Interpolation and Polynomial Approximation

Peng Yu

Tel: 0755 8801 8911

Email: yup6@sustech.edu.cn

Introduction

• Why polynomial approximation?

The computational procedures used in computer software for the evaluation of a library function, such as sin(x), cos(x), or e^x , involve polynomial approximation.

Figure 4.1 (a) The Taylor polynomial $p(x) = 1.000000 + 1.000000x + 0.500000x^2$, which approximates $f(x) = e^x$ over [-1, 1]. (b) The Chebyshev approximation $q(x) = 1.000000 + 1.129772x + 0.532042x^2$ for $f(x) = e^x$ over[-1, 1].

Introduction

• Why interpolation?

Given n + 1 points in the plane (no two of which are aligned vertically), the collocation polynomial is the unique polynomial of degree $\leq n$ that passes through the points. In cases where data are known to a high degree of precision, the collocation polynomial is sometimes used to find a polynomial that passes through the given data points.

A variety of methods can be used to construct the collocation polynomial: solving a linear system for its coefficients, the use of Lagrange coefficient polynomials, and the construction of a divided differences table and the coefficients of the Newton polynomial.

Interpolation and Polynomial Approximation

- Taylor Series and Calculation of Functions
- Introduction to Interpolation
- Lagrange Approximation
- Newton Polynomials
- Chebyshev Polynomials
- Pade Approximations

Taylor Series and Calculation of Functions

Taylor Expansion

Table 4.1 Taylor Series Expansions for Some Common Functions

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \qquad \text{for all } x$$

$$\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots \qquad \text{for all } x$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \cdots \qquad \text{for all } x$$

$$\ln(1+x) = x - \frac{x^2}{2!} + \frac{x^3}{3!} - \frac{x^4}{4!} + \cdots \qquad -1 \le x \le 1$$

$$\arctan(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots \qquad -1 \le x \le 1$$

$$(1+p)^p = 1 + px + \frac{p(p-1)}{2!} x^2 + \frac{p(p-1)(p-2)}{3!} x^3 + \cdots \qquad \text{for } |x| < 1$$

Taylor Polynomial Approximation

- A finite sum can be used to obtain a good approximation to an infinite sum.
- If enough terms are added, then an accurate approximation will be obtained

Table 4.2 Partial Sums S_n Used to Determine e

n	$S_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$
0	1.0
1	2.0
2	2.5
3	2.666666666666
4	2.708333333333
5	2.716666666666
6	2.718055555555
7	2.718253968254
8	2.718278769841
9	2.718281525573
10	2.718281801146
11	2.718281826199
12	2.718281828286
13	2.718281828447
14	2.718281828458
15	2.718281828459

Taylor Polynomial Approximation

Theorem (Taylor Polynomial Approximation). Assume that $f \in C^{N+1}[a,b]$ and $x_0 \in [a,b]$ is a fixed value. If $x \in [a,b]$, then

$$(1) f(x) = P_N(x) + E_N(x),$$

where $P_N(x)$ is a polynomial that can be used to approximate f(x):

(2)
$$f(x) \approx P_N(x) = \sum_{k=0}^N \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

The error term $E_N(x)$ has the form

(3)
$$E_N(x) = \frac{f^{(N+1)}(c)}{(N+1)!} (x - x_0)^{N+1}$$

for some value c = c(x) that lies between x and x_0 .

Error term can be used to determine a bound for the accuracy of the approximation

Example Show why 15 terms are all that are needed to obtain the 13-digit approximation e = 2.718281828459.

Expand $f(x) = e^x$ in a Taylor polynomial of degree 15 using the fixed value $x_0 = 0$ and involving the powers $(x - 0)^k = x^k$. The derivatives required are $f'(x) = f''(x) = \cdots = f^{(16)} = e^x$. The first 15 derivatives are used to calculate the coefficients $a_k = e^0/k!$ and are used to write

(4)
$$P_{15}(x) = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^{15}}{15!}.$$

Setting x = 1 in (4) gives the partial sum $S_{15} = P_{15}(1)$. The remainder term is needed to show the accuracy of the approximation:

(5)
$$E_{15}(x) = \frac{f^{(16)}(c)x^{16}}{16!}.$$

Since we choose $x_0 = 0$ and x = 1, the value c lies between them (i.e., 0 < c < 1), which implies that $e^c < e^1$. Notice that the partial sums are bounded above by 3. So $e^c < 3$,

$$|E_{15}(1)| = \frac{|f^{(16)}(c)|}{16!} \le \frac{e^c}{16!} < \frac{3}{16!} < 1.433844 \times 10^{-13}.$$

Taylor Polynomial Approximation

• Matches the leading derivatives at x_0 ,

Corollary If $P_N(x)$ is the Taylor polynomial of degree N given in previous Theorem, then

(6)
$$P_N^{(k)}(x_0) = f^{(k)}(x_0)$$
 for $k = 0, 1, ..., N$.

• A local approximation, bad if x is away from x_0

Taylor Polynomial Approximation

- The accuracy of a Taylor polynomial is increased when we choose *N* large.
- The accuracy of any given polynomial will generally decrease as the value of x moves away from the center x_0 .
- If we choose the interval width to be 2R and x_0 in the center (i.e., $|x x_0| < R$), the absolute value of the error satisfies the relation.

(8)
$$|error| = |E_N(x)| = \frac{MR^{N+1}}{(N+1)!}$$

where $M \le \max\{|f^{(N+1)}(z)/: x_0 - R \le z \le x_0 + R\}$.

Methods for Evaluating a Polynomial

- There are several mathematically equivalent ways to evaluate a polynomial, eg. $P(x)=a_0+a_1x+a_2x^2+a_3x^3+...+a_Nx^N$
- To evaluate it directly, it takes 1+2+3+...+N = N(N+1)/2 =O(N^2) multiplications.
- Horner's method, which is also called nested multiplication, uses N multiplications, $P(x) = a_0 + x(a_1 + x(a_2 + x(a_3 + ... + a_N x)))$.

Taylor Polynomial Approximation

Theorem 4.2 (Taylor Series). Assume that f(x) is analytic on an interval (a, b) containing x_0 . Suppose that the Taylor polynomials (2) tend to a limit

(12)
$$S(x) = \lim_{N \to \infty} P_N(x) = \lim_{N \to \infty} \sum_{k=0}^{N} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k,$$

then f(x) has the Taylor series expansion

(13)
$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Introduction to Interpolation

Why we need interpolation

- The information needed to construct the Taylor polynomial is the value of f(x) and its derivatives at x_0 .
- A shortcoming is that the higher-order derivatives must be known, and often they are either not available or they are hard to compute.
- For a function y=f(x), suppose N+1 points are known, a polynomial P(x) of degree N can be constructed that passes through the N+1 points. In the construction, only numerical values of x_k and y_k are needed.
- Situations in statistical and scientific analysis arise where the function y = f(x) is available only at N + 1 tabulated points (x_k, y_k) , and a method is needed to approximate = f(x) at nontabulated abscissas.

Why we need interpolation

The approximating polynomial P(x) can be used for interpolation at the point (4, P(4)) and extrapolation at the point (5.5, P(5.5)).

How to do interpolation

- Solve a linear equation
- For example, for polynomial $P(x) = A + Bx + Cx^2 + Dx^3$, pass through (1, 1.06), (2, 1.12), (3, 1.34), (5, 1.78)

The methods of Chapter 3 can be used to find the coefficients. Assume that $P(x) = A + Bx + Cx^2 + Dx^3$; then at each value x = 1,2,3, and 5 we get a linear equation involving A, B, C, and D.

(4)
$$At x = 1: A + 1B + 1C + 1D = 1.06$$
$$At x = 2: A + 2B + 4C + 8D = 1.12$$
$$At x = 3: A + 3B + 9C + 27D = 1.34$$
$$At x = 5: A + 5B + 25C + 125D = 1.78$$

The solution to (4) is A = 1.28, B = -0.4, C = 0.2 and D = -0.2.

How to do interpolation

• Solve a linear equation

Let $P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_N x^N$, or more compactly:

$$P(x) = \sum_{k=0}^{N} a_k x^k.$$

We need to find the N+1 coefficients, a_k , $k=0,1,\ldots,N$. Using the expression above, we have N+1 linear equations about the N+1 unknows, a_k :

$$\sum_{k=0}^{N} a_k x_i^k = P(x_i) = y_i, \quad \text{for all points:} \quad i = 0, 1, ..., N.$$

Written in matrix form:

$$\begin{pmatrix} 1 & x_0 & x_0^2 & \dots & x_0^N \\ 1 & x_1 & x_1^2 & \dots & x_1^N \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & x_N & x_N^2 & \dots & x_N^N \end{pmatrix} \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_N \end{pmatrix} = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_N \end{pmatrix}.$$

The matrix is called **Vandermonde Matrix**.

Lagrange Approximation

Lagrange coefficient polynomials

- Interpolation means to estimate a missing function value by taking a weighted average of known function values at neighboring points.
- Linear interpolation uses a line segment that passes through two points, (x_0, y_0) and (x_1, y_1)

$$y = P(x) = y_0 + (y_1 - y_0) \frac{x - x_0}{x_1 - x_0}$$

The French mathematician Joseph Louis Lagrange

$$y = P_1(x) = y_0 \frac{x - x_1}{x_0 - x_1} + y_1 \frac{x - x_0}{x_1 - x_0}.$$

$$L_{1,0}(x) = \frac{x - x_1}{x_0 - x_1}$$
 and $L_{1,1}(x) = \frac{x - x_0}{x_1 - x_0}$.

Lagrange coefficient polynomials

The construction of a polynomial $P_N(x)$ of degree at most N that passes through the N+1 points $(x_0,y_0),(x_1,y_1),\ldots,(x_N,y_N)$ and has the form

$$P_N(x) = \sum_{k=0}^{N} y_k L_{N,k}(x),$$

where $L_{N,k}$ is the Lagrange coefficient polynomial based on these nodes:

$$L_{N,k}(x) = \frac{(x - x_0) \cdots (x - x_{k-1})(x - x_{k+1}) \cdots (x - x_N)}{(x_k - x_0) \cdots (x_k - x_{k-1})(x_k - x_{k+1}) \cdots (x_k - x_N)}.$$

$$L_{N,k}(x) = \frac{\prod_{j=0}^{N} (x - x_j)}{\prod_{\substack{j=0 \ j \neq k}}^{N} (x_k - x_j)}.$$

Consider $y = f(x) = \cos(x)$ over [0.0, 1.2].

- (a) Use the three nodes $x_0 = 0.0$, $x_1 = 0.6$, and $x_2 = 1.2$ to construct a quadratic interpolation polynomial $P_2(x)$.
- (b) Use the four nodes $x_0 = 0.0$, $x_1 = 0.4$, $x_2 = 0.8$ and $x_3 = 1.2$ to construct a cubic interpolation polynomial $P_3(x)$.

$$P_2(x) = 1.0 \frac{(x - 0.6)(x - 1.2)}{(0.0 - 0.6)(0.0 - 1.2)} + 0.825336 \frac{(x - 0.0)(x - 1.2)}{(0.6 - 0.0)(0.6 - 1.2)}$$

$$+0.360358 \frac{(x - 0.0)(x - 0.6)}{(1.2 - 0.0)(1.2 - 0.6)}$$

$$= 1.388889(x - 0.6)(x - 1.2) - 2.292599(x - 0.0)(x - 1.2)$$

$$+0.503275(x - 0.0)(x - 0.6).$$

$$P_3(x) = 1.000000 \frac{(x - 0.4)(x - 0.8)(x - 1.2)}{(0.0 - 0.4)(0.0 - 0.8)(0.0 - 1.2)}$$

$$+ 0.921061 \frac{(x - 0.0)(x - 0.8)(x - 1.2)}{(0.4 - 0.0)(0.4 - 0.8)(0.4 - 1.2)}$$

$$+ 0.696707 \frac{(x - 0.0)(x - 0.4)(x - 1.2)}{(0.8 - 0.0)(0.8 - 0.4)(0.8 - 1.2)}$$

$$+ 0.362358 \frac{(x - 0.0)(x - 0.4)(x - 0.8)}{(1.2 - 0.0)(1.2 - 0.4)(1.2 - 0.8)}$$

$$= -2.604167(x - 0.4)(x - 0.8)(x - 1.2)$$

$$+ 7.195789(x - 0.0)(x - 0.8)(x - 1.2)$$

$$+ 5.443021(x - 0.0)(x - 0.4)(x - 0.8).$$

Figure 4.12 (a) The quadratic approximation polynomial $y = P_2(x)$ based on the nodes $x_0 = 0.0$, $x_1 = 0.6$, and $x_2 = 1.2$. (b) The cubic approximation polynomial $y = P_3(x)$ based on the nodes $x_0 = 0.0$, $x_1 = 0.4$, $x_2 = 0.8$, and $x_3 = 1.2$.

Error Terms and Error Bounds

• Similar to the error term for the Taylor polynomial

Theorem (Lagrange Polynomial Approximation). Assume that $f \in C^{N+1}[a,b]$ and that $x_0, x_1, ..., x_N \in [a,b]$ are N+1 nodes. If $x \in [a,b]$, then

$$f(x) = P_N(x) + E_N(x),$$

where $P_N(x)$ is a polynomial that can be used to approximate f(x):

$$f(x) \approx P_N(x) = \sum_{k=0}^{N} f(x_k) L_{N,k}(x).$$

The error term $E_N(x)$ has the form

$$E_N(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_N) f^{(N+1)}(c)}{(N+1)!}$$

for some value c = c(x) that lies in the interval [a, b].

Error Terms and Error Bounds

• For the special case when the nodes for the Lagrange polynomial are equally spaced $x_k = x_0 + hk$, for k = 0, 1, ..., N

Theorem (Error Bounds for Lagrange Interpolation, Equally Spaced Nodes).

Assume that f(x) is defined on [a,b], which contains equally spaced nodes $x_k = x_0 + hk$. Additionally, assume that f(x) and the derivatives of f(x), up to the order N+1, are continuous and bounded on the special subintervals $[x_0,x_1]$, $[x_0,x_2]$, and $[x_0,x_3]$, respectively; that is,

$$|f^{(N+1)}(x)| \le M_{N+1}$$
 for $x_0 \le x \le x_N$,

For N = 1, 2, 3. The error terms corresponding to the cases N = 1, 2, and 3 have the following useful bounds on their magnitude:

$$|E_1(x)| \le \frac{h^2 M_2}{8}$$
 valid for $x \in [x_0, x_1]$,
 $|E_2(x)| \le \frac{h^3 M_3}{9\sqrt{3}}$ valid for $x \in [x_0, x_2]$,
 $|E_3(x)| \le \frac{h^4 M_4}{24}$ valid for $x \in [x_0, x_3]$.

Comparison of Accuracy and $O(h^{N+1})$

- The significance of previous Theorem is to understand a simple relationship between the size of the error terms for linear, quadratic, and cubic interpolation.
- In each case the error bound $|E_N(x)|$ depends on h in two ways. First, $|E_N(x)|$ is proportional to h^{N+1} . Second, the values M_{N+1} generally depend on h and tend to $|f^{(N+1)}(x_0)|$ as h goes to zero. Therefore, as h goes to zero, $|E_N(x)|$ converges to zero with the same rapidity that h^{N+1} converges to zero. The notation $O(h^{N+1})$ is used when discussing this behavior.
- For example, the error bound can be expressed as

$$|E_1(x)| = \mathbf{0}(h^2)$$
 valid for $x \in [x_0, x_1]$.

• The notation $O(h^2)$ is meant to convey the idea that the bound for the error term is approximately a multiple of h^2

$$|E_1(x)| \leq Ch^2 \approx \mathbf{O}(h^2).$$

• As a consequence, if the derivatives of f(x) are uniformly bounded on the interval [a, b] and |h| < 1, then choosing N large will make h^{N+1} small, and the higher-degree approximating polynomial will have less error.

Comparison of Accuracy and $O(h^{N+1})$

Figure 4.13 (a) The error function $E_2(x) = \cos(x) - P_2(x)$. (b) The error function $E_3(x) = \cos(x) - P_3(x)$.

Matlab Code

Program 4.1 (Lagrange Approximation). To evaluate the Lagrange polynomial $P(x) = \sum_{k=0}^{N} y_k L_{N,k}(x)$ based on N+1 points (x_k, y_k) for $k=0, 1, \ldots, N$.

```
function [C,L]=lagran(X,Y)
"Input - X is a vector that contains a list of abscissas
        - Y is a vector that contains a list of ordinates
"Output - C is a matrix that contains the coefficients of
          the Lagrange interpolatory polynomial
        - L is a matrix that contains the Lagrange
          coefficient polynomials
w=length(X);
n=w-1;
L=zeros(w,w):
%Form the Lagrange coefficient polynomials
for k=1:n+1
    V=1;
    for j=1:n+1
    if k \sim = j
    V=conv(V,poly(X(j)))/(X(k)-X(j));
    end
end
    L(k,:)=V:
end
%Determine the coefficients of the Lagrange interpolating
%polynomial
C=Y*L:
```

The **conv** commands produces a vector whose entries are the coefficients of a polynomial that is the product of two other polynomials.

Newton Polynomials

Newton Polynomials

- If the Lagrange polynomials are used, there is no constructive relationship between $P_{N-1}(x)$ and $P_N(x)$.
- Each polynomial has to be constructed individually, and the work required to compute the higher-degree polynomials involves many computations.
- We take a new approach and construct Newton polynomials that have the recursive pattern

(1)
$$P_1(x) = a_0 + a_1(x - x_0),$$

(2)
$$P_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1),$$

Newton Polynomials

(3)
$$P_3(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2),$$
:

(4)
$$P_{N}(x) = a_{0} + a_{1}(x - x_{0}) + a_{2}(x - x_{0})(x - x_{1}) + a_{3}(x - x_{0})(x - x_{1})(x - x_{2}) + a_{4}(x - x_{0})(x - x_{1})(x - x_{2})(x - x_{3}) + \cdots + a_{N}(x - x_{0}) \cdots (x - x_{N-1}).$$

Here the polynomial $P_N(x)$ is obtained from $P_{N-1}(x)$ using the recursive relationship

(5)
$$P_N(x) = P_{N-1}(x) + a_N(x - x_0)(x - x_1)(x - x_2) \cdots (x - x_{N-1}).$$

The polynomial (4) is said to be a Newton polynomial with N centers x_0, x_1, \dots, x_{N-1} . It involves sums of products of linear factors up to

$$a_N(x-x_0)(x-x_1)(x-x_2)\cdots(x-x_{N-1}),$$

so $P_N(x)$ will simply be an ordinary polynomial of degree $\leq N$.

Given the centers $x_0 = 1$, $x_1 = 3$, $x_2 = 4$, and $x_3 = 4.5$ and the coefficients $a_0 = 5$, $a_1 = -2$, $a_2 = 0.5$, $a_3 = -0.1$, and $a_4 = 0.003$, find $P_1(x)$, $P_2(x)$, $P_3(x)$, and $P_4(x)$ and evaluate $P_k(2.5)$ for k = 1, 2, 3, 4.

Using formulas (1) through (4), we have

$$P_1(x) = 5 - 2(x - 1),$$

$$P_2(x) = 5 - 2(x - 1) + 0.5(x - 1)(x - 3),$$

$$P_3(x) = P_2(x) - 0.1(x - 1)(x - 3)(x - 4),$$

$$P_4(x) = P_3(x) + 0.003(x - 1)(x - 3)(x - 4)(x - 4.5).$$

Evaluating the polynomial at x = 2.5

$$P_1(2.5) = 5 - 2(1.5) = 2,$$

 $P_2(2.5) = P_1(2.5) + 0.5(1.5)(-0.5) = 1.625,$
 $P_3(2.5) = P_2(2.5) - 0.1(1.5)(-0.5)(-1.5) = 1.5125,$
 $P_4(2.5) = P_3(2.5) + 0.003(1.5)(-0.5)(-1.5)(-2.0) = 1.50575.$

Nested Multiplication

- If N is fixed and the polynomial $P_N(x)$ is evaluated many times, then nested multiplication should be used. The process is similar to nested multiplication for ordinary polynomials, except that the centers x_k must be subtracted from the independent variable x.
- For example, the nested multiplication form for $P_3(x)$ is

$$P_3(x) = ((a_3(x - x_2) + a_2)(x - x_1) + a_1)(x - x_0) + a_0.$$

$$S_3 = a_3,$$

 $S_2 = S_3(x - x_2) + a_2,$
 $S_1 = S_2(x - x_1) + a_1,$
 $S_0 = S_1(x - x_0) + a_0.$

Polynomial Approximation, Nodes, and Centers

- How to find the coefficients a_k for all the polynomials $P_1(x)$, ..., $P_N(x)$ that approximate a given function f(x).
- Then $P_k(x)$ will be based on the centers x_0, x_1, \ldots, x_k and have the nodes $x_0, x_1, \ldots, x_{k+1}$.
- For the Polynomial $P_1(x) = a_0 + a_1(x x_0)$

$$P_1(x_0) = f(x_0)$$
 and $P_1(x_1) = f(x_1)$.

$$f(x_0) = P_1(x_0) = a_0 + a_1(x_0 - x_0) = a_0.$$

$$f(x_1) = P_1(x_1) = a_0 + a_1(x_1 - x_0) = f(x_0) + a_1(x_1 - x_0),$$

Polynomial Approximation, Nodes, and Centers

• For the Polynomial $P_2(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1)$

$$f(x_2) = P_2(x_2) = a_0 + a_1(x_2 - x_0) + a_2(x_2 - x_0)(x_2 - x_1).$$

Polynomial Approximation, Nodes, and Centers

• The *divided differences* for a function f(x) are defined as follows:

$$f[x_k] = f(x_k),$$

$$f[x_{k-1}, x_k] = \frac{f[x_k] - f[x_{k-1}]}{x_k - x_{k-1}},$$

$$f[x_{k-2}, x_{k-1}, x_k] = \frac{f[x_{k-1}, x_k] - f[x_{k-2}, x_{k-1}]}{x_k - x_{k-2}},$$

$$f[x_{k-3}, x_{k-2}, x_{k-1}, x_k] = \frac{f[x_{k-2}, x_{k-1}, x_k] - f[x_{k-3}, x_{k-2}, x_{k-1}]}{x_k - x_{k-3}}$$

• The recursive rule for constructing higher-order divided differences is

$$f[x_{k-j}, x_{k-j+1}, \dots, x_k] = \frac{f[x_{k-j+1}, \dots, x_k] - f[x_{k-j}, \dots, x_{k-1}]}{x_k - x_{k-j}}$$

Polynomial Approximation, Nodes, and Centers

• The recursive rule for constructing higher-order divided differences is

$$f[x_{k-j}, x_{k-j+1}, \dots, x_k] = \frac{f[x_{k-j+1}, \dots, x_k] - f[x_{k-j}, \dots, x_{k-1}]}{x_k - x_{k-j}}$$

Table 4.8 Divided-Difference Table for y = f(x)

x_k	$f[x_k]$	f[,]	f[, ,]	f[, , ,]	f[, , ,]
x_0	$f[x_0]$				
x_1	$f[x_1]$	$f[x_0, x_1]$			
x_2	$f[x_2]$	$f[x_1, x_2]$	$f[x_0, x_1, x_2]$		
x_3	$f[x_3]$	$f[x_2, x_3]$	$f[x_1, x_2, x_3]$	$f[x_0, x_1, x_2, x_3]$	
x_4	$f[x_4]$	$f[x_3, x_4]$	$f[x_2, x_3, x_4]$	$f[x_1, x_2, x_3, x_4]$	$f[x_0, x_1, x_2, x_3, x_4]$

Newton Polynomial

Theorem 4.5 (Newton Polynomial). Suppose that $x_0, x_1, ..., x_N$ are N+1 distinct numbers in [a, b]. There exists a unique polynomial $P_N(x)$ of degree at most N with the property that

$$f(x_j) = P_N(x_j)$$
 for $j = 0, 1, ..., N$.

The Newton form of this polynomial is

(16)
$$P_N(x) = a_0 + a_1(x - x_0) + \dots + a_N(x - x_0)(x - x_1) \dots (x - x_{N-1}),$$

where $a_k = f[x_0, x_1, ..., x_k]$ for k = 0, 1, ..., N.

Remark. If $\{x_j, y_j\}_{j=0}^N$ is a set of points whose abscissas are distinct, the values $f(x_j) = y_j$ can be used to construct the unique polynomial of degree $\leq N$ that passes through the N+1 points.

Newton Approximation

Corollary 4.2 (Newton Approximation). Assume that $P_N(x)$ is the Newton polynomial given in Theorem 4.5 and is used to approximate the function f(x), that is,

(17)
$$f(x) = P_N(x) + E_N(x).$$

If $f \in C^{N+1}[a, b]$, then for each $c \in [a, b]$ there corresponds a number c = c(x) in (a, b), so that the error term has the form

(18)
$$E_N(x) = \frac{(x - x_0)(x - x_1) \cdots (x - x_N) f^{(N+1)}(c)}{(N+1)!}.$$

Remark. The error term $E_N(x)$ is the same as the one for Lagrange interpolation.

Examples

Let $f(x) = x^3 - 4x$. Construct the divided-difference table based on the nodes $x_0 = 1, x_1 = 2, ..., x_5 = 6$, and find the Newton polynomial $P_3(x)$ based on x_0, x_1, x_2 , and x_3 .

Table 4.9	Divided-Difference	Table Used fo	Constructing the	Newton Polynomial	$P_3(x)$
-----------	--------------------	---------------	------------------	-------------------	----------

x_k	$f[x_k]$	First divided difference	Second divided difference	Third divided difference	Fourth divided difference	Fifth divided difference
$x_0 = 1$ $x_1 = 2$ $x_2 = 3$ $x_3 = 4$ $x_4 = 5$ $x_5 = 6$		3 15 33 57 87	- 6 - 9 - 12 - 15	1 1 1	0 0	0

The coefficients $a_0 = -3$, $a_1 = 3$, $a_2 = 6$, and $a_3 = 1$ of $P_3(x)$ appear on the diagonal of the divided-difference table. The centers $x_0 = 1$, $x_1 = 2$, and $x_2 = 3$ are the values in the first column. Using formula (3), we write

$$P_3(x) = -3 + 3(x - 1) + 6(x - 1)(x - 2) + (x - 1)(x - 2)(x - 3).$$

Examples

Construct a divided-difference table for $f(x) = \cos(x)$ based on the five points $(k, \cos(k))$, for k = 0, 1, 2, 3, 4. Use it to find the coefficients a_k and the four Newton interpolation polynomials $P_k(x)$, for k = 1, 2, 3, 4.

Table 4.10 Divided-Difference Table Used for Constructing the Newton Polynomials $P_k(x)$

x_k	$f[x_k]$	f[,]	f[, ,]	f[, , ,]	f[, , , ,]
$x_0 = 0.0$	1.0000000				
$x_1 = 1.0$	0.5403023	-0.4596977			
$x_2 = 2.0$	-0.4161468	-0.9564491	-0.2483757		
$x_3 = 3.0$	-0.9899925	-0.5738457	0.1913017	0.1465592	
$x_4 = 4.0$	-0.6536436	0.3363499	0.4550973	0.0879318	-0.0146568

Examples

$$P_1(x) = 1.0000000 - 0.4596977(x - 0.0),$$

$$P_2(x) = 1.0000000 - 0.4596977(x - 0.0) - 0.2483757(x - 0.0)(x - 1.0),$$

$$P_3(x) = 1.0000000 - 0.4596977(x - 0.0) - 0.2483757(x - 0.0)(x - 1.0)$$

$$+ 0.1465592(x - 0.0)(x - 1.0)(x - 2.0),$$

$$P_4(x) = 1.0000000 - 0.4596977(x - 0.0) - 0.2483757(x - 0.0)(x - 1.0)$$

$$+ 0.1465592(x - 0.0)(x - 1.0)(x - 2.0)$$

$$- 0.0146568(x - 0.0)(x - 1.0)(x - 2.0)(x - 3.0).$$

Figure 4.14 (a) The graphs of $y = \cos(x)$ and the linear Newton polynomial $y = P_1(x)$ based on the nodes $x_0 = 0.0$ and $x_1 = 1.0$.

Figure 4.14 (b) The graphs of $y = \cos(x)$ and the quadratic Newton polynomial $y = P_2(x)$ based on the nodes $x_0 = 0.0$, $x_1 = 1.0$, and $x_2 = 2.0$.

Figure 4.14 (c) The graphs of $y = \cos(x)$ and the cubic Newton polynomial $y = P_2(x)$ based on the nodes $x_0 = 0.0$, $x_1 = 1.0$, $x_2 = 2.0$, and $x_3 = 3.0$.

Matlab Code

```
Program 4.2 (Newton Interpolation Polynomial). To construct and evaluate the Newton polynomial of degree \leq N that passes through (x_k, y_k) = (x_k, f(x_k)) for k = 0, 1, \ldots, N:

(21)
P(x) = d_{0,0} + d_{1,1}(x - x_0) + d_{2,2}(x - x_0)(x - x_1) + \cdots + d_{N,N}(x - x_0)(x - x_1) \cdots (x - x_{N-1}),
where
d_{k,0} = y_k \quad \text{and} \quad d_{k,j} = \frac{d_{k,j-1} - d_{k-1,j-1}}{x_k - x_{k-j}}.
```

```
function [C,D]=newpoly(X,Y)
%Input - X is a vector that contains a list of abscissas
        - Y is a vector that contains a list of ordinates
"Output - C is a vector that contains the coefficients
          of the Newton intepolatory polynomial
%
        - D is the divided-difference table
n=length(X);
D=zeros(n,n);
D(:,1)=Y';
% Use formula (20) to form the divided-difference table
for j=2:n
    for k=j:n
      D(k,j)=(D(k,j-1)-D(k-1,j-1))/(X(k)-X(k-j+1));
   end
end
%Determine the coefficients of the Newton interpolating
%polynomial
C=D(n,n);
for k=(n-1):-1:1
   C=conv(C,poly(X(k)));
   m=length(C);
   C(m)=C(m)+D(k,k);
end
```

Chebyshev Polynomials

Why Chebyshev

• Consider polynomial interpolation for f(x) over [-1, 1] based on the nodes $x_0 < x_1 < ... < x_N$. Both the Lagrange and Newton polynomials satisfy

$$f(x) = P_N(x) + E_N(x)$$

where

$$E_N(x) = Q(x) \frac{f^{(N+1)}(c)}{(N+1)!}$$

and Q(x) is the polynomial of degree N+1:

$$Q(x) = (x - x_0)(x - x_1) \cdots (x - x_N).$$

Using the relationship

$$|E_N(x)| \le |Q_N(x)| \frac{\max_{-1 \le x \le 1} \{|f^{(N+1)}(x)|\}}{(N+1)!},$$

• How to select the set of nodes $\{x_k\}$ that minimizes

$$\max_{-1 \le x \le 1} \{ |Q_N(x)| \}$$

Classical Orthogonal Polynomials

• In function analysis, an inner product with respect to a weight function, $\omega(x)$, is defined as:

$$\langle f, g \rangle \equiv \int \omega(x) f(x) g(x) dx.$$

Think the dot-product of two vectors.

- Two functions, f and g, are said to be orthogonal if $\langle f, g \rangle = 0$. (two perpendicular, or orthogonal, vectors)
- Orthogonal polynomial sequence, $P_n(x)$, $n = 0, \dots, \infty$, is a family of polynomial satisfying:
 - P_n is an n-th degree polynomial;
 - Ortho-normal: $\langle P_m, P_n \rangle = \begin{cases} 0 & m \neq n \\ 1 & m = n \end{cases}$. $P_n(x)$ are similar to the base vectors \mathbf{x} , \mathbf{y} , \mathbf{z} in three-dimensional Euclidean space.
 - $P_n(x)$ can be constructed explicitly through the **Gram-Schmidt** procedure.

Classical Orthogonal Polynomials

• A family of orthogonal polynomials form a complete basis of the given functional space, i.e. for any function f(x):

$$f(x) = \sum_{n=0}^{\infty} a_n P_n(x),$$

where a_n are the expansion coefficients given by

$$a_n = \int \omega(x) f(x) P_n(x) dx.$$

Any vector in Euclidean space can be expanded as $\mathbf{v} = v_x \mathbf{x} + v_y \mathbf{y} + v_z \mathbf{z}$ with $v_x = \mathbf{v} \cdot \mathbf{x}$, $v_y = \mathbf{v} \cdot \mathbf{y}$, The expansion is called the *general Fourier expansion*.

Classical Orthogonal Polynomials

• Orthogonal polynomials arise from the **Sturm-Liuville** problem, they are solutions to the **Sturm-Liuville** equation:

$$\frac{d}{dx}\left[p(x)\frac{dy}{dx}\right] + q(x)y = -\lambda\omega(x)y,$$

and some boundary conditions.

• The most commonly used families are the **Classical Orthogonal Polynomials:**

Jacobi
$$\omega = (1-x)^{\alpha}(1+x)^{\beta}$$
 [-1,+1]
Hermite $\omega = \exp(-x^2)$ (-\infty,+\infty)
Laguerre $\omega = x^{\alpha} \exp(-x)$ [0,\infty)

Chebyshev Polynomials

• Chebyshev polynomial is a special form of Jacobi polynomial with $\alpha = \beta = 1/2$

Table 4.11 Chebyshev Polynomials $T_0(x)$ through $T_7(x)$

$$T_0(x) = 1$$

$$T_1(x) = x$$

$$T_2(x) = 2x^2 - 1$$

$$T_3(x) = 4x^3 - 3x$$

$$T_4(x) = 8x^4 - 8x^2 + 1$$

$$T_5(x) = 16x^5 - 20x^3 + 5x$$

$$T_6(x) = 32x^6 - 48x^4 + 18x^2 - 1$$

$$T_7(x) = 64x^7 - 112x^5 + 56x^3 - 7x$$

Property 1. Recurrence Relation

Chebyshev polynomials can be generated in the following way. Set $T_0(x) = 1$ and $T_1(x) = x$ and use the recurrence relation

$$T_k(x) = 2xT_{k-1}(x) - T_{k-2}(x)$$
 for $k = 2, 3, ...$

Property 1 is often used as the definition for higher-order Chebyshev polynomials. Let us show that $T_3(x) = 2xT_2(x) - T_1(x)$. Using the expressions for $T_1(x)$ and $T_2(x)$ in Table 4.11, we obtain

$$2xT_2(x) - T_1(x) = 2x(2x^2 - 1) - x = 4x^3 - 3x = T_3(x).$$

Property 2. Leading Coefficient

The coefficient of x^N in $T_N(x)$ is 2^{N-1} when $N \ge 1$.

Property 2 is proved by observing that the recurrence relation doubles the leading coefficient of $T_{N-1}(x)$ to get the leading coefficient of $T_N(x)$.

Property 3. Symmetry

When N = 2M, $T_{2M}(x)$ is an even function, that is,

$$(4) T_{2M}(-x) = T_{2M}(x)$$

When N = 2M + 1, $T_{2M+1}(x)$ is an odd function, that is,

(5)
$$T_{2M+1}(-x) = -T_{2M+1}(x).$$

Property 3 is established by showing that $T_{2M}(x)$ involves only even powers of x and $T_{2M+1}(x)$ involves only odd powers of x

Property 4. Trigonometric Representation on [-1,1]

$$T_N(x) = \cos(N \arccos(x)) \qquad \text{for } -1 \le x \le 1.$$

$$\cos(k\theta) = \cos(2\theta)\cos((k-2)\theta) - \sin(2\theta)\sin((k-2)\theta).$$

$$\cos(k\theta) = 2\cos(\theta)(\cos(\theta)\cos(k-2)\theta) - \sin(\theta)\sin((k-2)\theta) - \cos((k-2)\theta).$$

$$\cos(k\theta) = 2\cos(\theta)\cos((k-1)\theta) - \cos((k-2)\theta).$$

Finally, substitute $\theta = \arccos(x)$ and obtain

$$2x \cos((k-1)\arccos(x)) - \cos((k-2)\arccos(x))$$

$$= \cos(k \arccos(x)) \qquad \text{for } -1 \le x \le 1.$$

• The first two Chebyshev polynomials are

$$T_0(x) = \cos(0 \arccos(x)) = 1$$

 $T_1(x) = \cos(1 \arccos(x)) = x$

Now assume

$$T_k(x) = \cos(k \arccos(x))$$
 for $k = 2, 3, ..., N-1$

$$T_N(x) = 2xT_{N-1}(x) - T_{N-2}(x)$$

$$= 2x\cos((N-1)\arccos(x)) - \cos((N-2)\arccos(x))$$

$$= \cos(N\arccos(x)) \quad \text{for } -1 \le x \le 1.$$

Property 5. Distinct Zeros in [−1, 1]

 $T_N(x)$ has N distinct zeros x_k that lie in the interval [-1, 1] (see Figure):

$$x_k = \cos\left(\frac{(2k+1)\pi}{2N}\right)$$
 for $k = 0, 1, ..., N-1$.

These values are called the *Chebyshev abscissas* (nodes).

Property 6. Extreme Values

$$|T_N(x)| \le 1$$
 for $-1 \le x \le 1$.

Figure 4.15 The graphs of the Chebyshev polynomials $T_0(x)$, $T_1(x)$, ..., $T_4(x)$ over [-1, 1].

Minimize the upper bound for error

The Russian mathematician Chebyshev studied how to minimize the upper bound for $|E_N(x)|$. One upper bound can be formed by taking the product of the maximum value of |Q(x)| over all x in [-1, 1] and the maximum value $|f^{(N+1)}(x)/(N+1)!|$ over all x in [-1, 1]. To minimize the factor $\max\{|Q(x)|\}$, Chebyshev discovered that x_0, x_1, \ldots, x_N should be chosen so that $Q(x) = (1/2^N)T_{N+1}(x)$.

Theorem 4.6. Assume that N is fixed. Among all possible choice for Q(x) in equation (2), and thus among all possible choices for the distinct nodes $\{x_k\}_{k=0}^N$ in [-1, 1], the polynomial $T(x) = T_{N+1}(x)/2^N$ is the unique choice that has the property

$$\max_{-1 \le x \le 1} \{ |T(x)| \} \le \max_{-1 \le x \le 1} \{ |Q(x)| \}.$$

Moreover,

$$\max_{-1 \le x \le 1} \{ |T(x)| \} = \frac{1}{2^N}.$$

Minimize the upper bound for error

- The consequence can be stated by saying that for Lagrange interpolation f(x) on [-1,1], the minimum value of the error bound is achieved when the nodes $\{x_k\}$ are the Chebyshev abscissas of $T_{N+1}(x)$
- See an example, we look at the Lagrange coefficient polynomials that are used in forming $P_3(x)$, and compare using equally spaced nodes and the Chebyshev nodes.
- Recall that

$$P_3(x) = f(x_0)L_{3,0}(x) + f(x_1)L_{3,1}(x) + f(x_2)L_{3,2}(x) + f(x_3)L_{3,3}(x).$$

An Example: Equally spaced nodes

• If f(x) is approximated by a polynomial of degree at most N = 3 on [-1, 1], the equally spaced nodes $x_0 = -1$, $x_1 = -1/3$, $x_2 = 1/3$, and $x_3 = 1$ are easy to use for calculations.

Table 4.12 Lagrange Coefficient Polynomials Used to Form $P_3(x)$ Based on Equally Spaced Nodes $x_k = -1 + 2k/3$

```
L_{3,0}(x) = -0.06250000 + 0.06250000x + 0.56250000x^{2} - 0.56250000x^{3}
L_{3,1}(x) = 0.56250000 - 1.68750000x - 0.56250000x^{2} + 1.68750000x^{3}
L_{3,2}(x) = 0.56250000 + 1.68750000x - 0.56250000x^{2} - 1.68750000x^{3}
L_{3,3}(x) = -0.06250000 - 0.06250000x + 0.56250000x^{2} + 0.56250000x^{3}
```

An Example: Chebyshev nodes

• When f(x) is to be approximated by a polynomial of degree at most N = 3, using the Chebyshev nodes $x_0 = \cos(7\pi/8)$, $x_1 = \cos(5\pi/8)$, $x_2 = \cos(3\pi/8)$, and $x_3 = \cos(\pi/8)$, the coefficient polynomials are tedious to find (but this can be done by a computer).

Table 4.13 Coefficient Polynomials Used to Form $P_3(x)$ Based on the Chebyshev Nodes $x_k = \cos((7 - 2k)\pi/8)$

```
C_0(x) = -0.10355339 + 0.11208538x + 0.70710678x^2 - 0.76536686x^3

C_1(x) = 0.60355339 - 1.57716102x - 0.70710678x^2 + 1.84775906x^3

C_2(x) = 0.60355339 + 1.57716102x - 0.70710678x^2 - 1.84775906x^3

C_3(x) = -0.10355339 - 0.11208538x + 0.70710678x^2 + 0.76536686x^3
```

An Example

- Compare the Lagrange polynomials of degree N = 3 for $f(x) = e^x$ that are obtained by using the coefficient polynomials in Tables 4.12 and 4.13, respectively:
- Using equally spaced nodes, we get

$$f(x_0) = e^{(-1)} = 0.36787944,$$
 $f(x_1) = e^{(-1/3)} = 0.71653131,$ $f(x_2) = e^{(1/3)} = 1.39561243,$ $f(x_3) = e^{(1)} = 2.71828183,$

$$P(x) = 0.36787944L_{3,0}(x) + 0.71653131L_{3,1}(x) + 1.39561243L_{3,2}(x) + 2.71828183L_{3,0}(x).$$

$$P(x) = 0.99519577 + 0.99904923x + 0.54788486x^2 + 0.17615196x^3.$$

Using Chebyshev nodes, we obtain

$$V(x) = 0.99461532 + 0.99893323x + 0.54290072x^2 + 0.17517569x^3$$
.

An Example

Figure 4.16 (a) The error function $y = e^x - P(x)$ for Lagrange approximation over [-1, 1]. (b) The error function $y = e^x - V(x)$ for Chebyshev approximation over [-1, 1].

Runge Phenomenon

- Consider Lagrange interpolating to f(x) over the interval [-1, 1] based on equally spaced nodes. Does the error $E_N(x) = f(x) P_N(x)$ tend to zero as N increases?
- For functions link sin(x) or e^x , where all the derivatives are bounded by the same constant M, the answer is yes.
- In general, the answer to this question is no, and it is easy to find functions for which the sequence $\{P_N(x)\}$ does not converge.
- For example, if $f(x) = 1/(1+12x^2)$, the maximum of the error term $E_N(x)$ grows when $N \to \infty$.
- This nonconvergence is called the *Runge phenomenon*.
- However, the Chebyshev interpolation performs better.
- Under the condition that Chebyshev nodes be used, the error $E_N(x)$ will go to zero as $N \to \infty$.

Runge Phenomenon

• Consider construct an interpolating polynomial of degree 10 for f(x)= $1/(1+12x^2)$

Figure 4.17 (a) The polynomial approximation to $y = 1/(1 + 12x^2)$ based on 11 equally spaced nodes over [-1, 1].

Figure 4.17 (b) The polynomial approximation to $y = 1/(1 + 12x^2)$ based on 11 Chebyshev nodes over [-1, 1].

• In general, if f(x) and f'(x) are continuous on [-1, 1], then it can be proved that Chebyshev interpolation will produce a sequence of polynomials $\{P_N(x)\}$ that converges uniformly to f(x) over [-1, 1].

Transforming the Interval

Sometimes it is necessary to take a problem stated on an interval [a, b] and reformulate the problem on the interval [c, d] where the solution is known. If the approximation $P_N(x)$ to f(x) is to be obtained on the interval [a, b], then we change the variable so that the problem is reformulated on [-1, 1]:

(12)
$$x = \left(\frac{b-a}{2}\right)t + \frac{a+b}{2}$$
 or $t = 2\frac{x-a}{b-a} - 1$,

where $a \le x \le b$ and $-1 \le t \le 1$.

The required Chebyshev nodes of $T_{N+1}(t)$ on [-1, 1] are

(13)
$$t_k = \cos\left((2N+1-2k)\frac{\pi}{2N+2}\right) \quad \text{for } k = 0, 1, ..., N.$$

and the interpolation nodes on [a, b] are obtained by using (12):

(14)
$$x_k = t_k \frac{b-a}{2} + \frac{a+b}{2} for k = 0, 1, ..., N.$$

Transforming the Interval

Theorem 4.7 (Lagrange-Chebyshev Approximation Polynomial). Assume that $P_N(x)$ is the Lagrange polynomial that is based on the Chebyshev nodes given in (14). If $f \in C^{N+1}[a,b]$, then

(15)
$$|f(x) - P_N(x)| \le \frac{2(b-a)^{N+1}}{4^{N+1}(N+1)!} \max_{a \le x \le b} \{|f^{(N+1)}(x)|\}.$$

Chebyshev Approximation

Theorem 4.8 The Chebyshev approximation polynomial $P_N(x)$ of degree $\leq N$ for f(x) over [-1,1] can be written as a sum of $\{T_j(x)\}$:

(21)
$$f(x) \approx P_N(x) = \sum_{j=0}^{N} c_j T_j(x).$$

The coefficients $\{c_i\}$ are computed with the formulas

(22) and
$$c_0 = \frac{1}{N+1} \sum_{k=0}^{N} f(x_k) T_0(x_k) = \frac{1}{N+1} \sum_{k=0}^{N} f(x_k)$$
 and

$$c_j = \frac{2}{N+1} \sum_{k=0}^{N} f(x_k) T_j(x_k)$$

(23)
$$= \frac{2}{N+1} \sum_{k=0}^{N} f(x_k) \cos\left(\frac{j\pi(2k+1)}{2N+2}\right) \quad \text{for } j = 1, 2, \dots, N.$$

An example

Example 4.16. Find the Chebyshev polynomial $P_3(x)$ that approximates the function $f(x) = e^x$ over [-1, 1].

The coefficients are calculated using formulas (22) and (23), and the nodes $x_k = \cos(\pi(2k+1)/8)$ for k = 0, 1, 2, 3.

$$c_0 = \frac{1}{4} \sum_{k=0}^{3} e^{x_k} T_0(x_k) = \frac{1}{4} \sum_{k=0}^{3} e^{x_k} = 1.26606568,$$

$$c_1 = \frac{1}{2} \sum_{k=0}^{3} e^{x_k} T_1(x_k) = \frac{1}{2} \sum_{k=0}^{3} e^{x_k} x_k = 1.13031500,$$

$$c_2 = \frac{1}{2} \sum_{k=0}^{3} e^{x_k} T_2(x_k) = \frac{1}{2} \sum_{k=0}^{3} e^{x_k} \cos(2\pi \frac{2k+1}{8}) = 0.27145036,$$

$$c_3 = \frac{1}{2} \sum_{k=0}^{3} e^{x_k} T_3(x_k) = \frac{1}{2} \sum_{k=0}^{3} e^{x_k} \cos(3\pi \frac{2k+1}{8}) = 0.04379392.$$

$$P_3(x) = 1.26606568 T_0(x) + 1.13031500 T_1(x) + 0.27145036 T_2(x) + 0.04379392 T_3(x).$$

 $P_3(x) = 0.99461532 + 0.99893324x + 0.54290072x^2 + 0.17517568x^3$

Matlab Code

Program 4.3 (Chebyshev Approximation). To construct and evaluate the Chebyshev interpolating polynomial of degree N over the interval [-1, 1], where

$$P(x) = \sum_{j=0}^{N} c_j T_j(x)$$

is based on the nodes

$$x_k = \cos\left(\frac{(2k+1)\pi}{2N+2}\right).$$

```
function [C,X,Y]=cheby(fun,n,a,b)
"Input - fun is the string function to be approximated
        - N is the degree of the Chebyshev interpolating
          polynomial
       - a is the left endpoint
        - b is the right endpoint
%Output - C is the coefficient list for the polynomial
        - X contains the abscissas
        - Y contains the ordinates
if nargin==2, a=-1;b=1;end
d=pi/(2*n+2);
C=zeros(1,n+1);
for k=1:n+1
   X(k) = cos((2*k-1)*d);
end
X=(b-a)*X/2+(a+b)/2;
x=X;
Y=eval(fun);
for k = 1:n+1
   z=(2*k-1)*d;
   for j=1:n+1
      C(j)=C(j)+Y(k)*cos((j-1)*z);
   end
end
C=2*C/(n+1);
C(1)=C(1)/2;
```

Padé Approximations

A rational approximation

• A rational approximation to f(x) on [a, b] is the quotient of two polynomials $P_N(x)$ and $Q_M(x)$ of degrees N and M, respectively. We use the notation $R_{N,M}(x)$ to denote this quotient:

$$R_{N,M}(x) = \frac{P_N(x)}{Q_M(x)}$$
 for $a \le x \le b$.

- Our goal is to make the maximum error as small as possible. For a given amount of computational effort, one can usually construct a rational approximation that has a smaller overall error on [a, b] than a polynomial approximation.
- Our development is an introduction and will be limited to Padé approximations.

Method of Padé

- Requires that f(x) and its derivative be continuous at x = 0.
- Construct

(2)
$$P_N(x) = P_0 + P_1 x + P_2 x^2 + \dots + P_N x^N$$
 and

(3)
$$Q_M(x) = 1 + q_1 x + q_2 x^2 + \dots + q_M x^M.$$

- The polynomials in (2) and (3) are constructed so that f(x) and $R_{N,M}(x)$ agree at x = 0 and their derivatives up to N + M agree at x = 0.
- For a fixed value of N+M the error is smallest when $P_N(x)$ and $Q_M(x)$ have the same degree or when $P_N(x)$ has degree one higher than $Q_M(x)$.

Method of Padé

• Assume that f(x) is analytic and has the Maclaurin expansion

(4)
$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k + \dots,$$

and form the difference $f(x)Q_M(x) - P_N(x) = Z(x)$:

(5)
$$\left(\sum_{j=0}^{\infty} a_j x^j\right) \left(\sum_{j=0}^{M} q_j x^j\right) - \sum_{j=0}^{N} p_j x^j = \sum_{j=N+M+1}^{\infty} c_j x^j.$$

• When the left side of (5) is multiplied out and the coefficients of the powers of x^j are set equal to zero for k = 0, 1, ..., N + M, the result is a system of N + M + 1 linear equations:

Method of Padé

(6)
$$a_0 - p_0 = 0$$

$$q_1 a_0 + a_1 - p_1 = 0$$

$$q_2 a_0 + q_1 a_1 + a_2 - p_2 = 0$$

$$q_3 a_0 + q_2 a_1 + q_1 a_2 + a_2 - p_3 = 0$$

$$q_M a_{N-M} + q_{M-1} a_{N-M+1} + \dots + a_N - p_N = 0$$

and

$$q_{M}a_{N-M+1} + q_{M-1}a_{N-M+2} + \dots + q_{1}a_{N} + a_{N+1} = 0$$

$$(7) \qquad q_{M}a_{N-M+2} + q_{M-1}a_{N-M+3} + \dots + q_{1}a_{N+1} + a_{N+2} = 0$$

$$\vdots$$

$$q_{M}a_{N} + q_{M-1}a_{N+1} + \dots + q_{1}a_{N+M+1} + a_{N+M} = 0$$

An example

Example 4.17. Establish the Padé approximation

(8)
$$\cos(x) \approx R_{4,4}(x) = \frac{15,120 - 6900x^2 + 313x^4}{15,120 + 660x^2 + 13x^4}.$$

If the Maclaurin expansion for cos(x) is used, we will obtain nine equations in nine unknows. Instead, notice that both cos(x) and $R_{4,4}(x)$ are even functions and involve powers of x^2 . We can simplify the computations if we start with $f(x) = cos(x^{1/2})$:

$$f(x) = 1 - \frac{1}{2}x + \frac{1}{24}x^2 - \frac{1}{720}x^3 + \frac{1}{40,320}x^4 - \dots$$

In this case, equation (5) becomes

$$\left(1 - \frac{1}{2}x + \frac{1}{24}x^2 - \frac{1}{720}x^3 + \frac{1}{40,320}x^4 - \cdots\right)(1 + q_1x + q_2x^2) - p_0 - p_1x - p_2x^2$$

$$= 0 + 0x + 0x^2 + 0x^3 + 0x^4 + c_5x^5 + c_6x^6 + \cdots$$

An example

$$1 - p_0 = 0$$

$$-\frac{1}{2} + q_1 - p_1 = 0$$

$$\frac{1}{24} - \frac{1}{2}q_1 + q_2 - p_2 = 0$$

$$-\frac{1}{720} + \frac{1}{24}q_1 - \frac{1}{2}q_2 = 0$$

$$\frac{1}{40,320} - \frac{1}{720}q_1 + \frac{1}{24}q_2 = 0.$$

$$f(x) \approx \frac{1 - 115 \, x / 252 + 313 \, x^2 / 15,120}{1 + 11 \, x / 252 + 13 \, x^2 / 15,120}.$$

$$R_{4,4}(x) = \frac{15,120 - 6900x^2 + 313x^4}{15,120 + 660x^2 + 13x^4}.$$

$$p_1 = -\frac{1}{2} + \frac{11}{252} = -\frac{115}{252},$$

$$p_2 = \frac{1}{24} - \frac{11}{504} + \frac{13}{15,120} = \frac{313}{15,120}.$$

$$q_2 = \frac{1}{18} \left(\frac{1}{30} - \frac{1}{56} \right) = \frac{13}{15,120},$$
$$q_1 = \frac{1}{30} + \frac{156}{15,120} = \frac{11}{252}.$$

Figure 4.18 The graph of y = cos(x) and its Padé approximation $R_{4,4}(x)$.

Continued Fraction Form

• The Padé approximation $R_{4,4}(x)$ in Example 4.17 requires a minimum of 12 arithmetic operations to perform an evaluation. It is possible to reduce this number to seven by the use of continued fractions.

$$R_{4,4}(x) = \frac{15,120/313 - (6900/313)x^2 + x^4}{\frac{15,120}{13} + (660/13)x^2 + x^4}$$

$$= \frac{313}{13} - \left(\frac{296,280}{169}\right) \left(\frac{12,600/823 + x^2}{15,120/13 + (600/13)x^2 + x^4}\right).$$

$$R_{4,4}(x) = \frac{313}{13} - \frac{296,280/169}{\frac{15,120/13 + (660/13)x^2 + x^4}{12,600/823 + x^2}}$$

$$= \frac{313}{13} - \frac{296,280/169}{\frac{379,380}{10,699} + x^2 + \frac{420,078,960/677,329}{12,600/823 + x^2}}$$

Continued Fraction Form

$$R_{4,4}(x) = 24.07692308$$

$$-\frac{1753.13609467}{35.45938873 + x^2 + 620.19928277/(15.30984204 + x^2)}.$$

Compared with the Taylor polynomial $P_6(x)$ of degree N = 6

$$P_6(x) = 1 + x^2 \left(-\frac{1}{2} + x^2 \left(\frac{1}{24} - \frac{1}{720} x^2 \right) \right)$$
$$= 1 + x^2 (-0.5 + x^2 (0.0416666667 - 0.0013888889x^2)).$$

Continued Fraction Form

Figure 4.19 (a) The graph of the error $E_R(x) = \cos(x) - R_{4,4}(x)$ for the Padé approximation $R_{4,4}(x)$. (b) The graph of the error $E_P(x) = \cos(x) - P_6(x)$ for the Taylor approximation $P_6(x)$.

- The largest errors occur at the endpoints and are $E_R(1) = -0.0000003599$ and $E_P(1) = 0.0000245281$, respectively. The magnitude of the largest error for $R_{4,4}(x)$ is about 1.467% of the error for $P_6(x)$.