

Ensayo Curvas características de una bomba Centrifuga

Laboratorio de máquinas ICM-557.

Segundo semestre 2020.

Profesores:

Cristóbal Galleguillos Ketterer

Tomas Herrera Muñoz.

Ayudante:

Ignacio Ramos.

Alumno:

Cristóbal Ramos Correa.

INDICE

INTRODUCCIÓN	3
OBJETIVO	3
METODOLOGIA	4
DESARROLLO DEL CONTENIDOS	5
1 Tablas de Valores	5
2 Curvas y cuestionarios	11
CONCLUSIONES	
REFERENCIAS	

INTRODUCCIÓN

A continuación, se analizará el comportamiento de una bomba centrifuga sometido a distintas velocidades angulares (2700[rpm], 2900[rpm] y 3070[rpm]).

Estas condiciones de operación variables generaran valores y curvas que nos ayudaran a entender mejor el comportamiento y funcionamiento de esta máquina.

OBJETIVO

Analizar y comprender el funcionamiento de una bomba centrifuga en base a sus curvas características.

METODOLOGIA

Los procedimientos a realizar en laboratorio son: Revisar y poner en marcha la instalación, con las válvulas de aspiración y descarga totalmente abiertas. Regular la velocidad a la indicada por el profesor. Luego de inspeccionar los instrumentos y su operación y esperar un tiempo prudente para que se estabilice su funcionamiento, tome las siguientes medidas:

Medir:

- n velocidad de ensayo, [rpm].
- nx velocidad de la bomba, [rpm].
- pax% presión de aspiración, [%].
- pdx% presión de descarga, [%].
- Δhx caudal de la bomba, presión diferencial del venturímetro, [mmHg].
- Fx fuerza medida en la balanza, [kp].
- ta temperatura de agua en el estanque, [°C].
- Patm presión atmosférica, [mmHg].

Manteniendo la velocidad constante, repetir las mediciones tantas veces como fuera necesario para recorrer completamente la curva característica de la bomba y tener los valores apropiados para trazar las curvas que se indican. Para obtener las distintas condiciones de operación, se modifica la curva característica del sistema estrangulando la descarga de la bomba.

Se repite lo anterior para otras dos velocidades de ensayo. Mida los valores siguientes:

- cpax altura piezométrica del manómetro de aspiración respecto del eje de la bomba, en [mm].
- cpdx altura piezométrica del manómetro de descarga respecto del eje de la bomba, en [mm].

DESARROLLO DEL CONTENIDOS

1.- Tablas de Valores

Los valores medidos en la experiencia son:

Para 2700 [rpm]:

	n	pax%	pd%	Δhx	Fx	ta	Patm
	RPM	%	%	mmhg	kp	C°	mmhg
1	2702	94,3	5,8	118	1,16	17	758,7
2	2703	96,8	10,5	106	1,24	17	758,7
3	2703	98,5	14,5	95	1,3	17	758,7
4	2703	100	18,1	84	1,34	17	758,7
5	2702	102,4	22,6	72	1,38	17	758,7
6	2703	104,8	26,9	60	1,4	17	758,7
7	2703	107,1	32,1	47	1,4	17	758,7
8	2702	109,1	36,1	35	1,38	17	758,7
9	2702	111,3	39,9	23	1,3	17	758,7
10	2703	113,6	43,5	11	1,18	17	758,7
11	2703	114,9	45,3	5	1,05	17	758,7
12	2703	119,6	49,1	0	0,78	17	758,7

Para 2900 [rpm]:

	n	pax%	pd%	Δhx	Fx	ta	Patm
	RPM	%	%	mmhg	kp	C°	mmhg
1	2903	91,5	6,2	134	1,37	16	758,7
2	2903	93,9	12,7	121	1,47	16,5	758,7
3	2903	96,3	16,4	109	1,55	16,5	758,7
4	2903	98,7	21,4	95	1,62	17	758,7
5	2903	100,5	26,1	82	1,65	17	758,7
6	2902	103,4	30,5	70	1,68	17	758,7
7	2904	105,6	35,5	56	1,69	17	758,7
8	2902	108,1	40,2	43	1,68	17	758,7
9	2903	110	44,3	30	1,6	17	758,7
10	2903	112,3	48,1	17	1,49	17	758,7
11	2904	114,6	51,2	8	1,37	17	758,7
12	2904	119,5	56,1	0	0,94	17	758,7

Para 3070 [rpm]:

	n	pax%	pd%	Δhx	Fx	ta	Patm
	RPM	%	%	mmhg	kp	C°	mmhg
1	3075	89,5	6,5	146	1,54	16	758,7
2	3076	92	13,6	133	1,68	16	758,7
3	3076	94,8	19,4	118	1,79	16	758,7
4	3076	97	24,5	104	1,85	16	758,7
5	3077	99,4	29,1	91	1,89	16	758,7
6	3078	101,7	34,4	76	1,91	16	758,7
7	3078	105,2	41,3	59	1,92	16	758,7
8	3078	107,6	46,2	45	1,89	16	758,7
9	3078	110	49,2	32	1,83	16	758,7
10	3077	112,5	54,4	17	1,69	16	758,7
11	3078	114,3	56,9	9	1,55	16	758,7
12	3078	120,5	62,1	0	1,13	16	758,7

Los valores calculados en la experiencia son:

Para 2700 [rpm]:

	Qx	Q	pax	pdx	Нх	Н
	m3/h	m3/h	mca	mca	mca	mca
1	91,8	84,937	-0,685	2,485	3,17	2,7137
2	88,92	82,242	-0,435	4,365	4,8	4,1061
3	82,8	76,582	-0,265	5,965	6,23	5,3294
4	76,32	70,588	-0,115	7,405	7,52	6,4329
5	73,44	67,950	0,125	9,205	9,08	7,7731
6	67,32	62,264	0,365	10,925	10,56	9,0334
7	60,48	55,938	0,595	13,005	12,41	10,6160
8	53,28	49,297	0,795	14,605	13,81	11,8223
9	46,8	43,301	1,015	16,125	15,11	12,9352
10	33,84	31,299	1,245	17,565	16,32	13,9607
11	25,2	23,307	1,375	18,285	16,91	14,4654
12	19,44	17,980	1,845	19,805	17,96	15,3636

Nex	Ne	Nh	ηgl	U2	cm2
KW	KW	KW	-	m/s	m/s
2,3053	1,8260	0,6279	34,3882	17,6715	2,2893
2,4652	1,9504	0,9199	47,1654	17,6715	2,2167
2,5845	2,0448	1,1118	54,3726	17,6715	2,0641
2,6640	2,1077	1,2370	58,6890	17,6715	1,9026
2,7425	2,1723	1,4389	66,2377	17,6715	1,8314
2,7833	2,2021	1,5322	69,5801	17,6715	1,6782
2,7833	2,2021	1,6177	73,4616164	17,6715	1,5077
2,7425	2,1723	1,5877	73,0877	17,6715	1,3287
2,5835	2,0463	1,5258	74,5645872	17,6715	1,1671
2,3459	1,8561	1,1903	64,1318	17,6715	0,8436
2,0875	1,6516	0,9185	55,6109	17,6715	0,6282
1,5507	1,2269	0,7525	61,3356	17,6715	0,4846

ф	ψ	Qx	Qx	Ns
-	-	m3/s	m3/s	2700rpm
0,1295	0,1704	0,0255	0,0255	11768,9033
0,1254	0,2579	0,0247	0,0247	8488,64947
0,1168	0,3347	0,023	0,023	6736,26145
0,1077	0,4040	0,0212	0,0212	5615,98063
0,1036	0,4882	0,0204	0,0204	4780,91528
0,0950	0,5674	0,0187	0,0187	4088,78162
0,0853	0,6667	0,0168	0,0168	3433,57752
0,0752	0,7425	0,0148	0,0148	2973,34942
0,0660	0,8124	0,013	0,013	2604,85575
0,0477	0,8768	0,0094	0,0094	2091,43736
0,0355	0,9085	0,007	0,007	1757,36659
0,0274	0,9649	0,0054	0,0054	1475,32663

Para 2900 [rpm]:

	Qx	Q	pax	pdx	Нх	Н
	m3/h	m3/h	mca	mca	mca	mca
1	102,6	97,193	-0,965	2,645	3,61	3,2395
2	98,28	93,100	-0,725	5,245	5,97	5,3573
3	92,88	87,985	-0,485	6,725	7,21	6,4700
4	84,96	80,482	-0,245	8,725	8,97	8,0494
5	77,76	73,662	-0,065	10,605	10,67	9,5749
6	71,28	67,547	0,225	12,365	12,14	10,9016
7	64,8	61,364	0,445	14,365	13,92	12,4828
8	52,92	50,148	0,695	16,245	15,55	13,9637
9	43,56	41,264	0,885	17,885	17	15,2553
10	29,16	27,623	1,115	19,405	18,29	16,4129
11	20,16	19,091	1,345	20,645	19,3	17,3073
12	10,8	10,227	1,835	22,605	20,77	18,6255

Nex	Ne	Nh	ηgl	U2	cm2
KW	KW	KW	-	m/s	m/s
2,9252	2,4866	0,8577	34,4936	19,4386	2,6196
3,1387	2,6681	1,3587	50,9244	19,4386	2,5093
3,3095	2,8133	1,5508	55,1226	19,4386	2,3715
3,4590	2,9404	1,7648	60,0200	19,4386	2,1692
3,5230	2,9948	1,9214	64,1565	19,4386	1,9854
3,5858	3,0514	2,0060	65,7401	19,4386	1,8206
3,6097	3,0653	2,0867	68,0741	19,4386	1,6539
3,5858	3,0514	1,9076	62,5165	19,4386	1,3516
3,4163	2,9041	1,7149	59,0501	19,4386	1,1122
3,1814	2,7044	1,2351	45,6687	19,4386	0,7445
2,9262	2,4849	0,9001	36,2228	19,4386	0,5146
2,0077	1,7050	0,5189	30,4359	19,4386	0,2757

ф	ψ	Qx	Qx	Ns
-	-	m3/s	m3/s	2900rpm
0,1348	0,1681	0,0285	0,0285	11840,1068
0,1291	0,2781	0,0273	0,0273	7946,28551
0,1220	0,3358	0,0258	0,0258	6705,35838
0,1116	0,4178	0,0236	0,0236	5444,08954
0,1021	0,4970	0,0216	0,0216	4572,64148
0,0937	0,5659	0,0198	0,0198	3972,67047
0,0851	0,6479	0,018	0,018	3420,73942
0,0695	0,7248	0,0147	0,0147	2842,98675
0,0572	0,7918	0,0121	0,0121	2413,34596
0,0383	0,8519	0,0081	0,0081	1869,15717
0,0265	0,8983	0,0056	0,0056	1493,27295
0,0142	0,9668	0,003	0,003	1034,41884

Para 3070 [rpm]:

	Qx	Q	pax	pdx	Нх	Н
	m3/h	m3/h	mca	mca	mca	mca
1	111,6000	108,8780	-1,1650	2,7650	3,9300	3,7406
2	107,2800	104,6294	-0,9150	5,6050	6,5200	6,2018
3	100,8000	98,3095	-0,6350	7,9250	8,5600	8,1422
4	99,0000	96,5540	-0,4150	9,9650	10,3800	9,8734
5	87,8400	85,6419	-0,1750	11,8050	11,9800	11,3879
6	82,8000	80,7018	0,0550	13,9250	13,8700	13,1759
7	71,2800	69,4737	0,4050	16,6850	16,2800	15,4653
8	63,0000	61,4035	0,6450	18,6450	18,0000	17,0993
9	43,2000	42,1053	0,8850	19,8450	18,9600	18,0112
10	30,6000	29,8343	1,1350	21,9250	20,7900	19,7625
11	24,1200	23,5088	1,3150	22,9250	21,6100	20,5286
12	17,2800	16,8421	1,9350	25,0050	23,0700	21,9156

Nex	Ne	Nh	ηgl	U2	cm2
KW	KW	KW	1	m/s	m/s
3,4830	3,2343	1,1095	34,3038	21,2058	2,9346
3,8008	3,5260	1,7677	50,1328	21,2058	2,8201
4,0497	3,7569	2,1806	58,0425	21,2058	2,6497
4,1854	3,8828	2,5970	66,8845	21,2058	2,6024
4,2773	3,9642	2,6568	67,0210	21,2058	2,3083
4,3240	4,0035	2,8967	72,3529	21,2058	2,1752
4,3466	4,0245	2,9269	72,7283	21,2058	1,8725
4,2787	3,9616	2,8603	72,1994	21,2058	1,6550
4,1429	3,8358	2,0659	53,8584	21,2058	1,1349
3,8247	3,5447	1,6062	45,3119	21,2058	0,8041
3,5090	3,2489	1,3147	40,4653	21,2058	0,6336
2,5582	2,3686	1,0055	42,4517	21,2058	0,4539

ф	ψ	Qx	Qx	Ns
-	-	m3/s	m3/s	3070rpm
0,1384	0,1631	0,031	0,031	11909,6754
0,1330	0,2705	0,0298	0,0298	7990,55854
0,1250	0,3551	0,028	0,028	6315,07328
0,1227	0,4306	0,0275	0,0275	5415,92989
0,1089	0,4967	0,0244	0,0244	4582,98216
0,1026	0,5747	0,023	0,023	3987,89357
0,0883	0,6745	0,0198	0,0198	3281,17037
0,0780	0,7458	0,0175	0,0175	2860,89311
0,0535	0,7856	0,012	0,012	2278,49909
0,0379	0,8619	0,0085	0,0085	1789,01698
0,0299	0,8954	0,0067	0,0067	1543,41712
0,0214	0,9558	0,0048	0,0048	1243,86117

2.- Curvas y cuestionarios

¿Cuáles son las condiciones óptimas de operación de esta bomba?

Esto ocurre cuando el rendimiento es el máximo, en este caso cuando la bomba opera a 2700 [rpm] a 43 [m3/h] de caudal con un rendimiento del 82%

¿Las curvas tienen la forma esperada?

Según los apuntes del profesor tomas, las formas de las curvas son coherentes con las realizadas en el informe, sin embargo, presentan pequeñas variaciones por conceptos de medición empírica principalmente por la precisión de Qx.

¿Cuál es la potencia máxima consumida?

Esta ocurre cuando la bomba opera a 3070 [rpm] con un valor de 4,4 [kW] a 64 [m3/h] de caudal.

¿Qué tipo de curvas son?

Ambas curvas parabolicas (la primera invertida).

¿La nube de puntos que conforman esta curva son muy dispersos?

Si bien podemos ver que el conjunto de puntos está cerca, la que más se aleja es la curva de 2700[rpm] en el valor de Φ cercano a 0.06 por ende, se aprecia que los datos no son dispersos.

¿Al observar todas las bombas anteriores, qué tipo de bomba centrífuga es?

Por los valores de velocidad específica, podemos decir que en base al punto optimo de funcionamiento la bomba será una Francis helicoidal.

Para el calculo de la velocidad específica, concluimos lo mismo que en punto anterior y se incorporo a las tablas calculadas al comienzo del informe.

CONCLUSIONES

En este ensayo se logro comprender en detalle el funcionamiento de la bomba centrifuga y sus principales características respecto a las curvas enseñadas en clases.

Otro punto importante es que la experiencia nos enseña en base a los valores obtenidos y las curvas mostradas como y con que parámetros debemos seleccionar una bomba.

RFFFRFNCIAS

PAPER DE LA EXPERIENCIA Y APUNTES DE LA ASIGNATURA.

DIAGRAMAS CONTENIDOS EN LA EXPERIENCIA

SELECCIÓN DE BOMBAS:

https://pt.slideshare.net/LuisMorales94/seleccion-de-bombas/2