DATA DRIVEN ANALYSIS SAMARA SEED KINEMATICS AND DYNAMICS

Shashwat Sparsh

Advisor: Dr. Nandeesh Hiremath

+

BACKGROUND

BACKGROUND

Samara Seed: class of fruit most famous from the *Acer* genus (Maples)

Colloquially known as "helicopter" plants

Exhibit auto-rotating behavior as they fall

Walter Siegmund, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons

STAGES OF FLIGHT

- Free Fall: Kinematics modeled by Free Fall
- Transition:
 - Time period between the end of free-fall and the start of steady-state rotation like a helicopter
 - Not the subject of most aerodynamic studies
- Steady-State:
 - Seed exhibits auto-rotation and lower descent velocity
 - Primary focus of most studies
- Initial attitude and form factor have a significant impact
- Small Aerodynamic Torque in the initial drop perturbed the to generate rotation

[Reference 14]

PREVIOUS RESEARCH

- Biological Studies
 - "Efficient Seed Dispersal"
 - Morphological Property Distribution
- Aerodynamic Studies
 - Particle Image Velocimetry (PIV) Flow Analysis: Strong Leading-Edge Vortex (LEV) formation
 - Geometric and Flight Characteristic relations
 - Simulation Models
- Aerodynamic analysis does not necessarily agree with Biological studies

MOTIVATIONAL QUESTIONS

- Do the single-bladed seeds undergoing auto-rotation truly support the widely accepted claim of seed dispersal?
- Is there any peculiar morphological or flight characteristics that make a minority number of seeds fly far distances?
- What relationships are present between the flight performance and geometric characteristics?
- Investigate the kinematic and dynamic responses during steadystate and transition
- Applications:
 - Biomimicry
 - Large Scale Terraforming via seed dispersal

+ •

BIOLOGICAL STUDIES

WIND DRIFT

- Literature Review: Wind Drift studies are predominantly biological and statistical regarding dispersion
- Performance:
 - Greater than seeds that fall straight down
 - Poorer than fruit using *tufted* methods

By Rasbak - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=131578

+

PIV STUDIES

MODELING WAKE FLOW

Identification of appropriate Wake State

Local flow over the samara blade characterized by a Leading Edge Vortex (LEV)

Wing-root vortex, root-tip vortex, and wing-tip vortex in wake

Multiple tests of single samara specifically during steady-state auto-rotation

NORMAL WORKING STATE: VERTICAL CLIMB

- Continuous Contraction of slipstream above, through, and below rotor
- Upstream: Above Rotor
- Downstream: Below Rotor
- Induced Velocity: γ
- Rotor Climb Velocity: V_H
- Down Stream Velocity: V_D

A. Hovering or vertical climb

VORTEX-RING STATE: DESCENT

- External flow is upward
- Net flow is downward
- Flow is Steady
- Upstream: Below Rotor
- Downstream: Above Rotor
- $\gamma \gg V$
- Rotor Descent Velocity: V
- Down Stream Velocity: V_D

B. Vortex ring state ($V \ll \gamma$)

C. W

WINDMILL BRAKE STATE: DESCENT

- $\gamma \ll V$
- $V_{Vortex} < V_{Windmill}$
- Definite Slipstream Expanding as it passes upward
- Upstream: Below Rotor
- Downstream: Above Rotor
- Windmill extracting energy from the wind

C. Windmill brake state $(V >> \gamma)$

MODELING WAKE FLOW

4 Distinct Regions: Wake core flow, Upstream regions, Vortices region, and outer-wake

Vertical and Horizontal offsets between vortices

Coning Angle of 24° poor flat disk approximation

Wingtip Velocity combines the induced and descent velocity terms

Wake Flow characterized as the **windmill** brake model: $v_v > 0$ throughout the field

MECHANISM OF AUTOROTATION

- Autorotation: Equilibrium velocity established by force balance of aerodynamic and gravitational forces
- Seeds were dropped in a vertical wind tunnel and made to hover with coning angle $\beta=0^\circ$ and pitch angle $\theta=1.5^\circ$
- Compact LEVS:
 - Form even at high angles of attack $\alpha \approx 60^\circ$
 - Begin at 25% span and dissipate at 90% span
- Results are specific to Swietenia genus

+

Morphological Impact on Aerodynamics

GEOMETRIC PROPERTY STUDIES

GEOMETRIC IMPACT: MORPHOLOGICAL PERTURBATION

Multi-Species Test

Hover test in vertical wind tunnel

Descent Velocity Prediction Models

- Standard Model: $mg/A \sim V_D^2$
- Proposed Model: $mg \sim .5C_D \rho V_D^2 A \cos \theta$

Descent velocity has little to no apparent correlation with coning angle (θ) or angular velocity (ω)

MORPHOLOGICAL PERTURBATION

±70% mass changes correspond to ±15% changes in descent velocity

Chord is the most appropriate parameter for characterizing seeds

Significant variance in masses across samples

Performance is more complicated than $mg/A \sim V_D^2$

Better Performance Predictor:

 $mg \sim .5C_D \rho V_D^2 A \cos \theta$

GEOMETRIC IMPACT: ROTATIONAL EFFICIENCY

Mechanical samara models

- Planar symmetric blade
- Low Reynolds number flight regime

Consistent transition to steady-state rotation with drastically different trajectories

Fourier Series Model

- Successful extraction of Roll, Pitch, and Yaw rates
- Increasing phase between roll and pitch rates corresponds to increasing radius of precession

Table 2. Physical properties of the mechanical samaras

Physical Property	Units	A41	B41	C41	D41
I ₁₁ I ₂₂ I ₃₃ Span of wing Mass Surface area	kg m ² kg m ² kg m ² m kg m ²	9.64×10^{-6} 4.99×10^{-7} 1.01×10^{-5} 0.168 0.00526 1.24×10^{-2}	7.62×10^{-6} 5.80×10^{-7} 8.18×10^{-6} 0.150 0.00526 1.24×10^{-2}	1.00×10^{-5} 5.16×10^{-7} 1.05×10^{-5} 0.168 0.00526 1.24×10^{-2}	7.65×10^{-6} 6.59×10^{-7} 8.29×10^{-6} 0.135 0.00526 1.24×10^{-2}

0

INTRINSIC EQUILIBRIUM OF AUTOROTATION

- Freefall Biological and Artificial Samara Tests
- Generalized Parameter: $\frac{\rho v^2}{2\Delta}$
 - Dynamic Pressure: $\frac{1}{2}\rho v^2$
 - Disk Loading: ∆
- Stages
 - Stage 1: Free Fall
 - Stage 2: Transition—Subjected to Crosswind
 - Stage 3: Auto-rotation

INTRINSIC EQUILIBRIUM OF AUTOROTATION

- Transition Stage: Low disk-loading, high dynamic pressure
- Steady-State:
 - Disk-loading and Dynamic pressure balanced: $\frac{\rho v^2}{2\Delta} \sim \frac{1}{C_I}$
 - Parameter: $\frac{1}{c_L} \sim 1.618 \Rightarrow C_L \sim .618$
- Coning Angle (θ) dependent on the torque generated by the lift and drag on the blade
- Increasing angular velocity $(\dot{\omega} > 0)$ causes the seed to flip and begin auto-rotation

+

STABILITY ANLYSIS

CONTROLS BASED MODEL

Development of a State Space Model to describe the dynamics of the samara seed through all phases of flight

Fig. 1 Euler angle definition for a samara

EQUATIONS OF MOTION (EOM)

Term	Definition
ė	Coning Rate
ф	Yaw Rate
ψ	Roll Angle
v_0	Vertical Descent Rate
m	Mass

$$\ddot{\theta}\cos\psi + \dot{\phi}^2\sin\theta\cos\psi + 2\dot{\phi}\dot{\theta}\sin\psi - \ddot{\phi}\cos\theta\sin\phi = -M_{y_3}/I_{y_3y_3}$$

$$\ddot{\theta}\sin\psi + \dot{\phi}^2\sin\theta\cos\psi - 2\dot{\phi}\dot{\theta}\sin\psi + \ddot{\phi}\cos\theta\sin\phi = -M_{z_3}/I_{y_3y_3}$$

$$\dot{v_0} = -g + (F_{y_3} \cos \theta \sin \phi)/m + (F_{z_3} \cos \theta \sin \phi)/m$$

STEADY STATE AUTOROTATION

Term	Definition
M_{y_3}	Moment about y_3 axis
M_{Z_3}	Moment about z_3 axis
$I_{y_3y_1}$	Moment of inertia about the $y_3 y_1$ axes
F_{y_3}	Force along the y_3 axis
F_{Z_3}	Force along the z_3 axis

- Steady State: $\ddot{\theta} = \ddot{\phi} = \dot{p} = \dot{v}_0 = 0$
- Negligible Roll Rate

$$\dot{\phi}^2 \sin \theta \cos \theta \cos \psi = -M_{y_3}/I_{y_3y_1}$$
$$\dot{\phi}^2 \sin \theta \cos \theta \sin \psi = -M_{z_3}/I_{y_3y_1}$$
$$mg = F_{y_3} \sin \psi \cos \theta + F_{z_3} \cos \psi \cos \theta$$

LIFT AND DRAG

$$C_L(\alpha) = 2\pi \sin(\alpha)$$

$$C_D(\alpha) = C_L(\alpha) \sin(\alpha) + C_{D_0}$$

$$Tip Speed Ratio \stackrel{\text{def}}{=} \lambda = \frac{v_0}{r\dot{\phi}}$$

$$\frac{v_{0,e}}{0.9R\dot{\phi}_e} \le \frac{v_{0,e}}{r\dot{\phi}_e} \le \frac{v_{0,e}}{0.2R\dot{\phi}_e} \Rightarrow \frac{\lambda_e}{0.9} \le \frac{v_{0,e}}{r\dot{\phi}_e} \le \frac{\lambda_e}{0.2}$$

$$C_{D_0} \leq 4\pi \left(\sqrt{1+\left(\frac{\lambda_e}{0.9}\right)^2} + \frac{\left(\frac{\lambda_e}{0.9}\right)^2}{2\left(1+\left(\frac{\lambda_e}{0.9}\right)^2\right)} - 1\right)$$

+

Blade Element Momentum Theory (BEM)

MONO-COPTER MODEL

MONOCOPTER MODEL USING UNSTEADY BEM THEORY

$$dT_{BET} = F_p dT_{MT} + \dot{v_i} dm_a$$

$$\dot{v}_i = \frac{1}{dm_A} (dT_{BET} - F_P dT_{MT})$$

Term	Definition	
dT_{BET}	Thrust Force via BET	
F_p	Prandtl's Tip Loss Function	
dT_{MT}	Thrust Force via <i>steady</i> momentum theory	
v_i	Induced velocity at element	
dm_a	Apparent Mass of Air moved by element	

LIFT AND DRAG FORCES

$$dL = \frac{1}{2} \rho U^2 c C_L(\alpha) dx^b$$

$$dD = \frac{1}{2}\rho U^2 cC_D(\alpha) dx^b$$

Term	Definition
dL,dD	Lift and Drag Force
ρ	Air Density
U^2	Resultant local airflow velocity
С	Local wing Chord
$C_L(\alpha), C_D(\alpha)$	Lift and Drag Coefficients
α	Pitch Angle
dx^b	Blade Element Width

MOMENTUM THEORY THRUST

$$\dot{v}_i = \frac{1}{dm_A} (dT_{BET} - F_P \, \frac{dT_{MT}}{dT_{MT}})$$

$$dT_{MT} = 2\rho dA v_i \sqrt{V_{\infty}^2 + 2V_{\infty}v_i \sin \alpha_d + v_i^2}$$

	Term	Definition
	dA	Annulus Area
	V_{∞}	Free Stream Velocity
-	v_i	Induced Velocity Perpendicular to annulus and opposite to Thrust
	$\alpha_{ m d}$	Rotor Disk angle of attack, positive for flow incoming from above the rotor

PRANDTL TIP LOSS FUNCTION

$$\dot{v_i} = \frac{1}{dm_A} (dT_{BET} - F_P dT_{MT})$$

$$F_p = \frac{2}{\pi} \arccos(e^{-f})$$

$$f = \frac{N_b}{2} \left(\frac{R - r}{R \sin \phi} \right)$$

Term	Definition
F_p	Lift loss at wing-tip
f	N/A
N_b	Number of propeller blades
R	Total Radius of rotor
r	Blade element radial position
ф	Local inflow angle

APPARENT MASS

$$\dot{v_i} = \frac{1}{dm_A} (dT_{BET} - F_P dT_{MT})$$

$$dm_A = \frac{8}{3}\rho(r_2^3 - r_1^3)$$

Term	Definition	
dm_A	Apparent Mass of Air Moved	
ρ	Air Density	
r_1, r_2	Annulus Inner and Outer Bound	

MODEL SUCCESSES

 Model overall is successful at simulating the behavior of mono-copter

•
$$\dot{v}_i = \frac{1}{dm_A}(dT_{BET} - F_P dT_{MT})$$

- Passive Stability: Disturbance causing pitch in the same direction increases airflow on the advancing side generating more thrust
- Critical Failure Mode: Wing-pitch oscillations

+

Thesis - Kai Pointing

TRANSITION BEHAVIOR OF SAMARAS USING IMAGE PROCESSING

TRACKING SAMARA SEED TRAJECTORIES VIA HIGH-SPEED IMAGING

3D scans of samara seeds illustrating the geometric characteristics

High-speed imaging rig capable of mapping out the trajectory completely through all stages of flight

Generated raw-data sets for 100 seeds

Developed python code-base to extract positional data

Transition-time extracted for all seeds

TRACKING SAMARA SEED TRAJECTORIES VIA HIGH-SPEED IMAGING

Statistical analysis comparing various geometric properties to respective transition times

Fine-tune data smoothing filters

Improve transition-time extraction method

Extract Dynamic Behavior

+

Experimental Setup & Procedure

PROPOSED METHODOLOGY

SETUP AND PROCEDURE

- Complete 3D scan of seed to extract geometric properties
- Semi automatic tether triggers the seed drop and the camera simultaneously
 - Mirrors provide front and bottom views
 - Single drop angle
- High-speed camera & built-in software track seed during descent
- Python algorithm: Raw-Data Processing using Image-Masking
 - Trajectory Extraction
 - Kinematic Response Extraction
 - Dynamic Response Extraction

O

SCOPE

MOTIVATIONAL QUESTIONS

- Do the single-bladed seeds undergoing auto-rotation truly support the widely accepted claim of seed dispersal?
- Is there any peculiar morphological or flight characteristics that make a minority number of seeds fly far distances?
- Determine the relationship between geometric and flight characteristics
- Investigate the kinematic and dynamic responses during steadystate
- Applications:
 - Biomimicry
 - Large Scale Terraforming via seed dispersal

STAGES OF FLIGHT

- Free Fall: Kinematics modeled by Free Fall
- Transition:
 - Time period between start of fall and the instant it begins steady-state rotation like a helicopter
 - Not the subject of most aerodynamic studies
- Steady-State:
 - Seed exhibits auto-rotation and lower descent velocity
 - Primary focus of most studies
- Initial attitude and form factor have a significant impact
- Small Aerodynamic Torque in the initial drop perturbed the seed in order to generate rotation

[Reference 14]

SUCCESS CRITERIA

- Complete Statistical Analysis of existing data-sets on transition time
- Develop robust method for extracting the kinematic and dynamic behaviors during steady-state descent
 - Analyze 3 seeds based on performance: Fast, Average, and Slow Transitioning
 - Extract Specific Thrust (S_{Thrust}) and Specific Torque (S_{Torque})
 - Complete statistical analysis of S_{Thrust} and S_{Torque}
 - Specifically look to extract parameters like C_L and C_D
 - Verify these process results against existing models for the auto-rotation stage
 - Extract the radius of precession & gyration
 - Evaluate EOM considering lateral motion of seed
- Numerically map out the transition regimes and apply appropriate models to analyze kinematic and dynamic behavior
 - Specifically look to extract parameters like C_L and C_D
 - Re-test smaller sample size: Create new Data-Set

						W1	W2	W3	W4	W5	W6
WBS	TASK TITLE	TASK DESCRIPTION	SCHEDULED START	SCHEDULED FINISH	DURATION IN DAYS	12/30	1/6	1/13	1/20	1/27	2/3
1.0	Statistical Analysis		01/02/25	01/20/25	13						
1.1	Independent T Test	Evaluate Relationship between Transition Time and Geometric Parameters	01/03/25	01/09/25	5						
1.2	ANOVA Test	Compare Relationships between Transition Time and Geometric Parameters	01/10/25	01/16/25	5						
1.3	Geometric Trends	Extract Trends between various Geometric Parameters	01/17/25	01/21/25	3						
1.4	Identify Geometric Param	Identify Characteristic Predictor for Transition Time	01/17/25	01/21/25	3						
2.0	Data Processing: Kinematic	Steady-State + Transition	01/22/25	02/12/25	16						
2.1	Smoothing	Develop process for data smoothing	01/22/25	01/26/25	3						
2.2	Transition Time Extraction	Develop robust process for extracting transition time	01/26/25	02/05/25	8						
2.3	Rotation Rate Extraction	Develop Fourier-Transform process for extracting the rotation rate	02/01/25	02/12/25	8						
2.4	Coning Rate Extraction	Develop Fourier-Transform process for extracting the coning rate	02/01/25	02/12/25	8						
2.5	Descent Velocity Extraction	Apply smoothing to extract descent velocity (V _d)	01/22/25	02/12/25	16						

						W7	W8	W9	W10	W11	W12	W13	W14	W15	W16	W17
WBS	TASK TITLE	TASK DESCRIPTION	SCHEDULED START	SCHEDULED FINISH	DURATION IN DAYS	2/10	2/17	2/24	3/3	3/10	3/17	3/24	3/31	4/7	4/14	4/21
3.0	Data Processing: Dynamic	Steady-State Analysis	02/14/25	04/30/25	54											
3.1	Thrust & Torque Extraction	Extract Specific Thrust and Torque (SThrust and STorque)	02/14/25	02/21/25	6											
3.2	Disk Loading Computation	Develop process for computing disk-loading	02/22/25	02/25/25	2											
3.3	Induced Velocity Extraction	Develop algorithm for computing induced velocity (Vi) at each time-step	02/26/25	03/17/25	14											
3.4	(VI) Verification	Compare V₁ to V▷	03/15/25	03/20/25	4											
3.5	Identify Wake Flow	Determine appropriate wake-flow model and verify against existing model	03/15/25	03/20/25	4											
3.6		Extract the Coefficients of Lift and Drag (CL and CD) using thin air-foil assumption	03/21/25	04/10/25	15											
3.7	Comparison	Compare Thin-Airfoil model results to intrinsic equilbrium results	03/21/25	04/10/25	15											
3.8	Extract Gyration Radius	Compute the radius of gyration/radius of precession	04/10/25	04/15/25	4											
3.9	Develop Equations of Motion	Develop Equations of Motion incorporating radius of precession in SIMULINK	04/15/25	04/30/25	12											
	·															

STATISTICAL ANALYSIS

- Independent samples t-test
 - Define two distinct groups based on morphology
 - Parameters: Mass, Area, mg/A
- Analysis of Variance (ANOVA) test
 - Define multiple distinct groups based on morphology
 - Parameters: Mass, Span, Chord
- Determine statistical significance of relationships between parameters and transition time

STEADY-STATE

- Apply smoothing methods to eliminate noise in data
- Develop robust method for extracting rotation rate
 - Current is based on peak-to-peak data
 - Use Fourier Transform to extract Rotation Rate
- Evaluate S_{Thrust} and S_{Torque}

STEADY-STATE

- Compute C_L and C_D
 - Compare Controls Model to Intrinsic Auto-Rotation Model

•
$$C_L(\alpha) = 2\pi \sin(\alpha)$$
, $C_{D_0} \le 4\pi \left(\sqrt{1 + \left(\frac{\lambda_e}{0.9}\right)^2} + \frac{\left(\frac{\lambda_e}{0.9}\right)^2}{2\left(1 + \left(\frac{\lambda_e}{0.9}\right)^2\right)} - 1 \right)$

- $C_D \sim 5.68$, $C_L \sim .618$
- Compute induced velocity via
 - $\dot{v_i} = \frac{1}{dm_A} (dT_{BET} F_P dT_{MT})$
 - Verify result using Windmill-Brake state model: $v_i < v_d$
- Develop EOM to account for Radius of Gyration in Simulink

POTENTIAL FUTURE WORK

- Experimental Testing
 - Repeated n number of tests for s samples of seeds
 - Statistical analysis of average and variance across both tests and samples
- Vertical Wind Tunnel Testing
 - Analyze sample aerodynamics using codebase
 - Develop artificial samara with similar mass and material properties
 - Validate results using vertical wind-tunnel testing
 - Hover seeds at appropriate speed
 - Compare performance of natural samara to artificial samara

THANK YOU

Shashwat Sparsh

ssparsh@calpoly.edu

+

REFERENCES

REFERENCES (1/4)

- 1. Bai, S., He, Q., & Chirarattananon, P. (2022a). A bioinspired revolving-wing drone with passive attitude stability and efficient hovering flight. *Science Robotics*, 7(66), eabg5913. https://doi.org/10.1126/scirobotics.abg5913
- 2. Bai, S., He, Q., & Chirarattananon, P. (2022b). A bioinspired revolving-wing drone with passive attitude stability and efficient hovering flight. *Science Robotics*, 7(66), eabg5913. https://doi.org/10.1126/scirobotics.abg5913
- 3. Chen, T., & Lan, S. (2022). Numerical analysis of dynamic stability of falling maple samaras. *Acta Mechanica Sinica*, *38*(12), 322111. https://doi.org/10.1007/s10409-022-22111-x
- 4. Dorfling, J., & Rokhsaz, K. (2015). Constrained and Unconstrained Propeller Blade Optimization. *Journal of Aircraft*, 52(4), 1179–1188. https://doi.org/10.2514/1.C032859
- 5. G, Y., M.V., S. R., & Gopalan, J. (2023, January 23). Investigation of wake flow around the single-winged autorotating seed using PIV. *AIAA SCITECH 2023 Forum*. AIAA SCITECH 2023 Forum, National Harbor, MD & Online. https://doi.org/10.2514/6.2023-1025
- 6. Heyson, H. H. (n.d.). *X*+ *MOMENTUMANALYSIS OF HELICOPTERS ANDAUTOGYROSININCLINED DESCENT, WITH COMMENTS ON OPERATIONALRESTRICTION3*.

REFERENCES (2/4)

- 7. Inoue, O., Hattori, Y., Akiyama, K., Inoue, O., Hattori, Y., & Akiyama, K. (1997, June 29). Calculations of vortex ring states and autorotation in helicopter rotor flow fields. *28th Fluid Dynamics Conference*. 28th Fluid Dynamics Conference, Snowmass Village, CO, U.S.A. https://doi.org/10.2514/6.1997-1847
- 8. Jung, B., & Rezgui, D. (2023, January 23). Flight Performance of an Autorotating Samara with varying windspeed. *AIAA SCITECH 2023 Forum*. AIAA SCITECH 2023 Forum, National Harbor, MD & Online. https://doi.org/10.2514/6.2023-2111
- 9. Jung, B. K., & Rezgui, D. (2024). Experimental study into the effects of pitch and coning angles on the flight performance of the natural samara. *Royal Society Open Science*, *11*(9), 240758. https://doi.org/10.1098/rsos.240758
- 10. Kang, S., Wang, J., & Shan, J. (2015). Dynamics analysis and simulation for the invisible monowing rotorcraft. *The 27th Chinese Control and Decision Conference (2015 CCDC)*, 4029–4034. https://doi.org/10.1109/CCDC.2015.7162628
- 11. Lee, I., & Choi, H. (2017). Flight of a falling maple seed. *Physical Review Fluids*, 2(9), 090511. https://doi.org/10.1103/PhysRevFluids.2.090511
- 12. Lee, S. J., Lee, E. J., & Sohn, M. H. (2014). Mechanism of autorotation flight of maple samaras (Acer palmatum). *Experiments in Fluids*, 55(4), 1718. https://doi.org/10.1007/s00348-014-1718-4

REFERENCES (3/4)

- 13. McConnell, J., & Das, T. (2023). Control Oriented Modeling, Experimentation, and Stability Analysis of an Autorotating Samara. Journal of Dynamic Systems, Measurement, and Control, 145(6), 061004. https://doi.org/10.1115/1.4062438
- 14. Ng, M., Tang, E., Soh, G. S., & Foong, S. (2020). SHIFT: Selective Heading Image for Translation An onboard monocular optical flow estimator for fast constantly rotating UAVs. 2020 IEEE International Conference on Robotics and Automation (ICRA), 8525–8531. https://doi.org/10.1109/ICRA40945.2020.9197073
- 15. Niu, P., Atkins, M. D., Liu, Y., Li, M., Lu, T. J., & Kim, T. (n.d.). Intrinsic Equilibrium of Stably Autorotating Samaras.
- 16. Niu, P. X., Atkins, M. D., Liu, Y. Y., Lu, T. J., & Kim, T. (2022). Kinematic responses of an autorotating samara to concentrated crosswind. *Physics of Fluids*, 34(11), 111912. https://doi.org/10.1063/5.0125421
 17. Obradovic, B., Ho, G., Barto, R., Fregene, K., & Sharp, D. (2012, August 13). A Multi-Scale Simulation Methodology for the Samarai Monocopter ?UAV. *AIAA Modeling and Simulation Technologies Conference*. AIAA Modeling and Simulation Technologies Conference, Minneapolis, Minnesota.
- https://doi.org/10.2514/6.2012-5012

 18. Pantel, H., Falissard, F., & Dufour, G. (2024). Assessment of Reynolds-Averaged Navier–Stokes/Blade Element Theory Body Force Method for Propeller Modeling. AIAA Journal, 62(2), 758–775. https://doi.org/10.2514/1.J063302
- 19. Pratumnopharat, P., & Leung, P. S. (2011). Validation of various windmill brake state models used by blade element momentum calculation. *Renewable Energy*, 36(11), 3222–3227. https://doi.org/10.1016/j.renene.2011.03.027

REFERENCES (4/4)

- 20. Ulrich, E., Grauer, J., Pines, D., Hubbard, J., & Humbert, S. (2010, August 2). Identification of a Robotic Samara Aerodynamic/Multi-Body Dynamic Model. *AIAA Atmospheric Flight Mechanics Conference*. AIAA Atmospheric Flight Mechanics Conference, Toronto, Ontario, Canada. https://doi.org/10.2514/6.2010-8233
- 21. Ulrich, E. R., Faruque, I., Grauer, J., Pines, D. J., Humbert, J. S., & Hubbard, J. E. (2010). Control Model for Robotic Samara: Dynamics About a Coordinated Helical Turn. *Journal of Guidance, Control, and Dynamics*, 33(6), 1921–1927. https://doi.org/10.2514/1.50878
- 22. Ulrich, E. R., & Pines, D. J. (2012). Effects of Planform Geometry on Mechanical Samara Autorotation Efficiency and Rotational Dynamics. *Journal of the American Helicopter Society*, *57*(1), 1–10. https://doi.org/10.4050/JAHS.57.012003
- 23. Ulrich, E. R., Pines, D. J., & Humbert, J. S. (2010). From falling to flying: The path to powered flight of a robotic samara nano air vehicle. *Bioinspiration & Biomimetics*, 5(4), 045009. https://doi.org/10.1088/1748-3182/5/4/045009
- 24. Varshney, K., Chang, S., & Wang, Z. J. (2012). The kinematics of falling maple seeds and the initial transition to a helical motion. *Nonlinearity*, 25(1), C1–C8. https://doi.org/10.1088/0951-7715/25/1/C1
- 25. Venkatakrishnan, L., Majumdar, S., Subramanian, G., Bhat, G. S., Dasgupta, R., & Arakeri, J. (Eds.). (2021). *Proceedings of 16th Asian Congress of Fluid Mechanics*. Springer Singapore. https://doi.org/10.1007/978-981-15-5183-3

APPENDIX

STABILITY MODEL DETAILS

$$dF_{y_3} = \frac{1}{2} \rho w(r) ||\mathbf{U}_{\infty}||^2 (\sin \alpha C_L(\alpha) - \cos \alpha C_D(\alpha)) dr$$

$$dF_{z_3} = \frac{1}{2} \rho w(r) ||\mathbf{U}_{\infty}||^2 (\cos \alpha C_L(\alpha) + \sin \alpha C_D(\alpha)) dr$$

$$F_{y_3} = \int_{r_0}^{r_f} dF_{y_3}, \qquad F_{z_3} = \int_{r_0}^{r_f} dF_{z_3}$$

$$M_{z_3} = \int_{r_0}^{r_f} r \, dF_{y_3}, \qquad M_{y_3} = -\int_{r_0}^{r_f} r \, dF_{z_3}$$

$$I_{y_3y_3} = \frac{1}{3} fmR^2$$

$$||U_{\infty}||^2 = r^2 \dot{\phi}^2 \cos^2 \theta + (r\dot{\theta} + v_0 \cos \theta)^2$$

$$\sin \alpha = \left[-v_0 \cos \theta \cos \psi + r(\dot{\phi} \cos \theta \sin \psi - \dot{\theta} \cos \psi) \right] / ||U_{\infty}||$$

$$\cos \alpha = [v_0 \cos \theta \sin \psi + r(\dot{\phi} \cos \theta \cos \psi + \dot{\theta} \sin \psi)]/||U_{\infty}||$$

$$M_{y_3} = -I_{y_3y_3} \dot{\phi}^2 \sin \theta \cos \theta \cos \psi$$

$$= -\frac{1}{2}\rho \dot{\phi} \cos^2 \theta \int_{r_0}^{r_f} r^3 w(r) \sqrt{1 + \left(\frac{\lambda}{\chi}\right)^2}$$

$$\left[\left(\frac{\lambda}{\chi} C_L(\alpha) + C_D(\alpha)\right) \sin \psi - \left(C_L(\alpha) - \frac{\lambda}{\chi} C_D(\alpha)\right) \cos \psi \right] dr$$

$$M_{z_3} = I_{y_3y_3} \dot{\phi}^2 \sin \theta \cos \theta \sin \psi$$

$$= \frac{1}{2} \rho \dot{\phi} \cos^2 \theta \int_{r_0}^{r_f} r^3 w(r) \sqrt{1 + \left(\frac{\lambda}{\chi}\right)^2}$$

$$\left[\left(C_L(\alpha) + \frac{\lambda}{\chi} C_D(\alpha) \right) \sin \psi + \left(\frac{\lambda}{\chi} C_L(\alpha) - C_D(\alpha) \right) \cos \psi \right] dr$$

 $mg = \frac{1}{2}\rho \dot{\phi} \cos^2 \theta \int_{r_0}^{r_f} r^2 w(r) \sqrt{1 + \left(\frac{\lambda}{\chi}\right)^2}$

$$\left[\left(-\frac{\lambda}{\chi} C_L(\alpha) + C_D(\alpha) \right) \sin \psi \right]$$

$$+\left(C_L(\alpha)+\frac{\lambda}{\chi}C_D(\alpha)\right)\cos\psi]dr$$

MODEL LIMITATIONS AND SUCCESSES

- Negligible Roll Angle
- Simple thin Airfoil Model
- Model does not account for the LEV but still simulates the behavior for Low Reynolds number flows
- Solving the equations of motion indicates that $C_{D_0}\neq 0$ even when $(\psi=0)$ indicating it is crucial to the auto-rotation equilibrium
- Numerical solutions to the full state-space model encounter convergence issues

+

TASK LIST SUMMARIZED

TASK LIST

- Improve data-processing algorithm to reduce noise
- Complete statistical analysis of transition-time to geometric parameter to identify trends
- Develop algorithm to extract kinematic and dynamic parameters through transition and steady-state
 - Improve transition-time extraction algorithm
 - Specific Thrust and Torque
 - Utilize Fourier Transform to identify coning angle and rotation rate

•
$$\dot{v}_i = \frac{1}{dm_A} (dT_{BET} - F_P dT_{MT})$$

• Extract C_L and C_D

TASK LIST

- Extract C_L and C_D
 - Thin Airfoil Model
 - $C_D(\alpha) = C_L(\alpha) \sin(\alpha) + C_{D_0}$

•
$$C_{D_0} \le 4\pi \left(\sqrt{1 + \left(\frac{\lambda_e}{0.9}\right)^2} + \frac{\left(\frac{\lambda_e}{0.9}\right)^2}{2\left(1 + \left(\frac{\lambda_e}{0.9}\right)^2\right)} - 1 \right)$$

- Intrinsic Auto-Rotation Model
 - $\frac{\rho v^2}{2\Delta} \sim \frac{1}{C_L} \sim 1.618 \Rightarrow C_L \sim .618$
- Compare Model Results

TRANSITION

• Compute C_L and C_D via Controls Model

•
$$C_L(\alpha) = 2\pi \sin(\alpha)$$
, $C_{D_0} \le 4\pi \left(\sqrt{1 + \left(\frac{\lambda_e}{0.9}\right)^2} + \frac{\left(\frac{\lambda_e}{0.9}\right)^2}{2\left(1 + \left(\frac{\lambda_e}{0.9}\right)^2\right)} - 1 \right)$

Compute Induced Velocity using BEM model

•
$$\dot{v}_i = \frac{1}{dm_A} (dT_{BET} - F_P dT_{MT})$$

- Determine Wake-Flow State
 - Windmill-Brake vs Vortex-Ring
 - $v_i < v_d$ or $v_i > v_d$
 - $\left|\frac{v_i}{v_d}\right| > 1$ or $\left|\frac{v_i}{v_d}\right| < 1$

+

Experimental Setup & Procedure

PROPOSED METHODOLOGY

SETUP AND PROCEDURE

- Complete 3D scan of seed to extract geometric properties
- Semi automatic tether triggers the seed drop and the camera simultaneously
 - Mirrors provide front and bottom views
 - Single drop angle
- High-speed camera & built-in software track seed during descent
 - Phantom TMX 5010
 - Orthographic projections of seeds
 - Framerate: 5000Hz
- Python algorithm processes data for kinematics and dynamics

GEOMETRIC AXIS

O

PYTHON SCRIPT

- Libraries
 - Scipy and Numpy
 - Tsmoothie
 - Pandas
 - OpenCV
 - Create ellipse mask over seed
 - Extract position vectors (x, y, z) from ellipse
- Data Processing
 - Compute Descent Speed by referencing z position over time
 - Apply Kalman Filter to smooth out velocity data and reduce noise
 - Compute Acceleration by differencing velocity data over timestep
 - Compute Thrust by summing forces

FEATURE EXTRACTION

- Blur Out Background
- Convert to Binary Image
- Create contour fit using binary image
- Fit ellipse over contour
- Track ellipse points

CONTOUR AND ELLIPSE FIT

ORIENTATION EXTRACTION

- Compute an Angle parameter from the front and bottom views
- Range of 0-180 degrees

COMPUTING ALPHA AND BETA

- $\theta_{bottom} = \alpha$
- $\beta = \tan^{-1}(\tan(\theta_{front})\sin(\alpha))$
- x_1 can be computed via a spherical coordinate transformation
 - $x = \cos(\beta)\cos(\alpha)$
 - $y = \cos(\beta)\sin(\alpha)$
 - $z = \sin(\beta)$

NORMAL VECTOR

- Eccentricity
 - Min: y = 0
 - Max: x = 0
- x_2 is normal to x_1
 - Body Axis
 - Useful for tracking properties (e.g. coning angle) during the transition phase

SYMBOLS AND EQUATIONS

Variable	Symbol	Definition	Equation
Position	Z	Position along the z axis	N/A
Velocity	v	Descent Speed	$v_{z} = \frac{\Delta z}{\Delta t} = \frac{z_{n+1} - z_{n}}{t_{n+1} - t_{n}}$
Acceleration	а	Descent Acceleration	$a_{z} = \frac{\Delta v_{z}}{\Delta t} = \frac{v_{n+1} - v_{n}}{t_{n+1} - t_{n}}$
Net Force	$F_{net \; \mathbf{z}}$	Total Force experienced by the speed	$\sum ma_{\rm z} = mg - {\rm F_z}$
Thrust	T	Thrust generated by the seed	$F_{z steady state} = T = m * (g - a)$

PRELIMINARY RESULTS

THRUST RESULTS

ID	Transition	Mass [g]	Aspect Ratio	RPM	Thrust [mN]	Specific Thrust [mN/g]
003	Fast	0.4	3.19	4750	2.96	7.38
007	Average	0.5	3.60	6680	3.89	7.79
047	Slow	0.6	3.71	3330	4.68	7.81

0

CONCLUSION

SUMMARY

- Transition:
 - Region 1: The samara builds speed in free fall
 - Region 2: Drag causes the samara to flip, spin and flatten
 - Region 3: After 1 rotation, the descent speed slows completing transition
- Seed performance is consistent across multiple drops
- Non-monotonic trend with an average specific thrust ratio of 7.7 mN/g

FAQ

Why use image recognition?

Why create Body Axis vectors x_1 and x_2 ?

Why not C_T ?

$$T = \left(\frac{v_{\infty}^2}{4} + \frac{v_{tip}^2}{6}\right) * \rho * C_{\mathrm{T}} * A$$

Why not C_{Ω} ?

$$Q = C_Q * \rho * \omega^2 * D^5$$

$$\Rightarrow C_{D_0} \leq 4\pi \left(\sqrt{1 + \left(\frac{v_{0,e}}{r\dot{\phi}_e}\right)^2} + \frac{\left(\frac{v_{0,e}}{\dot{r}\dot{\phi}_e}\right)^2}{2\left(1 + \left(\frac{v_{0,e}}{r\dot{\phi}_e}\right)^2\right)} - 1 \right)$$

Resolution	Framerate	Exposure Time	Aperture	F-Stop
800x1280	1500 FPS	330 μ s	4.0	1.2

CAMERA SPECS

- Phantom TMX 5010
- 1280px by 800px resolution
- Capable of 50,525 fps at full resolution
- Used 1500 FPS for testing
- Good balance of speed and exposure
- No motion blur
- Canon 50mm lens

DROPPER AND CAMERA

Figure 10, Reference 16

3D SCANS

Figure 6 Reference 16

Figure 7 Reference 16

GEOMETRIC PARAMETERS & CAMERA VIEW

Figure 11, Reference 16

Figure 12, Reference 16