Functional Boxplots

Ying Sun and Marc G. Genton

Texas A&M University

September 17, 2010

Functional Boxplots

- 1 Informative Exploratory Tool
- 2 Band Depth for Functional Data
- 3 Functional Boxplots v.s. Classical Boxplots
- 4 Simulation Studies
- 6 Applications
- 6 Discussion

Functional Data

- The goal of this paper is
 - to develop functional boxplots for visualizing functional data.
- To do this, we need to
 - know the features of functional data,
 - generalize order statistics or ranks to the functional context.

Multivariate Ordering

- Basic ideas of depth in functional context
 - provides a method to order sample curves according to decreasing depth values,
 - $y_{[1]}$: the deepest (most central or median) curve,
 - $y_{[n]}$: the most outlying (least representative) curve,
 - $y_{[1]}, \ldots, y_{[n]}$: start from the center outwards.
- Usual order statistics: ordered from the smallest sample value to the largest.

Band Depth for Functional Data

- López-Pintado and Romo (2009) introduced the band depth (BD) concept through a graph-based approach.
- Grey area: band determined by two curves, y_1 and y_3 .
- Completely contains the curve y_2 , but only partly contains y_4 .

Band Depth for Functional Data

• Population version of $BD^{(2)}$:

$$BD^{(2)}(y,P) = P\{G(y) \subset B(Y_1,Y_2)\}.$$

- G(y): graph of the curve y,
- $B(Y_1, Y_2)$: band delimited by 2 random curves.
- The band could be delimited by more than 2 random curves,

$$BD_J(y, P) = \sum_{j=2}^{J} BD^{(j)}(y, P).$$

Sample Band Depth

- Population level: $BD^{(j)}(y, P)$ is a probability.
- Sample version of $BD^{(j)}(y, P)$

$$BD_n^{(j)}(y) = \binom{n}{j}^{-1} \sum_{1 \leq i_1 < i_2 < \dots < i_j \leq n} I\{G(y) \subseteq B(y_{i_1}, \dots, y_{i_j})\},$$

- $I\{\cdot\}$: the indicator function,
- fraction of the bands completely containing the curve y.
- Sample BD: $BD_{n,J}(y) = \sum_{i=2}^{J} BD_n^{(i)}(y)$.

Modified Band Depth

 López-Pintado and Romo (2009) also proposed a more flexible definition, the modified band depth (MBD).

$$BD_{n}^{(j)}(y) = \binom{n}{j}^{-1} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{j} \leq n} I\{G(y) \subseteq B(y_{i_{1}}, \dots, y_{i_{j}})\},$$

$$MBD_{n}^{(j)}(y) = \binom{n}{j}^{-1} \sum_{1 \leq i_{1} < i_{2} < \dots < i_{j} \leq n} \lambda_{r}\{A(y; y_{i_{1}}, \dots, y_{i_{j}})\}.$$

• $\lambda_r\{A(y; y_{i_1}, \dots, y_{i_j})\}$ measures the proportion of time that a curve y is in the band.

Functional Boxplots v.s. Classical Boxplots

- Comparing functional boxplots to classical boxplots.
- Functional boxplot: median, 50% central region, maximum non-outlying region, empirical outlier rule.

Enhanced Functional Boxplots

- The enhanced functional boxplot is a natural extension.
- Different from pointwise boxplots.

Functional Boxplot v.s. Functional Bagplot

- Functional boxplot:
 - uses MBD to order functional data,
 - visualizes functional data directly in the functional space,
 - a strong analog to the classical boxplot.
- Functional bagplot:
 - proposed by Hyndman and Shang (2010),
 - based on the first two robust principal component scores,
 - applies the bivariate bagplot (Rousseeuw et al., 1999),
 - maps the features of the bagplot into the functional space.

Children Growth Data

• The heights of 54 girls and 39 boys.

Spatio-Temporal Precipitation Data

- Spatio-temporal precipitation data: annual total precipitation data for U.S. from 1895 to 1997 at 11,918 weather stations.
- Nine climatic regions for precipitation defined by National Climatic Data Center.
- Four areas of outliers detected by functional boxplots.

South East and North West

- Outliers at the southmost tip in Florida show an oscillatory pattern, which captures the hurricane effect.
- Outliers along the west coast have higher precipitation.
- Easy to compare two functional boxplots.

Functional Boxplots for Nine Climatic Regions

Surface Boxplots for Spatio-temporal Data

- We have viewed the information as a temporal curve at each spatial location.
- An alternative: treat the dataset as a spatial surface at each time.
- Define a volume-based surface band depth for a surface S by counting the proportion of surface bands determined by J different surfaces $(2 \le J \le n)$ in \mathbb{R}^3 , containing S.
- Lead to a three-dimensional surface boxplot.

Surface Boxplot

Conclusions

- BD: graph-based nonparametric ordering for functional data.
- Functional boxplot: visualize complex datasets, detect outliers.
- Precipitation data: provided by the Institute for Mathematics Applied to Geosciences (http://www.image.ucar.edu/Data/US.monthly.met/).
- R command: fbplot (http://www.stat.tamu.edu/~sunwards/publication.html).