PRODUCT SALES ANALYSIS DATACAMP

REQUEST REPORT

You written report should include written text summaries and graphics of the following:

Data validation:

• Describe validation and cleaning steps for every column in the data

Exploratory Analysis to answer the customer questions ensuring you include:

- Two different types of graphics showing single variables only
- At least one graphic showing two or more variables
- Description of your findings

Definition of a metric for the business to monitor

- How should the business monitor what they want to achieve?
- Estimate the initial value(s) for the metric based on the current data?

Final summary including recommendations that the business should undertake

Report by khanhhuyenthai

OVERVIEW DATASET

The original dataset contains:

product_sales: 15,000 rows and 8 columns. In dataset product_sales, there are 8 attributes, including:

week: week sale was made

sales_method: Selling method for customers (Email, Call, Email + Call)

customer_id: unique identifier for the customer

nb_sold: number of new products sold

revenue: revenue from the sales

years_as_customer: number of years customer has been buying from us (company

founded in 1984)

nb_site_visits: number of times the customer has visited our website in the last 6 month

state: location of the customer i.e. where orders are shipped

Figure 1.1: Fisrt 10 rows and several colomns of dataset product_sales

DATA VALIDATION

Before delving into the analysis process, data pre-processing steps, including cleaning and transformation, should be performed.

Firstly, check for missing values in the 'product_sales' dataset. Only the 'revenue' column has NA values. Replace these NA values with the mean of the 'revenue' column, rounded to two decimal places.

Secondly, the 'sales_method' column contains exceptional values such as 'em + call' and 'email'. Transform these exceptional values to the correct format: 'em + call' = 'Email + Call', and 'email' = 'Email'.

Thirdly, although the company was established in 1984, the 'year_as_customer' column has outlier values like 63 and 47 (which exceed the current year back to 1984). Remove these outlier values from the 'year_as_customer' column.

Dataset product_sales final có 14998 obs of 8 variables:

- week: ranges from 1 week to 6 weeks.
- sales_method: there are 3 sales methods (Email, Call, Email + Call)
- customer_id: unique identifier for the customer
- **nb_sold:** ranges from 7 to 16 products.
- revenue: ranges from \$32.54 to \$238.32.
- years_as_customer: ranges from 0 to 39 years.
- **nb_site_visits:** ranges from 12 to 41 visits in the last 6 months.
- state: 49 location of the customer i.e. where orders are shipped

EXPLORATORY

DATA ANALYSIS

Week, year_as_customer, sales_method, state

WEEK

From chart 3.1, weeks 1 and 6 are the two weeks with the highest sales quantities since the implementation of the new approaches

YEAR_AS_CUSTOMER

Chart 3.2 skews to the right, mostly focusing on customers with less than 10 years of shopping (new customers).

SALES_METHOD

Email: Customers received two emails, one at product launch and another three weeks later, requiring minimal team effort.

Call: Sales team members called customers, averaging thirty minutes per call.

Email + Call: Customers got an initial email and a follow-up call a week later, with minimal email effort and a ten-minute call per customer.

In Chart 3.3, the company primarily utilizes the Email sales method with over 7000 occurrences, followed by Call with approximately 5000, and Email + Call with over 2500 occurrences.

SALES_METHOD (REVENUE AND SALES)

From charts 3.4 and 3.5, it is observed that the sales volume of Call is greater than Email + Call, but the revenue from Call is less than Email + Call. It's noticed that the company invests the most time in Call, but the effectiveness (as measured by revenue) is the lowest.

```
sales_method times

<chr> <chr> 1 Call 148830

2 Email 0

3 Email + Call 25720
```

Suggestion: The company may consider eliminating the Call-only sales method.

STATE (REVENUE AND SALES)

From charts 3.6 and 3.7, it is evident that sales volume is proportional to revenue. The top 4 states with the highest revenue are California, Texas, New York, and Florida.

DIAGNOSTIC ANALYSIS

Observation reveals a high correlation among the variables week, nb_sold, and nb_site_visit. Now, considering the use of PCA to analyze and determine if it's possible to reduce the number of variables.

PHÂN TÍCH PCA

 $PRINT1 = 0.26*week + 0.32*nb_sold + 0.9*nb_site_visits$

PRINT2 = 0.63*week + 0.65*nb_sold - 0.4*nb_site_visits

The contribution of PRINT1 is the highest, explaining nearly 80% of the data. Without reducing the dimensionality, all three variables are kept intact for further cluster analysis.

> loadings (pca) Loadings: Comp.1 Comp.2 Comp.3 week 0.264 0.633 0.728 nb sold 0.322 0.653 -0.685 nb_site_visits 0.909 -0.415 Comp.1 Comp.2 Comp.3 SS loadings 1.000 1.000 1.000 Proportion Var 0.333 0.333 0.333 Cumulative Var 0.333 0.667 1.000

CLUSTER CUSTOMER

The Hopkins index is approximately 0.86 (close to 1), meeting the conditions for cluster analysis.

ELBOW METHOD

Using two methods:

- · Elbow Method
- Gap Statistic

to select the number of clusters for K-means analysis.

GAP STATISTIC

From the two methods, the optimal number of clusters, k, is determined to be 2 (k = 2).

Therefore, customers will be grouped into 2 main clusters.

COMPUTATION K-MEANS

Using K-Means with k = 2, we observe that with 2 explanatory dimensions, such as dim1 and dim2, with explanatory values of 72.2% and 21.6%, the variation in the data is predominantly explained by dim1 (72.2%) and to a lesser extent by dim2 (21.6%). In summary, the 2 explanatory dimensions collectively explain 93.8% of the Within-Cluster Sum of Squares (WSS).

