Praktikum: Selbstlernende Systeme

Policy Gradient

11.12.2019

Universität Augsburg Institut für Informatik Lehrstuhl für Organic Computing

Gliederung

1. Policy Gradient vs. DQN

2. Policy Search

3. Quellen

Policy Gradient vs. DQN

value-based reinforcement learning

Um zu entscheiden welche Aktion in einem Zustand gewählt wird, orientiert man sich am **höchsten Q-Wert** (Maximum der zukünftigen Rewards in jedem Zustand)

Die policy existiert nur anhand dieser Aktion-Wert Abschätzungen

policy based reinforcement learning

- kein lernen der Value Function → erwartete Summe zukünftiger Rewards gegeben State und Aktion
- direktes lernen der policy → Mappt einen Zustand auf ein Aktion
- \cdot Optimieren der Policy Function π ohne Value Function
- Direktes Parametrisieren von π

deterministic policy

· mappt einen Zustand direkt auf eine Aktion

$$\pi(s) = a$$

- benutzt in deterministischen Environments
 - · gewählte Aktionen bestimmen das Ergebnis
 - · keine Unsicherheit
 - · Bsp.: Schach

stochastic policy

• gibt eine Zufallsverteilung über alle Aktionen zurück

$$\pi(s) = P(a_t|s_t)$$

- wenn man Aktion a wählt, dann führt man diese Aktion nur mit einer gewissen Wahrscheinlichkeit aus
- benutzt in unsicherem Environment
 - Pratially Observable Markov Decision Process (POMDP)
 - · Bsp.: Roboter

Deep Q Learning funktioniert gut! Warum policy-based Reinforcement Learning?

Vorteile: Konvergenz

- · bessere Konvergenzeigenschaften
- · Value-based:
 - · können während dem Training stark oszillieren
 - eine kleine Veränderung der Vorhersage (Aktion Werte) kann zu einer vergleichsweise dramatischen Veränderung bei der Auswahl der Aktion führen.
- · policy gradient:
 - folgen des Gradienten um die besten Parameter zu finden
 → smoothes Update der policy in jedem Schritt
 - garantierte Konvergenz in lokalem Maximum (worst case) oder gloablem Maximum (best case)

Konvergenz(2)

Vorteile: hoch-dimensionaler Aktionsraum

- effizienter in hoch-dimensionalen Aktionsräumen oder bei kontinuierlichen Aktionen.
- · Value-based:
 - für jeden Zeitschritt wird jeder möglichen Aktion ein Wert zugeordnet
 - · curse of dimensionality
 - unendlich viele Aktionen? → selbstfahrendes Auto
- · policy based:
 - · direktes anpassen der Parameter
 - Verstehen was das Maximum ist anstatt es jeden Schritt direkt zu berechnen

hoch-dimensionaler Aktionsraum(2)

Vorteile: stochastische Policies

- · Policy Gradient kann stochastische Policies erlernen.
- · kein Exploration/Exploitation Trade-off mehr
- · Output: Wahrscheinlichkeitsverteilung über die Aktionen
- $\cdot \to {\sf der}$ Situationsraum wird exploriert ohne immer die gleiche Aktion zu wählen
- kein problem of perceptual aliasing: Zustände sind gleich benötigen aber unterschiedliche Aktionen

stochastische Policies(2)

blaue Felder sind aliased states

deterministische policy:

Problem: Agent bleibt stecken

stochastische Policies(3)

stochastische policy: die Policy wird sich zufällig nach rechts oder nach links

bewegen → bleibt nicht stecken

$$\pi =$$
(wall UP and DOWN | Go LEFT) $= 0.5$

$$\pi =$$
(wall UP and DOWN | Go RIGHT) $= 0.5$

Nachteile

Ein großer Nachteil: Konvergiert oft zu einem lokalen Maximum anstatt zum globalen Maximum.

Konvergiert langsam Schritt für Schritt ightarrow kann länger dauern als bei DQN

Policy Search

Policy als Optimierungsproblem

• policy π hat Parameter θ und gibt eine Wahrscheinlichkeitsverteilung der Aktionen aus:

$$\pi_{\theta}(a|s) = P[a|s]$$

Wann ist policy gut? → policy als Optimierungsproblem:

$$J(\theta) = E_{\pi\theta} \left[\sum \gamma r \right]$$

- · 2 Schritte:
 - messen der Qualitat von π mit einer policy score function $J(\theta)$
 - · mit policy gradient ascent die besten Parameter θ finden

Schritt 1: Policy Score Function

3 unterschiedliche Methoden - abhängig von Environment und Zielen

- 1. episodisches Environment:
 - Startwert \rightarrow Berechnen des mittleren Rewards vom ersten Schritt G_1
 - · kumulierter diskontierter Reward der gesamten Episode

$$J_1(\theta) = E_{\pi}[G_1 = R_1 + \gamma R_2 + \gamma^2 R_3 + \dots] = E_{\pi}(V(s_1))$$

- Wenn ich immer in s₁ starte, was ist dann der gesamte Reward den ich von diesem Zustand bis zum Endzustand bekomme?
- Policy die G₁ maximiert = optimale Policy

Beispiel: Breakout

- · Spiel beginnt immer im gleichen Zustand
- · berechnen des Scores mittels $J_1(heta) o ext{Anzahl}$ der getroffenen Bricks

Policy Score Function (2)

2. kontinuierliches Environment:

- \cdot durchschnittlicher Wert \rightarrow kein fixer Startzustand
- jeder State Value wird mit der Wahrscheinlichkeit gewichtet mit der er auftritt

$$J_{avgV}(\theta) = E_{\pi}(V(s)) = \sum d(s)V(s)$$
where
$$d(s) = \frac{N(s)}{\sum_{s'} N(s')}$$

- · N(s) Auftreten von Zustand s
- $\cdot \sum_{s'} N(s')$ Auftreten aller Zustände

Policy Score Function (3)

3. Avg Reward pro Zeitschritt:

· größter Reward in jedem Zeitschritt

$$J_{avgR}(\theta) = E_{\pi}(r) = \sum_{s} d(s) \sum_{a} \pi_{\theta}(s, a) R_{s}^{a}$$

- $\sum_{s} d(s)$ Wahrscheinlichkeit in s zu sein
- · $\sum_a \pi_{\theta}(s,a)$ Wahrscheinlichkeit Aktion a zu wählen
- \cdot R_s^a sofortiger Reward

Schritt 2: Policy Gradient Ascent

- · maximieren von $J(\theta) o Gradient Ascent auf Policy Parametern$
- Gradient Ascent = Inverse von Gradient Descent (steilster Anstieg)
- kein Gradient Desent weil wir nichts minimieren wollen (Fehler Function vs. Score Function)
- Finde den Gradienten, der die aktuelle Policy in Richtung der größten Steigung updatet und iteriere:
 - 1. Policy: π_{θ}
 - 2. Objective function: $J(\theta)$
 - 3. Gradient: $\nabla_{\theta} J(\theta)$
 - 4. Update: $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$

Policy Gradient Ascent(2)

Ziel: finde besten Parameter θ^* der den Score maximiert:

$$\theta^* = \operatorname*{argmax}_{\theta} E_{\pi\theta} \left[\sum_{t} R(s_t, a_t) \right]$$

$$J(\theta)$$

Score Function:

$$J(\theta) = \underbrace{E_{\pi}}_{\substack{\text{expexted} \\ \text{given} \\ \text{policy}}} \underbrace{\begin{bmatrix} R(\tau) \\ s_0, a_0, r_1, \\ s_1, a_1, r_2, \dots \\ \text{expected future} \\ \text{reward} \end{bmatrix}}_{\substack{\text{expected future} \\ \text{reward}}}$$

 \Rightarrow gesamte Summe aller erwarteten Rewards geben policy π

Policy Gradient Ascent(3)

Differenzieren der Score Function:

$$J_{1}(\theta) = V_{\pi\theta}(s_{1}) = E_{\pi\theta}[v_{1}] = \sum_{s \in S} d(s) \sum_{a \in A} \pi_{\theta}(s, a) R_{s}^{a}$$
State distribution Action distribution

Problem:

- Policy Parameter beeinflussen wie Aktionen gewählt werden \to Reward & welchen Zustand betreten wir wie oft
- Performance abhängig von Aktionsauswahl & Verteilung von zugehörigen Zuständen → Herausforderung: Änderungen finden, die Verbesserung sicherstellen
- Einfluss der Parameter auf Zustandsverteilung? \rightarrow Environment Function unbekannt
- Wie bestimmt man den Gradienten im Bezug auf π , wenn er von der Unbekannten Beziehung zwischen einer Änderung auf die Zustandsverteilung abhängt?

Policy Gradient Ascent(4)

Lösung: Policy Gradient Theorem

ightarrow liefert analytischen Ausdruck für Gradienten ∇ von $J(\theta)$ im Bezug auf π der kein Differenzierung der Zustandsverteilung enthält

$$J(\theta) = E_{\pi} [R(\tau)]$$
$$\nabla_{\theta} J(\theta) = \nabla_{\theta} \sum_{\tau} \pi(\tau; \theta) R(\tau)$$
$$= \sum_{\tau} \nabla_{\theta} \pi(\tau; \theta) R(\tau)$$

Likelihood ratio trick:

$$\pi(\tau; \theta) \frac{\nabla_{\theta\pi}(\tau; \theta)}{\pi(\tau; \theta)} \quad \nabla \log x = \frac{\nabla x}{x}$$

$$= \sum_{\tau} \pi(\tau; \theta) \nabla_{\theta} (\log \pi(\tau; \theta)) R(\tau)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\nabla_{\theta} J(\theta) = E_{\pi} \left[\nabla_{\theta} (\log \frac{\pi(\tau|\theta)}{x}) \right] \underbrace{R(\tau)}_{\text{Policy function Score function}}_{\text{Score function}}$$

Policy Gradient Ascent(5)

- Policy Gradient: $E_{\pi}[\nabla_{\theta}(\log \pi(s, a, \theta))R(\tau)]$
- · Update Regel: $\Delta \theta = \alpha \times \nabla_{\theta} (\log \pi(s, a, \theta)) R(\tau)$
- $R(\tau)$ ist ein skalarer Wert:
 - gesamter diskontierter zukünftiger Reward
 - Wenn R(τ) groß ist → im Durchschnitt werden Aktionen gewählt die zu einem hohen Reward führen, Wahrscheinlichkeit der gesehen Aktionen ↑
 - Wenn $R(\tau)$ klein ist o Wahrscheinlichkeit der gesehen Aktionen \downarrow

REINFORCE: Monte Carlo Policy Gradient

Algorithm 1: REINFORCE: Monte-Carlo Policy Gradient Control (episodic) for π

Initialize θ

for each episode do

Generate an epsiode $S_0, A_0, R_1, \dots, S_{T-1}, A_{T-1}, R_T$ following π_{θ}

$$G \leftarrow \sum_{k=t+1}^{T} \gamma^{k-t-1} R_k$$

$$\theta \leftarrow \theta + \alpha \gamma^t G \nabla \log \pi (A_t | S_t, \theta)$$

REINFORCE in keras

- $G_t = r_t + \gamma * r_{t+1} + \gamma^2 * r_{t+2} + ...$
- keras minimiert seine Fehler Funktion mittels Gradient Descent
- Trick: negatives Vorzeichen → Gradient Ascent
- $J(\theta)$ als Fehlerfunktion:

$$loss_{t} = -\log \pi(A_{t}, S_{t}) * G_{t}$$

$$loss = \frac{\sum_{t} loss_{t}}{T}$$

Loss Funktionen in keras


```
1
    from keras.layers import Input, Dense
    from keras, models import Model
    from keras.optimizers import RMSProp
    import keras.backend as K
4
5
6
    inL = Input(self.state size)
    h1 = Dense(16, activation='relu')(inL)
    out = Dense(self.action size, activation='softmax')(h1)
8
9
    self.model = Model(input=inL. output=out)
10
    self. build train()
11
    def build train():
12
13
      # placholder Tensor for target values
      target = K.placeholder()
14
15
       prediction = self.model.output
16
      #compute error
17
      error = K.mean(K.sqrt(1 + K.square(prediction - target)) - 1, axis=-1)
18
      # create optimizer
      opimizer = RMSProp(lr=self.learningrate)
19
20
      update = optimizer.get updates(loss=error, params=self.model.trainable weights)
      # create fit function with in- and outputs
21
22
       self.fit = K.function(inputs=[self.model.input, target], outputs=[error], updates=
          update)
23
    #train model
24
    err = self.fit([states, targets])
25
```


- · normalisierte Exponentialfunktion
- "quetscht" einen Vektor der Dimension K in einen Vektor dem Dimension K und dem Wertebereich (0,1)
- · Komponenten summieren sich zu 1 auf
- Wahrscheinlichkeitsverteilung über K unterschiedliche Ereignisse

Quellen

 https://medium.freecodecamp.org/an-introduction-topolicy-gradients-with-cartpole-and-doom-495b5ef2207f