photobiologyWavebands Version 0.3.4

User Guide

Pedro J. Aphalo

January 2, 2016

1 Introduction

We have developed a set of packages to facilitate the calculation of many different quantities that can be derived from spectral irradiance data. The basic package is called photobiology, and the package described here is an extension of the basic facilities for quantification of ultraviolet radiation. It will be submitted to CRAN (Comprehensive R archive network), it is meanwhile available from https://bitbucket.org/aphalo/photobiology/downloads and https://bitbucket.org/aphalo/photobiologyuv/downloads. There are also a public Git repositories at https://bitbucket.org/aphalo/photobiology and https://bitbucket.org/aphalo/photobiologyuv. Functions are included for calculating weighted and unweighted UV doses, irradiances and related quantities.

2 Calculating irradiances

Functions for several colour bands, in some cases according to different optional definitions, are listed in Table 1.

A new waveband definition can be created with new_waveband()¹. When using data stored in vectors integrated irradiance or dose is calculated with functions energy_irradiance() and photon_irradiance, which take as one argument the waveband descriptor list as an argument. When working with data stored in source_spct objects functions and e_irrad and q_irrad are used instead.

The functions used for calculating the irradiances from vectors have additional arguments, that permit to indicate the type of scale used for the input spectrum ("photon" od "energy"). In the case of irradiance and irrad, output units ("photon" or "energy") can also be supplied.

An example using sun_spct included in package photobiology. As the input spectral irradiance is units of $\rm W\,m^{-2}\,nm^{-1}$ the output is in $\rm mol\,m^{-2}\,s^{-1}$

¹See package photobiology and its documentation.

Table 1: Functions in R package photobiology Wavebands used for cronstructing descriptors of wavebands used for calculation of irradiances or exposures. The boundaries of the band given as wavelengths in nm (λ). Definiton according to ISO-21348 "ISO" is the default for all functions exept PAR() for which there is only one definition in common use "Plant" which is the default.

Waveband	Source	Dose or irrad.	Waveband (nm)
UV	ISO-21348	UV("ISO")	$100 \le \lambda < 400$
UV-C	ISO-21348	UVC("ISO")	$100 \le \lambda < 280$
UV-C	n.a.	<pre>UVC("medical")</pre>	$220 \le \lambda < 290$
UV-C	n.a.	UVC("none")	$200 \le \lambda < 280$
UV-B	ISO-21348	UVB("ISO")	$280 \le \lambda < 315$
UV-B	n.a.	UVB("none")	$280 \le \lambda < 320$
UV-A	ISO-21348	UVA("ISO")	$315 \le \lambda < 400$
UV-A	n.a.	UVA("none")	$320 \le \lambda < 400$
Visible	ISO-21348	VIS("ISO")	$380 \le \lambda < 760$
Photosynthesis	n.a.	PAR("Plant")	$400 \le \lambda < 700$
Purple	ISO-21348	Purple("ISO")	$360 \le \lambda < 450$
Blue	Sellaro	Blue("Sellaro")	$420 \le \lambda < 490$
Blue	ISO-21348	Blue("ISO")	$450 \le \lambda < 500$
Green	Sellaro	<pre>Green("Sellaro")</pre>	$500 \le \lambda < 570$
Green	ISO-21348	<pre>Green("ISO")</pre>	$500 \le \lambda < 570$
Yellow	ISO-21348	Yellow("ISO")	$570 \le \lambda < 591$
Orange	ISO-21348	Orange("ISO")	$591 \le \lambda < 610$
Red	ISO-21348	Red("ISO")	$610 \le \lambda < 760$
Red	Smith	Red("Smith10")	$655 \le \lambda < 665$
Red	Smith ?	Red("Smith20")	$650 \le \lambda < 670$
Red	Inada	Red("Inada")	$600 \le \lambda < 700$
Red	Warrington	Red("Warrington")	$625 \le \lambda < 675$
Red	Sellaro	Red("Sellaro")	$620 \le \lambda < 680$
Far-red	ISO	Far_red("ISO")	not defined
Far-red	Smith10	Far_red("Smith")	$725 \le \lambda < 735$
Far-red	Smith20	Far_red("Smith")	$720 \le \lambda < 740$
Far-Red	Inada	Red("Inada")	$700 \le \lambda < 800$
Far-Red	Warrington	Red("Warrington")	$700 \le \lambda < 850$
Far-red	Sellaro	Far_red("Sellaro")	$700 \le \lambda < 750$
Far-red	BTV	Far_red("BTV")	$700 \le \lambda < 760$
Arbitrary	n.a.	new_waveband(lo,hi)	$lo \le \lambda < hi$

or W m $^{-2}.$ We multiply by 10^6 to obtain photon irradiance expressed in $\mu mol\,m^{-2}\,s^{-1}.$

```
e_irrad(sun.spct, PAR()) # W m-2

## PAR
## 196.6343
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "energy irradiance total"

q_irrad(sun.spct, PAR()) * 1e6 # umol s-1 m-2

## PAR
## 894.1352
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "photon irradiance total"
```

To integrate the whole spectrum, without selecting a waveband or applying any weighting function, we simply omit the waveband in the function call.

```
e_irrad(sun.spct)

## Total

## 269.1249

## attr(,"time.unit")

## [1] "second"

## attr(,"radiation.unit")

## [1] "energy irradiance total"
```

It is also very easy to define your own waveband as described in the photo-biology manual. Here we give a very simple example.

```
e_irrad(sun.spct, PAR())
##
        PAR.
## 196.6343
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "energy irradiance total"
e_irrad(sun.spct, waveband(c(400, 700))) # Same as PAR()
   range.400.700
##
        196.6343
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "energy irradiance total"
```

Irradiances for different wavebands can be grouped into a list of any length. If the list has named members, then these names are used instead of the default ones.

```
e_irrad(sun.spct, list(Blue(), VIS()))

## Blue.ISO VIS.ISO
## 37.55207 231.86345
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "energy irradiance total"

e_irrad(sun.spct, list(B = Blue(), VIS()))

## Blue.ISO VIS.ISO
## 37.55207 231.86345
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "energy irradiance total"
```

A few functions for generating coherent lists of wavebands are also defined (Table 2).

```
e_irrad(sun.spct, VIS_bands())

## Purple.ISO Blue.ISO Green.ISO Yellow.ISO
## 47.75529 37.55207 49.26860 13.67971

## Orange.ISO Red.ISO
## 12.00432 79.38159
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "energy irradiance total"
```

Function irrad behaves either as e_irrad or q_irrad depending on a global option, and in some circumstances this may help when needing to switch between bases of expression. By default energy irradiance are calculated.

```
e_irrad(sun.spct)
##
    Total
## 269.1249
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "energy irradiance total"
q_irrad(sun.spct)
        Total
##
## 0.001255336
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "photon irradiance total"
irrad(sun.spct, PAR())
```

Table 2: Functions in R package photobiologyWavebands used for constructing lists descriptors of wavebands used for calculation of irradiances or exposures.

Waveband	Source	Function	std values used
VIS defs. UV defs.	ISO-21348 ISO-21348	VIS_bands("ISO") UV_bands("ISO")	"ISO" "ISO"
UV defs.	n.a.	UV_bands("none")	"none"
Plant sens. Plant sens.	n.a. n.a.	<pre>Plant_bands("sensory20") Plant_bands("sensory")</pre>	"ISO", "Sellaro" and "Smith20" "ISO", "Sellaro" and "Smith20"
Plant sens.	n.a.	Plant_bands("sensory10")	"ISO", "Sellaro" and "Smith10"
Plant sens.	n.a.	Plant_bands("energy")	"ISO" and "McCree"

```
## PAR
## 196.6343
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "energy irradiance total"
```

Low level functions, allow doing the same calculations using numeric vectors with arbitrary names, with a more complicated syntax and weaker error diagnosis. These functions do also allow more detailed user control of speed optimizations.

3 Calculating photon ratios

Photon ratios can be calculated from any pair of waveband objects. This a convenient and very flexible way of doing this type of calculations.

```
q_ratio(sun.spct, Blue(), VIS())

## Blue.ISO: VIS.ISO(q:q)
## 0.1371157

## attr(,"radiation.unit")
## [1] "q:q ratio"
```

Although not so frequently used, enery ratios can be also calculated (please see the documentation of packae photobiology for a description of the available functions.

```
e_ratio(sun.spct, Blue(), VIS())

## Blue.ISO: VIS.ISO(q:q)
## 0.1371157

## attr(,"radiation.unit")
## [1] "q:q ratio"
```

Photon ratios can be calculated from pairs of lists of waveband objects. As can be seen in the example recycling applies.

```
q_ratio(sun.spct, VIS_bands(), VIS())
   Purple.ISO: VIS.ISO(q:q)
                                Blue.ISO: VIS.ISO(q:q)
##
                  0.15087813
                                           0.13711571
##
     Green.ISO: VIS.ISO(q:q) Yellow.ISO: VIS.ISO(q:q)
##
                  0.20259364
                                            0.06106049
   Orange.ISO: VIS.ISO(q:q)
                                Red.ISO: VIS.ISO(q:q)
##
##
                  0.05545498
                                            0.41504754
## attr(,"radiation.unit")
## [1] "q:q ratio"
```

Low-level functions, including convenience functions are provided for calculating photon ratios from data stored in numeric vectors. These functions are listed in Table 3. We follow the most frequently used wavelength ranges for the different colours, but also provide generic functions that can be used when other limits are needed. Here we calculate Blue: PAR photon ratio.

```
with(sun.spct,
    B_PAR_ratio(w.length, s.e.irrad)
)

## [1] 0.2117127
```

Please, be aware that following common practice in the literature, the wavelength range used for red light is different for the different photon ratios.

4 Calculating effective irradiances and exposures

The waveband definitions and SWFs are stored in waveband objetcs, that can be created with functions waveband or new_waveband(). The same functions described above for unweighted irradiances are used to calculate effective irradiances and doses.

Currently functions for constructing waveband objects describing several BSWFs are implemented (see Table 4). These functions take three arguments in most cases as they have been used and continue to be used inconsistently in the scientific literature. By supplying these arguments different variations of the BSWFs can be obtained. The defaults used are those values which we consider best, usually the most frequently used ones, except in cases when we consider the use of those values problematic for the reliability of the calcualtions.

Table 3: Functions in R package photobiologyWavebands for calculation of photon ratios from spectra in spectral energy units. w.length = vector of wavelengths (nm); s.e.irrad = vector of spectral energy irradiances.

Ratio	R function	wavelength ranges (nm)
UV:PAR	<pre>UV_PAR_ratio(w.length, s.e.irrad)</pre>	$100 \le \lambda < 400, \ 400 \le \lambda < 700$
UV-C:PAR	<pre>UVC_PAR_ratio(w.length, s.e.irrad)</pre>	$100 \le \lambda < 280$, $400 \le \lambda < 700$
UV-B:PAR	<pre>UVB_PAR_ratio(w.length, s.e.irrad)</pre>	$280 \le \lambda < 315, 400 \le \lambda < 700$
UV-A:PAR	<pre>UVA_PAR_ratio(w.length, s.e.irrad)</pre>	$315 \le \lambda < 400, 400 \le \lambda < 700$
Blue:PAR	B_PAR_ratio(w.length, s.e.irrad)	$420 \le \lambda < 490, \ 400 \le \lambda < 700$
Green:PAR	<pre>G_PAR_ratio(w.length, s.e.irrad)</pre>	$500 \le \lambda < 570, 400 \le \lambda < 700$
Red:Far-red	R_FR_ratio(w.length, s.e.irrad)	$650 \le \lambda < 670, 720 \le \lambda < 740$
Blue:Green	B_G_ratio(w.length, s.e.irrad)	$420 \leq \lambda < 490$, $500 \leq \lambda < 570$

```
e_irrad(sun.spct, CIE())

## CIE98.298.tr.lo

## 0.08181583

## attr(,"time.unit")

## [1] "second"

## attr(,"radiation.unit")

## [1] "energy irradiance total"
```

5 Calculating an action spectrum at given wavelengths

The functions available for calculating action spectra take as argument a vector of wavelengths, and return a vector of effectiveness (either quatum/photon or energy based) depending on how the original source describes them. These functions are listed in Table 5, and an example of their use follows. In these examples we generate the wavelengths vectors in R, but they can be also read from a file.

```
# at 1 nm intervals
wavelengths1 <- 285:400
action.spectrum1 <- CIE_e_fun(wavelengths1)
# plot(wavelengths1, action.spectrum1, type = "p")</pre>
```

All functions accept a wavelengths vector with variable and arbitrary step sizes, with the condition that the wavelengths are sorted in strictly increasing order.

In practice these functions are mainly used internally by the package, and very rarely in user code, as the same output can by obtained by multiplication of source_spct objects by waveband objects.

Table 4: Functions in R package photobiologyWavebands used for constructing waveband objects describing BSWFs used for calculation of effective irradiances or doses. The functions for BSWFs available in this package, are by default as in the original source. Optionally they can be normalized to any wavelength within their non-zero range by providing the norm argument with a wavelength in nm. The range of wavelengths included when calculating integrals is given by w.low and w.high. The values in the table below are the defaults.

Action spectrum	Formulation	Constructor		wol.w	
		tunction	A (nm)	A (nm)	γ (nm)
Gen. plant action	Green	<pre>GEN_G(norm, w.low, w.high)</pre>	300	275	313.3
Gen. plant action	Thimijan	GEN_T(norm, w.low, w.high)	300	275	345.0
Gen. plant action	Micheletti	GEN_M(norm, w.low, w.high)	300	275	313.3
Plant growth	Flint & Caldwell	PG(norm, w.low, w.high)	300	275	390.0
Erythemal	CIE98	CIE(norm, w.low, w.high)	298	250	400.0
ICNIRP	ICNIRP2004	ICNIRP(norm, w.low, w.high)	270	210	400.0
'Naked' DNA	TUV, from Setlow	DNA_N(norm, w.low, w.high)	300	250	400.0
'Naked' DNA	Green & Miller	DNA_GM(norm, w.low, w.high)	300	250	400.0
'Plant' DNA	Musil, from Quaite	DNA_P(norm, w.low, w.high)	300	250	400.0
Flavonoid	lbdah	FLAV(norm, w.low, w.high)	300	275	346.0

Table 5: Biological spectral weighting functions predefined in R package photobiologyWavebands. The functions for BSWFs available in this package, implement the functions as defined in the original publications. When the original 'definition' is available as tabulated data, or we have tabulated it by digitizing a figure, the values returned are calculated by spline interpolation.

Action spectrum	Formulation	Function	Norm. λ (nm)
Gen. plant action	Green	GEN_G_q_fun(w.length)	280
Gen. plant action	Thimijan	$GEN_T_q_fun(w.length)$	300
Gen. plant action	Micheletti	GEN_M_q_fun(w.length)	300
Plant growth	Flint & Caldwell	$PG_q_fun(w.length)$	300
Erythemal	CIE98	$CIE_{-e_{-}}fun(w.length)$	298
ICNIRP	ICNIRP2004	<pre>ICNIRP_e_fun(w.length)</pre>	270
'Naked' DNA	TUV, from Setlow	DNA_N_q_fun(w.length)	n.a.
'Naked' DNA	Green & Miller	DNA_GM_q_fun(w.length)	n.a.
'Plant' DNA	Musil, from Quaite	$DNA_P_q_fun(w.length)$	290
Flavonoid	Ibdah	$FLAV_q_fun(w.length)$	300

Compare the following two plots,

plot(sun.spct)


```
plot(sun.spct * CIE())
## Warning in trim_tails(data$x, data$y, low.limit = range[1], high.limit =
range[2]): Ignoring high.limit as it is too high.
## Warning: Removed 1 rows containing missing values
## (geom_rect).
```


One can use operators and by multiplying spectral irardiance equal to one by a waveband obtain a plot,

```
plot(source_spct(285:400, 1) * CIE())

## Warning in trim_tails(data$x, data$y, low.limit = range[1], high.limit =
range[2]): Ignoring high.limit as it is too high.
## Warning: Removed 1 rows containing missing values
## (geom_rect).
```


However, it is simpler and clearer to directly plot the wavband.

```
plot(CIE(), range = c(285,400))
## Warning in f(...): BSWFs not yet supported: skipping summary for 'CIE98
.tr.lo'.
```



```
plot(CIE(), range = c(285,400), norm = 300)
## Warning in f(...): BSWFs not yet supported: skipping summary for 'CIE98
.tr.lo'.
```


6 Luminous flux

The luminuous flux per unit are in lux can be calculated as follows using the original luminous efficency function for the human eye using for defining the lumen. As we start with spectral irradiance we obtain luminous flux per unit area expressed in lux.

```
e_response(sun.spct * CIE1924_lef.spct) * photopic_sensitivity

## Total
## 49579.93
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "energy response total"
```

The luminuous flux per unit area in lux can be calculated as follows using the latest luminous efficency function for the human eye.

```
e_response(sun.spct * CIE2008_lef2deg.spct) * photopic_sensitivity

## Total
## 53057.78
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "energy response total"
```

As the luminous effciency functions vary slightly in the wavelength at which the maximum is located, and the wavelength used for the sensitivity constant is fixed by the definition of the Lumen, a small correction is need for exact results.

An equivalent quantity can be calculated for scotopic vision, using the corresponding function and constant.

```
moon.spct <- sun.spct / 1000 # a placeholder for now!
e_response(moon.spct * CIE1951_scotopic_lef.spct) * scotopic_sensitivity

## Total
## 118.6256
## attr(,"time.unit")
## [1] "second"
## attr(,"radiation.unit")
## [1] "energy response total"</pre>
```