Rank-20 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

General information

Number of lines	9
Number of points	29
Number of singular points	4
Number of Eckardt points	5
Number of double points	6
Number of single points	18
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{9}
Type of lines on points	$3^5, 2^6, 1^{18}$

Singular Points

The surface has 4 singular points:

0:
$$P_{12} = \mathbf{P}(1, 1, 1, 0) = \mathbf{P}(1, 1, 1, 0)$$

1: $P_{27} = \mathbf{P}(1, 1, 0, 1) = \mathbf{P}(1, 1, 0, 1)$
2: $P_{39} = \mathbf{P}(1, 0, 1, 1) = \mathbf{P}(1, 0, 1, 1)$

The 9 Lines

The lines and their Pluecker coordinates are:

$$\ell_{0} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{38} = \mathbf{Pl}(0,0,1,1,1,1)_{198}$$

$$\ell_{1} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{110} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{110} = \mathbf{Pl}(1,0,1,1,1,1)_{199}$$

$$\ell_{2} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{25} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{25} = \mathbf{Pl}(1,1,0,0,1,1)_{177}$$

$$\ell_{3} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{26} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{26} = \mathbf{Pl}(1,1,1,0,1,1)_{180}$$

$$\ell_{4} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{85} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{85} = \mathbf{Pl}(1,1,1,1,0,0)_{16}$$

$$\ell_{5} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{106} = \mathbf{Pl}(1,1,1,1,0,1)_{150}$$

$$\ell_{6} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{89} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{89} = \mathbf{Pl}(1,1,1,1,1,1,1)_{149}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{109} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \end{bmatrix}_{109} = \mathbf{Pl}(1,1,0,1,1,1)_{189}$$

$$\ell_{8} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{122} = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{122} = \mathbf{Pl}(0,1,1,1,1,1,1)_{202}$$

Rank of lines: (38, 110, 25, 26, 85, 106, 89, 109, 122)

Rank of points on Klein quadric: (198, 199, 177, 180, 16, 150, 74, 189, 202)

Eckardt Points

The surface has 5 Eckardt points:

 $0: P_4 = \mathbf{P}(1, 1, 1, 1) = \mathbf{P}(1, 1, 1, 1),$

 $1: P_{12} = \mathbf{P}(1, 1, 1, 0) = \mathbf{P}(1, 1, 1, 0),$

 $2: P_{27} = \mathbf{P}(1, 1, 0, 1) = \mathbf{P}(1, 1, 0, 1),$

 $3: P_{39} = \mathbf{P}(1,0,1,1) = \mathbf{P}(1,0,1,1),$

 $4: P_{42} = \mathbf{P}(0, 1, 1, 1) = \mathbf{P}(0, 1, 1, 1).$

Double Points

The surface has 6 Double points:

The double points on the surface are:

$$P_5 = (1, 1, 0, 0) = \ell_0 \cap \ell_1$$

$$P_{38} = (0, 0, 1, 1) = \ell_0 \cap \ell_8$$

$$P_8 = (1, 0, 1, 0) = \ell_2 \cap \ell_3$$

$$P_{26} = (0, 1, 0, 1) = \ell_2 \cap \ell_7$$

$$P_{11} = (0, 1, 1, 0) = \ell_4 \cap \ell_5$$

 $P_{23} = (1, 0, 0, 1) = \ell_4 \cap \ell_6$

Single Points

The surface has 18 single points:

The single points on the surface are:

```
0: P_{47} = (2, 2, 1, 1) lies on line \ell_0
                                                                       10: P_{68} = (3, 3, 2, 1) lies on line \ell_8
1: P_{48} = (3, 2, 1, 1) lies on line \ell_1
                                                                       11: P_{75} = (2, 1, 3, 1) lies on line \ell_3
                                                                       12 : P_{76} = (3, 1, 3, 1) lies on line \ell_2
2: P_{51} = (2, 3, 1, 1) lies on line \ell_1
3: P_{52} = (3,3,1,1) lies on line \ell_0
                                                                       13: P_{78} = (1, 2, 3, 1) lies on line \ell_5
4: P_{59} = (2, 1, 2, 1) lies on line \ell_2
                                                                       14: P_{79} = (2, 2, 3, 1) lies on line \ell_8
5: P_{60} = (3, 1, 2, 1) lies on line \ell_3
                                                                       15: P_{80} = (3, 2, 3, 1) lies on line \ell_7
6: P_{62} = (1, 2, 2, 1) lies on line \ell_4
                                                                       16: P_{82} = (1, 3, 3, 1) lies on line \ell_4
7: P_{64} = (3, 2, 2, 1) lies on line \ell_6
                                                                       17: P_{83} = (2, 3, 3, 1) lies on line \ell_6
8: P_{66} = (1, 3, 2, 1) lies on line \ell_5
9: P_{67} = (2, 3, 2, 1) lies on line \ell_7
```

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line:

The points on the surface but not on lines are:

Line Intersection Graph

$ \begin{array}{r} 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \end{array} $	0	1	2	3	4	5	6	7	8
0	0	1	1	0	1	0	0	0	1
1	1	0	0	1	0	1	1	1	0
2	1	0	0	1	1	0	0	1	0
3	0	1	1	0	0	1	1	0	1
4	1	0	1	0	0	1	1	0	0
5	0	1	0	1	1	0	0	1	1
6	0	1	0	1	1	0	0	1	1
7	0	1	1	0	0	1	1	0	1
8	1	0	0	1	0	1	1	1	0

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_8
in point	P_5	P_4	P_4	P_{38}

Line 1 intersects

Line	ℓ_0	ℓ_3	ℓ_5	ℓ_6	ℓ_7
in point	P_5	P_{42}	P_{39}	P_{42}	P_{39}

Line 2 intersects

Line	ℓ_0	ℓ_3	ℓ_4	ℓ_7
in point	P_4	P_8	P_4	P_{26}

 ${\bf Line~3~intersects}$

Line	ℓ_1	ℓ_2	ℓ_5	ℓ_6	ℓ_8
in point	P_{42}	P_8	P_{27}	P_{42}	P_{27}

Line 4 intersects

Line	ℓ_0	ℓ_2	ℓ_5	ℓ_6
in point	P_4	P_4	P_{11}	P_{23}

Line 5 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_7	ℓ_8
in point	P_{39}	P_{27}	P_{11}	P_{39}	P_{27}

Line 6 intersects

Line	ℓ_1	ℓ_3	ℓ_4	ℓ_7	ℓ_8
in point	P_{42}	P_{42}	P_{23}	P_{12}	P_{12}

Line 7 intersects

Line	ℓ_1	ℓ_2	ℓ_5	ℓ_6	ℓ_8
in point	P_{39}	P_{26}	P_{39}	P_{12}	P_{12}

Line 8 intersects

Line	ℓ_0	ℓ_3	ℓ_5	ℓ_6	ℓ_7
in point	P_{38}	P_{27}	P_{27}	P_{12}	P_{12}

The surface has 29 points: The points on the surface are:

$0: P_4 = (1, 1, 1, 1)$	$10: P_{42} = (0, 1, 1, 1)$	$20: P_{67} = (2, 3, 2, 1)$
$1: P_5 = (1, 1, 0, 0)$	$11: P_{47} = (2, 2, 1, 1)$	$21: P_{68} = (3, 3, 2, 1)$
$2: P_8 = (1,0,1,0)$	$12: P_{48} = (3, 2, 1, 1)$	$22: P_{75} = (2, 1, 3, 1)$
$3: P_{11} = (0, 1, 1, 0)$	13: $P_{51} = (2, 3, 1, 1)$	$23: P_{76} = (3, 1, 3, 1)$
$4: P_{12} = (1, 1, 1, 0)$	$14: P_{52} = (3, 3, 1, 1)$	$24: P_{78} = (1, 2, 3, 1)$
$5: P_{23} = (1,0,0,1)$	$15: P_{59} = (2, 1, 2, 1)$	$25: P_{79} = (2, 2, 3, 1)$
$6: P_{26} = (0, 1, 0, 1)$	$16: P_{60} = (3, 1, 2, 1)$	$26: P_{80} = (3, 2, 3, 1)$
$7: P_{27} = (1, 1, 0, 1)$	$17: P_{62} = (1, 2, 2, 1)$	$27: P_{82} = (1, 3, 3, 1)$
$8: P_{38} = (0,0,1,1)$	$18: P_{64} = (3, 2, 2, 1)$	$28: P_{83} = (2,3,3,1)$
$9: P_{39} = (1,0,1,1)$	$19: P_{66} = (1, 3, 2, 1)$	