Contrôle continu - Durée 2 heures.

Notes de cours, calculatrices et téléphones portables interdits.

Rédaction soignée exigée.

Exercice 1 La fonction $z \mapsto |z| \cdot \exp(i \operatorname{Im}(z))$ est-elle holomorphe (justifier sa réponse)?

Exercice 2 Soit $U \subset \mathbb{C}$ un ouvert et $f: U \to \mathbb{C}$ une fonction holomorphe non constante. Montrer qu'il n'existe pas $a, b, c \in \mathbb{R}^*$ tels que $a \cdot \text{Re}(f) + b \cdot \text{Im}(f) = c$.

Exercice 3 Soit $U \subset \mathbb{C}$ un ouvert connexe et f une fonction holomorphe non constante sur U. On suppose que |f| admet un minimum local sur U. Montrer que f s'annule dans U.

Exercice 4 Soit $f: \mathbb{C} \to \mathbb{C}$ une fonction entière. Pour tout réel r > 0 posons

$$M(r) := \sup_{|z|=r} |f(z)|.$$

- (a) Soit $f(z) = \sum_{n \geq 0} a_n z^n$ le développement en série de f à l'origine. A l'aide des égalités de Cauchy montrer que, pour tout $n \geq 0$, on a $|a_n| \leq \frac{M(r)}{r^n}$.
- (b) Supposons qu'il existe un entier $p \ge 0$ tel que

$$\lim_{r\to +\infty}\frac{M(r)}{r^{p+1}}=0.$$

Déduire alors du point (a) précédent que f est un polynôme de degré au plus p.

Exercice 5 Soit $\mathbb{C} := \{z \in C : |z| = 1\}$ le cercle unité parcouru dans le sens contraire des aiguilles d'une montre.

- (a) Calculer $\int_C z^k dz$, pour tout $k \in \mathbb{Z}$.
- (b) Calculer $\int_C \frac{1}{z} (z + \frac{1}{z})^n dz$, $n \in \mathbb{N}$, en développant par la formule du binôme.
- (c) Déduire du point (b) la valeur de l'intégrale $\int_{-\pi}^{\pi} \cos^n(t) dt$.
- (d) Déduire du point (c) la formule

$$\int_0^{\pi/2} \cos^{2m}(t)dt = \frac{\pi}{2} \cdot \frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2m-1)}{2 \cdot 4 \cdot 6 \cdot \dots \cdot (2m)}.$$

Exercice 6 Soit \mathbb{D} le disque unité et $f: \mathbb{D} \to \mathbb{C}$ une fonction holomorphe. On appelle diamètre de f la quantité (éventuellement infinie) suivante :

$$d := \sup_{w,z \in \mathbb{D}} |f(z) - f(w)|.$$

- (a) Montrer que pour tout 0 < r < 1 on a $2f'(0) = \frac{1}{2i\pi} \int_{C_r(0)} \frac{f(w) f(-w)}{w^2} dw$.
- (b) En déduire que $2|f'(0)| \le d$.