Universidade de Brasília Faculdade Gama Engenharia de Software

Disciplina: 203291 - MED / Medição e Análise

CFP – Cosmic Function Points

Elaine Venson

elainevenson@unb.br

O Método COSMIC de Tamanho Funcional

- Método padronizado para a medição do tamanho funcional de software
- Aplicável a sitemas de negócios e a software em tempo real
- Unidade de medida PFC Pontos de Função COSMIC
- A definição do método consta do manual de medição COSMIC, versão atual = 4.01
- COSMIC Common Software Measurement International Consortium
 - Grupo voluntário internacional de especialistas em medição de software
- O método COSMIC foi aceito pelo ISO/IEC JTC1 SC7 em dezembro de 2002 como o Padrão Internacional ISO/IEC 19761 'Engenharia de Software – COSMIC-FFP – Um método para a medição funcional de tamanho'

http://www.cosmicon.com

Domínios de aplicação

- Software aplicativo de negócio (apoio à administração do negócio: bancos, contabilidade, compras, distribuição, manufatura)
- Software de tempo-real (acompanhamento e controle de eventos no mundo real: softwares de telefonia, softwares embarcados, softwares contidos nos sistemas operacionais)
- Híbridos dos tipos anteriores (ex: sistemas em tempo real para reservas de companhias aéreas)

Não aplicável a

• Software com uso de algoritmos matemáticos complexos como: sistemas especialistas, software de simulação, processamento contínuo de variáveis (ex: jogos, edição musical, etc)

Limitações de fatores que influem no tamanho funcional

- Todo método de medição funcional funciona sobre a hipótese de um modelo simplificadode de representação funcionaliade que é reconhecido como razoável na média para o seu domínio de aplicabilidade
- Cuidados devem ser tomandos quando é necessário medir e comparar pedaços muito pequenos de software, ou pequenas mudanças em um pedaço de software, onde a suposição de razoabilidade é quebrada. No caso do COSMIC, pequenos pedaços de software compreendem poucos movimentos de dados.

Método COSMIC de Tamanho Funcional

- Envolve a aplicação de um conjunto de modelos,
 princípios, regras e processos aos Requisitos Funcionais do Usuário (ou RFU) de um dado pedaço de software.
- O resultado é um número, o valor de uma quantidade representando o tamanho funcional do pedaco de software de acordo com o método COSMIC em unidades de Pontos de Função COSMIC (ou PFC)
- Foi projetado para ser independente de quaisquer decisões de implementação contidas nos artefatos operacionais do software a ser medido

- O tamanho funcional produzido pelo método COSMIC é a soma das movimentações de dados dos processos funcionais do pedaço de software
- Cada uma das movimentações de dados é contada como 1 ponto de função COSMIC (PFC)

Movimentações de Dados

Tipos de Movimentos de Dados

Tipos de Movimentos de Dados

Tipo de Movimento de Dados

Tipo de Movimento de Dados

Tipos de Usuário

Dispositivo

Um (tipo de) usuário que é uma fonte e/ou um destino pretendido para os dados dos Requisitos Funcionais do Usuário de um pedaço de software

Usuários Funcionais

Definição:

 Um usuário funcional é uma origem e/ou um destinatário pretendido para os dados nos Requisitos Funcionais do Usuário de um pedaço de software

Regras:

- Os usuários funcionais de um pedaço de software a ser medido devem ser derivados do propósito da medição
- Quando o propósito da medição de um pedaço de software estiver relacionado ao esforço para desenvolver ou modificar um pedaço de software, então os usuários funcionais deverão ser aqueles para quem a funcionalidade nova ou modificada deverá ser fornecida

Fronteira

A **fronteira** é definida como uma interface conceitual entre o software sendo medido e os seus usuários funcionais.

Fronteira

- A fronteira de um pedaço de software é o limite conceitual entre o referido pedaço e o ambiente no qual o mesmo opera, conforme percebido externamente segundo a perspectiva de seus usuários funcionais.
- A fronteira permite que o medidor distinga, sem ambiguidade, o que está incluído dentro do software medido daquilo que é parte do ambiente operacional do referido software.

- O método de medição COSMIC consiste em aplicar um conjunto de modelos, princípios e processos aos requisitos funcionais do usuário (FUR) de um dado pedaço de software.
- O resultado é um valor quantitativo que representa o tamanho funcional do pedaço de software sendo medido de acordo com o método COSMIC.
- O método foi idealizado para ser independente de qualquer decisão de implementação incluída nos artefatos do software a ser mensurado.
- Funcionalidade deve ser entendida como sendo a informação processada que o software deve prover para seus usuários.
- Mais precisamente, uma expressão dos RFU descrevem o que o software deve fazer para o usuário funcional que, por sua vez, são a fonte e o destino pretendido para os dados tratados pelo software

Artefatos de definição de requisitos

Artefatos de análise / modelagem de dados Artefatos de decomposição funcional de requisitos

Requisitos Funcionais do Usuário (RFU) nos artefatos do software a ser medido

Artefatos de definição de requisitos

Artefatos de análise / modelagem de dados Artefatos de decomposição funcional de rquisitos

Requisitos Funcionais do Usuário (RFU) nos artefatos do software a ser medido

O Tamanho funcional pode ser medido antes do software ser implementado

Requisitos Funcionais do Usuário (RFU) nos artefatos do software a ser medido

(Sistemas Legados)

Programas Físicos

Manual e procedimentos de operação do software

Artefatos do armazenamento físico

Fases do processo de medição COSMIC

Fases do processo de medição COSMIC

Estabelecendo uma estratégia de medição

Modelo de Contexto de Software COSMIC

- Um pedaço de software a ser medido com o método COSMIC deve ser cuidadosamente definido (no escopo da medição)
- Tal definição deve levar em conta, em seu contexto, qualquer outro software e/ou hardware com o qual o mesmo interaja
- Este Modelo de Contexto de Software apresenta os princípios e conceitos necessários a esta definição

Modelo de Contexto de Software COSMIC

PRINCÍPIOS:

- a) O Software é delimitado pelo hardware
- b) O software é normalmente estruturado em camadas
- c) Uma camada pode conter um ou mais pares de pedaços de software distintos e qualquer pedaço de software pode ser composto de **componentes pares** distintos
- d) Qualquer pedaço de software a ser medido deverá ser definido por seu escopo de medição, o qual deve estar integralmente contido em uma única camada
- e) O escopo de um pedaço de software a ser medido depende do **propósito** da medição

O modelo de contexto de software para o COSMIC

PRINCÍPIOS:

- f) Os usuários funcionais de um pedaço de software devem ser identificados a partir dos **requisitos funcionais do usuário** do pedaço de software a ser medido, como fontes e/ou destinos pretendidos para os dados
- g) Um pedaço de software interage com os seus usuários funcionais por meio de **movimentações de dados** através de uma **fronteira**, e o pedaço de software pode mover dados de e para o **armazenamento** persistente dentro da fronteira
- h) Os RFU do software podem ser expressos em diferentes **níveis de granularidade**
- i) O nível de granularidade no qual as medições devem ser normalmente efetuadas é o dos **processos funcionais**

O modelo de contexto de software para o COSMIC

PRINCÍPIOS:

j) Se não for possível medir no nível de granularidade dos processos funcionais, nesse caso os RFU do software devem ser medidos através de uma abordagem de **aproximação** e **escalonados** para o nível de granularidade dos processos funcionais

Camadas

- Uma camada é uma partição resultante da divisão funcional de um sistema de software que, juntamente com o hardware, forma um sistema computacional completo onde:
 - As camadas são organizadas segundo uma hierarquia
 - Há apenas uma camada em cada nível de hierarquia
 - Há uma dependência hierárquica do tipo superior/subordinado entre os serviços funcionais providos pelo software em quaiquer duas camadas da arquitetura de sofftware que troquem dados diretamente
 - Os software em quaisquer duas camadas da aquitetura de software que troquem dados interpretam apenas parte daqueles dados identicamente
- O software em uma camada troca dados com o software em outra camada através dos seus respectivos processos funcionais

Nível de Granularidade

- Qualquer nível de expansão da descrição de um pedaço de software tal que a cada nível de expansão adicional a descrição da funcionalidade do pedaço de software está em um nível de detalhe maior e uniforme.
- Os medidores devem estar cientes de que, quando os requisitos evoluem cedo na vida de um projeto de software, a qualquer momento partes da funcionalidade requerida pelo mesmo terão sido documentadas em diferentes níveis de granularidade

Camada e Componentes Pares

- Uma camada é uma partição resultante da divisão funcional de um sistema de software que, juntamente com o hardware, forma um sistema computacional
- Dois pedaços de software são pares quando residirem na mesma camada

Propósito da Medição

- Define a necessidade e a forma de utilização da medição
- Ajuda o medidor a determinar
 - O escopo a ser medido e os artefatos que serão necessários para a medição
 - Os usuários funcionais
 - O momento no ciclo de vida do projeto onde acontecerá a medição
 - A exatidão requerida para a medição
 - O nível de granularidade no qual os RFU serão medidos

Exemplos

- Estimar o esforço do desenvolvimento
- Gerenciar a veriação não controlada no escopo do projeto (scope creep)
- Utilizar como entrada no cálculo da produtividade no projeto

Escopo da Medição

- Conjunto de requisitos funcionais do usuário (RFU) a serem incluídos na medição de tamanho funcional
- O escopo deve ser definido antes de ser iniciada a medição
- O escopo de uma medição de tamanho funcional deve estar alinhado ao propósito de medição, pode ser derivado dele
- O escopo de uma medição qualquer não deve contemplar mais do que uma camada do software a ser medido

Exemplo

Sistema de cadastro de cliente

Escopo da Medição

Incluir Cliente
Alterar Cliente
Consultar Cliente
Excluir Cliente

Bloquear Ciente Listar clientes bloqueados

Pontos Críticos

- Estabelecer o propósito da medição
- Definir o escopo total do pedaço de software a ser medido e o escopo dos pedaços a serem medidos separadamente, considerando as camadas e componentes pares da arquitetura do software
- Estabelecer os usuários funcionais do pedaço de software a ser medido
- Estabelecer o nível de granularidade dos artefatos de software a serem medidos

Fases do processo de medição COSMIC

Fase de Mapeamento

Aplicando o modelo genérico de software COSMIC

- Modelo genérico de software COSMIC deve ser aplicado aos requisitos funcionais do usuário de cada pedaço de software distinto para o qual um escopo de medição, também distinto, tenha sido definido.
- Aplicar esse modelo diz respeito a identificar
 - o conjunto de eventos disparadores percebidos por cada um dos (tipos de) usuários funcionais identificados nos RFU
 - seus processos funcionais associados,
 - objetos de interesse,
 - grupos de dados e
 - movimentações de dados que devem ser providos como respostas a tais eventos.

Processo Funcional

- É um componente elementar de um conjunto de requisitos do usuário
- Compeende um conjunto de movimentações único, coeso e independentemente executável
- Inicia quando um usuário funcional percebe um evento e aciona o processo
- Termina quando tiver executado tudo que é requerido em resposta ao evento disparador

Evento Disparador

- Um evento (alguma coisa que acontece) que faz com que um usuário funcional inicie (dispare) um ou mais processos funcionais.
- Eventos de relógio e oriundos do decorrer do tempo podem ser eventos disparadores.

Evento Disparador

Outros Conceitos

- Um Objeto de Interesse é qualque coisa que é identificada do ponto de vista dos requisitos do usuário.
 - Pode ser qualquer coisa física, assim como qualquer objeto conceitual ou parte de um objeto conceitual no mundo do usuário funcional. O objeto de interesse é um conceito do qual o software deve processar e/ou armazenar dados.
- Um grupo de dados é um conjunto de atributos de dados distintos, não vazio, não ordenado e não redundante, onde cada atributo de dado descreve um aspecto complementar do mesmo objeto de interesse
- Um atributo de dado é a menor parcela de informação, dentro de um grupo de dados identificado, que possui significado segundo a perspectiva dos requisitos funcionais do usuário do software

Fases do processo de medição COSMIC

Fase de Medição

Movimentação de Dados

- Um componente funcional básico que movimenta um único grupo de dados (tipo)
- Há quatro subtipos de tipos de movimentação de dados: Entry (E), Exit (X), Read (R) e Write (W)
- Para fins de medição, considera-se que cada subtipo de movimentação de dados inclui certas manipulações de dados associadas
- De uma forma mais precisa, trata-se de uma ocorrência de uma movimentação de dados, e não um tipo de movimentação de dados, que realmente movimenta as ocorrências do grupo de dados

Entry (E)

- Uma movimentação de dados (tipo) que movimenta um grupo de dados de um usuário funcional através da fronteira para dentro do processo funcional no qual o mesmo é requerido.
- Considera-se que uma entry (tipo) inclui certas manipulações de dados associadas

Exit (X)

- Uma movimentação de dados que movimenta um grupo de dados de um processo funcional através da fronteira na direção do usuário funcional que o requisita.
- Considera-se que uma Exit (tipo) inclui certas manipulações de dados associadas

Read (R)

- Uma movimentação de dados que movimenta um grupo de dados do armazenamento persistente para dentro do alcance do processo funcional que dele necessita.
- Considera-se que um Read (tipo) inclui certas manipulações de dados associadas

Write (W)

- Uma movimentação de dados que movimenta um grupo de dados do interior de um processo funcional para o armazenamento persistente.
- Considera-se que um Write (tipo) inclui certas manipulações de dados associadas

Definições

Reportando a medição

- Um resultado de medição COSMIC deve ser designado como "x CFP (v.y)", onde:
 - "x" representa o valor numérico do tamanho funcional,
 - "v.y" representa a identificação da versão do padrão COSMIC utilizado para obter o valor numérico do tamanho funcional "x".

Exercício de fixação APLICANDO O MÉTODO COSMIC SISTEMA DE CADASTRO DE CLIENTES

- Foi solicitado um sistema de cadastro de clientes. Inicialmente o sistema deverá permitir a inclusão, a consulta, a alteração e a exclusão de clientes
- Requisitos da Inclusão:
 - A identificação do cliente será pelo CPF
 - Na inclusão o sistema deverá validar as informações fornecidas e verificar se o CPF informado já existe
 - Caso exista o CPF informado pelo usuário, os sitema deverá retornar uma mensagem de erro
 - Caso não exista, o sistema deverá incluir as informações do cliente e retornar a mensagem de inclusão realizada com sucesso.
- Requisitos de Consulta:
 - O usuário poderá consultar todas as informações do usuário por nome completo ou CPF
 - Quando o usuário informar o nome, o sistema apresentará uma lista de clientes com nome semelhante ao fornecido pelo usuário
 - O usuário escolhe o cliente e o sistema apresenta todas as informações do cliente selecionado na lista.

Exercício de fixação APLICANDO O MÉTODO COSMIC SISTEMA DE CADASTRO DE CLIENTES

- Requisitos de Alteração:
 - Na alteração o usuário informa o CPF
 - O sistema apresenta os dados do cliente
 - Caso o sistema n\u00e3o encontre o CPF informado, dever\u00e1 ser apresentada uma mensagem de erro
 - O usuário poderá alterar qualquer informação, exceto o CPF
 - O sistema apresenta mensagem de sucesso
- Requisitos de Exclusão:
 - Na exclusão o usuário informa o CPF
 - O sistema deverá verficar se o cliente existe
 - O sistema exclui o cliente e apresenta mensagem de sucesso
 - Caso o sistema n\u00e3o encontre o CPF informado, dever\u00e1 ser apresentada uma mensagem de erro.