# **Temporal autocorrelation**

Lots of ways to analyze/model time series data:

- Autoregressive
- Spectral analysis
- Mechanistic population dynamics

How to use time series data in LM, GLM, GLMM, etc?

### 'alae ke'oke'o - Hawaiian coot - Fulica alai

Endemic and endangered





- Rainfall may affect habitat availability, but also counting/detection success
- Treat the bird counts as lognormal



Patterns in time series can be explore with autocorrelation function:

$$r_k = \frac{\sum_{t=1}^{N-k} (Y_t - \bar{Y})(Y_{t+k} - \bar{Y})}{\sum_{t=1}^{N} (Y_t - \bar{Y})^2}$$

# ggAcf(log(birds\$Coot.Maui))



Why might abundance be correlated at 1-2 year lag?

How can we model this kind of dependence, using only the time series itself?

# **Autoregressive model**

The observation at time t depends on one or more previous observations

$$Y_t = c + \varphi Y_{t-1} + \varepsilon_t$$

Usually assume phi is between -1 and 1; represents the lag-1 autocorrelation

This is AR(1)

**AR(2):** 

$$Y_t = c + \varphi_1 Y_{t-1} + \varphi_2 Y_{t-2} + \varepsilon_t$$

```
#AR1
phis = c(0.4, 0.8, -0.5)
par(mfrow = c(3,3), mar = c(4,4,2,1))
for (j in 1:3) {
Y = 1
tmax = 10000
SD = 0.5
phi = phis[j]
for (t in 2:tmax) {
  Y[t] = phi*Y[t-1] + rnorm(1, mean = 0, sd = SD)
plot(c(1:50), Y[1:50], type = 'b', pch = 19, main = paste('AR(1), phi = ', phi)
xlab = 'time', ylab = 'Y')
abline(h = mean(Y), col = 'red', lty = 3, lwd = 2)
acf(Y, lwd = 3, lag.max = 15, ylim = c(-0.3, 1), main = '10000 observations')
acf(Y[1:50], lwd = 3, lag.max = 15, ylim = c(-0.3, 1), main = '50 observations'
')
```



$$Y_2 = \varphi Y_1 + \varepsilon_2$$

$$Y_3 = \varphi Y_2 + \varepsilon_3 = \varphi(\varphi Y_1 + \varepsilon_2) + \varepsilon_3 = \varphi^2 Y_1 + \varphi \varepsilon_2 + \varepsilon_3$$

Lag-1 0.4

Lag-2  $0.4^2 = 0.16$ 

Lag-3  $0.4^3 = 0.064$ 

E.g., a species that lives for a few years





## **Partial autocorrelation function:**

Correlation at lag k, after removing the effect of earlier lags

acf(mydata, type = "partial")



### Moving average model

Value at time t doesn't depend directly on previous values

Depends on random 'shocks' from previous timesteps

$$Y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$

Connection to population dynamics less obvious, but good at modeling short-term autocorrelation that does not have a 'memory'

$$Y_t = \mu + \varepsilon_t + \theta_1 \varepsilon_{t-1} + \dots + \theta_q \varepsilon_{t-q}$$



In principle, can distinguish AR and MA, and their order, using acf

But with limited data it's not so clear. Try simple models, compare, add compexity.

### **Generalized least squares (GLS)**

We want to 1) model the effect of rainfall on abundance, 2) while also accounting for temporal autocorrelation

We will do this by adding a model for the residuals

Terminology is unfortunate:

- GLS is for normal data with correlated residuals
- GLM for non-normal data with uncorrelated residuals
- GEE = Generalized Estimating Equations is for non-normal data with correlated resids

$$Y_t = \beta_0 + \beta_1 X_t + \varepsilon_t$$

$$\begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{bmatrix} = \varepsilon \sim MultivariateNormal(\Sigma)$$

$$\Sigma = \sigma^2 \begin{bmatrix} 1 & \varphi & \varphi^2 & \varphi^3 \\ \varphi & 1 & \varphi & \varphi^2 \\ \varphi^2 & \varphi & 1 & \varphi \\ \varphi^3 & \varphi^2 & \varphi & 1 \end{bmatrix}$$

Sigma<sup>2</sup> is the residual variance

**Phi** is the correlation between consecutive residuals

This is an AR(1) model

Note: we assume the amount of variability does not change over time

Stationary: the distribution from which the data are drawn does not change over time

```
mod.nopredictors = gls(log(Coot.Maui) ~ 1, data = birds, correlation =
corAR1(form =~ Year))
```

Syntax like lm(), but with a correlation argument

See ?corStruct

AR1 has its own function

Can also do AR1 within groups: form =~ Year | Site

```
## Generalized least squares fit by REML
    Model: log(Coot.Maui) ~ 1
    Data: birds
##
## AIC BIC logLik
   82.3 87.85 -38.15
##
##
## Correlation Structure: AR(1)
## Formula: ~Year
## Parameter estimate(s):
## Phi
## 0.587
##
## Coefficients:
              Value Std.Error t-value p-value
## (Intercept) 4.752
                        0.18
                                26.4
## Standardized residuals:
       Min
                        Med
                 01
                                  Q3
                                          Max
## -2.01305 -0.61361 -0.08572 0.63491 2.34595
##
## Residual standard error: 0.6547
## Degrees of freedom: 48 total; 47 residual
```

Can compare raw residuals and 'normalized' residuals

$$Y_t - \text{fitted}(Y_t) = \eta_t = \varphi \eta_{t-1} + \varepsilon_t$$

```
plot(resid(mod.nopredictors) ~ birds$Year, type = 'b', pch = 19, main = 'raw o
ver time')
abline(h = 0, col = 'red')
plot(resid(mod.nopredictors, type = "normalized") ~ birds$Year, type = 'b', pc
h = 19, main = 'normalized over time')
abline(h = 0, col = 'red')
acf(resid(mod.nopredictors), lwd = 3, main = 'raw residuals')
acf(resid(mod.nopredictors, type = "normalized"), lwd = 3, main = 'normalized
residuals')
                                                                  raw residuals
                            raw over time
                                                        1.0
              resid(mod.nopredictors)
                 0.
                                                        9.0
                                                    ACF
                 0.0
                                                        0.2
                                                        -0.2
                                  1980
                                                                             10
                                                                                     15
                      1960
                                             2000
                                                            0
                                                                     5
                               birds$Year
                                                              Lag normalized residuals
             sid(mod.nopredictors, type = "normaliz
                       normalized over time
                                                        1.0
                 \alpha
                                                        9.0
                                                    ACF
                 0
                                                        0.2
                                                        -0.2
                 Ŋ
                                                                             10
                      1960
                                  1980
                                             2000
                                                                     5
                                                                                     15
                                                            0
                               birds$Year
                                                                         Lag
```

Important: model assumes residuals independent after accounting for the predictors

So using the right predictor may be sufficient (like we saw with the spatial smoother)≈

```
mod = lm(log(Coot.Maui) ~ Rainfall, data = birds)
acf(resid(mod))
```

## Series resid(mod)



```
mod1 = gls(log(Coot.Maui) ~ Rainfall, data = birds, correlation = corAR1(form
=~ Year)
acf(resid(mod1, type = "normalized"))
```

# Series resid(mod1, type = "normalized")



Model: log(Coot.Maui) ~ Rainfall + Rainfall.lag1
Data: subset(birds, !is.na(Rainfall.lag1))
 AIC BIC logLik
74.40192 83.65266 -32.20096

Correlation Structure: AR(1)

Formula: ~Year

Parameter estimate(s):

Phi

0.4161663

#### Coefficients:

Value Std.Error t-value p-value (Intercept) 5.538649 0.30630520 18.082126 0.0000 Rainfall -0.032254 0.00949971 -3.395276 0.0015 Rainfall.lag1 -0.010790 0.00950933 -1.134696 0.2626

#### Correlation:

(Intr) Ranfll

Rainfall -0.737

Rainfall.lag1 -0.739 0.294

#### Standardized residuals:

Min Q1 Med Q3 Max -2.05602659 -0.81469555 0.06235979 0.62591168 2.26555967

Residual standard error: 0.5269013

Degrees of freedom: 47 total; 44 residual

# > anova(mod1)

Denom. DF: 44

```
numDF F-value p-value
(Intercept) 1 1517.5655 <.0001
Rainfall 1 10.2611 0.0025
Rainfall.lag1 1 1.2875 0.2626
```



# Rainfall.lag1 effect plot



### **Conclusions?**

- High rainfall in current year may make detection harder (more habitat)
- High rainfall in previous year doesn't seem to translate into a larger population this year

exp(5) = 148 to exp(4) = 55

$$mod.gam.year = gam(log(Coot.Maui) \sim s(Year), data = birds)$$

### Series resid(mod.gam.year)



```
mod.gam.year = gam(log(Coot.Maui) \sim s(Year), data = birds)
> gam.check(mod.gam.year)
Method: GCV Optimizer: magic
Smoothing parameter selection converged after 9 iterations.
The RMS GCV score gradiant at convergence was 4.240182e-07 .
The Hessian was positive definite.
The estimated model rank was 10 (maximum possible: 10)
Model rank = 10 / 10
Basis dimension (k) checking results. Low p-value (k-index<1) may
indicate that k is too low, especially if edf is close to k'.
          k' edf k-index p-value
s(Year) 9.000 8.033 0.886
                              0.14
```



### Series resid(mod.gam.rainfall)



```
mod.gam.rainfall = gam(log(Coot.Maui) \sim s(Rainfall) + s(Year), data = birds)
  Family: gaussian
  Link function: identity
  Formula:
  log(Coot.Maui) ~ s(Rainfall) + s(Year)
  Parametric coefficients:
              Estimate Std. Error t value Pr(>|t|)
  (Intercept) 4.7485 0.0694 68.43 <2e-16 ***
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  Approximate significance of smooth terms:
               edf Ref.df F p-value
  s(Rainfall) 1.102 1.197 12.200 0.000559 ***
  s(Year) 2.686 3.349 3.544 0.018407 *
  Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
  R-sq.(adj) = 0.437 Deviance explained = 48.2\%
  GCV = 0.25677 Scale est. = 0.23116 n = 48
```

For non-normal data: Generalized Estimating Equations

Basically an extension of quasipoisson, quasibinomial

For Poisson, assume the variance is proportional to the mean, modified by the residual correlation structure you specify

```
library(geepack)
birds$idvar = factor(rep('1', nrow(birds)))
gee.rainfall = geeglm(Coot.Maui ~ Rainfall, family = poisson, id = idvar, corstr = 'ar1', data = birds)
```

### For non-normal data: Generalized Estimating Equations

Basically an extension of quasipoisson, quasibinomial

For Poisson, assume the variance is proportional to the mean, modified by the residual correlation structure you specify

```
Call:
geeglm(formula = Coot.Maui ~ Rainfall, family = poisson, data = birds,
   id = idvar, corstr = "ar1")
Coefficients:
            Estimate Std.err
                                  Wald Pr(>|W|)
(Intercept) 5.45e+00 3.95e-07 1.90e+14 <2e-16 ***
Rainfall -2.95e-02 1.77e-08 2.78e+12 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Estimated Scale Parameters:
           Estimate Std.err
(Intercept) 54.9 1.27e-06
Correlation: Structure = ar1 Link = identity
Estimated Correlation Parameters:
     Estimate Std.err
alpha 0.553 1.55e-07
Number of clusters: 1 Maximum cluster size: 48
```