MODULE 3: HOUSING PRICES ASSIGNMENT

Claire Markey, Julia Granito, Manny Hurtado, and Steve Desilets

MSDS 422: Practical Machine Learning April 16th, 2023

Introduction

Developing a well-tuned predictive model (i.e, Ridge, Lasso, ElasticNet) can provide accurate, precise estimates of home prices, which may be helpful to real-estate industry stakeholders. Conceptually, a Lasso or ElasticNet approach may perform better if there are many good predictors due to cost functions. All of these methods offer advantages such as regularization, reducing collinearities, and improving performance on unseen data. Conversely, there are negative consequences such as not being the best options for variable selection due to the algorithms arbitrarily selecting which variable(s) to allocate to in the presence of multicollinearity. To that end, predictive models (i.e., Ridge, Lasso, ElasticNet) were evaluated to identify predictors of home prices and to determine which approach may be best suited to predict home prices.

Method

Data about home sale prices in Ames, Iowa, were downloaded from Kaggle and analyzed using Jupyter Notebooks (Montoya, 2016). An exploratory data analysis explored feature characteristics (associations, distributions, missingness, and outliers), as well as bivariate (Pearson correlations, t-tests, ANOVAs, simple linear regressions) and multivariate analyses (OLS, Ridge, Lasso, and ElasticNet regression). Multivariate analyses were conducted using a *k*-fold cross-validation design (James et al. 2021) and Kaggle training/validation sets. Underlying model assumptions and metrics were examined in analyses.

Results and Insights

First, descriptive statistics about the outcome of interest (Sale Price) were examined by constructing histograms and boxplots, then examined by calculating summary statistics. Sale price was skewed right, ranged from \$34,900 to \$755,000 (M= \$180,921), and included outliers. A log transformation of the home sale price variable improved the normality of the outcome variable ahead of subsequent analyses. After addressing missing data and outliers, categorical variables were separated into dichotomous indicator, ordinal indicator, and non-indicator variables in order to be encoded. An alternative, larger dataset was created with these new variables. We used this dataset later on in the analysis that explored an ElasticNet regression model.

To determine which features should be included in OLS models, we examined the associations between SalePrice and features. Bivariate analyses suggested the following variables had strong relationships with Sale Price: central air (t(1458) = 17.26, p < .001), exterior quality (F(3, 1456) = 443.33, p < .001), and total square footage (TotalSF, a linear combination of GrLivArea and TotalBsmtSF; r = .82, p < .001). Simple linear regressions were conducted between Sale Price and its key predictors. A simple linear regression, piecewise regression model, and parsimonious five-factor multiple regression model exhibited R^2 values of .76, .82, and .84, respectively. Then a second-degree polynomial regression on principal components and a regression using L2 regularization on principal components were considered, which returned R^2 values of .91.

To further this analysis, regularization techniques were explored (Ridge, Lasso, ElasticNet) on the full dataset; these analyses included all encoded variables. We observe empirically that non-zero levels of alpha resulted in more generalizable models.

Hyperparameter tuning using different methods, including a five-fold cross-validation design, were then conducted to identify the alpha that minimizes the error on the testing data. First, using R^2 as the performance metric, we plotted training and testing data for alphas at even increments from 0 to .02. By

inspection, there was an inflection point for the Lasso regularization technique. We then assessed that the optimal value for alpha was about .004, with an R^2 of .90.

Next, we explored a Lasso regression model to model the log sale prices. To do so, we standardized each of the numeric predictor variables and fit a Lasso regression model to the training data using the optimal tuning parameter. The R squared of this lasso model when applied to a validation set was 0.863. After applying the model to the Kaggle test dataset, the resulting root mean squared error was 0.16194.

For Ridge regression analyses, the optimal alpha was approximately .015 for the initial data; the alpha increased to .81 and the R^2 was .89 after including categorical variables. We found that our ElasticNet model performed the best out of the three regularization methods when all the encoded variables (full data set) were included, with an R^2 for the final model of .94 and a Kaggle RMSE score of .1356. Regarding ElasticNet, the best alpha values were .015 and .009 for the limited and full data sets, respectively. This indicates that a combination of L1 and L2 regularization is optimal for our dataset. The implications of an alpha close to zero for ElasticNet regression means that the importance of the predictors is likely to be distributed among the features. This results in the coefficients of important variables to be close, despite any high correlations. If the alpha value were closer to 1, therefore suggesting higher bias, then the coefficient for one of the correlated variables would be high, while the others would have shrunk to zero. In comparing the coefficients, we observe that the Lasso model has more non-zero coefficients with lower magnitude, while the ElasticNet coefficients are larger but the matrix is somewhat more sparse. By incorporating both L1 and L2 regularization, ElasticNet optimizes the cost function to produce the best fit.

Models such as ElasticNet are not ideal for feature selection as the penalty term may cause the model to skew the weights of certain predictors, making some good predictors appear unimportant. However, we do consider the variables in our model in the analysis. Regarding the Elastic Net model that achieved the lowest Kaggle RMSE score (0.1356), the largest coefficients included square footage variables (Total Square Ft), Overall Quality and Condition variables (overall material, finish, and condition of a home), and the Year Built variable. These had positive coefficients indicating Sale Price increased as the predictors increased. The coefficient of one of the encoded variables, indicating whether the home is in the Crawford neighborhood, was large, indicating that living in this neighborhood was associated with higher Sale Prices. Some variables have negative coefficients, like the engineered feature, Year Since Last remodel, and like some of the of the encoded variables related to the zoning classification of properties, specifically for commercial and medium-density residential properties. This indicates that a greater number of years since a remodel or selling a commercial or medium-density residential property can negatively impact the sale price of a home.

Exploratory data analysis provided insights about factors that impact the sale price of homes in Ames. This work successfully explored methods to accurately predict Sale Price using regression techniques (simple linear, MLR, Piecewise, Polynomial, Ridge, Lasso, and Elastic Net). Our highest performing model, built using Elastic Net regression, has practical implications for Ames real estate market stakeholders. Given the variability of the housing market over time, along with the fact that the housing market in Ames may not be representative of other cities or regions, extrapolating the results beyond the timeframe and city for the data used to train the model will likely lead to inaccurate predictions.

References

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani. 2021. *An Introduction to Statistical Learning*. Springer. https://www.statlearning.com/

Montoya, Anna. 2016. "House Prices - Advanced Regression Techniques." Kaggle.

https://www.kaggle.com/c/house-prices-advanced-regression-techniques

Appendix - Python Code and Outputs

Data Preparation

First, we will set up this notebook so that it will display multiple outputs for each cell if needed.

```
In [1]: from IPython.core.interactiveshell import InteractiveShell
InteractiveShell.ast_node_interactivity = "all"
```

Second, we will import the data. We will view the first five rows of data and the shape of the dataframe to confirm that the data imported correctly.

```
import pandas as pd
housing_training_data = pd.read_csv('train.csv')

# show first five rows of the data
housing_training_data.head()
# show number of columns and rows
housing_training_data.shape
```

Out[2]:		Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities
	0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub
	1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub
	2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub
	3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub
	4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub

5 rows × 81 columns

Out[2]: (1460, 81)

Distribution of the Dependent Variable

We can begin examining the distribution of this dataset's dependent variable, sale price, by generating summary statistics for this variable.

```
In [3]: housing_training_data['SalePrice'].describe()
```

```
1460.000000
        count
Out[3]:
                  180921.195890
        mean
        std
                  79442.502883
        min
                   34900.000000
        25%
                  129975.000000
        50%
                  163000.000000
        75%
                  214000.000000
                  755000.000000
        max
        Name: SalePrice, dtype: float64
```

We can also construct a histogram and a boxplot to visualize the distribution of the sale price variable in this dataframe.

```
import seaborn as sns
import matplotlib.pyplot as plt

histogram = housing_training_data['SalePrice'].hist(edgecolor = 'black', bins = 15, find the state of the state of
```



```
In [5]: sns.boxplot(x=housing_training_data["SalePrice"])
```

Out[5]: <AxesSubplot:xlabel='SalePrice'>


```
import numpy as np
In [6]:
        from scipy import stats
        from scipy.stats import norm, kurtosis
        df = []
        raw_data = housing_training_data['SalePrice']
        transform_data = np.log(housing_training_data['SalePrice'])
        transform data2, best lambda = stats.boxcox(housing training data['SalePrice'])
        print("homeprice kurtosis:", kurtosis(raw_data))
        print("log of homeprice kurtosis:", kurtosis(transform_data))
        print("boxcox transform of homeprice kurtosis:", kurtosis(transform_data2))
        plt.rcParams["figure.figsize"] = [7.50, 3.50]
        plt.rcParams["figure.autolayout"] = True
        s1 = pd.DataFrame(raw data)
        s2 = pd.DataFrame(np.array(transform_data).tolist(), columns = ['logSalePrice'])
        s3 = pd.DataFrame(np.array(transform_data2).tolist(), columns = ['boxcoxSalePrice'])
        fig, axes = plt.subplots(1, 3)
        s1.hist('SalePrice', ax=axes[0])
        s2.hist('logSalePrice', ax=axes[1])
        s3.hist('boxcoxSalePrice', ax=axes[2])
        plt.show()
        homeprice kurtosis: 6.509812011089439
        log of homeprice kurtosis: 0.8026555069117713
        boxcox transform of homeprice kurtosis: 0.870759906431624
        array([<AxesSubplot:title={'center':'SalePrice'}>], dtype=object)
Out[6]:
        array([<AxesSubplot:title={'center':'logSalePrice'}>], dtype=object)
Out[6]:
        array([<AxesSubplot:title={'center':'boxcoxSalePrice'}>], dtype=object)
```

Out[6]:

Shapiro Wilk test for normality

```
In [7]: print("Shapiro Wilk test for normality: ", stats.shapiro(raw_data))
    print("Shapiro Wilk test for normality: ", stats.shapiro(transform_data))
    print("Shapiro Wilk test for normality: ", stats.shapiro(transform_data2))

Shapiro Wilk test for normality: (0.869671642780304, 3.206247534576162e-33)
    Shapiro Wilk test for normality: (0.9912067651748657, 1.1490678986092462e-07)
    Shapiro Wilk test for normality: (0.9915341138839722, 1.906367685933219e-07)
```

The Shapiro Wilk test for normality (H0: normal, Ha: not-normal) suggests a departure from normality for both the raw and transformed data.

Investigation of Missing Data and Outliers

We can take a look at the counts of reported values in each column to determine the number of missing values for each variable in the dataframe.

```
In [8]: # find null counts, percentage of null values, and column type
   null_count = housing_training_data.isnull().sum()
   null_percentage = housing_training_data.isnull().sum() * 100 / len(housing_training_data.column_type = housing_training_data.dtypes

# show null counts, percentage of null values, and column type for columns with more to null_summary = pd.concat([null_count, null_percentage, column_type], axis=1, keys=['Minull_summary_only_missing = null_summary[null_count != 0].sort_values('Percentage Missing_summary_only_missing)
```

Out[8]:

	Missing Count	Percentage Missing	Column Type
PoolQC	1453	99.520548	object
MiscFeature	1406	96.301370	object
Alley	1369	93.767123	object
Fence	1179	80.753425	object
FireplaceQu	690	47.260274	object
LotFrontage	259	17.739726	float64
GarageType	81	5.547945	object
GarageYrBlt	81	5.547945	float64
GarageFinish	81	5.547945	object
GarageQual	81	5.547945	object
GarageCond	81	5.547945	object
BsmtExposure	38	2.602740	object
BsmtFinType2	38	2.602740	object
BsmtFinType1	37	2.534247	object
BsmtCond	37	2.534247	object
BsmtQual	37	2.534247	object
MasVnrArea	8	0.547945	float64
MasVnrType	8	0.547945	object
Electrical	1	0.068493	object

We will deal with columns that contain missing values. For the purpose of this exploratory data analysis, we will use the percentage of nulls missing, the column type, and the other columns present in the data that may provide information that can be used to fill in the missing values.

We will remove columns with over 50% Null values.

We will set Null values in columns that are non-numeric to None.

```
In [10]: # select non-numeric columns that contain more than 1 Null value
    columns_None = ['BsmtQual','BsmtCond','BsmtExposure','BsmtFinType1','BsmtFinType2','Ga
# set Nulls in non-numeric columns to 'None'
    housing_training_data[columns_None] = housing_training_data[columns_None].fillna('None)
```

We determine the best way to handle nulls for each numeric column. We replace nulls in Masonry veneer area with 0, nulls in Lot Frontage with the median, and nulls in Year Garage was built with the average between the year the garage was built and year house was built.

```
# change Null values to 0 for Masonry veneer area
In [11]:
         housing training data['MasVnrArea'].fillna(0, inplace=True)
          # show distribution stats for Lot Frontage
          housing training data['LotFrontage'].describe()
          # fill Nulls for Lot Frontage with median value
          housing training data['LotFrontage'].fillna(housing training data['LotFrontage'].media
          # average years between garage being built and years built
          avg years = round((housing training data['GarageYrBlt'] - housing training data['YearE
          # fill Nulls with avg bet year garage was built and year house was built
          housing training data['GarageYrBlt'].fillna(housing training data['YearBuilt']+avg yea
                  1201.000000
         count
Out[11]:
         mean
                    70.049958
                    24.284752
         std
         min
                    21.000000
         25%
                    59.000000
         50%
                    69.000000
         75%
                    80.000000
                   313.000000
         max
         Name: LotFrontage, dtype: float64
```

We can see there are no more missing values in our original dataframe.

```
In [12]: # check that there are no more missing values in the dataframe
    null_count = housing_training_data.isnull().sum()
    null_count[null_count != 0]

Out[12]: Series([], dtype: int64)
```

We can also create boxplots for each of the continuous variables in the dataframe to analyze whether outliers exist for each of those variables.

<AxesSubplot:xlabel='OverallCond'> Out[13]: <AxesSubplot:xlabel='MasVnrArea'> Out[13]: <AxesSubplot:xlabel='BsmtFinSF1'> Out[13]: <AxesSubplot:xlabel='BsmtFinSF2'> Out[13]: <AxesSubplot:xlabel='BsmtUnfSF'> Out[13]: <AxesSubplot:xlabel='TotalBsmtSF'> Out[13]: <AxesSubplot:xlabel='1stFlrSF'> Out[13]: <AxesSubplot:xlabel='2ndFlrSF'> Out[13]: <AxesSubplot:xlabel='LowQualFinSF'> Out[13]: <AxesSubplot:xlabel='GrLivArea'> Out[13]: <AxesSubplot:xlabel='BsmtFullBath'> Out[13]: <AxesSubplot:xlabel='BsmtHalfBath'> Out[13]: <AxesSubplot:xlabel='FullBath'> Out[13]: <AxesSubplot:xlabel='HalfBath'> Out[13]: <AxesSubplot:xlabel='BedroomAbvGr'> Out[13]: <AxesSubplot:xlabel='KitchenAbvGr'> Out[13]: <AxesSubplot:xlabel='TotRmsAbvGrd'> Out[13]: <AxesSubplot:xlabel='Fireplaces'> Out[13]: <AxesSubplot:xlabel='GarageCars'> Out[13]: <AxesSubplot:xlabel='GarageArea'> Out[13]: <AxesSubplot:xlabel='WoodDeckSF'> Out[13]: <AxesSubplot:xlabel='OpenPorchSF'> Out[13]: <AxesSubplot:xlabel='EnclosedPorch'> Out[13]: <AxesSubplot:xlabel='3SsnPorch'> Out[13]: <AxesSubplot:xlabel='ScreenPorch'> Out[13]: <AxesSubplot:xlabel='PoolArea'> Out[13]: <AxesSubplot:xlabel='MiscVal'> Out[13]:

Out[13]:

<AxesSubplot:xlabel='SalePrice'>

Examination of the Relationship between the Dependent Variable and Potential Predictors

We can use a correlation heatmap to quantify the correlation between the dependent variable, sale price, and the potential continuous predictor variables.


```
In [15]:
          #Correlation with output variable
          cor_target = abs(corrmat_housing_training["SalePrice"])
          #Selecting highly correlated features
          relevant_features = cor_target[cor_target>0.5]
          relevant_features.sort_values(ascending=False)
          SalePrice
                          1.000000
Out[15]:
         OverallQual
                          0.790982
         GrLivArea
                          0.708624
         GarageCars
                          0.640409
         GarageArea
                          0.623431
          TotalBsmtSF
                          0.613581
         1stFlrSF
                          0.605852
          FullBath
                          0.560664
         TotRmsAbvGrd
                          0.533723
```

Name: SalePrice, dtype: float64

We can use jointplots to take a closer look at the relationship between sale price and five of the continuous variables with which sale price has a strong or moderate association: OverallQual, GrLivArea, GarageArea, Fullbath, and TotalBsmntSF.

Below are plots that examine the relationship between variables of interest and sale price

In [16]: sns.jointplot(x='OverallQual', y='SalePrice', data = housing_training_data, joint_kws=

In [17]: sns.jointplot(x='GrLivArea', y='SalePrice', data = housing_training_data, joint_kws={'

In [18]: sns.jointplot(x='FullBath', y='SalePrice', data = housing_training_data, joint_kws={"s

In [19]: sns.jointplot(x='TotalBsmtSF', y='SalePrice', data = housing_training_data, joint_kws=

In [20]: sns.jointplot(x='GarageArea', y='SalePrice', data = housing_training_data, joint_kws=

To determine which binary categorical variables might serve as the best predictors in a regression model, we can create boxplots and run t-tests to help decipher which binary indicator variables may have the strongest relationship with home sale prices.

```
categorical variables = ['MSZoning', 'Street', 'LotShape', 'LandContour', 'Utilities'
In [21]:
                                     'Neighborhood', 'Condition1', 'Condition2', 'BldgType', 'House
                                    'Exterior1st', 'Exterior2nd', 'MasVnrType', 'ExterQual', 'Exte
                                    'BsmtQual', 'BsmtCond', 'BsmtExposure', 'BsmtFinType1', 'BsmtF
                                    'CentralAir', 'Electrical', 'KitchenQual', 'Functional', 'Fire 'GarageQual', 'GarageCond', 'PavedDrive', 'SaleType', 'SaleCo
                                     'YrSold', 'MoSold']
          category_counts = []
          for var in categorical variables:
              category_counts.append(len(housing_training_data[var].unique()))
          categorical variable dictionary = {'Categorical Predictor':categorical variables,'Numb
          categorical_var_df = pd.DataFrame(categorical_variable_dictionary)
          categorical var df
          # Identify the Indicator Variables
          indicator_variables_df = categorical_var_df[categorical_var_df['Number of Categories']
          indicator variables df
          # Identify the Non-Indicator Categorical Variables
          non indicator categorial vars df = categorical var df[categorical var df['Number of Ca
          non_indicator_categorial_vars_df
```

Out[21]:

	Categorical Predictor	Number of Categories
0	MSZoning	5
1	Street	2
2	LotShape	4
3	LandContour	4
4	Utilities	2
5	LotConfig	5
6	LandSlope	3
7	Neighborhood	25
8	Condition1	9
9	Condition2	8
10	BldgType	5
11	HouseStyle	8
12	RoofStyle	6
13	RoofMatl	8
14	Exterior1st	15
15	Exterior2nd	16
16	MasVnrType	4
17	ExterQual	4
18	ExterCond	5
19	Foundation	6
20	BsmtQual	5
21	BsmtCond	5
22	BsmtExposure	5
23	BsmtFinType1	7
24	BsmtFinType2	7
25	Heating	6
26	HeatingQC	5
27	CentralAir	2
28	Electrical	6
29	KitchenQual	4
30	Functional	7
31	FireplaceQu	6
32	GarageType	7
33	GarageQual	6

	Categorical Predictor	Number of Categories
34	GarageCond	6
35	PavedDrive	3
36	SaleType	9
37	SaleCondition	6
38	YearBuilt	112
39	GarageYrBlt	102
40	YrSold	5
41	MoSold	12

٦	1.1	+		٠)	7	- 1	0
J	и	L	L	\sim	-	Ш	0
			_			_	

	Categorical Predictor	Number of Categories
1	Street	2
4	Utilities	2
27	CentralAir	2

Out[21]:

	Categorical Predictor	Number of Categories
0	MSZoning	5
2	LotShape	4
3	LandContour	4
5	LotConfig	5
6	LandSlope	3
7	Neighborhood	25
8	Condition1	9
9	Condition2	8
10	BldgType	5
11	HouseStyle	8
12	RoofStyle	6
13	RoofMatl	8
14	Exterior1st	15
15	Exterior2nd	16
16	MasVnrType	4
17	ExterQual	4
18	ExterCond	5
19	Foundation	6
20	BsmtQual	5
21	BsmtCond	5
22	BsmtExposure	5
23	BsmtFinType1	7
24	BsmtFinType2	7
25	Heating	6
26	HeatingQC	5
28	Electrical	6
29	KitchenQual	4
30	Functional	7
31	FireplaceQu	6
32	GarageType	7
33	GarageQual	6
34	GarageCond	6
35	PavedDrive	3
36	SaleType	9

Categorical	Predictor	Number of	of	Categories

37	SaleCondition	6
38	YearBuilt	112
39	GarageYrBlt	102
40	YrSold	5
41	MoSold	12

Out[22]: Y 1340 N 120

Name: PavedDrive, dtype: int64

Out[22]: <AxesSubplot:xlabel='Street', ylabel='SalePrice'>

Out[22]: <AxesSubplot:xlabel='Utilities', ylabel='SalePrice'>

Out[22]: <AxesSubplot:xlabel='CentralAir', ylabel='SalePrice'>

Out[22]: <AxesSubplot:xlabel='PavedDrive', ylabel='SalePrice'>


```
Central Air t test = ttest ind(housing training data['SalePrice'][housing training dat
                            housing_training_data['SalePrice'][housing_training_data['CentralAir'] == 'N
                            equal_var=False)
 Paved_Drive_t_test = ttest_ind(housing_training_data['SalePrice'][housing_training_dat
                            housing training data['SalePrice'][housing training data['PavedDrive'] == 'N
                            equal var=False)
 Indicator_Variable_t_test_statistics = [Street_t_test[0], Utilities_t_test[0], Central
 Indicator_Variable_t_test_p_values = [Street_t_test[1], Utilities_t_test[1], Central_/
 indicator_var_t_tests = {'Indicator Variable':indicator_vars,'T-Test Statistic':Indicator_vars,'T-Test Stati
                                                                  'P-Values':Indicator_Variable_t_test_p_values}
 Indicator_var_t_test_df = pd.DataFrame(indicator_var_t_tests)
 Indicator var t test df.style.background gradient(cmap = 'Greens')
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/numpy/c
ore/fromnumeric.py:3724: RuntimeWarning: Degrees of freedom <= 0 for slice
      **kwargs)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/numpy/c
ore/_methods.py:254: RuntimeWarning: invalid value encountered in double_scalars
      ret = ret.dtype.type(ret / rcount)
```

Out[23]:

Indicator Variable T-Test Statistic P-Values

0	Street	1.900788	0.115048
1	Utilities	nan	nan
2	CentralAir	17.267773	0.000000
3	PavedDrive	15.093535	0.000000

We can see that Street, Central Air, and Paved Drive all have statistically significant t-test statistics. This tells us that there does appear to be statistically significant differences in Sale Prices between the categories of these variables. Let's dummy encode each one so that we can use them in our regression analysis.

```
In []:
In [25]: # dummy encode the Street, Central Air, Paved Drive indicator variables, we will exclu
housing_training_data = pd.get_dummies(housing_training_data, columns=['Street','Central Air, Paved Drive indicator variables, we will exclu
housing_training_data = pd.get_dummies(housing_training_data, columns=['Street','Central Air, Paved Drive indicator variables, we will exclusion to the property of t
```

To determine which categorical variables might be most useful for inclusion in a regression model (in the form of a dichotomous variable), we can create boxplots and run analyses of variance (ANOVA) to determine which non-binary categorical variables may have the strongest relationship with home sale prices.

We can create boxplots to visually display the distribution of sale prices disaggregated by the categories associated with each of the non-indicator categorical variables as well.

```
# redefine categorical_vars_df after transforming Paved Drive variable
In [26]:
          non_indicator_categorial_vars_df = non_indicator_categorial_vars_df[non_indicator_cate
          fig, ax = plt.subplots(33, 1, figsize=(15, 200))
          for var, subplot in zip(non_indicator_categorial_vars_df['Categorical Predictor'], ax
                   sns.boxplot(x = var, y = 'SalePrice', data=housing_training_data, ax=subplot)
          fig.tight_layout()
          <AxesSubplot:xlabel='MSZoning', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='LotShape', ylabel='SalePrice'>
Out[26]:
         <AxesSubplot:xlabel='LandContour', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='LotConfig', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='LandSlope', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='Neighborhood', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='Condition1', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='Condition2', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='BldgType', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='HouseStyle', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='RoofStyle', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='RoofMatl', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='Exterior1st', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='Exterior2nd', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='MasVnrType', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='ExterQual', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='ExterCond', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='Foundation', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='BsmtQual', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='BsmtCond', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='BsmtExposure', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='BsmtFinType1', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='BsmtFinType2', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='Heating', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='HeatingQC', ylabel='SalePrice'>
Out[26]:
         <AxesSubplot:xlabel='Electrical', ylabel='SalePrice'>
Out[26]:
          <AxesSubplot:xlabel='KitchenQual', ylabel='SalePrice'>
Out[26]:
```


Visual inspection of the boxplots above suggests that the variables for exterior quality, basement quality, fireplace quality, kitchen quality, garage quality and condition, and Heating quality may provide the most promise in our search for helpful categorical predictors that may be transformed into dichotomous variables. Conducting ANOVAs can shed more light on the relationship between these seven variables and home sale prices.

```
In [27]: ANOVA_variables = ['ExterQual', 'BsmtQual', 'FireplaceQu', 'KitchenQual','GarageQual']
         from scipy.stats import f_oneway
         # ExterQual ANOVA
         ExterQual_Gd = housing_training_data['SalePrice'][housing_training_data['ExterQual']
         ExterQual_TA = housing_training_data['SalePrice'][housing_training_data['ExterQual'] =
         ExterQual_Ex = housing_training_data['SalePrice'][housing_training_data['ExterQual'] =
         ExterQual_Fa = housing_training_data['SalePrice'][housing_training_data['ExterQual'] =
         ANOVA_ExterQual = f_oneway(ExterQual_Gd, ExterQual_TA, ExterQual_Ex, ExterQual_Fa)
         # BsmtQual ANOVA
         BsmtQual_Gd = housing_training_data['SalePrice'][housing_training_data['BsmtQual'] ==
         BsmtQual_TA = housing_training_data['SalePrice'][housing_training_data['BsmtQual'] ==
         BsmtQual_Ex = housing_training_data['SalePrice'][housing_training_data['BsmtQual'] ==
         BsmtQual_None = housing_training_data['SalePrice'][housing_training_data['BsmtQual'] =
         BsmtQual_Fa = housing_training_data['SalePrice'][housing_training_data['BsmtQual'] ==
         ANOVA_BsmtQual = f_oneway(BsmtQual_Gd, BsmtQual_TA, BsmtQual_Ex, BsmtQual_None, BsmtQu
         # FireplaceQu ANOVA
         FireplaceQu_None = housing_training_data['SalePrice'][housing_training_data['Fireplace
```

```
FireplaceQu TA = housing training data['SalePrice'][housing training data['FireplaceQu
FireplaceQu Gd = housing training data['SalePrice'][housing training data['FireplaceQu
FireplaceQu_Fa = housing_training_data['SalePrice'][housing_training_data['FireplaceQu
FireplaceQu Ex = housing training data['SalePrice'][housing training data['FireplaceQu
FireplaceQu Po = housing training data['SalePrice'][housing training data['FireplaceQu
ANOVA FireplaceQu = f oneway(FireplaceQu None, FireplaceQu TA, FireplaceQu Gd, Firepla
                            FireplaceQu_Ex, FireplaceQu_Po)
# KitchenQual ANOVA
KitchenQual Gd = housing training data['SalePrice'][housing training data['KitchenQua]
KitchenQual_TA = housing_training_data['SalePrice'][housing_training_data['KitchenQua]
KitchenQual_Ex = housing_training_data['SalePrice'][housing_training_data['KitchenQual
KitchenQual_Fa = housing_training_data['SalePrice'][housing_training_data['KitchenQual
ANOVA KitchenQual = f oneway(KitchenQual Gd, KitchenQual TA, KitchenQual Ex, KitchenQual
# GarageQual ANOVA
GarageQu None = housing training data['SalePrice'][housing training data['GarageQual'
GarageQu TA = housing training data['SalePrice'][housing training data['GarageQual']
GarageQu_Gd = housing_training_data['SalePrice'][housing_training_data['GarageQual'] =
GarageQu_Fa = housing_training_data['SalePrice'][housing_training_data['GarageQual'] =
GarageQu Ex = housing training data['SalePrice'][housing training data['GarageQual']
GarageQu Po = housing training data['SalePrice'][housing training data['GarageQual']
ANOVA_GarageQu = f_oneway(GarageQu_None, GarageQu_TA, GarageQu_Gd, GarageQu_Fa,
                            GarageQu_Ex, GarageQu_Po)
# GarageCond ANOVA
GarageCond_None = housing_training_data['SalePrice'][housing_training_data['GarageCond
GarageCond TA = housing training data['SalePrice'][housing training data['GarageCond'
GarageCond_Gd = housing_training_data['SalePrice'][housing_training_data['GarageCond'
GarageCond Fa = housing training data['SalePrice'][housing training data['GarageCond'
GarageCond Ex = housing training data['SalePrice'][housing training data['GarageCond'
GarageCond Po = housing training data['SalePrice'][housing training data['GarageCond'
ANOVA_GarageCond = f_oneway(GarageCond_None, GarageCond_TA, GarageCond_Gd, GarageCond_
                            GarageCond Ex, GarageCond Po)
# HeatingQC ANOVA
HeatingQC_TA = housing_training_data['SalePrice'][housing_training_data['HeatingQC'] =
HeatingQC Gd = housing training data['SalePrice'][housing training data['HeatingQC']
HeatingQC Fa = housing training data['SalePrice'][housing training data['HeatingQC'] =
HeatingQC Ex = housing training data['SalePrice'][housing training data['HeatingQC']
HeatingQC_Po = housing_training_data['SalePrice'][housing_training_data['HeatingQC']
ANOVA HeatingQC = f oneway(HeatingQC TA, HeatingQC Gd, HeatingQC Fa,
                            HeatingQC Ex, HeatingQC Po)
# Compile Outputs
ANOVA statistics = [ANOVA ExterQual[0], ANOVA BsmtQual[0], ANOVA FireplaceQu[0], ANOVA
                    ANOVA_GarageQu[0], ANOVA_GarageCond[0], ]
ANOVA_p_values = [ANOVA_ExterQual[1], ANOVA_BsmtQual[1], ANOVA_FireplaceQu[1], ANOVA_K
                  ANOVA_GarageQu[1], ANOVA_GarageCond[1]]
ANOVA_outputs = {'Categorical Variable': ANOVA_variables ,'Test Statistic': ANOVA_stat
                 'P-Values': ANOVA p values}
```

```
ANOVA_df = pd.DataFrame(ANOVA_outputs)
ANOVA_df.style.background_gradient(cmap = 'Greens')
```

Out[27]:		Categorical Variable	Test Statistic	P-Values
	0	ExterQual	443.334831	0.000000
	1	BsmtQual	316.148635	0.000000
	2	FireplaceQu	121.075121	0.000000
	3	KitchenQual	407.806352	0.000000
	4	GarageQual	88.394462	0.000000
	5	GarageCond	25.776093	0.000000
	6	HeatingQC	25.750153	0.000000

We will use the Tukey-Cramer Multiple Comparison Test to confirm whether there are statistically significant differences in means when considering pairwise comparisons of categorical variable values.

```
In [28]: # lets view the tukeyhsd for each variable
from statsmodels.stats.multicomp import pairwise_tukeyhsd

for i in ANOVA_variables:
    tukey_cramer_result = pairwise_tukeyhsd(endog=housing_training_data['SalePrice'],
    print(tukey_cramer_result)
```

Multiple Comparison of Means - Tukey HSD, FWER=0.05

			of Mear	ns - Tukey HSI), FWER=0.05	
	======			========	========	======
group1	group2	meandiff	p-adj	lower	upper	reject
Ex		-279375.7473		-323897.1579		True
Ex		-135727.4513		-157297.3415		True
Ex		-223019.6481		-244104.9402	-201934.356	True
Fa	Gd TA	143648.296	0.001	103567.1096	183729.4823	True True
Fa Gd	TA	56356.0992 -87292.1968	0.0016	16533.607 -95594.9096	96178.5913 -78989.484	True
du	IA	-07292.1900	0.001	-93394.9090	-70303.404	True
=====	•	•		ns - Tukey HSI		======
	group2				upper	reject
Ex	Fa	-211349.0128	0.001	-241850.1706	-180847.8549	True
Ex	Gd	-124352.5624	0.001	-140151.0688	-108554.0559	True
Ex	None	-221388.1494	0.001	-251243.057	-191533.2419	True
Ex	TA	-186281.2231	0.001	-202017.8288	-170544.6174	True
Fa	Gd	86996.4504	0.001	59383.7383	114609.1625	True
Fa	None	-10039.1367	0.9	-47511.5875	27433.3141	False
Fa	TA	25067.7896	0.095	-2509.553	52645.1322	False
Gd	None	-97035.5871	0.001	-123932.7383	-70138.4358	True
Gd	TA	-61928.6608	0.001	-70860.7377	-52996.5838	True
None	TA	35106.9263	0.0034	8246.0868	61967.7658	True
	 Multipl	le Comparison	of Mear	ns - Tukey HSI), FWER=0.05	
group1	group2	meandiff	p-adj	lower	upper	reject
Ex		-170414.0152		-221601.4617		True
Ex		-111361.0842		-151519.9919	-71202.1765	True
Ex		-196381.0174		-236000.3876		True
Ex	Po	-207948.35		-265717.2832		True
Ex		-131989.0112		-172402.4484		True
Fa	Gd	59052.9309	0.001	24425.9294 -59966.7943		True
Fa Fa	None	-25967.0022			8032.7899	False False
	Po	-37534.3348		-91604.1139	16535.4442	
Fa	TA	38425.004		3503.1301	73346.8778	True
Gd Gd	None Po	-85019.9332 -96587.2658	0.001	-97208.8236 -140360.8217	-72831.0427 -52813.7099	True True
Gd	TA	-20627.927	0.001		-6063.5712	True
None	Po	-11567.3326	0.001	-54846.4364	31711.7712	
None	TA	64392.0062	0.001	51389.0416	77394.9708	True
Po	TA	75959.3388	0.001	31952.1549		True
		·		ns - Tukey HSI		
	group2				upper	reject
Ex	Fa	-222989.4649	0.001	-251454.2769	-194524,6528	True
Ex		-116438.6461		-132752.1208		
Ex		-188592.1584		-204662.7844		True
Fa	Gd	106550.8188	0.001			
Fa	TA					
Gd	TA	-72153.5123				
======				ns - Tukey HSI		=====
	group2			lower		reject

Ex	Fa	-117426.6458	0.101	-246946.454	12093.1623	False
Ex	Gd	-25139.2857		-163601.7848		
Ex	None			-265641.1324		
Ex				-318533.0441		
Ex	TA			-179306.5197		
Fa	Gd	92287.3601				
Fa	None	-20256.0702				
Fa	Po	-23406.6875		-152926.4956		
Fa	TA	63916.4818				
Gd				-175535.7535		
Gd				-254156.5467		
Gd	TA	-28370.8783				
None	Po			-131109.0337		
None	TA	84172.5521		59254.8429		
Po	TA			-38473.1863		
N	Multiple	Comparison	of Mean	s - Tukey HSD	. FWFR=0.05	
				=========		
		meandiff			upper	reject
0						
Ex	Fa	-9345.9714	0.9	-167580.7655	148888.8227	False
Ex	Gd	55930.0		-114211.491		False
Ex	None			-176469.8843		False
Ex	Ро			-190004.8015		False
Ex	TA			-90129.0525		False
Fa	Gd	65275.9714		-16067.2196		False
Fa		-11336.7446		-55362.0733		False
Fa	Ро	-6154.0286		-96267.9206	83959.8634	False
Fa	TA	73231.7067	0.001	35960.5027		True
Gd	None	-76612.716		-153085.6293	-139.8028	True
Gd	Po			-181113.1364		False
Gd	TA	7955.7353	0.9			False
None	Ро	5182.716	0.9			False
None	TA	84568.4513	0.001		109478.9787	True
Po	TA			-3093.4641		False
				ns - Tukey HS =======		; :======
		meandiff	p-adj		upper	
Ex	 Fa	-90994 9394		-119740.4887		True
Ex				-72506.7051		
Ex				-322924.5088		
Ex	TA			-84383.0712		
Fa	Gd				63478.5107	
Fa	Po			-233776.6307		
Fa	TA			-10946.8769		
Gd	Po			-265141.3923		
Gd	TA			-30190.4728		
Po				-139743.2799		
				-139743.2799		

Given that the ANOVA and Tukey-Cramer tests the levels of these variables appear to be statistically significant from one another (for the most part). This demonstrates that it makes since to ordinally encode these with HeatingQC as the exception.

This also reveals that sale prices for rows with 'None' is not statistically different from sale prices of rows with 'FA'. For each variable, so we will encode 'None' with the same value as 'FA'.

```
In [29]: # for heatingQC excellent is the only value that is statistically significant from the housing_training_data['HeatingEx'] = np.where(housing_training_data['HeatingQC'] == 'E housing_training_data.drop(columns=['HeatingQC'],inplace=True)
```

Encode important categorical variables

```
from sklearn.preprocessing import LabelEncoder
In [30]:
          # let's ordinally encode the other variables we explored above (aside from heatingQC w
          important_categorical = ['ExterQual', 'BsmtQual', 'FireplaceQu', 'KitchenQual', 'Garag
         ordinal_mapping = {
              'Ex': 4,
              'Gd': 3,
              'TA': 2,
              'Fa': 1,
              'None':1,
              'Po': 0,
          }
         # process columns, replace to categorical features with ordinal ranking
         for i in important categorical:
             housing_training_data[i] = housing_training_data[i].replace(ordinal_mapping)
          print('Shape all data: {}'.format(housing training data.shape))
         Shape all data: (1460, 77)
```

Feature Creation

New features may enable us to create more accurate prediction models for home sale prices. Accordingly, we will create a feature to reflect the number of years since a home has been remodeled.

```
In [31]: # create new variable, years since the house has been remodeled from selling date (use housing_training_data['YrSinceRemod'] = housing_training_data['YrSold'] - housing_training_training_training_data['YrSinceRemod'].describe()
# create boxplot of YrSinceRemod', data=housing_training_data)

#Pearson correlation coefficient and p value for sale price and GarageArea (Size of gares6 = stats.pearsonr(housing_training_data.YrSinceRemod, housing_training_data.SalePrprint("Pearson correlation coefficient and p value for sale price and Years since Houses6
```

```
count
                   1460.000000
Out[31]:
                     22.950000
          mean
          std
                     20.640653
          min
                      -1.000000
          25%
                      4.000000
          50%
                     14.000000
          75%
                     41.000000
                     60.000000
          max
```

Name: YrSinceRemod, dtype: float64
<AxesSubplot:xlabel='YrSinceRemod':

Out[31]: <AxesSubplot:xlabel='YrSinceRemod'>

Pearson correlation coefficient and p value for sale price and Years since House was remodeled/built:

Out[31]: (-0.509078738015629, 4.3748554463775595e-97)

We can create a scatterplot to visualize the relationship between years since remodel and sale price.

In [32]: sns.jointplot(x='YrSinceRemod', y='SalePrice', data = housing_training_data, joint_kws

We will also create a feature to reflect the number of total square feet in a home.

```
In [33]:
         # create new variable TotalSF
          housing_training_data['TotalSF'] = housing_training_data['TotalBsmtSF'] + housing_trai
          housing_training_data['TotalSF'].describe()
          # create boxplot of TotalSF
          sns.boxplot(x = 'TotalSF', data=housing_training_data)
         count
                    1460.000000
Out[33]:
         mean
                    2572.893151
         std
                     823.598492
         min
                     334.000000
         25%
                    2014.000000
         50%
                    2479.000000
         75%
                    3008.500000
                   11752.000000
         max
         Name: TotalSF, dtype: float64
         <AxesSubplot:xlabel='TotalSF'>
Out[33]:
```


In [34]: # drop large outlier from the dataframe
housing_training_data.drop(housing_training_data[housing_training_data['TotalSF'] > 66
visualize distribution without extreme outliers
sns.histplot(data=housing_training_data, x="TotalSF")

#Pearson correlation coefficient and p value for sale price and TotalSF):
res7 = stats.pearsonr(housing_training_data.TotalSF, housing_training_data.SalePrice)
print("Pearson correlation coefficient and p value for sale price and TotalSF (Total sres7)

Out[34]: <AxesSubplot:xlabel='TotalSF', ylabel='Count'>

Pearson correlation coefficient and p value for sale price and TotalSF (Total square feet - includes basement):

Out[34]: (0.81999629129728, 0.0)

We can create a scatterplot to examine the relationship between total square feet and sale price.

In [35]: sns.jointplot(x='TotalSF', y='SalePrice', data = housing_training_data, joint_kws={"s'

Dummy Encoding

Let's dummy encode the remaining categorical variables and create a new dataframe with these encoded columns and the original numeric columns.

```
In [36]: # create new df with current numeric columns
housing_training_numeric_df = pd.DataFrame(housing_training_data.select_dtypes(exclude)
# create new df with current categorical columns
housing_training_object_df = pd.DataFrame(housing_training_data.select_dtypes(exclude)
orig_object_cols = housing_training_object_df.columns

# dummy encode the categorical columns
housing_training_data_dummy = pd.get_dummies(housing_training_object_df, columns=orig_
# create new df with original numeric and new dummy encoded columns
housing_training_data_large = pd.concat([housing_training_numeric_df, housing_training_housing_training_data_large]
```

Out[36]:		ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd
	0	1	60	65.0	8450	7	5	2003	2003

	Id	WSSubClass	LotFrontage	LotArea	OveraliQual	OveraliCond	YearBuilt	YearkemodAdd
0	1	60	65.0	8450	7	5	2003	2003
1	2	20	80.0	9600	6	8	1976	1976
2	3	60	68.0	11250	7	5	2001	2002
3	4	70	60.0	9550	7	5	1915	1970
4	5	60	84.0	14260	8	5	2000	2000
•••								
1455	1456	60	62.0	7917	6	5	1999	2000
1456	1457	20	85.0	13175	6	6	1978	1988
1457	1458	70	66.0	9042	7	9	1941	2006
1458	1459	20	68.0	9717	5	6	1950	1996
1459	1460	20	75.0	9937	5	6	1965	1965

1455 rows × 256 columns

```
In [37]: # Correlation with Sale Price
          corrmat_housing_training = housing_training_data_large.corr()
         cor_target = abs(corrmat_housing_training["SalePrice"])
         # Selecting correlated features
         relevant_features = cor_target[cor_target>0.25]
         # display features that have correlations with SalePrice over 0.25
         with pd.option_context("display.max_rows",300):
             relevant_features.sort_values(ascending=False)
         # create new dataframe with only those features
         feature list = relevant features.index
         housing_training_data_large_subset = housing_training_data_large[feature_list]
         housing_training_data_large_subset.shape
```

Out[37]:	SalePrice	1.000000
ouc[3/].	TotalSF	0.819996
	OverallQual	0.801196
	GrLivArea	0.718340
	ExterQual	0.695051
	KitchenQual	0.667111
	BsmtQual	0.657389
	GarageCars	0.650951
	TotalBsmtSF	0.643275
	GarageArea	0.638538
	1stFlrSF	0.621678
	FullBath	0.556516
	YearBuilt	0.535781
	TotRmsAbvGrd	0.535425
	FireplaceQu	0.525552
	YrSinceRemod	0.524075
	YearRemodAdd	0.522479
	GarageYrBlt	0.516351
	Foundation_PConc	0.505411
	MasVnrArea	0.476732
	Fireplaces	0.467166
	HeatingEx	0.440949
	BsmtFinType1_GLQ	0.434806
	GarageFinish_Fin	0.422119
	Neighborhood_NridgHt	0.421602
	GarageFinish_Unf	0.417580
	BsmtFinSF1	0.393687
	MasVnrType_None	0.383184
	SaleType_New	0.379298
	SaleCondition_Partial	0.373552
	GarageType_Detchd	0.361482
	MasVnrType_Stone	0.350892
	Foundation_CBlock	0.346991
	GarageType_Attchd	0.340156
	LotFrontage	0.339451
	OpenPorchSF	0.330605
	Exterior2nd_VinylSd	0.328221
	Exterior1st_VinylSd	0.326943
	WoodDeckSF	0.320869
	BsmtExposure_Gd	0.309613
	2ndFlrSF	0.300248
	MSZoning_RM	0.294802
	HalfBath	0.285725
	Neighborhood_NoRidge	0.280726
	GarageQual	0.280230
	LotArea	0.270350
	LotShape_Reg	0.263206
	BsmtExposure_No	0.262934
	SaleType_WD	0.258981
	CentralAir_Y	0.258415
	GarageCond	0.258367
	Name: SalePrice, dtype:	float64
Out[37]:	(1455, 51)	

Out[37]: (1455, 51)

We may use this dataframe later on in the analysis. For the start, we will investigate the relationship between SalePrice and a select number of features, like Total Square Feet.

Prepare Test Data

```
In [38]: # load test data
housing_testing_data = pd.read_csv('test.csv')
```

Handle Null values, matches how we dealt with Nulls in the training dataset

```
In [39]: # find null counts, percentage of null values, and column type
   null_count = housing_testing_data.isnull().sum()
   null_percentage = housing_testing_data.isnull().sum() * 100 / len(housing_testing_data
   column_type = housing_testing_data.dtypes

# show null counts, percentage of null values, and column type for columns with more t
   null_summary = pd.concat([null_count, null_percentage, column_type], axis=1, keys=['Mi
   null_summary_only_missing = null_summary[null_count != 0].sort_values('Percentage Miss
   null_summary_only_missing
```

Out[39]:

	Missing Count	Percentage Missing	Column Type
PoolQC	1456	99.794380	object
MiscFeature	1408	96.504455	object
Alley	1352	92.666210	object
Fence	1169	80.123372	object
FireplaceQu	730	50.034270	object
LotFrontage	227	15.558602	float64
GarageCond	78	5.346127	object
GarageYrBlt	78	5.346127	float64
GarageQual	78	5.346127	object
GarageFinish	78	5.346127	object
GarageType	76	5.209047	object
BsmtCond	45	3.084304	object
BsmtExposure	44	3.015764	object
BsmtQual	44	3.015764	object
BsmtFinType1	42	2.878684	object
BsmtFinType2	42	2.878684	object
MasVnrType	16	1.096642	object
MasVnrArea	15	1.028101	float64
MSZoning	4	0.274160	object
BsmtFullBath	2	0.137080	float64
BsmtHalfBath	2	0.137080	float64
Functional	2	0.137080	object
Utilities	2	0.137080	object
GarageCars	1	0.068540	float64
GarageArea	1	0.068540	float64
TotalBsmtSF	1	0.068540	float64
KitchenQual	1	0.068540	object
BsmtUnfSF	1	0.068540	float64
BsmtFinSF2	1	0.068540	float64
BsmtFinSF1	1	0.068540	float64
Exterior2nd	1	0.068540	object
Exterior1st	1	0.068540	object
SaleType	1	0.068540	object

```
# PoolQC, MiscFeature, Alley, Fence all have over 50% of missing values, we will remove
In [40]:
                  housing_testing_data.drop(['Alley','PoolQC','Fence','MiscFeature'],axis=1,inplace=True
                   columns_None = ['SaleType','BsmtCond','BsmtExposure','BsmtFinType1','BsmtFinType2','GaleType','BsmtFinType2','GaleType','BsmtFinType2','GaleType','BsmtFinType2','GaleType','BsmtFinType1','BsmtFinType2','GaleType','BsmtFinType2','GaleType','BsmtFinType2','GaleType','BsmtFinType2','GaleType','BsmtFinType2','GaleType','BsmtFinType2','GaleType','BsmtFinType2','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType','GaleType',
                   # set Nulls in non-numeric columns to 'None'
                  housing_testing_data[columns_None] = housing_testing_data[columns_None].fillna('None')
                 # change Null values to 0 for the following variables
In [41]:
                   columns zero = ['MasVnrArea', 'GarageArea', 'GarageCars', 'TotalBsmtSF', 'BsmtUnfSF', 'Bsmt
                   housing testing data[columns zero] = housing testing data[columns zero].fillna(0)
                   # fill Nulls for Lot Frontage with median value
                   housing testing data['LotFrontage'].fillna(housing testing data['LotFrontage'].median(
                   # fill Nulls with year garage was built with median value
                  housing testing data['GarageYrBlt'].fillna(housing testing data['GarageYrBlt'].median(
                 # convert Paved Drive to dichotomous, indicator variable
In [42]:
                  housing_testing_data['PavedDrive'] = np.where(housing_testing_data['PavedDrive'] == '\
                  housing testing data['PavedDrive'].value counts()
                  # dummy encode the Street, Central Air, Paved Drive indicator variables, we will exclu
                  housing_testing_data = pd.get_dummies(housing_testing_data, columns=['Street','Central
                           1301
Out[42]:
                             158
                  Name: PavedDrive, dtype: int64
                  # for heatingOC encode this to be a binary variable to match how we encoded this colum
In [43]:
                   housing testing data['HeatingEx'] = np.where(housing testing data['HeatingQC'] == 'Ex'
                  housing_testing_data.drop(columns=['HeatingQC'],inplace=True)
                 # encode categorical columns with ordinal values
In [44]:
                   important categorical = ['ExterQual', 'BsmtQual', 'FireplaceQu', 'KitchenQual', 'Garas
                  ordinal mapping = {
                          'Ex': 4,
                           'Gd': 3,
                          'TA': 2,
                           'Fa': 1,
                           'None': 1,
                          'Po': 0,
                   }
                   # process columns, replace to categorical features with ordinal ranking
                   for i in important categorical:
                          housing_testing_data[i] = housing_testing_data[i].replace(ordinal_mapping)
                   # shape
                   print('Shape all_data: {}'.format(housing_testing_data.shape))
                  Shape all data: (1459, 76)
In [45]: # create new variable TotalSF
                   housing_testing_data['TotalSF'] = housing_testing_data['TotalBsmtSF'] + housing_testing
```

create new variable, years since the house has been remodeled from selling date (use housing_testing_data['YrSinceRemod'] = housing_testing_data['YrSold'] - housin

In [46]: ### Dummy Encoding

In [47]: # create new df with current numeric columns

housing_testing_numeric_data = pd.DataFrame(housing_testing_data.select_dtypes(exclude

create new df with current categorical columns

housing_testing_object_data = pd.DataFrame(housing_testing_data.select_dtypes(excludeorig_object_cols = housing_testing_object_data.columns

dummy encode the categorical columns

housing_testing_data_dummy = pd.get_dummies(housing_testing_object_data, columns=orig

create new df with original numeric and new dummy encoded columns

housing_testing_data_large = pd.concat([housing_testing_numeric_data, housing_testing_housing_testing_data_large

\cap	1.15	-	1/17	
U	и	_	L+/.	

	ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd
0	1461	20	80.0	11622	5	6	1961	1961
1	1462	20	81.0	14267	6	6	1958	1958
2	1463	60	74.0	13830	5	5	1997	1998
3	1464	60	78.0	9978	6	6	1998	1998
4	1465	120	43.0	5005	8	5	1992	1992
•••								
1454	2915	160	21.0	1936	4	7	1970	1970
1455	2916	160	21.0	1894	4	5	1970	1970
1456	2917	20	160.0	20000	5	7	1960	1996
1457	2918	85	62.0	10441	5	5	1992	1992
1458	2919	60	74.0	9627	7	5	1993	1994

1459 rows × 246 columns

create new dataframe with correlated variables with SalePrice observed in the traini
feature_list = feature_list.drop('SalePrice')

housing_testing_data_large_subset = housing_testing_data_large[feature_list]
housing testing data large subset

Out[48]:	LotFront	age	LotArea	OverallQual	YearBuilt	YearRemodAdd	MasVnrArea	ExterQual	BsmtQua
	0 8	30.0	11622	5	1961	1961	0.0	2	
	1 8	31.0	14267	6	1958	1958	108.0	2	
	2	74.0	13830	5	1997	1998	0.0	2	
	3	78.0	9978	6	1998	1998	20.0	2	
	4	43.0	5005	8	1992	1992	0.0	3	
	•••								
145	54 2	21.0	1936	4	1970	1970	0.0	2	
145	i 5 2	21.0	1894	4	1970	1970	0.0	2	
145	5 6 16	60.0	20000	5	1960	1996	0.0	2	
145	57	52.0	10441	5	1992	1992	0.0	2	
145	8	74.0	9627	7	1993	1994	94.0	2	

1459 rows × 50 columns

Out[50]:		Id	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd
	0	1461	20	80.0	11622	5	6	1961	1961
	1	1462	20	81.0	14267	6	6	1958	1958
	2	1463	60	74.0	13830	5	5	1997	1998
	3	1464	60	78.0	9978	6	6	1998	1998
	4	1465	120	43.0	5005	8	5	1992	1992
	•••								
	1454	2915	160	21.0	1936	4	7	1970	1970
	1455	2916	160	21.0	1894	4	5	1970	1970
	1456	2917	20	160.0	20000	5	7	1960	1996
	1457	2918	85	62.0	10441	5	5	1992	1992

7

1993

1994

1459 rows × 240 columns

1458 2919

Out[50]:		ld	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd
	0	1	60	65.0	8450	7	5	2003	2003
	1	2	20	80.0	9600	6	8	1976	1976
	2	3	60	68.0	11250	7	5	2001	2002
	3	4	70	60.0	9550	7	5	1915	1970
	4	5	60	84.0	14260	8	5	2000	2000
	•••								
	1455	1456	60	62.0	7917	6	5	1999	2000
	1456	1457	20	85.0	13175	6	6	1978	1988
	1457	1458	70	66.0	9042	7	9	1941	2006
	1458	1459	20	68.0	9717	5	6	1950	1996
	1459	1460	20	75.0	9937	5	6	1965	1965

9627

74.0

1455 rows × 240 columns

In []:

Constructing Models to Predict Home Prices

Model Assumptions

- 1. Linearity
- 2. Homoscedasticity
- 3. Independence of Errors
- 4. Multivariate Normality
- 5. No or little Multicollinearity

Below are simple and multiple regressions that examine the associations between variables of interest and sale price.

```
import numpy as np
import statsmodels.api as sm
# New feature is highly correlated, lets try a simple linear regression
x = housing_training_data['TotalSF']
y = housing_training_data['SalePrice']

#add constant to predictor variables
X = sm.add_constant(x)

#fit linear regression model
model = sm.OLS(y, X).fit()

#view model summary
print(model.summary())

# plot the regression model
sns.regplot(x=x, y=y)
```

OLS Regression Results

=======================================			=========
Dep. Variable:	SalePrice	R-squared:	0.672
Model:	OLS	Adj. R-squared:	0.672
Method:	Least Squares	F-statistic:	2982.
Date:	Sun, 16 Apr 2023	<pre>Prob (F-statistic):</pre>	0.00
Time:	16:12:31	Log-Likelihood:	-17613.
No. Observations:	1455	AIC:	3.523e+04
Df Residuals:	1453	BIC:	3.524e+04
Df Model:	1		

nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const TotalSF	-3.239e+04 83.1361	4054.647 1.522	-7.989 54.610	0.000 0.000	-4.03e+04 80.150	-2.44e+04 86.122
Omnibus: Prob(Omnil Skew: Kurtosis:	ous):	0.	000 Jarq 197 Prob	======= in-Watson: ue-Bera (JB (JB): . No.	·· ··):	1.967 649.680 8.39e-142 9.41e+03

Notes

Covariance Type:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.
- [2] The condition number is large, 9.41e+03. This might indicate that there are strong multicollinearity or other numerical problems. <AxesSubplot:xlabel='TotalSF', ylabel='SalePrice'>

Out[51]:

In [52]: # plot the residuals
y_pred=model.predict(X)
sns.residplot(x=y, y=y_pred)

Out[52]: <AxesSubplot:xlabel='SalePrice'>

The residual plot shows evidence of Heteroscedasticity since the residuals are not evenly scattered. For higher Sales Prices, the residuals are negative indicating that the model is over estimating homes with higher Sales Prices. There is evidence that this model violates the linearity assumption, Homoscedasticity assumption and the Independence of Errors assumption.

```
# ggplot
In [53]:
         import matplotlib.pyplot as plt
          stats.probplot(y-y pred, dist="norm", plot=plt)
          plt.title("Normal QQ Plot")
          plt.xlabel("Theoretical Quantiles")
          plt.ylabel("Sample Quantiles")
         plt.show()
         ((array([-3.30417817, -3.04690148, -2.90382339, ..., 2.90382339,
Out[53]:
                    3.04690148, 3.30417817]),
           array([-184865.74057368, -169571.36528068, -156517.81407152, ...,
                    195404.36999739, 236556.60682101, 253807.82492125])),
          (42839.88750440423, 1.5086045390486717e-10, 0.9775030165443651))
         Text(0.5, 1.0, 'Normal QQ Plot')
Out[53]:
         Text(0.5, 0, 'Theoretical Quantiles')
Out[53]:
         Text(0, 0.5, 'Sample Quantiles')
Out[53]:
```


The tails of the distribution deviate from the qqline indicating that the errors are not Normally distributed.

Let's try transforming the independent variable, Sales Price since we saw earlier in this analysis that this helped to Normalize its distribution.

```
In [54]: # log transform Sales Price variable
y_log = np.log(housing_training_data['SalePrice'])

#add constant to predictor variables
X = sm.add_constant(x)

#fit linear regression model
model = sm.OLS(y_log, X).fit()

#view model summary
print(model.summary())

# plot the regression model
sns.regplot(x=x, y=y_log)
```

OLS Regression Results

=======================================									
Dep. Variable: SalePrice			R-sq	uared:	0.669				
Model:			0LS	Adj.	R-squared:		0.669		
Method:		Least	Squares	F-st	atistic:		2934.		
Date:		Sun, 16	Apr 2023	Prob	(F-statistic):		0.00		
Time:			16:12:32	Log-	Likelihood:		89.766		
No. Observation	ons:		1455	AIC:		-175.5			
Df Residuals:			1453	BIC:			-165.0		
Df Model:			1						
Covariance Ty	pe:	n	onrobust						
=========	======	======	======	======	=========		=======		
	coef	std	err	t	P> t	[0.025	0.975]		
const	10.9256	0.	021 5	 18.068	0.000	10.884	10.967		
TotalSF	0.0004	7.92e	-06	54.167	0.000	0.000	0.000		
Omnibus:	======	:======	====== 274.748	===== Durb	in-Watson:	:=====:	1.937		
Prob(Omnibus)	:		0.000	Jarq	ue-Bera (JB):		567.536		
,		-1.090		(JB):	5.77e-124				
Kurtosis: 5.147			Cond. No. 9.41e+0						

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 9.41e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Out[54]: <AxesSubplot:xlabel='TotalSF', ylabel='SalePrice'>

The relationship between log(Sale Price) and TotalSF appears to be linear. This meets the Linearity assumption.

An r-squared value of 0.669 means that the model explains 66.9 percent of the variance in the dependent variable. The omnibus test, however, indicates that residuals are not normally distributed and the high kurtosis value indicates that the distribution of the residuals are more peaked than a normal distribution. The condition number is 1.12e+04, which is quite high and suggests that there may be multicollinearity in the model.

```
# plot the residuals
In [55]:
           y pred=model.predict(X)
           sns.residplot(x=y_log, y=y_pred)
           <AxesSubplot:xlabel='SalePrice'>
Out[55]:
            0.8
            0.6
            0.4
            0.2
            0.0
           -0.2
           -0.4
                   10.5
                               11.0
                                            11.5
                                                        12.0
                                                                     12.5
                                                                                 13.0
                                                    SalePrice
```

The residuals appear to be more randomly scattered across values of Sales Price. This appears to better meet the Homoscedasticity assumption and the Independence of Errors assumptions than the model with the untransformed Sales Price.

```
In [56]: # qqplot
    stats.probplot(y_log-y_pred, dist="norm", plot=plt)
    plt.title("Normal QQ Plot")
    plt.xlabel("Theoretical Quantiles")
```


The tails of the distribution still stray from the qqline, indicating the distribution of the errors is not Normal.

We can see the assumptions of a linear model are still not met by transforming Sales Price, lets try building a polynomial model.

Polynomial Regression

Third Order Polynomial Regression with Total SF as a predictor of Sales Price

```
In [57]: from sklearn.preprocessing import PolynomialFeatures
    x = housing_training_data[['TotalSF']]
    y = housing_training_data['SalePrice']

polynomial_features= PolynomialFeatures(degree=3)
    xp = polynomial_features.fit_transform(x)
    xp.shape

model = sm.OLS(y, xp).fit()

#view model summary
print(model.summary())
# predicted sales price
y_pred = model.predict(xp)

# plot model against data
plt.scatter(x,y)
plt.plot(x,y_pred)
```

Out[57]: (1455, 4)

OLS Regression Results

=======================================			=========
Dep. Variable:	SalePrice	R-squared:	0.689
Model:	OLS	Adj. R-squared:	0.688
Method:	Least Squares	F-statistic:	1070.
Date:	Sun, 16 Apr 2023	<pre>Prob (F-statistic):</pre>	0.00
Time:	16:12:34	Log-Likelihood:	-17576.
No. Observations:	1455	AIC:	3.516e+04
Df Residuals:	1451	BIC:	3.518e+04
Df Model:	3		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const x1 x2 x3	6.831e+04 -4.1538 0.0203 -1.007e-06	2.17e+04 24.479 0.009 9.93e-07	3.146 -0.170 2.311 -1.015	0.002 0.865 0.021 0.310	2.57e+04 -52.171 0.003 -2.95e-06	1.11e+05 43.864 0.037 9.4e-07
Omnibus: Prob(Omnil Skew: Kurtosis:	======================================	126.2 0.6 -0.2	300 Jarque 222 Prob(J	•	:	1.954 633.593 2.61e-138 5.70e+11

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 5.7e+11. This might indicate that there are strong multicollinearity or other numerical problems.

Out[57]: <matplotlib.collections.PathCollection at 0x7fee806f4950>

Out[57]: [<matplotlib.lines.Line2D at 0x7fee8085ae10>]

In [58]: # plot the residuals
sns.residplot(x=y, y=y_pred)

Out[58]: <AxesSubplot:xlabel='SalePrice'>

The residuals are fairly scattered across Sales Prices. Let's try adding more predictors to a linear regression model.

Multiple Linear Regression

Check the correlation between the two new variables. If they are highly correlated we won't construct a mutliple linear regression model with the both of those variables as predictors.

```
In []:
```

TotalSF and YrSinceRemod are not highly correlated so we will construct a multiple linear regression model using the two variables as predictors of the log transformed Sales Price.

```
In [60]: x = housing_training_data[['TotalSF', 'YrSinceRemod']]
y_log = np.log(housing_training_data['SalePrice'])

#add constant to predictor variables
X = sm.add_constant(x)

#fit linear regression model
model = sm.OLS(y_log, X).fit()

#view model summary
print(model.summary())
```

OLS Regression Results

Dep. Variable: SalePrice			R-squai	red:		0.761		
Model:		0LS	Adj. R	-squared:		0.760		
Method:	L	east Squares	F-stat:	istic:		2308.		
Date:	Sun,	16 Apr 2023	Prob (I	-statistic):		0.00		
Time:		16:12:34	Log-Lil	kelihood:		326.20		
No. Observation	s:	1455	AIC:			-646.4		
Df Residuals:		1452	BIC:			-630.6		
Df Model:		2						
Covariance Type	:	nonrobust						
	coef	std err	t	P> t	[0.025	0.975]		
const	11 2212	0 022	 [12 127	0 000	11 170	11.264		
	11.2212	0.022			-			
	0.0004		51.300	0.000	0.000	0.000		
YrSinceRemod	-0.0062	0.000	-23.614	0.000	-0.007	-0.006		
Omnibus:		279.765	Durhin.	 -Watson:		1.927		
Prob(Omnibus): 0.000				Jarque-Bera (JB): 639.24				
Skew:	•			Prob(JB):				
Kurtosis:		5.450	•	Prob(JB): 1.55e-139 Cond. No. 1.15e+04				
		٥٠4٠٠		···				

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly spec ified.
- [2] The condition number is large, 1.15e+04. This might indicate that there are strong multicollinearity or other numerical problems.

An r-squared value of 0.765 means that the model explains 76.5 percent of the variance in the dependent variable. The adjusted R-squared value is about the same as the r-squared value, indicating that we aren't overfitting the model by addding multiple variables. The omnibus test, however, indicates that residuals are not normally distributed and the high kurtosis value indicates that the distribution of the residuals are more peaked than a normal distribution. The condition number is 1.12e+04, which is quite high and suggests that there may be multicollinearity in the model.

```
In [61]: # plot the residuals
    y_pred=model.predict(X)
    sns.residplot(x=y_log, y=y_pred)
```

Out[61]: <AxesSubplot:xlabel='SalePrice'>

The residuals appear to be more randomly scattered across values of Sales Price. This appears to better meet the Homoscedasticity assumption and the Independence of Errors assumptions than the model with the untransformed Sales Price. But as we mentioned above, the high omnibus value indicates the distribution of the residuals is not normally distributed.

Piecewise Regression

We can try fitting a linear regression model of sale price using a piecewise regression model.

```
import pwlf
In [62]:
         x = np.array(housing training data['TotalSF'])
         y = np.array(np.log(housing_training_data['SalePrice']))
         # initialize piecewise linear fit with your x and y data
         my pwlf = pwlf.PiecewiseLinFit(x, y)
          # fit the data for four line segments
          res = my_pwlf.fit(3)
          # predict for the determined points
          xHat = np.array(housing_training_data['TotalSF'])
         yHat = my_pwlf.predict(xHat)
          piecewise regression output = housing training data[["TotalSF"]]
          piecewise regression output['Log Sale Price'] = y.tolist()
          piecewise regression output['Predicted Log Sale Price'] = yHat.tolist()
          piecewise_regression_output['residual'] = piecewise_regression_output['Log Sale Price'
          piecewise regression output['squared residuals'] = piecewise regression output['residuals']
          RMSE = (piecewise regression output['squared residuals'].sum() / len(piecewise regress
          print(f"The Root Mean Squared Error of this piecewise regression model is {RMSE}.")
          correlation = piecewise regression output['Log Sale Price'].corr(piecewise regression
          print(f"The correlation of this piecewise regreession model is {correlation}.")
```

The Root Mean Squared Error of this piecewise regression model is 0.2253851335019151 6.

The correlation of this piecewise regreession model is 0.8215282922354664.

```
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/ipykern
el launcher.py:17: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row_indexer,col_indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er guide/indexing.html#returning-a-view-versus-a-copy
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/ipykern
el launcher.py:18: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/ipykern
el launcher.py:19: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er guide/indexing.html#returning-a-view-versus-a-copy
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/ipykern
el launcher.py:20: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame.
Try using .loc[row indexer,col indexer] = value instead
See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
er_guide/indexing.html#returning-a-view-versus-a-copy
```

We can visualize the residuals plot to examine whether the regression model may violate any of the regression assumptions.

```
In [63]:
           sns.residplot(x=y, y=yHat)
           plt.ylabel('Standardized Residual')
           plt.xlabel('TotalSF')
           <AxesSubplot:>
Out[63]:
           Text(0, 0.5, 'Standardized Residual')
Out[63]:
           Text(0.5, 0, 'TotalSF')
Out[63]:
               0.8
               0.6
           Standardized Residual
               0.4
               0.2
               0.0
              -0.2
              -0.4
                      10.5
                                  11.0
                                               11.5
                                                           12.0
                                                                        12.5
                                                                                    13.0
```

TotalSF

We can visualize a Q-Q plot to determine whether this regression model violates the linear regression assumption that residuals are noramlly distributed.

```
In [64]:
         # aaplot
          stats.probplot(y - yHat, dist="norm", plot=plt)
          plt.title("Normal QQ Plot")
          plt.xlabel("Theoretical Quantiles")
          plt.ylabel("Sample Quantiles")
          plt.show()
         ((array([-3.30417817, -3.04690148, -2.90382339, ..., 2.90382339,
Out[64]:
                    3.04690148, 3.30417817]),
           array([-1.1651156 , -1.0640493 , -1.0393697 , ..., 0.54546573,
                   0.57744714, 0.72360866])),
          (0.2193429300027091, 3.1475258810892375e-15, 0.9712466424655569))
         Text(0.5, 1.0, 'Normal QQ Plot')
Out[64]:
         Text(0.5, 0, 'Theoretical Quantiles')
Out[64]:
         Text(0, 0.5, 'Sample Quantiles')
Out[64]:
```


We will try and add more predictors to our model. First, lets observe any multicollinearity.

Inspection of multicollinearity: VIF, correlations

The correlation between garage cars and total square feet is moderately high. We will take that into consideration when analyzing the output of the model.

```
print(vif data)
x.corr()
       feature
                     VIF
0
       TotalSF 19.799177
1 YrSinceRemod 1.901546
2
    GarageCars 11.051476
3
     ExterQual 22.737370
4 CentralAir_Y 12.377024
```

Out[65]:

	TotalSF	YrSinceRemod	GarageCars	ExterQual	CentralAir_Y
TotalSF	1.000000	-0.352279	0.556693	0.528016	0.180174
YrSinceRemod	-0.352279	1.000000	-0.422033	-0.587649	-0.299245
GarageCars	0.556693	-0.422033	1.000000	0.524166	0.233414
ExterQual	0.528016	-0.587649	0.524166	1.000000	0.206058
CentralAir_Y	0.180174	-0.299245	0.233414	0.206058	1.000000

These VIF values suggests that our model contains some multicollinearity across all features. Some resources stated that greater than 10 suggests multicollinearity, while others used a cutoff of 5.0 or 1.0. This may not be an issue for a predictive model, but could have implications for an inferential model.

```
x = housing_training_data[['TotalSF','YrSinceRemod','GarageCars','ExterQual','Central/
In [66]:
         y log = np.log(housing training data['SalePrice'])
          polynomial_features= PolynomialFeatures(degree=2)
          xp = polynomial features.fit transform(x)
          xp.shape
          #add constant to predictor variables
          x = sm.add\_constant(xp)
          #fit polynomial regression model
          model = sm.OLS(y_log, x).fit()
          #view model summary
          print(model.summary())
         (1455, 21)
```

Out[66]:

OLS Regression Results

______ Dep. Variable: SalePrice R-squared: 0.838 Model: OLS Adj. R-squared: 0.835 Least Squares F-statistic: 389.4 Method: Date: Sun, 16 Apr 2023 Prob (F-statistic): 0.00 Time: 16:12:36 Log-Likelihood: 608.02 No. Observations: 1455 AIC: -1176. Df Residuals: 1435 BIC: -1070. Df Model:

Df Model: 19 Covariance Type: nonrobust

covariance Type.		110111	us c			
	coef	std err	t	P> t	[0.025	0.975]
const	10.7869	0.166	65.166	0.000	10.462	11.112
x1	0.0004	5.06e-05	8.017	0.000	0.000	0.001
x2	-0.0022	0.003	-0.826	0.409	-0.007	0.003
x3	0.1521	0.051	2.955	0.003	0.051	0.253
x4	-0.0450	0.096	-0.468	0.640	-0.234	0.144
x5	0.0780	0.065	1.195	0.232	-0.050	0.206
х6	-2.858e-08	6.91e-09	-4.135	0.000	-4.21e-08	-1.5e-08
x7	-1.603e-06	4.55e-07	-3.523	0.000	-2.5e-06	-7.11e-07
x8	3.71e-06	1.1e-05	0.336	0.737	-1.8e-05	2.54e-05
x9	3.17e-05	1.51e-05	2.100	0.036	2.09e-06	6.13e-05
x10	-1.362e-05	2.64e-05	-0.516	0.606	-6.55e-05	3.82e-05
x11	-1.634e-05	1.74e-05	-0.939	0.348	-5.05e-05	1.78e-05
x12	-0.0011	0.000	-2.609	0.009	-0.002	-0.000
x13	0.0017	0.001	1.910	0.056	-4.62e-05	0.003
x14	0.0018	0.001	1.812	0.070	-0.000	0.004
x15	-0.0348	0.008	-4.562	0.000	-0.050	-0.020
x16	0.0361	0.019	1.870	0.062	-0.002	0.074
x17	-0.0044	0.023	-0.193	0.847	-0.049	0.040
x18	-0.0057	0.018	-0.320	0.749	-0.040	0.029
x19	-0.0054	0.058	-0.092	0.926	-0.119	0.108
x20	0.0780	0.065 	1.195	0.232	-0.050 	0.206
Omnibus:		240.	889 Durb	in-Watson:		1.985
Prob(Omnil	bus):	0.	000 Jarq	ue-Bera (JB):	706.892
Skew:	•	-0.		(JB):	-	3.17e-154
Kurtosis:				. No.		1.01e+21
=======		========	=======	========	========	========

Notes

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The smallest eigenvalue is 9.79e-26. This might indicate that there are strong multicollinearity problems or that the design matrix is singular.

```
In [67]: # plot the residuals
y_pred=model.predict(x)
sns.residplot(x=y_log, y=y_pred)
```

Out[67]: <AxesSubplot:xlabel='SalePrice'>

The adjusted r-squared value is high for the 2nd order polynomial model, but the residuals are not randomly scattered. The plot indicates that the model is underestimating the value of homes with actual low sales prices and overestimating the value of homes with actual high sales prices.

```
In [68]: from sklearn.model_selection import train_test_split
    from sklearn.model_selection import KFold
    from sklearn.model_selection import cross_val_score
    from sklearn.linear_model import LinearRegression
    from numpy import mean
    from numpy import absolute
    from numpy import sqrt
    from sklearn.linear_model import Ridge
    from sklearn.preprocessing import PolynomialFeatures
    from sklearn.pipeline import make_pipeline
    from sklearn.metrics import mean_squared_error
```

Let's use PCA to find some more important predictors to add to our models

Regress on principal components

```
In [69]:
    from sklearn.decomposition import PCA
    from sklearn.preprocessing import scale
    from sklearn.linear_model import LinearRegression
    import os
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import r2_score

    scaler = StandardScaler()

    pca = PCA(n_components=8)

## independent variables ###

    x_raw = housing_training_data.select_dtypes(exclude=['object']).drop(columns = ['SaleFx_scale = scaler.fit_transform(x_raw))

    x_pca_raw = pca.fit_transform(x_raw)
    x_pca_scale = pca.fit_transform(x_scale) # PCA is affected by scale. We use the scaled
```

```
## importance scores of the principal components ##
# show loadings for features
loadings = pd.DataFrame(pca.components .T, columns=['PC1','PC2','PC3','PC4','PC5','PC6']
loadings
## dependent variable ##
y_trans = scaler.fit_transform(housing_training_data[['SalePrice']])
y_raw = np.array(housing_training_data[['SalePrice']]).reshape(-1,1)
y_scale = np.array(y_trans).reshape(-1,1)
## train linear model ##
regr = LinearRegression()
regr.fit(x_pca_scale, y_scale)
y_pred = regr.predict(x_pca_scale)
plt.subplot(1, 2, 1)
plt.scatter(y_scale, y_pred)
plt.xlabel('Log Sale Price (Standard Scaled)')
plt.ylabel('Predicted Log Sale Price')
plt.title('Log Sale Price vs Predicted Log Sale Price')
# Residuals
plt.subplot(1, 2, 2)
sns.residplot(x=y_scale, y=y_pred)
plt.xlabel('Log Sale Price')
plt.ylabel('Residual')
plt.title('Residual Plot')
## calculate RMSE ##
# Mean Squared Error
MSE = np.square(np.subtract(y_scale,y_pred)).mean()
print("MSE:",MSE)
r2 = r2 score(y scale, y pred)
print("R_sq:",r2)
```

Out[69]:		PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
	ld	0.003671	0.007609	-0.012863	-0.018848	-0.031304	0.014721	-0.000231	-0.230336
	MSSubClass	0.013197	0.056123	-0.258946	-0.164299	0.272634	0.191425	-0.164072	-0.186888
	LotFrontage	-0.098662	0.109474	0.215217	0.061892	-0.136464	-0.021591	0.195174	0.212405
	LotArea	-0.060616	0.085147	0.241554	-0.042553	0.031626	-0.034394	0.141926	0.328845
	OverallQual	-0.256954	0.013253	-0.057438	0.035494	0.024299	-0.095312	-0.106163	-0.076213
	OverallCond	0.055815	0.014262	0.008466	-0.135176	-0.040599	-0.481640	0.270476	-0.152957
	YearBuilt	-0.219252	-0.220127	-0.134601	0.005329	0.012171	0.181039	-0.024807	0.179010
	YearRemodAdd	-0.202447	-0.135251	-0.224474	0.081358	0.105161	-0.206615	0.237536	0.013918
	MasVnrArea	-0.143366	0.042596	0.050969	-0.027038	0.048708	0.116316	-0.144984	-0.030711
	ExterQual	-0.233778	-0.064617	-0.114988	0.116459	0.063804	-0.076014	-0.067799	-0.095841
	BsmtQual	-0.229908	-0.114895	-0.085267	0.067084	0.123963	0.021872	-0.090064	0.080774
	BsmtFinSF1	-0.099578	-0.153913	0.299269	-0.151573	0.374517	0.060625	0.034273	-0.065014
	BsmtFinSF2	0.008778	-0.017667	0.170686	-0.097427	0.022247	-0.067193	0.181676	0.085114
	BsmtUnfSF	-0.096454	0.126643	-0.099844	0.415105	-0.359291	-0.007090	-0.097226	-0.009365
	TotalBsmtSF	-0.205445	-0.032307	0.274765	0.249944	0.015222	0.029578	0.003010	-0.044868
	1stFlrSF	-0.191291	0.047038	0.322391	0.228092	-0.012687	0.051398	0.047960	-0.094858
	2ndFlrSF	-0.083826	0.325601	-0.263244	-0.286736	0.078471	-0.039820	-0.004822	0.045017
	LowQualFinSF	0.016325	0.121673	0.010900	0.022469	0.018783	-0.096268	0.098606	-0.087547
	GrLivArea	-0.212725	0.330630	0.009550	-0.079419	0.060909	-0.006249	0.040909	-0.039396
	BsmtFullBath	-0.061426	-0.165104	0.243546	-0.121882	0.422020	0.067214	0.096279	-0.103952
	BsmtHalfBath	0.012224	-0.002542	0.046869	-0.089462	-0.056439	-0.142792	0.079802	0.210566
	FullBath	-0.201502	0.150867	-0.134477	0.064371	0.018548	0.139731	0.098124	0.012173
	HalfBath	-0.093650	0.134351	-0.197361	-0.319660	0.076294	-0.018475	-0.112438	0.178204
	BedroomAbvGr	-0.054909	0.356909	-0.017353	-0.089966	-0.083644	0.073435	0.242245	0.114330
	KitchenAbvGr	0.041675	0.189837	-0.014183	0.086211	0.119344	0.377492	0.156014	-0.164956
	KitchenQual	-0.224767	-0.072831	-0.089469	0.069620	0.071262	-0.165911	0.015015	-0.123078
	TotRmsAbvGrd	-0.160080	0.368444	-0.015952	-0.048376	0.017501	0.055540	0.135361	-0.016877
	Fireplaces	-0.140927	0.115976	0.199048	-0.128389	0.035761	-0.219753	-0.387406	0.022184
	FireplaceQu	-0.162657	0.098898	0.121926	-0.017785	0.001883	-0.234443	-0.425147	-0.046188
	GarageYrBlt	-0.217834	-0.202084	-0.162327	-0.010719	-0.048295	0.184504	0.047086	0.077313
	GarageCars	-0.235138	-0.029470	0.027626	-0.079300	-0.147468	0.178528	0.004658	-0.089752
	GarageArea	-0.224938	-0.039640	0.079160	-0.078222	-0.156884	0.177333	0.047977	-0.111435
	GarageQual	-0.123336	-0.120531	0.066392	-0.325948	-0.343787	0.082770	0.031902	-0.204625
	GarageCond	-0.121213	-0.139310	0.070769	-0.330448	-0.357112	0.073309	0.032527	-0.173778

	PC1	PC2	PC3	PC4	PC5	PC6	PC7	PC8
WoodDeckSF	-0.104889	-0.019359	0.068648	-0.091644	0.117418	-0.031780	0.130396	0.072254
OpenPorchSF	-0.109004	0.064471	-0.040801	0.012955	0.060412	-0.076822	-0.057477	0.156020
EnclosedPorch	0.070821	0.133254	0.054251	0.045052	0.002906	-0.130765	0.058703	-0.383462
3SsnPorch	-0.016219	-0.018176	0.021199	0.031480	-0.041260	-0.060069	0.052732	0.065086
ScreenPorch	-0.024086	0.050690	0.111115	-0.107502	-0.031379	-0.128971	-0.230816	0.025060
PoolArea	-0.008178	0.038436	0.050052	-0.086850	-0.021028	-0.046144	0.093498	-0.148385
MiscVal	0.011021	0.023471	0.012395	-0.031549	0.006030	-0.034770	0.141798	-0.014292
MoSold	-0.019893	0.031797	0.001362	0.020580	-0.024677	-0.040583	-0.106347	0.175026
YrSold	0.007311	-0.029935	0.015310	-0.009106	0.065255	0.002643	0.143420	-0.129127
Street_Pave	-0.012603	0.006765	-0.080769	0.021471	-0.031430	-0.114273	0.005132	-0.366851
CentralAir_Y	-0.112814	-0.148689	0.011083	-0.165249	-0.133699	-0.179586	0.102746	0.064415
PavedDrive_Y	-0.108617	-0.164614	0.035119	-0.175303	-0.145556	0.098251	0.001568	0.098963
HeatingEx	-0.165890	-0.093989	-0.152127	0.112837	0.039147	-0.138834	0.035621	-0.020257
YrSinceRemod	0.202978	0.133363	0.225526	-0.081969	-0.100990	0.206846	-0.228373	-0.022236
TotalSF	-0.250927	0.199534	0.155107	0.083260	0.048228	0.011921	0.028484	-0.050165

Out[69]: LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)

Out[69]: <AxesSubplot:>

Out[69]: <matplotlib.collections.PathCollection at 0x7fee82082650>

Out[69]: Text(0.5, 0, 'Log Sale Price (Standard Scaled)')

Out[69]: Text(0, 0.5, 'Predicted Log Sale Price')

Out[69]: Text(0.5, 1.0, 'Log Sale Price vs Predicted Log Sale Price')

Out[69]: <AxesSubplot:>

Out[69]: <AxesSubplot:>

Out[69]: Text(0.5, 0, 'Log Sale Price')

Out[69]: Text(0, 0.5, 'Residual')

Out[69]: Text(0.5, 1.0, 'Residual Plot')

MSE: 0.15473155070155967 R_sq: 0.8452684492984404

Over 10 folds: -0.28 MSE with a standard deviation of 0.04 Over 10 folds: 0.85 r2 with a standard deviation of 0.03

There appears to be a lot of large negative residuals for higher Sales Prices indicating that the model is overestimating the price of homes with large sales prices.

```
In [72]: # Try log of Y

y_log_scale = scaler.fit_transform(np.array(np.log(housing_training_data['SalePrice'])
## train linear model ##
```

```
regr2 = LinearRegression()
          regr2.fit(x_pca_scale, y_log_scale)
         y pred = regr2.predict(x pca scale)
          plt.subplot(1, 2, 1)
          plt.scatter(y log scale, y pred)
          plt.xlabel('Log Sale Price (Standard Scaled)')
          plt.ylabel('Predicted Log Sale Price')
          plt.title('Log Sale Price vs Predicted Log Sale Price')
          # Residuals
          plt.subplot(1, 2, 2)
          sns.residplot(x=y_log_scale, y=y_pred)
          plt.xlabel('Log Sale Price')
          plt.ylabel('Residual')
          plt.title('Residual Plot')
          ##RMSE
          # Mean Squared Error
          MSE = np.square(np.subtract(y scale,y pred)).mean()
          print("MSE:",MSE)
          r2 = r2 score(y log scale, y pred)
          print("R_sq:",r2)
         LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
Out[72]:
         <AxesSubplot:>
Out[72]:
         <matplotlib.collections.PathCollection at 0x7fee820d0c10>
Out[72]:
         Text(0.5, 0, 'Log Sale Price (Standard Scaled)')
Out[72]:
         Text(0, 0.5, 'Predicted Log Sale Price')
Out[72]:
         Text(0.5, 1.0, 'Log Sale Price vs Predicted Log Sale Price')
Out[72]:
         <AxesSubplot:>
Out[72]:
         <AxesSubplot:>
Out[72]:
         Text(0.5, 0, 'Log Sale Price')
Out[72]:
         Text(0, 0.5, 'Residual')
Out[72]:
         Text(0.5, 1.0, 'Residual Plot')
Out[72]:
         MSE: 0.1675065487775354
         R sq: 0.8864767791398497
```



```
In [73]: #define cross-validation method to use

cv = KFold(n_splits=10, random_state=1, shuffle=True)

#build multiple linear regression model
model = LinearRegression()

#use k-fold CV to evaluate model
scores_mse = cross_val_score(model, x_pca_scale, y_log_scale, scoring='neg_mean_absolucrecyc, n_jobs=-1)
print("Over 10 folds: %0.2f MSE with a standard deviation of %0.2f" % (scores_mse.mear)

#use k-fold CV to evaluate model R2
scores_r2 = cross_val_score(model, x_pca_scale, y_log_scale, scoring='r2', cv=cv, n_jobs=-1)
print("Over 10 folds: %0.2f r2 with a standard deviation of %0.2f" % (scores_r2.mean())
Over 10 folds: -0.25 MSE with a standard deviation of 0.01
Over 10 folds: 0.88 r2 with a standard deviation of 0.02
```

There are a lot of positive residuals for lower sales prices indicating that the model is underestimating the value of homes with lower sales prices.

```
In [74]: ### FROM PCA ON SALE PRICE WE SEE QUADRATIC PATTERN -- TRY DEGREE 2 POLYNOMIAL

from sklearn.preprocessing import PolynomialFeatures

#define our polynomial model, degree 2

degree=2

# PolynomialFeatures will create a new matrix consisting of all polynomial combination
# of the features with a degree less than or equal to the degree we just gave the mode
poly_model = PolynomialFeatures(degree=degree)

# transform out polynomial features
poly_x_values = poly_model.fit_transform(x_pca_scale)

regression_model = LinearRegression()
regression_model.fit(poly_x_values, y_scale)
y_pred = regression_model.predict(poly_x_values)
```

```
plt.subplot(1, 2, 1)
          plt.scatter(y_scale, y_pred)
          plt.xlabel('Sale Price (Standard Scaled)')
          plt.ylabel('Predicted Sale Price')
          plt.title('Sale Price vs Predicted Sale Price')
          # Residuals
          plt.subplot(1, 2, 2)
          sns.residplot(x=y scale, y=y pred)
          plt.xlabel('Sale Price')
          plt.ylabel('Residual')
          plt.title('Residual Plot')
          # SCORES
          SS_Residual = sum((y_scale-y_pred)**2)
          SS Total = sum((y scale-np.mean(y scale))**2)
          r squared = 1 - (float(SS Residual))/SS Total
          adjusted_r_squared = 1 - (1-r_squared)*(len(y_scale)-1)/(len(y)-poly_x_values.shape[1]
          print('x_shape_transformed',poly_x_values.shape)
          print('x_shape_original',x_pca_scale.shape)
          MSE = np.square(np.subtract(y_scale,y_pred)).mean()
          print("MSE:",MSE)
          r2 = r2 score(y scale, y pred)
          print("R sq:",r squared[0])
          print("R_sq_adjusted:", 1 - (1-r_squared[0])*(len(y_scale)-1)/(len(y_scale)-poly_x_val
         LinearRegression(copy_X=True, fit_intercept=True, n_jobs=None, normalize=False)
Out[74]:
         <AxesSubplot:>
Out[74]:
          <matplotlib.collections.PathCollection at 0x7fee82271c10>
Out[74]:
         Text(0.5, 0, 'Sale Price (Standard Scaled)')
Out[74]:
         Text(0, 0.5, 'Predicted Sale Price')
Out[74]:
         Text(0.5, 1.0, 'Sale Price vs Predicted Sale Price')
Out[74]:
         <AxesSubplot:>
Out[74]:
         <AxesSubplot:>
Out[74]:
         Text(0.5, 0, 'Sale Price')
Out[74]:
         Text(0, 0.5, 'Residual')
Out[74]:
         Text(0.5, 1.0, 'Residual Plot')
Out[74]:
         x shape transformed (1455, 45)
         x shape original (1455, 8)
         MSE: 0.08764742224548526
         R sq: 0.9123525777545145
         R_sq_adjusted: 0.9095533343187112
```


We will need to verify that better fit is not just from including more variables. We do this using cross validation to assess out of sample accuracy.

The residuals are a bit more scattered, but there are still some more large negative residuals for higher sales prices.

```
In [76]: # Lastly, try a regularization technique
    from sklearn.linear_model import ElasticNet
    scaler = StandardScaler()
    # As an experiment, use on an original set of x variables...
    x_raw = housing_training_data[numerical_vars].drop(columns = 'SalePrice')
    x_scale = scale(x_raw)

#x_raw_new = housing_training_data.select_dtypes(exclude=['object']).drop(columns = [#x_scale = scaler.fit_transform(x_raw_new)
    regr = ElasticNet()
```

```
regr.fit(x_scale, y_log_scale)
          ElasticNet(random state=0)
          print(regr.coef_)
          print(regr.intercept )
          y pred = regr.predict(x scale)
          plt.subplot(1, 2, 1)
          plt.scatter(y log scale, y pred)
          plt.xlabel('Sale Price (Standard Scaled)')
          plt.ylabel('Predicted Sale Price')
          plt.title('ElasticNet: Sale Price vs Predicted Sale Price')
          # Residuals
          plt.subplot(1, 2, 2)
          sns.residplot(x=y_log_scale, y=y_pred)
          plt.xlabel('Sale Price')
          plt.ylabel('Residual')
          plt.title('Residual Plot')
          MSE = np.square(np.subtract(y scale,y pred)).mean()
          print("MSE:",MSE)
          r2 = r2_score(y_scale, y_pred)
          print("R sq:",r2)
         ElasticNet(alpha=1.0, copy_X=True, fit_intercept=True, l1_ratio=0.5,
Out[76]:
                     max_iter=1000, normalize=False, positive=False, precompute=False,
                     random state=None, selection='cyclic', tol=0.0001, warm start=False)
         ElasticNet(alpha=1.0, copy X=True, fit intercept=True, l1 ratio=0.5,
Out[76]:
                     max iter=1000, normalize=False, positive=False, precompute=False,
                     random_state=0, selection='cyclic', tol=0.0001, warm_start=False)
         [ 0.
                        0.
                                    0.17296878 -0.
                                                             0.
                                                                         0.
                                    0.00587394 0.
           0.
                        0.
                                                             0.
                                                                        -0.
           0.06700516 0.
                                   -0.
                                                                         0.
                                                0.
                                                             0.
                        0.
                                                0.02809537 0.00115474 0.
          -0.
                                    0.
                                                                                   1
                                    0.
                                                0.
                                                             0.
                                                                        -0.
          [-2.46470368e-15]
          <AxesSubplot:>
Out[76]:
         <matplotlib.collections.PathCollection at 0x7fee824f0f10>
Out[76]:
         Text(0.5, 0, 'Sale Price (Standard Scaled)')
Out[76]:
         Text(0, 0.5, 'Predicted Sale Price')
Out[76]:
         Text(0.5, 1.0, 'ElasticNet: Sale Price vs Predicted Sale Price')
Out[76]:
         <AxesSubplot:>
Out[76]:
         <AxesSubplot:>
Out[76]:
         Text(0.5, 0, 'Sale Price')
Out[76]:
         Text(0, 0.5, 'Residual')
Out[76]:
         Text(0.5, 1.0, 'Residual Plot')
Out[76]:
```

MSE: 1.058250120091334 R sq: 0.36078782270420806


```
In [77]: x = housing_training_data[['OverallQual','TotalBsmtSF','GrLivArea','GarageCars','Garage
y_log = np.log(housing_training_data['SalePrice'])

#polynomial_features= PolynomialFeatures(degree=2)
#xp = polynomial_features.fit_transform(x)
#xp.shape

#add constant to predictor variables
#x = sm.add_constant(xp)
x = sm.add_constant(x)

#fit polynomial regression model
model = sm.OLS(y_log, x).fit()

#view model summary
print(model.summary())
```

OLS Regression Results

Dep. Variable:	p. Variable: Sa		ce R-squa	ared:		0.825
Model:	1: OL		LS Adj. F	Adj. R-squared:		
Method: Lea		Least Squar	east Squares F-statistic:			1370.
Date: Sur		n, 16 Apr 20	23 Prob (Prob (F-statistic):		0.00
Time:		16:12:	42 Log-Li	Log-Likelihood:		
No. Observations:		14	55 AIC:			-1099.
Df Residuals:		14	49 BIC:			-1067.
Df Model:			5			
Covariance Typ	oe:	nonrobu	st			
	coef	std err	t	P> t	[0.025	0.975]
const	10 5242	0.020	F24 742	0.000	10 405	10 574
const		0.020			10.495	10.574
OverallQual		0.005			0.110	0.128
		1.3e-05	15.556	0.000	0.000	0.000
GrLivArea	0.0002	1.11e-05	21.632	0.000	0.000	0.000
GarageCars	0.0689	0.013	5.246	0.000	0.043	0.095
GarageArea	0.0001	4.51e-05	3.118	0.002	5.22e-05	0.000
Omnibus: 321.730 Durbin-Watson:						1.974
Prob(Omnibus):		0.000 Jarque-Bera (JB):			1037.251	

Notes:

Skew:

Kurtosis:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Prob(JB):

Cond. No.

5.80e-226

9.24e+03

[2] The condition number is large, 9.24e+03. This might indicate that there are strong multicollinearity or other numerical problems.

-1.085

6.522

Polynomial regression using predictors from PCA for Kaggle

```
from sklearn.preprocessing import PolynomialFeatures
In [78]:
         ypolyscaler = StandardScaler()
          poly y scale = ypolyscaler.fit transform(np.array(housing training data['SalePrice'])
          #define our polynomial model, with whatever degree we want
         degree=2
         # PolynomialFeatures will create a new matrix consisting of all polynomial combination
          # of the features with a degree less than or equal to the degree we just gave the mode
          poly model = PolynomialFeatures(degree=degree)
         # transform out polynomial features
          poly_x_values = poly_model.fit_transform(x_pca_scale)
          poly regression model = LinearRegression()
          poly regression model.fit(poly x values, poly y scale)
         y pred = poly regression model.predict(poly x values)
         plt.subplot(1,2,1)
         plt.scatter(poly_y_scale, y_pred)
          plt.xlabel('Sale Price (Standard Scaled)')
          plt.ylabel('Predicted Sale Price')
          plt.title('Sale Price vs Predicted Sale Price')
```

```
# Residuals
          plt.subplot(1,2,2)
          plt.title('Residuals')
          sns.residplot(x=poly_y_scale, y=y_pred)
          # Mean Squared Error
          MSE = np.square(np.subtract(poly_y_scale,y_pred)).mean()
          print("MSE:",MSE)
          r2 = r2_score(y_scale, y_pred)
          print("R_sq:",r2)
          LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=False)
Out[78]:
          <AxesSubplot:>
Out[78]:
          <matplotlib.collections.PathCollection at 0x7fee826cf9d0>
Out[78]:
          Text(0.5, 0, 'Sale Price (Standard Scaled)')
Out[78]:
          Text(0, 0.5, 'Predicted Sale Price')
Out[78]:
          Text(0.5, 1.0, 'Sale Price vs Predicted Sale Price')
Out[78]:
          <AxesSubplot:>
Out[78]:
          Text(0.5, 1.0, 'Residuals')
Out[78]:
          <AxesSubplot:title={'center':'Residuals'}>
Out[78]:
          MSE: 0.08764742224548526
          R sq: 0.9123525777545147
                 Sale Price vs Predicted Sale Price
                                                                    Residuals
                                                    1.5
                                                    1.0
              3
          Predicted Sale Price
                                                    0.5
              2
                                                    0.0
              1
                                                   -0.5
              0
                                                   -1.0
                                                   -1.5
```

Ridge regression using predictors from PCA with Cross Validation to find the best alpha

Sale Price (Standard Scaled)

Principal components have no collinearity by definition. However, we were interested in applying a Ridge regularization model to our PCA and seeing how it would perform, including what value of alpha it would select. There are many methods aimed at making our PCA more robust/reduce overfitting inherent in their calculation. See below for comments about the loading within our components.

```
from sklearn.model selection import GridSearchCV
In [79]:
         yscaler = StandardScaler()
         y log scale = yscaler.fit transform(np.array(np.log(housing training data['SalePrice'
         pca = PCA(n components=8)
          ## independent variables ###
          xscaler = StandardScaler()
          x_raw = housing_training_data.select_dtypes(exclude=['object']).drop(columns = ['Salef
          x scale = xscaler.fit transform(x raw)
         x pca raw = pca.fit transform(x raw)
         x_pca_scale = pca.fit_transform(x_scale) # PCA is affected by scale. We use the scaled
         # Split the data into training and testing sets
         X train, X test, y train, y test = train test split(x pca scale, y log scale, test siz
          # Set the alpha values to test
          alpha values = np.logspace(-4, 4, num=50)
          # Create the Ridge Regression model
          ridge = Ridge()
          # Set up the grid search with cross-validation
          param grid = {'alpha': alpha values}
          grid_search = GridSearchCV(ridge, param_grid, cv=5, scoring='neg_mean_squared_error',
          # Fit the grid search to the training data
         grid search.fit(X train, y train)
          # Get the best alpha value
          best_alpha = grid_search.best_params_['alpha']
          print("Best alpha value:", best alpha)
          # Create and fit the Ridge Regression model with the best alpha value
          ridge best = Ridge(alpha=best alpha)
          ridgemodel = ridge best.fit(X train, y train)
          # View the coefficients of the ridge model
          coefficients = ridgemodel.coef
          print("Coefficients:", coefficients)
         # Predict
         y pred = ridgemodel.predict(X test)
          # plot predictors against log scaled
          plt.scatter(y test, y pred)
          plt.xlabel('Sale Price (Standard Scaled)')
         plt.ylabel('Predicted Sale Price')
         plt.title('Sale Price vs Predicted Sale Price')
          # Calculate the mean squared error (MSE) of the predictions
         MSE = np.square(np.subtract(y test,y pred)).mean()
          print("MSE:",MSE)
          # Calculate the R^2 of the predictions
          r2 = r2_score(y_test, y_pred)
          print("R_sq:",r2)
```

```
GridSearchCV(cv=5, error_score=nan,
Out[791:
                     estimator=Ridge(alpha=1.0, copy X=True, fit intercept=True,
                                    max iter=None, normalize=False, random state=None,
                                    solver='auto', tol=0.001),
                     iid='deprecated', n_jobs=-1,
                     param grid={'alpha': array([1.00000000e-04, 1.45634848e-04, 2.12095089e-
         04, 3.08884360e-04,
               4.49843267e-04, 6.55128557e-04, 9.54095476e-04, 1.38949549e-03,
               2.02358965e-...
               1.67683294e+01, 2.44205309e+01, 3.55648031e+01, 5.17947468e+01,
               7.54312006e+01, 1.09854114e+02, 1.59985872e+02, 2.32995181e+02,
               3.39322177e+02, 4.94171336e+02, 7.19685673e+02, 1.04811313e+03,
               1.52641797e+03, 2.22299648e+03, 3.23745754e+03, 4.71486636e+03,
               6.86648845e+03, 1.00000000e+04])},
                     pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                     scoring='neg mean squared error', verbose=0)
         Best alpha value: 24.420530945486497
         32
            0.01581126 -0.01322861]]
         <matplotlib.collections.PathCollection at 0x7fee87819e50>
Out[79]:
         Text(0.5, 0, 'Sale Price (Standard Scaled)')
Out[79]:
         Text(0, 0.5, 'Predicted Sale Price')
Out[79]:
         Text(0.5, 1.0, 'Sale Price vs Predicted Sale Price')
Out[79]:
         MSE: 0.12096607983798188
         R sq: 0.8936548969444329
```

Sale Price vs Predicted Sale Price

```
2
Predicted Sale Price
         1
         0
      ^{-1}
      -2
                                                                                                                                                        2
                                                          -2
                                                                                 -1
                                                                                                         0
```

```
In [80]:
             x raw.columns
             Index(['Id', 'MSSubClass', 'LotFrontage', 'LotArea', 'OverallQual',
Out[80]:
                       'OverallCond', 'YearBuilt', 'YearRemodAdd', 'MasVnrArea', 'ExterQual',
                       'BsmtQual', 'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', '2ndFlrSF', 'LowQualFinSF', 'GrLivArea', 'BsmtFullBath',
                       'BsmtHalfBath', 'FullBath', 'HalfBath', 'BedroomAbvGr', 'KitchenAbvGr',
                       'KitchenQual', 'TotRmsAbvGrd', 'Fireplaces', 'FireplaceQu',
                       'GarageYrBlt', 'GarageCars', 'GarageArea', 'GarageQual', 'GarageCond', 'WoodDeckSF', 'OpenPorchSF', 'EnclosedPorch', '3SsnPorch',
                       'ScreenPorch', 'PoolArea', 'MiscVal', 'MoSold', 'YrSold', 'Street_Pave', 'CentralAir_Y', 'PavedDrive_Y', 'HeatingEx', 'YrSinceRemod', 'TotalSF'],
                     dtype='object')
```

Sale Price (Standard Scaled)

3

Interpret the coefficients

Coef0: (0.29916159) has a positive impact on Sale Price. Given that As this feature increases, the predicted house price also increases. This coefficient has the largest positive effect among all features. In the PCA loadings for PC1, TotalSF and OverQual accounting for over 0.50 of the component, indicating both these features have a larger postive impact on Sale Price.

Coef1: (0.01065569) has a small positive impact on Sale Price. As this feature increases, the predicted house price marginally increases.

Coef2: (0.05379505) has a positive impact on Sale Price. As this feature increases, the predicted house price increases.

Coef3: (0.08326186) has a positive impact on Sale Price. As this feature increases, the predicted house price increases.

Coef4: (-0.09188438) has a negative impact on Sale Price. As this feature increases, the predicted house price decreases. This coefficient has the largest negative effect among all features.

Coef5: (0.03202796) has a positive impact on Sale Price. As this feature increases, the predicted house price increases.

Coef6: (0.01423303) has a small positive impact on Sale Price. As this feature increases, the predicted house price marginally increases.

Coef7: (-0.01638527) has a small negative impact on Sale Price. As this feature increases, the predicted house price marginally decreases.

```
In [81]: # Residuals
sns.residplot(x=y_test, y=y_pred)
```

Out[81]: <AxesSubplot:>

Lasso Regression

We will now try to fit a Lasso Regression to the housing sales dataframe.

```
# Import libraries relevant to Lasso
In [82]:
          from sklearn.linear model import LassoCV
          from sklearn.metrics import mean squared error
          from sklearn.model selection import train test split
          import pandas as pd
          # Create dataframe that can be used for lasso.  Only keep variables that aren't causin
          lasso_sandbox = housing_training_data[ ['LotFrontage', 'LotArea', 'OverallQual', 'Over
                            'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF', 'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath',
                            'TotRmsAbvGrd', 'Fireplaces', 'GarageCars', 'GarageArea', 'WoodDeckSF
                            'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal',
          # Perform a Log Transformation on the outcome variable SalePrice and drop the original
          lasso sandbox log saleprice = np.log(housing training data['SalePrice'])
          lasso_sandbox_x = lasso_sandbox.drop(columns=['SalePrice'])
          # Split the dataset into training and testing dataframes
          lasso_X_train, lasso_X_validation, lasso_y_train, lasso_y_validation = train_test_spli
                                                                                          lasso sand
                                                                                          random_sta
          # Standardize the numeric predictors - which can help strengthen the model fit
          numerical_predictors = ['LotFrontage', 'LotArea', 'OverallQual', 'OverallCond', 'MasVr
                            'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF',
                            'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath',
                            'TotRmsAbvGrd', 'Fireplaces', 'GarageCars', 'GarageArea', 'WoodDeckSF
                            'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal']
          from sklearn.preprocessing import StandardScaler
          lasso scaler = StandardScaler().fit(lasso X train[numerical predictors])
          lasso X train[numerical predictors] = lasso scaler.transform(lasso X train[numerical p
          lasso X validation[numerical predictors] = lasso scaler.transform(lasso X validation[r
          # Let's visualize the Lasso coefficients as a function of the tuning parameter, alpha
          import numpy as np
          import matplotlib.pyplot as plt
          from sklearn.linear model import Lasso
          alphas = np.linspace(0.01,500,100)
          lasso = Lasso(max iter=10000)
          coefs = []
          for a in alphas:
              lasso.set_params(alpha=a)
              lasso.fit(lasso X train, lasso y train)
              coefs.append(lasso.coef )
          ax = plt.gca()
          ax.plot(alphas, coefs)
```

```
ax.set xscale('log')
          plt.axis('tight')
          plt.xlabel('alpha')
          plt.ylabel('Standardized Coefficients')
          plt.title('Lasso coefficients as a function of alpha');
          # Fit a Lasso Regression Model with ten-fold cross-validation
          lasso_model = LassoCV(cv=5, random_state=1, max_iter = 10000)
          lasso_model.fit(lasso_X_train, lasso_y_train)
          lasso model.coef
         /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pandas/
         core/frame.py:3678: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row_indexer,col_indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
         er guide/indexing.html#returning-a-view-versus-a-copy
           self[col] = igetitem(value, i)
         /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/pandas/
         core/frame.py:3678: SettingWithCopyWarning:
         A value is trying to be set on a copy of a slice from a DataFrame.
         Try using .loc[row indexer,col indexer] = value instead
         See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/us
         er guide/indexing.html#returning-a-view-versus-a-copy
           self[col] = igetitem(value, i)
         Lasso(alpha=0.01, copy X=True, fit intercept=True, max iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random_state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.01, copy X=True, fit intercept=True, max iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=5.06040404040404, copy_X=True, fit_intercept=True, max_iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random_state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=5.06040404040404, copy_X=True, fit_intercept=True, max_iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random_state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=10.1108080808080808, copy X=True, fit intercept=True, max iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm start=False)
         Lasso(alpha=10.1108080808080808, copy_X=True, fit_intercept=True, max_iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=15.161212121212122, copy_X=True, fit_intercept=True, max_iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=15.16121212121212, copy_X=True, fit_intercept=True, max_iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=20.211616161616163, copy_X=True, fit_intercept=True, max_iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random_state=None,
               selection='cyclic', tol=0.0001, warm start=False)
         Lasso(alpha=20.211616161616163, copy X=True, fit intercept=True, max iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random_state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
```

- Out[82]: Lasso(alpha=25.2620202020203, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=25.2620202020203, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=30.3124242424246, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=30.3124242424246, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=35.3628282828282828, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=35.3628282828282828, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=40.41323232323232, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=40.41323232323232, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=45.46363636363636, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=45.46363636363636, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=50.5140404040404, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=50.5140404040404, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=55.564444444444444, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=55.564444444444444, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=60.61484848484849, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=60.61484848484849, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=65.66525252525253, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=65.66525252525253, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=70.71565656565657, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=70.71565656565657, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

- Out[82]: Lasso(alpha=75.7660606060606, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=75.7660606060606, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=80.81646464646465, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=80.81646464646465, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=85.8668686868687, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=85.8668686868687, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=90.91727272727373, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=90.91727272727373, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=95.96767676767678, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=95.96767676767678, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=101.01808080808081, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=101.01808080808081, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=106.06848484848486, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=106.06848484848486, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=111.1188888888889, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=111.1188888888889, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=116.16929292929294, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=116.16929292929294, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=121.219696969698, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=121.219696969698, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

- Out[82]: Lasso(alpha=126.2701010101010102, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=126.2701010101010102, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=131.32050505050503, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=131.32050505050503, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=136.3709090909091, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=136.3709090909091, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=141.42131313131313, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=141.4213131313131313, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=146.471717171716, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=146.471717171716, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=151.5221212121212, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=151.5221212121212, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=156.57252525252525, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=156.57252525252525, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=161.62292929292929, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=161.62292929292929, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=166.67333333333332, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=166.6733333333332, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=171.723737373738, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=171.723737373738, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

- Out[82]: Lasso(alpha=176.7741414141414, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=176.7741414141414, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=181.82454545454544, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=181.82454545454544, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=186.87494949494948, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=186.87494949494948, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=191.92535353535354, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=191.92535353535354, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

- Out[82]: Lasso(alpha=202.0261616161616, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=202.0261616161616, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

- Out[82]: Lasso(alpha=212.1269696969697, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=212.1269696969697, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=217.177373737373737373, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=217.17737373737373, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=222.227777777776, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=222.227777777776, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

- Out[82]: Lasso(alpha=227.27818181818182, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=227.27818181818182, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=232.32858585858585, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=232.32858585858585, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=237.3789898989899, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=237.3789898989899, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=242.429393939395, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=242.429393939395, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=247.479797979798, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=247.479797979798, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=252.530202020202, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=252.530202020202, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=257.58060606060604, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=257.58060606060604, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=262.6310101010101, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=262.6310101010101, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=267.6814141414141, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=267.6814141414141, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=272.7318181818182, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=272.7318181818182, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

- Out[82]: Lasso(alpha=277.782222222223, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=277.782222222223, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=282.83262626262626, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=282.83262626262626, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=287.8830303030303, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=287.8830303030303, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=292.933434343434343, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=292.9334343434343, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=297.98383838383836, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=297.98383838383836, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=303.0342424242424, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=303.0342424242424, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=308.0846464646465, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=308.0846464646465, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=313.1350505050505, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=313.135050505050505, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=318.18545454545455, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=318.18545454545455, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=323.235858585858586, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=323.235858585858586, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

- Out[82]: Lasso(alpha=328.2862626262626, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=328.2862626262626, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=333.3366666666664, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=333.33666666666664, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=338.3870707070707, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=338.3870707070707, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=343.4374747474777, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=343.437474747477, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=348.487878787878788, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=348.487878787878788, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=353.53828282828283, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=353.53828282828283, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=358.58868686868686, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=363.6390909090909, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=363.6390909090909, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=368.689494949493, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=368.689494949493, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=373.739898989896, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=373.739898989896, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

- Out[82]: Lasso(alpha=378.790303030305, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=378.790303030305, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=383.8407070707071, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=383.8407070707071, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=388.8911111111111, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=388.89111111111111, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=393.94151515151515, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=393.94151515151515, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=398.9919191919192, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=398.9919191919192, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=404.0423232323232, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=404.0423232323232, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=409.092727272725, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=409.092727272725, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=414.143131313131333, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=414.143131313131333, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=419.19353535353537, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=419.19353535353537, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=424.2439393939394, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=424.2439393939394, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

- Out[82]: Lasso(alpha=429.29434343434343, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=429.29434343434343, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=434.344747474746, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=434.344747474746, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=439.3951515151515, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=439.3951515151515, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=444.44555555555553, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=444.44555555555553, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=449.4959595959596, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=449.495959595959596, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=454.54636363636365, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=454.54636363636365, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=459.5967676767677, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm start=False)
- Out[82]: Lasso(alpha=459.5967676767677, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=464.6471717171717, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=464.6471717171717, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=469.6975757575757575, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=474.7479797979798, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
- Out[82]: Lasso(alpha=474.7479797979798, copy_X=True, fit_intercept=True, max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

```
Lasso(alpha=479.7983838383838, copy X=True, fit intercept=True, max iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=479.7983838383838, copy_X=True, fit_intercept=True, max_iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=484.8487878787879, copy X=True, fit intercept=True, max iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=484.8487878787879, copy X=True, fit intercept=True, max iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=489.89919191919194, copy_X=True, fit_intercept=True, max_iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random_state=None,
               selection='cyclic', tol=0.0001, warm start=False)
         Lasso(alpha=489.89919191919194, copy X=True, fit intercept=True, max iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=494.949595959597, copy X=True, fit intercept=True, max iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=494.94959595959597, copy_X=True, fit_intercept=True, max_iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm start=False)
         Lasso(alpha=500.0, copy_X=True, fit_intercept=True, max_iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random_state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=500.0, copy X=True, fit intercept=True, max iter=10000,
Out[82]:
               normalize=False, positive=False, precompute=False, random_state=None,
               selection='cyclic', tol=0.0001, warm start=False)
         [<matplotlib.lines.Line2D at 0x7fee87dd4210>,
Out[82]:
          <matplotlib.lines.Line2D at 0x7fee87dd4450>,
          <matplotlib.lines.Line2D at 0x7fee87dd4590>,
          <matplotlib.lines.Line2D at 0x7fee87dd4690>,
          <matplotlib.lines.Line2D at 0x7fee87dd4790>,
          <matplotlib.lines.Line2D at 0x7fee87dd47d0>,
          <matplotlib.lines.Line2D at 0x7fee87dd4a10>,
          <matplotlib.lines.Line2D at 0x7fee87dd4b10>,
          <matplotlib.lines.Line2D at 0x7fee87dd4c10>,
          <matplotlib.lines.Line2D at 0x7fee87dd48d0>,
          <matplotlib.lines.Line2D at 0x7fee87d62b90>,
          <matplotlib.lines.Line2D at 0x7fee87d8d110>,
          <matplotlib.lines.Line2D at 0x7fee87dd4e50>,
          <matplotlib.lines.Line2D at 0x7fee87dd4f50>,
          <matplotlib.lines.Line2D at 0x7fee87dd4f90>,
          <matplotlib.lines.Line2D at 0x7fee87de1190>,
          <matplotlib.lines.Line2D at 0x7fee87de1290>,
          <matplotlib.lines.Line2D at 0x7fee87de1390>,
          <matplotlib.lines.Line2D at 0x7fee87de1490>,
          <matplotlib.lines.Line2D at 0x7fee87de1590>,
          <matplotlib.lines.Line2D at 0x7fee87de1690>,
          <matplotlib.lines.Line2D at 0x7fee87de1790>,
          <matplotlib.lines.Line2D at 0x7fee87de1890>,
          <matplotlib.lines.Line2D at 0x7fee87de1990>,
          <matplotlib.lines.Line2D at 0x7fee87de1a90>,
          <matplotlib.lines.Line2D at 0x7fee87de1b90>,
          <matplotlib.lines.Line2D at 0x7fee87de1c90>,
          <matplotlib.lines.Line2D at 0x7fee87de1d90>,
          <matplotlib.lines.Line2D at 0x7fee87de1e90>,
          <matplotlib.lines.Line2D at 0x7fee87de1f90>]
```

```
(0.005821722491960459,
Out[82]:
           858.8523425678187,
           -0.028034197659991166,
           0.1415390558301679)
          Text(0.5, 0, 'alpha')
Out[82]:
          Text(0, 0.5, 'Standardized Coefficients')
Out[82]:
          Text(0.5, 1.0, 'Lasso coefficients as a function of alpha')
Out[82]:
          LassoCV(alphas=None, copy_X=True, cv=5, eps=0.001, fit_intercept=True,
Out[82]:
                   max iter=10000, n alphas=100, n jobs=None, normalize=False,
                   positive=False, precompute='auto', random state=1, selection='cyclic',
                   tol=0.0001, verbose=False)
          array([ 0.0144498 , 0.01915226, 0.13032816, 0.03233272,
Out[82]:
                   0.0253451 , 0.
                                            , -0.
                                                              0.05136664,
                                                                            0.02051305,
                              , -0.00935478, 0.07656874,
                                                             0.02401095,
                                                                            0.
                                                           , -0.02599228,
                   0.04353805, 0.02686431, -0.
                   0.01277892, 0.05172721,
                                               0.0221585 ,
                                                              0.01390011,
                                                                            0.01036037,
                  -0.00643844, -0.
                                               0.00428796,
                                                                            0.
                                                                                        ])
                                    Lasso coefficients as a function of alpha
              0.125
          Standardized Coefficients
              0.100
              0.075
              0.050
              0.025
              0.000
             -0.025
                     10^{-2}
                                   10-1
                                                 10°
                                                               10<sup>1</sup>
                                                                             10<sup>2</sup>
                                                     alpha
```

Let's plot the mean squared error as a function of our tuning parameter, alpha, from our cross-validation

```
In [83]: plt.semilogx(lasso_model.alphas_, lasso_model.mse_path_, ":")
plt.plot(
    lasso_model.alphas_,
    lasso_model.mse_path_.mean(axis=-1),
    "k",
    label="Average across the folds",
    linewidth=2,
)
plt.axvline(
    lasso_model.alpha_, linestyle="--", color="k", label="alpha: CV estimate"
)

plt.legend()
plt.xlabel("alphas")
plt.ylabel("Mean square error")
plt.title("Mean square error on each fold")
plt.axis("tight")
```

```
[<matplotlib.lines.Line2D at 0x7fee880dca50>,
Out[83]:
           <matplotlib.lines.Line2D at 0x7fee880fad50>,
           <matplotlib.lines.Line2D at 0x7fee880fae90>,
           <matplotlib.lines.Line2D at 0x7fee880faf90>,
           <matplotlib.lines.Line2D at 0x7fee880fafd0>]
          [<matplotlib.lines.Line2D at 0x7fee880e2990>]
Out[83]:
          <matplotlib.lines.Line2D at 0x7fee8806a210>
Out[83]:
          <matplotlib.legend.Legend at 0x7fee880e2d10>
Out[83]:
          Text(0.5, 0, 'alphas')
Out[83]:
          Text(0, 0.5, 'Mean square error')
Out[83]:
          Text(0.5, 1.0, 'Mean square error on each fold')
Out[83]:
          (0.00022029931480145153,
Out[83]:
           0.4395549208368023,
           0.008856435504039587,
           0.16445482294561087)
                                     Mean square error on each fold
```


Let's fit a Lasso Regression using the newly identified best value for the tuning parameter, alpha.

```
alphas = np.linspace(0.01,500,100)
In [84]:
          best alpha
          alphas[0:10]
         24.420530945486497
Out[84]:
         array([1.00000000e-02, 5.06040404e+00, 1.01108081e+01, 1.51612121e+01,
Out[84]:
                 2.02116162e+01, 2.52620202e+01, 3.03124242e+01, 3.53628283e+01,
                 4.04132323e+01, 4.54636364e+01])
         ### plot training vs testing MSE for increasing lambda
In [85]:
          from sklearn.metrics import mean squared error
          lasso = Lasso(max iter=10000)
          alphas = np.linspace(0.00005, 0.015, 100)
          #alphas = np.linspace(0.00001,0.00003,1000)
          scaler = StandardScaler()
          lasso x = scaler.fit transform(lasso sandbox x)
          lasso_y = scaler.fit_transform(np.array(lasso_sandbox['SalePrice']).reshape(-1,1))
```

```
# Split the dataset into training and testing dataframes
          lasso_X_train, lasso_X_validation, lasso_y_train, lasso_y_validation = train_test_spli
                                                                                       lasso_y, t
                                                                                       random sta
         training mse = []
          testing mse = []
          #best alpha = lasso model.alpha
         for a in alphas:
             lasso.set params(alpha=a)
             lasso.fit(lasso_X_train, lasso_y_train)
             training_mse.append(mean_squared_error(lasso_y_train, lasso.predict(lasso_X_train)
             testing mse.append(mean squared error(lasso y validation, lasso.predict(lasso X va
             #coefs.append(lasso.coef )
         Lasso(alpha=5e-05, copy X=True, fit intercept=True, max iter=10000,
Out[85]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         /Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
         n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
         erge. You might want to increase the number of iterations. Duality gap: 0.33398039476
         475105, tolerance: 0.10374553746774125
           positive)
         Lasso(alpha=5e-05, copy_X=True, fit_intercept=True, max_iter=10000,
Out[85]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.000201010101010101, copy_X=True, fit_intercept=True,
Out[85]:
               max_iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.000201010101010101, copy X=True, fit intercept=True,
Out[85]:
               max_iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.00035202020202020203, copy X=True, fit intercept=True,
Out[85]:
               max_iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.000352020202020203, copy_X=True, fit_intercept=True,
Out[85]:
               max_iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.00050303030303030303, copy_X=True, fit_intercept=True,
Out[85]:
               max_iter=10000, normalize=False, positive=False, precompute=False,
               random state=None, selection='cyclic', tol=0.0001, warm start=False)
         Lasso(alpha=0.00050303030303030303, copy_X=True, fit_intercept=True,
Out[85]:
               max_iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.000654040404040404, copy_X=True, fit_intercept=True,
Out[85]:
               max iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.000654040404040404, copy_X=True, fit_intercept=True,
Out[85]:
               max iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.0008050505050505051, copy_X=True, fit_intercept=True,
Out[85]:
               max_iter=10000, normalize=False, positive=False, precompute=False,
               random state=None, selection='cyclic', tol=0.0001, warm start=False)
         Lasso(alpha=0.0008050505050505051, copy X=True, fit intercept=True,
Out[85]:
               max_iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
```

Lasso(alpha=0.00095606060606060606, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00095606060606060606, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.001107070707070707, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.001107070707070707, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.001258080808080808, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.001258080808080808, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.001409090909090909, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00140909090909090909, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00156010101010101, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00156010101010101, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.001711111111111111, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.001711111111111111, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0018621212121212119, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.0018621212121212119, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.002013131313131313, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.002013131313131313, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0021641414141414144, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0021641414141414444, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0023151515151515153, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.002315151515151515153, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

Lasso(alpha=0.0024661616161616162, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00246616161616162, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.002617171717171717, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.002617171717171717, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.002768181818181818, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.002768181818181818, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00291919191919194, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0029191919191919194, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0030702020202020204, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0030702020202020204, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0032212121212121213, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0032212121212121213, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0033722222222222, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.0033722222222222, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.003523232323232323, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.003523232323232323, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.003674242424242424, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0036742424242424, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0038252525252525254, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0038252525252525254, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

Lasso(alpha=0.0039762626262626255, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00397626262626255, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.004127272727272727, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0041272727272727, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.004278282828282828, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.004278282828282828, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00442929292929292, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.004429292929292929, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00458030303030303, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00458030303030303, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0047313131313131305, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0047313131313131305, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.004882323232323232, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.004882323232323232, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.005033333333333333, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.005033333333333333, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.005184343434343434, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.005184343434343434, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00533535353535353535, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00533535353535353535, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

Lasso(alpha=0.00548636363636363636, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00548636363636363636, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.005637373737373737, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.005637373737373737, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.005788383838383838, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.005788383838383838, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00593939393939393, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.005939393939393939, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00609040404040404, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00609040404040404, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.006241414141414141, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.006241414141414141, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.006392424242424242, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.006392424242424242, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00654343434343434343, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00654343434343434343, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.006694444444444444, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00684545454545454545, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.006845454545454545, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

Lasso(alpha=0.00699646464646464646, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.006996464646464646, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0071474747474747, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0071474747474747, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0072984848484848475, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0072984848484848475, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.007449494949494949, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.007449494949494949, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00760050505050505, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00760050505050505, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00775151515151515151, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.00775151515151515151, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.007902525252525251, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.007902525252525251, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00805353535353535353, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.008053535353535353535, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.008204545454545454, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.008204545454545454, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00835555555555555555, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0083555555555555555, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

Lasso(alpha=0.008506565656565657, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.008506565656565657, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.008657575757575756, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.008657575757575756, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0088085858585858585, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0088085858585858585, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.008959595959595959, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.008959595959595959, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00911060606060606, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.00911060606060606, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.009261616161616162, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.009261616161616162, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.009412626262626261, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.009412626262626261, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.009563636363636363, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.009563636363636363, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.009714646464646464, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.009714646464646464, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.009865656565656565, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.009865656565656565, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

Lasso(alpha=0.010016666666666667, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.010016666666666667, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.010167676767676766, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0101676767676766, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.010318686868686868, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.010318686868686868, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.010469696969696969, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.010469696969696969, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01062070707070707, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01062070707070707, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.010771717171717172, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.010771717171717172, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0109227272727271, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.0109227272727271, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.011073737373737373, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.011073737373737373, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01122474747474747, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01122474747474747, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.011375757575757576, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.011375757575757576, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

Lasso(alpha=0.011526767676767677, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.011526767676767677, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01167777777777777, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0116777777777777, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.011828787878787878, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.011828787878787878, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01197979797979798, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01197979797979798, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01213080808080808, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01213080808080808, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.012281818181818182, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.012281818181818182, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.012432828282828282, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.012432828282828282, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.012583838383838383, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.012583838383838383, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.012734848484848484, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.012734848484848484, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.012885858585858586, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.012885858585858586, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

Lasso(alpha=0.013036868686868687, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.013036868686868687, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.013187878787878787, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.013187878787878787, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.013338888888888888, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0133388888888888888, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01348989898989899, copy X=True, fit intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01348989898989899, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01364090909090909, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.01364090909090909, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0137919191919192, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.0137919191919192, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0139429292929292, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random state=None, selection='cyclic', tol=0.0001, warm start=False) Lasso(alpha=0.0139429292929292, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.014093939393939393, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.014093939393939393, copy_X=True, fit_intercept=True, Out[85]: max iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.0142449494949494, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.014244949494949494, copy X=True, fit intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.014395959595959596, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False) Lasso(alpha=0.014395959595959596, copy_X=True, fit_intercept=True, Out[85]: max_iter=10000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

```
Lasso(alpha=0.014546969696969695, copy X=True, fit intercept=True,
Out[85]:
               max iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.0145469696969695, copy_X=True, fit_intercept=True,
Out[85]:
               max iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.014697979797979797, copy X=True, fit intercept=True,
Out[85]:
               max_iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.0146979797979797, copy X=True, fit intercept=True,
Out[85]:
               max iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.014848989898989898, copy_X=True, fit_intercept=True,
Out[85]:
               max_iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.014848989898989898, copy_X=True, fit_intercept=True,
Out[85]:
               max_iter=10000, normalize=False, positive=False, precompute=False,
               random_state=None, selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.015, copy X=True, fit intercept=True, max iter=10000,
Out[85]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm_start=False)
         Lasso(alpha=0.015, copy_X=True, fit_intercept=True, max_iter=10000,
Out[85]:
               normalize=False, positive=False, precompute=False, random state=None,
               selection='cyclic', tol=0.0001, warm start=False)
         diff = np.array(testing_mse) - np.array(training_mse)
In [86]:
          #diff
         plt.plot(alphas, training mse, label='Training Error')
In [87]:
          plt.plot(alphas, testing mse, label='Testing Error')
          #plt.axvline(best_alpha, linestyle="--", color="k", label="Optimal Alpha")
          plt.legend()
         ax.set xscale('log')
          plt.axis('tight')
          plt.xlabel('Alpha')
          plt.ylabel('Mean Squared Error')
          plt.title('Training MSE vs Testing MSE');
         # Fit a Lasso Regression Model with ten-fold cross-validation
          #lasso_model = LassoCV(cv=5, random_state=1, max_iter = 10000)
          #lasso_model.fit(lasso_X_train, lasso_y_train)
```



```
import pandas as pd
In [88]:
          import numpy as np
          import matplotlib.pyplot as plt
          import seaborn as sns
          from sklearn.metrics import r2 score, get scorer
          from sklearn.linear_model import Lasso, Ridge, LassoCV,LinearRegression, ElasticNet
          from sklearn.preprocessing import StandardScaler, PolynomialFeatures
          from sklearn.model selection import KFold, RepeatedKFold, GridSearchCV, cross validate
          def regmodel param test(
             alphas_to_try, X, y, cv, scoring = 'r2',
             model name = 'LASSO', X test = None, y test = None,
             draw plot = False, filename = None):
             validation_scores = []
             train_scores = []
             results list = []
             if X test is not None:
                 test scores = []
                  scorer = get_scorer(scoring)
             else:
                  test scores = None
             for curr_alpha in alphas_to_try:
                  if model name == 'LASSO':
                      regmodel = Lasso(alpha = curr alpha)
                  elif model name == 'Ridge':
                      regmodel = Ridge(alpha = curr alpha)
                  elif model_name == 'ElasticNet':
                      regmodel = ElasticNet(alpha = curr alpha)
                  else:
                      return None
                  results = cross_validate(
                      regmodel, X, y, scoring=scoring, cv=cv,
                      return_train_score = True)
                  validation scores.append(np.mean(results['test score']))
                  train scores.append(np.mean(results['train score']))
                  results list.append(results)
                  if X_test is not None:
                      regmodel.fit(X,y)
                      y pred = regmodel.predict(X test)
                      test scores.append(scorer(regmodel, X test, y test))
             chosen_alpha_id = np.argmax(validation_scores)
             chosen alpha = alphas to try[chosen alpha id]
             max validation score = np.max(validation scores)
             if X test is not None:
                 test score at chosen alpha = test scores[chosen alpha id]
             else:
                  test score at chosen alpha = None
             if draw_plot:
                  regmodel param plot(
                      validation_scores, train_scores, alphas_to_try, chosen_alpha,
                      scoring, model_name, test_scores, filename)
```

```
return chosen alpha, max validation score, test score at chosen alpha
def regmodel param plot(
   validation score, train score, alphas to try, chosen alpha,
   scoring, model name, test score = None, filename = None):
   plt.figure(figsize = (8,8))
   sns.lineplot(y = validation_score, x = alphas_to_try,
                 label = 'validation data')
   sns.lineplot(y = train_score, x = alphas_to_try,
                 label = 'training_data')
   plt.axvline(x=chosen_alpha, linestyle='--')
   if test score is not None:
        sns.lineplot(y = test score, x = alphas to try,
                     label = 'test data')
    plt.xlabel('alpha parameter')
   plt.ylabel(scoring)
   plt.title(model_name + ' Regularisation')
   plt.legend()
   if filename is not None:
        plt.savefig(str(filename) + ".png")
   plt.show()
```

```
In [89]: cv = KFold(n_splits=5, shuffle=True)

lasso_alphas = np.linspace(0, 0.02, 101)

chosen_alpha, max_validation_score, test_score_at_chosen_alpha = \
    regmodel_param_test(
        lasso_alphas, lasso_X_train, lasso_y_train,
        cv, scoring = 'r2', model_name = 'LASSO',
        X_test = lasso_X_validation, y_test = lasso_y_validation,
        draw_plot = True, filename = 'lasso_wide_search')

print("Chosen alpha: %.5f" % \
        chosen_alpha)

print("Validation score: %.5f" % \
        max_validation_score)

print("Test score at chosen alpha: %.5f" % \
        test score at chosen alpha)
```

```
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model selection/ validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 59.3151184062
4592, tolerance: 0.08146137472628749
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 62.4133800932
1754, tolerance: 0.08383375419276164
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 52.0013250398
59324, tolerance: 0.07646279640865453
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X train, y train, **fit params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 65.0095184659
7536, tolerance: 0.08599641085489657
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
 positive)
```

```
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 64.7876398341
8031, tolerance: 0.08721964620031875
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/ipykern
el launcher.py:44: UserWarning: With alpha=0, this algorithm does not converge well.
You are advised to use the LinearRegression estimator
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 77.0555878122
8252, tolerance: 0.10374553746774125
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.34496764577
092165, tolerance: 0.08126724283571046
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.12904315448
244574, tolerance: 0.07752593667652338
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.40067582136
090607, tolerance: 0.08818182766329767
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.21124932477
2524, tolerance: 0.08300929344027744
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.42393140899
55144, tolerance: 0.08483106610569778
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.36810356882
534734, tolerance: 0.10374553746774125
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.23611889218
67381, tolerance: 0.08262500137838019
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.40371434196
553935, tolerance: 0.07940128899327321
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.20887390371
```

1023, tolerance: 0.08018441167777415 positive)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.49385535614 66392, tolerance: 0.083430130263864

positive)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.24958147857 60473, tolerance: 0.0893172914193282

positive)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.39077165557 705484, tolerance: 0.10374553746774125

positive)

Chosen alpha: 0.00600 Validation score: 0.84299

Test score at chosen alpha: 0.86357

In [90]: ### BASED ON LASSOCV:

Show best value of tuning parameter (alpha) chosen by cross validation print(f"The best value of the tuning parameter, alpha, chosen by cross-validation is

```
# Set best tuning parameter (alpha) and use it to fit our final Lasso regression model
lasso_best = Lasso(alpha=lasso_model.alpha_)
lasso_best.fit(lasso_X_train, lasso_y_train)

# Show best Lasso model coefficients and names
best_lasso_coeffs_data = (list(zip(lasso_X_train, lasso_best.coef_)))
best_lasso_coeffs_df = pd.DataFrame(best_lasso_coeffs_data, columns = ['Predictor', 'E
with pd.option_context("display.max_rows",300):
    best_lasso_coeffs_df.style.background_gradient(cmap = 'Greens')
```

The best value of the tuning parameter, alpha, chosen by cross-validation is 0.003577 8259276540722.

Out[90]:

Lasso(alpha=0.0035778259276540722, copy_X=True, fit_intercept=True,
 max_iter=1000, normalize=False, positive=False, precompute=False,
 random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

Out[90]:

	Predictor	Best Lasso Coefficient
0	[-0.60134894 -0.12192403 -0.7943627 -0.51768686 -0.57401865 0.58069606 -0.28918978	0.041777
1	[-0.93621711 -0.45101191 -0.06376995 0.38008952 -0.57401865 -0.09178658 -0.28918978 0.31764015 0.13181675 -0.14422762 -0.79680412 -0.12045114 -0.81315996 -0.81857737 -0.23990443 -1.02643215 -0.75919202 -1.05968807 -0.21183287 -0.93449284 0.61077524 0.31592367 -0.1486834 0.577744 1.12931613 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.067138
2	[-0.02728921 -0.13358662 -0.06376995 2.17564227 0.84977655 -0.08480579 0.10705153 -0.52199815 -0.61031529 -0.97370056 1.13164459 -0.12045114 0.25604563 -0.81857737 3.96564919 -1.02643215 1.23112219 1.39352774 -0.21183287 0.30836555 -0.95104897 0.31592367 0.05888586 -0.74905884 -0.0948976 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.321800
3	[0.4510939 0.01924402 1.39741555 -0.51768686 1.32437495 1.98150764 -0.28918978 -0.33818544 1.60628371 1.53935609 -0.79680412 -0.12045114 0.42986733 1.114913 -0.23990443 0.80378694 -0.75919202 0.16691984 -0.21183287 0.30836555 0.61077524 1.65606634 1.67226514 0.91344111 -0.03368691 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.064117
4	[0.11622572 -0.1832794 0.6668228 -0.51768686 -0.57401865 -1.0155776 -0.28918978 1.82898909 0.79067325 0.59216916 -0.79680412 -0.12045114 -0.26946184 -0.81857737 -0.23990443 0.80378694 -0.75919202 0.16691984 -0.21183287 -0.31306364 -0.95104897 0.31592367 0.27117261 -0.74905884 1.43536957 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.073773
5	[0.92947701 0.20422285 1.39741555 -0.51768686 -0.57401865 2.37243181 -0.28918978 -0.90323932 1.40789198 1.28202785 -0.79680412 -0.12045114 0.23987617 1.114913 -0.23990443 0.80378694 -0.75919202 -1.05968807 -0.21183287 -0.93449284 0.61077524 1.65606634 1.3467588 -0.74905884 1.0375001 2.79957949 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.092032
6	[-0.93621711 -0.4729173 -0.7943627 2.17564227 -0.57401865 -1.0155776 -0.28918978 -0.85331488 -2.1043765 -0.7382726 -0.79680412 -0.12045114 -1.25175658 -0.81857737 -0.23990443 -1.02643215 -0.75919202 -1.05968807 -0.21183287 -1.55592204 -0.95104897 -1.024219 -0.93650311 0.40190266 -0.40095103 0.95699807 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	-0.002737
7	[-0.21864245 -0.26806136 -1.52495546 -2.31323961 -0.57401865 0.43177257 -0.28918978 -0.14983414 0.17835308 0.47171764 0.71674998 -0.12045114 0.96143835 1.114913 -0.23990443 0.80378694 -0.75919202 1.39352774 -0.21183287 0.30836555 2.17259946 0.31592367 0.49289432 2.69583288 -0.03368691 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.000000
8	[-0.12296583 0.19337157 -0.06376995 2.17564227 -0.57401865 -1.0155776 -0.28918978 0.26771571 -0.89443185 -1.29125456 0.38993355 -0.12045114 -0.62518997 -0.81857737 -0.23990443 -1.02643215 -0.75919202 0.16691984 -0.21183287 0.30836555 -0.95104897 0.31592367 0.26645513 -0.74905884 -0.00308157 -0.35913151 -0.11654172 -0.27070619 -0.05813532 1.5224731]	0.139404
9	[-0.21864245 -0.20254802 -0.7943627 0.38008952 -0.57401865 0.78779279 -0.28918978 -0.64680925 0.01670056 -0.27289174 -0.79680412 -0.12045114 -0.90815554 1.114913 -0.23990443 -1.02643215 -0.75919202 0.16691984 -0.21183287 -0.31306364 0.61077524 -1.024219 -0.79026113 -0.74905884 0.59372263 2.66796653 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.041091

	Predictor	Best Lasso Coefficient
10	[-0.31431907 -0.26086098 0.6668228 -0.51768686 -0.35931937 -1.0155776 -0.28918978 1.52263458 0.46002036 0.26640256 -0.79680412 -0.12045114 -0.50998257 -0.81857737 -0.23990443 0.80378694 -0.75919202 0.16691984 -0.21183287 -0.31306364 0.61077524 0.31592367 -0.32794777 1.00935457 -0.38564836 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.000000
11	[-0.79270218 -0.68588634 0.6668228 -0.51768686 0.16047887 -1.0155776 -0.28918978 1.83125838 0.79312253 1.09313797 -0.79680412 -0.12045114 0.10041457 -0.81857737 -0.23990443 0.80378694 -0.75919202 -1.05968807 -0.21183287 0.30836555 0.61077524 1.65606634 0.88916292 0.39390987 -0.40095103 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	-0.025678
12	[0.25974066 -0.06310401 -0.7943627 -0.51768686 -0.57401865 -1.0155776 -0.28918978 -1.2844805 -2.56973983 1.39152923 -0.79680412 -0.12045114 0.32072348 -0.81857737 -0.23990443 0.80378694 -0.75919202 1.39352774 4.32076744 0.92979475 -0.95104897 -2.36436167 -2.22437604 -0.74905884 -0.70700446 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.253948
13	[-0.98405542 -0.4692664 -2.25554821 2.17564227 -0.57401865 -0.41988364 -0.28918978	0.022657
14	[-0.93621711 -0.45101191 -0.7943627 2.17564227 -0.57401865 -1.0155776 -0.28918978	-0.016310
15	[0.30757897 -0.28570737 -0.7943627 3.07341864 -0.57401865 -1.0155776 -0.28918978 -0.46753512 -1.68799879 -0.33859256 1.01111655 -0.12045114 0.6198585 -0.81857737 -0.23990443 0.80378694 -0.75919202 1.39352774 4.32076744 0.92979475 0.61077524 0.31592367 0.94577272 2.0004603 -0.70700446 0.29893328 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.061960
16	[-0.45783401 0.03577448 0.6668228 2.17564227 -0.57401865 -1.0155776 -0.28918978 0.34487166 -0.81115631 1.15062619 1.47005026 -0.12045114 2.11957598 -0.81857737 -0.23990443 -1.02643215 1.23112219 0.16691984 -0.21183287 0.92979475 -0.95104897 0.31592367 1.09673218 -0.74905884 0.02752377 1.99345012 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.034481
17	[0.49893221 0.25726228 -0.7943627 0.38008952 2.01932261 1.969873 0.62092699 -1.2844805 0.93273153 1.34499114 -0.79680412 -0.12045114 0.28636337 1.114913 -0.23990443 0.80378694 -0.75919202 0.16691984 -0.21183287 0.30836555 0.61077524 0.31592367 0.70518107 -0.74905884 -0.70700446 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	-0.120404
18	[0.4510939 -0.09190553 0.6668228 -0.51768686 0.94017625 -1.0155776 -0.28918978 2.12399714 1.10907974 0.94804864 -0.79680412 -0.12045114 -0.0067081 -0.81857737 -0.23990443 0.80378694 -0.75919202 0.16691984 -0.21183287 0.30836555 -0.95104897 0.31592367 0.81368319 -0.74905884 1.0375001 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	-0.076264
19	[0.92947701 0.02360482 -0.7943627 -2.31323961 -0.32541949 0.74358113 -0.28918978 1.84714343 2.66192368 2.68364551 -0.79680412 -0.12045114 1.27472166 -0.81857737 -0.23990443 0.80378694 -0.75919202 1.39352774 -0.21183287 0.30836555 -0.95104897 0.31592367 0.26645513 -0.74905884 -0.24792432 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.106356

	Predictor	Best Lasso Coefficient
20	[0.49893221 0.63330477 0.6668228 -0.51768686 0.46557785 0.82269673 2.61451608 -0.98266457 0.83965886 0.64691985 2.42963892 -0.12045114 2.58444797 1.114913 -0.23990443 2.63400602 1.23112219 2.62013565 -0.21183287 3.41551155 2.17259946 0.31592367 0.43628453 -0.74905884 1.00689476 -0.35913151 -0.11654172 7.6107848 14.60962252 3.93794201]	-0.000000
21	[0.49893221 -0.1928123 -1.52495546 -0.51768686 -0.57401865 -1.0155776 -0.28918978	0.065079
22	[-0.64918725 1.01249108 2.12800831 -0.51768686 4.34146478 2.26539305 -0.28918978 -0.29053029 1.95653085 1.89523557 1.24290125 -0.12045114 2.47126175 1.114913 -0.23990443 0.80378694 1.23112219 1.39352774 -0.21183287 2.17265315 2.17259946 1.65606634 1.10616715 -0.74905884 -0.70700446 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.064081
23	[1.12083025 0.07228346 0.6668228 -0.51768686 -0.57401865 1.46260236 -0.28918978	0.030624
24	[-1.22324698 -0.41338738 0.6668228 -0.51768686 0.14917891 0.69006175 -0.28918978 0.13382744 0.75638332 0.55384368 -0.79680412 -0.12045114 -0.2977584 1.114913 -0.23990443 0.80378694 -0.75919202 -1.05968807 -0.21183287 -0.31306364 0.61077524 0.31592367 0.05888586 0.7855565 -0.17141096 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.028564
25	[0.0205491 -0.2551818 -0.7943627 -0.51768686 -0.57401865 1.65573751 -0.28918978 -1.2844805 0.24203438 -0.02103856 -0.79680412 -0.12045114 -0.72220674 1.114913 -0.23990443 -1.02643215 -0.75919202 0.16691984 -0.21183287 -0.31306364 -0.95104897 -1.024219 0.94577272 -0.74905884 -0.70700446 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	-0.022844
26	[-0.55351063 0.64121505 0.6668228 -0.51768686 -0.40451922 -1.0155776 -0.28918978 1.42732428 0.35715057 0.10762556 0.69588936 -0.12045114 0.67443043 -0.81857737 -0.23990443 0.80378694 1.23112219 1.39352774 -0.21183287 0.30836555 -0.95104897 0.31592367 0.06832083 -0.74905884 0.53251194 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	-0.013004
27	[-0.02728921 -0.02040878 -1.52495546 3.07341864 -0.57401865 0.49227274 -0.28918978 -1.2844805 -0.98260595 -0.53569505 -0.79680412 -0.12045114 -1.10218906 1.114913 3.96564919 -2.85665123 -0.75919202 -3.51290387 -0.21183287 -2.17735124 -0.95104897 -1.024219 -0.50721213 -0.04569348 -0.70700446 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	0.012988
28	[-0.26648076 -0.35172777 -0.06376995 -0.51768686 -0.57401865 1.44165999 -0.28918978 -1.2844805 0.01670056 -0.27289174 -0.79680412 -0.12045114 -0.90815554 3.04840337 -0.23990443 -2.85665123 -0.75919202 -3.51290387 4.32076744 -1.55592204 -0.95104897 0.31592367 0.49289432 1.36103725 0.14994515 -0.35913151 -0.11654172 -0.27070619 -0.05813532 1.11989495]	0.000040
29	[-0.07512752 -0.16238815 -0.06376995 -0.51768686 -0.57401865 -1.0155776 -0.28918978 0.41748903 -0.73277933 -1.11057729 0.94158114 -0.12045114 -0.01075047 -0.81857737 -0.23990443 0.80378694 1.23112219 0.16691984 -0.21183287 -0.31306364 -0.95104897 0.31592367 0.43628453 -0.74905884 -0.17141096 -0.35913151 -0.11654172 -0.27070619 -0.05813532 -0.08783951]	-0.001388

Let's evaluate the performance of the best Lasso model that we were able to construct

```
In [91]: # Calculate the R squared for the training and validation datasets
lasso_r_squared_train = round(lasso_best.score(lasso_X_train, lasso_y_train), 3)
lasso_r_squared_validation = round(lasso_best.score(lasso_X_validation, lasso_y_validation)
print(f"The R squared for the best Lasso model for the training set is: {lasso_r_squared_train = lasso_model for the validation set is: {lasso_r_squared_train = lasso_model.predict(lasso_X_train)
lasso_mse_train = mean_squared_error(lasso_y_train, lasso_y_predictions_train)
print(f"The mean squared error of the Lasso Regression model's predictions using the lasso_mse_validation = lasso_model.predict(lasso_X_validation)
lasso_mse_validation = mean_squared_error(lasso_y_validation, lasso_y_predictions_validation)
lasso_mse_validation = mean_squared_error(lasso_y_val
```

The R squared for the best Lasso model for the training set is: 0.851.

The R squared for the best Lasso model for the validation set is: 0.863.

The mean squared error of the Lasso Regression model's predictions using the log home sale prices in the training dataset is 144.98172527888673.

The mean squared error of the Lasso Regression model's predictions using the log home

The mean squared error of the Lasso Regression model's predictions using the log home sale prices in the validation dataset is 146.1750136575638.

Rework LASSO analysis on full set of variables including encoded

```
In [92]: # Split the dataset into training and testing dataframes
         scaler = StandardScaler()
         x raw = housing training data large.select dtypes(exclude=['object']).drop(columns =
         x_scale = xscaler.fit_transform(x_raw)
         #y scale = scaler.fit transform(np.array(housing training data['SalePrice']).reshape(-
         y = housing training data large['SalePrice']
         new_lasso_X_train, new_lasso_X_validation, new_lasso_y_train, new_lasso_y_validation =
                                                                                      y, test si
                                                                                       random sta
         cv = KFold(n splits=5, shuffle=True)
         lasso alphas = np.linspace(0, 0.02, 101)
         chosen alpha, max validation score, test score at chosen alpha = \
             regmodel_param_test(
                 lasso_alphas, x_scale, y_scale,
                 cv, scoring = 'r2', model_name = 'LASSO',
                 X test = new lasso X validation, y test = new lasso y validation,
                 draw plot = True, filename = 'lasso wide search')
         print("Chosen alpha: %.5f" % \
             chosen alpha)
         print("Validation score: %.5f" % \
             max validation score)
         print("Test score at chosen alpha: %.5f" % \
             test score at chosen alpha)
```

```
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model selection/ validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 35.3103798322
7483, tolerance: 0.1175439996562544
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 41.1884587561
6272, tolerance: 0.11994908768764215
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 37.2113407937
0813, tolerance: 0.11510572462008437
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X train, y train, **fit params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 36.8492994960
1944, tolerance: 0.11130167392847584
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
 positive)
```

```
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 37.8278550766
66005, tolerance: 0.11805824792012207
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/ipykern
el launcher.py:44: UserWarning: With alpha=0, this algorithm does not converge well.
You are advised to use the LinearRegression estimator
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 49.5886073510
90744, tolerance: 0.1455
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.53230726080
91621, tolerance: 0.1176629040603749
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.57879148543
52749, tolerance: 0.12076187790379247
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.32350882588
03529, tolerance: 0.11008462468197588
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.53296904776
23359, tolerance: 0.11636219756433114
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.52106977290
2834, tolerance: 0.11705095348674897
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.69185636815
31253, tolerance: 0.1455
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.61277135871
3502, tolerance: 0.12034767772202624
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.59478800365
51112, tolerance: 0.1132149441195675
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.62415284785
```

```
41554, tolerance: 0.11364270760054555
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.63271476533
22243, tolerance: 0.11675327959970194
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.66818232914
09472, tolerance: 0.11799409528077164
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.65142209022
16863, tolerance: 0.1455
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.89474017524
48201, tolerance: 0.11705600642769155
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.70265298839
25292, tolerance: 0.11494023970738529
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.72073933585
6166, tolerance: 0.12229740025743394
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.72350790526
83488, tolerance: 0.10953361819285792
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.74971139394
63134, tolerance: 0.11802449832063418
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.92663345080
7131, tolerance: 0.1455
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.29492617996
53158, tolerance: 0.1127727010985301
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.86132869772
22856, tolerance: 0.12101298580921589
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.78439334450
```

```
01596, tolerance: 0.11781216750580778
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.76762793116
36591, tolerance: 0.11565185578018948
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.87109507098
91137, tolerance: 0.11464783456618256
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.04378349035
35048, tolerance: 0.1455
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.88836066593
24386, tolerance: 0.11931861656109605
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.95035449356
21306, tolerance: 0.11931983307743459
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.91304865034
4507, tolerance: 0.11420908182302415
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.53232980674
61479, tolerance: 0.11525065812982799
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.51068433650
6273, tolerance: 0.1455
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.14887124087
974257, tolerance: 0.11038849436093542
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.43817160077
62151, tolerance: 0.10741983918266827
 positive)
```


Chosen alpha: 0.00960 Validation score: 0.90266

Test score at chosen alpha: -5.52195

```
### BASED ON LASSOCV:

# Show best value of tuning parameter (alpha) chosen by cross validation
print(f"The best value of the tuning parameter, alpha, chosen by cross-validation is {

# Set best tuning parameter (alpha) and use it to fit our final Lasso regression model
lasso_best = Lasso(alpha=lasso_model.alpha_)
lasso_best.fit(x_scale, y_scale)
```

The best value of the tuning parameter, alpha, chosen by cross-validation is 0.003577 8259276540722.

Out[95]: Lasso(alpha=0.0035778259276540722, copy_X=True, fit_intercept=True, max_iter=1000, normalize=False, positive=False, precompute=False, random_state=None, selection='cyclic', tol=0.0001, warm_start=False)

lasso_best.coef_

```
array([-0.00000000e+00, -4.11641928e-02,
                                                  1.68674529e-02,
                                                                   7.24623204e-02,
Out[95]:
                 1.42221206e-01,
                                 6.37091222e-02,
                                                   6.65378779e-02,
                                                                    6.44723957e-03,
                 5.91435950e-02,
                                 4.70831383e-02,
                                                  4.33865364e-02,
                                                                   9.97823843e-02,
                 0.00000000e+00, -0.00000000e+00,
                                                  0.00000000e+00,
                                                                    0.00000000e+00,
                 0.00000000e+00, -1.02289184e-02,
                                                   2.09573638e-01,
                                                                    3.33189236e-03,
                -5.46213183e-03, 1.39061621e-03, 1.71937649e-02, -4.92538653e-02,
                -2.9555525ae-02, 5.11046900e-02, 4.97189772e-02, 1.15072485e-02,
                -0.00000000e+00, 0.0000000e+00,
                                                   3.68962259e-02, 4.41013884e-02,
                 1.83428461e-02, -0.00000000e+00,
                                                  2.18563071e-02,
                                                                   1.96597065e-02,
                 0.00000000e+00, 9.05923345e-03, 2.55688945e-02, 7.29072340e-03,
                 0.00000000e+00, -9.49453220e-03, 0.00000000e+00,
                                                                   1.21863168e-02,
                 0.00000000e+00,
                                 8.79282952e-04,
                                                  1.38182045e-02, -0.00000000e+00,
                 1.78978199e-01, -1.88381909e-02, 5.29227611e-03, 0.00000000e+00,
                 0.00000000e+00, -1.65701625e-02, -5.31651431e-03, 1.08271695e-02,
                                 0.00000000e+00, 0.00000000e+00, 9.79819716e-03,
                -0.00000000e+00,
                -1.36340235e-02, -0.00000000e+00, 8.64029619e-03, -2.56381400e-17,
                -1.38794294e-03, 2.78942011e-02, -7.66727125e-03, -2.95661698e-03,
                 0.00000000e+00, -0.00000000e+00, 3.91229824e-03, -2.73234175e-02,
                 0.00000000e+00, 7.81750228e-04, 1.26543881e-02, 2.66377844e-02,
                 0.00000000e+00, -8.56622265e-04, 4.76431492e-02, -3.94484436e-03,
                -7.05947109e-04, 0.00000000e+00, -0.00000000e+00, -5.91519048e-03,
                -3.32237844e-03,
                                 1.44601176e-02, -9.20523700e-03, 4.60277418e-02,
                 9.21870562e-02, -0.00000000e+00, -0.00000000e+00, 8.47176710e-03,
                 0.00000000e+00, 2.18324747e-02, 7.29085570e-02, -0.00000000e+00,
                 7.89579560e-03, -1.37850752e-03, -5.16928423e-04, 3.29263639e-02,
                -0.00000000e+00, 0.0000000e+00, -1.44121563e-02, 9.93173579e-04,
                -0.00000000e+00, 1.99300323e-04, 0.00000000e+00, -0.00000000e+00,
                                 8.20307862e-03, -5.93864085e-03, -8.25542450e-03,
                -0.00000000e+00,
                                 4.44285365e-03, 4.81227342e-02, 1.43636382e-02,
                 0.00000000e+00,
                -0.00000000e+00, -1.11366489e-02, -0.00000000e+00, -5.42761342e-03,
                 2.08204330e-03,
                                 0.00000000e+00, -3.26274640e-03, -2.84325953e-03,
                -0.00000000e+00, -3.34462380e-04, 9.68455305e-04, -0.00000000e+00,
                -1.53003023e-02, -0.00000000e+00, 1.50152661e-03, 0.00000000e+00,
                 3.06431925e-03, 0.00000000e+00, 1.39802794e-02, 4.52769348e-03,
                -1.02443687e-03, -9.93173127e-03, -1.17115017e-03, 2.19971605e-02,
                 0.000000000e+00, -1.29534324e-03, -0.000000000e+00, 2.47370263e-02,
                -0.00000000e+00, 4.66886522e-03, -1.06781329e-02, -0.00000000e+00,
                 2.44173254e-03, -6.99740581e-03, -0.00000000e+00, 0.00000000e+00,
                 0.00000000e+00, -2.17791584e-02, 0.00000000e+00, 0.00000000e+00,
                -0.00000000e+00, 0.00000000e+00, -0.00000000e+00, -0.00000000e+00,
                 1.36015094e-02, -5.47260759e-03, -0.00000000e+00, 0.00000000e+00,
                -9.48333527e-03, -9.08224695e-03, -1.88499913e-03, -0.00000000e+00,
                 0.00000000e+00, 7.27601399e-03, -3.62226615e-03, -1.13712099e-02,
                -2.38261473e-02,
                                 0.00000000e+00, 1.06676924e-02,
                                                                   1.07326229e-03.
                 4.78343573e-03, -3.61537054e-03, 0.00000000e+00, 0.00000000e+00,
                -8.16079028e-03, -0.00000000e+00, 0.00000000e+00, 0.00000000e+00,
                 0.0000000e+00, -1.15543355e-02, -1.99967616e-03, -0.00000000e+00,
                 2.98255402e-02, 1.36725674e-02, 0.00000000e+00, 0.00000000e+00,
                 6.97761132e-02, -1.34062669e-03, -2.05711341e-02, 0.00000000e+00,
                -0.00000000e+00, 0.00000000e+00, 1.61264655e-02, -5.88018109e-03,
                 1.62512225e-03, -9.02280592e-03, 0.00000000e+00, 1.70625401e-02,
                -0.00000000e+00, 1.20341614e-02, -1.80073545e-05, 0.00000000e+00,
                 0.0000000e+00, -0.00000000e+00, -0.00000000e+00, 0.00000000e+00,
                                 0.00000000e+00, -1.47006792e-02,
                                                                   2.41276733e-03,
                -0.00000000e+00,
                 0.00000000e+00, 0.00000000e+00, 1.38944991e-03, -7.61111234e-04,
                 1.79173217e-03, -3.33226841e-03, -8.72097534e-03, -6.71160593e-03,
                                 0.00000000e+00, -3.79393444e-03, -1.37204495e-02,
                -0.00000000e+00,
                 3.87021485e-02, -1.07768334e-02, -8.66479352e-03, -0.00000000e+00,
                 1.73038571e-02, 0.000000000e+00, 0.00000000e+00, 3.07172169e-02,
                 0.00000000e+00, 3.11442357e-15, -2.69444207e-02, -0.00000000e+00,
```

```
-5.11827731e-03, 5.05126470e-03, 7.91052204e-03, 1.78206443e-03, 0.00000000e+00, 0.00000000e+00, 6.37785659e-02, 2.83827499e-04, -8.16526918e-03, -2.33267870e-02, 0.00000000e+00, 0.00000000e+00, -9.45648888e-03, 0.00000000e+00, 0.00000000e+00])
```

REPEAT WITH RIDGE

```
In [96]:
         # Split the dataset into training and testing dataframes
          scaler = StandardScaler()
         x_raw = housing_training_data.select_dtypes(exclude=['object']).drop(columns = ['Salef
         x scale = xscaler.fit transform(x raw)
         y scale = np.array(housing training data['SalePrice']).reshape(-1,1)
         new ridge X train, new ridge X validation, new ridge y train, new ridge y validation
                                                                                       y scale, t
                                                                                       random sta
         cv = KFold(n splits=5, shuffle=True)
          lasso alphas = np.linspace(0, 0.02, 101)
          chosen alpha, max validation score, test score at chosen alpha = \
              regmodel param test(
                  lasso_alphas, new_ridge_X_train, new_ridge_y_train,
                  cv, scoring = 'r2', model_name = 'Ridge',
                 X test = new ridge X validation, y test = new ridge y validation,
                  draw_plot = True, filename = 'ridge_wide_search')
          print("Chosen alpha: %.5f" % \
             chosen alpha)
          print("Validation score: %.5f" % \
             max validation score)
          print("Test score at chosen alpha: %.5f" % \
             test score at chosen alpha)
```


Chosen alpha: 0.01900 Validation score: 0.86132

0.0000

Test score at chosen alpha: 0.88396

0.0025

0.0050

0.0075

REPEAT WITH RIDGE USING SUBNET OF ENCODED VARIABLE SET

0.0100

alpha_parameter

0.0125

0.0150

0.0175

0.0200

Chosen alpha: 0.26000 Validation score: 0.87303

Test score at chosen alpha: 0.88549

```
In [118... # Show best Ridge model coefficients and names
    regr = Ridge(alpha=chosen_alpha)
    r_model = regr.fit(x_scale, y_scale)
    r_model.coef_
```

```
ValueError
                                          Traceback (most recent call last)
<ipython-input-118-d679e1c0ac7f> in <module>
      1 # Show best Ridge model coefficients and names
      2 regr = Ridge(alpha=chosen alpha)
----> 3 r_model = regr.fit(x_scale, y_scale)
      4
      5 r model.coef
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ ridge.py in fit(self, X, y, sample_weight)
    764
                self: returns an instance of self.
    765
--> 766
                return super().fit(X, y, sample_weight=sample_weight)
    767
    768
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_ridge.py in fit(self, X, y, sample_weight)
    545
                                 accept sparse= accept sparse,
                                 dtype=_dtype,
    546
--> 547
                                 multi output=True, y numeric=True)
    548
                if sparse.issparse(X) and self.fit_intercept:
    549
                    if self.solver not in ['auto', 'sparse_cg', 'sag']:
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/utils/validation.py in check X y(X, y, accept sparse, accept large sparse, dtype, o
rder, copy, force_all_finite, ensure_2d, allow_nd, multi_output, ensure_min_samples,
ensure_min_features, y_numeric, warn_on_dtype, estimator)
    763
                y = y.astype(np.float64)
    764
            check consistent length(X, y)
--> 765
    766
    767
            return X, y
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/utils/validation.py in check consistent length(*arrays)
    210
            if len(uniques) > 1:
                raise ValueError("Found input variables with inconsistent numbers of"
    211
                                 " samples: %r" % [int(1) for 1 in lengths])
--> 212
    213
    214
ValueError: Found input variables with inconsistent numbers of samples: [1459, 1455]
```

Try ElasticNet...

```
In [99]: # Split the dataset into training and testing dataframes

elasticscaler = StandardScaler()
    x_raw = housing_training_data.select_dtypes(exclude=['object']).drop(columns = ['SaleFx_scale = xscaler.fit_transform(x_raw)
    y_scale = elasticscaler.fit_transform(np.array(housing_training_data['SalePrice']).res
    new_elastic_X_train, new_elastic_X_validation, new_elastic_y_train, new_elastic_y_validation, new_elastic_y_train, new_el
```

```
lasso_alphas = np.linspace(0, 0.02, 101)

chosen_alpha, max_validation_score, test_score_at_chosen_alpha = \
    regmodel_param_test(
        lasso_alphas, new_elastic_X_train, new_elastic_y_train,
        cv, scoring = 'r2', model_name = 'ElasticNet',
        X_test = new_elastic_X_validation, y_test = new_elastic_y_validation,
        draw_plot = True, filename = 'EN_wide_search')

print("Chosen alpha: %.5f" % \
        chosen_alpha)

print("Validation score: %.5f" % \
        max_validation_score)

print("Test score at chosen alpha: %.5f" % \
        test_score_at_chosen_alpha)
```

```
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model selection/ validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 49.3125375381
18214, tolerance: 0.08376794942129816
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 51.4806629249
15535, tolerance: 0.08296929794930137
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 50.3086102193
9106, tolerance: 0.0832879990067399
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X train, y train, **fit params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 54.2289283658
1726, tolerance: 0.08423980593987467
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
 positive)
```

```
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 47.9565815146
30635, tolerance: 0.08064710497810411
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/ipykern
el launcher.py:44: UserWarning: With alpha=0, this algorithm does not converge well.
You are advised to use the LinearRegression estimator
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 64.2155674826
2068, tolerance: 0.10374553746774125
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 14.8324109681
52516, tolerance: 0.07984098495757876
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 17.2714897778
90878, tolerance: 0.08478563025384582
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 18.2938617689
9299, tolerance: 0.08573864849881115
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 17.1456043772
13814, tolerance: 0.08156778779801227
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 10.5966910863
72644, tolerance: 0.08301386036646154
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 21.2487475804
6724, tolerance: 0.10374553746774125
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.58927631640
67958, tolerance: 0.08031832214608478
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.33611384848
6363, tolerance: 0.087668087863972
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.72855298349
```

```
26194, tolerance: 0.08761967961525664
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.59140017137
7643, tolerance: 0.08012040170117148
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.09457461204
0148, tolerance: 0.07922056992737007
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 2.12145323550
3438, tolerance: 0.10374553746774125
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.50144169310
59742, tolerance: 0.08387924134623305
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.45456187827
20169, tolerance: 0.08478729028699415
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.86059401397
59554, tolerance: 0.0829635134454385
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.31158642986
90951, tolerance: 0.07829629426425311
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.15667175741
16296, tolerance: 0.08500518242117788
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.91922396447
2991, tolerance: 0.10374553746774125
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.21984425365
16296, tolerance: 0.07805887084269865
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.63331634304
16988, tolerance: 0.07836715183096404
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.72355389023
```

```
48395, tolerance: 0.08657749475035348
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.06248143120
3679, tolerance: 0.08943469232554455
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.64926703283
87078, tolerance: 0.10374553746774125
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.54617895968
47098, tolerance: 0.08285161879543186
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.64818024513
06606, tolerance: 0.08645037608406281
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.16631171129
20673, tolerance: 0.08853233855876791
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.86663584662
68065, tolerance: 0.07659656457777933
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.66203991493
14551, tolerance: 0.0804650902509035
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.24267570805
64101, tolerance: 0.10374553746774125
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.84748004934
02341, tolerance: 0.08409565251635383
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.70249586936
55918, tolerance: 0.08326943437755133
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.69013453035
40012, tolerance: 0.08759098461862767
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.92795236143
```

25171, tolerance: 0.10374553746774125 positive)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.59994164465 49617, tolerance: 0.08124478175214664

positive)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv erge. You might want to increase the number of iterations. Duality gap: 0.52895585352 25183, tolerance: 0.08421883793675204

positive)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.18427547147 619805, tolerance: 0.08514750485032266

positive)

/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Duality gap: 0.14913533380 695299, tolerance: 0.08255240780472282

positive)

Chosen alpha: 0.01280 Validation score: 0.86336

Test score at chosen alpha: 0.88575

REPEAT WITH ELASTIC NET USING FULL ENCODED VARIABLE SET with LOG TRANSFORMED SALES PRICE

```
In [100...
          # Split the dataset into training and testing dataframes
          elasticscaler = StandardScaler()
          x_raw = housing_training_data_large_common.select_dtypes(exclude=['object'])
          x_scale = xscaler.fit_transform(x_raw)
          y scale = elasticscaler.fit transform(np.array(np.log(housing training data['SalePrice
          new_elastic_X_train, new_elastic_X_validation, new_elastic_y_train, new_elastic_y_vali
                                                                                        y scale, t
                                                                                        random_sta
          cv = KFold(n splits=5, shuffle=True)
          lasso alphas = np.linspace(0, 0.02, 101)
          chosen alpha, max validation score, test score at chosen alpha = \
              regmodel param test(
                  lasso alphas, new elastic X train, new elastic y train,
                  cv, scoring = 'r2', model_name = 'ElasticNet',
                  X_test = new_elastic_X_validation, y_test = new_elastic_y_validation,
                  draw plot = True, filename = 'EN wide search')
          print("Chosen alpha: %.5f" % \
              chosen alpha)
          print("Validation score: %.5f" % \
              max_validation_score)
          print("Test score at chosen alpha: %.5f" % \
              test_score_at_chosen_alpha)
```

```
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model selection/ validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 16.5441130702
6035, tolerance: 0.07539341997255294
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 16.8699040526
05243, tolerance: 0.07725168572866303
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 16.7032115959
4418, tolerance: 0.0788264889258652
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X train, y train, **fit params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 15.0946617829
26801, tolerance: 0.07603936850041647
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/model_selection/_validation.py:515: UserWarning: With alpha=0, this algorithm does
not converge well. You are advised to use the LinearRegression estimator
  estimator.fit(X_train, y_train, **fit_params)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
 positive)
```

```
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 17.1919312264
57065, tolerance: 0.07694340945238295
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/ipykern
el launcher.py:44: UserWarning: With alpha=0, this algorithm does not converge well.
You are advised to use the LinearRegression estimator
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: UserWarning: Coordinate descent with no re
gularization may lead to unexpected results and is discouraged.
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 22.4779662732
66922, tolerance: 0.09613331437474897
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.90399952595
03897, tolerance: 0.07623876165913449
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 4.06457986203
00795, tolerance: 0.07610252455058931
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 6.43442660304
82355, tolerance: 0.0759868798099048
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 8.31587049223
5138, tolerance: 0.08114298606601994
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 1.47567009231
42212, tolerance: 0.0749816143695759
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 3.11914423182
22755, tolerance: 0.09613331437474897
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.17001955667
550916, tolerance: 0.07601276646072924
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.95842731615
08392, tolerance: 0.0777792267773953
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.17253331035
```

```
206187, tolerance: 0.07360550635910844
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.46909483036
90341, tolerance: 0.07955760019098691
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.56946233962
95739, tolerance: 0.07742283223216413
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.22512411125
43383, tolerance: 0.09613331437474897
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.21804421017
856157, tolerance: 0.07877312557424299
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.43176096402
54183, tolerance: 0.07947117074664821
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.57062523729
28873, tolerance: 0.0758603512428788
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.22306834893
089444, tolerance: 0.07425728258752042
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.87029802379
476, tolerance: 0.07612537381325887
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.22437728195
586004, tolerance: 0.09613331437474897
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.16971187968
005808, tolerance: 0.07634739405347273
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.14486588347
944718, tolerance: 0.07332520826459797
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.54815887425
```

```
55985, tolerance: 0.08151762677599025
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.16442160677
052797, tolerance: 0.07554830737803726
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.34365312008
965887, tolerance: 0.07776746432901534
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.21164941245
021396, tolerance: 0.09613331437474897
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.14959850747
870718, tolerance: 0.07278342135686353
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.11671506983
923763, tolerance: 0.07719096820309204
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.15285353928
59922, tolerance: 0.08063668034245289
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.34636192639
790764, tolerance: 0.07820399985909574
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.18532742750
152664, tolerance: 0.09613331437474897
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.11294847871
543112, tolerance: 0.07960459611255288
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.33713275353
62276, tolerance: 0.07744520486830796
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear_model/_coordinate_descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.10990394275
642146, tolerance: 0.0796201418006938
  positive)
/Library/Frameworks/Python.framework/Versions/3.7/lib/python3.7/site-packages/sklear
n/linear model/ coordinate descent.py:476: ConvergenceWarning: Objective did not conv
erge. You might want to increase the number of iterations. Duality gap: 0.14075228147
```

40787, tolerance: 0.07584299507683794 positive)

Chosen alpha: 0.01620 Validation score: 0.92317

0.0000

Test score at chosen alpha: 0.90052

0.0025

0.0050

0.0075

0.0100

alpha_parameter

0.0175

0.0200

```
# Let's elastic build model with this alpha
In [101...
          regr = ElasticNet(alpha=chosen_alpha)
          elastic_model = regr.fit(x_scale, y_scale)
           ElasticNet(random state=1)
          print(regr.coef_)
          print(regr.intercept_)
          y_pred = elastic_model.predict(x_scale)
          plt.subplot(1, 2, 1)
          plt.scatter(y_scale, y_pred)
          plt.xlabel('Sale Price (Standard Scaled)')
          plt.ylabel('Predicted Sale Price')
          plt.title('ElasticNet: Sale Price vs Predicted Sale Price')
          # Residuals
          plt.subplot(1, 2, 2)
```

```
sns.residplot(x=y_scale, y=y_pred)
          plt.xlabel('Sale Price')
          plt.ylabel('Residual')
          plt.title('Residual Plot')
          MSE = np.square(np.subtract(y_scale,y_pred)).mean()
          print("MSE:",MSE)
          r2 = r2_score(y_scale, y_pred)
          print("R_sq:",r2)
          ElasticNet(alpha=1.0, copy_X=True, fit_intercept=True, l1_ratio=0.5,
Out[101]:
                     max_iter=1000, normalize=False, positive=False, precompute=False,
```

random_state=1, selection='cyclic', tol=0.0001, warm_start=False)

```
[-1.25799231e-03 -0.00000000e+00
                                  2.52828503e-02
                                                   3.99026969e-02
 1.76904467e-01
                  9.13294632e-02
                                  1.02098694e-01
                                                   0.00000000e+00
 2.96895048e-03
                  1.61808229e-02
                                  2.42243790e-02
                                                   6.95349451e-02
 0.00000000e+00 -0.00000000e+00
                                  0.00000000e+00
                                                   2.51643279e-03
 0.00000000e+00 -1.86622997e-05
                                  1.84006566e-01
                                                   2.46860056e-02
 0.00000000e+00
                  1.01755101e-02
                                  1.72673876e-02 -0.00000000e+00
 -1.65936356e-02
                  3.32505813e-02
                                  4.93259348e-03
                                                   2.61716317e-02
 1.52140017e-02
                  0.00000000e+00
                                  5.21161155e-02
                                                   4.10254337e-02
  2.70558643e-02
                  0.00000000e+00
                                  2.30652808e-02
                                                   1.34023067e-02
 1.67813390e-03
                  1.34991981e-03
                                  2.39006708e-02
                                                   0.00000000e+00
 -0.00000000e+00 -0.00000000e+00
                                                   9.41176671e-04
                                 -0.00000000e+00
  3.21902052e-02
                  6.91241163e-03
                                  2.64275356e-02
                                                   2.00981720e-01
 -4.01255451e-02 -7.54500592e-02
                                  3.79073812e-03
                                                   0.00000000e+00
 0.00000000e+00 -5.01522928e-02
                                  0.00000000e+00
                                                   3.22639563e-03
 -0.00000000e+00 -0.00000000e+00
                                  -0.00000000e+00
                                                   0.00000000e+00
 -0.00000000e+00 -0.00000000e+00
                                  0.00000000e+00
                                                   0.00000000e+00
 1.84472801e-02 -0.00000000e+00
                                 -0.00000000e+00
                                                  -0.00000000e+00
                  0.00000000e+00
 -0.00000000e+00
                                 -3.97772115e-03
                                                  -0.00000000e+00
 -0.00000000e+00 -4.91541755e-04
                                  1.13170266e-02
                                                   8.77678553e-03
 -0.00000000e+00
                  4.85363737e-02
                                 -1.17670065e-02
                                                   0.00000000e+00
 -0.00000000e+00 -2.15960818e-02
                                 -1.17832513e-03 -0.00000000e+00
 0.00000000e+00 -0.00000000e+00
                                  3.80998842e-03
                                                   2.74290398e-02
 -2.23187875e-03 -0.00000000e+00
                                 -0.00000000e+00 -0.00000000e+00
                  2.84149704e-02
                                  0.00000000e+00
                                                   3.71488597e-03
 1.38466880e-02
 -1.27563708e-02 -0.00000000e+00
                                                  -0.00000000e+00
                                  2.59726671e-02
 0.00000000e+00 -9.13520856e-03
                                  0.0000000e+00 -0.0000000e+00
 0.00000000e+00 -0.00000000e+00
                                  0.00000000e+00
                                                   0.00000000e+00
 0.00000000e+00 -0.00000000e+00
                                  2.51263310e-02
                                                   0.00000000e+00
 -6.15091942e-04 -1.55519981e-02
                                 -0.00000000e+00
                                                   0.00000000e+00
 0.00000000e+00 -0.00000000e+00
                                  0.00000000e+00
                                                   0.00000000e+00
 -0.00000000e+00
                  6.55827650e-04
                                  0.00000000e+00
                                                  -1.29595794e-04
 -0.00000000e+00
                  0.00000000e+00
                                  0.00000000e+00
                                                   0.00000000e+00
 -0.00000000e+00 -0.00000000e+00
                                 -0.00000000e+00
                                                   7.28270473e-04
                  0.00000000e+00
-0.00000000e+00
                                 -1.33082845e-02
                                                   2.41896524e-02
-0.0000000e+00
                  0.00000000e+00
                                 -6.11469164e-03
                                                   5.43587585e-03
 -0.00000000e+00
                  0.00000000e+00
                                  0.00000000e+00 -1.15170483e-02
 -0.00000000e+00
                 -0.00000000e+00
                                  0.00000000e+00 -0.00000000e+00
 -0.00000000e+00
                 -0.00000000e+00
                                  0.00000000e+00 -0.00000000e+00
                  0.00000000e+00
                                 -0.00000000e+00 -0.00000000e+00
-0.00000000e+00
                  0.00000000e+00
                                  0.00000000e+00 -0.00000000e+00
-0.00000000e+00
 -2.85742997e-03
                  0.00000000e+00
                                  -0.00000000e+00
                                                   1.11322540e-02
 4.43071426e-04 -0.00000000e+00
                                 -0.00000000e+00 -0.00000000e+00
 6.20371380e-03 -0.00000000e+00
                                 -0.00000000e+00
                                                  2.62451044e-02
 0.00000000e+00
                  6.22903279e-03
                                 -4.77455788e-03 -7.79837630e-03
                                  0.00000000e+00
                                                  0.00000000e+00
 0.00000000e+00
                  0.00000000e+00
 0.00000000e+00
                  3.04113582e-02
                                  0.00000000e+00 -1.07545621e-02
                  0.00000000e+00
                                  0.00000000e+00 8.97144497e-03
 0.00000000e+00
 -0.00000000e+00
                  0.00000000e+00
                                 -0.00000000e+00 -2.46339358e-04
 3.10139060e-03 -3.50975469e-03
                                  4.64976308e-03 -0.00000000e+00
 0.00000000e+00
                  0.00000000e+00
                                 -0.00000000e+00 -0.00000000e+00
 7.71655985e-03 -1.56874171e-02
                                  0.00000000e+00
                                                   0.00000000e+00
 0.00000000e+00 -0.00000000e+00
                                 -0.00000000e+00 -7.55102047e-03
                  0.00000000e+00
 -2.44924883e-02
                                  0.00000000e+00 -9.78471378e-03
 -1.30260125e-02
                  2.53278389e-02 -5.09277918e-03
                                                   3.68371423e-03
-0.00000000e+00
                  0.00000000e+00 -0.00000000e+00 -0.00000000e+00
 -0.00000000e+00
                  3.26300960e-03
                                 -0.00000000e+00
                                                   0.00000000e+00
 -6.50114630e-04 -0.00000000e+00
                                  0.00000000e+00
                                                   8.86416409e-04
 6.24797758e-03 -0.00000000e+00
                                  0.00000000e+00
                                                   2.68387209e-02
 0.00000000e+00 -8.86138386e-03 -4.00799608e-02
                                                   0.00000000e+00
```

```
-0.00000000e+00 -1.30035001e-02 0.00000000e+00 0.00000000e+00]
           [-2.18349378e-15]
           <AxesSubplot:>
Out[101]:
           <matplotlib.collections.PathCollection at 0x7fee8a0ef850>
Out[101]:
           Text(0.5, 0, 'Sale Price (Standard Scaled)')
Out[101]:
           Text(0, 0.5, 'Predicted Sale Price')
Out[101]:
           Text(0.5, 1.0, 'ElasticNet: Sale Price vs Predicted Sale Price')
Out[101]:
           <AxesSubplot:>
Out[101]:
           <AxesSubplot:>
Out[101]:
          Text(0.5, 0, 'Sale Price')
Out[101]:
          Text(0, 0.5, 'Residual')
Out[101]:
          Text(0.5, 1.0, 'Residual Plot')
Out[101]:
          MSE: 1.8975655358794232
          R sq: 0.93603420818627
            ElasticNet: Sale Price vs Predicted Sale Price
                                                                  Residual Plot
```


Let's check the coefficients to determine the important predictors in the model

TotalSF, GrLivArea, and Overall Quality appear to have strong, positive effects on Sales Price.

Try using LassoCV

0.009417743973449105

Running Models on Test Data for Kaggle Predictions

Scale x-values and transform using PCA, then use those values in the ridge model we created above to predict values of Sales Price

```
In [104... # select numeric variables in the test data for x
    x_test_raw = housing_testing_data.select_dtypes(exclude=['object'])
# scale x-values
    x_test_scale = xscaler.fit_transform(x_test_raw)
# transform x-values using PCA
    x_test_pca_scale = pca.fit_transform(x_test_scale)
# use x-values to predict y values
    scaled_y_predtest = ridgemodel.predict(x_test_pca_scale)

# Apply inverse scaling transformation to predicted y-values
    y_predtest = yscaler.inverse_transform(scaled_y_predtest)
# Exponential transform the predictions (since the model output log transformed y-valuey)
    y_pred_final = np.exp(y_predtest)
```

Create dataframe with Id and Sales Price predictions

```
In [105...
           # Create a dataframe with the y predictions
           predictiondf=pd.DataFrame(y_pred_final, columns=['SalePrice'])
           # Add the Id column to the front of the dataframe
           predictiondf.insert(0, 'Id', housing_testing_data['Id'])
           predictiondf.head()
                       SalePrice
Out[105]:
                ld
           0 1461 256784.333872
           1 1462 203132.211028
           2 1463 161976.051358
           3 1464 145088.338480
           4 1465 148360.496704
In [106...
           #output predictions to csv
           predictiondf.to csv('test salespriceridge v6 ridge.csv', index=False)
```

Kaggle Results - Ridge Regression

Upon submission of our home price predictions from the ridge regression model into Kaggle using Claire Markey's username, the team achieved a RMSE (as calculated using the log of the predicted and actual home prices) of 0.16954 for the testing dataset as displayed in the screenshot from the Kaggle leaderboard below.

Predicting Home Sale Prices In the Testing Dataset using the Polynomial Model

Let's predict Sales Price using our polynomial model

```
poly model = PolynomialFeatures(degree=degree)
In [108...
           # transform out polynomial features
           poly_x_test_values = poly_model.fit_transform(x_test_pca_scale)
           y_poly_pred = poly_regression_model.predict(poly_x_test_values)
           # Apply inverse scaling transformation to predicted y-values
           y_poly_predtest = ypolyscaler.inverse_transform(y_poly_pred)
           # Create a dataframe with the y predictions
In [109...
           predictionpolydf=pd.DataFrame(y_poly_predtest, columns=['SalePrice'])
           # Add the Id column to the front of the dataframe
           predictionpolydf.insert(0, 'Id', housing_testing_data['Id'])
           predictionpolydf.head()
               ld
                       SalePrice
Out[109]:
           0 1461 261902.092805
           1 1462 205879.875005
           2 1463 155206.325441
           3 1464 135215.922537
           4 1465 141244.457630
          #output predictions to csv
In [110...
           predictionpolydf.to_csv('test_salespricepoly_v5.csv', index=False)
```

Kaggle Results - Polynomial Regression

Upon submission of our home price predictions from the polynomial model into Kaggle using Claire Markey's username, the team achieved a RMSE (as calculated using the log of the predicted and actual home prices) of 0.163 for the testing dataset as displayed in the screenshot from the Kaggle leaderboard below.

Kaggle Results - Lasso Regression

```
# Set up Test dataframe for Lasso Regression Analysis
In [112...
          lasso X test = housing testing data.copy(deep=True)
           lasso_X_test = lasso_X_test[ ['LotFrontage', 'LotArea', 'OverallQual', 'OverallCond',
                           'BsmtFinSF1', 'BsmtFinSF2', 'BsmtUnfSF', 'TotalBsmtSF', '1stFlrSF',
                           'GrLivArea', 'BsmtFullBath', 'BsmtHalfBath', 'FullBath', 'HalfBath',
                           'TotRmsAbvGrd', 'Fireplaces', 'GarageCars', 'GarageArea', 'WoodDeckSF'
                           'EnclosedPorch', '3SsnPorch', 'ScreenPorch', 'PoolArea', 'MiscVal']]
          from sklearn.preprocessing import StandardScaler
           lasso X test[numerical predictors] = lasso scaler transform(lasso X test[numerical pre
          # Exponential transform the predictions (since the model output log transformed y-valu
In [113...
          lasso_y_predictions_test = lasso_model.predict(lasso_X_test)
          y_predictions_final_lasso = np.exp(lasso_y_predictions_test)
          # Create a dataframe with the y predictions
           predictiondf lasso=pd.DataFrame(y predictions final lasso, columns=['SalePrice'])
           # Add the Id column to the front of the dataframe
           predictiondf_lasso.insert(0, 'Id', housing_testing_data['Id'])
           #output predictions to csv
           predictiondf_lasso.to_csv('test_sales_price_lasso_v1.csv', index=False)
          # Display the kaggle results associated with the Lasso Regression Model
In [114...
           plt.figure(figsize = (15, 15))
           kaggle results = plt.imread('Kaggle RMSE lasso.jpg')
           plt.imshow(kaggle_results)
           plt.axis("off")
           plt.show()
          <Figure size 1080x1080 with 0 Axes>
Out[114]:
          <matplotlib.image.AxesImage at 0x7fee6f4b4390>
Out[114]:
          (-0.5, 1478.5, 335.5, -0.5)
Out[114]:
```

Submissions

Kaggle Results - Elastic Regression

```
x raw = housing testing data large common.select dtypes(exclude=['object'])
In [115...
           x_scale = xscaler.fit_transform(x_raw)
           # predict Sales Price
           y_scale_elastic_pred = elastic_model.predict(x_scale)
           # transform the predictions (since the model output scaled y-values)
           y log elastic pred = elasticscaler.inverse transform(y scale elastic pred)
           y elastic pred = np.exp(y log elastic pred)
           y_elastic_pred
          array([124133.94005013, 160183.6995892 , 179493.67266664, ...,
Out[115]:
                  172452.63034495, 120158.64228585, 226165.83170092])
           # Create a dataframe with the y predictions
In [116...
           predictiondf elastic=pd.DataFrame(y elastic pred, columns=['SalePrice'])
           # Add the Id column to the front of the dataframe
           predictiondf_elastic.insert(0, 'Id', housing_testing_data['Id'])
           #output predictions to csv
           predictiondf_elastic.to_csv('test_sales_price_elastic_v7.csv', index=False)
In [117...
           # Display the kaggle results associated with the Lasso Regression Model
           plt.figure(figsize = (15, 15))
           kaggle_results = plt.imread('Kaggle_RMSE_elastic_full.jpg')
           plt.imshow(kaggle_results)
           plt.axis("off")
           plt.show()
           <Figure size 1080x1080 with 0 Axes>
Out[117]:
           <matplotlib.image.AxesImage at 0x7fee8b1a4390>
Out[117]:
           (-0.5, 1187.5, 121.5, -0.5)
Out[117]:
                 test_sales_price_elastic_v7.csv
                                                                                        0.1356
                 Complete · now
```