Rank-76355 over GF(8)

January 15, 2021

The equation

The equation of the surface is :

$$X_0^2 X_3 + X_1^2 X_3 + X_1 X_2^2 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(8) is 1361613389

General information

Number of lines	5
Number of points	89
Number of singular points	0
Number of Eckardt points	1
Number of double points	3
Number of single points	36
Number of points off lines	49
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{5}
Type of lines on points	$3, 2^3, 1^{36}, 0^{49}$

Singular Points

The surface has 0 singular points:

The 5 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_1 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{64} = \mathbf{Pl}(0, 0, 1, 0, 0, 0)_2$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{73} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_{73} = \mathbf{Pl}(1,0,0,0,0,1)_{650}$$

$$\ell_{3} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4744} = \mathbf{Pl}(0,1,0,0,0,0)_{1}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{648} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{648} = \mathbf{Pl}(0,1,1,0,0,0)_{10}$$

Rank of lines: (0, 64, 73, 4744, 648)

Rank of points on Klein quadric: (0, 2, 650, 1, 10)

Eckardt Points

The surface has 1 Eckardt points: $0: P_2 = \mathbf{P}(0, 0, 1, 0) = \mathbf{P}(0, 0, 1, 0).$

Double Points

The surface has 3 Double points: The double points on the surface are:

$$P_0 = (1, 0, 0, 0) = \ell_0 \cap \ell_1$$

$$P_1 = (0, 1, 0, 0) = \ell_0 \cap \ell_2$$

$P_{12} = (1, 0, 1, 0) = \ell_1 \cap \ell_2$

Single Points

The surface has 36 single points: The single points on the surface are:

 $0: P_3 = (0,0,0,1)$ lies on line ℓ_3 1: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_0 2: $P_6 = (2, 1, 0, 0)$ lies on line ℓ_0 $3: P_7 = (3, 1, 0, 0)$ lies on line ℓ_0 4: $P_8 = (4, 1, 0, 0)$ lies on line ℓ_0 5: $P_9 = (5, 1, 0, 0)$ lies on line ℓ_0 6: $P_{10} = (6, 1, 0, 0)$ lies on line ℓ_0 7: $P_{11} = (7, 1, 0, 0)$ lies on line ℓ_0 8: $P_{13} = (2, 0, 1, 0)$ lies on line ℓ_1 9: $P_{14} = (3,0,1,0)$ lies on line ℓ_1 10: $P_{15} = (4, 0, 1, 0)$ lies on line ℓ_1 11: $P_{16} = (5, 0, 1, 0)$ lies on line ℓ_1 12: $P_{17} = (6,0,1,0)$ lies on line ℓ_1 13: $P_{18} = (7,0,1,0)$ lies on line ℓ_1 14 : $P_{20} = (1, 1, 1, 0)$ lies on line ℓ_2 15: $P_{28} = (1, 2, 1, 0)$ lies on line ℓ_2 16: $P_{36} = (1, 3, 1, 0)$ lies on line ℓ_2 17: $P_{44} = (1, 4, 1, 0)$ lies on line ℓ_2 18: $P_{52} = (1, 5, 1, 0)$ lies on line ℓ_2

19: $P_{60} = (1, 6, 1, 0)$ lies on line ℓ_2 20: $P_{68} = (1,7,1,0)$ lies on line ℓ_2 21: $P_{75} = (1,0,0,1)$ lies on line ℓ_4 22: $P_{138} = (0,0,1,1)$ lies on line ℓ_3 23: $P_{139} = (1,0,1,1)$ lies on line ℓ_4 24: $P_{201} = (0, 0, 2, 1)$ lies on line ℓ_3 25: $P_{202} = (1, 0, 2, 1)$ lies on line ℓ_4 26: $P_{265} = (0,0,3,1)$ lies on line ℓ_3 27: $P_{266} = (1,0,3,1)$ lies on line ℓ_4 28: $P_{329} = (0, 0, 4, 1)$ lies on line ℓ_3 29 : $P_{330} = (1,0,4,1)$ lies on line ℓ_4 $30: P_{393} = (0,0,5,1)$ lies on line ℓ_3 $31: P_{394} = (1,0,5,1)$ lies on line ℓ_4 $32: P_{457} = (0,0,6,1)$ lies on line ℓ_3 33: $P_{458} = (1,0,6,1)$ lies on line ℓ_4 $34: P_{521} = (0,0,7,1)$ lies on line ℓ_3 $35: P_{522} = (1,0,7,1)$ lies on line ℓ_4

The single points on the surface are:

Points on surface but on no line

The surface has 49 points not on any line: The points on the surface but not on lines are:

$0: P_{104} = (6, 3, 0, 1)$	$25: P_{354} = (1, 3, 4, 1)$
$1: P_{105} = (7, 3, 0, 1)$	$26: P_{381} = (4, 6, 4, 1)$
$2: P_{116} = (2, 5, 0, 1)$	$27: P_{384} = (7, 6, 4, 1)$
$3: P_{117} = (3, 5, 0, 1)$	$28: P_{385} = (0,7,4,1)$
$4: P_{126} = (4, 6, 0, 1)$	$29: P_{392} = (7,7,4,1)$
$5: P_{127} = (5, 6, 0, 1)$	$30: P_{411} = (2, 2, 5, 1)$
$6: P_{146} = (0, 1, 1, 1)$	$31: P_{413} = (4, 2, 5, 1)$
$7: P_{157} = (4, 2, 1, 1)$	$32: P_{418} = (1, 3, 5, 1)$
$8: P_{160} = (7, 2, 1, 1)$	$33: P_{419} = (2, 3, 5, 1)$
$9: P_{171} = (2, 4, 1, 1)$	$34: P_{441} = (0,6,5,1)$
$10: P_{176} = (7, 4, 1, 1)$	$35: P_{446} = (5, 6, 5, 1)$
$11: P_{195} = (2,7,1,1)$	$36: P_{453} = (4,7,5,1)$
$12: P_{197} = (4,7,1,1)$	$37: P_{480} = (7, 2, 6, 1)$
$13: P_{233} = (0,4,2,1)$	$38: P_{481} = (0, 3, 6, 1)$
$14: P_{237} = (4, 4, 2, 1)$	$39: P_{487} = (6, 3, 6, 1)$
$15: P_{243} = (2, 5, 2, 1)$	$40: P_{493} = (4, 4, 6, 1)$
$16: P_{245} = (4, 5, 2, 1)$	$41: P_{496} = (7, 4, 6, 1)$
$17: P_{250} = (1, 6, 2, 1)$	$42: P_{498} = (1, 5, 6, 1)$
$18: P_{299} = (2,4,3,1)$	$43: P_{501} = (4, 5, 6, 1)$
$19: P_{305} = (0, 5, 3, 1)$	$44: P_{537} = (0, 2, 7, 1)$
$20: P_{308} = (3, 5, 3, 1)$	$45: P_{539} = (2, 2, 7, 1)$
$21: P_{314} = (1, 6, 3, 1)$	$46: P_{547} = (2, 3, 7, 1)$
$22: P_{320} = (7, 6, 3, 1)$	$47: P_{552} = (7, 3, 7, 1)$
$23: P_{323} = (2, 7, 3, 1)$	$48: P_{562} = (1, 5, 7, 1)$
$24: P_{328} = (7, 7, 3, 1)$	502 (-, 0, 1, 1)

Line Intersection Graph

	$\begin{array}{c} 0 \ 1 \ 2 \ 3 \ 4 \\ 0 \ 1 \ 1 \ 0 \ 0 \\ 1 \ 0 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 0 \ 0 \ 0 \\ 0 \ 1 \ 0 \ 1 \ 0 \\ 0 \ 1 \ 0 \ 1 \ 0 \end{array}$
0	01100
1	10111
2	11000
3	01001
4	01010

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_0	P_1

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3	ℓ_4
in point	P_0	P_{12}	P_2	P_2

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1
in point	P_1	P_{12}

Line 3 intersects

Line	ℓ_1	ℓ_4
in point	P_2	P_2

Line 4 intersects

Line	ℓ_1	ℓ_3
in point	P_2	P_2

The surface has 89 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$30: P_{126} = (4, 6, 0, 1)$	$60: P_{381} = (4, 6, 4, 1)$
$1: P_1 = (0, 1, 0, 0)$	$31: P_{127} = (5, 6, 0, 1)$	$61: P_{384} = (7, 6, 4, 1)$
$2: P_2 = (0, 0, 1, 0)$	$32: P_{138} = (0,0,1,1)$	$62: P_{385} = (0,7,4,1)$
$3: P_3 = (0,0,0,1)$	$33: P_{139} = (1,0,1,1)$	$63: P_{392} = (7,7,4,1)$
$4: P_5 = (1, 1, 0, 0)$	$34: P_{146} = (0, 1, 1, 1)$	$64: P_{393} = (0,0,5,1)$
$5: P_6 = (2, 1, 0, 0)$	$35: P_{157} = (4, 2, 1, 1)$	$65: P_{394} = (1,0,5,1)$
$6: P_7 = (3, 1, 0, 0)$	$36: P_{160} = (7, 2, 1, 1)$	$66: P_{411} = (2, 2, 5, 1)$
$7: P_8 = (4, 1, 0, 0)$	$37: P_{171} = (2, 4, 1, 1)$	$67: P_{413} = (4, 2, 5, 1)$
$8: P_9 = (5, 1, 0, 0)$	$38: P_{176} = (7, 4, 1, 1)$	$68: P_{418} = (1, 3, 5, 1)$
$9: P_{10} = (6, 1, 0, 0)$	$39: P_{195} = (2,7,1,1)$	$69: P_{419} = (2, 3, 5, 1)$
$10: P_{11} = (7, 1, 0, 0)$	$40: P_{197} = (4,7,1,1)$	$70: P_{441} = (0, 6, 5, 1)$
$11: P_{12} = (1,0,1,0)$	$41: P_{201} = (0,0,2,1)$	$71: P_{446} = (5, 6, 5, 1)$
$12: P_{13} = (2,0,1,0)$	$42: P_{202} = (1, 0, 2, 1)$	$72: P_{453} = (4,7,5,1)$
13: $P_{14} = (3, 0, 1, 0)$	$43: P_{233} = (0,4,2,1)$	73: $P_{457} = (0, 0, 6, 1)$
$14: P_{15} = (4,0,1,0)$	$44: P_{237} = (4, 4, 2, 1)$	$74: P_{458} = (1, 0, 6, 1)$
15: $P_{16} = (5, 0, 1, 0)$	$45: P_{243} = (2, 5, 2, 1)$	$75: P_{480} = (7, 2, 6, 1)$
16: $P_{17} = (6, 0, 1, 0)$	$46: P_{245} = (4, 5, 2, 1)$	76: $P_{481} = (0, 3, 6, 1)$
17: $P_{18} = (7, 0, 1, 0)$	$47: P_{250} = (1, 6, 2, 1)$	77: $P_{487} = (6, 3, 6, 1)$
18: $P_{20} = (1, 1, 1, 0)$	$48: P_{265} = (0,0,3,1)$	$78: P_{493} = (4, 4, 6, 1)$
$19: P_{28} = (1, 2, 1, 0)$	$49: P_{266} = (1, 0, 3, 1)$	$79: P_{496} = (7, 4, 6, 1)$
$20: P_{36} = (1,3,1,0)$	$50: P_{299} = (2,4,3,1)$	$80: P_{498} = (1, 5, 6, 1)$
$21: P_{44} = (1,4,1,0)$	$51: P_{305} = (0, 5, 3, 1)$	$81: P_{501} = (4, 5, 6, 1)$
$22: P_{52} = (1, 5, 1, 0)$	$52: P_{308} = (3, 5, 3, 1)$	$82: P_{521} = (0, 0, 7, 1)$
$23: P_{60} = (1, 6, 1, 0)$	$53: P_{314} = (1, 6, 3, 1)$	$83: P_{522} = (1, 0, 7, 1)$
$24: P_{68} = (1, 7, 1, 0)$	$54: P_{320} = (7, 6, 3, 1)$	$84: P_{537} = (0, 2, 7, 1)$
$25: P_{75} = (1,0,0,1)$	$55: P_{323} = (2,7,3,1)$	$85: P_{539} = (2, 2, 7, 1)$
$26: P_{104} = (6, 3, 0, 1)$	$56: P_{328} = (7, 7, 3, 1)$	$86: P_{547} = (2, 3, 7, 1)$
$27: P_{105} = (7, 3, 0, 1)$	$57: P_{329} = (0, 0, 4, 1)$	$87: P_{552} = (7, 3, 7, 1)$
$28: P_{116} = (2, 5, 0, 1)$	$58: P_{330} = (1, 0, 4, 1)$	$88: P_{562} = (1, 5, 7, 1)$
$29: P_{117} = (3, 5, 0, 1)$	$59: P_{354} = (1, 3, 4, 1)$	