2024年浙江省中考数学试卷1

一、选择题(每题3分)2

1. 以下四个城市中某天中午 12 时气温最低的城市是(

北京	济南	太原	郑州	4
0°C	- 1°C	- 2°C	3 °C	

A. 北京

B. 济南

C. 太原

D. 郑州 5

2.5个相同正方体搭成的几何体主视图为()6

3. 2024年浙江经济一季度 GDP 为 201370000 万元,其中 201370000 用科学记数法表示为(

A. 20.137×10^9

B. 0.20137×10^8 9

C. 2.0137×10^9

D. 2.0137×10^8

4. 下列式子运算正确的是()10

- A. $x^3 + x^2 = x^5$
- B. $x^3 \cdot x^2 = x^6$
- C. $(x^3)^2 = x^9$ D. $x^6 \div x^2 = x^4$ 11

5. 菜鸡班有 5 位学生参加志愿服务次数为: 7,7,8,10,13.则这 5 位学生志愿服务次数的中位数为(12)

- A. 7
- B. 8
- C. 9
- D. 10 13

6. 如图,在平面直角坐标系中, $\triangle ABC$ 与 $\triangle A'B'C'$ 是位似图形,位似中心为点 O. 若点 A (– 3, 1) 的对 ¹⁴ 应点为 A' (-6,2),则点 B (-2,4)的对应点 B'的坐标为 ()

- (-4, 8)

- B. (8, -4) C. (-8, 4) D. (4, -8) 16

3(2-x)> -6 的解集在数轴上表示为(

8. 如图,正方形 ABCD 由四个全等的直角三角形($\triangle ABE$, $\triangle BCF$, $\triangle CDG$, $\triangle DAH$)和中间一个小正 3方形 EFGH 组成,连接 DE. 若 AE=4, BE=3,则 DE=()

- A. 5
- B. $2\sqrt{6}$ C. $\sqrt{17}$ D. 4 ⁵

9. 反比例函数 $y=\frac{4}{2}$ 的图象上有 $P(t, y_1)$, $Q(t+4, y_2)$ 两点.下列正确的选项是(

- A. 当 t < 4 时, y₂ < y₁ < 0
- B. 当 4<t<0时, y₂<y₁<0 7
- C. 当 4<t<0 时,0< y_1 < y_2 D. 当 t>0 时,0< y_1 < y_2

10. 如图,在 \Box ABCD中,AC,BD相交于点 O,AC=2,BD=2√3. 过点 A作 AE⊥BC 的垂线交 BC 于点 8 E,记 BE 长为 x, BC 长为 y. 当 x, y 的值发生变化时,下列代数式的值不变的是(

A. x+y

B.
$$x-y$$

D.
$$x^2+y^2$$
 1

二、填空题(每题3分)2

- 11. 因式分解: $a^2 7a = _____.$ 3
- 12. $\pm \frac{2}{x-1} = 1$, y = 1.
- 13. 如图,AB 是 $\odot O$ 的直径,AC 与 $\odot O$ 相切,A 为切点,连接 BC.已知 $\angle ACB$ = 50°,则 $\angle B$ 的度数为 5

- 14. 有8张卡片,上面分别写着数1,2,3,4,5,6,7,8. 从中随机抽取1张,该卡片上的数是4的7整数倍的概率是______.
- 15. 如图,D,E 分别是 $\triangle ABC$ 边 AB,AC 的中点,连接 BE,DE.若 $\angle AED$ = $\angle BEC$,DE=2,则 BE 的 8 长为 ______.

16. 如图,在菱形 ABCD 中,对角线 AC,BD 相交于点 O, $\frac{AC}{BD}$ = $\frac{5}{3}$. 线段 AB 与 A'B' 关于过点 O 的直线 I 对称,点 B 的对应点 B' 在线段 OC 上,A'B' 交 CD 于点 E,则 $\triangle B'$ CE 与四边形 OB' ED 的面积比为

三、解答题(17-21 每题 8 分, 22、23 每题 10 分, 24 题 12 分) 2

- 17. 计算: $(\frac{1}{4})^{-1} \sqrt[3]{8} + |-5|$.
- 18. 解方程组: $\begin{cases} 2x-y=5 \\ 4x+3y=-10 \end{cases}$
- 19. 如图,在 $\triangle ABC$ 中, $AD\perp BC$,AE 是 BC 边上的中线,AB=10,AD=6, $\tan \angle ACB=1$. 5
 - (1) 求 BC 的长;
 - (2) 求 sin LDAE 的值.

20. 某校开展科学活动. 为了解学生对活动项目的喜爱情况,随机抽取部分学生进行问卷调查. 调查问 8 卷和统计结果描述如下:

科学活动喜爱项目调查问卷

以下问题均为单选题,请根据实际情况填写.

问题 1: 在以下四类科学"嘉年华"项目中,你最喜

爱的是 ____

- (A) 科普讲座 10
- (B) 科幻电影
- (C) AI 应用
- (D) 科学魔术

如果问题 1 选择 C. 请继续回答问题 2. 11

问题 2:你更关注的 AI 应用是 _____

(E) 辅助学习 ¹(F) 虚拟体验(G) 智能生活(H) 其他

问题1答题情况条形统计图 2

根据以上信息. 解答下列问题: 6

- (1) 本次调查中最喜爱 "AI应用"的学生中更关注"辅助学习"有多少人?
- (2) 菜鸡学校共有1200名学生,根据统计信息,估计该校最喜爱"科普讲座"的学生人数.

21. 尺规作图问题:8

如图 1,点 E 是 $\Box ABCD$ 边 AD 上一点(不包含 A,D),连接 CE.用尺规作 $AF \parallel CE$,F 是边 BC 上一 9 点.

小明:如图 2.以 C 为圆心,AE 长为半径作弧,交 BC 于点 F,连接 AF,则 $AF \parallel CE$. 10

小丽:以点 A 为圆心,CE 长为半径作弧,交 BC 于点 F,连接 AF,则 $AF \parallel CE$. 11

小明:小丽,你的作法有问题.12

小丽: 哦…我明白了! 13

(1) 证明AF ||CE;(2) 指出小丽作法中存在的问题.

8

22. 小明和小丽在跑步机上慢跑锻炼. 小明先跑,10 分钟后小丽才开始跑,小明跑步时中间休息了两次. 5 跑步机上 C 档比 B 档快 40 米/分、B 档比 A 档快 40 米/分. 小明与小丽的跑步相关信息如表所示,跑步累计里程 s (米)与小明跑步时间 t (分)的函数关系如图所示.

	时间	里程分段	速度档	跑步里程	
小明	16: 00~	不分段	A 档	4000米	
	16: 50				
小丽	16: 10~	第一段	B档	1800米	
	16: 50	第一次休息			
		第二段	B档	1200米	
		第二次休息			
		第三段	C档	1600米	
小明 ——					
4600					

- (1) 求 A, B, C 各档速度(单位: 米/分);
- (2) 求小丽两次休息时间的总和(单位:分);
- (3) 小丽第二次休息后,在a分钟时两人跑步累计里程相等,求a的值.
- 23. 已知二次函数 $y=x^2+bx+c$ (b, c 为常数) 的图象经过点 A (-2, 5) ,对称轴为直线 $x=-\frac{1}{2}$.
 - (1) 求二次函数的表达式;

(1) 若点 B (1, 7) 向上平移 2 个单位长度,向左平移 m (m>0) 个单位长度后,恰好落在 v=

10

x^2+bx+c 的图象上,求 m 的值; 1

- (3) 当 2≤a≤n 时,二次函数 y= x^2 +bx+c 的最大值与最小值的差为 $\frac{9}{4}$,求 n 的取值范围. $\frac{2}{4}$
- 24. 如图,在圆内接四边形 ABCD 中,AD < AC, $\angle ADC < \angle BAD$,延长 AD 至点 E,使 AE = AC,延长 BA 至点 E,连结 EF,使 $\angle AFE = \angle ADC$.
 - (1) 若∠AFE=60°, CD为直径,求∠ABD的度数. 4
 - (2) 求证: ① *EF* || *BC*;
 - ②EF = BD.

