Analisi 3

Appunti di Analisi 3 del corso di Giovanni Alberti e Maria Stella Gelli

Arianna Carelli e Antonio De Lucreziis

I Semestre 2021/2021

Indice

Capitolo 1

Teoria della misura

1.1 Misure astratte

Definizione. Uno spazio misurabile è una terna (X, \mathcal{A}, μ) tale che

- \bullet X è un insieme qualunque.
- \mathcal{A} è una σ -algebra di sottoinsiemi di X (chiamata σ -algebra dei misurabili) ovvero una famiglia di sottoinsiemi di X che rispetta le seguenti proprietà:
 - $\circ \emptyset, X \in \mathcal{A}.$
 - \circ \mathcal{A} è chiusa per complementare, unione e intersezione numerabile.
- μ è una misura su X, ossia una funzione $\mu \colon \mathcal{A} \to [0, +\infty]$ σ -addittiva, cioè tale che data una famiglia numerabile $\{E_k\} \subset \mathcal{A}$ disgiunta e posto $E := \bigcup E_n$, allora

$$\mu(E) = \sum_{n} \mu(E_n).$$

Notazione. Data una successione crescente di insiemi $E_1 \subset E_2 \subset \cdots \in E_n \subset \cdots \subset U$ scriviamo $E_n \uparrow E$.

Proprietà.

- $\mu(\emptyset) = 0$
- Monotonia: Dati $E, E' \in \mathcal{A}$ e $E \subset E'$, allora $\mu(E) \leq \mu(E')$.
- Data $E_n \uparrow E$, vale $\mu(E) = \lim_{n \to \infty} \mu(E_n) = \sup_n \mu(E_n)$.
- Se $E_n \downarrow E$ e $\mu(E_{\bar{n}}) < +\infty$ per qualche \bar{n} , allora $\mu(E) = \lim_{n \to \infty} \mu(E_n) = \inf_n \mu(E_n)$.
- Subadditività: Se $E \subset \bigcup E_n$, allora $\mu(E) \leq \sum_n \mu(E_n)$.

Osservazione. Dato $X' \in \mathcal{A}$ si possono restringere \mathcal{A} e μ a X' nel modo ovvio.

Definizioni.

• μ si dice **completa** se $F \subset E, E \in \mathcal{A}$ e $\mu(E) = 0$, allora $F \in \mathcal{A}$ (e di conseguenza $\mu(F) = 0$).

- μ si dice finita se $\mu(X) < +\infty$.
- μ si dice σ -finita se esiste una successione $\{E_n\}$ con $E_n \subset E_{n+1}$ tale che $\bigcup E_n = X$ con $\mu(E_n) < +\infty$ per ogni n.

Notazione. Sia P(X) un predicato che dipende da $x \in X$ allora si dice che P(X) vale μ -quasi ogni $x \in X$ se l'insieme $\{x \mid P(x) \text{ è falso}\}$ è (contenuto in) un insieme di misura μ nulla.

D'ora in poi consideriamo solo misure complete.

1.2 Esempi di misure

• Misura che conta i punti.

$$X \text{ insieme} \qquad \mathcal{A} := \mathcal{P}(X) \qquad \mu(E) := \#E \in \mathbb{N} \cup \{+\infty\}$$

• Delta di Dirac in x_0 .

X insieme,
$$x_0 \in X$$
 fissato $\mathcal{A} := \mathcal{P}(X)$ $\mu(E) := \delta_{x_0}(E) = \mathbb{1}_E(x_0)$

• Misura di Lebesgue.

 $X = \mathbb{R}^n$ \mathcal{M}^n σ -algebra dei misurabili secondo Lebesgue \mathscr{L}^n misura di Lebesgue Dato R parallelepipedo in \mathbb{R}^n , cioè $R = \prod_{k=1}^n I_k$ con I_k intervalli in \mathbb{R} . Si pone

$$\operatorname{vol}_n(R) := \prod_{k=1}^n \operatorname{lungh}(I_k)$$

per ogni $E \subset \mathbb{R}^n$ (assumendo lungh([a, b]) = b - a). Infine poniamo

$$\mathscr{L}^n(E) := \inf \left\{ \sum_i \operatorname{vol}_n(R_i) \mid \{R_i\} \text{ tale che } E \subset \bigcup_i R_i \right\}.$$

Osservazioni.

- $\mathscr{L}^n(R) = \operatorname{vol}_n(R)$
- \mathcal{L}^n non è σ -addittiva su $\mathcal{P}(\mathbb{R}^n)$.

Il secondo punto giustifica l'introduzione della σ -algebra dei misurabili secondo Lebesgue che denotiamo con \mathcal{M}^n .

Dato $E \subset \mathbb{R}^n$ si dice che E è misurabile (secondo Lebesgue) se

$$\forall \varepsilon > 0 \; \exists A \text{ aperto e } C \text{ chiuso, tali che } C \subset E \subset A \text{ e } \mathscr{L}^n(A \setminus C) \leq \varepsilon.$$

Osservazioni.

 \bullet Per ogni E misurabile vale

$$\mathscr{L}^n(E) = \inf \left\{ \mathscr{L}^n : A \text{ aperto}, A \supset E \right\} = \sup \left\{ \mathscr{L}^n : K \text{ compatto}, K \subset E \right\}.$$

• Notiamo che se $F \subset E$ con $E \subset \mathcal{M}^n$ e $\mathcal{L}^n(E) = 0$, allora $F \in \mathcal{M}^n$. Ovvero la misura di Lebesgue è completa!

Notazione. $|E| := \mathcal{L}^n(E)$

1.3 Funzioni misurabili

Definizione. Dato (X, \mathcal{A}, μ) e $f: X \to \mathbb{R}$ (o al posto di \mathbb{R} in Y spazio topologico), diciamo che f è **misurabile** (più precisamente \mathcal{A} -misurabile), se

$$\forall A \text{ aperto } f^{-1}(A) \in \mathcal{A}$$

Osservazioni.

- Dato $E \subset X$, vale $E \in \mathcal{A}$ se solo se $\mathbb{1}_E$ è misurabile.
- La classe delle funzioni misurabili è chiusa rispetto a molte operazioni
 - o Somma, prodotto (se hanno senso nello spazio immagine della funzione).
 - o Composizione con funzione continua: Se $f: X \to Y$ continua e $g: Y \to Y'$ continua, allora $g \circ f$ è misurabile.
 - o Convergenza puntuale: data una successione di f_n misurabili e $f_n \to f$ puntualmente, allora f è misurabile.
 - \circ lim inf e lim sup (almeno nel caso $Y = \mathbb{R}$).

1.3.1 Funzioni semplici

Definizione. Definiamo la classe delle funzione semplici come

$$\mathcal{S} := \left\{ f \colon X \to \mathbb{R} \;\middle|\; f = \sum_i \alpha_i \mathbb{1}_{E_i} \text{ con } E_i \text{ misurabili e } \{\alpha_i\} \text{ finito} \right\}$$

Osservazione. La rappresentazione di una funzione semplice come combinazione lineare di indicatrici di insiemi $non \ \hat{e} \ unica$, però se necessario possiamo prendere gli E_i disgiunti.

1.4 Integrale

Definizione. Diamo la definizione di $\int_X f \, \mathrm{d}\mu$ per passi

i) Se $f \in \mathcal{S}$ e $f \geq 0$ cioè $f = \sum_i \alpha_i \mathbb{1}_{E_i}$ con $\alpha_i \geq 0$ allora poniamo

$$\int_X f \, \mathrm{d}\mu := \sum_i \alpha_i \mu(E_i),$$

convenendo che $0 \cdot +\infty = 0$ in quanto la misura di un insieme non è necessariamente finita.

ii) Se $f: X \to [0, +\infty]$ misurabile si pone

$$\int_X f \, \mathrm{d}\mu \coloneqq \sup_{\substack{g \in \mathcal{S} \\ 0 \le g \le f}} \int_X g \, \mathrm{d}\mu.$$

4

iii) $f \colon X \to \overline{\mathbb{R}}$ misurabile si dice **integrabile** se

$$\int_X f^+ \,\mathrm{d}\mu < +\infty \quad \text{oppure} \quad \int_X f^- \,\mathrm{d}\mu < +\infty.$$

e per tali f si pone

$$\int_X f \, \mathrm{d}\mu \coloneqq \int_X f^+ \, \mathrm{d}\mu - \int_X f^- \, \mathrm{d}\mu.$$

iv) $f: X \to \mathbb{R}^n$ si dice **sommabile** (o di **classe** \mathscr{L}^1) se $\int_X |f| d\mu < +\infty$. In tal caso, se $\int_X f_i^{\pm} d\mu < +\infty$ per ogni f_i componente di f, allora $\int_X f d\mu$ esiste ed è finito.

Per tali f si pone

$$\int_X f \, \mathrm{d}\mu := \left(\int_X f_1 \, \mathrm{d}\mu, \dots, \int_X f_n \, \mathrm{d}\mu \right).$$

Notazione. Scriveremo spesso $\int_E f(x) dx$ invece di $\int_E f d\mathcal{L}^n$.

Osservazioni.

- L'integrale è lineare (sulle funzioni sommabili).
- I passaggi i) e ii) danno lo stesso risultato per f semplice ≥ 0 .
- La definizione in ii) ha senso per ogni $f: X \to [0, +\infty]$ anche non misurabile. Ma in generale vale solo che

$$\int_X f_1 + f_2 \,\mathrm{d}\mu \ge \int_X f_1 \,\mathrm{d}\mu + \int_X f_2 \,\mathrm{d}\mu.$$

• Dato $E \in \mathcal{A}$, f misurabile su E, notiamo che vale l'uguaglianza

$$\int_E f \, \mathrm{d}\mu \coloneqq \int_X f \cdot \mathbb{1}_E \, \mathrm{d}\mu.$$

- Si può definire l'integrale anche per $f: X \to Y$ con Y spazio vettoriale normato finito dimensionale¹ ed f sommabile.
- Se $f_1 = f_2 \mu$ -q.o. allora $\int_X f_1 d\mu = \int_X f_2 d\mu$.
- Si definisce $\int_X f \, \mathrm{d}\mu$ anche se f è misurabile e definita su $X \setminus N$ con $\mu(N) = 0$.
- Se $f:[a,b] \to \mathbb{R}$ è integrabile secondo Riemann allora è misurabile secondo Lebesgue e le due nozioni di integrale coincidono.

Nota. Lo stesso vale per integrali impropri di funzioni positive. Ma nel caso più generale non vale: se consideriamo la funzione

$$f: (0, +\infty) \to \mathbb{R}$$
 $f(x) := \frac{\sin x}{x}$

allora l'integrale di f definito su $(0, +\infty)$ esiste come integrale improprio ma non secondo Lebesgue, infatti

$$\int_0^{+\infty} f^+ \, \mathrm{d}x = \int_0^{+\infty} f^- \, \mathrm{d}x = +\infty$$

¹È necessario avere uno spazio vettoriale, perché serve la linearità e la moltiplicazione per scalare

- $\bullet \int_X f \, \mathrm{d}\delta_{x_0} = f(x_0)$
- Se $X=\mathbb{N}$ e μ è la misura che conta i punti l'integrale è

$$\int_X f \, \mathrm{d}\mu = \sum_{n=0}^\infty f(n)$$

per le f positive o tali che $\sum f^+(n) < +\infty$ oppure $\sum f^-(n) < +\infty$.

Nota. Come prima nel caso di funzioni non sempre positive ci sono casi in cui la serie solita non è definita come integrale di una misura, ad esempio

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

esiste come serie ma non come integrale.

• Dato X qualunque, μ misura che conta i punti e $f: X \to [0, +\infty]$ possiamo definire la somma di tutti i valori di f

$$\sum_{x \in X} f(x) \coloneqq \int_X f \, \mathrm{d}\mu.$$

1.5 Teoremi di convergenza

Sia (X, \mathcal{A}, μ) come in precedenza.

Teorema (di convergenza monotona o Beppo-Levi). Date $f_n: X \to [0, +\infty]$ misurabili, tali che $f_n \uparrow f$ ovunque in X, allora¹

$$\lim_{n \to +\infty} \int_X f_n \, \mathrm{d}\mu = \int_X f \, \mathrm{d}\mu$$

ed in particolare il termine a sinistra è crescente quindi è proprio un sup ovvero $\lim_{n\to+\infty} \int_X f_n d\mu = \sup_n \int_X f_n d\mu$.

Teorema (lemma di Fatou). Date $f_n \colon X \to [0, +\infty]$ misurabili, allora

$$\liminf_{n \to +\infty} \int_X f \, \mathrm{d}\mu \ge \int_X \left(\liminf_{n \to +\infty} f_n \right) \, \mathrm{d}\mu.$$

Teorema (di convergenza dominata o di Lebesgue). Date $f_n: X \to \mathbb{R}$ (o anche \mathbb{R}^n) con le seguenti proprietà

- Convergenza puntuale: $f_n(x) \to f(x)$ per ogni $x \in X$.
- Dominazione: Esiste $g: X \to [0, +\infty]$ sommabile tale che $|f_n(x)| \le g(x)$ per ogni $x \in X$ e per ogni $n \in \mathbb{N}$.

allora

$$\lim_{n \to \infty} \int_{Y} f_n \, \mathrm{d}\mu = \int_{Y} f \, \mathrm{d}\mu.$$

¹Mnemonica: $\sup_{n} \int_{X} f_n d\mu = \int_{X} \sup_{n} f_n d\mu$

Nota. La seconda proprietà è essenziale; sostituirla con $\int_X |f_n| d\mu \le C < +\infty$ non basta!

Definizione. Data una densità $\rho \colon \mathbb{R}^n \to [0, +\infty]$ misurabile, la **misura** μ con densità ρ è data da

$$\forall E \in \mathcal{A} \quad \mu(E) \coloneqq \int_{E} \rho \, \mathrm{d}x$$

Osservazioni.

- \mathbb{R}^n e \mathcal{L}^n possono essere sostituiti da X e $\widetilde{\mu}$.
- \bullet il fatto che μ è una misura segue da Beppo Levi, in particolare serve per mostrare la subadditività.

Teorema (di cambio di variabile). Siano Ω e Ω' aperti di \mathbb{R}^n , $\Phi: \Omega \to \Omega'$ un diffeomorfismo di classe C^1 e $f: \Omega' \to [0, +\infty]$ misurabile. Allora

$$\int_{\Omega'} f(x') dx' = \int_{\Omega} f(\Phi(x)) |\det(\nabla \Phi(x))| dx.$$

La stessa formula vale per f a valori in $\overline{\mathbb{R}}$ integrabile e per f a valori in \mathbb{R}^n sommabile.

Osservazioni.

- Se n = 1, $|\det(\Lambda \Phi(x))| = |\Phi'(x)|$ e non $\Phi'(x)$ come nella formula vista ad Analisi 1 (l'informazione del segno viene data dall'inversione degli estremi).
- Indebolire le ipotesi su Φ è delicato. Basta Φ di classe C^1 e $\widetilde{\forall} x' \in \Omega' \# \Phi^{-1}(x') = 1$ (supponendo Φ iniettiva la proprietà precedente segue immediatamente). Se Φ non è "quasi" iniettiva bisogna correggere la formula per tenere conto della molteplicità.
- Quest'ultima osservazione serve giusto per far funzionare il cambio in coordinate polari che non è iniettivo solo nell'origine.

1.5.1 Fubini-Tonelli

Di seguito riportiamo il teorema di Fubini-Tonelli per la misura di Lebesgue.

Teorema (di Fubini-Tonelli). Sia $\mathbb{R}^{n_1} \times \mathbb{R}^{n_2} \simeq \mathbb{R}^n$ con $n = n_1 + n_2$, $E := E_1 \times E_2$ dove E_1, E_2 sono misurabili e f è una funzione misurabile definita su E. Se f ha valori in $[0, +\infty]$ allora

$$\int_X f \, \mathrm{d}\mu = \int_{E_2} \int_{E_1} f(x_1, x_2) \, \mathrm{d}x_1 \, \mathrm{d}x_2 = \int_{E_1} \int_{E_2} f(x_1, x_2) \, \mathrm{d}x_2 \, \mathrm{d}x_1$$

Vale lo stesso per f a valori in \mathbb{R} o in \mathbb{R}^n sommabile.

Osservazioni. Possiamo generalizzare il teorema di Fubini-Tonelli a misure generiche ed ottenere alcuni risultati utili che useremo ogni tanto.

• Se X_1, X_2 sono spazi con misure μ_1, μ_2 (con opportune ipotesi) vale:

$$\int_{E_2} \int_{E_1} f(x_1, x_2) d\mu_1(x_1) d\mu_2(x_2) = \int_{E_1} \int_{E_2} f(x_1, x_2) d\mu_2(x_2) d\mu_1(x_1).$$

¹funzione differenziabile con inversa differenziabile.

se
$$f \ge 0$$
 oppure $\int_{X_1} \int_{X_2} |f| d\mu_2(x_2) d\mu_1(x_1) < +\infty$.

• **Teorema** (di scambio serie-integrale). Se $X_1 \subset \mathbb{R}$ (oppure $X_1 \subset \mathbb{R}^n$), $\mu_1 = \mathcal{L}^n$ e $X_2 = \mathbb{N}$, μ_2 è la misura che conta i punti, allora la formula sopra diventa

$$\sum_{n=0}^{\infty} \int_{X_1} f_n(x) \, \mathrm{d}x = \int_{X_1} \sum_{n=0}^{\infty} f_n(x) \, \mathrm{d}x.$$

se
$$f_i \ge 0$$
 oppure $\sum_i \int_{X_1} |f_i(x)| dx < +\infty$.

• Teorema (di scambio di serie). Se $X_1=X_2=\mathbb{N}$ e $\mu_1=\mu_2$ è la misura che conta i punti la formula sopra diventa

$$\sum_{j=0}^{\infty} \sum_{i=0}^{\infty} a_{i,j} = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i,j}$$

se
$$a_{i,j} \ge 0$$
 oppure $\sum_{i} \sum_{j} |a_{i,j}| < +\infty$.

Capitolo 2

Spazi L^p e convoluzione

2.1 Disuguaglianze

2.1.1 Disuguaglianza di Jensen

Ricordiamo che una funzione $f: \mathbb{R}^d \to [-\infty, +\infty]$ è **convessa** se e solo se dati $x_1, \dots, x_n \in \mathbb{R}^d$ e $\lambda_1, \dots, \lambda_n \in [0, 1]$ con $\sum_i \lambda_i = 1$ abbiamo che

$$f\left(\sum_{i} \lambda_{i} x_{i}\right) \leq \sum_{i} \lambda_{i} f(x_{i})$$

Teorema (Jensen). Dato (X, \mathcal{A}, μ) con $\mu(X) = 1$ e $f: \mathbb{R}^d \to [-\infty, +\infty]$ convessa e semi-continua inferiormente (S.C.I.) e $u: X \to \mathbb{R}^d$ sommabile allora vale

$$f\left(\int_X u \, \mathrm{d}\mu\right) \le \int_X f \circ u \, \mathrm{d}\mu$$

e $f \circ u$ è integrabile.

Osservazioni.

- $(f \circ u)^-$ ha integrale finito.
- Interpretando μ come probabilità si riscrive come $\mathbb{E}[f \circ \mu] \geq f(\mathbb{E}[u])$.
- Se u è una funzione semplice, cioè $u = \sum_i y_i \cdot \mathbb{1}_{E_i}$ con E_i disgiunti e $\bigcup E_i = X$ allora posti $\lambda_i = \mu(E_i)$ abbiamo

$$\int_X f \circ u \, d\mu = \int_X \sum_i f(y_i) \cdot \mathbb{1}_{E_i} \, d\mu = \sum_i \lambda_i f(y_i) \ge f\left(\sum_i \lambda_i y_i\right) = f\left(\int_X u \, d\mu\right)$$

Questo ci darebbe una strada per dimostrare in generale per passi il teorema di Jensen ma in realtà si presentano vari problemi tecnici.

• Ogni funzione convessa e S.C.I su Ω convesso in \mathbb{R}^d si estende a $\tilde{f}: \mathbb{R} \to (-\infty, +\infty]$ convessa e S.C.I., ad esempio se $\Omega = (0, +\infty)$

$$f(y) = \frac{1}{y} \quad \leadsto \quad \widetilde{f}(y) = \begin{cases} +\infty & y \le 0 \\ \frac{1}{y} & y > 0 \end{cases}$$

• La semi-continuità inferiore serve perché le funzioni convesse sono continue solo se a valori in \mathbb{R} , ad esempio per k costante la funzione

$$f(y) := \begin{cases} k & y < 0 \\ +\infty & y \ge 0 \end{cases}$$

è convessa ma non semi-continua inferiormente (e neanche continua).

Dimostrazione. Poniamo $y_0 \coloneqq \int_X u \, \mathrm{d}\mu$, allora la tesi diventa

$$f\left(\int_X u \, \mathrm{d}\mu\right) \le \int_X f \circ u \, \mathrm{d}\mu \quad \leadsto \quad \int_X f \circ u \, \mathrm{d}\mu \ge f(y_0)$$

Prendiamo $\phi \colon \mathbb{R}^d \to \mathbb{R}$ affine (ovvero $\phi(y) = a \cdot y + b$ con $a \in \mathbb{R}^d$ e $b \in \mathbb{R}$) tale che $\phi \leq f$, allora

$$\int_X f \circ u \, \mathrm{d}\mu \ge \int_X \phi \circ u \, \mathrm{d}\mu = \int_X a \cdot u + b \, \mathrm{d}\mu = ay_0 + b = \phi(y_0)$$

Infine concludiamo usando il seguente lemma di caratterizzazione delle funzioni convesse ed S.C.I.

Lemma. Ogni $f: \mathbb{R}^d \to (-\infty, +\infty]$ convessa e S.C.I è tale che

$$\forall y_0 \in \mathbb{R}^d \quad \sup_{\substack{\phi \text{ affine} \\ \phi \le f}} \phi(y_0) = f(y_0)$$

Nel caso d = 1 e $f: \mathbb{R} \to \mathbb{R}$ possiamo appoggiarci al fatto che le funzioni convesse ammettono sempre derivata destra o sinistra, il sup diventa un massimo e ci basta prendere come ϕ la retta tangente in $(y_0, f(y_0))$ o una con pendenza compresa tra $f'(y_0^-)$ e $f'(y_0^+)$.

Rileggendo meglio la dimostrazione segue che $(f \circ u)^- < (\phi \circ u)^- \implies (f \circ u)^-$.

Definizione. Dati $p_1, p_2 \in [1, +\infty]$ diciamo che sono **coniugati** se

$$\frac{1}{p_1} + \frac{1}{p_2} = 1$$

convenendo che $1/\infty = 0$.

Fissiamo $p \in [1, +\infty]$ detto esponente di sommabilità e sia (X, \mathcal{A}, μ) come sempre.

Definizione. Data $f \colon X \to \overline{\mathbb{R}}$ o \mathbb{R}^d misurabile, la norma p di f è

$$||f||_p := \left(\int_X |f|^p d\mu\right)^{1/p} \quad p \in [1, +\infty)$$

mentre per $p = +\infty$ poniamo

$$\|f\|_{\infty} = \operatorname{supess} f(x) \coloneqq \inf\{m \in [0, +\infty] \mid |f(x)| \le m \text{ per } \mu\text{-q.o. } x\}.$$

Nota. In realtà queste sono solo delle semi-norme¹.

¹Vedremo meglio più avanti questo dettaglio

- $\bullet ||f||_{\infty} \le \sup_{x \in X} |f(x)|$
- $||f||_p = 0 \iff f = 0$ quasi ovunque

Dimostrazione.

⇒ [TODO: Facile ma non ovvia]

← Ovvio.

• Se $f_1 = f_2$ quasi ovunque $\Longrightarrow ||f_1||_p = ||f_2||_p$.

Dimostrazione. $f_1 = f_2$ quasi ovunque $\implies \exists D \subset X \text{ con } \mu(D) = 0$ tale che $f_1(x) = f_2(x)$ su $X \setminus D$, usiamo il fatto che l'integrale non cambia se modifichiamo la funzione su un insieme di misura nulla

$$||f_1||_p^p = \int_X |f_1|^p d\mu = \int_{X \setminus D} |f_1|^p d\mu = \int_{X \setminus D} |f_2|^p d\mu = \int_X |f_2|^p d\mu = ||f_2||_p^p$$

2.1.2 Disuguaglianza di Young

Proposizione. Per ogni $a_1, a_2 \ge 0$ e $\lambda_1, \lambda_2 > 0$ con $\lambda_1 + \lambda_2 = 1$ abbiamo che

$$a_1^{\lambda_1} a_2^{\lambda_2} \le \lambda_1 a_1 + \lambda_2 a_2$$

inoltre vale l'uguale se e solo se $a_1 = a_2$.

Dimostrazione. Se $a_1 = a_2 = 0$ allora è ovvia. Supponiamo dunque $a_1, a_2 > 0$. Per la concavità del logaritmo abbiamo

$$\lambda_1 \log a_1 + \lambda_2 \log a_2 \leq \log(\lambda_1 a_2 + \lambda_2 a_2),$$

da cui segue la tesi.

Il se e solo se per l'uguale segue dal fatto che il logaritmo è strettamente concavo.

2.1.3 Disuguaglianza di Hölder

Proposizione. Date $f_1, f_2 \colon X \to \overline{\mathbb{R}}$ o \mathbb{R}^d e p_1, p_2 esponenti coniugati allora

$$\int_{X} |f_1| \cdot |f_2| \, \mathrm{d}\mu \le \|f_1\|_{p_1} \cdot \|f_2\|_{p_2}$$

vale anche per $p=+\infty$ convenendo che $+\infty\cdot 0=0$ nel membro di destra.

Dimostrazione. Se $||f_1||_{p_1} = 0$ o $+\infty$ e anche $||f_2||_{p_2} = 0$ o $+\infty$ la dimostrazione è immediata, supponiamo dunque $||f_1||_{p_1}$, $||f_2||_{p_2} > 0$ e finiti.

• Caso 1: se $p_1 = 1, p_2 = +\infty$ allora

$$\int_X |f_1| \cdot |f_2| \, \mathrm{d}\mu \le \int_X |f_1| \cdot ||f_2||_{\infty} \, \mathrm{d}\mu = ||f_2||_{\infty} \cdot \int_X |f_1| \, \mathrm{d}\mu = ||f_2||_{\infty} \cdot ||f_1||_1$$

• Caso 2: se $1 < p_1, p_2 < +\infty$, introduciamo un parametro $\gamma > 0$ allora

$$\int_X |f_1| \cdot |f_2| \, \mathrm{d}\mu = \int_X (\gamma^{p_1} \cdot |f_1|^{p_1})^{1/p_1} \cdot (\gamma^{-p_2} \cdot |f_1|^{p_2})^{1/p_2} \, \mathrm{d}\mu$$

a questo punto chiamiamo per comodità $g_1:=\gamma^{p_1}\cdot|f_1|^{p_1},\ \lambda_1:=1/p_1$ e $g_2:=\gamma^{-p_2}\cdot|f_1|^{p_2},\ \lambda_2:=1/p_2$ da cui

$$= \int_{X} g_{1}^{\lambda_{1}} \cdot g_{2}^{\lambda_{2}} \stackrel{\text{Young}}{\leq} \int_{X} \lambda_{1} g_{1} + \lambda_{2} g_{2} \, \mathrm{d}\mu = \lambda_{1} \gamma^{p_{1}} \int_{X} |f_{1}|^{p_{1}} + \lambda_{2} \gamma^{-p_{2}} \int_{X} |f_{1}|^{p_{2}} \, \mathrm{d}\mu$$
$$= \lambda_{1} \gamma^{p_{1}} \cdot ||f_{1}||_{p_{1}}^{p_{1}} + \lambda_{2} \gamma^{-p_{2}} \cdot ||f_{1}||_{p_{2}}^{p_{2}}$$

posti ora $a_1 := \gamma^{p_1} \|f_1\|_{p_1}^{p_1}$ e $a_2 := \gamma^{-p_2} \|f_1\|_{p_2}^{p_2}$, per $\gamma \to 0$ abbiamo che $a_1 \to 0, a_2 \to +\infty$ mentre per $\gamma \to +\infty$ abbiamo che $a_1 \to +\infty, a_2 \to 0$ dunque per il teorema del valor medio esisterà γ tale che $a_1 = a_2$, ma allora siamo nel caso dell'uguaglianza per la disuguaglianza di Young dunque

$$\lambda_1 \gamma^{p_1} \|f_1\|_{p_1}^{p_1} + \lambda_2 \gamma^{-p_2} \|f_1\|_{p_2}^{p_2} = \lambda_1 a_1 + \lambda_2 a_2 = a_1^{\lambda_1} \cdot a_2^{\lambda_2} = \|f_1\|_{p_1} \cdot \|f_2\|_{p_2}$$

In particolare, vale l'uguaglianza se prendiamo un valore di γ tale che $a_1 = a_2$. Resta da verificare che tale valore di γ esista [TODO].

Osservazione. La disuguaglianza di Hölder può essere generalizzata a n funzioni, date f_1, \ldots, f_n e p_1, \ldots, p_n con $\frac{1}{p_1} + \cdots + \frac{1}{p_2} = 1$ allora

$$\int_X \prod_i^n |f_i| \,\mathrm{d}\mu \le \prod_i^n \|f_i\|_{p_i}$$

2.1.4 Disuguaglianza di Minkowski

Proposizione. Consideriamo sempre (X, \mathcal{A}, μ) e sia $p \in [1, +\infty]$ un esponente di sommabilità ed $f_1, f_2 \colon X \to \mathbb{R}$ oppure \mathbb{R}^d allora vale la disuguaglianza triangolare

$$||f_1 + f_2||_p \le ||f_1||_p + ||f_2||_p$$

Dimostrazione.

- Caso 1: se p=1 o $p=+\infty$, allora svolgiamo il calcolo diretto
 - \circ Se p=1

$$||f_1 + f_2||_1 = \int_X |f_1 + f_2| \, \mathrm{d}\mu \le \int_X |f_1| + |f_2| \, \mathrm{d}\mu = \int_X |f_1| \, \mathrm{d}\mu + \int_X |f_2| \, \mathrm{d}\mu = ||f_1||_1 + ||f_2||_1$$

∘ Se $p = +\infty$ allora poniamo D l'insieme di misura nulla che realizza su $X \setminus D$ il supess ovvero supess_X $|f_1 + f_2| = \sup_{X \setminus D} |f_1 + f_2|$

$$||f_1 + f_2||_{\infty} = \operatorname{supess}_X |f_1 + f_2| = \operatorname{supess}_{X \setminus D} |f_1 + f_2| \le \operatorname{supess}_{X \setminus D} (|f_1| + |f_2|)$$

= $\operatorname{supess}_{X \setminus D} |f_1| + \operatorname{supess}_{X \setminus D} |f_2| = \operatorname{supess}_X |f_1| + \operatorname{supess}_X |f_2| = ||f_1||_{\infty} + ||f_2||_{\infty}$

• Caso 2: se $1 e <math>0 < ||f_1 + f_2||_p < +\infty$

$$||f_1 + f_2||_p^p = \int_X |f_1 + f_2|^p \le \int_X (|f_1| + |f_2|) \cdot |f_1 + f_2|^{p-1} d\mu =$$

$$= \int_X |f_1| \cdot |f_1 + f_2|^{p-1} d\mu + \int_X |f_2| \cdot |f_1 + f_2|^{p-1} d\mu =$$

ora introduciamo q esponente coniugato di p e notiamo

$$q = \frac{p-1}{p}$$
 e $||f|^{p-1}||_q = ||f||_p^{p-1}$

ora continuiamo a svolgere il conto di prima usando Hölder con esponenti p e q

$$\stackrel{\text{H\"{o}lder}}{\leq} \|f_1\|_p \cdot \||f_1 + f_2|^{p-1}\|_q + \|f_2\|_p \cdot \||f_1 + f_2|^{p-1}\|_q = \\
= (\|f_1\|_p + \|f_2\|_p) \cdot \||f_1 + f_2|^{p-1}\|_q = (\|f_1\|_p + \|f_2\|_p) \cdot \|f_1 + f_2\|_p^{p-1}$$

infine per l'ipotesi $\|f_1+f_2\|_p>0$ possiamo portare l'ultimo fattore dall'altra parte ed ottenere la tesi

$$\implies \frac{\|f_1 + f_2\|_p^p}{\|f_1 + f_2\|_p^{p-1}} \le \|f_1\|_p + \|f_2\|_p \implies \|f_1 + f_2\|_p \le \|f_1\|_p + \|f_2\|_p$$

• Caso 3: se $1 ma <math>||f_1 + f_2|| = 0$ o $+\infty$ allora se $||f_1 + f_2|| = 0$ la disuguaglianza è banale mentre se $||f_1 + f_2|| = +\infty$ si usa la seguente disuguaglianza

$$||f_1 + f_2||_p^p \le 2^{p-1} (||f_1||_p^p + ||f_2||_p^p)$$

che si ottiene usando la convessità della funzione $x \mapsto x^p$ e la combinazione affine $\frac{1}{2}x_1 + \frac{1}{2}x_2$ infatti

$$\left(\frac{x}{2} + \frac{y}{2}\right)^p \le \frac{1}{2}x^p + \frac{1}{2}y^p \implies \frac{1}{2^{p-1}}(x+y)^p \le x^p + y^p \implies (x+y)^p \le 2^{p-1}(x^p + y^p)$$

ma sostituendo con f_1 e f_2 , integrando e poi sostituendo le norme otteniamo

$$||f_1 + f_2||_p^p \le 2^{p-1} (||f_1||_p^p + ||f_2||_p^p)$$

da cui possiamo ricavare subito che almeno uno dei due termini deve essere $+\infty$.

2.2 Esercitazione del 4 ottobre

2.2.1 Esercizi di teoria della misura

Di seguito riportiamo alcune proprietà di base di teoria della misura.

Proprietà.

i) Se $A \subset B$, allora $\mu(A) \leq \mu(B)$.

Dimostrazione. Scomponiamo $B = (B \setminus A) \cup (A \cap B)$. Per ipotesi $A \cap B = A$ ed essendo la misura positiva segue che

$$\mu(B) = \underbrace{\mu(B \setminus A)}_{>0} + \mu(A) \ge \mu(A).$$

ii) Dati due insiemi A, B misurabili, vale

$$\mu(A \cup B) \le \mu(A) + \mu(B).$$

Dimostrazione. La disuguaglianza segue dalle seguenti uguaglianze.

$$\mu(A) = \mu(A \setminus B) + \mu(A \cap B)$$

$$\mu(B) = \mu(B \setminus A) + \mu(A \cap B)$$

$$\mu(A \cup B) = \mu(A \setminus B) + \mu(B \setminus A) + \mu(A \cap B).$$

iii) Data una successione di insiemi $E_1 \subset E_2 \subset \cdots \subset \cdots$, si ha

$$\mu\left(\bigcup_{i} E_{i}\right) = \sup_{i} \mu(E_{i}) = \lim_{i} \mu(E_{i}).$$

iv) Data una successione di insiemi $E_1\supset E_2\supset\cdots\supset\cdots$ e $\mu(E_1)<+\infty$, si ha

$$\mu\left(\bigcap_{i} E_{i}\right) = \lim_{i} \mu(E_{i}).$$

Esercizio (Numerabile subaddittività). Dato $E \in \mathcal{A}, E \subset \bigcup_i E_i$ dove $E_i \in \mathcal{A}$. Allora

$$\mu(E) \leq \sum_{i} \mu(E_i).$$

Dimostrazione (Idea). Basta dimostrare che $\mu\left(\bigcup_{i} E_{i}\right) \leq \sum_{i} \mu(E_{i})$. Infatti per quanto visto prima $\mu(E) \leq \mu\left(\bigcup_{i} E_{i}\right)$. Prima dimostriamo per induzione $\mu\left(\bigcup_{i=1}^{N} E_{i}\right) \leq \sum_{i=1}^{N} \mu(E_{i})$.

Il passo base n=2 è stato visto al punto ii). Una volta dimostrata la proprietà sopra, si nota che $\sum_{i=1}^{N} \mu(E_i)$ è limitata per ogni N, e dunque è limitato anche il suo limite, da cui la tesi. \square

2.2.2 Funzioni misurabili rispetto alla misura di Lebesgue

Si ricorda che le funzioni *continue*, *semplici* e *semicontinue* sono classi di funzioni misurabili. Due osservazioni sulle funzioni semicontinue.

- Le funzioni semicontinue sono boreliane.
- La proprietà di misurabilità delle funzioni semicontinue è necessaria per l'enunciato della disuguaglianza di Jensen.

Controesempio (disuguaglianza di Jensen). Notiamo che l'ipotesi di semicontinuità inferiore della funzione f è necessaria per la validità della disuguaglianza di Jensen. Infatti, definiamo f come segue

$$f(x) = \begin{cases} 0 & x \in (0,1) \\ +\infty & \text{altrimenti} \end{cases}.$$

Osserviamo che la funzione f così definita è convessa ma non semicontinua inferiormente.

Ora definiamo la funzione $u: X \to \mathbb{R}$ con X = (0, 2), come la funzione costante di valore 1/2. Calcoliamo l'integrale di u(x) su X.

$$\int_X u(x) \, \mathrm{d}x = 1.$$

In tal caso vale $f\left(\int_X u(x) dx\right) = +\infty$. D'altra parte $\int_X f \circ u dx = 0$, dunque l'ipotesi di semicontinuità inferiore è necessaria.

Fatto. Date φ_1, φ_2 funzioni semplici su \mathbb{R} con misura di Lebesgue. Allora $\varphi_1 \vee \varphi_2$ e $\varphi_1 \wedge \varphi_2$ sono ancora funzioni semplici.

Lemma. Data $f: X \to [0, +\infty]$ misurabile

$$\int_{X} f \, \mathrm{d}\mu = 0 \quad \Longleftrightarrow \quad f = 0 \text{ q.o. su } X$$

Dimostrazione.

 \implies Dato che f è non negativa, il dominio X può essere riscritto come

$$X = \{x \in X \mid f(x) \ge 0\} = \{x \in X \mid f(x) > 0\} \cup \{x \in X \mid f(x) = 0\}$$

ricordiamo che $(0, +\infty) = \bigcup_{n\geq 1} (\frac{1}{n}, +\infty)$, dunque possiamo riscrivere una parte di X come segue e poi passare alle misure

$$\left\{x \in X \mid f(x) > 0\right\} = \bigcup_{n \in \mathbb{N} \setminus \{0\}} \left\{x \in X \mid f(x) \ge \frac{1}{n}\right\}$$

$$\implies \mu\left(\left\{x \in X \mid f(x) > 0\right\}\right) = \lim_{n \to +\infty} \mu\left(\left\{x \in X \mid f(x) \ge \frac{1}{n}\right\}\right)$$

in questo modo otteniamo la seguente caratterizzazione dell'insieme su cui f è positiva

$$\mu\left(\left\{x \in X \mid f(x) > 0\right\}\right) > 0 \iff \exists \bar{n} \text{ tale che } \mu\left(\left\{x \in X \mid f(x) \geq 1/\bar{n}\right\}\right) > 0$$

A questo punto possiamo maggiorare come segue

$$0 = \int_X f \, \mathrm{d}\mu \ge \int_{\left\{f \ge \frac{1}{n}\right\}} f \, \mathrm{d}\mu \ge \frac{1}{n} \mu \left(\left\{ x \mid f(x) \ge \frac{1}{n} \right\} \right).$$

da cui ricaviamo che $\forall n$ vale

$$\mu\left(\left\{x \mid f(x) \ge \frac{1}{n}\right\}\right) = 0$$

e si conclude osservando che

$$\mu\left(\left\{x\mid f(x)>0\right\}\right) = \lim_{n} \mu\left(\left\{x\mid f(x)\geq \frac{1}{n}\right\}\right) = 0$$

 \sqsubseteq Dal fatto che f è positiva possiamo scrivere

$$\int_X f \, \mathrm{d}\mu = \sup_{\substack{g \le f \\ g \text{ semplice}}} \int_X g \, \mathrm{d}\mu = \sup_i \sum_i \alpha_i \mu(E_i) = 0.$$

Osservazione (sup essenziale di funzioni misurabili). Data f misurabile, definiamo

$$\|f\|_{\infty,X}\coloneqq\inf\left\{m\in[0,+\infty]\mid|f(x)|\leq m\quad\text{quasi ovunque}\right\}.$$

Se $||f||_{\infty} < +\infty$, allora diciamo che esiste una costante L > 0 con $L = ||f||_{\infty,X}$, tale che

$$|f(x)| \le L$$

quasi ovunque. Infatti, per definizione di inf
, $L=\lim_n m_n,$ dove m_n verificano

$$|f(x)| \le m_n \quad \forall x \in X \setminus N_m, \quad \mu(N_m) = 0.$$

Definiamo $N = \bigcup_m N_m$, da cui si ottiene

$$\mu(N) \le \sum_{n=1}^{\infty} \mu(N_m) = 0.$$

Ovvero N è trascurabile. Preso $x \in X \setminus N$, vale

$$|f(x)| \le m_n \quad \forall n \in \mathbb{N}.$$

2.2.3 Formula di cambio di variabile applicata a funzioni radiali

Sia $f: [0, +\infty) \to \mathbb{R}$ misurabile (di solito si richiede misurabile e positiva oppure sommabile). Allora per il teorema di cambio di variabili vale la seguente

$$\int_{\mathbb{R}^n} f(|x|) dx = c_n \cdot \int_0^{+\infty} f(\rho) \rho^{n-1} d\rho,$$

dove $c_n = n \mathcal{L}^n (\mathcal{B}(0,1)).$

Applichiamo questa formula alla stima di integrali di funzioni positive.

Esercizio. Sia

$$\psi(x) = \frac{1}{\|x\|^{\alpha}}$$

su $\mathcal{B}(0,1) \in \mathbb{R}^n$. Notiamo che $\psi(x) = f(\|x\|)$ con $f = 1/t^{\alpha}$. Usiamo la formula appena introdotta per determinare gli $\alpha \in \mathbb{R}$ per i quali ψ è sommabile su $\mathcal{B}(0,1)$.

$$\int_{\mathcal{B}(0,1)} \psi(x) \, \mathrm{d}x = c_n \int_0^1 \frac{1}{\rho^{\alpha}} \rho^{n-1} \, \mathrm{d}\rho = c_n \int_0^1 \rho^{n-1-\alpha} \, \mathrm{d}\rho = \begin{cases} \log(\rho) & n = \alpha \\ \frac{\rho^{n-\alpha}}{n-\alpha} & \text{altrimenti} \end{cases}$$

Concludendo,

$$\int_{\mathcal{B}(0,1)} \frac{1}{\|x\|^{\alpha}} \, \mathrm{d}x < +\infty \Longleftrightarrow n > \alpha.$$

Esercizio. Con passaggi analoghi al precedente otteniamo

$$\int_{\mathbb{R}^n \setminus \mathcal{B}(0,1)} \frac{1}{\|x\|^{\alpha}} \, \mathrm{d}x < +\infty \Longleftrightarrow n < \alpha.$$

Esercizio. Vediamo per quali valori di β il seguente integrale converge

$$\int_{\mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x$$

Vale la seguente catena di uguaglianze.

$$\int_{\mathbb{R}^n} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x = \int_{\mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x + \int_{\mathbb{R}^n \setminus \mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} \, \mathrm{d}x.$$

Studiamo separatamente i due pezzi dell'integrale.

$$\int_{\mathcal{B}(0,1)} \frac{1}{\left(\|x\| + \|x\|^2\right)^{\beta}} dx = c_n \int_{\mathcal{B}(0,1)} \frac{1}{(\rho + \rho^2)^{\beta}} \rho^{n-1} d\rho = c_n \int_0^1 \frac{1}{\rho^{\beta}} \cdot \frac{\rho^{n-1}}{(1+\rho)^{\beta}} d\rho$$
$$\approx \int_0^1 \rho^{n-1-\beta} d\rho < +\infty \iff \beta < n.$$

Inoltre,

$$\int_{\mathbb{R}^n \setminus \mathcal{B}(0,1)} \frac{1}{\left(\left\|x\right\| + \left\|x\right\|^2\right)^{\beta}} \, \mathrm{d}x = \int_{\mathbb{R}^n \setminus \mathcal{B}(0,1)} \frac{1}{\rho^{2\beta}} \cdot \frac{\rho^{n-1}}{\left(\frac{1}{\rho} + 1\right)^{\beta}} \, \mathrm{d}\rho \approx \int_1^{+\infty} \frac{\rho^{n-1}}{\rho^{2\beta}} \, \mathrm{d}\rho < +\infty \Longleftrightarrow 2\beta > n.$$

In conclusione, l'integrale è finito se $n > \beta > n/2$.

Esercizio. Studiare l'insieme di finitezza al variare del parametro α dell'integrale

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^\alpha} \, \mathrm{d}x.$$

Osserviamo che la norma 1 e 2 sono legate dalle seguenti disuguaglianze

$$\frac{\|x\|_1}{n} \le \|x\|_2 \le \|x\|_1.$$

Studiamo una maggiorazione per l'integrale

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} dx \le \int_{[0,1]^n} \frac{1}{\|x\|^{\alpha}} dx \le \int_{B(0,\sqrt{n})} \frac{1}{\|x\|^{\alpha}} dx < +\infty \iff \alpha < n,$$

dunque

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} \, \mathrm{d}x < +\infty \quad \text{se } \alpha < n.$$

Vediamo ora una minorazione.

$$\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} \, \mathrm{d}x = \frac{1}{2^n} \int_{[-1,1]^n} \frac{1}{\|x\|_1^{\alpha}} \, \mathrm{d}x \ge \frac{1}{2^n} \int_{\mathcal{B}(0,1)} \frac{1}{\|x\|_1^{\alpha}} \, \mathrm{d}x \approx \int_{\mathcal{B}(0,1)} \frac{1}{\|x\|^{\alpha}} \, \mathrm{d}x < +\infty \Longleftrightarrow \alpha < n.$$

Dunque l'integrale $\int_{[0,1]^n} \frac{1}{\|x\|_1^{\alpha}} dx$ converge se solo se $\alpha < n$.

Esercizi per casa.

(1) Dimostrare che date f, g misurabili ed $r, p_1, p_2 > 0$ tali che $1/r = 1/p_1 + 1/p_2$. Allora vale

$$||f \cdot g||_r \le ||f||_{p_1} \cdot ||g||_{p_2}$$
.

Suggerimento. Usare Hölder osservando che $1 = \frac{r}{p_1} + \frac{r}{p_2} = \frac{1}{(p_1/r)} + \frac{1}{(p_2/r)}$.

Dimostrazione. Vale quanto segue.

$$\begin{split} \|f \cdot g\|_{r}^{r} &= \int_{X} |f \cdot g|^{r} \, d\mu = \int_{X} |f| \cdot |g| \, d\mu \overset{\text{Holder}}{\leq} \|f^{r}\|_{p_{1}/r} \cdot \|f^{r}\|_{p_{2}/r} \\ &= \left(\int_{X} |f|^{r \cdot p_{1}/r} \right)^{r/p_{1}} \cdot \left(\int_{X} |g|^{r \cdot p_{2}/r} \right)^{r/p_{2}} = \|f\|_{p_{1}}^{r} \cdot \|g\|_{p_{2}}^{r} = \left(\|f\|_{p_{1}} \cdot \|g\|_{p_{2}} \right)^{r} \\ &\Longrightarrow \|f \cdot g\|_{r} \leq \|f\|_{p_{1}} \cdot \|g\|_{p_{2}} \, . \end{split}$$

(2) Dimostrare che date f_1, \ldots, f_n misurabili e $p_i > 0$ tali che $1/p_1 + \ldots + 1/p_n = 1$ si ha

$$||f_1 \cdots f_n||_1 \leq ||f_1||_{p_1} \cdots ||f_n||_{p_n}$$
.

Suggerimento. Fare il primo passo dell'induzione e usare la formula precedente scegliendo r in modo corretto.

Dimostrazione. Dimostriamo per induzione la seguente proprietà più generale.

Siano f_1, \ldots, f_n misurabili e r > 1. Allora, per i $p_i > 0$ tali che $1/p_1 + \ldots + 1/p_n = r$ si ha

$$||f_1 \cdots f_n||_r \le ||f_1||_{p_1} \cdots ||f_n||_{p_n}$$
.

Passo base. Vero per il punto (1).

 $Passo\ induttivo\ [n-1\Rightarrow n].$ Supponiamo di aver dimostrato per ognir>1la disuguaglianza sopra. Allora

$$||f_1 \cdots f_n||_r = ||(f_1 \cdots f_{n-1}) \cdot f_n||_r \stackrel{(1)}{\leq} ||f_1 \cdots f_{n-1}||_p \cdot ||f_n||_{p_n}, \quad \text{dove } r = 1/p + 1/p_n.$$

Notando che $1/p = 1/r - 1/p_{n-1} = 1/p_1 + \cdots + 1/p_{n-1}$ e usando l'ipotesi induttiva otteniamo la tesi.

2.3 Costruzione spazi L^p

Fissiamo (X, \mathcal{A}, μ) come sempre.

Definizione. Sia \mathcal{L}^p l'insieme delle funzioni $f \colon X \to \mathbb{R}$ o \mathbb{R}^d misurabili tali che $\|f\|_p < +\infty$. Osservazioni.

• \mathscr{L}^p è un sottospazio vettoriale dello spazio vettoriale dato da $\{f \colon X \to \mathbb{R} \mid f \text{ misurabile}\}$ e $\|\cdot\|_p$ è una semi-norma.

Dimostrazione.

- o \mathcal{L}^p è chiuso per somma e moltiplicazione per scalari.
- o Dalla definizione segue subito $\|\lambda f\|_p = |\lambda| \cdot \|f\|_p$ l'omogeneità della norma.
- o Dalla disuguaglianza di Minkowski segue che $\|\cdot\|_p$ è una semi-norma.
- In particolare non è una norma se $\{0\} \subsetneq \{f \mid ||f||_p = 0\}$ ovvero se \mathcal{A} contiene insiemi non vuoti di misura nulla.
- In generale dato V spazio vettoriale e $\|\cdot\|$ semi-norma su V possiamo introdurre $N\coloneqq\{v\mid\|v\|=0\}$. N risulta essere un sottospazio di V e la norma data da $\|[v]\|\coloneqq\|v\|$ per $[v]\in V/N$ è ben definita ed è proprio una norma su V/N.
- Nel caso della della norma $\|\cdot\|_p$ abbiamo che $[f_1]=[f_2]\iff [f_1-f_2]=0\iff f_1-f_2=0$ quasi ovunque.

Definizione. Poniamo $N := \{f \mid ||f||_p = 0\}$ e definiamo gli spazi L^p come

$$L^p := \mathscr{L}^p/N = \mathscr{L}^p/\!\!\sim \qquad \|[f]\|_p \coloneqq \|f\|_p$$

Notazione. Ogni tanto serve precisare meglio l'insieme di partenza e di arrivo degli spazi L^p ed in tal caso useremo le seguenti notazioni

$$L^{p} = L^{p}(X) = L^{p}(X, \mu) = L^{p}(X, \mathcal{A}, \mu) = L^{p}(X, \mu; \mathbb{R}^{d}).$$

Nota. Nella pratica non si parla mai di "classi di funzioni" e si lavora direttamente parlando di "funzioni in L^p ". Le "operazioni" comuni non creano problemi però in certi casi bisogna stare attenti di star lavorando con oggetti ben definiti. Ad esempio:

- Preso $x_0 \in X$, consideriamo l'insieme $\{f \in L^p \mid f(x_0) = 0\}$. Notiamo che non è un sottoinsieme ben definito (a meno che $\mu(\{x_0\}) > 0$ ovvero che la misura sia atomica) di L^p , in quanto possiamo variare f su un insieme di misura nulla.
- Invece ad esempio il seguente insieme è ben definito

$$\left\{ f \in L^1 \, \middle| \, \int_X f \, \mathrm{d}\mu = 0 \right\}$$

2.3.1 Prodotto scalare su L^2

Date $f_1, f_2 \in L^2(X)$ si pone

$$\langle f_1, f_2 \rangle \coloneqq \int_X f_1 \cdot f_2 \, \mathrm{d}\mu.$$

Osservazioni.

• La definizione di $\langle f_1, f_2 \rangle$ è ben posta, infatti basta far vedere che $\int_X |f_1 f_2| d\mu < +\infty$ ma per Hölder abbiamo

$$\int_{X} |f_1 f_2| \, \mathrm{d}\mu \le \|f_1\|_2 \|f_2\|_2 < +\infty$$

• $||f||_2^2 = \langle f, f \rangle$ per ogni $f \in L^2(X)$.

• Inoltre,
$$\left| \int_X f_1 f_2 d\mu \right| \le \int_X |f_1 f_2| d\mu$$
 quindi $|\langle f_1, f_2 \rangle| \le ||f_1||_2 ||f_2||_2$ (Cauchy-Schwartz).

 \bullet L'operatore $\langle\,\cdot\,,\,\cdot\,\rangle$ è un prodotto scalare definito positivo.

Osservazioni.

• Dato C spazio vettoriale reale con prodotto scalare $\langle \cdot, \cdot \rangle$, allora $\langle \cdot, \cdot \rangle$ si ricava dalla norma associata $\| \cdot \|$ tramite l'identità di polarizzazione:

$$\langle v_1, v_2 \rangle = \frac{1}{4} (\|v_1 + v_2\|^2 - \|v_1 - v_2\|^2).$$

 $\bullet\,$ Dato V come sopra, vale l'identità del parallelogramma:

$$||v_1 + v_2||^2 + ||v_1 - v_2||^2 = 2||v_1||^2 + 2||v_2||^2 \quad \forall v_1, v_2 \in V.$$

Usando questa identità di dimostra che la norma di L^p deriva da un prodotto scalare solo per p=2.

Proprietà. Sia V uno spazio vettoriale con norma $\|\cdot\|$. Allora vale l'identità del parallelogramma se solo se $\|\cdot\|$ deriva da un prodotto scalare.

Esempio. La norma di $L^p([-1,1])$, deriva da un prodotto scalare solo per p=2. Prendiamo $f_1=\mathbb{1}_{[-1,0]}$ e $f_2=\mathbb{1}_{[0,+1]}$. Allora

$$||f_1 + f_2||_p^p = \int_{-1}^1 1 \, \mathrm{d}x = 2 \Rightarrow ||f_1 + f_2||_p = 2^{1/p}$$

$$||f_1 - f_2||_p = ||f_1 + f_2||_p = 2^{1/p}, \quad ||f_1||_p = ||f_2||_p = 1$$

Se vale l'identità del parallelogramma allora

$$||f_1 + f_2||_p^2 + ||f_1 - f_2||_p^2 = 2 ||f_1||_p^2 + 2 ||f_2||_p^2$$

cioè

$$2^{2/p} + 2^{2/p} = 2 \cdot 1 + 2 \cdot 1 \iff p = 2.$$

Domanda. Per quali X, \mathcal{A}, μ vale la stessa conclusione?

2.4 Completezza degli spazi L^p

Vediamo ora la proprietà più importante degli spazi L^p .

Teorema. Lo spezio L^p è completo per ogni $p \in [1, +\infty]$.

Lemma 1. Dato (Y, d) spazio metrico, allora

i) Ogni successione (y_n) tale che

$$\sum_{n=1}^{\infty} d(y_n, y_{n+1}) < +\infty$$

è di Cauchy.

ii) Se ogni (y_n) tale che $\sum_{n=1}^{\infty} d(y_n, y_{n+1}) < +\infty$ converge allora Y è completo.

Osservazione. Non tutte le successioni di Cauchy (y_n) soddisfano quella condizione. Ad esempio la successione $(-1)^n/n$ definita su \mathbb{R} è di Cauchy però

$$\sum_{n=1}^{\infty} \left| \frac{(-1)^{n+1}}{n+1} - \frac{(-1)^n}{n} \right| = \sum_{n=1}^{\infty} \frac{2n+1}{n^2+n} \approx \sum_{n=1}^{\infty} \frac{1}{n} \to \infty.$$

Nota. Per mostrare la completezza degli spazi L^p è sufficiente verificare la convergenza per una sottoclasse propria delle successioni di Cauchy.

Dimostrazione.

i) Vorremmo vedere che $\forall \varepsilon \exists N$ tale che $\forall m, n > N$ si ha $d(y_m, y_n) \leq \varepsilon$. Presi n > m abbiamo che

$$d(y_m, y_n) \le \sum_{k=m}^{n-1} d(y_k, y_{k+1}) \le \sum_{k=m}^{\infty} d(y_k, y_{k+1}) \to 0$$

in quanto coda di una serie convergente, quindi

$$\forall \varepsilon > 0 \ \exists m_{\varepsilon} \text{ tale che } \sum_{k=m_{\varepsilon}}^{\infty} d(y_k, y_{k+1}) < \varepsilon \implies \forall n > m \ge m_{\varepsilon} \ d(y_m, y_n) \le \varepsilon$$

ii) Vogliamo vedere che ogni successione di Cauchy converge, ma osserviamo che basta mostrare che data (y_n) di Cauchy esiste una sottosuccessione y_{n_k} tale che

$$\sum_{k=1}^{\infty} d(y_{n_k}, y_{n_{k+1}}) < +\infty$$

ma a quel punto per ipotesi questa sottosuccessione converge ad $y \in Y$ e dunque anche $y_n \to y$. Questa sottosuccessione esiste in quanto $\forall k \; \exists n_k \; \text{tale che} \; \forall n, m \geq n_k \; d(y_m, y_n) \leq 1/2^k$ e dunque $d(y_{n_k}, y_{n_{k+1}}) \leq 1/2^k$.

Lemma 2. Dato Y spazio normato, i seguenti fatti sono equivalenti

- i) Y è completo.
- ii) Per ogni successione (y_n) tale che $\sum_{n=1}^{\infty} ||y_n|| < +\infty$, la serie $\sum_{n=1}^{\infty} y_n$ converge¹.

Dimostrazione. È un corollario del lemma precedente.

Lemma 3 (Minkowski per somme infinite). Date delle funzioni (g_n) funzioni positive su X allora

$$\left\| \sum_{n=1}^{\infty} g_n \right\|_{p} \le \sum_{n=1}^{\infty} \left\| g_n \right\|_{p}$$

Dimostrazione. Per ogni N abbiamo che

$$\left\| \sum_{n=1}^{N} g_n \right\|_{p}^{p} \le \left(\sum_{n=1}^{N} \left\| g_n \right\|_{p} \right)^{p} \le \left(\sum_{n=1}^{\infty} \left\| g_n \right\|_{p} \right)^{p}$$

¹Nel senso che esiste y tale che $\left\|y - \sum_{n=1}^{N} y_n\right\| \to 0$.

e per convergenza monotona possiamo passare il termine di sinistra al limite

$$\lim_{N} \left\| \sum_{n=1}^{N} g_n \right\|_p^p = \lim_{N} \int_X \left(\sum_{n=1}^{N} g_n \right)^p d\mu = \int_X \left(\lim_{N} \sum_{n=1}^{N} g_n \right)^p d\mu = \left\| \sum_{n=1}^{\infty} g_n \right\|_p^p$$

Dimostrazione (Completezza spazi L^p).

• Se $p = +\infty$: si tratta di vedere che data (f_n) di Cauchy in $L^{\infty}(X)$ esiste E con $\mu(E) = 0$ tale che (f_n) è di Cauchy rispetto allora norma del sup in $X \setminus E$. [TODO: Finire]

• Se $p < +\infty$: per il Lemma 2, basta far vedere che data $(f_n) \subset L^p(X)$ tale che $\sum_{n=1}^{\infty} \|f_n\|_p < +\infty$ allora $\sum_n f_n$ converge a qualche $f \in L^p(X)$.

La dimostrazione è suddivisa in tre passi, prima costruiamo f, poi mostriamo che f_n converge a f ed infine mostriamo $f \in L^p(X)$.

o Passo 1: Per ipotesi abbiamo

$$\infty > \sum_{n=1}^{\infty} \|f_n\|_p = \sum_{n=1}^{\infty} \||f_n|\|_p \ge \left\| \sum_{n=1}^{\infty} |f_n| \right\|_p = \left(\int \left(\sum_{n=1}^{\infty} |f_n(x)| \right)^p d\mu(x) \right)^{1/p}$$

quindi $\sum_{n=1}^{\infty} |f_n(x)| < +\infty$ per ogni $x \in X \setminus E$ con $\mu(E) = 0$. Quindi $\sum_{n=1}^{\infty} f_n(x)$ converge a qualche f(x) per ogni $x \in X \setminus E$ ed a questo punto ci basta estendere f a zero in E^{-1} .

o Passo 2: Fissiamo N ed osserviamo che $\forall x \in X \setminus E$ abbiamo

$$\left| f(x) - \sum_{n=1}^{N} f_n(x) \right| = \left| \sum_{n=N+1}^{\infty} f_n(x) \right| \le \sum_{n=N+1}^{\infty} |f_n(x)|$$

da cui otteniamo

$$\left\| f - \sum_{n=1}^{N} f_n \right\|_p \le \left\| \sum_{n=N+1}^{\infty} |f_n| \right\|_p \le \sum_{n=N+1}^{\infty} \|f_n\|_p$$

dove l'ultimo termine è la coda di una serie convergente.

 \circ Passo 3: In particolare rileggendo il passo precedente per N=0 otteniamo

$$||f||_p \le \sum_{n=1}^{\infty} ||f_n||_p < +\infty \implies f \in L^p$$

Esercizio.² Sia $f: X \to [0, +\infty]$ allora $\int_X f \, d\mu < +\infty \implies f(x) < +\infty$ per quasi ogni x.

 $^{^{1}}$ Una costruzione alternativa degli spazi L^{p} potrebbe anche partire da funzioni definite quasi ovunque, questo ovvierebbe al problema di estendere a 0 la funzione f appena costruita. Però diventa più complicato mostrare di essere in uno spazio vettoriale poiché per esempio serve ridefinire + a funzioni definite quasi ovunque.

²In questo corso non è strettamente necessario ricordarsi come si facciano tutti questi esercizi tecnici di teoria della misura ma è bene saperli applicare in automatico quando serve.

Dimostrazione. Sia $E := \{x \mid f(x) = +\infty\}$, allora l'idea è che

$$\infty > \int_X f d\mu \ge \int_E f d\mu = +\infty \cdot \mu(E).$$

Oppure, osserviamo che $\forall m \in [0, +\infty)$ abbiamo $f \cdot \mathbb{1}_E \ge m \cdot \mathbb{1}_E$ per ogni $x \in E$ quindi integrando ricaviamo

$$\underbrace{\int_E f \, \mathrm{d}\mu}_I \ge m \cdot \mu(E) \implies \mu(E) \le \frac{I}{m} \xrightarrow{m \to +\infty} 0$$

2.5 Nozioni di convergenza per successioni di funzioni

Fissiamo X, \mathcal{A}, μ e prendiamo $f, f_n \colon X \to \mathbb{R}$ (o \mathbb{R}^k) misurabili.

Definizione. Riportiamo le definizioni di alcune nozioni di convergenza.

- Uniforme: $\forall \varepsilon \; \exists n_{\varepsilon} \; \text{tale che} \; ||f(x) f_n(x)|| < \varepsilon \; \; \forall n > n_{\varepsilon}.$
- Puntuale: $f_n(x) \to f(x) \ \forall x \in X$.
- Puntuale μ -quasi ovunque: $f_n(x) \to f(x)$ per μ -q.o. $x \in X$.
- In L^p : $||f_n f||_p \xrightarrow{n \to \infty} 0$.
- In misura: $\forall \varepsilon > 0$ $\mu(\{x \mid |f_n(x) f(x)| \ge \varepsilon\}) \xrightarrow{n \to +\infty} 0$.

Osservazione. Abbiamo le seguenti implicazioni ovvie delle diverse nozioni di convergenza:

uniforme
$$\Rightarrow$$
 puntuale \neq puntuale μ q.o.

Proposizione. Valgono le seguenti.

- i) Data $f_n \to f$ q.o. e $\mu(X) < +\infty$, allora $f_n \to f$ in misura.
- ii) (Severini-Egorov): Data $f_n \to f$ q.o. e $\mu(X) < +\infty$, allora $\forall \delta > 0$ esiste $E \in \mathcal{A}$ tale che $\mu(E) < \delta$ e $f_n \to f$ uniformemente su $X \setminus E$.
- iii) $f_n \to f$ in L^p , $p < +\infty$, allora $f_n \to f$ in misura.
- iii') $f_n \to f$ in L^{∞} , allora $\exists E$ tale che $\mu(E) = 0$ e $f_n \to f$ uniformemente su $X \setminus E$.
- iv) $f_n \to f$ in misura, allora $\exists n_k$ tale che $f_{n_k} \to f$ μ -q.o.
- v) $f_n \to f$ in L^p , allora $\exists n_k$ tale che $f_{n_k} \to f$ μ -q.o.

Osservazione. In i) e ii) l'ipotesi $\mu(X) < +\infty$ è necessaria. Infatti, preso $X = \mathbb{R}$ e $f_n = \mathbb{1}_{[n,+\infty)}$ si ha che $f_n \to 0$ ovunque ma f_n non converge a 0 in misura, e f_n non converge a 0 uniformemente in $\mathbb{R} \setminus E$ per ogni E di misura finita.

Lemma (disuguaglianza di Markov). Data $g: X \to [0, +\infty]$ misurabile e m > 0 si ha

$$\mu\left(\left\{x \in X \mid g(x) \ge m\right\}\right) \le \frac{1}{m} \int_X g \,\mathrm{d}\mu$$

Dimostrazione. Poniamo $E := \{x \in X \mid g(x) \ge m\}$. Osserviamo che $g \ge m \cdot \mathbb{1}_E$. Dunque vale

$$\int_X g \, \mathrm{d}\mu \ge \int_X m \cdot \mathbb{1}_E \, \mathrm{d}\mu = m \cdot \mu \left(\left\{ x \in X \mid g(x) \ge m \right\} \right).$$

Lemma (Borel-Cantelli). Dati $(E_n) \subset \mathcal{A}$ tali che $\sum \mu(E_n) \leq +\infty$, l'insieme

$$E := \{x \in X \mid x \in E_n \text{ frequentemente}\}\$$

ha misura nulla. Cioè per μ -q.o. $x, x \notin E_n$ definitivamente (in n.)

Dimostrazione. Osserviamo che

$$E = \bigcap_{m=1}^{\infty} \left(\underbrace{\bigcup_{n=m}^{\infty} E_n}_{F_m} \right).$$

Allora

$$\mu(E) = \lim_{\substack{m \to \infty \\ F_m \downarrow E \text{ e } \mu(F_1) < +\infty}} \mu(F_m) \le \lim_{\substack{m \to \infty \\ \text{coda serie convergente}}} \sum_{n=m}^{\infty} \mu(E_n) = 0.$$

Osservazione. L'ipotesi $\sum \mu(E_n) < +\infty$ non può essere sostituita con $\mu(E_n) \to 0$. Ora dimostriamo la proposizione.

Dimostrazione della Proposizione. Definiamo gli insiemi

$$A_n^{\varepsilon} := \left\{ x \mid |f_n(x) - f(x)| \ge \varepsilon \right\},$$

$$B_m^{\varepsilon} := \left\{ x \mid |f_n(x) - f(x)| \ge \varepsilon \text{ per qualche } n \ge m \right\} = \bigcup_{n=m}^{\infty} A_n^{\varepsilon},$$

$$B^{\varepsilon} := \left\{ x \mid |f_n(x) - f(x)| \ge \varepsilon \text{ frequentemente} \right\} = \left\{ x \in A_n^{\varepsilon} \text{ frequentemente} \right\} = \bigcap_{m=1}^{\infty} B_m^{\varepsilon}.$$

i) Per ipotesi, $f_n \to f$ quasi ovunque, cioè $\mu(B^\varepsilon)=0$ per ogni $\varepsilon>0$, ma $B_m^\varepsilon\downarrow B^\varepsilon$ e $\mu(X)<+\infty$. Allora

$$\lim_{m \to +\infty} \mu(B_m^{\varepsilon}) = \mu(B^{\varepsilon}) = 0 \Longrightarrow \lim_{m \to \infty} \mu(A_m^{\varepsilon}) = 0.$$

ii) Dalla dimostrazione precedente, abbiamo $\lim_{m\to\infty}\mu(B_m^{\varepsilon})=0$. Allora per ogni k esiste un m_k tale che $\mu\left(B_{m_k}^{1/k}\right)\leq \delta/2^k$. Poniamo $E:=\bigcup_k B_{m_k}^{1/k}$ per ogni k; allora $\mu(E)\leq \delta$. Inoltre,

$$x \in X \setminus E \Longrightarrow x \notin B_{m_k}^{1/k} \ \forall k \iff x \notin A_n^{1/k} \ \forall k, n \ge m_k$$

$$\Longrightarrow |f(x) - f_n(x)| < \frac{1}{k} \ \forall k, n \ge m_k$$

$$\Longrightarrow \sup_{x \in X \setminus E} |f(x) - f_n(x)| \le \frac{1}{k} \ \forall k, n \ge m_k$$

$$\Longrightarrow f - f_m \text{ uniformemente su } X \setminus E.$$

iii) Dobbiamo mostrare che per ogni $\varepsilon>0$ $\mu(A_n^\varepsilon)\xrightarrow{n}0$. Usando la disuguaglianza di Markov otteniamo

$$\mu(A_n^{\varepsilon}) = \mu\left(\left\{x \middle| \overbrace{|f_n(x) - f(x)|^p} \le \varepsilon^p\right\}\right) \le \frac{1}{m} \int_X g \, \mathrm{d}\mu = \frac{1}{\varepsilon^p} \|f_n - f\|_p^p \xrightarrow{n \to +\infty} 0.$$

iii') Definiamo $E_n := \{x \mid |f_n(x) - f(x)| > ||f_n - f||_{\infty}\}$ per ogni n, allora $\mu(E_n) = 0$. Poniamo $E = \bigcup_n E_n \in \mu(E) = 0$, dunque

$$\sup_{x \in X \setminus E} |f_n(x) - f(x)| \le ||f_n - f||_{\infty} \xrightarrow{n \to \infty} 0.$$

iv) Per ipotesi, $f_n \to f$ in misura, cioè

$$\forall \varepsilon > 0 \quad \mu\left(A_n^{\varepsilon}\right) \xrightarrow{n \to +\infty} 0$$

$$\Longrightarrow \forall k \ \exists n_k \colon \mu\left(A_{n_k}^{1/k}\right) \le \frac{1}{2^k}$$

$$\Longrightarrow \sum_k \mu\left(A_{n_k}^{1/k}\right) < +\infty.$$

Allora per Borel-Cantelli, si ha per μ -quasi ogni $x, x \notin A_{n_k}^{1/k}$ definitivamente in k, cioè $||f_{n_k}(x) - f(x)|| < 1/k$ definitivamente in k, cioè $f_{n_k}(x) \xrightarrow{k} f(x)$.

- v) Vogliamo mostrare che $f_n \to f$ in $L^p \Rightarrow \exists n_k$ tale che $f_{n_k} \to f$ quasi ovunque. Consideriamo due casi
 - Se $p < +\infty$, allora $f_n \to f$ in $L^p \implies f_n \to f$ in misura da cui $\exists n_k$ tale che $f_{n_k} \to f$ quasi ovunque.
 - Se $p = +\infty$, allora $f_n \to f$ uniformemente su $X \setminus E$ con $\mu(E) = 0 \implies f_n \to f$ puntualmente su $X \setminus E \implies f_n \to f$ quasi ovunque (quindi semplicemente con $n_k = k$).

2.6 Controesempi sulle convergenze

Vediamo un controesempio che mostra che tutte le implicazioni sui vari tipi di convergenza sono ottimali ovvero

- i) $f_n \to f$ in misura $\implies f_n \to f$ q.o.
- ii) $f_n \to f$ in L^p con $p < +\infty \implies f_n \to f$ q.o.
- iii) $\mu(E_n) \to 0 \implies \text{per q.o } x \text{ si ha } x \notin E_n \text{ definitivamente.}$

Dimostrazione. Consideriamo gli insiemi $I_1 = \left[1, 1 + \frac{1}{2}\right], I_2 = \left[1 + \frac{1}{2}, 1 + \frac{1}{2} + \frac{1}{3}\right], \dots$

$$I_n := \left[\sum_{k=1}^n \frac{1}{k}, \sum_{k=1}^{n+1} \frac{1}{k}\right]$$

e consideriamo la loro proiezione "modulo" [0,1] usando la funzione $p\colon \mathbb{R} \to [0,1)$ parte frazionaria data da

$$p(x) \coloneqq x - |x|$$

e chiamiamo $E_n := p(I_n)$. Per ogni n abbiamo che $|I_n| = |E_n| = 1/n$ e $\bigcup_n I_n = [1, +\infty)$ (in quanto $\sum_{k=1}^{\infty} \frac{1}{k} = +\infty$) e quindi ogni $x \in [0, 1)$ appartiene ad E_n per infiniti n ed in particolare questo mostra la iii).

[TODO: Disegnino]

Per la i) basta notare che $\mathbb{1}_{E_n} \to 0$ in misura (in quanto $|E_n| \to 0$) ma $\mathbb{1}_{E_n} \not\to 0$ q.o., anzi $\forall x \in [0,1) \, \mathbb{1}_{E_n}(x) \not\to 0$ e la ii) segue analogamente.

2.7 Approssimazioni di funzioni in L^p

Vediamo ora alcune classi di funzioni dense in L^p che risulteranno essere un utile strumento da usare nelle dimostrazioni.

Nota. Ricordiamo la nozione di insieme denso in uno spazio metrico. Sia (X, d) uno spazio metrico e $Y \subset X$. Allora Y è denso in X se solo se per ogni $x \in X$, esiste una successione $(y_n)_{n\in\mathbb{N}}$ in Y che tale che $x = \lim_n y_n$.

Per ora sia (X, \mathcal{A}, μ) in generale.

Proposizione 1. Le funzioni limitate in L^p sono dense in L^p .

Dimostrazione. Data $f \in L^p(X)$ cerchiamo una successione di funzioni $f_n \in L^p(X)$ limitate tali che $f_n \to f$ in L^p , consideriamo

$$f(x) := (f(x) \land n) \lor (-n)$$

vorremmo mostrare che $f_n \to f$ in L^p ovvero

$$||f_n - f||_p^p = \int_X |f_n - f|^p d\mu \to 0$$

intanto osserviamo che, per la convergenza puntuale, basta osservare che se $n \ge |f(x)|$ abbiamo che $\forall x \ f_n(x) = f(x) \implies f_n(x) \xrightarrow{n} f(x) \implies |f_n(x) - f(x)|^p \to 0$.

Per concludere basta applicare convergenza dominata usando come dominazione direttamente $|f(x) - f_n(x)| \le |f(x)| \implies |f(x) - f_n(x)|^p \le |f(x)|^p$ e notiamo che $|f|^p \in L^1(X)$.

Proposizione 2. Sia¹ $\widetilde{\mathscr{S}} := \operatorname{Span}(\{\mathbb{1}_E \mid E \in \mathcal{A}, \mu(E) < +\infty\})$, allora $\widetilde{\mathscr{S}}$ è denso in $L^p(X)$.

Dimostrazione. Data $f \in L^p(X)$ cerchiamo una successione che approssima f in $\widetilde{\mathscr{S}}$.

• Caso 1: Se $f \ge 0$ allora fissiamo $\varepsilon > 0$ e per ogni $k = 1, 2, \ldots$ e poniamo

$$A_{\varepsilon}^k := \{x \mid k\varepsilon \le f(x) \le (k+1)\varepsilon\}$$

risulta che A_k^{ε} è misurabile ed ha misura finita². Ora consideriamo la successione di funzioni parametrizzata da ε data da

$$f_{\varepsilon}(x) := \sum_{1 \le k \le 1/\varepsilon^2} k\varepsilon \cdot \mathbb{1}_{A_{\varepsilon}^k}(x) \in \widetilde{\mathscr{S}}$$

[TODO: Disegnino]

Osserviamo che vale anche max $f_{\varepsilon}(x) = \max\{k\varepsilon \mid k\varepsilon \leq f(x) \text{ e } k \leq 1/\varepsilon^2\}$ e mostriamo la seguente³

$$\int_{X} |f(x) - f_{\varepsilon}(x)|^{p} d\mu(x) \xrightarrow{\varepsilon \to 0} 0$$

o Convergenza puntuale: Per l'identità precedente abbiamo che $0 \le f(x) - f_{\varepsilon}(x) \le \varepsilon$ se $f(x) \le 1/\varepsilon$.

¹Lo span è inteso come combinazioni lineari

²È misurabile in quanto preimmagine di un misurabile ed ha misura finita in quanto se così non fosse esisterebbero $\varepsilon > 0, k \ge 1$ tali che $\mu(A_{\varepsilon}^k) = +\infty$ da cui $\|f\|_p^p \ge \|k\varepsilon\mathbbm{1}_{A_{\varepsilon}^k}\|_p^p \ge +\infty \implies f \notin L^p(X)$ \(\xeta\).

³Notiamo che qui stiamo applicando il teorema di convergenza dominata su una famiglia parametrizzata da ε e non su una successione ma si può verificare facilmente che il teorema (ed anche gli altri risultati di convergenza di successioni di funzioni) si può estendere semplicemente prendendo $\varepsilon = 1/n$ per $n \to \infty$.

o Dominazione: Possiamo usare nuovamente $|f(x)-f_{\varepsilon}(x)|^p \leq |f(x)|^p < +\infty$ in quanto $f \in L^p(X)$.

[TODO: Disegnino]

- Caso 2: Sia $f: X \to \mathbb{R}$ allora si può rifare la dimostrazione precedente oppure si può semplicemente considerare $f_{\varepsilon} := (f^+)_{\varepsilon} (f^-)_{\varepsilon}$.
- Caso 3: Generalizziamo la proposizione al caso di $f: X \to \mathbb{R}^d$ come segue

Proposizione 2' (Generalizzata). Sia $\widetilde{\mathscr{S}} := \left\{ \sum_{i} \alpha_{i} \mathbb{1}_{E_{i}} \mid \alpha_{i} \in \mathbb{R}^{d}, E_{i} \in \mathcal{A}, \mu(E_{i}) < +\infty \right\}$. Allora $\widetilde{\mathscr{S}}$ è denso in $L^{p}(X; \mathbb{R}^{d})$.

Dimostrazione. (Idea) Basta approssimare componente per componente.

Sia ora X uno spazio metrico e {aperti} $\subset A$.

Proposizione 3. Sia $\widetilde{\mathscr{S}_{\ell}} := \{ \sum_{i} \alpha_{i} \mathbb{1}_{E_{i}} \mid \alpha_{i} \in \mathbb{R}^{d}, E_{i} \in \mathcal{A}, \mu(E_{i}) < +\infty, E_{i} \text{ limitati} \} \text{ allora } \widetilde{\mathscr{S}_{\ell}} \text{ è denso in } L^{p}(X; \mathbb{R}^{d}) \text{ per } p < +\infty.$

Osservazione. In generale l'enunciato non vale per $p=+\infty$. Ad esempio preso $L^{\infty}(\mathbb{R})$ e f=1 non si può approssimare con funzioni a supporto limitato (come quelle in $\widetilde{\mathscr{S}_{\ell}}$. In particolare data g con supporto A limitato |f-g|=1 su $\mathbb{R} \backslash A$ e siccome $|\mathbb{R} \backslash A|>0$ abbiamo $||f-g||_{\infty}\geq 1$).

Dimostrazione. $(\widetilde{\mathscr{S}_\ell}$ è denso in $L^p)$ Per prima cosa vediamo un lemma che useremo assieme alla proposizione precedente.

Lemma 1. Dato $E \in \mathcal{A}, \mu(E) < +\infty$ esiste $E_n \in \mathcal{A}$ con E_n limitati tali che $E_n \subset E$ e $\mu(E \setminus E_n) \to 0$ e quindi $\|\mathbb{1}_E - \mathbb{1}_{E_n}\|_p = \mu(E \setminus E_n)^{1/p} \xrightarrow{n} 0$ (e $\mathbb{1}_{E_n} \in \widetilde{\mathscr{S}_\ell}$).

Dimostrazione. Dato E con $\mu(E) < +\infty$ prendiamo $x_0 \in X$ e poniamo $E_n := E \cap \mathcal{B}(x_0, n)$; $E_n \subset E$ e $E \setminus E_n \downarrow \varnothing \implies \mu(E \setminus E_n) \xrightarrow{n} 0$.

Intuitivamente $\widetilde{\mathscr{S}}_{\ell}$ è denso in $\widetilde{\mathscr{S}}$ che a sua volta è denso in L^p (usando la definizione di densità topologica la tesi è quasi ovvia mentre usando la definizione per successioni bisogna passare per un procedimento diagonale).

Ora siano $X \subset \mathbb{R}^n$, $\mu = \mathscr{L}^n$ e $C_C(\mathbb{R}^n) := \{\text{funzioni a supporto compatto}\}$, precisiamo che il **supporto** di una funzione è definito come la chiusura dell'insieme dei punti in cui è non zero

$$\operatorname{supp}(f) := \overline{\{x \mid f(x) \neq 0\}}$$

in quanto per le funzioni continue l'insieme $\{x\mid f(x)\neq 0\}$ è sempre aperto e dunque mai veramente compatto, a parte quando è vuoto.

Proposizione 4. Le funzioni in $C_C(\mathbb{R}^n)$ ristrette a X sono dense¹ in $L^p(X)$ per $p < +\infty$.

Vediamo prima alcuni lemmi.

Lemma 2. (di Urysohn) Dati C_0, C_1 chiusi disgiunti in X spazio metrico esiste una funzione $f: X \to [0, 1]$ continua tale che f = 0 su C_0 e f = 1 su C_1 .

Dimostrazione. Posta $d(x,C) = \inf\{d(x,y) \mid y \in C\}$ basta considerare

$$f(x) = \frac{d(x, C_0)}{d(x, C_0) + d(x, C_1)}.$$

¹È denso anche l'insieme delle funzioni continue a supporto compatto ristretto a X e si indica con $\mathcal{C}^0_C(\mathbb{R}^n)$.

Lemma 3. Dato $E \subset \mathbb{R}^n$ limitato (e quindi di misura finita) esiste $f_{\varepsilon} \in C_C(\mathbb{R}^n)$ tale che $f_{\varepsilon} \xrightarrow{\varepsilon \to 0} \mathbb{1}_E$ in $L^p(\mathbb{R}^n)$ e quindi in $L^p(X)$.

Dimostrazione. Per regolarità della misura di Lebesgue abbiamo che per ogni ε esistono $C_{\varepsilon} \subset E \subset A_{\varepsilon}$ tali che $|A_{\varepsilon} \setminus C_{\varepsilon}| \leq \varepsilon$. Per il Lemma 2 possiamo definire la classe di funzioni $f_{\varepsilon} \colon \mathbb{R}^n \to [0,1]$ continue tali che

$$f_{\varepsilon} = 1 \text{ su } C_{\varepsilon}$$
 $f_{\varepsilon} = 0 \text{ su } \mathbb{R}^n \setminus A_{\varepsilon}.$

In particolare, sappiamo che su $A_{\varepsilon} \setminus C_{\varepsilon}$ vale $|f_{\varepsilon} - \mathbb{1}_{E}| \leq 1$. Allora,

$$||f_{\varepsilon} - \mathbb{1}_{E}||_{p}^{p} = \int_{A_{\varepsilon} \setminus C_{\varepsilon}} |f_{\varepsilon} - \mathbb{1}_{E}|^{p} dx \le \int_{A_{\varepsilon} \setminus C_{\varepsilon}} \mathbb{1}_{A_{\varepsilon} \setminus C_{\varepsilon}} dx = |A_{\varepsilon} \setminus C_{\varepsilon}|^{1/p} \le \varepsilon^{1/p}$$

$$\implies ||f_{\varepsilon} - \mathbb{1}_{E}||_{p}^{p} \xrightarrow{\varepsilon \to 0} 0.$$

Dimostrazione Proposizione 4. Per la Proposizione 3 basta approssimare la classe delle funzioni a supporto limitato (e finito). Dunque, per il Lemma 3 si ha la tesi.

2.8 Esercitazione del 13 ottobre

2.8.1 Esercizi su spazi $L^p(X)$ al variare di p e dello spazio X

Sia $X \subset \mathbb{R}^n$, μ la misura di Lebesgue e $1 \leq p_1 \leq p_2$.

Domanda. Possiamo confrontare gli spazi $L^{p_1}(X)$ e $L^{p_2}(X)$? In generale no.

Vediamo informalmente perché. Posto $X = (0, +\infty)$, gli integrali

$$\int_0^{+\infty} \frac{1}{(1+x)^{\beta p}} \, \mathrm{d}x \qquad \int_0^{+\infty} \frac{1}{x^{\beta p}} \cdot \mathbb{1}_{[0,1]}(x) \, \mathrm{d}x = \int_0^1 \frac{1}{x^{\beta p}} \, \mathrm{d}x$$

sono maggiorati dall'integrale di $1/x^{\alpha}$ dove l'esponente α è rispettivamente più piccolo e più grande di $\beta \cdot p$.

Utilizziamo questa intuizione per vedere formalmente che gli spazi $L^p(0, +\infty)$ non sono confrontabili.

Cerchiamo una funzione $f \in L^{p_1}(0,+\infty) \setminus L^{p_2}(0,+\infty)$ e una funzione $g \in L^{p_2}(0,+\infty) \setminus L^{p_1}(0,+\infty)$. Sia β un parametro e sia funzione f definita come segue

$$f(x) := \begin{cases} 1/x^{\beta} & x \in (0,1) \\ 0 & x \ge 1 \end{cases}$$

ed ora imponiamo i vincoli sulle due norme

$$||f||_{p_1}^{p_1} = \int_0^{+\infty} f(x)^{p_1} dx = \int_0^1 \frac{1}{x^{\beta p_1}} dx < +\infty \iff \beta \cdot p_1 < 1$$

$$||f||_{p_2}^{p_2} = \int_0^{+\infty} f(x)^{p_2} dx = \int_0^1 \frac{1}{x^{\beta p_2}} dx = +\infty \iff \beta \cdot p_2 \ge 1$$

dunque poiché $p_1 < p_2$ basta prendere $\beta \in [1/p_2, 1/p_1)$.

Ora cerchiamo $g \in L^{p_2}(0,+\infty) \setminus L^{p_1}(0,+\infty)$. Definiamo g(x) come segue

$$g(x) := \frac{1}{(1+x)^{\alpha}}$$

da cui

$$\int_0^{+\infty} g(x)^{p_2} dx < +\infty \iff \alpha \cdot p_2 > 1 \quad \text{e} \quad \int_0^{+\infty} g(x)^{p_1} dx = +\infty \iff \alpha \cdot p_1 \le 1$$

Conclusione. In generale non c'è confrontabilità fra gli spazi L^p . La confrontabilità, dipende infatti dall'insieme X su cui sono definiti.

Nota. Un caso particolare è dato ponendo $p_1 < p_2$ e $\mu(X) < +\infty$. In tal caso $L^{p_2}(X) \subset L^{p_1}(X)$. Data $f \in L^{p_2}(X)$, cioè con $\int_X |f|^{p_2} d\mu < +\infty$ vediamo che $\int_X |f|^{p_1} d\mu < +\infty$. Usiamo Hölder:

$$\int_{X} |f|^{p_{1}} d\mu \leq \left(\int_{X} \underbrace{|f(x)|^{p_{1}p}}_{|h(x)|^{p}} d\mu \right)^{1/p} \cdot \left(\int_{X} 1^{q} d\mu \right)^{1/q} \underbrace{\leq}_{p=p_{1}/p_{2}} \left(\int_{X} |f|^{p_{2}} d\mu \right)^{p_{2}/p_{1}} \left(\int_{X} 1^{q} d\mu \right)^{1/q}$$

$$\underbrace{=}_{q=\left(1-\frac{1}{p}\right)^{-1} = \frac{p}{p-1} = \frac{p_{2}/p_{1}}{p_{2}-p_{1}}}_{p_{2}-p_{1}}} \cdot \mu(X)^{\frac{p_{2}-p_{1}}{p_{2}}}.$$

Dunque

$$||f||_{p_1} \le ||f||_{p_2} \cdot \mu(X)^{\frac{p_2-p_1}{p_1p_2}}$$

L'inclusione

$$\begin{array}{ccc} i\colon & L^{p_2}(X) & \to & L^{p_1}(X) \\ f & \mapsto & f \end{array}$$

è ben definita per quanto fatto sopra.

Esercizio. [TO DO] Vedere con quale topologia l'inclusione risulta continua.

Esercizio. [TO DO] Dato $p \ge 1$, stabilire se esistono X, μ tali che $f \in L^p(X)$ e $\forall q \ge 1$ con $q \ne p$ valga $f \notin L^q(X)$ (ovvero se esiste una funzione che appartiene ad un solo L^p). Suggerimento. Pensare a $X = (0, +\infty)$, μ misura di Lebesgue.

Osservazione. $L^p(X)$ è uno spazio vettoriale di dimensione infinita, ossia ogni base algebrica ha cardinalità infinita. Vediamo il caso X=(0,1). Per trovare una base infinita, cerchiamo per ogni $N \in \mathbb{N}$, un insieme di funzioni $f_1, \ldots, f_N \in L^p(0,1)$ tali che siano linearmente indipendenti. Vale a dire, presi $\lambda_1, \ldots, \lambda_N \in \mathbb{R}$ vale $\lambda_1 f_1 + \ldots + f_N = 0$ se solo se $\lambda_1 = \ldots = \lambda_N = 0$.

Ad esempio, definiamo $f_i := \mathbb{1}_{i/N,(i+1)/N}$ (questa costruzione si può riprodurre per ogni $N \in \mathbb{N}$). Ricordiamo che, essendo $L^p(X)$ uno spazio metrico, dato $Y \subset L^p$ vale la seguente caratterizzazione:

Y è compatto \iff Y è compatto per successioni \iff Y chiuso e totalmente limitato.

Osservazione. $Y \subset L^p(X)$ è un sottoinsieme che eredita la norma $\|\cdot\|_{L^p}$:

$$Y$$
 è completo \iff Y è chiuso.

Osservazione. In L^p i sottoinsiemi chiusi e limitati non sono compatti¹! In particolare le palle

$$Y = \{ f \in L^p \mid ||f||_{L^p} \le 1 \}$$

non sono compatte.

Ad esempio, mostriamo che in $L^p(0,1)$ le palle

$$B = \{ f \in L^p \mid ||f||_{L^p} \le 1 \}$$

non sono compatte. Per farlo, esibiamo una successione $\{f_n\}_{n\in\mathbb{N}}\subset B$ che non ammetta sottosuccessioni convergenti. La costruiamo in modo che non abbia sottosuccessioni di Cauchy

$$f_n: (0,1) \to \mathbb{R}, \quad ||f_n - f_m||_{L^p} \ge c_0 > 0 \quad \forall n \ne m.$$

Cerchiamo $A_n\subset (0,1)$ tale che $|A_n\cap A_m|=0$ per ogni $n\neq m.$ Definiamo f_n come segue

$$f_n(x) := \begin{cases} 0 & \text{se } x \in (0,1) \setminus (1/(n+1), 1/n) \\ c_n > 0 & \text{altrimenti} \end{cases}$$

dove c_n è tale che

$$\left(\int_{1/n+1}^{1/n} c_n^p\right)^{1/p} = 1 \iff c_n^p \cdot (1/n - 1/(n+1)) = 1 \iff c_n^p = n \cdot (n+1).$$

Calcoliamo ora $||f_n - f_m||_{L^p}^p$ con $n \neq m$:

$$\int_0^1 |f_n(x) - f_m(x)|^p dx = \int_{(1/n, 1/n+1) \cup (1/m+1, 1/m)} |f_n|^p dx = \int_{1/n+1}^{1/n} |f_n|^p dx + \int_0^1 |f_m|^p dx = 1 + 1 = 2.$$

Si osserva che quanto detto sopra vale anche per $p = +\infty$.

Esercizio. [TO DO] Sia $E = \{ f \in L^1(1, +\infty) \mid |f(x)| \le 1/x^2 \text{ e } x \in [1, +\infty) \}.$

- E è limitato in L^1 ?
- E è chiuso in L^1 ?
- E è compatto in L^1 ?

Soluzione.

i) Dimostriamo che $||f||_{L^1} < C$ per ogni $f \in E$.

$$||f||_{L^1} = \int_1^\infty |f(x)| \, \mathrm{d}x \le \int_1^\infty 1/x^2 \, \mathrm{d}x < C.$$

ii) E è chiuso. Ci basta dimostrare che se $\{f_n\} \in E$ è convergente a f allora $f \in E$. Questo equivale a dimostrare che $|f(x)| < 1/x^2$. Dal fatto che $\{f_n\} \in E$ è convergente in L^1 , abbiamo che esiste una sottosuccessione $\{f_{n_k}\}$ che converge puntualmente a f. Essendo che $|f_{n_k}| < 1/x^2$ per ogni $x \in [1, +\infty)$, per la continuità del modulo segue la tesi.

¹Uno spazio metrico è compatto se solo se è completo e totalmente limitato. Ricordiamo che uno spazio metrico X si dice **totalmente limitato** se ∀ε > 0 esiste $B_ε^1, ..., B_ε^n$ tale che $X \subset \bigcup_{i=1}^n B_ε^i$.

iii) Da fare [TO DO]

Esercizio. [TO DO]

- Dire se $f_n(x) = x^n$, n = 0, ..., N è un insieme di funzioni linearmente indipendenti in $L^p([0,1])$.
- Dire se $\{f_n\} \subset L^p(0,1)$ è compatta in $L^p(0,1)$.

Suggerimento. Studiare il limite puntuale.

Soluzione.

i) Dimostriamolo per induzione.

Passo base. [TO DO]

Passo induttivo. $(n-1 \Rightarrow n)$ Vediamo che se $a_1 \cdot 1 + a_2 \cdot x + \cdots + a_{n-1} \cdot x^{n-1} + a_n \cdot x^n = 0 \implies a_1 = \ldots = a_n = 0.$

$$a_1 \cdot 1 + a_2 \cdot x + \dots + a_{n-1} \cdot x^{n-1} = -a_n \cdot x^n$$

$$\downarrow +a_n \cdot x^n$$

$$(a_1 + a_n) \cdot 1 + (a_2 + a_n) \cdot x + \dots + (a_{n-1} + a_n) \cdot x^{n-1} = 0$$

essendo che $1, x^1, \ldots, x^{n-1}$ sono linearmente indipendenti per ipotesi induttiva, vale $(a_i + a_n) = 0$ per ogni $i = 1, \ldots, n-1$, da cui $a_i = 0$ per ogni $i = 1, \ldots, n$.

ii) Dimostriamo che non è compatto. Se per assurdo lo fosse, dalla successione (f_n) potremmo estrarre una sottosuccessione convergente (f_{n_k}) in $L^p([0,1])$; denotiamo il limite con f. Per i risultati visti sulla convergenza, da (f_{n_k}) potremmo estrarre una sottosuccessione convergente quasi ovunque a f. Ma questo è assurdo perchè $\lim_n f_n = +\infty$.

2.8.2 Spazi ℓ^p

Prendiamo $X = \mathbb{N}$ e $\mu = \#$ la misura che conta i punti.

Osservazione. Definiamo

$$\ell^p = L^p(\mathbb{N}, \#) = \left\{ (x_n)_{n \in \mathbb{N}} \mid \sum_{n=0}^{+\infty} |x_n|^p < +\infty \right\}$$

con $p \ge 1$ e $p \ne +\infty$, e

$$l^{\infty} = \{\text{successioni limitate}\} = \left\{ (x_n) \mid \sup_{n \in \mathbb{N}} |x_n| < +\infty \right\}.$$

Esempio (di insieme non compatto in ℓ^1). Consideriamo la successione (e_i) definita come

$$(e_i)_n := \begin{cases} 0 & \text{se } n \neq i \\ 1 & \text{se } n = i \end{cases}$$

si osserva inoltre che le successioni così definite sono linearmente indipendenti e generano se sono infiniti.

31

Esempio (di insieme compatto in ℓ^1). Sia $F = \{(x_n)_n \in \ell^1 \mid |x_n| \le 1/n^2 \quad \forall n \in \mathbb{N}\}$. Noto subito che F è limitato, infatti, presa

$$\underline{x} = (x_n) \in F, \quad \|\underline{x}\|_{\ell^1} = \sum_{n=0}^{+\infty} |x_n| \le \sum_{n=0}^{+\infty} 1/n^2 < +\infty.$$

F è anche chiuso.

Osservazione. Data una successione $(\underline{x}^k) \subset \ell^1$, se $\underline{x}^k \xrightarrow{\ell^1} \underline{x}^\infty$, vuol dire che

$$\left\|\underline{x}^k - \underline{x}^{\infty}\right\|_{\ell^1} = \sum_{n=0}^{+\infty} \left|x_n^k - x_n^{\infty}\right| \xrightarrow{k} 0.$$

In particolare, per ogni $n \in \mathbb{N}$ fissato, $\lim_{k} (x_n^k - x_n^{\infty}) = 0$.

F è chiuso perché se $(\underline{x}^k) \subset F$ e $\underline{x}^k \xrightarrow{\ell^1} \underline{x}^\infty$, allora per ogni $n \in \mathbb{N}$ vale

$$\left|x_n^k\right| \le 1/n^2$$
 e $\underbrace{\lim_{n \to +\infty} \left|x_n^k\right|}_{x_n^\infty} \le 1/n^2$.

Dimostriamo che è compatto per successioni. Prendiamo $(\underline{x}^k) \subset F$, ogni componente x_n è equilimitata, quindi a meno di sottosuccessioni $x_n^{k_j}$ converge a x_n^{∞} . A meno di diagonalizzare, possiamo supporre che le successione k_j non dipenda da n. Inoltre gli elementi $x_n^{k_j}$ sono dominati da $y = (1/n^2)$. Concludiamo usando il teorema di convergenza dominata di Lebesgue.

2.9 Complementi su approssimazioni di funzioni in L^p

Sia X misurabile in \mathbb{R}^n con $\mu = \mathcal{L}^n$ su X. In precedenza abbiamo visto che

Proposizione 3. Le funzioni in $C_C(\mathbb{R}^n)$ ristrette a X sono dense in L^p se $p < +\infty$.

Osservazione. Si vede facilmente che $C_C(\mathbb{R}^n) \subset L^p(\mathbb{R}^n)$.

Domanda. Vale un risultato analogo per le funzioni $C_C(X)$?

Notiamo che dato $X \subset \mathbb{R}^n$ le funzioni continue su X hanno supporto compatto solo se X è aperto in quanto il supporto ha veramente distanza non nulla dal bordo e possiamo estendere la funzione a 0 fuori da X. [TODO: Esempio con un chiuso in cui le cose non fungono?]

Proposizione 4. Sia X aperto di \mathbb{R}^n , $\mu = \mathcal{L}^n$ allora $C_C(X)$ è denso in L^p per ogni $p < +\infty$ Dimostrazione.

- $\mathscr{S}_C := \{ \text{funzioni semplici con supporto compatto in } X \}$ è denso in $L^p(X)$ per ogni $p < +\infty$.
- Dato E relativamente compatto¹ in X esiste $f_n \in C_C(X)$ tale che $f_n \to \mathbb{1}_E$ in L^p per ogni $p < +\infty$.

¹Un sottospazio relativamente compatto di uno spazio topologico è un sottoinsieme dello spazio topologico la cui chiusura è compatta.

La Proposizione 3 non vale per $p = +\infty$, intuitivamente in quanto data $f \in L^{\infty}(X)$ discontinua, se trovassimo $f_n \to f$ in $L^{\infty}(X)$ con f_n continue avremmo $f_n \to f$ uniformemente e dunque f continua.

Fatto. In generale vale che data $f: X \to \mathbb{R}$ misurabile, $||f||_{\infty} \le \sup_{x \in X} |f(x)|$ (detta anche norma del sup)

Esercizio. Se X è aperto in \mathbb{R}^n e $\mu = \mathscr{L}^n$ e $f \colon X \to \mathbb{R}$ continua, allora $\|f\|_{\infty} = \sup_{x \in X} |f(x)|$.

Soluzione. Se per assurdo $\exists x \in X$ tale che $\|f\|_{\infty} < |f(x)|$ allora la continuità di f implica che esiste un intorno di x in cui $\|f\|_{\infty} < |f(x)|$; ma un intorno contiene una palla aperta di misura positiva. \not

X

X

In particolare possiamo anche estenderci a $X\subseteq\mathbb{R}^n$ tali che ogni A aperto relativamente a X abbia misura positiva.

Per spiegare meglio il perché la Proposizione 3 non si estende al caso $p=+\infty$ consideriamo

$$f(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0 \end{cases}$$

(In particolare dato $E = \{x \mid f(x) = \tilde{f}(x)\}$, prendiamo $x_n, y_n \in E$ tali che $x_n \uparrow 0$ e $y_n \downarrow 0$ ma i limiti di f sono 0 e $1 \not \{ \}$

Teorema (di Lusin). Dato $X \subset \mathbb{R}^d$, $\mu = \mathcal{L}^d$ e data $f: X \to \mathbb{R}$ o \mathbb{R}^m misurabile e $\varepsilon > 0$, esiste un aperto $E \subset X$ con $|E| \le \varepsilon$ tale che f è continua su $X \setminus E$ (la restrizione di f a $X \setminus E$ è continua)

Osservazione. In generale f può essere non continua in tutti i punti di X, infatti E può essere denso e $X \setminus E$ avere parte interna vuota.

Lemma (di estensione di Tietze). Dato X spazio metrico e $C \subset X$ chiuso, $f: C \to \mathbb{R}$ continua allora f si estende a una funzione continua su X.

Usando questo lemma possiamo enunciare nuovamente il teorema precedente come segue

Teorema (di Lusin'). Data $f: X \to \mathbb{R}$ misurabile e $\varepsilon > 0$, $\exists E$ aperto con $|E| \le \varepsilon$ e $g: X \to \mathbb{R}$ continua tale che f = g su $X \setminus E$, inoltre se $f \in L^p(X)$ e $p < +\infty$ si può anche chiedere che $||f - g||_p \le \varepsilon$.

Essenzialmente il teorema di Lusin ci dice che le funzioni misurabili (o in L^p), a meno di un insieme di misura arbitrariamente piccola, si comportano come funzioni continue.

Dimostrazione. Basta trovare E misurabile (per ottenere E aperto si usa la regolarità della misura)

- Caso 1: $f \in L^1(X)$ e $|X| < +\infty$ Abbiamo che $f \in L^1 \implies \exists f_n$ continue tali che $f_n \to f$ in $L^1 \implies f_n \to f$ in misura e per Severini-Egorov esiste E tale che $|E| \le \varepsilon$ e $f_n \to f$ uniformemente su $X \setminus E \implies f$ è continua su $X \setminus E$.
- Caso 2: f qualunque misurabile e $|X| < +\infty$

Lemma. Dati X, \mathcal{A}, μ con $\mu(X) < +\infty$ e data $f: X \to \mathbb{R}$ misurabile e $\varepsilon > 0$ esiste F misurabile con $\mu(F) \le \varepsilon$ tale che f è limitata su $X \setminus F$.

Dimostrazione. $\forall m > 0$ sia $F_m := \{x \mid |f(x)| > m\}$ allora $F_m \downarrow \emptyset \implies \mu(F_m) \downarrow 0$ e quindi esiste m tale che $\mu(F_m) \leq \varepsilon$.

Quindi data f qualunque misurabile e $|X| < +\infty$ esiste F misurabile tale che $|F| \le \varepsilon/2$ e con f limitata su $X \setminus F \implies f \in L^{\infty}(X \setminus F) \subset L^{1}(X \setminus F)$, dunque per il Caso 1 esiste E misurabile tale che $|E| \le \varepsilon/2$ e f è continua su $X \setminus (E \cup F)$ e $\mu(E \cup F) \le \varepsilon$

• Caso 3: f qualunque misurabile

Per ogni n poniamo $X_n := X \cap B(0, n)$ per il $Caso\ 2$ esistono E_n misurabili con $|E_n| \le \varepsilon/2^n$ tali che f è continua su $X_n \setminus E_n$, infine prendo $E := \bigcup_{n=1}^{\infty} E_n$ con $\mu(E) \le \varepsilon \implies f$ è continua su $X_n \setminus E$ per ogni $n \implies f$ è continua su $X \setminus E$.

2.10 Alcune proprietà degli spazi normati

Proposizione. Siano V,W spazi normati, $T\colon V\to W$ lineare. Sono fatti equivalenti

- i) T è continua in 0.
- ii) T è continua.
- iii) T è lipschitziana, cioè esiste una costante $c < +\infty$ tale che $||Tv Tv'||_W \le c ||v v'||_V$.
- iv) Esiste una costante c tale che $||Tv||_W \le c ||v||_V$ per ogni $v \in V$.
- v) Esiste una costante c tale che $||Tv||_W \le c$ per ogni $v \in V$, $||v||_V = 1$.

Dimostrazione. v) \Rightarrow iv). Vale la seguente

$$\|Tv\|_W \underbrace{=}_{v=\lambda \widetilde{v}, \left\|\widetilde{v}\right\|_V = 1} |\lambda| \, \|T\widetilde{v}\|_W \le c\lambda = c \, \|v\|_V \le 1.$$

 $iv) \Rightarrow iii$). Vale la seguente

$$||Tv - Tv'||_W = ||T(v - v')||_W \le c ||v - v'||_W.$$

- $iii) \Rightarrow ii$).
- i) \Rightarrow v). T continua in 0, dunque esiste $\delta > 0$ tale che

$$||Tv - T0||_W \le 1 \quad \text{se} \quad ||v - 0||_V \le \delta,$$

cioè

$$||Tv|| \le 1$$
 se $||v|| \le \delta$,

da cui segue che $||Tv|| \le 1/\delta$ se $||v|| \le 1$.

Osservazione. Le costanti ottimali iii), iv), v) sono uguali e valgono

$$c = \sup_{\|v\|_{V} \le 1} \|Tv\|_{W} \,.$$

Esempi.

i) Sia X, \mathcal{A}, μ coma al solito, con $\mu(X) < +\infty$. Allora, dati $1 \le p_1 < p_2 \le +\infty$, vale

$$L^{p_2}(X) \subset L^{p_1}(X). \tag{*}$$

Inoltre, l'inclusione $i: L^{p_2}(X) \to L^{p_1}(X)$ è continua.

Dimostrazione. La dimostrazione di (\star) segue dalla stima

$$\|u\|_{p_1} \underbrace{\leq}_{\text{H\"older generalizzato}} \|\mathbb{1}_X\|_q \|u\|_{p_2} \quad \text{dove} \quad q = \frac{p_1 p_2}{p_2 - p_1}.$$

Dove

$$\|\mathbb{1}_X\|_{\frac{p_1p_2}{p_2-p_1}} \|u\|_{p_2} = (\mu(X))^{\frac{1}{p_1}-\frac{1}{p_2}} \|u\|_{p_2}$$
.

Quanto sopra soddisfa la condizione al punto iv).

ii) L'applicazione $L^1(X) \ni u \mapsto \int u \, \mathrm{d}\mu \in \mathbb{R}$ è continua.

Dimostrazione. Infatti, vale

$$\left| \int_X u \, \mathrm{d}\mu \right| \le \int_X |u| \, \mathrm{d}\mu = \|u\|_1.$$

Quanto sopra soddisfa la condizione al punto iv).

iii) Cosa possiamo dire invece dell'applicazione $L^p(X) \ni u \mapsto \int u \, \mathrm{d}\mu \in \mathbb{R}$? Se $\mu(X) < +\infty$ la continuità segue dagli esempi i) e ii) sopra. Se invece $\mu(X) = +\infty$? Per esempio $L^2(\mathbb{R})$? [TO DO].

2.11 Convoluzione

Definizione. Date $f_1, f_2 : \mathbb{R}^d \to \mathbb{R}$ misurabili, il **prodotto di convoluzione** $f_1 * f_2$ è la funzione (da \mathbb{R}^d a \mathbb{R}) data da

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy$$

Osservazioni.

- i) La definizione sopra è ben posta se $f_1, f_2 \geq 0$ $(f_1 * f_2(x))$ può essere anche $+\infty$). In generale non è ben posta per funzioni a valori reali (non è detto che l'integrale esista). Ad esempio, se prendiamo $f_1 = 1$ e $f_2 = \sin x$ con d = 1, allora $f_1 * f_2(x)$ non è definito per alcun x.
- ii) Se $f_1 * f_2(x)$ esiste, allora $f_1 * f_2(x) = f_2 * f_1(x)$, infatti

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy = \begin{pmatrix} t := x - y \\ dt = dy \end{pmatrix} = \int_{\mathbb{R}^d} f_1(t) f_2(x - t) \, dt = f_2 * f_1(x).$$

iii) È importante che f_1, f_2 siano definite su \mathbb{R}^d e che la misura sia quella di Lebesgue. In realtà, si può generalizzare quanto sopra rimpiazzando $(\mathbb{R}^d, \mathcal{L}^d)$ con (G, μ) , dove G è un gruppo commutativo e μ una misura su G invariante per traslazione². Per esempio, \mathbb{Z} con la misura che conta i punti. Cioè $f_1, f_2 : \mathbb{Z} \to \mathbb{R}$, vale

$$f_1 * f_2(n) := \sum_{n \in \mathbb{Z}} f_1(n-m) f_2(m).$$

iv) Data f distribuzione di massa (continua) su \mathbb{R}^3 , il potenziale gravitazionale generato è

$$v(x) = \int_{y \in \mathbb{R}^d} \frac{1}{|x - y|} \rho(y) \, \mathrm{d}y$$

cioè $v = g * \rho$, dove g(x) = 1/|x| è il potenziale di una massa puntuale in 0.

v) Se X_1, X_2 sono variabili aleatorie (reali) con distribuzione di probabilità continua p_1, p_2 e X_1, X_2 sono indipendenti, allora $X_1 + X_2$ ha distribuzione di probabilità $p_1 * p_2$. (Facile per X_1, X_2 in \mathbb{Z}).

Proposizione 1. Se $|f_1| * |f_2|(x) < +\infty$ allora $f_1 * f_2(x)$ è ben definito, in quanto $|f_1 * f_2(x)| \le |f_1| * |f_2|(x)$.

Dimostrazione. Basta osservare che,

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) \cdot f_2(y) \, dy \le \left| \int_{\mathbb{R}^d} f_1(x - y) \cdot f_2(y) \, dy \right|$$

$$\le \int_{\mathbb{R}^d} |f_1(x - y) \cdot f_2(y)| \, dy = |f_1| * |f_2|(x) < +\infty.$$

Corollario 2. Se $|f_1| * |f_2| \in L^p(\mathbb{R}^d)$ con $1 \leq p \leq +\infty$ allora $f_1 * f_2(x)$ è ben definito per quasi ogni $x \in \mathbb{R}^d$ e $||f_1 * f_2||_p \leq |||f_1| * |f_2||_p$.

Dimostrazione. Segue subito dalla proposizione precedente.

2.11.1 Disuguaglianza di Young per convoluzione

Teorema 3 Se $f_1 \in L^{p_1}(\mathbb{R}^d)$ e $f_2 \in L^{p_2}(\mathbb{R}^d)$ e preso $r \geq 1$ tale che

$$\frac{1}{r} = \frac{1}{p_1} + \frac{1}{p_2} - 1,\tag{*}$$

allora $f_1 * f_2$ è ben definito quasi ovunque e

$$||f_1 * f_2||_r \le ||f_1||_{p_1} \cdot ||f_2||_{p_2} \tag{**}$$

Osservazioni.

• Nel caso di prima 1 e sin x sono solo in L^{∞} infatti viene r=-1 e la disuguaglianza non ha senso.

²Ovvero per ogni $g \in G$ e $E \subset G$, posto $E + g := \{x + g \mid x \in E\}$, allora vale $\mu(E) = \mu(E + g)$

• Supponiamo di avere $||f_1 * f_2|| \le C \cdot ||f_1||_{p_1}^{\alpha_1} \cdot ||f_2||_{p_2}^{\alpha_2}$ allora vediamo che per ogni f_1, f_2 positiva deve valere necessariamente $\alpha_1 = \alpha_2 = 1$ e la condizione (??).

Dimostrazione. Per ogni $\lambda > 0$ consideriamo λf_1 e f_2 , allora

$$\|(\lambda f_1) * f_2\|_r = \|\lambda (f_1 * f_2)\|_r = \lambda \|f_1 * f_2\|_r$$

ma abbiamo anche

$$\|(\lambda f_1) * f_2\|_r \le C \cdot \|\lambda f_1\|_{p_1}^{\alpha_1} \cdot \|f_2\|_{p_2}^{\alpha_2} = C \cdot \lambda^{\alpha_1} \|f_1\|_{p_1}^{\alpha_1} \cdot \|f_2\|_{p_2}^{\alpha_2}$$

da cui necessariamente $\alpha_1 = 1$ e di conseguenza $\alpha_2 = 1$.

A questo punto richiediamo anche che f_1 e f_2 siano tali che $||f_1||_{p_1}, ||f_2||_{p_2} < +\infty$ e $||f_1 * f_2|| > 0$ (questo possiamo farlo in quanto basta prendere $f_1 = f_2 = \mathbb{1}_B$ con B una palla, nel caso segue proprio che $f_1 * f_2(x) > 0$ se |x| < 1).

Data $f: \mathbb{R}^d \to \mathbb{R}$ e $\lambda > 0$ poniamo $R_{\lambda} f(x) := f(x/\lambda)$ allora abbiamo

$$\|(R_{\lambda}f_{1}) * (R_{\lambda}f_{2})\|_{r} = \left\| \int_{\mathbb{R}^{d}} f_{1}\left(\frac{x-y}{\lambda}\right) \cdot f_{2}\left(\frac{y}{\lambda}\right) dy \right\| = \begin{pmatrix} t = y/\lambda \\ \lambda dt = dy \end{pmatrix}$$
$$= \lambda^{d} \cdot \left\| \int_{\mathbb{R}^{d}} f_{1}\left(\frac{x}{\lambda} - t\right) \cdot f_{2}(t) dt \right\|$$
$$= \lambda^{d} \cdot \left\| R_{\lambda}(f_{1} * f_{2}) \right\|_{r}$$

Per il punto successivo abbiamo $||R_{\lambda}(g)||_r = \lambda^{d/r} ||g||_r$, da cui otteniamo

$$\|(R_{\lambda}f_1)*(R_{\lambda}f_2)\|_r = \lambda^{d(1+\frac{1}{r})} \|f_1*f_2\|_r$$

Ma anche

$$\|(R_{\lambda}f_1)*(R_{\lambda}f_2)\|_r \le C \cdot \|R_{\lambda}f_1\|_{p_1} \cdot \|R_{\lambda}f_2\|_{p_2} = \lambda^{d\left(\frac{1}{p_1} + \frac{1}{p_2}\right)} \cdot \|f_1\|_{p_1} \cdot \|f_2\|_{p_2}.$$

Dunque sicuramente abbiamo $\lambda^{d(1+1/r)} \leq C \cdot \lambda^{d(1/p_1+1/p_2)}$ per ogni $\lambda > 0$ e quindi $1+1/r = 1/p_1 + 1/p_2$.

• $||R_{\lambda}f||_p = \lambda^{d/p} ||f||_p$ ed in realtà possiamo ricavare l'esponente d/p per analisi dimensionale³. Consideriamo l'espressione

$$||f||_p^p = \int_{\mathbb{R}^d} f(x) \, \mathrm{d}x.$$

Se f(x) è una quantità adimensionale allora $\int_{\mathbb{R}^d} f dx$ ha dimensione di un volume L^d , da cui $||f||_p$ ha dimensione di $\mathsf{L}^{d/p}$.

Similmente, per ottenere $\|R_{\lambda}(f_1 * f_2)\|_r = \lambda^{d(1+1/r)} \|f_1 * f_2\|_r$, basta osservare che

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy$$

ha dimensione L^d , da cui

$$\|f_1 * f_2\|_r = \left(\int_{\mathbb{R}^d} \underbrace{|f_1 * f_2|^r}_{\mathsf{L}^{dr}} \underbrace{\mathrm{d}x}_{\mathsf{L}^d}\right)^{1/r}$$

ha dimensione di $\mathsf{L}^{d(1+1/r)}$

³Ovvero studiando le potenze delle unità di misura delle varie quantità.

Dimostrazione Teorema 3. Per via del Corollario 2 ci basta dimostrare (??) se $f_1, f_2 \ge 0$.

• Caso facile. Se $p_1 = p_2 = 1$ e r = 1

$$||f_1 * f_2||_1 = \int f_1 * f_2(x) dx = \iint f_1(x - y) f_2(y) dy dx = \int f_2(y) \int f_1(x - y) dx dy =$$

$$= \int ||f_1||_1 \cdot f_2(y) dy = ||f_1||_1 \cdot ||f_2||_1$$

• Caso leggermente meno facile. Se $p_1 = p, p_2 = 1$ e r = p. Vogliamo vedere che

$$||f_1 * f_2||_p \le ||f_1||_p \cdot ||f_2||_1$$

allora

$$||f_1 * f_2||_p = \int_{\mathbb{R}^d} (\underbrace{f_1 * f_2}_h)^p \, dx = \int h \cdot h^{p-1} \, dx = \iint f_1(x - y) f_2(y) h^{p-1}(x) \, dy \, dx =$$

$$= \int f_2(y) \int f_1(y - x) h^{p-1}(x) \, dx \, dy \overset{\text{H\"older}}{\leq} \int ||f_1(y - \cdot)||_p \, ||h^{p-1}||_{p'} f_2(y) \, dy$$

con p' esponente coniugato a p. Inoltre notiamo che $||f_1(y - \cdot)||_p = ||f_1||$ per invarianza di \mathcal{L}^d per riflessioni e traslazioni. Infine otteniamo

$$||f_1||_p ||h^{p-1}||_{p'} ||f_2||_1 = ||f_1||_p ||h||_{p'}^{p-1} ||f_2||_1.$$

Dunque, $\|f_1*f_2\|_p^p \leq \|f_1*f_2\|_p^{p-1} \|f_1\|_p \|f_2\|_1 \implies \|f_1*f_2\|_p \leq \|f_1\|_p \|f_2\|_1$. Quest'ultima implicazione però è valida solo nel caso in cui $0 < \|f_1*f_2\|_p < +\infty$. Resterebbero da controllare i due casi in cui la norma è 0 oppure $+\infty$. Il primo è ovvio; il secondo invece si fa per approssimazione e passando al limite.

Consideriamo f_1, f_2 e approssimiamole con $f_{1,n}, f_{2,n}$ limitate a supporto compatto, allora vale $||f_{1,n} * f_{1,n}||_p \le ||f_{1,n}||_p \cdot ||f_{2,n}||_1$ e passando al limite si ottiene la tesi. In particolare possiamo costruire le f_n come

$$f_n(x) := (f(x) \cdot \mathbb{1}_{\mathcal{B}(0,n)}(x)) \wedge n$$

Osservazione. Se $f_2 \ge 0$ e $\int f_2 dx = 1$ allora $||f_1 * f_2||_p \le ||f_1||_p$ è una versione semplificata della proposizione precedente, in particolare la dimostrazione si semplifica in quanto possiamo pensare a f_2 come distribuzione di probabilità e quindi $f_1 * f_2$ è una "media pesata" delle traslazioni di f_1 o più precisamente una combinazione convessa "integrale".

• Caso generale. Non lo facciamo perché servono mille mila parametri e non è troppo interessante.

Nel caso $r=+\infty$ gli esponenti p_1 e p_2 sono proprio coniugati e possiamo rafforzare la tesi del teorema precedente.

Teorema 4 (caso $r = +\infty$ del Teorema 3). Dati p_1 e p_2 esponenti coniugati e $f_1 \in L^{p_1}(\mathbb{R}^d), f_2 \in L^{p_2}(\mathbb{R}^d)$, allora

i) $f_1 * f_2(x)$ è ben definito per ogni $x \in \mathbb{R}^d$

- ii) $|f_1 * f_2(x)| \le ||f_1||_{p_1} ||f_2||_{p_2}$
- iii) $f_1 * f_2$ è uniformemente continua
- iv) Se $1 < p_1, p_2 < +\infty$ allora $f_1 * f_2 \to 0$ per $|x| \to +\infty$, ovvero è infinitesima a $\pm \infty$.

Premettiamo i seguenti risultati.

Proposizione 5. Data $f \in L^p(\mathbb{R}^d)$ con $p < +\infty$ la mappa di traslazione

$$\tau_h f: \mathbb{R}^d \to L^p(\mathbb{R}^d)$$
 $h \mapsto f(\cdot - h)$

è continua.

Lemma 6. Lo spazio $C_0(\mathbb{R}^d) = \{f : \mathbb{R}^d \to \mathbb{R} \text{ continue con } f(x) \to 0 \text{ per } |x| \to \infty\}$ è chiuso rispetto alla convergenza uniforme.

Dimostrazione Teorema 4.

i) Osserviamo che

$$|f_1| * |f_2|(x) = \int_{\mathbb{R}^d} |f_1(x-y)| \cdot |f_2(y)| \, dy \stackrel{\text{H\"older}}{\leq} ||f_1(x-\cdot)||_{p_1} \, ||f_2||_{p_2} = ||f_1||_{p_1} \, ||f_2||_{p_2}$$

e concludiamo per la Proposizione 1.

- ii) Dal punto precedente abbiamo che $|f_1|*|f_2|(x) \leq ||f_1||_{p_1} ||f_2||_{p_2}$, da cui si conclude banalmente.
- iii) Uno tra p_1 e p_2 è finito; supponiamo lo sia p_1 . Fissiamo $x, h \in \mathbb{R}^d$

$$f_1 * f_2(x+h) - f_1 * f_2(x) = \int_{\mathbb{R}^d} (f_1(x+h-y) - f_1(x-y)) f_2(y) dy$$

quindi

$$|f_{1} * f_{2}(x+h) - f_{1} * f_{2}(x)| \leq \int |f_{1}(x+h-y) - f_{1}(x-y)| |f_{2}| dy$$

$$\stackrel{\text{H\"older}}{\leq} ||f_{1}(x+h-y) - f_{1}(x-y)||_{p_{1}} ||f_{2}||_{p_{2}}$$

$$= ||f_{1}(y-h) - f_{1}(y)||_{p_{1}} ||f_{2}||_{p_{2}}$$

$$= ||f_{1}(y-h) - f_{1}(y)||_{p_{1}} ||f_{2}||_{p_{2}}$$

$$= ||f_{1}(y-h) - f_{1}(y-h)||_{p_{1}} ||f_{2}||_{p_{2}}$$

$$= ||f_{1}(y-h) - f_{1}(y-h)||_{p_{1}} ||f_{2}||_{p_{2}}$$

iv) Approssimiamo f_1 e f_2 con $f_{1,n}$ e $f_{2,n} \in \mathcal{C}_C(\mathbb{R}^d)$ in L^{p_1} e L^{p_2} rispettivamente. Osserviamo che $f_{1,n} * f_{2,n} \in \mathcal{C}_C(\mathbb{R}^d) \subset \mathcal{C}_0(\mathbb{R}^d)$. Per il Lemma 6 basta dimostrare che $f_{1,n} * f_{2,n} \longrightarrow f_1 * f_2$ uniformemente

$$\begin{split} \|f_{1,n} * f_{2,n} - f_1 * f_2\|_{\infty} &= \|(f_{1,n} * f_{2,n} - f_{1,n} * f_2) + (f_{1,n} * f_2 - f_1 * f_2)\|_{\infty} \\ &\stackrel{\text{lin della conv}}{\leq} \|f_{1,n} * (f_{2,n} - f_2)\|_{\infty} + \|(f_{1,n} - f_1) * f_2\|_{\infty} \\ &\stackrel{ii)}{\leq} \underbrace{\|f_{1,n}\|_{p_1} \|f_{2,n} - f_2\|_{p_2}}_{\to 0} + \underbrace{\|f_{1,n} - f_1\|_{p_1}}_{\to 0} \|f_2\|_{p_2} \,. \end{split}$$

Quindi $||f_{1,n} * f_{2,n} - f_1 * f_2||_{\infty} \to 0.$

2.12 Esercitazione del 21 ottobre

Data $T: X \to Y$ lineare tra X, Y spazi normati, allora T è continua se solo se esiste C > 0 tale che $||T(x)||_Y \le C ||x||_X$ per ogni $x \in X$.

Applichiamo questo risultato.

i) Sia $X = \mathbb{R}^d$. L'applicazione $L^1(\mathbb{R}^d) \ni u \xrightarrow{T} \int_{\mathbb{R}^d} u \, dx$ è lineare e continua in quanto limitata. Infatti:

$$|T(u)| = \left| \int_{\mathbb{R}^d} u \, dx \right| \le \int_{\mathbb{R}^d} |u| \, dx = ||u||_{L^1(\mathbb{R}^d)}.$$

ii) Studiamo ora il caso per p > 1. Data $u \in L^p(\mathbb{R}^d)$, l'applicazione

$$u \mapsto \int_{\mathbb{R}^d} u \, \mathrm{d}x$$

potrebbe non essere ben definita.

Ad esempio se restringiamo il dominio a $L^p(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ l'applicazione sopra è ben definita, ma in generale non è continua. Più formalmente, la mappa

$$T: \left(L^p \cap L^1(\mathbb{R}^d), \|\cdot\|_{L^p}\right) \to \mathbb{R}$$

è lineare ma non continua.

Studiamo il caso reale, ovvero d = 1.

Per verificare quanto sopra, utilizziamo la definizione di continuità per successioni. Definiamo una successione di funzioni a supporto compatto u_n , che sappiamo essere in tutti gli spazi L^p , e verifichiamo che $\lim_n T(u_n) \neq T(u_\infty)$ dove $u_\infty := \lim_n u_n$.

Definiamo la successione come segue (fare disegno):

$$u_n(x) = \frac{1}{n} \mathbb{1}_{[n,2n]} = \begin{cases} \frac{1}{n} & \text{se} \quad n \le x \le 2n \\ 0 & \text{altrimenti.} \end{cases}$$

Dunque, $T(u_n) = \int_{\mathbb{R}} u_n \, dx = \frac{1}{n} |E_n| = 1$, dove $E_n = [n, 2n]$. Segue che $T(u_n) \equiv 1$ ma rispetto alla convergenza in L^p , $T(u_n) \not\to T(u_\infty) = T(0) = 0$.

Più in generale, quando $u \in L^p(\mathbb{R}^d)$ con p > 1, una costruzione come sopra non funziona, infatti

$$||u_n||_{L^p(\mathbb{R})}^p = \int_{\mathbb{R}} u_n^p(x) \, \mathrm{d}x = \frac{1}{n^p} \cdot |E_n| = \frac{n}{n^p} = \frac{1}{n^{p-1}} \xrightarrow{n \to \infty} 0.$$

Un altro modo per dimostrare quanto sopra è verificare che, per ogni C > 0, esiste una funzione $u \in L^p(\mathbb{R}^d) \cap L^1(\mathbb{R}^d)$ tale per cui

$$\left| \int_{\mathbb{R}} u \, \mathrm{d}x \right| > C \left(\int_{\mathbb{R}} |u|^p \, \mathrm{d}x \right)^{1/p}.$$

Notiamo che questo è proprio l'esercizio che segue.

Esercizio. Fissato C > 0, trovare $u \in L^p \cap L^1(\mathbb{R})$ tale che

$$\left| \int_{\mathbb{R}} u \, \mathrm{d}x \right| > C \, \|u\|_{L^p(\mathbb{R})} \tag{*}$$

Dimostrazione. Fissato C > 0, cerchiamo una funzione in L^p il cui integrale in modulo sia maggiore di C per la sua norma L^p . Per trovare u consideriamo la successione di funzioni definita come segue

$$f_n = \begin{cases} 1/x & 1 \le x \le n \\ 0 & \text{altrimenti} \end{cases}.$$

Le funzioni f_n sono a supporto compatto e stanno in ogni L^p . Notiamo che $f_n \uparrow f$ definita come

$$f = \begin{cases} 1/x & x > 1\\ 0 & \text{altrimenti} \end{cases}$$

ed
$$f \in L^p$$
 per ogni $p > 1$. In particolare, $\left(\int_{\mathbb{R}} |f_n|^p\right)^{1/p} \leq \left(\int_{\mathbb{R}} |f|^p\right)^{1/p} \leq +\infty$ per ogni $p > 1$.

Quindi il secondo membro di (??) è maggiorato da una costante che non dipende da n. D'altra parte, per Beppo Levi $\lim_{n} \int_{\mathbb{R}} f_n dx = \int_{\mathbb{R}} f dx$ che non sta in L^1 . In conclusione, esiste un n abbastanza grande per cui vale (??).

Esercizio. Sia
$$p \ge 1$$
 e $E = \left\{ u \in L^p(-1,1) : \int_{-1}^1 u \, dx = 0 \right\}$.

- i) Dire se E è limitato in $L^p(-1,1)$.
- ii) Dire se E è chiuso in $L^p(-1,1)$.

Soluzione.

i) Dimostrare che E è limitato in $L^p(-1,1)$ equivale a dimostrare che esiste M>0 tale che ogni $u\in L^p(-1,1),$ $\int_{-1}^1 u\,\mathrm{d}x=0$ verifica $\|u\|_{L^p}\leq M.$

Vediamo che E non è limitato. Preso M>0, riesco sempre a trovare una funzione maggiore di M in norma. Ad esempio la funzione definita come

$$u(x) := \begin{cases} M & \text{se } x \in (0,1) \\ -M & \text{se } x \in (-1,0) \end{cases}$$

ha norma $||u||_{L^p}^p = 2M^p$.

Nota. Aveva senso cercare il controesempio nella classe delle funzioni dispari e limitate, perché hanno media zero, e perché sono in tutti gli L^p .

ii) Vediamo che E è chiuso.

Nota. Possiamo dimostrarlo usando i teoremi di convergenza, ma seguiremo un'altra strada.

• Caso p > 1. Definiamo l'operatore

$$T: L^p(-1,1) \to \mathbb{R}$$

$$u \mapsto \int_{-1}^1 u \, \mathrm{d}x$$

è ben definito. Infatti, per Hölder vale

$$\left| \int_{-1}^{1} 1 \cdot u \, dx \right| \le \left(\int_{-1}^{1} |u|^{p} \, dx \right)^{1/p} (1^{q})^{1/q}$$

dove $q = \frac{p}{p-1}$. Allora

$$|T(u)| \le ||u||_{L^p(-1,1)} \cdot 2^{\frac{p}{p-1}}.$$

Dunque T è continuo in L^p per ogni p > 1.

• Caso p=1. L'operatore sopra è continuo anche per p=1. Grazie alla stima vista prima

$$|T(u)| = \left| \int_{-1}^{1} u \, \mathrm{d}x \right| \le \int_{-1}^{1} |u| \, \mathrm{d}x = ||u||_{L^{1}}.$$

Dunque T è continua e $T^{-1}(0) = E$, dunque E è chiuso.

Esercizio. [TO DO] Sia $p \ge 1$. Definiamo

$$F = \left\{ v \in L^p(\mathbb{R}) \mid \int_0^1 v(x) \, dx - 2 \int_{-1}^0 v(x) \, dx = 3 \right\}.$$

Dire se F è chiuso in $(L^p(\mathbb{R}), \|\cdot\|_{L^p(\mathbb{R})})$.

Esercizio. [TO DO] Sia

$$G = \left\{ v \in L^p(0, 2\pi) \mid \int_0^{2\pi} v(x) \sin(x) dx = 1 \right\}.$$

Dire se G è chiuso in $L^2(0,2\pi)$.

Domanda. Dato $L^p(X,\mu)$ e V sottospazio di $L^p(X,\mu)$, posso dire che V è chiuso?

In generale no! Infatti esistono sottospazi densi in $L^p(X,\mu)$.

Ad esempio in ℓ^2 consideriamo l'insieme denso

$$V = \{\{x_n\} \mid x_n = 0 \text{ definitivamente}\}.$$

Vediamo che non è chiuso. Sia $\underline{x} \in \ell^2$, definita come $\underline{x} = \{1/n\}_{n \in \mathbb{N} \setminus \{0\}}$, diciamo che $\underline{x} = \lim_{n \to +\infty} \underline{x}^n$ dove

$$x_n^k = \begin{cases} \frac{1}{n} & 1 \le n \le k \\ 0 & n > k, n = 0 \end{cases}$$

abbiamo che

$$\left\| \underline{x} - \underline{x}^k \right\|_{\ell^2}^2 = \sum_{n=1}^{\infty} \left| x_n - x_n^k \right|^2 = \sum_{n=k+1}^{+\infty} \left| x_n \right|^2 = \sum_{n=k+1}^{\infty} \frac{1}{n^2} \xrightarrow{k \to +\infty} 0$$

abbiamo così trovato una successione che converge fuori da V segue che V non è chiuso.

Vediamo un altro esempio. Siano $X = \mathbb{R}$, μ la misura di Lebesgue e p > 1. In tal caso, l'insieme $L^p \cap L^1(\mathbb{R})$ è un sottospazio denso in $(L^1(\mathbb{R}), \|\cdot\|_{L^1})$ e $(L^p(\mathbb{R}), \|\cdot\|_{L^p})$.

Nota. L'insieme $L^2(\mathbb{R}) \cap L^1(\mathbb{R})$ è un sottospazio proprio di $L^1(\mathbb{R})$. Diciamo che non è chiuso in $\|\cdot\|_{L^1(\mathbb{R})}$ perché è denso. Infatti,

$$\mathcal{C}^0_C(\mathbb{R}) \subset L^2(\mathbb{R}) \cap L^1(\mathbb{R}).$$

2.12.1 Convoluzione

Sia $f \in L^1(\mathbb{R}^d)$ e sia $g \colon \mathbb{R}^d \to \mathbb{R}$ continua a supporto compatto⁴.

$$|g(x) - g(y)| \le M |x - y|_{\mathbb{R}^d}.$$

Esercizio. Dimostrare che f * g è ben definita e lipschitziana, dove $f \in L^1(\mathbb{R}^d)$ e $g \in \mathcal{C}^0_C(\mathbb{R}^d)$. Verifichiamo che la convoluzione è ben definita. Dal fatto che $g \in \mathcal{C}^0_C(\mathbb{R}^d)$ abbiamo in particolare che g è limitata, da cui

$$f * g = \int_{\mathbb{R}^d} f(x - y) \cdot g(y) \, \mathrm{d}y \stackrel{|g| \le M}{\le} M \cdot \int_{\mathbb{R}^d} f(x - y) \, \mathrm{d}y \stackrel{f \in L^1(\mathbb{R}^d)}{<} + \infty.$$

Ora verifichiamo che f * g è lipschitziana. Consideriamo $x_1, x_2 \in \mathbb{R}^d$

$$|f * g(x_1) - f * g(x_2)| = \left| \int_{\mathbb{R}^d} f(x_1 - x)g(y) \, dy - \int_{\mathbb{R}^d} f(x_2 - y)g(y) \, dy \right|$$

Usiamo la proprietà che, essendo f*g ben definita, si ha f*g(x)=g*f(x). Da cui

$$|f * g(x_1) - f * g(x_2)| = \left| \int_{\mathbb{R}^d} g(x_1 - y) f(y) \, dy - \int_{\mathbb{R}^d} g(x_2 - y) f(y) \, dy \right|$$

$$= \left| \int_{\mathbb{R}^d} \left(g(x_1 - y) - g(x_2 - y) \right) f(y) \, dy \right|$$

$$\leq \int_{\mathbb{R}^d} |g(x_1 - y) - g(x_2 - y)| \cdot |f(y)| \, dy$$

$$\leq \int_{\mathbb{R}^d} M \left| (x_1 - y) - (x_2 - y)| \cdot |f(y)| \, dy \leq M \left| x_1 - x_2 \right| \cdot ||f||_{L^1(\mathbb{R}^d)}.$$

Esercizio. [TO DO] Se $f \in L^1(\mathbb{R}^d)$ e g a supporto compatto è α -Hölderiana allora anche f * g lo è.

Esercizio. [TO DO] Presa $f(x) = \mathbb{1}_{[0,1]}$ in \mathbb{R} , calcolare f * f.

2.12.2 Separabilità degli spazi L^p

Proposizione. Si ha che $L^p(\mathbb{R}^d, \mu)$ con μ la misura di Lebesgue, è separabile se solo se $p \neq +\infty$. Lo stesso risultato vale per ℓ^p .

Osservazione. La proposizione è valida anche per $L^p(X,\mu)$ con $X\subset\mathbb{R}^d$ aperto.

 $^{{}^{4}}$ In tal caso g è lipschitziana.

Sia $1 \leq p < +\infty$, $L^p(\mathbb{R}^d, \mu)$ con μ la misura di Lebesgue. Le funzioni semplici costituite da somme finite di insiemi di misura finita sono dense in $L^p(\mathbb{R}^d)$.

Prendiamo una base numerabile di \mathbb{R}^d e la indichiamo con \mathcal{B} . L'insieme

$$Y = \left\{ \sum_{i=1}^{n} \alpha_i \mathbb{1}_{B_i} \mid B_i \in \mathcal{B}, \alpha_i \in \mathbb{Q} \right\}$$

è numerabile. Vediamo che è denso in $L^p(\mathbb{R}^d)$.

Idea. È sufficiente approssimare le funzioni semplici a somma finita $\sum_{i=1}^{N} \alpha_i \mathbb{1}_{E_i}$. In particolare, ci basta approssimare $\alpha \cdot \mathbb{1}_E$. Essendo $\alpha \in \mathbb{R}$ troviamo una successione di razionali α_j tali che $\alpha_j \xrightarrow{j \to \infty} \alpha$. Dunque, rimane da approssimare l'insieme E.

Fissiamo E e supponiamo dapprima E aperto. Possiamo scrivere E come unione arbitraria di elementi della base $\mathcal B$

$$E = \bigcup_{i=1}^{\infty} B_i.$$

Per approssimare E consideriamo gli insiemi $E_N = \bigcup_{i=1}^N B_i$. Otteniamo $|E| = \lim_N |E_N|$, da cui $|E \setminus E_N| \xrightarrow{N \to +\infty} 0$. Concludiamo notando che il caso E arbitrario si fa approssimandolo con una famiglia di aperti.

Per ℓ^p con $p < +\infty$ definiamo

$$Y = \{\{x_n\} \mid x_n = 0 \text{ definitivamente}, x_n \in \mathbb{Q}\}$$

e verifico che è numerabile e separabile.

Domanda. Cosa succede per $p = +\infty$?

Consideriamo $L^{\infty}([0,+\infty],\mu)$ con μ di Lebesgue e $E_n=[n,n+1]$. Definiamo l'insieme

$$Z = \left\{ \forall J \subset \mathbb{N} \quad u = \sum_{j \in J} \mathbb{1}_{E_j} \right\}.$$

Z ha la cardinalità delle parti di $\mathbb N$ cioè è più che numerabile. Osserviamo che per ogni $u,v\in Z$, $u\neq v$ si ha che $\|u-v\|_{L^\infty(\mathbb R)}=1$. Se per assurdo esistesse un insieme denso e numerabile D in ℓ^∞ , per definizione di insieme denso dovremmo trovare per ogni palla di raggio minore di 1 e centro in un qualsiasi elemento di Z, un elemento di D. Ma questo è impossibile in quanto D ha cardinalità numerabile e Z la cardinalità del continuo.

Vediamo in un altro modo che l^{∞} non è separabile. Se per assurdo $Y = \left\{\underline{x}^k\right\}_{k \in \mathbb{N}}$ fosse denso in L^{∞} , allora potremmo definire un elemento $z \in l^{\infty}$ tale che $\left\|\underline{x}^k - \underline{z}\right\|_{l^{\infty}} \ge 1$ per ogni k.

Definiamo $z = \{z_n\}$ come segue

$$z_n = \begin{cases} 0 & \text{se } |x_n^n| > 1 \\ 2 & \text{se } |x_n^n| \le 1 \end{cases}.$$

2.13 Rimanenze dalla lezione precedente

Proposizione. Data $f \in L^p(\mathbb{R}^d)$ con $1 \leq p < +\infty$ allora la funzione $\tau_h f \colon \mathbb{R}^d \to L^p(\mathbb{R}^d)$ data da $h \mapsto f(\cdot - h)$ è continua.

Dimostrazione. Per prima cosa notiamo che basta vedere solo la continuità in 0 in quanto

$$\tau_{h'}f - \tau_h f = \tau_h(\tau_{h'-h}f - f) \implies \|\tau_{h'}f - \tau_h f\|_p = \|\tau_{h'-h}f - f\|_p.$$

Dimostriamo ora la proposizione in due passi.

• Caso 1: $f \in C_C(\mathbb{R}^d)$

$$\|\tau_h f - f\|_p^p = \int_{\mathbb{D}^d} |f(x - h) - f(x)|^p dx \xrightarrow{|h| \to 0} 0$$

per convergenza dominata, verifichiamo però che siano rispettate le ipotesi

- i) La convergenza puntuale, ovvero $|f(x-h)-f(x)|^p \xrightarrow{|h|\to 0} 0$ segue direttamente dalla continuità di f.
- ii) Come dominazione invece usiamo $|f(x-h)-f(x)|^p \leq (2 ||f||_{\infty})^p \cdot \mathbb{1}_{\mathcal{B}(0,R+1)}$ usando che $f \in C_C \implies \sup(f) \subset \overline{B(0,R)}$ e poi che

$$\operatorname{supp}(f(\cdot - h) - f(\cdot)) \subset \overline{\mathcal{B}(0, R + |h|)}$$

infine se |h| < 1 come raggio ci basta prendere R + 1.

• Caso 2: f qualunque Dato $\varepsilon > 0$ prendiamo $g \in C_C(\mathbb{R}^d)$ tale che $||g - f|| \le \varepsilon$ allora aggiungiamo a sottraiamo $g + \tau_h g$ e raggruppiamo in modo da ottenere

$$\tau_h f - f = \tau_h (f - g) + (\tau_h g - g) + (g - f)$$

$$\implies \|\tau_h f - f\|_p \le \underbrace{\|\tau_h (f - g)\|_p}_{\le \varepsilon} + \|\tau_h g - g\|_p + \underbrace{\|g - f\|_p}_{\le \varepsilon} \le 2\varepsilon + \underbrace{\|\tau_h g - g\|_p}_{\to 0 \text{ per } Caso \ 1}$$

dunque $\limsup_{|h|\to 0} \|\tau_h f - f\|_p \le 2\varepsilon$ ma per arbitrarietà di ε otteniamo anche che $\|\tau_h f - f\|_p \to 0$ per $|h|\to 0$.

Teorema. Siano $f_1 \in L^{p_1}(\mathbb{R}^d)$ e $f_2 \in L^{p_2}(\mathbb{R}^d)$ con p_1 e p_2 esponenti coniugati, allora $f_1 * f_2$ è definita per ogni x e uniformemente continua

$$|f_1 * f_2(x)| \le ||f_1||_{p_1} \cdot ||f_2||_{p_2} \quad \forall x.$$

Dimostrazione. Prendiamo $f_{1,n}, f_{2,n} \in C_C(\mathbb{R}^d)$ tali che $f_{1,n} \to f_1$ in L^{p_1} e $f_{2,n} \to f_2$ in L^{p_2} .

• Per prima cosa verifichiamo che f * g è ben definita. Notiamo che $f_{1,n} * f_{2,n}$ ha supporto limitato, infatti se supp $(f_{i,n}) \subset \overline{\mathcal{B}(0,r_{i,n})}$ per i=1,2 allora

$$\operatorname{supp}(f_{1,n} * f_{2,n}) \subset \overline{\mathcal{B}(0, r_{1,n} + r_{2,n})}$$

e basta notare che l'espressione

$$f_1 * f_2(x) = \int_{\mathbb{R}^d} f_1(x - y) f_2(y) \, dy$$

ha integranda nulla per ogni y se $|x| \ge r_{1,n} + r_{2,n}$.

• Vediamo che $f_{1,n} * f_{2,n} \to f_1 * f_2$ uniformemente

$$\begin{aligned} f_{1,n} * f_{2,n} - f_1 * f_2 &= (f_{1,n} - f_1) * f_{2,n} - f_1 * (f_{2,n} - f_2) \\ \|f_{1,n} * f_{2,n} - f_1 * f_2\|_p &\leq \|(f_{1,n} - f_1) * f_{2,n}\|_p + \|f_1 * (f_{2,n} - f_2)\|_p \\ &\leq \underbrace{\|f_{1,n} - f_1\|_{p_1}}_{\to 0} \cdot \underbrace{\|f_{2,n}\|_{p_2}}_{\to \|f_2\|_{p_2}} + \underbrace{\|f_1\|_{p_1}}_{\cot t} \cdot \underbrace{\|f_{2,n} - f_2\|_{p_2}}_{\to 0} \to 0 \end{aligned}$$

• $C_0(\mathbb{R}^d)$ è chiuso per convergenza uniforme [TODO: da fare per esercizio]

2.14 Derivata e Convoluzione

Osservazione. Osserviamo che la convoluzione si comporta bene con l'operatore di traslazione definito precedentemente, infatti $\tau_h(f_1 * f_2) = (\tau_h f_1) * f_2$ in quanto

$$f_1 * f_2(x - h) = \int f_1(x - h - y) \cdot f_2(y) \, dy = \int \tau_h f(x - y) \cdot f_2(y) \, dy = (\tau_h f_1) * f_2(y) \, dy$$

quindi "formalmente" possiamo calcolare il seguente rapporto incrementale

$$\frac{\tau_h(f_1 * f_2) - f_1 * f_2}{h} = \frac{\tau_h f_1 - f_1}{h} * f_2 \implies (f_1 * f_2)' = (f_1)' * f_2$$

Vediamo ora di formalizzare questo risultato.

Teorema. Dati p_1 e p_2 esponenti coniugati, se

- $f_1 \in C^1(\mathbb{R}^d), \nabla f_1 \in L^{p_1}(\mathbb{R}^d)$
- $f_2 \in L^{p_2}(\mathbb{R}^d)$

allora $f_1 * f_2 \in C^1$ con $\nabla (f_1 * f_2) = (\nabla f_1) * f_2^5$.

Dimostrazione.

• d=1: Sappiamo che f_1*f_2 è continua e $f_1'*f_2$ è continua. Vediamo che coincidono usando il teorema fondamentale del calcolo integrale. L'uguaglianza $(f_1*f_2)'=f_1'*f_2$ segue da

$$\int_{a}^{b} f_{1}' * f_{2} dx = f_{1} * f_{2}(b) - f_{1} * f_{2}(a) \quad \forall a < b$$

ed in effetti

$$\int_{a}^{b} f_{1}' * f_{2}(x) dx = \int_{a}^{b} \int_{-\infty}^{\infty} f_{1}'(x - y) f_{2}(y) dy dx$$

$$\stackrel{(*)}{=} \int_{-\infty}^{\infty} \int_{a}^{b} f_{1}'(x - y) dx \cdot f_{2}(y) dy$$

$$= \int_{-\infty}^{\infty} (f_{1}(b - y) - f_{1}(a - y)) \cdot f_{2}(y) dy$$

$$= \int_{-\infty}^{\infty} f_{1}(b - y) f_{2}(y) dy - \int_{-\infty}^{\infty} f_{1}(a - y) f_{2}(y) dy$$

$$= f_{1} * f_{2}(b) - f_{1} * f_{2}(a).$$

⁵Ha senso anche se ∇f_1 è a valori vettoriali. In tal caso $\frac{\partial}{\partial x}(f_1 * f_2) = \left(\frac{\partial f_1}{\partial x_i}\right) * f_2$ per $i = 1, \dots, d$.

In particolare in (*) stiamo usando Fubini-Tonelli in quanto

$$\int_{a}^{b} \int_{-\infty}^{\infty} |f_{1}'(x-y)| \cdot |f_{2}(y)| \, \mathrm{d}y \le \int_{a}^{b} \|f_{1}'(x-y)\|_{p_{1}} \cdot \|f_{2}\|_{p_{2}} \, \mathrm{d}x = \|f_{1}'\|_{p_{1}} \cdot \|f_{2}\|_{p_{2}} \cdot (b-a).$$

 \bullet per d>1 dato $i=1,\ldots,d$ basta semplicemente considerare le proiezioni infatti

$$\int_{a}^{b} \frac{\partial f_{1}}{\partial x_{i}} * f_{2}(x_{1}, \dots, \overset{(i)}{t}, \dots, x_{d}) dt = f_{1} * f_{2}(x_{1}, \dots, \overset{(i)}{b}, \dots, x_{d}) - f_{1} * f_{2}(x_{1}, \dots, \overset{(i)}{a}, \dots, x_{d})$$

Corollario. Data $f_1 \in C_C^{\infty}(\mathbb{R}^d)$ (da cui segue $\nabla^k \in L^q(\mathbb{R}^d)$ per ogni $k = 0, 1, \ldots$ e $1 \leq q < +\infty$) e $f_2 \in L^p(\mathbb{R}^d)$ allora $f_1 * f_2 \in C^{\infty}(\mathbb{R}^d)$ (anzi $\nabla^k (f_1 * f_2) \in C_0(\mathbb{R}^d)$ per ogni k) e vale la formula nota⁶

$$\nabla^k (f_1 * f_2) = (\nabla^k f_1) * f_2.$$

Dimostrazione. Dimostriamo il corollario per approssimazione usando il seguente teorema.

Definizione. Per prima cosa data una funzione $g \colon \mathbb{R}^d \to \mathbb{R}$ e $\delta \neq 0$ poniamo

$$\sigma_{\delta}g(x) := \frac{1}{\delta^d}g\left(\frac{x}{\delta}\right)$$

e notiamo che questa trasformazione preserva la norma L^1 . Infatti, il valore $1/\delta^d$ è proprio il modulo del determinante dello Jacobiano del cambio di variabile.

Teorema. Data $f \in L^p(\mathbb{R}^d)$ e $g \in L^1(\mathbb{R}^d)$ con $1 \le p < +\infty$ e posto $m \coloneqq \int_{\mathbb{R}^d} g(x) \, \mathrm{d}x$, allora

$$f * \sigma_{\delta} g \xrightarrow{\delta \to 0} mf \in L^p(\mathbb{R}^d).$$

Osservazione. Se $g_2 \ge 0$ con $\int g \, dx = 1$ (dunque g distribuzione di probabilità) allora f * g possiamo pensarla come media pesata di traslate di f, dunque facendo $f * \sigma_{\delta}g$ stiamo pesando sempre di più i valori delle traslate vicino a 0.

Inoltre per $p=+\infty$ non vale ed il controesempio è sempre il solito. [TO DO: scrivere la funzione].

Dimostrazione. Per ora consideriamo g generica e ripercorriamo una dimostrazione simile a quella fatta per la disuguaglianza di Young

$$\begin{aligned} \|f * g - mf\|_p^p &= \int_{\mathbb{R}^d} \underbrace{|f * g - mf|^p} \, \mathrm{d}x \\ &= \int |f * g - mf| \cdot h^{p-1} \, \mathrm{d}x \\ &= \int \left| \int \left(f(x - y)g(y) - f(x) \int g(y) \right) \, \mathrm{d}y \right| \cdot h^{p-1}(x) \, \mathrm{d}x \\ &\leq \int \int |f(x - y) - f(x)| \cdot |g(y)| \, \mathrm{d}y \cdot h^{p-1}(x) \, \mathrm{d}x \\ &\stackrel{(*)}{=} \int \left(\int |f(x - y) - f(x)| h^{p-1}(x) \, \mathrm{d}x \right) |g(y)| \, \mathrm{d}y, \end{aligned}$$

⁶Vista in termini di gradienti la formulazione è più compatta ma non poi così intuitiva: bisognerebbe definire la convoluzione tre una funzione a valori vettoriali ed uno scalare etc... Altrimenti basta scrivere le singole identità usando derivate parziali e multiindici.

dove in (*) abbiamo usato Fubini-Tonelli. Ora prendiamo q tale che 1/p+1/q=1 allora per Hölder abbiamo

$$\leq \int \|f(\cdot - y) - f(\cdot)\|_{p} \|h^{p-1}\|_{q} \cdot |g(y)| \, dy$$
$$= \|h\|_{p}^{p-1} \int_{\mathbb{R}^{d}} \|\tau_{y} f - f\|_{p} \cdot |g(y)| \, dy$$

dunque abbiamo ricavato che

$$||f * g - mf||_p^p \le ||f * g - mf||_p^{p-1} \int_{\mathbb{R}^d} ||\tau_y f - f||_p \cdot |g(y)| \, dy$$

ed ora applicando questa stima a $\sigma_{\delta}g$ invece che a g otteniamo

$$||f * \sigma_{\delta}g - mf||_{p} \le \int_{\mathbb{R}^{d}} ||\tau_{y}f - f||_{p} \cdot |\sigma_{\delta}g(y)| \,dy$$

infine ponendo $z=y/\delta$ e d $z=1/\delta^d\,\mathrm{d} y$ e sostituendo nell'integrale

$$= \int_{\mathbb{R}^d} \|\tau_{\delta z} f - f\|_p \cdot |\sigma_{\delta} g(y)| \, \mathrm{d}y \xrightarrow{\delta \to 0} 0$$

per convergenza dominata, verifichiamone le ipotesi

- i) La convergenza puntuale segue in quanto $\|\tau_{\delta z}f f\|_p \xrightarrow{\delta \to 0} 0$ per ogni z.
- ii) Come dominazione prendiamo $2\left\Vert f\right\Vert _{p}\cdot\left\vert g\right\vert \in L^{1}.$

Corollario. Sia $g \in C_C^{\infty}(\mathbb{R}^d)$ con $\int g \, dx = 1$ e $f \in L^p(\mathbb{R}^d)$ e $1 \leq p < +\infty$ allora $\sigma_{\delta}g * f \xrightarrow{\delta \to 0} f$ in $L^p(\mathbb{R}^d)$ e $\sigma_{\delta}g * f \in C^{\infty}(\mathbb{R}^d)$.

Capitolo 3

Spazi di Hilbert

Sia H spazio vettoriale reale con prodotto scalare $\langle \cdot, \cdot \rangle$ definito positivo e norma indotta $\| \cdot \|$ definita come $\|x\| = \sqrt{\langle x, x \rangle}$.

Si ricorda l'identità di polarizzazione

$$\langle x_1, x_2 \rangle = \frac{1}{4} (\|x_1 + x_2\|^2 - \|x_1 - x_2\|^2).$$

Nota. Siccome $\|\cdot\|$ è continua, dalla formula di polarizzazione segue che il prodotto scalare è continuo.

Definizione. H si dice **spazio di Hilbert** se è completo.

Esempi.

- Dato (X, \mathcal{A}, μ) , gli spazi $L^2(X), L^2(X, \mathbb{R}^m)$ sono spazi di Hilbert.
- Lo spazio $\ell^2 = \left\{ (x_n) \mid \sum_{n=0}^{\infty} x_n^2 < +\infty \right\}$ è uno spazio di Hilbert.

Definizione. $\mathcal{F} \subset H$ è un sistema ortonormale se

$$||e|| = 1 \ \forall e \in \mathcal{F}, \qquad \langle e, e' \rangle = 0 \ \forall e \neq e' \in \mathcal{F}.$$

Definizione. \mathcal{F} si dice **completo** se $\overline{\mathrm{Span}(\mathcal{F})} = H^1$. In tal caso \mathcal{F} si dice **base di Hilbert**.

Osservazione. In generale una base di Hilbert $\mathcal{F} \subset H$ non è anche una base algebrica di H. L'esempio che segue spiega quanto appena detto.

Esempio. In ℓ^2 una base ortonormale è $\mathcal{F} = \{e_n \mid n \in \mathbb{N}\}$ con $e_n = (0, \dots, 0, 1, 0, \dots)$. Infatti, il fatto che siano ortonormali è banale; verifichiamo che sia una base.

Studiamo Span $(\mathcal{F}) = \{x = (x_0, x_1, \ldots) \mid x_n \text{ è definitivamente nullo}\}: dato <math>x \in \ell^2$ e $m = \mathbb{N}$, definiamo

$$P_m x := (x_0, x_1, \dots, x_m, 0, \dots).$$

Allora Span $(\mathcal{F}) \supset P_m x \xrightarrow{m \to +\infty} x$ in ℓ^2 . Infatti,

$$x - P_m x = (0, \dots, 0, x_{m+1}, x_{m+2}, \dots).$$

¹Lo span sono combinazioni lineari finite.

Dunque

$$||x - P_m x|| = \sum_{n=m+1}^{\infty} x_n^2 \xrightarrow{m \to +\infty} 0.$$

Teorema 1. (della base di Hilbert.) Dato H spazio di Hilbert, \mathcal{F} sistema al più numerabile, ovvero $\mathcal{F} = \{e_n \mid n \in \mathbb{N}\}$. Definiamo per ogni $x \in H$, $n \in \mathbb{N}$ l'elemento $x_n = \langle x, e_n \rangle$. Allora

- i) Vale $\sum_{n} x_n^2 \le ||x||^2$ (Disuguaglianza di Bessel).
- ii) La somma $\sum_{n} x_n e_n$ converge a qualche $\overline{x} \in H$ e $\overline{x}_n = x_n$ per ogni n.
- iii) Vale $\|\overline{x}\|^2 = \sum_{n} x_n^2 \le \|x\|^2$.
- iv) Se $x \overline{x} \perp \mathcal{F}$, allora $x \overline{x} \perp \overline{\operatorname{Span}(\mathcal{F})}$, ovvero \overline{x} è la proiezione di x su $\overline{\operatorname{Span}(\mathcal{F})}$.
- v) Se \mathcal{F} è completo, allora $x = \overline{x}$ e in particolare

$$x = \sum_{n=0}^{\infty} x_n e_n, \qquad ||x||^2 = \sum_{n=0}^{\infty} x_n^2 \qquad \text{(Identità di Parceval)}.$$

Alla dimostrazione del teorema premettiamo il seguente lemma.

Lemma. Siano H e $\mathcal F$ come nel teorema. Data $(a_n) \in \ell^2$, allora

- i) La serie $\sum_{n} a_n e_n$ converge a qualche $\overline{x} \in H$.
- ii) $\overline{x}_n = a_n$ per ogni n.

iii)
$$\|\overline{x}\|^2 = \sum_n a_n^2$$
.

Dimostrazione lemma.

i) Dimostriamo che $y_n = \sum_{n=1}^m a_n e_n$ è di Cauchy in H. Se m' > m, vale

$$y_{m'} - y_m = \sum_{n=m+1}^{m'} a_n e_n \Longrightarrow \|y_{m'} - y_m\|^2 = \left\| \sum_{n=m+1}^{m'} a_n e_n \right\|^2 = \sum_{n=m+1}^{m'} a_n^2 \le \sum_{n=m+1}^{\infty} a_n^2 < +\infty.$$

Dunque, per ogni ε esiste m_{ε} tale che $\sum_{m+1}^{\infty}a_n^2\leq \varepsilon^2$, per cui

$$||y_{m'} - y_m||^2 \le \sum_{m+1}^{\infty} a_n^2 \le \sum_{m_{\varepsilon}+1}^{\infty} a_n^2 \le \varepsilon^2 \quad \forall m, m' \ge m_{\varepsilon}.$$

ii) Se $m \geq n$, $\langle y_m, e_n \rangle = a_n$, dunque

$$a_n = \langle y_m, e_n \rangle \xrightarrow{m \to \infty} \langle \overline{x}, e_n \rangle = \overline{x}_n.$$

iii) Si ha l'uguaglianza
$$\|y_m\|^2 = \sum_{n=1}^m a_n^2$$
, per cui passando al limite per $m \to +\infty$ otteniamo

$$||y_m||^2 \xrightarrow{m \to \infty} ||\overline{x}||^2$$

$$\sum_{n=0}^m a_n^2 \xrightarrow{m \to \infty} \sum_{n=0}^\infty a_n^2$$

Dimostrazione teorema.

i) Studiamo la somma $x = \sum_{n=0}^{m} x_n e_n + y$.

Notiamo che x è somma di vettori ortogonali, infatti y è ortogonale a $\sum_{n=0}^{m} x_n e_n$:

$$\langle y, e_i \rangle = \left\langle x - \sum_{n=0}^m x_n e_n, e_i \right\rangle = \langle x, e_i \rangle - \sum_{n=0}^m x_n \underbrace{\langle e_n, e_i \rangle}_{\delta_{i,n}} = x_i - x_i = 0.$$

Essendo che x è somma di vettori ortogonali abbiamo

$$||x||^2 = \sum_{n=1}^m x_n^2 + ||y||^2 \ge \sum_{n=1}^m x_n^2.$$

Passando al limite per $m \to +\infty$ otteniamo

$$\left\|x\right\|^2 \ge \sum_{n=1}^{\infty} x_n^2.$$

- ii) Segue dal punto precedente e dal lemma.
- iii) Segue dal punto precedente e dal lemma.

iv) Notiamo che
$$\langle x-\overline{x},e_n\rangle=x_n-\overline{x}_n\stackrel{\mathrm{ii})}{=}0$$
 per ogni $n.$ Cioè

$$x - \overline{x} \perp e_n \Longrightarrow x - \overline{x} \perp \operatorname{Span}(\mathcal{F}) \Longrightarrow x - \overline{x} \perp_{\substack{\text{continuità} \\ \text{pr. scalare}}} \overline{\operatorname{Span}(\mathcal{F})}$$

v)
$$x - \overline{x} \perp \overline{\operatorname{Span}(\mathcal{F})} = H \Longrightarrow x - \overline{x} = 0$$
, cioè $x = \overline{x}$.

Corollario. Siano H spazio di Hilbert, $\mathcal{F} = \{e_n \mid n \in \mathbb{Z}\}$ base di Hilbert, $x, x' \in H$. Valgono le seguenti.

i) Se $x_n = x_n'$ per ogni $n \in \mathbb{N}$, allora x = x' (\Leftarrow è ovvia.)

ii)
$$\langle x, x' \rangle = \sum_{n=0}^{\infty} x_n x'_n$$
 (Identità di Parceval).

iii) L'applicazione $H \ni x \mapsto (x_n) \in \ell^2$ è un'isometria surgettiva².

Dimostrazione.

- i) Per l'enunciato ?? se due vettori hanno la stessa rappresentazione rispetto a una base di Hilbert coincidono.
- ii) La tesi segue usando l'identità di polarizzazione congiuntamente all'enunciato ?? del teorema:

$$\langle x, x' \rangle = \frac{1}{4} \left(\|x + x'\|^2 + \|x - x'\|^2 \right) = \frac{1}{4} \left(\sum_{n} \underbrace{(x_n + x'_n)^2 + 2x_n x'_n}_{(x_n + x'_n)^2} \sum_{n} \underbrace{(x_n - x'_n)^2}_{x_n^2 + x'_n^2 - 2x_n x'_n} \right)$$

$$= \frac{1}{4} \left(\sum_{n} \underbrace{x'_n^2 + \sum_{n} x'_n^2}_{n} + 2 \sum_{n} x_n x'_n - \sum_{n} \underbrace{x'_n^2 + x'_n^2 - 2x_n x'_n}_{n} + 2 \sum_{n} x_n x'_n \right).$$

iii) Segue da Parseval e dal punto ??.

Osservazioni.

• Gli enunciati ?? e ?? non richiedono H completo, mentre ?? è vero anche se H non è completo.

• Se H è uno spazio di Hilbert e \mathcal{F} sistema ortonormale infinito, allora \mathcal{F} non è mai una base algebrica³. Dunque, combinazioni lineari finite di H non sono mai uguali ad H, ovvero $\mathrm{Span}(\mathcal{F}) \subseteq H$) di H.

Dimostrazione. Presi $(e_n) \subset \mathcal{F}$, consideriamo $\overline{x} = \sum_{n=0}^{\infty} 2^{-n} e_n$. Allora $\overline{x} \in H \setminus \text{Span}(\mathcal{F})$.

• Siano H uno spazio di Hilbert di dimensione infinita e \mathcal{F} una base di Hilbert. Allora \mathcal{F} è numerabile se solo se H è separabile.

Dimostrazione.

 \sqsubseteq Se \mathcal{F} non fosse numerabile, siccome $||e-e'||=\sqrt{2} \quad \forall e,e'\in \mathcal{F}$ allora H non è separabile.

Esempio. Lo spazio $H=L^2(X)$, con $X=\mathbb{R}^n$, μ misura di Lebesgue ha base di Hilbert numerabile.

• Dato \mathcal{F} sistema ortonormale in H, allora \mathcal{F} è completo se solo se \mathcal{F} è massimale (nella classe dei sistemi ortonormali rispetto all'inclusione).

Dimostrazione.

²In particolare è bigettiva ma l'iniettività è ovvia.

³Per base algebrica s'intende un insieme di vettori di uno spazio vettoriale le cui combinazioni lineari generano tutto lo spazio.

 \implies Dato che \mathcal{F} è completo segue che $\overline{\mathrm{Span}(\mathcal{F})} = X$, quindi

$$\mathcal{F}^{\perp} = (\operatorname{Span}(\mathcal{F}))^{\perp} = \overline{\operatorname{Span}(\mathcal{F})}^{\perp} = H^{\perp} = \{0\}.$$
continuità del prodotto scalare

dunque \mathcal{F} è massimale.

Se \mathcal{F} non è completo, esiste $c \in H \setminus \operatorname{Span}(\mathcal{F})$. Definiamo \overline{x} come nel Teorema 1. Notiamo che $x - \overline{x} \perp \operatorname{Span}(\mathcal{F})$, dunque $x - \overline{x} \perp \mathcal{F}$ e $x - \overline{x} \neq \{0\}$, da cui $\mathcal{F} \cup \left\{\frac{x - \overline{x}}{\|x - \overline{x}\|}\right\}$ è un sistema ortonormale che include strettamente \mathcal{F} . $\cancel{\xi}$

Osservazione. Nell'implicazione \Rightarrow non abbiamo usato la completezza di H.

Corollario. Ogni sistema ortonormale \mathcal{F} si completa a $\widetilde{\mathcal{F}}$ base di Hilbert di H.

Dimostrazione. Sia $X = \{ \mathcal{F} \text{ sistema ortonormale } H \text{ tale che } \tilde{\mathcal{F}} \subset \mathcal{F} \}$. Per Zorn, X contiene un elemento massimale. Denotiamolo con $\tilde{\mathcal{F}}$. Allora $\tilde{\mathcal{F}}$ è una base di Hilbert.

Nota. Aggiungere le note a caso. [TO DO: ?]

Teorema 2. Dato V sottospazio vettoriale chiuso di H. Allora

- i) $H = V + V^{\perp}$, cioè per ogni $x \in H$ esiste $\overline{x} \in V$ e $\widetilde{x} \in V^{\perp}$ tale che $x = \overline{x} + \widetilde{x}$.
- ii) Gli elementi \overline{x} e \widetilde{x} sono univocamente determinati (e indicati con x_V e x_V^{\perp}).
- iii) \overline{x} è caratterizzato come l'elemento di V più vicino a X.

Dimostrazione.

- i) Dato che V è chiuso, V è completo, cioè V è un sottospazio di H, dunque V ammette base ortonormale $\mathcal{F} = \{e_n \mid n \in \mathbb{N}\}$. Definiamo $\overline{x} \in \overline{\mathrm{Span}(\mathcal{F})}$ come nel Teorema 1 e $\widetilde{x} := x \overline{x} \in \overline{\mathrm{Span}(\mathcal{F})} = V^{\perp}$ (per $\ref{eq:span}$).
- ii) Se $x = \overline{x} + \widetilde{x} = \overline{x}' + \widetilde{x}'$, dove $\overline{x}, \overline{x}' \in V$ e $\widetilde{x}, \widetilde{x}' \in V^{\perp}$, allora

$$\overline{x} - \overline{x}' = \widetilde{x}' - \widetilde{x} \underset{V \cap V^{\perp} = \{0\}}{\Longrightarrow} \overline{x} - \overline{x}' = \widetilde{x}' - \widetilde{x} = 0.$$

iii) Per ogni $y \in V$ sia $f(y) = ||x - y||^2$. Mostriamo che \overline{x} è l'unico minimo di f.

$$f(y) = \|x - y\|^2 = \|\widehat{x - \overline{x}} + \widehat{\overline{x} - y}\|^2 = \|x - \overline{x}\|^2 + \|\overline{x} - y\|^2 = f(\overline{x}) + \|\overline{x} - y\|^2 \ge f(\overline{x}).$$

Osservazione. Serve V chiuso. Se per esempio V è denso in H ma $V \neq H$, allora

$$\overline{V^{\perp}} = \overline{V}^{\perp} = H^{\perp} = \{0\} \Longrightarrow V \subseteq V + V^{\perp} \subseteq V + \overline{V^{\perp}} = V \subsetneq H.$$

Un esempio di tale $V \in \text{Span}(\mathcal{F})$ con \mathcal{F} base di H (H di dimensione infinita).

Teorema 3 (di rappresentazione di Riesz.) Dato $\Lambda \colon H \to \mathbb{R}$ lineare e continuo, esiste $x_0 \in H$ tale che

$$\Lambda(x) = \langle x, x_0 \rangle$$
 per ogni $x \in H$. (*)

Dimostrazione. Supponiamo $\Lambda \not\equiv 0$. Dato che Λ è continuo, ker Λ è chiuso in H. Definiamo $V := \ker \Lambda$. Per il primo enunciato del teorema precedente, $H = V + V^{\perp}$ e per quanto supposto $V^{\perp} \neq \{0\}$.

Notiamo che dim $V^{\perp}=1$. Infatti, se per assurdo dim $(V^{\perp})>1$, allora esisterebbe $W\subset V^{\perp}$ con dim W=2, da cui seguirebbe che $\Lambda\colon W\to\mathbb{R}$ ha ker banale. 4

Allora $V^{\perp} = \operatorname{Span} \{x_1\}$ con $||x_1|| = 1$. Definiamo $c := \Lambda(x_1), x_0 = cx_1$.

Dimostriamo ora l'uguaglianza * per passi.

- i) Vale per $x \in V$ tale che $x \in \ker \Lambda$. Infatti $\Lambda(x) = x_0 \in \langle x, x_0 \rangle = 0$ perché $x_0 \in V^{\perp}$.
- ii) Vale per $x = x_1$ (e quindi per $x \in V^{\perp}$). Infatti,

$$\Lambda(x_1) = c \quad \langle x_1, x_0 \rangle = \langle x_1, cx_1 \rangle = c \|x_1\|^2 = c.$$

iii) Vale su $V + V^{\perp} = H$.

Osservazioni.

• Esistono funzioni $\Lambda \colon H \to \mathbb{R}$ lineari ma non continue se H ha dimensione infinita.

Dimostrazione. Prendo $\Lambda \colon H \to \mathbb{R}$ lineare definito come

$$\begin{cases} \Lambda(e_n) = n & \forall n \\ \Lambda(e) = \text{qualsiasi } e \in \mathcal{G} \setminus \{e_n\} \,. \end{cases}$$

Allora

$$+\infty = \sup_{n} |\Lambda(e_n)| \le \sup_{\|x\| \le 1} |\Lambda(x)|$$

da cui segue che Λ non è continuo.

3.1 Esercitazione del 3 Novembre 2021

3.1.1 Basi Hilbertiane e proiezioni

Esercizio. Sia $H=L^2(-1,1)$ e sia $V=\operatorname{Span}\{1,x,x^2\}$. Verificare che V è un sottospazio chiuso e calcolare la proiezione di sin x su V.

Notazione. Indichiamo con $\|\cdot\|$ la norma $\|\cdot\|_{L^2(-1,1)}$ e con $\langle\,\cdot\,,\,\cdot\,\rangle$ il prodotto scalare su $L^2.$

Soluzione. Vediamo come risolvere questo esercizio in tre modi diversi.

- i) Dato H spazio di Hilbert separabile, e dato un sottospazio $V \subset H$, vediamo come trovare la proiezione di un elemento $x \in H$ su V. Procediamo come segue.
 - \bullet Controlliamo che V sia chiuso.
 - Calcoliamo una base hilbertiana di V che indichiamo con $\{e_1, \ldots, e_n, \ldots\}$.

Il tal caso, la proiezione di un elemento $x \in H$ su V è data da

$$p_V(x) = \sum_n \langle x, e_n \rangle e_n.$$

Esercizio. [TO DO: per casa] Ogni sottospazio di dimensione finita di uno spazio di Hilbert o di L^p è chiuso (e in particolare ha parte interna vuota).

Abbiamo una base di V data da $\{1, x, x^2\}$ (è una base in quanto sono linearmente indipendenti: si può verificare mostrando che $\forall x \in [-1, 1] \ \lambda_1 + \lambda_2 x + \lambda_3 x^2 = 0 \implies \lambda_1 = \lambda_2 = \lambda_3 = 0$ usando la teoria sulle equazioni di II grado oppure si può derivare e man mano ottenere più informazioni su $\lambda_3, \lambda_2, \lambda_1$).

Volendo usare la base scritta sopra per calcolare la proiezione di sin x su V, dovremmo prima applicare Gram-Schmidt alla base $\{1, x, x^2\}$ per determinare una base Hilbertiana:

$$e_{1} = \frac{1}{\|1\|} = \frac{1}{\sqrt{2}}$$

$$e_{2} = \frac{x - \langle x, \frac{1}{\sqrt{2}} \rangle \cdot 1}{\|x - \langle x, \frac{1}{\sqrt{2}} \rangle \cdot 1\|}$$

$$e_{3} = \frac{x^{2} - \langle x^{2}, e_{1} \rangle \cdot e_{1} - \langle x^{2}, e_{2} \rangle \cdot e_{2}}{\|x^{2} - \langle x^{2}, e_{1} \rangle \cdot e_{1} - \langle x^{2}, e_{2} \rangle \cdot e_{2}\|}$$

e successivamente calcolare $p_V(\sin x)$ con la formula scritta sopra.

ii) Alternativamente, possiamo direttamente cercare la proiezione di sin x su V. Determiniamo a, b, c tali che $a + bx + cx^2$ sia $p_V(x) = \sin x$ allora posto $f(x) := \sin x - a - bx - cx^2$ abbiamo $f(x) \in V^{\perp} \iff$ si verificano le seguenti condizioni

$$\langle f(x), 1 \rangle = 0$$
 $\langle f(x), x \rangle = 0$ $\langle f(x), x^2 \rangle = 0$

Ad esempio da $\langle f(x), 1 \rangle = 0$ otteniamo

$$0 = \int_{-1}^{1} (\sin x - a - bx - cx^{2}) \cdot 1 \, dx = \underbrace{\int_{-1}^{1} \sin x \, dx}_{=0} - 2a - b \underbrace{\int_{-1}^{1} x \, dx}_{=0} - c \int_{-1}^{1} x^{2} \implies 0 = -2a - \frac{2}{3}c$$

ed analogamente si procede con x e x^2 ... [TODO: Da finire]

iii) Un altro modo è considerare la funzione $g(a,b,c) := \|\sin x - a - bx - cx^2\|_{L^2(-1,1)}$ che è continua, coerciva, etc. e imponendo $\nabla_{a,b,c,g} = 0$ si minimizza e si ottengono \bar{a},\bar{b},\bar{c} che verificano $p_V(\sin x)$.

Esercizio. Sia $X = \{u \in L^2(\mathbb{R}) \mid \int_0^2 u \, \mathrm{d}x = 0\}$, dire se è un sottospazio chiuso, calcolare X^{\perp} per una generica $u \in L^2(\mathbb{R})$ e determinare le proiezioni $p_X(u)$ e $p_{X^{\perp}}(u)$.

Soluzione. La mappa T lineare data da

$$u \mapsto \int_0^2 u \, \mathrm{d}x$$

è ben definita, lineare e continua, allora X è proprio $T^{-1}(0)$ dunque è un sottospazio chiuso.

Osservazione. Notiamo che

$$T(u) = \int_{\mathbb{R}} u(x) \cdot \mathbb{1}_{[0,2]}(x) \, dx = \langle u, g \rangle_{L^2(\mathbb{R})}, \qquad g = \mathbb{1}_{[0,2]}(x) \in L^2(\mathbb{R}).$$

Calcoliamo ora X^{\perp} e le proiezioni p_X , $p_{X^{\perp}}$. Abbiamo che $X = \{u \in L^2(\mathbb{R}) \mid \langle u, g \rangle = 0\}$ dove $g = \mathbb{1}_{[0,2]}(x)$, dunque $X^{\perp} = \operatorname{Span}(g)$. Notiamo⁴ che

$$L^2(\mathbb{R}) = \operatorname{Span}_{\mathbb{R}} \left\{ \frac{g}{\|g\|_{L^2}} \right\} \oplus \left\{ \frac{g^{\perp}}{\|g^{\perp}\|_{L^2}} \right\}.$$

Calcoliamo $p_X(u)$ come segue

$$p_X(u) = u - \left\langle u, \frac{g}{\|g\|_{L^2}} \right\rangle \cdot \frac{g}{\|g\|_{L^2}},$$

dove

$$||g||_{L^2} = \left(\int_{\mathbb{R}} \mathbb{1}_{[0,2]}(x)^2 dx\right)^{1/2} = \sqrt{2}$$

e dunque

$$p_X(u) = u - \left(\int_0^2 u \, dx\right) \cdot \frac{\mathbb{1}_{[0,2]}}{2}$$

Un controllo veloce per verificare di aver fatto i conti corretti è quello di vedere che $p_X(u) \in X$, dunque di verificare che $\int_0^2 p_X(u) dx = 0$.

Per calcolare $p_{X^{\perp}}(u)$ usiamo la seguente.

Osservazione. Vale $u = p_X(u) + p_{X^{\perp}}(u)$.

In conclusione,

$$p_{X^{\perp}}(u) = u - p_X(u) = \left(\int_0^2 u \, \mathrm{d}x\right) \cdot \frac{\mathbb{1}_{[0,2]}}{2}.$$

Esercizio. [TO DO: per casa.] Sia $V = \{\underline{x} = (x_n)_{n \in \mathbb{N}} \in \ell^2 \mid x_1 + x_3 + x_5 = 0\}$. Dire se V è chiuso in ℓ^2 e calcolare p_V e $p_{V^{\perp}}$.

3.1.2 Approssimazioni per convoluzione

Abbiamo visto che data $g \in L^1(\mathbb{R}^d)$ con $\int g \, dx = 1$ allora per ogni $f \in L^p(\mathbb{R}^d)$ abbiamo $f_{\delta} := f * \sigma_{\delta} g \xrightarrow{\delta \to 0} f$ in $L^p(\mathbb{R}^d)$ per $p \neq \infty$.

Esercizio. Dire se esiste $v \in L^1(\mathbb{R})$ tale che sia elemento neutro della convoluzione, ovvero

$$\forall f \in L^1(\mathbb{R}) \qquad f * v = f.$$

Una tale v non esiste, per vederlo scegliamo opportunamente \bar{f} e usiamo l'equazione. Scelgo $g \in C_C(\mathbb{R})$ e defiamo $\sigma_{\delta}g = 1/\delta g(1/\delta)$. Abbiamo che $\sigma_{\delta}g * v = \sigma_{\delta}g$ per ogni δ . Per il teorema abbiamo che $\sigma_{\delta}g * v = \sigma_{\delta}g \xrightarrow{\delta \to 0} v$ in $L^1(\mathbb{R})$, ma $\sigma_{\delta}g \xrightarrow{\delta \to 0} 0$ quasi ovunque in $L^1(\mathbb{R})$. Allora v = 0 q.o. in $L^1(\mathbb{R})$, dunque non può valere f * v = v per ogni $f \in L^1(\mathbb{R})$.

 $^{^4\}mathrm{Con}\ g/\left\|g^\perp\right\|_{L^2}$ indichiamo una base normalizzata di $g^\perp.$

Esercizio. [TO DO: per casa.] Sia f misurabile su \mathbb{R}^d tale che $\int_E f \, \mathrm{d}x = 0$ per ogni E misurabile di \mathbb{R}^d . Dimostrare che f = 0 q.o. su \mathbb{R}^d .

Suggerimento. Considerare l'integrale sull'insieme $\{x \in \mathbb{R}^d \mid f(x) = 0\} \cup \{x \in \mathbb{R}^d \mid f(x) \neq 0\}$ e verificare che, se denotiamo $A = \{x \in \mathbb{R}^d \mid f(x) \neq 0\}$, allora |A| = 0.

Esercizio. [TO DO: per casa.] Sia f Lebesgue-misurabile su \mathbb{R}^d tale che $\forall B$ palla su \mathbb{R}^d

$$\int_{B} f \, \mathrm{d}x = 0$$

Dimostrare che che f = 0 quasi ovunque su \mathbb{R}^d .

Suggerimenti. Usare la convoluzione con opportuni nuclei; notare che $\int_B f = 0 \iff f * \mathbb{1}_B = 0$ per ogni palla B.

3.2 Esempi di basi Hilbertiane

3.2.1 Polinomi

La base data da $\{1, x, x^2, \dots, x^n, \dots\}$ opportunamente ortonormalizzata è una base⁵ di $L^2[0, 1]$ (anche di $L^2(\mathbb{R})$).

3.2.2 Base di Haar

Vediamo la base di Haar data da due indici n, k dove n indica l'ampiezza delle "onde" (anche dette wavelet) e k il posizionamento dell'onda. Sia $n \in \mathbb{N}$ e $k = 1, \ldots, 2^n$ e poniamo

$$g^{0,0} \coloneqq \mathbb{1}_{[0,1]} \qquad g^{n,k} \coloneqq 2^{\frac{n-1}{2}} \left(\mathbb{1}_{\left[\frac{2k-2}{2^n}, \frac{2k-1}{2^n}\right]} - \mathbb{1}_{\left[\frac{2k-1}{2^n}, \frac{2k}{2^n}\right]} \right)$$

Inoltre $||g^{n,k}||_{L^2[0,1]} = 1$ ed anche $||g^{0,0}||_{L^2[0,1]} = 1$. Vedremo che $\{g^{n,k} \mid n \geq 1, k = 1, \dots, 2^n\} \cup \{g^{0,0}\}$ formano un sistema ortonormale.

- $\langle g^{n,k}, g^{0,0} \rangle = 0$: È ovvio in quanto le $g^{n,k}$ hanno media nulla.
- $\langle g^{n,k}, g^{n',k'} \rangle = 0$: Se n = n' i supporti sono sempre disgiunti altrimenti $n \neq n'$, se supponiamo n < n' allora i supporti o sono disgiunti e si conclude come prima o il supporto di $g^{n',k'}$ è contenuto in quello di $g^{n,k}$. In tal caso però $g^{n,k}$ è costante su $g^{n',k'}$ e dunque l'integrale è sempre nullo.

 $^{^5{\}rm Teorema}$ di Stone-Weierstrass: i polinomi sono densi nello spazio delle funzioni continue.

Inoltre è anche una base hilbertiana, per combinazioni algebriche si ottengono tutti gli intervalli della forma

$$I_k := \left\lceil \frac{k-1}{2^n}, \frac{k}{2^n} \right\rceil \qquad \leadsto \qquad \mathbb{1}_{I_k}$$

ad esempio normalizzando $g^{n,k}+2^{\frac{n-1}{2}}g^{0,0}$ otteniamo uno degli intervalli di sopra di lunghezza $1/2^{n+1}$.

Vedremo che possiamo estendere la base di Haar a tutto \mathbb{R} però è più difficile... [TODO: Ehm aggiungere la parte dopo quando verrà fatta]

Esercizio. Sia $p \ge 1$ allora $\{u \in L^p(\mathbb{R}) \mid \int u \, \mathrm{d}x = 0\} \subseteq L^p(\mathbb{R})$ è denso in $L^p(\mathbb{R})$?

3.3 Spazi di Hilbert complessi

Definizione. Sia H una spazio vettoriale su \mathbb{C} con prodotto hermitiano $\langle \cdot; \cdot \rangle$, ovvero tale che

- $\bullet \ \langle \, \cdot \, ; \, \cdot \, \rangle$ è lineare nella prima variabile
- $\langle x; x' \rangle = \overline{\langle x', x \rangle}$ ovvero è antilineare nella seconda variabile.
- $\langle x; x \rangle \ge 0$ per ogni x e vale 0 se e solo se x = 0.

Analogamente si pone $||x|| := \sqrt{\langle x; x \rangle}$. C'è un'identità di polarizzazione ma è leggermente diversa dalla versione reale.

Definizione. H si dice di Hilbert se è completo.

Esempio. Su $L^2(X;\mathbb{C})$ si mette il prodotto scalare dato da

$$\langle u; v \rangle \coloneqq \int_{\mathbf{Y}} u \cdot \overline{v} \, \mathrm{d}\mu.$$

Teorema. (della base di Hilbert per spazi complessi) Dato $\mathcal{F} = \{e_n\}$ sistema ortonormale in H e $x \in H$ allora per ogni n si pone⁶

$$x_n = \langle x; e_n \rangle$$

Vale anche l'identità di Parseval $||x^2|| = \sum |x_n|^2$ dove $|\cdot|$ è il modulo di un numero complesso, in particolare nella versione con prodotto scalare diventa

$$\langle x, x' \rangle = \sum_{n} x_n \overline{x'_n}.$$

⁶E non $\langle e_n; x \rangle$!

Capitolo 4

Serie di Fourier

Lo scopo della serie di Fourier (complessa) è di rappresentare una funzione $f: [-\pi, \pi] \to \mathbb{C}$ (o più in generale una funzione $f: \mathbb{R} \to \mathbb{C}$ 2 π -periodica) come

$$f(x) = \sum_{n = -\infty}^{\infty} c_n e^{inx}$$

In particolare, chiamiamo i coefficienti c_n coefficienti di Fourier di f(x) e tutta l'espressione a destra serie di Fourier di f(x).

Motivazione. La rappresentazione in serie di Fourier serve ad esempio a risolvere certe equazioni alle derivate parziali ed è anche utilizzata per la "compressione dati".

Problemi.

- Come si trovano (se esistono) i coefficienti di Fourier?
- Ed in che senso la serie converge?

Osservazione. La serie appena vista è indicizzata da $-\infty$ a $+\infty$, più avanti vedremo che la definizione esatta non sarà importante ma per ora usiamo la definizione

$$\sum_{n=-\infty}^{\infty} a_n := \lim_{N \to +\infty} \sum_{n=-N}^{N} a_n$$

ed ogni tanto scriveremo anche $\sum_{n\in\mathbb{Z}}a_n$ per brevità.

Teorema 1. L'insieme $\mathcal{F} = \left\{ e_n(x) := \frac{e^{inx}}{\sqrt{2\pi}} \right\}$ è una base ortonormale di $L^2([-\pi, \pi]; \mathbb{C})$.

Da cui formalmente segue che

$$f(x) = \sum_{n \in \mathbb{Z}} \langle f; e_n \rangle \cdot e_n = \sum_{n \in \mathbb{Z}} \left(\int_{-\pi}^{\pi} f(t) \frac{\overline{e^{int}}}{\sqrt{2\pi}} dt \right) \frac{e^{inx}}{\sqrt{2\pi}}$$
$$= \sum_{n \in \mathbb{Z}} \underbrace{\frac{1}{2\pi} \left(\int_{-\pi}^{\pi} f(t) e^{-int} dt \right)}_{c_n} e^{inx}$$

Definizione. Data $f \in L^2([-\pi, \pi]; \mathbb{C})$ i coefficienti di Fourier di f sono

$$c_n = c_n(f) := \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)e^{-inx} dx.$$

Notiamo in particolare che è anche ben definito anche per $f \in L^1$ (anche se per ora non ci dice molto in quanto L^1 non è uno spazio di Hilbert).

Corollario. Per ogni $f \in L^2([-\pi, \pi]; \mathbb{C})$ abbiamo

- i) La serie $\sum_{n\in\mathbb{Z}} c_n e^{inx}$ converge a f in L^2 .
- ii) Vale l'identità di Parseval

$$||f||_2^2 = 2\pi \sum_{n \in \mathbb{Z}} |c_n|^2 \qquad \langle f, g \rangle = \sum_{n \in \mathbb{Z}} c_n(f) \overline{c_n(g)}$$

Osservazione. Usando la ?? ed il fatto che la convergenza in L^2 implica la convergenza quasi ovunque a meno di sottosuccessioni otteniamo che $\forall f \; \exists N_n \uparrow \infty$ tale che

$$\sum_{n=-N_k}^{N_k} c_n e^{inx} \xrightarrow{k} f(x) \qquad \widetilde{\forall} x \in [-\pi, \pi]$$

In particolare nel 1966 Carleson ha dimostrato che in realtà vale proprio

$$\sum_{n=-N}^{N} c_n e^{inx} \xrightarrow{N} f(x) \qquad \widetilde{\forall} x$$

Dimostrazione Teorema 1. Vogliamo vedere che

i) \mathcal{F} è un sistema ortonormale.

Dimostrazione. Basta calcolare $\langle e_n; e_m \rangle$ per ogni $n, m \in \mathbb{Z}$

$$\langle e_n; e_m \rangle = \int_{-\pi}^{\pi} \frac{e^{inx}}{\sqrt{2\pi}} \cdot \frac{e^{inx}}{\sqrt{2\pi}} dx = \begin{cases} \frac{1}{2\pi} \int_{-\pi}^{\pi} 1 dx = 1 & \text{se } n = m \\ \frac{1}{2\pi} \left[\frac{e^{i(n-m)x}}{i(n-m)} \right]_{-\pi}^{\pi} = 0 & \text{se } n \neq m \end{cases}$$

ii) \mathcal{F} è completo

Questo punto richiede il teorema di Stone-Weierstrass che enunciamo.

Teorema di Stone-Weierstrass. Sia K uno spazio compatto e T_2 (essenzialmente è uno spazio metrico compatto) e siano C(K) le funzioni continue reali su K, mentre $C(K;\mathbb{C})$ le funzioni continue complesse su K (con la norma del sup).

Dato $\mathcal{A} \subset C(K)$ diciamo che è una **sottoalgebra** se è uno spazio vettoriale e chiuso rispetto al prodotto e diciamo che **separa i punti** se $\forall x_1, x_2 \in K$ con $x_1 \neq x_2$ allora $\exists f \in \mathcal{A}$ tale che $f(x_1) \neq f(x_2)$.

- Caso reale: se \mathcal{A} è una sottoalgebra di C(K) che separa i punti e contiene le costanti allora $\overline{\mathcal{A}} = C(K)$.
- Caso complesso: se \mathcal{A} è una sottoalgebra di $C(K;\mathbb{C})$ che separa i punti, contiene le costanti e chiusa per coniugio allora $\overline{\mathcal{A}} = C(K;\mathbb{C})$.

Osservazioni.

- Se K = [0, 1], A = "polinomi reali" $\Longrightarrow \overline{A} = C(K; \mathbb{C})$.
- L'ipotesi di separare i punti è necessaria, se ad esempio $\exists x_1, x_2$ tali che $x_1 \neq x_2$ e per ogni f abbiamo $f(x_1) = f(x_2)$ allora varrà analogamente anche per ogni funzione nella chiusura ma le funzioni continue separano i punti.
- È anche necessario che $\mathcal{A} \supset$ "costanti", ad esempio dato $x_0 \in K$ ed $\mathcal{A} := \{ f \in \mathcal{A} := \{ f \in\mathcal{A} := \{ f \in \mathcal{A} := \{$ $C(K) \mid f(x_0) = 0$ } abbiamo che $\overline{A} = A \subsetneq C(K)$.
- Anche la chiusura per coniugio è necessaria, infatti ad esempio preso $K = \{z \in \mathbb{C} \mid$ $|z| \leq 1$, \mathcal{A} = "polinomi complessi", \mathcal{A} separa i punti e contiene le costanti però $\overline{\mathcal{A}}$ sono solo le funzioni olomorfe su K.

In particolare vorremmo applicare questo teorema alle funzioni 2π -periodiche ristrette a $[-\pi,\pi]$ che però non verificano la separazione dei punti in quanto per la periodicità $f(-\pi) = f(\pi)$. Nel seguente corollario vediamo come possiamo estendere leggermente il teorema passando ai quozienti topologici.

Corollario. Sia \mathcal{A} una sottoalgebra di C(K) (o analogamente per $C(K;\mathbb{C})$) che contiene le costanti (e nel caso complesso anche chiusa per coniugio) e definiamo la seguente relazione di equivalenza $x_1 \sim x_2$ se $f(x_1) = f(x_2)$ per ogni $f \in \mathcal{A}$ allora

$$\overline{\mathcal{A}} = \{ f \in C(K) \mid x_1 \sim x_2 \Rightarrow f(x_1) = f(x_2) \}$$

Dimostrazione del corollario. Diciamo $X := \{f \in C(K) \mid X_1 \sim x_2 \Rightarrow f(x_1) = f(x_2)\}$ allora applichiamo il teorema di Stone-Weierstrass a $K/_{\infty}$, è chiaro che $\overline{A} \subset X$ vediamo che $X \subset \overline{A}$ $\xrightarrow{g} \mathbb{C}$ Stone-Weierstrass a K/\sim , è chiaro che $\overline{A} \subset X$, vediamo che $X \subset \overline{A}$.

$$K \xrightarrow{g} \mathbb{C}$$

$$\downarrow^{\pi} \qquad \qquad \widetilde{g}$$

$$K/_{\sim}$$

Data $g \in X$ troviamo $g_n \in \mathcal{A}$ tale che $g_n \to g$ uniformemente allora $\exists \widetilde{g} \colon K / \sim \to \mathbb{C}$ tale che $g = \widetilde{g} \circ \pi$, consideriamo $\mathcal{A} = \{\widetilde{f} \mid f \in \mathcal{A}\}$ che è una sottoalgebra di $C(\overline{K/_{\sim}};\mathbb{C})$ che separa i punti, etc.

Torniamo alla dimostrazione della completezza di \mathcal{F} , $K = [-\pi, \pi]$ e consideriamo

$$\mathcal{A} = \operatorname{Span}_{\mathbb{C}}(\mathcal{F}) = \left\{ \sum_{n \in \mathbb{Z}} c_n e^{inx} \right\} = \left\{ p(e^{inx}) \mid p \text{ polinomio a esponenti interi} \right\}$$

segue che \mathcal{A} è una sottoalgebra, separa i punti di K tranne $-\pi$ e π ed è chiuso per coniugio.

Per il corollario $\overline{\mathcal{A}}^C = \{ f \in C([-\pi, \pi]; \mathbb{C}) \mid f(-\pi) = f(\pi) \}$. Se invece facciamo la chiusura rispetto ad L^2 abbiamo che

$$\overline{\mathcal{A}}^{L^2} \supseteq \{ f \in C([-\pi, \pi]; \mathbb{C}) \mid f(-\pi) = f(\pi) \}$$

in quanto la convergenza uniforme implica la convergenza in L^2 per spazi di misura finita.

Inoltre $\overline{\mathcal{A}}^{L^2} \supseteq \{f \in C([-\pi,\pi];\mathbb{C})\}$, data $f \in C([-\pi,\pi];\mathbb{C})$ la approssimiamo in L^2 con $f_n = f \cdot \varphi_n$, dove le φ_n sono tali che $\varphi_n(-\pi) = \varphi_n(\pi) = 0$, $\varphi_n = 1$ su $[1/n - \pi, \pi - 1/n]$ e interpolata linearmente nell'intervallo rimanete.

[TODO: Disegnino delle φ_n]

Infine poiché le funzioni continue sono dense in L^2 rispetto alla sua norma segue che $\overline{\mathcal{A}}^{L^2} = L^2.$

 $^{^1}$ Notiamo che la topologia su \mathcal{A} è quella data dalla norma del sup delle funzioni continue quindi la chiusura è rispetto a tale norma e la indichiamo con $\overline{\mathcal{A}}^{C}$.

Esempio (calcolo coefficienti di Fourier).

•
$$\cos x = \frac{e^{ix} - e^{-ix}}{2} = \frac{1}{2}e^{ix} + \frac{1}{2}e^{-ix}$$
, allora $c_n = \begin{cases} \frac{1}{2} & n = \pm 1\\ 0 & \text{altrimenti} \end{cases}$.

•
$$(\sin x)^2 = (\frac{e^{ix} - e^{-ix}}{2i})^2 = \frac{1}{4}e^{2ix} + \frac{1}{2} - \frac{1}{4}e^{-2ix}$$
, allora $c_n = \begin{cases} -\frac{1}{4} & n = \pm 2\\ \frac{1}{2} & n = 0\\ 0 & \text{altrimenti} \end{cases}$

• $f(x) = x, c_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx = 0$. Per $n \neq 0$:

$$c_n = \frac{1}{2\pi} \int_{-\pi}^{\pi} x e^{-inx} dx = \frac{1}{2\pi} \left| \frac{x e^{-inx}}{-in} \right|_{\pi}^{\pi} - \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{e^{-inx}}{-in} dx = \frac{(-1)^n i}{n}.$$

Calcoliamo ora $\sum_{n\in\mathbb{Z}} |c_n|^2$. Valgono le uguaglianze

$$\sum_{n \in \mathbb{Z}} |c_n|^2 i = 2 \sum_{n=1}^{+\infty} \frac{1}{n^2}$$

$$\sum_{n \in \mathbb{Z}} |c_n|^2 i = \frac{1}{2\pi} \|x\|_2^2 = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{2}{2\pi} \cdot \frac{\pi^3}{3} = \frac{\pi^2}{3}.$$

Dunque
$$\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^3}{6}$$
.

4.0.1 Regolarità di f e dei coefficienti

Proposizione 1. Data $f \in [-\pi, \pi] \to \mathbb{C}$ tale che

(R) $f \in C^1$ (basta f continua e C^1 a tratti).

(CB)
$$f(-\pi) = f(\pi)$$
.

Allora $c_n(f') \stackrel{(\star)}{=} in \ c_n(f)$.

Derivazione formale della formula

$$f(x) = \sum_{n \in \mathbb{Z}} c_n e^{inx} \xrightarrow{\text{derivata}} f'(x) = \sum_{n \in \mathbb{Z}} in \ c_n e^{inx}$$

Dimostrazione. Vale quanto segue

$$c_{n}(f') = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x)' e^{-inx} dx$$

$$= \underbrace{\frac{1}{2\pi}}_{\text{int. per parti}} \underbrace{\frac{1}{2\pi}}_{\text{int. per parti}} \underbrace{\frac{f(-\pi) = f(\pi), e^{-in\pi} = e^{-in(-\pi)}}{f(x) e^{-inx}}}_{-\pi} - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) (-in) e^{-inx} dx$$

$$= (in) \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx = in \ c_{n}(f).$$

Esercizio. Trovare l'analogo della formula della derivata nel caso di cui non valga la condizione al bordo (CB). [TO DO]

Osservazione. In verità, basta ancora meno. Possiamo riformulare la Proposizione 1 come segue.

(R') Data
$$f$$
 continua ed esiste $g \in L^1([-\pi, \pi], \mathbb{C})$ tale che $f(x) = f(-\pi) + \int_{-\pi}^x g(t) dt$

(CB)
$$f(-\pi) = f(\pi) \iff \int_{-\pi}^{x} g(t) dt = 0.$$

Allora la formula (\star) diventa $c_n(g) = in \ c_n(f)$.

Proposizione 2. Data f come nella Proposizione 1, valgono le seguenti

i)
$$\sum_{n \in \mathbb{Z}} n^2 |c_n(f)|^2 = \frac{\|f'\|_2^2}{2\pi} < +\infty.$$

ii)
$$\sum_{n\in\mathbb{Z}} |n|^{\alpha} |c_n(f)| < +\infty$$
 per ogni $\alpha < 1/2$.

iii) La serie di Fourier converge ²totalmente.

Dimostrazione.

i)
$$\sum n^2 |c_n(f)|^2 \stackrel{(*)}{=} \sum |c_n(f')|^2 \stackrel{\text{Parceval}}{=} 2\pi \|f'\|_2^2 \underbrace{<}_{f' \in L^1([-\pi,\pi],\mathbb{C}) \subset L^2([-\pi,\pi],\mathbb{C})} + \infty.$$

ii)
$$\sum |n|^{\alpha} |c_n(f)| \underbrace{\leq}_{(n \neq 0)} \sum_{n \in \mathbb{Z}} |n| |c_n(f)| \cdot \frac{1}{|n|^{1-\alpha}} \underbrace{\leq}_{C-S} \underbrace{\left(\sum_{n \in \mathbb{Z}} |n|^2 |c_n(f)|^2\right)^{1/2}}_{<+\infty \text{ per il punto ii)}} \cdot \left(\sum_{n \in \mathbb{Z}} \frac{1}{|n|^{2-2\alpha}}\right)^{1/2}.$$

iii) Dal punto precedente con
$$\alpha = 0$$
 otteniamo $\|c_n(f)e^{inx}\|_{\infty} \sum_{n \in \mathbb{Z}} |c_n(f)| < +\infty$.

Proposizione 3. Data $f \in [-\pi, \pi] \to \mathbb{C}$ tale che

$$(R_k)$$
 $f \in C^k$ (oppure $f \in C^{k-1}$ e $D^{k-1}f$ è C^1 a tratti).

$$(CB_{k-1})$$
 $D^h f(-\pi) = D^h f(\pi)$ per $h = 0, 1, \dots, k-1$.

Allora

i)
$$c_n(D^h f) = (in)^h c_n(f)$$
 per ogni $n \in \mathbb{Z}$ per ogni $h = 1, \dots, k$.

ii)
$$\sum |n|^{2k} |c_n(f)|^2 \le \frac{\|D^k f\|_2^2}{2\pi} < +\infty.$$

iii)
$$\sum_{n \in \mathbb{Z}} |n|^{\alpha} |c_n(f)| < +\infty$$
 per ogni $\alpha < k - 1/2$.

 $^{2\}sum a_n(x)$ converge totalmente se converge la serie $\sum ||a_n(x)||_{\infty}$.

iv) La serie di Fourier di f converge totalmente con tutte le derivate fino all'ordine k-1.

Proposizione 4. Se f è continua e $\sum_{n\in\mathbb{Z}} |n|^{k-1} |c_n(f)| < +\infty$ allora $f \in C^{k-1}$ e soddisfa (CB_{k-1}) .

Dimostrazione. Preso $h = 0, 1, \dots, k-1$ vale

$$D^{k}(c_{n}(f)e^{inx}) = c_{n}(f)(in)^{h}e^{inx}$$
$$||D^{k}(c_{n}(f)e^{inx})|| = |c_{n}(f)| |n|^{h} \le |c_{n}(f)| |n|^{k-1}.$$

Dunque $\sum D^h \left(c_n(f) e^{inx} \right)$ converge totalmente e quindi uniformemente per ogni $h \leq k-1$ ad $\widetilde{f} : [-\pi, \pi] \to \mathbb{C}$ di classe C^{k-1} . Ma

$$\frac{1}{\sqrt{2\pi}} \left\| \sum_{-N}^{N} c_n e^{inx} - \tilde{f}(x) \right\|_2 \le \left\| \sum_{-N}^{N} c_n e^{inx} - \tilde{f}(x) \right\|_{\infty} \xrightarrow{N \to +\infty} 0.$$

Ma $\sum c_n e^{inx} \to \widetilde{f}$ uniformemente, allora $\sum_{-N}^{N} c_n e^{inx} \to \widetilde{f}$ in L^2 . Allora $f = \widetilde{f}$ nel senso L^2 . Siccome f, \widetilde{f} sono continue e coincidono quasi ovunque, vale $f = \widetilde{f}$. Abbiamo usato il lemma

Lemma. Date f, \tilde{f} continue e $f(x) = \tilde{f}(x)$ per quasi ogni x, allora $f(x) = \tilde{f}(x)$ per ogni x. \square

Osservazione. $f \in C^{k-1}([-\pi, \pi]) + (CB_{k-1})$ se solo se f è la restrizione a $[-pi, \pi]$ di una funzione 2π -periodica e C^{k-1} .

4.0.2 Convergenza puntuale della serie di Fourier

Teorema. Data $f \in L^1([-\pi, \pi], \mathbb{C})$ (estesa in modo 2π -periodico a tutto \mathbb{R}) tale che esiste $\overline{x} \in \mathbb{R}$ ed esiste $\alpha > 0$ tale che f è α -Holderiana in \overline{x} , cioè esiste $\delta > 0$, $M < +\infty$ per cui

$$|f(\overline{x}+t)-f(\overline{x})| \le M |t|^{\alpha} \qquad \forall t \colon |t| < \delta \Longleftrightarrow \limsup_{t \to 0} \frac{|f(\overline{x}+t)-f(\overline{x})|}{|t|^{\alpha}} < +\infty.$$

Allora
$$\sum_{-\infty}^{\infty} c_n(f)e^{in\overline{x}}$$
 converge a $f(\overline{x})$. Cioè $\sum_{-N}^{N} c_n(f)e^{in\overline{x}} \xrightarrow{N \to \infty} f(\overline{x})$

Lavoro preparatorio: rappresentare somme parziali di serie di Fourier con "convoluzione": Data $f \in L^1([-\pi, \pi], \mathbb{C}), N = 1, 2, \dots$ (estesa a funzioni 2π -periodiche su \mathbb{R}).

$$S_N f(x) := \sum_{-N}^{N} c_n e^{inx}$$

Riscriviamo

$$S_N f(x) := \sum_{-N}^{N} c_n e^{inx} = \sum_{-N}^{N} \frac{1}{2\pi} \left(\int_{-\pi}^{\pi} f(y) e^{-iny} \, dy \right) e^{inx}$$
$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) \left(\sum_{n=-N}^{N} e^{in(x-y)} \right) \, dy.$$

Poniamo $D_N(z) := \sum_{n=-N}^N e^{inz}$ che si definisce **nucleo di Dirichlet**. Allora

$$S_n f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(y) D_N(x - y) \, dy \stackrel{x - y = t, \, dy = \, dt}{=} \frac{1}{2\pi} \int_{x - \pi}^{x + \pi} f(x - t) D_N(t) \, dt$$

$$\stackrel{(\star)}{=} \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - t) D_N(t) \, dt$$

Dove (\star) è il seguente lemma.

Lemma. Se $g \in T$ -periodica e $g \in L^1([-\pi, \pi], \mathbb{C})$, allora

$$\int_0^T g(\tau) d\tau = \int_c^{c+T} g(\tau - s) d\tau \quad \forall s \, \forall c.$$

Ne segue che

$$S_N f(x) := \sum_{-N}^{N} c_n(f) e^{inx} = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - t) D_N(t) dt$$

dove

$$D_N(t) = \sum_{-N}^{N} e^{int} = \frac{\sin((N+1/2)t)}{\sin(t/2)}.$$

Infatti,

$$D_N(t) = \sum_{-N}^{N} e^{int} = \sum_{-N}^{N} (e^{it})^t = e^{-iNt} \cdot \sum_{n=0}^{2N} (e^{it})^n$$

$$= \frac{e^{-i(N+1/2)t}}{e^{-it/2}} \cdot \frac{e^{(2N+1)it} - 1}{e^{it} - 1} = \frac{e^{(N+1/2)it} - e^{-(N+1)it}}{e^{it/2} - e^{-it/2}}$$

$$= \frac{\sin((N+1/2)t)}{\sin(t/2)}.$$

Lemma. (di rappresentazione di S_nf come convoluzione) Ricapitolando data f come sopra abbiamo visto che

$$S_n f(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x - t) D_n(t) dt \qquad \text{con } D_N(t) := \sum_{n = -N}^{N} e^{int} = \frac{\sin\left(\left(N + \frac{1}{2}\right)t\right)}{\sin\left(\frac{t}{2}\right)}$$

Osservazione. In particolare vale $\frac{1}{2\pi} \int_{-\pi}^{\pi} D_N(t) dt = 1.$

Lemma. (di Riemann-Lebesgue (generalizzato)). Data $g \in L^1(\mathbb{R})$ e $h \in L^{\infty}(\mathbb{R})$ con h T-periodica, allora

$$\int_{\mathbb{R}} g(x)h(yx) dx \xrightarrow{y \to \pm \infty} \underbrace{\left(\int_{\mathbb{R}} g(x) dx\right)}_{a} \underbrace{\left(\int_{0}^{T} h(x) dx\right)}_{m}$$

Se supponiamo supp $g \subseteq [0,1]$ allora

$$\int_0^1 g(x)h(yx) dx \xrightarrow{y \to \pm \infty} \int_0^1 g(x) dx \cdot \int_0^T h(x) dx \approx \int_0^1 g(x) dx \cdot \int_0^1 h(yx) dy.$$

In particolare è abbastanza intuitivo il risultato per g costante a tratti infatti su un intervallo otterremmo

 $\int_0^{x_1} g(x)h(yx) \, \mathrm{d}x = c \int_0^{x_1} h(yx) \, \mathrm{d}x = (cx_1)m$

Però ci sarebbero delle correzzioni da fare per dimostrare le cose in questo modo in generale. Vediamo invece un'altra dimostrazione un po' più elegante.

[TODO: Disegnino nel caso g costante a tratti]

Dimostrazione. Per ogni s, y poniamo $\Phi(y, s) := \int_{\mathbb{R}} g(x)h(yx + s) dx$ con $s, y \in \mathbb{R}$ allora la tesi è che $\Phi(y, 0) \xrightarrow{y \to \pm \infty} am$. Vedremo che valgono le seguenti

i)
$$\forall y \ \int_0^T \Phi(y, s) \, \mathrm{d}s = am.$$

ii)
$$\forall s \ \Phi(y,s) - \Phi(y,0) \xrightarrow{y \to \pm \infty} 0$$
.

da cui segue subito che

$$\Phi(y,0) - ma = \int_0^T \Phi(y,0) - \Phi(y,s) \, \mathrm{d}s \xrightarrow{y \to \pm \infty} 0$$

per convergenza dominata dove dalla ii). segue la convergenza puntuale e come dominazione usiamo

$$|\Phi(y,0) - \Phi(y,s)| \le 2 \|g\|_1 \|h\|_{\infty}$$

da cui segue la tesi. Mostriamo ora i due punti.

i) Esplicitiamo e applichiamo Fubini-Tonelli

$$\int_0^T \Phi(y, s) \, ds = \int_0^T \int_{\mathbb{R}} g(x) h(yx + s) \, dx \, ds$$
$$= \int_{\mathbb{R}} \underbrace{\int_0^T h(yx + s) \, ds \cdot g(x)}_{m} \cdot g(x) \, dx$$
$$= m \int_{\mathbb{R}} g(x) \, dx = ma$$

e possiamo usare Fubini-Tonelli in quanto

$$\int_{\mathbb{R}} \int_{0}^{T} |h(yx - s)| \, \mathrm{d}s \cdot |g(x)| \, \mathrm{d}x \le \int_{\mathbb{R}} ||f||_{\infty} |g(x)| \, \mathrm{d}x = ||h||_{\infty} \cdot ||g||_{1}$$

ii) [TODO: inventare delle parole a caso]

$$\Phi(y,s) = \int_{\mathbb{R}} g(x)h\left(y\left(x + \frac{s}{y}\right)\right) dx$$

ora applichiamo la sostituzione $t = x + \frac{s}{y}$ da cui dt = dx

$$= \int_{\mathbb{R}} g\left(t - \frac{s}{y}\right) h(yt) \, \mathrm{d}t$$

ed a questo punto otteniamo

$$\begin{split} \Phi(y,s) - \Phi(y,0) &= \int_{\mathbb{R}} \left(g \left(t - \frac{s}{y} \right) - g(t) \right) h(yt) \, \mathrm{d}t \\ \Longrightarrow & \left| \Phi(y,s) - \Phi(y,0) \right| = \int_{\mathbb{R}} \left| \tau_{\frac{s}{y}} g - g \right| \cdot \left| h(yt) \right| \, \mathrm{d}t \leq \left\| \tau_{\frac{s}{y}} g - g \right\|_{1} \cdot \left\| h \right\|_{\infty} \xrightarrow{y \to \pm \infty} 0 \end{split}$$

Dimostrazione del Teorema.

$$S_N f(\bar{x}) - f(\bar{x}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\bar{x} - t) D_N(t) dt - \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\bar{x}) D_N(t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} (f(\bar{x} - t) - f(\bar{x})) D_N(t) dt$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} \frac{f(\bar{x} - t) - f(\bar{x})}{\sin \frac{t}{2}} \sin \left(\left(N + \frac{1}{2} \right) t \right) dt$$

$$= \int_{-\pi}^{\pi} g(t) \cdot \sin \left(\left(N + \frac{1}{2} \right) t \right) \xrightarrow{\text{RL}} \left(\int g(x) dx \right) \cdot \int_{0}^{\pi} \sin x dx$$

in particolare per applicare Riemann-Lebesgue serve $g \in L^1([-\pi,\pi])$ ma infatti per $|t| \leq \delta$

$$|g(t)| \leq \frac{|f(\bar{x} - t) - f(\bar{x})|}{|\sin \frac{t}{2}|} \leq \frac{M|t|^{\alpha}}{|t|/\pi} = \frac{M\pi}{|t|^{1-\alpha}} \in L^1([-\delta, \delta])$$

invece per $\delta \leq |t| \leq \pi$ basta

$$|g(t)| \le \frac{|f(\bar{x} - t)| + |f(\bar{x})|}{\sin \frac{\delta}{2}} \in L^1([-\pi, \pi])$$

Data $f \in L^1([-\pi, \pi])$ estesa per periodicità e dato \bar{x} tale che esistano i limiti a destra e sinistra di f in \bar{x} detti L^+ e L^- ed f α -Hölderiana a sinistra e destra si può vedere che vale

$$S_N f(\bar{x}) \xrightarrow{N} \frac{L^+ + L^-}{2}$$

Capitolo 5

Applicazioni della serie di Fourier

5.1 Equazione del calore

Sia Ω un aperto di \mathbb{R}^d e $u(t,x)\colon [0,T)\times\Omega\to\mathbb{R}$ e chiamiamo x la variabile spaziale e t la variabile temporale. In dimensione 3 l'insieme Ω rappresenta un solito di materiale conduttore omogeneo e u(t,x)= temperatura in x all'istante $t\Longrightarrow u$ risolve l'equazione del calore

$$u_t = c \cdot \Delta u$$

dove con u_t indichiamo la derivata parziale di u rispetto al tempo, c è una costante fisica che porremo uguale ad 1 e Δu è il laplaciano rispetto alle dimensioni spaziali ovvero

$$\Delta u = \sum_{i=1}^{d} \frac{\partial^2 u}{\partial x_i^2} = \operatorname{div}(\nabla_x u)$$

Vedremo che la soluzione di $u_t = \Delta u$ esiste ed è unica specificando $u(0, \cdot) = u_0$ condizione iniziale con $u_0 \colon \Omega \to \mathbb{R}$ data e delle condizioni al bordo come ad esempio

- Condizioni di Dirichlet: $u = v_0$ su $[0,T) \times \partial \Omega$ con v_0 funzione fissata. Possiamo pensare come fissare delle sorgenti di calore costanti sul bordo.
- Condizioni di Neumann: $\frac{\partial u}{\partial \nu}$ con ν direzione normale al bordo. Essenzialmente ci sta dicendo che non c'è scambio di calore con l'esterno.

In particolare scriveremo

$$\begin{cases} u_t = \Delta u & \text{su } \Omega \\ u(0,\,\cdot\,) = u_0 \\ \text{Una delle condizioni al bordo su } \partial\Omega \dots \end{cases}$$

5.1.1 Derivazione dell'equazione del calore

Partiamo da due leggi fisiche

• Trasmissione del calore attraverso pareti sottili: Siano u^- e u^+ le temperature a sinistra e destra di una parete di spessore δ ed area a. Allora "la quantità di calore che attraversa la parete per unità di tempo è proporzionale a $u^- - u^+$, all'area della parete e inversamente proporzionale allo spessore.

$$\Delta E = c_1 \frac{\Delta u}{\delta} a \Delta t$$

In particolare per $\delta \to 0$ otteniamo che su una superficie Σ vale

$$\Delta E = c_1 \frac{\partial u}{\partial \nu} |\Sigma| \Delta t$$

Passando ulteriormente al caso continuo otteniamo

$$\frac{\Delta E}{\Delta t} = c_1 \frac{\partial u}{\partial \nu} |\Sigma| \implies \frac{\partial E}{\partial t} = \int_{\partial A} \frac{\partial u}{\partial \nu}$$

• Legge fisica 2:

L'aumento di temperatura in un solito è proporzionale alla quantità di calore immessa e inversamente proporzionale al volume.

$$\Delta u = \frac{1}{c_2} \frac{\Delta E}{V}$$

passando al continuo otteniamo $\frac{\partial E}{\partial t} = \int_A c_2 \frac{\partial u}{\partial t}$.

Dunque infine otteniamo che

$$\forall A \subseteq \Omega \, \forall t$$

$$\int_A c_2 \frac{\partial u}{\partial t} = \int_{\partial A} \frac{\partial u}{\partial \nu} = \int_A \operatorname{div}(\nabla u) = \int_A \Delta u$$

dove abbiamo usato il teorema della divergenza. Ed infine

$$\implies \int_{A} c_{2} \frac{\partial u}{\partial t} = \int_{A} c_{1} \Delta u \implies c_{2} \frac{\partial u}{\partial t} = c_{1} \Delta u \implies \frac{\partial u}{\partial t} = \frac{c_{1}}{c_{2}} \cdot \Delta u$$

5.2 Esercitazione del 11 novembre

Consideriamo $L^2([-\pi,\pi],\mathbb{C})$. Ricordiamo che $e^{inx}=\cos(nx)+i\sin(nx)$. Abbiamo

$$\sum_{n=-N}^{N} c_n e^{inx} = c_0(f) + \sum_{n=1}^{N} \left(c_n(f) e^{inx} + c_{-n} e^{inx} \right)$$

$$= c_0(f) + \sum_{n=1}^{N} \left[(c_n(f) + c_{-n}(f)) \cos(nx) + i \left(c_n(f) - c_{-n}(f) \right) \sin(nx) \right]$$

$$= c_0(f) + \sum_{n=1}^{N} a_n(f) \cos(nx) + b_n(f) \sin(nx)$$

con

$$\begin{cases} a_n(f) = c_n(f) + c_{-n}(f) \\ b_n(f) = ic_n(f) - ic_{-n}(f) \\ a_0(f) = c_0(f) \end{cases}$$

Passando al limite per $N \to +\infty$

$$f(x) \stackrel{L^2}{=} \sum_{n=-N}^{N} c_n e^{inx} \stackrel{(\star)}{=} c_0(f) + \sum_{n=1}^{+\infty} a_n(f) \cos(nx) + b_n(f) \sin(nx)$$

Nota. L'uguaglianza (\star) ha bisogno di qualche spiegazione: come sappiamo che la serie a destra converge? Usiamo il fatto, che mostriamo sotto, che $\{1, \cos(nx), \sin(nx), n > 1\}$ sono un sistema ortogonale, dunque per la disuguaglianza di Bessel segue la convergenza.

Osservazione. Gli elementi $\{1, \sin(nx), \cos(nx)\}$ sono ortogonali per $n \ge 1$ in $L^2([-\pi, \pi], \mathbb{C})$. Infatti, ricordiamo che

$$\sin(nx) = \frac{e^{inx} - e^{-inx}}{2i} = \frac{ie^{-inx} - ie^{inx}}{2}$$
$$\cos(nx) = \frac{1}{2} \left(e^{inx} + e^{-inx} \right).$$

È banale verificare che $\langle 1, \cos(nx) \rangle = \langle 1, \sin(nx) \rangle = 0$ per ogni n, perchè integro cos e sin sul periodo. Anche $\langle \cos(nx), \sin(mx) \rangle = 0$ per ogni n, m.

Dunque, calcoliamo

$$\langle \sin(nx), \sin(mx) \rangle = \frac{1}{4} \langle e^{-inx} - e^{inx}, e^{-imx} - e^{imx} \rangle = 0.$$

Ora normalizziamo: $\left\{\frac{1}{\sqrt{2\pi}}, \frac{\cos(nx)}{\sqrt{\pi}}, \frac{\sin(nx)}{\sqrt{\pi}}, n \geq 1\right\}$.

Dunque abbiamo ottenuto che

- $L^2([-\pi,\pi],\mathbb{C})$ ha base Hilbertiana $\left\{\frac{1}{\sqrt{\pi}},\frac{\cos(nx)}{\sqrt{\pi}},\frac{\sin(nx)}{\sqrt{\pi}}\right\}_{\mathbb{C}}$
- $L^2([-\pi,\pi],\mathbb{R})$ ha base Hilbertiana $\left\{\frac{1}{\sqrt{\pi}},\frac{\cos(nx)}{\sqrt{\pi}},\frac{\sin(nx)}{\sqrt{\pi}}\right\}_{\mathbb{R}}$

Esercizio. Se f è a valori reali, dimostrare che $a_n(f)$ e $b_n(f)$ sono anch'essi reali. [TO DO] Sketch. Si dimostra che $a_n(f) = \overline{a_n(f)}, b_n(f) = \overline{b_n(f)}$ e per farlo si usano le espressioni di a_n, b_n in funzione dei coefficienti di Fourier complessi scritte sopra.

Esercizio. Trovare la base di Fourier complessa e reale di $L^2([a,b],\mathbb{C})$ [TO DO]

Esercizio. Sia $f \in L^2([-\pi, \pi], \mathbb{C})$ (l'estensione di) $f \in 2\pi/N$ periodica. Dimostrare che $c_n(f) \neq 0$ se solo se n multiplo di N. [TO DO]

Esercizi classici. Fissata una funzione $f \in L^2$, calcolare i coefficienti di Fourier complessi (e reali).

Calcoliamo i coefficienti di $f(x) = x^2$.

$$c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 e^{-inx} \, dx = \frac{1}{2\pi} \left| \frac{e^{-inx}}{-in} x^2 \right|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{e^{-inx}}{-in} 2x \, dx$$

$$= -\int_{-\pi}^{\pi} \frac{e^{-inx}}{-in} 2x \, dx = -\frac{i}{\pi n} \left[\left| \frac{e^{-inx}}{-in} \right|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} \frac{e^{-inx}}{-in} \, dx \right]$$

$$= \frac{-i\pi}{\pi n} \frac{\cos(-n\pi) + \cos(-n(-\pi))}{-in} + \frac{i}{\pi n} \int_{-\pi}^{\pi} \frac{e^{-inx}}{-inx} \, dx$$

$$= \frac{2}{n^2} + \frac{i}{\pi n} \cdot 0 = \frac{2}{n^2} (-1)^n$$

$$\implies c_n(f) = \frac{2}{n^2} (-1)^n.$$

Infine

$$c_0(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} x^2 dx = \frac{1}{2\pi} \frac{2}{3} \pi^3 = \frac{1}{3} \pi^2.$$

Per Parseval $||f||_{L^2}^2 = 2\pi \sum_{n \in \mathbb{Z}} |c_n(f)|^2$. Da cui

$$\int_{-\pi}^{\pi} x^4 \, \mathrm{d}x = \left\| x^2 \right\|_{L^2}^2 = 2\pi \cdot \left[\sum_{n=1}^{+\infty} \frac{4}{n^4} + \frac{\pi^2}{3} \right].$$

Nota. Potevamo ottenere i coefficienti di $f(x) = x^2$, applicando il teorema della derivata. [TO DO: vedere che valgono le ipotesi]

Domande.

- Abbiamo visto che $c_n(x^2) = \frac{2(-1)^n}{n^2}$ e dedotto che $c_n(2x) = in \frac{2(-1)^n}{n^2} = \frac{2(-1)^n i}{n}$.
- Vorremmo calcolare $c_n(2)$, possiamo applicare il teorema sulla formula della derivata?

Esercizio.

- i) Calcolare i coefficienti di Fourier complessi di x^3 e vedere che se vale $c_n(3x^2) = inc_n(x^3)$.
- ii) Calcolare i coefficienti reali di x^2 .

Esercizio. Sia f(x) definita da $\sum_{n \in \mathbb{Z}} \gamma_n e^{inx} \operatorname{con} \begin{cases} \gamma_n = \frac{\cos(n)}{|n|^{3/2}} \\ \gamma_0 = 1 \end{cases}$

Domande.

- i) f è ben definita?
- ii) f è continua?
- iii) f è derivabile?

Dimostrazione.

i) Sì, infatti
$$2\sum_{n=1}^{+\infty} |\gamma_n|^2 \le 2\sum_{n=1}^{+\infty} \frac{1}{n^3} < +\infty.$$

ii) Suggerimento. Usare la Proposizione 3 della parte della regolarità dei coefficienti della serie di Fourier.

5.3 Risoluzione dell'equazione del calore (su \mathbb{S}^1)

Come conduttore consideriamo un anello di materiale omogeneo e sottile che parametrizziamo con $[-\pi, \pi]$. Dunque consideriamo $u: [0, T) \times [-\pi, \pi] \to \mathbb{R}$ con le condizioni

$$\begin{cases} u_t = u_{xx} \\ u(\cdot, \pi) = u(\cdot, -\pi) \\ u(0, \cdot) = u_0 \end{cases}$$
 (P)

in particolare la (ii) e la (iii) condizione non sono né quelle di Dirichlet né di Neumann, sono delle condizioni che effettivamente ci dicono che siamo "su \mathbb{S}^1 "; invece l'ultima è la condizione iniziale ed u_0 è data.

5.3.1 Risoluzione formale

Scriviamo u in serie di Fourier rispetto a x cioè

$$u(t,x) = \sum_{n \in \mathbb{Z}} c_n e^{inx}$$

con $c_n \coloneqq c_n(u(t,\,\cdot\,))$ da cui derivando formalmente dentro le sommatorie otteniamo che u_t e u_{xx} sono

$$\sum_{n \in \mathbb{Z}} \dot{c}_n(t)e^{inx} = u_t = u_{xx} = \sum_{n \in \mathbb{Z}} -n^2c_n(t)e^{inx}$$
$$u_t = u_{xx} \Longleftrightarrow \dot{c}_n(t) = -n^2c_n(t) \ \forall n \ \forall t \quad \text{e} \quad u(0, \, \cdot \,) = u_0 \Longleftrightarrow c_n(0) = c_n(u_0) \eqqcolon c_n^0$$

Dunque risolvere (??) equivale per ogni n che c_n che risolva il problema di Cauchy dato da

$$\begin{cases} \dot{y} = -n^2 y \\ y(0) = c_n^0 \end{cases} \tag{P'}$$

con soluzione $y(t) = \alpha e^{-n^2 t}$ cioè $c_n(t) = c_n^0 e^{-n^2 t}$ e quindi abbiamo

$$u(t,x) = \sum_{n \in \mathbb{Z}} c_n^0 e^{-n^2 t} e^{inx} \tag{*}$$

Studiando questa soluzione formale possiamo fare le seguenti osservazioni che poi diventeranno dei teoremi

• La soluzione esiste per $t \in [0, +\infty)$ ed è molto regolare per t > 0Vedremo che la soluzione formale è proprio una soluzione al problema per $t \geq 0$, in particolare il termine $e^{-n^2t} \to 0$ in modo più che polinomiale ed infatti vedremo che la soluzione sarà proprio C^{∞} per t > 0.

¹Bastano solo queste condizioni sulla funzione e sulla sua derivata perché intuitivamente le altre seguono applicando la (i).

• La soluzione è unica

Tutti i problemi di Cauchy per i coefficienti $c_n(t)$ hanno un'unica soluzione dunque anche la soluzione u è unica.

• In generale non esiste soluzione nel passato. Se il numero di coefficienti $c_n^0 \neq 0$ è infinito allora il termine $e^{-n^2t} \to +\infty$ molto velocemente per t < 0 e la serie diverge.

Teorema 1 (Esistenza e Regolarità).

Se $u_0: [-\pi, \pi] \to \mathbb{C}$ (presa in L^2) è tale che $\sum_{n \in \mathbb{Z}} |c_n^0| < +\infty$ (ad esempio se $u_0 \in C^1$ ed è 2π -periodica) allora

$$u(t,x) = \sum_{n \in \mathbb{Z}} \underbrace{c_n^0 e^{-n^2 t} e^{inx}}_{u_n(t,x)}$$

definisce una funzione $u: [0, +\infty) \times \mathbb{R} \to \mathbb{C}$ tale che

- i) $u \ \hat{e} \ 2\pi$ -periodica in $x \ ed \ \hat{e} \ reale$ se $u_0 \ \hat{e} \ reale$.
- ii) u è continua.
- iii) $u \in C^{\infty}$ su $(0, +\infty) \times \mathbb{R}$.
- iv) Risolve (??). In particolare vale $u_{tt} = u_{xx}$ e valgono le condizioni di periodicità per t > 0; e infine vale $u(0, \cdot) = u_0$ su $[-\pi, \pi]$.

Vediamo alcuni lemmi tecnici preparatori e sia R un rettangolo di \mathbb{R}^d ovvero prodotto di intervalli con estremi aperti o chiusi.

Lemma 4. Date $v_n \colon R \to \mathbb{C}$ di classe C^k con $k = 1, 2, \dots, +\infty$ tali che

- $v_n \to v$ uniformemente.
- $\forall \underline{h} = (h_1, \dots, h_d) \in \mathbb{N}^d$ con $|\underline{h}| := h_1 + \dots + h_d \le k$ (se $k = +\infty$ allora basta $|\underline{h}| < +\infty$) posto

$$D^{\underline{h}} v_n := \frac{\partial^k}{\partial x_1^{h_1} \cdots \partial x_d^{h_d}} v_n$$

 $D^{\underline{h}}v_n \to D^{\underline{h}}v$ converge uniformemente.

allora $v \in C^k$ e $D^{\underline{h}}v = \lim_n D^{\underline{h}}v_n$.

Dimostrazione. Si parte dal caso d=1 e k=1 e si procede per induzione. [TODO: Esercizio]

Corollario. 5 Date $u_n : R \to \mathbb{C}$ di classe C^k con $k = 1, \dots, +\infty$ tali che

allora $u := \sum_n u_n$ è una funzione ben definita su R e C^k e $D^{\underline{h}}u = \sum_n D^{\underline{h}}u_n$ per ogni \underline{h} con $|\underline{h}| \le k$.

Lemma. 6 Data $u: R \to \mathbb{C}$ e rettangoli $R_i \subset R$ relativamente aperti in R tali che $u \in C^k$ sugli R_i per ogni i allora $u \in C^k$ su $\widetilde{R} := \bigcup_i R_i$.

Dimostrazione. Intuitivamente essere C^k è una proprietà locale ma preso $x \in R \implies \exists i \ x \in R_i$ e dunque segue per l'ipotesi sugli R_i .

Lemma. 7 Data $f \in L^2((-\pi,\pi);\mathbb{C})$

$$f$$
 è reale q.o. $\iff c_{-n}(f) = \overline{c_n(f)}$

Osservazione. Notiamo che se $f \in L^1$ la freccia \leftarrow è molto più difficile.

Dimostrazione Teorema 1.

- i) u_0 reale $\implies c_{-n}^0 = \overline{c_n^0} \implies c_{-n}^0 e^{-(-n)^2 t} = \overline{c_n^0 e^{-n^2 t}} \iff c_{-n}(u(t,\cdot)) = \overline{c_n(u(t,\cdot))}$.
- ii) Sia $R := [0, +\infty) \times \mathbb{R}$, $\|u_n\|_{L^{\infty}(R)} = \|c_n^0 e^{-n^2 t}\|_{L^{\infty}(R)} = |c_n^0|$ dunque $\sum_{n \in \mathbb{Z}} u_n$ converge totalmente su R e quindi u è ben definita e continua su R.
- iii) Presi h, k = 0, 1, 2, ... se proviamo a calcolare $D_t^h D_x^k u_n = c_n^0 (-n)^{2h} (in)^k e^{-n^2 t} e^{inx}$ vediamo non si riesce a stimare per $t \to 0$ infatti

$$\left\|D_t^h D_x^k u_n\right\|_{L^{\infty}(R)} = |c_n^0| \cdot |n|^{2h+k} \xrightarrow{n} \infty.$$

Serve prendere $\delta > 0$ e sia $R_{\delta} := (\delta, +\infty) \times \mathbb{R}$

$$\|D_t^h D_x^k u_n\|_{L^{\infty}(B_{\delta})} = |c_n^0| \cdot |n|^{2h+k} e^{-n^2 \delta}$$

in particolare per ogni h, k abbiamo che $|n|^{2h+k}e^{-n^2\delta} \xrightarrow{n} 0 \implies |n|^{2h+k}e^{-n^2\delta} \le m_{h,k} \implies \|D_t^h D_x^k u_n\|_{L^{\infty}(R_{\delta})} \le m_{h,k} \cdot |c_n^0|$ e quindi $\sum_n D_t^h D_x^k u_n$ converge totalmente su R_{δ} .

Quindi $u \in C^{\infty}$ su R_{δ} per ogni $\delta > 0$ e siccome R_{δ} è aperto in R per il Lemma. 6 $u \in C^{\infty}$ su $\bigcup_{\delta > 0} R_{\delta} = (0, +\infty) \times \mathbb{R}$.

iv) Essendo che u è 2π -periodica in x, valgono le condizioni al bordo; inoltre u_0 e $u(0,\cdot)$ hanno gli stessi coefficienti di Fourier, dunque $u_0 = u(0,\cdot)$ quasi ovunque, ma essendo continue vale $u_0 = u(0,\cdot)$ su $[-\pi,\pi]$; infine, $(u_n)_t = (u_n)_{xx} \implies \sum (u_n)_t = \sum (u_n)_{xx} \implies u_t = u_{xx}$ per t > 0.

Ora enunciamo il teorema di unicità, vogliamo un teorema con il minor numero di ipotesi possibile e che ci dà più informazioni; quindi in questo caso cerchiamo la più grande famiglia di funzioni (quindi la meno regolare possibile) sulla quale vale l'unicità della soluzione.

Teorema. 2 (Unicità) Sia $u: [0,T) \times [-\pi,\pi] \to \mathbb{C}$ continua, C^1 nel tempo e C^2 nello spazio per t>0. Se u risolve $(\ref{eq:continuous})$ su t>0 allora u è unica.

Definizione. Dato R un rettangolo e $u: R \to \mathbb{C}$ diciamo che $u \in C^k$ nella variabile x_i se $\left(\frac{\partial}{\partial x_i}\right)^h u$ esiste per $h = 1, \dots, k$ ed è continua su R.

Lemma. 8 Data $u: I \times [-\pi, \pi] \to \mathbb{C}$ di classe C^k in $t \implies c_n(D_t^h u(t, \cdot)) = D_t^h c_n(u(t, \cdot))$ per $h \leq k$.

Dimostrazione.

$$c_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(t, x) e^{-inx} dx \implies \dot{c}_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u_t(t, x) e^{-inx} dx = c_n(u_t(t, \cdot))$$

per il teorema di derivazione sotto il segno di integrale (Analisi 2?)

Dimostrazione Teorema 2. Poniamo $c_n(t) := c_n(u(t, \cdot))$. Sappiamo che per t > 0 vale $\dot{c}_n(t) \stackrel{(*)}{=} c_n(u_t(t, \cdot)) \stackrel{(**)}{=} c_n(u_{xx}(t, \cdot)) = -n^2 c_n(t)$, dove (*) segue dal Lemma 8 e (**) segue dalla regolarità dei coefficienti. Dunque i coefficienti c_n risolvono il problema di Cauchy

$$\begin{cases} \dot{y} = -n^2 y \\ y(0) = c_n^0 \end{cases}$$

che ha un'unica soluzione.

Nota. Sia $y: [0,T) \to \mathbb{R}^k$ funzione continua su [0,T) e derivabile su (0,T) che risolve l'equazione differenziale ordinaria $\dot{y} = f(t,y)$ su (0,T) con $f: [0,T) \times \mathbb{R}^k \to \mathbb{R}^k$ continua. Allora y è \mathcal{C}^1 su [0,T) e risolve $\dot{y} = f(t,y)$ su [0,T).

Dalla nota sopra otteniamo che c_n è unico.

Notazione. $C_{per}^k = \{f : \mathbb{R} \to \mathbb{C} \text{ π-periodiche e } C^k \}.$

Teorema 3 (di non esistenza nel passato). Esiste $u_0 \in \mathcal{C}_{per}^{\infty}$ tale che per ogni $\delta > 0$ non esiste $u: (-\delta, 0] \times [-\pi, \pi] \to \mathbb{C}$ soluzione di (??) (u continua, \mathcal{C}^1 in t e \mathcal{C}^2 in x per t < 0)

Dimostrazione. Sia u su $(-\delta, 0) \times [-\pi, \pi]$ un'eventuale soluzione. Sia $c_n(t)$ al solito. Dalla dimostrazione del Teorema 2 abbiamo che c_n risolve (??).

Quindi $c_n(t) = c_n^0 e^{-n^2 t}$. Scelgliamo c_n^0 (cioè u_0) in modo che

- $c_n^0 = O(|n|^{-a})$ per $n \to \pm \infty$ per ogni a > 0. $(\Rightarrow \sum |n|^k |c_n^0| < +\infty \ \forall k \Rightarrow u_0 \in \mathcal{C}_{per}^{\infty})$.
- $c_n^0 e^{-n^2 t} \rightarrow 0$ per ogni t < 0.

Con un tale c_n^0 la soluzione non esiste al tempo t. Infatti, se per assurdo esistesse, i coefficienti di Fourier $c_n(t)$ sarebbero quadrato sommabili, ovvero dovrebbero tendere a zero ξ .

Prendiamo
$$c_n^0 = e^{-|n|}$$
.

Esercizio. Dato u_0 sia T_* il massimo T per cui (??) ammette soluzione su $(-T,0] \times [-\pi,\pi]$. Caratterizzare T_* in termini del comportamento asintotico di c_n^0 per $n \to \pm \infty$.

Suggerimento. Guardare $\log(|c_n^0|)/n^2$.

5.4 Equazione delle onde

Sia $\Omega \subset \mathbb{R}^d$ aperto, I intervallo temporale, $u \colon I \times \overline{\Omega} \to \mathbb{R}$, l' equazione delle onde è

$$u_{tt} = v^2 \nabla u = \nabla_x u = \sum_{i=1}^d \frac{\partial^2 u}{\partial x_i^2}$$

dove v si chiama velocità di propagazione.

La soluzione è univocamente determinata specificando

- Le condizioni al bordo (come per il calore), ad esempio quelle di Dirichlet: $u=v_0$ su $I\times\partial\Omega$ oppure di Neumann: $\partial u/\partial\nu=0$ su $I\times\partial\Omega$.
- Condizioni iniziali: $u(0,\cdot)=u_0, u_t(0,\cdot)=u_1.$

Esempio 1. Per d=1, $\Omega=[0,1]$ rappresenta una sbarra sottile di materiale elastico. La sbarra è soggetta a vibrazioni longitudinali (onde sonore). La funzione u(t,x) rappresenta lo spostamento dalla posizione di riposo x al tempo t. In tal caso, l'equazione delle onde è

$$u_{tt} = v^2 u_{xx}.$$

Esempio 2. Per $d=2, \Omega$ rappresenta una sbarra sottile di materiale elastico che vibra trasversalmente. La funzione u(t,x) rappresenta lo spostamento verticale del punto di coordinata $x \in \Omega$ a riposo. Allora u soddisfa²

$$u_{tt} = v^2 \nabla v$$
.

5.5 Derivazione dell'equazione delle onde

[TO DO: da aggiungere (non viene chiesto all'esame.)]

5.6 Risoluzione dell'equazione delle onde

Consideriamo il caso uno dimensionale. In tal caso l'equazione delle onde è la seguente.

$$\begin{cases} u_{tt} = v^2 u_{xx} \\ u(\cdot, \pi) = u(\cdot, -\pi) \\ u_x(\cdot, \pi) = u_x(\cdot, -\pi) \\ u(0, \cdot) = u_0 \\ u_t(0, \cdot) = u_1 \end{cases}$$
 (P)

5.6.1 Risoluzione formale

Scriviamo $u(t,x) = \sum_{n \in \mathbb{Z}} c_n(t)e^{inx}$. Deriviamo in t e due volte in x.

$$u_{tt} = \sum_{n \in \mathbb{Z}} \ddot{c}_n e^{inx}$$
$$u_{xx} = \sum_{n \in \mathbb{Z}} -v^2 n^2 c_n e^{inx}$$

Abbiamo che

$$u_{tt} = v^2 u_{xx} \iff \ddot{c}_n = -v^2 n^2 c_n$$

$$u(0,\cdot) = u_0 \iff c_n(0) = c_n^0 \coloneqq c_n(u_0) \qquad u_t(0,\cdot) = u_1 \iff \dot{c}_n(0) = c_n^1 \coloneqq c_n(u_1)$$

Quindi u risolve (??) se solo se per ogni n, c_n risolve

$$\begin{cases} \ddot{y} = -n^2 v^2 y \\ y(0) = c_n^0 \\ \dot{y}(0) = c_n^1 \end{cases}$$
 (P')

Dunque,

²Per oscillazioni piccole.

- Per n = 0, $\ddot{y} = 0$ se solo se y è un polinomio di primo grado, ovvero $c_0(t) = c_0^0 + c_0^1 t$.
- Per $n \neq 0$, $y = \alpha_n^+ e^{invt} + \alpha_n^- e^{-invt}$ con

$$\alpha_n^{\pm} = \frac{1}{2} \left(c_n^0 \pm \frac{c_n^1}{inv} \right)$$

Quindi, la soluzione è

$$u(t,x) = c_0^0 + c_0^1 t + \sum_{n \neq 0} \left[\alpha_n^+ e^{in(x+vt)} + \alpha_n^- e^{in(x-vt)} \right] \tag{*}$$

Inoltre,

$$u(t,x) = c_0^0 + c_0^1 t + \varphi^+(x+vt) + \varphi^-(x-vt)$$
 (**)

con φ^{\pm} funzioni con coefficienti di Fourier α_n^{\pm} che si dicono **onde viaggianti**.

Nota. La $(\ref{eq:notation})$ è specifica delle equazioni delle onde.

5.7 Esercitazione del 18 Novembre 2021

5.7.1 Esercizi preliminari

Data $f: [-\pi, \pi] \to \mathbb{R}$ o \mathbb{C} uno degli esercizi più comuni è doverne calcolare lo sviluppo di Fourier complesso o reale.

Osservazione. Ricordiamo che $c_n(f)$ può essere calcolato anche solo se $f \in L^1$ inoltre

$$\operatorname{SF}_{\mathbb{C}}(f) = \sum_{n \in \mathbb{Z}} c_n(f) e^{inx}$$
 $c_n(f) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$
e con base hilbertiana $\left\{ \frac{e^{inx}}{\sqrt{2\pi}} \middle| n \in \mathbb{Z} \right\}$

invece nel caso reale abbiamo visto

$$\operatorname{SF}_{\mathbb{R}}(f) = \sum_{n=1}^{\infty} \left[a_n \cos(nx) + b_n \sin(nx) \right] + a_0$$

$$a_n(f) = c_n(f) + c_{-n}(f) \qquad b_n(f) = i(c_n(f) - c_{-n}(f)) \qquad a_0(f) = c_0(f)$$

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos(nx) \, \mathrm{d}x \qquad b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin(nx) \, \mathrm{d}x$$
e con base hilbertiana $\left\{ \frac{1}{\sqrt{2\pi}}, \frac{\cos(nx)}{\sqrt{\pi}}, \frac{\sin(nx)}{\sqrt{\pi}} \, \middle| \, n \ge 1 \right\}$

Esercizio. Sia $f(x) = \cos^2(x)\sin(3x)$, calcolare i coefficienti di Fourier³.

Svolgimento. Usiamo lo sviluppo complesso

$$\cos(x) = \frac{e^{ix} + e^{-ix}}{2}$$
 $\sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$

³Con funzioni ottenute come combinazioni di prodotti di potenze di funzioni trigonometriche (anche con argomento moltiplicato per un naturale) conviene calcolare lo sviluppo complesso e poi passare a quello reale.

Dunque possiamo riscrivere f(x) come

$$= \frac{i}{8} \left(e^{i2x} + e^{-i2x} + 2 \right) \left(e^{-i3x} - e^{i3x} \right) =$$

$$= \frac{i}{8} \left(e^{-ix} + e^{-i5x} + 2e^{-i3x} - e^{i5x} - e^{ix} - 2e^{i3x} \right) =$$

$$= \frac{i}{8} e^{-ix} + \frac{i}{8} e^{-i5x} + \frac{i}{4} e^{-i3x} - \frac{i}{8} e^{i5x} - \frac{i}{8} e^{ix} - \frac{i}{4} e^{i3x}.$$

Dunque possiamo già scrivere i coefficienti di Fourier complessi di f(x)

$$c_n(f) \neq 0 \iff n = \pm 1, \pm 3, \pm 5$$

 $c_{\pm 1}(f) = \mp \frac{i}{8} \quad c_{\pm 3}(f) = \mp \frac{i}{4} \quad c_{\pm 5}(f) = \mp \frac{i}{8}.$

Continuiamo ora il conto precedente e ricostruiamo la serie di Fourier reale ricomponendo i termini

$$= -\frac{1}{4} \left(\frac{e^{ix} - e^{-ix}}{2i} \right) - \frac{i^2}{4} \left(\frac{e^{i3x} - e^{-i3x}}{2i} \right) - \frac{i^2}{4} \left(\frac{e^{i5x} - e^{-i5x}}{2i} \right) =$$

$$= \frac{1}{4} \sin(x) + \frac{1}{2} \sin(3x) + \frac{1}{4} \sin(5x),$$

in particolare possiamo notare che $f(\pi) = f(-\pi) = 0$ dunque potevamo già dedurre che la serie di Fourier reale sarebbe stata composta solo da seni.

Esercizio. Caratterizzare i coefficienti $c_n(f)$ di una $f: [-\pi, \pi] \to \mathbb{C}$ in L^2 tale che $\mathrm{Im}(f) \subseteq \mathbb{R}$. Suggerimento. Si usa che per $z \in \mathbb{C}$ vale $z \in \mathbb{R} \iff z = \overline{z}$.

Esercizio. Determinare la soluzione di (P) e stabilire unicità e regolarità della soluzione $u: [0,T) \times [-\pi,\pi] \to \mathbb{R}$ o \mathbb{C} .

$$\begin{cases} u_t = 4u_{xx} \\ u(\cdot, -\pi) = u(\cdot, \pi) \\ u_x(\cdot, -\pi) = u_x(\cdot, \pi) \\ u(0, x) = \cos^2(x)\sin(3x) \end{cases}$$
 (P)

Svolgimento. Per prima cosa troviamo formalmente una soluzione in serie di Fourier $u(t,x) = \sum_{n \in \mathbb{Z}} c_n(t)e^{inx}$ dove $c_n(t)$ è il coefficiente di $u(t,\cdot)$.

Per il teorema di derivazione sotto il segno di integrale abbiamo

$$u_t(t,x) = \sum_{n \in \mathbb{Z}} \dot{c}_n(t)e^{inx} \qquad \text{con } c_n(t) = \frac{1}{2\pi} \int_{-\pi}^{\pi} u(t,x)e^{-inx} dx$$

Le condizioni al bordo assicurano che $c_n(u_{xx}(t,\cdot))=-4n^2c_n(u(t,\cdot))$ da cui otteniamo il seguente problema di Cauchy sui coefficienti

$$\begin{cases} \dot{c}_n(t) = -4n^2 c_n(t) \\ c_n(0) = c_n(u(0, \cdot)) = c_n(\cos^2(x)\sin(3x)) \end{cases} \quad \forall n \in \mathbb{Z}$$

Inoltre dato che $c_n^0=0$ se $n\neq \pm 1, \pm 3, \pm 5 \implies c_n(t)=0$ per questi n, dunque complessivamente i sistemi sono

$$\begin{cases} \dot{c}_1(t) = -4c_1(t) \\ c_1(0) = -\frac{i}{8} \end{cases} \begin{cases} \dot{c}_3(t) = -36c_3(t) \\ c_3(0) = -\frac{i}{4} \end{cases} \begin{cases} \dot{c}_5(t) = -100c_5(t) \\ c_5(0) = -\frac{i}{8} \end{cases}$$

con la condizione $c_{-n}(t) = \overline{c_n(t)}$, così otteniamo

$$c_{1}(t) = -\frac{i}{8}e^{-4t} \qquad c_{3}(t) = -\frac{i}{4}e^{-36t} \qquad c_{5}(t) = -\frac{i}{8}e^{-100t}$$

$$c_{-1}(t) = \frac{i}{8}e^{-4t} \qquad c_{-3}(t) = \frac{i}{4}e^{-36t} \qquad c_{-5}(t) = \frac{i}{8}e^{-100t}$$

ed infine fattorizzando

$$\begin{split} u(t,x) &= \frac{e^{-4t}}{4} \left(-\frac{i}{2} e^{ix} + \frac{i}{2} e^{-ix} \right) + \frac{e^{-36t}}{2} \left(-\frac{i}{2} e^{i3x} + \frac{i}{2} e^{-i3x} \right) + \frac{e^{-100t}}{4} \left(-\frac{i}{2} e^{i5x} + \frac{i}{2} e^{-i5x} \right) = \\ &= \frac{1}{4} e^{-4t} \sin(x) + \frac{1}{2} e^{-36t} \sin(3x) + \frac{1}{2} e^{-100t} \sin(5x) \end{split}$$

Esercizio. Consideriamo il problema (P) dato da

$$\begin{cases}
 u_t = u_{xx} + u \\
 u(\cdot, -\pi) = u(\cdot, \pi) \\
 u_x(\cdot, -\pi) = u_x(\cdot, \pi) \\
 u(0, \cdot) = u_0
\end{cases}$$
(P)

dove $u_0(x)$ è $\cos^2(x)\sin(3x)$ oppure $\sum_{n\in\mathbb{Z}}\frac{1}{2^{|n|}}e^{inx}$.

Svolgimento. Per ora lavoriamo con $u_0(x) = \cos^2(x)\sin(3x)$, notiamo subito che i coefficienti soddisfano l'equazione

$$\begin{cases} \dot{c}_n(t) = -n^2 c_n(t) + c_n(t) = (1 - n^2) c_n(t) \\ c_n(0) = c_n(\cos^2(x)\sin(3x)) \end{cases}$$

da cui $\dot{c}_n(t) = (1-n^2)c_n$ con soluzione $c_n(t) = \gamma e^{(1-n^2)t}$, quindi ad esempio abbiamo

$$c_{\pm 1}(t) = \mp \frac{i}{8}$$
 $c_{\pm 3}(t) = \mp \frac{i}{4}e^{-8t}$ $c_{\pm 5}(t) = \mp \frac{i}{8}e^{-24t}$

Dunque la soluzione finale è

$$\begin{split} u(t,x) &= \frac{i}{8}e^{-ix} - \frac{i}{8}e^{ix} + \frac{i}{4}e^{3t}e^{-i3x} + \frac{i}{4}e^{3t}e^{i3x} + \frac{i}{8}e^{-24t}e^{-i5x} + \frac{i}{8}e^{-24t}e^{i5x} = \\ &= -\frac{i}{4}\left(\frac{e^{ix} - e^{-ix}}{2}\right) - \frac{i}{2}e^{-3t}\left(\frac{e^{i3x} - e^{-i3x}}{2}\right) - \frac{i}{4}e^{-24t}\left(\frac{e^{i5x} - e^{-i5x}}{2}\right) = \\ &= \frac{1}{4}\sin(x) - \frac{1}{2}e^{-3t}\sin(3x) - \frac{1}{4}e^{-24t}\sin(5x) \end{split}$$

Invece considerando la condizione iniziale $u_0(x) = \sum_{n \in \mathbb{Z}} e^{inx}/2^{|n|}$ abbiamo che $c_n(u_0) = 1/2^{|n|}$, notiamo che i coefficienti sono sommabili

$$\sum_{n \in \mathbb{Z}} \frac{1}{2^{|n|}} = 2\sum_{n=1}^{\infty} \frac{1}{2^n} + 1 < +\infty \qquad u(t,x) \coloneqq \sum_{n \in \mathbb{Z}} \frac{1}{2^{|n|}} e^{(1-n)^2 t} e^{inx}$$

in particolare formalmente possiamo scriverla meglio come

$$= \sum_{n \in \mathbb{Z}} \frac{1}{2^{|n|}} e^{(1-n)^2 t} e^{inx} = e^t \left(1 + \sum_{n>0} \frac{1}{2^{|n|}} e^{(1-n)^2} \cos(nx) \cdots \right)$$

[TODO: Finire meglio questo conto]

Esercizio. (della volta scorsa) Consideriamo la funzione

$$f(x) = \sum_{n \neq 0} \frac{\cos(n)}{|n|^{3/2}} e^{inx}$$

- Dire se f è ben definita e continua.
- Dire se f è derivabile.

Svolgimento.

$$\sum_{n \neq 0} |c_n| = 2\sum_{n=1}^{\infty} \frac{|\cos(n)|}{|n|^{3/2}} \le 2\sum_{n=1}^{\infty} \frac{1}{n^{3/2}} < +\infty$$

dunque la serie di Fourier converge uniformemente a $f \implies$ è continua e periodica. Se $\sum |n|\cdot |c_n| < +\infty$ si potrebbe dire che f è derivabile però

$$\sum_{n\neq 0} |n| \cdot |c_n| = 2\sum_{n=1}^{\infty} \frac{|\cos(n)|}{\sqrt{n}} = +\infty \text{ non converge assolutamente}$$

Ma la candidata derivata ha coefficienti inc_n e non starebbe in L^2 ovvero

$$\sum n^2 |c_n|^2 = +\infty \implies \sum inc_n e^{inx} \notin L^2$$

5.8 Risoluzione dell'equazione delle onde

Consideriamo il problema

$$\begin{cases} u_{tt} = v^2 u_{xx} \\ u(\cdot, \pi) = u(\cdot, -\pi) \\ u_x(\cdot, \pi) = u_x(\cdot, -\pi) \\ u(0, \cdot) = u_0 \\ u_t(0, \cdot) = u_1 \end{cases}$$
 (P)

ed abbiamo visto che ha soluzione

$$u(t,x) = c_0^0 + c_0^1 t + \sum_{n \neq 0} (\alpha_n^+ e^{in(x+vt)} + \alpha_n^- e^{in(x-vt)})$$

$$\alpha_n^{\pm} = \frac{1}{2} \left(c_n^0 \pm \frac{c_n^1}{inv} \right).$$
(*)

Inoltre, possiamo scrivere l'equazione (*) come

$$u(t,x) = c_0^0 + c_0^1 t + \varphi^+(x+vt) + \varphi^-(x-vt)$$
 (**)

dove φ^+, φ^- sono funzioni 2π -periodiche.

Vedremo i seguenti risultati

- Esistenza usando la forma (**), specifico per equazione delle onde.
- \bullet Esistenza usando la forma (*), che però richiede maggiore regolarità su u_0 e $u_1.$

• Unicità.

Teorema 1. Dati $u_0 \in C^1_{per}$ allora esistono $c_0^0, c_0^1 \in \varphi^+, \varphi^- \in C^2_{per}$ tali che la u in (**) è di classe C^2 su $\mathbb{R} \times \mathbb{R}$, 2π -periodica in x e risolve (P).

Lemma 4. Date $h, g \in C^1(\mathbb{R})$ con g primitiva di h e T > 0 allora g è T-periodica $\iff h$ è T-periodica e $\int_0^T h(x) dx = 0$.

Dimostrazione. Notiamo che h è T-periodica se e solo se $\forall x \int_x^{T+x} h(x) dx = \cos t$.

$$\int_{T}^{T+x} h(x) dx = g \Big|_{x}^{T+x} = g(T+x) - g(x) = 0 \iff g \text{ è T-periodica}$$

Dimostrazione Teorema 1.

Parte 1. Se $c_0^0, c_0^1 \in \mathbb{R}$ e $\varphi^+, \varphi^- \in C_{per}^2$ allora la u data da (**) è C^2 su $\mathbb{R} \times \mathbb{R}$ e 2π -periodica in x e risolve $u_{tt} = v^2 u_{xx}$.

$$u_{tt} = [\ddot{\varphi}^{+}(x+vt) + \ddot{\varphi}^{-}(x-vt)]v^{2} \\ u_{xx} = \ddot{\varphi}^{+}(x+vt) + \ddot{\varphi}^{-}(x-vt) \implies u_{tt} = v^{2}u_{xx}$$

Parte 2. $\exists c_0^0, c_0^1 \in \mathbb{R} \text{ e } \varphi^+, \varphi^- \in C_{\text{per}}^2$ tali che la u data da (**) soddisfa la condizione iniziale in (P), per t = 0, poste $\varphi^{\pm} = \varphi^{\pm}(x \pm v0)$

$$\begin{cases} c_0^0 + \varphi^+ + \varphi^- = u_0 \\ c_0^1 + v(\dot{\varphi}^+ - \dot{\varphi}^-) = u_1 \end{cases} \implies \begin{cases} \varphi^+ + \varphi^- = u_0 - c_0^0 \\ (\varphi^+ - \varphi^-)' = (u_1 - c_0^1)/v \end{cases}$$

ed ora fissiamo $c_0^0 = \int_{-\pi}^{\pi} u_0 \, dx$ e $c_0^1 = \int_{-\pi}^{\pi} u_1 \, dx$. In questo modo possiamo applicare il lemma precedente ed ottenere

$$\begin{cases} \varphi^{+} + \varphi^{-} = g_{0} \\ (\varphi^{+} - \varphi^{-})' = g'_{1} \end{cases} \implies \varphi^{+} = \frac{1}{2}(g_{0} + g_{1}) \qquad \varphi^{-} = \frac{1}{2}(g_{0} - g_{1})$$

Teorema 2. Siano $u_0, u_1 \in C^0_{\text{per}}$ tali che $\sum n^2 |c_n^0| < +\infty$ e $\sum |n| \cdot |c_n^1| < +\infty$. Allora (*) definisce una funzione $u \colon \mathbb{R} \times \mathbb{R} \to \mathbb{C}$ di classe C^2 , 2π -periodica in x che risolve (P).

Dimostrazione.

$$u(t,x) = c_0^0 + c_0^1 t + \sum_{n \neq 0} (\underbrace{\alpha^+ e^{in(x+vt)}}_{v_n^+} + \underbrace{\alpha^- e^{in(x-vt)}}_{v_n^-})$$

Passo 1. Dimostriamo che $u \in C^0(\mathbb{R} \times \mathbb{R})$ e 2π -periodica in x.

La funzione u soddisfa le condizioni di periodicità. Per mostrare la continuità è sufficiente mostrare che la serie converga totalmente su $\mathbb{R} \times \mathbb{R}$.

$$\left\| v_n^{\pm} \right\|_{L^{\infty}(\mathbb{R} \times \mathbb{R})} = |\alpha^{\pm}| = O\left(|c_n^0| + \frac{|c_n^1|}{n} \right)$$

che sono sommabili in n.

Passo 2. Mostriamo che $u \in C^2(\mathbb{R} \times \mathbb{R})$.

Abbiamo

$$D_t^h D_x^k v_n^{\pm} = \alpha_n^{\pm} e^{in(x \pm vt)} (in)^k (ivn)^h$$

$$\Longrightarrow \left\| D_t^h D_x^k v_n^{\pm} \right\|_{L^{\infty}(\mathbb{R} \times \mathbb{R})} = |\alpha_n^{\pm}| \cdot |v|^h \cdot |n|^{k+h} = O(|c_n^0| \cdot |n|^{k+h} + |c_n^1| \cdot |n|^{k+h-1})$$

che è sommabile se $k + h \le 2$ in n. La serie in (*) converge totalmente su $\mathbb{R} \times \mathbb{R}$ con tutte le derivate di ordine $\le 2 \implies u$ è C^2 .

Passo 3. Dimostriamo che u risolve l'equazione $u_{tt} = v^2 u_{xx}$.

u risolve l'equazione perché derivata e serie commutano e per come abbiamo impostato (P') $c_n(u(0,\cdot)) = c_n(u_0) \implies u(0,\cdot) = u_0$. $c_n(u_t(0,\cdot)) = c_n(u_1) \implies u_t(0,\cdot) = u_1$.

Teorema 3. (Unicità) Se $u: I \times [-\pi, \pi] \to \mathbb{C}$ è C^2 in x e t e risolve (P) allora è unica.

Dimostrazione. Si ripercorre la stessa dell'equazione del calore. Dimostriamo che i coefficienti $c_n(t) = c_n(u(t, \cdot))$ definiti per $t \in I$ risolvono (P')...

5.9 Altre applicazioni della serie di Fourier

5.9.1 Disuguaglianza isoperimetrica

Sia D un aperto limitato con frontiera C^1 parametrizzata da un unico cammino γ (quindi niente buchi o più di una componente connessa). Allora $L^2 \geq 4\pi A$ dove L è la lunghezza di ∂D e A è l'area di D. Inoltre vale l'uguale se e solo se D è un disco.

Dimostrazione.

Possiamo scegliere $\gamma\colon [-\pi,\pi]\to\mathbb{R}^2\simeq\mathbb{C}$ e γ parametrizzazione di ∂D in senso antiorario ed a velocità costante (da cui $|\dot{\gamma}(t)|=L/2\pi$)

Passo 1.

$$L^{2} = 2\pi \int_{-\pi}^{\pi} |\dot{\gamma}|^{2} dt = 2\pi ||\dot{\gamma}||_{2} = 4\pi^{2} \sum |c_{n}(\dot{\gamma})|^{2} = 4\pi^{2} \sum n^{2} |c_{n}|^{2}$$

Passo 2.

$$A \stackrel{(*)}{=} \frac{1}{2} \langle -i\dot{\gamma}, \gamma \rangle = \frac{1}{2} 2\pi \sum (-i(inc_n))c_n = \pi \sum n|c_n|^2$$

Vediamo che vale questa formula per l'area usata in (*), poniamo $\gamma = \gamma_x + i\gamma_y$ allora

$$\langle \dot{\gamma}, \gamma \rangle = \int_{-\pi}^{\pi} \dot{\gamma} \, \overline{\gamma} \, dt$$

$$= \int_{-\pi}^{\pi} (\gamma_x - i\gamma_y)(\dot{\gamma}_x + i\dot{\gamma}_y) \, dt =$$

$$= \int_{\gamma} (x - iy)(\, dx + i \, dy) =$$

$$= \int_{D} 2i \, dx dy = 2iA$$

Passo 3. Infine $L^2 = 4\pi \sum n^2 |c_n|^2$ e $4\pi A = 4\pi \sum n |c_n|^2$, dunque segue subito che $L^2 \ge 4\pi A$ e vale l'uguale se e solo se $n^2 = n$ o se $c_n = 0$ per ogni $n \implies \gamma(t) = c_0 + c_1 e^{it}$ che è una circonferenza di centro c_0 e raggio $|c_1|$.

5.10 Appendice

Studiamo alcune variazioni dell'equazione del calore.

Nota. Un problema del tipo $u_t = a(t) \cdot u_{xx}$ si può risolvere ripercorrendo i passaggi della risoluzione dell'equazione del calore. Viceversa, il problema $u_t = a(x) \cdot u_{xx}$ non si può risolvere allo stesso modo, in quanto, non è vero che il prodotto di serie di Fourier ha come coefficienti il prodotto dei coefficienti.

Studiamo ora variazioni alle condizioni di bordo.

Osservazione. Quando proviamo a risolvere $u_t = u_{xx}$, passiamo alla serie di Fourier e deriviamo; per fare questo passaggio servono le condizioni al bordo⁴; dunque, togliendo le condizioni di periodicità il sistema non funziona più molto bene.

Introduciamo delle varianti della serie di Fourier.

• Serie di Fourier su $[-\pi, \pi]^d$. Data $u \in L^2([-\pi, \pi]^2, \mathbb{C})$, definiamo

$$u(x) = \sum_{\underline{n} \in \mathbb{Z}^d} c_{\underline{n}} e^{i\underline{n}x} \qquad c_{\underline{n}} = c_{\underline{n}}(u) := \frac{1}{(2\pi)^d} \int_{[-\pi,\pi]^d} u(x) e^{-i\underline{n}x} dx$$

con base di Hilbert

$$\mathcal{F} = \left\{ \frac{e^{i\underline{n}x}}{(2\pi)^{d/2}} \colon n \in \mathbb{Z}^d \right\}$$

C'è da dimostrare che \mathcal{F} è una base di Hilbert.

Dimostrazione (idea).

- o Ortonormalità. È un conto [TO DO].
- o Completezza. Si può dimostrare come per d=1, oppure si usa il seguente lemma. **Lemma.** Sia $\mathcal{F}_1 := \{e_n^1\}$ base di Hilbert di $L^2(X_1, \mathbb{C})$ e $\mathcal{F}_2 := \{e_n^2\}$ base di Hilbert di $L^2(X_2, \mathbb{C})$. Allora, una base di Hilbert di $L^2(X_1 \times X_2, \mathbb{C})$ è

$$\mathcal{F} = \left\{ e_{n_1, n_2}(x_1, x_2) \mid e_{n_1}^1(x_1) e_{n_2}^2(x_2) \right\}$$

Formula chiave. Se $u \in C^1_{per}(\mathbb{R}^d) = \{\text{funzioni } 2\pi\text{-periodiche in tutte le variabili}\}$. Abbiamo che

$$c_{\underline{n}}(\nabla u) = i\underline{n}c_n(u), \qquad c_{\underline{n}}(\Delta u) = -|\underline{n}|^2 c_{\underline{n}}(u) \text{ se } u \in \mathcal{C}^2_{per}$$

• Serie in seni. Data $u \in L^2([0,\pi])$, allora

$$u(x) = \sum_{n=1}^{\infty} b_n \sin(nx) \qquad b_n = b_n(u) := \frac{2}{\pi} \int_0^{\pi} u(x) \sin(nx) dx$$

con base di Hilbert

$$\mathcal{F} = \left\{ \sqrt{\frac{2}{\pi}} \sin(nx) \mid n \ge 1 \right\}$$

Dimostrazione. Mostriamo l'ortonormalità e la completezza.

⁴Anche se avevamo derivato le formule formalmente anche a posteriori l'ipotesi delle condizioni al bordo era necessaria.

Ortonormalità. Sono conti. [TO DO]

Completezza. Data $u \in L^2([0,\pi])$. Sia \widetilde{u} l'estensione dispari a $[-\pi,\pi]$. Allora

$$\widetilde{u} = a_0 + \sum_{n=1}^{\infty} \widetilde{a}_n \cos(nx) + \widetilde{b}_n \sin(nx) = \sum_{\widetilde{u} \text{ dispari } n=1}^{\infty} \widetilde{b}_n \sin(nx).$$

Osservazione. I coefficienti $\tilde{b}_n = b_n$. Si può vedere in diversi modi, un modo possibile è questo.

$$\widetilde{b}_n = \frac{1}{\pi} \int_{-\pi}^{\pi} \widetilde{u}(x) \sin(nx) \, \mathrm{d}x = \frac{2}{\pi} \int_{0}^{\pi} \widetilde{u} \sin(nx) \, \mathrm{d}x = \frac{2}{\pi} \int_{0}^{\pi} u(x) \sin(nx) \, \mathrm{d}x = b_n.$$

Formula chiave. Data $u \in \mathcal{C}^2([0,\pi])$ con condizioni al bordo $u(\,\cdot\,,0) = u(\,\cdot\,,\pi)$. Allora

$$b_n(\ddot{u}) = -n^2 b_n(u)$$

dove

$$b_n(\ddot{u}) := \frac{2}{\pi} \int_0^{\pi} \ddot{u}(x) \sin(nx) dx$$

$$= \frac{2}{\pi} |\dot{u}(x) \sin(nx)|_0^{\pi} - \frac{2}{\pi} \int_0^{\pi} \dot{u}(x) \cos(nx) dx$$

$$= -n\frac{2}{\pi} |u(x) \cos(nx)|_0^{\pi} - n^2 \underbrace{\left(\frac{2}{\pi} \int_0^{\pi} u(x) \sin(nx) dx\right)}_{b_{n(x)}}$$

Applicazione (della serie in seni). Risoluzione di EDP su $[0, \pi]$ con condizioni di Dirichlet (omogenee) al bordo.

Esempio. Risolvere

$$\begin{cases} u_t = u_{xx} & \text{su } [0, \pi] \\ u(\cdot, 0) = u(\cdot, \pi) = 0 \\ u(0, \cdot) = u_0 \end{cases}$$
 (P)

Soluzione. Poniamo $b_n^0 := b_n(u_0)$. Scriviamo $u(t,x) = \sum_{n=1}^{\infty} b_n(t) \sin(nx)$ serie di seni in x.

Formalmente,

$$u_t = \sum_{n=1}^{\infty} \dot{b}_n(t) \sin(nx)$$
 $u_{xx} = \sum_{n=1}^{\infty} -n^2 b_n(t) \sin(nx)$

Dunque,

$$u_t = u_{xx} \iff \dot{b}_n(t) = -n^2 b_n(t) \ \forall t \forall n$$

Cioè $b_n(t)$ risolve il problema di Cauchy.

$$\begin{cases} \dot{y} = -n^2 y \\ y(0) = \dot{b}_n \end{cases} \tag{P'}$$

Ovvero $b_n(t) = b_n^0 e^{-n^2 t}$, da cui

$$u(t,x) = \sum_{n=1}^{\infty} b_n^0 e^{-n^2 t} \sin(nx). \tag{*}$$

Teorema 1 (di esistenza nel futuro). Se $u_0: [0,\pi] \to \mathbb{R}$ è continua è $\sum_n |b_n^0| < +\infty$ (basta $u_0 \in \mathcal{C}^1$ e $u(0) = u(\pi) = 0$). Allora la u in $(\ref{eq:continuous})$ è ben definita e continua su $[0,+\infty) \times \mathbb{R}$ e risolve $(\ref{eq:continuous})$.

Dimostrazione. Dimostriamo il teorema per passi.

Passo 1. Mostriamo che u è ben definita e continua su $(0, +\infty) \times \mathbb{R}$: studiamo la norma del sup. Sia $R = [0, +\infty) \times \mathbb{R}$.

$$||u_n||_{L^{\infty}(R)} \leq |b_n^0| \Longrightarrow u_n$$
 converge totalmente su \mathbb{R} .

Passo 2. Mostriamo che \mathcal{C}^{∞} su $(0, +\infty) \times \mathbb{R}$. Sia $R_{\delta} = (\delta, +\infty) \times \mathbb{R}$. Stimiamo le derivate.

$$D_t^k D_x^h u_n = b_n^0 (-n^2)^k e^{-n^2 t} \cdot n^h \cdot \underbrace{\dots}_{\star}$$

$$\Longrightarrow \left\| D_t^k D_x^h u_n \right\|_{L^{\infty}(R_{\delta})} = |b_n^0| \underbrace{e^{-n^2 \delta} \cdot |n|^{2k+h}}_{\text{perché è infinitesimo in } n}$$

Allora le norme delle derivate sono sommabili per ogni n, dunque $u \in \mathcal{C}^{\infty}(R_{\delta})$ per ogni δ , da cui $u \in \mathcal{C}^{\infty}((0, +\infty), \mathbb{R})$.

Passo 3. Mostriamo che la u(t,x) definita in (??) risolve (??).

- u risolve $u_t = u_{xx}$ per t > 0. Infatti, l'equazione è lineare per quanto mostrato al punto sopra e dunque posso scambiare serie e derivata.
- u soddisfa la condizione iniziale $u(0,\cdot)=u_0$, perché hanno gli stessi coefficienti di Fourier.
- Sono soddisfatte anche le condizioni al bordo, infatti

$$u(\,\cdot\,,0)=u(\,\cdot\,,\pi)=0$$

Domanda. Quale ipotesi su u_0 garantisce $\sum_n |b_n^0| < +\infty$? Basta $u_0 \in \mathcal{C}^1$ e $u(0) = u(\pi) = 0$.

Teorema 2 (non esistenza nel passato). Esiste $u_0: [0,\pi] \to \mathbb{R}$ \mathcal{C}^{∞} (+ condizioni al bordo) tale che per ogni $\delta > 0$ (??) non ha alcuna soluzione $u: (-\delta, 0] \times [0, \pi] \to \mathbb{R}$ continua e \mathcal{C}^1 in $t \in \mathcal{C}^2$ in x.

Teorema 3 (di unicità). [TO DO: aggiungere (è sempre lo stesso).]

5.11 Esercitazione del 25 Novembre 2021

Esercizio. Consideriamo l'equazione alle derivate parziali

$$\begin{cases} u_{ttt}(t,x) = u_{xx}(t,x) & x \in [-\pi,\pi] \\ u(\cdot,\pi) = u(\cdot,-\pi) \\ u_{x}(\cdot,\pi) = u_{x}(\cdot,-\pi) \\ u(0,\cdot) = u_{0} \\ u_{x}(0,\cdot) = u_{1} \\ u_{xx}(0,\cdot) = u_{2} \end{cases}$$
(P)

ponendo $c_n^i := c_n(u_i)$ per $n \in \mathbb{Z}$ per i = 1, 2, 3. Segue subito che il problema di Cauchy sui coefficienti è

$$\begin{cases} \ddot{c}_n(t) = -n^2 c_n(t) \\ c_n(0) = c_n^0 \\ \dot{c}_n(0) = c_n^1 \\ \ddot{c}_n(0) = c_n^2 \end{cases} \quad \forall n \in \mathbb{Z}$$

$$(P')$$

che ha polinomio caratteristico $p(\lambda) = \lambda^3 + n^2 \implies \lambda^3 = -n^2$ e dunque le soluzioni sono $\lambda_i = n^{2/3} \zeta_6^{2i-1}$ con ζ_6 una radice sesta dell'unità. Per comodità per i=1,2,3 poniamo $z_i \coloneqq n^{2/3} \omega_i$ con ω_i soluzioni di $\omega^3 = -1$ che possiamo anche riscrivere come

$$\omega_1 = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$
 $\omega_2 = \frac{1}{2} - \frac{\sqrt{3}}{2}i$ $\omega_3 = -1$

Dunque per $n \in \mathbb{Z}$ e $n \neq 0$ la soluzione sarà

$$\begin{cases}
c_n(t) = A_n e^{-z_1^n t} + B_n e^{-z_2^n t} + C_n e^{-z_3^n t} \\
c_n(0) = c_n^0 = A_n + B_n + C_n \\
c_n(1) = c_n^1 = A_n z_1^n + B_n z_2^n + C_n z_3^n \\
c_n(2) = c_n^2 = A_n (z_1^n)^2 + B_n (z_2^n)^2 + C_n (z_3^n)^2
\end{cases}$$

e quindi otteniamo il sistema

$$\implies \begin{cases} c_n^0 = A_n + B_n + C_n \\ n^{-2/3} c_n^1 = A_n \omega_1 + B_n \omega_2 + C_n \omega_3 \\ n^{-4/3} c_n^2 = A_n \omega_1^2 + B_n \omega_2^2 + C_n \omega_3^2 \end{cases} \longrightarrow \begin{pmatrix} 1 & 1 & 1 \\ \omega_1 & \omega_2 & \omega_3 \\ \omega_1^2 & \omega_2^2 & \omega_3^2 \end{pmatrix} \begin{pmatrix} A_n \\ B_n \\ C_n \end{pmatrix} = \begin{pmatrix} c_n^0 \\ n^{-2/3} c_n^1 \\ n^{-4/3} c_n^2 \end{pmatrix}$$

e facendo conti si ottengono A_n, B_n e C_n e si scopre che [TODO: Controllare i conti con Mathematica]

$$A_n e^{n^{2/3}(t/2 + i\sqrt{3}t/2)} \sim e^{n^{2/3}t/2} \xrightarrow{t \to \infty} \infty$$

$$B_n e^{n^{2/3}(t/2 - i\sqrt{3}t/2)} \sim e^{n^{2/3}t/2} \xrightarrow{t \to \infty} \infty$$

$$C_n e^{-n^{2/3}} \sim e^{-n^{2/3}t} \xrightarrow{t \to -\infty} \infty$$

dunque in realtà anche se il problema in partenza sembrava ben definito in realtà non ha soluzione per alcun $t \in \mathbb{R}$.

Conti esatti con Mathematica:

$$A_n \to \frac{c_n^0}{3} - \frac{c_n^2}{3n^{4/3}} - \frac{(-1)^{2/3}c_n^2}{3n^{4/3}} - \frac{(-1)^{2/3}c_n^1}{3n^{2/3}},$$

$$B_n \to \frac{c_n^0}{3} - \frac{c_n^2}{6n^{4/3}} + \frac{ic_n^2}{2\sqrt{3}n^{4/3}} + \frac{c_n^1}{6n^{2/3}} + \frac{ic_n^1}{2\sqrt{3}n^{2/3}},$$

$$C_n \to \frac{c_n^0}{3} + \frac{c_n^2}{3n^{4/3}} - \frac{c_n^1}{3n^{2/3}}$$

Esercizio. (Equazione del calore senza una condizione al bordo)

$$\begin{cases} u_t = u_{xx} & x \in [-\pi, \pi] \\ u(\cdot, -\pi) = u(\cdot, \pi) & \\ u(0, \cdot) = u_0 = \cos(x/2) \end{cases}$$
 (P)

i) Esiste una soluzione?

Sì in quanto esiste anche con una condizione in più

ii) È unica?

Senza periodicità per u_x non è vero in generale che $c_n(u_{xx}(t,\,\cdot\,))=-n^2c_n(u(t,\,\cdot\,))$.

Cerchiamo una soluzione della forma $u(t,x) = \cos(x/2)\psi(t)$. Abbiamo che $u_t(t,x) = \dot{\psi}(t)\cos(x/2)$ e $u_{xx}(t,x) = -\cos(x/2)\psi(t)/4$. Dunque $\dot{\psi}(t) = -\psi(t)/4$ e $\psi(0) = 1 \implies \psi(t) = e^{-t/4}$.

Esercizio.

$$\begin{cases} u_t = u_{xx} & x \in [0, \pi] \\ u(t, 0) = 0 & t \in \mathbb{R} \\ u(t, \pi) = t & t \in \mathbb{R} \\ u(0, \cdot) = u_0 \end{cases}$$
(P)

L'equazione è lineare, cerchiamo $u(t,x)=v(t,x)+\psi(t,x)$ in modo che v(t,x)=0 se $x=0,\pi$ e $\psi(t,0)=0$ e $\psi(t,\pi)=t$ e $\psi(t,x)=tx/\pi$.

Esercizio.

$$\begin{cases} u_{t} = u_{xxxx} & x \in [-\pi, \pi] \\ u(\cdot, \pi) = u(\cdot, -\pi) \\ u_{x}(\cdot, \pi) = u_{x}(\cdot, -\pi) \\ u_{xx}(\cdot, \pi) = u_{xx}(\cdot, -\pi) \\ u_{xxx}(\cdot, \pi) = u_{xxx}(\cdot, -\pi) \\ u(0, \cdot) = u_{0} \end{cases}$$
(P)

Esercizio.

$$\begin{cases} u_{t} = u_{xxxx} & x \in [0, \pi] \\ u(\cdot, 0) = u(\cdot, \pi) = 0 \\ u_{xx}(\cdot, 0) = u_{xx}(\cdot, \pi) = 0 \\ u(0, \cdot) = u_{0} \end{cases}$$
(P)

Esercizio. Sia V il seguente insieme

$$V \coloneqq \left\{ f \in L^1([1, +\infty]) \mid |f(x)| \le \frac{1}{x^2} \text{ per q.o. } x \right\}$$

è compatto in L^1 ? e se al posto di L^1 avessimo L^2 ?

[TODO: Espandere]

Intuitivamente $V \supseteq \{f \mid |f(x)| \le 1/2 \text{ q.o. in } [1,2]\}$ che non è compatto in quanto contiene famiglie di funzioni che "oscillano molto" costruite sull'idea della base di Haar.

Esercizio. Trovare una funzione in $L^p([0,+\infty))$ tale però che $f \notin L^q$ per $q \neq p$.

Cercare f della forma

$$f(x) = \frac{1}{x^{\alpha}(a + (\ln x)^{\beta})}$$

5.11.1 Considerazioni finali su SdF e serie in seni

Notiamo che l'efficacia per la soluzione di certe EDP dipende dal fatto che

$$c_n(u) = inc_n(u)$$
 $b_n(\ddot{u}) = -n^2b_n(u)$

che segue (almeno formalmente) da $(e^{inx})' = ine^{inx}$ e $(\sin(nx))'' = -n^2\sin(nx)$.

Cioè che $\left\{e^{inx}/\sqrt{2\pi}\right\}$ è una base ortonormale di $L^2([-\pi,\pi],\mathbb{C})$ di autovettori di D e $\left\{\sqrt{2/\pi}\sin(x)\right\}$ è una base ortonormale di autovettori di D^2 .

Analogamente per risolvere $u_t = \Delta u$ su Ω , basterebbe avere $\{e_n\}$ base ortonormale di $L^2(\Omega)$ fatta di autovettori del laplaciano.

Per avere una base ortonormale di autovettori di un operatore T serve che T sia autoaggiunto (almeno in dimensione finita).

Definizione. Dato H spazio di Hilbert complesso o reale, D sottospazio denso di H, $T: D \to H$ lineare (non necessariamente continuo), dico che T è **autoaggiunto** se $\langle Tx, y \rangle = \langle x, Ty \rangle$ per ogni $x, y \in D$.

Proposizione. Dato T come sopra

- i) Se λ è autovalore di T (ovvero tale che $\exists x \neq 0$ tale che $Tx = \lambda x$) allora λ è reale.
- ii) Dati $\lambda_1 \neq \lambda_2$ autovalori allora $V_{\lambda_1} \perp V_{\lambda_2}$ dove $V_{\lambda} := \{x \mid Tx = \lambda x\}.$

Nota. In dimensione infinita manca un teorema spettrale, ovvero tale che $\overline{\bigoplus V_{\lambda}} = H$.

Esempio 1. Sia $H = L^2([-\pi, \pi], \mathbb{C}), D = \{u \in \mathcal{C}^2(-\pi, \pi) \mid u(-\pi) = u(\pi)\} \text{ e } T \colon D \to H \text{ tale che } u \mapsto iu. \text{ Mostrare che}$

- i) T è autoaggiunto
- ii) Gli autovalori di T sono $\lambda_n = n$ con $n \in \mathbb{Z}$ $V_{\lambda_n} = V_n = \operatorname{Span} \{e^{inx}\}.$
- iii) T non è continuo

In questo caso esiste una base ortonormale di L^2 di autovettori di T. [TO DO: aggiustare].

Dimostrazione.

i) Dati $u, c \in D(=\mathcal{C}^1_{per})$, allora

$$\langle Tu, v \rangle = \int_{-\pi}^{\pi} i \dot{u} \overline{v} \, dx = |i u \overline{v}|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} i u \overline{v} \, dx$$
$$= \int_{-\pi}^{\pi} u \overline{i v} \, dx = \langle u, Tv \rangle$$

ii) Questo è un esercizio di equazioni differenziali ordinarie. Risolviamo il problema

$$\begin{cases}
-iu = \lambda u & \text{su } [-\pi, \pi] \\
u(\pi) = u(-\pi)
\end{cases}$$

da cui $\dot{u} - i\lambda u = 0$, che ha polinomio associato $t - i\lambda = 0$ con radice $i\lambda$. In conclusione la soluzione del problema sopra è $\alpha e^{i\lambda x}$.

Dalla condizione al bordo abbiamo che $\alpha e^{i\lambda\pi}=e^{-i\lambda\pi}$ dunque $e^{i\lambda\pi}=e^{-i\lambda\pi}\Longleftrightarrow e^{2i\lambda\pi}=1\Longleftrightarrow\lambda\in\mathbb{Z}.$

iii) Siccome gli autovalori sono illimitati, T non è continuo.

Esempio 3. Sia $H = L^2([-\pi, \pi], \mathbb{C})$ $D = \{u \in \mathcal{C}^1(-\pi, \pi)\}$ e $T: D \to H$ tale che $u \mapsto i\dot{u}$. Dimostrazione. Dati $u, v \in D$ abbiamo

$$\langle Tu, v \rangle = \int_{-\pi}^{\pi} i \dot{u} \overline{v} \, dx = |i u \overline{v}|_{-\pi}^{\pi} - \int_{-\pi}^{\pi} i u \overline{\dot{v}} \, dx$$
$$= i(u(\pi)\overline{v}(\pi) - u(-\pi)\overline{v}(-\pi)) + \langle u, Tv \rangle \neq \langle u, Tv \rangle.$$

In quanto, in generale, il termine $u(\pi)\overline{v}(\pi) - u(-\pi)\overline{v}(-\pi)$ è diverso da zero.

Esercizio. Cercare $T \colon L^2([0,1]) \to L^2([0,1])$ continuo autoaggiunto senza autovalori.

Suggerimento. Cercare T del tipo $T: u \mapsto gu$ con $g \in L^{\infty}$.

Capitolo 6

Trasformata di Fourier

Data $f: \mathbb{R} \to \mathbb{C}$ poniamo

$$f(x) \stackrel{\text{(*)}}{=} \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(y)e^{iyx} dy \qquad \widehat{f}(y) \coloneqq \int_{-\infty}^{\infty} f(x)e^{-iyx} dx.$$

Dove \hat{u} si chiama trasformata di Fourier¹ di u e la formula (*) si dice formula di inversione.

Derivazione formale (della formula di inversione). Prendiamo $f \in \mathcal{C}^1_C(\mathbb{R}, \mathbb{C})$ e $\delta > 0$ tale che supp $(f) \subset [-\pi/\delta, \pi/\delta]$.

Scriviamo f in serie di Fourier su $[-\pi/\delta, \pi/\delta]$ (serve un cambio di variabile per ricondursi alla serie di Fourier su $[-\pi, \pi]$).

$$f(x) = \sum_{n \in \mathbb{Z}} c_n^{\delta}(f) e^{in\delta x}$$
$$c_n^{\delta}(f) \coloneqq \frac{\delta}{2\pi} \int_{-\pi/\delta}^{\pi/\delta} f(x) e^{-in\delta x} \, \mathrm{d}x = \frac{\delta}{2\pi} \int_{-\infty}^{\infty} f(x) e^{-in\delta x} \, \mathrm{d}x = \frac{\delta}{2\pi} \widehat{f}(n\delta).$$

Dunque,

$$f(x) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \frac{\delta}{2\pi} \underbrace{\widehat{f}(n\delta) e^{i(n\delta)x}}_{\widehat{f}(y)e^{iyx} \text{ calcolata in } y = n\delta}$$

dove $\sum_{n\in\mathbb{Z}}\frac{\delta}{2\pi}\widehat{f}(n\delta)e^{i(n\delta)x}$ è la somma di Rienmann di $\int_{-\infty}^{\infty}\widehat{f}e^{iyx}\,\mathrm{d}y$. Dunque

$$f(x) = \frac{1}{2\pi} \sum_{n \in \mathbb{Z}} \frac{\delta}{2\pi} \widehat{f}(n\delta) e^{i(n\delta)x} \xrightarrow{\delta \to 0} \frac{1}{2\pi} \int_{-\infty}^{\infty} \widehat{f}(y) e^{iyx} \, \mathrm{d}y.$$

Quest'ultimo passaggio non è giustificato rigorosamente ma si può rendere rigoroso per $f \in \mathcal{C}^1_C(\mathbb{R})$.

Definizione. Data $f \in L^1(\mathbb{R};\mathbb{C})$ la trasformata di Fourier \widehat{f} è definita da

$$\widehat{f}(y) = \int_{-\infty}^{\infty} f(x)e^{-ixy} dx \quad \forall y \in \mathbb{R}.$$

¹Sostituisce la serie di Fourier quando si passa da funzioni su \mathbb{R} 2π -periodiche a funzioni su \mathbb{R} .

Teorema. Data $f \in L^1(\mathbb{R}; \mathbb{C})$, allora

i) \hat{f} è ben definita in ogni punto di \mathbb{R} .

ii) Vale
$$\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$$
.

- iii) \widehat{f} è continua
- iv) \hat{f} è infinitesima.

Dimostrazione.

i) $\widehat{f}(y)$ è ben definita per ogni $y \in \mathbb{R}$. Infatti, $f(x)e^{-iyx} \in L^1$ dato che

$$\int_{-\infty}^{\infty} |f(x)e^{-iyx}| \, dx = \int_{-\infty}^{\infty} |f(x)| \, dx = ||f||_{1}.$$

ii) $\|\widehat{f}\|_{\infty} \leq \|f\|_{1}$. Infatti,

$$|\widehat{f}|_{\infty} \le \int |f(x)e^{-iyx}| dx = ||f||_1$$

iii) \hat{f} è continua. Se $y_n \to y$, allora

$$\widehat{f}(y_n) = \int_{-\infty}^{\infty} f(x)e^{-ixy_n} dx \xrightarrow{n \to \infty} \int_{-\infty}^{\infty} f(x)e^{-iny} dx = \widehat{f}(y)$$

per convergenza dominata. Infatti, la convergenza puntuale segue dalla continuità dell'esponenziale; mentre la dominazione è data da $|f(x)e^{-iyx}| = |f(x)|$.

iv) $\widehat{f}(y) \xrightarrow{y \to \pm \infty} 0$ per il lemma di Rienmann-Lebesgue.

6.1 Proprietà della trasformata di Fourier

Data $f \in L^1(\mathbb{R}; \mathbb{C})$ abbiamo posto

$$\forall y \in \mathbb{R}$$
 $\mathcal{F}(f)(y) = \hat{f}(y) := \int_{-\infty}^{+\infty} f(x)e^{-iyx} dx$

ed abbiamo visto che

Teorema 1. $\hat{f} \in C_0(\mathbb{R}; \mathbb{C}) \in \|\hat{f}\|_{\infty} \leq \|f\|_1$.

Proposizione 2. Data $f \in L^1(\mathbb{R}; \mathbb{C})$ allora

i)
$$\forall h \in \mathbb{R} \text{ vale } \widehat{\tau_h f} = e^{-ihy} \widehat{f}$$

ii)
$$\forall h \in \mathbb{R} \text{ vale } \widehat{e^{ihx}f} = \tau_h \widehat{f}$$

iii)
$$\forall \delta \neq 0$$
 vale $\widehat{\sigma_{\delta}f} = \widehat{f}(\delta y)$

Derivazione. Partendo dalla formula di inversione

$$f(x) = \frac{1}{2\pi} \int \widehat{f}(y)e^{iyx} \, dy$$
$$f(x - h) = \frac{1}{2\pi} \int \underbrace{\widehat{f}(y)e^{-ihy}}_{=\widehat{f(x - h)}} e^{iyx} \, dy$$

Dimostrazione. Facciamo il calcolo diretto

$$\widehat{\tau_h f} = \int_{-\infty}^{+\infty} f(x - h)e^{-ixy} dx =$$

$$= \begin{pmatrix} t = x - h \\ dt = dx \end{pmatrix} = \int_{-\infty}^{+\infty} f(t)e^{-i(t+h)y} dt =$$

$$= e^{-ihy} \int_{-\infty}^{+\infty} f(t)e^{-ity} dt = e^{-ihy} \widehat{f}(t).$$

Analogamente seguono anche le altre

Proposizione 3. Sia $f \in C^1(\mathbb{R}; \mathbb{C})$ con $f, f' \in L^1$ allora $\hat{f}' = iy\hat{f}$ (da confrontare con $c_n(f') = inc_n(f)$ nel caso della serie di Fourier).

Derivazione. Si deriva la formula di inversione

$$f'(x) = \frac{1}{2\pi} \int_{-\infty}^{+\infty} \widehat{f}(y) iy e^{ixy} \, dy$$

Dimostrazione. Vediamo prima una dimostrazione che non funziona e cerchiamo di aggiustarla. Abbiamo che

$$\widehat{f}'(y) = \int_{-\infty}^{+\infty} f'(x)e^{-iyx} dx = \underbrace{\left[f(x)e^{-iyx}\right]_{-\infty}^{+\infty}}_{=0} + iy \int_{-\infty}^{+\infty} f(x)e^{-iyx} dx = iy\widehat{f}(y)$$

serve che $f(x) \to 0$ per $|x| \to +\infty$ (ad esempio $f \in C \cap L^1$ lo implica), in realtà $f \in C^1$ e $f, f' \in L^1$ basta, ma la dimostrazione è più complicata.

Argomentiamo come segue, $f \in L^1 \implies \liminf_{|x| \to \infty} |f(x)| = 0$ (in quanto se $\liminf_{|x| \to \infty} |f(x)| = \delta > 0$ allora la funzione sarebbe $> \delta$ per $|x| \to +\infty$ ed avrebbe integrale $+\infty$) dunque esistono due successioni $a_n \to -\infty, b_n \to +\infty$ tali che $f(a_n) \to 0$ e $f(b_n) \to 0$ quindi come prima abbiamo

$$\widehat{f}'(y) = \lim_{n} \int_{a_{n}}^{b_{n}} f'(x)e^{iyx} dx =$$

$$= \lim_{n} \int \mathbb{1}_{[a_{n},b_{n}]} f'(x)e^{iyx} dx =$$

$$= \lim_{n} \left(\underbrace{\left[f(x)e^{-iyx} \right]_{a_{n}}^{b_{n}} + iy \int_{a_{n}}^{b_{n}} f(x)e^{-iyx} dx \right)}_{\rightarrow 0} =$$

$$= \lim_{n} iy \int_{a_{n}}^{b_{n}} f(x)e^{-iyx} dx =$$

$$= iy \widehat{f}(y)$$

Proposizione 4. Sia $f \in L^1$ con $xf \in L^1$, allora $\widehat{f} \in C^1(\mathbb{R}; \mathbb{C})$ e $(\widehat{f})' = -\widehat{ixf}$.

Dimostrazione.

$$\widehat{f}(y) = \int_{-\infty}^{+\infty} f(x)e^{-ixy} dx \implies (\widehat{f})'(y) = \int_{-\infty}^{+\infty} f(x)(-ix)e^{-ixy} dx = \widehat{-ixf}$$

Proposizione 5. (Derivazione sotto segno di integrale) Sia I un intervallo di \mathbb{R} , E misurabile in \mathbb{R}^d e $g \colon I \times E \to \mathbb{C}$ tale che

- i) $g(\cdot, x) \in C^1(I)$ per q.o. $x \in E$.
- ii) $\exists h_0, h_1 \in L^1(E)$ tali che

$$|g(t,x)| \le h_0(x)$$
 e $\left| \frac{\partial g}{\partial t}(t,x) \right| \le h_1(x)$

allora $G(t) := \int_E g(t,x) dx$ è ben definita per ogni $t \in I$ e $G \in C^1(I)$ e

$$G'(t) = \int_{E} \frac{\partial}{\partial t} g(t, x) \, \mathrm{d}x$$

Traccia dimostrazione.

- Passo 1: G(t) e $\widetilde{G}(t)$ sono ben definite $\forall t \in I$ (grazie alla dominazione) e continue in t (usando convergenza dominata e le dominazioni)
- Passo 2: Dobbiamo far vedere che G è C^1 con derivata \widetilde{G} , si usa la seguente forma del teorema fondamentale del calcolo integrale

$$\forall t_0, t_1 \in I \text{ con } t_0 < t_1 \qquad G(t_1) - G(t_0) \stackrel{(*)}{=} \int_{t_0}^{t_1} \widetilde{G}(t) dt$$

ed usando Fubini-Tonelli in (*).

Proposizione 6. (Prodotto di convoluzione e trasformata di Fourier). Siano $f_1, f_2 \in L^1(\mathbb{R}; \mathbb{C})$, allora $f_1 * f_2 \in L^1$ (già visto) e vale

$$\mathcal{F}(f_1 * f_2) = (\mathcal{F}f_1) \cdot (\mathcal{F}f_2)$$

Dimostrazione.

$$\widehat{f_1 * f_2}(y) = \int f_1 * f_2(x)e^{-ixy} dx =$$

$$= \iint f_1(x - t)f_2(t) dt e^{-ixy} dx =$$

$$= \int \left(\int f_1(x - t)e^{-i(x - t)y} dx \right) f_2(t)e^{-ity} dt =$$

$$= \int \widehat{f_1}(y)f_2(t)e^{-ity} dt = \widehat{f_1}(y) \cdot \widehat{f_2}(y)$$

Definizione. Data $g \in L^1(\mathbb{R}; \mathbb{C})$ definiamo l'antitrasformata di Fourier di g la funzione

$$\check{g}(x) := \int_{-\infty}^{+\infty} g(y)e^{ixy} \, \mathrm{d}y.$$

Cioè $\check{g}(x) = \widehat{g}(-x)$ e scriviamo anche $\check{g} = \mathcal{F}^*g$. Effettivamente \mathcal{F}^* è l'aggiunto di \mathcal{F} , almeno formalmente infatti abbiamo

$$\langle \mathcal{F}f, g \rangle = \iint f \overline{e^{ixy}g(y)} \, \mathrm{d}x \, \mathrm{d}y = \int f(x) \overline{\check{g}(x)} \, \mathrm{d}x = \langle f, \mathcal{F}^*g \rangle.$$

Teorema 7. Data $f \in L^1(\mathbb{R}; \mathbb{C})$ tale che $\widehat{f} \in L^1(\mathbb{R}; \mathbb{C})$ allora

$$\widetilde{\forall} x \in \mathbb{R}$$
 $\mathcal{F}^* \mathcal{F} f = 2\pi f$ cioè $\int \widehat{f}(x) e^{ixy} \, \mathrm{d}y = 2\pi f(x)$

Nota. Una funzione continua e infinitesima non è, in generale, una funzione L^1 ; in particolare, l'ipotesi $\hat{f} \in L^1$ è necessaria e non deriva dalle proprietà già note.

Dimostrazione. Dimostrazione diretta (passando dalla Delta di Dirac dei fisici):

$$\mathcal{F}^* \mathcal{F} f = \int_{-\infty}^{+\infty} \widehat{f}(y) e^{iyx} \, dy =$$

$$= \iint f(t) e^{-iyt} \, dt e^{ixy} \, dy =$$

$$= \int f(t) \underbrace{\int e^{i(x-t)y} \, dy}_{\text{``}\delta(x-t)\text{''}} \, dt = f(x)$$

Dimostrazione vera: scegliamo una funzione ausiliaria $\varphi \colon \mathbb{R} \to \mathbb{R}$ tale che

- i) $\varphi(0) = 1$ continua in 0 e φ limitata
- ii) $\varphi \in L^1$
- iii) $\check{\varphi} \in L^1$

e poniamo
$$g_{\delta}(x) := \int_{-\infty}^{+\infty} \widehat{f}(y) \varphi(\delta y) e^{ixy} dy.$$

• Passo 1: $g_{\delta}(x) \to \mathcal{F}^*\mathcal{F}f(x)$ per ogni $x \in \mathbb{R}$ per convergenza dominata

$$\int \widehat{f}(y)e^{iyx}\varphi(\delta y)\,\mathrm{d}y \xrightarrow{\delta \to 0} \int \widehat{f}(y)e^{iyx}\,\mathrm{d}y$$

e come dominazione usiamo $|\hat{f}(y)e^{iyx}\varphi(\delta y)| \leq |\hat{f}(y)| \cdot \|\varphi\|_{\infty}$

• Passo 2:
$$g_{\delta}(x) = \int \left(\int f(t)e^{-ity} dt \right) e^{ixy} \varphi(\delta y) dy$$
, per Fubini-Tonelli otteniamo
$$= \iint \varphi(\delta y)e^{i(x-t)y} dy f(t) dt =$$
$$= \int \sigma_{\delta} \check{\varphi}(x-t)f(t) dt = \sigma_{\delta} \check{\varphi} * f(x).$$

• Passo 3: $g_{\delta} \to mf$ in L^1 con $m = \int_{\mathbb{R}} \check{\varphi}(x) dx$ (per il teorema di approssimazione e per ipotesi).

 $^{^{2}}$ In L^{1} non è definito il prodotto scalare.

- Passo 4: Usando il primo ed il terzo passo otteniamo $\mathcal{F}^*\mathcal{F}f = mf$ per quasi ogni x, in quanto la convergenza puntuale e quella in L^1 devono essere compatibili; in particolare, la convergenza in L^1 a meno di sottosuccessioni equivale alla convergenza puntuale e dunque coincidono.
- Passo 5: $m = 2\pi$ ad esempio prendendo $\varphi(y) = e^{-|y|}$, segue che

$$\check{\varphi}(y) = \frac{2}{1+x^2}$$

e dunque $m=2\pi$. In realtà vale per ogni φ che verifica le condizioni dell'ipotesi.

In conclusione, riportiamo la verifica di Fubini-Tonelli:

$$\iint |f(t)e^{-ity}e^{ixy}\varphi(\delta y)| dt dy = \iint |f(t)| \cdot |\varphi(\delta y)| dt dy = ||f||_1 \cdot ||\varphi(\delta y)||_1 < +\infty$$

Corollario 8. Date $f_1, f_2 \in L^1$ tali che $\hat{f}_1 = \hat{f}_2 \implies f_1 = f_2$ quasi ovunque cioè \mathcal{F} è iniettiva, cioè f è univocamente determinata da \hat{f} .

Dimostrazione. Per ipotesi, $\widehat{f_1} - \widehat{f_2} = \widehat{f_1 - f_2} = 0$. Applicando il Teorema 7 a $\widehat{f_1 - f_2}$ (possiamo farlo perchè $0 \in L^1$) otteniamo

$$0 = \widehat{\int f_1 - f_2(x)} e^{ixy} dy = 2\pi (f_1(x) - f_2(x)) \Rightarrow f_1(x) = f_2(x) \quad \widetilde{\forall} x \in \mathbb{R}.$$

Esercizio. Date $f_1, f_2 \in L^1([-\pi, \pi]; \mathbb{C})$ e tali che per ogni $n \in \mathbb{Z}$ vale $c_n(f_1) = c_n(f_2)$ allora $f_1 = f_2$ quasi ovunque (e $c_n(f) = 0$ per ogni $n \implies f = 0$ q.o.).

Esercitazione del 2 dicembre 6.2

Ricordiamo la definizione della trasformata di Fourier

$$\mathcal{F}(f) = \widehat{f}(y) = \int_{\mathbb{R}} f(x)e^{-ixy} dx, \quad f \in L^1(\mathbb{R}; \mathbb{C}), \quad f \in L^1(\mathbb{R})$$

dove $\mathcal{F}: L^1(\mathbb{R}; \mathbb{C}) \to L^{\infty}(\mathbb{R}) \cap C_0(\mathbb{R})$, in quanto $\|\widehat{f}\|_{\infty} \leq \|f\|_1$.

Proprietà. Ricordiamo le proprietà viste a lezione.

- i) $\widehat{\tau_h f}(y) = e^{-iyh} \widehat{f}(y)$ per ogni $h \in \mathbb{R}$, dove $\sigma_h f(x) = f(x-h)$
- ii) $\widehat{e^{ihx}f}(y) = \tau_h \widehat{f}(y)$
- iii) Legame tra trasformata e derivata.
 - $f \in C^1(\mathbb{R}), f, f' \in L^1(\mathbb{R}, \mathbb{C}), \text{ allora } \hat{f}'(y) = iy\hat{f}(y).$
 - $f \in L^1(\mathbb{R}; \mathbb{C})$ e $xf(x) \in L^1(\mathbb{R}; \mathbb{C})$, $(1+|x|)f(x) \in L^1(\mathbb{R}; \mathbb{C})$, allora $\hat{f} \in C^1(\mathbb{R})$ e $(\widehat{f})' = -i\widehat{x}\widehat{f(x)}.$

Nota. Le ipotesi $f \in L^1(\mathbb{R}; \mathbb{C})$ e $xf(x) \in L^1(\mathbb{R}; \mathbb{C})$ sono equivalenti a $(1 + |x|)f(x) \in L^1(\mathbb{R}; \mathbb{C})$.

iv) Vale
$$\widehat{f * g} = \widehat{f} \cdot \widehat{g}$$
.

Riportiamo un esercizio già posto con una soluzione alternativa.

Esercizio. Dire se esiste $v \in L^1$ non banale tale che

- v * v = v
- g * v = g per ogni $g \in L^1$.

Soluzione. La risposta è no per entrambi i punti. Infatti,

• Se per assurdo valesse tale identità, passando alle trasformate si avrebbe

$$\widehat{v * v} = (\widehat{v})^2 \Longrightarrow \widehat{v}(\widehat{v} - 1) = 0.$$

Ovvero, $\hat{v} = \{0, 1\}$. Osserviamo subito che non è possibile che \hat{v} assuma entrambi i valori in quanto funzione continua; d'altra parte non è possibile che $\hat{v} = 1$, in quanto è anche infinitesima, dunque $\hat{v} = 0 \Longrightarrow v = 0$.

• Analogamente al punto precedente si avrebbe $\hat{v} = 1$ ma ciò non è possibile.

Esercizio 1. Calcolare la trasformata di Fourier della funzione $f(x) = e^{-|x|}$.

Soluzione. Abbiamo

$$\widehat{f}(y) = \int_{-\infty}^{\infty} e^{-|x|} e^{-ixy} \, dx = \int_{-\infty}^{\infty} e^{-|x|} \cos(xy) \, dx - i \int_{-\infty}^{\infty} \underbrace{e^{-|x|} \sin(xy)}_{\text{distingtione dispars}}^{\text{integrale definito}} = 0$$

$$= 2 \int_{0}^{\infty} e^{-x} \operatorname{Re} e^{ixy} \, dx = 2 \int_{0}^{\infty} \operatorname{Re} \left(e^{-x} \cdot e^{ixy} \right) \, dx = 2 \operatorname{Re} \left[\int_{0}^{\infty} e^{-x} e^{ixy} \right] \, dx = 2 \operatorname{Re} \left[\frac{e^{x(iy-1)}}{(iy-1)} \Big|_{0}^{\infty} \right]$$

$$= 2 \operatorname{Re} \left[-\frac{1}{iy-1} + \underbrace{\lim_{x \to \pm \infty} \frac{e^{x(iy-1)}}{iy-1}}_{=0} \right] = 2 \operatorname{Re} \left[-\frac{1}{iy-1} \cdot \frac{iy+1}{iy+1} \right]$$

$$= 2 \operatorname{Re} \left[\frac{iy+1}{1+y^2} \right].$$

In conclusione, $\hat{f}(y) = \frac{2}{1+y^2}$.

Esercizio 2. Calcolare la trasformata di Fourier della funzione $f(x) = \frac{1}{1+x^2}$.

Soluzione. Calcoliamo $\hat{f}(y) = \int_{\mathbb{R}} \frac{e^{-ixy}}{1+x^2} dx$. Dal fatto che $f \in L^1$ e usando il teorema di convergenza dominata, possiamo scrivere $\hat{f}(y)$ come

$$\widehat{f}(y) = \lim_{R \to +\infty} \int_{-R}^{R} \frac{e^{-ixy}}{1+x^2} dx$$

Idea. Calcolare questo integrale con il metodo dei residui, ponendo $\frac{e^{-ixy}}{1+x^2} = \left.\frac{e^{-izy}}{1+z^2}\right|_{z \text{ reale}}$

residui, ponendo
$$\frac{e^{-ixy}}{1+x^2} = \frac{e^{-izy}}{1+z^2}\Big|_{z \text{ reale}}$$

Per il teorema dei residui:

$$\int_{B_r} g(z) dz = 2\pi i \sum_{\substack{z_i \text{ singolarità} \\ \text{di } g \text{ in } B_r}} \text{res}(g, z_i)$$

$$\operatorname{Inoltre} \int_{B_r} g(z) \, \mathrm{d}z = \int\limits_{I_r := \operatorname{bordo\ sotto}} g(z) \, \mathrm{d}x + \int\limits_{\gamma_r := \operatorname{semicirconferenza}} g(x) = \int_{-r}^r \frac{e^{-ixy}}{1 + x^2} \, \mathrm{d}x.$$

Poniamo z=x+it, dunque yz=xy+yit, da cui $g(z)=g(x+it)=\left(e^{-ixy}e^{ty}\right)/(1+(x+it))$ $(it)^2$). Dunque,

 B_r

 γ_r

$$\int_0^\pi g(e^{i\theta}r)r\,\mathrm{d}\theta \Longrightarrow \int_0^\pi \frac{e^{-ri\cos\theta}e^{r\sin\theta y}}{(1+r^2e^{i2\theta})}r\,\mathrm{d}\theta \xrightarrow{r\to\pm\infty} 0 \quad \text{se } y<0.$$

Per il caso y > 0 si ripercorre lo stesso procedimento ma si utilizza la curva $[\pi, 2\pi] \ni \theta \xrightarrow{\gamma_r}$ $re^{i\theta}$.

• Calcoliamo i residui: l'unico residuo di q è nel punto i che si tratta di una singolarità semplice (nel caso y > 0 la singolarità è in -i).

$$\lim_{r \to \pm \infty} 2\pi i \operatorname{res}(g, i) = \pi e^y$$

Considerando anche il caso y > 0 la trasformata di Fourier diviene $\pi e^{-|y|}$.

[TO DO]. Riportare il teorema dei residui con i metodi di base per calcolare i residui?

Trasformata di Fourier su L^2 6.3

Abbiamo visto che la serie di Fourier si definisce naturalmente su L^2 (uno spazio di Hilbert) mentre la trasformata di Fourier ha bisogno di L^1 che non è uno spazio di Hilbert. Vedremo ora come estendere la trasformata di Fourier ad L^2 e come poter fare i conti.

Proposizione 1. Data $f \in L^1(\mathbb{R}; \mathbb{C}) \cap L^2(\mathbb{R}; \mathbb{C})$ vale $\|\widehat{f}\|_2 = \sqrt{2\pi} \|f\|_2$.

Teorema 2. \mathcal{F} si estende per continuità da $L^1 \cap L^2$ a tutto L^2 e $\mathcal{F}/\sqrt{2\pi}$ risulta essere un'isometria (come operatore a valori in L^2).

Corollario 3. (Identità di Plancherel). $\forall f_1, f_2 \in L^2(\mathbb{R}; \mathbb{C}) \text{ vale } \langle \widehat{f_1}, \widehat{f_2} \rangle = 2\pi \langle f_1, f_2 \rangle.$

Osservazione. Come si può calcolare \hat{f} per $f \in L^2 \setminus L^1$? Se per quasi ogni $y \in \mathbb{R}$ esiste il limite

$$\lim_{n} \underbrace{\int_{-n}^{n} f(x)e^{-ixy} \, \mathrm{d}x}_{\widehat{f}_{n}(y)}$$

allora coincide con $\hat{f}(y)$.

Infatti, per ogni n posto $f_n := f \cdot \mathbb{1}_{[-n,n]}$ abbiamo che $\lim_n \int_{-n}^n f(x) e^{-ixy} dx = \widehat{f_n}(x)$. A questo punto, osserviamo che $f_n \to f$ in L^2 (da controllare per esercizio) e quindi $\widehat{f_n} \to \widehat{f}$ in L^2 (segue dalla continuità della trasformata). Siccome per ipotesi $\widehat{f_n}$ converge puntualmente quasi ovunque allora $\widehat{f_n} \to \widehat{f}$ puntualmente quasi ovunque.

Intuitivamente, il Teorema 2 e l'identità di polarizzazione danno il Corollario 3. mentre il Teorema 2 segue dalla Proposizione 1. più un fatto noto usando che $L^1 \cap L^2$ è denso in L^2 .

Fatto Noto. Dati X e Y spazi metrici, Y completo e D denso in X, $g: D \to Y$ uniformemente continua allora g ammette un'unica estensione $G: X \to Y$ continua. (Inoltre se X e Y sono spazi normati e g è lineare allora anche G è lineare)

Dimostrazione Proposizione 1.

Dimostrazione che non funziona: Proviamo a svolgere il calcolo diretto

$$\|\widehat{f}\|_{2}^{2} = \int_{-\infty}^{+\infty} \widehat{f}(y) \overline{\widehat{f}(y)} \, dy$$

$$= \iiint f(x) e^{-ixy} \overline{f(t)} e^{-ity} \, dt \, dx \, dy =$$

$$= \iint f(x) \overline{f(t)} \left(\underbrace{\int_{-\infty}^{+\infty} e^{-iy(t-x)} \, dy}_{\delta(x-t)} \right) dt \, dx =$$

$$= \int \left(\int f(x) \delta(x-t) \, dx \right) \overline{f(t)} \, dt =$$

$$= 2\pi \int f(t) \overline{f(t)} \, dt = 2\pi \|f\|_{2}^{2}$$

vediamo però che compare l'integrale $\int_{-\infty}^{+\infty} e^{-iy(t-x)} \, \mathrm{d}y$ e serve assumere che corrisponda a $\delta(x-t)$ dove δ è la "funzione Delta di Dirac", vediamo ora la dimostrazione formale usando una funzione ausiliaria.

Dimostrazione formale: Prendiamo $\varphi \colon \mathbb{R} \to [0, +\infty]$ tale che

- i) φ continua in 0, crescente per y<0 e decrescente per y>0 e $\varphi(0)=1.$
- ii) $\varphi \in L^1$ e $\check{\varphi} \in L^1$.

Poniamo per ogni δ

$$I_{\delta} = \int_{-\infty}^{+\infty} |\widehat{f}(y)|^2 \varphi(\delta y) \, dy \xrightarrow{?} \int_{-\infty}^{+\infty} |f(y)|^2$$

• Passo 1: $I_{\delta} \xrightarrow{\delta \to 0} \|\hat{f}\|_{2}^{2}$ per convergenza monotona usando l'ipotesi di crescenza/descrescenza prima/dopo lo 0.

• Passo 2:

$$I_{\delta} = \int \widehat{f}(y)\overline{\widehat{f}(y)}\varphi(\delta y) \, \mathrm{d}y =$$

$$= \int \left(\int f(x)e^{-ixy} \, \mathrm{d}x\right) \left(\int \overline{f(t)}e^{ity} \, \mathrm{d}t\right) \varphi(\delta y) \, \mathrm{d}y =$$

$$\stackrel{\mathrm{FT}}{=} \iint f(x)\overline{f(t)} \left(\underbrace{\int \varphi(\delta y)e^{i(t-x)y} \, \mathrm{d}y}\right) \, \mathrm{d}x \, \mathrm{d}y =$$

$$= \int (f(x)\sigma_{\delta}\check{\varphi}(t-x) \, \mathrm{d}x) \, \overline{f(t)} \, \mathrm{d}t =$$

$$= \int f * \sigma_{\delta}\check{\varphi}(t) \cdot \overline{f(t)} \, \mathrm{d}t =$$

$$= \langle f * \sigma_{\delta}\check{\varphi}; f \rangle$$

e possiamo applicare il teorema di Fubini-Tonelli in quanto le ipotesi sono verificate infatti

$$\iiint |f(x)\overline{f(t)}|e^{i(t-x)y}\varphi(\delta y) \,dx \,dt \,dy =$$

$$= \iiint |f(x)| \cdot |f(t)| \cdot |\varphi(\delta y)| \,dx \,dt \,dy =$$

$$= ||f||_1^2 ||\varphi(\delta y)||_1 < +\infty$$

e $\|\varphi(\delta y)\|_1 < +\infty$ poiché $\varphi \in L^1$.

• Passo 3: $I_{\delta} \xrightarrow{\delta \to 0} 2\pi \|f\|_{2}^{2}$. Infatti $I_{\delta} = \langle f * \sigma_{\delta} \check{\varphi}; f \rangle$ e

$$\sigma_{\delta} \check{\varphi} \xrightarrow{\text{in } L^2} mf \qquad \text{con } m = \int \check{\varphi}(x) \, \mathrm{d}x$$

- Passo 4: Infine $m=2\pi$ ad esempio prendendo $\varphi(y)=e^{-|y|}$

$$\check{\varphi}(x) = \frac{2}{1+x^2} \in L^1$$

ed in questo caso m si calcola.

6.3.1 Proprietà della trasformata di Fourier in L^2

Proposizione 4.

- $\bullet \ \widehat{\tau_h f} = e^{-ihy} \widehat{f}$
- $\widehat{e^{ihx}f} = \tau_h \widehat{f}$
- $\widehat{\sigma_h f} = \widehat{f}(\delta y)$

Dimostrazione. Le identità valgono in $L^1 \cap L^2$ che è denso in L^2 e dunque si estendono per continuità ad L^2 .

Proposizione 5. Se $f \in C^1(\mathbb{R}; \mathbb{C})$ e $f \in L^1 \cup L^2$ e $f' \in L^1 \cup L^2 \implies \widehat{f'} = iy\widehat{f}$.

Dimostrazione. La stessa fatta per $f, f' \in L^1$. Si parte da a_n, b_n tali che $a_n \to -\infty$ e $b_n \to +\infty$ con $f(a_n) \to 0$ e $f(b_n) \to 0$ e si integra per parti

$$\mathcal{F}(f' \cdot \mathbb{1}_{[a_n,b_n]}) = \int_{a_n}^{b_n} f'(x)e^{-ixy} dx$$

$$= \underbrace{\left[f(x)e^{-ixy}\right]_{a_n}^{b_n}}_{\to 0} + iy \int_{a_n}^{b_n} f(x)e^{-iyx} dx = iy\mathcal{F}(f \cdot \mathbb{1}_{[a_n,b_n]}).$$

Per concludere si dimostra che

$$\mathcal{F}(f' \cdot \mathbb{1}_{[a_n,b_n]}) \xrightarrow{n \to \infty} \mathcal{F}(f') \text{ in } L^2$$

$$\mathcal{F}(f \cdot \mathbb{1}_{[a_n,b_n]}) \xrightarrow{n \to \infty} \mathcal{F}(f) \text{ in } L^2$$

Ovvero si dimostra che

$$\int_{b_n}^{+\infty} |f(x)e^{-ixy}|^2 dx + \int_{-\infty}^{a_n} |f(x)e^{-ixy}|^2 dx \xrightarrow{n \to \infty} 0$$
$$\int_{b_n}^{+\infty} |f'(x)e^{-ixy}|^2 dx + \int_{-\infty}^{a_n} |f'(x)e^{-ixy}|^2 dx \xrightarrow{n \to \infty} 0$$

Ma questo è vero in quanto $f, f' \in L^2$.

Proposizione 6. Se $f \in C^1$, $f \in L^1$, $f' \in L^2 \implies \hat{f} \in L^1$ e soddisfa le ipotesi del teorema di inversione.

Dimostrazione. Sappiamo che $iy\hat{f} = \hat{f}' \in L^2 \implies y\hat{f} \in L^2$.

$$\int_{\mathbb{R}} |\widehat{f}(y)| \, \mathrm{d}y = \int_{|y| \le 1} |\widehat{f}(y)| \, \mathrm{d}y + \int_{|y| \ge 1} |\widehat{f}(y)| \, \mathrm{d}y \\
\le 2 \|\widehat{f}\|_{\infty} + \int_{|y| \ge 1} |\widehat{f}(y)y| \frac{1}{|y|} \, \mathrm{d}y \\
\le 2 \|f\|_1 + \|\widehat{f}y\|_2 \left(\int_{|y| \ge 1} \frac{1}{|y|^2} \, \mathrm{d}y \right)^{1/2} \\
\le 2 \|f\|_1 + 2 \|f'\|_2$$

Corollario. $f \in C_C^1 \implies f, \hat{f} \in L^1$

Proposizione 7. Se $f_1, f_2 \in L^2(\mathbb{R}; \mathbb{C})$ (e dunque $f_1 f_2 \in L^1(\mathbb{R}; \mathbb{C})$ per Hölder) allora

$$2\pi \widehat{f_1 f_2} = \widehat{f_1} * \widehat{f_2}$$

Dimostrazione. $f_1, f_2 \in L^2 \implies f_1 f_2 \in L^1$ segue da Hölder. Dimostriamo la proposizione per $f_1, f_2 \in C_C^1 \implies f_1, f_2, f_1 f_2 \in C_C^1 \implies$ tutte in L^1 e con trasformate in L^1 .

$$\mathcal{F}^* \left(\frac{1}{2\pi} \widehat{f_1} * \widehat{f_2} \right) = \frac{1}{2\pi} \mathcal{F}^* (\widehat{f_1}) \mathcal{F}^* (\widehat{f_2}) = \frac{1}{2\pi} (2\pi f_1) \cdot (2\pi f_2) = 2\pi f_1 \cdot f_2 = \mathcal{F}^* (\widehat{f_1 f_2})$$

ed usando che \mathcal{F}^* è iniettiva otteniamo che $2\pi \widehat{f_1f_2} = \widehat{f_1} * \widehat{f_2}$.

Per $f_1, f_2 \in L^2$ si procede per continuità e si approssimano f_1 ed f_2 con $f_{1,n}$ e $f_{2,n}$ in C_C^1 .

6.4 Conclusione sulla TdF

Proposizione 4. (di 2 lezioni fa) Se $f, xf \in L^1(\mathbb{R}; \mathbb{C})$, allora $\widehat{f} \in C^1(\mathbb{R}; \mathbb{C})$ e $(\widehat{f})' = \widehat{-ixf}$.

Corollario. Se $f, x^k f \in L^1$ con k = 1, 2, ..., allora $x^h f \in L^1$ per ogni h = 0, ..., k e $\widehat{f} \in C_0^k$ e $D^h \widehat{f} = \widehat{(-ix)^h} f$.

Dimostrazione. Vale $|x^h| \leq 1 + |x|^k$ per ogni x e per ogni h = 1, ..., k. Allora $|x^h f| \leq (1 + |x|^k)|f| \in L^1$. Il resto dell'enunciato è per induzione su k.

Corollario. Se $x^k f \in L^1$ per ogni k = 0, 1, ..., 3 allora $\hat{f} \in C^{\infty}$ (anzi C_0^{∞} siccome le derivate sono trasformate).

Teorema (Paley-Weiner). Se $e^{\alpha|x|} \cdot f(x) \in L^1$ per qualche $\alpha > 0$, allora \hat{f} è analitica⁴.

Dimostrazione. In $\mathbb{R} \times \mathbb{R} \simeq \mathbb{C}_{z=x+it}$ definisco g(z).

Ricordiamo che $\hat{f}(y) = \int_{-\infty}^{\infty} f(x)e^{-iyx} dx$. Poniamo

$$g(z) := \int_{-\infty}^{\infty} f(x)e^{-izx} dx$$

Passo 1. g(z) è definita per ogni $z \in \mathbb{R} \times [-\alpha, \alpha]$. Infatti,

$$\int_{-\infty}^{\infty} f(x)e^{-izx} dx = \int_{-\infty}^{\infty} |f(x)|e^{tx} dt \le \int_{-\infty}^{\infty} |f(x)|e^{\alpha|x|} dx < +\infty$$

Passo 2. Mostriamo che g(z) è olomorfa su $\mathbb{R} \times (-\alpha, \alpha)$. Sviluppo g in serie di potenze in 0.

Nota. Questo mi serve per dire che è olomorfa in una palla di raggio α centrata in 0. Per concludere bisogna traslare il centro la palla per tutta la retta reale e mostrare la stessa cosa [TO DO: spiegare meglio + disegno palla].

$$g(z) = \int_{\mathbb{R}} f(x)e^{-izx} dx = \int_{\mathbb{R}} f(x) \sum_{n=0}^{\infty} \frac{(-izx)^n}{n!} dx \stackrel{(\star)}{=} \sum_{n=0}^{\infty} \left(\int_{\mathbb{R}} \frac{(-ix)^n}{n!} f(x) dx \right) z^n = \sum_{n=0}^{\infty} a_n z^n$$

La serie $\sum_n a_n z^n$ è convergente per $|z| \leq \alpha$, quindi g è olomorfa su $B(0,\alpha)$. Notiamo che in (\star) abbiamo usato Fubini-Tonelli; controlliamo che potevamo applicarlo, dunque verifichiamo quanto segue.

$$\int_{\mathbb{R}} |f(x)| \sum_{n=0}^{\infty} \left| \frac{(-izx)^n}{n!} \right| dx < +\infty$$

Abbiamo

$$\int_{\mathbb{R}} |f(x)| \sum_{n=0}^{\infty} \frac{|zx|^n}{n!} dx = \int_{\mathbb{R}} |f(x)| e^{|z||x|} dx \le \sup_{|z| \le \alpha} \int_{R} |f(x)| e^{\alpha|x|} dx$$

Per concludere si dimostra (allo stesso modo) che g si sviluppa in serie in ogni punto $y_0 \in \mathbb{R}$ con raggio di convergenza α .

³Questa condizione è implicata, ad esempio, dall'ipotesi $f \in C_C$

⁴Restrizione di $g: \underbrace{\mathbb{R} \times (-\alpha, \alpha)} \to \mathbb{C}$ olomorfa

Corollario. Se $f \in L^1$ è olomorfa e a supporto compatto allora \hat{f} è la restrizione di $g \colon \mathbb{C} \to \mathbb{C}$ olomorfa [TO DO: controllare].

Nota. Se $f \in L^1$ e a supporto compatto, si ha $f(x)e^{\alpha|x|} \in L^1$ per ogni α .

6.5 Applicazioni TdF

Risoluzione equazioni del calore su \mathbb{R} .

$$\begin{cases} u_t = u_{xx}(x \in \mathbb{R}) \\ u(0, \cdot) = u_0 \end{cases}$$

Risoluzione formale. Denotiamo con $\widehat{u} := \widehat{u}(t,y)$ la trasformata di Fourier rispetto alla variabile x

$$\widehat{u_t}(t,y) = \int \frac{\partial}{\partial t} u(t,x) e^{-ixy} \, \mathrm{d}x = \frac{\partial}{\partial t} \left(\int u(t,x) e^{-ixy} \, \mathrm{d}x \right) = \widehat{u}_t$$

Inoltre, $\widehat{u_t}=\widehat{u_{xx}}=(iy)^2\widehat{u}=-y^2\widehat{u}$. Quindi, per ogni $y,\ \widehat{u}(\cdot,y)$ risolve

$$\begin{cases} \dot{z} = -y^2 z \\ z(0) = \widehat{u_0}(y) \end{cases}$$
 (P)

Soluzione generale $z = \alpha e^{-y^2 t}$, da cui la soluzione per (??) è $\widehat{u}(t,y) = \widehat{u_0}(y)e^{-y^2 t}$.

Siano

$$\rho(x) := \frac{e^{-x^2/2}}{\sqrt{2\pi}}, \quad \widehat{\sigma_{\sqrt{2t}}}\rho = \widehat{\rho}(\sqrt{2t}y).$$

Però è noto che
5 $\widehat{\rho}(y)=e^{-y^2/2}\implies \widehat{\rho}(\sqrt{2t}y)=e^{-(\sqrt{2t}y)^2/2}=e^{-y^2t}.$ Da cui

$$\widehat{u}(t,y) = \widehat{u_0}(y)e^{-y^2t} = \widehat{u_0}(y) \cdot \widehat{\sigma_{\sqrt{2t}}}\rho(y) = \mathcal{F}(u_0 * \sigma_{\sqrt{2t}}\rho) \Longrightarrow u(t,y) = u_0 * \left(\sigma_{\sqrt{2t}}\rho\right)$$

Dunque

$$u(t,x) := \begin{cases} u_0(x) & \text{per } t = 0\\ u_0 * \sigma_{\sqrt{2t}} \rho(x) & \text{per } t > 0 \end{cases}$$
 (*)

Teorema. Se $u_0: \mathbb{R} \to \mathbb{R}$ è continua e limitata, allora u data in (??) è ben definita su $[0, +\infty) \times \mathbb{R}$, continua, C^{∞} per t > 0 e risolve (??).

Data $u: [0,T) \times \mathbb{R} \to \mathbb{R}$ soluzione di (??) tale che esiste $h_0, h_1 \in L^1(\mathbb{R})$ tali che

$$|u(t,x)| \le h_0(x), \quad |u_t(t,x)| \le h_1(x)$$

allora $\widehat{u}(\cdot,y)$ è univocamente determinata su [0,T), dunque u è univocamente determinata per l'iniettività di TdF.

⁵Si vede all'esercitazione che segue?

6.6 Esercitazione del 13 Dicembre 2021

6.6.1 Operatori autoaggiunti

[TODO: Pezzo iniziale mancante]

Esercizi.

- 1) Esempio classico di $H = L^2([-\pi, \pi]; \mathbb{C})$ e $D = \{u \in C^1([-\pi, \pi]; \mathbb{C}) \mid u(-\pi) = u(\pi)\}$ e Tu = iu allora T è un operatore autoaggiunto ed ha autovalori $\lambda = n \in \mathbb{Z}$.
- 2) $H = L^2([0,\pi];\mathbb{R})$ e $D = \{u \in C^2([0,\pi]) \mid u(0) = 0 \text{ e } u(\pi) = 0\}$ sono dette condizioni di Dirichlet con $Tu = -\ddot{u}$.

Ora usiamo sempre $Tu = -\ddot{u}$ ma su domini differrenti.

- 3) $D_3 = \{u \in C^2([0,\pi]) \mid \dot{u}(0) = 0 \text{ e } \dot{u}(\pi) = 0\}$ sono dette condizioni di Neumann.
- 4) $D_4 = \{u \in C^2([0,\pi]) \mid u(0) = 0 \text{ e } \dot{u}(\pi) = 0\}$ sono dette condizioni di Robin.

Dire per 2), 3) e 4) rispondere alle seguenti

- L'operatore T è autoaggiunto e controllare se il relativo D è denso in L^2
- Controllare se esistono autovalori ed eventualmente dire chi sono gli autovettori.
- Stabilire se esiste una base Hilbertiana di autovettori.

Risoluzione.

2) D_2 è denso. Vediamo l'operatore è autoaggiunto

$$\langle Tu, v \rangle = \int_0^{\pi} (-\dot{u}(x))v(x) \, dx = \underbrace{-\dot{u}(x)v(x)}_{v(0)=v(\pi)=0}^{\pi} - \int_0^{\pi} (-\dot{u}(x))\dot{v}(x) \, dx = \int_0^{\pi} \dot{u}(x)\dot{v}(x) \, dx$$

$$\langle u, Tv \rangle = \int_0^{\pi} u(x)(-\ddot{v}(x)) \, dx = u(x)(-\dot{v}(x))\Big|^{\pi} - \int_0^{\pi} \dot{u}(x)(-\dot{v}(x)) \, dx = \int_0^{\pi} \dot{u}(x)\dot{v}(x) \, dx$$

$$\langle u, Tv \rangle = \int_0^{\pi} u(x)(-\ddot{v}(x)) dx = \underbrace{u(x)(-\dot{v}(x))}_{u(0)=u(\pi)=0}^{\pi} - \int_0^{\pi} \dot{u}(x)(-\dot{v}(x)) dx = \int_0^{\pi} \dot{u}(x)\dot{v}(x) dx$$

dunque $\langle Tu, v \rangle = \langle \dot{u}, \dot{v} \rangle = \langle u, Tv \rangle$.

Inoltre T è anche definito positivo infatti $\langle Tu, u \rangle = \langle \dot{u}, \dot{u} \rangle = ||\dot{u}||_{L^2} \ge 0.$

Cerchiamo gli autovalori quindi poniamo $-\ddot{u} = Tu = \lambda u \text{ con } \lambda \geq 0 \text{ e } u \in D_2$. Segue $p(t) = t^2 + \lambda \implies t = \pm i\sqrt{\lambda} \text{ se } \lambda \neq 0$.

Se $\lambda = 0$ invece otteniamo $\ddot{u} = 0 \implies u(x) = ax + b$ ma per le condizioni al bordo segue a, b = 0 e dunque $u = 0 \implies \lambda = 0$ non è autovalore.

Invece se $\lambda > 0$ abbiamo $u(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x)$ e segue A = 0 e $\lambda = n^2$ per $n \in \mathbb{N} \setminus \{0\}$.

3) D_2 è denso e similmente si vede che anche in questo caso T è autoaggiunto. Anche in questo caso T è definito positivo perché vale sempre $\langle Tu, v \rangle = \langle \dot{u}, \dot{v} \rangle$.

Per cercare gli autovalori risolviamo il seguente sistema

$$\begin{cases} -\ddot{u} = \lambda u \\ \dot{u}(0) = 0 \\ \dot{u}(\pi) = 0 \end{cases}$$

Se $\lambda = 0$ allora $u(x) = \cos t$. è un autovettore per l'autovalore 0.

Se invece $\lambda \neq 0$ allora $u(x) = A\cos(\sqrt{\lambda}x) + B\sin(\sqrt{\lambda}x) \implies \cos(nx)$ è un autovettore e $\lambda = n^2$ per $n = 1, 2, \dots$

4) In questo caso vediamo che vale sempre $\langle Tu, v \rangle = \langle \dot{u}, \dot{v} \rangle$ ma per motivi diversi infatti

$$\langle Tu, v \rangle = \int_0^{\pi} (-\ddot{u}(x))v(x) \, dx = \underbrace{-\dot{u}(x)v(x)}_{\dot{u}(\pi)=0, \ v(0)=0}^{\pi} - \int_0^{\pi} (-\dot{u}(x))\dot{v}(x) \, dx = \int_0^{\pi} \dot{u}(x)\dot{v}(x) \, dx$$

$$\langle u, Tv \rangle = \int_0^{\pi} u(x)(-\ddot{v}(x)) \, dx = \underbrace{u(x)(-\dot{v}(x))}_{\dot{v}(\pi)=0, \ v(0)=0}^{\pi} - \int_0^{\pi} \dot{u}(x))(-\dot{v}(x)) \, dx = \int_0^{\pi} \dot{u}(x)\dot{v}(x) \, dx$$

Considerando il sistema $-\ddot{u} = \lambda u$ con le condizioni al bordo di Robin caso $\lambda = 0$ non è un autovalore mentre se $\lambda \neq 0$ abbiamo che $\dot{u}(x) = \sqrt{\lambda}B\cos(\sqrt{\lambda}x) = 0$ per $x = \pi$ dunque $\sqrt{\lambda} = n + 1/2$ per $n = 0, 1, 2, \ldots$ e gli autovettori sono

$$u_n(x) = \sin\left(\left(n + \frac{1}{2}\right)x\right)$$

Osservazione. $T: D \to L^2$ operatore lineare e continuo $\iff \exists M > 0$ tale che $||Tu||_2 \le M ||u||$ per ogni $u \in D$.

Vediamo ad esempio che D_1 non è continuo infatti gli autovalori sono $\lambda_n = n^2 \implies n^2 \|u_n\|_2 \le M \|u_n\|_2 \implies M \ge n^2$ per ogni n. Dunque M è illimitato e l'operatore non può essere continuo.

Esempio. Se ad esempio abbiamo $Tu = -\ddot{u}$ con $\widetilde{D} = \{u \in C^2 \mid u(0) = u(\pi) = 1\}$ allora T non è autoaggiunto e basta trovare u, v tali che

$$\langle Tu, v \rangle \neq \langle u, Tv \rangle$$

Esercizio.

i) Sia $T_1 \colon \ell^2 \to \ell^2$ dato da

$$T_1((x_n)_{n>0}) = (0, x_1, x_2, \dots)$$

ii) Sia $T_2 \colon \ell^2 \to \ell^2$ dato da

$$T_2((x_n)_{n>0}) = (x_2, x_3, \dots)$$

Dire se sono autoaggiunti ed eventualmente chi sono gli autovalori.

Esericizi più da compito sono invece cose del tipo...

Esercizio. Sia $H=L^2([0,\pi]\times[0,\pi];\mathbb{R})$ e $Tu=-\Delta u=-u_{xx}-u_{yy}$

•
$$D_1 = \{ u \in C^2([0, \pi] \times [0, \pi]; \mathbb{R}) \mid u|_{\partial Q} = 0 \}$$

- $D_2 = \{ u \in C^2([0, \pi] \times [0, \pi]; \mathbb{R}) \mid \nabla u|_{\partial Q} = 0 \}$
- $D_3 = \{u \in C^2([0,\pi] \times [0,\pi]; \mathbb{R}) \mid u = 0 \text{ su due lati paralleli e } \nabla u = 0 \text{ sugli altri due} \}$

e dire se l'operatore è autoaggiunto ed eventualmente trovare gli autovalori.

6.6.2 Calcolo Trasformate di Fourier

Abbiamo visto che le trasformate di $f(x) = e^{-|x|}$ e $g(x) = 1/(1+x^2)$ sono rispettivamente

$$\hat{f}(y) = \frac{2}{1+y^2}$$
 $\hat{g}(y) = \pi e^{-|y|}$

Vorremo provare a trovare ora le trasformate funzioni come $x^2e^{-|x|}$ o $x/(1+x^2)$ usando le proprietà delle trasformate con le derivate. Ricordiamo che

$$f, f' \in L^1 \implies \widehat{f'}(y) = iy\widehat{f}(y)$$

 $f, xf \in L^1 \implies \widehat{f'}(y) = \widehat{-ixf}(y)$

dunque intuitivamente per $x^2e^{-|x|}$ possiamo fare

$$x^2 e^{-|x|} = i(-i)x(xe^{-|x|}) \implies \mathcal{F}(i(-i)x(xe^{-|x|})) = i(\mathcal{F}(xe^{-|x|}))'(y)$$

ora dobbiamo calcolare $\mathcal{F}(xe^{-|x|})(y)$

$$\mathcal{F}(xe^{-|x|})(y) = i\mathcal{F}(-ixe^{-|x|}) = i\mathcal{F}(e^{-|x|})'(y) = i\left(\frac{2}{1+y^2}\right)' = \frac{-4iy}{(1+y^2)^2}$$

dunque in conclusione abbiamo

$$\mathcal{F}(x^2 e^{-|x|})(y) = i \left(\frac{-4iy}{(1+y^2)^2}\right)' = 4 \left(\frac{y}{(1+y^2)^2}\right)'$$

Invece per quanto riguarda

$$g(x) = \frac{x}{1+x^2} \notin L^1$$

però è in L^2 ma per poterne calcolare la trasformata di Fourier dovremmo passare per delle troncate di g(x). Possiamo però vedere chi dovrebbe essere il candidato formale usando le tecniche di prima

$$\frac{x}{1+x^2} = \frac{i(-ix)}{1+x^2} \leadsto i\mathcal{F}\left((-ix)\frac{1}{1+x^2}\right)(y) = i\mathcal{F}\left(\frac{1}{1+x^2}\right)'(y) = i\pi(e^{-|y|})'(y)$$

però notiamo che la derivata di $e^{-|y|}$ non è ben definita in 0.

Esercizio. Calcolare la trasformata di Fourier di

$$f(x) = \mathbb{1}_{[-r,r]}(x)$$

Iniziamo a svolgere il conto

$$\widehat{f}(y) = \int_{-\infty}^{\infty} \mathbb{1}_{[-r,r]}(x)e^{-ixy} \, dx = \int_{-r}^{r} e^{-ixy} \, dx = \begin{cases} 2r & xy = 0\\ \int_{-r}^{r} e^{-ixy} \, dx & xy \neq 0 \end{cases}$$

nel caso $xy \neq 0$ contiuiamo a svolgere il conto

$$\int_{-ry}^{ry} \frac{e^{-it}}{y} dt = \frac{1}{y} \int_{-ry}^{ry} [\cos(t) - i \underbrace{\sin(t)}_{\text{dispari}}] dt = \frac{2}{y} \sin(ry)$$

dunque in conclusione abbiamo

$$\mathcal{F}(\mathbb{1}_{[-r,r]}(x)) = \begin{cases} 2r & y = 0\\ \frac{2}{y}\sin(ry) & y \neq 0 \end{cases}$$

Esercizio. Un esercizio simile è calcolare $\mathcal{F}(\mathbb{1}_{[0,r]}(x))$, ovvero il caso non centrato e poi provare a calcolare (come integrale improprio di Analisi 1) l'integrale

$$\int_0^\infty \frac{\sin(t)}{t} \, \mathrm{d}t = \lim_{r \to \infty} \int_0^r \frac{\sin(t)}{t} \, \mathrm{d}t$$

Trasformata della Gaussiana

Calcoliamo ora la trasformata della funzione gaussiana $e^{-x^2/2}$.

• Metodo I: Troviamo un'equazione differenziale (lineare) risolta dalla gaussiana, sia $f(x) = e^{-x^2/2}$ allora vale

$$f'(x) = -xe^{-x^2/2} = -xf(x)$$

e per il decadimento della gaussiana abbiamo che $f,f'\in L^1$ dunque

$$iy\widehat{f}(y) = \widehat{f'(x)}(y) = -i\mathcal{F}(-ixf(x))(y) = i(\widehat{f})'(y)$$

dunque $\hat{f} = h(y)$ con h tale che $h'(y) = -yh(y) \implies h(y) = ke^{-y^2/2}$, rimane da trovare k. Calcoliamo direttamente h(0)

$$h(0) = e^{-x^2/2}(0) = \int_{-\infty}^{\infty} e^{-x^2/2} e^{-ix \cdot 0} dx = \int_{-\infty}^{\infty} e^{-x^2/2} dx = \sqrt{2\pi}$$
$$\implies \widehat{e^{-x^2/2}} = \sqrt{2\pi} e^{-y^2/2}$$

• Metodo II: Studiamo la funzione di variabile complessa $g(z) = e^{-z^2/2}$ e integriamola lungo un percorso che passi per $[-r, r] \times \{0\} \subset \mathbb{R}^2 \approx \mathbb{C}$.

$$\mathcal{F}(\widehat{-x^2/2})(y) = \int_{\mathbb{R}} e^{-x^2/2} \cdot e^{-ixy} \, dx = \int_{\mathbb{R}} e^{-\frac{1}{2}(x^2 + 2ixy)} \, dx$$

$$= \int_{\mathbb{R}} e^{-\frac{1}{2}(x^2 + 2ixy + y^2 - y^2)} \, dx = \int_{\mathbb{R}} e^{-\frac{1}{2}(x^2 + 2ixy + y^2)} \cdot e^{-y^2/2} \, dx$$

$$= e^{-y^2/2} \int_{\mathbb{R}} e^{-\frac{1}{2}(x^2 + 2ixy + y^2)} \, dx = e^{-y^2/2} \lim_{r \to \infty} \int_{-r}^{r} \underbrace{e^{-\frac{1}{2}(x + iy)^2}}_{g(x + iy)} \, dx$$

Consideriamo ora il rettangolo $D_r := \{z \mid \text{Im } z \in [0, iy] \text{ e } \text{Re } z \in [-r, r] \}$ dunque poiché g(z) non ha poli su D_r abbiamo

$$\int_{\partial D_r} g = \sum \text{Res. su } D_r = 0$$

$$0 = \int_{-r}^r g(x+it) \, dx - \int_{-r}^r g(x+iy) \, dx + \int_0^{iy} g(r+iy) \, dt - \int_0^{iy} \underbrace{g(-r+iy)}_{\sim e^{-(r+it)^2} \xrightarrow{r \to \infty} 0} dt$$

infatti più precisamente i termini verticali vanno a zero

$$\int_0^y e^{-(r+it)^2/2} dt = e^{-r^2/2} \int_0^y e^{-itr-t^2/2} dt = y e^{-r^2/2} \xrightarrow{r \to +\infty} 0$$

In conclusione abbiamo

$$\widehat{e^{-x^2/2}}(y) = \lim_{r \to +\infty} \int_{-r}^{r} e^{-y^2/2} e^{-(x+iy)^2/2} \, \mathrm{d}x = e^{-y^2/2} \left[\lim_{r \to +\infty} \int_{-r}^{r} e^{-x^2/2} \, \mathrm{d}x + o(1) \right] = e^{-y^2/2} \int_{-\infty}^{\infty} e^{-x^2/2} \, \mathrm{d}x = \sqrt{2\pi} e^{-y^2/2}$$

Capitolo 7

Integrazione di superfici

7.1 Superfici

Definizione. Data $f: \Omega \subset \mathbb{R}^k \to \mathbb{R}^d$ di classe C^1 e dato $x \in \Omega$, la mappa lineare da \mathbb{R}^k a \mathbb{R}^d associata alla matrice $\nabla f(x)$ si dice **differenziale di** f **in** x e si indica con $d_x f$.

Nota. La mappa $d_x f$ è univocamente determinata da

$$f(x+h) = f(x) + d_x f(h) + o(|h|)$$

dove $d_x f$ è il termine di primo grado dello sviluppo di Taylor di f.

Definizione. Siano $1 \le k \le d$ e $m = 1, 2, \ldots$ L'insieme $\Sigma \subset \mathbb{R}^d$ si definisce **superficie** (senza bordo) di dimensione k e classe C^m se per ogni $x \in \Sigma$ esiste U intorno aperto¹ di $x \in \Sigma$ ed esiste una mappa $\phi \colon D \to \mathbb{R}^d \in C^m$ con D aperto di \mathbb{R}^k tale che

- $\phi(D) = \Sigma \cap U$
- $\phi \colon D \to \Sigma \cap U$ è un omeomorfismo
- $\nabla \phi(s)$ ha rango massimo (=k) per ogni $s \in D$

Ovvero ϕ è una parametrizzazione locale della superficie

Osservazione. Se k=d abbiamo che Σ è una superficie se e solo se Σ è aperto.

Proposizione. Dati k, d, m come sopra, $\Sigma \subset \mathbb{R}^d$ e $x \in \Sigma$ sono fatti equivalenti

- Esistono U e $\phi \colon D \to \Sigma \cap U$ tale che ϕ è una parametrizzazione regolare
- Esistono U intorno di $x \in g: U \to \mathbb{R}^{d-k} \in C^m$ tale che
 - $\circ \Sigma \cap U = q^{-1}(0)$
 - $\circ \nabla g$ ha rango massimo, ovvero d-k
- Esistono U intorno di x e $h: \mathbb{R}^k \to \mathbb{R}^{d-k}$ di classe C^m tale che $\Sigma \cap U = \Gamma_h \cap U$ (dove Γ_h è il grafico di h) avendo identificato $\mathbb{R}^k \times \mathbb{R}^{d-k}$ con \mathbb{R}^d tramite una scelta di k coordinate tra le d di \mathbb{R}^d

¹D'ora in avanti gli intorni saranno sempre aperti.

Esempi.

- $\mathbb{S}^{d-1} = \{x \in \mathbb{R}^d \mid |x| = 1\}$ è una superficie senza bordo di dimensione d-1 e classe C^{∞} in \mathbb{R}^d
- $\mathbb{D} = \{x \in \mathbb{R}^3 \mid x_3 = 0 \text{ e } |x| < 1\}$ è una superficie 2-dimensionale in \mathbb{R}^3
- \overline{D} non lo è! (È una superficie con bordo)

[TO DO]: disegni in blu sul quaderno

Definizione. Data Σ superficie e fissato $x \in \Sigma$, lo **spazio tangente** a Σ in $x \in T_x \Sigma := \text{Im}(d_s \phi)$ dove $\phi \colon D \to \Sigma \cap U$ è una parametrizzazione regolare e $x = \phi(s)$ con $s \in D$.

Nota. Lo spazio tangente è uno spazio vettoriale di stessa dimensione della superficie.

Proposizione.

- $T_x \Sigma = {\dot{\gamma}(0) \mid \gamma \colon [0, \delta) \to \Sigma \text{ cammino } C^1 \text{ con } \gamma(0) = x}$
- Data $g: U \to \mathbb{R}^{d-k}$ tale che $\Sigma \cap U = g^{-1}(0)$, $\operatorname{rk}(\nabla g) = d k$ su U, allora

$$T_x \Sigma = \ker(d_x g) = \{\nabla g_1(x), \dots, \nabla g_{n-k}(x)\}^{\perp}$$

Definizione. Data Σ superficie in \mathbb{R}^d di classe C^m , $f: \Sigma \to \mathbb{R}^{d'}$, diciamo che f è di classe $C^{m'}$, con $m' \leq m$ se per ogni $x \in \Sigma$ se esistono U e $\phi: D \to \Sigma \cap U$ parametrizzazione regolare, tale che $f \circ \phi: D \to \mathbb{R}^d$ è di classe $C^{m'}$ con D aperto di \mathbb{R}^k .

Proposizione. $f \in C^{m'} \iff \exists A \text{ aperto di } \mathbb{R}^d \text{ che contiene } \Sigma \in F \colon A \to \mathbb{R}^d \text{ estensione di } f \text{ di classe } C^{m'}.$

Osservazione. Se $\phi: D \to \Sigma \cap U$ è una parametrizzazione regolare, allora $\phi^{-1}: \Sigma \cap U \to D \subset \mathbb{R}^k$ è C^m . La mappa ϕ^{-1} viene definita **carta**.

Definizione. Data $f: \Sigma \to \mathbb{R}^d$ di classe (almeno) C^1 e $x \in \Sigma$,

$$d_x f : T_z \Sigma \longrightarrow \mathbb{R}^d$$

$$\dot{\gamma}(0) \longmapsto (f \circ \gamma)'(0) \quad \gamma : [0, \delta) \to \Sigma, \ \gamma \in C^1, \ \gamma(0) = x$$

Proposizione. Data $F: A \to \mathbb{R}^{d'}$ estensione C^1 di f, con $A \subset \mathbb{R}^d$, allora

$$d_x f = |d_x F|_{T_x \Sigma}$$

Osservazione. Se $f: \Sigma \to \Sigma'$, dove $\Sigma \subset \mathbb{R}^d$ e $\Sigma' \subset \mathbb{R}^{d'}$ allora $\operatorname{Im}(d_x f) \subset T_{f(x)}\Sigma'$. Quindi, $d_x f: T_x \Sigma \to T_{f(x)}\Sigma'$.

7.2 Misure su superfici

In questa sezione studiamo la misura di Lebesgue su superfici definite tramite parametrizzazione 2 .

Definizione. Dati V spazio vettoriale k-dimensionale dotato di prodotto scalare (per esempio V sottospazi di \mathbb{R}^d), la **misura di Lebesgue** σ_k su V è data dall'identificazione di V con \mathbb{R}^k tramite la scelta di una base ortonormale.

²Coincide con la definizione di Hausdorff

Nota. σ_k non dipende dalla scelta della base.

Definizione. Siano V, V' spazi vettoriali di dimensione k dotati di prodotto scalare e $\Lambda \colon V \to V'$ lineare. Poniamo

$$|\det \Lambda| := |\det M|,$$

dove M è una matrice $k \times k$ associata a Λ dalla scelta di basi ortonormali su V e V'.

Nota. Si verifica che la definizione è ben posta, ovvero non dipende dalla scelta delle basi. Inoltre, si verifica che per ogni $E \subset V$ misurabile si ha $\sigma_k(\Lambda(E)) = |\det \Lambda| \cdot \sigma_k(E)$ (formula di cambio di variabile negli integrali).

Definizione. Sia $\Lambda\colon V\to W,$ con V,W spazi vettoriali, non necessariamente di stessa dimensione. Poniamo $V'\coloneqq \mathrm{Im}(\Lambda)$ e

$$|\det \Lambda| := \begin{cases} 0 & \text{se } \operatorname{rk}(\Lambda) < k \\ \operatorname{come prima} & \text{se } \operatorname{rk}(\Lambda) = k \text{ e } \dim V' = \dim V \end{cases}$$

Proposizione 1. Se $\Lambda : \mathbb{R}^k \to \mathbb{R}^d$ allora

$$|\det \Lambda|^2 = \det(N^t N) \tag{1}$$

dove N è una matrice $d \times k$ associata a Λ . E inoltre

$$|\det \Lambda|^2 = \sum_{\substack{Q \text{ minore} \\ k \times k \text{ di } N}} \det(Q)^2 \tag{2}$$

Osservazione. Questa proposizione implica che non è necessario trovare una base ortormale dell'immagine di Λ per calcolarne il determinante.

Dimostrazione.

(1) Supponiamo Λ iniettiva (il caso Λ non iniettivo per esercizio), scegliamo una base ortonormale e_1, \ldots, e_k di $\operatorname{Im}(\Lambda)$ e una matrice M $k \times k$ associata a Λ . Sia $B \in \mathbb{R}^{d \times k}$ una matrice avente colonne uguali a e_1, \ldots, e_k . Allora N = BM. Dunque,

$$\det(N^t N) = \det(M^t \underbrace{B^t B}_{=I} M) = \det(M^t M) = (\det M)^2 =: |\det \Lambda|^2.$$

(2) La seconda formula richiede la formula di Binet generalizzata.

7.3 Superfici k-dimensionali in \mathbb{R}^d di classe C^1

Definizione. Un insieme $E \subset \Sigma$ è **misurabile** (secondo Lebesgue) se $\forall \phi \colon D \to \Sigma \cap U$ parametrizzazione regolare e $D \subset \mathbb{R}^k$, l'insieme $\phi^{-1}(E \cap U) \subset \mathbb{R}^k$ è misurabile secondo Lebesgue.

Notazione. $\mathcal{M}(\Sigma) := \{E \subset \Sigma \text{ misurabili}\}.$

Proposizione 1. Esiste un'unica misura σ_k su $\mathcal{M}(\Sigma)$ tale che per ogni E misurabile e per ogni $\phi: D \to \Sigma \cap U$ parametrizzazione regolare

$$\sigma_k(E \cap U) = \int \underbrace{\det(d_s \phi)}_{\phi^{-1}(E \cap U)} ds$$
(1)

Commenti.

- σ_k misura di volume k-dimensionale su Σ .
- σ_k coincide con la misura di Hausdorff \mathcal{H}^k ristretta a Σ .
- $J\phi(s) = \sqrt{\det(\nabla^t \phi(s) \nabla \phi(s))} = \sqrt{\sum_Q (\det Q)^2}$ dove Q sono i minori $k \times k$ si $\nabla \phi(s)$.
- Se k = 1, vale $J\phi(s) = \sqrt{\det(\phi'(s))^t \phi'(s)} = |\phi'(s)|$.

Dimostrazione.

Passo 1: costruzione di σ_k .

Prendiamo $\sigma_i : D_i \to \Sigma \cap U_i$ parametrizzazioni regolari, dove $\{D_i\}$ è una famiglia numerabile, tale che $\Sigma \subset \bigcup U_i$. Prendiamo Σ_i misurabili e disgiunti tali che $\bigcup \Sigma_i = \Sigma$ e $\Sigma_i \subset U_i$.

Per ogni $E \in \mathcal{M}(\Sigma)$ poniamo

$$\sigma_k(E) = \sum_{i} \int_{\phi^{-1}(E \cap \Sigma_i)} J\phi_i(s) \, \mathrm{d}s$$

Evitiamo di verificare che sia una misura σ -addittiva.

Per dimostrare la proposizione si usa il seguente lemma.

Lemma. Date $\phi \colon D \to \Sigma \cap U$ e $\widetilde{\phi} \colon \widetilde{D} \to \Sigma \cap \widetilde{U}$ e E misurabili contenuto in $U \cap \widetilde{U}$, allora

$$\int_{\phi^{-1}(E)} J\phi(s) \, \mathrm{d}s = \int_{\widetilde{\phi}(E)} J\widetilde{\phi}(\widetilde{s}) \, \mathrm{d}\widetilde{s} \tag{2}$$

Dimostrazione lemma. Usiamo il cambio di variabile $s = \phi^{-1}(\widetilde{\phi}(\widetilde{s})) =: g(\widetilde{s}).$

$$\int_{F} J\phi(s) \, \mathrm{d}s = \int_{g^{-1}(F) = \widetilde{F}} J\phi(s) Jg(\widetilde{s}) \, \mathrm{d}\widetilde{s} = \int_{\widetilde{F}} |\det(\,\mathrm{d}_{s}\phi)| \cdot |\det(\,\mathrm{d}_{\widetilde{s}}g)| \, \mathrm{d}\widetilde{s}$$
$$= \int_{\widetilde{F}} |\det(d_{\widetilde{s}}(\phi \circ g))| \, \, \mathrm{d}\widetilde{s} = \int_{\widetilde{F}} J\widetilde{\phi}(\widetilde{s}) \, \mathrm{d}\widetilde{(s)}$$

Da cui la tesi. \Box

Corollario 2. Data $\phi: D \to \Sigma \cap U$ C^1 parametrizzazione bigettiva (non necessariamente regolare), $f: \Sigma \cap U \to \overline{\mathbb{R}}$ misurabile e integrabile rispetto a σ_k .

$$\int_{\Sigma \cap U} f(x) \, d\sigma_k(x) = \int_D f(\phi(s)) J\phi(s) \, ds \tag{3}$$

Se $\phi: D \to \Sigma \cap U$ è solo C^1 , come vanno corrette (??) e (??)?

$$\int_{E \cap U} \#\phi^{-1}(x) \, d\sigma_k(x) = \int_{\phi^{-1}(E \cap U)} J\phi(s) \, ds$$
 (1')

е

$$\int_{E \cap U} f(x) \# \phi^{-1}(x) \, \mathrm{d}\sigma_k(x) = \int_D f(\phi(s)) J\phi(s) \, \mathrm{d}s \tag{3'}$$

Nota. Le formule sopra giustificano il fatto che parametrizzazione non esattamente bigettive possono essere usate lo stesso per il calcolo dei volumi.

Esempio. Parametrizzazione di $\mathbb{S}^d \subset \mathbb{R}^{d+1}$ con coordinate sferiche.

Consideriamo $\phi_d \colon \mathbb{R}^d \to \mathbb{S}^d$ definita come

$$\phi_d(\alpha_1, \dots, \alpha_d) = (\cos \alpha_1, \sin \alpha_1 \cos \alpha_2, \sin \alpha_1 \sin \alpha_2 \cos \alpha_3, \dots, \sin \alpha_1 \cdots \sin \alpha_{d-1} \cos \alpha_d, \sin \alpha_1 \cdots \sin \alpha_d)$$

Definizione ricorsiva

$$\phi_1(\alpha_1) = (\cos \alpha_1, \sin \alpha_1), \quad \phi_d(\alpha) = (\cos \alpha_1, \sin \alpha_1 \cdot \phi_{d-1}(\alpha_2, \dots, \alpha_d))$$

Dunque

- $\phi_d\left([0,\pi]^{d-1}\times[0,2\pi]\right)=\mathbb{S}^d$ è una parametrizzazione in coordinate sferiche ed è iniettiva.
- $J\phi_d(\alpha) = \sin(\alpha_1)^{d-1}\sin(\alpha_2)^{d-2}\cdots\sin(\alpha_{d-1})^1$

Proposizione 3. Sia Σ superficie come al solito. Allora esiste un'unica misura μ sui $\mathcal{M}(\Sigma)$ tale che per ogni $\varepsilon > 0$ esiste $\delta > 0$ tale che data $f: \Sigma \cap U \to \mathbb{R}^k \in C^1$ che è δ -isometria, cioè

$$\frac{1}{1+\delta}|x-x'| \le |f(x)-f(x')| \le (1+\delta)|x-x'| \quad \forall x, x' \in \Sigma \cap U$$
 (P)

Allora

$$\frac{1}{1+\varepsilon}\sigma_k(E) \le |f(E)| \le (1+\varepsilon)\sigma_k(E) \quad \forall E \text{ mis } \subset \Sigma \cap U$$

Corollario 4. Poichè σ_k e la restrizione di \mathcal{H}^k a Σ hanno la proprietà (??), coincidono.

Dimostrazione (Unicità). Prendiamo μ, μ' che soddisfano (??). Fissiamo $E, \varepsilon > 0$ e δ di conseguenza usando (??). Allora

- Per ogni $x \in \Sigma$ esiste $\phi_x \colon U_x \cap \Sigma \to \mathbb{R}^k$ tale che $d_x \phi_x \colon T_x \Sigma \to \mathbb{R}^k$ è un'isometria.
- per ogni x esiste $V_x \subset U_x$ tale che $\phi_x \colon \Sigma \cap V_x \to \mathbb{R}^k$ è δ -isometria.
- Ricopriamo Σ con una successione $V_i := V_{x_i}$.
- Scriviamo $E = \bigsqcup_{i} E_{i}$ con $E_{i} \subset V_{i}$.

Per (??) abbiamo che

$$\frac{1}{1+\varepsilon}\mu(E_i) \le |f(E_i)| \le (1+\varepsilon)\mu(E_i)$$
$$\frac{1}{1+\varepsilon}\widetilde{\mu}(E_i) \le |f(E_i)| \le (1+\varepsilon)\widetilde{\mu}(E_i)$$

da cui incrociando le disuguaglianze otteniamo

$$\implies \frac{1}{(1+\varepsilon)^2}\mu(E_i) \le \widetilde{\mu}(E_i) \le (1+\varepsilon)^2\mu(E_i)$$

$$\frac{1}{(1+\varepsilon)^2}\widetilde{\mu}(E_i) \le \mu(E_i) \le (1+\varepsilon)^2\widetilde{\mu}(E_i)$$

e per arbitrarietà di ε ricaviamo $\mu(E) = \widetilde{\mu}(E)$. Per arbitrarietà di E otteniamo $\mu = \widetilde{\mu}$.

7.4 k-covettori

Dato V spazio vettoriale su \mathbb{R} e $k=1,2,\ldots$, l'applicazione $\alpha\colon V^k\to\mathbb{R}$ si dice k-covettore o k-lineare e alternante se

- è lineare in ogni variabile
- per ogni σ permutazione in S_k , $\alpha(v_{\sigma(1)}, \ldots, v_{\sigma(k)}) = \operatorname{sgn}(\sigma)\alpha(v_1, \ldots, v_k)$ (equivalentemente, α cambia segno scambiando due variabili).

Notazione. $\Lambda^k(V) := \{ \alpha \text{ } k\text{-covettori su } V \}.$ Formalmente $\Lambda^0(V) := \{ 0 \}.$

Osservazione.

- $\Lambda^k(V)$ è uno spazio vettoriale.
- $\Lambda^1(V) = V^*$ duale di V.
- det è *n*-lineare alternante nelle colonne (o righe).
- Se v_1, \ldots, v_k sono linearmente dipendenti, allora $\alpha(v_1, \ldots, v_k) = 0$.
- Se $k > \dim V$, allora $\Lambda^k(V) = \{0\}$.

Definizione. Dati V,V' spazi vettoriali, $T\colon V\to V'$ lineare, $\alpha\in\Lambda^k(V')$, il **pull-back** di α secondo T è

$$T^{\#}\alpha \in \Lambda^k(V)$$
 dato da $T^{\#}\alpha(v_1,\ldots,v_k) = \alpha(Tv_1,\ldots,Tv_n)$

Inoltre, dati $\alpha \in \Lambda^k(V)$, $\beta \in \Lambda^h(V)$ si definisce **prodotto esterno** e si indica con $\alpha \wedge \beta \in \Lambda^{k+h}(V)$ quanto segue

$$\alpha \wedge \beta(v_1, \dots, v_{k+h}) = \frac{1}{k!h!} \sum_{\sigma \in S_{k+h}} \operatorname{sgn}(\sigma) \alpha(v_{\sigma(1)}, \dots, v_{\sigma(k)}) \beta(v_{\sigma(k+1)}, \dots, v_{\sigma(k+h)})$$

7.5 Integrazione di k-forme su superfici

Proposizione 0. Il prodotto esterno \wedge è distributivo (rispetto a +), associativo e anticommutativo, ovvero $\alpha \wedge \beta = (-1)^{hk}\beta \wedge \alpha$.

Data e_1, \ldots, e_d base di V, e_1^*, \ldots, e_d^* è una base di V^* . Denotiamo con $I(d, k) := \{\underline{i} = (i_1, \ldots, i_k) \text{ con } 1 \leq i_1 \leq \ldots \leq i_k \leq i_d\}$ l'insieme di multiindici. Per ogni $i \in I(d, k)$ indichiamo con $e_{\underline{i}}^* = e_{i_1}^* \wedge \ldots \wedge e_{i_k}^* \in \Lambda^k(V)$. Data una matrice $d \times k$ A, $A_{\underline{i}}$ è il minore di A dato dalle righe i_1, \ldots, i_k .

Proposizione 1. $e_{\underline{i}}^*(v_1, \dots, v_k) = \det(A_{\underline{i}})$, dove $A \in \mathbb{R}^{d \times k}$ matrice delle coordinate di v_1, \dots, v_k , cioè $A_{ij} = (v_j)_i$.

Dimostrazione. Per induzione su k.

- k = 1. OK
- Passo induttivo $k-1 \to k$. Scriviamo $e_{\underline{i}}^* = e_{i_1} \wedge e_{\underline{i'}}$ con $\underline{i'} = (i_2, \dots, i_k)$. Usando la definizione di prodotto esterno e l'ipotesi induttiva notiamo che questo è uguale allo sviluppo per la prima riga di $\det(A_i)$

Proposizione 2. Posta $\{e_{\underline{i}} : \underline{i} \in I(d,k)\}$ è una base di $\Lambda^k(V)$ e in particolare per ogni $\alpha \in \Lambda^k(V)$

$$\alpha = \sum_{\underline{i} \in I(d,k)} \alpha(e_{\underline{i}}) e_{\underline{i}}^*$$

Dimostrazione. Definiamo $\tilde{\alpha}$ come sopra. Prendiamo $\underline{i} \in I(d,k)$, allora

$$\widetilde{\alpha}(e_{j_1},\ldots,e_{j_k}) = \sum_{\underline{i}} \alpha(e_{i_1},\ldots,e_{i_k}) \cdot \underbrace{e_{\underline{i}}^*(e_{j_1},\ldots,e_{j_k})}_{=\delta_{ij}} = \alpha(e_{j_1},\ldots,e_{j_k})$$

Si conclude per linearità e alternanza.

Corollario. Vale la seguente identità

$$\dim \Lambda^k(V) = \#I(d,k) = \begin{cases} \binom{d}{k} & \text{se } k < d \\ 0 & \text{altrimenti} \end{cases}$$

Proposizione 3 (Formula di Binet generalizzata). Dati A, B matrici di $d \times k$ con k < d, allora

$$\det(B^t A) = \sum_{\underline{i} \in I(d,k)} \det(B_{\underline{i}}) \det(A_{\underline{i}})$$

Dimostrazione. Basta definire $\alpha(v_1, \ldots, v_k) = \det(B^t A)$ dove A è la matrice avente colonne pari a v_1, \ldots, v_k . Bisogna verificare che α è k-lineare alternante ([TO DO]), da cui segue che

$$\det(B^t A) = \alpha(v_1, \dots, v_k) = \sum_{\underline{i}} \underbrace{\alpha(e_{i_1}^*, \dots, e_{i_k}^*)}_{\det(B_i^t)} \cdot \underbrace{e_{\underline{i}}^*(v_1, \dots, v_k)}_{\det A_i}$$

Osservazione. Nel caso in cui B = A, otteniamo la formula

$$\det(A^t A) = \sum_{\substack{Q \text{ minore} \\ k \times k \text{ di } A}} \det(Q)^2.$$

Caso particolare $V = \mathbb{R}^d$. Indichiamo con e_1, \ldots, e_d i vettori della base canonica, dx_1, \ldots, dx_d base duale di \mathbb{R}^d , $dx_{\underline{i}} := e_{\underline{i}}^*$ base canonica di $\Lambda^k(\mathbb{R}^d)$.

Esempio.

$$(dx_1 + 2 dx_2) \wedge (2 dx_1 \wedge dx_3 - dx_2 \wedge dx_4) =$$

$$= 2 dx_1 \wedge dx_1 \wedge dx_3 - dx_1 \wedge dx_2 dx_4 + 4 dx_2 \wedge dx_1 \wedge dx_3 - 2 dx_2 \wedge dx_2 \wedge dx_4 =$$

$$= - dx_1 \wedge dx_2 \wedge dx_4 - 4 dx_1 \wedge dx_2 \wedge dx_3.$$

Nota. Nel prodotto esterno si cancellano tutti i termini con indici ripetuti.

Definizione. Dato $\Omega \subset \mathbb{R}^d$ aperto, una k-forma ω su Ω è una "funzione" da Ω in $\Lambda^k(\mathbb{R}^d)$. In coordinate, $\omega(x) = \sum_{\underline{i} \in I(d,k)} w_{\underline{i}}(x) \cdot dx_{\underline{i}}$.

Il differenziale esterno di una k-forma ω su Ω di classe C^1 è la (k+1)-forma su Ω di classe almeno C^0 data da

•
$$k = 0$$
. In tal caso f è una funzione (0-forma) e $df(x) = d_x f = \sum_{i=1}^d \frac{\partial w_i(x)}{\partial x_j} dx_j \wedge dx_i$

$$\bullet \ k>0 \ \mathrm{d}\omega \coloneqq \sum_{\underline{i} \in I(d,k)} \mathrm{d}\omega_{\underline{i}}(x) \wedge \ \mathrm{d}x_{\underline{i}} = \sum_{\underline{i} \in I(d,k)} \sum_{j=1}^d \frac{\partial \omega_{\underline{i}}(x)}{\partial x_j} \, \mathrm{d}x_j \wedge \ \mathrm{d}x_{\underline{i}}.$$

Proposizione (Leibniz). Valgono le seguenti

•
$$d(\omega_1 \wedge \omega_2) = d\omega_1 \wedge \omega_2 + (-1)^{k_1} \omega_1 \wedge \omega_2$$

$$d^2\omega = 0$$