Corsi di Laurea in Ingegneria Biomedica, dell'Informazione, Elettronica e Informatica Prova scritta di Fisica Generale 1 - Padova, 10 Febbraio 2016

C	NI	e Matricola	
L.OODOMA	Name	a Watricola	
OOGIIOIIIC		> IVIALI IVOIA	

Problema 1

Una sbarra sottile AB di lunghezza $\ell=0.8$ m e massa M=15 kg può ruotare senza attrito nel piano verticale attorno ad un perno fisso in A. La posizione della sbarra è definita tramite l'angolo θ formato dalla stessa con l'asse verticale (vedi figura). Inizialmente la sbarra è mantenuta ferma all'angolo $\theta=90^\circ$ per mezzo di una fune ideale collegata ad un motore privo di attriti; poi, azionando il motore e quindi agendo sulla fune, la sbarra viene sollevata e bloccata all'angolo $\theta=135^\circ$. Successivamente si taglia la fune; quando la sbarra raggiunge l'angolo $\theta=0^\circ$ il suo estremo B urta in modo completamente anelastico un corpo di dimensioni trascurabili e massa m=M/2. Questo corpo è stato messo in moto prima dell'urto tramite l'applicazione di un impulso orizzontale J tale per cui, dopo aver

percorso un tratto orizzontale scabro di lunghezza ℓ e coefficiente di attrito μ = 0.15, urta la sbarra con velocità v = 0.6 m/s orientata nel verso opposto rispetto alla velocità della sbarra stessa. Determinare:

- a) il lavoro W compiuto dal motore per sollevare la sbarra;
- b) il modulo ω della velocità angolare della sbarra per $\theta = 0^{\circ}$;
- c) il modulo dell'impulso *J* fornito inizialmente al corpo che urta la sbarra;
- d) modulo ω ' e verso della velocità angolare del sistema sbarra+corpo subito dopo l'urto;
- e) (facoltativo) l'energia E_{diss} dissipata nell'urto nel caso in cui sul corpo sia applicato un diverso impulso J', tale per cui il sistema sbarra+corpo non si muova dopo l'urto.

Problema 2

Un recipiente cilindrico di sezione $S=10^{-2}$ m² è diviso in due parti da un pistone libero di scorrere senza attriti. Nella parte sinistra (vedi figura) vi sono n=0.6 moli di gas ideale biatomico. Nella parte destra è stato fatto il vuoto, ed è inserita una molla di costante elastica k=2000 N/m. Inizialmente il gas è alla temperatura ambiente $T_A=300$ K, e la molla è compressa rispetto alla sua lunghezza di riposo della quantità $\Delta x_A=0.4$ m. Il gas viene riscaldato ponendolo a contatto termico, attraverso la parete diatermica a sinistra del cilindro, con un serbatoio alla temperatura T_B (tutte le altre pareti del cilindro sono adiabatiche). Il gas si espande fino allo stato di equilibrio B in cui la molla è compressa di $\Delta x_B=0.9$ m. Il serbatoio viene quindi rimosso, si blocca il pistone e si attende che si ristabilisca l'equilibrio termico con l'ambiente (stato C). Infine, rimossa la molla e sbloccato nuovamente il pistone, si riporta il gas allo stato iniziale A con una compressione isoterma reversibile. Si disegni il ciclo descritto nel piano di Clapeyron e si determinino:

- a) il volume iniziale V_A del gas ed il lavoro W_{AB} compiuto dal gas nella trasformazione AB;
- b) la temperatura T_B del serbatoio ed il calore Q_{AB} scambiato dal gas nella trasformazione AB;
- c) il calore Q_{ced} ceduto nel ciclo ed il rendimento η del ciclo;
- d) la variazione di entropia dell'universo ΔS_{UN}^{AB} nella trasformazione AB.

Soluzioni

Problema 1

a)
$$W = \Delta E_{p,sbarra} = Mgh = Mg\frac{\ell}{2}\cos 45^{\circ} = Mg\frac{\ell\sqrt{2}}{4} = 41.6 \text{ J}$$

b)
$$E_m = \cos t \implies \frac{1}{2}I\omega^2 = Mg\frac{\ell}{2}(1+\cos 45^\circ) \implies \frac{1}{2}\frac{1}{3}M\ell^2\omega^2 = Mg\frac{\ell}{4}(2+\sqrt{2}) \implies \omega = \sqrt{\frac{3g}{2\ell}(2+\sqrt{2})} = 7.9 \text{ rad/s}$$

c)
$$v^2 = v_o^2 + 2a\ell = v_o^2 - 2\mu g\ell \implies v_o = \sqrt{v^2 + 2\mu g\ell} \implies J = mv_o = \frac{M}{2}\sqrt{v^2 + 2\mu g\ell} = 12.4 \text{ Ns}$$

d)
$$L_A = \cos t \implies I\omega - mv\ell = I'\omega' \implies \frac{1}{3}M\ell^2\omega - \frac{M}{2}v\ell = \left(\frac{1}{3}M\ell^2 + m\ell^2\right)\omega' \implies \omega' = \frac{2\ell\omega - 3v}{5\ell} = 2.72 \text{ rad/s}$$
 in verso orario (concorde con la velocità angolare della sbarra prima dell'urto).

e)
$$L'_{A} = \cos t = 0 \implies I\omega - mv'\ell = 0 \implies \frac{1}{3}M\ell^{2}\omega - \frac{M}{2}v'\ell = 0 \implies v' = \frac{2}{3}\ell\omega = 4.22 \text{ m/s}$$

$$E_{diss} = |\Delta E_{k}| = \frac{1}{2}I\omega^{2} + \frac{1}{2}mv'^{2} = \frac{1}{2}\frac{1}{3}M\ell^{2}\omega^{2} + \frac{1}{2}\frac{M}{2}\frac{4}{9}\ell^{2}\omega^{2} = \frac{5}{18}M\ell^{2}\omega^{2} = 167 \text{ J}$$

Problema 2

- a)
 $$\begin{split} V_{A} &= nRT_{A}/p_{A} = 0.0187 \; m^{3}, \; \; con \quad \; p_{A} &= k\Delta X_{A}/S = 0.8 \; 10^{5} \; Pa \\ W_{AB} &= (1/2)k(\Delta X_{B}^{\; 2} \Delta X_{A}^{\; 2}) = 650 \; J \end{split}$$
- $$\begin{split} b) & T_B = p_B V_B / nR = 855.4 \; K, \; con \; V_B = V_A + S(\Delta X_B \Delta X_A) = 0.0237 \; m^3 \quad e \\ p_B = k \Delta X_B / S = 1.8 \; 10^5 \; Pa \\ Q_{AB} = \Delta U_{AB} + W_{AB} = nc_V (T_B T_A) + W_{AB} = 7577 \; J, \qquad con \; c_V = (5/2) R. \end{split}$$
- c) $\begin{aligned} Q_{ced} &= Q_{BC} + Q_{CA} = nc_V (T_C T_B) + nRT_A ln(V_A / V_C) = -7281 \ J, \quad con \ T_C = T_A \ e \ V_C = V_B. \\ \eta &= 1 + Q_{ced} / Q_{AB} = 0.039. \end{aligned}$
- d) $\Delta S_{AB}^{UN} = \Delta S_{AB}^{gas} + \Delta S_{AB}^{serb} = nc_V ln(T_B/T_A) + nRln(V_B/V_A) Q_{AB}/T_B = 5.39 \text{ J/K}$