This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

THIS PAGE BLANK (USPTO)

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平8-26766

(43)公開日 平成8年(1996)1月30日

(51) Int.Cl.⁶

識別記号

庁内整理番号

FΙ

技術表示箇所

C 0 3 C 3/068 3/15

審査請求 未請求 請求項の数1 OL (全 6 頁)

(21)出願番号特願平6-156300(71)出願人 000004112(22)出願日平成6年(1994)7月7日東京都千代田区丸の内3丁目2番3号
東京都千代田区丸の内3丁目2番3号 株式会社ニコン内

(54) 【発明の名称】 光学ガラス

(57)【要約】

【目的】 屈折率 (nd) が 1.66~1.77、アッペ数 (νd) が 43~55 の光学恒数を持ち、屈伏点がモールド成形に適した 620 で以下であり、さらにモールド成形中に多量のガラスの組成成分が揮発することなく、化学的耐久性、失透に対する安定性に優れ、環境汚染のない新規な光学ガラスを提供することである。

【構成】 ガラスの組成がB $_2$ O $_2$ -Li $_2$ O-ZnO-La $_2$ O $_3$ の基本組成系からなり、屈折率 (nd) が 1.66~1.77、アッペ数 (ν d) が43~55であり、620 Γ 以下の屈伏点を有する光学ガラスである。

ENERGONO - ID GOROSETERA I >

•--

【特許請求の範囲】

【請求項1】重量比(以下wt%)で、

EMISON X X 2		- 1-21 /		, .,	
SiO2	0	~	5	wt%	
B ₂ O ₃	2 2	~	3 5	wt%	
A 1 2 O3	0	~	5	wt%	
Li2O	0.	1~	2.	5 w t %	
Na2O	0	~	5	wt%	
K ₂ O	0	~	5	wt%	
但し、Li2C	N+(a 2 O +	K ₂ O		
0.1~	5.	5 w t %	6		
MgO	0	~	5	wt%	
CaO	0	~	1 0	wt%	
SrO	0	~	1 0	w t %	
ВаО	0	~	10	wt%	
ZnO	2 0	~	3 5	wt%	
ZrO2	0	~	5	wt%	
L a 2 O3	1 2	~	4 2	w t %	
G d 2 O3	0	~	2 0	w t %	
Y ₂ O ₃	0	~	10	wt%	
Y b ₂ O ₃	0	~	1 0	wt%	
N b 2 O 5	0	~	10	w t %	
T a 2 O5	0	~	14	wt%	
A S 2 O3	0	~	1	wt%	
S b ₂ O ₃	0	~	1	wt%	
の知性を本 1	₩	= 1	ند ۱ اد	1 00.	1 77

の組成を有し、屈折率 (nd) が1.66~1.77、 アッベ数 (ν d) が43~55、屈伏点 (A t) が62 0℃以下であることを特徴とする光学ガラス。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、B2O3-Li2O-Z 30 nO-La₂O₃の基本組成系からなり、屈折率 (nd) が約1.66~1.77、アッペ数 (vd) が約43~ 55である光学ガラスに関する。さらに、本発明による 光学ガラスは、低温での成形が可能であり、特にモール ド成形に有用な光学ガラスに関する。

[0002]

【従来の技術】近年、光学系を使用する機器の高集積 化、高機能化が進められる中で、光学系に対する髙精度 化、軽量・小型化の要求が強く、この要求を実現するた めに非球面レンズを使用した光学設計が主流となりつつ ある。このため、非球面レンズを低コストで大量に安定 供給することが必要となり、高精度な金型の面をガラス 素材(軟化状態のゴブ、研磨後の平面ガラスまたは球面 ガラスを軟化状態にしたもの) に加圧転写して、最終的 な研削・研磨工程を要しないで所定の性能を有するレン ズを得るモールド成形技術が盛んに研究されるようにな った。さらに、非球面レンズに限らず、複雑な形状を有 するレンズについてもモールド成形技術が研究されるよ うになってきている。それに伴って、モールド成形に適 した光学ガラスの開発に対する要求も年々高まってきて 50 優れ、環境汚染のない新規な光学ガラスを提供すること

いる。

【0003】上記光学恒数を有する光学ガラスとして は、B2O3、La2O3を必須成分とする種々のガラスが 古くから知られている。しかし、従来のB2O2-La2 〇3を必須成分とする光学ガラスは、いずれも化学的耐 久性や耐失透性の向上に重点がおかれており、熱間成形 性については十分な配慮が成されておらず、モールド成 形に適しているとは言い難い。さらに、これらの光学ガ ラスは、一般に高い屈伏点を持つため、加熱成形時の成 10 形温度は650℃以上となり、高精度の金型の劣化を招 き易く、精度の高いレンズ面を実現することも困難とな る。そこで、低い屈伏点を持つモールド成形用光学ガラ スとして、B2O3、Li2O、La2O3を主成分とする 種々の光学ガラスが開発され開示されている。例えば、

2

特開平4-92834号は、nd=1.622~1.7 01、ν d=45.3~55.1を特徴とし、実施例に おいてAt=504~549℃である光学ガラス、特開 平4-92835号は、nd=1.740~1.78 5、νd=38.0~47.0、Atが570℃以下 (実施例At=500~569℃)を特徴とする光学ガ ラス、特開平5-58669号は、nd=約1.63~ 1. 75、 νd =約 $45\sim60$ 、 $At=555\sim640$ ℃を特徴とする光学ガラス、特開平5-201743号 は、nd=1.65~1.75、vdが50以上でAt =560℃以下を特徴とする光学ガラス等である。

【0004】特開昭62-87432号は、アッペ数は 開示されていないが、nd=1.690~1.725、 At=570℃以下で、PbOを含んだ比較的低温での 精密プレスが可能な光学ガラスである。

[0005]

【本発明が解決しようとする課題】しかし、上記従来の 光学ガラス、特にモールド成形用光学ガラスは、加熱成 形時にガラス組成中の特定元素が揮発し、金型に付着す ることにより、高精度なモールド成形を困難にするとい う問題点があった。また、分析等の結果から、金型に付 着する元素は、主に、低屈伏点を実現するために含有さ せた比較的多量のアルカリ金属酸化物または酸化鉛であ ることがわかっている。

【0006】これらの元素は高精度なモールド成形を困 難にするだけでなく、多量のアルカリ金属酸化物は化学 的耐久性を低下させ、酸化鉛は製造工程で環境汚染につ ながるという問題点もある。そこで本発明は、上記した 従来の光学ガラス、特にモールド成形用光学ガラスの諸 問題に鑑みてなされたものである。

【0007】本発明の目的は、屈折率 (nd) が1.6 6~1. 77、アッペ数 (vd) が43~55の光学恒 数を持ち、屈伏点がモールド成形に適した620℃以下 であり、さらにモールド成形中にガラスの組成成分が揮 発することなく、化学的耐久性、失透に対する安定性に

3

である。

9:0

[0008]

【課題を解決するための手段】本発明者は、上記目的を 達成するために鋭意研究を重ねた結果、B2O3、Li2 O、2nO、La₂O₂を必須成分とする光学ガラス組成 が、所定の組成範囲内において所望の光学恒数とモール ド成形に適した屈伏点を持ち、さらにモールド成形中に ガラスの組成成分が揮発することなく、優れた化学的耐 久性、失透に対する安定性を実現できることを見い出 し、本発明を成すに至った。すなわち、本発明は、重量 10 Na₂〇、K₂〇は成形時に揮発して成形型に付着し易 比 (wt%) で、

S 1 O ₂	Ü	~	5	W 1 %	
B ₂ O ₃	2 2	~	3 5	wt%	
A 1 2 O 3	0	~	5	wt%	
Li2O	0.	1~	2.	5 w t %	
N a 2 O	0	~	5	wt%	
K₂ O	0	~	5	w t %	
MgO	0	~	5	wt%	
CaO	0	~	10	w t %	
SrO	0	~	1 0	wt%	
ВаО	0	~	1 0	wt%	
ZnO	2 0	~	3 5	wt%	
ZrO2	0	~	5	w t %	
L a 2 O 3	1 2	~	4 2	wt%	
G d 2 O3	0	~	2 0	wt%	
Y ₂ O ₃	0	~	1 0	wt%	
Y b 2 O3	0	~	10	w t %	
N b2 O5	0	~	1 0	wt%	
T a 2 Os	0	~	1 4	wt%	
A S 2 O3	0	~	1	wt%	
S b ₂ O ₃	0	~	1	w t %	
ムとログのみたち!		E-7 +1	⊏ 50	- 41 421	66-1

から成る組成を有し、屈折率 (nd) が1.66~1. 77、アッペ数 (ν d) が43~55、屈伏点 (A t) が620℃以下であることを特徴とするモールド成形用 光学ガラスを提供する。

【作用】上記組成範囲は、実験化学的に見い出されたも のであり、組成範囲限定の理由は次の通りである。Si O: はガラス形成酸化物であり、失透に対する安定性を 向上させるが、5wt%を越えると、未溶物が生じ易く 40 なり、溶融温度及び屈伏点を上昇させる。

【0010】 B₂O₂はSiO₂と同様にガラス形成酸化 物であり、本発明において必須成分である。22wt% 未満では失透に対して十分な安定性を得られないが、3 5wt%を越えると屈折率が低下し、化学的耐久性を低 下させる。Al2O3は失透に対する安定性、化学的耐久 性を向上させるが、5wt%を越えると屈伏点を上昇さ せる。

【0011】 L i₂ O は他のアルカリ金属酸化物に比べ て大幅な屈折率低下、化学的耐久性の低下を伴うことな 50

く、溶融温度及び屈伏点を低下させる必須成分である が、0. 1wt%未満では十分な効果が得られず、2. 5wt%を越えると化学的耐久性及び失透に対する安定 性が低下する。さらに、Li2Oは成形時に揮発して成 形型に付着し易く、高精度なモールド成形が困難にな

【0012】Na:O、K:Oは溶融温度及び屈伏点を低 下させるが、5 w t %を越えると屈折率が低下し、化学 的耐久性及び失透に対する安定性も低下する。さらに、 く、髙精度なモールド成形が困難になる。但し、Liz O、Na₂O、K₂Oの合計量として、5.5wt%を越 えると、屈折率が低下し、化学的耐久性及び失透に対す る安定性も低下する。さらに、これらのアルカリ金属酸 化物は成形時に揮発して成形型に付着し易く、高精度な モールド成形が困難になる。。

【0013】Mg〇は溶融温度を低下させるが、5wt %を越えると失透に対する安定性が低下し、分相傾向も 増大する。CaO、SrO、BaOは屈折率の調整、失 20 透に対する安定性向上に有用であるが、10wt%を越 えると逆に失透傾向が増大し、化学的耐久性を低下させ る。

【0014】Zn〇は溶融温度及び屈伏点を低下させ、 屈折率の調整にも有効な必須成分であるが、20wt% 未満では十分な効果が得られず、35wt%を越えると 分散が大きくなり、失透に対する安定性が低下し、化学 的耐久性も低下する。ZrOzは失透に対する安定性、 化学的耐久性を向上させるが、5 w t %を越えると、逆 に失透傾向が増大し、屈伏点も上昇する。

30 【0015】La2O3は比較的に失透に対する安定性を 低下させることなく、屈折率を高くし、化学的耐久性を 向上させる必須成分であるが、12wt%未満では十分 な効果が得られず、42wt%を越えると失透に対する 安定性が低下し、屈伏点も上昇する。G d 2 O 3 は比較的 に失透に対する安定性を低下させることなく、屈折率を 高くし、化学的耐久性を向上させるが、20wt%を越 えると失透に対する安定性が低下し、屈伏点も上昇す

【0016】Y:O3、Yb2O3は屈折率を高くし、化学 的耐久性を向上させるが、10wt%を越えると失透に 対する安定性が低下し、屈伏点も上昇する。Nb:Os、 Ta:Osは屈折率を高くし、化学的耐久性を向上させる が、それぞれ10wt%、14wt%を越えると分散を 大きくし、失透に対する安定性も低下する。

【0017】As2O3、Sb2O3は脱泡剤として用いる が、1wt%以下で十分な効果を得ることができる。ま た、Sb2O2は1wt%を越えるとガラスに着色が認め られる.

[0018]

【実施例】以下、本発明を実施例によりさらに具体的に

5

説明するが、本発明はこれらの例に限定されるものではない。本発明に係る実施組成例(数値はwt%)を、光学恒数(nd, ν d)及び屈伏点(At、数値は $\mathbb C$)とともに表 1、表 2、表 3に示す。

【0019】本発明に係る光学ガラスは、各成分の原料 として各々相当する酸化物、炭酸塩、硝酸塩等を使用 し、所望の割合に秤量し、粉末で十分に混合して調合原* *料と成し、これを例えば1050~1300℃に加熱された電気炉中の白金坩堝に投入し、溶融清澄後、撹拌均質化して予め加熱された鉄製の鋳型に鋳込み、徐冷して製造することができる。

[0020]

【表1】

			Τ			T	T
	No.	1	2	3	4	5	6
	SiO ₂	5.0		3.5	3.5	1.0	5.0
1	B 2 O 3	40.0	80.0	27.7	27.7	38.0	34.8
	A 1 2 0 s	}					
	Li ₂ O	2.5	0.1	0.7	0.7	2.0	1.0
	Na2O	ĺ			4.8		
1	K 2 O		3.0	4.8			
1	MgO	5.0	1			1	
	CaO				1	10.0	
	SrO	ļ					
	BaO		10.0				
	2 n O	20.0	27.0	29.0	29.0	22.0	20.0
	Z r O 2					5.0	
1	L a 2 O 3	27.0	15.0	29.7	29.7	21.0	38.7
	G d 2 O 3		9.9	,			
	Y 2 O 3			4.2	4.2		
	Y b 2 O 5	İ	5.0				
l	N b 2 O z	!		į			
l	T a 2 O 5						
l	A S 2 O 3	0.5					0.5
	S b 20 s			0.4	0.4	1.0	
	n d	1.8874	1: 0005				
ı	n a v d		1.8982	1.6938	1.6991	1.8999	1.7078
1	i	54.5	50.4	49.6	49.1	51.8	58.3
	At	582	570	550	528	563	813

[0021]

【表2】

~	

,						
No.	7	8	9	10	11	12
S i O 2		6.0	5.0	3.5	4.3	4.0
B 2 O s	29.9	31.3	31.3	29.8	28. D	24.8
A 1 2 0 3						4.0
Li ₂ O	0.1	2.1	1.1	2.5	0.9	0.8
N a 2 O	3.0					
K ₂ O			,			
MgO						
CaO						
SrO						
BaO						
ZnO	24.0	20.7	21.1	25. 1	34.6	267
ZrO2						
L a 2 O 3	12.0	40.4	40.9	30.5	33.8	39.7
G d 2 O 3	20.0					
Y 20 3				8.4		
Y b 2 O 3	10.0					
N P 2 O 2						
Ta2Os						}
A S 2 O 3			0.8			
Sb ₂ O ₃	1.0	0.5		0.4	0.4	0.5
n d	1.7132	1.7183	1.7206	1.7248	1.7345	1.7370
νd	49.8	52.0	52. l	50.7	48.8	49.8
A t	580	579	608	551	567	585

【0022】 【表3】 9

No.	13	14	15	16
SiO ₂	4.2	3.1		3.2
B ₂ O ₅	25.3	28.2	30.0	25.1
A 1 2 0 5		İ		
Li ₂ O	0.1	0.6	2.0	0.8
Na ₂ O	0.9	ŀ		
K ₂ O				
MgO				
CaO	5.0			
SrO.			10.0	
ВаО				
ZnO	22.8	25.6	28.0	28.2
Z r O 2				
La203	41.8	26.3	22.0	26.9
G d 2 O 3	ļ	8.3		
Y 203		3.7		3.8
Y b 2 0 3				
Nb20.			10.0	
TagOs		3.8		13.8
A 6 2 0 3	0.4		İ	
S b 20 s		0.4		0.4
n d	1.7394	1.7391	1.7456	1.7810
νd	48.0	49.4	43.5	45.5
At	598	806	540	800
1	1 .	1	L	1

[0023]

【発明の効果】以上の通り、本発明によれば、屈折率 (nd) が 1 . $66\sim1$. 77 、 7 ッペ数 (νd) が $43\sim55$ 、屈伏点 (At) が 620 ℃以下であることを特徴とし、化学的耐久性、失透に対する安定性に優れ、環境汚染がない光学ガラスが提供される。

10

【0024】しかも、本発明による光学ガラスは屈伏点が低いため、特に、高精度な金型の面をガラス素材に加圧転写して、最終的な研削・研磨工程を要しないで所定の性能を有するレンズを得るモールド成形にきわめて有用である。

20

30