Example. Let X be a partial ordered set. That is there exists a binary relation \leq on X that fulfills:

- (1) if $a \le b$ and $b \le c$ then $a \le c$
- (2) if $a \le b$ and $b \le a$ then a = b
- (3) $a \leq a$

We can define a category by taking as objects all elements from X and as morphisms all relations of the form $a \leq b$ for any $a, b \in X$. That means, the set Hom(a, b) is either empty or consists of the only morphism $a \leq b$.

By (1) associativity is trivially satisfied for the composition. Moreover, (3) ensures the existence of the identity map: $id_a = a \le a$.

For a product $a \times b$ the following necessarily would have to be fulfilled: For any x with $x \leq a$ and $x \leq b$

$$x \le a \times b$$

Projections must fulfill

$$a \times b \le a$$

and

$$a \times b \le b$$

Altogether, these statements are equivalent of $a \times b$ being the largest lower bound of a and b.

This is an interesting example, where the product directly presents a known concept of partial orders.