

Дигитална логика и системи

5

Аритметички операции и дигитални кола. Конвертори на код. Кодери, Декодери. Мултиплексери - Демултиплексери

Доц. д-р Никола Рендевски nikola.rendevski@fikt.edu.mk

летен семестар 2017/2018

Аритметички операции

- Една од најважните функции на дигиталните системи и компјутери е извршувањето на аритметички операции
- Дигиталниот систем "дигиталната архитектурата" за извршување (execution) на аритметички операции се базира на градбени блокови кои припаѓаат на основните логички порти
- Изведување на соодветна аритметичка операција се реализира со чекор-по-чекор процедура се додека не се добие посакуваниот резултат
- Секоја аритметичка операција може да биде реализирана во комбинаторна логика или со користење на MSI чипови (Medium Scale Integration) Средно -интегрирани чипови од основни логички порти

Бинарна аритметика

- Процедури за четирите основни операции
 - □ собирање, одземање, множење и делење

Собирање

- Слична процедура како и кај декадниот систем, освен што бинарната сума е од 1 и 0.
- Кога бинарната сума надминува 1, се пренесува 1 (<u>carry</u>) во следната повеќе-сигнификантна колона (позиција)
- Четири комбинации за собирање

$$0 + 0 = 0 \text{ carry } 0$$

 $0 + 1 = 1 \text{ carry } 0$
 $1 + 0 = 1 \text{ carry } 0$
 $1 + 1 = 0 \text{ carry } 1$ (пренос 1)
саггу - пренос

Собирање

A_0	B_0	Σ_0	$C_{ m out}$
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Carry Out

(пренос)

$$A_0 + B_0 = \Sigma_0 + C_{\text{out}}$$

Одземање

0 - 0 = 0 borrow	0
------------------	---

$$0 - 1 = 1 \text{ borrow } 1$$

$$1 - 0 = 1 \text{ borrow } 0$$

$$1 - 1 = 0 \text{ borrow } 0$$

A_0	B_0	R_0	$B_{ m out}$
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

$$A_0 - B_0 = R_0 + B_{\text{out}}$$

borrow - позајми

Одземање – Начин 2 (Пример - тежински)

Одземање – Примери

(a)
$$27$$
 $0001 \ 1011$ $-\frac{10}{17}$ $0001 \ 1010$ $0001 \ 0001 = 17_{10}$ (b) 9 $0000 \ 1001$ $-\frac{4}{5}$ $0000 \ 0100$ $0000 \ 0101 = 5_{10}$ (c) 172 $1010 \ 1100$ $-\frac{42}{130}$ $1000 \ 0010 = 130_{10}$ (d) 154 $1001 \ 1010$ $-\frac{54}{100}$ 100 $0110 \ 0100 = 100_{10}$ (e) 192 $1100 \ 0000$ 0000 $-\frac{3}{189}$ $1001 \ 1011 = 189_{10}$

Множење

- Множењето на бинарни броеви можеме да го реализираме на ист начин како множењето на повеќецифрени декадни броеви
- Имајќи во предвид дека кај бинарниот систем имаме само единици и нули, тогаш меѓурезултатот секогаш ќе биде множеникот или пак нула (низа од нули)
- Секој меѓупроизвод која учествува во крајната сума е множеникот шифтириан во лево во насока од LSB кон MSB
- \blacksquare 1x0=0, 0x1=0, 0x0=0,1x1=1

Множење на бинарни броеви

```
23
                       0001 0111
\times 9
                     \times 0000 1001
   207
                       0001 0111
                      0000 000
                     000000 00
                    0001011 1
                    0001100 \ 1111 = 1100 \ 1111 = 207_{10}
    15
                        0000 1111
× <u>15</u> 75
                      \times 0000 1111
                        0000 1111
+\frac{15}{225}
                       00001 111
                      000011 11
                  + 0000111 1
                    0001110 \ 0001 = 1110 \ 0001 = 225_{10}
```

Делење на бинарни броеви

- Делењето на два бинарни броеви може да се реализира на сличен начин како кај декадниот
- Се тргнува од првата цифра на деленикот и се дели со делителот. Доколку бројот на до тековната цифра е помал од делителот се пишува 0, доколку може да се подели се пишува 1, а потоа се одзема од бројот до тековната цифра. Потоа се спушта друга цифра и постаптката се повторува до крај.
- Ке го презентираме преку еден пример

Делење на бинарни броеви

- Пример 32:6=5
- \blacksquare 32₁₀=11110, 6₁₀=110

- Најчеста форма на репрезентација на бинарните броеви при реализација на аритметичките операции е т.н двоен комплемент (two's complement method)
- На овој начин и позитивните и негативните броеви можат да се претстават во ист формат, а операцијата одземање е значително попроста
- Најчесто дигиталните/компјутерските системи се базирани на 8-, 16-, 32или 64-битна презентација на бинарните секвенци (податоци, адреси, итн)
- Со цел да се претстацат позитивни и негативни вредности во формат на двоен комплемент, MSB битот се користи за знак (MSB – Sign Bit)
- 0 позитивен број
- 1 негативен број

1 - НЕГАТИВЕН

0 - Позитивен

- При репрезентацијата со двоен комплемент, рангот на броевите (состојбите) кои можат да се репрезентираат со битова секвенца од N бита е 2^{N-1}
- На пример: со 8-бита можат да се претстават
 - □ Позитивните броеви од 00000000 01111111
 - □ Негативните броеви од 11111111 10000000
- Максималниот позитивен број е 2^{N-1}-1
- Максималниот негативен број е –(2^{N-1})

```
00000001 = 1

11111110 ← прв комплемент (бит-по-бит)

+ 0000001 ← двоен комплемент (+1)

11111111 = -1
```

- Доколку бројот е позитивен тогаш неговата презентација во двоен комплемент е чисто неговиот бинарен еквивалент, Битот за знак е 0
- Доколку бројот е негативен тогаш
 - 1. Комплементирај го секој бит во бинарниот еквивалент, бит по бит) прв комплемент (one's complement), потоа
 - 2. Додај 1 на бинарната секвенца од првиот комплемент
 - □ Битот за знак е 1 (MSB)
- Одземањето може да се реализира како собирање со двојниот комплемент

```
00000001 = 1

11111110 ← прв комплемент (бит-по-бит)

+ 0000001 ← двоен комплемент (+1)

11111111 = -1
```

- Доколку бројот е позитивен тогаш неговата презентација во двоен комплемент е чисто неговиот бинарен еквивалент, Битот за знак е 0
- Доколку бројот е негативен тогаш
 - 1. Комплементирај го секој бит во бинарниот еквивалент, бит по бит) прв комплемент (one's complement), потоа
 - 2. Додај 1 на бинарната секвенца од првиот комплемент
 - □ Битот за знак е 1 (MSB)
- Одземањето може да се реализира како собирање со двојниот комплемент

Пример (overflow) — 7_{10} - 1_{10}

$$4 ext{-бита}$$
 0111 (7) -0001 - (1) Прв комплемент \longrightarrow 0001 -> 1110 \longrightarrow 1111 \longrightarrow 1111 \longrightarrow 1111 \longrightarrow 0111 (7) \longrightarrow 1111 \longrightarrow 1111 \longrightarrow 0111 (7) \longrightarrow 10110 (?) \longrightarrow 10110 (7) \longrightarrow 10110 (6)

Примери

$$+18 = 0001 \ 0010$$
 $+21 = 0001 \ 0101$ $-7 = 1111 \ 1001$ $-13 = 1111 \ 0011$ $-13 = 0000 \ 1011 = 11_{10}$ $-13 = 0000 \ 1000 = 8_{10}$

$$+59 = 0011 \ 1011$$

 $-96 = 1010 \ 0000$
 $-54 = 1100 \ 1010$
 $-54 = 1100 \ 1010$
 $-54 = 0100 \ 0000 = 64_{10}$

Дигитални кола за аритметички операции

- Полусобирач (Half Adder)
 - □ Два влеза и два излеза
 - Влезови (Вредностите на бинарните варијабли)
 - Излези (Збир и пренос)
- Целосен собирач (Full Adder)
 - □ Три влезови и два излези
 - Два влеза за влезни операнди (двата значајни битови)
 - Третиот влез преносот од помалку значајната позиција (Carry in)
 - Два излези се потребни имајќи во предвид дека сумата на три бинарни цифри може да се претстави со два бита (две линии)

Полусобирач

Целосен собирач

Декодер

- Во дигиталните системи, декодер е комбинаторно логичко коло (матрица) кој конвертира бинарна информација од n-кодирани влезови во максимум 2ⁿ различни излези. Декодерот се користи за различни примени, како реализација на 7-сегментни дисплеи, декодирање на мемориски адреси итн.
- Постојат неколку типови на бинарни декодери, но во сите случаи се работи за дигитално коло кое ја конвертира секоја (единствена) влезна комбинација во единствена излезна комбинација
- Пример 1-of-n декодерот претставува логичка коло кое има множество на влезови (inputs) кои репрезентираат еден бинарен број, а го активира само излезот кој кореспондира со влезниот број
- Со други зборови, 1-of-n декодерот активира <u>само еден излез</u> кој одговара на вредноста на влезната бинарна секвенца, додека останатите излези се неактивни (0)
- Сингуларен активен излез! (за 1-of-n)
- Ќе видиме понатаму дека демултиплексерот е 1-of-n декодер

Декодер (1-од-n) – илустративен пример

BCD – во децимален декодер

Декодер (1-од-п)

- Постојат две можности за логичка изведба за 1-од-n декодер
 - □ Active-Low-Level (Активно ниско ниво)
 - □ Active-High-Level (Активно високо ниво)
- Избор на дизајнерот или во зависност од логичките порти/логиката на изведба на дигиталниот дизајн
- Вистинитосните табели на двете изведби се комплементирани една во однос на друга
- При дизајнот на декодерот во дигитална комбинаторна логика треба да се реализира таблица на вистинитост за секој излез во зависност од комбинацијата на влезот
- Најчесто (Често) достапните IC дигитални кола се Active-Low-Level

3-битен бинарен во октален

			· Ac	tive-HIG	H Output	ts al	тивно	о-висс	ко		
		Input					Out	tput			
•	2^2	21	20	0	1	2	3	4	5	6	7
•	0	0	0	, 1	0	0	0	0	0	0	0
селектираниот	0	0	1	/0	1	0	0	0	0	0	0
излез - високо ниво	0	1	0	0	0	1	0	0	0	0	0
	0	1	1	0	0	0	1	0	0	0	0
	1	0	0	0	0	0	0	1	0	0	0
	1	0	1	0	0	0	0	0	1	0	0
	1	1	0	0	0	0	0	0	0	1	0
	1	1	1	0	0	0	0	0	0	0	1
			A	ctive-LOV	V Output	s	актив	но-ни	ско		
		Input					Out	tput			
•	- 2										
	2^2	21	20	0	1	2	3	4	5	6	7
	0	0	0	0	1	2	3	1	5	6	
селектираниот						2 1 1	3 1 1	1 1	5 1 1	6 1 1	7 1 1
селектираниот излез - ниско ниво	0	0			1	1 1 0	1 1 1	1 1 1	1 1 1	1 1 1	7 1 1 1
_	0	0	0		1	1 1 0 1	1 1 1 0	1 1 1 1	5 1 1 1 1	1 1 1 1	7 1 1 1 1
_	0 0	0	0		1	1 1 0 1 1	1 1 1 0 1	1 1 1 1 0	1 1 1 1 1	1 1 1 1 1	7 1 1 1 1 1
_	0 0	0 0 1 1	0 1 0 1		1	1 1 0 1 1 1	1 1 1 0 1	1 1 1	1 1 1 1 1 0	1 1 1 1 1 1	7 1 1 1 1 1 1
_	0 0	0 0 1 1	0 1 0 1		1	1 1 0 1 1 1 1	1 1 1 0 1 1 1	1 1 1	1 1 1 1 1 0 1	1 1 1 1 1 1 1 0	7 1 1 1 1 1 1 1

BCD во 7-сегментен дисплеј декодер

Decimal	Input lines Output lines									Input lines Output lines							Display
Digit	A	В	С	D	а	b	C	d	е	f	g	pattern					
0	0	0	0	0	1	1	1	1	1	1	0	8					
1	0	0	0	1	0	1	1	0	0	0	0	8					
2	0	0	1	0	1	1	0	1	1	0	1	8					
3	0	0	1	1	1	1	1	1	0	0	1	8					
4	0	1	0	0	0	1	1	0	0	1	1	8					
5	0	1	0	1	1	0	1	1	0	1	1	8					
6	0	1	1	0	1	0	1	1	1	1	1	8					
7	0	1	1	1	1	1	1	0	0	0	0	8					
8	1	0	0	0	1	1	1	1	1	1	1	8					
9	1	0	0	1	1	1	1	1	0	1	1	8					

7-segment Display

Кодер (Coder, Encoding)

- Кодирањето е обратен процес во однос на декодирањето
- Кодерот (англ. Encoder) е дигитално коло кое генерира кодиран излез од влезот.
- Пример: Декаден во бинарен, Декаден во ВСD итн

Кодер (Coder, Encoding)

- Кодирањето е обратен процес во однос на декодирањето
- Кодерот е дигитално коло кое генерира кодиран излез од влезот
- Пример: Декаден во ВСD итн.

Мултиплексер/Демултиплексер

- Мултиплексерот претставува комбинаторно дигитално коло кое одбира една од повеќето влезни линии и ја насочува кон една излезна линија.
 - □ Логичкото ниво на избраната влезна линија, станува логичко ниво на излезот.
- Демултиплексерот единствената влезна линија (влез) ја носи (поврзува) со една од повеќето излезни линии
 - □ Логичкото ниво на единствената влезна линија, станува логичко ниво на една од повеќето излезни линии
- MUX/DeMUX
- Прекинувачка/насочувачка логика
- Контролни линии (линии за одбирање)
- Бројот на контролни линии е log₂ од бројот на влезни линии кај MUX или излезни линии кај DeMUX
- Пример: за 2-во-1 MUX потребна е 1 контролна линија, за 4-во-1 потребни се 2, за 8-во-1 потребни се 3 итн...

MUX

2-BO-1

I₀

MUX

Y

Логички дијаграм

Блок дијаграм (симбол)

$$\frac{I_0}{\sup_{I_1} - \sup_{I_1} - \sup_{I_2} - \sup_{I_3} - \sup_{I_4} - \sup_{I_4}$$

MUX/DeMUX

MUX (реализација на логичка функција со 4 влеза со MUX) - Пример

	A	B	C	D	F	
0	0	0	0	0	0	F = D
U	0	0	0	1	1	
1	0	0	1	0	0	F = D
	0	0	1	1	1	
2	0	1	0	0	1	F = D'
_	0	1	0	1	0	
	0	1	1	0	0	F = 0
3	0	1	1	1	0	1 - 0
4	1	0	0	0	0	F = 0
4	1	0	0	1	0	1 - 0
5	1	0	1	0	0	F = D
_	1	0	1	1	1	I - D
6	1	1	0	0	1	F = 1
0	1	1	0	1	1	$\Gamma = 1$
7	1	1	1	0	1	F = 1
1	1	1	1	1	1	F = 1

Понатаму – Примена на теорема за експанзија (Шенонова теорема за експанзија)

Примери за примена

 Булова теорема за експанзија позната како Шенонова теорема за експанзија или декомпозиција

$$F = x \cdot F_x + x' \cdot F_{x'}$$

- Каде F е било која логичка функција од променливата x,
 x' е комплемент на променливата x, а F_x и F_{x'} се вредностите на функцијата F кога x=1 (F_x), и кога x=0 (F_{x'})
- F_x и F_{x′} се нарекуваат шенонови кофактори
- Ова е фундаментална теорема на буловата алгебра

- Да се имплементира f=A'C'+AB+AC со 2-во-1 MUX
- Пример ако f=A'C'+AB+AC, тогаш f може да биде запишана како f=A'*f(0,B,C)+A*f(1,B,C) →

- Овде реализираме со 2 променливи и 4 кофактори (2 контролни влеза)

 Да се имплементира функцијата со 3-8 бинарен декодер:

$$f(a,b,c) = \sum m(0,1,3,4,6,7)$$

 Решение: декодерот ќе генерира посебен излез за секој минтерм (1 – високо ниво) од функцијата:

- Реализација (експанзија) на декодер со повеќе влезови и излези од декодери со помалку влезови и излези
- Да се реализира 5-во-32 со 3-во-8. Што уште е потребно?
- Потребен е уште еден декодер:
 - □ 2-во-4
 - □ Ги активира 4-те 3-во-8
 - Излезите на 2-во-4 се поврзани на линијата за овозможување на 4-те 3-во-8 декодери
 - □ 3 од влезовите одат директно на влез на 3-8 декодерите
 - 2 од влезовите реализираат мултиплексирачка операција за овозможување/активирање на 3-8 декодерите

- Да се реализира 6-во-64 со 4-во-16. Што уште е потребно?
- Потребен е уште еден декодер:
 - □ 2-во-4
 - □ Ги активира 4-те 4-16
 - □ Излезите на 2-во-4 се поврзани на линијата за овозможување на 4-те 4-во-16 декодери
 - □ 4 од влезовите одат директно на влез на 4-16 декодерите
 - 2 од влезовите реализираат мултиплексирачка операција за овозможување/активирање на 4-16 декодерите

Реализација

- □ Да се реализира 8-во-1 MUX со два 4-1 и еден 2-1
- 2-1 МUХ ги прима излезите од првиот и вториот 4-1 МUХ и ги мултиплексира, а за тоа му е потребна една линија за селекција која одговара на најсигнификантниот бит за селекција на целиот 8-1 МUХ

- Да се реализира 32-во-1 MUX <u>само</u> со примена на 8во-1
- Бидејќи ни се потребн 4 8-во-1 МUХ да обезбедиме 32 влеза, ќе имаме четири излези кои понатаму треба да ги мултиплексираме во еден
- Бидејќи на располагање имаме само 8-во-1 МUХ тогаш само 4 влезови треба да се активни, останатите ги поврзуваме со 0
- За 4 влезови потребни се 2 селекциони линии, а 8-1 МUХ има 3. Двте селекциони линии ги користиме, а третата ја врзуваме на нула бидејќи немаме потреба да ги адресираме сите 8 влезови туку само 4

Реализација

