北京交通大學

基于视觉的激光雷达数据增强 程序使用说明书

小组成员: 宋绪杰 戴孙浩 詹书涛

组长学号: 17252048

指导老师: 林春雨

学院: 计算机与信息技术学院

日期: 2020年05月

目录

- ,	算法流程	.3
二、	运行环境	.3
三、	文件组织	.4
1.	工程文件组织	.4
2.	数据集文件组织	.4
四、	使用方法	.5
1.	程序编译	.5
2.	程序运行	.5
五、	运行效果	.6
1.	地面分割效果	.6
2.	点云稠密化效果	.7

一、 算法流程

本程序的总体算法流程图如 Fig. 1 所示,主要分为四部分:

Step 1. 由双目 RGB 图像生成深度图像,根据深度信息估计每个像素点在 LiDAR 坐标系下的三维坐标;

Step 2. 使用本文提出的循环 RANSAC 算法进行点云的地面分割,并提取非地面点云:

Step 3. 将步骤 2 中提取的非地面点云插入 KDTree,对步骤 1 中的每个大致三维坐标点在 KDTree 中搜索其若干近邻点,利用这些近邻点进行曲面重建;

Step 4. 根据曲面重建结果和 LiDAR 与相机的标定参数,由计算几何方法导出大致坐标点的精确坐标,并将这些精确坐标点与原始 LiDAR 点云进行融合,得到稠密化点云。

Figure 1 点云稠密化算法流程

具体的算法原理见论文。

二、运行环境

系统: Ubuntu 16.04.6 LTS (Xenial)

内核: Linux version 4.15.0-generic

环境: ROS-Kinetic, PCL 1.6, gcc 5.5, g++ 5.5, cmake 3.13.2

三、文件组织

1. 工程文件组织

文件(夹)名	描述
.vscode	vscode 临时文件
build	cmake 编译文件夹
devel	cmake 编译文件夹
pic	图片文件夹
src	源代码文件夹
雷达参数	雷达参数文件夹
.catkin_workspa	cmake 临时文件
instruction	使用说明

Figure 2 文件组织结构

本程序的文件组织结构如 Fig. 2 所示,每个文件(夹)的功能描述如 Table 1 所示。

2. 数据集文件组织

Table 2 数据集文件组织

文件(夹)名	内容
KITTI_input	数据集文件夹
—calib	标定参数文件夹
<pre>-velodyne</pre>	LiDAR 点云文件夹
-image2	左目 RGB 图像文件夹
-image3	右目 RGB 图像文件夹
-depth	深度图像文件夹
KITTI_output	输出结果文件夹
_dense_velodyne	稠密化 LiDAR 点云文件夹

本程序使用 KITTI 数据集作为输入进行测试,数据集组织结构如 Table 2 中"KITTI_input"所示。

输出结果为稠密化的 LiDAR 点云,保存在"dense_velodyne"文件夹下。

四、使用方法

1. 程序编译

首先在系统中安装依赖,环境如"二、运行环境"所示。

然后将工程文件夹移动至/home/EnhancedLiDAR, 执行以下命令:

- \$ cd /home/EnhancedLiDAR
- \$ catkin make

2. 程序运行

本程序有两种运行模式,分别为:

- ▶ 模式 1: 对整个数据集进行点云稠密化
- ▶ 模式 2: 输出某一帧的可视化运行结果
- 对于模式 1, 执行以下命令:
 - \$ cd /home/EnhancedLiDAR
 - \$ source devel/setup.bash
 - \$ roslaunch EnhancedLiDAR EnhancedLiDAR.launch

my_args:="file 0"

- 对于模式 2, 执行以下命令:
 - \$ cd /home/EnhancedLiDAR
 - \$ source devel/setup.bash
 - \$ roslaunch EnhancedLiDAR EnhancedLiDAR.launch
 - \$ rosrun rviz rviz

然后修改 Fixed Frame 为 "velodyne", 并在 RViz 中添加想要可视化的点云。运行结果如 Fig. 3 所示。

Figure 3 模式 2 运行示例

五、运行效果

1. 地面分割效果

Figure 4 地面分割效果

Figure 5 地面分割效果对比

上述图片 Fig. 4 和 Fig. 5 提供了地面分割步骤的结果示意图,详细信息可见论文。

2. 点云稠密化效果

点云稠密化效果如 Fig. 6 所示,其中蓝色的点为稠密化出来的点。可以看到,稠密化过后点云中的物体在视觉上具有更加完整的形状和轮廓,物体特征更加明显。

Figure 6 点云稠密化效果

除此之外,本数据增强方法还在 KITTI 数据集上提升了 3D 目标 检测精度,AVOD 的 AP_{3D}-Easy 提升了 8.25%,AVOD-FPN 的 AP_{BEV}-Hard 提升了 7.14%。详细情况请参见本项目论文。