Input Format

March 28, 2022

1. TS Input Format:

The first line contains two numbers S and T. S refers to the number of states. T refers to the number of transitions. The second line contains a set of initial states. The third line contains A actions Act. The fourth line contains P atomic propositions.

The next T lines contain 3 values (i,k,j) $(0 \le i,j \le S-1,0 \le k \le A-1)$, representing that there exists a transition $s_i \xrightarrow{\alpha_k} s_j$, where $\alpha_k \in Act$.

The next S lines contains the set $L(s_i) \subseteq AP$ of atomic propositions held by state $s_i(0 \le i \le AP)$.

s-1). If this line only contains -1, then $L(s_i) = \emptyset$.

Consider the following transition system TS:

Table 1: Input sample

input	explanation
69	states: $\{s_0, \dots, s_5\}$; transitions: $\{t_0, \dots, t_8\}$
0	s_0 is the initial state
0 1 2	$\alpha_0 = \alpha, \alpha_1 = \beta, \alpha_2 = \gamma$
a b c	$p_0 = a, p_1 = b, p_2 = c$
0 1 1	$t_0 = s_0 \xrightarrow{\alpha_1} s_1$
003	$t_1 = s_0 \xrightarrow{\alpha_0} s_3$
3 2 1	
1 2 4	
2 2 1	$t_4 = s_2 \xrightarrow{\alpha_2} s_1$
502	
5 1 1	
4 0 1	$t_7 = s_4 \xrightarrow{\alpha_0} s_1$
4 1 5	$t_8 = s_4 \xrightarrow{\alpha_1} s_5$
0 1	$L(s_0) = \{p_0, p_1\}$
0 1 2	$L(s_1) = \{p_0, p_1, p_2\}$
1 2	$L(s_2) = \{p_1, p_2\}$
0 2	
0 2	
0 1	$L(s_5) = \{p_0, p_1\}$

