MA2104 Cheatsheet

by Wei En & Yiyang, AY21/22

Chapter 01 - Vectors in 3D Space Vectors

Vector projection of a onto b: $\operatorname{proj}_b a = \frac{a \cdot b}{b \cdot b} b$ Scalar projection of a onto b: $\operatorname{comp}_b a = \frac{a \cdot b}{\|b\|}$

Dot & Cross Product

 $a \cdot b = ||a|| ||b|| \cos \theta, \quad ||a \times b|| = ||a|| ||b|| \sin \theta$

where θ is the angle between vectors a and b.

Prop Ch01.3.5 - Scalar Triple Product

$$|a \cdot (b \times c)| = \left| \det \begin{pmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{pmatrix} \right|$$

is the volume of the parallelepiped determined by vectors a, b, c.

Chapter 02 - Curves and Surfaces

Curve

Tangent Vector

Tangent vector to a curve C paramaterised by R(t) = (f(t), g(t), h(t)) at R(a) on the curve is given by

$$R'(a) = \langle f'(a), g'(a), h'(a) \rangle.$$

Arc Length Formula

The length of curve C: R(t) = (f(t), g(t), h(t)) between R(a) and R(b) is

$$\int_a^b \, \|R'(t)\| \, dt = \int_a^b \, \sqrt{f'(t)^2 + g'(t)^2 + h'(t)^2} \, dt.$$

provided the first derivatives are continuous.

Surfaces

Cylinder

A surface is a cylinder if there is a plane P such that all the planes parallel to P intersect the surface in the same curve.

Quadric Surfaces

- Elliptic Paraboloid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} = \frac{z}{c}$
- Hyperbolic Paraboloid: $\frac{x^2}{a^2} \frac{y^2}{b^2} = \frac{z}{c}$
- Ellipsoid: $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$
- Elliptic Cone: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 0$
- Hyperboloid of 1 Sheet: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = 1$
- Hyperboloid of 2 Sheet: $\frac{x^2}{a^2} + \frac{y^2}{b^2} \frac{z^2}{c^2} = -1$

Chapter 03 - Multivariable Functions Limit, Continuity & Differentiability

Limit for 2D Functions

For function f with domain $D \subset \mathbb{R}^2$ that contains points arbitrarily close to (a,b), then

$$\lim_{(x,y)\to(a,b)} f(x,y) = L$$

if for any number $\epsilon>0$ there exists a number $\delta>0$ such that $|f(x,y)-L|<\epsilon$ whenever $0<\sqrt{(x-a)^2+(y-b)^2}<\delta$.

The limit exists iff. the limit exists and is the same for all continuous paths to (a, b).

Clairaut's Theorem

For function f defined on $D \subset \mathbb{R}^2$ that contains (a, b), if the functions f_{xy} and f_{yx} are both continuous on D, then

$$f_{xy}(a,b) = f_{yx}(a,b).$$

Differentiability for 2D Functions

For function f defined on $D \subset \mathbb{R}^2$ and differentiable at (a,b) within the interior of D,

$$\lim_{(h,k)\to(0,0)}\frac{f(a+h,b+k)-f(a,b)-L(h,k)}{\sqrt{h^2+k^2}}=0,$$

where $L: \mathbb{R}^2 \to \mathbb{R}$ is a linear map defined as the total derivative of f at (a,b):

$$L(h,k) = D_{f(a,b)}(h,k) = f_x(a,b)h + f_y(a,b)k. \label{eq:loss}$$

Notes about Differentiability

Consider f at a point (a, b):

- f_x and f_y exist $\implies f$ differentiable
- f_x and f_y exist & continuous $\implies f$ differentiable (*Differentiability Theorem*)
- f differentiable $\implies f_x$ and f_y continuous

Linear Approximation

$$f(a+h,b+k) \approx f(a,b) + f_x(a,b)h + f_y(a,b)k$$

Gradient Vector

Gradient Vector

The gradient vector of f defined on $D \subset \mathbb{R}^2$ at $(a,b) \in D$ is defined as:

$$\nabla f(a,b) = \langle f_x(a,b), f_y(a,b) \rangle$$

Directional Directive

The directional directive of f defined on $D \subset \mathbb{R}^2$ in the direction of the unit vector $u = \langle u_1, u_2 \rangle$ is

$$D_{f(a,b)}(u) = \lim_{h \rightarrow 0} \frac{f(a+hu_1,b+hu_2) - f(a,b)}{h} = \nabla f(a,b) \cdot u.$$

Perpendicular Vector of Level Sets

 $\nabla f(a,b)$ is orthogonal to the f(a,b)-level curve of f at (a,b).

Chapter 04 - Calculus on Surfaces Implicit Differentiation

Prop Ch04.1.4

For *F* defined on $D \subset \mathbb{R}^3$ where F(a, b, c) = k defines *z* as a differentiable function of *x* and *y* near (a, b, c), and $F_z(a, b, c) \neq 0$,

$$\frac{\partial z}{\partial x}(a,b,c) = -\frac{F_x(a,b,c)}{F_x(a,b,c)}, \frac{\partial z}{\partial y}(a,b,c) = -\frac{F_y(a,b,c)}{F_x(a,b,c)}$$

Extrema

Extreme Value Theorem

If $f: D \to \mathbb{R}$ is continuous on a **closed and bounded** set $D \subset \mathbb{R}^2$, then f has at least one global maximum and one global minimum.

Steps for Finding Global Extrema

For $f: D \to \mathbb{R}$ where D is closed and bounded,

- 1. Find all critical points of f and their corresponding f-values.
- 2. Find the extreme values of f on boundary of D.
- 3. Compare.

Method of Lagrange Multiplier

To find the extrema of differentiable $f:D\to \mathbb{R}$ subject to curve C:g(x,y)=k for some $k\in \mathbb{R}$,

1. Find all points (a, b) for $\nabla g(a, b) \neq 0$ and values λ s.t.

$$\nabla f(a,b) = \lambda \nabla g(a,b), \ g(a,b) = k,$$

and evaluate f at all these points.

- 2. Find the extreme values of *f* on the boundary of *C*.
- 3. Compare.

Chapter 05 & 06 - Integration *Fubini's Theorem*

If *f* is continuous on the rectangle $D = [a, b] \times [c, d]$, then,

$$\iint_D f(x,y)dA = \int_a^b \int_c^d f(x,y)dydx = \int_c^d \int_a^b f(x,y)dxdy$$

Its equivalence in \mathbb{R}^3 for triple integral also holds.

Change of Coordinates

Double Integral in Polar Coordinates

Transform between (x, y) and (r, θ) :

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \end{cases} \begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \tan^{-1} (y/x) \end{cases}$$

In addition, $dA = dxdy = rdrd\theta$.

Triple Integral in Cylindrical Coordinates

Transform between (x, y, z) and (r, θ, z) :

$$\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases} \begin{cases} r = \sqrt{x^2 + y^2} \\ \theta = \tan^{-1} (y/x) \\ z = z \end{cases}$$

In addition, $dV = dxdydz = rdrd\theta dz$.

Triple Integral in Spherical Coordinates

Transform between (x, y, z) and (ρ, θ, ϕ) :

$$\begin{cases} x = \rho \cos \theta \sin \phi \\ y = \rho \sin \theta \sin \phi \\ z = \rho \cos \phi \end{cases} \begin{cases} \rho = \sqrt{x^2 + y^2 + z^2} \\ \theta = \tan^{-1}(y/x) \\ \phi = \cos^{-1}(z/\rho) \le \pi \end{cases}$$

In addition, $dV = dxdydz = \rho^2 \sin \phi d\rho d\theta d\phi$.

Application of integration

For a given region D in \mathbb{R}^2 , the area of the region can be calculated as $Area(D) = \iint_D 1 dA$.

For a given solid E in \mathbb{R}^3 , the volume of the solid can be calculated as $Volume(E) = \iiint_E 1 dV$.

Chapter 07 - Change of Coordinates

Planar Transformation

A map $T: S \to R$ is a planar transformation if it is a differentiable map whose inverse is differentiable.

Therefore, to show $T:S\to R$ is a planar transformation, it must satisfy:

- 1. T is differentiable
- 2. The inverse T^{-1} exists
- 3. The inverse T^{-1} is differentiable

Change of Coordinates

2D Jacobian Determinant

The $\emph{Jacobian}$ of the transformation T(u,v)=(x(u,v),y(u,v)) is defined

$$\frac{\partial(x,y)}{\partial(u,v)} = \begin{vmatrix} x_u & x_v \\ y_u & y_v \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial x}{\partial v} \frac{\partial y}{\partial u}$$

Change of Variable in Double Integral

Let $T: S \to R$ be a planar transformation, where S lies in the uv-plane and R lies in the xy-plane. Let A and A' denote the area in the xy- and uv-plane respectively. For a two-var. function from xy-plane to \mathbb{R} ,

$$\iint_{R} f(x,y)dA = \iint_{R} f \circ T(u,v) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| dA'$$

Equivalently,

$$\iint_{R} f(x,y) dx dy = \iint_{S} f(x(u,v),y(u,v)) \left| \frac{\partial (x,y)}{\partial (u,v)} \right| du dv$$

The 3D Jacobian has similar expressions and properties.

Inverse Function Theorem

Chapter 08 - Line Integrals Line Integral

Line Integral of Functions

For curve *C* parameterised by $R(t) = (x(t), y(t), z(t), a \le t \le b$, and a 3-var function f(x, y, z), the line integral

$$\int_{C} f(x, y, z) ds = \int_{a}^{b} f(x(t), y(t), z(t)) \|R'(t)\| dt$$

Line Integral of Vector Fields

Let C = (C, o) be a smooth oriented curve in \mathbb{R}^3 parameterised by $R(t) = (x(t), y(t), z(t)), \ a \le t \le b$, and let F = F(x, y, z) be a continuous vector field along C. Then, the line integral of F along C

$$\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(x(t), y(t), z(t)) \cdot R'(t) dt$$

For $\mathbf{F} = \langle X, Y, Z \rangle$ in its component form,

$$\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathbf{C}} X dx + Y dy + Z dz$$

In addition, if $-\mathbf{C}$ is the curve \mathbf{C} with opposite orientation,

$$\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r} = -\int_{-\mathbf{C}} \mathbf{F} \cdot d\mathbf{r}$$

Conservative Vector Fields

Whenever a vector field **F** on some open domain stratifies $\mathbf{F} = \nabla f$ for some differentiable function f, then we call **F** a *conservative vector field* and f the *potential function* of **F**.

Tests for Conservativity

- To show conservative: find a f s.t. $\nabla f = \mathbf{F}$ (by definition).
- To show conservative: if F(x,y) = ⟨X,Y⟩ is defined over an open and simply-connected region D ⊂ R², then need to show

$$\frac{\partial X}{\partial y} = \frac{\partial Y}{\partial x}$$

To show non-conservative: find two oriented curves, C₁ and C₂, with same starting and ending points, s.t.

$$\int_{\mathbf{C}_1} \mathbf{F} \cdot d\mathbf{r} \neq \int_{\mathbf{C}_2} \mathbf{F} \cdot d\mathbf{r}$$

Gradient Theorem

For a 3-var function f whose gradient vector ∇f is continuous along $\mathbf{C} = (C, 0)$ parameterised by $R(t) = (x(t), y(t), z(t)), \ a \le t \le b$,

$$\int_{C} \nabla f \cdot d\mathbf{r} = f(R(b)) - f(R(a))$$

Green's Theorem, Version I

Let C = (C, o) be a **positively oriented**, piecewise differentiable loop in \mathbb{R}^2 , and let D be the region bounded by C. Then for vector field $F = \langle X, Y \rangle$,

$$\int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r} = \iint_{D} \left(\frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y} \right) dA$$

Green's Theorem, Version II

Let C = (C, o) be a **positively oriented**, piecewise differentiable loop in \mathbb{R}^2 , and let D be the region bounded by C. Then for vector field F, let $\mathbf{n}(x, y)$ denote the **outward pointing** unit normal vector to S,

$$\int_{\mathbf{C}} \mathbf{F} \cdot \mathbf{n} \, ds = \iint_{D} \operatorname{div} \mathbf{F} \, dA$$

Algebraically, the outward pointing unit normal vector is

$$\mathbf{n}(t) = \frac{\langle y'(t), -x'(t) \rangle}{\|R'(t)\|} = \frac{\langle y'(t), -x'(t) \rangle}{\sqrt{x'(t)^2 + y'(t)^2}}$$

Note, the integral is called the outward flux of F across C.

Chapter 09 - Surface Integrals

Surface Integral

Surface Integral of Functions

Let $R: D \to S$ be a (differentiable) parameterisation of surface S, then

$$\iint_{S} f(x,y,z) dS = \iint_{D} f(x(u,v),y(u,v),z(u,v)) \|R_{u} \times R_{v}\| \, dA$$

Special case: when S is the graph of a 2-var function g(x,y) for $(x,y) \in D$ for some domain D,

$$\iint_{C} f(x, y, z) dS = \iint_{D} f(x, y, g(x, y)) \left(\sqrt{g_{x}^{2} + g_{y}^{2} + 1} \right) dA$$

Orientation on Surface

A (differentiable) surface $S \in \mathbb{R}^3$ is *orientable* if it is possible to define for every $(x, y, z) \in S$, a unit normal vector $\mathbf{n}(x, y, z)$ to S with initial point (x, y, z) such that \mathbf{n} varies continuously.

$$\mathbf{n} = \pm \frac{R_u \times R_v}{\|R_u \times R_v\|}$$

Surface Integral of Vector Fields

Let $S = (S, \mathbf{n})$ be an oriented surface where $R : D \to S$ is the parameterisation for S, and let F be a vector field along the surface,

$$\iint_{\mathbf{S}} \mathbf{F} \cdot d\mathbf{S} = \iint_{\mathbf{S}} \mathbf{F} \cdot \mathbf{n} \, dS = \iint_{D} \mathbf{F} \cdot (R_{u} \times R_{v}) \, dA$$

Special case: when *S* is the graph of a 2-var function g(x, y), let **S** denote *S* with **upward orientation**, and let $F = \langle X, Y, Z \rangle$,

$$\iint_{\mathbf{S}} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \left(-\mathbf{X} \frac{\partial g}{\partial x} - \mathbf{Y} \frac{\partial g}{\partial Y} + \mathbf{Z} \right) dA$$

Gauss' Theorem

Divergence

For a vector field $\mathbf{F} = \langle X, Y, Z \rangle$, the *divergence* of \mathbf{F} is defined as

$$\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial X}{\partial x}(x, y, z) + \frac{\partial Y}{\partial y}(x, y, z) + \frac{\partial Z}{\partial z}(x, y, z)$$

Gauss' Theorem

Let E be a solid region where the boundary surface S is piece-wise smooth, and let S denote S with **outward orientation**. Then for a vector field F defined over S,

$$\iint_{\mathbf{S}} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \operatorname{div} \mathbf{F} dV$$

Stokes' Theorem

Curl

For a vector field $\mathbf{F} = \langle X, Y, Z \rangle$, the *curl* of \mathbf{F} is defined as

$$\operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F} = \left(\frac{\partial Z}{\partial y} - \frac{\partial Y}{\partial z}, \frac{\partial X}{\partial z} - \frac{\partial Z}{\partial x}, \frac{\partial Y}{\partial x} - \frac{\partial X}{\partial y} \right)$$

Induced Orientation

For oriented surface $S = (S, \mathbf{n})$ with boundary C being a simple loop, the *induced orientation*, \mathbf{o} of \mathbf{n} is one such that if you want along C in the orientation \mathbf{o} with your head pointing in the direction of \mathbf{n} , then S will always be on your left.

Stokes' Theorem

For oriented surface S = (S, n) bounded by a simple curve C, and let C = (C, o) be the oriented loop with induced orientation, then for a vector field F,

$$\iint_{\mathbf{S}} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{\mathbf{C}} \mathbf{F} \cdot d\mathbf{r}$$

Properties of Gradient, Divergence & Curl

For any function f = f(x, y, z),

$$\nabla \times (\nabla f) = \operatorname{curl}(\nabla f) = \mathbf{0}$$

For any vector fields $\mathbf{F} = \mathbf{F}(x, y, z)$,

$$\nabla \cdot (\nabla \times \mathbf{F}) = \text{div (curl } \mathbf{F}) = 0$$