מעבדה 9-8

נושא: עץ חיפוש בינארי מאוזן

תאריך הגשה לקבוצה של יום ב': 04.01.2021 תאריך הגשה לקבוצה של יום ד': 06.01.2021 (הגשה בזוגות)

יש לקרוא היטב לפני תחילת העבודה!

עבודה נעימה!

:מבוא

במעבדה הנוכחית נממש עץ חיפוש בינרי מאוזן - עץ AVL במעבדה הנוכחית

תיאור:

נחפש עץ חיפוש עבורו יתקיימו התנאים הבאים:

- ${\it Ig} \phi l$) פעולות החיפוש, ההוספה והמחיקה יתבצעו בסדר גודל של 1
 - 2. העץ יהיה קל לתחזוקה.

הגדרה 1 (עץ AVL): עץ חיפוש בינרי בו הפרש הגבהים של תת-העץ השמאלי ותת-העץ הימני (לכל צומת Adelson-Velskii and Landis פנימי) יהיה 1 לכל היותר ייקרא עץ

:AVL דוגמא לעצי

הכנסת צומת לעץ AVL

ההכנסה נעשית באופן שגרתי לעצי חיפוש: הצומת החדש מתווסף בתור עלה. באופן כזה לא נפגעת תכונת החיפוש של העץ.

אולם, הכנסה עלולה לפגוע בתנאי האיזון. נסמן ב a - את ה<u>צומת הראשון במסלול מנקודת ההכנסה</u> אל השורש, שבו יש הפרה של תנאי האיזון.

למשל, הכנסה של 1 גורמת להפרת האיזון בשורש (a הוא השורש):

עלינו לתקן את האיזון בין תתי העצים של צומת זה (נראה כי זה מספיק).ניתן לעשות זאת אם נהפוך את 5 להיות שורש העץ ואת 7 לבן השמאלי של 10. נקבל:

יש ארבעה מקרים, אך משיקולי סימטריה אפשר לדון רק בשני מקרים:

4. הכנסה "חיצונית". לתת-עץ שמאלי של בן שמאלי או לתת-עץ ימני של בן ימני. מקרים 1 ו-3
 ב. הכנסה "פנימית". לתת-עץ ימני של בן שמאלי או לתת-עץ שמאלי של בן ימני. מקרים 2 ו-3

פתרון הפרת האיזון:

כאמור נסמן ב-a את הצומת הראשון במסלול מנקודת ההכנסה אל השורש, שבו יש הפרה של תנאי האיזון. בהכנסה "חיצונית", (למשל: לתת-עץ השמאלי של הבן השמאלי של a) נראה שמספיק <u>סיבוב אחד.</u> בהכנסה "<u>פנימית</u>", (למשל: לתת-עץ הימני של הבן השמאלי של a) נראה שיש צורך <u>בשני סיבובים</u>.

הכנסה חיצונית (מקרים 1 ו 4)

רוטציה יחידה

צד שמאל מתאר את המצב לפני התיקון (הרוטציה): אחרי ההוספה לתת-העץ X מופר האיזון. הצומת הראשון שאינו מאוזן מסומן ב- k2 . צד ימין מתאר את המצב לאחר התיקון.

הערה: באיור לעיל הראנו רוטציה ימינה שפותרת את המקרה 1. תארו באיור דומה רוטציה שמאלה לפתרון מקרה 4.

תרגיל עצמי 1

הכנס מפתח 6 לתוך העץ הנתון.

יש להכניס את המפתח באופן רגיל ואז לבצע רוטציה יחידה.

מהם k1, k2, X,Y,Z במקרה זה?

תרגיל עצמי 2

בנה עץ AVL אשר נוצר ע"י הכנסת המפתחות הבאים (משמאל לימין):

3214567

הכנסה פנימית (מקרים 2 ו 3) רוטציה כפולה

מכניסים לתת-העץ הימני של הבן השמאלי, לכן הוא אינו ריק. לכן אפשר לתאר את העץ באמצעות 4 תתי-עצים (אולי ריקים) ועוד שלושה צמתים מקשרים.

. ולכן הוא עמוק יותר (מלמעלה) ל-C הוא בה"כ שהכנסנו ל-L הוא בה"כ שבו מתגלה ההפרה. נניח בה"כ שהכנסנו ל-K ולכן הוא במוק יותר.

- . אחרש. אחרש ורוטציה אח \mathbf{k}_2 את הבעיה, לכן הבעיה את אחרת עם \mathbf{k}_1 לא ורוטציה ורוטציה אחרש לא יכול או אורש. \mathbf{k}_3 . 1
- . נקבע בהתאם D עד A עד ארבעת של ארבעת אמיקום \mathbf{k}_3 מימין \mathbf{k}_1 מימין להיות: משמאל מינים שלו חייבים שלו המיקום ארבעת מימין אונים בהתאם.
 - k_{3} ל- k_{2} ואח"כ רוטציה ימינה בין ל- k_{1} ל- k_{2} ל-געושים רוטציה שמאלה בין 3
 - 4. זה נקראה רוטציה שמאלה-ימינה.

הערה: המקרה האנלוגי – הכנסה לתת-עץ השמאלי של הבן הימני נפתר ע"י רוטציה ימינה-שמאלה.

תרגיל עצמי 3

לעץ שיצרתם בתרגיל עצמי 2 הכניסו את המפתחות הבאים (משמאל לימין):16,15,14,13,12,11,10,8,9

AVL אלגוריתם ההכנסה של צומת X לעץ

- .1. אם העץ ריק, צור צומת חדש והכנס בו את X, השם 0 בשדה הגובה.
- 2. אחרת, אם X קטן מהמפתח של השורש, הכנס משמאל, בדוק אם יש הפרת איזון וטפל בה
- 3. אחרת אם X גדול או שווה מהמפתח של השורש, הכנס מימין, בדוק אם יש הפרת איזון וטפל בה
 - 5. עדכן את גובה העץ והחזר אותו.

טיפול בהפרת איזון:

בהכנסה לתת-עץ שמאלי: אם X קטן מהמפתח של הבן השמאלי בצע סיבוב אחד, אחרת בצע סיבוב רפול.

בהכנסה לתת-עץ ימני: אם X גדול מהמפתח של הבן הימני בצע סיבוב אחד, אחרת בצע סיבוב כפול.

נממש את עץ החיפוש AVL לפי השלבים הבאים:

שלב 1.

ניצור מחלקה של **צומת בעץ** AVL כל איבר יכיל איבר (key), שני מצביעים וגובה תת-העץ שהצומת הנוכחי הוא השורש שלו. להלן המחלקה:

צור קובץ בשם AVLTreeNode.java וממש את המחלקה הנ"ל.

שלב 2.

צור מחלקה המגדירה **עץ חיפוש בינארי מאוזן** (AVLTree). שים לב: עליך להוסיף מטודות <u>רקורסיביות (AVLTree)</u> בדרושות למימוש העץ. <u>private methods</u>

(תזכורת: הוספה של צומת מתבצעת רק כעלה)

להלן המחלקה:

```
public class AVLTree{
private AVLTreeNode root;

public AVLTree ( ){ }

public void insert ( int newElement ){ }

public AVLTreeNode retrieve ( int searchKey ){ }

public void clear ( ){ }// Clear tree

public boolean isEmpty ( ){}

public boolean isFull ( ){}
```

public String toString (){} // Output the tree structure in Inorder
// Recursive partners of the public member methods --- Insert these methods here.
} // class AVLTree

צור קובץ בשם AVLTree.java וממש את המחלקה המופיעה לעיל.

שלב 3. בדיקות

Command	Action
+key	Insert (or update) the element with the specified key.
?key	Retrieve the element with the specified key and output it.
K	Output the keys in ascending order.
E	Report whether the tree is empty.
F	Report whether the tree is full.
С	Clear the tree.
Q	Quit the test program.

א). צור קלאס חדש בשם **TestAVLTree .java** ובדוק בעזרתו את נכונות המחלקות שכתבת. בצע בדיקות .על המחלקה לתמוך בפעולות המופיעות בטבלה שלעיל (ניתן, המידת הצורך לשנות את הסימנים + ו ? ל ADD ו FIND).

הגשה:

AVLTree.java, AVLTreeNode.java, TestAVLTree .java_ יש להגיש את הקבצים הבאים:

עבודה נעימה!