NAVAL POSTGRADUATE SCHOOL

Monterey, California

THESIS

LASER-DOPPLER VELOCIMETER MEASUREMENTS IN A CASCADE OF CONTROLLED DIFFUSION COMPRESSOR BLADES AT STALL

by Humberto Javier Ganaim Rickel

June, 1994

Principal Advisor:

Garth V. Hobson

Approved for public release; distribution is unlimited.

DAIC COUPTILL INSURCIND

94-25694

94 8 15

CCS

REPORT DOCUMENTATION PAGE			Form Approved OMB No. 0704-0188	
and maintaining the data needed, and complet	ing and reviewing the collection of informati is burden, to Washington Headquarters Ser	tion. Send commer vices, Directorate fo	g the time for reviewing instructions, searching existing data sources, gathering lents regarding this burden estimate or any other aspect of this collection of for Information Operations and Reports, 1215 Jefferson Davis Highway, Suiti 1704-0188), Washington, DC 20503.	
1. AGENCY USE ONLY (Leave Blank)	2. REPORT DATE	3. REPORT	TT TYPE	
	June, 1994	Master's	Thesis	
4. TITLE AND SUBTITLE LASER-DOPPLER VELOCIMETER MI CONTROLLED DIFFUSION COMPRE		OF .	5. FUNDING NUMBERS	
6. AUTHOR(S) Ganaim Rickel, Humberto Javier				
7. PERFORMING ORGANIZATION N	AMES(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION	
Naval Postgraduate School Monterey, CA 93943-5000				
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(E	ES)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES The views expressed in this thesi Defense or the U.S. Government.		o not reflect t	the official policy or position of the Department of	
12a. DISTRIBUTION/AVAILABILITY S	TATEMENT		12b. DISTRIBUTION CODE	
Approved for public release; distribution is unlimited.			A	
blades were a controlled-diffusion designater-sheet flow-visualization technique laser-doppler velocimeter measurements of the continuous reversed flow region	been generated and examined in the n with solidity 1.67, and stalling oc s showed that the stalling process over the suction side of the blades si at the leading edge were the first ements quantified what was observed	cured at 10 degrees was unsteady, a howed regions o data to be obta	ascade Wind Tunnel at the Turbopropulsion Laboratory. The tengrees of incidence above the design inlet air angle. Tufting an and occurred over the whole cascade of 20 blades. Detailed of continuous and intermittent reversed flow. The measurement tained of flow within the leading edge separation bubble. The isualization studies. Blade surface pressure measurements shower	
14. SUBJECT TERMS			16. PRICE CODE	
			15. NUMBER OF PAGES 140	

NSN 7540-01-280-5500

OF REPORT

Unclassified

17. SECURITYCLASSIFICATION 18. SECURITY CLASSIFICATION

OF THIS PAGE

Unclassified

Standard Form 298 (Rev. 2-89)

19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT

UL

OF ABSTRACT

Unclassified

Approved for public release; distribution is unlimited.

LASER-DOPPLER VELOCIMETER MEASUREMENTS IN A CASCADE OF CONTROLLED DIFFUSION COMPRESSOR BLADES AT STALL

by

Humberto Javier Ganaim Rickel BS, Venezuelan Naval School, 1985

Submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ENGINEERING SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL June, 1994

ABSTRACT

An incipient compressor blade stall has been generated and examined in the Low Speed Cascade Wind Tunnel at the Turbopropulsion Laboratory. The test blades were a controlled-diffusion design with solidity 1.67, and stalling occured at 10 degrees of incidence above the design inlet air angle. Tufting and laser-sheet flow-visualization techniques showed that the stalling process was unsteady, and occurred over the whole cascade of 20 blades. Detailed laser-doppler velocimeter measurements over the suction side of the blades showed regions of continuous and intermittent reversed flow. The measurements of the continuous reversed flow region at the leading edge were the first data to be obtained of flow within the leading edge separation bubble. The intermittent reversed flow region measurements quantified what was observed in the flow visualization studies. Blade surface pressure measurements showed a decrease in normal

force on the blade as would be expected at stall.

Accesion For		
	CRA&I	ď
DTIC TAB		
Unannounced		
Justification		
By		
Diut.ibution /		
Availability Codes		
Dist	Avail and for Special	
A-1		

TABLE OF CONTENTS

I. INTRODUCTION		1
A. BACKGROUND		1
B. PURPOSE		1
II. TEST FACILITY AND INSTRUMENTATION		3
A. LOW-SPEED CASCADE WIND TUNNEL		3
B. INSTRUMENTATION	• • • • • • • • •	3
1. Pneumatic Data Acquisition System	• • • • • • • •	3
2. Laser-Doppler Velocimeter	• • • • • • • •	3
a. Laser and Optics	• • • • • • • • • • • • • • • • • • • •	7
b. Data Acquisition		7
c. Automated Traverse table		8
d. Atomizer and Seeding Probe		8
III. EXPERIMENTAL PROCEDURE	1	0
A. PRESSURE MEASUREMENTS AND FLOW VISUALIZATION		10

	B. TUNNEL SET-UP AND TEST-SECTION CONFIGURATION	10
	C. LASER SET-UP	12
	D. SURVEYS	14
	1. Inlet Surveys at 48 and 50 Degrees	14
	2. Passage Surveys at 50 Degrees	14
	3. Wake Surveys at 50 Degrees	17
IV.	RESULTS AND DISCUSSION	18
	A. BLADE SURFACE PRESSURE MEASUREMENTS	18
	B. INLET SURVEYS (STATIONS 1 THROUGH 1E)	18
	C. PASSAGE SURVEYS (STATIONS 2 THROUGH 15)	26
	D. WAKE SURVEYS (STATIONS 16 THROUGH 19)	43
	E. SUMMARY	43
V.	CONCLUSIONS AND RECOMMENDATIONS	50
	A. CONCLUSIONS	50
	B. RECOMMENDATIONS	51
VI.	. APPENDICES	52
	A. INLET SURVEY AT 48 DEGREES (STATIONS 1 THROUGH 1E)	52

B. HISTOGRAMS FROM STATIONS 2 THROUGH 15 FOR 50 DEG 64
C. HISTOGRAMS FROM STATIONS 16 THROUGH 19 FOR 50 DEG 86
D. TABLE OF SHIFT SELECTIONS AT PLUS OR MINUS 5 MHz 94
E. TUNNEL CALIBRATION DATA
F. SURVEYS FROM STATION 1 THROUGH 19 105
REFERENCES 127
INITIAL DISTRIBUTION LIST

LIST OF FIGURES

Figure 1. Low Speed Cascade Tunnel Schematic
Figure 2. CD Blade Pressure Tap Locations on Pressure and Suction Sides 5
Figure 3. LDV System Installation
Figure 4. Atomizer and Seeding Probe
Figure 5. Anodized Blades
Figure 6. LDV Fringe Pattern and Beam Arrangement
Figure 7. Inlet and Exit Pitchwise Survey Locations
Figure 8. Suction Side Passage Survey Locations
Figure 9. Pressure Distribution and Normal Force Coefficient
Figure 10. Survey at Station 1
Figure 11. Survey at Station 1A
Figure 12. Survey at Station 1B
Figure 13. Survey at Station 1C
Figure 14. Survey at Station 1D
Figure 15. Survey at Station 1E
Figure 16. Survey at Station 2
Figure 17. Survey at Station 2A
Figure 18 Survey at Station 2B

Figure 19. Survey at Station 3 3	0
Figure 20. Survey at Station 4	1
Figure 21. Survey at Station 5	2
Figure 22. Survey at Station 6	3
Figure 23. Survey at Station 7	4
Figure 24. Survey at Station 8	5
Figure 25. Survey at Station 9	6
Figure 26. Survey at Station 10	7
Figure 27. Survey at Station 11	8
Figure 28. Survey at Station 12	9
Figure 29. Survey at Station 13	0
Figure 30. Survey at Station 14	1
Figure 31. Survey at Station 15	2
Figure 32. Survey at Station 16	4
Figure 33. Survey at Station 17	5
Figure 34. Survey at Station 18 4	6
Figure 35. Survey at Station 19 4	7
Figure 36. Reverse Flow Regions 4	8

ACKNOWLEDGEMENTS

I would like to avail myself of this opportunity to thank Dr. Garth V. Hobson for taking so much of his time to explain the procedures involved in this project to me and for all his patience during his explanation. I would also like to thank Dr. Raymond Shreeve for his advice, which positively influenced my thesis. I would like to thank my wife Jaira and my children, Humbert and Kevin, for giving me the support to finish my studies at the Naval Postgraduate School. Jaira: you are the main reason in my life that helps me improve.

I. INTRODUCTION

A. BACKGROUND

The continuing effort to predict off-design performance and stalling behavior of compressor blades during the design phase has prompted studies to characterize the flow in and around leading edge separation bubbles of blades in cascade. Experimental studies have attempted to map viscous flow development in specific geometries. Recently Hobson and Shreeve [Ref. 1] reported detailed two-component (LDV) measurements of the flow through a controlled-diffusion (CD) compressor cascade at a Reynolds number of about 700,000, and at a very high-incidence angle (8 deg above design).

They obtained a laminar leading-edge separation, which reattached turbulent, and enclosed a (laminar) bubble on the suction surface of the blade. Consistent with measurements at lower incidence angles, the reattached suction surface boundary layer remained turbulent and attached over the rear part of the blade. Since boundary layer separation (for a code-validation test case) had not been achieved, the next step was to increase the incidence angle further to 10 deg above design and try to stall the (CD) blades. This was the motivation for the present study in which the flowfield through the CD cascade was extensively surveyed at a fixed incidence angle which was 2 deg greater than the previous incidence reported by Hobson and Shreeve [Ref. 1].

B. PURPOSE

The objective was to increase the inlet air angle beyond 48 degrees, as tested by Classick [Ref. 2], Murray [Ref. 3], Hobson and Shreeve [Ref. 1], and Wakefield [Ref. 4], to 50 degrees in an attempt to stall the blades. The intention was to determine the maximum turning or lift generated by the blades, and to determine the way in which the suction-side boundary layer separated. Would the leading-edge separation bubble grow or

would separation begin from the trailing edge where the boundary layer was fully turbulent. Two-dimensional laser deppler velocimeter measurements were to be taken in the pitchwise or blade-to-blade direction at most of the stations measured by Hobson and Shreeve [Ref. 1].

Prior to performing the above study, LDV measurements at 48 degrees were obtained in the inlet region in order to verify the results that both Hobson and Shreeve [Ref. 1] and Wakefield [Ref. 4] obtained during their experiments. This was desirable because Hobson and Shreeve had used different inlet guide vanes (IGV's) and, after new IGV's were installed, Wakefield performed only Hot-Wire measurements. A comparison of the measurements taken by the present author with those taken by Hobson and Shreeve at 48 degrees is presented in Appendix A. The study carried out at an inlet-air angle of 50 degrees is reported in the sections which follow.

II. TEST FACILITY AND INSTRUMENTATION

A. LOW-SPEED CASCADE WIND TUNNEL

The subsonic cascade wind tunnel and operating instrumentation were as described by Wakefield [Ref. 5]. The cascade had 20 blades, the flow Reynolds number, based on chord length, was approximately 700,000 and the inlet air angle was 48 and 50 deg.

The blades had a chord length of 5.01 in. and a spacing of 3 in. The blade coordinates and cascade geometry were reported by Elazar [Ref. 5]. Figure 1 shows the schematic of the cascade.

B. INSTRUMENTATION

1. Pneumatic Data Acquisition System

Blade surface static pressure measurements were recorded with a 48-channel Scanivalve. The pneumatic data acquisition system was the same as that described and used by Classick [Ref. 2] and the program "ACQUIRE" was used to perform the pressure measurements. Figure 2 shows the location of the pressure taps on blade number 10, the location of which is shown in Figure 1.

2. Laser-Doppler Velocimeter

The horizontal (U) and vertical (V) mean velocity components, U-turbulence, V-turbulence, and Reynolds stress were measured with a two-dimensional LDV system consisting of four major subsystems:(a) the laser and optics, (b) the data acquisition system, (c) the automated traverse table, and (d) the seeding probe. A photograph of the LDV equipment, traverse table, counters and oscilloscope is shown in Figure 3, which also shows the north endwall of the cascade.

Figure. 1 Low Speed Cascade Tunnel Schematic

Figure 2. CD Blade Pressure Tap Locations on Pressure and Suction Sides

Figure 3. LDV System Installation

a. Laser and Optics

A four beam, two color TSI model 9100-7 LDV system was used. The laser was a Lexell four-Watt Argon-Ion laser which was operated nominally at 2 Watts in a multi-line mode. Two colors, green (514.5 nm) and blue (488 nm) were selected by the color separator. The two beams were centered and split into a four beam arrangement to measure two velocity components at right angles to each other. Two Bragg cells shifted the frequency of one beam in each pair to allow measurement of reverse flows. The four beams then passed through a divergence section which improved the dimensions measuring volume. Two photo-detectors collected the scattered light after it passed through the same optics. Table 1 contains a summary of the characteristics of the LDV system.

TABLE 1

	INDEE I	
CHARACTERISTIC	BLUE BEAM	GREEN BEAM
WAVELENGTH	488 nanometers	514.5 nanometers
FRINGE SPACING	4.51 microns	4.76 microns
FOCAL LENGTH	762 mm	762 mm
NUMBER OF FRINGES	28	28
HALF ANGLE	3.10 degrees	3.10 degrees
MEASURING VOL. DIAM	133 micro meter	133 micro meter
MEASURING VOL. LENG	2.5 mm	2.5 mm
FREQ. SHIFT (FIND)	+ 5 Mhz	+ 5 Mhz
BEAM SPACING	82.5 mm	82.5 mm
ORIENTATION	HORIZONTAL.	VERTICAL
CHANNEL	2	1
FREQUENCY SHIFT	5 Mhz UP	5 Mhz DOWN

b. Data Acquisition

The data acquisition system consisted of two TSI Model 1990 counter-type signal processors and a 1998A Master Interface in which the signals from the photo-detectors were digitized. An oscilloscope attached to the input conditioner of the counters provided real-time display of the photomultiplier output. The digitized signals from the counters were send to an IBM PC in which the information was processed by

TSI proprietary software "FIND" version 4.0. Through this software it was possible to position the LDV at programmed locations and automatically take measurements in surveys at any desired increment.

c. Automated Traverse table

The automated three-axis traverse was Model 9500 from TSI. The traverse used stepping motors for positioning the optical table which rested between the upper support arms. Digital encoders along each axis provided positioning accuracy to 0.0001 inch. The traverse and encoder interface to the PC used RS-232C protocol.

d. Atomizer and Seeding Probe

Olive oil was used as a seed material in a TSI atomizer which produced approximately 1 micro-meter sized particles as measured by Elazar [Ref. 5]. The seeding wand was adjustable, however, the adjustment was done on an arc, perpendicular to the tunnel, thus the seeding was not always at midspan. This limited the distance over which the pitchwise surveys could be extended. Figure 4 shows the atomizer and seeding probe.

Figure 4. Atomizer and Seeding Probe

III. EXPERIMENTAL PROCEDURE

A. PRESSURE MEASUREMENTS AND FLOW VISUALIZATION

Once the tunnel was set up at 50 degrees and running at a plenum pressure of 12 inches of water (approximately 700,000 Reynolds number), the pressure measurements were taken as specified by Classick [Ref. 2].

The flow visualization was carried out by projecting a laser sheet from the bottom left of the cascade to blade number 14, and while the tunnel plenum pressure was set at 12 inches of water (gauge), fog was introduced through one of the endwalls. The flow pattern of the fog between the blades was illuminated by the laser sheet. This process was performed at night for better visibility. The process was filmed ussing an 8mm video camera.

B. TUNNEL SET-UP AND TEST-SECTION CONFIGURATION

For the present study, the 50 degree inlet flow angle was set by adjusting the inlet guide vanes and side walls to equalize the endwall static pressures on both upstream walls. The exit flow angle was adjusted by setting the tailboards at angles which gave nearly uniform downstream wall static pressure measurements in the pitchwise direction across the cascade. The average inlet flow angle was measured, with the LDV, over three passage widths, 31.3% of an axial chord length upstream of the blade leading edge. Fine adjustments of the inlet guide vanes were made to achieve an average inlet flow angle (as measured by the LDV) of 50.21 degrees.

Previous LDV measurements were taken between blades 7 and 8 which were anodized black to minimize reflections. Because of the present inlet flow angle setting of 50.21 deg., blade 8 was too close to the edge of the window. Thus blade 8 and 6 were

Figure 5. Anodized Blades

exchanged and all subsequent measurements during this study were taken between blades 6 and 7 as shown in Figure 5.

The tunnel reference velocity (Vref) was determined using the analysis of Elazar [Ref. 5]. At different tunnel speeds, the inlet flow velocity was measured (31.3% axial chord upstream) with the LDV, and the plenum pressure and temperature and ambient pressure were recorded. A least-squares curve fit was applied to the data to determine the calibration curve. During each subsequent run, the plenum and atmospheric conditions were recorded and used as input to a Newton method iteration algorithm to determine Vref. The result of this calibration is presented in Appendix E.

C. LASER SET-UP

The green beams of the laser were aligned vertically with the unshifted beam at the bottom and the blue beams were horizontal with the unshifted beam to the right, as shown in Figure 6. All surveys were conducted with the LDV optics "standard", i.e., the 488-nm blue beam measuring the horizontal velocity component (U), and the 514.5-nm green beam measuring the vertical velocity component (V). Down shifting was used in the following form; the green beam was downshifted by 5MHz and the blue beam was upshifted by 5MHz. The 1990 signal processors had the following settings: continuous (CONT) Mode; High Filter, 20MHz; Low Filter, 0.3MHz; Amplitude Limit, full counterclockwise; Cycles/Burst, 8; Comparison, 1 percent; Auto (green button), in; Voltage, External (EXT); Data Ready, Internal(INT); Gain, One (01); Resolution (No/SEC), One (01). For the Data Interface Master; Coincidence Mode, Range X1 and Delta Interval 2 to the power 3 micro-seconds was used throughout this study.

In the Optics screen of the acquisition menu of FIND the frequency shift was set to +5MHz on both channels. As the maximum reverse flow Doppler frequency was approximately 1MHz this level of 5MHz downshifting allowed the determination of reverse flow velocities, both in the mean and intermittently. The determination of this final selection is shown in Appendix D.

BLUE

Two Color Fringe Pattern

Beam Arrangement

Figure 6. LDV Fringe Pattern and Beam Arrangement

D. SURVEYS

1. Inlet Surveys at 48 and 50 Degrees

All LDV measurements presented herein were averaged over 3000 data points, and plus or minus 2 Standard Deviation histogram editing was performed for the flowfield distribution plots. The edited histograms were used to determine the edge of the separation and reverse flow regions.

The initial pitchwise survey at station 1 (Figure 7) was conducted over three passage widths to determine the flow periodicity. All subsequent inlet pitchwise surveys were traversed over a 4 in. distance, spanning the region of maximum seeding. The first three inlet surveys, at stations 1, 1a and 1b, were carried out with the LDV horizontal. Station 1b was repeated with the laser pitched upwards by 4 deg. The need for pitching was to allow for closer access to the leading edge, i.e., so that there would not be any blade shadow interference at the subsequent stations 1c-1e. At any time during the experiment, if the laser was either pitched or yawed, then the previous survey would be repeated to enable the determination of any errors due to the measurement volume orientation. The maximum spatial error, due to probe volume orientation, was calculated by Hobson and Shreeve [Ref. 1] to be 0.3mm. This error was because the probe volume was not parallel to the blade span, and therefore seed particles displaced from the actual measurement location could be measured. The location of the measurement volume was always referenced to the same location between the blades throughout the study. The alignment procedure is described by Elazar [Ref. 5].

2. Passage Surveys at 50 Degrees

Measurements were taken only on the suction side, over a two inch pitchwise distance. Figure 7 shows the positions for the passage surveys and each dot on the figure represents a measurement location. These dots were stretched away from the surface to approximate a boundary layer survey. The passage surveys (between blades 6 and 7) were conducted with the same LDV optics configuration specified for the inlet surveys. In addition, the LDV was yawed by 4 deg to the left and pitched upward by 2 deg to avoid

Figure 7. Inlet and Exit Pitchwise Survey Locations

X (TACH)

Figure 8. Suction Side Passage Survey Locations

the laser beams being shadowed by the blade. This was done for the suction side close to the leading edge, from station 2 to 7. At stations 7 to 15 the LDV was only yawed by 4 deg.

3. Wake Surveys at 50 Degrees

Wake surveys (between blades 6 and 7) were conducted with the same LDV optics configuration specified for the inlet surveys. The LDV was horizontal and perpendicular to the tunnel for stations 16 to 19 and the surveys were performed over two passage widths (6 inches). Figure 7 shows the positions for the wake surveys.

IV. RESULT AND DISCUSSION

A. BLADE SURFACE PRESSURE MEASUREMENTS

The upper plot of Figure 9 shows the blade surface pressure distribution measured by Dreon [Ref. 6] at 40 and 43 degrees, Armstrong [Ref. 7] at 48 degrees and the present work at 50 degrees. The integration of the area within the pressure distributions for each angle gave the Normal Force Coefficient. The lower plot (Normal Force Coefficient versus Angle of Attack) shows a drop-off in force (or lift) at 50 degrees, consistent with the observation that the cascade had entered into stall.

B. INLET SURVEYS (STATIONS 1 THROUGH 1E)

Figures 10 through 15 show the horizontal (U), vertical (V) components and the total velocity (Utot) distributions in the pitchwise direction ahead of the blades. At station 1, a disturbance in the total velocity profile is evident which is periodic and three inches apart. This disturbance corresponds to the spacing of the blades and thus the presence of the blades is now felt 30% of an axial chord ahead of the leading edges. This magnitude of upstream disturbance, was not evident at lower inlet air angles.

Station 1A (Fig. 11) shows measurement anomalies on the U component which are due to imperfections in the acrylic window. In subsequent figures (12 through 15) the total velocity (Utot) decreased as the flow approached the leading edge of blade number 6 and then increased again as the flow rounded the leading edge of the blade.

The final inlet profile (Fig. 15) shows a variation in total velocity of 40% (from 1.0 to 0.6) across the leading edge. This variation is less than that previously measured at 48 degrees inlet air angle (> 50% variations), and this too is an indication that stall had occurred.

Figure 9. Pressure Distribution and Normal Force Coefficient

Figure 10. Survey at Station 1

Figure 11. Survey at Station 1A

Figure 12. Survey at Station 1B

Figure 13. Survey at Station 1C

Figure 14. Survey at Station 1D

Figure 15. Survey at Station 1E

C. PASSAGE SURVEYS (STATIONS 2 THROUGH 15)

At station 2 only forward moving particles were measured, and the mean velocities (both U and V components) were all positive (Fig. 16). The discontinuity in the V/Vref profile between points 11 and 12 was unexplained. At station 2A the magnitude of the first data point dropped off significantly (Fig. 17). Upon examination of the histograms for the vertical velocity component it was found to contain reverse flow particles, which indicated that this region had intermittent reverse flow. The first data point at station 2B had a negative mean V velocity and a positive mean U velocity (Fig. 18), and this indicated the beginning of the leading edge reverse flow region (i.e., negative mean velocity on V). The following 5 data points had intermittent reverse flow histograms.

At station 3 the first three data points had negative mean velocities, both U and V, and then the following 7 data points had intermittent reverse flow particles. Station 4 only had intermittent reverse flow particles (no histograms with a negative mean) for the first 6 data points. The discontinuity in the profile as shown in Figure 20 illustrated the change over from intermittent reverse flow to all positive, or forward-moving particles. The profile at station 5 (Fig. 21) was very similar to that at station 4.

At station 6 (Fig. 22) the first two points showed only forward moving particles, the third data point had intermittent reverse flow, the next five data points were all positive and the ninth data point again had intermittent reverse flow. All other data points beyond the tenth point had histograms with only positive values. The first data point at station 7 (Fig. 23) only had positive moving particles, the second through sixteenth data points showed intermittent reverse flow and then all higher points were positive.

The first data point at station 8 (Fig. 24) had only positive particles, the next 17 data points showed intermittent reverse flow, and then all the points showed only positive flow. The mean flow profile once again showed a significant discontinuity in that region.

Stations 9 through 15 (Figs. 25 through 31) were similar in that they all showed regions of intermittent reverse flow close to the suction surface of the blade followed by the core flow where all the measured particles had positive velocity components.

Figure 16. Survey at Station 2

Figure 17. Survey at Station 2A

Figure 18. Survey at Station 2B

Figure 19. Survey at Station 3

Figure 20. Survey at Station 4

Figure 21. Survey at Station 5

Figure 22. Survey at Station 6

Figure 23. Survey at Station 7

Figure 24. Survey at Station 8

Figure 25. Survey at Station 9

Figure 26. Survey at Station 10

Figure 27. Survey at Station 11

Figure 28. Survey at Station 12

Figure 29. Survey at Station 13

Figure 30. Survey at Station 14

Figure 31. Survey at Station 15

It can be seen in Appendix B that for each station all the histograms to the left of the discontinuity had negative and positive velocities and the histograms to the right of the discontinuity had only positive velocities.

D. WAKE SURVEYS (STATIONS 16 THROUGH 19)

Figure 32 through 34 show the horizontal (U) and vertical (V) velocity components and the total velocity (Utot) distributions through the wakes at the exit of the cascade. Like the other surveys, each point in these plots represents a histogram of 3000 data points which where analyzed at plus and minus two standard deviations. The ones that delimited positive from negative velocities for each station are printed in Appendix C. Two features are evident in these plots; firstly, the width of the wake increased from station 16 to 19, and secondly, the region of intermittent reverse flow was within the wake on the suction side of the blade (to the left of the X=0 line for blade 6).

E. SUMMARY

Once all the histograms from each station were analyzed, the boundary of the region of intermittent reverse flow (last point of negative velocity at a station) was plotted for each station 2 through 19. This is shown in figure 36 with dotted lines. Also shown on this plot, with the solid line, is the region of reverse flow as determined by a negative mean velocity on the vertical component. This line represented the reverse flow region of the leading edge separation bubble which had been observed with flow visualization techniques. It was postulated that the reason reverse flow was measured in this region was because the flow was unsteady and seed particles were entrained into the leading edge separation bubble. This was not possible at lower inlet air angles because the flow was relatively steady compared to the present study. Flow visualization also confirmed the two distinct regions of intermittent reverse flow, as shown by the two regions of dotted lines; the lower region being associated with the leading edge separation bubble and the upper region representing the turbulent separation that occurred aft of mid chord.

Figure 32. Survey at Station 16

Figure 33. Survey at Station 17

Figure 34. Survey at Station 18

Figure 35. Survey at Station 19

Figure 36. Reverse Flow Regions

(H.)H1) A

More detailed surveys are needed between stations 6 and 7 to fully characterize the transition between these two regions.

V. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The lack of experimental data of compressor cascades at or near stall has been somewhat alleviated with the current set of detailed measurements. The following specific conclusions can be drawn.

- 1. The controlled diffusion (CD) cascade was successfully stalled. This was confirmed with the blade surface pressure measurements, which showed that for 50 degrees the normal force on the blade had decreased. Flow visualization techniques (both tufting and laser sheet with fog or smoke) also confirmed that the blades had stalled.
- 2. It was possible to measure both mean reverse flow and intermittent reverse flow with the LDV. With the appropriate use of frequency shifting it was possible to do these measurements with the certainty that the results from the histograms were correctly representing negative or positive velocities.
- 3. The regions of reverse flow were plotted. With the information obtained from each histogram at each station it was possible to plot regions of intermittent reverse flow and also a region of leading-edge reverse flow.
- 4. It was possible to take LDV measurements inside the reverse flow region during the stalling process, which was unsteady.
- 5. The inlet-flow pitchwise surveys at an inlet air angle of 48 degrees compared very well with previous measurements.

B. RECOMMENDATIONS

The following specific recommendations for further measurements at the 50 degrees inlet-air angle setting are proposed;

- 1. More detailed measurements should be taken in the leading edge separation bubble region (station 2 to 4).
- 2. More detailed measurements should be taken between stations 6 and 8 to further characterize the region of forward and intermittent reverse flow.
- 3. Detailed measurements are needed between stations 15 and 16 to determine the trailing edge base flow region.
- 4. Pressure side passage surveys are also needed.
- 5. Measurements away from mid span are needed to determine the degree of two dimensionality of the flow.

Blade surface pressure measurements at approximately 49 degrees inlet air angle are also needed to determine the maximum blade loading condition.

VI APPENDICES

A. INLET SURVEYS AT 48 DEGREES (STATIONS 1 THROUGH 1E) Pitchwise survey at station 1

X(1)	Y(i)	U/Vref	V/Vref	U-turb refer	V-turb refer	Reynolds Stress	Correl.
3	-6.292	0.74138	0.692654	1.463915	1.413083	0.067128	0.046882
2.75	-6.292	0.746466	0.692364	1.416979	1.283615	0.085471	0.06789
2.4999	-6.292	0.753923	0.688168	1.334609	1.346387	0.042565	0.034223
2.2499	-6.292	0.756578	0.682245	1.311649	1.348866	0.05643	0.04606
2	-6.292	0.753071	0.674006	1.300756	1.348572	0.017453	0.014374
1.75	-6.292	0.748567	0.67201	1.31101	1.306448	0.059379	0.050087
1.5	-6.292	0.742543	0.671287	1.303482	1.298236	0.043573	0.0372
1.25	-6.292	0.738081	0.670637	1.501345	1.348765	0.127392	0.090889
1	-6.292	0.738915	0.676326	1.574865	1.353234	0.120067	0.081395
0.75	-6.2921	0.735438	0.680991	1.61169	1.334633	0.115111	0.077315
0.4999	-6.292	0.738607		1.475767	1.369417	0.11728	0.083842
0.25	-6.292			1.509785		0.056298	0.036198
-0.0001	-6.292	0.744766		1.487172		0.093394	0.064144
-0.2501	-6.292			1.409122		0.002955	0.002307
~0.5001	-6.292		0.685292		1.362432	0.12184	0.088783
-0.75	-6.2 9 2	0.754739	0.683108	1.350538	1.25881	0.110055	0.093525
-1	-6.292	0.755145	0.678992	1.576743	1.411971	0.074725	0.048492

Pitchwise survey at station 1a

x(i)	Y(i)	U/Vref	V/Vref	U-turb refer	V-turb refer	Reynolds Stress	Correl.
1	-5.5	0.703738	0.644747		1.353239		0.092111
0.75	-5.5	0.700153	0.668084	1.394284	1.284097	0.127712	0.104707
0.5	-5.5	0.705206	0.687196	1.384214	1.217664	0.033909	0.029531
0.25	-5.5	0.718	0.702983	1.589035	1.464419	0.166871	0.105262
0	-5.5001	0.736945	0.71407	1.665003	1.373785	0.190951	0.122541
-0.2501	-5.5	0.758807	0.718859	1.72404	1.296312	-0.06843	-0.04495
-0.5	-5.5	0.782435	0.712994	1.508213	1.245929	0.064386	0.050296
-0.75	-5.5001	0.799708	0.693006	1.487321	1.454848	-0.00563	-0.00382
-1		0.800899	0.666727	1.479869	1.467399	-0.00566	-0.00383
-1.25	-5.5	0.779457	0.642881	1.482129	1.449028	-0.00456	-0.00311
-1.5	-5.5	0.749275	0.638938	1.373295	1.386049	0.071845	0.055405
-1.7501	-5.5	0.726591	0.651752	1.472721	1.426907	0.126707	0.088507
-2	-5.5	0.716153	0.670346	1.632892	1.457935	0.164624	0.101506
-2.25	-5.5	0.718584	0.692819	1.663465	1.428475	0.146736	0.090645
-2.5001	-5.5	0.728194	0.711438	1.754875	1.446504	0.188347	0.108915
-2.7501	-5.5	0.744533	0.725975	1.892023		0.139615	0.063169
-3	-5.5	0.763451	0.732077	1.694677	1.649282	0.01088	0.005714

Pitchwise survey at station 1b

X(i)	Y(i)	U/Vref	V/Vref	U-turb refer	V-turb refer	Reynolds Stress	Correl.
2	-5	0.958084	0.627842	1.607578	1.781224	0.096447	0.049347
1.75	− 5	0.853672	0.444457	1.729976	1.526591	0.025728	0.014273
1.5	-5	0.673285	0.487715	1.244763	1.41887	0.117505	0.097474
1.25	-5	0.63042	0.569016	1.298135	1.408513	0.060343	0.048351
1	-5	0.624632	0.626094	1.413872	1.319718	0.113958	0.089479
0.75	-5	0.632516	0.669163	1.375078	1.271422	0.162005	0.135761
0.4999	~5.0001	0.647871	0.703524	1.474691	1.29333	0.197921	0.152035
0.25	-5	0.668768	0.730604	1.378618	1.227758	0.152697	0.132172
0	-5	0.699079	0.755237	1.472813	1.265611	0.154464	0.121407
-0.2501	-5	0.738667	0.770627	1.907636	1.633206	-0.02761	-0.01298
-0.5	-5	0.791511	0.77656	1.580932	1.429406	0.100471	0.065138
-0.75	-5	0.866611	0.750163	1.757226	1.776589	-0.29205	-0.13706
-1	-5	0.931505	0.641569	1.729945	2.052353	0.062178	0.025658
~1.25	-5	0.827388	0.477815	1.866588	1.647463	0.104234	0.04966
-1.5	-5	0.677658	0.521568	1.426295	1.718446	0.149499	0.089363
-1.75	-5	0.640081	0.594843	1.475752	1.367188	0.244467	0.177518
-2	-5	0.63561	0.646967	1.527771	1.302694	0.204851	0.1508

Pitchwise survey at station 1c

X(1)	(i)Y	U/Vref	V/Vref	U-turb refer	V-turb r efe r	Reynolds Stress	Correl. Coeff.
2	-4.896	1.032942	0.655777	1.95444	2.395522	0.309529	0.09653
1.75	-4.896	0.899393	0.305473	4.000105	4.453251	-3.537	-0.28991
1.5	-4.896	0.611193	0.452963	1.218652	1.492263	0.128289	0.103002
1.25	-4.896	0.592662	0.560462	1.266566	1.320667	0.138072	0.120522
1	-4.896	0.596724	0.621573	1.264895	1.247186	0.166161	0.15379
0.75	-4.896	0.609269	0.668145	1.407681	1.275609	0.15649	0.127247
0.4999	-4.896	0.626958	0.705764	1.471754	1.314726	0.242738	0.183168
0.25	-4.896	0.65313	0.733446	1.490103	1.267063	0.210081	0.162463
0	-4.896	0.685123	0.765836	1.481566	1.287087	0.121722	0.093201
-0.25	-4.896	0.726156	0.787	1.542182	1.306153	0.117827	0.085408
-0.5	-4.896	0.78884	0.799841	1.883499	1.530384	-0.03132	-0.01587
-0.75	-4.896	0.884321	0.784678	1.922391	2.078085	-0.77927	-0.28482
-1	-4.896	1.019106	0.655669	2.272077	3.191467	-0.67551	-0.13602
-1.25	-4.896	0.846569	0.34376	2.641355	2.621281	-0.66567	
-1.5	-4.896	0.627775		1.513604	1.485803	0.192735	0.125133
-1.75	-4.896	0.609753	0.585436		1.327857	0.26045	0.18721
-2	-4.896	0.616697	0.645592	1.495324	1.342328	0.165122	0.120114

X(i)	Y(i)	U/Vref	V/Vref	U-turh	V-turb	Reynolds	Correl.
				refer	refer	Stress	Coeff.
2	-4.844	1.07927	0.691071	1.70938	2.788001	0.175375	0.05373
1.875	-4.844	1.187167	0.497841	3.30138	3.384047	1.44019	0.188222
1.75	-4.844	1.187167	0.497841	3.30138	3.384047	1.44019	0.188222
1.625	-4.844	0.577508	0.318685	1.266654	1.977669	0.232642	0.135599
1.5	-4.844	0.568449	0.450118	1.300276	1.457942	0.132569	0.102105
1.375	~4.8441	0.569421	0.518367	1.247914	1.316408	0.125447	0.111498
1.25	-4.844	0.573569	0.563031	1.317631	1.238009		0.149569
1.125	-4.844	0.577805	0.598154	1.354335	1.259156	0.17762	0.152079
1	-4.8441	0.58466	0.626691	1.316982	1.238104	0.177691	0.159115
0.875	~4.8441	0.591886	0.651528	1.421663	1.298462	0.20271	0.160336
0.75	-4.844	0.599771	0.672473	1.411686	1.197735	0.148799	0.128494
0.625	~4.844	0.609006	0.693352	1.542253	1.321696	0.154754	0.110851
0.5	-4.844	0.62082	0.711766	1.534475	1.310233	0.184049	
0.375	-4.844	0.63455	0.728728	1.519501	1.234516	0.170355	0.132599
0.2499	~4.844	0.649186	0.74463	1.482682	1.261745	0.127431	0.099457
0.125	-4.8441	0.66519	0.75998	1.454505	1.277603	0.122416	0.096185
0.0001	-4.844	0.680877	0.77378	1.423782	1.221272	0.16884	0.141775
-0.125	-4.844	0.699117	0.786315	1.466321	1.288817	0.18499	0.142925
-0.2501	-4.844	0.723446	0.799266	1.550707	1.289112	0.11641	0.085026
-0.3751	-4.844	0.748298	0.807987	1.524747	1.349774	0.108343	0.076864
-0.5	-4.844	0.78575	0.817583	1.755867	1.459877	0.037677	0.021461
-0.625	-4.844	0.829675	0.820534	1.750142	1.541152	0.114339	0.061895
-0.7501	-4.844	0.888058	0.812054	2.131969	2.158399	-0.63247	-0.20068
-0.875	-4.844	0.980107	0.778259	2.326029	2.584084	-1.17601	-0.28567
-1	-4.844	1.087523	0.683	2.355792	3.890212	-0.99661	-0.15878
-1,125	~4.844	1.164313	0.45077	4.517489	3.635272	2.47677	0.220208
-1.25	-4.844	0.795877	0.345364	3.956939	7.094027	-4.37986	-0.22782
-1.375	-4.844	0.619863	0.373951	1.557443	1.789111	0.141239	0.074009
~1.5	-4.844	0.601546	0.482327	1.528185	1.44206	0.223027	0.147768
-1.625	-4.844	0.597837	0.545238	1.65922	1.501836	0.200149	0.117276
-1.75	-4.844	0.598954	0.589662	1.510196	1.374525	0.216697	0.152423
-1.875	-4.844	0.60419	0.623358	1.480675	1.420208	0.218697	0.179625
-1.673	-4.844	0.608207	0.649622	1.460579	1.435412		
-2	-4.044	0.000207	U.047022	1.4000/9	1.435418	0.235375	0.163923

B. HISTOGRAMS FROM STATION 2 THROUGH 15 FOR 50 DEG

Position (rec/in) (-1.1233, 0.8000, -4.7905)

Velocity mean = 28.871

Velocity at cursor =

Percent at cursor =

-8.412

0.00

Percent at cursor = 0.00

Position (rec/in) (-0.9160, 0.8000, -4.5420) Velocity mean = -6.512

Velocity at cursor = 8.6% Percent at cursor = 8.23

Position (rec/in) (-9.8951, 8.8881, -4.5428) Velocity mean = -2.858

Velocity at cursor = 0.152 Percent at cursor = 0.75

Position (rec/in) (~8.8831, 8.8881, -4.5428) Velocity mean = 8.149

Velocity at cursor = 0.56 Percent at cursor = 1.14

Position (rec/in) (~8.7575, 8.8081, ~4.5428) Velocity mean = 65.897 Velocity at cursor = 0.00 Percent at cursor = 0.00

Position (rec/in) (-8.7811, 8.8881, -4.5428) Velocity mean = 48.572 Velocity at cursor = -0.442 Percent at cursor = 0.59

Position (rec/in) (-8.6498, 8.8801, -4.2920) Velocity at cursor = 8.50) Velocity mean = 46.338 Percent at cursor = 8.75

Fosition (rec/in) (-8.7167, 8.8881, -4.2928) Velocity at cursor = 8.551 Velocity mean = 27.553 Percent at cursor = 1.48

Position (rec/in) (-0.5489, 8.8881, -4.8428) Velocity mean = 36.661

Velocity at cursor = 0.551 Percent at cursor = 0.39

Position (rec/in) (-8.4982, 8.8881, -4.8419) Velocity mean = 47.428

Velocity at cursor = -8.444 Percent at cursor = 8.39

Position (rec/in) (-8.4642, 8.8881, -4.8428) Velocity mean = 59.529 Velocity at cursor = -8.86 Percent at cursor = -8.86

Position (rec/in) (-8.3825, 8.6661, -3.7919) Velocity mean = 45.139

Velocity at cursor = 0.7% Percent at cursor = 0.88

Position (rec/in) (-0.3725, 0.8881, -3.7928) Velocity mean = 51.862 Velocity at cursor = 0.163 Percent at cursor = 0.66

Position (rec/in) (-0.3614, 0.8881, -3.7928) Velocity mean = 43.358

Velocity at cursor = 8.47 Percent at cursor = 8.49

Position (rec/in) (-8.3494, 0.8881, -3.7928) Velocity mean = 53.849

Velocity at cursor = 8.2% Percent at cursor = 0.00

Position (rec/in) (-8.2808, 8.8861, -3.7928) Velocity mean = 57.984

Velocity at cursor = 0.321 Percent at cursor = 0.80

Position (rec/in) (-0.2688, 0.8801, -3.7921) Velocity mean \approx 40.410

Velocity at cursor = 8.5% Percent at cursor = 8.5%

8.00

Position (rec/in) (-8.1434, 8.8888, -3.2921) Velocity at cursor = 8.69 Velocity mean = 45.385 Velocity mean = 6.88

Fusition (rec/in) (8.2141, 8.8888, -3.2921) Wellocity mean = 69.234

Velocity at cursor = 0.269 Percent at cursor = 0.80

Position (rec/in) (8.2598, 8.8888, -3.2921) Velocity mean = 53.658

Velocity at cursor = -0.9% Percent at cursor = 1.14

Fosition (rec/in) (8.3188, 8.8888, -3.2921) Velocity mean = 71.261

Velocity at cursor = 8.765 Percent at cursor = 8.88

6.60

Velocity mean = 41.014

Position (rec/in) (8.4451, -8.6601, -2.7928) Velocity mean = 68.545 Velocity at cursor = 0.2% Percent at cursor = 0.88

Fosition (rec/in) (8.3949, -8.8081, -2.7920) Velocity mean = 52.282 Velocity at cursor = 0.623Percent at cursor = 0.65

Position (rec/in) (8.8862, -8.8881, -2.2928) Velocity Mean = 26.493 Velocity at cursor ~ 8.2f*
Percent at cursor - 8.68

Position (rec/in) (8.4894, -8.6001, -2.2920) Velocity mean = 53.267

Velocity at cursor = 0.00 Percent at cursor = 0.52

First tion (rec/in) (0.5397, -0.8881, -2.2929) Unicity mean = 78.118

Volocity at cursor - 0.00 Percent at cursor - 0.00

Position (rec/in) (8.1286, -8.8881, -1.7928) Velocity mean = 17.262

Velocity at cursor = -8.552 Percent at cursor = -8.98

Position (rec/in) (8.3988, -8.8681, -1.7928) Unincity mean = 46.474

Velocity at cursor = -8.5% Percent at cursor = -8.5%

Position (rec/in) (8.4365, -8.MM81, -1.7928) Unlacity mean = 59.378 Velocity at cursor - 8.687 Percent at cursor - 8.68

Position (rec/in) (8.1435, 8.6688, -1.2928) Velocity mean = 17.387

Velocity at cursor = -8,156 Percent at cursor = -8.39

Position (rec/in) (0.4594, 0.8000, -1.2921) Velocity mean = 45.363

Velocity at cursor = 0.99 Percent at cursor = 0.59

Fosition (rec/in) (6.5889, 8.8888, -1.2928) Velocity mean = 61.518

Velocity at cursor = -8.215 Percent at cursor = 9.80

Fosition (rec/in) (8.1238, 8.8888, -8.792R) Velocity mean = 13.858

Velocity at cursor = 0.235
Percent at cursor = 0.65

Position (rec/in) (8.5772, 8.6888, -8.7928) Velocity mean = 55.623

Velocity at cursor = 0.257
Percent at cursor = 0.29

Position (rec/in) (8.6325, 6.8866, -8.7928) Velocity mean = 64.765 Velocity at cursor - 8.86F Percent at cursor - 8.88

Position (rec/in) (8.2238, 8.8888, -8.5888) Velocity weam = 14.388 Velocity at cursor = 8.635 Fercent at cursor = 8.20

Position (rec/in) (8.6325, 8.8888, -8.4999) Velocity mean = 54.188

Velocity at cursor = 0.65% Fercent at cursor = 8.42

Position (rec/in) (8.6933, 8.8888, -8.4999) Unlocity mean = 56.998

Velocity at cursor = 0.131 Percent at cursor = 0.13

Position (rec/in) (8.1841, 8.8888, -8.2588) Velocity mean = 15.899

Velocity at cursor = 8.5% Percent at cursor = 8.33

Position (rec/in) (8.6735, 8.8881, -8.2581) Valocity mean = 53.496 Velocity at cursor = -8.12* Percent at cursor = -8.46

Position (rec/in) (8.7485, 8.8889, ~8.2581) Velocity mean = 67.198 Velocity at cursor = -8.145 Percent at cursor = -8.86

Position (rec/in) (8.1823, 8.8888, 9.8881) Velocity mean = 16.194

Velocity at cursor = 0.53 Percent at cursor = 8.42

Position (rec/in) (0.6118, 8.8888, 8.8881) Velocity mean = 58.777 Velocity at cursor = 8.23 Percent at cursor = 8.33

Position (rec/in) (8.6719, 8.6888, 8.6881) Velocity mean = 56.262

Velocity at cursor = 0.0% Percent at cursor = 0.00

C. HISTOGRAMS FROM STATION 16 THROUGH 19 FOR 50 DEG

Position (rec/in) (2.8749, 0.8881, 0.2628) Velocity mean ≈ 69.852

Velocity at cursor = 35,053 Percent at cursor = 0.00

Position (rec/in) (0.6250, 0.0001, 0.2620) Velocity mean = 47.020

Velocity at cursor = 0.397 Percent at cursor = 0.55

Position (rec/in) (0.1250, 0.0001, 0.2620) Velocity mean = 16.427

Velocity at cursor = -0.606 Percent at cursor = 0.68

Position (rec/in) (-0.1250, 0.8801, 0.2628) Velocity mean = 70.683 Velocity at cursor = 31.548
Percent at cursor = 0.00

Position (rec/in) (0.7500, 0.0001, 0.3620) Velocity mean = 53.464 Velocity at cursor = 0.068 Percent at cursor = 0.00

Position (rec/in) (8.6258, 8.8881, 8.3628) Velocity mean = 47.268 Velocity at cursor = 0.0%
Percent at cursor = 0.42

Position (rec/in) (-0.0001, 0.0001, 0.3620) Velocity mean = 17.474

Velocity at cursor = -0.174 Percent at cursor =

Percent at cursor =

8.88

Position (rec/in) (8.7500, 0.0000, 0.6779) Velocity mean = 54.324

Velocity mean = 45.557

Velocity at cursor = -0.268
Percent at cursor = 0.68

Percent at cursor = 0.23

Percent at cursor =

0.49

Position (rec/in) (0.6250, 0.8880, 1.8628) Velocity mean = 44.614 Velocity at cursor = -0.263 Percent at cursor = 0.00

Position (rec/in) (8.4999, 0.8888, 1.8628)Velocity mean = 38.523 Velocity at cursor = 0.083 Percent at cursor = 0.29

80.8

Velocity mean = 25.447

D. TABLE OF SHIFT SELECTION AT PLUS OR MINUS 5MHZ AND LDV MEASUREMENTS.

BLUE BEAM (NORMAL FLOW), FRINGES DIRECTION → FLOW DIRECTION →

SHIFT	FIND SOFTWARE	VELOCITY M/S	FREQUENCY MHZ
0	0	-	-
UP 5	0	22.832	5.128
DOWN 5	0	21.501	4.702
UP 5	+ 5	0.492	5.213
DOWN 5	+ 5	-1.689	4.639
UP 5	- 5	45.031	5.063
DOWN 5	- 5	44.823	4.889

BLUE BEAM (REVERSE FLOW), FRINGES DIRECTION → FLOW DIRECTION ←

SHIFT	FIND SOFTWARE	VELOCITY M/S	FREQUENCY MHZ
0	0	•	-
UP 5	0	20.597	4.622
DOWN 5	0	24.232	5.422
UP 5	+5	-2.253	4.543
DOWN 5	+ 5	1.710	5.363
UP 5	- 5	43.005	4.576
DOWN 5	- 5	46.660	5.347

This two tables shows that with the shifter at UP 5MHz and FIND software at +5 it is possible to measured a positive and negative velocity (normal and reverse flow).

GREEN BEAN (NORMAL FLOW), FRINGES DIRECTION ↓ FLOW DIRECTIONS ↑

SHIFT	FIND SOFTWARE	VELOCITY M/S	FREQUENCY MHZ
0	0	2.389	0.481
UP 5	0	21.795	4.549
DOWN 5	0	25.433	5.284
UP 5	+ 5	-2.116	4.682
DOWN 5	+ 5	1.724	5.350
UP 5	-5	45.805	4.401
DOWN 5	- 5	49.137	5.392

GREEN BEAN (REVERSE FLOW), FRINGES DIRECTION ↓ FLOW DIRECTIONS ↓

SHIFT	FIND SOFTWARE	VELOCITY M/S	FREQUENCY MHZ
0	0	6.077	1.282
UP 5	0	29.226	6.136
DOWN 5	0	17.658	3.725
UP 5	+ 5	5.025	6.185
DOWN 5	+ 5	-6.355	3.672
UP 5	- 5	53.047	6.185
DOWN 5	- 5	41.470	3.757

This two tables shows that with the shifter at DOWN 5MHz and FIND software at +5 it is possible to measured a positive and negative velocity (normal and reverse flow).

E. TUNNEL CALIBRATION DATA

ეტების გენის გ	C
•	č
OUTPUT FROM PROGRAM CALIBRATE	Č
	c
	ċ

LEAST SQUARES STRAIGHT LINE CURVE FIT IS USED TO DETERMINE TUNNEL CHARACTERISTICS AT DIFFERENT SPEEDS

NEWTON S METHOD IS USED TO DETERMINE THE REFERENCE VELOCITY FROM THE RECORDED AMBIENT PRESSURE AND TUNNEL PLENUM PRESSURE AND TEMPERATURE

BEGIN DETERMINING TUNNEL CHARACTERISTICS FROM THE FOLLOWING MEASURED VALUES

AXIAL VEL. M PER SEC	TANGENTIAL VEL. M PER SEC.	AMBIENT PRESS. INCHES MERCURY	PLENUM PRESS. INCHES WATER	PLENUM TEMP. DEG. C.
19.9600	24.6660	29.8941	2.0000	17.7778
32.0520	39.2970	29.8941	4.7000	18.0556
39.7110	48.1900	29.8941	7.3000	18.8889
46.6360	55.9700	29.9841	10.0000	19.4444
50.9830	61.5980	29.9841	12.0000	20.0000
54.9530	66.2070	29.9841	14.1000	20.5556

CALCULATED VALUES FOR THE TUNNEL CONFIGURATION

TOTAL VALOCITY	MACH NUMBER	MACH NUMBER FUN	CT. PRESSURE RATIO
0.317303192E+02	0.414931434E-01	0.599998018E-02	-0.193311650E+03
0.507107968E+02	0.662819212E-01	0.152081979E-01	-0.816858085E+U2
0.6244389182+02	0.815012269E-01	0.228644274E-01	-0.522360685E+02
0.728529848E+02	0.949967822E-01	0.308775796E-01	-0.379793300E+02
0.799598643E+02	0.104164963E+00	0.369544196E-01	-0.314827750E+02
0.860418448E+02	0.111981989E+00	0.425268503E-01	-0.266449149E+02

CALLING LEAST SQUARES SUBROUTINE
TO DETERMINE THE PRESSURE RATIO AS A FUNCTION OF MACH NO. PARAM

PRESSURE RATIO = A1 * ANUX + A0

MATRIX EQUATION

0.60E+01	-0.42E+03 A0	0.15E+00
-0.42E+03	0.50E+05 A1	-0.71E+01

A1 = 0.19109469172E-03 A0 = 0.39221597704E-01

REFERENCE CONDITIONS FOR EACH RUN
AMBIENT PRESSURE PLENUM PRESSURE PLENUM TEMPERATURE RUN NAME
INCHES MERCURY INCHES WATER DEGREES CELSIUS

```
29.8737
             12.0000
                               18.8889
                                                  0514s11.PRN
29.8737
             12.0000
                               20.0000
                                                  0514s1a1.PRN
29.8684
                               22.7778
             12.0000
                                                  0514s1b1.PRN
29.8481
             12.0000
                               22.2222
                                                  0514s1c1.PRN
29.8481
             12.0000
                               22.7778
                                                  0514s1d1.PRN
29.8481
             12.0000
                               22.7778
                                                  0514sle1.PRN
30.0110
             12.1000
                               21.1111
                                                  0511s21.PRN
30.0110
             12.1000
                               21.1111
                                                  0511s2a1.PRN
30.0110
             12.1000
                               22.2222
                                                  0511s2b1.PRN
29.9702
             12.2000
                               20.5556
                                                  0512s31.PRN
                               21.1111
29.9906
             12.2000
                                                  0512s41.PRN
29.9906
             12.1000
                               21.1111
                                                  0512s51.PRN
29.9906
             12.1000
                               21.1111
                                                  0512s61.PRN
29.9092
             12.1000
                               22.2222
                                                  0507s71.PRN
29.9295
             12.2000
                               22.7778
                                                  0508s81.PRN
             12.2000
                               22.7778
29.9295
                                                  0507s91.PRN
29.9295
             12.2000
                               22.7778
                                                  0507s101.PRN
29.9295
                               23.3333
                                                  0507s111.PRN
             12.2000
29.9499
             12.2000
                              23.3333
                                                  0507s121.PRN
29.9499
            12.2000
                               23.3333
                                                  0507s131.PRN
                               21.1111
                                                  0508s141.PRN
30.0110
            12.0000
                                                  0508s151.PRN
29.9906
             12.0000
                               21.6667
                               21.6667
                                                  0514s161.PRN
29.8684
             12.0000
29.8684
             12.0000
                               22.2222
                                                  0514s171.PRN
29.8684
             12.0000
                               22.2222
                                                  0514s181.PRN
29.8684
             12.0000
                               22.2222
                                                  0514s191.PRN
```

PRESSURE RATIO = -31.36317 MACH NUMBER PARAMETER = 0.4151E-01 RUN NAME = 0514s11.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. = 0.104363 ERROR TERM = -0.6401E-02
ITERATION NUMBER 2 MACH NO. PARAM. = 0.110764 ERROR TERM = 0.1655E-03
ITERATION NUMBER 3 MACH NO. PARAM. = 0.110598 ERROR TERM = 0.5999E-07
ITERATION NUMBER 4 MACH NO. PARAM. = 0.110598 ERROR TERM = -0.1731E-10

VREF = 84.73722268314

I = 2
PRESSURE RATIO = -31.36317 MACH NUMBER PARAMETER = 0.4151E-01
RUN NAME = 0514s1a1.PRN

BEGIN NEWTON ITERATION

 ITERATION NUMBER
 1
 MACH NO. PARAM. = 0.104165
 ERROR TERM = -0.6610E-02

 ITERATION NUMBER
 2
 MACH NO. PARAM. = 0.110775
 ERROR TERM = 0.1765E-03

 ITERATION NUMBER
 3
 MACH NO. PARAM. = 0.110598
 ERROR TERM = 0.7161E-07

 ITERATION NUMBER
 4
 MACH NO. PARAM. = 0.110598
 ERROR TERM = 0.7161E-07

VREF = 84.89826103496

I = 3

PRESSURE RATIO = -31.35743 MACH NUMBER PARAMETER = 0.4151E-01 RUN NAME = 0514s1b1.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER	1	MACH NO.	PARAM.	=	0.103675	ERROR	TERM =	-0.7129E-02
ITERATION NUMBER	2	MACH NO.	PARAM.	=	0.110804	ERROR	TERM =	0.2053E-03
ITERATION NUMBER	3	MACH NO.	PARAM.	=	0.110598	ERROR	TERM =	0.1066E-06
ITERATION NUMBER	4	MACH NO.	PARAM.	=	0.110598	ERROR	TERM =	-0.3074F-10

VREF = 85.29953401308

I = 4
PRESSURE RATIO = -31.33544 MACH NUMBER PARAMETER = 0.4151E-01
RUN NAME = 0514s1c1.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER	1	MACH NO.	PARAM. = 0.103772	ERROR TERM =	-0.7025E-02
ITERATION NUMBER	₹ 2	MACH NO.	PARAM. = 0.110798	ERROR TERM =	0.1994E-03
ITERATION NUMBER	3	MACH NO.	PARAM. = 0.110598	ERROR TERM =	0.9887E-07
ITERATION NUMBER	₹ 4	MACH NO.	PARAM. = 0.110598	ERROR TERM =	-0.2852E-10

VREF = 85.21942480550

I = 5 PRESSURE RATIO = -31.33544 MACH NUMBER PARAMETER = 0.4151E-01 RUN NAME = 0514s1d1.PRN

BEGIN NEWTON ITERATION

ITERATION NU	MBER 1	MACH NO.	PARAM. = 0	.103675 ERROI	R TERM =	-0.7129E-02
ITERATION NU	MBER 2	MACH NO.	PARAM. = 0).110804 ERROI	TERM =	0.2053E-03
ITERATION NU	MBER 3	MACH NO.	PARAM. = 0).110598 ERROI	R TERM =	0.1066E-06
ITERATION NU	MBER 4	MACH NO.	PARAM. = 0).110598 ERROI	R TERM =	-0.3074E-10

VREF = 85.29953401308

I = 6
PRESSURE RATIO = -31.33544 MACH NUMBER PARAMETER = 0.4151E-01
RUN NAME = 0514sle1.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER	1	MACH NO.	PARAM.	=	0.103675	ERROR '	TERM =	-0.7129E-02
ITERATION NUMBER	2	MACH NO.	PARAM.	**	0.110804	ERROR '	TERM =	0.2053E-03
ITERATION NUMBER	3	MACH NO.	PARAM.	*	0.110598	ERROR '	TERM =	0.1066E-06
TTERATION NUMBER	4	MACH NO.	PARAM.	=	0.110598	ERROR '	TERM =	-0.3074E-10

VREF = 85.29953401308

I = 7
PRESSURE RATIO = -31.24322 MACH NUMBER PARAMETER = 0.4153E-01
RUN NAME = 0511s21.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER	1	MACH NO.	PARAM.	=	0.103968	ERROR	TERM =	-0.6846E-02
ITERATION NUMBER	2	MACH NO.	PARAM.	=	0.1 0814	ERROR	TERM =	0.1893E-03
ITERATION NUMBER	3	MACH NO.	PARAM.	=	0.1_0625	ERROR	TERM -	0.8621E-07
ITERATION NUMBER	4	MACH NO.	PARAM.	=	0.110625	ERROR	TERM =	-0.2489E-10

VREF = 85.07919440271

I = 8
PRESSURE RATIO = -31.24322 MACH NUMBER PARAMETER = 0.4153E-01
RUN NAME = 0511s2a1.PRN

BEGIN NEWTON ITERATION

ITERATION NUMB	ER 1	MACH NO.	PARAM. = 0.103968	ERROR TERM =	-0.6846E-02
ITERATION NUMB	ER 2	MACH NO.	PARAM. = 0.110814	ERROR TERM =	0.1893E-03
ITERATION NUMB	ER 3	MACH NO.	PARAM. = 0.110625	ERROR TERM =	0.8621E-07
ITERATION NUMB	ER 4	MACH NO.	PARAM. = 0.110625	ERROR TERM =	-0.2489E-10

VREF = 85.07919440271

I = 9
PRESSURE RATIO = -31.24322 MACH NUMBER PARAMETER = 0.4153E-01
RUN NAME = 0511s2b1.PRN

BEGIN NEWTON ITERATION

ITERATION	NUMBER	1	MACH NO.	PARAM.	=	0.103772	ERROR	TERM =	-0.7053E-02
ITERATION	number	2	MACH NO.	PARAM.	-	0.110826	ERROR	TERM =	0.2009E-03
ITERATION	NUMBER	3	MACH NO.	PARAM.	=	0.110625	ERROK	TERM =	0.1007E-06
ITERATION	NUMBER	4	MACH NO.	PARAM.	=	0.110625	ERROR	TERM =	-0.2908E-10

VREF = 85.23966280667

I = 10 PRESSURE RATIO = -30.93546 MACH NUMBER PARAMETER = 0.4155E-01 RUN NAME = 0512831.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. = 0.104066 ERROR TERM = -0.6770E-02

```
        ITERATION NUMBER
        2
        MACH NO. PARAM. = 0.110836
        ERROR TERM = 0.1850E-03

        ITERATION NUMBER
        3
        MACH NO. PARAM. = 0.110651
        ERROR TERM = 0.8108E-07

        ITERATION NUMBER
        4
        MACH NO. PARAM. = 0.110651
        ERROR TERM = -0.2344E-10
```

VREF = 85,01903047416

I = 11 PRESSURE RATIO = -30.95720 MACH NUMBER PARAMETER = 0.4155E-01 RUN NAME = 0512841.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER	1	MACH NO.	PARAM.	=	0.103968	ERROR TER	M =	-0.6874E-02
ITERATION NUMBER	2	MACH NO.	PARAM.	=	0.110842	ERROR TER	M =	0.1908E-03
ITERATION NUMBER	3	MACH NO.	PARAM.	=	0.110651	ERROR TER	M =	0.8790E-07
ITERATION NUMBER	4	MACH NO.	PARAM.	=	0.110651	ERROR TER	M =	-0.2540E-10

VREF = 85.09939011711

I = 12 PRESSURE RATIO = -31.22131 MACH NUMBER PARAMETER = 0.4153E-01 RUN NAME = 0512851.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER	1	MACH NO.	PARAM.	=	0.103968	ERROR TERM =	-0.6846E-02
ITERATION NUMBER	2	MACH NO.	PARAM.	==	0.110814	ERROR TERM =	0.1893E-03
ITERATION NUMBER	3	MACH NO.	PARAM.	=	0.110625	ERROR TERM =	0.8621E-07
ITERATION NUMBER	4	MACH NO.	PARAM.	**	0.110625	ERROR TERM =	-0.2489E-10

VREF = 85.07919440271

I = 13
PRESSURE RATIO = -31.22131 MACH NUMBER PARAMETER = 0.4153E-01
RUN NAME = 0512s61.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER	1	MACH NO.	PARAM.	= 0.103968	ERROR TERM =	-0.6846E-02
ITERATION NUMBER	2	MACH NO.	PARAM.	= 0.110814	error term =	0.1893E-03
ITERATION NUMBER	3	MACH NO.	PARAM.	= 0.110625	ERROR TERM =	0.8621E-07
ITERATION NUMBER	4	MACH NO.	PARAM.	= 0.110625	ERROR TERM =	-0.2489E-10

VREF = 85.07919440271

I = 14 PRESSURE RATIO = -31.13385 MACH NUMBER PARAMETER = 0.4153E-01 RUN NAME = 0507871.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. = 0.103772 ERROR TERM = -0.7053E-02 ITERATION NUMBER 2 MACH NO. PARAM. = 0.110826 ERROR TERM = 0.2009E-03 ITERATION NUMBER 3 MACH NO. PARAM. = 0.110625 ERROR TERM = 0.1007E-06 ITERATION NUMBER 4 MACH NO. PARAM. = 0.110625 ERROR TERM = -0.2908E-10

VREF = 85.23966280667

I = 15
PRESSURE RATIO = -30.89209 MACH NUMBER PARAMETER = 0.4155E-01
RUN NAME = 0508s81.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. = 0.103675 ERROR TERM = -0.7184E-02
ITERATION NUMBER 2 MACH NO. PARAM. = 0.110859 ERROR TERM = 0.2084E-03
ITERATION NUMBER 3 MACH NO. PARAM. = 0.110651 ERROR TERM = 0.1105E-06
ITERATION NUMBER 4 MACH NO. PARAM. = 0.110651 ERROR TERM = -0.3193E-10

VREF = 85.34004386482

I = 16 PRESSURE RATIO = -30.89209 MACH NUMBER PARAMETER = 0.4155E-01 RUN NAME = 0507s91.PRN

BEGIN NEWTON ITERATION

 ITERATION NUMBER
 1
 MACH NO. PARAM. = 0.103675
 ERROR TERM = -0.7184E-02

 ITERATION NUMBER
 2
 MACH NO. PARAM. = 0.110859
 ERROR TERM = 0.2084E-03

 ITERATION NUMBER
 3
 MACH NO. PARAM. = 0.110651
 ERROR TERM = 0.1105E-06

 ITERATION NUMBER
 4
 MACH NO. PARAM. = 0.110651
 ERROR TERM = -0.3193E-10

VREF = 85.34004386482

I = 17
PRESSURE RATIO = -30.89209 MACH NUMBER PARAMETER = 0.4155E-01
RUN NAME = 0507s101.PRN

BEGIN NEWTON ITERATION

 ITERATION NUMBER
 1
 MACH NO. PARAM. = 0.103675
 ERROR TERM = -0.7184E-02

 ITERATION NUMBER
 2
 MACH NO. PARAM. = 0.110859
 ERROR TERM = 0.2084E-03

 ITERATION NUMBER
 3
 MACH NO. PARAM. = 0.110651
 ERROR TERM = 0.1105E-06

 ITERATION NUMBER
 4
 MACH NO. PARAM. = 0.110651
 ERROR TERM = -0.3193E-10

VREF = 85.34004386482

I = 18

PRESSURE RATIO = -30.89209 MACH NUMBER PARAMETER = 0.4155E-01 RUN NAME = 0507s111.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBI	er 1	MACH NO.	PARAM. = 0.103578	ERROR TERM =	-0.7288E-02
ITERATION NUMBI	SR 2	MACH NO.	PARAM. = 0.110865	ERROR TERM =	0.2145E-03
ITERATION NUMBI	SR 3	MACH NO.	PARAM. = 0.110651	ERROR TERM =	0.1188E-06
ITERATION NUMBI	2R 4	MACH NO.	PARAM. = 0.110651	ERROR TERM =	-0.3432E-10

VREF = 85.42010151240

I = 19

PRESSURE RATIO = -30.91383 MACH NUMBER PARAMETER = 0.4155E-01 RUN NAME = 0507s121.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER	1	MACH NO. PAR	RAM. = 0.103578	ERROR TERM =	-0.7288E-02
ITERATION NUMBER	2	MACH NO. PAR	RAM. = 0.110865	ERROR TERM =	0.2145E-03
ITERATION NUMBER	3	MACH NO. PAR	RAM. = 0.110651	ERROR TERM =	0.1188E-06
ITERATION NUMBER	4	MACH NO. PAR	RAM. = 0.110651	ERROR TERM =	-0.3432E-10

VREF = 85.42010151240

I = 20

PRESSURE RATIO = -30.91383 MACH NUMBER PARAMETER = 0.4155E-01 RUN NAME = 0507s131.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER	1	MACH NO.	PARAM. = 0.1035	78 ERROR TERM =	-0.7288E-02
ITERATION NUMBER	2	MACH NO.	PARAM 0.1108	65 ERROR TERM =	0.2145E-03
ITERATION NUMBER	3	MACH NO.	PARAM. = 0.1100	551 ERROR TERM =	0.1188E-06
ITERATION NUMBER	4	MACH NO.	PARAM. = 0.1106	551 ERROR TERM =	-0.3432E-10

VREF = 85.42010151240

I = 21 PRESSURE RATIO = -31.51192 MACH NUMBER PARAMETER = 0.4151E-01 RUN NAME = 0508s141.PRN

BEGIN NEWTON ITERATION

ITERATION I	NUMBER	1	MACH NO.	PARAM.	=	0.103968	ERROR	TERM	=	-0.6818E-02
ITERATION I	NUMBER	2	MACH NO.	PARAM.	=	0.110786	ERROR	TERM	=	0.1878E-03
ITERATION I	NUMBER	3	MACH NO.	PARAM.	=	0.110598	ERROR	TERM	=	0.8454E-07
TTEDATION I	MIMBER	4	MACH NO.	PARAM.	=	0.110598	ERROR	TERM	=	-0.2439E-10

VREF = 85.05899450070

I = 22

PRESSURE RATIO = -31.48982 MACH NUMBER PARAMETER = 0.4151E-01 RUN NAME = 0508s151.PRN

BEGIN NEWTON ITERATION

 ITERATION NUMBER
 1
 MACH NO. PARAM. = 0.103870
 ERROR TERM = -0.6922E-02

 ITERATION NUMBER
 2
 MACH NO. PARAM. = 0.110792
 ERROR TERM = 0.1936E-03

 ITERATION NUMBER
 3
 MACH NO. PARAM. = 0.110598
 ERROR TERM = 0.9153E-07

 ITERATION NUMBER
 4
 MACH NO. PARAM. = 0.110598
 ERROR TERM = -0.2640E-10

VREF = 85.13925466046

I = 23

PRESSURE RATIO = -31.35743 MACH NUMBER PARAMETER = 0.4151E-01 RUN NAME = 0514s161.PRN

BEGIN NEWTON ITERATION

VREF = 85.13925466046

I = 24

PRESSURE RATIO = -31.35743 MACH NUMBER PARAMETER = 0.4151E-01 RUN NAME = 0514s171.PRN

BEGIN NEWTON ITERATION

 ITERATION NUMBER
 1
 MACH NO. PARAM. = 0.103772
 ERROR TERM = -0.7025E-02

 ITERATION NUMBER
 2
 MACH NO. PARAM. = 0.110798
 ERROR TERM = 0.1994E-03

 ITERATION NUMBER
 3
 MACH NO. PARAM. = 0.110598
 ERROR TERM = 0.9887E-07

 ITERATION NUMBER
 4
 MACH NO. PARAM. = 0.110598
 ERROR TERM = 0.9887E-07

VREF = 85.21942480550

I = 25

PRESSURE RATIO = -31.35743 MACH NUMBER PARAMETER = 0.4151E-01 RUN NAME = 0514s181.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER 1 MACH NO. PARAM. = 0.103772 ERROR TERM = -0.7025E-02

```
      ITERATION NUMBER
      2
      MACH NO. PARAM. = 0.110798
      ERROR TERM = 0.1994E-03

      ITERATION NUMBER
      3
      MACH NO. PARAM. = 0.110598
      ERROR TERM = 0.9887E-07

      ITERATION NUMBER
      4
      MACH NO. PARAM. = 0.110598
      ERROR TERM = -0.2852E-10
```

VREF = 85.21942480550

I = 26
PRESSURE RATIO = -31.35743 MACH NUMBER PARAMETER = 0.4151E-01
RUN NAME = 0514s191.PRN

BEGIN NEWTON ITERATION

ITERATION NUMBER	1	MACH NO.	PARAM.	=	0.103772	ERROR	TERM =	-0.7025E-02
ITERATION NUMBER	2	MACH NO.	PARAM.	-	0.110798	ERROR	TERM -	0.1994E-03
ITERATION NUMBER	3	MACH NO.	PARAM.	=	0.110598	ERROR	TERM =	0.9887E-07
ITERATION NUMBER	4	MACH NO.	PARAM.	*	0.110598	ERROR	TERM =	-0.2852E-10

VREF = 85.21942480550

EXPERIMENT	NUMBER	REFERENCE	VELOCITY	NAME
1		84.73	372	0514s11.PRN
2		84.89	983	0514s1a1.PRN
3		85.29	995	0514s1b1.PRN
4		85.23	194	0514s1c1.PRN
5		85.29	995	0514s1d1.PRN
6		85.29	995	0514slel.PRN
7		85.07	792	0511s21.PRN
8		85.07	792	0511s2a1.PRN
9		85.23	397	0511s2b1.PRN
10		85.01	190	0512s31.PRN
11		85.09	994	0512s41.PRN
12		85.07	792	0512s51.PRN
13		85.07	792	0512s61.PRN
14		85.23	397	0507 s 71.PRN
15		85.34	100	0508 s 81.PRN
16		85.34	100	0507 s 91.PRN
17		85.34	100	0507s101.PRN
18		85.42	201	0507s111.PRN
19		85.42	201	0507s121.PRN
20		85.42	201	0507s131.PRN
21		85.09	590	0508s141.PRN
22		85.13	393	0508s151.PRN
23		85.13	393	0514s161.PRN
24		85.21	L94	0514s171.PRN
25		85.21	194	0514s181.PRN
26		85.21	L94	0514s191.PRN

F. SURVEYS FROM STATION 1 THROUGH 19

UNCOME	Contract	0,000.0		71000	T COOK	0.0212	6.013	3 59	6.0455	0.0440	9000			1		2000	70.00			200	200	2000			5 8 8 E	D.0146			Y S				3	0.0726	9.0029	0.000555	0.00299	0.00822	-0.00643	0.0245	0.0503	0.0117	0.0489	0.00474	0.045	3.129	7 CW 0				, c	0.0747	. c. 11.	0.0517	9776
UV-Reyn. U		2				0.70																30.5		r i	0.233	<u>4</u>		B C	2.5		- W		1000	78.7			0.0564			2.07	3	1.27	1.74	-0.153	1.33	2.8	0.818	6.43	77.5	7	- 66 - 66 - 66 - 66 - 66 - 66 - 66 - 66	57 .	91.7	0.93	9
UV-Angle	1	4.1	8	8		7.5		8	8	8	9	S	į	P. C	30.8	5	Ş		9	9.0	8	8		3	20.5	8	5	Š	?		N. Amele	100 P		9.00	200	5.10	20.7	9.0	37.1	43.3	38.5	13.1	9.67	51.3	52	52.9	7 55		5	9 9	7 Q	7.04	9 9	6.74	2.0
Contract		0.7804	0.500070			70000			0.951787	0.000	0.962877	747			P/2010	2773	O GLELSS	0.0000		0.942315	0.966867	0.056257			0.987888	0.004157	0 004157	0.000			1 BretAver		0.061307	17/108:0	0.854038	U.WOTO/A		0.00077	0.76091	0.546696	0.808026	0.068097	0.988395	0.97764	0.967039	0.956794	0.926001	O SORRES	0.00000	00000	0.32220	U. W. W. W. W. W.	2000	3.83/616	0.971751
V.T u		2727			000000																					3.516283	1 480001	3 300053			Y.T.T.	3	20030	4 30000	2.404594	*.03K0	4.0014	4.013/77	5.034848	5.418096	5.466626	5.60062	6.200679	6.271504	6.317677	5.471067	5.198326	4 933903	4 719246	4 667842	70000	4./00004 6.704064	3.36.120	4.863/15	5.355176
U-TSB		27.00.27																										3 542624			U-Turb	,	1728no	204070			3.300043	7000170	23.61178	21.00.12	24.37175	22.57.224	7.826425	7.160167	6.523476	5,497165	6.7729568	7.000460	5 075579	A 04546.	A 006177			71,017.0	3./ eU32/
												0.611362													0.01808	0.613662	0.611302	0.600681			/V		0 564204	0.564784	667137	0.000		70/10/0	0.0000	0.01/200	0.033686	0.633686	0.628986	0.614853	0.596007	0.578339	0.552426	0.580871	0.578339	0.500363	O RIGHTS	2000	0 644048		
				736.5																			A 737878			0745473	745836	0.730556		8	3		0.785822	0 751487	200707				C-450575		0.4842	J. 542474	0.738531	0.76091	0.762088	0.785622	2,7442	0.713795	9.702016	0.702016	2.702016	1 TORT 28	7.000	70701	J. 1 SAUG.
<u>(j.</u>)																												6.29		vey at Stati	Y(in)		eć.	*	¥	,	,							.	è.		w	10	ĸ,	41	eri eri) vi	¥		ņ
X(in)	•	7.	-	1 25	-	0.75			1000	0.43	ė,	ф. 73	-	7.		ij	2.7	?	30.6	27.7	c.7.	-2.75	•:	20.0	67.5		.3.73	7		Dischwise Survey at Station 1A	X(in)		2	1 7 1	-		•	- 6	0.0	, e	0.43	0000	.O. 48	5.0	57.6	-	1.28	5)	10. F.	"	1000	2.5	,	;	?

		UV-Correl		0.00	0.156	0 0875	921.6	17 100 0	0 112	0.173	U 16.0	0.13	0.045		. 92 6	0.223	6,196.6	J CG52	€ 0000			UV-Comel.	1010	0.146	-0.0151	0.112	0.0256	0.00011	0.157	5.50	0.13/	00106	0.272	0.248	0.253	0.00675	0.00101
_		UV-Reyn	8	V	= -	- 19	69 I	11.9.17	90 E	5.28	635	·9 54	98 1	(ب ب	10.9	-	137	- 13	901 (UV-Reyn. UV	777	4.26	0.273	1.74		•	, .	Ģ.	20 G	0.427	11.3	5.61	 	•	.0.0217
Ξ		UV-Angle Mean	58.9	613	53.2	47.9	45.4	940	15.4	46.4	47.4	49 1	49 3	52 5	57.8	60 4	S	47.6	ά			UV-Angle 1	9	89	52.1	46.4	7.7	43.4	9.94	7 0 0	40.4	; 5	51.2	50.0	6.99	53.1	7 9
ပ		UlotVref	0 922631	0 853463	0.779806	0.812431	0 852291	0 883944	0 929665	0.949595	0 96711	0.965938	1 006212	1 005868	0.944906	0 859325	0.805397	0 831189	0 858153	ı		Utotvref	0.027019	0.806154	0.741615	0.79442	0.633144	0.86952	0.942274	0.8000.0	1016201	1 032620	1.024415	0.93406	0.814369	0.752176	0.817889
u.		V-Turb	8 922561	6.0719	5.785731	4.538632	4 325254	5 502236	6.242616	7 274251	8 486568	9.624793	10 37286	10.77052	9.052606	6.111173	5 532975	4.97616	5 567407			V-Turb	7 051241	4.967179	4.06272	4.963805	5.473402	5.725097	7.080364		40.746601	11 22781	12.19558	8.006276	5.872841	6.053786	5.487366
ш		U-Tub	4.748844	7 195259	5.648708	4.157516	4 291186	4.9148	6.100446	6 57 1961	6 62 161	6.196003	4 891787	4.446884	4.666128	7.098072	5.56083	4 711728	5.010545	1		U-Tub	4 064567	8.110829	5.00643	4.312306	4.461484	4.23472	_	0.000	6.9415/	A DEDECA	4.067951	3.675174	7.496293	5.58746	5.355541
0		VMe	0.477567	0 396185	0 461383	0.542356	0.593129	0 623505	0.647552	0.65213	0 666359	0 645243	0 654624	0 612245	0.503191	0 420004	0 481474	0.554627	0 593764			VMM	0.451775	_	_	_	_	0		0.0000			_		_	_	0.543304
v	8	UNef	0.790157	0.752642	0 624857	0.599066	0.6061	0 62134	0.662372	0.688163	0.726851	0.745606	0.765538	0.796363	0 800706	0.747953	0.643615	0 614306	0 617623	i sala		UNief	0.800675	_	_	_		0		0.704063	_			0	_		0.611363
6	ry at Statio	Y(in)	ڻ. ڪ	ń		κi	κċ		'n	ń	κċ	Ĩ.	κ'n	κί	-	κ'n	_	κί	κċ	Of collection Section 18		Y(ju)	7	7	9	4.0	7	7	7	7 '	? ?	7	4	7	7	7	7
<	Pitchwise Survey at Station 18	X(in)	8	1.75	1.5	125	-	0.75	0.5	0 25	-0 0001	-0.25	-0.5	5/ 0-	- -	-1 25	-15	.175	Ċ	Official		X(in)	~	1.75	1.5	1.25	-	0.75	0.0	0.23		4 C	0.75	•	1.25	1.5	1.75
<_	ē.			_	_	0	=	2	5	<u> </u>	ē.	5	1	50	19	2	~	12	23	- 0	• • •	, eo (c	۰~	. 🖘	6	5	Ξ	2	Ξ:	•		2 2	•	Ç	8	2	23

		wij.	•	4 53					, «		•	v	w			~	•	•	9		-	•	•	40	wo	40	_	9	•	10	_	~		~	~
7			275	0.00	-0.2136	0 2147	0.0142	0.061432	0 0773	0.00288	9000	-0.11825	0.03	0.00219	0.13	0.15123	-0.22216	-0.2180	0.1846	0.1983	0.0	0.000	0.00649	0.109805	0.066615	-0.06005	0.20444	0.26456	0.07449	0.09875	0.0198	-0.08072	0.067675	0.0	0.03092
-		CV-Reyn.	22 0181	25.2127	-8 77056	5.34166	-0.28305	0.990964	0.378153	0.058593	0.42142	-2.99451	-1.12419	-2.66725	-4.0235	6.16138	-9.56062	-9.9735	9.77831	10.1554	.11.3925	-3.91207	-0.42649	7.71674	7.07677	-7.18541	17,6641	-18.9382	4.24899	-2.96356	0.49877	-1.32559	1.29635	1.07529	0.729665
I		UV-Angle	50 6157	66,6825	81 4429	56.9004	51.3065	47.3683	45.6127	45.3139	44.475	44,1953	44.7149	44.5006	44.5528	44.97	45.026	45.3152	46.0813	45.4558	46.6585	46.6804	47.2392	48.1696	50.1995	53.89	60.0892	67.1414	77.2908	59.2518	51.4841	48.1628	46.2345	45.8911	44.6414
o		UtotVref	0 902062	0.624584	0.738644	0.650168	0.702961	0.747751	0.775118	0.801906	0.831198	0.652456	0.68067	0.900176	0.919134	0.937358	0.95297	0.9862	0.961361	0.996543	1.003798	1.013639	1.026983	1.033086	1.02107	0.972983	0.897603	0.825141	0.761272	0.672764	0.724029	0.762793	0.793049	0.820461	0.840557
Ŀ		V-Turb	8.567149	5.800656	5.878302	5.777084	5.662643	4.914687	5.067545	5.526106	5.500264	5.854637	6.173211	6.531586	6.937933	7.330177	7.910793	8.301234	9.005476	9.080234	10.50606	10.62025	11.69583	12.39093	12.84267	11.97058	8.280391	5.743566	7.537854	6.671077	6.061145	5.728084	5.423629	5.911393	5.91958
w		U-Tuð	14.59078	17,95053	9.603218	5.917017	4.616662	4.510065	4.004063	5.431109	5.562041	5.944541	6.525729	6.828504	6.997788	7.629605	7.476677	7.571753	8.004001	7.845237	7.916754	7.568629	7.724172	7.786551	8.743651	11.91511	14.34133	17,12931	10.40002	6.310755	5.740233	5.238241	4.854118	5.385549	5.478931
٥		VAref	0.456255	0.326391	0.100007	0.334054	0.43947	0.506439	0.542199	0.563016	0.593108	0.611164	0.625816	0.642045	0.654979	0.663159	0.673546	0.679438	0.680707	0.700438	0.686952	0.695425	0.69726	0.666993	0.853604	0.573416	0.447501	0.320533	0.167485	0.343962	0.450676	0.506797	0.548559	0.571061	0.596073
v	2 0 10		0.778157	0.757237	0.730422	0.557247	0.548677	0.550137	0.553921	0.570131	0.582335	0.594252	0.619621	0.630949	0.644833	0.662465	0.674156	0.696965	0.706800	0.71167	0.730038	0.73746	0.754004	0.769749	0.784465	0.786061	0.778046	0.76034	0.74262	0.578189	0.506505	0.568314	0.572721	0.589105	0.590632
•	vey at Stati	(in)	4.844	787	7.5	7.84	7.84	1.8441	7.05	7.4	7.5	7.87	Į,	7.4	7.87	7.87	7.7	7	7.2	1.84	4.844	7.87	7.	3	3	7.7	7.7	7.87	7.847	4.844	1.81	7.84	7.5	7.847	7 844
<	Pitchwise Survey at Station	X(in)	7	1.875	1.75	1.625	1.5	1.375	1.25	1.1240	-	0.875	0.75	0.625	0.4900	0.3749	0.25	0.125	0.0001	-0.125	-0.2501	-0.3751	Q (2)	-0.625	-0.75	-0.875	7	-1.125	.1.25	-1.375	.1.s	-1.625	-1.75	-1.875	ņ
۲.	- 14 W 4	w w		∞	0	5	=	5	ũ	7	2	9	-	•	.	2	2	23	23	24	22	56	22	58	58	ဓ္က	3	32	33	7,	35	36	31	38	38

1 ^	A	8	С	D	E
ż	Pitchwise Su	rvev at Sta	tion 1E		
3		,			
4					
5	X(in)	Y(m)	U/Vref	V/Vref	UtoWref
6	_				
7	2	4.62	0.825327	0.433766	0.93201
8	1.94	4.82	0.631189	0.383355	0.915597
9 10	1.67 1.81	4.62 4.82	0.637061	0.320049 0.143025	0. 896008 0.247 38 4
11	1.75	4.82	0.718017	0.607623	0.860427
12	1.00	4.82	0 636790	0.191091	
13	1.62	4.82	0.829000	0.334117	0. 50075 7 0. 620029
14	1.56	4.82	0.53107	0.411401	0.671781
15	1.5	4.82	0.532342	0.453660	0.000007
16	1.44	4.82	0.540027	0.405340	0.733006
17	1.37	4.82	0.547463 0.543666	0.513486 0.543000	0.790297
18	1.31	4.62		0.543000	0.770227 0.784295
19 20	1.25 1.19	4.82 4.82	0.551 0.556206	0.588206 0.582723	0.782802
21	1.12	4.82	0.561561	0.573274	0.803053
22	1.06	4.82	0.580378	0.583204	0.815049
23	1	4.82	0.572102	0.603755	0.832381
24	0.937	4.82	0.577964	0.611961	0.84174
25	0.675	4.82	0.617823 0.616661	0.013134	0.000070
26	0.812	4.82		0.617823	0.872221
27	0.75	4.82	0.622512	0.634236	0.866634
28 29	0. 66 7 0. 62 5	4.82 4.82	0. 042442 0. 64476 7	0.637753	0.908046 0.908863
30	0.962	4.82	0.600649	0.061021	0.921450
31	0.5	4.82	0.061821	0.002372	0.929005
32	0.437	4.82	0.674086	0.002372	0.949423
33	0.375	-4.82	0.003474	0.670670	0.967802
34	0.312	4.82	0. 004640 0.70 00 21	0.000400 0.007001	0.957802
35	0.25	4.82			0.97187
36 37	0.1 67 0.125	4.82 4.82	0.710430 0.702232	0.677612	0.981248
36 36	0.0025	4.82	0.702232	0. 0066 19 0. 004 025	0.982421 0.963693
39	-0.0001	4.82	0.703404	0.702232	0.994144
40	-0.0025	4.82	0.719817	0.004046	0.992972
41	-0.125	4.82	0.726661	0.704578	1.011729
42	-0.187	4.82	0.728023	0.701069	1.010567
43	-0.25	4.62	0.736229	0.701050	1.016419
44 45	-0.313	4.82 4.82	0.7 30746 0.7 5 147	0.718644 0.667542	1.031 050 1.024 6 25
48	-0.375 -0.437	4.82	0.736159	0.706749	1.034004
47	-0.5	4.82	0.76671	0.708921	1.043362
48	-0.962	4.82	0.7714	0.705749	1.045727
49	-0.025	4.02	0.705466	0.000007	1.051580
50	-0.007	4.82	0.790157	0.679957	1.04221
51	-0.76	4.62	0.603063	0.052903 0.029546	1.035176
52	-0.612	4.82	0.808914	0.020340	1.025797
53 54	-0. 675 -0. 93 7	4.82 4.82	0.613604 0.817121	0. 57327 4 0. 50293 4	0.995317 0.960146
55	-0.897 -1	4.82	0.62161	0.425550	0.924970
56	-1.06	4.82	0.825327	0.36101	
67	-1.12	4.62	0.6265	0.314187	0.909563 0.863944
54 50	-1.19	4.82	0.346185	0.171162	0.300044
99	-1.25	4.82	0.000163	0.146642	0.703404
60	-1.31	4.82	0.577904	0.221572	0.618995
61	-1.37	4.82	0.561	0.348186 0.412884	0.851821
62 63	-1.44 -1.5	4.82	0.547483	0.412004 0.463074	0.665819
64	-1.56 -1.56	4.82	0.567412	0.463655	0.75147
85	-1.62	4.82	0.58617	0.804106	0.772572
66	-1.60	4.82	0.583625	0.520519	0.781951
67	-1.75	4.82	0.587342	0.840055	0.004225
66	-1.81	4.02	0.595549	0.561551	0.019466
69	-1.86	4.82	0.597893	0.575619	0.830017
70	-1.94	4.82	0.500006	0.588515	0.839395
71	-2	4.62	0.606444	0.600238	0.854636
72 73					

7		UV-Correct.	0.078442	-0.04675	0.04603	-0.10023	-0.05614	0.0000	-0.03186	-0.04452	-0.03793	-0.04137	0.018568	0.079369	0.148868	0.130035	0.163426	0.142855	0.13046	0.15378	0.214226	0.162528	0.179024	0.092022	0.021764	0.00029	-0.02471	0.05906	-0.08058	-0.07223	-0.00056	-0.1288	0.10997	0.04928
-		CV-Reyn.	0.363651	0.22809	-0.30602	-0.56685	-0.32189	-0.04897	-0.20284	-0.31353	-0.28711	0.37961	0.166956	1.5166	3.47764	4.06359	5.19462	5.16966	4.883	5.93235	8.8236	6.80889	7.49319	3.59141	0.908746	-0.01269	-1.12888	-2.85278	-3.90589	-3.45345	4.14156	-5.6767	-3.96202	-1,66913
I		UV-Angle	70.5354	69.4811	68.495	67.3079	66.3113	65.4381	66.677	63.8574	63.0591	62.3715	61,4141	50.2808	57.5066	55.1213	53.6724	52.2805	50.8617	49.7881	48.214	47.6923	46.2254	46.045	45.4401	45.0021	44.8696	44.63	44.4171	44.7014	44.6719	45.0224	44.7986	44.7633
O		UtotVref	0.897514	0.904283	0.90666	0.909488	0.913754	0.919107	0.922165	0.926083	0.930904	0.93134	0.938347	0.957233	0.971162	0.996246	1.012368	1.026118	1.037912	1.054152	1.063903	1.080209	1.07494	1.059923	1.05759	1.048555	1.035841	1.029538	1.020055	1.004077	0.966793	0.980787	0.957823	0.918197
u.		V.Tuð	2.531112	2.946563	3.453303	3.45336	3.405060	3.58333	3.685724	4.054896	4.242669	4.879436	4.929947	8.781766	10.38706	12.62225	13.00001	13.78741	13.86441	14.02024	13.10235	13.44459	12.00043	12.20148	11.47023	11.57043	10.77446	10.35092	9.963644	9.18777	8,705311	8.28677	7.322295	7.012262
w		U-Turb	2.531737	2.296563	2.659542	2.262367	2.266012	2.348654	2.386051	2.3006	2.484512	2.599101	2.519654	3.010382	3.107017	3.196016	3.376067	3.626106	3.720500	3.801236	4.342894	4.304803	4.818513	4.788016	5.02806	5.297506	5.856138	6.447299	6.70739	7.186737	7.336524	7.347469	6.79781	6.673367
۵		VVref	0.299073	0.316967	0.332368	0.350861	0.367117	0.382051	0.394856	0.408039	0.421766	0.431896	0.448977	0.488964	0.520394	0.560604	0.590728	0.627776	0.665125	0.680578	0.708832	0.713639	0.743668	0.735685	0.742064	0.741414	0.73386	0.732678	0.728588	0.71368	0.703175	0.693251	0.679683	0.65194
ပ	5	UN.	0.84622	0.846912	0.843549	0.838085	0.836763	0.835939	0.833354	0.831344	0.829677	0.825143	0.823963	0.822916	0.819967	0.817264	0.915607	0.811674	0.80503	0.805016	0.793288	0.784067	0.776178	0.783022	0.753551	0.741467	0.731038	0.723278	0.713914	0.706281	0.695166	0.693792	0.674875	0.646575
60	vey at Slati	Y(in)	4.792	4.792	4.792	1.782	4.792	7.705	4.792	7.785	4.792	-4.792	4.792	4.792	4.792	4.792	4.792	4.702	7.785	4.792	4.792	4.702	4.792	4.792	4.792	4.792	4.792	4.792	4.792	4.792	4.792	4.792	4.792	4.792
<	Pitchwise Survey at Station	X(in)	-1.1421	-1.1322	-1.1212	- 1002	-1.096	1.0614	1.0854	1.047	1.0284	-1.007	.0. 9636	-0.9577	-0.9295	0.0003	0.0630	-0.8262	0.7846	0.7380	-0. 6888	-0.6334	-0.5728	-0.508	-0.432	0.3512	-0.2621	-0.1642	0.0564	0.062	0.1923	0.3358	0.4934	0.667
<_	. w w 4	en eo	~	•	•	2	Į.	2	5	=	5	9	1	⊕	2	೭	2	2	R	7	32	92	23	58	2	ಜ	ä	32	33	줐	35	98	37	38

7		m. UV-Correl.	0	_				~	_	_					0.111083			_	14 0.147304			Z 0.146861		12 0.090486		57 -0.02 664	Z -0.01248	_	36 -0.06249	15 -0.122	Q		_	_
-		UV-Reyn	280.8	7.20231	0.01833	-0.23011	0.352	0.32	-0.2417	0.1578					2.84807			4.65445	5.22514	4.47017	5.79176	5.93854	5.35624	3.3511	3.15948	1.19067	0.5286	-2.7274	-3.13566	-5,7445	4.29378	3.3744	3.8238	-1.82948
I		UV-Angle	70.218	68.283	67.957	67.0966	66.4336	65.4609	64.5307	63.923	63.2148	62.1624	61.2069	50.8119	56.6466	54.5756	53.3332	\$2.0725	50.3461	49.5572	48.2626	47.2812	46.3306	45.4151	45.4494	44.8853	44.1517	44.3801	44.5493	44.4079	44.3237	44.5295	44 6066	44.5107
o		UtolVref	0.547047	0.891682	0.906567	0.9105	0.915127	0.917304	0.922202	0.925849	_	_			0.962308	1.000192	1.013323	1.024655	1.046269	_	_		1.074266	1.065746	1.047664	1.041131	1.033602	1.023011	1.014428	1.00468	0.990627	0.972854	0.941069	0.920759
u.		V-Tub	14.97263	4.243045	3.251016	3.501935	3.62258	3.58476	3.828519	4.068867	4.255344	4.624233	5.552399	6.055728	11.69466	13.00071	13.46362	_	•		_			10.59751		11.19863	10.04714	9.800322	9.919305	o	7.79023	^		6.954294
w		U.Tuth	32,32784	6.423264	2.345#02	2.439791	2.228061	2,386412	2.230067	2.294308	2,479587	2.47803	2.500787	2.464501	3.026777	3.284966	3.272501	3.474762	3.510661	3.649696	4.140723	4.331317	4.604112	4.627805	5.202754	5.472322	5.824292	6.262041	6.986422	7.047873	7.315346	7.31728	7.117754	6.626875
٥		VAN	0.185144	0.329042	0.340244	0.354318	0.366679	0.38007	0.306442	0.406983	0.418261	0.434948	0.463542	0.477279	0.540074	0.57974	0.005117	0.629616	0.666024	0.679632	0.707661	0.72714	0.741777	0.748116	0.734992	0.737664	0.741607	0.731163	0.722929	0.717719	0.706641	0.693537	0.669066	0.656611
υ	ion 2s		0.514764	0.626303	0.840317	0.63673	0.636803	0.634451	0.832641	0.831802	0.828548	0.824338	0.825225	0.620436	0.620518	0.816037	0.812807	0.806236	0.8071	0.707238	0.783216	0.786026	0.777055	0.750035	0.740611	0.724715	0.719966	0.71551	0.711644	0.703037	0.892302	0.682238	0.000075	0.645491
0	rvey at Stat	Y(in)	1,7906	4.7905	4.7905	4.7806	4.7905	4.7905	4.7905	1.7806	7,7005	4.7906	1,7905	7,706	4,7906	1,7906	7906	1,7805	7.706	-4.7905	1,7905	7,7905	1,7905	7.7808	4.7905	4.7905	4,7805	7,7905	7,005	4.7905	4.7905	4.7905	7.7904	4.7905
∢	Pitchwise Survey at Station 2s	X(In)	1.1331	-1.1233	1.1122	-1.1001	-1.067	-1.0724	-1.0563	- 03 66	1.019	966 ,0-	-0.9746	9.0°	0.8205	5.8863	0.8548	-0.8172	-0.7757	-0.7299	0.6796	0.624	0.9636	0.4966	-0.4231	-0.3422	-0.2532	-0.1552	-0.0475	0.071	0.2014	0.3448	0.5026	0.676
<_	. W W 4		~	•	•	5	Ξ	5	5	7	₽	5	4	£	•	2	.	z	೭	7	23	%	23	58	2	8	£	8	ಜ	콨	æ	8	37	88

7		UV-Correl	0.5685	0.581134	0.580531	0.711548	0.600646	0.705819	0.327618	0.131681	0.058893	-0.01402	-0.00265	0.000104	0.068203	0.049965	0.075723	0.090234	0.00000	0.180421	0.146147	0.100568	0.056616	0.02913	0.01956	-0.01893	-0.06355	-0.06961	0.07757	-0.07863	0.17079	0.06906	-0.05861	0.08979
-		CV-Reyn.	63.6356	102.31	149.267	280.508	304 868	228.02	16.7339	1.7892	0.534219	-0.15193	-0.07065	2.55061	2.33818	1.88299	2.91721	3.63139	0.033200	6.81932	5.3608	4.01119	2.52793	1.19807	-0.8589	-0.75732	-2.33571	3.17024	-3.52482	-3.52906	.7.87775	3.06439	-2.16226	-2.90785
I		W-Angle	93.4677	72 9546	63.9447	61.2965	61 1645	62.0124	61.9687	61.9046	61.2432	60.6397	57.2197	55.3487	53.0465	51.7150	50.7425	49.5439	48.7035	47.6393	46.0347	45.6433	45.387	44.7202	44.6028	43.7637	43.7449	43.8474	13.61	43.761	44,1054	44,1095	44.1236	44,3868
ø		UtolVnef	0.031735	0.062373	0.181663	0.33053	0.511161	0.691153	0.893536	0.932588	0.942422	0.947581	0.978429	0.996303	1.024072	1.034591	1.04332	1.055358	1.060018	1.076054	1.066438	1.06831	1.06582	1.059773	1.047243	1.043144	1.032007	1.022871	1.007621	0.991668	0.974725	0.962967	0.937885	0.910051
u.		V.Turb	-12.3486	14.62206	17.0971	20.16143	20.4421	17.8687	7.805426	5.66025	4.97794	5.862778	12,23814	13.7142	14.32362	14.71708	14.95318	14.78568	14.33618	14.03163	11.7343	12.32772	12.43287	11.32259	11.29104	10.37191	9.853462	9.828795	8.976669	8.836055	8.820573	8.185731	7.306926	6.867285
w		C.T.	12.47551	16.57095	20.00029	27.76346	29.33062	24.86303	9.006312	3.296786	2.516516	2.544832	2.996571	3.195469	3.294097	3.524332	3.54585	3.746079	3.066667	4.160546	4.302284	4.452061	4.942768	4.99929	5.352903	5.308970	6.092813	6.370038	6.966053	6.991172	7.198984	7.480349	6.949097	6.490623
۵		VNref	-0.00192	0.024146	0.079793	0.158746	0.246532	0.324345	0.421295	0.430194	0.453393	0.464599	0.529741	0.566478	0.615638	0.640092	0.660219	0.684785	0.6 00565	0.72504	0.755619	0.760663	0.74854	0.753022	0.745628	0.753357	0.745548	0.737731	0.725464	0.716358	0.699912	0.691421	0.673251	0.650354
υ	on 2b		0.031676	0.078754	0.163201	0.289914	0.447782	0.610322	0.787961	0.822695	0.826192	0.825869	0.822617	0.819586	0.81836	0.812099	0.007852	0.803025	0.796395	0.795115	0.783414	0.778143	0.758722	0.745704	0.735362	0.721528	0.713579	0.708531	0.699287	0.686028	0.678389	0.870256	0.652963	0.636579
	vey at Stati	(س) براس	4.75	4.75	4.75	7.7	4.75	4.75	4.75	4.75	4.75	4.75	4.75	4.7490	4.7499	4.75	4.75	4.75	4.75	4.75	4.75	-4.75	4.75	4.75	4.75	-4.75	4.75	-4.75	4.75	-4.75	-4.75	4.75	-4.75	4.75
<	Pitchwise Survey at Station 2b	X(in)	-1.0928	.+.083	-1.0719	9	1.0467	-1.0321	-1.0162	-0.9965	0.070	-0.9577	-0.9343	-0.9065	-0.8803	-0.849	-0.8146	-0.7769	-0.7352	-0. 6896	0.6394	-0.5841	-0.5233	-0.4563	-0.3820	-0.3019	-0.2128	0.1149	-0.0072	0.1113	0.2417	0.3851	0.5428	0.7163
<.	- 01 to 4	w &	~	∞	ф	5	=	2	E.	=	.	5	1	=	\$	2	₹	23	23	7.	22	5 8	21	58	50	ಜ	<u>ج</u>	33	33	z	35	36	37	8 8

7		UV-Correl.	0.265692	0.244739	0.638559	0.74466	0.805449	0.902889	0.890845	867433	0.963367	0.637305	67221	0.505114	0.39118	0.179668	0.014487	-0.00	15849	1535	28285	-0.30467	0.24728	0.12247	0.17442	0.06261	0.12629	-0.20731	0.13681	-0.07097	0.17805	0.1903	-0.126	0 13013
			-	-	_		-	_		ö						_	_						·		·	•								۹
-		CV-Reyn Stress	4.379	4.38616	73.8739	180.36	763.78	657.97	615.674	762.4	712.001	570.61	75.1521	61.743	32.6266	11.250	0.6944	-0.34341	6.3566	-7.301	-15.5378	-15.6511	-11.0751	5.54343	-8.78027	-4.21765	6.78383	-10.3242	-6.50301	3.30618	8.62473	7.99586	4.89398	C000C F
r		W-Angle	211.786	212.67	216.291	21.6531	37.1704	36.8673	30.0492	40.5161	41.7278	42.5419	41.9727	42.6833	43.0241	42.7034	43.2817	42.1921	42.5045	41.8069	42.5229	41.9298	41 2288	40,7533	41.2753	41.1832	41,1696	41.0382	41.0601	41.2591	41,8308	41.9773	42.353	1001 47
O		UtoWed	000	0.09251	0.041552	0.027142	0.324077	0.43999	0.591928	0.066235	0.743995	0.775409	1.029671	1.025139	1.042598	1.066356	1.053856	1.068983	1.065668	1.068905	1.058065	1.057367	1.050889	1.053784	1.034602	1.039037	1.021124	0.997221	0.995989	0.980108	0.986145	0.944011	0.913967	44.40
u		V-Turb	4.76987	4.96297	-15.3	23,3007	30,36651	41.17507	40.13113	38.57666	37.29660	34.8091	17.11742	17.4843b	15.51582	13.84635	14.62694	12.74156	13.24025	12.30617	13.40076	12.61516	11.75946	10.79422	11.5357	10.71073	10.25944	19.5531	9.346982	8.833712	8.899089	8.075529	7.657204	100001
w		U-1 40	4.78085	1.99584	10.4609	15.0000	29.97592	31.92786	31.56861	30.81043	20.00007	27.06807	10.70627	9.672061	7.436808	6.255722	5.840164	5.324646	5.509242	5.347273	5.637497	5.633615	5.269107	5.801403	6.037184	6.594623	7.243513	6.528684	7.035506	7,300557	7.530381	7.198029	7.01761	0 000000
٥		VAref	-0.0765	-0.07787	0.03349	0.025227	0.258238	0.342576	0.459695	0.508008	0.555257	0.571309	0.765671	0.753592	0.762208	0.783637	0.767196	0.792006	0.785636	0.796732	0.779616	0.766643	0.790355	0.796271	0.777553	0.781986	0.768665	0.752175	0.750997	0.736761	0.719692	0.701787	0.675429	001637
v	ion 3	UNref	-0.04741	0.04994	-0.02459	0.010015	0.195903	0.276102	0.372907	0.434126	0.495196	0.524276	0.666754	0.694966	0.71137	0.723207	0.722509	0.717949	0.720016	0.712583	0.715142	0.706554	0.892606	0.687914	0.682504	0.684174	0.672196	0.654738	0.654216	0.646347	0.644355	0.631389	0.615736	A CONCER
60	vey at Stat	√(in)	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	4.542	-4.542	4.542	4.542	4.542	-4.542	-4.542	4.542	4.542	4.542	4.542	1 613
<	Pikr.imise Survey at Station	X(in)	-0.916	-0.9061	-0.8951	0.8631	0.8600	-0.8553	-0.8383	-0.8217	-0.8023	-0.7811	-0.7575	-0.7317	-0.7035	-0.6722	-0.6378	-0.6001	-0.5585	-0.5128	-0.4626	-0.4073	-0.3465	-0.2796	-0.20	-0.1251	-0.038	0.0619	0.1696	0.2881	0.4185	0.562	0.7196	2000
٧.	- ~ ~ ~	. N. CO	~	e 0	o	2	Ξ	22	5	7	ž.	9	~	6	5	2	73	23	23	7,	52	9 2	22	58	82	S S	3	32	33	3 6	SS	85	37	•

<_	<	60	ပ	۵	ш	u	O	I	_	7
N 10 4	Pitchwise Survey at Station	rvey at Stal	lion 4							
. NO 60	X(in)	Y (in)	UNTE	VVref	U-Turb	V.Turb	UtotVref	UV-Angle	UV-Reyn.	UV-Correl.
~	-0.7107	-4.292	0.212372	0.323567	21.06198	31,09684	0.387038	33.2787	334.394	0.705
60	-0.7007	4.292	0.23211	0.352861	22.65667	33.21171	0.422358	33.3367	397,691	0.729804
0	-0.6897	4.292	0.289582	0.412049	23.3677	34.50698	0.492402	33.1947	424.492	0.72693
9	-0.6777	4.2921	0.304871	0.457987	23.72603	34.626	0.55018	33.6508	448.847	0.750098
=	-0.6645	4.292	0.332136	0.490955	23.7325	35.0113	0.592749	34.0787	460.451	0.765208
2	0.6498	4.292	0.372165	0.544244	22.25359	33.3169	0.659323	34.3651	394.254	0.734276
ţ	-0.6339	4.202	0.499627	0.718085	11.51407	18.86317	0.874783	34.6301	52.26	0.331905
7	-0.6163	4.292	0.51995	0.743408	10.82145	17.74731	0.907196	34.9695	52.3975	0.376738
ŧ	-0.5969	4.292	0.559617	0.799693	6.843428	11.94629	0.97535	35.0272	14.4705	0.244412
5	-0.5757	4.292	0.566093	0.794867	8.260377	13.66006	0.975646	35.458	28.815	0.35211
1	-0.5522	4.292	0.579297	0.807163	6.857309	12.03065	0.993528	35.6668	19.4828	0.326096
6	-0.5263	4.292	0.590361	0.818551	6.261019	11.13925	1.009234	35,8001	19.6996	0.390038
6	0.498	-4.292	0.597103	0.822718	5.640634	10.93935	1.016561	35.971	15.2902	0.342168
೭	-0.4668	4.292	0.602506	0.62896	5.079415	10.54437	1.024787	36.0105	14.3574	0.370157
₹	-0.4324	4.292	0.607994	0.829042	4.144490	10.21397	1.02809	36.2552	10.7102	0.349366
23	-0.3947	-4.292	0.606314	0.821435	4.187875	10.82873	1.020986	36.4316	11,8447	0.360664
23	-0.3531	4.292	0.609032	0.829991	3.548796	9.736868	1.029468	36.2706	5.90169	0.235843
5 4	-0.3074	-4.292	0.603651	0.818378	3.448541	9.92808	1.018925	36.4132	6.10402	0.24459
52	-0.2572	4.292	0.604035	0.820134	3.279124	9.044369	1.018567	36.3719	3.16628	0.134079
9 2	-0.2019	-4.292	0.602507	0.834266	3.106244	7.881424	1.029084	35.8368	3.33876	0.186318
22	0.1411	4.292	0.592049	0.834838	2.806094	7.601265	1.023463	35.3434	5.39558	0.34905
78	0.0742	-4.292	0.59039	0.821556	3.202988	8.069361	1.011689	35.7019	3.4652	0.185132
53	-0.0007	-4.292	0.581994	0.810146	3.231531	7.805841	0.997523	35.6928	2.80954	0.153799
౭	0.0803	-4.292	0.570458	0.814623	2.718698	6.647354	0.994499	35.0024	5.63169	0.430306
둢	0.1695	4 292	0.580915	0.788948	4,780754	8.266202	0.979746	36.3648	-0.11488	0.00403
32	0.2673	4 292	0.593501	0.782316	6.903488	10.12004	0.966109	37.9026	-10.0238	0.19812
33	0.3749	4 292	0.57748	0.75692	6.348584	8.777239	0.952056	37.3413	5.28021	0.13085
34	0.4934	4.292	0.578086	0.739644	7.140233	9.101547	0.938753	38.0102	9.42362	-0.20023
35	0.6239	4.292	0.561093	0.717685	6.461999	8.211398	0.910986	38.0187	4.12814	0.10738
36	0.7673	4.292	0.555918	0.700528	6.560668	7.557505	0.894307	38.4345	-3.76355	0.10481
31	0.925	4.292	0.551098	0.665751	6.750288	7.642421	0.864254	39.6174	-3.03193	-0.08115
38	1.0985	-4.292	0.530426	0.645169	5.739523	7.054988	0.835221	39.4253	-0.25585	0.00872

٧_	∢	o	ပ	٥	w	u.	ø	I	-	7
~ ~ ~	Pitchwise Survey at Station	rvey at Sta	tion 5							
	X(in)	Y(in)	UNref	VVref	U-Turb	V-Turb	UtolVref	UV-Angle	CV-Reyn.	W-Correl.
_	0.5409	4.042	0.270295	0.430002	16 77976	25.78195	O SOMER!	2000	77.	257736
_	-0.531	7.02	0.287194	0.46302	16.91602	28.866	0.544858	31 8097	178 171	O STREET
_	0.52	4.042	0.292558	0.479302	18.7929	20 94864	0.581534	31 3000	256 356	0 62670
0	0.5081	4.042	0.313064	0.502649	18.05518	20,6076	A 500 C	34 GD FF	249.442	0.0000
<u>-</u>	0.4046	1.042	0.329878	0.52162	19 05018	30 74500	0.617016	2 286	267 175	0.000
2	-0.4902	4.0419	0.346223	0.557454	19.50248	30.63041	0.655603	31 7694	277 447	0.637475
2	-0.4642	4.042	0.45046	0.600602	10.92393	19.56233	0.832155	27.73	46 2553	0 200031
<u>=</u>	-0.4466	4.0419	0.477463	0.741849	9.118786	17.00481	0.88223	32.767	27 532	0 245291
50	-0.4272	4.042	0.492676	0.766376	8.874577	15.97446	0.91276	32.6676	27.3198	0.288229
•	-0.40 6 1	4.042	0.506257	0.796645	7.718796	13.67468	0.94497	32.5377	23.6282	0,304798
<u>-</u>	0.3825	7.62	0.516874	0.803008	7.720077	13.75103	0.954976	32.7682	26.8332	0.349195
_	-0.35 66	4.0419	0.53609	0.834656	5.942386	10,60314	0.902478	32.7559	14.6604	0.321639
•	-0.3263	4.0416	0.640627	0.643326	4.967138	9.254575	1.001736	32.6625	10.3852	0.310235
2	-0.2972	1.0419	0.54569	0.845602	4.586152	9.34804	1.006389	32.8353	8.86528	0.28574
: :!	-0.2626	4.042	0.546364	0.647454	4.253817	9.174705	1.006311	32.8104	9.70281	0.343478
2	0.225	7.045	0.545802	0.843675	3.828299	0.568606	1.004632	32.9002	8.22776	0.310259
:	0.1834	7.045	0.544584	0.636343	3.203376	9.496161	0.998019	33.0701	6.59358	0.298381
Z . !	0.1378	4.0419		0.858927	2.521506	7.366607	1.017417	32.4113	4.24966	0.316064
Ω:	0.0875	7.045	0.539565	0.848054	2.453002	7.478586	1.00592	32.4396	3.69063	0.277818
9	-0.0322	7.65		0.850713	2.335006	7.437505	1.006783	32.33	2.2509	0.179051
<u>.</u>	0.0285	1.042	0.539232	0.832408	2.74841	9.236639	0.991801	32.0352	0.711242	0.038706
₽:	0.0823	4.0419		0.639066	2.274867	7.511490	0.992633	32.2966	1.62617	0.131473
D	0.1691	1.82	0.525338	0.626803	2.480891	7.635902	0.979563	32.4312	0.014287	0.001042
요 :	0.2499	1.0419	0.521348	0.624648	2.729561	7.241458	0.975627	32.3013	0.893932	0.06248
= !	0.3391	7.045	0.515449	0.811554	3.066396	7.102935	0.96141	32.4212	0.454304	0.028611
2	0.4371	1.0419	0.514242	0.788593	4.059684	8.049252	0.94140	33.1084	-3.45327	0.14599
ឌ	0.5447	4.0419	0.531021	0.766268	5.963114	6.935532	0.932282	34.7218	-8.38249	0.21661
3	0.8631	4.042	0.526957	0.748636	7.156448	950260.6	0.915501	35.1413	-7.13093	-0.15141
35	0.7936	1.0419	0.520423	0.73342	7.108295	8.497993	0.899302	35,3569	-6.55171	-0.14962
9	0.937	1.0419	0.509543	0.710725	6.928917	7.462113	0.874509	35.638	2.62328	-0.07009
5	1.0046	4.0419	0.491104	0.689496	6.156622	6.99632	0.846516	35.4609	-2.53765	-0.06139
8	1.2682	4.0419	0.475787	0.676952	6.083178	6.353441	0.827428	35.101	2.22852	0.079658

		Ŧ.	•		- 90			, ч	-			. ~	- 40	۰ د		. ~	. ~			. 4/1		~	_	œ	•	_	•		_	_				
7		W.Com	24164	0 30451	76650	0.2822	0 31718	2000	0.30486	0.31664	0.71566	0.407687	0 323528	0 333607	0.353015	0 42167	0.383107	0 22000	0 183287	0.060075	0.025957	0.085162	-0.03527	-0.15336	0.0064	-0.20334	0.0458	-0.15915	-0.15271	0.0546	-0 07206	0.08323	0.020488	0.274012
-		UV-Reyn.	70.3750	46 8369	210.500	47 OAR	50 3503	55 0746	58.515	53,1289	321,185	66.4934	33.6522	24.4731	25.2068	38,3959	19.6818	7 54161	4.31797	1.26891	0.375694	1.04766	-0.41713	-2.38	-1.26481	-3.52377	-0.58117	-3.04317	-4.48127	.1 58542	-2 79114	-2.78605	0 620797	6.45742
I		UV-Angle	28.789	29.0032	29.06	20.4435	29.3249	29.7369	30.0042	30.3625	29.7696	30.3087	30.0631	29.878	29.9479	30.4716	29.8573	29.8409	29.7148	29.6039	29.4807	29.0903	29.0881	29.5379	29.1555	29.4243	28.899	29.5068	30.4557	30.5447	31.8201	32.2341	31.4447	30.5295
ø		Utotvraf	0.605384	0.686231	0.583014	0.726799	0.71818	0.740243	0.760722	0.79003	0.655506	0.846301	0.892384	0.940173	0.939275	0.92328	0.964299	0.971603	0.961457	0.98318	0.988211	0.962676	0.977177	0.957987	0.953617	0.942113	0.937047	0.914436	0.909018	0.892535	0.882425	0.851548	0.839968	0.819301
u.		V-Turb	20,78082	18.19775	27.97193	19,12274	20.72263	20.92288	20.6706	20.59168	32.9876	19.79646	16.13806	13.50617	13.69251	16.01364	11.97809	10.00926	8.674493	8.322973	7.338107	6.865488	6.793612	7.781704	6.863668	7.95737	8.547293	7.245361	7.839684	7.501247	7.950544	7.108454	6.631469	5.881909
w		U-Turb	12,80063	11.67863	16.70771	12.04359	12,47663	12,30675	12.38047	11.18616	18.80668	11.3814	8.904339	7.502669	7.188618	7.855402	5.92535	4.529503	3.667391	3.049209	2.726366	2.475465	2.405041	2.755072	2.636516	3.00861	2.677707	3.645921	5,171242	5.346765	6.730291	6.505659	6.312222	5.535075
٥		VNnef	0.530557	0.600174	0.509619	0.632927	0.626151	0.642762	0.658776	0.681534	0.568996	0.732354	0.772179	0.615213	0.613963	0.795756	0.636307	0.842778	0.852399	0.854838	0.860429	0.858715	0.853929	0.833478	0.832795	0.820586	0.820358	0.795831	0.783592	0.768681	0.749604	0.720303	0.716613	0.70572
ပ	ion &	UNref	0.291545	0.332725	0.283184	0.357289	0.351738	0.367174	0.380400	0.399574	0.326469	0.428102	0.447313	0.466352	0.465596	0.466205	0.480069	0.483464	0.486491	0.485892	0.486028	0.477765	0.475059	0.472287	0.464585	0.462835	0.452844	0.450385	0.460755	0.453596	0.465262	0.454198	0.438191	0.41619
•	rvey at Stat	Y(in)	-3.7919	-3.792	-3.792	3.792	-3.7021	-3.7921	-3.702	-3.782	-3.7921	-3.7921	-3.792	-3.7921	-3.792	-3.792	-3.792					-3.792			-3.792	3.792	-3.792					-3.792	-3.792	-3.792
∢	Pitchwise Survey at Station 6	X(in)	-0.3825	0.3725	-0.3814	9.35	-0.3363	-0.3218	-0.3057	-0.288	-0.2 668	0.2474	-0.2239	ò. 1 96 1	-0.1 696	0.1386	0.1042	-0.0685	-0.02 8	0.0207	0.071	0.1263	0.187	0.2541	0.3276	0.4085	0.4976	0.5955	0.7031	0.8216	0.9521	1.0955	1.2532	1.4267
٧_	. W ED 4	w w	_	•	On	9	=	12	.	Z	2	õ	17	6	19	8	7	22	23	7	52	5 6	27	82	20	8	£ :	32	89	75	35	36	37	98

7	UV-Corret.	0.636259	0.673946	0.658738	0.657918	0.661280	0.661099	0.673903	0.692647	0.663009	_	0.709321			0.667017		•				_		0.478926	0.42645	0.285742	0.228293	0.125019	-0.11761	0.16426	-0.16025	0.07484	0.095848	0.279246
-	UV-Reyn.	156.247	205,644	211.911	217.921	228.619	245.186	257.524	307.429	260.182	284.869	301.399	279.754	299.19	276.217	279.928	282.62	248.247	258.186	216.859	174.516	132.543	126.203	83.5102	49.4368	34,5881	15.042	-11,1425	-12.0447	-10.618	4.29428	3.67147	9.31951
I	UV-Angle Mean	21.4978	21.5444	21.64	21.7150	22.153	22.5262	22.4050	23.5466	23.2757	23.0133	23.1525	23.761	24.0548	24.2134	24.9399	24.8956	24.3672	24.9964	24.6592	24.9514	25.1079	24.8291	24.9452	25.1158	25.6877	25.4868	25.8597	25.6466	25.9097	25.9796	25.0078	24.0244
ဖ	UtotVref	0.492855	0.464651	0.487118	0.509182	0.508501	0.500157	0.533174	0.511656	0.552644	0.545517	0.556883	0.570792	0.563911	0.507734	0.580724	0.615921	0.660902	0.647794	0.711407	0.738459	0.76817	0.758391	0.795054	0.797862	0.805196	0.822112	0.829855	0.832187	0.838101	0.843578	0.839414	0.826952
L.	V-Turb	28.40004	29.81033	30.64493	31.04267	31.78307	33.1659	33.51588	38.41224	24.28792	35.4 696 2	35.87502	35.86252	36.05697	35.98155	36.79496	36.4164	34.56800	35.15899	32.8536	31.19131	28.69042	28.88602	25.23296	23.54629	21.52913	18.51253	15.51023	13.55733	11.69235	10,17586	7,817534	7.614252
ш	-1-5 	12.80234	14,0877	14.44764	14.68542	14.97024	15,39059	15.00231	16.77647	15.75106	16.07961	16.30083	18.02425	16,6061	15.83982	15.84730	16.00137	15.00416	15.28143	14.25851	13.00687	12.17994	12.55538	10.63135	10.11276	9.685518	8.945011	8.406667	7.444013	7.946445	7.76053	6.74375	6.032438
۵	VNref	0.458568	0.45079	0.452785	0.473045	0.469111	0.461997	0.492604	0.468046	0.507666	0.502102	0.512033	0.522408	0.514938	0.545149	0.526572	0.559688	0.620247	0.587117	0.64653	0.669535	0.695587	0.686288	0.720885	0.722425	0.72562	0.742107	0.746758	0.750201	0.753859	0.758334	0.760719	0.755315
ت. 8	UNnet	0.180613	0.177975	0.179636	0.1664	0.190992	0.191613	0.204002	0.204422	0.218361	0.213267	0.218955	0.229964	0.229857	0.245152	0.244872	0.258282	0.280929	0.273733	0.296812	0.311518	0.325953	0.318458	0.335316	0.338652	0.349025	0.353758	0.361957	0.360187	0.366211	0.36953	0.354856	0.336873
D Vey at Stati	(با) خ	-3.2021	-3.2921	-3.2921	-3.2921	-3.282	-3.292	-3.292	-3.292	-3.292	-3.282	-3.292	-3.292	-3.292	-3.292	-3.2921	-3.2921	-3.2921	-3.2921	-3.2921	-3.2021	-3.2921	-3.2921	-3.2921	-3.2921	-3.202	-3.292	-3.292	-3.292	-3.292	-3.292	-3.292	-3.292
Pitchwise Survey at Station 7	X(in)	0.1434	-0.1335	-0.1224	-0.1105	0.0973	-0.0627	-0.0667	-0.0048	0.0296	-0.0064	0.0151	0.0406	0.0692	0.1001	0.1348	0.1725	0.2141	0.2598	0.31	0.3654	0.426	0.493	0.5666	0.6474	0.7365	0.8345	0.9422	1.0808	1.1911	1.3345	1.4922	1.6657
- N m 4	. vo eo	~	•	o	5	=	5	ŧ.	7	5	9	4	9	2	2	≂	2	23	₹	25	8	23	9 2	8	క్ల	E	33	ಜ	ੜ	35	36	37	8

		T	8	22	23	2	99	5	5	23	8	22	33	Z	25	2	92	5	8	82	32	8	22	33	29	9	8	15	82	55	5	8	7	8
7		W.Com	0.25360	0.55257	0.60942	0.55636	0.64296	0.6093	0.559	0.57002	0.56040	0.57452	0.5633	0.56619	0.594425	0.581169	0.583276	0.528415	0.564008	0.523582	0.232432	0.044796	0.33782	-0.37633	-0.48267	-0.39746	-0.40709	-0.45315	-0.43128	0.33665	9000	-0.05486	0.0331	0.236506
-		UV-Reym. Stress	13.4256	75.4077	110.516	101.744	150.655	152.895	136.526	148.599	156.345	169.275	159.415	170.044	189.258	181.834	186.384	147.486	177.438	139.376	16.5262	2.06494	-5.88098	-3.75024	-5.08819	3.79462	-4.18405	-4.41815	4.04325	-3.6228	-3.84545	-0.82723	0.491201	4.77142
I		UV-Angle Mean	12.662	13.0903	13.319	13.7605	13.7665	14.5074	15.2059	15.4039	15.5122	16.5808	17.1362	17.1161	17.7762	18.3706	18.3465	19.1708	19.4195	19.0642	17.6309	17.7427	17.4126	17.0026	17,4131	17.436	17.6069	17.662	17.7659	17.8834	17,9918	18.3489	18.1023	18.2518
v		UtotVref	0.492573	0.417865	0.400786	0.441261	0.448486	0.433186	0.46098	0.49369	0.476526	0.478091	0.528818	0.525177	0.510963	0.539298	0.577096	0.617217	0.581256	0.647187	0.842782	0.868586	0.696147	0.905485	0.900337	0.894366	0.881398	0.875775	0.858217	0.851915	0.842088	0.831507	0.826616	0.826969
u.		V.Tuð	14.9943	25.16160	28.7994	28.53714	32.62565	33.76961	33.09906	33.84572	34.44707	35.73072	35.63799	35.95944	37.57134	37.70323	37.26334	36.01578	37.7255	35.13822	17.28803	13.22376	7.671635	5.548567	5.549704	5.177473	5.09454	4.88542	4.965803	5.079062	5.440072	5.649475	5.749224	6.439735
W		U-Turb	4.846092	7.447023	8.646002	8.799021	9.861248	-0.00149	10.12964	10.57585	11.12042	11.32235	10.90368	11.42733	11.6358	11.30433	11.77463	10.6394	11.45045	10.40201	5.654295	4.786332	3.11586	2.466036	2.720933	2.531916	2.770132	2.74028	2.592251	2.909162	3.235218	3.664997	3.543762	4.301629
٥		VNref	0.480594	0.407006	0.390006	0.428596	0.435602	0.419374	0.444841	0.475956	0.459167	0.456212	0.505342	0.501917	0.486588	0.511814	0.547763	0.582988	0.548186	0.611691	0.803194	0.827271	0.85699	0.865907	0.850077	0.853272	0.840106	0.834493	0.81729	0.810753	0.80091	0.78923	0.785701	0.785363
υ	8		0.107971	0.094641	0.00233	0.10496	0.106724	0.106516	0.120909	0.131135	0.127443	0.13643	0.155813	0.154564	0.156003	0.160966	0.181648	0.202685	0.193258	0.211389	0.255265	0.264694	0.268771	0.264777	0.269434	0.267988	0.26661	0.265711	0.261865	0.261608	0.260105	0.261761	0.256841	0.259002
60	vey at Stat	χ(ji)	-2.792	-2.792	2.792	2.792	-2.792	-2.792	2.792	2.792	-2.792	-2.792	-2.792	-2.792	-2.792	-2.792	-2.792	-2.792	-2.7919	-2.792	-2.792	-2.7921	-2.7021	-2.792	-2.792	-2.792	-2.792	-2.792	-2.792	-2.7921	-2.792	.2.792	-2.7921	2.792
<	Pitchwise Survey at Station	X(in)	-0.0083	0.0016	0.0126	0.0245	0.0377	0.0525	0.0664	0.086	0.1054	0.1267	0.1502	0.1759	0.2043	0.2354	0.2699	0.3075	0.3493	0.3949	0.4451	0.5004	0.5612	0.628	0.7017	0.7825	0.8717	0.9696	1.0773	1.1959	1.3262	1.4696	1.6273	1.8008
۲.	. W W 4	so so	_	•	•	2	Ξ	5	£	=	5	9	4	2	9	2	7	22	ຊ	57	52	5 8	21	8	82	ಜ	3	32	33	3 5	35	98	37	88

⋖.	<	€	ပ	٥	w	u	v	I	-	7
- ~ ~ ~	Pitchwise Survey at Station 9	vey at Stat	6 uoji							
4 N 60	X(in)	۲(آ آ)	UNref	V/Vref	U.T.	V-Turb	Utotvref	UV-Angle	UV-Reyn.	UV-Correl.
~	0.0862	-2.292	0.043477	0.310347	5.136796	24.89345	0.313378	7.97481	32.9796	0.354133
€0	0.0961	-2.282	0.046773	0.332176	5.723830	25.75966	0.335453	8.01505	42,3584	0.394455
•	0.1071	-2.202	0.048243	0.354266	5,96450	25.98624	0.357674	7.91342	30,315	0.348278
2	0.119	-2.292	0.055301	0.350061	6.215303	27.39200	0.364203	8.73363	45.0996	0.363715
=	0.1323	-2.282	0.053403	0.369036	6.680562	29.01347	0.372861	8.23300	46.8289	0.331737
7	0.1400	-2.292	0.062457	0.396124	6.791023	29.37594	0.401017	8.96002	49.9124	0.343538
Ę	0.1629	-2.202	0.065373	0.382474	7.018894	31.52647	0.388021	9.69929	50.4289	0.312923
=	0.1806	-2.282	0.076904	0.432386	7.271161	30.77164	0.439172	10.0852	48.4381	0.297254
÷	0.5	-2.292	0.079519	0.418146	7.664605	31.6054	0.425641	10.7673	52.5867	0.297235
₽	0.2212	-2.282	0.063768	0.438872	7.825014	33.37965	0.446795	10.8061	67.2944	0.353758
1	0.2446	-2.282	0.094579	0.470664	7.887924	33.57947	0.480093	11.3616	56.6247	0.294575
=		-2.282	0.103323	0.509632	8.100829	34.12624	0.52	11.4606	71.8276	0.356754
2	0.2967	-2.282	0.110297	0.525618	8.466073	36.22787	0.537066	11.8511	96.4102	0.306000
8	0.33	-2.202	0.117633	0.538607	8.488021	36.49678	0.551303	12.3201	84,315	0.373812
≂	0.3645	-2.282	0.126454	0.526368	8.864742	36.89433	0.541335	13.5069	86.6771	0.363602
æ	0.4022	-2.292	0.138001	0.586553	8.789053	34.98698	0.604061	13.0113	77.2423	0.345662
£	0.4438	-2.202	0.138377	0.604576	8.420048	35.82366	0.620434	12.9819	78.2794	0.356336
*	0. 489.	-2.292	0.148752	0.623913	8.475713	33.88787	0.6414	13.41	70.1102	0.335163
22	0.5307	-2.292	0.178683	0.821536	4.918325	13.32022	0.840786	12.284	6.87448	0.144081
8	0.5949	-2.202	0.183144	0.811287	4.00000	14.99907	0.831701	12.721	5.49718	0.107527
≈	0.6557	-2.202	0.18646	0.851517	3.876160	8.211013	0.872128	12.481	-2.99964	-0.12941
≈	0.7226	-2.292	0.191424	0.96404	2.917967	5.302849	0.884991	12.4918	-3.27205	-0.29035
2	0.7962	-2.292	0.193106	0.850238	2.899975	5.140032	0.88067	12.0863	-3.72466	-0.3431
ຂ	0.0771	-2.292	0.191999	0.850845	3.10 8964	5.152529	0.672239	12.7162	3.78296	-0.32426
돐	0.9862	-2.292	0.198696	0.644973	2.743624	4.293866	0.868021	13.2329	-3.90050	-0.45462
g	- - - - -	-2.292	0.19655	0.835442	2.878652	4.301374	0.858252	13.239	4.20635	-0.45686
g	1.1717	-2.292	0.195996	0.830796	3.174300	4.462616	0.853802	13.2743	-4.37103	-0.42178
z	1.2905	-2.292	0.196426	0.827358	2.658097	4.208512	0.850355	13.3555	3.70527	-0.42207
35	1.4206	-2.202	0.198615	0.815776	2.064558	4.40348	0.839136	13.5507	-3.36313	0.38809
99	1.564	-2.282	0 192512	0.806295	2.994086	4.515241	0.830905	13.3966	3.84677	-0.37039
37	1.7218	-2.282	0.190221	0.806119	3.21111	5.017293	0.628259	13.2773	1.00475	-0.15381
8	1.8955	-2.292	0.1855	0.900216	3.006369	5.30046	0.621435	13.0513	1.14841	0.09809

		= i	_	•	•	•	•		•		~		•	_	•	•	₩)	•		~	6	4	4 0	4	4	~	~	•	e	0	•	s	w.	
7		W.Com	0.08280	0.0570	0.07306	0.08561	0.0004	0.06743	0.07965	0.08839	0.10502	0.07629	0.106495	0.13430	0.15001	0.1460	0.21867	0.14831	0.13789	0.13693	0.108303	0.05534	0.0381	-0.15874	-0.242	0.34967	-0.36752	0.339	-0.3903	0.44839	0.4487	-0.39115	-0.3205	.0 2R121
-		UV-Reyn.	5.17505	4.4248	6.42001	8.33057	9.34802	9.81707	9.37134	8.01096	14.6841	10,7865	14,0069	20.9408	23,2023	23.7706	36.128	11,6500	7.34039	5.94806	3.80894	0.89507	0.69925	-1.41209	-1 95532	-1.98287	-2.35659	-2.53307	-2.99006	4 1607	3.24783	2.08138	-3,44784	1707 6.
I		W-Angle	6.27626	4.86822	5.1600	4.93012	5.42035	6.53926	6.33705	5.76441	6.99303	7.00918	6.60616	7.84612	7.81061	8.10467	8.00639	7.22661	7.47322	7.84572	8.153	8.23012	8.62877	8.55283	8.90178	9.06361	9.29002	9.55659	9.57706	9.85463	9.63659	9.8189	90506	0 61802
ø		Unatwel	0.203542	0.254504	0.267783	0.288029	0.295664	0.308423	0.333521	0.392800	0.363004	0.300303	0.45679	0.444285	0.486474	0.509462	0.550039	0.7011	0.756827	0.793478	0.818396	0.85479	0.853465	0.867634	0.862451	0.863367	0.856874	0.849456	0.845644	0.835241	0.835145	0.82319	0.820264	O 822863
u.		V-Tub	20.96179	22.022	22.90935	24.47976	24.80967	25.62062	26.75057	25.63707	28.28786	28.80747	27.30855	31,29150	30.06678	32.38639	31.64293	20.13652	15.78403	14.05772	12.54500	7.65266	8.130053	4.707802	4.307616	3.543605	3.762053	3.773841	3.561857	3.925244	3.49704	3.210614	4.552556	4 8774R1
w		CT S	4.005017	4.831564	5,187335	5.438401	5.630083	6.017204	6.021336	6.230679	6.786367	6.738795	6.613386	6.141943	6.925107	6.997745	7.238403	5.324335	4.630696	4.242766	3.849022	2.901798	3.005015	2.504468	2.571258	2.195908	2.340322	2.715473	2.936798	3.245907	2.641611	2.275676	3.244392	1017182
0			0.202321	0.253587	0.268694	0.26796	0.294341	0.306417	0.331483	0.300012	0.380303	0.306319	0.45586	0.440105	0.481962	0.504374	0.544677	0.006631	0.750306	0.78605	0.610124	0.845067	0.843805	0.857996	0.852064	0.852587	0.845635	0.837667	0.833859	0.822918	0.623362	0.811132	0.808036	0.811201
v	ž 5			·				0.035124	0.036813	0.030462	0.044196	0.048726	0.063497	0.080648	0.086111	0.071825	0.078611	0.088194	0.006435	0.106315	0.116062	0.122362	0.128047	0.129036	0.133457	0.136007	0.138327	0.141028	0.140694	0.142951	0.139602	0.140382	0.141098	0 137455
•	vey at Statk	(j)	1.792	1.782	1.782	722	1.792	1.7921	1.792	1.782	1.792	1.792	1.792	1.782	- 722	1.792	1.782	172	-1.782	-1.792	1.792	-1.792	-1.792	-1.792	-1.792	-1.792	-1.792	1.792	-1.792	-1.792	1.792	1.792	1.792	1 702
<	Pitchwiee Survey at Station 10	X(m)	0.1206	0.1305	0.1415	0.1535	0.1667	0.1813	0.1973	0.2149	0.2343	0.2566	0.2791	0.3048	0.3332	0.3645	0.3066	0.4365	0.4782	0.5239	0.574	0.6293	0.6902	0.7571	0.6306	0.9115	1.0006	1.0985	1.2062	1.3248	1,4552	1.5965	1.7561	1000
۲.	- ~ ~ ~	n no no	_	•	•	5	=	7	t.	=	5	9	1	5	5	೭	7	z	23	75	22	9 2	22	58	53	8	E	32	33	3 6	55	38	37	ď

7		W.Contel.	0.10866	0.10823	0.10463	0.00012	0.00000	0.08232	0.11028	0.0578	0.0000	0.01565	0.05736	-0.01412	0.045547	0.014074	0.04678	0.00000	0.034162	0.133845	0.110780	0.020811	-0.00141	0.0	-0.07665	0.28782	-0.20209	0.286	0.36568	0.31656	0.38051	0.35	0.30000	-0.31272
-		W-Reyn.	7.0066	-8.23781	6.36317	4.02786	4.07854	6.34067	-11.711	6.5567	0.98462	-1.5000	£ 71006	-	6.22768	2.01246	6.47807	10.1966	1.71603	18.7319	5.30006	0.493407	-0.02123	0.55633	0.74941	-1.90494	-1.40702	-1.56230	1.91047	-1.35585	1.81648	1.93464	-2.44544	-2.05842
I		W.Angle	3.37862	3,6450	2.87063	3.4220	3.40644		4.90447	4.4000	4.96801	1 00.7	70000	5.16671	5.54016	5.82028	5.61294	£.1800	S. 15850	6.20025	6.74742	S. DA 124	5.91990	6.32751	6.54962	6.65679	6.60528	6.86513	7.12768	7.25003	7.50444	7.48854	7,30832	7.22835
o		Upovref	0.202847	0.200	0.236325	0.237177	0.28632	0.28228	0.308673	0.313253	0.321623	0.41	0.418380	0.419180	0.434679	0.459792	0.512014	0.534256	0.723003	0.610733	0.762586	0.815383	0.838377	0.14483	0.843573	0.843707	0.845490	0.843021	0.836456	0.837446	0.828208	0.823081	0.816865	0.815048
u		V-Tub	19.80049	20.78871	21.07354	22.00-121	22.18619	23.2177	23.20917	24.82462	28.41828	22.12813	24.00164	28.34007	24.00025	27.28013	28.64113	30.25111	16.45062	28.51944	16.00375	0.047284	6.974886	\$.741174	5.004671	3.942197	3.467547	3.074494	3.058873	2,73854	2.886038	3.144337	3.340581	3.579866
w		515	4.8664	6.022906	S. ISERY	S. 802082	£ 200040	£.014418	C272647	6.30278A	0.466022	C.31422	6.457791	£.486767	£ \$2217	7.100027	£.72002.	7.045786	1.461861	275.00	4.016222	3.284002	2.980016	2.054054	2,000718	2,47275	2.722488	2.416224	2.342485	2.120062	2.283661	2.406262	2.502326	2.519958
۵			0.202404	0.204078	0.2360	0.236762	0.20001	22152	0.308817	0.3123	0.32042	0.417628	0.41	0.417466	0.454600	0.457422	0.808642	0.531151	D.720078	0.007057	0.748812	0.01114	0.834801	0.138340	0.838067	0.0000	0.838733	0.636877	0.831979	0.830734	0.21120	0.818863	0.8102S2	0.808671
ü	=	3	0.011964	0.013506	0.011786	0.014188	Conses	0.020822	0.024557	0.024412	0.027787	O. GREATTS	D.COSEAST	0.007741	0.04252	0.04627	0.080257	0.0677230	0.004662	0.00000	0.075367	0.062963	0.000073	0.000073	0.000221	0.087833	0.000076	D. 100780	0. to4037	0. 108829	0.107905	0.107388	0.103867	0.102563
•	Survey at Stati	Y(In)	1.202	- 282	1.2821	- 282	-1.28	-1.282	-1.282	-1.202	1.282	1.282	1.282					1.2821								-1.222	1.282	-1.282	1.282	1.2010	-1.2016	-1.2921	-1.292	-1.292
<	Pitchwise Sur	X(in)	0.1436		2.0	2.172	0.188	0.2042	0.2202	0.237	0.2573	0.27	0.301	0.3278	0.3861	0.3674	0.4217	0.4504	0.500	0.5467	0.5000	0.6621	0.713	6 .79	0.8536	0.934	1.0235	1.1214	1.22	-247	1.4781	1.6213	1.77	1.9526
۲.	- n n 4	. no eo	~	•	0	5	=	12	2	7	5	=	1	.	2	2	2	z	R	72	52	2	23	2	2	2	ä	Ħ	33	3	35	**	37	8

7		5	27.	_	72 -0 1582	_	786 -0.12004		262 -0.0792	DE -0.09837	•				128 -0.01731												_	_		112 -0.28039	00 -0.29049	53 -0.28014		112 -0.27913
-		_			10.217		20 -0.7678	٠	20.7-	15 -9.0560					1.09428												Ŧ	Ģ	1.2370	1.066	1.5300	÷		13 -1,00312
I		W.Ang	_																													7 5.40801		
o			10		6 0.173802	_																										0.824757		
u		V-Turb	18,6047	17.000	17.9764	_			21.4627																					2.577905				2.991902
w		C. 15	4.13479	76757	4.924236										8.48036											2.210852	2.2837	2.34087	2.342802			2.470577		
٥			O 18300	_	_				0.225662													0.786182								0.827107	0.823456	0.821085	0.017145	0.81513
ပ	M on 12	3	_		_															0.0424					0.0		0.072846						_	
6	Survey at St.	(ja)	-0.792	0.72	D. 792	6.782 28.00	6.782	0.782	97.9	0.782	6.75 25.	6.78	9.75	9.7 0	6.7 8 2	0762	0.75	0.782	0.782	0.782	0.7	0.782	-0.787B	9.78	0.782	0.782	0.782	-0.782	0.72	0.782	9.76	0.782	-0.792	-0.792
<	Pilchwise S	X	0.1236	0.1337	0.1447	0.1567	0. 1 60	0.1846	0.2005	0.2181	0.2375	0.2586	0.2823	0.00	2000	0.3678	0.402	0.4307	0.4613	0.527	0.5772	0.6328		0.7002	0.6538	0.9147		1.1002	7.00	1.328	1.4583	1.6017	1.7504	1.9320
۲.	- C4 E5 -4	· •• ••	~	•	•	5	F	2	2	= !	÷.	₽ :	-	=	₽ :	2	₹.	2	2	₹ :	21	2	> 8	8 8	R:	8 :	F (2	8	%	×	8	37	8

																						1												
~		UV-Correl.	3		75 9		4457	5 1556	5 10054	10871	0.10338	-0.11675	0.00513	-0.08122	-0.00042	0.070	0.04707	0.018703	-0.04974	0.00114	0.005951	0.066168	0.104317	0.000022	0.003116	0.07713	-0.13121	-0.21816	0.21039	0.29626	0.2379	-0.25149	-0.30073	-0.2072
-		UV-Reyn.		200	2200.0		5 2225	7 0020	427.0	-0.00003	- 820E3	11.4786	-9.71684	4.00774	-0.74368	1.00071	-5.40224	2.02906	-5.427	3.47923	0.674111	7.33255	10.0902	0.146503	1.07503	92.4	-1.13862	-1.20091	1.02342	1.53233	1.16482	1.26117	1.67791	1.75533
I		UV.Angle			2 12818			2 000	2.43661	2.19751	2,32511	2.03256	2.7863	2.50360	2,96755	3.07757	3,31130	2.78708	3.30025	3.10465	3.45002	3.54519	3.3866	3.30630	3.53186	3.75567	3.90659	3.90352	4.31462	4.41152	4.38795	4.27151	4.15443	4.09386
9		UlceVine		0176	0 191634	0.707.0	0.21	0 224436	0.233188	0.274002	0.29011	0.303302	0.337803	0.338205	0.378104	0.40272	0.427478	0.482404	0.5267	0.578008	0.802681	0.634578	0.00000	0.802882	0.813029	0.821145	0.628021	0.836460	0.832716	0.832766	0.828988	0.626344	0.623079	0.819962
L		V-Turb	44 3444	17.44015	17.22778	7,67	16.5372	10.01006	19.7812	19,85106	10.45136	20,78867	21,63624	22.7484	21.78657	22.57342	23,00871	21.82864	22.97067	24.02102	24.36165	24.95447	23,42804	9.564023	8.17886		4.90561	3.288041	2.981614	2.82680	2.717512	2.636578	2.639909	2.944167
w		ST-O	4 140111		8.020044	A 144497	A. C. S. S. S. S. S.	5.701314	8.563776	6.283208	0.006726	C. C	4.470010	8.807482	Car 1615	6.903062	8.836722	£.811867	6.510002	6.3744	£.37543	£.086130	5.563128	3.032704	2.867157	2.032019	2,634863	2.316667	2.250851	2.907543	2.460207	2.804722	2.002545	2.740296
٥		VAN	0.168611	0.174675	Q.181800	0.202788	0.21000	0.234263	0.232877	0.273801	0.200004	0.300111	0.337103		0.377801	0.40214	0.426766	0.461621	0.625773	0.578061	D. 801563	0.633364	0.867121	20120	0.012363	2001830	0.626086	0.834430	0.630356	0.8303	0.826547	0.624048	0.620916	0.81787
v	8 5		0.00007	0.005616	0.008746	0.003708	0.004462	0.008437	0.000000	0.010808	0.012135	0.010757	200	0.014818	9.04 9608					0.031245							0.056442	0.054255	0.062648	0.084058	0.06357	0.061548	0.050628	0.056537
•	resy at State	4	90	9	9	9	9.5	0.400		9		6.400 6.400		0.400	9	0.400	0.480			9								0.488	_	_			_	0.400
<	Phyloseles Su	X(m)	0.1236	0.1337	0.1447	0.1567	0.1600	0.1845	0.2006	0.2181	0.2375	0.258		5	200	0.3676	0.402	0.4307	0.4812	0.527	0.5772	0.6325						7.1002	200	228	4583	1.0017		1.8328
٧,		· •• •		•	•	2	=	2	ţ	= :	5	9 !	4	2	2	R	7	n:	R	2	2	R	~ {	2 9	\$ \$	3 2	5 8	3 5	2	\$:	ខ្លួ	8 :	'n	3

7		N-Correl.	0 15455	0.16213	0.11766	20000	0.13077	0.10518	0.00101	0.14447	0 12242	0.10037	0.14718	0.11742	0.13802	12301	12733	-0.15143	10706	0.10408	00500	09792	0.16362	-0.11165	0.10629	-0.13186	0.17568	0.16831	-0.21038	0.17445	-0.3341	-0.27408	35873	.0.37753
		W.Reyn. UV			4.02037						_				_	_		22.0542 0										·		•		-23.7911 -0		
_		-	_	_	_		_			Ť	Ī	·	٠		•									_	_		_							
I		%.¥3	3.20	2 9862	_		0.356110	0.9852	1778			2.42363								3.70651				3.71066	4.15553	4.48332	4.30		*	•	4	4.743	4.502	4.27703
o		UtoWref	0.179921	0.174366	0.187280	0 221424	0.216771	0.236144	0.237005	0.230746	0.280294	0.292538	0.221332	0.300624	0.361306	0.358865	0.38223	0.404131	0.445616	0.486875	0.514531	0.547096	0.570912	0.636024	0.633458	0.641996	0.679193	0.600600	0.708485	0.725086	0.736342	0.759801	0.769007	0.780157
u.		V.Tuð	15,61025	17.11317	18.13415	17.47.85	18.51841	18,80637	19.96192	20.49738	20,30581	21.121	7.05923	22.54207	23.075t.7	23.80225	23.836.	25.24000	25.00656	26.9786	28.13092	26.57357	29.95711	28.48080	28.77244	28.13465	25.75062	23.58042	22.73428	20.18159	18.436	15.29497	14,4752	12.51062
w		5	4.756343	4.006326	6.194431	8.400306	5.817479	6.298002	6.333604	6.050606	6.886286	7.040197	7.276508	7.058825	7.788364	7.83044	100464	7.970306	7.830459	6.190013	7.970461	7.931076	7.923060	7.160737	7.563563	7.730±6	7.000072	7.670903	7.728564	7.232319	7.528667	7.842371	7.701523	7.744855
0		WAref	0.179626	0.174127	0.187246	0.221419	0.218767	0.23511	0.230000	0.230565	0.260086	0.282277	0.521112	0.309137	0.351042	0.356276	0.301551	0.403303	0.444766	0.487862	0.513164	0.545812	0.560386	0.634691	0.631792	0.640033	0.677273	0.666600	0.706173	0.722835	0.736765	0.757199	0.786634	0.777965
ပ	14 14	Š	0.010303	0.0000	0.002928	0.001425	0.00136	0.003061	0.00713	0.008755	0.011101	0.01237	0.011 985	0.015476	0.015762	0.020667	0.023086	0.024415	0.027496	0.031621	0.037474	0.037485	0.041665	0.041162	0.045903	0.050161	0.051042	0.05500	0.057181	0.065606	0.061661	0.062627	0.080373	0.058183
•	Survey at Station 14	Y(in)	0.25	-0.25	0.25	979	0.26	-0.25	0.25	-0.25	0.25	0.25	-0.2501	-0.2501	0.2501	6.28 0	0.250	0.250	6.250	0.2501	0.2501	-0.25	0.2501	0.2501	0.2501	0.2501	0.2501	-0.2501	-0.2501	-0.2501	-0.2501	-0.2501	-0.2501	-0.2501
<	Pilohwige Su	χ(gr)	0.10	0.1130	0.1248		0.15	0.1647	0.1807	0.1963	0.2177	0.2389	0.2625	0.2884	0.3166	0.27	0.3823	0.4190	0.4615	0.5072	0.5574	0.6126	0.6735	0.7405	0.614	0.865	0.964	- 0819 619	 	1.3082	1.4385	1.5810	1.7395	1.9132
۲.	. 4 6 4	in eo	7	•	•	2	=	2	Ç	=	÷	ş	4	=	2	2	Ξ.	Z:	R	7	5 2	2	21	29	20	8	£	8	£	3	35	8	37	#

X(in) Y(in) UVref Viref U-Turb V-Turb UsdViref UV-Angle UV-Reyn UV-Cornell Config. 0.1023 0.0001 0.02012 0.1196234 -4.31419 16.53814 0.180234 0.02022 14.3479 -0.27123 0.1322 0.0001 0.02123 0.17179 -4.52026 0.17222 0.12202 0.0001 0.02123 0.17222 0.12202 0.1222 0.0001 0.02123 0.17222 0.12222 0.1	<	∞	ပ	٥	ш	u	ø	I	-	7	
V(in) UV/ref V/Vref U-Turb V-Turb Ublot/vref UV-Angle UV-A	tcharise Sur	vey at Stat	lon 15								
0.0001 0.00017 0.190234 -4.31419 16.53814 0.190234 -0.05025 14.3378 0.0001 0.00017 0.190234 -4.31419 16.53814 0.190847 6.74791 -20.7209 0.0001 0.000325 0.228001 -8.47829 18.9489 0.217284 -0.24374 -10.2592 0.0001 0.000320 0.228001 -8.47829 18.9489 0.215284 -0.34374 -10.0289 0.0001 0.0003708 0.228001 -8.47829 18.9489 0.2152824 -0.34374 -10.0289 0.0001 0.0003708 0.228001 -8.47829 18.9489 0.215824 -0.34374 -10.0289 0.0001 0.0003708 0.228003 -8.47829 18.9489 0.215824 -0.34374 -10.0289 0.0001 0.0003708 0.228003 -8.47829 18.9489 0.213908 0.671399 -12.7104 0.0001 0.0003708 0.228003 -8.447829 18.9489 0.213908 0.671399 -12.7104 0.0001 0.0003709 0.228003 -8.447829 18.9489 0.213908 0.671399 -12.7104 0.0001 0.000477 0.228023 -8.447829 18.9489 0.213908 0.671399 -12.7104 0.0001 0.000477 0.228023 -8.42742 0.228024 0.0001 0.000447 0.228023 -8.42742 0.228024 0.03902 0.000447 0.228023 -8.42742 0.228024 0.0001 0.000489 0.238224 6.42742 0.238022 0.038023 0.038023 -10.02902 0.00044 0.000414 0.42742 0.280024 0.038024 0.13802 0.43802 0.23802 0.0001 0.000489 0.338224 6.42742 0.32802 0.43802 0.43807 0.00001 0.022315 0.48808 0.43807 0.43807 0.43807 0.43807 0.43807 0.43807 0.43807 0.43807 0.43807 0.43807 0.43807 0.43807 0.43807 0.44807 0.04242 0.44807 0.44807 0.44807 0.44807 0.44807 0.44807 0.44807 0.44807 0.44807 0.44807 0.44807 0.44807 0.44807 0.44807 0.44407 0.44407 0.44407 0.44807 0.44807 0.44807 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44807 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.44407 0.	X(in)	(in)	UNref	VAref	U-Turb	V.Turb	UtoWref	UV-Angle	UV-Reyn.	UV-Correl	
0.0001 0.02125 0.178886 6.03404 17.22427 0.180647 0.72727 17.7272 0.0001 0.	0.1023	0000	710000	2,2001.0	01716	16 63844	120000	10000			
0.0001 0.00877 0.217779 -4.89036 17.0838 0.217284 -1.7847 -1.71779 0.0001 -0.00128 0.228001 -4.87875 17.57023 0.228024 -0.84174 -16.0428 0.0001 -0.00128 0.228018 -5.47825 18.9489 0.21862 -0.51178 -16.00178 -0.51178 -16.00178 -0.51178	0.1122	000	0.02125	0.178665	103404	17 00427	0.1802.3	A 74791	2000	0.27743	
0.0001 0.00129 0.228001 4.67875 7.57023 0.228034 -0.4394 -10.4380 0.0001 0.00129 0.228618 -8.47825 18.97167 0.228627 -0.51778 -11.6319 0.0001 0.00270 0.228618 -8.47825 18.97167 0.228627 -0.51778 -11.6319 0.0001 0.004747 0.228623 18.97167 0.228043 -0.50474 -12.04049 0.0001 0.004747 0.228623 18.96172 0.289315 0.86243 -12.2344 0.0001 0.00417 0.288286 6.208428 0.38962 0.31302 -12.2344 0.0001 0.00417 0.288786 6.208428 0.38962 0.31302 -12.2344 0.0001 0.00447 0.288782 0.08032 0.38628 -1.3196 -10.6933 0.0001 0.00447 0.388782 6.208428 0.31302 -1.3196 -10.6933 0.0001 0.01144 0.386726 0.138622 0.41302 -1.3196 -1.24040 <th>0.1232</th> <th>0 000</th> <th>-0.00877</th> <th>0 217170</th> <th>7 06086</th> <th>47.00</th> <th>0 21 7266</th> <th>70517</th> <th>10.767</th> <th>2000</th> <th></th>	0.1232	0 000	-0.00877	0 217170	7 06086	47.00	0 21 7266	70517	10.767	2000	
0.0001 0.00126 0.236681 -5.47029 18.9489 0.23684 -0.34374 -11.0319 0.0001 0.002702 0.228681 -5.47025 18.97167 0.228627 -0.51178 -11.0319 0.0001 0.002708 0.228603 -5.47025 18.97167 0.2280243 0.671399 -12.7104 0.0001 0.004747 0.228023 6.02512 0.2280315 0.86472 -12.2302 0.0001 0.004447 0.238028 6.225426 19.86172 0.238024 0.86472 0.238024 0.86472 0.238024 0.86472 0.238024 0.86472 0.75813 -0.22802 0.00504 0.00444 0.338024 0.86472 0.00517 0.75813 0.03704 0.00504 0.00444 0.338024 0.00517 0.38802 0.33802 0.33802 0.00504 0.00444 0.33802 0.00504 0.00504 0.00504 0.00504 0.00504 0.00504 0.00504 0.00504 0.00504 0.00504 0.00504 0.00504 0.00504 0.00504	0.135	10000	0.00383	0.22600	A 62676	17 8702	0.2717.0	70700	7787.7	70.00	
0.0001 -0.00022 0.228618 -5.47925 18.01687 0.228627 -5.1104 -1.0319 0.0001 0.003787 0.228024 5.864712 18.6888 0.231066 0.671399 -12.7104 0.0001 0.00478 0.228024 6.146959 19.1787 0.228024 0.68233 -10.6853 0.0001 0.004147 0.228028 6.285428 19.06172 0.228033 -10.28903 0.0001 0.004147 0.238024 6.284543 20.80527 0.238024 0.239024 0.239024 0.239024 0.239024 0.239024 0.039024 <td>0 1484</td> <td>0000</td> <td>0.00120</td> <td>0.216581</td> <td>42020</td> <td>10 0460</td> <td>216684</td> <td>72.57</td> <td>2000</td> <td>0.0000</td> <td></td>	0 1484	0000	0.00120	0.216581	42020	10 0460	216684	72.57	2000	0.0000	
0.0001 0.002706 0.23105 5.804713 19.86858 0.231086 0.671399 -12.7104 0.0001 0.000787 0.286034 5.846782 18.06212 0.280043 0.806393 -10.8653 0.0001 0.0004747 0.280634 0.81787 0.280043 0.81827 -12.294 0.0001 0.0004147 0.282636 6.282677 18.98638 0.313027 0.758133 -8.33302 0.0001 0.0004147 0.338724 6.28453 20.80532 0.33627 0.81833 -8.03704 0.0001 0.000419 0.386124 6.28453 20.80532 0.33627 0.81833 -8.03704 0.0001 0.000419 0.386119 0.886285 0.313027 0.386124 1.3196 -10.8633 0.0001 0.001217 0.386722 6.607818 20.3867 0.41822 1.75369 -10.8633 0.0001 0.01842 0.418625 6.007818 20.38624 1.53569 0.41862 0.0001 0.01842 0.41862 6.607818 20.38624 1.53569 0.41862 0.0001 0.01842 0.41862 6.607818 20.3867 0.41862 1.53569 0.41862 0.0001 0.01842 0.41862 6.41863 2.28207 0.48646 2.18637 3.38734 1.50949 0.0001 0.01842 0.48846 6.194497 23.4124 0.596813 2.14283 2.38057 0.0001 0.022315 0.88038 6.194497 23.4124 0.596813 2.14283 2.38057 0.0001 0.027315 0.88038 6.194497 23.4124 0.596813 2.14283 2.38057 0.0001 0.027315 0.88038 6.194497 23.4124 0.596813 2.14283 2.38057 0.0001 0.027315 0.88038 6.184497 23.4124 0.596813 2.14283 2.38057 0.0001 0.027315 0.88038 6.184497 23.4124 0.596813 2.14283 2.38057 0.0001 0.027315 0.88038 6.18487 2.38038 0.801442 2.18237 0.0001 0.027315 0.88038 6.18424 2.02732 0.800341 2.78062 0.801042 2.00054 0.000341 2.78062 0.810422 2.00054 0.000341 2.78062 0.810422 0.000341 2.78062 0.810422 0.000341 2.78062 0.810422 0.000341 2.78062 0.810422 0.000341 2.78062 0.810422 0.000341 2.78062 0.810422 0.000341 0.81752 2.86569 0.88132 3.1724 0.81092 0.004457 0.004471 0.820134 2.48064 2.48044 2.18072 0.004457 0.0044674 0.81752 2.78062 0.81754 0.81754 0.81754 0.004457 0.004457 0.81752 2.78062 0.81754 0.81752 0.006527 0.006223 0.004228 0.006233 2.48064 0.004457 0.81752 2.78062 0.004235 0.006235 2.78062 0.004235 0.006235 2.78062 0.006235 2.78062 0.006235 2.78062 0.004235 0.006235 2.78062 0.006235 2.78062 0.006235 2.78062 0.006235 2.78062 0.006235 2.78062 0.006235 2.78062 0.006235 2.78062 0.006235 2.78062 0.006235 2.78062 0.006235 2.78062	0.163	0000	0.0000	0.228618	\$ 47825	18 07187	0.224627	5 51178	11 0340	0.45847	
0.0001 0.005787 0.268034 5.846782 16.00572 0.268033 10.00578 0.0001 0.004747 0.280238 19.1767 0.280315 0.806472 -12.234 0.0001 0.00414 0.280238 6.205428 19.1767 0.280315 0.806472 -12.234 0.0001 0.00446 0.280238 6.205432 0.00532 0.33207 0.75133 -15.235 0.0001 0.00468 0.336724 6.425453 20.0052 0.33207 0.75133 -10.527 0.0001 0.001217 0.386726 20.12782 0.38626 1.7596 -6.4287 0.0001 0.011418 0.416672 0.03530 0.43864 1.3196 -10.6833 0.0001 0.011418 0.446816 0.00200 0.41667 0.44681 0.44681 0.44681 0.44681 0.44684 0.44684 0.44684 0.44684 0.44684 0.44684 0.44684 0.44684 0.44684 0.44684 0.44684 0.44684 0.44684 0.44684 <td< td=""><td>0.179</td><td>0.000</td><td>0.002708</td><td>0.23105</td><td>5.004713</td><td>10 GARGE</td><td>0 21/066</td><td>067170</td><td>12.75</td><td>16369</td><td></td></td<>	0.179	0.000	0.002708	0.23105	5.004713	10 GARGE	0 21/066	067170	12.75	16369	
0.0001 0.004747 0.280603 6.148659 19.1767 0.280643 0.968472 11.5275 0.0001 0.004147 0.280583 6.226426 19.89172 0.282315 0.812823 11.5275 0.0001 0.004447 0.280282 6.226426 19.89172 0.282315 0.812823 11.5275 0.0001 0.004447 0.386782 6.226426 0.33822 0.33822 0.33822 0.33822 0.33822 0.0001 0.004447 0.386782 6.425453 0.30523 0.33822 0.33823 1.3596 10.0833 0.0001 0.001217 0.388782 6.864285 20.12782 0.38693 1.78206 8.42287 0.0001 0.01654 0.43486 6.842287 0.43692 0.43868 6.842297 21.91882 0.43869 0.54542 0.43868 6.842297 21.91882 0.43869 0.54542 0.43869 6.84289 0.48844 0.43869 6.84289 0.48844 0.48818 6.73704 2.3829 0.48848 2.04387 0.48848 0.0001 0.022315 0.48848 6.73704 2.8829 0.48848 2.04387 0.48848 0.0001 0.022315 0.48848 6.73704 2.8829 0.48848 2.04387 0.48848 0.0001 0.022315 0.48848 6.73704 2.8829 0.48848 2.04387 2.4428 0.0001 0.02759 0.88734 6.73847 2.4624 0.88734 0.0001 0.02799 0.88734 6.72847 2.4624 0.0001 0.02799 0.88734 6.72847 2.4624 0.0001 0.02799 0.88734 6.72842 0.80822 2.48804 7.7878 0.02799 0.04428 0.88929 2.48804 2.8072 2.40804 0.044248 0.88734 6.23804 0.72825 2.8804 0.70424 0.004248 0.88929 2.38692 0.881342 2.4822 0.004487 0.044471 0.82013 2.38827 0.81800 0.24827 0.04448 0.88734 2.37802 2.40804 0.044471 0.82013 2.28627 0.81804 0.004471 0.82013 2.48872 2.80604 0.044471 0.82013 2.28927 0.81804 0.0044874 0.81752 2.80427 0.81794 0.81792 0.004477 0.91794 0.044474 0.81752 2.789422 2.4877 0.91794 0.004471 0.82013 2.77917 0.817916 0.0044874 0.81792 2.80452 0.81795 0.91794 0.00428 0.00428 0.81752 2.80427 0.81799 0.004477 0.91794 0.00428 0.81752 2.80427 0.817916 0.004471 0.82013 2.47791 0.817916 0.0044874 0.81752 2.80427 0.817916 0.004471 0.82013 2.77917 0.817916 0.0044874 0.81752 2.80427 0.817916 0.0044874 0.81752 2.78942 0.81792 0.81792 0.004977 0.91794 0.004471 0.82013 2.77917 0.817916 0.0044874 0.81752 2.789427 0.817916 0.0044874 0.81752 2.789427 0.817916 0.0044874 0.81752 2.789427 0.81792 0.81792 0.004477 0.91794 0.91794 0.91794 0.81792 0.81792 0.81792 0.81792 0.81792 0.81792 0.81792 0.81792 0.81792 0.81792 0	0.1966	0000	0.003767	0.269034	5.846782	18.08212	0.260061	0.806383	10.0053	-0 14217	
0,0001 0,004019 0,283278 6,283277 19,98639 0,313327 11,5273 11,5273 0,0001 0,000447 0,313 6,283277 19,98639 0,313327 0,786133 -8,33302 0,0001 0,000469 0,336274 6,283277 19,98639 0,331327 1,3196 -10,3024 0,0001 0,001217 0,341867 6,607818 20,3807 1,39124 1,3196 -1,4026 0,0001 0,010217 0,348672 6,607818 20,3507 0,41967 6,607818 20,3807 1,79306 -4,0281 0,0001 0,016342 0,41867 6,607818 20,3807 1,41867 -4,0281 1,5399 -5,5472 0,0001 0,016342 0,41867 6,607807 21,3817 0,41869 -5,5472 0,41869 0,54717 1,41867 1,4004 0,54869 0,54869 0,54869 0,54869 0,54869 0,54869 0,54869 0,54869 0,54869 0,54869 0,54869 0,54869 0,54869 0,54869	0.216	0.000	0.004747	0.280503	6.148059	19.1767	0.280543	0.969472	12 2304	-0.14319	
0.0001 0.004147 0.313 6.259277 19.90639 0.319027 0.759133 -8.33302 0.0001 0.00469 0.384119 6.462453 20.80532 0.33626 0.831535 -9.03704 0.0001 0.01217 0.386726 6.386726 0.38623 0.38623 0.33626 0.63704 0.0001 0.01217 0.48672 6.60761 20.38673 1.38734 -7.8896 -4.0287 0.0001 0.01634 0.43468 6.607618 20.38073 0.470421 1.38734 -7.8186 -7.8186 0.0001 0.017419 0.44868 6.77744 22.8175 0.47048 1.38734 -7.8186 0.0001 0.017419 0.44868 6.77744 23.4124 0.56641 2.1623 2.4604 0.0001 0.017419 0.44864 6.77744 23.4124 0.56641 2.1623 2.4604 0.0001 0.017419 0.46848 6.17744 23.4124 0.56611 2.1626 0.4466 0.34606 <t< th=""><th>0.2372</th><th>9. 90. 90.</th><th>0.004019</th><th>0.283285</th><th>6.205426</th><th>19.99172</th><th>0.263315</th><th>0.812823</th><th>11.5275</th><th>0.12819</th><th></th></t<>	0.2372	9. 90. 90.	0.004019	0.283285	6.205426	19.99172	0.263315	0.812823	11.5275	0.12819	
0.0001 0.00468 0.336224 6.425453 20.80532 0.33626 0.831535 -0.03704 0.000219 0.381119 0.854255 20.12782 0.381214 1.3196 -10.6833 0.0001 0.000219 0.381119 0.854255 20.12782 0.381214 1.3196 -10.6833 0.0001 0.011145 0.418672 6.607818 20.38597 0.415621 1.353599 -8.40287 0.0001 0.01142 0.417022 6.607818 20.38297 0.415621 1.353599 -8.40287 0.0001 0.018642 0.477022 6.607818 2.32829 0.48648 2.04368 1.46054 0.0001 0.01879 0.48848 6.77744 25.8039 0.48848 2.04368 1.46054 0.0001 0.022315 0.596298 6.164497 23.4124 0.596813 2.14283 2.36322 0.0001 0.022315 0.596298 6.164497 23.4124 0.596813 2.14283 2.36322 0.0001 0.022315 0.596298 6.154497 23.4124 0.596813 2.14283 2.36322 0.0001 0.022315 0.596298 6.154497 23.4124 0.596813 2.14283 2.36322 0.0001 0.022315 0.596298 5.818915 2.26568 0.68148 2.36032 4.44008 0.022315 0.596298 5.818915 2.26568 0.68148 2.30222 0.02459 0.02428 0.000241 2.70862 0.818799 2.30004 2.36024 2.30022 0.000241 2.70822 2.30004 0.02428 0.000241 2.70822 2.759025 0.81902 2.94452 0.045672 0.044474 0.82013 2.7564 0.819082 2.94452 0.045672 0.044474 0.82013 2.42825 2.86770 0.818798 2.30004 0.02428 0.000241 2.70822 2.70922 2.96774 2.3779 0.044674 0.82013 2.42825 2.86770 0.818798 2.30004 0.044574 0.818752 2.78472 0.818702 2.9452 0.045672 0.044474 0.82013 2.77874 0.818702 2.94452 0.045672 0.044574 0.818752 2.78472 0.81872 2.78472 0.064272 0.044574 0.818752 2.78472 0.81872 2.78472 0.044574 0.81872 2.78472 0.687424 0.044574 0.818722 2.78472 0.81872 0.065427 0.044574 0.818722 2.78472 0.81872 0.065427 0.044574 0.818722 2.78472 0.81872 0.055427 0.044574 0.818722 2.78472 0.81872 0.055427 0.044574 0.818722 2.78472 0.81872 0.055427 0.044574 0.818722 2.78472 0.81872 0.055427 0.044574 0.818722 2.78472 0.81772 0.68772 0.05472 0.044574 0.81772 2.78472 0.68772 0.04457 0.044574 0.81772 2.78472 0.68772 0.04457 0.044574 0.81772 2.78472 0.68772 0.04457 0.04457 0.81772 2.78472 0.68772 0.04457 0.04457 0.81772 2.78472 0.68772 0.04472 0.04472 0.81772 2.78472 0.81772 0.81772 0.68772 0.04772 0.04772 0.04772 0.04772 0.04772 0.94772 0.04772 0.81	0.2609	0.000	0.004147	0.313	6.253277	19.99638	0.313027	0.759133	8.33302	0.09193	
0,0001 0,000319 0,381119 6,546256 20,12782 0,386031 1,3196 -10,6833 0,0001 0,01217 0,388782 6,80801 20,5803 1,78908 -1,7896 -6,4287 0,0001 0,01145 0,418672 6,80801 20,5803 1,3874 -7,81808 0,0001 0,016842 0,47622 6,61683 22,36175 0,418673 1,3874 -7,81808 0,0001 0,016842 0,47622 6,61683 20,48648 2,0486 1,40054 0,0001 0,01679 0,48848 6,77044 2,8030 0,48844 2,0485 0,0001 0,022315 0,56036 6,7774 2,8030 0,48844 2,3837 -4,4406 0,0001 0,02715 0,68036 6,7834 2,7816 0,68613 2,4806 0,24406 0,0001 0,02716 0,68036 5,1784 2,7816 0,6814 7,7875 0,0001 0,02716 0,88034 2,7806 0,0452 0,0452 0,0452	0.2866	0.00 200	0.00488	0.336224	6.425453	20.80532	0.33626	0.831535	-9.03704	-0.09326	
0.0001 0.01217 0.388782 6.568801 20.5807 0.388653 1.78306 -6.40287 0.0001 0.0011445 0.418672 6.607818 20.08597 0.418672 1.53596 -5.57472 0.0001 0.016542 0.424872 6.641863 22.38175 0.470483 1.50519 -5.57472 0.0001 0.015419 0.488156 6.4731028 23.28175 0.470483 1.90519 -3.28857 0.0001 0.017419 0.488156 6.4731028 23.28279 0.488468 2.04368 1.40054 0.0001 0.017419 0.488156 6.4731028 23.28209 0.488648 2.04368 1.40054 0.0001 0.027231 0.688298 6.144497 23.4124 0.568289 6.1544497 23.4124 0.568289 6.1544497 23.4124 0.568289 6.1544497 23.4124 0.568289 6.1544497 23.4124 0.568289 6.152442 2.17828 0.681436 2.155035 -4.036 0.002739 0.02739 0.687348 6.125447 23.4124 0.683744 20.3234 0.705231 2.47872 5.48931 0.002831 2.008233 5.818818 22.6589 0.683744 20.3234 0.705231 2.4057 0.024551 0.0042428 0.805233 2.48004 3.75124 0.80004 2.80034 2.78059 0.001044 0.80034 2.300346 3.75124 0.80077 2.90598 0.24551 0.042428 0.818001 2.38024 3.75124 0.80077 2.90598 0.24551 0.042428 0.818001 2.38024 3.75124 0.80077 2.90598 0.024551 0.044711 0.80013 2.26452 2.687009 0.811752 2.90548 0.051016 0.004262 0.811752 2.80527 3.77514 0.818001 2.38027 2.70452 2.84652 0.004471 0.80013 2.276925 2.687009 0.811754 0.811752 2.06592 0.004471 0.801752 2.704622 2.704622 0.811752 2.80508 3.17512 0.051016 0.004262 0.811752 2.70472 0.811754 0.81752 0.811754 0.81752 0.811754 0.81752 0.004171 0.801752 2.704024 2.54757 0.81752 0.811754 0.81752 2.70472 0.817548 0.81752 2.70452 0.81752 0.004228 0.004228 0.81752 2.70472 0.81752 0.004228 0.004228 0.81752 2.70472 0.81752 0.004229 0.004228 0.81752 2.70472 0.81752 0.004229 0.004228 0.81752 2.70472 0.81752 0.00522 0.00422 0.00422 0.00422 0.00422 0.81752 0.00422	0.3140	900	0.006319	0.361119	0.540255	20.12782	0.361214	1.3196	-10.6833	-0.1118	
0.0001 0.011445 0.418672 8.607618 20.35397 0.415621 1.53569 5.57472 0.0001 0.010534 0.442668 8.6202207 21.91822 0.470423 1.38734 7.81898 0.0001 0.015632 0.470222 8.641853 2.38173 0.470432 1.38734 7.81898 0.0001 0.015632 0.470222 8.641853 2.38279 0.48648 2.04368 1.40054 0.0001 0.01879 0.48648 8.77794 28.8939 0.48644 2.19637 3.44608 0.0001 0.027125 0.68038 8.164497 23.4124 0.506613 2.14283 2.38222 0.0001 0.027125 0.68038 8.152647 23.71815 0.680434 2.1927 3.44608 0.027125 0.68038 8.152647 23.718156 0.681436 2.35032 2.47872 8.1967 0.0228152 0.680235 5.818815 22.8568 0.080327 2.47872 8.1967 0.0041209 0.818739 2.38634 3.75124 0.820774 2.30076 0.03154 0.004205 0.800341 2.70022 5.75605 0.816072 2.94452 0.045672 0.0042075 0.818730 2.37804 0.81790 2.36076 0.0044074 0.820734 2.42826 2.86773 2.86737 0.021916 0.0044074 0.820734 2.428259 2.66709 0.818726 2.86737 0.818726 0.66727 0.0044074 0.81752 2.86737 0.0044074 0.81752 2.86737 0.0044074 0.81752 2.86737 0.0044074 0.81752 2.80737 0.0044074 0.81752 2.80738 2.40737 0.0044074 0.81752 2.80738 2.80737 0.0044074 0.81752 2.807383 2.46709 0.818726 2.36709 0.818726 2.807383 2.46709 0.818726 2.36709 0.818726 2.36709 0.818726 2.36709 0.818726 2.36709 0.818726 2.36709 0.818726 2.807383 2.46709 0.818726 2.36709 0.818726	0.3461	0.0001	0.01217	0.368762	6.568601	20,5903	0.388963	1.79308	-6.40267	0.08584	
0.0001 0.010534 0.434665 6.802207 21.9182 0.43503 1.38734 7.81808 0.0001 0.010542 0.47022 6.841853 2.238175 0.47043 1.90519 0.3051 0.410629 0.43064 0.20365 1.40054 0.0001 0.01842 0.48064 6.77104 25.28209 0.480644 2.19637 3.44805 0.0001 0.027125 0.580596 6.164497 23.4124 0.586613 2.14283 2.34054 0.0001 0.027125 0.860596 6.164497 23.4124 0.586613 2.14283 2.34024 0.027125 0.860736 6.123447 23.718165 0.881439 2.34023 4.0356 0.027125 0.860736 6.123447 23.718165 0.881439 2.34023 4.0360 0.027125 0.880236 3.818015 2.28686 0.881737 2.47237 8.19675 0.000381 0.704681 5.118244 20.3234 0.705235 2.46904 7.76756 0.0042426 0.808034 2.78062 0.810422 2.00056 0.23154 0.0042426 0.808034 2.78062 3.75805 0.810422 2.00054 2.78062 3.75805 0.810452 0.045672 0.004245 0.818799 2.300064 3.75124 0.81047 0.51047 0.51047 0.0044074 0.81755 2.860709 0.818799 2.360709 0.818799 2.360709 0.818799 2.360709 0.818799 2.360709 0.818799 2.34004 0.818799 2.34004 0.818799 2.34004 0.81879 0.81879 0.004407 0.818752 2.784024 2.54277 0.81879 0.004407 0.818752 2.784024 2.54277 0.81879 0.004407 0.0044074 2.81755 2.784024 2.54277 0.81879 0.004407 0.0044074 0.81755 2.784024 2.54277 0.81879 0.004407 0.0044074 2.8179 2.284024 2.54277 0.81879 0.004407 0.0044074 2.8179 2.284024 2.54277 0.81879 0.004407 0.0044074 2.8179 2.284024 2.54277 0.81879 0.004407 0.0044074 2.8179 2.284024 2.54277 0.81879 0.004407 0.0044074 2.54272 2.784024 2.54277 0.817995 3.17546 0.00427 0.60427 0.60427 0.81879 0.24719 0.817954 0.817995 3.17546 0.00427 0.60427 0.60427 0.817995 3.17546 0.00427 0.60427 0.60427 0.81879 0.24719 0.817995 3.17546 0.00427 0.60427 0.60427 0.817995 3.17546 0.00427 0.60427 0.60427 0.60427 0.817995 3.17546 0.00427 0.60427 0.60427 0.60427 0.60427 0.817995 3.17546 0.00427 0.60427 0.60427 0.60427 0.817995 3.17546 0.00427 0.60427	0.3805	0.000	0.011145	0.415672	6.607618	20.36367	0.415821	1.53589	-5.57472	-0.05716	
0.0001 0.015642 0.470222 6.641653 22.26175 0.470483 1.90519 -3.2867 0.0001 0.015842 0.470222 6.641653 22.25957 1.00519 0.0001 0.01879 0.488468 6.177044 25.8029 0.488468 2.04368 1.40054 0.0001 0.027315 0.680286 6.194497 23.4124 0.596813 2.14283 2.36322 0.0001 0.027725 0.680286 6.194497 23.4124 0.596813 2.14283 2.36322 0.0001 0.027725 0.680286 6.152847 23.78868 0.86136 2.36033 4.036 0.02739 0.02736 0.687346 6.152847 23.78868 0.86135 2.46004 7.76756 0.020381 0.704681 5.119244 20.3234 0.705235 2.46004 7.76756 0.00402426 0.80933 2.48004 3.75124 0.801042 0.0042426 0.809341 2.70822 5.759025 0.810452 0.004519 0.201916 0.0042714 0.800341 2.78822 5.759025 0.810452 0.004619 0.0042714 0.820134 2.42825 2.667009 0.811092 2.94452 0.046874 0.500341 2.42825 2.667009 0.811092 2.94452 0.046874 0.500343 2.42825 2.667009 0.811092 2.94452 0.046874 0.500343 2.42825 2.667009 0.811092 2.94452 0.046874 0.500343 2.428259 2.667009 0.811092 2.94452 0.06913 0.0044874 0.81752 2.764024 2.54237 0.811095 3.1724 0.51047 0.0042822 0.811752 2.764024 2.54237 0.8117546 0.7044627 0.611752 2.764024 2.54237 0.8117546 0.004280 0.004280 0.811752 2.764024 2.54237 0.8117546 0.7044674 0.7044024 0.81752 2.764024 2.54237 0.8117546 0.7044627 0.811752 2.764024 2.54237 0.8117546 0.004280 0.004280 0.811752 2.764024 2.54237 0.8117546 0.7044627 0.7044024 2.54237 0.8117546 0.7044627 0.7044024 0.7044024 2.54237 0.8117546 0.7044627 0.7044627 0.7044024 2.54237 0.8117546 0.7044627 0.7044024 2.54237 0.8117546 0.7044627 0.7044024 2.54237 0.8117546 0.7044627 0.70447 0.70427 0.704467 0.70447 0.70427 0.70477 0.7	0.4182	9	0.010534	0.434065	6.802207	21.91862	0.435083	1.38734	-7.81896	-0.0723\$	
0.0001 0.01879 0.488158 0.771038 23.8209 0.488468 2.04368 1.40054 0.0001 0.01879 0.488448 0.77794 25.8209 0.488448 2.1937 3.44806 0.0001 0.02739 0.680308 6.164497 2.34174 0.596813 2.14283 2.35322 0.0001 0.02739 0.687348 0.12454 2.35322 0.0001 0.02739 0.687348 0.12454 2.35432 2.4036 0.002739 0.687348 0.12454 2.17895 0.681438 2.47872 5.46933 0.002739 0.002739 0.687348 0.12847 2.4737 2.4037 0.002815 0.002838 5.818815 22.6586 0.683743 2.47877 2.4037 0.02455 0.002428 0.20024 1.51824 0.702835 2.46904 7.76756 0.0042428 0.80024 1.518244 0.32344 0.702335 2.46904 7.02455 0.0042428 0.80024 1.51822 0.815007 2.300246 2.30076 0.02457 0.004271 0.20034 2.30034 0.75182 0.815007 0.004271 0.20034 2.428259 2.687009 0.82135 3.12047 0.51047 0.004471 0.820134 2.428259 2.687009 0.82135 3.12047 0.51047 0.0044874 0.81502 2.80432 2.46437 0.81752 0.687009 0.82135 3.12047 0.51047 0.0044874 0.81752 2.804324 2.42824 0.81752 0.81802 2.44622 0.687009 0.024328 0.0044874 0.81752 2.804328 2.46437 0.81752 0.68702 0.0044874 0.81752 2.804328 2.4477 0.81752 0.68707 0.0044874 0.81752 2.784024 2.54277 0.817958 3.172 0.65427 0.004422 0.004422 0.81752 2.784024 2.54277 0.817955 3.1724 0.5778 0.004427 0.004422 0.81752 2.784024 2.54277 0.817955 3.1724 0.81752 0.68707 0.004422 0.004422 0.81752 2.784024 2.54277 0.817958 3.1724 0.5778 0.004427 0.004422 0.004424 0.81752 2.784024 2.54277 0.817958 3.1724 0.5777 0.004427 0.004422 0.004427 0.81752 2.784024 2.54277 0.817958 3.1724 0.5777 0.00427 0.004427 0.81752 2.787037 0.817959 3.1724 0.7777 0.67777 0.00427 0.00427 0.81752 0.81	0.4598	0000	0.015642	0.470222	6.641653	22.36175	0.470483	1.90519	-3.28957	-0.03056	
0.0001 0.01879 0.488484 0.77794 28.8939 0.488644 2.19837 3.44400 0.0001 0.022315 0.569296 6.194497 23.4124 0.598613 2.14283 2.3622 0.0001 0.027125 0.680296 6.194497 23.4124 0.598613 2.14283 2.3622 0.0001 0.027125 0.680296 6.194497 23.4128 0.6801343 2.14283 2.3622 0.0027125 0.680796 6.122647 23.78956 0.6877443 2.47872 5.46904 0.0020381 0.704834 5.192244 20.32344 0.705235 2.46904 7.76756 0.0042046 0.080934 2.789264 0.705235 2.46904 7.76756 0.004209 0.818739 2.390046 3.75124 0.820774 2.8779 0.02451 0.004205 0.818739 2.390046 3.75124 0.820774 2.8779 0.024914 0.820134 2.280207 3.77544 0.819002 2.94452 0.45872 0.0044074 0.820134 2.280204 2.46571 0.819002 2.94452 0.65913 0.0044074 0.817525 2.7802283 2.64571 0.81759 0.0044074 0.817525 2.7802283 2.64571 0.818746 0.0044074 0.817525 2.7802283 2.64571 0.818746 0.0044074 0.817525 2.7802283 2.64571 0.818746 0.0044074 0.817525 2.7802283 2.64571 0.818746 0.0044074 0.817525 2.7802283 2.64571 0.818746 0.76786 0.004202 0.818726 2.7802283 2.64571 0.818746 0.76786 0.004202 0.818726 2.7802283 2.64571 0.818746 0.76786 0.004202 0.818726 2.7802283 2.64571 0.818746 0.76786 0.004202 0.818726 2.7802283 2.64571 0.818746 0.76786 0.004202 0.818726 2.7802283 2.64571 0.818746 0.76786 0.004202 0.818726 2.7802283 2.64571 0.818746 0.76786 0.004202 0.818726 2.7802283 2.64571 0.818746 0.76786 0.004202 0.818726 0.7802283 2.78024 0.817795 0.8187246 0.76787	0.5056	0000	0.017419	0.486156	6.731036	23.28209	0.488468	2.04366	1.49054	0.013121	
0.0001 0.022315 0.66036 6.164487 23.4124 0.596813 2.14283 2.35322 0.0001 0.0227125 0.66036 6.152646 2.178156 0.661439 2.35035 4.036 0.027756 0.6607346 0.527546 0.657746 0.627746 0.627746 0.027746 0.627746 0.627746 0.627746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027746 0.027874 0.02787 0.0278	0.5558	9.00 P	0.01879	0.489484	2112	26.0030	0.480844	2.19637	-3.44808	-0.0261	
0.00001 0.027125 0.66006 5.526346 5.178156 0.661436 2.35035 4.036 0.00001 0.02759 0.667746 6.123647 23.178156 0.661436 2.47872 5.46933 0.02759 0.667746 0.257446 6.123647 23.178666 0.66372 2.47877 5.46933 0.025152 0.020381 0.704681 5.116244 20.32384 0.705235 2.46904 7.76756 0.0242426 0.505341 2.469051 5.863442 0.810372 2.90558 0.24551 0.0442426 0.505341 2.469051 5.867462 0.810472 2.90558 0.24551 0.044209 0.816739 2.350046 3.77544 0.819062 2.94452 0.42514 0.044271 0.820134 2.428259 2.667099 0.82135 3.12047 0.51047 0.044471 0.820134 2.428259 2.667099 0.82135 3.12047 0.51047 0.044574 0.81752 2.764024 2.45427 0.81876 2.77646 2.46571 0.044574 0.51047 0.51047 0.044574 0.81752 2.784024 2.45277 0.817546 0.044574 0.317546 0.044574 0.51647 0.51047 0.044574 0.51647 0.51047 0.044574 0.516752 2.784024 2.45277 0.817546 0.04572 0.65427 0.044574 0.517546 0.04572 0.65427 0.044574 0.51647 0.51047 0.044574 0.5167676 0.045262 0.81552 2.784024 2.45277 0.817546 0.767676	0.611	0.0001	0.022315	0.596396	6.194497	23,4124	0.596613	2.14283	2.36322	0.02248	
0 0.027390 0.637344 6.123647 23.78686 0.637843 2.47872 5.49933 0.02028152 0.666235 5.618615 22.65666 0.69823 2.47872 5.49933 0.0202815 0.7004681 5.119244 20.32384 0.776253 2.46804 7.76756 0.024228 0.800341 5.119244 20.32384 0.776235 2.46804 7.76756 0.024228 0.800341 2.706822 5.759605 0.810452 3.00076 -0.93154 0.024228 0.818979 2.356946 3.75124 0.820714 2.8779 0.021916 0.042071 0.818071 2.356247 3.77544 0.818001 2.54652 0.68709 0.82135 3.12047 -0.51047 0.024442 0.81852 2.784024 2.5477 0.81807 0.024874 3.17245 0.65427 0.024842 0.024822 0.81852 2.784024 2.54727 0.817968 3.17246 0.024827 0.024822 0.81852 2.784024 2.547277 0.817968 3.17246 0.054227 0.024227 0.024228 0.024228 0.024227 0.817995 3.17246 0.054227 0.024228 0.024228 0.024228 0.024227 0.817995 3.17246 0.024227 0.024227 0.024228 0.024227 0.024228 0.0242224 0.024228 0.02422 0.024228 0	0.6719	0.0001	0.027125	0.98086	5.526346	21.78156	0.661436	2.35035	4.036	-0.04626	
0 0,028152 0,000235 5,610015 22,0500 0,000227 2,41237 8,1967 0,003039 0,700681 5,119244 20,3234 0,705235 2,46904 7,76756 0 0,044004 0,00033 2,46004 1,700022 5,76904 0,705235 2,46904 7,76756 0 0,044004 0,00033 2,360046 3,75124 0,810372 2,90509 0,93154 0 0,04209 0,819739 2,350046 3,75124 0,820774 2,8779 0,021916 0 0,042075 0,819739 2,350046 3,75124 0,819002 2,94452 0,45672 0 0,044074 0,820134 2,428259 2,645716 0,819709 0,82135 3,12047 0,51047 0 0,044074 0,817525 2,704024 2,45471 0,81752 2,704024 2,45471 0,81752 2,704024 2,45471 0,817045 2,704024 2,45471 0,817045 2,70471 0,817045 2,70471 0,817046 2,70471 0,817046 2,70471 0,817046 2,70471 0,817046 2,70471 0,817046 2,70471 0,817046 2,70471 0,817040 2,70471 0,817046 2,70471 0,8170471 0,817047 0,817	0.7386	0	0.02750	0.637346	a. 123647	23.78868	0.637943	2.47872	5.49933	0.052079	
0 0.000381 0.704681 5.119244 20.32384 0.705235 2.46904 7.76756 0 0.041084 0.89033 2.46904 3.75805 0.810372 2.90588 0.24551 0 0.0412428 0.80934 2.709622 5.758059 0.810372 2.90588 0.24551 0 0.041209 0.818739 2.300646 3.75124 0.820774 2.8779 0.021916 0 0.042075 0.818799 2.300646 3.75124 0.820774 2.8779 0.021916 0 0.042075 0.818909 2.300646 3.77594 0.819082 2.94452 0.45672 0 0.044711 0.820134 2.428259 2.667009 0.82135 3.12047 0.51047 0 0.044674 0.817525 2.784024 2.545715 0.818744 3.12782 0.65913 0.044674 0.61752 2.784024 2.542247 0.818768 3.17546 0.65527 0.045262 0.818539 2.471915 2.2897037 0.817985 3.17546 0.75778	0.8124	0	0.028152	0.000235	5.610015	22.65666	0.066227	2.41237	8.1967	0.068824	
0 0.041209 0.80633 2.488081 5.883482 0.810372 2.90598 0.24551 0 0.042228 0.806394 2.708622 0.815402 0.810452 2.00076 0.9154 0 0.041209 0.819739 2.380646 3.75124 0.820774 2.8779 0.021916 0 0.042075 0.818001 2.586207 3.77584 0.819082 2.94452 0.45872 0 0.044711 0.820134 2.428259 2.687009 0.82135 3.12047 0.51047 0 0.044674 0.817525 2.8062283 2.645715 0.818844 3.12782 0.68913 0 0.044202 0.818752 2.784024 2.542677 0.817858 3.172 0.655427	0.8932	0	0.030381	0.704581	5.119244	20.32384	0.705235	2.46904	7.76756	0.102995	
0 0.042426 0.800341 2.708322 5.758055 0.810452 3.00076 -0.93154 0.0041209 0.818779 2.300846 3.75124 0.820774 2.8779 0.021916 0.0042075 0.818001 2.58207 3.77544 0.819002 2.94452 -0.45872 0.0044711 0.820134 2.420259 2.667009 0.82135 3.12047 -0.51047 0.0044674 0.817525 2.8003283 2.645715 0.818744 3.12762 0.68913 0.0044674 0.817525 2.794024 2.542247 0.818758 3.112 -0.65913 0.0044622 0.815839 2.471915 2.297037 0.817095 3.17546 -0.76778	0.9622	0	0.041064	0.80833	2.488061	5.863482	0.810372	2.90598	0.24551	-0.02314	
0 0.041209 0.818739 2.350846 3.75124 0.820774 2.8779 0.021916 0 0.042075 0.818001 2.88207 3.77544 0.819082 2.94452 0.45872 0 0.044711 0.820134 2.428259 2.664709 0.82135 3.12047 0.51047 0 0.044674 0.817525 2.0603283 2.645715 0.818744 3.12162 0.69913 0 0.044674 0.817522 2.774024 2.454274 0.817895 3.17246 0.555427	1.0802	0	0.042426	0.808341	2.706022	5.756055	0.810452	3.00076	0.93154	-0.06251	
0 0.042075 0.818001 2.58207 3.77504 0.819082 2.94452 -0.45672 0 0.044711 0.820134 2.428259 2.667009 0.82135 3.12047 -0.51047 0 0.044874 0.817525 2.603283 2.645715 0.816744 3.12762 0.65913 0 0.044874 0.816752 2.794024 2.542247 0.817958 3.17246 -0.76578 0 0.045262 0.816783 2.471915 2.297037 0.817095 3.17546 -0.76778	1.1878	0	0.041209	0.819739	2.350646	3.75124	0.820774	2.8779	0.021916	0.003428	
0 0.044711 0.820134 2.428259 2.687009 0.82135 3.12047 -0.51047 0 0.004874 0.81752 2.802283 2.645715 0.818244 3.12782 -0.68913 0.044405 0.816752 2.784024 2.542247 0.817856 3.1782 -0.65427 0 0.045262 0.816839 2.477915 2.287037 0.817095 3.17546 -0.76778	1 3085	0	0.042075	0.818001	2.56207	3.77504	0.819082	2.94452	-0.45872	-0.06462	
0 0.044674 0.817525 2.603283 2.645715 0.818744 3.12782 0.68913 0 0.044405 0.818752 2.794024 2.542247 0.817958 3.112 0.65427 0 0.045262 0.815839 2.471915 2.297037 0.817095 3.17546 0.76776	1.4388	0	0.044711	0.820134	2.429259	2.667009	0.82135	3.12047	0.51047	-0.1087	
0 0.044405 0.818752 2.794024 2.542247 0.817958 3.112 -0.65427 0 0.045262 0.815839 2.471915 2.297037 0.817095 3.17546 -0.76776	1.5802	0	0.044674	0.817525	2.603283	2.645715	0.818744	3.12782	0.68913	-0.13803	
1 0 0.045262 0.815839 2.471915 2.297037 0.817095 3.17546 0.76776	1.7379	0	0.044405	0.816752	2.794024	2.542247	0.817958	3.112	-0.65427	-0.12707	
	1,9114	0	0.045262	0.815839	2.471915	2.297037	0.817095	3.17546	-0.76776	0.18654	

```
(fit)
```

REFERENCES

- Hobson, G. V., and Shreeve, R. P., "Inlet Turbulence Distortion and Viscous Flow Development in a Controlled-Diffusion Compressor Cascade at Very High Incidence", AIAA paper 91-2004 presented at the 27th Joint Propulsion Conference, Sacramento, California June 24-26 1991.
- 2. Classick, M. A., "Off-Design Loss Measurements in a Compressor Cascade", Master's Thesis, Naval Postgraduate School, Monterey, California, September 1989.
- 3. Murray, K. D., "Automation and Extension of LDV Measurements of Off-Design Flow in a Subsonic Cascade Wind Tunnel", Engineer's Thesis, Naval Postgraduate School, Monterey, California, June 1989.
- 4. Wakefield, B. E., "Hotwire Measurements of the Turbulent Flow into a Cascade of Controlled-Diffusion Compressor Blades", Master's Thesis, Naval Postgraduate School, Monterey, California, December 1993.
- 5. Elazar, Y., "A Mapping of the Viscous Flow Behavior in a Controlled Diffusion Compressor Cascade Using Laser Doppler Velocimetry and Preliminary Evaluation of Codes for the Prediction of Stall", Doctoral Thesis, Naval Postgraduate School, Monterey, California, March 1988.
- 6. Dreon, J. W., "Controlled Diffusion Compressor Blade Wake Measurements", Master's Thesis, Naval Postgraduate School, Monterey, California, September 1986.
- 7. Armstrong, J. H., "Near-Stall Loss Measurements in a CD Compressor Cascade With Exploratory Leading Edge Flow Control", Master's Thesis, Naval Postgraduate School, Monterey, California, June 1990.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center Cameron Station Alexandria, Virginia 22304-6145	2
2.	Library, Code 52 Naval Postgraduate School Monterey, California 93943-5000	2
3.	Department Chairman, AA Department of Aeronautics Naval Postgraduate School Monterey, California 93943	1
4.	Garth V. Hobson, Turbopropulsion Laboratory, Code AA/Hg Department of Aeronautics Naval Postgraduate School Monterey, California 93943	7
5.	Naval Air Systems Command AIR-536T (Attn: Mr. Mario Duffles) Washington, District of Columbia 20361-5360	1
6.	Naval Air Warfare Center Aircraft Division (Trenton) PE-31 (Attn: S. Clouser) 250 Phillips Blvd. Princeton Crossroads Trenton, New Jersey 08628-0176	1
7.	N.L. Sanger NASA Lewis Research Center M/S 5-11, 21000 Brookpark Road Cleveland, Ohio 44135	1

 Lt. Humberto Javier Ganaim Rickel Venezuelan Navy Acquisition Office 880 NW 15th St. Miami, Florida 33172

2