Introduction to Big Data

Pooya Jamshidi

pooya.jamshidi@ut.ac.ir

Ilam University

School of Engineering, Computer Group

February 22, 2025

Pooya Jamshidi Big data February 22, 2025 1/29

Big Data Characteristics & Data Mining

Big Data Characteristics

- 3 V's (Laney 2001)
 - Volume
 - Variety
 - Velocity
- Plus one
 - Value
- Another one
 - Veracity
- Plus many more
 - Validity
 - Variability
 - Viscosity & Volatility
 - Viability
 - Venue
 - Vocabulary

Volume

- How much storage space the data takes up
 - Driven by exponential growth in storage capacity
 - Mediated by technology
 - Parallel processing
 - Better hardware
- Zetabyte Era:
 - Cisco Inc. report:
 - The global IP traffic achieved an estimated 1.2 ZB (or an average of 96 exabytes (EB) per month) in 2016.
 - Global IP traffic: All digital data that passes over an IP network which includes, but is not limited to, the public Internet
 - The largest contributing factor to the growth of IP traffic comes from video traffic (including online streaming services like Netflix and YouTube).

How much is a ZettaByte?

Value	Metric
10 ³	kB (kilobyte)
10 ⁶	MB (megabyte)
10 ⁹	GB (gigabyte)
10 ¹²	TB (terabyte)
10 ¹⁵	PB (petabyte)
10 ¹⁸	EB (exabyte)
10 ²¹	ZB (zettabyte)
10 ²⁴	YB (yottabyte)

Volume

- European Union industry chief
 Thierry Breton called on
 streaming platforms to help
 reduce their load on the continent's
 infrastructure at the beginning of
 COVID-19 lockdown.
- Billion is the keyword we're looking for...

Data Storage Calculation:

$$(10^6 \times 10 \text{kB}) = 10 \text{GB}$$

$$(10^9 \times 10 \text{kB}) = 10 \text{TB}$$

6 / 29

Variety

- How heterogeneous the data is.
 - Many features per item
 - Irregular structure (as opposed to structured data for RDBMSes)
 - Need to store and retrieve different data types quickly, efficiently, cheaply
 - Need to align & integrate different representations
 - Dealt with using standards, specs, etc.
- Big data draws from text, images, audio, and video
 - It completes missing pieces through data fusion.

Dimensions of Variety

- Content:
 - Image, spectrum, timeseries
- Form:
 - Text, numeric, relational, graphical, geospatial, sensory
- Format:
 - Plain-text file, .csv, fixed-width, Excel spreadsheet, HTML table
- Structure:
 - Unstructured text, semi-structured email, semantically-marked-up document
- Source:
 - Human-generated, automated sensor logging, scientific instruments, simulations
- Meaning:
 - "This dish is hot."
- Representation:
 - Feb. 20, 2025 vs. **2025/20/02** vs. 2025/02/20

Velocity

- How quickly data must be generated and processed
- Speed of storage / retrieval / analysis
- Aspects:
 - Real-time (acted on immediately)
 - **Timeliness** (rate of capture/usage)
 - Lifespan (how long it's valuable)
 - Response time
- Strategies:
 - Simple ingest & access
 - Parallelization
 - Better hardware

Value

- Business value or ROI
- Data value can be achieved by the processing and analysis of large datasets.
- Value also can be measured by an assessment of the other qualities of big data.
- Value may also represent the profitability of information that is retrieved from the analysis of big data.

Veracity

- Is the data trustworthy?
 - Provenance, reliability, accuracy, completeness, ambiguity.
 - Importance of Veracity depends on what the Value of the data is.
- Strategies:
 - Transparent QC
 - Provenance tracking
 - Data management best practice
 - Good governance practices
- Note: Provenance and other veracity metadata can itself become Big Data.

Validity

- Accuracy and correctness of the data relative to a particular use.
 - Example: Gauging storm intensity

How much data does Facebook have?

- It contains an extremely heterogeneous set of data:
 - Binary blobs: e.g., photos & videos
 - Textual data: e.g., post contents
 - Metadata: e.g., impressions & metadata
- Facebook stores several exabytes of data, and the size grows exponentially.

Source 1 — Source 2

Pooya Jamshidi Big data February 22, 2025 13/29

Variability

- How the meaning of the data changes over time
 - Language evolution
 - Data availability
 - Sampling processes
 - change in the souece of data

Viscosity & Volatility

- Both related to velocity.
- Viscosity: data velocity relative to timescale of event being studied.
- Volatility: rate of data loss and stable lifetime of data.
 - Scientific data often has practically unlimited lifespan, but social/business data may evaporate in finite time.

More V's

Viability

- Which data has meaningful relations to questions of interest?
- Another take on value.

Venue

• Where does the data live and how do you get it?

Vocabulary

- Metadata describing structure, content, & provenance
- Schemas, semantics, ontologies, taxonomies, vocabularies

Critiques of Big V's Model

- Big V's model concerns mostly about scalability than understandability.
- An alternative is cognitive big data which concerns around:
 - Data completeness: Understanding of the non-obvious from data.
 - Data correlation, causation, and predictability: Causality as not essential requirement to achieve predictability.
 - Explainability and interpretability: Humans desire to understand and accept what they understand, where algorithms do not cope with this.
 - Level of automated decision making: Algorithms that support automated decision making and algorithmic self-learning.

Source: A. Lugmayr, et al. A comprehensive survey on big-data research and its implications - What is really 'new' in big data? It's cognitive big data! Pacific Asia Conference on Information Systems, 2016.

Data Mining

Data Mining

- To extract knowledge from data, it needs to be:
 - Stored
 - Managed
 - Analyzed

Predictive Analytics \approx **Data Science**

Good News

¹ Other supply drivers include attrition (-), immigration (+), and reemploying previously unemployed deep analytical talent (+). SOURCE: US Bureau of Labor Statistics; US Census; Dun & Bradstreet; company interviews; McKinsey Global Institute analysis

Pooya Jamshidi Big data February 22, 2025 20/29

What is Data Mining?

- Given lots of data
- Discover patterns and models that are:
 - Valid: hold on new data with some certainty
 - Useful: should be possible to act on the item
 - Unexpected: non-obvious to the system
 - Understandable: humans should be able to interpret the pattern

Data Mining Tasks

Descriptive methods

- Find human-interpretable patterns that describe the data
- Example: Clustering

Predictive methods

- Use some variables to predict unknown or future values of other variables
- Example: Recommender systems

Meaningfulness of Analytic Answers

- A risk with "Data mining" is that an analyst can "discover" patterns that are meaningless.
- Statisticians call it Bonferroni's principle:
 - Roughly, if you look in more places for interesting patterns than your amount of data will support, you are bound to find crap.

Total Information Awareness (TIA)

- Following the terrorist attack on Sep. 11, 2001, it turned out that:
 - Four people enrolled in different flight schools for commercial aircrafts.
 - They were not affiliated with any airline.
 - Conclusion: There was enough data to prevent the attack.
- Total Information Awareness (TIA) was created under DARPA to mine all the data it could find to track terrorist activity. These data include:
 - credit-card receipts
 - hotel records
 - travel data
- TIA caused great concern among privacy advocates, and the project was eventually killed by Congress.

Meaningfulness of Analytic Answers

Example:

- We want to find (unrelated) people who at least twice have stayed at the same hotel on the same day.
 - 1 billion (10⁹) people being tracked
 - 1,000 days
 - Each person stays in a hotel 1% of time (1 day out of 100)
 - Hotels hold 100 people (so 10⁵ hotels)
- If everyone behaves randomly (i.e., no terrorists) will the data mining detect anything suspicious?

Meaningfulness of Analytic Answers (cont'd)

 Probability of any two people both deciding to visit a hotel on any given day is:

$$(10^{-2})^2 = 10^{-4}$$

• Visiting the same hotel:

$$10^{-4} \times 10^{-5} = 10^{-9}$$

Two people visiting on two different given days is:

$$(10^{-9})^2 = 10^{-18}$$

- Hotels can be different on the two days.
- Expected number of "suspicious" pairs of people:

$$\binom{10^9}{2} \times \binom{1000}{2} \times 10^{-18} \approx 250,000$$

• ... too many combinations to check – we need to have some additional evidence to find "suspicious" pairs of people in a

What matters when dealing with data?

Pooya Jamshidi Big data February 22, 2025 27/29

Data Mining: Cultures

- Data mining overlaps with:
 - Databases: Large-scale data, simple queries
 - Machine learning: Small data, Complex models
 - CS Theory: (Randomized) Algorithms
- Different cultures:
 - To a DB person, data mining is an extreme form of analytic processing – queries that examine large amounts of data
 - Result is the query answer
 - To an ML person, data-mining is the inference of models
 - Result is the parameters of the model
- In this class we will do both!

This Class

- This class overlaps with machine learning, statistics, artificial intelligence, databases but more stress on:
 - Scalability (big data)
 - Algorithms
 - Computing architectures
 - Automation for handling large data