A Synopsis on

Profile Based Room Automation Using Machine Learning

Submitted in partial fulfillment of the requirements of the degree of

Bachelor of Engineering

in

Information Technology

by

Aniruddh Patil (15104013) Namrata Joshi (15104049) Gargi Surve (15104039)

> Guide Co-guide

Prof. Apeksha Mohite Prof. Nahid Shaikh

Department of Information Technology

A.P. Shah Institute of Technology G.B.Road, Kasarvadavli, Thane(W), Mumbai-400615 UNIVERSITY OF MUMBAI 2018-2019

CERTIFICATE

This is to certify that the project Synopsis entitled "Profile Based Room Automation Using Machine Learning" Submitted by "Aniruddh patil (15104013), Namrata Joshi (15104049), Gargi Surve (15104039)" for the partial fulfillment of the requirement for award of a degree Bachelor of Engineering in Information Technology.to the University of Mumbai, is a bonafide work carried out during academic year 2018-2019

(Prof. Nahid Shaikh) Co-Guide	(Prof. Apeksha Mohite) Guide
Prof. Kiran Deshpande Head Department of Information Technology	Dr. Uttam D.Kolekar Principal
External Examiner(s)	
1.	
2.	
Place: A.P.Shah Institute of Technology, Thane Date:	

Declaration

We declare that this written submission represents our ideas in our own words and where others'
ideas or words have been included, we have adequately cited and referenced the original sources.
We also declare that we have adhered to all principles of academic honesty and integrity and
have not misrepresented or fabricated or falsified any idea/data/fact/source in our submission.
We understand that any violation of the above will be cause for disciplinary action by the
Institute and can also evoke penal action from the sources which have thus not been properly
cited or from whom proper permission has not been taken when needed.

	(Aniruddh Patil (15104013)
	(Namrata Joshi (15104049)
	(Gargi Surve (15104039)

Abstract

The objective of the proposed idea is to explore the ever expanding world Of IoT. IoT involves extending internet connectivity beyond standard de- vices, to a range of non-internet enabled physical devices like lights and fans. The planned system aims at giving users control over their environment and enhance their standard of living. The idea is implemented on the base of android things enabling the above mentioned physical devices to connect and exchange data. It also facilitates integration of data analytics and pattern recognition based on certain algorithms. The system adapts to the user patterns using machine learning with the help of TensorFlow. Following is a system which allows the user to control their environment over the internet learning the patterns and maintaining the profiles for every user and thus optimizing and reducing the effort of the user to get their preferred environment with the help of automation.

Introduction

As homo sapiens we have always felt at peace and happy when we have our life in control and when we have control over what happens around us and in our environment. Its in this state of being that we find ourselves the most productive. Also we as humans want the shortest, less taxing, less effort requiring way to get our desired results. Example we all want money without actually having to work for it. This is possible via Passive Income Stream. Just like with Passive income stream after the initial setup a very minimal interaction with the system is required to get desired results. We give you a solution which will give you total control over your immediate environment and gradually reduce the efforts required to get your optimal required environment set up with least amount of efforts. The way we go about doing this is we provide you an intelligent adaptive room control system which allows you to control your environment with the help of phone and the system tracks your usage patterns and then develops patterns and these patterns are then used to automate the work for you reducing your interaction with the system as time passes. We maintain a profile for each user so as to tend to the specific needs of each user.

Objectives

- To give users more control over their environment.
- To allow the system to learn about the variations in user profile with the help of various machine learning tools.
- To enable the system to learn and develop patterns that allow it to automate the respective room.
- To use motion sensing in the system for optimal usage of resources.
- To make use of user recognition module for better profile maintenance.

Literature Review

Condition I in Homes-S Tebje Kelly, Kumar Su and Subha dra Mukh Fellow, IEL SENSORS NAL, VOL 10, OCTOE 2 Smart Ho	of IoT rironmental Monitoring Sean Dieter v, Nagender aryadevara, as Chanhopadhyay, EE, IEEE JOUR-13, NO. BER 2013 ome and	0	oacket on stor-	and fleconnection greater coover routing packets	scal- fault low- ution exible ontrol ng of	Bee Un architec	for Zig-
		Tour rayer r	model	$ \Delta \text{bility} t_{\Delta}$	111)-	1 Technol	ogy isnt
Smart City enabled by AAI and vicesK E S Lynggaard Internationa ence on G rary Comp Informatics	CoT Ser-Skouby, P - 2014 al Confer-Contempo- outing and	which join interfaces elements deploying nologies as 5G, into of things, of things, distributed ficial intelligi	these by tech- such ternet cloud and arti-	from	smart l im- new ffered cloud eposi- its lizing -data n on		ogy isnt at a con- evel
Automation ternet of T Kumar Ramu CH.A.S.Mu E.Magesh, Lunagariya Internationa	Chings(IoT) Mandula, Parupalli, urty, Rutul -2015 al Conon Cononentation, ation and conal Tech-	tion Bluetooth	toma- using and using	Low energy sumption easy connectity	con-	dards figrating sensors, tions an existing gent endevices. viding IP as	various applica- nd other intelli- mbedded Pro- unique addresses onnected and and

Table 1 – continued from previous page

Sr.No.	Paper	Methodology	Advantages	Disadvantages		
4	A Remote Sensor Net-	Using Android	Ease of interfac-	Lack of security		
	work using Android	things to enable	ing and easy app	standards		
	Things and Cloud	IOT and cloud	integration			
	Computing for the					
	Food Reserve Agency					
	in Zambia -Mulima					
	Chibuye, Jackson					
	Phiri (IJACSA) In-					
	ternational Journal of					
	Advanced Computer					
	Science and Applica-					
	tions, Vol. 8, No. 11,					
	2017					
5	Implementation of	Voice Based	Easy interaction	Authentication,		
	Voice Based Home	Home Automa-	with the system	accent recogni-		
	Automation System	tion System	and increased	tion		
	Using Raspberry Pi	using Raspberry	comfort level			
	-Harshada Rajput1,	Pi				
	Karuna Sawant2,					
	Dipika Shetty3, Punit					
	Shukla4, Prof. Amit					
	Chougule5 Inter-					
	national Research					
	Journal of Engineer-					
	ing and Technology					
	(IRJET) e-ISSN:					
	2395-0056 Volume: 05					
	Issue: 05 May-2018					
6	Intelligent smart	Use of Tensor-	Better result	Developing cor-		
	home energy effi-	_	with least in-			
	ciency model using	the use of energy	teraction,smart	be difficult		
	artificial TensorFlow	consumption	decision			
	engine Jo and Yoon					
	Hum. Cent. Comput.					
	Inf. Sci. (2018) 8:9					
	Continued on next page					

Table 1 – continued from previous page

Sr.No.	Paper	Methodology	Advantages	Disadvantages
7	IoT Based Home	Advancement	Home automa-	Reduced in-
	Automation System	in Computer	tion using	stallation costs:
	over the Cloud Ms.	Science IJIACS	private cloud	System scal-
	Fareha Firdous, Ms.	ISSN 2347 8616	and mobile app	ability and
	Sumayya, Mr. Aseem	Volume 7, Issue		easy extension
	Mohd Umair Inter-	3 March 2018		Integration of
	national Journal of			mobile devices
	Innovations			and No voice
				support
8	IoT based Smart	Sensor Network	Can be integra-	Lacks intelli-
	Home Automa-	using microcon-	tion with other	gence
	tion System using	troller to sense	technologies eas-	
	Sensor Node Himan-	data	ily	
	shu Singh, Vishal			
	Pallagani, Vedant			
	Khandelwal and			
	Venkanna U. 4th Intl			
	Conf. on Recent Ad-			
	vances in Information			
	Technology			
9	Smart Gesture Con-	Using gesture	Gives the abil-	Complex al-
	trol for Home Au-	to control appli-	ity to improve	gorithms and
	tomation Using	ances	user interaction	high resource
	Internet of Things		and ease of ac-	rerequirements
	Sunil Kumar Khatri,		tion	
	Govind Sharma,			
	Prashant Johri			
	and Sachit Mohan			
	Springer Nature Sin-			
	gapore Pte Ltd. 2018			
	S. Bhalla et al. (eds.),			
	Intelligent Comput-			
	ing and Information			
	and Communica-			
	tion, Advances in			
	Intelligent Systems			
	and Computing			1
			Contin	nued on next page

Table 1 – continued from previous page

Sr.No.	Paper	Methodology	Advantages	Disadvantages
10	Smart Home Automa-	Using Bluetooth	Easy compat-	Low range, low
	tion System Using	for communica-	ibility , low	data transfer
	Bluetooth Technology	tion	energy	rates
	Muhammad Asadul-			
	lah, IEEE Student			
	Member, Khalil Ullah			
	978-1-5090-3310-2			

Problem Definition

Wastage of resources is the driving force behind implementing the system. Ubiquitous home environment is designed to regulate the consumption of a utility and to improve usage efficiency. User context aware energy devices can be designed to switch themselves on in a particular way, e.g. a light switches on, heating switches on when it detects the presence of a user otherwise it switches off. The problem of unoptimized power consumption is solved by this system, Thus this system provides optimized power consumption. The need of manually controlling the devices is diminished as people are becoming technologically sound which has also resulted in us becoming a bit lazy. Thus, the proposed system focuses on the above discussed points.

Proposed System Architecture

Fig.1 Basic architecture

Ambient Intelligent systems collect the data this process is known as sensing. Sensing plays an important role in the learning process. The data captured will greatly affect the learning process and the pattern that are then developed based on the data captured will alert accordingly. Raw data will not always be meaningful. To make sense different raw data has to be brought and analyzed to infer and recognize the activity. This data can be both sensor collected or user input. User input data, plays a major role in the learning process and help in

understanding patterns quickly. This data is transferred over to the Room Controller via a suitable network communication technology. The room controller has learning and cognition engine, energy management engine, prediction engine, devices profiles, user profiles, organization engine, task schedulers and storage which help in analyzing then data input, figuring out patterns, learn the patterns, learn to take decision based on the data input and previously analyzed patterns. This is the main control unit of the Ambient Intelligent Systems.

Summary

For proper and successful completion of the project it is necessary that the system recognizes its users efficiently. The system will be trained for registered users with the help of Keras, which is used for training the data sets. Hence, by using machine learning the system will identify user patterns and develop presets to create the required environment. The prototype will aim at automating the basic appliances like one of each ACs, fans, lights and PCs. We will make use of Raspberry pi 3B+ as our minicomputer on which the actual processing and decision making will take place. It is the brain of the system. This is connected to the ardunio which is the arms and legs of the system, it does the work of sensing and actuating. A sensor network linked to the arduino is used to gather data from the system a set of IR, receiver and transmitter is used to operate the AC whereas to control other appliances we use relay modules. Once the prototype shows optimal performance, we will opt to automate the complete lab. The system will facilitate the user with much more control over their ambience. Installation and configuration of the software on raspberry pi 3B+ has been completed. Further progress is made in terms of hardware in the project implementation along with learning the connections of various hardware components as well as the softwares required.

References

- [1] Towards the Implementation of IoT for Environmental Condition Monitoring in Homes-Sean Dieter Tebje Kelly, Nagender Kumar Suryadevara, and Subhas Chandra Mukhopadhyay, Fellow, IEEE, IEEE SENSORS JOURNAL, VOL. 13, NO. 10, OCTOBER 2013
- [2] Smart Home and Smart City Solutions enabled by 5G, IoT, AAland CoT ServicesK E Skouby, P Lynggaard 2014 International Conference on Contemporary Computing and informatics (IC31)
- [3] Mobile based Home Automation using Internet of Things(IoT) Kumar Mandula, Ramu Parupalli, CH.A.S.Murty, E.Magesh, Rutul Lunagariya -2015 International Conference on Control, histrumentation, Communication and Computational Technologies (1CCICCT)
- [4] A Remote Sensor Network using Android Things and Cloud Computing for the Food Reserve Agency in Zambia Mulima Chibuye, Jackson Phiri (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 8, No. 11, 2017
- [5] Implementation of Voice Based Home Automation System Using Raspberry Pi -Harshada Rajputl, Karuna Sawant2, Dipika Shetty3, Punit Shukla4, Prof. Amit Chougule5 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 05 Issue: 05 May-2018
- [6] Intelligent smart home energy efficiency model using artificial TensorFlow engine Jo and Yoon Hum. Cent. Comput. Inf. Sci. (2018) 8:9
- [7] IoT Based Home Automation System over the Cloud Ms. Fareha Firdous, Ms. Sumayya, Mr. Aseem Mohd Umair International Journal of Innovations Advancement in Computer Science IJIACS ISSN 2347–8616 Volume 7, Issue 3 March 2018
- [8] IoT based Smart Home Automation System using Sensor Node Himanshu Vishal Pallagani, Vedant Khandelwalt and Venkanna U. 4th Intl Conf. on Recent Advances in Information Technology! RAIT-20181
- [9] Gesture Control for Home Automation Using Internet of Things Sunil Kumar Khatri, Govind Sharma, Prashant Johriand Sachit Mohan Springer Nature Singapore Pte Ltd. 2018 S. Bhalla et al. (eds.), Intelligent Computing and Information and Communication, Advances in Intelligent Systems and Computing 673
- [10] Smart Home Automation System Using Bluetooth Technology Muhammad Asadullah, IEEE Student Member, Khalil Ullah 978-1-5090-3310-2/17/S3_00 2017 IEEE