2 - Analisis Kompleksitas Komputasional

[KOMS120403]

Desain dan Analisis Algoritma (2022/2023)

Dewi Sintiari

Prodi S1 Ilmu Komputer Universitas Pendidikan Ganesha

Week 2 (March 2023)

Daftar isi

- Review algoritma fpb
- Model kompleksitas komputasi
- Notasi asimtotik dan order of magnitude
- Notasi Big-O: batas atas asimtotik
 - Definisi
 - Linear & fungsi polinomial
 - Operasi aritmatika di O
 - Fungsi logaritmik
 - Klasifikasi algoritma
 - Menentukan kompleksitas asimtotik
- Notasi Big-Omega
- Notasi Big-Theta
- Latihan soal

Tujuan pembelajaran

Anda diharapkan mampu untuk:

- Menjelaskan konsep kompleksitas algoritma
- Menjelaskan perbedaan worst-case, best-case, dan average-case algoritma
- Menggunakan notasi Big-O, Big-Omega, dan Big-Theta dalam menuliskan kompleksitas
- Menghitung kompleksitas algoritma
- Mengklasifikasikan algoritma berdasarkan kelas kompleksitasnya

Bagian 1: Contoh motivasi

Perhatikan lagi algoritma penghitungan fpb dua integer

Menghitung fpb:

- Input: bilangan bulat a dan b
- Output: fpb dari m dan n

Algorithm ${f 1}$ Algoritma sederhana fpb dari dua bilangan bulat

```
    procedure FPB(a, b)
    r = 1
    x = min(a, b)
    for i = 1 to x do
    if a mod i == 0 and b mod i == 0 then r = i
    end if
    end for
    end procedure
```

Tentukan banyaknya operasi yang dilakukan untuk menjalankan algoritma tersebut!

Jawaban

Coba bandingkan algoritma tersebut dengan algoritma berikut (yang disebut dengan algoritma Euclid untuk fpb)

Algoritma Euclid untuk menghitung fpb (1)

Contoh

Menggunakan algoritma Euclid, tentukan fpb dari 210 dan 45.

Solusi:

Algoritma Euclid untuk menghitung fpb (1)

Contoh

Menggunakan algoritma Euclid, tentukan fpb dari 210 dan 45.

Solusi:

$$210 = 4 \cdot 45 + 30$$
$$45 = 1 \cdot 30 + 15$$
$$30 = 2 \cdot 15 + 0$$

Jadi
$$fpb(210, 45) = 15$$

Algoritma Euclidean untuk menghitung fpb (2)

Algorithm 2 Euclidean algorithm

```
1: procedure EUCLIDFPB(a, b)
2: while b \neq 0 do
3: r = a \mod b
4: a = b
5: b = r
6: end while
7: return a
8: end procedure
```

Questions:

- Mengapa algoritma tersebut berakhir (tidak mengalami infinite looping)? (lihat Teorema Lame https://www.cut-the-knot.org/blue/LamesTheorem.shtml)
- Tentukan banyaknya operasi yang terjadi, dan bandingkan dengan algoritma penghitungan fpb yang sebelumnya!

Bagian 2: Kompleksitas algoritma

Model kompleksitas komputasi (1)

Dapatkah Anda menjelaskan kembali definisi dari kompleksitas algoritma, dan mengapa hal tersebut penting?

Model kompleksitas komputasi (2)

Bagian dari *analisis algoritma* adalah menghitung *kompleksitas komputasional* dari suatu algoritma.

Kompleksitas komputasional (atau cukup disebut kompleksitas) dari sebuah algoritma adalah banyaknya sumber daya (*waktu* dan *memori*) yang diperlukan untuk menjalankannya.

- Kompleksitas waktu: seberapa cepat suatu algoritma dijalankan
- Kompleksitas ruang: berapa banyak memori yang dibutuhkan untuk mengeksekusi suatu algoritma

Bagaimana menghitung kompleksitas suatu algoritma?

Bagaimana pengaruh kompleksitas algoritma?

Contoh

Misalkan sebuah superkomputer mengeksekusi algoritma A, dan sebuah PC (personal computer) mengeksekusi algoritma B. Kedua komputer harus mengurutkan 1 juta elemen. Superkomputer dapat mengeksekusi 100 juta instruksi dalam satu detik, sedangkan PC hanya mampu mengeksekusi 1 juta instruksi dalam satu detik. Diketahui bahwa:

- Algoritma A membutuhkan 2n² instruksi untuk mengurutkan n elemen;
- Algoritma B membutuhkan 50n log n instruksi

Hitunglah banyaknya waktu yang dibutuhkan untuk mengurutkan 1 juta elemen di masing-masing komputer (superkomputer dan PC)!

Bagaimana pengaruh kompleksitas algoritma?

Dapatkah Anda memperkirakan, secara intuitif, komputer manakah yang memiliki waktu eksekusi lebih singkat?

Bagaimana pengaruh kompleksitas algoritma?

Dapatkah Anda memperkirakan, secara intuitif, komputer manakah yang memiliki waktu eksekusi lebih singkat?

Solusi: running time masing-masing komputer

$$n = 10^6$$

- Superkomputer: $\frac{2 \cdot (10^6)^2 \text{ instructions}}{10^8 \text{ instructions / sec}} = 20000 \text{ sec} \approx 5.56 \text{ hours}$
- PC: $\frac{50 \cdot 10^6 \log 10^6 \text{ instructions}}{10^6 \text{ instructions / sec}} \approx 1000 \text{ sec} \approx 16.67 \text{ minutes}$

Apa yang dapat Anda simpulkan?

Apa yang mempengaruhi kompleksitas komputasi?

Running time bergantung pada banyak hal seperti *hardware*, *OS*, *processors*, *programming language* dan *compiler*, dll.

Tapi kita **tidak** memperhitungkan faktor-faktor ini saat menganalisis **kompleksitas** algoritma.

Beberapa catatan dalam mempelajari kompleksitas algoritma:

- Fokus kita pada perkuliahan ini adalah pada kompleksitas waktu.
- Kita berasumsi bahwa mesin kita hanya menggunakan satu prosesor (yaitu generic one-processor). Jadi hanya satu instruksi yang dieksekusi dalam suatu waktu tertentu.
- Kompleksitas waktu dihitung berdasarkan banyaknya operasi/instruksi
- Running time dari suatu algoritma dihitung sebagai fungsi dari ukuran input (n), dan merupakan fungsi yang tak-turun (non-decreasing).

Contoh penghitungan kompleksitas komputasi

Algorithm 3 Rata-rata array bilangan bulat

```
1: procedure AVERAGE(A[1..n])

2: sum \leftarrow 0

3: for i = 1 to n do

4: sum \leftarrow sum + A[i]

5: end for

6: avg \leftarrow sum/n

7: end procedure
```

Jumlah operasi:

- Penugasan: baris 2, 4, 6; dengan operasi 1 + n + 1 = n + 2
- Penjumlahan: baris 4, dengan operasi n
- Divisi: baris 6, dengan 1 operasi

Kompleksitas waktu: T(n) = (n+2) + n + 1 = 2n + 3 operations.

Bagian 3: Tiga model kompleksitas algoritma

Tiga macam pengukuran penggunaan sumber daya

- Kasus terburuk $(T_{max}(n))$: ini mengukur sumber daya (mis. running time, memori) yang diperlukan algoritma dalam kasus terburuk yaitu kasus paling sulit, ketika algoritma diberi input berukuran acak n (biasanya dilambangkan dengan notasi asimtotik \mathcal{O}).
- Kasus terbaik $(T_{\min}(n))$: menjelaskan perilaku algoritma dalam kondisi optimal.
- Kasus rata-rata $(T_{avg}(n))$: menghitung jumlah waktu komputasi yang digunakan oleh algoritma, rata-rata dari semua input yang mungkin.

Notasi asimtotik dan derajat besarannya (1)

- Ingatlah bahwa kompleksitas waktu suatu algoritma diukur sebagai fungsi dari ukuran inputnya.
- Rate of growth dari fungsi kompleksitas mengukur seberapa cepat suatu fungsi meningkat dengan peningkatan ukuran input. Secara asimtotik berarti fungsi itu penting hanya untuk nilai n yang besar.
- Order of magnitude dari fungsi menjelaskan bagian dari fungsi yang meningkat paling cepat saat nilai *n* meningkat.

Notasi asimtotik dan derajat besarannya (2)

Contoh

Misalkan sebuah algoritma dijalankan pada input berukuran n, membutuhkan sebanyak $6n^2 + 100n + 300$ eksekusi.

Kita hanya menyimpan suku yang paling "penting". Dalam hal ini, fungsi $6n^2$ memiliki nilai yang lebih dari 100n + 300 untuk setiap nilai n dalam batas bawah tertentu.

3.1. Big-O

Review fungsi logaritma

Sebelum mempelajari notasi Big-O, silahkan tinjau kembali definisi dan sifat-sifat fungsi logaritma berikut.

Pratinjau fungsi logaritma dan eksponensial

$$\log_b \mathbf{a} = c \Leftrightarrow \mathbf{b}^c = \mathbf{a}$$

- a > 0 adalah "pangkat logaritma"
- b > 0 adalah "basis logaritma"
- c adalah "hasil logaritma"

Catatan. Jika basis b = 2, maka disebut logaritma biner (binary logarithm). Dalam hal ini, basisnya seringkali tidak dituliskan.

Review fungsi logaritma

Silahkan baca lagi buku catatan / rujukan tentang fungsi logaritma

Beberapa sifat fungsi logaritma

- $\log_b 1 = 0$ untuk setiap $b \ge 0$
- Penggantian basis: $\log_b a = \frac{\log_p a}{\log_p b}$
- Penjumlahan: $\log_p m + \log_p n = \log_p mn$
- Pengurangan: $\log_p m \log_p n = \log_p \frac{m}{n}$
- Pangkat: $\log_p a^x = x \cdot \log_p a$
- Invers: $\log_p \frac{1}{a} = -\log_p a$
- dsb...

Notasi \mathcal{O} (O-besar/big-O): Batas-atas asimtotik

Kompleksitas kasus terburuk mengukur sumber daya yang dibutuhkan algoritma dalam *kasus terburuk*. Ini memberikan *upper bound* (batas atas) pada sumber daya yang dibutuhkan oleh algoritma.

Mengapa mempelajari kompleksitas kasus terburuk?

- memberikan informasi tentang kebutuhan sumber daya maksimum
- secara alami, kompleksitas terburuk sering terjadi pada suatu sistem

O adalah notasi matematika yang menjelaskan perilaku pembatas fungsi ketika argumen cenderung ke nilai tertentu atau tak terhingga.

Notasi \mathcal{O} (O-besar/big-O): Batas atas asimtotik

Definisi (Notasi Big-O $\mathcal{O}(\cdot)$)

 $g(n) \in \mathcal{O}(f(n))$ if $\exists \ k > 0$ dan n_0 sedemikian sehingga

$$g(n) \leq k \cdot f(n), \quad \forall n \geq n_0$$

Contoh notasi \mathcal{O} (1): Fungsi linier

Contoh

Tunjukkan bahwa g(n) = 5n + 3 ada di O(n).

Contoh notasi \mathcal{O} (1): Fungsi linier

Contoh

Tunjukkan bahwa g(n) = 5n + 3 ada di O(n).

Solusi:

Perhatikan bahwa $5n + 3 \le 5n + 3n = 8n$ untuk semua $n \ge 1$. Dalam hal ini, k = 8 dan $n_0 = 1$. Jadi, $g(n) \in \mathcal{O}(n)$.

Contoh notasi \mathcal{O} (2): Fungsi polinomial

Contoh

Tunjukkan bahwa $g(n) = 3n^2 - 5n + 6$ ada di $\mathcal{O}(n^2)$.

Contoh notasi \mathcal{O} (2): Fungsi polinomial

Contoh

Tunjukkan bahwa $g(n) = 3n^2 - 5n + 6$ ada di $\mathcal{O}(n^2)$.

Solusi:

Perhatikan bahwa $3n^2 - 5n + 6 \le 3n^2 + 0 + 6n^2 = 9n^2$ untuk semua $n \ge 1$. Dalam hal ini, k = 9 dan $n_0 = 1$. Jadi, $g(n) \in \mathcal{O}(n^2)$.

Bagian 3: Operasi aritmatika di \mathcal{O}

Operasi aritmatika di ${\cal O}$

Fungsi kompleksitas waktu dilambangkan dengan T(n).

Teorema (Big-O dari kompleksitas polinomial)

Jika $T(n) = a_m n^m + a_{m-1} n^{m-1} + \cdots + a_1 n + a_0$ polinomial dengan derajat m, maka $T(n) \in \mathcal{O}(n^m)$.

Teorema (Operasi aritmatika dengan Big-O)

Let $T_1(n) \in \mathcal{O}(f(n))$ dan $T_2(n) \in \mathcal{O}(g(n))$, then:

- $2 T_1(n)T_2(n) \in \mathcal{O}(f(n))\mathcal{O}(g(n)) \in \mathcal{O}(f(n)g(n))$
- $O(cf(n)) \in O(f(n)), dimana c adalah konstanta.$
- $f(n) \in \mathcal{O}(f(n))$

Proof: kerjakan sebagai latihan!

Operasi aritmatika dengan ${\mathcal O}$

Contoh (Operasi aritmatika dengan Big-O)

1 Misalkan $T_1(n) \in \mathcal{O}(n)$ dan $T_2(n) \in \mathcal{O}(n^2)$, maka:

$$T_1(n) + T_2(n) \in \mathcal{O}(\max(n, n^2)) \in \mathcal{O}(n^2)$$

2 Misalkan $T_1(n) \in \mathcal{O}(n)$ dan $T_2(n) \in \mathcal{O}(n^2)$, maka:

$$T_1(n)T_2(n) \in \mathcal{O}(n \cdot n^2) = \mathcal{O}(n^3)$$

Notasi \mathcal{O} pada fungsi logaritma

Dalam Ilmu Komputer, kita biasanya menggunakan kompleksitas logaritma basis-dua secara standar (*default*). Mengapa?

Notasi \mathcal{O} pada fungsi logaritma

Dalam Ilmu Komputer, kita biasanya menggunakan kompleksitas logaritma basis-dua secara standar (*default*). Mengapa?

- Dalam Ilmu Komputer, seringkali kita bekerja dengan bilangan biner atau membagi data input menjadi dua.
- Dalam notasi Big-O (pertumbuhan batas atas), semua logaritma bersifat setara secara asimtotik (satu-satunya perbedaan adalah faktor konstanta perkalian).
- Jadi, kita biasanya tidak menuliskan basisnya, dan hanya menuliskannya sebagai $\mathcal{O}(\log n)$.

Contoh notasi \mathcal{O} (3): Fungsi logaritma

Contoh

Tunjukkan bahwa $g(n) = (n+3)\log(n^2+1) + 2n^2$ ada di $\mathcal{O}(n^2)$

Contoh notasi \mathcal{O} (3): Fungsi logaritma

Contoh

Tunjukkan bahwa
$$g(n) = (n+3)\log(n^2+1) + 2n^2$$
 ada di $\mathcal{O}(n^2)$

Solusi:

Perhatikan bahwa:

$$\log(n^2 + 1) \le \log(2n^2) = \log 2 + \log n^2 \le 2 \log n^2 = 4 \log n$$

Jadi,
$$\log(n^2 + 1) \in \mathcal{O}(\log n)$$
.

Karena $n+3\in\mathcal{O}(n)$, maka

$$(n+3)\log(n^2+1) \in \mathcal{O}(n) \cdot \mathcal{O}(\log n) \in \mathcal{O}(n\log n)$$

Karena $2n^2 \in \mathcal{O}(n^2)$, dan $\max(n \log n, n^2) = n^2$, maka $g(n) \in \mathcal{O}(n^2)$.

Bagian 4: Klasifikasi algoritma berdasarkan kompleksitas waktu terburuk

Klasifikasi algoritma berdasarkan kompleksitas waktu terburuk

Complexity	Class
$\mathcal{O}(1)$	constant
$\mathcal{O}(\log n)$	logarithmic
$\mathcal{O}(n)$	linear
$\mathcal{O}(n \log n)$	quasilinear/linearithmic
$\mathcal{O}(n^2)$	square
$\mathcal{O}(n^3)$	cubic
$\mathcal{O}(n^k), k \geq 2$	polynomial
$\mathcal{O}(2^n)$	exponential
$\mathcal{O}(n!)$	factorial

$$\underbrace{\mathcal{O}(1) < \mathcal{O}(\log n) < \mathcal{O}(n) < \mathcal{O}(n\log n)}_{\text{polynomial algorithms}} < \mathcal{O}(n^2) < \mathcal{O}(n^3) < \dots < \underbrace{\mathcal{O}(2^n) < \mathcal{O}(n!)}_{\text{exponential algorithms}}$$

Klasifikasi algoritma berdasarkan kompleksitas waktu terburuk

Bagian 5: Penghitungan banyaknya operasi pada algoritma

Menghitung jumlah operasi algoritma: operasi dasar

- **Operasi assign (deklarasi)** (perbandingan, operasi aritmatika, baca, tulis) membutuhkan $\mathcal{O}(1)$
- **Mengakses** elemen array, atau mengambil nilai yang tersimpan memerlukan $\mathcal{O}(1)$

Contoh

- $ightharpoonup read(x)
 ightarrow \mathcal{O}(1)$
- $x: x + a[k] \rightarrow \mathcal{O}(1)$
- $ightharpoonup print(x)
 ightarrow \mathcal{O}(1)$

Menghitung jumlah operasi algoritma: if-else

If-Else condition: If C THEN A1 ELSE A2 membutuhkan waktu: $T_C + \max(T_{O1}, T_{O2})$

Contoh (Operasi dasar)

```
1: read(x)
2: if x mod 2 = 0 then
3: x := x + 1
4: print("Even")
5: else
6: print("Odd")
7: end if
```

Kompleksitas waktu asimtotik:

$$\mathcal{O}(1) + \mathcal{O}(1) + \max \left(\mathcal{O}(1) + \mathcal{O}(1), \mathcal{O}(1) \right) \in \mathcal{O}(1)$$

Menghitung jumlah operasi algoritma: for loop

For loop: kompleksitas waktu adalah jumlah iterasi dikalikan dengan kompleksitas waktu body loop (yaitu pernyataan loop)

Contoh (Single for loop)

- 1: **for** i = 1 to n **do**
- 2: sum := sum + a[1]
- 3: end for

Kompleksitas waktu asimtotik: $n \cdot \mathcal{O}(1) = \mathcal{O}(n)$

Menghitung jumlah operasi algoritma: loop bersarang

Contoh (Two nested for loops with one instruction)

```
1: for i = 1 to n do
2: for j = 1 to n do
3: a[i,j] := i + j
4: end for
5: end for
```

Kompleksitas waktu asimtotik: $n \cdot \mathcal{O}(n) = \mathcal{O}(n^2)$

Menghitung jumlah operasi algoritma: loop bersarang

Contoh (Two nested for loops with two instructions)

```
1: for i = 1 to n do
2: for j = 1 to i do
3: a := a + 1
4: b := b - 1
5: end for
6: end for
```

Loop luar dieksekusi n kali, dan loop dalam dieksekusi i kali untuk setiap j.

Jumlah iterasi:
$$1+2+\cdots+n=\frac{n(n+1)}{2}\in\mathcal{O}(n^2)$$
.

Perulangan pada body membutuhkan waktu $\mathcal{O}(1)$.

Kompleksitas waktu asimtotik: $\mathcal{O}(n^2)$.

Menghitung jumlah operasi algoritma: while loop

• While loop: WHILE C DO A; and REPEAT A UNTIL C. Time complexity = # iterations \times T_{body}

Contoh (Single loop with n-1 iterations)

```
1: i := 2
```

2: while i < n do

3: sum:= sum + a[i]

4: i := i + 1

5: end while

Kompleksitas waktu asimtotik:

$$\mathcal{O}(1) + (n-1)(\mathcal{O}(1) + \mathcal{O}(1) + \mathcal{O}(1)) = \mathcal{O}(1) + \mathcal{O}(n-1) \in \mathcal{O}(n)$$

Menghitung jumlah operasi algoritma: infinite loop

Contoh (Infinite loop)

```
1: x := 0
```

2: while x < 5 do

3: x := 1

4: x := x + 1

5: end while

Dalam situasi ini, x tidak akan pernah lebih besar dari 5, karena pada awal perulangan while, x diberi nilai 1, sehingga perulangan akan selalu berakhir dengan 2 dan perulangan tidak akan pernah terputus.

Operasi pada procedure dan function

- Untuk sebuah prosedur atau fungsi yang dipanggil pada suatu algoritma, kompleksitas waktunya adalah $\mathcal{O}(1)$.
- Namun, pada penghitungan kompleksitas waktu secara keseluruhan, kita tetap memperhitungkan kompleksitas waktu prosedur atau fungsi tersebut terhadap besarnya input n.

3.2. Big-Omega

Notasi Ω : Batas-bawah (*lower-bound*) asimtotik

Kita juga dapat mengatakan bahwa suatu algoritma membutuhkan minimal sejumlah waktu tertentu. Hal ini biasanya dilakukan dengan memberikan batas bawah (lower bound).

Definisi (Notasi Big-Omega $\Omega(\cdot)$)

 $g(n) \in \Omega(f(n))$ jika $\exists \ k > 0$ dan n_0 sedemikian sehingga

$$g(n) \geq k \cdot f(n), \quad \forall n \geq n_0$$

3.3. Big-Theta

Notasi Θ: Batas-ketat (tight-bound) asimtotik

Batas ketat dari suatu fungsi berarti suatu fungsi lain yang membatasi fungsi tersebut dari atas dan bawah. Secara formal, didefinisikan sebagai berikut:

Definisi (Notasi Big-Theta $\Theta(\cdot)$)

 $g(n) \in \Theta(f(n))$ jika $\exists \ k_1, k_2 > 0$ dan n_0 sedemikian sehingga

$$k_1 \cdot f_n \leq g(n) \leq k_2 \cdot f(n), \quad \forall n \geq n_0$$

Contoh penghitungan kompleksitas waktu terbaik, terburuk, dan rata-rata

Contoh:

Algorithm 4 Sequential search

```
1: procedure SeqSearch(A[1..n], x)
        found \leftarrow False
 2:
 3:
        i \leftarrow 1
 4.
        while (not found) and (i < N) do
             if (A[i] = x) then found \leftarrow True
 5:
             else i \leftarrow i + 1
 6:
             end if
 7:
        end while
 8.
 9:
        if (found) then index \leftarrow i
        else index \leftarrow 0
10.
        end if
11:
12: end procedure
```

Contoh penghitungan kompleksitas waktu terbaik, terburuk, dan rata-rata

```
Algorithm 2 Sequential search

1: procedure SEQSEARCH(T[1..n])

2: found \leftarrow False

4: while (not found) and (i \le N) do

5: if (T[i] = x) then found \leftarrow True

6: else i \leftarrow i + 1

7: end if

8: end while

9: if (found) then index \leftarrow i

10: else index \leftarrow 0

11: end if

12: end procedure
```

• Kasus terbaik adalah ketika x = A[1], yaitu

$$T_{\min}(n) = 1$$

Ini dapat juga diartikan bahwa algoritma memiliki kompleksitas waktu $\Omega(1)$.

• Kasus terburuk adalah ketika x = A[n] atau x tidak ditemukan, yaitu

$$T_{\mathsf{max}}(n) = n$$

Ini dapat juga diartikan bahwa algoritma memiliki kompleksitas waktu $\mathcal{O}(n)$.

Apa yang dapat Anda simpulkan? (1)

Apa yang dapat Anda simpulkan? (1)

Tiga macam penghitungan kompleksitas waktu.

- Kompleksitas waktu terbaik (best case)
 Kasus terbaik adalah fungsi yang melakukan jumlah langkah minimum pada input data n elemen.
- Kompleksitas waktu terburuk (worst case)
 Kasus terburuk adalah fungsi yang melakukan jumlah langkah maksimum pada data masukan berukuran n.
- Kompleksitas waktu rata-rata (average case)
 Kasus rata-rata adalah fungsi yang melakukan jumlah langkah rata-rata pada data input n elemen.

Apa yang dapat Anda simpulkan? (2)

Apa yang dapat Anda simpulkan? (2)

- Jika g(n) adalah $\mathcal{O}(f(n))$, ini berarti bahwa g(n) tumbuh secara asimtotik tidak lebih cepat dari f(n).
- Jika g(n) adalah $\Omega(f(n))$, ini berarti bahwa g(n) tumbuh secara asimtotik tidak lebih lambat dari f(n).
- Jika g(n) adalah $\Theta(f(n))$, ini berarti bahwa g(n) tumbuh secara asimtotik pada kecepatan yang sama dengan f(n).

Catatan

Kompleksitas waktu terbaik, terburuk, dan rata-rata **tidak sama** dengan penggunaan notasi \mathcal{O} , Ω , dan Θ .

Kesimpulan lain?

- **1** ...
- 2 ...
- **③** ...

Latihan. Kerjakan Exercise 1 "Kompleksitas"

end of slide...