Uniwersytet Wrocławski Wydział Matematyki i Informatyki Instytut Matematyczny

specjalność: Analiza danych

Bartosz Chmiela

Statystyczna analiza częstości występowania kodonów w kodzie genetycznym

Praca licencjacka napisana pod kierunkiem dr. hab. Krzysztofa Topolskiego

Wroclaw 2020

Spis treści

1	Wst	zęp do tematyki pracy 4
	1.1	Budowa kodu genetycznego
	1.2	Kodony
	1.3	Proteiny
	1.4	Geny
		1.4.1 Fragmenty genu
	1.5	Chromosomy
2	$\mathbf{W}\mathbf{v}$	bór organizmów i danych 5
	2.1	Organizm haploidalny
	2.2	Organizm diploidalny
3	Cze	sć programistyczna 5
J	3.1	Rozszerzenia plików
	3.1	Biblioteka Biostrings
	$\frac{3.2}{3.3}$	Biblioteka $biomaRt$
	3.4	Autorski kod
	5.4	
		3.4.1 Opis ważniejszych funkcji
4	Cze	ść statystyczna 8
	4.1	Testowanie równości prawdopodobieństw w występowaniu kodonów 8
		4.1.1 Test zgodności χ^2
		4.1.2 Współczynnik rozbieżności
		4.1.3 Wyniki
	4.2	Testowanie zgodności z rozkładami
	1.2	4.2.1 Rozkład geometryczny
		4.2.2 Rozkład logarytmiczny
		4.2.3 Estymator największej wiarogodności
		4.2.4 Historgramy
		4.2.5 Wykresy kwantylowo-kwantylowe
		4.2.6 Test zgodności χ^2
		4.2.7 Wyniki
		4.2.8 Liczba przedziałów
	4.3	Testowanie niezależności
	4.0	4.3.1 Test niezależności χ^2
		4.3.2 Wyniki
	4.4	· ·
	4.4	<u> </u>
		4.4.1 Wyniki
5	$\mathbf{W}\mathbf{n}$	ioski 28
	5.1	Czułość testu χ^2
	5.2	Równość prawdopodobieństw w występowaniu kodonów
	5.3	Rozkład geometryczny jako opis długości przerw między kodonami 28
	5 4	Różnice w organizmach

\mathbf{A}	Testowanie równości prawdopodobieństw w występowaniu kodonów	29
	A.1 E. Coli	29
	A.2 Muszka owocowa	29
В	Testowanie zgodności z rozkładami	30
	B.1 E. Coli	30
	B.2 Muszka owocowa	34
\mathbf{C}		38
	C.1 E. Coli	38
	C.2 Muszka owocowa	39
D	Plik z kodem	40

1 Wstęp do tematyki pracy

1.1 Budowa kodu genetycznego

Genom jest nośnikiem informacji w organizmamach, będącym odpowiedzialnym za odpowiedni wzrost, funkcjonowanie oraz reprodukcję organizmu. Przenoszony jest przez kwas deoksyrybonukleinowy, w skrócie *DNA* (z ang. *deoxyribonucleic acid*) znajdujący się głównie w jądrach komórkowych. *DNA* jest cząsteczką zbudowaną z dwóch nici połączonych ze sobą nukleotydami: adeniny (A), guaniny (G), cytozyny (C), tyminy (T) (lub uracylu (U) w przypadku *RNA*). Nukleotydy są parami komplementarne, tzn. że łączą się tylko w odpowiednie pary: A-T(U), G-C. Dzięki temu mając tylko jedną nić *DNA* organizm jest w stanie odtworzyć drugą – co wskazuje na prostotę duplikacji informacji genetycznej. Tak zbudowana kombinacja nukletydów tworzy genom, za pomocą którego organizm potrafi generować potrzebne mu proteiny (białka, omawiane w sekcji 1.3).

1.2 Kodony

Trójkę nukleotydów nazywa się kodonem, ponieważ koduje on powstanie jednego aminokwasu. Nie oznacza to jednak, że na jeden kodon przypada na jeden aminokwas – jest wręcz przeciwnie, 20 aminokwasów (oraz koniec kodowania) są kodowane przez kilka kodonów, których jest aż $4^3 = 64$. Istnieją pewnie kombinacje nukleotydów oznaczające początek i koniec, które oznaczają gdzie zaczyna i kończy się translacja DNA.

TTT	Fenyloalanina (F)	TCT		TAT	Tyrozyna (Y)	TGT	Cysteina (C)
TTC	reny toatamina (r)	TCC	Seryna (S)	TAC	Tyrozyna (1)	TGC	Cystema (C)
TTA		TCA	Beryna (B)	TAA	STOP	TGA	STOP
TTG		TCG		TAG	5101	TGG	Tryptofan (W)
CTT	Leucyna (L)	CCT		CAT	Histydyna (H)	CGT	
CTC	Leucyna (L)	CCC	Prolina (P)	CAC	Histydylla (H)	CGC	Arginina (R)
CTA		CCA	r ronna (r)	CAA	Glutamina (Q)	CGA	Aigiiiia (it)
CTG		CCG		CAG	Giutaililla (Q)	CGG	
ATT		ACT		AAT	Aspargina (N)	AGT	Seryna (S)
ATC	Izoleucyna (I)	ACC	Treonina (T)	AAC	Aspaigilla (N)	AGC	Seryna (S)
ATA		ACA	rreonina (1)	AAA	Lizyna (K)	AGA	Arginina (R)
ATG	Metionina(M)/START	ACG		AAG	Lizylia (K)	AGG	Aiginina (it)
GTT		GCT		GAT	V canonagina (D)	GGT	
GTC	Walina (V)	GCC	Alanina (A)	GAC	Kwas asparaginowy (D)	GGC	Glicyna (G)
GTA	vvaiilla (v)	GCA	Alaillia (A)	GAA	Kwas glutaminowy (E)	GGA	GIICYIIa (G)
GTG		GCG		GAG	Twas grataminowy (E)	GGG	

Tablica 1.2.1: Tabela przedstawiająca kodony i odpowiadające im aminokwasy.

1.3 Proteiny

Proteiny (białka) powstają z połączenia aminokwasów, występują we wszystkich organizmach żywych oraz wirusach. Mają wiele funkcji – są budulcami wielu struktur występujących w komórkach oraz biorą udział w regulowaniu procesów życiowych.

1.4 Geny

Gen jest to fragment DNA, zawierający informację o białku. W genie nie tylko zapisane jest jak stworzyć białko (za pomocą kodonów), jest w nim również zawarta informacja o tym kiedy to białko potrzeba wyprodukować, w jakich ilościach (ekspresja genu) oraz do jakiego miejsca ma dotrzeć.

1.4.1 Fragmenty genu

Ze względu na to, że w genie istnieje więcej informacji niż kodowanie samego białka, istnieje problem ze zrozumieniem kodu genetycznego (w przypadku organizmów niebateryjnych). Okazuje się, że sekwencja kodująca tworzenie białka nie jest zawarta w jednym kawałku kodu genetycznego, lecz jest podzielona na kawałki, pomiędzy którymi zawarte są inne informacje. Kawałki sekwencji kodującej nazywamy eksonami, a inforomację zapełniającą luki pomiędzy intronami. W eksonach znajdziemy również kawałki kodu genetycznego nazywane UTR (z ang. $untranslated\ regions$). Suma kawałków kodujących budowę białka nazywa slę sewkencją kodującą (z ang. $coding\ sequence$, w skrócie CDS) i własnie te będą przedmiotem badań tej pracy.

1.5 Chromosomy

Chromosom to cząsteczka przechowywująca cały materiał genetyczny, znajdująca się w jądrze komórkowym. Położenie genów w chromosomie jest opisywane za pomocą loci (l. poj. locus). Liczba chromosomów w organizmach różni się, od jednego do setek.

2 Wybór organizmów i danych

W tej pracy zbadano dwa organizmy, aby porównać czy istnieją różnice w wynikach w zależności od ilości chromosomów.

2.1 Organizm haploidalny

Organizm haploidalny, to taki który zawiera jeden zestaw chromosomów. W tej pracy jako przykład organizmu haploidalnego została wybrana bakteria *E. Coli*, która jest znana z wielu prac biologicznych. Jej popularność w badaniach genetycznych jest związana z szybkim rozmnażaniem i wysoką ekspresją protein. Bakteria ta posiada tylko jeden chromosom, który cały został przebadany w tej pracy. Użyty genom pochodzi ze strony międzynarodowego banku genów GenBank.

2.2 Organizm diploidalny

Organizm diploidalny, to taki który zawiera podwójny zestaw chromosmów. W tej pracy jako przykład organizmu diploidalnego została wybrana muszka owocowa (z łac. *Drosophila melanogaster*). Jest ona również znana z wielu badań genetycznych, ze względu szybkie rozmnażanie (cykl życia trwa zaledwie 12 dni oraz składa dużą liczbę potomstwa) oraz prostotę w utrzymaniu. Muszka owocowa posiada kilka chromosomów, jednak do badań w tej pracy został wybrany chomosom X. Użyty geneom pochodzi ze strony europejskiego banku genów Ensembl.

3 Część programistyczna

Wszystkie obliczenia prowadzone w tej pracy zostały wkonane przy użyciu języka R. Język ten został wybrany, ze względu na dużą ilość bilbiotek statystycznych oraz bioinformatycznych.

3.1 Rozszerzenia plików

Istnieje wiele rozszerzeń plików, w których przechowywane są sekwencje DNA: .gff (z ang. General feature format), .gff2, .gff3, .gtf, .fasta, .fna. Zawierają one wiele innych informacji poza samą sekwencją DNA, takich jak: miejsce na chromosomie sekwencji, rodzaj sekwencji (CDS, exon, UTR, itp.), nazwa proteiny wyprodukowanej z sekwencji, nazwa genu, identyfikatory oraz wiele innych. Do badań w tej pracy został użyty format .fna ze względu na prostotę odczytu pliku.

3.2 Biblioteka Biostrings

Biblioteka *Biostrings* pochodząca z Bioconductor zawiera wiele funkcji do przetwarzania łancuchów znaków, w tym specjalnie funkcje związane z sekwencjami DNA. Funkcje oraz klasy używane przy pracy nad badaniem genomów organizmów:

- Obiekty AA_ALPHABET, DNA_ALPHABET zawierają znaki używane do opisu odpowiednio aminokwasów oraz DNA.
- Obiekt GENETIC CODE reprezentuje tabelę kodu genetycznego.
- Klasa *DNAString* jest rozszerzeniem klasy *XString* i służy do efektywnego przechowywania długich sekwencji znaków alfabetu DNA.
- Klasa *DNAStringSet* służy do przechowywania wielu obiektów *DNAString*.
- Funkcja readDNAStringSet wczytuje wiele sekwencji DNA z pliku (domyślnie w rozszerzeniu fasta).
- Funkcja trinucleotideFrequency zlicza występowanie znaków w sekwencji DNA (wraz z parametrem step=3 zlicza ilości kodonów).
- Funkcja translate tłumaczy sekwencję kodonów na sekwencję aminokwasów.
- Funkcja codons znajduje poczatki oraz końce kodonów w sekwencji DNA.

3.3 Biblioteka biomaRt

Biblioteka biomaRt (również pochodząca z pakietu Bioconductor), służy do pobierania sekwencji kodujących z banku genów Ensembl.

3.4 Autorski kod

Kod napisany przez twórcę pracy w dużej mierze opiera się na funkcjach z biblioteki *Biostrings* (3.2), która w efektywny sposób przetwarza sekwencje kodujące. Ciała funkcji zawarte są w dodatku do pracy D.

- Funkcja divideDNA3 dzieli i zwraca DNAString na 3 części: początek, środek i koniec.
- Funkcja which Codon znajduje kodony odpowiadające ustalonemu aminokwasowi.
- Funkcja codonFreg zwraca częstość kodonów kodujących ustalony aminokwas.

- Funkcja deleteSeq usuwa krótkie sekwencje kodujące.
- Funkcja testCodonInd przeprowadza test niezależności χ^2 sprawdzający niezależność zmiennej ozaczającej rodzaj kodonu i zmiennej położenia kodonu w sekwencji kodującej.
- Funkcja testCodonFreq przeprowadza test zgodności χ^2 z jednostajnym rozkładem występowania kodonów.
- Funkcja AAPos zwraca wektor pozycji, na których występuje kodon kodujący ustalony aminokwas w sekwencji kodującej.
- Funkcja *codonPos* zwraca listę wektorów pozycji, na których występują kodony kodujące ustalony aminokwas w sekwencji kodującej.
- Funkcja *breaks* zmienia wektor pozycji na wektor długości przerw pomiędzy wystąpieniami.
- Funkcja AABreaks zwraca wektor długości przerw w występowaniu ustalonego aminowkwasu w sekwencji kodującej.
- Funkcja *codonBreaks* zwraca listę wektorów długości przerw w występowaniu kodonów kodujących ustalony aminokwas w sekwencji kodującej.
- Funkcja genomeAABreaks zwraca wektor długości przerw w występowaniu ustalonego aminowkwasu we wszystkich sekwencjach kodujących.
- Funkcja genomeCodonBreaks zwraca listę wektorów długości przerw w występowaniu kodonów kodujących ustalony aminokwas we wszystkich sekwencjach kodujących.
- Funkcja quantIntervals funkcja zwracająca wektor początków przedziałów, dzielących półprostą dodatnią na przedziały których prawdopodobieństwo jest równe.
- Funkcja testCodonDist przeprowadza test zgodności χ^2 z zadanym rozkładem długości przerw pomiędzy kodonami kodującymi ustalony aminokwas i również długości przerw pomiędzy ustalonym aminokwasem.
- Funkcja transitionMatrix zwraca macierz przejść pomiędzy kodonami kodującymi ustalony aminokwas w sekwencji kodującej.
- Funkcja transitionGenome zwraca macierz przejść pomiędzy kodonami kodującymi ustalony aminokwas we wszystkich sekwencjach kodujących.
- Funkcja discrepancyCoeff oblicza współczynnik rozbieżności testu χ^2 .

3.4.1 Opis ważniejszych funkcji

• Funkcja testCodonFreq

Do wykonania testu zgodności opisanego w sekcji 4.1 potrzebny jest wektor z częstością występowania każdego kodonu, który uzyskany jest przy zsumowaniu kolumn macierzy otrzymanej za pomocą funkcji codonFreq. Taki wektor może posłużyć jako argument funkcji chi.test, która dokonuje odpowiedniego testu – w tym przypadku

testu zgodności χ^2 z rozkładem jednostajnym. Domyślnie prawdopodobieństwo w tej funkcji jest obliczane jako odwrotność liczby kodonów (kategorii). Stąd można wyznaczyć liczbę oczekiwaną jako sumę wszystkich wystąpień przez liczbę kodonów.

• Funkcja testCodonDist

Do wykonania testu zgodności opisanego w sekcji 4.2 potrzebny jest wektor z sumowaną ilością wystąpień długości przerw mieszczących się w odpowiednich przedziałach. Przedziały wyznaczone są za pomocą funkcji quantIntervals, tak aby prawdopodobieństwa przedziałów według zadanego rozkładu były w przybliżeniu równe sobie. Do przetestowania zgodności z zadanym rozkładem jest również potrzebny wektor prawdopodobieństw tych przedziałów z teoretycznego zadanego rozkładu, który jest uzyskany za pomocą odpowiedniej dystrybuanty. Tak stworzone wektory mogą posłużyć jako argumenty funkcji chi.test, która dokonuje odpowiedniego testu – w tym przypadku testu zgodności χ^2 z zadanym rozkładem. Za pomocą wektora prawdopodobieństw można również obliczyć liczbę oczekiwaną wystąpień w przedziałe, mnożąc go przez ilość wszystkich przerw.

• Funkcja testCodonInd

Do wykonania testu niezależności opisanego w sekcji 4.3 potrzebna jest tabela kontyngencji, której jeden wiersz zostaje uzyskany po zsumowaniu kolumn macierzy otrzymanej za pomocą codonFreq. Taką operację należy powtórzyć dla każdego data.frame'u, który ma w sobie początki/środki/końce wszystkich sekwencji kodujących. Tak przygotowana tablica może posłużyć jako argument do funkcji chi.test, która dokonuje odpowiedniego testu – w tym przypadku testu niezależności χ^2 .

4 Część statystyczna

4.1 Testowanie równości prawdopodobieństw w występowaniu kodonów

Pierwszym pytaniem, które możemy postawić przy analizie częstości kodonów jest, czy występują one po równo? Aminokwasy są kodowane przez różne ilości kodonów oraz niektóre z nich wydają się być bardziej odporne na mutacje (podmianę jednego nukleotydu). Stosunek par nukleotydów w DNA również nie musi być sobie równy, co może sugerować różną częstość w występowaniu kodonów.

4.1.1 Test zgodności χ^2

Do przetestowania hipotezy o równości prawdopodobieństw może posłużyć test zgodności χ^2 . Niech zmienna X ma k możliwych kategorii x_i , których prawdopodobieństwo wystąpienia wynosi $P(X=x_i)=p_i$, gdzie p_i jest nieznane oraz $\sum_{i=1}^k p_i=1$. Rozważając problem testowania zgodności rozkładu $\{p_i\}_{i=1}^k$ z ustalonym $\{p_i^0\}_{i=1}^k$ można sformułować hipotezy:

$$H_0: p_i = p_i^0, i = 1, \dots, k, \quad H_1: \exists_i \ p_i \neq p_i^0.$$
 (4.1.1)

Statystyka testowa w tym problemie ma postać:

$$Q = \sum_{i=1}^{k} \frac{(n_i - np_i^0)^2}{np_i^0}.$$
 (4.1.2)

Gdzie n_i to liczba obserwacji i-tej kategorii, n to suma wszystkich obserwacji, a np_i^0 to oczekiwana ilość wystąpień tego kodonu. Statystyka ta przy założeniu hipotezy zerowej (4.1.1) ma w przybliżeniu rozkład χ^2 z k-1 stopniami swobody

W przypadku występowania kodonów zmienna X ma k możliwych wartości, gdzie k oznacza liczbę kodonów za pomocą których jest reprezentowany jeden aminokwas oraz prawdopodobieństwo wystąpienia i-tego kodonu jest nieznane i wyniosi $P(X=cod_i)=p_i$. Rozważając problem testowania zgodności rozkładu z rozkładem jednostajnym można sformułować hipotezy:

$$H_0: p_i = \frac{1}{k}, \ i = 1, \dots, k, \quad H_1: \exists_i \ p_i \neq \frac{1}{k}.$$
 (4.1.3)

Statystyka testowa w tym problemie ma postać:

$$Q = \sum_{i=1}^{k} \frac{(n_i - \frac{n}{k})^2}{\frac{n}{k}}.$$
 (4.1.4)

Gdzie n_i to liczba wystąpień i-tego kodonu, n to liczba wystąpień wszystkich kodonów kodujących ustalony aminokwas, a $\frac{n}{k}$ to oczekiwana ilość wystąpień tego kodonu. Statystyka ta przy założeniu hipotezy zerowej (4.1.3) ma w przybliżeniu rozkład χ^2 z k-1 stopniami swobody.

4.1.2 Współczynnik rozbieżności

Test χ^2 jest matematycznie poprawny, ale podobnie jak inne testy statystyczne, odrzuca hipotezę zerową, jeśli wielkość próbki jest wystarczająco duża. Taka sytuacja ma często miejsce przy analizie danych genetycznych, gdzie próbki liczą dziesiątki tysięcy nie są wyjątkowe. Zatem test w jego oryginalnej formie jest praktycznie bezużyteczny dla próbek o takich rozmiarach. Dlatego proponuje się brać pod uwagę nie tylko poziom istotności, ale także wielkość opisującą tzw. test resistance. Biorąc pod uwagę, że statystyki chi-kwadrat rosną liniowo wraz z wielkość próby, jeśli różnice między teoretyczną a empirycznczną częstotliwości są ustalone, można za test resistane przyjąć współczynnik rozbieżności discrepancy coefficient

$$C = \frac{\chi^2}{N},$$

Powszechnie uważa się dopasowanie za zadowalające, jeśli $C \leq 0.02$ Badania symulacyjne wskazują, że w niektórych sytuacjach można zaakceptować model gdy $C \leq 0.05$

4.1.3 Wyniki

Wyniki testowania są przedstawione w tabelach 4.1.1 i 4.1.2. W tabelach znajdują się częstości wystąpień odpowiednich kodonów, oczekiwana liczba kodonów, wartość statystyki, współczynnik rozbieżności oraz p-wartość (liczba stopni swobody statystyki to ilość kodonów w tabeli -1). Część z tabel znajduje się w dodatku A.

GCA	GCC	GCG	GCT	L.oczek.	Statystyka	С	Pval
33847	41359	52805	25139	38288	10781	0.07	0.00

(a) Test dla aminokwasu A

-	TGC	TGT	L.oczek.	Statystyka	C	Pval
Ī	10553	8623	9588	194	0.01	0.00

(b) Test dla aminokwasu C

GAC	C GAT	L.oczek.	Statystyka	С	Pval
31358	3 53487	42422	5772	0.07	0.00

(c) Test dla aminokwasu D

GAA	GAG	L.oczek.	Statystyka	С	Pval
64132	30848	47490	11664	0.12	0.00

(d) Test dla aminokwasu E

TTC	TTT	L.oczek.	Statystyka	С	Pval
25675	35909	30792	1701	0.03	0.00

(e) Test dla aminokwasu F

GGA	GGC	GGG	GGT	L.oczek.	Statystyka	C	Pval
1/530	45651	10///3	30/10	29763	22080	N 10	

(f) Test dla aminokwasu G

CAC	CAT	L.oczek.	Statystyka	С	Pval
15209	20839	18024	879	0.02	0.00

(g) Test dla aminokwasu H

ATA	ATC	ATT	L.oczek.	Statystyka	$^{\rm C}$	Pval
9058	38856	48152	32022	26052	0.27	0.00

(h) Test dla aminokwasu I

AAA	AAG	L.oczek.	Statystyka	С	Pval
55421	18221	36821	18791	0.26	0.00

(i) Test dla aminokwasu K

$\overline{\text{CTA}}$	CTC	CTG	CTT	TTA	TTG	L.oczek.	Statystyka	С	Pval
6323	17093	83341	18640	22428	21021	28141	135700	0.80	0.00

(j) Test dla aminokwasu L

AAC	AAT	L.oczek.	Statystyka	С	Pval
35229	30956	33093	276	0.00	0.00

(k) Test dla aminokwasu N

CCA	CCC	CCG	CCT	L.oczek.	Statystyka	С	Pval
13707	9150	36865	11873	17899	27384	0.38	0.00

(l) Test dla aminokwasu P

CAA	$_{\mathrm{CAG}}$	L.oczek.	Statystyka	С	Pval
23882	48281	36082	8250	0.11	0.00

(m) Test dla aminokwasu Q

AGA	AGG	CGA	$_{\rm CGC}$	$_{\rm CGG}$	CGT	L.oczek.	Statystyka	С	Pval
4771	3057	6414	34270	10431	33200	15357	67960	0.74	0.00

(n) Test dla aminokwasu R

Tablica 4.1.1: Wyniki testu zgodności dla E.Coli.

GCA	GCC	GCG	GCT	L.oczek.	Statystyka	С	Pval
51872	134719	64746	47498	74709	66424	0.22	0.00

(a) Test dla aminokwasu A

TGC	TGT	L.oczek.	Statystyka	C	Pval
49482	18351	33917	14287	0.21	0.00

(b) Test dla aminokwasu C

GAC	GAT	L.oczek.	Statystyka	С	Pval
91489	105796	98643	1038	0.01	0.00

(c) Test dla aminokwasu D

GAA	GAG	L.oczek.	Statystyka	С	Pval
71820	170095	120958	39923	0.17	0.00

(d) Test dla aminokwasu E

TTC	TTT	L.oczek.	Statystyka	С	Pval
78122	43607	60865	9786	0.08	0.00

(e) Test dla aminokwasu F

GGA	GGC	GGG	GGT	L.oczek.	Statystyka	С	Pval
64856	121726	17863	56212	65164	84661	0.32	0.00

(f) Test dla aminokwasu G

CAC	CAT	L.oczek.	Statystyka	C	Pval
62728	43592	53160	3444	0.03	0.00

(g) Test dla aminokwasu H

ATA	ATC	ATT	L.oczek.	Statystyka	$^{\rm C}$	Pval
32541	87366	55222	58376	26001	0.15	0.00

(h) Test dla aminokwasu I

AAA	AAG	L.oczek.	Statystyka	С	Pval
51408	141463	96436	42048	0.22	0.00

(i) Test dla aminokwasu K

СТА	CTC	CTG	CTT	ТТА	TTG	L.oczek.	Statystyka	С	Pval
29260	53673	150561	26647	14303	57223	55278	221804	0.67	0.00

(j) Test dla aminokwasu L

AAC	AAT	L.oczek.	Statystyka	С	Pval
95438	84558	89998	658	0.00	0.00

(k) Test dla aminokwasu N

CCA	CCC	CCG	CCT	L.oczek.	Statystyka	С	Pval
54750	67090	73358	21215	54103	29970	0.14	0.00

(l) Test dla aminokwasu P

CAA	$_{\mathrm{CAG}}$	L.oczek.	Statystyka	$^{\mathrm{C}}$	Pval
62388	156284	109336	40318	0.18	0.00

(m) Test dla aminokwasu Q

AGA	AGG	CGA	CGC	$\overline{\text{CGG}}$	CGT	L.oczek.	Statystyka	С	Pval
16811	21865	32345	76431	32782	35949	36031	61792	0.29	0.00

(n) Test dla aminokwasu R

Tablica 4.1.2: Wyniki testu zgodności dla muszki owocowej.

Rozważając tylko p-wartości z tabel 4.1.1 i 4.1.2 można wywnioskować, że kodony nie występują równomiernie w sekwencjach kodujących bakterii i muszki owocowej. Jednakże współczynnik rozbieżności sugeruje, że większość testów nie jest znacząca, te testy które są znaczące odrzucają hipotezę o równym prawdopodobieństwie. Znaczące testy najczęściej są przy aminokwasie, który jest kodowany za pomocą dwoch kodonów.

4.2 Testowanie zgodności z rozkładami

Wyniki poprzedniej sekcji 4.1 sugerują, że występowanie kodonów pochodzi z innego rozkładu niż jednostajny. W tej pracy spróbowano odnaleźć rozkład długości przerw pomiędzy wystąpieniami aminokwasu oraz kodonów kodujących ten aminokwas. Zmienna X_i będzie oznaczała długość przerwy pomiędzy ponownym wystąpieniem kodonu, a n liczbę wszystkich zmiennych X_i .

4.2.1 Rozkład geometryczny

Rozkład geometryczny jest rozkładem dyskretnym, który mierzy prawdopodobieństwo pojawienia się wygranej po serii porażek. Odpowiada to sytuacji, w której wygraną jest pojawienie się ustalonego kodonu, a przegraną wystąpienie jakiegokolwiek innego kodonu. Typowym przykłedem zastosowania rozkładu geometrycznego jest modelowanie rzutu monetą. Jest zatem naturalnym pomysłem przybliżenie tym rozkładem przerw w występowaniu kodonów i aminokwasów. Funkcja masy rozkładu $Geom(\theta)$ ma postać:

$$P(X = k|\theta) = (1 - \theta)^k \theta, \quad \theta \in (0, 1).$$
 (4.2.1)

4.2.2 Rozkład logarytmiczny

Rozkład logarytmiczny jest również rozkładem dyskretnym, wyprowadzonym z rozwinięcia logarytmu w szereg Taylor'a:

$$-\log(1-p) = \sum_{k=1}^{\infty} \frac{p^k}{k}, \quad p \in (0,1).$$

Gdzie log oznacza logarytm naturalny. R. Fisher wykorzystał ten rozkład do modelowania względnej liczebności gatunków. Funkcja masy rozkładu $Log(\theta)$ ma postać:

$$P(X = k | \theta) = \frac{-1}{\log(1 - \theta)} \frac{p^k}{k}, \quad \theta \in (0, 1).$$
 (4.2.2)

4.2.3 Estymator największej wiarogodności

Do znalezienia parametru rozkładu do którego chcemy dopasować dane, można posłużyć się estymatorem największej wiarogodności (ENW), który jest znajdywany za pomocą maksymalizacji logarytmu funkcji wiarogodności, która ma postać:

$$L(\theta) = \prod_{i=1}^{n} f(x_i | \theta). \tag{4.2.3}$$

W przypadku rozkładu geometrycznego ENW można wyznaczyć i ma postać:

$$\hat{\theta} = \frac{n}{\sum_{i=1}^{n} X_i}.$$
(4.2.4)

Natomiast w przypadku rozkładu logarytmicznego ENW jest rozwiązaniem równania:

$$\bar{X} = \frac{\hat{\theta}}{-(1-\hat{\theta})\log(1-\hat{\theta})}.$$
(4.2.5)

Lub można wykorzystać prostszą konstrukcję:

$$\hat{\theta} = 1 - \sum_{j \ge 1} \frac{jf_j}{\sum_{j \ge 1} j^2 f_j}.$$
(4.2.6)

Gdzie f_j jest proporcją obserwacji które są równe j oraz \bar{X} jest średnią próbkową.

4.2.4 Historgramy

Pierwszym krokiem badania zgodności rozkładu zmiennej z założonym jest graficzne porównanie histogramu gęstościowego z funkcją masy zakładanego rozkładu. Zamieszczone zostały tutaj przykładowe histogramy dla obu organizmów wraz z wykresami funkcji masy. Czerwona linia to wykres funkcji masy rozkładu logarytmicznego, a niebieska linia to wykres funkcji masy rozkładu geometrycznego.

Rysunek 4.2.1: Histogramy długości przerw pomiędzy kodonami oraz aminokwasem S dla bakterii E.Coli.

Rysunek 4.2.2: Histogramy długości przerw pomiędzy kodonami oraz aminokwasem I dla bakterii E.Coli.

Rysunek 4.2.3: Histogramy długości przerw pomiędzy kodonami oraz aminokwasem I dla muszki owocowej.

Rysunek 4.2.4: Histogramy długości przerw pomiędzy kodonami oraz aminokwasem S dla muszki owocowej.

Funkcja masy rozkładu geometrycznego jest zbliżona w kształcie do histogramów, jedyne jej niedopasowanie pojawia się na początku dziedziny, w tym miejscu natomiast przybliżenie funkcją masy rozkładu logarytmicznego wydaje się sensowniejsze. Ten drugi jednak nie jest dopasowany na reszcie dziedziny. Z tego też powodu w dalszej części pracy zajemiemy się badaniem zgodności tylko rozkładu geometrycznego.

4.2.5 Wykresy kwantylowo-kwantylowe

Dla potwierdzenia intuicji dobrze jest zobaczyć wykresy kwantylowo-kwantylowe.

Rysunek 4.2.5: Wykresy kwantylowo-kwantylowe długości przerw pomiędzy kodonami oraz aminokwasami S dla bakterii E.Coli.

Rysunek 4.2.6: Wykresy kwantylowo-kwantylowe długości przerw pomiędzy kodonami oraz aminokwasami I dla bakterii E.Coli.

Rysunek 4.2.7: Wykresy kwantylowo-kwantylowe długości przerw pomiędzy kodonami oraz aminokwasami I dla muszki owocowej

Rysunek 4.2.8: Wykresy kwantylowo-kwantylowe długości przerw pomiędzy kodonami oraz aminokwasami S dla muszki owocowej

Na ogół widać w przybliżeniu dobre dopasowanie rozkładem geometrycznym, odstęp od prostej pojawia się dla większych wartości zmiennych.

4.2.6 Test zgodności χ^2

Do przetestowania hipotezy o zgodności rozkładu danych z rozkładem geometrycznym może posłużyć test zgodności χ^2 . Ze względu na dużą ilość pojedynczych wartości zmiennej X_i , warunek $np_i^0 \geq 5$, gdzie p_i^0 oznacza zakładne w hipotezie zerowej prawdopodobieństwo wystąpienia długości i-tej przerwy, może nie zachodzić, co prowadzi do niepoprawnej aproksymacji rozkładem χ^2 . Z tego powodu stworzone zostały nowe zmienne, zliczające wystąpienia długości przerw w ustalonych przedziałach, tak aby zakładane prawdopodobieństwa w tych przedziałach były sobie w przybliżeniu równe. Takie przedziały można uzyskać za pomocą funkcji kwantylowej. Hipotezy w tym problemie są zatem sformułowane tak samo jak w problemie (4.1.1).

4.2.7 Wyniki

Wyniki zostaly przedstawione w tabelach 4.2.1 i 4.2.2. W tabelach znajdują się liczby wystąpień przerw kodonu w odpowiednim przedziale (numerowanym od 1 do 5), oczekiwana liczba wystąpień w przedziale, wynik statystyki testowej (liczba stopni swobody to ilość przedziałów -1) oraz p-wartość. Część z tabel znajduje się w dodatku B.

		1	2	3	4	5	Sta	t. (C Pval
Lic	zba GCT	5368	5420	4758	4625	4968			1 101
	zek. GCT	4898	5080	5071	5059	5028	125	$4.98 \times 10^{-}$	$3 4.29 \times 10^{-26}$
	zba GCC	8292	8433	8710	8012	7912	12	1.00 / 10	1.20 \(10
	zek. GCC	8200	8129	8449	8289	8291	47	$7 1.14 \times 10^{-}$	$3 1.47 \times 10^{-9}$
	zba GCA	7022	7265	6492	6299	6769	-	1.11 / 10	1.11 // 10
	zek. GCA	6742	6782	6743	6776	6802	89	$9 2.63 \times 10^{-}$	$3 2.15 \times 10^{-18}$
	zba GCG	10020	11314	11016	10115	10340	0.	2.00 × 10	2.10 × 10
	zek. GCG	10020	11030	10412	10685	10612	79	$9 1.51 \times 10^{-}$	$3 1.83 \times 10^{-16}$
L. OC2	Liczba A	16173	39823	32697	32099	$\frac{10012}{32358}$	1.	7 1.51 × 10	1.03 × 10
т	Oczek. A	27619	$\frac{39323}{32377}$	30569	31383	31203	6663	$4.35 \times 10^{-}$	2 0
	OCZEK, A	21013	92911	30009	31303	31203	000,	4.55 × 10	
			,	a) Test	dla am	inokwas			
		1	2	3	4	5	Stat	С	Pval
	Liczba TG	T 2006	6 1741	1564	1594	1718			
L.	Oczek. TG	T 1703	3 1729	1739	1723	1727	81	9.44×10^{-3}	8.96×10^{-17}
	Liczba TG	C 2399	2134	1987	2008	2025			
L.	Oczek. TG	C 2104	1 2101	2114	2120	2112	59	5.60×10^{-3}	4.57×10^{-12}
	Liczba	C 4431	3825	3607	3417	3896			
	L.Oczek.	C 3914	4053	4007	3992	4013	182	9.12×10^{-3}	2.56×10^{-38}
			(b) Test	dla am	inokwas	su C		
		1	2	3	4	5	Stat	C	Pval
Lic	zba GAT	8887	11961	11413	11034	10192	5000		1 vai
	zek. GAT	10673	10598	10794	10703	10716	545	1.02×10^{-2}	8.99×10^{-117}
	zba GAC	5986	6463	6734	6060	6115	010	1.02 × 10	0.55 × 10
	zek. GAC	6212	6214	6367	6286	6277	51	1.64×10^{-3}	1.69×10^{-10}
	Liczba D	13332	18095	18427	18737	16254	01	1.04 × 10	1.03 × 10
	Oczek. D	15901	17967	16682	17245	17088	768	9.06×10^{-3}	4.50×10^{-165}
		10001						0.00 // 10	1.00 // 10
			,	· · · · · · · · · · · · · · · · · · ·		inokwas			D 1
	1 (1 4 4	1	2	3	4	5	Stat	C	Pval
	zba GAA	10966	15070	12826	12886	12384	~	0 55 40-9	2 0 0 10 117
	zek. GAA	12517	12975	12876	12903	12858	548	8.55×10^{-3}	2.25×10^{-117}
	zba GAG	6032	6430	6459	5976	5951			10
L.Ocz	zek. GAG	6132	6088	6204	6226	6196	51	1.66×10^{-3}	2.17×10^{-10}
	Liczba E	17359	18914	22062	18452	18193			
L.	Oczek. E	17859	19509	19635	18893	19127	388	4.08×10^{-3}	1.01×10^{-82}
			(d) Test	dla am	inokwas	su E		
		1	2	3	4	5	Stat	;	Pval
Lie	czba TTT	7399	7419	7610	6734	6747			
L.Oc	zek. TTT	7151	7115	7259	7189	7193	95	2.65×10^{-3}	$3 1.11 \times 10^{-19}$
Lie	czba TTC	5152	5388	5391	4673	5071			
L.Oc	zek. TTC	5112	5062	5218	5140	5141	70	2.75×10^{-3}	1.76×10^{-14}
	Liczba F	10355	14136	13250	11658	12185			
\mathbf{L}	.Oczek. F	11752	12790	12459	12309	12377	395	6.42×10^{-3}	$3 2.27 \times 10^{-84}$
				/ \ T					_

(e) Test dla aminokwasu F

Tablica 4.2.1: Wyniki testu zgodności dla bakterii Ecoli.

	1	2	3	4	5	Stat		C		P	val
Liczba GCT	13518	8256	7874	8011	9839						
L.Oczek. GCT	9427	9543	9481	9517	9527	2469	5.20	0×10^{-2}			0
Liczba GCC	28453	29069	26046	24748	26403						
L.Oczek. GCC	26837	26661	27172	26970	27078	561	4.17	7×10^{-3}	3.58	$\times 10^{-}$	120
$\operatorname{Liczba} \operatorname{GCA}$	16632	8210	8095	7985	10950						
L.Oczek. GCA	10314	10306	10437	10389	10424	5405	1.04	4×10^{-1}			0
Liczba GCG	17080	12609	11050	11111	12896						
L.Oczek. GCG	12662	13198	12927	12939	13016		3.24	4×10^{-2}			0
Liczba A	68250	69051	51397	47842	62295			10-2			0
L.Oczek. A	57787	61666	59490	58638	61257	5885	1.97	7×10^{-2}			0
			(a) Test	dla am	inokwa	su A					
	1	2	3	4	5	Stat	i	С		P	val
Liczba TGT	5551	3303	2897	2930	3670						
L.Oczek. TGT	3659	3665	3683	3664	3678	1328	7.24	4×10^{-2}	2.36	$\times 10^{-}$	286
Liczba TGC	16072	9709	7904	6692	9105			1			
L.Oczek. TGC	9866	9808	9997	9903	9905		1.10	0×10^{-1}			0
Liczba C	22237	13224	10572	9462	12338			10-1			0
L.Oczek. C	13468	13719	13655	13557	13672	7817	1.15	6×10^{-1}			0
			(b) Test	dla am	inokwa	$\mathrm{su} \mathrm{C}$					
-		1	2	3	4	5	Stat		С	Pval	
Liczba G	AT 25	629 20	375 20	402 18	607 20	0783					
L.Oczek. G	AT 20	716 21	243 21	307 21	269 2	1258	1582	1.50×1	0^{-2}	0	
Liczba G	AC 22	741 18	152 17	021 15	452 - 18	8123					
L.Oczek. G	AC 17	694 18	704 18	312 18	3448 - 13	8329	2035	2.23×1	0^{-2}	0	
Liczba						9052					
L.Oczek	. D 38	173 39	664 40	350 39	0070 - 40	0047	2987	1.51×1	0^{-2}	0	
			(c) Test	dla am	inokwas	su D					
		1	2	3	4	5	Stat		C	Pval	
Liczba G	AA 21	084 13	327 12	441 10	0522 14	4446					
L.Oczek. G	AA 14	092 14	483 14	506 14	1330 - 14	4406	4867	6.78×1	-0^{-2}	0	
Liczba G			990 31	356 - 27	786 - 32	2378					
L.Oczek. G							4553	2.68×1	-0^{-2}	0	
Liczb						5317			. 1	_	
L.Oczek	. E 47	625 48	183 47	642 49	0649 48	8829	6155	2.54×1	0^{-2}	0	
			(d) Test	dla am	inokwa	su E					
	1	2	3	4	5	Stat		С		Р	val
Liczba TTT	10317	9660	8211	7489	7930						
L.Oczek. TTT	8579	8834	8677	8756	8758	715	1.64	4×10^{-2}	1.29	$\times 10^{-}$	153
Liczba TTC	19151	17548	14453	12919	14051						_
L.Oczek. TTC	15179	15870	15590	15852	15628	2001	2.56	6×10^{-2}			0
Liczba F	28945	26589	23787	20484	21924		1.00	10-9			0
L.Oczek. F	23444	24944	24444	24301	24619	2311	1.90	0×10^{-2}			0

(e) Test dla aminokwasu F

Tablica 4.2.2: Wyniki testu zgodności dla muszki owocowej.

Z tabel jednoznacznie wynika, że rozkłady tych zmiennych nie pochodzą z rozkładu geometrycznego, zwłaszcza w przypadku wystąpień samego aminokwasu. W przypadku bakterii E. Coli wszystkie testy są istotne, natomiast w przypadku muszki owocowej kilka z testów może być nie istotna – współczynnik rozbiezności jest w przybliżeniu 0.05.

4.2.8 Liczba przedziałów

Wybór 5 przedziałów jest spowodowany granicznymi wartościami współczynnika rozbieżności (ok. $0.02 \le C \le 0.05$, część testów jest istotna, a część nie). Dla większej ilości przedziałów, statystyka χ^2 często zwiększa się, a ponieważ liczba obserwacji zostaje taka sama, współczynnik zwiększa się, przez co wnioskujemy o braku istotności testu. Przykładowe wyniki statystyki testowej, współczynnika zbieżności oraz p-wartości dla różnej ilosci przedziałów są podane w tabelach 4.2.3, 4.2.4, 4.2.5 i 4.2.6.

	Stat	С	Pval
$\overline{\text{GCT}}$	120	4.78×10^{-3}	8.26×10^{-27}
GCC	44	1.07×10^{-3}	2.66×10^{-10}
GCA	89	2.65×10^{-3}	3.55×10^{-20}
GCG	56	1.07×10^{-3}	5.87×10^{-13}
\mathbf{A}	1401	9.15×10^{-3}	5.43×10^{-305}

(b) Test dla aminokwasu D

(a) Test dla aminokwasu A

Tablica 4.2.3: Wyniki testu zgodności dla bakterii Ecoli dla 3 przedziałów.

	Stat	C	Pval
$\overline{\text{GCT}}$	206	8.23×10^{-3}	1.21×10^{-39}
GCC	94	2.29×10^{-3}	1.80×10^{-16}
GCA	254	7.52×10^{-3}	1.09×10^{-49}
GCG	251	4.77×10^{-3}	4.21×10^{-49}
A	26285	1.72×10^{-1}	0

(b) Test dla aminokwasu D

(a) Test dla aminokwasu A

Tablica 4.2.4: Wyniki testu zgodności dla bakterii Ecoli dla 10 przedziałów.

	Stat	\mathbf{C}	Pval
GCT	1041	2.19×10^{-2}	8.84×10^{-227}
GCC	663	4.93×10^{-3}	6.83×10^{-145}
GCA	2696	5.20×10^{-2}	0
GCG	1175	1.82×10^{-2}	4.57×10^{-256}
\mathbf{A}	1462	4.89×10^{-3}	2.68×10^{-318}

(a) Test dla aminokwasu A

	Stat	С	Pval
GAT	1315	1.24×10^{-2}	2.66×10^{-286}
GAC	1161	1.27×10^{-2}	7.38×10^{-253}
D	2883	1.46×10^{-2}	0

(b) Test dla aminokwasu D

Tablica 4.2.5: Wyniki testu zgodności dla muszki owocowej dla 3 przedziałów.

	Stat	С	Pval
GCT	3183	6.70×10^{-2}	0
GCC	2083	1.55×10^{-2}	0
GCA	10256	1.98×10^{-1}	0
GCG	3317	5.12×10^{-2}	0
A	63033	2.11×10^{-1}	0

(a) Test dla aminokwasu A

	Stat	$^{\mathrm{C}}$	Pval
GAT	1765	1.67×10^{-2}	0
GAC	2295	2.51×10^{-2}	0
D	5844	2.96×10^{-2}	0

(b) Test dla aminokwasu D

Tablica 4.2.6: Wyniki testu zgodności dla muszki owocowej dla 10 przedziałów.

4.3 Testowanie niezależności

Brak dobrego dopasowania rozkładu geometrycznego do rozkładu zminnej opisującej długości przerw w występowaniu odpowiedniego kodonu może być spowodowany złamaniem założenia o niezależności. Kodony opisują informację genetyczną, zatem niekoniecznie powinny być traktowane jako zmienne losowe. Warto jest zatem sprawdzić niezależność zmiennej X opisującej wystąpienie kodonu ze zmienną Y opisującą położenie kodonu w sekwencji kodującej (początek/środek/koniec). Do przetestowania tego problemu można wykorzystać test niezależności, korzystający ze statystyki χ^2 .

4.3.1 Test niezależności χ^2

Niech zmienna X ma k kategorii, równe liczbie kodonów opisujących ustalony aminokwas, a zmienna Y ma l=3 kategorii odpowiadających położeniu kodonu w sekwencji kodującej (początek/środek/koniec). Oznaczmy przez p_{ij} prawdopodobieństwo zaobserwowania i-tego kodonu w j-tej lokacji, p_i rozkład brzegowy X i p_j rozkład brzegowy Y. Sformułowanie hipotez ma postać:

$$H_0: X i Y są niezależne, \quad H_1: X i Y są zależne.$$
 (4.3.1)

Co sprowadza się do matematycznej postaci:

$$H_0: p_{ij} = p_{i,p_{i,j}}, i = 1, \dots, k, j = 1, \dots, l \quad H_1: \exists_{i,j} \ p_{ij} \neq p_{i,p_{j,i}}.$$
 (4.3.2)

Statystyka testowa w tym problemie ma postać:

$$Q = \sum_{i=1}^{k} \sum_{j=1}^{l} \frac{(n_{ij} - n_{i.} n_{.j} / n)^2}{n_{i.} n_{.j} / n}.$$
 (4.3.3)

Gdzie n_{ij} to liczba zaobserwowanych realizacji zmiennych należących do i-tej i j-tej kategorii, $n_{i.} = \sum_{j=1}^{l} n_{ij}$ oraz $n_{.j} = \sum_{i=1}^{k} n_{ij}$. Statystyka ta przy założeniu hipotezy zerowej (4.3.2) ma w przybliżeniu rozkład χ^2 z (k-1)(l-1) stopniami swobody.

4.3.2 Wyniki

Wyniki zostały przedstawione w tabelach 4.3.1 i 4.3.2. W tabelach znajdują się ilości wystąpień kodonu w odpowiedniej części sekwencji kodującej, wartość statystyki testowej, współczynnik rozbieżności oraz p-wartość. Część z tabel znajduje się w dodatku C.

beg mid end Stat C Pva	
GCT 11170 11238 11231 1360 9.54×10^{-3} 7.39×10^{-29}	1
GCC 14501 10072 9356	
GCA 16645 14942 13926	
GCG 8707 10509 10332	
(a) Test dla aminokwasu A	
beg mid end Stat C Pval	_
TGT 3404 11598 11408 191 4.47×10^{-3} 3.06×10^{-42}	
TGC 2904 6731 6713	_
(b) Test dla aminokwasu C	
beg mid end Stat C Pval	_
GAT 10149 6909 6788 7 1.18×10^{-4} 2.35×10^{-2}	_
GAC 17266 11147 11192	
(c) Test dla aminokwasu D	_
beg mid end Stat C Pval	_
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	_
GAG 9502 4901 5356	
(d) Test dla aminokwasu E	
beg mid end Stat C Pval	-
TTT 7829 7687 7426 301 5.50×10^{-3} 3.47×10^{-66}	-
TTC 13213 9633 9058	
(e) Test dla aminokwasu F	-
beg mid end Stat C Pval	
$\frac{\text{GGT} 4808 8042 8558 1899 1.66 \times 10^{-2} 0}{\text{GGT} 4808 8042 8558 1899 1.66 \times 10^{-2} 0}$	
GGC 14762 12766 12627	
GGA 6474 6897 7138	
GGG 12663 9773 9707	
(f) Test dla aminokwasu G	
beg mid end Stat C Pval	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
CAC 6864 7102 7200	
() TD + 11	
(g) Test dla aminokwasu H	
beg mid end Stat C Pval	
ATT 3325 5559 6155 2690 3.28×10^{-2} 0	
ATC 13089 9254 8927 ATA 16521 9523 9575	
A1A 10521 9525 9575	
(h) Test dla aminokwasu I	
beg mid end Stat C Pva	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	J
(i) Test dla aminokwasu K beg mid end Stat C Pval	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
TTG 6384 4764 4484	
CTT 27061 15243 14597	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
CTA 8280 7700 8156	
CTG 7022 8794 8641	
(j) Test dla aminokwasu L	
beg mid end Stat C Pval	_
$\frac{\text{deg find end Stat}}{\text{AAT } 11093 10031 10118} 54 9.36 \times 10^{-4} 1.34 \times 10^{-12}$	
AAC 10428 8166 8599	
	—

(k) Test dla aminokwasu N

Tablica 4.3.1: Tablice kontyngencji dla bakterii E.Coli.

-	b	eg mi	d ei	ıd S	Stat		С	Pval
GC	T 188	09 3329	6 339	62 10	1828	3.31×10^{-2}	$^{-2}$	0
GC	C = 447	24 3022	5 315	89				
GC	A 216	96 2507	4 271	92				
GC	G = 148	04 2302	2 229	58				
		() m	. 11		1			
		(a) Te	est dla	amine	okwa	asu A		
	beg	mid	end	Stat		С		Pval
TGT	17408	26697	27316	568	5.38	3×10^{-3}	4.25	$\times 10^{-124}$
TGC	6122	14268	13715					
		(1) m	. 11		1	a		
		(b) Te	est dla	amın	okwa	asu C		
	beg	mid	end	Stat		С		Pval
GAT	30293	20138	19802	1	1.2	27×10^{-5}	3.84	4×10^{-1}
GAC	34742	23127	22365					
		/ \ -						
		$(c) T\epsilon$	est dla	amin	ok wa	asu D		
-	beg	mid	end	Stat		С		Pval
GAA	24125	24342	21594	4418		45×10^{-2}	0.0	00×10^{0}
GAG	55389	27529	27363	1110		10 // 10	0.0	, o , (1 o
		2.020	2.000					
		(d) Te	est dla	amin	ok w	asu E		
	hor	mid	end	Stat		C		Pval
mmm	beg				0.7	2×10^{-3}	0.91	$\times 10^{-59}$
TTT	25355	$17819 \\ 12633$	17024	270	2.1.	2 × 10	2.31	X 10
TTC	14350	12033	11920					
		(a) T	est dla	amin	okw	en F		
		* *				asu r		
					stat		C	Pval
	FT 221				849	2.97×10	₁ -2	0
	GC 411							
		276 134						
G(GG = 178	345 162	60 159	067				
		(f) T _o	st dla	omin.	1	van C		
		· · /			JK W c			
	beg	mid	end	Stat		C		Pval
CAT	20032	23590	23229	313	2.5	5×10^{-3}	8.73	$\times 10^{-69}$
CAC	14250	20994	20814					
		(m) To	مالہ جم		. 1	a. II		
		107	est dla		UK W	asu II		
	beg	mid	end	Stat		$\overline{\mathbf{C}}$		Pval
ATT	11109	10213	10435	77	4.9	5×10^{-4}	5.69	$\times 10^{-16}$
ATC	29132	25098	24448					
ATA	17003	15305	14059					
		(1) T				_		
		(h) T	est dla	amın	.okw	asu I		
	b	eg m	id e	nd S	tat		С	Pval
	AA 180	37 1707	73 162	38 2	686	1.87×10	-2	0
	AG = 453	352 - 2363	30 230	09				
		(i) Te	st dla	amino	okwa	ısu K		
	h	eg mi	d er	ıd S	Stat		С	Pval
TI		0			893	3.74×10^{-2}		0
ТТ					.000	0.74 / 10	,	O
СТ								
СТ								
CI								
CT								
	G 108	54 I3UZ	o 149	1.1				
		(i) Te	est dla	amina	ak w:	asıı I.		
	1	(0)			> 17 AA (D 1
A A FED	beg	mid	end	Stat	0.0	C	F 00	Pval
AAT	32386	21172	20991	83	6.0	7×10^{-4}	7.66	$\times 10^{-19}$
AAC	28856	17221	16812					

(k) Test dla aminokwasu N

Tablica 4.3.2: Tablice kontyngencji dla bakterii muszki owocowej.

Z tabel 4.3.1 i 4.3.2 jednoznacznie wynika istnienie zależności między położeniem, a wystąpieniem kodonu. Współczynniki rozbieżności prawie zawsze są poniżej poziomu 0.02 (w kilku przypadkach poniżej 0.05) oraz wszystkie p-wartości są bliskie zera.

4.4 Macierze przejść

Poza zależnością wystąpień kodonów od położenia w sekwencji kodującej, sensownym jest pomyśleć o zależności wystąpienia kodonu od tego jaki poprzednio wystąpił kodon kodujący ten sam aminokwas. Na podstawie zliczeń można stworzyć estymatory częstościowe, za pomocą których otrzymane zostaną macierze przejść. W ten sposób można by modelować występowanie kodonów za pomocą łańcuchów Markova, których pewnym przybliżeniem były by macierze przejść otrzymane w sposób wyżej wymienony. Takie macierze mogłyby posłużyć do wyznaczenia stanów stacjonaranych łańcuchów, które nie będą tematem tej pracy.

4.4.1 Wyniki

Macierze przejść zostały przedstawione w tabelach 4.4.1 i 4.4.2. Z tabel tych wynika, że przejścia pomiędzy kodonami nie są równomiernie rozłożone, pewnie kodony przechodzą cześciej w inne. Niektóre przejścia są mało prawdopodobne – zwłaszcza w przypadkach gdzie aminowkas jest kodowany przez wiele kodonów. Wyniki te zgadzają z wynkiami z sekcji 4.1, kodony które dominują w pewnym aminokwasie mają większe prawdopodobieństwo przejścia do nich.

	GCT	GCC	GCA	GCG
GCT	0.188	0.269	0.230	0.313
GCC	0.156	0.302	0.207	0.335
GCA	0.176	0.254	0.242	0.328
GCG	0.146	0.257	0.210	0.387

(a) Macierz dla aminokwasu A

	GAT	GAC
GAT	0.643	0.357
GAC	0.606	0.394

(c) Macierz dla aminokwasu D

	TTT	TTC
TTT	0.607	0.393
TTC	0.530	0.470

(e) Macierz dla aminokwasu F

	CAT	CAC
CAT	0.604	0.396
CAC	0.537	0.463

(g) Macierz dla aminokwasu H

	AAA	AAG
AAA	0.759	0.241
AAG	0.731	0.269

(i) Macierz dla aminokwasu K

	AAT	AAC
AAT	0.523	0.477
AAC	0.413	0.587

(k) Macierz dla aminokwasu N

	CAA	CAG
$\overline{\text{CAA}}$	0.377	0.623
CAG	0.302	0.698

(m) Macierz dla aminokwasu Q

	ТСТ	TCC	TCA	TCG	AGT	AGC
TCT	0.188	0.165	0.145	0.135	0.140	0.226
TCC	0.147	0.169	0.117	0.134	0.151	0.281
TCA	0.151	0.138	0.172	0.145	0.163	0.231
TCG	0.133	0.150	0.134	0.176	0.147	0.260
AGT	0.134	0.134	0.144	0.147	0.174	0.266
AGC	0.127	0.146	0.115	0.147	0.156	0.310

(o) Macierz dla aminokwasu S

	GTT	GTC	GTA	GTG
GTT	0.289	0.211	0.168	0.331
GTC	0.254	0.222	0.152	0.371
GTA	0.279	0.201	0.170	0.349
GTG	0.227	0.211	0.141	0.421

(q) Macierz dla aminokwasu V

	TGT	TGC
TGT	0.475	0.525
TGC	0.420	0.580

(b) Macierz dla aminokwasu C

	GAA	GAG
GAA	0.679	0.321
GAG	0.660	0.340

(d) Macierz dla aminokwasu E

` '				
	GGT	GGC	GGA	GGG
GGT	0.359	0.378	0.114	0.150
GGC	0.330	0.413	0.104	0.152
GGA	0.311	0.335	0.166	0.188
GGG	0.297	0.371	0.135	0.197

(f) Macierz dla aminokwasu G

	ATT	ATC	ATA
ATT	0.523	0.391	0.086
ATC	0.479	0.453	0.068
ATA	0.482	0.298	0.220

(h) Macierz dla aminokwasu I

	TTA	TTG	CTT	CTC	CTA	CTG
TTA	0.181	0.139	0.129	0.099	0.047	0.405
TTG	0.143	0.145	0.110	0.096	0.040	0.466
CTT	0.148	0.129	0.131	0.107	0.043	0.441
CTC	0.127	0.117	0.112	0.108	0.035	0.500
CTA	0.177	0.140	0.126	0.100	0.051	0.405
CTG	0.106	0.114	0.097	0.100	0.031	0.551

(j) Macierz dla aminokwasu L

(0)				
	CCT	CCC	CCA	CCG
CCT	0.191	0.142	0.208	0.459
CCC	0.190	0.169	0.187	0.454
CCA	0.175	0.126	0.216	0.483
CCG	0.141	0.107	0.173	0.579

(l) Macierz dla aminokwasu P

	CGT	CGC	CGA	CGG	AGA	AGG
CGT	0.408	0.383	0.059	0.099	0.031	0.020
CGC	0.367	0.413	0.058	0.106	0.033	0.023
CGA	0.313	0.329	0.103	0.130	0.074	0.052
CGG	0.311	0.344	0.077	0.165	0.056	0.047
AGA	0.257	0.254	0.110	0.118	0.171	0.090
AGG	0.234	0.240	0.118	0.164	0.154	0.090

(n) Macierz dla aminokwasu R

	ACT	ACC	ACA	ACG
ACT	0.194	0.403	0.155	0.249
ACC	0.156	0.458	0.116	0.270
ACA	0.176	0.338	0.211	0.274
ACG	0.148	0.407	0.143	0.302

(p) Macierz dla aminokwasu T

	TAT	TAC
TAT	0.596	0.404
TAC	0.535	0.465

(r) Macierz dla aminokwasu Y

Tablica 4.4.1: Tablice przejść dla bakterii E.Coli.

	GCT	GCC	GCA	GCG
GCT	0.199	0.430	0.191	0.181
GCC	0.147	0.504	0.142	0.207
GCA	0.171	0.362	0.251	0.216
GCG	0.146	0.428	0.166	0.260

(a) Macierz dla aminokwasu A

	GAT	GAC
GAT	0.563	0.437
GAC	0.507	0.493

(c) Macierz dla aminokwasu D

	TTT	TTC
TTT	0.391	0.609
TTC	0.340	0.660

(e) Macierz dla aminokwasu F

	CAT	CAC
CAT	0.445	0.555
CAC	0.388	0.612

(g) Macierz dla aminokwasu H

	AAA	AAG
AAA	0.334	0.666
AAG	0.239	0.761

(i) Macierz dla aminokwasu K

	AAT	AAC
AAT	0.518	0.482
AAC	0.428	0.572

(k) Macierz dla aminokwasu N

	CAA	CAG
$\overline{\text{CAA}}$	0.348	0.652
CAG	0.259	0.741

(m) Macierz dla aminokwasu Q

	TCT	TCC	TCA	TCG	AGT	AGC
TCT	0.112	0.212	0.131	0.215	0.128	0.202
TCC	0.063	0.241	0.087	0.241	0.132	0.237
TCA	0.097	0.218	0.132	0.232	0.120	0.201
TCG	0.058	0.220	0.084	0.262	0.126	0.249
AGT	0.074	0.213	0.099	0.208	0.157	0.249
AGC	0.049	0.202	0.072	0.198	0.141	0.337

(o) Macierz dla aminokwasu S

` '				
	GTT	GTC	GTA	GTG
GTT	0.209	0.230	0.120	0.442
GTC	0.166	0.262	0.092	0.480
GTA	0.203	0.237	0.138	0.422
GTG	0.151	0.241	0.089	0.519

(q) Macierz dla aminokwasu V

	TGT	TGC
TGT	0.313	0.687
TGC	0.257	0.743

(b) Macierz dla aminokwasu C

	GAA	GAG
GAA	0.369	0.631
GAG	0.265	0.735

(d) Macierz dla aminokwasu E

	GGT	GGC	GGA	GGG
GGT	0.246	0.449	0.238	0.066
GGC	0.208	0.501	0.225	0.066
GGA	0.212	0.417	0.306	0.065
GGG	0.198	0.463	0.241	0.098

(f) Macierz dla aminokwasu G

	ATT	ATC	ATA
ATT	0.325	0.478	0.196
ATC	0.303	0.531	0.166
ATA	0.333	0.449	0.217

(h) Macierz dla aminokwasu I

	TTA	TTG	СТТ	CTC	CTA	CTG
$\overline{\text{TTA}}$	0.158	0.195	0.116	0.111	0.115	0.304
TTG	0.048	0.203	0.084	0.152	0.092	0.421
CTT	0.066	0.194	0.107	0.138	0.091	0.404
CTC	0.030	0.159	0.075	0.163	0.090	0.483
CTA	0.053	0.189	0.097	0.151	0.106	0.404
CTG	0.028	0.156	0.070	0.177	0.079	0.490

(j) Macierz dla aminokwasu L

(0)				
	CCT	CCC	CCA	CCG
CCT	0.142	0.282	0.281	0.295
CCC	0.088	0.342	0.230	0.340
CCA	0.116	0.277	0.294	0.313
CCG	0.082	0.312	0.237	0.369

(l) Macierz dla aminokwasu P

	CGT	CGC	CGA	CGG	AGA	AGG
CGT	0.193	0.370	0.151	0.136	0.065	0.085
CGC	0.161	0.391	0.136	0.156	0.064	0.091
CGA	0.177	0.328	0.163	0.146	0.085	0.100
CGG	0.150	0.351	0.156	0.175	0.069	0.099
AGA	0.158	0.263	0.166	0.132	0.146	0.135
AGG	0.155	0.309	0.153	0.150	0.092	0.141

(n) Macierz dla aminokwasu R

	ACT	ACC	ACA	ACG
ACT	0.175	0.355	0.216	0.255
ACC	0.125	0.428	0.170	0.277
ACA	0.151	0.318	0.274	0.256
ACG	0.113	0.371	0.179	0.337

(p) Macierz dla aminokwasu T

	TAT	TAC
TAT	0.421	0.579
TAC	0.373	0.627

(r) Macierz dla aminokwasu Y

Tablica 4.4.2: Tablice przejść dla bakterii muszki owocowej.

5 Wnioski

5.1 Czułość testu χ^2

Czułośc testu χ^2 jest największym problemem w testowaniu tego typu danych, gdzie obserwacji jest ok. 50-100 tysięcy. Powoduje to częste odrzucanie hipotez zerowych z niską p-wartością. Kontrolowanie go za pomocą prostego współczynnika rozbieżności, może wprowadzać w błąd. Różnice w tym współczynniku widać pomiedzy organizmami, ponieważ muszka owocowa ma znacznie dłuższe sekwencje kodujące. Do dokładniejszego kontrolowania tego testu można posłużyć się lepszymi, bardziej skomplikowanymi współczynnikami.

5.2 Równość prawdopodobieństw w występowaniu kodonów

Z samych liczności kodonów z tabel opisanych w sekcji 4.1.3 możemy już zauważyć, że większość kodonów nie występuje równomiernie. Wszystkie p-wartości są bliskie zeru, jednakże jest to spowodowane ogromnymi liczbami wystąpień i dużymi różnicami pomiędzy przewidywaną wartością, co daje duże wartości statystyki. Współczynnik rozbieżności w przypadku mniejszej ilości kodonów opisujących aminokwas jest zawsze mała, ze względu na duże liczby wystąpień (często rzędu 10⁵). Gdy kodonów jest więcej, jak w przypadku aminokwasu R oraz nierównomiernie rozkładają się, różnice pomiędzy przewidywaną wartością są tak duże, że współczynnik rozbieżności staje się stosunkowo duży, co sugeruje nam nieistotność tego testu, gdzie tabela wskazuje na znaczącą nierówność prawdopodobieństw.

5.3 Rozkład geometryczny jako opis długości przerw między kodonami

Rozkład geometryczny wydaje się być naturalnym wyborem do opisu długości przerw między aminokwasami i kodonami kodującymi ten aminokwas, lecz być może przez zależności w położeniach kodonów test zgodności χ^2 zawsze go odrzuca. Niezależność kodonów od położenia jest zdecydowanie odrzucana przez test niezależności χ^2 zawsze z niskim współczynnikiem rozbieżności. Wykresy kwantylowe z sekcji 4.2.5 sugerują niedopasowanie tego rozkładu na końcach dziedziny, gdzie rozkład daje bardzo niskie prawdopodobieństwa, a występują tam wciąż obserwacje. Być może powinno się zastosować inne podziały półprostej dodaniej, z większą ilością przedziałów na końcach. Nie jest to możliwe w przypadku testu χ^2 , który wymaga przybliżonych podobieństw na każdym przedziałe. W tabelach z sekcji 4.2.7 widać pewne znaczące niedopasowania na niektórych przedziałach. Większość testów jest przeprowadzona na niskim poziomie współczynnika rozbieżności, co sugeruje poprawność odrzucania tego rozkładu.

5.4 Różnice w organizmach

Główną różnicą w testowaniu różnych organizmów jest długość sekwencji kodujących. Ze tego względu wyniki testów w przypadku muszki owocowej, zawsze dają p-wartości bliskie zeru, lecz niekoniecznie mniejsze współczynniki rozbieżności, co powoduje wątpliwość w wynikach testu tego organizmu.

A Testowanie równości prawdopodobieństw w występowaniu kodonów

A.1 E. Coli

AGC	AGT	TCA	TCC	TCG	ТСТ	L.oczek.	Statystyka	С	Pval
26113	15324	13344	14678	14306	14217	16330	7160	0.07	0.00
			(a) T	Cest dla	aminok	wasu S			
	ACA	ACC	ACG	ACT	L.oczek.	Statysty	ka C	Pval	
	13316	37013	24680	14768	22444	160	0.18	0.00	
			(b) T	Cest dla	aminok	wasu T			
	GTA	GTC	GTG	GTT	L.oczek.	Statysty	ka C	Pval	
•	17837	24063	42594	29480	28494	116	86 0.10	0.00	
			(c) T	est dla	aminok	wasu V			
		TAC	TAT	L.oczek.	Statys	styka (Pval		
		20007	26874	23441		1006 0.0	2 0.00		

(d) Test dla aminokwasu Y

Tablica A.1.1: Wyniki testu zgodności dla E.Coli.

A.2 Muszka owocowa

4616	0 3128	5 74869 (a)			22655	57103		66299	0.19	0.00
		(a)	Test	11						
		(a)	Lest			C				
				ara a	minok	wasu S				
ACA	ACC	ACG	ACT	L.oc	zekiwany	ch Stat	ystyka	. (C Pva	l
45040	85263	64634	30002		562	235	30705	0.14	4 0.00)
		(1)	m ,	11	. 1	TD.				
		(a)	rest	aia a	ımınoky	wasu 1				
GTA	A GTC	G = G = G = G = G = G = G = G = G = G =	G G	TT	L.oczek.	Statyst	yka	$^{\mathrm{C}}$	Pval	
21850	5 53386	10665	8 37	200	54775	74	602	0.34	0.00	
	45040 GTA	45040 85263 GTA GTC	45040 85263 64634 (b) GTA GTC GT	45040 85263 64634 30002 (b) Test GTA GTC GTG G 21856 53386 106658 37	45040 85263 64634 30002 (b) Test dla a GTA GTC GTG GTT 21856 53386 106658 37200	45040 85263 64634 30002 562 (b) Test dla aminok GTA GTC GTG GTT L.oczek. 21856 53386 106658 37200 54775	45040 85263 64634 30002 56235 (b) Test dla aminokwasu T GTA GTC GTG GTT L.oczek. Statyst 21856 53386 106658 37200 54775 74	45040 85263 64634 30002 56235 30705 (b) Test dla aminokwasu T GTA GTC GTG GTT L.oczek. Statystyka	45040 85263 64634 30002 56235 30705 0.14 (b) Test dla aminokwasu T GTA GTC GTG GTT L.oczek. Statystyka C 21856 53386 106658 37200 54775 74602 0.34	45040 85263 64634 30002 56235 30705 0.14 0.00 (b) Test dla aminokwasu T GTA GTC GTG GTT L.oczek. Statystyka C Pval 21856 53386 106658 37200 54775 74602 0.34 0.00

(d) Test dla aminokwasu Y

Statystyka

5129

Pval

0.00

L.oczek.

52471

TAC

64071

TAT

Tablica A.2.1: Wyniki testu zgodności dla muszki owocowej.

B Testowanie zgodności z rozkładami

B.1 E. Coli

	1	2	3	4	5	Stat	(C Pval
Liczba GGT	7638	8603	7833	7567	7778			
L.Oczek. GGT	7807	7908	7863	7902	7937	82	$2.09 \times 10^{-}$	$3 5.53 \times 10^{-17}$
Liczba GGC	8552	10253	9203	8922	8721			
L.Oczek. GGC	9055	9141	9013	9250	9189	202	$4.44 \times 10^{-}$	$3 1.06 \times 10^{-42}$
$\operatorname{Liczba}\ \operatorname{GGA}$	3093	3126	2916	2592	2812			
L.Oczek. GGA	2905	2899	2908	2908	2917	68	4.68×10^{-1}	$3 5.77 \times 10^{-14}$
Liczba GGG	3708	4117	4016	3842	3760			
L.Oczek. GGG	3826	3935	3893	3882	3903	21	1.11×10^{-1}	$3 2.41 \times 10^{-4}$
Liczba G	17513	27539	26123	24987	22890			
L.Oczek. G	22409	24094	24745	23539	24288	1809	$1.52 \times 10^{-}$	2 0
		(a) Test	dla am	inokwas	u G		
	1	2	3	4	5	Stat	С	Pval
Liczba CA	T 4330	4252	4216	4076	3965			
L.Oczek. CA	T 4086	4182	4209	4188	4172	28 1	1.39×10^{-3}	8.03×10^{-6}
Liczba CA	C 3084	3129	3084	2916	2996			
L.Oczek. CA	C 3037	3043	3032	3042	3051	10 6	6.73×10^{-4}	3.65×10^{-2}
Liczba	H 7769	6959	7378	6888	7054			
L.Oczek.	H 7243	7205	7349	7275	7270	71 1	1.98×10^{-3}	8.69×10^{-15}
		(b) Test	dla am	inokwas	su H		
	1	2	3	4	5	Stat	C	Pval
Liczba ATT	9113	10082	10073	9719	9165			
L.Oczek. ATT	9322	9904	9466	9817	9641	71	1.48×10^{-3}	1.15×10^{-14}
Liczba ATC	7510	8315	7739	7604	7688			
L.Oczek. ATC	7613	7734	7871	7810	7826	55	1.42×10^{-3}	3.15×10^{-11}
Liczba ATA	2655	1920	1481	1250	1752			
L.Oczek. ATA	1794	1805	1824	1815	1817	663	7.32×10^{-2}	3.49×10^{-142}
Liczba I	16273	19399	22762	19149	18483			
L.Oczek. I	18316	19931	19139	19442	19258	963	1.00×10^{-2}	2.79×10^{-207}
			(c) Test	dla am	ninokwas	su I		
	1	2	3	4	5	Stat		Pval
Liczba AAA	11111	12287	10220	11051	10752			
L.Oczek. AAA	10682	11252	11108	11184	11192	202	3.65×10^{-3}	$3 1.24 \times 10^{-42}$
Liczba AAG	4296	3608	3335	3403	3579			
L.Oczek. AAG	3570	3678	3659	3662	3649	197	1.08×10^{-2}	1.41×10^{-41}
$\operatorname{Liczba} \mathrm{K}$	15542	16057	13801	13607	14635			
L.Oczek. K	14042	15136	14868	14667	14966	376	5.11×10^{-3}	$3 2.75 \times 10^{-80}$

(d) Test dla aminokwasu K

Tablica B.1.1: Wyniki testu zgodności dla bakterii Ecoli.

	1	2	3	4	5	Stat		Pval
Liczba TTA	5591	4647	4262	3705	4223			
L.Oczek. TTA	4453	4477	4482	4522	4491	471	2.10×10^{-2}	7.74×10^{-101}
Liczba TTG	4728	4325	3996	3925	4047			
L.Oczek. TTG	4198	4200	4199	4205	4217	106	5.04×10^{-3}	5.09×10^{-22}
Liczba CTT	3987	3899	3652	3480	3622			
L.Oczek. CTT	3664	3770	3731	3743	3730	56	3.02×10^{-3}	1.72×10^{-11}
Liczba CTC	3365	3492	3455	3406	3375			
L.Oczek. CTC	3414	3377	3431	3437	3432	6	3.51×10^{-4}	1.99×10^{-1}
Liczba CTA	1353	1223	1297	1196	1254			
L.Oczek. CTA	1257	1269	1261	1266	1268	14	2.23×10^{-3}	7.03×10^{-3}
Liczba CTG	13039	18659	18091	18032	15520			
L.Oczek. CTG	15600	17630	16374	16934	16801	829	9.95×10^{-3}	3.55×10^{-178}
Liczba L	18433	44829	38979	33110	33413			
L.Oczek. L	33146	34297	33464	33906	33956	10701	6.34×10^{-2}	0
		((e) Test	dla am	inokwa	su L		
	1	2	3	4		Stat	C	Pval
Liczba ATG			8011	7850	9122	5000		1 7001
L.Oczek. ATG			8779	8923		1240	2.81×10^{-2}	2.45×10^{-267}
Liczba M		7568	8011	7850	9122	1210	2.01 / 10	2.10 × 10
L.Oczek. M		8796	8805	8938		1282	2.90×10^{-2}	1.86×10^{-276}
		(f) Tost	dla am	inokwas	211 M		
	1	,	f) Test					Dvol
Liagha AAT	7264	2	3	4	5	Stat	С	Pval
Liczba AAT	7264	6410	3 5848	4 5469	5 5965	Stat		
L.Oczek. AAT	7264 6146	6410 6144	3 5848 6192	5469 6251	5965 6220	Stat 5 342		
L.Oczek. AAT Liczba AAC	7264 6146 7191	2 6410 6144 7168	3 5848 6192 6824	4 5469 6251 7037	5965 6220 7009	Stat 3 3 3 3	1.11×10^{-2}	7.61×10^{-73}
L.Oczek. AAT Liczba AAC L.Oczek. AAC	7264 6146 7191 6877	2 6410 6144 7168 7066	3 5848 6192 6824 7135	4 5469 6251 7037 7087	5965 6220 7009 7062	Stat 3 342 9 30	1.11×10^{-2}	7.61×10^{-73}
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N	7264 6146 7191 6877 12267	2 6410 6144 7168 7066 15276	3 5848 6192 6824 7135 12905	4 5469 6251 7037 7087 12354	5 5965 6220 7009 7062 13383	Stat 342 342 30 38	1.11×10^{-2} 8.55×10^{-4}	7.61×10^{-73} 4.63×10^{-6}
L.Oczek. AAT Liczba AAC L.Oczek. AAC	7264 6146 7191 6877	2 6410 6144 7168 7066 15276 13890	3 5848 6192 6824 7135 12905 13236	4 5469 6251 7037 7087 12354 13235	5965 6220 7009 7062 13383 13377	Stat 342 3 30 3 30 3 210	1.11×10^{-2} 8.55×10^{-4}	7.61×10^{-73}
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N	7264 6146 7191 6877 12267	2 6410 6144 7168 7066 15276 13890	3 5848 6192 6824 7135 12905 13236 (g) Test	4 5469 6251 7037 7087 12354 13235 dla am	5965 6220 7009 7062 13383 13377	Stat 3 342 3 30 2 30 3 210 su N	1.11×10^{-2} 8.55×10^{-4} 3.17×10^{-3}	7.61×10^{-73} 4.63×10^{-6} 2.42×10^{-44}
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N L.Oczek. N	7264 6146 7191 6877 12267 12513	2 6410 6144 7168 7066 15276 13890	3 5848 6192 6824 7135 12905 13236 (g) Test 3	4 5469 6251 7037 7087 12354 13235 dla am	5965 6220 7009 7062 13383 13377 inokwas	Stat 342 342 30 342 2 30 3 42 2 10 Su N 5 Stat	1.11×10^{-2} 8.55×10^{-4} 3.17×10^{-3}	7.61×10^{-73} 4.63×10^{-6} 2.42×10^{-44}
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N L.Oczek. N	7264 6146 7191 6877 12267 12513	2 6410 6144 7168 7066 15276 13890 (2 2417	3 5848 6192 6824 7135 12905 13236 (g) Test 3 2374	4 5469 6251 7037 7087 12354 13235 dla am 4 2242	5965 6220 7009 7062 13383 13377 inokwas 5	Stat 342 3 30 3 210 Su N Stat	1.11×10^{-2} 8.55×10^{-4} 3.17×10^{-3}	7.61×10^{-73} 4.63×10^{-6} 2.42×10^{-44} Pval
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N L.Oczek. N Liczba CCT L.Oczek. CCT	7264 6146 7191 6877 12267 12513	2 6410 6144 7168 7066 15276 13890	3 5848 6192 6824 7135 12905 13236 (g) Test 3	4 5469 6251 7037 7087 12354 13235 dla am	5965 6220 7009 7062 13383 13377 inokwas 5 2345 2375	Stat 342 3 30 3 2 30 3 2 210 Stat Stat 1 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.11×10^{-2} 8.55×10^{-4} 3.17×10^{-3}	7.61×10^{-73} 4.63×10^{-6} 2.42×10^{-44} Pval
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N L.Oczek. N	7264 6146 7191 6877 12267 12513 1 2495 2356 1890	2 6410 6144 7168 7066 15276 13890 (2 2417	3 5848 6192 6824 7135 12905 13236 (g) Test 3 2374 2387 1811	4 5469 6251 7037 7087 12354 13235 dla am 4 2242	5965 6220 7009 7062 13383 13377 inokwas 5	Stat 342 3 30 3 2 30 3 2 210 Stat Stat 1 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1.11×10^{-2} 8.55×10^{-4} 3.17×10^{-3} 0 1.58×10^{-3}	7.61×10^{-73} 4.63×10^{-6} 2.42×10^{-44} Pval 8.69×10^{-4}
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N L.Oczek. N Liczba CCT L.Oczek. CCT Liczba CCC L.Oczek. CCC	7264 6146 7191 6877 12267 12513 1 2495 2356 1890 1806	2 6410 6144 7168 7066 15276 13890 (2 2417 2364 1946 1838	3 5848 6192 6824 7135 12905 13236 (g) Test 3 2374 2387 1811 1835	4 5469 6251 7037 7087 12354 13235 dla am 4 2242 2388 1712 1835	5965 6220 7009 7062 13383 13377 inok was 2345 2375 1791 1832	Stat 342 30 342 30 31 210 Su N Stat 31 31 31 31 31 31 31 31 31 3	1.11×10^{-2} 8.55×10^{-4} 3.17×10^{-3} 0 1.58×10^{-3}	7.61×10^{-73} 4.63×10^{-6} 2.42×10^{-44} Pval 8.69×10^{-4}
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N L.Oczek. N Liczba CCT L.Oczek. CCT Liczba CCC L.Oczek. CCC Liczba CCA	7264 6146 7191 6877 12267 12513 1 2495 2356 1890 1806 2938	2 6410 6144 7168 7066 15276 13890 (2 2417 2364 1946	3 5848 6192 6824 7135 12905 13236 (g) Test 3 2374 2387 1811	4 5469 6251 7037 7087 12354 13235 dla am 4 2242 2388 1712	5965 6220 7009 7062 13383 13377 inokwas 5 2345 2375 1791	Stat 342 30 342 30 31 210 Su N Stat 31 31 31 31 31 31 31 31 31 3	1.11×10^{-2} 8.55×10^{-4} 3.17×10^{-3} 0 1.58×10^{-3} 2.16×10^{-3}	7.61×10^{-73} 4.63×10^{-6} 2.42×10^{-44} 8.69×10^{-4} 5.51×10^{-4}
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N L.Oczek. N Liczba CCT L.Oczek. CCT Liczba CCC Liczba CCC Liczba CCA L.Oczek. CCA	7264 6146 7191 6877 12267 12513 1 2495 2356 1890 1806 2938 2703	2 6410 6144 7168 7066 15276 13890 (2 2417 2364 1946 1838	3 5848 6192 6824 7135 12905 13236 (g) Test 3 2374 2387 1811 1835 2656 2752	4 5469 6251 7037 7087 12354 13235 dla am 4 2242 2388 1712 1835 2647 2750	5965 6220 7009 7062 13383 13377 inok was 2345 2375 1791 1832	Stat 342 30 342 30 31 210 Su N Stat 31 31 31 31 31 31 31 31 31 3	1.11×10^{-2} 8.55×10^{-4} 3.17×10^{-3} 0 1.58×10^{-3} 2.16×10^{-3}	7.61×10^{-73} 4.63×10^{-6} 2.42×10^{-44} 8.69×10^{-4} 5.51×10^{-4}
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N L.Oczek. N Liczba CCT L.Oczek. CCT Liczba CCC L.Oczek. CCC Liczba CCA	7264 6146 7191 6877 12267 12513 1 2495 2356 1890 1806 2938	2 6410 6144 7168 7066 15276 13890 (2 2417 2364 1946 1838 2755	3 5848 6192 6824 7135 12905 13236 (g) Test 3 2374 2387 1811 1835 2656	4 5469 6251 7037 7087 12354 13235 dla am 4 2242 2388 1712 1835 2647	5965 6220 7009 7062 13383 13377 inok was 2345 2375 1791 1832 2711	Stat 342 30 342 30 31 210 Su N Stat 31 31 31 31 31 31 31 31 31 3	1.11×10^{-2} 8.55×10^{-4} 3.17×10^{-3} 1.58×10^{-3} 2.16×10^{-3} 2.07×10^{-3}	7.61×10^{-73} 4.63×10^{-6} 2.42×10^{-44} 8.69×10^{-4} 5.51×10^{-4} 1.07×10^{-5}
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N L.Oczek. N Liczba CCT Liczba CCC Liczba CCC Liczba CCC Liczba CCA Liczba CCA Liczba CCG L.Oczek. CCA Liczba CCG Loczek. CCA Liczba CCG Loczek. CCG	7264 6146 7191 6877 12267 12513 1 2495 2356 1890 1806 2938 2703	2 6410 6144 7168 7066 15276 13890 (2 2417 2364 1946 1838 2755 2747	3 5848 6192 6824 7135 12905 13236 (g) Test 3 2374 2387 1811 1835 2656 2752	4 5469 6251 7037 7087 12354 13235 dla am 4 2242 2388 1712 1835 2647 2750	5965 6220 7009 7062 13383 13377 inokwas 5 2345 2375 1791 1832 2711 2752	Stat 342 30 342 2 30 Su N Stat 3 18 2 19 2 28	1.11×10^{-2} 8.55×10^{-4} 3.17×10^{-3} 1.58×10^{-3} 2.16×10^{-3} 2.07×10^{-3}	7.61×10^{-73} 4.63×10^{-6} 2.42×10^{-44} 8.69×10^{-4} 5.51×10^{-4} 1.07×10^{-5}
L.Oczek. AAT Liczba AAC L.Oczek. AAC Liczba N L.Oczek. N Liczba CCT Liczba CCT Liczba CCC Liczba CCC Liczba CCA Liczba CCA Liczba CCA	7264 6146 7191 6877 12267 12513 1 2495 2356 1890 1806 2938 2703 6587	2 6410 6144 7168 7066 15276 13890 (2 2417 2364 1946 1838 2755 2747 8346	3 5848 6192 6824 7135 12905 13236 (g) Test 3 2374 2387 1811 1835 2656 2752 7798	4 5469 6251 7037 7087 12354 13235 dla am 4 2242 2388 1712 1835 2647 2750 7015	5965 6220 7009 7062 13383 13377 inokwas 5 2345 2375 1791 1832 2711 2752 7119	Stat 342 30 342 30 31 210 Stat 5 5 18 210 220 34 34 34 34 34 34 34 34 34 3	1.11×10^{-2} 8.55×10^{-4} 3.17×10^{-3} 1.58×10^{-3} 2.16×10^{-3} 2.07×10^{-3}	7.61×10^{-73} 4.63×10^{-6} 2.42×10^{-44} Pval 8.69×10^{-4} 5.51×10^{-4} 1.07×10^{-5} 3.24×10^{-52}

(h) Test dla aminokwasu P

Tablica B.1.1: Wyniki testu zgodności dla bakterii Ecoli.

	1	2	3	4	5	Stat	С	Pval
Liczba CAA	5844	4493	4685	4294	4566		0	70
L.Oczek. CAA	4739	4765	4772	4816	4788	341	1.43×10^{-2}	1.01×10^{-72}
Liczba CAG	9849	9779	9813	9328	9512		4	0
L.Oczek. CAG	9321	9910	9702	9630	9716	46	9.66×10^{-4}	1.80×10^{-9}
Liczba Q	15646	15095	12994	13586	14842		9	114
L.Oczek. Q	13678	14770	14545	14641	14608	535	7.42×10^{-3}	1.11×10^{-114}
			(i) Test	dla ami:	nokwası	ı Q		
	1	2	3	4	5	Stat	C	Pval
Liczba CGT	6978	6902	6444	6323	6553			
L.Oczek. CGT	6611	6650	6613	6647	6678	52	1.58×10^{-3}	1.17×10^{-10}
Liczba CGC	6789	7137	7217	6527	6600			
L.Oczek. CGC	6619	6999	6856	6912	6882	59	1.72×10^{-3}	4.50×10^{-12}
Liczba CGA	1442	1336	1230	1137	1269			
L.Oczek. CGA	1269	1290	1288	1282	1283	44	6.93×10^{-3}	5.24×10^{-9}
Liczba CGG	2269	2362	1944	1837	2019			
L.Oczek. CGG	2079	2091	2078	2087	2093	93	8.98×10^{-3}	2.14×10^{-19}
Liczba AGA	1313	1005	867	685	901			
L.Oczek. AGA	948	956	951	958	955	231	4.85×10^{-2}	6.52×10^{-49}
Liczba AGG	782	599	616	479	581			
L.Oczek. AGG	607	612	610	614	611	81	2.67×10^{-2}	7.38×10^{-17}
Liczba R	17454	21175	16764	18754	17996			
L.Oczek. R	18321	18150	18474	18464	18773	740	8.03×10^{-3}	6.31×10^{-159}
			(;) Test	dla ami	n o lengo di	, D		
	1	2	$\frac{(j)}{3}$	4	110K wast	Stat	C	Pval
Liczba TCT	3211	2889	$\frac{3}{2644}$	2610	2863	Diai		1 vai
L.Oczek. TCT	$\frac{3211}{2836}$	$\frac{2832}{2832}$	2842	$\frac{2010}{2857}$	$\frac{2847}{2847}$	85	6.05×10^{-3}	9.57×10^{-18}
Liczba TCC	2792	3133	3004	2811	2938	00	0.00 ∧ 10	3.01 ∧ 10
L.Oczek. TCC	2885	2984	2911	$\frac{2911}{2948}$	2948	19	1.35×10^{-3}	5.60×10^{-4}
Liczba TCA	3201	2687	$\frac{2311}{2477}$	2313		10	1.00 / 10	
	0401				2666			0.00 × 10
I Oczek ICA					$\frac{2666}{2672}$	174	1.31×10^{-2}	
L.Oczek. TCA	2665	2640	2684	2681	2672	174	1.31×10^{-2}	8.88×10^{-37}
Liczba TCG	$2665 \\ 2831$	$2640 \\ 2987$	$2684 \\ 2778$	$2681 \\ 2831$	$2672 \\ 2879$			8.88×10^{-37}
Liczba TCG L.Oczek. TCG	2665 2831 2840	2640 2987 2866	$2684 \\ 2778 \\ 2851$	2681 2831 2879	2672 2879 2868	174 7	1.31×10^{-2} 5.44×10^{-4}	
Liczba TCG L.Oczek. TCG Liczba AGT	$2665 \\ 2831 \\ 2840 \\ 3220$	2640 2987 2866 3179	2684 2778 2851 3073	2681 2831 2879 2810	2672 2879 2868 3042	7	5.44×10^{-4}	8.88×10^{-37} 9.97×10^{-2}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT	2665 2831 2840 3220 3046	2640 2987 2866 3179 3069	2684 2778 2851 3073 3070	2681 2831 2879 2810 3069	2672 2879 2868 3042 3067		5.44×10^{-4}	8.88×10^{-37}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC	2665 2831 2840 3220 3046 5060	2640 2987 2866 3179 3069 5386	2684 2778 2851 3073 3070 5442	2681 2831 2879 2810 3069 5098	2672 2879 2868 3042 3067 5127	7 35	5.44×10^{-4} 2.34×10^{-3}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC	2665 2831 2840 3220 3046 5060 5204	2640 2987 2866 3179 3069 5386 5151	2684 2778 2851 3073 3070 5442 5308	2681 2831 2879 2810 3069 5098 5191	2672 2879 2868 3042 3067 5127 5256	7	5.44×10^{-4}	8.88×10^{-37} 9.97×10^{-2}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S	2665 2831 2840 3220 3046 5060 5204 18519	2640 2987 2866 3179 3069 5386 5151 19115	2684 2778 2851 3073 3070 5442 5308 19560	2681 2831 2879 2810 3069 5098 5191 20678	2672 2879 2868 3042 3067 5127 5256 20110	7 35 22	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC	2665 2831 2840 3220 3046 5060 5204	2640 2987 2866 3179 3069 5386 5151 19115 19293	2684 2778 2851 3073 3070 5442 5308 19560 20054	2681 2831 2879 2810 3069 5098 5191 20678 19754	2672 2879 2868 3042 3067 5127 5256 20110 19918	7 35 22 70	5.44×10^{-4} 2.34×10^{-3}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S	2665 2831 2840 3220 3046 5060 5204 18519 18985	2640 2987 2866 3179 3069 5386 5151 19115 19293	2684 2778 2851 3073 3070 5442 5308 19560 20054 (k) Test	2681 2831 2879 2810 3069 5098 5191 20678 19754	2672 2879 2868 3042 3067 5127 5256 20110 19918	7 35 22 70 u S	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4} 7.17×10^{-4}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4} 1.97×10^{-14}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S L.Oczek. S	2665 2831 2840 3220 3046 5060 5204 18519 18985	2640 2987 2866 3179 3069 5386 5151 19115 19293	2684 2778 2851 3073 3070 5442 5308 19560 20054 (k) Test	2681 2831 2879 2810 3069 5098 5191 20678 19754 dla ami	2672 2879 2868 3042 3067 5127 5256 20110 19918 inokwas	7 35 22 70	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S L.Oczek. S	2665 2831 2840 3220 3046 5060 5204 18519 18985	2640 2987 2866 3179 3069 5386 5151 19115 19293	2684 2778 2851 3073 3070 5442 5308 19560 20054 (k) Test 3 2826	2681 2831 2879 2810 3069 5098 5191 20678 19754 dla ami	2672 2879 2868 3042 3067 5127 5256 20110 19918 inokwas 5	7 35 22 70 u S Stat	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4} 7.17×10^{-4}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4} 1.97×10^{-14} Pval
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S L.Oczek. S L.Oczek. S	2665 2831 2840 3220 3046 5060 5204 18519 18985	2640 2987 2866 3179 3069 5386 5151 19115 19293 2884 2936	2684 2778 2851 3073 3070 5442 5308 19560 20054 (k) Test 3 2826 2977	2681 2831 2879 2810 3069 5098 5191 20678 19754 dla ami 4 2852 2957	2672 2879 2868 3042 3067 5127 5256 20110 19918 inokwas $ 5 2975 2957 $	7 35 22 70 u S	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4} 7.17×10^{-4}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4} 1.97×10^{-14}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S L.Oczek. S L.Oczek. S	2665 2831 2840 3220 3046 5060 5204 18519 18985	2640 2987 2866 3179 3069 5386 5151 19115 19293 2884 2936 7992	2684 2778 2851 3073 3070 5442 5308 19560 20054 (k) Test 2826 2977 7094	2681 2831 2879 2810 3069 5098 5191 20678 19754 dla ami 4 2852 2957 7327	2672 2879 2868 3042 3067 5127 5256 20110 19918 inokwas 2975 2957 7468	7 35 22 70 u S Stat 41	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4} 7.17×10^{-4} C 2.80×10^{-3}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4} 1.97×10^{-14} Pval 2.32×10^{-8}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S L.Oczek. S L.Oczek. S Liczba ACT Liczba ACT Liczba ACC Liczba ACC Liczba ACC Liczba ACC	2665 2831 2840 3220 3046 5060 5204 18519 18985 1 3231 2939 7132 7340	2640 2987 2866 3179 3069 5386 5151 19115 19293 2 2884 2936 7992 7369	2684 2778 2851 3073 3070 5442 5308 19560 20054 (k) Test 2826 2977 7094 7431	2681 2831 2879 2810 3069 5098 5191 20678 19754 dla ami 4 2852 2957 7327 7418	2672 2879 2868 3042 3067 5127 5256 20110 19918 inokwas 5 2975 2957 7468 7453	7 35 22 70 u S Stat	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4} 7.17×10^{-4}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4} 1.97×10^{-14} Pval
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S L.Oczek. S Liczba ACT Liczba ACT Liczba ACT Liczba ACC Liczba ACC Liczba ACC Liczba ACC	2665 2831 2840 3220 3046 5060 5204 18519 18985 1 3231 2939 7132 7340 3393	2640 2987 2866 3179 3069 5386 5151 19115 19293 2884 2936 7992 7369 2673	2684 2778 2851 3073 3070 5442 5308 19560 20054 (k) Test 3 2826 2977 7094 7431 2415	2681 2831 2879 2810 3069 5098 5191 20678 19754 dla ami 4 2852 2957 7327 7418 2145	$2672 \\ 2879 \\ 2868 \\ 3042 \\ 3067 \\ 5127 \\ 5256 \\ 20110 \\ 19918 \\ \hline $	7 35 22 70 u S Stat 41 74	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4} 7.17×10^{-4} C 2.80×10^{-3} 2.02×10^{-3}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4} 1.97×10^{-14} Pval 2.32×10^{-8} 2.14×10^{-15}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S L.Oczek. S L.Oczek. ACT Liczba ACT Liczba ACC Liczba ACC Liczba ACC Liczba ACC Liczba ACA L.Oczek. ACA	2665 2831 2840 3220 3046 5060 5204 18519 18985 1 3231 2939 7132 7340 3393 2637	2640 2987 2866 3179 3069 5386 5151 19115 19293 2 2884 2936 7992 7369 2673 2674	2684 2778 2851 3073 3070 5442 5308 19560 20054 (k) Test 3 2826 2977 7094 7431 2415 2667	2681 2831 2879 2810 3069 5098 5191 20678 19754 dla ami 4 2852 2957 7327 7418 2145 2669	2672 2879 2868 3042 3067 5127 5256 20110 19918 inokwas 5 2975 2957 7468 7453 2690 2667	7 35 22 70 u S Stat 41	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4} 7.17×10^{-4} C 2.80×10^{-3}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4} 1.97×10^{-14} Pval 2.32×10^{-8}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S L.Oczek. S L.Oczek. ACT Liczba ACT Liczba ACT Liczba ACC Liczba ACC Liczba ACA Liczba ACA Liczba ACA	2665 2831 2840 3220 3046 5060 5204 18519 18985 1 3231 2939 7132 7340 3393 2637 5023	2640 2987 2866 3179 3069 5386 5151 19115 19293 2 2884 2936 7992 7369 2673 2674 4879	2684 2778 2851 3073 3070 5442 5308 19560 20054 (k) Test 3 2826 2977 7094 7431 2415 2667 5171	2681 2831 2879 2810 3069 5098 5191 20678 19754 dla ami 4 2852 2957 7327 7418 2145 2669 4811	2672 2879 2868 3042 3067 5127 5256 20110 19918 inokwas 5 2975 2957 7468 7453 2690 2667 4796	7 35 22 70 u S Stat 41 74 343	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4} 7.17×10^{-4} C 2.80×10^{-3} 2.02×10^{-3} 2.58×10^{-2}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4} 1.97×10^{-14} Pval 2.32×10^{-8} 2.14×10^{-15} 3.66×10^{-73}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S L.Oczek. S L.Oczek. ACT Liczba ACT Liczba ACT Liczba ACC Liczba ACC Liczba ACC Liczba ACA L.Oczek. ACA Liczba ACG L.Oczek. ACA	2665 2831 2840 3220 3046 5060 5204 18519 18985 1 3231 2939 7132 7340 3393 2637 5023 4914	2640 2987 2866 3179 3069 5386 5151 19115 19293 2884 2936 7992 7369 2673 2674 4879 4936	2684 2778 2851 3073 3070 5442 5308 19560 20054 (k) Test 2826 2977 7094 7431 2415 2667 5171 4937	2681 2831 2879 2810 3069 5098 5191 20678 19754 dla ami 4 2852 2957 7327 7418 2145 2669 4811 4941	2672 2879 2868 3042 3067 5127 5256 20110 19918 inokwas 5 2975 2957 7468 7453 2690 2667 4796 4950	7 35 22 70 u S Stat 41 74	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4} 7.17×10^{-4} C 2.80×10^{-3} 2.02×10^{-3}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4} 1.97×10^{-14} Pval 2.32×10^{-8} 2.14×10^{-15}
Liczba TCG L.Oczek. TCG Liczba AGT L.Oczek. AGT Liczba AGC L.Oczek. AGC Liczba S L.Oczek. S L.Oczek. ACT Liczba ACT Liczba ACT Liczba ACC Liczba ACC Liczba ACA Liczba ACA Liczba ACA	2665 2831 2840 3220 3046 5060 5204 18519 18985 1 3231 2939 7132 7340 3393 2637 5023	2640 2987 2866 3179 3069 5386 5151 19115 19293 2 2884 2936 7992 7369 2673 2674 4879	2684 2778 2851 3073 3070 5442 5308 19560 20054 (k) Test 3 2826 2977 7094 7431 2415 2667 5171	2681 2831 2879 2810 3069 5098 5191 20678 19754 dla ami 4 2852 2957 7327 7418 2145 2669 4811	2672 2879 2868 3042 3067 5127 5256 20110 19918 inokwas 5 2975 2957 7468 7453 2690 2667 4796	7 35 22 70 u S Stat 41 74 343	5.44×10^{-4} 2.34×10^{-3} 8.75×10^{-4} 7.17×10^{-4} C 2.80×10^{-3} 2.02×10^{-3} 2.58×10^{-2}	8.88×10^{-37} 9.97×10^{-2} 3.13×10^{-7} 1.35×10^{-4} 1.97×10^{-14} Pval 2.32×10^{-8} 2.14×10^{-15} 3.66×10^{-73}

(l) Test dla aminokwasu T

Tablica B.1.1: Wyniki testu zgodności dla bakterii Ecoli.

		1	2	3	4	5	Stat	C	Pval
	Liczba GTT	5839	6357	5936	5686	5662			
\mathbf{L}	.Oczek. GTT	5880	5796	5963	5943	5896	75	2.55×10^{-3}	1.83×10^{-15}
	Liczba GTC	4484	5031	5040	4871	4637			
\mathbf{L}	.Oczek. GTC	4793	4787	4834	4817	4829	49	2.05×10^{-3}	4.97×10^{-10}
	Liczba GTA	3523	3658	3672	3447	3537			
\mathbf{L}	Oczek. GTA	3497	3584	3593	3584	3575	9	5.10×10^{-4}	5.86×10^{-2}
	Liczba GTG	8384	9326	8443	8010	8431			
\mathbf{L} .	Oczek. GTG	8251	8570	8670	8497	8603	106	2.49×10^{-3}	4.93×10^{-22}
	${ m Liczba~V}$	17201	25451	22762	26145	22415			
	L.Oczek. V	20570	24109	22757	23354	23197	986	8.65×10^{-3}	3.16×10^{-212}
) m ,	11	. 1	17		
					dia am	inokwa			
		1	2	3	4	5	Stat	C	Pval
	Liczba TG	G = 5090	5879	4841	4648	4792			
	L.Oczek. TG	G = 5019	5074	5026	5057	5071	184	7.29×10^{-3}	9.95×10^{-39}
	Liczba V	N = 5090	5585	4770	4839	4966			
	L.Oczek. V	N = 5120	5216	5120	5225	5197	75	2.92×10^{-3}	1.46×10^{-15}
			(1	n) Test	dla am	inokwas	u W		
		1	2	3	4	5	Stat	C	Pval
	Liczba TAT	5338	5633	5448	5107	5348			
	L.Oczek. TAT		5338	5369	5414	5385	35	1.31×10^{-3}	4.12×10^{-7}
	Liczba TAC	3942	4264	3944	3911	3946			
	L.Oczek. TAO	3929	4065	3989	4019	4002	13	6.96×10^{-4}	7.54×10^{-3}
	Liczba Y	9084	10100	9369	9116	9212			
	L.Oczek. Y	9373	9453	9309	9536	9424	76	1.62×10^{-3}	1.16×10^{-15}

(o) Test dla aminokwasu Y

Tablica B.1.1: Wyniki testu zgodności dla bakterii Ecoli.

B.2 Muszka owocowa

	1	2	3	4	5	Stat	C	Pval
Liczba GGT	16013	10608	9129	8872	11590			
L.Oczek. GGT	11044	11426	11210	11228	11302	3182	5.66×10^{-2}	0
Liczba GGC	31236	23633	22064	21132	23661			
L.Oczek. GGC	23445	24943	24440	24294	24602	3336	2.74×10^{-2}	0
$\operatorname{Liczba}\ \operatorname{GGA}$	20338	11340	10387	9832	12959			
L.Oczek. GGA	12952	12927	12875	13058	13041	5685	8.77×10^{-2}	0
Liczba GGG	4624	3627	3063	2918	3631			
L.Oczek. GGG	3552	3569	3587	3577	3575	523	2.93×10^{-2}	5.61×10^{-112}
Liczba G	63797	55328	46585	42517	52430			
L.Oczek. G	49860	51970	52472	53947	52410	7194	2.76×10^{-2}	0

/ \ -	_			_	
(a)'	Pest	dla	amino	ZW2 S11	C^{\perp}

	1	2	3	4	5	Stat	С	Pval
Liczba CAT	12392	7671	7178	7423	8928			
L.Oczek. CAT	8588	8839	8678	8750	8735	2304	5.29×10^{-2}	0
Liczba CAC	16313	11933	11211	10913	12358			
L.Oczek. CAC	12322	12749	12438	12601	12616	1697	2.71×10^{-2}	0
Liczba H	30756	17694	18768	17514	21588			
L.Oczek. H	20897	21413	21455	21170	21494	6271	5.89×10^{-2}	0

(b) Test dla aminokwasu H

	1	2	3	4	5	Stat	C	Pval
Liczba ATT	11978	11579	11023	9849	10793			
L.Oczek. ATT	10995	11034	11079	11056	11056	253	4.59×10^{-3}	1.32×10^{-53}
Liczba ATC	18755	19987	16489	15808	16327			
L.Oczek. ATC	17340	17460	17383	17650	17531	801	9.18×10^{-3}	2.88×10^{-172}
Liczba ATA	7690	6831	6189	5432	6399			
L.Oczek. ATA	6482	6474	6528	6537	6517	451	1.39×10^{-2}	2.27×10^{-96}
${ m Liczba}\ { m I}$	36054	38097	33614	34417	32947			
L.Oczek. I	34896	34851	34519	35621	35252	555	3.17×10^{-3}	5.69×10^{-119}

(c) Test dla aminokwasu I

	1	2	3	4	5	Stat	C	Pval
Liczba AAA	14104	10594	8804	7849	10057			
L.Oczek. AAA	10142	10319	10370	10262	10313	2365	4.60×10^{-2}	0
Liczba AAG	36023	29194	26799	22667	26780			
L.Oczek. AAG	27946	28135	28225	28747	28407	3825	2.70×10^{-2}	0
Liczba K	40718	49865	35695	29911	36682			
L.Oczek. K	36473	40183	38453	39101	38672	5287	2.74×10^{-2}	0

(d) Test dla aminokwasu K

Tablica B.2.1: Wyniki testu zgodności dla muszki owocowej.

	1	2	3	4	5	Stat	С	Pval	
Liczba TTA	4659	2658	2184	2008	2794				
L.Oczek. TTA	2840	2868	2869	2859	2865	1598	1.12×10^{-1}	0	
Liczba TTG	12423	12478	10690	10475	11157				
L.Oczek. TTG	11359	11524	11386	11465	11486	316	5.52×10^{-3}	3.62×10^{-67}	
Liczba CTT	6423	5708	4817	4338	5361				
L.Oczek. CTT	5300	5323	5337	5352	5333	508	1.91×10^{-2}	8.38×10^{-109}	
Liczba CTC	11480	11882	10366	10047	9898				
L.Oczek. CTC	10596	10779	10717	10825	10753	321	5.99×10^{-3}	2.18×10^{-68}	
Liczba CTA	6724	5908	5582	5209	5837				
L.Oczek. CTA	5821	5872	5857	5841	5867	221	7.57×10^{-3}	8.45×10^{-47}	
Liczba CTG	33591	30947	31272	27218	27533				
L.Oczek. CTG	29913	29177	31086	30161	30221	1087	7.22×10^{-3}	4.66×10^{-234}	
Liczba L	60323	74067	64120	69345	63797				
L.Oczek. L	62572	69478	64229	67269	68109	721	2.17×10^{-3}	8.87×10^{-155}	
			(e) Test	dla am	inokwas	u L			
		1	$\frac{(\varepsilon)^{-2}}{2}$	3	4		Stat	C Pval	
Liczba A	TG 23	463 17	183 15	175 14	256 17	622			
L.Oczek. A							$322 3.79 \times 10^{-3}$	0^{-2} 0	
Liczba						622			
L.Oczek.							$331 3.80 \times 10^{-1}$	0^{-2} 0	
(f) Test dla aminokwasu M									
	1	2	3	4	5	Stat	C	Pval	
Liczba AAT	18356	18049	16309	15251	16593	5 000			
L.Oczek. AAT	16490	17096	17136	16880	16953	468	5.55×10^{-3}	3.49×10^{-100}	
Liczba AAC	25636	16997	17606	16215	18984	100	0.00 × 10	0.40 × 10	
L. Oczek. AAC	18997	18904	19291	19110	19134	3099	3.25×10^{-2}	0	
Liczba N	42417	36818	31854	32497	36410	0000	0.20 × 10	O	
L.Oczek. N	34381	37037	36351	35816	36424	2743	1.52×10^{-2}	0	
			. — .		inokwas				
	1	2	3	4	5	Stat	С	Pval	
Liczba CCT	6233	3945	3339	3452	4246				
L.Oczek. CCT	4991							0.15 \(\tau \) 10-200	
	4231	4234	4243	4257	4248	1311	6.18×10^{-2}	9.15×10^{-283}	
Liczba CCC	15135	13875	12568	12463	13049				
L.Oczek. CCC	$15135 \\ 13131$	$13875 \\ 13514$	$12568 \\ 13603$	$12463 \\ 13403$	13049 13436	471	6.18×10^{-2} 7.03×10^{-3}	1.07×10^{-100}	
L.Oczek. CCC Liczba CCA	15135 13131 17005	$13875 \\ 13514 \\ 9582$	$12568 \\ 13603 \\ 8591$	12463 13403 8248	13049 13436 11324	471	7.03×10^{-3}	1.07×10^{-100}	
L.Oczek. CCC Liczba CCA L.Oczek. CCA	15135 13131 17005 10946	13875 13514 9582 10843	12568 13603 8591 11022	12463 13403 8248 10950	13049 13436 11324 10986				
L.Oczek. CCC Liczba CCA L.Oczek. CCA Liczba CCG	15135 13131 17005 10946 19344	13875 13514 9582 10843 14128	12568 13603 8591 11022 12828	12463 13403 8248 10950 12403	13049 13436 11324 10986 14655	471 4713	7.03×10^{-3} 8.61×10^{-2}	1.07×10^{-100}	
L.Oczek. CCC Liczba CCA L.Oczek. CCA Liczba CCG L.Oczek. CCG	15135 13131 17005 10946 19344 14406	13875 13514 9582 10843 14128 14803	12568 13603 8591 11022 12828 14614	12463 13403 8248 10950 12403 14841	13049 13436 11324 10986 14655 14691	471	7.03×10^{-3}	1.07×10^{-100}	
L.Oczek. CCC Liczba CCA L.Oczek. CCA Liczba CCG	15135 13131 17005 10946 19344	13875 13514 9582 10843 14128	12568 13603 8591 11022 12828	12463 13403 8248 10950 12403	13049 13436 11324 10986 14655	471 4713	7.03×10^{-3} 8.61×10^{-2}	1.07×10^{-100}	

(h) Test dla aminokwasu P

Tablica B.2.1: Wyniki testu zgodności dla muszki owocowej.

		1	2	3	4	5	Stat		С	Pval
Liczba C						375				
L.Oczek. CA			570 - 124			484	7127	1.14×1	10^{-1}	0
Liczba C			115 - 226			879				
L.Oczek. CA							4043	8.99×1	10^{-2}	0
Liczba	•					991				
$\underline{\hspace{1cm}}$ L.Oczek.	Q 428	899 420	$654 ext{ } 453$	387 - 439	951 43	813 2	23800	1.09×1	10^{-1}	0
			(i) Test	dla am	inokwas	91 ()				
	1	2	3	4	5	Stat		C		Pval
Liczba CGT	8865	6901	$\frac{3}{6347}$	6624	$\frac{3}{7212}$	Diai				1 vai
L.Oczek. CGT	7177	7175	7176	7220	7199	552	1.54	$\times 10^{-2}$	3 49	2×10^{-118}
Liczba CGC	17126	17355	14288	13411	14251	002	1.01	. / 10	0.42	7 / 10
L.Oczek. CGC	14934	15475	15351	15373	15294	945	1 9/	$\times 10^{-2}$	2 50	0×10^{-203}
Liczba CGA	7600	6263	5970	6029	6483	340	1.29	. ^ 10	2.00	/ ^ 10
L.Oczek. CGA	6433	6476	6478	6477	6478	289	8 04	$\times 10^{-3}$	9.1	8×10^{-61}
Liczba CGG	8388	6327	6087	5383	6597	209	0.34	: ^ 10	2.1	0 ^ 10
L.Oczek. CGG	6547	6514	6597	6558	6564	773	2 26	5×10^{-2}	1 28	3×10^{-166}
Liczba AGA	4736	3210	$\frac{0397}{2788}$	2640	3437	110	2.50	V 10	4.40	, ^ 10
L.Oczek. AGA	3336	$\frac{3210}{3372}$	3368	$\frac{2040}{3368}$	3364	853	5.09	3×10^{-2}	1.65	5×10^{-183}
Liczba AGG	5520	4020	4080	3920	4325	099	0.00	0 ^ 10	1.00) \ 10
L.Oczek. AGG	4370	4347	4386	4384	4325 4376	397	1 22	2×10^{-2}	7 5	8×10^{-85}
Liczba R	49771	48194	39822	37388	41008	331	1.02	· ^ 10	1.0	0 \ 10
L.Oczek. R	41899	43194 44367	42109	44432	43397	3181	1 47	$\times 10^{-2}$		0
L.Oczek. It	41099	44307	42109	44404	40091	3101	1.41	× 10		0
(j) Test dla aminokwasu R										
	1	2	3	4	5	Stat		С		Pval
Liczba TCT	6573	4082	3677	3797	4526					
L.Oczek. TCT	4511	4538	4537	4535	4531	1271	5.61	$\times 10^{-2}$	5.86	6×10^{-274}
Liczba TCC	19401	14063	13457	12439	15509					
L.Oczek. TCC	14865	14907	15077	15000	15017	2059	2.75	$\times 10^{-2}$		0
$\operatorname{Liczba} \operatorname{TCA}$	8905	6050	4908	5054	6368					
L.Oczek. TCA	6200	6267	6287	6271	6258	1728	5.52	$\times 10^{-2}$	(0.00×10^{0}
$\operatorname{Liczba} \operatorname{TCG}$	18832	15632	13887	13706	15890					
L.Oczek. TCG	15562	15334	15772	15595	15681	1149	1.48	10^{-2}	1.23	3×10^{-247}
Liczba AGT	11730	9523	8084	7507	9316					
L.Oczek. AGT	9119	9243	9288	9260	9247	1244	2.70	$\times 10^{-2}$	4.27	$' \times 10^{-268}$
Liczba AGC	26398	15939	14491	14258	18618			_		
L.Oczek. AGC	17838	17627	18218	17966	18052	5814	6.48	$\times 10^{-2}$		0
Liczba S	86020	71700	56716	60569	67615			_		
L.Oczek. S	66513	66908	69086	71170	68943	9883	2.88	$\times 10^{-2}$		0
			(k) Test	dla am	inokwa	su S				
-	1	2	3	4	5	Stat		С		Pval
Liczba ACT	8256	5681	5166	4911	5988					
L.Oczek. ACT	5993	5973	6016	6002	6017	1186	3.96	$\times 10^{-2}$	1.26	6×10^{-255}
Liczba ACC	20682	16508	15302	15672	17099		3.00	ŭ	0	=
L.Oczek. ACC	16627	17238	17278	17021	17096	1353	1.59	$\times 10^{-2}$	1.06	6×10^{-291}
Liczba ACA	14271	7698	6913	6709	9449			ŭ		=
L.Oczek. ACA	8974	9035	8945	9059	9025	4415	9.80	$\times 10^{-2}$		0
Liczba ACG	14905	12828	12752	11372	12777	-110	3.00	. =0		V
L.Oczek. ACG	12736	13003	13019	12893	12981	559	8.66	$\times 10^{-3}$	7.15	6×10^{-120}
Liczba T	53759	46966	36336	42719	45159	555	0.00	10	0	. , , 20
L.Oczek. T	41418	48278	45222	44960	45078	5571	2.48	$\times 10^{-2}$		0
	11110	10210	10222	11000	10010	3011	2.40	/\ 10		- 0

(l) Test dla aminokwasu T

Tablica B.2.1: Wyniki testu zgodności dla muszki owocowej.

	1	2	3	4	5	Stat	;	P val	
Liczba GTT	8465	7479	7044	6688	7524				
L.Oczek. GTT	7349	7506	7448	7433	7461	266	7.16×10^{-3}	1.79×10^{-56}	
$\operatorname{Liczba} \operatorname{GTC}$	11712	10932	10486	9953	10303				
L.Oczek. GTC	10635	10574	10783	10687	10705	194	3.65×10^{-3}	4.72×10^{-41}	
${ m Liczba~GTA}$	4777	4628	4320	3683	4448				
L.Oczek. GTA	4338	4375	4393	4368	4380	168	7.72×10^{-3}	1.96×10^{-35}	
Liczba GTG	24474	21115	21368	18871	20830				
L.Oczek. GTG	20937	21454	21499	21430	21336	921	8.64×10^{-3}	$3 4.34 \times 10^{-198}$	
Liczba V	42607	48718	45270	38841	43664				
L.Oczek. V	42867	42652	45430	44060	44098	1487	6.79×10^{-3}	8.09×10^{-321}	
(m) Test dla aminokwasu V									
		,		dia an					
	1	. 2	3	4	5	Stat	$^{\mathrm{C}}$	Pval	
Liczba TG	G 8826	7692	6607	5975	5892				
L.Oczek. TG	G = 6905	7029	7020	7021	7015	956	2.73×10^{-2}	8.98×10^{-206}	
Liczba V	W 8826	7395	6679	6054	6038				
L.Oczek. V	W 7091	7029	7149	7097	7113	794	2.24×10^{-2}	1.21×10^{-170}	
(n) Test dla aminokwasu W									
	1	2	3	4	5	Stat	(Pval	
Liczba TAT	9865	8670	7720	6940	7675				
L.Oczek. TAT	8050	8288	8169	8170	8191	669	1.64×10^{-2}	1.61×10^{-143}	
Liczba TAC	15115	14522	12017	10789	11628				
L.Oczek. TAC	12760	12677	12921	12827	12884	1212	1.89×10^{-2}	2.80×10^{-261}	
Liczba Y	24814	23671	19063	18242	19151		-		
L.Oczek. Y	20379	21570	20876	21155	21018	1895	1.80×10^{-2}	0	

(o) Test dla aminokwasu Y

Tablica B.2.1: Wyniki testu zgodności dla muszki owocowej.

C Testowanie niezależności

C.1 E. Coli

	beg	mid	end	Stat		C	Pval
ССТ	4369	7261	7091	656	8.21 ×		1.57×10^{-138}
CCC	3610	4560	4167	000	0.21 X	10	1.57 × 10
CCA	11099	11282	10584				
CCG	4374	5957	5571				
CCG	4574	9991	9971				
		(a) T	est dla	amir	ıokwası	ı P	
	beg	mid	end	Stat		С	Pval
CAA	8273	8453	8400	483	$7.74 \times$	10^{-3}	8.41×10^{-106}
CAG	15562	10849	10965				
		(b) T	est dla	amir	nokwasu	ıQ	
				end	Stat		C Pval
$\overline{\mathrm{CG'}}$.0718 7	.76 ×	10^{-2} 0
CG				170			
CG.				102			
$^{\mathrm{CG}}$				716			
AG				572			
AGG	G 1064	46 90	93 89	933			
		(c) T	est dla	amir	okwasu	ıR	
	beg	mid	end	Stat		С	Pval
TCT	8534	9203	9109	1009	8.55×10^{-2}	$^{0-3}$	1.63×10^{-210}
TCC	5356	5140	5511				
TCA	4775	7905	7757				
TCG	5313	5714	5271				
AGT	4707	7783	7530				
AGC	5162	6797	6448				
		(d) T	Test dla	a amir	nokwası	ı S	
		. ,			tat		C Pval
A			483 68	21 1	634 1.8	2×10	0^{-2} 0
A	CC 12	409 8	493 80	43			
A	CA 8	224 8	576 86				
A	CG = 5	193 60	071 60	95			
		(e) T	est dla	amir	nokwasu	ιT	
	beg	mid	end	Stat		С	Pval
GTT	6015	5791	6363	373	3.72×1	10^{-3}	1.53×10^{-77}
GTC	8419	6506	6307				
GTA	13271	9662	9681				
GTG	10313	9050	9055				
		(f) T	est dla	amin	nokwasu	ιV	
		\ /		Stat		С	Pval
	beg	mid	end	Diai			
	beg 6302	mid 6423	end 6273	10	2.47×1	_	$\frac{1.430 \times 10^{-3}}{4.30 \times 10^{-3}}$

Tablica C.1.1: Tablice kontyngencji dla bakterii E.Coli.

C.2 Muszka owocowa

CCT								
CCC 24478 15595 15988 CCA 24302 22625 24300 CCG 7116 16413 16103 CA			beg	mid	end	Stat	C	Pval
CCA	CC	СТ	18139	31688	32031	9274	3.76×10^{-2}	0
CCG	CC	$^{\circ}$ C	22478	15595	15988			
CAA			24302	22625	24300			
beg mid end Stat C Pval	CC	CG	7116	16413	16103			
CAA 21544 31953 30414 7786 3.91 × 10 ⁻² 0 CAG 51750 31419 31962 3191 × 10 ⁻² 0 (b) Test dla aminokwasu Q beg mid end Stat C Pval CGT 6025 18971 18977 12131 3.60 × 10 ⁻² 0 CGC 6870 21235 23029 CGA 10625 27631 26250 CGG 25450 25630 26434 AGA 11447 23880 25023 AGG 11526 14168 14242 10 <td< td=""><td></td><td></td><td>(;</td><td>a) Test</td><td>dla am</td><td>ninokw</td><td>asu P</td><td></td></td<>			(;	a) Test	dla am	ninokw	asu P	
CAG 51750 31419 31962 (b) Test dla aminokwasu Q beg mid end Stat C Pval CGT 6025 18971 18977 12131 3.60 × 10 ⁻² 0 CGC 6870 21235 23029 CGA 10625 27631 26250 CGG 25450 25630 26434 AGA 11447 23880 25023 AGG 11526 14168 14242 C Pval CC) Test dla aminokwasu R © mid end Stat C Pval TCT 31084 30559 32857 8403 2.29 × 10 ⁻² 0 TCT 31084 30559 32857 8403 2.29 × 10 ⁻² 0 TCC 15495 15600 15772 15600 15772 15772 15772 15772 15772 15772 15772 15772 15772 15772 15772 15772 15772 15772 15772 15772 15			beg	mid	end	Stat	C	Pval
(b) Test dla aminokwasu Q beg mid end Stat C Pval CGT 6025 18971 18977 12131 3.60 × 10 ⁻² 0 CGC 6870 21235 23029 CGA 10625 27631 26250 CGG 25450 25630 26434 AGA 11447 23880 25023 AGA 11447 23880 25023 AGG 1526 14168 14242 (c) Test dla aminokwasu R (c) Test dla aminokwasu R TCT 31084 30559 32857 8403 2.29 × 10 ⁻² 0 TCT 13495 15600 15772 15495 15600 15772 15495 15600 15772 15495 15600 15772 15495 15600 14814 1446 14814 14814 14814 14814 14814 14814 14814 14814 14814 14814 14814 14814 14814	CA	ιA	21544	31953	30414	7786	3.91×10^{-2}	0
Deg	CA	ΔG	51750	31419	31962			
CGT 6025 18971 18977 12131 3.60 × 10 ⁻² 0 CGC 6870 21235 23029 CGA 10625 27631 26250 CGG 25450 25630 26434 AGA 11447 23880 25023 AGG 11526 14168 14242 (c) Test dla aminokwasu R beg mid end Stat C Pval			(1	o) Test	dla am	inokw	asu Q	
CGC 6870 21235 23029 CGA 10625 27631 26250 CGG 25450 25630 26434 AGA 11447 23880 25023 AGG 11526 14168 14242 Cc			beg	mid	end	Stat	_	
CGA 10625 27631 26250 CGG 25450 25630 26434 AGA 11447 23880 25023 AGG 11526 14168 14242 (c) Test dla aminokwasu R beg mid end Stat C Pval TCT 31084 30559 32857 8403 2.29 × 10 ⁻² 0 TCC 15495 15600 15772 TCA 10892 20542 20303 TCG 26259 21441 21050 AGT 26560 20864 21321 AGC 7116 15160 14814 (d) Test dla aminokwasu S beg mid end Stat C Pval ACT 16117 22037 23013 5390 2.30 × 10 ⁻² 0 ACC 29298 20343 20629 ACA 21854 20017 20953 ACG 9399 15356 15281 (e) Test dla aminokwasu T beg mid end Stat C Pval GTT 6948 8199 8470 2667 1.40 × 10 ⁻² 0 GTC 17947 16374 16205 GTA 35002 21684 22490 GTG 12045 12790 12153 (f) Test dla aminokwasu V beg mid end Stat C Pval GTG 12045 12790 12153 CF Test dla aminokwasu V DEST MIN MIN MAN SERIES CF PVAL TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 12153 CF TEST CATA 35002 21684 22490 GTG 12045 12790 1			6025	18971	18977	12131	3.60×10^{-2}	0
CGG 25450 25630 26434 AGA 11447 23880 25023 AGG 11526 14168 14242 (c) Test dla aminokwasu R beg mid end Stat C Pval TCT 31084 30559 32857 8403 2.29 × 10 ⁻² 0 TCC 15495 15600 15772 TCA 10892 20542 20303 TCG 26259 21441 21050 AGT 26560 20864 21321 AGC 7116 15160 14814 (d) Test dla aminokwasu S beg mid end Stat C Pval ACT 16117 22037 23013 5390 2.30 × 10 ⁻² 0 ACC 29298 20343 20629 ACA 21854 20017 20953 ACG 9399 15356 15281 (e) Test dla aminokwasu T beg mid end Stat C Pval GTT 6948 8199 8470 2667 1.40 × 10 ⁻² 0 GTC 17947 16374 16205 GTA 35002 21684 22490 GTG 12045 12790 12153 (f) Test dla aminokwasu V beg mid end Stat C Pval GTG 12045 12790 12153 CF Test dla aminokwasu V	CG	$^{\mathrm{C}}$	6870	21235	23029			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CG	A	10625	27631	26250			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	CG	G	25450	25630	26434			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	\overline{AG}	Α	11447	23880	25023			
Deg	AG	G			14242			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				/				D '
TCC 15495 15600 15772 TCA 10892 20542 20303 TCG 26259 21441 21050 AGT 26560 20864 21321 AGC 7116 15160 14814 (d) Test dla aminokwasu S beg mid end Stat C Pval ACC 29298 20343 20629 ACA 21854 20017 20953 ACG 9399 15356 15281 (e) Test dla aminokwasu T beg mid end Stat C Pval ACC 29298 20343 20629 ACA 21854 20017 20953 ACG 9399 15356 15281 Ce Test dla aminokwasu T		1 FF						
TCA 10892 20542 20303 TCG 26259 21441 21050 AGT 26560 20864 21321 AGC 7116 15160 14814 (d) Test dla aminokwasu S beg mid end Stat C Pval ACT 16117 22037 23013 5390 2.30 × 10 ⁻² 0 ACC 29298 20343 20629 ACA 21854 20017 20953 ACG 9399 15356 15281 (e) Test dla aminokwasu T beg mid end Stat C Pval ACG 9399 15356 15281 GTT 6948 8199 8470 2667 1.40 × 10 ⁻² 0 GTC 17947 16374 16205 GTA 35002 21684 22490 GTG 12045 12790 12153 (f) Test dla aminokwasu V beg mid end Stat C Pval ACG 12045 12790 12153 (f) Test dla aminokwasu V beg mid end Stat C Pval ACG 12045 12790 12153 CF PVAL ACG 12045 12045 120						8403	2.29×10^{-2}	0
TCG 26259 21441 21050 AGT 26560 20864 21321 AGC 7116 15160 14814 (d) Test dla aminokwasu S beg mid end Stat C Pval ACT 16117 22037 23013 5390 2.30 × 10 ⁻² 0 ACC 29298 20343 20629 ACA 21854 20017 20953 ACG 9399 15356 15281 (e) Test dla aminokwasu T beg mid end Stat C Pval ACT 16948 8199 8470 2667 1.40 × 10 ⁻² 0 GTC 17947 16374 16205 GTA 35002 21684 22490 GTG 12045 12790 12153 (f) Test dla aminokwasu V beg mid end Stat C Pval ACT 19979 13355 13024 199 2.45 × 10 ⁻³ 6.04 × 10 ⁻³								
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$								
Carrell								
(d) Test dla aminokwasu S beg mid end Stat C Pval ACT 16117 22037 23013 5390 2.30 × 10 ⁻² 0 ACC 29298 20343 20629 ACA 21854 20017 20953 ACG 9399 15356 15281								
beg mid end Stat C Pval ACT 16117 22037 23013 5390 2.30 × 10 ⁻² 0 ACC 29298 20343 20629 ACA 21854 20017 20953 ACG 9399 15356 15281	AC	iC.	7116	15160	14814			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			(/	dla an	ninokw	asu S	
ACC 29298 20343 20629 ACA 21854 20017 20953 ACG 9399 15356 15281 (e) Test dla aminokwasu T beg mid end Stat C Pval GTT 6948 8199 8470 2667 1.40 × 10 ⁻² 0 GTC 17947 16374 16205 GTA 35002 21684 22490 GTG 12045 12790 12153 (f) Test dla aminokwasu V beg mid end Stat C P Test dla aminokwasu V test dla amino								Pval
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						5390	2.30×10^{-2}	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	AC	CG	9399	15356	15281			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			(e) Test	dla am	inokw	asu T	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			beg	mid	end	Stat	_	Pval
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			6948	8199	8470	2667	1.40×10^{-2}	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GI	Γ C	17947	16374	16205			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			35002	21684	22490			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	GΊ	G	12045	12790	12153			
AT 19979 13355 13024 199 2.45×10^{-3} 6.04×10^{-3}			(1	f) Test	dla am	inokw	asu V	
		}	oeg 1	mid	end St			P
AC 13302 11004 10524						99 2.4	5×10^{-3} 6.	$04 \times 10^{-}$
	rС	133	302 11	004 10	524			

(g) Test dla aminokwasu Y

Tablica C.2.1: Tablice kontyngencji dla bakterii muszki owocowej.

D Plik z kodem

```
1 \# Kod genetyczny
   genomeEcoli = readDNAStringSet("GCF 000008865.2 ASM886v2 cds
      from genomic.fna", format = "fasta")
  genomeDrosChrX = readDNAStringSet("Drosophila_melanogaster_chrX_
      cds.fna", format = "fasta")
   genomeDrosChrX = deleteSeq(genomeDrosChrX)
 5 #Podzielenie DNA na 3 czesci: poczatek, srodek i koniec
   divideDNA3 = function(DNA)
     width = width (DNA)
 7
     beg = DNAStringSet()
     mid = DNAStringSet()
9
     end = DNAStringSet()
11
     for (i in 1: length(DNA))  {
       n = width[i]/3
13
       beg = c(beg, subseq(DNA[i], 1, n))
       mid = \mathbf{c} (mid, subseq(DNA[i], n+1, 2*n))
15
       end = c(end, subseq(DNA[i], 2*n+1, 3*n))
17
     return(list(beg, mid, end))
19
21 \quad \#Szukanie \quad kodonow \quad odpowiadajacych \quad aminokwasowi
   whichCodon = function(AA)
23
     names(GENETIC CODE | which (GENETIC CODE == AA) | )
25 #Czestosc kodonow kodująca jeden aminokwas
   codonFreq = function(DNA, AA){
     freq = trinucleotideFrequency(DNA, step=3)
27
     indicies = which ( colnames (freq ) %in% which Codon (AA) )
     return (freq [, indicies])
29
31 \# Usuwanie \ niedostepnych \ sekwencji
   deleteSeq <- function (DNA) {
     DNA[width(DNA) > 9]
33
35 #Testowanie niezaleznosci kodonu od polozenia
   testCodonInd <- function (DNA, AA) {
37
     contingency = data.frame()
     dividedDNA = divideDNA3 (DNA)
39
     for (DNA in dividedDNA) {
       sumFreq = apply(codonFreq(DNA, AA), MARGIN=2, sum)
41
       contingency = rbind(contingency, sumFreq)
43
     colnames (contingency) = whichCodon (AA)
```

```
45
     rownames(contingency) = c("beg", "mid", "end")
      contingency = t(contingency)
      test = chisq.test(contingency)
47
      pval = test$p.val
49
      stat = unname(test$statistic)
      c = discrepancyCoeff(stat, sum(contingency))
      nr = nrow(contingency)
51
      contingency = \mathbf{cbind} (contingency, \mathbf{c} (\mathbf{stat}, \mathbf{rep} (NA, \mathbf{nr}-1)), \mathbf{c} (\mathbf{c},
         \mathbf{rep}(NA, nr-1), \mathbf{c}(pval, \mathbf{rep}(NA, nr-1))
      nc = ncol(contingency)
53
      colnames(contingency)[(nc-2):nc] = c("Stat", "C", "Pval")
      return (contingency)
55
57 \# Testowanie zgodnosci AA
   testCodonFreq <- function (DNA, AA) {
      contingency = apply(codonFreq(DNA, AA), MARGIN=2, sum)
59
      expected = sum(contingency)/length(contingency)
      test = chisq.test(contingency)
61
      stat = test\$statistic
      pval = test$p.value
63
      c = discrepancyCoeff(stat, sum(contingency))
65
      data = t(c(contingency, L.oczekiwanych=expected, Stat=unname(
         stat), C=c, Pval=pval))
      return (as.data.frame(data))
67 }
   \#Wystepowanie aminokwasow
   AAPos <- function (dna, AA) {
      greg = gregexpr(AA, translate(dna))[[1]]
71
      3*greg[1:length(greg)]-2
   #Wystepoiwanie kodonow w sekwencji kodujacej
73
   codonPos <- function (dna, AA) {
      cod = whichCodon(AA)
75
      listPos = list()
77
      \mathbf{pos} = \operatorname{codons}(\operatorname{dna})
79
      for (c in cod) {
        listPos[[c]] = start(pos[as.data.frame(pos)[,1]==c,])
81
      return (listPos)
83
   \#Zamiana pozycji na przerwy
85 breaks <- function(X) {
     n = length(X)
      return(X - c(0,X[1:n-1]))
87
89 #Przerwy w wystepowaniu aminokwasow w sekwencji kodujacej
   AABreaks <- function (dna, AA)
```

```
91
      breaks (AAPos (dna, AA))
    #Przerwy w wystepowaniu kodonow w sekwencji kodujacej
   codonBreaks <- function (dna, AA)
93
      lapply (codonPos (dna, AA), breaks)
   #Przerwy w wystepowaniu aminokwasow w calym genomie
    genomeAABreaks <- function(DNA, AA) {
97
      breaks = c()
      for (i in 1:length(DNA))  {
99
        breaks = c(breaks, AABreaks(DNA[[i]], AA))
101
      return (breaks)
    #Przerwy w wystepowaniu kodonow w calym genomie
103
    genomeCodonBreaks <- function (DNA, AA) {
105
      codons = whichCodon(AA)
      listPos = list()
      for (i in 1:length(DNA))  {
107
        listBreaks = codonBreaks (DNA[[i]], AA)
        for (c in codons) {
109
           listPos[[\mathbf{c}]] = \mathbf{c}(listPos[[\mathbf{c}]], listBreaks[[\mathbf{c}]])
111
113
      return (listPos)
    #Przedziały do rownego rozdzielenia rozkładu
115
    quantIntervals <- function(qdist, theta, n) {
      p = 1/n
117
      rev(qdist(1:n*p, theta, lower.tail = FALSE))
119
    \#Testowanie\ rozkladu\ geometrycznego
121 testCodonDist <- function (DNA, AA, n=5, qdist=ggeom, MLE=
       function(X)1/mean(X)) {
      codonBr = genomeCodonBreaks (DNA, AA)
123
      AABr = list (genomeAABreaks (DNA, AA))
      \mathbf{names}(AABr) = AA
      data = data.frame()
125
      for (cod in c(whichCodon(AA), AA)) {
127
        breaks = append(codonBr, AABr)[[cod]]
129
        mle = MLE(breaks)
        int = quantIntervals(qdist, mle, n)
131
        count = c()
133
        for (i in 1:(length(int)-1))
           count[i] = sum(int[i] <= breaks & breaks < int[i+1])
        count[n] = sum(int[n] <= breaks)
135
```

```
137
         \operatorname{prob} = \mathbf{c} (\operatorname{\mathbf{pgeom}}(\operatorname{int}[-1]-1, \operatorname{mle}) - \operatorname{\mathbf{pgeom}}(\operatorname{int}[-n]-1, \operatorname{mle}), \operatorname{\mathbf{pgeom}}(
             int[n]-1, mle, lower.tail = FALSE)
         test = chisq.test(count, p=prob)
         pval= test$p.value
139
         stat = unname(test$statistic)
         c = discrepancyCoeff(stat, length(breaks))
141
143
         dataCod = data.frame(c(count, NA, NA, NA), c(prob*length(breaks
             ), stat, c, pval))
         colnames(dataCod) = c(paste("Liczba", cod), paste("L.Oczek."
             , cod))
145
         data = rbind(data, t(dataCod))
       colnames(data) = c(paste(1:(ncol(data)-3)), "Stat", "C", "Pval
147
       return (data)
149
    \#Tablica\ przejsc\ z\ kodonow
    transition Matrix <- function (dna, AA) {
       listPos = codonPos(dna, AA)
153
       k = length (whichCodon (AA))
       transMat = matrix(0,k,k)
155
       posVec = NULL
       for (i in 1:k)
         posVec[listPos[[i]]] = i
157
       posVec = posVec[!is.na(posVec)]
159
       for (i in 1:k) {
         nextCod = c(posVec[which(posVec==i)+1], 1:k)
161
         row = table(nextCod)-1
         transMat[i] = row
163
       rownames (trans Mat) = which Codon (AA)
165
       colnames (trans Mat) = which Codon (AA)
       return (transMat)
167  }
    \#Tablica\ przejsc\ z\ kodonow\ dla\ genomu
    transitionGenome <- function(DNA, AA) {
169
       k = length (whichCodon (AA))
171
       transMat = matrix(0, k, k)
       for (i in 1:length(DNA))  {
173
         transMat = transMat + transitionMatrix(DNA[[i]],AA)
175
       transMat = diag(1/rowSums(transMat)) %*% transMat
       rownames (trans Mat) = which Codon (AA)
177
       return (transMat)
    \#Wspolczynnik rozbieznosci
    discrepancyCoeff <- function(chi, N) unname(chi/N)
```

Literatura

- [1] D. Chen and D. E. Texada. Low-usage codons and rare codons of escherichia coli. Gene Ther. Mol. Biol, 10:1–12, 2006.
- [2] N. Cressie and T. R. Read. Multinomial goodness-of-fit tests. *Journal of the Royal Statistical Society: Series B (Methodological)*, 46(3):440–464, 1984.
- [3] B. B. Khomtchouk, C. Wahlestedt, and W. Nonner. A global perspective of codon usage. *BioRxiv*, 2016.
- [4] K. Kirilov and I. Ivanov. A programme for determination of codons and codons context frequency of occurrence in sequenced genomes. *Biotechnology & Biotechnological Equipment*, 26(5):3310–3314, 2012.
- [5] J. Koronacki and J. Mielniczuk. Statystyka: dla studentów kierunków technicznych i przyrodniczych. Wydawnictwa Naukowo-Techniczne, 2009.
- [6] H. Mirsafian, A. Mat Ripen, A. Singh, P. H. Teo, A. F. Merican, and S. B. Mohamad. A comparative analysis of synonymous codon usage bias pattern in human albumin superfamily. *The Scientific World Journal*, 2014, 2014.
- [7] D. S. Moore. Measures of lack of fit from tests of chi-squared type. *Journal of statistical planning and inference*, 10(2):151–166, 1984.
- [8] Y. Nakamura and T. Ikemura. Fop (frequency of optimal codon usage): Www service with its distribution analysis. *Genome Informatics*, 6:166–167, 1995.
- [9] G. A. Palidwor, T. J. Perkins, and X. Xia. A general model of codon bias due to gc mutational bias. *PLoS One*, 5(10), 2010.
- [10] T. E. F. Quax, N. J. Claassens, D. Söll, and J. van der Oost. Codon bias as a means to fine-tune gene expression. *Molecular cell*, 59(2):149–161, 2015.
- [11] H. M. Salim and A. R. Cavalcanti. Factors influencing codon usage bias in genomes. Journal of the Brazilian Chemical Society, 19(2):257–262, 2008.
- [12] A. Uddin. Indices of codon usage bias. Proteom. Bioinform, 10(6), 2017.

Spis tablic

1.2.1 Tabela przedstawiająca kodony i odpowiadające im aminokwasy	4
4.1.1 Wyniki testu zgodności dla E.Coli.	0
4.1.2 Wyniki testu zgodności dla muszki owocowej	1
4.2.1 Wyniki testu zgodności dla bakterii Ecoli.	9
4.2.2 Wyniki testu zgodności dla muszki owocowej	20
	21
4.2.4 Wyniki testu zgodności dla bakterii Ecoli dla 10 przedziałów	21
4.2.5 Wyniki testu zgodności dla muszki owocowej dla 3 przedziałów.	21
4.2.6 Wyniki testu zgodności dla muszki owocowej dla 10 przedziałów 2	21
4.3.1 Tablice kontyngencji dla bakterii E.Coli	23
4.3.2 Tablice kontyngencji dla bakterii muszki owocowej	24
4.4.1 Tablice przejść dla bakterii E.Coli.	26
4.4.2 Tablice przejść dla bakterii muszki owocowej	27
	29
A.2.1Wyniki testu zgodności dla muszki owocowej	29
B.1.1Wyniki testu zgodności dla bakterii Ecoli.	80
B.1.1Wyniki testu zgodności dla bakterii Ecoli.	1
B.1.1Wyniki testu zgodności dla bakterii Ecoli.	32
B.1.1Wyniki testu zgodności dla bakterii Ecoli.	3
B.2.1Wyniki testu zgodności dla muszki owocowej	4
	5
	6
	37
	8
C.2.1Tablice kontyngencji dla bakterii muszki owocowej.	9
C. :	
Spis rysunków	
4.2.1 Histogramy długości przerw pomiędzy kodonami oraz aminokwasem S dla	
bakterii E.Coli	3
4.2.2 Histogramy długości przerw pomiędzy kodonami oraz aminokwasem I dla	J
	4
4.2.3 Histogramy długości przerw pomiędzy kodonami oraz aminokwasem I dla	.'±
	4
4.2.4 Histogramy długości przerw pomiędzy kodonami oraz aminokwasem S dla	.4
	.5
4.2.5 Wykresy kwantylowo-kwantylowe długości przerw pomiędzy kodonami oraz	J
	.6
	·U
4.2.6 Wykresy kwantylowo-kwantylowe długości przerw pomiędzy kodonami oraz aminokwasami I dla bakterii E.Coli	7
aminokwasami i dia bakterii E.Coii	. 1
	.7
v .	. 1
4.2.8 Wykresy kwantylowo-kwantylowe długości przerw pomiędzy kodonami oraz aminokwasami S dla muszki owocowej	0
анннок w a sa нн э ч на нн u s z к l о w o c o w e j	8