

Demystifying Artificial Intelligence and Machine Learning

John Strand, IANS Faculty

Agenda

- AI and ML An Overview
- ML Uses in Security
- Security Analytics A Set of Products
- Action Plan
- What Will the Future Bring?

AI & ML

"Everyone calls their stuff 'machine learning' or even better 'artificial intelligence' - It's not cool to use statistics!"

All and ML are promising approaches to solve some security problems:

- These are algorithms, not products
- Expert knowledge is more important than algorithms
- Don't start your own ML projects unless you have the right data and skills
- Buy products that address your use-cases

AI & ML - An Overview

Machine Learning & Artificial Intelligence

Machine Learning (ML)

Learns from training data to classify data (e.g., SPAM or malware classification)

Anomaly Detection (Outlier Detection)

- Can be done with ML but simple statistics often work much better
- Statistical outliers are hardly ever security relevant
- 2 decades of anomaly detection research in security!

Deep learning

- Is just another ML algorithm significantly improved results for classification problems
- Basically eliminates the feature engineering step

Artificial Intelligence (AI)

• "A program that doesn't simply classify or compute model parameters, but comes up with **novel knowledge** that a security analyst finds insightful."

ML & Deep Learning

- Any Machine Learning:
 - Is used to classify data
 - Needs a lot of well-labeled training data
 - Good for malware / SPAM identification

- Traditional Machine Learning:
 - Features / Attributes identified by experts
 - Similarity and correlation determined by statistical evaluation and expert knowledge
- Deep Learning:
 - Automatically learns features from data
 - Eliminates the bias introduced by the human identification of features
 - Smaller model, faster and more accurate
 - Lacks explain-ability

ML Uses in Security

- Malware detection and classification
- SPAM identification
- Firewall data analysis to identify likely attackers
- DNS analytics:
 - Co-occurrence, domain name classification
 - DNS lookup analysis (frequency)
- Threat intelligence feed analysis:
 - IOC prioritization, de-duplication, campaign association, removing false positives
- URL analytics:
 - Identify malicious URLs
 - Turns out, you have to analyze the content of the website behind the URL as well

www.mlsecproject.org

Security Analytics - A Set of Products

Attackers are using 'allowed' channels and mask in benign looking activity that traditional security tools cannot detect.

User and Entity Behavior Analytics (UEBA)

- Identify anomalies based on user and/or machine behavior.
- Most vendors don't use real machine learning, don't fall for snake oil – ask for real-world proof
- Two groups of products: based on logs or based on network traffic

Automation & Orchestration

 Sit on top of SIEM (and some other data) to close the loop of a) prioritizing important attacks and b) automating response.

Hunting

 Enable senior security analysts to explore data within a SIEM or big data store to find environment specific attacks and breaches.

All these products are really features of a larger platform:

- They should all be under one single product
- If they are sold as individual products, make sure they interoperate well. Where is the data stored? etc.

What Now?

Action Plan

- Define your use-cases first understand where you want and should use ML
- Make sure you have the right data and context
- Understand your environment inside out!
- Buy products for your most pressing problems. Make sure they solve them costeffectively!
- Don't ever have an "Al project"

Practical Considerations Buying Analytics Products

- Does the solution really detect behavioral anomalies?
- Does the solution integrate with the rest of your infrastructure (e.g., SIEM)?
- How long does it take to begin recognizing suspicious patterns? How long does it take to establish a baseline?
- How does the solution adapt to completely novel attacks?
- Ask for results that have been seen in actual customer environments
- Do a PoC on your network to learn:
 - How hard it is to install the product and how much time does it take to tune?
 - How much time it will take on ongoing maintenance?
 - What does it actually **detect** in your environment?

What Will the Future Bring?

- More bad marketing calling 'analytics' and 'statistics' ML and Al
- Algorithms will advance, but we won't hit real Al anytime soon
- Consolidations in the 'Security Analytics' product space
- More and better approaches to model expert knowledge
- Data lakes will eventually become a reality analytics will have to run on top of that
- Better, automated asset inventory
- Data sharing will become more and more important (TI, models, etc.)
 - Threat Intelligence will morph more and more into real-time data sharing between trusted entities
- Talent gap will keep widening How do you staff your projects?

Summary

- We don't have artificial intelligence (yet)
- Machine learning is an algorithm not a product
- Algorithms are getting 'smarter', but experts are more important
- Invest in people who know security (and have experience)
- Understand your environments, applications, devices
- Focus on advancing insights

BlackHat Workshop

Applied Machine Learning for Identity and Access Management

ML | AI | IAM

August 4,5 & August 6,7 - Las Vegas, USA

http://secviz.org

Questions?

info@iansresearch.com