Задача JUL Фрактальное множество Жюлиа

Алгоритмы и алгоритмические языки

Павел Олегович Смирнов

СПбПУ, ИПММ 2020

Координатные системы

- «Математическая», «мировая»
- Вещественные оси ±∞

Координатные системы

Преобразование координат

• Простейшая пропорция

$$\frac{X - X_1}{X_2 - X_1} = \frac{x - x_1}{x_2 - x_1}$$

• По *х* можно узнать *X* и наоборот (формула будет симметрична

п.1. Нарисуйте оси (1 балл)

```
point_t Transform(
   point_t p,
   rect_t const* from,
   rect_t const* to);

void DrawAxes(
   rect const* math,
   rect const* screen);
```

- Математическая область по х от –2 до 2, по у от –3 до 3.
- Экранная область левая половина
- Математический «ноль» переводим в экранный
- В полученной точке на экране рисуем вертикальную линию и горизонтальную

п.2. Закрасьте круг (+1 балл)

```
labbool_t IsInsideDisk(
   point_t p);
```

```
void DrawDisk(
   rect_t const* math,
   rect_t const* screen);
```

• Множество точек «Внутренность диска» на левой половине экрана

- Бежим по всем **экранным** точкам в прямоугольнике
 - Переводим в математические
 - Проверяем принадлежность
- Поиграйте с координатами

После п.2

п.3. Закрасьте множество Жюлиа (+1 балл)

```
labbool_t IsInsideJulia(
  point_t p);
```

```
• Множество точек 
«Внутренность мн. Жюлиа» 
на правой половине экрана
```

```
void DrawJulia(
  rect_t const* math,
  rect_t const* screen);
```

- Бежим по всем **экранным** точкам в прямоугольнике
 - Переводим в математические
 - Проверяем принадлежность

IsInsideJulia()

- $z = (x, y) \in C$
- Простейший итерационный процесс $z \to z^2 + c$, где c = (p,q)
- Три исхода:
 - а) имеет конечный предел,
 - b) ограничен, но не сходится,
 - с) стремится к бесконечности.

• Множество Жюлиа это множество точек для которых итерационный процесс **ограничен**, т.е. a) и b)

IsInsideJulia()

- c = (-0.12375, 0.56508)
- Процесс ограничен, т.е. точка остаётся бесконечно долго в ограниченной области
 - Пусть «ограниченная область» круг радиуса $R_{max} = 2$
 - Пусть «бесконечно долго» больше N_{max} = 100 итераций
- Берём «математическую точку» и крутим в цикле, который прерывается, если:
 - превышено количество итераций (TRUE)
 - точка вышла за пределы радиуса (FALSE)

После п.3

п.4. Добавьте анимацию (+1 бонус)

• Оберните в цикл и меняйте параметр $c=(r\sin\alpha,r-r\cos\alpha)$, где r=0.32

• Придётся передавать параметр

Приступайте к решению