15 Nov (Wed) Last of Ramsey Theory notes.

- · R(K', KS) = R(KS, K')=1
- $R(k^2, k^s) = R(k^s, k^2) = s$.
- · <u>Lemma</u>: R(K^r, K^s) \le R(K^{r-1}, K^s)+R(K^r, K^{s-1})

Pf: Let n=R(kr-1, Ks)+R(kr, ks-1)

Given any 2-coloring of Kⁿ, we need to show I red k^r or blue k^s.

Let $v \in V(K^n)$. Since |N(v)| = n-1, by PHP, $|N_{red}(v)| \ge R(K^{r-1}, K^s)$ or $|N_{blue}(v)| \ge R(K^r, K^{s-1})$.

If $|N_{red}(v)| \ge R(k^{r-1}, k^s)$, then there is a red k^r or a blue k^s in $N_{red}(v)$.

If $|N|(v)| > R(k^r, k^{s-1})$, then there is a red K^r or a blue K^s in N blue V^s .

· Find a bound for R(k³,k³)

Thm: For every
$$t \ge 3$$
, $R(k^t, k^t) = R(t) > \lfloor 2^{t/2} \rfloor$.

(R(3) = 2.8)

Pf: Strategy: Demonstrate the existence of a graph G such that $K^t \notin G$ and $K^t \notin G$.

Straight counting argument.

Let $n = \lfloor 2^{t/2} \rfloor$. Let $V = \{1, 2, ..., n\}$, labeled vertices.

So there exist 2 distinct labeled graphs on V

and (n) distinct subsets $S \subseteq V$ where |S| = t.

Given a particular t-subset of V, there exist $2^{\binom{n}{2}-\binom{t}{2}}$

graphs such that G[S] = Kt.

Let M represent the number of graphs on V that contain a subgraph isomorphic to K^{t} .

So $M = \binom{n}{t} 2^{\binom{n}{2} - \binom{t}{2}} < \frac{n^{t}}{t!} 2^{\binom{n}{2} - \binom{t}{2}} < \frac{n!}{t! (n-t)!} = \frac{n!}{t! (n-t)!} = \frac{n!}{t!}$

Now, $n^{t} = (2^{t/2})^{t} = 2^{t/2} = 2^{(\frac{t}{2} - \frac{t}{2} + \frac{t}{2})}$ $= 2^{(\frac{t}{2})} \cdot 2^{\frac{t}{2}} \quad \text{for } t \ge 3$ $= 2^{(\frac{t}{2})} \cdot 2^{\frac{t}{2}} \quad \frac{t}{2} t > 2^{\frac{t}{2}}$

 $S_0 \quad M < \frac{1}{2} \cdot 2$ $S_0 \quad 2M < 2$

So we have shown that deleting all labeled graphs with $K^t \subseteq G$ and all so that $K \subseteq G$ still leaves at kest 1 graph.