STA 314: Statistical Methods for Machine Learning I

Lecture 7 - Logistic regression

Xin Bing

Department of Statistical Sciences University of Toronto

Review

- In classification, $X \in \mathcal{X}$ and $Y \in C = \{0, 1, \dots, K-1\}$.
- The Bayes rule

$$\arg\max_{k\in C} \mathbb{P}\left\{Y = k \mid X = \mathbf{x}\right\}, \qquad \forall \mathbf{x} \in \mathcal{X}$$

has the smallest expected error rate.

• For binary classification, our goal is to estimate

$$p(\mathbf{x}) = \mathbb{P}\left\{Y = 1 \mid X = \mathbf{x}\right\}, \quad \forall \mathbf{x} \in \mathcal{X}.$$

Logistic Regression

Logistic Regression is a parametric approach that assumes parametric structure on

$$p(\mathbf{x}) = \mathbb{P}(Y = 1 \mid X = \mathbf{x}).$$

It assumes

$$p(\mathbf{x}) = \frac{e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}{1 + e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p}}.$$

The function $f(t) = e^t/(1 + e^t)$ is called the logistic function. β_0, \dots, β_p are the parameters.

- It is easy to see that we always have $0 \le p(\mathbf{x}) \le 1$.
- Note that $p(\mathbf{x})$ is **NOT** a linear function either in \mathbf{x} or in $\boldsymbol{\beta} = (\beta_0, \dots, \beta_p)$.

Logistic Regression

A bit of rearrangement gives

$$\underbrace{\frac{p(\mathbf{x})}{1 - p(\mathbf{x})}}_{\text{odds}} = e^{\beta_0 + \beta_1 x_1 + \dots + \beta_p x_p},$$

$$\underbrace{\log \left[\frac{p(\mathbf{x})}{1 - p(\mathbf{x})}\right]}_{\text{log-odds (a.k.a. logit)}} = \beta_0 + \beta_1 x_1 + \dots + \beta_p x_p.$$

odds $\in [0, \infty)$ and log-odds $\in (-\infty, \infty)$.

- Similar interpretation as linear models.
- How to estimate β ?

Maximum Likelihood Estimator (MLE)

Given $\mathcal{D}^{train} = \{(\mathbf{x}_1, y_1), ..., (\mathbf{x}_n, y_n)\}$ with $y_i \in \{0, 1\}$, we estimate the parameters by **maximizing the likelihood** of \mathcal{D}^{train} .

The maximum likelihood principle

We seek the estimates of parameters such that the fitted probability are the closest to the individual's observed outcome.

Cont'd: MLE under logistic regression

Recipe of computing the MLE:

- 1. Write down the likelihood, as always!
- 2. Solve the optimization (maximization) problem.

The MLE has many nice properties!

- Asymp. consistent
- Asymp. normal
- Asymp. efficient

Inference under logistic regression

Let $\hat{\beta}$ be the MLE.

• Z-statistic is similar to t-statistic in regression, and is defined as

$$\frac{\hat{\beta}_j}{SE(\hat{\beta}_j)}, \quad \forall j \in \{0, 1, \dots, p\}.$$

It produces p-value for testing the null hypothesis

$$H_0: \beta_j = 0$$
 v.s. $H_1: \beta_j \neq 0$.

A large (absolute) value of the z-statistic or small p-value indicates evidence against H_0 .

Example: Default data

Consider the Default data using balance, income, and student status as predictors.

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$
$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-10.8690	0.4923	-22.08	< 0.0001
balance	0.0057	0.0002	24.74	< 0.0001
income	0.0030	0.0082	0.37	0.7115
student[Yes]	-0.6468	0.2362	-2.74	0.0062

Prediction at different levels under logistic regression

Let $\hat{\beta} = (\hat{\beta}_0, \dots, \hat{\beta}_p)$ be the MLE.

• Prediction of the logit at $x \in \mathcal{X}$:

$$\hat{\log}it(\mathbf{x}) = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p.$$

• Prediction of the conditional probability $\mathbb{P}(Y = 1 \mid X = \mathbf{x})$:

$$\hat{\mathbb{P}}(Y = 1 \mid X = \mathbf{x}) = \frac{e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p}}{1 + e^{\hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_p x_p}}$$

• Prediction of the label Y (i.e. classification) at X = x:

$$\hat{y} = \left\{ \begin{array}{ll} 1, & \text{if} & \hat{\mathbb{P}}(Y=1 \mid X=\mathbf{x}) \geq 0.5; \\ \\ 0, & \text{otherwise.} \end{array} \right.$$

Prediction of $\mathbb{P}(Y = 1 \mid X = \mathbf{x})$

Consider the Default data with student status as the only feature.

What is the probability of default for a student?

To fit the model, we encode student status as 1 for student and 0 otherwise.

	Coefficient	Std. Error	Z-statistic	P-value
Intercept	-3.5041	0.0707	-49.55	< 0.0001
student[Yes]	0.4049	0.1150	3.52	0.0004

$$\begin{split} \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=Yes}) &= \frac{e^{-3.5041 + 0.4049 \times 1}}{1 + e^{-3.5041 + 0.4049 \times 1}} = 0.0431, \\ \widehat{\Pr}(\texttt{default=Yes}|\texttt{student=No}) &= \frac{e^{-3.5041 + 0.4049 \times 0}}{1 + e^{-3.5041 + 0.4049 \times 0}} = 0.0292. \end{split}$$

Metrics used for evaluating classifiers

In classification, we have several metrics that can be used to evaluate a given classifier.

- The most commonly used metric is the overall classification accuracy.
- For binary classification, there are a few more out there.....

Logistic Regression on the Default Data

- Classify whether or not an individual will default on the basis of credit card balance and student status.
- The confusion matrix of fitted logistic regression

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

Type of Errors for binary classification

		True default status		
		No	Yes	Total
Predicted	No	9,644	252	9,896
$default\ status$	Yes	23	81	104
	Total	9,667	333	10,000

- 1. The training error rate is (23 + 252)/10000 = 2.75%.
- 2. False positive rate (FPR): The fraction of negative examples that are classified as positive: 23/9667 = 0.2% in default data.
- 3. False negative rate (FNR): The fraction of positive examples that are classified as negative: 252/333 = 75.7% in default data.¹

¹For a credit card company that is trying to identify high-risk individuals, the error rate 75.7% among individuals who default is unacceptable.

Types of Errors for binary classification

Q: How to modify the logistic classifier to lower the FNR?

• The current classifier is based on the rule

$$\hat{\mathbb{P}}(\text{default} = yes \mid X = \mathbf{x}) \ge 0.5.$$

To lower FNR, we reduce the number of negative predictions.
 Classify X = x to yes if

$$\hat{\mathbb{P}}\left(Y = yes \mid X = \mathbf{x}\right) \geq t.$$

for some t < 0.5.

Trade-off between FPR and FNR

We can achieve better balance between FPR and FNR by varying the threshold:

ROC Curve

The ROC curve is a popular graphic for simultaneously displaying FPR and TPR = 1 - FNR for all possible thresholds.

The overall performance of a classifier, summarized over all thresholds, is given by the area under the curve (AUC). High AUC is good.

More metrics in the binary classification

		Predicted class		
		– or Null	+ or Non-null	Total
True	– or Null	True Neg. (TN)	False Pos. (FP)	N
class	+ or Non-null	False Neg. (FN)	True Pos. (TP)	P
	Total	N*	P*	

Name	Definition	Synonyms
False Pos. rate	FP/N	Type I error, 1—Specificity
True Pos. rate	TP/P	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1—false discovery proportion
Neg. Pred. value	TN/N*	

The above also defines sensitivity and specificity.

Computation of the MLE under Logistic Regression

General steps of computing the MLE:

- Write down the likelihood, as always!
- Solve the optimization problem.

Likelihood under Logistic Regression

For simplicity, let us set $\beta_0 = 0$ such that

$$p(\mathbf{x}) = \frac{e^{\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta}}}{1 + e^{\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta}}}, \qquad 1 - p(\mathbf{x}) = \frac{1}{1 + e^{\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta}}}.$$

The data consists of $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ with

$$y_i \sim \text{Bernoulli}(p(\mathbf{x}_i)), \qquad p(\mathbf{x}_i) = \frac{e^{\mathbf{x}_i^T \boldsymbol{\beta}}}{1 + e^{\mathbf{x}_i^T \boldsymbol{\beta}}}, \quad 1 \leq i \leq n.$$

• What is the likelihood of y_i?

Likelihood under Logistic Regression

The likelihood of each data point (\mathbf{x}_i, y_i) at any $\boldsymbol{\beta}$ is

$$L(\boldsymbol{\beta}; \mathbf{x}_i, y_i) = [p(\mathbf{x}_i)]^{y_i} [1 - p(\mathbf{x}_i)]^{1 - y_i}$$

with

$$p(\mathbf{x}_i) = \frac{e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}}{1 + e^{\mathbf{x}_i^{\top} \boldsymbol{\beta}}}.$$

The joint likelihood of all data points is

$$L(\beta) = \prod_{i=1}^{n} [p(\mathbf{x}_{i})]^{y_{i}} [1 - p(\mathbf{x}_{i})]^{1-y_{i}}.$$

Log-likelihood under Logistic Regression

The log-likelihood at any β is

$$\ell(\beta) = \log \left\{ \prod_{i=1}^{n} \left[p(\mathbf{x}_{i}) \right]^{y_{i}} \left[1 - p(\mathbf{x}_{i}) \right]^{1-y_{i}} \right\}$$

$$= \sum_{i=1}^{n} \left[y_{i} \log(p(\mathbf{x}_{i})) + (1 - y_{i}) \log(1 - p(\mathbf{x}_{i})) \right]$$

$$= \sum_{i=1}^{n} \left[y_{i} \log\left(\frac{p(\mathbf{x}_{i})}{1 - p(\mathbf{x}_{i})}\right) + \log(1 - p(\mathbf{x}_{i})) \right]$$

$$= \sum_{i=1}^{n} \left[y_{i} \mathbf{x}_{i}^{\mathsf{T}} \beta - \log\left(1 + e^{\mathbf{x}_{i}^{\mathsf{T}} \beta}\right) \right].$$

How to compute the MLE?

How do we maximize the log-likelihood

$$\ell(\beta) = \sum_{i=1}^{n} \left[y_i \mathbf{x}_i^{\mathsf{T}} \beta - \log \left(1 + e^{\mathbf{x}_i^{\mathsf{T}} \beta} \right) \right]$$

for logistic regression?

- It is equivalent to minimize $-\ell(\beta)$ over β .
- No direct solution: taking derivatives of $\ell(\beta)$ w.r.t. β and setting them to 0 doesn't have an explicit solution.
- Need to use iterative procedure.