

Lab Manual

Department of Electrical and Computer Engineering School of Engineering and Physical Sciences

North South University, Bashundhara, Dhaka-1229, Bangladesh

Experiment No: 3

Experiment Name: Design a 4-bit by 4-bit Binary Multiplication Unit

Introduction: Combinational Multipliers do multiplication of two unsigned binary numbers. Each bit of the multiplier is multiplied against the multiplicand, the product is aligned according to the position of the bit within the multiplier, and the resulting products are then summed to form the final result. Main advantage of binary multiplication is that the generation of intermediate products are simple: if the multiplier bit is a 1, the product is an appropriately shifted copy of the multiplicand; if the multiplier bit is a 0, the product is simply 0.

Theory:

The design of a combinational multiplier to multiply two 4-bit binary number is illustrated below:

				B4 A4	B3 A3	B ₂ A ₂	B ₁ A ₁		
	A4. B4			A2. B3 A3. B2			A1. B1		
S 7	S ₆	S 5	S4	S ₃	S ₂	S ₁	So		

If two n-bit numbers are multiplied then the output will be less than or equals to 2n bits.

Binary Multiplication Procedure:

Need an adder unit to add

	Multiplicano	1 1000
$\mathbf{m} \times \mathbf{n}$ bits = $\mathbf{m} + \mathbf{n}$ bit product $\mathbf{m} + \mathbf{n}$ bits required to represent all possible	Multiplier	x 1001
products.		1000
There are only two possibilities in every step.		0000×
If multiplier bit = 1		0000XX
copy multiplicand (1 x multiplicand) If multiplier bit = 0		1000 XXX
place 0 (0 x multiplicand)	Product	01001000

Multiplication Hardware 32-bit MIPS Example

Use 31 32-bit adders to compute the partial products

One input is the multiplicand ANDed with a multiplier, and the other is the partial product from previous step.

Objectives:

 Understanding behavior of combinational multiplier from module designed by the student as part of the experiment

p63

- Understanding the theory and implement the multiplication unit which is as follows (along with the logic diagram bellow
- Check Multiplying bits and show the sum outputs

Apparatus:

- 4 X 7408 AND IC
- 3 X 7483 or 74283 4-bit Adder IC
- Trainer Board
- Wires
- D. Procedure: Design a Combinational 4-bit multiplier.
 - 1. Identify the inputs and outputs from the truth table and complete the system analysis.
 - 2. Complete the Theoretical Truth Table in (Table 1) for the 4-bit multiplier.
 - 3. Simulate the Entire circuit in Logisim showing the pin configurations and values properly (Figure 1).
 - 4. Implement the circuit in the trainer board. Test one output one at a time.
 - Connect the 4 inputs of the Multiplier A1, A2, A3, A4
 - Connect the 4 inputs of the Multiplicand B1, B2, B3, B4
 - Connects the Total 8 Sums Output from the 3 Adders and Connect them to the LED and Observe Outputs
 - 5. Now Complete the Experimental truth table (**Table 2**) for the 4-bit multiplier with the outputs from the hardware.

LOGIC CIRCUIT DIAGRAM

Fig:1

Table:1 Theoretical

Multiplicand	Multiplier	Product	Result in Decimal
B4 B3 B2 B1	A4 A3 A2 A1	S8 S7 S6 S5 S4 S3 S2 S1	
1 0 0 0	1 0 0 1	0 1 0 0 1 0 0 0	8×9=72
0 1 0 1	0 0 1 0		
0 1 1 1	0 0 1 1		
0 1 0 0	1 0 0 0		
0 1 0 1	0 1 1 0		
1 0 0 1	0 1 0 0		
1 1 1 1	1 0 1 1		

Table:2 Experimental

Multiplicand	Multiplier	Product	Result in Decimal
B4 B3 B2 B1	A4 A3 A2 A1	S8 S7 S6 S5 S4 S3 S2 S1	
1 0 0 0	1 0 0 1	0 1 0 0 1 0 0 0	8×9=72
0 0 0 1	0 0 1 0		
0 0 1 1	0 1 1 1		
0 1 0 0	1 0 0 0		
0 1 0 1	0 1 1 0		
1 0 0 1	0 1 0 0		
	1 0 1 1		

Assignment:

- 1. Implement the circuit in Logisim. Submit logisim (.circ) file within the given time by your lab instructor (10 marks).
- 2. Prepare and submit the lab report by the end of the class individually (10 marks).

Pin Configuration of the ICs:

^{**}Plagiarism and late submission won't be acceptable.