Package 'fastAdaboost'

August 29, 2016

Type Package

Title a Fast Implementation of Adaboost

Description Implements Adaboost based on C++ backend code.

This is blazingly fast and especially useful for large, in memory data sets.

The package uses decision trees as weak classifiers. Once the classifiers

have been trained, they can be used to predict new data.

Currently, we support only binary classification tasks.

The package implements the Adaboost.M1 algorithm and the real

Adaboost(SAMME.R) algorithm.

Version 1.0.0

Date 2016-02-23

Author Sourav Chatterjee [aut, cre]

Maintainer Sourav Chatterjee <souravc83@gmail.com>

License MIT + file LICENSE

URL https://github.com/souravc83/fastAdaboost

 $\pmb{BugReports} \ \text{https://github.com/souravc83/fastAdaboost/issues}$

Depends R (>= 3.1.2)

Imports Rcpp, rpart

Suggests testthat, knitr, MASS

LazyData yes

LinkingTo Rcpp (>= 0.12.0)

RoxygenNote 5.0.1

NeedsCompilation yes

Repository CRAN

Date/Publication 2016-02-28 09:59:32

2 adaboost

R topics documented:

adaboost
fastAdaboost
get_tree
predict.adaboost
predict.real_adaboost
print.adaboost
print.real_adaboost
real_adaboost
10
10

adaboost

Index

Adaboost.M1 algorithm

Description

Implements Freund and Schapire's Adaboost.M1 algorithm

Usage

```
adaboost(formula, data, nIter, ...)
```

Arguments

formula Formula for models data Input dataframe nIter no. of classifiers

... other optional arguments, not implemented now

Details

This implements the Adaboost.M1 algorithm for a binary classification task. The target variable must be a factor with exactly two levels. The final classifier is a linear combination of weak decision tree classifiers.

Value

object of class adaboost

References

Freund, Y. and Schapire, R.E. (1996): "Experiments with a new boosting algorithm". *In Proceedings of the Thirteenth International Conference on Machine Learning*, pp. 148–156, Morgan Kaufmann.

fastAdaboost 3

See Also

```
real_adaboost, predict.adaboost
```

Examples

fastAdaboost

fastAdaboost: fast adaboost implementation for R

Description

fastAdaboost provides a blazingly fast implementation of both discrete and real adaboost algorithms, based on a C++ backend. The goal of the package is to provide fast performance for large in-memory data sets.

Author(s)

Sourav Chatterjee

References

Freund, Y. and Schapire, R.E. (1996): "Experiments with a new boosting algorithm". *In Proceedings of the Thirteenth International Conference on Machine Learning*, pp. 148–156, Morgan Kaufmann.

Zhu, Ji, et al. "Multi-class adaboost" Ann Arbor 1001.48109 (2006): 1612.

Examples

```
\label{eq:fakedata} $$fakedata <- data.frame( X=c(rnorm(100,0,1),rnorm(100,1,1)), Y=c(rep(0,100),rep(1,100) ) )$$ fakedata$Y <- factor(fakedata$Y)$$ test_adaboost <- adaboost(Y~X, fakedata, 10)$$ pred <- predict( test_adaboost,newdata=fakedata)$$ print(pred$error)$$
```

4 predict.adaboost

get_tree

Fetches a decision tree

Description

returns a single weak decision tree classifier which is part of the strong classifier

Usage

```
get_tree(object, tree_num)
```

Arguments

object of class adaboost

tree_num integer describing the tree to get

Details

returns an individual tree from the adaboost object This can provide the user with some clarity on the individual building blocks of the strong classifier

Value

object of class rpart

See Also

adaboost

Examples

```
\label{eq:fakedata} $$fakedata <- data.frame( X=c(rnorm(100,0,1),rnorm(100,1,1)), Y=c(rep(0,100),rep(1,100) ) ) $$fakedata$Y <- factor(fakedata$Y) $$test_adaboost <- adaboost(Y^X, fakedata, 10) $$ tree <- get_tree(test_adaboost,5) $$
```

predict.adaboost

predict method for adaboost objects

Description

predictions for model corresponding to adaboost.m1 algorithm

Usage

```
## S3 method for class 'adaboost'
predict(object, newdata, ...)
```

predict.real_adaboost 5

Arguments

object an object of class adaboost

newdata dataframe on which we are looking to predict

... arguments passed to predict.default

Details

makes predictions for an adaboost object on a new dataset. The target variable is not required for the prediction to work. However, the user must ensure that the test data has the same columns which were used as inputs to fit the original model. The error component of the prediction object(as in pred\$error) can be used to get the error of the test set if the test data is labeled.

Value

predicted object, which is a list with the following components

formula the formula used.

votes total weighted votes achieved by each class

class the class predicted by the classifier

prob a matrix with predicted probability of each class for each observation

error The error on the test data if labeled, otherwise NA

See Also

adaboost

Examples

```
\label{eq:fakedata} $$fakedata <- data.frame( X=c(rnorm(100,0,1),rnorm(100,1,1)), Y=c(rep(0,100),rep(1,100) ) )$$ fakedata$Y <- factor(fakedata$Y)$$ test_adaboost <- adaboost(Y^X, fakedata, 10)$$ pred <- predict( test_adaboost,newdata=fakedata)$$ print(pred$error)$$ print( table(pred$class,fakedata$Y) )
```

predict.real_adaboost predict method for real_adaboost objects

Description

predictions for model corresponding to real_adaboost algorithm

Usage

```
## S3 method for class 'real_adaboost'
predict(object, newdata, ...)
```

6 print.adaboost

Arguments

object an object of class real_adaboost

newdata dataframe on which we are looking to predict

... arguments passed to predict.default

Details

makes predictions for an adaboost object on a new dataset using the real_adaboost algorithm. The target variable is not required for the prediction to work. However, the user must ensure that the test data has the same columns which were used as inputs to fit the original model. The error component of the prediction object(as in pred\$error) can be used to get the error of the test set if the test data is labeled.

Value

predicted object, which is a list with the following components

formula the formula used.

votes total weighted votes achieved by each class

class the class predicted by the classifier

prob a matrix with predicted probability of each class for each observation

error The error on the test data if labeled, otherwise NA

See Also

```
real_adaboost
```

Examples

```
fakedata <- data.frame( X=c(rnorm(100,0,1),rnorm(100,1,1)), Y=c(rep(0,100),rep(1,100) ) )
fakedata$Y <- factor(fakedata$Y)
test_real_adaboost <- real_adaboost(Y~X, fakedata, 10)
pred <- predict(test_real_adaboost,newdata=fakedata)
print(pred$error)
print( table(pred$class,fakedata$Y) )</pre>
```

print.adaboost
Print adaboost.m1 model summary

Description

S3 method to print an adaboost object

print.real_adaboost 7

Usage

```
## S3 method for class 'adaboost' print(x, ...)
```

Arguments

x object of class adaboost

... arguments passed to print.default

Details

Displays basic information on the model, such as function call, dependent variable, the number of trees, and weights assigned to each tree

Value

None

See Also

```
print.real_adaboost
```

Examples

```
\label{eq:fakedata} $$fakedata <- data.frame( X=c(rnorm(100,0,1),rnorm(100,1,1)), Y=c(rep(0,100),rep(1,100) ) ) $$fakedata$Y <- factor(fakedata$Y) $$test_adaboost <- adaboost(Y~X, fakedata, 10) $$print(test_adaboost)$$
```

print.real_adaboost

Print real adaboost model summary

Description

S3 method to print a real_adaboost object

Usage

```
## S3 method for class 'real_adaboost'
print(x, ...)
```

Arguments

```
x object of class real_adaboost
```

... arguments passed to print.default

8 real_adaboost

Details

Displays basic information on the model, such as function call, dependent variable and the number of trees

Value

None

See Also

```
print.adaboost
```

Examples

```
\label{eq:fakedata} $$fakedata <- data.frame( X=c(rnorm(100,0,1),rnorm(100,1,1)), Y=c(rep(0,100),rep(1,100) ) )$$ fakedata$Y <- factor(fakedata$Y)$$ test_real_adaboost<- real_adaboost(Y~X, fakedata, 10)$$ print(test_real_adaboost)
```

real_adaboost

Real Adaboost algorithm

Description

Implements Zhu et al's real adaboost or SAMME.R algorithm

Usage

```
real_adaboost(formula, data, nIter, ...)
```

Arguments

formula Formula for models
data Input dataframe
nIter no. of classifiers

... other optional arguments, not implemented now

Details

This implements the real adaboost algorithm for a binary classification task. The target variable must be a factor with exactly two levels. The final classifier is a linear combination of weak decision tree classifiers. Real adaboost uses the class probabilities of the weak classifiers to iteratively update example weights. It has been found to have lower generalization errors than adaboost.m1 for the same number of iterations.

Value

```
object of class real_adaboost
```

real_adaboost 9

References

Zhu, Ji, et al. "Multi-class adaboost" Ann Arbor 1001.48109 (2006): 1612.

See Also

```
adaboost,predict.real_adaboost
```

Examples

```
\label{eq:fakedata} $$fakedata <- data.frame( X=c(rnorm(100,0,1),rnorm(100,1,1)), Y=c(rep(0,100),rep(1,100) ) ) $$fakedata$Y <- factor(fakedata$Y) $$test_adaboost <- real_adaboost(Y~X, data=fakedata,10) $$
```

Index

```
adaboost, 2, 4, 5, 9
fastAdaboost, 3
fastAdaboost-package (fastAdaboost), 3
get_tree, 4
predict.adaboost, 3, 4
predict.real_adaboost, 5, 9
print.adaboost, 6, 8
print.real_adaboost, 7, 7
real_adaboost, 3, 6, 8
```