Master IFA 1ère année

$\operatorname{TD}_{\mathbf{n}}^{\circ} 2$

Formes normales, Conséquences logiques

Exercice 1 Donnez une formule F ayant la table de vérité suivante :

p	q	r	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Exercice 2 Calculer les formes normales conjonctives et disjonctives de chacune des formules suivantes :

- 1. $\psi_1 = (p \land \neg((q \lor r) \Rightarrow p)) \lor s$
- 2. $\psi_2 = (p_1 \wedge q_1) \vee (p_2 \wedge q_2)$
- 3. $\psi_3 = \neg((p \Leftrightarrow q) \Rightarrow (r \Rightarrow s))$

Exercice 3 On considère l'ensemble de formules propositionnelles :

$$\Gamma = \{ p \lor q \lor r, p \Rightarrow q, q \Rightarrow r \}$$

- 1. Trouver un modèle de Γ . Combien y a-t-il de modèles?
- 2. Les formules $q \Rightarrow p$, p, r sont elles des conséquences logiques de Γ ?

Exercice 4 On se donne Γ un ensemble fini satisfaisable de formules, une formule φ conséquence de Γ , une formule ψ qui n'est pas une conséquence de Γ .

- 1. On ajoute une tautologie τ à Γ . Est-ce que φ et ψ sont des conséquences logiques de $\Gamma \cup \{\tau\}$? Donner une preuve formelle.
- 2. Même question si τ est une formule insatisfaisable.

Exercice 5 Démontrer :

- 1. $\Gamma \models \varphi \operatorname{ssi} \Gamma \cup \{\neg \varphi\} \models \bot$
- 2. $\Gamma \cup \{\varphi\} \models \psi \text{ ssi } \Gamma \models \varphi \Rightarrow \psi$
- 3. $\varphi \equiv \psi \operatorname{ssi} \operatorname{cons}(\varphi) = \operatorname{cons}(\psi)$

Exercice 6 Démontrer :

- 1. $\Gamma \subseteq cons(\Gamma)$
- 2. $mod(\Gamma \cup \Sigma) = mod(\Gamma) \cap mod(\Sigma)$
- 3. Si $\Gamma \subseteq \Sigma$, alors $mod(\Sigma) \subseteq mod(\Gamma)$
- 4. Si $\Gamma \models \varphi$, alors $mod(\Gamma) = mod(\Gamma \cup \{\varphi\})$
- 5. $mod(cons(\Gamma)) = mod(\Gamma)$