

Linguagem de Programação [C++]

[www.caiobarbosa.com.br]

Aula 03

ESTRUTURAS PRIMITIVAS

[www.caiobarbosa.com.br]

Automação e Controle

- Recursos da Linguagem de Programação;
- Variáveis;
- Constantes;
- Expressões Aritméticas;
 - Operadores Aritméticos;
- Atribuições;
- Expressões Lógicas;
 - Operadores Relacionais;
 - Operadores Lógicos.
- Comandos de Entra da e Saída

Drndo. Prof. Anderson Elias, 2019

Recursos das Linguagens de Computação

Quando um programa é "traduzido" para linguagem de máquina pelo compilador, o mesmo precisa diferenciar:

- Variável;
- Tipo de variável;
- Instruções;
- Operadores (aritméticos e lógicos);
- Outros elementos de linguagem de comparação.

Drndo. Prof. Anderson Elias, 2019

Recursos das Linguagens de Computação (cont.)

Toda linguagem de programação possui alguns recursos que evita a possibilidade de "dupla interpretação" de uma linha de código pelo compilador, são elas:

- Palavras Reservadas;
- Simbologia para alguns operadores;
- Regras de nomes de variáveis;

Drndo. Prof. Anderson Elias, 2019

Comentários

```
/*
o comentário tradicional,
englobando várias linhas
*/
```

// já o comentário de uma única linha

Variáveis

Na programação, uma variável é um espaço da memória volátil capaz de reter e representar um valor ou expressão. Enquanto as variáveis só "existem" em tempo de execução, elas são associadas a "nomes", chamados identificadores, durante o tempo de desenvolvimento.

Variáveis: Tipos de Dados

Tipo	Descripción	Rango	Ejemplo
bool	Valor binario verdadero o falso.	true false	bool dato = false; dato = true;
char	Valor entero que representa un caractér de la tabla ASCII	−128 a 127 ó 0 a 255 compilado con/J	char letra = 'A'; letra = '\n'; letra = 65;
short	Valor entero de 2 bytes	-32,768 32,767	short x = 94; x = -54;
int	Valor entero de 4 bytes	-2,147,483,648 2,147,483,647	int x = 1598; x = -988574;
unsigned int	Valor entero positivo de 4 bytes	0 4,294,967,295	unsigned int x = 9887; x = 98745;
long long	Valor entero de 8 bytes	-9,223,372,036,854,775,808 9,223,372,036,854,775,807	long long x = 684574; x = -998564;
float	Valor decimal de 4 bytes	3.4E +/- 38 (7 dígitos)	float x = 45.6; x = -98.58;
double	Valor decimal de 8 bytes	1.7E +/- 308 (15 dígitos)	double x = 9878.568; x = -98745.668;
void	Tipo de dato nulo. Representa la ausencia de valor.		

Variáveis: Tipos de Dados: String

É uma coleção de caracteres (char).

Fundamental constant-time String operations

Variáveis: Declaração de Variáveis

As variáveis têm de ser declaradas antes do uso:

```
int altura;
float raio;
```

Podemos declarar múltiplas variáveis do mesmo tipo duma só vez:

```
int altura, largura, profundidade;
float raio, massa;
```

Variáveis: Declaração de Variáveis

As variáveis têm de ser declaradas antes do uso:

```
int altura;
float raio;
```

Podemos declarar múltiplas variáveis do mesmo tipo duma só vez:

```
int altura, largura, profundidade;
float raio, massa;
```

Variáveis: Atribuição de Variáveis

Podemos definir ou modificar o valor de uma variável usando uma atribuição.

```
int altura; // declaração
altura = 8; // atribuição
```

- A atribuição têm de ocorrer depois da declaração
- Neste caso: atribuimos a constante 8 à variável altura

Variáveis: Definição de Constantes

- É por vezes necessário usar constantes ou parâmetros
- Constantes espalhadas pelo programa podem obfuscar o sentido
- Em vez disso: podemos usar directivas #define para definir macros

```
#define INCHES_PER_METER 39.3701

/* factor de conversão:

polegadas por cada metro */
```

Convenção: nomes de constantes em maísculas

C++: Include

O Comando Include, carrega uma biblioteca de funções do Framework da Linguagem.

#include <iostream>

Declara um alias para um namespace. Geralmente é usado para desambiguar quando classes diferentes possuem o mesmo nome.

using namespace std;

Sem o using:

std::cout << "Exemplo de saída na tela"</pre>

Com o using:

cout << "Os dois primeiros nomes são "</pre>

Operador de Entrada e Saída de Dados

Operador **cout** << saída de dados

Operador cin >> entrada de entrada

```
// Example program
2 #include <iostream>
 3 #include <string>
   using namespace std;
    int main()
     int comprimento;
10
     int largura;
     int resposta;
11
12
     cout << "Informe o comprimento e a largura do retângulo: ";
13
14
     cin >> comprimento >> largura;
15
     resposta = (comprimento + largura);
16
17
18
     cout << resposta;
19
```

Alternativas Entrada e Saída de Dados

Não serão usadas nestas abordagens:

```
Saída:
               printf("Altura: %d cm\n", alt);
Entrada:
               int n;
               scanf("%d", &n);
               OU
               getline (name);
```

Teste:

printf("%.2f", 37.77779);

C++: Main

Na maioria das linguagens é o método principal a ser executado pelo sistema operacional.

```
1 #include <iostream>
2 #include <string>
3 using namespace std;
4
5 int main()
6 * {
7   string nome;
8   cout << "Qual seu nome";
9   getline(cin, nome);
10   cout << "Oi, " << name << "!\n";
11 }</pre>
```

Algumas dicas...

• Ver o meu auto completar:

Ctrl + barra

Automação e Controle

ESTRUTURAS LÓGICAS PRIMITIVAS

Operadores: Aritméticos

Operador	Descrição	
+	(Adição)	
-	(Subtração)	
*	(Multiplicação)	
/	(Divisão)	
%	(Resto/Módulo)	

Operadores: Atribuição

Operador	Descrição
=	Atribuição simples
+=	Atribuição aditiva
-=	Atribuição Subtrativa
*=	Atribuição Multiplicativa
/=	Atribuição de divisão
%=	Atribuição de módulo

Operadores: Relacionais

Operador	Descrição
==	Igualdade
>	Maior
<	Menor
<=	Menor igual
>=	Maior igual
!=	Diferente

Operadores: Concatenação


```
"+" é operador de concatenação.

string | Caio = "Caio";
string | Barbosa = "Barbosa";
string | CaioBarbosa = | Caio + | Barbosa;
```

Operadores: Incremento e Decremento

OPERADOR DE INCREMENTO: ++
OPERADOR DE DECREMENTO: --

Também é possível incrementar uma unidade antes da linha onde o cursor está posicionado como também, pode-se executar o incremento ou decremento somente após a linha em que o cursor está posicionado. Então, temos 2 formas de utilizar esse operadores:

```
PRÉ-INCREMENTO: ++ variavel; -- variavel; PÓS-INCREMENTO: variavel ++; variavel --;
```

```
using namespace std;
int main() {
  //Incremento = ++
  //Decremento = --
  cout << "Operador de incremento" << endl;</pre>
  int i = 0, i2 = 0;
  cout << "Pre = " << ++i << endl;//pre-incrementar
  cout << "Pos = " << i2++ << endl;//pos-incrementar
  cout << "Pos = " << i2 << endl;
  cout << endl;
  cout << "Operador de decremento" << endl;</pre>
  i = 0;
  i2 = 0;
  cout << "Pre = " << --i << endl;//pre-decrementar
  cout << "Pos = " << i2-- << endl;//pos-decrementar
  cout << "Pos = " << i2 << endl;
  system("pause");
  return 0;
```


Operadores: Lógicos

Operador	Descrição	Exemplo	Frase
&&	And (e) de curto circuito**	0 0 1 1 operando1 0 1 0 1 operando2 0 0 0 1 (operando1 & operando2)	Retorna Verdadeiro se A e B forem Verdadeiros
11	Or (ou) de curto circuito**	0 0 1 1 operando1 0 1 0 1 operando2 0 1 1 1 (operando1 operando2)	Retorna Verdadeiro se A ou B forem Verdadeiro ou ambos
٨	Xor (ou exclusivo)	0 0 1 1 operando1 0 1 0 1 operando2 0 1 1 0 (operando1 ^ operando2)	Retorna Verdadeiro se A ou B forem Verdadeiro

Tendo as variáveis SALARIO, IR e SALLIQ, e considerando os valores abaixo. Informe se as expressões são verdadeiras ou falsas.

SALARIO	IR	SALLIQ	EXPRESSÃO	V ou F
100,00	0,00	100	(SALLIQ >= 100,00)	
200,00	10,00	190,00	(SALLIQ < 190,00)	
300,00	15,00	285,00	SALLIQ = SALARIO -	R

Exercício

Sabendo que A=3, B=7 e C=4, informe se as expressões abaixo são verdadeiras ou falsas.

Exercício

Sabendo que A=5, B=4 e C=3 e D=6, informe se as expressões abaixo são verdadeiras ou falsas.

Automação e Controle

FUNÇÕES BÁSICAS

Funções Numéricas: Biblioteca cmath

#include <cmath>

Para arredondamento de máquina:

round(x)

ceil(x)	Arredonda valor real para		
	cima (ex: ceil(3,2) =4)		
floor(x)	Arredonda valor real para		
	baixo (ex: ceil(3,2) =3)		
sin(x)	seno de um ângulo em		
	radianos		
cos(x)	co-seno de um ângulo em		
	radianos		
tan(x)	Tangente de um ângulo em		
	radianos		
abs(x)	Valor absoluto do número		
	inteiro		
fabs(x)	Valor absoluto do número		
	real		
exp(x)	número e elevado a potência		
	×		
log(x)	logaritmo natural de 🗴		
log10(x)	Logaritmo decimal de x		
sqrt(x)	raiz quadrada do número		
pow(base,exp)	Calcula x elevado a y		

Funções Numéricas: Biblioteca cstring

#include <cstring>

strcpy(s1, s2)	Para armazenar uma string literal numa variável string - ou copiar o conteúdo de uma variável string para outra Concatena s2 no final da s1.
strcmp(s1,s2)	compara, <0 se s1 <s2, 0 se s1==s2, >0 se s1>s2</s2,
strncpy(s1, s2,n)	copia ate n caracteres
strlen(s)	tamanho de s sem contar com \0
strchr(s,c) strrchr(s,c)	endereço do primeiro / ultimo caractere c em s ou 0
strstr(s,sub)	endereço do primeiro substring em s ou 0
strupr(string)	converte uma string para maiúscula
strlwr (string)	converte uma string para minúscula
toupper(char)	Converte um único caractere para maiúsculo
tolower(char)	Converte um único caractere para minúsculo

Conversão	Comando	Biblioteca
Inteiro para floar	Float(<variável_inteiro>)</variável_inteiro>	#include <iostream></iostream>
Float para inteiro	Int(<variável_float>)</variável_float>	#include <iostream></iostream>
(semelhante para todos os numéricos)	(semelhante para todos os numéricos)	#include <iostream></iostream>
Qualquer numérico para string	to_string(<variável_numérico>);</variável_numérico>	#include <string></string>
String ASCII para Float (double)	double atof (const char *str);	#include <stdlib.h></stdlib.h>
String ASCII para int	atoi (const char *str);	#include <stdlib.h></stdlib.h>
String ASCII para long	atol (const char *str);	#include <stdlib.h></stdlib.h>

https://www.ti-enxame.com/pt/c%2B%2B/como-converter-um-numero-em-string-e-vice-versa-em-c/971513093/

Automação e Controle

ESTRUTURAS DE DECISÃO

Estrutura de Decisão: If...else

Expression is true

Expression is false

```
// codes before if-else

if (number < 5)
{
    number += 5;
}
else
{
    number -= 5;
}
// codes after if-else</pre>
```

Estrutura de Decisão: If...else em sequência

Usando como referência a linguagem c#.

```
double Salario = 1200;

if (Salario < 500)
   Salario += 50;
else if ((Salario >= 500) && (Salario < 600))
   Salario += 100;
else if ((Salario >= 500) && (Salario < 700))
   Salario += 110;
else if ((Salario >= 500) && (Salario < 800))
   Salario += 120;
else
   Salario += 250;</pre>
```

Estrutura de Decisão: Switch

É possível usar um valor default, caso nenhuma alternativa (case) esteja definida:

default:

<instruções>


```
int diaDaSemana = 3:
switch (diaDaSemana)
    case III
       MessageBox.Show("Domingo");
         break:
    case 21
        MessageBox. Show ("Segunda-Feira");
         break:
    case 3:
        MessageBox.Show("Terça-Feira");
         break:
    case 4:
        MessageBox.Show("Quarta-Feira");
         break:
    case 51
       MessageBox.Show("Quinta-Feira");
         break:
    case 61
        MessageBox.Show("Sexta-Feira");
         break:
    case 7:
       MessageBox.Show("Sabado");
         break:
```


Para doar sangue é necessário ter entre 18 e 67 anos. Faça um aplicativo que pergunte a idade de uma pessoa e diga se ela pode doar sangue ou não.

Exercício

Faça um programa que receba três inteiros e diga qual deles é o maior e qual o menor.

Escreva um programa em que recebe um inteiro e diga se é par ou ímpar.

Escreva um programa que pergunte o dia, mês e ano do aniversário de uma pessoa e diga se a data é válida ou não. Caso não seja, diga o motivo.

Automação e Controle

ESTRUTURAS DE REPETIÇÃO

Laço: for

Sintaxe:

```
int answer = 0;
for (int i = 1; i < 101; i++)
{
    answer = answer + i;
}</pre>
```

Laço: do..while


```
int x = 5;
do {
    // D: do something ...

x++;
} while (x <= 10);</pre>
```

Laço: while

Sintaxe:

```
int i = 0;
while (i < 11) {
    i+=1;
    Label1.Text += i + ", ";
}</pre>
```


for loop => do while loop


```
for (int x = 5; x <= 10; x++)
{
    // D: do something ...
}</pre>
```



```
int x = 5;
do {
    // D: do something ...

    x++;
} while (x <= 10);</pre>
```


Crie uma rotina que imprime na tela a sequência numérica de 1 até 100. Faça de duas formas distintas: usando for e while.

Crie uma calculadora, que realiza quatro operações, usando Java,

- a) Usando tipos inteiros;
- b) Verificando os dados de entrada e saída;
- c) Altere para tipo double;

Automação e Controle

VARIÁVEIS COMPOSTAS

Conceito:

Variáveis Compostas Homogêneas

Ex: Uma variável composta homogênea seria uma Manada e seus elementos seriam os Elefantes.

Variável Composta Homogênea

Elemento

Conceito:

Variáveis Compostas Heterogêneas

Ex: Uma variável composta heterogênea seria uma "Arca de Noé" e seus elementos seriam os diversos animais.

Variável Composta Heterogêneas

Elementos

Não abordaremos isto neste curso, pois este é um recurso típico de orientação a objetos e não de programação imperativa. Trata-se da coleções.

(Variáveis Compostas Homogêneas Unidimensionais)

Ex:

float notas[] = {8.5, 7.3, 8.5, 6.4, 7.3, 8.4, 5.7, 4.2, 8.6, 7.9};

(Variáveis Compostas Homogêneas Unidimensionais)

- Ao declaramos um vetor, os seus elementos não são inicializados.
- Mas é possível atribuir valores iniciais.
- O valores iniciais são colocados entre chaves
- A quantidade de valores entre chaves n\u00e3o deve ser maior que o n\u00eamero de elementos
- A fim de facilitar a inicialização, C/C++ permite deixar o número de elementos em branco [].
- Neste caso, o compilador vai supor que o tamanho do vetor é igual ao número de valores especificados entre chaves

```
int vetor[] = {0, 2, 5, 3, 9}; // tamanho = 5
```

```
double notas[] = {10.0, 9.5, 7.5}; // tamanho = 3
```



```
// declaração sem inicializar os valores do vetor (eles terão 'lixo')
int v1[3];

// declaração inicializando os valores do vetor
int v2[3] = {0, 2, 5};

// declaração alternativa inicializando os valores do vetor
int v3[] = {0, 2, 5};
```

(Variáveis Compostas Homogêneas Unidimensionais)

Outras informações:

- Não é permitido acessar um elemento de um array fora do seu limite => erro em tempo de execução.
- Use o sizeof(vetor) / <número de bites>, para saber o tamanho do array.

Vetores Multidimensional ou Matriz

(Variáveis Compostas Homogêneas Multidimensionais)

Ex:

int notas[3][3] =
$$\{\{8, 7, 8\}, \{6, 7, 8\}, \{5, 4, 8\}\}$$
;

Vetores Multidimensional ou Matriz

(Variáveis Compostas Homogêneas Multidimensionais)

Outras informações:

 Uma matriz precisa ser declarada com o número de linhas e colunas.

Exercício

Monte um vetor de inteiros de 121 até 1121.

- a) Qual a soma de todos os elementos?
- b) Qual a soma dos elementos pares?
- c) Qual a soma dos elementos ímpares?
- d) Qual a média?
- e) Faça um motor para encontrar o índice de um elemento determinado pelo usuário.
- f) Faça um motor para encontrar o elemento de um índice determinado pelo usuário.
- g) Faça um motor para encontrar o índice do elemento inteiro mais próximo à média.

Exercício

$$\vec{A} = (q, r, s)$$

$$\vec{B} = (t, u, v)$$

Considere os vetores que seguem e responda.

$$A = \{1, 3, -2\}$$

$$B = \{-2, 2, 2\}$$

- a) Qual o produto escalar?
- b) Qual o módulo de A?
- c) Qual o módulo de B?
- d) Qual o ângulo de A faz como B?
- e) O ângulo é agudo, obtuso ou reto?
- f) Qual a projeção de A em B?

$$\vec{A}.\vec{B} = (qt) + (ru) + (sv)$$

$$A = \sqrt{q^2 + r^2 + s^2}$$

$$\vec{A} \cdot \vec{B} = AB \cos \theta$$

$$\cos \theta > 0$$
 é agudo $\cos \theta < 0$ é obtuso $\cos \theta = 0$ é reto

$$\operatorname{proj}_{\overrightarrow{B}}^{\overrightarrow{A}} = \frac{\overrightarrow{A} \cdot \overrightarrow{B}}{B^2} \overrightarrow{B}$$

(...)

$$\vec{A} = (q, r, s)$$

$$\vec{B} = (t, u, v)$$

... continuando

$$A = \{1, 3, -2\}$$

$$B = \{-2, 2, 2\}$$

$$\frac{x_1}{x_2} = \frac{y_1}{y_2} = \frac{z_1}{z_2} = k$$

Condição de paralelismo

- g) A é paralelo a B?
- h) A e B são linearmente dependentes?
- i) Qual o produto vetorial?
- i) Qual o determinante?

L.D. = paralelos ou det(matriz_coeficientes) = 0

$$\vec{A}x\vec{B} = \begin{bmatrix} i & j & k \\ q & r & s \\ t & u & v \end{bmatrix} = (rv - us)i + (st - vq)j + (qu - tr)k$$

$$i = j = k = 1$$
 (versor)

Exercício

Calcule a área do triângulo de vértices:

$$A = \{2, 1, 3\}$$

$$B = \{6, 4, 1\}$$

$$C = \{-6, -2, 6\}$$

(...)

$$A = \{2, 1, 3\}$$

$$B = \{6, 4, 1\}$$

$$C = \{-6, -2, 6\}$$

Lembrando que o produto vetorial é a área do paralelogramo...

$$A_{paralelogramo} = |AB \times AC| = \begin{vmatrix} i & j & k \\ 4 & 3 & -2 \\ -8 & -3 & 3 \end{vmatrix} = |(3,4,12)| = \sqrt{3^2 + 4^2 + 12^2} = 13$$

$$A_{tri\hat{a}ngulo} = \frac{A_{paralelogramo}}{2} = \frac{13}{2}$$

Até a próxima aula!

