midterm2

maryam norouzi

December 2023

1

1.1

To find the characteristic functions of X_k and Y_n , we will proceed as follows: For X_k , which can take the values $\pm \sqrt{k}$ each with probability $\frac{1}{2}$, the characteristic function $\phi_{X_k}(t)$ is defined by:

$$\phi_{X_k}(t) = E[e^{itX_k}] = \sum_{x \in X_k} e^{itx} P(X_k = x)$$

Since X_k takes on two values with equal probability, the characteristic function is:

$$\phi_{X_k}(t) = \frac{1}{2}e^{it\sqrt{k}} + \frac{1}{2}e^{-it\sqrt{k}}$$

This can be simplified using Euler's formula $e^{ix} = \cos(x) + i\sin(x)$, recognizing that the sine terms will cancel out as they will be equal and opposite for $+\sqrt{k}$ and $-\sqrt{k}$:

$$\phi_{X_k}(t) = \frac{1}{2}(\cos(t\sqrt{k}) + i\sin(t\sqrt{k})) + \frac{1}{2}(\cos(t\sqrt{k}) - i\sin(t\sqrt{k}))$$
$$\phi_{X_k}(t) = \frac{1}{2} \cdot 2 \cdot \cos(t\sqrt{k})$$
$$\phi_{X_k}(t) = \cos(t\sqrt{k})$$

Now, for Y_n , which is the average of n such X_k variables, the characteristic function $\phi_{Y_n}(t)$ can be found by noting that the characteristic function of the sum of independent random variables is the product of their characteristic functions, and then we must adjust for the fact that Y_n is an average, not a sum:

$$\Phi_{Y_n}(t) = \prod_{k=1}^n \Phi_{X_k}(t) = \prod_{k=1}^n \cos\left(t\sqrt{\frac{k}{n}}\right)$$

$$\phi_{Y_n}(t) = \left(\phi_{X_k}\left(\frac{t}{n}\right)\right)^n$$

Substituting the characteristic function of X_k we found earlier:

$$\phi_{Y_n}(t) = \left(\cos\left(\frac{\sqrt{kt}}{n}\right)\right)^n$$

These are the characteristic functions for X_k and Y_n respectively.

1.2

b) The characteristic function of X_k is given by

$$\phi_{X_k}(t) = E(e^{itX_k})$$

The characteristic function of Y_n is then

$$\phi_{Y_n}(t) = \left(\cos\left(\frac{t}{\sqrt{n}k}\right)\right)^n$$

As $n \to \infty$, $\phi_{Y_n}(t)$ converges to

$$\phi_Y(t) = 1$$

By the Continuity Theorem, if $X_n \xrightarrow{d} X$, then

$$\lim_{n \to \infty} F_n(x) = F_X(x)$$

where $F_X(x)$ is the CDF of X. Hence,

$$\lim_{n \to \infty} F_n(x) = \delta(x)$$

Given the characteristic function for Y_n :

$$\Phi_{Y_n}(t) = \prod_{k=1}^n \cos\left(t\sqrt{\frac{k}{n}}\right)$$

we take the limit of the logarithm of $\Phi_{Y_n}(t)$ as n approaches infinity:

$$\lim_{n \to \infty} \log \left(\Phi_{Y_n}(t) \right) = \lim_{n \to \infty} n \log \left(\cos \left(\frac{t}{\sqrt{n}} \right) \right)$$

Evaluating this limit, we find that it is $-\frac{t^2}{2}$, which corresponds to the logarithm of the characteristic function of a standard normal distribution:

$$\lim_{n \to \infty} \log \left(\Phi_{Y_n}(t) \right) = -\frac{t^2}{2}$$

Thus, the characteristic function for Y_n converges to:

$$\lim_{n\to\infty} \Phi_{Y_n}(t) = e^{-\frac{t^2}{2}}$$

This implies that Y_n converges in distribution to a standard normal distribution as n goes to infinity. Therefore, the cumulative distribution function $F_n(x)$ converges to the CDF of a standard normal distribution:

$$\lim_{n \to \infty} F_n(x) = \Phi(x)$$

where $\Phi(x)$ is the CDF of a standard normal distribution.

2

2.1

Given a sequence of iid random variables $\{X_i\}_{i=1}^{\infty}$ with all moments existing and finite, particularly with mean $m = E[X_i]$ and variance $\sigma^2 = \text{var}[X_i]$, and a sequence of positive constants $\{a_i\}_{i=1}^{\infty}$ where $a_1 = k$ and $a_n = a_{n-1} + k$ for n > 1, we seek to find the means and variances of the weighted sum $S_n = \sum_{i=1}^n a_i X_i$ and average $M_n = S_n / \sum_{i=1}^n a_i$.

The mean of S_n is calculated as follows:

$$E[S_n] = E\left[\sum_{i=1}^n a_i X_i\right]$$

$$= \sum_{i=1}^n a_i E[X_i]$$

$$= m \sum_{i=1}^n a_i$$

$$= m \sum_{i=1}^n (ik)$$

$$= mk \sum_{i=1}^n i$$

$$= mk \frac{n(n+1)}{2}$$

$$= \frac{mk}{2} n(n+1).$$

The variance of S_n is given by:

$$\operatorname{var}(S_n) = \operatorname{var}\left(\sum_{i=1}^n a_i X_i\right)$$

$$= \sum_{i=1}^n a_i^2 \operatorname{var}(X_i)$$

$$= \sigma^2 \sum_{i=1}^n a_i^2$$

$$= \sigma^2 \sum_{i=1}^n (ik)^2$$

$$= \sigma^2 k^2 \sum_{i=1}^n i^2$$

$$= \sigma^2 k^2 \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{\sigma^2 k^2}{6} n(n+1)(2n+1).$$

For M_n , the mean is the mean of S_n divided by the sum of the weights a_i , and the variance is the variance of S_n divided by the square of the sum of the weights a_i . Thus, we have:

$$E[M_n] = \frac{E[S_n]}{\sum_{i=1}^n a_i}$$
$$= \frac{\frac{mk}{2}n(n+1)}{k\frac{n(n+1)}{2}}$$
$$= m,$$

and

$$\operatorname{var}(M_n) = \frac{\operatorname{var}(S_n)}{\left(\sum_{i=1}^n a_i\right)^2}$$

$$= \frac{\frac{\sigma^2 k^2}{6} n(n+1)(2n+1)}{\left(k\frac{n(n+1)}{2}\right)^2}$$

$$= \frac{6\sigma^2}{k^2 n^2 (n+1)^2} \cdot \frac{n(n+1)(2n+1)}{6}$$

$$= \frac{\sigma^2 (2n+1)}{k^2 n(n+1)}.$$

The sum of the sequence a_i where each term follows the pattern $a_n = a_{n-1} + k$ for n > 1 with $a_1 = k$ is an arithmetic sequence with common difference k. The n-th term of this sequence, a_n , is nk.

The sum of the first n terms of an arithmetic sequence is given by the formula:

$$S_n = \frac{n}{2}(a_1 + a_n)$$

For our sequence, this becomes:

$$S_n = \frac{n}{2}(k+nk)$$

$$S_n = \frac{n}{2}(k(1+n))$$

$$S_n = \frac{nk}{2}(1+n)$$

Hence, the sum of a_i from i = 1 to n is:

$$\sum_{i=1}^{n} a_i = \frac{nk}{2} (1+n)$$

2.2

To show that $M_n \stackrel{P}{\to} m$, we need to show that for any $\epsilon > 0$, the probability that the absolute difference between M_n and m is greater than ϵ goes to 0 as n approaches infinity:

$$P(|M_n - m| > \epsilon) \to 0 \text{ as } n \to \infty.$$

From part a), we have that the expected value $E[M_n] = m$. To establish convergence in probability, we consider the variance of M_n , which is:

$$Var(M_n) = \frac{\sigma^2}{k^2} \cdot \frac{(2n+1)}{n(n+1)^2}.$$

As n approaches infinity, the variance of M_n approaches 0:

$$\lim_{n \to \infty} \operatorname{Var}(M_n) = \lim_{n \to \infty} \frac{\sigma^2}{k^2} \cdot \frac{(2n+1)}{n(n+1)^2} = 0.$$

By Chebyshev's inequality, for any $\epsilon > 0$:

$$P(|M_n - m| > \epsilon) \le \frac{\sigma_m}{\epsilon}.$$

$$\sigma_m = \sqrt{\text{Var}}$$

Since the variance of M_n goes to 0 as n approaches infinity, it follows that:

$$\lim_{n \to \infty} P(|M_n - m| > \epsilon) \le \lim_{n \to \infty} \frac{\sqrt{\operatorname{Var}(M_n)}}{\epsilon} = 0.$$

Hence, M_n converges in probability to m.

$$(M_n \stackrel{P}{\to} m)$$

To show that the standardized version of S_n converges in distribution to a standard normal random variable Z with distribution N(0,1), we can invoke the Central Limit Theorem (CLT).

The CLT states that if X_1, X_2, \ldots, X_n are independent and identically distributed (i.i.d.) random variables with mean $E[X_i] = \mu$ and variance $Var(X_i) = \sigma^2 > 0$, then as n approaches infinity, the standardized sum:

$$Z_n = \frac{S_n - E[S_n]}{\sqrt{\operatorname{Var}(S_n)}}$$

converges in distribution to a standard normal random variable Z, that is:

$$Z_n \xrightarrow{d} Z$$

Expected Value and Variance of S_n

Given the weighted sum $S_n = \sum_{i=1}^n a_i X_i$, where X_i are i.i.d random variables with mean m and variance σ^2 , and a_i are positive constants:

The expected value and the variance are calculated as:

$$E[S_n] = \sum_{i=1}^n a_i E[X_i] = m \sum_{i=1}^n a_i = mk \frac{n(n+1)}{2}$$

$$Var[S_n] = \sum_{i=1}^{n} a_i^2 Var[X_i] = \sigma^2 k^2 \frac{n(n+1)(2n+1)}{6}$$

Limitations of CLT and the Need for Lyapunov's Condition

The Central Limit Theorem states that the sum (or average) of a large number of independent, identically distributed random variables with finite mean and variance will be approximately normally distributed, irrespective of the original distribution of the random variables.

The traditional CLT requires identically distributed random variables with finite variance. If the random variables are not identically distributed, or if the variances grow quickly (as with weighted sums), we use Lyapunov's version of the CLT.

Lyapunov's Central Limit Theorem

Lyapunov's CLT is a generalization for sequences of independent, not necessarily identically distributed random variables, introducing a condition for their sum to be approximately normally distributed.

Lyapunov's Condition

Lyapunov's condition, necessary for the CLT to apply, is for some $\delta > 0$:

$$\lim_{n \to \infty} \frac{1}{s_n^{2+\delta}} \sum_{i=1}^n E\left[|X_i - E[X_i]|^{2+\delta}\right] = 0$$

where s_n^2 is the sum of the variances of the random variables.

For the Central Limit Theorem to apply, we need to check Lyapunov's condition. Specifically, we need to show that for some $\delta > 0$:

$$\lim_{n \to \infty} \frac{1}{(\text{Var}(S_n))^{1+\delta/2}} \sum_{i=1}^n E[|a_i X_i|^{\delta}] = 0.$$

For $\delta = 1$, this becomes:

$$\lim_{n \to \infty} \frac{1}{(\sigma^2 \sum_{i=1}^n a_i^2)^{3/2}} \sum_{i=1}^n a_i^3 E[|X_i|^3] = 0.$$

The standardized sum Z_n is then given by:

$$Z_n = \frac{S_n - E[S_n]}{\sqrt{\text{Var}(S_n)}} = \frac{\sum_{i=1}^n a_i X_i}{\sqrt{\sigma^2 \sum_{i=1}^n a_i^2}}.$$

If Lyapunov's condition is satisfied, the standardized sum Z_n converges in distribution to Z as $n \to \infty$, where Z is a standard normal variable N(0,1).

We assume that a_i are either constants or follow a pattern such that Lyapunov's condition is met. Under these assumptions, we can apply the Central Limit Theorem to conclude that Z_n converges in distribution to a standard normal distribution.

Proof Using Lyapunov's Condition

Setting Up

Define $Z_i = \frac{a_i}{m}(X_i - m)$ and calculate s_n^2 as the sum of the variances of Z_i .

Applying the Condition

Verify Lyapunov's condition by showing that for the chosen δ , the sum of the $(2 + \delta)$ -th central moments of Z_i normalized by $s_n^{2+\delta}$ approaches zero as n becomes large.

$$Z_i = \frac{a_i}{m} X_i - a_i$$
$$E[Z_i] = \frac{a_i}{m} E[X_i] - a_i = 0$$

$$E[Z_i^2] = \frac{a_i^2}{m^2} E[X_i^2] - a_i$$

As defined, all moments of X_i are finite, therefore $E[Z_i^3] < \infty$. The variance of Z_i is given by:

$$\operatorname{Var}(Z_i) = \operatorname{Var}\left(\frac{a_i}{m}X_i - 1\right) = \frac{a_i^2}{m^2}\operatorname{Var}(X_i) = \frac{\sigma^2}{m^2}a_i^2$$

Then we have:

$$\sigma(n)^2 = \operatorname{Var}\left(\sum_{j=1}^n Z_j\right) = \sum_{j=1}^n \frac{\sigma^2}{m^2} a_j^2 =$$

$$\frac{k^2\sigma^2}{m^2} \left(\frac{n^4}{4} + \frac{n^3}{2} + \frac{n^2}{4} \right) + \frac{k^2\sigma^2}{m^2} \left(\frac{n^3}{3} + \frac{n^2}{2} + \frac{n}{6} \right) + \frac{k^2\sigma^2}{m^2} \left(\frac{n^2}{2} + \frac{n}{2} \right) = \frac{\sigma^2}{m^2} k^2 \left(\frac{n(n+1)(2n+1)}{6} \right)$$

Given:

$$\sigma(n)^2 = \operatorname{Var}\left(\sum_{j=1}^n Z_j\right) = \sum_{j=1}^n \frac{\sigma^2}{m^2} a_j^2$$
$$= \frac{\sigma^2}{m^2} k^2 \left(\frac{n(n+1)(2n+1)}{6}\right)$$

We then examine the third moment:

$$\begin{split} \frac{1}{(\sigma(n))^3} \sum_{j=1}^n E\left[Z_j^3\right] \\ & \leq \frac{1}{\left(\frac{\sigma^2}{m^2} k^2 \left(\frac{n(n+1)(2n+1)}{6}\right)\right)^{3/2}} \cdot \left(\frac{\sigma^2}{m^2} k^2 \cdot \left(\frac{n(n+1)(2n+1)}{6}\right)\right)^{3/2} \\ & = \frac{1}{\left(\frac{\sigma^2}{m^2} k^2\right)^{3/2}} \cdot \left(\frac{n(n+1)(2n+1)}{6}\right)^{3/2} \cdot \left(\frac{\sigma^2}{m^2} k^2\right)^{3/2} \cdot \left(\frac{n(n+1)(2n+1)}{6}\right)^{3/2} \\ & = \frac{1}{\left(\frac{n(n+1)(2n+1)}{6}\right)^{3/2}} \cdot \left(\frac{\sigma^2}{m^2} k^2\right)^{3/2} \cdot \left(\frac{n(n+1)(2n+1)}{6}\right)^{3/2} \end{split}$$

$$\sum_{j=1}^n a_j^3 \to k^3 \cdot \frac{n^2(n+1)^2}{4} \quad \text{because the nominator is dominated by the term} \quad n^4$$

As n approaches infinity, the above expression tends towards zero, satisfying Lyapunov's condition. Hence: $\sum Z_i \sim N(0,1)$, then S_n is also $\sim N(0,1)$.

So, if the sum of Z_j converges in distribution to a normal distribution with mean 0 and variance 1, i.e., $\sum Z_j \sim N(0,1)$, then the sum S_n also converges to a normal distribution:

$$\frac{1}{\sigma(n)} \cdot \sum_{j=1}^{n} Z_j \to N(0,1)$$

And thus, as $\{Z_i\}$ converges to N(0,1), so does S_n .

Concluding the Proof

Upon confirming Lyapunov's condition, it follows that:

$$\frac{S_n - E[S_n]}{\sqrt{\operatorname{Var}[S_n]}} \xrightarrow{D} N(0,1)$$

indicating that the standardized sum converges in distribution to a standard normal distribution. Hence, if $\sum Z_j \sim N(0,1)$, then S_n is also normal as $n \to \infty$, confirming the convergence in distribution to $Z \sim N(0,1)$.

- The random variables X_j are assumed to be independent with a mean of 0 ($E[X_j] = 0$) and a finite variance ($Var(X_j) = \sigma^2$).
- They have a finite third absolute moment $(E[|X_j|^3] < \infty)$, which allows for the use of Lyapunov's CLT.
- A standardized variable Z_i is defined as a normalized form of the weighted random variables $a_i X_i$, with $E[Z_i]$ being 0 and the variance of Z_i being the weighted variance of X_i .
- The variance of the sum S_n is calculated, which involves the sum of the squares of the weights a_i^2 .
- Lyapunov's condition is checked by considering the sum of $a_j^3 E[|X_j|^3]$ normalized by the cubed variance of the sum, which must approach 0 as n goes to infinity for the CLT to apply.
- It is concluded that the normalized sum $\frac{1}{\sigma(n)} \sum_{j=1}^{n} Z_j$ converges in distribution to N(0,1).
- If the sum of the Z_j converges to N(0,1), then the original sum S_n , normalized by its expectation and standard deviation, also converges to N(0,1).

3

3.1

Chernoff Bounds for Probability Inequality

Given S_n as the sum of i.i.d random variables, we want to find the probability that the squared deviation of S_n from its mean is greater than n:

$$P\left(\left(\frac{S_n - \mu_{S_n}}{\sigma_{S_n}}\right)^2 > n\right) = P(S_n > \mu_{S_n} + \sqrt{n}\sigma_{S_n}) + P(S_n < \mu_{S_n} - \sqrt{n}\sigma_{S_n})$$

Using Chernoff bounds, this probability can be bounded by:

$$\leq M(t) \cdot e^{-t^2 n}$$
 for $t \geq 0$, and $M(t) \cdot e^{t^2 n}$ for $t < 0$

where $M_S(t) = (M_{X_i}(t))^n$ is the moment-generating function of S_n , given by:

$$M_{S_n}(t) = \left(\frac{1}{1 - t^2}\right)^n$$

Then the Chernoff bounds can be expressed as:

$$\leq \left(\frac{1}{1-t^2}\right)^n \cdot e^{-t\sqrt{n}} \text{ for } t \geq 0, \text{ and } \left(\frac{1}{1-t^2}\right)^n \cdot e^{t\sqrt{n}} \text{ for } t < 0$$

Finally, we are interested in the limit as n approaches infinity:

$$\lim_{n \to \infty} = 0$$

To apply the Chernoff bound, we first calculate the moment generating function (MGF) for a single random variable X_i . Given the symmetry and the exponential nature of the Laplace distribution, the MGF for |t| < 1 is given by

$$M_{X_i}(t) = \int_{-\infty}^{\infty} e^{tx} f(x) dx = \frac{1}{1 - t^2}.$$

The Chernoff bound provides an exponentially decreasing bound on the tail probabilities of the sum of random variables. For our case, the Chernoff bound is

$$P(S_n \ge s) \le \min_{t>0} \left\{ e^{-ts} \left(M_{X_i}(t) \right)^n \right\}.$$

For s=n, we seek to minimize the above expression over t in the range (-1,1). We performed a numerical minimization for a large value of n=1000 and obtained an optimal $t\approx 0.414$ with a Chernoff bound approximately 7.16×10^{-99} .

This result indicates that the probability $P(S_n > n)$ is exceedingly small for large n, which is consistent with the Law of Large Numbers. As n increases, the Chernoff bound decreases exponentially, supporting the claim that the probability in question approaches 0 as n approaches infinity.

3.2

The problem is to find the limit:

$$\lim_{n \to \infty} \left(P\left(S_n^2 > n^2 \right) \right)^{\frac{1}{n}}$$

This limit involves a probability raised to a power that diminishes as ngrows. The Large Deviation Principle (LDP) typically estimates probabilities of the form $P\left(\frac{S_n}{n} > x\right)$ as $n \to \infty$, not probabilities inside a power of $\frac{1}{n}$. Assuming that $P\left(S_n^2 > n^2\right)$ can be approximated using LDP, we would have:

$$P\left(S_n^2 > n^2\right) \approx e^{-nI(2)}$$

where I(x) is the rate function derived from the logarithmic moment-generating function (MGF) of the random variables X_i .

For a standard LDP problem, the rate function I(x) for the random variable X_i with PDF $f(x) = \frac{1}{2}e^{-|x|}$ is derived as follows:

1. Calculate the logarithmic moment-generating function:

$$\Lambda(\lambda) = \log E\left[e^{\lambda X_i}\right]$$

2. Find the Legendre-Fenchel transform, which is the rate function:

$$I(x) = \sup_{\lambda \in \mathbb{R}} \{ \lambda x - \Lambda(\lambda) \}$$

Given the Laplace distribution, the MGF is:

$$M(\lambda) = \frac{1}{1 - \lambda^2}$$

for $|\lambda| < 1$, and the log-MGF is:

$$\Lambda(\lambda) = \log\left(\frac{1}{1 - \lambda^2}\right)$$

The supremum is found by setting the derivative of $\lambda x - \Lambda(\lambda)$ with respect to λ to zero.

To calculate the rate function I(x) for x = n since we are dealing with $S_n^2 > n^2$, we solve for λ in the equation:

$$\frac{d}{d\lambda}\Lambda(\lambda) = x$$

to find λ^* , and then find I(n) using:

$$I(x) = \lambda^* x - \Lambda(\lambda^*)$$

The limit as $n \to \infty$ of the expression $\left(P\left(S_n^2 > n^2\right)\right)^{\frac{1}{n}}$ is calculated to be 0, which suggests that the probability $P(S_n^2 > n^2)$ decays to zero faster than any exponential decay of the form e^{-cn} for c > 0.