Package 'lmap'

December 11, 2024

Type Package
Title Logistic Mapping
Version 0.1.3
Maintainer Mark de Rooij <rooijm@fsw.leidenuniv.nl></rooijm@fsw.leidenuniv.nl>
Description Set of tools for mapping of categorical response variables based on principal component analysis (pca) and multidimensional unfolding (mdu).
Depends R (>= 3.5.0), ggplot2, ggrepel, ggforce, fmdu
Imports nnet, stats, magrittr, dplyr, MASS, Rfast
License BSD_2_clause + file LICENSE
Encoding UTF-8
LazyData TRUE
Author Mark de Rooij [aut, cre, cph], Frank Busing [aut, cph], Juan Claramunt Gonzalez [aut]
NeedsCompilation yes
RoxygenNote 7.2.3
Repository CRAN
Date/Publication 2024-12-11 07:50:02 UTC
Contents
clmdu clpca dataExample_clmdu dataExample_clpca dataExample_lmdu dataExample_lpca dataExample_mru esm fastmbu fastmru 1

2 clmdu

	lmdu	12
	lpca	14
	mru	16
	plot.clmdu	17
	plot.clpca	18
	plot.lmdu	9
	plot.lpca	20
	plot.mru	21
	predict.clmdu	22
	predict.clpca	23
	predict.lmdu	24
	predict.lpca	25
	predict.mru	26
	summary.clmdu	27
	summary.clpca	28
	summary.esm	28
	summary.lmdu	29
		29
	summary.mru	30
	twomodedistance	30
Index		31

clmdu

 $Cumulative\ Logistic\ (Restricted)\ MDU$

Description

Cumulative Logistic (Restricted) MDU

Usage

```
clmdu(
    Y,
    X = NULL,
    S = 2,
    trace = FALSE,
    start = "svd",
    maxiter = 65536,
    dcrit = 1e-06
)
```

Arguments

Y An N times R ordinal matrix coded with integers 1,2	·,
---	----

- X An N by P matrix with predictor variables
- S Positive number indicating the dimensionality of the solution

clmdu 3

trace boolean to indicate whether the user wants to see the progress of the function

(default=TRUE)

start either starting values (list with (U,V) or (B,V)) or way to compute them (svd,

random, ca)

maxiter maximum number of iterations

dcrit convergence criterion

Value

Y Matrix Y from input

Xoriginal Matrix X from input

X Scaled X matrix

mx Mean values of X

sdx Standard deviations of X

ynames Variable names of responses

xnames Variable names of predictors

probabilities Estimated values of Y

m main effects

U matrix with coordinates for row-objects

B matrix with regression weight (U = XB)

V matrix with vectors for items/responses

iter number of main iterations from the MM algorithm

deviance value of the deviance at convergence

Examples

```
## Not run:
data(dataExample_clmdu)
Y<-dataExample_clmdu
X<-dataExample_clmdu
output1 = clmdu(Y)
plot(output1)
plot(output1, circles = NULL)
summary(output1)

output2 = clmdu(Y = Y, X = X)
plot(output2, circles = c(1,2))
summary(output2)
## End(Not run)</pre>
```

4 clpca

clpca

Cumulative Logistic (Restrcited) PCA

Description

Cumulative Logistic (Restrcited) PCA

Usage

```
clpca(
    Y,
    X = NULL,
    S = 2,
    lambda = FALSE,
    trace = FALSE,
    maxiter = 65536,
    dcrit = 1e-06
)
```

Arguments

Y An N times R ordinal matrix.

X An N by P matrix with predictor variables

S Positive number indicating the dimensionality of the solution lambda if TRUE does lambda scaling (see Understanding Biplots, p24)

trace tracing information during iterations

maxiter maximum number of iterations

dcrit convergence criterion

Value

Y Matrix Y from input

Xoriginal Matrix X from input

X Scaled X matrix

mx Mean values of X

sdx Standard deviations of X

ynames Variable names of responses

xnames Variable names of predictors

probabilities Estimated values of Y

m main effects

U matrix with coordinates for row-objects

B matrix with regression weight (U = XB)

dataExample_clmdu 5

V matrix with vectors for items/responses iter number of main iterations from the MM algorithm deviance value of the deviance at convergence

Examples

```
## Not run:
data(dataExample_clpca)
Y<-as.matrix(dataExample_clpca[,5:8])
X<-as.matrix(dataExample_clpca[,1:4])
out = clpca(Y)
out = clpca(Y, X)
## End(Not run)</pre>
```

dataExample_clmdu

Dummy data for clmdu example

Description

Dummy data for clmdu example

Usage

```
dataExample_clmdu
```

Format

A data frame with 200 observations on the following variables:

- X1 Continuous variable 1.
- X2 Continuous variable 2.
- X3 Continuous variable 3.
- X4 Continuous variable 4.
- Y1 Discrete variable 1.
- Y2 Discrete variable 2.
- Y3 Discrete variable 3.
- Y4 Discrete variable 4.
- Y5 Discrete variable 5.

6 dataExample_lmdu

dataExample_clpca

Dummy data for clpca example

Description

Dummy data for clpca example

Usage

dataExample_clpca

Format

A data frame with 200 observations on the following variables:

- X1 Continuous variable 1.
- X2 Continuous variable 2.
- X3 Continuous variable 3.
- X4 Continuous variable 4.
- Y1 Discrete variable 1.
- Y2 Discrete variable 2.
- Y3 Discrete variable 3.
- Y4 Discrete variable 4.

dataExample_lmdu

Dummy data for lmdu example

Description

Dummy data for Imdu example

Usage

 ${\tt dataExample_lmdu}$

Format

A data frame with 234 observations on the following variables:

- Y1 Dichotomous variable 1.
- Y2 Dichotomous variable 2.
- Y3 Dichotomous variable 3.
- Y4 Dichotomous variable 4.

dataExample_lpca 7

- Y5 Dichotomous variable 5.
- Y6 Dichotomous variable 6.
- Y7 Dichotomous variable 7.
- Y8 Dichotomous variable 8.
- X1 Continuous variable 1.
- X2 Continuous variable 2.
- X3 Continuous variable 3.
- X4 Continuous variable 4.
- X5 Continuous variable 5.

dataExample_lpca

Dummy data for lpca example

Description

Dummy data for lpca example

Usage

dataExample_lpca

Format

A data frame with 234 observations on the following variables:

- Y1 Dichotomous variable 1.
- Y2 Dichotomous variable 2.
- Y3 Dichotomous variable 3.
- Y4 Dichotomous variable 4.
- Y5 Dichotomous variable 5.
- Y6 Dichotomous variable 6.
- Y7 Dichotomous variable 7.
- Y8 Dichotomous variable 8.
- X1 Continuous variable 1.
- X2 Continuous variable 2.
- X3 Continuous variable 3.
- X4 Continuous variable 4.
- X5 Continuous variable 5.

8 esm

dataExample_mru

Dummy data for mru example

Description

Dummy data for mru example

Usage

```
dataExample_mru
```

Format

A data frame with 234 observations on the following variables:

- y Categorical variable.
- X1 Continuous variable 1.
- X2 Continuous variable 2.
- X3 Continuous variable 3.
- X4 Continuous variable 4.
- X5 Continuous variable 5.

esm

Extended Stereotype Model

Description

The function esm performs extended stereotype model analysis for multivariate logistic analysis i.e. a double constrained reduced rank multinomial logistic model

Usage

```
esm(
    X,
    Y,
    S = 2,
    Z = NULL,
    W = NULL,
    ord.z = 1,
    ord.m = R,
    scale.x = FALSE,
    trace = FALSE,
    maxiter = 65536,
    dcrit = 1e-06
)
```

esm 9

Arguments

X An N by P matrix with predictor variables

Y An N times R binary matrix.

S Positive number indicating the dimensionality of teh solution

Z design matrix for response
W design matrix for intercepts

ord.z if Z = NULL, the function creates Z having order ord.z ord.m if W = NULL, the function creates W having order ord.m

scale.x whether X should be scaled to zero mean and standard deviation one

trace whether progress information should be printed on the screen

maxiter maximum number of iterations

dcrit convergence criterion

Value

This function returns an object of the class esm with components:

call function call

Xoriginal Matrix X from input
X Scaled X matrix
mx Mean values of X

sdx Standard deviations of X
Y Matrix Y from input
pnames Variable names of profiles
xnames Variable names of predictors
znames Variable names of responses

Z Design matrix Z
W Design matrix W

G Profile indicator matrix G

m main effects

bm regression weights for main effects

Bx regression weights for X
 Bz regression weights for Z
 A regression weights (Bx Bz')

U matrix with coordinates for row-objects
V matrix with coordinates for column-objects

Ghat Estimated values of G

deviance value of the deviance at convergence

df number of paramters

AIC Akaike's informatoin criterion

iter number of main iterations from the MM algorithm svd Singular value decomposition in last iteration

10 fastmbu

Examples

```
## Not run:
data(dataExample_lpca)
Y = as.matrix(dataExample_lpca[ , 1:5])
X = as.matrix(dataExample_lpca[ , 9:13])
#unsupervised
output = esm(X, Y, S = 2, ord.z = 2)
## End(Not run)
```

fastmbu

Fast version of mbu. It runs mbu without input checks.

Description

Fast version of mbu. It runs mbu without input checks.

Usage

```
fastmbu(
   Y = NULL,
   W = NULL,
   XU = NULL,
   BU = NULL,
   XV = NULL,
   BV = NULL,
   mains = TRUE,
   MAXINNER = 32,
   FCRIT = 0.001,
   MAXITER = 65536,
   DCRIT = 1e-06
)
```

Arguments

Υ	matrix with dichotomous responses
W	matrix with weights for each entrance of Y or vector with weights for each row of Y
XU	in unsupervised analysis starting values for row coordinates; in supervised analysis matrix with predictor variables for rows
BU	for supervised analysis matrix with regression weights for the row coordinates
XV	in unsupervised analysis starting values for column coordinates; in supervised analysis matrix with predictor variables for columns
BV	for supervised analysis matrix with regression weights for the column coordinates

fastmru 11

mains	whether offsets for the items should be estimated
MAXINNER	maximum number of iterations in the inner loop
FCRIT	convergence criterion for STRESS in the inner loop
MAXITER	maximum number of iterations in the outer loop
DCRIT	convergence criterion for the deviance

Value

U estimated coordinate matrix for row objects

BU for supervised analysis the estimated matrix with regression weights for the rows

V estimated coordinate matrix for column objects

BV for supervised analysis the estimated matrix with regression weights for the columns

Mu estimated offsets

Lastinner number of iterations in the last call to STRESS

Lastfdif last difference in STRESS values in the inner loop

lastouter number of iterations in the outer loop

lastddif last difference in deviances in outer loop

deviance obtained deviance

fastmru

Fast version of mru. It runs mru without input checks.

Description

Fast version of mru. It runs mru without input checks.

Usage

```
fastmru(
   G = NULL,
   X = NULL,
   B = NULL,
   Z = NULL,
   MAXINNER = 32,
   FCRIT = 0.001,
   MAXITER = 65536,
   DCRIT = 1e-06,
   error.check = FALSE
)
```

12 Imdu

Arguments

G	indicator matrix of the response variable
X	matrix with predictor variables
В	starting values of the regression weights
Z	starting values for class locations
MAXINNER	maximum number of iterations in the inner loop
FCRIT	convergence criterion for STRESS in the inner loop
MAXITER	maximum number of iterations in the outer loop
DCRIT	convergence criterion for the deviance
error.check	extensive check validity input parameters (default = FALSE).

Value

B estimated regression weights

V estimated class locations

Lastinner number of iterations in the last call to STRESS

Lastfdif last difference in STRESS values in the inner loop

lastouter number of iterations in the outer loop

lastddif last difference in deviances in outer loop

deviance obtained deviance

1mdu

Logistic (Restricted) MDU

Description

This function runs: logistic multidimensional unfolding (if X = NULL) logistic restricted multidimensional unfolding (if X = NULL)

Usage

```
lmdu(
    Y,
    f = NULL,
    X = NULL,
    S = 2,
    start = "svd",
    maxiter = 65536,
    dcrit = 1e-06
)
```

Imdu 13

Arguments

Y An N times R binary matrix.

f Vector with frequencies of response patterns in Y (only applicable if (X = NULL))

X An N by P matrix with predictor variables

S Positive number indicating the dimensionality of the solution

start Either user provided starting values (start should be a list with U and V) or a

way to compute starting values (choices: random, svd, ca)

maxiter maximum number of iterations

dcrit convergence criterion

Value

deviance

call Call to the function

Yoriginal Matrix Y from input

Y Matrix Y from input

f frequencies of rows of Y

Xoriginal Matrix X from input

X Scaled X matrix

mx Mean values of X

sdx Standard deviations of X

ynames Variable names of responses

xnames Variable names of predictors

probabilities Estimated values of Y

m main effects

U matrix with coordinates for row-objects

B matrix with regression weight (U = XB)

V matrix with vectors for items/responses

iter number of main iterations from the MM algorithm

deviance value of the deviance at convergence

npar number of estimated parameters

AIC Akaike's Information Criterion

BIC Bayesian Information Criterion

lpca lpca

Examples

```
## Not run:
data(dataExample_lmdu)
Y = as.matrix(dataExample_lmdu[ , 1:8])
X = as.matrix(dataExample_lmdu[ , 9:13])
# unsupervised
output = lmdu(Y = Y, S = 2)
# supervised
output2 = lmdu(Y = Y, X = X, S = 2)
## End(Not run)
```

1pca

Logistic (Restricted) PCA

Description

This function runs: logistic principal component analysis (if X = NULL) logistic reduced rank regression (if X != NULL)

Usage

```
lpca(
   Y,
   X = NULL,
   S = 2,
   dim.indic = NULL,
   eq = FALSE,
   lambda = FALSE,
   maxiter = 65536,
   dcrit = 1e-06
)
```

Arguments

Υ	An N times R binary matrix .
Χ	An N by P matrix with predictor variables
S	Positive number indicating the dimensionality of the solution
dim.indic	An R by S matrix indicating which response variable pertains to which dimension
eq	Only applicable when dim.indic not NULL; equality restriction on regression weighhts per dimension
lambda	if TRUE does lambda scaling (see Understanding Biplots, p24)
maxiter	maximum number of iterations
dcrit	convergence criterion

lpca 15

Value

This function returns an object of the class 1pca with components:

call Call to the function

Y Matrix Y from input

Xoriginal Matrix X from input

X Scaled X matrix

mx Mean values of X

sdx Standard deviations of X

ynames Variable names of responses

xnames Variable names of predictors

m main effects

U matrix with coordinates for row-objects

B matrix with regression weight (U = XB)

V matrix with vectors for items/responses

iter number of main iterations from the MM algorithm

deviance value of the deviance at convergence

npar number of estimated parameters

AIC Akaike's Information Criterion

BIC Bayesian Information Criterion

Examples

```
## Not run:
data(dataExample_lpca)
Y = as.matrix(dataExample_lpca[, 1:8])
X = as.matrix(dataExample_lpca[, 9:13])
# unsupervised
output = lpca(Y = Y, S = 2)
## End(Not run)
```

16 mru

mru

Multinomial Restricted MDU

Description

The function mru performs multinomial restricted unfolding for a nominal response variable and a set of predictor variables.

Usage

```
mru(y, X, S = 2, start = "da", maxiter = 65536, dcrit = 1e-05)
```

Arguments

У	An N vector of the responses (categorical).
Χ	An N by P matrix with predictor variables
S	Positive number indicating the dimensionality of teh solution
start	Type of starting values (da: discriminant analysis, random or list with B and V)
maxiter	maximum number of iterations
dcrit	convergence criterion

Value

Y Matrix Y from input

Xoriginal Matrix X from input

X Scaled X matrix

G class indicator matrix

ynames class names of response variable

xnames variable names of the predictors

mx means of the predictor variables

sdx standard deviations of the predictor variables

U coordinate matrix of row objects

B matrix with regression coefficients

Class coordinate matrix

iters number of iterations

deviance value of the deviance at convergence

plot.clmdu 17

Examples

```
## Not run:
data(dataExample_mru)
y = as.matrix(dataExample_mru[1:20 , 1])
X = as.matrix(dataExample_mru[1:20 , 2:6])
output = mru(y = y, X = X, S = 2)
## End(Not run)
```

plot.clmdu

Plots a Cumulative Logistic MDU model

Description

Plots a Cumulative Logistic MDU model

Usage

```
## S3 method for class 'clmdu'
plot(
    x,
    dims = c(1, 2),
    circles = seq(1, R),
    ycol = "darkgreen",
    xcol = "lightskyblue",
    ocol = "grey",
    ...
)
```

Arguments

Х	an object of type clmdu
dims	which dimensions to visualize
circles	which circles to visualize
ycol	colour for representation of response variables
xcol	colour for representation of predictor variables
ocol	colour for representation of row objects
	additional arguments to be passed.

Value

Plot of the results obtained from clmdu

18 plot.clpca

Examples

```
## Not run:
data(dataExample_clmdu)
Y = as.matrix(dataExample_clmdu[ , 1:8])
X = as.matrix(dataExample_clmdu[ , 9:13])
# unsupervised
output = clmdu(Y = Y, S = 2)
plot(output)
## End(Not run)
```

plot.clpca

Plots a Cumulative Logistic PCA model

Description

Plots a Cumulative Logistic PCA model

Usage

```
## $3 method for class 'clpca'
plot(
    x,
    dims = c(1, 2),
    ycol = "darkgreen",
    xcol = "lightskyblue",
    ocol = "grey",
    ...
)
```

Arguments

```
    x an object of type clpca
    dims which dimensions to visualize
    ycol colour for representation of response variables
    xcol colour for representation of predictor variables
    ocol colour for representation of row objects
    ... additional arguments to be passed.
```

Value

Plot of the results obtained from clpca

plot.lmdu 19

Examples

```
## Not run:
data(dataExample_clpca)
Y<-as.matrix(dataExample_clpca[,5:8])
X<-as.matrix(dataExample_clpca[,1:4])
out = clpca(Y, X)
plot(out)
## End(Not run)</pre>
```

plot.lmdu

Plots a Logistic MDU model

Description

Plots a Logistic MDU model

Usage

```
## $3 method for class 'lmdu'
plot(
    x,
    dims = c(1, 2),
    ycol = "darkgreen",
    xcol = "lightskyblue",
    ocol = "grey",
    ...
)
```

Arguments

```
x an object of type Imdu
dims which dimensions to visualize
ycol colour for representation of response variables
xcol colour for representation of predictor variables
ocol colour for representation of row objects
... additional arguments to be passed.
```

Value

Plot of the results obtained from Imdu

20 plot.lpca

Examples

```
## Not run:
data(dataExample_lmdu)
Y = as.matrix(dataExample_lmdu[ , 1:8])
X = as.matrix(dataExample_lmdu[ , 9:13])
# unsupervised
output = lmdu(Y = Y, S = 2)
plot(output)
## End(Not run)
```

plot.lpca

Plots a Logistic PCA Model

Description

Plots a Logistic PCA Model

Usage

```
## $3 method for class 'lpca'
plot(
    x,
    dims = c(1, 2),
    type = "H",
    ycol = "darkgreen",
    xcol = "lightskyblue",
    ocol = "grey",
    ...
)
```

Arguments

```
x an object of type lpca

dims which dimensions to visualize

type either H (hybrid), I (inner product/pca), or D (distance/melodic)

ycol colour for representation of response variables

xcol colour for representation of predictor variables

ocol colour for representation of row objects

... additional arguments to be passed.
```

Value

Plot of the results obtained from lpca

plot.mru 21

Examples

```
## Not run:
data(dataExample_lpca)
Y = as.matrix(dataExample_lpca[, 1:8])
X = as.matrix(dataExample_lpca[, 9:13])
# unsupervised
output = lpca(Y = Y, S = 2)
plot(output)
## End(Not run)
```

plot.mru

Plots a Multinomial Restricted MDU model

Description

Plots a Multinomial Restricted MDU model

Usage

```
## S3 method for class 'mru'
plot(
    x,
    dims = c(1, 2),
    class.regions = FALSE,
    ycol = "darkgreen",
    xcol = "lightskyblue",
    ocol = "grey",
    ...
)
```

Arguments

```
    x an object of type mru
    dims which dimensions to visualize
    class.regions whether a voronoi diagram with classification regions should be included
    ycol colour for representation of response variables
    xcol colour for representation of predictor variables
    ocol colour for representation of row objects
    additional arguments to be passed.
```

Value

Plot of the results obtained from mru

22 predict.clmdu

Examples

```
## Not run:
data(dataExample_mru)
y = as.matrix(dataExample_mru[ , 1])
X = as.matrix(dataExample_mru[ , 2:6])
output = mru(y = y, X = X, S = 2)
plot(output)
## End(Not run)
```

predict.clmdu

The function predict.clmdu makes predictions for a test/validation set based on a fitted cl restricted multidimensional unfolding model (clmdu with X)

Description

The function predict.clmdu makes predictions for a test/validation set based on a fitted cl restricted multidimensional unfolding model (clmdu with X)

Usage

```
## S3 method for class 'clmdu'
predict(object, newX, newY = NULL, ...)
```

Arguments

object An clmdu object

newX An N by P matrix with predictor variables for a test/validation set

newY An N by R matrix with response variables for a test/validation set

additional arguments to be passed.

Value

This function returns an object of the class predclpca with components:

Yhat Predicted values for the test set

devr Estimated prediction deviance for separate responses

devtot Estimated prediction deviance for all responses

predict.clpca 23

Examples

```
## Not run:
data(dataExample_clpca)
Y = as.matrix(dataExample_clmdu[ , 1:8])
X = as.matrix(dataExample_clmdu[ , 9:13])
newY = as.matrix(dataExample_clmdu[1:20 , 1:8])
newX = as.matrix(dataExample_clmdu[1:20 , 9:13])
# supervised
output = clmdu(Y = Y, X = X, S = 2)
preds = predict(output, newX = newX, newY = newY)
## End(Not run)
```

predict.clpca

The function predict.clpca makes predictions for a test/validation set based on a fitted clrrr model (clpca with X)

Description

The function predict.clpca makes predictions for a test/validation set based on a fitted clrrr model (clpca with X)

Usage

```
## S3 method for class 'clpca'
predict(object, newX, newY = NULL, ...)
```

Arguments

object An clpca object

newX An N by P matrix with predictor variables for a test/validation set

newY An N by R matrix with response variables for a test/validation set

additional arguments to be passed.

Value

This function returns an object of the class predclpca with components:

Yhat Predicted values for the test set

devr Estimated prediction deviance for separate responses

devtot Estimated prediction deviance for all responses

24 predict.lmdu

Examples

```
## Not run:
data(dataExample_clpca)
Y = as.matrix(dataExample_clpca[ , 1:8])
X = as.matrix(dataExample_clpca[ , 9:13])
newY = as.matrix(dataExample_clpca[1:20 , 1:8])
newX = as.matrix(dataExample_clpca[1:20 , 9:13])
# supervised
output = clpca(Y = Y, X = X, S = 2)
preds = predict(output, newX = newX, newY = newY)
## End(Not run)
```

predict.lmdu

The function predict.lmdu makes predictions for a test/validation set based on a fitted lrmdu model (lmdu with X)

Description

The function predict.lmdu makes predictions for a test/validation set based on a fitted lrmdu model (lmdu with X)

Usage

```
## S3 method for class 'lmdu'
predict(object, newX, newY = NULL, ...)
```

Arguments

object An 1mdu object

newX An N by P matrix with predictor variables for a test/validation set

newY An N by R matrix with response variables for a test/validation set

additional arguments to be passed.

Value

This function returns an object of the class 1pca with components:

Yhat Predicted values for the test set

devr Estimated prediction deviance for separate responses

devtot Estimated prediction deviance for all responses

Brier.r Estimated Brier score for separate responses

Brier Estimated Brier score for all responses

predict.lpca 25

Examples

```
## Not run:
data(dataExample_lpca)
Y = as.matrix(dataExample_lmdu[-c(1:20) , 1:8])
X = as.matrix(dataExample_lmdu[-c(1:20) , 9:13])
newY = as.matrix(dataExample_lmdu[1:20 , 1:8])
newX = as.matrix(dataExample_lmdu[1:20 , 9:13])
# supervised
output = lmdu(Y = Y, X = X, S = 2)
preds = predict(output, newX = newX, newY = newY)
## End(Not run)
```

predict.lpca

The function predict.lpca makes predictions for a test/validation set based on a fitted lrrr model (lpca with X)

Description

The function predict.lpca makes predictions for a test/validation set based on a fitted lrrr model (lpca with X)

Usage

```
## S3 method for class 'lpca'
predict(object, newX, newY = NULL, ...)
```

Arguments

object An 1pca object

newX An N by P matrix with predictor variables for a test/validation set

newY An N by R matrix with response variables for a test/validation set

additional arguments to be passed.

Value

This function returns an object of the class 1pca with components:

Yhat Predicted values for the test set

devr Estimated prediction deviance for separate responses

devtot Estimated prediction deviance for all responses

Brier.r Estimated Brier score for separate responses

Brier Estimated Brier score for all responses

26 predict.mru

Examples

```
## Not run:
data(dataExample_lpca)
Y = as.matrix(dataExample_lpca[-c(1:20) , 1:8])
X = as.matrix(dataExample_lpca[-c(1:20) , 9:13])
newY = as.matrix(dataExample_lpca[1:20 , 1:8])
newX = as.matrix(dataExample_lpca[1:20 , 9:13])
# supervised
output = lpca(Y = Y, X = X, S = 2)
preds = predict(output, newX = newX, newY = newY)
## End(Not run)
```

predict.mru

The function predict.mru makes predictions for a test/validation set based on a fitted mru model

Description

The function predict.mru makes predictions for a test/validation set based on a fitted mru model

Usage

```
## S3 method for class 'mru'
predict(object, newX, newG = NULL, ...)
```

Arguments

object An 1mdu object

newX An N by P matrix with predictor variables for a test/validation set

newG An N by R matrix with response variables for a test/validation set

additional arguments to be passed.

Value

This function returns an object of the class p.mru with components:

Yhat Predicted values for the test set dev Estimated prediction deviance

summary.clmdu 27

Examples

```
## Not run:
data(dataExample_lpca)
Y = as.matrix(dataExample_mru[-c(1:20) , 1:8])
X = as.matrix(dataExample_mru[-c(1:20) , 9:13])
newY = as.matrix(dataExample_mru[1:20 , 1:8])
newX = as.matrix(dataExample_mru[1:20 , 9:13])
# supervised
output = mru(Y = Y, X = X, S = 2)
preds = predict(output, newX = newX, newY = newY)
## End(Not run)
```

summary.clmdu

Summarizing Cumulative Logistic MDU models The function summary.lmdu gives a summary from an object from clmdu()

Description

Summarizing Cumulative Logistic MDU models

The function summary.lmdu gives a summary from an object from clmdu()

Usage

```
## S3 method for class 'clmdu'
summary(object, ...)
```

Arguments

```
object An object resulting from clmdu
... additional arguments to be passed.
```

Value

Summary of the results obtained from clmdu

28 summary.esm

summary.clpca

Summarizing Cumulative Logistic PCA models

Description

The function summary.clpca gives a summary from an object from clpca()

Usage

```
## S3 method for class 'clpca'
summary(object, ...)
```

Arguments

object An object resulting from clpca
... additional arguments to be passed.

Value

Summary of the results obtained from clpca

summary.esm

Summarizing an Extended Steretype Model

Description

The function summary.esm gives a summary from an object from esm()

Usage

```
## S3 method for class 'esm'
summary(object, ...)
```

Arguments

object An object resulting from esm
... additional arguments to be passed.

Value

Summary of the results obtained from esm

summary.lmdu 29

summary.lmdu

Summarizing Logistic MDU models

Description

The function summary.lmdu gives a summary from an object from lmdu()

Usage

```
## S3 method for class 'lmdu'
summary(object, ...)
```

Arguments

object An object resulting from Imdu
... additional arguments to be passed.

Value

Summary of the results obtained from lmdu

summary.lpca

Summarizing Logistic PCA models

Description

The function summary.lpca gives a summary from an object from lpca()

Usage

```
## S3 method for class 'lpca'
summary(object, ...)
```

Arguments

object An object resulting from lpca ... additional arguments to be passed.

Value

Summary of the results obtained from lpca

30 twomodedistance

summary.mru	Summarizing	Multinomial	Logistic	Unfolding	model The function
	gives a summary from an object from mru()				

Description

Summarizing Multinomial Logistic Unfolding model
The function summary.mru gives a summary from an object from mru()

Usage

```
## S3 method for class 'mru'
summary(object, ...)
```

Arguments

object An object resulting from mru
... additional arguments to be passed.

Value

Summary of the results obtained from mru

twomodedistance

The function two mode distance computes the two mode (unfolding) distance

Description

The function two mode distance computes the two mode (unfolding) distance

Usage

```
twomodedistance(U, V)
```

Arguments

U An N times S matrix with coordinates in S dimensional Euclidean space.
 V An R times S matrix with coordinates in S dimensional Euclidean space.

Value

D a N by R matrix with Euclidean distances

Index

```
* datasets
                                                 summary.lpca, 29
    dataExample_clmdu, 5
                                                 summary.mru, 30
    dataExample_clpca, 6
                                                 twomodedistance, 30
    dataExample_lmdu, 6
    dataExample_lpca, 7
    dataExample_mru, 8
clmdu, 2
clpca, 4
dataExample_clmdu, 5
dataExample_clpca, 6
dataExample_lmdu, 6
dataExample_lpca, 7
dataExample_mru, 8
esm, 8
fastmbu, 10
fastmru, 11
1mdu, 12
1pca, 14
mru, 16
plot.clmdu, 17
plot.clpca, 18
plot.lmdu, 19
plot.lpca, 20
plot.mru, 21
\verb|predict.clmdu|, 22|
predict.clpca, 23
predict.lmdu, 24
predict.lpca, 25
predict.mru, 26
summary.clmdu, 27
summary.clpca, 28
summary.esm, 28
summary.1mdu, 29
```