Differential Calculus for Engineers

Presentation · September 2014			
DOI: 10.131	.40/RG.2.2.12618.16326		
CITATION	s	READS	
155		34,891	
1 autho	1 author		
1 autilo			
	Syed Ibrahim		
	Shaqra University		
	280 PUBLICATIONS 41,446 CITATIONS		
	SEE PROFILE		

Some of the authors of this publication are also working on these related projects:

Introduction to calculus

Calculus is a branch of mathematics involving or leading to calculations dealing with continuously varying functions. Calculus is a subject that falls into two parts:

(i) differential calculus (or differentiation) and (ii) integral calculus (or integration).

Differentiation is used in calculations involving velocity and acceleration, rates of change and maximum and minimum values of curves.

Functional notation

In an equation such as $y = 3x^2 + 2x - 5$, y is said to be a function of x and may be written as y = f(x).

An equation written in the form $f(x) = 3x^2 + 2x - 5$ termed **functional notation**. The value of f(x) when x = 0 is denoted by f(0), and the value of f(x) when x = 2 is denoted by f(2) and so on.

Thus when
$$f(x)=3x^2+2x-5$$
, then
$$f(0)=3(0)^2+2(0)-5=-5$$
 and $f(2)=3(2)^2+2(2)-5=11$ and so on.

Problem 1. If
$$f(x) = 4x^2 - 3x + 2$$
 find $f(0)$, $f(3)$, $f(-1)$ an= $f(3) - f(-1)$

$$f(x) = 4x^2 - 3x + 2$$

$$0$$

$$f(0) = 4(0)^2 - 3(0) + 2 = 2$$

$$f(3) = 4(3)^2 - 3(3) + 2$$

$$= 36 _ 9 + 2 = 29$$

$$f(-1) = 4(-1)^2 - 3(-1) + 2$$

$$= 4 + 3 + 2 = 9$$

$$f(3) - f(-1) = 29 - 9 = 20$$

Problem 2. Given that $f(x) = 5x^2 + x - 7$ determine:

a)
$$f(2) \div f(1)$$
 b) $f(3+a)$ c) $f(3+a) - f(3)$ d) $\frac{f(3+a) - f(3)}{a}$

$$f(x) = 5x^2 + x - 7$$

(i)
$$f(2) = 5(2)^2 + 2 - 7 = 15$$

 $f(1) = 5(1)^2 + 1 - 7 = -1$
 $f(2) \div f(1) = \frac{15}{-1} = -15$

(ii)
$$f(3+a)= 5(3+a)^2 + (3+a) - 7$$

= $5(9+a^2+6a)+ (3+a)-7$
= $45+5a^2+30a+3+a-7$
= $5a^2+31a+41$

(iii)
$$f(3) = 5(3)^2 + 3 - 7$$

= 45+3-7
= 41

$$f(3+a) - f(3) = 5a^2 + 31a + 41 - 41 = 5a^2 + 31a$$

(iv)
$$\frac{f(3+a)-f(3)}{a} = \frac{5a^2+31a}{a} = 5a+31$$

Problem 3. Diffrentiate from first principles $f(x) = x^2$ and determine the value of the gradient of the curve at x = 2.

To diffrentiate from first principles means to find f'(x) by using the expression

$$f'(x) = \lim_{\delta x \to 0} \left\{ \frac{f(x + \delta x) - f(x)}{\delta x} \right\}$$
$$f(x) = x^2$$

Substituting $(x+\delta x)$ for x gives

$$f'(x) = \lim_{\delta x \to 0} \left\{ \frac{(x + \delta x)^2 = x^2 + 2x\delta x + \delta x^2, \text{ hence}}{\delta x} \right\} = \lim_{\delta x \to 0} \left\{ \frac{2x\delta x + \delta x^2}{\delta x} \right\} = \lim_{\delta x \to 0} \left\{ 2x + \delta x \right\}$$

As $\delta x \rightarrow 0$, $[2x + \delta x] \rightarrow [2x + 0]$. Thus f'(x) = 2x, i.e., the differential coefficient of x^2 is 2x. At x = 2, the gradient of the curve, f'(x) = 2(2) = 4.

Problem 4. Differentiate from first principles $2f(x) = 2x^3$

Solution: Substituting $(x+\delta x)$ for x gives

$$2f(x + \delta x) = 2(x + \delta x)^3 = 2(x + \delta x)(x^2 + 2x\delta x + \delta x^2)$$
$$= 2(x^3 + 3x^2\delta x + 3x\delta x^2 + \delta x^3)$$
$$= 2x^3 + 6x^2\delta x + 6x\delta x^2 + 2\delta x^3$$

$$\frac{dy}{dx} = f'(x) = \lim_{\delta x \to 0} \left\{ \frac{f(x + \delta x) - f(x)}{\delta x} \right\}$$

$$= \lim_{\delta x \to 0} \left\{ \frac{2x^3 + 6x^2 \delta x + 6x \delta x^2 + 2\delta x^3 - 2x^3}{\delta x} \right\}$$

$$= \lim_{\delta x \to 0} \left\{ \frac{6x^2 \delta x + 6x \delta x^2 + 2\delta x^3}{\delta x} \right\}$$

$$= \lim_{\delta x \to 0} \left\{ 6x^2 + 6x \delta x + 2\delta x^2 \right\}$$

Hence $\frac{dy}{dx} = f'(x) = 6x^2$

Problem 5. Find the differential coefficient of $y=4x^2+5x-3$ and determine the gradient of the curve at x= -3

Solution:

$$y = f(x) = 4x^{2} + 5x - 3$$

$$f(x + \delta x) = 4(x + \delta x)^{2} + 5(x + \delta x) - 3)$$

$$= 4(x^{2} + 2x\delta x + \delta x^{2}) + 5x + 5\delta x - 3$$

$$= 4x^{2} + 8x\delta x + 4\delta x^{2} + 5x + 5\delta x - 3$$

$$\frac{dy}{dx} = f'(x) = \lim_{\delta x \to 0} \left\{ \frac{4x^{2} + 8x\delta x + 4\delta x^{2} + 5x + 5\delta x - 3 - (4x^{2} + 5x - 3)}{\delta x} \right\}$$

$$= \lim_{\delta x \to 0} \left\{ \frac{8x\delta x + 4\delta x^2 + 5\delta x}{\delta x} \right\}$$
$$= \lim_{\delta x \to 0} \{8x + 4\delta x + 5\}$$

$$\frac{dy}{dx} = f'(x) = 8x + 5$$

At x = -3, the gradient of the curve $\frac{dy}{dx} = f'(x) = 8(-3) + 5 = -19$

Problem 6. Using the general rule, differenciate the following with respect to x:

a)
$$y = 5x^{7}$$
 b) $y = 3\sqrt{x}$ c) $y = \frac{4}{x^{2}}$

$$\frac{d}{dx}(ax^{n}) = anx^{n-1}$$

$$y = 5x^{7}$$

$$\frac{dy}{dx} = 5 \times 7 \times x^{7-1} = 35x^{6}$$

$$y = 3\sqrt{x} = 3x^{1/2}$$

$$\frac{dy}{dx} = 3 \times \frac{1}{2} \times x^{1/2-1} = \frac{3}{2}x^{-1/2}$$

$$y = \frac{4}{x^2} = 4x^{-2}$$
 $\frac{dy}{dx} = 4 \times (-2)x^{-2-1} = -8x^{-3} = \frac{-8}{x^3}$

	Common Functions	Function(y)	Derivative(dy/dx)
1	Constant	C	0
2	Constant	X	1
3	Square	x^2	2x
4	Square root	\sqrt{x}	$\frac{1}{2\sqrt{x}}$
5	Exponential	e^x	$\frac{-\sqrt{x}}{e^x}$
6	Logarithms	In(x)	1/2
7	Trigonometric functions	sin(x)	cos(x)
8		cos(x)	- sin(x)
9		tan(x)	$sec^2(x)$
10		cot(x)	$-cosec^2(x)$
11		sec(x)	secx tanx
12		cosec(x)	-cosecx cotx
13	Inverse Trigonometric	$sin^{-1}x$	1
	functions	_1	$\sqrt{1-x^2}$
14		$cos^{-1}x$	
15		$tan^{-1}x$	$\frac{\sqrt{1-x^2}}{1}$
16		$cot^{-1}x$	$ \frac{1+x^2}{1-\frac{1}{1+x^2}} $
17		sec ^{−1} x	$\frac{1}{x\sqrt{x^2-1}}$
18		cosec ⁻¹ x	$-\frac{1}{x\sqrt{x^2-1}}$
19	Rules	Function	Derivative
20	Multiplication by constant	Cf	$cf^{'}$
21	Power Rule	x^n	nx^{n-1}
22	Sum Rule	u + v	u' + v'
23	Difference Rule	u-v	$u^{'}-v^{'}$
24	Product Rule	uv	uv' + u'v
25	Quotient Rule	$\frac{u}{12}$	$\frac{vdu - udv}{r^2}$
		v	v^2

Problem 7. Find the differential coefficient of $y = \frac{2}{5}x^3 - \frac{4}{x^3} + 4\sqrt{x^5} + 7$

$$y = \frac{2}{5}x^3 - \frac{4}{x^3} + 4\sqrt{x^5} + 7 = \frac{2}{5}x^3 - 4x^{-3} + 4x^{5/2} + 7$$
$$\frac{dy}{dx} = \frac{2}{5} \times 3x^{3-1} - 4(-3)x^{-3-1} + 4\left(\frac{5}{2}\right)x^{(5/2)-1} + 0$$
$$= \frac{6}{5}x^2 + 12x^{-4} + 10x^{3/2} = \frac{6}{5}x^2 + \frac{12}{x^4} + 10\sqrt{x^3}$$

Problem 8. If $f(t) = 5t + \frac{1}{\sqrt{t^3}}$ find f'(t)

$$f(t) = 5t + \frac{1}{\sqrt{t^3}} = 5t + t^{-3/2}$$

$$f'(t) = 5(1)t^{1-1} + \left(-\frac{3}{2}\right)t^{-3/2-1} = 5t^0 - \frac{3}{2}t^{-5/2} = 5 - \frac{3}{2t^{5/2}} = 5 - \frac{3}{2\sqrt{t^5}}$$

Power Rule

Problem 9. What is the derivative of x^3 ?

We can use the Power Rule, where n=3:

$$\frac{d}{dx}(x^n) = nx^{n-1}$$
$$\frac{d}{dx}(x^3) = 3x^{3-1} = 3x^2$$

Problem 10. What is the derivative of (1/x)?

We can use the Power Rule, where n= -1:

$$\frac{d}{dx}\left(\frac{1}{x}\right) = \frac{d}{dx}(x^{-1}) = -1x^{-1-1} = -x^{-2} = \frac{-1}{x^2}$$

Product Rule

Problem11. What is the derivative of cosx sinx?

$$d(uv) = uv' + u'v$$
Let $u = \cos(x)$ and $v = \sin(x)$

$$u' = \frac{d}{dx}\cos(x) = -\sin(x)$$
 and
$$v' = \frac{d}{dx}\sin(x) = \cos(x)$$

$$\frac{d}{dx}\{\cos(x)\sin(x)\} = \cos(x)\cos(x) - \sin(x)\sin(x) = \cos^2(x) - \sin^2(x)$$

$$= \frac{1 + \cos 2x}{2} - \left(\frac{1 - \cos 2x}{2}\right) = \frac{1 + \cos 2x - 1 + \cos 2x}{2} = \frac{2\cos 2x}{2} = \cos 2x$$

Chain Rule

Problem 12. What is the derivative of $sin(x^2)$?

The Chain Rule says: the derivative of
$$f(g(x)) = f'(g(x)) g'(x)$$

et u= x²

and y= sinu

$$\frac{du}{dx} = 2x$$
 and $\frac{dy}{du} = \cos u$

So:

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \cos(u) \times 2x = 2x \cos(x^2)$$

Problem 13. What is the derivative of $\frac{1}{\sin(x)}$?

Let

u= sinx and y=
$$\frac{1}{y}$$

$$\frac{du}{dx} = \cos x$$
 and $\frac{dy}{du} = -\frac{1}{u^2}$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = -\frac{1}{u^2} \times \cos x = -\frac{\cos(x)}{\sin^2(x)}$$

Problem 14. What is the derivative of $(5x-2)^3$?

Let

$$u = 5x - 2$$
 and $y = u^3$
$$\frac{du}{dx} = 5$$
 and
$$\frac{dy}{du} = 3u^2$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = 3u^2 \times 5 = 3(5x - 2)^2 \times 5 = 15(5x - 2)^2$$

Problem 15. Find the derivative of $y = 2 x^3 - 4 x^2 + 3 x - 5$

$$\frac{dy}{dx} = \frac{d}{dx}(2x^3) - \frac{d}{dx}(4x^2) + \frac{d}{dx}(3x) - \frac{d}{dx}(5) = 6x^2 + 8x + 3 + 0$$
$$= 6x^2 + 8x + 3$$

Problem 16. Find $\frac{dy}{dx}$, if $y = x^2 e^x$

Let
$$u = x^2$$
 and $v = e^x$ $\frac{du}{dx} = 2x$ and $\frac{dv}{dx} = e^x$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx} = x^2. e^x + e^x. 2x = xe^x(x+2)$$

Problem 17. What is
$$\frac{d}{dx} \left(\frac{\ln x}{x} \right)$$

By the quotient rule,
$$d\left(\frac{u}{v}\right) = \frac{vdu-udv}{v^2}$$

$$\frac{d}{dx}\left(\frac{\ln x}{x}\right) = \frac{x \cdot \frac{1}{x} - \ln x \cdot 1}{x^2} = \frac{1 - \ln x}{x^2}$$

Problem 18. Find
$$\frac{dy}{dx}$$
, if $y = \sqrt{x^2 + 1}$

$$y = (x^{2} + 1)^{1/2}$$
$$\frac{dy}{dx} = \frac{1}{2}(x^{2} + 1)^{1/2 - 1} \cdot 2x = \frac{x}{\sqrt{x^{2} + 1}}$$

Problem 19. Find
$$\frac{dy}{dx}$$
, If $y = e^{\tan x}$
$$\frac{dy}{dx} = e^{\tan x} sec^2 x$$

Problem 20. Find the derivative of $y = 3x + \sin(x) - 4\cos(x)$ Solution

$$\frac{dy}{dx} = \frac{d}{dx}(3x) + \frac{d}{dx}(sinx) - 4\frac{d}{dx}(cos x) = 3 + cos x - 4(-sinx)$$
$$= 3 + cos x + 4sinx$$

Problem 21. Find the derivative of $y = 3ln(x) - 4e^x$

$$\frac{dy}{dx} = \frac{d}{dx}3ln(x) - \frac{d}{dx}(4e^x) = \frac{3}{x} - 4e^x$$

Problem 22. Find
$$\frac{dy}{dx}$$
, , if $y = \sin(x^2)$

$$\frac{dy}{dx} = 2x\cos(x^2)$$

Problem 23. Find $\frac{dy}{dx}$, if, $y = \sin^2 x$

$$y = (\sin x)^2$$
 \Rightarrow $\frac{dy}{dx} = 2 \sin x \cos x = \sin 2 x$

Problem 24. Find
$$\frac{dy}{dx}$$
, *if*, $y = (x^3 + x - 1)^4$

$$y = (x^3 + x - 1)^4$$
 $\Rightarrow \frac{dy}{dx} = 4(x^3 + x - 1)^3 \cdot (3x^2 + 1)$

Problem 25. What is the equation of the tangent line to the curve $y = e^x ln(x)$ at the point (1, 0)?

Solution:

The first step is to find the slope of the tangent line at x = 1, which is the value of the derivative of y at this point:

slope at point (1,0)

$$= \left| \frac{dy}{dx} \right|_{x=1} = \left[e^x \cdot \frac{1}{x} + \ln x \cdot e^x \right]_{x=1} = e$$

Since the point-slope formula says that the straight line with slope m which passes through the point (x_0 , y_0) has the equation

$$y - y_o = m(x - x_o)$$

the equation of the desired tangent line is

$$y = e(x - 1)$$

Problem 26. Consider the curve given implicitly by the equation $3x^2y - y^3 = x + 1$ What is the slope of this curve at the point where it crosses the x axis? Solution:

To find the slope of a curve defined implicitly (as is the case here), the technique of **implicit differentiation** is used: Differentiate both sides of the equation with respect to *x*; then solve the resulting equation for *y'*.

$$3x^{2}y - y^{3} = x + 1$$

$$3x^{2}y' + 6xy - 3y^{2}y' = 1$$

$$y'(3x^{2} - 3y^{2}) = 1 - 6xy$$

$$y' = \frac{1 - 6xy}{3(x^{2} - y^{2})}$$

The curve crosses the x axis when y = 0, and the given equation clearly implies that x = -1 at y = 0. From the expression directly above, the slope of the curve at the point (-1, 0) is

$$|y'|_{(-1,0)} = \left| \frac{1 - 6xy}{3(x^2 - y^2)} \right|_{(-1,0)} = \frac{1}{3}$$

Exercise

$y = 7x^4$	$28x^3$
$y = \sqrt{x}$	$1/2\sqrt{x}$
$y = \sqrt{t^3}$	$3\sqrt{t}/2$
$y = 6 + \frac{1}{x^3}$	$-3/x^4$

1 1	1 1
$y = 3x - \frac{1}{\sqrt{x}} + \frac{1}{x}$	$3 + \frac{1}{2\sqrt{x^3}} - \frac{1}{x^2}$
5 1	10 7
$y = \frac{1}{x^2} - \frac{1}{\sqrt{x^7}} + 2$	$-\frac{1}{x^3}+\frac{1}{2\sqrt{x^9}}$
$y = 3(t-2)^2$	6t - 12
$y = (x+1)^3$	$3x^2 + 6x + 3$

27. Differentiate $f(x) = 6x^2 - 3x + 5$ and find the gradient of the curve at a) x= -1, and b) x=2

$$12x - 3$$
 a) $- 15$ b) 21

28. Find the differential coefficient of $y=2x^3+3x^2-4x-1$ and determine the gradient of the curve at x = -2

$$6x^2 + 6x - 4$$
, 8

29. Determine the derivative of $y = -2x^3 + 4x + 7$ and determine the gradient of the curve at x = -1.5

$$-6x^2 + 4$$
, -9.5

29. If
$$y = \cos a\theta$$
, $\frac{dy}{d\theta} = -a\sin a\theta$ where a is a constant

30. If
$$y = \cos(a\theta + \alpha)$$
, $\frac{dy}{d\theta} = -a\sin(a\theta + \alpha)$ where and α are constants

31. Differentiate the following with respect to the variable:

a)
$$y = 2\sin 5\theta$$
 and b) $f(t) = 3\cos 2t$

a) $y = 2\sin 5\theta$

$$\frac{dy}{d\theta} = 2 \times 5 \times \cos 5\theta = \mathbf{10} \cos 5\theta$$

 $b) f(t) = 3 \cos 2t$

$$\frac{dy}{d\theta} = 3(-2)\sin 2t = -6\sin 2t$$

32. Find the differential coefficient of $y = 7 \sin 2x - 3\cos 4x$

 $y = 7\sin 2x - 3\cos 4x$

$$\frac{dy}{dx} = (7 \times 2)\cos 2x - (3 \times -4)\sin 4x = 14\cos 2x + 12\sin 4x$$

33. Differentiate the following with respect to the variable:

a)
$$f(\theta) = 5\sin(100\pi\theta - 0.40)$$
 and b) $f(t) = 2\cos(5t + 0.20)$

- a) If $f(\theta) = 5\sin(100\pi\theta 0.40)$ $f'(\theta) = 5[100\pi\cos(100\pi\theta - 0.40)] = 500\pi\cos(100\pi\theta - 0.40)$
- b) If $f(t) = 2\cos(5t + 0.20)$ $f'(t) = 2[-5\sin(5t + 0.20)] = -10\sin(5t + 0.20)$
- 34. An alternating voltage is given by $v=100\sin 200t\ volts$, where t is the time in seconds. Calculate the rate of change of voltage when a) t= 0.005 s and b) t=0.01 s
- 35. Differentiate with respect to x: a) y = 4sin3x b) y = 2cos6x a) 12cos3x b) y = -12sin6x
- 36. Given $f(\theta) = 2\sin 3\theta 5\cos 2\theta$, find $f'(\theta)$

 $6\cos 3\theta + 10\sin 2\theta$

37. An alternating current is given by $i=5\sin 100t$ amperes, where t is the time in seconds. Determine the rate of change of current when a) t= 0.01 seconds

[270.2 A/s]

38. If
$$f(t) = 3\sin(4t + 0.12) - 2\cos(3t - 0.72)$$
 determine $f'(t)$

$$[12\cos(4t+0.12)+6\sin(3t-0.72)]$$

39. If
$$y = e^{ax}$$
, then $\frac{dy}{dx} = ae^{ax}$

40. Differentiate the following with respect to the variable:

a)
$$y = 3e^{2x}$$
 and b) $f(t) = \frac{4}{3e^{5t}}$

$$y = 3e^{2x} \Rightarrow \frac{dy}{dx} = 3(2e^{2x}) = 6e^{2x}$$

$$f(t) = \frac{4}{3e^{5t}} = \frac{4}{3}e^{-5t} = \frac{4}{3}(-5)e^{-5t} = -\frac{20}{3e^{5t}}$$

41. Differentiate y = 5ln3x

$$y = 5ln3x$$
 $\frac{dy}{dx} = 5 \times \left(\frac{1}{x}\right) = \frac{5}{x}$

42. Differentiate with respect to x: a) $y = 5e^{3x}$ b) $\frac{2}{7e^{2x}}$

a)
$$15e^{3x}$$
 b) $-\frac{4}{7e^{2x}}$

43. Find the differential coefficient of a) $y = 12x^3$ b) $y = \frac{12}{x^3}$

If
$$y = ax^n$$
 then $\frac{dy}{dx} = anx^{n-1}$

a) Since $y = 12x^3$, a = 12 and n = 3 thus $\frac{dy}{dx} = (12)(3)x^{3-1} = 36x^2$

b)
$$y = \frac{12}{x^3} = 12x^{-3}$$
, $a = 12$ and $n = -3$

Thus
$$\frac{dy}{dx} = (12)(-3)x^{-3-1} = -36x^{-4} = -\frac{36}{x^4}$$

44. Find the derivative of a) $y = 3\sqrt{x}$ b) $y = \frac{5}{\sqrt[3]{x^4}}$

a)
$$y = 3\sqrt{x} = 3x^{1/2}$$

$$\frac{dy}{dx} = 3 \times \frac{1}{2} \times x^{1/2 - 1} = \frac{3}{2} x^{-1/2} = \frac{3}{2\sqrt{x}}$$

b)
$$y = \frac{5}{\sqrt[3]{x^4}} = \frac{5}{x^{4/3}} = 5x^{-4/3}$$
$$\frac{dy}{dx} = 5 \times \left(\frac{-4}{3}\right) \times x^{-4/3 - 1} = \frac{-20}{3} x^{-7/3} = \frac{-20}{3x^{7/3}} = \frac{-20}{3\sqrt[3]{x^7}}$$

45. Differentiate $y = 5x^4 + 4x - \frac{1}{2x^2} + \frac{1}{\sqrt{x}} - 3$ with respect to x

$$y = 5x^{4} + 4x - \frac{1}{2x^{2}} + \frac{1}{\sqrt{x}} - 3 = 5x^{4} + 4x - \frac{1}{2}x^{-2} + x^{-1/2} - 3$$

$$\frac{dy}{dx} = 20x^{3} + 4 + \frac{1}{2} \times 2x^{-2-1} - \frac{1}{2}x^{-1/2-1}$$

$$\frac{dy}{dx} = 20x^{3} + 4 + x^{-3} - \frac{1}{2}x^{-3/2}$$

$$\frac{dy}{dx} = 20x^{3} + 4 + \frac{1}{x^{3}} - \frac{1}{2x^{3/2}} = 20x^{3} + 4 + \frac{1}{x^{3}} - \frac{1}{2\sqrt{x^{3}}}$$

46. Find the differential coefficients of a) $y=3\sin 4x$ and b) $f(t)=2\cos 3t$ with respect to the variable

a)
$$y = 3 \sin 4x$$
 ; $\frac{dy}{dx} = 3 \times 4 \cos 4x = 12 \cos 4x$

b)
$$f(t) = 2\cos 3t$$
 ; $f'(t) = 2 \times (-3)\sin 3t = -6\sin 3t$

47. Determine the derivative of a) $y=3e^{5x}$ b) $f(\theta)=\frac{2}{e^{3\theta}}$ c) $y=6\ln 2x$

$$y = 3e^{5x}$$
 ; $\frac{dy}{dx} = 3 \times 5e^{5x} = 15e^{5x}$
 $f(\theta) = \frac{2}{e^{3\theta}} = 2e^{-3\theta}$; $f'(\theta) = 2(-3)e^{-3\theta} = -6e^{-3\theta} = \frac{-6}{e^{3\theta}}$
 $y = 6 \ln 2x$; $\frac{dy}{dx} = \frac{6}{x}$

48. Determine the co-ordinates of the point on the graph $y = 3x^2 - 7x + 2$ where the gradient is -1.

Ans: The gradient of the curve is given by the derivative

$$y = 3x^{2} - 7x + 2 ; \frac{dy}{dx} = 6x - 7 then$$

$$6x - 7 = -1 \Rightarrow 6x = -1 + 7 = 6 \Rightarrow x = 1$$
When $x = 1$, $y = 3(1)^{2} - 7(1) + 2 = 3 - 7 + 2 = -2$

Hence the gradient is -1, at the point (1, -2)

49. Find the gradient of the curve $y=3x^4-2x^2+5x-2$ at the points (0,-2) and (1,4)

$$y = 3x^4 - 2x^2 + 5x - 2$$

$$\frac{dy}{dx} = 12x^3 - 4x + 5$$

At the point (0,-2), x = 0. Thus

$$\frac{dy}{dx} = 12(0)^3 - 4(0) + 5 = 5$$

At the point (1,4), x = 1. Thus

$$\frac{dy}{dx}$$
 = 12(1)³ - 4(1) + 5 = 12 - 4 + 5 = **13**

50. Differentiate $a) y = 5x^5$; $\frac{dy}{dx} = 25x^4$

b)
$$y = 2.4x^{3.5}$$
 ; $\frac{dy}{dx} = (2.4 \times 3.5)x^{3.5-1} = 8.4x^{2.5}$

c)
$$y = \frac{1}{x}$$
 ; $\frac{dy}{dx} = -\frac{1}{x^2}$

d)
$$y = \frac{-4}{x^2} = -4x^{-2}$$
 ; $\frac{dy}{dx} = 8x^{-3} = \frac{8}{x^3}$

$$e)$$
 $y = 2x$

$$; \quad \frac{dy}{dx} = 2$$

$$f) \quad y = 2\sqrt{x}$$

;
$$\frac{dy}{dx} = 2 \times \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x}}$$

$$g) \ \ y = 3\sqrt[3]{x^5} = 3x^{5/3}$$

;
$$\frac{dy}{dx} = 3 \times \frac{5}{3} x^{\frac{5}{3}-1} = 5x^{\frac{2}{3}} = 5\sqrt[3]{x^2}$$

$$h) y = \frac{4}{\sqrt{x}} = 4x^{-1/2}$$

;
$$\frac{dy}{dx} = 4 \times \frac{-1}{2} x^{-\frac{1}{2} - 1} = -2x^{-3/2} = \frac{-2}{\sqrt{x^3}}$$

$$i) y = \frac{-3}{\sqrt[3]{x}} = -3x^{-1/3}$$

$$; \frac{dy}{dx} = -3 \times \frac{-1}{3} x^{-\frac{1}{3}-1} = -x^{-\frac{4}{3}} = \frac{-1}{x^{\frac{4}{3}}} = \frac{-1}{\sqrt[3]{x^4}}$$

$$j) \ y = (x-1)^2$$

$$;\frac{dy}{dx} = 2(x-1)$$

$$k) \quad y = 2\sin 3x$$

$$; \frac{dy}{dx} = 2 \times 3\cos 3x = 6\cos 3x$$

Differentiation of a product

When y = u v, and u and v are both functions of x, then

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

This is known as product rule.

51. Find the differential coefficient of $y = 3x^2 sin2x$

 $3x^2sin2x$ is a product of two terms. Let $u = 3x^2and$ v = sin2x

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{dy}{dx} = 3x^2(2\cos 2x) + \sin 2x(6x) = 6x^2\cos 2x + 6x\sin 2x = 6x(x\cos 2x + \sin 2x)$$

52. Find the rate of change of y with respect to x : $y = 3\sqrt{x} \ln 2x$

Let
$$u = 3\sqrt{x}$$
 and $v = \ln 2x$

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

$$\frac{dy}{dx} = 3\sqrt{x} \times \frac{1}{x} + \ln 2x \frac{3}{2\sqrt{x}} = \frac{3}{\sqrt{x}} + \frac{3}{2\sqrt{x}} \ln 2x = \frac{3}{\sqrt{x}} \left(1 + \frac{1}{2} \ln 2x\right)$$

53. Differentiate $y = x^3 cos 3x ln x$

Let
$$u = x^3 cos3x$$
 and $v = lnx$

$$\frac{dy}{dx} = u \frac{dv}{dx} + v \frac{du}{dx}$$

$$\frac{du}{dx} = x^3(-3sin3x) + cos3x(3x^2)$$

$$\frac{dv}{dx} = \frac{1}{x}$$

$$\frac{dy}{dx} = x^3 cos3x \times \left(\frac{1}{x}\right) + lnx \left(-3x^3 sin3x + 3x^2 cos3x\right)$$

$$= x^2 cos3x + 3x^2 lnx \left(cos3x - xsin3x\right)$$

$$\frac{dy}{dx} = x^2(cos3x + 3lnx \left[cos3x - xsin3x\right])$$

HOME WORK	dy
y	\overline{dx}
$2x^3\cos 3x$	$6x^2(\cos 3x - x\sin 3x)$
$\sqrt{x^3} \ln 3x$	$\sqrt{x}\left(1+\frac{3}{2}\ln 3x\right)$
e ^{3t} sin4t	$e^{3t}(4\cos 4t + 3\sin 4t)$
$e^{4 heta} ln3 heta$	$e^{4\theta}\left(\frac{1}{\theta} + 4\ln 3\theta\right)$

DIFFERENTIATION OF A QUOTIENT

When $y = \frac{u}{v}$, and u and v are both functions of x, then

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

This is known as quotient rule.

15 CALCULUS by Dr. Ibrahim

54. Find the differential coefficient of
$$y = \frac{4 \sin 5x}{5x^4}$$

$$y = \frac{4\sin 5x}{5x^4}$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

Let $u = 4 \sin 5x$ and $v = 5x^4$

$$\frac{du}{dx} = 4 \times 5\cos 5x = 20\cos 5x$$

$$\frac{dv}{dx} = 5 \times 4x^3 = 20x^3$$

$$\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2}$$

$$\frac{dy}{dx} = \frac{5x^4 \times 20\cos 5x - 4\sin 5x \times 20x^3}{(5x^4)^2}$$

$$=\frac{100x^4cos5x - 80x^3 sin5x}{25x^8}$$

$$=\frac{80x^3(5x\cos 5x - 4\sin 5x)}{25x^8}$$

$$=\frac{20x^{3}(5x\cos 5x - 4\sin 5x)}{25x^{8}}$$

$$\frac{dy}{dx} = \frac{4}{5x^5} (5x\cos 5x - 4\sin 5x)$$

55. Differentiate
$$y = \frac{te^{2t}}{2cost}$$

Let
$$u = te^{2t}$$
 and $v = 2cost$

$$\frac{du}{dt} = 2t e^{2t} + e^{2t}(1) \quad and \quad \frac{dv}{dt} = -2sint$$

$$\frac{dy}{dt} = \frac{v\frac{du}{dt} - u\frac{dv}{dt}}{v^2}$$

$$\frac{dy}{dt} = \frac{2cost(2t e^{2t} + e^{2t}) - te^{2t}(-2sint)}{(2cost)^2}$$

$$= \frac{4t e^{2t}cost + 2 e^{2t}cost + 2te^{2t}sint}{4cos^2t}$$

$$= \frac{2 e^{2t}(2t cost + cost + tsint)}{4cos^2t}$$

$$\frac{dy}{dt} = \frac{e^{2t}}{2cos^2t}(2t cost + cost + tsint)$$

56. Determine the gradient of the curve $y = \frac{5x}{2x^2+4}$ at the point $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right)$ Let u = 5x and $v = 2x^2 + 4$ $\frac{du}{dx} = 5 \text{ and } \frac{dv}{dx} = 4x$ $\frac{dy}{dx} = \frac{v\frac{du}{dx} - u\frac{dv}{dx}}{v^2} = \frac{(2x^2 + 4)5 - 5x \times 4x}{(2x^2 + 4)^2}$ $= \frac{10x^2 + 20 - 20x^2}{(2x^2 + 4)^2} = \frac{20 - 10x^2}{(2x^2 + 4)^2}$

At the point $\left(\sqrt{3}, \frac{\sqrt{3}}{2}\right)$, $x = \sqrt{3}$

Hence the gradient

$$\frac{dy}{dx} = \frac{20 - 10(\sqrt{3})^2}{\left[2(\sqrt{3})^2 + 4\right]^2} = \frac{20 - 30}{(6 + 4)^2} = -\frac{10}{100} = -\frac{1}{10}$$

HOME WORK	dy
y	\overline{dx}
$2\cos 3x/_{\chi^3}$	$\frac{-6}{x^4}(x\sin 3x + \cos 3x)$

$\frac{2x}{x^2+1}$	$\frac{2(1-x^2)}{(x^2+1)^2}$
$\frac{3\sqrt{\theta^3}}{2\sin 2\theta}$	$\frac{3\sqrt{\theta}(3\sin 2\theta - 4\theta\cos 2\theta)}{4\sin^2\theta}$
$\frac{\overline{ln2t}}{\sqrt{t}}$	$\frac{\left(1-\frac{1}{2}ln2t\right)}{\sqrt{t^3}}$
$\frac{2xe^{4x}}{sinx}$	$\frac{2e^{4x}}{\sin^2 x}\{(1+4x)\sin x - x\cos x\}$
Find the gradient of the curve $y = \frac{2x}{x^2-5}$ at the point $(2, -4)$	-18

Function of a function

If y is a function of x then $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$

This is known as 'function of a function' rule (or some times the chain rule)

57. For example $y = (3x - 1)^9$ then

Let
$$u = 3x - 1$$
, $y = u^9$

$$\frac{du}{dx} = 3 \quad , \frac{dy}{du} = 9u^8$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = 9u^8 \times 3 = 27u^8 = \mathbf{27}(3x - \mathbf{1})^8$$

58. Differentiate $y = 3\cos(5x^2 + 2)$

Let
$$u = 5x^2 + 2$$
 then $y = 3 \cos u$

$$\frac{du}{dx} = 10 x \qquad \frac{dy}{du} = -3 \sin u$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = -3 \sin u \times 10x = -30x \sin u$$

$$\frac{dy}{dx} = -30x \sin(5x^2 + 2)$$

59. Find the derivative of: $y = (4t^3 - 3t)^6$

Let
$$u = 4t^3 - 3t$$
, then $y = u^6$

Hence
$$\frac{du}{dt} = 12t^2 - 3$$
 and $\frac{dy}{dt} = 6u^5$

Using the function of a function rule

$$\frac{dy}{dt} = \frac{dy}{du} \times \frac{du}{dt} = (6u^5)(12t^2 - 3) = 6(4t^3 - 3t)^5(12t^2 - 3)$$
$$= 18(4t^2 - 1)(4t^3 - 3t)^5$$

60. Determine the differential coefficient of: $y = \sqrt{3x^2 + 4x - 1}$

$$y = \sqrt{3x^2 + 4x - 1} = (3x^2 + 4x - 1)^{1/2}$$
Let $u = 3x^2 + 4x - 1 \Rightarrow y = u^{1/2}$
Hence $\frac{du}{dx} = 6x + 4$ and $\frac{dy}{du} = \frac{1}{2}u^{-1/2} = \frac{1}{2\sqrt{u}}$

Using the function of a function rule

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = \frac{1}{2\sqrt{u}}(6x+4) = \frac{3x+2}{\sqrt{u}} = \frac{3x+2}{\sqrt{3x^2+4x-1}}$$

61. Differentiate $y = 3tan^4 3x$

$$Let u = tan3x then y = 3u^4$$

$$\frac{du}{dx} = 3sec^23x and \frac{dy}{du}12u^3$$

$$\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx} = 12u^3 \times 3sec^23x = 12(tan3x)^3 \times 3sec^23x$$

$$\frac{dy}{dx} = 36tan^33xsec^23x$$

62. Find the differential coefficient of $y = \frac{2}{(2t^3 - 5)^4}$

$$y = \frac{2}{(2t^3 - 5)^4} = 2(2t^3 - 5)^{-4}$$
Let $u = 2t^3 - 5$ then $y = 2(u)^{-4}$ $\Rightarrow \frac{du}{dt} = 6t^2$

$$\frac{dy}{du} = -8u^{-5} = \frac{-8}{u^5}$$

$$\frac{dy}{dt} = \frac{dy}{du} \times \frac{du}{dt} = \frac{-8}{u^5} \times 6t^2 = \frac{-48t^2}{(2t^3 - 5)^5}$$

	HOME WORK	dy
	y	\overline{dx}
1	$(2x^3 - 5x)^5$	$5(6x^2 - 5)(2x^3 - 5x)^4$
2	$2\sin(3\theta-2)$	$6\cos(3\theta-2)$
3	$2cos^5\alpha$	$-10cos^4 \alpha \ sin \alpha$
4	1	$5(2-3x^2)$
	$(x^3 - 2x + 1)^5$	$(x^3 - 2x + 1)^6$
5	$5e^{2t+1}$	$10e^{2t+1}$
6	$2\cot(5t^2+3)$	$-20t \ cosec^2(5t^2+3)$
7	$6\tan(3y+1)$	$18sec^{2}(3y+1)$
8	$2e^{tan\theta}$	$2sec^2\theta e^{tan\theta}$

Successive Differentiation

When a function y=f(x) is differentiated with respect to x the differential coefficient is written as $\frac{dy}{dx}$ or f'(x). If the expression is differentiated again, the second differential coefficient is obtained and is written as $\frac{d^2y}{dx^2}$ or f''(x). By successive differentiation further higher derivative such as $\frac{d^3y}{dx^3}$ and $\frac{d^4y}{dx^4}$ may obtained.

63. Thus if
$$y = 3x^4$$

$$\frac{dy}{dx} = 12x^3, \frac{d^2y}{dx^2} = 36x^2, \frac{d^3y}{dx^3} = 72x, \frac{d^4y}{dx^4} = 72 \text{ and } \frac{d^5y}{dx^5} = 0$$
If $f(x) = 2x^5 - 4x^3 + 3x - 5$, find $f''(x)$

$$f(x) = 2x^5 - 4x^3 + 3x - 5$$

$$f'(x) = 10x^4 - 12x^2 + 3$$

$$f'^{(x)} = 40x^3 - 24x = 4x(10x^2 - 6)$$

64. Given
$$y = 2xe^{-3x}$$
 show that $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$

$$y = 2xe^{-3x} \Rightarrow \frac{dy}{dx} = 2x(-3e^{-3x}) + e^{-3x}(2) = -6xe^{-3x} + 2e^{-3x}$$
$$\frac{d^2y}{dx^2} = -6x(-3e^{-3x}) + e^{-3x}(-6) + (-6e^{-3x}) = 18xe^{-3x} - 6e^{-3x} - 6e^{-3x}$$
$$\frac{d^2y}{dx^2} = 18xe^{-3x} - 12e^{-3x}$$

Substituting the values into $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$ gives:

$$18xe^{-3x} - 12e^{-3x} + 6(-6xe^{-3x} + 2e^{-3x}) + 9(2xe^{-3x})$$

$$= 18xe^{-3x} - 12e^{-3x} - 36xe^{-3x} + 12e^{-3x} + 18xe^{-3x} = 0$$
Thus when $y = 2xe^{-3x}$, $\frac{d^2y}{dx^2} + 6\frac{dy}{dx} + 9y = 0$

1

$$I=\int \frac{dx}{2x^2+20x+51}$$

$$2x^{2} + 20x + 51 = 2(x^{2} + 10x + 25) + 1 = 2(x + 5)^{2} + 1 = 2\left[(x + 5)^{2} + \frac{1}{2}\right]$$

$$I = \int \frac{dx}{2\left[(x+5)^2 + \frac{1}{2}\right]} = \frac{1}{2} \int \frac{dx}{(x+5)^2 + \left(\frac{1}{\sqrt{2}}\right)^2}$$

Let
$$u = x + 5 \Rightarrow du = dx$$

$$I = \frac{1}{2} \int \frac{du}{(u)^2 + \left(\frac{1}{\sqrt{2}}\right)^2} = \frac{1}{2} \cdot \frac{1}{\frac{1}{\sqrt{2}}} tan^{-1} \left(\frac{u}{\frac{1}{\sqrt{2}}}\right) + c = \frac{\sqrt{2}}{2} tan^{-1} \left(\sqrt{2}(x+5)\right) + c$$
$$= \frac{1}{\sqrt{2}} tan^{-1} \left(\sqrt{2}(x+5)\right) + c$$

$$I = \int_{0}^{\pi/6} 4\sin(4t + \frac{\pi}{3}) dt$$

$$Let u = 4t + \frac{\pi}{3} \implies du = 4dt$$

$$I = \int_{0}^{\pi/6} \sin u \, du = (-\cos u)_{0}^{\pi/6} = \left[\cos\left(4t + \frac{\pi}{3}\right)\right]_{\pi/6}^{0} = \cos\left(\frac{\pi}{3}\right) - \cos\left(\frac{4\pi}{6} + \frac{\pi}{3}\right)$$

$$= \cos \pi/3 - \cos \pi = 0.5 + 1 = \mathbf{1}.\mathbf{5}$$

3.
$$I = \int \frac{x}{\sqrt{x+1}} dx$$

Let
$$u = x + 1 \Rightarrow du = dx$$

$$I = \int \frac{u-1}{\sqrt{u}} du = \int \left(\frac{u}{\sqrt{u}} - \frac{1}{\sqrt{u}}\right) du = \int \left(u^{1/2} - u^{-1/2}\right) du = \frac{u^{3/2}}{3/2} - \frac{u^{1/2}}{1/2} + c$$

$$I = \frac{2(x+1)^{3/2}}{3} - 2(x+1)^{1/2} + c = \frac{2(\sqrt{x+1})^3}{3} - 2\sqrt{x+1} + c$$

$$I = \int_{-1}^{5} (3x+1)\sqrt{3x^2+2x+5} \, dx$$

Let
$$u = 3x^2 + 2x + 5$$
 \Rightarrow $du = (6x + 2)dx$ $\Rightarrow \frac{du}{2} = (3x + 1)dx$

$$I = \int_{-1}^{5} \sqrt{u} \, du = \int_{-1}^{5} u^{1/2} \, du = \left[\frac{u^{3/2}}{3/2} \right]_{-1}^{5} = \frac{2}{3} \left[(3x^2 + 2x + 5)^{3/2} \right]_{-1}^{5}$$
$$= \frac{2}{3} \left[(90)^{3/2} - (6)^{3/2} \right] = 559.4$$

5.

$$I = \int tan^2x \, sec^4x dx$$

$$\sec^2 x = 1 + \tan^2 x$$

$$I = \int (\tan^2 x) (\sec^2 x) (\sec^2 x) dx = \int (\tan^2 x) (1 + \tan^2 x) (\sec^2 x) dx$$

Let
$$u = tanx \Rightarrow du = sec^2x dx$$

$$I = \int u^2 (1 + u^2) du = \frac{u^3}{3} + \frac{u^5}{5} + c = \frac{\tan^3 x}{3} + \frac{\tan^5 x}{5} + c$$

6.

$$I = \int x\sqrt{5 + x^2} \ dx$$

Let
$$u = 5 + x^2$$
 \Rightarrow $du = 2xdx$ $\Rightarrow xdx = \frac{du}{2}$

$$I = \int \sqrt{u} \, \frac{du}{2} = \frac{1}{2} \int u^{1/2} \, du = \frac{1}{2} \frac{u^{3/2}}{\left(\frac{3}{2}\right)} + c = \frac{1}{2} \cdot \frac{2}{3} u^{3/2} + c = \frac{1}{3} u^{3/2} + c$$
$$= \frac{1}{3} (5 + x^2)^{3/2} + c$$

7.

$$I = \int_{0}^{1} 3x \ e^{(2x^2 - 1)} \ dx$$

Let
$$u = 2x^2 - 1$$
 \Rightarrow $du = 4x dx$ $\Rightarrow dx = \frac{du}{4x}$

$$I = \int_{0}^{1} 3x \, e^{u} \, \frac{du}{4x} = \frac{3}{4} \int_{0}^{1} e^{u} \, du = \frac{3}{4} \left[e^{u} \right]_{0}^{1} = \frac{3}{4} \left[e^{(2x^{2}-1)} \right]_{0}^{1} = \frac{3}{4} \left[e^{1} - e^{-1} \right]$$
$$= \frac{3}{4} (2.71 - 0.3678) = 1.7628 = 1.763$$

8.

$$I = \int_{0}^{\pi/3} 3\sin^{2} 3x \, dx$$

$$\because \sin^{2} \theta = \frac{1 - \cos 2\theta}{2} \qquad \Rightarrow \qquad \sin^{2} 3x = \frac{1 - \cos 6x}{2}$$

$$I = \int_{0}^{\pi/3} \frac{3}{2} (1 - \cos 6x) \, dx = \frac{3}{2} \left[x - \frac{\sin 6x}{6} \right]_{0}^{\pi/3} = \frac{3}{2} \left[\left(\frac{\pi}{3} - \frac{\sin 2\pi}{6} \right) - \left(0 - \frac{\sin 0}{6} \right) \right]$$

$$= \frac{3}{2} \times \frac{\pi}{3} = \frac{\pi}{2} = 1.571$$

9.

 $\int 2\sin 3x \sin x dx$

$$\sin A \sin B = -\frac{1}{2} [\cos(A+B) - \cos(A-B)]$$

$$\int 2\sin 3x \sin x dx = -\int (\cos 4x - \cos 2x) \ dx = -\left[\frac{\sin 4x}{4} - \frac{\sin 2x}{2}\right] + c$$

$$= \left[\frac{\sin 2x}{2} - \frac{\sin 4x}{4}\right] + c$$

10.

$$\int_{1}^{2} 3\cos 8t \sin 3t \ dt$$

$$\cos A \sin B = \frac{1}{2} [\sin(A+B) - \sin(A-B)]$$

$$\int_{1}^{2} 3\cos 8t \sin 3t \, dt = \frac{3}{2} \int_{1}^{2} (\sin 11t + \sin 5t) \, dt = \frac{3}{2} \left(-\frac{\cos 11t}{11} + \frac{\cos 5t}{5} \right)_{1}^{2}$$

$$= \frac{3}{2} \left(\frac{\cos 5t}{5} - \frac{\cos 11t}{11} \right)_{1}^{2} = \left(\frac{3}{10} \cos 5t \right)_{1}^{2} - \left(\frac{3}{22} \cos 11t \right)_{1}^{2}$$

$$= \frac{3}{10} (\cos 10 - \cos 5) - \frac{3}{22} (\cos 22 - \cos 11)$$

$$= \frac{3}{10} (-0.8363 - 0.2836) - \frac{3}{22} (-0.9999 - 0.0044)$$

$$= -0.3359 - 0.1369 = -0.1990$$