

What Is Claimed Is:

1. A method for I/Q mismatch calibration of a
2 transmitter, comprising the following steps:
3 generating a discrete-time signal $x[n] = x(n \cdot T_s)$, wherein
4 $x(t) = e^{j2\pi f_r t}$ and f_r and T_s are real numbers;
5 obtaining a corrected signal $x_c[n]$ based on the signal $x[n]$
6 and a set of correction parameters A_p and B_p , wherein
7 $x_c[n] = A_p \cdot x[n] + B_p \cdot x^*[n]$;
8 converting the corrected signal $x_c[n]$ to an analog
9 corrected signal $x_c(t)$;
10 applying I/Q modulation to the analog corrected signal
11 $x_c(t)$ and outputting a modulated signal $x_m(t)$;
12 obtaining a first desired component measure $W^{(0)}(f_r)$ and a
13 first image component measure $W^{(0)}(-f_r)$ from the
14 modulated signal $x_m(t)$ with a first set of the
15 correction parameters A_p and B_p ;
16 obtaining a second desired component measure $W^{(2)}(f_r)$ and
17 a second image component measure $W^{(2)}(-f_r)$ from the
18 modulated signal $x_m(t)$ with a second set of the
19 correction parameters A_p and B_p ;
20 obtaining a third desired component measure $W^{(3)}(f_r)$ and a
21 third image component measure $W^{(3)}(-f_r)$ from the
22 modulated signal $x_m(t)$ with a third set of the
23 correction parameters A_p and B_p ;
24 obtaining a fourth and fifth set of correction parameters
25 A_p and B_p based on the first, the second, and the third
26 desired component measures as well as the first, the
27 second, and the third image component measures;

28 obtaining a fourth desired component measure $W^{(4)}(f_r)$ and
29 a fourth image component measure $W^{(4)}(-f_r)$ from the
30 modulated signal $x_m(t)$ with the fourth set of
31 correction parameters A_p and B_p ;
32 obtaining a fifth desired component measure $W^{(5)}(f_r)$ and a
33 fifth image component measure $W^{(5)}(-f_r)$ from the
34 modulated signal $x_m(t)$ with the fifth set of
35 correction parameters A_p and B_p ; and
36 obtaining a final set of the correction parameters A_p and
37 B_p from the fourth and fifth sets of correction
38 parameters.

1 2. The method for I/Q mismatch calibration of a
2 transmitter as claimed in claim 1, wherein the first set of
3 correction parameters $(A_p, B_p) = (a, 0)$, the second set of
4 correction parameters $(A_p, B_p) = (b, b)$, and the third set of
5 correction parameters $(A_p, B_p) = (b, -b)$, where a and b are real
6 numbers.

1 3. The method for I/Q mismatch calibration of a
2 transmitter as claimed in claim 2, wherein the parameter a is
3 1 and the parameter b is 1/2.

1 4. The method for I/Q mismatch calibration of a
2 transmitter as claimed in claim 1, wherein the fourth set of
3 correction parameters (A_p, B_p) are obtained by

$$A_p = \sqrt{P} - j\hat{\alpha}\sqrt{Q}$$

$$B_p = -\hat{\alpha}\sqrt{P} - j\sqrt{Q}$$

5 and the fifth set of correction parameters (A_p, B_p) are
6 obtained by

7 $A_p = \sqrt{P} + j\hat{\alpha}\sqrt{Q}$
 $B_p = -\hat{\alpha}\sqrt{P} + j\sqrt{Q}$

8 where

9 $\alpha \approx \hat{\alpha} = \frac{\sqrt{N_O} - 1}{\sqrt{N_O} + 1}$,

10 $N = (W^{(2)}(f_T) + W^{(2)}(-f_T))/2$,

11 $O = (W^{(3)}(f_T) + W^{(3)}(-f_T))/2$,

12 $Q = \frac{\hat{\alpha}^2 - \rho^{(0)}}{(1 + \rho^{(0)})(\hat{\alpha}^2 - 1)}$,

13 $P = 1 - Q$,

14 $\rho^{(0)} = \frac{W^{(0)}(-f_T)}{W^{(0)}(f_T)}$.

1 5. The method for I/Q mismatch calibration of a
2 transmitter as claimed in claim 1, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if a function of $W^{(4)}(-f_T)$ is less than the
5 function of $W^{(5)}(-f_T)$, otherwise the final set of correction
6 parameters (A_p, B_p) is set to be the fifth set of correction
7 parameters.

1 6. The method for I/Q mismatch calibration of a
2 transmitter as claimed in claim 5, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if $W^{(4)}(-f_T)$ is less than $W^{(5)}(-f_T)$,
5 otherwise the final set of correction parameters (A_p, B_p) is set
6 to be the fifth set of correction parameters.

1 7. The method for I/Q mismatch calibration of a
2 transmitter as claimed in claim 1, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if a function of $W^{(4)}(f_r)$ is greater than
5 the function of $W^{(5)}(f_r)$, otherwise the final set of correction
6 parameters (A_p, B_p) is set to be the fifth set of correction
7 parameters.

1 8. The method for I/Q mismatch calibration of a
2 transmitter as claimed in claim 7, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if $W^{(4)}(f_r)$ is greater than $W^{(5)}(f_r)$,
5 otherwise the final set of correction parameters (A_p, B_p) is set
6 to be the fifth set of correction parameters.

1 9. The method for I/Q mismatch calibration of a
2 transmitter as claimed in claim 1, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if a function of $W^{(4)}(-f_r)$ and $W^{(4)}(f_r)$ is
5 less than the function of $W^{(5)}(-f_r)$ and $W^{(5)}(f_r)$, otherwise the
6 final set of correction parameters (A_p, B_p) is set to be the fifth
7 set of correction parameters.

1 10. The method for I/Q mismatch calibration of a
2 transmitter as claimed in claim 9, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if $W^{(4)}(-f_r)/W^{(4)}(f_r)$ is less than
5 $W^{(5)}(-f_r)/W^{(5)}(f_r)$, otherwise the final set of correction
6 parameters (A_p, B_p) is set to be the fifth set of correction
7 parameters.

1 11. The method for I/Q mismatch calibration of a
2 transmitter as claimed in claim 1, further comprising the
3 following steps:
4 further adding an DC compensation parameter γ_p while
5 obtaining the corrected signal $x_c[n]$ such that
6 $x_c[n] = A_p \cdot (x[n] + \gamma_p) + B_p \cdot (x[n] + \gamma_p)^*$;
7 obtaining a first local leakage component measure L_1 from
8 the modulated signal $x_m(t)$ with the final set of
9 parameters A_p and B_p , and the parameter $\gamma_p = \zeta_1$, where
10 ζ_1 is a real number;
11 obtaining a second local leakage component measure L_2 from
12 the modulated signal $x_m(t)$ with the final set of
13 parameters A_p and B_p , and the parameter $\gamma_p = \zeta_2$, where
14 ζ_2 is a real number;
15 obtaining a third local leakage component measure L_3 from
16 the modulated signal $x_m(t)$ with the final set of
17 parameters A_p and B_p , and the parameter $\gamma_p = j\zeta_1$;
18 obtaining a fourth local leakage component measure L_4 from
19 the modulated signal $x_m(t)$ with the final set of
20 parameters A_p and B_p , and the parameter $\gamma_p = j\zeta_2$;
21 obtaining a fifth local leakage component measure L_5 from
22 the modulated signal $x_m(t)$ with the final set of
23 parameters A_p and B_p , and the parameter $\gamma_p = 0$; and
24 obtaining a final DC compensation parameter $\gamma_{p,final}$ based on
25 the first local leakage component measure L_1 , the
26 second local leakage component measure L_2 , the third
27 local leakage component measure L_3 , the fourth local
28 leakage component measure L_4 and the fifth local
29 leakage component measure L_5 .

1 12. The method for I/Q mismatch calibration of a
2 transmitter as claimed in claim 11, wherein the final DC
3 compensation parameter $\gamma_{p,final}$ is obtained by

4
$$\gamma_{p,final} = -\frac{1}{2} \frac{\zeta_2^2(L_1-L_3) - \zeta_1^2(L_2-L_5)}{\zeta_1(L_2-L_5) - \zeta_2(L_1-L_5)} - j \frac{1}{2} \frac{\zeta_2^2(L_3-L_5) - \zeta_1^2(L_4-L_5)}{\zeta_1(L_4-L_5) - \zeta_2(L_3-L_5)}.$$

1 13. An apparatus for I/Q mismatch calibration of a
2 transmitter, comprising:

3 a signal generator for generating a discrete-time signal
4 $x[n] = x(n \cdot T_s)$, wherein $x(t) = e^{j2\pi f_rt}$ and f_r and T_s are real
5 numbers;
6 a correction module for receiving the discrete-time signal
7 $x[n]$ and obtaining a corrected signal $x_c[n]$ based on
8 the test signal $x[n]$ and a set of correction
9 parameters A_p and B_p , wherein $x_c[n] = A_p \cdot x[n] + B_p \cdot x'[n]$;
10 a first and second D/A converter converting the corrected
11 signal $x_c[n]$ to an analog signal $x_c(t)$, wherein the
12 first D/A converter converts the real part of the
13 corrected signal to the real part of the analog
14 signal, and the second D/A converter converts the
15 imaginary part of the corrected signal to the
16 imaginary part of the analog signal;
17 a modulator applying I/Q modulation to the analog signal
18 $x_c(t)$, and outputting a modulated signal $x_m(t)$;
19 a measurer for implementing the steps of:
20 obtaining a first desired component measure $W^{(1)}(f_r)$
21 and a first image component measure $W^{(1)}(-f_r)$
22 from the modulated signal $x_m(t)$ with a first set
23 of the correction parameters A_p and B_p ;

24 obtaining a second desired component measure $W^{(2)}(f_r)$
25 and a second image component measure $W^{(2)}(-f_r)$
26 from the modulated signal $x_m(t)$ with a second
27 set of the correction parameters A_p and B_p ;
28 obtaining a third desired component measure $W^{(3)}(f_r)$
29 and a third image component measure $W^{(3)}(-f_r)$
30 from the modulated signal $x_m(t)$ with a third set
31 of the correction parameters A_p and B_p ;
32 obtaining a fourth desired component measure
33 $W^{(4)}(f_r)$ and a fourth image component measure
34 $W^{(4)}(-f_r)$ from the modulated signal $x_m(t)$ with a
35 fourth set of correction parameters A_p and B_p ;
36 and
37 obtaining a fifth desired component measure $W^{(5)}(f_r)$
38 and a fifth image component measure $W^{(5)}(-f_r)$
39 from the modulated signal $x_m(t)$ with a fifth set
40 of correction parameters A_p and B_p ; and
41 a processor for implementing the steps of:
42 obtaining the fourth and fifth sets of correction
43 parameters A_p and B_p based on the first, the
44 second, and the third desired component
45 measures as well as the first, the second, and
46 the third image component measures; and
47 choosing a final set of correction parameters A_p and
48 B_p from the fourth and fifth sets of correction
49 parameters.

1 14. The apparatus for I/Q mismatch calibration of a
2 transmitter as claimed in claim 13, wherein the first set of
3 correction parameters $(A_p, B_p) = (a, 0)$, the second set of

4 correction parameters $(A_p, B_p) = (b, b)$, and the third set of
5 correction parameters $(A_p, B_p) = (b, -b)$, where a and b are real
6 numbers.

1 15. The apparatus for I/Q mismatch calibration of a
2 transmitter as claimed in claim 13, wherein the parameter a is
3 1 and the parameter b is 1/2.

1 16. The apparatus for I/Q mismatch calibration of a
2 transmitter as claimed in claim 13, wherein the fourth set of
3 correction parameters (A_p, B_p) are obtained by

$$A_p = \sqrt{P} - j\hat{\alpha}\sqrt{Q}$$

$$B_p = -\hat{\alpha}\sqrt{P} - j\sqrt{Q}$$

5 and the fifth set of correction parameters (A_p, B_p) are
6 obtained by

$$A_p = \sqrt{P} + j\hat{\alpha}\sqrt{Q}$$

$$B_p = -\hat{\alpha}\sqrt{P} + j\sqrt{Q}$$

8 where

$$\alpha \approx \hat{\alpha} = \frac{\sqrt{N_O} - 1}{\sqrt{N_O} + 1},$$

$$N = (W^{(2)}(f_r) + W^{(2)}(-f_r))/2,$$

$$O = (W^{(3)}(f_r) + W^{(3)}(-f_r))/2,$$

$$Q = \frac{\hat{\alpha}^2 - \rho^{(0)}}{(1 + \rho^{(0)})(\hat{\alpha}^2 - 1)},$$

$$P = 1 - Q,$$

$$\rho^{(0)} = \frac{W^{(0)}(-f_r)}{W^{(0)}(f_r)}.$$

1 17. The apparatus for I/Q mismatch calibration of a
2 transmitter as claimed in claim 13, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if a function of $W^{(4)}(-f_r)$ is less than the
5 function of $W^{(5)}(-f_r)$, otherwise the final set of correction
6 parameters (A_p, B_p) is set to be the fifth set of correction
7 parameters.

1 18. The apparatus for I/Q mismatch calibration of a
2 transmitter as claimed in claim 17, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if $W^{(4)}(-f_r)$ is less than $W^{(5)}(-f_r)$,
5 otherwise the final set of correction parameters (A_p, B_p) is set
6 to be the fifth set of correction parameters.

1 19. The apparatus for I/Q mismatch calibration of a
2 transmitter as claimed in claim 13, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if a function of $W^{(4)}(f_r)$ is greater than
5 the function of $W^{(5)}(f_r)$, otherwise the final set of correction
6 parameters (A_p, B_p) is set to be the fifth set of correction
7 parameters.

1 20. The apparatus for I/Q mismatch calibration of a
2 transmitter as claimed in claim 19, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if $W^{(4)}(f_r)$ is greater than $W^{(5)}(f_r)$,
5 otherwise the final set of correction parameters (A_p, B_p) is set
6 to be the fifth set of correction parameters.

1 21. The apparatus for I/Q mismatch calibration of a
2 transmitter as claimed in claim 13, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if a function of $W^{(4)}(-f_r)$ and $W^{(4)}(f_r)$ is
5 less than the function of $W^{(5)}(-f_r)$ and $W^{(5)}(f_r)$, otherwise the
6 final set of correction parameters (A_p, B_p) is set to be the fifth
7 set of correction parameters.

1 22. The apparatus for I/Q mismatch calibration of a
2 transmitter as claimed in claim 21, wherein the final set of
3 correction parameters (A_p, B_p) is set to be the fourth set of
4 correction parameters if $W^{(4)}(-f_r)/W^{(4)}(f_r)$ is less than
5 $W^{(5)}(-f_r)/W^{(5)}(f_r)$, otherwise the final set of correction
6 parameters (A_p, B_p) is set to be the fifth set of correction
7 parameters.

1 23. The apparatus for I/Q mismatch calibration of a
2 transmitter as claimed in claim 13, wherein the processor
3 further implementing the steps of:

4 further adding an DC compensation parameter γ_p while
5 obtaining the corrected signal $x_c[n]$ such that
6 $x_c[n] = A_p \cdot (x[n] + \gamma_p) + B_p \cdot (x[n] + \gamma_p)^*$;
7 obtaining a first local leakage component measure L_1 from
8 the modulated signal $x_m(t)$ with the final set of
9 parameters A_p and B_p , and the parameter $\gamma_p = \zeta_1$, where
10 ζ_1 is a real number;
11 obtaining a second local leakage component measure L_2 from
12 the modulated signal $x_m(t)$ with the final set of
13 parameters A_p and B_p , and the parameter $\gamma_p = \zeta_2$, where
14 ζ_2 is a real number;

15 obtaining a third local leakage component measure L_3 from
16 the modulated signal $x_m(t)$ with the final set of
17 parameters A_p and B_p , and the parameter $\gamma_p=j\zeta_1$;
18 obtaining a fourth local leakage component measure L_4 from
19 the modulated signal $x_m(t)$ with the final set of
20 parameters A_p and B_p , and the parameter $\gamma_p=j\zeta_2$;
21 obtaining a fifth local leakage component measure L_5 from
22 the modulated signal $x_m(t)$ with the final set of
23 parameters A_p and B_p , and the parameter $\gamma_p=0$; and
24 obtaining a final DC compensation parameter $\gamma_{p,final}$ based on
25 the first local leakage component measure L_1 , the
26 second local leakage component measure L_2 , the third
27 local leakage component measure L_3 , the fourth local
28 leakage component measure L_4 and the fifth local
29 leakage component measure L_5 .

1 24. The apparatus for I/Q mismatch calibration of a
2 transmitter as claimed in claim 23, wherein the final DC
3 compensation parameter $\gamma_{p,final}$ is obtained by

$$4 \quad \gamma_{p,final} = -\frac{1}{2} \frac{\zeta_1^2(L_1-L_3)-\zeta_2^2(L_2-L_3)}{\zeta_1(L_2-L_3)-\zeta_2(L_1-L_3)} - j \frac{1}{2} \frac{\zeta_2^2(L_1-L_3)-\zeta_1^2(L_4-L_5)}{\zeta_1(L_4-L_5)-\zeta_2(L_3-L_5)}.$$