GPU-Accelerated Ray-Tracing Methods for Determining Radiation View Factors in Multi-Junction Thermoelectric Generators

Asher J. Hancock^{1a} and:

Laura B. Fulton², Justin Ying³, Shervin Sammak, Ph.D.⁴,

Matthew M. Barry, Ph.D¹

¹Department of Mechanical and Materials Science, UPitt

²School of Computer Science, CMU

³Department of Computer Engineering, UPitt

⁴Center for Research Computing, UPitt

ajh172@pitt.edua

Background: Thermoelectric generators and uses

Thermoelectric generators (TEGs) are solid-state energy conversion devices

Show promise in space applications, as well as the automobile industries

"Recent development and application of thermoelectric generator and cooler" (2015) in Applied Energy

"US space radioisotope power systems and applications: past, present and future" (2011) in Radioisotopes-Applications in Physical Sciences

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Conclusion

2020 July 22nd

Background: TEG design

Basics of a unit-cell thermoelectric generator design

- P- and N-type thermoelectric materials
- Conductive interconnectors (Int.)
- Heat source and heat sink
- String multiple cells together to form a TE modules

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Background: TEG performance

Figure of merit for TE materials ($Z\overline{T}$):

 α : seebeck coefficient

 σ_{el} : electrical conductivity

K: thermal conductivity

 \bar{T} : mean temperature

 $Z\overline{T} = \frac{\alpha^2 \sigma_{el}}{\mathrm{K}} \overline{T}$

Performance rests upon optimizing temperature-dependent material properties and device design

Radiative heat transfer proportional to T^4

Minimize parasitic radiative transfer across the junction

"High performance bulk thermoelectrics via a panoscopic approach" (2013) in Materials Today

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Motivation: View factor

Radiation view factor (F_{ij}):

$$F_{ij} = \frac{1}{A_i} \int \int \frac{\cos \theta_i \cos \theta_j}{\pi \vec{R}^2} dA_i A_j$$

A geometric property that quantifies the proportion of diffuse radiation emitted from one surface, A_i , and received by another surface, A_i

Radiation Heat Transfer Rate (Q_i) :

ε: material emissivity

σ: Stefan-Boltzmann constant

 T_i : temperature of emitter

 T_i : temperature of receiver

Why do we care?

Accurate heat transfer models

Parasitic radiative transfer that lowers temperature gradient

$$Q_i = \varepsilon \sigma A_i F_{ij} (T_i^4 - T_j^4)$$

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Methodology: GPU-accelerated programming and geometry definition

Graphics Processing Unit (GPU) can achieve massive runtime gains

Thousands of cores that operate in parallel Computational structure is ideal for repetitive, algebraic tasks

Geometry Input: STL Files

Ubiquitous in CAD software Robust geometry definition

```
solid ThermoelectricGenerator.STL
facet normal 0.000000e+00 -1.000000e+00 0.000000e+00
outer loop
vertex -4.128709e-01 1.750000e+00 5.000000e-01
vertex -4.128709e-01 1.750000e+00 -5.000000e-01
vertex 4.128709e-01 1.750000e+00 5.000000e-01
endloop
endfacet
```

Example STL format

Example TEG unit-cell defined in STL format

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Methodology: View factor computation

View factor:

$$F_{ij} = \frac{1}{A_i} \int \int \frac{\cos \theta_i \cos \theta_j}{\pi \vec{R}^2} dA_i A_j$$

View factor summation:

$$F_{ij} = \frac{1}{A_i} \sum_{i=1}^{N_i} \sum_{j=1}^{N_j} \frac{\cos \theta_i \cos \theta_j}{\pi \vec{R}^2} dA_i A_j$$

Every differential area of the emitter surface creates a corresponding ray for each receiver differential area, where the ray vectors are determined by the centroidal locations of each triangle, as determined from the STL file.

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Methodology: Shadow effect and Möller-Trumbore intersection algorithm

Shadow effect: a phenomenon that represents any potential ray intersection with a non-participating surface

Reduces view factor magnitude

Möller–Trumbore ray-triangle intersection algorithm:

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Methodology: Flow chart

Methodology: Self-intersection

Self-intersection: refers to any obstructive surface, intrinsic of either emitting or receiving surface, that need checked by the MT algorithm for possible ray-intersection to properly resolve the view factor

Normally exhibited in curved surfaces

Concentric cylinders that exhibit self-intersection

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Methodology: Self-intersection algorithm

Self-intersection algorithm: dynamics updates the emitting/receiving surfaces to consider only one tessellation at a time

All other surfaces are considered non-participatory (blocking)

Geometry Partitioning: Iteration 1 Iteration 2 Iteration 3 Iteration 3

Dynamic geometry partitioning during self-intersection algorithm

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Conclusion

2020 July 22nd

Methodology: Back-face culling

Back-face culling: a computer graphics technique that refers to the removal of primitive geometries that face away from the camera

> In this context, tessellations that "face away" from the emitting tessellation appear clockwise oriented

Increases computational savings and it prevents intersection miscalculations.

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Validation: Analytical studies

To validate the program's effectiveness, numerous geometries with published analytical solutions were inputted and tested

Parallel plates geometry X/L = Y/L = 1.0

Spatial convergence with increasing mesh density

Outline:

Background

Motivation

Methodology

Validation

Results
Discussion

Validation: Analytical studies

More analytical test cases . . .

Analytical	Numerical	Percent
Soln.	Soln.	Error
0.05573419	0.05573420	7.05725E-06

Analytical vs. numerical solutions for Z/X = 1.0, Y/X = 1.0

Analytical	Numerical	Percent
Soln.	Soln.	Error
1.00	0.9988312	0.116872

Analytical vs. numerical solutions for r1 = 0.5 [mm], r2 = 1.0 [mm]

Note: MT, self-intersection, and culling are implemented in concentric spheres

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Results: Single-junction TEG

H Height W Width t Interconnector Thickness \vec{R} Radiative Ray Vector

$$\theta = \frac{N * A_P A_N}{A_{total}}$$

 A_P : Area of p-type TE leg A_N : Area of n-type TE leg

N: Number of junctions

As demonstrated, the view factor decreases as H/W increases (with a constant interconnector thickness)

> Due to increased prevalence of shadow effect

Outline:

Motivation

Methodology

Validation

Results

Results: Multi-junction TEG, H/W=0.25

Outline:

Motivation
Methodology
Validation

Results

Discussion Conclusion

Asymptotic

in the view factor

0.08

Results: Multi-junction TEG, H/W=4.00

0.24 -0.20 $t_{int} = 0.125$ 0.16 $-t_{int} = 0.15625$ **Constant Design Parameters** $t_{int} = 0.1875$ $\theta = 0.1$ $t_{int} = 0.21875$ behavior observed 0.12 -H/W = 4.00 $t_{int} = 0.25$

Number of Junctions

Outline:

Motivation Methodology Validation

Results

Discussion Conclusion

16

Discussion: TEG modeling implications

Asymptotic curve demonstrates that a realistic model (N>128) could be modeled with a simpler model (N=16)

Number of Junctions	View Factor	Absolute Difference
1	0.58177071	
2	0.637026446	0.055256
4	0.665832591	0.028806
8	0.680281868	0.014449
16	0.68751517	0.007233
128	0.694024679	0.00651

View factor values for various junction sizes: $\theta = 0.1 \text{ H/W} = 0.25$, t = 0.125 [mm].

View Factor: N = 16	View Factor: N = 128	Percent Difference
0.68751517	0.69402468	0.942356%

Percent difference between a 16 junction TEG and a 128 junction TEG

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Discussion: Computational Speedup

Computational time comparison between the CPU (i9-9980XE) and GPU (i9-9980XE + 2080TI) for a single-junction TEG with θ = 0.1,

H/W = 0.25, t = 0.125 [mm] GPU-acceleration becomes increasingly important as junction size grows

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Conclusion

GPU-accelerated programming allows for a robust view factor calculator

Shadow effect: MT algorithm

Curved surfaces: self-intersection algorithm, culling enabled

As distance across a TEG hot- and cold-sides increases, the view factor decreases

For constant design parameters, as junction number increases, the view factor behaves asymptotically

Can estimate a large and complex models with simpler models

This methodology facilitates the ability the design and analysis of high-temperature TEGs.

Outline:

Background

Motivation

Methodology

Validation

Results

Discussion

Acknowledgements:

Computational resources provided by the Center for Research Computing (CRC) at the University of Pittsburgh Background Motivation

Methodology Validation

Results

Discussion