First-Order Logic Part1

Dr. Igor Ivkovic

iivkovic@uwaterloo.ca

[with material from "Mathematical Logic for Computer Science", by Zhongwan, published by World Scientific]

Objectives

- Introduction to First-Order Logic
- Terms and WFFs for First-Order Logic
- First-Order Interpretations and Satisfiability

Alphabet

- The alphabet of the language of first-order logic consists of the following symbols.
 - Constant Symbols: c, d, c1, c2, ..., d1, d2, ...
 - **Function Symbols**: f, g, h, f1, f2, ..., g1, g2, ...
 - Variables: x, y, z, x1, x2, ..., y1, y2, ...
 - Predicate (Relational) Symbols: P, Q, P1, P2, ... ,Q1,Q2, ...
 - Logical Connectives: ¬, ∧, ∨, →
 - Quantifiers: ∀ ("for all" or "for each") ∃ ("there exists")
 - Punctuation: "(", ")", "," and ".".

Arity

- Each predicate symbol P and each function symbol f is associated with a natural number called its arity
 - ar(P) and ar(f)
- Predicate and function symbols with arity 1 (2, 3) are called unary (binary, ternary) respectively
- The constant, functional, and predicate symbols are called the non-logical symbols (or parameters)
- Predicate symbols with arity 0 are essentially propositional symbols, and function symbols with arity 0 are essentially constants

Terms

- Let CS be a set of constant symbols, FS a set of function symbols, and VS a set of variables
- Define the set of terms TS inductively as:

```
1. CS \subseteq TS,
```

2. $VS \subseteq TS$, and

3. if $f \in FS$ and $t_1, \ldots, t_n \in TS$, then $f(t_1, \ldots, t_n) \in TS$, where n = ar(f);

No other strings are terms

Well-Formed Formulæ (WFFs)

- Let PS be a set of predicate symbols, TS a set of terms, and VS a set of variables
- Define the set of formulæ of first-order logic (WFF) inductively as follows:

```
1. if P \in PS and t_1, \ldots, t_n \in TS, where n = ar(P), then P(t_1, \ldots, t_n) \in WFF;
```

- 2. if $\varphi \in WFF$, then $(\neg \varphi) \in WFF$;
- 3. if $\varphi, \psi \in \mathsf{WFF}$, then $(\varphi \star \psi) \in \mathsf{WFF}$ for each $\star \in \{\land, \lor, \rightarrow\}$;
- 4. if $x \in VS$ and $\varphi \in WFF$, then $(\forall x.\varphi) \in WFF$ and $(\exists x.\varphi) \in WFF$;
- No other strings are elements of WFF

Free and Bound Variables

Assume the following shorthands:

$$\varphi \vee \psi$$
 for $(\neg \varphi) \rightarrow \psi$, $\varphi \wedge \psi$ for $\neg(\varphi \rightarrow (\neg \psi))$, and $(\exists x.\varphi)$ for $\neg(\forall x.(\neg \varphi))$

- Let *φ* ∈ WFF
- Define the **set of free variables** of φ , denoted $\mathsf{FV}(\varphi)$

```
1. If \varphi = P(t_1, \dots, t_{ar(P)}), then FV(\varphi) = \{x \mid x \text{ appears in } t_i \text{ for some } 0 < i \leq ar(P)\};
```

- 2. if $\varphi = (\neg \psi)$, then $\mathsf{FV}(\varphi) = \mathsf{FV}(\psi)$;
- 3. if $\varphi = (\psi \to \eta)$, then $FV(\varphi) = FV(\psi) \cup FV(\eta)$; and
- 4. if $\varphi = (\forall x.\psi)$, then $\mathsf{FV}(\varphi) = \mathsf{FV}(\psi) \{x\}$.
- Variables in the set $FV(\varphi)$ are called *free* (in φ); other variables that occur in φ are called *bound* (in φ).
- For a set of formulæ Σ , can define $FV(\Sigma) = \bigcup_{\varphi \in \Sigma} FV(\varphi)$

Closed Formulæ (Sentences)

A first-order formula $\varphi \in \mathsf{WFF}$ is **closed** (or a **sentence**) iff $\mathsf{FV}(\varphi) = \emptyset$

First-Order Interpretations (Structures)

- A first-order interpretation (or structure) I is a pair $(D,(.)^I)$ where:
 - D is a non-empty set, called the domain (or universe) and
 - $(.)^{I}$ is an interpretation function that maps

```
constant symbols c \in \mathsf{CS} to individuals (c)^I \in D, function symbols f \in \mathsf{FS} to functions (f)^I : D^{\mathsf{ar}(f)} \to D, and predicate symbols P \in \mathsf{PS} to relations (P)^I \subseteq D^{\mathsf{ar}(P)}.
```

■ For a fixed selection *L* of constant, function, and predicate symbols, called the vocabulary (or the signature (or the language)), can define L-structures to be those interpretations restricted to symbols in *L*

Valuation

- Let *D* be a domain and VS a set of variables. A valuation (or assignment) is a mapping $\theta : VS \rightarrow D$.
- For a valuation θ , a variable x and a term v, the valuation $\theta[x/v]$ is defined by

$$\theta[x/v](y) = \begin{cases} v & \text{if } x = y, \\ \theta(y) & \text{otherwise.} \end{cases}$$

Meaning of Terms

Let I be a first-order interpretation and θ valuation. For a term $t \in TS$, we define the interpretation of t, denoted

$(t)^{I,\theta}$ as follows

- 1. $(c)^{I,\theta} = (c)^I$ for $t \in CS$ (i.e., t is a constant),
- 2. $(x)^{I,\theta} = \theta(x)$ for $t \in VS$ (i.e., t is a variable), and
- 3. $(f(t_1,\ldots,t_{\mathsf{ar}(f)}))^{I,\theta}=(f)^I((t_1)^{I,\theta},\ldots,(t_{\mathsf{ar}(f)})^{I,\theta})$ otherwise (i.e., for t a functional term).

Satisfaction Relation

- The **satisfaction relation** \models between a first-order interpretation I, a valuation θ , and a formula $\varphi \in WFF$ written I, $\theta \models \varphi$ is defined as follows
 - $I, \theta \models P(t_1, \dots, t_{\mathsf{ar}(P)}) \text{ iff } ((t_1)^{I,\theta}, \dots, (t_{\mathsf{ar}(P)})^{I,\theta}) \in (P)^I \text{ for } P \in \mathsf{PS};$
 - $I, \theta \models (\neg \varphi) \text{ iff } I, \theta \not\models \varphi;$
 - $I, \theta \models (\varphi \rightarrow \psi)$ iff whenever $I, \theta \models \varphi$ then also $I, \theta \models \psi$.
 - $I, \theta \models (\forall x. \varphi) \text{ iff } I, \theta[x/v] \models \varphi \text{ for all } v \in D.$

A pair (I, θ) such that $I, \theta \models \varphi$ is called a *(pointed) model of* φ .

Can define

 $\mathsf{mod}(\varphi)$ to be the set of models of φ : $\mathsf{mod}(\varphi) = \{ (I, \theta) \mid (I, \theta) \models \varphi \}$.

Satisfiability and Validity

- \blacksquare A modal formula φ is
- valid iff $I, \theta \models \varphi$ for all interpretations I and all valuations θ (i.e., true in all models),
- satisfiable iff $I, \theta \models \varphi$ for some interpretation I and some valuation θ (i.e., has a model), and
- *unsatisfiable* otherwise.
 - Definitions of **logical implication** ($\Sigma \models \varphi$) and **equivalence** and their properties are now the same as for propositional logic

Relevance

 The Relevance lemma allows us to consider only Lstructures for an appropriately chosen set L of nonlogical parameters

Let L be the set of all non-logical symbols in $\varphi \in \mathsf{WFF}$, and let

- 1. I_1 and I_2 be two interpretations such that $I_1(s) = I_2(s)$ for all $s \in L$ and
- 2. θ_1 and θ_2 be two valuations such that $\theta_1(x) = \theta_2(x)$ for all $x \in FV(\varphi)$.

Then $I_1, \theta_1 \models \varphi$ if and only if $I_2, \theta_2 \models \varphi$.

Food for Thought

Read:

- Chapter 3, Sections 3.1, 3.2 and 3.3 from Zhongwan
 - Read the material discussed in class in more detail
 - Follow the notation conventions discussed in class
- Handout on "First-Order Logic"
 - Available from the course schedule web page or through LEARN

Answer Assignment #4 questions

 Assignment #4 includes several practice exercises related to First-Order Logic