Path Tracing

The Lighting Equation

Start with Phong since that's what you probably know, but beware: Phong lighting is deficient. We need a physically based light equation.

Phong:
$$I_o = I_a K_d + I_i (N \cdot L) K_d + I_i K_s (R \cdot V)^{\alpha}$$

For Ray Tracing, we make many modifications:

- eliminate the (grossly approximate) ambient term,
- separate the **light**, **geometry**, and **surface** quantities

$$I_o = I_i \cdot (N \cdot L) \cdot (K_d + K_s???)$$

- change notation
 - \circ $\dot{\omega_i}$ and $\dot{\omega_o}$ instead of L and V
 - \circ cos θ_i instead of $N \cdot L$
 - $\circ \quad L_o(\omega_o)$ and $L_i(\omega_i)$ instead of $\ I_o$ and $\ I_i$
- add an emission term $L_e(\omega_o)$, and
- eventually fix Phong's flaws with a BRDF $f(\omega_i, \omega_o)$.

Resulting in:

$$L_o(\omega_o) = L_e(\omega_o) + L_i(\omega_i) \cdot \cos \theta_i \cdot f(\omega_i, \omega_o)$$

The Rendering Equation

This acknowledges that light comes in from all directions, and each input direction needs to apply the lighting equation So, at a point x on a surface with normal N:

$$L_o(\omega_o) = L_e(\omega_o) + \int_{\Omega} L_i(\omega_i) \cos \theta_i f(\omega_i, \omega_o) d\omega_i$$

We need a way to (numerically) evaluate integrals. (Monte-Carlo)

For each pixel:

Track a running average of many instances of "light along a path"

Evaluate "light along a path":

generate ray (with a known probability p)

for many bounces:

trace ray into scene → record intersection(object, point, normal, ...) if object is a light:

return <object's emission> * <running product of BRDF's> eval BRDF* $cos()/p \rightarrow into running product$ generate new random ray (with probability p)

Features captured by Path Tracing

Penumbras (soft shadows): Integrate over visible portion of light Gloss (blurred reflections): Integrate over a range of reflection directions

Translucency: Integrate over range of transmission directions.

Depth of field: Integrate over area of lens

Indirect illumination: Integrate over full diffuse range Anti-aliasing: Integrate over a pixel's range of directions

Motion blur: Integrate over a length of time. Sub-surface scattering and volumetric scattering

Prism/rainbow

Features not captured Polarization

Polarization
Interference
Fluorescence
Non-Linear and quantum effects
Relativistic effects
Gravitational lensing and atmospheric ray-bending effects.