CURS 6

Fie $m, n \in \mathbb{N}^*$ şi K un corp comutativ. Reamintim că orice matrice pătratică rezultată din matricea unitate prin aplicarea <u>unei transformări</u> elementare se numește **matrice elementară**. Câteva proprietăți importante referitoare la matrici elementare sunt:

- i) Matricele elementare ce se obțin prin permutări de linii (coloane) au determinantul -1.
- ii) Matricele elementare obținute prin înmulțirea unei linii (coloane) cu $\alpha \in K^*$ au determinantul α .
- iii) Matricile elementare ce se obțin prin înmulțirea unei linii (coloane) cu $\alpha \in K$ și adunarea la alta au determinantul 1.
- iv) Inversa unei matrici elementare este tot o matrice elementară.
- iv) Orice transformare elementară asupra liniilor (coloanelor) unei matrice $A=(a_{ij})\in M_{m,n}(K)$ este rezultatul înmulțirii lui A la stânga (dreapta) cu matricea elementară rezultată prin efectuarea aceleiași transformări elementare asupra matricei I_m (respectiv I_n).

Teoremă. Fie $n \in \mathbb{N}^*$. Pentru orice matrice $A, B \in M_n(K)$ avem $\det(AB) = \det A \cdot \det B$.

v) Orice matrice inversabilă este un produs de matrici elementare.
 \checkmark

Am varet ca prin efectuarea de transf. elem ampra uni matrice, rangul une se modifica, adica, daca $A \in M_{mn}(K)$, $E \in M_{m}(K)$, $E \in M_{n}(K)$, $E \in M_{n}(K)$, $E \in M_{n}(K)$ \implies rang $(E_1A) = rang(AE_2) = rang(E_1AE_2)$

Cum orice matrice inversable e produs de matrice elementant, aven:

Observație. Dacă $B \in GL_m(K)$, $A \in M_{m,n}(K)$ și $C \in GL_n(K)$ atunci rang $(BAC) = \operatorname{rang} A$.

matricile potratice de ordinal in inversalite

deu : tema

 $\frac{1}{2} \int_{-\infty}^{\infty} \cos \alpha \cdot \cos \alpha \cdot \cot \alpha \cdot \cos \alpha \cdot \cot \alpha \cdot \cos \alpha \cdot \cot \alpha$

ii) C= In - rang (BA) = rang A

Spații vectoriale, subspații, subspațiu generat

În cele ce urmează, $(K, +, \cdot)$ este un corp comutativ (dacă nu menționăm altceva).

Definiția 1. Fie K un corp comutativ. O pereche formată dintr-un grup abelian (V, +) și o funcție $K \times V \to V$ (care asociază unei perechi $(\alpha, x) \in K \times V$ elementul notat αx din V) se numește Kspațiu vectorial (liniar) sau spațiu vectorial (liniar) peste K dacă verifică următoarele axiome: pentru orice $\alpha, \beta \in K$ şi $x, y \in V$,

- 1) $(\alpha + \beta)x = \alpha x + \beta x$;
- 2) $\alpha(x+y) = \alpha x + \alpha y;$ 3) $(\underline{\alpha\beta})x = \alpha(\beta x);$ 4) 1x = x.

Elementele din K se numesc scalari, elementele din V se numesc vectori, funcția $\cdot: K \times V \to V$ se numește **operație externă** pe V sau **înmulțire cu scalari** (din K), vectorul αx se numește produsul dintre scalarul α și vectorul x, iar + din V operație internă sau adunare a vectorilor.

Observația 2. Atragem atenția că + și \cdot notează fiecare câte două operații. O analiză atentă a fiecărei axiome arată ca nu e nici pericol de a face confuzie între operațiile notate la fel. De exemplu, în axioma 1) primul + este operația din corp, iar al doilea este operația din grup, iar în axioma 3), în membrul stâng, primul · este operația din corp, iar al doilea este operația externă, în timp ce în membrul drept ambii · simbolizează operația externă.

Desigur, ar exista și opțiunea schimbării notațiilor, dar aceasta ar duce la forma mai puțin comodă a axiomelor de mai sus. De exemplu, dacă pentru operația externă am folosi notația φ (în loc de ·), axiomele de mai sus s-ar transcrie astfel:

- 1) $\varphi(\alpha + \beta, x) = \varphi(\alpha, x) + \varphi(\beta, x)$;
- 2) $\varphi(\alpha, x + y) = \varphi(\alpha, x) + \varphi(\alpha, y)$;
- 3) $\varphi(\alpha\beta, x) = \varphi(\alpha, \varphi(\beta, x))$;
- 4) $\varphi(1,x) = x$.

Notație. Pentru a sugera că V este un K-spațiu vectorial, folosim notația KV (sau V_K).

Teorema 3. Dacă V este un K-spațiu vectorial, atunci:

- i) Pentru orice $\underline{\alpha \in K}$, funcția $t_{\alpha}: V \to V$, $t_{\alpha}(x) = \alpha x$ este un endomorfism al grupului (V, +). Dacă, în plus, $\alpha \neq 0$ atunci t_{α} este un automorfism al lui (V,+) și $t_{\alpha}^{-1} = t_{\alpha^{-1}}$.
- ii) Pentru orice $\underline{x \in V}$ funcția $t'_x : K \to V, t'_x(\alpha) = \alpha x$ este un ombrorfism al grupului (K, +) în grupul (V, +).

ii) The xeV,
$$f'_{x}: K \rightarrow V$$
, $f'_{x}(\alpha) = \alpha \cdot x$

The $\alpha, \beta \in K$, $f'_{x}(\alpha + \beta) = (\alpha + \beta)x = \frac{1}{\alpha} (\alpha) + f'_{x}(\beta)$
 $\implies f'_{x}$ working do graphin

 $\alpha \in K$, $f_{x}: V \rightarrow V$, $f_{x}(\alpha) = \alpha x$
 $x \in V$, $f'_{x}: K \rightarrow V$, $f'_{x}(\alpha) = \alpha x$
 $x \in V$, $f'_{x}: K \rightarrow V$, $f'_{x}(\alpha) = \alpha x$
 $x \in V$, $f'_{x}: K \rightarrow V$, $f'_{x}(\alpha) = \alpha x$
 $x \in V$, $f'_{x}: K \rightarrow V$, $f'_{x}(\alpha) = \alpha x$

Corolarul 4. (Reguli de calcul într-un spațiu vectorial)

- a) Pentru orice $\alpha \in K$ și $x \in V$ avem:
 - i) $\alpha x = 0 \Leftrightarrow \alpha = 0 \text{ sau } x = 0$;
 - ii) $\alpha(-x) = (-\alpha)x = -\alpha x$ și $(-\alpha)(-x) = \alpha x$.

Demonstrain i)
$$=$$
 " $\propto \in K$ fixat, $t_{\alpha}: V \rightarrow V$ endown (V, t)
 $\Rightarrow t_{\alpha}(0) = 0$ $\Rightarrow t_{\alpha}(-x) = -t_{\alpha}(x)$, $\forall x \in V$
 $\Rightarrow \alpha \cdot 0 = 0$ $\Rightarrow \alpha \cdot (-x) = -\alpha x$, $\forall x \in V$
 $\Rightarrow \alpha \cdot 0 = 0$ $\Rightarrow \alpha \cdot (-x) = -\alpha x$, $\forall x \in V$
 $\Rightarrow \alpha \cdot 0 = 0$ $\Rightarrow \alpha \cdot (-x) = -\alpha x$, $\forall x \in V$
 $\Rightarrow \alpha \cdot 0 = 0$ $\Rightarrow \alpha \cdot (-x) = -\alpha x$, $\forall x \in V$
 $\Rightarrow \alpha \cdot 0 = 0$ $\Rightarrow \alpha \cdot (-x) = -\alpha x$, $\forall x \in V$
 $\Rightarrow \alpha \cdot 0 = 0$ $\Rightarrow \alpha \cdot (-x) = -\alpha x$, $\forall x \in V$
 $\Rightarrow \alpha \cdot 0 = 0$ $\Rightarrow \alpha \cdot (-x) = -\alpha x$, $\forall x \in V$
 $\Rightarrow \alpha \cdot 0 = 0$ $\Rightarrow \alpha \cdot (-x) = -\alpha x$, $\forall x \in V$
 $\Rightarrow \alpha \cdot 0 = 0$ $\Rightarrow \alpha \cdot (-x) = -\alpha x$, $\forall x \in V$
 $\Rightarrow \alpha \cdot 0 = 0$ $\Rightarrow \alpha \cdot (-x) = -\alpha x$, \Rightarrow

b) Pentru orice $\alpha, \beta \in K$ şi $x, y \in V$ avem:

$$(\alpha - \beta)x = \alpha x - \beta x \text{ si } \alpha(x - y) = \alpha x - \alpha y.$$
 (Leve $\tilde{\alpha}$)

c) Pentru orice $\alpha, \alpha_1, \dots, \alpha_n \in K$ şi $x, x_1, \dots, x_n \in V$ avem:

$$(\alpha_1 + \dots + \alpha_n)x = \alpha_1 x + \dots + \alpha_n x \text{ si } \alpha(x_1 + \dots + x_n) = \alpha x_1 + \dots + \alpha x_n.$$
 (temā; Inductive dupā n)

Exemplele 5. a) Pe o mulţime dintr-un singur element $\{0\}$ există o singură operaţie + definită prin egalitatea 0 + 0 = 0 şi $(\{0\}, +)$ este grup abelian. De asemenea, există o singură operaţie externă

$$K \times \{0\} \rightarrow \{0\}, \ (\alpha, 0) \mapsto 0,$$
 $\alpha \cdot 0 = 0$

iar aceasta verifică în mod evident axiomele 1)-4) din definiția 1. Prin urmare, cele două operații definesc pe $\{0\}$ o structură de K-spațiu vectorial. Acest spațiu vectorial se numește **spațiul vectorial zero** sau **nul**.

b) Pentru orice $n \in \mathbb{N}^*$ mulţimea

$$K^n = \{(x_1, \dots, x_n) \mid x_i \in K, i = \{1, \dots, n\}\}\$$

este un K-spațiu vectorial în raport cu operațiile definite pe componente astfel:

$$(x_1,\ldots,x_n)+(y_1,\ldots,y_n)=(x_1+y_1,\ldots,x_n+y_n); \qquad 1) \begin{array}{c} (\kappa^{k},+) \text{ gusp abelian} \\ (\kappa^{k},+) \end{array}$$

$$\alpha(x_1,\ldots,x_n)=(\alpha x_1,\ldots,\alpha x_n), \qquad 2) \begin{array}{c} (\kappa^{k},+) \end{array}$$

R R-S.V. Q mbcoy in R

unde $(x_1, \ldots, x_n), (y_1, \ldots, y_n) \in K^n$ şi $\alpha \in K$.

c) Fie O un punct fixat în plan. Fiecărui punct M al planului i se asociază vectorul (segmentul orientat) \overrightarrow{OM} numit vectorul de poziție al punctului M (relativ la originea O). Notăm cu V_2 mulțimea tuturor vectorilor \overrightarrow{OM} când M parcurge punctele planului fixat. Mulțimea V_2 este \mathbb{R} - spațiu vectorial în raport cu adunarea vectorilor după regula paralelogramului și înmulțirea cu scalari definită astfel: dacă $\alpha \in \mathbb{R}$ atunci $\alpha \overrightarrow{OM}$ este vectorul cu originea în O care are direcția lui \overrightarrow{OM} , sensul lui \overrightarrow{OM} dacă $\alpha > 0$ și sens contrar lui \overrightarrow{OM} dacă $\alpha < 0$, iar lungimea (modulul) este produsul dintre $|\alpha|$ și lungimea lui \overrightarrow{OM} . Dacă $\alpha = 0$ sau \overrightarrow{OM} este vectorul nul atunci $\alpha \overrightarrow{OM}$ este vectorul nul.

Relativ la un sistem de coordonate ortogonal cu originea în O un vector \overrightarrow{OM} este reprezentat de coordonatele (x,y) ale punctului M, iar operațiile de adunare a vectorilor și de înmulțire a vectorilor cu scalari se exprimă astfel:

$$(x,y) + (x',y') = (x+x',y+y'); \ \alpha(x,y) = (\alpha x, \alpha y).$$

Cu alte cuvinte, putem identifica \mathbb{R} -spaţiul vectorial V_2 cu \mathbb{R}^2 .

Analog se obține spațiul liniar V_3 al vectorilor din spațiu cu originea într-un punct O fixat. Un vector din V_3 este determinat în raport cu un sistem de coordonate cu originea în O de un triplet (x,y,z) de numere reale. Scriind coordonatele vectorului sumă și produs cu un scalar în acest sistem, se constată că putem identifica \mathbb{R} -spațiul vectorial V_3 cu \mathbb{R}^3 .

d) Grupul (K,+) al unui corp $(K,+,\cdot)$ este un K-spațiu vectorial în raport cu operația externă

abelian
$$\underbrace{K \times K}_{\text{Scalar}} \xrightarrow{K} \underbrace{K}_{\text{Color}} \underbrace{K \times K}_{\text{Color}} \xrightarrow{\text{Urchan}} \underbrace{K \times K}_{\text{Urchan}} \xrightarrow$$

unde αx este produsul perechii (α, x) in (K, \cdot) . Acest exemplu se obține și din b) luând n = 1. e) Fie K' un corp și K un un subcorp al lui K'. Dacă (V, +) este un K'-spațiu vectorial, atunci (V, +) este un K-spațiu vectorial în raport cu operația externă

$$K \times V \to V, (\alpha, x) \mapsto \alpha \cdot x$$

unde αx este produsul dintre scalarul α și vectorul x în K'-spațiul vectorial V. Se spune că K-spațiul vectorial V s-a obținut din K'-spațiul vectorial V prin **restricția corpului de scalari** de la K' la K. Astfel \mathbb{R} este un \mathbb{Q} -spațiu vectorial, iar \mathbb{C} este un \mathbb{Q} -spațiu vectorial și un \mathbb{R} -spațiu vectorial.

f) Fie $m, n \in \mathbb{N}^*$. Grupul abelian $(M_{m,n}(K), +)$ al matricelor de tipul (m, n) cu elemente din K e un K-spațiu vectorial în raport cu înmulțirea cu scalari definită astfel:

$$\alpha(a_{ij}) = (\alpha a_{ij}) \ (\alpha \in K, \ (a_{ij}) \in M_{m,n}(K)).$$

Să observăm că pentru m=1 se obține chiar exemplul b) (caz care poate fi identificat, în urma unei transpuneri, și cu cel al K-spațiului vectorial $M_{n,1}(K)$). Cu alte cuvinte, liniile (coloanele) unei matrice din $M_{m,n}(K)$ pot fi privite ca vectori din K^n (respectiv K^m).

Să notăm și că în cazul matricilor pătratice (de ordin n), pe lânga structura de K-spațiu vectorial a lui $M_n(K)$ avem și o structură de inel pe $M_n(K)$. Mai mult, între cele două structuri avem o relație de legătură, și anume:

$$\alpha(A B) = (\alpha A)B = A(\alpha B), \ \forall \alpha \in K, \ \forall A, B \in M_n(K).$$

g) Fie $K[X]=\{f=a_0+a_1X+\cdots+a_nX^n\mid a_0,a_1,\ldots,a_n\in K,\ n\in\mathbb{N}\}$ mulţimea polinoamelor cu coeficienți în corpul comutativ K în nedeterminata X. Reamintim că (K[X], +) este un grup abelian în raport cu adunarea polinoamelor: pentru $f, g \in K[X]$,

$$f = a_0 + a_1 X + \dots + a_n X^n, \ g = b_0 + b_1 X + \dots + b_n X^n$$

(putem considera că ambele polinoame au același număr de termeni, adăugând, dacă e cazul, monoame cu coeficientul 0 în scrierea unuia dintre ele și) avem

$$f + g = (a_0 + b_0) + (a_1 + b_1)X + \dots + (a_n + b_n)X^n$$
.

Elementul nul e $0 \in K[X]$ (polinomul nul) și orice $f = a_0 + a_1X + \cdots + a_nX^n \in K[X]$ are opus, pe

$$-f = -a_0 + (-a_1)X + \dots + (-a_n)X^n.$$

Grupul abelian (K[X], +) este un K-spațiu vectorial în raport cu înmulțirea cu scalari definită astfel: dacă $\alpha \in K$ și $f = a_0 + a_1 X + \dots + a_n X^n \in K[X]$, atunci

$$\alpha f = \alpha a_0 + \alpha a_1 X + \dots + \alpha a_n X^n.$$

Și aici, pe lângă structura de K-spațiu vectorial, există și o structură de inel cu unitate pe K[X] și structurile sunt "compatibile" în sensul că

$$\alpha(fg) = (\alpha f)g = f(\alpha g), \ \forall \alpha \in K, \ \forall f, g \in K[X].$$

h) Dacă V_1 şi V_2 sunt K-spaţii vectoriale, atunci produsul cartezian $V_1 \times V_2$ este K-spaţiu vectorial $\begin{cases} el.\ uul \\ div V_2 \end{cases}$ în raport cu operatiile definite astfel: pentru $(x_1, x_2), (x'_1, x'_2) \in V_1 \times V_2$ si $\alpha \in K$ Vectoral and $(e_1, e_2) = (0, 0)$ în raport cu operațiile definite astfel: pentru $(x_1, x_2), (x_1', x_2') \in V_1 \times V_2$ și $\alpha \in K$,

$$(x_1, x_2) + (x'_1, x'_2) = (x_1 + x'_1, x_2 + x'_2), \ \alpha(x_1, x_2) = (\alpha x_1, \alpha x_2).$$

Spațiul vectorial obținut astfel (peste K) se numește **produsul direct** al spațiilor V_1 și V_2 .

Definiția 6. O pereche formată dintr-un inel $(R, +, \cdot)$ și o operație externă $\cdot : K \times V \to V$ se numește K-algebră sau algebră peste K dacă grupul abelian (R, +) este un K-spațiu vectorial și înmulțirea cu scalari și înmulțirea din inel verifică următoarea condiție

$$\alpha(xy) = (\alpha x)y = x(\alpha y), \ \forall \alpha \in K, \ \forall x, y \in R.$$

Dacă, în plus, inelul R este comutativ (cu unitate), spunem că R este o K-algebră comutativă (respectiv o K-algebră cu unitate).

Observația 7. Din exemplele anterioare rezultă că inelul $M_n(K)$ al matricelor pătratice de ordinul $n \ (n \in \mathbb{N}^*)$ formează o K-algebră cu unitate și că K[X] este o K-algebră comutativă cu unitate.

Definiția 8. Fie V un K-spațiu vectorial. O submulțime $A \subseteq V$ se numește subspațiu al lui V dacă

- i) $a_1, a_2 \in A \Rightarrow a_1 + a_2 \in A$,
- (A parte stabità rel. la + ri la îhue. cu scalari)
- ii) $\alpha \in K$, $a \in A \Rightarrow \alpha a \in A$

şi
$$A$$
 este K -spaţiu vectorial în raport cu operaţiile induse.

(op. extruc din K etc $\cdot: K \times A \longrightarrow A$ etc $\circ: K \times A \longrightarrow A$

Faptul că A este un subspațiu al K-spațiului vectorial V îl notăm prin $A \leq_K V$.

 $A \leq_{\mathcal{K}} \lor \implies A \neq \emptyset$

Observația 9. Dacă
$$A$$
 este un subspațiu al K -spațiului vectorial V , atunci $0 \in A$.

Juh-adevar, $A \neq \emptyset \implies \exists x \in A \subseteq V \implies O = O \times A$

Practic, când arătăm că o submulțime a unui spațiu vectorial este subspațiu aplicăm următoarea:

Teorema 10. (Teorema de caracterizare a subspaţiului)

Fie V un K-spațiu vectorial și $A\subseteq V$. Sunt echivalente următoarele afirmații:

- 1) A este subspațiu al lui V.
- 2) A verifică condițiile:
 - α) $A \neq \emptyset$;
 - β) $a_1, a_2 \in A \Rightarrow a_1 a_2 \in A$;
 - γ) $\alpha \in K$, $a \in A \Rightarrow \alpha a \in A$.
- 3) A verifică condițiile:
 - α) $A \neq \emptyset$;
 - β') $a_1, a_2 \in A \Rightarrow a_1 + a_2 \in A$;
 - γ) $\alpha \in K$, $a \in A \Rightarrow \alpha a \in A$.
- 4) A verifică condițiile:
 - α) $A \neq \emptyset$;
 - β'') $\alpha_1, \alpha_2 \in K$, $a_1, a_2 \in A \Rightarrow \alpha_1 a_1 + \alpha_2 a_2 \in A$.

Demonstrație.

Observațiile 11. a) Caracterizarea de mai sus rămâne adevărată dacă înlocuim condiția α) cu α') $0 \in A$.

b) Dacă V este un K-spațiu vectorial și $A \subseteq V$, atunci A este un subspațiu dacă și numai dacă A este subgrup al grupului (V, +) și A verifică condiția ii).

Exemplele 12. a) Pentru orice spațiu vectorial V submulțimile $\{0\}$ și V sunt subspații ale lui V. Un subspațiu al lui V diferit de $\{0\}$ și V se numește **subspațiu propriu**.

b) Fie K-spațiul vectorial al polinoamelor K[X] și $n \in \mathbb{N}^*$. Se constată ușor că

$$P_n(K) = \{ f \in K[X] \mid \operatorname{grad} f \le n \}$$

verifică pe α), β'), γ). Deci $P_n(K)$ este un subspațiu al lui K[X].

c) Fie $I \subseteq \mathbb{R}$ un interval. Mulțimea $\mathbb{R}^I = \{f \mid f : I \to \mathbb{R}\}$ este \mathbb{R} -spațiu vectorial în raport cu operațiile definite prin:

$$(f+g)(x) = f(x) + g(x), \ (\alpha f)(x) = \alpha f(x)$$

unde $f, g \in \mathbb{R}^I$ şi $\alpha \in \mathbb{R}$. Submulţimile

$$C(I,\mathbb{R}) = \{ f \in \mathbb{R}^I \mid f \text{ continuă pe } I \}, \ D(I,\mathbb{R}) = \{ f \in \mathbb{R}^I \mid f \text{ derivabilă pe } I \}$$

sunt subspații ale lui \mathbb{R}^I pentru că sunt nevide și

$$\alpha, \beta \in \mathbb{R}, f, g \in C(I, \mathbb{R}) \Rightarrow \alpha f + \beta g \in C(I, \mathbb{R});$$

$$\alpha, \beta \in \mathbb{R}, \ f, g \in D(I, \mathbb{R}) \Rightarrow \alpha f + \beta g \in D(I, \mathbb{R}).$$

Teorema 13. Dacă $(A_i)_{i \in I}$ este o familie nevidă de subspații ale K-spațiului vectorial V, atunci

$$\bigcap_{i \in I} A_i \leq_K V.$$

Demonstrație.

Din Teorema 13 rezultă că dacă $X\subseteq V$ atunci

$$\bigcap \{ A \le_K V \mid X \subseteq A \} \tag{1}$$

este un subspațiu al lui V notat cu $\langle X \rangle$ numit subspațiul generat de X. Din (1) rezultă că

 $\langle X \rangle$ este cel mai mic subspațiu al lui V care include pe X.

Dacă $V = \langle X \rangle$ atunci vom spune că X este un **sistem de generatori** al lui V sau că X generează pe V. Dacă există o submulțime finită $X \subseteq V$ astfel încât $V = \langle X \rangle$, atunci spunem că spațiul V este de **tip finit** sau **finit generat**. Dacă $X = \{x_1, \ldots, x_n\}$, vom nota $\langle X \rangle$ cu $\langle x_1, \ldots, x_n \rangle$.

Observaţia 14. Din definiţia subspaţiului generat rezultă:

- a) $\langle \emptyset \rangle = \{0\};$
- b) $X, Y \subseteq V, \ X \subseteq Y \Rightarrow \langle X \rangle \subseteq \langle Y \rangle;$
- c) $A \leq_K V \Rightarrow \langle A \rangle = A$;
- d) $X \subseteq V \Rightarrow \langle \langle X \rangle \rangle = \langle X \rangle$.

Definiția 15. Fie V un K-spațiu vectorial și $X \subseteq V, X \neq \emptyset$. O sumă de forma

$$x = \alpha_1 x_1 + \dots + \alpha_n x_n \ (\alpha_1, \dots, \alpha_n \in K, \ x_1, \dots, x_n \in X)$$

se numește **combinație liniară** de elemente din X.

Teorema 16. Dacă V este un K-spațiu vectorial și $\emptyset \neq X \subseteq V$, atunci

$$\langle X \rangle = \{ \alpha_1 x_1 + \dots + \alpha_n x_n \mid \alpha_k \in K, x_k \in X, k = 1, \dots, n, n \in \mathbb{N}^* \}$$
 (2)

adică $\langle X \rangle$ este format din toate combinațiile liniare de elemente din X.

Demonstrație.

Dacă $n \in \mathbb{N}^*$ și $A_1, \ldots, A_n \subseteq V$, notăm

$$A_1 + \dots + A_n = \{a_1 + \dots + a_n \mid a_1 \in A_1, \dots, a_n \in A_n\}.$$

Corolarul 17. a) Dacă $x \in V$ atunci $\langle x \rangle = \{\alpha x \mid \alpha \in K\} = Kx$.

b) Dacă $x_1, \ldots, x_n \in V$ atunci $\langle x_1, \ldots, x_n \rangle = Kx_1 + \cdots + Kx_n$.

Observațiile 18. (și exemple...)

a) Fie V_2 \mathbb{R} -spaţiul vectorial al vectorilor din plan cu originea într-un punct O. Subspaţiile lui V_2 sunt: $\{0\}$, V_2 şi dreptele care trec prin O (mai exact mulţimile de vectori de poziţie ai punctelor situate pe aceste drepte).

- b) Pentru \mathbb{R} -spaţiul vectorial V_3 peste al vectorilor din spaţiu cu originea într-un punct O, subspaţiile lui sunt: $\{0\}$, V_3 , dreptele care trec prin O (mai exact mulţimile de vectori de poziţie ai punctelor situate pe aceste drepte) şi planele care trec prin O (mulţimile de vectori de poziţie conţinuţi în aceste plane).
- c) În general reuniunea a două subspații ale unui spațiu vectorial nu este un subspațiu. De exemplu, mulțimile $A = \{(a,0) \mid a \in \mathbb{R}\}$ și $B = \{(0,b) \mid b \in \mathbb{R}\}$ sunt subspații ale \mathbb{R} -spațiului vectorial \mathbb{R}^2 , dar $A \cup B$ nu este subspațiu, nefiind stabilă în raport cu +:

$$(1,0) \in A \subseteq A \cup B, \ (0,1) \in B \subseteq A \cup B, \ \operatorname{dar} (1,0) + (0,1) = (1,1) \notin A \cup B.$$

d) Dacă $A, B \leq_K V$ atunci cel mai mic subspațiu al lu
iV ce conține A și B est
eA+B, adică

$$A + B = \langle A \cup B \rangle$$
.

e) Dacă A_1,\dots,A_n sunt subspații ale K-spațiului vectorial V, atunci

$$A_1 + \dots + A_n = \langle A_1 \cup \dots \cup A_n \rangle.$$

f) Dacă $X_i \subseteq V$ (i = 1, ..., n), atunci $\langle X_1 \cup \cdots \cup X_n \rangle = \langle X_1 \rangle + \cdots + \langle X_n \rangle$.

Am văzut că suma a două subspații este un subspațiu.

Definiția 19. Dacă A și B sunt subspații ale lui V și $A \cap B = \{0\}$, subspațiul A + B se notează cu $A \oplus B$ și se numește **suma directă** a lui A și B.

În particular, $V=A\oplus B$ dacă și numai dacă au loc următoarele:

- i) A + B = V;
- ii) $A \cap B = \{0\}.$

În acest caz, spunem că A (sau B) este **sumand** (sau **sumant**) **direct** al lui V (prin urmare, A şi B sunt sumanzi (sumanți) direcți ai lui V). De asemenea, spunem că A este un **complement direct** al lui B (în V); la fel B pentru A.

Observațiile 20. a) Pentru un sumand direct pot exista mai mulți complemenți direcți.

b) Proprietatea de a fi sumand direct este tranzitivă (la seminar).