

Tema 1 Introducció al procés de desenvolupament del software

Maria Salamó Llorente Disseny de Software

Enginyeria Informàtica

Facultat de Matemàtiques, Universitat de Barcelona

Contingut

- 1.1 Introducció
- 1.2 Procés de desenvolupament del software
- 1.3 Desenvolupament iteratiu
- 1.4 Fases, iteracions, disciplines i artefactes
- 1.5 Artefactes en el desenvolupament d'una aplicació
 - Casos d'ús
 - Model de domini
 - Model de disseny
 - Diagrames de interacció
 - Diagrames de classes

1.1 Introducció

Universitat de Barcelona Exemple de desenvolupament

Desenvolupament del SW

Desenvolupament del SW

- Té un cost en formació i temps
- Millora la **productivitat**
- Millora la qualitat del software

Utilitat del modelat

- Hi ha estructures que no són visibles en els programes.
- Ajuda a raonar sobre el com s'implementa
- Facilita la comunicació entre l'equip ja que tenen un llenguatge comú
- Es disposa de **documentació** que perdura més enllà del projecte.
- Generació de codi a partir de models
 - Ha sorgit un **nou paradigma** de desenvolupament software a partir de models (p.e. MDA de OMG)

Què és un model?

"Un model és una simplificació de la realitat"

"Un model és resultat d'un procés d'abstracció i ajuda a comprendre i a raonar sobre una realitat"

Què és un model software?

"Un model és una descripció d'un aspecte del sistema, expressada en un llenguatge ben definit"

UML i el modelat

UML és un llenguatge per visualitzar, especificar, construir i documentar els artefactes (models) d'un sistema que involucra una gran quantitat de software, des d'una perspectiva orientada a objectes.

- UML és una notació, no és un procés
- S'han definit molts processos per a UML
 - Rational ha ideat RUP, el "procés unificat"
- Usable per sistemes que no siguin software

Models en UML

- Modelat de Casos d'ús
 - Diagrames de Casos d'ús
- Modelat Estructural
 - Diagrames de Classes
- Modelat de Comportament
 - Diagrames d'Interacció
 - Diagrames d'Estats
- Modelat de flux d'Activitats
 - Diagrames d'activitats
- Modelat d'Implementació
 - Diagrames de Components
- Modelat de Desplegament
 - Diagrames de Desplegament

Els diagrames no són models

1.2 Procés de desenvolupament del SW

Com desenvolupar el SW?

Però, amb UML no és suficient

Notació

Què és un procés?

Defineix qui està fent què, quan s'ha de fer i com arribar a un cert objectiu

Un procés de desenvolupament del software defineix com construir, desenvolupar i mantenir software

requirements

Procés d'enginyeria del Software

Sistema

Beneficis del procés

"Un procés ben definit es necessari per a desenvolupar sistemes software de manera **repetible i predecible**"

"Permet un negoci sostenible i que pot millorar a cada nou projecte, incrementant **l'eficiència** i la **productivitat** de l'organització"

G. Booch

El procés unificat

No hi ha un únic procés de desenvolupament!

El procés unificat és:

- Procés orientat a objectes
- Dirigit per casos d'ús
- Centrat en l'arquitectura
- Amb un cicle de vida iteratiu i incremental
- Configurable: Té flexibilitat i permet l'extensió (extensibilitat)
- Impulsa un control de qualitat i una gestió del risc d'objectius i continus

El procés unificat

- •El **procés unificat** és molt popular per a la construcció de sistemes orientats a objecte
- •El **procés unificat** inclou un conjunt de "bons costums" per desenvolupar el software

The Unified Modeling Language

OMG standard

The Unified Process

- Convergència en el futur
- Convergència a través de frameworks

1.3 Desenvolupament iteratiu

Definició desenvolupament iteratiu

- El projecte s'organitza en una sèrie de mini projectes d'un temps limitat i curt (unes 4 setmanes) que s'anomenen **iteracions**.
 - Cada iteració inclou el seu propi anàlisi de requisits, disseny, implementació i testeig
- El sistema creix de forma incremental, iteració a iteració, adaptant els seus objectius a canvis en les necessitats que es detecten durant la iteració
- No es comença el projecte directament programant però tampoc s'espera a finalitzar un llarg procés d'anàlisi i disseny abans de començar a programar

Evolució desenvolupament iteratiu

Iteracions

- El resultat de cada iteració és un sistema executable però incomplet, no està llest per passar a producció. Possiblement no ho estigui fins passades 10 o 15 iteracions
- El **resultat** de cada iteració **NO és un prototipus** per llençar, és un software de qualitat amb un subconjunt de la funcionalitat desitjada
- Cada iteració aborda nous requisits i amplia el sistema incrementalment. Però, una iteració podria ocasionalment, tornar sobre el software que ja existeix i millorar-lo

Conclusió

- El desenvolupament iteratiu entén el canvi i l'adaptació com inevitables i essencials
- El desenvolupament d'un projecte consisteix per tant en:
 - Una sèrie de cicles "construir, rebre feedback – adaptar". En les primeres iteracions, la desviació del "veritable objectiu" serà més gran que a les últimes

Beneficis

- Ràpida mitigació dels principals riscos als que s'enfronta el projecte
- Possibilitat de visualitzar el progrés
- Ràpida recepció de feedback dels usuaris i adaptació al mateix
- Complexitat limitada a cada iteració

1.4 Fases, iteracions, disciplines i artefactes

Fases del cicle de vida

- Començament o Inici: Visió aproximada del projecte, anàlisi de negoci, identificació de riscos, planificació inicial, estimacions imprecises
- Elaboració: Visió refinada, implementació iterativa de l'arquitectura fonamental, resolució de riscos principals, identificació de la majoria de requisits, estimacions més realistes
- Construcció: Implementació iterativa de la resta d'elements de menor risc i més senzills. Desenvolupar el producte i preparació per a l'entrega
- Transició: Beta testing, entrega.

Inici	Elaboració	Construcció	Transició
temps			*

Fases i iteracions

Una **iteració** és una *seqüència d'activitats* amb un pla establert i un criteri d'avaluació, resultant en una versió estable i executable

El cicle de vida del procés unificat

Disciplines: Sequències d'Activitats

Requisits

Anàlisi

Disseny

Implementació

Proves

Artefactes i disciplines

- Un **artefacte** és qualsevol producte del treball: codi, esquema de bases de dades, diagrames, models, un pla de projecte, etc.
- Una disciplina és un conjunt d'activitats (i artefactes relacionats) en una de les àrees en les que es treballa, com per exemple, les activitats dins de l'àrea d'anàlisi de requisits

Disciplines

- Aquest curs ens centrarem en 3 disciplines:
 - Modelat de Negoci: Pot anar des d'un model dels objectes de negoci fins a un model dinàmic dels processos d'una empresa
 - Modelat dels Requeriments: Comprèn l'anàlisi de requisits per una aplicació.
 Fonamentalment escriure casos d'ús i identificar els requisits no funcionals
 - Modelat del Disseny: Comprèn tots els aspectes de disseny, incloent-hi l'arquitectura general, objectes, bases de dades, xarxes, patrons, etc.

Fase d'inici

- Quina és la visió i l'objectiu de negoci per al projecte?
- És el projecte viable?
- S'ha de construir o comprar el SW?
- Quina és l'estimació de cost?
 - De 30.000 a 60.000€
 - De 300.000 a 400.000€
- Tenint en compte totes les preguntes,
 - -Posem en marxa el projecte?

Universitat de Barcelona Artefactes que s'inicien en la fase d'inici

- Visió i pla de negoci
- Model de casos d'ús: requisits funcionals
- Especificacions addicionals: requisits no funcionals
- Llista de riscos i pla de gestió de riscos
- Pla d'iteració: Descriu amb cert detall el que es farà a la propera iteració
- Pla de fases: Tracta de preveure l'evolució del projecte més a llarg termini
- Carpeta de desenvolupament: Descriu com s'adaptarà el procés unificat al projecte

Fase d'elaboració

- És la sèrie inicial d'iteracions durant la qual:
 - Es descobreixen i estabilitzen la major part dels requisits
 - S'eliminen o mitiguen els principals riscos
 - Els principals elements de l'arquitectura s'implementen i es proven

Construeix l'arquitectura, resol els elements d'alt risc, defineix la majoria dels requisits i estima el programa de treball i els recursos necessaris

Recomanacions en la fase d'elaboració

- Fer iteracions de temps fixat i curtes guiades pel risc
- Començar a programar aviat
- Dissenyar, implementar i provar de forma adaptativa el nucli i les parts de major risc de l'arquitectura
- Provar aviat, sovint i de forma realista
- Adaptar-se en funció del feedback dels testers, usuaris i desenvolupadors

Prioritzant iteracions en la fase d'elaboració

S'han d'ordenar els requisits a cobrir a cada iteració tenint en compte:

- Risc: Inclou la complexitat tècnica i altres factors, com la incertesa en l'esforç o la usabilitat
- Cobriment: Totes les parts fonamentals del sistema s'han de tocar a les primeres iteracions
- Criticitat: Les funcions d'alt valor de negoci que han d'ésser prioritzades

Artefactes que s'inicien en la fase d'elaboració

- Model de domini: És una visualització dels conceptes del domini i les seves relacions
- Model de disseny: Descriu el disseny lògic. Inclou diagrames de classe, diagrames d'interacció, diagrames de paquets, etc.
- Model de dades: Inclou els esquemes de les BD's i les estratègies per al mapeig objecte-relacional
- Model de test: És una descripció del què es provarà i com
- Model d'implementació: És la implementació: codi, executable, base de dades, etc.
- Storyboards, wireframes: Esquemes de la interfície d'usuari

Fase de construcció: Desenvolupar el sw

- Es construeix el producte. En aquesta fase:
 - L'arquitectura es completa per construir un sistema ben cimentat
 - La visió evoluciona fins convertir-se en un producte preparat per als usuaris.
 - És la fase on es dediquen la majoria dels recursos
 - L'arquitectura del sistema és estable tot i que es poden fer canvis mínims.
 - El producte s'ajusta a les necessitats d'alguns usuaris com per a enviar-los el software?

Fase de transició: Proporcionar el sistema als usuaris finals

- El producte es troba en fase beta
 - Un grup reduït d'usuaris experimentats prova el producte i informa dels defectes, deficiències i suggereix millores
 - Els desenvolupadors arreglen les deficiències i incorporen alguna de les millores proposades per un major grup d'usuaris
 - Aquesta fase inclou activitats com la venta, formació d'usuaris, oferiment d'ajuda en línia i correcció de defectes descoberts després de la implantació.

El procés unificat àgil

- És millor un conjunt petit d'activitats i artefactes. El procés ha de ser **simple**.
- Donat que el procés és iteratiu, els requisits i els dissenys no estan complets abans de la implementació. Emergeixen a través d'una sèrie d'iteracions basades en el "feedback"
- No existeix un pla detallat per tot el projecte. Existeix un pla d'alt nivell (pla de fases) que estima la data final del projecte i altres fites principals. Un pla detallat (pla d'iteració) només planeja en detall la propera iteració

Resum

- El procés unificat de desenvolupament del software és un procés iteratiu i adaptatiu
- Es composa de:
 - Fases: Inici, Elaboració, Construcció i Transició
 - Iteracions
 - Disciplines: Modelat de negoci, requeriments, disseny, etc.
 - Artefactes
- El procés unificat tracta de ser un procés àgil

1.5 Artefactes

Artefactes

- Casos d'ús
- Model de domini
- Model de disseny
 - Diagrames de interacció
 - Diagrames de classes

NOTA! En els següents apartats es veu una **breu** introducció a cadascun dels punts. Més endavant hi ha un tema que descriu en profunditat cadascun d'ells.

Casos d'ús

- Els casos d'ús són històries sobre com usar un sistema per satisfer uns objectius
- Descriuen el que fa el sistema des del punt de vista d'un observador extern

Emfatitzen el què enlloc del com

Plantegen **escenaris**, el que passa quan algú interactua amb el sistema. Proporcionen un resum per a un objectiu

"Jugar a daus: Un jugador llança 2 daus de sis cares. Si el valor de la suma dels punts representats a la cara superior d'ambdós és 7, el jugador guanya; altrament, perd"

Model de domini

- Crear una descripció del domini des de la perspectiva dels conceptes existents en el mateix
- Comprendre fonamentalment la identificació de:
 - Conceptes
 - Associacions
 - Atributs

Model de domini

Model de disseny: diagrames d'interacció

Visió dinàmica

- Mostren el flux de missatges entre objectes i la invocació de mètodes (visió dinàmica)
- Aquest flux no sempre correspon amb el del món real

Diagrames d'interacció

Universitat de Barcelona Diagrama de classes de disseny

Visió estàtica

- Mostren una visió estàtica de les definicions i les classes, il·lustrant els seus atributs, els seus mètodes i les seves associacions
- En contrast amb el model de domini, aquest no mostra conceptes del món real sinó classes software

Universitat de Barcelona Diagrama de classes de disseny

