#### Madhav yadav

#### Indian Institute of Technology Hyderabad

 $Under\ the\ supervision\ of\ Dr. Balasubramaniam\ Jayaram$ 

June 6, 2023



Indian Institute of Technology Hyderabad

### Motivation for this work

Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17)

#### **Classification with Minimax Distance Measures**

#### Morteza Haghir Chehreghani

Xerox Research Centre Europe - XRCE 6 chemin de Maupertuis 38240 Meylan, France morteza.chehreghani@xrce.xerox.com

# Decoding the title

| Classification |  |  |
|----------------|--|--|
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |
|                |  |  |

# Decoding the title

#### Classification

- A supervised ML process
  - categorizing a given set of input data into classes,
  - based on one or more variables.

# Decoding the title

#### Classification

- A supervised ML process
  - categorizing a given set of input data into classes,
  - based on one or more variables.
- Real world data are very complex.
  - Basic distance functions fail to capture underlying patterns.

- Each data point has two characteristics:
  - The vector
  - The Label.
- A dataset is represented in the form of graph G(O, D)

- Each data point has two characteristics:
  - The vector
  - The Label.
- A dataset is represented in the form of graph G(O, D)
  - ullet O is the set of objects representing data points,
  - D is the set of edges.

 $d_{ij}$  – pairwise distance between nodes i and j.

 $\boldsymbol{d}_{ij}$  needs to satisfy the following conditions:

- $d_{ii} = 0$
- $d_{ij} \geq 0$
- $\bullet \ d_{ij} = d_{ji}$

 $d_{ij}$  needs to satisfy the following conditions:

- $d_{ii} = 0$
- $d_{ij} \geq 0$
- $\bullet \ d_{ij} = d_{ji}$

Need not be a metric since

• it need not satisfy triangle inequality.

#### Definition

$$d_{ij}^{MM} = \min_{r \in R_{ij}(G)} (\max_{1 \leq l \leq |r|-1} d_{r(l)r(l+1)})$$

#### Definition

$$d_{ij}^{MM} = \min_{r \in R_{ij}(G)} (\max_{1 \leq l \leq |r|-1} d_{r(l)r(l+1)})$$

where

- $R_{ij}(G)$  set of all possible paths between i and j,
- $\bullet$  r- sequence of object indices,
- r(l)-  $l^{th}$  object in the path.

## Example



• Base distance  $d_{FG} = 18$ .

### Example



- Base distance  $d_{FG} = 18$ .
- Minimax distance  $d_{FG}^{MM} = 15$ .

#### Advantages

• Enable to compute the classes in a non-parametric way.

### Advantages

- Enable to compute the classes in a non-parametric way.
- Extract the class specific structures.

### Advantages

- Enable to compute the classes in a non-parametric way.
- Extract the class specific structures.
- Take into account the transitive relations.

#### Advantages

- Enable to compute the classes in a non-parametric way.
- Extract the class specific structures.
- Take into account the transitive relations.
- Makes use of the distance function which is not necessarily a metric.

| Goal: |  |  |
|-------|--|--|
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |
|       |  |  |

#### Goal:

• Develop a general-purpose framework,

#### Goal:

- Develop a general-purpose framework,
- To employ Minimax distances with any classification method,

#### Goal:

- Develop a general-purpose framework,
- To employ Minimax distances with any classification method,
- That performs on numerical data.

#### Plan of Action

• Compute the pairwise minimax distance between all the objects i and j.

#### Plan of Action

- Compute the pairwise minimax distance between all the objects i and j.
- 2 Compute an embedding of these points in a new V.S.

#### Plan of Action

- Compute the pairwise minimax distance between all the objects i and j.
- 2 Compute an embedding of these points in a new V.S.
  - the pairwise squared Euclidean distance in the new space and
  - the pairwise minimax distance in the original space are equal.

# Step 1- Computing pairwise minimax distance

#### Procedure:

- Build a minimum spanning tree (MST) over the graph,
- Compute the minimax distances over the MST.

## Step 1- Computing pairwise minimax distance

#### Procedure:

- Build a minimum spanning tree (MST) over the graph,
- Compute the minimax distances over the MST.

Are the minimax distances over a graph and its MST same?

#### Theorem

• Given a graph G(O, D),

#### Theorem

- Given a graph G(O, D),
- for every pair of objects i, j belongs to O,

#### Theorem

- Given a graph G(O, D),
- for every pair of objects i, j belongs to O,
- their Minimax distance over G and MST constructed on that is identical.

#### Theorem

- Given a graph G(O, D),
- for every pair of objects i, j belongs to O,
- their Minimax distance over G and MST constructed on that is identical.

#### Outcome

#### Theorem

- Given a graph G(O, D),
- for every pair of objects i, j belongs to O,
- their Minimax distance over G and MST constructed on that is identical.

#### Outcome

• The Minimax distance for the Minimum spanning tree is

$$d_{ij}^{MM} = \max_{1 \le l \le |r_{ij}| - 1} d_{r_{ij}(l)r_{ij}(l+1)} .$$

#### Theorem

- Given a graph G(O, D),
- for every pair of objects i, j belongs to O,
- their Minimax distance over G and MST constructed on that is identical.

#### Outcome

• The Minimax distance for the Minimum spanning tree is

$$d_{ij}^{MM} = \max_{1 \le l \le |r_{ij}| - 1} d_{r_{ij}(l)r_{ij}(l+1)} .$$

• Equivalent of getting the maximum edge weight in the path between them.

### Given

 $D^{MM}$ - pairwise minimax distance between the objects.

#### Given

 $D^{MM}$ - pairwise minimax distance between the objects.

#### Aim

• To find an embedding of the objects into a vector space.

#### Given

 $D^{MM}$ - pairwise minimax distance between the objects.

#### Aim

- To find an embedding of the objects into a vector space.
  - The pairwise minimax distance in the original space and pairwise squared Euclidean distance in the new space are same.

Does an  $L_2^2$  embedding exist or not?

#### Given

 $D^{MM}$ - pairwise minimax distance between the objects.

#### Aim

- To find an embedding of the objects into a vector space.
  - The pairwise minimax distance in the original space and pairwise squared Euclidean distance in the new space are same.

Does an  $L_2^2$  embedding exist or not?

#### Theorem

• Given the pairwise distances  $D^{MM}$ ,

# Step 2- Embedding of pairwise Minimax distances

### Given

 $D^{MM}$ - pairwise minimax distance between the objects.

### Aim

- To find an embedding of the objects into a vector space.
  - The pairwise minimax distance in the original space and pairwise squared Euclidean distance in the new space are same.

Does an  $L_2^2$  embedding exist or not?

#### Theorem

- Given the pairwise distances  $D^{MM}$ ,
- the matrix of Minimax distances  $D^{MM}$  induces an  $L_2^2$  embedding.

Step 1: Centering the distance matrix  $D^{MM}$ .

$$W^{MM} = -\frac{1}{2}AD^{MM}A\tag{1}$$

where  $A = I_N - \frac{1}{N} e_N e_N^T$ .

Step 1: Centering the distance matrix  $D^{MM}$ .

$$W^{MM} = -\frac{1}{2}AD^{MM}A\tag{1}$$

where  $A = I_N - \frac{1}{N} e_N e_N^T$ .

Step 2: Singular Value Decomposition of  $W^{MM}$ 

$$W^{MM} = V\Lambda V^{'} . (2)$$

Step 1: Centering the distance matrix  $D^{MM}$ .

$$W^{MM} = -\frac{1}{2}AD^{MM}A\tag{1}$$

where  $A = I_N - \frac{1}{N} e_N e_N^T$ .

Step 2: Singular Value Decomposition of  $W^{MM}$ 

$$W^{MM} = V\Lambda V' \ . \tag{2}$$

Step 3: Calculating Minimax vectors

$$Y_d^{MM} = V_d(\Lambda_d)^{\frac{1}{2}} . (3)$$

### Classification Methods

- Logistic Regression
- SVM Linear Kernel
- Nearest Neighbour

### Classification Methods

- Logistic Regression
- SVM Linear Kernel
- Nearest Neighbour

### datasets

- Synthetic:
  - ① Circular
  - 2 Annular
  - 6 Chess Board
- Real:
  - Iris

### Base distances

- Euclidean distance
- $d(x,y) = | \|x\|_2 \|y\|_2 |$
- 3 Manhatten distance

### Base distances

- Euclidean distance
- $d(x,y) = | \|x\|_2 \|y\|_2 |$
- Manhatten distance

### Performance parameters

- Accuracy of classification in the original space.
- ${\color{red} 2}$  Accuracy of classification after embedding in the new space.



### 1. Euclidean Distance





(i) Logistic Regression

(ii) SVM Linear



**2.**  $d(x,y) = |\|x\|_2 - \|y\|_2|$ 



(iv) Logistic Regression



(v) SVM Linear



(vi) MST

### 3. Manhatten Distance



(vii) Logistic Regression



(viii) SVM Linear



(ix) MST



### 1. Euclidean Distance





(x) Logistic Regression

(xi) SVM Linear



## **2.** $d(x,y) = |\|x\|_2 - \|y\|_2|$



175 — accuracy — Eigen value | 125 | 100 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 150 | 200 | 250 | 100 | 250 | 100 | 250 | 250 | 100 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 | 250 |

(xiii) Logistic Regression

(xiv) SVM Linear



(xv) MST

### 3. Manhatten Distance





(xvi) Logistic Regression

(xvii) SVM Linear



(xviii) MST

# Chessboard Dataset

### 1. Euclidean Distance



(xxi) MST

## Chessboard Dataset

### **2.** $d(x,y) = |\|x\|_2 - \|y\|_2|$



(xxii) Logistic Regression



(xxiii) SVM Linear



(xxiv) MST

# Chessboard Dataset

### 3. Manhatten Distance



(xxv) Logistic Regression



(xxvi) SVM Linear



(xxvii) MST

## Iris dataset

### 1. Euclidean Distance



(xxviii) Logistic Regression



(xxix) SVM Linear



## Iris dataset

**2.** 
$$d(x,y) = |\|x\|_2 + \|y\|_2|$$



(xxxi) Logistic Regression

(xxxii) SVM Linear



(xxxiii) MST

## <u>Iri</u>s dataset

### 3. Manhatten Distance





(xxxiv) Logistic Regression

(xxxv) SVM Linear



(xxxvi) MST

# Accuracy

|     |              |                   |                            |                         | Accuracy without |                         |                            | Accuracy with |
|-----|--------------|-------------------|----------------------------|-------------------------|------------------|-------------------------|----------------------------|---------------|
|     |              |                   | Accuracy without embedding | Accuracy with embedding | embedding        | Accuracy with embedding | Accuracy without embedding | embedding     |
| no. | DataSet Name | distance function | (Logistic regression)      | (logistic regression)   | (svm Lin)        | (svm lin)               | (NN)                       | (NN)          |
| 1   | Circular     | Euclidean         | 0.626262626                | 0.646464646             | 0.626262626      | 0.888888889             | 0.95                       | 0.9233333     |
|     |              | Norm 2            | 0.626262626                | 0.626262626             | 0.626262626      | 0.939393939             | 0.993333333                | 0.9866666     |
|     |              | Manhatten         | 0.626262626                | 0.656565657             | 0.626262626      | 0.858585859             | 0.96                       | 0.9333333     |
| :   | ! Annular    | Euclidean         | 0.5                        | 0.709302326             | 0.5              | 0.790697674             | 0.896153846                | 0.8846153     |
|     |              | Norm 2            | 0.5                        | 0.802325581             | 0.5              | 0.802325581             | 1                          | 0.9884615     |
|     |              | Manhatten         | 0.5                        | 0.697674419             | 0.5              | 0.76744186              | 0.888461538                | 0.8846153     |
|     | Chess Board  | Euclidean         | 0.419753086                | 0.419753086             | 0.419753086      | 0.456790123             | 0.771428571                | 0.7346938     |
|     |              | Norm 2            | 0.419753086                | 0.419753086             | 0.419753086      | 0.419753086             | 0.555102041                | 0.5428571     |
|     |              | Manhatten         | 0.419753086                | 0.419753086             | 0.419753086      | 0.49382716              | 0.783673469                | 0.7428571     |
| 4   | Iris         | Euclidean         | 1                          | 0.96                    | 0.98             | 0.98                    | 0.96                       | 0.9266666     |
|     |              | Norm 2            | 1                          | 0.76                    | 0.98             | 0.76                    | 0.833333333                | 0.            |
|     |              | Manhatten         | 1                          | 1                       | 0.98             | 1                       | 0.953333333                | 0.            |
|     |              |                   |                            |                         |                  |                         |                            |               |

### Conclusion

### Observations

- While LR and SVM largely benefit from the embedding based on Minimax distance,
  - NN does not.
  - Does not bring in more insight than the original pairwise distance.
- The embedding does not make use of the class information.

### Conjecture

- A distance that understands the underlying relationship,
  - appropriate for embedding in an NN setting.
- Amount of enhancement obtained from embedding
  - dependent on the original base distance.

Thanks for your patient listening!!!