2) Soln: S = 144, Z/S = 10, $\phi = 0.03$ Wb, N = 375 r.p.m, f=?, Eph=?, $E_L = ?$

f=PN/120=(16*375)/120=50 Hz

Total no of conductor Z = number of slots x conductor/slot = 144 x 10= 1440

Conductor per phase Zph= 1440/3=480

Therefore Eph = 2.22 Kp Kd f Φ Zph

= 2.22 x 1 x 1 x 50 x 0.030 x 480

= 1598.4 volts

The line Voltage $EL = \sqrt{3} Eph$

 $= \sqrt{3} \times 1598.4 = 2768.51 \text{ volts}$

$$E_{L} = 4kV$$
, $f = 50Hz$, $N = 500 \text{ PM}$, $.3/P/Ph = 3$, $2/g = 12$

i) $f = \frac{1}{7}$, ii) $\phi = \frac{1}{7}$, $\frac{1}{7}$

(3) f = 6, $f = 50H^2$, $f = 12 \times 6 = 72$, 2/s = 4, p = 25 mwb $E_L = 1$, y, $k_d = 0.96$, $k_c = 1$ $2 = 72 \times 4 = 288$ 2) $E_{ph} = 2.22 \text{ kg/kc} f \neq 2ph$ = 255.744 V $E_L = \sqrt{3} E_{ph} = 442.962 \text{ V}$

