TSRT08 Optimal Control Homework 1 - Discrete Dynamic Programming

Eric Moringe (erimo668), David Wiman (davwi279)

November 20, 2023

Exercises

a)

$$\max \sum_{k=0}^{N-1} u_k$$
subject to $x_{k+1} = x_k + \theta(x_k - u_k)$

$$x_k \ge 0, \ \forall k = \{0, 1, \dots, N-1\}$$

$$0 < u_k < x_k$$

$$(1)$$

Further, it is also assumed that $\theta > 0$ since it is necessary to increase the company profit the following year.

b) The Bellman equation J(k,x) is written down, assuming the solution $J(k,x) = \alpha_k x$ and then simplified.

$$\begin{split} J(k,x) &= \max_{0 \leq u_k \leq x_k} \{u_k + J(k+1,x_k + \theta(x_k - u_k))\} \\ J(k,x) &= \alpha_k x \\ \alpha_k x &= \max_{0 \leq u_k \leq x_k} \{u_k + \alpha_{k+1}(x_k + \theta(x_k - u_k))\} \\ \alpha_k x &= \max_{0 \leq u_k \leq x_k} \{u_k + \alpha_{k+1}x_k + \alpha_{k+1}\theta x_k - \alpha_{k+1}\theta u_k\} \\ \alpha_k x &= \max_{0 \leq u_k \leq x_k} \{u_k(1 - \alpha_{k+1}\theta) + x_k(\alpha_{k+1} + \alpha_{k+1}\theta)\} \end{split}$$

Since the function we want to maximize for u_k is linear, we only need to check the endpoints of the interval of the max operation. This yields the following cases:

$$\begin{cases} \alpha_k x_k = x_k (\alpha_{k+1} + \alpha_{k+1} \theta), & \text{if } u_k = 0\\ \alpha_k x_k = x_k (\alpha_{k+1} + 1), & \text{if } u_k = x_k \end{cases}$$

Since we want to maximize $J(k, x) = \alpha_k x$ we get

$$\alpha_k x_k = \max \begin{cases} x_k (\alpha_{k+1} + \alpha_{k+1} \theta) \\ x_k (\alpha_{k+1} + 1) \end{cases}$$

which simplifies to

$$\alpha_k = \max \begin{cases} \alpha_{k+1} + \alpha_{k+1}\theta \\ \alpha_{k+1} + 1 \end{cases}$$

Since the term α_{k+1} is the same in both cases we only need to apply the max operation on the second terms, hence

$$\alpha_k = \alpha_{k+1} + \max \begin{cases} \alpha_{k+1} \theta \\ 1 \end{cases}$$

It is now possible to shift this in k to get the desired expression.

$$\alpha_{k-1} = \alpha_k + \max \begin{cases} \alpha_k \theta \\ 1 \end{cases}$$

c) Now the backwards recursion is solved for α_k to find the optimal control signal u_k^* . It is assumed that $\alpha_k \geq 0$. We begin at k = N.

$$\alpha_{N-1} = \alpha_N + \max \begin{cases} \alpha_N \theta \\ 1 \end{cases}$$

Since there is no distribution to shareholders in the last year, $J(N,x) = \alpha_N x_N = 0$. Since $x_N = 0$ would imply all $x_k = 0$ and there is no distribution to shareholders, we assume $x_N \neq 0$. Therefore, $\alpha_N = 0$. Using this, we get

$$\alpha_{N-1} = 1$$

Next, we look at N-2

$$\alpha_{N-2} = \alpha_{N-1} + \max \begin{cases} \alpha_{N-1} \theta \\ 1 \end{cases}$$

Using the value for $\alpha_{N-1} = 1$, we get

$$\alpha_{N-2} = 1 + \max \begin{cases} \theta \\ 1 \end{cases}$$

Now, we get two cases. One where $\theta < 1$ and one where $\theta \ge 1$. More generally, with an unknown value for α_k , we get the cases $\alpha_k \theta < 1$ and $\alpha_k \theta \ge 1$.

We begin by examining the case where $\alpha_k \theta \geq 1$.

$$\alpha_{N-2} = 1 + \theta$$

$$\alpha_{N-3} = \alpha_{N-2} + \max \begin{cases} \alpha_{N-2}\theta \\ 1 \end{cases} = 1 + \theta + \max \begin{cases} (1+\theta)\theta \\ 1 \end{cases} = 1 + 2\theta + \theta^2$$

$$\alpha_{N-4} = \alpha_{N-3} + \max \begin{cases} \alpha_{N-3}\theta \\ 1 \end{cases} = 1 + 2\theta + \theta^2 + \theta + \max \begin{cases} (1 + 2\theta + \theta^2)\theta \\ 1 \end{cases} = 1 + 3\theta + 3\theta^2 + \theta^3$$

If we extend the pattern looking like binomial expansion, we get

$$\alpha_k = (1+\theta)^{N-k-1}$$

This expression for α_k is valid as long as $\alpha_k \theta \geq 1$. We now check for which k this assumption breaks down.

$$\theta(1+\theta)^{N-k-1} = 1$$

$$(1+\theta)^{N-k-1} = \frac{1}{\theta}$$

$$(N-k-1)\ln(1+\theta) = -\ln(\theta)$$

$$N-k-1 = \frac{-\ln(\theta)}{\ln(1+\theta)}$$

$$k = N + \frac{\ln(\theta)}{\ln(1+\theta)} - 1$$

For k below this threshold, we instead get that $\alpha_k \theta < 1$.

$$\alpha_{N-2} = \alpha_{N-1} + \max \begin{cases} \alpha_{N-1}\theta \\ 1 \end{cases} = 2$$

$$\alpha_{N-3} = \alpha_{N-2} + \max \begin{cases} \alpha_{N-2}\theta \\ 1 \end{cases} = 3$$

If we extend the pattern, we get

$$\alpha_k = N - k$$

This expression for α_k holds for $\alpha_k \theta < 1$.

We can now compute the optimal control signal u_k^* .

$$u_k^* = \underset{0 < u_k < x_k}{\arg \max} \{ u_k + \alpha_{k+1} (x_k + \theta(x_k - u_k)) \}$$

If k is above the threshold, we get

$$u_k^* = \underset{0 \le u_k \le x_k}{\arg \max} \{ u_k + (1+\theta)^{N-k} (x_k + \theta(x_k - u_k)) \}$$

$$u_k = 0: \quad (1+\theta)^{N-k} (x_k + \theta x_k) = (1+\theta)^{N-k} x_k + (1+\theta)^{N-k} \theta x_k$$

$$u_k = x_k: \quad x_k + (1+\theta)^{N-k} x_k = (1+\theta)^{N-k} x_k + x_k$$

For these two, since $(1+\theta)^{N-k}\theta > 1$, $u_k = 0$ gives the maximum value. Therefore, $u_k^* = 0$. If k is bellow the threshold, we get

$$u_k^* = \underset{0 \le u_k \le x_k}{\arg \max} \{ u_k + (N - k + 1)(x_k + \theta(x_k - u_k)) \}$$

$$u_k = 0: \quad (N - k + 1)(x_k + \theta x_k) = (N - k + 1)x_k + (N - k + 1)\theta x_k$$

$$u_k = x_k: \quad x_k + (N - k + 1) = (N - k + 1)x_k + x_k$$

Therefore, $u_k^* = x_k$ in this case.