UNIVERSIDADE FEDERAL DE ALFENAS

Curso de Ciência da Computação - Instituto de Ciências Exatas

Disciplina: DCE 119 - Lógica Digital

Professor: Eliseu César Miguel

2^a Lista de Exercícios

Bibliografia

1-TOCCI, R.J.; WIDMER, N.S.; MOSS, G.L.; e MARTINS, C.S.A. **Sistemas Digitais: Princípios e Aplicações**. 10° e 11° Edição. Brasil: Editora Pearson Education, 2011

2-SERATES, JONOFON. Raciocínio Lógico I. 11ª Ed. Volume 1.: Brasília: Editora Jonofon, Sérates, 2007.

3-LOURENCO, ANTONIO C. DE.; CRUZ, EDUARDO C. A.; FERREIRA, SABRINA R.; JUNIOR, SALOMAO C. Circuitos Digitais: Estude e Use. 6^a Ed.:São Paulo: Editora Erica, 1996.

1. Para cada ítem desta sessão, escolha um dos diagramas da Figura 1 que representa corretamente a lógica descrita no ítem. Caso nenhum dos diagramas da Figura 1 seja adequado, você deverá sugerir um diagrama correto:

Figura 1: Diagrama de conjunto

- (a) doutores, graduados, políticos;
- (b) louros, morenos, ateus;
- (c) dentistas, dançarinos, angolanos;
- (d) cigarros, drogas, cervejas;
- (e) viciados, estudantes, estelionatários;
- (f) recipientes, panelas, comidas;
- (g) artistas, atores, pernanbucanos;
- (h) padres, mulheres, doentes mentais;

- (i) lutadores de box, frades, homems;
- (j) plantas raízes, remédios;
- (k) livros, discos, obras primas;
- (l) platéia, pessoas, crianças
- (m) metalúrgicos, operários, cantores;
- (n) medicina, alopatia, homeopatia;
- (o) solfato, ditado musical, vaca;
- (p) advogados, americanos, mecânicos;
- 2. Para as frases abaixo, descubra as formas atômicas possíveis e, em seguida, descreva as fórmulas originadas, como no exemplo que se segue.

Exemplo :. Se Felipe Massa for poli e se não faltar energia elétrica eu assistirei à corrida.

Solução: Usaremos os símbolos proposicionais: p, q e r com as seguintes definições:

p ≡ Felipe Massa é Poli

q ≡ Falta de energia elétrica

 $r \equiv assisto à corrida$

Fórmula resultante:. $p.\overline{q} \rightarrow r$

- (a) O jogo não foi agradável, o juiz roubou e, as meninas o assistiram ou estudaram.
- (b) O policial é mal pago e marginalizado
- (c) Se o governo não fosse corrupto nós pagaríamos as contas com mais prazer e teríamos melhores condições de vida
- (d) Para o homem ser feliz é necessário: Saúde, amor, casa própria e, muito dinheiro ou uma ilha deserta.
- (e) A fermentação ocorre à temperatura mínima de 23° C A mistura de cevada e lúpulo possibilita a fermentação caso a temperatura seja adequada Se eu alcançar a Fermentação então consigo produzir cerveja A temperatura agora é 34°C
- 3. Para as questões que se seguem, assinale a resposta correta:
 - (a) Todo professor é graduado. Alguns professores são pós-graduados.
 - i. Alguns pós-graduados são graduados.
 - ii. Alguns pós-graduados não são graduados

- iii. Todos pós-graduados são graduados.
- iv. Todos pós-graduados não são graduados.
- v. Nenhum pós-graduado é graduado.
- (b) Todo cristão é teísta

Algum cristão é luterano

- i. Todo teísta é luterano.
- ii. Algum luterano é teísta.
- iii. Algum luterano não é cristão.
- iv. Nenhum teísta é cristão.
- v. Nenhum luterano é teísta.
- (c) Nemhum M é K

 $Algum R \notin K$

- i. algum R não é M.
- ii. todo R é M.
- iii. nemhum R é M.
- iv. algum R é M.
- v. todo R não é M.
- 4. Para cada uma das afirmativas abaixo forneça sua negação lógica: Para esta questão o símbolo \vee significa o ou lógico e o símbolo \wedge significa o e lógico.
 - (a) x > y ; $x \neq y$; $p \rightarrow q$;
 - (b) $x \in (A \cup B)$; $x \in (A \cap B)$;
 - (c) $(\forall x)(p(x))$; $(\exists x)(q(x))$;
 - (d) $p(x) \to q(x)$; $p(x) \leftrightarrow q(x)$;
 - (e) Viajarei de ônibus ou de avião ;
 - (f) Ela cria cachorros e gatos ;
 - (g) Se o polígono P é um paralelogramo, então é um quadrado ;
 - (h) Existe ao menos um aluno estudioso ;
 - (i) Nenhum aluno foi reprovado
 - (j) Todos alunos são maiores de idade
 - (k) Existe pescador que não é mentiroso ;
 - (l) Não quero nada ;
 - (m) $(4 \in A) \lor (4 \in B)$;

- (n) $(4 \in A) \land (4 \in B)$;
- (o) Todo nordestino é trabalhador
- (p) Existe galinha com pescoço pelado
- (q) Alguma música é erudita ;
- (r) Nenhum peixe vive fora da água
- (s) Marta gosta de ler ou de ouvir música
- (t) Se Marta estudou, então foi aprovada
- (u) Thábata é magra e loura. ;
- (v) Nenhum gato gosta de tomar banho ;
- (w) Wilson não é paciente ou Lídia não é faladeira
- (x) O gato mia e o rato chia ;
- 5. Determine o valor lógico das seguintes proposições:
 - (a) é falso que (3+4=7 e 2+2=5)
 - (b) não é verdade que 1998 é um número ímpar
 - (c) $2+2=4 \rightarrow (3+3=7 \leftrightarrow 1+1=3)$
- 6. Sejam as proposições:
 - $p \equiv J\hat{o}$ Soares é gordo.
 - $\mathbf{q} \equiv \mathbf{J} \hat{\mathbf{o}}$ soares é artista.

Escreva, na forma algébrica, cada uma das proposições seguintes:

- (a) Jô Soares não é gordo
- (b) Jô soares não é artista.
- (c) Não é verdade que Jô Soares não é gordo
- (d) Jô Soares é gordo ou artista.
- (e) Jô Soares não é gordo e é artista.
- 7. Mostre que as Fórmulas Lógicas abaixo são tautologias.
 - (a) $\overline{P}.\overline{Q} \to \overline{P+Q}$
 - (b) $\overline{P.Q} \leftrightarrow \overline{P} + \overline{Q}$
 - (c) $\overline{P \to Q} \to P.\overline{Q}$
 - (d) $P \to (Q \to P)$

- (e) $(Q \to (K \to N)) \to ((Q \to K) \to (Q \to N))$
- (f) $(\overline{P} \to \overline{Q} \to ((\overline{P} \to Q) \to P)$
- (g) $\overline{P} + Q \leftrightarrow P \to Q$
- 8. Simplifique, ao máximo, e deixando claro em cada passo qual lei lógica você utilizou, as expressões abaixo.
 - (a) $F(a, b, c) \equiv (a.b.\overline{c} + a.b + \overline{a.b.\overline{c}})$
 - (b) $X(a,b,c) \equiv a.b.c + a.b.\overline{c} + \overline{c}$,
 - (c) $P(a,b,c,d) \equiv ((d+a) + (\overline{d}.\overline{a})) \rightarrow d + \overline{a} + c.d(\overline{a+d}).d.c$
 - (d) $M(a, b, c, d) \equiv (\overline{\overline{a+b}+c}) \cdot a \rightarrow (\overline{c} \cdot \overline{d}) \cdot d$
- 9. Para os diagramas de Venn da Figura 2 faça o que se pede:

Figura 2: Expressões lógicas em Diagramas de Venn

- (a) Forneça as expressões lógicas no formato algébrico;
- (b) Forneça as expressões no formato de circuitos;
- (c) Forneça as expressões no formato de portas lógicas;
- (d) Simplifique as expressões lógicas;
- (e) Represente, utilizando Diagramas de Venn, as expressões:
 - i. $Z \equiv K + M$
 - ii. $W \equiv K \cdot M$
 - iii. $P \equiv (K + V) \cdot T$
- 10. Minimize as expressões a seguir, utilizando o mapa de Karnaugh:
 - (a) $\overline{A}.B + \overline{A}.\overline{B}$
 - (b) $\overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + \overline{A}.B.C + A.B.C$
 - (c) $\overline{A}.\overline{B}.C.D + A.\overline{B}.C.\overline{D} + A.B.C.\overline{D} + \overline{A}.B.C.D$
 - (d) $A.B.C.\overline{D}.\overline{E} + \overline{A}.\overline{B}.C.\overline{D}.E + A.B.C.D.E + \overline{A}.\overline{B}.C.\overline{D}.\overline{E}$

Projeto

A Figura 3 ilustra a automação na captação de água pluvial por uma empresa.

O sistema é composto por um reservatório de água alimentado pela bomba BR e uma caixa de água alimentada pela bomba BC. Sempre que o sensor de nível alto SNAR do reservatório estiver desativado (SNAR=0), a bomba BR (do rio) deve manter-se ligada (BR=1) para encher o reservatório. A bomba mantém-se desligada quando o reservatório está cheio, indicado pelo sensor de nível alto SNAR=1.

A empresa está em uma região de baixo índice pluviométrico e o rio, às vezes, fica tão baixo que não é possível captar a água. Então, se o sensor de nível crítico do rio estiver desacionado (SNCR=0), um alarme sonoro (AS=1) deve avisar o operador do sistema e, também, a bomba do rio (BR) deve ser desligada automaticamente pelo sistema.

Em um segundo estágio do sistema, a caixa de água da indústria deve manter o nível sobre o sensor SC. Se o nível da caixa de água da indústria ficar abaixo de SC (SC = 0) a bomba da caixa deve ser ligada (BC = 1), mas somente se o sensor de reservatório indicar que há água para ser bombeada, SNBR = 1.

Analisando este processo, identifique as variáveis de entrada e saída, monte as tabelas-verdades e obtenha as expressões lógicas que permitem implementar o funcionamento deste sistema.

Figura 3: Diagrama da empresa

Parte 2

1. Simplifique cada uma das seguintes expressões usando os teoremas de DeMorgan.

(a)
$$\overline{\overline{A}B\overline{C}}$$
 (f) $\overline{\overline{A}} + \overline{B} + \overline{C}$
(b) $\overline{\overline{A}} + \overline{B}C$ (g) $\overline{A(+\overline{C})D}$
(c) $\overline{AB\overline{BC}}$ (h) $\overline{(M+\overline{N})(\overline{M}+N)}$
(e) $\overline{\overline{AB}}$ (i) $\overline{\overline{ABC}D}$

- 2. Mostre como uma porta NAND de duas entradas pode ser construída a partir de portas NOR de duas entradas.
- 3. Mostre como uma porta NOR de duas entradas pode ser construída a partir de portas NAND de duas entradas.
- 4. Um avião a jato emprega um sistema de monitoração dos valores de rpm, pressão e temperatura dos seus motores usando sensores que operam, conforme descrito a seguir:

saída do sensor RPM = 0 apenas quando a velocidade for < 4.800 rpm saída do sensor P = 0 apenas quando a pressão for < 1,33 N/m2 saída do sensor T = 0 apenas quando a temperatura for < 93,3°C

A Figura 4 mostra o circuito lógico que controla uma lâmpada de advertência dentro da cabine para certas combinações de condições da máquina. Admita que um nível ALTO na saída W ative a luz de advertência.

Figura 4: Circuito lógico de monitoração de sensores de um avião a jato

Determine quais condições do motor indicam sinal de advertência ao piloto.

5. Determine a tabela-verdade completa para o circuito da figura 5 encontrando os níveis lógicos presentes na saída de cada porta para as 32 combinações possíveis de entrada.

Figura 5: Circuito com inversores

Troque cada OR por AND e cada AND por OR na figura. Em seguida, escreva a expressão para a saída e determine a tabela-verdade completa.

6. A figura 6 mostra uma aplicação de portas lógicas que simula um circuito two-way como o usado em nossas casas para ligar ou desligar uma lâmpada a partir de interruptores diferentes. Nesse caso, é usado um LED que estará LIGADO (conduzindo) quando a saída da porta NOR for nível BAIXO. Observe que essa saída foi nomeada LIGHT para indicar que é ativa-embaixo. Determine as condições de entrada necessárias para ligar o LED. Em seguida, verifique se o circuito funciona como um interruptor two-way (interruptores A e B). No Capítulo 4, você aprenderá a projetar circuitos como esse para produzir uma relação entre entradas e saídas.

Figura 6: Circuito two-way

Parte 3

1. Consulte a Fig. 7 Modifique o circuito de modo que o alarme seja ativado somente quando a pressão e a temperatura excederem os seus limites máximos ao mesmo tempo.

Fig. 3-40 Exemplo 3-23.

Figura 7: Circuito de monitoração de alarme

2. Monte a tabela-verdade completa para o circuito da Fig. 8 determinando os níveis lógicos presentes em cada saída de porta para cada uma das 16 combinações possíveis de níveis de entrada.

Figura 8: Circuito com 16 combinações de entrada

- 3. Para cada uma das seguintes expressões, construa o circuito lógico correspondente, usando portas AND, OR e inversores.
 - (a) $X \equiv \overline{AB(C+D)}$
 - (b) $Y \equiv (\overline{A + B + \overline{C}D\overline{E}}) + \overline{B}C\overline{D}$
 - (c) $Z \equiv (\overline{M+N} + \overline{P}Q)$
 - (d) $T \equiv \overline{W + \overline{PQ}}$
 - (e) $U \equiv MN(P + \overline{N})$

4. (a) Aplique as formas de onda de entrada da Fig. 9 numa porta NOR e desenhe a forma de onda de saída. (b) Repita com C mantido permanentemente em BAIXO. (c) Repita com C mantido ALTO.

Figura 9: Formas de onda de entrada

- 5. Repita o Problema 3-17 para uma porta NAND.
- 6. Escreva a expressão de saída para o circuito da Fig. 10. Monte uma tabela-verdade completa.

Figura 10: Circuito lógico para expressão de saída

- 7. Modifique os circuitos que foram construídos no Problema 3-16 de modo que portas NAND e portas NOR sejam usadas sempre que for apropriado.
- 8. Use os teoremas de DeMorgan para simplificar a expressão para a saída da Fig. 10.
- 9. Converta o circuito da Fig. 11 para outro que use apenas portas NOR. Depois escreva a expressão para o novo circuito, simplifique-a usando os teoremas de DeMorgan e compare-a com a expressão para o circuito original.

Figura 11: Circuito com portas NOR

Parte 4

1. Para os circuitos abaixo, obtenha a tabela verdade e as expressões canônicas e as simplificadas:

Figura 12: Circuito (a)

Figura 13: Circuito (b)

Figura 14: Circuito (c)

- 2. Desenhe o circuito que executa as expressões lógicas citadas abaixo:
 - (a) A.B.C + [(A + B).C]
 - (b) $(\overline{A+B}) + [(\overline{C.D}).\overline{D}]$
 - (c) $[\overline{(A+B).C}] + [\overline{D.\overline{(B+C)}}]$
 - (d) $A + [(B \oplus C).(\overline{\overline{A}.\overline{B}.C})] + (\overline{\overline{A}.\overline{C} + \overline{B}})$

Figura 15: Circuito (d)

Figura 16: Circuito (e)

(e)
$$\overline{C}.[\overline{A.\overline{B} + B.(\overline{A} + C)}]$$

(f)
$$A.B.C + A.\overline{B}.C + \overline{A}.B.\overline{C} + A.\overline{B}.\overline{C} + C$$

- 3. Encontre a expressão lógica e monte seu circuito para $T(a,b,c)\equiv a\not\equiv (b\not\equiv c).$
- 4. Encontre os circuitos S e Z. Em seguida, desenhe os circuitos que representam S e Z:

Α	В	С	S
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

A	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
$\mid B \mid$																
$\mid C \mid$	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
$\mid D \mid$																
Z	0	0	0	0	1	0	1	0	1	0	1	1	0	0	1	1

Tabela 2:

Tabela 1:

- 5. Simplifique as expressões utilizando os Mapas de Veitch-Karnaugh:
 - (a) Expressões U e W da Tabela 3.
 - (b) Expressão S da Tabela 1.
 - (c) Expressão Z da Tabela 2.
- 6. Como vimos as possíveis equivalências no exercício anterior, faça o que se pede:

A	В	С	U	W
0	0	0	0	X
0	0	1	0	0
0	1	0	1	1
0	1	1	1	1
1	0	0	1	X
1	0	1	0	1
1	1	0	1	1
1	1	1	1	0

Tabela 3: Expressões U e W

- (a) Desenhe o circuito do Exercício 1 item a), utilizando somente portas NOR.
- (b) Desenhe o circuito do Exercício 1 item a), utilizando somente portas NAND.
- 7. Represente em *Diagrama de Venn* os seguintes itens abaixo:
 - (a) Desenhe o Diagrama de Venn da Figura 12.
 - (b) Desenhe o Diagrama de Venn da Figura 13
 - (c) Desenhe o Diagrama de Venn da expressão no item (a) do Exercício 1.
 - (d) $\overline{A}.B + A.\overline{B} + A.B$
 - (e) $A.B.C + \overline{A}.B.\overline{C} + A.B.\overline{C} + A.\overline{B}.\overline{C} + \overline{B} + A + A.C$
- 8. As portas lógicas possuem entre si equivalência, como podemos obter portas NOT a partir de NAND e NOR, como forma de otimização e redução de componentes na construção de sistemas.
 - (a) Demonstre como podemos obter uma porta NOT a partir de uma porta NOR.
 - (b) Demonstre como podemos obter uma porta OR a partir de uma porta NAND e NOT.
 - (c) Demonstre como podemos obter uma porta NAND a partir de uma porta OR e NOT.
 - (d) Demonstre como podemos obter uma porta AND a partir de uma porta NOR e NOT.
 - (e) Demonstre como podemos obter uma porta EXCLUSIVE OR a partir de uma porta AND, OR e NOT.
- 9. Minimize as expressões a seguir, utilizando os Diagramas de Veitch-Karnaugh:
 - (a) $\overline{A}.\overline{B}.\overline{C} + \overline{A}.B.\overline{C} + \overline{A}.B.C + A.B.C$
 - (b) $\overline{A}.\overline{B}.\overline{C}.\overline{D} + \overline{A}.\overline{B}.\overline{C}.D + \overline{A}.\overline{B}.C.\overline{D} + \overline{A}.B.\overline{C}.D + A.\overline{B}.\overline{C}.\overline{D} + A.\overline{B}.\overline{C}.D + A.\overline{B}.\overline{$

(c)
$$\overline{B}.\overline{D} + A + A.\overline{B}.\overline{C}.D + \overline{A}.\overline{B}.C.D + \overline{A}.\overline{C}$$

(d)
$$A.B.C + A.B + \overline{A}.B.C.D + B.D + C.D + \overline{B}.C.\overline{D} + \overline{A}.B.\overline{C}.\overline{D}$$

- 10. Simplifique por Karnaugh o que se pede:
 - (a) Simplifique T(a, b, c, d) sendo:

$$K \equiv 1 \quad se \quad \begin{cases} a \equiv b \\ a \equiv \overline{c} \\ a \equiv \overline{b}.\overline{c}.d \end{cases}$$

ou $K \equiv 0$ se $a \not\equiv b$ e $a \equiv c$ e $a \equiv \overline{d}$ (caso não contrarie as anteriores)

(b) Simplifique K(a, b, c, d) sendo:

$$K \equiv 1 \quad se \quad \left\{ \begin{array}{l} a \not\equiv b \\ b \equiv c \\ c \equiv d \end{array} \right.$$

ou $K \equiv 0$ se $c \not\equiv d$ e $c \equiv a$ (caso não contrarie as anteriores)

11. Simplifique, utilizando os *Mapas de Veitch-Karnaugh*, as expressões representadas pelos circuitos em portas lógicas das Figuras [17], [18] e [19]:

Figura 17:

Figura 18:

Figura 19:

Bom Trabalho!

Professor Eliseu César Miguel Revisado por Leonardo Magnani e Pedro Henrique de Almeida Esta lista de exercícios foi elaborada utilizando-se LATEX