1. Draw the logic circuit for the following using only 2-input AND gates, 2-input OR gates and inverters.

a.
$$(A\overline{B}C + D\overline{E})$$

b.
$$(\overline{DEF} + A\overline{B})C$$

c.
$$(\overline{A} + \overline{B} + \overline{C})(\overline{D} + \overline{E} + \overline{F})$$

d.
$$A\overline{B}(\overline{C} + \overline{D})$$

e.
$$(\overline{A}\overline{B} + C + D)\overline{E}F$$

- 2. Convert the circuits in Question 1a, 1b, and 1d, using only NAND gates.
- 3. Convert the circuits in Question 1c and 1e, using only **NOR** gates.
- 4. Convert the following circuit to NAND only then prove that the converted circuit is the same as the original circuit.

- 5. Referring to truth table below, draw the circuit to implement the function using
 - i) AND-OR
 - ii) AND-OR-Invert

	Inputs	Output	
A	В	C	X
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

2. Convert the circuits in Question 1a, 1b,and 1d, using only NAND gates.

3. Convert the circuits in Question 1c and 1e, using only NOR gates.

5.	Referring to	truth table below,	draw the	circuit to	implement the function	
	using					

- i) AND-OR
- ii) AND-OR-Invert

Inputs			Output
A	В	С	X
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

