CLAIMS

What is claimed is:

1	1. A transmitter comprising:
2	a phase difference element to generate a phase reference signal from phase
3	information extracted from an offset input signal and an offset output signal;
4	an amplitude difference element to generate an amplitude reference signal
5	from amplitude information extracted from the offset input signal and the offset
6	output signal;
7	a signal synthesizer to synthesize an output signal from the amplitude
8	reference signal and the phase reference signal;
9	an input combining element to combine an input signal with an origin-
10	offset signal to produce the offset input signal; and
11	an output combining element to combine the output signal and the origin-
12	offset signal to produce the offset output signal.
1	2. The transmitter of claim 1 further comprising a carrier leakage
2	compensation element to adjust an amplitude and phase of the origin-offset signal
3	based on a carrier leakage level of the output signal to provide a compensated
4	origin-offset signal to the input combining element.
1	3. The transmitter of claim 2 wherein the carrier leakage compensation
2	element adjusts the origin-offset signal either based on a ratio of an RMS level
3	and an average level of the output signal or based on detection of carrier leakage
4	in a non-linearly amplified output signal.
1	4. The transmitter of claim 2 wherein the input signal is a baseband signal
2	and wherein the carrier leakage compensation element is implemented within a
3	digital signal processor and adds the origin-offset signal directly to the input
4	signal.

1	5. The transmitter of claim 1 further comprising:
2	an input phase detector to extract phase information from the offset input
3	signal;
4	an input amplitude detector to extract amplitude information from the
5	offset input signal;
6	a feedback phase detector to extract phase information from the offset
7	output signal; and
8	a feedback amplitude detector to extract amplitude information from the
9	offset output signal.
1	6. The transmitter of claim 1 further comprising an origin-offset signal
2	generator to generate the compensation signal.
1	7. The transmitter of claim 6 wherein the origin-offset signal includes a
2	frequency of the output signal to cause a shift in the phase of the phase reference
3	signal away from zero on a phasor plane.
1	8. The transmitter of claim 7 wherein the origin-offset signal generator
2	adjusts an amplitude and phase of the origin-offset signal based on a non-linearly
3	amplified output signal.
1	9. The transmitter of claim 1 further comprising an output amplifier to
2	amplify the output signal generated by the signal synthesizer prior to being
3	combined by the output combining element.
i	10. The transmitter of claim 7 wherein the output amplifier is a non-linear
2	power amplifier.
	T
l	11. The transmitter of claim 1 wherein the output signal is one of a
2	plurality of frequency channels in a WCDMA communication system.
l	12. The transmitter of claim 5 wherein at least one of the phase and
2	amplitude difference elements, the signal synthesizer, the feedback phase and

3	amplitude detectors and the input phase and amplitude detectors are fabricated as
4	part of a digital signal processor (DSP).
1	13. A wireless communication device comprising:
2	a phase difference element to generate a phase reference signal from phase
3	information extracted from an offset input signal and an offset output signal;
4	an amplitude difference element to generate an amplitude reference signal
5	from amplitude information extracted from the offset input signal and the offset
6	output signal;
7	a signal synthesizer to generate an output signal from the amplitude
8	reference signal and the phase reference signal;
9	an input combining element to combine an input signal with a
10	compensation signal to generate the offset input signal;
11	an output combining element to combine the output signal and the
12	compensation signal to generate the offset output signal;
13	a non-linear power amplifier to amplify the output signal generated by the
14	signal synthesizer prior to being combined by the output combining element; and
15	an origin-offset signal source generator to generate the compensation
16	signal.
1	14. The communication device of claim 13 further comprising a carrier
2	leakage compensation element to down-convert the compensation signal from a
3	radio frequency (RF) to an intermediate frequency (IF), and wherein the input
4	combining element combines the input signal with the IF compensation signal to
5	generate the offset input signal.
1	15. The communication device of claim 13 wherein the origin-offset signal
2	source generator generates the compensation signal at a frequency of the output
3	signal.
1	16 A method of concreting an autout size 1 '
2	16. A method of generating an output signal comprising:
3	generating a phase reference signal from phase information extracted from an offset input signal and an offset output signal;
-	and officer subject officer outbut gibital

1

4	generating an amplitude reference signal from amplitude information
5	extracted from the offset input signal and the offset output signal;
6	generating an output signal from the amplitude reference signal and the
7	phase reference signal;
8	combining an input signal with a compensation signal to generate the
9	offset input signal; and
0	generating the output signal and the compensation signal to generate the
11	offset output signal.
1	17. The method of claim 16 further comprising adding the compensation
2	signal directly to the input signal in a digital signal processor to generate the offset
3	input signal.
1	18. The method of claim 16 further comprising:
2	extracting phase information from the offset input signal; and
3	extracting amplitude information from the offset input signal.
1	19. The method of claim 16 further comprising:
2	extracting phase information from the offset output signal; and
3	extracting amplitude information from the offset output signal.
1	20. The method of claim 16 further comprising generating the
2	compensation signal at a frequency of the output signal
1	21. The method of claim 16 further comprising amplifying the output
2	signal generated by the signal synthesizer with a non-linear power amplifier prior
3	to combining the output signal with the compensation signal.

1	22. A digital signal processor (DSP) comprising:
2	a phase difference block to generate a phase reference signal from phase
3	information extracted from an offset input signal and an offset output signal;
4	an amplitude difference block to generate an amplitude reference signal
5	from amplitude information extracted from the offset input signal and the offset
6	output signal;
7	a signal synthesizer block to synthesize an output signal from the
8	amplitude reference signal and the phase reference signal; and
9	an input-combining block to add an input signal with an origin-offset
10	signal to produce the offset input signal.
1	23. The DSP of claim 22 further comprising a carrier leakage
2	compensation block to adjust an amplitude and phase of the origin-offset signal
3	based on a carrier leakage level of the output signal to provide a compensated
4	origin-offset signal to the input-combining block, the carrier leakage
5	compensation block adjusting the origin-offset signal based on a ratio of an RMS
6	level and an average level of the output signal.

24. The DSP of claim 23 wherein the output signal is coupled external to the DSP and combined with the origin-offset signal to produce the offset output signal