

Subscribe (Full Service) Register (Limited Service, Free) Login

Search: • The ACM Digital Library • The Guide

transaction layer and data link layer and physical layer and page

SEARCH

1:

12,011	(A)(C)(1:0):(C)	7.5、	(2) W//W	
	74 - 44-cann - (mino			and the same and the same is

Feedback Report a problem Satisfaction sun

Terms used

transaction layer and data link layer and physical layer and packet header and data processing and fields

Sort results by relevance Display results expanded form

Save results	to	a	Binder
Search Tips	•		

Try an Advanced Search Try this search in The ACM Guide

Open results in a new window

Results 1 - 20 of 200

Result page: 1 2 3 4 5 6 7 8 9 10 next

Best 200 shown

Relevance scale \square

1 The transport layer: tutorial and survey Sami Iren, Paul D. Amer, Phillip T. Conrad

December 1999 ACM Computing Surveys (CSUR), Volume 31 Issue 4

Full text available: Double: D

Additional Information: full citation, abstract, references, citings, index terms

Transport layer protocols provide for end-to-end communication between two or more hosts. This paper presents a tutorial on transport layer concepts and terminology, and a survey of transport layer services and protocols. The transport layer protocol TCP is used as a reference point, and compared and contrasted with nineteen other protocols designed over the past two decades. The service and protocol features of twelve of the most important protocols are summarized in both text and tables. < ...

Keywords: TCP/IP networks, congestion control, flow control, transport protocol, transport service

² Adaptive link layer strategies for energy efficient wireless networking

Paul Lettieri, Curt Schurgers, Mani Srivastava

October 1999 Wireless Networks, Volume 5 Issue 5

Full text available: pdf(611.81 KB)

Additional Information: full citation, references, citings, index terms

³ A data labelling technique for high-performance protocol processing and its consequences David C. Feldmeier

October 1993 ACM SIGCOMM Computer Communication Review , Conference proceedings on Communications architectures, protocols and applications, Volume 23 Issue 4

Full text available: pdf(1.34 MB)

Additional Information: full citation, references, citings, index terms

An architecture for packet-striping protocols

Adiseshu Hari, George Varghese, Guru Parulkar

November 1999 ACM Transactions on Computer Systems (TOCS), Volume 17 Issue 4

Full text available: pdf(220.97 KB)

Additional Information: full citation, abstract, references, index terms, review

10/041,028

Link-striping algorithms are often used to overcome transmission bottlenecks in computer networks. Traditional striping algorithms suffer from two major disadvantages. They provide inadequate load sharing in the presence of variable-length packets, and may result in non-FIFO delivery of data. We describe a new family of link-striping algorithms that solves both problems. Our scheme applies to any layer that can provide multiple FIFO channels. We deal with variable-sized packets by showing h ...

Keywords: causal fair queuing, fair queuing, load sharing, multilink PPP, packet striping, stripe protocol, striping

5 AIRMAIL: a link-layer protocol for wireless networks

Ender Ayanoglu, Sanjoy Paul, Thomas F. LaPorta, Krishan K. Sabnani, Richard D. Gitlin February 1995 **Wireless Networks**, Volume 1 Issue 1

Full text available: pdf(1.35 MB) Additional Information: full citation, abstract, references, citings, index terms

This paper describes the design and performance of a link-layer protocol for indoor and outdoor wireless networks. The protocol is asymmetric to reduce the processing load at the mobile, reliability is established by a combination of automatic repeat request and forward error correction and link-layer packets are transferred appropriately during handoffs. The protocol is named AIRMAIL (Asymmetric Reliable Mobile Access In Link-layer). The asymmetry is needed in the design because the mobil ...

6 Transport Layer Issues: A transport layer approach for achieving aggregate bandwidths on multi-homed mobile hosts

Hung-Yun Hsieh, Raghupathy Sivakumar

September 2002 Proceedings of the 8th annual international conference on Mobile computing and networking

Full text available: pdf(380.57 KB)

Additional Information: full citation, abstract, references, citings, index terms

Due to the availability of a wide variety of wireless access technologies, a mobile host can potentially have subscriptions and access to more than one wireless network at a given time. In this paper, we consider such a multi-homed mobile host, and address the problem of achieving bandwidth aggregation by striping data across the multiple interfaces of the mobile host. We show that both link layer striping approaches and application layer techniques that stripe data across multiple TCP sockets d ...

Keywords: bandwidth aggregation, multi-homed mobile host, striping

⁷ Sirpent: a high-performance internetworking approach

D. R. Cheriton

August 1989 ACM SIGCOMM Computer Communication Review , Symposium proceedings on Communications architectures & protocols, Volume 19 Issue 4

Full text available: pdf(1.65 MB)

Additional Information: full citation, abstract, references, citings, index terms

A clear target for computer communication technology is to support a high-performance global internetwork. Current internetworking approaches use either concatenated virtual circuits, as in X.75, or a "universal" internetwork datagram, as in the DoD Internet IP protocol and the ISO connectionless network protocol (CLNP). Both approaches have significant disadvantages. This paper describes Sirpent™ (Source Internetwork Routing Protocol with Extended Network Trans ...

8 Network Protocols

Andrew S. Tanenbaum

December 1981 ACM Computing Surveys (CSUR), Volume 13 Issue 4

Full text available: pdf(3.37 MB) Additional Information: full citation, references, citings, index terms

⁹ FLIP: an internetwork protocol for supporting distributed systems

M. Frans Kaashoek, Robbert van Renesse, Hans van Staveren, Andrew S. Tanenbaum February 1993 **ACM Transactions on Computer Systems (TOCS)**, Volume 11 Issue 1

Full text available: pdf(2.29 MB) Additional Information: full citation, abstract, references, citings, index terms

Most modern network protocols give adequate support for traditional applications such as file transfer and remote login. Distributed applications, however, have different requirements (e.g., efficient at-most-once remote procedure call even in the face of processor failures). Instead of using ad hoc protocols to meet each of the new requirements, we have designed a new protocol, called the Fast Local Internet Protocol (FLIP), that provides a clean and simple integrated approact to these new ...

10 Fast detection of communication patterns in distributed executions

Thomas Kunz, Michiel F. H. Seuren

November 1997 Proceedings of the 1997 conference of the Centre for Advanced Studies on Collaborative research

Full text available: pdf(4.21 MB)

Additional Information: full citation, abstract, references, index terms

Understanding distributed applications is a tedious and difficult task. Visualizations based on process-time diagrams are often used to obtain a better understanding of the execution of the application. The visualization tool we use is Poet, an event tracer developed at the University of Waterloo. However, these diagrams are often very complex and do not provide the user with the desired overview of the application. In our experience, such tools display repeated occurrences of non-trivial commun ...

11 Improving TCP performance over wireless networks at the link layer

Christina Parsa, J. J. Garcia-Luna-Aceves

March 2000 Mobile Networks and Applications, Volume 5 Issue 1

Full text available: pdf(324.14 KB) Additional Information: full citation, abstract, references, citings, index terms

We present the transport unaware link improvement protocol (TULIP), which dramatically improve the performance of TCP over lossy wireless links, without competing with or modifying the transport- or network-layer protocols. TULIP is tailored for the half-duplex radio links available with today's commercial radios and provides a MAC acceleration feature applicable to collision-avoidance MAC protocols (e.g., IEEE 802.11) to improve throughput. TULIP's timers rely on a maximum propagation del ...

12 Multi-layer tracing of TCP over a reliable wireless link

Reiner Ludwig, Bela Rathonyi, Almudena Konrad, Kimberly Oden, Anthony Joseph

May 1999 ACM SIGMETRICS Performance Evaluation Review, Proceedings of the 1999 ACN SIGMETRICS international conference on Measurement and modeling of computer systems, Volume 27 Issue 1

Full text available: pdf(1.37 MB)

Additional Information: full citation, references, citings, index terms

Keywords: GSM, TCP, measurement tools, wireless

¹³ A 50-Gb/s IP router

Craig Partridge, Philip P. Carvey, Ed Burgess, Isidro Castineyra, Tom Clarke, Lise Graham, Michael Hathaway, Phil Herman, Allen King, Steve Kohalmi, Tracy Ma, John Mcallen, Trevor Mendez, Walter (Milliken, Ronald Pettyjohn, John Rokosz, Joshua Seeger, Michael Sollins, Steve Storch, Benjamin Tober, Gregory D. Troxel

June 1998 IEEE/ACM Transactions on Networking (TON), Volume 6 Issue 3

Full text available: pdf(133.28 KB)

Additional Information: full citation, references, citings, index terms, review

Keywords: data communications, internetworking, packet switching, routing

14 Computing curricula 2001

September 2001 Journal on Educational Resources in Computing (JERIC)

Full text available: pdf(613.63 KB) Additi

Additional Information: <u>full citation</u>, <u>references</u>, <u>citings</u>, <u>index terms</u>

15 <u>Services: TinySec: a link layer security architecture for wireless sensor networks</u> Chris Karlof, Naveen Sastry, David Wagner

November 2004 Proceedings of the 2nd international conference on Embedded networked sensor systems

Full text available: pdf(316.88 KB)

Additional Information: full citation, abstract, references, index terms

We introduce TinySec, the first fully-implemented link layer security architecture for wireless sensor networks. In our design, we leverage recent lessons learned from design vulnerabilities in security protocols for other wireless networks such as 802.11b and GSM. Conventional security protocols tend to be conservative in their security guarantees, typically adding 16--32 bytes of overhead. With small memories, weak processors, limited energy, and 30 byte packets, sensor networks cannot affo ...

Keywords: link layer security, sensor network security

Link layer retransmission schemes for circuit-mode data over the CDMA physical channel Mooi Choo Chuah, Bharat Doshi, Subra Dravida, Richard Ejzak, Sanjiv Nanda October 1997 Mobile Networks and Applications, Volume 2 Issue 2

Full text available: pdf(460.82 KB) Additional Information: full citation, abstract, references, index terms

In the last few years, wide-area data services over North American digital (TDMA and CDMA) cellular networks have been standardized. The standards were developed under three primary constraints: (i) compatibility with existing land-line standards and systems, (ii) compatibility with existing cellular physical layer standards that are optimized for voice, and (iii) market demands for quick solutions. In particular, the IS-95 CDMA air interface standard permits multiplexing of primary traffic ...

17 The design and implementation of hierarchical software systems with reusable components Don Batory, Sean O'Malley

October 1992 ACM Transactions on Software Engineering and Methodology (TOSEM), Volume 1
Issue 4

Full text available: pdf(3.15 MB)

Additional Information: <u>full citation</u>, <u>abstract</u>, <u>references</u>, <u>citings</u>, <u>index terms</u>, <u>review</u>

We present a domain-independent model of hierarchical software system design and construction that is based on interchangeable software components and large-scale reuse. The model unifies the conceptualizations of two independent projects, Genesis and Avoca, that are successful examples of software component/building-block technologies and domain modeling. Building-bloc technologies exploit large-scale reuse, rely on open architecture software, and elevate the granularity of programming to ...

Keywords: domain modeling, open system architectures, reuse, software building-blocks, software design

18 Design, implementation, and performance measurement of a native-mode ATM transport layer (extended version)

R. Ahuja, S. Keshav, H. Saran

August 1996 IEEE/ACM Transactions on Networking (TON), Volume 4 Issue 4

Full text available: pdf(1.66 MB)

Additional Information: full citation, references, citings, index terms

Keywords: AAL 5, asynchronous transfer mode, native-mode ATM, personal computer, transport layer

19 Peer to peer networks: Tarzan: a peer-to-peer anonymizing network layer

Michael J. Freedman, Robert Morris

November 2002 Proceedings of the 9th ACM conference on Computer and communications security

Full text available: pdf(242.72 KB)

Additional Information: full citation, abstract, references, citings, index terms

Tarzan is a peer-to-peer anonymous IP network overlay. Because it provides IP service, Tarzan is general-purpose and transparent to applications. Organized as a decentralized peer-to-peer overlay, Tarzan is fault-tolerant, highly scalable, and easy to manage. Tarzan achieves its anonymity with layered encryption and multi-hop routing, much like a Chaumian mix. A message initiator chooses a path of peers pseudo-randomly through a restricted topology in a way that adversaries cannot easily influenc ...

Keywords: IP tunnels, anonymity, cover traffic, distributed trust, mix-nets, overlay networks, peer-to-peer

²⁰ IP switching—ATM under IP

Peter Newman, Greg Minshall, Thomas L. Lyon

April 1998 IEEE/ACM Transactions on Networking (TON), Volume 6 Issue 2

Full text available: pdf(154.32 KB)

Additional Information: <u>full citation</u>, <u>references</u>, <u>citings</u>, <u>index terms</u>

Keywords: Internet protocol, asynchronous transfer mode, broadband communication, communication system control, data communication, packet switching, protocols

Results 1 - 20 of 200

Result page: 1 2 3 4 5 6 7 8 9 10 next

The ACM Portal is published by the Association for Computing Machinery. Copyright © 2005 ACM, Inc. Terms of Usage Privacy Policy Code of Ethics Contact Us

Useful downloads: Adobe Acrobat QuickTime Windows Media Player Real Player

Home | Login | Logout | Access Information | Alerts |

Welcome United States Patent and Trademark Office

I□ISearch Results

BROWSE

SEARCH

IEEE XPLORE GUIDE

Results for "((packet header)<in>metadata)"

Your search matched 156 of 1137806 documents.

⊡ e-mail

A maximu	im of 100 results are	e displayed	l, 25	to a page, sorted by Relevance in Descending order.		
» <u>View Ses</u> » <u>New Sea</u>	sion History	Modi	fy S	earch		
		((pack	((packet header) <in>metadata)</in>			
» Key		□ c	hec	k to search only within this results set		
IEEE JNI	_ IEEE Journal or Magazine	Displ	Display Format:			
IEE JNL	IEE Journal or Magazine		•			
IEEE CNF	IEEE Conference Proceeding	Select	Δ	article Information	View: 1-25 <u>26-5</u>	
IEE CNF	IEE Conference Proceeding		1.	An all-optical packet header recognition scheme for self-routing packet networks Kit Chan; Tong, F.; Chan, C.K.; Chen, L.K.; Wai Hung;		
IEEE STD	IEEE Standard			Optical Fiber Communication Conference and Exhibit, 2002. OI 17-22 March 2002 Page(s):284 - 285	FC 2002	
				AbstractPlus Full Text: PDF(280 KB) IEEE CNF		
			2.	Analysis of packet header effects in rate allocation for pack Bo Hong; Nosratinia, A.; Image Processing. 2002. Proceedings. 2002 International Conf Volume 2, 22-25 Sept. 2002 Page(s):II-177 - II-180 vol.2		
				AbstractPlus Full Text: PDF(374 KB) IEEE CNF		
			3.	All optical wavelength independent packet header replaced generated directly from the packet flag Jiang, X.; Chen, X.P.; Willner, A.E.; Photonics Technology Letters, IEEE Volume 10, Issue 11, Nov. 1998 Page(s):1638 - 1640	nent using a long CW	
				AbstractPlus References Full Text: PDF(60 KB) IEEE JNL		
			4.	Fault-tolerant convergence routing Yener, B.; Bhandari, I.; Ofek, Y.; Moti Yung; Network Protocols, 1994. Proceedings., 1994 International Con 25-28 Oct. 1994 Page(s):229 - 238	ference on	
				AbstractPlus Full Text: PDF(816 KB) IEEE CNF		
			5.	Effect of fixed and interference-induced packet error probate Mehta, N.B.; Goldsmith, A.; Communications, 2000. ICC 2000. 2000 IEEE International Convolume 1, 18-22 June 2000 Page(s):362 - 366 vol.1		
				AbstractPlus Full Text: PDF(376 KB) IEEE CNF		
			6.	Detecting anomalous behavior: optimization of network tra strategy Bauer, D.C.; Cannady, J.; Garcia, R.C.; SoutheastCon 2001. Proceedings. IEEE 30 March-1 April 2001 Page(s):34 - 39	ffic parameters via an	

AbstractPlus | Full Text: PDF(388 KB) IEEE CNF

7.	Voice over IPsec: analysis and solutions Barbieri, R.; Bruschi, D.; Rosti, E.; Computer Security Applications Conference, 2002. Proceedings. 18th Annual 9-13 Dec. 2002 Page(s):261 - 270
	AbstractPlus Full Text: PDF(807 KB) IEEE CNF
□ 8.	Optical packet header extraction and band conversion in a high-speed, multi-/spl network Politi, C.; O'Mahony, M.; Lasers and Electro-Optics, 2002. CLEO '02. Technical Digest. Summaries of Papers Pi 19-24 May 2002 Page(s):539 - 540 vol.1 AbstractPlus Full Text: PDF(331 KB) IEEE CNF
9.	A framework on gigabit rate packet header collection for low-cost Internet monitor Hasegawa, T.; Ogishi, T.; Communications, 2002. ICC 2002. IEEE International Conference on Volume 4, 28 April-2 May 2002 Page(s):2206 - 2211 vol.4
	AbstractPlus Full Text: PDF(606 KB) IEEE CNF
☐ 10	Chandranmenon, G.P.; Varghese, G.; Networking, IEEE/ACM Transactions on Volume 4, Issue 2, April 1996 Page(s):141 - 152
	AbstractPlus Full Text: PDF(1380 KB) IEEE JNL
□ ¹¹	. Performance analysis of multiple subcarrier encoding of packet headers in quasi networks Poggiolini, P.; Benedetto, S.; Photonics Technology Letters, IEEE Volume 6, Issue 1, Jan. 1994 Page(s):112 - 114
	AbstractPlus Full Text: PDF(264 KB) IEEE JNL
☐ 12	Multiwavelength-channel header recognition for reconfigurable WDM networks u correlators based on sampled fiber Bragg gratings McGeehan, J.E.; Hauer, M.C.; Sahin, A.B.; Willner, A.E.; Photonics Technology Letters, IEEE Volume 15, Issue 10, Oct. 2003 Page(s):1464 - 1466
	AbstractPlus References Full Text: PDF(367 KB) IEEE JNL
☐ 13	Martinez, J.M.; Ramos, F.; Marti, J.; Electronics Letters Volume 40, Issue 14, 8 July 2004 Page(s):894 - 895
	AbstractPlus Full Text: PDF(213 KB) IEE JNL
☐ ¹⁴	Performance of random-wavelength switching of three-electrode DBR laser with used for routing Willner, A.E.; Chapuran, T.E.; Wullert, J.R., II; Meyer, J.; Lee, T.P.; Electronics Letters Volume 28, Issue 16, 30 July 1992 Page(s):1526 - 1528
	AbstractPlus Full Text: PDF(244 KB) IEE JNL
<u> </u>	An architecture for a photonic fast packet switching fabric Jajszczyk, A.; Mouftah, H.T.; Global Telecommunications Conference, 1991. GLOBECOM '91. Countdown to the Ne Featuring a Mini-Theme on: Personal Communications Services

2-5 Dec 1991 Page(s):1219 - 1223 vol.2 AbstractPlus | Full Text: PDF(364 KB) | IEEE CNF 16. Pipeline banyan-a parallel fast packet switch architecture Wong, P.C.; Yeung, M.S.; Communications, 1992. ICC 92, Conference record, SUPERCOMM/ICC '92, Discoveri of Communications. IEEE International Conference on 14-18 June 1992 Page(s):882 - 887 vol.2 AbstractPlus | Full Text: PDF(472 KB) | IEEE CNF 17. Performance evaluation of subcarrier encoding of packet headers in quasi-all-op WDM networks Poggiolini, P.T.; Benedetto, S.; Communications, 1994. ICC 94, SUPERCOMM/ICC '94, Conference Record, Serving I Through Communications. IEEE International Conference on 1-5 May 1994 Page(s):1681 - 1686 vol.3 AbstractPlus | Full Text: PDF(484 KB) | IEEE CNF 18. A narrowband/wideband packet radio system Morrow, R.K., Jr.; Tactical Communications Conference, 1994. Vol. 1. Digital Technology for the Tactical Proceedings of the 1994 10-12 May 1994 Page(s):159 - 166 AbstractPlus | Full Text: PDF(540 KB) IEEE CNF 19. Throughput performance of multiuser detection in unslotted contention channel: Brady, D.; Merakos, L.F.; Information Theory, 1994. Proceedings., 1994 IEEE International Symposium on 27 June-1 July 1994 Page(s):289 AbstractPlus | Full Text: PDF(64 KB) | IEEE CNF 20. All-optical packet header recognition and switching in a reconfigurable network Bragg gratings for time-to-wavelength mapping and decoding Cardakli, M.C.; Lee, S.; Willner, A.E.; Grubsky, V.; Starodubov, D.; Feinberg, J.; Optical Fiber Communication Conference, 1999, and the International Conference on I and Optical Fiber Communication. OFC/IOOC '99. Technical Digest Volume 3, 21-26 Feb. 1999 Page(s):171 - 173 vol.3 AbstractPlus | Full Text: PDF(228 KB) | IEEE CNF 21. IPSec/PHIL (packet header information list): design, implementation, and evaluat Chien-Lung Wu; Wu, S.F.; Narayan, R.; Computer Communications and Networks, 2001. Proceedings. Tenth International Cor 15-17 Oct. 2001 Page(s):206 - 211 AbstractPlus | Full Text: PDF(112 KB) | IEEE CNF 22. A traffic sampling model for measurement using packet identification Cheng Guang; Gong Jian; Ding Wei; Networks, 2002. ICON 2002. 10th IEEE International Conference on 27-30 Aug. 2002 Page(s):409 - 413 AbstractPlus | Full Text: PDF(363 KB) IEEE CNF 23. Overhead-constrained rate-allocation for scalable video transmission over netwo Hong, B.; Nosratinia, A.; Data Compression Conference, 2002. Proceedings. DCC 2002 2-4 April 2002 Page(s):455 AbstractPlus | Full Text: PDF(214 KB) | IEEE CNF

24. Application of O-CDMA techniques to all optical packet header processing Kelm, J.H.; Wang, B.C.; Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the Volume 1, 27-28 Oct. 2003 Page(s):232 - 233 vol.1
AbstractPlus Full Text: PDF(247 KB) IEEE CNF
25. All-optical packet header recognition integrated optic chip Geraghty, D.F.; Castro, J.; West, B.; Honkanen, S.; Lasers and Electro-Optics Society, 2003. LEOS 2003. The 16th Annual Meeting of the Volume 2, 27-28 Oct. 2003 Page(s):752 - 753 vol.2
AbstractPlus Full Text: PDF(233 KB) IEEE CNF
View: 1-25 <u>26-5</u>

Indexed by Inspec

Help Contact Us Privacy & :

© Copyright 2005 IEEE -

WEST Search History

DATE: Wednesday, March 30, 2005

Hide? Set Name Query			<u>Hit Count</u>
	DB=US	PT; PLUR=NO; OP=OR	
	L19	118 and(communication near stack)	0
	L18	117 and (data near link near layer)	1
	L17	116 and (physical near layer)	7
	L16	(110 or 111 or 112 or 113) and (transaction near layer)	11
	L15	(110 or 111 or 112 or 113) and(transaction near layer)	11
	L14	(110 or 111 or 112 or 113) and(communication near stack)	11
	L13	707/100.ccls.	1681
	L12	709/236.ccls.	539
	L11	709/232.ccls.	670
	L10	709/231.ccls.	620
	DB=US	PT,USOC,EPAB,JPAB,DWPI,TDBD; PLUR=NO; OP=O	R
	L9	l6 and (length near (field\$ or record\$ or table\$))	4
	L8	11 and 15	1
	L7	L6 and (field\$ or record\$ or table\$)	7
	L6	L5 and (packet near header\$)	7
	L5	12 and 13 and 14	27
	L4	(physical near layer)	11726
	L3	(data near link near layer)	3200
	L2	(transaction near layer)	323
	L1	(communication near stack)	617

END OF SEARCH HISTORY