Name:

MAT201A

University of California, Davis

Fall 2015

Homework # 5

(Due Monday, November 9)

Problem 1. Let (X, \mathcal{T}) be a Hausdorff space and $F, K \subset X$ such that F is closed and K is compact.

- a) Prove that K is closed.
- b) Prove that $F \cap K$ is compact.

Problem 2. Let (X, \mathcal{T}) be a topological space and K_1 and K_2 two compact subsets of X.

- a) Prove that $K_1 \cup K_2$ is compact.
- **b)** Assuming (X, \mathcal{T}) is Hausdorff, prove that $K_1 \cap K_2$ is compact.

Problem 3. If A is a subset of a topological space, then the *interior* A° of A is the union of all open sets contained in A, the *closure* \overline{A} of A is the intersection of all closed sets that contain A, and the *boundary* ∂A of A is defined by $\partial A = \overline{A} \cap \overline{A^c}$.

- a) Show that a set is closed if and only if it contains its boundary.
- b) Show that a set is open if and only if it is disjoint from its boundary.
- c) What are the closure, interior, and boundary of the Cantor set, considered as a subset of \mathbb{R} with its usual topology? The Cantor set is defined in Example 1.40 of the textbook.

Problem 4. A topological space is *connected* if it is not the union of two disjoint non-empty open sets. A subset Y of a topological space (X, \mathcal{T}) is called connected if Y is a connected topological space with respect to the relative topology.

- a) Describe the connected subsets of $(\mathbb{R}, |\cdot|)$.
- **b)** Show that $(\mathbb{R}, |\cdot|)$ is homeomorphic to the open interval $(0, 1) \subset \mathbb{R}$ with the relative topology.
- c) Show that $(\mathbb{R}, |\cdot|)$ is not homeomorphic to $(\mathbb{R}^2, \|\cdot\|)$, where $\|\cdot\|$ is the Euclidean norm.

Problem 5. Prove that the sequence (f_n) defined in Example 5.11 in the textbook is a Schauder basis of $(C([0,1]), \|\cdot\|_{\infty})$.

Problem 6. For $1 \leq p \leq \infty$, consider the Banach space $\ell^p(\mathbb{N})$ defined in Example 5.5 of the texbook. The set $\ell_c(\mathbb{N})$ of all sequences of the form $(x_1, x_2, \ldots, x_n, 0, 0, \ldots)$ whose terms vanish from some point onwards is an infinite-dimensional linear subspace of $\ell^p(\mathbb{N})$ for any $1 \leq p \leq \infty$.

- a) Show that $\ell_c(\mathbb{N})$ is not closed in $\ell^p(\mathbb{N})$, so it is not a Banach space with respect to the norm of $\ell^p(\mathbb{N})$.
- **b)** Show that $\ell_c(\mathbb{N})$ is dense in $\ell^p(\mathbb{N})$ for $1 \leq p < \infty$.
- c) Find the closure of $\ell_c(\mathbb{N})$ in $\ell^{\infty}(\mathbb{N})$.