Lecture 6 – ANOVA and Linear Models STAT/BIOF/GSAT 540

Keegan Korthauer

2020/01/22

Slides by: Gabriela Cohen Freue with contributions from Jenny Bryan and Keegan Korthauer

Are these genes truly different in NrIKO compared to WT?

H₀: the expression level of gene A is the same in both conditions.

Is there **enough** evidence in the data to reject H₀?

Statistics: use a random sample to learn about the population

Population (unknown)

$$Y \sim F$$

 $Z \sim G$

$$E[Y] = \mu_Y$$

$$E[Z] = \mu_Z$$

Sample

(observed with randomness)

$$Y_1, Y_2, \ldots, Y_{n_Y}$$

$$Z_1, Z_2, \ldots, Z_{n_Z}$$

$$\hat{\mu}_Y = \bar{Y} = \frac{\sum_{i=1}^{n_Y} Y_i}{n_Y}$$

$$\hat{\mu}_Z = \bar{Z} = \frac{\sum_{i=1}^{n_Z} Z_i}{n_Z}$$

Last class: hypothesis testing

- 1. Define a test statistic to test
 - 2-sample *t*-test
 - Welch *t*-test
 - Wilcoxon rank-sum test
 - Kolmogorov-Smirnov test
- 2. Compute the observed value for the test statistic
- 3. Compute the probability of seeing a test statistic as extreme as that observed, under the null sampling distribution (p-value)
- 4. Make a decision about the significance of the results, based on a pre-specified value (alpha, significance level)

We can run these tests in R

Example: use the t.test function to test using a classical 2-sample *t*-test.

```
miniDat %>% subset(gene == "Irs4") %>% t.test(gExp ~ gType, data = .,
    var.equal = TRUE)
##
##
      Two Sample t-test
##
## data: gExp by gType
## t = -0.52865, df = 37, p-value = 0.6002
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.12597002 0.07383844
## sample estimates:
## mean in group NrlKO mean in group wt
##
             7,739684
                                  7,765750
```

Today...

- show how to compare means of different groups (2 or more) using a linear regression model
 - dummy variables to model the levels of a qualitative explanatory variable
- write a linear model using matrix notation
 - understand which matrix is built by R
- distinguish between conditional and marginal effects
 - -tests vs -tests

```
> t.test(gExp ~ gType, miniDat,
+ subset = gene == "Irs4", var.equal = TRUE)
```

two sample t test

```
H_0: \mu_1 = \mu_2
```

```
> summary(aov(gExp ~ gType, miniDat,
+ subset = gene == "Irs4"))
```

(one-way) analysis of variance "ANOVA"

```
> summary(lm(gExp ~ gType, miniDat,
+ subset = gene == "Irs4"))
```

linear model linear regression

It seems that we can use any of these methods to test

<snip, snip>

Coefficients:

```
> t.test(qExp ~ qType, miniDat,
         subset = gene == "Irs4", var.equal = TRUE)
    Two Sample t-test
                                                    Irs4 gene
data: gExp by gType
t = 0.5286, df = 37, p-value = 0.6002
                                                               mean = 7.74
                                               NrlKO -
<snip, snip>
sample estimates:
   mean in group wt mean in group NrlKO
                                                                mean = 7.77
           7.765750
                                7.739684
                                                  wt -
> summary(aov(gExp ~ gType, miniDat,
              subset = gene == "Irs4"))
                                                            7.6
                                                                    7.8
                                                                             8.0
                                                     7.4
            Df Sum Sq Mean Sq F value Pr(>F)
                                                                  gExp
qType 1 0.0066 0.00662
                                 0.279
                                                      7.739684 - 7.765750 = -0.026066
Residuals 37 0.8764 0.02369
                                                      -0.5286494 ^ 2 = 0.2794702
> summary(lm(qExp ~ qType, miniDat,
             subset = gene == "Irs4"))
+
```

t-test *vs* linear regression: why the same results?

```
irs4Dat <- subset(miniDat,gene=="Irs4")</pre>
ttest.irs4<-t.test(gExp ~ gType, irs4Dat, var.equal = TRUE)</pre>
list("t value"=ttest.irs4$stat,"p-value"=ttest.irs4$p.value)
## $t value
##
## -0.5286494
##
## $p-value
## [1] 0.6002058
lm.irs4 <- summary(lm(gExp ~ gType, irs4Dat))</pre>
list("t value"=lm.irs4$coeff[2,3],"p-value"=lm.irs4$coeff[2,4])
## $t value
## [1] 0.5286494
##
## $p-value
## [1] 0.6002058
```

t-test *vs* linear regression: where's the line?

Note that the -axis in these plots is not numerical, thus a line in this space does not have any mathematical meaning.

Why can we run a -test with a linear regression model?

From *t*-test to linear regression

Let's change the notation to give a common framework to all methods

 \downarrow

We can use a subindeces to distinguish observations from each group, i.e.,

where each group

or

identifies the groups; and

identifies the observations within

For example:

is the first observation in group 1 or WT

The goal is to test

using data from the model

```
where or ; and .

For simplicity, we assume a common distribution for all groups
```

Note that the population means are given by means - - parametrization

, i.e., the model is written with a cell-

Note that for each group, the population mean is given by

A natural **estimator** of the population mean is the **sample mean**

Classical hypothesis testing methods use the group sample means as estimators

7,765750

See, for example, the t.test function in R:

7.739684

##

```
## mean in group NrlKO mean in group wt
```

However, the \tag{Tm function reports other estimates, why?

```
(means.irs4 <- as.data.frame(irs4Dat %>% group_by(gType) %>%
    summarize(meanGroups = mean(gExp, digits = 6))))
    gType meanGroups
## 1 NrlKO 7.739684
## 2
       wt 7,765750
lm.irs4$coefficients[,1]
## (Intercept) gTypewt
## 7.73968421 0.02606579
(Intercept) is the sample mean of NrlKO group
                                                  but gTypewt is not the sample mean of the WT
                                                  group
```

Parametrizations: which parameters we use to write the model?

By default, the lm does not use the cell-means parametrization The goal is to *compare* the means, not to study each in isolation

From **cell-means** - :

to reference-treatment effect -

Note that for each group, the population mean is given by

and

compares the means

Relation between parametrizations

16 / 46

Im reports the sample mean of the reference group (NrIKO):

and the treatment effect, i.e., difference between the sample means of both groups:

```
lm.irs4$coefficients[, 1]

## (Intercept) gTypewt
## 7.73968421 0.02606579

data.frame(meanWT = means.irs4[1, 2],
    meanDiff = diff(means.irs4$meanGroups))

## meanWT meanDiff
## 1 7.739684 0.02606579
```

We still haven't answered ... where's the line??

Dummy variables

Let's re-write our model using dummy (or indicator) variables:

 \downarrow

```
Note that , because and and , because (for all )

The second form is written as a linear ( ) regression, with a special (dummy) explanatory variable
```

Using a dummy variables to model our categorical variables gtype we can perform a 2-sample *t*-test with a linear model

```
list("t value"=ttest.irs4$stat,"p-value"=ttest.irs4$p.value)
## $t value
##
## -0.5286494
##
## $p-value
## [1] 0.6002058
list("t value"=lm.irs4$coeff[2,3],"p-value"=lm.irs4$coeff[2,4])
## $t value
## [1] 0.5286494
##
## $p-value
  [1] 0.6002058
```

Beyond 2-groups comparisons: difference of means

"cell-means"

$$Y_{ij} = \mu_j + \varepsilon_{ij}$$

"reference-treatments"

$$Y_{ij} = \theta + \tau_j + \varepsilon_{ij}, (\tau_1 = 0)$$

More than 2 groups!

Dummy variables can be used to model one *or more* categorical variables with 2 *or more* levels!

2-sample *t*-test using a linear model

1-way ANOVA with many levels using a linear model

This is why R can estimate all of them with lm()

in general, yet another parametrization is used to present ANOVA

t-test

Special case of ANOVA, but with ANOVA you can compare **more than two groups** and **more than one factor**.

ANOVA

Special case of linear regression, but with linear regression you can include **quantitative** variables in the model.

Linear regression

Provides a unifying framework to model the association between a response **many quantitative** and qualitative variables.

In R: all can be computed using the lm () function.

Linear models using matrix notation

It will become handy to write our model using matrix notation

Let's form an matrix for a 3-groups comparison:

Note that and become the 2nd and 3rd columns of : group; and for the 3rd group

for the reference group;

for the 2nd

$$Y_{ij} = \theta + \tau_2 \times x_{ij2} + \tau_3 \times x_{ij3} + \varepsilon_{ij}$$

$$\begin{bmatrix} Y_{11} \\ \vdots \\ Y_{n_{1}1} \\ Y_{12} \\ \vdots \\ Y_{n_{2}2} \\ Y_{13} \\ \vdots \\ Y_{n_{3}3} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 0 \\ 1 & 1 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} \theta \\ \tau_{2} \\ \tau_{3} \end{bmatrix} \end{bmatrix} + \begin{bmatrix} \varepsilon_{11} \\ \vdots \\ \varepsilon_{n_{1}1} \\ \varepsilon_{12} \\ \vdots \\ \varepsilon_{n_{2}2} \\ \varepsilon_{13} \\ \vdots \\ \varepsilon_{n_{3}3} \end{bmatrix}$$

Note that

Note that

Note that

Which is the same as

Which is the same as

Note that the model is still written with a reference-treatment parametrization (difference of means)

Linear regression can include quantitative & qualitative covariates.

$$Y = X\alpha + \varepsilon$$

This gives us a VERY FLEXIBLE framework!!

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ \vdots & \vdots & \vdots \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ \vdots & \vdots & \vdots \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1.22 \\ 1 & 2.02 \\ 1 & 1.42 \\ \vdots & \vdots \\ 1 & 1.89 \\ 1 & 2.01 \\ \vdots & \vdots \\ 1 & 1.56 \\ 1 & 2.17 \\ 1 & 1.51 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 1.22 & 0 \\ 1 & 0 & 2.02 & 0 \\ 1 & 0 & 1.42 & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 0 & 1.89 & 0 \\ 1 & 1 & 2.01 & 2.01 \\ \vdots & \vdots & \vdots & \vdots \\ 1 & 1 & 1.56 & 1.56 \\ 1 & 1 & 2.17 & 2.17 \\ 1 & 1 & 1.51 & 1.51 \end{bmatrix}$$

1 categorical covariate

2 categorical covariates

1 continuous covariate 1 continuous 1 categorical

AND MANY MORE

Tip: ?model.matrix

Linear in the parameters : can contain , , etc.

How it works in practice using Im() in R

```
lm(y ~ x, data = yourData)

y ~ x: formula,
y numeric,

yourData: data.frame in which x and y are
to be found (optional but recommended)

y ~ x: formula,
y numeric,
y ourData: data.frame in which x and y are
to be found (optional but recommended)
```

By default, R uses a ref-tx parametrization but you can control that!

x numeric and/or factor

- Mathematically, is a numeric matrix
- If your data contains categorical variables (e.g., gType), you need to set them as **factors**
- R creates appropriate dummy variables for factors!

```
str(irs4Dat$gType)
```

```
## Factor w/ 2 levels "NrlKO","wt": 2 2 2 2 1 1 1 2 2 2 ...
```

Under the hood, R creates a numeric :

```
data.frame(X = model.matrix(gExp ~ gType, irs4Dat),
    gType = irs4Dat$gType) %>% head(10)

## X..Intercept. X.gTypewt gType
## 1 1 1 wt
```

Beyond 2-group comparisons in our case study:

Is the expression of gene A the same at all developmental stages?

Note: 4W = 4_weeks

The sample means:

```
with(devDat, tapply(gExp, list(devStage, gene), mean))
```

```
## E16 7.544143 5.540857
## P2 7.583500 5.844875
## P6 7.554000 5.784250
## P10 7.571000 6.375125
## 4_weeks 7.559000 9.173375
```


"theHit" with significant time ("treatment") effect

"theHit" with significant time ("treatment") effect

Can you guess the size of the matrix??

How many dummy variables do we need?

"theHit" with significant time ("treatment") effect

We need 4 dummy variables to estimate and test 4 time differences:

```
: P2 vs E16, : P6 vs E16, : P10 vs E16, : 4W vs E16)
```

Mathematically:

Notation: , where is an index for the observation, for the level of devStage, and for the name of the dummy variable

Under the hood, R creates a numeric :

```
X.matrix <- data.frame(X = model.matrix(gExp ~ devStage, irs4Dat),
    devStage = irs4Dat$devStage)</pre>
```

```
##
      X..Intercept. X.dStP2 X.dStP6 X.dStP10 X.dS4W
## 1
                                                     0 E16
                           0
## 2
                                                     0 E16
                           0
## 3
                           0
                                                     0 E16
## 4
                                                     0 E16
                           0
## 5
                                                     0 E16
                           0
## 6
                                                     0 E16
                           0
## 7
                                                     0 E16
                           0
## 8
                                                     0 P2
## 9
                                                     0 P2
## 10
                                                       P2
## 11
                                                        P2
                                                     0 P2
## 12
## 13
                                                        P2
## 14
                                                        P2
## 15
                                                        P2
## 16
                                                        P6
                           0
```

Note: column names changed and first 16 rows displayed to fit output in the page (code hidden)

```
summary(lm(gExp~devStage,subset(devDat,gene=="theHit")))$coeff
##
                   Estimate Std. Error
                                         t value
                                                     Pr(>|t|)
  (Intercept)
                  5.5408571 0.1021381 54.248698 1.307554e-34
## devStageP2
                  0.3040179 0.1398583 2.173756 3.678022e-02
## devStageP6 0.2433929 0.1398583 1.740282 9.085489e-02
## devStageP10
                  0.8342679 0.1398583 5.965093 9.559065e-07
## devStage4 weeks 3.6325179 0.1398583 25.972843 5.266481e-24
means.dev %>% mutate(txEffects=cellMeans-cellMeans[1])
    devStage cellMeans txEffects
##
## 1
         E16 5.540857 0.0000000
## 2
          P2 5.844875 0.3040179
## 3
          P6 5.784250 0.2433929
## 4
         P10 6.375125 0.8342679
## 5
     4 weeks 9.173375 3.6325179
```

Estimate:

or

we are not usually interested in testing this hypothesis

```
summary(lm(gExp~devStage,subset(devDat,gene=="theHit")))$coeff
##
                   Estimate Std. Error
                                                     Pr(>|t|)
                                         t value
  (Intercept)
                  5.5408571 0.1021381 54.248698 1.307554e-34
## devStageP2
                  0.3040179 0.1398583 2.173756 3.678022e-02
## devStageP6 0.2433929 0.1398583 1.740282 9.085489e-02
## devStageP10
                  0.8342679 0.1398583 5.965093 9.559065e-07
## devStage4 weeks 3.6325179 0.1398583 25.972843 5.266481e-24
means.dev %>% mutate(txEffects=cellMeans-cellMeans[1])
##
     devStage cellMeans txEffects
## 1
         E16 5.540857 0.0000000
## 2
          P2 5.844875 0.3040179
## 3
          P6 5.784250 0.2433929
## 4
         P10 6.375125 0.8342679
     4 weeks 9.173375 3.6325179
## 5
```

Estimate:

we *are* usually interested in testing this hypothesis: first 2 days after birth

or

```
summary(lm(gExp~devStage,subset(devDat,gene=="theHit")))$coeff
##
                   Estimate Std. Error t value
                                                    Pr(>|t|)
  (Intercept)
                  5.5408571 0.1021381 54.248698 1.307554e-34
## devStageP2
                  0.3040179 0.1398583 2.173756 3.678022e-02
## devStageP6 0.2433929 0.1398583 1.740282 9.085489e-02
## devStageP10
              0.8342679 0.1398583 5.965093 9.559065e-07
## devStage4 weeks 3.6325179 0.1398583 25.972843 5.266481e-24
means.dev %>% mutate(txEffects=cellMeans-cellMeans[1])
    devStage cellMeans txEffects
##
## 1
         E16 5.540857 0.0000000
## 2
         P2 5.844875 0.3040179
## 3
     P6 5.784250 0.2433929
## 4
         P10 6.375125 0.8342679
## 5 4 weeks 9.173375 3.6325179
```

Estimate:

or

we *are* usually interested in testing this hypothesis: 4 weeks after birth

We generally test two types of null hypotheses:

VS

VS

for each *j* individually

e.g., Is gene A differencially expressed 2 days after birth?

for all *j* at the same time

e.g., Is gene A significantly affected by time (devStage)?

Two types of null hypotheses in R:

$$Y = X\alpha + \varepsilon$$
 $\alpha = (\theta, \tau_{P2}, \tau_{P6}, \tau_{P10}, \tau_{4 \text{ weeks}})$

```
H_0: \tau_j = 0
vs H_0: \tau_j \neq 0 for each j individually
```

```
H_0: 	au_j = 0 AND statement vs H_0: 	au_j \neq 0 OR statement for all j at the same time
```

```
> summary(hitFit)
Call:
lm(formula = gExp ~ devStage, <blah, blah>)
<snip, snip>
Coefficients:
               Estimate Std. Error t value Pr(>|t|)
                           0.1021 54.249 < 2e-16 ***
                 5.5409
(Intercept)
                0.3040
                           0.1399 2.174 0.0368 *
devStageP2
                0.2434 0.1399 1.740 0.0909 .
devStageP6
           0.8343
                           0.1399 5.965 9.56e-07 ***
devStageP10
                           0.1399 25.973 < 2e-16 ***
devStage4 weeks 3.6325
<snip, snip>
F-statistic: 243.4 on 4 and 34 DF, p-value: < 2.2e-16
```

F-test and overall significance of one or more covariates

• the *t*-test in linear regression allows us to test single hypotheses:

• but we often like to test multiple hypotheses *simultaneously*:

the *F*-test allows us to test such compound tests

To conclude

- we can use different parametrizations to write statistical models

```
From cell-means - :

to reference-treatment effect - : (used by default by lm)
```

- we can compare group means (2 or more) using a linear model
 - dummy variables (e.g.,) to model the levels of a qualitative explanatory variables

• qualitative variables need to be set as "factors" in the data --> R creates the dummy variables

- we can write a linear model using matrix notation:

- Linear model can include quantitative & qualitative covariates.

- distinguish between single and joint hypotheses:
 - -tests vs -tests