Klassische Theoretische Physik II Blatt 15

WS 2013/14

Abgabe: Keine. Wir bieten stattdessen in Kürze eine **Musterlösung** auf der Kurswebseite an. **Website:** http://www.thp.uni-koeln.de/trebst/Lectures/2013-KTP2.html

56. Sonderübung

(0 Punkte)

Vor der Klausur wird eine Sonderübung angeboten. Diese findet am Montag, den 17.02. um 9:00 Uhr im Seminarraum der THP statt. Falls Sie konkrete Fragen haben bzw. Vorschläge, was in der Sonderübung besprochen werden sollte, schicken Sie bitte eine Email an hermanns@thp.uni-koeln.de.

57. Relativistisches Teilchen

(0 Punkte)

In der Vorlesung haben Sie die Hamiltonfunktion

$$H(\mathbf{p}) = \sqrt{m^2 c^2 + \mathbf{p}^2 c^2}$$

für ein relativistisches Teilchen hergeleitet.

- a) Leiten Sie die Bewegungsgleichungen aus der Hamiltonfunktion her.
- b) Berechnen Sie nun die zugeörige Lagrangefunktion mit Hilfe einer Legendre-Transformation.

58. Poissonklammern

(0 Punkte)

- a) Wie ist die Poissonklammer $\{F, K\}$ zweier Größen F und K definiert?
- b) Drücken Sie die Zeitableitung der Größe F mithilfe der Poissonklammern aus. Welche Eigenschaft hat die Poissonklammer $\{F,H\}$, wenn F eine Erhaltungsgröße und H der Hamiltonoperator ist?
- c) Zeigen Sie mithilfe von a), dass für beliebige Größen F, F' und G die Produktregel

$$\{FF',G\} = F\{F',G\} + \{F,G\}F'$$

gilt.

59. Freies Teilchen

(0 Punkte)

a) Berechnen Sie mithilfe einer Legendretransformation die Hamiltonfunktion für ein freies Teilchen in Zylinderkoordinaten $(x, y, z) = (r \cos \phi, r \sin \phi, z)$ mit Lagrangefunktion

$$\mathcal{L} = \frac{m}{2}(\dot{r}^2 + r^2\dot{\phi}^2 + \dot{z}^2)$$

- b) Definieren Sie den Begriff 'zyklische Koordinate' und bestimmen Sie die zyklischen Koordinaten für die oben-gegebene Lagrangefunktion.
- c) Was folgt aus dem Vorhandensein von zyklischen Koordinaten? Nehmen Sie wiederum die Lagrangefunktion aus a) als konkretes Beispiel.
- d) Leiten Sie die Bewegungsgleichungen aus der Hamiltonfunktion her und lösen Sie diese.

60. Harmonischer Oszillator

(0 Punkte)

Betrachten Sie nun ein freies Teilchen in einem harmonischen Oszillatorpotential. Die Lagrangefunktion ist durch

$$\mathcal{L}(\mathbf{r}, \dot{\mathbf{r}}, t) = \frac{m}{2}\dot{\mathbf{r}} + \frac{1}{2}m\omega^2\mathbf{r}^2$$

gegeben.

- a) Berechnen Sie die Hamiltonfunktion sowie die kanonischen Gleichungen.
- b) Bestimmen Sie die Erhaltungsgrößen.

61. Perle auf rotierendem Draht

(0 Punkte)

Eine Perle gleitet reibungsfrei auf einem geraden Draht, der mit konstanter Winkelgeschwindigkeite ω in der horizontalen Ebene rotiert. Bestimmen Sie die Hamiltonfunktion durch eine Legendretransformation der Lagrangefunktion und zeigen Sie, dass in diesem Fall $H \neq E$. Welche Vorraussetzungen muss das System erfüllen, damit H = E ist?