$\frac{2b_n}{2+\sqrt{4+b_n^2}}$.

a) Prove that the sequences (a_n) , (b_n) are decreas-

Let $a_0 = \sqrt{2}$, $b_0 = 2$, $a_{n+1} = \sqrt{2 - \sqrt{4 - a_n^2}}$, $b_{n+1} = \sqrt{2 - \sqrt{4 - a_n^2}}$

ing and converge to 0.
b) Prove that the sequence (2ⁿa_n) is increasing, the sequence (2ⁿb_n) is decreasing and that these

two sequences converge to the same limit.c) Prove that there is a positive constant C such that for all n the following inequality holds:

that for all n the following inequality ho $0 < b_n - a_n < \frac{C}{8^n}$.