Домашна работа 2 част по Вероятности Компютърни Науки

Име	, Група	., ФН
5	май 2023 г.	

Задача 1 Случайна величина Z=(X,Y) има плътност $f(x,y)=\left\{ egin{array}{ll} c(1+xy), & 0< x< y< 1 \\ 0, & \text{иначе} \end{array} \right.$ Намерете: а) константата c; б) $\mathbf{E}XY,\ \mathbf{D}(X-Y).$

Задача 2 Провеждаме бернулиеви опити с вероятност за успех при всеки опит, равна на p. Нека ξ_k е случайната величина - брой опити, докато за първи път получим последователност от k успеха. Да се намери $\mathbf{E}\xi_k$.

Задача 3 Даден е правилен шестоъгълник със страна 1 и център О. Да се определи:

- а) броят на пътищата с дължина n, при които стартираме и завършваме в O;
- б) вероятността да няма междинни посещения в O, при движението указано в а);
- в) средната стойност на дължината на пътя, до първото междинно посещение в O.

Задача 4 $\{\xi_n\}_{n=1}^{\infty}$ е редица от случайни величини, като $\xi_n \in \mathrm{Bi}(n,p_n)$ и $\lim_{n\to\infty} np_n = \lambda > 0$. Да се докаже, че редицата $\{\xi_n\}_{n=1}^{\infty}$ е сходяща по разпределение, с гранична функция $\xi \in \mathrm{Po}(\lambda)$.

Задача 5 Нека ξ е случайна величина с характеристична функция $\psi_{\xi}(t)$. Докажете, че

- a) ако $\xi \in \text{Ex}(\lambda)$, то $\psi_{\xi}(t) = (1 it\lambda^{-1})^{-1}$;
- б) ако $\xi \in \Gamma(\alpha, \beta)$, то $\psi_{\xi}(t) = (1 it\beta^{-1})^{-\alpha}$.

Задача 6 Нека X_1, X_2, \ldots, X_n са независими и експоненциално разпределени случайни величини, с параметър λ . Да се докаже, че $S = X_1 + X_2 + \cdots + X_n$ има гама разпределение $\Gamma(n, \lambda)$.

Задача 7 Случайна величина X се нарича безгранично делима, ако за всяко естествено $n \in \mathbb{N}$ съществува редица X_1, X_2, \ldots, X_n от независими и еднакво разпределени случайни величини така, че X и $X_1 + X_2 + \cdots + X_n$ имат еднакво разпределение. Докажете, че ако X има нормално, поасоново или гама разпределение, то X е безгранично делима.

Задача 8 Нека ξ_1, ξ_2, \ldots са независими и еднакво разпределени случайни величини от $\operatorname{Ex}(\lambda)$ и $\tau \in \operatorname{Ge}(p)$. Да се докаже, че $S_{\tau} = \xi_1 + \xi_2 + \ldots + \xi_{\tau+1}$ е експоненциално разпределена и да се намери параметърът на разпределението.

Забележка: Всяка задача се оценява с 1 точка и ще се прибави към резултата от домашна

работа 1. Максимален брой точки от домашните: Д1 + Д2 = 7 + 8 = 15, което се равнява на +0.75 към финалната оценка за писмен изпит. Успех!