Acceleration:

- . A change in an object's velocity over time

 - → speeds up → slowing down → changing direction

Acceleration Intro.notebook

Plane Plane (higgest velocity)

car

Motorcycle (fastest-acceleration) **Acceleration Intro.notebook**

Acceleration equation:

acceleration =
$$\frac{\text{(final velocity-initial velocity)}}{\text{time}}$$
 $Q = \frac{\text{(V_f - V_o)}}{\text{t}}$

Units: $\frac{\text{Meters}}{\text{Second}^2} \Rightarrow \frac{\text{M}}{\text{S}^2}$

Acceleration Intro.notebook January 04, 2012

Example:

My rocket car goes Rom
$$10\frac{10}{5}$$
 to

 $100\frac{m}{5}$ in $5\frac{100}{5}$ what was

my acceleration?

(a) $10\frac{100}{5}$ $10\frac{100}{5}$ $10\frac{100}{5}$

(b) $100\frac{m}{5}$ $100\frac{m}{5}$

(c) $100\frac{m}{5}$ $100\frac{m}{5}$

(d) $100\frac{m}{5}$ $100\frac{m}{5}$

(e) $100\frac{m}{5}$ $100\frac{m}{5}$

(f) $100\frac{m}{5}$ $100\frac{m}{5}$

(g) $100\frac{m}{5}$ $100\frac{m}{5}$

(h) $100\frac{m}{5}$ $100\frac{m}{5}$

(g) $100\frac{m}{5}$ $100\frac{m}{5}$

(h) $100\frac{m}{5}$

(h