Métodos de la Física matemática

Teorema fundamental del álgebra

Un polinomio de grado $n \geq 1$ tiene al menos una raíz en el plano complejo.

Demostración: sea $p(z) = \sum_{j=0}^{n} a_j z^j$, con $|a_n| > 0$ y $n \ge 1$. Si p no tuviera ninguna raíz, la función f = 1/p sería entera. Probaremos que esto es imposible demostrando que en tal caso f sería también acotada en C y no constante, lo que entra en contradicción con el teorema de Liouville.

Podemos escribir p de la siguiente forma

$$p(z) = z^n \sum_{j=0}^n \frac{a_j}{z^{n-j}} \Rightarrow$$

$$\left| \frac{p(z)}{z^n} \right| = \left| \sum_{j=0}^n \frac{a_j}{z^{n-j}} \right| = \left| a_n + \sum_{j=1}^{n-1} \frac{a_j}{z^{n-j}} \right| \le |a_n| + \sum_{j=1}^{n-1} \left| \frac{a_j}{z^{n-j}} \right|$$

Nótese que $|a_j|/|z^{n-j}| \to 0$ cuando $|z| \to \infty$, entonces podemos decir que

$$\frac{|a_j|}{|z^{n-j}|} < \frac{|a_n|}{2n} \quad \forall j > 0$$

para un |z| > K lo suficientemente grande.

$$\Rightarrow \left| \sum_{j=1}^{n-1} \frac{a_j}{z^{n-j}} \right| \le \sum_{j=1}^{n-1} \left| \frac{a_j}{z^{n-j}} \right| < \frac{|a_n|}{2} \quad \text{con} \quad |z| > K.$$

$$\Rightarrow \left| a_n + \sum_{j=1}^{n-1} \frac{a_j}{z^{n-j}} \right| > \frac{|a_n|}{2} \quad \text{con} \quad |z| > K.$$

$$\Rightarrow \left| \frac{p(z)}{z^n} \right| = \frac{|p(z)|}{|z|^n} > \frac{|a_n|}{2} \quad \text{con} \quad |z| > K.$$

$$\Rightarrow |p(z)| > \frac{|a_n|}{2} |z|^n > \frac{|a_n|}{2} \quad \text{con} \quad |z| > K.$$

Por otra parte, si p(z) no tuviera una raíz entonces en el disco cerrado centrado en 0 y radio K existe un M>0 tal que |p(z)|>M>0 para $|z|\leq K$. Esto significa que

$$|f(z)| = \frac{1}{|p(z)|} < \max\left(\frac{2}{|a_n|}, \frac{1}{M}\right), \quad \forall z \in C.$$

Nótese que $|a_n| > 0$, esto implica que |f(z)| debería ser constante, pero p(z) varia con z (ya que $a_n \neq 0$ con $n \geq 1$). Esto contradice el teorema de Liouville.

Series

Recordando el Criterio de Cauchy

- uns secuencia $f_n(z)$ converge uniformemente en D si y solo si por cada $\varepsilon > 0$ $\exists N/n \ge N$ implica $|f_n(z) f_{n+p}(z)| < \varepsilon \quad \forall z \in D \text{ y } \forall p = 1, 2, 3, ...$
- una serie $\sum_{k=1}^{\infty} g_k(z)$ converge uniformemente en D si y solo si por cada $\varepsilon > 0$ $\exists N/n \geq N$ implica que

$$\left| \sum_{k=n+1}^{n+p} g_k(z) \right| < \varepsilon$$

 $\forall z \in D \ y \ \forall p = 1, 2, 2, \dots$

Prueba de Weierstrass

Sea g_n una secuencia de funciones definida en un conjunto D contenido en los complejos. Suponga que hay una secuencia de constantes reales $M_n \ge 0$ tal que las siguientes condiciones se satisfacen.

- $|g_n(z)| \leq M_n \ \forall z \in D$
- $\blacksquare \sum_{n=1}^{\infty} M_n$ converge

Entonces $\sum_{n=1}^{\infty} g_n(z)$ converge absoluta y uniformemente en D.

Demostración:

Si definimos $f_n(z) = \sum_{n=1}^{\infty} g_n(z)$, entonces

$$|f_n(z) - f_{n+p}(z)| = \left| \sum_{k=n+1}^{n+p} g_k(z) \right| \le \sum_{k=n+1}^{n+p} |g_k(z)| \le \sum_{k=n+1}^{n+p} M_n < \varepsilon,$$

luego por el criterio de Cauchy la serie converge absoluta y uniformemente.

Teorema de la convergencia de funciones analíticas

- (i) Sea f_n una secuencia de funciones analíticas, si f_n converge uniformemente en f, i.e. $f_n \to f$, entonces f es analítica. Además $f'_n \to f'$ en forma puntual, i.e. $f'_n(a) \to f'(a)$ para cualquier punto complejo a en el dominio de validez de la secuencia.
- (ii) Si ambos g_k with $k = 1, 2, ..., \infty$, que es una secuencia de funciones analíticas, yi $g(z) = \sum_{k=1}^{\infty} g_k(z)$ convergen uniformemente en un dominio D entonces g es analítica en D y $g'(z) = \sum_{k=1}^{\infty} g'_k(z)$ converge en forma puntual y uniformemente en D.

Una diferencia importante entre las funciones reales y complejas es que para las primeras la convergencia uniforme garantiza la operación de diferenciación mientras que para las segundas es necesario que se cumpla además el criterio de analiticidad.

Teorema Sea γ un contorno en un dominio D y f_n una secuencia de funciones continuas en ese dominio que converge uniformemente a una función f sobre el contorno γ , entonces

$$\int_{\gamma} f_n dz \to \int_{\gamma} f dz.$$

De la misma forma, si $\sum_{k=1}^{\infty} g_k(z)$ converge uniformemente sobre γ , entonces

$$\int_{\gamma} \left(\sum_{k=1}^{\infty} g_k(z) \right) dz = \sum_{k=1}^{\infty} \int_{\gamma} g_n(z) dz.$$

Demostración: Si f es continua satisface que para un $n \geq N$ (grande) $|f_n(z) - f(z)| < \varepsilon \ \forall z \in \gamma$, entonces

$$\left| \int_{\gamma} f_n dz - \int_{\gamma} f dz \right| = \left| \int_{\gamma} (f_n - f) dz \right| \le \int_{\gamma} |(f_n - f)| dz| < \varepsilon L(\gamma),$$

donde $L(\gamma)$ es la longitud del contorno γ .

Ahora si podemos demostrar que si $f_n \to f$ entonces $f'_n \to f'$ cuando f es analítica en un dominio D. Usando la fórmula integral de Cauchy podemos ver fácilmente que

$$|f'_n(z) - f'(z)| = \left| \frac{1}{2\pi i} \int_{\gamma} \frac{f_n(\zeta) - f(\zeta)}{(\zeta - z)^2} d\zeta \right| \le \frac{1}{2\pi} \int_{\gamma} \frac{|f_n(\zeta) - f(\zeta)|}{|(\zeta - z)^2|} |d\zeta|,$$

cond la parametrización $\zeta-z=Re^{i\theta}$ donde R>0 es una constante, se tiene que

$$|f'_n(z) - f'(z)| \le \frac{1}{2\pi} \frac{\varepsilon L(\gamma)}{R^2},$$

con ε arbitrariamente pequeño.

Series de Potencias

Una serie de potencias es aquella que tiene la forma

$$\sum_{n=0}^{\infty} a_n (z - z_0)^n,$$

donde a_n y z_0 son numeros complejos fijos (constantes). Es importante notar que el dominio de analiticidad de la serie es el interior de un circulo centrado en z_0 .