Projections of *n*-cubes, *n*-simplices, and *n*-cross polytopes

n-cubes

An *n*-cube is the convex hull of the points in \mathbb{R}^n with coordinates $(\pm 1, \ldots, \pm 1)$.

A zonotope is the projection of an n-cube.

n-simplex

Let I_n denote the $n \times n$ identity matrix. Each row of I_n corresponds to a point in \mathbb{R}^n .

The standard *n*-simplex in \mathbb{R}^{n+1} is the convex hull of the rows of I_{n+1} .

Subtracting (1/n, ..., 1/n) from each row centers this *n*-simplex about the origin.

The centered *n*-simplex lies in the vector space orthogonal to the vector [1, 1, ..., 1].

A polytope is the convex hull of a set of points in \mathbb{R}^k .

Every non-degenerate polytope is the projection of a scaled/translated regular simplex.

n-cross polytope

The standard n-cross polytope is the convex hull of the rows of I_n and $-I_n$.

Problem 1: Experimentally find the expected number of vertices and edges of the shadow of a 3-cube to \mathbb{R}^2 under a random projection.

Problem 2: Experimentally find the expected number of vertices and edges of the shadow of an n-cube to \mathbb{R}^2 under a random projection.

Problem 3: Experimentally find the expected area of the shadow of a 3-cube in \mathbb{R}^2 under a random projection.

Problem 4: Experimentally find the expected area of the shadow of an n-cube in \mathbb{R}^2 under a random projection.

Problem 5: Repeat Problems 1-4 for the *n*-simplex and the *n*-cross polytope.

Problem 6: Repeat Problems 1-5 for projections to \mathbb{R}^3 and \mathbb{R}^k .

You might enjoy: https://www.youtube.com/watch?v=ltLUadnCyiO