论文标题

tanghongyu

2024年7月5日

摘要

这里是摘要。这里是摘要。这里是摘要。这里是摘要。这里是摘要。这里是摘要。这里是摘要。这里是摘要。这里是摘要。这里是摘要。这里是摘要。这里是摘要。这里是摘要。

关键词:这里是关键词;这里是关键词。

目录

1	定理	1
2	表格	2
3	图片	3
	3.1 单图	3
	3.2 多图	3
4	公式	5
	4.1 单行公式	5
	4.2 多行公式	5
	4.3 分情况讨论	6
	4.4 公式编号	6
5	算法	6
A	附录标题	7

1 定理 1

1 定理

 $\operatorname{dingli}[1]$

2 表格 2

2 表格

表 1

表 2

- blue
- dark green
- light green
- yellow

蓝色	浅绿色	深绿色	黄色
1	2	3	4

¹这是蓝色

²这是深绿色

³这是浅蓝色

⁴这是黄色

3 图片

3 图片

3.1 单图

图 1: 0 杀吃鸡

3.2 多图

3 图片 4

4 公式 5

4 公式

希腊字母:

α	\alpha	β	\beta	γ	\gamma
δ	\delta	ϵ	\epsilon	ε	\varepsilon
ζ	\zeta	η	\eta	θ	\theta
λ	\lambda	μ	\mu	ν	\nu
ξ	\xi	π	\pi	ρ	\rho
σ	\sigma	τ	\tau	ϕ	\phi
φ	\varphi	ψ	\psi	ω	\omega

以下字母存在大写形式 (省略了一些带\var前缀的),只需把首字母大写即可。

4.1 单行公式

单行公式较为简单,直接在 \$...\$ 之间输入公式代码即可,例如:

$$E_0 = mc^2 (1)$$

4.2 多行公式

多行公式涉及到手动在恰当的地方用 \\ 分行,同时用 & 对齐,本模板中以等号对齐为例:

$$Dec_{sk}(\alpha) = (a_1 \cdot a_2) + (a_2 \cdot b_1) + (a_1 \cdot b_2)$$

$$= m_1 m_2 - m_1 b_2 - m_2 b_1 + b_1 b_2 + m_2 b_1 - b_1 b_2 + m_1 b_2 - b_1 b_2$$
(2)
$$= m_1 m_2 - b_1 b_2$$

5 算法 6

分情况讨论 4.3

 $\begin{cases} \Delta > 0 & \text{方程有两个不相等的实根} \\ \Delta = 0 & \text{方程有两个相等的实根} \\ \Delta < 0 & \text{方程有两个复根} \end{cases}$

4.4 公式编号

还没想好捏

算法 5

Algorithm 1 斐波那契数列算法

Input: 斐波那契数列的长度 n

Output: 斐波那契数列的前 n 项

- 1: Initialize $F[0] \leftarrow 0, F[1] \leftarrow 1$
- 2: **for** i = 2 to n **do**
- $F[i] \leftarrow F[i-1] + F[i-2]$
- 4: end for
- 5: **return** 斐波那契数列 $F[0], F[1], \dots, F[n-1]$

参考文献

7

[1] Taher ElGamal. "A public key cryptosystem and a signature scheme based on discrete logarithms". In: *IEEE transactions on information theory* 31.4 (1985), pp. 469–472.

A 附录标题

这里是附录.