Основы компьютерного зрения

Панфилова Кристина Владимировна 2017

Окурсе

Структура

- 16 аудиторных занятий
- 7 блоков
 - Фильтрация и улучшение изображений
 - Сегментация изображений
 - Описание изображений
 - Преобразования изображений
 - Компьютерное зрение
 - Машинное обучение
 - о Стереозрение
- Закрепление материала (он-лайн тестирование)

Литература

- 1. Гонсалес Р., Вудс Р. Цифровая обработка изображений М.: Техносфера, 2012
- 2. Гонсалес Р., Вудс Р., Эддинс С. Цифровая обработка изображений в MATLAB М.: Техносфера, 2006
- 3. Умняшкин С.В., Лесин В.В. Основы цифровой обработки изображений. М.: МИЭТ, 2016
- 4. Шапиро Л., Стокман Дж. Компьютерное зрение, 2006

Уровни обработки изображений

- Цифровая обработка изображений (изменение изображения)
- Компьютерное зрение (получение атрибутов изображения)
- Распознавание образов и машинное обучение (действия на основе

Восприятие света

Схема глаза человека в разрезе

Колбочки vs Палочки

<u>Колбочки</u> (6-7 млн.)

- Образуют желтое пятно
- Мелкие детали: колбочка нервное окончание
- Фотопическое зрение

Палочки (75-150 млн)

- Общая картина: нервное окончание - ~10 палочек
- Скотопическое зрение

Чтобы наблюдать у себя слепое пятно, закройте *правый* глаз и *левым* глазом посмотрите на *правый* крестик, который обведён кружочком.

Формирование изображений

Считывание и регистрация изображения

Модель формирования изображения

Аналоговое изображение - функция яркости f(x, y) непрерывных аргументов, определенных в прямоугольнике $0 \le x \le A$, $0 \le y \le B$

Дискретное изображение

$$\{f_{m,n} = f(m\triangle x, n\triangle y)\}\ m = 0, 1, ..., M-1, n = 0, 1, ..., N-1$$

Где $\triangle x = A/M$ и $\triangle y = B/N$ - шаги дискретизации

Цифровое изображение

Дискретное изображение, у которого $f_{mn} \in \{l_0, ..., l_{L-1}\}$, где L - число уровней яркости.

Квантование изображения с разным числом уровней *L*

L = 32

L = 128

Добавление шума перед квантованием

Проблемы формирования цифровых изображений

- Геометрические искажения
- Дисперсия
- Блюминг
- и далее

Типы изображений

Типы изображений

- Полутоновое изображение (монохромное)
- Многоспектральное изображение
- Бинарное изображение
- Маркированное изображение

Форматы изображений

Растровый порядок

Portable Bit Map (PBM)

```
P3
# feep.ppm
8 8
255
255 255 0
            255 255 0
                        255 255 0
                                     255 255 0 255 255 0
                                                            255 255 0
255 255 0
            255 255 0
255 255 0
            255 255 0
                        255 255 0
                                     255 255 0
                                                255 255 0
                                                             255 255 0
255 255 0
            255 255 0
                                     255 0 255
                           0
                              0
                 0 255
            0 255 127
                        0 0
                              0
                                                             0 255 127
                                                      0
                        0 255 127
                                                      0
0 255 127
255
    0 255
                        0
                           0
                              0
                                        0
                                          0
                                                255
                                                     0 255
                                                            0
                                                               0 0
  0
255 255 0
            255 255 0
                        255 255 0
                                     255 255 0
                                                255 255 0
                                                             255 255 0
255 255 0
            255 255 0
255 255 0
            255 255 0
                        255 255 0
                                     255 255 0
                                                255 255 0
                                                             255 255 0
255 255 0
            255 255 0
```

JPEG

Цветные изображения

RGB

Джеймс Максвелл предложил аддитивный синтез цвета как спосо получения цветных изображений в 1861 году

CMY, CMYK

Если смешать в равном количестве голубой, пурпурный и желтый, то теоретически будет черный, Но на практике получается осветленный черный. Поэтому для печати используется СМҮК с черным.

$$\begin{pmatrix} C \\ M \\ Y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} - \begin{pmatrix} R \\ G \\ B \end{pmatrix}$$

HSI

- Hue
- Saturation
- Intensity

YCbCr

Y - яркостная компонента Cb, Cr - цветоразностные составляющие

