

Spectroscopie

12-09-2023

Cours 2

Spectres vibrationnels

Une particule élémentaire (atome, ion ou molécule) ne peut exister que dans certains états d'énergie quantifiés.

En se basant sur le principe de Born-Oppenheimer, on peut considérer que l'énergie totale est la somme des termes :

Les ordres de grandeurs sont très différents : $E_{\text{élec}} >> E_{\text{vib}} >> E_{\text{rot}} >> E_{\text{spin}}$, avec : $E_{\text{élec}} \approx 100 \text{ Kcal et } E_{\text{vib}} \approx 1 \text{ Kcal}$.

On peut donc négliger E_{spin} , ce qui donne:

$$E_{tot} = E_{\acute{e}lec} + E_{vib} + E_{rot}$$

TO SEE STATE OF SELECTION OF SE

Spectres vibrationnels

- Q. Comment sont peuplés les différent niveaux énergétiques?
- R. Comme pour évaluer les populations de spins en RMN!

On utilise la loi de distribution de Maxwell-Boltzmann:

$$\frac{\mathbf{N_i}}{\mathbf{N_0}} = \frac{\mathbf{g_i}}{\mathbf{g_0}} \mathbf{e}^{\left[-\frac{\left(\mathbf{E_i} - \mathbf{E_0}\right)}{kT}\right]}$$

N_i : nombre de particules dans l'état excité i

N₀: nombre de particules dans l'état fondamental 0

g_i et g₀ : dégénérescence des états i et 0

 E_i et E_0 : énergie des états i et 0

k: constante de Boltzmann (1,38.10⁻²³ J.K⁻¹)

T : température en Kelvin

ANN IN THE STANDARD OF CARRIET HAND AS CARRIED HAND AS CARRIED

Spectres vibrationnels

$$\Delta E_{\text{élec}} >> \Delta E_{\text{vib}} >> \Delta E_{\text{rot}}$$

À température ambiante (25 °C) :

Toutes les molécules sont dans l'état électronique fondamental

Le niveau vibrationnel fondamental est peuplé par plus de 90 % des molécules, quelques pourcents se plaçant sur le premier niveau excité

Plusieurs niveaux rotationnels sont peuplés

Absorption

Énergie moléculaire

$$\Delta E_{\text{élec}} >> \Delta E_{\text{vib}} >> \Delta E_{\text{rot}}$$

 $|\mathbf{h} \, \mathbf{v}_0 \approx \Delta \mathbf{E}_{\mathsf{rot}}|$

 $h \nu_0 \approx \Delta E_{vib}$

 $h \nu_0 \approx \Delta E_{\text{élec}}$

Information

Information

Information

Mouvements de rotation de la molécule

Mouvements de rotation et mouvements de vibration des atomes

Transition électronique

Type de spectre

Type de spectre

Type de spectre

Spectres de rotation pure (IR lointain/micro-ondes)

Spectres de vibrationrotation pure (IR moyen) Spectres électroniques (UV/visible)

Spectroscopie

Spectroscopie

Spectroscopie

Micro-onde

Infrarouge

UV-Visible

Diagramme des niveaux d'énergie pour une molécule diatomique

Passage à un état excité de la molécule

Dissipation d'énergie

Sous forme de chaleur (déformations, chocs)

retour au premier niveau électronique excité (10-12 s)

(relaxation vibrationnelle)

Retour à état fondamental

Chocs avec molécules voisines

dissipation d'énergie par conversion interne (10-8 s) S₁ Premier état Perte d'énergie excité vibrationnelle S_1 **Absorption Absorption** S_0 État électronique fondamental

Distance interatomique

Retour à état fondamental

avec émission de photons

Passage d'un état singulet à un état triplet

Désactivation du 1er état excité de triplet

transition du 1er état excité de triplet au singulet fondamental

Désactivation du 1er état excité de triplet

Énergie totale

dissipation d'énergie par conversion interne

COST CHINA C

Autres états excités impliqués

Différentes techniques spectroscopiques

Spectroscopie atomique

Spectrophotométrie d'absorption atomique

Un faisceau de lumière monochromatique de fréquence caractéristique (absorbable par l'élément à analyser) est envoyé dans une vapeur atomique de cet élément.

La mesure de l'intensité lumineuse avant et après passage dans la vapeur atomique permet de déterminer le pourcentage d'absorption.

Méthode d'analyse qualitative et quantitative.

Spectrophotométrie d'absorption atomique

Principe

Atome dans une cathode creuse

Atome dans une flamme

WHITE THE STATE OF THE STATE OF

Brûleur à flamme laminaire

Comburant

Mélanges combustible/comburant

Un comburant est une substance chimique qui a pour propriété de permettre la combustion d'un combustible.

Par exemple dans le mélange NO₂ / Acétylène, NO₂ est le comburant et acétylène, le combustible.

Mélange combustible/comburant	T°C max
butane/air	1700 – 1900 °C
propane/air	1915°C
hydrogène/air	2100 °C
hydrogène/oxygène	2850 °C
acétylène/air	2125 – 2400 °C
acétylène/protoxyde d'azote (N ₂ O)	2950°C

Atomiseur électrothermique (four en graphite)

À la place d'une flamme, on peut aussi utiliser un four en graphite

Le four permet d'obtenir des atomes à l'état de vapeur

Avantages: La combustion se fait en atmosphère inerte (pas de problèmes d'oxydes réfractaires) et la température est programmée en fonction du temps.

Par exemple :

Premier palier à 100°C : évaporation de l'eau

600°C: pyrolyse des substances organiques

plus de 1000°C atomisation : transformation des ions en

atomes (formation de vapeur).

Il offre une meilleure sensibilité que la flamme : les vapeurs restent disponibles au REM (dans le cas d'une flamme, il y a dispersion en permanence et perte dans l'atmosphère).

Petit rappel

Technique adaptée au dosage de métaux et alcalino-terreux en solutions aqueuses.

CHINA IN SCIENCE IN STATE OF SCIENCE IN SCIENCE IN STATE OF SCIENCE IN SCIENCE

Applications

Très sensible, elle permet d'atteindre des éléments à l'état de traces (concentrations inférieures au mg/l).

Biologie

Dosage du: Ca²⁺, Mg²⁺

Dosage des oligo-éléments: Zn²⁺, Cu²⁺, Ce²⁺

Toxicologie

Dosage des métaux lourds : Al, Cr, Pb, Hg dans divers matrices.

Dosage de l'Aluminium (Al) chez les hémodialysés: le liquide de dialyse est préparé avec de l'eau. Il faut vérifier la teneur en aluminium (risque d'encéphalopathie).

Pharmacie

Recherche des impuretés métalliques dans les médicaments.

Environnement

Dosage des métaux toxiques dans l'eau, plantes et poissons.

Instrumentation

Perkin Elmer AAnalyst 800

AA140 Varian

AA-6300 Shimadzu

Spectrophotométrie d'émission atomique

Ces méthodes reposent sur l'étude des raies émises par des atomes dans un état excité.

⇒ Spectrophotométrie d'émission atomique (ou photométrie en flamme)

Principe

Comme dans le cas de l'absorption atomique, l'échantillon est vaporisé dans une flamme de telle sorte que l'élément à analyser est porté sous forme de gaz à l'état atomique. Le passage à l'état excité de l'atome libre est réalisé dans ce cas par la flamme.

La désactivation de cet état excité s'accompagne d'émission de radiations de longueurs d'onde caractéristiques de l'élément à analyser et d'intensités proportionnelles au nombre d'atomes émetteurs.

Spectrophotométrie d'émission atomique

Applications

En pratique, seuls les éléments alcalino-terreux et quelques métaux lourds sont dosables par cette technique.

	Four	Flamme
Limites de détection	0,002 - 0,01 ppb	0.001 – 0.02 ppm
Rapidité (échantillon par heure)	30	200
Précision (% d'erreur relative)	2 - 5%	1 - 2 %
Dosage	Solution et suspension	Solution et suspension