

VIGILADA MINEDUCACIÓN - SNIES 1732

Regresión por mínimos cuadrados

X _i	y i
1	0.5
2	2.5
3	2.0
4 5	4.0
5	3.5
6	6.0
7	5.5
Σ	24.0

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

\mathbf{x}_{i}	y 1
1	0.5
2	2.5
3	2.0
4	4.0
5	3.5
6	6.0
7	5.5
Σ	24.0

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

X i	y ı
1	0.5
2	2.5
3	2.0
4	4.0
5	3.5
6	6.0
7	5.5
Σ	24.0

	Х	у	xiyi	xi ²
	1	0,5	0,5	1
	2	2,5	5	4
	3	2	6	9
	4	4	16	16
	5	3,5	17,5	25
	6	6	36	36
	7	5,5	38,5	49
Sumatoria	28	24	119,5	140

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

X i	y ı
1	0.5
2	2.5
3	2.0
4	4.0
5	3.5
6	6.0
7	5.5
Σ	24.0

	х	у	xiyi	xi ²
	1	0,5	0,5	1
	2	2,5	5	4
	3	2	6	9
	4	4	16	16
	5	3,5	17,5	25
	6	6	36	36
	7	5,5	38,5	49
Sumatoria	28	24	119,5	140

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

$$(\sum x_i)^2 =$$

X i	y ı
1	0.5
2	2.5
3	2.0
4	4.0
5	3.5
6	6.0
7	5.5
Σ	24.0

	Х	у	xiyi	xi ²
	1	0,5	0,5	1
	2	2,5	5	4
	3	2	6	9
	4	4	16	16
	5	3,5	17,5	25
	6	6	36	36
	7	5,5	38,5	49
Sumatoria	28	24	119,5	140

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

$$(\sum x_i)^2 = 784$$

$$\bar{y}$$
=

x _i	y ı
1	0.5
2	2.5
3	2.0
4	4.0
5	3.5
6	6.0
7	5.5
Σ	24.0

	х	у	xiyi	xi ²
	1	0,5	0,5	1
	2	2,5	5	4
	3	2	6	9
	4	4	16	16
	5	3,5	17,5	25
	6	6	36	36
	7	5,5	38,5	49
Sumatoria	28	24	119,5	140

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

$$(\sum x_i)^2 = 784$$

$$\bar{y}$$
= 3,4285

X _i	y ı
1	0.5
2	2.5
3	2.0
4	4.0
5	3.5
6	6.0
7	5.5
Σ	24.0

	x	У	xiyi	xi ²
	1	0,5	0,5	1
	2	2,5	5	4
	3	2	6	9
	4	4	16	16
	5	3,5	17,5	25
	6	6	36	36
	7	5,5	38,5	49
Sumatoria	28	24	119,5	140

$$a_1 = \frac{7(119,5) - (28)(24)}{7(140) - (784)} =$$

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

$$(\sum x_i)^2 = 784$$

$$\bar{y}$$
= 3,4285

$$\bar{x}$$
= 4

x i	y ı
1	0.5
2	2.5
3	2.0
4	4.0
5	3.5
6	6.0
7	5.5
Σ	24.0

	x	У	xiyi	xi ²
	1	0,5	0,5	1
	2	2,5	5	4
	3	2	6	9
	4	4	16	16
	5	3,5	17,5	25
	6	6	36	36
	7	5,5	38,5	49
Sumatoria	28	24	119,5	140

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

$$(\sum x_i)^2 = 784$$

$$\bar{y}$$
= 3,4285

$$\bar{x}$$
= 4

X _i	y ı
1	0.5
2	2.5
2	2.0
4	4.0
5	3.5
6	6.0
7	5.5
Σ	24.0

	х	у	xiyi	xi ²
	1	0,5	0,5	1
	2	2,5	5	4
	3	2	6	9
	4	4	16	16
	5	3,5	17,5	25
	6	6	36	36
	7	5,5	38,5	49
Sumatoria	28	24	119,5	140

$$a_1 = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2}$$

$$a_0 = \overline{y} - a_1 \overline{x}$$

$$(\sum x_i)^2 = 784$$

$$\bar{y}$$
= 3,4285

$$\bar{x}$$
= 4

Ejercicio: ajustar la recta de los valores de la tabla dada.

$$a_1 = \frac{7(119,5) - (28)(24)}{7(140) - (784)} = \frac{836,5 - 672}{980 - 784} = \frac{164,5}{196} = 0,839285$$

$$a_0 = 3,4285 - 0,839285(4) = 0,07136$$

Por tanto, la recta que se ajusta a los valores dados es:

$$y = a_0 + a_1 x$$
$$y = 0.07136 + 0.839285 x$$

Ejercicio: ajustar la recta de los valores de la tabla dada. y = 0.07136 + 0.839285x

Ejercicio: medición del error

$$y = 0.07136 + 0.839285x$$

$$S_r = \sum_{i=1}^n e_i^2 = \sum_{i=1}^n (y_{i,\text{medida}} - y_{i,\text{modelo}})^2 = \sum_{i=1}^n (y_i - a_0 - a_1 x_i)^2$$

Х	у	a0	a1xi	e ²
1	0,5	0,07136	0,839285	0,168629316
2	2,5	0,07136	1,67857	0,562605005
3	2	0,07136	2,517855	0,347174316
4	4	0,07136	3,35714	0,32661225
5	3,5	0,07136	4,196425	0,589493806
6	6	0,07136	5,03571	0,797323985
7	5,5	0,07136	5,874995	0,199232786
				2,991071464

Ejercicio: desviación estándar, error estándar estimado y coeficiente de correlación

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} \qquad r = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}}$$

$$s_{y} = \sqrt{\frac{S_{t}}{n-1}}$$

$$S_t = \Sigma (y_i - \overline{y})^2$$

Error estándar estimado

Grado de asociación lineal entre dos variables

Grado de dispersión

Ejercicio: desviación estándar, error estándar estimado y coeficiente de correlación

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} \qquad r = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}}$$

$$s_y = \sqrt{\frac{S_t}{n-1}}$$

$$S_t = \sum (y_i - \overline{y})^2$$

Error estándar estimado

Grado de asociación lineal entre dos variables

Grado de dispersión

Desviación de 0 y correlación de 1 significa que los valores se ajustan al 100% a la recta hallada.

Ejercicio: desviación estándar, error estándar estimado y coeficiente de correlación

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} \qquad r = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}}$$

$$s_{y} = \sqrt{\frac{S_{t}}{n-1}}$$

$$S_t = \sum (y_i - \overline{y})^2$$

Error estándar estimado

Grado de asociación lineal entre dos variables

Grado de dispersión

Desviación de 0 y correlación de 1 significa que los valores se ajustan al 100% a la

recta hallada.

Tomada de:

httpshttps://static.platzi.com/media/user_upload/ ejemplo3-ac75f3c4-5ccf-4c0c-a559-13aaa757173e.jpg

Ejercicio: desviación estándar, error estándar estimado y coeficiente de correlación

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} \qquad r = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}} \qquad S_y = \sqrt{\frac{S_t}{n-1}} \qquad S_t = \sum (y_i - \overline{y})^2$$

$$s_y = \sqrt{\frac{S_t}{n-1}}$$

$$S_t = \sum (y_i - \overline{y})^2$$

x	у	yi-mediay	(yi-mediay) ²
1	0,5	-2,92857	8,576530612
2	2,5	-0,92857	0,862244898
3	3 2 -1,42857		2,040816327
4	4	0,571429	0,326530612
5	3,5	0,071429	0,005102041
6	6	2,571429	6,612244898
7	5,5	2,071429	4,290816327
28	24		22,71428571

$$S_{y} = \sqrt{\frac{S_{t}}{n-1}} =$$

Ejercicio: desviación estándar, error estándar estimado y coeficiente de correlación

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} \qquad r = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}} \qquad S_y = \sqrt{\frac{S_t}{n-1}} \qquad S_t = \sum (y_i - \overline{y})^2$$

$$s_y = \sqrt{\frac{S_t}{n-1}}$$

$$S_t = \sum (y_i - \overline{y})^2$$

x	у	yi-mediay	(yi-mediay) ²
1	0,5	-2,92857	8,576530612
2	2,5	-0,92857	0,862244898
3	3 2 -1,42857		2,040816327
4	4	0,571429	0,326530612
5	3,5	0,071429	0,005102041
6	6	2,571429	6,612244898
7	5,5	2,071429	4,290816327
28	24		22,71428571

$$S_y = \sqrt{\frac{S_t}{n-1}} = 1,945691$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} =$$

Ejercicio: desviación estándar, error estándar estimado y coeficiente de correlación

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} \qquad r = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}} \qquad S_y = \sqrt{\frac{S_t}{n-1}} \qquad S_t = \sum (y_i - \overline{y})^2$$

$$s_{y} = \sqrt{\frac{S_{t}}{n-1}}$$

$$S_t = \sum (y_i - \overline{y})^2$$

х	у	yi-mediay	(yi-mediay) ²
1	0,5	-2,92857	8,576530612
2	2,5	-0,92857	0,862244898
3	2	-1,42857	2,040816327
4	4	0,571429	0,326530612
5	3,5	0,071429	0,005102041
6	6	2,571429	6,612244898
7	5,5	2,071429	4,290816327
28	24		22,71428571

$$S_y = \sqrt{\frac{S_t}{n-1}} = 1,945691$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} = 0,773443$$

Ejercicio: desviación estándar, error estándar estimado y coeficiente de correlación

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} \qquad r = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}} \qquad s_y = \sqrt{\frac{S_t}{n-1}}$$

$$s_{y} = \sqrt{\frac{S_{t}}{n-1}}$$

$$S_t = \sum (y_i - \overline{y})^2$$

х	у	yi-mediay	(yi-mediay) ²
1	0,5	-2,92857	8,576530612
2	2,5	-0,92857	0,862244898
3	2 -1,42857		2,040816327
4	4	0,571429	0,326530612
5	3,5	0,071429	0,005102041
6	6	2,571429	6,612244898
7	5,5	2,071429	4,290816327
28	24		22,71428571

$$S_y = \sqrt{\frac{S_t}{n-1}} = 1,945691$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} = 0,773443$$

$$r^2 = \frac{22,714285 - 2,991071}{22,714285}$$

$$r^2 = \frac{S_t - S_r}{S_t}$$

Coeficiente de determinación

Ejercicio: desviación estándar, error estándar estimado y coeficiente de correlación

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} \qquad r = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}} \qquad s_y = \sqrt{\frac{S_t}{n-1}}$$

$$s_y = \sqrt{\frac{S_t}{n-1}}$$

$$S_t = \Sigma (y_i - \overline{y})^2$$

х	у	yi-mediay	(yi-mediay) ²
1	0,5	-2,92857	8,576530612
2	2,5	-0,92857	0,862244898
3	2	-1,42857	2,040816327
4	4	0,571429	0,326530612
5	3,5	0,071429	0,005102041
6	6	2,571429	6,612244898
7	5,5	2,071429	4,290816327
28	24		22,71428571

$$S_y = \sqrt{\frac{S_t}{n-1}} = 1,945691$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} = 0,773443$$

$$r^2 = \frac{22,714285 - 2,991071}{22,714285} = 0,868317$$

$$r^2 = \frac{S_t - S_r}{S_t}$$

Coeficiente de determinación

Ejercicio: desviación estándar, error estándar estimado y coeficiente de correlación

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}}$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} \qquad r = \frac{n\sum x_i y_i - (\sum x_i)(\sum y_i)}{\sqrt{n\sum x_i^2 - (\sum x_i)^2} \sqrt{n\sum y_i^2 - (\sum y_i)^2}} \qquad s_y = \sqrt{\frac{S_t}{n-1}}$$

$$s_{y} = \sqrt{\frac{S_{t}}{n-1}}$$

$$S_t = \sum (y_i - \overline{y})^2$$

x	у	yi-mediay	(yi-mediay) ²
1	0,5	-2,92857	8,576530612
2	2,5	-0,92857	0,862244898
3	2	-1,42857	2,040816327
4	4	0,571429	0,326530612
5	3,5	0,071429	0,005102041
6	6	2,571429	6,612244898
7	5,5	2,071429	4,290816327
28	24		22,71428571

$$S_y = \sqrt{\frac{S_t}{n-1}} = 1,945691$$

$$S_{y/x} = \sqrt{\frac{S_r}{n-2}} = 0,773443$$

$$r^2 = \frac{22,714285 - 2,991071}{22,714285} = 0,868317$$

$$r = 0.931835$$

Coeficiente de determinación

Los resultados indican que el modelo lineal explicó el 86.8% de la incertidumbre original.

Ejercicio 2: encontrar una recta que se ajuste a los siguientes datos. Calcule la desviación estándar, el coeficiente de correlación, el error estándar estimado y el coeficiente de determinación.

X	0	2	4	6	9	11	12	15	17	19
										12

Referencias

Chapra, S. C., & Canale, R. P. (2007). Métodos numéricos para ingenieros. McGraw-Hill,.

UNIVERSIDAD SANTO TOMÁS PRIMER CLAUSTRO UNIVERSITARIO DE COLOMBIA

SECCIONAL

VIGILADA MINEDUCACIÓN - SNIES 1732

iSiempre_{Ito!}

