Regular Languages: Properties

Pumping Lemma: Let L be a regular language. Then there exists a constant n (which depends on L) such that for every string w in L satisfying $|w| \geq n$, we can break w into three strings w = xyz, such that

- (a) $y \neq \epsilon$,
- (b) $|xy| \leq n$
- (c) For all $k \geq 0$, the string xy^kz is also in L.

Examples:

Let
$$L = \{a^m b^m \mid m \ge 1\}$$
.

Then L is not regular.

Proof: Let n be as in Pumping Lemma.

Let $w = a^n b^n$.

Let w = xyz be as in Pumping Lemma.

Thus, $xy^2z \in L$, however, xy^2z contains more a's than b's.

Let $L = \{a^i b^j \mid i < j\}.$

Then L is not regular.

Proof: Let n be as in Pumping Lemma.

Let $w = a^n b^{n+1}$.

Let w = xyz be as in Pumping Lemma.

Thus, $xy^3z \in L$, however, xy^3z contains more a's than b's.

Let $L = \{a^p \mid p \text{ is prime}\}.$

Then L is not regular.

Proof: Let n be as in Pumping Lemma.

Let $w = a^p$, where p is prime, and p > n.

Let w = xyz be as in Pumping Lemma.

Thus, $xy^kz \in L$, for all k.

Choose k = 1. Thus, $xy^kz = a^r$, where r is not a prime number.

Proof of Pumping Lemma

Suppose $A = (Q, \Sigma, \delta, q_0, F)$ is a DFA which accepts L.

Let n be number of states in Q.

Suppose $w = a_1 a_2 \dots a_n \dots a_m$ is as given, where $m \ge n$.

For $i \geq 1$, let $q_i = \hat{\delta}(q_0, a_1 \dots a_i)$.

Then, by Pigeonhole principle, there exists $i, j \leq n, i < j$, such that $q_i = q_j$.

Let $x = a_1 \dots a_i, y = a_{i+1} \dots a_j, z = a_{j+1} \dots a_m$.

As $\hat{\delta}(q_i, y) = q_i$, we have: for all k, $\hat{\delta}(q_i, y^k) = q_i$.

Thus, $\hat{\delta}(q_0, xyz) = \hat{\delta}(q_0, xy^kz)$, for all k.

QED

Closure Properties

- If L_1, L_2 are regular, then so is $L_1 \cup L_2$.
- If L_1, L_2 are regular, then so is $L_1 \cdot L_2$.
- If L is regular, then so is $\overline{L} = \Sigma^* L$.
- If L_1, L_2 are regular, then so is $L_1 \cap L_2$.
- If L_1, L_2 are regular, then so is $L_1 L_2$.
- If L is regular, then so is L^R .
- Let h be a homomorphism. If L is regular, then so is h(L).

Homomorphism: $h(a) \in B^*$, where B is an alphabet set.

$$h(\epsilon) = \epsilon$$
.

$$h(a_1 a_2 ...) = h(a_1)h(a_2)...$$

Decision Problems on Regular Languages

$$L = \emptyset$$
?

$$L = \Sigma^*$$
?

$$w \in L$$
?