课程回顾: 第2次课程

- 十进制转换成其它数制的方法
- 二进制与八进制、十六进制的转换
- 原码、反码和补码的表示与特点
- 记录了随堂测验与考勤的成绩

定点数

定点小数:

定点整数:

浮点表示

阶符 阶码 数符 尾 数

$$X=(11.01)_B=0.1101\times 2^2$$

阶和尾数均为原码?

阶为补码,尾数为原码?

浮点表示(续)

阶符 阶码 数符 尾 数

$$X_1 = (-0.00011)_B = -0.11 \times 2^{-3}$$

阶和尾数均为原码

阶为补码, 尾数为原码

计算机中数的表示

止负亏 和小数点

字符的编码

用若干位二进制符号表示数字、字母、命令以及特殊符号的方法称为字符编码。

ASCII

(American Standard Code for Information Interchange)

美国国家信息交换标准码 常用字符有128个,编码从0到127。

ASCII码用7位二进制符号($b_7b_6b_5b_4b_3b_2b_1$)来表示字符和命令,编码为000 0000~111 1111

ASCII 码编码表

b7b,b3 符号 b4b3b2b1	000	001	010	011	100	101	110	111
0000	NUL	DLE	SP	0	@	P	-	P
0001	SOH	DC1	ı	1	A	Q	a	q
0010	STX	DC2	"	2	В	R	Ъ	r
0011	ETX	DC3	#	3	С	S	с	s
0100	EOT	DC4	\$	4	D	Т	d	t
0101	ENQ	NAK	%	5	E	U	e	u
0110	ACK	SYN	&	6	F	v	f	v
0111	BEL	ETB	,	7	G	w	ε	w
1000	BS	CAN	(8	Н	X	h	×
1001	нт	EM		9	I	Y	i	У
1010	LF	SUB	*		J	Z	j	z
1011	VΤ	ESC	+	;	K	[k	{
1100	FF	S	,	γ	L	١.	1	ı
1101	CR	GS	_	=	M]	m	}
1110	so	RS		А	N	†	n	~
1111	SI	υs	1	?	0	↓	0	DEL

ASCII码

字符	十六进制表示	十进制表示	
空格	20H	32	
'0'~'9'	30H∼39H	48~57	
'A'∼'Z'	41H~5AH	65~90	
'a'∼'z'	61H∼7AH	97~122	

控制字符: 0~32, 127; 普通字符: 94个。

例: "a"字符的编码为 1100001. 十进制数是 97 ASCII码的排列

有大小之分:空格 < 数字 < 大写字母 < 小写字母

中文字符一汉字编码

汉字如何编码 ?

1980年,中国颁布了第一个汉字编码的国家标准: GB2312-80《信息交换用汉字编码字符集》基本集,是目前国内所有汉字系统的统一标准。

中文字符-汉字编码(续)

将汉字和其它符号排列成表格,分为94区,每区有94位,并将"区"和"位"用十进制数字进行编号:即区号为01-94,位号为01-94。

国标码用两个字节(**16**位二进制数)表示一个 汉字,通常转换为十六进制数使用。

汉字的编码

国标码(GB2312-80)

一级汉字: 3755个, 按汉语拼音排列

二级汉字: 3008个, 按偏旁部首排列

区位码

由94个区号和94个位号构成 每个汉字占两个字节

区位码分布

01区	键盘上没有的各种符号			
02区	各种序号			
03区	键盘上的各种符号			
04-05区	日文字母			
06区	希腊字母			
07区	俄文字母			
08区	标识拼音声调的母音及拼音字母名称			
09区	制表符号			
10-15区	未用			
16-55⊠	一级汉字(按拼音字母顺序排列)			
56-87区	二级汉字(按部首笔划顺序排列)			
88-94 <u>×</u>	自定义汉字			

图形符号区

一级汉字区 二级汉字区 自定义汉字区

区位码与国标码的转换

国标码 区位码 如何转换 (十六进制) (十进制) 区位码(<u>54 48)</u>_D 区号、位号分别转换成十六进制数 $(36\ 30)$ $+(2020)_{H}$ 标码 (5650)

如何将汉字输入计算机?

汉字输入码

其它

微软拼音、搜狗、紫光和智能 ABC等 五笔学型法、郑码输入法等 语音、手写输入或扫描 输入等

计算机中如何存储、处理汉字?

国标码?

将国标码每个字节最高位置"1"

机内码

"中"的国标码

"中" 的机 内码 (01010110 01010000) _B

 $(\underline{D6}\ \underline{D0})$ H

(5650)

(<u>11010110</u> <u>11010000</u>) _B

如何将存储的汉字显示出来?

汉字字形码 (汉字字形点阵的代 码)

计算 16×16点阵显示汉字, 需要多少存储空间?

16×16 / 8 = 32字节

16×16点阵显示国标码中6763个常用汉 字需要多少存储空间?

 $32 \times 6763 = 216416B = 211.34KB$

汉字地址码

- 汉字库中存储汉字字形信息的逻辑地址码
- 输出设备输出汉字时,必须通过地址码
- 字形信息是按一定顺序连续存放在存储介质 上,所以汉字地址码也大多是连续有序的,

与汉字内码间有着简单的对应关系,以简化汉字内码到汉字地址码的转换。

汉字信息处理系统

- 通过键盘输入汉字的输入码
- ●将输入码转换为相应国标码,再转换为机内码。 就可以在计算机内存储和处理了。
- 输出汉字时,将汉字的机内码通过简单的对应关系转换为相应的汉字地址码;通过汉字地址码对汉字库进行访问,从字库中提取汉字的字形码,最后根据字形数据显示和打印出汉字。

汉字处理过程

■ 通过汉字外码输入,以汉字内码存储,以汉字字形码输出

■ 在键盘上输入汉字 并在屏幕上显示 由内到外 0000001100000000 0000001100000000 "da" 0000001100000000 0000001100000000 0000001100000000 0000001100000000 0000001110000000 0000011001000000 国标码+8080μ 内码 0000110000100000 汉字地址码 0001100000110000 0010000000001110

1.3 计算机系统

- ◆1.3.1计算机系统的组成
- ◆1.3.2计算机硬件系统
- ◆1.3.3计算机软件系统
- ◆1.3.4计算机的工作原理

计算机硬件系统

- 什么是计算机?计算机是能按照人的要求接受和存储信息,自动进行数据处理和计算,并输出结果信息的机器系统。
- ▶ 计算机由哪几部分组成? 计算机是由硬件和软件两部分组成。硬件是实体,软件是灵魂。
- 计算机和人有何种关系?计算机是人造自动机。人类发明计算机的初衷是处理 数学运算。

计算机和人

▶ 计算机和人息息相关

计算机的很多设计原理和工作流程都是观察、仿照

和模拟人类活动而抽象获得的。

计算机部件	人类器官
输入设备	眼睛
运算器	大脑
控制器	大脑
存储器	大脑
输出设备	口、手

计算机硬件系统

▶ 冯 · 诺依曼体系结构

运算器

▶运算器——决定计算机是否聪明

运算器又称算术逻辑部件(Arithmetic and Logic Unit, ALU),主要用于算术运算和逻辑运算。

。内部结构: ALU、寄存器、控制电路

。执行操作: 算术运算(+-×÷)、逻辑运算(与或非)、

移位操作(左移、右移)

。性能指标:字长和运算速度。

运算器的结构示意图

控制器

。 机器指令: 按照一定格式构成的二进制代码串。

操作码 源操作数(或地址) 目的操作数地址

。执行过程:

控制器

- ▶ 控制器——指挥计算机有序工作
 - 控制器指挥和协调计算机各部件有条不紊的工作。
 - 。内部结构:指令寄存器(IR)、指令译码器(ID)、操作控制器(OC)和程序计数器(PC)。

计算1+2=?

存储器

- ▶ 存储器——帮助计算机记忆信息 存储器是存取程序和数据的部件。
 - 。 类型划分: 依据CPU是否可以直接访存将存储器划分为内存和外存。

存储器—内存

(1) 内存

内存可以被CPU直接访问。内存容量小、速度快、掉电后 RAM信息全部消失。

存储器—RAM

- ▶ 随机存储器RAM 通常所说的计算机内存就是指RAM。
 - 。内部结构:存储器由若干存储单元构成;每个存储单元 由若干(一般是8个)存储元组成。

0x000001	存储元	内存单元1							
0x000002									内存单元2
									1 3 13 1 7 2 -
0x00000n									内存单元n

存储器内部结构图

RAM的外部结构与性能指标

。 外部结构: 地址寄存器、地址译码器、读写控制电路

。性能指标:存储容量和存取速度

1KB=1024B 1MB=1024KB 1GB=1024MB 1TB=1024GB

其他类型内存

- ▶ 只读存储器ROM ROM中存放计算机系统管理程序,是由厂家固化的, 用户无法修改,掉电后信息不丢失。
- ▶ 高速缓冲存储器Cache Cache是为了解决CPU和RAM速度不匹配而设计的。 它产生的理论依据是局部性原理(时间局部性和空 间局部性)。

存储器—外存

(2) 外存

外存必须通过接口才能与CPU互访。外存容量大、速度慢、 掉电后信息不丢失。

外存—硬盘

▶ 硬盘

硬盘是主要的外存设备。

内部结构: 硬盘是由磁盘片、读写控制电路和驱动机构组成。

电源接口

SCSI接口,电缆的另一端 连接到主板的SCSI接口上

硬盘的工作原理和性能指标

。工作原理:根据电磁学原理,使得磁性材料被磁化时具

有两种极性来记录二进制信息。

。性能指标: 容量和转速

硬盘容量=磁头数(H)×柱面数(C)×磁道扇区数(S)× 每扇区字节数(B)

存储器—光盘

- ▶ 光盘
 - 工作原理:通过激光照射染料层呈现结晶和非结晶两种 状态记录二进制信息。
 - 。 类型划分: 只读型和可记录型。

种类	典型	原理
只读型	CD-ROM, DVD-ROM	结晶和非结晶间不能互换
可记录型	CD-R, CD-RW DVD-R, DVD-RW	结晶和非结晶间可以互换

。性能指标:容量和倍速,一倍速率= 150KB/秒。

存储器—快速闪存

▶ 快速闪存

Flash是一种非易失型半导体存储器,即掉电后信息不丢失且存取速度快,采用USB接口,支持热插拔。

最新指标

- USB 3.0接口
- 4.8Gb传输率
- 128G容量

存储器系统

▶ 存储器系统

寄存器一级高速缓存

CPU内部

二级高速缓存

CPU外部

主存储器

辅存(软盘、硬盘、光盘)

两大层次

- Cache—主存:解决CPU 和主存速度不匹配问题
- 主存一辅存:解决存储 器系统容量问题

内存储器

访问速度快 信息暂时性 相对价格高

外存储器

访问速度慢 信息永久性 相对价格低

输入设备

- ▶ 输入/输出设备——感知现实世界 输入/输出设备是计算机与外部世界进行信息交换 的中介,是人与计算机联系的桥梁。
 - 。输入设备:将信息输入计算机
 - 。输出设备:将结果反馈给人

典型的输入设备

脚踏鼠标

Photosmart Express

Photosmart Express

Photosmart Express

Photosmart Express

Photosmart Express

Photosmart Express

手触输入

语音识别

- 输入设备
- •越来越自然
- •越来越方便

姿态

40

输出设备

电子书

多屏幕显示器

全息投影

硬件连接

硬件连接 直接连接 总线结构

IAS计算机的结构

基于总线结构的计算机的示意图

硬件连接—总线

▶总线

总线是一组连接各个部件的公共通信线。

总线种类	定义	传输内容	特点
数据总线	一组用来在存储器、运算器、控制器和I/0部件之间传输数据信号的公共通路。	数据信号	双向总线
地址总线	一组CPU向主存储器和I/0接口传送地址信息的公共通路。	地址信号	单向总线
控制总线	一组用来在存储器、运算器、控制器和I/O部件之间传输控制信号的公共通路。	控制信号	双向总线

计算机软件系统

▶ 计算机软件

计算机软件是为运行、管理和维护计算机而编制的各种程序、数据和文档的总称。

發件是计算机的灵魂, 是人机之间的接口

软件概念

- > 基本概念
 - 。程序

程序是按照一定顺序执行的、能够完成某一任务的指令集合。

程序设计语言

。程序设计语言

程序设计语言是由单词、语句、函数和程序文件等组成。程序设计语言是软件的基础和组成。

机器指令

直接用二进制

- ✓无需翻译
- ✓效率高
 - 使用繁琐

汇编指令

使用助记符

- ✓较易掌握
- ◆需要翻译
- ◆通用性差

高级语言

最接近人类语言

- ✓容易使用
- ✓易于移植
- ◆需要翻译
- ◆效率较低

程序设计语言类型

执行 顺序	机器语言	汇编语言	语句含义	高级语言 (Python)	语句含义
1	10110000 00000001	MOV AL, 1	将1传送至AL寄存器	a =1	定义变量a, 并赋值为1
2	10110010 00000010	MOV BL, 2	将2传送至BL寄存器	b =2	定义变量b, 并赋值为2
3	10001010 11011000	ADD AL, BL	将寄存器BL的内容与 寄存器AL的内容相加, 结果保存在AL中	c = a+b	定义变量c, 并赋值为a+b
4	10100010 00000110 00000000	MOV [06H], AL	将寄存器AL中的内容 传送到内存地址为 06H的存储单元中		
5	11110100	HLT	停止操作		

计算"1+2=?"的三种程序设计语言

软件分类

操作系统 ▶ 软件分类 系统软件 程序设计语言 语言处理程序 数据库管理程序 软件系统 系统辅助处理程序 应用软件 办公软件套件 多媒体处理软件 Internet工具软件

本章小结

- 內·诺依曼提出了存储程序和计算机采用二进制的思想。根据"存储程序式计算机"结构思想,计算机由运算器、控制器、存储器、输入设备和输出设备五大部分组成。
- 进制转换的方法。
- 信息在计算机中的表示与编码。
- 计算机系统是由硬件系统和软件系统两部分组成。

第3次课程小结

- > 浮点数的表示与字符的编码
- 计算机系统及工作原理
- ▶本周需要完成: 随堂测试及考勤
- ▶ 复习前3次的课程,下周有阶段性的测试
- ▶ 上机完成作业

本次课程的测试

- 观看上课视频后,上课时间完成"随堂测验&考勤 3-20211012"
- 测试后,同时记录考勤成绩(请通过查看分数,确 认考勤成功)

提交作业示例1

- ▶ 建立word文档,
- ▶ 文档名: 上机1_学习笔记1_12345678_艾 亿.docx

提交作业示例2

主页 🏡

💈 2021国际学院-大学计算机基础: 作业

课程大纲

选择—项作业来浏览具体内容,开始处理或编辑作业。

通知 🗐

作业标题

状态

尚未提交

作业 🌌

成绩册 🗐

聊天室 🧟

此时作业没有 提交,需要点 击"提交"按 銒

班组管理 🙈

站点信息

讨论区

教师信息

帮助 😉

评分方式 分数 (最高 100.0)

指导

- 。 独立完成,不允许抄袭,满分100分;
- 截止日期之前提交至网站作业栏目,补交或迟交将被扣分;
- 。 提交作业后,记得将提交成功的界面<mark>截图留证,并重新登录确认是否提交成功。今后提交失败,如</mark>

作业的附加资源

上机1 学习笔记1.docx (28 KB; 2021-10-8 上午10:51)

作业提交

此作业只可通过附加文档提交。

上机1 学习笔记1 12345678 艾亿.docx (28 KB; 2021-10-8 上午11:24) 移除

从计算机中选择更多文件

选择文件 未选择任何文件

或者从工作空

预览

提交

保存草稿

取消

请不要忘记保存或提交

主页 🏡 课程大纲 🦲 日程 🖩 通知 🗐 咨源 🗀 作业 📝 练习与测验 🥒 成绩册 🗐 聊天室 🧟 班组管理 🧥

💈 2021国际学院-大学计算机基础: 作业 提交确认 ✓ 你已成功提交作业。 你将收到包含此信息的确认邮件。 用户: 吴秀娟 (07062) 班级站点: 2021国际学院-大学计算机基础 作业标题 A 上机1 学习笔记1

交失败时,提供此截图,可以补交。 b497bc8f-e523-4150-85cf-d743b001b039 提交ID 提交时间: 2021-10-8 上午11:30 Fri Oct 08 11:30:20 CST 2021 吴秀娟 (07062) submitted 历史 您的提交包括以下内容: 作业附件 上机1 学习笔记1 12345678 艾亿.docx (28 KB; 2021-10-8 上午11:24)

成功提交的通知界面,显示你成功

注意: 拍照或截图保存此界面。提

提交附件的时间。

修改作业(添加、删除等)

讨论区 🧖

教师信息

帮助 😉

任何修改(重 交,添加、删 除等)操作, 需要点击"重 新提交"按钮, 并重新截图

您附加的提交作业。

(28 KB: 2021-10-8 上午11:24) 移除

<u>上机1 学习笔记1 12345678 艾亿new.docx</u> (28 KB; 2021-10-8 上午11:42) <u>移除</u>

从计算机中选择更多文件

选择文件 未选择任何文件 或者从

重新提交 预览 保存草稿

取消

请小要忘记保存或提交

