Gegeben die Datenpaare 1

- a) Zeichne das Streudiagramm
- b) Bestimme die Regressionsgerade mit und ohne den letzten Punkt (Ausreisser), und trage die Regressionsgeraden ein. Welchen Einfluss hat der Ausreisser?
- 2 Für ein Unternehmen soll untersucht werden, welcher Zusammenhang zwischen Umsatz und Beschäftigten besteht, das Modell lautet y = mx+b:

Umsatz in Mio	У	3	8	19 22	31	42	48	52	54
Anz. Beschäftigte	X	2	31	49 65	84	96	117	129	146

Gib die Daten in den TR ein und löse die Aufgabe mit Hilfe von abgelesenen Werten:

- a) Bestimme die Parameter der Regressionsgeraden.
 - Welchen Umsatz könnte das Unternehmen erwarten, wenn es 200 Beschäftigte hätte?
- b) Berechne die gesamte Varianz und die erklärte Varianz des Umsatzes. Welches ist das Bestimmtheitsmass?
- Eine Messwerte-Reihe (x/y) hat das Bestimmtheitsmass 0.8, die y-Varianz = 3 und die x-Varianz = 4. 3 Man berechne daraus die erklärte Varianz, die Steigung der Regressionsgeraden sowie die Kovarianz.
- Eine Regressionsgerade hat die Gleichung y = mx + 7.8. Der Durchschnitt der x-Werte beträgt 7, derjenige der v Werte ist 12. Die Standardabweichungen betragen $s_x = 2.5$ und $s_v = 1.8$.
- a) berechne die Kovarianz zwischen den x und y Werten
- b) berechne den Korrelationskoffizienten r.
- Bestimmen der besten Funktion der Form $y = a \cdot b^x$ für die Daten.
- a) betrachte zuerst das x-y Streudiagramm um zu erkennen, dass kein linearer Trend vorliegt.
- b) Wir vermuten einen exponentiellen Verlauf der y Werte als Trend. Berechne die Ln y Werte und zeichne den Scatterplott. Folgen die Daten einem linearen Trend?
- c) bestimme die Regressionsgerade für die Ln y Werte und daraus a und b. Fülle die Tafel aus.

X	y	Ln y	y berechnet
2	5		
6	20		
8	48		
12	260		
12	220		
4	10		
7	38		

Die Tafel zeigt die Bevölkerung der Schweiz in 1000. Man modelliere ein Exponentielles Wachstum. Welche Prognose erhält man für das Jahr 2000?

Jahr	anz			
	1880	2846		
	1888	2918		
	1900	3315		
	1920	3880		
	1930	4066		
	1950	4715		
	1960	5429		
	1980	6366		

Resultate Regression

Der Ausreisser zieht die Gerade zu sich hin!

3 2.4, m= 0.775 3.1 **4** a) 3.75 b) 0.833

5 Modell: lny = ax+b daraus y = exp(ax+b)

X	У	ln y	y b	erechnet
	2	5	1.61	4.7
	6	20	3.00	22.7
	8	48	3.87	49.6
	12	260	5.56	237.5
	12	220	5.39	237.5
	4	10	2.30	10.4
	7	38		
			3.64	33.5
1V _	0.2015*	0.7722		

 $\ln Y = 0.3915 * x + 0.7722$

y = 2.16*1.48**x

 $6 \quad Modell: \ lnchbev = a \cdot Jahr \ + b$

a = 0.00808 b = -7.2577

chbev = $\exp(0.00808*jahr - 7.2577)$ 2000: chbev = 7350