南京大学数学系试卷

姓名			学号			院系			
考试和			任课教师	张高飞		考试时间	闰_	2015.:	5.4
	题 号	_	二	三		四	总	分	
	得分								
一、填	空题 (4	l×4=16 タ	})						
1. $\left \frac{z-1}{z+1}\right < 1$ 表示的点 z 的轨迹图形为									
2. 设z=	$=1+i\sqrt{3}$,则 $\left e^{z^2}\right $	=	,	Li	nz. =			;
3. 级数	$\sum_{n=1}^{\infty} \frac{2^n}{n^2 + 1}$	z ⁿ 的收敛	文半径 <i>R</i> =	: 		;			
4. 设 $z = x + iy$, Γ 为连接 0 到 $1 + i$ 的直线段, 则 $\int_{\Gamma} (x - y + ix^2) dz = \underline{\qquad}$									
二、选	泽题 (4	1×4=16 9	})						
1. 函数	$f(z) = z ^2$	2在复平	面内()					
A) 处划	可导			B)	处久	上不可导			
C) 只在	z = 0处	可导		D)	只有	在 $z=0$ 处	不同	可导	
2. $z = 0$	是函数-	$\frac{\sin z - z}{z^3} \not=$	的 ()					
A) 解析	方点			B)	极点	Ä			
C) 可去	奇点			D)	本性	生奇点			
3. 级数	$\sum z^n/n \not\equiv$	E单位圆	周上 ()					
A) 处划	收敛			B)	除了	了 z=1处	处收	(敛	

C) 除了z=-1处处收敛 D) 处处不收敛

- 4. 方程 $z^4 5z + 1 = 0$ 在 1 < |z| < 2 内 (根的个数计算重数) ()
- A) 没有根

B) 有1个根

C) 有3个根

D) 有 4 个根

三、计算题 (6×3=18分)

- 1. 已知调和函数u = 2(x-1)y, f(2) = -i, 求函数f(z) = u + iv。
- 2. 将函数 $\int_0^z e^{z^2} dz$ 展成 z 的幂级数,并指出展式成立的范围。
- 3. 计算 $\int_{-\infty}^{+\infty} \frac{x \sin x}{1+x^2} dx$ 。

四、证明题 (10×5=50分)

1. 如果复数 z_1, z_2, z_3 满足等式 $\frac{z_2 - z_1}{z_3 - z_1} = \frac{z_1 - z_3}{z_2 - z_3}$, 证明: $|z_2 - z_1| = |z_3 - z_1| = |z_2 - z_3|$

并说明这些等式的几何意义。

- 2. 若函数 f(z) 在区域 D 内解析,且 $\overline{f(z)}$ 也在 D 内解析,证明 f(z) 在 D 内必为常数。
- 3. 设 f(z) 在闭圆 $|z| \le R$ 上解析。如果存在 a > 0,使当 |z| = R 时 |f(z)| > a,而且 |f(0)| < a,证明:在圆 |z| < R 内 f(z) 至少有一个零点。
- 4. 设C为复平面上的任意正向简单闭曲线,记 $g(w) = \int_C \frac{z^3 + 2z}{(z w)^3} dz$ 。证明当w在C内时 $g(w) = 6\pi i w$,而w在C外时g(w) = 0。
- 5. 假设函数 f 在正向简单闭曲线 C 内和 C 上解析,且在 C 上没有零点,证明:若 f 在 C 内有 n 个零点 z_k $(k=1,2,\cdots,n)$,其中每一个 z_k 的重数为 m_k ,则 $\int_C \frac{zf'(z)}{f(z)} dz = 2\pi i \sum_{k=1}^n m_k z_k$ 。