

Course: CTC485 Assignment: FE Review

Description: Mathematics and Statistics (v1.1)

Date: 1/24/2022 Page: 1 of 11

These problems address topics from the NCEES FE Civil CBT Exam Specifications at https://ncees.org/wp-content/uploads/FE-Civil-CBT-specs-1.pdf, see below.

FE Civil Review 2022

Mathematics and Statistics

NCEES Fundamentals of Engineering (FE) CIVIL CBT Exam Specifications

Effective Beginning with the July 2020 Examinations

8-12

Knowledge Number of Questions

1. Mathematics and Statistics

- A. Analytic geometry
- B. Single-variable calculus
- C. Vector operations
- D. Statistics (e.g., distributions, mean, mode, standard deviation, confidence interval, regression and curve fitting)

Updates

V1.0 published 1/24/2022

V1.01 minor formatting

V1.02 added question numbers

V1.03 minor updates per live session

V1.1 title sheet 3/29/2022

Course: CTC485 Assignment: FE Review

Description: Mathematics and Statistics (v1.1)

Date: 1/24/2022 Page: 2 of 11

A. Analytic G	eometry
---------------	---------

Question 1: A line with a slope of 12/5 and passes through the point (5,3) also passes through <u>all</u> the following points <u>except</u>:

Α.	(-5.	-21
	ι –,	

A. Analytic Geometry

Question 2: A circle with center (2,4) and a point on the circle of (5,8) can be described by which of the following equations:

A.
$$(x-4)^2 + (y-2)^2 = 5$$

B.
$$(x + 2)^2 + (y + 4)^2 = 25$$

C.
$$x(x-4) + y(y-8) = 25$$

D.
$$x(x-4) + y(y-8) = 5$$

Course: CTC485 Assignment: FE Review

Description: Mathematics and Statistics (v1.1)

Date: 1/24/2022 Page: 3 of 11

A. Analytic Geometry

Question 3: The solution to the three linear equations shown is which of the following points in coordinate

$$4x + 4y + z = -2$$
 Equation 1

$$2x + y + z = 8$$
 Equation

$$x + 2y + 2z = 4$$

A. Analytic Geometry

Question 4: The inverse of $y = 3^x$ can be written as which of the following:

A.
$$y = e^{3x}$$

B.
$$y = 3 \log x$$

C.
$$y = \log_3 x$$

D.
$$y = \log_x 3$$

ONWARD	Name: MM Course: CTC485 Assignment: FE Review Description: Mathematics and Statistics (v1.1)					
MM) UPWARD						
MARK MATTSON, PE	Date: 1/24/2022 Page: 4 of 11					
A. Analytic Geometry						
Question 5: The trigonometric expression below is e	quivalent to which of the following:					
$\cos x + \sin x \tan x$	A. sec x					
	B. cos <i>x</i>					
	C.cscx					
	$D. \sin x$					
A. Analytic Geometry						
Question 6: The value of $\cos x$ is not equivalent to w	hich of the following when $x = \pi/2$ radians:					
	A. $tan(2x)$					
	B. $\sec(2x) + 1$					
	C. $2\sin^2 x - 1$					

Question 6: The value of $\cos x$ is not equivalent to which of the following when $x = c$	$\pi/2$ radians:
	A. $tan(2x)$
	B. $sec(2x) + 1$
	C. $2\sin^2 x - 1$
	$D. \csc(x) - 1$
Constitute © Marth Matters DE 2022	

Course: CTC485 Assignment: FE Review

Description: Mathematics and Statistics (v1.1)

Date: 1/24/2022 Page: 5 of 11

A. Analytic Geometry

Question 7: In the right triangle below AM is perpendicular to BC. The ratio of AM:BM:CM is most nearly:

12

A. 12: 5: 13

B. 60: 25: 144

C. 81: 36:169

D. 90: 121: 169

A. Analytic Geometry

Question 8: The enclosed area ABCD shown below is most nearly:

A. 74 m²

B. 76 m²

C. 78 m²

D. 80 m²

Date:

Course: CTC485 Assignment: FE Review

Description: Mathematics and Statistics (v1.1)

1/24/2022 Page: 6 of 11

B. Single-variable calculus

Question 9: The functions below define a parabola and line segment where the value b is unknown.

$$f_1(x) = x^2 - 4x + 2$$
 Function 1

$$f_2(x) = 2x + b$$

The value of b that will make the line tangent to the parabola is:

	7	
١.	-/	

B. Single-variable calculus

Question 10: The derivative dy/dx of the following equation is equivalent to which of the following equations.

$$y = \cos(2x) e^{4x}$$

A.
$$-8 \sin(2x) e^{4x}$$

B.
$$8 \sin(2x) e^{4x}$$

C.
$$e^{4x}(4\cos(2x) - 2\sin(2x))$$

$$D. 8e^{4x}(\cos(2x) - \sin(2x))$$

Course: CTC485 Assignment: FE Review

Description: Mathematics and Statistics (v1.1)

Date: 1/24/2022 Page: 7 of 11

B. Single-variable calculus

Question 11: The functions below intersect in two locations and create an enclosed area.

$$f_1(x) = -x^2 + 4x + 1$$
 Function 1

$$f_2(x) = x + 1$$

Function 2

The area bounded by these two functions is most nearly:

- A. 3.0 units²
- B. 4.5 units²
- C. 7.5 units²
- D. 10.5 units²

B. Single-variable calculus

Question 12: The following integral is equivalent to which of the following equations.

$$\int \sec^2 x - 1$$

- A. $tan^2 x + C$
- B. $\tan x x + C$
- C. $\tan \frac{x}{2} + x + C$
- D. $\frac{\tan x}{2} x + C$

Course: CTC485 Assignment: FE Review

Description: Mathematics and Statistics (v1.1)

Date: 1/24/2022 Page: 8 of 11

C. Vector operations

Question 13: For vectors $\mathbf{A} = 5i + 4j - 3k$ and $\mathbf{B} = 2i - 3j + 4k$ the dot product $\mathbf{A} \cdot \mathbf{B}$ is:

A.
$$10i + 12j - 12k$$

B.
$$10i - 12j - 12k$$

C. Vector operations

Question 14: For vectors $\mathbf{A} = 5i + 4j - 3k$ and $\mathbf{B} = 2i - 3j + 4k$ the cross product $\mathbf{A} \times \mathbf{B}$ is:

A.
$$10i + 12j - 12k$$

B.
$$25i - 14j - 23k$$

C.
$$7i - 26j - 23k$$

D.
$$7i + 26j - 23k$$

Course: CTC485 Assignment: FE Review

Description: Mathematics and Statistics (v1.1)

Date: 1/24/2022 Page: 9 of 11

c. v	ector	operat	ions
------	-------	--------	------

Question 15: For vectors $\mathbf{A} = 5i + 4j - 3k$ and $\mathbf{B} = 2i - 3j + 4k$ the unit vector for the sum of $\mathbf{A} + \mathbf{B}$ is:

A.
$$10i + 12j - 12k$$

B.
$$7i + j + k$$

C.
$$0.78i + 0.11j + 0.11k$$

D.
$$0.98i + 0.14j + 0.14k$$

C. Vector operations

Question 16: Given vectors $\mathbf{A} = 2i + 4j$ and $\mathbf{B} = -i + 3j$, what is true about the vectors?

- A. \boldsymbol{A} is perpendicular to \boldsymbol{B}
- B. \boldsymbol{A} is parallel to \boldsymbol{B}
- C. A is the same length as B
- D. \boldsymbol{A} is at an angle of 45° to \boldsymbol{B}

Course: CTC485 Assignment: FE Review

Description: Mathematics and Statistics (v1.1)

Date: 1/24/2022 Page: 10 of 11

D. Statistics								
Question 17	: A sample of	6 concrete cy	linders were	e broken at	28 days to	estimate t	he concrete	's compressi

Question 17: A sample of 6 concrete cylinders were broken at 28 days to estimate the concrete's compressive strength. The test results in psi were: 3900, 4150, 4450, 4275, 4350 and 4250. The sample mean and standard deviation are most nearly:

- A. 4,229 psi and 173 psi
- B. 4,229 psi and 190 psi
- C. 4,263 psi and 173 psi
- D. 4,263 psi and 190 psi

D. Statistics

Question 18: A concrete mix design produces normally distributed concrete with a mean strength of 4,400 psi and standard deviation of 200 psi. The probability that a sample would be greater than 4,000 psi is most nearly:

- A. 98%
- B. 97%
- C. 96%
- D. 94%

Name: _	MM	
Course:	CTC485	Assignment: FE Review
Descript	on: Mathe	ematics and Statistics (v1.1)

MARK MATTSON, PE	Date: _	1/24/2022	Page: _	<u>11</u> of	11
D. Statistics					
Question 19: The points below can be modeled using a best	t-fit linear re	gression model.			
Point					
(2, 2)					
(4, 5)					
(8, 16)					
The value estimated by the linear regression model for $x = 1$	l0 is most ne	arly:			
		A. 20			
		B. 21			
		C. 22			
		D. 23			
		D. 23			
D. Statistics					
Question 20: A bag contains three blue marbles and two re-	d marbles It	f a marble is soleste	nd five time	s out o	£
the bag with replacement after each pick, the probability of					
		A. 19%			
		B. 21%			
		C. 25%			
		D. 34%			