10. Illumination Model

Basic illumination models

Polygon rendering methods **Global illumination methods**

· Ray-tracing

Basic

- Illumination model: 픽셀의 색을 정하기 위한 모델

 - material property

· Light sources

- Point light source
 - 공간 상의 한 점에서 빛이 뿜어져 나옴 = 점 **광원**
 - (가정) **빛이 같은 세기로 모든 방향**으로 일정하게 뿜어져 나간다
 - 공간상의 위치(Position) 과 빛의 색(Color) 이 중요
- o Directional light source
 - **특정 방향**으로 빛이 집중되어 비추어지는 형태
 - Light Source의 위치와 빛을 비추는 방향 **V_light** 도 중요
 - 집중 방향을 벗어나면 빛의 세기가 줄어들다가 일정 각도 이상을 벗어나면 빛의 영향이 사라짐 → 영향 범위 각도 **6_1**도 중요
 - 예시: Spotlight, Headlight, Sunlight

• (Light) Intensity I

- 빛의 세기 = Power/unit area (W/m²)
- 。 빛의 진행 방향의 **수직 방향**으로 센서를 두고 측정
- 。 센서의 단위 면적당 단위 시간당 도착하는 에너지 = irradiance
- 。 만약, 빛이 대각선 방향으로 진행하여 만나는 각이 수직이 아니라면 cos θ 를 곱해줘야 함 (Cos θ 레 배계배서, 작당 에 제기 취공)

💡 및의 진행 방향에 수직일 때, 가장 밝음 수직에서 점점 각도가 뒤틀릴 수록, 단위 면적당 받게 되는 에너지도 적어짐 빛의 진행 방향에 평행할 때, 가장 어두움

RGB color

- 。 Intensity 값들로 이루어진 벡터
- 。 빛의 3요소 r, g, b 의 Light Intensity 를 측정 → (I_r, I_g, I_b)

$$\cos\theta = \frac{A}{A'}$$

$$=\frac{\varphi}{A}\cos\theta$$

Attenuation

- Attenuation (감쇠): light intensity가 줄어드는 것
- Radial intensity attenuation (거리)
 - 。 Light source 로부터 거리 d 에 반비례하여 light intensity 가 줄어든다.
 - 。 Point light, directional light 모두에 해당

• Angular intensity attenuation (각도)

- 。 Directional light 에만 해당
- \circ **V_light** = light 가 집중되는 방향 (Spotlight), **V_obj** = light intensity 측정 방향, α = 끼인각
- \circ α 값이 커지면, light intensity 가 줄어든다.

Basic Illumination Models

- Light source, camera, render 물체 3개를 고려해서 물체의 color 값을 결정
- 빛이 물체에 도달하는 방법 (매우 다양한 light path 가 존재)
 - 1. Direct illumination: 빛이 물체에 바로 도달
 - 2. Indirect illumination: 다른 물체에 반사, 굴절
- ⇒ Exact global illumination 은 매우 많은 계산 필요하므로, local illumination model 사용
 - Indirect illumination 포기, direct illumination 만 고려

Phong model

- 3가지 컴포넌트
 - Ambient light
 - o Diffuse reflection
 - Specular reflection

1. Ambient light (주변광): I_amb

- Indirect illumination 완전히 포기 하지 않고 근사 사용
 - 。 가장 간단한 근사 **상수값** 사용
- 현재 scene 의 다른 surface 로부터 반사에서 만들어짐
- $I_amb = k_a I_a$
 - \circ $k_a = 물체와 관련된 수 (반사도) → material dependent$
 - \circ I_a = ambient light intensity (주변광의 색) \rightarrow light dependent

2. Diffuse reflection: I_diff

- 물체의 고유색
- (1가지 가정) Lambertian reflector
 - 。 빛이 물체에 도달하고 반사될 때 모든 방향으로 일정한 세기로 반사된다 = ideal diffuse reflector

$$I_{diff} = \begin{cases} k_d I_l(\mathbf{N} \cdot \mathbf{L}) & \text{if } \mathbf{N} \cdot \mathbf{L} > 0 \\ 0 & \text{if } \mathbf{N} \cdot \mathbf{L} \le 0 \end{cases}$$

 k_d diffuse reflectivity (৬ ব্রু I, light source intensity

N surface normal

L light source direction

- 빛의 세기가 cos θ 에 비례하여 감소
- (N · L) = cos θ 가 식에 곱해짐
- $(\mathbf{N} \cdot \mathbf{L}) = \cos \theta \le 0 \Rightarrow I_diff = 0$ → 만속 90 보다 귀차는 경수 > 글라는 빛이 없다는 네트 즉. 0 $(\cos(90) = 0)$

3. Specular reflection: I_spec

- highlight 를 모델링
- 입사한 빛이 특정 방향으로 강하게 반사
- L: light 방향 / V: 사용자의 눈 방향 / **R: 입사한 빛이 반사된 방향**

$$I_{l,\text{spec}} = \begin{cases} k_s I_l (\mathbf{V} \cdot \mathbf{R})^{n_s}, & \text{if } \mathbf{V} \cdot \mathbf{R} > 0 & \text{and} & \mathbf{N} \cdot \mathbf{L} > 0 \\ 0.0, & \text{if } \mathbf{V} \cdot \mathbf{R} < 0 & \text{or} & \mathbf{N} \cdot \mathbf{L} \le 0 \end{cases}$$

 k_s spec. refl. coeff. I light source intensity

 n_s spec. refl. exponent

V view direction

R reflected light direction

• V, R 사이의 끼인각이 작으면 highlight가 커지고, 끼인각이 크면 highlight 작아짐 ightarrow \cos θ 로 측정

- n_s = dull surface, shiny surface 구분 (어떤 3위 Surface 바에 다시 결정)
 - \circ n_s 가 크면, shiny surface 로 θ 가 작아야 highlight 생김
 - n_s가 작으면, dull surface 로 θ 가 비교적 커도 highlight 생김
- $(V \cdot R) = \cos \theta < 0 \rightarrow I_spec = 0 \stackrel{\text{.}}{} = (N \cdot L) \leq 0 \rightarrow I_spec = 0$
 - 。 어두운 지역에는 highlight 가 생길 수 없기 때문

Dull Surface (Small n_s)

Phong Illumination Model

- · Phong Model
- 3가지 컴포넌트(Ambient light, Diffuse reflection, Specular reflection) 를 적절하게 섞어서 rendering
- 경험적인 모델

$$k_a I_a + k_d I_l (\mathbf{N} \cdot \mathbf{L}) + k_s I_l (\mathbf{V} \cdot \mathbf{R})^{n_s} = I$$

- k_a ambient reflectivity
- k_a ambient reflectivity l_a ambient light intensity l_a diffuse reflectivity l_a arbient light intensity l_a light intensity l_a light intensity

Blinn Phong Illumination Model

$$k_a I_a + k_d I_l (\mathbf{N} \cdot \mathbf{L}) + k_s I_l (\mathbf{N} \cdot \mathbf{H})^{n_s} = I$$

Phong model 의 Specular reflection V ⋅ R

• Rendering surface 의 모든 점에 대해 R 을 계산해야 함 \rightarrow 계산량 증가, expensive ⇒ V · R 대신, halfway vector H 를 사용

• Blinn's halfway vector (H)

- V ⋅ R 을 N ⋅ H 로 대체
- $\circ \quad \mathbf{H} = (\mathbf{L} + \mathbf{V}) / \| \mathbf{L} + \mathbf{V} \|$
- 。 R 과 V 의 끼인각 대신, N 과 H 의 끼인각 α 사용
 - lacksquare lpha 와 Φ 의 값이 일치한 것은 아니지만, 유사한 경향성 있음
- 。 사용 이유: L, V 가 변하지 않으면 H 는 변하지 않음
 - H 를 한 번만 계산하고 surface 모든 점에 대해 동일한 H 사용
 - 효율적인 계산과 괜찮은 결과

3

• Blinn-Phong Model

- \circ V · R \rightarrow N · H
- 。 (가정) light source 하나만 있음
 - light source 가 여러 개라면, 각 light source 에 대해 식을 계산하고 합치면 됨

$$\begin{split} I &= I_{amb} + I_{diff} + I_{spec} \\ &= k_a I_a + k_d I_l(\mathbf{N} \cdot \mathbf{L}) + k_s I_l(\mathbf{N} \cdot \mathbf{H})^{n_s} \\ I &= I_{\text{surfemission}} + I_{\text{ambdiff}} + \sum_{l=1}^{n} \underbrace{f_{l,\text{radatten}} f_{l,\text{angatten}}}_{\mathbf{M} \cdot \mathbf{M} \cdot \mathbf{M}} (I_{l,\text{diff}} + I_{l,\text{spec}}) \\ &\underbrace{I_{l,\text{diff}}}_{\mathbf{M} \cdot \mathbf{M} \cdot \mathbf{M}} = \begin{cases} 0.0, & \text{if } \mathbf{N} \cdot \mathbf{L}_l \leq 0.0 \text{ (light source behind object)} \\ k_d I_l(\mathbf{N} \cdot \mathbf{L}_l), & \text{otherwise} \end{cases} \\ I_{l,\text{spec}} &= \begin{cases} 0.0, & \text{if } \mathbf{N} \cdot \mathbf{L}_l \leq 0.0 \text{ (light source behind object)} \\ k_s I_l \max\{0.0, (\mathbf{N} \cdot \mathbf{H}_l)^{n_s}\}, & \text{otherwise} \end{cases} \end{split}$$

Polygon Shading Methods

Blinn phong model → 물체 위 특정 점의 색 결정

- 점 하나하나에 대해 계산하려면 계산량이 너무 많음
- 무수히 많은 점으로 구성된 다각형 면 에 적용하기 위한 방법
- ⇒ 몇 개의 점에 대해서만 illumination model 적용한 후, 적절히 interpolation 해서 나머지를 채움
- 3가지 방법: Flat shading, Gouraud shading, Phong shading

1. Flat shading

- 한 점의 N 으로 I 를 계산한 후, 내부에 모두 같은 색 적용
- 면들이 flat 하게 보임
- Interpolation 하지 않음

2. Gouraud shading

- · Intensity interpolation
- 과정
 - 1 각 꼭짓점에서의 Normal vector N 을 결정
 - 사용자가 직접 알려줌
 - 모른다면 추정 → 꼭짓점과 인접한 면들의 Normal vector 를 평균

$$\mathbf{N}_V = \frac{\sum_{k=1}^n \mathbf{N}_k}{\left|\sum_{k=1}^n \mathbf{N}_k\right|}$$

- 각 꼭짓점들에 illumination model 적용해서 intensity 계산 (I1, I2, I3)
- ③ 삼각형 내부 intensity 를 interpolation (2 번의 interpolation, Bi-Linearly interpolate)
 - y 축으로 수선을 내려 내분점 I₄, I₅ 계산
 - X 축으로 I₄, I₅ 의 내분점 Iթ 계산

$$I_4 = \frac{y_4 - y_2}{y_1 - y_2} I_1 + \frac{y_1 - y_4}{y_1 - y_2} I_2$$

$$I_p = \frac{x_5 - x_p}{x_5 - x_4} I_4 + \frac{x_p - x_4}{x_5 - x_4} I_5$$

• mach bands: intensity 를 interpolation 하는 과정에서 수학적으로는 자연스럽게 변하지만 사람의 눈에는 일정 부분에서 색이 잘 연결되지 않음

• highlight 가 뭉개지거나 없어짐: 꼭짓점들에 highlight 가 없었던 경우, 꼭짓점을 interpolation 한 가운데의 점들에게도 highlight 가 정상적으로 생기지 않음

3. Phong shading

- Normal interpolation
- 과정
 - 11 각 꼭짓점에서의 Normal vector N 을 결정
 - ② 구하고자 하는 곳의 Normal vector N 을 interpolation 해서 찾아내기
 - $\boxed{3}$ N_p 를 illumination model 에 넣어서 전체 다각형 계산

$$\mathbf{N} = \frac{y - y_2}{y_1 - y_2} \, \mathbf{N}_1 + \frac{y_1 - y}{y_1 - y_2} \, \mathbf{N}_2$$

$$I = k_a I_a + k_d I_l(\mathbf{N} \cdot \mathbf{L}) + k_s I_l(\mathbf{N} \cdot \mathbf{H})^{n_s}$$

♀ 단점

• 내부 모든 점을 illumination model model에 대입해서 계산하기 때문에 계산량이 많음

Quiz) Polygon Shading

We want to find the color intensity I(2,3) of the rasterized point R(2,3) using Gouraud shading. Since the RGB intensity (I_R , I_G , I_B) is the same in our simplified illumination model, just any color channel intensity would do.

5

6