STAT 5572

Exam I

Due: Monday, Oct.9th by 11:59 pm

(1) Consider a bivariate normal population with $\mu_1 = 0$, $\mu_2 = 2$, $\sigma_{11} = 2$, $\sigma_{22} = 1$, and $\rho_{12} = 0.5$.

- (a) (5 pts) Write out the bivariate normal density.
- (b) (5 pts) Write out the squared statistical distance expression $(x \mu)'\Sigma^{-1}(x \mu)$ as a function of x_1 and x_2 .
- (c) (10 pts) Determine (and sketch) the constant-density contour that contains 50% of the probability.
- (2) Let *X* be distributed $N_4(\mu, \Sigma)$ such that,

$$\mu = \begin{bmatrix} 1 \\ -1 \\ 2 \\ 0 \end{bmatrix} \quad \Sigma = \begin{bmatrix} 2 & 0 & 1 & 0 \\ 0 & 3 & 0 & 2 \\ 1 & 0 & 5 & 0 \\ 0 & 2 & 0 & 3 \end{bmatrix}$$

- (a) (5 pts) Find the marginal distribution of $\chi_1 = [X_1, X_3]$
- (b) (10 pts) Find the conditional distribution of $(X_1, X_2 | X_3 = x_3, X_4 = x_4)$.
- (3) Suppose *X* is $N_3(\mu, \Sigma)$ with

$$\mu = \begin{bmatrix} -4\\2\\5 \end{bmatrix} \quad \Sigma = \begin{pmatrix} 8 & 0 & -1\\0 & 3 & 0\\-1 & 0 & 5 \end{pmatrix}$$

Which of the following are independent? Justify.

- (a) (5 pts) X_1 and X_2
- (b) (5 pts) X_1 and X_3
- (c) (5 pts) (X_1, X_2) and X_3
- (4) The datafile '*National_Track_records.dat*' contains the national track records for women in 54 countries.

Let
$$X_1 = 100m (s)$$

 $X_2 = 200m (s)$
 $X_3 = 400m (s)$
 $X_4 = 800m (min)$
 $X_5 = 1500m (min)$

$$X_6 = 3000m (min)$$

 $X_7 = Marathon (min)$

Define the following linear combinations,

$$V_1 = \frac{1}{3}X_1 + \frac{1}{6}X_2 + \frac{1}{12}X_3$$

$$V_2 = \frac{15}{8}X_4 + X_5 + \frac{1}{2}X_6 + \frac{1}{28,13}X_7$$

Where V_1 is the average of the short distance times scaled to seconds per 100 meters and V_2 is the average of the long-distance times scaled to seconds per 100 meters.

- (a) (8 pts) Calculate the observed values of V_1 and V_2 .
- (b) (12 pts) Calculate sample means, sample variances and sample covariances of V₁ and V₂.
- (5) Consider the 'sweat.dat' data file. For each of 20 healthy females, three numerical variables that measure aspects of perspiration: $X_1 = \text{Sweat}$ (Sweat rate), $X_2 = \text{Sodium}$ (Sodium content), and $X_3 = \text{Potassium}$ (Potassium content) are included.
 - (a) (10 pts) Construct univariate QQ-plots for each of the three variables. Also, make the three pairwise scatterplots. Does the multivariate normal assumption seem reasonable?
 - (b) (15 pts) Test the null hypothesis H_0 : $\mu' = [4.0, 45.0, 10.0]$ at $\alpha = 0.05$ using the Hotelling's T^2 test.
 - What is the test statistic, critical value, and the p-value? What is your conclusion regarding H_0 ?
 - (c) (5 pts) Determine the 95% confidence ellipsoid for μ . Where is it centered? What are the corresponding half-lengths of its axes?