Notes on "Statistics for Mathematicians" by Victor M. Panaretos

hisanobu-nakamura

<2019-06-27 >

Contents

1	About this note	1
2	Jargons	1
3	Chapter 1: Regular Probability Models 3.1 Discrete Regular Models	1
1	About this note	
2	Jargons	
3	Chapter 1: Regular Probability Models	
	Definition 1.1: Regular Parametric Probability Models	
	 X: ℝ-valued random variable F_θ: distribution function of X θ: a parameter in Θ ⊆ ℝ^p (parameter space) 	
	The probability model $\{F_{\theta}: \theta \in \Theta\}$ will be calld regular if one of	

- 1. $\forall \theta \in \Theta$, the distribution F_{θ} is continuous with density $f(x; \theta)$
- 2. $\forall \theta \in \Theta$, the distribution F_{θ} is discrete with probability mass function $f(x;\theta)$ such that $\sum_{x \in \mathbb{Z}} f(x;\theta) = 1$ for all $\theta \in \Theta$.
- The model F_{θ} cannot switch between continuous and discrete depending on the value of θ .
- $\mathcal{X} := \{x \in \mathbb{R} : f(x; \theta) > 0\}$ is called the <u>sample space</u> of X.

the two following conditions holds:

3.1 Discrete Regular Models