Discrete Mathematics Note

Wonseok Shin

2021/03/09

Last Compile: 2021/03/09 at 23:16:46

Contents

March 3, 2021: Propositional Logic	3	
March 8, 2021: Propositional Logic II	4	

Discrete Mathematics

[M1522.000000 Spring 2021]

Lecture I: Propositional Logic

March 3, 2021

Lecturer: Moon Bongki Scribe : Wonseok Shin

Logic: Formal system for describing knowledge, implement reasoning on knowledge.

Set of rules deducing entailments of a set of sentences.

Ambiguity 없이 명제를 표현하고 사고를 전개하는 언어 (Syntax, Semantics, Rules).

Propositional Logic

기본적인 문장들을 Atomic entity로 간주하고, Boolean connective를 이용하여 복잡한 문장을 전개.

Boolean Connective : $\land, \lor \dots$

Definition 1.1. Proposition : Assertion, declarative sentence with definite meaning, having a truth value that is either TRUE or FALSE.

Proposition variable (P, Q, R...) denotes arbitrary proposition with unspecified truth value.

Definition 1.2 (Boolean Operators).

• \neg : NOT • \lor : IMPLIES

 $\bullet \ \land : AND \qquad \qquad \bullet \ \oplus : XOR \qquad \qquad \bullet \ \Longleftrightarrow : IFF$

Discrete Mathematics

[M1522.000000 Spring 2021]

Lecture II: Propositional Logic II

March 8, 2021

Lecturer: Moon Bongki Scribe : Wonseok Shin

Definition 2.1. 명제 $P \rightarrow Q$ 에 대하여 다음과 같이 용어를 정의한다.

• Converse : $Q \to P$

• Inverse : $\neg P \rightarrow \neg Q$

• Contrapositive : $\neg Q \rightarrow \neg P$

셋 중 Contrapositive만이 원래 명제의 Truth table을 보존한다.

Definition 2.2 (Well Formed Formula).

- Proposition variable WFF
- WFF P에 대해 $\neg P$ 는 WFF
- WFF P, Q에 대해 $(P \vee Q), (P \wedge Q), (P \rightarrow Q) \vdash WFF$
- 위 과정으로 만들어진 논리식들 (문자열들) 만을 WFF로 인정한다.

Definition 2.3 (Tautology). WFF T 가 주어질 때, T의 모든 variable의 모든 truth value assignment에 대해서 T가 항상 참이면 T를 Tautology라고 부른다.

예를 들어, $(P \lor \neg P)$ 는 tautology. Truth table의 모든 row에서 결과가 T이면 tautology이다.

Definition 2.4 (Contradiction). WFF T 가 주어질 때, T의 모든 variable의 모든 truth value assignment 에 대해서 T가 항상 거짓이면 T를 Contradiction이라고 부른다.

Definition 2.5 (Logical Equivalence). 두 WFF T,S가 주어질 때, 모든 variable의 모든 truth value assignment에 대해서 T와 S의 참/거짓이 같으면 두 식을 Logically Equivalent하다고 부른다.

Theorem 2.6 (Logical Equivalence Theorems).

• Identity : $P \wedge T \Leftrightarrow P$, $P \vee F \Leftrightarrow P$

• Domination : $P \lor T \Leftrightarrow T$, $P \land F \Leftrightarrow F$

• Idempotent : $P \lor P \Leftrightarrow P$, $P \land P \Leftrightarrow P$

- Double Negation : $\neg\neg P \Leftrightarrow P$
- Commutatitive : \land , \lor are commutative
- Associative : \land , \lor are associative
- Distributive : $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R), \quad P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)$
- De Morgan's : $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$, $\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$
- Trivial Tautology/Contradiction : $P \vee \neg P \Leftrightarrow T$, $P \wedge \neg P \Leftrightarrow F$

Theorem 2.7 (Operators via Equivalences).

• XOR : $P \oplus Q \Leftrightarrow (P \vee Q) \land \neg (P \land Q)$

$$P \oplus Q \Leftrightarrow (P \land \neg Q) \lor (\neg P \land Q)$$

- Conditional : $P \to Q \Leftrightarrow \neg P \lor Q$
- Biconditional : $P \leftrightarrow Q \Leftrightarrow (P \to Q) \land (\neg P \to \neg Q) \Leftrightarrow \neg (P \oplus Q)$