## Laserul

Se consideră o placă dreptunghiulară cu dimensiunile  $m \times n$ , unde m și n sînt numere naturale. Această placă trebuie tăiată în  $m \cdot n$  plăci mai mici, fiecare bucată avînd forma unui pătrat cu dimensiunile  $1 \times 1$  (*vezi desenul*). Întrucît placa este neomogenă, pentru fiecare bucată se indică densitatea  $d_{xy}$ , unde x, y sînt coordonatele colțului stînga-jos al pătratului respectiv.



Pentru operațiile de tăiere se folosește un strung cu laser. Fiecare operație de tăiere include:

- fixarea unei placi pe masa de tăiere;
- stabilirea puterii laserului în funcție de densitatea materialului de tăiat;
- o singură deplasare a laserului de-a lungul oricărei drepte paralele cu una din axele de coordonate;
  - scoaterea celor două plăci de pe masa de tăiere.

Costul unei operații de tăiere se determină după formula  $c = d_{\text{max}}$ , unde  $d_{\text{max}}$  este densitatea maximă a bucăților  $1 \times 1$  peste marginile cărora trece raza laserului. Evident, costul total T poate fi determinat adunînd costurile individuale c ale tuturor operațiilor de tăiere necesare pentru obținerea bucăților  $1 \times 1$ .

Scrieți un program care calculează costul minim *T*.

## Date de intrare.

Fişierul text LASER. IN conține pe prima linie numerele m și n separate prin spațiu. Următoarele m linii ale fișierului conțin cîte n numere naturale  $d_{xy}$  separate prin spațiu.

## Date de iesire.

Fișierul text LASER. OUT conține pe o singură linie numărul natural T.

## Exemplu.

LASER.IN LASER.OUT

3 5
1 1 1 1 5
1 7 1 1 1
1 1 6 1

**Restricții.**  $2 \le m, n \le 20; 1 \le d_{xy} \le 100$ . Timpul de execuție nu va depăși 3 secunde. Fișierul sursă va avea denumirea LASER.PAS, LASER.C, LASER.CPP. Această problemă se va nota cu 110 de puncte.