

Problem • Given a sequence of tokens, infer the most probable sequence of labels for these tokens. Examples • part of speech tagging • named entity recognition

PoS tags from Universal Dependencies project

Open class words		
ADJ	adjective	
ADV	adverb	
INTJ	interjection	
NOUN	noun	
PROPN	proper noun	
VERB	verb	

Other	
PUNCT	punctuation
SYM	symbol
X	other

Closed class words		
ADP	adposition	
AUX	auxiliary verb	
CCONJ	coordinating	
	conjunction	
DET	determiner	
NUM	numeral	
PART	particle	
PRON	pronoun	
SCONJ	subordinating	
	conjunction	

http://universaldependencies.org/

Types of named entities

Any real-world object which may have a proper name:

- persons
- · organizations
- · locations
- •

Also named entities usually include:

- dates and times
- units
- · amounts

Approaches to sequence labeling 1. Rule-based models (example: EngCG tagger) 2. Separate label classifiers for each token 3. Sequence models (HMM, MEMM, CRF) 4. Neural networks

PoS tagging with HMMs

Notation:

 $\mathbf{x} = x_1, \dots x_T$ is a sequence of words (input)

 $\mathbf{y} = y_1, \dots y_T$ is a sequence of their tags (labels)

We need to find the most probable sequence of tags given the sentence:

$$\mathbf{y} = \operatorname{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} p(\mathbf{x}, \mathbf{y})$$

But first, let us define the model...

HSE Adv ML Page 9

Formal definition of HMM

A Hidden Markov Model is specified by:

- 1. The set $S = s_1, s_2, \dots, s_N$ of hidden states
- 2. The start state s_0
- 3. The $\underbrace{\text{matrix}}_{A} A$ of transition probabilities: $a_{ij} = p(s_j|s_i)$
- 4. The set O of possible visible outcomes
- 5. The matrix $\,B\,$ of output probabilities: $\,b_{kj}=p(o_k|s_j)\,$

Num of parameters N44+1) + KN

If we could see the tags in train set, we would count:

$$a_{ij} = p(s_j|s_i) = \frac{c(s_i \to s_j)}{c(s_i)}$$

$$b_{ik} = p(o_k|s_i) = \frac{c(s_i \to o_k)}{c(s_i)}$$

Don't ranky understand -.

Supervised case: MLE

The same in more formal terms (this is MLE!):

$$a_{ij} = p(s_j|s_i) = \frac{\sum_{t=1}^{T} [y_{t-1} = s_i, y_t = s_j]}{\sum_{t=1}^{T} [y_t = s_i]}$$

Note that the corpus is considered as a single sequence of length T with special states between the sentences.

can not train indicator (maison)

Supervised case: MLE

The same in more formal terms (this is MLE!):

$$a_{ij} = p(s_j|s_i) = \frac{\sum_{t=1}^{T} [y_{t-1} = s_i, y_t = s_j]}{\sum_{t=1}^{T} [y_t = s_i]}$$

Note that the corpus is considered as a single sequence of length T with special states between the sentences.

But we do not see the labels! How to train the model?

Baum-Welch algorithm (a sketch)

E-step: posterior probabilities for hidden variables:

$$p(y_{t-1} = s_i, y_t = s_j)$$

Can be effectively done with dynamic programming (forward-backward algorithm)

M-step: maximum likelihood updates for the parameters:

$$a_{ij} = p(s_j|s_i) = \frac{\sum_{t=1}^{T} p(y_{t-1} = s_i, y_t = s_j)}{\sum_{t=1}^{T} p(y_t = s_i)}$$

"
viterbi

Decoding in HMM

$$p(\mathbf{x}, \mathbf{y}) = \prod_{t=1}^{T} p(y_t|y_{t-1}) p(x_t|y_t)$$

$$\text{Transition Output probabilities probabilities}$$

Decoding problem:

What is the most probable sequence of hidden states?

$$\mathbf{y} = \operatorname{argmax}_{\mathbf{y}} p(\mathbf{y}|\mathbf{x}) = \operatorname{argmax}_{\mathbf{y}} p(\mathbf{x}, \mathbf{y})$$

Solve this problem efficiently using dynamic programming!

Viterbi decoding

Let $Q_{t,s}$ be the most probable sequence of hidden states of length t that finishes in the state s and generates $o_1, ..., o_t$. Leq_{t,s} be the probability of this sequence.

Then $q_{t,s}$ can be computed dynamically:

$$q_{t,s} = \max_{s'} \underbrace{q_{t-1,s'} \cdot p(s|s')}_{} \cdot \underbrace{p(o_t|s)}_{}$$

Transition Output probabilities probabilities

 $Q_{t,s}$ can be determined by remembering the argmax.

approximation of?

a25 x =. 4

An example of HMM: transition probabilities

Suppose that we have the following PoS tags: ADJ, NOUN, VERB.

Consider the transition probabilities between tags:

from \ to	ADJ	NOUN	VERB
ADJ	0.4	0.4	0.2
NOUN	0.2	0.4	0.4
VERB	0.1	0.6	0.3

Note that the sum of probabilities in each row is equal to 1.

0.25 x 5.4 x

An example of HMM: transition probabilities

Suppose that we have the following PoS tags: ADJ, NOUN, VERB.

Consider the transition probabilities between tags:

from \ to	ADJ	NOUN	VERB
ADJ	0.4	0.4	0.2
NOUN	0.2	0.4	0.4
VERB	0.1	0.6	0.3

Note that the sum of probabilities in each row is equal to 1.

Let all initial state probabilities be equal (to 1/3).

An example of HMM: output probabilities

Consider the following output probabilities for the vocabulary:

tag\word	a	bear	fly	honey	likes	sweet
ADJ	0.2	0.1	0.1	0.1	0.1	0.4
NOUN	0.1	0.2	0.2	0.2	0.2	0.1
VERB	0.1	0.2	0.2	0.1	0.3	0.1

The probabilities in each row also sum to 1.

from... Lihati +h.),

Viterbi algorithm

Input: observations of length T, state-graph of length NOutput: best-path

for each state s from 1 to N do $q[1,s] \leftarrow p(s|s_0) \cdot p(o_1|s)$ $\mathsf{backpointers}[1,s] \gets 0$

for each time step t from 2 to T do for each state s from 1 to N do $q[t,s] \leftarrow \max_{s'=1}^N q[t-1,s'] \cdot p(s|s') \cdot p(o_t|s)$

$$q[t,s] \leftarrow \max_{s'=1}^{N} q[t-1,s'] \cdot p(s|s') \cdot p(o_t|s)$$

 $\texttt{backpointers}\ [t,s] \leftarrow \operatorname{argmax}_{s'=1}^{N} q[t-1,s'] \cdot p(s|s')$

 $s \leftarrow \operatorname{argmax}_{s'=1}^N q[T,s']$ return the backtrace path from backpointers [T,s]

memm

$p(y_t|y_{t-1},x_t) = \frac{1}{Z_t(y_{t-1},x_t)} \exp\left(\sum_{k=1}^K \theta_k f_k(y_t,y_{t-1},x_t)\right)$ Normalization constant weight feature

Complacated normalization

Conditional Random Field (linear chain)

itional Random Field (linear chain)
$$p(\mathbf{y}|\mathbf{x}) = \underbrace{\frac{1}{Z(x)} \prod_{t=1}^{T} \exp\left(\sum_{k=1}^{K} \theta_k f_k(y_t, y_{t-1}, x_t)\right)}_{\text{Undirected graph:}} \text{Undirected graph:}$$

Black-box implementations

CRF++	https://sourceforge.net/projects/crfpp/
MALLET	http://mallet.cs.umass.edu/
GRMM	http://mallet.cs.umass.edu/grmm/
CRFSuite	http://www.chokkan.org/software/crfsuite/
FACTORIE	http://www.factorie.cc

noed to generate features.

http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf

Features engineering

Label-observation features:

•
$$f(y_t, y_{t-1}, x_t) = [y_t = y] \frac{g_m(x_t)}{g_m(x_t)}$$

•
$$f(y_t, y_{t-1}, x_t) = [y_t = y][y_{t-1} = y']$$

•
$$f(y_t, y_{t-1}, x_t) = [y_t = y][y_{t-1} = y'] \frac{g_m(x_t)}{g_m(x_t)}$$

Observation function examples

$w_t = v$	$\forall v \in$
part-of-speech tag for w_t is j	∀ tags j
w_t is in a phrase of syntactic type j	∀ tags j
w_t matches [A-Z][a-z]+	
w_t matches [A-Z]+	
w_t matches [^\.]+.*\.	
w_t matches a dash	
w_t appears in a list of stop words	
w_t appears in list of capitals	
	part-of-speech tag for w_t is j w_t is in a phrase of syntactic type j w_t matches [A-Z][a-z]+ w_t matches [A-Z]+ w_t matches [^\.]+.*\. w_t matches a dash w_t appears in a list of stop words

http://homepages.inf.ed.ac.uk/csutton/publications/crftut-fnt.pdf

Dependencies on input

Trick: Pretend the current input x_t contains not only the current word w_t , but also w_{t-1} and w_{t+1} and build observation functions for them as well.

The model is discriminative, so we can use the whole input:

Resume for the lesson

Probabilistic graphical models:

- · Hidden Markov Models (generative, directed)
- · Maximum Entropy Markov Models (discriminative, directed)
- · Conditional Random Field (discriminative, undirected)

Tasks:

- · Training fit parameters (Baum-Welch for HMM)
- Decoding find the most probable tags (Viterbi for HMM)

Practice:

· Features engineering + black-box implementation

4. Consider a Hidden Markov Model with three hidden states: N (noun), V (verb) and O (other). Let all transitions between states be equiprobable. Consider the following possible outputs:

N: mimsy | borogoves

V: were | borogoves

O: All | mimsy | the

Let all these outputs be also equiprobable.

Consider the sentence "All mimsy were the borogoves" and choose the correct statement.

- There are four possible best tag sequences: ONVON, ONVOV, OOVON, OOVOV. All of them are equiprobable.
- The best tag sequence is OOVON.
- The best tag sequence is ONVOV.
- There are two possible best tag sequences: ONVON and ONVOV. They are equiprobable.
- The best tag sequence is OOVOV.
- The best tag sequence is ONVON.

