Bachelorabeit Untersuchung von Datenreduktionsregeln beim Kontenüberdeckungsproblem

Benedikt Lüken-Winkels

1. Februar 2018

Inhaltsverzeichnis

1	Ein	eitung	2
2	Kno	${ m ten}\ddot{{ m u}}{ m berdeckungsproblem}$	4
3	Gra	phreduktion	2
	3.1	Parametrisierte Algorithmen	4
	3.2	Einfache Reduktionsregeln	4
		3.2.1 Grad 0, Grad 1	4
	3.3	Buss	
	3.4	Nemhauser/Trotter	
		3.4.1 Theorie	
		3.4.2 Implementierung/Umsetzung	
		3.4.3 Ergebnisse	
	3.5	Kronenregel	
		3.5.1 Theorie	
		3.5.2 Implementierung/Umsetzung	
		3.5.3 Ergebnisse	,
4	Ana	lyse	
	4.1	Vergleich	

Zusammenfassung

Was ist Vertex Cover und warum sollte man es reduzieren; Es gibt verschiedene Algorithmen, die in Polinomialzeit einen Problemkern erstellen.

1 Einleitung

• Einfluss von Reduktionsregeln auf die Problemgröße

2 Knotenüberdeckungsproblem

- Woher kommt die Komplexität?
- Was macht eine schwere Instanz aus?
- Wie sieht eine schwere Instanz aus?
- Wo findet das Knotenüberdeckungsproblem Anwendung?

3 Graphreduktion

- Effekt von Graphreduktionsalgorithmen auf die Problemkomplexität
- Bewertungskriterien für einen GRalgorithmus
 - Laufzeit (Parametrisierung)
 - Erwartete Reduktion/Wie oft wird die Regel angewandt
 - Ressourcenverbrauch
 - Wie gut ist das Ergebnis im Vergleich zu anderen Algorithmen?
- Wie funktionieren die GRA in Kombination?
- Wie sehen Graphen aus, auf die keine Regel anwendbar ist? [1]
- Wie sehen Graphen aus, auf die genau eine Regel anwendbar ist?
- Welche Regeln werden untersucht?

3.1 Parametrisierte Algorithmen

Kleiner Exkurs

- Wie funktioniert Parametrisierung?
- Vorteile von FPA

3.2 Einfache Reduktionsregeln

3.2.1 Grad 0, Grad 1

Selbsterlklärend

- 3.3 Buss
- 3.4 Nemhauser/Trotter
- 3.4.1 Theorie
- ${\bf 3.4.2}\quad {\bf Implementierung/Umsetzung}$
- 3.4.3 Ergebnisse
- 3.5 Kronenregel
- 3.5.1 Theorie
- ${\bf 3.5.2} \quad {\bf Implementierung/Umsetzung}$
- 3.5.3 Ergebnisse
- 4 Analyse
- 4.1 Vergleich

References

[1] Hemanshu Kaul E. C. Sewell S. H. Jacobson. "Reductions for the Stable Set Problem". In: Algorithmic Operations Research Vol.6 40–55 (2011).