INTRODUCTION À LA ROBOTIQUE

DE MANIPULATION

Viviane CADENAT.

Enseignant-chercheur à l'UPS.

LAAS-CNRS, équipe Robotique, action, perception.

- Un peu d'histoire ...
 - La robotique est née pour répondre à plusieurs besoins
 - Augmenter la productivité
 - Remplacer l'opérateur humain en milieu hostile
 - 1961: 1^{er} bras manipulateur par Unimation

- Poids: 1.5 tonnes
- Utilisé par General Motors
- Manipulation de pièces de fonderie pesant 150 kg.

Définition

- Etymologie : mot tchèque robota (travail)
- Plusieurs niveaux
 - Système mécanique articulé, plus ou moins autonome, capable de réaliser certaines tâches à la place d'un opérateur
 - Système mobile qui doit réaliser une tâche tout en contrôlant son exécution
 - Système mécanique articulé ou doué de mouvement capable d'effectuer automatiquement certaines tâches
- → Le robot doit interagir avec l'environnement
- → Le mouvement est sa spécificité
- → Ce n'est pas ordinateur!

Evolution des robots

- Robots de 1^{ère} génération
 - Machine playback → « rejeu » de séquences apprises
 - Pas de contrôle d'exécution de la tâche ni d'adaptation à l'environnement.
- Robots de 2^{ème} génération
 - Robots industriels actuels → Machines programmables
 - Interaction avec l'environnement
- Robots de 3^{ème} génération
 - Robots de laboratoire
 - Adaptation à la tâche et à l'environnement

Les domaines d'applications

- Industrie manufacturière
 - Secteurs:
 - Automobile (63%),
 - □ Industrie chimique (13%),
 - □ Industrie électronique, ...
 - Tâches :
 - soudure,
 - peinture,
 - palettisation,
 - mesure,
 - manutention, ...

- Les domaines d'application
 - La robotique médicale

- Les domaines d'application
 - La robotique d'intervention

Robot Sojourner

→ Exploration

iRobot 510 PackBot

→ Robot démineur

Porteur BROKK 90 / Bras MAESTRO (cybernetix)

→ Centrale nucléaire

- Les domaines d'application
 - La robotique de service

Pixys helpmate : transport de repas, médicaments, contexte hospitalier

Ebee, sensefly.

Roomba,

irobot

- Les domaines d'application
 - La robotique de service

Aibo, Sony

HRP2, Kawada industries

Nao, aldebarran robotics

Les problématiques

- La robotique de manipulation
 - Contexte industriel
 - Manipulation d'objets
 - Rendement et productivité
- La robotique mobile
 - Navigation dans des environnements peu connus, éventuellement hostiles
 - Environnement non restreint
 - Explosion de la robotique de service

- Pourquoi vouloir robotiser une installation industrielle ?
 - But : augmenter la productivité
 - Augmenter le temps de travail du personnel,
 - Réorganiser le travail,
 - Elargir les compétences du personnel,
 - Optimiser la capacité des usines → utilisation des ressources, ...
 - Investir dans de nouveaux moyens de production
 - □ Machines spéciales → une tâche particulière
 - □ Cellules robotisées → possibilité de réaliser plusieurs tâches

Pourquoi vouloir robotiser une installation industrielle ?

Pourquoi vouloir robotiser une installation industrielle?

- Pourquoi vouloir robotiser une installation industrielle ?
 - Comparaison des performances homme/robot

- ✓ Pour de lourdes charges : le robot est toujours plus rapide.
- ✓ Dès que la distance augmente (> 50cm) l'homme met beaucoup de temps.
- ✓ Pour des charges légères : l'homme est toujours très rapide.

- Paramètres techniques à prendre en compte pour robotiser
 - Temps de réalisation de la tâche
 - → Vitesse de production (nb cycles/h)
 - → Vitesse et accélérations du BM
 - Poids de la charge à manipuler
 - → Charge utile transportable par le BM
 - Qualité de réalisation souhaitée
 - → **Précision** du BM (écart moyen)
 - → Répétabilité du BM (dispersion)

- Paramètres techniques à prendre en compte pour robotiser
 - Volume de travail nécessaire
 - → Espace de travail du BM
 - → Aspects sécurité
 - Mouvements nécessaires
 - → Structure mécanique du BM
 - → Nombre d'axes
 - → Type d'effecteur
 - Logiciel
 - → Niveau de programmation du BM (play-back ou évolué → langage)
 - → Nombre de programmes disponibles → Nb de produits à fabriquer
 - → Couplage avec un simulateur

- Paramètres à prendre en compte pour robotiser
 - Evaluation des coûts
 - Coût initial d'achat et d'installation
 - Coût de formation du personnel
 - Coût de maintenance
 - → La robotisation est un **risque**
 - → Prévision de l'impact de la robotisation sur les hommes et le budget
 - → Nécessite d'avoir bien évalué l'installation existante pour n'automatiser que ce qui est nécessaire.

Bilan des caractéristiques techniques

- □ Sa géométrie → architecture, nombre d'axes, etc.
- Son volume de travail accessible
- Sa précision et sa répétabilité
- Sa vitesse maximale pour chaque articulation et pour l'OT
- Son accélération maximale pour chaque axe
- Sa charge utile
- Son logiciel de commande

un bel

exemple

d'intégration!

Structures mécaniques

Simple

Arborescente

Complexe

Quelques exemples

Chaine simple

Chaine arborescente

Chaine complexe

Liaisons et structure des bras industriels

Liaisons prismatiques

Quelques exemples

Robot cartésien Structure : PPP Robot SCARA Structure : RRP Anthropomorphes
Structure 6 axes

Quelques exemples

Robot cylindriques Structure : RPP

Robot sphériques Structure : RRP

Architecture d'un bras manipulateur

- Opération industrielle de pick & place
 - Robot + système de vision

But : saisir la pièce détectée par la caméra

- Opération industrielle de pick & place
 - Tâches à effectuer
 - Détecter l'objet avec la caméra → TI
 - Déduire sa position <u>ET</u> son orientation dans le repère de base du robot → Xbut
 - Déplacer la pince pour rejoindre la situation Xbut
 - Tout cela doit être fait de manière automatique
 - Question : comment faire ?

Schéma de commande d'un robot

