Name (PRINT): GIANG TRAN

- **1.** Given the following input (3412, 3413, 1741, 3269, 2909, 6291, 6373, 5129) and the hash function $h(k) = k \mod 10$, which of the following statement(s) true? Choose all correct ones.
 - A. 3269, 2909, 5129 hash to the same value
 - B. 3412 and 3413 hash to the same value
 - C. 1741, 6291 hash to the same value
 - D. 3413, 3269, 6291, 6373 each hashes to a different value
- 2. The keys 14, 18, 33, 4, 3, 23, 25 and 5 are inserted into an initially empty hash table in this given order. The hash table has 10 slots and uses chaining with hash function $h(k) = k \mod 10$. What is the hash table after inserting all keys? (multiple numbers in the same slot represents a linked list to chain the numbers together in that order)

0	
1	
3	
	3, 23, 33
4	4, 14 5, 25
5	5, 25
6	
7	
8	18
9	

0	
1	
3	
	23, 3, 33
4	4, 14
5	5, 25
6	
7	
8	18
9	

0	
1	
2	
	33, 23, 3
4	14,4
5	25,5
6	
7	
8	18
9	

33, 3, 23
14, 4
25, 5
18

 C

D

$$h(4) = 4 \mod 10 = 4 \pmod{\text{collision}}$$

$$h(3) = 3 \mod 10 = 3$$
 (collision)
 $h(23) = 23 \mod 10 = 3$ (collision)
 $h(25) = 25 \mod 10 = 5$

M(F) = 5 mod 10 = 5 (collision)

3. The keys 14, 18, 33, 4, 3, 23, 25 and 5 are inserted into an initially empty hash table in this given order. The hash table has 10 slots and uses open addressing with hash function $h(k) = k \mod 10$ and linear probing. What is the hash table after inserting all keys?

0	
1	
2	
1 2 3 4 5 6	23 4 5
4	4
5	5
6	
7	
8	18
9	

0	
1	
2 3	5
3	33
5	14
5	4
6 7	3
7	23
8	18
9	25

0	
1	
2	
1 2 3 4	33
	14
5 6	25
6	
7	
8	18
9	

0	5
1	
3	
	33
4	14
5	4
6	3
7	23
8	18
9	25

h (14,0) = 14 mod 10=4

h (18,0) = 18 mod 10=3

h (23,0) = 23 mod 10=3 (collision)

h (33,0) = 33 mod 10=3

h (4,0) = 4 mod 10=4 (collision)

h (4,1) = (4+1) mod 10=5

h (3,0) = 3 mod 10=3 (collision)

h (3,1) = 4; h(3,2)=5; h(3,3)=6

h (5,0)=5 mod 10=5--- h(5,5)=0 h(3,1) = 4; h(3,2) = 5; h(3,3) = 6 h(5,2) = 6 h

c h
$$(23,0) = 23 \mod 10 = 3$$
 (collision)
 $h(23,1) = 4$ (collision)
 $h(23,4) = 7$
 $h(25,0) = 25 \mod 10 = 5$ (collision)
 $h(25,4) = 9$
 $h(5,0) = 9 \mod 10 = 5 - - h(5,5) = 0$
 $h(5,0) = 9 \mod 10 = 5 - - h(5,5) = 0$

(2) What is the load factor in Problem 3 above?