Big Data Overview

Pete Champlin
Population Health Technology
July 14, 2020

Agenda

Origins of "Big Data"

Defining Big Data

Managing Big Data

Learning Big Data

Origins of "Big Data"

A Little History

- Google and Doug Cutting cataloging the World Wide Web to create search engines
- Challenges
 - Massive amounts of data
 - Web pages don't fit nicely in a table
 - New web pages constantly being created

Defining Big Data

The Three V's

Volume

- Too much data to fit in one or even several traditional data stores
- Too much data to query quickly or conveniently

Variety

- Data in many different formats
 - Tabular/relational
 - CSV
 - JSON/XML
 - Logs
 - Text (e.g. web pages, emails)
 - Images
 - Audio/Video

Velocity

- Streaming, real-time data
 - Social media/networking (tweets, reviews)
 - Machine generated (logs)
 - Click stream
 - loT/loMT (telemetry devices, sensors)
- Real-time data analysis

Managing Big Data

The Three V's

Volume

- Horizontal scaling and distributed storage and processing
- Google File System (GFS) & BigTable
- MapReduce processing
- Hadoop Distributed File System (HDFS) & HBase
- Apache Spark
 - In-memory storage
 - Separate processing and storage

Variety

- NoSQL Databases (No SQL or Not Only SQL) – specialize in specific data formats
 - Documents/JSON (MongoDB)
 - Key/Value, column-oriented (Cassandra)
 - Data Warehouse (Snowflake)
- New file formats
 - Parquet
 - ORC
 - Avro

Velocity

- Distributed stream processing systems/engines
 - Apache Storm
 - Apache Kafka (Confluent)
 - Apache Spark (Databricks)

Distributed data and processing tradeoffs - Data volume and velocity issues "solved", but...

- Hardware failures
- Data movement/shuffling
- Higher latency
- Less (immediate) consistency

Managing Big Data Cloud Computing

Storage, processing, and computing services that are remote, distributed, and elastic.

Providers

- Amazon Web Services (AWS)
- Microsoft Azure
- Google Cloud Platform (GCP)
- The rest...Alibaba, IBM, Oracle

Models

- laaS (Infrastructure as a Service)
- PaaS (Platform as a Service)
- SaaS (Software as a Service)
- Hybrid (cloud and on-prem)
- Multi-cloud

Benefits

- Scalability
- Managed hardware maintenance
- Evergreen environments
- Data redundancy
- Pay per usage
- Flexibility
- Etc...

Managing Big Data

Architecture

Who Works With Big Data?

Software Engineer Data Engineer/Architect Cloud System Analyst/Engineer/Architect DevOps Engineer BI Developer/Analyst Data Analyst Machine Learning Engineer Data Scientist Al *Engineer

Learning Big Data

July 16, 2019 - FINAL 2019 VERSION

© Matt Turck (@mattturck), Lisa Xu (@lisaxu92), & FirstMark (@firstmarkcap)

FIRSTMARK
EARLY STAGE VENTURE CAPITAL

Learning Big Data

- SQL
- Python (NumPy, Pandas, Scikit-learn, Anaconda)
- Apache Spark/Databricks
 - Spark is open source, but managed by Databricks (on Azure or AWS)
 - Community Edition (free) community.cloud.databricks.com
 - Cloud services
 - Machine Learning
 - Notebooks (Jupyter, etc.)
 - NoSQL databases (MongoDB, Cassandra, Snowflake, etc.)
 - R, Scala, Bash, Apache Kafka, Docker/Kubernetes, GitHub/GitLab, CI/CD

Questions?

