

Representação de Informação Incompleta

Unidade de ensino, 2002

Cesar Analide, Paulo Novais, José Neves

Objectivos

 Representação de conhecimento imperfeito;

- Representação simbólica de informação incompleta, inconsistente, incerta, etc.;
- Implementação de mecanismos de raciocínio não-monótono.

Motivação

Manipulação de informação simbólica;

 Representação explícita de informação falsa;

 Extensão da capacidade das respostas a questões.

BD's versus **RC**

- Bases de Dados:
 - Pressuposto dos Nomes Únicos;
 - Pressuposto do Mundo Fechado;
 - Pressuposto do Domínio Fechado.

- Representação de Conhecimento:
 - Pressuposto dos Nomes Únicos;
 - Pressuposto do Mundo **Aberto**;
 - Pressuposto do Domínio Aberto.

Monotonia vs Não-Monotonia

• Monotonia:

Não é permitida informação que contrarie conclusões anteriores.

• Não-Monotonia:

Justifica-se pela:

- consideração de pressupostos temporários;
- obtenção de conclusões plausíveis;
- flexibilização da evolução do conhecimento;
- dificuldade na representação completa do conhecimento.

Programação em Lógica

 A programação em lógica determina a veracidade ou falsidade de questões:

```
voa(X) ← ave(X)
não-voa(X) ← avestruz(X)
```

 A extensão à programação em lógica permite representar explicitamente informação falsa:

```
\neg voa(X) \leftarrow avestruz(X)
```

A Negação na PLE

Negação por falha na prova:

atravessar ← não comboio

• Negação forte:

atravessar ← ¬comboio

Interpretação na PLE

 Genericamente, a resposta a uma questão q(X) é:

- verdadeira se
- $\exists_{x}: \neg q(x)$ • falsa se
- desconhecida se $\neg \exists_X : q(X) \lor \neg q(X)$

 $\exists_{\mathsf{x}} : \mathsf{q}(\mathsf{X})$

O PMF na PLE

Aplicação do PMF na PLE:

par(0) par(0)

 $par(s(s(X))) \leftarrow par(X)$ $par(s(s(X))) \leftarrow par(X)$

 $\neg par(X) \leftarrow n\~ao par(X)$

O conjunto de soluções é: O conjunto de soluções é:

 ${par(0),par(2),...}$ ${par(0),\neg par(1),par(2),...}$

o que implica par(1) ser o que implica par(1) ser desconhecido falso

Informação Incompleta

- Valores Nulos:
 - Tipo Desconhecido;
 - Tipo Desconhecido, mas de um conjunto determinado de hipóteses;
 - Tipo Desconhecido e não permitido.

Valores Nulos I

Filho F	P
João	Adão
Belém	<u>Alguém</u>

filho(joão, adão)

filho(belém, <u>alguém</u>)

¬filho(F, P) ← não filho(F, P) ∧

não excepção(F, P)

excepção(F, P) ← filho(F, <u>alquém</u>)

- A Belém é filha de quem?
- A Belém é filha do Adão?

filho(belém, X)

filho(belém, adão)

Valores Nulos II

.w0	1
Filho F	P
João	Adão
Belém	<u>Alguém</u>
Maria	{ <u>Faria</u> , <u>Garcia</u> }

filho(joão, adão)

filho(belém, <u>alguém</u>)

¬filho(F, P) ← não filho(F, P) ∧ não excepção(F, P)

excepção(F, P) ← filho(F, <u>alguém</u>)

excepção(maria, <u>faria</u>) excepção(maria, <u>garcia</u>)

- A Maria é filha do Sofia?
 filho(maria, sofia)
- A Maria é filha do Faria?
 filho(maria, faria)

Valores Nulos III

Filho F	P
João	Adão
Belém	<u>Alguém</u>
Maria	{ <u>Faria</u> , <u>Garcia</u> }
<u>βεβε</u>	Pelé

¬filho(F, P) ← não filho(F, P) ∧
não excepção(F, P)

excepção(F, P) ← ...

filho(βεβε, pelé)

excepção(F, P) ← filho(βεβε, P)

nulo(βεβε)

← filho(F, pelé) ∧ não nulo(F)

O André é filho do Pelé?

filho(andré, pelé)

Interpretador

demo: questão \times resposta $\rightarrow \{ V, F \}$

verdadeira

$$\exists_{\mathsf{X}} : \mathsf{q}(\mathsf{X})$$

falsa

$$\exists_{\mathsf{X}} : \neg \mathsf{q}(\mathsf{X})$$

desconhecida

$$\neg \exists_{X} : q(X) \lor \neg q(X)$$

Questões: demo(Q,R)

```
filho(joão, adão)
filho(belém, <u>alquém</u>)
filho(\beta \epsilon \beta \epsilon, pelé)
\negfilho(F,P) \leftarrow não filho(F,P) \land
                    não excepção(F,P)
excepção(F,P) ← filho(F,<u>alquém</u>)
excepção(maria, faria)
excepção(maria, garcia)
excepção(F, P) \leftarrow filho(\beta \epsilon \beta \epsilon, P)
nulo(\beta \epsilon \beta \epsilon)
← filho(F, pelé) ∧ não nulo(F)
```

•demo(filho(belém,X), R

•demo(filho(belém,adão), R

•demo(filho(maria,sofia), R

•demo(filho(maria,faria), R

•demo(filho(andré,pelé), R

Conclusões

- Extensão à Programação em Lógica:
 - Duas formas de negação;
 - Distinção entre falso e não verdadeiro.
- Formalização do PMF na PLE:
 - Maior flexibilidade;
 - Identificação, tratamento e raciocínio sobre valores nulos.
- Novo tipo de dados: Valores Nulos.

Sugestões

- Sofisticação do interpretador;
- Tratamento da assimilação de conhecimento e aprendizagem;

 Manipulação de bases de conhecimento não destrutivas.

Apresentação

- Cesar Analide analide@di.uminho.pt
- Paulo Novais pjon@di.uminho.pt
- José Neves jneves@di.uminho.pt

Grupo de Inteligência Artificial Departamento de Informática Universidade do Minho