Proximal Policy Optimization with Dynamic Clipping

Student: Rishikesh Vaishnav Mentor: Sicun Gao

August 15, 2018

Background

Reinforcement Learning

- A set of algorithms that seek to replicate behavioral learning.
- Basic vocabulary:
 - Environment: a general setting with changeable parameters in which actions can be performed that affect these parameters
 - State (denoted s): a specific configuration (i.e. "snapshot") of an environment
 - Agent: an entity that learns to accomplish a task in a specific evironment
 - Action (denoted a): a decision made by the agent that is intended to affect subsequent states
 - **Episode**: a sequence of states and actions in an environment
 - **Reward** (denoted r): a number associated with a state-action pair
- Overall goal: train an agent that picks actions such that the sum of the rewards over an episode is maximimized.

- Example: cart-pole demo

Policy Gradient Methods

- An agent can be provided with a **policy**, usually denoted π , that completely specifies the probabilty distribution of the action that should be taken at any particular state.
- $-\pi$ is parameterized by some vector θ and can be any function of a state s_t .
- The task of the agent is to learn θ .

$$s \to NN(\theta) \to \pi(a)$$

Generic Policy Gradient Algorithm

Algorithm Generic Policy Gradient

```
Initialize \theta arbitrarily
```

while True do

▷ loop forever

$$\theta_{\textit{old}} \leftarrow \theta$$

 $rollout \leftarrow (s, a, r)$ from multiple π_{θ} episodes

Set θ to maximize the loss function $L(rollout, \theta, \theta_{old})$

Trust Region Policy Optimization (TRPO)

The theory behind TRPO suggests using the loss function:

$$L_{\theta_{old}}(\theta) - CD_{KL}^{max}(\theta, \theta_{old})$$

where C is a constant and

$$L_{ heta_{old}}(heta) = \mathbb{E}_t \left[rac{\pi_{ heta}(a_t|s_t)}{\pi_{ heta_{old}}(a_t|s_t)} A_t
ight]$$

.

- Using this loss function guarantees monotonic improvement.
- Using the penalty term $CD_{KL}^{max}(\theta,\theta_{old})$ leads to small step sizes in practice, so TRPO uses a hard constraint on the KL divergence.

Proximal Policy Optimization (PPO)

 PPO uses a loss function that is an approximation to the TRPO loss:

$$L^{CLIP}(heta) = \mathbb{E}\left[\min\left(r_t A_t, \operatorname{clip}(r_t, 1-\epsilon, 1+\epsilon) A_t
ight)
ight]$$
 where $r_t(heta) = rac{\pi_{ heta}(a_t|s_t)}{\pi_{ heta_{old}}(a_t|s_t)}$.

- Resultant clipping behavior:

 Research question: how can we more precisely control penalties introduced through the clipping objective?

Potential Shortcoming of PPO

 We can separate the loss into its positive and negative components:

$$\begin{split} L^{CLIP}(\theta) &= \mathbb{E}_t \left[\min \left(r_t A_t, \operatorname{clip}(r_t, 1 - \epsilon, 1 + \epsilon) A_t \right) \right] \\ &= \mathbb{E}_t \left[\begin{cases} \min \left(r_t, \operatorname{clip}(r_t, 1 + \epsilon) \right) A_t & A_t > 0 \\ \max \left(r_t, \operatorname{clip}(r_t, 1 - \epsilon) \right) A_t & A_t < 0 \end{cases} \right] \end{split}$$

Let:

$$egin{aligned} r_{t,\textit{CLIP}}^+ &= \min \left(r_t, \operatorname{clip}(r_t, 1 + \epsilon)
ight) \ r_{t,\textit{CLIP}}^- &= \max \left(r_t, \operatorname{clip}(r_t, 1 - \epsilon)
ight) \end{aligned}$$

– Because $\mathbb{E}_t[r_t] = 1$, we know that:

$$\mathbb{E}_t[r_{t,CLIP}^+] < 1$$

$$\mathbb{E}_t[r_{t,CLIP}^-] > 1$$

 Now, we can define the "expected penalty contributions" of positive and negative advantages:

$$1 - \mathbb{E}_t[r_{t,CLIP}^+]$$

and

$$\mathbb{E}_t[r_{t,CLIP}^-] - 1$$

- Because r_t and A_t are not independent, these expected penalty contributions do not suggest actual penalty contributions.
- However, they can indicate inherent imbalances in the system.

Conceptual Example

- Consider a typical example in reinforcement learning where:
 - We have an agent using a continuous action space (continuous control).
 - The policy is encoded by a gaussian with state-dependent means but constant standard deviation.

What happens as we learn?

This discrepancy also appears empirically:

- The discrepancy between positive and negative penalty contributions is unintentional and highly dependent on the shape of the distribution.
- The goal of this project is to investigate the effects of controlling this discrepancy directly.

Idea

 In the gaussian example, we can precisely calculate the discrepancy at a particular state using the equation:

$$(1 - E[r_{t,CLIP}^+]) - (E[r_{t,CLIP}^-] - 1) = \epsilon + (1 - \epsilon) \int_{x^-}^{x^+} p(\mu_{old}, x) dx$$
$$- \left(\int_{x^-}^{x^+} p(\mu, x) dx + 2\epsilon \int_{x^+}^{\infty} p(\mu_{old}, x) dx \right)$$

where

$$x^{+} = \frac{(\mu^{2} - \mu_{old}^{2}) + 2\sigma^{2} \ln(1 + \epsilon)}{2(\mu - \mu_{old})}$$

and

$$x^{-} = \frac{(\mu^{2} - \mu_{old}^{2}) + 2\sigma^{2} \ln (1 - \epsilon)}{2(\mu - \mu_{old})}$$

Idea (contd.)

- If we want to minimize this using ϵ , this equation doesn't give us very much control.
- Generalizing to two ϵ by redefining the clipping function as $\operatorname{clip}(r_t, 1 \epsilon^-, 1 + \epsilon^+)$:

$$(1 - E[r_{t,CLIP}^{+}]) - (E[r_{t,CLIP}^{-}] - 1) = \epsilon^{-} + (1 - \epsilon^{-}) \int_{x^{-}}^{x^{+}} p(\mu_{old}, x) dx$$
$$- \left(\int_{x^{-}}^{x^{+}} p(\mu, x) dx + (\epsilon^{+} + \epsilon^{-}) \int_{x^{+}}^{\infty} p(\mu_{old}, x) dx \right)$$

– We can also define the total expected penalty contributions:

$$\begin{split} (1 - E[r_{t, CLIP}^+]) + (E[r_{t, CLIP}^-] - 1) &= 2 \int_{x^+}^{\infty} p(\mu, x) dx - (2 + \epsilon^+ - \epsilon^-) \int_{x^+}^{\infty} p(\mu_{old}, x) dx \\ &- \epsilon^- - (1 - \epsilon^-) \int_{x^-}^{x^+} p(\mu_{old}, x) dx + \int_{x^-}^{x^+} p(\mu, x) dx \end{split}$$

Idea (contd.)

- The new algorithm is identical to PPO, except we use two ϵ , and at the end of every model update, we optimize ϵ^- and ϵ^+ so that:
 - $-(1-E[r_{t,CIIP}^{+}])-(E[r_{t,CIIP}^{-}]-1)$ is minimized.
 - $-(1-E[r_{t,CLIP}^{+}])+(E[r_{t,CLIP}^{-}]-1)$ remains the same.

Results

- Overall, we observed approximately the same performance or modest improvements.
- The optimization was always successful in reducing the empirical discrepancy.

Results (contd.)

Example: Walker2d-v2 environment

Results (contd.)

Example: Hopper-v2 environment

Results (contd.)

Example: Swimmer-v2 environment

Future Directions

Some questions:

- Is there a simpler, problem-independent way to control the discrepancy?
- How does increasing the discrepancy in some direction affect performance?
- How, specifically, does the expected discrepancy relate to the actual penalty difference?

Acknowledgements

Many thanks to...

- UC Scholars Program, Dr. Kirsten Kung

- UCSD CSE Department, Dr. Sicun (Sean) Gao

