Общее положение множеств.

Будем говорить, что множества A и B находятся b общем положении, и писать $A \odot B$, если существуют такие элементы a,b,c, что $a \in A$ и $a \notin B$, $b \in B$ и $b \notin A$, $c \in A$ и $c \in B$.

Теорема о четырёх возможностях.

Для любых множеств A и B справедлива хотя бы одна из следующих четырёх возможностей:

- 1) $A \subseteq B$;
- 2) $B \subseteq A$;
- 3) A и B не имеют общих элементов;
- 4) $A \otimes B$.

<u>Доказательство.</u> Допустим противное, т.е. допустим, что для некоторых множеств A и B ни одна из четырёх возможностей не выполнена.

- 1) Если не выполнена первая возможность, найдётся элемент $a \in A_H \ a \notin B$;
- 2) Если не выполнена вторая возможность, найдётся элемент $b \in B_H \ b \notin A$;
- 3) Если не выполнена третья возможность, найдётся элемент $c \in A_{\mathsf{H}}$ $c \in B$.

Существование таких элементов означает, что $A \odot B$.

4) Если не выполнена четвёртая возможность, получаем противоречие.

Значит, допущение о том, что теорема не может быть выполнена, неверно, и теорема доказана.

Операции между множествами.

1. Объединение.

Объединение обозначается символом ∪ и определяется для *двух множеств* так:

$$A \cup B = \{x \mid x \in A \text{ или } x \in B\}.$$
 (7)

Объединению двух множеств A и B соответствует заштрихованная область на рисунке (1):

Операцию *объединение* можно обобщить на случай *любого семей- ства множеств* так:

$$\bigcup_{i \in I} A_i = \{ x \mid \exists_i x \in A_i \}.$$
(8)

2. Пересечение.

Пересечение обозначается символом \cap и определяется для *двух множеств* так:

$$A \cap B = \{x \mid x \in A \text{ if } x \in B\}.$$

Пересечению двух множеств соответствует заштрихованная область на рисунке (2):

$$A \bigcirc B$$
 (puc.2)

Операцию *пересечение* можно обобщить на случай *любого семей- ства множеств* так:

$$\bigcap_{i \in I} A_i = \{ x \mid \forall_i x \in A_i \}. \tag{10}$$

Пример.

Пусть
$$A_n = \left[\frac{1}{n}; n+1\right)$$
. Тогда
$$\bigcup_{n \in \mathbb{N}} A_n = \left[1; 2\right) \cup \left[\frac{1}{2}; 3\right] \cup \left[\frac{1}{3}; 4\right] \cup \dots = \left(0; +\infty\right),$$

$$\bigcap_{n \in \mathbb{N}} A_n = \left[1; 2\right) \cap \left[\frac{1}{2}; 3\right] \cap \left[\frac{1}{3}; 4\right] \cap \dots = \left[1; 2\right).$$

3. Разность.

Разность обозначается символом \ и определяется для $\frac{\partial \textit{вух мно-}}{\partial \textit{жеств}}$ так:

$$A \setminus B = \{ x \mid x \in A \text{ if } x \notin B \}.$$
 (11)

Разности $A \setminus B$ соответствует заштрихованная область на рисунке (3):

Разности $B \setminus A$ соответствует заштрихованная область на рисунке (4):

Как видим из рисунка, в общем случае $A \setminus B \neq B \setminus A$.

Вопрос для самостоятельной работы:

Выяснить, справедлива ли формула $(A \setminus B) \setminus C = A \setminus (B \setminus C)$?

4. Симметрическая разность.

Симметрическая разность обозначается символом Δ и определяется для *двух множеств* так:

$$A \Delta B = (A \setminus B) \cup (B \setminus A). \tag{12}$$

Симметрической разности $A \Delta B$ соответствует заштрихованная область на рисунке (4):

Теорема о двух представлениях симметрической разности.

Для симметрической разности справедливо равенство (13):

$$(A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B). \tag{13}$$

<u>Доказательство.</u> Рассмотрим общий случай, т.е. случай, когда множества A и B находятся в общем положении. Можно записать: $A = \{1; 2\}, B = \{3; 2\},$ где 1, 2, 3 — попарно непересекающиеся списки элементов.

Тогда
$$(A \setminus B) \cup (B \setminus A) = (\{1;2\} \setminus \{3;2\}) \cup (\{3;2\} \setminus \{1;2\}) = \{1\} \cup \{3\} = \{1;3\},$$
 $(A \cup B) \setminus (B \cap A) = (\{1;2\} \cup \{3;2\}) \setminus (\{1;2\} \cap \{3;2\}) = \{1;2;3\} \setminus \{2\} = \{1;3\}.$

Видим, что множества, находящейся в левой и в правой части соотношения (13) равны, значит, равенство (13) доказано.

Вопрос для самостоятельной работы:

Выяснить, справедлива ли формула $(A \Delta B) \Delta C = A \Delta (B \Delta C)$?

Нетрудно понять, что
$$A \triangle B = B \triangle A$$
.

(рис.5)

5. Дополнение.

Множество U называется универсальным множеством, если все рассматриваемые в данном разделе множества являются его подмножествами.

 $A = U \setminus A$.

Дополнению A, соответствует заштрихованная область на рисунке (5):

Пример. Пусть
$$U = \{a,b,c,d,e\}$$
, $A = \{a,b\}$, $B = \{b,c,d\}$.
Тогда $A \cup B = \{a,b,c,d\}$, $A \cap B = \{b\}$, $A \setminus B = \{a\}$, $B \setminus A = \{c,d\}$, $\overline{A} = \{c,d,e\}$, $\overline{B} = \{a,e\}$.

Векторы

Упорядоченный набор (вектор) размерности n - неопределяемое понятие. Изображается в виде $(x_1, x_2, ... x_n)$, где $x_1, x_2, ... x_n$ называются координатами или компонентами вектора, а число n - размерностью вектора. Чаще всего слово координаты мы будем употреблять, если $x_1, x_2, ... x_n$ числа, а термин компоненты — в остальных случаях.

Векторы $\alpha = (x_1, x_2, ..., x_n)$ и $\beta = (y_1, y_2, ..., y_n)$ называются *равными*, если для любого номера i, где i = 1, 2, ..., n, выполнено равенство $x_i = y_i$.

Вектор размерности два будем называть *парой*, а вектор размерности три — *тройкой*.

Заметим, что понятие вектора можно было бы определить через понятие множества, что и сделал в прошлом веке польский математик Куратовский. Он определил пару следующим образом:

$$(x, y) = \{ \{x\}, \{x, y\} \}.$$

Вопрос для самостоятельной работы:

Доказать, что при таким образом введённым определением пары сохраняется определение равенства пар:

$$\{\{x\},\{x,y\}\}=\{\{z\},\{z,t\}\} \Rightarrow x=z, y=t.$$

Декартово произведение.

Декартово произведение двух множеств A и B обозначается $A \times B$ и определяется так: $A \times B = \{(x, y) | x \in A, y \in B\}.$

Если множества A и B изображать отрезками на оси Ox и Oy соответственно, то декартову произведению $A \times B$ будет соответствовать часть плоскости, ограниченная прямоугольником в декартовой системе координат (рис.6):

Пример. Пусть $A = \{a, b\}, B = \{3\}.$

Тогда $A \times B = \{(a,3),(b,3)\}, B \times A = \{(3,a),(3,b)\}.$

Этот пример показывает, что в общем случае $A \times B \neq B \times A$.

Вопрос для самостоятельной работы:

Выяснить, справедлива ли формула $(A \times B) \times C = A \times (B \times C)$?

Понятие *декартова произведения* можно обобщить на случай *любого натурального числа* сомножителей так:

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1, a_2 \in A_2, a_n \in A_n\}.$$
 (14)

<u>Теорема о мощности декартова произведения конечных множеств.</u>

Мощность декартова произведения конечных множеств равна произведению мощностей этих множеств:

$$|A_1| = m_1, |A_2| = m_2, ..., |A_n| = m_n \Longrightarrow |A_1 \times A_2 \times ... \times A_n| = m_1 \cdot m_2 \cdot ... \cdot m_n.$$
 (15)

<u>Доказательство.</u> Применим метод математической индукции, проведя индукцию по количеству сомножителей n.

- 1) Проверка справедливости формулы (15) при n = 1.
- Действительно, при n = 1 формула (15) примет вид:
- $\mid A_{\!\scriptscriptstyle 1} \mid = m_{\!\scriptscriptstyle 1} \Longrightarrow \mid A_{\!\scriptscriptstyle 1} \mid = m_{\!\scriptscriptstyle 1},$ что верно.
- 2) Допустим справедливость (15) при n = k, т.е. допустим справедливость равенства:

$$|A_1| = m_1, |A_2| = m_2, ..., |A_k| = m_k \Longrightarrow |A_1 \times A_2 \times ... \times A_k| = m_1 \cdot m_2 \cdot ... \cdot m_k.$$

3) Докажем справедливость формулы (15) при n = k + 1.

Пусть $A_{k+1} = \{b_1, b_2, ..., b_{m_{k+1}}\}$. Будем рассматривать всевозможные векторы декартова произведения $A_1 \times A_2 \times ... \times A_k \times A_{k+1}$ с фиксированными последними координатами.

Количество различных векторов вида $(x_1, x_2, ..., x_k, b_1)$ равно количеству различных векторов $(x_1, x_2, ..., x_k)$, которое, по допущению индукции 2), равно $m_1 \cdot m_2 \cdot ... \cdot m_k$. Аналогично, этому же числу равно количество векторов вида $(x_1, x_2, ..., x_k, b_2), ..., (x_1, x_2, ..., x_k, b_{m_{k+1}})$. Тогда общее число векторов множества $A_1 \times A_2 \times ... \times A_k \times A_{k+1}$ равно $\underbrace{m_1 \cdot m_2 \cdot ... \cdot m_k + ... + m_1 \cdot m_2 \cdot ... \cdot m_k}_{m_{k+1}} = m_1 \cdot m_2 \cdot ... \cdot m_k \cdot m_{k+1}$.

На основании метода математической индукции утверждаем, что формула (15) справедлива для всех натуральных n.

Если каждый из сомножителей в левой части формулы (14) равен некоторому множеству A, то мы получим определение n - \breve{u} декартовой степени множества A:

$$A^{n} = \underbrace{A \times A \times ... \times A}_{n \text{ combown to the id}}$$
 (16)

Пусть $E = \{0;1\}$, тогда вектор $\alpha \in E^n$ назовём *двоичным* вектором размерности n.

<u>Теорема о количестве различных двоичных наборов размерности</u> n.

Количество различных двоичных векторов размерности n равно 2^n , то есть справедлива формула

$$\mid E^n \mid = 2^n \tag{17}$$

<u>Доказательство.</u> Эта теорема является непосредственным следствием из теоремы о мощности декартова произведения конечных множеств, в которой мощность каждого из n декартовых сомножителей равна 2.

Графики.

Графиком называется множество, элементами которого являются пары. Если график состоит из пар действительных чисел, каждому такому графику можно сопоставить некоторое множество точек на плоскости xOy.

Пример: графиком неравенства $(x-2)^2 + (y-3)^2 \le 2$ является множество точек координатной плоскости, расположенных на границе и внутри круга радиуса 2 с центром в точке (2;3):

Операции над графиками.

Кроме введённых ранее операций над множествами над графиками можно ввести ещё 2 операции.

1. Инверсия.

Инверсия графика P обозначается P^{-1} и определяется так:

$$P^{-1} = \{ (y, x) \mid (x, y) \in P \}$$
 (18)

Пример. Пусть $P = \{(a,1), (a,3), (b,\$)\}.$

Тогда $P^{-1} = \{(1, a), (3, a), (\$, b)\}.$

В декартовой системе координат график P^{-1} будет состоять из точек, симметричных точкам графика P относительно биссектрисы 1 и 3 координатных четвертей:

Пример:

2. Композиция.

Композиция графиков P и Q обозначается $P \circ Q$ и определяется так: $P \circ Q = \{(x,y) | \exists_a ((x,a) \in P, (a,y) \in Q)\}.$ (19)

Пример. Пусть $P = \{(a,1), (a,3), (b,\$)\}, Q = \{(1,\delta), (1,\beta)\}.$

Тогда $P \circ Q = \{(a, \delta), (a, \beta)\}.$

Действительно, $(a,\delta) \in P \circ Q$, так как нашёлся элемент 1, такой, что $(a,1) \in P_{\mathsf{H}}$ $(1,\delta) \in Q$. Аналогично можно показать, что $(a,\beta) \in P \circ Q$.

Переставим композиционные «сомножители» местами.

Тогда $Q \circ P = \emptyset$, так как элементов, которые являлись бы второй компонентой некоторой пары графика Q и одновременно первой компонентой некоторой пары графика P, не найдётся.

Как видим из этого примера, в общем случае композиция не коммутативна, т.е. $P \circ Q \neq Q \circ P$.

Некоторые свойства операций над графиками.

Двойная инверсия:
$$(P^{-1})^{-1} = P$$
 (20)

<u>Доказательство.</u> Возьмём произвольную пару (x, y) и составим цепочку равносильных высказываний:

$$(x, y) \in (P^{-1})^{-1} \Leftrightarrow (y, x) \in P^{-1} \Leftrightarrow (x, y) \in P.$$

Следовательно, каждая пара (x, y), принадлежащая левой части формулы (19), принадлежит также и правой части формулы (19) и обратно, каждая пара (x, y), принадлежащая правой части формулы (19), принадлежит также и левой части формулы (19). Значит, справедливость равенства (19) доказана.

Связь инверсии и композиции:
$$(P \circ Q)^{-1} = Q^{-1} \circ P^{-1}$$
 (21)

<u>Доказательство.</u> Возьмём произвольную пару (x, y) и составим цепочку равносильных высказываний:

$$(x,y) \in (P \circ Q)^{-1} \Leftrightarrow (y,x) \in P \circ Q \Leftrightarrow \exists_a ((y,a) \in P, (a,x) \in Q) \Leftrightarrow$$

$$\Leftrightarrow \exists_a ((a,x) \in Q, (y,a) \in P) \Leftrightarrow \exists_a ((x,a) \in Q^{-1}, (a,y) \in P^{-1}) \Leftrightarrow (x,y) \in Q^{-1} \circ P^{-1}.$$

Значит, справедливость равенства (20) доказана.

Ассоциативность композиции:
$$(P \circ Q) \circ T = P \circ (Q \circ T)$$
 (22)

<u>Доказательство.</u> Возьмём произвольную пару (x, y) и составим цепочку равносильных высказываний:

$$(x, y) \in (P \circ Q) \circ T \Leftrightarrow \exists_a ((x, a) \in P \circ Q, (a, y) \in T) \Leftrightarrow$$

$$\Leftrightarrow \exists_a \exists_b ((x,b) \in P, (b,a) \in Q, (a,y) \in T) \Leftrightarrow$$

$$\Leftrightarrow \exists_b ((x,b) \in P, (b,y) \in Q \circ T) \Leftrightarrow (x,y) \in P \circ (Q \circ T).$$

Справедливость равенства (21) доказана.