Probability Theory

Random experiment: the outcome of the experiment is not determined before performing the experiment.

Outcome: An outcome of an experiment is any possible observation of that experiment.

Sample Space: The sample space of an experiment is the finest-grain, mutually exclusive, collectively exhaustive set of all possible outcomes. (Ω)

Event: An event is a set of outcomes of an experiment. Subset of Ω .

Event Space: An event space is a collectively exhaustive, mutually exclusive set of events.

Axioms of Probability

Axiom 1: For any event A, $P[A] \ge 0$

Axiom 2: P[S] = 1

Axiom 3: For any countable collection A_1, A_2, \ldots of mutually exclusive events

$$P[A_1 \cup A_2 \cup \dots] = P[A_1] + P[A_2] + \dots$$

Theorem

For an experiment with sample Space $S = \{s_1, \ldots, s_n\}$ in which each outcome s_i is equally likely

$$P[s_i] = 1/n \quad 1 \le i \le n$$

Proof using axiom 2.

Theorem

The probability measure $P[\cdot]$ satisfies

(a)
$$P[\phi] = 0$$

(b)
$$P[A^c] = 1 - P[A]$$

(c) For any A and B (not necessarily disjoint),

$$P[A \cup B] = P[A] + P[B] - P[A \cap B]$$

(d) If $A \subset B$, then $P[A] \leq P[B]$

Conditional Probability

The conditional probability of the event A given the occurrence of the event B is

$$P[A|B] = \frac{P[AB]}{P[B]}$$

Law of Total Probability

For an event space $\{B_1, B_2, \dots, B_m\}$ with $P[B_i] > 0$ for all i,

$$P[A] = \sum_{i=1}^{m} P[A|B_i] P[B_i]$$

Bayes' Theorem

In many situations, we have advance information about P[A|B] and need to calculate P[B|A]. To do so we have the following formula: proved using Conditional Probability.

$$P[B|A] = \frac{P[A|B] \ P[B]}{P[A]}$$

Independence

Events A and B are independent if and only if

$$P[AB] = P[A] P[B]$$

When events A and B have nonzero probabilities, the following formulas are equivalent to the definition of independent events:

$$P[A|B] = P[A], \quad P[B|A] = P[B]$$

3 Independent Events

 A_1, A_2 , and A_3 are **independent** if and only if

- (a) A_1 and A_2 are independent,
- (b) A_2 and A_3 are independent,
- (c) A_1 and A_3 are independent,

(d) $P[A_1 \cap A_2 \cap A_3] = P[A_1]P[A_2]P[A_3].$

More than Two Independent Events

If $n \geq 3$, the sets A_1, A_2, \ldots, A_n are independent if and only if

- (a) every set on n-1 sets taken from A_1, A_2, \ldots, A_n is independent,
- (b) $P[A_1 \cap A_2 \cap \cdots \cap A_3] = P[A_1]P[A_2] \dots P[A_n]$

Fundamental Principle of Counting

If subexperiment A has n possible outcomes, and subexperiment B has k possible outcomes, then there are nk possible outcomes when you perform both subexperiments.

Theorem

The number of k-permutations of n distinguishable objects is

$$(n)_k = \frac{n!}{(n-k)!}$$

Sample without Replacement

Theorem

The number of ways to choose k objects out of n distinguishable objects is

$$\binom{n}{k} = \binom{n}{n-k}$$

n choose k

For an integer ≥ 0 , we define

$$\binom{n}{k} = \begin{cases} \frac{n!}{k!(n-k)!} & k = 0, 1, \dots, n \\ 0 & \text{otherwise.} \end{cases}$$

Sample with Replacement

Theorem

Given m distinguishable objects, there are m^n ways to choose with replacement an ordered sample of n objects.

Permutations:

Definition: An ordered sequence of n distinguishable objects is called an n-permutation. **Theorem:** The number of n-permutations is n-factorial, that is $n! = n \cdot (n-1) \cdots 2 \cdot 1$ 0! = 1

Identical Elements

Let h red, k blue and m white elements (h + k + m = n). Denote by X the number of permutations of these n elements. Then

$$Xh!k!m! = n!$$

So,

$$X = \frac{n!}{h!k!m!}$$

Ordered Selections

Without Replacement

Theorem: The number of ordered selections without replacement is

$$n \cdot (n-1) \cdot (n-2) \cdots (n-k+1) = \frac{n!}{(n-k)!}$$

With Replacement

Theorem: The number of ordered selections with replacement is

$$n \cdot n \cdots n \cdot n = n^k$$

Combinations

Order is not important. Theorem: The number of ways to choose k objects out of n distinguishable objects is

$$\binom{n}{k}$$
, where $\binom{n}{k} = \frac{n!}{k!(n-k)!}$

With Replacement

Theorem: The number of ways to choose k objects out of n distinguishable objects when we replace the chosen elements is

$$\binom{n+k-1}{k}$$

4

Binomial Theorem

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k = \binom{n}{0} a^n b^0 + \binom{n}{1} a^{n-1} b^1 + \dots + \binom{n}{n} a^0 b^n.$$

The binomial coefficients are contained in the Pascal triangle. **Remark:** The rule of the Pascal triangle is

$$\binom{n+1}{k+1} = \binom{n}{k+1} + \binom{n}{k}$$

Number of Subsets

Theorem: The number of subsets of an n-element set is 2^n .