Hard capacitated k-facility location problem Seminarski rad u okviru kursa Matematičko programiranje i optimizacija

Matematički fakultet

Student: Miloš Manić
 1087/2014Problem br:14

Metode: Genetski algoritmi, iterativna lokalna pretraga i njihova hibridizacija

9. april 2015.

Sažetak

Sadržaj

1	Pro	blem	2	
	1.1	Matematička formulacija problema		
	1.2	Opis problema		
	1.3	Primena		
	1.4	Postojeći načini rešavanja	,	
2	Heuristike			
	2.1	Genetski algoritmi		
	2.2	Iterativna lokalna pretraga		
	2.3	Hibridizacija	;	
3	Testiranje			
	3.1	Instance		
	3.2	Rezultati	į	
	3.3	Analiza rezultata		
4	Zak	ljučak	;	
Li	Literatura			

Problem 1

Matematička formulacija problema 1.1

Capacitated k-facility location problem(CKFL) se može formulisati[1] kao sledeći Mixed Integer Problem
(MIP) gde promenljiva x_{ij} označava količinu potražnje klijenta i koja je opslužena postrojenjem i, a y_i označava da li je postrojenje i otvoreno:

$$\min \sum_{i \in F} \sum_{j \in D} c_{ij} x_{ij} + \sum_{j \in F} f_i y_i \tag{1}$$

subject to:
$$\sum_{i \in F} x_{ij} = d_j, \forall j \in D,$$

$$\sum_{j \in D} x_{ij} \le s_i y_i, \forall i \in F,$$
(2)

$$\sum_{i \in D} x_{ij} \le s_i y_i, \forall i \in F, \tag{3}$$

$$\sum_{i \in F} y_i \le k,\tag{4}$$

$$x_{ij} \ge 0, \forall i \in F, \forall j \in D,$$
 (5)

$$y \in \{0, 1\}, \forall i \in F \tag{6}$$

Opis problema 1.2

U datom probllemu dat je skup klijenata D i skup potencijalnih postrojenja(lokacija na kojima se može izgraditi postrojenje F[1].

- a) Svako postrojenje $i \in F$ ima kapacitet s_i
- b) Izgradnja postrojenja $i \in F$ košta f_i
- c) Svaki klijent $j \in D$ ima potražnju d_i
- d) Slanje x_{ij} jedinica robe od postrojenja i do klijenta j košta $c_{ij}x_{ij}$, gde je c_{ij} jedinicna cena proporcionalna rastojanju između i i j
- e) Na svakoj potencijalnoj lokaciji $i \in F$ može se izgraditi najviše jedno postrojenje
- f) Bez gubitka opštosti može se smatrati da su cene izgradnje f_i , kapaciteti s_i , i potražnje d_j celi brojevi

Cilj je opslužiti sve klijente koristeći najviše k postrojenja sa što manjim(minimalnim) troškovima izgradnje postrojenja i dopremanja robe.

1.3Primena

Kao što ime kaže ovakvi problemi se javljaju prilikom planiranja postavljanja postrojenja i prostornog planiranja.

Neke od primera primena obuhvataju[3]:

- Optimizacija rasporeda zgrada u fabričkom postrojenju
- Nalaženje rasporeda skladišta nekog prodajnog lanca
- Planiranje lokacija bitnih gradskih ustanova (bolnice, vatrogasne stanice . . .)
- Planiranje lokacija baznih stanica za bežične mreže
- Raspored elemenata na čipu radi optimalne jačine signala prilikom VLSI dizajna

1.4 Postojeći načini rešavanja

Pored korišćenja egzaktnih metoda kao što su metode linearnog programiranja, problem je rešavan raznim heuristikama. Neke od najkorišćenijih pristupa su[2]:

- Lokalna pretraga i varijacije
- ullet Gramzive heuristike
- Tabu pretraga
- Genetski algoritmi

2 Heuristike

- 2.1 Genetski algoritmi
- 2.2 Iterativna lokalna pretraga
- 2.3 Hibridizacija
- 3 Testiranje
- 3.1 Instance
- 3.2 Rezultati
- 3.3 Analiza rezultata

4 Zaključak

Literatura

- Karen Aardal, Pieter L van den Berg, Dion Gijswijt, and Shanfei Li. Approximation algorithms for hard capacitated k-facility location problems. European Journal of Operational Research, 242(2):358-368, 2015.
- [2] Francisco José Ferreira Silva and DS De la Figuera. A capacitated facility location problem with constrained backlogging probabilities. *International journal of production research*, 45(21):5117–5134, 2007.
- [3] Jens Vygen. Approximation algorithms facility location problems. Forschungsinstitut für Diskrete Mathematik, Rheinische Friedrich-Wilhelms-Universität, 2005.