★ 深度解析: 对比学习 (Contrastive Learning) & 自编码器 (Autoencoder)

我们将详细讲解:

- 1. 对比学习 (Contrastive Learning)
 - 介绍对比学习的核心思想
 - 逐个解析 SimCLR, SwAV, BYOL, SimSiam, CLIP
 - 给出每种方法的损失函数
- 2. **自编码器 (Autoencoder)**
 - 介绍自编码器的基本原理
 - 解析 标准自编码器、去噪自编码器 (DAE)、Masked 自编码器 (MAE)
 - 介绍自编码器的损失函数

◆ 1. 对比学习 (Contrastive Learning)

(a) 核心思想

对比学习的目标是学习样本之间的相似性, 使得:

- 正样本 (Positive Samples) 更接近
- 负样本 (Negative Samples) 更远离

常见方法:

- 1. 基于负样本的方法 (如 SimCLR)
- 2. **不需要负样本的方法** (如 BYOL, SimSiam)
- 3. **多模态方法**(如 CLIP)

(b) SimCLR

★ 介绍

• 负样本: 批次中的其他样本

• 网络结构: 单网络,使用 投影头 (MLP Projection Head)

• 训练目标: 最大化同一图像的不同增强版本的相似度

→ 损失函数

使用 InfoNCE (Normalized Temperature-scaled Cross-Entropy Loss):

$$\mathcal{L} = -\log rac{\exp(\sin(z_i, z_j)/ au)}{\sum_{k
eq i} \exp(\sin(z_i, z_k)/ au)}$$

- $\operatorname{sim}(z_i, z_j)$ 表示余弦相似度: $\operatorname{sim}(z_i, z_j) = \frac{z_i \cdot z_j}{\|z_i\| \|z_j\|}$
- τ 是温度参数 (Temperature)

(c) SwAV (Swapping Assignments between Views)

★ 介绍

- 不使用负样本
- 使用聚类 (Clustering) 来学习特征

★ 损失函数

SwAV 采用**聚类损失**: $\mathcal{L} = \sum_i -q_i^T \log p_i$ 其中:

- (q_i)是 Softmax 归一化后的聚类标签。
- (p_i)是模型输出的概率分布。

(d) BYOL (Bootstrap Your Own Latent)

★ 介绍

- 无负样本
- 双网络 (Student & Target)
- 目标网络无梯度

★ 损失函数

 $\mathcal{L} = 2 - 2 \cdot \sin(z_{ ext{student}}, z_{ ext{target}})$

(e) SimSiam

★ 介绍

- 无负样本
- 单网络
- 通过梯度阻断 (Stop-Gradient) 避免崩溃

★ 损失函数

 $\mathcal{L} = 1 - \text{cosine} \setminus \text{similarity}(z_{\text{proj}}, \text{stop} \setminus \text{grad}(z_{\text{pred}}))$

(f) CLIP

★ 介绍

- 多模态 (图片-文本)
- 跨模态对比学习
- 目标: 让文本-图像对匹配

★ 损失函数

$$\mathcal{L} = -rac{1}{N}\sum_{i=1}^{N}\lograc{\exp(ext{sim}(I_i,T_i)/ au)}{\sum_{j=1}^{N}\exp(ext{sim}(I_i,T_j)/ au)}$$

• I_i 和 T_i 是匹配的图像和文本。

◆ 2. 自编码器 (Autoencoder)

(a) 标准自编码器

★ 介绍

• 目标: 通过压缩数据学习隐藏特征。

• 结构:

■ 编码器 (Encoder): h = f(x)■ 解码器 (Decoder): x' = g(h)

★ 损失函数

 $\mathcal{L} = ||x - x'||^2$ (均方误差, MSE)

(b) 去噪自编码器 (Denoising Autoencoder, DAE)

★ 介绍

• 输入数据被添加噪声

• 目标:恢复原始数据

• 训练方式:

• 输入: $\tilde{x} = x + \text{Noise}$

■ 目标: $x' \approx x$

★ 损失函数

 $\mathcal{L} = \|x - x'\|^2$

(c) Masked Autoencoder (MAE)

★ 介绍

- 输入数据部分被遮蔽
- 模型需要重建遮蔽部分
- BERT 采用 Masked Language Modeling (MLM)

★ 损失函数

 $\mathcal{L} = \sum_{m \in \mathrm{masked}} (x_m - x_m')^2$ 只计算被遮蔽部分的误差。

★ 总结

1 对比学习

方法	是否使用负样本?	网络结构	损失函数
SimCLR	✓	单网络	InfoNCE
SwAV	X	单网络	聚类损失

方法	是否使用负样本?	网络结构	损失函数
BYOL	X	双网络	余弦损失
SimSiam	X	单网络	余弦损失
CLIP	☑ (多模态)	双网络	InfoNCE (跨模态)

2 自编码器

方法	核心思想	损失函数
标准自编码器	通过低维编码重建输入	MSE
去噪自编码器 (DAE)	训练模型恢复被噪声破坏的数据	MSE
Masked 自编码器 (MAE)	训练模型恢复被遮蔽的数据	MSE (仅计算被遮蔽部分)

★ 重点理解

- 对比学习中的负样本作用:
 - SimCLR 依赖负样本, BYOL/SimSiam 通过梯度阻断避免崩溃。
- CLIP 是跨模态对比学习 (图像-文本)
- 自编码器通过信息压缩、去噪、遮蔽进行学习
- ☑ 如果你有任何问题,欢迎继续提问! 🞣