Estrutura e Dinâmica da Galáxia Lista de Exercícios

- 1. Qual estratégia você utilizaria para determinar as coordenadas do polo galáctico?
- 2. Uma estrela tem coordenadas $\alpha=22^{\rm h}\,50^{\rm m}\,14^{\rm s}$ e $\delta=-40^{\circ}\,57'\,42.8''$ e se encontra a uma distância de 1.3 kpc do Sol. Sua velocidade radial é $v_{\rm rad}=228~{\rm km/s}$ e seu movimento próprio é $\mu_{\alpha}=38~{\rm mas/yr}$ e $\mu_{\delta}=-119~{\rm mas/yr}$. Calcule a sua posição e velocidade galactocéntrica, assumindo que o Sol se encontra a 8.33 kpc do centro da Galáxia, a 17 pc acima do plano da Galáxia, que as componentes da velocidade peculiar do Sol são $(U,V,W)=(8.5,\,13.4,\,6.5)~{\rm km/s},$ e que a velocidade circular do LSR é 220 km/s. Resposta:

$$x = -7712.05 \text{ pc}, \quad y = -42.95 \text{ pc}, \quad z = -1125.93 \text{ pc}, \quad r = 7793.93 \text{ pc}$$

$$v_x = 133.88 \text{ km/s}, \quad v_y = -527.97 \text{ km/s}, \quad v_z = -156.44 \text{ km/s}, \quad v = 566.70 \text{ km/s}$$

- 3. Dois aglomerados abertos apresentam os seus respectivos pontos de turn-off em valores de (B-V)=-0.1 e 0.3, respectivamente. Estime a idade aproximada de ambos. $Resposta: 3.55 \times 10^8$ e 2.50×10^9 anos, respectivamente.
- 4. O VizieR (http://vizier.u-strasbg.fr/) é um repositório de catálogos astronômicos. Faça o download do catálogo de aglomerados da Via Láctea compilado por Kharchenko et al. (2013) –Milky Way global survey of star clusters. II.- e selecione deste catálogo os aglomerados globulares. Sabendo que os aglomerados mais distantes (d > 4 kpc) se distribuem de forma esférica ao redor do centro da Galáxia, determine as coordenadas α, δ e a distância ao centro da Galáxia.

Resposta:
$$\alpha = 261.27^{\circ}$$
, $\delta = -27.58^{\circ}$, $r = 7.45 \text{ kpc}$

5. A tabela a seguir apresenta a distribuição das magnitudes aparentes monocromáticas da linha de OIII para um conjunto de nebulosas planetárias localizadas numa galáxia distante:

Tabela 1:	
m	N
20.50	3
20.60	5
20.75	12
20.90	20
21.10	18
21.25	35
21.40	25
21.50	30
21.70	20

Assumindo que esta distribuição segue uma lei exponencial truncada da forma

$$N(m) = N_0 e^{0.307m} \left(1 - e^{3(m_c - m)} \right)$$

onde N_0, m_c são parâmetros da distribuição, e sabendo que, a partir de calibrações secundárias, a magnitude de corte da função de luminosidade das nebulosas planetárias é $M_c = -4.47 \pm 0.05$, determine a distância da galáxia observada. Negligencie qualquer absorção interestelar.

Resposta: 0.969 Mpc

6. Para um dado conjunto de estrelas de características semelhantes na vizinhança solar, a função de luminosidade $\Lambda(M)$ é dada por uma distribuição Gaussiana com média M_0 e desvio padrão σ_0 . Assumindo que a densidade D(r) seja constante, determine qual deveria ser a distribuição da contagem de estrelas em termos da magnitude aparente A(m). A partir deste resultado, calcule o viés de Malmquist.

Resposta: $\Delta M = -1.38155\sigma_0^2$

- 7. A partir do resultado do exercício anterior, considere o catálogo de estrelas próximas de Gliese et al. (1991) Nearby Stars, Preliminary 3rd Version, disponível no VizieR– e selecione todas as estrelas de tipo espectral F e classe de luminosidade V com magnitude aparente $3 \le m \le 10$. Determine a magnitude absoluta média e o desvio padrão da amostra e estime o valor de M_0 . Resposta: $M_0 = 4.863$
- 8. A velocidade radial medida de uma estrela na vizinhança solar pode ser escrita como

$$v_{r,i} = V_{r,i} - V_S \cos \gamma_i$$

onde V_S é a velocidade do Sol em direção ao ápex, γ_i é o ângulo entre a direção do ápex e a linha de visada, e $V_{r,i}$ é a componente peculiar da velocidade radial. A partir do catálogo de velocidades radiais de Kharchenko et al. (2007) -2nd Catalog of Radial Velocities with Astrometric Data, disponível no VizieR-, selecione as estrelas de tipo espectral F na vizinhança solar ($d \leq 200$ pc), com magnitude aparente $V \leq 10$, que estejam localizadas nas seguintes regiões do céu:

Tabela 2:		
	Região 1 (plano galáctico)	Região 2 (polo galáctico)
α	$6^{\rm h} \pm 40^{\rm m}$	$12^{\rm h} \pm 40^{\rm m}$
δ	$30^{\circ} \pm 10^{\circ}$	$0^{\circ} \pm 30^{\circ}$

Para cada conjunto de estrelas nas duas regiões, determine a distribuição das velocidades radiais, e calcule as respectivas médias e desvios padrão. Sabendo que $V_S = 20 \text{ km/s}$ e que as coordenadas do ápex são $\alpha_A = 18^{\text{h}}$, $\delta_A = 30^{\circ}$ determine:

- (a) se a velocidade média de cada amostra pode ser atribuída ao movimento do Sol;
- (b) se a distribuição de velocidades na vizinhança solar é Maxwelliana ou elipsoidal.
- 9. Repita o cálculo do exercício anterior considerando as estrelas de tipo espectral A e as de tipo K. Discuta as diferenças.
- 10. Quais dos seguintes conjuntos de unidades correspondem a um potencial gravitacional?
 - (a) $M_{\odot} \, \text{pc}^{-3}$
 - (b) $au^2 yr^{-2}$

- (c) kg m^{-1}
- 11. IC 2574 é uma galáxia de baixo brilho superficial cuja parte central está dominada por matéria escura. Sabendo que dentro de um raio de 6 kpc do centro a curva de rotação cresce linearmente com a distância, $v_c \propto r$, determine como varia o perfil de densidade $\rho(r)$ na região central dessa galáxia.
- 12. Encontre a expressão da velocidade circular v_c e do tempo dinâmico t_{dyn} para o potencial de Plummer. Assumindo que $M=10^{11}\,M_{\odot}$ e b=1 kpc, considere uma estrela com $L=1.6\times10^3$ kpc km s⁻¹ e $E=-2.4\times10^4$ km²/s², e determine os valores de:
 - (a) A distância da estrela no pericentro e no apocentro;
 - (b) A excentricidade da órbita;
 - (c) Os períodos radial T_r e azimutal T_{ψ}

```
(utilize o valor de G = 4.302 \times 10^{-3} \ \mathrm{pc \, km^2 s^{-2}} M_{\odot}^{-1}).

Resposta: r_p = 3.97836 \ \mathrm{kpc}, \ r_a = 14.09666 \ \mathrm{kpc}, \ T_r = 3.49 \times 10^{10} \ \mathrm{anos}, \ T_{\psi} = 1.74 \times 10^8 \ \mathrm{anos}
```

- 13. O Sol orbita o centro da Via Láctea com um período de aproximadamente 220 Myr seguindo uma órbita que não é exatamente circular, mas que oscila radialmente com uma pequena amplitude. Qual seria o intervalo de valores possíveis para o período dessa oscilação radial?
- 14. Faça uma estimativa da massa da Via Láctea aplicando:
 - (a) a velocidade circular do Sol, a 8,33 kpc do centro;
 - (b) o virial do conjunto de aglomerados globulares (Kharchenko et al. 2013), assumindo um potencial externo;
 - (c) o virial do conjunto de aglomerados globulares, assumindo um sistema autogravitante.

Discuta as diferenças nos valores encontrados.

Resposta:
$$M = 9.12 \times 10^{10} \ M_{\odot}$$
; $1.72 \times 10^{11} \ M_{\odot}$; $6.37 \times 10^{11} \ M_{\odot}$

- 15. Assumindo que massa da Via Láctea obtida no ponto anterior esteja concentrada dentro da órbita solar e distribuída esfericamente, determine o valor da velocidade de escape v_{esc} na vizinhança solar e estabeleça a relação entre v_{esc} e v_c . $Resposta: v_{esc} = 307 \text{ km s}^{-1}$
- 16. A galáxia anã de Fornax possui uma massa de aproximadamente $10^7 M_{\odot}$, um tamanho de aproximadamente 1 kpc, e uma dispersão de velocidades típica de 10 km/s. Calcule o seu tempo de relaxamento, t_{relax} .

Resposta: 2.38×10^{13} anos

- 17. Considere as galáxias de um aglomerado de massa total M. Se a massa do aglomerado dobrasse, mas as posições das galáxias fossem mantidas, qual seria a variação típica nas suas velocidades?
- 18. Suponha que conseguimos medir o perfil de densidade 3D, $\nu(r)$, e a dispersão radial de velocidades, $\sigma_r(r)$, para um sistema esférico não rotante e estimamos a sua massa assumindo que o parâmetro de anisotropia é $\beta = 0$. Qual seria o máximo erro possível desta estimativa se a fração de órbitas radiais do sistema fosse significativa?
- 19. Considere que o perfil de densidade, $\nu(r)$, e a distribuição de massa, M(< r), de um sistema esférico não rotante são bem representados pelo modelo de Hernquist (neste caso, assumimos $\nu(r) = \rho(r)/M$). Qual seria neste caso o comportamento da dispersão radial de velocidades, $\sigma_r(r)$, para $r \gg 1$, considerando valores do parâmetro de anisotropia $\beta = 1/2$ e $\beta = 1$?

- 20. Aplicando a fórmula de Eddington, determine a função distribuição ergódica, $f(\mathcal{E})$, para o potencial de Plummer.
- 21. Suponha que você conhece a função distribuição ergódica, $f(\mathcal{E})$, para um sistema esférico não rotante, onde $\mathcal{E} = -\frac{E\,a}{GM}$ é a energia normalizada do sistema (a é uma constante com dimensões de distância), e que você quer determinar a função distribuição $f(\mathcal{E}, \mathbf{L})$ para este mesmo sistema mas agora em rotação ao redor do eixo z, de maneira que se mantenha aproximadamente o perfil esférico original. Qual das opções a seguir seria uma possível solução?

(a)
$$f(\mathcal{E}, \mathbf{L}) = f(\mathcal{E}) \frac{L_z^2}{L^2}$$

(b)
$$f(\mathcal{E}, \mathbf{L}) = f(\mathcal{E}) \frac{1}{2} \left[1 + \tanh\left(\frac{L_z}{\sqrt{GMa}}\right) \right]$$

(c)
$$f(\mathcal{E}, \mathbf{L}) = f(\mathcal{E}) \frac{1}{2} \left[1 + \tanh\left(\frac{L_z^2}{GMa}\right) \right]$$

(d)
$$f(\mathcal{E}, \mathbf{L}) = f(\mathcal{E}) [1 + \operatorname{sgn}(L_x)]$$