• 群体的力量!

- 达尔文的进化论:
 - 自然选择,适者生存
- 孟德尔与摩根的遗传学理论:
 - 基因是决定生物特征的最基本的物质单元,基因在染色体上以一定的顺序和结构排列,每个基因有特殊的位置并控制生物的某些特性。
 - 基因组合的特异性决定了生物体的多样性,基因结构的 稳定性保证了生物物种的稳定性,而基因的杂交和变异 使生物进化成为可能。

Charles Robert Darwin, 1809-1882

Gregor Mendel, 1822-1884

- 生物进化过程的发生需要的基本条件:
 - 存在由多个生物个体组成的种群;
 - 生物个体之间存在着差异,或群体具有多样性;
 - 生物能够自我繁殖;
 - 不同个体具有不同的环境生存能力,具有优良基因结构的个体繁殖能力强,反之则弱。
 - 存在竞争(优胜劣汰)。

- 遗传算法基本思想
 - 将问题的候选解编码为二进制位串,称为<mark>染色体</mark>(**chromosome**)
 - 生成包含若干不同染色体的种群(population)
 - 根据每个染色体相对于某种适应度函数得到一个适应度 (fitness)
 - 保留适应度较高的染色体,淘汰剩余的染色体
 - "生存"下来的染色体得以复制(replication)下一代,同时以一定的概率交叉(crossover)和变异(mutation),以产生新的个体
 - 每一代均比上一代具有更好的平均性能
 - 通过若干代的进化,找到最优解

• 基本遗传算法

```
begin initialize \theta, P_{co}, P_{mut}, L N-bit chromosomes
             <u>do</u> Determine fitness of each chromosome, f_i, i = 1, ..., L
 2
                 Rank the chromosomes
 3
                 do Select two chromosomes with highest score
 4
                     <u>if</u> Rand[0,1) < P_{co} <u>then</u> crossover the pair at a randomly chosen bit
 5
                                            <u>else</u> change each bit with probability P_{mut}
 6
                                                  Remove the parent chromosomes
 7
                     until N offspring have been created
 8
                 <u>until</u> Any chromosome's score f exceeds \theta
 9
             return Highest fitness chromosome (best classifier)
10
     end
11
```

- 三种基本操作
 - 复制 (replication)
 - 染色体被原样复制一遍,不发生任何改变

110101001010010101011111010100011111010010

- 三种基本操作
 - 交叉 (crossover)
 - 两条染色体通过交换片段产生两条新的染色体
 - 在染色体上随机确定一个位置并截断
 - A染色体的第一部分与B染色体的第二部分连接
 - A染色体的第二部分与B染色体的第一部分连接

- 三种基本操作
 - 变异 (mutation)
 - 染色体中每个位以一个很小的概率改变自身(0变1,或1变0)

- 染色体编码
 - 如何将一个解编码为二进制位串
 - 任意形式的数据都可以表示为二进制串
 - 整数
 - 实数
 - 虚数
 - 向量
 - 矩阵
 - 图像
 - 字符
 -

• 选择

确定某一代中哪些染色体可以为下一代提供遗传信息

- 直接选择适应度最高的若干染色体可能会降低个体间的 差异度
- 更好的选择方法是:
 - 以较大的概率选择适应度得分高的染色体
 - 以较小的概率选择适应度得分低的染色体

让适应度分数不高的染色体也有一定机会进入下一代,以保留种群的多样性

- 选择
 - 赌轮选择 (roulette wheel selection)

• 例子 用遗传算法求 $f(x) = -\frac{1}{4}x^2 + 2x + 5$ 的在 $x \in [0,10]$ 范围内的最大值

• 编码

- 假设x的精度为小数点后两位
- 二进制编码为 x×100的二进制表示
- x×100 的范围为[0, 1000], 所以需要10位二进制数

- 例子 用遗传算法求 $f(x) = -\frac{1}{4}x^2 + 2x + 5$ 的在 $x \in [0,10]$ 范围内的最大值
 - 初始种群生成

No	x	100 <i>x</i>	染色体	
1	1.05	105	0001101001	
2	9.62	962	1111000010	
3	2.55	255	0011111111	
4	9.07	907	1110001011	
5	8.87	887	1101110111	

• 例子 用遗传算法求 $f(x) = -\frac{1}{4}x^2 + 2x + 5$ 的在 $x \in [0,10]$ 范围内的最大值

• 选择

No	染色体	x	f(x)	比例(%)
1	0001101001	1.05	6.82	31
2	1111000010	9.62	1.11	5
3	0011111111	2.55	8.48	38
4	1110001011	9.07	2.57	12
5	1101110111	8.87	3.08	14
总和			22.05	100

- 例子 用遗传算法求 $f(x) = -\frac{1}{4}x^2 + 2x + 5$ 的在 $x \in [0,10]$ 范围内的最大值
 - 选择

赌轮选择

• 例子 用遗传算法求 $f(x) = -\frac{1}{4}x^2 + 2x + 5$ 的在 $x \in [0,10]$ 范围内的最大值

交叉

• 以一定的概率 P_{co} 将选择出的两个染色体交叉

• 例子 用遗传算法求 $f(x) = -\frac{1}{4}x^2 + 2x + 5$ 的在 $x \in [0,10]$ 范围内的最大值

- 变异
 - 以一定的概率 P_{mut} 将选择出的染色体变异

小结

- 遗传算法
 - 三种基本操作
 - 复制 (replication)
 - 交叉 (crossover)
 - 变异 (mutation)
 - 基本过程
 - 编码
 - 生成种群
 - 计算适应度
 - 选择
 - 交叉
 - 变异