Задача Коши для обыкновенного дифференциального уравнения

Скалько Юрий Иванович **Цыбулин Иван**

Обыкновенные дифференциальные уравнения Задача Коши

Дано обыкновенное дифференциальное уравнение 1го порядка и начальное условие

$$\frac{dy(t)}{dt} = G(t, y(t))$$
$$y(0) = y_0$$

Требуется найти решение y(t) при $t \in [0, T]$

Обыкновенные дифференциальные уравнения Приближение непрерывной функции

Решением задачи коши является некоторая непрерывная функция y(t).

Поскольку вычислительная техника не может работать с произвольными непрерывными функциями, требуется упростить вид функции решения y(t).

Обыкновенные дифференциальные уравнения

Введем на отрезке [0, T], на котором решается задача Коши, сетку из точек t_n .

• Если $au = t_{n+1} - t_n$ одинаков для всех n, то сетка называется равномерной. При этом шаг сетки au является постоянным.

Обыкновенные дифференциальные уравнения Сеточная функция

Сеточная функция, в отличие от непрерывной, является элементом конечномерного пространства \mathbb{R}^n Операция получения из непрерывной функции y(t) сеточной функции \mathbf{u} называется *проецированием* и обозначается квадратными скобками.

$$u_n = y(t_n) = [y]_n$$

Обыкновенные дифференциальные уравнения Операторная запись

Задачу Коши

$$\frac{dy(t)}{dt} = G(t, y(t))$$
$$y(0) = y_0$$

можно записать в операторном виде

$$\mathcal{L}y(t) = f(t)$$

Оператор $\mathcal L$ состоит из дифференциального оператора и начального условия

$$\mathcal{L}y(t) = \left\{ egin{array}{ll} rac{dy(t)}{dt} - G(t,y(t)) \ y(0) \end{array}
ight., \quad f(t) = \left\{ egin{array}{ll} 0 \ y_0 \end{array}
ight.$$

Обыкновенные дифференциальные уравнения Разностная задача

Поскольку неизвестной функцией является теперь сеточная функция [y] необходимо переформулировать исходную задачу Коши для непрерывной функции, в некоторую, похожую, разностную задачу.

Обыкновенные дифференциальные уравнения Разностная задача

Поскольку неизвестной функцией является теперь сеточная функция [y] необходимо переформулировать исходную задачу Коши для непрерывной функции, в некоторую, похожую, разностную задачу.

По аналогии с общим видом задачи Коши

$$\mathcal{L}y(t) = f(t)$$

рассмотрим разностную задачу

$$\mathcal{L}^{ au}$$
u = g

Здесь \mathbf{u} и \mathbf{g} — сеточные функции, а $\mathcal{L}^{ au}$ — разностный оператор

Обыкновенные дифференциальные уравнения Сравнение различных задач

Допустим имеется дифференциальная задача Коши

$$\mathcal{L}y(t) = f(t)$$

и разностная задача

$$\mathcal{L}^{ au}\mathbf{u}=\mathbf{g}$$

 Как убедиться, что эти задачи действительно "похожи", и главное, что "похожи" решения этих задач?

Обыкновенные дифференциальные уравнения Сравнение различных задач

Допустим имеется дифференциальная задача Коши

$$\mathcal{L}y(t) = f(t)$$

и разностная задача

$$\mathcal{L}^{ au}\mathbf{u}=\mathbf{g}$$

- Как убедиться, что эти задачи действительно "похожи", и главное, что "похожи" решения этих задач?
- Как вообще можно сравнить между собой непрерывную функцию y(t) и сеточную функцию **u**?

Обыкновенные дифференциальные уравнения Сравнение решений

Сравнивать решения разных задач из разных пространств напрямую невозможно.

Вместо этого необходимо перевести решения в некоторое другое пространство и сравнивать уже элементы одного и того же пространства.

Обыкновенные дифференциальные уравнения Сравнение решений

Сравнивать решения разных задач из разных пространств напрямую невозможно.

Вместо этого необходимо перевести решения в некоторое другое пространство и сравнивать уже элементы одного и того же пространства.

Оказывается, удобно сравнивать решения именно в пространстве сеточных функций. Для этого необходимо перевести непрерывное решение y(t) в пространство сеточных функций. Операция проектирования как раз и служит для этого

$$y(t) \rightarrow [y]$$

Обыкновенные дифференциальные уравнения - Схолимость

Можно легко сравнить проекцию решения дифференциальной задачи $[y]_n$ и решение разностной задачи u_n .

$$\varepsilon = \|[y] - \mathbf{u}\| = \max_{n} |[y]_{n} - u_{n}|$$

При изменении шага сетки au будут получаться различные разностные задачи с различными решениями $\mathbf{u}^{(au)}$.

$$\varepsilon^{(\tau)} = \|[y] - \mathbf{u}^{(\tau)}\| = \max_{n} |[y]_n - u_n^{(\tau)}|$$

Если $\varepsilon^{(au)} o 0$ при au o 0, то говорят о *сходимости* решений разностной задачи к решению дифференциальной задачи. Если при этом $\varepsilon^{(au)} = O(au^k)$, то говорят о сходимости k-го порядка

Обыкновенные дифференциальные уравнения Пример

Рассмотрим задачу Коши

$$y' = y$$
, $y(0) = 1$, $t \in [0, T]$

и разностную задачу

$$u_{n+1}=(1+\tau)u_n, \quad u_0=1, \quad n=\overline{0,N}, \quad \tau=\frac{I}{N}$$

Решения обеих задач легко находятся: $y(t) = e^t$ и $u_n = (1+ au)^n$

$$\varepsilon^{(\tau)} = e^{T} - (1 + \tau)^{N} = e^{T} - e^{N \ln(1 + \tau)} =$$

$$= e^{T} - e^{T - \frac{T\tau}{2} + o(\tau)} = e^{T} \left(1 - e^{1 - \frac{\tau}{2} + o(\tau)} \right) = \frac{e^{T}}{2} \tau + o(\tau) = O(\tau)$$

Решение разностной задачи сходится к решению дифференциальной задачи с первым порядком

Обыкновенные дифференциальные уравнения - Сходимость

Наличие сходимости позволяет находить решение дифференциальной задачи с любой точностью, взяв в качестве решения решение разностной задачи.

Например, в примере для вычисления y(1) можно было взять u_N при достаточно большом N.

Обыкновенные дифференциальные уравнения - Сходимость

Наличие сходимости позволяет находить решение дифференциальной задачи с любой точностью, взяв в качестве решения решение разностной задачи.

Например, в примере для вычисления y(1) можно было взять u_N при достаточно большом N.

Однако, напрямую проверять сходимость бессмысленно, так как требуется иметь решение исходной дифференциальной задачи. Рассмотрим другие свойства, которые можно проверить не обладая точным решением

Обыкновенные дифференциальные уравнения - Аппроксимация

Аппроксимация показывает насколько хорошо решение дифференциальной задачи

$$\mathcal{L}y(t) = f(t)$$

удовлетворяет разностной задаче

$$\mathcal{L}^{ au}$$
u = g

Обыкновенные дифференциальные уравнения - Аппроксимация

Аппроксимация показывает насколько хорошо решение дифференциальной задачи

$$\mathcal{L}y(t) = f(t)$$

удовлетворяет разностной задаче

$$\mathcal{L}^{ au}\mathbf{u}=\mathbf{g}$$

Поскольку решение дифференциальной задачи является непрерывной функцией, а разностная задача сформулирована в терминах сеточной функции, необходимо вначале спроецировать решение y(t) на сетку, а уже после этого подставлять в разностную задачу $\mathcal{L}^{\tau}\mathbf{u}=\mathbf{g}$

Обыкновенные дифференциальные уравнения Аппроксимация

Аппроксимация показывает насколько хорошо решение дифференциальной задачи

$$\mathcal{L}y(t) = f(t)$$

удовлетворяет разностной задаче

$$\mathcal{L}^{ au}\mathbf{u}=\mathbf{g}$$

Поскольку решение дифференциальной задачи является непрерывной функцией, а разностная задача сформулирована в терминах сеточной функции, необходимо вначале спроецировать решение y(t) на сетку, а уже после этого подставлять в разностную задачу $\mathcal{L}^{\tau}\mathbf{u}=\mathbf{g}$ Поскольку, в общем случае, такая функция не обязана быть решением разностной задачи, в правой части появится невязка

$$\mathcal{L}^{\tau}[y] = \mathbf{g} + \delta \mathbf{g}$$

Обыкновенные дифференциальные уравнения Ошибка аппроксимации

$$\mathcal{L}^{\tau}[y] = \mathbf{g} + \delta \mathbf{g}$$

Величина невязки в правой части называется ошибкой аппроксимации

$$\delta \mathbf{g} = \|\delta \mathbf{g}\|$$

Если эта величина стремится к нулю при au o 0, то говорят что разностная задача *аппроксимирует* дифференциальную, а если дополнительно $\delta g = O(au^k)$, то говорят, что имеет место аппроксимация k-го порядка

Обыкновенные дифференциальные уравнения Ошибка аппроксимации

$$\mathcal{L}^{\tau}[y] = \mathbf{g} + \delta \mathbf{g}$$

Величина невязки в правой части называется ошибкой аппроксимации

$$\delta \mathbf{g} = \|\delta \mathbf{g}\|$$

Если эта величина стремится к нулю при au o 0, то говорят что разностная задача аппроксимирует дифференциальную, а если дополнительно $\delta g = O(au^k)$, то говорят, что имеет место аппроксимация k-го порядка Но исходя из определения не ясно, как найти ошибку аппроксимации не обладая точным решением y(t) или его проекцией [y]

Обыкновенные дифференциальные уравнения Нахождение ошибки аппроксимации

Выберем произвольную точку t^* . Удачный выбор точки позволит впоследствии сильно сократить объем вычислений. Разностный оператор \mathcal{L}^{τ} действуя на сеточную функцию [y], на самом деле, действует на значения $y(t_n)$. Каждое из этих значений можно представить по формуле Тейлора в виде

$$y(t_n) = y(t^*) + (t_n - t^*)y'(t^*) + \frac{(t_n - t^*)^2}{2}y''(t^*) + \dots + \frac{(t_n - t^*)^k}{k!}y^{(k)}(\xi_n)$$

Отметим, что все производные функции y(t) взяты в одной и той же точке t^* . Вспомним, что y(t) является на самом деле решением задачи Коши, поэтому

$$y'(t^*) = G(t^*, y(t^*))$$

 $y''(t^*) = G_t(t^*, y(t^*)) + G_y(t^*, y(t^*))G(t^*, y(t^*))$

Обыкновенные дифференциальные уравнения

Итак, имея представление в виде формулы Тейлора

$$y(t_n) = y(t^*) + (t_n - t^*)y'(t^*) + \frac{(t_n - t^*)^2}{2}y''(t^*) + \dots + \frac{(t_n - t^*)^k}{k!}y^{(k)}(\xi_n)$$
a takke crash

$$y'(t^*) = G(t^*, y(t^*))$$

 $y''(t^*) = G'_t(t^*, y(t^*)) + G'_y(t^*, y(t^*))G(t^*, y(t^*))$
:

можно выразить ошибку аппроксимации δg_n как

$$\delta g_n = F_0(y(t^*)) + \tau F_1(y(t^*)) + \cdots + \frac{\tau^{k-1}}{k-1!} F_{k-1}(y(t^*)) + O(\tau^k)$$

Если все функции $F_0(y), F_1(y), ..., F_k(y)$ тождественно равны нулю, то ошибка аппроксимации будет иметь порядок $O(\tau^k)$

Обыкновенные дифференциальные уравнения Пример

Рассмотрим задачу Коши

$$y' = t \sin y, \quad y(0) = 1, \quad t \in [0, T]$$

и разностную задачу

$$\frac{u_{n+1}-u_n}{\tau}=\tau\left(n+\frac{1}{2}\right)\sin\left(u_n+\frac{\tau^2n}{2}\sin u_n\right),\quad u_0=1$$

Подставим $\mathbf{u} = [y]$

$$\frac{[y]_{n+1} - [y]_n}{\tau} = \tau \left(n + \frac{1}{2}\right) \sin\left([y]_n + \frac{\tau^2 n}{2} \sin[y]_n\right) + \delta g_{n+1}$$
$$[y]_0 = 1 + \delta g_0$$

Заметим, что начальное условие является частью разностного оператора и тоже может иметь невязку!

Обыкновенные дифференциальные уравнения Пример

Задача Коши

$$y' = t \sin y$$
, $y(0) = 1$, $t \in [0, T]$

Разностная задача

$$\begin{split} &\frac{[y]_{n+1}-[y]_n}{\tau}=\tau\left(n+\frac{1}{2}\right)\sin\left([y]_n+\frac{\tau^2n}{2}\sin[y]_n\right)+\delta g_{n+1}\\ &[y]_0=1+\delta g_0 \end{split}$$

Представим $[y]_{n+1}$ в виде формулы Тейлора в окрестности точки t_n

$$[y]_{n+1} = [y]_n + \tau [y']_n + \frac{\tau^2}{2} [y'']_n + O(\tau^3)$$
$$\frac{[y]_{n+1} - [y]_n}{\tau} = [y']_n + \frac{\tau}{2} [y'']_n + O(\tau^2)$$

Обыкновенные дифференциальные уравнени. Пример

Задача Коши

$$y' = t \sin y$$
, $y(0) = 1$, $t \in [0, T]$

Разностная задача

$$\frac{[y]_{n+1} - [y]_n}{\tau} = \tau \left(n + \frac{1}{2} \right) \sin \left([y]_n + \frac{\tau^2 n}{2} \sin[y]_n \right) + \delta g_{n+1}$$
$$[y]_0 = 1 + \delta g_0$$

Воспользуемся дифференциальным уравнением

$$[y']_n = n\tau \sin[y]_n = O(1) \qquad (n = O(\tau^{-1}))$$

$$[y'']_n = \sin[y]_n + (n\tau)^2 \cos[y]_n \sin[y]_n = O(1)$$

$$\frac{[y]_{n+1} - [y]_n}{\tau} = [y']_n + \frac{\tau}{2}[y'']_n + O(\tau^2) =$$

$$= n\tau \sin[y]_n + \frac{\tau}{2} \left(\sin[y]_n + (n\tau)^2 \cos[y]_n \sin[y]_n\right) + O(\tau^2)$$

Обыкновенные дифференциальные уравнения Пример

Задача Коши

$$y' = t \sin y, \quad y(0) = 1, \quad t \in [0, T]$$

Разностная задача

$$\begin{split} &\frac{[y]_{n+1}-[y]_n}{\tau}=\tau\left(n+\frac{1}{2}\right)\sin\left([y]_n+\frac{\tau^2n}{2}\sin[y]_n\right)+\delta g_{n+1}\\ &[y]_0=1+\delta g_0 \end{split}$$

Представим правую часть в виде формулы Тейлора

$$\tau\left(n+\frac{1}{2}\right)\sin\left([y]_n+\frac{\tau^2n}{2}\sin[y]_n\right) =$$

$$=(n\tau)\sin[y]_n+\frac{\tau}{2}\sin[y]_n+\frac{\tau}{2}(n\tau)^2\cos[y]_n\sin[y]_n+O(\tau^2)$$

Обыкновенные дифференциальные уравнения Пример

Задача Коши

$$y' = t \sin y$$
, $y(0) = 1$, $t \in [0, T]$

Разностная задача

$$\begin{split} &\frac{[y]_{n+1}-[y]_n}{\tau}=\tau\left(n+\frac{1}{2}\right)\sin\left([y]_n+\frac{\tau^2n}{2}\sin[y]_n\right)+\delta g_{n+1}\\ &[y]_0=1+\delta g_0 \end{split}$$

Сравнивая разложения для правой и левой частей, получаем

$$\delta g_0 = 0$$

$$\delta g_{n+1} = O(\tau^2)$$

$$\delta g = \|\delta \mathbf{g}\| = O(\tau^2)$$

Разностная задача аппроксимирует дифференциальную со вторым порядком

Обыкновенные дифференциальные уравнения Аппроксимация

Не стоит забывать проверять аппроксимацию начальных условий. Хотя в предыдущем примере аппроксимация с любым порядком начального условия была очевидна, так бывает не всегда.

Например, изменив в разностной задаче начальное условие с

$$u_0 = 1$$

на

$$u_0 = 1 + 2\tau$$

мы бы все равно получили аппроксимирующую задачу, но порядок аппроксимации был бы уже первый, так как

$$\delta g_0 = 2\tau = O(\tau)$$
$$\delta g_{n+1} = O(\tau^2)$$
$$\delta g = ||\delta g_n|| = O(\tau)$$

Обыкновенные дифференциальные уравнения Устойчивость

При проверке аппроксимации мы убеждаемся, что решение [y] "почти" удовлетворяет задаче

$$\mathcal{L}^{\tau}\mathbf{u} = \mathbf{g}$$

Рассмотрим возмущенную задачу

$$\mathcal{L}^{\tau}\mathbf{u} = \mathbf{g} + \delta\mathbf{g}$$

Эти задачи отличаются только небольшим возмущением правой части. Если это возмущение не сильно повлияет на решение, можно утверждать, что $\mathbf{u} \approx \mathbf{v}$. Если допустить единственность решения возмущенной задачи, то

$$\mathcal{L}^{\tau}\mathbf{v} = \mathbf{g} + \delta\mathbf{g} = \mathcal{L}^{\tau}[y]$$

и $[y] = \mathbf{v}$, а следовательно и $\mathbf{u} \approx [y]$.

Обыкновенные дифференциальные уравнения Устойчивость

Введем понятие устойчивой разностной задачи. Задача

$$\mathcal{L}^{ au}\mathbf{u}=\mathbf{g}$$

называется устойчивой, если для для небольших возмущений δg_n задача

$$\mathcal{L}^{\tau}\mathbf{u} = \mathbf{g} + \delta\mathbf{g}$$

имеет единственное решение v_n , причем

$$\|\mathbf{v} - \mathbf{u}\| < C\|\delta\mathbf{g}\|$$

а константа C не зависит от au

Обыкновенные дифференциальные уравнения Теорема Рябенького-Филиппова-Лакса-...

Теорема

Пусть устойчивая с коэффициентом C разностная задача

$$\mathcal{L}^{\tau}\mathbf{u} = \mathbf{g}$$

аппроксимирует задачу

$$\mathcal{L}y(t) = f(t)$$

с ошибкой аппроксимации $\|\delta \mathbf{g}\| = \delta g < D \tau^k$. Тогда решения разностной задачи сходятся к решению дифференциальной, причем для ошибки сходимости справедлива оценка

$$\varepsilon^{(\tau)} < CD\tau^k \underset{\tau \to 0}{\longrightarrow} 0$$

Обыкновенные дифференциальные уравнения Устойчивость

Устойчивость гарантирует еще одно свойство разностной схемы: любые ошибки, возникающие при решении разностной задачи не могут неограниченно возрастать. Численные ошибки не могут возрасти более чем в C раз, причем эта константа C не меняется при уменьшении шага сетки.

Обыкновенные дифференциальные уравнения

В отличие от нахождения ошибки аппроксимации, единого способа проверки устойчивости нет.

Докажем устойчивость разностной задачи

$$\frac{\textit{u}_{\textit{n}+1}-\textit{u}_{\textit{n}}}{\tau}=\textit{G}\left(\textit{t}_{\textit{n}}+\frac{\tau}{2},\textit{u}_{\textit{n}}+\frac{\tau}{2}\textit{G}(\textit{t}_{\textit{n}},\textit{u}_{\textit{n}})\right),\quad \textit{u}_{0}=\textit{y}_{0}$$

в предположении, что по второму аргументу функция G Липшицева, то есть

$$|G(t,u)-G(t,v)|< L|u-v|$$

Введем функцию

$$F(t, u, \tau) = u + \tau G\left(t + \frac{\tau}{2}, u + \frac{\tau}{2}G(t, u)\right)$$

Обыкновенные дифференциальные уравнения

$$F(t, u, \tau) = u + \tau G\left(t + \frac{\tau}{2}, u + \frac{\tau}{2}G(t, u)\right)$$

Функция F(t,u, au) также Липшицева по u

$$|F(t,u,\tau)-F(t,v,\tau)|<|u-v|\left(1+L\tau\left(1+\frac{L\tau}{2}\right)\right)< e^{L\tau}|u-v|$$

Разностную задачу можно переписать в виде

$$u_{n+1} = F(t_n, u_n, \tau), \quad u_0 = y_0$$

При возмущении исходной задачи на $\delta {f g}$ получается задача

$$v_{n+1} = F(t_n, v_n, \tau) + \tau \delta g_{n+1}, \quad v_0 = y_0 + \delta g_0$$

Отметим множитель au перед δg_{n+1} . Он появился при умножении исходной задачи на au

Эбыкновенные дифференциальные уравнения

Устойчивость

$$|F(t, u, \tau) - F(t, v, \tau)| < e^{L\tau} |u - v|$$

 $u_{n+1} = F(t_n, u_n, \tau), \quad u_0 = y_0$
 $v_{n+1} = F(t_n, v_n, \tau) + \tau \delta g_{n+1}, \quad v_0 = y_0 + \delta g_0$

Справедлива следующая цепочка оценок

Справедлива Следующая цепочка оценок
$$|u_0-v_0|=|\delta g_0|$$

$$|u_1-v_1|=|F(t_0,u_0,\tau)-F(t_0,v_0,\tau)-\tau\delta g_1|< e^{L\tau}|\delta g_0|+\tau|\delta g_1|$$

$$|u_2-v_2|=|F(t_1,u_1,\tau)-F(t_1,v_1,\tau)-\tau\delta g_2|< e^{2L\tau}|\delta g_0|+$$

$$e^{L\tau}\tau|\delta g_1|+\tau|\delta g_2|$$

$$|u_n - v_n| < e^{nL\tau} |\delta g_0| + \frac{e^{nL\tau} - 1}{e^{L\tau} - 1} \tau \max_{n > 0} |\delta g_n|$$

$$\|u_n - v_n\| \lesssim e^{LT} |\delta g_0| + \frac{e^{LT} - 1}{L} \max_{n > 0} |\delta g_n| \leq \max \left(e^{LT}, \frac{e^{LT} - 1}{L}\right) \|\delta g\|$$

Обыкновенные дифференциальные уравнения

Для данной задачи единственность решения очевидна (все неизвестные u_n вычисляются последовательно), а константой устойчивости будет

$$\max\left(e^{CT}, \frac{e^{CT} - 1}{C}\right)$$

Заметим, что от au она не зависит. По определению, данная задача устойчива.

Спасибо за внимание!

tsybulin@crec.mipt.ru