

Ministério da Educação Universidade Federal dos Vales do Jequitinhonha e Mucuri Faculdade de Ciências Sociais, Aplicadas e Exatas - FACSAE

Departamento de Ciências Exatas - DCEX

Disciplina: Cálculo Numérico Prof.: Luiz C. M. de Aquino

Lista de Exercícios VI

1. Considere o seguinte sistema de equações:

$$\begin{cases} 2x - 4y + 8z - w = -6 \\ -2x - 2y + z - 7w = -5 \\ 5x - y + z - 2w = -2 \\ x - 4y - z + w = 8 \end{cases}$$

- (a) Da forma como ele está arrumado, é recomendável usar diretamente o método de Gauss-Jaboci? Justifique sua resposta.
- (b) Proponha uma maneira de utilizar o método de Gauss-Jacobi para obter uma solução aproximada desse sistema (considere uma tolerância de 10⁻⁵). Justifique a sua proposta.
- 2. Utilize o Método de Gauss-Seidel para resolver o mesmo sistema que você propôs no exercício 1. (b) (considere a mesma tolerância). Houve alguma vantagem em relação ao Método de Gauss-Jacobi?

Gabarito

[1] (a) Não, pois usando o Critério das Linhas não temos a garantia da convergência. (b) Primeiro, podemos trocar de lugar as colunas um e três. Em seguida, podemos trocar de lugar as linhas dois e quatro. Com esta arrumação, podemos garantir pelo Critério das Linhas que o método de Gauss-Jacobi será convergente. Utilizando então o chute inicial $z^{(0)} = -\frac{6}{8}$, $y^{(0)} = -2$, $x^{(0)} = -\frac{2}{5}$ e $w^{(0)} = \frac{5}{7}$, obtemos como solução $z \approx -1,3408269471$, $y \approx -1,4387214857$, $x \approx -0,0413311135$ e $w \approx 0,9456141095$. [2] Utilizando o mesmo chute inicial de 1. (b), obtemos $z \approx -1,3408296817$, $y \approx -1,4387216809$, $x \approx -0,0413335297$ e $w \approx 0,9456115342$. A vantagem em relação ao método anterior foi a redução do número de passos para atingir a tolerância desejada.