Foundations of Data and Knowledge Bases

Structured Data Collections:

Tables, Graphs, Unranked Trees, Data Trees, Relational Structures

Joachim Niehren

Links: Linking Dynamic Data Inria Lille

November 10, 2020

Outline

- Tables
- Colored Directed Graphs
 - Colored Digraphs
 - Reachability in Digraphs
 - Terms as Digraphs
 - Relational Databases as Digraphs
- Unranked Trees
 - Inductive Definition
 - Unranked Trees as Digraphs
 - Words as Unranked Trees
 - Linearizations of Unranked Trees
- 4 Relational Structures
- 6 Adding Data

Database tables

Relational schema

alphabet Δ for words in tables is finite set ranked alphabet Γ of relation symbols

Database = Relations between words

for all relation symbols γ or arity k a k-ary relation:

$$R_{\gamma} \subseteq \underbrace{\Delta^* \times \ldots \times \Delta^*}_{k \ \textit{times}}$$

Example

table of (first-names, last names) pairs of PhD students is relation $R_{first-name_last-name} = \{("tom"," sebastian"), ("antoine"," ndione")\}$

Outline

- Tables
- Colored Directed Graphs
 - Colored Digraphs
 - Reachability in Digraphs
 - Terms as Digraphs
 - Relational Databases as Digraphs
- Unranked Trees
 - Inductive Definition
 - Unranked Trees as Digraphs
 - Words as Unranked Trees
 - Linearizations of Unranked Trees
- 4 Relational Structures
- 6 Adding Data

Colored Digraphs

Directed Graphs (Digraphs)

nodes set: Vedge set: $E \subseteq V \times V$ digraph: G = (V, E)

Color Alphabets

 C_{nod} set of node colors C_{edg} set of edge colors

Colored Digraph

digraph (V, E)

for every node color $c \in C_{nod}$ a set $V_c \subseteq V$

for every edge color $c \in C_{edg}$ a set $E_c \subseteq E$

colored digraph $G = (V, E, (V_c)_{c \in C_{nod}}, (E_c)_{c \in C_{edg}})$

Reachability

Reachable Nodes

 v_2 is reachable from v_1 over a path in G iff $(v_1, v_2) \in E^*$ How to define reachability over paths of edges with color a? Can you define what a path is?

Example

```
V = \{Li, Pa, Ly, Ma\}

E = \{(Li, Pa), (Pa, Ly), (Ly, Ma)\}
```

Ma is reachable from Li in this colored digraph, but Li is not reachable from Ma there.

Terms as Digraphs

Colors

Colors of nodes in Σ Colors of edges in $\{i \mid f \in \Sigma, 1 \leq i \leq ar(f)\}$ $graph(t) = (nod(t), edg(t), (lab_a(t))_{a \in \Sigma}, (pos_i(t))_{i \in \mathbb{N}})$

```
Nodes and Edges nod(t) \subseteq \mathbb{N}^*

nod(a) = \{\epsilon\}

nod(f(t_1, \dots, t_n)) = \{\epsilon\} \cup \bigcup_{i=1}^n i \cdot nod(t_i)

edg(a) = \emptyset

edg(f(t_1, \dots, t_n)) = \{(\epsilon, i) \mid 1 \le i \le n\}

\cup \bigcup_{i=1}^n \{(i \cdot \pi, i \cdot \pi') \mid (\pi, \pi') \in edg(t_i)\}
```

Exercise: Node Colors

① For every node color $a \in \Sigma$ define sets $lab_a(t)$ of nodes of t whose label is a.

Relational Databases

Tables

lecture	title	
\$1	Foundations of XML	
\$2	Term Rewriting	

teacher	lecture	
\$3	\$1	
\$4	\$2	
\$5	\$2	

teacher	name	
\$3	Joachim Niehren	
\$4	Mateu Villaret	
\$5	Miquel Bofill	

Graphical Representation

Exercise: Graph Databases as Colored Digraphs

Output
When the distribution of the property of the

Exercise: Paths in Graph Databases

② Let us call two users u and u' related in the above database if there is a sequence of users u_0, \ldots, u_n with $u = u_0$ and $u' = u_n$ such that for all $1 \le i \le n$ the users u_i and u_{i-1} worked on the same topic. Can you write a regular expression based on edge colors and inverse edge colors, so that all related users are linked by a path recognized by your regular expression?

Outline

- Tables
- Colored Directed Graphs
 - Colored Digraphs
 - Reachability in Digraphs
 - Terms as Digraphs
 - Relational Databases as Digraphs
- Unranked Trees
 - Inductive Definition
 - Unranked Trees as Digraphs
 - Words as Unranked Trees
 - Linearizations of Unranked Trees
- 4 Relational Structures
- 6 Adding Data

Signature=Vocabulary

Unranked Signature Σ

- a set of symbols
- no arities

Examples for unranked tree over $\{a, b\}$

```
a(b, b, b, b, b, b)

a(b(a(b(a(a, b)))))

a(b(a, b), a, b(b, a(b)))
```

Inductive Definition of Unranked Trees

Parameter

∑ an unranked signature

Set of unranked trees $\mathcal{T}_{\Sigma}^{\leq m}$ of depth $\leq m$

$$\begin{array}{rcl} \mathcal{T}_{\Sigma}^{\leq 0} & = & \emptyset \\ \mathcal{T}_{\Sigma}^{\leq m+1} & = & \{a(t_1,\ldots,t_n) \mid a \in \Sigma, t_1,\ldots,t_n \in \mathcal{T}_{\Sigma}^{\leq m}, \ n \geq 0\} \cup \mathcal{T}_{\Sigma}^{\leq m} \end{array}$$

Set of all unranked trees

$$T_{\Sigma} = \bigcup_{m=0}^{\infty} T_{\Sigma}^m$$

Equivalent Definitions

Recursive

 \mathcal{T}_{Σ} is the least set that contains all pairs $a(t_1,\ldots,t_n)$ where $a\in\Sigma$ and $(t_1,\ldots,t_n)\in(\mathcal{T}_{\Sigma})^n$ for some $n\geq0$:

Mathematical

$$T_{\Sigma} = \bigoplus_{n\geq 0} \Sigma \times (T_{\Sigma})^n$$

Backus-Naur form (BNF)

 $t \in T_{\Sigma} ::= a(t_1, \ldots, t_n)$ where $n \geq 0$.

Example

signature $\Sigma = \{bib, author, book, title\}$ unranked trees in T_{Σ} : bib(book(author, author, title), book(author, title)) how can we define the schema of admissible bibliographies?

Unranked Trees as Digraphs

Nodes and Edges

```
nod(t) \subseteq \mathbb{N}^*

nod(a(t_1, \dots, t_n)) = \{\epsilon\} \cup \bigcup_{i=1}^n i \cdot nod(t_i)
```

father-child edges in analogy to terms

Colors

Node colors analoguous as for terms: Σ

How many edge colors does one need? Are finitely many edge colors sufficient, if Σ is finite?

Words as Unranked Trees

Flat trees

fix symbol for the root $r \in \Sigma$ transformation from Σ^* to T_{Σ} : $a \cdot b \cdot c \Rightarrow r(a, b, c)$

Deep trees

fix symbol for the end of a word nil transformation from Σ^* to $T_{\Sigma \cup \{nil\}}$: $a \cdot b \cdot c \Rightarrow a(b(c(nil)))$

Linearization of Unranked Trees as Words

Preorder traversal as in XML

```
bib(book(author("Abiteboul"), author("Hull")...title("FoXML"))) \Rightarrow < bib >< book >< author > Abiteboul < /author >< author > Hull < author / > ... < title > FoXML < /title >< /book >< /bib >
```

Exercise

③ Find a deterministic finite automaton for the regular expression $(a^* + b^*) \cdot (c^* + d^*)$.

Outline

- Tables
- Colored Directed Graphs
 - Colored Digraphs
 - Reachability in Digraphs
 - Terms as Digraphs
 - Relational Databases as Digraphs
- Unranked Trees
 - Inductive Definition
 - Unranked Trees as Digraphs
 - Words as Unranked Trees
 - Linearizations of Unranked Trees
- 4 Relational Structures
- 5 Adding Data

Relational Structures

Relational signature $\Sigma = \mathrm{Consts} \uplus \mathrm{Rels}$

- Consts is a set of constants (that may be infinite, for instance the set of data values i.e. the set of strings of a finite alphabet.
- Rels is a finite set of relation symbols. Every symbols has a fixed arity given by a function $ar : Rels \to \mathbb{N}$.

Finite Σ -Structures $S = (Dom, .^S)$

- Dom is a finite set of elements called the domain (it may contain the nodes of a graph and a finite subset of data values.)
- . S gives interpretaion to all symbols of Σ :

```
a^{S} \in \text{Dom} for a \in \text{Consts}

r^{S} \subseteq \text{Dom}^{\text{ar}(r)} for r \in \text{Rels}
```

Example Database

lecture	location	title	teacher
\$1	Girona	Foundations of XML	\$3
\$2	Girona	Term Rewriting	\$4
\$2	Girona	Term Rewriting	\$5

teacher	fname	Iname
\$3	Joachim	Niehren
\$4	Mateu	Villaret
\$5	Miquel	Bofill

Relational Structure

```
Rels = \{lecture, teacher\}
ar(lecture) = 4
ar(teacher) = 3
Consts = { "Girona", "Joachim", "Niehren", "Mateu", "Villaret",
            "Miquel", "Bofill", "Foundations of XML",
             "Term Rewriting" }
Dom = \{\$1, \$2, \$3, \$4, \$5\} \uplus Consts
lecture^{S} = \{(\$1, "Girona", "Foundations of XML", \$3),
            ($2, "Girona", "Term Rewriting", $4),
            ($2, "Girona", "Term Rewriting", $5)}
teacher^S = \{(\$3, \text{``Joachim''}, \text{``Niehren''}),
            ($4, "Mateu", "Villaret"),
            ($5, "Miquel", "Bofill")}
a^S = a for all a \in \text{Consts}
```

Relational Structure for Words

Signature

alphabet : Δ

constants: $Consts = \{start, last\}$

relation symbols: $Rels = \{next^*\} \cup \{lab_a \mid a \in \Delta\}$

Relational structure for word $w = a_1 \dots a_n \in \Delta^*$

domain $Dom^w = \{0, ..., n\}$ (is always non-empty)

constants $start^w = 0$

 $last^w = n$

predicates $lab_a^w = \{i \mid a_i = a\}$

 $=\{i\mid a_i=a\}$ where $a\in\Delta$

 $(\text{next}^*)^w = \{(i,j) \mid 0 \le i \le j \le n\}$

Exercise

Oan you formalize the above graph database as a relational structure?

Outline

- Tables
- Colored Directed Graphs
 - Colored Digraphs
 - Reachability in Digraphs
 - Terms as Digraphs
 - Relational Databases as Digraphs
- Unranked Trees
 - Inductive Definition
 - Unranked Trees as Digraphs
 - Words as Unranked Trees
 - Linearizations of Unranked Trees
- 4 Relational Structures
- 6 Adding Data

Data Trees

Data values are words in Γ^* for some finite set Γ

Unranked Data Trees

Data trees are unranked trees t with mapping $text : nodes(t) \rightarrow \Gamma^*$.

What can one do with data values?

Test for equality

Select data value

Apply string operations

Convert to numbers

Arithmetics

Data Graphs

Exercise

What could be a data word?
What could be a colored data graph?

Question

Are relationional structures with additional data still relational structures?