

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

CR 134.089

NASA-CR-134089) RESULTS OF INVESTIGATIONS ON A 0.010-SCALE MODEL OF THE CONFIGURATION 3. SPACE SHUTTLE OABITER AND EXTERNAL TANK IN THE NASA/AMES (Chrysler Corp.) 123 p HC \$9.25 CSCL 22B

N74-22503

Unclas G3/31 37941

SPACE SHUTTLE

AEROTHERMODYNAMIC DATA REPORT

JOHNSON SPACE CENTER
HOUSTON, TEXAS

SPACE DIVISION CHRYSLER CORPORATION

DMS DR-2102 NASA CR-134,089

RESULTS OF INVESTIGATIONS ON A 0.010-SCALE MODEL

OF THE CONFIGURATION 3 SPACE SHUTTLE ORBITER

AND EXTERNAL TANK IN THE NASA/AMES RESEARCH CENTER

3.5-FOOT HYPERSONIC WIND TUNNEL (IA15)

 $\mathbf{B}\mathbf{y}$

M. T. Petrozzi and M. D. Milam, Rockwell International J. A. Mellenthin, NASA Ames

Prepared under NASA Contract Number NAS9-13247

Ву

Data Management Services Chrysler Corporation Space Division New Orleans, La. 70189

for

Engineering Analysis Division

Johnson Space Center National Aeronautics and Space Administration Houston, Texas RESULTS OF INVESTIGATIONS ON A 0.010-SCALE MODEL

OF THE CONFIGURATION 3 SPACE SHUTTLE ORBITER

AND EXTERNAL TANK IN THE NASA/AMES RESEARCH CENTER

3.5-FOOT HYPERSONIC WIND TUNNEL (IA15)

By M. T. Petrozzi, M. D. Milam and J. A. Mellenthin*

ABSTRACT

Experimental aerodynamic investigations were conducted in the NASA/
Ames 3.5-Foot Hypersonic Wind Tunnel during the period of October 10
through October 15, 1973. The model used for this test was a 0.010-scale of the Configuration 3 Space Shuttle Orbiter and the External Tank.

Six-component aerodynamic force and moment data were recorded over an angle of attack range from -8° to +30° at 0° and 5° angles of side-slip. Data was also recorded during beta sweeps of -8° to +10° at angles of attack of -10°, 0°, and 30°. All testing was done at Mach 7.3.

Various elevon, rudder and orbiter to external tank attaching structures and fairings were tested to determine longitudinal and lateral-directional stability characteristics. Non-metric exhaust plumes were installed during a portion of the testing to determine the effects of the main propulsion system rocket plumes.

Base pressures on the external tank, which were monitored through tubing internally routed through the external tank and orbiter, were found to be questionable during the first 10 runs. Externally mounted tubing was installed prior to run 11 and the test series were completed using

PRECEDING PAGE BLANK NOT FILMED

that tubing configuration for the external tank base pressures. Subsequent to run 18, when the non-metric plumes were installed, all base pressures were monitored through externally routed tubing. See the DATA REDUCTION section for additional information.

TABLE OF CONTENTS

	Page
ABSTRACT	iii
INDEX OF MODEL FIGURES	2
INDEX OF DATA FIGURES	3
NOMENCLATURE	5
CONFIGU TIONS INVESTIGATED	9
TEST FACILITY	11
DATA REDUCTION	12
TABLES	
I. TEST CONDITIONS	14
II. DATA SET/RUN NUMBER COLLATION SUMMARY	15
III. MODEL DIMENSIONAL DATA	17
FIGURES	. "
MODEL	36
DATA	48
• ,	

APPENDIX - TABULATED SOURCE DATA

INDEX OF MODEL FIGURES

igure		Title	Page
1.	Axis s	ystems	36
2.	Model	sketches.	
	a.	Integrated Vehicle Configuration 3 (mated).	37
	ъ.	Model installation with non-metric plumes.	38
	c.	Umbilical fairing on Orbiter (FR ₁).	39
	đ.	Forward attachment of the external tank to the Orbiter.	40
` /	e.	Attach structure-VL72-000089 Configuration 3A.	41
	f.	External tank protuberances.	42
	g.	SRB protuberances.	43
	h.	Base pressure orifice locations.	44
3.	Model	photographs.	
	a.	Close-up 3/4 rear view of 0.010-scale orbiter model 139B mounted on external tank.	45
	b.	Side view of 0.010-scale orbiter model 139B, external tank, sting, and strut.	46
	c.	Side view of 0.010-scale orbiter model 139B, external tank, and sting.	47

PRECEDING PAGE BLANK NOT FILMED

INDEX OF DAMA PTOTIBES

	TAUEA OF DATA FIGURES	THE FIGURES		
FIGURE	FIGURE TITLE	PLOT SCHEDULE	CONDITIONS VARIED	PAGES
ন	RUDDER DEFLECTION WITH FAIRING, LONGITUDINAL	(A)	RUDDER	1-4
.	RUDDER DEFLECTION WITT FAIRING, LATERAL-DIRECTIONAL	(B)	RUDDER	5-8
9	ELEVON DEFLECTION WITHOUT FAIRING, LONGITUDINAL	(A)	ELEVON	9-15
-	AILERON DEFLECTION FAIRING, LATERAL- DIRECTIONAL	(c)	AILRON	13-15
 c o	POWER ON AND OFF, WITH AND WITHOUT FAIRING, LONGITUDINAL	· (A)	PLUMES	16-19
σ	WITH AND WITHOUT FAIRING, DE = 15 AND -40 DEGS., LONGITUDINAL	(A)	ELEVON	20-23
10	POWER ON AND OFF, WITH AND WITHOUT FAIRING, LATERAL-DIRECTIONAL	(B)	PLUMES	24-27
#	RUDDER DEFLECTION, POWER ON AND OFF, LATERAL-DIRECTIONAL (PITCH)	(0)	PLUMES	28–30
75	RUDDER DEFLECTION, POWER ON AND OFF, LATERAL-DIRECTIONAL (YAW)	(B)	PLUMES	31-34
13	RUDDER DEFLECTION, WITH BETA = 5 DEG. LATERAL-DIRECTIONAL (PITCH)	(2)	RUDDER	35–37
77	YAW EFFECTS WITH ALPHA = 0 AND 30 DEG., WITHOUT FAIRING, LAIDIR.	(B)	АГЪНА	38-41

INDEX OF DATA FIGURES (Concluded)

	TOO STRONG WINT TO WHATT			
FIGURE	FIGURE TITLE	PLOT SCHEDULE	CONDITIONS	PAGES
15	SUMMARY OF SOLID PLUME PITCH EFFECTS	(D)	PLUMES	24
16	SUMMARY OF SOLID PLUME YAW EFFECTS	(E)	PLUMES	n3-nn
17	SUMMARY OF ELEVON EFFECTIVENESS	(F)	ELEVON	1,5-47
18	SUMMARY OF AILERON EFFECTIVENESS	(9)	AILRON	84
19	SUMMARY OF RUDDER EFFECTIVENESS IN YAW	(н)	RUDDER	64
50	SUMMARY OF BETA OFFSET EFFECTS IN PITCH, DBETA = 5 DEGS.	(1)	BETA	50-51
12	SUMMARY OF ALPHA OFFSET EFFECTS IN YAW	(E)	ALPHA	52-53
. 55	SUMMARY OF RUDDER EFFECTIVENESS IN PITCH	(£)	· RUDDER	75

PLOT SCHEDULES:

	DCY/DR, DCBLDR, DCYNDR vs BETA	(I) DCY/DB, DCBLDB, DCYNDB, YAC/L vs ALPHA	
			(E) CY/B, CBL/B, CYN/B, YAC/L VS BETA

NOMENCIATURE General

SYMBOL	SADSAC SYMBOL	DEFINITION
8		speed of sound; m/sec, ft/sec
$C_{\mathcal{D}}$	CP	pressure coefficient; (p ₁ - p ₂)/q
M	MACH	Mach number; V/a
p		pressure; N/m ² , psf
q	Q(NSM) Q(PSF)	dynamic pressure; 1/2, V ² , N/m ² , psf
RN/L	RN/L	unit Reynolds number; per m, per ft
v		velocity; m/sec, ft/sec
a	ALPHA	angle of attack, degrees
β	BETA	angle of sideslip, degrees
ψ	PSI	angle of yaw, degrees
φ	PHI	angle of roll, degrees
ρ		mass density; kg/m3, slugs/ft3
	Refe	rence & C.G. Definitions
Ab .		base area; m ² , ft ²
ъ	BREF	wing span or reference span; m, ft
c.g.		center of gravity
REF	LREF	reference length or wing mean aerodynamic chord; m, ft
S	SREF	wing area or reference area; m2, ft2
	MRP	moment reference point
	XMRP	moment reference point on X axis
	YMRP	moment reference point on Y axis
	ZMRP	moment reference point on Z axis
SUBSCRIPTS		
b l		base local
5		static conditions
t		total conditions

free stream

NOMENCLATURE (Continued)

Body-Axis System

SYMBOL	SADSAC SYMBOL	DEF INITION
$^{\text{C}}_{ extbf{N}}$	CIN	normal-force coefficient; normal force
C _A	CA	sxisl-force coefficient; axial force
C _Y	CY	side-force coefficient; $\frac{\text{side force}}{qS}$
c_{A_b}	CAB	base-force coefficient; $\frac{\text{base force}}{q^S}$
		$-A_b(p_b - p_{\infty})/qS$
c _{Af}	CAF	forebody axial force coefficient, c_A - c_{A_b}
C _m	CIM	pitching-moment coefficient; pitching moment qSI _{REF}
c_n	CYN	yawing-moment coefficient; yawing moment qSb
c 1	CBL	rolling-moment coefficient; rolling moment qSb
		Stability-Axis System
$c_{\mathtt{L}}$	CL	lift coefficient; lift qS
c_{D}	CD	drag coefficient; drag
c_{D_D}	CDB	base-drag coefficient; base drag
$\mathbf{c}_{\mathtt{D_{f}}}$	CDF	forebody drag coefficient; CD - CDb
$c_{\mathtt{Y}}$	CX	side-force coefficient; side force
C _m	CLM	pitching-moment coefficient; pitching moment qs/REF
c_n	CLAN	yawing-moment coefficient; yawing moment qSb
c [CSL	rolling-moment coefficient; rolling moment qSb
L/D	L/D	lift-to-drag ratio; $c_{ m L}/c_{ m D}$

NOMENCLATURE (Continued)

ADDITIONS TO STANDARD NOMENCLATURE

SYMBOL	SADSAC SYMBOL	DEFINITION
δ _a	AILRON	aileron, total aileron deflection angle, degrees, (left aileron-right aileron)/2
δ _e	ELEVON	elevon, surface deflection angle, positive deflection, trailing edge down; degrees
$\delta_{f r}$	RUDDER	rudder, surface deflection angle, positive deflection, trailing edge to the left; degrees
PL ₁	PLUMES	solid plumes (Ref. figure 2a), as a parameter PLUMES = 1 (plumes on), PLUMES = 0 (plumes off)
$^{\text{C}}N_{\alpha}$	CN/A	normal force coefficient derivative with ALPHA, per degree
$^{\mathrm{C}}_{\mathbf{m}_{\mathbf{\alpha}}}$	CLM/A	pitching moment coefficient derivative with ALPHA, per degree
Xac/LREF	XAC/LR	pitch aerodynamic center, -(CLM/A)/(CN/A)
$c_{\Upsilon_{oldsymbol{eta}}}$	CY/B	side force coefficient derivative with BETA, per degree
C ₂	CBL/B	rolling moment coefficient derivative with BETA, per degree
$^{\mathrm{C}}{}_{\mathrm{n}}{}_{\boldsymbol{\beta}}$	CYN/B	yawing moment coefficient derivative with BETA, per degree
Yac/LREF	YAC/L	yaw aerodynamic center $-(CYN/B)/(CY/B)$ for β sweeps, $-(DCYNDB)/(DCY/DB)$ for α sweeps
$^{\mathrm{C}}^{\mathrm{N}}_{\delta_{\mathbf{e}}}$	DCN/DE	normal force coefficient due to ELEVON, per degree
C _A δ _e	DCA/DE	axial force coefficient due to ELEVON, per degree
c _m ôe	DCLMDE	pitching moment coefficient due to ELEVON, per degree
$^{\mathrm{C}}{}_{\mathrm{n}}{}_{\delta_{\mathbf{a}}}$	DCYNDA	yawing moment due to AILERON, per degree, (body axis)

NOMENCIATURE (Concluded)

SYMBOL	SADSAC SYMBOL	DEFINITION
$^{\text{C}_{oldsymbol{\ell}_{oldsymbol{\delta}_{oldsymbol{a}}}}}$	DCBLDA	rolling moment due to aileron, per degree, (body axis)
$\mathtt{C}_{Y_{\delta_{\mathbf{a}}}}$	DCY/DA	side force due to aileron, per degree, (body axis)
$^{\mathtt{C}_{\mathtt{n}}}_{\delta_{\mathtt{r}}}$	DCYNDR	yawing moment due to RUDDER, per degree, (body axis)
$^{\mathtt{C}_{\ell_{\delta_{\mathbf{r}}}}}$	DCBLDR	rolling moment due to RUDDER, per degree, (body axis)
$\mathtt{c_{Y_{\delta_{\mathbf{r}}}}}$	DCY/DR	side force due to RUDDER, per degree
$^{C}{}_{n}{}_{\delta}{}_{\beta}$	DCYNDB	yawing moment due to BETA, per degree
C _l s	DCBLDB	rolling moment due to BETA, per degree
$c_{Y_{\delta_{\beta}}}$	DCY/DB	side force due to BETA, per degree

CONFIGURATIONS INVESTIGATED

The following summarizes configurations investigated and nomenclature used to designate their model components:

OT =
$$B_{19}$$
 C_7 E_{23} F_5 M_4 N_{24} N_8 R_5 V_7 W_{107} T_{10} P_1 = PT_4 PT_5 PT_6 ; A_1 = AT_6 AT_7 AT_{11} ; PT_8 PT_8

Config. Symbol	Component Description	Drawing <u>Lines</u>
B ₁₉	Body	VL70-0C0139
c. ₇	Canopy	VL70-000139
E ₂₃	Elevons	VL70-00C139
F'5	Body Flap	VL70-000139
WIţ	Orbital Maneuvering System	VL70-000139
N ₂₄	Orbiter SSME Nozzles	VL70-000140A
и8	OMS Nozzles	VL70-000089B
R ₅	Rudder	VL70-000140A
v ₇	Vertical Tail	VL70-000139
W ₁₀₇	Wing	VL70-000139B
T ₁₀	External Tank	VL7&-000041B

s ₁₂	Boosters (Solid Rocket)	VL77-000036A
PL_1	Solid Plumes	Defined in Model Dimen.
-	Attach Structure (Simulated)	
AT ₁₁	Front Orbiter to External Tank	VL72-000088D & 89
^{AT} 6	Left Rear Orbiter to External Tank	VL72-000088D & 89
Ar ₇	Right Rear Orbiter to External Tank	VL72-000088D & 89
AT ₈	Front SRB to External Tank	VL72-000106
AT ₉	Rear ERB to External Tanl.	VL72-000106
$PT_{\underline{l}_{4}}$	LO ₂ Vent Line Fairing	VL78-000031A
PT ₅	LO2 Feed Line	VL78-000031A
PT ₆	LH ₂ Vent Line	VL78-000031A
	Feed Lines (from External Tank to Orbite	r)
FL ₃	LO ₂ Feedlines	VL78-000050
$\mathtt{FL}_{rac{1}{4}}$	LH ₂ Feedline	VL78-000050
	SRB Protuberances	
PS ₁	Electrical Tunnel Fairing Sketc	h "SRB Electr. Tunnel"
PS ₂	Attach Ring	VL77-000036A
PS ₃	Separation Rocket Fairing	VL77-000036A
FR ₁	Umbilical Door Fairing	VL78-000050

TEST FACILITY

The NASA-Ames 3.5-Foot Kypersonic Wind Tunnel is a closed-circuit, blowdown-type tunnel capable of operating at nominal Mach numbers of 5, 7, and 10 at pressures to 1800 psia and temperatures to 3400°R for run times to four minutes. The major components of the facility include a gas storage system where the test gas is stored at 3000 psi, a storage heater filled with aluminum-oxide pebbles capable of heating the test gas to 3400°R, axisymmetric contoured nozzles with exit diameters of 42 inches for generating the desired Mach number, and a 900,000 ft³ vacuum storage system which operates to pressures of 0.3 psia. The test section itself is an open-jet type enclosed within a chamber approximately 12-feet in diameter and 40-feet in length, arranged transversally to the flow direction.

A model support system is provided that can pitch models through an angle-of-attack range of -20 to +18 degrees, in a vertical plane, about a fixed point of rotation on the tunnel centerline. This rotation point is adjustable from 1 to 5 feet from the nozzle exit plane. The model normally is out of the test stream (strut centerline 37-inches from tunnel centerline) until the tunnel test conditions are established after which it is inserted. Insertion time is adjustable to as little as 1/2 second and models may be inserted at any strut angle.

A high-speed, analog-to-digital data acquisition system is used to record test data on magnetic tape. The present system is equipped to measure and record the outputs from 80 transducers in addition to 20 channels of tunnel parameters.

DATA REDUCTION

Aerodynamic forces and moments have been reduced to coefficient form based on the following reference values:

bref = total theoretical wing projected area = 0.2690 ft²

 ℓ_{ref} = body length = 12.903 in

 $b_{ref} = total wing span = 9.3668 in$

The moments have been reduced about a reference moment center located at the external tank STA 9.89 (this is orbiter STA 2.38) on the external tank center line.

All data are corrected for model base pressure effects. The groupings of the manifolded pressures along with their designated symbols of the effective base area, magnitude of the base areas, pressure coefficient symbols, base/cavity axial-force coefficient definitions, and the orifice number assignments are listed as follows:

Runs 1 through 18:

Base Area Name	Area Desig.	Area, Numerical Value - Sq. in	Pressure Coefficient Symbol	Pressure Orifice Number(s)
Orbiter Upper Base	A BU	1.31	C _{PBU}	3
Orbiter Lower Base	$A_{ m BL}$	1.97	${^{\mathrm{C}}}^{\mathrm{P}}{_{\mathrm{BL}}}$	4 .
OMS Upper (Recessed) Base	AOU	0.80	^C POU	1
OMS Lower (Extended) Base	A _{OL}	0.52	$c_{ t P_{OL}}$	2

Orbiter Balance Cavity	A _{BC}	1,78	c _P BC	7
External Tank Base, inner	^A ETI	3 .99	$^{\mathrm{C}}_{\mathrm{P}_{\mathrm{B}_{\mathrm{ETI}}}}$	5
External Tank Base, outer	$^{A}_{BC_{\widetilde{\mathbf{ETO}}}}$	4.32	c _p B _{ETO}	6
Runs subsequent	to no.18:			
Orbiter Upper Base	A _{BU}	2.30	C _P BU	1
Orbiter Lower Base	A _{BL}	2.30	C _{PBL}	2
Orbiter Balance Cavity	A _{BC}	1.78	$^{\mathrm{C}}_{\mathrm{P}_{\mathrm{BC}}}$	3
External Tank Base, inner	A _{ETI}	3.99	c _p Eti	4
External Tank Buse, outer	A _{BCETO}	4.32	с _Р Вето	5

TABLE I.

ST: IA15			DATE :15 OCT. 197
	TEST COND	SMOITK	
			•
			
MACH NUMBER	REYNOLDS NUMBER (per unit length)	DYNAMIC PRESSURE (pounds/sq. inch)	STAGNATION TEMPERATUR (degrees Fahrenheit)
7,3	2 x 10 ⁶ /ft	2.3	1709°
		`	<u> </u>
·			
			· ·
BALANCE UTILIZED: _	MK XIV A (1 inch	.)	
Marior officials.	CAPACITY:	ACCURACY:	COEFFICIENT TOLERANCE:
NF	800 pounds	1/2%	***************************************
SF	400 pounds	1/2%	-
, AF	100 pounds	1/2%	
PM	1600 in-nounds		
RM	250 in-pounds 660 in-pounds		•
YM	ooo mepounds		**************************************
COMMENTS:			
1			,

NDV IDVAR (2) MACH NUMBERS OCTOBER 10VAR(1) 1 1 WACH চ 15 Ç 3 < 8 S **O**C 4 O ~ M DATE: ROPE. DATA SET/RUN NUMBER COLLATION SUMMARY PARAMETERS/VALUES ACT 2 - 10 - ACT 5 - 30° 11 LLK . ICYM . KIRL . I LILL OFF SRPLH 20 -20 -20 TABLE I 0 0 ٥ 0 0 ٥ O 0 Ò 0 100 -40 -40 -20 31+ 0 0 0 8 8 ٥ 0 0 SCHD. Ö 0 0 0 0 R. ٥ N 60 ×(C)=-80+ 30 0/-Ü 0 0 0 0 0 14 4 4 4 4 19 ٠. ۲ (IA 15) CONFIGURATION DT+L+ 7.1/1 50 111 KN 111 CA EST: ARC 3.5-175 7 SCHEDULES a or B REGOOD 623 DATA SET IDENTIFIER 005 003 2004 900 600 610 013 0.15 017 010 014 016 41: ć. 610 C

TEST RUN NUMBERS

15

TABLE II. (CONTINUED)

П	T							٢	EST	RUN	NU	MBE	RS							5 76	79	> Q2
6																				7.5		
17	2	Н			-	-		├-	-	├-	-	-	├	-	ļ			_	<u> </u>		=	10VAR (2)
3E.R	NUMBERS									ļ										67] :	1001
OCTOBER	1												T			一				ľ		÷ 0
1 1	MAC	3			_	_	_		_	_	<u> </u>	<u> </u>	igspace	_	<u> </u>			_			H	10VAR (1)
-	ł	2	7	58	27	20	30				ł									9	MACH	0.
삘	٥	RUNS			┞				-				1	一	┢			_		۴	7	۵۵ د
DATE	L	o⊋		_									<u>.</u>	_	_				L]	4
							3													5.5	_	4-08
_		П	•	-	\vdash	-			 	-	\vdash	╁╌	-	-	-	-					=	
AAR		,					_			L]	7.
TA SET/RUN NUMBER COLLATION SUMMARY					1												,			49		R
COLLATION !	UES	H			-	-		-	-	-	-	-		-	-				-			1 1
AT	PARAMETERS/VALUES																			43]	
9	ERS,]	30
S S	AMET	Н						-	-	<u> </u>	_	_	_			-			_			S of
MBE	PAR		-					L		Ĺ										37		CEN
	1	7	20	\vdash	_	<u></u>	-															EFFI A A A
RC N		SR	0	0	20	0	0										·			_	187	23 1
ET/R	Ì	Sa	0							-	-	-	<u> </u>		<u> </u>					31	\f	10
1 ≥ S				1						L	_	<u> </u>	_			_					, 'W',	7 41
ă		Se	0			~	15								-					25	73	Das
Ī	SCHD.	8	60	0	٥	0	0					<u> </u>								-	4	1 4 1
\vdash	<u> </u>	8	0	A	. A	A	၁			L		_								,	겈	-8-
ल	Ĺ				+F	+F						ĺ								19	יכרע	1 1
(IAIS)			+//1																		}	त्रब
		CONFIGURATION	٠.;																	8	3	88
12			*	Н			-										·			13	7	1 .
5.5	8	3	ØT.																		4	
N	L			<u> </u>																7	ট্ৰ	G OR B SCHEDULES
Y	SET	FIEF	18	022	022	054	025								Í		·				3	G OR
TEST: ARC 3.5-175	X T	IDENTIFIER	REGOSI			,	,							į							4	S
旦	Ļ	2	R						·	, -		16								-	Ö	

TABLE III. - MODEL DIMENSIONAL DATA

MODEL COMPONENT: BODY - B19		
GENERAL DESCRIPTION: Fuselage, Configurat VL70-0001398.	ion 3, per Rcckwell	Lines
NOTE: Identical to B17 except foreb	oody.	
Model Scale = 0.010	1	
DRAWING NUMBER: VL70-0001393	-	
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Length - IN.	1290.3	12,903
Max. Width - IN.	267.6	2.676
Max. Depth _ IN.	244.5	2.445
Fineness Ratio	4.82175	4.82175
Area - FT ²		
Max. Cross-Sectional	386.67	0.03867
Planform		
Wetted	· · <u> </u>	
Base	•	

MODEL COMPONENT:	Canopy - C7	. !	
	•	.	
GENERAL DESCRIPTION:	Configuration 3 per	Rockwell Lines	VL70-000139
Model Scale = 0.010			
DRAWING NUMBER	V1.70-000139		
DIMENSION:	<u>.</u>	FULL SCALE	MODEL SCALE
Length $(X_0 = 433 t)$	$0 X_0 = 670) - ir FS$	237	2.370
Max Width			
Max Depth (Z _O =	to $Z_0 = 501.$) - in	FS	
. Fineness Ratio		**************************************	
Areo		-	•
Max Cross-Sect	ional		
Planform	•		
Wetted			
Base			:

MODEL COMPONENT: ELEVON - E23		
GENERAL DESCRIPTION: Configuration 3 per W	7107 Rockwell Lines	
VL70-0001393, data for (1) of (2) sides	3	
Model Scale = 0.010	•	
DRAWING NUMBER: VL70-000139B		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - FT ²	205.52	0.02055
Span (equivalent) - IN.	353.34	3.533
Inb'd equivalent chord	114.78	1.147
Outb'd equivalent chord	55.00	0.550
Ratio movable surface chord/ total surface chord		
At Inb'd equiv. chord	.208	. 208
At Outb'd equiv. chord	.400	.400
Sweep Back Angles, degrees		
Leading Edge	0.00_	0.00
Tailing Edge	-10.24	-10.24
Hingeline	0.00	0.00
Area Moment (Normal to hinge line) - FT ³ Product of Area Moment	1548.07	.001548

MODEL COMPONENT: F	Body Flap		
GENERAL DESCRIPTION:	3 Configuration pe	r Rockwell Lines	VL70-000139
Scale Model = 0.010			
DRAWING NUMBER	VL70-000139		
DIMENSION:		FULL SCALE	MODEL SCALE
Length - in		84.70	0.8470
Max Width - in		267.6	2.676
Max Depth	•		
Fineness Ratio			
Areo - Ft ²			•
Max Cross-Section	nal		
Planform '		142.5	0.01425
Wetted		And the Control of th	
Base .		38.0958	.00380958

MODEL COMPONENT: ONS Pod - M4		
GENERAL DESCRIPTION: Configurat	ion 3 per Rockwell Lines	s VL70-000139
NOTE: M4 identical to M3, except i	intersection to fuselage	•
Model Scale = 0.010,		
DRAWING NUMBER VL70-	-000139	
DIMENSION:	FULL SCALE	MODEL SCALE
Length - IN	346.0	3.460
Max Width - IN	108.0	1.080 ·
Max Depth - IN	113.0	1.130
Fineness Ratio Area — FT ²		
Max Cross-Sectional		
Planform '		
Wetted		•
Base		:

MODEL COMPONENT: NOZZLES - 1	N8		
GENERAL DESCRIPTION: Basic (CAS Nozzle of Confi	guration 2A per Rockwell	Lines
VL70-008306 and VL70-00	00089"B". Intersec	tion of nozzle exit plan	ne and
nozzle centerline at Xo	$o = 1570.75, Y_0 = \frac{1}{2}$	99.25 , $Z_0 = 507.25$	
MODEL SCALE = 0.010			
DRAWING NO. VL70-008306, VL70	0-000089"B", SS-A00	0092	•
DIMENSIONS	ĺ	FULL SCALE	MODEL SCALE
Kach lio.	i !		
India nos	·	•	
Length ~ in.		•	_
Gimbal Point to Exi	t Plane		
Throat to Exit Plan	16		-
Diameter~in.			
Exit	•	50.00	0.500
Throat		N/A .	N/A
Inlet		28.00	0.280
	•	politica de la constantida	
Area ~ft ² ./Nozzle	٠.		
Exit		13.635	0.00136
Throat			مود والمعاولية في المعاولية المعاولية المعاولية المعاولية المعاولية المعاولية المعاولية المعاولية المعاولية ا
Gimbal Point (station)~	in.	•	
X		1518.0	15 .180
Y .		<u>+88.0</u>	0.880
z	•	492.0	4.920
Null Position~deg.	•	والمستورسية الفرد في البيان أورد أمينا البيانية والفرد	و سوموه و هومان در المواقع الم
Pitch		.· 15°49'	15°49'
Yaw (Outhid)	•	±12°17'	±12°17'
YOU JANEAU	53	despite of the state of the sta	

HODEL COMPONENT: NOS NOZZIES - N 24 TABLE III Co	ntinued.	
GENERAL DESCRIPTION: Configuration 3A 175 Mozzles		
		Agenting the Party of the Party
MODEL SCALE = 0.010		
DRAWING NO. VL70-0001404, VL70-0050304		
DIMENSIONS	FULL SCALE	MODEL SCALE
Mach No.		
Length~in.		
Gimbal Point to Exit Plane		
Throat to Exit Plane		
Diameter~in.	•	
Exit	91.000	0.910
Throat		
Inlet		
Area ~ ft ² . /liozzle		
Exit	45.16585	0.00452
Throat		
Gimbal Point (station)~in.		
Upper Nozzle	1445	14.450
Y Z	<u> </u>	4.430
lower Nozzles		
X	1468.16996 <u>+53.</u> 00000	14.68170 + 0.530
Y Z	342.63988	3.42640
Null Position ~deg.	•	•
Upper Nozzle	16•	3.6°
Pitch Yaw	00	
Lower Nezzles	10°	10°
Pitch Yaw (outbid)	3.50	3.5

ENERAL DESCRIPTION: SSME simulated plum	es from N24 nonzles to represent
all 3 engines at H = 5.5 during exit	trajectory
ODEL SCALE - 0.010	
RAVING NUMBER:	
CORDINATES:	
Ratio of local plume radius to nozzle exit plane internal radius	Patio of local axial distance from nozzle exit plane to nozzle exit plane to nozzle exit plane internal radius
1.053	0.057
1.943	1.122
<u> 2.772 · </u>	2.250
3.497	3.341
4.450	4.912
5.421	6.642
5.905	7.566
6.389	8.529
7.321	10.496
7.861	11.699
8.136	12.330
8.672	13.602
8.937	14.367
9.204	14.912
9.464	15.569
	•

	,
DIMENSIONS:	FULL SCALE MODEL SCALE

MODEL COMPONENT: RUDDER - R5		
GENERAL DESCRIPTION: 2A, 3 and 34 Configurat	tion per Rockwell	Lines
VI.70-000095		·
Model Scale =0.010		
DRAWING NUMBER: VL70-00095		
DIMENSIONS:	FULL-SCALE	MODEL SCALE
Area - FT2	106.38	0.0106 8
Span (equivalent) - IN.	201.0	2.01.0
Inb'd equivalent chord	91.585	0.516
Outb'd equivalent chord	50.833	0.508
Ratio movable surface chord/ total surface chord	·	
At Inb'd equiv. chord	0.400	0.400
At Outb'd equiv. chord	0.400	<u>0.400</u>
Sweep Back Angles, degrees		
Leading Edge	34.83	34.83
Tailing Edge	26.25	26.25
Hingeline	34.83	34.83
Area Moment (Normal to hinge line) - FT3	526.13	000526

MODEL COMPONENT: BOOSTER SOLID ROCKET	Kater - S12	
GENERAL DESCRIPTION: Configuration 3A, I per Rockwell Lines Vi.77-00036A	ate for (1) of (2) sides,
Model Scale = 0.010		
DRAWING NUMBER V172-000088A V177-000036A		
DIMENSION:	FULL SCALE	MODEL SCALE
Length (Includes Nozzle) - IW.	1741.0	17.410
Max Width (Tank Dia) - IN.	142.3	1.423
Mox Depth (Aft Shroud) - IN.	192.0	1.920
Fineness Ratio	9.06771	9.06771
Areo - FT ²		7
Max Cross-Sectional	201.06193	0.0201
Planform *		
Wetted		· · ·
Base		•
WP of BSRM Centerline (2T) - IN.	400	4.00
FS of BSRM Nose (XT) - IN.	200	2.00

TABLE III. - Continued.

MODEL COMPONENT: EXTERNAL	TANK - TIO		
		.	
GENERAL DESCRIPTION: Exte	rnal Oxygen Hy	drogen Tenk, 3 C	onfiguration,
per Rockwell Lines VI.78-0000	41 and VL72-00	8800	
		<u> </u>	
Model Scale = 0.010		- • •	
DRAWING NUMBER	VL72-000088 VL78-000041		
DIMENSION:	•	FULL SCALE	MODEL SCALE
Length - IN (Nose @ XT =	309)	1865	_ 18.65
Max Width (Dia) - IN.	•	324	3.24
Max Depth		_	-
· Fineness Ratio		5.75617	5.75617
Areo - FT ²			
Max Cross-Sectional		57 2.555	0.0573
Planform	•		
Wetted	,		•
Base			:
WP of Tank Centerline (X	T) IN.	400.0	4.00

MODEL COMPONENT: VERTICAL - V 7			
GENERAL DESCRIPTION:Conterlin	e vertical tail, do	ublewedre Lirfoi	l with
rounded leading edge.			
NOTE: Same as V5, but with man	ipulator housing re	moved.	
Model Scale = 0.010	:	موس منظمين والشرابية المناسلة المتالية	
DRAWING NUMBER:	VL70-000139	; 	
DIMENSIONS:		FULL-SCALE	MODEL SCALE
TOTAL DATA		• •	
Area (Theo) Ft ² Planform Span (Theo) In Aspect Ratio Rate of Taper Tuper Ratio Sweep Back Angles, degrees Leading Edge Trailing Edge 0.25 Element Line Chords:		425.92 315.72 1.675 0.507 0.404 45.000 26.249 41.130	0.0425 3.157 1.675 0.507 0.404 45.000 26.249 41.130
Rcot (Theo) WP Tip (Theo) WP MAC Fus. Sta. of .25 MAC W. P. of .25 MAC B. L. of .25 MAC Airfoil Section Leading Wedge Angle	Deg	268.50 103.47 199.31 1463.50 635.522 0.00	2.685 1.085 1.998 14.635 6.355 0.00
Trailing Wedge Angle Leading Edge Radius Void Area - Pt2 Blanketed Area	Deg	10.000 14.920 2.0 13.17. 0.00	0.020 0.131 0.00

MODEL COMPONENT: WING-W 307		
GENERAL DESCRIPTION: Configuration 3 per Rockwell	Lines VI.70-0001	398
NOTE: Same as W103, except cuff, airfoil and inc	idence engle.	
Model Scale = 0.010		
TEST NO.	DWG. NO. VI.7	0-0001398
DIMENSIONS:	FULL-SCALE	MODEL SCALE
TOTAL DATA Area (Theo.) Ft ²		
Planform Span (Theo In. Aspect Ratio Rate of Taper Taper Ratio Dihedral Angle, degrees (@ TE of Elevon) Incidence Angle, degrees Aerodynamic Twist, degrees	2690.00 936.68 2.265 1.177 0.200 3.500 0.500 +3.000	0.2690 9.3668 2.265 1.177 0.200 3.500 0.500 +3.000
Sweep Back Angles, degraes Leading Edge Trailing Edge 0.25 Element Line Chords: Root (Theo) 2.P.0.0.	45,000 -1.0.24 35.209.	45.000 -10.24 35.209 6.892
Tip, (Theo) B.P. MAC Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC	137.85 474.81 1136.89 299.20 182.13	1.378 4.7/48 11.3689 2.992 1.8213
EXPOSED DATA Area (Theo) Ft ² Span, (Theo) In. BP108 Aspect Ratio Taper Ratio Chords	1752.29 720.68 2.058 0.2451	0.1752 7.2068 2.058 0.2451
Root BP108 Tip 1.00 b MAC	562.40 137.65 393.03	5.6240 1.3785 3.9303
Fus. Sta. of .25 MAC W.P. of .25 MAC B.L. of .25 MAC Airfoil Section (Rockwell Mod NASA) XXXX-64	1185.31 300.20 251.76	11.8531 3.002 2.518
Root b =	0.10	0.10
Tip b=	0.12	0.13
Data for (1) of (2) Sides Leading Edge Cuff Planform Area Ft Leading Edge Intersects Fus M. L. 0 Sta Leading Edge Intersects Wing 0 Sta	118.333 500 1083.4	0.0118 5.00 10.834

MODEL COMPONENT: Attach Structure - ATG		
GENERAL DESCRIPTION: Right Rear, Orbiter to	External Tank	
·		
MODEL SCALE = 0.010		
DRAWING NO. VL72-000088B + VL72-000089 NOTE	E: Use first drawing second drawing for	
DIMENSIONS:		
First Strut	FULL SCALE	MODEL SCALE
Diameter in. (Approx.) Fwd Location, in. (Attach to Orb.)	1	0.010
Xo⁻· X≘	1307 2058	13.07 20.58
Approximate Aft Location, in. (Attac	ch to Orb.)	•
X _o X _s	<u>1107</u> 1858	11.07
(Note: This strut is the mirror of Strut AT7)	or immage	
Second Strut	•	
Diameter, in. (Approx.) Location, in.	1	0.010
X _o	1307	13.07
X _S	2058	20.58
(Note: This is a Cross-Brace S	Strut)	

		2
		·
MODEL SCALE = 0.010		
DRAWING NO. VL7 -000088B + VL72-000089 NOT	E: Use first drawing for descend drawing for de	c location and
DIKENSIONS:	FULL SCALE	MODEL SCAL
FORWARD ATTACH POINTS		
Orbiter to Tank		
Number of Struts	. 1	1
Diameter in. (Approx.)	• • • •	0.010
Location in.	-	0.010
X _o	1307	13.07
x _r	2058	20.58
	-	
Orbiter to SRB		•
Number of Struts	. <u> </u>	
Diameter in.		
· location in.		
X _o		
X ₈		
Mank to CDD		
Tank to SRB		
Number of Struts		·
Diameter in.	•	
Location in.		,
Å₽ •••		
^ 8		
AFT ATTACH POINTS	•	•
Orbiter to Tank		
Number of Struts	1	·, 1
Diameter in. (Approx.)	<u>-</u>	0.010
Location in. (Approx.)		~
X _o X _T	1107	11.07
X _T	1858	18.58
^ ^ \	· ·	
Orbiter to SRB	•	•
Number of Struts	•	
Diameter in.	0	
Location in.		,
Х _о	-	
X _s		
Tank to SRB		
Number of Struts		
Diameter in.		-
Location in.	-	والمناسخ والمراورة

MODEL COMPONENT: Attach Structure - AT g GENERAL DESCRIPTION: Front, SRB to External Tank	•	
		بريونون بريوان بالواند
MODEL SCALE = 0.010		
NO. V172-00106	•	
DIMENSIONS:	FULL SCALE	MODEL SCAL
FORWARD ATTACH POINTS		-
Orbiter to Tank	•	
Number of Struts		***************************************
Diameter in. Location in.		
X _o	•	
χ̈́ρ		***************************************
Orbiter to SRB Number of Struts		
Diameter in.	, 	
Location in.		·····
X _o		-
. X ₈		
Tank to SRB	•	
Number of Struts (3 to each SRB)		6
Diameter in. (Approx)	5/6	0.06
Location in.		
X _T X _B	947	9.47
* 8	404	4.04
AFT ATTACH POINTS		
Orbiter to Tank	•	•
Number of Struts		
Diameter in.		
Location in.		
'. To		
•		
Orbiter to SRB		
Number of Struts Diameter in.		
Diameter in. Location in.	-	
X _o	•	,
Χ <mark>ο</mark>		
Tank to SRB Number of Struts		• •
Diameter in.		<u> </u>
Location in.	,	
$\chi_{\mathbf{p}}$	-	
X ₀ *		

(')

TABLE III. - Continued.

ODEL SCALE = 0.010 RAWING NO. VL72-00 PIMENSIONS: FORWARD ATTACH POINTS Orbiter to Tank Number of Struts Diameter in. Location in. Xo XT Orbiter to SRB Number of Struts Diameter in. Location in.	FULL SCALE	MCDEL SCAL
PAWING NO. VL72-00 PIMENSIONS: FORWARD ATTACH POINTS Orbiter to Tank Number of Struts Diameter in. Location in. Xo XT Orbiter to SRB Number of Struts Diameter in.	FULL SCALE	MODEL SCAL
PAWING NO. VL72-00 PIMENSIONS: FORWARD ATTACH POINTS Orbiter to Tank Number of Struts Diameter in. Location in. Xo XT Orbiter to SRB Number of Struts Diameter in.	FULL SCALE	MODEL SCAL
FORMARD ATTACH POINTS Orbiter to Tank Number of Struts Diameter in. Location in. Xo XT Orbiter to SRB Number of Struts Diameter in.	FULL SCALE	MCDEL SCAL
FORMARD ATTACH POINTS Orbiter to Tank Number of Struts Diameter in. Location in. Xo XT Orbiter to SRB Number of Struts Diameter in.	FULL SCALE	MODEL SCAL
FORWARD ATTACH POINTS Orbiter to Tank Number of Struts Diameter in. Location in. Xo XT Orbiter to SRB Number of Struts Diameter in.		
Orbiter to Tank Number of Struts Diameter in. Location in. Xo XT Orbiter to SRB Number of Struts Diameter in.		
Number of Struts Diameter in. Location in. Xo XT Orbiter to SRB Number of Struts Diameter in.		
Diameter in. Location in. Xo XT Orbiter to SRB Number of Struts Diameter in.		
Location in. Xo XT Orbiter to SRB Number of Struts Diameter in.		
X _O X _T Orbiter to SRB Number of Struts Diameter in.		
XT Orbiter to SRB Number of Struts Diameter in.		
Orbiter to SRB Number of Struts Diameter in.		
Number of Struts Diameter in.		
Number of Struts Diameter in.		•
Diameter in.		
Location in.		
X _o		
Χs	•	
	•	•
Tank to SRB	6	6
Number of Struts (3 to each SRB) Diameter in. (Approx.)	576	0.06
Diameter in. (Approx.) Location in.	270	
rocecton rut	2058	20.58
TX aX	1515	15.15
^8		
AFT_ATTACH_POINTS		
Orbiter to Tank		
Number of Struts		
Diameter in.		
Location in.		
Xo	,	·
· X _T	والمتارية فيسترا المارية والمارية والمارية	
Orbiter to SRB	-	1
Number of Struts Diameter in.		***********
Location in.		
		•
X _o X _g	***************************************	
. ""5		
Tank to SRB		
Number of Struts		
· Diameter in.		
Location in.		
$\mathbf{x_T}$		

TABLE III. - Continued.

MODEL COMPONENT: Attach Structure - AT11		
GENERAL DESCRIPTION: Front, Orbiter to Externa	al Tank	
		-
MODEL SCALE = 0.010	·	
DIMENSIONS:	PITT COALD	NODEL COLLE
	FULL SCALE	MODEL SCALE
Number of Struts	2	2
Width of Each Strut	122	,125
Length of Each Strut Location	25	,250
Location X _O	391.0	3.91
$\hat{\mathbf{x}}_{\mathbf{T}}^{\mathbf{o}}$	1132.0	11.32
<u>L</u>	11)2.0	11.)2

NOTE: Configuration (AT₁₁) is the same as configuration AT₅ except legs are $12\frac{1}{2}$ by 25 instead of 6 inches diameter.

TABLE III. - Concluded.

MODEL COMPONENTS: P	T ₄ , PT ₅ , FT ₆ , FL ₃ ,	FL ₄ , PS ₁ , FS ₂ , PS ₃	FR.		
,					
GENERAL DESCRIPTON:	General dimension	onal data not appli	cable. ine		
description in "Configurations Investigated" section and in figure					

Figure 1. - Axis systems.

0

a. Integrated Vehicle Configuration 3 (Mated)

Figure 2. - Model sketches.

b. Model Installation with Non-Motric Plunes Included

Figure 2. - Continued.

 $_{
m c.}$ Umbilical Fairing on Orbiter (FR $_{
m l}$)

Figure 2. - Continued.

12-1/2 IN.

CONFIGURATION ATIL IS THE SAME AS CONFIGURATION ATS EXCEPT LEGS ARE 6 INCHES DIAMETER INSTEND OF 12-1/2 BY 25 INCHES.

NOTE:

CONFIGURATION AT11

d. Forward Attachment of the External Tank to the Orbiter

Figure 2. - Continued.

()

e: Attach Structure - VL72-000089 Configuration 3A

Figure 2. Continued.

f. External Tunk Protuberances

Figure 2. - Continued.

h. Base pressure orifice locations >

Figure 2. - Concluded.

こうしている 女のないないないないないないないということ

(a) Close-up 3/4 rear view of 0.010-scale orbiter model 139B mounted on external tank

Figure 3. - Model photographs.

(b) Side view of 0.010-scale orbiter model 139B, external tank, sting, and strut

Figure 3. - Continued.

1

(c) Side view of 0.010-scale orbiter model 139B, external tank, and sting.

Figure 3. - Concluded.

DATA FIGURES

PAGE

(

WITH AND WITHOUT FAIRING, LONGITUDINAL FIG. 8 POWER ON AND OFF.

FIG. 14 YAW EFFECTS WITH ALPHA = CAJMACH = 7.32

FIG. 16 SUMMARY OF SOLID PLUME YAW EFFECTS.

æ

CECCOS)

.0045

.C040

PER DEGREE

.0035

.0030

.0020

.0015

NORMAL FORCE COEFFICIENT DUE TO ELEVON, DCN/DE.

.0010

.0005

.0000

-.0005

.0025

 \sim

 \bigcirc

FIG. 21 SUMMARY OF ALPHA OFFSET EFFECTS IN YAW (A)MACH

YAW AERODYNAMIC CENTER, YAC/L

53

FIG. 22 SUMMARY OF RUDDER EFFECTIVENESS IN PITCH.

APPENDIX

TABULATED SOURCE DATA

Tabulations of plotted data are available on request from Data Management Services.

_			000																	
74	: }		. ·																	
(REGOOE) (12 FEB 74	; ;	DATA	ELEVON :							,					,					
(BECO)		PARAMETRIC DATA	000.		ŧ	00295	00304	~.00259	00235	-,00072	-,00069	-,00062	00013	00070	\$9000	00016	.00034	.00059	.00301	.00027
			BETA = A1LRON = PLUMES =	00' 8'00	£	90900	.00363	.00467	.00422	99000	.00036	.00027	-,00039	,00004	-,00236	00167	00113	00224	00532	-,00062
			•	RVAL = -5.	5	.09111	.07625	.06334	.05320	.03636	.02710	.01939	.00779	00533	01991	04249	08497	13084	22696	00549
	1 * 1 * 1			GRADIENT INTERVAL = -5.00/ 5.00	ð	. 20595	.19419	10124	.17163	.16145	.15135	.14329	.13505	.12931	.13041	.11462	.10692	.10828	.11346	-,00464
	AMES 3.5-175 IAIS OF CHIPTING			8.29 8.29	ช	01567	01626	01490	01335	00645	00542	00528	00331	02550	00005	00050	00161	.00024	.00948	SE100.
	3.5-179 1		.0000 1N.	# TVNS (8	23776	-,19556	14817	11777	06523	02015	.01606	19650.	.10119	.14526	.24384	.36872	.52857	.71482	CACCO.
IAIS ARC 3.3 173	S		и и и	0.2 .0	AL P. MA	-7.330	-5.407	-3.411	-2.000	.411	2.527	4.614	6.615	6.563	10.696	15.575	20.726	25.794	31.014	TVGTGA
1415		DATA	anger A	RUN NO.	707	2.80	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	7.320	
7. 7.		NETERENCE DATA	2690.0000 56.FT. 1290.3000 IN. 336.8600 IN.																	

DATE 26 MAR 74

SACY :

PACE

(RECO.) (12 FEB 74)

AMES 3.3-175 1415 OT+L+P1+A1+F

1A15 ARC 3.5 175

BATE 28 MAR 74

PARAMETRIC DATA

ELEVON = RUDDER = 000.

BETA = A1LRON = PLUMES =

.01283 .01283 .00687 .00739 .00698 .00460 .00359 1.88 GRADIENT INTERVAL = -5.007 5.00

RUN NO. 3/ 0 RN/L =

ALPHA -7.327 -5.504

989, 0000 IM. ,0000 IN. 67, 0000 IN.

REFERENCE DATA

SREF = 2690,0000 50.FT.

19 XMRP YMRP ZMRP

1290,3000 IN. 936,6300 IN.

LAEF = SCALE =

.09303 .07970 .06504 .06504 .05471 .03859 .02854 .02054 .02150 .02150 .02150 .02150 .02150 .02150 .02150 .02150 .02150

15656 113990 113990 113090 113090 111000 11000 110000 100000 100000 100000 10000 100000 100000 100000 100000 10000 CA .21122 .19935 .17737 .18577

CY -.02156 -.01515 - 01419 - 01045 - 01045 - 00030 - 00030 - 00181 - 00181 - 00181 - 00181 - 00181 - 00192 - 00064

CN -,23824 -,19536 -,11900 -,06462 -,105462

.01726 .05875 .10362 .14030 .24473 .36710 .52797 .71498 -3.448

.428 2.521 4.589 6.544

6.553 10.514 15.578 20.717 25.782 31.013

1,320 1,320

.00011 -.00087 -.00185 -.00033

		¥	AMES 3.8-175 IA19 OT-L-PI-AI-F	A19 OT-L-P	1.41.6			(456003)	15) (12 FCB 74	72 03
								PARAMETRIC DATA	DATA	
REFERENCE UNIA 90.0070 50.FT. XP 90.5070 1N. YP 56.0000 1N. ZP	XMAP :: YMAP :: ZMAP ::	6 6	969,00000 IN. .00000 IN. 67,00000 IN.				BETA = ATERON = PLUNES =	600.	ELEVON :	. ann
	EN NO.		3/ 13 RN/L =	2.00 GR	GRADIENT INTERVAL = -5.007 5.00	1VAL = -5.	.007 5.00			
i	•	47.0	ð	5	ð	ş	¥.	18		
H TOPE	•		. 22427	01693	.21400	.08222	.00631	00360		
7.360	, ,		. 10743	02014	.20226	.07014	. 177695	00407		
7.320		3.36.	4667	01110	18954	.05715	1,10557	17.1329		
7.320					60.4	05970	565(X).	!!!? 72		
7.320		-2.171	-11100			12076	10CICAL.	-, 19,1159		
7.320		.367	05434	4. P. C.	280.					
7.329		2.503	91033	10:201	. 16097	57870	- (%)237	I I I Walter		
7 320		4.529	.112969	-,00346	.15316	16600.	(%)26	00004		
		6.547	.07457	00185	.14562	'25433	(%)252	6 00000.		
		4.52	12036	00120	. 14072	1.71159	(٢)246	. (2003)		
			90191	0.1809.	. 141744	03363	(%)468	.00155		,
		47.470	26641	A0800.	.12798	06121	CK1384	44000	÷.	
1.36.1				0,000	.12349	-,11236	X1554	14200.		
136.7		74. 76		16600	.12937	19419	.(14:722	62800.		
136.7			79777	\$66(K)*	.141177	29353	-,10057	. (M)342		
n3e :)			7	24 11/20	DVM.5	00593	CYN)45	150000		
	Š	CRACIEN	-01717		1111					

1413 4AÇ 3.9 175

SACF = LRCF = BAEF = SCALE =

 \bigcirc

(REGOOS) (12 FEB 74)

AMES 3.5-175 TAIS OT-L+P1+A1

1A15 ARC 3.5 175

DATE TO MAR PS

PARAMETRIC DATA

FLEVON =

.000

966

BETA = AILRON = PLUMES =

6/ 5 RWA =

RUN HO.

949,0000 IN. .0000 IN. 87,000 IN.

NETERENCE DATA

2690.0000 14.FT. 1290.3000 IN. 936.6600 IN. .0100 SCALE

BREF : . . .

CYN .00577 .00149 -.00051 1.95 GRADIENT INTERVAL = -5.00/ 5.00

. 00047 -, 00352 -, 00354 -, 00354 -, 00354 -, 00451 -, 00451 -, 00451 -, 00451 -, 00451 -, 00451

.00394 .07134 .07134 .03667 .03165 .01099 .01099 .01099 .01099 .01099 .01099 .011406 .11406 .11406 .11406 .11406

CA .21090 .20031 .18864 .17974 .16866 .15998 .15594 .14559

Cel.
-.00316
-.00110
-.00111
-.00111
-.00111
-.00111
-.00123
-.00023
-.00023
-.00023
-.00023
-.00023

-01651 -00644 -00651 -00651 -00646 -00660 -00660 -00162 -00171 -00162 -00171 -00171 -00171 -00171 -00171 -00171 -00171

CN -.23273 -.18746 -.14521 -.15153 -.05789 -.01383 ..02750

10.413

.11613 .80511 .80616 .02147

.12679 .12506 .12941 .14040

25.766 31.076 GRADIENT

7. 320 7. 320 7. 320 7. 320 7. 320 7. 320 7. 320 7. 320 7. 320 7. 320 7. 320

1

(REGOOT) (12 FEB 74)

APES 3.9-175 TAIS OF-C+PI+AI

1A15 ARC 3.5 175

DATE 26 MAR 74

PARAMETRIC DATA

.000 ELEVON = .000 RUDDER =

-40.000

BETA = ATLACH = PLUMES =

CYN ... 00221 ... 00223 ... 00223 ... 00223 ... 00233 ... 0023 ... 1.96 GRADIENT INTERVAL = -5.00/ 5.00

7/ 0 RM/L =

RUN NO.

.NI CCCC.

X + Y

2690.0000 50.FT. 1290.3000 IN. 936.6600 IN.

REFERENCE DATA

CA .22340 .20061 .19150 .17944 .17944 .17944 .17944 .17944 .17942 .17943 .12662 .10646 .11930

.00263 .00394 .00394 .00137 .00213 .00213 .00123 .00123 .00133 .00339 .00339

4.532

5.497 10.496 15.607 20.831 25.834 31.197 GRADIENT

7.380 7.380 7.380 7.380 7.380 7.380 7.380 7.380 7.380 7.380 7.380

DATE 26 MAR 74	1415 4	1A15 ARC 3.5 175					•		ž L	F46E 7	
		MES	3.9-175 IA	AMES 3.5-175 TAIS OT-C+	.A1			(REC008)	4) (12 FEB 74	. 24 0	
ATAC TOMORDOM	14							ARAMETRIC DATA	DATA		
94CF = 2690,0000 34.FT. LNCF = 1290,3000 IN. 94CF = 936,6670 IN. 94ALE = .0100 SCALE	7 148.6 7 148.6	ж. 69. Ж. Ж. Ж.	969, 0000 1M. .0000 1M. 67, 0000 1M.				BETA E ALLRON E PLUNES E	000	ELEVON :	. 000	
	RUN NO.	o. • • •	BWAL = .	1.95	GRADIENT INTERVAL =		-9.00/ 9.00				
3	Ž	716	3	t	ð	ş	Z.	aj S			
·		400	26760	-,00499	.21400	.11636	00015	00014			
ć ,		40	-,22006	.00462	.20295	99660.	00573	.00271			
΄ 1	7.360		17166	01130	18992	.06293	-, 00956	.00463			
× 1	2		13616	.00262	18042	()6690.	00497	.00201			
ć ,	7.363	37.6	07887	.00022	.16799	.05055	00396	.00093			
, and the second	1.000	2,520	-, 23410	.01066	.15692	.03840	-,00962	.00364			
	7.320	4.541	.00663	00357	,15039	.02911	00163	mm22			
	7.320	6.548	.04606	.00174	.14243	.01790	00493	.00111	. •		
	7.320	8.556	.09026	.01327	136 '6	.00485	17.1992	.00404	-		
	7,320	10.494	.13103	.01260	.13596	-,00804	-,91023	CM19	-		
	7,320	15.651	.23954	79600	.12315	03416	00765	.00252			
	7.320	20.600	.36025	.00729	.11564	07378	00.00	1,200.			
	7.320	25.636	.51863	.02251	.11654	13419	-,01426	0000			
ž	7.320	31.177	.71172	.01510	.12379	21146	(%)812	. Outel			
	•	PRADIENT	.02214	00097	(%)488	-,00666	.0000	(19.71)57			

(

4
IA15
3.5-175
1

OT+L+P1+A1	
1415	
AMES 3.5-175 TA15	
1	
	DATA
	REFERENCE DATA

SARF = 2090,0000 S LARF = 1290,0000 B SARF = 956,0000 B	D SG.FT. XMSP E 989.0000 IN. D IN. YMSP E .0000 IN. D IN. ZMSP E 67.0000 IN.	SHELP YHELP PARE	H 6 11	8.00 6.00	.0000 1N. .0000 1N. 67.0000 1N.				BETA = AILRON = PLUMES =	000.01	ELEVON =	000.
		SUN NO	·	0 /	RPN #	80.N	RIM NO. 9/ O GN/L = 2.03 GRADIENT INTERVAL = -5.00/ 5.00	. = TAN	-\$.00/ 5.00			
	3	MACH	***	. (HACH ALPHA CH		CY CA	CLX 09618	CYN CBL 600615) .00701	.00701	•	

Ş	AMO IA	₹	Շ	ð	3	E	5	
5	į ;			F 10 14	81880	00015	10000	
350	-7.430	1.24634	19010.					
	41.510	20362	.00239	.20063	.06910	00390		
		184.80	.00095	.18863	62690	00429	.00439	1
				17967	02950	00050	.00393	
2	-2.133	. 1691			61070	19610	.00717	
.320	.371	-,06623	.01748	.16737	300	1000		
380	2.465	02237	22910.	.15867	.02696	01392	. 197741	
	A. 538	. O1774	90600	.15075	.0204	-,00666	.00487	
	****	98090	.01157	.14367	.00661	01016	.00355	
0.50			12857	.13611	00444	-, (70663	60500.	
2	616.0		990.50	13796	01967	00988	20500.	
2	10.485	00/41	90000		- DAGAD	(10935	.03559	
320	15.595	22852.	Sen to	000			46400	
320	20.812	.36314	.00932	.11628	09149	(8.915		
020	25.826	.54990	.00466	.11963	16098	00750	.00781	
	31.163	.75426	.01677	12774	24692	01276	.01332	
Ì	CEADITY	112142	\$6050.	00463	-, 0060e	00068	11000.	

1)

(REC008) (12 FEB 74

PARAMETRIC DATA

DATE DO MAR TA

_	
3.5 175	
TAIS ARC !	
141	
:	
_	

2		* *
-	DATA	ELEVON = RUDDER =
(REG010) (18	PARAMETRIC DATA	000.
	1	
		BETA = ATURON = PLUMES =
		BET A & C.U.
1 4		
£ 45;		
ģ		
EVI 8		
11-6		Z Z Z
AMES 3.5-175 TAIS OT-L-P1-AS	e	# 969,0000 1M. # .0000 1M. # 67,0000 1M.
	₹	
	NEFERENCE DATA	1407 = 1290,0000 50,FT. 3009 1 1407 = 1290,3000 1M. YMMP 1 1407 = 930,6000 IM. ZMMP 1
	TO COM	8 000
	•	SACY = 2890,0000 90.FT LACY = 1290,3000 IM, BACY = 930,4000 IM,
		H # R !

900.

	ALPRA	5	Շ	ð	₹	£	형
380	-7.490	23676	.01634	.20843	56160	01257	.00593
7.360	-5.537	19634	.02210	.19766	.07817	01449	6 9 00'
7.320	-3,510	-, 15103	.01203	.18817	.06566	01006	.00460
7.320	-2.196	1,090	.01766	.17717	.05531	01259	.00378
7.320	.374	06434	.91675	. 16542	.03664	01270	,00316
7.320	2.454	-,02334	.01935	.15565	.02676	01435	.00561
7.320	4.507	.01734	.01532	.14626	.02015	01200	.00471
7.320	6.524	.05946	.02615	.14102	.00652	~.01655	.00793
7.320	6.507	£6660°	.03203	.13563	00395	02101	.00924
7.350	10,443	.14251	.01954	.13546	01766	01392	.00598
7.320	15,590	.24846	.05210	.12272	04391	03076	.01354
7.320	20,03	.37591	47640.	.11520	08762	-,02900	.01375
7.320	25.676	.53954	.04179	.11659	-,15546	-,02464	.01174
7.320	31.164	.74208	.07011	.12375	24215	03654	.01925

2	
794	
_	

_	
2	
FEB	
*	
-	
(866012)	

AMES 3.5-175 IA15 OT-L-P1-A1+F

1A15 ARC 3.8 175

PARAMETRIC DATA

ELEVON = NUDDER = 000. BETA = ATLRON = PLUMES =

-20.000

2.06 SRADIENT INTERVAL * -5.00/ 5.00

CA .23421 .22272 .21180 .20347 .18707

.15652 -,17528 -,18399 -,19409 -,14786

.14143 .13499 .12591 .12026 .11644 .10749 .11379 .11379

.13394

.12762 .12916 .13130 -.00365

00 --25436 --16034 --15197 --07502 --07502 --0510 -

7.380 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300 7.300

4.34 4.34 4.34 5.03

RUN NC. 12/ 0 RM/L =

2690,0000 54.FT. 1260,3000 IN. 936,6600 IN.

X ANEX

REFERENCE DATA

900.0000 1N. .0000 1N. 67.0000 1N.

DATE SE MAR 74

,	
000	C
RUDDER	E DATA ELEVON = RUDGER =
5.000 .000 .000 .000 .000 .002 .022 .022	(REGO14) PARAMETRIC DATA . UND. CDC UND UND UND ULU42 . ULU42 . ULU42 . ULU42 . ULU44 . UL
BETA = AILRON = AILRON = PLUMES = PLUMES = CTN	ALPhA = AILMON = AILMON = AILMON = PLUMES = CYN -5.00/ 5.00 CYN 609737 80782 100869 1100735 700735 7 .00735
GRADIENT INTERVAL = CA CLM S. 23119 .096 S. 21971 .096 S. 21976 .067 1.0493 .015 1.17452 .015 1.17452 .015 1.17452 .015 1.17452 .015 1.17452 .015 1.17452 .015 1.17452 .015 1.17452 .015 1.17452 .015 1.17452 .015 1.17452 .015 1.17452 .015 1.17452 .015 1.174693 .015 1.174693 .015 1.17469 .016 1.17460 .016 1.17460 .016	-#1+41+F GRADIENT INTERVAL = CA CLM CA CLM 3 .20311 .036 3 .19654 .037 3 .19675 .041 2 .17873 .041 2 .18620 .042 3 .19820 .042 1 .18620 .042 1 .18620 .042
C.V166031641316781187818781844118741187118711897	AMES 3.5-175 IA15 OT-L-F1+A1+F B9.0000 IN. 67.0000 IN. CN CY CA 307844 .23415 .199 1007892 .17466 .199 508002 .078992 .176 508002 .08902 .176 70760107457 .184 70760107457 .184 90745903070 .178 70760107457 .184 90745903070 .178 70760107457 .184 90745907457 .184
67.0000 IN. 67.00000 IN. 67.0000 IN. 67.0000 IN. 67.0000 IN. 67.0000 IN. 67.0000 IN. 67.0000 IN.	AMES 3.5-175 I. 909.0000 IN. 67.0000 IN. 4307851 6307851 6307851 6407851 6407854 6507851 6607851 6707851 6807851 6807851 6807851 6807851 6807851 6807851 6807851 6807851
ALPHA ALPHA -6.245 -6.245 -4.016 -7.774 -7.774 -9.670 11.690 9.670 12.690 9.670 12.690 9.670 12.690 13.790 13.690 13.700	D. 1 BETA -10.24 -2.01 -2.02 -2.03 -
FT. 18.00 1.32 1.32 1.32 1.32 1.32 1.32 1.32 1.32	F 0A14 F 7.32
SECT = R699,0900 94. LECT = 1290,3000 IN. EFEF : 936,6800 IN. SCALE = .0100 SCA	RETERBONC 9NET = 2990,0000 96.1 LRET = 1396,6000 1N. SCALE = .0100 SCAL
v: 195 v?	n _ p n

•

** ** ** ** :

The second second second

designation thanks the second of the second of the second

いっているとうないのできませんというないのできないのできないのできないのできない。

1

REFERENCE DATA

(REGOIS) (12 FEB 74)

AMES 3.5-175 1A15 OT+L+P1+A1+F

IA15 ARC 3.5 175

DATE 28 MAR 74

PARAMETRIC DATA

PAGE 11

A CONTRACTOR AND A CONT

000.

ELEVON = RUCCER =

900.

ALPHA = AILRON = PLUNES =

969.0000 IN. .0000 IN. 67.0000 IV.

XYARP YYARP

2890.0000 50.FT. 1290.3000 IN. 936.8803 IN. .0100 SCALE

REFERENCE DATA

(REGOS 1) (12 FEB 74)

AMES 3.5-175 IA15 OT+L+P1+A1

PARAMETRIC DATA

	2											=		
	.000													
DATA	ELEVON :													
PARAMETRIC DATA	000.		ĕ	.03551	.02878	. 02097	.01527	.00658	. מממפפ	-, 00680	01362	132 745	03067	00376
	ALPHA = A1LRON = PLUMES =	00.8 /00	¥.	98839	07070	05163	03665	-, 019 9 0	00323	.01295	. 112658	.04135	.06437	.00818
		IVAL = -5.0	ş	.03555	.03660	.03772	.03880	01660.	.03601	.04183	.04059	.04987	.03952	.00032
•		GRADIENT INTERVAL = -5,00/	5	.19992	.19240	.16570	117944	.17561	.17255	.17607	.17874	.10380	19016	00005
		2.07 GR	Շ	.27561	07222.	.16552	.11610	.06395	.01076	04193	09155	14196	20751	:12676
	.N1 0000 1N.	RNA =	8	07551	97501	97366	97498	07473	07133	07487	07021	-,06837	56592	.00039
	G. 78	NO. 15/ 0	BETA	-10.256	-8.188	-6.141	-4.013				3.734	5.783	7.765	GRADIENT
CATA	T. XPAGF YMEP ZPAGF	S. S.	MACH	7.320	7.320	7.320	7.320	7.320	7.325	7,325	7.320	7.320	7.320	3
REFERENCE CATA	2090,0000 50.FT. 1290,3000 IN. 936,6000 IN.													
	SACF = 2 LACF = 1 BACF = 1 SCALE =													

(REG015) (12 FEB 74)

AMES 3.5-175 1A15 OT+L+P1+A1+F

1A15 ARC 3.5 179

DATE 26 MAR 74

- :

PAGE 12

	BETA	ð	۲	ð	5	Z.	펄
	-10.230	07961	.29111	.19269	.03751	09737	.04171
	-6.165	07923	.23412	.18664	.03814	07715	.03360
	-6.163	07948	.16427	.18036	.04020	05139	.02242
	-3.972	07778	.10442	.17550	.04047	03078	.01364
	-2,030	00000	.06921	.17203	.04174	02392	32010.
	021	07485	.01463	.17056	.04047	00668	.00255
	1.854	07606	06610	.17207	.04208	-,00099	0006
7.320	3.600	07500	06597	.17405	.04196	.01073	-, 00649
	5.771	07161	13021	.17811	.04149	.03180	01663
	7.621	07022	16706	.18369	.04019	.04923	02431
	SRACTENT	00000	A19211	P 1000 -	0.000	A1810	- 17726

1)

														:																				
000.																	000	COO.			-										•		,	
ELEVON =	,										-				18) (12 FEB 74	CDATA	" NUMBER																	
30.000 .000		륟	.06546	.05467	, (M384	96625	.0200	.00896	-,000060	01852	93321	04317	-, DO 596		(REC018)	PARAMETRIC DATA	רעטנו רוא-	000	orie.	200			ø	18587	1.08805	1.02357	.90877	.38667	-, 20355	1.31498	-, !12382	1,20084	.83671	04912
ALPHA = AILRON = FLUMES =	-9.00/ 5.00	CAR	(9146	07154	05657	03796	112845	01721	(1)1759	.01766	.03560	19740.	92900				1 11 11 11	2		PLUMES =		-5,007 5,00	Z.	.27187	-1.14400	-1.08523	97124	40869	.22843	-1.45254	.00508	-1,35402	96886	.04769
		쿤	30626	- 30020	28605	-,27504	26947	-,26535	26772	27789	-,29/194	-,30596	00019										Š	.10043	.11175	.10925	.10628	.10281	.09674	.11378	.10425	.12246	.12308	.00035
	GRADIENT INTERVAL =	ð	.13349	.12942	.12515	.12093	.11854	.11698	.11727	.12089	.12497	.12897	00007	•	1+41							GRADIENT INTERVAL =	ð	.23884	.25027	.24632	.24126	.22965	.22012	.24288	.22618	.24782	.24905	-, 000089
	2.05 St. 55	Շ	.29891	.23704	.18259	.12004	.07634	.03124	00970	08455	14849	20263	02545		A15 OT+L+P							2.49 GR	Շ	87778	4.09106	3.87041	3.45612	1.46150	79176	5.11885	03473	4.74227	3,36493	17435
.N1 0000 1N. .ODD 1N. 67.0000 1N.	O ROLL :	3	.85562	.84410	. 82436	.80648	. 79785	.78946	.79372	.8:201	.63298	.85690	.00033		AMES 3.5-175 [A15 OT+L+P1+A1			989.000 IN.	.NI 0000.	67.0000 IN.		D RN/L =	3	-,25649	27738	27513	-,27290	27219	25916	29327	28247	31287	31725	00206
н и и	RUN NO. 177 0	BETA	-10.254	-8.210	-6.174	-4.009	-2.039	019	1.965	3.802	5.796	7.834	CRACIENT		¥E			н	H	ji		NO. 18/ U	BETA	-10.256	-8.267	-6.185	-4.022	-2.070	081	1.610	3.716	5.668	7.755	GRACIENT
= 2690,0000 50.FT. XMGF = 1290,3700 IN. YMGF = 936.6600 IN. ZMGF = 03100 SCALE	25	MACH	7.320	7,320	7,320	7.320	7,320	7.329	7,329	7.320	7,320	7.320				REFERENCE CATA				# 936.6600 IN. ZMEP	= .0100 SCALE	RUN NO.	MACH	7.320	7.320	7.320	7.320	7.320	7.320	7. 120	7.320	7.320	7.320	
SAEF LAEF BAEF SCALE																			1967	1000	SCALE												,	

REPERENCE DATA

(REGD17) (12 FEB 74)

AMES 3.5-175 1A15 OT+L+P1+A1

IA15 ARC 3.5 175

CATE 24 MAR 74

PARAMETRIC DATA

PAGE 13

(

という こうこうなん 日本大学 一大学

	<i>:</i>	•	
, gas •	·	, 45 66 56 56 56 56 56 56 56 56 56 56 56 56	-zp. 000
ELEVON = RUCDER =		EN) (12 FEB 74 C DATA ELECTRON =	RUDDER =
.000	CBL .03207 .02447 .01741 .01157 .01157 .01157 .01157 .00420 .0007800178	01131 012697 00276 00276 (REGD20) PARAMETRIC DATA	CBL .000 .03216 .03216 .01257 .01125 .01125 .01126 .01129 .01109 .01129 .01109
ALPHA = AILEON = FLUMES =	-9.00/ 5.00 CYN 07904 0277 0277 0217 01108 00356	.02074 .03654 .05313 .00590	
		. 138311 . 13824 . 1001201 . 1001201	
	CA CLM CA CLM .16652 .035 .16336 .034 .15534 .036 .13246 .035 .14421 .031	.15713 .15990 .07010 .07010	CRADIENT INTERVAL = CA CLII CA17441034 1.17441034 1.16749037 1.16729037 1.16729037 1.16729043 1.1724043 1.1729043
	2.01 GRA CY .29638 .20235 .19125 .10026 .04831 .00721	108935 14515 2211105 12394 135 OT+L+P1	1.63 GRA CY .25952 .20736 .1316 .10116 .03253 .01127 03687 13271
969,0000 1N. .0000 1N. 67,0000 1N.		.40774908935 .15713 .03 .40744014505 .15990 .053 .60741120105 .16533 .033 .7 .022202394 .07016 .004	20/ 0 RW/L = CN
u 11 H	RIM NO. 19/ 0 BETA 10.265 1-0.265 1-3.976 1-0.56	5.76 5.77 7.78 ØIADIG	67 20/20 66. 20/20 -10.203 -10.203 -10.203 -2.052 -10.62 1.852 5.719 7.773
2090,0000 30.FT. XMRP 1290,3000 IN. YMRP 936,6000 IN. ZMRP ,0100 SCALE	RUACH 7.320 7.320 7.320 7.320 7.320 7.320 7.320 7.320	7.32 7.32 7.32 DATA	2690,0000 36,FT. XMM 1290,3000 IN. YMM 936,6000 IN. ZMM 600 IN. ZMM 7,320 7,320 7,320 7,320 7,320 7,320 7,320 7,320 7,320 7,320 7,320 7,320 7,320
SAET : 24 LAGT : 32 BACT : 3			SCALE : 28

PACE 14

(REC019) (12 FEB 74)

PARAMETRIC DATA

AMES 3.5-175 IA15 OT+L+P1+A1+F PLUMES ON

1A15 ARC 3.5 175

DATE 26 MAR 74

REFERENCE CATA

- 4

000.		.000.	
RUCOFR =		2) (12 FEB 74 DATA ELEWON = .(•
.000. 000.		CBL .03241 .03227 .01168 .01168 .00404 .004040111401286101286	CBL
ALPHA = ATLRON = FLUMES =	-5.00/ 5.00	CYN07683057490114100252 .00550 .01984 .03752 .05654 .07574075740757407668	-5.00/ 5.00 CYN CYN 3.00:636 5.00:633 3.00:633 3.00:633 6.00:633 7.00:293 7.00:293 7.00:293 8.00:293 8.00:293 8.00:293
		CLM 11 .03532 12 .03549 12 .04142 13 .03499 14 .04025 14 .04025 15 .04228 16 .04165 17 .04228 18 .03911 18 .03911	# H H H H H H H H H H H H H H H H H H H
	GRADIENT INTERVAL =	1756 1716 1716 1618 1618 1618 16717 1717 17	CA CL CA CL CA CL 19917 .0 17816 .0 17816 .0 15859 .0 15151 .0 13784 .0 13784 .0
	2.03 GR/	CY .25901 .20657 .105012 .05012 .05012 .09037 .14812 -21016 -702428	CY CY -,02133 -,02173 -,0183 -,0183 -,01850 -,01850 -,01850 -,01850 -,01876 -,01876
969,0000 IN. .0000 IN. 67,0000 IN.	D RN/L =	CN CY CY 3908019 .25901 . 8508046 .15559 . 7608450 .10155 . 9708243 .10115 . 9408243 .03012 . 8408243 .03012 . 8408243 .03012 . 8408243 .03012 . 8408243 .03012 . 850765009279 . 8607660092428 . AMES 3.5-175 IA15 OT+L+F1+A1 . 989,0000 IN 990000 IN 90000 IN 970001 IN	CN 23926 19143 19626 11569 06165 01987 .02068 .05927 .11063 .14062
H (I H	NO. 21/ B	BETA10.23	ALFHA -7.340 -5.380 -2.051 -2.051 -2.584 4.646 6.630 8.561 10.464
2690,0000 50.FT. XMRP 1290,3000 IN. YMRP 936,6600 IN. ZMRP .0100 SCALE	RUR	MACH 7.3250 7.32	RLM HACH 7.320 7.320 7.320 7.320 7.320 7.320 7.320 7.320
SKEF = 2695 LAEF = 1205 BREF = 936 SCALE =		SFEF = 2690 LIREF = 1293 BREF = 936 SCALE =	

(REGOZI) (12 FEB 74)

PARAMETRIC DATA

PACE 15

1A15 ARC 3.5 175

AMES 3,5-175 1A15 OT+L+P1+A1 PLUMES ON

CATE 28 MAR 74

= 2690,0000 SA.FT. XMRF = REFERENCE DATA

おおおというないのからないというとうないというないのからないというとう

(RECORS) (12 FEB 74)

AMES 3.5-175 TAIS OT-L-P1-A1-F PLUMES ON

1A15 ARC 3.5 175

DATE 26 MAR 74

į.

REFERENCE DATA

PARAMETRIC DATA

PACE 16

000.02.														(12 FEB 74)		.000	000.														
ELEVON =															DATA	ELEVON =	RUCCER =														
.000.		3	.00277	. 90243	.00199	.00139	.00189	21100	99000	.00086	.00013	.00057	-, 00014	(Recu24)	PARAMETRIC DATA	000	CCG.	1.000		de	00115	.00041	-,00204	-, 19999	21000	00036	00135	00118	00039	.00044	, OCCO
BETA = AILRON = FLUMES =	-5.00/ 5.00	CYN	00527	00535	00371	00259	00452	(7.327	10214	(10)242	-, 00039	00113	. 2001.			BETA ::	z		-5.007 5.00	C	.00297	-,00032	.00478	.00212	P60000*-	.00074	.00193	. 130211	. (10067	00109	00032
		3	.06467	.07193	.05757	.04758	.03349	.02342	.01525	.00373	00734	02041	(%)524	FES ON						Ē	.06629	.07214	05930	, 04824	.03322	.02453	.01535	.00512	00723	01972	00533
	CRADIENT INTERVAL =	5	.20125	.19054	.17966	.17207	.16101	.15250	.14573	.13816	.1332	.12857	00421	MES 3.5-175 TAIS OT-L-P1-A1-F PLUFES CN					GRADIENT INTERVAL =	3	.20077	.19006	17914	.17134	.15993	.15159	.14484	.13764	.13263	.12895	00422
	2.20 GR	Շ	00347	00336	00420	-, 00397	50141	-,00257	-,00319	-,00164	00340	11100	71000	A15 OT-L-P					2.17 GR	Š	01216	00820	01480	01097	00549	-,00773	00947	00626	00471	00217	, 00065
909.0000 IN. .0000 IN. 67.0000 IN.	D RN/L =	3	23476	19122	14296	11291	06022	01642	.02265	.06559	.10359	.15 60	102067	5 3.5-175 1		9A9 . DYYYT IN.	MI COOL	67. DONO IN.	G RN/L =	5	23749	1 094ti	14645	-,11433	-,05963	01615	.02512	. 06362	.10409	.14737	.0208
n u u	RUM NO. 23/ 9	ALPHA	-7.352	-5,394	-3,373	-2.007	.466	2.560	4.626	6.634	6.514	10,772	GRACIENT	94		н			MO. 24/	AFTA	-7.350	-5.372	-3.431	-2.077	769.	2.562	4.657	6.624	8.556	10.467	GRACIENT
2690,0000 50,FT. XMRF 1290,3000 IN. YMGP 936,6600 IN. ZMRP ,0100 5CALE	A.S.	MACH	7.320	7.320	7.320	7.320	7.320	7.320	7,320	7.320	7,320	7,320			REFERENCE DATA	Page Tra 60 FT		936.6600 IN. 2969 .0100 SCALE	S.S.	HACH	7.380	7.320	7.320	7.320	7.320	7, 320	7.320	7.320	7.320	7.320	
SPEF = 2 LREF = 1 OREF = 5 SCALE :																į	• •	SCALK :													

DATE 28 MAR 74	IA15 ARC	1415 ARC 3.5 175							Ž	PAGE 17
		AMES :	AMES 3.5-175 1415 OT+L+P1+41	S OTALARI		PLUMES ON		(REG025)	25) (12 FEB 74	EB 74)
REFERENCE DATA	ATA							PARAMETRIC DATA	C DATA	
2692 1290 92	XMRF = YMRF = ZMRF =	989	.89.UDTD IN. .0000 IN. 67.0000 IN.				BETA = AILRON = FLUMES =	. 000 . 000 1.000	ELEVON = RUCCER =	15.000 .000
SCALE	RUN NO.	25/ 0	RN/L =	1.69 GRA	DIENT INTE	GRADIENT INTERVAL = -5.00/ 5.00	no.8 \on			
i		410	7	5	5	5	A N	ję;		
ť •	1961	, A. M.	00187	01112	.20010	10670.	.00128	-,00055		
· N		-8.522	.18626	01333	.19050	.06662	.00149	00100	•	
• •		-3.515	14242	00862	.17920	. 05376	.00126	-,00061		
		•	11193	06739	.17182	.04333	-,00015	00032		
•			-,05535	00476	.15058	.92781	00158	11/1/13		
. •	7.320		01200	00432	.15328	.01779	- 00145	-,59011		
	7.320		.02895	00724	.14740	.00861	. 0000	96000*-		
•	.320	6,541)	.07355	Seves	.14133	(1),464	.00110	99134		
. •	7.320	8.591	.11453	90299	.13728	01847	-, 000087	11000		
. p.		19.467	.15625	.00157	.13334	03179	00339	.99125		
· K		15,533	.26529	00199	.12605	-,05959	5, 10, 1	00052		,
		257.722	.49513	.99584	12034	11974	00418	.00242		
, K		25.796	.58495	.02610	.12460	19313	07424	.00240		
. N		31.062	.80575	60800.	.13315	29550	90458	. 93293		
	ď	GRADIENT	.02114	.00029	00393	00555	71000	50003		