Uvod u aritmetiku eliptičkih krivulja

Frobeniusov element (skica) - 23. lekcija

Galoisova grupa $\operatorname{Gal}(\bar{\mathbf{Q}}/\mathbf{Q})$ za matematiku je još uvijek zagonetna i daleko smo od njena eksplicitnog opisa. Jedan od očitih elemenata te grupe jest kompleksno konjugiranje (koje je restrikcija standardnog kompleksnog konjugiranja na polju kompleksnih brojeva, koje se može karakterizirati i time da ostavlja na miru polje realnih brojeva). Sjetimo se da, uz standardno upotpunjenje polja racionalnih brojeva do polja realnih brojeva, imamo i p-adska upotpunjenja, za svaki prosti broj p. Frobeniusovi elementi bit će p-adski analogoni kompleksnog konjugiranja i imat će važnu ulogu u aritmetici. Mi nećemo sustavno razvijati tu analogiju, već ćemo do tog pojma doći od **Frobeniusova automorfizma** konačnog polja (koji onda definira i Frobeniusov automorfizam eliptičke krivulje nad konačnim poljem), preko **Frobeniusovih automorfizama** konačnog abelovog proširenja od \mathbf{Q} i **Frobeniusovih elemenata** (bilo kakvih) konačnih Galoisovih proširenja od \mathbf{Q} .

Frobeniusov automorfizam konačnog polja.

Podsjetimo da je \mathbf{F}_p minimalno polje karakteristike p (prost broj) i da ima p elemenata, a možemo ga realizirati kao skup ostataka modulo p ili kao kvocijentni prsten $\mathbf{Z}/p\mathbf{Z}$. Ako fiksiramo jedno algebarsko zatvorenje $\bar{\mathbf{F}}_p$ od \mathbf{F}_p , onda za svaki prirodni broj n postoji točno jedno podpolje od $\bar{\mathbf{F}}_p$ koje ima p^n elemenata. To je polje

$$\mathbf{F}_{p^n} = \{ x \in \bar{\mathbf{F}}_p : x^{p^n} = x \}.$$

Sva su ta polja algebarska proširenja od \mathbf{F}_p , sva su Galoisova, i nema drugih konačnih proširenja od \mathbf{F}_p koji su u $\bar{\mathbf{F}}_p$ (drugim riječima, za svaki n postoji jedinstveno proširenje stupnja n). Takodjer se vidi:

$$\mathbf{F}_{p^m} \subseteq \mathbf{F}_{p^n}$$
 akko $m|n$.

Nadalje, Galoisova grupa $Gal(\mathbf{F}_{p^n}/\mathbf{F}_p$ je **ciklička** i generirana **Frobeniusovim automorfizmom** $Frob_p$ zadanim kao

$$Frob_n(x) := x^p$$
.

Podsjetimo da je grupna operacija kompozicija, pa ako, radi jednostavnosti, pišemo σ umjesto $Frob_n$, onda je

$$Gal(\mathbf{F}_{p^n}/\mathbf{F}_p = \{1, \sigma, \sigma^2, ..., \sigma^{n-1}\}\$$

gdje je $\sigma^k := \sigma \circ \sigma \circ ... \circ \sigma$ (k puta), tj. $\sigma^k(x) = x^{p^k}$, za sve x.

Uočite da je fiksno polje Frobeniusova automorfizma upravo minimalno polje \mathbf{F}_{p} .

Uočite takodjer da formula za Frobeniusov automorfizam ne ovisi o n, već samo o p. Zato su $Frob_p$ za različite n uskladjeni pa je tom formulom zadan i automorfizam polja $\bar{\mathbf{F}}_p$ nad \mathbf{F}_p .

Frobeniusov automorfizam eliptičke krivulje.

Neka je E eliptička krivulja definirana nad poljem \mathbf{F}_p . Tada je formulom

$$\phi_p(x,y) := (x^p, y^p)$$

zadan morfizam $\phi_p: E \to E$ (pri tom točke od E razmatramo s koordinatama iz $\bar{\mathbf{F}}_p$). Dakle, ϕ_p je zadan djelovanjem Frobeniusova automorfizma na koordinatama.

Uočite da vrijedi $\phi_p(P) = P$ akko P je definirana nad \mathbf{F}_p .

To znači da je broj \mathbf{F}_p -racionalnih točaka na E jednak broju nultočaka morfizma ϕ_p-1 , gdje 1 označava morfizam identiteta; ta je činjenica polazna za dokaz Hasse-Weilova teorema.

Frobeniusov automorfizam konačnog abelova proširenja od Q.

Neka je K/\mathbf{Q} konačno abelovo proširenje. To znači da je ono konačnog stupnja (posebice, tada je ono i algebarsko), Galoisovo i da je Galoisova grupa G abelova. Pokazat će se da za svaki prosti p (osim njih konačno mnogo - koji se granaju u K) jednoznačno možemo definirati automorfizam σ iz G koji ima jaku vezu s Frobeniusovim automorfizmom odredjenog proširenja od \mathbf{F}_p , zato ćemo taj σ takodjer zvati Frobeniusovim automorfizmom i označavati $Frob_p$. Kako je G konačna grupa, a prostih brojeva ima beskonačno mnogo, to znači da će bar jedan σ biti $Frob_p$ za beskonačno mnogo p. Teorem Čebotareva govori da je svakom σ tako pridruženo "jednako mnogo" prostih brojeva, tj. da za svaki σ skup svih onih prostih brojeva p za koje je $\sigma = Frob_p$ čini |G|-ti dio skupa svih prostih brojeva (zanemarujući konačno mnogo onih koji se granaju. To ćemo preciznije formulirati poslije. Započet ćemo s jednim

primjerom.

Primjer 1. Neka je $K = \mathbf{Q}(i) = \{a + bi : a, b \in \mathbf{Q}\}$ polje Gaussovih brojeva. To je proširenje 2. stupnja, s Galoisovom grupom $G = \{1, \sigma\}$ gdje je σ kompleksno konjugiranje, tj. $\sigma(a + bi) = a - bi$.

Uz polje Gaussovih brojeva prirodno ide prsten cijelih Gaussovih brojeva $\mathbf{Z}[i] = \{a + bi : a, b \in \mathbf{Z}\}$, koji treba gledati kao prirodno proširenje prstena cijelih brojeva \mathbf{Z} . Prsten $\mathbf{Z}[i]$ ima jednoznačnu faktorizaciju koja se može opisati ovako:

(i) ako je p=3 modulo 4, onda je p prost i u $\mathbf{Z}[i]$. Kažemo da je p inertan.

(ii) (i) ako je p = 1 modulo 4, onda je p = (u + vi)(u - vi) umnožak dvaju prostih u $\mathbf{Z}[i]$, medjusobno kompleksno konjugiranih. Kažemo da se p cijepa.

(iii) $2 = i(1-i)^2$ je umnožak od kvadrata od 1-i koji je prost u $\mathbf{Z}[i]$ i broja i koji je invertibilan u $\mathbf{Z}[i]$ (još su invertibilni ± 1 i -i). Kažemo da se 2 grana. Na primjer $3, 7, 11, 19, 23, \ldots$ ostaju prosti u $\mathbf{Z}[i]$, dok je

5 = (2+i)(2-i), 13 = (3+2i)(3-2i), 17 = (4+i)(4-i)...

Podsjetimo da je kvocijent $\mathbf{Z}/p\mathbf{Z}$ minimalno konačno polje \mathbf{F}_p .

Uočite da je za inertne p analogni kvocijentni prsten $\mathbf{Z}[i]/p\mathbf{Z}[i]$ kvadratno proširenje od \mathbf{F}_p .

Naime, taj je prsten izomorfan prstenu $\mathbf{F}_p[\eta]$ uz $\eta^2 + 1 = 0$, koji se ostvaruje tako da se klasi od a + bi pridruži $\bar{a} + \bar{b}\eta$, gdje je $\bar{a} := a$ modulo p itd.

Kako je p=3 modulo 4, -1 nije kvadrat u \mathbf{F}_p pa je X^2+1 ireducibilan polinom nad \mathbf{F}_p , tj. prsten $\mathbf{F}_p[\eta]$ je polje drugog stupnja nad \mathbf{F}_p , pa je izomorfan polju \mathbf{F}_{p^2} .

Sad imamo Frobeniusov automorfizam $Frob_p: x \mapsto x^p$ proširenja $\mathbf{F}_{p^2}/\mathbf{F}_p$, koje ima Galoisovu grupu $\{1, Frob_p\}$, koja je pak prirodno izomorfna Galoisovoj grupi $\{1, \sigma\}$ proširenja K/\mathbf{Q} . Naime, σ preslikava prsten cijelih brojeva u sebe, takodjer ostavlja na miru prosti element p, pa i pripadni ideal $p\mathbf{Z}[i]$, zato se djelovanje od σ može prenijeti na kvocijent $\mathbf{Z}[i]/p\mathbf{Z}[i]$ prema formuli

$$\sigma(\overline{a+bi} = \overline{\sigma(a+bi)}$$

Zato je $\sigma(\bar{a} + \bar{b}\eta) = \overline{a - bi} = \bar{a} - \bar{b}\eta = (\bar{a} + \bar{b}\eta)^p$. Naime, kako je $eta^2 = -1$ i p = 3 modulo 4, vrijedi $(\bar{a} + \bar{b}\eta)^p = \bar{a}^p + \bar{b}^p\eta^p = \bar{a} + \bar{b}(-1)$. Dakle, pri tom prirodnom izomorfizmu σ prelazi u $Frob_p$ (kako je jedino i moguće), pa zato definiramo $\sigma = Frob_p$ za sve p = 3 modulo 4. Naravno, pri tom izomorfizmu, identitet u G prelazi u identitet za konačno polje.

Ako je pak p = 1 modulo 4, tj. p = (u + vi)(u - vi), onda je

 $\mathbf{Z}[i]/(u+vi)\mathbf{Z}[i] \cong \mathbf{F}_p \cong \mathbf{Z}[i]/(u-vi)\mathbf{Z}[i]$

jer je sad -1 kvadrat u \mathbf{F}_p . Zato je sad pripadni Frobeniusov automorfizam identitet (proširenje je stupnja 1), pa je $Frob_p = 1$ za sve p = 1 modulo 4. Ako želimo uspostaviti analogiju s prvim slučajem (kad je p inertan), sad σ prosti element u + vi prebacuje u u - vi (i obratno), dok ih na miru ostavlja samo identitet 1, pa je σ odmah isključen iz razmatranja.

Općenito, neka je K konačno abelovo proširenje stupnja n od \mathbf{Q} i neka je G pripadajuća Galoisova grupa. Neka je O_K pripadni prsten cijelih brojeva. Taj prsten ne mora (i u pravilu nije) biti s jednoznačnom faktorizacijom. Umjesto toga jednoznačna je faktorizacija na proste ideale. Posebno za glavne ideale pO_K u O_K generirane prostim brojevima p vrijedi (za sve osim konačno mnogo njih koji se granaju)

 $pO_K = \mathcal{P}_1\mathcal{P}_2...\mathcal{P}_m$, umnožak na **različite** proste ideale. Pri tom je $O_K/\mathcal{P}_1 \cong O_K/\mathcal{P}_2 \cong ... \cong O_K/\mathcal{P}_m \cong \mathbf{F}_p^f$,

za neki prirodni broj f koji se zove indeks inercije od p i vrijedi mf = n. Ako je f = 1 onda kažemo da se p potpuno rastavlja (cijepa), a ako je f = n, onda p ostaje prost (inertan). Za svaki od ovih \mathcal{P}_j kažemo da dijeli pO_K i pišemo $\mathcal{P}_j|pO_K$ (odnosno da je iznad p jer je $\mathcal{P}_j \cap \mathbf{Z} = (p)$ - ideal u \mathbf{Z} generiran s p).

Ovi \mathcal{P}_j medjusobno su povezani, kako ćemo ubrzo vidjeti. Ako je \mathcal{P} neki prost ideal u O_K i $\sigma \in G$ automorfizam od K, onda je skup

$$\sigma(\mathcal{P}) := \{ \sigma(x) : x \in \mathcal{P} \}$$

opet prost ideal.

Fiksirajmo načas jedan prost
 broj p i jedan prosti ideal \mathcal{P} izna
dp. Neka je $O_K/\mathcal{P} \cong \mathbf{F}_p^f$ (*), tj. f je indeks inercije u
 p. Definirajmo:

 $D_{\mathcal{P}} = \{ \sigma \in G : \sigma(\mathcal{P}) = \mathcal{P} \}$ - grupa rastavljanja u \mathcal{P} (dekompozicijska grupa) Postoji prirodni surjektivni homomorfizam $D_{\mathcal{P}} \to \operatorname{Gal}(\mathbf{F}_p^f/\mathbf{F}_p)$. Naime, preko izomorfizma (*), svaki $\sigma \in D_{\mathcal{P}}$ djeluje na konačno polje preko

$$\sigma(u \bmod \mathcal{P}) := \sigma(u) \bmod \mathcal{P}$$

za svaki $u \in O_K$.

Taj je homomorfizam izomorfizam ako se p ne grana i tada postoji jedinstveni automorfizam iz G (preciznije iz dekompozicijske grupe) koji se preslikava u $Frob_p$ i njega nazivamo Frobeniusovim automorfizmom u \mathcal{P} - oznaka $Frob_{\mathcal{P}}$. Lako se vidi da $D_{\mathcal{P}}$ pa tako niti $Frob_{\mathcal{P}}$ ne ovise o izboru prostog ideala iznad

p, pa je tako jednoznačno odredjen Frobeniusov automorfizam u p - oznaka $Frob_n$ (kao i za konačna polja).

Iz gornjeg opisa slijedi da je $Frob_p$ jednoznačno odredjeno kao:

$$Frob_n(u) = u^p \text{ modulo } \mathcal{P}$$

za neki (pa onda za svaki) \mathcal{P} iznad p.

Primjer 2. (peti korijeni iz jedinice).

Neka je $K := \mathbf{Q}(\mu_5)$ polje generirano (bilo kojim) primitivnim petim korijenom iz jedinice, na pr. neka je $\mu_5=e^{\frac{2\pi i}{5}}$. To je polje Galoisovo (jer sadrži i ostale pete korijene iz jedinice, koje su potencije od μ_5). Minimalni polinom je $f(X) := X^4 + X^3 + X^2 + X + 1$ (dobije se dijeljenjem polinoma $X^5 - 1$ s X-1), pa je proširenje stupnja n=4. Galoisova grupa je ciklička reda 4 izomorfna grupi {1, 2, 3, 4} uz množenje modulo 5 (uočite da su izvodnice brojevi 2 i 3), tj. $Gal(K/\mathbf{Q}) = \{1, \sigma, \sigma^2, \sigma^3\}$, gdje je, na primjer, $\sigma(\mu_5) = \mu_5^2$ (drugi je izbor da bude $\sigma(\mu_5) = \mu_5^3$). Sad je $\sigma^2(\mu_5) = \sigma(\mu_5^2) = \mu_5^4$ itd. Pokazuje se da je tu prsten cijelih brojeva $O_K = \mathbf{Z}[\mu_5]$, grana se jedino broj

(I) Prosti brojevi p za koje je $Frob_p = 1$, tj. f = 1 su upravo oni za koje se pO_K rastavlja na umnožak četiri različita prosta (jer mora biti m=4) i ako je \mathcal{P} jedan od tih faktora, onda je

$$pO_K = \mathcal{P}\sigma(\mathcal{P})\sigma^2(\mathcal{P})\sigma^3(\mathcal{P})$$

Prema teoremu Čebotareva ima $\frac{1}{4}$ takvih prostih p. To su inače svi oni p za koje se minimalni piolinom f modulo p rastavlja na različite linearne faktore.

(II) Prosti brojevi p za koje je $Frob_p = \sigma$, tj. f = 4, jer σ generira grupu 4-tog reda, imaju svojstvo da je pO_K prost (odnosno da je f ireducibilan modulo p). Analogno je s onim p za koji je $Frob_p = \sigma^3$ (jer je i σ_3 izvodnica. Prema teoremu Čebotareva ima $\frac{2}{4} = \frac{1}{2}$ takvih prostih p. (III) Ostaju prosti p za koje je $Frob_p = \sigma^2$, tj. f = 2, jer σ^2 generira grupu

2-gog reda. Oni imaju svojstvo da je

$$pO_K = \mathcal{Q}\sigma(\mathcal{Q})$$

gdje je \mathcal{Q} jedan od prostih djelitelja (naime 1 i σ^2 čine dekompozicijsku grupu i oni fiksiraju Q, dok ga σ ne fiksira; uočite i to da je $\sigma^3(Q) = \sigma(Q)$). Takvih p ima jedna četvrtina i to su upravo oni za koje se f modulo p rastavlja na umnožak dvaju različitih ireducibilnih polinoma drugog stupnja.

Napomenimo da je u ovomu slučaju O_K prsten s jednoznačnom faktorizacijom, pa se gornji rastavi mogu napisati pomoću prostih brojeva umjesto ideala (ali to ne činimo).

Dirichletov teorem o prostim projevima u aritmetičkim nizovima vodi do preciznije tvrdnje: u (I) spadaju oni prosti koji su kongruentni 1 modulo 5, u (II) oni kongruentni 2 odnosno 3, a u (III) oni kongruentni 4 modulo 5. Na primjer, 19 = 4 modulo 5, a

$$X^4 + X^3 + X^2 + X + 1 = (X^2 + 5X + 1)(X^2 - 4X + 1)$$
 modulo 5

je rastav na ireducibilne faktore, što potvrdjuje da je f=2.

Frobeniusov element konačnog Galoisova proširenja.

Za razliku od abelova proširenja, tu Frobeniusov element u p (za nerazgranati p) nije dobro definiran, već samo njegova klasa konjugiranosti. Podsjetimo, ako je G neka grupa i $h \in G$, onda je klasa konjugiranosti od h, prema definiciji, $\{g^{-1}hg:g\in G\}$. Očito je da su klase konjugiranosti u abelovoj grupi jednočlane (i obratno). Općenito, klase konjugiranosti čine particiju grupe na disjunktne podskupove - biti u istoj klasi konjugiranosti je relacija ekvivalencije).

Primjer 3. Klase konjugiranosti u S_3 .

Kako je poznato, simetrična grupa S_3 izomorfna je grupi

$$\{1, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}$$

gdje je $\sigma^3=\tau^2=1$ i $\tau\sigma=\sigma^2\tau$

(odakle onda slijedi i da je $\tau \sigma^2 = \sigma \tau$; takodjer vrijedi $(\sigma \tau)^2 = (\sigma^2 \tau)^2 = 1$).

Ova grupa ima tri klase konjugiranosti.

Klasa konjugiranosti od 1 je {1} (to je uvijek tako).

Klasa konjugiranosti od σ je $\{\sigma, \sigma^2\}$ jer je $\tau^{-1}\sigma\tau = \tau\sigma\tau = \sigma^2\tau\tau = \sigma^2$ (a daljnjim se konjugiranjem ništa novo ne dobiva - provjerite).

Klasa konjugiranosti od τ je $\{\tau, \sigma\tau, \sigma^2\tau\}$ jer je, na primjer, $\sigma^{-1}\tau\sigma = \sigma^2\tau\sigma = \sigma^4\tau = \sigma\tau$ (slično se dobije i da je $\sigma^2\tau$ u klasi).

Frobeniusov element za konačna neabelova proširenja.

Neka je K/\mathbf{Q} Galoisovo proširenje stupnja n s Galoisovom grupom G (općenito neabelovom) i prstenom cijelih brojeva O_K . Fiksirajmo neki prost broj p koji

se ne grana u K. Tada je glavni ideal pO_K umnožak različitih prostih ideala i neka je \mathcal{P} jedan od njih.

Kao i u abelovom slučaju definiramo grupu razlaganja $D_{\mathcal{P}}$ u \mathcal{P} (koje se sastoje od onih $g \in G$ za koje je $g(\mathcal{P}) = \mathcal{P}$ i pripadno konačno polje $\mathbf{F}_{p^f} \cong O_K/\mathcal{P}$. Kao i prije, $D_{\mathcal{P}}$ je ciklička reda f i imamo prirodni izomorfizam izmedju $D_{\mathcal{P}}$ i $\mathrm{Gal}(\mathbf{F}_{p^f}/\mathbf{F}_p)$ koja je generirana Frobeniusovim automorfizmom $Frob_p: x \mapsto x^p$, pa postoji jedinstven element u $D_{\mathcal{P}}$ koji pri tom izomorfizmu korespondira $Frob_p$ pa ga označavamo kao $Frob_{\mathcal{P}}$, odredjen je kongruencijom

$$Frob_{\mathcal{P}}(u) = u^p \text{ modulo } \mathcal{P}.$$

Ako je Q neki drugi prosti ideal iznad p, onda postoji $g \in G$ tako da bude Q = g(P) i tada je

$$D_{\mathcal{Q}} = g D_{\mathcal{P}} g^{-1}$$

i prema tomu i

$$Frob_{\mathcal{Q}} = gFrob_{\mathcal{P}}g^{-1},$$

tj. Frobeniusovi automorfizmi u različitim prostim idealima iznad p medjusobno su konjugirani. Takodjer, indeks inercije f jednak je za sve proste ideale iznad p, i ako se pO_K rastavlja na umnožak m prostih faktora, onda je

$$mf = n \ (**)$$

Uočite, takodjer, da vrijedi čim je \mathcal{P} iznad p onda je i $g(\mathcal{P})$ iznad p za svaki $g \in G$. Zato su svi elementi iz klase konjugiranosti od $Frob_{\mathcal{P}}$ Frobeniusovi elementi u nekim prostim idealima nad p. To omogućuje definiciju:

Frobeniusovim elementom $Frob_p$ u prostom broju p zovemo klasu konjugiranosti Frobeniusova automorfizma $Frob_p$ za bilo koji prosti ideal \mathcal{P} iznad p (i ona ne ovisi o tom izboru).

Teorem Čebotareva.

Neka je K konačno Galoisovo proširenje od \mathbf{Q} stupnja n s Galoisovom grupom G. Neka je $A\subset G$ podskup zatvoren na konjugiranje (na primjer, klasa konjugiranosti). Tada je

$$\mu(\{p: p \text{ prost i } Frob_p \subseteq A\} = \frac{\text{card}A}{n},$$

pri čemu je μ **Dirichletova gustoća**, definirana za podskupove skupa prostih brojeva kao

$$\mu(B) := \lim_{X \to \infty} \frac{\operatorname{card}(\{p : p \le X\} \cap B)}{\operatorname{card}\{p : p \le X\}}$$

(ako limes postoji).

Primjer 4. Frobeniusovi elementi u $Gal(\mathbf{Q}(\sqrt[3]{2}, \rho)/\mathbf{Q})$.

Poznato je da je polje $K := \mathbf{Q}(\sqrt[3]{2}, \rho)$, gdje je $\rho = e^{\frac{2\pi i}{3}}$, Galoisovo stupnja 6, s Galoisovom grupom izomorfnom S_3 (pa prema tomu nije abelovo). Takodjer u K se granaju 2 i 3, pa njih izključujemo iz razmatranja.

Sjetimo se identifikacije $S_3 = \{1, \sigma, \sigma^2, \tau, \sigma\tau, \sigma^2\tau\}$ i klasa konjugiranosti $\{1\}$, $\{\sigma, \sigma^2\}$ i $\{\tau, \sigma\tau, \sigma^2\tau\}$. Sad imamo:

(I) $Frob_p = 1$ akko f = 1, tj. pO_K se potpuno rastavlja (na 6 prostih faktora), i ako je \mathcal{P} jedan od prostih faktora onda je

$$pO_K = \mathcal{P}(\sigma \mathcal{P})(\sigma^2 \mathcal{P})(\tau \mathcal{P})(\sigma \tau \mathcal{P})(\sigma^2 \tau \mathcal{P}).$$

Teorem Čebotareva kaže da ima šestina takvih prostih p.

(II) $Frob_p = \{\sigma, \sigma^2\}$ akko je f = 3 (jer σ generira cikličku grupu reda 3), pa je m = 2 u (**), i ako je \mathcal{P} jedan od faktora od pO_K onda je

$$pO_K = \mathcal{P}(\tau\mathcal{P})$$

(uočite da je $\tau \mathcal{P} = \sigma \tau \mathcal{P} = \sigma^2 \tau \mathcal{P}$). Teorem Čebotareva kaže da ima ďvije sestine takvih prostih p.

(III) $Frob_p = \{\tau, \sigma\tau, \sigma^2\tau\}$ akko je f = 2 (naime, svaki od tih elemenata je drugog reda) pa, ako je za \mathcal{P} iznad p onda je

$$pO_K = \mathcal{P}(\sigma \mathcal{P})(\sigma^2 \mathcal{P}).$$

Teorem Čebotareva kaže da ima tri šestine takvih prostih p. Uočite da ne postoji ni jedan p za koji je pO_K prost.