Algorithmes numériques – Rapport Interpolation et Approximation

Axel Delsol, Pierre-Loup Pissavy Décembre 2013

Table des matières

1	Pré	éambule	2
	1.1	Structure du programme	2
2	Inte	erpolation	3
	2.1	Méthode de Newton	3
		2.1.1 Présentation	3
		2.1.2 Programme	3
	2.2	Méthode de Neuville	5
		2.2.1 Présentation	5
		2.2.2 Programme	5
	2.3	Résultats de tests	6
		2.3.1 Exemple tiré d'un TD	6
		2.3.2 Densité de l'eau en fonction de la température	7
		2.3.3 3 séries	8
		2.3.4 Dépenses et Revenus	11
	2.4	±	13
3	Apr	proximation	L 4
•	3.1	r	14
	0.1		14
			14
	3.2	8	17
	3.3	· · · · · · · · · · · · · · · · · · ·	17
	3.4		18
	0.1		18
		•	19
			20
			20 23
		1	23 24
			24 25
		3.4.6 Vérification de la loi de Pareto	2O
4	Con	nclusion	26

1 Préambule

1.1 Structure du programme

Nous avons conçu un programme principal avec menus, présenté sous la forme suivante :

```
Menu principal : Interpolation et Approximation

Entrez n le nombre de points : 2
(Saisie de la série de points...)

(Affichage du tableau correspondant...)
Quelle résolution utiliser ?

1- Newton
2- Neuville
3- Régression Linéaire
4- Approximation par une fonction exponentielle
5- Approximation par une fonction "puissance"
9- Nouvelle série de points (Menu principal)
0- Quitter
Votre choix :
```

 ${\tt FIGURE~1.1-Apercu:Menu~Principal}$

Interpolation 2

L'interpolation, en analyse numérique, est un ensemble de méthode permettant d'obtenir une équation mathématique passant par tous les points d'une liste données.

Pour cette partie, les équations mathématiques recherchées sont des polynômes.

Notation pour la suite :

- La liste comporte N éléments (x_i, y_i) .
- Les polynômes recherchés sont de la forme

$$P_{N-1}(x) = \sum_{i=0}^{N-1} a_i \cdot x^i$$

2.1 Méthode de Newton

2.1.1Présentation

La forme du polynôme par la méthode de Newton est la suivante :

$$P_{N-1}(x) = \sum_{i=0}^{N-1} \left(a_i \cdot \prod_{j=1}^{j=i} (x - x_j) \right)$$

Pour se faire, on utilise une méthode de recherche de coefficients récursive appelée la méthode des différences divisées. Le calcul des valeurs des différences divisées se fait à l'aide d'une fonction :

La différence divisée de degré 0 est :

$$\forall i=1,\ldots,N: \nabla^0 y_i=y_i$$

$$\forall i = k+1, \dots, N : \nabla^k y_i = \frac{\nabla^{k-1} y_i - \nabla^{k-1} y_k}{\nabla^k - \nabla^k}$$

La différence divisée de degré b est : La différence divisée de degré k est : $\forall i=k+1,\ldots,N: \bigtriangledown^k y_i = \frac{\bigtriangledown^{k-1} y_i - \bigtriangledown^{k-1} y_k}{x_i - xk}$ Ensuite, on a directement les coefficients du polynôme de Newton par la relation

$$\forall i = 1, \dots, N - 1 : a_i = \nabla^i y_{(i+1)}$$

Enfin, on peut retrouver la forme développée du polynôme à l'aide de la relation :

$$\forall i = 0, \dots, N : P_i(x) = \begin{cases} a_{N-1} & \text{si } i = 0 \\ a_{N-1-i} + (x - x_{N-i}) \cdot P_{i-1}(x) & \text{sinon} \end{cases}$$

2.1.2 Programme

```
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "polynome.h"
void newton (double ** tab, int n)
```

```
9 |
      int i, k;
10
      double** t= (double**) malloc(n*sizeof(double*));
      for (i=0; i<n; i++)
11
12
13
       t[i]= (double*) malloc((i+1)*sizeof(double));
14
15
16
      //initialisation des valeurs : on récupère les y.
17
      for (i=0; i<n; i++)</pre>
18
        t[i][0]=tab[1][i];
19
      }
20
21
22
      //calcul des differences divisees
23
      for (k=1; k<n; k++)
24
      {
25
        for (i=k; i<n; i++)</pre>
26
27
          t[i][k]=(t[i][k-1]-t[k-1][k-1])/(tab[0][i]-tab[0][k-1]);
        }
28
29
      }
30
31
      //tableau de polynomes
      polynome** tabP= (polynome**) malloc(n*(sizeof(polynome*)));
32
      for (i=0; i<n; i++)</pre>
33
34
35
        tabP[i]=(polynome*) malloc(sizeof(polynome));
      }
36
37
      tabP[0]->poln=(double*) malloc(sizeof(double));
38
39
      tabP[0]->poln[0]=t[n-1][n-1];
40
      for (i=1; i<n; i++)
41
42
        tabP[i]=addPoly(creerPoly(1,"valeur",t[n-1-i][n-1-i]),mulPoly(creerPoly(2,"valeur",-tab[0][n-1-i], 1.),
43
             tabP[i-1]));
44
45
      redimensionnerPoly(tabP[n-1]);
46
47
      //affichage
      menuAffichage(tabP[n-1]);
48
49
      ecartPoly(tab,n,tabP[n-1]);
      printf("\n");
50
51
52
      //libération mémoire
      for(i=0;i<n;i++)</pre>
53
54
        free(tabP[i]->poln);
55
        free(tabP[i]);
56
57
        free(t[i]);
58
      free(tabP);
59
60
      free(t);
61 || }
```

Figure 2.1 – Code : newton.c

2.2 Méthode de Neuville

2.2.1 Présentation

La méthode permet d'exprimer le polynôme $P_{N-1}[x_1,\ldots,x_N]$ sur les points $\{1,\ldots,N\}$ en fonction des polynômes $P_{N-2}[x_1,\ldots,x_{N-1}]$ et $P_{N-2}[x_2,\ldots,x_N]$ sur l'ensemble des points $\{1,\ldots,N-1\}$ et $\{2,\ldots,N\}$. L'expression est donnée sous la forme suivante : $\forall x, \forall k=2,\ldots,N-1: P_k[x_i,\ldots,x_{i+k}](x) = \frac{(x-x_{i+k})\cdot P_{k-1}[x_i,\ldots,x_{i+k-1}(x)+(x_i-x)\cdot P_{k-1}[x_{i+1},\ldots,x_{i+k}(x)+x_i]}{x_i-x_i-x_i-x_i}$

```
2.2.2 Programme
```

```
1 | #include <stdio.h>
    #include <stdlib.h>
 3
    #include <string.h>
 4
    #include <math.h>
    #include "polynome.h"
 6
 7
    void neuville (double ** tab, int n)
 8
 9
      int i. k:
10
      polynome*** t= (polynome***) malloc(n*sizeof(polynome**));
      for (i=0; i<n; i++)
11
12
13
       t[i]= (polynome**) malloc((i+1)*sizeof(polynome*));
14
15
16
      //initialisation des valeurs : on récupère les y.
      for (i=0; i<n; i++)</pre>
17
18
19
        t[i][0]=creerPoly(1,"valeur", tab[1][i]);
20
21
      //calcul des differences divisees
22
23
      for (k=1; k< n; k++)
24
      {
25
        for (i=k; i<n; i++)
26
          t[i][k]=mulSPoly((1/((tab[0][i-k])-(tab[0][i]))),addPoly(mulPoly(creerPoly(2,"valeur", -(tab[0][i]),
27
               1.), t[i-1][k-1]), mulPoly(creerPoly(2, "valeur", tab[0][i-k], -1.),t[i][k-1])));
28
        }
      }
29
30
      //polynome àretourner
      redimensionnerPoly(t[n-1][n-1]);
31
32
33
      //affichage
34
      menuAffichage(t[n-1][n-1]);
35
      ecartPoly(tab,n,t[n-1][n-1]);
      printf("\n");
36
37
38
      //libération mémoire
      for(i=0;i<n;i++)
39
40
      {
41
        for(k=0;k<i;k++)
42
43
          free(t[i][k]->poln);
44
          free(t[i][k]);
45
46
        free(t[i]);
47
      free(t);
48
```

FIGURE 2.2 - Code: neuville.c

2.3 Résultats de tests

2.3.1 Exemple tiré d'un TD

x_i	1	2	3	4
y_i	0	0	0	6

Tableau 2.3.1 – Série 1

On obtient alors :

Méthode de Newton :

 $P(x) = -6.00 + 11.00 \cdot x - 6.00 \cdot x^2 + 1.00 \cdot x^3$

 ${\bf Erreur}:0$

Méthode de Neuville :

 $P(x) = -6.00 + 11.00 \cdot x - 6.00 \cdot x^2 + 1.00 \cdot x^3$

Erreur: 0

Graphique 2.3.1 – Interpolations de Newton et Neuville – (Tableau 2.3.1)

2.3.2 Densité de l'eau en fonction de la température

x_i	0	2	4	6	8	10	12	14	16	18
y_i	0.999870	0.999970	1.000000	0.999970	0.999880	0.999730	0.999530	0.999530	0.998970	0.998460
r.	20	20	0.4	0.0	20	20	20	0.4	0.0	20
x_i	20	22	24	26	28	30	32	34	36	38

Tableau 2.3.2 – Mesures

On obtient alors:

Méthode de Newton:

 $P(x) \approx 0.999870 + 7.693711 \cdot x - 13.276666 \cdot x^2 + 9.932303 \cdot x^3 - 4.345460 \cdot x^4 + 1.259124 \cdot x^5 - 0.258585 \cdot x^6 + 0.039240 \cdot x^7 - 0.004520 \cdot x^8 + 0.000402 \cdot x^9 - 0.000028 \cdot x^{10} + 0.000002 \cdot x^{11} - 0.000000 \cdot x^{12} + 0.000000 \cdot x^{13} - 0.000000 \cdot x^{14} + 0.000000 \cdot x^{15} - 0.000000 \cdot x^{16} + 0.000000 \cdot x^{17} - 0.000000 \cdot x^{18} + 0.000000 \cdot x^{19} \\ \text{Erreur} : 0.000002166566117323$

Méthode de Neuville :

 $P(x) \approx 0.999870 + 7.693711 \cdot x - 13.276666 \cdot x^2 + 9.932303 \cdot x^3 - 4.345460 \cdot x^4 + 1.259124 \cdot x^5 - 0.258585 \cdot x^6 + 0.039240 \cdot x^7 - 0.004520 \cdot x^8 + 0.000402 \cdot x^9 - 0.000028 \cdot x^{10} + 0.000002 \cdot x^{11} - 0.000000 \cdot x^{12} + 0.000000 \cdot x^{13} - 0.000000 \cdot x^{14} + 0.000000 \cdot x^{15} - 0.000000 \cdot x^{16} + 0.000000 \cdot x^{17} - 0.000000 \cdot x^{18} + 0.000000 \cdot x^{19}$ Erreur : 0.000028505775100296

Graphique 2.3.2 – Interpolation de Newton et Neuville – (Tableau 2.3.2)

2.3.3 3 séries

x_i	10	8	13	9	11	14	6	4	12	7	5
$y_i^{(1)}$	9.14	8.14	8.74	8.77	9.26	8.10	6.13	3.10	9.13	7.26	4.74
$y_i^{(2)}$	7.46	6.77	12.74	7.11	7.81	8.84	6.08	5.39	8.15	6.42	5.73
$y_i^{(3)}$	6.58	5.76	7.71	8.84	8.47	7.04	5.25	12.50	5.56	7.91	6.89

Tableau 2.3.3 – Trois séries S1, S2, S3

On obtient alors:

Série 1:

Méthode de Newton:

 $P(x) \approx -229.550000 + 299.165750 \cdot x - 173.107636 \cdot x^2 + 58.546955 \cdot x^3 - 12.731862 \cdot x^4 + 1.859906 \cdot x^5 - 0.184968 \cdot x^6 + 0.012375 \cdot x^7 - 0.000533 \cdot x^8 + 0.000013 \cdot x^9 - 0.000000 \cdot x^{10}$

Erreur: 0.00000000016217532

Méthode de Neuville :

 $P(x) \approx -229.550000 + 299.165750 \cdot x - 173.107636 \cdot x^2 + 58.546955 \cdot x^3 - 12.731862 \cdot x^4 + 1.859906 \cdot x^5 - 0.184968 \cdot x^6 + 0.012375 \cdot x^7 - 0.000533 \cdot x^8 + 0.000013 \cdot x^9 - 0.000000 \cdot x^{10}$

Erreur: 0.00000000012119518

Série 2:

Méthode de Newton:

 $P(x) \approx -12345.190000 + 16608.066492 \cdot x - 9870.941498 \cdot x^2 + 3416.593892 \cdot x^3 - 763.094009 \cdot x^4 + 114.979985 \cdot x^5 - 11.842442 \cdot x^6 + 0.823658 \cdot x^7 - 0.037039 \cdot x^8 + 0.000973 \cdot x^9 - 0.000011 \cdot x^{10}$

Erreur: 0.00000000774325735

Méthode de Neuville :

 $P(x) \approx -12345.190000 + 16608.066492 \cdot x - 9870.941498 \cdot x^2 + 3416.593892 \cdot x^3 - 763.094009 \cdot x^4 + 114.979985 \cdot x^5 - 11.842442 \cdot x^6 + 0.823658 \cdot x^7 - 0.037039 \cdot x^8 + 0.000973 \cdot x^9 - 0.000011 \cdot x^{10}$

Erreur: 0.00000001033081661

Série 3:

Méthode de Newton:

 $P(x) \approx -568559.640000 + 739678.381270 \cdot x - 424130.450858 \cdot x^2 + 141275.523224 \cdot x^3 - 30298.693006 \cdot x^4 + 4375.222059 \cdot x^5 - 431.155992 \cdot x^6 + 28.652640 \cdot x^7 - 1.229803 \cdot x^8 + 0.030806 \cdot x^9 - 0.000342 \cdot x^{10}$

Erreur: 0.000000081067879843

Méthode de Neuville :

 $P(x) \approx -568559.640000 + 739678.381270 \cdot x - 424130.450858 \cdot x^2 + 141275.523224 \cdot x^3 - 30298.693006 \cdot x^4 + 4375.222059 \cdot x^5 - 431.155992 \cdot x^6 + 28.652640 \cdot x^7 - 1.229803 \cdot x^8 + 0.030806 \cdot x^9 - 0.000342 \cdot x^{10}$

Erreur: 0.000000035876804073

Graphique 2.3.3 – Interpolations de Newton et Neuville – Série 1 (Tableau 2.3.3)

Graphique 2.3.4 – Interpolations de Newton et Neuville – Série 2 (Tableau 2.3.3)

Graphique 2.3.5 – Interpolations de Newton et Neuville – Série 3 (Tableau 2.3.3)

2.3.4 Dépenses et Revenus

x_i (R)	752	855	871	734	610	582	921	492	569	462	907
y_i (D)	85	83	162	79	81	83	281	81	81	80	243
x_i (R)	643	862	524	679	902	918	828	875	809	894	
y_i (D)	84	84	82	80	226	260	82	186	77	223	

Tableau 2.3.4 – Série non triée

x_i (R)	752	855	828	734	809	610	582	492	569	462	643	862	524	679
y_i (D)	85	83	82	79	77	81	83	81	81	80	84	84	82	80

Tableau 2.3.5 – Série triée : Partie Basse

x_i (R)	902	918	871	875	921	907	894
y_i (D)	226	260	162	186	281	243	223

Tableau 2.3.6 – Série triée: Partie Haute

On obtient alors:

Partie Basse:

Méthode de Newton:

 $P(x) \approx 73581192209.962601 - 1459287367.863513 \cdot x + 13300351.970502 \cdot x^2 - 73765.523297 \cdot x^3 + 277.759281 \cdot x^4 - 0.749863 \cdot x^5 + 0.001493 \cdot x^6 - 0.000002 \cdot x^7 + 0.000000 \cdot x^8 - 0.0000000 \cdot x^9 + 0.000000 \cdot x^{10} - 0.000000 \cdot x^{11} + 0.000000 \cdot x^{12} - 0.000000 \cdot x^{13}$

Erreur: 0.018460432587224723

Méthode de Neuville :

 $P(x) \approx 73581192209.952133 - 1459287367.863373 \cdot x + 13300351.970501 \cdot x^2 - 73765.523297 \cdot x^3 + 277.759281 \cdot x^4 - 0.749863 \cdot x^5 + 0.001493 \cdot x^6 - 0.0000002 \cdot x^7 + 0.0000000 \cdot x^8 - 0.0000000 \cdot x^9 + 0.0000000 \cdot x^{10} - 0.000000 \cdot x^{11} + 0.000000 \cdot x^{12} - 0.0000000 \cdot x^{13}$

Erreur: 0.192499821369502971

Partie Haute:

Méthode de Newton:

 $P(x) \approx 621022623331.547363 - 4157904770.816573 \cdot x + 11598209.746191 \cdot x^2 - 17253.085748 \cdot x^3 + 14.435304 \cdot x^4 - 0.006441 \cdot x^5 + 0.000001 \cdot x^6$

Erreur: 0.000429349286215646

Méthode de Neuville :

 $P(x) \approx 621022623331.548340 - 4157904770.816572 \cdot x + 11598209.746191 \cdot x^2 - 17253.085748 \cdot x^3 + 14.435304 \cdot x^4 - 0.006441 \cdot x^5 + 0.000001 \cdot x^6$

Erreur: 0.002443850040435791

Graphique 2.3.6 – Interpolation de Newton et Neuville – (Tableaux 2.3.5 & 2.3.6)

2.4 Comparaison

3 Approximation

Contrairement aux interpolations, les équations obtenues ne passent pas forcément par les N points. On cherche uniquement à minimiser la distance moyenne entre les N points mesurés et les points de la courbe. Cette méthode est appelée la méthodes des moindres carrés.

3.1 Régression linéaire

La régression linéaire est un cas particulier de la méthode des moindres carrés. L'équation recherchée ici est une droite d'équation $y = a_0 + a_1 \cdot x$. On obtient alors le système :

$$\begin{bmatrix} \sum_{i=N}^{i=N} & i=N \\ \sum_{i=1}^{x_i} & \sum_{i=1}^{x_i} \\ i=N & i=N \\ \sum_{i=1}^{x_i} & \sum_{i=1}^{x_i^2} \end{bmatrix} \cdot \begin{bmatrix} a_0 \\ a_1 \end{bmatrix} = \begin{bmatrix} \sum_{i=N}^{i=N} \\ y_i x_i^0 \\ i=1 \\ i=N \\ \sum_{i=1}^{x_i} y_i x_i^0 \\ y_i x_i^0 \end{bmatrix}$$
(1)

On a enfin une expression de a_0 et a_1 :

```
a_1 = \frac{\bar{y}\bar{x} - \bar{x}\bar{y}}{\bar{x}^2 - (\bar{x})^2}
```

$$a_0 = \bar{y} - a_1 \cdot \bar{x}$$

3.1.1 Présentation

3.1.2 Programme

```
1
    #include <stdio.h>
    #include <stdlib.h>
 3
    #include <string.h>
 4
    #include <math.h>
 5
    #include "polynome.h"
 6
    void mapping(double** from, double** to, int n, char* fn)
 8
 9
      int i, j;
      if (strcmp(fn, "exponentielle")==0)
10
11
12
        for (j=0; j<n; j++)
13
          to[0][j]=from[0][j];
14
15
        for (j=0; j<n; j++)
16
17
          to[1][j]=log(from[1][j]);
18
19
20
21
      else if (strcmp(fn,"puissance")==0)
22
        for (i=0; i<2; i++)
23
24
          for (j=0; j<n; j++)
25
            to[i][j]=log(from[i][j]);
27
28
```

```
30
      }
31
    }
32
33
     double moyenneElements(double** tab,int 1, int n)
34
      double resultat = 0.;
35
36
       double cpt = 0.;
37
       int i;
38
       for(i=0;i<n;i++)</pre>
39
        resultat = resultat + tab[l][i];
40
41
         cpt = cpt + 1.;
42
43
       resultat = resultat/cpt;
44
       return resultat;
45
46
47
     double moyenneElementsCarres(double** tab,int 1, int n)
48
49
       double resultat = 0;
50
       double cpt = 0;
       int i;
51
52
       for(i=0;i<n;i++)</pre>
53
       {
         resultat = resultat + pow(tab[1][i],2);
54
55
         cpt = cpt + 1;
56
57
       resultat = resultat/cpt;
      return resultat;
58
59
60
61
     double movenneProduitElements(double** tab, int n)
62
63
      double resultat = 0;
       double cpt = 0;
64
65
       int i;
66
       for(i=0;i<n;i++)
67
68
         resultat = resultat + tab[0][i]*tab[1][i];
69
         cpt = cpt + 1;
70
71
       resultat = resultat/cpt;
72
      return resultat;
73
74
75
     reglinD(double** tab, int n)
76
77
       double a0 = 0;
78
       double a1 = 0;
       double xb, yb, xcb, xyb; // b pour barre et c pour carre
79
       printf("Nous cherchons le polynome de degré 1 sous la forme a0 + a1*x.\n");
80
81
82
       //calculs
       xb = moyenneElements(tab,0,n);
83
84
       yb = moyenneElements(tab,1,n);
       xcb = moyenneElementsCarres(tab,0,n);
85
       xyb = moyenneProduitElements(tab,n);
86
87
88
       a1 = (xyb-xb*yb)/(xcb-pow(xb,2));
89
       a0 = yb-xb*a1;
90
91
       //\ creation\ et\ affichage\ du\ polynome
92
       polynome *P = creerPoly(2,"valeur",a0,a1);
       menuAffichage(P);
93
94
95
       //statistiques
96
       ecartPoly(tab,n,P);
97
       printf("\n");
98
       //libération mémoire
99
100
      free(P->poln);
```

```
101 ||
       free(P);
102
     }
103
104
      \textbf{reglinE(double** tab, int n)} \ //y = c \ (e^{(dx)}) \iff ln(y) = ln(c) + xd \implies c = e^{(a0)} \ \ \emptyset \ d = a1 
105
106
       int i;
107
       double c = 0;
108
       double d = 0;
109
       double a0 = 0;
       double a1 = 0;
110
       double xb, yb, xcb, xyb; // b pour barre et c pour carre
111
112
       double** t = (double**) malloc(2*sizeof(double*)); // contiendra le mapping de tab
       for(i=0;i<2;i++)
113
114
       {
115
         t[i] = (double*) malloc (n*sizeof(double));
116
117
       printf("Nous cherchons une approximation sous la forme c*(e^(d*x)).\n");
118
119
       //calculs
120
       mapping(tab, t, n, "exponentielle");
121
       xb = movenneElements(t,0,n);
       yb = moyenneElements(t,1,n);
122
123
       xcb = moyenneElementsCarres(t,0,n);
124
       xyb = moyenneProduitElements(t,n);
125
126
       a1 = (xyb-xb*yb)/(xcb-pow(xb,2.));
       a0 = yb-xb*a1;
127
       d = a1;
128
129
       c = \exp(a0);
130
131
       //affichage
132
       printf("P(x) = %20.18f*exp(%20.18f*x)\n",c,d);
133
134
       //statistiques
       ecartExpo(tab,n,c,d);
135
136
       printf("\n");
137
138
       //libération mémoire
139
       for (i=0; i<2; i++)
140
       {
141
         free(t[i]);
142
       }
143
       free(t);
144
145
     reglinP(double ** tab, int n) //y=a(x^b) \iff ln(y)=ln(a)+b*ln(x) \implies a=e^(a0) \& b=a1
146
147
148
       int i:
       double a = 0.;
149
150
       double b = 0.;
       double a0 = 0.;
151
       double a1 = 0.;
152
153
       double xb, yb, xcb, xyb; // b pour barre et c pour carre
       double** t = (double**) malloc(2*sizeof(double*)); // contiendra le mapping de tab
154
155
       for(i=0;i<2;i++)
156
       {
         t[i] = (double*) malloc (n*sizeof(double));
157
158
159
       printf("Nous cherchons une approximation sous la forme a*(x^(b)).\n");
160
161
       //calculs
       mapping(tab, t, n, "puissance");
162
163
       xb = moyenneElements(t,0,n);
       yb = movenneElements(t,1,n);
164
       xcb = moyenneElementsCarres(t,0,n);
165
166
       xyb = moyenneProduitElements(t,n);
167
       a1 = (xyb-xb*yb)/(xcb-pow(xb,2));
168
       a0 = yb-xb*a1;
169
       b = a1;
170
171
       a = \exp(a0);
```

```
172
173
       //affichage
174
       printf("P(x) = %20.18f*x^{(%20.18f)}n",a,b);
175
176
       //statistiques
       ecartPui(tab,n,a,b);
177
       printf("\n");
178
179
180
       //lib\'{e}ration m\'{e}moire
181
       for (i=0; i<2; i++)
182
         free(t[i]);
183
184
185
       free(t);
186 | }
```

 ${\tt Figure~3.1-Code:reglin.c}$

- 3.2 Ajustement exponentiel
- 3.3 Ajustement de type "puissance"

3.4 Résultats de tests

3.4.1 Exemple tiré d'un TD

x_i	0.5	1	1.5	2	2.5
y_i	0.49	1.6	3.36	6.44	10.16

Tableau 3.4.1 – Série 1

Graphique 3.4.1 – Régression linéaire – (Tableau 3.4.1)

3.4.2 Série d'Anscombe

	x_i	10	8	13	9	11	14	6	4	12	7	5
y_i	A	8.04	6.95	7.58	8.81	8.33	9.96	7.24	4.26	10.84	4.82	5.68

Tableau 3.4.2 – Série dûe à Anscombe

Graphique 3.4.2 – Régression linéaire – (Tableau 3.4.2)

3.4.3 3 séries

x_i	10	8	13	9	11	14	6	4	12	7	5
$y_i^{(1)}$	9.14	8.14	8.74	8.77	9.26	8.10	6.13	3.10	9.13	7.26	4.74
$y_i^{(2)}$	7.46	6.77	12.74	7.11	7.81	8.84	6.08	5.39	8.15	6.42	5.73
$y_i^{(3)}$	6.58	5.76	7.71	8.84	8.47	7.04	5.25	12.50	5.56	7.91	6.89
$y_i^{(A)}$	8.04	6.95	7.58	8.81	8.33	9.96	7.24	4.26	10.84	4.82	5.68

Tableau 3.4.3 - 3 séries $S^{(1)}$, $S^{(2)}$ et $S^{(3)}$ comparées à Anscombe

Série (1):

Regression linéaire par une droite : $P(x) = 3.000909 + 0.500000 \cdot x$

Erreur moyenne : 0.967934

Série (2):

Regression linéaire par une droite : $P(x) = 3.002455 + 0.499727 \cdot x$

Erreur moyenne: 0.715967

Graphique 3.4.3 – Régression linéaire – (Tableau 3.4.3)

Regression linéaire par une exponentielle : $P(x) = 3.417548 \cdot \exp(0.082249 \cdot x)$

Erreur moyenne: 1.187786

Regression linéaire par une exponentielle : $P(x) = 4.100273 \cdot \exp(0.063981 \cdot x)$

Erreur moyenne: 0.590601

Graphique 3.4.4 – Approximation par ajustement exponentiel – (Tableau 3.4.3)

Regression linéaire par une puissance : $P(x) = 1.453451 \cdot x^{0.749910}$

Erreur moyenne: 0.950634

Regression linéaire par une puissance $:\!P(x)=2.478570\cdot x^{0.507328}$

Erreur moyenne: 0.682932

Graphique 3.4.5 – Approximation par ajustement "puissance" – (Tableau 3.4.3)

3.4.4 Dépenses mensuelles et revenus

x_i (R)											
y_i (D)	85	83	162	79	81	83	281	81	81	80	243

Tableau 3.4.4 – Série 1

- 1	x_i (R)										
	y_i (D)	84	84	82	80	226	260	82	186	77	223

Tableau 3.4.5 – Série 2

Série 1:

Regression linéaire par une droite : $P(x) = -98.368005 + 0.312192 \cdot x$

 $Erreur\ moyenne: 38.488186$

Regression linéaire par une exponentielle : $P(x) = 24.011644 \cdot \exp(0.002124 \cdot x)$

Erreur moyenne: 33.486916

Regression linéaire par une puissance $:\!P(x)=0.015258\cdot x^{1.356482}$

Erreur moyenne: 36.660388

Série 2:

Regression linéaire par une droite : $P(x) = -164.266162 + 0.381480 \cdot x$

Erreur moyenne: 46.455702

Regression linéaire par une exponentielle : $P(x) = 14.780629 \cdot \exp(0.002657 \cdot x)$

Erreur moyenne: 45.099159

Regression linéaire par une puissance $:\!P(x)=0.000785\cdot x^{1.793989}$

Erreur moyenne : 47.682118

3.4.5 Série chronologique avec accroissement exponentiel

						93			96	97
y_i	5.89	6.77	7.97	9.11	10.56	12.27	13.92	15.72	17.91	22.13

Tableau 3.4.6 – Série

3.4.6 Vérification de la loi de Pareto

					50			
ĺ	y_i	352	128	62.3	35.7	6.3	0.4	0.1

Tableau 3.4.7 – Relation entre revenu et nombre de personnes ayant un revenu supérieur

4 Conclusion