

CS 412 Intro. to Data Mining

Chapter 2. Getting to Know Your Data

Jiawei Han, Computer Science, Univ. Illinois at Urbana-Champaign, 2017

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization

- Measuring Data Similarity and Dissimilarity
- Summary

Types of Data Sets: (1) Record Data

Relational records

Relational tables, highly structured

Data matrix, e.g., numerical matrix, crosstabs

	China	England	France	Japan	USA	Total
Active Outdoors Crochet Glove		12.60	4.00	1.00	240,00	257.00
Active Outdoors Lycra Clove		10.00	6.00		323.00	339.00
InFlux (rachet Glove	3.00	6.00	8.00		132,00	149.00
InFlux Lycra Glove		2.00			1+3.00	145.00
Triumph Pro Helmet	3.00	1.00	7.00		333.00	344.00
Triumph Vertigo Helmet		3.00	22.00		474.00	499,00
Xtreme Adult Helmet	8.00	8.00	7.00	2.00	251.00	276.00
Xtreme Youth Helmet		1.60			76,00	77.00
Total	14.00	43.00	54.00	3.00	1,572.00	2,086.00

Person:						
Pers_ID	Surname	First_Name	City]		
0	Miller	Paul	London			
1	Ortega	Alvaro	Valencia	— no relation		
2	Huber	Urs	Zurich			1
3	Blanc	Gaston	Paris			
4	Bertolini	Fabrizio	Rom		_	
Car: Car_ID	Model	Year	Value	Pers_ID		
101	Bentley	1973	100000	0		⊢ -7
102	Rolls Royce	1965	330000	0		rela
103	Peugeot	1993	500	3		reis
104	Ferrari	2005	150000	4	$\vdash \vdash \vdash \prime$	
105	Renault	1998	2000	3		
106	Renault	2001	7000	3		
107	-					

Transaction data พังพราษทราปลังวางคร

TID	Items
1	Bread, Coke, Milk
2	Beer, Bread
3	Beer, Coke, Diaper, Milk
4	Beer, Bread, Diaper, Milk
5	Coke, Diaper, Milk

		team	caach	pla y	ball	score	game	wí n	lost	timeout	se ason
	Document 1	3	0	5	0	2	6	0	2	0	2
	Document 2	0	7	0	2	1	0	0	3	0	0
	Document 3	0	1	0	0	1	2	2	0	3	0

Document data: Term-frequency vector (matrix) of text documents

Types of Data Sets: (2) Graphs and Networks

- Transportation network
- World Wide Web

- Molecular Structures
- Social or information networks

Types of Data Sets: (3) Ordered Data

Video data: sequence of images

Temporal data: time-series

Sequential Data: transaction sequences

Human Chimparase Масация Humen Chimparage Macaque. Humen Chimparpee Macara e Human Chimpa vee

COTGAGITGATGTGTGAGCAATATGTCACTTTCATAAAGCCAGGTAT Genetic sequence data AACTGTTGCGCGTGTGTTGGTAA---TGTAAAACAAACTGAGTAG Масаска

Chimpargee Мерария Humen Chimpanzee Мосадью Human Chimparzoe Macaque

Types of Data Sets: (4) Spatial, image and multimedia Data

Spatial data: maps

- Image data:
- Video data:

Important Characteristics of Structured Data

- Dimensionality → * Dimension
- Curse of dimensionality
- Sparsity วัดที่เหมือน สเป็นและที่รัชอลูล
- Only presence counts
- Resolution
- Patterns depend on the <u>scale</u>
- Distribution พรกชะฉาน
- Centrality and dispersion

distrov

Data Objects

- (Data sets) are made up of data objects
- A data object represents an entity
- Examples:
 - sales database: customers, store items, sales
 - medical database: patients, treatments
 - university database: students, professors, courses
- Also called samples, examples, instances, data points, objects, tuples
- Data objects are described by attributes
- Database rows → data objects; columns → attributes

Attributes and and Attributes

- Attribute (or dimensions, features, variables)
- A data field, representing a characteristic or feature of a data object.
- E.g., customer _ID, name, address
- Types:
 - Nominal (e.g., red, blue)
 - Binary (e.g., {true, false})
 - Ordinal (e.g., {freshman, sophomore, junior, senior})
 - Numeric: quantitative
 - Interval-scaled: 100°C is interval scales of wann
 - Ratio-scaled: 100 o K is ratio scaled since it is twice as high as 50 o K
- Q1: Is student ID a nominal, ordinal, or interval-scaled data?
- Q2: What about eye color? Or color in the color spectrum of physics?

Attribute Types

- Nominal: categories, states, or "names of things" Hair color = {auburn, black, blond, brown, grey, red, white} marital status, occupation, ID numbers, zip codes Binary & a moniton Nominal attribute with only 2 states (0 and 1) * Symmetric binary: both outcomes equally important e.g., gender
- *Asymmetric binary: outcomes not equally important.
- e.g., medical test (positive vs. negative)
 - Convention: assign 1 to most important outcome (e.g., HIV positive)
 - Ordinal
- Values have a meaningful order (ranking) but magnitude between successive values is not known
- Size = {small, medium, large}, grades, army rankings

Numeric Attribute Types

- Quantity (integer or real-valued)
- Interval → สากรถนำสามาสิขาที่จับ
- Measured on a scale of equal-sized units
- Values have order บอกคำความอ่าวของวิจ เฉขาอ
- E.g., temperature in C° or F° , calendar dates
- No true zero-point no ในได้เปล่าได้เชื่อลูลแต่แมกษณีขึ้นผูลมีค่าเท่ากับ 0
- Ratio เชียอลำฮับ นาดาควา มอท่าง
- Inherent zero-point
- We can speak of values as being an order of magnitude larger than the unit of measurement (10 K° is twice as high as 5 K°).
- e.g., temperature in Kelvin, length, counts, monetary quantities

Discrete vs. Continuous Attributes

- Discrete Attribute ไม่ต่อห้อง เพ่งข้อเจาใ
 - Has only a finite or countably infinite set of values
 - E.g., zip codes, profession, or the set of words in a collection of documents
 - Sometimes, represented as integer variables
 - Note: Binary attributes are a special case of discrete attributes
- Continuous Attribute ต่องห้อง สำหน่อง สำหน้อง สำหน้อง
 - Has real numbers as attribute values
 - E.g., temperature, height, or weight
 - Practically, real values can only be measured and represented using a finite number of digits
 - Continuous attributes are typically represented as floating-point variables

Chapter 2. Getting to Know Your Data

- Data Objects and Attribute Types
- Basic Statistical Descriptions of Data
- Data Visualization

- Measuring Data Similarity and Dissimilarity
- Summary

Basic Statistical Descriptions of Data

- Motivation
 - To better understand the data: central tendency, variation and spread
- Data dispersion characteristics
- Median, max, min, quantiles, outliers, variance, ...
- Numerical dimensions correspond to sorted intervals
- Data dispersion:
 - Analyzed with multiple granularities of precision
- Boxplot or quantile analysis on sorted intervals
- <u>Dispersion analysis on computed measures</u>
 - Folding measures into numerical dimensions
 - Boxplot or quantile analysis on the transformed cube

