Analysis II - 2014.04.03

Erinnerung: $U \subset \mathbb{R}^n \xrightarrow{f} \mathbb{R}^m$ diff'bar in $\xi \in U \iff f(x) = f(\xi) + \underbrace{\nabla f(\xi)}_{\text{Funktional matrix}} (x - \xi) + o(|x - \xi|)$

für $x \to \xi$.

Vergleich: m = 1, f zwei mal stetig diff'bar $f(x) = f(\xi) + \nabla f(\xi)(x - \xi) + \frac{1}{2}(x - \xi)^T \underbrace{\nabla^2 f(\xi)}_{\text{Hesse-Matrix}} (x - \xi) + o(|x - \xi|^2)$

Definition: f ist regulär in ξ wenn Rang $(\nabla f(\xi)) = \min(n, m)$ ist.

$$\begin{aligned} &Beispiel\colon f:\mathbb{R}^2\to\mathbb{R}^3, \binom{r}{t}\mapsto \binom{r\cos t}{r\sin t}\\ &\nabla f=\begin{pmatrix} \cos t & -r\sin t\\ \sin t & r\cos t\\ 0 & 1 \end{pmatrix}\Rightarrow \begin{array}{l} f \text{ "iberall regul"ar }\\ f \text{ injektiv} \end{array} \right\}\Rightarrow \text{Bild}(f) \text{ "iberall regul"ar Fl"ache}. \end{aligned}$$

 $\begin{array}{l} \mathit{Satz} \colon \mathsf{Seien} \ X \subset \mathbb{R}^n \xrightarrow{f} Y \subset \mathbb{R}^m \xrightarrow{g} Z \subset \mathbb{R}^l \ \mathsf{dann} \ \mathsf{ist} \ g \circ f \ \mathsf{diff'bar} \ \mathsf{und} \\ \nabla (g \circ f)(\xi) = \underbrace{\nabla g}_{n \times m\text{-matrix}} (f(\xi)) \underbrace{\nabla f}_{m \times l\text{-matrix}}(\xi). \ \mathsf{Dies} \ \mathsf{ist} \ \mathsf{die} \ \mathit{Kettenregel}. \end{array}$

Beweis:

$$\begin{split} g(f(x)) &= g(f(\xi) + \nabla f(\xi)(x - \xi) + o(|x - \xi|)) = \\ &= g(f(\xi)) + \nabla g(f(\xi)(\nabla f(\xi)(x - \xi) + o(|x - \xi|)) + o(|\nabla f(\xi)(x - \xi) + o(|x - \xi|)) \\ &= g(f(\xi)) + (\nabla g(f(\xi))\nabla f(\xi))(x - \xi) + o(|x - \xi|) \end{split}$$

$$Beispiel: \begin{cases} f: \begin{pmatrix} r \\ \varphi \end{pmatrix} \mapsto \begin{pmatrix} r\cos\varphi \\ r\sin\varphi \end{pmatrix} & \Rightarrow \\ g: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} \sqrt{x^2 + y^2} \\ \arg(x + iy) \end{pmatrix} & \Rightarrow \\ f\circ g = id \\ g\circ f = id \end{cases} \Rightarrow \begin{cases} \nabla f \nabla g = \nabla id \\ \nabla g \nabla f = \nabla id \end{cases} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Nachtrag zur Kettenregel: f, g k-mal stetig diff'bar $\Rightarrow g \circ f$ dito.

Satz: Seien $X, Y \subset \mathbb{R}^n$ offen, $f: X \to Y$ k-mal stetig diff'bar, $\xi \in X$ und $\eta := f(\xi)$.

- (a) Ist f invertierbar unf f^{-1} diff'bar, so ist $\nabla f(x)$ invertierbar und $\nabla (f^{-1})(f(x)) = (\nabla f(x))^{-1}$. Ausserdem ist dann g ebenfalls k-mal stetig diff'bar.
- (b) Ist $\nabla f(\xi)$ invertierbar, so existieren offene $U \subset X$ und $V \subset Y$ mit $\xi \in U$ und $\eta \in V$, so dass f eine bijektive Abbildung $f \mid U : U \to V$ induziert deren Inverse (a) erfüllt.

Beispiel: $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto x^3$ bijektiv, aber $f^{-1}(y) = \sqrt[3]{y}$ in y = 0 nicht diff'bar.

Zu (a): Kettenregel: $f^{-1} \circ f = id \Rightarrow (\nabla f^{-1})(f(x))\nabla f(x) = \nabla (f^{-1} \circ f)(x) = \nabla (id)(x) = I_n$

Zu(b): $\nabla f(\xi)$ invertierbar \iff $\det \nabla f(\xi) \neq 0$ \iff $\det \nabla f(x) \neq 0$ in der Nähe von $\xi \iff \nabla f(x)$ invertierbar nahe ξ .

Beispiel:
$$f: \mathbb{C} \to \mathbb{C}, \ z \mapsto z^2 \quad \mathbb{R}^2 \to \mathbb{R}^2, \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix} \Rightarrow \nabla f = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$$
 det $\nabla f = 4(x^2 + y^2) = 0 \iff x = y = 0$

Definition: det ∇f heisst Funktionaldeterminante.

Translation Koordinatenwchsel

Geometrische Bedeutung: $f(x) = f(\xi) + \nabla f(\xi)(x - \xi) + o(|x - \xi|)$ $\nabla f(\xi)$ bildet einen Quader mit Kanten $h_i e_i$ auf einem Raumspat mit Kanten $\nabla f(\xi) \cdot h_i e_i$ ab. Das Volumen des Bilds ist $\det(\nabla f(\xi)) \cdot h_1 ... h_n$. $\operatorname{vol}(f(Q)) = |\det(\nabla f(\xi))| \cdot \operatorname{vol}(Q)$

Allgemein: $|\det(\nabla f(\xi))|$ ist der lokale Volumenfaktor von f bei ξ , das heisst für jedes $\epsilon > 0$ und jede hinreichend gute Teilmenge $A \subset X \cap B_{\epsilon}(\xi)$ gilt: $\operatorname{vol}(f(A)) = |\det(\nabla f(\xi))| \cdot \operatorname{vol}(A) + o(\epsilon)$