école normale supérieure paris – saclay

Ultrasound Nerve Segmentation: A kaggle competition

Final project presentation

Khaoula Belahsen - Nadir El Manouzi

March 29, 2020

Understanding the Kaggle Challenge

The datasets

Evaluation metrics

Models studied

Unet

Unet with two heads

ResUnet

Unet++

Attention ResUnet

Results

Quantitative Results

Qualitative Results

Understanding the Kaggle challenge

We participated in a Kaggle competition called UltraSound Nerve Segmentation.

- The goal was: Build the best performing model to identity nerve structures in the neck.
- Dataset: Ultrasound images from the neck
- Medical goals:
 - Effectively insert a patient's pain management catheter
 - Reduce dependence on narcotics
 - Speed up patient recovery
 - Improve pain management

Datasets

- Large training set of images where nerves were manually annotated by humans.
- Train size = 5635, Test size = 5508
- The dataset contains images with no active regions, some degree of noise and artifacts.
- Identical images possible
- Use of run-length encoding (RLE) on the pixel values for final submission

(a) Image with a nerve

(b) Ground truth mask

Figure: 2 Figures side by side

Evaluation metrics

We used several evaluation metrics:

- Dice coefficient: 2 * the Area of Overlap divided by the total number of pixels in both images.
- Jaccard similarity (IoU): intersection over union
- Recall: TP/(TP+FN)

U-Net and its variant with 2 heads

Leaderboard score of the classic U-Net: 0.58607 Leaderboard score of the U-Net variant: 0.68589 Innovation in the variant of U-Net:

- One auxiliary head (after the encoding part) for predicting the nerve presence in the image
- A weighted loss with binary cross entropy and negative dice coefficient
- Inception blocks

Figure: U-Net with a nerve presence branch at the bottom

R2U-Net

Advantages of R2U-Net over U-Net:

- Residual units help building a more efficient deeper model
- Feature accumulation method helps extract better feature representation in particular low-level features

Score of B2U-Net: 0.51214

Score of R2U-Net using the probability of nerve

presence file: 0.64770

Figure: Different variant of convolutional and recurrent convolutional units (a) Forward convolutional units (d) Recurrent Residual convolutional units

Unet++

Novelty of Unet++ compared to Unet:

- redesigned skip pathways (shown in green): sem link enco-deco
- dense skip connections (shown in blue): improve gradient flow
- deep supervision (shown in red): model pruning and performance

Figure: U-net++ architecture

Unet++

Hyperparameters tuning:

BatchSize: 32,64,128

Learning Rate: 1e-5, 1e-4, 2e-4, 3e-4 (value used in original paper)

• Epochs: 20, 50, 70

Optimizer: Adam, RMSProp

Results for the differents cases

Model	Val Dice Coefficient	Leaderboard
Unet++ no data aug	0.6187	0.63241
Unet++ with data aug	0.0957	0.58086

Table: Unet++ results with and without data augmentation

Attention ResUnet

Attention ResUnet can be seen as a combination of different previously developed models:

- Unet model: previously described in this report
- Attention Gates: used to perform class-specific pooling, amplify the relevant regions, thus demonstrating superior generalisation, better classification performance.
- Residual block: incorporated in this version of Attention-Unet.

Results for the differents cases

Model	Val Dice Coefficient	Leaderboard
AttResNet no data aug	0.0951	0.55389
AttResNet with data aug	RAM crash	RAM crash

Table: AttResNet results with and without data augmentation

Quantitative results

Models	Nb of Parameters	With proba of Nerve presence	Sensitivity	Jaccard Similarity	Dice Coefficient	Leaderboard
U-Net	7,759,521	No	0.6125	0.5833	0.6062	0.58607
-	-	Yes	-	-	-	0.64789
U-Net incep2 heads	1,865,676	No	0.6078	0.7076	0.5986	0.58930
-	-	Yes	-	-	-	0.68589
R2U-Net	6,003,009	No	0.6373	0.5988	0.5896	0.51214
-	-	Yes	-	-	-	0.64770
U-Net++	9,041,601	No	0.6778	0.6635	0.5109	0.63241
AttResNet	9,786,857	No	0.4776	0.6690	0.1045	0.55389

Table: Model performance with the original dataset

Quantitative results

Models	Sensitivity (validation set)	Jaccard similarity (validation set)	Dice coefficient (validation set)	Dice coefficient (leaderboard)
U-Net inception 2 heads	0.0666	0.5185	0.0942	0.68311
U-Net++	0.0634	0.5181	0.0957	0.62423

Table: Model performance on the augmented dataset

Qualitative results

Figure: Images with ground truth masks and predictions from the U-Net with 2 heads model. The dice coefficients are 0.88 for the first image, 0.59 for the second image and 0.0 for the third image

Figure: Images with ground truth masks and predictions from the U-Net++ model. The dice coefficients are 0.89 for the first image, 0.78 for the second image and 0.0 for the third image

école——— normale——— supérieure——— paris–saclay———

école———— normale———— supérieure——— paris–saclay———

Thank You!

