Theorem.

- (9) of $\lambda \in V$ then the subgroup of W that fixes λ is generated by the reflection S_{α} . $(\alpha \in \mathbb{D})$ which fix λ .
- (b) some for the subgp of W that fixe, UCV pointuite.

Pf.

(a) We lynow this for $\lambda \in D$.

For others let $\lambda = w_{\mathcal{H}}$. v fixe, λ iff $-v\lambda = \lambda$

W-M-MM W-M-MW

W - U = S, ... Sk Si M = M U = (WS, W -) ... (w Sk W -)

Mlimy /=y

(b) Easy induction

E

- The hyperplane arrangement {Hα3αεπ dudes V into chamber (connected components of V) U Hα)
- The <u>findamental</u> chamber C has walls Hai,..., Han
- The other chamber are wC (wEW)

Exi l(w) = # of hyperplanes separating C, wC

Combin of Findamental Domain

$$C_{I} = \int_{A} E D | (\lambda_{\alpha}) = 0 \quad \alpha \in \Delta_{I}$$

$$(\lambda_{\alpha}) > 0 \quad \alpha \notin \Delta_{I}$$