Szimulált robot raj vezérlése Sapientia

Erdélyi Magyar Tudományegyetem, Marosvásárhely

Patka Zsolt-András

2020

Kivonat

Abstract

Extras

Tartalomjegyzék

7.	Következtetések	8		
6.	A rendszer tesztelése	7		
	5.2. Célkövetés és akadálykerülés QLearning használatával			
5.	Gyakorlati megvalósítás 5.1. Célkövetés és akadálykerülés a push-pull erők használatával	6		
4.	Felhasznált Szoftverkeretrendszerek 4.0.1. Robot szimulátorok adta lehetőségek tanulmányozása	4		
3.	. Szakirodalmi háttér bemutatása			
2.	A dolgozat célja	2		
1.	Bevezető	1		

Bevezető

A rajintelligencia alapötlete, hogy számos limitált számításikapacitással rendelkező agensek képesek egy komplex feladat megoldására. Az ötlet az állatvilágban megvizsgált szószerinti rajok tanulmányozásából született. Rajokba szerveződnek a hangyák, méhek, madarak, halak és sok más állatfajta. A méhek esetén kimutatható, hogy egy olyan komplex feladat megoldásában, mint például a kaptár optimális helyének a kiválasztásában, az esetek hozzávetőlegesen 80 százalékában optimális megoldásra jutnak. Az állatvilágot utánozva jelentek meg ennek az alapötletnek számos alkalmazásai nem csak robotikában, hanem a számítástechnika számos ágazatában (TODO: példák sorolása). E ötlet követése által lehetséges olyan osztott algoritmusok kidolgozása, amelyek implementálása által sok limitált számításikapacítással rendelkező agens egy komplex feladat megoldására képes.

A dolgozat célja

Szakirodalmi háttér bemutatása

Felhasznált Szoftverkeretrendszerek

Egy szimulációskörnyezet szükséges és előnyös rajintelligenciás osztott algoritmusok kidolgozásához. Jóval lerövidíti a fejlesztési időt, mivel egyrészt nem szükséges számos robot megvásárlása, másrészt a robotok felprogramozása összemérhetetlenül gyorsabban történik.

4.0.1. Robot szimulátorok adta lehetőségek tanulmányozása

A robotszimulációs környezet világában két nyílt forráskódu, elterjedtebb szoftver között lehet választani: az ARGoS3 és a V-REP. A következőkben szemléltetve lesz a két szimulációs környezet előnyei, hátrányai.

V-REP http://www.coppeliarobotics.com/

- \bullet Támogatott nyelvek robot kontrollerlogikájának megírására: C/C++, Python, Java, Lua, Matlab, Octave
- Rendkívül valósághű
- Ingyenes, van fizetős verzió is
- Robotrajokra nincs optimalizálva
- Aktívan fejlesztik, jelennek meg új verziók
- Nagy a felhasználók száma
- Nyílt forráskódu

ARGoS3 https://www.argos-sim.info/index.php

- Támogatott nyelvek robot kontrollerlogikájának megírására: C/C++ és Lua
- Nagyobb az absztrakciós szint, nem annyira valósághű
- Robotrajokra teljesen optimalizálva van
- Ingvenes
- Fejlesztés alatt áll, bár az új verziók nem konszisztensen érkeznek (2019 júliusán jött ki új verzió, az ezelőtti verzió 2016-os)
- Viszonylag kevesen használják, nehezebb a hibákra megoldást találni

• Nyílt forráskódu

A két robotszimulátor között a választás az ARGoS-ra esett, mivel egy nagyobb absztrakciós szintet ajánl, ezért könnyebb magára az algoritmusra, a logikára fektetni a hangsúlyt. Ez a nagyobb absztrakciós szint ahhoz is vezet, hogy egy sok robotot tartalmazó robotraj esetén a számítási kapacitás közel se olyan sok, mint a V-REP-nél.

Gyakorlati megvalósítás

5.1. Célkövetés és akadálykerülés a push-pull erők használatával

A push-pull erők elv követésével felírhatóak azok az erők amik a cél fele mutatnak, mint húzó erők, és azok amik az akadály felé mutatnak, mint taszító erők.

5.2. Célkövetés és akadálykerülés QLearning használatával

5.1. táblázat. Jutalommatrix, Akkadálykerülő és célkövető agensnek

Állapot	STOP	$TURN_LEFT$	$TURN_RIGHT$	FORWARD
FOLLOW	-1	0	0	1
UTURN	-1	0	0	0
OBST_LEFT	-1	0	0.1	0
OBST_RIGHT	-1	0.1	0	0
OBST_FORWARD	-1	0.1	0	0
WANDER	-1	0	0	0.1
IDLE	-1	0	0	1

5.2.1.

A rendszer tesztelése

Következtetések

Irodalomjegyzék