Лабораторная работа №7

Эффективность рекламы

Евдокимова Юлия, НПИбд-01-18

Содержание

1	Цель работы						
2	Задание						
3	Выполнение лабораторной работы						
	3.1	Teope	тические сведения	7			
	3.2 Ход работы						
			Построение графиков распространенения рекламы	8			
		3.2.2	Сравнение эффективности двух первых математических				
			моделей	11			
		3.2.3	Определение времени с максимально быстрым ростом эф-				
			фективности	12			
	3.3	Вопро	осы к лабораторной работе	13			
4	Выв	оды		15			

Список таблиц

Список иллюстраций

3.1	График распространения рекламы для первого случая				ç
3.2	График распространения рекламы для второго случая				10
3.3	График распространения рекламы для третьего случая				11
3.4	Сравнение случаев 1) $a_1(t) > a_2(t)$ и 2) $a_1(t) < a_2(t)$				12
3.5	Максимальный рост эффективности				1.7

1 Цель работы

Цель работы — построение модели распространения рекламы для разных уравнений.

2 Задание

Вариант 8

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.64 + 0.00014n(t))(N - n(t))$$
.

$$\label{eq:2.2} \textbf{2.} \frac{dn}{dt} = (0.000014 + 0.63n(t))(N-n(t)).$$

3.
$$\frac{dn}{dt} = (0.7t + 0.4cos(t)n(t))(N - n(t)).$$

При этом объем аудитории N=810, в начальный момент о товаре знает 11 человек. Для случая 2 определите, в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

3 Выполнение лабораторной работы

3.1 Теоретические сведения

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t - время, прошедшее с начала рекламной кампании, n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом:

 $a_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $a_1(t)>0$ - характеризует интенсивность рекламной кампании (зависит от затрат на рекламу в данный момент времени). Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем (в этом случае работает т.н. сарафанное радио). Этот вклад в рекламу описывается величиной $a_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt}=(a_1(t)+a_2(t)n(t))(N-n(t))$$

При $a_1(t) >> a_2(t)$ получается модель типа модели Мальтуса. В обратном случае, при $a_1(t) << a_2(t)$ получаем уравнение логистической кривой.

3.2 Ход работы

3.2.1 Построение графиков распространенения рекламы

1.
$$a_1(t) > a_2(t)$$

В этом случае коэффициент платной рекламы значительно выше, чем коэффициент сарафанного радио:

$$\frac{dn}{dt} = (0.64 + 0.00014n(t))(N - n(t))$$

Построим график распространения рекламы для этого случая (рис. 3.1):

Рис. 3.1: График распространения рекламы для первого случая

Получаем модель Мальтуса.

Код программы в Modelica:

model lab07

parameter Real N = 810; Real n (start = 11);

equation der(n) = (0.64+0.00014n)(N-n);

end lab07;

2.
$$a_1(t) < a_2(t)$$

Здесь коэффициент платной рекламы ниже, чем коэффициент сарафанного радио:

$$\frac{dn}{dt} = (0.000014 + 0.63n(t))(N - n(t))$$

Построим график распространения рекламы для этого случая (рис. 3.2):

Рис. 3.2: График распространения рекламы для второго случая

Получаем уравнение логистической кривой.

Код программы в Modelica:

model lab07_2

parameter Real N = 810; Real n (start = 11);

equation der(n) = (0.000014+0.63n)(N-n);

end lab07 2;

3. Построим график распространения рекламы для третьего случая. Здесь математическая модель описывается следующим уравнением:

$$\frac{dn}{dt} = (0.7t + 0.4cos(t)n(t))(N-n(t))$$

Посмотрим на график (рис. 3.3):

Рис. 3.3: График распространения рекламы для третьего случая

Получаем уравнение логистической кривой.

Код программы в Modelica: model lab07 3

parameter Real N = 810; Real n (start = 11); equation der(n) = (0.7time+0.4cos(time)n)(N-n);

end lab07 3;

3.2.2 Сравнение эффективности двух первых математических моделей

Сравним эффективность рекламной кампании при $a_1(t)>a_2(t)$ и $a_1(t)< a_2(t)$ (рис. 3.4):

Рис. 3.4: Сравнение случаев 1) $a_1(t) > a_2(t)$ и 2) $a_1(t) < a_2(t)$

По графику видно, что эффективность рекламной кампании во втором случае значительно выше.

3.2.3 Определение времени с максимально быстрым ростом эффективности

Необходимо определить, в какой момент времени эффективность рекламы будет иметь максимально быстрый рост для случая 2.

Для этого построим график производной n и увидим, когда он принимает максимальное значение (рис. 3.5):

Рис. 3.5: Максимальный рост эффективности

Маскимальное значение в момент времени t=0.01.

3.3 Вопросы к лабораторной работе

1. Записать модель Мальтуса (дать пояснение, где используется данная модель).

Согласно модели, предложенной Мальтусом, скорость роста пропорциональна текущему размеру популяции, то есть описывается дифференциальным уравнением:

= ax

Иначе модель называют простой экспоненциальной, экспоненциальным законом или мальтузианским законом (англ. Malthusian law). Он широко используется в популяционной экологии как первый принцип популяционной динамики. Мальтус писал, что для всех форм жизни, располагающих избытком ресурсов, характерен экспоненциальный рост популяции. Тем не менее, в какой-то момент ресурсов начинает недоставать, и рост замедляется.

Модель Мальтуса:

$$\frac{dn}{dt}=(a_1(t)+a_2(t)n(t))(N-n(t))$$

В случае $a_1(t) >> a_2(t)$.

2. Записать уравнение логистической кривой (дать пояснение, что описывает данное уравнение).

Поведение популяции, численность которой стабилизируется на некотором устойчивом уровне, часто описывают с помощью логистического уравнения, предложенного Ферхюльстом в 1838 г.

$$= \varepsilon x - \delta x^2$$

Модель $\frac{dn}{dt} = (a_1(t) + a_2(t)n(t))(N-n(t))$ в случае $a_1(t) << a_2(t)$ является логистической кривой.

3. На что влияет коэффициент $a_1(t)$ и $a_2(t)$ в модели распространения рекламы.

Коэффициент $a_1(t)$ показывает вклад платной рекламы, а $a_2(t)$ - сарафанного радио.

4. Как ведет себя рассматриваемая модель при $a_1(t) >> a_2(t).$

Количество информированной аудитории возрастает экспоненциально.

5. Как ведет себя рассматриваемая модель при $a_1(t) << a_2(t).$

Количество информированной аудитории изменяется по принципу логистической кривой.

4 Выводы

В ходе выполнения данной лабораторной работы я изучила модель рекламной кампании и построила графики распространения рекламы, математические модели которых описываются различными уравнениями. Также для одного из случаев я определила момент времени, в котором скорость распространения рекламы имеет максимальное значение.