MATH3821 Assignment 2 - Presentation

Kirat Kounsal, Samuel McLeod, Martin Tran

(z5163354), (z5061746), (z5330510)

24th July 2022

- Goal of Statistical Analysis
- 2 Data Collection and Exploration
- Model Choice
- Model Fitting
- Diagnostics
- 6 Model Assessment
- Conclusion

Goal of Statistical Analysis

Housing in New York City

- Continual housing crisis as there is excess demand and short supply
- Rent control and stabilisation measures are applied to 45% of apartments
- The effects of rent policies are debated
 - Put upward pressure on non-regulated apartments
 - Discourage construction of affordable housing

Do rent control measures have any effect overall?

- What factors affect house and rent prices
- Do they affect them in the same way?
- Aim to create a model predicting rent prices, so we can determine if housing prices have stayed in line with them over time

Data Collection and Exploration

The New York City Housing and Vacancy Survey

- Survey conducted every 3 years on various New York properties
- Captures 35 different variables, reflecting various physical, social, economic, and demographic factors
- 102218 total observations from 1991 to 2017

Data Cleaning

- Renaming variables appropriately
- Replacing categorical variables with dummy variables
- Omitting NA entries
- Changing categorical range variables to medians
- Splitting into two: renters and owners

Variables in the Dataset

- Social factors e.g. sex, age, race
- Fixed features e.g. apartment size, density
- Physical features e.g. building condition, wear and tear

Correlation Matrix and PCA

- Many fixed and physical features are correlated
- PCA is a good proxy for all the physical features

Factors to consider

Model Choice

Initial thoughts on Model Selection

- Linear model is appropriate for continuous data
- Residual plots of base model alarming
- Transformation is necessary

Transformations of the response variable

Additional benfits of log-transformation

- Improvement in distribution of Variance
- Improvement in Residual plots
- Larger Adjusted R-squared values
- Eases interpretation
- Avoids over-fitting

Conclusion of Model Selection

 log(HousePrice) and log(MonthlyRent) as responses against linear predictors

Household Value Preliminary Model

```
own.full.lm <-
  lm(log(Household.value) ~ Householder.age + Householder.hispanic.
       Householder.race + Householder.income + Householder.female +
       Duration.of.stay.as.of.2017 + Year + Borough +
       Median.number.of.units + Median.number.of.stories +
       Number.of.rooms + Number.of.bedrooms + Plumbing.facilities +
       Kitchen.facilities + Resident.rating + Number.of.people +
       Severity.walls + Severity.windows + Severity.stairways +
       Severity.floors + Mice.and.rats + Broken.plaster +
       General.building.condition + Toilets.breakdowns +
       Heating.breakdowns + Kitchen.functioning +
       Holes.in.floors + Water.leakage,
    data = housing.owners)
```

Monthly Rent Preliminary Model

```
rent.full.lm <-
  lm(log(Monthly.rent) ~ Householder.age + Householder.hispanic.ori
       Householder.race + Householder.income + Householder.female +
       Duration.of.stay.as.of.2017 + Year + Borough +
       Median.number.of.units + Median.number.of.stories +
       Number.of.rooms + Number.of.bedrooms + Plumbing.facilities +
       Kitchen.facilities + Resident.rating + Number.of.people +
       Severity.walls + Severity.windows + Severity.stairways +
       Severity.floors + Mice.and.rats + Broken.plaster +
       General.building.condition + Toilets.breakdowns +
       Heating.breakdowns + Kitchen.functioning +
       Holes.in.floors + Water.leakage,
    data = housing.renters)
```

Model Fitting

Selecting subset of useful predictors

- Aim: find subset of predictors that attain balance of fit and simplicity
- Possible due to results of ANOVA tests and factor box plots
- AIC used to find best subset of predictors

Stepwise Forward Selection (Homeowner model)

```
forward.AIC.own <- stepAIC(own.intercept.lm,
                           scope = list(lower = own.intercept
                                        upper = own.full.lm),
                           direction = 'forward')
```

```
Df Sum of Sq RSS
                                           AIC
                                 9910.6 -6732.8
<none>
+ Water.leakage
                     1 1.25415 9909.4 -6732.8
                     1 1.05449 9909.6 -6732.5
+ Broken.plaster
+ Toilets.breakdowns
                     1 0.58104 9910.1 -6731.7
+ Householder.age
                      1 0.41451 9910.2 -6731.5
                      1
                        0.17394 9910.5 -6731.1
+ pca
+ pca_scaled
                      1 0.17394 9910.5 -6731.1
+ Plumbing.facilities
                      1 0.13057 9910.5 -6731.0
+ Holes.in.floors
                      1 0.00410 9910.6 -6730.9
+ Severity.stairways
                     2 0.68985 9909.9 -6729.9
+ Severity.walls
                     2 0.48914 9910.1 -6729.6
                     3 0.51639 9910.1 -6727.6
+ Severity.windows
```

	Df	Sum of Sq	RSS	AIC
+ Year	1	8163.8	26044	-8101.0
+ Resident.rating	3	2295.4	31912	-1343.2
+ Borough	4	1002.3	33205	-21.0
+ Mice.and.rats	1	790.5	33417	184.4
+ General.building.condition	2	539.2	33668	435.3
+ Broken.plaster	1	454.5	33753	516.9
+ Heating.breakdowns	1	344.1	33863	625.4
+ Severity.windows	3	343.2	33864	630.3
+ Severity.stairways	2	285.5	33922	684.9
+ Holes.in.floors	1	274.7	33933	693.5
+ Water.leakage	1	259.3	33948	708.5
+ Severity.floors	2	175.8	34032	792.2
+ Toilets.breakdowns	1	125.0	34082	839.8
+ Kitchen.functioning	1	118.0	34089	846.6
+ Severity.walls	2	53.0	34154	911.9
+ Number.of.rooms	1	25.4	34182	936.7
+ Plumbing.facilities	1	22.4	34185	939.7
+ Kitchen.facilities	1	9.8	34197	951.9
<none></none>			34207	959.4

Selection - Adjusted R^2

- Measures goodness-of-fit but penalizes models with more variables
- Used to find the subset models with the highest Adjusted R^2

Adjusted R^2 : Homeowners Model

> best.adj.r2.owners

Number of Parameters: 19 Adj R2: 0.4152284

Parameters include Year, Number.of.rooms, BoroughB, General.building.condition, Severity.stairways, Kitchen.functioning, Heating.breakdowns, Mice.and.rats, Holes.in.floors, Broken.plaster, Resident.rating, Median.number.of.units, Median.number.of.stories

- Adjusted R² using regsubsets: 0.4152284
- Adjusted R² using stepAIC: 0.4152284

Adjusted R^2 : Monthly Rent Model

> best.adj.r2.owners

Number of Parameters: 28 Adj R2: 0.3165994

Parameters include Year, Number.of.rooms, BoroughB, General.building.condition, Severity.walls, Severity.windows, Severity.stairways, Severity.floors, Toilets.breakdowns, Kitchen.functioning, Mice.and.rats, Broken.plaster, Water.leakage, Resident.rating, Plumbing.facilities, Kitchen.facilities, Median.number.of.units, Median.number.of.stories

- Adjusted R² using regsubsets: 0.3165994
- Adjusted R² using stepAIC: 0.3165919

Diagnostics

Diagnostics for the Homeowners Model

Diagnostics for the Monthly Rent Model

Model Assessment

Model Assessment Techniques

- Predictive ability of the model can be assessed using Cross-Validation methods
- Run model on a subset of the data, and compare its predictions to observed data
- Can be computationally expensive for large datasets
- K-fold cross validation can be used to reduce computational expense

Model Limitations

- Predictive accuracy is an issue for varied datasets
- New York City housing data is very noisy, due to the city's large variation in housing types and qualities
- Wide confidence bands for point estimates

Conclusion

Conclusion

- Both rent and housing prices rely on both fixed physical factors and economic factors
 - e.g. number of rooms, building condition, location
- Rental prices have more micro-level determinants than housing prices
 - e.g. damage severity, general wear and tear

Conclusion

- Used our predictive model to predict rental prices for home owners through the years
- Our predictive model showed on average, rent as a proportion of house prices has drastically decreased from 1991 to 2017
- ullet House prices 463 imes monthly rent in 1991, compared to 768 imes in 2017
 - Standard errors of 23.8 and 39.9 respectively
 - 95% confidence intervals do not overlap
- Clear evidence that New York's rent control measures are indeed effective in dampening rent prices compared to real estate