# Algoritmo Genético para o Ajuste das Bandas de Energia do $CrS_2$ e $CrSe_2$ via Modelo $k \cdot p$

Davi Valadares Rodrigues Feliciano

Universidade de Brasília - Instituto de Física

22 de setembro de 2022



- Composição segue MX<sub>2</sub>, sendo M um metal de transição e X um calcogênio (S, Se ou Te)
- Ascenderam com a descoberta do Grafeno
- Alguns são semicondutores, o que possibilitam algumas aplicações como
  - Transístores
  - 2 Amplificadores Operacionais
  - Fotodetectores
  - O Células Solares
- O caso mais estudado é o dissulfeto de molibdênio MoS<sub>2</sub>, que ocorre naturalmente na forma do mineral molibdenita





Figura: (a) Molibdenita incrustada em uma massa de quartzo. (b) Representação da estrutura cristalina da molibdenita. Molibdênio em azul, enxofre em amarelo.

- Para aplicações, é de fundamental importância o conhecimento sobre a estrutura eletrônica do material
- Em especial, é importante o conhecimento do bandgap do cristal
- Este valor é a diferença entre o menor nível da banda de condução e o maior nível da banda de valência
- Essa é a energia de um éxciton produzido pela excitação de um elétron de valência

Um éxciton é um par elétron-buraco formado pela transição de um elétron de valência para uma camada de condução



- Usualmente, as bandas s\(\tilde{a}\) calculadas ao longo da primeira zona de Brillouin do cristal
- Essa região é a correspondente da célula primitiva de Wigner-Seitz na rede recíproca
- A rede recíproca pode ser vista como a transformada de Fourier da rede primitiva



Figura: A primeira zona de Brillouin é obtida da seguinte forma: primeiro, traçamos segmentos de reta de *O* até os pontos vizinhos na rede recíproca. Em seguida traçamos os planos mediadores de cada um desses segmentos. O volume delimitado corresponde à região desejada.



Figura: Zona de Brillouin para monocamadas de TMDCs e principais pontos de simetria. Geralmente as bandas de valência e de condução são calculadas ao longo desses pontos, como no caminho exemplificado.



Figura: Energias das bandas de condução e de valência ao longo do caminho  $\Gamma$ -K-M para o dissulfeto de molibdênio, calculadas via DFT.



- Aproxima as bandas em torno dos vales K e K'
- É um modelo analítico, o que facilita o desenvolvimento de uma intuição física acerca do material, possibilitando a observação do comportamento das bandas de energia com a variação dos parâmetros que as descrevem
- Computacionalmente barato
- Possibilidade de inclusão de um campo magnético normal à monocamada do material à descrição do sistema, o que tornaria impraticável o uso do DFT

As bandas são dadas na base

$$\{|\Psi_{C},\uparrow\rangle\,;\,|\Psi_{C},\downarrow\rangle\,;\,|\Psi_{V},\uparrow\rangle\,;\,|\Psi_{V},\downarrow\rangle\}$$

pelos autovalores de

$$\hat{H}_{kp}(\mathbf{k}) = \hat{H}_0 + \sum_{i=1}^3 \hat{H}_{kp}^{(i)}(\mathbf{k})$$

• O vetor k é uma posição na zona de Brillouin



$$\begin{split} \hat{H}_0 &= \begin{pmatrix} E_F + \Delta - \tau \lambda_c & 0 & 0 & 0 \\ 0 & E_F + \tau \lambda_v & 0 & 0 \\ 0 & 0 & E_F + \Delta + \tau \lambda_c & 0 \\ 0 & 0 & 0 & E_F + \Delta + \tau \lambda_c & 0 \\ 0 & 0 & 0 & 0 & E_F - \tau \lambda_v \end{pmatrix} \\ \hat{H}_{kp}^{(1)}(\mathbf{k}) &= \begin{pmatrix} 0 & \gamma_0 f_1(\mathbf{k},\tau) & 0 & 0 & 0 \\ \gamma_0 f_1^{\dagger}(\mathbf{k},\tau) & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \gamma_0 f_1(\mathbf{k},\tau) & 0 \\ 0 & 0 & 0 & \gamma_0 f_1^{\dagger}(\mathbf{k},\tau) & 0 & 0 \\ 0 & 0 & 0 & \gamma_0 f_1^{\dagger}(\mathbf{k},\tau) & 0 & 0 \\ 0 & 0 & 0 & \gamma_1 f_2(\mathbf{k}) & \gamma_3 f_3(\mathbf{k},\tau) & 0 & 0 \\ 0 & 0 & \gamma_1 f_2(\mathbf{k}) & \gamma_3 f_3(\mathbf{k},\tau) & 0 & 0 \\ 0 & 0 & \gamma_1 f_2(\mathbf{k}) & \gamma_3 f_3(\mathbf{k},\tau) & 0 \\ 0 & 0 & \gamma_1 f_2(\mathbf{k}) & \gamma_3 f_3(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) \\ 0 & 0 & \gamma_1 f_2(\mathbf{k}) & \gamma_3 f_3(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_3 f_3(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_3 f_3(\mathbf{k},\tau) & \gamma_2 f_2(\mathbf{k}) & 0 & 0 \\ 0 & 0 & \gamma_3 f_3^{\dagger}(\mathbf{k},\tau) & \gamma_3 f_3(\mathbf{k},\tau) & \gamma_3 f_3(\mathbf{k$$

#### Como usar esse modelo?

- Suponha que tenhamos uma sequencia de valores das bandas ao longo de Γ-K-M, tendo pontos na vizinhança de K
- Esses valores podem ser obtidos usando DFT, por exemplo
- Vamos denotar por  $E_{ik}^{(dft)}$  o *i*-ésimo maior valor de energia no k-ésimo ponto
- Podemos usar o modelo para inferir os valores dos parâmetros que descrevem o cristal

#### Como usar esse modelo?

- Os parâmetros que melhor ajustam o modelo podem ser encontrados usando o método dos mínimos quadrados
- Procuramos os parâmetros que minimizem

$$f(E_F, \Delta, \lambda_c, \lambda_v, \gamma_i) = \frac{1}{4N} \sum_{k=1}^{N} \sum_{i=1}^{4} \left( E_{ik}^{(dft)} - E_{ik}^{(kp)} \right)^2$$

sendo  $E_{ik}^{(kp)}$  o i-ésimo maior autovalor de  $\hat{H}_{kp}$ 

#### Como usar esse modelo?

- Para obter o valor de f então é preciso obter os autovalores da Hamiltoniana e em seguida ordená-los
- Isso sugere o uso de métodos de busca estocásticos
- Usaremos o Algoritmo Genético desenvolvido para buscar um mínimo para f

#### Parâmetros Usados no Algorítmo para o Ajuste

- 16 processos concorrentes
- 1000 indivíduos por processo, evoluídos por 200 gerações

• 
$$p_2 = p_3 = 5\%$$
,  $h = 2$ ,  $e_1 = 5\%$  e  $e_2 = e_3 = 10\%$ 

|               | Mínimo | Máximo |
|---------------|--------|--------|
| $E_F$         | -1,0   | 1,0    |
| Δ             | 0,5    | 1,2    |
| $\lambda_c$   | 0,0    | 1,0    |
| $\lambda_{v}$ | 0,0    | 1,0    |
| $\gamma_i$    | -1,0   | 1,0    |

|               | CrS <sub>2</sub> | $CrSe_2$    |
|---------------|------------------|-------------|
| a (Å)         | 3,022302679      | 3,167287237 |
| $\Delta$ (eV) | 0,942            | 0,763       |

Tabela: Valores para os parâmetros de rede considerados nos processos de otimização e valores esperados para o *bandgap*, para cada um dos materiais considerados.

|               | Algorítmo Genético |           | Dual Annealing |           |
|---------------|--------------------|-----------|----------------|-----------|
|               | 1ª Ordem           | 3ª Ordem  | 1ª Ordem       | 3ª Ordem  |
| f             | 0,003858           | 0,000335  | 0,003860       | 0,000165  |
| $E_F$         | -0,052734          | 0,023191  | -0,052109      | 0,010791  |
| Δ             | 1,077500           | 0,954347  | 1,076284       | 0,976370  |
| $\lambda_c$   | -0,002289          | 0,006503  | 0,000000       | 0,000000  |
| $\lambda_{v}$ | 0,031810           | 0,030079  | 0,032250       | 0,033154  |
| $\gamma_0$    | 0,475147           | 0,508048  | -0,475765      | 0,662441  |
| $\gamma_1$    |                    | 0,227823  |                | 0,038586  |
| $\gamma_2$    |                    | -0,216329 |                | -0,050962 |
| $\gamma_3$    |                    | 0,185349  |                | 0,196977  |
| $\gamma_4$    |                    | -0,063952 |                | -0,128763 |
| $\gamma_5$    |                    | 0,037538  |                | 0,116953  |
| $\gamma_6$    |                    | -0,196858 |                | -0,147924 |

Tabela: Parâmetros da Hamiltoniana  $\hat{H}_{kp}$  ajustados para  $\operatorname{CrS}_2$  usando as expansões de  $1^{\underline{a}}$  e  $3^{\underline{a}}$  ordem, bem como os valores para a função objetivo f correspondente.

|               | Algorítmo Genético |           | Dual Annealing |           |
|---------------|--------------------|-----------|----------------|-----------|
|               | 1ª Ordem           | 3ª Ordem  | 1ª Ordem       | 3ª Ordem  |
| f             | 0,002695           | 0,000261  | 0,002695       | 0,000129  |
| $E_F$         | 0,657808           | 0,722708  | 0,657704       | 0,715254  |
| Δ             | 0,897031           | 0,792868  | 0,896809       | 0,814547  |
| $\lambda_c$   | 0,006592           | 0,007456  | 0,006680       | 0,007329  |
| $\lambda_{v}$ | 0,045311           | 0,047549  | 0,045330       | 0,042298  |
| $\gamma_0$    | -0,381442          | -0,649511 | 0,381519       | 0,456269  |
| $\gamma_1$    |                    | -0,090387 |                | 0,137704  |
| $\gamma_2$    |                    | 0,090028  |                | -0,154747 |
| $\gamma_3$    |                    | -0,075382 |                | 0,124848  |
| $\gamma_4$    |                    | -0,059988 |                | -0,030592 |
| $\gamma_5$    |                    | 0,037979  |                | 0,016737  |
| $\gamma_6$    |                    | 0,110312  |                | -0,169387 |

Tabela: Parâmetros da Hamiltoniana  $\hat{H}_{kp}$  ajustados para  $CrSe_2$  usando as expansões de  $1^{\underline{a}}$  e  $3^{\underline{a}}$  ordem, bem como os valores para a função objetivo f correspondente.



Figura: Gráficos das bandas de energia ajustadas para  $CrS_2$  via Algoritmo Genético usando as expansões de  $1^{\underline{a}}$  e  $3^{\underline{a}}$  ordem de  $\hat{H}_{kp}$ .





Figura: Gráficos das bandas de energia ajustadas para  $CrS_2$  via Dual Annealing usando as expansões de  $1^{\underline{a}}$  e  $3^{\underline{a}}$  ordem de  $\hat{H}_{kp}$ .





Figura: Gráficos das bandas de energia ajustadas para  $CrSe_2$  via Algoritmo Genético usando as expansões de  $1^a$  e  $3^a$  ordem de  $\hat{H}_{kp}$ .



Figura: Gráficos das bandas de energia ajustadas para  $CrSe_2$  via *Dual Annealing* usando as expansões de  $1^{\underline{a}}$  e  $3^{\underline{a}}$  ordem de  $\hat{H}_{kp}$ .



- Podemos estudar o comportamento do bandgap dos materiais em questão sob o efeito de um campo magnético B normal à monocamada
- Adicionando o termo de iteração à expansão de 1<sup>a</sup> ordem e calculando os seus autovalores, obtemos

$$\begin{split} E_{\pm}(B,n,s_z) &= \frac{\lambda_{\nu}\tau s_z}{2} \pm \sqrt{\frac{(\Delta-\lambda_{\nu}\tau s_z)^2}{4} + \frac{2\gamma_0^2 a^2 eBn}{\hbar}} \\ E_{(n=0)} &= \begin{cases} -\Delta/2 + \lambda_{\nu} s_z \;, & \text{se } \tau = 1 \quad \text{(valência)} \\ \Delta/2 \;, & \text{se } \tau = -1 \quad \text{(condução)} \end{cases} \end{split}$$



Figura: Níveis de Landau no vale K para  $CrS_2$  em termos de B.





Figura: Níveis de Landau no vale K' para  $CrS_2$  em termos de B.





Figura: Níveis de Landau no vale K para  $CrSe_2$  em termos de B.





Figura: Níveis de Landau no vale K' para  $CrSe_2$  em termos de B.





Figura: Gráficos de  $\Delta$  nos vales K e K' para  $CrS_2$  em termos da magnitude de B.





Figura: Gráficos de  $\Delta$  nos vales K e K' para  $CrSe_2$  em termos da magnitude de B.



### Conclusões

- O algoritmo desenvolvido se mostrou eficaz em espaços de busca de dimensões maiores ( $\mathbb{R}^{11}$ , no problema discutido)
- Obteve resultados similares em comparação ao método Dual Annealing
- O modelo  $k \cdot p$  aproximou bem as bandas dos cristais  $CrS_2$  e  $CrSe_2$  na vizinhança do vale K
- Dos parâmetros de ajuste foi possível calcular os níveis de Landau em função de B e obter  $\Delta(B)$

#### Conclusões

- Com a aplicação do campo, há o splitting das bandas de condução e de valência
- Por conseguinte, ocorre uma quebra na simetria de  $\Delta$  que antes existia entre os vales K e K'
- Isso abre marge para aplicações que exploram a diferença na polarização dos fótons emitidos com a transição de um estado de condução para um estado de valência
- A polarização do fóton emitido pode ser selecionada com base na frequência da luz que incide sobre a monocamada em questão, dada a dependência de Δ com B



A. C. Dias.

Estrutura eletrônica e propriedades magneto ópticas dos pontos quânticos de dissulfeto de molibdênio. 2016.



A. C. Dias, J. Fu, L. Villegas-Lelovsky, and F. Qu.

Robust effective zeeman energy in monolayer MoS<sub>2</sub> quantum dots.

Journal of Physics: Condensed Matter, 28(37):375803, jul 2016.



A. V. Kolobov and J. Tominaga.

Two-dimensional transition-metal dichalcogenides, volume 239.

Springer, 2016.