#### 목록

| ㅂㅏ       | 조っ    |   |     |
|----------|-------|---|-----|
| $\neg$   | 0 7   |   | ٠.  |
| 亽        | 7] 7  |   | ,   |
| 9        | /   レ |   | ٠,  |
| 소        | 0.7   |   | 7   |
| Ò        | 七八    |   | ٠.  |
| 0        | 도ㅁ    |   |     |
| 판        | つに    |   | ٠ ۷ |
| Ò.       | 스ゟ    |   | -   |
| 판        | るそ    | - | ٠,  |
| റി       | レス    |   | -   |
| $\sim$ 1 | 一工工   |   | ٠,  |
| ΔÌ       | ヘロ    |   | -   |
| $\sim$ 1 | Τī    |   | ٠,  |
| スト       | 0.7   |   |     |
| ſð'      | T     |   | ıl  |
| 하        | CO    | 3 |     |
| 7        | -1- 0 |   |     |

문제 1번)

NAT의 문제에 대해 한 가지 이상 서술하시오

문제 2번)

ICMP를 사용하여 구현한 유틸리티를 한 가지 이상 서술하시오

문제



문제 1. offer만 받고난뒤 주소 선택하게 되면 다 진행된거 같은데 request를 다시 보내는 이 유는?

2. ICMP 의 용도는 무엇일까요?

### 네트워트 3, 4

2022년 11월 8일 화요일 오후 8:57

| DHCP | 서버로부터 IP힐 | 당 절차 | 나열하기(1 | 1,2,3,4는 | 단순알파벳 | 순임) |
|------|-----------|------|--------|----------|-------|-----|
|------|-----------|------|--------|----------|-------|-----|

- 1. DHCP ack
- 2. DHCP discover
- 3. DHCP offer
- 4. DHCP request

\_\_\_\_\_-> \_\_\_\_\_-> \_\_\_\_\_->

IPv4의 고갈 문제로 \_\_\_\_\_가 등장하게 되었다. 그러나, 모든 라우터가 업그레이드를 할 수 없어서 IPv4와 IPv6를 같이 사용하는 기법을 \_\_\_\_\_기법이라고 한다.

■ 날짜

# Q1. 'link state' algorithm에서 최단경로를 찾을 수 있는 방법은?

Q2) 사용자는 전세계적으로 유일한 IP주소를 가진다 (O / X / 모른다)



#### 문제 1.

위 그림은 Client가 DHCP server로부터 offer를 받고, 이를 승낙하는 상황이다.

이 때 client가 offer를 받은 주소가 아닌, broadcast를 통해 request를 보내는 이유가 무엇인지 서술하시오.

#### 문제 2.



그림과 같은 서브셋이 존재하고, 해당 라우터는 NAT 수행하고 있다. 호스트들이 서브셋 내부에서 운영되는 웹 서버를 해당 주소를 찾을 수 있다 (O, X)

### 1. DHCP의 장점을 쓰시오

2. u노드에서 시작해서 다익스트라 알고리즘을 사용해 최단경로를 구할 때 최단경로가 확정되는 노드의 순서를 나열하시오



<u>답안</u>

# 문제\_이수민

### **DHCP: Dynamic Host Configuration Protocol**

#### broadcast

- 1. broadcast란 무엇인가?
- 2. broadcast 는 네트워크 상의 전체 노드로 전송되기 때문에 전체 트래픽이 \_\_\_\_ 한다.
- 3. 이 패킷을 받은 CPU는 이 패킷을 처리하게 되고 PC의 성능은 \_\_\_\_ 한다.

#### **IP fragmentation**

- 1. 이란 network link가 한번에 보낼 수 있는 데이터 용량을 의미한다.
- 2. 쪼개진 IP datagram은 최종 목적지에 도달해야 다시 합쳐진다. (O, X)
- 3. IP datagram 일부가 유실되어 다시 합쳐질 때 이상이 있으면 receiver는 sender에게 NAK #seq를 보낸다. (O, X)

문제\_이수민

1. 다음은 인터넷에 연결되기 위해 필요한 기본적인 정보 네가지와 그에 대한 예시이다. 빈칸을 채우세요.

| 명칭 | 예시            |
|----|---------------|
|    | 192.168.1.47  |
|    | 255.255.255.0 |
|    | 192.168.1.1   |
|    | 192.168.1.1   |

2. 다음은 라우터 알고리즘에 (Router Algorithm) 관한 내용이다. 빈칸을 채우세요.



| 라우터          | 트리의( )                              |
|--------------|-------------------------------------|
| ( )          | 노드 사이의 엣지                           |
| 링크에 존재하는 값   | 링크의 ( )<br>- 트래픽 양<br>- 라우터 간 실제 거리 |
| 라우터 알고리즘의 목적 | ( ) 구하기                             |

1)



전체를 보고 알고리즘을 설계하는 방법 ( ) 알고리즘 - ( ) 알고리즘

2)

### Bellman-Ford equation (dynamic programming)

let

$$d_x(y) := cost of least-cost path from x to y$$
 then

$$d_{x}(y) = \min_{v} \{c(x,v) + d_{v}(y)\}$$

$$cost from neighbor v to destination y$$

$$cost to neighbor v$$

min taken over all neighbors v of x

이웃한 노드를 중심으로 설계하는 방법 ( ) 알고리즘

link state 라우팅 알고리즘에서 사용하는 알고리즘 기법은?

IP 주소를 확인할 때 ip주소, 서브넷 마스크, 라우터, DNS 등의 정보를 제공해주는 프로토콜의 이름은?