Probability Analysis for Monopoly

L. Rotgers

May 13, 2018

In [1]: %pylab inline

Populating the interactive namespace from numpy and matplotlib

Contents

1	Moı	nopoly	3
	1.1	Squares	4
		1.1.1 Labels	4
		1.1.2 Descriptions	4
		1.1.3 Purchasable	5
		1.1.4 Grouping	5
	1.2	Cards	6
		1.2.1 Community cards	6
		1.2.2 Community deck implementation	7
		1.2.3 Chance cards	8
		1.2.4 Chance deck implementation	9
	1.3	Dice	0
		1.3.1 Simple: one dice with six sides	0
		1.3.2 Advanced: two dice with four sides	1
	1.4	Monopoly simulation	2
		1.4.1 Algorithm	2
		1.4.2 Modulo arithmetic for position tracking	2
		1.4.3 Implementation	2
	1.5	Detailed probability analysis	4
		1.5.1 Determining probabilities	4
		1.5.2 Plot of probabilities by square	4
		1.5.3 Table of probabilities by square	5
		1.5.4 Top 10 highest probability squares	6
	1.6	High-level probability analysis	7
		1.6.1 Aggregating (grouping by)	7
		1.6.2 Overview of all the probabilities by aggregate	8
		1.6.3 Train station probabilities	8
		1.6.4 Probability to be in jail	8
		1.6.5 Probability to draw a card	9

1 Monopoly

Analysis for the probabilities with Monopoly to answer the question: which are the best houses to buy?

To answer this question we will create a simulated version of Monopoly and determine the probabilities to land on each square. The square with the highest probability will be the best square to have.

monopoly

1.1 Squares

Each edge has 9 positions and there are 4 edges. There are 4 corners. Which gives a total of 40 positions where a player can land. The labels are numbered starting at GO.

1.1.1 Labels

There are 40 squares.

1.1.2 Descriptions

We also want to know the proper names, so we don't have to look up the labels.

1.1.3 Purchasable

We want to know if they are purchasable so we can sort on that later.

```
In [5]: squares_purchasable = [False, True, False, True, True, True, False, True, False, True, True, False, True, True, False, True, True, False, True]
```

1.1.4 Grouping

We want to know in what group they are so we can aggregate our data later.

1.2 Cards

There are two decks of cards.

- Community Cards
- Chance Cards

Each deck contains 16 cards.

1.2.1 Community cards

Monopoly has 16 community cards.

COMMUNITY CHEST ADVANCE TOKEN TO THE NEAR- EST RAILROAD AND PAY OWNER TWICE THE RENTAL TO WHICH HE IS OTHERWISE ENTITLED. IF RAILROAD IS UNOWNED, YOU MAY BUY IT FROM THE BANK.	COMMUNITY CHEST INCOME TAX REFUND COLLECT \$20,00	COMMUNITY CHEST ADVANCE TO "GO"	COMMUNITY CHEST YOU INHERIT \$100.00
COMMUNITY CHEST FROM SALE OF STOCK YOU GET \$45.00	COMMUNITY CHEST GO TO JAIL MOVE DIRECTLY TO JAIL DO NOT PASS "GO" DO NOT COLLECT \$200.00	COMMUNITY CHEST LIFE INSURANCE MATURES COLLECT \$100,00	COMMUNITY CHEST BANK ERROR IN YOUR FAVOR COLLECT \$200.00
COMMUNITY CHEST RECEIVE FOR SERVICES \$25.00	COMMUNITY CHEST DOCTOR'S FEE PAY \$50.00	COMMUNITY CHEST GET OUT OF JAIL FREE This cand may be bept until seeded or sold	COMMUNITY CHEST ADVANCE TOKEN TO THE NEAR- EST RAILROAD AND PAY OWNER TWICE THE RENTAL TO WHICH HE IS OTHERWISE ENTITLED. IF RAILROAD IS UNOWNED, YOU MAY BUY IT FROM THE BANK.
COMMUNITY CHEST PAY HOSPITAL \$100.00	COMMUNITY CHEST YOU HAVE WON SECOND PRIZE IN A BEAUTY CONTEST COLLECT \$11.00	COMMUNITY CHEST WE'RE OFF THE GOLD STANDARD COLLECT \$50.00	COMMUNITY CHEST PAY A \$10.00 FINE OR TAKE A "CHANCE"

CC

Because we are only determining the probabilities, we are only interested in the following cards:

- advance to go
- go to jail
- get out of jail, free
- go back 2 spaces

1.2.2 Community deck implementation

We implement the community deck in a class. The class keeps track of a list with 16 cards. An index points to the next card. When we are out of cards, we reset the index and reshuffle the cards.

```
In [28]: from random import shuffle
         class CommunityDeck():
             def __init__(self):
                self.deck = [0] * 16
                 self.deck[0] = 'gtg' # go to go
                 self.deck[1] = 'gtj' # go to jail
                 self.deck[2] = 'goj' # get out of jail
                 self.deck[3] = 'gb2' # go back 2 steps
                 self.index = 16
             def draw card(self):
                 if self.index >= len(self.deck):
                     self.index = 0
                     shuffle(self.deck)
                 card = self.deck[self.index]
                 self.index += 1
                 return card
  Now we test it:
In [34]: deck = CommunityDeck()
         deck.deck
Out[34]: ['gtg', 'gtj', 'goj', 'gb2', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
In [35]: deck.draw_card()
Out[35]: 0
In [36]: deck.deck
Out[36]: [0, 0, 0, 0, 'gb2', 0, 0, 'gtg', 0, 'gtj', 0, 'goj', 0, 0, 0]
In [37]: deck.index
Out[37]: 1
```

1.2.3 Chance cards

Monopoly has 16 chance cards.

chance

Because we are only determining the probabilities, we are only interested in the following cards:

- go back three spaces
- get out of jail free
- advance to go
- advance to illinois avenue (R3)
- go to jail

1.2.4 Chance deck implementation

We implement the chance deck in a class. The class keeps track of a list with 16 cards. An index points to the next card. When we are out of cards, we reset the index and reshuffle the cards.

```
In [8]: from random import shuffle
        class ChanceDeck():
            def __init__(self):
                self.deck = [0] * 16
                self.deck[0] = 'gtg' # go to go
                self.deck[1] = 'gtj' # go to jail
                self.deck[2] = 'goj' # get out of jail
                self.deck[3] = 'gb3' # go back 3
                self.deck[4] = 'r3' # go to red 3 (r3)
                self.index = 16
            def draw_card(self):
                if self.index >= len(self.deck):
                    self.index = 0
                    shuffle(self.deck)
                card = self.deck[self.index]
                self.index += 1
                return card
  Now we test it:
In [30]: deck = ChanceDeck()
         deck.deck
Out[30]: ['gtg', 'gtj', 'goj', 'gb3', 'r3', 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
In [31]: deck.draw_card()
Out[31]: 0
In [32]: deck.deck
Out[32]: [0, 'gtj', 0, 'gb3', 0, 0, 0, 0, 0, 'goj', 0, 0, 'gtg', 0, 'r3']
In [33]: deck.index
Out[33]: 1
```

1.3 Dice

We will be implementing the dice as a class. This allows us to encapsulate how the result is determined. It makes it easier to implements other scenarios such as throwing with multiple dices.

```
In [9]: from random import randint

    class Dice():
        def __init__(self, dices = 1, sides = 6):
            self.dices = dices
            self.sides = 6

        def throw(self):
            total = 0
            for i in range(self.dices):
                total += randint(1, self.sides)
            return total

    Rolling one time:
In [39]: dice = Dice()
            dice.throw()
```

1.3.1 Simple: one dice with six sides

A simple setup would be one dice with six sides. This will give uniformly distributed probabilities.

```
In [10]: dice = Dice()
    sides = [0] * dice.dices * dice.sides
    N = 10000
    for i in range(N): sides[dice.throw()-1] += 1
    sides = np.array(sides) / N
    bar(range(1,len(sides)+1), sides);
```


1.3.2 Advanced: two dice with four sides

A more advanced set up would be to play with two dices and four sides. This will give normally distributed probabilities.

```
In [11]: dice = Dice(2,4)
    sides = [0] * dice.dices * dice.sides
    N = 10000
    for i in range(N): sides[dice.throw()-1] += 1
    sides = np.array(sides) / N
    bar(range(1,len(sides)+1), sides);
```


1.4 Monopoly simulation

1.4.1 Algorithm

Here we are going to simulate a game for *N* amount of rounds. The game algorithm is simple:

- 1. Roll the dice
- 2. Move to the new position
- 3. Increment the square counter for that position
- 4. Check and handle go to jail
- 5. Check and handle community chest
- 6. Check and handle chance

1.4.2 Modulo arithmetic for position tracking

We can easily keep track of our position with modulo arithemetic. Let C be our position (or index), d the result from throwing the dice, and n the current round. To determine our new position we calculate:

$$C_{n+1} \equiv C_n + d \pmod{40}$$

The modulo is 40 because that are the total amount of squares.

1.4.3 Implementation

Below is the implementation for the Monopoly simulation.

```
In \lceil 12 \rceil: dice = Dice()
         community_deck = CommunityDeck()
         chance_deck = ChanceDeck()
         index = 0 # position
         total_squares = len(squares_labels)
         squares = [0] * total_squares
         rounds = 1000000
         for i in range(rounds):
             # Throw the dice and move our position on the board.
             steps = dice.throw()
             index = (index + steps) % total_squares
             squares[index] += 1
             # We landed on go to jail.
             if squares_labels[index] is 'gtj':
                 index = squares_labels.index('jail')
             # We landed on the community card.
             if squares_labels[index] in ['cc1', 'cc2', 'cc3']:
                 card = community_deck.draw_card()
                 if card is 'gtg': index = squares_labels.index('start')
                 if card is 'gtj': index = squares_labels.index('jail')
                 if card is 'gb2':
                     if index >= 2: index -= 2
                     if index < 2: index = total_squares-abs(index-2)-1</pre>
             # We landed on the chance card.
             if squares_labels[index] in ['c1', 'c2', 'c3']:
                 card = chance_deck.draw_card()
                 if card is 'gtg': index = squares_labels.index('start')
                 if card is 'gtj': index = squares_labels.index('jail')
                 if card is 'r3': index = squares_labels.index('r3')
                 if card is 'gb3':
                     if index >= 3: index -= 3
                     if index < 3: index = total_squares-abs(index-3)-1</pre>
```

It takes around 2.7 seconds to run a game when N = 1,000,000.

1.5 Detailed probability analysis

Now we can proceed to analyze our results.

1.5.1 Determining probabilities

With the number of times that each square is visited we can calculate the probabilities. The probability that a square is visited is:

$$P(\bar{x} = x) = \frac{\text{Times visited}}{\text{# of rounds}}$$

We also want to create a DataFrame in Python to easily keep track of everything.

We can calculate a quick summary about the data:

1.5.2 Plot of probabilities by square

If we sort these values in descending order on the probability, we can easily see which squares have the highest probability to be visited.

Here we can conclude that Orange 1 is the most visited square. Also notice that Orange 2 and Orange 3 are pretty high. It seems that Orange is the best street to have.

1.5.3 Table of probabilities by square

Below is the full table with all the squares and their corresponding values.

In [25]: df.loc[:, 'Square':'Probability'].sort_values(by='Probability', ascending=False)

	_				
Out[25]:	Square	=	Purchasable		Probability
16	01	Orange 1	True	33538	0.033538
15	ts2	Train Station 2	True	31676	0.031676
21	r1	Red 1	True	30453	0.030453
20	р	Free Parking	False	30063	0.030063
14	р3	Purple 3	True	30037	0.030037
22	c2	Chance 2	False	29980	0.029980
19	03	Orange 3	True	29722	0.029722
17	cc2	Community Chest 2	False	29637	0.029637
30	gtj	Go to Jail	False	29563	0.029563
29	уЗ	Yellow 3	True	29470	0.029470
18	02	Orange 2	True	29360	0.029360
25	ts3	Train Station 3	True	29204	0.029204
26	у1	Yellow 1	True	29178	0.029178
27	у2	Yellow 2	True	28880	0.028880
24	r3	Red 3	True	28651	0.028651
28	WW	Water Works	True	28474	0.028474
23	r2	Red 2	True	28010	0.028010
13	p2	Purple 2	True	27773	0.027773
12		Electric Company	True	26916	0.026916
11	p1	Purple 1	True	26309	0.026309
31	-	Green 1	True	24060	0.024060
32	•	Green 2	True	23654	0.023654
33	•	Community Chest 3	False	22656	0.022656

lb1	Light Blue 1	True	21486	0.021486
it	Income Tax	False	20836	0.020836
t1	Train Station 1	True	20824	0.020824
b2	Brown 2	True	20812	0.020812
g3	Green 3	True	20763	0.020763
b1	Brown 1	True	20650	0.020650
c1	Chance 1	False	20565	0.020565
cc1	Community Chest 1	False	20450	0.020450
db1	Dark Blue 1	True	20430	0.020430
1b3	Light Blue 3	True	20238	0.020238
st	Super Tax	False	20028	0.020028
jail	Jail	False	19892	0.019892
1b2	Light Blue 2	True	19715	0.019715
ts4	Train Station 4	True	19699	0.019699
db2	Dark Blue 2	True	19163	0.019163
start	Start	False	19045	0.019045
c3	Chance 3	False	18140	0.018140
	it t1 b2 g3 b1 c1 cc1 db1 lb3 st jail lb2 ts4 db2 start	it Income Tax t1 Train Station 1 b2 Brown 2 g3 Green 3 b1 Brown 1 c1 Chance 1 cc1 Community Chest 1 db1 Dark Blue 1 lb3 Light Blue 3 st Super Tax jail Jail lb2 Light Blue 2 ts4 Train Station 4 db2 Dark Blue 2 start Start	it Income Tax False t1 Train Station 1 True b2 Brown 2 True g3 Green 3 True b1 Brown 1 True c1 Chance 1 False cc1 Community Chest 1 False db1 Dark Blue 1 True lb3 Light Blue 3 True st Super Tax False jail Jail False jail Jail False ts4 Train Station 4 True db2 Dark Blue 2 True start Start False	it Income Tax False 20836 t1 Train Station 1 True 20824 b2 Brown 2 True 20812 g3 Green 3 True 20763 b1 Brown 1 True 20650 c1 Chance 1 False 20565 cc1 Community Chest 1 False 20450 db1 Dark Blue 1 True 20430 lb3 Light Blue 3 True 20238 st Super Tax False 20028 jail Jail False 19892 lb2 Light Blue 2 True 19715 ts4 Train Station 4 True 19699 db2 Dark Blue 2 True 19163 start Start False 19045

1.5.4 Top 10 highest probability squares

The top 10 squares that have the highest probability for a player to land on are:

Out[46]:		Square	Descr	iption	Purchasable	Visited	Probability
	16	01	Ora	ange 1	True	33538	0.033538
	15	ts2	Train Stat	tion 2	True	31676	0.031676
	21	r1		Red 1	True	30453	0.030453
	14	р3	Pu	cple 3	True	30037	0.030037
	19	03	Ora	ange 3	True	29722	0.029722
	29	у3	Ye	llow 3	True	29470	0.029470
	18	02	Ora	ange 2	True	29360	0.029360
	25	ts3	Train Stat	tion 3	True	29204	0.029204
	26	y1	Ye	llow 1	True	29178	0.029178
	27	у2	Ye	llow 2	True	28880	0.028880

The total probability for all 10 squares is:

Out[47]: 0.3015180000000001

1.6 High-level probability analysis

We want to answer the following questions:

- 1. What are the best streets to have?
- 2. What is the probability to be in jail?
- 3. What is the probability to draw a card?

1.6.1 Aggregating (grouping by)

To find what the probabilities are per street, chance, community chest, etc., we are going to aggregate the possibilities.

```
In [19]: aggregated_df = pd.DataFrame(df.groupby(['Aggregate'])['Probability'].sum()).reset_index
Now we plot the aggregated probabilities.
```


1.6.2 Overview of all the probabilities by aggregate

A total overview of all the probabilities can be found in the table below:

In [21]: aggregated_df.sort_values('Probability', ascending=False)

Out[21]:		${\tt Aggregate}$	Probability
	16	Train Station	0.101403
	11	Orange	0.092620
	18	Yellow	0.087528
	13	Red	0.087114
	12	Purple	0.084119
	2	Community Chest	0.072743
	1	Chance	0.068685
	7	Green	0.068477
	10	Light Blue	0.061439
	0	Brown	0.041462
	3	Dark Blue	0.039593
	5	Free Parking	0.030063
	6	Go to Jail	0.029563
	17	Water Works	0.028474
	4	Electric Company	0.026916
	8	Income Tax	0.020836
	15	Super Tax	0.020028
	9	Jail	
	14	Start	0.019045

1.6.3 Train station probabilities

We can conclude that Train Station has the highest probability to land on. However, we need to take into account that there are four squares to land on.

```
In [27]: df.loc[df['Aggregate'] == 'Train Station', 'Square':'Probability'].sort_values('Probabi
Out [27]:
           Square
                       Description Purchasable Visited Probability
         15
              ts2 Train Station 2
                                                    31676
                                                             0.031676
                                           True
         25
              ts3 Train Station 3
                                                   29204
                                                             0.029204
                                           True
               t1 Train Station 1
         5
                                           True
                                                    20824
                                                             0.020824
```

True

19699

0.019699

1.6.4 Probability to be in jail

35

To find the total probability to be in jail, we need to take into account that:

- We can land on jail.
- We can land on go to jail.
- There is one community card which sends you to jail.
- There is one chance card which sends you to jail.

ts4 Train Station 4

Each deck has 16 cards, therefore the probability to draw go to jail is $P(\bar{x} = \text{go to jail}) = \frac{1}{16}$.

```
P(\bar{x}=\text{in jail}) = P(\bar{x}=\text{jail}) + P(\bar{x}=\text{go to jail}) + \frac{1}{16} \left[ P(\bar{x}=\text{community chest}) + P(\bar{x}=\text{chance}) \right]
In [50]: P_{\text{jail}} = \sup(\text{aggregated\_df.loc[aggregated\_df['Aggregate']} == 'Jail' \\ P_{\text{go\_to\_jail}} = \sup(\text{aggregated\_df.loc[aggregated\_df['Aggregate']} == 'Go \text{ to Jail'} \\ P_{\text{community\_card}} = \sup(\text{aggregated\_df.loc[aggregated\_df['Aggregate']} == 'Community \text{ Chest} \\ P_{\text{chance\_card}} = \sup(\text{aggregated\_df.loc[aggregated\_df['Aggregate']} == 'Chance')
In [51]: P_{\text{jail}} + P_{\text{go\_to\_jail}} + 1/16 * (P_{\text{community\_card}} + P_{\text{chance\_card}})
Out[51]: 0.058294249999999999
```

1.6.5 Probability to draw a card

To find the probability to draw a card, we simply calculate:

```
P(\bar{x} = \text{draw a card}) = P(\bar{x} = \text{community chest}) + P(\bar{x} = \text{chance})
```

In [52]: P_community_card + P_chance_card

Out[52]: 0.141428

Where the probabilities for the community chest square are:

```
In [53]: df.loc[df['Aggregate'] == 'Community Chest', 'Square':'Probability'].sort_values('Probability']
Out [53]:
            Square
                           Description Purchasable Visited Probability
                cc2 Community Chest 2
         17
                                                                   0.029637
                                               False
                                                         29637
         33
                ссЗ
                     Community Chest 3
                                               False
                                                         22656
                                                                   0.022656
                     Community Chest 1
                cc1
                                               False
                                                         20450
                                                                   0.020450
```

And the probabilities for the chance square are:

```
In [54]: df.loc[df['Aggregate'] == 'Chance', 'Square':'Probability'].sort_values('Probability',
            Square Description Purchasable Visited Probability
Out [54]:
         22
                c2
                      Chance 2
                                      False
                                                29980
                                                          0.029980
                      Chance 1
         7
                c1
                                      False
                                                          0.020565
                                                20565
                      Chance 3
         36
                c3
                                      False
                                                18140
                                                          0.018140
```