Envia tus examenes a lawikifiuba@gmail.com

Apellido y nombres:

Padrón:

..... Correo electrónico: .

Cursada. Cuatrimestre: Año: Profesor:

Análisis Matemático III.

Examen Integrador. Cuarta fecha. 20 de febrero de 2019.

1		2		3		4	
a	b	a	b	a	b	a	b

Justificar claramente todas las respuestas. La aprobación del examen requiere la correcta resolución de al menos 4(cuatro) ítems, entre los cuales debe figurar uno del ejercicio 1 o del 2 y uno del ejercicio 3 o del 4.

Ejercicio 1.

(a) Hallar la función potencial de un campo de fuerzas, u, que verifica:

$$abla^2 u(x,y) = 0$$
 para $x^2 + y^2 > 1$, $y > 0$
 $u(x,0) = 0$ para $|x| \geqslant 1$
 $u(x,y) = 1$ para $x^2 + y^2 = 1$, $y > 0$

y calcular las equipotenciales y y las líneas de fuerza.

(b) Demostrar la convergencia de $\int_0^\infty \frac{x}{1+x^5} dx$ y calcularla, usando variable compleja.

Ejercicio 2.

(a) Resolver la ecuación de difusión $u_t(x,t) = u_{xx}(x,t)$ para $0 < x < \pi$ y t > 0, con condiciones de contorno nulas y condición inicial $u(x,0) = \pi \sin(3x)$ para $0 \le x \le \pi$. Hallar y graficar aproximadamente las dependencias temporales: $u_1 = u(\pi/3,t), u_2 = u(\pi/2,t)$ y $u_3 = u(2\pi/3,t)$.

(b) Calcular el valor de $\sum_{n=1}^{\infty} \frac{1}{(2n-1)^6}$, sabiendo que la serie de Fourier de senos de

la función $f(t) = t(\pi - t)$ en $[0, \pi]$ es $\frac{8}{\pi} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^3} \operatorname{sen}((2n-1)t)$.

Ejercicio 3.

(a) Sean $f, g : \mathbb{R} \to \mathbb{R}$ con f absolutamente integrable y g(t) = f(t-1) + f(-t-1). Mostrar que existe la transformada de Fourier de g y calcularla en términos de la transformada de Fourier de f.

(b) Calcular la transformada inversa de Fourier de cada una de las siguientes funciones:

i)
$$F(w) = \frac{1}{1+iw}$$
 ii) $F(w) = \frac{1}{(iw+1)^2+4}$.

Ejercicio 4.

(a) Determinar si $f(t) = \begin{cases} te^{t^2} & \text{para } 0 \leq t < 1 \\ 0 & \text{para } t \geq 1 \end{cases}$ es de orden exponencial. Decidir si existe su transformada de Laplace y en caso afirmativo, calcular su valor en cero.

(b) Resolver el sistema:

$$\begin{cases} (x' * y)(t) + \sinh(t)H(t) = 0 \\ (x * y)(t) - \sinh(t)H(t) = 0 \end{cases}$$

con $x(0^+)=1$ y H(t) la función de Heaviside.