University of Strathclyde, Department of Mathematics and Statistics

MM102 Applications of Calculus Exercises for Week 3

- 1. Sketch the finite region bounded by following curves and the x-axis. Hence find the volume generated when this region is rotated through 360° about the x-axis:
 - (a) $y = \sqrt{4 + 3x x^2}$;
 - (b) y = 2x + 1, x = 0, x = 2;
 - (c) $y = \sin x$, x = 0, $x = \pi$.
- 2. Sketch the finite region bounded by the following pairs of curves and find the points of intersection. Hence find the volume generated when this region is rotated through 360° about the x-axis:
 - (a) $y = x^2 + 1$, y = 3 x;
 - (b) $y = x^2 4x + 6$, $y = 4x x^2$;
 - (c) $y = x^2, y = \sqrt{x};$
 - (d) $y = 2x + 3, y = x^2.$
- 3. Sketch the finite region bounded by the following curves. Hence find the volume generated when this region is rotated through 360° about the **y-axis**:
 - (a) $y = x^2 3x + 4$, y = 0, x = 1, x = 3;
 - (b) y = x + 1, y = 0, x = 1, x = 2;
 - (c) $y = \sin x$, y = 0, x = 0, $x = \pi$;
 - (d) $y = \frac{1}{x}$, y = 0, x = 1, x = 2;
 - (e) $y = x^2 + 1$, $y = -x^2 1$, x = 0, x = 1.
- 4. Find the arc length of the following curves:
 - (a) $y = \frac{1}{8}x^2 \ln x$, $x \in [1, 4]$;

(Note that the expression under the square root that appears in the integral is a complete square.)

(b) $y = e^x$, $x \in \left[0, \frac{1}{2} \ln 3\right]$;

(Hint: for the integral use the substitution $u = \sqrt{1 + e^{2x}}$, i.e. $x = \frac{1}{2} \ln(u^2 - 1)$. Use the latter relation to obtain the connection between dx and du.)

(c)
$$y = 2x^{3/2}$$
, $x \in [0, 1]$;

(d)
$$y = \ln(\cos x), \quad x \in [0, \frac{\pi}{4}].$$

(Hint: for the integral, use the relation $\sec^2 x = \tan^2 x + 1$.)

5. Find the surface area when the following curve is rotated through 360° about the x-axis:

(a)
$$y = \sqrt{2x+1}, \quad x \in [1,7];$$

(b)
$$y = \sqrt{x}, \quad x \in [0, 1].$$

(Hint for (a) and (b): write the integrand as a single square root.)