Probleme date la examenul de logică matematică și computațională. Partea a IV-a

Claudia MUREŞAN

Universitatea din București
Facultatea de Matematică și Informatică
Academiei 14, RO 010014, București, România
Emailuri: c.muresan@yahoo.com, cmuresan11@gmail.com

Abstract

Textul de față conține o colecție de probleme de diferite tipuri date de autoare la examenul aferent cursului de logică matematică și computațională din anul I de studiu al Facultății de Matematică și Informatică a Universității din București.

Peste tot în acest text, prescurtarea ddacă va semnifica "dacă și numai dacă".

Amintim următoarea notație: pentru orice $m,n\in\mathbb{Z}$ cu $m\leq n$, se notează $\overline{m,n}=\{m,m+1,\ldots,n-1,n\}\subset\mathbb{Z}.$

Fie A o mulțime oarecare. Amintim că o relație binară pe A este o submulțime a produsului cartezian $A \times A$, produs notat și A^2 ; în particular, A^2 este o relație binară pe A, anume cea mai mare relație binară pe A raportat la relația de incluziune între relații binare pe A.

Dacă R şi S sunt două relații binare pe A, atunci, prin definiție, compunerea lor este următoarea relație binară pe A: $R \circ S = \{(a,c) \in A \times A \mid (\exists b \in A)(a,b) \in S$ şi $(b,c) \in R\}$. De asemenea, pentru orice n natural, R^n este o relație binară pe A, definită prin: $R^0 = \Delta_A = \{(a,a) \mid a \in A\}$ (diagonala lui A) şi, pentru orice n natural, $R^{n+1} = R^n \circ R$. Este evident că Δ_A este element neutru la compunerea de relații binare pe A (atât la stânga, cât și la dreapta), și deci $R^1 = R$.

Compunerea relațiilor binare pe A este asociativă și, în general, necomutativă. În cazul particular al compunerii puterilor aceleiași relații binare pe A însă, este satisfăcută comutativitatea, ea fiind implicată de asociativitatea compunerii; într-adevăr, asociativitatea compunerii oricăror relații

binare pe A ne asigură de faptul că, în şirul de compuneri de mai jos, nu contează unde punem parantezele, şi, prin urmare, pentru orice $n, k \in \mathbb{N}^*$, este valabil următorul şir de egalități: $R^n \circ R^k = (R \circ \ldots \circ R) \circ (R \circ \ldots \circ R) =$

$$\underbrace{(R \circ \ldots \circ R)}_{n + k \text{ de } R} = \underbrace{(R \circ \ldots \circ R)}_{k \text{ de } R} \circ \underbrace{(R \circ \ldots \circ R)}_{n \text{ de } R} = \underbrace{(R \circ \ldots \circ R)}_{n \text{ de } R} \circ R^n. \text{ Privind, în acest}$$
 şir de egalități, primul membru, membrul din mijloc şi ultimul membru,

şir de egalități, primul membru, membrul din mijloc şi ultimul membru, putem adăuga faptul că: $R^n \circ R^k = R^{n+k} = R^k \circ R^n$. Faptul că $\Delta_A = R^0$ este element neutru la compunere şi deci, pentru orice $n \in \mathbb{N}$, $R^n \circ R^0 = R^n \circ \Delta_A = R^n = \Delta_A \circ R^n = R^0 \circ R^n$ (şi, desigur, $R^n = R^{n+0}$), ne arată că relația $R^n \circ R^k = R^{n+k} = R^k \circ R^n$ este valabilă pentru orice $n, k \in \mathbb{N}$ (nu neapărat nenule). În fapt, se poate arăta că această relație este valabilă pentru orice $n, k \in \mathbb{Z}$, dacă definim R^{-1} ca mai jos şi, pentru orice $n \in \mathbb{N}^*$, definim $R^{-n} = (R^{-1})^n$; dar nu vom folosi această generalizare în cele ce urmează.

Inversa relației R este o relație binară pe A notată R^{-1} și definită prin: $R^{-1} = \{(b,a) \in A^2 \mid (a,b) \in R\}$. Amintim că $(R \circ S)^{-1} = S^{-1} \circ R^{-1}$.

1 Lista 1 de subiecte

Exercițiul 1.1. Fie A o mulțime nevidă și R o relație binară tranzitivă pe A. Demonstrați că:

- (i) pentru orice n natural nenul, $R^{n+1} \subseteq R^n$:
- (ii) pentru orice n natural, R^n este tranzitivă.

Rezolvare: Fie S o relație binară oarecare pe A. Conform definiției, S este tranzitivă ddacă, pentru orice $a,b,c\in A$, dacă $(a,b)\in S$ și $(b,c)\in S$, atunci $(a,c)\in S$, ceea ce este echivalent cu faptul că $S^2\subseteq S$.

(i) Procedăm prin inducție matematică după n natural nenul. Pentru n=1, conform celor de mai sus, $R^2\subseteq R$ pentru că R este tranzitivă. Presupunând relația $R^{n+1}\subseteq R^n$ valabilă pentru un n natural nenul arbitrar, fixat, compunem în această relație cu R (nu contează dacă aplicăm compunerea la dreapta sau la stânga, datorită comutativității demonstrate mai sus pe un caz particular în care ne încadrăm aici) și obținem: $R^{n+2}\subseteq R^{n+1}$. Conform principiului inducției matematice, rezultă că $R^{n+1}\subseteq R^n$ pentru orice n natural nenul.

(ii) Pentru $n=0,\ R^0=\Delta_A$ este tranzitivă întrucât $\Delta_A^2=\Delta_A\circ\Delta_A=$ $\Delta_A \supseteq \Delta_A$. Putem menţiona că, pentru $n=1, R^1=R$ este tranzitivă din ipoteză, cu toate că acest caz este cuprins în următorul. Pentru orice nnatural nenul, $2n > n \ge 1$, aşadar, conform punctului (i), $R^{2n} \subseteq R^{2n-1} \subseteq$ $\ldots \subseteq R^{n+1} \subseteq R^n$, prin urmare $(R^n)^2 = R^{2n} \subseteq R^n$ și deci R^n este tranzitivă.

Exercitiul 1.2. Considerăm algebra Boole standard $\mathcal{L}_2 = \{0, 1\}, cu \ 0 \le 1,$ ca submulțime a mulțimii numerelor naturale: $\mathcal{L}_2 = \{0,1\} \subset \mathbb{N}$, având relația de ordine dată de ordinea naturală de pe N și operațiile disjuncție, conjuncție și negație definite uzual: pentru orice $x, y \in \mathcal{L}_2, x \lor y = \max\{x, y\}$, $x \wedge y = \min\{x,y\}, \ \overline{x} = 1 - x.$ Fie n natural nenul și algebra Boole

 $(\mathcal{L}_{2}^{n}, \vee, \wedge, \bar{}, 0_{n}, 1_{n}), \ cu \ \mathcal{L}_{2}^{n} = \prod_{i=1}^{n} \mathcal{L}_{2} = \{(x_{1}, x_{2}, \dots, x_{n}) \mid x_{1}, x_{2}, \dots, x_{n} \in \mathcal{L}_{2}\}$ si operațiile definite uzual, pe componente, pe baza operațiilor lui \mathcal{L}_{2} :

pentru orice $(x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n) \in \mathcal{L}_2^n$ ca mai sus:

$$\begin{cases} (x_1, x_2, \dots, x_n) \lor (y_1, y_2, \dots, y_n) = (x_1 \lor y_1, x_2 \lor y_2, \dots, x_n \lor y_n), \\ (x_1, x_2, \dots, x_n) \land (y_1, y_2, \dots, y_n) = (x_1 \land y_1, x_2 \land y_2, \dots, x_n \land y_n), \\ \hline (x_1, x_2, \dots, x_n) = (\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}), \\ 0_n = \underbrace{(0, 0, \dots, 0)}_{n \ de \ 0}, \\ 1_n = \underbrace{(1, 1, \dots, 1)}_{n \ de \ 1}. \end{cases}$$

Relația de ordine de pe \mathcal{L}_2^n , notată \leq , este definită pe baza relației de ordine de pe \mathcal{L}_2 astfel: pentru orice $(x_1, x_2, \ldots, x_n), (y_1, y_2, \ldots, y_n) \in \mathcal{L}_2^n$, are loc $(x_1,x_2,\ldots,x_n) \leq (y_1,y_2,\ldots,y_n) \ ddac\ x_1 \leq y_1, \ x_2 \leq y_2, \ \ldots, \ x_{n-1} \leq y_n \leq y_n \leq y_n \leq y_n$ y_{n-1} $i x_n \leq y_n$.

Pentru orice k natural, notăm $A_k = \{(x_1, x_2, \dots, x_n) \in \mathcal{L}_2^n \mid x_1 + x_2 + \dots \}$ $\ldots + x_n = k \} \subseteq \mathcal{L}_2^n$, unde operația + este adunarea obișnuită din \mathbb{N} . Demonstrați că:

- (i) $\mathcal{L}_2^n = A_0 \cup A_1 \cup \ldots A_n$ şi mulţimile A_k , cu $k \in \mathbb{N}$, sunt două câte două disjuncte;
- (ii) $A_k \neq \emptyset \ ddac \ \ k \in \overline{0, n}$;
- (iii) pentru orice $k \in \overline{0,n}$ și orice $x \in A_k$, are loc: $\overline{x} \in A_{n-k}$;

- (iv) pentru orice $k, l \in \overline{0, n}$, orice $x \in A_k$ și orice $y \in A_l$, au loc: $x \vee y \in \bigcup_{j=\max\{k,l\}}^{k+l} A_j$ și $x \wedge y \in \bigcup_{j=0}^{\min\{k,l\}} A_j$;
- (v) pentru orice $k \in \overline{0,n}$ şi orice $x \in A_k$, filtrul principal generat de x în algebra Boole \mathcal{L}_2^n , notat < x >, are proprietățile: $< x > \subseteq \bigcup_{j=k}^n A_j$ şi cardinalul său este $|< x >| = 2^{n-k}$.

Rezolvare: (i) Pentru orice $x = (x_1, x_2, \dots, x_n) \in \mathcal{L}_2^n$, avem: $x_1, x_2, \dots, x_n \in \mathcal{L}_2 = \{0, 1\}$, aşadar $0 \le x_j \le 1$ pentru orice $j \in \overline{1, n}$, şi deci $0 = \underbrace{0 + 0 + \dots + 0}_{n \text{ de } 0} \le x_1 + x_2 + \dots + x_n \le \underbrace{1 + 1 + \dots + 1}_{n \text{ de } 1} = n$, aşadar $x \in \overline{n \text{ de } 1}$

 $A_0 \cup A_1 \cup \ldots A_n$. Am obţinut: $\mathcal{L}_2^n \subseteq A_0 \cup A_1 \cup \ldots A_n$. Dar, prin definiţie, $A_k \subseteq \mathcal{L}_2^n$ pentru orice $k \in \mathbb{N}$, prin urmare avem şi incluziunea în sens invers: $A_0 \cup A_1 \cup \ldots A_n \subseteq \mathcal{L}_2^n$. Deci $\mathcal{L}_2^n = A_0 \cup A_1 \cup \ldots A_n$.

Conform definiției mulțimilor A_k , cu $k \in \mathbb{N}$, pentru orice $k_1, k_2 \in \mathbb{N}$ cu $k_1 \neq k_2$ și orice $x = (x_1, x_2, \dots, x_n) \in A_{k_1}$, avem $x_1 + x_2 + \dots + x_n = k_1 \neq k_2$, deci $x = (x_1, x_2, \dots, x_n) \notin A_{k_2}$. Așadar $A_{k_1} \cap A_{k_2} = \emptyset$, și deci mulțimile A_k , cu $k \in \mathbb{N}$, sunt două câte două disjuncte.

(ii) Este evident că, pentru orice $k \in \overline{0,n}$, $A_k \neq \emptyset$, pentru că, de exemplu, $(\underbrace{1,1,\ldots,1}_{},\underbrace{0,0,\ldots,0}_{}) \in A_k$.

 $k \text{ de } 1 \quad n-k \text{ de } 0$

Acum fie $k \in \mathbb{N} \setminus \overline{0,n}$. Presupunem prin absurd că există $x \in A_k$. Conform punctului (i), A_k este disjunctă de fiecare dintre mulţimile A_0, \ldots, A_n , așadar $x \notin A_0, \ldots, x \notin A_n$, deci $x \notin A_0 \cup \ldots \cup A_n = \mathcal{L}_2^n$ (am aplicat din nou punctul (i)). Dar, prin ipoteză, $x \in A_k \subseteq \mathcal{L}_2^n$. Am obţinut $x \in \mathcal{L}_2^n$ și $x \notin \mathcal{L}_2^n$; contradicție. Prin urmare, $A_k = \emptyset$ pentru orice $k \in \mathbb{N} \setminus \overline{0,n}$.

Demonstrația punctului (ii) este completă.

- (iii) Fie $k \in \overline{0,n}$ şi $x = (x_1, x_2, \dots, x_n) \in A_k$, aşadar $x_1 + x_2 + \dots + x_n = k$. $\overline{x} = (\overline{x_1}, \overline{x_2}, \dots, \overline{x_n}) = (1 x_1, 1 x_2, \dots, 1 x_n)$, prin urmare $\overline{x} \in A_j$, cu $j = \overline{x_1} + \overline{x_2} + \dots + \overline{x_n} = 1 x_1 + 1 x_2 + \dots + 1 x_n = n (x_1 + x_2 + \dots + x_n) = n k$, deci $\overline{x} \in A_{n-k}$.
- (iv) Să observăm că, pentru orice $p \in \overline{0,n}$ şi orice $z = (z_1, z_2, \dots, z_n) \in \mathcal{L}_2^n$, are loc: $z \in A_p$ ddacă $z_1 + z_2 + \dots + z_n = p$ ddacă există o submulţime $P \subseteq \overline{1,n}$ astfel încât |P| = p şi:

$$\begin{cases} (\forall j \in P) & z_j = 1, \\ (\forall j \in \overline{1, n} \setminus P) & z_j = 0, \end{cases}$$

deoarece $z_1, z_2, ..., z_n \in \mathcal{L}_2 = \{0, 1\}.$

Fie $k, l \in \overline{0, n}, x = (x_1, x_2, \dots, x_n) \in A_k$ și $y = (y_1, y_2, \dots, y_n) \in A_l$, aşadar există submulțimile $K \subseteq \overline{1,n}$ și $L \subseteq \overline{1,n}$, astfel încât |K| = k, |L|=l și:

$$\begin{cases} (\forall j \in K) & x_j = 1, \\ (\forall j \in \overline{1, n} \setminus K) & x_j = 0, \\ (\forall j \in L) & y_j = 1, \\ (\forall j \in \overline{1, n} \setminus L) & y_j = 0. \end{cases}$$

 $x \vee y = (x_1 \vee y_1, x_2 \vee y_2, \dots, x_n \vee y_n)$ şi avem:

$$\begin{cases} (\forall j \in K \cup L) & x_j \lor y_j = 1, \\ (\forall j \in \overline{1, n} \setminus (K \cup L))) & x_j \lor y_j = 0, \end{cases}$$

prin urmare $x \vee y \in A_{|K \cup L|}$. Dar $K \subseteq K \cup L$ şi $L \subseteq K \cup L$, aşadar $k = |K| \le |K \cup L|$ şi $l = |L| \le |K \cup L|$, deci $\max\{k, l\} \le |K \cup L|$. Pe de altă parte, $|K \cup L| = |K| + |L| - |K \cap L| \le |K| + |L| = k + l$. Am obținut: $x \vee y \in A_{|K \cup L|}$ și $\max\{k,l\} \leq |K \cup L| \leq k+l$, de unde rezultă că

$$x \vee y \in \bigcup_{j=\max\{k,l\}}^{k+l} A_j.$$

 $x \wedge y = (x_1 \wedge y_1, x_2 \wedge y_2, \dots, x_n \wedge y_n)$ şi avem:

$$\begin{cases} (\forall j \in K \cap L) & x_j \wedge y_j = 1, \\ (\forall j \in \overline{1, n} \setminus (K \cap L))) & x_j \wedge y_j = 0, \end{cases}$$

prin urmare $x \wedge y \in A_{|K \cap L|}$. Dar $K \cap L \subseteq K$ şi $K \cap L \subseteq L$, aşadar $|K \cap L| \le |K| = k$ şi $|K \cap L| \le |L| = l$, deci $0 \le |K \cap L| \le \min\{k, l\}$. Am obținut: $x \wedge y \in A_{|K \cap L|}$ și $0 \leq |K \cup L| \leq \min\{k, l\}$, de unde rezultă că

$$x \wedge y \in \bigcup_{j=0}^{C^{(j)}} A_j.$$

(v) Fie $k \in \overline{0,n}$ și $x = (x_1, x_2, \dots, x_n) \in A_k$. Ştim că filtrul principal generat de un element într-o algebră Boole este mulțimea majoranților acelui element din respectiva algebră Boole, așadar: $\langle x \rangle = \{y \in \mathcal{L}_2^n \mid x \leq$ y} = { $y = (y_1, y_2, ..., y_n) \in \mathcal{L}_2^n \mid x_1 \le y_1, x_2 \le y_2, ..., x_n \le y_n$ }. Rezultă că, pentru orice $y=(y_1,y_2,\ldots,y_n) \in \langle x \rangle, \ k=x_1+x_2+\ldots+x_n \leq$ $y_1 + y_2 + \ldots + y_n \leq \underbrace{1 + 1 + \ldots + 1}_{n \text{ de } 1} = n, \text{ aşadar } y_1 + y_2 + \ldots + y_n \in \overline{k, n},$ $\text{prin urmare } y \in \bigcup_{j=k}^n A_j. \text{ Am obţinut: } \langle x \rangle \subseteq \bigcup_{j=k}^n A_j.$

prin urmare
$$y \in \bigcup_{j=k}^{n} A_j$$
. Am obţinut: $\langle x \rangle \subseteq \bigcup_{j=k}^{n} A_j$

Pentru a calcula cardinalul filtrului generat de x, avem nevoie de o exprimare mai precisă a elementelor acestui filtru. Conform observației de la începutul rezolvării punctului (iv), faptul că $x = (x_1, x_2, \ldots, x_n) \in A_k$ este echivalent cu faptul că există $K \subseteq \overline{1, n}$, având |K| = k, astfel încât:

$$\begin{cases} (\forall j \in K) & x_j = 1, \\ (\forall j \in \overline{1, n} \setminus K) & x_j = 0. \end{cases}$$

Rezultă: $\langle x \rangle = \{y \in \mathcal{L}_2^n \mid x \leq y\} = \{y = (y_1, y_2, \dots, y_n) \in \mathcal{L}_2^n \mid x_1 \leq y_1, x_2 \leq y_2, \dots, x_n \leq y_n\} = \{y = (y_1, y_2, \dots, y_n) \in \mathcal{L}_2^n \mid (\forall j \in K) 1 \leq y_j, (\forall j \in \overline{1, n} \setminus K) 0 \leq y_j\} = \{y = (y_1, y_2, \dots, y_n) \in \mathcal{L}_2^n \mid (\forall j \in K) y_j = 1\},$ celelalte componente ale unui element y care majorează pe x putând lua orice valoare, deoarece componentele corespunzătoare ale lui x au valoarea 0. Așadar, pentru orice $y \in \langle x \rangle$, k componente ale lui y sunt fixate, putând lua doar valoarea 1, iar celelalte n-k componente pot lua oricare dintre valorile 0 și 1, deci fiecare dintre aceste n-k componente poate lua 2 valori. Numărul acestor elemente $y \in \langle x \rangle$ este așadar egal cu $\underbrace{2 \cdot 2 \cdot \ldots \cdot 2}_{n-k} = 2^{n-k}$, prin urmare $|\langle x \rangle| = 2^{n-k}$.

2 Lista 2 de subiecte

Exercițiul 2.1. Fie n un număr natural nenul și mulțimea $A = \overline{0,n}$. Considerăm relația binară pe A: $R = \{(k, k+1) \mid k \in \overline{0, n-1}\} \cup \{(n, 0)\}$. Demonstrați că:

- (i) pentru orice i natural, $R^i = \{(k,l) \in A^2 \mid (n+1)|(l-k-i)\}$, unde a doua bară orizontală reprezintă relația "divide pe" între două numere întregi;
- (ii) $T(R) = A^2$, unde T(R) este închiderea tranzitivă a relației R.

Rezolvare: (i) $R^0 = \Delta_A = \{(k,k) \mid k \in A = \overline{0,n}\}$. $\{(k,l) \in A^2 = \overline{0,n}^2 \mid (n+1)|(l-k-0)\} = \{(k,l) \in A^2 = \overline{0,n}^2 \mid (n+1)|(l-k)\} = \{(k,l) \in A^2 = \overline{0,n}^2 \mid k=l\} = R^0$, unde penultima egalitate este dedusă din faptul că, pentru orice $k,l \in \overline{0,n}$, are loc: $0-n \le l-k \le n-0$, deci $l-k \in \overline{-n,n}$, iar singurul număr din $\overline{-n,n}$ care se divide cu n+1 este 0.

Pentru a obține relațiile din enunț pentru $i \in \mathbb{N}^*$, procedăm prin inducție matematică după i.

Pentru i=1, $\{(k,l)\in A^2=\overline{0,n}^2\mid (n+1)|(l-k-1)\}=R,$ pentru că, oricare ar fi $k,l\in\overline{0,n},$ are loc: $l-k-1\in\overline{-n-1,n-1},$ iar singurele numere din $\overline{-n-1,n-1}$ care se divid cu n+1 sunt -n-1 și 0, și faptul că:

$$\begin{cases} l-k-1 \in \{-n-1,0\} \\ \S i \\ k,l \in \overline{0,n} \end{cases}$$

este echivalent cu:

$$\begin{cases} (k,l) = (n,0) \\ \text{sau} \\ (k,l) \in \{(j,j+1) \mid j \in \overline{0,n-1}\}, \end{cases}$$

adică: $(k, l) \in R$.

Acum să presupunem că, pentru un $i \in \mathbb{N}^*$ arbitrar, fixat, $R^i = \{(k,l) \in A^2 \mid (n+1) | (l-k-i) \}$. Atunci $R^{i+1} = R^i \circ R = \{(k,m) \in A^2 \mid (\exists l \in A)(k,l) \in R$ și $(l,m) \in R^i \} = \{(k,m) \in A^2 \mid (\exists l \in A)(n+1) | (l-k-1) \}$. Pentru orice $k,l,m \in \mathbb{Z}$, dacă $(n+1) | (l-k-1) \}$ și $(n+1) | (m-l-i) \}$. Pentru orice $k,l,m \in \mathbb{Z}$, dacă $(n+1) | (l-k-1) \}$ și $(n+1) | (m-l-i) \}$, atunci $(n+1) | (l-k-1+m-l-i) \}$, ceea ce este echivalent cu $(n+1) | (m-k-(i+1)) \}$. Așadar, $R^{i+1} \subseteq \{(k,m) \in A^2 \mid (n+1) | (m-k-(i+1)) \}$ cu B_{i+1} . Am demonstrat că $B_{i+1} \subseteq B_{i+1}$.

Pentru a obţine incluziunea în sens invers, să observăm că, pentru orice $\alpha, \beta \in \mathbb{Z}$ astfel încât $(n+1)|(\alpha+\beta)$, există (chiar un unic) $l \in \overline{0,n}$ astfel încât $(n+1)|(\alpha+l)$ şi $(n+1)|(\beta-l)$; într-adevăr, mulţimea $\overline{0,n}$ este formată din n+1 numere naturale consecutive, prin urmare şi mulţimea $\{\alpha+l\mid l\in \overline{0,n}\}=\overline{\alpha,\alpha+n}$ este formată din n+1 numere naturale consecutive, aşadar (exact) unul dintre elementele acestei mulţimi se divide cu n+1, adică există un (unic) $l\in \overline{0,n}$ astfel încât $(n+1)|(\alpha+l)$, iar faptul suplimentar că $(n+1)|(\alpha+\beta)$ implică $(n+1)|(\alpha+\beta-(\alpha+l))$, adică $(n+1)|(\beta-l)$.

Acum să luăm $(k,m) \in B_{i+1}$, adică, $k,m \in A = \overline{0,n}$ astfel încât (n+1)|(m-k-(i+1)). Luând în afirmația anterioară $\alpha = -k-1$ și $\beta = m-i$, rezultă că există un (unic) $l \in A = \overline{0,n}$ astfel încât (n+1)|(l-k-1) și (n+1)|(m-l-i), și deci $(k,m) \in R^{i+1}$ conform expresiei lui R^{i+1} de mai sus. Am demonstrat așadar că are loc și $B_{i+1} \subseteq R^{i+1}$.

Conchidem că $R^{i+1} = B_{i+1} = \{(k, m) \in A^2 \mid (n+1) \mid (m-k-(i+1))\}$, și principiul inducției matematice ne asigură de faptul că relația din enunț este valabilă pentru orice $i \in \mathbb{N}^*$.

Aşadar relația din enunț este satisfăcută pentru orice $i \in \mathbb{N}$.

(ii) Amintim formula închiderii tranzitive a unei relaţii binare: $T(R) = \bigcup_{i \in \mathbb{N}^*} R^i$. Aplicăm acum punctul (i): $T(R) = \bigcup_{i \in \mathbb{N}^*} R^i = \bigcup_{i \in \mathbb{N}^*} \{(k,l) \in A^2 \mid (n+1)|(l-k-i)\} = \{(k,l) \in A^2 \mid (\exists i \in \mathbb{N}^*)(n+1)|(l-k-i)\}.$ T(R) este o relaţie binară pe A, deci $T(R) \subseteq A^2$. Evident, pentru orice $(k,l) \in A^2 = \overline{0,n^2}$, există (chiar o infinitate de) $i \in \mathbb{N}^*$, astfel încât (n+1)|(l-k-i) (orice $i = l-k+(n+1)\alpha$, cu $\alpha \in \mathbb{N}^*$, satisface: $i \in \mathbb{N}^*$ şi (n+1)|(l-k-i), prin urmare are loc şi incluziunea în sens invers: $A^2 \subseteq T(R)$. Aşadar $T(R) = A^2$.

Exercițiul 2.2. Fie $(L, \vee, \wedge, 0, 1)$ o latice cu 0 și 1. Pentru orice $x \in L$, notăm cu C(x) mulțimea complemenților lui x în L. Definim relația binară \sim pe L prin: pentru orice $x, y \in L$, $x \sim y$ ddacă $x \in C(y)$ (adică x este complement al lui y). Demonstrați că:

- (i) \sim este simetrică și $\sim \neq \emptyset$;
- (ii) \sim este reflexivă ddacă L este trivială (adică L are un singur element, adică 0 = 1 în L, adică $L = \{0\}$, adică $L = \{1\}$);
- (iii) ∼ este tranzitivă ddacă L este trivială;

(iv)
$$\bigcup_{x \in L \setminus \{0,1\}} C(x) \subseteq L \setminus \{0,1\}.$$

Rezolvare: (i) Conform definiției unui complement al unui element într-o latice cu 0 și 1, pentru orice $x,y\in L,\ x\sim y$ ddacă $x\in C(y)$ ddacă $x\vee y=1$ și $x\wedge y=0$ ddacă $y\in C(x)$ (amintim că operațiile binare \vee și \wedge sunt comutative) ddacă $y\sim x$. Așadar \sim este o relație simetrică.

 $0 \lor 1 = 1 \text{ şi } 0 \land 1 = 0$, prin urmare $0 \in C(1)$ (şi $1 \in C(0)$), adică $0 \sim 1$ (şi $1 \sim 0$), adică $(0, 1) \in \sim$ (şi $(1, 0) \in \sim$). Deci $\sim \neq \emptyset$.

(ii) Conform demonstrației ultimei părți a punctului (i), dacă L este trivială, deci $L=\{1\}$, atunci $1=0\sim 1$, așadar $1\sim 1$, prin urmare $\Delta_L=\{(1,1)\}\subseteq \sim$, așadar \sim este reflexivă.

Reciproc, dacă \sim este reflexivă, adică $\Delta_L \subseteq \sim$, atunci $(1,1) \in \sim$, adică $1 \sim 1$, prin urmare $1 = 1 \wedge 1 = 0$, deci 0 = 1, adică L este trivială.

(iii) Conform demonstrației primei implicații de la punctul (ii), dacă L este trivială, adică $L = \{1\}$, atunci $L^2 = \{(1,1)\} \subseteq \sim \subseteq L^2$, prin urmare $\sim = L^2 = \{(1,1)\}$, deci \sim este tranzitivă (deoarece, oricare ar fi mulțimea L, relația binară L^2 pe L este în mod trivial tranzitivă: oricare ar

fi $(x,y),(y,z)\in L^2$, rezultă $(x,z)\in L^2$; de asemenea, oricare ar fi mulțimea L și 1 element al lui L, relația binară $\{(1,1)\}$ pe L este în mod trivial tranzitivă: oricare ar fi $(x,y),(y,z)\in\{(1,1)\}$, rezultă x=y=z=1, rezultă $(x,z)=(1,1)\in\{(1,1)\}$).

Reciproc, dacă \sim este tranzitivă, atunci, întrucât $(1,0), (0,1) \in \sim$ conform demonstrației celei de-a doua părți a punctului (i), rezultă $(1,1) \in \sim$, deci L este trivială conform ultimei părți a demonstrației celei de-a doua implicații a punctului (ii).

(iv) Desigur, pentru orice $x \in L$ (în particular pentru orice $x \in L \setminus \{0,1\}$), $C(x) \subseteq L$. Rămâne de demonstrat că, pentru orice $x \in L \setminus \{0,1\}$, $0,1 \notin C(x)$. Fie aşadar $x \in L \setminus \{0,1\}$, arbitrar, fixat. Presupunem prin absurd că $0 \in C(x)$; rezultă $x = 0 \lor x = 1$, deci x = 1, ceea ce contravine ipotezei $x \in L \setminus \{0,1\}$; aşadar $0 \notin C(x)$. Presupunem prin absurd că $1 \in C(x)$; rezultă $x = 1 \land x = 0$, deci x = 0, ceea ce, de asemenea, este o contradicție cu ipoteza $x \in L \setminus \{0,1\}$; aşadar $1 \notin C(x)$. Demonstrația este încheiată.

3 Lista 3 de subiecte

Exercițiul 3.1. Fie A o mulțime nevidă. Pentru orice relație binară Q pe A, notăm cu Q_{in} , Q_{out} următoarele relații binare pe A:

$$\begin{cases} Q_{in} = \{(a, c) \in A^2 \mid (\exists b \in A)(b, c) \in Q\}, \\ Q_{out} = \{(a, c) \in A^2 \mid (\exists b \in A)(a, b) \in Q\}. \end{cases}$$

De exemplu, dacă $A = \{a,b,c\}$ este o mulțime de cardinal 3 și $Q = \{(a,a),(a,b)\} \subset A^2$, atunci $Q_{in} = \{(a,a),(b,a),(c,a),(a,b),(b,b),(c,b)\} \subset A^2$ și $Q_{out} = \{(a,a),(a,b),(a,c)\} \subset A^2$. Ilustrăm grafic acest exemplu:

Intuitiv (făcând referire la această reprezentare a relațiilor binare pe A ca grafuri orientate cu mulțimea de vârfuri A):

- Q_{in} este mulțimea arcelor din A^2 care intră în vârfuri în care intră măcar un arc din Q:
- Q_{out} este mulțimea arcelor din A^2 care ies din vârfuri din care iese măcar un arc din Q.

Fie R o relație binară nevidă pe A. Demonstrați că:

(i) $R \subseteq R_{in} \cap R_{out}$;

(ii)
$$\begin{cases} R_{in} = R \circ A^2; \\ R_{out} = A^2 \circ R; \end{cases}$$

(iii)
$$\begin{cases} (R_{in})^{-1} = (R^{-1})_{out}; \\ (R_{out})^{-1} = (R^{-1})_{in}; \end{cases}$$

- (iv) $R_{in} \circ R_{out} = R_{in} \cap R_{out}$;
- (v) $dac\check{a} R^2 \neq \emptyset$, $atunci R_{out} \circ R_{in} = A^2$.

Rezolvare: (i) Pentru orice $(a, c) \in R$, avem:

există $b \in A$ astfel încât $(b, c) \in R$, de exemplu b = a; aşadar $(a, c) \in R_{in}$; există $b \in A$ astfel încât $(a, b) \in R$, de exemplu b = c; aşadar $(a, c) \in R_{out}$.

Aşadar $(a, c) \in R_{in} \cap R_{out}$, prin urmare $R \subseteq R_{in} \cap R_{out}$.

(ii) $R \circ A^2 = \{(a,c) \in A^2 \mid (\exists b \in A)(a,b) \in A^2 \text{ si } (b,c) \in R\} = \{(a,c) \in A^2 \mid (\exists b \in A)(b,c) \in R\} = R_{in}, \text{ decarece } (a,b) \in A^2 \text{ pentru orice } (a,c) \in A^2 \text{ si } b \in A$

 $A^2 \circ R = \{(a,c) \in A^2 \mid (\exists b \in A)(a,b) \in R \text{ \sharp} (b,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b \in A)(a,b) \in R\} = R_{out}, \text{ decarece } (b,c) \in A^2 \text{ pentru orice } (a,c) \in A^2 \text{ \sharp} b \in A.$

(iii) $(A^2)^{-1} = \{(b, a) \in A^2 \mid (a, b) \in A^2\} = A^2$. Aplicând punctul (ii) de câte două ori pentru fiecare dintre următoarele șiruri de egalități, obținem:

 $(R_{in})^{-1} = (R \circ A^2)^{-1} = (A^2)^{-1} \circ R^{-1} = A^2 \circ R^{-1} = (R^{-1})_{out};$ $(R_{out})^{-1} = (A^2 \circ R)^{-1} = R^{-1} \circ (A^2)^{-1} = R^{-1} \circ A^2 = (R^{-1})_{in}.$ (iv) $A^2 \circ A^2 = \{(a,c) \in A^2 \mid (\exists b \in A)(a,b) \in A^2 \text{ si } (b,c) \in A^2\} = A^2$. Folosim asociativitatea compunerii de relații binare. Conform punctului (ii), $R_{in} \circ R_{out} = (R \circ A^2) \circ (A^2 \circ R) = R \circ (A^2 \circ A^2) \circ R = R \circ A^2 \circ R =$ $(R\circ A^2)\circ R=\{(a,c)\in A^2\mid (\exists b\in A)(a,b)\in R \text{ si } (b,c)\in R\circ A^2\}=\{(a,c)\in A^2\}$ $A^2 \mid (\exists b, d \in A)(a, b) \in R, (b, d) \in A^2 \text{ si } (d, c) \in R \} = \{(a, c) \in A^2 \mid (\exists b, d \in A)(a, b) \in R \}$ $A(a,b) \in R \text{ si } (d,c) \in R = \{(a,c) \in A^2 \mid (\exists b \in A)(a,b) \in R \text{ si } (\exists d \in A)(a,b) \in R \}$ $A(d,c) \in R$ = { $(a,c) \in A^2 \mid (a,c) \in R_{out} \text{ si } (a,c) \in R_{in}$ } = $R_{in} \cap R_{out}$. (v) Si aici folosim asociativitatea compunerii de relații binare; a se observa că, în calculele următoare, ridicarea la puterea 2 are două semnificații diferite: $A^2 = A \times A$ este produsul cartezian de mulțimi, iar $R^2 = R \circ R$ este compunere de relații binare pe mulțimea A. Conform punctului (ii), $R_{out} \circ R_{in} = (A^2 \circ R) \circ (R \circ A^2) = A^2 \circ (R \circ R) \circ A^2 = A^2 \circ R^2 \circ A^2 = (A^2 \circ R^2) \circ A^2 = \{(a,c) \in A^2 \mid (\exists b \in A)(a,b) \in A^2 \text{ si } (b,c) \in A^2 \circ R^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2, (b,d) \in R^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2, (b,d) \in R^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2, (b,d) \in R^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2, (b,d) \in R^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2, (b,d) \in R^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2, (b,d) \in R^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2, (b,d) \in R^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \in A^2 \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si } (d,c) \in A^2\} = \{(a,c) \mid (\exists b,d \in A)(a,b) \in A^2 \text{ si }$ $A^2 \mid (\exists b, d \in A)(b, d) \in R^2 \} = A^2$, deoarece condiția din definiția mulțimii anterioare, care spune că R^2 are măcar un element, este adevărată prin ipoteză: $R^2 \neq \emptyset$.

Exercițiul 3.2. Fie mulțimile ordonate (A, \leq) și (B, \sqsubseteq) (adică \leq și \sqsubseteq sunt relații de ordine pe mulțimile A și respectiv B), cu câte 3 elemente: $A = \{a, b, c\}$, $B = \{x, y, z\}$, și cu următoarele diagrame Hasse:

$$(A, \leq) = \mathcal{L}_3:$$

$$(lanţul cu 3 elemente)$$

$$b$$

$$(B, \sqsubseteq):$$

$$x$$

Determinați toate funcțiile izotone $f:A\to B.$ Câte astfel de funcții există?

Rezolvare: Amintim că o funcție $f:A\to B$ se zice izotonă ddacă, pentru orice $\alpha,\beta\in A$, dacă $\alpha\leq\beta$ atunci $f(\alpha)\sqsubseteq f(\beta)$. (A,\leq) este lanțul cu 3 elemente: $a\leq b\leq c$ în A. Prin urmare, funcțiile izotone $f:A\to B$ sunt funcțiile $f:A\to B$ care verifică: $f(a)\sqsubseteq f(b)\sqsubseteq f(c)$ în B. $Cazul\ 1$: Dacă $f(a)=x=\min(B)$, atunci f(b) poate lua orice valoare din B.

Subcazul 1.1: Dacă $f(b) = x = \min(B)$, atunci f(c) poate lua orice valoare din B. În acest subcaz se obțin |B| = 3 funcții f.

Subcazul 1.2: Dacă f(b) = y, atunci $y \sqsubseteq f(c)$, așadar f(c) = y. Aici se obține o singură funcție f.

Subcazul 1.3: Dacă f(b)=z, atunci $z\sqsubseteq f(c)$, așadar f(c)=z. Și aici obținem tot o singură funcție f.

Cazul 2: Dacă f(a) = y, atunci $y \sqsubseteq f(b) \sqsubseteq f(c)$, ceea ce implică f(b) = f(c) = y. În acest caz obținem o singură funcție f.

Cazul 3: Dacă f(a) = z, atunci $z \subseteq f(b) \subseteq f(c)$, ceea ce implică f(b) = f(c) = z. Şi în acest caz se obține o singură funcție f.

Aşadar, am obținut 7 funcții izotone de la (A, \leq) la (B, \sqsubseteq) : $f_i : A \to B$, cu $i \in \overline{1,7}$, date în tabelul următor:

α	a	b	c
$f_1(\alpha)$	x	\boldsymbol{x}	x
$f_2(\alpha)$	x	\boldsymbol{x}	y
$f_3(\alpha)$	x	\boldsymbol{x}	z
$f_4(\alpha)$	x	y	y
$f_5(\alpha)$	x	z	z
$f_6(\alpha)$	y	y	y
$f_7(\alpha)$	z	z	z