Hw#5 Datapath&Control and Pipeline

1) For the following code draw multicycle pipeline diagram, identify hazards, show if there is pipeline stall or forwarding.

$$$t0 = 10, $t3 = 1016, $t5 = -2$$

Address	Value
1012	15
1016	47
1020	-5
1024	3

Lw \$t5, 4(\$t3) Addi \$t3, \$t5, 13 Sub \$t0, \$zero, \$t3 Sw \$t0, 16(\$t3) Or \$t3, \$t0, \$t5 And \$t5, \$t3, \$t3

The value of \$t5 in **Lw** operation will be used in the **addi** operation. The value of \$t3 in **addi** operation will be used in the **sub** operation. The value of \$t0 in **sub** operation will be used in the **Sw** operation. The value of \$t3 in **or** operation will be used in the **and** operation.

All hazards in this example are data hazards.

a) FIRST DRAW MULTICYCLE PIPELINE DIAGRAM. IDENTIFY DEPENDENCIES. INDICATE IF A REGISTER IS FORWARDED or CAUSES STALL. Example

													Write the					
	Сс	Сс	Cc	Сс	CC	Сс	Сс	Сс	Сс	Cc	Сс	Сс	name of					
	1	2	3	4	5	6	7	8	9	10	11	12	<u>register</u>					
													<u>causing</u>					
Instruction	Pipeline Stages												Stall	Fwd Rs	Fwd Rt			
ex \$t5,\$t1,\$t2	IF	ID	EX	М	WB									\$t2*				
Lw \$t5, 4(\$t3)	IF	ID	EX	M \	WB													
		-	-	- \	-	-							\$t5					
Addi \$t3, \$t5, 13			IF	ID	EX	M	WB								\$t5*			
Sub \$t0, \$zero, \$t3				IF	ID	EX	M	WB							\$t3*			
Sw \$t0, 16(\$t3)					IF	ID	EX	M	WB						\$t0*			
Or \$t3, \$t0, \$t5						IF	ID	EX	M	WB					\$t0*			
And \$t5, \$t3, \$t3							IF	ID	EX	М	WB			\$t3*	\$t3*			

A (read data 1): 0 B (read data 2):1016 C(sign extend input): X

D(Write data):1016(the value of \$t0) E(RegWrite):1

F(Mux A): 0 G(Mux B): X H(Mux 4 output): 0 I(ALU output): 11

K(Write Data): empty L(Mem write): empty M(Mem read): empty

N(Mux 3): 1 P(Mux 3 output): -5 O(MEM/WB) write reg: 1