Enu-Semester Examination

Date: 6th May 2023

Total Marks: 60 Duration: 3 hrs

SECTION - A

(Answer any 5 questions; 8 marks each)

- How a promoter controls stress inducible gene expression in plants? Describe with a suitable example. What is the procedure to clone tissue-specific promoters?
 Why recombinant protein expression through chloroplast transformation is beneficial even avalage.
- 2. Why recombinant protein expression through chloroplast transformation is beneficial over nuclear transformation? What are the significances of inverted repeat regions of chloroplast genome? How chloroplast transformed plants are selected?
- 3. How expression of Cry toxin proteins, plant digestive enzyme inhibitors, and blocking of trehalose biosynthesis and neurotransmission protect the transgenic plants from insect pest infestation, while the products are safe for human consumption?
- 4. What are the basic differences between gene-trap, promoter-trap and enhancer trap vectors? How are these vectors fish out the respective DNA elements?
- 5. Describe reverse genetics methods to understand the gene functions, with suitable examples.
- 6. Give an example of each of these bioenergy production technologies through biotechnology: (a) Combustion of lignocellulose (b) conversion of oil (triacylglycerols) to biodiesel
- 7. Explain the basis of fungal resistance in transgenic plants through targeting (a) fungal cell wall, (b) plant-fungal signalling, (c) pathogenesis related proteins.
- 8. How programmed cell death is involved in plant defence response to pathogen infection and senescence process?

PLANT Biotechnology (BT- 607)

End-Semester Examination

6th May 2023

SECTION - B (20 questions; 1 mark each)

Name:		H	ROII NO:		
1. Host crop having reduced chance of con	taminating food	d or feed chain v	with recombinant protein is		
(A) tobacco (B) alfalafa	(C) maize	(D) tomato			
2. Increased stability of recombinant prote	in is expected i	n			
(A) tubers (B) seeds	(C) fruits	(D) leaves			
3. ZMapp is a plant expressed recombinant	vaccine, manu	ufactured for trea	atment of		
(A) Middle east respiratory syndr		(C) Ebola	(D) Non-Hodgkins Lymphoma		
4. Recombinant protein expression through	n chloroplast go	enome allows			
(A) improper glycosylation	(A) improper glycosylation (B) high yield of recombinant protein				
(C) risk of gene silencing	(D) transgen	e polluting other	plant species		
5. A gene of interest can be integrated to	chloroplast ger	nome by			
(A) Agrobacterium-mediated trans	sfer (B) dir	ectly by particle	bombardment		
(C) homologous recombination	(D) dig	gestion followed	by ligation		
6. Transgene escape from a transplastom					
(A) pollen chloroplasts disintegrat		due to fragment	ation of ovary		
(C) egg cells chloroplasts rendere	d sterile (D)	pollens nuclei be	ecome non-functional		
7. Following statement about chloroplast of	genes is incorre	ect			
(A) arranged as operons		xpress monocist	ronic mRNAs		
(C) absence of methylation in ger	ies (D) d	riven by eukaryo	otic promoters		
8. Foreign gene expression in transformed	d chloroplast is	usually very high	h because its genome is		
(A) polyploid and homoplasmic			vcistonic mRNAs		
(C) autonomously replicated		otected from ger			
9. Insecticidal genes from bacteria and fu	ngus can be be	st expressed in	plants with inclusion of		
(A) additional polyA sites	(B) cryptic ir				
(C) additional promoters	(D) GC rich				
(e) additional promoters	(5) 55	3332			
10. Which one of the following is a non-pla	int source cons	titutive promote	er		
(A) Ubiquitin (B) CaMV19S	(C) CaMV35S	(D) actin			
11. The timing of gene expression can be	controlled by				
(A) inducible promoter (B) crypt	ic promoter (C	c) temporal pron	noter (D) constitutive promoter		
12. A bidirectional promoter has the follo					
(A) distal cis element (B) proxi	mai cis elemen	t (C) IAIA DO	x (D) enhancer element		
13. Which of the following is correct regard					
(A) Polygalacturonases		ositol tetracaine			
(C) a- aminolevulinic acid synthas	a. (D) amino	cylopropane car	boxylic acid sythase		

14. A characteristic feature of the chloroplast genome is the (A) two simple tandem arrays (B) two reperties (C) two identical inverted repeats (D) two com-	presence of eat / repeat interspers spound tandem arrays	ions			
15. Plants are preferred over bacterial and mammalian systoms as plants cells facilitate in (A) low cost of production (B) glycosylation	ems for expression of (C) scalability	therapeutic recombin (d) all of above	ant proteins		
16. Which of the following compounds in the fungal cell wal (A) chitin (B) cellulose (C) peptidoglycan	Il can be targeted for (D) phospholipids	generating fungal resi	stance?		
17. The following plant hormone is involved in host plant cell signalling response to plant pathogens (A) abscisic acid (B) jasmonic acid (C) auxin (d) gibberillin					
18. Plants are preferred over bacterial and mammalian syst as plants cells facilitate in(A) low cost of production(B) glycosylation		therapeutic recombin (d) all of above	ant proteins		
19. Biodiesel made from plant storage lipids is chemically k(A) triacylglycerols (B) fattyacid methyl easter		cohol (d) triglycer	ride easters		
20. Which of the following is used in creating plant mutants (A) T-DNA (B) EMS (C) transposon		ient			