Statistical Methods in Artificial Intelligence CSE471 - Monsoon 2016 : Lecture 09

Avinash Sharma CVIT, IIIT Hyderabad

Lecture Plan

- Introduction
 - Probability Theory Revision
 - Toy Example Walkthrough
- Bayesian Decision Theory
 - Bayes Formula
 - Prior, Likelihood, Posteriori and Evidence
 - Bayes Decision Rule
 - Bayes Risk
- Minimum-Error-Rate Classification

Introduction

- Random Variables
 - Boolean (True/False values)
 - Discrete (Categorical/Exact values like weather, Birth Year)
 - Continuous (Continuous values like Temperature, Time, Weight)
- Fundamental Rules
 - Probability of Union: $P(A \lor B) = P(A) + P(B) P(A \land B)$
 - Joint Probabilities: P(A,B) = P(A|B)P(B)
 - Conditional Probability: P(A|B)=P(A,B)/P(B) if P(B)>0
 - Marginal Distribution: $P(A) = \sum_b P(A,B) = \sum_b P(A|B=b)P(B=b)$
- Probability Density Functions (PDFs)
 - Discrete histograms
 - Continuous p(x) where $P(a \le x \le b) = \int_a^b p(x) dx \ \& \int_{-\infty}^{+\infty} p(x) dx = 1$

Toy Examples Walkthrough

• Image Based Fish Classification (Salmon v/s Sea Bass)

Toy Examples Walkthrough

- State of nature (ω)
 - Let variable ω be the discrete random variable which can assume only two categorical values, namely, ω_1 (i.e., sea bass) or ω_2 (i.e., solmon)
- Prior knowledge based classification
 - $-P(\omega=\omega_2)$ represents the prior probability of any new sample belonging to class ω_2 .
 - Let $P(\omega_1)$ and $P(\omega_2)$ be the class prior probabilities of the next fish on conveyer belt being sea bass and solmon, respectively.
 - $-P(\omega_1)+P(\omega_2)=1$ i.e., only if two types of fishes are caught
 - Decide ω_1 if $P(\omega_1) > P(\omega_2)$ else ω_2 . (Decision Rule)
- But we can use more information !!

Toy Examples Walkthrough

Toy Example Walkthrough

• The joint probability density of finding a sample which is in category ω_i and has feature value x is given by:

$$p(\omega_j, x) = P(\omega_j | x) p(x)$$
$$= p(x | \omega_j) P(\omega_j)$$

Bayes Formula

$$P(\omega_j|x) = \frac{p(\omega_j,x)}{p(x)} = \frac{p(x|\omega_j)P(\omega_j)}{p(x)}$$

$$posterior = \frac{likelihood \times prior}{evidence}$$

Posteriori probabilities for fixed prior probabilities $P(\omega_1) = 2/3$ and $P(\omega_2) = 1/3$

Evidence act as normalizing term as:

$$p(x) = \sum_{i=1,2} p(\omega_i, x) = \sum_{i=1,2} p(x|\omega_i) P(\omega_i)$$

Bayes Formula (Two Category)

$$P(\omega_j|x) = \frac{p(x|\omega_j)P(\omega_j)}{p(x)} = \frac{p(x|\omega_j)P(\omega_j)}{\sum_{i=1,2}p(x|\omega_i)P(\omega_i)}$$

Bayes Decision Rule

Decide ω_1 if $P(\omega_1|x) > P(\omega_2|x)$; Otherwise decide ω_2

- Practical Example
 - Cancer Test
- Sensitivity (TPR), <u>Recall</u>, Hit-rate = $\frac{TP}{TP+F}$
- <u>Precision</u> (PPV) = $\frac{TP}{TP+}$
- Specificity (TNR) = $\frac{TN}{TN+FP}$
- NPV= $\frac{TN}{FN+TN}$
- Fall-out (FPR)= $\frac{FP}{FP+TN}$
- False Discovery Rate (FDR)= $\frac{FP}{FP+TP}$

- Bayes formula can be generalized to:
 - Multi-dimensional feature space i.e., $\mathbf{x} = [x_1, \dots, x_d]^T$
 - Multiple classes i.e., $\{\omega_1, ..., \omega_c\}$
 - Allowing more generic actions like rejection apart from assigning class label $\{\alpha_1, \dots, \alpha_a\}$

•
$$P(\omega_j | \mathbf{x}) = \frac{p(\mathbf{x} | \omega_j) P(\omega_j)}{p(\mathbf{x})} = \frac{p(\mathbf{x} | \omega_j) P(\omega_j)}{\sum_{i=1}^{C} p(\mathbf{x} | \omega_i) P(\omega_i)}$$

• Let's define loss function as $\lambda_{ij} = \lambda(\alpha_i | \omega_j)$ where α_i is the action taken while being in stat of nature ω_i .

Bayes Risk (conditional risk)

$$R(\alpha_i|\mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i|\omega_j) P(\omega_j|\mathbf{x})$$

Two-Category Classification

$$R(\alpha_1|\mathbf{x}) = \lambda_{11}P(\omega_1|\mathbf{x}) + \lambda_{12}P(\omega_2|\mathbf{x})$$

$$R(\alpha_2|\mathbf{x}) = \lambda_{21}P(\omega_1|\mathbf{x}) + \lambda_{22}P(\omega_2|\mathbf{x})$$

- Choose ω_1 if $R(\alpha_1|\mathbf{x}) < R(\alpha_2|\mathbf{x})$ or

$$(\lambda_{21} - \lambda_{11}) P(\omega_1 | \mathbf{x}) > (\lambda_{12} - \lambda_{22}) P(\omega_2 | \mathbf{x}) \text{ or}$$

$$(\lambda_{21} - \lambda_{11}) p(\mathbf{x} | \omega_1) P(\omega_1) > (\lambda_{12} - \lambda_{22}) p(\mathbf{x} | \omega_2) P(\omega_2) \text{ or}$$

$$\frac{p(\mathbf{x} | \omega_1)}{p(\mathbf{x} | \omega_2)} > \underbrace{\frac{(\lambda_{12} - \lambda_{22}) P(\omega_2)}{(\lambda_{21} - \lambda_{11}) P(\omega_1)}}_{P(\omega_1)} \theta_a$$

Minimum-Error-Rate Classification

• Let
$$\lambda_{ij} = \lambda(\alpha_i | \omega_j) = \begin{cases} 0 & i = j \\ 1 & i \neq j \end{cases}$$

•
$$R(\alpha_i | \mathbf{x}) = \sum_{j=1}^{c} \lambda(\alpha_i | \omega_j) P(\omega_j | \mathbf{x})$$

= $\sum_{j \neq i} P(\omega_j | \mathbf{x}) = 1 - P(\omega_i | \mathbf{x})$

- If we choose ω_i corresponding to largest $P(\omega_i|\mathbf{x})$ then we minimize $R(\alpha_i|\mathbf{x})$
- Decision rule:

Decide
$$\omega_i$$
 if $P(\omega_i|x) > P(\omega_j|x) \quad \forall j \neq i$

Minimum-Error-Rate Classification

• Let $\lambda_{12} > \lambda_{21}$ (penalize miss-categorizing ω_2 as ω_1)

