1. Solution

- O Upload the given sample data on AWS s3 in a folder named input-data
- Cleaning Activity
 - i. First check if there are null values in dataset
 - ii. Count the total Null values for each column
 - iii. And then replace the null values for specific columns by NA
 - iv. Check the If three are duplicates records
 - v. If there are duplicates then drop duplicates
- Clean data for at least for following datasets
 - i. Patients
 - ii. Subscriber
 - iii. Claims
 - iv. Group_subgroup
- Upload cleaned data corresponding to each data set into a redshift table.
- o Create a schema design doc for target tables.
- o Create a separate redshift table for each use case output in a redshift schema

2. Use Cases -

- Which disease has a maximum number of claims.
- Find those Subscribers having age less than 30 and they subscribe any subgroup
- Find out which group has maximum subgroups.
- o Find out hospital which serve most number of patients
- Find out which subgroups subscribe most number of times
- o Find out total number of claims which were rejected
- From where most claims are coming (city)
- Which groups of policies subscriber subscribe mostly Government or private
- Average monthly premium subscriber pay to insurance company.
- Find out Which group is most profitable
- List all the patients below age of 18 who admit for cancer
- List patients who have cashless insurance and have total charges greater than or equal for Rs.
 50,000.
- \circ List female patients over the age of 40 that have undergone knee surgery in the past year
- 3. Database Design List down all possible db(Redshift) tables here
 - Tables Metadata Info with Pk/FK relationship
 - i. Claim
 - 1. Claim_Or_Rejected: string,
 - 2. SUB_ID: string,
 - 3. claim_amount: string,
 - 4. claim_date: string,

- 5. claim_id: bigint,
- 6. claim_type: string,
- 7. disease_name: string,
- 8. patient_id: bigint

ii. Disease

- 1. SubGrpID: string,
- 2. Disease ID: int,
- 3. Disease_name: string

iii. Group

- 1. Country: string,
- 2. premium_written: int,
- 3. zipcode: int,
- 4. Grp_ld: string,
- 5. Grp_Name: string,
- 6. Grp_Type: string,
- 7. city: string,
- 8. year: int

iv. SubGroup

- 1. SubGrp_id: string,
- 2. SubGrp_Name: string,
- 3. Monthly_Premium: int

v. Hospital

- 1. Hospital_id: string,
- 2. Hospital_name: string,
- 3. city: string,
- 4. state: string,
- 5. country: string

vi. Patient Records

- 1. Patient_id: int
- 2. Patient_name: string
- 3. patient_gender: string
- 4. patient_birth_date: timestamp
- 5. patient_phone: string
- 6. disease_name: string
- 7. city: string
- 8. hospital_id: string

vii. Subscriber

- 1. [sub _id: string
- 2. first_name: string
- 3. last_name: string
- 4. Street: string
- 5. Birth_date: timestamp

- 6. Gender: string
- 7. Phone: string
- 8. Country: string
- 9. City: string
- 10. Zip Code: int
- 11. Subgrp_id: string
- 12. Elig_ind: string
- 13. eff_date: timestamp
- 14. term_date: timestamp

viii. GroupSubgroup

- 1. SubGrp_ID: string,
- 2. Grp_ld: string
- O ER diagram Optional
- 4. Technologies and Platforms to be used in this solution -
 - O Databrick
 - O AWS S3
 - O Redshift
 - O Pyspark
 - O SQL