NewTH4-20 [横浜国立大]

極板の面積 S $[m^2]$,間隔 d [m] の平行板コンデンサーがある. 図 1 のように,コンデンサーにはスイッチを通して起電力 V_0 [V] の電池がつながれている.ここで,抵抗 R $[\Omega]$ は電池の内部抵抗であり,導線の抵抗は無視する.コンデンサーの負側の極板は接地されている.スイッチを閉じてコンデンサーを充電し,十分に

時間がたった後スイッチを開く.このとき,コンデンサーに蓄えられた電荷を Q_0 [C] とする.極板の端の影響は無視できるものとする.以下の文章の空欄を埋めよ.空欄 オ には適切な語を記入せよ.空欄 サ と セ には,問題文の最後にある選択肢①~③から正しいものを選び記号で答えよ.その他の空欄については,適切な数式を本文中の記号 Q_0 , S, d, ε_0 , ε_r および数字を使って答えよ.また,(3) と (4) に従ってグラフを描け.

- (1) 極板間は真空であるとし,真空の誘電率を ε_0 [F/m] とする.極板間の電気力線の本数はコンデンサーの電荷 Q_0 に比例し,極板間の電界の強さE [V/m] は単位面積あたりの電気力線の本数に等しいから,電界の強さは,E= P Q_0 である.したがって,充電電圧 V_0 とコンデンサーの電荷 Q_0 との関係は $Q_0=$ Q_0 であり,この比例定数がコンデンサーの電気容量 Q_0 Q_0
- (2) 極板間にはたらく力 F [N] を求めたい. 極板間隔 d における静電エネルギーは $U_0 = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$ d と表される. 極板をゆっくりと Δd [m] だけ引き離すときの静電エネルギーの変化分 ΔU [J] は外から加えた仕事 $F\Delta d$ に等しい. これより, $F = \begin{bmatrix} & & \\ & & \\ & & \end{bmatrix}$ $Q_0 E$ となることがわかる.
- (3) スイッチを開いた状態で、図 2 のようにコンデンサーの中央に、極板と同じ大きさで厚みが $\frac{d}{2}$ の電荷をもたない導体を挿入した。このときのコンデンサーの電気容量は導体挿入前の ケ 倍となる。図 2 に示すように、正側の極板上を座標の原点として負側の極板に向けて y 軸をとるとき、 $0 \le y \le d$ における電位変化の様子を V-y グラフで描け。また、コンデンサーに蓄えられた静電エネルギーは導体挿入前の コ 倍となるから、導体は挿入時、 サ ことがわかる。
- (4) (3) と同様に、スイッチを開いた状態で、コンデンサーの中央に、極板と同じ大きさで厚みが $\frac{d}{2}$ 、比誘電率が ε_r (> 1) の帯電していない誘電体を挿入した。このときのコンデンサーの電気容量は、誘電体挿入前の シ 倍となる。 $\varepsilon_r=2$ の場合について、 $0 \le y \le d$ における電位変化の様子を V-y グラフで描け。また、この場合にコンデンサーに蓄えられた静電エネルギーは誘電体挿入前の ス 倍となるから、誘電体挿入時、 セ ことがわかる。

- ① コンデンサーに引き込まれる力を受ける
- ② コンデンサーから押し出される力を受ける
- ③ コンデンサーから力を受けない