Вспомним, что такое комплексные числа С. Это никакая не мистика. Всё вводим аксиоматически.

Определение 0.1. $\mathbb{C} = \{z = x + iy \mid x, y \in \mathbb{R}, i - cumbon\}^1$, где введены операции

«+»
$$z_1 + z_2 = (x_1 + x_2) + i(y_1 + y_2);$$

$$varphi z_1 \cdot z_2 = x_1 x_2 - y_1 y_2 + i (x_1 y_2 + x_2 y_1),$$

где $z_{1,2}=x_{1,2}+i\,y_{1,2}.\,z_1\,u\,z_2$ различны, если u только если $x_1\neq x_2\,u\,y_1\neq y_2.$

Упражнение 0.1. Доказать, что $\mathbb C$ — поле. (Нулём называют $0+i\,0$, единицей $1+i\,0$, обратным $\frac{1}{z}=\frac{\overline{z}}{z\overline{z}}=\frac{\overline{z}}{z^2+y^2}=:\frac{\overline{z}}{|z|^2}=\frac{x-i\,y}{x^2+y^2}$.)

Определение 0.2. $\overline{z} = x - iy$ называется сопряжённым κ z.

Совокупность вида $\{x+i\ 0\mid x\in\mathbb{R}\}$ — это подполе в \mathbb{C} , изоморфное \mathbb{R} . Будем отождествлять $x+i\ 0$ и $x,\ 0+i\ y$ с $i\ y.$

Посмотрим, чему равняется $i^2 = (0 + i \, 1)^2 = -1$.

Хорошо бы это поле уметь интерпретировать по крайней мере геометрически: это просто декартова система координат на плоскости.

Рис. 1. Геометрическая интерпретация

Каждая z может быть представлена в виде радиус-вектора в декартовой плоскости: $z = x + i\,y \leftrightarrow \{x,y\} \leftrightarrow (x,y)$, где $\{x,y\}$ — радиус-вектор, а (x,y) — точка плоскости. Вектора мы далее будем обозначать фигурными скобками.

Пока мы не умножаем комплексные числа, мы имеем дело с обычным линейным пространством. Геометрическая интерпретация подсказывается ещё одну форму записи z.

0.1 Тригонометрическая форма записи

Пусть $z \neq 0$. Возьмём положительное направление вещественной оси (ox) и в ближайшем к $\{x,y\}$ направлении повернём на угол $\varphi_0 \in (-\pi,\pi]$. Углы у нас считаются в радианах.

С этого момента никогда i не будет индексом, а углы всегда будут в радианах.

Упражнение 0.2. π иррационально. (Полторы странички за три часа. Кто захочет, расскажу, где прочитать.)

Определение 0.3. Главным значением (полярного) аргумента² числа z называется $\arg(z) = \varphi_0$.

Совокупным полярным аргументом числа z называется множество $Arg(z) = \{\varphi_0 + 2\pi k, \ k \in \mathbb{Z}\},\ a$ $\varphi \in Arg(z)$ называется представителем.

Пишем, как точку в полярных координатах, $z = r \cos \varphi + i r \sin \varphi = r(\cos \varphi + i \sin \varphi)$, последнее выражение называется тригонометрической формой числа z, $r = |z| = \sqrt{x^2 + y^2}$ называется модулем числа z.

Например, пусть z=1+i. Тогда а тригонометрической форме $z=\sqrt{2}\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)$.

Утверждение 0.1. Пусть $z_{1,2} \neq 0$ и $z_{1,2} = r_{1,2}(\cos\varphi_{1,2} + i\sin\varphi_{1,2})$. Тогда

$$z_1 \cdot z_2 = r_1 \cdot r_2 \left(\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) \right).$$

Из этого утверждения вытекает ассоциативность умножения.

Оказывается, что именно такое умножение является важным среди для обобщения умножения в \mathbb{R} . Один из замечательных примеров, когда появляются комплексные числа. Рассмотрим функцию $\frac{1}{1+x^2}=1-x^2+x^4-\ldots$ при |x|<1. Непонятно, почему в 1 проблема. Никаких перегибов. Но посмотрим на функцию $\frac{1}{1+z^2}$. Тогда функция не определена для $z_{1,2}=\pm i$, и как раз $|z_{1,2}|=1$.

Следствие 0.1 (Формула Муавра). Если $z=r(\cos\varphi+i\sin\varphi)\neq 0$ и если $n\in\mathbb{Z}$, то $z^n=r^n(\cos n\varphi+i\sin n\varphi)$. Определение 0.4. Пусть $n\in\mathbb{N}$ и $n\geqslant 2$. Тогда корнем n-й степени из числа z называется множество $\sqrt[n]{z}=\{w\mid w^n=z\}$, то есть множество решений уравнения $w^n=z$.

 $^{^1}$ Запись $z=x+i\,y$ называют алгебраической формой комплексного числа. $x=\mathrm{Re}(z)$ — вещественная часть $z,\,y=\mathrm{Im}(z)$ — мнимая часть. Символ i играет роль базисного вектора.

 $^{^2}$ Это плохое название. У функции потом само z будет аргументом.

В этом курсе очень часто будут изучаться многозначные функции.

Из формулы Муавра следует, что если z=0, то $\sqrt[n]{z}=0$, а при $z=r(\cos\varphi_0+i\sin\varphi_0)\neq 0$, где $\varphi_0=\arg(z)$, имеем $\sqrt[n]{z} = \{w_0, \dots, w_{n-1}\}$, где

$$w_j = \sqrt[n]{r} \left(\cos \frac{\varphi_0 + 2\pi j}{n} + i \sin \frac{\varphi_0 + 2\pi j}{n} \right), \quad j = 0, \dots, n - 1.$$

Упражнение 0.3. Доказать, что $\sum_{j=0}^{n-1} w_j = 0$ и что других корней нет.

Рассмотрим пример: $\sqrt[4]{-1} = \left\{\frac{1+i}{\sqrt{2}}, \frac{-1+i}{\sqrt{2}}, \frac{-1-i}{\sqrt{2}}, \frac{1-i}{\sqrt{2}}\right\}$. Здесь $\varphi_0 = \pi$. **Теорема 0.1** (Основная теорема алгебры). *Пусть* $p(z) = a_n z^n + \dots + a_0$ — многочлен (от z) степени $n \geqslant 1$, то есть $a_n \neq 0$, $a_i \in \mathbb{C}$. Тогда $\exists z_0 \in C : p(z_0) = 0$. Говорят, что поле \mathbb{C} алгебраически замкнуто.

Эта теорема у вас уже была доказана, но мы потом независимо докажем.

Поле \mathbb{R} алгебраически замкнутым не является.

Из теоремы следует, что $p(z) = a_n(z - z_1)(z - z_2) \dots (z - z_n)$.

Оказывается, что другого такого обобщения для $\mathbb R$ нет.

Теорема 0.2 (Фробениуса). Пусть P- поле, содержащее \mathbb{R} . И пусть размерность $p=\dim_{\mathbb{R}}P<+\infty$ $(pазмерность относительно \mathbb{R} \ oзначает pазмерность noля, как линейного npocmpaнcmвa нaд noлем <math>\mathbb{R}).$ Torða утверждается, что либо p=1 и $P=\mathbb{R}$, либо p=2 и $P\cong\mathbb{C}$.

Доказательство есть на полутора страничках. Мы его опустим.

0.2Топология и метрика

У нас всё-таки анализ. Поэтому пора вводить функции и топологию.

Определение 0.5. Пусть $z_{1,2} \in \mathbb{C}$. Расстоянием между z_1 и z_2 называется

$$d(z_1, z_2) = |z_1 - z_2| = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2},$$

 $\kappa a \kappa u \in \mathbb{R}^2$.

Все свойства расстояния работают, как и в \mathbb{R}^2 .

Определение 0.6. Пусть $z_0 \in \mathbb{C}$ и $\delta > 0$. Открытый круг с центром z_0 и радиусом δ будем обозначать

$$B(z_0, \delta) = \{ z \in \mathbb{C} | |z - z_0| < \delta \}$$

u называть δ -окрестностью точки z_0 .

Как только есть понятие окрестности, возникают понятия открытого, замкнутого, ограниченного, компактного и связного множеств. Напомню кое-что.

Определение 0.7. Множество $X\subset\mathbb{C}\colon X\neq\varnothing$ является несвязным, если \exists открытые $U_1,U_2\subset\mathbb{C},$ для которых

- $U_1 \cap X \neq \emptyset$;
- $U_2 \cap X \neq \emptyset$;
- $U_1 \cap U_2 = \varnothing$:
- $X \subset U_1 \cup U_2$.

Если множество непусто и не является несвязным, то оно называется связным.

Определение 0.8. Путём в $\mathbb C$ называется всякое непрерывное отображение отрезка $[\alpha,\beta]\subset \mathbb R$ в $\mathbb C$. При этом $-\infty < \alpha < \beta < +\infty$.

Так как $[\alpha, \beta] \subset \mathbb{R}$, то на отрезке возникается индуцированная топология. Непрерывность понимается в смысле этой топологии. Обозначения следующие

$$\gamma \colon [\alpha, \beta] \to \mathbb{C}, \quad \gamma(t).$$

Определение 0.9. Множество $X \subset \mathbb{C}$ называется линейно связным, если $\forall z_1, z_2 \in X \; \exists \; nymb \; \gamma \colon [\alpha, \beta] \to \mathbb{C}$, для которого

(1)
$$[\gamma] := \gamma([\alpha, \beta]) \subset X^1;$$

(2)
$$\gamma(\alpha) = z_1, \ \gamma(\beta) = z_2.$$

Упражнение 0.4. Если $U \neq \emptyset$, то U связно, если и только если U линейно связно.

 $^{^{1}}$ [γ] называется носителем пути или траекторией.

Определение 0.10. Всякое открытое и связное множество называется областью.

Рис. 2. Связное, но не линейносвязное множество

Определение 0.11. Пусть есть последовательность $\{z_n\}_{n=1}^{+\infty} \subset \mathbb{C}$. Говорят, что последовательность сходится $c \in C$, если

$$\lim_{n \to +\infty} z_n = c \Leftrightarrow \forall \ \varepsilon > 0 \quad \exists \ N \in \mathbb{N} \colon \forall \ n > N \quad |z_n - z| < \varepsilon.$$

Упражнение 0.5. Пусть $z_n=x_n+i\,y_n,\; a\;c=a+i\,b.\;$ Тогда $\lim_{n\to +\infty}z=c\;\Leftrightarrow\; \begin{cases} x_n\xrightarrow[n\to +\infty]{n\to +\infty}a;\\ y_n\xrightarrow[n\to +\infty]{n\to +\infty}b. \end{cases}$

Упражнение 0.6. То же самое, только для тригонометрической формы

- (1) Пусть c=0. Тогда $\lim_{n\to+\infty} z_1=c \Leftrightarrow \lim_{n\to+\infty} |z_n|=0$.
- (2) Пусть $c \neq 0$ и $c = \underbrace{|c|}_{\rho>0} (\cos \psi + i \sin \psi)$, $\psi \in \operatorname{Arg}(c)$. Тогда $z_n \xrightarrow[n \to +\infty]{} c$, где $z_n = r_n(\cos \varphi_n + i \sin \varphi_n)$, если и только если

$$\begin{cases} r_n \xrightarrow[n \to +\infty]{} \rho; \\ \varphi_n \xrightarrow[n \to +\infty]{} \psi \pmod{2\pi} \end{cases}$$

 $3anucь\ arphi_n\xrightarrow[n
ightarrow+\infty]{}\psi\ (\mathrm{mod}\ 2\pi)\ важна\ только\ для\ \psi=\pi.$

1 Экспонента

Вспомним, что

$$\lim_{n \to +\infty} z_n = c \neq 0 \iff \begin{cases} \lim_{n \to +\infty} |z_n| = |c|; \\ \lim_{n \to +\infty} \operatorname{Arg}(z_n) = \operatorname{Arg}(c) \pmod{2\pi}. \end{cases}$$

Определение 1.1. $\forall z \in \mathbb{C}$ полагаем $e^z = \lim_{n \to +\infty} \left(1 + \frac{z}{n}\right)^n$.

Утверждение 1.1. $\forall z = x + iy \in \mathbb{C}$ последний предел существует и равен $e^x(\cos y + i\sin y)$, то есть $|e^z| = e^x > 0$, $\operatorname{Arg} e^z = \{y + 2\pi k\}$.

Доказательство. Пользуемся замечанием о пределе, с которого началась лекция/

(1) Пусть $z_n = (1 + \frac{z}{n})^n$. Тогда

$$|z_n| = \left(\left(1 + \frac{x}{n} \right)^2 + \frac{y^2}{n^2} \right)^{n/2} = e^{\frac{n}{2} \ln \left(1 + \frac{2x}{n} + \frac{x^2 + y^2}{n^2} \right)} = e^{\frac{n}{2} \left(\frac{2x}{n} + \overline{\overline{o}} \left(\frac{1}{n} \right) \right)} \xrightarrow[n \to +\infty]{} e^x,$$

так как $\ln(1+t) = t + \frac{\overline{\overline{o}}}{\overline{o}}(t)$.

(2) Пусть $n \gg 1$. Тогда $1 + \frac{z}{n} \in \{(x, y), \ x > 0\}$. Значит,

$$\arg\left(1 + \frac{z}{n}\right) = \arctan\frac{y/n}{1 + \frac{x}{n}}.$$

Тогда используя формулу Муавра и $\arctan t = t + \frac{\overline{\overline{o}}}{t \to 0}(t)$, получаем

$$\operatorname{Arg}(z_n) = \left\{ n \cdot \operatorname{arctg} \frac{y}{n+x} + 2\pi k \right\}_{k \in \mathbb{Z}} \ni y + \sum_{n \to +\infty}^{\overline{o}} (1) + 2\pi k \xrightarrow[n \to +\infty]{} y \pmod{2\pi}.$$

Итак, если $z=x+i\,y$, то $e^z=e^x(\cos y+i\,\sin y)$. Например, $e^{2\pi i}=1$, а $e^{\pi i}=-1$.

Упражнение 1.1. $\forall z_1 \ u \ z_2 \in \mathbb{C} \ e^{z_1} \cdot e^{z_2} = e^{z_1+z_2}$.

Отсюда вытекает, что $\forall z \in \mathbb{C} \ e^{z+2\pi i} = e^z$.

Определение 1.2. Говорят, что $2\pi i -$ главный мнимый период e^z .

Заметим, что для $\varphi \in \mathbb{R}$

- $e^{i\,\varphi}=\cos\varphi+i\,\sin\varphi$ (если $z\neq 0$, то $r=|z|,\;\varphi=\arg(z)$, получим $z=r\cdot e^{i\,\varphi}$, это называется показательной формой числа z),
- $e^{-i} = \cos \varphi i \sin \varphi$.

Отсюда вытекает, что

$$\begin{cases} \cos \varphi = \frac{e^{i \varphi} + e^{-i \varphi}}{2}; \\ \sin \varphi = \frac{e^{i \varphi} - e^{-i \varphi}}{2 i}. \end{cases}$$

Возникает естественное определение

Определение 1.3. $\forall \ z \in \mathbb{C} \quad \cos z = \frac{e^{i \, z} + e^{-i \, z}}{2}, \ \sin z = \frac{e^{i \, z} - e^{-i \, z}}{2 \, i}.$

Для $mex\ z\in\mathbb{C},\ чтo\ \cos z\neq 0\ onpedeляем\ {\rm tg}\ z=\frac{\sin z}{\cos z}.$ Для $z\in\mathbb{C}\colon z\sin z\neq 0\ \ {\rm ctg}\ z=\frac{\cos z}{\sin z}.$

Упражнение 1.2. У основных тригонометрических функций нули только вещественные:

- $\cos z = 0 \Leftrightarrow z = \frac{\pi}{2} + \pi k, \ k \in \mathbb{Z};$
- $\sin z = 0 \Leftrightarrow z = \pi k, \ k \in \mathbb{Z};$

Пусть $E \subset \mathbb{C}$, z_0 — предельная точка E, то есть

$$\forall \ \delta > 0 \ \exists \ z \in B'(z_0, \delta) \cap E.$$

Определение 1.4. Пусть $f \colon E \to \mathbb{C}$ (отображения из подмножества \mathbb{C} в \mathbb{C} будем называть функциями). Тогда

$$\lim_{(E\ni)z\to z_0} f(z) = A \in C,$$

если $\forall \ \varepsilon > 0 \exists \ \delta > 0 \colon \forall \ z \in B'(z_0, \delta) \cap E \ \left| f(z) - A \right| < \varepsilon.$

Замечание 1.1. Если $z_0 \in E$ и $\lim_{\substack{z \to z_0 \\ z \in E}} f(z) = f(z_0)$, то f называется непрерывной в точке z_0 по множеству E.

Многое в курсе сохраняется из \mathbb{R}^2 , надо просто быть осторожным.

Определение 1.5. Пусть f и g определены g проколотой окрестности точки g0 и $g(z) \neq 0$ g0 в проколотой окрестности g0. Пишем, что g0 при g0 при g0 гели

$$\lim_{z \to z_0} \frac{f(z)}{g(z)} = 1;$$

numem, что $f(z) = \overline{\overline{o}}(g(z))$, $ecnu \lim_{z \to z_0} \frac{f(z)}{g(z)} = 0$.

Добавку «по множеству E» уже не пишем, хотя можно и написать.

Предложение 1.1. $\lim_{z\to 0} \frac{e^z-1}{z} = 1$, mo ecmb $e^z-1\sim z$ npu $z\to 0$ или $e^z=1+z+\frac{\overline{o}}{z\to 0}(z)$.

Доказательство. Пусть $z=x+i\,y$. Тогда заметим, что $|x|,|y|\leqslant |z|$, а значит, если некая $h(z)=\overline{\overline{o}}(x)$, то $h(z)=\overline{\overline{o}}(z)$. Аналогично для y. Кроме того, используя последнее упражнение предыдущей лекции, имеем $\overline{\overline{o}}(g(x))=\overline{\overline{o}}\big(|g(x)|\big)$. Тогда

$$e^{z} - 1 = e^{x}(\cos y + i\sin y) - 1 = \left(1 + x + \underbrace{\overline{\overline{o}}(x)}_{\overline{\overline{o}}(z)}\right) \left(1 + \overline{\overline{o}}(y) + i\left(y + \overline{\overline{o}}(y)\right)\right) = 1 + x + iy + \overline{\overline{o}}(z) - 1 = z + \overline{\overline{o}}(z).$$

Упражнение 1.3. Доказать, что $\lim_{z\to 0} \frac{\sin z}{z} = 1$.

Пусть $-\infty < \alpha < \beta < +\infty$. $\Pi_{\alpha,\beta} = \{z = x + iy \mid \alpha < y < \beta\}$. Для открытых множеств у нас будут соглашение о том, как их рисовать.

Рис. 3. Когда множество открыто, штрихуем дополнение

Утверждение 1.2. Пусть в предыдущих обозначениях $\beta \leqslant \alpha + 2\pi$. Тогда функция $w = e^z$ гомеоморфно отображает $\Pi_{(\alpha,\beta)}$ на открытый улог $V_{(\alpha,\beta)}$, где

$$V_{(\alpha,\beta)} = \{ z = re^{i\varphi} \mid 0 < r < +\infty, \ \alpha < \varphi < \beta \}.$$

Рис. 4. Отображение «экспонента»

Рассмотрим различные прямые вида $z=z(t)=t+i\,\gamma,\,t\in(-\infty,+\infty)$. Каждая $\gamma\in(\alpha,\beta)$ задаёт прямую. Эти прямые переходят в лучи $e^z=e^t(\cos\gamma+i\,\sin\gamma)$.

Рис. 5. Образ горизонтальных прямых при экспоненте

Теперь сделаем наоборот. Рассмотрим $z(t) = x_0 + it$, где $t \in (\alpha, \beta)$. Тогда $e^{z(t)} = e^{x_0}(\cos t + i\sin t)$ — дуга окружности радиуса e^{x_0} . Arg $(e^{z(t)}) \in (\alpha, \beta)$ (mod 2π). Таким образом, куда перейдёт прямоугольник:

Рис. 6. Образ прямоугольника при экспоненте

В частности посмотрим, куда переходит основная полоса экспоненты $\Pi(-\pi,\pi)$, она ещё называется областью основного периода.

Рис. 7.
$$\exp\left(\Pi_{(-\pi,\pi)}\right) = \mathbb{C}_{-} = \mathbb{C} \setminus \mathbb{R}_{-}$$

Теперь введём обратную функцию.

Определение 1.6. Пусть $z \neq 0$. Пишем, что $w \in \text{Ln}(z) \Leftrightarrow z = e^w$.

Утверждение 1.3. В указанных обозначениях для z=x+i $y\neq 0$ имеем $\operatorname{Ln} z=\Big\{\ln|z|+i\left(\operatorname{arg}(z)+2\pi k\right)\Big|k\in\mathbb{Z}\Big\}.$

Легко видеть, что для любого $w_k \in \operatorname{Ln} z$ $e^{w_k} = e^{\ln|z|} \Big(\cos \big(\arg(z) + 2\pi k \big) + i \sin \big(\arg(z) + 2\pi k \big) \Big) = z.$

Упражнение 1.4. Почему нет других решение уравнения $z=e^w$?

Например, $\operatorname{Ln}(1+i) = \{ \ln \sqrt{2} + i(\pi/4 + 2\pi k) | k \in \mathbb{Z} \}.$

Определение 1.7. Главным значением логарифма при $z \neq 0$ называется $\ln z := \ln |z| + i \arg(z)$ ($\arg(z) \in (-\pi, \pi]$).

Упражнение 1.5 (почти доказано). Функция $z = \ln w$ является обратной к функции $w = e^z$. Она непрерывно переводит $V_{(-\pi,\pi)}$ в $\Pi_{(\pi,\beta)}$.

Определение 1.8. Пусть f определена в окрестности точки $z_0 \in \mathbb{C}$. Тогда предел (если он существует) вида

$$\lim_{z \to z_o} \frac{f(z) - f(z_0)}{z - z_0} =: f'(z_0)$$

называется комплексной производной функции f в точке $z_0.$

Например, $\lim_{z \to z_0} \frac{e^z - e^{z_0}}{z - z_0} = \lim_{\Delta z \to 0} \underbrace{\frac{e^{z_0 + \Delta x} - e^{z_0}}{\Delta z}}_{e = e^{z_0}} = e^{z_0} \lim_{\Delta z \to 0} \underbrace{\frac{e^{\Delta z} - 1}{\Delta z}}_{e = e^{z_0}} = e^{z_0}$. Будем коротко писать $(e^z)'\Big|_{z_0} = e^{z_0}$ или ещё короче $(e^z)' = e^z$.

Упражнение 1.6. $Haŭmu (\sin z)', (\cos z)', (\operatorname{tg} z)', (\operatorname{ctg} z)'.$

Теорема 1.1 (о производной обратной функции). Пусть f имеет производную в точке z_0 , причём $f'(z_0) \neq 0$ (это уже означает, что f определена в некоторой окрестности точки z_0). Пусть f гомеоморфно переводит окрестности точки z_0 на некоторую окрестность точки $w_0 = f(z_0)$. Утверждается, что $g(w) = f^{-1}(w)$ имеет комплексную производную $g'(w_0) = \frac{1}{f'(z_0)}$.

Доказательство. При $\Delta z \to 0 \ (\Delta z \neq 0)$ имеем $\Delta w := f(z_0 + \Delta z) - f(z_0) \to 0$ и $\Delta w \neq 0$ из гомеоморфности. Значит,

$$g'(w_0) \leftarrow \frac{\Delta z}{\Delta w} = \frac{1}{\left(\frac{\Delta w}{\Delta z}\right)} \to \frac{1}{f'(z_0)}.$$

2 Дифференцирование

В прошлый раз определили e^z доказали формулу $e^z=e^x(\cos y+i\sin y)$ для $z=x+i\,y$. Показали, что e^z имеет основной период $2\pi\,i$. Достаточно изучать экспоненту на основной полосе периода, то есть $\{z\colon y\in (-\pi,\pi)\}$. Легко видеть непрерывность. Возникает естественное обратное отображение $\ln(w)=\ln|w|+i\,\arg(w)$ (главная часть логарифма). Мы ввели обозначение $z\in {\rm Ln}\,w \Leftrightarrow w=e^z$. Увидели, что ${\rm Ln}\,w=\{\ln|w|+i\,(\arg w+2\pi k)|k\in \mathbb{Z}\}$.

Доказали ещё теорему о производной обратной функции. Что даёт нам

$$(\ln w)'\big|_{w_0=e_{z_0}} = \frac{1}{(e^z)'\big|_{z=z_0}} = \frac{1}{e^{z_0}} = \frac{1}{w_0}.$$

Пишем коротко $(\ln z)' = \frac{1}{z}$ для $z \in \mathbb{C}_-$.

Не все свойства логирифма переносятся из \mathbb{R} . Например, $\ln z^2 \neq 2 \ln z$, это странная функция.

Ещё одну функцию рассмотрим в качестве примера: $w = z^n$ для $n \ge 2$. Эта функция склеивает точки на одной окружности. Легко показать, что $(z^n)' = nz^{n-1}$. А что можно взять в качестве основной области? Нет простой периодичности, но есть инвариантность относительно поворотов.

Рис. 8. Степенная функция

Сегодня будем кратко обозначать $V:=V_{\left(-\frac{\pi}{n},\frac{\pi}{n}\right)}.$ V при отображении z^n перейдёт в \mathbb{C}_- . Рассмотрим $z(t)=t\cdot e^{i\gamma},\, t>0.$ Тогда $\left(z(t)\right)^n=t^n\cdot e^{i\,n\gamma}.$ Есть обратная функция $z=\sqrt[n]{w}=\sqrt[n]{|w|}\cdot e^{\frac{i\,\arg w}{n}}.$

Упражнение 2.1. $\left(\sqrt[n]{z}\right)'_{z_0} = \frac{1}{nz_0} \cdot \sqrt[n]{z_0}$, если короче, то $(\sqrt[n]{z})' = \frac{1}{nz} \sqrt[n]{z}$.

Упражнение 2.2. $\sqrt[n]{z} = e^{\frac{1}{n} \ln z}$.

Просто по определению $\sqrt[n]{z} = z^{\frac{1}{n}}$.

Определение 2.1. Пусть $\lambda \in \mathbb{C}$ — фиксированное число. Тогда $z^{\lambda} = e^{\lambda \ln z}$ — многозначная функция. Можно доопределять в нуле по непрерывности.

Упражнение 2.3. Что будет, когда $\lambda \in \mathbb{Z}$? (Оказывается, будет однозначная функция.)

Упражнение 2.4. Что будет, когда $\lambda \in \mathbb{Q}$ (вещественные рациональные)?

Для остальных λ функция z^n оказывается счётнозначной.

Упражнение 2.5. Доказать, что $i^i \subset \mathbb{R}$.

Что можем сказать про тригонометрические функции? $\cos z = \frac{e^{i\,z} + e^{-i\,z}}{2}, \sin z = \frac{e^{i\,z} - e^{-i\,z}}{2\,i} - 2\pi$ -периодичные функции, а tg $z = \frac{\sin z}{\cos z}$ и ctg $z = \frac{\cos z}{\sin z} - \pi$ -периодичны. Но где они определены? Там, где знаменатели не обращаются в ноль.

2.1 \mathbb{C} - и \mathbb{R} -линейные функции

Определение 2.2. Функция w = l(z) называется \mathbb{C} -линейной. если

$$\forall z_1, z_2, z, \lambda \in \mathbb{C} \ l(z_1 + z_2) = l(z_1) + l(z_2), \ l(\lambda z) = \lambda l(z).$$

Упражнение 2.6. l(z) является \mathbb{C} -линейной, если и только если $\exists \ A \in \mathbb{C} \colon \forall \ z \in \mathbb{C} \ \ l(z) = A \cdot z.$

Определение 2.3. Функция w = L(z) называется \mathbb{R} -линейной, если

$$\forall \ z_1, z_2, z \in \mathbb{C}, \ \forall \ \lambda \in \mathbb{R} \quad L(z_1 + z_2) = L(z_1) + L(z_2), \ L(\lambda z) = \lambda L(z).$$

Такие функции называются линйными формами.

Упражнение 2.7. L(z) является \mathbb{R} -линейной, если и только если $\exists A, B \in \mathbb{C} : \forall z \in \mathbb{C} \ L(z) = A \cdot z + B \cdot \overline{z}$.

Упражнение 2.8. Пусть есть $L(z) = Az + B\overline{z}$ и $L_1(z) = A_1z + B_1\overline{z}$. Утверждается, что $L(z) \equiv L_1(z) \Leftrightarrow A = A_1$ и $B = B_1$.

Надо просто решить систему. Очень просто получается.

Следствие 2.1. \mathbb{R} -линейная функция $L(z)=Az+B\overline{z}$ является \mathbb{C} -линейной, если и только если B=0.

Давайте посмотрим, чему это соответствует, когда берём дифференциал от функции.

Определение 2.4. Функция w=f(z) (определённая в окрестности $U(z_0)$ точки $z_0 \in \mathbb{C}$; в этой окрестности для любой точки z определяем $\Delta z = z - z_0 = \Delta x + i\,\Delta y)$ называется \mathbb{C} -дифференцируемой в точке z_0 , если её полное приращение относительно Δz представляется в виде

$$\Delta f|_{z_0}(\Delta z) = f(z) - f(z_0) = A \cdot \Delta z + \sum_{\Delta z \to 0}^{\overline{\overline{o}}} (\Delta z),$$

где $A \in \mathbb{C}$ — постоянная. $A \cdot \Delta z$ называется главной линейной по Δz частью приращения, обозначается $df|_{z_0}(\Delta z) \equiv A \cdot \Delta z$, и ещё называется дифференциалом f в точке z_0 . Таким образом, функция дифференцируема, если дифференциал является \mathbb{C} -линейной функцией относительно Δz .

Рассмотрим предел $\lim_{\Delta z \to 0} \frac{\Delta f|_{z_0}(\Delta z)}{\Delta z} \stackrel{\exists}{=} f'(z_0)$. Очевидно выполнено

Следствие 2.2. f является \mathbb{C} -дифференцируемой, если и только если существует $f'|_{z_0}$ и тогда $A=f'_{z_0}$.

Рассмотрим функцию $f(z) = z\overline{z} = |z|^2 = x^2 + y^2$. Уж куда проще. Фиксируем точку $z_0 \neq 0$.

$$\Delta f|_{z_0}(\Delta z) = (z_0 + \Delta z)(\overline{z}_0 + \overline{\Delta z}) - z_0\overline{z}_0 = \underbrace{\overline{z}_0}_A \Delta z_0 + \underbrace{z_0}_B \overline{\Delta z} + \underbrace{|\Delta z|^2}_{\overline{o}} \overline{\overline{o}}(|\Delta z|).$$

При этом $\overline{\overline{o}}(\Delta z) = \overline{\overline{o}}(|\Delta z|) = \overline{\overline{o}}(\sqrt{\Delta x^2 + \Delta y^2})$. Так как $B \neq 0$, f не является \mathbb{C} -дифференцируемой функцией в точке z_0 .

Пусть f определена в окрестности $U(z_0)$ точки $z_0 \in \mathbb{C}$. z = x + iy, $\Delta z = z - z_0 = \Delta x + i\Delta y$.

Рис. 9. Окрестность — выпуклое множество

Можно на какое-то время забывать про i и считать, что f(x) — это функция на плоскости f(x,y) = u(x,y) + i v(x,y), u = Re f, v = Im f.

Например, для $f(z) = e^z$ имеем $u(x,y) = e^x \cos y$, $v(x,y) = e^x \sin y$. Для $f(z) = z^2$ имеем $u(x,y) = x^2 - y^2$, v(x,y) = 2xy.

Пусть u, v для некоторой f(z) определены в окрестности точки $(x_0, y_0) \sim z_0$.

Определение 2.5. Функция f называется \mathbb{R} -дифференцируемой в точке z_0 , если функции u(x,y) и v(x,y) одновременно являются дифференцируемыми функциями 2-х вещественных переменных (x,y) в точке $z_0 = (x_0, y_0)$, то есть

$$\Delta u|_{z_0}(\Delta z) = u(x_0 + \Delta x, y_0 + \Delta y) - u(x_0, y_0) = \underbrace{\frac{\partial u}{\partial x}\Big|_{z_0}}_{u_x'|_{z_0}} \cdot \Delta x + \underbrace{\frac{\partial u}{\partial y}\Big|_{z_0}}_{u_y'|_{z_0}} \cdot \Delta y + \underbrace{\overline{\overline{o}}(\Delta z)}_{\overline{\overline{o}}\left(\sqrt{x^2 + y^2}\right)}$$

и одновременно

$$\Delta v|_{z_0}(\Delta z) = v(x_0 + \Delta x, y_0 + \Delta y) - v(x_0, y_0) = \underbrace{\frac{\partial v}{\partial x}\Big|_{z_0}}_{v_x'|_{z_0}} \cdot \Delta x + \underbrace{\frac{\partial v}{\partial y}\Big|_{z_0}}_{v_y'|_{z_0}} \cdot \Delta y + \underbrace{\overline{\overline{o}}(\Delta z)}_{\overline{\overline{o}}\left(\sqrt{x^2 + y^2}\right)}.$$

Бывают функции, не являющиеся \mathbb{R} -дифференцируемыми. Для этого достаточно, чтобы хотя бы u не была дифференцируемой в \mathbb{R}^2 .

Рис. 10. Функция не диффенцируемы в \mathbb{R}^2

Частная производная работает только по двум направлениям, а дифференциал работает по всем. Приращение можно записать ещё в таком виде.

$$\Delta f|_{z_0}(\Delta z) = \Delta u|_{z_0} + i\,\Delta v|_{z_0}(\Delta z) = \underbrace{(u_x' + i\,v_x')|_{z_0}}_{f_x'|_{z_0}} \cdot \Delta x + \underbrace{(u_y' + i\,v_y')|_{z_0}}_{f_{x|z_0}} \cdot \Delta y + \underbrace{\bar{o}}_{\Delta z \to 0} (\Delta z).$$

Возникают ествественные частные производные. А теперь идея такая. Давайте в этом выражении заменим $(x,y) \to (z,\overline{z}).$

$$\Delta z = \Delta x + i \, \Delta y; \quad \overline{\Delta z} = \Delta x - i \, \Delta y; \quad \Delta x = \frac{\Delta z + \overline{\Delta z}}{2}; \quad \Delta y = \frac{\Delta z - \overline{\Delta z}}{2 \, i}.$$

После подстановки возникают естественные определения для $\frac{\partial f}{\partial z}$ и $\frac{\partial f}{\partial \overline{z}}$.

$$\begin{split} \Delta f|_{z_0}(\Delta z) &= f_x'|_{z_0} \left(\frac{\Delta z + \overline{\Delta z}}{2}\right) + f_y'|_{z_0} \left(\frac{\Delta z - \overline{\Delta z}}{2\,i}\right) + \sum_{\Delta z \to 0}^{\overline{o}} \left(\Delta z\right) = \\ &= \frac{1}{2} \underbrace{\left(f_x' - i\,f_y'\right)|_{z_0}}_{\frac{\partial f}{\partial z}\big|_{z_0}} \cdot \Delta z + \frac{1}{2} \underbrace{\left(f_x' + i\,f_y'\right)|_{z_0}}_{\frac{\partial f}{\partial \overline{z}}\big|_{z_0}} \cdot \overline{\Delta z} + \sum_{\Delta z \to 0}^{\overline{o}} \left(\Delta z\right) = \frac{\partial f}{\partial z}\bigg|_{z_0} \Delta z + \frac{\partial f}{\partial \overline{z}} \overline{\Delta z} + \sum_{\Delta z \to 0}^{\overline{o}} \left(\Delta z\right). \end{split}$$

Определение 2.6. В случае \mathbb{R} -дифференцируемости, главная линейная часть приращения имеем вид

$$\left. \frac{\partial f}{\partial z} \right|_{z_0} \Delta z + \frac{\partial f}{\partial \overline{z}} \overline{\Delta z},$$

то есть является \mathbb{R} -линейной функцией по Δz . $E\ddot{e}$ обозначают $df|_{z_0}(\Delta z)$.

Следствие 2.3. \mathbb{R} -дифференцируемая функция f в точке z_0 является \mathbb{C} -дифференцируемой в точке z_0 , если u только если $\frac{\partial f}{\partial \overline{z}}\Big|_{z_0} = 0$, если u только если $\exists f'(z_0)$.

Напишем критерий С-дифференцируемости в более понятных терминах.

$$2\frac{\partial f}{\partial \overline{z}}\bigg|_{z_0} = \left(u_x' + i\,v_x' + i(u_y' + i\,v_y')\right)\bigg|_{z_0} = 0 \iff \begin{cases} u_x' - v_y' = 0; \\ v_x' + u_y' = 0. \end{cases}$$

У этого критерия есть название.

Теорема 2.1 (Коши—Римана). Пусть f = u + iv является \mathbb{R} -дифференцируемой в точке z_0 . Тогда f \mathbb{C} -дифференцируема в z_0 , если и только если $\exists f'(z_0) \Leftrightarrow$

$$\begin{cases} u_x' = v_y'; \\ u_y' = -v_x'. \end{cases}$$

Бывает так, что только одна точка хорошая. Например, $f(z) = x^2 + y^2 = z\overline{z}$. Только в нуле есть комлексная производная.

производная. Замечание 2.1. Пусть f является \mathbb{R} -дифференцируемой в точке z_0 . Пусть $\Delta z = \Delta x + i \, \Delta y = \underbrace{|\Delta z|}_{\neq 0} e^{i\,\theta}$, где

 $\theta = \arg(\Delta z) - \phi$ иксирована. Рассмотрим предел

$$\lim_{\substack{\Delta z \to 0 \\ \arg(\Delta z) = \theta}} \frac{\Delta f|_{z_0}(\Delta z)}{\Delta z}.$$

Он является производной f по направлению $e^{i\,theta}$, где $\theta\in(-\pi,\pi]$. Что получим, если этот пределе преобразуем, используя \mathbb{R} -дифференцируемость:

$$\lim_{\substack{\Delta z \to 0 \\ \arg(\Delta z) = \theta}} \frac{\Delta f|_{z_0}(\Delta z)}{\Delta z} = \lim_{\substack{\Delta z \to 0 \\ \arg(\Delta z) = \theta}} \frac{\frac{\partial f}{\partial z}\Big|_{z_0} \Delta z + \frac{\partial f}{\partial \overline{z}}\Big|_{z_0} \overline{\Delta z} + \overline{\overline{o}}(\Delta z)}{|\Delta z| e^{i\theta}} = \frac{\partial f}{\partial z}\Big|_{z_0} + \frac{\partial f}{\partial \overline{z}}\Big|_{z_0} e^{-2i\theta},$$

 $\max \kappa a \kappa \overline{\Delta z} = \Delta x - i \, \Delta y = |\Delta z| e^{-i \, \theta}.$

Получается следующее замечательное следствие.

Следствие 2.4. В указанных обозначениях совокупность всех производных по направлению дважды пробегает (по часовой стрелке) окружность с центром $\frac{\partial f}{\partial z}\Big|_{z_0}$ и радиусом $\left|\frac{\partial f}{\partial \overline{z}}\Big|_{z_0}$ при θ , один раз пробегающей $(-\pi,\pi]$.

Следствие 2.5. Все производные по направлению $\frac{\partial f}{\partial z_{\theta}}\Big|_{z_0}$ совпадают, если и только если $\frac{\partial f}{\partial \overline{z}}\Big|_{z_0}=0$. В этом случае все они равны $\frac{\partial f}{\partial z}\Big|_{z_0}$ и совпадают с $f'(z_0)=:\frac{df}{dz}\Big|_{z_0}$.

3 Сложная функция. Конформность. Голоморфность. ДЛО

Вводили частные производны каким-то странным образом. Покажем, что $\frac{\partial}{\partial z}$ и $\frac{\partial}{\partial \overline{z}}$ ведут себя так, будто бы z и \overline{z} независимые переменные.

Предложение 3.1. Пусть f и g являются \mathbb{R} -диффенцируемыми в точке z_0 . Тогда $f \pm g$, $f \cdot g$, f/g (если $g(z_0) \neq 0$) тоже являются \mathbb{R} -дифференцируемыми. Причём

$$\left. \frac{\partial (f \cdot g)}{\partial z} \right|_{z_0} = \left. \frac{\partial f}{\partial z} \right|_{z_0} g(z_0) + f(z_0) \frac{\partial g}{\partial z} \right|_{z_0},$$

аналогично для $\frac{\partial}{\partial \overline{z}}$. А также

$$\left. \frac{\partial (f/g)}{\partial z} \right|_{z_0} = \frac{\left. \frac{\partial f}{\partial z} \right|_{z_0} g(z_0) - \left. f(z_0) \frac{\partial g}{\partial z} \right|_{z_0}}{\left. \left(g(z_0) \right)^2},$$

аналогично для $\frac{\partial}{\partial \overline{z}}$.

Следствие 3.1. Если f и g являются \mathbb{C} -дифференцируемыми, то $f \cdot g$ является \mathbb{C} -дифференцируемой и верна формула для комплексной производной.

Теперь посмотрим на сложную функцию.

Предложение 3.2. Пусть g является \mathbb{R} -дифференцируемой в точке $w_0=g(z_0)$. Тогда h(z)=fig(g(z)ig) является \mathbb{R} -дифференцируемой в z_0 , причём

$$\left.\frac{\partial h}{\partial z}\right|_{z_0} = \left.\frac{\partial f}{\partial w}\right|_{w_0} \cdot \left.\frac{\partial g}{\partial z}\right|_{z_0} + \left.\frac{\partial f}{\partial \overline{w}}\right|_{w_0} \cdot \left.\frac{\partial \overline{g}}{\partial z}\right|_{z_0}.$$

Следствие 3.2 (Теорема о комплексной производной сложной функции). Пусть f, g С-дифференцируемы. Тогда $f \circ f$ С-дифференцируема u $h'(z_0) = f'(w_0) \cdot g'(z_0)$.

Замечание 3.1. Таблица производных, как обычно.

• $z^p \equiv = e^{p \ln z}$. Если $p \in \mathbb{Z}$, всё однозначно. В общем случае диффенцируема основная ветвь:

$$(z_{(o)}^p)' = e^{p \ln z} \frac{1}{z} \cdot p = z_{(o)}^p \frac{p}{z}.$$

- $\bullet (e^z)' = e^z;$
- $(\cos z)' = -\sin z;$
- $(\sin z)' = \cos z;$
- $(\operatorname{tg} z)' = \frac{1}{\cos^2 z}$;
- $(\operatorname{ctg} z)' = \frac{-1}{\sin^2 z};$
- $(\ln z)' = \frac{1}{z}$.

Это надо всё вывести.

Замечание 3.2. Достаточным условием дифференцируемости функции двух вещественных переменных является непрерывность частных производных.

Определение 3.1. Пусть f является \mathbb{R} -диффенцируемой в точке z_0 . Функция f называется конформной (сохраняющей форму) в точке z_0 , если её дифференциал в точке z_0 $df|_{z_0}(\Delta z)$ является композицией гоотетии c положительным коэффициентом u поворота, оба c центром $\Delta z = 0$, то есть

$$df|_{z_0}(\Delta z) = ke^{i\theta}\Delta z, \quad k = k_{z_0} > 0, \ \theta = \theta_{z_0} \in \mathbb{R}.$$

 $3 десь \ k, \theta$ не зависят от Δz .

Утверждение 3.1. f является конформной в z_0 , если и только если f является \mathbb{C} -дифференцируемой в точке z_0 и $f'(z_0) \neq 0$.

На самом деле $f'(z_0) = ke^{i\,\theta}$, то есть $k = \left| f'(z_0) \right| > 0$, а $\theta \in \operatorname{Arg} f'(z_0)$. В этом состоит геометрический смысл комплексной производной, если она не равна нулю.

Например, $f(z)=e^z$. Тогда $f'(z_0)=e^{z_0}$. Здесь $k=e^{x_0},\ \theta=y_0\ (\mathrm{mod}\ 2\pi)$. Значит, на мнимой оси нет растяжения, а на прямых $y=2\pi k$ нет поворота.

Определение 3.2. Функция называется локально конформной в области $D \subset \mathbb{C}$, если f является конформной в каждой точке $z_0 \in D$, то есть $\forall z_0 \in D \ \exists f'(z_0) \neq 0$.

Определение 3.3. Функция f называется конмормной в области D, если f локально конформна и взаимно-однозначна в D.

Например, $f(z)=z^2$. f'(z)=2z, значит, f локально конформна в $\mathbb{C}_*=\mathbb{C}\setminus\{0\}$. z^2 склеивает z и -z, но в любой полуплоскости, у которой граница содержит ноль, является конформной.

Ещё пример: e^z локально конформна в С. Просто конформна в $\Pi_{(\alpha,\alpha+2\pi)}$. Такие области называются максимальными областями конформности для e^z .

Определение 3.4. Функция f называется голоморфной (простой формы) в точке z_0 , если f является \mathbb{C} -дифференцируемой в некоторой окрестности точки z_0 .

Определение 3.5. Функция f называется голоморфной в области $D \subset \mathbb{C}$, если f(z) всюду в D имеет комплексную производную. Класс всех голоморфных функций в области D будем обозначать $\mathcal{A}(D)$.

Функции e^z , $\sin z$, $\cos z$, многочлены p(z) голоморфны в $\mathbb C$. Функции, голоморфные на всей комплексной плоскости называют целыми.

Например, $f(z)=z\overline{z}=x^2+y^2-\mathbb{R}$ -дифференцируемая функция, а $\frac{\partial f}{\partial \overline{z}}=z$. Значит, z=0—единственная точка \mathbb{C} -дифференцируемости, причём f'(0)=0. Таким образом, эта функция нигде не конформна и нигде не голоморфна.

3.1 Дробно-линейные отображения

Определение 3.6. ДЛО – это функции вида

$$\Lambda(z) = \frac{az+b}{cz+d},$$

 $\operatorname{ede}\ a,b,c,d\in\mathbb{C}\ u\ \begin{vmatrix} a & b \\ c & d \end{vmatrix} \neq 0,\ \operatorname{mo}\ \operatorname{ecmb}\ \Lambda \neq \operatorname{const}.$

Обсудим свойства такого отображения.

Утверждение 3.2. Любое ДЛО является гомеоморфизмом $\overline{\mathbb{C}}$ на $\overline{\mathbb{C}}$, где $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ — расширенная комплексная плоскость, представляющаяся, как сфера Римана.

Когда $z \to z_0 \in \mathbb{C}$, всё как раньше. Оставшийся случай $z \to \infty \in \overline{\mathbb{C}} \Leftrightarrow |z| \to +\infty$. Символу ∞ соответствует полюс сферы.

Если c=0, то $a\neq 0$ и $d\neq 0$. Можно считать, что d=1. Тогда $\Lambda(z)=\underbrace{a}_{be^{i\,\theta}}\left(z+\frac{b}{a}\right)$ и считаем $\Lambda(\infty)=\infty$.

Пусть далее $c \neq 0$. Тогда есть особая точка $z_0 = -\frac{d}{c} \in \mathbb{C}$. Полагаем $\Lambda(z_0) = \infty$, $\Lambda(\infty) = \frac{a}{c}$.

Упражнение 3.1. Проверить, что указанное отображение является гомеоморфизмом.

Утверждение 3.3. Все ДЛО образуют группу относительн комфозиции.

Утверждение 3.4. Любое ДЛО конформно отображает $\overline{\mathbb{C}}$ на $\overline{\mathbb{C}}$.

Доказательство. Считаем производную

$$\Lambda'(z) = \frac{a(cz+d) - c(az+b)}{(cz+d)^2} = \frac{\begin{vmatrix} a & b \\ c & d \end{vmatrix}}{(cz+d)^2}$$

при $z \neq z_0$.

■ Таким образом, ДЛО сохраняют углы между гладкими кривыми.

Утверждение 3.5 (круговое свойство). Любое ДЛО обобщённую окружность переводит в обобщённую окружность.

Обобщённая окружность в $\overline{\mathbb{C}}$ — это обыкновеная окружность или прямая, объединённая с ∞ .

При $c \neq 0$ считаем c=1 можно ДЛО представить в виде $\Lambda(z) = \frac{\gamma}{z-z_0} + b$. В данном случае Λ является композицией

- сдвига $z_1 = z z_0$;
- симметрии и инверсии $z_2 = \frac{1}{z_1}$;
- гомотетии $z_3 = az_2$;
- и поворота $z = z_3 + b$.

Таким образ, доказывать круговое свойство достаточно для отображения $\frac{1}{z}$. Остальные этапы очевидны.

4 Свойства ДЛО. Функция Жуковского

ДЛО — это отображение вида $w=\frac{az+b}{cz+d}$. Обозначаем $\Lambda(z)$. Интересные случаи, когда $c\neq 0$, тогда функция нелинейная, существует точка $z_0=-\frac{d}{c}$, при стремлении $z\to z_0$ имеем $\Lambda(z)\to\infty$.

Утверждение 4.1. $ДЛО-гомеоморфизм <math>\overline{C}$ на \overline{C} .

Сегодня мы введём на \overline{C} структуру гладкого многообразия, и всё станет ясно.

Утверждение 4.2. Групповое свойство: ДЛО вместе с операцией композиции образуют группу. Причём матрица композиции — произведение матриц.

Утверждение 4.3. Круговое свойства: обобщённая окружность переходит в обобщённую окружность.

Доказательство. Идея здесь такая. Линейный случай совсем простой. А при $c \neq 0$

$$\Lambda(z) = \frac{a}{c} + \frac{\alpha}{z - z_0}, \ \alpha \neq 0.$$

Это композиция $z-z_0,\, \frac{1}{z},\, \alpha z,\, z+\frac{a}{c}.$ Нетривиальный случай $w=\frac{1}{z}.$

Упражнение 4.1. Любую обобщённую окрудность S в \overline{C} можно записать так

$$S \colon A \, z \, \overline{z} + \overline{B} \, z + B \, \overline{z} + C = 0, \quad A > 0, \ B \in \mathbb{C}, \ C \in \mathbb{R} \ AC < |B|^2.$$

Показать, что при подстановке $w = \frac{1}{z}$ получается уравнение такого же виде.

Утверждение 4.4. Любое ДЛО Λ конформно отображает \overline{C} на \overline{C} .

Что означает конформность в любой точке $z \in \mathbb{C}$? Если $z_1 \in \mathbb{C}$, то утверждается, что $\Lambda'(z_1) \neq 0$. А что делать, если $z_1=z_0$ или ∞ ? Или когда $\Lambda(z_1)=\infty$. Надо вводить атлас на \overline{C} .

$$\varphi_1(z) = z \quad (z \in \mathbb{C}); \qquad \varphi_2(z) = \begin{cases} \frac{1}{z}, & z \in \mathbb{C}_*; \\ 0, & z = \infty. \end{cases}$$

Тогда склейка будет такая: $\varphi_2 \circ \varphi_1^{-1}(z) = \frac{1}{z}$. Как тогда определить конформность в точке z_0 ? Определение 4.1. Пусть $z_1 \in \mathbb{C}$, f определена в окрестности z_1 и $f(z_1) = \infty$. Говорят, что f конформна в точке z_1 , если отображение

$$g(z) = \begin{cases} \frac{1}{f(z)}, & z \neq z_1; \\ 0, & z = z_1, \end{cases}$$

конформно в z_1 .

Это просто мы записали конформность во второй карте.

Определение 4.2. Если $z_1 = \infty$ и f определена e окрестности z_1 e \overline{C} и $f(\infty) \neq \infty$, то f конформна e z_1 , если и только если

$$g(\zeta) = \begin{cases} f\left(\frac{1}{\zeta}\right), & \zeta \neq 0; \\ f(\infty), & \zeta = 0, \end{cases}$$

конформно в точке 0.

Здесь мы ввели карту $\zeta = \frac{1}{z}$ около ∞_z . Упражнение 4.2. Случай $z_1 = \infty = f(z_1)$ определить самостоятельно.

Утверждение 4.5. Любое ДЛО конформно в каждой точке $z_1 \in \overline{C}$.

Замечание 4.1. Пусть $f \in C^1(U(z_0))$, то есть в некоторой окрестности $U(z_0)$ точки z_0 компоненты $u,v:f=u+i\,v,$ имеют непрерывные частные производные. Пусть ещё $\exists f'(z_0) \neq 0$ (то есть f конформна в z_0). Тогда f сохраняет улы между гладкими кривыми, пересекающимися в точке z_0 .

Определение 4.3. Пусть путь γ есть отображение $[\alpha,\beta]_t \to \mathbb{C}$ и $\gamma(t)=x(t)+i$ y(t). Пусть $t_0 \in (\alpha,\beta)$: $\gamma(t_0)=x(t)+i$ z_0 . Тогда $\dot{\gamma}(t_0)=\dot{x}(t_0)+i\,y\dot{y}(t_0)-\kappa$ асательный вектор пути γ в точке t_0 . Путь называется гладким, если $\gamma \in C^1([\alpha, \beta]) \ u \ \forall \ t \in [\alpha, \beta] \ |\dot{\gamma}(t)| \neq 0.$

Пусть есть другой гладкий путь $\gamma_1(t)\big|_{[\alpha_1,\beta_1]}$, есть $t_1\in(\alpha,\beta)$: $\gamma_1(t_1)=z_0$. Рассмотрим новые пути $\widetilde{\gamma}(t)$ и $\widetilde{\gamma}_1(t)$ в окрестностях t_0 и t_1 соответственно, такие, что

$$\widetilde{\gamma}(t) = f(\gamma(t)); \quad \widetilde{\gamma}_1(t) = f(\gamma_1(t)).$$

Из теоремы о производной сложной функции легко показать, что

$$\dot{\tilde{\gamma}}(t_0) = f'(z_0)\dot{\gamma}(t_0), \ \dot{\tilde{\gamma}}_1(t_1) = f'(z_0)\dot{\gamma}_1(t_1)$$

являются комнозициями растяжения и поворота, применённого к старому вектору скорости. Отсюда получается сохранение углов между образами гладких кривых.

Пусть $f(z) = z + z^1 \chi(z)$, где $\chi(z)$ — функция Дирихле. f(z) конформна в 0.

Следствие 4.1. Любое ДЛО созраняет углы между гладкими кривыми (в частности, между обобщёнными окруженостями).

Утверждение 4.6. Сохранение симметрии относительно обобщённой окружености. Утверждаеся, что если z_1 и z_2 симметричны относительно обобщённой окрежности S, то $\Lambda(z_1)$ и $\Lambda(z_2)$ симметричны относительно $\Lambda(S)$.

