

32 位微控制器

HC32F460 系列的片上温度传感器 OTS

适用对象

F系列	HC32F460
-----	----------

目 录

1	摘要	3
	简介	
3	定标实验	4
	3.1 实验条件	
	3.2 实验步骤	
4	应用	6
5	总结	6
6	版本信息 & 联系方式	7

1 摘要

本应用笔记主要介绍 HC32F460 系列 MCU 的片上温度传感器 OTS 的特点、使用方法及注意事项。

2 简介

HC32F460 系列 MCU 的片上温度传感器 OTS,可实时获取芯片内部的温度,以支持系统的可靠性设计。OTS 不需要 ADC 的参与,使用时只需直接读取寄存器,算术运算后即可得到温度值,不使用的时候可关闭以减少系统功耗,其功能框图如图 2-1。

图 2-1 OTS 功能框图

应用笔记 Page 3 of 7

3 定标实验

要想获得准确的温度值,有两个参数非常重要,一个是温度斜率 K,一个是温度偏移量 M。这两个参数需要用户通过定标实验来得到,然后保存起来,供后续使用。参数 K 和 M 不具有通用性,每颗芯片都需要做定标实验; OTS 可选择外部晶振 XTAL 或内部高速晶振 HRC,两种晶振测得的 K 和 M 也不具有通用性。

3.1 实验条件

定标实验需要一个高低温箱,一个数字温度计(用来获取高低温箱内的准确温度值,如果高低温箱的温度足够精准,则不需要),串口调试工具(用来观察实验数据)。推荐用户在 25℃ 和 105℃这两个温度值上做定标实验。

3.2 实验步骤

定标实验例程 ots_05_scaling_experiment 中设置有定标实验的触发方式,例程中用的是按键 (引脚 PC1)按下并释放作为触发方式,之所以设置触发方式,是为了让实验是可控制的。用户可根据自己的实际需求,修改触发方式。具体实验步骤如下。

- 1. 修改好触发方式后,重新编译工程,并下载到目标板;
- 2. 将目标板和数字温度计放入高低温箱,设置高低温箱温度为25℃,并启动高低温箱;
- 3. 待高低温箱温度稳定在25℃约5分钟后,触发定标实验运行;
- 4. 通过串口调试助手可获得一个参数 A,记为 A1,并记录当前高低温箱的实际温度为 T1;
- 5. 将高低温箱温度设置为 105℃并运行;
- 6. 待高低温箱温度稳定在105℃约5分钟后,触发定标实验运行;
- 7. 通过串口调试助手可获得一个参数 A,记为 A2,并记录当前高低温箱的实际温度为 T2;
- 8. 通过下面两个公式可得 K 和 M:

$$K = (T2 - T1) / (A2 - A1);$$

$$M = T1 - K \times A1 = T2 - K \times A2$$
:

应用笔记 Page 4 of 7

本实验例程会输出 XTAL 和 HRC 对应的参数 A,用户可根据实际需求计算对应的 K 和 M。图 3-1 是一组可能的实验数据:

4	Α	В	С	D	E	F	G
1		T1	T2	A1	A2	K	M
2	HRC16M	24.6	105.7	-0.001105	0.025905	3002.591633	27.91786375
3	HRC20M	24.6	105.7	-0.001108	0.025878	3005.261988	27.92983028
4	XTAL	24.6	105.7	-0.000004	0.000106	737272.7273	27.54909091

图 3-1 一组可能的定标实验数据

9. 修改 hc32f46x_ots.c 中 K 和 M 的值(见程序清单 3-1,HRC20M 和 HRC16M 的 K 和 M 通用),利用例程 ots_01_base 便可验证参数的准确性;

#define OTS_XTAL_K	737272.73f	
#define OTS_XTAL_M	27.55f	
#define OTS_HRC_K	3002.59f	
#define OTS_HRC_M	27.92f	

程序清单 3-1 OTS 参数设置

- 10. 用户可将 K 和 M 保存至 Flash, 以备后续使用;
- 11. 定标实验结束。

应用笔记 Page 5 of 7

4 应用

OTS 的应用相对简单,这里简单介绍一下 OTS 几个例程:

- 1. 例程 ots_01_base 介绍了 OTS 的配置和基本用法;
- 2. 例程 ots_02_interrupt 介绍了 OTS 中断应用的配置和使用方法;
- 3. 例程 ots 03 aos base 实现了用内部事件触发 OTS 以获取温度值的配置和基本用法;
- 4. 例程 ots_04_aos_interrupt,实现了利用 Timer0 每秒产生一个事件 EVT_TMR02_GCMA,来触发 OTS,以达到每秒获取一次温度值的目的。

5 总结

本应用笔记主要介绍了 HC32F460 系列 MCU 的片上温度传感器 OTS 的定标实验,给出了一组可能的定标实验数据及其验证方法。在实际项目中,用户需要对每颗芯片做定标实验,以获取更加准确的温度值。

应用笔记 Page 6 of 7

6 版本信息 & 联系方式

日期	版本	修改记录
2019/3/13	Rev1.0	初版发布。
2020/8/28	Rev1.1	更新支持型号。
2022/7/15	Rev1.2	公司 Logo 更新。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@xhsc.com.cn

网址: http://www.xhsc.com.cn

通信地址:上海市浦东新区中科路 1867号 A座 10层

邮编: 201203

应用笔记 AN0100003C