Properties of Relations

Previous Lecture

- Cartesian product, the cardinality of Cartesian product
- Binary relations, higher arity relations
- Describing binary relations
 - list of pairs
 - matrix of relation
 - graph of relation

Properties of Binary Relations – Reflexivity

- From now on we consider only binary relations from a set A to the same set A. That is, such relations are subsets of $A \times A$.
- A binary relation R ⊆ A × A is said to be reflexive if (a,a) ∈ R for all a ∈ A.
 - $(a,b) \in R \subseteq \mathbb{Z} \times \mathbb{Z}$ if and only if $a \le b$

This relation is reflexive, because $a \le a$ for all $a \in \mathbb{Z}$

Matrix:

$$egin{pmatrix} 1 & * & * & * \ * & 1 & * & * \ * & * & 1 & * \ * & * & * & 1 \end{pmatrix}$$

1's on the diagonal

Graph:

Loops at every vertex

Properties of Binary Relations – Symmetricity

• A binary relation $R \subseteq A \times A$ is said to be **symmetric** if, for any $a,b \in A$, if $(a,b) \in R$ then $(b,a) \in R$.

The relation Brotherhood (`x is a brother of y') on the set of men is symmetric, because if a is a brother of b then b is a brother of a

Matrix:

Matrix is symmetric w.r.t. the diagonal

Graph:

Graph is symmetric

Properties of Binary Relations – Transitivity

A binary relation $R \subseteq A \times A$ is said to be **transitive** if, for any $a,b,c \in A$, if $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$.

The relation Div ('integer x divides y') is transitive, because if a divides b and b divides c, then a divides c

Matrix:

Graph:

Properties of Binary Relations – Anti-Symmetricity

A binary relation $R \subseteq A \times A$ is said to be **anti-symmetric** if, for any $a,b \in A$, if $(a,b) \in R$ and $(b,a) \in R$ then a = b.

The relation Motherhood ('x is the mother of y') is anti-symmetric, because if a is the mother of b then b is not the mother of a

Matrix:

Matrix is anti-symmetric w.r.t. the diagonal

Graph:

There are no edges going towards each other

Examples

	reflexive	symmetric	transitive	anti-symmetric
Brotherhood				
x is a brother of y				
Neighborhood				
x is a neighbor of y				
$x \le y$				
x,y are intergers and x divides y				

Orders and Equivalences

Properties of binary relations

Reflexivity

A binary relation $R \subseteq A \times A$ is said to be reflexive if $(a,a) \in R$ for all $a \in A$.

Symmetricity

A binary relation $R \subseteq A \times A$ is said to be symmetric if, for any $a,b \in A$, if $(a,b) \in R$ then $(b,a) \in R$.

Transitivity

A binary relation $R \subseteq A \times A$ is said to be transitive if, for any $a,b,c \in A$, if $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$.

Anti-symmetricity

A binary relation $R \subseteq A \times A$ is said to be anti-symmetric if, for any $a,b \in A$, if $(a,b) \in R$ and $(b,a) \in R$ then a = b.

Equivalence relations

- A binary relation R on a set A is said to be an equivalence relations if it is reflexive, symmetric, and transitive.
- Let R ⊆ People × People. Pair (a,b) ∈ R if and only if a and b are of the same age.
- Let S ⊆ Animals × Animals. Pair (a,b) ∈ S if and only if a and b belong to the same species.
- Equivalence classes.
 Take a ∈ A. The set C(a) = { b | (a,b) ∈ R} is called the equivalence class of a.
- For example, C(my father) is the set of all 72 year old people.

Equivalence Classes

Lemma.

- (1) For any $a \in A$, the class $C(a) \neq \emptyset$
- (2) If $C(a) \neq C(b)$ then $C(a) \cap C(b) = \emptyset$
- (3) $A = \bigcup_{a \in A} C(a)$

Proof

- (1) R is reflexive, therefore, $(a,a) \in R$. Hence $a \in C(a) \neq \emptyset$
- (2) Suppose $c \in C(a) \cap C(b)$.

Thus we prove by contrapositive.

We need to show that C(a) = C(b)

For that we prove that any $x \in C(a)$ belongs to C(b) as well, and vice versa, every $y \in C(b)$ belongs to C(a)

Equivalence Classes (cntd)

- First we show that $(a,b) \in R$ Since $c \in C(a) \cap C(b)$, we have (a,c), $(b,c) \in R$. By symmetricity, (a,c), $(c,b) \in R$. Then, by transitivity, $(a,b) \in R$. Take $x \in C(b)$. We have $(b,x) \in R$. By transitivity, $(a,x) \in R$. Hence, $x \in C(a)$. Thus $C(b) \subseteq C(a)$. $C(a) \subseteq C(b)$ is similar.
 - (3) is obvious, because $a \in C(a)$. Q.E.D.

Partitions

Thus the equivalence classes divide up the set A into disjoint subsets.

- A collection of subsets $M_1, ..., M_n$ of a set A is called a partition if the following conditions hold.
 - (1) Every $M_i \neq \emptyset$
 - (2) If $M_i \neq M_j$ then $M_i \cap M_j = \emptyset$
 - $(3) \quad A = \bigcup_{i=1} M_i$

Partitions and Equivalence Relations

- Lemma shows that the equivalence classes constitute a partition of the set. Actually, a stronger statement is true
- Theorem. Let A be a set.
 - (1) If R is an equivalence relation on A, then its equivalence classes form a partition of A.
 - (2) If $M_1, ..., M_n$ is a partition of the set A, then the relation R defined as follows: $(a,b) \in R$ if and only if $a,b \in M_i$ for some M_i , is an equivalence relation on A.
- Proof
 - (1) Follows from Lemma
 - (2) Homework

Congruences

- Let k be an integer. Integers a,b are congruent modulo k, denoted a ≡ b (mod k), if their reminders when they are divided by k are equal, or, equivalently, if k divides a b.
 - ... -3, 0, 3, 6, ... are congruent modulo 3, and so are ..., -4, -1, 2, 5, ... and ..., -5, -2, 1, 4, ...
- The relation \equiv (mod k), 'to be congruent modulo k' is
 - reflexive, because k divides a a = 0
 - symmetric, because if k divides a b then it also divides b a
 - transitive, because if k divides a b and b c, then it also divides a c = (a b) + (b c)
- \equiv (mod k), is an equivalence relation with equivalence classes $\{ a \mid \text{there is b with } a = bk + c \}$
- Arithmetic on these classes is called modular arithmetic

Orders

- A relation R on a set A is called a (partial) order if it is reflexive, transitive and anti-symmetric.
- Examples:
 - $a \le b$ on the set of real numbers
 - (a,b) ∈ Div if and only if a divides b
- Diagram of a partial order.

Due to anti-symmetricity, all the elements of A are ranked with respect to the order R, that is b is ranked higher than a if $(a,b) \in R$.

Due to transitivity, we do not need to know all pairs (a,b) from the relation, but only those, in which b is just higher than a.

Diagram of a Partial Order

- Rules of drawing a diagram: if a is higher than b, put it higher connect every element only with elements that are just higher, so avoid triangles.
- Relation of divisibility on {1,2,...,12}

Minimal and Maximal

- Elements a,b are said to be comparable if $(a,b) \in R$ or $(b,a) \in R$
- Otherwise they are called incomparable
- Element a is minimal if for any b if $(b,a) \in R$ then a = b
- Element a is maximal if for any b if $(a,b) \in R$ then a = b
- Element a is called the least element if for any b, $(a,b) \in R$
- Element a is called the greatest element if for any b, $(b,a) \in R$

Total Order

- A partial order is said to be total if every two elements are comparable
- Sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} are totally ordered with respect to \leq

The diagram of a total order is a chain

Homework

- Are the following relations reflexive? symmetric? transitive? antisymmetric?
 - Motherhood: `x is the mother of y'
 - Intersect: `straight lines x and y intersect'
- Show that the relation ⊆ on the power set of a set is an order.

 Draw the diagram of this relation on the power set P({ a, b, c }).
- Which of the properties: reflexivity, symmetricity, transitivity, and anti-symmetricity, should be true for a relation expressing the idea of similarity (not necessarily identity)?