

TMSCA HIGH SCHOOL MATHEMATICS

TEST #3 ©

NOVEMBER 3,2018

GENERAL DIRECTIONS

- 1. About this test:
- A. You will be given 40 minutes to take this test.
- B. There are 60 problems on this test.
- 2. All answers must be written on the answer sheet/Scantron form/Chatsworth card provided. If you are using an answer sheet, be sure to use **BLOCK CAPITAL LETTERS**. Clean erasures are necessary for accurate grading.
- 3. If using a scantron answer form, be sure to correctly denote the number of problems not attempted.
- 4. You may write anywhere on the test itself. You must write only answers on the answer sheet.
- 5. You may use additional scratch paper provided by the contest director.
- 6. All problems have **ONE** and **ONLY ONE** correct [BEST] answer. There is a penalty for all incorrect answers.
- 7. Calculators used on this test must be conform to the UIL standards. Graphing calculators are allowed. Calculators need not be cleared.
- 8. All problems answered correctly are worth **SIX** points. **TWO** points will be deducted for all problems answered incorrectly. No points will be added or subtracted for problems not answered.
- 9. In case of ties, percent accuracy will be used as a tie breaker.

TMSCA TMSCA

- 2018 2019 TMSCA Mathematics Test Three Evaluate: $(6!+4^2) \div 46 \times 2^{-2} + 3$. 1. (A) 4 (B) 3 (C) 7 (\mathbf{D}) 67 (E) 15 2. Kayla has a job at a retail store where she receives a discount on any purchases she makes. At Christmastime, the store ran a sale with 30% off all ornaments and 40% off all lights. Kayla purchased 4 ornaments and 6 strings of lights with full prices of \$6.99 each and \$8.95 each respectively. Kayla's employee discount gives her an additional 20% off of her purchase, and the local sales tax is 8.35%. How much change will Kayla receive if she pays with a \$100 bill? (B) \$61.58 (C) \$65.50 (D) \$55.11 (A) \$58.57 (E) \$64.54 3. If $m\angle A + m\angle B + m\angle C = 180^{\circ}$ and $m\angle C + m\angle D = 180^{\circ}$ then $m\angle A + m\angle B + m\angle C = m\angle C + m\angle D$ is an example of the _____ property. (A) Transitive (B) Reflexive (C) Symmetric (D) Distributive (E) Addition
- 4. Find an equation of the line that is perpendicular to 2x + 7y = 9 and has a x-intercept of (-2,0). (A) 7x - 2y = -14 (B) 2x + 7y = -4 (C) 7x - 2y = -2
 - (D) 2x + 7y = 6 (E) 7x + 2y = -14
- 5. Which of the following is a symbolic representation for the Venn diagram shown?

- 6. Andrew's Organic Farm consists of 13 "labors" of land. How many total acres of land does this include?
- (A) 1872 (B) 2301 (C) 832 (D) 8320 (E) 2210 7. Simplify: $\left(\frac{4x^2 - 24x + 35}{4x^2 - 25}\right) \left(\frac{2x^2 + 21x + 40}{7 - 2x}\right)$
- (A) 2x-5 (B) 8-x (C) 2x+5 (D) -x-8 (E) 5-2x
- 8. Quadrilateral ABCD is inscribed in circle O, $\angle A$ and $\angle C$ are not consecutive angles, and the measure of $\angle A$ is eight times the measure of $\angle C$. Find $m\angle A$.
- (A) 160° (B) 120° (C) 20° (D) 80° (E) 100° 9. If $\frac{x-6}{x+8} + \frac{x+8}{x-6}$ is written as the mixed number $A \frac{B}{C}$, then B = ?
- (A) 28 (B) 98 (C) 196 (D) 4 (E) 48
- 10. Simplify: $(\sqrt[3]{3a^3b^2})(\sqrt[6]{243a^3b^2})$
 - (A) $3ab\sqrt[3]{3b^3}$ (B) $3ab\sqrt[3]{3a^3}$ (C) $3ab\sqrt[6]{3a^3}$ (D) $3ab\sqrt[6]{3b^3}$ (E) $3ab\sqrt[6]{3a^3b^3}$

11. Events A and B are independent events such that p(B) = 3p(A) and $p(A \cup B) = \frac{213}{400}$. Find p(A).

- (A) 0.15
- (B) 0.22
- (C) 0.45
- (E) 0.05

12. The line segments shown are all chords of the circle. Find the value of x.

(A)

(B) 7.2°

(C) 8'

(D) 8.4'

(E) 9.3'

13. Two standard dice are rolled. What are the odds that the numbers on each of the dice are the different?

- (A) 6:1
- **(B)** 5:2
- (C) 5:1
- (D) 3:1
- **(E)** 4:1

14. Wade's pool is shaped like a trapezoidal prism as shown. How many gallons (nearest gallon) will fill the pool completely?

- (A) 14,244 gal
- (B) 16,966 gal
- (C) 22,621 gal

- (D) 18,437 gal
- (E) 19,793 gal
- 15. The point (x,y) is a point of inflection on $f(x) = \frac{\cos x}{1+\sin x}$, where $0 \le x \le 2\pi$. Find the value of x.
 - $(A) \quad 0$
- (C) $\frac{\pi}{2}$ (D) $\frac{\pi}{6}$

16. Using the following pattern of numbers, which of the following numbers will not be in row 15?

- (A) 15
- **(B)** 455
- (C) 1365
- (D) 2002
- 5005 **(E)**

17. The measure of an interior angle of a regular octagon is _____. (nearest degree)

- (A) 144°
- (B) 135°
- (C) 120°
- (D) 150°
- (E) 132°

18. Find the range of the function y = 3 + 2|1 - x| if the domain is restricted to $\{x \mid x \in \mathbb{R}, -4 \le x \le 4\}$.

- (A) [3,13]
- (B) [3,9]
- (C) [2,11]
- (D) [2,17] (E) [0,17]

19.
$$456_7 + 567_8 + 678_9 = \underline{\hspace{1cm}}_{10}$$

- (A) 1701
- **(B)** 1435
- (C) 1571
- (D) 1091
- **(E)** 1169

20. Which of the following functions is neither even nor odd? f(x) =_____.

- (A) $(4x+3)^2$
- (B) $x^3 x$
- (C) |3x|
- (D) $\tan(\pi x)$
- (E) $\cos(2x)$

21. Determine the frequency of $f(x) = 7 + 3\cos\left|2\left(x - \frac{\pi}{2}\right)\right|$.

- (A) π
- (B) $\frac{1}{2\pi}$ (C) $\frac{2}{\pi}$ (D) $\frac{1}{\pi}$

- (E) 2

22. If the dots on the grid shown below are 5 cm apart both vertically and horizontally, then the area of the shaded region is ____cm².

- **(A)** 175
- **(B)** 35
- (C) 7

- (D) 200
- (E) 225

23. Let $f(x) = x^3 + 5$ and g(x) = x + 1. Find f(g(x)).

(A) $x^3 + 6$

- (B) $x^3 + 3x^2 + 3x + 1$
- (C) $x^3 + 3x^2 + 3x + 6$

- (D) $x^3 + 3x^2 + 3x + 5$
- (E) $x^3 + 3x^2 + 3x + 8$

24. Find m+n if $\begin{bmatrix} 3 & 7 \\ -5 & -2 \end{bmatrix} \begin{bmatrix} m \\ n \end{bmatrix} = \begin{bmatrix} 42 \\ 17 \end{bmatrix}.$

- (A) 9
- (\mathbf{B}) -7
- (C) 3
- (\mathbf{D}) 2
- **(E)** 16

25. How many distinct 4-letter arrangements can be made from the letters in the word "CALCULATOR"?

- (A) 1380
- **(B)** 1038
- (C) 1398
- (D) 1218
- **(E)** 1200

26. Let P, Q, and R be positive integers. If $P + \frac{1}{Q + \frac{1}{R+1}} = \frac{229}{25}$, then $P + Q + R = \frac{1}{Q + \frac{1}{R+1}} = \frac{229}{25}$

- (A) 19
- (C) 16
- (D) 18
- **(E)** 17

27. Let $f(x) = \frac{9x^3 + 8x^2 - 9}{3x^2 + 2}$ and s(x) be the slant asymptote of f(x). Find the value of s(3).

- (D) $-\frac{97}{2}$
- (E) $\frac{35}{3}$

28. An icosahedron has 20 faces, V vertices and 30 edges. Find the value of V.

- (A) 12
- **(B)** 10
- (C) 14
- **(D)** 16
- **(E)** 18

Copyright © 2018 TMSCA

(A) 1090 m

(B) 1174 m

	odds of drawing y pink tickets w	_					_		
(A)	62	(B)	38	(C)	41	(D)	49	(E)	72
30. The roots of $x^3 - 4x^2 - 11x + 30$ are p, q and r . Find $(p+q)(q+r)(p+r)$.									
(A)	-14	(B)	-20	(C)	-30	(D)	-12	(E)	-28
31. The harmonic mean of the roots of $0 = x^4 - 16x^3 + 91x^2 - 216x + 180$ is:									
	$\frac{30}{91}$		·				· ·	(E)	3
32. Give	n the sequence	10, 8,	2, 10, 50, 140, 2	298,	., find the 20 th	term	•		
(A)	14,050	(B)	19,730	(C)	16,730	(D)	3,503	(E)	3917
33. If log	33. If $\log_2(x) + \log_2(x-7) = \log_2(4) + \log_2(15)$, then x equals								
(A)	3	(B)	5	(C)	10	(D)	6	(E)	12
34. Whi	ch of the followi	ing is	closed under m	ultipl	ication?				
I.	irrational nu	mbers	s II. whole n	umbe	ers III. negat	ive nu	imbers IV.	even in	itegers
(A)	II & IV	(B)	II, III & IV	(C)	I, II & III	(D)	II	(E) n	one of these
35. The area under the curve $f(x) = \sin(2x)$ on the interval $\left[k, \frac{4\pi}{3}\right]$ is 0.5. Find k to the nearest tenth,									
wher	$e \pi \le k \le \frac{4\pi}{3}.$								
(A)	3.2	(B)	3.7	(C)	3.5	(D)	3.8	(E)	4.0
36. Carl would like to know the height of his peach tree before he buys a ladder. The angle of elevation to the top of the tree at a point 30 feet from the base of the tree is 40°. How tall is the tree? (nearest foot)									
(A)	22 ft	(B)	23 ft	(C)	24 ft	(D)	25 ft	(E)	26 ft
37. Given that $x + \frac{1}{x} = 32$, find $x^3 + \frac{1}{x^3}$.									
(A)	32,704	(B)	32,736	(C)	32,864	(D)	32,832	(E)	32,672
38. An operation " \odot " is defined by: $a \odot b = a - b^2$. What is the value of $(-1 \odot 2)(2 \odot -1)$?									
(A)	6	(B)	-3	(C)	-4	(D)	-6	(E)	-18
	edith set out to a					_			_

(C) 1201 m (D) 1152 m

(E) 1075 m

	10-17 1151/171	LCSL I	iii cc						I age :
40. Giveı	f(x) = 2x + 5	5 and	$g(x) = x^2 -$	-3 find	f(g'(2)).				
(A)				(C) 12		(D)	6	(E)	15
41. Givei	$f(x) = ax^4 +$	$bx^2 +$	8x and $f(s)$	5) = 25,	calculate $f(-1)$	5).			
(A)	-25	(B)	25	(C)	-55	(D)) 55	(E	C) -15
	y has a large sta		ŕ					put 4 k	oills into an
	ope to give to c	_		-	_		_		
(A)		(B)		(C)		(D)	30	(E)	45
	M(-2,5) is the	e mid	point of the l	line segn	ient with endp	oints	P(-4,y) and	Q(x,1	2). Find PQ.
•	est tenth) 11.7	(B)	12.0	(C)	17.1	(D) 14.6	(E	2) 13.8
44 On th	no trionalo ARC	Schou	m m /RAC			and A	C = 18 Find	the or	oo of trionglo
	ne triangle ABC	SHUW	n, mzdac	$-\frac{1}{6}$	11a115, AD – 24	anu A	.C = 10. Find	tile al	ta of triangle
ABC		(T)			(C) 100				B
	$54\sqrt{3}$	(B)	144		(C) 108		A <u></u>		
(D)	$144\sqrt{3}$	(E)	54					C	
45. Find	the sum of the	coeffi	cients of the	2 nd and 3	3 rd terms in the	e poly	nomial expans	sion of	$(2x-3)^9.$
(A)	40,704	(B)	34,560	(C)	44,928	(D)	-44,928	(E)	-6400
46. How	many four-digi	it num	bers exist su	ich that	all of the digits	s are p	orime?		
(A)	24	(B)	625	(C)	120	(D)	500	(E)	256
47. The p	orobability that	it wil	l rain on any	y single I	May day in Bo	wie, T	X is 0.15. If S	Sarah p	lans a seven-
_	rip in May, wh	at is tl	ne probabilit	ty that it	will rain at lea	ast one	e day while sh	e is the	ere? (nearest
	sandth)								
	0.679	(B)	0.321	(C)	0.623	(D)	0.377	(E)	0.396
48. Simp	$lify \sqrt[3]{2} \left(\sqrt[3]{4} - 2 \right)$	$\sqrt[3]{32}$).							
(A)	-4	(B)	-2	(C)	4	(D)	-6	(E)	-8
	repeating decim	nal 0.4	1222 in ba	se 5 can	be written as v	which	of the followin	ng frac	tions in base 5
	_		12		14		4		23
(A)	$\frac{33}{44}_5$	(B)	$\frac{12}{20}_{5}$	(C)	$\frac{14}{20}_{5}$	(D)	$\frac{4}{10}$	(E	$\frac{25}{40_5}$
	$y = \ln 5x - 11 $						J		·
(A)	1.2	(B)	0.6	(C)	0.6 and 1.6	(D)	3.2	(E)	1.2 and 3.2
	-4,a,1,b,c, be					, ,		(11)	1,2 4114 012
(A)	15	(B)	18	(C)	16	(D)	11	(E)	9

52. The graph of $h(x) = \frac{2x^2 - 19x + 24}{x - 9}$ suggests that the discontinuity at x = 8 is removable by defining

h(8) t	o be	
--------	------	--

- (A) 0
- **(B)** 16
- (C) 13
- (D) 19

53. What is the 10⁻⁸ digit in the expansion of $1+(x-2)+\frac{(x-2)^2}{2!}+\frac{(x-2)^3}{3!}+...$, when x=1?

- (A) 0
- **(B)** 4
- (C) 5
- (\mathbf{D}) 8
- (\mathbf{E}) 9

54. Which of the following is a reference angle for $\frac{29\pi}{6}$?

- (A) $\frac{\pi}{6}$ (B) $\frac{\pi}{3}$ (C) $\frac{\pi}{4}$
- $(\mathbf{D}) \quad \mathbf{0}$

55. Andrew is 6 feet tall. He is walking at a rate of 5 feet per second toward a street light that is 25 feet tall. What is the rate of change of the length of Andrew's shadow? (nearest tenth ft/s)

- (A) -2.1 ft/s
- (B) -1.4 ft/s
- **(C)** -1.8 ft/s
- (D) -1.6 ft/s
- **(E)** -2.0 ft/s

56. If the three numbers 227, 292 and 370 are each divided by the number D, each of their quotients has the same remainder R. Find R.

- (A) 5
- (\mathbf{B}) 6
- (C) 0
- **(D)** 16
- (E) 8

57. Which of the following mathematicians are associated with working with prime numbers?

- I. Erastosthenes
- II. Marin Mersenne

III. Sophie Germain

- I only
- (B) I & II
- (C) II & III
- **(D)** I & III
- (E) I, II & III

58. Find the perimeter of the pentagon ABCDE to the nearest centimeter.

(A) 53 cm

(D) 61 cm

(B) 57 cm

(E) 58 cm

(C) 51 cm

- 59. The sum of the first *n* terms of a sequence is given by $S_n = \frac{3}{2}(n^2 + 3n)$, where $n \in \mathbb{Z}^+$. Find the 8th term of the sequence.
 - (A) 27
- **(B)** 132
- (C) 30
- **(D)** 24
- **(E)** 105

- (A) $\sin(2\alpha)$ (B) $\sec^2(\alpha)$
- (C) $\cos(2\alpha)$ (D) $\csc^2(\alpha)$
- **(E)**

2018-2019 TMSCA Mathematics Test Three Answers

1. C	21. D	41. C
2. D	22. A	42. A
3. A	23. C	43. D
4. A	24. D	44. C
5. C	25. C	45. B
6. B	26. D	46. E
7. D	27. E	47. A
8. A	28. A	48. D
9. C	29. C	49. C
10. C	30. A	50. E
11. A	31. D	51. B
12. C	32. C	52. C
13. C	33. E	53. B
14. E	34. A	54. A
15. C	35. B	55. D
16. D	36. D	56. B
17. B	37. E	57. E
18. A	38. D	58. C
19. E	39. B	59. A
20. A	40. A	60. C

2018-2019 TMSCA Mathematics Test Three Solutions

- 6. One "labor" of land is about 177 acres, so 13 labors is 2301 acres.
- 8. $m\angle C + 8m\angle C = 180^{\circ}$ for $m\angle C = 20^{\circ}$ and $m\angle A = 160^{\circ}$

11. $p(A \cup B) = p(A) + p(B) - p(A) \times p(B)$ $\frac{213}{400} = p(A) + 3p(A) - 3(p(A))^{2}$ for p(A) = 0.15.

- 16. The numbers in the $15^{\rm th}$ row will be $_{15}C_x$, where x is an integer from 0 to 15. It works well to enter this as a function and look at the table to see that 2002 is not a function value.
- 22. $\frac{2I+2P-2}{2} = \frac{4+12-2}{2} = 7$ square units where each square unit represents 25 cm² and a total of 175 cm².
- 25. CALCULATOR has 2-C's, 2-A's and 2-L's and a total of 7 distinct letters.

No repeats: $_{7}C_{4} \times 4! = 840$

One letter repeating: $3 \times_6 C_2 \times \frac{4!}{2!} = 540$

Two letters repeating: $3 \times \frac{4!}{(2!)(2!)} = 18$

For a sum of 1398.

31. The roots are 2, 3, 5 and 6, so the harmonic mean is

$$\frac{4}{\frac{1}{2} + \frac{1}{3} + \frac{1}{5} + \frac{1}{6}} = \frac{10}{3}$$

37.
$$x^3 - \frac{1}{x^3} = \left(x + \frac{1}{x}\right) \left[\left(x + \frac{1}{x}\right)^2 - 3\right] = 32\left(32^2 - 3\right) =$$

32,672.

42.
$$_{3+4-1}C_4 = _6 C_4 = 15$$

45.
$$9(2)^8(-3)^1 +_9 C_2(2)^7(-3)^2 = 34,560$$

47.
$$1 - p(norain) = 1 - (0.85)^7 \approx 0.68$$

52. $h(x) = \frac{(2x-3)(x-8)}{x-8}$ is equal to g(x) = 2x-3 at all points except when x = 8, so the value that removes the discontinuity is g(8) = 16-3=13

- 53. This is the MacClaurin series representation of the function $f(x) = e^{x-2}$, so e^{1-2} and the 10^{-8} place digit 4.
- 55. Set up the similar triangles letting x be the distance from the pole and s be the length of the shadow for $\frac{6}{s} = \frac{25}{x+s}$ then simplify to 6x = 19s and $6\frac{dx}{dt} = 19\frac{ds}{dt}$ then substitute in the rate of change for x which is -5 ft/s and solve for $\frac{ds}{dt} = -\frac{30}{19} \approx -1.6$.
- 60. $\cos^2 \alpha \sin^2 \alpha = \cos(2\alpha)$