Andrew Vu - CS156 HW7

April 6, 2022

1 CS156 (Introduction to AI), Spring 2022

2 Homework 7 submission

2.0.1 Roster Name: Andrew Vu

2.0.2 Student ID: 015055911

2.0.3 Email address: andrew.k.vu@sjsu.edu

Any special notes or anything you would like to communicate to me about this homework submission goes in here.

2.1 References and sources

List all your references and sources here. This includes all sites/discussion boards/blogs/posts/etc. where you grabbed some code examples.

- https://www.geeksforgeeks.org/violinplot-using-seaborn-in-python/
- https://stackoverflow.com/questions/68629457/seaborn-grouped-violin-plot-without-pandas
- https://seaborn.pydata.org/generated/seaborn.swarmplot.html#seaborn.swarmplot

2.2 Solution

Load libraries and set random number generator seed

```
[137]: import numpy as np
  import pandas as pd
  import seaborn as sns
  import matplotlib.pyplot as plt

from sklearn import datasets
  from sklearn.model_selection import train_test_split
  from sklearn.neural_network import MLPClassifier

from sklearn.model_selection import StratifiedKFold
  from sklearn.model_selection import cross_val_score
```

```
[138]: np.random.seed(42)
```

Code the solution

2.2.1 Load the Dataset

```
[139]: digits = datasets.load digits()
       X = digits.data
       X = X.astype("float32") / 255
       Y = digits.target
       class_names = digits.target_names
       X.shape, Y.shape, class_names
[139]: ((1797, 64), (1797,), array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]))
[140]: digits_df = pd.DataFrame(X, columns=digits.feature_names)
       digits_df['output_digit'] = Y
       digits_df.head()
[140]:
          pixel_0_0 pixel_0_1 pixel_0_2 pixel_0_3 pixel_0_4 pixel_0_5 \
                                  0.019608
                                                                    0.003922
                0.0
                           0.0
                                             0.050980
                                                        0.035294
       1
                0.0
                           0.0
                                  0.000000
                                             0.047059
                                                        0.050980
                                                                    0.019608
       2
                0.0
                           0.0
                                  0.000000
                                                        0.058824
                                                                    0.047059
                                             0.015686
       3
                0.0
                           0.0
                                  0.027451
                                             0.058824
                                                        0.050980
                                                                    0.003922
       4
                0.0
                           0.0
                                  0.000000
                                             0.003922
                                                        0.043137
                                                                    0.000000
          pixel_0_6 pixel_0_7 pixel_1_0 pixel_1_1
                                                       \dots pixel_6_7 pixel_7_0 \
       0
                0.0
                           0.0
                                       0.0
                                             0.000000
                                                                 0.0
                                                                            0.0
       1
                0.0
                           0.0
                                       0.0
                                             0.000000
                                                                 0.0
                                                                            0.0
       2
                                             0.000000
                0.0
                           0.0
                                       0.0
                                                                 0.0
                                                                            0.0
       3
                0.0
                           0.0
                                                                 0.0
                                                                            0.0
                                       0.0
                                             0.031373
                0.0
                           0.0
                                             0.000000
                                                                 0.0
                                                                            0.0
                                       0.0
          pixel_7_1 pixel_7_2 pixel_7_3 pixel_7_4 pixel_7_5 pixel_7_6 \
       0
                0.0
                      0.023529
                                  0.050980
                                             0.039216
                                                        0.000000
                                                                    0.000000
                0.0
       1
                      0.000000
                                  0.043137
                                             0.062745
                                                        0.039216
                                                                    0.000000
       2
                0.0
                      0.000000
                                  0.011765
                                             0.043137
                                                        0.062745
                                                                    0.035294
       3
                0.0
                      0.027451
                                                                    0.000000
                                  0.050980
                                             0.050980
                                                        0.035294
       4
                0.0
                      0.000000
                                  0.007843
                                             0.062745
                                                        0.015686
                                                                    0.000000
          pixel_7_7
                    output_digit
       0
                0.0
                                 0
                0.0
                                 1
       1
       2
                0.0
                                 2
       3
                0.0
                                 3
                0.0
```

[5 rows x 65 columns]

2.2.2 Split data into training and test & stratify

```
[141]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, 

→random_state=0, stratify=Y)

X_train.shape, X_test.shape, Y_train.shape, Y_test.shape
```

```
[141]: ((1437, 64), (360, 64), (1437,), (360,))
```

2.2.3 6 different MLP models

2.2.4 Stratified 5-fold cross-val prediction accuracy per fold

```
[143]: cross_vals1 = cross_val_score(model1, X_train, Y_train, cv=5) cross_vals2 = cross_val_score(model2, X_train, Y_train, cv=5) cross_vals3 = cross_val_score(model3, X_train, Y_train, cv=5) cross_vals4 = cross_val_score(model4, X_train, Y_train, cv=5) cross_vals5 = cross_val_score(model5, X_train, Y_train, cv=5) cross_vals6 = cross_val_score(model6, X_train, Y_train, cv=5) print('Individual cross-validation accuracies for Model 1: ' + str(cross_vals1)) print('Individual cross-validation accuracies for Model 2: ' + str(cross_vals2)) print('Individual cross-validation accuracies for Model 3: ' + str(cross_vals3)) print('Individual cross-validation accuracies for Model 4: ' + str(cross_vals4)) print('Individual cross-validation accuracies for Model 5: ' + str(cross_vals5)) print('Individual cross-validation accuracies for Model 6: ' + str(cross_vals6))
```

```
Individual cross-validation accuracies for Model 1: [0.96180556 0.98263889 0.95818815 0.96864111 0.96515679]
Individual cross-validation accuracies for Model 2: [0.95486111 0.97569444 0.95121951 0.95818815 0.95121951]
Individual cross-validation accuracies for Model 3: [0.93402778 0.9583333 0.92682927 0.93031359 0.93728223]
Individual cross-validation accuracies for Model 4: [0.9375 0.95486111 0.91289199 0.95121951 0.94425087]
Individual cross-validation accuracies for Model 5: [0.94444444 0.96527778
```

```
0.95121951 0.93728223 0.94425087]
Individual cross-validation accuracies for Model 6: [0.94791667 0.97222222 0.94425087 0.95121951 0.95121951]
```

2.2.5 Prediction Accuracy for each model on test set

```
[144]: model1accuracy = model1.score(X_test, Y_test)
       model2accuracy = model2.score(X_test, Y_test)
       model3accuracy = model3.score(X_test, Y_test)
       model4accuracy = model4.score(X test, Y test)
       model5accuracy = model5.score(X_test, Y_test)
       model6accuracy = model6.score(X_test, Y_test)
       print('Accuracy of MLPClassifier Model1 on test set: {:.2f}'.
       →format(model1accuracy))
       print('Accuracy of MLPClassifier Model2 on test set: {:.2f}'.
       →format(model2accuracy))
       print('Accuracy of MLPClassifier Model3 on test set: {:.2f}'.
       →format(model3accuracy))
       print('Accuracy of MLPClassifier Model4 on test set: {:.2f}'.
       →format(model4accuracy))
       print('Accuracy of MLPClassifier Model5 on test set: {:.2f}'.
        →format(model5accuracy))
       print('Accuracy of MLPClassifier Model6 on test set: {:.2f}'.
        →format(model6accuracy))
```

```
Accuracy of MLPClassifier Model1 on test set: 0.97
Accuracy of MLPClassifier Model2 on test set: 0.95
Accuracy of MLPClassifier Model3 on test set: 0.94
Accuracy of MLPClassifier Model4 on test set: 0.93
Accuracy of MLPClassifier Model5 on test set: 0.95
Accuracy of MLPClassifier Model6 on test set: 0.95
```

2.2.6 Setting up the variables for plotting

```
vals = vals.flatten()
```

2.2.7 Plotting the cross vals & test set accuracy

AxesSubplot(0.125,0.125;0.775x0.755)

