Acción sobre grupos

Sésar

1. Definición

Definition 1. Sea G grupo y $X \neq \emptyset$. Decimos que $\phi : G \times X \to X$ es una **acción** de G sobre X, denotado por $g \cdot x := \phi(g, x)$, si

- 1. $e \cdot x = x$ para todo $x \in X$,
- 2. $g_1 \cdot (g_2 \cdot x) = (g_1 g_2) \cdot x$ para todo $g_1, g_2 \in G$ y $x \in X$.

Example 1. Veamos algunas acciones

- 1. Sea $X \neq \emptyset$ y G = S(X) el grupo de permutaciones de X, entonces $f \cdot x := f(x)$ es una acción.
- 2. Para todo K-espacio vectorial V. Tomando X=V y K^* el grupo multiplicativo, entonces $k\cdot\overrightarrow{v}=k\overrightarrow{v}$ es una acción.
- 3. Si X = G, entonces $g \cdot x = gx$ es lo que llamamos **acción regular**.
- 4. De nuevo, X = G, entonces $g \cdot x := gxg^{-1}$ es la acción conjugación.
- 5. Tomando $H \leq G$ y $X = \{xH \mid x \in G\}$, entonces $g \cdot xH = (gx)H$ es también una acción.

Theorem 1. Sea G un grupo y $X \neq \emptyset$. Entonces

- 1. Para todo $g \in G$, $\phi_g : X \to X$ tal que $\phi_q(x) := g \cdot x$ es biyectiva.
- 2. La aplicación $\widehat{\phi}: G \to S(X)$ tal que $\widehat{\phi}(g) = \phi_g$ es un homomorfismo.

Demostración. Probemos cada caso en el orden establecido.

- 1. Veamos primero que es inyectiva. Supongamos que $\phi_g(x) = \phi_g(y)$. Entonces $g \cdot x = g \cdot y$. De este modo, $x = e \cdot x = (g^{-1}g) \cdot x = g^{-1} \cdot (g \cdot x) = g^{-1} \cdot (g \cdot y) = (g^{-1}g) \cdot y = e \cdot y = y$. Por otro lado, supongamos que $x \in X$. Entonces $\phi_g(g^{-1} \cdot x) = g \cdot (g^{-1} \cdot x) = x$.
- 2. Sean $g_1, g_2 \in G$. Entonces $\widehat{\phi}(g_1g_2) = \phi_{g_1g_2}$. Ahora, para todo $x \in X$. Tenemos que $\phi_{g_1g_2}(x) = (g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x) = g_1 \cdot \phi_{g_2(x)} = \phi_{g_1} \circ \phi_{g_2}(x)$. Por tanto, $\phi_{g_1g_2} = \phi_{g_1} \circ \phi_{g_2} = \widehat{\phi}(g_1) \circ \widehat{\phi}(g_2)$.

Definition 2. Dada una acción $\phi: G \times X \to X$, llamamos homomorfismo representación de ϕ al homomorfismo $\widehat{\phi}: G \to S(X)$ tal que $\widehat{\phi}(g)(x) := g \cdot x$.

Theorem 2. Supongamos que $\rho: G \to S(X)$ es un homomorfismo. Entonces

- 1. La aplicación $\phi: G \times X \to X$ tal que $g \cdot x := \rho(g)(x)$ es una acción.
- 2. El homomorfismo representación $\hat{\phi} = \rho$.

Demostración. Demostremos cada punto en el orden establecido.

- 1. Como ρ es un homomorfismo, entonces $\rho(e) = \mathrm{id}_X$. De este modo, para todo $x \in X$, $e \cdot x = \rho(e)(x) = \mathrm{id}_X(x) = x$. Por otro lado, sean $g_1, g_2 \in G$. Entonces $\rho(g_1g_2) = \rho(g_1) \circ \rho(g_2)$. De este modo, $\rho(g_1g_2)(x) = \rho(g_1) \circ \rho(g_2)(x) = \rho(g_1)(g_2 \cdot x) = g_1 \cdot (g_2 \cdot x)$.
- 2. Es fácil observar que $\widehat{\phi}(g) = \phi_g$ y para todo $x \in X$, $\phi_g(x) = g \cdot x = \rho(g)(x)$, es decir, $\widehat{\phi}(g) = \rho(g)$ para todo g.

Definition 3. Decimos que una acción $\phi: G \times X \to X$ es fiel si $\ker \widehat{\phi} = \{e\}$.

Es decir, una acción es fiel si su homomorfismo representación es inyecitva o, dicho de otro modo, G es isomorfo a un subgrupo de S(X).

Theorem 3 (Cayley). Todo grupo G es isomorfo a un subgrupo de S(G).

Demostración. Basta con probar que la acción regular $\phi: G \times G \to G$ con $g \cdot x = gx$ es fiel. Si $\widehat{\phi}(g) = \mathrm{id}_G$, en particular $e = \mathrm{id}_G(e) = \widehat{\phi}(g)(e) = ge = g$.

2. Establizador y órbita

Definition 4. Sea $\phi: G \times X \to X$ una acción. Definimos el **estabilizador** de $x \in X$ como

$$G_x := \{ g \in G \mid g \cdot x = x \}.$$

Proposition 1. Sea $\phi: G \times X \to X$ una acción y $x \in G$.

- 1. $G_x \leq G$.
- 2. Si $h \in G$, entonces $hG_xh^{-1} = G_{h\cdot x}$.

Demostración. Demostremos cada punto en el orden establecido.

- 1. Sea $g_1, g_2 \in G_x$. Entonces $(g_1g_2) \cdot x = g_1 \cdot (g_2 \cdot x) = g_1 \cdot x = x$, luego $g_1g_2 \in G$. Por otro lado, por definición, $e \cdot x = x$, luego $e \in G_x$. Finalmente, si $g \in G_x$, Entonces $g^{-1} \cdot x = g^{-1} \cdot (g \cdot g) = (g^{-1}g) \cdot x = e \cdot x = x$, luego $g^{-1} \in G_x$.
- 2. El hecho de que $g \in hG_xh^{-1}$ equivale a $h^{-1}gh \in G_x$, es decir, $(h^{-1}gh) \cdot x = x$. De este modo,

$$g \cdot (h \cdot x) = (gh) \cdot x = (hh^{-1}gh) \cdot x = h \cdot (h^{-1}gh \cdot x) = h \cdot x,$$

luego $g \in G_{h \cdot x}$.

Proposition 2. Sea $\phi: G \times X \to X$ una acción y $\widehat{\phi}$ su homomorfismo representación. Entonces

$$\ker \widehat{\phi} = \bigcap_{x \in X} G_x.$$

Demostración. El hecho de que $g \in \ker \widehat{\phi}$ es equivalente a $\widehat{\phi}(g) = \operatorname{id}_X$, es decir, para todo $x \in X$, $g \cdot x = \widehat{\phi}(g)(x) = \operatorname{id}_X(x) = x$, lo que equivalen a que $g \in G_x$ para todo $x \in X$.

Lemma 1. Sea $\phi: G \times X \to X$ una acción. La siguiente relación en X es una RBE:

$$x \sim y \iff \exists g \in G \text{ t.q. } x = g \cdot y.$$

Demostración. En primer lugar, $x \sim x$ ya que $x = e \cdot x$. Por otro lado es simétrica ya que si $x \sim y$, entonces $x = g \cdot y$ para un cierto $g \in G$. Luego $g^{-1} \cdot x = g^{-1} \cdot (g \cdot y) = (g^{-1}g) \cdot y = e \cdot y = y$, luego $y \sim x$. Finalmente, supongamos que $x \sim y$ e $y \sim z$. Entonces existen $g_1, g_2 \in G$ tales que $x = g_1 \cdot y$ e $y = g_2 \cdot z$. Por tanto, $(g_1g_2) \cdot z = g_1 \cdot (g_2 \cdot z) = g_1 \cdot y = x$, luego $x \sim z$ y la propiedad transitiva se cumple.

Definition 5. Sea $\phi: G \times X \to X$ una acción. Llamámos **órbita** de x a una clase de equivalencia de x en la RBE \sim :

$$O_x := \{g \cdot x \mid g \in G\}.$$

Recordemos que las órbitas al ser clases de equivalencia, forman una partición en X. Además, sean $x,y\in X$ tales que $y\in O_x$, entonces $O_x=O_y$.

Definition 6. Sea $\phi: G \times X \to X$ una acción. Decimos que la acción es **transitiva** si $\exists x \in X$ tal que $O_x = X$.

En particular, si ϕ es transitiva, entonces para todo $x \in X$, $O_x = X$. Ya que si existe un $x' \in X$ tal que $O_{x'} = X$, en particular $x \in O_{x'}$ y por el comentario previo, $O_x = O_{x'}$.

Proposition 3. Una acción $\phi: G \times X \to X$ es transitiva si y solo si $\forall x, y \in X, \exists g \in G$ tal que $x = g \cdot y$

Demostración. La acción es transitiva si y solo si existe un $z \in X$ tal que $X = O_z$. Sean $x, y \in X$. Entonces como $x, y \in O_z$, tenemos que $x \sim z$ y $y \sim z$ y por ser la relación \sim una RBE, $x \sim y$, es decir, $\exists g \in G$ tal que x = gy. Por otro lado, fijemos un $x \in X$. Para todo $y \in X$, po hipótesis existe un $g \in G$ tal que $x = g \cdot y$, luego $x \sim y$ y por tanto, $y \in O_x$, luego $X = O_x$.

Corollary 1. Los estabilizadores de una acción transitiva son conjugados entre sí.

Demostración. Como la acción es transitiva, para todo par $x_1, x_2 \in X$, existe un $g \in G$ tal que $g \cdot x_1 = x_2$. De este modo, $G_{x_2} = G_{g \cdot x_1} = gG_{x_1}g^{-1}$.

3. Teorema de la órbita estabilizadora

Theorem 4 (Órbita estabilizadora). Sea $\phi: G \times X \to X$ una acción y $x \in X$. Entonces existe una biyección $O_x \to G/G_x$. En particular, si G es finito, entonces

$$[G:G_x]=|O_x|.$$

Demostración. Definamos la aplicación siguiente:

$$f: O_x \to G/G_x$$

 $g \cdot x \mapsto gG_x$.

En primer lugar, comprobaremos que la función está bie definida. Supongamos que $g_1 \cdot x = g_2 \cdot x$. Entonces $(g_2^1 g_1) \cdot x = x$, luego $g_2^1 g_1 \in G_x$, lo que implica que $f(g \cdot x) = g_1 G_x = g_2 G_x = f(g_2 \cdot x)$.

Veamos que f es inyectiva. Supongamos que $f(g_1 \cdot x) = f(g_2 \cdot x)$. Entonces $g_1 G_x = g_2 G_x$, es decir, $g_1^{-1} g_2 \in G_x$. Por tanto, $(g_1^{-1} g_2) \cdot x = x$, y de esto se deduce que $g_1 \cdot x = g_2 \cdot x$.

Por otro lado, es claro ver que si $gG_x \in G/G_x$, entonces $f(g \cdot x) = gG_x$, por lo que f es sobreyectiva.

Si G es finito, entonces $G_x \leq G$ es también finito, por lo que $[G:G_x] < \infty$ y como f es una biyección, $[G:G_x] = |O_x|$.

Corollary 2. Sea $\phi: G \times X \to X$ una acción transitiva y G, X finitos. Entonces para todo $x \in X$,

$$|G| = |X||G_x|.$$

Demostraci'on. Como ϕ es transitiva, en particular, $O_x=X$ para todo $x\in X$. Por el teorema de la óbrta estabilizadora, $|X|=|O_x|=[G:G_x]=\frac{|G|}{|G_x|}$ donde obtenemos la ecuación deseada. \square

Definition 7. Sea $\phi: G \times X \to X$ una acción. Decimos que $x \in X$ es un **punto fijo** si $g \cdot x = x$ para todo $g \in G$. Denotamos el conjunto de puntos fijos como

$$X_G := \{ x \in X \mid g \cdot x = x, \ \forall g \in G \}.$$

Lemma 2. Sea $\phi: G \times X \to X$ una acción. Los siguientes son equivalentes:

- 1. El punto $x \in X$ es fijo.
- 2. $O_x = \{x\}$.
- 3. $G_x = G$.

Demostración. Supongamos que $x \in X$ es un punto fijo. Entonces di $y \in O_x$, tenemos que $y = g \cdot x = x$. Si $O_x = \{x\}$, entonces para todo $g \in G$ tenemos que $g \cdot x \in O_x$, luego $g \cdot x = x$, por lo que $g \in G_x$. Finalmente, por la definición se comprueba que si $G_x = G$, entonces x es un punto fijo.

De aquí podemos deducir que $X_G = \bigsqcup_{x \in X_G} O_x$.

Theorem 5. Sea $\phi: G \times X \to X$ una acción. Si X es finito, entonces

$$|X| = |X_G| + \sum_{i=1}^n |O_{x_i}|,$$

para unos ciertos $x_i \in X$.

Demostración. Como las órbitas son clases de equivalencia, forman una partición de X, de manera que

$$X = \bigsqcup_{i=1}^{m} O_{x_i},$$

donde x_i son representantes de las clases de equivalencia. Supongamos que x_{n+1}, \ldots, x_m son puntos fijos. Entonces

$$X = \left(\bigsqcup_{i=1}^{n} O_{x_i}\right) \sqcup \left(\bigsqcup_{i=n+1}^{m} O_{x_i}\right) = \left(\bigsqcup_{i=1}^{n} O_{x_i}\right) \sqcup X_G.$$

Como el conjunto es finito y está compuesto por uniones disjuntas, entonces se puede calcular el cardinal de X de manera directa obteniendo la ecuación deseada.

Corollary 3 (Ecuación de clases). Sea G un grupo finito. Entonces

$$|G| = |Z(G)| + \sum_{i=1}^{n} [G : C(x_i)],$$

donde $x_i \in G$ son unos representantes para las clases de conjugación.

Demostración. Tomemos la acción por conjugación $\phi: G \times G \to G$ tal que $g \cdot x = gxg^{-1}$. Entonces G = X y es finito, por tanto, se da la ecuación del Teorema anterior. Además, por el Teorema de la órbita estabilizadora, $|O_{x_i}| = [G:G_{x_i}]$. Por lo que

$$|X| = |G_G| + \sum_{i=1}^{n} [G: G_{x_i}].$$

Basta calcular el estabilizador y el conjunto de puntos fijos. Vemos en primer lugar que

$$G_x = \{g \in G \mid g \cdot x\} = \{g \in G \mid xgx^{-1} = g\} = C(x).$$

Finalmente,

$$G_G = \{x \in G \mid g \cdot x = x, \ \forall g \in G\} = \{x \in G \mid xg = gx, \ \forall g \in G\} = Z(G),$$

obteniendo la ecuación deseada.

4. Teorema del conteo de órbitas

Definition 8. Sea $\phi: G \times X \to X$ una acción. Decimos que $x \in X$ está **fijado** por $g \in G$ si $g \cdot x = x$. Denotamos el conjunto de puntos fijados por $g \in G$ como

$$Fix_q(X) := \{ x \in X \mid g \cdot x = x \}.$$

Es claro ver que $X_G = \bigcap_{g \in G} \operatorname{Fix}_g(X)$. Denotaremos ahora X/G como el conjunto de órbitas para una acción, es decir, $X/G := X/\sim$ bajo la RBE del lema.

Theorem 6 (Conteo de órbitas). Sea $\phi: G \times X \to X$ una acción y G, X finitos. Entonces

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}_g(X)|.$$

Demostración. Empezamos tomando el cojunto $A = \{(g, x) \in G \times X \mid g \cdot x = x\}$. Por un lado, se puede comprobar que $(g, x) \in A$ si y solo si $x \in \text{Fix}_q(X)$. De este modo, obtenemos que

$$|A| = \sum_{g \in G} |\operatorname{Fix}_g(X)|.$$

Por otro lado, $(g,x) \in A$ si y solo si $g \in G_x$. Por tanto,

$$|A| = \sum_{x \in X} |G_x|.$$

Combinando las dos ecuaciones anteriores y por el Teorema de la órbita estabilizadora, tenemos que

$$\sum_{g \in G} |\operatorname{Fix}_g(X)| = \sum_{x \in X} |G_x| = \sum_{x \in X} \frac{|G|}{|O_x|} \Longrightarrow \frac{1}{|G|} \sum_{g \in G} |\operatorname{Fix}_g(X)| = \sum_{x \in X} \frac{1}{|O_x|}.$$

Ahora bien, fijémonos que, fijando un $x \in X$, $\sum_{y \in O_x} \frac{1}{|O_y|} = \sum_{y \in O_x} \frac{1}{|O_x|} = |O_x| \frac{1}{|O_x|} = 1$. De este modo,

$$\frac{1}{|O_x|} = \sum_{O_x \in X/G} \sum_{y \in O_y} \frac{1}{|O_x|} = \sum_{O_x \in X/G} 1 = |X/G|,$$

obteniendo la ecuación deseada.

5. Core

Theorem 7. Sea G grupo y $H \leq G$. Sea $X = \{xH\}_{x \in G}$ y consideremos la acción ϕ dada por $g \cdot xH = (gx)H$.

- 1. La acción ϕ es transitiva.
- 2. $G_{xH} = xHx^{-1}$.

Demostración. Es fácil ver que ϕ es una acción. Pare ver la transitividad, sean $x, y \in G$. Entonces tomando $g = yx^{-1} \in G$, obtenemos que $g \cdot xH = (gx)H = (yx^{-1}xH) = yH$.

Si $g \in G_{xH}$, entonces $g \cdot xH = (gx)H = xH$. Lo que implica que $(x^{-1}gx)H = H$, es decir, $x^{-1}gx \in H$ o, equivalentemente, $g \in xHx^{-1}$.

Definition 9. Sea G grupo y $H \leq G$. Definimos el **core** de H en G como

$$\operatorname{Core}_G(H) := \ker \widehat{\phi},$$

donde ϕ es la acción de las clases laterales.

Lemma 3. Sea G un grupo y $H \leq G$. Entonces

$$\operatorname{Core}_G(H) = \bigcap_{x \in G} x H x^{-1}.$$

Demostración. Sabemos que $\operatorname{Core}_G(H)$ es el núcleo del homomorfismo representación de la acción ϕ . Por teorema, $\ker \widehat{\phi} = \bigcap_{xH \in X} G_{xH}$. De este modo, por el teorema anterior, tenemos que $G_{xH} = xHx^{-1}$.

Proposition 4. Sea G grupo y $H \leq G$. Entonces

- 1. $Core_G(H) \subseteq G$.
- 2. $\operatorname{Core}_G(H) \leq H$.

Demostración. El core está definido como el núcleo del homomorfismo representación, luego es un subgrupo normal. Por otro lado, es fácil ver que $Core_G(H)$ es un subconjunto de H.

Theorem 8. $Core_G(H)$ es el mayor subgrupo normal contenido en H.

Demostración. Suop
ngamos que $N \leq G$ tal que $N \leq H$. Como N es normal, ent
onces para todo $x \in G$, tenemos que $N = xNx^{-1} \leq xHx^{-1}$. De este modo, tomando la intersección sobre todos los $x \in G$, tenemos que

$$N = \bigcap_{x \in G} xNx^{-1} \le \bigcap_{x \in G} xHx^{-1} = \operatorname{Core}_G(H),$$

luego el Core es el más grande que cumple con estas propiedades.

Theorem 9 (Generalizado de Caley). Sea G y $H \leq G$. Tomando X el conjunto de clases laterales de H, entonces $G/\operatorname{Core}_G(H)$ es isomorfo a un subgrupo de S(X).

Demostración. Sea ϕ la acción de las clases laterales y $\widehat{\phi}: G \to S(X)$. Como $\mathrm{Core}_G(H)$ es el núcleo de esta aplicación, entonces por el Primer Teorema de isomorfía se tiene.