Predicție liniară

Laborator 12, PSS

Obiectiv

Studiul predicției liniare a semnalelor.

Noțiuni teoretice

Exerciții

1. Se consideră sistemul descris de ecuația cu diferențe

$$y[n] = 0.8y[n-1] + x[n] + x[n-1],$$

unde x[n] este un proces aleator staționar cu medie 0 și autocorelație $\gamma_{xx}[m] = \left(\frac{1}{2}\right)^{|m|}$

- a. Determinați densitatea spectrală de putere a ieșirii y[n];
- b. Determinați funcția de autocorelație a ieșirii, $\gamma_{yy}[m]$;
- c. Determinați varianța σ_y^2 a ieșirii.
- 2. În Matlab, încărcați semnalul audio badsignal.wav, afișați-l grafic și redați-l audio. Cum vi se pare calitatea audio? Ce anume o cauzează?
- 3. Detectati si înlocuiti esantioanele eronate folosind predictia liniară.
 - a. Utilizați funcția buffer() pentru a împărți semnalul în ferestre cu lungimea de aproximativ 25ms.
 - b. Modelați semnalul ca un proces aleator AR(10), și găsiți coeficienții liniari de predicție utilizând funcția lpc() (citiți documentația funcției pentru a vedea un exemplu de utilizare).
 - c. Calculați predicția liniară a semnalului, cu coeficienții obținuți mai sus
 - d. Pentru prima fereastră a semnalului, afișați semnalul original, cel prezis, precum și eroarea absolută.

- e. Se decide că un eșantion este eronat dacă diferă foarte mult de valoarea prezisă de modelul AR(10), $|x(i) x_{prezis}(i)| > T$. Se alege un prag T astfel încât numărul eșantioanelor detectate ca eronate nu depășească 1% din numărul total (de ex. T = 0.1) Înlocuiți toate eșantioanele x(i) detectate ca eronate (pentru care $|x(i) x_{prezis}(i)| > T$) cu valoarea conform modelului AR(10), $x_{prezis}(i)$.
- f. Reconstruiți semnalul audio întreg, afișați-l și redați-l. Cum vi se pare calitatea audio acum?
- 4. Folosind modelul AR10 pentru ultima fereastră a semnalului, generați pe baza acestuia încă 100ms de semnal (calculați câte eșantioane reprezintă 100ms). Concatenați aceste eșantioane la finalul semnalului original, afișați și redați rezultatul.

Întrebări finale

1. TBD