(ME 2013)

Assignment 4

EE24Btech11024 - G. Abhimanyu Koushik

1) The function f(t) satisfies the differential equation $\frac{d^2f}{dt^2} + f = 0$ and the auxillary conditions, f(0) = 0, $\frac{df}{dt}(0) = 4$. The Laplace transform of f(t) is given by

a) $\frac{2}{s+1}$	b) $\frac{4}{s+1}$	c) $\frac{4}{s^2+1}$	d) $\frac{2}{s^4+1}$				
_	2) Specific enthalpy and velocity of steam at inlet and exit of a steam turbine, running under steady state, are as given below:						
		Specific enthalpy (kJ/kg)	Velocity (<i>m</i> / <i>s</i>)				
	Inlet steam condition	3250	180				
	Exit steam condition	2360	5				
	Late steam condition	2500	3				
The rate of heat loss from the turbine per kg of steam flow rate is 5 kW . Neglecting changes in potential energy of steam, the power developed in kW by the steam turbine per kg of the steam flow rate is (ME 2013)							
a) 901	.2 b) 911.2	c) 17072.5	d) 17082.	5			
3) A steel ball of diameter 60 mm is initially in thermal equilibrium at $1030^{\circ}C$ in a furnace. It is suddenly removed from the furnace and cooled in ambient air at $30^{\circ}C$, with convective heat transfer coefficient $h=20~W/m^2K$. The thermo-physical properties of steel are: density $\rho=7800~kg/m^3$, conductivity $k=40~W/mK$ and specific heat $c=600~J/kgK$. The time required in seconds to cool the steel ball in air from $1030^{\circ}C$ to $430^{\circ}C$ is (ME 2013)							
a) 519	b) 931	c) 1195	d) 2144				
4) A flywheel is connected to a punching machine has a supply energy of 400 Nm while running at mean angular speed of 20 rad/s . If the total fluctuation of speed is not to exceed $\pm 2\%$, the mass moment inertia of the flywheel in $kg - m^2$ is (ME 2013)							
a) 25	b) 50	c) 100	d) 125				
5) A com Gears gear Q	apound gear train with gears P Q and R are mounted on the Q is twice that of the gear R . Let the gears P and S is	<i>P</i> , <i>Q</i> , <i>R</i> and <i>S</i> has number of to same shaft as shown in the	eeth 20, 40, 15 and figure below. The	diameter of the			

(ME 2013)

a) 40

b) 80

c) 120

d) 160

6) A pin jointed uniform rigid rod of weight W and length L is supported horizontally by an external force F as shown in the figure below. The force F is suddenly removed. At the instant of force removal, the magnitude of vertical reaction developed at the support is

(ME 2013)

a) zero

b) $\frac{W}{4}$

c) $\frac{W}{2}$

d) W

7) Two cutting tools are being compared for a machine operation. The tool life equations are:

Carbide tool: $VT^{1.6} = 3000$ HSS tool: $VT^{0.6} = 200$

where V is the cutting speed in m/min and T is the tool life in min. The carbide tool will provide higher tool life if the cutting speed in m/min exceeds

(ME 2013)

a) 15.0

b) 39.4

c) 49.3

d) 60.0

8) In a CAD package, mirror image of a 2D point **P**(5, 10) is to be obtained about a line which passes through origin and makes an angle 45° counterclockwise with the X-axis. The coordinates of transformed point will be

(ME 2013)

a) (7.5, 5)

b) (10, 5)

c) (7.5, -5)

d) (10, -5)

9) A linear programming problem is shown below.

Maximize 3x + 7y

Subject to
$$3x + 7y \le 10$$

 $4x + 6y \le 8$
 $x, y \ge 0$

It has

10)	Cylindrical pins of $25^{+0.020}_{+0.010}$ mm diameter are electroplated in a shop. Thickness of the plate is $30^{\pm2.0}$ micron. Neglecting gauge tolerances, the size of the GO gauge in mm to inspect the plated components is						
	15			(ME 2013)			
	a) 25.042	b) 25.052	c) 25.074	d) 25.084			
11)	During the electrochemical machining (ECM) of iron (atomic weight = 56, valency = 2) at current 1000 A with 90% current efficiency, the material removal rate was observed to be $0.26 \ gm/s$. If the Titanium (atomic weight = 48, valency = 3) is machined by ECM process at the current of 2000 A with 90% current efficiency, the expected material removal rate in gm/s will be (ME 2013)						
	a) 0.11	b) 0.23	c) 0.30	d) 0.52			
12)	12) A single degree of freedom system having mass 1 kg and stiffness 10 kN/m initially at rest is subjected to an impulse force of magnitude 5 kN for 10^{-4} seconds. The amplitude in mm if the resulting free vibration is						
				(ME 2013)			
	a) 0.5	b) 1.0	c) 5.0	d) 10.0			

c) exactly two optimal solutions.d) infinitely many optimal solutions.

a) an unbounded objective function.b) exactly one optimal solution.