QUESTION R.E. S^1 -ACTION VIA A SUBTORUS

BENJAMIN C. W. BROWN

1. Example

Take $(\mathbb{C}^2, \omega_{std})$ with T^2 acting on \mathbb{C}^2 as

$$(t_1, t_2) \cdot (z_1, z_2) = (t_1 z_1, t_2 z_2).$$

This action is Hamiltonian with moment map $\mu: \mathbb{C}^2 \to \mathbb{R}^2$ given by

$$\mu(z_1, z_2) = \frac{1}{2} (|z_1|^2, |z_2|^2).$$

For the symplectic cut, relabel $M:=\mathbb{C}^2$ then consider $M\times\mathbb{C}$, along with the following S^1 -action:

$$\tau \cdot (z_1, z_2, \xi) = (\tau z_1, \tau z_2, \tau \xi),$$

so S^1 can be thought of acting on the first factor, M, via the inclusion $S^1 \hookrightarrow T^2$ as $\tau \mapsto (\tau, \tau)$, and then via the diagonal product action on $M \times \mathbb{C}$. This action is also Hamiltonian, with moment map $\Phi : M \times \mathbb{C} \to \mathbb{R}$, given by

$$\Phi(z_1, z_2, \xi) = \frac{1}{2} \left(|z_1|^2 + |z_2|^2 + |\xi|^2 \right).$$

Consider the preimage of $k \in \mathbb{Z}$ under Φ to get

$$\Phi^{-1}(k) = \{ (z_1, z_2, 0) \in M \times \mathbb{C} \mid ||z||^2 = 2k \} \mid \{ (z_1, z_2, \xi) \in M \times \mathbb{C} \mid ||z||^2 < 2k \}$$

References

(Benjamin Brown) School of Mathematics and Maxwell Institute, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, United Kingdom

Email address: B.Brown@ed.ac.uk

Date: April 30, 2021.