Robolin 1

Coche robot seguidor de lineas con arduino y sensor Infrarrojo TCRT5000

Consumo máximo 380 mA

Manual:

- Material necesario
- Montaje
- Esquema eléctrico
- Explicación del código de programación

Material necesario

	Chasis 3 ruedas
60 700005 7. 40 405-44 1504204 CHOOT	Bateria lipo 7,5 V / 400 mA
FUSE	Portafusibles + fusible 1A
	Interruptor
336 LAS	Regulador de tension Módulo LM2596
	Doble puente H L298N
COCCOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG	2 bases arduino nano
	Arduino nano Atmega 328
į	

	2 Sensores TCRT5000
- 5 8	Diodo 1N4007
	Cables varios
	Tornillos varios 3mm
	2 tiras de 15 pines puenteadas
	Metacrilato 9x9 cm

Montaje

Montar chasis 3 ruedas

Doblar metacrilato

Montar regleta

Esquema electrico

Explicación código de programación

TCRT5000	TCRT5000		0
Sensor Izquierdo	Sensor Derecho	Estado	1
0	0	Hacia delante	
0	1	Giro derecha	
1	0	Giro izquierda	
1	1	Stop	

```
0 = Blanco
1 = Negro
```

```
int VelocidadMotor1 = 5; // ENA - PWM
int VelocidadMotor2 = 9; // ENB
int Motor1A = 6; // IN2
int Motor1B = 7; // IN1
int Motor2C = 8; // IN4
int Motor2D = 10; // IN3
int infraPin = 2; // izquierdo - pin del infrarrojos utilizado como entrada digital
int infraPin1=4; // derecho
int valorInfra = 0; // Valor inicial de la lectura digital del infrarrojos
int valorInfra1 = 0:
void setup() {
 pinMode(infraPin, INPUT);
 pinMode(infraPin1, INPUT);
 pinMode(Motor1A, OUTPUT);
 pinMode(Motor1B, OUTPUT);
 pinMode(Motor2C, OUTPUT);
 pinMode(Motor2D, OUTPUT);
 pinMode(VelocidadMotor1, OUTPUT);
 pinMode(VelocidadMotor2, OUTPUT);
  analogWrite(VelocidadMotor1, 138);
                                       //motor izquierdo PWM
  analogWrite(VelocidadMotor2, 120);
                                       //motor derecho PWM
   digitalWrite(Motor1A, LOW);
                                         Ajuste para que los dos motores
   digitalWrite(Motor1B, LOW);
                                         giren a las mismas revoluciones
   digitalWrite(Motor2C, LOW);
   digitalWrite(Motor2D, LOW);
}
void loop() {
 valorInfra = digitalRead(infraPin); // valor entrada que lee el infrarrojo izquierdo
 valorInfra1 = digitalRead(infraPin1); // valor entrada que lee el infrarrojo derecho
```

```
// Lectura de los sensores 0 = blanco
                             1 = negro
 if(valorInfra == 0 && valorInfra1 == 0){ // hacia delante
 digitalWrite(Motor1A, HIGH);
   digitalWrite(Motor2D, HIGH);
   delay(20);
                                       Tiempos para el control
   digitalWrite(Motor1A, LOW);
                                       de la velocidad
   digitalWrite(Motor2D,LOW);
    delay(20);
}
if(valorInfra == 0 && valorInfra1 == 1){ // Gira hacia la derecha
   digitalWrite(Motor1A, LOW);
   digitalWrite(Motor2D,LOW);
    delay(25);
 digitalWrite(Motor1A, HIGH);
   digitalWrite(Motor2D,LOW);
   delay(20);
}
if(valorInfra == 1 && valorInfra1 == 0){ // Gira hacia la izquierda
 digitalWrite(Motor1A,LOW);
   digitalWrite(Motor2D, LOW);
      delay(25);
      digitalWrite(Motor1A,LOW);
   digitalWrite(Motor2D, HIGH);
   delay(20);
}
if(valorInfra == 1 && valorInfra1 == 1){ // STOP
 digitalWrite(Motor1A, LOW);
   digitalWrite(Motor1B, LOW);
   digitalWrite(Motor2C, LOW);
   digitalWrite(Motor2D, LOW);
}
}
```

Explicación código de programación