Projeto Final - DocVQA

Luiza Amador Pozzobon

Janeiro de 2021

Abstract

O uso dos Transformers trouxe ganhos expressivos para o campo de processamento de linguagem natural nos últimos anos e modelos como o BERT e o T5 ganharam notoriedade pelo seu sucesso em explorar a etapa de pré-treinamento. Este projeto, portanto, explora diferentes estratégias de pré-treinamento de um modelo T5 para tarefas de visão e linguagem, onde as entradas são imagens e texto e as saídas são texto, com objetivo final de aplicação no conjunto de dados DocVQA. Julga-se que a estratégia ideal ainda não foi encontrada e nenhum dos experimentos trouxe resultados promissores.

1 Introdução

O campo de processamento de linguagem natural (Natural Language Processing ou NLP) sofreu uma revolução nos últimos anos com a ampla utilização do Transformer [8] para resolução de problemas como tradução de texto. O sucesso alcançado deve-se, principalmente, ao mecanismo de auto-atenção utilizado na arquitetura, que torna o modelo capaz de atentar-se a todo o contexto de uma sequência de entrada.

Com o uso da arquitetura citada como base, outros modelos obtiveram sucesso em tarefas de linguagem, como o BERT [2], que evidenciou a importância da etapa de pré-treino, e o T5 [5], criado com o intuito de unificar a resolução de tarefas relacionadas a texto em um framework texto-para-texto. A potência dos mecanismos de atenção ainda foi pouco explorada para imagens, entretanto, e o modelo que ganhou notoriedade até esse momento foi o Visual Transformer [3], que obteve 88,55% de acurácia top-1 para o dataset ImageNet, equivalente ao estado da arte. Esse sucesso traz como possibilidade a não necessidade do uso de convoluções para o processamento de imagens com redes profundas.

Quando se fala de problemas que misturam texto e imagem ($Visual\ and\ Language\ Tasks$, ou V+L), ainda não há clareza de qual abordagem é bem sucedida, talvez pelo campo ainda não ter estabelecido um dataset base para os testes, mas principalmente porque há duvidas sobre como representar conjuntamente os dados de imagem e de texto. Como abordagens para a tarefa, ressaltam-se

dois trabalhos: o LayoutLM [10] e o UNITER (UNiversal Image-TExt Representation) [1]. O primeiro utiliza tanto features da imagem, obtidos com auxílio de uma rede Faster-RCNN, como de OCR (Optical Character Recognition). O segundo, por sua vez, investe em um pré-treino complexo junto a um Transformer.

Neste trabalho, objetiva-se investigar métodos de pré-treino que poderiam auxiliar na tarefa V+L de entendimento de documentos com o conjunto de dados DocVQA ($Document\ Visual\ Question\ Answering$) [4]. O dataset é composto por cerca de 13 mil imagens e 50 mil perguntas de documentos de diversos segmentos industriais. As perguntas podem ser em relação ao conteúdo textual do documento, mas também sobre elementos de layout e disposição espacial das informações, então a utilização apenas do OCR ou apenas dos elementos da imagem é, provavelmente, insuficiente para resolução da tarefa.

Sendo assim, faz-se uso de um modelo T5 para tentativa de resolução da tarefa apresentada, que recebe como entrada, concatenados, tanto os embeddings da imagem, quanto os da pergunta relacionada a essa. Para resolução dessa tarefa, julga-se necessário que o modelo não só entenda o layout do documento, mas também que tenha noções de entendimento textual. Exploram-se estratégias de pré-treino com enfoque em duas tarefas principais: (1) OCR end-to-end do texto e (2) resolução de perguntas e respostas sobre o texto da imagem. A primeira estratégia utiliza o dataset SQuAD 2.0 (Stanford Question Answering Dataset) [6] para resolução das tarefas citadas em cascata. A segunda estratégia faz uso de um dataset sintético gerado a partir dos textos do WikiText, com algumas mudanças na arquitetura citada, que conta com adição do OCR da imagem, e das tarefas objetivadas, que são na linha de VQA e MLM (Masked Language Modeling).

2 Trabalhos Relacionados

2.1 Transformers

Os Transformers [8], redes que permitiram a revolução na resolução de problemas de linguagem natural nos últimos anos, baseiam-se no uso de mecanismos de atenção e na lógica encoder-decoder. O mecanismo fundamental dos Transformers é a camada de auto-atenção que permite que o modelo tenha acesso ao contexto completo da sequência observada. A camada de auto-atenção é calculada de acordo com a Equação 1, onde Q, K e V são embeddings obtidos a partir da sequência de entrada e d_k é um fator de estabilização da equação obtido a partir da dimensão do modelo d_{model} .

$$Auto - Atencão = softmax(\frac{QK^T}{\sqrt{d_k}})V$$
 (1)

2.2 Text-to-Text Transfer Transformer

A transferência de aprendizagem, ou Transfer Learning, quando um modelo é pré-treinado para uma tarefa em que há abundância de dados antes de ser treinado para uma mais específica, mostrou-se eficiente não só no campo de processamento de imagens, mas também no de linguagem natural. Raffel et al. (2019) exploram a técnica no contexto de NLP (Natural Language Processing) e comparam arquiteturas, objetivos e métodos de transferência em diversas tarefas relacionadas ao entendimento da linguagem. Como resultado, chegam à arquitetura chamada T5 (Text-to-Text Transfer Transformer) [5], que é um framework texto-para-texto capaz de performar mais de uma tarefa com o mesmo modelo, função de custo, hiperparâmetros, etc., diferenciadas por uma string adicionada à sequência de entrada. Na Figura 1 está o esquemático de entrada e saída do T5.

Figure 1: No T5, modelo texto-para-texto, as tarefas são delimitadas pelo prefixo no texto de entrada.

3 Metodologia

Com base nos trabalhos apresentados, como o BERT e o T5, hipotetiza-se que uma etapa de pré-treino bem desenvolvida é crucial e suficiente para facilitar a resolução de tarefas complexas como as do DocVQA. Sendo assim, há um enfoque maior na estratégia de pré-treino e manteve-se o modelo base como um T5 quase inalterado. A seguir, então, são apresentadas a arquitetura e a lógica de pré-treino utilizadas, além de uma análise exploratória preliminar que guiou o trabalho.

3.1 Exploração do DocVQA

Conduziu-se uma breve análise exploratória do conjunto de dados DocVQA para compreender a natureza das imagens, principalmente, do texto presente nas imagens, das perguntas e das respostas. Todos os dados foram colhidos a partir do conjunto de validação. Na Tabela 1 estão alguns dos dados observados, bem como na Figura 2 está a distribuição da proporção de altura/largura das imagens. Ainda, nota-se que as perguntas são no geral relacionadas ao texto

do documento ou à interação de elementos não textuais com o texto. A seguir alguns exemplos de perguntas do conjunto de dados:

- "What is the date on the 'form'?"
- "What is the page number?"
- "In which year did Michael receive his PhD?"
- "What is the number written in the credit field?"
- "What is written within the circle at the bottom of the" page?

Table 1: Especificações do conjunto de validação do dataset DocVQA.

	Média	Mediana	Máximo
Quantia de palavras no OCR	199	159	1176
Altura da imagem (px)	2084	2207	7184
Largura da imagem (px)	1776	1706	6921

Figure 2: Distribuição da proporção de altura por largura das imagens do dataset DocVQA.

3.2 Arquitetura

Como arquitetura principal e preliminar, fez-se uso de modelo T5-base completo que recebe como entrada, concatenados, os embeddings da imagem e os da pergunta relacionada a essa.

Os embeddings de imagem são obtidos a partir de uma camada convolucional de 384 canais, com tamanho de kernel 28, stride 24 e padding 4, que gera patches de 32 × 24 pixels. Esses patches são então redimensionados para obtermos embeddings de tamanho $N\times384\times d_{model}$, sendo N o tamanho do batch e $d_{model}=768$ para o caso do T5-base. De acordo com a exploração do dataset Doc VQA apresentada, definiu-se o formato de $3\times768\times576$ para as imagens de entrada, visto que no conjunto de dados as imagens no geral possuem uma altura maior que a largura.

As perguntas relacionadas às imagens tem tamanho de sequência máximo de 20 e seus embeddings são obtidos a partir daqueles já conhecidos pelo modelo (pela camada shared do modelo da biblioteca utilizada, HuggingFace [9]). Somam-se embeddings posicionais aos embeddings de texto. A seguir, concatenam-se os embeddings das imagens aos das perguntas, resultando em embeddings finais de tamanho $N \times 404 \times 768$. Na estratégia de pré-treino com o dataset WikiText, houve ainda a concatenação do OCR da imagem, com tamanho de sequência de 128 tokens, o que resultou em uma entrada máxima no T5 de $N \times 532 \times 768$. Na Figura 3 está a arquitetura proposta.

3.3 Estratégias de pré-treino

Conforme mencionado, a hipótese é que para o sucesso da tarefa de perguntas e respostas de documentos no conjunto de dados Doc VQA o modelo necessite de habilidades que vão desde a leitura do texto (OCR), até o entendimento da disposição das informações na página e no próprio texto. Sendo assim, estruturaram-se duas estratégias de pré-treino, uma utilizando o conjunto de dados SQuAD 2.0 e outra com o WikiText, mas com foco em duas tarefas: (1) leitura do texto da imagem $(OCR\ end-to-end)$ e (2) $Visual\ Question\ Answering$, ou perguntas e respostas sobre o texto da imagem.

4 Conjuntos de dados

4.1 SQuAD 2.0

O Stanford Question Answering Dataset foi construído para auxilio na resolução de tarefas de entendimento de linguagem natural, mais especificamente para a de perguntas e respostas acerca de um fragmento textual. A versão 2.0 combina os dados presentes no SQuAD 1.0 [7] com mais de 50.000 amostras cuja resposta para a pergunta não está presente no texto, resultando em mais de 150.000 amostras no conjunto de dados. Conforme os autores, para um sistema performar bem no SQuAD 2.0, é necessário que esse não só seja capaz de en-

Figure 3: Arquitetura dos modelos e fluxo dos dados nos experimentos.

contrar a resposta no parágrafo fornecido, mas também que consiga discernir se a resposta está presente nele ou não [6].

Para ambas as tarefas, constrói-se um dataset de imagens sintéticas com o texto disposto em uma imagem de fundo branco. O ponto âncora do texto varia horizontalmente de 10 a 30 pixels e verticalmente de 10 a $0.4 \times image_height$ pixels e a fonte, Arial, pode variar de 10 a 16 pt. Em uma mesma época de treino, os textos das imagens se repetem k=1,2,... vezes, com variações de tamanho de letra e ancoragem, visto que cada imagem possui k perguntas associadas a elas.

Na tarefa de OCR, o texto da imagem e aquele previsto pelo modelo tem tamanhos máximos de 128 tokens. Na tarefa de perguntas e respostas sobre o texto, mantiveram-se as mesmas configurações da tarefa anterior, mas adicionou-se um ruído gaussiano de -30 a 30 na imagem. Nesta etapa, espera-se que o modelo já tenha a habilidade de ler o texto da imagem e que agora passe a "entendê-lo" suficientemente bem para responder as perguntas propostas pelo conjunto de dados.

Table 2: Perguntas geradas no dataset sintético e mascarado de perguntas e respostas do WikiText.

Perguntas presentes no dataset	Tradução
Which are all the masked tokens?	Quais são todos os tokens mascarados?
What is the first masked token?	Qual é o primeiro token mascarado?
What is the word after/before the first/last covered token?	Qual é a palavra após o primeiro/depois do último token mascarado?
How many masked words are there?	Quantas palavras mascaradas existem?
What is the first/last word of the sentence?	Qual é a primeira/última palavra da sentença?
What is the whole sentence?	Qual é a sentença completa?

4.1.1 WikiText

Foram selecionadas 1 milhão de amostras do WikiText para o conjunto de treino, mil para validação e mil para teste. A tarefa foi estruturada a partir da união de duas: (1) o $Masked\ Language\ Modeling\ (MLM)$ conforme apresentado pelo BERT e explorado similarmente pelo T5, onde é feita a predição das palavras mascaradas de uma sequência de texto [2, 5]; e (2) a tarefa de perguntas e respostas (VQA).

Das 128 palavras máximas da sequência de entrada, 15% são escolhidas aleatoriamente para o mascaramento. Dessas, 10% podem ser inalteradas (não mascaradas), 10% trocadas por um token aleatório e 80% mascaradas com "[MASK i]", onde i vai de 0 até o número total de palavras mascaradas na sequência menos um. Produzem-se perguntas e respostas acerca do texto modificado, que é alocado em uma imagem com ruído gaussiano de -30 a 30 e âncora de texto variável. Para cada amostra, um par de pergunta e resposta é sorteado aleatoriamente e o conjunto de dados tem tarefas relacionadas tanto a OCR quanto a $Visual\ Question\ Answering$.

Na Tabela 2 observam-se as possibilidades de perguntas do *dataset* sintético e no Apêndice A estão os exemplos do mascaramento, das perguntas e respostas geradas e uma amostra do conjunto de dados.

5 Experimentos

A seguir são expostas as métricas utilizadas para validação dos modelos, bem como os resultados obtidos para cada método de pré-treino. Os hiperparâmetros dos experimentos são visualizados no Apêndice A.

5.1 Métricas

Duas métricas foram utilizadas para a avaliação dos modelos, conforme apresentado junto ao conjunto SQuAD 1.0 [7]. Essas ignoram pontuações e artigos da língua inglesa (a, an, the).

Exact Match. Métrica que mede a percentagem de predições que correspondem exatamente àquelas do conjunto de *labels*.

Pontuação F1. As predições e os *labels* são tratados como uma bolsa de *tokens* e a pontuação F1 é calculada conforme a Equação 2.

$$F1 = 2 \frac{precision \cdot recall}{precision + recall} \tag{2}$$

5.2 Pré-treino com o SQuAD 2.0

Idealizou-se que o pré-treinamento para a tarefa de OCR seria de grande valia para a tarefa de VQA, especialmente se utilizando o mesmo conjunto de dados, que por sua vez seria crucial para resolução do DocVQA. Sendo assim o segundo pré-treino dessa estratégia é iniciado a partir do melhor *checkpoint* do primeiro.

5.2.1 Tarefa de OCR

Na tarefa de OCR, o modelo treinou por quase 5 dias e obteve pontuação F1 de validação máxima de 20% e exact match sempre zero, conforme Figura 4. Observando amostras de predições de validação, nota-se que o modelo provavelmente memorizou algumas amostras de texto, as quais devem ter aumentado a pontuação F1 (mas não completamente, pois não conseguiu nenhuma pontuação na métrica de exact match), enquanto que para a maioria das outras amostras o texto predito nada tem a ver com o que está na imagem.

O modelo foi capaz de realizar um *overfit* para um teste preliminar com dois *batches* e atingiu pontuação F1 de 96%. Devido a esse resultado, julga-se que a falta de sucesso no treino completo possa estar nos parâmetros associados, no tempo de treino ou no *dataset* em questão, que é parcialmente sintético.

5.2.2 Tarefa de VQA

Mesmo com a falta de sucesso da tarefa anterior, foi realizado o experimento de VQA para o $dataset\ SQuAD\ 2.0$. Fez-se uso do melhor checkpoint de OCR para treinar o modelo por mais um dia e, embora a perda tenha reduzido bruscamente para níveis muito inferiores aos da etapa anterior, nenhuma das métricas acompanhou essa mudança e ambas permaneceram próximas de zero de acordo com a Figura 5.

5.3 Treino no DocVQA

Como o pré-treino para a tarefa de VQA não resultou em pontuações maiores que zero, o treino no DocVQA foi realizado a partir do melhor checkpoint de pré-treino de OCR. Entretanto, conforme o esperado devido às baixas pontuações, após quase dois dias de treino, o modelo não foi bem sucedido na tarefa final, atingindo no máximo 1,5% de pontuação F1 de validação e o exact match permaneceu próximo de zero, como na Figura 6.

5.4 Pré-treino com o WikiText

O pré-treino com o conjunto WikiText utiliza a arquitetura com adição do OCR do texto e faz uso das imagens, perguntas e respostas sintéticas produzidas

especificamente para esse experimento, conforme apresentado. Na Figura 7 observa-se a progressão de perda, de pontuação F1 e de *Exact Match*. A primeira métrica teve seu máximo em 1,8% e a segunda em 1,5%.

Diferentemente das outras tarefas, aqui a perda não regrediu de forma agradável e permaneceu ruidosa durante todo o período de treino. O modelo, por sua vez, sempre retornava a mesma resposta repetida n vezes, o que explica a similaridade dos gráficos das métricas. É necessária uma investigação mais criteriosa do dataset já que é onde estão, provavelmente, os erros e bugs introduzidos ao sistema.

Figure 4: Gráficos de perda e pontuação F1 de validação durante o pré-treino para a tarefa de OCR com o dataset SQuAD 2.0.

Figure 5: Gráficos de perda e pontuação F1 de validação durante o pré-treino para a tarefa de VQA com o dataset SQuAD 2.0.

Figure 6: Gráficos de perda e pontuação F1 de validação durante o treino no dataset DocVQA.

Figure 7: Gráficos de perda, pontuação F1 e exact match de validação durante o treino no dataset WikiText de imagens sintéticas e com mascaramento.

6 Conclusão

Neste relatório foram apresentados experimentos de pré-treino para tentativa de resolução da tarefa de perguntas e respostas acerca dos documentos do dataset Doc VQA. Embora nenhuma das tentativas tenha sido bem sucedida, ainda é de entendimento da autora a necessidade de encontrar a(s) tarefa(s) de pré-treino corretas para a resolução da tarefa. De acordo com o que vem sendo apresentado na literatura, essa etapa é crucial para a resolução de problemas complexos, como é o caso do Doc VQA, que une leitura e entendimento de texto a entendimento de layout e de disposição de elementos não textuais.

References

[1] Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and Jingjing Liu. Uniter: Universal image-text representation learning. In *European Conference on Computer Vision*, pages 104–120. Springer, 2020.

- [2] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.
- [3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929, 2020.
- [4] Minesh Mathew, Dimosthenis Karatzas, R Manmatha, and CV Jawahar. Docvqa: A dataset for vqa on document images. arXiv preprint arXiv:2007.00398, 2020.
- [5] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683, 2019.
- [6] Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don't know: Unanswerable questions for squad. arXiv preprint arXiv:1806.03822, 2018.
- [7] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.
- [8] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998– 6008, 2017.
- [9] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface's transformers: State-of-the-art natural language processing. ArXiv, pages arXiv-1910, 2019.
- [10] Yiheng Xu, Minghao Li, Lei Cui, Shaohan Huang, Furu Wei, and Ming Zhou. Layoutlm: Pre-training of text and layout for document image understanding. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1192–1200, 2020.

A Apêndice

A.1 VQA Sintético com WikiText

Nas Figuras 8 e 9 estão, respectivamente, uma amostra do *dataset* sintético gerado e as possíveis perguntas e respostas geradas para um exemplo simples de sequência de texto.

The Indroda Dinosaur and Fossil Park in Gandhinagar, Gujarat in the state of Gujarat, India, is a [MASK 0] which houses the fossilized remains and the petrified eggs of the dinosaurs. It [MASK 1] technically a man made fossil park and [MASK 2] [MASK 3] actual nesting grounds where the dinosaurs lived. The eggs and fossils [MASK 4] display here are actually from the world's 3rd largest dinosaur fossil excavation site and 2nd largest hatchery located at Raiyoli, Balasinor, [MASK 5] The Park was set up [MASK 6] the Geological [MASK 7] of India and [MASK 8] the only dinosaur museum in the country. The Park is run by the Gujarat Ecological and Research Foundation (GEER)

Figure 8: Exemplo de uma amostra do conjunto de dados sintético de perguntas e respostas gerado com o WikiText. As imagens geradas para os experimentos do SQuAD são similares a esta, com ou sem o ruído de fundo, mas sem o mascaramento das palavras.

Pergunta: "Which are all the masked tokens?"

Resposta: "park, is, not, the, on, Gujarat., by, Survey, is"

```
Original text and mask: ['oi' 'como' 'está' 'você'] [0 1 0 1] {
    "Which are all the masked tokens?": "como, você",
    "What is the first masked token?": "como",
    "What is the word after the first covered token?": "está",
    "How many masked words are there?": "2",
    "What is the first word of the sentence?": "oi",
    "What is the whole sentence?": "oi como está você"
}
```

Figure 9: Exemplo de uma sequência de texto tokenizada, a máscara e as possibilidades de perguntas e respostas geradas.

A.2 Hiperparâmetros

Os hiperparâmetros para todos os experimentos quase não foram modificados e seus valores são observados na Tabela 3.

Table 3: Hiperparâmetros utilizados nos experimentos.

Modelo base	t5-base
Otimizador	Adafactor
Batch Size - Treino	2
Batch Size - Validação	2
Tamanho de sequência de saída (Squad-OCR)	256
Tamanho de sequência de saída (Squad-VQA)	256
Tamanho de sequência de saída (Squad-DocVQA)	128
Tamanho de sequência de saída (WikiText)	128
Tamanho de sequência das perguntas	20
Learning Rate	5e-4 ou 1e-4