MILAD SHIRAZI

milad.r.shirazi@gmail.com | Tehran, Iran | P: +98 9376610883 |

Check out www.milad-shirazi.ml for my accomplishments and feel free to ask my AI assistant about me there.

SUMMARY

Data Scientist and Machine-Learning Engineer who is passionate about machine-learning applications and staying up-to-date with latest technology advancements with over 5 years of experience in design, development, deployment, maintaining, monitoring, and scaling data and AI pipelines as well as collaborating with various technical and non-technical teams and individuals.

Hands-on Experience in:

- Design, Development and Deployment of Machine Learning pipelines on cloud and on-premise platforms
- Time Series data & forecasting using customized state-of-the-art models
- Natural Learning Processing (NLP), LLMs fine-tuning and prompt engineering
- Creating dashboards for monitoring and providing reports and documentations
- Analysis and prediction of signal-processing data

Familiarity with Recommender systems (content-based, Item/user-based, collaborative filtering), Reinforcement Learning, Computer Vision and Image Processing, and Data Engineering and Software Engineering common practices.

WORK EXPERIENCE

Senior Data Scientist / Machine Learning Engineer – Remote

Aug 2021 - Present

RIGID ROBOTICS: An advanced Mining technology group based in Vancouver, British Columbia, Canada that provides Al software as a service for optimized solutions

Batch High-Precision State Detection - Deployed on Azure Cloud services:

- Design, Development and Deployment of a complete AI integrated system that corrects the real-time pipeline outputs by allowing the delayed pipeline to see the ahead signals, leading to a 5% increase in overall accuracy (90 to 95%). This pipeline had a separate stream for recovered signals, and was implemented with the following Azure cloud services: ML workspace, Function App, Event-Hubs, CosmosDB, Azure Data Explorer (ADX), Service-Bus, and SignalR
- Design and Implementation of the Azure orchestrator with Dagster and FastAPI scheduling
- Writing Tests for the Machine Learning deployment pipeline while monitoring with Power BI dashboards

Real-Time High-Precision State Detection - Deployed on Azure Cloud services and on-premise:

- Design, Development, and Deployment of two complete Real-Time Machine-Learning state detection Pipelines that consist of various preprocessing steps, an auto-encoder model and 2 Attention based models all stacked on top of each other, resulting in an 8% F1 score accuracy improvement (from 82% to 90%)
- Deploying the Developed pipeline using Tensorflow-Lite and Numpy for optimized latency and achieving an inference speed of 0.0005 second (half a millisecond) for each record (on a single core CPU device with a batch size of 1)

Other modules and achievements:

- Design and Development of a machine learning pipeline that detects the Digging Condition Index(DCI) which indicates the softness/hardness of the digs performed by the shovel, using high frequency acceleration data
- Fine-tuning a pre-trained Large Language Model with billions of parameters on the entire company's documentation for technical and non-technical teams and deployed it on Azure services
- Development and Deployment of a Chat-Bot trained on company's internal data, utilizing prompting methods such as Chain-Of-Thought, One and Few-Shot Learning in order to achieve tasks like creating tables based on dates and non-technical summarizations.
- Design, Development and Deployment of a machine learning pipeline that detects Boom-Jacks and high-tension digs in a shovel/excavator
- Development of Center-Detection pipeline that locates shovel's center based on coordinate signal behavior
- Clustering excavator's movements and data augmentation using Variational-AutoEncoders (VAEs)
- Creating separate customized accuracy metrics for stakeholders and clients, as well as the technical team

<u>Yaas Arghavani Industrial Engineering</u>: A financial IT consulting group based in Tehran, Iran that provides solutions and services in Online Banking and Payment using software and Al

Predicting Bank's total monthly deposits:

- Using RNNs & Transformer models to predict Mellat Banks' total deposits for the next month
- Data mining & Feature engineering on big data using different tools such as Spark (Koalas-PySpark and Scala) & Dask
- Parallel/multithreaded programming in python to reduce feature engineering runtime from 14 days to 4 hours
- Reporting to clients and stakeholders and providing guidance for project end goals
- Utilizing Federated Learning in order to train a single model without needing direct access to client data.

ATM machine allocation across the country:

- Recommending optimized locations to place new ATM machines using machine learning and Data Analytics
- Extracting features (neighborhood safety, wealth, Population Density, etc.) based on Customer Transactions
- Applying Recurrent Neural Networks in order to remove noise data and outliers (97% successful)
- Utilizing Applied mathematics and Algebra to develop customized machine learning models (derived from DBscan, KNN, collaborative filtering) to find the locations of rival banks' ATM machines with a 97% accuracy

Churn prediction for Mellat Bank Mobile App users:

- Predicting Customer RFM using Classic models, LSTMs & Attention-Based-Models (Transformers) and providing benchmarks and Predicting churn rate with an overall accuracy of 98%
- Customer segmentation based on user transaction behavior
- Extracting features and utilizing time-embedding (Periodic & non-periodic), wavelet transform and other signal processing techniques (Fourier Transforms) on time-series data

EDUCATION

UNIVERSITY OF TEHRAN – Tehran, Iran

2017-2020

Master of Science - Civil and Environmental Engineering

TECHNICAL SKILLS AND TOOLS

Programming Languages: Python, SQL, KQL, Scala, C++, Q

Data Engineering tools: Power BI, SSIS, Microsoft SQL Management Studio, PostgreSQL (relational), MongoDB (non-relational), Spark (Koalas-PySpark and Scala), Dask, ORMs (SQLAlchemy)

Software practices and tools: RESTful APIs such as FastAPI, Flask, Django, Version control systems (Git), Object Oriented Programming, Linters, and some familiarity with CI/CD pipelines

Al and Machine Learning Tools: Pandas, Numpy, Scipy, Jupyter, Plotly, Tableau, Tensorflow, Keras, Pytorch, Scikit-learn, EvalML& MLlib, AutoML, Huggingface, Torch, OpenAl, RAG, and other GPT tools

Cloud Services: Azure Cloud services such as ML workspace, Function App, Event Hubs, CosmosDB, Azure Data Explorer (ADX), Service Bus, Dagster, and SignalR, as well as familiarity with some Google cloud services.

Machine Learning Models:

- Classic Supervised (Linear and Logistic Regressions, SVMs, Naive Bayes, Decision Trees) & Unsupervised (K-means, PCA, DBscan, One-class-SVM) models, and Ensemble methods such as Boosting (Gradient Boosting models such as XGBoost) and Bagging (such as Random Forest)
- Neural Networks (Feed Forward, Recurrent Neural Networks, Convolutional Neural Networks, VAEs, Auto-Encoders, Attention Based models)
- Pre-trained Large Language Models in Natural Language Processing