Московский физико-технический институт

Лабораторная работа по общей физике

1.2 Эффект Комптона

выполнила студентка Б01-907 группы $\hbox{ \begin{tabular}{l} O_{1} ил \mathbb{Z} } \\ O_{1} \hbox{ I_{1} } \\ O_{2} \hbox{ I_{2} } \\ O_{3} \hbox{ I_{3} } \\ O_{3} \hbox{ $$

Содержание

1.	Цель работы	2
2.	Оборудование	2
3.	Теория	2
4.	Экспериментальная установка	2
5.	Ход работы	2
6.	Вывод	4

1. Цель работы

- С помощью сцинтилляционного спектрометра исследовать энергетический спектр γ -квантов, рассеяных на графите
- Определяить энергию рассеяных ү-квантов в зависимости от угла рассеяния
- Определить энергию покоя частиц, на которых происходит комптоновское рассеяние

2. Оборудование

ЭВМ, ФЭУ, сцинилляционный счетчик, графитовая мишень, источник излучения.

3. Теория

 $\mathbf{Эффект}$ **Комптона** - увеличение длины волны рассеянного излучения по сравнению с падающим - интерпретируется как разультат упругого соударения двух частиц: γ -кванта (фотона) и свободного электрона.

Рассмотрим элементарный пример:

Пусть на покоящийся электрон $E=mc^2$ налетает γ -квант с энергией $\hbar\omega_0$ и импульсом $\hbar\omega_0/c$. После соударения электрон будет иметь энергию ти импульс $\gamma mc^2 \gamma mv$ соответственно

Запишем законы сохранения энергии и импульса:

Рис. 1: Форма спектра β -частиц при разрешенных переходах

$$mc^{2} + \hbar\omega_{0} = \gamma mc^{2} + \hbar\omega_{1}$$
$$\frac{\hbar\omega_{0}}{c} = \gamma mv\cos\phi + \frac{\hbar\omega_{1}}{c}\cos\theta$$
$$\gamma mv\sin\phi = \frac{\hbar\omega_{0}}{c}\sin\theta$$

Перейдем от частот к длинам волн и получим изменение длины рассеяного света:

$$\Delta \lambda = \lambda_1 - \lambda_0 \frac{h}{mc} (1 - \cos \theta)$$

$$\Lambda_k = \frac{h}{mc} = 2.42^{-10} ({
m cm})$$
 - комптоновская длина волны электрона

Перейдем от длин волн к энергии:

$$\frac{1}{\epsilon(\theta)} - \frac{1}{\epsilon_0} = 1 - \cos\theta$$

Здесь $\epsilon_0 = E_0/(mc^2)$ - выраженная в единицах mc^2 энергия γ -квантов, падающих на рассеиватель, $\epsilon(\theta)$ - энергия квантов, испытавших комптоновское рассеяние на угол θ .

4. Экспериментальная установка

Блок-схема установки изображена на рис.2. Источником излучения 1 служит ^{137}Cs , испускающий γ -лучи с энергией 662 кэВ. Он помещен в толстостенный контейнер с коллиматором. Сформированный коллиматором узкий пучок квантов подает на графитовую мишень 2.

Кванты, испытавшие комптоновское рассеяние, регистрируются сцинтилляционным счетсчиком. Он состоит из ФЭУ и сцинтиллятора. Сигналы, возникающие на аноде ФЭУ подаются на ЭВМ.

5. Ход работы

- 1) Включим установку. Запустим программу и зайдем в режим измерения спектра.
- 2) Устанавлиявая счетчик под разными углами от 0 до 120° снимем спектры и занесем результат в таблицу

Рис. 2: Блок схема установки

Рис. 3: Блок-схема измерительного комлпекса

Таблица 1: Номер канала от угла наблюдения

Угол θ , $^{\circ}$	0	10	20	30	40	50	60
N канала	774 ± 1	735 ± 1	649 ± 4	603 ± 2	529 ± 3	470 ± 3	433 ± 5
Угол θ , $^{\circ}$	70	80	90	100	110	120	
N канала	381 ± 2	343 ± 2	310 ± 3	275 ± 2	252 ± 3	234 ± 3	

3) Построим зависимость $1/N = f(1 - \cos \theta)$:

Рис. 4: График зависимости $1/N = f(1-\cos\theta)$

Согласно формуле, точки ложатся на одну прямую. Пересечение этой прямой с осью ординат опредлеяет наилучшее значение $N_{\text{наил}}(0)$. А пересечение линии с прямой $\cos\theta=0$ позволяет найти наилучшее значение $N_{\text{наил}}(90)$.

Вернемся от переменной ϵ к энергии E, получим, что при $\theta=90^\circ$ и формула $\frac{1}{\epsilon(\theta)}-\frac{1}{\epsilon_0}=1-\cos\theta$ примет вид:

$$mc^2 \left(\frac{1}{E(90)} - \frac{1}{E(0)} \right) = 1$$

Или

$$mc^2 = E(0)\frac{E(90)}{E(0) - E(90)} = E_{\gamma} \frac{N(90)}{N(0) - N(90)}$$

В этой формуле $E(0)=E_{\gamma}=662$ кэВ - энергия электонов, рассеяных вперед. Номер канала, соответствующий фотопику, пропорционален энергии кванта. Значения N возьмем из графика, чтобы снизить случайную погрешность, полученную во время эксперимента (колебания напряжения сильно влияют на величину коэффициента усиления Φ ЭУ и эл. схем)

Итак, согласно графику:

$$N(90) = a + b = 391 \pm 16, \quad \sigma N(90) = \sqrt{\frac{\sigma_a^2}{a} + \frac{\sigma_b^2}{b}} N(90)$$
$$N(0) = \frac{1}{b} = 791 \pm 12, \quad \sigma N(0) = \frac{\sigma_b}{b} N(0)$$
$$a = (1, 2 \pm 0, 4)10^{-3}, \ b = (1, 3 \pm 0, 2)10^{-3}$$

Согласно выше выведенной формуле:

$$mc^2 = 699 \pm 28 \text{K} \cdot \text{B}$$

где

$$\sigma_{mc^2} = \sqrt{\frac{\sigma_a^2}{a^2 + \frac{\sigma_b^2}{b^2}}} mc^2$$

6. Вывод

В ходе работы с помощью сцинтилляционного счетчика был измерен энергетический спектр γ -квантов, рассеяных на графите. Проверен эффект Комптона, получена эксперементальная зависимость энергии рассеяния от угла наблюдения. Графическим способом получено значение энергии покоя электрона.