In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
```

In [2]:

```
from sklearn.linear_model import LogisticRegression
```

In [51]:

```
d=pd.read_csv(r"C:\Users\user\Downloads\health_care.csv")
d
```

Out[51]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	ВМІ	DiabetesPedigreeFun
0	6	148	72	35	0	33.6	_
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
763	10	101	76	48	180	32.9	
764	2	122	70	27	0	36.8	
765	5	121	72	23	112	26.2	
766	1	126	60	0	0	30.1	
767	1	93	70	31	0	30.4	

768 rows × 9 columns

Logistic Regression

In [52]:

```
feature_matrix=d.iloc[:,0:8]
target_vector=d.iloc[:,-1]
```

In [53]:

```
from sklearn.preprocessing import StandardScaler
```

```
In [54]:
fs=StandardScaler().fit_transform(feature_matrix)
In [56]:
logr=LogisticRegression()
logr.fit(fs,target_vector)
Out[56]:
LogisticRegression()
In [59]:
observation=[[1,2,3,4,5,6,7,8
             ]]
In [60]:
predication=logr.predict(observation)
print(predication)
[1]
In [61]:
logr.classes_
Out[61]:
array([0, 1], dtype=int64)
In [62]:
logr.predict_proba(observation)[0][0]
Out[62]:
```

Logistic Regression-2

0.00029236948687560993

In [63]:

```
import re
from sklearn.datasets import load_digits
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
```

In [64]:

```
digits=load_digits()
digits
Out[64]:
{'data': array([[ 0., 0., 5., ..., 0., 0., 0.],
        [0., 0., 0., ..., 10., 0., 0.],
              0., 0., ..., 16., 9.,
        [ 0.,
        [0., 0., 1., ..., 6., 0.,
        [0., 0., 2., ..., 12., 0., 0.],
                                 1.,
        [ 0., 0., 10., ..., 12.,
 'target': array([0, 1, 2, ..., 8, 9, 8]),
 'frame': None,
 'feature_names': ['pixel_0_0',
  'pixel_0_1',
  'pixel_0_2',
  'pixel_0_3',
  'pixel_0_4',
  'pixel_0_5',
  'pixel_0_6',
  'pixel_0_7',
  'nixel 1 0'.
```

In [65]:

```
plt.figure(figsize=(20,4))
for index,(image,label) in enumerate(zip(digits.data[0:5],digits.target[0:5])):
    plt.subplot(1,5,index+1)
    plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
    plt.title('Number:%i\n'%label,fontsize=15)
```


In [66]:

```
x_train,x_test,y_train,y_test=train_test_split(digits.data,digits.target,test_size=0.30)
```

In [67]:

(540,)

```
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

(1257, 64)
(540, 64)
(1257,)
```

```
In [68]:
```

logr=LogisticRegression(max iter=100000)

In [69]:

logr.fit(x_train,y_train)

Out[69]:

LogisticRegression(max_iter=100000)

In [70]:

```
print(logr.predict(x_test))
```

In [71]:

```
print(logr.score(x_test,y_test))
```

0.97222222222222

In []: