1

Assignment 4

Sairam V C Rebbapragada

Abstract—This document uses the concepts of Intercept theorem, Isosceles triangle in proving a statement.

Download latex-tikz codes from

https://github.com/Sairam13001/AI5006/blob/master/Assignment_4/assignment_4.tex

1 Problem

D is a point on side *BC* of a $\triangle ABC$ such that $\frac{BD}{CD} = \frac{AB}{AC}$. Prove that *AD* is the bisector of $\angle BAC$

2 EXPLANATION

SSS PROPERTY: Two triangles are similar if their corresponding sides are in proportion. For example two triangles $\triangle ABC$ and $\triangle XYZ$ can be said to be similar if:

$$\frac{\|\mathbf{A} - \mathbf{B}\|}{\|\mathbf{X} - \mathbf{Y}\|} = \frac{\|\mathbf{B} - \mathbf{C}\|}{\|\mathbf{Y} - \mathbf{Z}\|} = \frac{\|\mathbf{A} - \mathbf{C}\|}{\|\mathbf{X} - \mathbf{Z}\|}$$
(2.0.1)

If two triangles are similar, then corresponding angles are equal.

3 Solution

Fig. 0: Construction

Given that:

$$\frac{\|\mathbf{B} - \mathbf{D}\|}{\|\mathbf{C} - \mathbf{D}\|} = \frac{\|\mathbf{A} - \mathbf{B}\|}{\|\mathbf{A} - \mathbf{C}\|}$$
(3.0.1)

In triangles $\triangle ABD$ and $\triangle ACD$,

$$\frac{\|\mathbf{A} - \mathbf{B}\|}{\|\mathbf{A} - \mathbf{C}\|} = \frac{\|\mathbf{B} - \mathbf{D}\|}{\|\mathbf{C} - \mathbf{D}\|} = \frac{\|\mathbf{A} - \mathbf{D}\|}{\|\mathbf{A} - \mathbf{D}\|}$$
(3.0.2)

From SSS property we can see that these two triangles are similar. So, the corresponding angles are equal. Thus, we can say that:

$$\angle DAB = \angle DAC \tag{3.0.3}$$

Hence it is proved that AD is the bisector of $\angle BAC$