Solving Travelling Salesman Problem using Simulated Annealing

Anshuman Kumar

Department of Aerospace Engineering IIT Bombay

April 14, 2015

Outline

- 1 Travelling Salesman Problem
- Simulated Annealing
- Problem Model
- 4 Conclusions

Travelling Salesman Problem

Definition

A Travelling Salesman Problem asks the following question: Given a list of cities and the distances between each pair of cities, what is the shortest possible route that visits each city exactly once and returns to the origin city?

Simple Travelling Salesman Problem with 20 cities

Figure: Showing 20 cities at different position

Simulated Annealing

Definition

Simulated annealing (SA) is a generic probabilistic metaheuristic for the global optimization problem of locating a good approximation to the global optimum of a given function in a large search space. It is often used when the search space is discrete (e.g., all tours that visit a given set of cities).

Modelling of Problem

Objective

Minimise the total distance travelled by Salesman

Randomly index the cities as 1,2,3,4 n

Figure: Showing 20 cities with travel route

Distance function and Swaps

Calculate Distance

- Recursively add distance from i to i+1 starting from 1, and go till n-1.
- Then add the distance of n from 1;

Swap

Swapping is just changing the index of cities

Example temp = 5, 5 = 20, 20 = temp

Iteration

- Calculate the distance.
- Based on temperature decide the numbers of Swaps.
- Produce a new city list based on random swaps.
- Calculate the distance again.
- If distance is less than old distance make your new city list as current list.
- If distace is more based on probablity decide which city list to choose.

Optimised path for Salesman

Figure: Showing 20 cities with optimised travel route

9 / 10

Conclusions

- Most of the time results are exactly same as the real answer.
- Sometime we did't get the exact solution, but the answer is too near to real solution.
- This algorithm takes much less time than brute force method.