NAME

CUTEST_cdimsh – CUTEst tool to determine the number of nonzeros needed to store the Hessian of the Lagrangian function for the problem decoded from a SIF file by the script *sifdecoder*.

SYNOPSIS

CALL CUTEST_cdimsh(status, nnzh)

DESCRIPTION

The CUTEST_cdimsh subroutine determines the number of nonzero elements required to store the Hessian matrix of the Lagrangian function for the problem decoded into OUTSDIF.d in the constrained minimization case. The matrix is stored in sparse "coordinate" format.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l(x) \le c_i(x) \le c_i^u(x)$, $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_cdimsh are as follows

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

nnzh [out] - integer

the number of nonzero elements required to store the matrix.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited, N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, **29**:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, TOMS, 21:1, pp.123-160, 1995.

sifdecoder(1).

NAME

CUTEST_cdimsh – CUTEst tool to determine the number of nonzeros needed to store the Hessian of the Lagrangian function for the problem decoded from a SIF file by the script *sifdecoder*.

SYNOPSIS

CALL CUTEST_cdimsh(status, nnzh)

DESCRIPTION

The CUTEST_cdimsh subroutine determines the number of nonzero elements required to store the Hessian matrix of the Lagrangian function for the problem decoded into OUTSDIF.d in the constrained minimization case. The matrix is stored in sparse "coordinate" format.

The problem under consideration is to minimize or maximize an objective function f(x) over all $x \in \mathbb{R}^n$ subject to general equations $c_i(x) = 0$, $(i \in 1, ..., m_E)$, general inequalities $c_i^l(x) \le c_i(x) \le c_i^u(x)$, $(i \in m_E + 1, ..., m)$, and simple bounds $x^l \le x \le x^u$. The objective function is group-partially separable and all constraint functions are partially separable.

ARGUMENTS

The arguments of CUTEST_cdimsh are as follows

status [out] - integer

the outputr status: 0 for a successful call, 1 for an array allocation/deallocation error, 2 for an array bound error, 3 for an evaluation error,

nnzh [out] - integer

the number of nonzero elements required to store the matrix.

AUTHORS

I. Bongartz, A.R. Conn, N.I.M. Gould, D. Orban and Ph.L. Toint

SEE ALSO

CUTEr (and SifDec): A Constrained and Unconstrained Testing Environment, revisited, N.I.M. Gould, D. Orban and Ph.L. Toint, ACM TOMS, **29**:4, pp.373-394, 2003.

CUTE: Constrained and Unconstrained Testing Environment, I. Bongartz, A.R. Conn, N.I.M. Gould and Ph.L. Toint, TOMS, 21:1, pp.123-160, 1995.

sifdecoder(1).