Práctico 7

ESPACIOS Y SUBESPACIOS VECTORIALES.

- 1. Investigar si $(\mathbb{R}^2, \mathbb{R}, +, \cdot)$ es un espacio vectorial en caso de que las operaciones de suma y producto se definan de las siguientes maneras:
 - a) $(x_1, y_1) + (x_2, y_2) = (3y_1 + 3y_2, -x_1 x_2), \quad \lambda(x_1, y_1) = (3\lambda y_1, x_1);$
 - b) $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, y_1 + y_2), \quad \lambda(x_1, y_1) = (\lambda x_1, 0);$
 - c) $(x_1, y_1) + (x_2, y_2) = (x_1 + x_2, 0), \quad \lambda(x_1, y_1) = (\lambda x_1, \lambda y_1);$
 - d) $(x_1, y_1) + (x_2, y_2) = (x_1, x_2 + y_2), \quad \lambda(x_1, y_1) = (\lambda x_1, \lambda y_1);$
 - e) $(x_1, y_1) + (x_2, y_2) = (|x_1 + x_2|, |y_1 + y_2|), \quad \lambda(x_1, y_1) = (|\lambda x_1|, |\lambda y_1|).$
- 2. Sea $V \subset \mathbb{R}^3$ dado por $V = \{(x, y, 1) : x, y \in \mathbb{R}\}$.

Definimos la suma $+_V$ como:

$$(x_1, y_1, 1) +_V (x_2, y_2, 1) = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}, 1\right);$$

y definimos \times_V como:

$$\lambda \times_V (x_1, y_1, 1) = (\lambda x, \lambda y, 1).$$

Determinar si $(V, \mathbb{R}, +_V, \times_V)$ es un espacio vectorial.

- 3. Sea V un K-espacio vectorial. A partir de los axiomas de espacio vectorial, probar las siguientes propiedades (se pueden ver los axiomas en las notas).
 - a) El neutro de la suma es único. Es decir, si $v_1, v_2 \in V$ verifican que $v_1 + v = v_2 + v = v$ para todo $v \in V$ entonces $v_1 = v_2$.
 - b) El opuesto es único. Es decir, dado $v \in V$, si $v + v_1 = v + v_2 = O_V$, entonces $v_1 = v_2$.
 - c) Sea $0 \in \mathbb{K}$ (el neutro del cuerpo con respecto a la suma). Para todo $v \in V$ se tiene que $0v = O_V$.
 - d) Sea $O_V \in V$ (el neutro del espacio vectorial). Para todo $\lambda \in \mathbb{K}$ se tiene que $\lambda O_V = O_V$
 - e) Probar que para todo $v \in V$, el opuesto de v es (-1)v, donde -1 es el opuesto de 1 en el cuerpo \mathbb{K} .
- 4. Sea V un \mathbb{R} -espacio vectorial.
 - a) Sean $u, v \in V$ dos vectores tal que 3v + 5w = 7v 2w, mostrar que existe un $\lambda \in \mathbb{R}$ tal que $\lambda v = w$.
 - b) Sea $v \in V$ tal que 3v = v, probar que v = 0, es decir, v es el vector nulo.
- 5. Sea X un conjunto no vacío cualquiera, y $(V, \mathbb{K}, +, .)$ un espacio vectorial. Consideramos el conjunto \mathcal{F} formado por todas las funciones de X que toman valores en V. Es decir,

$$\mathcal{F} = \{ f \text{ tales que } f : X \to V \}.$$

Definimos

- SUMA DE DOS FUNCIONES: (f + g)(x) = f(x) + g(x), $x \in X$;
- PRODUCTO DE UNA FUNCIÓN f por un escalar λ : $(\lambda f)(x) = \lambda f(x)$, $x \in X$.

Mostrar que $(\mathcal{F}, \mathbb{K}, +, \cdot)$ es un espacio vectorial.

6. Consideremos el espacio vectorial \mathcal{F} formado por todas las funciones reales de variable real. Investigar cuáles de los siguientes subconjuntos de \mathcal{F} son subespacios vectoriales:

- a) para un $x_0 \in \mathbb{R}$ dado, el conjunto de las funciones f tales que $f(x_0) = 0$;
- b) el conjunto de funciones f que tiene al menos una raíz. Es decir, aquellas funciones f para las que existe $x_0 \in \mathbb{R}$ tal que $f(x_0) = 0$.
- 7. Determinar si los subconjuntos de $\mathcal{M}_{n\times n}(\mathbb{K})$ son subespacios vectoriales.
 - a) El conjunto de las matrices simétricas, es decir, $\{A \in \mathcal{M}_{n \times n}(\mathbb{K}) : A^T = A\}$.
 - b) El conjunto de las matrices antisimétricas, $\{A \in \mathcal{M}_{n \times n}(\mathbb{K}) \colon A^T = -A\}$.
 - c) El conjunto de las matrices invertibles.
 - d) El conjunto de las matrices no invertibles.
 - e) El conjunto de matrices de rango k, para k = 0, 1, ..., n;
 - f) El conjunto de matrices de traza 0 (recordar que la traza de una matriz es la suma de los elementos de la diagonal).
 - g) El conjunto de matrices triangulares superiores.
 - h) Fijado $X \in \mathbb{K}^n$, el conjunto de matrices A tales que AX = 0;
 - *i*) Fijado $B \in \mathcal{M}_{n \times n}$ el conjunto de matrices A tales que AB = BA;
 - *j*) el conjunto de matrices nilpotentes, es decir las matrices A tal que existe $k \in \mathbb{N}$ que verifica $A^k = 0$;
 - k) el conjunto de matrices idempotentes, es decir las matrices A tal que $A^2 = A$.
- 8. Determinar en qué condiciones los siguientes conjuntos S son subespacios de \mathbb{R}^3 .
 - a) Fijo $(a, b, c) \neq (0, 0, 0)$, $S = \{(x, y, z) : \langle (x, y, z), (a, b, c) \rangle = d\}$.
 - b) Fijo $(a,b,c) \neq (0,0,0)$ y $v \in \mathbb{R}^3$, $S = \{(x,y,z) : (x,y,z) \land (a,b,c) = v\}$.
 - c) Fijo $r \in \mathbb{R}$, $S = \{(x, y, z) : ||(x, y, z)|| = r\}$.
- 9. En cada caso, determinar si *S* es subespacio vectorial del espacio vectorial dado.
 - *a*) Para el espacio vectorial $V = \mathbb{R}^3$ considerar:
 - 1) $S = \{(a, b, c) \in V; a + b + c = 2\};$
 - 2) $S = \{(a, b, c) \in V; 3a 2 = 3b + c\};$
 - 3) $S = \{(a, b, c) \in V; a = b = c\};$
 - 4) $S = \{(a, a + b, a + b + c) \in V; a, b, c \in \mathbb{R}\};$
 - 5) $S = \{(b 6c, b, c) \in V; b, c \in \mathbb{R}\};$
 - 6) $S = \{(b/c, b, c) \in V; b, c \in \mathbb{R}, c \neq 0\};$
 - 7) $S = \{(x, y, z) \in V; z \ge x^2 + y\}.$
 - *b*) Para el espacio vectorial $V = \mathbb{R}^n$ considerar:
 - 1) $S = \{(x_1, ..., x_n) \in V; x_1 \ge 0\};$
 - 2) $S = \{(x_1, ..., x_n) \in V; x_1 = x_2 = \cdots = x_n\};$
 - 3) $S = \{(x_1, ..., x_n) \in V; x_1 = x_2 = ... = x_n = 1\};$
 - 4) $S = \{(x_1, ..., x_n) \in V; x_1 + x_2 + \cdots + x_n = 1\};$
 - 5) $S = \{(x_1, \dots, x_n) \in V; x_1^2 + x_2^2 + \dots + x_n^2 = 0\};$
 - 6) $S = \{(x_1, ..., x_n) \in V ; x_i \le x_j \text{ para todo } i \le j\}.$
 - *c*) Para el espacio vectorial $V = \mathbb{R}_n[x]$, formado por los polinomios de grado menor o igual que n y con coeficientes reales, considerar:
 - 1) $S = \{ p \in \mathbb{R}_n[x]; \ p(\alpha) = 0 \}$, donde $\alpha \in \mathbb{R}$ es un valor fijo;
 - 2) $S = \{p \in \mathbb{R}_n[x]; \ p(\alpha) = p'(\alpha) = 0\}$, donde $\alpha \in \mathbb{R}$ es un valor fijo;
 - 3) $S = \{ p \in \mathbb{R}_n[x] ; \text{ el grado de } p \text{ es } n \};$

```
4) S = \{ p \in \mathbb{R}_n[x]; \ p(1-x) = p(1+x) \ \forall x \in \mathbb{R} \};
```

- 5) $S = \{ p \in \mathbb{R}_n[x]; \ p(x) \le p(2x) \};$
- 6) $S = \{ p \in \mathbb{R}_n[x]; |p(x)| \le |p(2x)| \}.$
- *d*) Para el espacio vectorial $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$, formado por las funciones reales de variable real, considerar:
 - 1) $S = \{ f \in \mathcal{F}; f(1) = f(0) \};$
 - 2) $S = \{ f \in \mathcal{F}; \ f(x^2) = f(x)^2, \ \forall x \in \mathbb{R} \};$
 - 3) $S = \{ f \in \mathcal{F}; f \text{ es par} \}.$
 - 4) $S = \{ f \in \mathcal{F}; f \text{ es impar} \};$
 - 5) $S = \{ f \in \mathcal{F}; f \text{ es periódica con período } \pi \};$
 - 6) $S = \{ f \in \mathcal{F}; f \text{ con 1 como raíz} \};$
 - 7) $S = \{ f \in \mathcal{F}; f \text{ con alguna raı́z} \}.$
- 10. Sea (S) un sistema de ecuaciones lineales homogéneo con n incógnitas. Probar que las soluciones de (S) son un subespacio de \mathbb{R}^n .
- 11. Intersección de una colección de subespacios.
 - a) Sea $\{S_i\}_{i\in I}$ una colección subespacios de un espacio vectorial V. Mostrar que la intersección $S=\bigcap_{i\in I}S_i$ de todos los subespacios es un subespacio vectorial.
 - b) Sean $x_0, ..., x_n$ números reales. Mostrar que el conjunto de las funciones f reales y continuas tales que $f(x_i) = 0$ para i = 0, 1, ..., n es un espacio vectorial real.
- 12. Sea V un \mathbb{K} -espacio vectorial. Dados W_1, W_2 dos subespacios de V. Probar que si $W = W_1 \cup W_2$ es un subespacio de V entonces $W_1 \subset W_2$ o $W_2 \subset W_1$.
- 13. **Espacios vectoriales de funciones.** Para el espacio vectorial $\mathcal{F} = \{f : \mathbb{R} \to \mathbb{R}\}$, formado por las funciones reales de variable real, determinar si los siguientes subconjuntos son subespacios.
 - a) $S = \{ f \in \mathcal{F} : f \text{ es continua} \};$
 - b) $S = \{ f \in \mathcal{F} : f \text{ es derivable} \};$
 - c) $S = \{ f \in \mathcal{F} : f \text{ es derivable y } f' = -f \};$
 - *d*) $S = \{ f \in \mathcal{F} : f \text{ es acotada} \}.$
 - e) $S = \{ f \in \mathcal{F} : \lim_{x \to +\infty} f(x) = 0 \};$
 - f) $S = \{ f \in \mathcal{F} : \lim_{x \to +\infty} f(x) \text{ es finito} \};$
 - g) $S = \{ f \in \mathcal{F} : \lim_{x \to +\infty} \frac{f(x)}{x} \text{ es finito} \};$
 - *h*) $S = \{ f \in \mathcal{F} : f \text{ es integrable} \};$
 - *i*) $S = \{ f \in \mathcal{F} : f \text{ es monótona} \}.$
- 14. Sea $A \in \mathcal{M}_{m \times n}$. Probar que los conjuntos

$$\operatorname{Im} = \{v \in \mathcal{M}_{m \times 1} : \text{ existe } u \in \mathcal{M}_{n \times 1} \text{ tal que } v = Au\} \subset \mathcal{M}_{m \times 1} \text{ y Ker} = \{u \in \mathcal{M}_{n \times 1} : Au = 0_{m \times 1}\} \subset \mathcal{M}_{n \times 1},$$

son subespacios vectoriales.

15. Sea V un \mathbb{K} esp vectorial. Sean $v_1, v_2, v_3 \in V$ tres vectores de V. Probar que el conjunto

$$A = \{v \in V : v = \lambda_1 v_1 + \lambda_2 v_2 + \lambda_3 v_3, \lambda_i \in \mathbb{K}\}\$$

es un subespacio de V.

16. **Suma de subespacios.** Sea V un \mathbb{K} -espacio vectorial y W_1 , W_2 dos subespacios de V. Se define el subconjunto de V dado por:

$$W=\{v\in V: \text{ tal que existen } w_1\in W_1 \text{ y } w_2\in W_2 \text{ con } v=w_1+w_2\}.$$

- a) Probar que W es un subespacio de V.
- b) Mostrar que W contiene a W_1 y W_2 .
- c) Probar que cualquier otro subespacio S que contenga a W_1 y W_2 también debe contener a W. Se dice que W es la suma de los subespacios W_1 y W_2 .
- 17. Sean $V = \mathbb{R}^+$ y las siguientes operaciones $+: V \times V \to V$ y $*: \mathbb{R} \times V \to V$ dadas por +(u,v) = uv y $*(\lambda,u) = u^{\lambda}$. Probar que $(V,\mathbb{R},+,*)$ es un \mathbb{R} -espacio vectorial.