Matematyka dyskretna (L)

Katarzyna Paluch

Instytut Informatyki, Uniwersytet Wrocławski

2024

Grafy

Graf nieskierowany to para zbiorów (V, E), gdzie $E = \{\{u, v\} : u, v \in V\}$. V nazywamy zbiorem wierzchołków, a E krawędzi.

Pętla to krawędź postaci $\{v, v\}$.

Krawedzie równoległe - dwie lub więcej krawędzie łączace dwa wierzchołki $u,v \ (u \neq v)$.

Graf G = (V, E) jest prosty jeśli nie zawiera pętli ani krawędzi równoległych.

Grafy

Zastosowania grafów:

- znalezienie najkrótszej drogi,
- obliczenie przydziału zadań pracownikom,
- pokolorowanie mapy.

Graf pełny - klika

Ile krawędzi ma graf *n*-wierzchołkowy prosty, w którym każda para wierzchołków jest połączona krawędzią?

Liczba różnych grafów prostych n-wierzchołkowych

lle jest różnych grafów prostych n wierzchołkowych?

Grafy

Graf skierowany to para zbiorów (V, E), gdzie $E = \{(u, v) : u, v \in V\}$. V nazywamy zbiorem wierzchołków, a E krawędzi skierowanych lub łuków.

Pętla to krawędź postaci $\{v, v\}$. Krawedzie równoległe - dwie lub więcej krawędzie z u do v.

Graf G = (V, E) jest prosty jeśli nie zawiera pętli ani krawędzi równoległych.

Stopień wierzchołka

Krawędź e jest incydentna do wierzchołka u, jeśli jeden z końców e to u.

Stopień wierzchołka u, oznaczany deg(u), to liczba krawędzi incydentnych do u.

(Każda pętla incydentna do u dokłada się do stopnia u liczbą 2.)

Lemat o uściskach dłoni

Lemat

Niech G = (V, E) będzie nieskierowanym grafem. Wtedy

$$\sum_{v \in V} deg(v) = 2|E|.$$

Różne reprezentacje grafów

- listowa,
- za pomocą macierzy sąsiedztwa,
- za pomocą macierzy incydencji.

Izomorfizm grafów

Dwa grafy nieskierowane proste G=(V,E) i H=(V',E') są *izomorficzne* wtw, gdy \exists bijekcja $f:V\to V'$ taka, że

$$\forall_{u,v\in V} \{u,v\} \in E \Leftrightarrow \{f(u),f(v)\} \in E'.$$

Marszruta, ścieżka, droga

Marszrutą o długości k jest ciąg $(v_0, v_1, v_2, \dots, v_k)$ taki, że $\forall_{0 \leq i < k} \{v_i, v_{i+1}\} \in E$.

Droga to marszruta, w której żadna krawędź nie występuje dwukrotnie.

Ścieżka to marszruta, w której żaden wierzchołek nie występuje dwukrotnie.

Cykl to marszruta, w której $v_0 = v_k$ a poza tym, żaden wierzchołek nie występuje dwukrotnie.

Marszruta, ścieżka, droga

u - v-marszruta to marszruta taka, że $v_0 = u$ i $v_k = v$.

Analogicznie definiujemy u - v-drogę i u - v-ścieżkę.

Marszruta/droga jest zamknięta, jeśli $v_0 = v_k$.

Graf spójny

Nieskierowany graf G=(V,E) jest spójny, jeśli "z każdego wierzchołka da się dojść do każdego innego", tzn. $\forall_{u,v\in V}$ w G istnieje u-v-scieżka (ścieżka łącząca u i v.).

Podgrafem grafu G = (V, E) jest dowolny graf H = (V', E') taki, że $V' \subseteq V$ i $E' \subseteq E$.

Podgraf H jest właściwy, jeśli $G \neq H$.

Spójna składowa grafu G to dowolny podgraf spójny H=(V',E') grafu G, który jest maksymalny ze względu na zawieranie tzn. taki, że nie istnieje podgraf spójny H', którego podgrafem właściwym jest H.

Grafy dwudzielne

Graf G=(V,E) jest dwudzielny wtw, gdy istnieje podział zbioru wierzchołków V na zbiory A i B taki, że $\forall_{e\in E}$ jeden koniec e należy do A, a drugi do B.

Podział wierzchołków nie zawsze jest jednoznaczny.

Grafy dwudzielne

Graf G=(V,E) jest dwudzielny wtw, gdy istnieje podział zbioru wierzchołków V na zbiory A i B taki, że $\forall_{e\in E}$ jeden koniec e należy do A, a drugi do B.

Czy dwudzielny graf G może zawierać cykl o nieparzystej długości?

Grafy dwudzielne - charakteryzacja

Graf dwudzielny

Graf G = (V, E) jest dwudzielny wtw, gdy nie zawiera cyklu o nieparzystej długości.

Grafy dwudzielne - lemat pomocniczy

Lemat

Każda zamknięta marszruta o nieparzystej długości zawiera cykl o nieparzystej długości.