Импулсни схеми с ТТЛ интегрални схеми

Тригери на Шмит с ТТЛ елементи

Входното напрежение u_i нараства и достигайки $u_{i1} = U_0 = 1,3 \ V \ ЛЕ_1$ и $\ ЛЕ_2$ се превключват и входното напрежение на $\ ЛЕ_1$ нараства със скок. За да се изключи тригерът, входното напрежение на $\ ЛЕ_1$ трябва да се намали под $\ U_0$.

Частта от изходното напрежение, което влияе върху входа

$$\frac{\Delta u_o}{R+R_{_{\mathcal{I}}}}$$
. $R_{_{\mathcal{I}}}$ > Δu_i \rightarrow за да превключи схемата

влиянието на изменението на изходния сигнал върху входа.

 $\Delta~u_i$ - широчина на предавателната характеристика на двата ЛЕ $\Delta~u_i\approx 60~mV$

$$\frac{\Delta u_o}{R + R_{_{I\!\!\!/}}}.R_{_{I\!\!\!/}} \approx \frac{2.4 \text{ V}}{R + R_{_{I\!\!\!/}}}.R_{_{I\!\!\!/}} > 0.06 \Longrightarrow 2.4.R_{_{I\!\!\!/}} > 0.06.(R + R_{_{I\!\!\!/}})$$

$$R_{_{I\!\!\!/}} > \frac{0.06.R}{2.4} = \frac{R}{40}$$

$$R_{_{\rm I\! I}} > \frac{R}{40}$$
 - ориентировъчно изискване.

1.1. Определяне на U_I.

Преди първия праг на входа на ΠE_1 има ниско ниво. T1 в ΠE_1 е наситен.

$$\Pi$$
ри $u_i = U_I$, $u_{i1} = U_0$ и $u_{o2} \approx 0$ $i_i = i_1 + i_2$

$$U_{I} = U_{0} - (\frac{E_{C} - U_{BESAT1} - U_{0}}{R_{1}} - \frac{U_{0}}{R}).R_{\pi}$$

Когато $u_i = U_I$, схемата се превключва и на изхода се получава 1. От положителната обратна връзка напрежението на входа се увеличава.

Последният израз определя прага на задействане на схемата. При $U_0 \approx 1,3~V;~R_1=4~k;~E_C=5~V;~U_{BE_1}=0,7~V~$ той еднозначно се определя от външните резистори в схемата.

(5)
$$U_I = 1,3 - (0,75 - \frac{1,3}{R})R_{\mathcal{I}}$$
 (R и $R_{\mathcal{I}}$ в к Ω)

1.2. Определяне на U_{II} .

След превключване на схемата напрежението u_{i_1} приема стойност $u_{i_1} > U_0 = 1,3$ V поради превключването на изхода на ЛЕ2 в логическа 1. При понижаване на входното напрежение u_i , при $u_{i_1} = U_0$ се извършва обратен лавинообразен процес и схемата се връща в изходното си състояние

При
$$u_i = U_{II}$$
, $u_{i1} = U_0$ и $u_{o2} \approx U_o^1$
$$U_{II} = U_0 - i_1.R_{\pi} = U_0 - (i_i - i_2). R_{\pi} = U_0 - (I_0 - i_2). R_{\pi} = U_0 - (I_0 - \frac{U_0 - U_o^1}{R}).R_{\pi}$$

$$U_{II} = U_0 - (I_0 + \frac{U_o^1 - U_o}{R}).R_{\pi}$$

При
$$U_0 \approx 1.3 \text{ V}; \ I_{i_0} \approx 0.6 \text{ mA}; \ U^1 \approx 3.6 \text{ V}$$

(7)
$$U_{II} = 1,3 - (\frac{2,3}{R} + 0,6)R_{\mathcal{A}}$$
 (R и $R_{\mathcal{A}}$ в $\kappa\Omega$)

 $U_{\rm X}$ - ширина на хистерезисния цикъл

$$U_{X} = U_{I} - U_{II} = \left(\frac{U_{o}^{1} - U_{0}}{R} + I_{0} - \frac{E_{C} - U_{BESAT1} - U_{0}}{R_{1}} + \frac{U_{0}}{R}\right).R_{\pi}$$

$$U_{X} = \left(\frac{U_{o}^{1}}{R} + I_{0} - \frac{E_{C} - U_{BESAT1} - U_{0}}{R_{1}}\right).R_{\pi}$$

Очевидно е, че схемата притежава хистерезис. Неговата ширина е:

(8)
$$U_x = U_I - U_{II} \approx (\frac{3.6}{R} - 0.15) R_{\mathcal{A}}$$
 (R и $R_{\mathcal{A}}$ в $\kappa \Omega$)

Недостатъци на схемата са ниското входно съпротивление и бързото нарастване на хистерезиса при увеличаване на $R_{\rm d}$.

Тъй като потенциалът на горния вход е винаги по-нисък от този на долния вход, U_I се запазва почти същият.

$$U_{I} = U_{0} - (\frac{E_{C} - U_{BESAT1} - U_{0}}{R_{1}} - \frac{U_{0}}{R}).R_{\pi} + U_{F}.$$

Достигането на U_0 и от горния вход води до включване на тригера. U_{II} зависи само от входния ток. (Диодът е обратно включен, равностойно на прекъсната верига).

$$U_{II}=U_0-I_0.R_{\pi}.$$

2.2. Тригер на Шмит с емитерен повторител на входа

След като схемата превключи, при $R_B \approx R_E$, е възможно с нарастването на u_i на колектора на наситения транзистор да се получи напрежение на входа на JE_1 по-голямо от U_0 и тригерът да изключи. Затова трябва да се избира $R_B >> R_E$.

$$U_{II} = U_{B0} + \frac{E_C - U_{BESAT1} - U_{CESAT}}{R_1 + R_E || R}.(R_E || R).$$

Предимство: Схемата има голямо входно съпротивление.

В изходно положение на изхода има U_o^1 , тъй като транзисторът T е запушен (ниско входно ниво).

Част от изходното напрежение U_o^1 се подава на R_E . Входното напрежение нараства \Rightarrow T ще се отпуши при $u_i > U_{B0} + U_{RE}$, T — отпушен \Rightarrow 0 на входа на ΠE_1 и 0 на изхода на схемата.

$$U_{I} = U_{B0} + \frac{U_{o}^{1}}{R + R_{E}} R_{E}$$

3. Тригер на Шмит с разширители

Р1 и Р2 – разширители

През R_E се осъществява положителна обратна връзка

 $R_{C1} > R_{C2}$ - избират се.

$$R_{C1} = 3.9 \text{ k}\Omega; R_{C2} = 1.5 \text{ k}\Omega;$$

$$R_E = (30 \div 50) \Omega$$
.

Основно предимство – позволява работа с тесен хистерезис.

Недостатък – високо ниво на изходната 0; твърде голям брой външни елементи.

 T_2' – запушен, T_2'' – наситен \to ниско ниво на входа и на изхода.

 T_2' се отпушва, U_{C1} намалява, в даден момент T_1'' се насища, T_2'' се запушва и на изхода се получава 1.

$$U_I = U_{RE} + U_{B0} - U_{CESAT1}.$$

Вторият праг се определя по същата формула, но U_{RE} се определя от другото състояние на тригера.

Всички тригери на Шмит в интегрално изпълнение са с инверсен изход (изпълняват се като елементи И-НЕ).

7413 – два четиривходови тригера на Шмит;

7414 - шест едновходови тригера на Шмит;

74132 - четири двувходови тригера на Шмит.

За тези тригери $U_I \approx 1,7 V$

$$U_{II} \approx 0.9 \text{ V}$$

Има възможност чрез включване на резистор във входа да понижим праговете, а чрез включване на делител – да повишим праговете.

доц. д-р Нина Бенчева

Катедра Телекомуникации

3. Тригер на Шмит с ОУ

Общи сведения

Операционният усилвател (ОУ) е схема (устройство) с два входа, захранваща се с две разнополярни напрежения: $+ E_{CC}$, $- E_{EE}$.

$$R_i o \infty$$
 $R_o o 0$ $K_0 o \infty$ (без обратна връзка)
Усилва разликата между двата входни

Недостатъци:

- Ниско бързодействие;
- Необходимост от два захранващи източника;
- Несъвместимост на изходните нива с тези на ТТЛ схемите.

3. Тригер на Шмит с ОУ

Работи като компаратор. На изхода има или + E_{CC} или – E_{EE} . Нека $u_o = + E_{CC}$.

$$u_i = 0, \ U'_+ = \frac{E_{CC}}{R_1 + R_2}.R_2 = U_I$$

При нарастване на входното напрежение u_i потенциалната разлика между входовете на ОУ става положителна и на изхода се формира u_o = - E_{EE} . Тази потенциална разлика на входа след скока на изхода нараства още повече и затова при u_i = 0 ОУ няма да се превключи.

$$U''_{+} = -\frac{E_{EE}}{R_1 + R_2}.R_2 = U_{II}$$

Импулсна и цифрова схемотехника

 T_1 – инверсен активен режим

 T_2 , T_4 — наситено състояние

 T_3 – запушен

Д – запушен

Т1 – наситен режим

Т3 – активен режим

Т2, Т4 – запушени

Д – отпушен

$$\begin{split} U_o^1 &= 3,7 \text{ V} \\ U_{oa2} &= 2,7 \text{ V} \\ U_o^0 &= 0,2 \text{ V} \\ U_{ia1} &= 0,55 \text{ V} \\ U_{ia2} &= 1,2 \text{ V} \\ U_{ia3} &= U_0 = 1,3 \text{ V} \\ U_{i0} &= 1,4 \div 1,5 \text{ V} \end{split}$$

4. Статични нива

доц. д-р Нина Бенчева

Катедра Телекомуникации