

Workbook:

Best-First Search Greedy Search (tree search)

Albert Sanchis Jorge Civera

Departament de Sistemes Informàtics i Computació

Learning objectives

- ► To describe greedy search (tree search).
- ► To draw the tree of greedy search (tree search).
- To apply greedy search (tree search) to a well-known problem.
- ► To analyze the quality of greedy search (tree search).

Problem: Shortest path between two points

Shortest path from Arad to Bucarest [1]:

Actions(Arad) = {Move(Sibiu), Move(Timisoara), Move(Zerind)}.

Problem: Shortest path between two points

Straight-line distances to Bucharest:

	Bucharest		Bucharest
Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
lasi	226	Vaslui	199
Lugoj	244	Zerind	374

1 Best-first algorithm (tree search) [2]

```
BF(G, s', h)
               // G weighed graph, s', f evaluation function
 O = InitQueue(s', f(s'))
                                            // Open: priority queue f
 while not EmptyQueue(O):
                                        // best-first: s = \arg\min_{n \in O} f_n
                                        // draws in favour of goal state
   s = Pop(O)
   if Goal(s) return s
                                                       // solution found!
   for all (s,n) \in Adjacents(G,s):
                                           // generation: n is child of s
    x = f(n)
                                                      // possibly new f_n
    if n \notin O: Push(O, n, f_n \triangleq x)
    else if n \in O and x < f_n: Update(O, n, f_n \triangleq x)
                                                   // solution not found
  return NULL
```

► Question 1: Write a trace of the BF algorithm (tree search) applied to the problem of finding the shortest path from Arad to Bucarest.

O	S	
{Arad (c=366)}	_	
{Sibiu (c=253), Timisoara (c=329), Zerind (c=374)}		
{Fagaras (c=176), Rimnicu (c=193), Timisoara (c=329), Arad (c=366), Zerind	Sibiu	
(c=374), Oradea (c=380)}		
{Bucharest (c=0), Rimnicu (c=193), Sibiu (c=253), Timisoara (c=329), Arad	Fagaras	
(c=366), Zerind (c=374), Oradea (c=380)}		
{Rimnicu (c=193), Sibiu (c=253), Timisoara (c=329), Arad (c=366), Zerind	Bucharest	
(c=374), Oradea (c=380)}		

▶ Question 2: Draw the search tree as a result of applying the BF algorithm (tree search) to the problem of finding the shortest path from Arad to Bucarest.

- Question 3: Does the BF algorithm (tree search) find a solution?
 Yes
- ► Question 4: If the answer is "Yes":
 - ▶ What is the solution found? The solution path is: Arad, Sibiu, Fagaras, Bucharest
 - ▶ What is the cost of this solution? 450
 - ▶ Is this the solution of minimum cost? No, because there is an alternative solution with lower cost of 418: Arad, Sibiu, Rimnicu, Pitesti, Bucharest

References

- [1] S. Russell and P. Norvig. *Artificial Intelligence: A Modern Approach*. Pearson, third edition, 2010.
- [2] J. Pearl. *Heuristics: Intelligent Search Strategies for Computer Problem Solving*. Addison-Wesley, 1984.

