Praca Domowa Termodynamika i Fizyka Statystyczna R 2021/2022

Kacper Cybiński

26 maja 2022

1 Zadanie 2

2. W przemianie fazowej drugiego rodzaju molowe entropie współistniejących faz są sobie równe wzdłuż linii współistnienia. Dla pewnej substancji, która doznaje przemiany fazowej drugiego rodzaju znamy ciepła molowe obu faz c_{p1} i c_{p2} , oraz współczynniki rozszerzalności cieplnej $\alpha = \frac{1}{v} \left(\frac{\partial v}{\partial T} \right)_p$ równe α_1 i α_2 (parami różne). Znajdź nachylenie $\frac{dp(T)}{dT}$ linii współistnienia faz dla tej przemiany fazowej.

2 Rozwiązanie

Zauważmy na początku, że jest to przemiana drugiego rodzaju, więc znany z wykładu wzorek nie zadziała (plus dostaniemy dla niego $\frac{0}{0}$). Wiadomo jednak, że mamy równość entropii molowych dla obu faz, to znaczy:

$$s_1 = s_2$$

Skoro tak, to zachodzi również:

$$ds_1 = ds_2$$

Załóżmy, że entropia molowa jest funkcją ciśnienia i temperatury. Wówczas mamy równość:

$$ds = \left(\frac{\partial s}{\partial T}\right)_p dT + \left(\frac{\partial s}{\partial p}\right)_T dp$$

Z definicji $\left(\frac{\partial s}{\partial T}\right)_p = c_p$, natomiast z relacji Maxwella mamy, że $\left(\frac{\partial s}{\partial p}\right)_T = -\left(\frac{\partial V}{\partial T}\right)_p = -\alpha v$. Czyli możemy zapisać:

$$\frac{1}{T}c_{p1}dT - \alpha_1 v_1 dp = \frac{1}{T}c_{p2}dT - \alpha_2 v_2$$

$$(\alpha_1 v_1 - \alpha_2 v_2)dp = \frac{1}{T}(c_{p1} - c_{p2})dT$$

A stąd dostajemy szukany wynik:

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{c_{p1} - c_{p2}}{T(\alpha_1 v_1 - \alpha_2 v_2)}$$

Ale skoro entropie są sobie równe to ze wzoru Clausiusa-Claperyona wnioskujemy, że $v_1 = v_2$. Czyli ostatecznie:

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{c_{p1} - c_{p2}}{Tv(\alpha_1 - \alpha_2)}$$