In [1]:

import numpy as np
import pandas as pd

Read dataset

In [2]:

auto_mpg = pd.read_csv("C:/Users/91920/Desktop/New folder/auto-mpg.csv")

View datset

In [3]:

auto_mpg.shape

Out[3]:

(398, 9)

In [4]:

auto_mpg.head()

Out[4]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino

In [5]:

```
auto_mpg.tail()
```

Out[5]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
393	27.0	4	140.0	86	2790	15.6	82	1	ford mustang gl
394	44.0	4	97.0	52	2130	24.6	82	2	vw pickup
395	32.0	4	135.0	84	2295	11.6	82	1	dodge rampage
396	28.0	4	120.0	79	2625	18.6	82	1	ford ranger
397	31.0	4	119.0	82	2720	19.4	82	1	chevy s- 10

https://archive.ics.uci.edu/ml/datasets/auto+mpg (https://archive.ics.uci.edu/ml/datasets/auto+mpg)

Descriptive Statistics

In [6]:

```
auto_mpg.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 398 entries, 0 to 397
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	mpg	398 non-null	float64
1	cylinders	398 non-null	int64
2	displacement	398 non-null	float64
3	horsepower	398 non-null	object
4	weight	398 non-null	int64
5	acceleration	398 non-null	float64
6	model year	398 non-null	int64
7	origin	398 non-null	int64
8	car name	398 non-null	object
dtyp	es: float64(3)	, int64(4), obje	ct(2)

memory usage: 28.1+ KB

In [7]:

```
auto_mpg.describe()
```

Out[7]:

	mpg	cylinders	displacement	weight	acceleration	model year	origin
count	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000	398.000000
mean	23.514573	5.454774	193.425879	2970.424623	15.568090	76.010050	1.572864
std	7.815984	1.701004	104.269838	846.841774	2.757689	3.697627	0.802055
min	9.000000	3.000000	68.000000	1613.000000	8.000000	70.000000	1.000000
25%	17.500000	4.000000	104.250000	2223.750000	13.825000	73.000000	1.000000
50%	23.000000	4.000000	148.500000	2803.500000	15.500000	76.000000	1.000000
75%	29.000000	8.000000	262.000000	3608.000000	17.175000	79.000000	2.000000
max	46.600000	8.000000	455.000000	5140.000000	24.800000	82.000000	3.000000
4							•

pd.set_option('display.max_rows', None)

But then, why is horsepower an object and not a float, the values we saw above were clearly numbers

In [8]:

```
auto_mpg.horsepower.unique()
```

Out[8]:

```
array(['130', '165', '150', '140', '198', '220', '215', '225', '190', '170', '160', '95', '97', '85', '88', '46', '87', '90', '113', '200', '210', '193', '?', '100', '105', '175', '153', '180', '110', '72', '86', '70', '76', '65', '69', '60', '80', '54', '208', '155', '112', '92', '145', '137', '158', '167', '94', '107', '230', '49', '75', '91', '122', '67', '83', '78', '52', '61', '93', '148', '129', '96', '71', '98', '115', '53', '81', '79', '120', '152', '102', '108', '68', '58', '149', '89', '63', '48', '66', '139', '103', '125', '133', '138', '135', '142', '77', '62', '132', '84', '64', '74', '116', '82'], dtype=object)
```

In [9]:

```
auto_mpg.replace(to_replace = '?', value = np.nan , inplace=True)
auto_mpg.style.highlight_null(null_color='red')
                                                                                               chrysler
231 15.500000
                        8
                             400.000000
                                                  190
                                                        4325
                                                                 12.200000
                                                                                77
                                                                                               cordoba
                                                                                                  ford
232 16.000000
                        8
                             351.000000
                                                  149
                                                        4335
                                                                 14.500000
                                                                                77
                                                                                            thunderbird
                                                                                            volkswagen
233 29.000000
                        4
                               97.000000
                                                   78
                                                         1940
                                                                 14.500000
                                                                                77
                                                                                        2
                                                                                                 rabbit
                                                                                                custom
                                                                                                pontiac
234 24.500000
                        4
                              151.000000
                                                   88
                                                        2740
                                                                 16.000000
                                                                                77
                                                                                        1
                                                                                                sunbird
                                                                                                 coupe
                                                                                                 toyota
235 26.000000
                        4
                               97.000000
                                                   75
                                                        2265
                                                                 18.200000
                                                                                77
                                                                                        3
                                                                                                corolla
                                                                                                liftback
                                                                                                  ford
236 25.500000
                        4
                                                        2755
                              140.000000
                                                   89
                                                                 15.800000
                                                                                77
                                                                                        1
                                                                                             mustang ii
                                                                                                  2+2
                                                                                              chevrolet
237
     30.500000
                        4
                               98.000000
                                                   63
                                                        2051
                                                                 17.000000
                                                                                77
                                                                                        1
                                                                                               chevette
```

auto_mpg.style.highlight_null(null_color='red')

In [10]:

```
auto_mpg.isnull().sum()
```

Out[10]:

0 mpg cylinders 0 displacement 0 horsepower 6 0 weight acceleration 0 0 model year 0 origin car name 0 dtype: int64

In [11]:

auto_mpg[auto_mpg.isna().any(axis=1)]

Out[11]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
32	25.0	4	98.0	NaN	2046	19.0	71	1	ford pinto
126	21.0	6	200.0	NaN	2875	17.0	74	1	ford maverick
330	40.9	4	85.0	NaN	1835	17.3	80	2	renault lecar deluxe
336	23.6	4	140.0	NaN	2905	14.3	80	1	ford mustang cobra
354	34.5	4	100.0	NaN	2320	15.8	81	2	renault 18i
374	23.0	4	151.0	NaN	3035	20.5	82	1	amc concord dl

we can fill NaN values or drop it

In [12]:

```
df = auto_mpg.dropna(axis=0)
df
```

Out[12]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140	3449	10.5	70	1	ford torino
393	27.0	4	140.0	86	2790	15.6	82	1	ford mustang gl
394	44.0	4	97.0	52	2130	24.6	82	2	vw pickup
395	32.0	4	135.0	84	2295	11.6	82	1	dodge rampage
396	28.0	4	120.0	79	2625	18.6	82	1	ford ranger
397	31.0	4	119.0	82	2720	19.4	82	1	chevy s- 10

392 rows × 9 columns

In [13]:

```
df.horsepower = df.horsepower.astype('float')
df.dtypes
```

C:\Users\91920\anaconda3\lib\site-packages\pandas\core\generic.py:5303: Sett
ingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

self[name] = value

Out[13]:

float64 mpg cylinders int64 float64 displacement float64 horsepower weight int64 float64 acceleration model year int64 origin int64 object car name

dtype: object

In [14]:

df.describe()

Out[14]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model yea
count	392.000000	392.000000	392.000000	392.000000	392.000000	392.000000	392.00000
mean	23.445918	5.471939	194.411990	104.469388	2977.584184	15.541327	75.97959
std	7.805007	1.705783	104.644004	38.491160	849.402560	2.758864	3.68373
min	9.000000	3.000000	68.000000	46.000000	1613.000000	8.000000	70.00000
25%	17.000000	4.000000	105.000000	75.000000	2225.250000	13.775000	73.00000
50%	22.750000	4.000000	151.000000	93.500000	2803.500000	15.500000	76.00000
75%	29.000000	8.000000	275.750000	126.000000	3614.750000	17.025000	79.00000
max	46.600000	8.000000	455.000000	230.000000	5140.000000	24.800000	82.00000
4							•

In [15]:

df.corr()

Out[15]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	mode yea
mpg	1.000000	-0.777618	-0.805127	-0.778427	-0.832244	0.423329	0.58054
cylinders	-0.777618	1.000000	0.950823	0.842983	0.897527	-0.504683	-0.34564
displacement	-0.805127	0.950823	1.000000	0.897257	0.932994	-0.543800	-0.36985
horsepower	-0.778427	0.842983	0.897257	1.000000	0.864538	-0.689196	-0.41636
weight	-0.832244	0.897527	0.932994	0.864538	1.000000	-0.416839	-0.30912
acceleration	0.423329	-0.504683	-0.543800	-0.689196	-0.416839	1.000000	0.29031
model year	0.580541	-0.345647	-0.369855	-0.416361	-0.309120	0.290316	1.00000
origin	0.565209	-0.568932	-0.614535	-0.455171	-0.585005	0.212746	0.18152

Question 1 Find the most economic car company name

In [16]:

df[df.mpg==df['mpg'].max()]

Out[16]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
322	46.6	4	86.0	65.0	2110	17.9	80	3	mazda glc

Question 2 Print oldest car

In [17]:

df['model year'].min()

Out[17]:

70

In [18]:

df[df['model year'] == df['model year'].min()]

Out[18]:

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
0	18.0	8	307.0	130.0	3504	12.0	70	1	chevrolet chevelle malibu
1	15.0	8	350.0	165.0	3693	11.5	70	1	buick skylark 320
2	18.0	8	318.0	150.0	3436	11.0	70	1	plymouth satellite
3	16.0	8	304.0	150.0	3433	12.0	70	1	amc rebel sst
4	17.0	8	302.0	140.0	3449	10.5	70	1	ford torino
5	15.0	8	429.0	198.0	4341	10.0	70	1	ford galaxie 500
6	14.0	8	454.0	220.0	4354	9.0	70	1	chevrolet impala
7	14.0	8	440.0	215.0	4312	8.5	70	1	plymouth fury iii
8	14.0	8	455.0	225.0	4425	10.0	70	1	pontiac catalina
9	15.0	8	390.0	190.0	3850	8.5	70	1	amc ambassador dpl
10	15.0	8	383.0	170.0	3563	10.0	70	1	dodge challenger se
11	14.0	8	340.0	160.0	3609	8.0	70	1	plymouth 'cuda 340
12	15.0	8	400.0	150.0	3761	9.5	70	1	chevrolet monte carlo
13	14.0	8	455.0	225.0	3086	10.0	70	1	buick estate wagon (sw)
14	24.0	4	113.0	95.0	2372	15.0	70	3	toyota corona mark ii
15	22.0	6	198.0	95.0	2833	15.5	70	1	plymouth duster
16	18.0	6	199.0	97.0	2774	15.5	70	1	amc hornet
17	21.0	6	200.0	85.0	2587	16.0	70	1	ford maverick
18	27.0	4	97.0	88.0	2130	14.5	70	3	datsun pl510
19	26.0	4	97.0	46.0	1835	20.5	70	2	volkswagen 1131 deluxe sedan
20	25.0	4	110.0	87.0	2672	17.5	70	2	peugeot 504
21	24.0	4	107.0	90.0	2430	14.5	70	2	audi 100 ls

	mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin	car name
22	25.0	4	104.0	95.0	2375	17.5	70	2	saab 99e
23	26.0	4	121.0	113.0	2234	12.5	70	2	bmw 2002
24	21.0	6	199.0	90.0	2648	15.0	70	1	amc gremlin
25	10.0	8	360.0	215.0	4615	14.0	70	1	ford f250
26	10.0	8	307.0	200.0	4376	15.0	70	1	chevy c20
27	11.0	8	318.0	210.0	4382	13.5	70	1	dodge d200
28	9.0	8	304.0	193.0	4732	18.5	70	1	hi 1200d
4									•

```
In [19]:
```

```
df.horsepower.mean()
```

Out[19]:

104.46938775510205

In [20]:

```
df.horsepower.median()
```

Out[20]:

93.5

In [21]:

```
df.horsepower.min()
```

Out[21]:

46.0

In [22]:

```
df.horsepower.max()
```

Out[22]:

230.0

In [53]:

df.horsepower.values

Out[53]:

```
array([130., 165., 150., 150., 140., 198., 220., 215., 225., 190., 170.,
       160., 150., 225., 95., 95., 97., 85., 88., 46.,
                                                               87., 90.,
        95., 113.,
                   90., 215., 200., 210., 193.,
                                                 88.,
                                                         90.,
                                                               95., 100.,
                  88., 100., 165., 175., 153., 150., 180., 170., 175.,
       105., 100.,
              72., 100.,
                          88.,
                                86., 90., 70., 76., 65.,
                                                               69.,
       110.,
                                90., 86., 165., 175., 150., 153., 150.,
              95.,
                    80.,
                          54.,
       70.,
       208., 155., 160., 190.,
                                97., 150., 130., 140., 150., 112.,
                          92.,
              69., 86.,
                                97., 80., 88., 175., 150., 145., 137.,
       150., 198., 150., 158., 150., 215., 225., 175., 105., 100., 100.,
       88.,
              95., 46., 150., 167., 170., 180., 100.,
                                                         88.,
                                                               72.,
                                                                    94.,
                          90., 145., 230.,
                                                         91., 112., 150.,
              85., 107.,
                                            49.,
                                                  75.,
       90.,
                                           67.,
                                                         65.,
                          95., 100., 100.,
       110., 122., 180.,
                                                  80.,
                                                               75., 100.,
                                                         67.,
       110., 105., 140., 150., 150., 140., 150.,
                                                  83.,
                                                               78.,
              75., 75., 75., 97., 93., 67.,
                                                  95., 105.,
                                                                     72.,
       61.,
                                                               72.,
       170., 145., 150., 148., 110., 105., 110.,
                                                  95., 110., 110., 129.,
                                      71.,
              83., 100., 78.,
                                96.,
                                            97.,
                                                  97., 70.,
                                                               90., 95.,
                                                  79.,
                                      81.,
                                            92.,
                                                        83., 140., 150.,
       88.,
              98., 115., 53.,
                                86.,
       120., 152., 100., 105.,
                                            52.,
                                81.,
                                      90.,
                                                  60.,
                                                        70.,
                                                               53., 100.,
        78., 110., 95., 71.,
                               70., 75.,
                                            72., 102., 150.,
                                                               88., 108.,
       120., 180., 145., 130., 150., 68.,
                                            80., 58., 96.,
                                                               70., 145.,
       110., 145., 130., 110., 105., 100.,
                                            98., 180., 170., 190., 149.,
                          89.,
                                63., 83.,
                                            67., 78., 97., 110., 110.,
              88.,
                    75.,
                          70.,
                                60., 110., 140., 139., 105.,
                                                               95., 85.,
        48.,
              66.,
                    52.,
        88., 100.,
                    90., 105.,
                                85., 110., 120., 145., 165., 139., 140.,
        68.,
              95.,
                    97., 75.,
                                95., 105.,
                                            85., 97., 103., 125., 115.,
                                            90., 110., 130., 129., 138.,
              71.,
                    68., 115.,
                                85.,
                                      88.,
       133.,
       135., 155., 142., 125., 150.,
                                      71.,
                                            65., 80., 80.,
                                                               77., 125.,
                                      69.,
                                            90., 115., 115.,
                                                                     76.,
        71.,
              90.,
                    70.,
                          70.,
                                65.,
                                                               90..
              70.,
                          90.,
                                88.,
                                      90.,
                                            90., 78.,
       60.,
                    65.,
                                                         90.,
                                                               75.,
                                                                     92.,
                                      48.,
       75.,
              65., 105.,
                          65.,
                                48.,
                                            67., 67.,
                                                         67.,
                                                               67.,
                                                                     62.,
                                            92., 110.,
       132., 100.,
                    88.,
                          72.,
                                84.,
                                      84.,
                                                         84.,
                                                               58.,
              67.,
                    65.,
                          62.,
                                68.,
                                      63.,
                                            65., 65.,
                                                         74.,
                                                               75.,
       60.,
                                                                     75.,
              74.,
                    80.,
                          76., 116., 120., 110., 105.,
                                                         88.,
                                                               85.,
       100.,
                                                                     88.,
              88.,
                    85.,
                                90., 92., 74., 68.,
                                                               63.,
                                                                     70.,
                          84.,
                                                         68.,
        88.,
              75.,
                    70.,
                          67.,
                                67.,
                                      67., 110., 85.,
                                                         92., 112.,
        88.,
              90.,
                    86.,
                          52.,
                                84.,
                                      79.,
                                            82.])
        84.,
```

In [54]:

```
pd.set_option('display.max_rows', None)
df.horsepower.value_counts()
```

Out[54]:

```
150.0
          22
90.0
          20
          19
88.0
110.0
          18
100.0
          17
95.0
          14
75.0
          14
67.0
          12
105.0
          12
70.0
          12
65.0
          10
85.0
           9
           9
97.0
145.0
           7
           7
140.0
           7
80.0
68.0
           6
72.0
           6
84.0
           6
78.0
           6
92.0
           6
           5
175.0
115.0
           5
180.0
           5
           5
60.0
           5
86.0
           5
130.0
           5
71.0
170.0
           5
165.0
           4
83.0
           4
52.0
           4
           4
120.0
76.0
           4
           3
96.0
69.0
           3
           3
190.0
           3
74.0
           3
63.0
112.0
           3
215.0
           3
48.0
           3
225.0
           3
125.0
           3
62.0
           2
           2
198.0
           2
155.0
           2
153.0
81.0
           2
           2
139.0
           2
53.0
           2
160.0
```

2

58.0 87.0

```
12/9/21, 10:21 AM
```

```
46.0
           2
129.0
           2
98.0
           2
79.0
           2
210.0
           1
200.0
           1
113.0
           1
220.0
           1
193.0
           1
82.0
           1
54.0
           1
102.0
           1
64.0
           1
132.0
           1
77.0
           1
142.0
           1
135.0
           1
138.0
           1
133.0
           1
103.0
           1
66.0
           1
89.0
           1
149.0
           1
108.0
           1
152.0
           1
208.0
           1
148.0
           1
93.0
           1
61.0
           1
122.0
           1
91.0
           1
49.0
           1
230.0
           1
116.0
           1
94.0
           1
167.0
           1
158.0
           1
137.0
           1
```

Name: horsepower, dtype: int64

1

In [52]:

107.0

```
df.horsepower.describe()
```

Out[52]:

```
count
         392.000000
         104.469388
mean
std
          38.491160
          46.000000
min
25%
          75.000000
50%
          93.500000
75%
         126.000000
         230.000000
max
```

Name: horsepower, dtype: float64

In []:		