Лабораторна робота 3 Регресійний аналіз

Піковець Артем КМ-22

Дослідницьке питання

• Питання: Як кількість вісцерального жиру впливає на систолічний тиск людини?

Дані

- Дані взяті з NHANES за роки 2011-2018.
- Були взяті базові демографічні змінні, та зміні що стосуються артеріального тиску та розподілу жирової й нежирової маси в тілі людини.
- Отримана вибірка містить 16788 людей.
- Вибірку розділено на тренувальну (50%) та тестову (50%).

Модель 1

• $y = m(visceral\ fat) + \varepsilon$

Модель 2

• $y = m(visceral\ fat, age) + \varepsilon$

Модель 2

Частково лінійна модель

• $y = m(visceral\ fat, age) + \beta_{is\ male} \cdot is\ male + \beta_{is\ black} \cdot is\ black + \beta_{lean\ mass} \cdot ln(lean\ mass) + \varepsilon$

Частково лінійна модель

Порівняння частково лінійної моделі з лінійною

	(1)	(2)
(Intercept)	-4.557	
	(5.193)	
genderMale	1.471* [*] **	1.475***
	(0.219)	(0.337)
raceNon-Hispanic Black	3.611* [*] **	3.746* [*] *
•	(0.233)	(0.328)
log(lean mass g)	10.582***	10.752***
	(0.491)	(0.775)
log(visceral fat g)	-1.162+	()
- 6((0.675)	
age	-1.132***	
-6-	(0.270)	
I(age^2)	0.006	
(ugc 2)	(0.005)	
I(age^3)	0.000***	
(uge 3)	(0.000)	
$log(visceral\ fat\ g) imes age$	0.332***	
log(visceral_lat_g) × age	(0.053)	
$log(visceral\ fat\ g) \times I(age^2)$	-0.005***	
log(visceral_rat_g) x r(age 2)	(0.001)	
N. O.		0204
Num.Obs.	16788	8394

• Для РСА було взято 12 змінних.

• Перші 6 компонент пояснюють 87.8% дисперсії.

Висновки

- Непараметричні моделі дали дещо схожий результат з попередньою лабораторною роботою: зі збільшенням кількості вісцерального жиру підвищується артеріальний тиск, але сам вплив незначний. Але побудовані непараметричні моделі не враховували деякі важливі фактори взаємодії (наприклад, між кількість жиру та статтю).
- Непараметричні моделі дали змогу побачити нелінійні зв'язки (такі як між віком та тиском).
- Значного зменшення розмірності досягнути за допомогою РСА не вдалось, але можна використати деякі компоненти як змінні які характеризують певні характеристики людини (такі як її розмір).