In [1]:

import CHSHCHSH as CHSH
import numpy as np

The CHSH Correlator for a Bell State

Will Parker

The aim of this assignment was to show the violation of the classical limit of the CHSH correlator by generating probabilistically accurate data for the measurement of a two-qubit Bell State. That is, starting with the Bell State:

$$|\Phi\rangle = \frac{1}{2}(|00\rangle + |11\rangle)$$

and one observable for each qubit, I calculated the probability of each outcome. Each observable had eigenstates:

$$|\theta\rangle = \cos\frac{\theta}{2}|0\rangle + \sin\frac{\theta}{2}|1\rangle$$
$$|\theta^{\perp}\rangle = -\sin\frac{\theta}{2}|0\rangle + \cos\frac{\theta}{2}|1\rangle$$

with eigenvalues $\lambda = +1, -1$ respectively. To calculate the probability of a measurement of (λ_1, λ_2) I created the projector for the respective eigenstate and found its expectation value. So I ended up with:

$$P(+1,+1) = \langle \Phi | \theta_1 \theta_2 \rangle \langle \theta_1 \theta_2 | \Phi \rangle$$

$$P(+1,-1) = \langle \Phi | \theta_1 \theta_2^{\perp} \rangle \langle \theta_1 \theta_2^{\perp} | \Phi \rangle$$

$$P(-1,+1) = \langle \Phi | \theta_1^{\perp} \theta_2 \rangle \langle \theta_1^{\perp} \theta_2 | \Phi \rangle$$

$$P(-1,-1) = \langle \Phi | \theta_1^{\perp} \theta_2^{\perp} \rangle \langle \theta_1^{\perp} \theta_2^{\perp} | \Phi \rangle$$

which gives:

$$P(+1,+1) = \frac{1}{2}\cos^2\left(\frac{\theta_1 - \theta_2}{2}\right)$$

$$P(-1,-1) = \frac{1}{2}\cos^2\left(\frac{\theta_1 - \theta_2}{2}\right)$$

$$P(+1,-1) = \frac{1}{2}\sin^2\left(\frac{\theta_1 - \theta_2}{2}\right)$$

$$P(-1,+1) = \frac{1}{2}\sin^2\left(\frac{\theta_1 - \theta_2}{2}\right)$$

I generated large sets of outcomes for the measurements matching these probabilities. Each outcome was in the form of a tuple of data $(\pm 1, \pm 1)$.

In order to average the data, I multiplied each tuple, and then averaged over that set of values; so if the measurements were the same - (1,1) or (-1,-1) - then multiplying would give +1. If they were different, multiplying would give -1. So for example, for $\theta_1=\theta_2=0$ it's clear that the probability of both observables measuring the same eigenvalue should be unity; thus, their average should be 1.

```
In [2]:
```

```
theta1 = 0; theta2 = 0
1 = CHSH.makeData(1000,theta1, theta2)
CHSH.avgDataTog(1)
```

Out[2]:

0.999

We see that indeed, for 1000 measurements, almost all of them returned either (1,1) or (-1,-1).

Likewise, for $\theta_1=\pi,\theta_2=0$, all measurements will return (+1,-1) or (-1,+1), and for $\theta_1=\frac{\pi}{2},\theta_2=0$, measurements will return (+1,-1), (-1,-1), (-1,+1) with equal probabilities, so their average will be 0.

```
In [3]:
```

```
theta1 = np.pi; theta2 = 0
1 = CHSH.makeData(1000,theta1, theta2)
CHSH.avgDataTog(1)
```

Out[3]:

-0.999

In [4]:

```
theta1 = np.pi/2; theta2 = 0
l = CHSH.makeData(1000,theta1, theta2)
CHSH.avgDataTog(1)
```

Out[4]:

-0.081000000000000003

Also, it's good to note that, when averaged separately, each observable seems to be completely random; that is, the average measured value for each observable is 0.

```
In [5]:
```

```
theta1 = np.pi; theta2 = 0
l = CHSH.makeData(1000,theta1, theta2)
CHSH.avgDataSep(1)
```

```
Out[5]:
```

array([0., 0.])

In [7]:

```
theta1 = np.pi/2; theta2 = 0
1 = CHSH.makeData(1000,theta1, theta2)
CHSH.avgDataSep(1)
```

```
Out[7]:
```

array([-0.002, 0.])

This verifies validity of the function for a couple simple tests. Before we move on to the CHSH correlator, I should mention the expectation value of the observable pair $O_1(\theta_1)O_2(\theta_2)$. This can be calculated by:

$$\langle \Phi | \hat{O}_1 \otimes \hat{O}_2 | \Phi \rangle$$

Where $\hat{O} = \lambda_1 |\theta_1\rangle \langle \theta_1| + \lambda_2 |\theta_1^{\perp}\rangle \langle \theta_1^{\perp}| = |\theta_1\rangle \langle \theta_1| - |\theta_1^{\perp}\rangle \langle \theta_1^{\perp}|$ is the operator corresponding to the first observable, and likewise for \hat{O}_2 .

When worked out, this comes to:

$$\langle \Phi | \hat{O}_1 \otimes \hat{O}_2 | \Phi \rangle = \cos^2 \left(\frac{\theta_1 - \theta_2}{2} \right) - \sin^2 \left(\frac{\theta_1 - \theta_2}{2} \right) = \cos(\theta_1 - \theta_2)$$

What this physically gives is the average measured value for the pair of observables as a function of θ_1 and θ_2 .

Now for the CHSH correlator. Writing $\hat{O}(\theta_1,\theta_2) = \hat{O}_1(\theta_1) \otimes \hat{O}_2(\theta_2)$, we can define the CHSH correlator as: $CHSH = \hat{O}\left(0,\frac{\pi}{4}\right) + \hat{O}\left(0,-\frac{\pi}{4}\right) + \hat{O}\left(\frac{\pi}{2},\frac{\pi}{4}\right) - \hat{O}\left(\frac{\pi}{2},-\frac{\pi}{4}\right)$

Classically - that is, where both observables are perfectly correlated such that the measurement always yields either (1,1) or (-1,-1), but with equal probability - this correlator, for the Bell state in this problem, is actually independent of θ_1 and θ_2 . This is equivalent to calculating the expectation value of each qubit individually and multiplying them. Thus, the correlator should always give a value of 2.

Indeed, even in general, this correlator should never exceed 2, for classical probabilities. However, in this case, it reaches a value of $2\sqrt{2}$. We can see this by generating a large set of data and simply computing it.

In [8]:

print(2*np.sqrt(2))
CHSH.CHSH(50000)

2.82842712475

Out[8]:

2.8344

We see that for 50000 measurement tuples generated using the probabilities listed above, the CHSH correlator comes to a value higher than the classical limit. Now, to see how this correlator works for varying angles, we keep the θ_1 s constant, and add ϕ to θ_2 where ϕ varies from 0 to 2π .

Plugging in above, this gives us:

$$CHSH = \cos(-\frac{\pi}{4} - \phi) + \cos(\frac{\pi}{4} - \phi) + \cos(\frac{\pi}{4} - \phi) - \cos(\frac{3\pi}{4} - \phi)$$

Just for some reference, let's look at this function plotted numerically from $\phi = 0$ to $\phi = 2\pi$:

In [10]:

And now, finally, we can run the simulated two-qubit measurement of the Bell state, using the CHSH correlator prescription, and compare its value as a function of ϕ to the analytic plot of the correlator as a function of ϕ . To summarize, this program is generating measurement tuples based on analytic expressions for the probabilities of each possible outcome from the set (+1,+1), (-1,-1), (+1,-1), (-1,+1). Then, to average the values, each tuple is multiplied, giving either 1 or -1. It is clear, then, that if these probabilities are given classically - with the pair perfectly correlated, but an equal probability of (+1,+1) and (-1,-1) - then the CHSH correlator would have a maximum value of 2. However, we see from the graph above that analytically, its maximum is in fact $2\sqrt{2}$. Finally, here is the same plot for the generated values:

In [11]:

All is as it should be. The data generated based on the observable pair seems to be correlated in a way that defies classical correlation, and matches perfectly the analytically derived expectation value.