## Stat 61: Simple Regression Worksheet

I believe it is worthwhile to go through the steps of fitting a linear regression and constructing an ANOVA table with a simple data set. I chose these numbers to make it easy enough to do by hand.

| i | $x_i$ | $x_i - \bar{x}$ | $y_i$ | $y_i - \bar{y}$ | $(x_i - \bar{x})(y_i - \bar{y})$ | $\hat{y_i}$ | $y_i - \hat{y}_i$ |
|---|-------|-----------------|-------|-----------------|----------------------------------|-------------|-------------------|
| 1 | 1     |                 | 1     |                 |                                  |             |                   |
| 2 | 1     |                 | 3     |                 |                                  |             |                   |
| 3 | 2     |                 | 1     |                 |                                  |             |                   |
| 4 | 2     |                 | 3     |                 |                                  |             |                   |
| 5 | 3     |                 | 4     |                 |                                  |             |                   |
| 6 | 3     |                 | 6     |                 |                                  |             |                   |
|   |       |                 |       |                 |                                  |             |                   |

a) Plot the x, y pairs on the graph below. Compute  $\bar{y}$  and draw in a horizontal line at  $y = \bar{y}$ .



b) Fill in the blanks in the table and below. Add the least squares line to the graph.

$$s_x^2 = \underline{\qquad} \qquad s_y^2 = \underline{\qquad} \qquad r = \frac{1}{n-1} \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{s_x s_y} = \underline{\qquad}$$

$$\hat{\beta}_1 = r \sqrt{\frac{s_y^2}{s_x^2}} = \underline{\qquad} \qquad \hat{\beta}_0 = \bar{y} - \beta_1 \bar{x} = \underline{\qquad} \qquad (\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i)$$

c) Fill in the ANOVA table for regression and compute  $R^2$  and  $R^2_{\text{adj}}$ . Verify that SSM+SSE = SST. Compare the sum of squares error for the least squares fit and for the line  $\hat{y} = \bar{y}$ .

| source | df | SS | MS |
|--------|----|----|----|
| Model  |    |    |    |
|        |    |    |    |
| Error  |    |    |    |
|        |    |    |    |
| Total  |    |    |    |
|        |    |    |    |

d) Find the standard error for  $\hat{\beta}_1$ :  $SE_{(\hat{\beta}_1)} = \frac{\mathrm{rmse}}{\sum (x_i - \bar{x})^2}$ . Evaluate the t statistic (and degrees of freedom) for testing  $H_o$ :  $\beta_1 = 0$  vs.  $H_1$ :  $\beta_1 \neq 0$ . The F-Ratio is the Mean Square Model divided by the Mean Square Error. Show this equals the square of your t statistic (for simple regression, the "whole model" F test is equivalent to this t test).

e) Repeat for the binary  $x_i$  given in the table below. Show that the t statistic (and degrees of freedom) for testing  $H_o: \beta_1 = 0$  vs.  $H_1: \beta_1 \neq 0$  match those of the pooled 2-sample t statistic for testing  $H_o: E(Y_i|x_i=0) = E(Y_i|x_i=1)$ .

| i | $x_i$ | $x_i - \bar{x}$ | $y_i$ | $y_i - \bar{y}$ | $(x_i - \bar{x})(y_i - \bar{y})$ | $\hat{y_i}$ | $y_i - \hat{y}_i$ |
|---|-------|-----------------|-------|-----------------|----------------------------------|-------------|-------------------|
| 1 | 0     |                 | 1     |                 |                                  |             |                   |
| 2 | 1     |                 | 3     |                 |                                  |             |                   |
| 3 | 0     |                 | 1     |                 |                                  |             |                   |
| 4 | 1     |                 | 3     |                 |                                  |             |                   |
| 5 | 0     |                 | 4     |                 |                                  |             |                   |
| 6 | 1     |                 | 6     |                 |                                  |             |                   |
|   |       |                 |       |                 |                                  |             |                   |

| source | df | SS | MS |
|--------|----|----|----|
| Model  |    |    |    |
|        |    |    |    |
| Error  |    |    |    |
|        |    |    |    |
| Total  |    |    |    |
|        |    |    |    |