Facial Expression Prediction using Information Theoretic Learning

Soumen Ghosh

Indian Institute of Information Technology Sri City Chittoor, Andhra Pradesh India

May 5, 2018

- Introduction
 - Motivation
 - Data Description
- 2 Methodology
 - Proposed Models
 - Models Description
- Experiments and Results
 - Dataset
 - Results
- 4 Conclusion

- Introduction
 - Motivation
 - Data Description
- 2 Methodology
 - Proposed Models
 - Models Description
- Experiments and Results
 - Dataset
 - Results
- 4 Conclusion

Motivation

- The aim of this work is to identify the expression reflected on the face of a single person.
- This is a classification problem that consists of six different expressions

- Introduction
 - Motivation
 - Data Description
- 2 Methodology
 - Proposed Models
 - Models Description
- Experiments and Results
 - Dataset
 - Results
- 4 Conclusion

Dataset

Figure: Example images of the six emotions in the FERA-2013 dataset

- Introduction
 - Motivation
 - Data Description
- 2 Methodology
 - Proposed Models
 - Models Description
- Experiments and Results
 - Dataset
 - Results
- 4 Conclusion

Roadmap

Figure: Roadmap of the Project

Feature Extraction using LBP

The value of the LBP code of a pixel (x_c, y_c) is given by:

$$LBP_{P,R} = \sum_{p=0}^{P-1} s(g_p - g_c) 2^p$$
 $s(x) = \begin{cases} 1, & \text{if } x \ge 0; \\ 0, & \text{otherwise.} \end{cases}$

4. Multiply by powers of two and sum

Figure: Local Binary Pattern

Dimensonality Reduction

Figure: Principal Component Analysis

Classification Algorithms

- Support Vector Machine (SVM)
- K-Nearest Neighbors (KNN)
- Probabilistic Neural Network (PNN)
- Least Mean Square (LMS)
- Kernel Least Mean Square (KLMS)
- Maximum Correntropy Criterion (MCC)
- Kernel Maximum Correntropy (KMC)

- Introduction
 - Motivation
 - Data Description
- 2 Methodology
 - Proposed Models
 - Models Description
- Experiments and Results
 - Dataset
 - Results
- 4 Conclusion

Models Description

Figure: Facial Expression Prediction System

- Introduction
 - Motivation
 - Data Description
- 2 Methodology
 - Proposed Models
 - Models Description
- Experiments and Results
 - Dataset
 - Results
- 4 Conclusion

Dataset Description

- Type of the Dataset: Image
- Name: FERA-2013
- Number of Image: 1314
- Image Dimension: 496×640
- Number of Class: 6
- Class Type: Anger, Disgust, Fear, Happy, Sadness, Surprise
- Training Set: 75%
- Testing Set: 25%

Distribution of the Dataset

Figure: Distribution of the six emotions in FERA-2013 dataset

- Introduction
 - Motivation
 - Data Description
- 2 Methodology
 - Proposed Models
 - Models Description
- Experiments and Results
 - Dataset
 - Results
- 4 Conclusion

Results

PCA Features	SVM	KNN	PNN	LMS	KLMS	MCC	KMC
50	79.03%	80.85%	87.84%	22.80%	97.87%	16.72%	98.78%
100	85.11%	87.84%	91.49%	21.88%	97.87%	16.11%	98.76%
150	85.11%	88.45%	88.15%	17.93%	97.87%	16.41%	98.78%
200	88.15%	87.23%	91.19%	19.76%	96.05%	19.15%	99.08%
250	86.93%	85.71%	91.79%	13.37%	98.18%	17.63%	99.09%
300	87.23%	85.71%	89.36%	15.20%	97.26%	17.02%	99.39%

Table: Classification Accuracy for Different Algorithms

Confusion Matrix

73	0	0	3	0	3	
2	44	0	1	3	1	
0	1	10	3	6	2	
10	1	0	60	0	4	
3	0	0	0	14	0	
10	1	0	3	3	68	

Figure: SVM

89	0	0	0	0	0
1	33	0	0	0	0
0	1	25	0	0	0
0	0	2	59	0	0
0	0	0	0	24	0
0	0	0	0	1	94

Figure: KLMS

Figure: PNN

66	2	0	0	0	0
1	51	1	0	0	0
0	0	25	0	0	0
0	0	0	75	0	0
0	0	0	0	26	0
0	0	0	0	0	82

Figure: KMC

ROC Courve

Figure: SVM

Figure: KLMS

Figure: PNN

Conclusion

- In this work, the kernel-based Least Mean Square (KLMS) and Maximum Correntropy Criterion (KMC) algorithms are outperformed than other algorithms.
- In future, this work can be extended to increase the classification accuracy using different feature descriptor, dimensionality reduction and classification algorithms for a big dataset.
- The source code of this project is available in github: https://github.com/soumenca/facialExpressionPrediction

References I

CORTES, C., AND VAPNIK, V.

Support-vector networks.

Machine learning 20, 3 (1995), 273-297.

OJALA, T., PIETIKAINEN, M., AND MAENPAA, T.

Multiresolution gray-scale and rotation invariant texture classification with local binary patterns.

IEEE Transactions on pattern analysis and machine intelligence 24, 7 (2002), 971–987.

Pearson, K.

Liii. on lines and planes of closest fit to systems of points in space.

The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2, 11 (1901), 559–572.

POKHAREL, P. P., LIU, W., AND PRINCIPE, J. C.

Kernel Ims.

In Acoustics, Speech and Signal Processing, 2007. ICASSP 2007. IEEE International Conference on (2007), vol. 3, IEEE, pp. III–1421.

References II

Specht, D. F.

Probabilistic neural networks.

Neural networks 3, 1 (1990), 109-118.

ZHAO, S., CHEN, B., AND PRINCIPE, J. C.

Kernel adaptive filtering with maximum correntropy criterion.

In Neural Networks (IJCNN), The 2011 International Joint Conference on (2011), IEEE, pp. 2012–2017.

Thank You