Introdução à Análise Numérica 3ª Lista

Igor Patrício Michels

06/10/2021

Primeiramente, note que, x^* é a raiz de f se, e somente se, $f(x^*) = 0$, ou seja, $x^* = \ln(15 - \ln(x^*))$, ou seja, x^* é ponto fixo da aplicação $g(x) = \ln(15 - \ln(x))$.

Pelo Teorema de Lagrange, sabemos que, para todo $x, y \in [1, 3]$, vale que

$$|g(x)-g(y)|=|g'(c)||x-y|, \text{ para algum } c\in(x,y).$$

Notemos que

$$g'(x) = -\frac{1}{x(15 - \ln(x))}$$

Como sabemos que $\ln(x)$ é uma função monótona, temos que $15 - \ln(x)$ também é e, consequentemente, g(x) será monótona também. Dessa forma, podemos afirmar que $g'(x) \in \left[-\frac{1}{15}, \frac{1}{\ln(27)-45}\right]$, ou seja, |g'(x)| < 1 para todo $x \in [1,3]$, o que mostra que a função é contrativa. Para mostrar que $g([1,3]) \subseteq [1,3]$, podemos usar o fato de g(x) ser monótona e avaliar apenas os extremos da função: $g(1) = \ln(15) \approx 2.708$ e $g(3) = \ln(15 - \ln(3)) \approx 2.632$, ou seja, podemos afirmar que $g([1,3]) \subseteq [1,3]$.

Com isso, podemos afirmar que, dado qualquer $x_0 \in [1,3]$, a sequência dada por $x_{n+1} = g(x_n)$ converge para x^* tal que $x^* = g(x^*)$, isso é, para o ponto fixo de g, o qual é a raiz de f.

Para encontrar x^* por meio dessa recorrência, usando $x_0 = 2$ e precisão de 5 algarismos significativos, são necessárias 4 iterações e obtemos $x^* = 2.6411119626298705$. Já utilizando o Método de Newton-Raphson, para $x_0 = 2$ e precisão de 8 algarismos significativos, temos $x^* = 2.641112347187374$ após 3 iterações.