Calculus Exams 3

luca.ambrogioni

October 2020

1 Question 1: 2pt

Compute the limit of the following sequence

$$s_n = \frac{3n^4 + \sin(n)}{2n^4 + 5n^2 + 2} \tag{1}$$

2 Question 1: 1pt

Show that these two functions are asymptotic to each other for $x \to 0$.

$$f(x) = 1 - \cos(x) \tag{2}$$

$$g(x) = x(e^x - 1)/2 (3)$$

3 Question 3: 1pt

Write a Python script to approximate the following derivative at $x_0 = 1$ with dx equal to 0.1.

$$\frac{\mathrm{d}\left(xe^{x^2}\right)}{\mathrm{d}x}\tag{4}$$

4 Question 4: 2pt

Compute derivative of the following function

$$f(x) = \phi(x^2 + \sin(\omega(x)^2)) \tag{5}$$

where $\omega(x)$ and $\phi(x)$ are arbitrary functions and ϕ_0 is a real number.

5 Question 4: 2pt

Compute the following integral:

$$\int_0^1 e^{2x+e^x} \mathrm{d}x \tag{6}$$

Hint: You need to use both substitution and integration by parts.

6 Question 5: 2pt

Compute the integral

$$\int_0^1 x \mathrm{d}x$$

using only the definition of integral.

Hint: you need to compute the limit of a sequence of approximations with rectangles.