

Discrete Mathematics 2024

Student: Jeferson Morales Mariciano <jmorale@ethz.ch>

Assignment 1 Due date: Thursday, 26 September 2024, 23:59

1. Exercise 1.5, Two New Logical Operators

We define two binary logical operators \heartsuit and \diamondsuit as follows:

A	$\mid B \mid$	$A \heartsuit B$
0	0	1
0	1	0
1	0	1
1	1	1

A	$\mid B \mid$	$A \diamondsuit B$
0	0	1
0	1	0
1	0	0
1	1	1

1. a) (*)

Are \heartsuit and \diamondsuit commutative, i.e., does it hold

$$A \heartsuit B \equiv B \heartsuit A$$
 and $A \diamondsuit B \equiv B \diamondsuit A$?

Argue by comparing function tables.

2. b) (*)

Prove or disprove that

$$(\neg A \heartsuit B) \diamondsuit (B \diamondsuit C) \equiv \neg (A \diamondsuit B) \heartsuit \neg (A \diamondsuit C)$$

by computing and comparing the function tables of the left-hand-side and the right-hand-side formulas.

From the truth table of the 3 propositional symbols A, B, and C,

A	$\mid B \mid$	$\mid C$
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	0
1	1	1

we compute the left-hand-side formula as follows,

$\neg A$	$\neg A \heartsuit B$	$B \heartsuit C$	$(\neg A \heartsuit B) \diamondsuit (B \heartsuit C)$
1	1	1	1
1	1	0	0
1	1	1	1
1	1	1	1
0	1	1	1
0	1	0	0
0	0	1	0
0	0	1	0

and the right-hand-side formula as follows,

$A \diamondsuit B$	$\neg (A \lozenge B)$	$A \diamondsuit C$	$\neg (A \diamondsuit C)$	$\neg (A \diamondsuit B) \heartsuit \neg (A \diamondsuit C)$
1	0	1	0	1
1	0	0	1	0
0	1	1	0	1
0	1	0	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1

by comparing the left-hand-side and right-hand-side function tables, we can see that $\underline{\text{they are not equivalent}}$, i.e.

$(\neg A \heartsuit B) \diamondsuit (B \diamondsuit C)$	$\neg (A \diamondsuit B) \heartsuit \neg (A \diamondsuit C)$
1	1
0	0
1	1
1	1
1	1
0	1
0	0
0	1

$$(\neg A \heartsuit B) \diamondsuit (B \diamondsuit C) \not\equiv \neg (A \diamondsuit B) \heartsuit \neg (A \diamondsuit C)$$

3. c) (**)

Let F be a formula with the following function table:

A	B	$\mid C \mid$	F
0	0	0	1
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

Find a formula G containing only the logical operators \heartsuit and \diamondsuit , in which the propositional symbols A, B, and C all appear exactly once, and such that $G \equiv F$. No justification is required.

Let G be defined as $G := (C \diamondsuit A) \heartsuit B$. Then, the truth table of G is as follows,

$C \diamondsuit A$	$(C \diamondsuit A) \heartsuit B$		G	F
1	1	-	1	1
0	1		1	1
1	1		1	1
0	0	\longrightarrow	0	0
0	1		1	1
1	1		1	1
0	0		0	0
1	1		1	1

by comparing the function tables of F and G, we can see that $G \equiv F$. All constraints are satisfied: only logical operators \heartsuit, \diamondsuit and propositional symbols A, B, C appear exactly once.