

Laboratorios Electrónica de Potencia

Inversor: SPWM

Prof. Jesús Peña-Rodríguez

Introducción

Los inversores son circuitos que convierten una tensión de corriente continua en una tensión de corriente alterna. El control de la amplitud y frecuencia de la tensión de salida se hace mediante una modulación por anchura de pulsos sinusoidal (SPWM). La señal SPWM se encarga de controlar la conmutación de los interruptores (MOSFETs o IGBTs) del inversor. Para generar la señal SPWM se necesita una señal de **referencia** -una sinusoide y una señal **portadora**, - una onda triangular de alta frecuencia que controla la frecuencia de conmutación.[1].

Objetivos

- Entender el funcionamiento de un inversor
- Implementar un circuito modulador por anchura de pulso sinusoidal (SPWM)

Materiales

- Osciloscopio
- Generador de señales
- Fuente de alimentación
- Multímetro
- 2 osciladores 555
- Amplificador operacional
- Inductor 10 mH
- Componentes electrónicos del esquema

1. Montaje

El montaje del circuito modulador por anchura de pulso sinusoidal (SPWM) se basa en el esquema mostrado en la Fig. 1. Las señales de referencia (sinusoidal) y la portadora (triangular) son generadas por 2 osciladores astables 555. En el primer caso, la salida cuadrada del oscilador (U_1) se modifica mediante un filtro LC $(L_1 \ y \ C_3)$ para eliminar sus componentes armónicas de alta frecuencia y dejar la componente sinusoidal de frecuencia principal $(\sim 60\,\mathrm{Hz})$. En el segundo caso, la salida cuadrada del oscilador (U_2) se integra para general una onda triangular con una frecuencia de $\sim 600\,\mathrm{Hz}$. La señal SPWM se crea a partir de la comparación de las señales de referencia (Sine) y portadora (Port) a través del amplificador operacional (U_4) . Si $V_{sine} > V_{port}$ la salida del comparador será de $5\,\mathrm{V}$ y si $V_{sine} < V_{port}$ la salida del comparador será de $0\,\mathrm{V}$.

Teniendo en cuenta que para un inversor de puente completo debemos activar 4 interruptores $(S_1, S_2, S_3 \ y \ S_4)$, entonces se generan dos señales SPWM (HO y LO) -una inversa a la otra. Este proceso lo realiza el transistor BJT NPN (Q_1) configurado como inversor. La señal HO activará la pareja de interruptores S_1/S_2 y la señal LO activará la pareja de interruptores S_3/S_4 . *La activación de los interruptores se hace mediante un circuito de activación de lado alto/bajo o usando el circuito integrado IR2110. Esta parte no se aborda en este laboratorio.

Figura 1: Circuito modulador por anchura de pulso sinusoidal (SPWM). El oscilador 555 U_1 genera la señal sinusoidal de referencia, mientras que el oscilador 555 U_2 genera la señal portadora triangular. Las señales se comparan mediante el amplificador operacional U_4 . Las dos señales de activación SPWM son la salida del comparador (HO) y su inverso (LO).

Figura 2: Señal sinusoidal de referencia (rojo) y señal SPWM (negro).

2. Actividades

- Montar el circuito modulador por anchura de pulso sinusoidal (SPWM)
- ullet Graficar la señal sinusoidal de referencia. Tomar los datos de voltaje máximo (V_m) y frecuencia.
- lacktriangle Graficar la señal triangular. Tomar los datos de voltaje máximo (V_m) y frecuencia.
- Graficar la señal SPWM (HO) y su espectro de frecuencia (FFT). Tabular sus 4 primeros armónicos.
- Graficar la señal SPWM (LO) y su espectro de frecuencia (FFT). Tabular sus 4 primeros armónicos.
- \blacksquare Calcular el índice de modulación de frecuencia ($m_f = f_{portadora}/f_{referencia}$) de la señal SPWM.
- Calcular el índice de modulación de amplitud $(m_a = V_{m,referencia}/V_{m,portadora})$ de la señal SPWM.

Referencias

[1] P.D. Daniel W. Hart. Power Electronics. McGraw-Hill Education, 2010.

^{**} Cualquier inquietud revisar los apuntes de clase o el libro de referencia.