

Subject Index

- AAD. *See* Acidic activating domains
ABP. *See* Androgen binding protein
Acceptor protein, for thyroid receptor, 40
Acidic activating domains (AAD), 30
Acrosomal exocytosis, 460, 462, 467
 A23187 and, 466
 extracellular Ca^{2+} dependence of, 466
 inhibition of, 466
 M42 and, 466
 QNB and, 466
 tyrphostin RG50864 and, 466
Acrosomal lamina (ALM), 242–245, 251, 255–256
Acrosomal matrix (AMX), 241, 243–245, 255, 467–468
Acrosomal membrane, 241, 243–245, 251, 255–256
Acrosomal stabilizing factor, 367
Acrosome
 enzyme targeting to, 331, 336
 EQ segment of, 241, 245–247, 249–251
 functions during fertilization, 251, 255–256
 structure-function relationships in, 240–256
Acrosome formation, testosterone and, 272
Acrosome-reacted sperm, and zona binding, 486
Acrosome reaction. *See also* Spontaneous acrosome reaction; Zona-induced acrosome reaction
A23187 and, 463, 466, 469
and capacitation, 459–471
characterization of, 459–560
CTC fluorescence assay for, 460–461
and fertilization, 459–471
intracellular Ca^{2+} and, 461, 468–470
M4 inhibition of, 462–463, 466, 470
model, 467–470
participants, 461–463
pertussis toxin inhibition of, 463, 469
PH-20 and, 489–490
phorbol esters in, 463
QNB inhibition of, 460–461, 463, 466, 469
and sperm-zona binding, 486
spontaneous, 460–461, 470–471, 479–480
t complex and, 479
tyrphostin RG50864 inhibition of, 466, 469
ZP3 induction of, 462
Acrosome reaction rate, and t complex sperm, 479
Acrosome reaction stages
 fenestrated (S3), 464–467, 470
 intact (B;N+;F+), 464–469
 poised (S1;N+;F+), 464–470
 punctate (S2;N−;F−), 464–467, 470
 reacted (AR), 464–467, 470
Acrosome reaction stage transitions
 blockage of, 460–463, 466, 469–470
 enzymes in, 469–470
 intracellular protein phosphorylation in, 468–470
 signal transduction reactions in, 467–470
Acrosome system, 204–205
ACTH. *See* Adrenocorticotropin
Actin filaments, in ectoplasmic specializations, 175, 178–186, 189–190, 192–193
Activin, and Leydig cell steroidogenesis, 358
Acute lymphoblastic leukemia phenotype, mutated *E2A* gene and, 300–301
Adherens, 399. *See also* Cadherins; Cell adhesion molecules and principal cells, 404
Adrenocorticotropin (ACTH), Leydig cell production of, 358
Albumin, blood-to-lumen movement of, 371
ALH. *See* Amplitude of lateral head displacement
Amino acids, in epididymal fluids, 368
Amplitude of lateral head displacement (ALH), of sperm motion, 417, 427–428
AMX. *See* Acrosomal matrix
Androgen action, in testis, 97–99
Androgen antigrade movement
 energy dependence of, 379–380
 protein synthesis inhibition and, 380
Androgen-binding protein (ABP)
 bidirectional secretion of, 322–325
 binding sites for, 270
 in caput epididymal lumen, 375
 endocytosis of, 271
 in proluminal androgen movement, 375–381
 Sertoli cell synthesis of, 272, 322–325,
 328–329, 342, 357, 376
 and sperm fertility, 381
 steroid hormone transport by, 258
Androgen-binding protein (ABP) levels
 cyclic changes in, 319
 reduction in, 322–325
 in reproductive tract fluids, 372–374
Androgen-binding protein (ABP) production
 in cryptorchidism, 342–344
 spermatid influence on, 342–347

- Androgen microenvironment, of maturing spermatozoa, 371–381
Androgen production, by Leydig cells, 392
Androgen proluminal movement, inhibition of, 378–380
Androgen reabsorption, receptor-mediated endocytosis, 381
Androgen receptors (AR)
 cyclic concentration changes of, 318–319
 first appearance of, 392
 in Leydig cell progenitors, 157
 as ligand-activated TF, 97
 localization of, 98
 in male sexual development, 56
 molecular analysis of, 56–72
 nuclear transport requirements of, 58–62
 p59 association with, 33
 in peritubular cells, 359
 phosphorylation of, 62
 and testicular target gene expression, 99
 transcriptional activation domains of, 56–58
Androgen replacement, and transcriptional gene expression, 389–391
Androgens
 antigrade movement of, 374–381
 cell targets of, 98
 and epididymal sperm maturation, 371–381
 and gonadotropin secretion, 113
 and Leydig cell differentiation, 155–157
 mRNA-level regulation by, 98
 and peritubular cell differentiation, 359
 proluminal movement of, 374–381
 and 5α -reduced androgens formation, 5
 regional differences in concentration, 371–381
 target gene regulation by, 97–99
Androgen secretion, hemorchidectomy and, 133–141
Antiandrogens. *See also* Androgen receptors
 effects of, 60, 62
Antimüllerian hormone (AMH). *See* Müllerian-inhibiting substance
A23187, in acrosome reaction, 463, 466, 469
ATP, and sperm motility reactivation, 439–440
ATP level
 and flagellar beat frequency, 440
 ROS effect on, 440, 442
Atresia, of female germ cells, 64
Average-path velocity (VAP), of sperm motion, 417, 427
azh mutation, 475
Azoospermia
 GnRH antagonist and, 118
 in GnRH-immunized rats, 96
 induced, 95–96
 testosterone and, 4
 via sustained estradiol-testosterone release, 5
BCF. *See* Beat cross frequency
Beat cross frequency (BCF), of sperm motion, 417–418, 427
Blood-epididymal barrier, 370–371, 399, 404, 406
bouncy mutation, 475–476
Busulfan
 and epididymal gene expression, 392–393
 and proenkephalin mRNA, 392
 seminiferous tubules disruption by, 322–324
Cadherin mRNA
 developmental changes in, 403–404
 in epididymis, 400–407
 longitudinal distribution of, 402–403
Cadherins. *See also* Adherens; Cell adhesion molecules; Epithelial cadherin; Neural cadherin; Placental cadherin
 characterization of, 399–400
 in organogenesis, 399
Calcium ion
 and flagellar structure, 481
 in spontaneous acrosome reaction, 471
 in zona-induced acrosome reaction, 461, 468–470
Calmodulin, 481
Capacitation
 and acrosome reaction, 459–471
 characterization of, 459–560
 and CTC fluorescence patterns, 460–469
 PH-20 relocation during, 490
 and t complex, 479
Caput epididymis, morphological variation within, 384–385
Carnitine, blood-to-lumen movement of, 370–371
Carnitine concentration gradient, in epididymal fluids, 366
Castration/androgen replacement, and transcriptional gene expression, 389–391
CAT. *See* Chloramphenicol acetyltransferase
Catalase, ROS destruction by, 436, 439
Catecholamines
 regressed testes responsiveness to, 145–146
 steroidogenic response to, 145
Cathepsin L, 319
Cation-dependent MPRs, 330–332, 334–336
Cation independent MPRs, 330–331, 334–336
Cation ionophores, in acrosome reaction, 463, 466, 469
Cell adhesion
 in germ cell–Sertoli cell interactions, 347–349
 in mammalian fertilization, 486
Cell adhesion molecules (CAMs), 348. *See also* Cadherins
 identification of, 491
 in sperm-zona binding, 487, 491

- Cell-cell interactions
potential regulatory agents in, 356
in seminiferous epithelium, 327–329, 399
and testis function regulation, 354–361
types of, 354
- Cell-cell tight junctions
adherence and, 399–400, 404
calcium dependence of, 399–400
and proluminal solute movement, 370–371
zonula occludens provision by, 370
- Ceruloplasmin, copper transport by, 355
- Cervical mucus, and sperm motility, 412–413
- Chloramphenicol acetyltransferase (CAT)
activity, antiandrogens and, 60, 62
- Chlortetracycline (CTC) probe
and capacitated sperm fluorescence patterns,
460–462, 464–469
in capacitation assay, 460–461, 464
- Chromatin acceptor proteins, SR binding sites
in, 40–42
- Chromatin acceptor sites, 40
nuclear matrix model of, 41
properties of, 41
- Clusterin (SGP-2), 79. *See also* Sulfated
glycoprotein-2
in epididymal lumen, 367
- Computer-assisted sperm analysis (CASA)
sources of variation in, 427–430
of sperm concentration, 430
and sperm kinematics, 417–420, 424–426,
430–434
and sperm motility measurement, 419–420
of sperm motion characteristics, 431–433
technology, 426–427
- Computer-assisted sperm analysis (CASA) results
counting chamber depth and, 429–430
from semen, 430–433
sperm concentration effect on, 427–429
temperature effect on 427–428
- Conception mechanisms, West Point meeting
on, 19, 22
- Contraception, via sustained testosterone-
estradiol release, 5
- Cryptorchidism
germ cell degeneration in, 341, 343
and Leydig cell steroidogenesis, 358
seminiferous tubule damage in, 358
- Sertoli cell function in, 342
spermatogenesis alteration in, 445
- CTC. *See* Chlortetracycline
- Curvilinear velocity (VCL), of sperm motion,
417, 427–429, 431–432
- Cyclophilin. *See* Peptidyl-prolyl *cis-trans*
isomerase
- Cystatin, 319
- Cytoplasm from elongated spermatids (CES), in
spermatid-Sertoli cell binding, 347–349
- Cytotoxic agents, seminiferous tubule damage
by, 358
- DAG. *See* Diacylglycerol
- Desmosome-like junctions
in germ cell-Sertoli cell interactions, 328
of spermatids, 340–341
- DHT. *See* Dihydrotestosterone
- Diacylglycerol (DAG), and acrosome reaction
stage transitions, 468–470
- Dihydrotestosterone (DHT)
and E-Cad mRNA concentrations, 406
and increased testosterone production,
155–157
potency enhancement of, 157–160
in reproductive tract fluids, 372–374
and spermatogenesis maintenance, 93–94
testosterone conversion to, 371–372
and testosterone secretion, 14
- DNA-binding elements, for TFs, 37
- DNA loop domains, 164–166
and nuclear matrix attachments, 166
- DNA mini-loop domains, nuclear annulus
attachment of, 167–173
- DNA organization
in hamster sperm nucleus, 164–173
levels of, 172–173
in somatic cells, 164–165, 172–173
- cDNA probes, 401
- DNA-TF-SR interaction model, 39
- Doxorubicin, seminiferous tubules disruption
by, 322–324
- Dynein
in sperm flagella, 410
- E2. *See* Estradiol
- E-Cad. *See* Epithelial cadherin
- Ecdysone, 26, 42
- Ectoplasmic specializations
actin filaments in, 175, 178–186, 189–190,
192–193
domains of, 179
fimbrin in, 181, 184
nature of, 175
proteins associated with, 180–181, 184
of spermatids, 328, 340–341
- Ectoplasmic specializations function
adhesion hypothesis of, 190–192
historical perspective of, 186–190
intermediate filament hypothesis of, 196
microtubule hypothesis of, 192–196
in positioning spermatogenic cells, 192
- Ectoplasmic specializations structure, 175–179
actin zone, 180–184
cytoplasmic domain, 185–186
ectoplasmic reticulum domain, 185
ectoplasmic reticulum-related zone, 184

- extracellular domain, 179
integral membrane domain, 179
model of, 178–179
plasma membrane-related zone, 180
- EDS. *See* Ethylene dimethanesulfonate
- EGF. *See* Epidermal growth factor
- Embryonic survival
frozen semen and, 455–456
heat-stressed males and, 456
intrascrotal temperature and, 453–457
- β BEND. *See* β -Endorphin
- Endocrine infertility, gonadotropin hormones and, 107
- Endocytic apparatus structure, during spermatogenesis, 263–265
- Endocytic pathways, in monkey germ cells, 265–269
- Endocytosis
and luminal androgen reabsorption, 381
of M6P-containing glycoproteins, 334–336
M6P receptor-mediated, 332–334
- β -Endorphin (β BEND)
FSH inhibition by, 358
Leydig cell production of, 358
- Epidermal growth factor (EGF), 355, 357
- Epididymal development, non-androgen testicular factors and, 389
- Epididymal fluids
concentration gradients in, 364–368
flow rate of, 368–369
protein concentration in, 366
- Epididymal gene expression
busulfan effects on, 392–393
spermatozoan regulation of, 392–393
- Epididymal intraluminal fluids, 364–368
- Epididymal microenvironment, 368–369
- Epididymal mRNA levels, 391
- Epididymal proteins
region specific, 367
species specific, 367
- Epididymal sperm maturation, 371–381
- Epididymis
ABP concentrations in, 372–374
androgen microenvironment of, 5
as androgen target tissue, 371–381
fluid movement through, 368–370
regulated gene expression in, 384–397
temperature-dependent functions of, 456
- Epithelial cadherin (E-Cad) mRNA
developmental changes in, 403, 405–407
DHT and, 406
epididymal distribution of, 402–407
- EQ. *See* Equatorial segment
- Equatorial segment (EQ), 467–468
- ER. *See* Estrogen receptor
- Estradiol (E2)
LH secretion inhibition by, 4
- spermatozoan binding sites for, 258
and sperm number, 3
- Estradiol (E2) feedback, in gonadotropin production, 130
- Estrogen, steroidogenesis inhibition by, 358
- Estrogen receptor (ER), 28–30
chromatin acceptor proteins for, 42
hsp90 binding with, 32–33
and nuclear localization, 36
p59 protein association with, 33
- Ethylene dimethanesulfonate (EDS) and ABP levels, 323
- Leydig cell elimination by, 95, 155, 322
- Fecundability
abnormalities preventing, 424
predictors of, 424
- Feedback inhibition, of testosterone synthesis, 5
- Female germ cells
atresia of, 64
meiosis in, 64–67
and X chromosome behavior, 68
- Fertility
with frozen semen, 446–447, 453–456
intrascrotal temperature and, 452–453
in PTU-treated rats, 126–127
- Fertilization
acrosome reaction and, 459–471
bouncy and, 476
frozen semen and, 453
M42 inhibition of, 462
mutagenesis and, 476
sperm motility and, 410–411
- Fertilization ability
gene interactions in, 477
mutations in, 476–483
- Fertilization defects, insertional mutagenesis in, 476
- Fetal meiotic decisions, 66–67
- Fibrous sheath (FS), of mammalian spermatozoon cytoskeleton, 203
- Fibrous sheath (FS) proteins, 224–225
characterization of, 227–229, 234–235
cytoskeletal characteristics of, 231–233
developmental appearance of, 229–231, 235–236
and intermediate filament proteins, 236–238
- Fimbrin, in ectoplasmic specializations, 181, 184
- Flagellar beat frequency, ATP and, 440
- Flagellar calcium sensitivity, t complex and, 481
- Flagellar morphology mutations affecting, 481–482
- Flagellar motion
in hyperactivation, 414
mechanism of, 409–410
photomicrographic study of, 419
in semen/cervical mucus, 412–413

- Follicle-stimulating hormone (FSH), 8
and ABP secretion, 376
and Leydig cell differentiation, 153–154
photoperiod-related Sertoli cell response to, 146–147
and primate testicular function, 107, 115–116
and RB/CES binding, 348
and Sertoli cell–germ cell interactions, 348, 357
and spermatogenesis maintenance, 92–93,
96–97, 103
spermatogenesis regulation by, 107, 129
and spermatogenesis reinitiation, 118
and testicular cell–cell interactions, 360
testicular effects of, 110, 129
- Follicle-stimulating hormone receptor (FSHR)
levels, cyclic changes in, 317–319
- Fractal dimension, and sperm head trajectory shape, 418
- FS. *See* Fibrous sheath
- FSH. *See* Follicle-stimulating hormone
- FSHR. *See* Follicle-stimulating hormone receptor
- Fura-2, and sperm fluorescence patterns, 466
- Galactosyltransferase (GT)
as CAM, 487
in sperm–zona binding, 489–490
in t/+ sperm populations, 479
- Gametogenesis
FSH in, 116
sexual dimorphism in, 64–66
- Gap-junctions, in spermatid–Sertoli cell interactions, 328, 341
- Gene expression
developmental aspects of, 392
epididymal sites of, 385–388
regional epididymal specificity of, 385–388
steroid action on, 47
transcriptional regulation of, 389–393
- Gene regulation
cell-type specific, 38
TF-SR interaction in, 39–40
- Genetic defects, germ cell depletion in, 322–324
- Gene transcriptional activity, SR and, 29
- Germ cell. *See also* Sperm; Spermatid;
Spermatozoa
- Germ-cell differentiation
Sertoli cells and, 66
XX chromosome constitution and, 66–67
Y chromosome presence and, 66–67
- Germ cell number, agents causing reduction in, 322–325
- Germ cells
in adrenal cortex, 66
cell–cell interaction effects on, 328
M6P receptor-mediated endocytosis in, 332–334
- Germ cell–Sertoli cell interactions
and ABP bidirectional secretion, 322–325
adhesion factors in, 347–349
desmosome-like junctions in, 328
effects of, 327–329
mechanisms of, 347–349
mediators of, 328, 341, 347–349
MPR mediation of, 327–336
- Germ-cell sex, first appearance of, 66
- Germline cells, Sertoli cell effects on, 355
- GH. *See* Growth hormone
- Glucocorticoid receptor (GR), 28–31
hsp90 stabilization of, 32
p59 protein association with, 33
- Glucose-6-phosphate dehydrogenase (G6PD),
X chromosome inactivation and, 68–69
- Glutathione peroxidase/reductase system, ROS destruction by, 436
- Glycerylphosphorylcholine (GPC), progressive epididymal concentrations of, 364, 366
- Glycoprotein ZP3
in acrosome reaction stage transitions, 469–470
in induced acrosome reaction, 462
and signal transduction chain, 464–466
sperm membrane receptors for, 462–463, 469
- Glycoprotein ZP3 modifications, TPA treatment and, 465–466
- Gonadotropin-releasing hormone (GnRH), and spermatogenesis, 92, 110
- Gonadotropin-releasing hormone (GnRH)
antagonist
and azoospermia, 113
and DHT/testicular testosterone concentrations, 114–115
gametogenesis inhibition by, 112
- GPC. *See* Glycerylphosphorylcholine
- Gpd gene, X chromosome inactivation and, 69
- G proteins
pertussis toxin inactivation of, 463
in zona-induced acrosome reaction, 463, 469–470
- GR. *See* Glucocorticoid receptor
- Growth hormone (GH), 8
and mouse germ cell development, 107
- G6PD. *See* Glucose-6-phosphate dehydrogenase
- GTP-binding regulatory proteins. *See* G proteins
- hCG. *See* Human chorionic gonadotropin
- Heat shock protein (hsp90)
functions of, 33
- GR stabilization by, 32
and nuclear localization, 36
SR interaction with, 28, 32–34
- Hemorchidectomy
and androgen/LH secretion, 133–141
Sertoli cell number reduction by, 324

- hMG. *See* Human menopausal gonadotropin
Homeobox genes (Hox)
characterization of, 300–304, 309
and differentiation regulation, 300–301
as TFs, 300
- Hormone response element (HRE), 35
- hotfoot mutation, 475–476
- HOX* genes. *See also* Homeobox genes
retinoic acid and, 304
- Hox* genes expression
and embryogenic structural organization, 304–305
pattern of, 304
tissue specificity of, 305–308
- HPRT. *See* Hypoxanthine phosphoribosyl transferase
- Hprt* gene, X chromosome inactivation and, 68–69
- Human chorionic gonadotropin (hCG)
effects of, 108
and spermatogenesis, 116
and testosterone spermatogenesis role, 113
- Human menopausal gonadotropin (hMG), and
gametogenesis, 110, 116
- Human sex steroid-binding protein (hSBP).
See also Sex steroid-binding protein
endocytosis of, 265–273
purification of, 260
- Hyperactivation, 480–481
CASA analysis of, 420
as fertilizing capacity biomarker, 415
flagellar beats in, 414
sperm exhibition of, 413–415
- Hypogonadotropism, hCG therapy in, 116
- Hypothyroidism. *See also* Transient hypothyroidism
PTU induction of, 124–128
and testicular development, 123–130
- Hypoxanthine phosphoribosyl transferase (HPRT), X chromosome inactivation and, 68–69
- IAM. *See* Inner acrosomal membrane
- IB15 gene, 389
and PPI, 385
- IB15 mRNA
distribution of, 385–386
levels distribution, 392
- Idiopathic infertility, ROS formation and, 436
- IGF. *See* Insulin-like growth factors
- IgG. *See* Immunoglobulin G
- Immobilin, in epididymal lumen, 367
- Immunoglobulin G (IgG), blood-to-lumen movement of, 371
- Implantation fossa, 165–166, 173
- Infection, and sperm function damage, 438–439
- Inhibin, 319, 329
and Leydig cell steroidogenesis, 154, 358
PMo5-stimulated production of, 100
- Inhibin production
by Sertoli cells, 358
spermatid influence on, 342–343
- Inner acrosomal membrane (IAM), 467–468
PH-20 and, 490
- Inositol
blood-to-lumen movement of, 371
in epididymal fluids, 366
- Insulin-like growth factor-I (IGF-I)
and androgen production, 160–161
and Leydig cell steroidogenesis, 154
peritubular cell production of, 357
Sertoli cell production of, 355
stimulatory effects of, 357
T3-stimulated production of, 123
- Insulin-like growth factor-II (IGF-II)
CI-MPR binding to, 330
in testes, 335
- Interleukin-1 (IL-1), Sertoli cell production of, 355, 358–359
- Intrascrotal temperature
and embryonic survival, 453–457
and fertility, 452–453, 455–457
and male infertility, 445–446
scrotal insulation and, 447–448
and spermatogenesis, 445–446, 455
and sperm motility, 449–451, 455–457
and TSC, 449–451, 455–457
- Ion concentration gradient, in epididymal fluids, 364–365
- Ion reabsorption, in epididymal fluids, 365–366
- Ischemia, and ABP levels, 322–323
- α -Lactalbumin-like protein, in epididymal lumen, 367
- Lactate production, puberty delay and, 146–147
- Lag phase, following SR-binding, 27
- Leu-enkephalin. *See* Proenkephalin pentapeptides
- Leydig cell differentiation
androgen involvement in, 155–157
FSH/LH promotion of, 153–154
hCG facilitation of, 154
hormonal control of, 152–161
- Leydig cell function, 144–146
regulation of, 1, 4
- Leydig cell morphology
agents altering, 358
- LH and, 9
testosterone secretion inhibition and, 7–8
- Leydig cell–peritubular cell interactions, 359
- Leydig cell peroxisomes, and testosterone production, 9–10
- Leydig cell population, mesenchymal cells and, 11–12, 14

- Leydig cell progenitors
ARs in, 157, 161
enhanced DHT action on, 157–160
IGF-I stimulatory effect on, 160–161
- Leydig cells
activin/inhibin production by, 358
androgen production by, 153, 392
ARs in, 98
early study of, 17
EDS elimination of, 95, 155, 322
estrogen production by, 358
photoperiod-related changes in, 144–146
POMC derivatives produced by, 358
progenitors of, 152–153
5 α -reduced androgen production by, 153
regulation of, 5–7
Sertoli cell influence on, 358–359
smooth endoplasmic reticulum of, 7–8
and spermatogenesis, 94–95, 99, 103, 107
in testicular function, 354
testosterone production by, 5, 9–10, 81,
90, 399
- Leydig cell–Sertoli cell interactions, 358–359
- Leydig cell steroidogenesis
Sertoli cell secretions and, 358
TGF- β inhibition of, 328
- LH. *See* Luteinizing hormone
- LHRH. *See* Luteinizing hormone releasing hormone
- LIN. *See* Linearity
- Linearity (LIN, L), of sperm motion, 417,
427–429, 431–432
- Lonidamine, seminiferous tubules disruption by, 322–323
- Luteinizing hormone (LH)
and Leydig cell differentiation, 153–154
and Leydig cell smooth endoplasmic reticulum, 8
and progesterone-testosterone conversion, 8–9
spermatogenesis regulation by, 107, 129
steroidogenesis inhibition by, 7–8
and testicular cell-cell interactions, 359–360
and testosterone production, 90
- Luteinizing hormone (LH) suppression, and azoospermia, 95–96
- Luteinizing hormone releasing hormone (LHRH)
and germ cell reduction, 322–323
and Sertoli cell number reduction, 322–324
- Luteinizing hormone secretion
following hemorchidectomy, 133–141
testosterone inhibition of, 4
- Lysozyme gene, and SREs, 37
- MAD. *See* Mean angle of deviation
- Major excreted protein (MEP)
factors stimulating synthesis of, 328–329
procatepsin L as, 328–329
- Male fertility
assessment problems, 425
sperm motility and, 409
testosterone-estradiol temporal effects on, 4
- Male germ cells
meiosis of, 64–70
X chromosome inactivation in, 67–70
- Male infertility
FSH/hCG/hMG treatment for, 116
intrascrotal temperature and, 445–446
ROS formation and, 436–437
sperm motility disorders in, 424–426
- Mammalian testis, perfusion of, 1–2
- Mannose 6-phosphate (M6P) glycoproteins
Sertoli cell secretion of, 334–335
- Mannose 6-phosphate receptor (CI-MPR)
endocytosis mediation by, 330
growth factors binding to, 330
and IGF-II receptor, 330, 335
Sertoli cell synthesis of, 331
- Mannose 6-phosphate receptor glycoproteins, and endocytosis, 334–336
- Mannose 6-phosphate receptor-mediated endocytosis, 332–334
- Mannose 6-phosphate receptors (MPRs)
cation-dependent (CD) form, 329–332,
334–36
cation-independent (CI) form, 329–331,
334–336
characteristics of, 329–330
as germ cell–Sertoli cell interaction mediators, 327–336
in germ cells/Sertoli cells, 330–332
and lysosomes, 329
- Mean angle of deviation (MAD), CASA analysis of, 432
- Meiosis
dimorphism of, 67–68
of female germ cells, 64–67
of male germ cells, 64–70
- α -Melanocyte stimulating hormone (α -MSH),
Leydig cell production of, 358
- MEP. *See* Major excreted protein
- Metabolic inhibitors, and androgen proluminal movement, 378–380
- Met-enkephalin. *See* Proenkephalin pentapeptides
- 3-O-Methyl-D-glucos (30 MG), blood-to-lumen movement of, 371
- M42 monoclonal antibody
and acrosomal exocytosis, 466
acrosome reaction inhibition by, 462–463,
466, 470
- MIS. *See* Müllerian-inhibiting substance
- MMTV. *See* Mouse mammary tumor virus
- Mouse mammary tumor virus (MMTV), SREs in, 31, 37–38
- MPR. *See* Mannose 6-phosphate receptor

- α-MSH.** *See* α-Melanocyte stimulating hormone
M6P. *See* Mannose-6-phosphate
Müllerian-inhibiting substance (MIS)
characterization of, 77, 329
and gonadal masculinization, 74–75
production of, 77–79
and testicular differentiation, 74–82, 85–86
Mutations
and fertilization defects, 476
in fertilization studies, 474–475
and male fertility, 474
and sperm-egg interactions, 476, 478
and sperm fertilizing ability, 476–483
and sperm function, 474–483
and sperm head morphology, 475
and sperm motility, 475, 479–481
- NAP.** *See* Nucleoacidic protein
National Institute of Child Health and Human Development (NICHD) Workshop on the Testis, 322
NDAA. *See* *N-(n-dodecyl)-9-aminoacridine*
Nerve growth factor (NGF), 356–357
Neural cadherin (N-cad), in testis/seminaliferous tubules, 348
Neutrophil concentration, and sperm function damage, 438–439
New York Academy of Sciences Meeting (1952), 19
Nexin, in sperm flagella, 410
NGF. *See* Nerve growth factor
Nigericin, in acrosome stage transitions, 466
N-(n-dodecyl)-9-aminoacridine (NDAA), and sperm fluorescence patterns, 464
Non-hsp proteins, and unactivated PR complex, 33
Nuclear annulus
DNA loop association with, 165–173
DNA mini-loops attachment to, 167–173
structure/position of, 166–167
Nuclear localization, ER-hsp90 interaction and, 36
Nuclear localization signal
for SRs, 36
and zinc finger region, 35–36
Nuclear matrix, DNA loop domains specific sites in, 166
Nucleoacidic protein (NAP), 40–42
- OAM.** *See* Outer acrosomal membrane
ODC. *See* Ornithine decarboxylase
ODF. *See* Outer dense fibers
3OMG. *See* 3-O-Methyl-D-glucose
Ornithine decarboxylase (ODC) production, testosterone effect on, 99–100
Outer acrosomal membrane (OAM), 467–498
- Outer dense fiber proteins**
developmental expression of, 209–210
intracellular localization of, 211–214
Outer dense fibers (ODF)
antibodies to, 207–208
formation of, 219–222
isolation of, 204–205
of mammalian spermatozoon cytoskeleton, 203–214
polypeptide composition of, 205–206
structure of, 204
- Paracrine factors**
peritubular myoid cell production of, 357–358
in Sertoli cell function, 340
Sertoli cell production of, 355–357
Paracrine factors mediation, of testicular cell-cell interactions, 359–361
pep. *See* Peptidyl-prolyl cis-trans isomerase
Peptidyl-prolyl cis-trans isomerase (PPI), 385–386
constitutive expression of, 390–391, 397
function of, 394
principal cell secretion of, 385
Peptidyl-prolyl cis-trans isomerase (PPI) mRNA, 385–386
distribution of, 385–386
Peptidyl-prolyl cis-trans isomerase (PPI) mRNA levels
androgen replacement and, 389–391
in epididymis, 386
Perforatorial proteins
developmental expression of, 209–210
distributional pattern of, 214–219
Perforatorium
antibodies to, 208
formation of, 219–222
isolation of, 204–205
polypeptide composition of, 205–206
structure of, 204
- Perinuclear theca (PT), of mammalian spermatozoon**
cytoskeleton, 203
Peritubular cell-Sertoli cell interactions, 357–358
Peritubular myoid cells
EGF receptors on, 357
growth factors produced by, 359
Leydig cell interactions with, 359
paracrine factors produced by, 357–358
PModS secretion by, 100, 359
in testis cytoarchitecture, 354
testosterone action mediation by, 98, 100
Pertussis toxin, in acrosome reaction blockage, 463, 469
p56, ZP3-binding activity of, 462

- PGK.** *See* Phosphoglycerate kinase
Pgk genes, in spermatogenic cells, 69
PH-20
in acrosome-reacted sperm-zona binding, 488
in epididymal maturation, 489-490
modification of, 489-490
post-testicular changes in, 489
relocation during capacitation, 490
- pH**
and acrosome reaction, 468
of intraluminal fluids, 366
of spermatozoa, 368
and sperm fluorescence pattern changes, 464
- pH probes**, in sperm capacitation, 464
- Phorbol esters**, and acrosome reaction, 463
- Phosphoglycerate kinase (PGK)**, X chromosome inactivation and, 68-69
- Phospholipase C (PL-C)**, in zona-induced acrosome reaction, 463, 469-470
- Photoperiod-related changes**
in FSH release, 146-147
in Leydig cells, 144-146
in testicular function, 143-144
- Placental cadherin (P-Cad)** mRNA concentration changes, 406
developmental changes in, 403-407
epididymal distribution of, 402-407
- Plakoglobin**, in ectoplasmic specializations, 180
- Plasma membrane (PM)**, 467-468
- Plasminogen activator production**, testosterone effect on, 99
- PL-C.** *See* Phospholipase C
- PM.** *See* Plasma membrane
- PModS**
androgen control of, 357
forms of, 357
- Sertoli cell regulation by, 100, 357-359
- PMSG.** *See* Pregnant mare serum gonadotropin (TK)
in acrosome reaction, 462, 469-470
in spontaneous acrosome reaction, 471
as ZP3 receptor, 462, 469-470
- Population kinetics**, in fluorescence pattern loss, 464-465
- PR.** *See* Progesterone receptor
- Pregnant mare serum gonadotropin (PMSG)**, and gametogenesis, 110
- Pregnenolone**, testosterone biosynthesis from, 6
- Principal cell**
protein transcripts, 386-388
- Principal cells**
characterization of, 384-385
epididymis-specific proteins secreted by, 385
tight junctions between, 404
- Procathepsin L (cyclic protein 2)**, Sertoli cell secretion of, 328-329
- Proenkephalin**
functional role of, 393-397
principal cell secretion of, 385
- Proenkephalin mRNA levels**
busulfan effect on, 392
castration/androgen replacement and, 390
regional differences in, 386
time course of, 391
- Proenkephalin pentapeptides**, 385
epididymal localization of, 395-397
- Progesterone**, spermatozoan binding sites for, 258
- Progesterone receptor (PR)**, 28-29
chromatin acceptor sites for, 40-42
higher order structure of, 34
hsp90 binding with, 32-33
p59 protein association with, 33
- Proliferin**, CI-MPR binding to, 330
- 6-Propyl-2-thiouracil (PTU)**
and body growth, 124
and hypothyroidism, 124
and testis size/sperm production, 127-128
- Prostatic hyperplasia**, androgen dependence of, 5
- Protamine mRNA expression**
in spermatics, 278, 285-287, 297-298
timing of, 277-278, 280-285, 289, 292, 294
- Protein B/C**
androgen-dependent gene transcription, 389
function of, 394
principal cell secretion of, 385
- Protein B/C mRNA levels**
castration/androgen replacement and, 389-390
time course of, 392
- Protein D/E**
androgen-dependent gene transcription, 389
carboxypeptidase Y homology with, 394
principal cell secretion of, 385
- Protein D/E mRNA levels**
castration/androgen replacement and, 389-390
time course of, 392
- Protein kinase C (PK-C)**, in zona-induced acrosome reaction, 463, 468-470
- Protein microenvironment**, and spermatozoan development, 366
- Proto-oncogenes**, as regulatory genes, 42-43
- PT.** *See* Perinuclear theca
- PTU.** *See* Propyl-2-thiouracil
- QNB.** *See* 3-Quinuclidinyl benzilate
- 3-Quinuclidinyl benzilate (QNB)**
and acrosome reaction, 460-463, 466
B-to-S1 transition blockage by, 469
- R.** *See* Receptor proteins
- Radiation**
and ABP levels, 322-323, 344-347
seminiferous tubule damage by, 358
and Sertoli cells, 344-347

- Radixin, in ectoplasmic specializations, 180
RAR. *See* Retinoic acid receptor
RB. *See* Residual bodies
RBF. *See* Receptor binding factors
Reactive oxygen species (ROS)
 enzymes destroying, 436
 and human spermatozoa, 436–442
 toxicity to spermatozoa of, 436
Reactive oxygen species (ROS) effect
 on spermatozoan ATP level, 439–440, 442
 on sperm motility/viability, 439–441
Reactive oxygen species (ROS) formation
 and idiopathic infertility, 436
 in infertile males, 437
 by neutrophils, 438–439
 sperm washing procedures effect on, 438
Reactive oxygen species (ROS) scavengers, 441
 and X + XO treated spermatozoa, 442
Receptor binding factors (RBF), 41–42
Receptor domains, 28
Receptor phosphorylation, 34–35
 and cytosolic PR, 33
5α-Reductase, in testosterone-to-DHT conversion, 371–372
Regulatory genes
 classes of, 44
 early genes as, 42–43, 47
Regulatory gene transcription, SR action on, 45–47
Reproduction and Human Welfare, Ford Foundation Report on, 22, 24
Residual bodies (RB), in spermatid-Sertoli cell binding, 341, 347–349
Retinoic acid receptor (RAR) levels, in spermatogenesis, 316–317
RU486, AR agonist action of, 62
- SCP-2. *See* Sterol carrier protein-2
Scrotal insulation. *See also* Intrascrotal temperature
 and rectal temperatures, 448, 455–456
 and respiratory rates, 448, 455–456
 and spermatozoan metabolism, 456
SDS. *See* Sodium dodecyl sulfate
Semen analysis
 CASA technology and, 424–426
 frozen semen and, 447, 452–453
 motion characteristics, 431–433
 problem areas in, 425–426
 semen collection for, 426
 sperm concentration estimates, 430
Seminiferous epithelium cycle, receptor expression during, 313–320
Seminiferous growth factor (SGF), 360
Seminiferous tubule disruption
 agents causing, 322–324
 and Leydig cell morphology, 358
- Seminiferous tubule fluid (STF), testosterone concentration in, 91, 94, 96, 98–99, 101, 115
Seminiferous tubules, hCG effect on, 108
Sertoli cell function
 paracrine factors in, 340
 PModS effects on, 359
 spermatid regulation of, 340–349
Sertoli cell–germ cell interactions, 355–357.
 See also Germ cell–Sertoli cell interactions
desmosome-like junctions in, 328
NGF in, 356–357
Sertoli cell products, functional mode distribution of, 320
Sertoli cell response, to testosterone, 100, 103
Sertoli cells, 18, 22, 71
 and ABP synthesis, 272, 322–325, 328–329, 342, 355, 376
ARs in, 98
Cell-cell interaction effects on, 328
 in copper transport, 355
 cyclic changes in, 313–314
 cyclic RAR levels in, 316
 ectoplasmic specializations in, 175–197, 348
 functional modes of, 315–320
 and germ-cell differentiation, 66, 328
 germinal cell interaction with, 355–357
 growth factors produced by, 355–357
 IGF-I production by, 123
 IL-1 production by, 355, 358–359
 in iron transport, 315, 355
 lactate production by, 146–147, 355
 Leydig cell interaction with, 358–359
 M6P receptor-mediated endocytosis in, 332–334
 neonatal LHRH antiserum reduction of, 322–324
 peritubular cell interaction with, 357–358
 photoperiod-related changes in, 146–147
 PModS stimulation of, 100
 pyruvate production by, 355
 radiation effects on, 344–347
 RB/CES binding to, 347–349
 roles of, 327–328
 SGP-2 production by, 79–81, 100–101
 spermatid action on, 347–349
 structural relationships with spermatids, 340–341
 sulfated glycoprotein secretion by, 331, 335
 testicular cadherin in, 348
 in testis cytoarchitecture, 354
 transferrin synthesis by, 315, 328, 355
 T3 receptors in, 123
Sertoli cell-secreted proteins, 100, 327–329
 M6P-containing glycoproteins, 334–336
 testosterone action on, 99
Sertoli cell–spermatid binding, CES and, 347–349

- Sex steroid-binding protein (SBP). *See also* Human sex steroid-binding protein
endocytosis of, 258–273
steroid hormone transport by, 258
- SGF. *See* Seminiferous growth factor
- SGP-2. *See* Sulfated glycoprotein-2
- Signal transduction chain
in acrosome reaction stage transitions, 467–470
- ZP3-initiated, 464–466
- Single cell kinetics, in fluorescence pattern loss, 464–465
- Sodium dodecyl sulfate (SDS), in cytoskeletal isolation, 204
- Somatomedin-C. *See* Insulin-like growth factor-I
- Sperm. *See also* Germ cell; Spermatid; Spermatozoa
Spermatid numbers, and Sertoli cell function parameters, 344–347
- Spermats
desmosome-like junctions in, 340–341
structural relationships with Sertoli cells, 340–341
- Spermatogenesis
androgen regulation of, 90–103
cyclic FSH mRNA levels in, 317–319
early studies of, 18–19
in GnRH-immunized rats, 94–96
heat alteration of, 445–446
homeobox genes expression in, 300–309
initiation of, 107–110
intrascrotal temperature and, 445–446
Leydig cell tumor and, 110
maintenance of, 107–108, 110–116
morphological events in, 340–341
nonandrogenic Leydig cell products and, 94–95
peritubular cell–Sertoli cell interaction and, 359
pituitary hormones dependence of, 107
in primates, 107–119
protamine mRNA transcription in, 277–278
qualitatively/quantitatively normal, 108
RAR in, 316–317
reinitiation of, 108, 116–118
SBPs role in, 272
in seasonal breeders, 143–146
seminiferous epithelium cycle in, 313–320
Sertoli cell changes in, 313
sex chromosomes role in, 64–72
and testicular testosterone, 114–115
testosterone-dependence of, 90
testosterone maintenance of, 91–95
testosterone restoration of, 95–97
transferrin receptor mRNA levels in, 315–319
vitamin A deficiency and, 316–317
X chromosome inactivation in, 67–70
in XO,Sxr males, 70–71
Y chromosome role in, 66, 70–71
- Spermatogenesis initiation
FSH role in, 110
LH in, 108
testosterone role in, 108–110
- Spermatogenesis maintenance
FSH and, 92–93
testosterone concentration and, 91–95
- Spermatogenesis modifications, scrotal temperature and, 446–457
- Spermatogenesis suppression
by GnRH antagonist, 112
and testicular somatic cell control/function, 143–149
- testosterone-estradiol synergism and, 4
- Spermatogenic cell endocytosis, of M6P-glycoproteins, 334–336
- Spermatozoa. *See also* Germ cell; Sperm; Spermatid
in epididymal microenvironments, 364–381
lipid peroxidation sensitivity of, 436
in proenkephalin gene expression regulation, 392–393
- steroid-binding sites on, 258
structural domains in, 240
- Spermatozoan cytoskeletal elements
biogenesis of, 203–222
components of, 203–204
SDS-insoluble proteins of, 203
- Sperm concentration gradient, in epididymal fluids, 365–366
- Sperm dysfunction models
azh, 475
bouncy, 475–476
hotfoot, 475–476
t complex, 475–482
- Sperm–egg interactions
defects in, 476, 478–479
t complex and, 478–479, 481
- Sperm exocytosis, initiation of, 486
- Sperm fertility, ABP and, 381
- Sperm flagella, structure of, 409–411
- Sperm fluorescence patterns
with CTC, 460–462, 464–469
with fura-2, 466–467
with NDAA, 464, 467
- Sperm function
genetics of, 4744–483
neutrophil/infection damage to, 438–439
- Sperm kinematics, 416–418. *See also* Sperm motility
CASA and, 417–420, 424–426, 430–434
- Sperm morphology
mutations in, 475
- Sperm motility
ATP reactivation of, 439–440
biological importance of, 410–412
characteristics of, 409–420

- characterization of, 416–418
components of, 416
in epididymis, 367–368
female tract properties and, 411
generation of, 409–410
hyperactivated, 413–415
intrascrotal temperature and, 449–451
and male fertility, 409
measurement of, 419–420
mutations in, 479–482
in semen, 412–413
and t complex genes, 475, 478–482
in uterus/oviduct, 413–415
velocities of, 417–418
 $X + X0$ effect on, 439, 442
- Sperm motility measurement
by CASA, 419–420
indirect methods for, 419
- Sperm motility parameters, definition of, 417–418
- Sperm number
combined testosterone-estradiol effect on, 3
estradiol effect on, 3
testosterone effect on, 3
- Sperm production
pituitary hormone replacement and, 424
in PTU-treated rats, 126
- Sperm proteins
PH-20, 488–490
post-testicular modification of, 486–491
- Sperm QNB binding protein (SQBP)
as Ca^{2+} channel, 463
and intracellular Ca^{2+} , 469
- Sperm-zona binding
acrosome reaction and, 486
CAMs in, 487
PH-20 in, 488
- Spontaneous acrosome reaction, 479–480.
See also Acrosome reaction; Zona-induced acrosome reaction
- Sputnik, impact of, 19
- Spy gene, 71
- SQBP. *See* Sperm QNB binding protein
- SR. *See* Steroid receptor
- SRU. *See* Steroid response unit
- SRY DNA sequence, as *TDF* gene candidate, 74
- Steel (*SI*) mutation, and sterility, 474
- Sterility, mutations causing, 474
- Steroid action
basic mechanism of, 26–29
cascade model of, 43–45
on chromatin structure, 45
on gene expression, 47
- Steroid-binding domain IV
and hsp90 binding, 33
and protein activity inhibition, 30
- Steroid hormone action, 35
model of, 97
- Steroidogenesis inhibition, by LH, 7–8
- Steroid receptors (SR), 26–27, 29
complex formation, 27
- DNA-binding domain (II and III), 28–30
nuclear localization sequences of, 35–36
primary structure of, 29–31
protein interaction with, 32–34
quaternary structure of, 31–34
and regulatory gene transcription, 45–47
steroid-binding domain (IV), 30–31
TF interaction with, 37–38
- Steroid-response elements (SRE), 27–28, 31, 35, 46–47
distribution of, 37
palindromic structure of, 36
SR binding to, 36–47
- Steroid response unit (SRU), 37
- Sterol carrier protein-2 (SCP-2), 10–11
- STR. *See* Straightness
- Straightline velocity (VSL), of sperm motion, 417, 427, 432
- Straightness (STR), of sperm motion, 417
- Sulfated glycoprotein-2 (SGP-2)
characterization of, 79
levels per testis of, 102–103
production of, 79–81
and testicular differentiation, 75–82, 85–86
- Superoxide dismutase, ROS destruction by, 436, 439
- Sustained release, of testosterone-estradiol, 4–5
- Ta3. *See* Triiodothyronine
- Ta4. *See* Thyroxine
- TAF. *See* Transcriptional activating function (TAF)
- t complex
and acrosome reaction, 479
chromosome locus of, 476
and flagellar Ca^{2+} sensitivity, 481
lethal factors in, 476
and regulatory proteins, 479
and sperm fertilizing ability, 476–479
sperm genotypes in, 476–481
and sperm motility, 475, 478–482
and sperm transport, 478–479
testis-expressed genes in, 477–478
- Tdy gene, and testicular differentiation, 74
- Testicular cell differentiation
biochemical evidence for, 75–82
SGP-2 and, 75–82, 85–86
ultrastructural evidence for, 75
- Testicular changes, in PTU-treated rats, 125–126
- Testicular development
thyroid hormones and, 122–124
transient hypothyroidism and, 123–130
- Testicular differentiation, in XX mouse
gonadal graft, 74–87

- Testicular function in primates
 FSH effects on, 107, 115–116
 testosterone effects on, 107–119
- Testicular macrophages
 FSH-stimulated lactate production by, 148
 seasonally-related decreases in, 147–148
- Testicular organomegaly, induction of, 124
- Testicular perfusion, 1–2
 testosterone synthesis in, 3
- Testicular somatic cell function, spermatogenesis suppression and, 143–149
- Testicular temperature, and spermatogenesis, 445–446
- Testicular testosterone, in GnRH antagonist-treated monkeys, 114
- Testicular testosterone secretion, hCG and, 144–145
- Testis
 androgen action in, 97–99
 cadherin in, 348
 cytoarchitectural cells of, 354
- Testis-expressed genes, in *t* complex, 477–478
- Testis growth, in PTU-treated rats, 125
- Testis research
 landmarks in, 19–24
 1949–1950, 17–19
 1950–1975, 24
- Testosterone
 and ABP secretion, 376
 and acrosome formation, 272
 and azoospermia, 4
 biosynthetic pathways, 6
 as effective testis androgen, 94
 epididymal concentration gradient of, 371–373
 and primate testicular function, 107, 129
 in Sertoli cell function, 340
 and spermatogenesis initiation, 108–110
 and spermatogenesis maintenance, 110–116, 129
 and spermatogenesis reinitiation, 116–118
 spermatozoan binding sites for, 258
 and sperm number, 3
 and testicular cell differentiation, 81, 129
 in vitro production of, 12–14
- Testosterone action
 peritubular myoid cell mediation of, 98
 Sertoli cell mediation of, 98
 on Sertoli cell proteins, 99–103
- Testosterone concentration
 and spermatogenesis maintenance, 91–95, 98
 in STF, 91, 94, 96, 98–99, 101
- Testosterone levels, in PTU-treated rats, 127
- Testosterone metabolites, formation of, 5
- Testosterone production
 by Leydig cell progenitors, 155–157
 Leydig cells and, 5, 81, 90
 LH stimulation of, 12–14
- Testosterone secretion
 smooth endoplasmic reticulum amount and, 7
 species differences in, 7
- Testosterone synthesis
 autoregulation of, 5
 by perfused testis, 3
- TF. *See* Transcription factors
- Thyroid hormones
 and spermatogenesis, 123
 and testis development, 122–130
- Thyroid-stimulating hormone (TSH), 8
 in PTU-treated rats, 124
- Thyroxine (T4), in PTU-treated rats, 124
- Tight junctions, 370–371, 399–400, 404
- TK. *See* Tyrosine kinase
- Total sperm count (TSC), intrascrotal temperature and, 449–451
- Transcriptional activating function (TAF), 30–31
- Transcriptional activation domains, of AR, 56–58
- Transcriptional expression patterns, 390–391
- Transcription factors (TF), 47
 receptor-protein interaction with, 38
 SR interaction with, 37–38
 in steroid action, 37–40
 steroid regulation of, 42–43
- Transducin. *See* G proteins
- Transferrin
 iron delivery via, 328, 355
 in spermatogenesis, 315
- Transferrin receptor mRNA levels, in spermatogenesis, 315, 319
- Transferrin synthesis
 by Sertoli cells, 100, 331, 355
 testosterone and, 100–103
- Transforming growth factor- α (TGF- α)
 and Leydig cell steroidogenesis, 154
 peritubular cell production of, 357
- Sertoli cell production of, 355, 357
- Transforming growth factor- β (TGF- β)
 actions of, 328–329, 357
 CI-MPR binding to, 330
 peritubular cell production of, 357
 Sertoli cell production of, 355, 357
- Transgenic mice
 fertilization defects in, 476
 insertional mutagenesis in, 476
- Transient hypothyroidism. *See also* Hypothyroidism and testicular development, 123–130
- Triiodothyronine (T3)
 and IGF-I production, 123
 in PTU-treated rats, 124
- Tryptophan oxygenase (TO) gene, SREs in, 37
- TSC. *See* Total sperm count
- TSH. *See* Thyroid-stimulating hormone

- Tubulobulbar complexes, in spermatid-Sertoli cell interactions, 340-341
- Tyrosine aminotransferase (TAT) gene, SREs in, 37
- Tyrosine kinase (TK), in acrosome reaction, 462, 469-470
- Tyrophostin RG50864, in stage transition inhibition, 466, 469
- Urea, blood-to-lumen movement of, 370
- Uteroglobin gene, SREs in, 37
- VAP. *See* Average-path velocity
- Vasectomy, and luminal fluid flow rate, 369
- Vasovasostomy, and luminal fluid flow rate, 369
- VCL. *See* Curvilinear velocity
- Vinculin, in ectoplasmic specializations, 180
- Vitamin A deficiency, seminiferous tubule damage by, 358
- Vitamin D₃, photoperiod-related Sertoli cell response to, 147
- Vitellogenin gene, SREs in, 37-38
- VSL. *See* Straightline velocity
- White-spotting (W) mutation*, and sterility, 474
- Wild type (+)/t complex recombination, 476
- WOB. *See* Wobble
- Wobble (WOB), of sperm motion, 417
- X. *See* Xanthine
- Xanthine (X) + xanthine oxidase (XO)
- ROS production by, 439
 - scavenger protection against, 442
- X-chromosome, and male/female meiosis, 65-66
- X chromosome behavior
- in female gametocytes, 68
 - in spermatogenesis, 67-70
- XO. *See* Xanthine oxidase
- XX germ cells, in testis, 66-67
- XX gonad
- MIS masculinization of, 74-75
 - sex reversal of, 74-75
 - testicular cell differentiation in, 75-82
 - XX gonadal graft, testicular differentiation mechanism in, 83-87
 - XX testicular differentiation induction conditions required for, 83-87
 - gonadal graft age and, 85
 - grafting sites and, 83
 - host kidney tissue interaction, 86
 - host sex/adjacent mesonephros and, 84-85
 - oocyte loss and, 86-87
 - testosterone and, 85
 - time course of, 85-86
- XXY gonocytes
- differentiation path of, 66
 - morphology of, 66
- XXY "Klinefelter" mice, 66-67
- Y chromosome
- and germ-cell differentiation, 66-67
 - during male meiosis, 69-70
 - spermatogenesis role of, 70-71
- Zinc fingers
- nuclear localization signals and, 35-36
 - of SR DN-binding domains, 30, 33, 36-37
- Zona-induced acrosome reaction, 461-470.
- See also* Acrosome reaction; Spontaneous acrosome reaction
- Zona pellucida, 459-460, 462-464
- Zona protein receptors
- alteration of, 488-491
 - identification of, 487-488
- ZP3. *See* Glycoprotein ZP3

