5G Mobile Platform with P4-enabled Network Slicing and MEC

Yihsuan Huang National Chiao Tung University

2019/09/11

Outline

- 5G Mobile Platform with free5GC
- Reduce Loading in MEC with P4 Switch
- P4-enabled Network Slicing

5G Requirements

Multi-cluster Architecture

Legency Hardware Device

Virtualization

Evolution towards the Edge

5G Mobile Platform with free5GC

Motivation

- 5G need Virtualized Network Functions (VNFs)
 - Flexible and efficient network
- Cloud-Native VNFs (CNF)
 - VNFs based on Cloud-Native containerization technology
 - Lower overhead and higher performance
- ETSI proposes NFV Management and Orchestration (NFV-MANO) architecture
- Many existing NFV-MANO projects
 - Complex service development
 - Insufficient support of CNF orchestration
 - □ High resource usage, e.g. CPU, memory, disk
- Need a 5G Lightweight NFV-MANO platform

So we want to

Propose a 5G Lightweight NFV-MANO Mobile Platform

- Utilize SDN, NFV, Cloud to provide 5GC flexibility and scalability
- All open sources
 - Kubernetes, ONOS, free5GC
- NFV functionality
 - Scalable free5GC CNFs
- Cloud functionality
 - Agile orchestration
- SDN functionality
 - Flexible underlay network

ETSI NFV-MANO

- NFVO: NFV Orchestrator
 - Management of the instantiation of VNFMs
- VNFM: VNF Manager
 - Manage lifecycle of VNF instances
- VIM: Virtualized Infrastructure Manager
 - E.g. OpenStack, Kubernetes, ONOS
- VNF: Virtualized Network Function
 - free5GC
- NFVI: NFV Infrastructure
 - Provide the infrastructure resources
- ☐ EM: Element Management
- OSS/BSS: Operation/Business System Support

free5GC

The free5GC is an open-source project code for 5G generation mobile core network created by NCTU

- CNFs (Cloud-Native VNFs)
 - AMF: Access Management Function
 - SMF: Session Management Function
 - HSS: Home Subscriber Server
 - PCRF: Policy and Charging Rules Function
 - UPF: User Plane Function

All CNFs are containerization and running on K8s cluster

free5GC-Op

Cloud-Native VNF

- Each NF of free5GC is a CNF
- May install/update a group of designated free5GC CNFs
 - Using Helm HEM
- Create Custom Resource Definition (CRD) for free5GC CNFs
- Introduce a free5GC Operator (free5GC-Op) as VNFM for free5GC CNFs CR

ONOS-Op

- Use ONOS to manage underlying SDN network
- Interact with ONOS
 - □ Modify **OLM-Op**
 - Introduce ONOS-Op
- Introduce a ONOS Operator (ONOS-Op) as VNFM
 - Implement a ONOS-Op as VNFM for ONOS REST API
 - Create CRD for ONOS REST API
 - Treat ONOS REST API as CR

Operator Lifecycle Manager (OLM) •

- Create Custom Resource Definition for Custom Operators (C-Ops)
 - Treat Custom Operator (C-Op) as CR in K8s
- Employ two operators to manage C-Op CR:
 - 1. OLM Operator (OLM-Op):
 - Watch C-Op CR update request
 - Perform C-Op installation/modification
 - 2. Catalog Operator (optional)
 - ☐ Cache of C-Op custom resource

Architecture of 5G Mobile Platform

Data Network

- Multus
 - multi-interface
 - eth0: Internal
 - eth1: external
- Calico
 - Deliver native Linux networking dataplane
- **SR-IOV**
 - Lowers latency and boosts throughput to satisfy CNF data plane needs

Reduce Loading in MEC with P4 Switch

P4-based MEC network

Network feature

Provide better packet I/O with P4 switch

Reduce MEC loading from packet encapsulation and decapsulation

eNodeB

Two approaches

UE

Packet-in SCTP packets

Redirect DNS

Outline

Network feature

- □ Provide better packet I/O with P4 switch
- Reduce MEC loading from packet encapsulation and decapsulation
 - Two approachesPacket-in downlink GTP-U packets
 - □ Packet-in SCTP packets
- □ Redirect DNS

Stateful GTP packet tracking (1/3)

- Decapsulate GTP-U header before sending it MEC
- Encapsulate packet with GTP-U header before sending it to UE
 - Tracking mapping between UE IP and downlink TEID

Tunnel endpoint identifier

Stateful GTP packet tracking (2/3)

- Decapsulate GTP-U header before sending it MEC
- Encapsulate packet with GTP-U header before sending it to UE
 - Tracking mapping between UE IP and downlink TEID

Stateful GTP packet tracking (3/3)

- Decapsulate GTP-U header before sending it MEC
- Encapsulate packet with GTP-U header before sending it to UE
 - Tracking mapping between UE IP and downlink TEID

Tunnel endpoint identifier

Packet-in downlink GTP-U packets (1/3)

Packet-in downlink GTP-U packets (2/3)

P4 Switch

EPC

eNodeB

UE

Packet-in downlink GTP-U packets (3/3)

Controller

UE Addr.	DL TEID		
192.168.3.2	777		

Outline

Network feature

- □ Provide better packet I/O with P4 switch
- Reduce MEC loading from packet encapsulation and decapsulation
 - Two approaches

Packet-in SCTP packets

Switch Controller

Packet-in SCTP packets (1/2)

Switch Controller

Initial Context Setup
Request
S1-AP
SCTP
IP
Ethernet

Packet-in SCTP packets (2/2)

Switch

Initial Context Setup Request S1-AP SCTP IP Ethernet

Controller

MME-	SGW	ENB Addr.	DNS	UE Addr.	DL	UL	
UE-ID	Addr.		Addr.		TEID	TEID	
112233	10.0.9.2		8.8.8.8	192.168.3.2		1	

Packet-in SCTP packets

Switch Controller

MME-	SGW	ENB Addr.	DNS	UE Addr.	DL	UL
UE-ID	Addr.		Addr.		TEID	TEID
112233	10.0.9.2		8.8.8.8	192.168.3.2		1

Packet-in SCTP packets (1/2)

Switch

Initial Context Setup
Response
S1-AP
SCTP
IP
Ethernet

Controller

MME-	SGW	ENB Addr.	DNS	UE Addr.	DL	UL
UE-ID	Addr.		Addr.		TEID	TEID
112233	10.0.9.2		8.8.8.8	192.168.3.2		1

Packet-in SCTP packets (2/2)

Switch

Initial Context Setup Response S1-AP SCTP IP Ethernet

Controller

MME-	SGW	ENB Addr.	DNS	UE Addr.	DL	UL
UE-ID	Addr.		Addr.		TEID	TEID
112233	10.0.9.2	10.0.9.100	8.8.8.8	192.168.3.2	777	1

Outline

Network feature

- □ Provide better packet I/O with P4 switch
- □ Reduce MEC loading from packet encapsulation and decapsulation
 - □ Two approaches
 - ☐ Packet-in downlink GTP-U packets
 - ☐ Packet-in SCTP packets
- Redirect DNS

DNS traffic redirection

- ☐ UE sends DNS requests to ask for a specific service on the Internet
- Switch (P4) redirect the DNS query to MEC
 - Target service can be provided by MEC
 - Response the request by MEC address
 - Target service cannot be provided by MEC
 - Response the request by real service address
- UE send normal traffic to service

P4-enabled Network Slicing

Design of Bandwidth Slice Management

- Bandwidth slice
 - Contain disjoint traffic flows identified from user-defined field
 - Reach isolation of bandwidth resources by priority forwarding
- Aggregated traffic flow in a slice will share the bandwidth resource

Policy of Bandwidth Management

- Sliced Traffic (aggregated traffic flows)
 - Guarantee minimum bandwidth
 - Best effort delivery without any guarantee
 - Limit maximum bandwidth

- Unspecified Traffic
 - Best effort delivery without any guarantee

Packet Classification

- P4 Meter with Two Rate Three Color Marker classification
 - minimum bandwidth: Committed Information Rate (CIR)
 - maximum bandwidth: Peak Information Rate (PIR)
- Color result
 - Green: Guarantee traffic
 - Yellow: Best Effort traffic
 - Red: Abandon traffic

Priority Forwarding

- Guarantee traffic
 - Requested bandwidth cannot exceed link available bandwidth
- Best Effort traffic
 - Contain unspecified packets
 - Deliver by residual bandwidth
 - Maximize bandwidth utilization
- Abandon traffic

Implementation of BW-Slicing.p4

- Extension from ONOS Basic pipeline
 - Provides fundamental data-plane functionalities of the switch

Conclusion

Conclusion

5G Mobile Platform with P4-enabled Network Slicing and MEC

UE₂

- Compliant with ETSI MANO
- NCTU free5GC
- Loading Reduction in MEC with P4 Switch
- P4-enabled network slicing

 UE1

 Slice 1

 Femto P4 Switch vPlatform

 Slice 2

Thank you.

Q & A

Packet-in downlink GTP-U packets

Packet-in SCTP packets

Switch

Initial Context Setup Response S1-AP SCTP IP Ethernet

Controller

MME-	SGW	ENB Addr.	DNS	UE Addr.	DL	UL
UE-ID	Addr.		Addr.		TEID	TEID
112233	10.0.9.2	10.0.9.100	8.8.8.8	192.168.3.2	777	1

Priority Forwarding - Two-Level Priority Queue

Single Queue: Best effort packet interference

