

Robust Locomotion Strategies on the HyQ Robot Series

Andreea Rădulescu

Dynamic Legged Systems Lab Istituto Italiano di Tecnologia (IIT)

Friday, 25th of May 2018 Dynamic Legged Locomotion in Realistic Terrains

IIT's Dynamic Legged Systems Lab

11 years of expertise:

Design and Control/Planning of Dynamic Legged Systems

dls.iit.it

Lab head: Dr. Claudio Semini

Legged Locomotion in Nature

The Vision: Versatile System

The HyQ Robot Series

HyQ

HyQ = Hydraulic Quadruped

fully torque-controlled quadruped robot

Property	Value
Dimensions (fully stretched legs)	1.0m x 0.5m x 0.98m (LxWxH)
Weight	80kg (external hydraulics), 110kg (onbard hydraulics)
Active DOF	12; 3 per leg (all hydraulic)
Joint range of motion	120°
Actuators (hydraulic cylinders and rotary vane actuators
Max. Torque	120Nm (Hip ab/add, vane type), 181Nm (Hip f/e+knee, cylinder)
Onboard sensors	joint position + torque, IMU, oil pressure, cameras
Onboard computers	IntensePC i5, real-time Linux

C. Semini et al, JSCE, 2011

HyQ2Max

HyQ2Max robot (2015)

Features

- Same weight as HyQ (80kg)
- Rugged design
- Higher joint torque
- Improved torque output curve
- Larger joint range of motion
- Self-righting capability

C. Semini et al., SICFP, 2015

Locomotion Strategies

Locomotion Strategy and Gait Selection

- Crawl
- Trot
- Non Periodic Movements
- Automatic Gait Discovery

- Reactive
- Vision-enhanced
- Machine Learning (Deep Learning)
- Planned Footholds

Reactive Approaches

Reactive Crawl

M. Focchi et al. AURO, 2017

Reactive Crawling with optimized GRF

Chimney Climbing with optimized distribution of joint torques

M. Focchi et al. AURO, 2017

Reactive Controller Framework (RCF)

Reactive Controller Framework

- Omnidirectional trotting controller
- Adaptation to rough terrain
- Balance, Push recovery
- Reduction of impact forces

H_s: step heightL_s: step lengthz_{td}: step depth

 w_s : angular frequency \overline{w}_s : average angular frequency

V. Barasuol et al, ICRA, 2013

Adaptive Locomotion – Step Reflex

Experiments on HyQ

Elevator step reflex with step reflex

•

M. Focchi et al, CLAWAR, 2013

Important in case of:

- No/bad perception due to smoke, vegetation
- 3D mapping or state estimation error

RCF + Machine Learning

Using PI² we improve the performance* of a trotting gait by learning the gait parameters, impedance profile and the gains of the control architecture.

RCF + Machine Learning

Heijmink et. al, Humanoids 2017

Incorporating Visual Information

Reactive Controller Framework ++

 Online generated local maps for visionenhanced reactive locomotion

Local 3D Map

Local Heightmap

Output: relative position

Vision-enhanced RCF

 Online generated local maps for visionenhanced reactive locomotion

Output dimension: **9** (3 x 3)

V. Barasuol, M. Camurri et al, IROS, 2015

Vision-enhanced RCF + Deep Learning

Deep Convolutional
Terrain Assessment for
Visual Reactive Footstep
Correction

- Real-time dynamic foothold correction strategy using visual feedback
- .The feet landing positions are reactively adjusted online
- The foothold selection is given by a CNN (self-supervised terrain classifier trained offline)

Villarreal-Magana et. al, submitted to IROS 2018

Foothold Planning

Foothold planning using maps

 Offline/online generated maps with RGBD sensor for planning of footholds

Asus Xtion Pro

Bumblebee

Multisense SL

Crawl with Planned Footholds

> Coupled planning of robot base trajectory and footholds

Trial 1 Trial 2

C. Mastalli, et al. ICRA 2017

Non Periodic Movements

HyQ2Max

Self-Righting

Finite State Machine

Predefined Poses

HyQ2Max demo at RSS 2015

Whole-body Trajectory Optimisation for Non-periodic Dynamic Motions

- Whole body optimization methodology for non-periodic dynamic movements
- Trajectory solutions involve multiple contacts, without any predefined feet placement heuristics (e.g., contact points, timing or order of succession)
- Realistic simulation of the hydraulically actuated HyQ2Max quadruped for rearing and posture recovery task

A. Radulescu et. al , ICRA 2017

Automatic Gait Discovery

Robust Multi-Legged Locomotion via Mixed-Integer Convex Optimization

simultaneous optimization of contact locations and motions formal robustness guarantees through friction cone constraints automatic gait discovery through mixed-integer constraints

B. Aceituno-Cabezas et. al , ICRA 2018

Conclusions

A combination of reactive and planned motion strategies leading to a robust locomotion performance

Thank you to my wonderful colleagues

Not in the picture:

Yifu Gao

From the left: Michele Focchi, Marco Camurri, Victor Barasuol, Octavio Villarreal, Evelyn D'Elia, Andreea Radulescu, Fabrizio Romanelli, Claudio Semini, Marco Ronchi, Jonathan Brooks, Andrzej Reinke, Romeo Orsolino, Gennaro Raiola, Shamel Fahmi

Thank you to our funding sources

The Dynamic Legged Systems Lab is mainly funded by Istituto Italiano di Tecnologia (IIT)

Moog@IIT funding sources:

- Moog Inc.
- IIT's Advanced Robotics Department

Additional funding through:

Questions?

dls.iit.it