1 三角圏の公理

加法圏 \mathcal{D} と自己同値[1]に対して以下を満たすとき三角圏と呼ぶ.

(i)

$$E \xrightarrow{\mathrm{id}} E \to 0 \to E[1]$$

は完全三角形.

(ii)

上の可換図式において,f,g,h が同型で $F_1 \to F_2 \to F_3 \to F_1[1]$ が完全三角形なら $F_1 \to F_2 \to F_3 \to F_1[1]$ も完全三角形

(iii) 任意の $E \xrightarrow{f} F$ は

$$E \xrightarrow{f} F \to G \to E[1]$$

と完全三角形に拡張できる.

(iv)

$$E_1 \xrightarrow{u} E_2 \xrightarrow{v} E_3 \xrightarrow{w} E_1[1]$$

が完全三角形であることと

$$E_2 \xrightarrow{v} E_3 \xrightarrow{w} E_1 \xrightarrow{-u[1]} E_2[1]$$

が完全三角形であることが同値.

(v)

$$E_1 \longrightarrow E_2 \longrightarrow E_3 \longrightarrow E_1[1]$$

$$\downarrow^f \qquad \downarrow^g \qquad \downarrow^h \qquad \downarrow^{f[1]}$$

$$F_1 \longrightarrow F_2 \longrightarrow F_3 \longrightarrow F_1[1]$$

2つの完全三角形と図式を可換にする f,g が存在したとき、すべての四角形を可換にする h が存在する.

(vi) 八面体公理

上記の 3 つの完全三角形に対して,以下の図式のすべての四角形を可換にし,4 行目を完全三角形にするような u,v,w が存在する.

2 t-structure

Def 2.1.

 \mathcal{D} を三角圏. 充満部分三角圏 $\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0} \subset \mathcal{D}$ が次の条件を満たすとき, $(\mathcal{D}^{\leq 0}, \mathcal{D}^{\geq 0})$ を \mathcal{D} の t-構造と呼ぶ. $\mathcal{D}^{\leq n} \coloneqq \mathcal{D}^{\leq 0}[n]$, $\mathcal{D}^{\geq n} \coloneqq \mathcal{D}^{\geq 0}[n]$

- (i) $\mathcal{D}^{\leq 0} \subset \mathcal{D}^{\leq 1}$ $\mathcal{D}^{\geq 1} \subset \mathcal{D}^{\geq 0}$
- (ii) $\mathcal{D}^{\geq 1} \subset (\mathcal{D}^{\leq 0})^{\perp}$

つまり、 $\forall E \in \mathcal{D}^{\leq 0}, \ \forall F \in \mathcal{D}^{\geq 1}, \ \mathrm{Hom}_{\mathcal{D}}(E,F) = 0$

(iii) 任意の $E \in \mathcal{D}$ に対して

$$\tau_{\leq 0}E \to E \to \tau_{\geq 1}E \to \tau_{\leq 0}E[1]$$

となるような $\tau_{\leq 0} E \in \mathcal{D}, \ \tau_{\geq 1} E \in \mathcal{D}^{\geq 1}$ が存在する.

Prop 2.2. -

- (i) $\mathcal{D}^{\geq 1} = (\mathcal{D}^{\leq 0})^{\perp}$
- (ii) E に対して、 $\tau_{<0}E$, $\tau_{>1}E$ は同型を除いて一意に定まる.

Proof. $E \in (\mathcal{D}^{\leq 0})^{\perp}$ を任意にとる. 定義より以下の完全三角形がとれる.

$$\tau_{\leq 0}E \to E \to \tau_{\geq 1}E \to \tau_{\leq 0}E[1]$$

定義より、 $\tau_{<0}E \rightarrow E$ は 0 射であるので、 $\tau_{>1}E \simeq$

射影的代数曲線 $\stackrel{\mathrm{def}}{\Longleftrightarrow}$ 射影空間 \mathbb{P}^n 内の 1 次元部分多様体

3 安定性条件

- Def 3.1. -

Abel 圏 A 上の安定性条件とは群準同型

$$Z \colon K(\mathcal{A}) \to \mathbb{C}$$

で以下を満たすもの

- (i) $\forall E(\neq 0) \in \mathcal{A}, Z(E) \in \mathbb{H} := \{ re^{i\pi\phi} \mid r > 0, 0 < \phi \leq 1 \}$
- (ii) 任意の $E \in A$ に対して HN フィルトレーションが存在する.

$$0 = E_0 \subset E_1 \subset \cdots \subset E_k = E$$

で各 $F_i = E_i/E_{i-1}$ が Z について Z-半安定.

 $E(\neq 0)$ が Z-半安定とは任意の部分対象 $0 \neq F \subsetneq E$ に対して, $\arg Z(F) \leq \arg Z(E)$ ここで,

$$\phi(E) \coloneqq \frac{1}{\pi} \arg Z(E)$$

と定める.

Lem 3.2.

 $E, F \in \mathcal{D}$ が半安定で $\phi(E) > \phi(F)$ とき,

$$\operatorname{Hom}_{\mathcal{D}}(E,F)=0$$

 $Proof. f \in Hom_{\mathcal{D}}(E, F)$ が 0 でないと仮定する.

$$0 \to \operatorname{Ker} f \to E \to \operatorname{Im} f \to 0$$

の完全列が存在して E が半安定対象であることから $\phi(\operatorname{Im} f) \geq \phi(E)$. $\operatorname{Im} f \neq 0$ が F の部分対象で F も半安定であることから $\phi(F) \geq \phi(\operatorname{Im} f)$. これらを合わせると $\phi(F) \geq \phi(E)$. 仮定に矛盾.

- Lem 3.3. -

A: アーベル圏,群準同型 Z: $K(A) \to \mathbb{C}$ が次の条件を満たすとき,HN フィルトレーションが存在する.つまり Z が安定性条件を定める.

(i) 全射の無限列

$$E_1 \twoheadrightarrow E_2 \twoheadrightarrow E_3 \twoheadrightarrow \cdots$$

で $\phi(E_i) > \phi(E_{i+1})$ となるものは存在しない.

(ii) 無限降下列

$$E_1 \supset E_2 \supset E_3 \supset \cdots$$

で $\phi(E_{i+1}) > \phi(E_i)$ となるものは存在しない.

Proof.

Step 1

- •任意の対象 $E \in \mathcal{A}$ には $\phi(A) \geq \phi(E)$ を満たす半安定な部分対象 A が存在する.
- •任意の対象 $E \in \mathcal{A}$ には $\phi(E) \geq \phi(B)$ を満たす半安定な対象 B と全射 $E \twoheadrightarrow B$ が存在する.

E が半安定なら OK. そうでないなら $\phi(E') > \phi(E)$ となる部分対象 $E'(\subseteq E)$ がとれる.

これが無限回繰り返されると条件の (ii) に矛盾するので有限回でとまる.この極小となる A をとれば半安定である.同様に E が半安定なら全射 $E \xrightarrow{\mathrm{id}} E$ がとれて OK.そうでないとき, $E'(\subsetneq E)$ で, $\phi(E') > \phi(E)$ が存在して, $B' \coloneqq E/E'$ と定めると $\phi(E) \ge \phi(B')$ であり, $E \twoheadrightarrow E/E'$ がとれて,有限回でこの操作はとまるのでいずれ半安定になる.

Step 2

 $E \rightarrow B$ が次の条件をみたすとき mdq と呼ぶ.

- $\bullet \phi(E) \ge \phi(B)$
- •任意の $E \rightarrow B'$ に対して、 $\phi(B') > \phi(B)$ であり、 $\phi(B') = \phi(B)$ なら

$$E \twoheadrightarrow B \twoheadrightarrow B'$$

と分解.

任意の対象 E は mdg を持つ.

 $E \twoheadrightarrow B'$ において B' が半安定でないなら Step 1 から半安定な対象 B'' で $\phi(B') > \phi(B'')$ と $B' \twoheadrightarrow B''$ がとれるので,B' が半安定なときについて示せばよい.同様に mdq の B は半安定でなければならない.

E が半安定対象のとき、任意の全射 $E \rightarrow B'$ に対して、短完全列

$$0 \to \operatorname{Ker} f \to E \xrightarrow{f} B' \to 0$$

が存在するので $Z(B')=Z(E)-Z(\operatorname{Ker} f)$. 安定対象なので、 $\phi(\operatorname{Ker} f)\leq\phi(E)$

したがって、 $\phi(B') \ge \phi(E)$ となり E が半安定対象のとき、 $E \xrightarrow{\mathrm{id}} E$ は mdq となる. そうでないとき、step1 より $\phi(A) > \phi(E)$ なる半安定対象 $A \subsetneq E$ と

$$0 \to A \to E \to E' \to 0$$

という完全列が存在する. $\phi(A)>\phi(E')>\phi(E')$ となっている. $E'\twoheadrightarrow B$ が E' の mdq となっているとき,合成 $E\twoheadrightarrow B$ は E の mdq であることを示す.

 $::E \to B'$ を半安定で $\phi(B') \leq \phi(B)$ となっているとすると

$$\phi(A) > \phi(E) > \phi(E') \ge \phi(B) \ge \phi(B')$$

A, B' は半安定対象であり、前の補題より $\operatorname{Hom}_{\mathcal{D}}(A, B') = 0$

$$A \xrightarrow{0} E \xrightarrow{} E/A = E'$$

図式のように可換にする全射が普遍性から存在する. E' woheadrightarrow B が mdq なので $\mu(B') = \mu(B)$ となり,mdq の条件より E' woheadrightarrow B woheadrightarrow B' が存在し,E woheadrightarrow B が mdq であることがわかる. E' が mdq でない場合は E を E' に取り替えて議論を繰り返すことと条件 (ii) から有限回でとまるので mdq の存在がわかる.

Step 3

任意の $E \in A$ は HN フィルトレーションをもつ.

0 でない $E \in \mathcal{A}$ を任意にとる. E が半安定なら $0 \subset E$ が HN フィルトレーションを与えている. そうでないとき, $E \twoheadrightarrow B^1$ を mdq として

$$0 \to E^1 \to E \to B^1 \to 0$$

をとる. E^1 が半安定であるなら $0 \subsetneq E^1 \subsetneq E$ が HN フィルトレーションになっている. $(E/E^1 \simeq B$ で mdq の B が半安定であるため). E^1 が mdq でないとき, $E^1 \twoheadrightarrow B^2$ を mdq として

$$0 \to E^2 \to E^1 \to B^2 \to 0$$

 $Q=E/E^2$ とすると, $E \twoheadrightarrow B^1$ が mdq であることから $\phi(Q) \geq \phi(B^1)$ であり,次の短完全列

$$0 \to B^2 \to Q \to B^1 \to 0$$

から $\phi(B^2) \geq \phi(Q)$ が得られる. $\phi(B^2) = \phi(Q) = \phi(B^1)$ と仮定すると, $E \to B^1$ が mdq であることから $E \to B^1 \to Q$ となって, B^1 と Q の双方向に全射があることから $B^1 \simeq Q$ となり, $B^2 = 0$. これは矛盾. したがって, $\phi(B^2) > \phi(B^1)$ が成り立つ.この操作は条件(ii)より有限回でとまり,その商は半安定なので HN フィルトレーションを得る.

- Def 3.4. −

 \mathcal{D} : 三角圏. \mathcal{D} 上の安定性条件とは, \mathcal{D} の有界な t-構造の Heart $\mathcal{A} \subset \mathcal{D}$ と \mathcal{A} と \mathcal{A} 上の安定性条件

$$Z \colon K(\mathcal{D}) = K(\mathcal{A}) \to \mathbb{C}$$

(Z, A) のことである.

- 三角圏 $\mathcal D$ におけるスライスとは部分圏の族 $\{\mathcal P(\phi)\}_{\phi\in\mathbb R}\subset\mathcal D$ で次の条件を満たすもの
- $\bullet \forall \phi \in \mathbb{R}, \mathcal{P}(\phi + 1) = \mathcal{P}(\phi)[1]$
- $\bullet \phi_1 > \phi_2$ で $E_i \in \mathcal{P}(\phi_i)$ ならば $\operatorname{Hom}_{\mathcal{D}}(E_1, E_2) = 0$
- ●任意の対象 $E \in \mathcal{D}$ に対して、

 $F_i \in \mathcal{P}(\phi_i)$

- Lem 3.5. -

 \mathcal{D} 上に安定性条件をあたえることと, \mathcal{D} 上のスライス \mathcal{P} と群準同型 $Z:K(\mathcal{D})\to\mathbb{C}$ の組 (Z,\mathcal{P}) で,任意の $\phi\in\mathbb{R}$ と $0\neq E\in\mathcal{P}(\phi)$ に対して $Z(E)\in\mathbb{R}_{>0}e^{i\pi\phi}$ を与えることは同値.

Proof. 安定性条件 $(Z, A) \rightarrow$ スライス \mathcal{P} の構成

各 $0 < \phi \le 1$ に対して、

$$\mathcal{P}(\phi) := \{ E \in \mathcal{A} \mid E \colon Z \text{-} \text{\pm} \text{\pm} \text{\pm} Z(E) \in \mathbb{R}_{>0} e^{i\pi\phi} \} \cup \{0\}$$

 $\phi \in \mathbb{R}, \phi \in (k, k+1]$ となる整数 k をとって

$$\mathcal{P}(\phi) := \mathcal{P}(\phi - k)[k]$$

こう定めたとき, スライスになっていることを確かめる.

 $\bullet \forall \phi \in \mathbb{R}, \mathcal{P}(\phi+1) = \mathcal{P}(\phi)[1]$ は定義から従い. $\phi_1 > \phi_2$ と $E_i \in \mathcal{P}(\phi_i)$ に対して、 $\mathrm{Hom}_{\mathcal{D}}(E_1, E_2) = 0$ が補題からしたがう.