

Exercise 8.1

Question 1:

Find the area of the region bounded by the curve $y^2 = x$ and the lines x = 1, x = 4 and the x-axis.

Answer

The area of the region bounded by the curve, $y^2 = x$, the lines, x = 1 and x = 4, and the x-axis is the area ABCD.

Area of ABCD =
$$\int_{1}^{4} y \, dx$$

= $\int_{1}^{4} \sqrt{x} \, dx$
= $\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}} \right]_{1}^{4}$
= $\frac{2}{3} \left[(4)^{\frac{3}{2}} - (1)^{\frac{3}{2}} \right]$
= $\frac{2}{3} [8 - 1]$
= $\frac{14}{3}$ units

Question 2:

Find the area of the region bounded by $y^2 = 9x$, x = 2, x = 4 and the x-axis in the first quadrant.

Answer

The area of the region bounded by the curve, $y^2 = 9x$, x = 2, and x = 4, and the x-axis is the area ABCD.

Area of ABCD =
$$\int_{2}^{1} y \, dx$$

= $\int_{2}^{4} 3\sqrt{x} \, dx$
= $3\left[\frac{x^{\frac{3}{2}}}{\frac{3}{2}}\right]_{2}^{4}$
= $2\left[x^{\frac{3}{2}}\right]_{2}^{4}$
= $2\left[(4)^{\frac{3}{2}} - (2)^{\frac{3}{2}}\right]$
= $2\left[8 - 2\sqrt{2}\right]$
= $(16 - 4\sqrt{2})$ units

Question 3:

Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

Answer

The area of the region bounded by the curve, $x^2 = 4y$, y = 2, and y = 4, and the y-axis is the area ABCD.

Area of ABCD =
$$\int_{2}^{4} x \, dy$$

= $\int_{2}^{4} 2\sqrt{y} \, dy$
= $2 \int_{2}^{4} \sqrt{y} \, dy$
= $2 \left[\frac{y^{\frac{3}{2}}}{\frac{3}{2}} \right]_{2}^{4}$
= $\frac{4}{3} \left[(4)^{\frac{3}{2}} - (2)^{\frac{3}{2}} \right]$
= $\frac{4}{3} \left[8 - 2\sqrt{2} \right]$
= $\left(\frac{32 - 8\sqrt{2}}{3} \right)$ units

Question 4:

Find the area of the region bounded by the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$ Answer

The given equation of the ellipse, $\frac{x^2}{16} + \frac{y^2}{9} = 1$, can be represented as

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

\uplambda Area bounded by ellipse = 4 \times Area of OAB

Area of OAB =
$$\int_{0}^{4} y \, dx$$

= $\int_{0}^{4} 3\sqrt{1 - \frac{x^{2}}{16}} dx$
= $\frac{3}{4} \int_{0}^{4} \sqrt{16 - x^{2}} \, dx$
= $\frac{3}{4} \left[\frac{x}{2} \sqrt{16 - x^{2}} + \frac{16}{2} \sin^{-1} \frac{x}{4} \right]_{0}^{4}$
= $\frac{3}{4} \left[2\sqrt{16 - 16} + 8 \sin^{-1} (1) - 0 - 8 \sin^{-1} (0) \right]$
= $\frac{3}{4} \left[\frac{8\pi}{2} \right]$
= $\frac{3}{4} \left[4\pi \right]$
= 3π

Therefore, area bounded by the ellipse = $4 \times 3\pi = 12\pi$ units

Question 5

Find the area of the region bounded by the ellipse $\frac{x^2}{4} + \frac{y^2}{9} = 1$ Answer

The given equation of the ellipse can be represented as

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

$$\Rightarrow y = 3\sqrt{1 - \frac{x^2}{4}} \qquad \dots (1)$$

It can be observed that the ellipse is symmetrical about x-axis and y-axis.

 \therefore Area bounded by ellipse = 4 \times Area OAB

∴ Area of OAB =
$$\int_0^2 y \, dx$$

= $\int_0^2 3\sqrt{1 - \frac{x^2}{4}} dx$ [Using (1)]
= $\frac{3}{2} \int_0^2 \sqrt{4 - x^2} \, dx$
= $\frac{3}{2} \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_0^2$
= $\frac{3}{2} \left[\frac{2\pi}{2} \right]$
= $\frac{3\pi}{2}$

Therefore, area bounded by the ellipse = $4 \times \frac{3\pi}{2} = 6\pi$ units

Ouestion 6:

Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3}y$ and the circle $x^2+y^2=4$

Answei

The area of the region bounded by the circle, $x^2+y^2=4, x=\sqrt{3}y$, and the x-axis is the area OAB.

The point of intersection of the line and the circle in the first quadrant is $\left(\sqrt{3},1\right)$. Area OAB = Area Δ OCA + Area ACB

Area of OAC
$$= \frac{1}{2} \times OC \times AC = \frac{1}{2} \times \sqrt{3} \times I = \frac{\sqrt{3}}{2} \qquad \dots (1)$$

Area of ABC
$$= \int_{\sqrt{3}}^{2} y \, dx$$

$$= \int_{\sqrt{3}}^{2} \sqrt{4 - x^2} \, dx$$

$$= \left[\frac{x}{2} \sqrt{4 - x^2} + \frac{4}{2} \sin^{-1} \frac{x}{2} \right]_{\sqrt{3}}^{2}$$

$$= \left[2 \times \frac{\pi}{2} - \frac{\sqrt{3}}{2} \sqrt{4 - 3} - 2 \sin^{-1} \left(\frac{\sqrt{3}}{2} \right) \right]$$

$$= \left[\pi - \frac{\sqrt{3}\pi}{2} - 2 \left(\frac{\pi}{3} \right) \right]$$

$$= \left[\pi - \frac{\sqrt{3}}{2} - \frac{2\pi}{3} \right]$$

$$= \left[\frac{\pi}{2} - \frac{\sqrt{3}}{2} \right]$$

...(2)

Therefore, area enclosed by x-axis, the line $x = \sqrt{3}y$, and the circle $x^- + y^- = 4$ in the first

quadrant =
$$\frac{\sqrt{3}\pi}{2} + \frac{3\sqrt{\pi}}{3} = \frac{3\sqrt{\pi}}{2}$$
 units

Question 7:

Find the area of the smaller part of the circle $x^2+y^2=a^2$ cut off by the line $x=\frac{a}{\sqrt{2}}$ Answer

The area of the smaller part of the circle, $x^2+y^2=a^2$, cut off by the line, $x=\frac{a}{\sqrt{2}}$, is the area ABCDA

********** END ********