

3a.

KAPACITA - kapacitní senzory

Přednášející: prof. Ing. Miroslav Husák, CSc.

husak@fel.cvut.cz,

http://micro.fel.cvut.cz

tel.: 2 2435 2267

Cvičící: Ing. Adam Bouřa, Ph.D.

Ing. Alexandr Laposa, Ph.D.

Ing. Tomáš Teplý

Kapacitní senzory

Kapacitní senzory – parametry měření

Displacement and position sensors: measuring ranges from 50 μ m to 30 m - short overview of measuring range, linearity and resolution

$$C = \varepsilon \frac{S}{d} \implies dC = \frac{\partial C}{\partial S} dS + \frac{\partial C}{\partial \varepsilon} d\varepsilon + \frac{\partial C}{\partial d} d(d)$$

Pracovní kmitočet

$$R_s, \omega L_s << \frac{1}{\omega C} << R_d, R_k, \frac{1}{\omega C_k}$$

Rapacitní senzor: Napište základní rovnici pro výpočet kapacity deskového kondenzátoru a k ní napište diferenciální rovnici popisující změnu kapacity, Nakreslete náhradní zapojení pro připojení kapacitního senzoru k měřicímu obvodu, K náhradnímu obvodu napište nerovnici pro určení frekvence napájecího signálu

Změna kapacity – změna vzdálenosti elektrod

a) Vzdálenost elektrod – posunutí cca do 1 mm

$$C_o = \varepsilon_o \varepsilon_r \frac{S}{d}$$

$$C = \varepsilon_o \varepsilon_r \frac{S}{d + \Delta d}$$

$$C = C_o \frac{1}{1 \pm \frac{\Delta d}{d}}$$

? Nakreslete princip činnosti a převodní charakteristiku pro změnu kapacity změnou vzdálenosti elektrod

Změna kapacity – změna vzdálenosti elektrod

a) Vzdálenost elektrod – posunutí cca do 1 mm

```
-měření házivosti rotujících částí
-měření vibrací rotujících i pevmých částí
-měření posunutí (např. u deformačních členů) vlivem
                                                                  Rozměrový náčrtek kapacitní sondy SH-02
   jiné mechanické veličiny
-měření úchylek od referenční plochy
                                              izolačních
-měření tloušťky elektricky vodivých i
   materiálů
-třídění součástek
                                                                     ěrový náčrtek kapacitní sondy SH-03
```

Změna kapacity – změna vzdálenosti elektrod

a) Vzdálenost elektrod – posunutí cca do 1 mm

parametr	typ sondy
	SH-02 SH-03
Průměr aktivní plochy sondy	1,67 mm 1 mm
Délka hrotu sondy	30 mm
Průměr hrotu sondy	5 mm 3 mm
Vzdálenost hrany měřené plochy	1
od podélné osy sondy	min. 2 mm min. 1 mm
Dėlka kabelu sondy	asi 1 m
Jmenovitá vzdálenost sondy	
od měřené plochy	200 µm
Měřicí-rozsah	*1-40-yn
Výstupní napětí	± 1 V/μm
Nelinearita výstupního napětí	
(bez linearizace)	± 0,5 %/բտ
Rozlišovací schopnost	dána šumem (fádově 20 nm)
Teplotní rozsah	(23 ± 5) ℃
Relativní vlhkost	(50 ± 10) %
Teplotni nestabilita	max. 0,5 µm/°C
Teplotní gradient	max. 5 °C/hod.
Frekvenční rozsah	do 10 kHz
Napájecí napětí (zvlnění),odběr	± 15 V (± 1%), 50 mA
	+ 5 V ± 5 % , 20 mA
Teplota skladování	(-10 až +50)°C
Relativní vlhkost při skladování	(30 až 70) %
Možnost doladění	-viceotáčkovým trimrem
	-osmibitovým slovem
	s drovni TTL
Vyhodnocovací část	deska 100 x 170 x 30 mm
	s konektorem FRB 62 kon-
	taktů
Váha sondy	130 g 125g
Rozméry sondy	viz rozměrový náčrtek

b) Posunutí elektrod – nad 1 mm

Chyba posuvem desek

Diferenciální uspořádání

$$C = \varepsilon_o \varepsilon_r \frac{bx}{d}$$

$$C_o = \epsilon_o \epsilon_r \frac{ba}{d}$$

$$C = C_o \frac{x}{a}$$

? Nakreslete princip činnosti a převodní charakteristiku pro změnu kapacity vzájemným posuvem elektrod

Zkou

ška

Příklad: válcový kapacitní senzor k měření posunutí

Příklad: válcový kapacitní senzor k měření posunutí, diferenciální uspořádání

Příklad:

Interdigitální kapacitní struktura (Ize jako akční člen, Coulomb. síly)

Příklad: Princip měření torze hřídele

c) Změna objemu dielektrika

$$C_{B} = \varepsilon_{2} \frac{b(a-x)}{d_{1} + d_{2}}$$

? Nakreslete princip činnosti a převodní charakteristiku pro změnu kapacity zasouváním dielektrika

Příklad: Měření výšky obilí, kapaliny, atd. v zásobníku (změna výšky dielektrika)

Příklad: Kapacitní limitní senzor výšky

Kompenzovatelná počáteční kapacita měřicí sondy
Maximální vybavovací citlivost pro I., II. a III. rozsah měřicí sondy

Zvýšená citlivost Délky elektrod

- tyčové neizolované
- tyčové izolované
- závěsné neizolované
- závěsné izolované

0 až 400 pF

I. rozsah: cca 1,5 pF

II. rozsah: cca 5 pF

III. rozsah: cca 30 pF

cca 0,5 pF (na I. rozsahu)

0,03 až 3m 0,5 až 2 m

0,5 až 40 m 0,5 až 40 m

Kapacitní limitní senzor výšky hladiny

Limitní kapacitní měřič výšky hladiny je určen jako limitní spínač pro signalizaci nebo regulaci jedné úrovně výšky hladiny (např. minimální nebo maximální) elektricky vodivých i nevodivých zmitých, sypkých a kapaluých látek v různých typech zásobníků, bunkrů, sil, nádrží, tanků, cisteren, na volných skládkách, dopravních pasech apod.

Měřič pracuje na kapacitním principu a lse jej použít pro limitní měření výšky hladiny různých látek v celé řadě oborů jako je hornictví, těžba rud, těžba a zpracování kamene, uranový průmysl, hutnictví, slévárenství, výroba cementu a cementářských výrobků, keramický průmysl, sklářský průmysl, výroba stavebních hmot, stavebnictví (panelárny, betonárky), výstavba silnic a dálnic, strojírenství, lodní průmysl (klasická a technická plavidla), energetika (tepelné a vodní elektrárny), výroba a rozvod tepla (teplárny, výtopny, spalovny), chemie, petrochemie, gumárenský průmysl, plastikářský průmysl, zpracování dřeva, papírny, potravinářství (mlékárny, pivovary, sladovny, cukrovary, mlýny a pekárny, pečivárny, čokoládovny, lihovary, droždárny, škrobárny, výroba tuků, vinařské závody, konzervárny, mrazírny), farmaceutický průmysl, vodní hospodářství (úpravny vody, vodárny, čisticí stanice, zdymadla, přehrady), zemědělství (obilní sila, krmivárny) apod.

Z látek, které lze měřit, jsou to např. uhlí, rudy, kámen (drcené frakce), rudné aglomeráty, koks, slávárenské písky, cement, slinek, drcený vápenec, vápno, struska, popílek, škvára, nafta, petrolej, olej, živice (asfalt), plyny v kapalné fázi, barvy, laky, kaučuky, dřevný prach, papírenská surovina, voda, mléko, sušené mléko, smetana, mouka, cukr, těstoviny, luštěniny, slad, pivo, víno, mošty, torula (droždí), obilí, kukuřice, brambory, řepa, krmné směsi a další.

Změna kapacity – změna vlastností dielektrika

d) Změna vlastností dielektrika (změna ε,)

Změna ε_r (vlhkost, teplota, mechanická deformace apod.)

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$

? Nakreslete princip činnosti a převodní charakteristiku pro změnu kapacity změnou vlastností dielektrika

Zkou

Změna kapacity – změna vlastností dielektrika

Příklad: Senzor relativní vlhkosti SHT3x

Princip je založený na měření kapacity mezi elektrodami umístěnými v porézní polymerní membráně. Vodní páry pronikají do membrány a mění kapacitu mezi elektrodami.

RH Range:	0 % to 100 %
RH Accuracy:	+/- 2 %
Mounting Style:	SMD/SMT
Output Type:	Digital
Interface Type:	I2C
Resolution:	16 bit
Full Temp Accuracy:	+/- 0.3 C
Operating Supply Current:	800 uA
Supply Voltage - Min:	2.4 V
Supply Voltage - Max:	5.5 V
Minimum Operating Temperature:	- 40 C
Maximum Operating Temperature:	+ 125 C

Změna kapacity – shrnutí mechanismů změn

Elektronické vyhodnocovací obvody pro kapacitní senzory

Typicky se používá:

- a) napěťový kapacitní dělič
- b) zesilovač se zpětnovazební měřicí kapacitou
- c) kapacitní můstek
- d) oscilátorové obvody

a) Napěťový kapacitní dělič

a) střídavý výstup

$$X_{C} = \frac{1}{2\pi fC}$$

? Nakreslete základní zapojení pro vyhodnocování kapacity s napěťovým kapacitním děličem a střídavým a stejnosměrným

výstupním signálem

Poznámky:

- Frekvence oscilátoru je konstantní, mění se C_s
- Výstupní střídavé napětí lze převést na stejnosměrné

a) Napěťový kapacitní dělič

a) střídavý výstup s usměrňovačem

a) Napěťový kapacitní dělič

a) střídavý výstup + synchronní demodulátor

Princip činnosti:

Elektronický spínač místo diody, synchronizace spínače s oscilátorem.

Sepnutí – vyšší napětí, filtrační C se nabíjí z děliče

Rozepnutí – nižší napětí

Nabíjení filtrační C bez chyb, které vznikají u klasického usměrňovače

Zesilovač se zpětnou kapacitní vazbou

b) Zesilovač se zpětnou kapacitní vazbou

$$U_2 = -\frac{X_{C_s}}{X_{C_1}}U = -\frac{\frac{1}{\omega C_s}}{\frac{1}{\omega C_1}}U$$

$$U_2 = -\frac{C_1}{C_s}U$$

? Nakreslete základní zapojení pro vyhodnocování kapacity se zesilovačem se zpětnou vazbou

Kapacitní můstek

24

c) Kapacitní můstek

$$\frac{1}{2\pi f C_s} = \frac{1}{2\pi f C_N}$$

$$\frac{1}{2\pi f L_{N1}} = \frac{1}{2\pi f L_{N2}}$$

$$\frac{1}{\frac{C_s}{L_{N1}}} = \frac{1}{\frac{C_N}{L_{N2}}}$$
Odvoteni stani

? Nakreslete základní zapojení pro vyhodnocování kapacity s kapacitním můstkem

Kapacitní můstek

Příklad zapojení: Kapacitní měření výšky hladiny

P – seřízení údaje na 100% při plném zásobníku

R,C – seřízení údaje na 0% při prázdném zásobníku

d) Oscilátorové obvody

Oscilátory – různé typy (LC, RC, relaxační, multivibrátory, apod.)

El. obvody - analogové i digitální zpracování

Vyhodnocování – změna kmitočtu, amplitudy

$$f = g(C)$$

g označuje funkci

Využití astabilního klopného obvodu (AKO)

Šířka výstupního signálu (frekvenční signál) je funkcí měřicí kapacity C_s Výstupní frekvenční signál – výstup jako frekvence nebo analogový signál

Zpracování výstupní frekvence – f/U převodník

Příklad: Senzor pro měření relativní vlhkosti (změna ε_r)

Princip činnosti:

Astabilní klopný obvod (AKO) 50 kHz (IO_A), výstupní signál AKO spouští monostabilní MKO (IO_B), doba překlopení je řízena kapacitou senzoru vlhkosti.

- Rozsah měření 5 95 %
- •C=207 pF při 33 % vlhkosti

Příklad 7: Kapacitní senzor pro měření polohy

Princip činnosti:

- 2x MKO spouštěné signálem CLK.
- Střídy výstupních signálů jsou opačným způsobem závislé na kapacitě, v dalším obvodu se odečítají a filtrují.

Příklad 2: Kapacitní spínač (senzor přiblížení)

Příklad 3: Kapacitní spínač 2 (senzor přiblížení osoba 25 cm)

Ochranná elektroda pro nezeměné pohyblivé elektrody

Ochrana proti snímání signálů kapacitními vazbami (vazba z el. obvodů, vazební indukčnosti)

Příklad 7: Kapacitní senzor pro měření přítomnosti předmětu

Kapacitní senzory na kontrolu balíci linky žárovek

Příklad: Kapacitní senzor pro měření tablet na výrobní lince

Displacement, distance position, elongation

Vibration, amplitude clearance, oscillations

Centering, positioning, tilt, alignment

Deflection, deformation, waviness

Thickness of layer, foil, rubber, insulation

Dimensions, tolerances, sorting, part recognition

Shaft oscillation, orbit tracing, shaft displacement

Stroke, deformation, axial shaft oscillation

Eccentricity, diameter, concentricity

Bearing oscillations, lubricating gap, wear

Collector concentricity, roundness, air gap, pitch

Compressor/turbine gap, revolutions

Edge control, position, width

Sheet thickness, profile, tension, deflection

Roller gap, roller deflection, crowning

Thickness of foil, layer, profile

Otázky

- 1. Kapacitní senzor: Napište základní rovnici pro výpočet kapacity deskového kondenzátoru a k ní napište diferenciální rovnici popisující změnu kapacity, Nakreslete náhradní zapojení pro připojení kapacitního senzoru k měřicímu obvodu, K náhradnímu obvodu napište nerovnici pro určení frekvence napájecího signálu
- 2. Nakreslete princip činnosti a převodní charakteristiku pro změnu kapacity změnou vzdálenosti elektrod
- 3. Nakreslete princip činnosti a převodní charakteristiku pro změnu kapacity vzájemným posuvem elektrod
- 4. Nakreslete princip činnosti a převodní charakteristiku pro změnu kapacity zasouváním dielektrika
- 5. Nakreslete princip činnosti a převodní charakteristiku pro změnu kapacity změnou vlastností dielektrika
- 6. Nakreslete základní zapojení pro vyhodnocování kapacity s napěťovým kapacitním děličem a střídavým a stejnosměrným výstupním signálem, synchronním demodulátorem
- Nakreslete základní zapojení pro vyhodnocování kapacity se zesilovačem se zpětnou vazbou
- 8. Nakreslete základní zapojení pro vyhodnocování kapacity s kapacitním můstkem
- 9. Nakreslete základní zapojení pro vyhodnocování kapacity s oscilátorem

