Лекция 8: линейные методы

Евгений Борисов

методы ML

- метрические померять расстояния, определить ближайших
- логические построить правило (комбинацию предикатов)
- *линейные* построить разделяющую поверхность
- статистические восстановить плотность, определить вероятность
- композиции собрать несколько классификаторов в один

метки классов $Y = \{-1,1\}$

размеченные данные
$$X = (x, y)$$

метки классов $Y = \{-1,1\}$

размеченные данные
$$X = (x, y)$$

алгоритм классификации

$$a(x, w) = sign(f(x, w))$$

метки классов

$$Y = \{-1,1\}$$

размеченные данные X = (x, y)

алгоритм классификации

$$a(x, w) = sign(f(x, w))$$

дискриминантная функция f(x, w)

вектор параметров W

метки классов

$$Y = \{-1,1\}$$

размеченные данные X = (x, y)

алгоритм классификации

$$a(x, w) = sign(f(x, w))$$

дискриминантная функция

вектор параметров W

разделяющая поверхность

$$f(x, w) = 0$$

Линейные методы: разделяющая поверхность

пример: линейно разделимые данные

разделяющая поверхность - прямая

$$w_1 \cdot x + w_0 = 0$$

метки классов

$$Y = \{-1,1\}$$

размеченные данные

$$X = (x, y)$$

дискриминантная функция

алгоритм классификации

$$a(x, w) = sign(f(x, w))$$

задача:

заданы данные X и вид функции f(x,w) как найти вектор параметров w?

Линейные методы: отступы

отступ - насколько далеко объект х от разделяющей поверхности

$$M(x, w) = y \cdot f(x, w)$$

$$y{\in}\{-1{,}1\}$$
 - метка класса $f(x{,}w)$ - дискриминантная функция

Линейные методы: отступы

отступ - насколько далеко объект х от разделяющей поверхности

$$M(x, w) = y \cdot f(x, w)$$

$$y{\in}\{-1,1\}$$
 - метка класса $f(x,w)$ - дискриминантная функция

$$M(x,w) {<} 0$$
 - алгоритм ошибается на ${f x}$

Линейные методы: отступы

отступ - насколько далеко объект от разделяющей поверхности

$$M(x,w)=y\cdot f(x,w)$$

$$y{\in}\{-1{,}1\}$$
 - метка класса

 $f\left(x,w
ight)$ - дискриминантная функция

$$M(x,w)$$
< 0 - алгоритм ошибается на ${\bf x}$

Линейные методы: эмпирический риск

функционал эмпирического риска, (число ошибок)

$$Q(x,w) = \sum_{x} [M(x,w) < 0]$$

$$M(x,w) = f(x,w) \cdot y$$
 - отступ объекта \mathbf{x} $y \in \{-1,1\}$ - метка класса $f(x,w)$ - дискриминантная функция

$$M(x,w) < 0$$
 - алгоритм ошибается на ${\bf x}$

Линейные методы: функция потери

функционал эмпирического риска

$$Q(x,w) = \sum_{x} [M(x,w) < 0]$$

Линейные методы: функция потери

функционал эмпирического риска

$$Q(x,w) = \sum_{x} [M(x,w) < 0]$$

[M<0] это пороговая функция, не учитываем значение отступа М, оптимизировать не удобно, заменим её...

Линейные методы: функция потери

функционал эмпирического риска

$$Q(x,w) = \sum_{x} [M(x,w) < 0]$$

[М<0] это пороговая функция,

не учитываем значение отступа М,

оптимизировать не удобно,

заменим её...

построим аппроксимацию Q

введём функцию потери L(M) (невозрастающая, неотрицательная)

$$\widetilde{Q}(x, w) = \sum_{x} L(M(x, w)) \rightarrow min$$

$$Q(x, w) \leq \widetilde{Q}(x, w)$$

функционал эмпирического риска

$$Q(x,w) = \sum_{x} [M(x,w) < 0]$$

[M<0] это пороговая функция, оптимизировать не удобно, заменим её...

варианты для замены [М<0]

$$L(M) = \log_2 \left(1 + \frac{1}{\exp(M)}\right)$$
 логарифмическая

$$V(M) = (1-M)_{\scriptscriptstyle +}$$
 кусочно-линейная

$$Q(M)$$
= $(1-M)^2$ квадратичная

$$E(M) = \frac{1}{\exp(M)}$$
 экспоненциальная

$$S(M) = \frac{1}{2 \cdot (1 + \exp(M))}$$
 сигмоид

Линейные методы: линейный классификатор

рассмотрим линейный классификатор,

дискриминантная функция f(x,w) это гиперплоскость

$$f(x,w)=\sum_{i=1}^n x_i\cdot w_i-w_0$$
 - дискриминантная функция

$$a(x,w) = sign(f(x,w)) = sign\left(\sum_{i=1}^{n} x_i \cdot w_i - w_0\right) = sign(\langle x, w \rangle)$$

 $M(x,w)=\langle x,w\rangle\cdot y$ - отступ на объекте **х** класса **у**

$$sign(x) = \begin{cases} 1, & x > 0 \\ 0, & x = 0 \\ -1, & x < 0 \end{cases}$$

обучение классификатора как задача оптимизации

$$Q(w;X) = \sum_{x \in X} L(\langle x, w \rangle \cdot y) \rightarrow \min_{w}$$

можно использовать градиентные методы

$$abla Q(w) = \left(\frac{\partial Q(w)}{\partial w_j} \right)_{j=0}^n$$
 - вектор градиента ф-ции \mathbf{Q}

Линейные методы: градиентный спуск (GD)

Линейные методы: стохастический градиентный спуск (SGD)

Линейные методы: линейный классификатор

линейная модель МакКаллока-Питтса (1943)

(формальный нейрон)

$$a(x,w) = \sigma \left(\sum_{i=1}^{n} x_i \cdot w_i - w_0 \right) = \sigma(\langle x, w \rangle)$$

σ - функция активации нейрона (можно использовать **sign**)

правило обучения Хебба (1949)

задача классификации

$$x \in \mathbb{R}^n$$
 $y \in \{-1,1\}$ $a(x,w) = sign(\langle x,w \rangle)$

правило обучения Хебба (1949)

задача классификации

$$x \in \mathbb{R}^n$$
 $y \in \{-1,1\}$ $a(x,w) = sign(\langle x,w \rangle)$ $L(a,y) = (-\langle x,w \rangle \cdot y)_+$

$$a(x, w) = sign(\langle x, w \rangle)$$

$$L(a,y)=(-\langle x,w\rangle\cdot y)$$

правило обучения Хебба (1949)

задача классификации

$$x \in \mathbb{R}^n$$
 $y \in \{-1,1\}$

$$a(x, w) = sign(\langle x, w \rangle)$$

$$x \in \mathbb{R}^n$$
 $y \in \{-1,1\}$ $a(x,w) = sign(\langle x,w \rangle)$ $L(a,y) = (-\langle x,w \rangle \cdot y)_+$

градиентный шаг

$$[\langle x, w \rangle \cdot y < 0] \Rightarrow w := w + \eta \cdot y \cdot x$$

параметры корректируем только в случае ошибки

правило обучения Розенблатта (1957)

задача классификации

$$x \in \{0,1\}^n \quad y \in \{0,1\}$$

$$x \in \{0,1\}^n$$
 $y \in \{0,1\}$ $a(x,w) = sign(\langle x,w \rangle)$ $L(a,y) = (-\langle x,w \rangle \cdot y)_+$

$$L(a,y)=(-\langle x,w\rangle\cdot y)_{+}$$

градиентный шаг

$$w := w - \eta \cdot (a(x, w) - y) \cdot x$$

«зоопарк» методов

- вид разделяющей поверхности **f(x,w)** (линейная, нелинейная)
- вид функции потерь **L(M)**
- вид метода оптимизации $\mathbf{Q}(\mathbf{w}) \to \mathbf{min}$

Метод опорных векторов (SVM, support vector machine)

В.Н.Вапник, А.Я.Червоненкис, (1963)

рассмотрим линейно разделимый набор

рассмотрим линейно разделимый набор

много разделяющих гиперплоскостей

разделительная полоса

цель: увеличить отступы, получить полосу максимальной ширины

$$a(x) = sign\left(\sum_{i} \lambda_{i} y_{i} \langle x_{i}, x \rangle - w_{0}\right)$$

опорным назовём объект $\mathbf{x}_{_{i}}$, для которого $\lambda_{i} \neq 0$

для нахождения опорных объектов применяется алгоритм SMO (sequential minimal optimization)

метод обучения SVM как задача выпуклой квадратичной оптимизации имеет единственное решение

нелинейное обобщение - kernel trick

вместо скалярного произведения

будем использовать функцию-ядро

$$a(x) = sign\left(\sum_{i} \lambda_{i} y_{i} K(x_{i}, x) - w_{0}\right)$$

функция К - ядро если для него существует отображение, удовлетворяющее условиям скалярного произведения

$$\exists \psi : K(x, x') = \langle \psi(x), \psi(x') \rangle$$

функция К симметрична и неотрицательно определена

kernel trick

с помощью ядра отображаем данные в пространство большей размерности линейно неразделимая задача превращается в линейно разделимую

kernel trick

с помощью ядра отображаем данные в пространство большей размерности линейно неразделимая задача превращается в линейно разделимую

Примеры с различными ядрами K(x,x')

линейное

$$\langle x, x' \rangle$$

полиномиальное $(\langle x, x' \rangle + 1)^d$, d=3

гауссовское (RBF) $\exp(-\gamma ||x - x'||^2)$

Линейные методы: итог

- линейные методы строят разделяющие поверхности в пространстве признаков
- использования нелинейных поверхностей позволяет разделять линейно неразделимые наборы
- аппроксимация пороговой ф-ции потерь позволяет использовать градиентные методы оптимизации
- метод стохастического градиента SGD подходит для обучения на больших данных
- для обучения SVM применяется алгоритм SMO (sequential minimal optimization)
- применение ядер позволяет SVM разделять линейно неразделимые наборы, общих подходов для выбора ядер нет

Линейные методы: литература

git clone https://github.com/mechanoid5/ml_lectorium.git

- Борисов Е.С. Классификатор на основе машины опорных векторов. http://mechanoid.kiev.ua/ml-svm.html
- К.В. Воронцов Линейные методы классификации: метод стохастического градиента.
- К.В. Воронцов Линейные методы классификации: метод опорных векторов.

Вопросы?

Линейные методы: практика

источники данных для экспериментов

sklearn.datasets UCI Repository kaggle

практика

- разделить данные на train/test (sklearn.train test split)
- посчитать метрики качества (confusion matrix, precision, recall, ROC/AUC)
- классифицировать данные с использованием sklearn.SVM