

Master's thesis

Master's Programme in Computer Science

Implementation and benchmarking of Ukkonen 1990 -algorithm

Arttu Kilpinen

February 7, 2022

FACULTY OF SCIENCE UNIVERSITY OF HELSINKI

Supervisor(s)

Assoc Prof. Simon Puglisi

Examiner(s)

Prof. Dunno yet

Contact information

P. O. Box 68 (Pietari Kalmin katu 5) 00014 University of Helsinki, Finland

Email address: info@cs.helsinki.fi URL: http://www.cs.helsinki.fi/

HELSINGIN YLIOPISTO - HELSINGFORS UNIVERSITET - UNIVERSITY OF HELSINKI

Tiedekunta — Fakultet — Faculty Koulutusohjelma — Utbildningsprogram — Study programme

Faculty of Science

Master's Programme in Computer Science

Tekijä — Författare — Author

Arttu Kilpinen

Työn nimi — Arbetets titel — Title

Implementation and benchmarking of Ukkonen 1990 -algorithm

Ohjaajat — Handledare — Supervisors

Assoc Prof. Simon Puglisi

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Master's thesis February 7, 2022 11 pages

Master's thesis

Tiivistelmä — Referat — Abstract

Abstract here. Last thing to write

ACM Computing Classification System (CCS)

Theory of Computation \to Design and Analysis of Algorithms \to Data Structures Design and Analysis \to Data Compression

Theory of Computation \to Design and Analysis of Algorithms \to Data Structures Design and Analysis \to Pattern Matching

Theory of Computation \to Design and Analysis of Algorithms \to Data Structures Design and Analysis \to Sorting and Searching

Avainsanat — Nyckelord — Keywords

Implementation, Shortest Common Superstring

Säilytyspaikka — Förvaringsställe — Where deposited

Helsinki University Library

Muita tietoja — övriga uppgifter — Additional information

Algorithms study track

Contents

1	Intr	roduction	2
	1.1	Motivation	2
	1.2	Related Work	2
	1.3	Structure of the Thesis	2
2	Sho	ortest Common Superstring	3
3	Ukł	konen's Algorithm	4
	3.1	AC-Machine	5
	3.2	Pseudocode	5
	3.3	correctness	5
4	Rel	ative Lempel-Ziv	8
5 experiments		eriments	9
	5.1	Implementation	9
	5.2	Benchmark Data	9
	5.3	Results	9
	5.4	Discussion	9
6	Cor	nclusions	10
Bi	ibliog	graphy	11

Puglisin kommentteja: - Experiments section saattaa paisua aika paljon. Voisi mahdollisesti jakaa useaan kappaleeseen. Esim implementation kohtaa voisi laittaa myös ukkonen kappaleeseen.

Intro ja Conclusions luonnollisella kielellä. Muualla teknistä kamaa.

Introduction

vitusti viitteitä ja pelkkää LUONNOLLISTA kieltä. Ei esim määritelmiä!

Motivation

introssa motivaatiossa rlz mainittu mutta myöhemmin teknisesti alanko or someone mentionet thet it would be interesting to see an implementation

Related Work

related workista oma kappale jos muita vertailuja kuin alanko ja norri. muuten ehkä introon.

Structure of the Thesis

Shortest Common Superstring

Tätä voi ehkä jakaa sectioneihin?

Definition 2.1 (SHORTEST COMMON SUPERSTRING).

Definition of SCS here.

preliminaries including syntax

what is an approximation algorithm

Ukkonen's Algorithm

List of Algorithms

1	Aho and Corasic Algorithm 2, Construction of the goto function	6
2	Aho and Corasix Algorithm 3, Construction of the failure function	7

AC-Machine

hjallis

Pseudocode

Tänne bugikorjaukset sähköpostista joka lähetetty 30.4 Ja sitten failuren laskeminen

correctness

approx factor (ei välttämättä epsilon mutta jotkut boundit on olemassa ainakin kompressiolle)

Algorithm 1 Aho and Corasic Algorithm 2, Construction of the goto function

Input: Set of keywords $K = \{y_1, y_2..., y_k\}$.

Output: Goto function g

Method: We assume output(s) is empty when state s is first created, and g(s, a) = fail if a is undefined or if g(s, a) has not yet been defined. The procedure enter(y) inserts into the goto graph a path that spells out y.

```
1: function CALCULATEGOTOFUNCTION(K = \{y_1, y_2..., y_k\})
 2:
        newstate \leftarrow 0
        for i \leftarrow 1 until k do
 3:
 4:
             enter(y_i)
        end for
 5:
        for all a s.t. g(0, a) = fail do
 6:
             g(0,a) \leftarrow 0
 7:
 8:
        end for
 9: end function
10: function ENTER(y = (a_1, a_2, ..., a_m))
        state \leftarrow 0
11:
12:
        j \leftarrow 1
        while g(state, a_i)! = fail do
13:
             state \leftarrow g(state, a_i)
14:
             j \leftarrow j + 1
15:
        end while
16:
        for p \leftarrow j until m do
17:
             newstate \leftarrow newstate + 1
18:
            g(state, a_p) \leftarrow newstate
19:
             state \leftarrow newstate
20:
         end for
21:
22: end function
```

Algorithm 2 Aho and Corasix Algorithm 3, Construction of the failure function

```
Input: Goto function g from algorithm
    Output: Failure function f
 1: function CalculateFailureFunction(g: \mathbb{N} \to \mathbb{N})
 2:
        queue \leftarrow empty
        for each a s.t. g(a,0) = s \neq 0 do
 3:
            queue \leftarrow queue \cup \{s\}
 4:
            f(s) \leftarrow 0
 5:
        end for
 6:
        while queue \neq empty do
 7:
        let r be the next state in queue
 8:
            queue \leftarrow queue \backslash \{r\}
 9:
            for each a s.t. g(r, a) = s \neq fail do
10:
                queue \leftarrow queue \cup \{s\}
11:
                state \leftarrow g(r)
12:
                while g(state, a) = fail do
13:
                     f(s) \leftarrow g(state, a)
14:
                end while
15:
16:
            end for
        end while
17:
```

18: end function

Relative Lempel-Ziv

 ${\it Lempel-Ziv dictionary construction.}$

subsections?

experiments

Implementation

Benchmark Data

HW + instances

Results

Discussion

Conclusions

- 1. (Aho and Corasick, 1975) describes the Aho-Corasic machine for the first time. It gives the pseudocode to creation and search.
- 2. alanko dissertation, no bibtex yet. Discusses some things related to this topic.
- 3. (Alanko and Norri, 2017) describes approx scs algorithm for compact space.
- 4. statistics.pdf describes the dataset pizzachili.
- 5. (Ukkonen, 1990) is the most important reference in this thesis. Describes the main scs algorithm.
- 6. (Tarhio and Ukkonen, 1988) Describes the same algorithm as ukkonen 90 but not in linear time.

Bibliography

- Aho, A. V. and Corasick, M. J. (1975). "Efficient String Matching: An Aid to Bibliographic Search". In: *Commun. ACM* 18.6, pp. 333–340. ISSN: 0001-0782. DOI: 10.1145/360825. 360855. URL: https://doi.org/10.1145/360825.360855.
- Alanko, J. and Norri, T. (2017). "Greedy Shortest Common Superstring Approximation in Compact Space". In: String Processing and Information Retrieval 24th International Symposium, SPIRE 2017, Palermo, Italy, September 26-29, 2017, Proceedings. Ed. by G. Fici, M. Sciortino, and R. Venturini. Vol. 10508. Lecture Notes in Computer Science. Springer, pp. 1–13. DOI: 10.1007/978-3-319-67428-5_1. URL: https://doi.org/10.1007/978-3-319-67428-5%5C 1.
- Tarhio, J. and Ukkonen, E. (1988). "A Greedy Approximation Algorithm for Constructing Shortest Common Superstrings". In: *Theor. Comput. Sci.* 57, pp. 131–145. DOI: 10. 1016/0304-3975(88) 90167-3. URL: https://doi.org/10.1016/0304-3975(88) 90167-3.
- Ukkonen, E. (1990). "A Linear-Time Algorithm for Finding Approximate Shortest Common Superstrings". In: *Algorithmica* 5.3, pp. 313–323. DOI: 10.1007/BF01840391. URL: https://doi.org/10.1007/BF01840391.