위스키입문자를 위한 서비스 Whiskey Wiki

B101

목차

1. 기획배경

2. 프로젝트 소개

3. 시연

4. 핵심 기술

5. 기대효과

1. 기획 배경

One Superb wedka One Superb wedka Onesteed in the village of Thus, Sweden Absolut Since 1879

IMPORTED 40%ALC./VOL.(80PROOF) 700 ML

79000010 482 8011110 19 4811, 191019

Aller Carried

SKYY

PREMIN

JIM BEAM

BOURBON

225

1864

위스키 수입량 역대 최대--- "올해 새 역사 쓸까"

올해 상반기 위스키 수입 50% 급증...사상 최대

[무역뉴스 **2023.07.19]**.

위스키 수입량 역대 최대...처음으로 3만톤 넘었다

작년 위스키 수입량 3만t '사상 최대'...와인은 대폭 감소

[연합뉴스 2024.01.30.]

2. 프로젝트 소개

핵심 기능

1. AI를 통한 위스키 인식

2. 온라인 저장공간, My Bar

3. 다른 유저와 거래하기

첫번째, AI를 통한 위스키 인식

첫번째, AI를 통한 위스키 인식

두 번째, 온라인 저장공간, My Bar

두 번째, 온라인 저장공간, My Bar

세 번째, 다른 유저와 거래하기

위스키 정보 / 선호도 통계

3. 人19

4. 핵심 기술

4-1. Al 기술

1) 모델/학습량 관련

1) 모델/학습량 관련

복잡도 낮은 일

VS

형태 변화 X 움직이지 않음 형태 변화 0 움직임

YOLOv5 모델 종류

Small YOLOv5s

Medium YOLOv5m

Large YOLOv5I

XLarge YOLOv5x

14 MB_{FP16} 2.2 ms_{V100} 36.8 mAP_{coco}

41 MB_{FP16} 2.9 ms_{v100} 44.5 mAP coco

90 MB_{FP16} 3.8 ms_{V100} 48.1 mAP_{coco}

168 MB_{FP16} 6.0 ms_{V100} 50.1 mAP_{coco}

학습 시간 / GPU 부담 / 모델 용량 🖠

1) 모델/학습량 관련

모델과 학습량 선정 🥌 성능 테스트

F	2.5.	한습 기록 - Excel										
파일	홈 삽입	페이지 레이아웃	수식 데이터	검토 보기	○ 수행할 작업		TOTAL TOTAL STREET				St 100	
C] [h 복사 +	맑은 고딕	· 11 · ババ					일반 🔻	##	표준	나쁨	보통
붙여넣	✓ 서식 복사	가 <u>가</u> - 🖽 -	<u>◇</u> - <u>가</u> - 백청 ·		<u>➡</u> 별합하	고 가-	운데 맞춤 *	• % • 6.0 .00 • 00 • 00	조건부 표 서식 * 서식 *	좋음	경고문	계산
ŧ	클립보드 등	글꼴	Г	ă	맞춤		F ₂	표시 형식 5			스타일	
M10	•	× \(\sqrt{f_x}										
4	Α	В	C	D	E	F	G	Н	1	J	K	L
19		v5	L	75	32		0.976	0.985	0.993	0.839	Χ	
20		v5	X	50	16		0.975	0.982	0.987	0.829	40	
22	Ballentines	v5	S	50	64		0.893	0.562	0.907	0.626		dataset A
23		v5	S	200	64		0.941	0.943	0.947	0.629		dataset B
24		v5	М	50	32		0.887	0.912	0.933	0.596		dataset B
25		v5	М	100	32		0.916	0.905	0.92	0.634	X (50)	dataset B
26		v5	М	200	32		0.96	0.928	0.948	0.675	80, 150, 170	dataset B
27		v5	L	100	32		0.917	0.926	0.954	0.613		dataset B
28		v5	L	200	32		0.93	0.931	0.934	0.646		dataset B
29		v5	X	50	16		0.926	0.96	0.975	0.645		dataset B
31	Jack-Daniels	v5	S	100	64		0.498	0.753	0.631	0.367		dataset A
32		v5	S	300	64		0.86	0.85	0.888	0.616		dataset A
33		v5	М	100	32	1	0.711	0.68	0.711	0.484		dataset A
34		v5	М	300	32		0.814	0.72	0.792	0.542		dataset A
35		v5	S	100	64		0.552	0.759	0.704	0.502		dataset B
36		v5	M	100	32		0.995	1	0.995	0.807	X	dataset B
37		v5	М	150	32		0.996	1	0.995	0.812	X (50-80)	dataset B
38		v5	М	200	32		0.996	1	0.995	0.815	150	dataset B
39		v5	М	300	32		0.997	1	0.995	0.814	200	dataset B
41	empty bottle	v5	S	100	64		0.61	0.204	0.207	0.152		

1) 모델/학습량 관련

Small YOLOv5s

 $\begin{array}{c} 14 \text{ MB}_{\text{FP16}} \\ 2.2 \text{ ms}_{\text{V100}} \\ 36.8 \text{ mAP}_{\text{coco}} \end{array}$

41 MB_{FP16} 2.9 ms_{V100} 44.5 mAP_{COCO}

YOLOv5I

90 MB_{FP16} 3.8 ms_{V100} 48.1 mAP_{COCO}

XLarge YOLOv5x

168 MB_{FP16} 6.0 ms_{V100} 50.1 mAP_{COCO}

L, X와 정확도 차이 크지 않음

용량은 훨씬 작음

대분류 모델과 똑같이 라벨링

정확도 크게 상승

라벨링 영역 변경

세부 분류 모델 제작

원하는 데이터 셋이 없음

라벨링 = 답안지 만들기

labelme 무료 라벨링 툴

세부 분류 모델 데이터 -> 직접 라벨링

labelme2yolo

Labelme 라벨 JSON

```
변환
```

YOLO 라벨

0 0.21211080586080586 0.6167582417582417 0.309409 0 0.5749771062271063 0.6682692307692307 0.6791437

```
'shapes": [
"label": "no.7",
"points": [
    163.47619047619048,
    202.2857142857143
    205.85714285714283,
    190.38095238095238
    254.4285714285714,
    206.0952380952381
    238.23809523809524,
    240.85714285714286
```


4-2. 보안

JS로 접근 가능

JS로 접근 불가

시스템 아키텍처

5. 기대 **호**과

기대효과

"위스키 입문자의 시간과 지갑을 지켜준다!"

담당 역할

FΕ

PM

FE Lead

Al, Auth, Design

BE

Infra, BE Lead

API

Al, Auth

