In this note we catalog the subalgebra structure for the finite cluster algebras $\subseteq E_6$. These algebras are: $A_2, A_3, A_4, D_4, A_5, D_5, E_6$.

 $\underline{A_2}$ clusters: 5 a-coordinates: 5 x-coordinates: 10

 A_3 clusters: 14 a-coordinates: 9 x-coordinates: 30

Type	Sub-polytopes	Distinct Subalgebras
A_2	6	6
$A_1 \times A_1$	3	3

 $\underline{A_4}$ clusters: 42 a-coordinates: 14 x-coordinates: 70

Type	Sub-polytopes	Distinct Subalgebras
A_2	28	21
$A_1 \times A_1$	28	28
A_3	7	7
$A_2 \times A_1$	7	7
$A_1 \times A_1 \times A_1$	0	0

 $\underline{D_4}$ clusters: 50 a-coordinates: 16 x-coordinates: 104

Type	Sub-polytopes	Distinct Subalgebras
A_2	36	36
$A_1 \times A_1$	30	18
A_3	12	12
$A_2 \times A_1$	0	0
$A_1 \times A_1 \times A_1$	4	4

 $\underline{A_5}$ clusters: 132 a-coordinates: 20 x-coordinates: 140

Type	Sub-polytopes	Distinct Subalgebras
A_2	120	56
$A_1 \times A_1$	180	144
A_3	36	28
$A_2 \times A_1$	72	72
$A_1 \times A_1 \times A_1$	12	12
D_4	0	0
A_4	8	8
$A_3 \times A_1$	8	8
$A_2 \times A_2$	4	4
$A_2 \times A_1 \times A_1$	0	0
$A_1 \times A_1 \times A_1 \times A_1$	0	0

 $\underline{D_5}$ clusters: 182 a-coordinates: 25 x-coordinates: 260

Type	Sub-polytopes	Distinct Subalgebras
A_2	180	125
$A_1 \times A_1$	230	145
A_3	70	65
$A_2 \times A_1$	60	50
$A_1 \times A_1 \times A_1$	30	30
D_4	5	5
A_4	10	10
$A_3 \times A_1$	5	5
$A_2 \times A_2$	0	0
$A_2 \times A_1 \times A_1$	5	5
$A_1 \times A_1 \times A_1 \times A_1$	0	0

 $\underline{E_6}$ clusters: 833 a-coordinates: 42 x-coordinates: 770

Type	Sub-polytopes	Distinct Subalgebras
A_2	1071	504
$A_1 \times A_1$	1785	833
A_3	476	364
$A_2 \times A_1$	714	490
$A_1 \times A_1 \times A_1$	357	357
D_4	35	35
A_4	112	98
$A_3 \times A_1$	112	112
$A_2 \times A_2$	21	14
$A_2 \times A_1 \times A_1$	119	119
$A_1 \times A_1 \times A_1 \times A_1$	0	0
D_5	14	14
A_5	7	7
$D_4 \times A_1$	0	0
$A_4 \times A_1$	14	14
$A_3 \times A_2$	0	0
$A_3 \times A_1 \times A_1$	0	0
$A_2 \times A_2 \times A_1$	7	7
$A_2 \times A_1 \times A_1 \times A_1$	0	0
$A_1 \times A_1 \times A_1 \times A_1 \times A_1$	0	0

How to count co-dimension 1 & 2 subalgebras

This algorithm comes from Hugh Thomas.

Our goal is to count the number of cluster algebras of type Y of rank n-1 in a finite type cluster algebra of type X of rank n.

Let N be the number of cluster a-coordinates in the cluster algebra of type X.

Let n be the rank of cluster algebra of type X.

Let Z be the number of ways to remove a node from a Dynkin diagram of type X to obtain one of type Y.

The number of cluster algebras of type Y is then NZ/n.

As an example, let's count the number of A_4 's in A_5 :

N = # of cluster a-coordinates in $A_5 = 20$

 $n = \text{rank of } A_5 = 5$

Z=# of ways to remove a node from A_5 and get an $A_4=2$

 $20 \times 2/5 = 8 \Rightarrow$ there are 8 A_4 's in A_5 .