CADANGAN PREMI ASURANSI *JOINT-LIFE* DENGAN SUKU BUNGA TETAP DAN BERUBAH SECARA STOKASTIK

Ni Komang Sukanasih^{1§}, I Nyoman Widana², Ketut Jayanegara³

ABSTRACT

Joint life is an insurance that covered two or more individuals in one policy. This research aims to determine the value and comparison of fixed deposit rate premium and stochastic rate with Vasicek model. It used prospective calculation method. The mortality table in the research used TMI-2011, for participant were couple age 40 and 35 years old with 10 year premium payment. Under this condition the value of constant rate premium and Vasicek rate premium is Rp. 0,1071 and Rp. 0,1043. Besed of this research showed the value of the Vasicek rate premium is smaller than constant rate premium.

Keywords: Joint Life Insurance, Premium Reserve, Vasicek, Prospective.

1. PENDAHULUAN

Asuransi joint life merupakan asuransi jiwa gabungan yang menanggung dua jiwa atau lebih dalam satu polis. Manfaat yang diperoleh dari asuransi joint life yaitu dibayarkan jika salah satu tertanggung meninggal dunia, dan tertanggung memiliki kewajiban untuk membayar premi dengan sejumlah uang yang dibayarkan ke perusahaan asuransi sesuai dengan kontrak asurani yang telah disepakati (Futami, 1994).

Pendapatan yang diperoleh perusahaan asuransi jiwa dari premi beserta bunganya akan jauh lebih besar dari jumlah uang pertanggungan yang harus dibayarkan oleh perusahaan asuransi kepada pihak tertanggung, kemudian kelebihan dana inilah disimpan sebagai cadangan premi.

Cadangan premi adalah sejumlah dana yang dihimpun oleh perusahaan asuransi yang diperoleh dari selisih nilai tunai pembayaran dan nilai santunan pada waktu pertanggungan sebagai persiapan pembayaran klaim (Sembiring, 1986). Cadangan premi dapat dihitung dengan dua cara yaitu, dengan cara prospektif dan secara retrospektif. Perhitungan cara prospektif adalah perhitungan cadangan premi berdasarkan nilai sekarang dari semua

pengeluaran di waktu yang akan datang, dikurangi dengan nilai seka-rang dari semua pendapatan di waktu yang akan datang (Futami, 1993).

ISSN: 2303-1751

Beberapa faktor yang harus diperhatikan dalam perhitungan premi asuransi jiwa yaitu, tingkat angka kematian, biaya perusahaan, dan tingkat suku bunga. Ada dua jenis perhitungan premi asuransi jiwa pada tingkat suku bunga yaitu menggunakan suku bunga konstan dan suku bunga tidak konstan. Selama ini suku bunga yang digunakan untuk perhitungan premi asuransi jiwa adalah menggunakan suku bunga konstan. Suku bunga tidak selalu konstan tetapi, berubah-ubah karena dipengaruhi oleh beberapa faktor yaitu inflasi, penawaran, dan permintaan. Suku bunga yang mengalami perubahan secara tidak menentu dapat dikatakan mengikuti proses stokastik.

Suatu model suku bunga diperlukan untuk dapat menangkap pergerakan suku bunga yang berubah-ubah mengikuti proses stokastik tersebut dan disebut sebagai model suku bunga stokastik (Paul, 2013). Vasicek merupakan salah

¹Jurusan Matematika, Fakultas MIPA – Universitas Udayana [Email: nikomangsukanasih@yahoo.com]

²Jurusan Matematika, Fakultas MIPA – Universitas Udayana [Email: nwidana@yahoo.com]

³Jurusan Matematika, Fakultas MIPA – Universitas Udayana [Email: ketut_jayanegara@yahoo.com] § Corresponding Author

satu model suku bunga stokastik yang sering digunakan untuk perhitungan finansial.

Penelitian terkait mengenai suku bunga stokastik model Vasicek pernah dilakukan oleh Soffan (2011) mengenai premi asuransi jiwa berjangka dengan model Vasicek menggunakan model numerik. Hasil penelitiannya adalah besar nilai suku bunga awal yang digunakan dalam perhitungan premi tidak memengaruhi konvergensi nilai suku bunga menuju tingkat suku bunga rata-rata. Sedangkan oleh Matvejevs (2001) telah menghitung harga premi untuk asuransi joint life dengan tingkat bunga konstan. Berdasarkan uraian tersebut maka peneliti ingin mengetahui nilai dan perbandingan cadangan premi tahunan tingkat suku bunga tetap dengan suku bunga berubah secara stokastik model Vasicek untuk asuransi jiwa joint life menggunakan perhitungan secara prospektif.

Selanjutnya dibahas konsep-konsep yang digunakan dalam perhitungan nilai cadangan premi tahunan tingkat suku bunga tetap dan stokastik model Vasicek untuk asuransi jiwa joint life.

Tingkat bunga untuk menentukan nilai sekarang dari pembayaran yang akan datang, pada bunga majemuk didefinisikan sebagai berikut (Futami, 1993):

$$v^t = \frac{1}{(1+i)^t} \tag{1}$$

Peluang gabungan dari dua orang yang berusia x tahun dan y tahun tetap hidup selama t tahun dinotasikan dengan $_tp_{xy}$ dan peluang dari dua orang berusia x tahun dan y tahun yang meninggal dalam jangka waktu t tahun dinotasikan dengan tq_{xy} yang secara berturutturut dinyatakan sebagai:

$$t_{t}p_{xy} = t_{t}p_{x} \times t_{t}p_{y} = \frac{l_{x+t}}{l_{x}} \times \frac{l_{y+t}}{l_{y}} = \frac{l_{xy+t}}{l_{xy}}$$

$$t_{t}q_{xy} = 1 - t_{t}p_{xy} = \frac{l_{xy} - l_{xy+t}}{l_{xy}}$$
(2)
(3)

$$_{t}q_{xy} = 1 - _{t}p_{xy} = \frac{l_{xy} - l_{xy+t}}{l_{xy}}$$
 (3)

Anuitas awal dari anuitas seumur hidup yang meninggal antara usia x + t tahun dinotasikan dengan \ddot{a}_{x+t} , dirumuskan sebagai:

$$\ddot{a}_{x+t} = \sum_{k=0}^{\infty} v^k_{\ k} p_x = \frac{N_{x+t}}{D_{x+t}}$$
 (4)

Anuitas awal pada anuitas yang ditunda

dinotasikan dengan $t | \ddot{a}_x$, dirumuskan sebagai:

$$_{t}|\ddot{a}_{x} = \sum_{k=t}^{\infty} v^{k}_{k} p_{x} = \sum_{n=t}^{\infty} \frac{D_{x+k}}{D_{x}} = \frac{N_{x+t}}{D_{x}}$$
 (5)

Nilai sekarang anuitas awal dari anuitas hidup berjangka joint life apabila x dan y tetap hidup dinotasikan dengan $\ddot{a}_{xy:\bar{t}|}$, dirumuskan

$$\ddot{a}_{xy:\bar{t}|} = \sum_{k=0}^{t-1} v^k_{\ k} p_{xy} \tag{6}$$

Besar premi ditentukan dengan prinsip ekuivalensi dan mempunyai persamaan sebagai berikut (Dickson, 2013):

$$E(L) = 0 (7$$

didefinisikan L sebagai variable random dari nilai tunai benefit yang dibayarkan pihak penanggung (Matvejevs, 2001).

Premi tunggal pure endowment joint life dinotasikan dengan $A_{xy:\overline{t}|}^{1}$ dan dirumuskan

$$A_{xy,\bar{t}|}^{1} = v^{t} \frac{l_{xy+t}}{l_{yy}} = v^{t} {}_{t}p_{xy}$$
 (8)

Premi tunggal asuransi berjangka joint life dinotasikan dengan $A_{xy;\overline{t}|}^1$ dan dirumuskan sebagai:

$$A_{xy:\bar{t}|}^{1} = \sum_{k=0}^{t-1} v^{k+1} \left({}_{k} p_{xy} - {}_{k+1} p_{xy} \right)$$
 (9)

Premi tunggal anuitas menaik asuransi joint dinotasikan dengan life $(IA)^1_{rv\cdot t\bar{l}},$ dirumuskan sebagai:

$$(IA)^{1}_{xy:\bar{t}|} = \sum_{k=0}^{t-1} (k+1)v^{k+1} \left({}_{k}p_{xy} - {}_{k+1}p_{xy} \right)$$
 (10)

Nilai tunai dari pendapatan premi tahunan konstan pada joint life dapat dinyatakan sebagai berikut:

$$\mathcal{P}.\left(1 + v.\,p_{xy} + v^2.\,p_{xy} + \dots + v^{t-1}._{t-1}p_{xy}\right) = \,\mathcal{P}.\,\ddot{a}_{xy:\bar{t}|}\,(11)$$

Nilai tunai dari benefit dibayarkan oleh pihak penanggung dapat dirumuskan sebagai berikut:

$$Q.v^{t}._{t}p_{xy} + R_{x} \sum_{m=0}^{t-1} \sum_{k=t}^{\infty} v^{k}_{k}p_{xm}|_{q_{y}} + R_{y} \sum_{k=0}^{t-1} \sum_{m=t}^{\infty} v^{m}_{m}p_{y|_{k}}|_{q_{x}} + \mathcal{P}.(IA)^{1}_{xy:t}|_{q_{x}}$$

$$= Q._{t}A_{xy:t}|_{q_{x}}^{1} + R_{x}._{t}|_{q_{x}}^{2} + R_{y}._{t}|_{q_{y}}^{2} + R_{y}._{t}|_{q_{x}}^{2} + \mathcal{P}.(IA)^{1}_{xy:t}|_{q_{x}}^{2}$$
(12)

Menggunakan prinsip ekuivalensi E(L)=0, besar preminya adalah:

$$\begin{split} \mathcal{P}.\ddot{a}_{xy:\bar{t}|} &= Q.~A_{xy:\bar{t}|}^{-1} + R_{x}_{\cdot t} |\ddot{a}_{x\cdot}~_{t}q_{y} + R_{y\cdot}~_{t} |\ddot{a}_{y\cdot}~_{t}q_{x} \\ &+ \mathcal{P}.\left(IA\right)^{1}_{xy:\bar{t}|} \end{split}$$
(13)

Sehingga diperoleh besar nilai premi tahunan

yang harus dibayar peserta adalah:

 $\mathcal{P} = \frac{Q \cdot A_{xy:\bar{t}|}^{1} + R_{x \cdot t} |\ddot{a}_{x} \cdot {}_{t}q_{y} + R_{y} \cdot {}_{t}|\ddot{a}_{y} \cdot {}_{t}q_{x}}{\ddot{a}_{xy:\bar{t}|} - (IA)^{1}_{xy:\bar{t}|}}$ (14)

Cadangan premi yang menggunakan perhitungan secara prospektif dimisalkan suatu asuransi seumur hidup dengan pertanggungan sebesar Rp.1 dengan premi sebesar \mathcal{P} dan didefinisikan _tL sebagai variabel kerugian pada tahun ke -t:

 $_{t}L = v^{K_{x}+1-t} - \mathcal{P}\ddot{a}_{K_{x}+1-t|}$, dengan $K_{x} > t$ maka besar cadangan pada akhir tahun ke- t adalah sebagai berikut:

$$tV = E[tL|K_x > t]$$

$$= E[v^{K_x+1-t}|K_x > t] - \mathcal{P}E[\ddot{a}_{\overline{K_x+1-t}}|K_x > t]$$

$$= A_{x+t} - \mathcal{P}\ddot{a}_{x+t}$$
(15)

selanjutnya model Vasicek merupakan model suku bunga stokastik yang memiliki ciri khusus pada tingkat suku bunga akan cenderung kembali ke tingkat suku bunga rata-rata setelah terjadinya penurunan atau peningkatan dan didefinisikan sebagai berikut (Zetun, 2007):

$$dr(t) = \kappa[\theta - r(t)]dt + \sigma dW(t), \quad r(0) = r_0$$
 (16)

dengan r, κ , dan θ suatu konstanta positif.

Ekspektasi nilai tunai pembayaran sebesar satu unit pada saat k dengan tingkat suku bunga mengikuti model Vasicek dinotasikan dengan P(k) dan didefinisikan sebagai berikut:

2. METODE PENELITIAN

Jenis dan Sumber Data

Penelitian ini menggunakan data sekunder yaitu Tabel Mortalitas Indonsia (TMI) 2011, dengan usia peserta sepasang suami istri 40 dan 35 tahun. Masa pertanggungan asuransi jiwa 10 tahun dan tingkat suku bunga yang digunakan adalah rata-rata tingkat suku bunga tahunan Bank Indonesia bulan Januari 2006-Januari 2016.

Penelitian ini menggunakan metode perhitungan secara prospektif dan suku bunga tetap serta suku bunga stokastik model Vasicek dengan bantuan software Microsoft Excel dan R i3863.8.0. Adapun langkah-langkah penelitian ini sebagai berikut:

ISSN: 2303-1751

- 1. Menentukan formula cadangan premi tahunan suku bunga tetap dan suku bunga stokastik model Vasicek pada asuransi jiwa perhitungan ioint life dengan secara prospektif.
- 2. Menghitung nilai tabel mortalitas yang dilanjutkan dengan menghitung nilai tabel mortalitas joint life.
- 3. Menghitung nilai tabel komutasi tunggal.
- 4. Menghitung cadangan premi asuransi jiwa joint life suku bunga tetap dengan melakukan simulasi terhadap pihak tertanggung berusia x tahun dan y tahun dalam jangka waktu t tahun sebagai berikut: (a) Menghitung nilai anuitas awal dari anuitas hidup yang ditunda. (b) Menghitung nilai anuitas awal hidup berjangka joint life. (c) Menghitung nilai premi tunggal pure endowment joint life. (d) Menghitung nilai premi tunggal asuransi jiwa berjangka joint life. (e) Menghitung nilai premi tunggal anuitas menaik pada asuransi jiwa joint life. (f) Menghitung nilai premi tahunan konstan pada asuransi jiwa joint life. (g) Menghitung nilai cadangan premi tahunan untuk asuransi jiwa joint life.
- 5. Estimasi parameter suku bunga stokastik model Vasicek dengan menggunakan metode Maximum Likelihood Estimator (MLE) dan bantuan Software R i386 3.8.0.
- 6. Menghitung cadangan premi asuransi jiwa joint life suku bunga stokastik model Vasicek dengan melakukan simulasi terhadap pihak tertanggung yang berusia x tahun dan y tahun dalam jangka waktu t tahun sebagai berikut: (a) Menghitung nilai anuitas awal dari anuitas hidup ditunda. (b) Menghitung nilai anuitas awal hidup berjangka joint life. (c) Menghitung nilai premi tunggal pure endowment joint life. (d) Menghitung nilai premi tunggal asuransi jiwa berjangka joint

life. (e) Menghitung nilai premi tunggal anuitas menaik pada asuransi jiwa joint life. (f) Menghitung nilai premi tahunan konstan pada asuransi jiwa joint life. (g) Menghitung nilai cadangan premi tahunan untuk asuransi jiwa joint life.

 Membandingkan hasil perhitungan cadangan premi tahunan asuransi jiwa *joint life* suku bunga tetap dengan suku bunga stokastik model Vasicek.

III. HASIL DAN PEMBAHASAN

Kontrak asuransi joint life melibatkan pasangan suami-istri dengan usia berturut-turut x tahun dan y tahun, dengan masa kontrak asuransi adalah t tahun. Pembayaran premi dilakukan setiap t tahun selama x dan y masih hidup pada akhir kontrak dengan tingkat suku bunga konstan setiap tahunnya. Rincian dari uang pertanggungan adalah sebagai berikut (Matvejevs, 2001): (a) Apabila peserta asuransi x dan y masih hidup pada akhir kontrak, maka diberikan uang pertanggungan sebesar Q dan kontrak asuransi berakhir. (b) Apabila salah satu peserta asuransi baik x atau y meninggal selama kontrak, maka premi berikutnya tidak perlu dibayar lagi dan premi yang telah dibayarkan akan dikembalikan semua ke peserta yang masih hidup baik x atau y pada akhir kematian, dan diberikan pertanggungan sebesar R_x atau R_y yang masih hidup pada akhir kontrak selama seumur hidup. (c) Jika x dan y meninggal ditahun yang sama sebelum masa kontrak berakhir pada t tahun, maka ahli waris menerima uang pertanggungan sejumlah premi yang telah dibayarkan dan kontrak berakhir.

Berdasarkan kontrak asuransi tersebut maka pada persamaan (15) yaitu:

$$_{t}V = A_{x+t} - P\ddot{a}_{x+t}$$

dimodifikasi formula cadangan premi asuransi *joint life* suku bunga tetap menggunakan metode perhitungan secara prospektif dengan kasus sebagai berikut:

Kasus pertama untuk cadangan premi apabila x hidup y meninggal pada tahun ke-t untuk

 $t \le 10$ maka dari persamaan (15) dengan R_x merupakan uang pertanggungan diberikan kepada x apabila y meninggal, dikali dengan 10-t jäx+t yang merupakan nilai anuitas peserta berusia x+t tahun dimulai dari periode 10-t sebagai berikut:

$${}_{t}V = R_{x} \times {}_{10-t} | \ddot{a}_{x+t}$$

$$= R_{x} \times \left(\frac{N_{x+10}}{D_{x+t}} \right)$$

Kasus kedua untuk cadangan premi apabila x meninggal y hidup pada tahun ke-t untuk $t \le 10$ maka dari persamaan (15) dengan R_y merupakan uang pertanggungan diberikan kepada y apabila x meninggal, dikali dengan $t_{10-t}|\ddot{a}_{y+t}$ yang merupakan nilai anuitas peserta berusia t_{10-t} tahun dimulai dari periode t_{10-t} sebagai berikut:

$${}_{t}V = R_{y} \times {}_{10-t}|\ddot{a}_{y+t}|$$
$$= R_{y} \times \left(\frac{N_{y+10}}{D_{y+t}}\right)$$

Kasus ketiga untuk cadangan premi apabila x hidup y hidup pada akhir tahun ke-t untuk $t \le 10$ maka dari persamaan (15) dengan $R_{x \ 10-t} | \ddot{a}_{x+t}$ merupakan uang pertanggungan dikalikan dengan nilai anuitas peserta berusia x + t tahun dimulai dari periode 10 - t yang diberikan oleh perusahaan apabila y meninggal sebelum akhir tahun ke-t dan x masih tetap hidup sampai akhir tahun ke-t, ditambah dengan $R_{y \ 10-t} | \ddot{a}_{y+t}$ yang merupakan uang pertanggungan dikalikan dengan nilai anuitas peserta berusia y + t tahun dimulai dari periode 10 - t yang diberikan apabila x meninggal sebelum akhir tahun ke-t dan y masih tetap hidup sampai akhir tahun ke-t, ditambah dengan $\left(Q \times \left(v^{10-n} \times \frac{l_{x+10}l_{y+10}}{l_{x+t}l_{y+t}}\right)\right)$ dengan Q yang merupakan uang pertanggungan yang diberikan apabila x dan y masih hidup sampai akhir tahun ke-t dikali dengan peluang orang yang berusia x dan y tahun tetap hidup selama t tahun dinotasikan dngan $v^{10-n} \times \frac{l_{x+10}l_{y+10}}{l_{x+t}l_{y+t}}$, lalu ditambah dengan $\mathcal{P}\sum_{k=0}^{10-t-1} v^{k+1}(k+t+1)$ 1) $({}_{k}p_{x+t;y+t} - {}_{k+1}p_{x+t;y+t})$ merupakan premi

bersih tahunan yang dibayarkan pada permulaan tahun ke-t yang dibungakan selama v^{k+1} dikurangi dengan $\mathcal{P} \cdot \ddot{a}_{x+t;y+t}$ yang merupakan uang pertanggungan yang dibayarkan pada akhir tahun ke-t. Sehingga diperoleh formula cadangan premi sebagai beriku:

$$\begin{split} _{t}V &= \ R_{x} \times \left(\frac{N_{x+10}}{D_{x+t}}\right) + R_{y} \times \left(\frac{N_{y+10}}{D_{y+t}}\right) + \\ & \left(Q\left(v^{10-t} \times \frac{l_{x+10}l_{y+10}}{l_{x+t}l_{y+t}}\right)\right) + \\ & \left(\mathcal{P}\sum_{k=0}^{10-t-1} v^{k+1}(k+t+1)(_{k}p_{x+t;y+t} - _{k+t}p_{x+t;y+t})\right) \\ & - \mathcal{P} \cdot \ddot{a}_{x+t;y+t} \end{split}$$

Selanjutnya, dicari formula cadangan premi untuk asuransi *joint life* yang benefitnya dibayarkan pada saat salah satu peserta asuransi baik x atau y masih hidup di akhir tahun ke-t+1 berbeda dengan cadangan premi akhir tahun ke-t karena pada tahun ke-t+1 sudah tidak ada pembayaran premi lagi, maka diperoleh:

Kasus keempat untuk cadangan premi apabila x hidup y meninggal pada akhir tahun ke-t+1 untuk t>10 maka dari persamaan (15) dengan R_x merupakan uang pertanggungan dikalikan dengan nilai anuitas awal dari anuitas seumur hidup yang mencapai usia x+t tahun di notasikan dengan \ddot{a}_{x+t} , yang diberikan apabila y meninggal dunia sebelum akhir tahun ke-t dan x masih hidup selama seumur hidup. Sehingga diperoleh formula cadangan premi sebagai berikut:

$$tV = R_x \times \ddot{a}_{x+t}$$
$$= R_x \times \left(\frac{N_{x+t}}{D_{x+t}}\right)$$

Dan kasus kelima untuk cadangan premi apabila x meninggal y hidup pada akhir tahun ke-t+1 untuk t>10 maka dari persamaan (15) dengan R_y merupakan uang pertanggungan dikalikan dengan nilai anuitas awal dari anuitas seumur hidup yang mencapai usia y+t tahun di notasikan dengan \ddot{a}_{y+t} , yang diberikan apabila x meninggal dunia sebelum akhir tahun ke-t dan y masih hidup selama seumur hidup. Sehingga diperoleh formula cadangan premi sebagai berikut:

$$tV = R_y \ddot{a}_{y+t}$$
$$= R_y \times \left(\frac{N_{y+t}}{D_{y+t}}\right)$$

Formula cadangan premi suku bunga stokastik model Vasicek memiliki formula yang sama dengan formula cadangan premi suku bunga tetap. Perbedaan formula cadangan premi suku bunga Vasicek dan formula cadangan premi suku bunga tetap adalah faktor diskonto pada suku bunga tetap yaitu v^k disubsitusikan oleh P(k) pada suku bunga Vasicek. Penjabaran formula cadangan premi dengan suku bunga Vasicek adalah sebagai berikut:

Kasus pertama untuk cadangan premi apabila x hidup y meninggal pada akhir tahun ke-t untuk $t \le 10$ yaitu:

$$\begin{split} _{t}V &= R_{x} \times _{10-t} | \ddot{a}_{x+t} \\ &= \frac{R_{x}}{\mathrm{P}(k)} \times \left(\frac{\mathrm{P}(10)l_{x+10} + \mathrm{P}(11)l_{x+11} + \cdots + \mathrm{P}(71).l_{x+71}}{l_{x+t}} \right) \end{split}$$

Kasus kedua untuk cadangan premi apabila x meninggal y hidup pada akhir tahun ke-t untuk $t \le 10$ yaitu:

$$\begin{split} _t V &= R_y \times _{10-t} | \ddot{a}_{y+t} \\ &= \frac{R_y}{\mathrm{P}(k)} \times \left(\frac{\mathrm{P}(10) l_{y+10} + \mathrm{P}(11) l_{y+11} + \dots + \mathrm{P}(71) . l_{y+71}}{l_{y+t}} \right) \end{split}$$

Kasus ketiga untuk cadangan premi apabila x dan y hidup pada akhir tahun ke-t untuk $t \le 10$ yaitu:

$$\begin{split} t & \leq \text{To yattu.} \\ t V &= \frac{R_x}{\mathrm{P}(k)} \times \left(\frac{\mathrm{P}(10) l_{x+10} + \mathrm{P}(11) l_{x+11} + \dots + \mathrm{P}(71). \, l_{x+71}}{l_{x+t}} \right) \\ &+ \frac{R_y}{\mathrm{P}(k)} \times \left(\frac{\mathrm{P}(10) l_{y+10} + \mathrm{P}(11) l_{y+11} + \dots + \mathrm{P}(71). \, l_{y+71}}{l_{y+t}} \right) \\ &+ \mathrm{P}(10 - k). \, Q \frac{l_{x+10} l_{y+10}}{l_{x+t} l_{y+t}} + \mathcal{P} \sum_{k=0}^{10 - t - 1} \mathrm{P}(k+1)(k+t+1) \\ & (_k p_{x+t;y+t} - _{k+t} p_{x+t;y+t}) - \mathcal{P} . \, \ddot{a}_{x+t;y+t} \end{split}$$

Selanjutnya, dicari formula cadangan premi untuk asuransi *joint life* yang benefitnya dibayarkan pada saat salah satu peserta asuransi baik x atau y masih hidup di akhir tahun ke-t+1 berbeda dengan cadangan premi akhir tahun ke-t karena pada tahun ke-t+1 sudah tidak ada pembayaran premi lagi, maka diperoleh:

Kasus keempat untuk cadangan premi apabila x hidup y meninggal pada akhir tahun ke-t+1 untuk t>10 yaitu:

$$tV = R_x \times \ddot{a}_{x+t}$$

$$= R_x \times \left(\frac{\sum_{k=11}^{71} P(k) l_{x+t}}{P(k) l_{x+t}}\right)$$

Kasus kelima untuk cadangan premi apabila x meninggal dan y hidup pada akhir tahun ke-t+1 untuk t>10 yaitu:

$$_{t}V = R_{y} \times \ddot{a}_{y+t}$$

$$(\Sigma^{71} \quad P(t))$$

$$=R_y\times\left(\frac{\sum_{k=11}^{71}\mathrm{P}(k)l_{y+t}}{\mathrm{P}(k)l_{y+t}}\right)$$

Pada penelitian ini diberikan sebuah contoh kasus yaitu misalkan usia peserta mulai mengikuti asuransi ini adalah usia suami x = 40tahun dan usia istri y = 35 tahun. Masa pembayaran premi 10 tahun selama x dan y masih hidup pada akhir kontrak, dengan tingkat suku bunga adalah konstan yaitu 6,5% dan besar uang pertanggungan yang diberikan perusahaan asuransi kepada peserta asuransi sebagai berikut: (a) apabila kedua peserta asuransi masih hidup pada akhir kontrak, maka diberikan uang sebesar Rp.1 (Q = 1)pertanggungan kontrak asuransi berakhir. (b) Apabila salah satu peserta asuransi baik suami atau istri meninggal selama kontrak, maka premi berikutnya tidak perlu dibayar lagi dan premi yang telah dibayarkan akan dikembalikan semua ke peserta yang masih hidup baik suami atau istri pada akhir tahun kematian, dan diberikan uang pertanggungan sebesar $Rp.1 (R_x = 1)$ atau $Rp.1 (R_v = 1)$ ke peserta yang masih hidup pada akhir kontrak selama seumur hidup. (c) Jika suami dan istri meninggal di tahun yang sama sebelum masa kontrak berakhir pada t tahun, maka ahli waris akan menerima uang pertanggungan sejumlah premi yang telah dibayarkan dan kontrak berakhir.

Berdasarkan persamaan (1) dan (17) dapat dilihat nilai suku bunga tetap dan suku bunga Vasicek pada tabel 1.

Berdasarkan persamaan (14) yang merupakan nilai premi tahunan suku bunga tetap yaitu:

$$\begin{split} \mathcal{P} &= \frac{Rp \times 1 \:.\: A_{xy:\bar{t}|}^{-1} + Rp.\: 1 \times_{.t} |\ddot{a}_{x} \cdot _{t}q_{y} + Rp.\: 1 \times_{.t} |\ddot{a}_{y} \cdot _{t}q_{x}}{\ddot{a}_{xy:\bar{t}|} - (IA)^{1}_{xy:\bar{t}|}} \\ &= \frac{Rp.\: 1 \times 0,5120 + Rp.\: 0,0739 + Rp.\: 0,2077}{7,4071} \\ &= Rp.\: 0,1071 \end{split}$$

dan nilai premi suku bunga stokastik model Vasicek untuk asuransi jiwa joint life adalah:

$$\mathcal{P} = \frac{Rp. 1 \times P(10)_{10} p_{xy} + Rp. 1 \times \sum_{t=0}^{9} {}_{t} q_{x} + Rp. 1 \times \sum_{t=0}^{9} {}_{t} q_{y}}{P(k)_{k} p_{xy} - (IA)^{1}_{xy:\bar{t}|}}$$

$$= \frac{Rp. 1 \times 0.4987 + Rp. 0.0793 + Rp. 0.1977}{7,3369} = Rp. 0.1057$$

Tabel 1. Suku Bunga Tetap (v^k) dan Suku Bunga Vasicek P(k) dengan Bunga (6,5%).

vasicek F(k) dengan bunga (0,5%).						
t/k	(v^k)	P(k)	t/k	(v^k)	P(k)	
0	1,0000	1,0000	36	0,1036	0,0939	
1	0,9390	0,9369	37	0,0973	0,0879	
2	0,8817	0,8776	38	0,0914	0,0823	
3	0,8278	0,8219	39	0,0858	0,0771	
4	0,7773	0,7697	40	0,0805	0,0722	
5	0,7299	0,7208	41	0,0756	0,0676	
6	0,6853	0,6749	42	0,0710	0,0633	
7	0,6435	0,6320	43	0,0667	0,0593	
8	0,6042	0,5918	44	0,0626	0,0555	
9	0,5674	0,5541	45	0,0588	0,0520	
10	0,5327	0,5189	46	0,0552	0,0487	
11	0,5002	0,4859	47	0,0518	0,0456	
12	0,4697	0,4549	48	0,0487	0,0427	
13	0,4410	0,4260	49	0,0457	0,0400	
14	0,4141	0,3989	50	0,0429	0,0374	
15	0,3888	0,3735	51	0,0403	0,0350	
16	0,3651	0,3497	52	0,0378	0,0328	
17	0,3428	0,3275	53	0,0355	0,0307	
18	0,3219	0,3067	54	0,0334	0,0288	
19	0,3022	0,2871	55	0,0313	0,0269	
20	0,2838	0,2689	56	0,0294	0,0252	
21	0,2665	0,2518	57	0,0276	0,0236	
22	0,2502	0,2357	58	0,0259	0,0221	
23	0,2349	0,2207	59	0,0243	0,0207	
24	0,2206	0,2067	60	0,0229	0,0194	
25	0,2071	0,1935	61	0,0215	0,0182	
26	0,1945	0,1812	62	0,0202	0,0170	
27	0,1826	0,1697	63	0,0189	0,0159	
28	0,1715	0,1589	64	0,0178	0,0149	
29	0,1610	0,1488	65	0,0167	0,0140	
30	0,1512	0,1393	66	0,0157	0,0131	
31	0,1420	0,1305	67	0,0147	0,0122	
32	0,1333	0,1222	68	0,0138	0,0115	
33	0,1252	0,1144	69	0,0130	0,0107	
34	0,1175	0,1071	70	0,0122	0,0100	
35	0,1103	0,1003	71	0,0114	0,0094	
D						

Data diolah: Tahun 2017

Selanjutnya nilai dan perbandingan hasil cadangan premi asuransi jiwa *joint life* suku bunga tetap dan suku bunga stokastik model Vasicek dengan menggunakan perhitungan

ISSN: 2303-1751

secara prospektif untuk usia peserta x = 40 tahun dan y = 35 tahun dengan menggunakan formula yang telah diperoleh sebelumnya dapat dilihat pada tabel berikut:

Tabel 2 Cadangan Premi x Hidup y Meninggal untuk $t \le 10$.

Jangka	$_{t}V$	$_{t}V$
Waktu (t)	(Suku Bunga Tetap)	(Suku Bunga
	(Rp.)	Vasicek) (Rp.)
1	6,9772	6.6336
2	7,4438	7.0945
3	7,9432	7.5900
4	8,4781	8.1227
5	9,0514	8.6955
6	9,6667	9.3120
7	10,3279	9.9762
8	11,0393	10.6928
9	11,8057	11.4668
10	12,6326	12.3039

Data diolah: Tahun 2017

Berdasarkan tabel 2 diperoleh hasil nilai cadangan premi x hidup y meninggal suku bunga tetap dengan suku bunga Vasicek samasama mengalami peningkatan pada cadangan premi tahunan pertama sampai tahun kesepuluh dan nilai cadangan premi suku bunga Vasicek lebih kecil dibandingkan suku bunga tetap.

Tabel 3 Cadangan Premi x Meninggal y Hidup untuk $t \le 10$.

Jangka	$_{t}V$	$_{t}V$
Waktu	(Suku Bunga Tetap)	(Suku Bunga
(<i>t</i>)	(Rp.)	Vasicek) (Rp.)
1	7,9073	7,4860
2	8,4275	7,9980
3	8,9828	8,5470
4	9,5756	9,1353
5	10,2087	9,7656
6	10,8846	10,4407
7	11,6067	11,1640
8	12,3786	11,9393
9	13,2041	12,7707
10	14,0870	13,6624

Data diolah: Tahun 2017

Berdasarkan tabel 3 diperoleh hasil nilai cadangan premi x meninggal y hidup suku bunga tetap dengan suku bunga Vasicek samasama mengalami peningkatan pada cadangan premi tahunan pertama sampai tahun kesepuluh dan nilai cadangan premi suku bunga Vasicek lebih kecil dibandingkan suku bunga tetap.

Tabel 4. Cadangan Premi x dan y Hidup untuk $t \le 10$.

Jangka	_t V	_t V
Waktu	(Suku Bunga	(Suku Bunga
(<i>t</i>)	Tetap) (Rp.)	Vasicek) (Rp.)
1	13,4480	13.3929
2	14,4903	14.3413
3	15,6114	15.3708
4	16,8179	16.4875
5	18,1186	17.6997
6	19,5230	19.0166
7	21,0425	20.4412
8	22,6908	22.0126
9	24,4831	23.7205
10	26,8060	25.5900

Data diolah: Tahun 2017

Berdasarkan tabel 4 diperoleh hasil nilai cadangan premi x dan y hidup suku bunga tetap dan suku bunga Vasicek sama-sama mengalami peningkatan pada cadangan premi tahunan pertama sampai tahun kesepuluh dan nilai cadangan premi suku bunga Vasicek lebih kecil dibandingkan suku bunga tetap.

Tabel 5. Cadangan Premi x Hidup y Meninggal untuk t > 10.

	_t V	_t V		_t V	_t V
Jangka	(Suku	(Suku	Jangka	(Suku	(Suku
Waktu	Bunga	Bunga	Waktu	Bunga	Bunga
(t)	Tetap)	Vasicek)	(<i>t</i>)	Tetap)	Vasicek)
	(Rp.)	(Rp.)		(Rp.)	(Rp.)
11	12,4557	12,1373	42	4,9329	4,8894
12	12,2759	11,9677	43	4,6848	4,6458
13	12,0933	11,7955	44	4,4434	4,4086
14	11,9077	11,6202	45	4,2098	4,1788
15	11,7189	11,4416	46	3,9861	3,9585
16	11,5264	11,2593	47	3,7742	3,7497
17	11,3297	11,0729	48	3,5753	3,5535
18	11,1282	10,8816	49	3,3907	3,3713
19	10,9211	10,6847	50	3,2206	3,2034
20	10,7075	10,4814	51	3,0656	3,0502
21	10,4871	10,2713	52	2,9190	2,9053
22	10,2599	10,0542	53	2,7805	2,7683
23	10,0261	9,8306	54	2,6501	2,6393
24	9,7863	9,6009	55	2,5290	2,5194
25	9,5411	9,3657	56	2,4190	2,4104
26	9,2914	9,1258	57	2,3129	2,3053
27	9,0371	8,8812	58	2,2114	2,2046
28	8,7778	8,6313	59	2,1156	2,1095
29	8,5134	8,3762	60	2,0279	2,0225
30	8,2425	8,1145	61	1,9539	1,9491
31	7,9668	7,8477	62	1,8811	1,8768
32	7,6866	7,5761	63	1,8095	1,8058
33	7,4072	7,3050	64	1,7393	1,7360
34	7,1276	7,0334	65	1,6704	1,6675
35	6,8468	6,760	66	1,6026	1,6001
36	6,5652	6,4860	67	1,5353	1,5332
37	6,2828	6,2105	68	1,4663	1,4646
38	6,0015	5,9358	69	1,3880	1,3867
39	5,7240	5,6645	70	1,2722	1,2714
40	5,4528	5,3990	71	1,0000	1,0000
41	5,1882	5,1398			

Data diolah: Tahun 2017

Berdasarkan tabel 5 diperoleh hasil nilai cadangan premi x hidup y meninggal suku bunga tetap dengan suku bunga Vasicek samasama mengalami penurunan pada cadangan premi tahun kesebelas sampai tahun ketujuh puluh satu dan nilai cadangan premi suku bunga Vasicek lebih kecil dibandingkan suku bunga tetap.

Tabel 6. Cadangan Premi untuk x Meninggal y Hidup untuk t > 10.

Jangka Waktu (t)	tV (Suku Bunga Tetap)(Rp.)	tV (Suku Bunga Vasicek) (Rp.)	Jangka Waktu (t)	tV (Suku Bunga Tetap) (Rp)	tV (Suku Bunga Vasicek) (Rp.)
11	13,9646	13,5489	42	7,6084	7,5001
12	13,8370	13,4304	43	7,3305	7,2304
13	13,7041	13,3069	44	7,0502	6,9579
14	13,5662	13,1785	45	6,7676	6,6829
15	13,4232	13,0450	46	6,4826	6,4051
16	13,2750	12,9066	47	6,2035	6,1328
17	13,1220	12,7635	48	5,9320	5,8676
18	12,9646	12,6161	49	5,6653	5,6068
19	12,8036	12,4651	50	5,4042	5,3512
20	12,6394	12,3109	51	5,1501	5,1023
21	12,4716	12,1533	52	4,8953	4,8524
22	12,2996	11,9915	53	4,6556	4,6171
23	12,1219	11,8241	54	4,4308	4,3962
24	11,9375	11,6500	55	4,2216	4,1906
25	11,7455	11,4685	56	4,0197	3,9920
26	11,5452	11,2787	57	3,7943	3,7700
27	11,3367	11,0809	58	3,5620	3,5408
28	11,1202	10,8752	59	3,3370	3,3186
29	10,8984	10,6639	60	3,1302	3,1143
30	10,6713	10,4475	61	2,9581	2,9440
31	10,4392	10,2259	62	2,8166	2,8041
32	10,2023	9,9994	63	2,7142	2,7031
33	9,9611	9,7684	64	2,5776	2,5679
34	9,7156	9,5331	65	2,4266	2,4183
35	9,4664	9,2939	66	2,2758	2,2689
36	9,2121	9,0494	67	2,1202	2,1148
37	8,9535	8,8004	68	1,9517	1,9475
38	8,6912	8,5475	69	1,7512	1,7484
39	8,4252	8,2907	70	1,4734	1,4721
40	8,1559	8,0304	71	1,0000	1,0000
41	7,8836	7,7668			

Data diolah: Tahun 2017

Berdasarkan tabel 6 diperoleh hasil nilai cadangan premi *x* meninggal *y* hidup suku bunga tetap dengan suku bunga Vasicek samasama mengalami penurunan pada cadangan premi tahun kesebelas sampai tahun ketujuh puluh satu dan nilai cadangan premi suku bunga

Vasicek lebih kecil dibandingkan suku bunga tetap.

4. SIMPULAN DAN SARAN

Simpulan

Berdasarkan hasil dan pembahasan dapat disimpulkan bahwa formula cadangan premi asuransi jiwa *joint life* dengan perhitungan secara prospektif untuk suku bunga tetap dan suku bunga stokastik model Vasicek sebagai berikut:

Cadangan premi apabila x hidup y meninggal pada akhir tahun ke-t:

$$V = R_x \times {}_{10-t} |\ddot{a}_{x+t}|$$

$$=R_x\times\left(\frac{N_{x+10}}{D_{x+t}}\right)$$

Cadangan premi apabila x meninggal y hidup pada akhir tahun ke-t:

$$V = R_y \times {}_{10-t} |\ddot{a}_{y+t}|$$

$$= R_{y} \times \left(\frac{N_{y+10}}{D_{y+t}}\right)$$

Cadangan premi apabila x hidup y hidup pada akhir tahun ke-t:

$$\begin{split} _{t}V &= \ R_{x} \times \left(\frac{N_{x+10}}{D_{x+t}}\right) + R_{y} \times \left(\frac{N_{y+10}}{D_{y+t}}\right) + \ Q \times v^{10-t} \frac{l_{x+10}l_{y+10}}{l_{x+t}l_{y+t}} \\ &+ \mathcal{P} \sum_{k=0}^{10-t-1} \ v^{k+1}(k+t+1) (\ _{k}p_{x+t;y+t} - \ _{k+1}p_{x+t;y+t}) - \mathcal{P} \times \left(\frac{N_{xy+t}}{D_{xy+t}}\right) \end{split}$$

Cadangan premi apabila x hidup y meninggal pada akhir tahun ke-t+1:

$$_{t}V = R_{x} \times \ddot{a}_{x+t}$$

$$(N_{x+t})$$

$$= R_{x} \times \left(\frac{N_{x+t}}{D_{x+t}}\right)$$

Cadangan premi apabila x meninggal dan y hidup pada akhir tahun ke-t+1:

$$_{t}V=R_{y}\times \ddot{a}_{y+t}$$

$$=R_y \times \left(\frac{N_{y+t}}{D_{y+t}}\right)$$

Formula cadangan premi suku bunga Vasicek memiliki formula yang sama dengan formula cadangan premi suku bunga konstan, perbedaan formula cadangan premi suku bunga tetap dan suku bunga Vasicek adalah faktor diskonto pada suku bunga tetap yaitu v^k disubsitusikan oleh P(k) suku bunga Vasicek.

ISSN: 2303-1751

Berdasarkan perhitungan cadangan premi asuransi jiwa *joint life* untuk usia peserta lakilaki 40 tahun dan perempuan 35 tahun dengan lama pembayaran premi sepuluh tahun, maka diperoleh nilai premi suku bunga tetap *Rp*. 0,1071 dan nilai premi suku bunga Vasicek *Rp*. 0,1057. Berdasarkan nilai cadangan premi yang diperoleh, cadangan premi suku bunga Vasicek secara keseluruhan lebih kecil dari pada nilai cadangan premi suku bunga tetap. Hal ini dikarenakan faktor diskonto pada suku bunga Vasicek lebih kecil dari pada suku bunga Vasicek lebih kecil dari pada suku bunga tetap, oleh karena itu suku bunga Vasicek lebih menguntungkan masyarakat daripada suku bunga tetap karena nilai preminya lebih murah.

Saran

Pada penelitian selanjutnya disarankan untuk menggunakan suku bunga stokastik model CIR, BDT, Ho-Lee dan lainnya dengan perhitungan secara prospektif.

DAFTAR PUSTAKA

- Dickson, D.C.M., Hardy, M.R. & Waters, H.R., 2009. *Actuarial Mathematics for Life Contingent Risk*. New York: Cambridge University Press. http://bookzz.org./md5/C4ADC30B53F17D
 - http://bookzz.org./md5/C4ADC30B53F17D 6B9B989D728A56DB11. Diakses 2 Maret 2017.
- Futami, T., 1994. *Matematika Asuransi Jiwa, Bagian I.* Tokyo: Oriental Life Insurance Cultural Development Center. Terjemah dari: *Seime Hoken Sugaku Gekan* ("92 Revision).
- , 1993. *Matematika Asuransi Jiwa, Bagian I.* Tokyo: Oriental Life Insurance Cultural Development Center. Terjemah dari: *Seime Hoken Sugaku Gekan* ("92 Revision).
- Matvejevs, A. & Matvejevs, A., 2001. Insurance Models for Joint Life and Last Survivor Benefit. *Informatica*, 12(4), Pp.547-558.
- Paul, Wand Baschnagel, J. 2013. Stochastic Process From Physics to Finance. London: Springer International Publishing Switzerland.
 - http://bookzz.org/md5/35B3F5BE9F00F83

- <u>D27F5DD6A68C4E902</u>. <u>Diakses 19 April</u> 2017.
- Sembiring, R.1986. *Buku Materi Pokok Asuransi I Modul 1-5*. Jakarta: Karunika.
- Soffan, R Soffan, Raden Muhamad. 2011. Perhitungan Premi Asuransi Jiwa Berjangka Menggunakan Model Stokastik Tingkat Suku Bunga. *Jurnal BIAStatistika Vol.5 No.1*, 1-10.
- Zetun, S, A, Gupta 2007, A Comparative Study of the Vasicek and the CIR Model of the Short Rate. Germany: Fraunhofer-Institut fur Techno- und Wirtschaftsmathematik.