# HEB1410 Gut Microbiome and Human Health Computation Lab Section

Yijia Liow

2023-11-16

#### **Overview**

- Slowing down
- Experimental design overview
- Hypotheses and predictions formulation
- More on alpha- and beta-diversity
- Strategy to answering your research questions

#### Recap



Cell Host & Microbe
Article

# Diet Dominates Host Genotype in Shaping the Murine Gut Microbiota

Rachel N. Carmody, 1,2,5 Georg K. Gerber, 3,5 Jesus M. Luevano, Jr., Daniel M. Gatti, Lisa Somes, Karen L. Svenson, and Peter J. Turnbaugh 1,2,8

1FAS Center for Systems Biology, Harvard University, 52 Oxford Street, Cambridge, MA 02138, USA
2Department of Microbiology and Immunology, Hooper Foundation, University of Galifornia, San Francisco, 513 Parnassus Avenue,
San Francisco, CA 94143, USA

San Francisco, CA 94143, USA

\*\*Center for Clinical and Translational Metagenomics, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School,

221 Longwood Avenue, Boston, MA 02115, USA 4The Jackson Laboratory, 610 Main Street, Bar Harbor, ME 04609, USA

<sup>4</sup>The Jackson Laboratory, 610 Main Street, Bar Harbor, ME 04609, USA <sup>5</sup>Co-first author

\*Correspondence: peter.tumbaugh@ucsf.edu

http://dx.doi.org/10.1016/j.chom.2014.11.010

- phyloseq
- taxonomic composition, alpha-diversity, beta-diversity
- PERMANOVA

# My hypothesis



#### How to test my hypothesis?



#### The scientific method



#### Hypotheses and predictions formulation

- Hypothesis: An idea that can be tested through experimentation
  - statement about the relationship between two or more variables
  - often takes the form of a cause-and-effect statement
  - changes in one variable (independent variable) cause changes in another variable (dependent variable)
- Prediction: A statement about expected outcomes
  - more specific
  - provides detailed expectations about experimental results

# Hypotheses and predictions (gut microbiome)

 Mice fed different types of diet will have different gut microbiome composition.

# Hypotheses and predictions (gut microbiome)

 Mice fed different types of diet will have different gut microbiome composition.

- A Western diet will reduce the overall microbial diversity compared to a control diet.
- Mice fed with a Western diet will show an increased abundance of the phylum Firmicutes and a decrease in Bacteroidetes.
- A higher relative abundance of pro-inflammatory bacterial genera in Western group mice.

# Hypotheses and predictions (pnenotypic measures)

Dietary composition influences mice body weight and composition.

# Hypotheses and predictions (pnenotypic measures)

Dietary composition influences mice body weight and composition.

- Western group mice will gain more weight over the intervention period compared to control group mice.
- Western group mice will have a higher percentage of body fat compared to control group mice.
- For every gram consumed, Western group mice will gain more weight compared to control group mice.

# Hypotheses and predictions (behavioral)

 Mice on the Western diet will prefer Western diet relative to mice on the control diet.

# Hypotheses and predictions (behavioral)

 Mice on the Western diet will prefer Western diet relative to mice on the control diet.

- Western group mice will consume a greater quantity of Western diet compared to control group mice.
- Western group mice will consume a greater percentage of their total caloric intake from Western diet.
- Western group mice will spend more time eating Western diet compared to control group mice.

#### Hypotheses and predictions formulation

- identify independent variable(s): type of diet (Western vs. control)
- identify dependent variable(s):
  - gut microbiome composition
  - phenotype (body weight, feed efficiency, food preference)
- propose a direct effect

- articulate specific outcomes from experimental data
- specific results that would support or reject the hypothesis

#### Data at hand

- Gut microbiome: 16S rRNA gene sequencing data
- Phenotypic measures: body weight, body composition, food intake

# Alpha-diversity (within sample diversity)



# **Alpha-diversity**

- Observed OTUs: number of unique OTUs (species)
- Shannon index: measure of evenness of the distribution of OTUs
- Faith's phylogenetic diversity: measure of the phylogenetic diversity

# Observed OTUs (species)

| FeatureTable[Frequency]                    |    |    |    |    |          |  |
|--------------------------------------------|----|----|----|----|----------|--|
| feature1 feature2 feature3 feature4 featur |    |    |    |    | feature5 |  |
| 4ac2                                       | 25 | 30 | 15 | 0  | 0        |  |
| e375                                       | 0  | 17 | 33 | 25 | 0        |  |

| FeatureTable[Frequency] |                                           |   |   |   |   |  |
|-------------------------|-------------------------------------------|---|---|---|---|--|
|                         | feature1 feature2 feature3 feature4 featu |   |   |   |   |  |
| 4ac2                    | 1                                         | 1 | 1 | 0 | 0 |  |
| e375                    | 0                                         | 1 | 1 | 1 | 0 |  |

| SampleData[AlphaDiversity] | Observed OTUs |
|----------------------------|---------------|
| 4ac2                       | 3             |
| e375                       | 3             |

# Faith's phylogenetic diversity

| FeatureTable[Frequency]                     |    |    |    |    |          |
|---------------------------------------------|----|----|----|----|----------|
| feature1 feature2 feature3 feature4 feature |    |    |    |    | feature5 |
| 4ac2                                        | 25 | 30 | 15 | 0  | 0        |
| e375                                        | 0  | 17 | 33 | 25 | 0        |





## Faith's phylogenetic diversity



| SampleData[AlphaDiversity] | Faith's PD |
|----------------------------|------------|
| 4ac2                       | 3.35       |
| e375                       | 5.05       |

# Shannon diversity: richness and evenness

$$H' = -\sum_{i=1}^{S} p_i \log p_i$$

| Feature Table [Frequency] |                                            |    |    |    |   |  |
|---------------------------|--------------------------------------------|----|----|----|---|--|
|                           | feature1 feature2 feature3 feature4 featur |    |    |    |   |  |
| 4ac2                      | 25                                         | 30 | 15 | 0  | 0 |  |
| e375                      | 0                                          | 17 | 33 | 25 | 0 |  |

| SampleData[AlphaDiversity] | Shannon |
|----------------------------|---------|
| 4ac2                       | 1.061   |
| e375                       | 1.064   |

# **Beta-diversity**



# **Beta-diversity**

• Jaccard distance: presence/absence

Bray-Curtis dissimilarity: abundance

• UniFrac distance: abundance and phylogeny

|                   | Presence/Absence   | Abundance          |
|-------------------|--------------------|--------------------|
| Without phylogeny | Jaccard            | Bray-Curtis (PCoA) |
| With phylogeny    | Unweighted UniFrac | Weighted UniFrac   |

#### Jaccard distance



#### Jaccard distance

| FeatureTable[Frequency]                              |    |   |    |    |   |  |
|------------------------------------------------------|----|---|----|----|---|--|
| feature1   feature2   feature3   feature4   feature! |    |   |    |    |   |  |
| 4ac2                                                 | 42 | 0 | 37 | 99 | 1 |  |
| e375                                                 | 12 | 1 | 22 | 88 | 0 |  |
| 4qd8                                                 | 25 | 3 | 23 | 86 | 0 |  |
| 9872                                                 | 0  | 0 | 87 | 12 | 0 |  |

$$J(A,B) = 1 - \frac{|A \cap B|}{|A \cup B|}$$

| DistanceMatrix      |     |     |     |     |  |  |  |
|---------------------|-----|-----|-----|-----|--|--|--|
| 4ac2 e375 4qd8 9872 |     |     |     |     |  |  |  |
| 4ac2                | 0.0 | 0.4 | 0.4 | 0.5 |  |  |  |
| e375                | 0.4 | 0.0 | 0.0 | 0.5 |  |  |  |
| 4qd8                | 0.4 | 0.0 | 0.0 | 0.5 |  |  |  |
| 9872                | 0.5 | 0.5 | 0.5 | 0.0 |  |  |  |

## **Bray-Curtis distance**

$$BC(A,B) = \frac{\sum_{i} |X_{iA} - X_{iB}|}{\sum_{i} (X_{iA} + X_{iB})}$$

- $X_{iA}$  is the frequency of feature i in sample A
- $X_{iB}$  is the frequency of feature i in sample B

| FeatureTable[Frequency] |                                                      |   |    |    |   |  |  |
|-------------------------|------------------------------------------------------|---|----|----|---|--|--|
|                         | feature1   feature2   feature3   feature4   feature5 |   |    |    |   |  |  |
| 4ac2                    | 42                                                   | 0 | 37 | 99 | 1 |  |  |
| e375                    | 12                                                   | 1 | 22 | 88 | 0 |  |  |
| 4qd8                    | 25                                                   | 3 | 23 | 86 | 0 |  |  |
| 9872                    | 0                                                    | 0 | 87 | 12 | 0 |  |  |

# **Bray-Curtis distance**

| FeatureTable[Frequency]                             |    |   |    |    |   |  |
|-----------------------------------------------------|----|---|----|----|---|--|
| feature1   feature2   feature3   feature4   feature |    |   |    |    |   |  |
| 4ac2                                                | 42 | 0 | 37 | 99 | 1 |  |
| e375                                                | 12 | 1 | 22 | 88 | 0 |  |
| 4qd8                                                | 25 | 3 | 23 | 86 | 0 |  |
| 9872                                                | 0  | 0 | 87 | 12 | 0 |  |

| DistanceMatrix |      |      |      |      |  |
|----------------|------|------|------|------|--|
|                | 4ac2 | e375 | 4qd8 | 9872 |  |
| 4ac2           | 0.0  | 0.19 | 0.15 | 0.65 |  |
| e375           | 0.19 | 0.0  | 0.07 | 0.60 |  |
| 4qd8           | 0.15 | 0.07 | 0.0  | 0.70 |  |
| 9872           | 0.65 | 0.69 | 0.70 | 0.0  |  |

# UniFrac distance: Weighted and Unweighted

 $UU(A, B) = \frac{\text{sum of unique branch length}}{\text{sum of observed branch length}}$ 



# **Unweighted UniFrac distance**

| FeatureTable[Frequency] |          |          |          |          |          |
|-------------------------|----------|----------|----------|----------|----------|
|                         | feature1 | feature2 | feature3 | feature4 | feature5 |
| 4ac2                    | 42       | 0        | 37       | 99       | 1        |
| e375                    | 12       | 1        | 22       | 88       | 0        |
| 4qd8                    | 25       | 3        | 23       | 86       | 0        |



| DistanceMatrix |      |      |      |  |
|----------------|------|------|------|--|
|                | 4ac2 | e375 | 4qd8 |  |
| 4ac2           | 0.0  |      |      |  |
| e375           | 0.13 | 0.0  |      |  |
| 4qd8           | 0.14 |      | 0.0  |  |

# Unweighted UniFrac distance

$$UU(A, B) = \frac{\text{sum of unique branch length}}{\text{sum of observed branch length}}$$



# Weighted UniFrac distance

$$UU(A, B) = \frac{\text{sum of unique branch length}}{\text{sum of observed branch length}}$$



# **Summary of distance metrics**

|                   | Presence/Absence   | Abundance          |  |
|-------------------|--------------------|--------------------|--|
| Without phylogeny | Jaccard            | Bray-Curtis (PCoA) |  |
| With phylogeny    | Unweighted UniFrac | Weighted UniFrac   |  |

# Brainstorming analysis strategies

- Formulate hypotheses about relationships you expect to find within the data
  - ▶ What factors do you predict will influence body weight or composition?
  - How might food preferences correlate with gut microbiome diversity?
- Make **predictions** based on your hypotheses
  - ▶ If hypothesis is correct, what patterns would you expect to see?
  - ► How would changes in feed intake during the intervention period reflect on body weight or gut microbiome composition?
- Decide on analysis tools and approaches:
  - ▶ Which distance metrics (e.g., Bray-Curtis, Jaccard) would be most appropriate for comparing microbiome samples?
  - Would correlation analysis help reveal associations between diet, body composition, and microbiome diversity?
  - What visual representations can illustrate the relationships you are investigating?