Лабораторная работа №11.1 Определение ширины запрещенной зоны полупроводников.

Нехаев Александр 654гр.

15 марта 2019 г.

Содержание

1.	Введение	1
	1.1. Теоретические основы	1
	1.2. Схема установки	3
2.	Ход работы	4
3.	Вывол	5

1. Введение

Цель работы Исследовать температурную зависимость проводимости типичного полупроводника (германия или кремния). Определить ширину запрещенной зоны с помощью универсального вольтметра.

1.1. Теоретические основы

Величина электропроводности в полупроводниках определяется числом электронов в зоне проводимости и дырок в валентной зоне (эти числа в чистыъ полупроводниках, конечно, равны друг другу).

Число электронов, находящихся в зоне проводимости, равно произведению числа имеющихся уровней на вероятность их заполнения. Вероятность заполнения уровней определяется функцией Ферми, которая в нашем случае мало отличается от простого экспоненциального больцмановского распределения:

$$f(E) = \frac{1}{\exp\left(\frac{E-\mu}{k_{\rm B}T}\right) + 1} \simeq \exp\left(-\frac{E-\mu}{k_{\rm B}T}\right),\tag{1}$$

так как $(E - \mu) \gg k_B T$.

В формулу (1) E – энергия уровня в зоне проводимости, μ – некоторая константа, которая, вообще говоря, зависит от температуры и называется энергией или уровнем Ферми. В собственных полупроводниках энергия Ферми лежит вблизи середины запрещенной зоны.

При не очент высоких температурах заняты главным образом уровни, находящиеся у дна зоны проводимости, так что в качестве энергии E можно подставить энергию E_c , соотвествующую дну зоны проводимости. При этом вместо полного числа уровней в зоне

нужно подставлять некоторое эффективное число уровней Q_n , находящихся вблизи дна зоны, тогда число электронов в зоне проводимости будет равно¹:

$$n_n = Q_n \exp\left(-\frac{E_c - \mu}{k_{\rm B}T}\right). \tag{2}$$

Вероятность появления дырки в валентной зоне определяется разностью 1-f(E). Поэтому число дырок равно

$$n_p = Q_p \left[1 - \frac{1}{\exp\left(\frac{E_v - \mu}{k_{\rm B}T}\right) + 1} \right] \simeq Q_p \exp\left(-\frac{E_v - \mu}{k_{\rm B}T}\right). \tag{3}$$

При преобразованиях формулы (3) было принято во внимание, что энергия верхнего края валентной зоны E_v меньше μ и дробь $(E_v - \mu)/(k_{\rm B}T)$ является большим отрицательным числом.

Перемножим формулы (2) и (3) и примем во внимание, что число электронов равно числу дырок:

$$n_n n_p = n^2 = Q_n Q_p \exp\left(-\frac{E_c - E_v}{k_{\rm B}T}\right). \tag{4}$$

Разность $E_c - E_v$ равна ширине запрещенной зоны Δ . Обозначая для краткости произведение

$$Q_n Q_p = C^2 (5)$$

и извлекая квадратный корень из (4), получим

$$n = C \exp\left(-\frac{\Delta}{2k_{\rm B}T}\right). \tag{6}$$

Найдем теперь электропроводность полупроводника. В присутствии поля, большая часть электронов в зоне проводимости начинает двигаться в сторону, противоположную полю. Средняя величина скорости электронов перестает быть равной нулю и направлена вдоль поля. При этом вплоть до самых сильных полей (практически до пробоя) справедлива формула

$$v_{\rm cp} = \mu_n \mathscr{E},\tag{7}$$

где $v_{\rm cp}$ – среднее значение дрейфовой скорости электронов, $\mathscr E$ – напряженность электрического поля, μ_n – коэффициент пропорциональности, носящий название подвижности электронов; он определяет, какую среднюю скорость приобретает электрон в поле единичной напряженности (обычно численное значение подвижности приводят для поля 1 $\mathrm{B/cm}$).

Применяя формулу (7) к электронам в зоне проводимости и к дыркам в валентной зоне, найдем, обозначая через $j=nev_{\rm cp}$ плотность электрического тока, что

$$\sigma = j/\mathscr{E} = |e|(n_n \mu_n + n_p \mu_p). \tag{8}$$

Подставляя в (8) значение $n_n = n_p$ из (6), получим

$$\sigma = |e|C(\mu_n + \mu_p) \exp\left(-\frac{\Delta}{2k_{\rm B}T}\right) = A \exp\left(-\frac{\Delta}{2k_{\rm B}T}\right),\tag{9}$$

 $^{^{1}}$ Строго говоря, число Q_{n} выбирается так, чтобы равенство (2) давало правильное число электронов при подстановке энергии дна зоны E_{c} вместо энергии E.

где предэкспоненциальный множитель заменен константой 2 .

Измерим электропроводность σ как функцию температуры и изобразим результаты на графике в полулогарифмическом масштабе:

$$\ln \sigma = f(1/T).$$
(10)

Формула (9) показывает, что график должен иметь вид прямой линии с наклоном $\Delta/(2k_{\rm B})$. Наклон прямой (10) позволяет, таким образом, определить ширину запрещенной зоны.

1.2. Схема установки

Рис. 1: Схема установки

Температура второго спая термопары измеряется спиртовым термометром, помещенным в сосуд дьюара. Рекомендуемый режим работы: частота – 500-700 Гц, усиление – $\frac{1}{2}$ шкалы, затухание – 10 дБ, $R_1=220$ Ом, $R_3=560$ Ом. Чувствительность термопары: $41\cdot 10^{-6}$ В/град.

Рис. 2: Геометрические размеры образца

 $^{^2}$ Более точные расчеты показывают, что величина A зависит от температуры. Этой зависимостью, однако, можно пренебречь по сравнению с быстро изменяющейся экспонентой.

2. Ход работы

Проводим измерение сопротивления образцов в зависимости от температуры, данные о которой берем из значения напряжения на термопаре. Начальное значение термопары 100 мкВ при температуре 300.6 К. Используя формулу $\sigma = \frac{l}{RS}$, строим график $\sigma(T)$.

Рис. 3: График зависимости $\sigma(T)$.

Подобный вид зависимости объясняется природой материала, определяющение эти законы.

$$\sigma = |e|C(\mu_n + \mu_p) \exp\left(-\frac{\Delta}{2kT}\right)$$
(11)

Строим график $\ln(\sigma) = f(1/T)$. Зная, как представляется эта зависимость по наклону прямой получаем, что ширина запрещенной зоны $\Delta = 0.66$ эВ.

Рис. 4: График зависимости $\ln(\sigma) = f(1/T)$

3. Вывод

В ходе лабораторной работы удалось предложенным методом измерить ширину запрещенной зоны полупроводника – $\Delta=0.66$ эВ, что позволяет сделать вывод о природе исследумого материала. Полученное значение соотвествует ширине запрещенной зоны германия (0.67 эВ).