

$$p_1 = 0$$
 $p_3 = -2$
 $p_2 = -1$ $p_4 = -4$

Z = -3

$$\frac{\Theta_{A} = (2 K + 1) \cdot 180^{\circ}}{41 - 1}$$
for
$$|L = 0| \Rightarrow |80^{\circ}/3 = 60^{\circ}$$

$$|L = 1| \Rightarrow |80^{\circ}/3 = |80^{\circ}|$$

Let's look at a guick example of using a by-hand sketch to evaluate a controller Let's say you want to stabilize this system. What gain can ->none! So you know your controller has to alter the pole-zero configuration So let's add a zero and redraw PD, roller (S+1)(s-2) There are values of K for stability

Let's use the RL to find the desired value K if we are targeting a 8% 05.

DDraw the RL

Breakaway is et -2

$$3 = -\frac{\ln(.08)}{\sqrt{\Pi^2 + \ln^2(.08)}} = .63$$

Recall that
$$\Theta = \cos^{-1}(\xi)$$

so tan (0) = In at desired location

Re and we know Re = -2

Retar (0) = Im = (-2)tan(50.95) = -2.5

desired pole loc is -z ± 2.55

$$OLTF = \frac{3K}{(S+1)(S+3)}$$

find poles of oner. ean

$$-\frac{4}{2} + \sqrt{\frac{4^{2} - 4(1)(3+3k)}{2}} = -\frac{4}{2} + \sqrt{\frac{16 - 12 - 12k}{2}}$$

set equal to desired poles & solve for k

$$-2 \pm 2.5 j = -2 \pm \frac{1}{2} + \frac{1}{4} + 12k$$

focus on Im part

$$2.5j = \frac{1}{2}\sqrt{4.12}K$$

We should set our K to 2.4 to achive 8% OS on this system

Now let's talk about the power	of making	the root
locus in mattal and how to use -	these tools	10
locus in mattalo and how to use the design a desired transient resp	onse	
Let's sketch the root locus, then u	se Matlab to	generate
Let's sketch the root locus, then us it. In Mathab we'll find some critical	points?	J
8(s) (S K (52 - 45 +20)	C(s)	
K (5 ² - 4s +20) (S + 2) (S + 4)	-	
T		
First, let's practice by making a the root locus wilt look like:	sketch of	what
the root locus will look like:		
01 P' = -2 -4		
OLP: 51,2 = -2, -4	1,00	
OLZ: S1,2 = 2 ± 4i	4	
Some points we may wish to know:		
wish to know:	1	σ
i) where is the breakaway? 4 -2	2	
2) What is the gain when the		
locus crosses the Im axis?		
3) What is the gain to achive	-4	
a damping ratio of .45?		
4) what is the range of K for		
4) what is the range of K for which the system is stable?		
use rootloous_example1.m		