Consider all r-colorings of the $n \times m$ grid where no two colors are adjancent (horizontally/vertically) more than once.

Figure 1: A 9-coloring of the 4×5 grid where no two colors are adjancent more than once. There is no 8-coloring.

Question. Let a(n,m) be the minimal r such that there exists an r-coloring of the $n \times m$ grid. What is a(n,m)?

Related.

- 1. What if colors are not allowed to be self-adjacent?
- 2. How many a(n, m)-colorings exist up to permutation of the colors?
- 3. What if this is done on a triangular or hexagonal grid?
- 4. What if orientation matters? (A horizontal adjacency is distinct from a vertical adjacency.)
- 5. What if order matters? (red-green is distinct from green-red.)
- 6. What if diagonal adjacencies are considered?

References.

Problem 27.

Problem 40.

Problem 56.