- 1. (original): A storage-stable fluorescent whitener formulation comprising
- (a) 5 60% by weight, based on the total weight of the whitener formulation, of at least one compound of formula (1)

$$X_{1} \longrightarrow \begin{pmatrix} X_{2} \\ N \\ N \end{pmatrix} \longrightarrow \begin{pmatrix} MO_{3}S \\ N \\ R_{1} \end{pmatrix} \longrightarrow \begin{pmatrix} R_{2} \\ N \\ N \end{pmatrix} \longrightarrow \begin{pmatrix} N \\ N \\ N \end{pmatrix} \longrightarrow \begin{pmatrix}$$

wherein

 R_1 and R_2 are, independently from each other, hydrogen; unsubstituted C_1 - C_8 alkyl,

X₁, X₂, X₃ and X₄ are, independently from each other, -N(R₃)R₄ or -OR₅, wherein R₃ and R₄ are, independently of each other, hydrogen; cyano; unsubstituted C₁-C₈alkyl; substituted C₁-C₈alkyl; unsubstituted C₅-C₇cycloalkyl or unsubstituted C₅-C₇cycloalkyl; or R₃ and R₄, together with the nitrogen atom linking them, form a heterocyclic ring, and R₅ is unsubstituted C₁-C₈alkyl or substituted C₁-C₈alkyl, and

M is hydrogen or a cation,

- (b) 0.01 1% by weight, based on the total weight of the whitener formulation, of at least one anionic polysaccharide,
- (c) 0 25% by weight, based on the total weight of the whitener formulation, of at least one electrolyte,
- (d) 0 20% by weight, based on the total weight of the whitener formulation, of at least one dispersant,
- (e) 0-30% by weight, based on the total weight of the whitener formulation, of at least one further fluorescent whitener.
- (f) 0-20% by weight, based on the total weight of the whitener formulation, of at least one further optional component, and
- (g) water to make up 100% by weight.
- 2. (original): A storage-stable fluorescent whitener formulation according to claim 1 comprising 5 60% by weight, based on the total weight of the whitener formulation, of at least

one compound of formula (1), wherein

R₁ and R₂, independently from each other, hydrogen or C₁-C₄alkyl, especially hydrogen,

X₁, X₂, X₃ and X₄ are independently from each other a radical of formula -N(R₃)R₄, wherein R₃ and R₄ are preferably, independently from each other, hydrogen; cyano; C₁-C₈alkyl which is unsubstituted or substituted by hydroxy, carboxy, cyano, -COOH, -H₂NC(NH)NH₂-, -CONH₂ or phenyl, and wherein the C₁-C₈alkyl group is uninterrupted or interrupted by -O-; unsubstituted C₅-C₇cycloalkyl or C₁-C₄alkyl-substituted C₅-C₇cycloalkyl; or R₃ and R₄, together with the nitrogen atom linking them, form an unsubstituted morpholino,

R₃ and R₄, together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or a C₁-C₄alkyl-substituted morpholino, piperidine or pyrrolidine ring.

3. (original): A storage-stable fluorescent whitener formulation according to claim 1 comprising 5-60% by weight, based on the total weight of the whitener formulation, of at least one compound of formula (1), wherein

 X_1 and X_3 are -NH₂,

X₂ and X₄ are, independently of each other, a radical of formula -N(R₃)R₄, wherein R₃ and R₄ are, independently from each other, hydrogen; cyano; C₁-C₈alkyl which is unsubstituted or substituted hydroxy, carboxy, -COOH, cyano, -CONH₂, NHC(NH)NH₂ or phenyl, and wherein the C₁-C₈alkyl group is uninterrupted or interrupted by -O-; unsubstituted cyclohexyl or C₁-C₄alkyl-substituted cyclohexyl; or

R₃ and R₄, together with the nitrogen atom linking them, form an unsubstituted morpholino, piperidine or pyrrolidine ring or C₁-C₄alkyl-substituted morpholino, piperidine or pyrrolidine ring.

- 4. (currently amended): A storage-stable fluorescent whitener formulation according to <u>claim 1</u> anyone of the preceding claims comprising
 5 to 50% by weight, <u>preferably 10 to 50% by weight</u>, based on the total weight of the formulation, of at least one compound of formula (1).
- **5.** (currently amended): A storage-stable fluorescent whitener formulation according to <u>claim 1</u> anyone of the preceding claims-wherein the anionic polysaccharide is selected from the group consisting of sodium alginate, carboxymethylated guar, carboxymethylcellulose, carboxymethyl-starch, carboxymethylated locust bean flour and xanthan gum.
- **6.** (currently amended): A storage-stable fluorescent whitener formulation according to <u>claim 1 anyone</u> of the preceding claims comprising

0.05 to 0.5% by weight, preferably 0.1 to 0.3% by weight, based on the total weight of the formulation, of at least one anionic polysaccharide.

- 7. (currently amended): A storage-stable fluorescent whitener formulation according to <u>claim 1</u> anyone of the preceding claims wherein the electrolyte or the mixture of electrolytes are selected from the group consisting of alkali metal salts and salts of lower carboxylic acids.
- **8.** (currently amended): A storage-stable fluorescent whitener formulation according to <u>claim 1 anyone</u> of the preceding claims-comprising
- 0.5 to 20% by weight, preferably 0.5 to 15% by weight, based on the total weight of the formulation, of at least one electrolyte.
- 9. (currently amended): A storage-stable fluorescent whitener formulation according to claim 1 anyone of the preceding claims-wherein the dispersant or the mixture of dispersants are selected from the group consisting of alkylbenzenesulfonates, alkyl or alkenyl ether-sulfonate salts, saturated or unsaturated fatty acids, alkyl or alkylene ether-carboxylic salts, sulfo-fatty acid salts or esters, phosphate esters, polyoxyethylene alkyl or alkenyl ethers, polyoxyethylene alkylvinyl ethers, polyoxypropylene alkyl or alkenyl ethers, polyoxybutylene alkyl or alkenyl ethers, higher fatty acid alkanolamides or alkylene oxide adducts, sucrose/fatty acid esters, fatty acid/glycol monoesters, alkylamine oxides and condensation products of aromatic sulfonic acids with formaldehyde and lignin-sulfonates.
- **10.** (currently amended): A storage-stable fluorescent whitener formulation according to <u>claim 1</u> anyone of the preceding claims comprising 0.1 to 20% by weight, preferably 0.1 to 10% by weight, based on the total weight of the formulation, of at least one dispersant.
- 11. (currently amended): A storage-stable fluorescent whitener formulation according to <u>claim 1</u> anyone of the preceding claims comprising of at least one further fluorescent whitener of formula (2)

wherein

 R_6 and R_8 , independently from each other, are hydrogen; unsubstituted C_1 - C_8 alkyl, · · ·

 R_7 and R_9 , independently from each other, are hydrogen; unsubstituted phenyl; unsubstituted C_1 - C_8 alkyl or substituted C_1 - C_8 alkyl, or

 NR_6R_7 and/or NR_8R_9 form a morpholino ring, and M is hydrogen or a cation.

12. (original): A storage-stable fluorescent whitener formulation according to claim 11 wherein R₆ and R₈, independently from each other, are hydrogen; unsubstituted C₁-C₂alkyl or C₁-C₄alkyl, which is substituted by hydroxy or C₁-C₄alkoxy,

 R_7 and R_9 , independently from each other, are unsubstituted phenyl; unsubstituted C_1 - C_2 alkyl or C_1 - C_4 alkyl, which is substituted by hydroxy or C_1 - C_4 alkoxy, or NR_6R_7 and/or NR_8R_9 form a morpholino ring, and M is an alkali metal atom.

13. (currently amended): A storage-stable fluorescent whitener formulation according to <u>claim 1</u> anyone of the preceding claims-comprising of at least one further fluorescent whitener of formula (3)

$$R_{10}$$
 SO_3M SO_3M R_{11} (3)

wherein

 R_{10} and R_{11} , independently from each other, are hydrogen; C_1 - C_8 alkyl; C_1 - C_8 alkoxy or halogen, and M is hydrogen or a cation.

14. (currently amended): A storage-stable fluorescent whitener formulation according to <u>claim 1</u> anyone of the preceding claims comprising 0 to 25 % by weight, preferably 0 to 20 % by weight, of at least one further fluorescent whitener of formula (2)

wherein

 R_6 and R_8 , independently from each other, are hydrogen; unsubstituted C_1 - C_8 alkyl, C_1 - C_8 alkyl,

R₇ and R₉, independently from each other, are hydrogen; unsubstituted phenyl; unsubstituted

C₁-C₈alkyl or substituted C₁-C₈alkyl, or

NR₆R₇ and/or NR₈R₉ form a morpholino ring,

and M is hydrogen or a cation

and/or formula (3)

$$R_{10}$$
 SO_3M SO_3M R_{11} (3)

wherein

 R_{10} and R_{11} , independently from each other, are hydrogen; C_1 - C_8 alkyl; C_1 - C_8 alkoxy or halogen, and M is hydrogen or a cation.

- **15.** (currently amended): A storage-stable fluorescent whitener formulation according to <u>claim 1</u> anyone of the preceding claims-wherein optional components are selected from the group consisting of preservatives; Mg/Al silicates; odour improvers; perfuming agents; antifoam agents; builders; protective colloids; stabilizers; sequestering agents and antifreeze agents.
- **16.** (currently amended): A storage-stable fluorescent whitener formulation according to <u>claim 1</u> anyone of the preceding claims-comprising 0.1 to 20% by weight, preferably 0.1 to 10% by weight, particularly preferably 0.2 to 5% by weight based on the total weight of the formulation, of at least one optional component.

- 17. (currently amended): A process for the preparation of a storage-stable fluorescent whitener formulation according to <u>claim 1</u> any one of the preceding claims, which comprises mixing the moist filter cake or the dry powder of the fluorescent whitening of formula (1) with least one anionic polysaccharide and water, and homogenizing the formulation.
- 18. (currently amended): A method The use of a storage-stable fluorescent whitener formulation according to any one of claim 1 16 for the preparation of a detergent composition, which comprises incorporating into said composition an effective whitening amount of a storage-stable fluorescent whitener formulation according to claim 1.