PRC 2009 - Resumo de Aula A camada de Transporte (parte 2)

- O protocolo TCP
 - Características gerais
 - comunicação entre processos, full-duplex, MSS (típico 1500 bytes)
 - Conexão de 3 msgs, header de 20 bytes, numeração de pacotes e de acks em bytes não em pacotes
 - janela do destinatário para fazer o controle de fluxo
 - estrutura do segmento slide 2

- ACKs e sequenciamento
 - número de sequência = número do primeiro byte no segmento enviado
 - número do ACK = número do próximo byte esperado
 - o ACK pega carona nos pacotes de resposta (piggyback) não há um pacote exicusivo de ACK
 - ACKs são otimizados pelo lado que recebe. Espera um pouco para confirmar mais segmentos

• Controle de fluxo no TCP

- é uma iniciativa do lado receptor
 - avisa o lado que envia que não tem mais buffer para receber
 - Lado que envia só envia se:
 - LastByteSent LastByteAcked <= RcsWindow

- E o timeout? pode ou tem que ser grande ou pequeno?
 - Grande ???
 - Pequeno ???
 - Como achar um valor justo??? baseado no RTT round trip time
 - O TCP mantém um histórico e faz uma estimativa sobre esse RTT
 - RTT = 0,9*RTT + 0,1*último RTT (Média EWMA)
 - slide 14
 - Timeout = RTT + 4*desvio

Gerenciamento da Conexão no TCP

- TCP estabelecimento e fechamento da conexão (connectionoriented)
- estabelecimento da conexão
 - 3 mensagens
 - cliente envia define início da sequência (seq_cliente_isn)
 - servidor envia aceitação define início da sequência (seq_servier_isn)
 - cliente envia reconfirmação que está conectado
 - slide 16
- fechamento da conexão
 - 4 mensagens
 - cliente envia
 - servidor ACK
 - servidor envia
 - cliente ACK
 - slide 17

• Principios de controle de congestionamento

- O congestionamento em redes ocasiona
 - perda de pacotes, longas filas nos routers, etc ...
- Consequências
 - Quando há buffers suficientes longas filas e atrasos
 - Quando não há
 - perda de pacotes que precisam ser retransmitidos, diminuindo a capacidade total da rede
 - realocação de todos os recursos usados quando da sua retransmissão idem diminuindo a capacidade
 - É melhor tratar bem esse problema

• O problema é resolvido de 2 maneiras

- Observando o comportamento da rede
 - É o caso do TCP (perda de pacotes triple ACK e timeout)
- Informação vinda da camada de rede basta 1 só bit de informação – pode ser feito de 2 maneiras
 - o elemento congestionado informa expontaneamente
 - envia-se um pedido de informação
- Exemplo ATM ABR Available Bit Rate

O caso ATM ABR

- O ATM também tem CBR (constant), VBR (variable), Ubr (undentified) – bem sofisticado
- 3 mecanismos de informação efetuado pelos switches da rede
- Uma célula RM é inserida no fluxo a cada 32 células normais
 - 1) todo comutador que se sentir congestionado, pode modificar os bits NI (leve) e CI (pesado). Quando o receptor recebe a célula retorna a mesma para a origem
 - 2) Todo nó pode alterar o bit EFCI de uma célula normal.
 Quando o destino recebe uma célula assim retorna CI = 1 na próxima RM que aparecer
 - 3) Toda célula RM possue um campo de 2 bytes (ER = explicit rate) que pode ser decrementado por qualquer switch da rede, baixando então a taxa em todos os switches

Controle de congestionamento no TCP

- É uma iniciativa do lado origem
- Vai aumentando o tamanho da janela até que seja observado alguma perda ou timeout – a cada conexão
- O lado origem mantém duas variáveis:
 - CongWin (congestion window) e Threshold (Limiar)
- 2 fases distintas em cada conexão
 - partida lenta CongWin = 1, 2, 4, ... até o Limiar
 - prevenção de congestionamento CongWin++ até haver alguma perda. Daí, Limiar = CongWin/2 e CongWin = 1
 - slide 34

Modelo de latência para o TCP

- Latência = tempo decorrido entre o pedido de um objeto e sua total entrega
- Limite inferior para a latência: 2RTT + O/R
 - O = tamanho do objeto; R = taxa de transmissão
 - ocorre quando não há espera por ACKs, isto é, todo o objeto é transmitido sem esperar por confirmação
- Se a janela W fosse fixa e k = O/(W*MSS), isto é, quantos pedaços serão transmitidos sem ACK
 - slide 38
 - Latência = 2RTT +O/R +(k-1)[S/R+RTT-WS/R]
- Como a janela não é fixa devido à partida lenta o modelo é mais complexo – vide slide 41

Casos práticos

- A partida lenta pode aumentar a latência quando o tamanho do objeto é pequeno e o RTT é grande.
- Não seria esse exatamente o caso da WEB???
 - Ainda há o que ser feito no TCP