Universidad de Granada	Fundamentos Físicos y Tecnológicos G.I.I.	Examen de Teoría 18 de Febrero de 2011	
Apellidos:			Firma:
Nombre:	DNI:	Grupo:	

- Responde a cada pregunta en hojas separadas.
- Indica en cada hoja tu nombre, el número de página y el número de páginas totales que entregas.
- Lee detenidamente los enunciados antes de contestar.
- No es obligatorio hacer los ejercicios en el orden en el que están planteados.
- 1. Un condensador cilíndrico está formado por dos láminas conductoras, cilíndricas y concéntricas de radios R₁ y R₂ respectivamente.
 - *a*) Calcula el campo eléctrico crado en cualquier punto del espacio por esta estructura. Para ello supón los cilindros muy largos.(**1 punto**)
 - b) Calcula la capacidad del condensador resultante.(1 punto)
- 2. En el circuito de la figura 1:
 - a) Calcula el equivalente Thevenin del circuito visto desde los puntos A y B si $R=2k\Omega$. (0.75 puntos)
 - b) Calcula la potencia en cada uno de los elementos del circuito justificando si es consumida o suministrada.(0.75 puntos)

Figura 1: Circuito para el problema 2

3. Calcula en el circuito de la figura 2 el punto de polarización del transistor (I_C y V_{CE}). Datos: V_{BEON} =0.7V, V_{CEsat} =0.2V, β =100, R_1 =100k Ω , R_2 =5k Ω , R_3 =5k Ω , C=10nF, L=100mH, V_{CC} =5V y V_1 =10V.(**1.5 puntos**)

Figura 2: Circuito para el problema 3

- 4. En el circuito de la figura 3, R_1 =35 $k\Omega$, R_2 =1 $k\Omega$, L=1mH y C=10nF.
 - a) Calcula la función de transferencia. (1.5 puntos)
 - b) Dibujar el diagrama de Bode en amplitud y en fase. (1.5 puntos)
 - c) Calcula la intensidad que circula por R₁. (**0.25 puntos**)
 - d) ¿Qué función realiza R₂ en el circuito?¿Es adecuado su valor? (0.25 puntos)

Figura 3: Circuito para el problema 4

5. Para los circuitos de la figura 4:

- a) ¿Qué diferencia(s) hay entre los circuitos de las figuras 4(a) y 4(b) desde el punto de vista de la operación de los componentes? ¿Y de la tecnología utilizada? ¿Y de las características de operación? (0.5 puntos)
- b) Elige **uno** de los circuitos y analiza el estado de cada transistor para cada una de las combinaciones de la entrada.(**0.5 puntos**)
- c) ¿Qué función lógica implementa el circuito que has elegido? (0.5 puntos)

Figura 4: Circuitos para el problema 5