Задание на четвертую неделю.

- 0. Постройте NP-сертификат простоты числа $p=3911,\ g=13.$ Простыми в рекурсивном построении считаются только числа 2, 3, 5.
- 1. (i) Докажите, что в Σ_2 лежит язык булевых формул от двух наборов переменных $\phi(x_1,\dots,x_n,y_1\dots y_n)=\phi(\vec x,\vec y)$ таких, что при некоторых значениях $\vec x$ они справедливы вне зависимости от значений y_1,\dots,y_n .
- (ii) Придумайте какую-нибудь свою задачу из класса Σ_3 (или Π_3 , на ваш вкус).
- (iii) Докажите, что $\Sigma_k \subset \Sigma_{k+1} \cap \Pi_{k+1}$.
- (iv) Докажите, что $\mathcal{NP} \subset \mathcal{PSPACE} \subset \mathcal{EXPTIME}$.
- 2. Покажите, как свести следующую задачу к вычислению некоторого перманента: найти количество перестановок п элементов, в которых части элементов (с номерами $i_1, i_2, \dots i_k$) запрещено занимать позиции $j_1, \dots j_k$ соответственно.
- 3. Докажите, что язык выполнимых ДНФ $C_1 \lor C_2 \lor ... \lor C_m$, где $C_i = (l_{i1} \land l_{i2} \land ... \land l_{ik_i})$, l_{ij} литералы, принадлежит \mathcal{P} . Найдите ошибку или пробел в рассуждении: любую КНФ можно преобразовать в эквивалентную ДНФ, поэтому задача выплимости КНФ сводится к задаче выполнимости ДНФ и лежит в \mathcal{P} .
- $3\frac{1}{2}$. Расставьте и обоснуйте \mathcal{P} , \mathcal{NP} complete, co \mathcal{NP} complete:

	Выполнимость	Тавтологичность
КНФ		
ДНФ		

Под выполнимостью понимается задача проверки наличия набора значений переменных, на котором формула равна 1. Под тавтологичностью понимается задача проверки свойства формулы принимать значение 1 на всех наборах.

4. Найдите Θ -асимптотику суммы $\sum_{k=1}^n \sqrt{k}$, оценив её с помощью инте-

грала $\int_{1}^{n} \sqrt{x} dx$ сверху и снизу. Выведите аналогичную формулу для

асимптотики
$$\sum_{k=1}^n k^{\alpha}$$
 для $\alpha>0.$

- 5. Останется ли 3-SAT полной, если ограничиться формулами, в которых каждая переменная входит не более 3 раз, а каждый литерал— не более 2 раз?
- а) Под $3-\mathsf{SAT}$ понимается HE-БО Λ EE- $3-\mathsf{SAT}$.
- б) (Бонусная задача) Покажите, что если имеется в виду РОВНО-3-SAT, то не бывает невыполнимых формул указанного вида.
- 6. Постройте сводимость по Карпу языка (G,k) графов, в которых есть k-клика к языку графов, в которых есть клика хотя бы на половине вершин.
- 7. а) Верно ли, что существует такая функция $f:\mathbb{N}\to\mathbb{N}$, для любых констант $\forall\, c,d>0$ выполнено

$$f(n) = \omega(n^c), f(n) = o(2^{nd}),$$

- т. е. функция f(n) растет быстрее любого заданного полинома, но медленнее любой заданной экспоненты?
- б) Некто анонсировал теорему (т. е. утверждение может быть и неверно), что любой МТ требуется $\Omega(n\log_2^{\log_2 n} n)$ тактов для того, чтобы проверять тавтологичность формул, заданных в формате 4-ДНФ, т. е. дизъюнктивных нормальных форм, в каждый конъюнкт которых входит не более четырех переменных (здесь n длина входа). Считаем, что теорема верна. Верно ли, что из этого вытекает, что $\mathcal P$ не совпадает с со $\mathcal N\mathcal P$?