LOAN APPROVAL PREDICTION MODEL

A SUPERVISED MACHINE LEARNING CLASSIFICATION PROJECT

Prepared by: Me! DTSA 5509 Final Project

As part of the MS-DS program University of Colorado at Boulder

ABOUT THIS PROJECT

Create a machine learning model which can predict the approval status of a loan.

WHY?

Buy a house

Buy a car

Start a business

Scalable solution to save time and money!

THE DATA

Sharma, A. (2021). Loan approval prediction dataset. Kaggle.

https://www.kaggle.com/datasets/architsharma01/loan-approval-prediction-dataset. License: MIT

License. https://www.mit.edu/~amini/LICENSE.md

THE DATA

- Employment status
- Number of dependents
- Education
- Income
- Loan amount
- Credit score
- Assets
- Approval status the target

- SimpleImputer
- ColumnTransformer
- StandardScaler and OneHotEncoder
- Pipeline
- SVC
- kNN
- RandomForest

SCIKIT LEARN

EDA: DISTRIBUTIONS

Target Data

- Imbalanced target data
- Source of bias
- -> class weights
- -> resampling, ensembling
- -> evaluation metrics

EDA: DISTRIBUTIONS

Categorical Features

- Suspected they weren't very important
- Eg: dependents

EDA: DISTRIBUTIONS

Numerical Features

- Strong correlations
- Need to assess multicollinearity

FEATURE SELECTION

Categorical

- Chi-squared < 1
- p-value > alpha = 0.05
- As suspected, not significant

Feature	Chi-Sqr Score	p-value
education	0.209	0.647
self_employed	0.019	0.889
no_of_dependents	0.386	0.534

FEATURE SELECTION

Numerical

- Variance Inflation Factor (VIF)
- High VIF: 5 to 10
- Income VIF = 74!
- Removed features until...

Feature	VIF	
loan_amount	7.24	
credit_score	4.93	
loan_term	3.90	
residential_asset	3.60	
commercial_asset	3.60	

MODELING: ITERATIVE PROCESS

- 1. type_of_feat = []
- 2. specify transformers
- 3. preprocessor to put features through transformers
- 4. list of models
 - a.pipeline
 - b.cross-validate
 - c.results
- 5. compare results

MODELING: ROUND 1, ALL FEATURES

Model	Mean Train Accuracy	Mean Validation Accuracy
Dummy	0.6310	0.6310
SVM	0.950	0.935
kNN	0.933	0.890
Random Forest	1.000	0.975

MODELING: ROUND 3, REDUCED FEATURES

Model	Mean Train Accuracy	Mean Validation Accuracy
Dummy	0.6310	0.6310
SVM	0.943 0.935	
kNN	0.957	0.925
Random Forest	1.000	0.9672

HYPERPARAMETER TUNING

Parameter grid search

- number of estimators = 18
- max depth = 12
- min samples split = 19

MODEL EVALUATION

rf_test_score = rf_search.score(X_test, y_test)
rf_test_score = 0.9707
AUC = 0.9959

AUC: 0.9959

MODEL EVALUATION

	Precision	Recall	F1 Score
Approved	0.98	0.97	0.97
Rejected	0.96	0.97	0.96

DISCUSSION

"The dataset and model are quite simple, and used for demonstration purposes only.
This model should not be used to approve actual loans"

-ME

Further improvements:

- addressing class imbalance before the pipeline could have helped to improve the kNN model.
- statistical testing using paired t-tests on changes in the mean training and validation accuracies - significance?
- Ethical considerations people are highly diverse! Minorities and marginalized persons may not be represented in the data.

CONCLUSION

"It's pretty good"