Chapter 1: Algorithms: Efficiency, Analysis, and Order

Contents

- 1.1 Algorithms
- 1.2 The Importance of Developing Efficient Algorithms
 - 1.2.1 Sequential Search vs. Binary Search
 - 1.2.2 The Fibonacci Sequence
- 1.3 Analysis of Algorithms
 - 1.3.1 Time Complexity Analysis
 - 1.3.2 Applying the Theory
- 1.4 Order
 - 1.4.1 An Intuitive Introduction to Order
 - 1.4.2 A Rigorous Introduction to Order

1.1 Algorithms

Problem

- **Ex.** 1.1: *Sorting* Sort the list *S* of *n* numbers in nondecreasing order. The answer is the numbers in sorted sequence.
- Ex. 1.2: Searching Determine whether the number x is in the list S of n numbers. The answer is yes if x is in S and no if it is not.
- **Ex**) Partition Decide whether a given multiset $A = \{a_1, ..., a_n\}$ of n positive integers has a partition P such that $\sum_{i \in P} a_i = \sum_{i \notin P} a_i$

Parameters, Instance, and Solution

- Problem may contain Parameters
 - **Ex.** 1.1 Sorting : S, n
 - **Ex.** 1.2 Searching: S, n, x
 - \blacksquare Ex) Partition: A, n
- Instance of a problem: each specific assignment of values to parameters
 - **Ex. 1.3: Instance of** *Sorting*
 - S = [10, 7, 11, 5, 13, 8] and n = 6
 - **Ex. 1.4: Instance of** *Searching*
 - S = [10, 7, 11, 5, 13, 8], n = 6, and x = 5
 - Instance of *Partition*
 - $A = \{10, 7, 11, 5, 13, 8\}$ and $n = 6 \rightarrow \text{sol} = \text{`no'}$
 - $A = \{10, 7, 11, 5, 15, 8\}$ and $n = 6 \rightarrow \text{sol} = \text{`yes'}$
- Solution

Algorithm

- Step by step procedure for producing the solution to each instance
- Def.(S. Sahni): An algorithm is a finite set of instructions that accomplish a particular task.
 - Input zero or more
 - Output zero or more
 - Definiteness each instruction is clear and unambiguous
 - Ex) add 6 or 7 to x (X)
 - Finiteness: must terminate after a finite number of steps.
 - cf) procedure
 - OS (X)

- Effectiveness: each instruction must be very basic so that it can be carried out by a person using pencil and paper. It also must be feasible.
 - Integer arithmetic (O)
 - Real arithmetic (X) decimal expansion might be infinitely long
- Pseudocode: C++ like
- Program: expression of an algorithm in a PL

1.2 Importance of Developing Efficient Algorithms

■ 1.2.1 Sequential search vs. Binary search

- Algorithm 1.1 vs. Algorithm 1.5
- # of comparisons (worst case)
 - n vs. $\log_2 n + 1$
- See Table 1.1

Table 1.1	The number of comparisons done by Sequential Search
and Binary	Search when x is larger than all the array items

Array Size	Number of Comparisons by Sequential Search	Number of Comparisons by Binary Search	
128	128	8	
1,024	1,024	11	
1,048,576	1,048,576	21	
4,294,967,296	4,294,967,296	33	

- **Problem:** Is the key x in the array S of n keys?
- Input (parameters): positive integer n, array of keys S indexed from 1 to n, and a key x.
- Output: *location*, the location of x in S (0 if x is not in S)

```
void seqsearch (
                     int n,
                     const keytype S[],
                     keytype x,
                     index& location)
  location = 1;
  while (location <= n && S[location] != x)
    location ++;
  if (location > n)
    location = 0;
```


Algorithm 1.5 Binary Search (1/2)

- Problem: Determine whether x in the sorted array S of n keys.
- Inputs: positive integer n, sorted (nondecreasing order) array of keys S indexed from 1 to n, and a key x.
- Outputs: location, the location of x in S (0 if x is not in S)

Algorithm 1.5 Binary Search (2/2)

```
void binsearch (
                      int n,
                       const keytype S[],
                       keytype x,
                       index& location)
  index low, high, mid;
  low = 1; high = n;
  location = 0;
  while (low \leq high && location == 0) {
    mid = \lfloor (low + high) / 2 \rfloor;
     if (x == S[mid])
       location = mid;
     else if (x < S[mid])
       high = mid - 1
     else
       low = mid + 1;
```


1.2.2 Fibonacci Sequence

$$f_0 = 0,$$

 $f_1 = 1,$
 $f_n = f_{n-1} + f_{n-2} \quad (n \ge 2)$

Algorithm 1.6 *n*–th Fibonacci Term (Recursive)

- **Problem:** Determine the *n*-th term in the Fibonacci Sequence.
- **Inputs**: a nonnegative integer *n*.
- **Outputs:** *fib*, the *n*-th term of the Fibonacci Sequence.

```
int fib (int n)  \{ \\  if \ (n <= 1) \\      return \ n; \\      f_0 = 0, \ f_1 = 1, \\      f_n = f_{n-1} + f_{n-2} \ (n \ge 2) \\  else \\      return \ fib (n-1) + fib (n-2); \\ \}
```

Figure 1.2 The recursion tree corresponding to Algorithm 1.6 when computing the fifth Fibonacci term.

• T(n): # of terms in the recursion tree for n.

$$T(n) > 2 \times T(n-2)$$

> 2 x 2 x $T(n-4)$

$$> 2 \times 2 \times ... \times 2 \times T(0)$$
n/2 terms

$$T(n) > 2^{n/2}$$
(proof by induction in Th. 1.1)

- **Problem:** Determine the *n*-th term in the Fibonacci Sequence.
- <u>Inputs</u>: a nonnegative integer n.
- **Outputs:** *fib2*, the *n*-th term in the Fibonacci Sequence.

```
int fib2 (int n)
  index i;
  int f[0..n];
  f[0] = 0;
  if (n > 0) {
     f[1] = 1;
     for (i = 2; i \le n; i++)
       f[i] = f[i-1] + f[i-2];
     return f[n];
```

dynamic programming:compute (n+1) terms

Table 1.2 A comparison of Algorithms 1.6 and 1.7

n	n + 1	2 ^{n/2}	Execution Time Using Algorithm 1.7	Lower Bound on Execution Time Using Algorithm 1.6
40	41	1,048,576	41 ns*	1048 μs [†]
60	61	1.1×10^{9}	61 ns	1 s
80	81	1.1×10^{12}	81 ns	18 min
100	101	1.1×10^{15}	101 ns	13 days
120	121	1.2×10^{18}	121 ns	36 years
160	161	1.2×10^{24}	161 ns	3.8×10^7 years
200	201	1.3×10^{30}	201 ns	4×10^{13} years

^{*1} ns = 10^{-9} second.

 $^{^{\}dagger}1 \ \mu s = 10^{-6} \text{ second.}$

1.3 Analysis of Algorithms

- Efficiency
 - Space complexity: memory
 - Time complexity: execution time

- Want a measure independent of
 - Computer
 - Programming language
 - Programmer
 - Complex details of algorithms (pointer setting, incrementing of loop indices)
- Not want # of CPU cycles or instructions
 - Ex) binary search is more efficient than sequential search
 - # of comparisons: $\log n < n$
- Algorithm's efficiency: # of basic operations executed as a function of input size

- Problem: Add all the numbers in the array S of n numbers.
- Inputs: positive integer n, array of numbers S indexed from 1 to n.
- Outputs: sum, the sum of the numbers in S.

```
number\ sum\ (int\ n,\ const\ number\ S[\ ]) \{ \\ index\ i; \\ number\ result; \\ result = 0; \\ for\ (i = 1;\ i <= n\ ;\ i++) \\ result = result + S[i]; \\ return\ result; \\ \}
```


- Problem: Sort n keys in nondecreasing order.
- Inputs: positive integer n, array of keys S indexed from 1 to n.
- Outputs: the array S containing the keys in nondecreasing order.

```
void exchangesort (int n, keytype S[ ]) {
   index i, j;
   for (i = 1; i <= n -1; i++)
      for (j = i+1; j <= n; j++)
      if (S[j] < S[i])
      exchange S[i] and S[j];
}</pre>
```


- Problem: Determine the product of two n x n matrices.
- Inputs: a positive integer n, 2D arrays of numbers A and B, each of which has both its rows and columns indexed from 1 to n.
- Outputs: a 2D array of numbers C, which has both its rows and columns indexed from 1 to n, containing the product of A and B.

```
void matrixmult (
                           int n,
                           const number A[][],
                           const number B[][],
                                  number C[ ] [ ])
  index i, j, k;
  for (i = 1; i \le n; i++)
     for (j = 1; j \le n; j++) {
        C[i][j] = 0;
                                                           /* b.o. \rightarrow e.t. = a
        for (k = 1; k <= n; k++)
          C[i][j] = C[i][j] + A[i][k] * B[k][j];
                                                           /* b.o. \rightarrow e.t. = b
```


Input size and Basic operation

Input size

- Sequential search, binary search, add array members, exchange sort: array S of n keys
- Matrix multiplication: n, # of rows and columns
- Graph: n, e, # of nodes and edges
- Fibonacci number: $\lfloor \log n \rfloor + 1$, # of binary digits to encode n (n is input not input size)

Basic operation

- Single instruction or group of instructions
- **Execution time is independent of** n
- Ex) search: comparison

Example

for (i = 1; i <= n; i++) for (j = 1; j <= n; j++) { $C[i][j] = 0; /* b.o. \rightarrow e.t. = a$ for (k = 1; k <= n; k++) C[i][j] = C[i][j] + A[i][k] * B[k][j]; $/* b.o. \rightarrow e.t. = b$ }

Ex) matrix multiplication

- Execution time → see Algorithm 1.4
- Discussion

(1)
$$a \cdot n^2 + b \cdot n^3$$

$$n = 10 \implies a \cdot 10^2 + b \cdot 10^3 \approx b \cdot 10^3$$

$$n = 100 \Rightarrow a \cdot 10^4 + b \cdot 10^6 \approx b \cdot 10^6$$

- (2) Ignore the time for incrementing loop indices
- (3) No time difference
 - temp = A[i][k] * B[k][j];
 - C[i][j] = C[i][j] + temp

- **Determination of how many times the basic operations** is done for each value of the input size.
- In some cases, depends not only the input size but also on the *input value*
 - Ex) sequential search

• Best case
$$B(n) = 1$$

• Worst case
$$W(n) = n$$

• Worst case
$$W(n) = n$$

• Average case $A(n) = (n+1)/2 \leftarrow \sum_{k=1}^{n} (k \times \frac{1}{n})$

Ex) array add

• Every case
$$T(n) = n$$

Ex) Exchange sort

•
$$T(n) = (n-1) + (n-2) + ... + 1 = (n-1)n/2$$

• Ex) matrix multiplication $T(n) = n^3$

If
$$T(n)$$
 exists $T(n) = W(n) = A(n) = B(n)$
If not $W(n), A(n)$

- Fixed part that is independent of I/O characteristics
 - Instruction (code) space
 - Simple variable x = 3
 - Constants
 - Fixed size component variables (A[10], ...)
- Variable part
 - Variables depending on input size

 $\mathbf{E}\mathbf{x}: \mathbf{S}[\mathbf{n}], \mathbf{A}[\mathbf{n}][\mathbf{n}]$

■ Recursion stack (formal parameters, local variables, return address): space $\geq 3(n+1)$ words, n is depth of recursion

Ex: Fibonacci number (Alg. 1.6): proportional to n