

EBU6018 Advanced Transform Methods

Week 4.4 – WVD and Uncertainty Principle

Dr Yixuan Zou

Lecture Outline

- 1. Wigner-Ville Distribution
 - Recap
 - Matlab Example
- 2. Uncertainty Principle
 - > Examples
 - > Fourier Transform

Question 1

WVD is a good at analyzing non-stationary signal.

- a. True
- b. False

Question 2

WVD is a windowed transform.

- a. True
- b. False

Question 3

WVD is good at analyzing composite signals.

- a. True
- b. False

Question 4

The cross-terms in WVD can be eliminated by smoothing.

- a. True
- b. False

Wigner-Ville Distribution - History

- First proposed in 1932 by Eugene Wigner in the field of quantum mechanics
 - Eugene Wigner later won the Nobel prize in Physics

- ➤ In 1948, J. Ville reformulated WVD in terms of time-frequency energy of a signal
 - Position and Momentum are the Physics pair of Time and Frequency. They are both constrained by the Uncertainty Principle

Wigner-Ville Distribution – How does it work?

- Compares the information in the signal with its own information at other times and frequencies
 - Known as auto-correlation

Auto-correlation is the correlation of a signal with a delayed copy of itself as a function of delay

Source: Patrick McCauley, for From Quarks to Quasars

Wigner-Ville Distribution – How does it work?

- Compares the information in the signal with its own information at other times and frequencies
 - Known as auto-correlation

The analysis of autocorrelation is a mathematical tool for finding repeating patterns, such as the presence of a periodic signal obscured by noise

Wigner-Ville Distribution – How does it work?

Power spectrum of a signal is the Fourier Transform of its auto-correlation function

$$P(\omega) = \int_{-\infty}^{\infty} R(\tau) e^{-j\omega t} d\tau \qquad R(\tau) = \int s(t)s(t+\tau)dt$$

Auto-/Cross-WVD is the Fourier Transform of the instantaneous auto-/cross-

correlation function

Auto-WVD:
$$WVD_{s}(t,\omega) = \int_{-\infty}^{\infty} R(t,\tau) \, e^{-j\omega t} \mathrm{d}\tau \qquad \mathrm{R}(t,\tau) = \mathrm{s}(t+\tau/2) \mathrm{s}^{*}(t-\tau/2)$$
 Cross-WVD:
$$WVD_{s,g}(t,\omega) = \int_{-\infty}^{\infty} R_{s,g}(t,\tau) \, e^{-j\omega t} \mathrm{d}\tau \qquad \mathrm{R}_{s,g}(t,\tau)$$

$$= s\left(t+\frac{\tau}{2}\right) g^{*}(t-\tau/2)$$

Wigner-Ville Distribution – Properties

Cross-term $\text{WVD}_{s}(t,\omega) = WVD_{s_{1}}(t,\omega) + WVD_{s_{2}}(t,\omega) + 2 \operatorname{Re}\{WVD_{s_{1},s_{2}}(t,\omega)\}$

Wigner-Ville Distribution – Properties

- For any real or complex signal, its auto-WVD is always real-valued
 - See p10 for a simple proof
 - The cross-WVD between two signals is not always real

- WVD is invariant to time and frequency shifts
 - ❖ Time invariant: $WVD_{S_0}(t,\omega) = WVD_S(t-t_0,\omega)$
 - Frequency invariant: $WVD_{S_1}(t, \omega) = WVD_S(t, \omega \omega_1)$
 - Both follows immediately from the equation

WVD – Time Invariant Derivation

$$WVD_{S}(t,\omega) = \int_{-\infty}^{\infty} R(t,\tau) e^{-j\omega t} d\tau \qquad R(t,\tau) = s(t+\tau/2)s^{*}(t-\tau/2)$$

$$WVD_{S-t_{0}}(t,\omega) = \int_{-\infty}^{\infty} R_{S-t_{0}}(t,\tau) e^{-j\omega t} d\tau \qquad R_{S-t_{0}}(t,\tau) = s(t+\tau/2-t_{0})s^{*}(t-\tau/2-t_{0}) = R(t,\tau-2t_{0})$$

$$= \int_{-\infty}^{\infty} R(t,\tau-2t_{0}) e^{-j\omega t} d\tau$$

$$= \int_{-\infty}^{\infty} R(t,\tau) e^{-j\omega t} d\tau$$

 $=WVD_{s}(t,\omega)$

Wigner-Ville Distribution – Properties

> Time marginal condition

$$\stackrel{1}{\star} \frac{1}{2\pi} \int_{-\infty}^{\infty} WVD_{s}(t,\omega)d\omega = |s(t)|^{2}$$

Integral over frequency of WVD is the signal power density at time t

- Frequency marginal condition

 - Integral over time of WVD is the power spectral density

Wigner-Ville Distribution – Properties

WVD has the exact same time interval as the original time-limited signal

WVD has the exact same frequency interval as the original frequency-band limited signal

Wigner-Ville Distribution - Pros

- In contrast to Fourier transform, WVD analyzes the signal from both time and frequency prospective.
 - Hence, WVD is beneficial when the signal is non-stationary

WVD provides the highest possible time-frequency resolution which is mathematically possible within the limitations of the uncertainty principle

Wigner-Ville Distribution - Con

- ➤ If a signal is composed of several signal components, WVD will result in large cross-terms between every pair of signal components
 - ❖ 2 components ⇒ 1 cross-term
 - **❖** 3 components ⇒ 3 cross-terms
 - ❖ 4 components ⇒ 6 cross-terms
 - ***** ...
 - ❖ N components \Rightarrow (N-1)! cross-terms
 - Moreover, the magnitudes of the cross-terms are always larger than the auto-terms

More cross-terms than auto-terms!

Wigner-Ville Distribution - Con

- The cross-terms can be suppressed by smoothing techniques
 - ❖ E.g., use a windowed version of the WVD, called the Pseudo-WVD (PWVD)
 - Similar to frequency smoothing or low-pass filtering

BUT, smoothing reduces the time-frequency resolution

Wigner-Ville Distribution - Matlab

- ☐ Aim
 - > To illustrate the WVD on all sorts of signals
 - Stationary signal e.g. sine wave
 - Non-stationary signal e.g. chirp
 - Modulated chirp
 - Composite signal (2 sub-signals, 3 sub-signals, 4 sub-signals)
 - To compare the time-frequency resolution of WVD vs. STFT
 - > To illustrate the cross-terms of WVD

□ The Matlab script will be uploaded to QMplus after the session

Lecture Outline

- 1. Wigner-Ville Distribution
 - > Recap
 - > Matlab Example
- 2. Uncertainty Principle
 - > Examples
 - > Fourier Transform

If I ask you what note is this, how confident are you with your answer?

- a. 100%
- b. 80%
- c. 50%
- d. 30%
- e. 0%

If I ask you what note is this, how confident are you with your answer?

- a. 100%
- b. 80%
- c. 50%
- d. 30%
- e. 0%

As we listen to the note for a longer duration

The more confident we are at our answers

Do you think these two waves have the same frequency?

- a. Yes
- b. No
- c. Not sure

- Do you think these two waves have the same frequency?
 - a. Yes
 - b. No
 - c. Not sure

As we observe the signal for a longer time duration

The uncertainty in frequency decreases

Uncertainty Principle – Fourier Transform

Less certain about the signal's value in time

More certain about the frequency

Uncertainty Principle – Fourier Transform

Time Domain Frequency Domain Fourier **Transform** Less certain about the about the frequency Time (seconds) Frequency (Hz)

More

certain

signal in

time

Uncertainty Principle - Summary

- > An inverse relationship between the certainty in time and certainty in frequency
- \triangleright We denote the uncertainty in time and frequency as Δt and $\Delta \omega$, respectively
- Uncertainty Principle:

$$\Delta t \Delta \omega \ge \frac{1}{2}$$

- > The product of uncertainty in time and uncertainty in frequency is a constant
- Different definitions of the Fourier Transform yield different versions of the Uncertainty Principle.

Uncertainty Principle - Summary

Uncertainty Principle:

$$\Delta t \Delta \omega \ge \frac{1}{2}$$

- > The product of uncertainty in time and uncertainty in frequency is a constant
- > It explains the trade-off of the uncertainty between
 - ➤ Time and frequency → Signal processing

Distance and Velocity

→ Radar

Position and Momentum

→ Quantum Mechanics

