|--|

Polarizzazione della luce

NOTA DI SICUREZZA E PREVENZIONE: in questa esperienza si utilizzano (anche) sorgenti laser a diodo nel visibile (lunghezza d'onda ~650 nm) e potenza inferiore a 1 mW. Queste sorgenti appartengono alla classe 2 di sicurezza laser. Si raccomanda di seguire le prescrizioni di sicurezza accresciute della Classe 3A:

- Non osservare direttamente o tramite strumenti ottici il fascio laser;
- Non indirizzare il fascio laser verso il viso;
- Non stazionare con il viso in prossimità del fascio laser.

Inoltre è buona norma evitare riflessi indiretti dovuti a intercettazione del fascio da parte di superfici riflettenti, per cui si raccomanda di operare in assenza di oggetti quali orologi, bracciali, anelli, collanine, piercing, etc., e di segnalare ogni potenziale situazione di rischio.

NOTA ORGANIZZATIVA: l'esperienza è divisa in varie parti che richiedono apparecchiature montate su diversi banchi e in due stanze diverse (~10 repliche di parte 1, 2 repliche ciascuna di parti 2 e 3). Dunque è necessario organizzarsi in modo da sincronizzare la migrazione da un banco all'altro.

Parte 1: polaroid

Lo scopo di questa parte dell'esperienza è di verificare il comportamento dei filtri polarizzatori lineari ("polaroid") in presenza della luce polarizzata linearmente prodotta da un laser a diodo. Avete a disposizione un rivelatore costituito da un fotodiodo al silicio che opera in modalità "fotovoltaica"; esso va collegato ad un multimetro digitale, da utilizzare come microamperometro, usato per leggere la fotocorrente I_{ph} .

1.	. <u>In assenza di filtri polaroid</u> , allineate sul banco ot	ttico il laser a diodo con il rivelatore
	(fotodiodo) agendo sull'altezza e orientazione del	laser e del rivelatore e sulla slitta di
	traslazione del laser, in modo da massimizzare il segr	nale di fotocorrente.

P ~	[]
1		

Prevedete tra laser e rivelatore il montaggio di un filtro montato su goniometro, che sarà utilizzato poi. Affinché il resto dell'esperienza riesca, è necessario avere $I_{ph} > 100 \, \mu\text{A!}$ Ad allineamento ultimato, stimate la potenza P raccolta dal rivelatore supponendo la fotocorrente $I_{ph} = k P$, dove il fattore di conversione è supposto $k = 0.4 \, \text{A/W}$ (valore nominale).

2. Sapendo che l'area sensibile del forodiodo è $A=7.5 \text{ mm}^2$ (supposta uniformemente interessata dalla radiazione), sulla base della stima di P e delle conoscenze che <u>dovreste</u> avere (inclusi valori numerici delle varie costanti!), stimate il flusso Φ_{ph} di fotoni che incidono sul rivelatore e il modulo del campo elettrico E_0 dell'onda.

$\Phi_{ph} \sim$	[phot/s]
$E_0 \sim$	[V/m]

3. Interponete un filtro polaroid tra laser e rivelatore avendo cura che la sua superficie sia ragionevolmente ortogonale al fascio laser e che il fascio passi senza ostruzioni attraverso il polaroid. Misurate la fotocorrente I_{phj} letta dal multimetro in funzione della posizione angolare θ_j del goniometro su cui è montato il polaroid, riportando i valori in tabella. Cercate di coprire un intervallo angolare complessivo sufficientemente ampio (si consiglia un po' oltre 180 gradi).

j	θ_{j} []	I_{phj} []	j	
1			13	
2			14	
3			15	
4			16	
5			17	
6			18	
7			19	
8			20	
9			21	
10			22	
11			23	
12			24	

J	• • • • • • • • • • • • • • • • • • •	I_{phj} []
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		Dogo 1 of

1.	Costruite il grafico delle misure $(I_{phj}$ vs θ_i) eseguite. Inoltre, nell'ipotesi che il segnale I_{ph} sia linearmente
	proporzionale alla potenza P e dunque all'intensità I della radiazione, costruite la funzione modello ("legge d
	Malus") che lega I_{ph} a θ ed eseguite un best-fit dei dati secondo questo modello. Tenete conto che lo zero
	angolare sulla scala del goniometro è arbitrario. Per aumentare l'affidabilità, può essere utile aggiungere alla
	funzione un termine costante che tenga conto del "segnale di fondo". Riportate la funzione modello, spiegando
	la sua costruzione, e tutte le informazioni rilevanti per il best-fit nel riquadro. Di default, Python misura gl
	angoli in radianti, per cui ponete attenzione alle conversioni.

i	<u>(16)</u>
,	

Funzione modello che lega I_{ph} a θ e <u>sua costruzione (con i principali passaggi</u>), informazioni (<u>tutte quelle rilevanti</u>) sul best-fit, commenti:

5. Ora dovete utilizzare <u>due</u> filtri polaroid, uno montato su goniometro e l'altro su un astuccio di materiale plastico da applicare al supporto del rivelatore. Chiamate "2" il filtro più vicino al rivelatore e "1" quello più vicino al laser, e θ₁ e θ₂ gli angoli dei loro goniometri, come rappresentato schematicamente in figura. <u>Inizialmente</u> usate solo il polaroid "2" e ruotatelo fino a <u>minimizzare</u> il segnale trasmesso (l'assenza di una scala graduata non dovrebbe pregiudicare la corretta esecuzione): <u>siate molto delicati</u> nell'inserire l'astuccio nella sua sede e nel ruotarlo! Se lo

ritenete opportuno, potete usare la vite in nylon per bloccare l'astuccio (<u>non usate attrezzi</u> per serrare!). Quindi inserite anche il polaroid "1" e misurate il segnale I_{phj} letto dal multimetro in funzione della posizione angolare θ_{1j} del <u>goniometro su cui è montato il polaroid "1"</u>, riportando i valori in tabella. Cercate di coprire un intervallo angolare complessivo sufficientemente ampio (si consiglia un po' oltre 90 gradi).

j	θ_{1j} []	I_{phj} []
1		
2		
3		
4		
5		
6		
7		

j	θ_{lj} []	I_{phj} []
8		
9		
10		
11		
12		
13		
14		Page 2 of

E_17016.0 – aa 17/18

	Nome e Cognome:	□LUN Data:	□MER	□GIO	<u>(16')</u>
5. (Costruite anche in questo caso la funzione modello che lega I_{ph} a θ_1 , spiegand passaggi che vi conducono a determinarla, disegnate il grafico delle misure eseguite	lone per l	bene nel i best-fit d	riquadro 1' ei dati.	origine e i
Fur	izione modello che lega I_{ph} a θ_1 e <u>sua costruzione (con i principali passaggi</u>), informat-fit, commenti:				
1	Molto facoltativo: rimpiazzate il polaroid "1" con una lamina ritardante (se disponottico (indicato sul supporto) sia a circa ±45 gradi rispetto alla direzione di polari otazione del polaroid "2", verificate che la polarizzazione in uscita dalla lamin notivato (motivazioni da spiegare nel riquadro dei commenti!) metodo sperimentale	zzazione na sia elli	del laser. ttica usan	Quindi, ag do un rag	gendo sulla
Cor	mmenti:				
				Pa	ge 3 of 4

Parte 2: angolo di Brewster in riflessione

8. Fate incidere la radiazione di una lampada a filamento (polarizzata random, ovvero non polarizzata) sull'interfaccia aria/PMMA e osservate con l'occhio la riflessione. Potete cambiare l'angolo di incidenza, e quindi di riflessione, spostandovi rispetto al punto di incidenza sulla lastra di PMMA. Avendo a disposizione un filtro polaroid, individuate la presenza

Page 4 of 4

Scopo di questa parte dell'esperienza è verificare la presenza e stimare il valore dell'"angolo di Brewster" $\theta_{\rm B}$. Per incidenza a questo angolo su un'interfaccia tra dielettrici con indice di rifrazione (reale) n_1 e n_2 , l'onda riflessa non contiene componenti "polarizzate p, ovvero TM" (polarizzazione parallela al piano di incidenza). Si ricorda anche che $tan \theta_{\rm B} = n_2/n_1$ e che, per il materiale usato nell'esperienza (PMMA, ovvero perspex, o plexiglas) si ha $n_2 \approx 1.48$.

Parte 3: angolo di Brewster in trasmissione 9. Ripetete l'osservazione de l'osservazione de l'osservazione de l'angolo di lastre di PMMA, cioè una successione di fante interface aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra. Commenti sull'osservazione e sul metodo adottato, motivazione per l'uso del pacco, etc.:	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	Commenti sull'osservazione e sul metodo adottato, valore atteso e "misurato" dell'angolo di Brewster, etc.:
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
9. Ripetete l'osservazione del punto 8 operando in trasmissione e usando, stavolta, un pacco di lastre di PMMA, cioè una successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	Parte 3: angolo di Brewster in trasmissione
successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco invece di una singola lastra.	
invece di una singola lastra.	
Commenti sull'osservazione e sul metodo adottato, motivazione per l'uso del pacco, etc.:	successione di tante interfacce aria/PMMA. Commentate, spiegando perché, secondo voi, è preferibile utilizzare un pacco
	invece di una singola lastra.