# FIITJEE Solutions to JEE(Main) -2024

Test Date: 1st February 2024 (First Shift)

# **MATHEMATICS, PHYSICS & CHEMISTRY**

Paper – 1

Time Allotted: 3 Hours Maximum Marks: 300

 Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose.

## **Important Instructions:**

- 1. The test is of 3 hours duration.
- 2. This test paper consists of 90 questions. Each subject (MPC) has 30 questions. The maximum marks are 300.
- 3. This question paper contains three parts. Part-A is Mathematics, Part-B is Physics and Part-C is Chemistry. Each part has only two sections: Section-A and Section-B.
- 4. **Section A**: Attempt all questions.
- 5. **Section B :** Do any 5 questions out of 10 Questions.
- 6. Section-A (01 20, 31 50, 61 80) contains 60 multiple choice questions which have only one correct answer. Each question carries +4 marks for correct answer and -1 mark for wrong answer.
- 7. **Section-B (21 30, 51 60, 81 90)** contains 30 Numerical based questions. The answer to each question is rounded off to the nearest integer value. Each question carries **+4 marks** for correct answer and **–1 mark** for wrong answer.

Note: For the benefit of the students, specially the aspiring ones, the question of JEE(Main), 2024 are also given in this booklet. Keeping the interest of students studying in class XI, the questions based on topics from class XI have been marked with '\*', which can be attempted as a test.

# **PART - A (MATHEMATICS)**

## **SECTION - A**

#### (One Options Correct Type)

This section contains **20 multiple choice questions**. Each question has **four choices** (1), (2), (3) and (4), out of which **ONLY ONE** option is correct.

- 1. A bag contains 8 balls, whose colours are either white or black. 4 balls are drawn at random without replacement and it was found that 2 balls are white and other 2 balls are black. The probability that the bag contains equal number of white and black balls is:
  - $(1) \frac{2}{5}$

(2)  $\frac{2}{7}$ 

(3)  $\frac{1}{7}$ 

(4)  $\frac{1}{5}$ 

Ans. (2)

**Sol.** A-2 Black and 2 white balls drawn

B - Bag contains 4 white and 4 black balls

$$\begin{split} &P\bigg(\frac{B}{A}\bigg) = \frac{P\bigg(\frac{A}{B}\bigg)P(B)}{P(A)} = \frac{{}^4C_2{}^4C_2}{{}^2C_2{}^6C_2 + {}^3C_2{}^5C_2 + {}^4C_2{}^4C_2 + {}^5C_2{}^3C_2 + {}^6C_2{}^2C_2}\\ &= \frac{36}{15 + 30 + 36 + 30 + 15} = \frac{2}{7} \end{split}$$

- 2. The value of the integral  $\int_{0}^{\frac{\pi}{4}} \frac{xdx}{\sin^{4}(2x) + \cos^{4}(2x)}$  equals:
  - (1)  $\frac{\sqrt{2}\pi^2}{8}$

(2)  $\frac{\sqrt{2\pi^2}}{16}$ 

(3)  $\frac{\sqrt{2}\pi^2}{32}$ 

(4)  $\frac{\sqrt{2}\pi^2}{64}$ 

Ans. (3)

Sol. 
$$I = \int_{0}^{\frac{\pi}{4}} \frac{x dx}{\sin^{4} 2x + \cos^{4} 2x} = \frac{\pi}{8} \int_{0}^{\frac{\pi}{4}} \frac{dx}{1 - 2\sin^{2} 2x \cos^{2} 2x} = \frac{\pi}{4} \int_{0}^{\frac{\pi}{4}} \frac{dx}{2 - \sin^{2} 4x}$$
$$= \frac{\pi}{4} \left[ \int_{0}^{\frac{\pi}{6}} \frac{\sec^{2} 4x dx}{2 + \tan^{2} 4x} + \int_{\frac{\pi}{8}}^{\frac{\pi}{4}} \frac{\sec^{2} 4x dx}{2 + \tan^{2} 4x} \right] = \frac{\pi}{16} \left[ \int_{0}^{\infty} \frac{dt}{2 + t^{2}} + \int_{-\infty}^{0} \frac{dt}{2 + t^{2}} \right] = \frac{\sqrt{2}\pi^{2}}{32}$$

- 3. If  $A = \begin{bmatrix} \sqrt{2} & 1 \\ -1 & \sqrt{2} \end{bmatrix}$ ,  $B = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ ,  $C = ABA^T$  and  $X = A^TC^2A$ , then det X is equal to:
  - (1) 243

(2) 729

(3) 27

(4) 891

**Ans.** (2) **Sol.** 
$$|X| = |A|^6 |B|^2 = 729$$

\*4. If 
$$tanA = \frac{1}{\sqrt{x(x^2 + x + 1)}}$$
,  $tanB = \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}$  and  $tanC = (x^{-3} + x^{-2} + x^{-1})^{\frac{1}{2}}$ ,  $0 < A$ , B,  $C < \frac{\pi}{2}$ ,

then A + B is equal to:

(2) 
$$\pi - C$$

(3) 
$$2\pi - C$$

(3) 
$$\frac{\pi}{2}$$
 - C

Ans.

Sol. 
$$tan(A + B) = \frac{\frac{1}{\sqrt{x(x^2 + x + 1)}} + \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}}{1 - \frac{1}{\sqrt{x(x^2 + x + 1)}} \frac{\sqrt{x}}{\sqrt{x^2 + x + 1}}} = \frac{(1 + x)\sqrt{x^2 + x + 1}}{\sqrt{x}(x^2 + x)}$$

$$= \sqrt{\frac{x^2 + x + 1}{x^3}} = tanC$$

If n is the number of ways five different employees can sit into four indistinguishable \*5. offices where any office may have any number of persons including zero, then n is equal

Ans.

Sol.

Case-I: 5, 0, 0, 0  $\rightarrow$  1 way
Case-II: 4, 1, 0, 0  $\rightarrow$   $\frac{5!}{4!} = 5$  ways

Case-III: 3, 2, 0, 0  $\rightarrow \frac{5!}{3! \, 2!} = 10$  ways

Case-IV: 3, 1, 1, 0  $\rightarrow \frac{5!}{3! \ 2!} = 10 \text{ ways}$ 

Case-V: 2, 2, 1, 0  $\rightarrow \frac{5!}{2!2!2!} = 15 \text{ ways}$ 

Case-VI: 2, 1, 1, 1  $\rightarrow \frac{5!}{2! \, 3!} = 10 \text{ ways}$ 

51 ways

- Let  $S = \{z \in C : |z 1| = 1 \text{ and } \left(\sqrt{2} 1\right)\left(z + \overline{z}\right) i\left(z \overline{z}\right) = 2\sqrt{2} \}$ . Let  $z_1, z_2 \in S$  be such that \*6.  $\left|z_{1}\right|=\max_{z\in s}\left|z\right|$  and  $\left|z_{2}\right|=\max_{z\in s}\left|z\right|$  . Then  $\left|\sqrt{2}z_{1}-z_{2}\right|^{2}$  equals:
  - (1) 1

(3) 3

**Sol.** 
$$z\overline{z} - z - \overline{z} = 0 \Rightarrow \overline{z} = \frac{z}{z - 1}$$
  
 $\Rightarrow (\sqrt{2} - 1) \left( z + \frac{z}{z - 1} \right) - i \left( z - \frac{z}{z - 1} \right) = 2\sqrt{2}$   
 $\Rightarrow (\sqrt{2} - 1) z^2 - i (z^2 - 2z) = 2\sqrt{2} (z - 1)$   
 $\Rightarrow (\sqrt{2} - 1 - i) z^2 + z (2i - 2\sqrt{2}) + 2\sqrt{2} = 0$   
 $\Rightarrow z = \frac{2\sqrt{2} - 2i \pm \sqrt{8 - 4 - 8\sqrt{2} i - 8\sqrt{2} (\sqrt{2} - 1 - i)}}{2(\sqrt{2} - 1 - i)}$   
 $= \frac{2\sqrt{2} - 2i \pm \sqrt{8\sqrt{2} - 12}}{2(\sqrt{2} - 1 - i)} = \frac{\sqrt{2} - i \pm (\sqrt{2} - 1)i}{\sqrt{2} - 1 - i} = \frac{\sqrt{2} + (\sqrt{2} - 2)i}{\sqrt{2} - 1 - i}$ ;  $\frac{\sqrt{2} - \sqrt{2}i}{\sqrt{2} - 1 - i}$   
 $\Rightarrow |\sqrt{2}z_1 - z_2|^2 = \left| \frac{2 - \sqrt{2} - \sqrt{2}i}{\sqrt{2} - 1 - i} \right|^2 = 2$ 

- \*7. Let the median and the mean deviation about the median of 7 observation 170, 125, 230, 190, 210, a, b be 170 and  $\frac{205}{7}$  respectively. Then the mean deviation about the mean of these 7 observations is:
  - (1) 31

(2) 28

(3) 30

(4) 32

#### Ans. (BONUS)

Sol. Median is 
$$170 \Rightarrow a, b < 170$$

$$\frac{205}{7} = \frac{60 + 40 + 20 + 170 - a + 170 - b}{7} \Rightarrow a + b = 255$$

$$\Rightarrow Mean = \frac{1180}{7}$$

To calculate mean deviation about mean it is required to know whether a, b are less than or greater than  $\frac{1180}{7}$  which is not known

## Incomplete information

8. Let 
$$\vec{a} = -5\hat{i} + \hat{j} - 3\hat{k}, \vec{b} = \hat{i} + 2\hat{j} - 4\hat{k}$$
 and  $\vec{c} = \left(\left(\left(\vec{a} \times \vec{b}\right) \times \hat{i}\right) \times \hat{i}\right) \times \hat{i}$ . Then  $\vec{c} \cdot \left(-\hat{i} + \hat{j} + \hat{k}\right)$  is equal to:

$$(1) - 12$$

$$(2) - 10$$
 $(4) - 15$ 

$$(4) - 15$$

Ans.

**Sol.** 
$$(((\vec{a} \times \vec{b}) \times \hat{i}) \times \hat{i}) \times \hat{i}) \times \hat{i}) \cdot (-\hat{i} + \hat{j} + \hat{k}) = ((\vec{a} \times \vec{b}) \times \hat{i}) \times \hat{i} \cdot (\hat{k} - \hat{j}) = ((\vec{a} \times \vec{b}) \times \hat{i}) \cdot (-\hat{j} - \hat{k}) = (\vec{a} \times \vec{b}) \cdot (-\hat{k} + \hat{j})$$
 Where  $\vec{a} \times \vec{b} = 2\hat{i} - 23\hat{j} - 11\hat{k}$ 

\*9. Let 
$$S = \left\{ x \in \mathbb{R} : \left(\sqrt{3} + \sqrt{2}\right)^x + \left(\sqrt{3} - \sqrt{2}\right)^x = 10 \right\}$$
. Then the number of elements in S is:

(3) 2

(4) 1

Ans.

**Sol.** 
$$(\sqrt{3} + \sqrt{2})^x + \frac{1}{(\sqrt{3} + \sqrt{2})^x} = 10$$
. Let  $(\sqrt{3} + \sqrt{2})^x = t$   

$$\Rightarrow t^2 - 10t + 1 = 0 \Rightarrow t = \frac{10 \pm \sqrt{100 - 4}}{2} = 5 \pm 2\sqrt{6}$$

$$(\sqrt{3} + \sqrt{2})^x = 5 + 2\sqrt{6} \Rightarrow x = 2$$

$$(\sqrt{3} + \sqrt{2})^x = 5 - 2\sqrt{6} = (5 + 2\sqrt{6})^{-1} \Rightarrow x = -2$$

- The area enclosed by the curves xy + 4y = 16 and x + y = 6 is equal to: 10.
  - (1) 28 30  $\log_{e}$ 2

  - (3) 30 32 $\log_{e} 2$
- Ans.
- (x + 4)y = 16, x + y = 6Sol.

Area = 
$$\int_{-2}^{4} 6 - x - \frac{16}{4 + x} dx$$

$$= \left| 6x - \frac{x^2}{2} - 16\ln(4 + x) \right|_{-2}^{4}$$
$$= 36 - 6 - 16 \ln 4$$

$$= 30 - 32 \ln 2$$



- let  $f: R \to R$  and  $g: R \to R$  be defined as  $f(x) = \begin{cases} \log_e x, x > 0 \\ e^{-x}, x \le 0 \end{cases}$  and  $g(x) = \begin{cases} x, x \ge 0 \\ e^x, x < 0 \end{cases}$ . Then, 11.
  - $gof: R \rightarrow R$  is:
  - (1) one-one but not onto
  - (3) onto but not one-one
- Ans.
- $gof(x) = \begin{cases} f(x) & f(x) \ge 0 \\ e^{f(x)} & f(x) < 0 \end{cases}$  $= \begin{cases} e^{-x} & x \le 0 \\ x & 0 < x < 1 \end{cases}$ Sol.

(2) neither one-one nor onto

(2)  $30 - 28\log_{e}2$ 

(4) 32 – 30 $log_e 2$ 

(4) both one-one and onto



12. If the system of equations

$$2x + 3y - z = 5$$

$$x + \alpha y + 3z = -4$$

$$3x - y + \beta z = 7$$

has infinitely many solutions, then  $13\alpha\beta$  is equal to

(1) 1110

(2) 1120

(3) 1210

(4) 1220

Ans. (2)

Sol. 
$$\begin{vmatrix} 2 & 3 & 5 \\ 1 & \alpha & -4 \\ 3 & -1 & 7 \end{vmatrix} = 0$$

$$\Rightarrow 14\alpha - 8 - 3(19) + 5(-1 - 3\alpha) = 0$$

$$\Rightarrow -70 = \alpha$$
and  $\begin{vmatrix} 2 & 5 & -1 \\ 1 & -4 & 3 \\ 3 & 7 & \beta \end{vmatrix} = 0$ 

$$\Rightarrow -8\beta - 42 - 5(\beta - 9) - 1(19) = 0$$

$$\Rightarrow -16 = 13\beta$$

$$\Rightarrow -\frac{16}{13} = \beta$$

$$\Rightarrow 13\alpha\beta = 1120$$

\*13. For  $0 < \theta < \frac{\pi}{2}$ , if the eccentricity of the hyperbola  $x^2 - y^2 cosec^2\theta = 5$  is  $\sqrt{7}$  times eccentricity of the ellipse  $x^2 cosec^2\theta + y^2 = 5$ , then the value of  $\theta$  is:

(1) 
$$\frac{\pi}{6}$$

(2) 
$$\frac{5\pi}{12}$$

(3) 
$$\frac{\pi}{3}$$

$$(4) \quad \frac{\pi}{4}$$

**Sol.** 
$$\sqrt{1+\sin^2\theta} = \sqrt{7}\sqrt{1-\sin^2\theta} \implies \sin^2\theta = \frac{6}{8} \implies \sin\theta = \frac{\sqrt{3}}{2}$$

14. Let y = y(x) be the solution of the differential equation  $\frac{dy}{dx} = 2x(x+y)^3 - x(x+y) - 1$ , y(0) = 1.

Then,  $\left(\frac{1}{\sqrt{2}} + y\left(\frac{1}{\sqrt{2}}\right)\right)^2$  equals:

(1) 
$$\frac{4}{4+\sqrt{e}}$$

(2) 
$$\frac{3}{3-\sqrt{e}}$$

(3) 
$$\frac{2}{1+\sqrt{e}}$$

$$(4) \quad \frac{1}{2-\sqrt{e}}$$

Ans. (4)

**Sol.** 
$$x + y = t \Rightarrow 1 + \frac{dy}{dx} = \frac{dt}{dx} \Rightarrow \frac{dt}{dx} - 1 = 2t^3x - tx = 1 \Rightarrow \int \frac{dt}{t(2t^2 - 1)} = \int x dx$$

$$\Rightarrow \frac{1}{2} \left[ -2\ln t + \ln\left(t - \frac{1}{\sqrt{2}}\right) + \ln\left(t + \frac{1}{\sqrt{2}}\right)\right] = \frac{x^2}{2} + c$$

$$\Rightarrow \frac{t^2 - \frac{1}{2}}{t^2} = ce^{x^2} \Rightarrow 1 - ce^{x^2} = \frac{1}{2t^2} \Rightarrow (x + y)^2 = \frac{1}{2(1 - ce^{x^2})}$$

$$y(0) = 1 \Rightarrow 1 = \frac{1}{2(1-c)} \Rightarrow \frac{1}{2} = c$$

$$x = \frac{1}{\sqrt{2}} \Rightarrow \left(\frac{1}{\sqrt{2}} + y\right)^2 = \frac{1}{2\left(1 - \frac{\sqrt{e}}{2}\right)} = \frac{1}{2 - \sqrt{e}}$$

Let  $f: R \to R$  be defined as: 15.

Let 
$$f: \mathbb{R} \to \mathbb{R}$$
 be defined a
$$f(x) = \begin{cases} \frac{a - b \cos 2x}{x^2}; x < 0 \\ x^2 + cx + 2; 0 \le x \le 1 \\ 2x + 1; x > 1 \end{cases}$$

If f is continuous every where in R and m is the number of points where f is NOT differential then m + a + b + c equals:

(1) 1

(3) 3

Ans.

Sol. 
$$f(x) = \begin{cases} \frac{a - b \cos 2x}{x^2} & ; & x < 0 \\ x^2 + cx + 2 & ; & 0 \le x \le 1 \\ 2x + 1 & ; & x > 1 \end{cases}$$

'f' of continuous at  $x = 0 \Rightarrow a = b$  and  $a.2 = 2 \Rightarrow a = b = 1$ 

'f' is continuous at  $x = 1 \Rightarrow 3 = 3 + c \Rightarrow c = 0$ 

$$\Rightarrow f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2} & ; & x < 0 \\ x^2 + 2 & ; & 0 \le x \le 3 \\ 2x + 1 & ; & x > 1 \end{cases}$$

$$\Rightarrow f(x) = \begin{cases} \frac{1 - \cos 2x}{x^2} & ; & x < 0 \\ x^2 + 2 & ; & 0 \le x \le 1 \\ 2x + 1 & ; & x > 1 \end{cases}$$
LHD at  $x = 0$  is  $\lim_{h \to 0} \frac{\frac{1 - \cos 2h}{h^2} - 2}{-h} = \lim_{h \to 0} \frac{2(\sin^2 h - h^2)}{-h^3} = 0$ 

RHD at x = 0 is 0

So, f(x) is differentiable at x = 0

Similarly 'f' is differentiable at x = 1

m + a + b + c = 2

\*16. Let  $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ , a > b be an ellipse, whose eccentricity is  $\frac{1}{\sqrt{2}}$  and the length of the

latusrectum is  $\sqrt{14}$ . Then the square of the eccentricity of  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  is

(1) 3

(3)  $\frac{3}{2}$ 

Ans. (3)

$$\begin{aligned} \textbf{Sol.} \qquad & e_e = \frac{1}{\sqrt{2}} \\ & e_e^2 = \frac{1}{2} \\ & 1 - \frac{b^2}{a^2} = \frac{1}{2} \\ & \frac{b^2}{a^2} = \frac{1}{2} \\ & \frac{b^2}{a^2} + 1 = \frac{3}{2} \\ & e_H^2 = \frac{3}{2} \end{aligned}$$

Let 3, a, b, c be in A.P. and 3, a - 1, b + 1, c + 9 be in G.P. Then, the arithmetic mean of \*17. a, b and c is:

$$(1) - 4$$

$$(2) - 1$$

Ans. (4)

Let a = 3 + d, b = 3 + 2d, c = 3 + 3dSol. a-1=2+d, b+1=4+2d, c+9=12+3d $(a-1)^2 = 3(b+1)$   $(2+d)^2 = 3(4+2d)$  $4 + d^2 + 4d = 12 + 6d$  $d^2 - 2d - 8 = 0$ 

$$d^{2} - 4d + 2d - 8 = 0$$

$$(d - 4)(d + 2) = 0$$

$$(d - 4)(d + 2) = 0$$
  
d = 4, -2 for d = -2, G.P. = 3, 0, 0, 6 which is not possible  
So, d = 4

Hence, A.M. of a, b, 
$$c = \frac{a+b+c}{3} = \frac{9+6d}{3} = \frac{33}{3} = 11$$

Let C:  $x^2 + y^2 = 4$  and C':  $x^2 + y^2 - 4\lambda x + 9 = 0$  be two circles. If the set of all values of  $\lambda$ \*18. so that the circles C and C' intersect at two distinct points, is R - [a, b], then the point (8a + 12, 16b - 20) lies on the curve:

(1) 
$$x^2 + 2y^2 - 5x + 6y = 3$$
  
(3)  $x^2 - 4y^2 = 7$ 

(2) 
$$5x^2 - y = -11$$
  
(4)  $6x^2 + y^2 = 42$ 

(3) 
$$x^2 - 4y^2 = 7$$

$$(4) 6x^2 + y^2 = 42$$

Ans.

Sol.  $|\mathbf{r}_1 - \mathbf{r}_2| < \mathbf{c}_1 \mathbf{c}_2 < \mathbf{r}_1 + \mathbf{r}_2$  $\left|2-\sqrt{4\lambda^2-9}\right|<\left|2\lambda\right|<\left|2+\sqrt{4\lambda^2-9}\right|$ R.H.I

$$|2\lambda| - 2 < \sqrt{4\lambda^2 - 9}$$
  
 $4\lambda^2 + 4 - 8|\lambda| < 4\lambda^2 - 9$ 

$$4\lambda^2 + 4 - 8|\lambda| < 4\lambda^2 - 9$$
  
 $\lambda > \frac{13}{8}, \lambda < -\frac{13}{8}$ 

$$4\lambda^2 - 9 > 0$$

$$\begin{split} \lambda > & \frac{3}{2}, \lambda < -\frac{3}{2} \\ \lambda \in \left(-\infty, -\frac{13}{8}\right) \cup \left(\frac{13}{8}, \infty\right) \\ \text{L.H.I} \\ & \left|2 - \sqrt{4\lambda^2 - 9}\right| < |2\lambda| \\ & 4 + 4\lambda^2 - 9 - 4\sqrt{4\lambda^2 - 9} < 4\lambda^2 \\ & 4\sqrt{4\lambda^2 - 9} > -5 \\ \lambda \in R \\ & \lambda \in \left(-\infty, -\frac{13}{8}\right) \cup \left(\frac{13}{8}, \infty\right) \\ & \lambda \in R - \left[-\frac{13}{8}, \frac{13}{8}\right] \end{split}$$

(8a + 12, 16b - 20) = (-1, 6) lies on  $6x^2 + y^2 = 42$ 

If  $5f(x) + 4f\left(\frac{1}{x}\right) = x^2 - 2$ ,  $\forall x \neq 0$  and  $y = 9x^2 f(x)$ , then y is strictly increasing in: 19.

$$(1) \quad \left(0, \frac{1}{\sqrt{5}}\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right)$$

(2) 
$$\left(-\frac{1}{\sqrt{5}},0\right) \cup \left(\frac{1}{\sqrt{5}},\infty\right)$$

$$(3) \quad \left(-\frac{1}{\sqrt{5}},0\right) \cup \left(0,\frac{1}{\sqrt{5}}\right)$$

(4) 
$$\left(-\infty, \frac{1}{\sqrt{5}}\right) \cup \left(0, \frac{1}{\sqrt{5}}\right)$$

Ans.

 $5f(x) + 4f\left(\frac{1}{x}\right) = x^2 - 2$ Sol.

Put  $x = \frac{1}{x}$  in above

$$5f\left(\frac{1}{x}\right) + 4f(x) = \frac{1}{x^2} - 2$$

.... (2)

Solving equation (1) and (2), we get

$$f(x) = \frac{1}{9} \left[ 5x^2 - \frac{4}{x^2} - 2 \right]$$

$$y = 9x^2f(x) = 5x^4 - 2x^2 - 4$$
  
 $y' = 20x^3 - 4x = 4x(5x^2 - 1)$ 

$$y' = 20x^3 - 4x = 4x(5x^2 - 1)$$

S.I. in 
$$\left(-\frac{1}{\sqrt{5}}, 0\right) \cup \left(\frac{1}{\sqrt{5}}, \infty\right)$$



If the shortest distance between the lines  $\frac{x-\lambda}{-2} = \frac{y-2}{1} = \frac{z-1}{1}$  and  $\frac{x-\sqrt{3}}{1} = \frac{y-1}{-2} = \frac{z-2}{1}$  is 20.

- 1, then the sum of all possible values of  $\lambda$  is:
- (1) 0

(2)  $2\sqrt{3}$ 

(3)  $3\sqrt{3}$ 

 $(4) - 2\sqrt{3}$ 

Ans. (2)

Sol. 
$$\frac{\begin{vmatrix} \lambda - \sqrt{3} & 1 & -1 \\ -2 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix}}{\begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{\mathbf{k}} \\ -2 & 1 & 1 \\ 1 & -2 & 1 \end{vmatrix}} \Rightarrow \frac{(\lambda - \sqrt{3})(3) - 1(-3) + 1(3)}{|\mathbf{i}(3) - \mathbf{j}(-3) + \hat{\mathbf{k}}(3)|} = 1$$
$$\Rightarrow \frac{3(\lambda - \sqrt{3})}{\sqrt{9 + 9 + 9}} = 1 \Rightarrow 3(\lambda - \sqrt{3}) = 3\sqrt{3}$$
$$\lambda = 2\sqrt{3}$$

## **SECTION - B**

#### (Numerical Answer Type)

This section contains **10** Numerical based questions. The answer to each question is rounded off to the nearest integer value.

- 21. If x = x(t) is the solution of the differential equation  $(t + 1)dx = (2x + (t + 1)^4)dt$ , x(0) = 2, then, x(1) equals \_\_\_\_\_.
- Ans. 14

Sol. 
$$(t+1)dx = (2x + (1+t)^4)dt$$
  

$$\frac{dx}{dt} - \frac{2x}{t+1} = (t+1)^3$$

$$I.F = e^{\int \frac{-2}{t+1}dt} = e^{-2\ln|t+1|} = \frac{1}{(t+1)^2}$$
Solution is  $\frac{x}{(t+1)^2} = \int (t+1)dt$   

$$\frac{x}{(t+1)^2} = \frac{t^2}{2} + t + c$$
At  $t = 0$ ,  $x = 2$ ,  $c = 2$   

$$\frac{x}{(t+1)^2} = \frac{t^2}{2} + t + 2$$

- \*22. The number of elements in the set  $S = \{(x,y,z): x,y,z \in Z; x+2y+3z=42; x,y,z \geq 0\}$  equals .
- **Ans. 169 Sol.** x + 2y + 3z = 42

|  | S.N. |             |       |
|--|------|-------------|-------|
|  | 0    | x + 2y = 42 | 22    |
|  | 0    | x + 2y = 42 | cases |
|  | 1    | x + 2y = 39 | 20    |
|  |      | x + 2y - 39 | cases |

| 2  | x + 2y = 36      | 19    |
|----|------------------|-------|
|    | X 1 2y = 30      | cases |
| 3  | x + 2y = 33      | 17    |
|    | X 1 2y = 00      | cases |
| 4  | x + 2y = 30      | 16    |
| 4  | X 1 2y = 50      | cases |
| 5  | x + 2y = 27      | 14    |
| 3  |                  | cases |
| 6  | v + 2v = 24      | 13    |
| O  | x + 2y = 24      | cases |
| 7  | v + 2v = 21      | 11    |
| /  | x + 2y = 21      | cases |
| 0  | y 1 Oy 10        | 10    |
| 8  | x + 2y = 18      | cases |
|    | y 1 2y – 15      | 08    |
| 9  | x + 2y = 15      | cases |
| 10 | x + 2y = 12      | 07    |
|    |                  | cases |
| 11 | x + 2y = 09      | 05    |
| 11 |                  | cases |
| 10 | V 1 2V - 06      | 04    |
| 12 | x + 2y = 06      | cases |
| 13 | v + 2v = 03      | 02    |
| 13 | x + 2y = 03      | cases |
| 14 | x + 2y = 0       | 01    |
| 14 |                  | cases |
|    | Total Solutions: |       |
|    | 169              |       |
|    |                  |       |



#### Ans. 678

Sol. Required coefficient = coefficient of 
$$x^{36}$$
 in  $(1 + x)^6 (1 + x^2)^7 (1 - x^3)^8$ 

$$T_{r_{+1}} = (-1)^{r_3} {}^6C_{r_1} {}^7C_{r_2} {}^8C_{r_3} x^{r_1 + 2r_2 + 3r_3} \qquad ..... (1)$$

$$r_1 + 2r_2 + 3r_3 = 36$$

| r <sub>3</sub> | r <sub>2</sub> | $r_1$  |  |  |  |
|----------------|----------------|--------|--|--|--|
| 6              | 6              | 6      |  |  |  |
| 6              | 7              | 4      |  |  |  |
| 7              | 5              | 5      |  |  |  |
| 7              | 6              | 3      |  |  |  |
| 7              | 7              | 1      |  |  |  |
| 8              | 3              | 6<br>4 |  |  |  |
| 8              | 4              | 4      |  |  |  |
| 8              | 5              | 2      |  |  |  |
| 8              | 6              | 0      |  |  |  |

#### JEE-MAIN-2024 (1st February-First Shift)-MPC-12

Putting above in (1) Required coefficient = 678

\*24. Let 3, 7, 11, 15, ......, 403 and 2, 5, 8, 11, ......, 404 be two arithmetic progressions. Then the sum, of the common terms in them, is equal to

Ans. 6699

Sol. Common terms are 11, 23, 35, terms

$$t_n \leq 403$$

$$11 + (n - 1) 12 \le 403$$

$$11 + 12n - 12 \le 403$$

$$12n \le 404$$

$$n \le 33 \cdot 6$$

$$n = 33$$

Sum of common terms =  $11 + 23 + 35 + \dots$  upto 33 terms

$$=\frac{33}{2}(2\cdot11+(33-1)12)$$

$$=\frac{33}{2}(22+33\cdot12-12)$$

$$=\frac{33}{2}(10+396)$$

$$=\frac{33}{2}(406)=33\times203=6699$$

25. Let {x} denote the fractional part of x and  $f(x) = \frac{\cos^{-1}(1 - \{x\}^2)\sin^{-1}(1 - \{x\})}{\{x\} - \{x\}^3}$ ,  $x \ne 0$ . If L and

R respectively denotes the left hand limit and the right hand limit of f(x) at x = 0, then  $\frac{32}{\pi^2}(L^2 + R^2)$  is equal to \_\_\_\_\_.

Ans. 18

Sol. 
$$L = \lim_{x \to 0^{-}} \frac{\cos^{-1}(1 - \{x\}^{2})\sin^{-1}(1 - \{x\})}{\{x\} - \{x\}^{3}}$$

$$= \lim_{x\to 0^{-}} \frac{\cos^{-1}(1-\{x\}^{2})}{\{x\}(1+\{x\})} = \frac{\pi}{4}$$

$$L = \frac{\pi}{4}$$

$$R = \lim_{x \to 0^{+}} \frac{\cos^{-1}(1 - \{x\}^{2})\sin^{-1}(1 - \{x\})}{\{x\} - \{x\}^{3}}$$

$$= \lim_{x \to 0^{+}} \frac{\cos^{-1}(1 - \{x\}^{2})}{\{x\}} \lim_{x \to 0^{+}} \frac{\sin^{-1}(1 - \{x\})}{(1 - \{x\}^{2})}$$

Let 
$$\cos^{-1}(1 - \{x\}^2) = \theta$$

$$= \lim_{\theta \to 0^{+}} \frac{\theta}{\sqrt{1 - \cos \theta}} = \lim_{\theta \to 0^{+}} \frac{\frac{\theta}{2} \cdot \pi}{\sqrt{2} \left| \sin \frac{\theta}{2} \right|} = \frac{\pi}{\sqrt{2}}$$
$$\frac{32}{\pi^{2}} (L^{2} + R^{2}) = \frac{32}{\pi^{2}} \left( \frac{\pi^{2}}{16} + \frac{\pi^{2}}{2} \right) = 32 \left( \frac{1 + 8}{16} \right) = 18$$

\*26. Let the line L:  $\sqrt{2} x + y = \alpha$  pass through the point of the intersection P (in the first quadrant) of the circle  $x^2 + y^2 = 3$  and the parabola  $x^2 = 2y$ . Let the line L touch two circles  $C_1$  and  $C_2$  of equal radius  $2\sqrt{3}$ . If the centres  $Q_1$  and  $Q_2$  of the circles  $C_1$  and  $C_2$  lie on the y-axis, then the square of the area of the triangle  $PQ_1Q_2$  is equal to \_\_\_\_\_.

Ans. 72  
Sol. 
$$x^2 + y^2 = 3$$
;  $x^2 = 2y$   
Solving above  $y = -3$ , 1  
For 1<sup>st</sup> quadrant  $y = 1$   
 $x^2 = 2$   
 $x = \sqrt{2}$   
 $p = (\sqrt{2}, 1)$   
 $\sqrt{2}x + y = \alpha$   
 $\sqrt{2} \cdot \sqrt{2} + 1 = \alpha$   
 $\alpha = 3$   
Equation of circle is  $x^2 + (y - \lambda)^2 = 12$   
 $\left| \frac{\sqrt{2} \times 0 + \lambda - 3}{\sqrt{3}} \right| = 2\sqrt{3}$   
 $|\lambda - 3| = 6$ 

$$|\lambda - 3| = 6$$

$$\lambda - 3 = \pm 6$$

$$\lambda = 9, -3$$

$$\Delta = \frac{1}{2} \times 12 \times \sqrt{2} = 6\sqrt{2}$$

$$\Lambda^2 = 72$$

\*27. Let  $P = \left\{z \in C : \left|z+2-3i\right| \le 1\right\}$  and  $Q = \left\{z \in C : z(1+i)+\overline{z}(1-i) \le -8\right\}$ . Let in  $P \cap Q$ ,  $\left|z-3+2i\right|$  be maximum and minimum at  $z_1$  and  $z_2$  respectively. If  $\left|z_1\right|^2+2\left|z_2\right|^2=\alpha+\beta\sqrt{2}$ , where  $\alpha$ ,  $\beta$  are integers, then  $\alpha+\beta$  equals \_\_\_\_\_\_.

Ans. 36  
Sol. 
$$z(1+\hat{i}) + \overline{z}(1-\hat{i}) \le -8$$
  
 $(x+\hat{i}y)(1+\hat{i}) + (x-\hat{i}y)(1-\hat{i}) \le -8$ 

#### JEE-MAIN-2024 (1st February-First Shift)-MPC-14

Point (x, y) lies above x - y + 4 = 0  $\begin{vmatrix} z + 2 - 3\hat{i} \end{vmatrix} \le 1$   $\begin{vmatrix} z - (-2 + 3\hat{i}) \end{vmatrix} \le 1$   $z_2 = \text{foot of perpendicular from A upon line}$   $= \left( -\frac{3}{2}, \frac{5}{2} \right)$ 



Applying parametric at C

$$z_{1} = \left(-2 - \frac{1}{\sqrt{2}}, 3 + \frac{1}{\sqrt{2}}\right)$$

$$|z_{1}|^{2} + 2|z_{2}|^{2} = 14 + 5\sqrt{2} + 2 \times 34/4 = 31 + 5\sqrt{2}$$

$$\alpha + \beta = 36$$

28. If  $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x dx}{\left(1 + e^{\sin x}\right)\left(1 + \sin^4 x\right)} = \alpha\pi + \beta \log_e\left(3 + 2\sqrt{2}\right)$ , where  $\alpha$ ,  $\beta$  are integers, then  $\alpha^2 + \beta^2$  equals .

Ans. 8

Sol. 
$$I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x \, dx}{(1 + e^{\sin x})(1 + \sin^4 x)}$$
$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} f(a + b - x) \, dx$$
$$2I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x \, dx}{(1 + \sin^4 x)}$$
(Using even odd property)

$$2I = 2\int_{0}^{\frac{\pi}{2}} \frac{8\sqrt{2}\cos x \, dx}{(1+\sin^{4}x)} \quad \text{let } \sin x = t$$

$$I = 4\sqrt{2}\int_{0}^{1} \frac{2\,dt}{1+t^{4}} = 4\sqrt{2}\int_{0}^{1} \frac{(t^{2}+1)-(t^{2}-1)\,dt}{1+t^{4}} = 4\sqrt{2}\int_{0}^{1} \frac{t^{2}+1}{1+t^{4}}\,dt$$

$$-4\sqrt{2}\int_{0}^{1} \frac{t^{2}-1}{1+t^{4}}\,dt = 4\sqrt{2}\int_{0}^{1} \frac{1+\frac{1}{t^{2}}}{t^{2}+\frac{1}{t^{2}}}\,dt - 4\sqrt{2}\int_{0}^{1} \frac{1-\frac{1}{t^{2}}}{t^{2}+\frac{1}{t^{2}}}$$

$$= \left(4\sqrt{2}\cdot\frac{1}{\sqrt{2}}\tan^{-1}\frac{t-\frac{1}{t}}{\sqrt{2}} - 4\sqrt{2}\cdot\frac{1}{\sqrt{2}}\ln\left|\frac{t-\frac{1}{\sqrt{2}}-\sqrt{2}}{t+\frac{1}{\sqrt{2}}+\sqrt{2}}\right|^{1}\right)$$

$$= 2\pi + 2\ln\left(3 + 2\sqrt{2}\right) = a^{2} + b^{2} = 8$$

29. Let the line of the shortest distance between the lines

$$L_1$$
:  $\vec{r} = (\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda(\hat{i} - \hat{j} + \hat{k})$ 

$$L_2$$
:  $\vec{r} = (4\hat{i} + 5\hat{j} + 6\hat{k}) + \mu(\hat{i} + \hat{j} - \hat{k})$ 

intersect  $L_1$  and  $L_2$  at P and Q respectively. If  $(\alpha, \beta, \gamma)$  is the mid point of the line segment PQ, then  $2(\alpha + \beta + \gamma)$  is equal to \_\_\_\_\_.

- Ans. 21
- **Sol.**  $L_1: \frac{x-1}{1} = \frac{y-2}{-1} = \frac{z-3}{1} = \lambda$

$$P = (\lambda + 1, -\lambda + 2, \lambda + 3)$$

$$L_2: \frac{x-4}{1} = \frac{y-5}{1} = \frac{z-6}{-1} = \mu$$

$$Q = (\mu + 4, \mu + 5, -\mu + 6)$$

$$\overline{PQ} = (\lambda - \mu - 3, -\lambda - \mu - 3, \lambda + \mu - 3)$$

$$\overline{N} = \overline{N}_1 \times \overline{N}_2 = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{vmatrix} = 2\hat{j} + 2\hat{k}$$

- PQ || N
- So,  $\frac{-\lambda + \mu + 3}{0} = \frac{\lambda + \mu + 3}{2} = \frac{-\lambda \mu + 3}{2}$
- $\lambda = \frac{3}{2} \ ; \ \mu = -\frac{3}{2}$
- $P = \left(\frac{5}{2}, \frac{1}{2}, \frac{9}{2}\right); Q = \left(\frac{5}{2}, \frac{7}{2}, \frac{15}{2}\right)$
- $(\alpha, \beta, \gamma) = \left(\frac{5}{2}, 2, 6\right)$

- $-\lambda \mu 3$
- $= \lambda + 4 3$
- $P\lambda = -2\mu, \lambda = -\mu$

- $2(\alpha + \beta + \gamma) = 21$
- 30. Let  $A = \{1, 2, 3, \dots, 20\}$ . Let  $R_1$  and  $R_2$  two relation on A such that
  - $R_1 = \{(a, b) : b \text{ is divisible by a}\}$
  - $R_2 = \{(a, b) : a \text{ is an integral multiple of b}\}.$

Then, number of elements in  $R_1 - R_2$  is equal to \_\_\_\_\_ .

- Ans. 46
- **Sol.**  $R_1 = (1, 1) (1, 2) \dots (1, 20)$ 
  - $(2, 2), (2, 4), \ldots, (2, 20)$
  - $(3, 3), (3, 6), \ldots, (3, 18)$
  - (4, 4), (4, 8) .... (4, 20)
  - (5, 5), (5, 10) ..... (5, 20)
  - (6, 6), (6, 12) (6, 18)
  - (7, 7)(7, 14)
  - (8, 8) (8, 16)
  - (9, 9) (9, 18)
  - (10, 10) (10, 20)
  - (11, 11), (12, 12) ..... (20, 20)
  - $n(R_1) = 66$
  - $n(R_1-R_2)=n(R_1)-n(R_1\cap R_2)=66-20=46$

# PART - B (PHYSICS)

## **SECTION - A**

(One Options Correct Type)

This section contains **20 multiple choice questions**. Each question has **four choices** (1), (2), (3) and (4), out of which **ONLY ONE** option is correct.

- \*31. With rise in temperature, the Young's modulus of elasticity:
  - (1) Changes erratically
  - (3) Increases

- (2) Decreases
- (4) Remains unchanged

Ans. (2)

**Sol.**  $Y = \frac{F\ell}{A\Delta\ell}$ 

 $\Delta \ell$  increases, Y decreases.

- \*32. If R is the radius of the earth and the acceleration due to gravity on the surface of earth is  $g = \pi^2 m / s^2$ , then the length of the second's pendulum at a height h = 2R from the surface of earth will be:
  - (1)  $\frac{2}{9}$ m

(2)  $\frac{1}{9}$ m

(3)  $\frac{4}{9}$ m

(4)  $\frac{8}{9}$ m

Ans. (2)

Sol.  $T = 2\pi \sqrt{\frac{\ell}{g'}}$  T = 2s g' = g/9  $\Rightarrow \ell = \frac{T^2 \times g'}{1 + g'} = \frac{4 \times g/9}{1 + g'} = -\frac{4 \times g/9}{1$ 

33. In the given circuit if the power rating of Zener diode is 10mW, the value of series resistance  $R_s$  to regulate the input unregulated supply is:



- (1)  $5k\Omega$
- (3)  $1 k\Omega$

- (2)  $\overline{10}\Omega$
- (4)  $10 \text{ k}\Omega$

Ans. (3)

**Sol.** 
$$\Delta v_Z = 4v \implies i_L = 4mA \text{ and } i_Z = 0$$
  
So  $R_c = \frac{8-4}{i_L + i_Z} = 1k\Omega$ 





34. The reading in the ideal voltmeter (V) shown in the given circuit diagram is:



- (1) 5V
- (3) 0V

- (2) 10V
- (4) 3V

Ans. (3)

**Sol.** 
$$I = \frac{40}{1.6}A = 25A$$
  
  $V = 5 - 1 \times 0.2 = 0$ 

- 35. Two identical capacitors have same capacitance C. One of them is charged to the potential V and other to the potential 2V. The negative ends of both are connected together. When the positive ends are also joined together, the decrease in energy of the combined system is:
  - (1)  $\frac{1}{4}$ CV<sup>2</sup>

(2) 2C V<sup>2</sup>

(3)  $\frac{1}{2}CV^2$ 

(4)  $\frac{3}{4}$ CV<sup>2</sup>

Ans. (1)

$$\begin{aligned} \text{Sol.} \qquad & U_i = \frac{1}{2}CV^2 + \frac{1}{2}C(2V)^2 = \frac{5}{2}CV^2 \\ & U_f = \frac{1}{2}C\bigg(\frac{3V}{2}\bigg)^2 \times 2 = \frac{9}{4}CV^2 \\ & \Delta U = \frac{5}{2}CV^2 - \frac{9}{4}CV^2 = \frac{CV^2}{4} \end{aligned}$$

- \*36. Two moles a monoatomic gas is mixed with six moles of a diatomic gas. The molar specific heat of the mixture of constant volume is:
  - (1)  $\frac{9}{4}$ R

(2)  $\frac{7}{4}$ R

(3)  $\frac{3}{2}$ R

(4)  $\frac{5}{2}$ R

Ans. (1)

**Sol.** 
$$(C_v)_{mix} = \frac{n_1 C_{v_1} + n_2 C_{v_2}}{n_1 + n_2} = \frac{2 \times \frac{3}{2} R + 6 \times \frac{5}{2} R}{2 + 6} = \frac{9}{4} R$$

- \*37. A ball of mass 0.5 kg is attached to a string of length 50 cm. The ball is rotated on a horizontal circular path about its vertical axis. The maximum tension that the string can bear is 400 N. The maximum possible value of angular velocity of the ball in rad/s is:
  - (1) 1600

(2) 40

(3) 1000

(4) 20

Ans. (2)

**Sol.** 
$$T = m\omega^2 r \Rightarrow \omega = \sqrt{\frac{T}{mr}} = 40 \text{ rad/s}$$

- 38. A parallel plate capacitor has a capacitance C = 200 pF. It is connected to 230 V ac supply with an angular frequency 300 rad/s. The rms value of conduction current in the circuit and displacement current in the capacitor respectively are:
  - (1) 1.38 μA and 1.38 μA

(2) 14.3μA and 143μA

(3) 13.8 μA and 138 μA

(4) 13.8 μA and 13.8 μA

Ans. (4)

**Sol.** 
$$I_{rms} = \frac{V}{X_c} = 13.8 \mu A = I_d$$

- \*39. The pressure and volume of an ideal gas are related as  $PV^{\frac{3}{2}} = K$  (Constant). The work done when the gas is taken from state A  $(P_1, V_1, T_1)$  and  $(P_2, V_2, T_2)$  is:
  - (1)  $2(P_1V_1-P_2V_2)$

(2)  $2(P_2V_2-P_1V_1)$ 

(3)  $2(\sqrt{P_1}V_1 - \sqrt{P_2}V_2)$ 

(4)  $2(P_2\sqrt{V_2} - P_1\sqrt{V_1})$ 

Ans. (1)

**Sol.** 
$$W = \frac{P_2V_2 - P_1V_1}{1 - \frac{3}{2}} = 2(P_1V_1 - P_2V_2)$$

- 40. A galvanometer has a resistance of  $50\Omega$  and it allows maximum current of 5mA. It can be converted into voltmeter to measure upto 100V by connecting in series a resistor of resistance:
  - (1) 5975Ω

(2)  $20050\Omega$ 

(3)  $19950\Omega$ 

(4)  $19500\Omega$ 

- Ans. (3)
- Sol.  $V = I_g (G + R)$  $\Rightarrow 50 + R = \frac{100}{5 \times 10^{-3}} = 20000\Omega$   $\Rightarrow R = 19950 \Omega$
- 41. The de Broglie wavelength of a proton and an  $\alpha$  particle are  $\lambda$  and  $2\lambda$  respectively. The ratio of the velocities of proton and  $\alpha$  particle will be:
  - (1) 1:8

(2) 1:2

(3) 4:1

(4) 8:1

Ans. (1)

**Sol.** 
$$\frac{V_p}{V_\alpha} = \frac{m_\alpha \lambda_\alpha}{m_p \lambda_p} = 8:1$$

- 42. 10 divisions on the main scale of a Vernier calliper coincide with 11 divisions on the Vernier scale. If each division on the main scale is of 5 units, the least count of the instrument is:
  - (1)  $\frac{1}{2}$

(2)  $\frac{10}{11}$ 

(3)  $\frac{50}{11}$ 

(4)  $\frac{5}{11}$ 

- Ans. (4)
- **Sol.** 1 V.S.D. =  $\frac{10}{11}$ M.S.D. =  $\frac{50}{11}$ units.

L.C. = 1 M.S.D. - 1 V.S.D.  $= \frac{5}{11}$  units

- 43. In series LCR circuit, the capacitance is changed from C to 4C. To keep the resonance frequency unchanged, the new inductance should be:
  - (1) Reduced by  $\frac{1}{4}$ L

(2) Increased by 2L

(3) Reduced by  $\frac{3}{4}$ L

(4) Increased to 4L

- Ans. (3)
- **Sol.**  $\omega_1 = \omega_2$   $\Rightarrow L' = L/4$

44. The radius (r), Length ( $\ell$ ), and resistance (R) of a metal wire was measured in the laboratory as:

 $r = (0.35 \pm 0.05) cm$ 

 $R = (100 \pm 10)$ ohm

 $\ell = (15 \pm 0.2) \text{cm}$ 

The percentage error in resistivity of the material of the wire is:

(1) 25.6%

(2) 39.9%

(3) 37.3%

(4) 35.6%

Ans. (2)

**Sol.** 
$$\rho = \frac{AR}{\ell}$$
 
$$\Rightarrow \frac{\Delta \rho}{\rho} = 2\frac{\Delta r}{r} + \frac{\Delta R}{R} + \frac{\Delta \ell}{\ell}$$
 
$$P.C. \ error = \left(\frac{\Delta \rho}{\rho} \times 100\right)\% = 39.9\%$$

- \*45. The dimensional formula of angular impulse is:
  - (1)  $\left[ ML^{-2} T^{-1} \right]$

 $(2) \left\lceil ML^2 T^{-2} \right\rceil$ 

(3) MLT<sup>-1</sup>

(4)  $\left[ ML^{2} T^{-1} \right]$ 

Ans. (4)

- \*46. A simple pendulum of length 1m has a wooden bob of mass 1 kg. It is struck by a bullet of mass  $10^{-2}$  kg moving with a speed of  $2 \times 10^{2}$  ms<sup>-1</sup>. The bullet gets embedded into the bob. The height to which the bob rises before swinging back is. (Use g = 10 m/s<sup>2</sup>).
  - (1) 0.30 m

(2) 0.20 m

(3) 0.35 m

(4) 0.40 m

Ans. (2)

Sol. 
$$v = \frac{mu}{(M+m)}$$
$$h = \frac{v^2}{2a} \approx 0.20m$$

- \*47. A particle moving in a circle of radius r with uniform speed takes time T to complete one revolution. If this particle is projected with the same speed at an angle  $\theta$  to the horizontal, the maximum height attained by its equal to 4R. The angle of projection  $\theta$  is then given by:
  - (1)  $\sin^{-1} \left[ \frac{2gT^2}{\pi^2 R} \right]^{\frac{1}{2}}$

(2)  $\sin^{-1} \left[ \frac{\pi^2 R}{2gT^2} \right]^{\frac{1}{2}}$ 

(3)  $\cos^{-1} \left[ \frac{2gT^2}{\pi^2 R} \right]^{\frac{1}{2}}$ 

(4)  $\cos^{-1} \left[ \frac{\pi R}{2gT^2} \right]^{\frac{1}{2}}$ 

- Ans. (1)
- Sol.  $v = \frac{2\pi R}{T}$   $4R = \frac{v^2 \sin^2 \theta}{2g}$   $\sin \theta = \sqrt{\frac{8Rg}{v^2}}$   $\Rightarrow \theta = \sin^{-1} \left[ \frac{2gT^2}{\pi^2 R} \right]^{1/2}.$
- \*48. Consider a block and trolley system as shown in figure. If the coefficient of kinetic friction between the trolley and the surface is 0.04, the acceleration of the system in ms<sup>-2</sup> is: (Consider that the string is massless and unstretchable and the pulley is also massless and frictionless):



- $(1)\dot{3}$
- (3) 2

(4) 1.2

Ans. (3)

**Sol.** 
$$a = \frac{60 - f_k}{26} = 2 \text{ m/s}^2$$

- 49. The minimum energy required by a hydrogen atom in ground state to emit radiation in Balmer series is nearly:
  - (1) 1.5eV

(2) 13.6eV

(3) 1.9eV

(4) 12.1 eV

Ans. (4)

**Sol.** E = 
$$13.6 \left( \frac{1}{1^2} - \frac{1}{3^2} \right) \approx 12.1 \text{eV}$$

- 50. A monochromatic light of wavelength  $6000\,\mathrm{\mathring{A}}$  is incident on the single slit of width 0.01 mm. If the diffraction pattern is formed at the focus of the convex lens of focal length 20 cm, the linear width of the central maximum is:
  - (1) 60 mm

(2) 24 mm

(3) 120 mm

(4) 12 mm

Ans. (2)

**Sol.** 
$$W = \frac{2\lambda}{a} \times x = 24 \times 10^{-3} \text{m} = 24 \text{mm}$$

## **SECTION - B**

#### (Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

51. A regular polygon of 6 sides is formed by bending a wire of length  $4\pi$  meter. If an electric current of  $4\pi\sqrt{3}$  A is flowing through the sides of the polygon; the magnetic field at the centre of the polygon would be  $x \times 10^{-7}$ T. The value of x is \_\_\_\_\_\_.

Ans. 72

**Sol.**  $a = \frac{4\pi}{6}$ 

B = 
$$\frac{\mu_0 I}{4\pi \left(\frac{\sqrt{3}a}{2}\right)} \left(\sin(30^\circ) + \sin(30^\circ)\right) \times 6 = 72 \times 10^{-7} T$$
.

52. A rectangular loop of sides 12 cm and 5 cm, with its sides parallel to the x-axis and y-axis respectively, moves with a velocity of 5 cm/s in the positive x-axis direction, in a space containing a variable magnetic field in the positive z direction. The field has a gradient of  $10^{-3}$  T/cm along the negative x direction and it is decreasing with time at the rate of  $10^{-3}$  T/s. If the resistance of the loop is  $6 \text{m}\Omega$ , the power dissipated by the loop as heat is \_\_\_\_\_  $\times 10^{-9}$  W .

Ans. 216

Sol.  $e_2 - e_1 = (B_2 - B_1)\ell v$   $= (B_1 + 10^{-3} \times 12) - B_1)\ell v = 3 \times 10^{-5} \text{ V}$   $e_2 = B_2\ell v$   $e_3 = B_1\ell v$  $i_1 = \frac{e_2 - e_1}{D} = 5 \times 10^{-3} \text{ A}$ 

$$\varepsilon = A \frac{dB}{dt} = 60 \times 10^{-7} \text{ V}$$

$$i_2 = \frac{\varepsilon}{R} = 10^{-3} A$$

$$i = i_1 + i_2 = 6 \times 10^{-3} A$$

$$P = i^2 R = 216 \times 10^{-9} \text{ W}.$$



- 53. The distance between object and its 3 times magnified virtual image as produced by a convex lens is 20 cm. The focal length of the lens used is \_\_\_\_\_ cm.
- Ans. 15

**Sol.** 
$$\frac{v}{u} = 3 \text{ cm}, v - u = 20 \text{ cm},$$
  
 $u = 10 \text{ cm}, v = 30 \text{ cm}$   
 $\frac{1}{v} - \frac{1}{u} = \frac{1}{f} \Rightarrow f = 15 \text{cm}$ 



- 54. Two identical charged sphere are suspended by strings of equal lengths. The strings make an angle  $\theta$  with each other. When suspended in water the angle remains the same. If density of the material of the sphere is 1.5 g/cc, the dielectric constant of water will be \_\_\_\_\_ (Take density of water = 1 g/cc)
- Ans.

Sol. 
$$\tan(\theta/2) = \frac{F}{mg} = \frac{F/k}{mg - \rho_w v_g}$$
  

$$\Rightarrow k = \frac{mg}{mg - m\frac{\rho_w}{\rho_s}g} = \frac{\rho_s}{\rho_s - \rho_w} = 3$$

- 55. The radius of a nucleus of mass number 64 is 4.8 fermi. Then the mass number of another nucleus having radius of 4 fermi is  $\frac{1000}{y}$ , where x is \_\_\_\_\_.
- Ans. 27

Sol. 
$$R \propto A^{1/3}$$
 
$$\frac{R_1^3}{R_2^3} = \frac{A_1}{A_2} \Rightarrow A_2 = \frac{1000}{27}$$

- \*56. The identical sphere of mass 2M are placed at the corners of a right angled triangle with mutually perpendicular sides equal to 4 m each. Taking point of intersection of these two sides as origin, the magnitude of position vector of the centre of mass of system is  $\frac{4\sqrt{2}}{x}$ , where the value of x is \_\_\_\_\_\_.
- Ans. 2

Sol. 
$$\vec{r}_{com} = \frac{m_1 \vec{t}_1 + m_2 \vec{r}_2}{m_1 + m_2} = -2\hat{i} + 2\hat{j}$$

$$|\vec{r}_{com}| = 2\sqrt{2}m = \frac{4\sqrt{2}}{2}m$$



- \*57. A tuning fork resonates with a sonometer wire of length 1 m stretched with a tension of 6 N. When the tension in the wire is changed to 54 N, the same tuning fork produces 12 beats per second with it. The frequency of the fork is \_\_\_\_\_\_ Hz.
- Ans. 6
- **Sol.** Assuming fundamental frequency

$$V = \sqrt{\frac{T}{\mu}}$$
  $V_1 = \sqrt{\frac{6}{\mu}}, V_2 = \sqrt{\frac{54}{\mu}} = 3V_1$ 

$$\begin{split} f_1 &= \frac{v_1}{2L} = \frac{v_1}{2}; \, f_2 = \frac{v_2}{2L} = \frac{3v_1}{2} \\ f_2 &= 3f_1, \ f_2 - f_1 = 12 \\ f_1 &= 6 \ Hz. \end{split}$$

- \*58. A plane is in level flight at constant speed and each of its two wings has an area of  $40 \text{ m}^2$ . If the speed of the air is 180 km/h over the lower wing surface and 252 km/h over the upper wing surface, the mass of the plane is \_\_\_\_\_ kg. (Take air density to be  $1 \text{ kg m}^{-3}$  and  $g = 10 \text{ m}^{-2}$ )
- Ans. 9600

**Sol.** 
$$\Delta P = \frac{1}{2} \rho (V_u^2 - V_\ell^2)$$
  
 $V_u = 70 \text{ m/s}, \ V_I = 50 \text{ m/s}$   
 $\Delta P = \frac{1}{2} \times 1(70^2 - 50^2) = 1200 Pa$   
 $Mg = \Delta P \times A$   
 $\Rightarrow M = \frac{1200 \times 40 \times 2}{10} = 9600 \text{ kg}$ 

- 59. The current in a conductor is expressed as  $I=3t^2+4t^3$ , where I is in Ampere and t is in second. The amount of electric charge that flows through a section of the conductor during t=1s to t = 2s is \_\_\_\_\_\_ C.
- Ans. 22

**Sol.** 
$$I = 3t^2 + 4t^3$$
  
  $Q = \int_1^2 I dt = 22C$ 

- \*60. A particle is moving in one dimension (along x axis) under the action of a variable force, It's initial position was 16 m right of origin. The variation of its position (x) with time (t) is given as  $x = -3t^3 + 18t^2 + 16t$ , where x is in m and t is in s. The velocity of the particle when its acceleration becomes zero is \_\_\_\_\_ m/s.
- Ans. 52

Sol. 
$$x = -3t^3 + 18t^2 + 16t$$
  
 $v = -9t^2 + 36t + 16$   
 $a = -18t + 36$   
 $a = 0 \implies t = 2s$   
 $v(2s) = 52 \text{ m/s}.$ 

# PART - C (CHEMISTRY)

## **SECTION - A**

#### (One Options Correct Type)

This section contains **20 multiple choice questions**. Each question has **four choices** (1), (2), (3) and (4), out of which **ONLY ONE** option is correct.

- 61. If one strand of a DNA has the sequence ATGCTTCA, sequence of the bases in complementary strand is:
  - (1) CATTAGCT

(2) TACGAAGT

(3) GTACTTAC

(4) ATGCGACT

Ans. (2)

**Sol.** TAGCTTCA TACGAAGT

62. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R)

**Assertion (A):** Haloalkanes react with KCN to form alkyl cyanides as a main product while with AgCN form isocyanide as the main product

Reason (R): KCN and AgCN both are highly ionic compounds.

In the light of the above statements, choose the most appropriate answer from the options given below.

- (1) (A) is correct but (R) is not correct
- (2) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (3) (A) is not correct but (R) is correct
- (4) Both (A) and (R) are correct and (R) is the correct explanation of (A)

Ans. (1)

Sol.  $R - X \xrightarrow{KCN} R - CN$  $R - X \xrightarrow{AgCN} R - NC$ 

\*63. In acidic medium, K<sub>2</sub>Cr<sub>2</sub>O<sub>7</sub> shows oxidising action as represented in the half reaction:

$$\mathrm{Cr_2O_7^{2-}} + \mathrm{XH^+} + \mathrm{Ye^{\odot}} \rightarrow \mathrm{2A} + \mathrm{ZH_2O}$$

X, Y, Z and A are respectively are:

(1) 8, 6, 4 and Cr<sub>2</sub>O<sub>3</sub>

(2) 14, 7, 6 and Cr<sup>3+</sup>

(3) 8, 4, 6 and Cr<sub>2</sub>O<sub>3</sub>

(4) 14, 6, 7 and Cr<sup>3+</sup>

Ans. (4)

**Sol.**  $Cr_2O_7^{--} + XH^+ + Ye^- \longrightarrow 2A + ZH_2O$   $Cr_2O_7^{--} + 14H^+ + 6e^- \longrightarrow 2Cr^{+++} + 7H_2O$  $X = 14, Y = 6, Z = 7, A = Cr^{+++}$  \*64. Which of the following reactions are disproportionation reactions?

- (A)  $Cu^+ \rightarrow Cu^{2+} + Cu$
- (B)  $3MnO_4^{2-} + 4H^+ \longrightarrow 2MnO_4^- + MnO_2 + 2H_2O$
- (C)  $2KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_2$
- (D)  $2MnO_4^- + 3Mn^{2+} + 2H_2O \longrightarrow 5MnO_2 + 4H^+$

Choose the correct answer from the options given below:

(1) (A), (B)

(2) (B), (C), (D)

(3) (A), (B), (C)

(4) (A), (D)

## Ans. (1)

Sol.

$$Cu^{+1} \longrightarrow Cu^{++} + Cu$$

$$(+1)$$
  $(+2)$   $(0)$ 

$$KMnO_4 \longrightarrow K_2MnO_4 + MnO_2 + O_2$$

$$(+7)$$

$$2MnO_{4}^{-} + 3Mn^{++} + 2H_{2}O \longrightarrow 5MnO_{2} + 4H^{+}$$

$$4H^{+} + MnO_{4}^{--} \longrightarrow MnO_{4}^{-} + MnO_{2} + O_{2}$$

- \*65. In case of isoelectronic species the size of F-, Ne and Na+ is affected by:
  - (1) Principal quantum number (n)
  - (2) None of the factors because their size is the same
  - (3) Electron-electron interaction in the outer orbitals
  - (4) Nuclear charge (z)

Ans. (4)

**Sol.** The order is

$$\overline{Z_{\text{eff}}}$$
 is maximum

\*66. According to the wave-particle duality of matter by de-Broglie, which of the following graph plot presents most appropriate relationship between wavelength of electron( $\lambda$ ) and momentum of electron(p)?







Ans. (1)

**Sol.** de-Broglie equation is  $\lambda_e = \frac{h}{p}$ 

or 
$$\lambda_e.p = h$$

= Rectangular hyperbola.



67. Given below are two statements:

**Statement (I):** A solution of [Ni(H<sub>2</sub>O)<sub>6</sub>]<sup>2+</sup> is green in colour

**Statement (II):** A solution of [Ni(CN)<sub>4</sub>]<sup>2-</sup> is colourless.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are incorrect
- (2) Both Statement I and Statement II are correct
- (3) Statement I is incorrect but Statement II is correct
- (4) Statement I is correct but Statement II is incorrect

Ans. (2)

**Sol.**  $\left[ Ni(H_2O)_6 \right]^{+1}$ 

$$\Rightarrow Ni^{{}^{\scriptscriptstyle ++}} \equiv d^8 \equiv t_{2g}^6 e_g^2$$

 $\equiv$  d-d transition takes place.

■ Green colour.

(I) is correct.

$$\left[ \text{Ni}(\text{CN})_4 \right]^{2-}$$

 $\Rightarrow$  Ni<sup>++</sup>  $\equiv$  d<sup>8</sup> colourless since it does not absorb radiation from visible range of electromagnetic spectrum.

(II) is correct.

\*68. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R).

Assertion (A): PH<sub>3</sub> has lower boiling point then NH<sub>3</sub>.

**Reason (R):** In liquid state NH<sub>3</sub> molecules are associated through van der Waal's forces, but PH<sub>3</sub> molecules are associated through hydrogen bonding.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both (A) and (R) are correct but (R) is not the correct explanation of (A)
- (2) (A) is not correct but (R) is correct
- (3) Both (A) and (R) are correct and (R) is the correct explanation of (A)
- (4) (A) is correct but (R) is not correct
- Ans. (4)
- **Sol.** Boiling point of PH<sub>3</sub> < Boiling point of NH<sub>3</sub>

No H-bonding Intermolecular H-bonding

- (A) is correct but (R) is incorrect.
- 69. Identify A and B in the following sequence of reaction

Ans. (2)

Sol.

$$\begin{array}{c|c} CH_3 & CH_2CI & CHCI_2 \\ \hline \\ CI_2 & UV & CH(OH)_2 \\ \hline \\ H_2O & -H_2O \\ \hline \\ 373 \, K & CHO \\ \hline \end{array}$$

\*70. Given below are two statements:

**Statement (I):** Aminobenzene and aniline are same organic compounds.

**Statement (II):** Aminobenzene and aniline are different organic compounds.

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Statement I is correct but Statement II is incorrect
- (3) Statement I is incorrect but Statement II is correct
- (4) Both statement I and Statement II are incorrect
- Ans. (2)

Statement (I) is correct. Statement (II) is incorrect.

- 71. Which of the following complex is homoleptic?
  - (1) [Ni(CN)<sub>4</sub>]<sup>2-</sup>

(2) [Ni(NH<sub>3</sub>)<sub>2</sub>Cl<sub>2</sub>]

(3)  $[Fe(NH_3)_4 Cl_2]^+$ 

(4) [Co(NH<sub>3</sub>)<sub>4</sub>Cl<sub>2</sub>]<sup>+</sup>

Ans. (1)

- **Sol.** Homoleptic complex means having only one kind of ligands in the co-ordination sphere. So, option (1) is correct.
- \*72. Which of the following compound will most easily be attacked by an electrophile?



3.

Ans. (4)

- **Sol.** Benzene ring to which activating group is connected is readily attacked by an electrophile. So, option (4) is correct.
- \*73. Ionic reactions with organic compounds proceed through:
  - (A) homolytic bond cleavage
- (B) heterolytic bond cleavage

(C) free radical formation

(D) primary free radical

(E) secondary free radical

Choose the correct answer from the options given below:

(1) (A) only

(2) (C) only

(3) (B) only

(4) (D) and (E) only

Ans. (3)

- **Sol.** Ionic reactions with organic compounds proceed through heterolytic bond cleavage.
- \*74. Arrange the bonds in order of increasing ionic character in the molecules, LiF, K<sub>2</sub>O, N<sub>2</sub>, SO<sub>2</sub> and ClF<sub>3</sub>
  - (1)  $CIF_3 < N_2 < SO_2 < K_2O < LiF$
- (2)  $LiF < K_2O < CIF_3 < SO_2 < N_2$
- (3)  $N_2 < SO_2 < CIF_3 < K_2O < LiF$
- (4)  $N_2 < CIF_3 < SO_2 < K_2O < LiF$

Ans. (3)

Sol. Order of increasing ionic character

$$N_2 < SO_2 < CIF_3 < K_2O < LiF$$

N<sub>2</sub> is non-polar molecule while remaining are polar molecules.

- 75. We have three aqueous solutions of NaCl labelled as 'A', 'B' and 'C' with concentration 0.1 M, 0.01 M and 0.001 M, respectively. The value of van't Hoff factor(i) for these solutions will be in the order.
  - (1)  $i_A < i_B < i_C$

(2)  $i_A < i_C < i_B$ 

(3)  $i_A = i_B = i_C$ 

(4)  $i_A > i_B > i_C$ 

## Ans. (1)

**Sol.** As the solution gets diluted, degree of dissociation of NaCl will increase and hence Van't Hoff factor will also increase.

Therefore,  $i_A < i_B < i_C$ 

- \*76. In Kjeldahl's method for estimation of nitrogen, CuSO<sub>4</sub> acts as:
  - (1) reducing agent

(2) Catalytic agent

(3) hydrolysis agent

(4) Oxidising agent

## Ans. (2)

- Sol. In Kjeldahl method for estimation of nitrogen, CuSO<sub>4</sub> acts as catalytic agent.
- \*77. Given below are two statements:

**Statement (I):** Potassium hydrogen phthalate is a primary standard for standardisation of sodium hydroxide solution

**Statement (II):** In this titration phenolphthalein can be used as indicator In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Statement I is correct but Statement II is incorrect
- (3) Statement I is incorrect but Statement II is correct
- (4) Both statement I and Statement II are incorrect

### Ans. (1)

- **Sol.** Potassium hydrogenphthalate is a weak acid and NaOH is a strong base. So in the titration of weak acid vs strong base, phenolphthalein can be used as an indicator.
- 78. Match List-I with List-II

| List-I (Reactions) |                                                                                             |       | List-II (Reagents)        |  |
|--------------------|---------------------------------------------------------------------------------------------|-------|---------------------------|--|
| (A)                | $CH_3(CH_2)_5 - C - OC_2H_5 \longrightarrow CH_3(CH_2)_5 CHO$ $\parallel$ $O$               | (I)   | CH₃MgBr,H₂O               |  |
| (B)                | $C_6H_5COC_6H_5 \rightarrow C_6H_5CH_2C_6H_5$                                               | (II)  | Zn(Hg) and conc. HCl      |  |
| (C)                | $C_6H_5CHO \rightarrow C_6H_5CH(OH)CH_3$                                                    | (III) | NaBH₄,H⁺                  |  |
| (D)                | $\begin{array}{c} CH_3COCH_2COOC_2H_5 \to CH_3COH)CH_2COOC_2H_5 \\   \\   \\ H \end{array}$ | (IV)  | DIBAL-H, H <sub>2</sub> O |  |

Choose the correct answer from the options given below:

- (1) (A)-(III), (B)-(IV), (C)-(I), (D)-(II)
- (2) (A)-(IV), (B)-(II), (C)-(I), (D)-(III)
- (3) (A)-(IV), (B)-(II), (C)-(III), (D)-(I)
- (4) (A)-(III), (B)-(IV), (C)-(II), (D)-(I)

$$\begin{array}{ll} \textbf{Sol.} & \text{CH}_{3}(\text{CH}_{2})_{5} - \text{C} - \text{OC}_{2}\text{H}_{5} \xrightarrow{\text{(i)} \, \text{DIBALH} \\ \text{(ii)} \, \text{H}_{2}\text{O}}} \text{CH}_{3}(\text{CH}_{2})_{5} \, \text{CHO} \\ & \text{O} \\ & \text{C}_{6}\text{H}_{5}\text{COC}_{6}\text{H}_{5} \xrightarrow{\text{Zn-Hg+conc.HCI}} \text{C}_{6}\text{H}_{5}\text{CH}_{2}\text{C}_{6}\text{H}_{5} \\ & \text{C}_{6}\text{H}_{5}\text{CHO} \xrightarrow{\text{(i)} \, \text{CH}_{3}\text{MgBr} \\ \text{(ii)} \, \text{H}_{3}\text{O}^{*}} \text{C}_{6}\text{H}_{5}\text{CH(OH)CH}_{3} \\ & \text{CH}_{3}\text{COCH}_{2}\text{COOC}_{2}\text{H}_{5} \xrightarrow{\text{(i)} \, \text{NaBH}_{4} \\ \text{(ii)} \, \text{H}_{5}\text{O}^{*}} \text{CH}_{3} \, \text{C(OH)CH}_{2}\text{COOC} \\ \end{array}$$

So, correct matching is option (2).

\*79. Choose the correct option for free expansion of an ideal gas under adiabatic condition from the following:

(1) 
$$q = 0, \Delta T \neq 0, w = 0$$

(2) 
$$q = 0, \Delta T < 0, w \neq 0$$

(3) 
$$q \neq 0, \Delta T = 0, w = 0$$

(4) 
$$q = 0, \Delta T = 0, w = 0$$

Ans. (4)

**Sol.** For adiabatic free expansion of an ideal gas q = 0, w = 0,  $\Delta U = 0$  (or  $\Delta T = 0$ )

\*80. Given below are two statements:

**Statement (I):** The NH<sub>2</sub> group in Aniline is ortho and para directing and a powerful activating group.

**Statement (II):** Aniline does not undergo Friedel-Craft's reaction (alkylation and acylation).

In the light of the above statements, choose the most appropriate answer from the options given below:

- (1) Both Statement I and Statement II are correct
- (2) Both statement I and Statement II are incorrect
- (3) Statement I is incorrect but Statement II is correct
- (4) Statement I is correct but Statement II is incorrect

Ans. (1)

**Sol.** Statement (I) and Statement (II) both are correct.

## **SECTION - B**

(Numerical Answer Type)

This section contains 10 Numerical based questions. The answer to each question is rounded off to the nearest integer value.

\*81. Number of optical isomers possible for 2-chlorobutane\_\_\_\_\_.

Ans. 2

## JEE-MAIN-2024 (1st February-First Shift)-MPC-32

2-Chlorobutane contains one chiral centre.

So, number of optical isomers =  $2^1 = 2$ 

82. The potential for the given half cell at 298 K is (–)  $\_\_\_ \times 10^{-2}$ V.

$$2H_{(aq)}^+ + 2e^- \longrightarrow H_2(g)$$

$$[H^{+}] = 1 M, P_{H_{2}} = 2atm$$

(Given: 2.303RT/F = 0.06 V, log2 = 0.3)

Ans.

**Sol.** 
$$E_{RP} = E_{RP}^{\circ} - \frac{0.06}{2} log_{10} \frac{P_{H_2}}{\left[H^+\right]^2}$$

$$\mathsf{E}_{\mathsf{RP}} = 0.0 - \frac{0.06}{2} \mathsf{log}_{10} \frac{2}{\left(1\right)^2}$$

$$= -0.03 \times 0.3010 = -0.009 \text{ V}$$

$$= -0.9 \times 10^{-2} \text{ V}$$

So, integer answer will be (1).

- 83. The number of white coloured salts, among the following is \_\_\_\_\_
  - (a) SrSO₄
- (b) Mg(NH<sub>4</sub>)PO<sub>4</sub>
- (c) BaCrO<sub>4</sub>
- (d) Mn(OH)<sub>2</sub>

- (e) PbSO<sub>4</sub>
- (f) PbCrO<sub>4</sub>
- (g) AgBr
- (h) Pbl<sub>2</sub>

- (i) CaC<sub>2</sub>O<sub>4</sub>
- (j) [Fe(OH)<sub>2</sub>(CH<sub>3</sub>COO)]
- Ans. 5
- Sol. White coloured salts among the following SrSO<sub>4</sub>, Mg(NH<sub>4</sub>)PO<sub>4</sub>, PbSO<sub>4</sub>, CaC<sub>2</sub>O<sub>4</sub>, Mn(OH)<sub>2</sub> So, answer is (5).
- 84. The ratio of  $\frac{{}^{14}\text{C}}{{}^{12}\text{C}}$  in a piece of wood is  $\frac{1}{8}$  part that of atmosphere. If half life of  ${}^{14}\text{C}$  is 5730 years, the age of wood sample is \_\_\_\_\_\_ years.
- Ans. 17190

**Sol.** 
$$\frac{0.693}{5730} = \frac{2.303}{t} log_{10} \frac{N_o}{\frac{N_o}{8}}$$

$$\frac{0.693}{5730} = \frac{2.303}{t} log_{10} 8$$

\*85. The number of molecules/ion/s having trigonal bipyramidal shape is \_\_\_\_\_ .  $PF_5, BrF_5, PCI_5, [PtCI_4]^{2-}, BF_3, Fe(CO)_5$ 

Ans. 3

**Sol.** Molecules/ions having trigonal bipyramidal shape is  $PF_5$ ,  $PCI_5$ ,  $Fe(CO)_5$ 

\*86. Total number of deactivating groups in aromatic electrophilic substitution reaction among the following is\_\_\_\_\_\_.

Ans. 2

$$O$$
 $OCH_2$ ,  $-C \equiv N$ 

Sol. Are deactivating.

\*87. The lowest oxidation number of an atom in a compound  $A_2B$  is -2. The number of electrons in its valence shell is \_\_\_\_\_.

Ans. 6

**Sol.**  $A_2B \rightarrow (-2)$ , i.e.

Group (16) compound like  $H_2O$ ,  $H_2S$  etc. Number of valence electrons = 6.

88. Among the following oxides of p-block elements, number of oxides having amphoteric nature is \_\_\_\_ .  $Cl_2O_7$ , CO,  $PbO_2$ ,  $N_2O$ , NO,  $Al_2O_3$ ,  $SiO_2$ ,  $N_2O_5$ ,  $SnO_2$ 

Ans. 3

**Sol.** 
$$PbO_2$$
,  $Al_2O_3$ ,  $SnO_2 \equiv Amphoteric$   
 $CO$ ,  $NO \equiv Neutral$   
 $Cl_2O_7$ ,  $SiO_2$ ,  $N_2O$ ,  $N_2O_5 \equiv Acidic$ 

\*89. Consider the following reaction:  $3PbCl_2 + 2(NH_4)_3PO_4 \rightarrow Pb_3(PO_4)_2 + 6NH_4Cl$  If 72 mmol of  $PbCl_2$  is mixed with 50 mmol of  $(NH_4)_3PO_4$ , then the amount of  $Pb_3(PO_4)_2$  formed is \_\_\_\_\_ mmol (nearest integer).

Ans. 24

**Sol.** 
$$3PbCl_2 + 2(NH_4)_3 PO_4 \longrightarrow Pb_3(PO_4)_2 + 6NH_4Cl$$

$$\therefore$$
 Millimoles of Pb<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub> formed  $\equiv 72 \times \frac{1}{3} = 24$ 

- \*90.  $K_a$  for  $CH_3COOH$  is  $1.8 \times 10^{-5}$  and  $K_b$  for  $NH_4OH$  is  $1.8 \times 10^{-5}$ . The pH of ammonium acetate solution will be \_\_\_\_\_\_ .
- Ans. 7

**Sol.** CH<sub>3</sub>COONH<sub>4</sub> is a salt of weak acid and weak base.

