# **Performance Analysis**

Kuan-Yu Chen (陳冠宇)

2018/09/17 @ TR-212, NTUST

#### Review

- Algorithm and Program
- Recursive Functions
  - Direct
  - Indirect
  - Tail
  - Compared with non-recursive functions

# **Space and Time Complexities**

- There are many criteria upon which we can judge a program/algorithm
  - Does it do what we want it to do?
  - Dos it work correctly?
  - Is there documentation for the program/algorithm?
  - Is the code readable?
- A reasonable way is to judge programs by considering their computing time and storage requirements

**Definition:** The *space complexity* of a program is the amount of memory it needs to run to completion. The *time complexity* of a program is the amount of computer time it needs to run to completion.  $\Box$ 

# Hard to Imagine?





#### 技嘉 AORUS GTX 1080Ti 11G 顯示卡

◆ 顯示晶片: NVIDIA GeForce GTX 1080 Ti

◆ 記憶體: 11GB GDDR5X

◆ 核心時脈: 1569 MHz

◆ 記憶體時脈: 11010 MHz

◆ 記憶體介面: 352-bit

◆ 最高解析度:7680x4320

◆ 輸出端子: 3x DP / 3x HDMI / DVI

◆ 電源連結器: 2x 8-pin

◆ 體積(長x寬x高): 29.3 x 14.2 x 5.5cm



#### ▼贈TOSHIBA 64GB 隨身碟▼

#### ▼頂級日製商務機●新上市▼

Fujitsu 富士通LIFEBOOK S937-PB722黑 ★第七代Core i7-7500U+512GB SSD+掌靜脈辨 識器

處理器:第七代Intel® Core™ i7-7500U

• 螢幕:13.3"高解析FHD防眩光護眼螢幕

• (解析度1920 x 1080)

• 記憶體: 24GB DDR4 2133MHz

硬碟: 512GB SATAIII M.2 SSD

作業系統: Windows 10 Pro 64bits

• USB3.1 x3 (Gen 1; 關機充電技術x1);

• HDMI x1; VGA x1; 擴充底座介面

• 內建富士通專利掌靜脈辨識器

• 起始重量1.13kg起

| 3期0利率  | <u>32家</u> | 18期0利率 | <u>17家</u> |
|--------|------------|--------|------------|
| 6期0利率  | <u>32家</u> | 24期0利率 | <u>15家</u> |
| 10期0利率 | <u>27家</u> | 30期0利率 | <u>3家</u>  |
| 12期0利率 | <u>11家</u> | 12期 分期 | <u>7家</u>  |

建議售價 \$79999

網路價\$78800

VISA 😂 🗱 🚾 ATM 說明

信用卡紅利折抵刷卡金 多家銀行

PChome儲值

LINE Pay Pay

完售,諸參考其他商品

# **Space Complexity**

- The space analysis can be classified into two parts
  - Fixed part
    - The instruction space, space for simple variables, space for constants, etc
  - Variable part
    - Space needed by referenced variables
    - The recursion stack space
- The space requirement S(P) of a program P can be defined

$$S(P) = c + S_p$$
fixed part variable part
usually a constant depend on the task

– We usually concentrate on  $S_p$ 

# **Recursion Stack Space.**

• Given an Ackerman's function A(m, n), please calculate A(1,2).

$$A(m,n) = \begin{cases} n+1, & if \ m=0 \\ A(m-1,1), & if \ n=0 \\ A(m-1,A(m,n-1)), & otherwise \end{cases}$$

$$A(1,2) = A(0,A(1,1))$$

$$A(1,1) = A(0,A(1,0))$$

$$A(1,0) = A(0,1)$$

$$A(0,1) = 2$$



# **Recursion Stack Space..**

• Given an Ackerman's function A(m, n), please calculate A(1,2).

$$A(m,n) = \begin{cases} n+1, & if \ m=0 \\ A(m-1,1), & if \ n=0 \\ A(m-1,A(m,n-1)), & otherwise \end{cases}$$

$$A(1,2) = A(0,A(1,1)) = A(0,3) = 4$$

$$A(1,1) = A(0,A(1,0)) = A(0,2) = 3$$

$$A(1,0) = A(0,1) = 2$$

$$A(0,1) = 2$$

# **Recursion Stack Space...**

• Given an Ackerman's function A(m, n), please calculate A(1,2).

$$A(m,n) = \begin{cases} n+1, & if \ m=0 \\ A(m-1,1), & if \ n=0 \\ A(m-1,A(m,n-1)), & otherwise \end{cases}$$

$$A(1,2) = A(0,A(1,1))$$

$$A(1,1) = A(0,A(1,0))$$

$$A(1,0) = A(0,1)$$

$$A(0,1) = 2$$



A(1,1)

A(1,2)

#### **Recursion Stack Space....**

• Given an Ackerman's function A(m, n), please calculate A(1,2).

$$A(m,n) = \begin{cases} n+1, & if \ m=0 \\ A(m-1,1), & if \ n=0 \\ A(m-1,A(m,n-1)), & otherwise \end{cases}$$

$$A(1,2) = A(0,A(1,1)) = A(0,3) = 4$$

$$A(1,1) = A(0,A(1,0)) = A(0,2) = 3$$

$$A(1,0) = A(0,1) = 2$$

$$A(0,1) = 2$$



# **Time Complexity**

- The time, T(P), taken by a program P is the sum of the **compile time** and the **run (execution) time** 
  - We mainly concentrate on the run time of a program

$$T(P) = c + T_p$$
compile time run time

- There are two ways to determine the run time
  - Measurement
     Execute the program

Record the CPU time

• Analysis

Count only the number of program steps

Count the number of instructions

# **Examples**

• How many times does the function *call\_fun()* execute?

$$\sum_{n=1}^{n} (a^2 - a) = \sum_{n=1}^{n} a^2 - \sum_{n=1}^{n} a = \frac{n(n+1)(2n+1)}{6} - \frac{n(n+1)}{2} = \frac{n(n+1)(n-1)}{3}$$

$$\sum_{n=1}^{n} a^2 = 1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$$

# **Asymptotic Notations**

 We introduce some terminology that will enable is to make meaningful but inexact statements about the time and space complexities of a program

**Definition** [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and  $n_0$  such that  $f(n) \le cg(n)$  for all  $n, n \ge n_0$ .  $\square$ 

**Definition:** [Omega]  $f(n) = \Omega(g(n))$  (read as "f of n is omega of g of n") iff there exist positive constants c and  $n_0$  such that  $f(n) \ge cg(n)$  for all  $n, n \ge n_0$ .  $\square$ 

**Definition:** [Theta]  $f(n) = \Theta(g(n))$  (read as "f of n is theta of g of n") iff there exist positive constants  $c_1, c_2$ , and  $n_0$  such that  $c_1g(n) \le f(n) \le c_2g(n)$  for all  $n, n \ge n_0$ .  $\square$ 

**Definition** [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and  $n_0$  such that  $f(n) \le cg(n)$  for all  $n, n \ge n_0$ .  $\square$ 

• f(n) = O(g(n)) means that  $c \times g(n)$  is an **upper bound** on the value of f(n) for all n, where  $n \ge n_0$ 

**Definition** [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and  $n_0$  such that  $f(n) \le cg(n)$  for all  $n, n \ge n_0$ .  $\square$ 

• f(n) = O(g(n)) means that  $c \times g(n)$  is an **upper bound** on the value of f(n) for all n, where  $n \ge n_0$ 

**Definition** [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and  $n_0$  such that  $f(n) \le cg(n)$  for all  $n, n \ge n_0$ .  $\square$ 

• f(n) = O(g(n)) means that  $c \times g(n)$  is an **upper bound** on the value of f(n) for all n, where  $n \ge n_0$ 

**Definition** [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and  $n_0$  such that  $f(n) \le cg(n)$  for all  $n, n \ge n_0$ .  $\square$ 

• f(n) = O(g(n)) means that  $c \times g(n)$  is an **upper bound** on the value of f(n) for all n, where  $n \ge n_0$ 

**Definition** [Big "oh"]: f(n) = O(g(n)) (read as "f of n is big oh of g of n") iff (if and only if) there exist positive constants c and  $n_0$  such that  $f(n) \le cg(n)$  for all  $n, n \ge n_0$ .  $\square$ 

• f(n) = O(g(n)) means that  $c \times g(n)$  is an **upper bound** on the value of f(n) for all n, where  $n \ge n_0$ 

- For the statement f(n) = O(g(n)) to be **informative**, g(n) should be as small a function of n as one can come up with
  - -3n + 3 = 0(n) vs.  $3n + 3 = 0(n^2)$
- Fantastic names
  - O(1) mean a computing time that is a constant
  - O(n) is called linear
  - $O(n^2)$  is called quadratic
  - $O(n^3)$  is called cubic
  - $O(2^n)$  is called exponential
- Ordering
  - $0(1) < 0(\log n) < 0(n) < 0(n\log n) < 0(n^2) < 0(n^3) < 0(2^n)$

#### Big-Oh...

•  $0(1) < 0(\log n) < 0(n) < 0(n\log n) < 0(n^2) < 0(n^3) < 0(n^c) < 0(2^n) < 0(3^n) < 0(c^n) < 0(n!) < 0(n^n) < 0(n^c)^n$ 



**Definition:** [Omega]  $f(n) = \Omega(g(n))$  (read as "f of n is omega of g of n") iff there exist positive constants c and  $n_0$  such that  $f(n) \ge cg(n)$  for all  $n, n \ge n_0$ .  $\square$ 

• The function g(n) is a lower bound on f(n)

- For the statement  $f(n) = \Omega(g(n))$  to be informative, g(n) should be as large a function of n as possible
  - $-3n + 3 = \Omega(n)$  vs.  $3n + 3 = \Omega(1)$
  - $-6 \times 2^{n} + n^{2} = \Omega(2^{n}) \text{ vs. } 6 \times 2^{n} + n^{2} = \Omega(1)$

**Definition:** [Omega]  $f(n) = \Omega(g(n))$  (read as "f of n is omega of g of n") iff there exist positive constants c and  $n_0$  such that  $f(n) \ge cg(n)$  for all  $n, n \ge n_0$ .  $\square$ 

• The function g(n) is a lower bound on f(n)

- For the statement  $f(n) = \Omega(g(n))$  to be informative, g(n) should be as large a function of n as possible
  - $-3n + 3 = \Omega(n)$  vs.  $3n + 3 = \Omega(1)$
  - $-6 \times 2^{n} + n^{2} = \Omega(2^{n}) \text{ vs. } 6 \times 2^{n} + n^{2} = \Omega(1)$

**Definition:** [Omega]  $f(n) = \Omega(g(n))$  (read as "f of n is omega of g of n") iff there exist positive constants c and  $n_0$  such that  $f(n) \ge cg(n)$  for all  $n, n \ge n_0$ .  $\square$ 

• The function g(n) is a lower bound on f(n)

- For the statement  $f(n) = \Omega(g(n))$  to be informative, g(n) should be as large a function of n as possible
  - $-3n + 3 = \Omega(n)$  vs.  $3n + 3 = \Omega(1)$
  - $-6 \times 2^{n} + n^{2} = \Omega(2^{n}) \text{ vs. } 6 \times 2^{n} + n^{2} = \Omega(1)$

**Definition:** [Omega]  $f(n) = \Omega(g(n))$  (read as "f of n is omega of g of n") iff there exist positive constants c and  $n_0$  such that  $f(n) \ge cg(n)$  for all  $n, n \ge n_0$ .  $\square$ 

• The function g(n) is a lower bound on f(n)

- For the statement  $f(n) = \Omega(g(n))$  to be informative, g(n) should be as large a function of n as possible
  - $-3n + 3 = \Omega(n)$  vs.  $3n + 3 = \Omega(1)$
  - $-6 \times 2^n + n^2 = \Omega(2^n) \text{ vs. } 6 \times 2^n + n^2 = \Omega(1)$

#### **Theta**

**Definition:** [Theta]  $f(n) = \Theta(g(n))$  (read as "f of n is theta of g of n") iff there exist positive constants  $c_1, c_2$ , and  $n_0$  such that  $c_1g(n) \le f(n) \le c_2g(n)$  for all  $n, n \ge n_0$ .  $\square$ 

- The theta is more precise than both big-oh and omega
  - g(n) is both an upper and lower bound on f(n)

**Example 1.16:**  $3n + 2 = \Theta(n)$  as  $3n + 2 \ge 3n$  for all  $n \ge 2$ , and  $3n + 2 \le 4n$  for all  $n \ge 2$ , so  $c_1 = 3$ ,  $c_2 = 4$ , and  $n_0 = 2$ .  $3n + 3 = \Theta(n)$ ;  $10n^2 + 4n + 2 = \Theta(n^2)$ ;  $6*2^n + n^2 = \Theta(2^n)$ ; and  $10*\log n + 4 = \Theta(\log n)$ .  $3n + 2 \ne \Theta(1)$ ;  $3n + 3 \ne \Theta(n^2)$ ;  $10n^2 + 4n + 2 \ne \Theta(n)$ ;  $10n^2 + 4n + 2 \ne \Theta(1)$ ;  $6*2^n + n^2 \ne \Theta(n^2)$ ;  $6*2^n + n^2 \ne \Theta(n^{100})$ ; and  $6*2^n + n^2 \ne \Theta(1)$ .  $\square$ 

#### **Theta**

**Definition:** [Theta]  $f(n) = \Theta(g(n))$  (read as "f of n is theta of g of n") iff there exist positive constants  $c_1, c_2$ , and  $n_0$  such that  $c_1g(n) \le f(n) \le c_2g(n)$  for all  $n, n \ge n_0$ .  $\square$ 

- The theta is more precise than both big-oh and omega
  - g(n) is both an upper and lower bound on f(n)

**Example 1.16:**  $3n + 2 = \Theta(n)$  as  $3n + 2 \ge 3n$  for all  $n \ge 2$ , and  $3n + 2 \le 4n$  for all  $n \ge 2$ , so  $c_1 = 3$ ,  $c_2 = 4$ , and  $n_0 = 2$ .  $3n + 3 = \Theta(n)$ ;  $10n^2 + 4n + 2 = \Theta(n^2)$ ;  $6*2^n + n^2 = \Theta(2^n)$ ; and  $10*\log n + 4 = \Theta(\log n)$ .  $3n + 2 \ne \Theta(1)$ ;  $3n + 3 \ne \Theta(n^2)$ ;  $10n^2 + 4n + 2 \ne \Theta(n)$ ;  $10n^2 + 4n + 2 \ne \Theta(1)$ ;  $6*2^n + n^2 \ne \Theta(n^2)$ ;  $6*2^n + n^2 \ne \Theta(n^{100})$ ; and  $6*2^n + n^2 \ne \Theta(1)$ .  $\square$ 

# **Example**

• Given a recursive function  $T(n) = 2T\left(\frac{n}{2}\right) + n$ , where T(1) = 0, please write down the time complexity in big-oh for the function.

$$T(n) = 2 \times T\left(\frac{n}{2}\right) + n$$

$$= 2 \times \left[2 \times T\left(\frac{n}{4}\right) + \frac{n}{2}\right] + n = 4 \times T\left(\frac{n}{4}\right) + 2 \times n$$

$$= 4 \times \left[2 \times T\left(\frac{n}{8}\right) + \frac{n}{4}\right] + 2 \times n = 8 \times T\left(\frac{n}{8}\right) + 3 \times n$$

$$= \cdots$$

$$= n \times T\left(\frac{n}{n}\right) + (\log_2 n) \times n = n \log_2 n$$

$$\therefore T(n) = O(n \log_2 n)$$

# **Data Type**

 All programming languages provide a set of predefined data types, and they also have the ability to construct new, and/or user-defined types

**Definition:** A *data type* is a collection of *objects* and a set of *operations* that act on those objects.  $\Box$ 

- A data type should consider two aspects
  - Objects
  - Operations

| Data Type | Objects                          | Operations   |  |
|-----------|----------------------------------|--------------|--|
| integer   | $0, \pm 1, \pm 2, \pm 3, \cdots$ | +, -,×,÷,··· |  |

# **Abstract Data Type**

**Definition:** An abstract data type (ADT) is a data type that is organized in such a way that the specification of the objects and the specification of the operations on the objects is separated from the representation of the objects and the implementation of the operations.  $\Box$ 

- ADT is implementation-independent
- Some programming languages provide explicit mechanisms to support the distinction between specification and implementation
  - Class in C++
  - Standard Template Library (STL) in
     C++
    - Map, Vector, List, ...
    - http://www.cplusplus.com/reference/stl



# **Questions?**



kychen@mail.ntust.edu.tw