Notes on Computability & Complexity

XIN CHEN chenxin_hello@outlook.com $Q_{uality} = \int (K, P, t)$

latest update: December 18, 2024

May the force of P and NP be with you.

Contents

1 Basic concepts		ic concepts	1
	1.1	Representations	2
References			3
	Cita	tion testing: [1]	

One of the important scientific advances in the first half of the twentieth century was that the notion of "computation" received a much more precise definition.

At roughly 50 years (1970s - 2020s), complexity theory is still an infant science, and many important results are less than 30 years old.

1 Basic concepts

If S is a finite set, called alphabet set, then a string over S is a finite ordered tuple of elements from S.

We will typically consider the binary alphabet $2 = \{0, 1\}$.

$$S^0 = \{\epsilon\}$$

 $S^* = \bigcup_{n \geq 0} S^n$ is the set of all strings over S.

The *concatenation* of strings x, y is denoted by $x^{\smallfrown} y, x \circ y$, or simply xy.

 x^k denotes the concatenation of k copies of x for $k \geq 1$. For example, 1³ is '111'.

The length of a string x is denoted by |x|.

1.1 Representations

we implicitly identify any function f whose domain and range are not strings with the function

$$g \colon \{0,1\}^* \to \{0,1\}^*$$

that given a representation of an object x as input, outputs the representation of f(x).

1.2 Big-Oh

References

[1] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern Approach. Cambridge: Cambridge University Press, 2009. xxiv+579. ISBN: 978-0-511-53381-5. URL: https://doi.org/10.1017/CB09780511804090 (cit. on p. 1).