Concatenate codes, save qubits

Satoshi Yoshida (The University of Tokyo)

Joint work with Shiro Tamiya (NanoQT), Hayata Yamasaki (UTokyo)

Based on <u>arXiv:2402.09606</u>

TQC2024, 13th September

Fault-Tolerant Quantum Computation (FTQC)

Original circuit

Noisy circuit with physical error rate $p_0 > 0$

<u>Task</u>: Given ϵ and an original circuit, perform the noisy circuit to output $x \sim \tilde{p}(x) \approx_{\epsilon} p(x)$ (the fault-tolerant circuit)

→ Use quantum error-correcting codes that can suppress logical error rate arbitrarily

$$p_0 < p_{
m th} \Rightarrow p_L \lessapprox rac{\epsilon}{WD}$$
 for achieving the overall error $O(\epsilon)$ Below threshold Width $imes$ Depth = Circuit size

Space overhead :=
$$\frac{W_{\mathrm{FT}}}{W}$$
 Time overhead := $\frac{D_{\mathrm{FT}}}{D}$

Obstacle: Overheads of FTQC

Two conventional approaches for FTQC to achieve $p_0 < p_{
m th} \Rightarrow p_L \lessapprox rac{\epsilon}{WD}$

n #physical qubits k #logical qubits

d distance

1: Quantum low-density parity-check (LDPC) code

Increase distance d

$$n = d^2, \ p_L \lessapprox \left(\frac{p_0}{p_{\rm th}}\right)^d$$

2: Concatenated code

Increase concatenation level L

$$n = 7^L, \ p_L \lessapprox \left(\frac{p_0}{p_{\rm th}}\right)^{2^L}$$

Obstacle in realizing FTQC: Polylog overhead → diverging to infinity on large scales

Space
$$\frac{W_{\mathrm{FT}}}{W} \approx \mathrm{polylog}\left(\frac{WD}{\epsilon}\right)$$

Time
$$\frac{D_{\mathrm{FT}}}{D} \approx \mathrm{polylog}\left(\frac{WD}{\epsilon}\right)$$

Solution: Constant-overhead FTQC

Constant-overhead protocols

1: Quantum LDPC code

Constant space overhead X Large time overhead

$$[[n, k = \Theta(n), d = \Theta(n^{\alpha})]]$$

$$\longrightarrow \frac{W_{\mathrm{FT}}}{W} = O(1)$$

$$\frac{D_{\mathrm{FT}}}{D} = \mathrm{poly}\left(\frac{WD}{\epsilon}\right)$$

Kovalev and Pryadko, PRA 87, 020304 (2013), Gottesman, Quantum Info. Comput. 14, 1338–1372 (2014). Fawzi, Grospellier, and Leverrier, FOCS2018, Krishna and Poulin, PRX 11, 011023 (2021), Cohen et al. Sci. Adv. 8, eabn1717 (2022), Tremblay, Delfosse, and Beverland, PRL 129, 050504 (2022).

$$\frac{D_{\rm FT}}{D} = \text{polylog}\left(\frac{WD}{\epsilon}\right)$$

Tamiya, Yamasaki, Koashi, AQIS 2024 (2024); Tamiya, PhD thesis (2024).

2: Concatenated quantum Hamming code

Concatenation of

$$[[N_r = 2^r - 1, N_r = 2^r - 2r - 1, 3]]$$

$$\frac{N}{K} = \prod_{l=1}^{\infty} \frac{N_{r_l}}{K_{r_l}} \to O(1)$$

Constant space overhead

$$\frac{W_{\rm FT}}{W} = O(1)$$

Short time overhead

$$\frac{D_{\rm FT}}{D} = \exp(O(\text{polylog}(\log(WD/\epsilon))))$$

Yamasaki and Koashi, Nature Physics 20, 247 (2024).

Concatenated Hamming Codes H. Yamasaki and M. Koashi, Nature Physics 20, 247 (2024).

Steane's 7-qubit code

[[7, 1, 3]]

1000

100

10

#physical qubits per logical qubit

Generalization

Quantum Hamming codes

$$[[2^r-1,2^r-2r-1,3]]$$
 Many logical qubits $[[7,1,3]],[[15,7,3]],[[31,21,3]],[[63,51,3]],\ldots$

Concatenating quantum Hamming codes at growing rate yields a non-vanishing overall rate

Practical requirements for FTQC

Concatenated Q Hamming code

This work

- Low space overhead

V

- High threshold

X

V

Modularity

V

- Quantitative comparison

X

This work

- High threshold & low space overhead protocol
- Quantitative comparison with surface code
 - → Reduction of space overhead at the practical regime

Outline of this talk

- Backgrounds
- Main results
- Discussions

Underlying code to improve threshold

Concatenated Hamming code

- Small space overhead: $\frac{W_{\mathrm{FT}}}{W} = O(1)$
- \star Low threshold: $\sim 10^{-5}$

Surface code

- igotimes Large space overhead: $\frac{W_{\mathrm{FT}}}{W} pprox \mathrm{polylog}\Big(\frac{WD}{\epsilon}\Big)$
- \sim High threshold: $\sim 10^{-2}$

Error suppression

Underlying code:

$$0.1\% \rightarrow 10^{-5}$$

Concatenated Hamming code:

$$10^{-5} \rightarrow 10^{-24}$$

Put high threshold code on the bottom layer to improve the threshold

High threshold code: C4/C6 code E. Knill, Nature 434, 39-44 (2005).

Merit: Threshold for protocol based on C4/C6 code: 2.4% vs Threshold for surface code: 0.3%

[[6, 2, 2]] code

[[6, 2, 2]] code Distance 2 for qubit pairs

[[4, 2, 2]] code

Protocol

8 qubits in 1D periodic arrangement

6 level-1 registers in 1D periodic arrangement

Preparation of [[6, 2, 2]] code

Preparation of [[4, 2, 2]] code

Outline of this talk

- Backgrounds
- Main results
- Discussions

Code construction

Guiding principle

Underlying code: High threshold (but many qubits)

Higher-level code: Few qubits (but low threshold)

Optimization

- Underlying code → C4/C6 code
- Higher-level code → Concatenation of Q Hamming codes

	Quantum code	N	K	N/K	
level-1	$C_4 (= [[4, 2, 2]])$	4	2	2	7
level-2	$C_6 (= [[6, 2, 2]])$	12 $ $	2	6	
level-3	$C_6 (= [[6, 2, 2]])$	36	2	18	C4/C6 code
level-4	$C_6 (= [[6, 2, 2]])$	108	2	54	J
level-5	$\mathcal{Q}_4 (= [[15, 7, 3]])$	1.6×10^{3}	14	1.2×10^{2}	
level-6	$\mathcal{Q}_5 (= [[31, 21, 3]])$	$ 5.0 \times 10^4 $	2.9×10^{2}	1.7×10^{2}	
level-7	$Q_6(=[[63,51,3]])$	3.2×10^{6}	1.5×10^{4}	2.1×10^{2}	- Q Hamming codes
level-8	$Q_7 (= [[127, 113, 3]])$	$ 4.0 \times 10^8 $	1.7×10^{6}	2.4×10^{2}	J

Main result: Comparison of our protocol with surface code

Space overhead: physical error rate = 0.1%

Threshold:

	Threshold
C_4/C_6 code	2.4%
Surface code	0.31%
Steane code	0.030%
$C_4/{ m Steane} \; { m code}$	0.15%

- Circuit-level error model
- Logical CNOT error rate

Space overhead = #(Logical qubits)/#(Physical qubits) per code block

Higher threshold, lower space overhead than surface code

Remark: Requires all-to-all connectivity → Suitable for neutral atoms, ion traps, and optics

Optimization over underlying code

Space overhead to achieve P_{target}

	Sp. Sp.		ace overhead		
	Threshold	p=0.01%	p = 0.1%	p = 1%	
C_4/C_6 code	2.4%	18	54	1458	
Surface code	0.31%	121	841	-	
Steane code	0.030%	343	-	-	
$C_4/{ m Steane~code}$	0.15%	14	4802	-	

Change underlying code to optimize space overhead for each physical error rate

Details of the protocol

Fault-tolerant gate operation = gate gadget + error correction gadget

Knill's EC gadget: based on teleportation

Conventional: Parallel use of auxiliary qubit

- X Large space overhead
- Less errors
- → Underlying codes

Modified: Sequential use of auxiliary qubit

- Small space overhead
- X More errors
- → Q Hamming codes

Parallel use of auxiliary qubit at underlying code → High threshold

Sequential use at higher-level codes → Small space overhead

Similar strategy for initial state preparation

Details of the protocol

Hard-decision decoder

- D. Horsman et al. NJP 14, 123011 (2012).
- C. Vuillot et al. NJP 21, 033028 (2019).
- C. Gidney, Quantum 7. 786 (2022).

Numerical simulation

Logical CNOT for surface code

Quantitative comparison with the surface code at the same condition

Outline of this talk

- Backgrounds
- Main results
- Discussions

Comparison with QLDPC codes

Modularity

X Large code at once

Abstraction layers

Future works

- Optimization of space overhead including auxiliary qubits

- Different error model other than depolarizing error model

Abbreviation	SD6 Standard	SI1000 Superconducting	EM3 Entangling	
Name	Depolarizing	Inspired	Measurements	
Noisy Gateset	$\operatorname{CX}(p)$ $\operatorname{AnyClifford}_1(p)$ $\operatorname{Init}_Z(p)$ $M_Z(p)$ $\operatorname{Idle}(p)$	$CZ(p)$ $AnyClifford_1(p/10)$ $Init_Z(2p)$ $M_Z(5p)$ $Idle(p/10)$ $ResonatorIdle(2p)$	$egin{array}{l} \mathrm{M}_{PP}(p) \ \mathrm{M}_{PI}(p) \ \mathrm{Init}_{Z}(p/2) \ \mathrm{M}_{Z}(p/2) \ \mathrm{Idle}(p) \end{array}$	
Measurement Ancillae	Yes	Yes	No	
Honeycomb Cycle Length	6 time steps	9 time steps ($\approx 1000 \mathrm{ns}$)	3 time steps	

C. Gidney, M. Newman, M. McEwen, Quantum 6, 813 (2022).

Do we still have an advantage over surface code including auxiliary qubits/on other error models?

→ Ongoing

Conclusion

Code construction

Space overhead

Threshold

Our protocol: 2.4% > Surface: 0.3%

- Lower space overhead, higher threshold than the surface code
- Underlying code can be optimized for each physical error rates

Concatenate codes, save qubits!

Thank you!