Niveau: 2^{nde} A-C

Discipline: PHYSIQUE-

CÔTE D'IVOIRE – ÉCOLE NUMÉRIQUE

CHIMIE

THÈME 3 : LA MATIÈRE ET SES TRANSFORMATIONS TITRE DE LA LEÇON : CLASSIFICATION PÉRIODIQUE DES ÉLÉMENTS CHIMIQUES

I. SITUATION D'APPRENTISSAGE

Un élève de la 2^{nde}C du Lycée Moderne de Tingrelaa découvert dans un manuel que les éléments chimiques sont classés dans un tableau appelé tableau de classification périodique et que ce tableau permet d'expliquer et même de prévoir le comportement chimique de chaque élément. Il informe ses camarades de classe. Ensemble avec leur professeur, ils entreprennent alors de décrire le tableau de classification périodique des éléments chimiques, de déterminer les différentes familles du tableau et de les analyser.

II. CONTENU DE LA LECON

1. Tableau de classification periodique des elements

1.1. Présentation du tableau de classification

Le tableau de classification périodique des éléments chimiques est un tableau à double entrée :

- une entrée horizontale appelée <u>période</u>ou <u>ligne</u> ;
- une entrée verticale appelée groupe ou colonne.

D'une manière générale, le tableau de classification comprend 18 colonnes et 7 lignes. Dans notre étude, on se limitera à 4 périodes et 8 groupes qui donnent le tableau simplifié suivant.

1.2. Règles d'édification du tableau de classification

En observant le tableau de classification, on peut retenir les règles suivantes :

-Les éléments chimiques sont classés par numéro atomique Z croissant.

A chaque valeur de Z correspond une case et une seule appartenant à une ligne et à une colonne. Z est le numéro de la case.

-Une ligne (ou période) correspond au remplissage d'une même couche électronique.

A chaque ligne, on remplit une couche électronique différente.

Exemples:

- 1^{ère} période : Elle correspond au remplissage de la couche K

 ₁H : K¹ et ₂He : K²
- $2^{\text{ème}}$ période : Elle correspond au remplissage de la couche L $_3\text{Li}$: $K^2\textbf{L}^1$; $_4\text{Be}$: $K^2\textbf{L}^2$; ; $_{10}\text{Ne}$: $K^2\textbf{L}^8$

 $_{11}$ Na: $K^2L^8M^1$; $_{12}$ Mg: $K^2L^8M^2$;.....; $_{18}$ Ar: $K^2L^8M^8$

-une colonne (ou groupe) contient des éléments dont les atomes ont le même nombre d'électrons sur la couche externe. Elle correspond à une famille.

Remarques:

- Tous les isotopes d'un élément se trouvent dans la même case du tableau.
- Le numéro d'une ligne correspond au nombre de couches électroniques occupés dans l'atome.
- Des anomalies de remplissage apparaissent après la 3èmepériode : la règle d'édification du tableau est partiellement respectée.

Exemple:

$${}_{19}\text{K}: \text{K}^2\text{L}^8\text{M}^8$$
 \Longrightarrow le remplissage de la couche N (4ème période) commence alors que la couche M (3ème période) est encore insaturé.

Activité d'application

Situe les éléments suivants dans le tableau de classification simplifié :

$$C(Z = 6)$$
; $S(Z = 16)$; $C\ell(Z = 17)$

Solution

C:
$$(K)^2(L)^4$$

Couche de valence : L (n = 2) \Rightarrow $2^{\text{ème}}$ ligne et 4 e- sur la couche externe \Rightarrow $4^{\text{ème}}$ colonne ; donc le carbone Cest situédans la $2^{\text{ème}}$ ligne et dans la $4^{\text{ème}}$ colonne.

$$S: (K)^2(L)^8(M)^6$$

Couche de valence : M (n = 3) \Rightarrow $3^{\text{ème}}$ ligne et 6 e- sur la couche externe \Rightarrow $6^{\text{ème}}$ colonne ; donc le carbone le soufre S est situédans la $3^{\text{ème}}$ ligne et dans la $6^{\text{ème}}$ colonne.

$$C\ell:(K)^2(L)^8(M)^7$$

Couche de valence : M (n=3) $\Longrightarrow 3^{\grave{e}me}$ ligne et 7 e- sur la couche externe $\Longrightarrow 7^{\grave{e}me}$ colonne ; donc lechlore $C\ell$ appartient à la $3\grave{e}me$ ligne et à la $7^{\grave{e}me}$ colonne.

2. Etude de quelques familles

Les familles correspondent aux colonnes du tableau. A l'intérieur d'une même famille, les éléments ont le même nombre d'électrons sur leur couche externe, ce qui leur donne des propriétés chimiques analogues.

2.1. La famille des métaux alcalins

Elle est constituée des éléments de la première colonne à l'exception de l'hydrogène.

Ce sont : le lithium, le sodium, le potassium, le rubidium, le césium

Lithium : Li $(Z = 3) \Longrightarrow K^2L^1$

Sodium : Na (Z = 11) \Longrightarrow K² L⁸M¹

Potassium : K (Z = 19) \Longrightarrow K² L⁸M⁸ N¹

Les métaux alcalins :

- ont un seul électron sur leur couche externe ;
- sont des corps métalliques simples, mous, peu denses ;
- s'oxydenttres facilement au contact de l'oxygene de l'air.
- réagissent très violemment avec l'eau pour formerdes bases forte etdu dihydrogène.

2.2. La famille des métaux alcalino-terreux

Elle est constituée des éléments de la deuxième colonne.

Ce sont : lebéryllium, le magnésium, le calcium, le strontium, le baryum.

Béryllium : Be $(Z = 4) \Longrightarrow K^2 L^2$

Magnésium : Mg (Z = 12) \Longrightarrow K²L⁸M²

- Calcium : Ca $(Z = 20) \Longrightarrow K^2 L^8 M^8 N^2$

Les métaux alcalino-terreux :

- ont deux électrons sur leur couche externe ;
- sont très réactifs et possèdent des propriétés chimiques très voisines de celles des alcalins ;
- s'oxydent en donnant des oxydes réfractaires (qui résistent à des températures élévées)

2.3. La famille des halogènes

Elle est constituée des éléments de la septième colonne (avant dernière colonne).

Ce sont lefluor, le chlore, le brome et l'iode.

Fluor : $F(Z = 9) \Longrightarrow K^2 L^7$

Chlore: $C\ell$ (Z = 17) $\Longrightarrow K^2 L^8 M^7$

Les halogènes :

- ont sept électrons sur leur couche externe ;
- existe sous la forme de corps simples diatomiques $(F_2, Br_2, C\ell_2)$;
- -ont un fort caractère oxydant (tendance à gagnerun électron);
- -réagissent facilement avec les métauxet l'hydrogène pour donner des halogénures métalliques

Exemple: NaCl (chlorure de sodium ou sel de cuisine).

2.4La famille des gaz rares

Elle est constituée des éléments de la huitième colonne ou dernière colonne.

Ce sont: l'hélium, le néon, l'argon, le krypton, le xénon.

- Hélium : He $(Z = 10) \Longrightarrow K^2$

- Néon : Ne $(Z = 40) \Longrightarrow K^2 L^8$

- Argon : Ar $(Z = 18) \Longrightarrow K^2 L^8 M^8$

Les gaz rares

- -ont huit électrons sur leur couche externe (saufl'hélium qui en possède seulement deux).
- -existent sous la forme de corps simples monoatomiques gazeux.
- -sont caractérisés par une absence quasi-totale de réactivité chimique : on parle d'inertie chimique.

On les appelle encore gaz nobles.

Activité d'application

Relie chaque colonne à sa famille.

Solution

3. Interet de la classification periodique

Lorsqu'on connaît la position d'un élément dans le tableau de classification périodique, on peut en déduire sa structure électronique et prédire ses propriétés chimiques.

Situation d'évaluation

Des élèves d'une classe de 2nde C regardent un documentaire scientifique télévisé. A travers le documentaire, ils apprennent que le principe actif de la pâte dentifrice est constitué essentiellement d'un élément chimique aux propriétés particulières, de numéro atomique Z = 9.

Ils te sollicitent pour les aider à localiser cet élément dans le tableau de classification périodique simplifié, et à déterminer sa famille.

- 1. Ecris la structure électronique de cet élément chimique.
- 2. Donne:
 - 2.1. sa position dans le tableau de classification (colonne et ligne);
 - 2.2. son nom et son symbole chimique;
 - 2.3. sa représentation de Lewis ;
 - 2.4. le nom de la famille à laquelle appartient cet élément ;
 - 2.5 une particularitéet une propriété chimique communes des élementsde cette famille.

Solution

- 1- Structure électronique : K²L⁷
- 2-
- 2.1Il appartient à la 2^{ème} période et 7^{ème} colonne
- 2.2 C'est le Fluor (F)
- 2.3 Représentation de Lewis

- 2.4 Il appartient à la famille des halogènes
- 2.5Leurs atomes ont sept électrons sur leur couche externe.
- Ils existent sous la forme de corps simples diatomiques $(F_2, Br_2, C\ell_2)$;
- ils réagissent facilement avec les métaux et l'hydrogène pour donner des halogénures métalliques.

III. EXERCICES

Exercice 1

L'élément chimique X a pour numéro atomique Z = 19.

- 1. La formule électronique de cet élément s'écrit:
 - a. $K^2L^7M^{10}$:
 - b. $K^2L^8M^9$:
 - c. $K^2L^8M^8N^1$.
- 2. L'élément chimique X occupe dans le tableau de classification périodique simplifié la:
 - a. 1^{ère} colonne et 4^{ème} période :
 - b. 4^{ème} colonne et 1^{ère} période ;
 - c. 3^{ème} colonne et 2^{ème} période.
- 3. L'élément chimique X appartient à la famille des :
 - a. métaux alcalino-terreux
 - b. métaux alcalins
 - c. halogènes

Pour chaque proposition, entoure la lettre qui correspond à la bonne réponse.

Solution
L'élément chimique X a pour numéro atomique Z = 19.
1. La formule électronique de cet élément s'écrit:
$c.$ $K^2L^8M^8N^1.$
2. L'élément chimique X occupe dans le tableau de classification périodique simplifié la:
a.) 1 ^{ère} colonne et 4 ^{ème} période ;
3. L'élément chimique X appartient à la famille des :
b.) Métaux alcalins
Exercice 2
Complète les phrases suivantes avec les mots ou gropues de mots qui conviennent.
1-Dans le tableau de classification périodique, les éléments chimiques sont classés par numéro atomique Z
2-Les éléments sont disposés dans des colonnes appelées et sur des lignes appelés
3-Une famille est constituée de l'ensemble des élémenst chimiques appartenant à une meme
5-La première colonne de la classification correspond à la famille des(sauf l'hydrogène).
6-La deuxième colonne de la classification periodique correspond à la famille des
7-L'avant dernière colonne de la classification periodique correspond à la famille des
8-La dernière colonne de la classification correspond à la famille des
Solution Complètons les phrases suivantes avec les mots ou gropues de mots qui conviennent.
 1-Dans le tableau de classification périodique, les éléments chimiques sont classés par numéro atomique Z <u>croissant</u>. 2- Les éléments sont disposés dans des colonnes appelées <u>groupes</u> et sur des lignes appelés <u>période</u>.
3-Une famille est constituée de l'ensemble des élémenst chimiques appartenant à une meme <i>colonne</i> du tableau de classification périodique.
4-Les éléments appartenant à meme famille possèdent des propriéts chimiques <u>analogues</u> .
5-La première colonne de la classification correspond à la famille des <i>métaux alcalins</i> .(sauf l'hydrogène).
6-La deuxième colonne de la classification periodique correspond à la famille des <u>métaux alcalino-</u> <u>terreux</u> .

7-L'avant dernière colonne de la classification periodique correspond à la famille des *halogènes*.

8-La dernière colonne de la classification correspond à la famille des *gaz nobles*.

Exercice 3

On donne les représentations de LEWIS de trois éléments inconnus.

- X et Y appartiennent à la troisième ligne de la classification périodique simplifiée.
- Z appartient à la deuxième ligne de la classification périodique simplifiée.
 - 1- Ecris la formule électronique de chaque élément.
 - 2- Donne les numéros atomiques et les noms des éléments X, Y et Z

Solution

- 1- La formule électronique de chaque élément :
- Pour $X: K^2L^8M^2$; Pour $Y: K^2L^8M^5$; Pour $Z: K^2L^8$
- 2- Les numéros atomiques et les noms des éléments X, Y et Z
- Pour X : Z = 2 + 8 + 3 = 13 donc X est l'aluminium
- Pour Y: Z = 2 + 8 + 5 = 15 donc Y est le Phosphore
- Pour X : Z = 2 + 8 = 10 donc Z est le Néon

Exercice 4

Au cours d'une séance de travaux pratiques, le professeur de physique d'une classe de seconde demande à un groupe d'élèves de determinerla carte d'identité (nom, symbole chimique, numero atomique, et propriétés chimiques) d'un élément chimique X. Pour cela, le professeur leur fourni les indices suivants : l'élement X est situé dans la case 11 du tableau de classification periodique simplifiée et peut intervenirdans la constitution de certaines lampadairesqui emettentune lumière jaune treséclairante.

Aide ce groupe à établir la carte d'identite de X.

- 1- Donne la règle suivant laquelle les éléments chimiques sont classé dans le tableau de classification periodique.
- 2- Détermine le numéro atomique de l'élément chimique X.
- 3- Ecris la structure électronique d'un atome de l'élément chimique X.
- 4- Donne:
 - 4.1- le nom et le symbole chimique de X;
 - 4.2- le nom de la famille à laquelle X appartient.
 - 4.3- une propriété chimique des élements de cette famille.

Solution

- 1- Règlesuivant laquelle les éléments chimiques sont classé dans le tableau de classification periodique : Les éléments chimiques sont rangés par numéro atomiques Z croissant.
- 2- Détermination du numéro atomique de l'élément chimique X.

Le numero atomique est celui de la case où X est situé : donc : Z = 11.

3- Ecriture de la structure électronique d'un atome de l'élément chimique X.

$$(Z = 11) : K^2L^8M^1$$

- 4.1-Pour Z = 11: c'est le sodium (Na)
- 4.2-Na (Z= 11) appartient à la famille des métaux alcalins
- 4.3- Les metaux alcalins sont très oxydables à froid par le dioxygène de l'airet réagissent violemment avec l'eau pour donner le dihydrogène H₂ et une base forte.

Exercice 5

Lors d'une seance de travaux pratique de physique en classe de 2^{nde} , le professeur met à disposition d'un groupe d'élèves un tableau de classification periodique en version codée ci-dessous. Chaque élément du tableau a été remplacé par une lettre de l'alphabet grecque. Il leur propose un jeu dont le but est d'identifier l'élément chimique σ et de determiner ses propriétés chimiques.

- 1- Enonce les trois règles d'édification du tableau de classification périodique.
- 2- Détermine le numéro atomique de l'élément chimique σ .
- 3- Ecris la structure électronique decet élément chimique.
- 4- Donne:
 - 4.1son nom et son symbole chimique;
 - 4.2. sa représentation de Lewis ;
 - 4.3. le nom de la famille à laquelle appartient cet élément ;
 - 4.4une particularité et une propriété chimique communes des élements de cette famille.

Solution

- 1. -Les éléments sont classés par numéro atomique **Z** croissant ;
 - -Chaque ligne correspond au remplissage d'une couche électronique ;
 - Les éléments dont les atomes ont le même nombre d'électrons sur la couche électronique externe sont disposés dans une même colonne et constituent une famille chimique.
- 2. L'élément chimique σ est situé dans la case 17 du tableau de classification periodique. Donc son numéro atomique est Z=17.
- 3. Pour $\sigma(Z = 17) : K^2L^8M^7$

4

- 4.1.Z = 17 donc σ est le chlore de symbole $C\ell$.
- 4.2.sa représentation de Lewis :
- 4.3. Il appartient à la famille des halogènes
- 4.4. Leurs atomes ont sept électrons sur leur couche externe.

Ils existent sous la forme de corps simples diatomiques $(F_2, Br_2, C\ell_2)$;

Ils réagissent facilement avec les métaux et l'hydrogène pour donner des halogénures métalliques

IV.DOCUMENTS

Historique de la classification des éléments chimiques

Bien que l'idée de classification des éléments chimiquesnaquit depuis l'an 1817 avec le chimiste Allemand Döbereiner et poursuivie par le géologue et minéralogiste Français Chancourtois, le chimiste Anglais Newlands et le chimiste Allemand Meyer, c'est le chimiste Russe Dimitri**Mendeleïev**qui proposaen 1869, le classement par masse atomique Mcroissante des 63 éléments connus à l'époque.

Mendeleïev eut le mérite de prévoir des cases videspour des éléments non encore connus, avec leurs propriétés chimiques.

Le gallium (Ga) aux propriétés chimiques analogues à l'aluminium et le germanium (Ge) aux propriétés chimiques semblables au silicium furent découverts respectivement en 1875 et en 1886. Ce qui confirmait les prévisions de Mendeleïev. Son classement fut alorsvalidé.

Avec la découverte de la charge du noyau en 1910 par Rutherford et l'introduction du numéro atomique Z, le classement des éléments fut établi non plus par masse atomique croissante mais par numéro atomique Z croissant, donc selon la configuration électronique desatomes.

L'intégration de nouveaux éléments super lourds, le Nihonium (symbole Nh, Z=113), le flérovium (symbole Fl, Z=114), et le Moscovium (symbole Mc, Z=115), le Livermorium (symbole Lv, Z=116), Tennessine (symbole Ts, Z=117), l'Organes son

(symbole Og, Z = 118) découverts en 2015 porte aujourd'hui à 118 le nombre d'éléments chimiques. Ainsi, de nouveaux éléments continuent d'intégrer le tableau de Mendeleiv, jusqu'à quand et jusqu'à combien ?

Dimitri Ivanovitch Mendeleiv