Cálculos trigonométricos: CORDIC

COordinate Rotation DIgital Computer Objetivo: Calcular el seno de un ángulo de modo iterativo y sencillo

$$z=(x,y)$$

 $x = |z|\cos \alpha$
 $y = |z|\sin \alpha$

 $X' = |z'|\cos(\alpha + \theta) = |z|(\cos\alpha \cos\theta - \sin\alpha \sin\theta) = x\cos\theta - y\sin\theta$ Si la rotación hubiese sido horaria cambiaría el signo de y sen $\boldsymbol{\theta}$

 $X' = x \cos \theta - y \sin \theta = \cos \theta (x - y \tan \theta)$

 $y' = y \cos \theta + x \sin \theta = \cos \theta (y + x \tan \theta)$

Si tan θ es una potencia de 2 => las coordenadas de z' pueden calcularse mediante sumas/restas y desplazamientos.

Partiendo de un vector z_0 de argumento 0^0 , hacer rotaciones sucesivas hasta alcanzar el ángulo θ , del que queremos hallar el seno o el coseno.

$$\begin{array}{lll} \theta = \alpha_0 \pm \alpha_1 \pm \alpha_2 \pm ... \pm \alpha_n & \frac{Arco \ tan}{45} & \frac{2^0}{26,56} \\ Siendo \ \alpha_i = atan(2^{-i}) & 26,56 \ 2^{-i} \\ |Z^*'| = |Z^*| / \cos \theta & 7,12 \ 2^{-3} \end{array}$$

20

Cálculos trigonométricos: CORDIC

Proceso iterativo:

Se parte de : $z_0 = (x_0, y_0) = (x_0, 0)$

Al hacer sucesivas rotaciones, llegaremos a vectores z_{i+1} con coordenadas:

 $x_{i+1} = x_i \pm y_i * 2^{-i}$ $y_{i+1} = y_i \pm x_i * 2^{-i}$ El cálculo sólo implica sumas/ restas y desplazamientos

Después de n iteraciones se dispondrá de un vector z_n tal que:

$$|z_{n}| = \frac{1}{\cos \alpha_{n-1}} |z_{n-1}| = \frac{1}{\cos \alpha_{n-1}} \frac{1}{\cos \alpha_{n-2}} |z_{n-2}| = \dots = \frac{1}{\prod_{i=0}^{n-1} \cos \alpha_{i}} |z_{0}|$$

$$\lim_{n \to \infty} \frac{1}{\sin \alpha_{n-1}} |z_{n-1}| = \frac{1}{\cos \alpha_{n-1}} \frac{1}{\cos \alpha_{n-1}} |z_{n-2}| = \dots = \frac{1}{\prod_{i=0}^{n-1} \cos \alpha_{i}} |z_{0}|$$

Pero: $\frac{\lim_{n \to \infty} \left(\prod_{i=0}^{n-1} \cos \alpha_i \right) = 0,6073$

Por ello, eligiendo z_0 =(0,6073,0), para n suficientemente grande se obtendrá un vector z_n con módulo 1, y con argumento θ , y por tanto:

 $x_n = \cos \theta$ $y_n=sen \theta$ CALCULO de sen() y cos() por CORDIC en binario con 10 bits Tabla de referencia

i	2-1	Arctag (2 ⁻¹)	En rad	En grad				
0	1.0000000000	0.1100100100	0,785	45				
1		0.0111011011	0,464	26,565				
2	0.0100000000		0,245	14,036				
3	0.0010000000		0,124	7,125				
4	0.0001000000		0,062	3,576				
5		0.0000100000	0,031	1,790				
6	0.0000010000	0.0000010000	0,016	0,896				
7	0.0000001000		0,008	0,448				
8			0,004	0,224				
9		0.0000000010	0,002	0,112				
1.0	0.0000000001	0.0000000000	0.001	0.056				

Constante 1/K, valor inicial de cos() = 0,6074 = .1001101110

21

Suma/resta en coma flotante

Algoritmo:

Sean e1 y e2 los exponentes de los dos operandos y m1, m2 las mantisas con el bit oculto.

1.- Si e1<e2 intercambiar los operandos. Esto garantiza que la diferencia de exponentes d=e1-e2 es siempre

Poner como exponente tentativo del resultado e=e1.

- 2.- Si los signos de los operandos difieren, reemplazar m2 por C2(m2).
- 3.- Colocar m2 en un registro de p bits y desplazarlo a la derecha d posiciones (introduciendo unos si se ha complementado m2) para igualar los exponentes.

De los bits desplazados fuera de **p**, poner el más significativo en un biestable **g**, el siguiente más significativo en un biestable r, y la "o-lógica" del resto de bits en un biestable s (sticky).

4.- Calcular m como la suma de m1 y el contenido de p (m2 modificado).

Si (signo de a1 ≠ signo de a2) and (bit_mas_significativo(m)=1) and (no carry-out) entonces m es negativo. Reemplazar m con C2(m).

Esto sólo puede ocurrir si d=0.

22

Suma/resta en coma flotante

- 5.- Normalización y ajuste de r y s :
 - Caso 1. Si (signo de a1 = signo de a2) and (carry-out) desplazar m una posición a la derecha, introduciendo un 1. •s=(g or r or s). r=bit que sale de m al desplazar.

 Caso 2. Si no estamos en el caso 1, desplazar a la izquierda hasta que el número esté normalizado.
 - (En el primer desplazamiento a la izquierda se introduce el contenido de g, en los restantes se introduce 0).
 - •Si no se ha necesitado desplazar => s=r or s
 - r=g s= s •Si se ha desplazado una posición => r=r s= s •Si se ha desplazado más de una posición => r=s=0
 - (esto sólo ocurre si a1 y a2 tienen signos opuestos y

el mismo exponente, por lo que la suma ha sido exacta). En ambos casos, ajustar el exponente adecuadamente.

6.- Redondear según la tabla que vimos anteriormente. Si se produce carry-out, desplazar a la derecha y ajustar el exponente.

- 7.- Signo del resultado:
- Si (signo de a1 = signo de a2) este es el signo del resultado.
- Si (signo de a1 ≠ signo de a2) el signo depende de cuál de los dos operandos fuera negativo, de si en el paso 1 se intercambiaron y de si en el paso 4 se reemplazó por su c2, como se muestra en la tabla.

Intercambio	C2	signo(a1)	signo(a2)	signo(resultado)	Significa que los
Si		+	-	-	exponentes son
si		_	+	+	imples v a2>a1
no	no	+	-	+	iguaics y azzai
no	no	-	+	-	
no	si	+	-	-	
no	Si	-	+	+	23