Modeling flow in a viscous continuously stratified fluid taking into account diffusivity effects

Vasiliev Alexey

Laboratory of Fluid Mechanics Institute for Problems in Mechanics of the RAS Moscow, Russia

Firth International Scientific School for Young Scientists. "Waves and vortices in complex media", 2014

Review

- J.V.S. Rayleigh
- J. Lighthill
- Yu.D. Chashechkin
- V.A. Gorodtsov
- **1** T.N. Stevenson
- 6 D.G. Hurley, G.J. Keady
- B.R. Sutherland
- Yu.V. Kistovich
- A.V. Kistovich
- B. Voisin

Color schlirien images oscillation of disk

 $_{\rm Into}$

System coordinate frame for analytical analyze

Governing equations and boundary conditions

Governing equations

$$\frac{\partial \rho}{\partial t} + \mathbf{v} \nabla \rho = 0, \quad \text{div } \mathbf{v} = 0$$

$$\frac{\partial \mathbf{v}}{\partial t} + (\mathbf{v}, \nabla) \mathbf{v} = \frac{1}{\rho} \nabla p + \nu \Delta v + \rho \mathbf{g}$$

$$\frac{\partial S}{\partial t} = \kappa_S \Delta S + \frac{v_z}{\Lambda}$$

Boundary conditions

$$|\mathbf{v}|_{\Gamma} = \mathbf{u}_0 e^{-i\omega t}, \quad \kappa_S \left. \frac{\partial S}{\partial n} \right|_{\Gamma} = 0$$

$$v \to 0$$
, $\rho \to \rho_0$, $\partial P/\partial z \to \rho_0(z) q, r \to \infty$

Toroidal-poloidal decomposition

$$\mathbf{v} =
abla imes \mathbf{e}_z \Phi +
abla imes (
abla imes \mathbf{e}_z \Psi)$$

$$\left(\left(\frac{\partial}{\partial t} - D\Delta \right) \left(\frac{\partial}{\partial t} - \nu \Delta \right) \Delta + N^2 \Delta_{\perp} \right) \Phi = 0$$

$$\left(\frac{\partial}{\partial t} - \nu \Delta \right) \Psi = 0$$

$$\left(\left(\frac{\partial}{\partial t} - D\Delta \right) \left(\frac{\partial}{\partial t} - \nu \Delta \right) \Delta + N^2 \Delta_{\perp} \right) S = 0$$

where

$$\Delta_{\perp} = \partial_x^2 + \partial_y^2$$
 $\Delta = \partial_x^2 + \partial_y^2 + \partial_z^2$ $N^2 = \sqrt{\frac{g}{\Lambda}}$

Construction solution for Φ and Ψ in Fourier transform

$$\Phi = e^{-i\omega t} \sum_{j=1}^{3} \int_{-\infty}^{+\infty} A_j(k_{\xi}, k_{\eta}) E_j dk_{\xi} dk_{\eta}$$

$$S = -\frac{\rho_0}{\Lambda} e^{-i\omega t} \sum_{j=1}^{3} \int_{-\infty}^{+\infty} \frac{\left(k_{\xi} \cos \varphi - k_{j} \sin \varphi\right)^{2} + k_{\eta}^{2}}{i\omega - \kappa_{S} k^{2}} A_{j} \left(k_{\xi}, k_{\eta}\right) E_{j} dk_{\xi} dk_{\eta}$$

$$\Psi = e^{-i\omega t} \int_{-\infty}^{+\infty} B(k_{\xi}, k_{\eta}) E_4 dk_{\xi} dk_{\eta}$$

where

$$E_j = \exp(ik_j\zeta + ik_\xi\xi + ik_\eta\eta), \quad k = \sqrt{k_j^2 + k_\xi^2 + k_\eta^2}$$

Viscous stratified fluid take into diffusion

Dispersion equation

$$\left(\nu\kappa_S\tilde{k}^6 - i\omega\left(\nu + \kappa_S\right)\tilde{k}^4 - \omega^2\tilde{k}^2 + N^2k_\perp^2\right)\left(\tilde{k}^2 + \frac{\omega}{i\nu}\right) = 0$$
$$\tilde{k}^2 = 2k_\zeta^2 + k_\perp^2, \quad k_\perp^2 = k_\xi^2 + k_\eta^2$$

Viscous stratified fluid take into diffusion

Regular solution(waves)

$$k_{1} = \frac{k_{\xi} \sin \varphi \cos \varphi \pm \kappa \cos \theta}{\mu_{\theta}} \pm \delta_{N}^{2} (1 + \varepsilon) \frac{i \tan \theta \mu_{\theta}^{4}}{2\kappa \mu^{4}} + \dots$$
$$\mu = \sin^{2} \varphi - \sin^{2} \theta, \quad \mu_{\theta} = (k_{\xi} \sin \varphi \cos \varphi \pm \kappa \cos \varphi),$$
$$\varepsilon = Sc^{-1} = \frac{\kappa_{S}}{\nu}, \quad \delta_{N} = \sqrt{\frac{\nu}{N}}$$

Singular solution

$$k_{2,3} \approx \sqrt{\frac{i\omega\left(\varepsilon + 1 \pm \lambda_{\nu\kappa}\right)}{\varepsilon}}, \quad \lambda_{\nu\kappa} = \frac{2}{\sin\theta}\sqrt{(1+\varepsilon)^2 - \frac{4\varepsilon\mu}{\sin^2\theta}}$$

$$k_4 = \sqrt{\frac{2i}{\delta_{\nu}^2} - k^2}, \quad \delta_{\nu} = \delta_N \sqrt{\frac{2}{\sin \theta}}, \quad \delta_{\varphi} = \delta_N \sqrt{\frac{2\sin \theta}{|\mu|}}, \quad \delta_{\kappa} = \delta_N \sqrt{\frac{2\varepsilon}{\sin \theta}}$$

Viscous stratified fluid take into diffusion. Vetrical component of the velocity

$$v_{\zeta} \approx \int_{-\infty}^{+\infty} A_1 \left(k_{\eta}^2 \sin \varphi - k_{\xi} \beta_1 \right) E_1 dk_{\xi} dk_{\eta} -$$

$$-ie^{\frac{i-1}{\delta_{\nu}}\zeta}\sin\varphi\int_{-\infty}^{+\infty}BE_{\xi\eta}\ dk_{\xi}dk_{\eta} - \frac{i+1}{\delta_{\varphi}}e^{\frac{i-1}{\delta_{\varphi}}\zeta}\cos\varphi\int_{-\infty}^{+\infty}A_{2}k_{\xi}E_{\xi\eta}dk_{\xi}dk_{\eta} -$$

$$-\frac{1+i}{\delta_{\kappa}}\sqrt{\frac{\sin\theta}{2}}e^{-\frac{\sqrt{\sin\theta}}{\delta_{\kappa}\sqrt{2}}\zeta + \frac{i\zeta}{\delta_{\kappa}\sqrt{2}}}\cos\varphi\int_{-\infty}^{+\infty}A_{3}k_{\xi}E_{\xi\eta}dk_{\xi}dk_{\eta}$$

where

$$E_{\xi\eta} = \exp\left(ik_{\xi}\xi + ik_{\eta}\eta\right)$$

Comparison theoretical analyze and measurement. Source is disk $u_0 = 0.25 cm\ s^{-1}$

 $R = 1.75 \text{ cm}, N = 1.0 \text{ s}^{-1}, \omega = 0.57 \text{ s}^{-1}$

 $R = 4.0 \text{ cm}, N = 1.26 \text{ s}^{-1}, \omega = 1.11 \text{ s}^{-1}$

Why OpenFOAM?

Pluses:

- OpenFOAM free and open source, under the GNU general public licence (GPL).
- Support of community http://www.cfd-online.com/Forums/openfoam/, http://openfoamwiki.net/
- Support open-source Linux platform (openSUSE, Ubuntu, Fedora and etc)

Minuses:

OpenFOAM has no GUI to create grids, but can use other applications such as: GMSH (http://geuz.org/gmsh/), Salome (http://www.salome-platform.org/) or commercial mesh generators such as: Icem CFD (www.ansys.com), Gambit (www.ansys.com), pro*star Star-CD (www.cd-adapco.com)

Hardware, software and workflow process for analyze and solving

Navier - Stokes equations

```
fvVectorMatrix UEqn (
   fvm::ddt(U) + fvm::div(phi, U)
 - fvm::laplacian(nu, U) - S*g
);
solve(UEqn = = -fvc::grad(p)/dens0);
```

Equations for salinity S and density dens

```
fvScalarMatrix SEqn (
   fvm::ddt(S) + fvm::div(phi, S)
 - fvm::laplacian(DS, S)
 - U.component(vector::Z)/Lambda
);
SEqn.solve();
dens = dens0*(1.0-Z/Lambda+S);
```

Create O-grid model

To construct the mesh used a standard utility of OpenFOAM blockMesh or pyFoam (Python for OpenFOAM)

Create mesh

Create mesh using blockMesh utility:

[user@server]\$ blockMesh -case name-of-model

Boundary conditions:

Top, Botton, Left, Right: freeSteram (U, p), zeroGradient (S)

Different velocities $L_x = 1$ cm, $N = 0.9 \ s^{-1}$, $\omega = 0.54 \ s^{-1}$ Module of velocity. Source - horizontal plate. Type - piston

 $u_0 = 0.001 \ m \ s^{-1}$

 $u_0 = 0.0025 \ m \ s^{-1}$

$$u_0 = 0.01 \ m \ s^{-1}$$

Different velocities $L_x = 1$ cm, $N = 0.9 \ s^{-1}$, $\omega = 0.54 \ s^{-1}$ Module of velocity. Source - horizontal plate. Type - friction

Different viscosity $L_x = 1$ cm, $N = 0.9 \ s^{-1}$, $\omega = 0.54 \ s^{-1}$ Module of velocity. Source - horizontal plate. Type - piston

$$u$$
 - u -

Different viscosity $L_x = 1$ cm, $N = 0.9 \ s^{-1}$, $\omega = 0.54 \ s^{-1}$

Different stratification $L_x = 1$ cm, $\nu = 10^{-2}$ cm² s⁻¹, $\omega = 0.54$ s⁻¹ Module of velocity. Source - horizontal plate. Type - piston

 $N = 2.8 s^{-1}$

 $N=1.46\ s^{-1}$

Different stratification $L_x = 1$ cm, $\nu = 10^{-2}$ cm² s⁻¹, $\omega = 0.54$ s⁻¹ Module of velocity. Source - horizontal plate. Type - friction

 $N = 2.8 \ s^{-1}$

$$N = 2.8 \ s^{-1}$$

$$N = 1.46 \ s^{-1}$$

 $N = 0.58 \ s^{-1}$

Conclusion

- In the general case, in a viscous stratified fluid there are two types of solutions: regular (waves) and three type singular solutions. Two of them don't have analogues in homogeneous fluid Their properties are defined viscosity, stratification, diffusion and the geometry of the problem;
- For a complete description of the flow of fluid you must consider all parameters (viscosity, stratification diffusion);
- Create solver for calculation of the internal gravity waves in a continuesly stratified fluid;
- Ocalculations case horizontal plate.