Nome: Mattia data inizio: 13/4/2021

Cognome: Bracco data consegna: 20/4/2021

Classe: 2A data assenza /

TITOLO: Legge di Boyle.

OBBIETTIVO: Calcolo sperimentalmente la legge di Boyle (isoterma,

temperatura costante).

TEORIA ED ASPETTATIVE:

$$P * V = K$$
 $X - Y = K$ $T = K$

Mi aspetto che alla diminuzione del volume aumenti la pressione.

MATERIALI E SCHEMI DI MONTAGGIO USATI:

Unico strumento multifunzione (utilizzato: termometro e manometro), siringa con doppio ingresso (aria / temperatura), alimentazione esterna per lo strumento multifunzione.

MISURE, DATI E GRAFICI:

Р	V	Т	PxV
Pa	cm ³	°C	Pa x cm ³
96.800	60	21	5.808.000
105.400	55	21	5.797.000
114.550	50	21	5.727.500
125.410	45	21	5.643.450
139.300	40	21	5.572.000
156.900	35	21	5.491.500
178.150	30	21	5.344.500

K media	errore assoluto	errore relativo percentuale	
56,02	2,18	3,88	

PROCEDIMENTO:

Abbiamo determinato la pressione, il volume e la temperatura per poi calcolare P x V, in seguito abbiamo rappresentato la situazione con un grafico

CONCLUSIONE:

Dopo aver determinato la pressione (P) (espressa in Pascal (Pa)), la temperatura in gradi centigradi (° C), e il volume in centimetri cubi (cm³) abbiamo moltiplicato la pressione per il volume.

La situazione è stata anche rappresentata con un grafico.

Si può notare che al diminuire del volume (V) aumenta la pressione (P).