Author: Liu Jian

Time: 2020-06-06

机器学习10-最大熵原理与最大熵模型

1 最大熵原理

- 1.1 问题的构建
- 1.2 对偶问题

2 最大熵模型

- 2.1 模型描述
- 2.2 模型学习--极大似然估计

3 数值优化算法

- 3.1 改进的迭代尺度法 (improved iterative scaling, IIS)
- 3.2 拟牛顿法

机器学习10-最大熵原理与最大熵模型

1 最大熵原理

1.1 问题的构建

最大熵原理: 在满足约束条件的模型集合中选取熵最大的模型 (可以这样理解,熵越大,编码也就越长,模型的表示能力也就越强)。下面我们从最大熵原理出发,学习某个概率分布 $P(y|\boldsymbol{x})$ (即 $P_{model}(y|\boldsymbol{x})$, 只不过这一模型的形式我们没有指定,而是根据最大熵原理推得), $\boldsymbol{x}\in\mathbb{X}\subseteq\mathbb{R}^d, y\in\mathbb{Y}\subseteq\mathbb{R}$ 。样本数据 $D=\{(\boldsymbol{x}_i,y_i)\}_1^N$,通过统计频率我们可以得到经验分布 $\tilde{P}(\boldsymbol{x},y)$ (即 $P_{data}(\boldsymbol{x},y)$,当然也可以得到 $P_{data}(\boldsymbol{x})$ 、 $P_{data}(y|\boldsymbol{x})$ 等)。

首先,我们给出学习的约束条件。给定特征函数 $f(m{x},y)$,基于经验分布我们可以计算特征函数的期望:

$$\mathbb{E}_{ ilde{P}}[f(oldsymbol{x},y)] = \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) f(oldsymbol{x},y) \mathrm{d}oldsymbol{x} \mathrm{d}y = \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x}) ilde{P}(oldsymbol{y}|oldsymbol{x}) f(oldsymbol{x},y) \mathrm{d}oldsymbol{x} \mathrm{d}y$$

我们将上式中的 $ilde{P}(y|m{x})$ 替换为我们所要求的分布 $P(y|m{x})$:

$$\int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x})P(y|oldsymbol{x})f(oldsymbol{x},y)\mathrm{d}oldsymbol{x}\mathrm{d}y riangleq\mathbb{E}_P[f(oldsymbol{x},y)]$$

自然地,我们希望替换前后二式相等,于是我们令 $\mathbb{E}_{\tilde{P}}[f(m{x},y)]=\mathbb{E}_P[f(m{x},y)]$,这也就得到了最大熵模型的约束条件。

接下来,我们给出优化的目标函数。我们可以选择最大化如下的条件熵:

$$H(y|oldsymbol{x}) = -\int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x}) P(y|oldsymbol{x}) \ln P(y|oldsymbol{x}) \mathrm{d}oldsymbol{x} \mathrm{d}y$$

综上, 我们要求解如下的约束优化问题:

$$egin{aligned} \max_P H(y|oldsymbol{x}) &\Leftrightarrow \min_P \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x}) P(y|oldsymbol{x}) \ln P(y|oldsymbol{x}) \mathrm{d}oldsymbol{x} \mathrm{d}y \ & ext{s. t. } \mathbb{E}_{ ilde{P}}[f_i(oldsymbol{x},y)] = \mathbb{E}_P[f_i(oldsymbol{x},y)], \ \ i=1,\cdots,n \ &\int_{\mathbb{Y}} P(y|oldsymbol{x}) \mathrm{d}y = 1 \end{aligned}$$

最后,我们指出:

1. 若我们要求解的对象是 $P({m x},y)$,在构建约束时,我们令 $\mathbb{E}_{ ilde{p}}[f({m x},y)]=\mathbb{E}_P[f({m x},y)]$,可得:

$$\int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y)f(oldsymbol{x},y)\mathrm{d}oldsymbol{x}\mathrm{d}y=\int_{\mathbb{X} imes\mathbb{Y}}P(oldsymbol{x},y)f(oldsymbol{x},y)\mathrm{d}oldsymbol{x}\mathrm{d}y$$

但这里我们要求解的对象是 P(y|x), 我们令:

$$\int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y)f(oldsymbol{x},y)\mathrm{d}oldsymbol{x}\mathrm{d}y=\int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x})P(y|oldsymbol{x})f(oldsymbol{x},y)\mathrm{d}oldsymbol{x}\mathrm{d}y$$

即从等号左边到右边,我们只替换其中的 $\tilde{P}(y|\boldsymbol{x})$ 为 $P(y|\boldsymbol{x})$,即对于等式右边,除了我们要求解的对象--条件概率 $y|\boldsymbol{x}$ 取 $P(y|\boldsymbol{x})$ (即 $P_{model}(y|\boldsymbol{x})$)外,其他概率均取经验分布。

2. 类似地,这里我们选择最大化条件概率 P(y|x)的交叉熵:

$$-\int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x})P(y|oldsymbol{x})\ln P(y|oldsymbol{x})\mathrm{d}oldsymbol{x}\mathrm{d}y$$

其中,除了我们要求解的对象--条件概率 $y|\mathbf{x}$ 取 $P(y|\mathbf{x})$ (即 $P_{model}(y|\mathbf{x})$) 外,其他概率均取经验分布。若我们要求解的对象是 $P(\mathbf{x},y)$,则我们最大化信息熵:

$$-\int_{\mathbb{X} imes\mathbb{Y}}P(oldsymbol{x},y)\ln P(oldsymbol{x},y)\mathrm{d}oldsymbol{x}\mathrm{d}y$$

1.2 对偶问题

原问题:

$$egin{aligned} \min_P \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x}) P(y|oldsymbol{x}) \ln P(y|oldsymbol{x}) \mathrm{d}oldsymbol{x} \mathrm{d}oldsymbol{y} \ \mathrm{s.\,t.} \ \mathbb{E}_{ ilde{P}}[f_i(oldsymbol{x},y)] = \mathbb{E}_P[f_i(oldsymbol{x},y)], \ \ i=1,\cdots,n \ \int_{\mathbb{Y}} P(y|oldsymbol{x}) \mathrm{d}oldsymbol{y} = 1 \end{aligned}$$

上述是一个泛函问题。

构造拉格朗日函数如下:

$$egin{aligned} L(P,\mu,oldsymbol{\lambda}) &= \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x})P(y|oldsymbol{x}) \ln P(y|oldsymbol{x}) \mathrm{d}oldsymbol{x} \mathrm{d}y + \mu(oldsymbol{x}) \left(1 - \int_{\mathbb{Y}} P(y|oldsymbol{x}) \mathrm{d}y
ight) \ &+ \sum_{i=1}^n \lambda_i \int_{\mathbb{X} imes\mathbb{Y}} \left(ilde{P}(oldsymbol{x},y) - ilde{P}(oldsymbol{x})P(y|oldsymbol{x})
ight) f_i(oldsymbol{x},y) \mathrm{d}oldsymbol{x} \mathrm{d}y \end{aligned}$$

其中, $\mu(\boldsymbol{x})$,入 为拉格朗日乘子,约束条件 $\int_{\mathbb{Y}} P(y|\boldsymbol{x})\mathrm{d}y = 1$ 是一个关于自变量 \boldsymbol{x} 的函数约束,因此其拉格朗日乘子是一个函数 $\mu(\boldsymbol{x})$ 。可以这样理解,约束条件 $\int_{\mathbb{Y}} P(y|\boldsymbol{x})\mathrm{d}y = 1$ 在空间 \mathbb{X} 中的每个点都对应了一个约束,也就对应了一个拉格朗日乘子,这些拉格朗日乘子可统一地用 $\mu(\boldsymbol{x})$ 表示。拉格朗日函数 $L(P,\lambda)$ 是关于 P 的凸函数,因此主问题 $\min_{P} \max_{\mu,\lambda} L(P,\mu,\lambda)$ 与对偶问题 $\max_{\mu,\lambda} \min_{P} L(P,\mu,\lambda)$ 等价,我们通过求解对偶问题来得到原问题的解。

首先是 $\min_P L(P,\mu,\pmb{\lambda})$,我们可以视 $P(\cdot|\star)$ 在输入输出空间 $\mathbb{X}\times\mathbb{Y}$ 每个点上的值为一个参数来进行优化,求导并令导数为 0 (KKT 条件之 stationarity):

$$egin{aligned} rac{\partial L(P,\mu,oldsymbol{\lambda})}{\partial P(y|oldsymbol{x})} &= 0 \ & \updownarrow \ & \hat{P}(oldsymbol{x})(\ln P(y|oldsymbol{x})+1) - \mu(oldsymbol{x}) - ilde{P}(oldsymbol{x}) \sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y) &= 0 \ & P(y|oldsymbol{x}) &= rac{\exp\left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y)
ight)}{\exp\left(1-\mu(oldsymbol{x})/ ilde{P}(oldsymbol{x})
ight)} riangleq P_{\mu,\lambda}(y|oldsymbol{x}) \end{aligned}$$

其中, $f_i(\boldsymbol{x},y), \tilde{P}(\boldsymbol{x})$ 是已知的量。因此, 对偶问题:

$$\max_{u, \boldsymbol{\lambda}} \min_{P} L(P, \mu, \boldsymbol{\lambda}) = \max_{u, \boldsymbol{\lambda}} L(P_{\mu, \lambda}, \mu, \boldsymbol{\lambda})$$

事实上,我们可以作进一步化简,消去变量 $\mu({m x})$,只保留变量 ${m \lambda}$ 。因为由 $\int_{\mathbb{Y}} P(y|{m x}) \mathrm{d}y = 1$ (KKT 条件之primal feasibility), $\mu({m x}), {m \lambda}$ 之间存在如下的约束条件:

$$\exp\left(1-\mu(oldsymbol{x})/ ilde{P}(oldsymbol{x})
ight) = \int_{\mathbb{Y}} \exp\left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y)
ight) \mathrm{d}y riangleq Z(oldsymbol{x};oldsymbol{\lambda})$$

使用规范化因子 $Z(x; \lambda)$, 我们记:

$$P_{\lambda}(y|oldsymbol{x}) = rac{1}{Z(oldsymbol{x};oldsymbol{\lambda})} \mathrm{exp}\left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y)
ight)$$

则:

$$egin{aligned} \max_{\mu, oldsymbol{\lambda}} L(P_{\mu, \lambda}, \mu, oldsymbol{\lambda}) \ &= \max_{oldsymbol{\lambda}} \int_{\mathbb{X} imes \mathbb{Y}} ilde{P}(oldsymbol{x}) P_{\lambda}(y | oldsymbol{x}) \ln P_{\lambda}(y | oldsymbol{x}) \mathrm{d} oldsymbol{x} \mathrm{d} oldsymbol{y} \ &+ 0 + \sum_{i=1}^n \lambda_i \int_{\mathbb{X} imes \mathbb{Y}} \left(ilde{P}(oldsymbol{x}, y) - ilde{P}(oldsymbol{x}) P_{\lambda}(y | oldsymbol{x}) \right) f_i(oldsymbol{x}, y) \mathrm{d} oldsymbol{x} \mathrm{d} oldsymbol{y} \ &\triangleq \max_{oldsymbol{\lambda}} \Psi(oldsymbol{\lambda}) \end{aligned}$$

通过求解 $\max_{\lambda} \Psi(\lambda)$ 得到 λ 的解,代入到 $P_{\lambda}(y|x)$ 中即可得 P(y|x) 解。此外,还可以根据 $\mu(x)$, λ 之间的关系得到 $\mu(x)$ 的解。

2 最大熵模型

2.1 模型描述

根据上一章的内容, 我们抽象出如下的模型, 并称之为最大熵模型:

$$P_{\lambda}(y|oldsymbol{x}) = rac{1}{Z(oldsymbol{x};oldsymbol{\lambda})} \mathrm{exp}\left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y)
ight)$$

其中, $f_i(\boldsymbol{x},y)$ 为给定的特征函数, $Z(\boldsymbol{x};\boldsymbol{\lambda})$ 为规范化因子,待学习的量为参数 $\boldsymbol{\lambda}$ 。可以看到,和线性模型、决策树等模型一样,最大熵模型的形式给定,我们需要对其中的待估参数进行学习。最大熵模型属于对数线性模型。

2.2 模型学习--极大似然估计

给定一个含有待估参数的机器学习模型和采样数据 D ,我们会采用极大似然估计对未知参数进行估计:

$$\max_{\lambda} - \sum_{i=1}^N \ln P_{\lambda}(y_i|m{x}_i)$$

而事实上,上式等价于 $\max_{\lambda} \Psi(\lambda)$,接下来,我们来证明这一点。

1. 我们知道,极大似然估计:

因此,

代入模型 $P_{\lambda}(y|x)$ 进行化简:

$$egin{aligned} &\int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \ln P_{\lambda}(y|oldsymbol{x}) \mathrm{d}oldsymbol{x} \mathrm{d}y \ &= \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y) - \ln Z(oldsymbol{x};oldsymbol{\lambda}) \mathrm{d}oldsymbol{x} \mathrm{d}y \ &= \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y) \right) \mathrm{d}oldsymbol{x} \mathrm{d}y - \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \ln Z(oldsymbol{x};oldsymbol{\lambda}) \mathrm{d}oldsymbol{x} \mathrm{d}y \ &= \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d}y - \int_{\mathbb{X}} ilde{P}(oldsymbol{x}) \ln Z(oldsymbol{x};oldsymbol{\lambda}) \mathrm{d}oldsymbol{x} \mathrm{d}y \ &= \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d}y - \int_{\mathbb{X}} ilde{P}(oldsymbol{x}) \ln Z(oldsymbol{x};oldsymbol{\lambda}) \mathrm{d}oldsymbol{x} \mathrm{d}y \ &= \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y) \right) \mathrm{d}oldsymbol{x} \mathrm{d}y - \int_{\mathbb{X}} ilde{P}(oldsymbol{x}) \ln Z(oldsymbol{x};oldsymbol{\lambda}) \mathrm{d}oldsymbol{x} \mathrm{d}y \ &= \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y) \right) \mathrm{d}oldsymbol{x} \mathrm{d}y - \int_{\mathbb{X}} ilde{P}(oldsymbol{x}) \ln Z(oldsymbol{x};oldsymbol{\lambda}) \mathrm{d}oldsymbol{x} \mathrm{d}y \ &= \int_{\mathbb{X} imes} ilde{P}(oldsymbol{x},y) \left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y) \right) \mathrm{d}oldsymbol{x} \mathrm{d}y - \int_{\mathbb{X}} ilde{P}(oldsymbol{x}) \ln Z(oldsymbol{x};oldsymbol{\lambda}) \mathrm{d}oldsymbol{x} \mathrm{d}y \ &= \int_{\mathbb{X} imes} ilde{P}(oldsymbol{x},y) \ln P(oldsymbol{x},y) \ln P(oldsymbol{x};oldsymbol{x}) \mathrm{d}oldsymbol{x} \mathrm{d}y \ &= \int_{\mathbb{X} imes} ilde{P}(oldsymbol{x},y) \ln P(oldsymbol{x};o$$

2. 对 $\Psi(\lambda)$ 变形:

$$\Psi(\lambda) =$$

$$\begin{split} \int_{\mathbb{X}\times\mathbb{Y}} \tilde{P}(\boldsymbol{x}) P_{\lambda}(y|\boldsymbol{x}) \ln P_{\lambda}(y|\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \mathrm{d}y + \int_{\mathbb{X}\times\mathbb{Y}} \left(\tilde{P}(\boldsymbol{x},y) - \tilde{P}(\boldsymbol{x}) P_{\lambda}(y|\boldsymbol{x}) \right) \left(\sum_{i=1}^{n} \lambda_{i} f_{i}(\boldsymbol{x},y) \right) \mathrm{d}\boldsymbol{x} \mathrm{d}y \\ &= \int_{\mathbb{X}\times\mathbb{Y}} \tilde{P}(\boldsymbol{x}) P_{\lambda}(y|\boldsymbol{x}) \ln P_{\lambda}(y|\boldsymbol{x}) \mathrm{d}\boldsymbol{x} \mathrm{d}y - \int_{\mathbb{X}\times\mathbb{Y}} \tilde{P}(\boldsymbol{x}) P_{\lambda}(y|\boldsymbol{x}) \left(\sum_{i=1}^{n} \lambda_{i} f_{i}(\boldsymbol{x},y) \right) \mathrm{d}\boldsymbol{x} \mathrm{d}y \\ &= \int_{\mathbb{X}\times\mathbb{Y}} \tilde{P}(\boldsymbol{x},y) \left(\sum_{i=1}^{n} \lambda_{i} f_{i}(\boldsymbol{x},y) \right) \mathrm{d}\boldsymbol{x} \mathrm{d}y \\ &+ \int_{\mathbb{X}\times\mathbb{Y}} \tilde{P}(\boldsymbol{x}) P_{\lambda}(y|\boldsymbol{x}) \left(\ln P_{\lambda}(y|\boldsymbol{x}) - \sum_{i=1}^{n} \lambda_{i} f_{i}(\boldsymbol{x},y) \right) \mathrm{d}\boldsymbol{x} \mathrm{d}y \\ &= \int_{\mathbb{X}\times\mathbb{Y}} \tilde{P}(\boldsymbol{x},y) \left(\sum_{i=1}^{n} \lambda_{i} f_{i}(\boldsymbol{x},y) \right) \mathrm{d}\boldsymbol{x} \mathrm{d}y + \int_{\mathbb{X}\times\mathbb{Y}} \tilde{P}(\boldsymbol{x}) P_{\lambda}(y|\boldsymbol{x}) (-\ln Z(\boldsymbol{x};\boldsymbol{\lambda})) \mathrm{d}\boldsymbol{x} \mathrm{d}y \\ &= \int_{\mathbb{X}\times\mathbb{Y}} \tilde{P}(\boldsymbol{x},y) \left(\sum_{i=1}^{n} \lambda_{i} f_{i}(\boldsymbol{x},y) \right) \mathrm{d}\boldsymbol{x} \mathrm{d}y - \int_{\mathbb{X}} \tilde{P}(\boldsymbol{x}) \ln Z(\boldsymbol{x};\boldsymbol{\lambda}) \mathrm{d}\boldsymbol{x} \mathrm{d}y \end{split}$$

3. 可见对最大熵模型 (存在具体的形式和待定参数) 进行极大似然估计就等价于依据最大熵原理 (对P(y|x)) 的形式没有作任何假设) 构建模型。

3 数值优化算法

由前可知,我们要解决如下的优化问题:

$$\max_{oldsymbol{\lambda}} \Psi(oldsymbol{\lambda}) = \min_{oldsymbol{\lambda}} \int_{\mathbb{X} imes \mathbb{Y}} ilde{P}(oldsymbol{x}, y) \left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x}, y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d} y - \int_{\mathbb{X}} ilde{P}(oldsymbol{x}) \ln Z(oldsymbol{x}; oldsymbol{\lambda}) \mathrm{d}oldsymbol{x} \mathrm{d} y$$

其中,除待优化变量 λ 未知外,其他均已知。接下来,我们介绍两种数值优化方法--改进的迭代尺度法 (improved iterative scaling, IIS) 和拟牛顿法。

3.1 改进的迭代尺度法 (improved iterative scaling, IIS)

IIS 的思路是:假设当前参数向量是 λ ,我们希望找到一个新的参数向量 $\lambda+\delta$,使得目标函数增大,重复这一过程,直到找到最大值。为此,我们构造 $\Psi(\lambda+\delta)-\Psi(\lambda)$ 的下界,也就是下文中的 $B(\delta;\lambda)$, $\Psi(\lambda+\delta)-\Psi(\lambda)\geqslant B(\delta;\lambda)$,通过不断优化下界的值来提到目标函数的值。

1. 我们有:

$$egin{aligned} \Psi(oldsymbol{\lambda} + oldsymbol{\delta}) - \Psi(oldsymbol{\lambda}) &= \int_{\mathbb{X} imes \mathbb{Y}} ilde{P}(oldsymbol{x}, y) \left(\sum_{i=1}^n \delta_i f_i(oldsymbol{x}, y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d} y - \int_{\mathbb{X}} ilde{P}(oldsymbol{x}) \ln rac{Z(oldsymbol{x}; oldsymbol{\lambda} + oldsymbol{\delta}}{Z(oldsymbol{x}; oldsymbol{\lambda})} \mathrm{d}oldsymbol{x} \ &\geqslant \int_{\mathbb{X} imes \mathbb{Y}} ilde{P}(oldsymbol{x}, y) \left(\sum_{i=1}^n \delta_i f_i(oldsymbol{x}, y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d} y + \int_{\mathbb{X}} ilde{P}(oldsymbol{x}) \left(1 - rac{Z(oldsymbol{x}; oldsymbol{\lambda} + oldsymbol{\delta})}{Z(oldsymbol{x}; oldsymbol{\lambda})} \mathrm{d}oldsymbol{x} \ &\qquad \qquad (au^{rac{\Delta t}{2}} \vec{x} - \ln x \geqslant 1 - x, \ x > 0) \ &= \int_{\mathbb{X} imes \mathbb{Y}} ilde{P}(oldsymbol{x}, y) \left(\sum_{i=1}^n \delta_i f_i(oldsymbol{x}, y) \right) \mathrm{d}oldsymbol{x} \mathrm{d} y + 1 - \int_{\mathbb{X}} ilde{P}(oldsymbol{x}) rac{Z(oldsymbol{x}; oldsymbol{\lambda} + oldsymbol{\delta}}{Z(oldsymbol{x}; oldsymbol{\lambda})} \mathrm{d}oldsymbol{x} \end{aligned}$$

又由前可知:

$$Z(oldsymbol{x};oldsymbol{\lambda}) = rac{1}{P_{\lambda}(y|oldsymbol{x})} \mathrm{exp}\left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y)
ight) = \int_{\mathbb{Y}} \mathrm{exp}\left(\sum_{i=1}^n \lambda_i f_i(oldsymbol{x},y)
ight) \mathrm{d}y$$

我们有:

则

$$egin{aligned} \Psi(oldsymbol{\lambda}+oldsymbol{\delta}) &= \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \left(\sum_{i=1}^n \delta_i f_i(oldsymbol{x},y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d}y + 1 - \int_{\mathbb{X}} ilde{P}(oldsymbol{x}) rac{Z(oldsymbol{x};oldsymbol{\lambda}+oldsymbol{\delta}}{Z(oldsymbol{x};oldsymbol{\lambda})} \mathrm{d}oldsymbol{x} \mathrm{d}y \\ &= \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \left(\sum_{i=1}^n \delta_i f_i(oldsymbol{x},y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d}y + 1 - \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x}) P_{\lambda}(y|oldsymbol{x}) \exp\left(\sum_{i=1}^n \delta_i f_i(oldsymbol{x},y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d}y \\ &= \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \left(\sum_{i=1}^n \delta_i f_i(oldsymbol{x},y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d}y + 1 - \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x}) P_{\lambda}(y|oldsymbol{x}) \exp\left(\sum_{i=1}^n \delta_i f_i(oldsymbol{x},y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d}y \\ &\triangleq A(oldsymbol{\delta};oldsymbol{\lambda}) \end{aligned}$$

至此,我们找到了一个下界 $A(\pmb{\delta};\pmb{\lambda})$,但对 $A(\pmb{\delta};\pmb{\lambda})$ 的优化依然稍显复杂,为此,下面我们作进一步缩放。

2. 记 $f^{\#}(oldsymbol{x},y)=\sum_{i=1}^n f_i(oldsymbol{x},y)$,由 Jensen 不等式:

$$egin{aligned} \exp\left(\sum_{i=1}^n \delta_i f_i(oldsymbol{x},y)
ight) &= \exp\left(\sum_{i=1}^n rac{f_i(oldsymbol{x},y)}{f^\#(oldsymbol{x},y)} \delta_i f^\#(oldsymbol{x},y)
ight) \ &\leqslant \sum_{i=1}^n rac{f_i(oldsymbol{x},y)}{f^\#(oldsymbol{x},y)} \exp\left(\delta_i f^\#(oldsymbol{x},y)
ight) \end{aligned}$$

则:

$$egin{aligned} A(oldsymbol{\delta};oldsymbol{\lambda}) \leqslant \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) \left(\sum_{i=1}^n \delta_i f_i(oldsymbol{x},y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d}y + 1 \ -\int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x}) P_{\lambda}(y|oldsymbol{x}) \sum_{i=1}^n rac{f_i(oldsymbol{x},y)}{f^{\#}(oldsymbol{x},y)} \mathrm{exp} \left(\delta_i f^{\#}(oldsymbol{x},y)
ight) \mathrm{d}oldsymbol{x} \mathrm{d}y riangleq B(oldsymbol{\delta};oldsymbol{\lambda}) \end{aligned}$$

至此,我们得到了下界 $B(\delta; \lambda)$,即:

$$\Psi(oldsymbol{\lambda} + oldsymbol{\delta}) - \Psi(oldsymbol{\lambda}) \geqslant B(oldsymbol{\delta}; oldsymbol{\lambda})$$

3. 下面我们说明为什么优化下界 $B(\pmb{\delta};\pmb{\lambda})$ 比优化下界 $A(\pmb{\delta};\pmb{\lambda})$ 更简单,及如何对 $B(\pmb{\delta};\pmb{\lambda})$ 进行优化。将 $B(\pmb{\delta};\pmb{\lambda})$ 对任意分量 δ_i 求导,并令导数为 0 ,我们有:

$$rac{\partial B(oldsymbol{\delta};oldsymbol{\lambda})}{\partial \delta_i} = \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y) f_i(oldsymbol{x},y) \mathrm{d}oldsymbol{x} \mathrm{d}y - \int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x}) P_{\lambda}(y|oldsymbol{x}) f_i(oldsymbol{x},y) \expig(\delta_i f^\#(oldsymbol{x},y)ig) \mathrm{d}oldsymbol{x} \mathrm{d}y = 0$$

可以看到,上式中的未知量只有分量 δ_i ,而含有其他分量 δ_j $(j\neq i)$,因此对每个分量 δ_i ,单独求解对应的方程即可;但若选择优化下界 $A(\pmb{\delta};\pmb{\lambda})$,为了求解 $\pmb{\delta}$,我们需求解的是一个联立的方程组,难度更大。

此外,若对任意的 $oldsymbol{x}, y$, $f^\#(oldsymbol{x}, y) \equiv C$,则 δ_i 有如下的解析解:

$$\delta_i = rac{1}{C} \mathrm{ln} \, rac{\int_{\mathbb{X} imes \mathbb{Y}} ilde{P}(oldsymbol{x}, y) f_i(oldsymbol{x}, y) \mathrm{d} oldsymbol{x} \mathrm{d} y}{\int_{\mathbb{X} imes \mathbb{Y}} ilde{P}(oldsymbol{x}) P_{\lambda}(y | oldsymbol{x}) f_i(oldsymbol{x}, y) \mathrm{d} oldsymbol{x} \mathrm{d} y} = rac{1}{C} \mathrm{ln} \, rac{\mathbb{E}_{ ilde{P}}[f_i]}{\mathbb{E}_P[f_i]}$$

否则, 我们可以采用牛顿法迭代求解方程:

$$\int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x},y)f_i(oldsymbol{x},y)\mathrm{d}oldsymbol{x}\mathrm{d}y-\int_{\mathbb{X} imes\mathbb{Y}} ilde{P}(oldsymbol{x})P_\lambda(y|oldsymbol{x})f_i(oldsymbol{x},y)\expig(\delta_if^\#(oldsymbol{x},y)ig)\mathrm{d}oldsymbol{x}\mathrm{d}y=0$$

上述方程有单根,牛顿法恒收敛且收敛速度很快。

3.2 拟牛顿法

按照拟牛顿法的格式进行求解即可,可参见笔记《7-数值优化方法》中的相关内容,《统计学习方法》中给出的是 BFGS 算法,不再赘述。