$\S 1$ Sets, Functions, and Sequences

§1 Sets, Functions, and Sequences

• It is often convenient to work inside a specified universal set, denoted by U, which is assumed to contain everything that is relevant.

§1 Sets, Functions, and Sequences

- It is often convenient to work inside a specified *universal set*, denoted by U, which is assumed to contain everything that is relevant.
- Venn diagrams are visualizations of sets as regions in the plane. For instance, here is a Venn diagram of a universal set U containing a set A:

• Venn diagrams are visualizations of sets as regions in the plane. For instance, here is a Venn diagram of a universal set U containing a set A:

• Venn diagrams are visualizations of sets as regions in the plane. For instance, here is a Venn diagram of a universal set U containing a set A:

Set operations and set algebra:

• Venn diagrams are visualizations of sets as regions in the plane. For instance, here is a Venn diagram of a universal set U containing a set A:

- Set operations and set algebra:
 - complement $(^c, \overline{})$ "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

• Venn diagrams are visualizations of sets as regions in the plane. For instance, here is a Venn diagram of a universal set U containing a set A:

- Set operations and set algebra:
 - complement $(^c, \overline{})$ "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

• difference $(-, \setminus)$ - "but not"

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

 \sim Venn diagrams \backsim

• complement $(^c, \overline{})$ - "not"

$$A^c = \overline{A} = U \setminus A = \{x \in U \mid x \notin A\}$$

• difference $(-, \setminus)$ - "but not"

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \notin B\}$$

• complement
$$(^c, \overline{})$$
 - "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

• difference $(-, \setminus)$ - "but not"

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

complement $(^c, \overline{\ }) -$ "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

• difference $(-, \setminus)$ - "but not"

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{x \in U \mid x \in A \text{ and } x \in B\}$$

• complement $(^c, \overline{})$ - "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \} \mid$$

• difference $(-, \setminus)$ - "but not"

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \} \mid$$

 $lacksquare Two sets A and B are disjoint if <math>A \cap B = \emptyset$.

- Set operations and set algebra:
 - complement $(c, \overline{})$ "not"

$$A^c = \overline{A} = U \setminus A = \{x \in U \mid x \notin A\}$$

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \notin B\}$$

union (∪) - "or"

$$A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$$

- ullet Two sets A and B are disjoint if $A\cap B=\varnothing$.
- ▶ The Inclusion-Exclusion Principle: $|A \cup B| = |A| + |B| |A \cap B|$.

• complement
$$(c, \overline{})$$
 - "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$$

Example. Set $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, and $B = \{1, 2\}$.

• complement
$$(c, \overline{})$$
 - "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$$

Example. Set
$$U = \{1, 2, 3, 4, 5, 6\}$$
, $A = \{1, 3, 5\}$, and $B = \{1, 2\}$.

$$A^c =$$

• complement
$$(^c, \overline{})$$
 - "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$$

Example. Set $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, and $B = \{1, 2\}$.

$$A^c = \{2, 4, 6\}$$

• complement
$$(^c, \overline{})$$
 - "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$$

Example. Set $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, and $B = \{1, 2\}$.

$$A^c = \{2, 4, 6\}$$
 $A \cap B =$

• complement
$$(^c, \overline{})$$
 - "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$$

Example. Set $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, and $B = \{1, 2\}$.

$$A^c = \{2, 4, 6\}$$
 $A \cap B = \{1\}$

• complement
$$(^c, \overline{})$$
 - "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$$

Example. Set $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, and $B = \{1, 2\}$.

$$A^c = \{2, 4, 6\}$$
 $A \cap B = \{1\}$ $A \cup B = \{1\}$

• complement
$$(^c, \overline{})$$
 - "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$$

Example. Set
$$U = \{1, 2, 3, 4, 5, 6\}$$
, $A = \{1, 3, 5\}$, and $B = \{1, 2\}$.

$$A^c = \{2, 4, 6\}$$
 $A \cap B = \{1\}$ $A \cup B = \{1, 2, 3, 5\}$

• complement
$$(^c, \overline{})$$
 - "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{ x \in U \mid x \in A \text{ or } x \in B \}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$$

Example. Set $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, and $B = \{1, 2\}$.

$$A^c = \{2, 4, 6\}$$
 $A \cap B = \{1\}$ $A \cup B = \{1, 2, 3, 5\}$ $A - B = \{1, 2, 3, 5\}$

• complement
$$(^c, \overline{})$$
 - "not"

$$A^c = \overline{A} = U \setminus A = \{ x \in U \mid x \notin A \}$$

$$A - B = A \setminus B = \{x \in U \mid x \in A \text{ and } x \not\in B\}$$

union (∪) - "or"

$$A \cup B = \{x \in U \mid x \in A \text{ or } x \in B\}$$

 \bullet intersection (\cap) - "and"

$$A \cap B = \{ x \in U \mid x \in A \text{ and } x \in B \}$$

Example. Set $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, and $B = \{1, 2\}$.

$$A^c = \{2, 4, 6\}$$
 $A \cap B = \{1\}$ $A \cup B = \{1, 2, 3, 5\}$ $A - B = \{3, 5\}$.

$$A = \{ x \in U \,|\, x \text{ is odd} \}$$

$$B = \{ x \in U \mid x \text{ is even} \}$$

$$C = \{x \in U \mid x \text{ is a multiple of 3}\}$$

$$D = \{x \in U \mid x \text{ is prime}\}\$$

determine the following sets:

$$A \cap C$$

$$B-D$$

$$B \cup D$$

 D^c

$$(A \cap C) - D$$

$$A = \{x \in U \mid x \text{ is odd}\} = \{1, 3, 5, 7, 9\}$$

$$B = \{ x \in U \mid x \text{ is even} \}$$

$$C = \{x \in U \mid x \text{ is a multiple of 3}\}$$

$$D = \{x \in U \mid x \text{ is prime}\}\$$

determine the following sets:

$$A \cap C$$

$$B-D$$

$$B \cup D$$

 D^c

$$(A \cap C) - D$$

$$A = \{x \in U \mid x \text{ is odd}\} = \{1, 3, 5, 7, 9\}$$

$$B = \{x \in U \mid x \text{ is even}\} = \{0, 2, 4, 6, 8\}$$

$$C = \{x \in U \mid x \text{ is a multiple of 3}\}$$

$$D = \{x \in U \mid x \text{ is prime}\}\$$

$$A \cap C$$

$$B-D$$

$$B \cup D$$

$$D^c$$

$$(A \cap C) - D$$

$$A = \{x \in U \mid x \text{ is odd}\} = \{1, 3, 5, 7, 9\}$$

$$B = \{x \in U \mid x \text{ is even}\} = \{0, 2, 4, 6, 8\}$$

$$C = \{x \in U \mid x \text{ is a multiple of 3}\} = \{0, 3, 6, 9\}$$

$$D = \{x \in U \mid x \text{ is prime}\}\$$

$$A \cap C$$

$$B - D$$

$$B \cup D$$

$$D^c$$

$$(A \cap C) - D$$

$$A = \{x \in U \mid x \text{ is odd}\} = \{1, 3, 5, 7, 9\}$$

$$B = \{x \in U \mid x \text{ is even}\} = \{0, 2, 4, 6, 8\}$$

$$C = \{x \in U \mid x \text{ is a multiple of 3}\} = \{0, 3, 6, 9\}$$

$$D = \{x \in U \mid x \text{ is prime}\} = \{2, 3, 5, 7\}$$

$$A \cap C$$

$$B-D$$

$$B \cup D$$

$$D^c$$

$$(A \cap C) - D$$

$$A = \{x \in U \mid x \text{ is odd}\} = \{1, 3, 5, 7, 9\}$$

$$B = \{x \in U \mid x \text{ is even}\} = \{0, 2, 4, 6, 8\}$$

$$C = \{x \in U \mid x \text{ is a multiple of 3}\} = \{0, 3, 6, 9\}$$

$$D = \{x \in U \mid x \text{ is prime}\} = \{2, 3, 5, 7\}$$

determine the following sets:

$$A \cap C = \{3, 9\}$$

$$B-D$$

$$B \cup D$$

 D^c

$$(A \cap C) - D$$

$$A = \{x \in U \mid x \text{ is odd}\} = \{1, 3, 5, 7, 9\}$$

 $B = \{x \in U \mid x \text{ is even}\} = \{0, 2, 4, 6, 8\}$
 $C = \{x \in U \mid x \text{ is a multiple of } 3\} = \{0, 3, 6, 9\}$
 $D = \{x \in U \mid x \text{ is prime}\} = \{2, 3, 5, 7\}$

$$A \cap C = \{3, 9\}$$

 $B - D = \{0, 4, 6, 8\}$
 $B \cup D$
 D^{c}
 $(A \cap C) - D$

$$A = \{x \in U \mid x \text{ is odd}\} = \{1, 3, 5, 7, 9\}$$

 $B = \{x \in U \mid x \text{ is even}\} = \{0, 2, 4, 6, 8\}$
 $C = \{x \in U \mid x \text{ is a multiple of } 3\} = \{0, 3, 6, 9\}$
 $D = \{x \in U \mid x \text{ is prime}\} = \{2, 3, 5, 7\}$

$$A \cap C = \{3, 9\}$$

 $B - D = \{0, 4, 6, 8\}$
 $B \cup D = \{0, 2, 3, 4, 5, 6, 7, 8\}$
 D^{c}
 $(A \cap C) - D$

$$A = \{x \in U \mid x \text{ is odd}\} = \{1, 3, 5, 7, 9\}$$

 $B = \{x \in U \mid x \text{ is even}\} = \{0, 2, 4, 6, 8\}$
 $C = \{x \in U \mid x \text{ is a multiple of } 3\} = \{0, 3, 6, 9\}$
 $D = \{x \in U \mid x \text{ is prime}\} = \{2, 3, 5, 7\}$

$$A \cap C = \{3, 9\}$$

$$B - D = \{0, 4, 6, 8\}$$

$$B \cup D = \{0, 2, 3, 4, 5, 6, 7, 8\}$$

$$D^{c} = \{0, 1, 4, 6, 8, 9\}$$

$$(A \cap C) - D$$

$$A = \{x \in U \mid x \text{ is odd}\} = \{1, 3, 5, 7, 9\}$$

 $B = \{x \in U \mid x \text{ is even}\} = \{0, 2, 4, 6, 8\}$
 $C = \{x \in U \mid x \text{ is a multiple of } 3\} = \{0, 3, 6, 9\}$
 $D = \{x \in U \mid x \text{ is prime}\} = \{2, 3, 5, 7\}$

$$A \cap C = \{3, 9\}$$

$$B - D = \{0, 4, 6, 8\}$$

$$B \cup D = \{0, 2, 3, 4, 5, 6, 7, 8\}$$

$$D^{c} = \{0, 1, 4, 6, 8, 9\}$$

$$(A \cap C) - D = \{9\}$$

$$A - B = \{a, c\},\ B - A = \{b, f, g\}, \text{ and } A \cap B = \{d, e\}.$$

$$A - B = \{a, c\},$$

 $B - A = \{b, f, g\},$ and
 $A \cap B = \{d, e\}.$

$$A - B = \{a, c\},\ B - A = \{b, f, g\}, \text{ and } A \cap B = \{d, e\}.$$

$$A - B = \{a, c\},\ B - A = \{b, f, g\}, \text{ and } A \cap B = \{d, e\}.$$

Exercise. Determine the sets A and B, where

$$A - B = \{a, c\},\ B - A = \{b, f, g\}, \text{ and } A \cap B = \{d, e\}.$$

Exercise. Determine the sets A and B, where

$$A - B = \{a, c\},$$

 $B - A = \{b, f, g\},$ and
 $A \cap B = \{d, e\}.$

$$A = \{a, c, d, e\}$$

Exercise. Determine the sets A and B, where

$$A - B = \{a, c\},$$

 $B - A = \{b, f, g\},$ and
 $A \cap B = \{d, e\}.$

$$A = \{a, c, d, e\}$$

 $B = \{b, d, e, f, g\}$

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
 - 9 can program in C++ and Visual Basic, but not Java.
 - 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
 - 9 can program in C++ and Visual Basic, but not Java.
 - 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
- 9 can program in C++ and Visual Basic, but not Java.
- 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
- 9 can program in C++ and Visual Basic, but not Java.
- 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
- 9 can program in C++ and Visual Basic, but not Java.
- 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
 - 9 can program in C++ and Visual Basic, but not Java.
 - 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
- 9 can program in C++ and Visual Basic, but not Java.
- 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
 - 9 can program in C++ and Visual Basic, but not Java.
 - 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
- 9 can program in C++ and Visual Basic, but not Java.
- 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
 - 9 can program in C++ and Visual Basic, but not Java.
 - 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
- 9 can program in C++ and Visual Basic, but not Java.
- 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

$$x = 100 - (17 + 22 + 9 + 2 + 19 + 21 + 0) = 10$$

- 17 can program in C++, Java, and Visual Basic.
- 22 can program in C++ and Java, but not Visual Basic.
 - 9 can program in C++ and Visual Basic, but not Java.
 - 2 can program in Java and Visual Basic, but not C++.
- 19 can program in C++, but not Visual Basic or Java.
- 21 can program in Visual Basic, but not C++ or Java.

$$x = 100 - (17 + 22 + 9 + 2 + 19 + 21 + 0) = 10$$

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit?
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit?
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit?
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit?
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit?
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit?
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit?
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit?
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit?
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit?
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit?
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit? 74 + 34 + 22 = 130
- b) How many people like none of these fruit?
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit? 74 + 34 + 22 = 130
- b) How many people like none of these fruit? 9
- c) How many people do not like cherries?

$$|A| = 112$$
 $|B| = 89$ $|C| = 71$ $|A \cap B| = 32$ $|A \cap C| = 26$ $|B \cap C| = 43$ $|A \cap B \cap C| = 20$.

- a) How many people like exactly one of these fruit? 74 + 34 + 22 = 130
- b) How many people like none of these fruit? 9
- c) How many people do not like cherries? 200 (20 + 6 + 23 + 22) = 129

- To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
- To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

- To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
- To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Example. Prove that if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Example. Prove that if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.

Proof.

• To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.

• To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Example. Prove that if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

• To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.

• To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Example. Prove that if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

• To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.

• To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Example. Prove that if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

• To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.

• To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Example. Prove that if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

Likewise, if $x \in B$, then $x \in C$, since $B \subseteq C$.

• To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.

• To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Example. Prove that if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

Likewise, if $x \in B$, then $x \in C$, since $B \subseteq C$.

In both cases, we have $x \in C$,

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

Likewise, if $x \in B$, then $x \in C$, since $B \subseteq C$.

In both cases, we have $x \in C$, which proves that $A \cup B \subseteq C$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

Likewise, if $x \in B$, then $x \in C$, since $B \subseteq C$.

In both cases, we have $x \in C$, which proves that $A \cup B \subseteq C$.

Exercise. Prove that if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

Likewise, if $x \in B$, then $x \in C$, since $B \subseteq C$.

In both cases, we have $x \in C$, which proves that $A \cup B \subseteq C$.

Exercise. Prove that if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

Likewise, if $x \in B$, then $x \in C$, since $B \subseteq C$.

In both cases, we have $x \in C$, which proves that $A \cup B \subseteq C$.

Exercise. Prove that if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

Likewise, if $x \in B$, then $x \in C$, since $B \subseteq C$.

In both cases, we have $x \in C$, which proves that $A \cup B \subseteq C$.

Exercise. Prove that if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

Then we have $x \in B$, because $A \subseteq B$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

Likewise, if $x \in B$, then $x \in C$, since $B \subseteq C$.

In both cases, we have $x \in C$, which proves that $A \cup B \subseteq C$.

Exercise. Prove that if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

Then we have $x \in B$, because $A \subseteq B$.

Also, we have $x \in C$, since $A \subseteq C$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

Likewise, if $x \in B$, then $x \in C$, since $B \subseteq C$.

In both cases, we have $x \in C$, which proves that $A \cup B \subseteq C$.

Exercise. Prove that if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

Then we have $x \in B$, because $A \subseteq B$.

Also, we have $x \in C$, since $A \subseteq C$.

Hence $x \in B \cap C$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq C$ and $B \subseteq C$ and that $x \in A \cup B$.

Then either $x \in A$ or $x \in B$ (maybe both).

If $x \in A$, then $x \in C$, because $A \subseteq C$.

Likewise, if $x \in B$, then $x \in C$, since $B \subseteq C$.

In both cases, we have $x \in C$, which proves that $A \cup B \subseteq C$.

Exercise. Prove that if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

Then we have $x \in B$, because $A \subseteq B$.

Also, we have $x \in C$, since $A \subseteq C$.

Hence $x \in B \cap C$.

This proves that $A \subseteq B \cap C$.

• To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.

• To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Exercise. Prove that if $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

Then we have $x \in B$, because $A \subseteq B$.

Also, we have $x \in C$, since $A \subseteq C$.

Hence $x \in B \cap C$.

This proves that $A \subseteq B \cap C$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

Then we have $x \in B$, because $A \subseteq B$.

Also, we have $x \in C$, since $A \subseteq C$.

Hence $x \in B \cap C$.

This proves that $A \subseteq B \cap C$.

Exercise. Prove that if $A \subseteq B$, then $A \cap B = A$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

Then we have $x \in B$, because $A \subseteq B$.

Also, we have $x \in C$, since $A \subseteq C$.

Hence $x \in B \cap C$.

This proves that $A \subseteq B \cap C$.

Exercise. Prove that if $A \subseteq B$, then $A \cap B = A$.

Proof.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

Then we have $x \in B$, because $A \subseteq B$.

Also, we have $x \in C$, since $A \subseteq C$.

Hence $x \in B \cap C$.

This proves that $A \subseteq B \cap C$.

Exercise. Prove that if $A \subseteq B$, then $A \cap B = A$.

Proof. Clearly, $A \cap B \subseteq A$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

Then we have $x \in B$, because $A \subseteq B$.

Also, we have $x \in C$, since $A \subseteq C$.

Hence $x \in B \cap C$.

This proves that $A \subseteq B \cap C$.

Exercise. Prove that if $A \subseteq B$, then $A \cap B = A$.

Proof. Clearly, $A \cap B \subseteq A$.

Also, $A \subseteq A$ and $A \subseteq B$

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

Then we have $x \in B$, because $A \subseteq B$.

Also, we have $x \in C$, since $A \subseteq C$.

Hence $x \in B \cap C$.

This proves that $A \subseteq B \cap C$.

Exercise. Prove that if $A \subseteq B$, then $A \cap B = A$.

Proof. Clearly, $A \cap B \subseteq A$.

Also, $A \subseteq A$ and $A \subseteq B$,

so $A \subseteq A \cap B$ by the previous exercise.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Suppose that $A \subseteq B$ and $A \subseteq C$ and that $x \in A$.

Then we have $x \in B$, because $A \subseteq B$.

Also, we have $x \in C$, since $A \subseteq C$.

Hence $x \in B \cap C$.

This proves that $A \subseteq B \cap C$.

Exercise. Prove that if $A \subseteq B$, then $A \cap B = A$.

Proof. Clearly, $A \cap B \subseteq A$.

Also, $A \subseteq A$ and $A \subseteq B$,

so $A \subseteq A \cap B$ by the previous exercise.

Therefore, $A \cap B = A$.

• To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.

• To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Exercise. Prove that if $A \subseteq B$, then $A \cap B = A$.

Proof. Clearly, $A \cap B \subseteq A$.

Also, $A \subseteq A$ and $A \subseteq B$,

so $A \subseteq A \cap B$ by the previous exercise.

Therefore, $A \cap B = A$.

• To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.

• To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Exercise. Prove that if $A \subseteq B$, then $A \cap B = A$.

Proof. Clearly, $A \cap B \subseteq A$.

Also, $A \subseteq A$ and $A \subseteq B$,

so $A \subseteq A \cap B$ by the previous exercise.

Therefore, $A \cap B = A$.

Exercise. Prove that if $A \cap B = A$, then $A \cup B = B$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Clearly, $A \cap B \subseteq A$.

Also, $A \subseteq A$ and $A \subseteq B$,

so $A \subseteq A \cap B$ by the previous exercise.

Therefore, $A \cap B = A$.

Exercise. Prove that if $A \cap B = A$, then $A \cup B = B$.

Proof.

• To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.

• To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Exercise. Prove that if $A \subseteq B$, then $A \cap B = A$.

Proof. Clearly, $A \cap B \subseteq A$.

Also, $A \subseteq A$ and $A \subseteq B$,

so $A \subseteq A \cap B$ by the previous exercise.

Therefore, $A \cap B = A$.

Exercise. Prove that if $A \cap B = A$, then $A \cup B = B$.

Proof. Suppose that $A \cap B = A$ and let $x \in A \cup B$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Clearly, $A \cap B \subseteq A$.

Also, $A \subseteq A$ and $A \subseteq B$,

so $A \subseteq A \cap B$ by the previous exercise.

Therefore, $A \cap B = A$.

Exercise. Prove that if $A \cap B = A$, then $A \cup B = B$.

Proof. Suppose that $A \cap B = A$ and let $x \in A \cup B$.

Then either $x \in A$ or $x \in B$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Clearly, $A \cap B \subseteq A$.

Also, $A \subseteq A$ and $A \subseteq B$,

so $A \subseteq A \cap B$ by the previous exercise.

Therefore, $A \cap B = A$.

Exercise. Prove that if $A \cap B = A$, then $A \cup B = B$.

Proof. Suppose that $A \cap B = A$ and let $x \in A \cup B$.

Then either $x \in A$ or $x \in B$.

If $x \in A$, then since $A = A \cap B$, we see that $x \in B$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Clearly, $A \cap B \subseteq A$.

Also, $A \subseteq A$ and $A \subseteq B$,

so $A \subseteq A \cap B$ by the previous exercise.

Therefore, $A \cap B = A$.

Exercise. Prove that if $A \cap B = A$, then $A \cup B = B$.

Proof. Suppose that $A \cap B = A$ and let $x \in A \cup B$.

Then either $x \in A$ or $x \in B$.

If $x \in A$, then since $A = A \cap B$, we see that $x \in B$.

Hence, $x \in B$ in both cases, and so $A \cup B \subseteq B$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Proof. Clearly, $A \cap B \subseteq A$.

Also, $A \subseteq A$ and $A \subseteq B$,

so $A \subseteq A \cap B$ by the previous exercise.

Therefore, $A \cap B = A$.

Exercise. Prove that if $A \cap B = A$, then $A \cup B = B$.

Proof. Suppose that $A \cap B = A$ and let $x \in A \cup B$.

Then either $x \in A$ or $x \in B$.

If $x \in A$, then since $A = A \cap B$, we see that $x \in B$.

Hence, $x \in B$ in both cases, and so $A \cup B \subseteq B$.

Since $B \subseteq A \cup B$, we conclude that $A \cup B \subseteq B$.

• To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.

• To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Exercise. Prove that if $A \cap B = A$, then $A \cup B = B$.

Proof. Suppose that $A \cap B = A$ and let $x \in A \cup B$.

Then either $x \in A$ or $x \in B$.

If $x \in A$, then since $A = A \cap B$, we see that $x \in B$.

Hence, $x \in B$ in both cases, and so $A \cup B \subseteq B$.

Since $B \subseteq A \cup B$, we conclude that $A \cup B \subseteq B$.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Exercise. Prove that if $A \cap B = A$, then $A \cup B = B$.

Proof. Suppose that $A \cap B = A$ and let $x \in A \cup B$.

Then either $x \in A$ or $x \in B$.

If $x \in A$, then since $A = A \cap B$, we see that $x \in B$.

Hence, $x \in B$ in both cases, and so $A \cup B \subseteq B$.

Since $B \subseteq A \cup B$, we conclude that $A \cup B \subseteq B$.

Exercise. Is the statement $A \cap (B \cup C) = (A \cap B) \cup C$ true?

Provide a proof if it is true or give a counter example if it is false.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Exercise. Prove that if $A \cap B = A$, then $A \cup B = B$.

Proof. Suppose that $A \cap B = A$ and let $x \in A \cup B$.

Then either $x \in A$ or $x \in B$.

If $x \in A$, then since $A = A \cap B$, we see that $x \in B$.

Hence, $x \in B$ in both cases, and so $A \cup B \subseteq B$.

Since $B \subseteq A \cup B$, we conclude that $A \cup B \subseteq B$.

Exercise. Is the statement $A \cap (B \cup C) = (A \cap B) \cup C$ true?

Provide a proof if it is true or give a counter example if it is false.

It is false.

For example, take $A = \{1\}, B = \{1\}, C = \{2\}.$

Then $A \cap (B \cup C) = \{1\}$

but $(A \cap B) \cup C = \{1, 2\}.$

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Exercise. Is the statement $A \cap (B \cup C) = (A \cap B) \cup C$ true?

Provide a proof if it is true or give a counter example if it is false.

It is false.

For example, take $A = \{1\}, B = \{1\}, C = \{2\}.$

Then $A \cap (B \cup C) = \{1\}$

but $(A \cap B) \cup C = \{1, 2\}.$

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Exercise. Is the statement $A \cap (B \cup C) = (A \cap B) \cup C$ true?

Provide a proof if it is true or give a counter example if it is false.

It is false.

For example, take $A = \{1\}, B = \{1\}, C = \{2\}.$

Then $A \cap (B \cup C) = \{1\}$

but $(A \cap B) \cup C = \{1, 2\}.$

Exercise. Is the statement A - (B - C) = (A - B) - C true?

Provide a proof if it is true or give a counter example if it is false.

- Hints for proofs:
 - To prove that $S \subseteq T$, we can assume that $x \in S$ and show that $x \in T$.
 - To prove that S=T, we can show that $S\subseteq T$ and $T\subseteq S$.

Exercise. Is the statement $A \cap (B \cup C) = (A \cap B) \cup C$ true?

Provide a proof if it is true or give a counter example if it is false.

It is false.

For example, take $A = \{1\}, B = \{1\}, C = \{2\}.$

Then $A \cap (B \cup C) = \{1\}$

but $(A \cap B) \cup C = \{1, 2\}.$

Exercise. Is the statement A - (B - C) = (A - B) - C true?

Provide a proof if it is true or give a counter example if it is false.

It is false.

For example, take $A = \{a, b, c\}, B = \{b, c\}, C = \{c\}.$

Then $A - (B - C) = \{a, c\}$

but $(A - B) - C = \{a\}.$