Случайные процессы. Прикладной поток.

Теоретическое задание 2.

Марковские цепи с дискретным временем. PageRank.

- 1. Марковская цепь $(\xi_n, n \in \mathbb{Z}_+)$ имеет начальное состояние $\xi_0 = 0$ и переходные вероятности $\mathsf{P}(\xi_{n+1} = k+1 | \xi_n = k) = p, \; \mathsf{P}(\xi_{n+1} = k | \xi_n = k) = 1-p, \; k, n \in \mathbb{N}, p \in [0,1].$ Найдите распределение ξ_n . Докажите, что последовательность $\tau_0 = 0, \tau_k = \min\{n: \xi_n = k\}$ также является цепью Маркова и найдите ее переходные вероятности.
- 2. * Пусть $\{\xi_n, n \in \mathbb{Z}_+\}$ марковская цепь с фазовым пространством $S = \{1, 2, 3\}$, начальным состоянием $\xi_0 = 1$ п.н. и матрицей переходных вероятностей

$$\begin{pmatrix} 3/7 & 3/7 & 1/7 \\ 1/11 & 2/11 & 8/11 \\ 1/11 & 4/11 & 6/11 \end{pmatrix}.$$

Положим $\eta_n=I\{\xi_n=1\}+2I\{\xi_n\neq 1\}$. Докажите, что η_n — тоже марковская цепь, и найдите ее матрицу переходов.

3. Пусть $\{\xi_n, n\in\mathbb{Z}_+\}$ — марковская цепь с фазовым пространством $S=\{1,...,N\}$ и матрицей переходных вероятностей

$$\begin{pmatrix} q & p & 0 & 0 & \dots & 0 \\ q & 0 & p & 0 & \dots & 0 \\ q & 0 & 0 & p & \dots & 0 \\ \dots & & & & & & \\ q & 0 & 0 & 0 & \dots & p \\ 1 & 0 & 0 & 0 & \dots & 0 \end{pmatrix},$$

где 0 . Нарисуйте граф, соответствующей данной марковской цепи, и найдите предельное распределение.

- 4. Приведите пример такой однородной марковской цепи с дискретным временем, что
 - (а) у нее есть ровно одно стационарное распределение, но нет предельного;
 - (b) у нее все распределения являются стационарными, но нет предельного;
 - (c) у нее нет стационарного распределения, но есть пределы переходных вероятностей при $n \to \infty$.

Докажите, что если однородная марковская цепь с дискретным временем имеет несколько стационарных распределений, то их, на самом деле, бесконечно много.

5. Пусть в модели PageRank пользователь браузера в дополнение к кликам по ссылкам один раз может перейти по кнопке Hasad и вернуться на предыдущую страницу. Можно ли такую модель описать с помощью однородной марковской цепи? Если да, опишите, если нет, докажите.

1