

Understanding closures

To execute jobs, Spark breaks up the processing of RDD operations into tasks to be executed by an executor

Prior to execution, Spark computes the task's closure

The closure is those variables and methods that must be visible for the executor to perform its computations on the RDD

This closure is serialized and sent to each executor.

9/13/2016	CS535 Big Data - Fall 2016	W4.A.14
	In-Memory Cluster Computing: Apache Spark	
	Key-Value pairs	
	Transformations on Pair RDDs	

/13/2016	CS535 Big Data	a - Fall 2016	W4.A.15	
Transformations on one pair RDD (example: {(1, 2), (3, 4), (3, 6)})				
Pair RDDs are a standard RDDs.		I the transformation	s available to	
Function	purpose	Example	Result	
reduceByKey()	Combine values with the same key	rdd.reduceByKey((x, y) = > x + y)	{(1,2),(3,10)}	
<pre>groupByKey()</pre>	Group values with the same key	rdd.groupByKey()	{(1,[2]), (3,[4,6])}	
<pre>combineByKey(c reateCombiner, mergeValue, mergeCombiners, partitioner)</pre>	Combine values with the same key using a different result type			

		example: {(1, 2), (3, 4	/, (-, -/J/
Function	purpose	Example	Result
mapValues(func)	Apply a function to each value of a pair RDD without changing the key	<pre>rdd.mapValues(x=> x+1)</pre>	{(1,3), (3,5),(3,7)}
flatMapValues(f unc)	Apply a function that returns an iterator	<pre>rdd.flatMapValues (x=>(x to 5)</pre>	{(1,2), (1,3),(1,4), (1,5),(3,4), (3,5)}
keys()	Return an RDD of just the keys	rdd.keys()	{1,3,3}
values()	Return an RDD of just the values	rdd.values()	{2,4,6}
sortByKey()	Return an RDD sorted by the key	rdd.sortByKey()	{(1,2), (3,4),(3,5)}

9/13/2016	CS535 Big Data	a - Fall 2016	W4.A.17	
$Transformations \ on \ one \ pair \ RDD \ (example: \{(\ 1,\ 2),\ (3,\ 4),\ (3,\ 6)\}) \ other=\{(3,9)\}$				
Function	purpose	Example	Result	
subtractByKey	Remove elements with a key present in the other RDD	rdd.subtractBy Key(other)	{(1,2)}	
join	Inner join	rdd.join(other)	{(3,(4,9)),(3,(6,9))}	
rightOuterJoin	Perform a join where the key must be present in the other RDD	rdd.rightOuter Join(other)	(3,(some(4), 9)),(3, (some(6),9))}	
<pre>leftOuterJoin()</pre>	Perform a join where the key must be present in the first RDD	Rdd.leftOuterJ oin(other)	{(1,(2,None)), (3, (4,Some(9))), (3, (6,Some(9)))}	
coGroup	Group data from both RDDs sharing the same key	Rdd.cogroup(ot her)	{(1,([2],[])), (3,([4,6], [9]))}	


```
W4A.23

Word count example

JavaRDD <String> input = sc.textFile("s3://...")
JavaRDD <String> words = input.flatMap(new FlatMapFunction
< String, String >() {
   public Iterable < String > call( String x) {
      return Arrays.asList( x.split(" "));
   }
});
JavaPairRDD <String, Integer> result = words
   .mapToPair(new PairFunction<String, String, Integer>() {
      public Tuple2 <String, Integer> call(String x) {
      return new Tuple2(x, 1);
   }
})
.reduceByKey(new Function2 <Integer, Integer, Integer>(){
      public Integer call(Integer a, Integer b) {
      return a + b;
   }
});
```



```
Per-key average using combineByKey() [1/2]

public static class AvgCount implements Serializable {
    public AvgCount( int total, int num) {
        total_ = total;
        num_ = num; }
    public int total;
    public int total;
    public int total_;
    public int total_;
    public int oum;
    public float avg() {
        return total_ / (float) num_; }
    }

Function < Integer, AvgCount > createAcc = new
Function < Integer, AvgCount > ({
        public AvgCount call( Integer x) {
            return new AvgCount < x, 1); }
    ;;

Function2 < AvgCount, Integer, AvgCount > addAndCount = new
        Function2 < AvgCount, Integer, AvgCount > () {
            ublic AvgCount call( AvgCount a, Integer x) {
                a.total_ + = x;
                 a.num_ + = 1;
```


9/13/2016	CS	535 Big Data - Fall 2016		W4.A.28
groupBy	/Key()			
 Group our da 	ata using the k	cey in our RDE)	
On an RDD	consisting of k	eys of type к	and values of type	e V
 Results will b 	e RDD of type [K, Iterable[V]]	
·cogroup()				
 Grouping dat 	a from multiple F	RDDs		
			with the respective v	alue
types V and I	-	RDD[(K, (Ite	:able[V],	
Itterubre	11//1			

9/13/2016	CS535 Big Data - Fall 2016	W4.A.29
ioins		
JUITIS		
• Inner join	t are present in both pair RDDs are output	
1 ' '		
	oin(other) and rightOuterJoin(o ir RDDs can be missing the key	ther)
·	• ,	
·leftOuterJ	oin(other)	
The resulting	pair RDD has entries for each key in the source F	RDD
·rightOuter	Join(other)	
The resulting	pair RDD has entries for each key in the other RD)D

9/13/2016	CS535 Big Data - Fall 2016	W4.A.30
	In-Memory Cluster Computing: Apache Spark	
	Key-Value pairs	
	Actions available on Pair RDDs	

From add and	Description	Francis	Daniel
Function	Description	Example	Result
countByKey()	Count the number of elements for each key	rdd.countByKey({(1,1),(3,2)}
collectAsMap()	Collect the result as a map to provide easy lookup	rdd.collectAsMa p()	Map{(1,2), (3,4),(3,6)}
lookup(key)	Return all values associated with the provided key	rdd.lookup(3)	[4,6]

	CS535 Big Data -	Fall 2015		W3.A.42	
MapReduce Usage statistics in Google					
	Aug. 04	Mar. 06	Sep.07	May. 10	
ber of jobs	29K	171K	2,217K	4,474K	
age completion time s)	634	874	395	748	
hine years used	217	2,002	11,081	39,121	
t data read (TB)	3,288	52,254	403,152	946,460	
mediate data (TB)	758	6,743	34,774	132,960	
out data written (TB)	193	2,970	14,018	45,720	
age worker machines	157	268	394	368	
age worker machines	157	268	394	368	

9/8/2015	CS535 Big Data - Fall 2015	W3.A.43
The Real	istic View of a Data Ce	nter
-		
,, ,	ear for a new cluster:	
 ~1 network re 	ewiring (rolling downtimes: ~5% of machine	s over 2-day span)
 ~20 rack failu back) 	res (40-80 machines instantly disappear, 1	-6 hours to get
 ~5 racks go w 	vonky (40-80 machines see 50% packet los	ss)
• ~8 network m losses)	aintenances (4 might cause ~30-minute ra	ndom connectivity
• ~12 router rel	oads (takes out DNS and external IPs for a	couple minutes)
 ~3 router failu 	ures (have to immediately pull traffic for an	hour)
	inor 30-second blips for DNS	,
	ual machine failures	
	f hard drive failures	
	oad memory, misconfigured machines, flaky ma	chines etc
Long distance		crimes, etc.
•	railability must come from software	
* Reliability/av	aliability flust come from software	

9/8/2015	CS535 Big Data - Fall 2015	W3.A.44
Numbers we	should know	[1/2]
Level 1 cache refere	0000	
• 0.5 ns	ence	
Branch misprediction	on	
• 5 ns		
 Level 2 cache refere 	ence	
• 7 ns		
 Mutex lock/unlock 		
• 25 ns		
Main memory reference	ence	
• 100 ns	and the second s	
3,000 ns	cheap compression algorithm	

9/8/2015	CS535 Big Data - Fall 2015	W3.A.45
Numbers v	ve should know	[2/2]
• Read 1 MB seq • 250,000 ns	uentially from memory	
 Round trip with 500,000 ns 	in the same datacenter	
Disk seek10,000,000 ns		
• Read 1 MB seq • 20,000,000 ns	uentially from disk	
• Send packet C/ • 150,000,000 ns	A->Netherlands->CA	

9/8/2015	CS535 Big Data - Fall 2015	W3.A.46
Back of the	Envelope Calcul	lation
How long to gen	erate an image results pag	je (30 thumbnails)?
	serially, thumbnail images s/seek + 30 * 256K / 30 MB/s = 5	. ,
	reads in parallel: 6K read / 30 MB/s = 18 ms	
 Lots of variation: caching (single ir pre-computing th 	nages? whole sets of thumbnails	s?)
•		

9/8/2015	CS535 Big Data - Fall 2015	W3.A.47
Storage	Software: GFS	
 Designed for 	t cluster-level file system (2003) batch applications with large files Single m anagement Chunks are typically replicated	
 Large files in Not appropris 	proximately 50M files, and 10PB creased application complexity ate for latency sensitive applications added management overhead	

