CASToR reconstruction for 131 lodine GATE Simulations

João Henrique Martins Castelo

Undergraduate student

Medical Physics Federal University of Rio de Janeiro, Brazil Institute of Radiationprotection and Dosimetry, Rio, Brazil

How to reconstruct images of data acquired from Monte Carlo simulations?

GEANT4 APP FOR TE

GATE

PHANTOM AT THE GATE RADIATION TRANSPORT CODE FOR SPECT SIMULATION

João H. M. Castelo¹, ¹Daniel A. B. Bonifácio

*Instituto de Radioproteção e Dosimetria - IRD/CNEN - Rio de Janeiro, RJ

Cores meramente ilustrativas

JS

Journal of Radiological Protection

ACCEPTED MANUSCRIPT

Influence of the SPECT calibration source position on the absorbed dose calculation for ¹³¹I-NaI therapy using GATE simulations

Samira Marques de Carvalho¹, Ana Paula Marques Costa², Celso D Ramos³, João H. M. Castelo⁴, Sérgio Querino Brunetto⁵ and D A B Bonifacio⁶

Accepted Manuscript online 18 July 2018 • © 2018 IOP Publishing Ltd

3D Dose Distribution

Projections

Out[3]: <matplotlib.colorbar.Colorbar at 0x7f981079c550>

Possible path?

$$p_1 = v4 + v5 + v6$$

 $p_2 = v4 + v8$
 $p_3 = v7 + v5 + v3$

Projection #1

$$\frac{\partial}{\partial x} \leftarrow \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + \underbrace{\begin{pmatrix} (6-0) \\ 2 \end{pmatrix}} \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 0 \\ 0 \end{bmatrix}$$

$$\frac{\partial}{\partial x} \leftarrow \begin{bmatrix} 3 \\ 3 \\ 0 \\ 0 \end{bmatrix} + \underbrace{\begin{pmatrix} 14-0 \\ 2 \\ 1 \end{bmatrix}} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 7 \\ 7 \end{bmatrix}$$

$$\frac{\partial}{\partial x} = \begin{bmatrix} 1 \\ -0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 7 \\ 7 \end{bmatrix}$$

$$\frac{\partial}{\partial x} = \begin{bmatrix} 1 \\ -0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 7 \\ 7 \end{bmatrix}$$

$$\frac{\partial}{\partial x} = \begin{bmatrix} 1 \\ -0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ -1 \end{bmatrix} = \begin{bmatrix} 3 \\ 3 \\ 7 \\ 7 \end{bmatrix}$$

$$Q_{3}^{T} P = \begin{bmatrix} 1 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 3 & 3 & 3 & 3 \\ 3 & 7 & 7 & 7 \\ 7 & 7 & 7 & 7 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}$$

Js

Customizable and Advanced Software for Tomographic Reconstruction (CASToR)


```
TFile *f = new TFile("./solo.root", "OPEN");
TTree *singles364 = (TTree*)gDirectory->Get("364keV");
nSingles364 = singles364->GetEntries();
TTree *singles400 = (TTree*)gDirectory->Get("400keV");
nSingles400 = singles400->GetEntries();
TTree *singles300 = (TTree*)gDirectory->Get("300keV");
nSingles300 = singles300->GetEntries();
TFile *f364 = new TFile("./wto364.root", "RECREATE");
TTree *newtree364 = singles364->CloneTree();
newtree364->SetName("Singles");
newtree364->Print();
f364->Write();
f364->Close();
TFile *f300 = new TFile("./wto300.root", "RECREATE");
TTree *newtree300 = singles300->CloneTree();
newtree300->SetName("Singles");
newtree300->Print();
f300->Write();
f300->Close();
```


If the last line does not work, and it's complaining about time slice, add those lines from the main macro in the SPECT macro.

Global distance camera to surface to COR: 234.5

castor-recon -df castorfile_CstrProj.Cdh -opti MLEM -dim 64,64,64 -vox 9.59,9.59,9.59 -fout convatnBih -it 10:10 -proj incrementalSiddon -fov-out 78 -oit -1 -conv gaussian,4.5,4.5,3::psf |

What now?

Cubic voxel geometry asks for cubic reconstruction volume!

ATTENUATION CORRECTION

Ann Nucl Med. 1992 Aug;6(3):153-8.

Correction of scattered photons in Tc-99m imaging by means of a photopeak dual-energy window acquisition.

Kojima A¹, Tsuji A, Takaki Y, Tomiguchi S, Hara M, Matsumoto M, Takahashi M.

Quantitative 131I SPECT with triple energy window Compton scatter correction

Article (PDF Available) in IEEE Transactions on Nuclear Science 45(6):3109 - 3114 · January 1999 with 135 Reads

DOI: 10.1109/23.737672 · Source: IEEE Xplore

Triple Energy Window

$$C_{sc} = \left(\frac{C_{high}}{W_{high}} + \frac{C_{low}}{W_{low}}\right) \frac{W_{main}}{2}$$

ROOT-CASTOR does not have room for scatter info.

But it exists at the direct conversion to cdF e cdH.

```
###### 364, 300, 400
/gate/output/projection/enable
/gate/output/projection/setInputDataName 364keV
/gate/output/projection/addInputDataName 300keV
/gate/output/projection/addInputDataName 400keV
#/gate/output/projection/setFileName ../output/{testNumber}
/gate/output/projection/setFileName ../output/ONEHEADEW{i}
/gate/output/projection/pixelSizeX 9.59 mm
/gate/output/projection/pixelSizeY 9.59 mm
/gate/output/projection/pixelNumberX 64
/gate/output/projection/pixelNumberY 64
/gate/output/projection/projectionPlane YZ
```

How I save time

```
#set -x
nohup Gate -a [i,1][act,650000][source,131IGamas] main.mac > flowlogi1.txt &
nohup Gate -a [i,2][act,650000][source,131IGamas] main.mac > flowlogi2.txt &
nohup Gate -a [i,3][act,650000][source,131IGamas] main.mac > flowlogi3.txt &
nohup Gate -a [i,4][act,650000][source,131IGamas] main.mac > flowlogi4.txt &
nohup Gate -a [i,5][act,650000][source,131IGamas] main.mac > flowlogi5.txt &
nohup Gate -a [i,6][act,650000][source,131IGamas] main.mac > flowlogi6.txt &
```

hadd full.root split1.root split2.root splitn.root

It's easier to work on projections than ROOT files. (I think)

Let's code!

Projections to cdH and cdF

Reconstruction`s not perfect! Is the code bad?

% FWHM X (RefCastor/RefWorkstation)	% FWHM Y (RefCastor/RefWorkstation)
116.2	109.2

	% FWHM X (Simulado/Referência)	% FWHM X (Simulado/Referência)
Central window	114.2	119.5
AC	101.7	132.2
AC+SC	182.8	75.7

https://github.com/SimpleITK/SimpleITK/blob/master/Example s/DicomSeriesFromArray/DicomSeriesFromArray.py

https://fiji.sc/

Adrian-FWHM

https://imagej.nih.gov/ij/plugins/fwhm/

NucMed

http://www.med.harvard.edu/JPNM/ij/plugins/NucMed.html

Agradecimentos especiais Igor Vieira CRCN James Scuffham

ROYAL SURREY COUNTY HOSPITAL NHS FOUNDATION TRUST

Daniel Bonifácio IRD T. Merlin CASToR Uwe Pietrzyk GATE