Franz Profelt

20.06.2016

General

General

Motivation

- Urge for testing of embedded systems
- Flexible testing scenarios
- Improved testing with Emulation and HiL

Tasks

■ Fundamentals of OMNeT++, simulation, emulation, ...

openPOWERLINK

- Design Evaluation
- Analysis of the openPOWERLINK stack
- Development of an OMNeT++ simulation representing a openPOWERLINK network

OMNeT++ Framework

General

General

- Object oriented modular discrete event network simulation
- Open Source simulation framework written in C++

Components

- Network, simple module, compound module
- channels
- messages, packets

Simulation types

- Real-time simulation
- Emulation
- Parallel simulation

Monolithic

General

- Small number of modules
- Complex functionality within a single module
- Avoiding compound modules

Modular

- High number of modules
- Small functionality within a single module
- Combination of multiple modules to compound modules

General

Performance Measurement

Measurement Methods

runtime Measurement of the runtime required to simulate a

given amount of simulation time

created events. Measurement Measurement of the number of

created events withing a fixed runtime

Observation of the real-time simulation indicator real-time

(performance ratio) during a parameter sweep for

the data generation interval

Results

General

The average ratio of performance values using a modular design over a monolithic design.

Sequential

runtime 4.033 created events 3.506 real-time 1.592

Parallel

runtime 2.067

Conclusion

Using a monolithic design as sequential simulation is used for the open POWERLINK simulation.

openPOWERLINK Stack

- Open Source implementation of POWERLINK.
 - Real-time communication protocol
- Distributed under the BSD license, available on GitHub and Sourceforge.
- Easy introduction in POWERLINK.
- Simple integration of POWERLINK in products.
- Improved development influenced by user requests and community contribution.

General

Structure

General

Architecture

High level User layer

functionalities, API,

Asynchronous transmission

Time critical Kernel layer

functionalities,

synchronization,

drivers

CAL Connection between

user layer and kernel Layer

Franz Profelt

Platform Dependency

General

Realized via common header files and platform specific implementations.

Implemented modules for minimal dependency

General target specific functionalities (Led, IP target

Address, Default Gateway, Tickcount, sleep)

edry Ethernet driver

hrestimer High resolution timer

Service Data Object (SDO) transmission via UDP sdoudp

trace Trace output for debugging

Simulation Stub

Target-specific implementation

 Implementation of all platform dependent modules for sim target

openPOWERLINK

- Function forwarding to simulation interface
- Simple parameter conversions

Simulation interface

- Separate interface module for each platform dependent module
- Store function pointer to external simulation environment
- Calling of function pointer with stored instance handle

Simulation Stub

- Separation of connection to openPOWERLINK stack from simulation modules.
- Reusability for different used stack configurations.
- Modularity for developing different Demo applications.

Multiple Instances

- Data and states stored in static variables
- Usage of openPOWERLINK library as shared library
- Multiple instances of shared library within memory
- Manual resolving and handling of different copies of shared library

General

Simulation interface

- Connection to stack
- Handling of multiple stack instances
- Static functions for function pointer

Simulation modules

- Representation of stack structure
- Implementation of required functionalities

Generic node, MN, CN

Stack module

General

- Structure of simulated openPOWERLINK stack
- Basic functionalities for each node (MN, CN)
- Message handling in between modules
- Base classes for specific implementations

Enhancements

General

- Usage of INET functionalities
- Implementation of different modularities
- Implementation of multiple demo networks/applications

Publication

- Integration of the simulation stub within the openPOWERLINK stack 2.5.0
- Hosting on GitHub https://github.com/OpenAutomationTechnologies/ openPOWERLINK_omnetpp