NOV. 28/17

Solution (two spheres) # :

IGWAZ DYNAMICS

PRINCIPLE & LINEAR (MPULSE :

I: MU, - FAUGAt = MUAZ

 \odot

ANGULAR MOMENTUM (About mass centre G):

 $+\dot{\omega}$: $-I_{\alpha}\omega_{\alpha} = -I_{\alpha}\omega_{\alpha}$ => ω_{α} => ω_{α} = ω_{α}

0 + FAUG Dt = M VBZ 3

+63: 0 + 0 = - I 6 W 82 = 0

1+3 : MV, = MVAZ + MVAZ $V_{A2} + V_{B2} = V_{1}$ (5)

$$C = -\left(\frac{V_{cn} - V_{dn}}{V_{rn} - V_{dn}}\right)$$

Before: Von = 0

Ver = Vccos 450 = V2TW, Cos 450

After impact :

$$\omega_{A2} = \omega$$
, Δ :

$$\frac{1}{\sqrt{\frac{V_{cn} - V_{on}}{V_{cn} - V_{on}}}} = \frac{1}{\sqrt{\frac{V_{cn} - V_{on}}{V_{cn} - V_{on}}}}} = \frac{1}{\sqrt{\frac{V_{cn} - V_{on}}{V_{cn} - V_{on}}}} = \frac{1}{\sqrt{\frac{V_{cn} - V_{on}}{V_{cn} - V_{on}}}} = \frac{1}{\sqrt{\frac{V_{cn} - V_{on}}{V_{cn} - V_{on}}}} = \frac{1}{\sqrt{\frac{V_{cn} - V_{on}}{V_{cn} - V_{on}}}}} = \frac{1}{\sqrt$$

$$\frac{y}{x}$$
: $0 + Nat - mgt = 0 \rightarrow Na = mg$
 $\frac{x}{x}$: $0 + Fst = mVa_3$
 $\frac{x}{y}$:

 $\frac{y}{x}$: $\frac{y}{y}$: \frac{y}

Since
$$I_G = \frac{2}{5} m r^2$$

 $7 \sim 10$: $W_{A3} = \frac{2}{7} \cdot \frac{v_1}{r}$; $V_{A3} = \frac{2}{7} v_1$

Sphere B:

$$W_{B3} = \frac{5}{7} \cdot \frac{V_1}{T} \quad ; \quad V_{B3} = \frac{5}{7} V_1$$

Impact: Perfectly plastic ($e = \emptyset$)
Find \overline{V} .

$$T_B = \frac{1}{3} m(\alpha^2 + b^2)$$

$$= \frac{mv.b}{a} = \frac{1}{3} m(a^2 + b^2) \omega_2$$

=>
$$V_1 = \frac{2}{3} \cdot \left(\frac{\alpha^2 + b^2}{b}\right) \omega_2$$

2 Rotation:

$$0 = \omega_1 \omega_2$$
:
 $0 = 3\omega^2, \omega_2 \omega$

Conservation of energy:

$$T_1 + V_1 = T_2 + V_2$$

$$T_1 = \frac{1}{2} I_8 \omega_2^2 = \frac{1}{2} \cdot \frac{1}{3} m(a^2 + b^2) \omega_2^2$$

$$V_1 = \dots$$

$$V_{1A} = may b_{2} = max \frac{a.1}{2} = 0.05 mg$$

datum

$$T_2 = 0$$

 $V_2 = mq \cdot \frac{AB}{2} \cdot Sin(30^\circ, B)$

$$\frac{1}{4} \ln \beta = \frac{b}{a} = \frac{100}{200} \quad \text{3} \quad \beta = 26.565^{\circ}$$

$$V_2 = \text{mag.} \quad \sqrt{0.2^2 + 0.1^2} \quad \text{Sin}(30^\circ + 26.565^\circ)$$

$$= \frac{100}{200} \quad \text{3} \quad \beta = 26.565^\circ$$

=>
$$W_z = 7.1396$$
 rad/s
=> $V_1 = \frac{2}{3} \frac{a^2 + b^2}{b} w_z = \frac{2}{3} \frac{(0.7)^2 + 0.1^2}{0.1} \times 7.1396$
= 2.38 m/s

Example:

L = 30 in

 $W_{AB} = 151b$ $W_{b} = 0.081b$

Vo = 1800 Ft/s

C is the 10 of

Find h

zero velocity of AB

Impact problem (don't worry about weight)

- Consider Support Force

- how do you know if the distance h is obove

$$X: M_b V_o + \emptyset = M_{AB} V_G + M_b V_i$$

Angular momentum

+G9: MbDoh +
$$\emptyset$$
 = IGW + MbDih
[9: \emptyset + $T\Delta t$ = \emptyset then T = \emptyset during impact]
 $V_G = (1.5L)W$
 $V_i = (1.5L)+h)W$ => $h = \frac{L}{18}$

Ge between 6 -0 1/2 L