TAILINE NONATO DC427182

EXERCISE II

Since the sequence $A_1 \subset A_2 \subset \cdots$ is expanding, the union can be written as: $A = \bigcup_{n=1}^{\infty} A_n \quad \text{where each } A_n \text{ event grows larger}$

Notice that $\ell(A_n) = \ell(A_1 \cup A_2 \cup \cdots)$ is increasing because $A_1 \subset A_2 \subset \cdots$ Then $\ell(A_1) \leq \ell(A_2) \leq \cdots$ and $\lim_{n \to \infty} \ell(A_n)$ exists.

By the definition of the probability measure, the idea of continuity of probability can be seen: $P(U + n) = \lim_{n \to \infty} P(A_n)$

Similarly, since the sequence $A_1 \supset A_2 \supset \cdots$ is contracting the union can be written as $B = \bigcap_{n=1}^{\infty} A_n$ where each A_n event becomes smaller

If one event contains the other, its probability can not increase, then $R(A_n) = P(A_s \cap A_2 \cap \cdots)$ and $P(A_s) \ge P(A_2) \ge \cdots$ and $P(A_n) = P(A_n) \ge P(A_n)$

Then by the definition of probability measure $P\left(\bigcap_{n=1}^{\infty}A_{n}\right)=\lim_{n\to\infty}P(A_{n})$

EXERCISE 12

Given that B_n is a contracting sequence $(B_1 \supset B_2 \supset \cdots)$, the results from Exercise 1.1 show that $P(\bigcap_{n=1}^{\infty} B_n) = \lim_{n \to \infty} P(B_n)$ $= \lim_{n \to \infty} P(A_n \cup A_{n+1} \cup \cdots)$ By the boole inequality $P(B_n) \subseteq P(A_n) + P(A_{n+1}) + \cdots$ Assume that $\bigcap_{n=1}^{\infty} P(A_n) \subset \infty$ Notice that when $n \to \infty$, the terms in $\bigcap_{n=1}^{\infty} P(A_n)$ get progressively $S_n = \lim_{n \to \infty} P(B_n) = 0$ $P(\bigcap_{n=1}^{\infty} B_n) = \lim_{n \to \infty} P(B_n) = 0$

EXERCISE 1.3

X is a r.v. $\sigma(X)$ - measurable, by that for any Borel set A $\{X \in A\} = X^{-1}(A) \in \mathcal{F}$ Considering $\{f(X) \in B\}$ where \mathcal{B} is a Borel set $\{f(X) \in B\} = X^{-1}(f^{-1}(B))$ Notice that $X^{-1}(f^{-1}(B)) \in \sigma(X)$ because f is Borel. And $\sigma(X)$ contains all events that depend on X including $\{X \in A\}$ where A is a Bovel set. And that implies that f(X) is $\sigma(X)$ -measurable.

EXERCISE 1.4

(1) Assume $x_1 \angle x_2$, then the event $9x \angle x_1$ $3 \Rightarrow 9x \angle x_2$ 3

meaning $P(x \angle x_1) \angle P(x \angle x_2)$ which implies $f_{\xi}(x_1) \angle f_{\xi}(x_2)$ Thus $f_{\xi}(x)$ is decreasing.

1) By the definition, $f_{\xi}(x_n) = P(\xi = x_n)$ And by Exercise 1.1 $f_{\xi}(x_n) = P(\xi = x_n) = \lim_{n \to \infty} P(\xi = x_n) = \lim_{n \to \infty} f_{\xi}(x_n)$

Proving that for is right continuous.

(1) As $x \to -\infty$ the probability of $X \le x$ goes to 0 Therefore $\lim_{n \to \infty} f_{\xi}(x) = f(Q) = 0$

Also, by Exercise 1.1 $\lim_{n\to\infty} f_{\xi}(n) = \lim_{n\to\infty} P(g \le n) = P(\Omega) = 1$

EXERCISE 1.5

By definition,

$$f_{\xi}(x) = P(\xi \leq x) = \int_{-\infty}^{x} f_{\xi}(x) dx$$

Assuming that $f_{\xi}(n)$ is defined. Now, assuming $f_{\xi}(n)$'s continuity and that f_{ξ} is differentiable: $\int_{\xi} f_{\xi}(n) = f_{\xi}(n)$ on

EXERCISE 1.6

By definition:
$$f_{g}(x) = f(\chi \leq x) = \sum_{x_i = x} f(\chi = x_i)$$

As (s,t] is an interval that does not contain x_1,x_2,\cdots , the probability of X taking any value is 0.

Therefore, for any sexet:

$$f_{g}(t) - f_{g}(s) = P(s < g \leq t) = 0$$

Now, the size of the jump is given by:

$$f_{\xi}(n_i) - f_{\xi}(\bar{x_i}) = f(\xi \leq x_i) - f(\xi \leq x_i) = f(\xi = x_i)$$

the value before x_i

EXERCISE 1.8

The Schwarz inequality is given by
$$[E(\S\eta)]^2 = E(\S^2) \cdot E(\eta^2)$$
 The objective is to prove that
$$E(\S^2) \text{ exists}$$
 Then if $N=1$ is choosen:
$$[E(\S\cdot 1)]^2 = E(\S^2) \cdot E(1^2) = E(\S^2) \subset \infty$$

EXERCISE 19

$$E(\eta^2)$$
 can be written as:
 $E(\eta^2) = \int_0^\infty t^2 df_n(t)$ where $f_n(t) = P(\eta \le t)$
Integrating by parts:

Since $f_{\eta}(t) \to 1$ as $t \to \infty$, the integrable is finite and it is proven that $E(\eta^2)$ is square integrable.

EXERCISE 1.10

Given that
$$B_1, B_2, \cdots$$
 is a sequence or disjoint sets,
 $A = (A \cap B_1) \cup (A \cap B_2) \cup \cdots$
By the property of additivity:
 $P(A) = P((A \cap B_1) \cup (A \cap B_2) \cup \cdots)$
 $= \sum_{n=1}^{\infty} P(A \cap B_n)$
 $= \sum_{n=1}^{\infty} P(A \cap B_n) \cdot P(B_n)$

EXERCISE 1.11

If A and B are independent, then P(A|B) = P(A) and vice versa. Therefore, if $P(B) \neq 0$, A and B are independent if and only if P(A|B) = P(A)Since $P(B) \neq 0$ we can multiply by P(B) on both sides: $P(A) = P(A \cap B) \implies P(A) \cdot P(B) = P(A \cap B) \cdot P(B)$ P(B)and find $P(A \cap B) = P(A) \cdot P(B)$