TRAVAUX DIRIGES DE BIOCHIMIE SV4

CORRIGE TD d'Enzymologie – Partie 1

Exercice 1 : Cinétique de réaction et constante de vitesse de 1^{er} ordre :

A)- La réaction de 1^{er} ordre suivante : A------ \rightarrow P

Au temps t = 0 s \rightarrow [A] = 10^{-3} M Au temps t = 5s \rightarrow [A] = $1, 2 \cdot 10^{-4}$ M

Vitesse de réaction : $V = -d[A]/dt = d[P]/dt = k_1 \times [A]$

- \Rightarrow $(-d[A]/[A]) = K_1 \times dt$
- \Rightarrow Ln [A] = K₁ x t + cste (Si t = 0s \rightarrow [A] = [A₀] => cste = Ln [A₀])
- \Rightarrow Ln ([A]/[A₀]) = K₁ x t
- ⇒ $K_1 = -1/t \times Ln([A]/[A_0])$ (K_1 a les dimensions d'inverse du temps 1/t) On a $Ln[A_0] = Ln 10^{-3} = -6,9077553$
- \Rightarrow Ln ([A]) = K₁ x t 6,908
- 1- La constante K₁ de la réaction d'ordre 1 :

 $K_1 = (1/5) \times Ln (10^{-3}/1.2. 10^{-4}) = 0.424 \text{ s}^{-1}$

2- Le temps de demi-réaction (période) T 1/2 :

 $T {=} \; T_{1/2}$ lorsque la moitié de la quantité initiale A_0 est transformée en Produit :

On a : T $\frac{1}{2}$ = (1/K₁) x Ln (2) = 0,693/K₁ = 1,6348 s

3- Calculer la [A] au temps t= 12 s:

On a : Ln [A] = -0.424 t - 6,908 = -11,9957553

 \Rightarrow [A] _{12s} = 6,17. 10⁻⁶ M.

B°- Une réaction de 1^{er} ordre : A------ \rightarrow P de constante de vitesse k_1 .

Dans quelles conditions cette réaction de 1^{er} ordre peut devenir une réaction d'ordre 0.

$$\rightarrow$$
 On a V = $k_1 \times [A]$

Si on maintient la [A] = cste = $[A_0]$ \rightarrow $V = k_1 \times [A_0]$ = cste = k'_0 (avec k_0 cste de vitesse d'ordre 0).

- \rightarrow k'₀ = k₁ x [A₀] dont les dimensions sont en (M/t) soit les dimensions d'une vitesse
- \rightarrow D'autre part : on a : V = $k_0 = -d[A]/dt$
- \rightarrow d [A] = k_0 x dt
- \rightarrow [A] = $k_0 t + [A_0]$
- **→** Représentation graphique :

A.U.: 2019/2020

Exercice 2 : Cinétique et constante de vitesse de 2^{ème} ordre :

Soit la réaction de $2^{\text{ème}}$ ordre suivante : A + B ----- P

Au temps t=0 s: $[A_0] = 1,2. \ 10^{-3} \ M$; $[B_0] = 10^{-3} \ M$;

Au temps $t = 5 \text{ s} : [A] = 9,85. \ 10^{-4} \text{ M}$; $[B] = 7,85. \ 10^{-4} \text{ M}$.

NB. : B est le réactif limitant \rightarrow [B] = [C]

K₂ est la constante de vitesse.

Au temps t, on a [P] = x et [A] = $[A_0-x]$ et $[B]=[B_0-x]$

La vitesse de la réaction $V = -d[B]/dt = -d[A]/dt = d[P]/dt = dx/dt = K_2 x [A_t] x [B_t]$

$$\Rightarrow \ \, K_2 \, x \, dt = \underbrace{\quad \quad \quad }_{[A_0 \text{-}B_0]} \quad x \ \, (\underbrace{\quad \quad }_{[B_0 \text{-}x]} \quad \text{-} \quad \underbrace{\quad \quad }_{[A_0 \text{-}x]} \quad)$$

D'autre-part, on sait que :

$$\int (1/ax + b) = (1/a) \times \ln (ax + b)$$

Par integration
$$\implies$$
 $K_2 x t = \frac{1}{[A_0 - B_0]} x \ln(\frac{[A_0 - x]}{[B_0 - x]}) + cste$

A t=0s
$$\Rightarrow$$
 x=0 donc : cste = $-\frac{1}{[A_0-B_0]}$ x ln $(-\frac{[A_0]}{[B_0]}$

Ce qui donne finalement :
$$K_2$$
 x $t = \frac{1}{[A_0-B_0]}$ x $\ln \left(\frac{[A_0-x] [B_0]}{[B_0-x] [A_0]} \right)$

D'où:
$$K_2 = (\frac{1}{t}) \times \frac{1}{[A_0 - B_0]} \times \ln(\frac{[A_0 - x][B_0]}{[B_0 - x][A_0]})$$

1- Calculer la constante de vitesse de la réaction K_2 .

D'après l'équation précédente : $K_2 = 44,63 \text{ s}^{-1} \text{ x M}^{-1}$ (K_2 a les dimensions $1/\text{t x M}^{-1}$)

2- Calculer la [A] et de [B] au temps t = 10 s.

A t=10 s : il sera formé une quantité de produit $x = 0.359 \times 10^{-3} M$

$$\Rightarrow$$
 D'où [A] = 0,841 x 10⁻³ M et [B] = 0,641 x 10⁻³ M