Chemical Reaction Equilibrium

-Keerthi vasan M (kvasan166@gmail.com)

Step by step procedure to determine equilibrium conversion (X_{eq}) at given temperature (T) and pressure (P) using Van't Hoff procedure.

Reaction stoichiometry: $aA + bB \rightleftharpoons cC + dD$

- 1. Initial moles of A, B, C and D are n_{A0} , n_{B0} , n_{C0} and n_{D0} respectively.
- 2. Total moles is $N_0 = \sum n_{i0}$ where i = A, B, C, D
- 3. Change in moles due to reaction is $\triangle n = \sum v_i$ where i = A, B, C, D. Here v denotes the signed stoichiometric coefficient and

$$v_A = -a, v_B = -b, v_C = c, v_D = d$$

- 4. Standard temperature $T_0 = 25$ °C = 298 K Standard pressure $P^0 = 1$ atm or 1 bar
- 5. Standard heat of reaction (in J/mol) = $\triangle H_R^{\circ} = \sum v_i \triangle H_{iF}^{\circ}$ where $\triangle H_{iF}^{\circ}$ is the standard heat of formation of i (= A, B, C, D).
- 6. Standard entropy of reaction (in J/mol K) = $\triangle S_R^{\circ} = \sum v_i \triangle S_{iF}^{\circ}$ where $\triangle S_{iF}^{\circ}$ is the standard entropy of formation of i = A, B, C, D.
- 7. Standard gibbs energy of reaction (in J/mol) = $\triangle G_R^{\circ} = \triangle H_R^{\circ} T_0 \triangle S_R^{\circ}$ Note: If the standard gibbs energy of formation $\triangle G_{iF}^{\circ}$ are given, then $\triangle G_R^{\circ}$ can be directly obtained as $\triangle G_R^{\circ} = \sum v_i \triangle G_{iF}^{\circ}$.
- 8. Equilibrium constant K_0 at Standard temperature T_0 is given by $\triangle G_R^{\circ} = -R \ T_0 \ ln(K_0)$ where R is the universal gas constant. Find the value of K_0 .

 Note: Ensure the unit consistancy of $\triangle G_R^{\circ}$ and R.
- 9. Van't Hoff expression to get equilibrium constant K at reaction temperature T is

$$ln\left(\frac{K}{K_0}\right) = -\frac{\triangle H_R^{\circ}}{R} \left[\frac{1}{T} - \frac{1}{T_0}\right]$$

Find K.

10. Equilibrium constant (K_y) based on mole fraction at the reaction pressure (P) is

$$K_a = K = \frac{K_y P^{\triangle n}}{[P^{\circ}]^{\triangle n}}$$

Find K_y .

11. Use mole balance table and get the expression for mole of key component.

Important note: This is only the example of the form and not the exact expression.

$$K_{y} = \frac{\left(n_{C0} + \frac{c}{a} \ x\right)^{c} \left(n_{D0} + \frac{d}{a} \ x\right)^{d}}{\left(n_{A0} - x\right)^{a} \left(n_{B0} - \frac{b}{a} \ x\right)^{b}} \frac{1}{\left(N + \triangle n \ x\right)^{\triangle n}}$$

- 12. From above two steps, solve and get the value of for x. x is the extend of reaction/moles of key component reacted.
- 13. Equilibrium conversion (Assuming A is the key component) in percentage (%) is

$$X_{eq} = \frac{x}{n_{A0}} * 100$$

1

Step by step procedure to determine equilibrium conversion (X_{eq}) at given temperature (T) and pressure (P) using Thermodynamic relation procedure.

Reaction stoichiometry: $aA + bB \rightleftharpoons cC + dD$

- 1. Initial moles of A, B, C and D are n_{A0} , n_{B0} , n_{C0} and n_{D0} respectively.
- 2. Total moles is $N_0 = \sum n_{i0}$ where i = A, B, C, D
- 3. Change in moles due to reaction is $\triangle n = \sum v_i$ where i = A, B, C, D. Here v denotes the signed stoichiometric coefficient and

$$v_A = -a, v_B = -b, v_C = c, v_D = d$$

- 4. Standard temperature $T_0 = 25$ °C = 298 K Standard pressure $P^0 = 1$ atm or 1 bar
- 5. Standard heat of reaction (in J/mol) = $\triangle H_R^{\circ} = \sum v_i \triangle H_{iF}^{\circ}$ where $\triangle H_{iF}^{\circ}$ is the standard heat of formation of $i \ (= A, B, C, D)$.
- 6. Standard entropy of reaction (in J/mol K) = $\triangle S_R^{\circ} = \sum v_i \triangle S_{iF}^{\circ}$ where $\triangle S_{iF}^{\circ}$ is the standard entropy of formation of i = A, B, C, D).
- 7. For the computation of specific heat contribution at reaction temperature (T), assume specific heat function of components to be given by polynomial as

$$C_{Pi} = a_{0i} + a_{1i} T + a_{2i} T^2 + a_{3i} T^3$$
 where $i = A, B, C, D$

Now compute $\triangle a_0 = \sum v_i \ a_{0i}$ $\triangle a_1 = \sum v_i \ a_{1i}$ $\triangle a_2 = \sum v_i \ a_{2i}$ $\triangle a_3 = \sum v_i \ a_{3i}$

$$\triangle C_P = \triangle a_0 + \triangle a_1 \ T + \triangle a_2 \ T^2 + \triangle a_3 \ T^3$$

$$\Rightarrow \int_{T_0}^T \triangle C_P \ dT = \int_{T_0}^T [\triangle a_0 + \triangle a_1 \ T + \triangle a_2 \ T^2 + \triangle a_3 \ T^3] \ dT$$

$$= \triangle a_0 \ [T - T_0] + \frac{\triangle a_1}{2} \ [T^2 - T_0^2] + \frac{\triangle a_2}{3} \ [T^3 - T_0^3] + \frac{\triangle a_3}{4} \ [T^4 - T_0^4]$$

Similarly,

$$\int_{T_0}^{T} \frac{\triangle C_P}{T} dT = \int_{T_0}^{T} \frac{\left[\triangle a_0 + \triangle a_1 \ T + \triangle a_2 \ T^2 + \triangle a_3 \ T^3\right]}{T} dT$$

$$= \triangle a_0 \ln \frac{T}{T_0} + \triangle a_1 \left[T - T_0\right] + \frac{\triangle a_2}{2} \left[T^2 - T_0^2\right] + \frac{\triangle a_3}{3} \left[T^3 - T_0^3\right]$$

Important note: Ensure unit consistency.

8. Enthalpy of reaction (in J/mol) at reaction temperature (T) is

$$\triangle H_R = \triangle H_R^{\circ} + \int_{T_0}^T \triangle C_P \ dT$$

9. Entropy of reaction (in J/mol K) at reaction temperature (T) is

$$\triangle S_R = \triangle S_R^{\circ} + \int_{T_0}^T \frac{\triangle C_P}{T} \ dT$$

- 10. Gibbs energy of reaction (in J/mol) at reaction temperature (T) is $\triangle G_R = \triangle H_R T \triangle S_R$
- 11. Equilibrium constant K_a at reaction temperature T is given by $\triangle G_R = -R T \ln(K_a)$ where R is the universal gas constant. Find the value of K_a .

 Note: Ensure the unit consistancy of $\triangle G_R$ and R.
- 12. Equilibrium constant (K_y) based on mole fraction at the reaction pressure (P) is

$$K_a = K = \frac{K_y P^{\triangle n}}{[P^{\circ}]^{\triangle n}}$$

Find K_y .

13. Use mole balance table and get the expression for mole of key component. Important note: This is only the example of the form and not the exact expression.

$$K_{y} = \frac{\left(n_{C0} + \frac{c}{a} \ x\right)^{c} \left(n_{D0} + \frac{d}{a} \ x\right)^{d}}{\left(n_{A0} - x\right)^{a} \left(n_{B0} - \frac{b}{a} \ x\right)^{b}} \frac{1}{\left(N + \Delta n \ x\right)^{\Delta n}}$$

- 14. From above two steps, solve and get the value of for x. x is the extend of reaction/moles of key component reacted.
- 15. Equilibrium conversion (Assuming A is the key component) in percentage (%) is

$$X_{eq} = \frac{x}{n_{A0}} * 100$$

Problems involving Chemical Reaction Equilibrium

1. Reforming of natural gas is one of the important route to produce hydrogen in a petrochemical complex $(CH_4 + H_2O \rightleftharpoons CO + 3H_2)$. Find the equilibrium conversion at 1 bar pressure and 850 K, using the fundamental thermodynamic relation $(\triangle G_R = \triangle H_R - T \triangle S_R)$. The inlet feed contains the molar mixture of 1: 1 CH₄: H₂O only. The Specific heat capacities of components are given as

$$\frac{C_{P,CO}}{R} = 3.912 - 3.913 \times 10^{-3} \ T$$
 $\frac{C_{P,H_2}}{R} = 2.883 + 3.681 \times 10^{-3} \ T$

$$\frac{C_{P,CH_4}}{R} = 4.568 - 8.975 \times 10^{-3} \ T \quad \frac{C_{P,H_2O}}{R} = 4.395 - 4.186 \times 10^{-3} \ T$$

Where R is the universal gas constant in appropriate units.

Solution: $X_{CO} = 69\%$

2. CO Methanation is a significant step in the production of synthetic natural gas (CO + $3\,\mathrm{H}_2 \Longrightarrow \mathrm{CH}_4 + \mathrm{H}_2\mathrm{O}$). Find the equilibrium conversion at 1 bar pressure and 800 K, using the fundamental thermodynamic relation ($\triangle G_R = \triangle H_R - T \ \triangle S_R$). The inlet feed contains the molar mixture of 1 : 3 CO : H_2 only. The Specific heat capacities of components are given as

$$\frac{C_{P,CO}}{R} = 3.912 - 3.913 \times 10^{-3} \ T$$
 $\frac{C_{P,H_2}}{R} = 2.883 + 3.681 \times 10^{-3} \ T$

$$\frac{C_{P,CH_4}}{R} = 4.568 - 8.975 \times 10^{-3} \ T \quad \frac{C_{P,H_2O}}{R} = 4.395 - 4.186 \times 10^{-3} \ T$$

Where R is the universal gas constant in appropriate units.

Solution: $X_{CO} = 53.615\%$

3. Ammonia production from nitrogen and hydrogen is thermodynamically favorable at higher pressure and lower temperature. Compute the percentage equilibrium conversion (X_{N_2}) at the different operating conditions to illustrate the fact the lower temperature and higher pressure indeed favor ammonia production. The operating conditions are a) P = 1 bar, T = 650 K; b) P = 4 bar, T = 650 K and c) P = 4 bar, T = 500 K. Assume initial feed mixture consists of 1:3 N₂: H₂.

Solution:

Temperature, T (K)	Pressure, P (bar)	Equilibrium	Equilibrium	Percentage
		constant, K	constant, K_y	conversion, X_{N_2}
(K)		(-)	(-)	(%)
650	1	0.00108	0.00108	2.67%
650	4	0.00108	0.017368944	7.6%
500	4	0.177328462	2.837255396	43.9%

4. Methanol production from syngas follows the reaction stoichiometry as $CO + 2H_2 \rightleftharpoons CH_3OH$. Determine the percentage equilibrium conversion of $CO(X_{CO})$ and the mole fraction of all the components at equilibrium at 1 bar pressure for an input mixture consisting of 1: 3 molar mixture of CO and H_2 at 400 K. Report conversion corrected to three decimal precision.

Solution:

$$X_{CO} = 52\%$$

Mole fraction of CO: $n_{CO} = 0.164$

Mole fraction of H_2 : $n_{H_2} = 0.664$

Mole fraction of CH₃OH: $n_{CH_3OH} = 0.172$

5. Dimethyl ether synthesis from syngas mixture can be represented by the following reactions. Formulate generic expression to determine the composition of the mixture at equilibrium

$$CO + 2 H_2 \Longrightarrow CH_3OH$$

 $CO_2 + 3 H_2 \Longrightarrow CH_3OH + H_2O$
 $CO + H_2O \Longrightarrow CO_2 + H_2$
 $2 CH_3OH \Longrightarrow CH_3OCH_3 + H_2O$

6. (a) CO Methanation is a significant step in the production of synthetic natural gas. The reaction stoichiometry is given by $CO + 3 H_2 \Longrightarrow CH_4 + H_2O$. Find the equilibrium conversion at 1 bar pressure and 800 K using the Van't Hoff relation. The inlet feed contains the molar mixture of 1:5 CO: H_2 only.

4

(b) If Water gas shift reaction also occurs along with $CO + H_2O \rightleftharpoons CO_2 + H_2$, recompute the conversion of CO and the yield of methane. What is the percentage decrease in the yield of methane.

Additional Data

Commonant	Standard enthalpy of	Standard entropy of	
Component	formation (kJ/mol)	formation (kJ/mol K)	
CH ₃ OH	-200.94	0.23988	
CH_4	-74.52	0.18627	
CO	-110.53	0.197556	
CO_2	-393.51	0.213677	
H_2	0	0.130571	
H ₂ O	-241.814	0.188724	
N_2	0	0.1915	
NH_3	-45.898	0.19266	