November 30, 2022

1 Аннотация

Цель работы: ознакомление с устройством и работой осциллографа и изучение его основных характеристик.

В работе используются: осциллограф, генераторы электрических сигналов, соединительные кабели.

2 Теоретические сведения

Осциллограф – регистрирующий прибор, в котором исследуемый сигнал преобразуется в видимый на экране график изменения напряжения от времени. Осциллограф широко используется в физическом эксперименте, так как с его помощью можно регестрировать любую величину, которую можно преобразовать в электрический сигнал.

2.1 Устройство осциллографа

Схема устройства осциллографа

2.2 Принцип работы

Основной элесент осциллографа – электронно-лучевая трубка. Электронный пучок формируется системой электродов, называемой электронной пушкой: катод с нагревателем, модулятор, фокусирующий и ускоряющий аноды. Форма, размеры и расположение электродов подобраны таким образом, чтобы разгонять электроны и фокусировать пучок на экране.

На пути к экрану сформированный пучок проходит две пары отклоняющих пластин

2. Подаваемое на горизонтально отклоняющие пластины напряжение должно линейно зависить от времени.

В таком случае, напряжение пилообразной формы, вырабатываемое генератором, (Которое называется напряжением развертки) имеет вид, представленный на рисунке.

Напряжение развёртки

Кроме того, еще один важный процесс - синхронизация. Для получения устойчивой картины сигнала на экране необходимо, чтобы период развертки был кратен периоду самого сигнала.

Условие наблюдения устойчивой картины сигнала на экране осциллографа

3 Методика измерений

При помощи скоординированной работы с товарищем, четко продумывая каждый шаг, получаем нужные для всех пунктов работы данные. Далее заносим из в таблицу Exel и обрабатываем их.

4 Используемое оборудование

Осциллограф, генераторы электрических сигналов, соединительные кабели, ноутбук, недоразвитый одногруппник.

5 Результаты измерений и обработка данных

5.1 Наблюдение периодического сигнала и измерение его частоты

Vзг, Гц	Т, с	V, Гц	dV, Гц	V - Vзг, Гц
1,5068	0,67	1,49	0,0231	0,0168
2,5124	0,4	2,5	0,0178	0,0124
40,432	0,025	40	0,528	0,432
183,32	0,0055	181,8	1,73	1,52
18204	0.000055	18181	28	23

Рис. 1: Таблица 1

Исходя из полученных данных можно сделать вывод, что показания осцилографа вполне точны, так как результаты лежат в пределах погрешности.

5.2 Наблюдение фигур Лиссажу

Для разных соотношений частот получаем различные фигуры Лиссажу

Рис. 2: Соотношение частот $2 \ \mbox{к} \ 1$

Рис. 3: Соотношение частот $1 \ \mbox{к} \ 1$

Рис. 4: Соотношение частот 3 к 1

6 Обсуждения результатов

Результаты можно считать вполне точными, так как они лежат в пределах погрешности и были сделаны очень аккуратно.

7 Вывод

В результате работы был изучен электронный осциллограф. Выяснилось, что на больших и низких частотах из-за конструктивных особенностей прибора результаты измерений искажаются. Помимо этого были при помощи осциллографа были получены фигуры Лиссажу.