El método de mínimos cuadrados

El método de mínimos cuadrados se aplica para ajustar rectas a una serie de datos presentados como punto en el plano.

Suponagamos que se tienen los siguientes datos para las variables x,y

x_1	x_2	 x_n
y_1	y_2	 y_n

Esta situación se puede presentar en estudios experimentales, donde se estudia la variación de cierta magnitud x en función de otra magnitud y.

Teoricamente es de esperarse que la relación entre estas variables sea lineal, del tipo

$$y = mx + b$$

El método de mínimos cuadrados nos proporciona un criterio con el cual podremos obtener la mejor recta que representa a los puntos dados.

Se desearía tener

$$y_i = mx_i + b$$

para todos los puntos (x_i, y_i) de i = 1, ..., n. Sin embargo, como en general

$$y_i \neq mx_i + b$$

se pide que la suma de los cuadrados de las diferencias (las desviaciones)

$$y_i - (mx_i + b)$$

sea la menor posible.

Se requiere

$$S = (y_1 - (mx_1 + b))^2 + (y_2 - (mx_2 + b))^2 + \dots + (y_n - (mx_n + b))^2$$
$$= \sum_{i=1}^n (y_i - (mx_i + b))^2$$

sea lo más pequeña posible. Los valores de m y b que cumplan con esta propiedad, determinan la recta

$$y = mx + b$$

que mejor representa el comportamiento lineal de los puntos (x_i, y_i) Consideremos entonces la función f de las variables m y b dada por

$$f(m,b) = \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

donde los puntos críticos de esta función se obtienen al resolver el sistema

$$\frac{\partial f}{\partial m} = \sum_{i=1}^{n} 2(y_i - (mx_i + b))(-x_i) = 2\sum_{i=1}^{n} x_i(y_i - (mx_i + b)) = 0$$

$$\frac{\partial f}{\partial b} = \sum_{i=1}^{n} 2(y_i - (mx_i + b))(-1) = -2\sum_{i=1}^{n} (y_i - (mx_i + b)) = 0$$

De la segunda ecuación obtenemos

$$\sum_{i=1}^{n} y_i - m \sum_{i=1}^{n} x_i - \sum_{i=1}^{n} b = 0$$

de donde

$$b = \frac{1}{n} \sum_{i=1}^{n} y_i - m \left(\frac{1}{n} \sum_{i=1}^{n} x_i \right)$$

Llamemos

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$$

que son las medias aritméticas de los valores x_i , y_i respectivamente. Entonces

$$b = \overline{y} - m\overline{x}$$

sustituyendo en la ecuación

$$\frac{\partial f}{\partial m} = 0$$

nos queda

$$\sum_{i=1}^{n} x_i (y_i - mx_i - (\overline{y} - m\overline{x})) = 0$$

de donde se obtiene

$$m = \frac{\sum_{i=1}^{n} x_i (y_i - \overline{y})}{\sum_{i=1}^{n} x_i (x_i - \overline{x})}$$

En resumen, la función

$$f(m,b) = \sum_{i=1}^{n} (y_i - (mx_i + b))^2$$

tiene un único punto crítico para

$$m = \frac{\sum_{i=1}^{n} x_i(y_i - \overline{y})}{\sum_{i=1}^{n} x_i(x_i - \overline{x})}, \quad b = \overline{y} - m\overline{x}$$

Ahora vamos a verificar que en dicho punto crítico se alcanza un mínimo local, para lo cual recurrimos a nuestro criterio de la segunda derivada, en este caso

$$\frac{\partial^2 f}{\partial m^2} = -2\sum_{i=1}^n -x_i^2 = 2\sum_{i=1}^n x_i^2$$

$$\frac{\partial^2 f}{\partial m \partial b} = -\sum_{i=1}^n -x_i = 2\sum_{i=1}^n x_i$$

$$\frac{\partial^2 f}{\partial b^2} = -2\sum_{i=1}^n (-1) = 2n$$

Tenemos que

$$\frac{\partial^2 f}{\partial m^2} > 0$$

Por otro lado

$$\left(2\sum_{i=1}^{n} x_i\right)^2 - \left(2\sum_{i=1}^{n} x_i^2\right)(2n) < 0$$

esta desigualdad es equivalente a

$$\left(\sum_{i=1}^{n} x_i\right)^2 < n \sum_{i=1}^{n} x_i$$

La cual no es mas que la desigualdad de Cauchy-Schwarz aplicada a los vectores (1, 1, ..., 1) y $(x_1, x_2, ..., x_n)$ de \mathbb{R}^n .

Por lo que la función f posee un mínimo local en el punto punto crítico dado.

Ejemplo Se obtuvieron experimentalmente los siguientes valores de las variables x, y, los cuales se sabe que guardan entre sí una relación lineal

Vamos a encontrar la recta que mejor se ajusta a estos datos, según el método de mínimos cuadrados se tiene

$$\overline{x} = \frac{1+2+3+4}{2} = 2,5$$

$$\overline{y} = \frac{1,4+1,1+0,7+0,1}{4} = 0,825$$

Aplicando la fórmula obtenida para m y b obtenemos

$$m = \frac{\sum_{i=1}^{n} x_i (y_i - \overline{y})}{\sum_{i=1}^{n} x_i (x_i - \overline{x})} = \frac{1(1, 4 - 0, 825) + 2(1, 1 - 0, 825) + 3(0, 7 - 0, 825) + 4(0, 1 - 0, 825)}{1(1 - 2, 5) + 2(2 - 2, 5) + 3(3 - 2, 5) + 4(4 - 2, 5)}$$
$$= \frac{-2, 15}{5} = -0, 43$$
$$b = \overline{y} - m\overline{x} = 0, 825 - (0, 43)(2, 5) = 1, 9$$

por lo que la recta que mejor ajusta los datos proporcionados

\boldsymbol{x}	У	y calculada con y=-0.43x+1.9	Desviación
1	1,4	1,47	-0,07
2	1,1	1,047	0,6
3	0,7	0,61	0,09
4	0,1	0,18	-0.8

La suma de las diferencias de la recta y real con la y predicha por la ecuación obtenida es

$$-0.07 + 0.06 + 0.09 - 0.08 = 0$$

Es decir nuestra recta efectivamente compensa los puntos que quedaron por encima con puntos que quedaron por debajo.

Gráficamente esto se ve

La mejor recta que ajusta los datos del ejemplo