Álgebra Linear

É o estudo relacionado a funções lineares que se associam em vetores, matrizes, determinantes buscando a resolução do valor de cada variável x, y, z, etc que pode ser adotado com x_1 , x_2 ,..., x_n para determinar o valor de cada variável que torne a equação verdadeira, achando as suas raízes.

Os sistemas lineares são montados a partir de situações práticas em que se deseja conhecer os valores que possibilitem maximizar ou minimizar os custos, produções, demandas em determinadas áreas da indústria, comércio, saúde, economia e muitos outros.

Utilizando algoritmos ou métodos específicos para resolução das variáveis.

Exemplo

Max Z = 1000x + 1300y função pretendida para maximizar o lucro no plantio.

$$Sujeito \ a: \begin{cases} 4x+2y+z+w=28-equação-de-restrição-de-agua-para-plantio\\ 2x+3y+4z+5w=24-equação-de-restrição-de-sementes-para-plantio\\ x\geq 0; y\geq 0 \end{cases}$$

Contendo inúmeras linhas e colunas.

EQUAÇÕES LINEARES

$$a_{11} x_1 + a_{12} x_2 + a_{13} x_3 + \dots + a_{1n} x_n = b_1$$

$$a_{21} x_1 + a_{22} x_2 + a_{23} x_3 + \dots + a_{2n} x_n = b_2$$

$$a_{31} x_1 + a_{32} x_2 + a_{33} x_3 + \dots + a_{3n} x_n = b_3$$

$$a_{m1} x_1 + a_{m2} x_2 + a_{m3} x_3 + \dots + a_{mn} x_n = b_m$$

Equações Lineares

As equações do tipo $a_1x_1 + a_2x_2 + a_3x_3 + \dots + a_nx_n = b$, são equações lineares, onde a_1 , a_2 , a_3 , ... são os coeficientes; x_1 , x_2 , x_3 ,... as incógnitas e b o termo independente.

A equação 4x - 3y + 5z = 31 é uma equação linear.

Os coeficientes são 4, -3 e 5; x, y e z as incógnitas e 31 o termo independente. Para x = 2, y = 4 e z = 7, temos

Para
$$x = 1$$
, $y = 0$ e $z = 3$, temos

$$4x - 3y + 5z = 31$$
.

4x - 3y + 5z = 31.

Dizemos que o conjunto de equações lineares forma um sistema linear.

Exemplos

$$2x + 3y = 10$$

$$x - 5y = 2$$

Sistema linear com duas equações e duas incógnitas.

$$5x - 6y - 2z = 15$$

$$9x - 10y + 5z = 20$$

Sistema linear com duas equações e três incógnitas.

$$x + 9y + 6z = 20$$

$$3x - 10y - 12z = 5$$

$$-x + y + z = 23$$

Sistema linear com três equações e três incógnitas.

$$x + y + z + w = 36$$

$$2x - y + 2z + 9w = 40$$

$$-5x + 3y - 5z + 5w = 16$$

Sistema linear com três equações e quatro incógnitas.

O sistema linear abaixo admite o terno ordenado (1, 2, 3) como solução.

$$x + 2y - z = 2$$

$$2x - y + z = 3$$

$$x + y + z = 6$$

No entanto, ele não admite como solução o terno ordenado (1, 2, 4).

Classificação dos sistemas lineares

Qualquer sistema linear pode ser classificado quanto ao número de soluções. Lembrando que um sistema linear é o conjunto de equações lineares.

Podemos classificar os sistemas lineares da seguinte forma:

SPD – Sistema Possível e Determinado SPI – Sistema Possível e Indeterminado SI – Sistema Impossível

Sistema Possível e Determinado

Dado o par ordenado (2, 3) e o sistema a seguir:

$$x + y = 5$$

$$4x - 2y = 2$$

classificamos como SPD.

Sistema Possível e Indeterminado

SPI é um sistema que possui infinitas soluções. :

$$x - y + z = 2$$
$$4x - 4y + 4z = 8$$

classificamos como SPI. Algumas soluções possíveis: (1, 1, 2), (0, 2, 4), (1, 0, 1),...

Sistema Impossível

SI é um sistema impossível de se resolver, ele não apresenta soluções. Observe:

$$3x - 3y = -9$$
$$3x - 3y = 15$$

classificamos como SI.

Equivalência de sistemas lineares

Quando se estuda sistemas lineares, é calcular o conjunto que soluciona determinado sistema linear. Na matemática o termo "equivalência, equivalente" é a comparação de elementos iguais, elementos equivalentes.

A importância deste conjunto solução, é que temos o estudo sobre a equivalência de sistemas, que trata sobre um sistema com equações diferentes, mas sendo solucionados por um mesmo conjunto de soluções.

Dizemos que dois sistemas são equivalentes quando estes possuem o mesmo conjunto solução. Vejamos um exemplo:

$$\begin{cases} x+y=5\\ 2x-3y=0 \end{cases} O \ conjunto \ solução \ deste \ sistema \ \'e \ S = \{(3,2)\}$$

$$\begin{cases} 3x+2y=13\\ x-y=1 \end{cases} O \ conjunto \ solução \ deste \ sistema \ \'e \ S = \{(3,2)\}$$

Note que os dois sistemas possuem o mesmo conjunto solução, portanto podemos afirmar que estes são sistemas equivalentes.

No exemplo foi informado, previamente, qual era o conjunto solução dos sistemas, mas sabemos bem que na prática isso não ocorre.

Sendo assim, para sabermos se dois sistemas são equivalentes, deverá ser encontrado o conjunto solução de cada sistema e verificar se eles são iguais, se forem, os sistemas são equivalentes.

Escalonamento de Sistemas

Um sistema linear pode ser resolvido através do método da substituição ou pelo método de Cramer, com o auxilio da regra de Sarrus.

Mas temos várias formas de resolver e determinar os valores das incógnitas de um sistema de equações lineares.

Vamos resolver pelo escalonamento de um sistema na forma de matriz completa dos coeficientes.

$$\begin{cases} 2x + y + z = 8 \\ x + y + 4z = 15 \\ 3y + 2z = 9 \end{cases}$$

Dado o sistema de equações , vamos escrevê-lo na forma de uma matriz completa dos coeficientes.

$$\begin{vmatrix} 2 & 1 & 1 & 8 & L_1 \\ 1 & 1 & 4 & 15 & L_2 \\ 0 & 3 & 2 & 9 & L_3 \end{vmatrix}$$

Vamos escolher a melhor forma de simplificação, para zerar o primeiro número.

Vamos subtrair os elementos da linha

Temos que zerar alguns elementos da matriz e, respectivamente, coeficientes do sistema de equações. Escalonando a matriz, na forma de uma escada: