Interferência

- Dupla fenda de Young
- Generalização para mais fendas
 redes de difração
- Interferómetro Fabry-Perot
- Interferência e a natureza quântica da luz

Interferometria

Aplicação de interferência ás medidas de grandezas físicas

2 classes principais:

Divisão das frentes de ondas

Fendas de Young Fendas múltiplas Redes de difração

Divisão dos amplitudes

Interferometros de Michelson Mach-Zenhder Fabry Perot

Interferometro de Young

$$E_{tot} \approx \frac{E_0 e^{-i\omega t}}{ik\overline{r}} \left[e^{ikr_1} + e^{ikr_2} \right]$$

$$r = \sqrt{(x - x')^2 + z^2}$$

$$= z\sqrt{1 + \frac{(x - x')^2}{z^2}} \approx z + \frac{(x - x')^2}{2z}$$

$$= z + \frac{x^2}{2z} - \frac{xx'}{z} + \frac{x'^2}{2z} = \overline{r} - \frac{xx'}{z} + \frac{x'^2}{2z}$$

 $r_{1,2} \approx \overline{r} \mp \frac{xd}{2z} + \frac{d^2}{8z}$

Aproximação de Fresnel (ângulos θ pequenos)

$$\sqrt{1+\varepsilon} \approx 1 + \frac{1}{2}\varepsilon$$

Interferómetro de Young

$$E_{tot} \approx \frac{E_0 e^{-i\omega t}}{ik\overline{r}} \left[e^{ikr_1} + e^{ikr_2} \right] \qquad r_{1,2} \approx \overline{r} \mp \frac{xd}{2z} + \frac{d^2}{8z}$$

$$E_{tot} \approx \frac{E_0 e^{i(k\overline{r} - \omega t)}}{ik\overline{r}} e^{ikd^2/8z} \left[e^{-ikxd/2z} + e^{+ikxd/2z} \right]$$

$$2\cos\left(\frac{kxd}{2z}\right)$$

$$I_{tot} \approx 4I_f \cos^2\left(\frac{kxd}{2z}\right) = 2I_f \left[1 + \cos\left(\frac{kxd}{z}\right)\right]$$

Distribuição sinusoidal de intensidade que varia com a fase relativa

Escala espacial da padrão aumenta com z

Redes de difração

Construídas primeiro pelo Josef Fraunhofer (riscas paralelas num superfície metálica) Muito úteis em espetroscopia.

$$E_{tot} \approx E_s e^{i(k\overline{r} - \omega t)} \sum_{m = \frac{-N}{2}}^{\frac{N}{2} - 1} e^{-imkxd/z}$$
 Generalização para N fasores

$$S = e^{i\left(-\frac{N}{2}\right)\frac{kxd}{z}} + e^{i\left(-\frac{N}{2}+1\right)\frac{kxd}{z}} + \dots + \dots e^{i\left(\frac{N}{2}-1\right)\frac{kxd}{z}}$$

$$e^{i\frac{kxd}{z}}S = + e^{i\left(-\frac{N}{2}+1\right)\frac{kxd}{z}} + \dots + \dots e^{i\left(\frac{N}{2}-1\right)\frac{kxd}{z}} + e^{i\left(\frac{N}{2}\right)\frac{kxd}{z}}$$

$$I_{tot} \approx I_s \frac{\sin^2\left(N\frac{kxd}{2z}\right)}{\sin^2\left(\frac{kxd}{2z}\right)}$$

$$S = \frac{e^{-i\frac{N}{2}\frac{kxd}{z}} - e^{i\left(\frac{N}{2}\right)\frac{kxd}{z}}}{1 - e^{i\frac{kxd}{z}}} = \frac{e^{i\left(\frac{N}{2}\right)\frac{kxd}{z}} - e^{-i\frac{N}{2}\frac{kxd}{z}}}{e^{i\frac{kxd}{2z}}\left(e^{i\frac{kxd}{2z}} - e^{-i\frac{kxd}{2z}}\right)} = e^{-i\frac{kxd}{2z}} \frac{\sin\left(N\frac{kxd}{2z}\right)}{\sin\left(\frac{kxd}{2z}\right)}$$

Redes de difração

$$I_{tot} \approx I_s \frac{\sin^2\left(N\frac{kxd}{2z}\right)}{\sin^2\left(\frac{kxd}{2z}\right)}$$

Máximos quando

$$\frac{kx_{\max}d}{2z} = m\pi \quad x_{\max} = m\left(\frac{\lambda z}{d}\right)$$

$$I_{\text{max}} = \lim_{\phi \to m\pi} I_s \left(\frac{\sin(N\phi)}{\sin(\phi)} \right)^2$$

$$= I_s \left(\lim_{\phi \to m\pi} \frac{\sin(N\phi)}{\sin(\phi)} \right)^2$$

$$= I_s \left(\lim_{\phi \to m\pi} \frac{N\cos(N\phi)}{\cos(\phi)} \right)^2$$

$$= N^2 I_s$$

Primeiro mínimo

$$N\frac{kx_{\min}d}{2z} = \pi \quad x_{\min} = \left(\frac{\lambda z}{Nd}\right)$$

Redes de difração – incidência normal

Interferência construtiva quando $d \sin \theta = m\lambda$

Rede de difração - Resolução

Capacidade de resolver dois picos espetrais

Critério de Rayleigh: Os dois espetros são distinguíveis quando o máximo de um espetro é coincidente com o primeiro mínimo de outro espetro

max @
$$\frac{kxd}{2z} = m\pi$$
 $x_{\text{max}}^{\lambda} = \left(\frac{m\lambda z}{d}\right)$ $I_{\text{tot}} \approx I_s \frac{\sin^2\left(N\frac{kxd}{2z}\right)}{\sin^2\left(\frac{kxd}{2z}\right)}$

Rayleigh:
$$m\frac{\lambda_2 z}{d} = m\frac{\lambda_1 z}{d} + \frac{\lambda_1 z}{Nd}$$
 $(\lambda_2 - \lambda_1) = \Delta \lambda = \frac{\lambda_1}{mN}$

Na 1ª ordem "Resolução"
$$R = \frac{\lambda_1}{\Delta \lambda} = mN$$

Rede de difração em reflexão

Um exemplo importante são redes de difração em reflexão Consiste de degraus com separação d

$$\Delta_i = d \sin \theta_i$$

$$\Delta_r = d\sin\theta_r$$

Diferença de fase de um degrau para o próximo $\phi = kd \sin \theta_i + kd \sin \theta_r$

$$\mathcal{E}_{T} = \mathcal{E}_{r}e^{i(k\overline{r}-\omega t)}\sum_{n=-N/2}^{N/2-1}e^{in\phi}$$

Máxima quando

$$m\lambda = d\sin\theta_i + d\sin\theta_r$$

Comprimentos de onda diferentes são separados

Interferência de filmes finos

Aplicação comum – revestimento antirreflexo

Incidência normal

$$r = \frac{n_{in} - n_{trans}}{n_{in} + n_{trans}}$$

Revestimento antirreflexo $n_0 < n_f < n_s$

Interferência destrutiva se a fase adquirida no percurso A
$$\rightarrow$$
B \rightarrow C
$$\Delta\phi=k_f\,2t=\pi \qquad t=\frac{\lambda_0}{4n}$$

$$r_{0f}=\frac{1-n_f}{1+n_f} \quad r_{fs}=\frac{1-\left(n_s\,/\,n_f\right)}{1+\left(n_s\,/\,n_f\right)} \qquad r_{0f}=r_{fs}\Rightarrow n_f=n_s\,/\,n_f \qquad \qquad n_f=\sqrt{n_s}$$

Vidro
$$n_s = 1.5 \quad n_f = 1.22$$

Vidro $n_s = 1.5$ $n_f = 1.22$ Na pratica é comum usar MgF₂ (n = 1.38)

Dielétrica Multicamada

Cada camada tem uma espessura dum quarto de onda

$$\frac{\lambda_f}{4} = \frac{\lambda_0}{4n_f}$$

Interferência construtiva – espelhos de alta refletividade

Interferometro Fabry-Perot

Interferência múltipla

Dois espelhos planos iguais separados por uma distância ℓ

$$\mathcal{E}_{T} = \mathcal{E}_{0} \mathcal{T} \left[1 + \mathcal{R} e^{i\phi} + \mathcal{R}^{2} e^{i2\phi} + \dots \right] = \frac{\mathcal{E}_{0} \mathcal{T}}{1 - \mathcal{R} e^{i\phi}}$$

$$\mathcal{I}_{T} = \mathcal{I}_{0} \left(\frac{\mathcal{T}}{1 - \mathcal{R}e^{i\phi}} \right) \left(\frac{\mathcal{T}}{1 - \mathcal{R}e^{-i\phi}} \right)$$

$$= \mathcal{I}_{0} \frac{\mathcal{T}^{2}}{1 + \mathcal{R}^{2} - 2\mathcal{R}\cos(\phi)} = \mathcal{I}_{0} \frac{\mathcal{T}^{2}}{1 + \mathcal{R}^{2} - 2\mathcal{R}\left[1 - 2\sin^{2}(\phi/2)\right]}$$

$$= \mathcal{I}_{0} \frac{\mathcal{T}^{2}}{\left(1 - \mathcal{R}\right)^{2} + 4\mathcal{R}\sin^{2}(\phi/2)} = \mathcal{I}_{0} \frac{1}{1 + \frac{4\mathcal{R}}{\left(1 - \mathcal{R}\right)^{2}}\sin^{2}(\phi/2)}$$

Interferometro de Fabry-Perot

$$\frac{\mathcal{I}_{T}}{\mathcal{I}_{0}} = \frac{1}{1 + \frac{4\mathcal{R}}{\left(1 - \mathcal{R}\right)^{2}} \sin^{2}\left(\phi / 2\right)}$$

$$\frac{\mathcal{I}_T}{\mathcal{I}_0} = \frac{1}{1 + 4\left(\mathcal{F}^2 / \pi^2\right) \sin^2\left(\phi / 2\right)}$$

Interferência construtiva cada vez que

$$\phi_m = m2\pi$$

Quanto maior o valor de \mathcal{R} mais ondas interferem o que dá picos da transmissão mais finos

Definir um parâmetro conhecido com "o finesse"

$$\mathcal{F} = \frac{\pi\sqrt{\mathcal{R}}}{1-\mathcal{R}}$$

Largura dos picos

$$\frac{\mathcal{I}_T}{\mathcal{I}_0} = \frac{1}{1 + 4\left(\mathcal{F}^2 / \pi^2\right) \sin^2\left(\phi / 2\right)}$$

$$\phi = m2\pi + \delta\phi$$

$$\sin(\phi/2) = \sin(m\pi + \delta\phi/2)$$

$$\approx \pm \sin(\delta\phi/2) \approx \pm \delta\phi/2$$

$$\frac{\mathcal{I}_T}{\mathcal{I}_0} \approx \frac{1}{1 + \left(\mathcal{F}^2 / \pi^2\right) \left(\delta \phi\right)^2}$$

Meia altura do pico quando

$$\left(\frac{\mathcal{F}}{\pi}\right)^2 \left(\delta\phi\right)^2 = 1 \quad \delta\phi = \pm\frac{\pi}{\mathcal{F}}$$

Largura inteira a meia altura $\Delta \phi = \frac{2\pi}{\mathcal{F}}$

Largura dos picos

$$\frac{\mathcal{I}_T}{\mathcal{I}_0} \approx \frac{1}{1 + \left(\mathcal{F}^2 / \pi^2\right) \left(\delta \phi\right)^2}$$

$$\begin{array}{ccc}
x'_{\mathcal{R}^2 e^{2i\phi} \mathcal{T} \mathcal{E}_0} & \phi = k \frac{2\ell}{\cos \theta} \\
\mathcal{R} e^{i\phi} \mathcal{T} \mathcal{E}_0 & \theta = 0 & \phi \to \frac{4\pi\ell}{c} \nu
\end{array}$$

Separação entre os máximos

$$\phi_{m+1} - \phi_m = 2\pi$$

$$v_{m+1} - v_m = c / 2\ell \equiv \Delta v_{fsr}$$

"Free spectral range"

$$\delta\phi \rightarrow \frac{2\pi\ell}{c} (v - v_{\text{max}}) = \frac{\pi}{\Delta v_{fsr}} (v - v_{\text{max}})$$

$$\frac{\mathcal{I}_{T}}{\mathcal{I}_{0}} \approx \frac{\left(\Delta v / 2\right)^{2}}{\left(v - v_{\text{max}}\right)^{2} + \left(\Delta v / 2\right)^{2}} \qquad \Delta v = \frac{\Delta v_{fsr}}{\mathcal{F}}$$

Valores típicos:

$$\ell = 1mm$$
 $\Delta v_{fsr} = 150 \text{ GHz}$ $\mathcal{F} = 100$ $\Delta v = 1.5 \text{ GHz}$

$$\lambda = 600nm$$
 $v = 5x10^{14} Hz = 5x10^5 GHz$

 \mathcal{F} pode chegar ~109

A experiência de dulpa fenda e a natureza da luz

As padrões esperadas são muito diferentes no caso que o feixe incidente consiste de partículas ou ondas....

Louis de Broglie, 1892-1987

Nobel 1927

Efeito fotoelétrico: luz é absorvida em pacotes bem definidas (fotões), i.e. Ondas EM podem assumir propriedades que associámos com partículas.

De Broglie sugeriu que o converso também seria possível, partículas pode demonstrar propriedades ondulatórios

$$\lambda = h/p$$

Ao enviar eletrões mono energéticas através uma placa com duas ondas uma padrão de interferência pode ser observada

Observar os eletrões destrói a Interferência

Detetar qual fenda o eletrão atravessou destrói a padrão de interferência

Sem obter informação sobre o caminho a padrão de interferência aparece

Um experiência com fotões únicas

O fotão só pode ser detetado uma vez – é detetado no detetor D1 ou D2 Mais qual detetor recebe o fotão varia com a diferencia da fase entre os caminhos.

Cada fotão "toma" os dois caminhos alternativos

Experiência de escolha adiada

A medida realizar determina se efeitos ondulatórios ou particulares são observados

V. Jacques et al., Science (March 2007)

O gato de Schrödinger

Depois 1 hora existe 50% probabilidade que a partícula desintegra matando o gato.

Depois uma hora qual é o estado do gato?

Reposta intuitiva: existe 50% chance que o gato sobreviveu – só sabe ao certo quando abra a caixa.

Reposta de MQ: Ao longo do tempo o sistema se evolve numa sobreposição de estado gato vivo + gato morte. Ao abrir a caixa uma medida é realizada e o sistema "se colapsa" num dos estados.

