Outlines

- Informed Search
- Heuristic
- Heuristic Search
- Heuristic Function
- Best First Search
- Greedy Best First Search
- A* Search

Informed Search

- Uninformed search strategies can find solutions to problems by systematically generating new states and testing them against the goal.
- Unfortunately, these strategies are incredibly inefficient in most cases.
- Uninformed search uses problem-specific knowledge—can find solutions more efficiently.

Heuristic

- Heuristic means:
 - To discover
 - Helping to discover or learn
 - Serving to discover
 - An aid to discover
- Heuristics are "rules of thumb", educated guesses, intuitive judgments or simply common sense.
- A heuristic contributes to the reduction of search in a problem-solving activity.

Heuristic

- "Educated guess" is a heuristic that allows a person to reach a conclusion without exhaustive research.
- With an educated guess a person considers what they have observed in the past, and applies that history to a situation where a more definite answer has not yet been decided.

Heuristic Search

■ Uses domain-dependent (heuristic) information in order to search the space more efficiently.

Ways of using heuristic information:

- Deciding which node to expand next, instead of doing the expansion in a strictly breadth-first or depth-first order.
- In the course of expanding a node, deciding which successor or successors to generate, instead of blindly generating all possible successors at one time.
- Deciding that certain nodes should be discarded, or pruned, from the search space.

Heuristic Search

■ A moment's reflection will show ourselves constantly using heuristics in the course of our everyday lives.

- If the sky is grey we conclude that it would be better to put on a coat before going out.
- We book our holidays in August because that is when the weather is best.

Heuristic Function

■ A heuristic function, h(n), provides an estimate of the cost of the path from a given node to the closest goal state.

■ Must be zero if node represents a goal state.

- Depth first search is good because it allows a solution to be found without all competing branches to be expanded.
- Breadth first search is good because it does not get trapped on dead-end paths.
- Best First Search combines the advantages of the two.
- At each step of the best first search process, we select the most promising of the nodes we have generated so far.
- This is done by applying an appropriate heuristic function to each of them.

- An algorithm in which a node is selected for expansion based on an evaluation function f(n).
 - Traditionally the node with the lowest evaluation function is selected
 - Not an accurate name...expanding the best node first would be a straight march to the goal.
 - Choose the node that appears to be the best

- There is a whole family of Best-First Search algorithms with different evaluation functions.
- \blacksquare Each has a heuristic function h(n).
- \blacksquare h(n) = estimated cost of the cheapest path from node n to a goal node.
- Example: In route planning the estimate of the cost of the cheapest path might be the straight line distance between two cities.

 \blacksquare **g(n)** = Cost from the initial state to the current state n.

 \blacksquare **h(n)** = Estimated cost of the cheapest path from node n to a goal node.

f(n) = Evaluation function to select a node for expansion (usually the lowest cost node).

■ Greedy Best-First search tries to expand the node that is closest to the goal assuming it will lead to a solution quickly

$$f(n) = h(n)$$

- f(n) = Function that gives an evaluation of the state.
- \blacksquare h(n) = The cost of getting from the current state to a goal state.

- The Greedy Best-First-Search algorithm works as uniform cost search, except that it has some estimate (called a heuristic) of how far from the goal any node is.
- Instead of selecting the node closest to the starting point, it selects the node closest to the goal.
- Greedy Best-First-Search is not guaranteed to find a shortest path.
- However, it runs much quicker than uniform cost search algorithm because it uses the heuristic function to guide its way towards the goal very quickly.

Algorithm:

- Step 01: Initialize Queue with Starting Node.
- Step 02: Pick the path with minimum heuristic cost f(n)=h(n) from Queue.
- Step 03: If the minimum path is goal, stop algorithm you found the solution.
- Step 04: For each neighbor node v add expanded path < v ,P > to Queue.
- Step 05: Repeat Step 02 to Step 04 until Queue is empty.

- A = Initial State
- I = Goal State

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
A	366
В	374
C	329
D	244
Е	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

Queue		
Path	Cost	f(n)

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

Queue				
Path Cost f(n)				
<a>	0	366		

State	Heuristic: h(n)	
A	366	
В	374	
С	329	
D	244	
Е	253	
F	178	
G	193	
Н	98	
I	0	

Queue					
Path Cost f(n)					
<e,a></e,a>	140	253			
<c,a></c,a>	118	329			
<b,a></b,a>	75	374			

State	Heuristic: h(n)	
A	366	
В	374	
С	329	
D	244	
Е	253	
F	178	
G	193	
Н	98	
I	0	

Queue					
Path Cost f(n)					
<f,e,a></f,e,a>	239	178			
<g,e,a></g,e,a>	220	193			
<c,a></c,a>	118	329			
<b,a></b,a>	75	374			

State	Heuristic: h(n)	
A	366	
В	374	
С	329	
D	244	
Е	253	
F	178	
G	193	
Н	98	
I	0	

Queue					
Path Cost f(n)					
<i,f,e,a></i,f,e,a>	450	0			
<g,e,a></g,e,a>	220	193			
<c,a></c,a>	118	329			
<b,a></b,a>	75	374			

State	Heuristic: h(n)	
A	366	
В	374	
С	329	
D	244	
Е	253	
F	178	
G	193	
Н	98	
I	0	

Solution = $A \rightarrow E \rightarrow F \rightarrow I$ Path Cost = 140+99+211=450

As minimum path is the goal path, so we have found a solution.

Greedy First Search is not optimal.

- Path 1: $A \rightarrow E \rightarrow F \rightarrow I$ (Cost = 140+99+211=450)
- Path 2: $A \rightarrow E \rightarrow G \rightarrow H \rightarrow I$ (Cost = 140+80+97+101=418)
- There was path (i.e. path 2) more optimal than path 1.
- It is faster but not optimal.

- S = Initial State
- G = Goal State

f(n) = h(n) = Straight Line Distance

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

Queue			
Path Cost f(n)			

St	ate	Heuristic: h(n)
	S	10
	A	2
	В	3
	С	1
	D	4
	G	0

Queue			
Path Cost f(n)			
<\$>	0	10	

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

Queue			
Path	Cost	f(n)	
<a,s></a,s>	2	2	
<b,s></b,s>	5	3	

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

Greedy Best First Search (Problem 02)

Queue					
Path Cost f(n)					
<c,a,s></c,a,s>	4	1			
<b,s></b,s>	3				
<d,a,s></d,a,s>	4				

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

Greedy Best First Search (Problem 02)

Queue					
Path Cost f(n)					
<b,s></b,s>	5	3			
<d,a,s></d,a,s>	4				
<d,c,a,s></d,c,a,s>	7	4			

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

Greedy Best First Search (Problem 02)

Queue					
Path Cost f(n)					
<g,b,s></g,b,s>	10	0			
<d,a,s></d,a,s>	4				
<d,c,a,s></d,c,a,s>	7	4			

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

Solution =
$$S \rightarrow B \rightarrow G$$

Path Cost = $5+5=10$

As minimum path is the goal path, so we have found a solution.

A* Search

- Greedy Search minimizes a heuristic h(n) which is an estimated cost from a node n to the goal state. However, although greedy search can considerably cut the search time (efficient), it is neither optimal nor complete.
- Uniform Cost Search minimizes the cost g(n) from the initial state to n. UCS is optimal and complete but not efficient.
- New Strategy: Combine Greedy Search and UCS to get an efficient algorithm which is complete and optimal.

A* Search

■ A search algorithm to find the shortest path through a search space to a goal state using a heuristic.

$$f(n) = g(n) + h(n)$$

- f(n) = Function that gives an evaluation of the state.
- \blacksquare g(n) = The cost of getting from the initial state to the current state.
- \blacksquare h(n) = The cost of getting from the current state to a goal state.

A* Search

Algorithm:

- Step 01: Initialize Queue with Starting Node.
- Step 02: Pick the path with minimum heuristic cost f(n)=g(n)+h(n) from Queue.
- Step 03: If the minimum path is goal, stop algorithm you found the solution.
- Step 04: For each neighbor node v add expanded path < v ,P > to Queue.
- Step 05: Repeat Step 02 to Step 04 until Queue is empty.

- A = Initial State
- I = Goal State

h(n) = Straight Line Distance

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

Queue			
Path g(n) h(n) f(n)			

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

Queue				
Path g(n) h(n) f(n)				
<a>	0	366	366	

State	Heuristic: h(n)	
A	366	
В	374	
С	329	
D	244	
Е	253	
F	178	
G	193	
Н	98	
I	0	

Queue				
Path g(n) h(n) f(n)				
<e,a></e,a>	140	253	393	
<c,a></c,a>	118	329	447	
<b,a></b,a>	75	374	449	

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

Queue			
Path	g(n)	h(n)	f(n)
<g,e,a></g,e,a>	220	193	413
<f,e,a></f,e,a>	239	178	417
<c,a></c,a>	118	329	447
<b,a></b,a>	75	374	449

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

Queue			
Path	g(n)	h(n)	f(n)
<h,g,e,a></h,g,e,a>	317	98	415
<f,e,a></f,e,a>	239	178	417
<c,a></c,a>	118	329	447
<b,a></b,a>	75	374	449

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

Queue			
Path	g(n)	h(n)	f(n)
<f,e,a></f,e,a>	239	178	417
<i,h,g,e,a></i,h,g,e,a>	418	0	418
<c,a></c,a>	118	329	447
<b,a></b,a>	75	374	449

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
Е	253
F	178
G	193
Н	98
I	0

Queue			
Path	g(n)	h(n)	f(n)
<i,h,g,e,a></i,h,g,e,a>	418	0	418
<c,a></c,a>	118	329	447
<b,a></b,a>	75	374	449
<i,f,e,a></i,f,e,a>	239	0	450

State	Heuristic: h(n)
A	366
В	374
С	329
D	244
E	253
F	178
G	193
Н	98
I	0

Solution = $A \rightarrow E \rightarrow G \rightarrow H \rightarrow I$ Path Cost = 140+80+97+101=418

As minimum path is the goal path, so we have found a solution.

- S = Initial State
- G = Goal State

f(n) = h(n) = Straight Line Distance

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

$$f(n) = g(n) + h(n)$$

Queue			
Path g(n) h(n) f(n)			

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

$$f(n) = g(n) + h(n)$$

Queue			
Path	g(n)	h(n)	f(n)
<s></s>	0	10	10

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

$$f(n) = g(n) + h(n)$$

Queue			
Path	g(n)	h(n)	f(n)
<a,s></a,s>	2	2	4
<b,s></b,s>	5	3	8

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

$$f(n) = g(n) + h(n)$$

Queue			
Path	g(n)	h(n)	f(n)
<c,a,s></c,a,s>	4	1	5
<b,s></b,s>	5	3	8
<d,a,s></d,a,s>	6	4	10

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

$$f(n) = g(n) + h(n)$$

Queue			
Path	g(n)	h(n)	f(n)
<b,s></b,s>	5	3	8
<d,a,s></d,a,s>	6	4	10
<d,c,a,s></d,c,a,s>	7	4	11

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

$$f(n) = g(n) + h(n)$$

Queue			
Path	g(n)	h(n)	f(n)
<d,a,s></d,a,s>	6	4	10
<g,b,s></g,b,s>	10	0	10
<d,c,a,s></d,c,a,s>	7	4	11

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

$$f(n) = g(n) + h(n)$$

Queue			
Path	g(n)	h(n)	f(n)
<g,d,a,s></g,d,a,s>	8	0	8
<g,b,s></g,b,s>	10	0	10
<d,c,a,s></d,c,a,s>	7	4	11

State	Heuristic: h(n)
S	10
A	2
В	3
С	1
D	4
G	0

Solution =
$$S \rightarrow A \rightarrow D \rightarrow G$$

Path Cost = $2+4+2=8$

As minimum path is the goal path, so we have found a solution.