Max. Marks: 50

Sin : Ang

Attempt all questions.

1. Consider the one dimension heat flow equation or the diffusion equation

$$\frac{\partial^2 u}{\partial x^2} = D \frac{\partial u}{\partial t}, \quad x \in [0, l],$$

with u(x,0) = f(x), $u(0,t) = \alpha$ and $u(l,t) = \beta$. Obtain u(x,t) by the method of separation of variables. (10)

- The first part carries 8 marks, the second part carries 5 marks.
 - (a) Using the Green function technique, obtain the solution of the Helmholtz equation $(\nabla^2 p^2) \psi(\vec{r}) = f(\vec{r}).$
 - (b) Now consider the Schodinger equation for a simple square well of radius a given by

$$\left(\nabla^2 + \frac{2mE}{\hbar^2}\right)\psi(\vec{r}) = \frac{2m}{\hbar^2}V(r)\psi(\vec{r}),$$

where $V(r) = -V_o$ for $a \le r \le b$ (with a, b > 0), and 0 otherwise. Using the Green function from (i), obtain the solution of this equation at large-r assuming the simplest form of $\psi(\vec{r})$.

- 3. Each question carries 5 marks.
 - (a) Solve the following integral equation

$$\int_0^\infty \cos(\mathbf{x}v)y(v)dv = \exp(-x^2/2)$$

for the function y(x) assuming that it is even.

(b) Closely related to the (cylindrical) Bessel functions are the spherical Bessel functions given by:

$$J_{\nu}(x) = 2^{\nu} x^{\nu} \sum_{n=0}^{\infty} \frac{(-1)^n (\nu + n)!}{n! (2n + 2\nu + 1)!} x^{2n}.$$

Verify directly from this definition that $J'_0 = -J_1(x)$. Show with little work that

$$J_1(x) = -\frac{\cos x}{x} + \frac{\sin x}{x^2}.$$

(c) By finding the eigenvectors of the Hermitian matrix

$$H = \begin{bmatrix} 10 & 3i \\ -3i & 2 \end{bmatrix},$$

Construct a unitary matrix U such that $U^{\dagger}HU=\wedge,$ where \wedge is a real diagonal matrix.

- Solve any 3, each question carries 4 marks. You may solve all if you wish to improve your marks.
 - (a) If z = x + iy, prove that $|x| + |y| \le \sqrt{2}|z|$
 - (b) Study the differentiability of $g(z) = \sin(2z)$.
 - (c) Expand $\exp(-z^2)\sinh(z+2)$ about $z_o=0$.
 - (d) Obtain the Fourier transform $\mathcal{F}[te^{-\alpha t}H(t)]$, where H(t) is the Heaviside function.
 - (e) Use the recurrence relation $(n+1)P_{n+1}(x) = (2n+1)xP_n(x) nP_{n-1}(x)$ and the Legendre polynomials $P_0(x) = 1$, $P_1(x) = x$ and $P_2(x) = (3x^2 1)/2$ to evaluate $P_3(x)$ and $P_4(x)$.