By definition, a Banach lattice is a Banach space $(E, \| \|)$ which is endowed with an order relation, usually written \leq , such that (E, \leq) is a lattice and the ordering is compatible with the Banach space structure of E . We are going to elaborate this in more detail now.

The axioms of compatibility between the linear structure of E and the order are as follows:

(LO₁)
$$f \le g$$
 implies $f + h \le g + h$ for all f , g , h in E .
(LO₂) $f \ge 0$ implies $\lambda f \ge 0$ for all f in E and $\lambda \ge 0$.

Any (real) vector space with an ordering satisfying (LO $_1$) and (LO $_2$) is called an ordered vector space. The property expressed in (LO $_1$) is sometimes called translation invariance and implies that the ordering of an ordered vector space E is completely determined by the positive part E $_+$ = {f \in E: f \ge 0} of E . In fact, one has f \le g if and only if g - f \in E $_+$. (LO $_1$) together with (LO $_2$) furthermore imply that the positive part of E is a convex set and a cone with vertex 0 (often called the positive cone of E). It is easily verified that conversely any proper convex cone C with vertex 0 in E is the positive part of E with respect to a uniquely determined compatible ordering.

An ordered vector space E is called a vector lattice if any two elements f, g in E have a supremum, which is denoted by $\sup(f,g)$ or by $f \circ g$, and an infimum, denoted by $\inf(f,g)$ or by $f \circ g$. It is obvious that the existence of, e.g., the supremum of any two elements in an ordered vector space implies the existence of the supremum of any finite number of elements in E and, since $f \circ g$ is equivalent to $-g \circ g \circ g$ this automatically implies the existence of finite infima. However, suprema (infima) of infinite majorized subsets need not exist in a vector lattice. If they do, then the vector lattice is called order complete (countably order complete or $g \circ g \circ g \circ g$ the binary relations sup and inf in a vector lattice automatically satisfy the (infinite) distributive laws

$$\inf(\sup_{\alpha} f_{\alpha}, h) = \sup_{\alpha} (\inf(f_{\alpha}, h))$$

 $\sup(\inf_{\alpha} f_{\alpha}, h) = \inf_{\alpha} (\sup(f_{\alpha}, h))$