Phân tích cú pháp xác suất

Lê Thanh Hương

Bộ môn Hệ thống Thông tin

Viện CNTT &TT – Trường ĐHBKHN

Email: huonglt@soict.hust.edu.vn

Làm cách nào chọn cây đúng?

- Ví dụ:
 - I saw a man with a telescope.
- Khi số luật tăng, khả năng nhập nhằng tăng
- Tập luật NYU: bộ PTCP Apple pie : 20,000-30,000 luật cho tiếng Anh
- Lựa chọn luật AD: V DT NN PP

```
(1) VP \rightarrow V NP PP
NP \rightarrow DT NN
(2) VP \rightarrow V NP
NP \rightarrow DT NN PP
```

Kết hợp từ (bigrams pr)

Ví dụ:

Eat ice-cream (high freq)
Eat John (low, except on Survivor)

Nhược điểm:

- P(John decided to bake a) có xác suất cao
- Xét:

$$P(w_3) = P(w_3|w_2w_1) = P(w_3|w_2)P(w_2|w_1)P(w_1)$$

Giả thiết này quá mạnh: chủ ngữ có thể quyết định bổ ngữ trong câu Clinton admires honesty

- > sử dụng cấu trúc ngữ pháp để dừng việc lan truyền
- Xét Fred watered his mother's small garden. Từ garden có ảnh hưởng như thế nào?
 - Pr(garden|mother's small) thấp ⇒ mô hình trigram không tốt
 - Pr(garden | X là thành phần chính của bổ ngữ cho động từ to water) cao hơn
- > sử dụng bigram + quan hệ ngữ pháp

Kết hợp từ (bigrams pr)

- V có một số loại bổ ngữ nhất định
 - ⇒ Verb-with-obj, verb-without-obj
- Sự tương thích giữa chủ ngữ và bổ ngữ:
 - John admires honesty
 - Honesty admires John ???

Nhược điểm:

- Kích thước tập ngữ pháp tăng
- Các bài báo của tạp chí Wall Street Journal trong 1 năm: 47,219 câu, độ dài trung bình 23 từ, gán nhãn bằng tay: chỉ có 4.7% hay 2,232 câu có cùng cấu trúc ngữ pháp
- Không thể dựa trên việc tìm các cấu trúc cú pháp đúng cho cả câu. Phải xây dựng tập các mẫu ngữ pháp nhỏ

Luật

- 1. NP→DT NN NN
- 2. NP \rightarrow DT JJ NN
- 3. $S \rightarrow NP VBX JJ CC VBX NP$
- Nhóm (NNS, NN) thành NX; (NNP, NNPs)=NPX; (VBP, VBZ, VBD)=VBX;
- Chọn các luật theo tần suất của nó

Tính Pr

 $S \rightarrow NP VP; 0.35$ $NP \rightarrow DT JJ NN; 0.1532$

Luật áp dụng Chuỗi Pr 1 S → NP VP 0.35 2 NP → DT JJ NN 0.1532 x 0.35 = 0.0536 3 VP → VBX NP 0.302 x 0.0536= 0.0162 4 NP → DT JJ NN 0.1532 x 0.0162=0.0025 Pr = 0.0025

Văn phạm phi ngữ cảnh xác suất

- 1 văn phạm phi ngữ cảnh xác suất (Probabilistic Context Free Grammar) gồm các phần thông thường của CFG
- Tập ký hiệu kết thúc {w^k}, k = 1, . . . ,V
- Tập ký hiệu không kết thúc {Nⁱ}, i = 1, . . . ,n
- Ký hiệu khởi đầu N¹
- Tập luật $\{N^i \to \zeta^j\}$, ζ^j là chuỗi các ký hiệu kết thúc và không kết thúc
- Tập các xác suất của 1 luật là:

$$\forall i \sum_{j} P(N^{j} \rightarrow \zeta^{j}) = 1$$

Xác suất của 1 cây cú pháp:

$$P(T) = \prod_{i=1..n} p(r(i))$$

Các giả thiết

Độc lập vị trí: Xác suất 1 cây con không phụ thuộc vào vị trí của các từ của cây con đó ở trong câu

$$\forall k, P(N_{ik}(k+c) \rightarrow \zeta)$$
 là giống nhau

 Độc lập ngữ cảnh: Xác suất 1 cây con không phụ thuộc vào các từ ngoài cây con đó

$$P(N_{jkl} \rightarrow \zeta \mid \text{các từ ngoài khoảng k đến I}) = P(N_{jkl} \rightarrow \zeta)$$

Độc lập tổ tiên: Xác suất 1 cây con không phụ thuộc vào các nút ngoài cay con đó

$$P(N_{jkl} \rightarrow \zeta | \text{ các nút ngoài cây con } N_{jkl}) = P(N_{jkl} \rightarrow \zeta)$$

Các thuật toán

- CKY
- Beam search
- Agenda/chart-based search
- ...

CKY kết hợp xác suất

- Cấu trúc dữ liệu:
 - Mảng lập trình động π[i,j,a] lưu xác suất lớn nhất của ký hiệu không kết thúc a triển khai thành chuỗi i...j.
 - Backptrs lưu liên kết đến các thành phần trên cây
- Ra: Xác suất lớn nhất của cây

Tính Pr dựa trên suy diễn

- Trường hợp cơ bản: chỉ có 1 từ đầu vào
 Pr(tree) = pr(A→ w_i)
- Trường hợp đệ qui: Đầu vào là xâu các từ $A \stackrel{*}{\Rightarrow} w_{ij}$ if $\exists k: A \rightarrow BC$, $B \Rightarrow w_{ik}^*$, $C \Rightarrow w_{kj}^*$, $i \le k \le j$. $p[i,j] = \max(p(A \rightarrow BC) \times p[i,k] \times p[k,j])$.

function CYK(words,grammar) **returns** best_parse

Create and clear *p*[*num_words*,*num_words*,*num_nonterminals*]


```
# base case
for i = 1 to num\_words
  for A = 1 to num nonterminals
     if A \rightarrow w_i is in grammar then
        \pi[i, i, A] = P(A \rightarrow w_i)
# recursive case
for j = 2 to num\_words
  for i = 1 to num\_words-j+1
     for k = 1 to j-1
        for A = 1 to num\_nonterminals
        for B = 1 to num\_nonterminals
        for C = 1 to num\_nonterminals
           prob = \pi[i, k, B] \times p[i+k, j-k, C] \times P(A \rightarrow BC)
           if (prob > \pi[i, j, A]) then
              \pi[i,j,A] = \text{prob}
```

 $B[i, j, A] = \{k, A, B\}$

TÍnh xác suất Viterbi (thuật toán CKY)

$S \rightarrow NP VP$	1.0	$NP \rightarrow NP PP$	0.4
$PP \rightarrow P NP$	1.0	NP → astronomers	0.1
$VP \rightarrow V NP$	0.7	NP → ears	0.18
$VP \rightarrow VP PP$	0.3	NP → saw	0.04
$P \rightarrow with$	1.0	NP → stars	0.18
V → saw	1.0	NP → telescopes	0.1

	1	2	3	4	5
1	$\delta_{NP} = 0.1$		$\delta_{S} = 0.0126$		$-\delta_{S} = 0.0009072$
			0.0304		<u> </u>
2		$\delta_{NP} = 0.04$	$\delta \dot{\mathbf{v}}_{\mathbf{P}} = 0.126$		$-\delta_{VP} = 0.009072$
		$\delta_V = 1.0$		Ç	← ↑
3			$\delta_{NP} = 0.18$		$\delta_{NP} = 0.01296$
4				$\delta p = 1.0$	$\delta_{\rm pp} = 0.18$
5					$\delta_{NP} = 0.18$
	astronomers	saw	stars	with	ears

Ví dụ

S	\rightarrow	N	P۱	/P	\cap	2	
\mathbf{O}		1 1	1 I	/ I	U.	יט.	U

Det → the

0.50

0.30

• Det \rightarrow a

0.40

•
$$VP \rightarrow V NP0.20$$

N → meal

0.01

0.05

• $N \rightarrow flight$

0.02

Dùng thuật toán CYK phân tích câu vào:

"The flight includes a meal"

Tính Pr

1.
$$S \rightarrow NP VP$$
 1.0

2.
$$VP \rightarrow V NP PP 0.4$$

3.
$$VP \rightarrow V NP$$
 0.6

4.
$$NP \rightarrow N$$
 0.7

5.
$$NP \rightarrow NPP$$
 0.3

6.
$$PP \rightarrow PREP N$$
 1.0

7.
$$N \rightarrow a \log 0.3$$

8.
$$N \rightarrow a$$
 cat 0.5

9.
$$N \rightarrow a \text{ telescop } 0.2$$

10.
$$V \rightarrow saw$$
 1.0

11. PREP
$$\rightarrow$$
 with 1.0

a_dog saw a_cat with a_telescope

$$P_1 = 1 \times .7 \times .4 \times .3 \times .7 \times 1 \times .5 \times 1 \times 1 \times .2 = .00588$$

$$P_r = 1 \times .7 \times .6 \times .3 \times .3 \times 1 \times .5 \times 1 \times 1 \times .2 = .00378$$

Tìm kiểm kiểu chùm

- Tìm kiếm trong không gian trạng thái
- Mỗi trạng thái là một cây cú pháp con với 1 xác suất nhất định
 - Tại mỗi thời điểm, chỉ giữ các thành phần có điểm cao nhất

Xác suất trong và ngoài

- N_{pq} = ký hiệu không kết thúc N^j trải từ vị trí p đến q trong xâu
- α_j = xác suất ngoài (outside)
- β_i = xác suất trong (inside)
- N^j phu các từ w_p ... w_{q_j} $n ilde{e}u$ N^j \Longrightarrow * w_p ... w_q

Xác suất trong và ngoài

$$\alpha_{j}(p,q)=P(w_{1(p-1)}, N_{pq}^{j}, w_{(q+1)m}|G)$$

 $\beta_{j}(p,q)=P(w_{pq}|N_{pq}^{j}, G)$

$$\alpha_{j}(p,q) \beta_{j}(p,q) = P(N^{1} \Longrightarrow * w_{1m}, N^{j} \Longrightarrow * w_{pq} \mid G)$$

$$= P(N^{1} \Longrightarrow * w_{1m} \mid G) \bullet P(N^{j} \Longrightarrow * w_{pq} \mid N^{1} \Longrightarrow * w_{1m}, G)$$

Tính xác suất của xâu

 Sử dụng thuật toán <u>Inside</u>, 1 thuật toán lập trình động dựa trên xác suất inside

$$P(w_{1m}|G) = P(N^1 \Rightarrow^* w_{1m}|G) = P(w_{1m}|N_{1m}^1, G) = \beta_1(1,m)$$

Trường hợp cơ bản:

$$\beta_i(k,k) = P(w_k|N_{kk}^j, G) = P(N^j \rightarrow w_k|G)$$

Suy diễn:

$$\beta_i(p,q) = \sum_{r,s} \sum_{d \in (p,q-1)} P(N^j \longrightarrow N^r N^s) \beta_r(p,d) \beta_s(d+1,q)$$

Suy diễn

Tính $\beta_j(p,q)$ với p < q - tính trên tất cả các điểm <math>j - thực hiện từ dưới lên

Ví dụ

- 1. $S \rightarrow NP VP$ 1.0
- 2. $VP \rightarrow V NP PP 0.4$
- 3. $VP \rightarrow V NP$ 0.6
- 4. $NP \rightarrow N$ 0.7
- 5. $NP \rightarrow NPP$ 0.3
- 6. $PP \rightarrow PREP N$ 1.0
- 7. $N \rightarrow a \log 0.3$
- 8. $N \rightarrow a_cat$ 0.5
- 9. $N \rightarrow a_{telescope} 0.2$
- 10. $V \rightarrow saw$ 1.0
- 11. $PREP \rightarrow with$ 1.0

$$1 \times .7 \times .4 \times .3 \times .7 \times 1 \times .5 \times 1 \times 1 \times .2 + ... \times .6... \times .3... = .00588 + .00378 = .00966$$

- 2 loại nhập nhằng cú pháp:
 - Câu có thể hiểu theo nhiều nghĩa khác nhau dẫn đến các cây cú pháp khác nhau.
 - Ví dụ, câu "Tôi nhìn thấy anh Hải ở tầng hai"
 - Câu chỉ có một nghĩa nhưng bộ PTCP vẫn tạo ra nhiều cây cú pháp, trong đó chỉ có một cây đúng.
 - Ví dụ, câu "Hôm nay trời mưa"

Hướng giải quyết:

Cách 1: Phân loại chi tiết hơn các nhãn từ loại/ngữ loại:

Thay vì luật

<Danh ngữ> → <Danh từ><Danh từ>

ta đưa ra luật

<Danh ngữ> → <Danh từ loại A><Danh từ loại B>.

Nhược điểm:

- Chưa thống nhất trong việc đặt tên các nhãn từ loại/ngữ loại
- Kích thước tập luật cú pháp tăng lên đáng kể.

Hướng giải quyết:

Cách 2: đưa xác suất vào tập luật cú pháp CFG

- Xử lý được câu "Tôi nhìn thấy anh Hải ở tầng hai"
- Chưa giải quyết nhập nhằng liên quan đến tính chất của các từ cụ thể.
- Ví dụ, danh ngữ "vấn đề trong phần trước và phần này"

Các từ cụ thể đôi khi ảnh hưởng đến việc PTCP

- Để giải quyết nhập nhằng trong PTCP, đôi khi cần thông tin về từ cụ thể. Ví dụ
 - "Tôi ăn" ít khi được chấp nhận là một câu hoàn chỉnh do mang lượng thông tin nhỏ.
 - "Tôi đang ăn" dễ được chấp nhận là câu hoàn chỉnh hơn.
- Phải dựa trên tính chất cụ thể của từ giữ vai trò chính trong câu
- 2. Nhập nhằng do lược bỏ quan hệ từ. Ví dụ
 - có thể nói bạn tôi, con tôi;
 - không nói con chó tôi, con mèo tôi.
- > Từ cũng có vai trò quan trọng trong việc PTCP
- đưa thông tin từ vựng vào văn phạm (làm giàu PCFG)

Làm giàu PCFG

- PCFG từ vựng hóa : PLCFG (Probabilistic Lexicalized CFG, Collins 1997; Charniak 1997)
- Gán từ vựng với các nút của luật
- Cấu trúc Head
 - Mỗi phần tử của parsed tree được gắn liền với một lexical head
 - Để xác định head của một nút trong ta phải xác định trong các nút con, nút nào là head (xác định head trong vế phải của một luật).

Làm giàu PLCFG

 $VP(dumped) \rightarrow VBD(dumped) NP(sacks) PP(into) 3*10^{-10}$

 $VP(dumped) \rightarrow VBD(dumped) NP(cats) PP(into) 8*10^{-11}$

Figure 12.12 A lexicalized tree from Collins (1999).

Hạn chế của PLCFG

VP -> VBD NP PP
VP(dumped) -> VBD(dumped) NP(sacks) PP(into)

- Không có một corpus đủ lớn!
 - Thể hiện hết các trường hợp cú pháp, hết các trường hợp đối với từng từ.

Penn Treebank

- Penn Treebank: tập ngữ liệu có chú giải ngữ pháp, có
 1 triệu từ, là nguồn ngữ liệu quan trọng
- Tính thưa:
 - có 965,000 mẫu, nhưng chỉ có 66 mẫu WHADJP, trong đó chỉ có 6 mẫu không là how much hoặc how many
- Phần lớn các phép xử lý thông minh phụ thuộc vào các thống kê mối quan hệ từ vựng giữa 2 từ liền nhau:

A Penn Treebank tree


```
( (S (NP-SBJ The move)
     (VP followed
         (NP (NP a round)
             (PP of
                 (NP (NP similar increases)
                      (PP by
                          (NP other lenders))
                      (PP against
                          (NP Arizona real estate loans)))))
         (S-ADV (NP-SBJ *)
                (VP reflecting
                     (NP (NP a continuing decline)
                         (PP-LOC in
                                 (NP that market))))))
     .))
```

Đánh giá độ chính xác của PTCP

- Độ chính xác của parser được đo qua việc tính xem có bao nhiêu thành phần ngữ pháp trong cây giống với cây chuẩn, gọi là gold-standard reference parses.
- Độ chính xác (Precision) =

% trường hợp hệ gán đúng tổng số trường hợp hệ gán

(%THợp hệ tính đúng).

• Độ phủ (Recall) =

% số trường hợp hệ gán đúng tổng số trường hợp đúng (%THợp hệ tính đúng so với con người).

Biểu diễn cây theo các thành phần ngữ pháp

Đánh giá

Precision and Recall

Label	Start Point	End Point
NP	1	2
NP	4	5
NP	4	8
PP	6	8
NP	7	8
VP	3	8
S	1	8

Label	Start Point	End Point
NP	1	2
NP	4	5
PP	6	8
NP	7	8
VP	3	8
S	1	8

- G = number of constituents in gold standard = 7
- P = number in parse output = 6
- C = number correct = 6

$$\text{Recall} = 100\% \times \frac{C}{G} = 100\% \times \frac{6}{7} \qquad \quad \text{Precision} = 100\% \times \frac{C}{P} = 100\% \times \frac{6}{6}$$

Precision =
$$100\% \times \frac{C}{P} = 100\% \times \frac{6}{6}$$

Ví dụ 2

- (b) Brackets in gold standard tree (a.): **S-(0:11)**, **NP-(0:2)**, VP-(2:9), VP-(3:9), **NP-(4:6)**, PP-(6-9), NP-(7,9), *NP-(9:10)
- (c) Brackets in candidate parse: **S-(0:11)**, **NP-(0:2)**, VP-(2:10), VP-(3:10), NP-(4:10), **NP-(4:6)**, PP-(6-10), NP-(7,10)
- (d) Precision: 3/8 = 37.5% Crossing Brackets: 0 Recall: 3/8 = 37.5% Crossing Accuracy: 100% Labeled Precision: 3/8 = 37.5% Tagging Accuracy: 10/11 = 90.9%

Labeled Recall: 3/8 = 37.5%

Bài tập - tính P, R

Cho kết quả PTCP chuẩn:

- (S (NP (N Cơn)(N lũ)) (VP(V cuốn)(V qua) (NP (L những)(N phận)(N người))) (. .))
- (S(NP(N Phận)(N người) (PP(E ở) (NP(Np Bình Sơn)))(...))

Kết quả của chương trình PTCP:

🖃 Phận người ở Bình Sơn .

🖃 Cơn lũ cuốn qua những phận người . <u> </u>■− NP Cơn <u>⊟</u>- N - lű ٧P cuốn <u>⊟</u>- PP qua <u> </u>B− NP những phận người

Các hệ thống PTCP tốt nhất

- CFG (context free grammar):
 - Berkeley : http://nlp.cs.berkeley.edu/software.shtml
 - Charniak: http://bllip.cs.brown.edu/resources.shtml
- HPSG (Head-driven Phrase Structure Grammar)
 - Enju, deepNLP: https://mynlp.github.io/enju/
- Depedency grammar
 - ClearNLP : http://clearnlp.wikispaces.com/depParser
 - Google SyntaxNet: open-source, sử dụng NN, cho câu đúng ngữ pháp,
 - https://research.googleblog.com/2016/05/announcing-syntaxnet-worlds-most.html
 - Netbase, cho cả câu twitter
 - https://www.codeproject.com/Articles/43372/NetBase-A-Minimal-NET-Database-with-a-Small-SQL
 - Stanford: https://nlp.stanford.edu/software/lex-parser.shtml