

PROYECTO DE AULA Y SISTEMATIZACIÓN DE EXPERIENCIAS: GUÍA PARA LA INTERPRETACIÓN DE MODELOS FUNCIONALES DE LATENCIA EN REDES

CALCULO DIFERENCIAL 012025 DOCENTE: ANDREA MENDOZA ZABALETA

I. GUÍA PARA ABRIR Y EJECUTAR UN ARCHIVO DE JUPYTER NOTEBOOK EN VS CODE:

1. REQUISITOS PREVIOS

Para trabajar con un archivo. ipynb (Jupyter Notebook) necesitas:

- Tener Python instalado.
- Tener instalado Visual Studio Code (VS Code).
- Instalar extensiones necesarias para notebooks en VS Code.

2. INSTALACIÓN PASO A PASO

- √ Ve a: https://www.python.org/downloads/
- ✓ Descarga la última versión estable.
- ✓ Durante la instalación, marca la casilla que dice "Add Python to PATH".
- ✓ Finaliza la instalación.

⇒ Instalar Visual Studio Code (VS Code)

- √ Ve a: https://code.visualstudio.com/
- ✓ Descarga e instala la versión correspondiente a tu sistema operativo.

⇒ Instalar las Extensiones en VS Code

- ✓ Abre VS Code.
- ✓ Ve al ícono de extensiones (a la izquierda, en la barra lateral).
- ✓ Busca e instala las siguientes extensiones:
 - Python (de Microsoft)
 - Jupyter (de Microsoft)

Estas dos extensiones permiten abrir, ejecutar y visualizar notebooks directamente desde VS Code.

3. ABRIR UN archivo. ipynb EN VS CODE

- ⇒ Abre VS Code.
- ⇒ Usa Archivo > Abrir carpeta y selecciona la carpeta donde está el archivo. ipynb.
- ⇒ Haz doble clic sobre el archivo. ipynb. Se abrirá en la interfaz de Jupyter integrada en VS Code.
- ⇒ ¡Pregunta por los comandos rápidos en clase!

4. EJECUTAR EL CÓDIGO

⇒ VS Code detectará el archivo y pedirá que selecciones un **kernel** (entorno de ejecución). Elige el entorno Python instalado (usualmente aparece con algo como Python 3.x).

PROYECTO DE AULA Y SISTEMATIZACIÓN DE EXPERIENCIAS: GUÍA PARA LA INTERPRETACIÓN DE MODELOS FUNCIONALES DE LATENCIA EN REDES

CALCULO DIFERENCIAL 012025 DOCENTE: ANDREA MENDOZA ZABALETA

⇒ Para ejecutar una celda de código, haz clic en el ícono de "play" (►) al lado izquierdo de la celda, o usa el atajo:
Shift + Enter.

5. INSTALACIÓN DE LIBRERIAS

Para que el código se pueda ejecutar correctamente se deben instalar las siguientes librerías:

- ✓ Pandas
- ✓ Numpy
- ✓ Matplotlib
- ✓ Seaborn
- ✓ Scikit-Learn (Sklearn)

Sigue estos pasos para instalar las librerías desde la terminal integrada de VS Code:

- ⇒ Abre VS Code.
- ⇒ Abre la terminal integrada con:
 - o Windows: Ctrl + ñ
 - o macOS: Ctrl + `
- ⇒ Escribe y ejecuta el siguiente comando en la terminal:

pip install pandas numpy matplotlib seaborn scikit-learn

- *Este comando instalará todas las librerías necesarias que el código utiliza.
- **Si usas un entorno virtual (virtualenv o venv), asegúrate de activarlo antes de ejecutar ese comando.
- ⚠ Nota: Si el comando pip no funciona, intenta usar:

python -m pip install pandas numpy matplotlib seaborn scikit-learn

Una vez finalizada la instalación, puedes ejecutar las celdas del notebook sin errores relacionados con librerías faltantes.

¡LUEGO DE ESTO TU CODIGO DEBE CORRER SIN PROBLEMAS Y VER LAS GRAFICAS Y LOS MODELOS FUNCIONALES PARA ANALIZAR LA LATENCIA EN REDES TCP!

PROYECTO DE AULA Y SISTEMATIZACIÓN DE EXPERIENCIAS: GUÍA PARA LA INTERPRETACIÓN DE MODELOS FUNCIONALES DE LATENCIA EN REDES

CALCULO DIFERENCIAL 012025 DOCENTE: ANDREA MENDOZA ZABALETA

II. ACTIVIDAD DEL PROYECTO DE AULA

La interfaz de Jupyter permite dividir el código por secciones. En el código encontraras las siguientes secciones:

- 1. LIBRERIAS
- 2. CARGAR LOS DATOS DEL ARCHIVO CSV
- 3. EXPLORACIÓN Y LIMPIEZA DE DATOS

- 4. GRAFICA DE PARES O PAIRPLOT
- 5. DIAGRAMA DE DISPERSIÓN
- 6. MODELO FUNCIONAL TEORICO
- 7. GRAFICA DE LINEA: MODELO REAL VS MODELO TEORICO

A continuación, las actividades que deberás realizar en cada sección:

- LIBRERIAS: Describir con tus propias palabras para que se utiliza cada librería en el código
- 2. CARGAR LOS DATOS DEL ARCHIVO CSV: Identificar las variables de estudio que influyen en la latencia de un paquete de datos enviado. Ver los datos utilizando la extensión *Data Wrangler* (capturar la tabla)
- 3. EXPLORACIÓN Y LIMPIEZA DE DATOS: Encontrar el promedio, la desviación estándar el dato máximo y mínimo para cada variable de estudio (Capturar y encerrar la información solicitada de la consola de impresión en Vs Code)
- 4. GRAFICA DE PARES O PAIRPLOT: Describir que relación interpretas de la gráfica entre las variables listadas a continuación en el respectivo eje:

Caso	Eje (X)	Eje (Y)	En ambos casos ten en
1	Distancia (km)	Latencia (ms)	cuenta para la
2	Distancia (km)	Tiempo promedio por saltos (ms)	interpretación la cantidad de saltos que esta dada por el color

Insertar la gráfica obtenida en el trabajo y debajo hacer las interpretaciones

5. DIAGRAMA DE DISPERSIÓN: Utiliza este grafico para confirmar las observaciones realizadas en el caso 1 del punto anterior. Insertar la gráfica obtenida en el trabajo y debajo hacer las interpretaciones u observaciones (deben coincidir con lo observado en el caso 1 del punto anterior)

PROYECTO DE AULA Y SISTEMATIZACIÓN DE EXPERIENCIAS: GUÍA PARA LA INTERPRETACIÓN DE MODELOS FUNCIONALES DE LATENCIA EN REDES CALCULO DIFERENCIAL 012025

DOCENTE: ANDREA MENDOZA ZABALETA

- 6. MODELO FUNCIONAL TEORICO: Verifica que tanto se ajusta el modelo teórico al modelo real en la sección siguiente, variando la velocidad dependiendo del medio de propagación (fibra óptica v = 200km/ms, wifi v = 300km/ms y cable v = 100km/ms)
- 7. GRAFICO DE LINEA (MODELO REAL VS MODELO TEORICO): Realiza 3 interpretaciones de esta gráfica, una por cada velocidad aplicada. **Insertar aquí la gráfica obtenida en el código y debajo hacer las interpretaciones**

Nota: Cada grafico insertado debe tener en la parte de abajo un título en relación con la información que muestra puedes utilizar los mismos títulos utilizados en el código.

III. LA HOJA DE PRESENTACIÓN DEBE CONTENER:

- ✓ FUNDACIÓN UNIVERSITARIA TECNOLOGICO COMFENALCO
- ✓ PROGRAMA
- ✓ ACTIVIDAD PARA PROYECTO DE AULA Y SISTEMATIZACIÓN DE EXPERIENCIAS
- ✓ ASIGNATURA
- **✓ INTEGRANTES**
- ✓ DOCENTE: ING. ANDREA C. MENDOZA ZABALETA
- ✓ CIUDAD Y FECHA

FECHA DE REVISIÓN: MIERCOLES 14 DE MAYO (CALIFICABLE) FECHA DE ENTREGA: MIERCOLES 21 DE MAYO. (CALIFICABLE)