registermate

small pony

1

Linear Regression

Dr Jamie A Ward Lecture 5

Linear Regression Refresher Quiz

1. Given the hypothesis function $h_{\theta}(x_i) = \theta_0 + \theta_1 x_i$, where $\theta = [\theta_0, \theta_1]^T = [0,1]^T$, and data samples $(\mathbf{x}, \mathbf{y}) = \{(1,1), (2,2), (3,3)\}$, what is the value of the loss function $J(\theta)$?

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}; \theta) - y^{(i)})^{2}$$

- 2. Plot the function $J(\theta)$ w.r.t. (with respect to) parameter θ .
- 3. How would you apply Gradient Descent to $J(\theta)$?
 - clue: GD uses the derivative of the function being optimised (in this case, J)

Lecture 5: Linear Regression

Multivariate Linear Regression

- ► N-dimensional regression
- ► Feature scaling
- ▶The Normal Equation
- ▶ Polynomial regression
- ► A bit about Noise

Summary

Linear Regression Hypothesis

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

Linear Regression Loss

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}; \theta) - y^{(i)})^{2}$$

Gradient descent algorithm

while not converged:

while not converged:
$$\theta_j^{new} = \theta_j^{old} - \alpha \frac{\partial}{\partial \theta_j} J \Big(\theta_0^{old}, \theta_1^{old} \Big)$$
 for $j=0,1$

Univariate Linear Regression

Find relationships between a dependent variable (y) and independent variable (x).

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x^{(i)}$$

Area (<i>m</i> ²)	Price (£ks)
100	400
72	389
50	250
122	689
\overline{x}	ν

But if we have several independent, or explanatory, variables, e.g.

 $\rightarrow x_2^{(i)}$: number of rooms

 $\rightarrow x_3^{(i)}$: number of floors

 $\rightarrow x_4^{(i)}$: age of house

Area (m²)	# rooms	# floors	Age (years)	Price (£ks)
100	3	2	50	400
72	2	1	25	389
50	1	1	10	250
122	4	2	92	689
300	5	3	65	900

 χ_{3}

 χ_4

How might we model this?

$$h_{\theta}(x^{(i)}) = \theta_0 + \theta_1 x_1^{(i)} + \theta_2 x_2^{(i)} + \theta_3 x_3^{(i)} + \theta_4 x_4^{(i)}$$
$$= \theta_0 + \sum_{i=1}^n \theta_i x_j^{(i)}$$

 χ_1

 χ_2

$$h_{\theta}(x^{(i)}) = \sum_{j=0}^{n} \theta_j x_j^{(i)}$$
 (where $x_0 = 1$ and $n = 4$)

7

$$h_{\theta}(x^{(i)}) = \sum_{j=0}^{n} \theta_j x_j^{(i)}$$

	Area (<i>m</i> ²)	# rooms	# floors	Age (years)	Price (£ks)
(1)	100	3	2	50	400
(2)	72	2	1	25	389
(3)	50	1	1	10	250
(4)	122	4	2	92	689
(5)	300	5	3	65	900
	$\overline{x_1^{(i)}}$	$x_2^{(i)}$	$x_3^{(i)}$	$x_4^{(i)}$	$y^{(i)}$

Notation refresher

m = number of samples

n = number of features

 $x_i^{(i)}$ = value of feature j in i^{th} training example

 $x^{(3)} = \text{feature vector at } i^{th} \text{ training example}$

e.g. For this dataset:

$$m =$$

$$n =$$

$$x_4^{(3)} =$$

$$x^{(3)} =$$

$$h_{\theta}(x^{(i)}) = \sum_{j=0}^{n} \theta_j x_j^{(i)}$$

	Area (m²)	# rooms	# floors	Age (years)	Price (£ks)	
(1)	100	3	2	50	400	
(2)	72	2	1	25	389	
(3)	50	1	1	10	250	1
(4)	122	4	2	92	689	
(5)	300	5	3	65	900	
	$x_1^{(i)}$	$x_2^{(i)}$	$x_3^{(i)}$	$x_4^{(i)}$	$y^{(i)}$	

Notation refresher

m = number of samples

n = number of features

 $x_i^{(i)}$ = value of feature j in i^{th} training example

 $x^{(3)} = \text{feature vector at } i^{th} \text{ training example}$

e.g. For this dataset:

$$m = 5$$

$$n = 4$$

$$r^{(3)} = 1$$

$$x_4^{(3)} = 10$$

$$x^{(3)} = \begin{bmatrix} 50 \\ 1 \\ 1 \\ 10 \end{bmatrix}$$

$$h_{\theta}(x^{(i)}) = \sum_{j=0}^{n} \theta_{j} x_{j}^{(i)} = \theta_{0} x_{0}^{(i)} + \theta_{1} x_{1}^{(i)} + \theta_{2} x_{2}^{(i)} + \theta_{3} x_{3}^{(i)} + \theta_{4} x_{4}^{(i)}$$

(where $x_0^{(1)} = 1$ and n = 4)

What does this look like in vector / matrix form?

(Try with
$$m=1$$
 for simplicity)
$$x = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \in \mathbb{R}^{n+1} \qquad \theta = \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} \in \mathbb{R}^{n+1}$$

$$n = 4$$

$$h_{\theta}(x) = \sum_{j=0}^{4} \theta_j x_j = \begin{bmatrix} \theta_0 & \theta_1 & \theta_2 & \theta_3 & \theta_4 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \theta^T x$$

Multivariate Gradient Descent

1. Multivariate Linear Regression Hypothesis

$$h_{\theta}(x^{(i)}) = \sum_{j=0}^{n} \theta_j x_j^{(i)}$$
 (where $x_0^{(i)} = 1$)

2. Linear Regression Loss (mean squared error / least squares)

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h(x^{(i)}; \theta) - y^{(i)})^2$$

3. Using 1 & 2, we get the following gradient descent updates

while not converged:

$$\theta_{j}^{new} = \theta_{j}^{old} - \alpha \frac{1}{m} \sum_{i=1}^{m} (h(x^{(i)}; \theta^{old}) - y^{(i)}) x_{j}^{(i)}$$
for $j = 0, 1, ..., n$
(where $x_{0} = 1$)

Gradient Descent

A note on Convergence

- ▶ What is an ideal value of α ?
- \blacktriangleright usually $0.01 < \alpha < 10$

When has the algorithm converged?

- 1. When loss $J(\theta)$ decreases by less than some tolerance ε , e.g. $\varepsilon=10^{-3}$ (it helps to make a plot)
- 2. Or when the parameters θ stop changing.

Learning rate, $\alpha > 0$, controls step size

Feature scaling

Multiple explanatory variables

- All on different scales, e.g.
 - ► area range(x_1) = (0-1000 m^2)
 - \blacktriangleright # rooms range(x_2) = (1-5)
- Scale the features
 - \blacktriangleright Avoids unnecessarily large or small heta
 - ► Gradient descent converges faster

Area (<i>m</i> ²)	# rooms	# floors	Age (years)	Price (£ks)
100	3	2	50	400
60	2	1	25	389
40	1	1	10	250
150	4	2	95	689
300	5	3	65	900

 x_1 x_2 x_3 x_4 y

mean,
$$\bar{x}_j = \frac{1}{m} \sum_{i=1}^m x_j^{(i)}$$

► Range normalization

Centre data around mean:

► Standardisation (z-score)

Ensure data has mean = 0 and standard deviation = 1:

$$x_j^s = \frac{x_j - \bar{x}_j}{max(x_j) - \min(x_j)}$$

$$x_j^s = \frac{x_j - \min(x_j)}{\max(x_j) - \min(x_j)}$$

$$\mathbf{x}_{\mathbf{j}}^{\mathbf{s}} = \frac{x_{\mathbf{j}} - \bar{x}_{\mathbf{j}}}{std(x_{\mathbf{j}})}$$

13

Feature scaling: effect on regression parameters

e.g. if feature $x_1 >> x_2$ Then θ_2 will be larger than θ_1 to compensate.

Gradient Descent using scaled data

Feature scaling: example

Given a possible area (x_1) range of $0 \ to \ 1000 m^2$, normalise this feature to within the range [-1,1]

$$\overline{x_1} = \frac{1}{5}(100 + 60 + 40 + 150 + 300)$$
$$= \frac{650}{5} = 130$$

range(x_1)	=	max((x_1)	– min	(x_1)	=	1000

$\boldsymbol{x}_1^S = \frac{x_1 - \overline{x_1}}{range(x_1)}$			
$= \begin{bmatrix} 100 - 130 \\ 60 - 130 \\ 40 - 130 \\ 150 - 130 \\ 300 - 130 \end{bmatrix}$	/1000 =	$\begin{bmatrix} -0.03 \\ -0.07 \\ -0.09 \\ 0.2 \\ 0.17 \end{bmatrix}$	

Area (<i>m</i> ²)	# rooms	# floors	Age (years)	Price (£ks)
100	3	2	50	400
60	2	1	25	389
40	1	1	10	250
150	4	2	95	689
300	5	3	65	900

 $x_1 \qquad x_2 \qquad x_3 \qquad x_4 \qquad y$

-0.03 -0.07 -0.09 0.2 0.17 χ_1^S

Feature scaling: example

Range normalisation applied to all the features, given the following stats:

 x_1 : range [0, 1000], $\bar{x}_1 = 130$ x_2 : range [1, 10], $\bar{x}_2 = 3$ x_3 : range [1, 10], $\bar{x}_3 = 2$ x_4 : range [0, 100], $\bar{x}_4 = 25$

$$x_j^s = \frac{x_j - \overline{x_j}}{range(x_j)}$$

 x_1^s : range [-1, 1], $\bar{x}^s_1 = 0$ x_2^s : range [-1, 1], $\bar{x}^s_2 = 0$ x_3^s : range [-1, 1], $\bar{x}^s_3 = 0$ x_4^s : range [-1, 1], $\bar{x}^s_4 = 0$

Area (m²)	# rooms	# floors	Age (years)	Price (£ks)
100	3	2	50	400
60	2	1	25	389
40	1	1	10	250
150	4	2	95	689
300	5	3	65	900
$\overline{x_1}$	x_2	x_3	$\overline{x_4}$	<u>y</u>

-0.03	0	0	0.25
-0.07	-0.1	-0.1	0
-0.09	-0.2	-0.1	-0.15
0.2	0.1	0	0.7
0.17	0.2	0.1	0.4
	20 S	~S	~S

 $\chi_{\tilde{\mathbf{z}}}$

 x_1

 $\chi_{\tilde{2}}$

Iterative optimisation

- ► (Batch) Gradient Descent
 - Slow for lots of data, m
 - Fast for lots of features, n

while not converged:
$$\theta_j^{new} = \theta_j - \alpha \frac{1}{m} \sum\nolimits_{i=1}^m \left(h_\theta\big(x^{(i)}\big) - y^{(i)}\big) \, x_j^{(i)}$$
 for $j=0,1,\dots,n$

Iterative optimisation

- ► (Batch) Gradient Descent
 - Slow for lots of data, m
 - Fast for lots of features, n

while not converged: $\theta_j^{new} = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$ for $j = 0, 1, \dots, n$

- ► Stochastic Gradient Descent
 - Fast for lots of data, m
 - Fast for lots of features, n
 - Doesn't converge smoothly

while not converged: $(x_0 = 1)$ for i = random(1 to m): $\theta_j^{new} = \theta_j - \alpha(h_\theta(x^{(i)}) - y^{(i)}) \, x_j^{(i)}$ for j = 0, 1, ..., n

Iterative optimisation

- ► (Batch) Gradient Descent
 - Slow for lots of data, m
 - Fast for lots of features, n

while not converged:
$$\theta_j^{new} = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$$
 for $j=0,1,\dots,n$

- ► Stochastic Gradient Descent
 - Fast for lots of data, m
 - Fast for lots of features, n

Analytic solution

► Normal Equation

while not converged:
$$(x_0 = 1)$$
 for $i = random(1 \text{ to } m)$:
$$\theta_j^{new} = \theta_j - \alpha(h_\theta(x^{(i)}) - y^{(i)}) \, x_j^{(i)}$$
 for $j = 0, 1, ..., n$

$$\theta^{best} = (X^T X)^{-1} X^T y$$

Normal Equation

Closed-form (analytic) solution

Find appropriate θ where $X\theta = y$ (Calculate the derivative for $J(\theta)$ wrt θ and set to zero)

x_0	Area x_1	# rooms x_2	# floors x_3	Age x_4	Price y
1	100	3	2	50	400
1	60	2	1	25	389
1	40	1	1	10	250
1	150	4	2	95	689

$$\theta^{best} = (X^T X)^{-1} X^T y$$

$$\begin{bmatrix} 1 & 100 & 3 & 2 & 50 \\ 1 & 60 & 2 & 1 & 25 \\ 1 & 40 & 1 & 1 & 10 \\ 1 & 150 & 4 & 2 & 95 \end{bmatrix} \cdot \begin{bmatrix} \theta_0 \\ \theta_1 \\ \theta_2 \\ \theta_3 \\ \theta_4 \end{bmatrix} =$$

(X=Design matrix) $X \in \mathbb{R}^{m \times n+1}$

$$\boldsymbol{\theta} \in \mathbb{R}^{n+1}$$

 $y \in \mathbb{R}^m$

400

389

250

689

import numpy as np

X=np.array([[1,100,3,2,50],[1,60,2,1,25],[1,40,1,1,10],[1,150,4,2,95]]) y=np.array([400,389,250,689])

theta = np.linalg.pinv(X.T.dot(X)).dot(X.T).dot(y) print(X.dot(theta)) # check that $X\theta = y$

Iterative optimisation

- ► (Batch) Gradient Descent
 - Slow for lots of data, m
 - Fast for lots of features, n

while not converged: $\theta_j^{new} = \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m \left(h_\theta \left(x^{(i)} \right) - y^{(i)} \right) x_j^{(i)}$ for $j=0,1,\dots,n$

- ► Stochastic Gradient Descent
 - Fast for lots of data, m
 - Fast for lots of features, n

Analytic solution

- ► Normal Equation
 - Fast for lots of data, m
 - Slow for big n (>10000)
 - Scaling not required

while not converged:
$$(x_0 = 1)$$
 for $i = random(1 \text{ to } m)$:
$$\theta_j^{new} = \theta_j - \alpha(h_\theta(x^{(i)}) - y^{(i)}) \, x_j^{(i)}$$
 for $j = 0, 1, ..., n$

$$\theta^{best} = (X^T X)^{-1} X^T y$$

$$\sim O(n^3)$$
very useful equation!

(a.k.a. Ordinary Least Squares Regression)

Alternative Solutions for Linear Regression

Iterative optimisation

- ► (Batch) Gradient Descent
 - Slow for lots of data, m
 - Fast for lots of features, n

while not converged:
$$\theta_j^{new} = \theta_j - \alpha \frac{1}{m} \sum\nolimits_{i=1}^m \left(h_\theta \left(x^{(i)}\right) - y^{(i)}\right) x_j^{(i)}$$
 for $j=0,1,\dots,n$

- ► Stochastic Gradient Descent
 - Fast for lots of data, m
 - Fast for lots of features, n

Analytic solution

- ► Normal Equation
 - Fast for lots of data, m
 - Slow for big n (>10000)
 - Scaling not required

while not converged:
$$(x_0 = 1)$$
 for $i = random(1 \text{ to } m)$:
$$\theta_j^{new} = \theta_j - \alpha(h_\theta(x^{(i)}) - y^{(i)}) \, x_j^{(i)}$$
 for $j = 0, 1, ..., n$

$$\theta^{best} = (X^T X)^{-1} X^T y$$

$$\sim O(n^3)$$
very useful equation!

Polynomial Regression

A special case of multivariate linear regression

$$h_{\theta}(x) =$$

Polynomial Regression

A special case of multivariate linear regression

► Use a polynomial (non-linear) hypothesis

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 x^2$$

= 2 + x + 0.5x²

This is non-linear in x...

- ▶ But it is still linear wrt θ
- ► Linear regression methods can still be used!

Also works for, e.g.:

$$h_{\theta}(x) = \theta_0 + \theta_1 x + \theta_2 \sqrt{x}$$

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1 x_2 + \theta_4 x_1^2 + \theta_4 x_2^2$$

A bit about noise

So far all our hypothesis functions mapped input to output in a deterministic way, e.g.

$$h_{\theta}(x) = 2 + x + 0.5x^2$$

But real world data has random, non deterministic changes, or noise

We can model this with a noise term, ϵ :

$$y(x) = h_{\theta}(x) + \epsilon$$

Or:

$$\epsilon = (h_{\theta}(x) - y(x))$$

(The residual from the Loss function)

A bit about noise

$$y = \sum_{j=0}^{n} \theta_j x_j^{(i)} + \epsilon^{(i)}$$

$$= X\theta + \epsilon$$

Additive noise ϵ is often modelled as a Gaussian random variable.

Gaussian, or normal distribution:

$$\epsilon = \mathcal{N}(\mu, \sigma^2)$$

where μ = mean, and σ^2 = variance of the noise.

Normal distribution of 1 million samples

Normal distribution

Commonly used as a probability distribution

Defined by only 2 variables: mean (μ) and variance (σ^2)

How much do I weigh?

The wisdom of the crowds

In 1906 at the Plymouth Fair, Francis Galton asked a crowd of 800 people to guess the weight of an ox.

https://www.doc.gold.ac.uk/dept/Evaluation

