Composing Stock and Flow Diagrams

CANMOD Bootcamp 2022

Xiaoyan Li

Outline

- 1. An example of a Stock and Flow diagram (Primitive schema)
- 2. Composing Stock and Flow Diagrams(Primitive schema)
 - a. Structured Cospan
 - b. uwd-algebra
- Examples of composing Stock and Flow Diagrams(moderate complexity schema)

1.1 An example of a stock and flow diagram as CSet

Category C represents the primitive stock and flow diagram

Functor from Category C to Set: C-Set

1.2 An example of a stock and flow diagram as ACSet

Category C, and Attributes

1.3 Codes of building a SIR model in StockFlow.jl

3.

SIR model

3 2 2

StockAndFlowp with elements Flow = 1:2, Stock = 1:3, Link = 1:3

Fle	wo	u	d	fname	φf
	1	1	2	NewIncidence	fNewIncidence
	2	2	3	NewRecovery	fNewRecovery


```
# define constant parameters
p_sir = LVector(
    cβ=0.2, N=1000, tr=12
)
# define initial values for stocks
u0_sir = LVector(
    S=990, I=10, R=0
)
```

```
# solve the ODEs
prob_sir = ODEProblem(vectorfield(sir),u0_sir,(0.0,100.0),p_sir);
sol_sir = solve(prob_sir,Tsit5(),abstol=le-8);
plot(sol_sir)
```


2. Composing Stock and Flow Diagrams

Compose

We have:

2.1 Method 1: Decorated/Structured Cospan

Figure cited from article in AlgebraicJulia blog, by Micah Halter and Evan Patterson https://www.algebraicjulia.org/blog/post/2020/10/structured-cospans/

2.1 Method 1: Structured Cospan

open svi=Open([:S,:I],svi,[:V]);

sirv1=apex(compose(open_sir,open_svi))

StockAndFlowp with elements Flow = 1:4, Stock = 1:4, Link = 1:6

фт	fname	d	u	Flow
fNewIncidence	NewIncidence	2	1	1
fNewRecovery	NewRecovery	3	2	2
fNewIncidenceFromV	NewIncidenceFromV	2	4	3
fNewVaccinated	NewVaccinated	4	1	4

-	
Stock	sname
1	S
2	ĺ
3	R

Link	s	t
1	1	1
2	2	1
3	2	2
4	4	3
5	2	3
6	1	4

2.2 Method 2: UWD-algebra

Define composition rule: UWD

Fill in the open stock flow diagram

Composed model

2.2 Method 2: UWD-algebra codes

```
uwd_sirv = @relation (R, SI, V) begin
    sir(R,SI)
    svi(SI,V)
end;
display_uwd(uwd_sirv)
```


Define composition rule: UWD

StockAndFlowp with elements Flow = 1:4, Stock = 1:4, Link = 1:6

фf	fname	d	u	Flow
fNewIncidence	NewIncidence	2	1	1
fNewRecovery	NewRecovery	3	2	2
fNewIncidenceFromV	4 2 NewIncidenceFromV fNewIncide		4	3
fNewVaccinated	NewVaccinated	4	1	4

Stock s	sname	Link	S	t
		1	1	1
1	S	2	2	1
2	Ī	3	2	2
3	R	4	4	3
4	V	5	2	3
		6	1	4

Apply the composition rule to the open stock and flow sub-components, and get the composed model

svname

The Schema of Moderate Complexity Stock and Flow Diagram

COVID-19 model, adapted from CEPHIL lab's work

Composition rule defined in Catlab.jl

Curable transmission model, adapted from Garnett's paper:

https://journals.lww.com/stdjournal/Fulltext/2000/11000/Epidemiology_and_Control_of_Curable_Sexually.7.aspx

3 sub-components

Composited model

Diabetes model, adapted from Zhang's thesis: https://harvest.usask.ca/handle/10388/ETD-2011-07-56

Pertussis model, adapted from Hethcote's paper:

https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.532.5615&rep=rep1&type=pdf

Priorities for Future Work

- Introducing analysis-transparent functions
- Broadening permissible connections
- Unit & dimensional attributes
- Modular stratification via pullbacks
- Adding supports for additional semantics
 - \circ Unit & dimensional inference & correctness, parameter space reduction via Buckingham π Thm
 - Calibration
 - Computational statistics methods (Particle filtering, Particle MCMC)
 - Stochastic simulation
 - Dynamic analysis mechanisms (Loop gains over time, eigenvalue elasticity over time, ...)
- Collaborative graphical interface
 - Synchronization with evolving capabilities of Algebraic Julia support (including composition, alternative semantics, stratification, etc.)
 - Version control
 - QA support: Issue tracking, testability & mocking, etc.