How to read real data, plot and fit

Instructions: It will first ask you to select the folder where the files to plot are, the files should have the following format

- A header with the name of all the parameters in our measurements.
- A complete dataset with all the supported columns should be the following:# temperature power bandwidth freq Bx By Bz Re_S21 Im_S21 amplitude phase
- After the header, the data should be in the same order as the header. The header order is not important
- All the data should be separated by tabs or spaces, and every sweep should be stacked one after the other.
- The only columns that are necessary are the **frequency**, the **amplitude**, and the **phase**. The other columns are optional.
- For example, for a dataset without Bx magnetic field the format could be:

# temperature	power	bandwid	lth By	Bz freq	Re_S21 Im_S21	amplitude phase		
0.050025	-20	50	0.033653	0.09999306	3675000000	-0.005787429322 0.008469726511	-39.77857931	2.170231336
0.050025	-20	50	0.033653	0.09999306	3675055556	-0.00577228832 0.008482358768	-39.77696521	2.168318288
0.050025	-20	50	0.033653	0.09999306	3675111111	-0.005772230999 0.008456827813	-39.79487125	2.169716496
0.050025	-20	50	0.033653	0.09999306	3675166667	-0.005770292262 0.008472179174	-39.78504351	2.168716002
0.050025	-20	50	0.033653	0.09999306	3675222222	-0.005766028865 0.008480375054	-39.78133523	2.167922492
0.050025	-20	50	0.033653	0.09999306	3675277778	-0.005778925255 0.008481270979	-39.77456432	2.168912558
0.050025	-20	50	0.033653	0.09999306	3675333333	-0.005793857048 0.008490710879	-39.76085486	2.169595894
0.050025	-20	50	0.033653	0.09999306	3675388889	-0.005796656751 0.008495190772	-39.75639566	2.169575232
0.050025	-20	50	0.033653	0.09999306	3675444444	-0.00574890799 0.008490336659	-39.78249543	2.165995428
0.050025	-20	50	0.033653	0.09999306	3675500000	-0.005779516886 0.008469899413	-39.78223719	2.169584704
0.050025	-20	50	0.033653	0.09999306	367555556	-0.005771496017 0.008488298733	-39.77318543	2.167928908
0.050025	-20	50	0.033653	0.09999306	3675611111	-0.005763793605 0.008474528268	-39.78649644	2.168062899
0.050025	-20	50	0.033653	0.09999306	3675666667	-0.005796246276 0.00849447327	-39.75709164	2.169581586
0.050025	-20	50	0.033653	0.09999306	3675722222	-0.005767002803 0.008491204836	-39.77328851	2.167407721
0.050025	-20	50	0.033653	0.09999306	3675777778	-0.005765220151 0.008496072858	-39.77072797	2.166997713
0.050025	-20	50	0.033653	0.09999306	3675833333	-0.005782453396 0.008506834295	-39.7550203	2.167796609
0.050025	-20	50	0.033653	0.09999306	3675888889	-0.005743657015 0.00850503689	-39.77467508	2.164768665
0.050025	-20	50	0.033653	0.09999306	3675944444	-0.005768895803 0.008489221331	-39.77377672	2.167668869
0.050025	-20	50	0.033653	0.09999306	3676000000	-0.005754666273 0.008506068493	-39.76873586	2.165600839

Note: Be sure that your bandwidth column is called **bandwidth** and not **bw** or any other name. Same for **freq**.

Overview:

- Sweep selector: Show sweeps in the interval [ini,end) spaciated with step.
- Shift: Shift the data for a waterfall plot.
- Colormap selector: Selects the colormap for the plot.
- Colorbar switch: Activates the colorbar.
- Sweep parameter selector (cbar): Select the parameter that has been swept.

 The colorbar will be deactivated if the parameter is not swept or if the parameter selected is not in the datafile.
- **Fit Button:** Fits the data shown in the plot. (See Fit section in this document)
- Guess delay switch: Activates the "Guess delay" option during the fitting. It is advisable to leave it OFF.(See Fit section on this document)
- Plot parameters: Optional main plot customizable options.
- Y axis selector: Select the y axis. Either S21, S21 in DB and Phase.
- Baseline selector: Select data file for the baseline. The baseline will be substracted from the data in the plot. Sweep: Select the sweep of the data file as a baseline. Shift: DB shift of the substracted data. Baseline data set should have the same amount of points as the plotted dataset.
- Smooth: Window size for data smoothing.
- Color plot: Make a color plot of the data. X axis: Frequency. Y axis: Colorbar axis in main plot. Z axis: Y axis in main plot. The colorbar in this plot is interactive.
- Autoscale: Autoscale the plot.
- **Prefix selector:** Select prefixes for the x axis and the colorbar.
- **Fit mode:** All in screen: Fits the range in the screen. Automatic: Selects the range automatically. Obtains the full width at half minimun (FWHM) of the resonance. The fitting is performed in the range (min-3*FWHM,min+3*FWHM). Recommended in case baseline is substracted.

Fit: All fitted values are plotted against the sweeping parameter. In the following example, fitted was performed with subtracted baseline and a smooth of 7.

• Save button: Saves the fitted data in a .txt file.

In case you want to see how the fitting is performed, you can click on the point in the plot to open the following window:

- Fit button: Fits the data again, in the range shown in the screen.
- Save button: Saves the fitted data in a .txt file.
- Save chart button: Saves the chart in a .txt file.

Fitting method:

☆←→ + Q = □

The fitting function was taken from the following paper <u>Efficient and robust analysis of complex scattering data under noise in microwave resonators</u>

(https://arxiv.org/abs/1410.3365), takes into account the environment contribution in the S_{21} parameter and the coupling between the resonator and the transmission line. The fitting function is the following:

$$S_{21}^{\text{notch}}(f) = ae^{i\alpha}e^{-2\pi i f\tau} \left[1 - \frac{\frac{Q_l}{|Q_e|}e^{i\phi}}{1 + 2iQ_l(f/f_0 - 1)} \right]$$

where a is the amplitude, α is the phase, τ is the delay, f_0 is the resonant frequency, Q_l is the total quality factor ($Q_l^{-1} = Q_i^{-1} + \text{Re}[Q_e^{-1}]$), Q_e is the external quality factor. If we focus the term in bracket, and try to plot real and imaginary part we will

have a perfect circle of radius $Q_l/|Q_c|$ with the following properties:

- The circle always intersects the real axis at 1 for $f \to \infty$ independent of the other parameters
- Resonance $f=f_0$ is always located at the opposite side.
- A tilt by ϕ indicates an impedance mismatch.

If we plot $Re[S_{21}]$ vs $Im[S_{21}]$ parameter of some experimental data we will have the following:

where the cable delay τ causes a circular distortion of the ideal resonance circle.

The radius a represents the system's attenuation/gain and the phase α is the phase of the system.

Basing on this, the fitting function is implemented in the code provided in the paper, and roughly speaking, it does the following:

- 1. Estimate the cable delay by fitting a linear function to the phase signal, which tilts the phase by $2\pi\tau$.
- 2. Perform a non-linear least square fit on the deformed circle-like curve caused by