Machine Learning Homework 3

February 25, 2025

Gabe Morris

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
from sklearn.datasets import load_breast_cancer

plt.style.use('../maroon_ipynb.mplstyle')

cancer = load_breast_cancer()
features = cancer.data
target = cancer.target
```

Contents

Problem 1 Solution	 	 	 	•							•	 •						3
Problem 2 Solution	 	 	 	•								 •			·		ě	6
Problem 3 Solution	 	 	 										•				•	8
Problem 4 Solution	 	 	 															9

The sklearn library includes a set of data containing image information on fine needle aspirates used to identify breast cancer. The dataset contains information gathered from the images as well as whether the mass was malignant (target=0) or benign (target=1).

```
[2]: # Showing the features of the dataset
feature_names = cancer.feature_names
temp_df = pd.DataFrame(features, columns=feature_names)
temp_df.head(n=4).transpose()
```

[2]:		0	1	2	3
	mean radius	17.990000	20.570000	19.690000	11.420000
	mean texture	10.380000	17.770000	21.250000	20.380000
	mean perimeter	122.800000	132.900000	130.000000	77.580000
	mean area	1001.000000	1326.000000	1203.000000	386.100000
	mean smoothness	0.118400	0.084740	0.109600	0.142500
	mean compactness	0.277600	0.078640	0.159900	0.283900
	mean concavity	0.300100	0.086900	0.197400	0.241400
	mean concave points	0.147100	0.070170	0.127900	0.105200
	mean symmetry	0.241900	0.181200	0.206900	0.259700
	mean fractal dimension	0.078710	0.056670	0.059990	0.097440
	radius error	1.095000	0.543500	0.745600	0.495600
	texture error	0.905300	0.733900	0.786900	1.156000
	perimeter error	8.589000	3.398000	4.585000	3.445000
	area error	153.400000	74.080000	94.030000	27.230000
	smoothness error	0.006399	0.005225	0.006150	0.009110
	compactness error	0.049040	0.013080	0.040060	0.074580
	concavity error	0.053730	0.018600	0.038320	0.056610
	concave points error	0.015870	0.013400	0.020580	0.018670
	symmetry error	0.030030	0.013890	0.022500	0.059630
	fractal dimension error	0.006193	0.003532	0.004571	0.009208
	worst radius	25.380000	24.990000	23.570000	14.910000
	worst texture	17.330000	23.410000	25.530000	26.500000
	worst perimeter	184.600000	158.800000	152.500000	98.870000
	worst area	2019.000000	1956.000000	1709.000000	567.700000
	worst smoothness	0.162200	0.123800	0.144400	0.209800
	worst compactness	0.665600	0.186600	0.424500	0.866300
	worst concavity	0.711900	0.241600	0.450400	0.686900
	worst concave points	0.265400	0.186000	0.243000	0.257500
	worst symmetry	0.460100	0.275000	0.361300	0.663800
	worst fractal dimension	0.118900	0.089020	0.087580	0.173000

Perform a PCA transformation of the features and plot the individual and cumulative explained variable as a function of number of components.

Solution

```
[3]: # Perform PCA transformation
     pca = PCA() # n_components should equal the number of features
     pca.fit(features)
     # Get explained variance
     explained_variance = pca.explained_variance_ratio_
     # Get the cumulative sum
     cumulative_variance = np.cumsum(explained_variance) # should go up to 1 at n=30
     # Plot
     components = np.arange(1, len(explained_variance) + 1, dtype=int)
     fig, (ax1, ax2) = plt.subplots(nrows=1, ncols=2)
     ax1.plot(components, explained_variance, marker='.')
     ax2.plot(components, cumulative_variance, marker='.')
     ax1.set_xlabel('Number of Components')
     ax1.set_ylabel('Explained Variance')
     ax1.set_title('Explained Variance vs.\n Number of Components')
     ax2.set xlabel('Number of Components')
     ax2.set_ylabel('Cumulative Explained Variance')
     ax2.set_title('Cumulative Explained Variance vs.\n Number of Components')
     plt.show()
```


This analysis shows that the first two components explain over 99.8% of the data. This means

that we can get rid of a lot of the features as they don't contribute much variance to the data. Incredible!

Plot the first two components (component 1 along the x-axis and component 2 along the y-axis) for all the data, differentiating between malignant and benign samples. Are the two cases well differentiated by just the first two components?

Solution

First let's fit a new PCA model that houses only the first two components.

```
[4]: # Make new PCA model
pca = PCA(n_components=2)
features_pca = pca.fit_transform(features)
```

Let's check and see which feature has the most variance by inspecting the largest weight in the first two components.

```
[5]: w1, w2 = pca.components_
max1, max2 = np.argmax(w1), np.argmax(w2)
feature_names[max1], feature_names[max2]
```

```
[5]: (np.str_('worst area'), np.str_('mean area'))
```

```
[6]: # Corresponding weight values w1[max1], w2[max2]
```

[6]: (np.float64(0.852063391798146), np.float64(0.8518237204834198))

Upon inspection, it appears as though the worst and mean area have the largest effect on the data, thus they should not be omitted. Let's plot the first two components and see if the data is well differentiated.

The results do show differentiation in separating malignant and benign. We can see an overlapping region where it maybe hard to distinguish the two, but we don't see false representations on the extremes of each case. The overlapping region suggests that although the first two principal components capture a large proportion of the variance in the dataset, they may not be sufficient to completely separate the two classes. This overlap indicates that some discriminative information might be contained in the remaining components or that the boundary between malignant and benign cases is inherently complex. While PCA is excellent for visualizing high-dimensional data and reducing noise, it is an unsupervised method that does not necessarily optimize for class separability. Therefore, even with a high variance capture, there may be nuances in the data that require more components or additional techniques to achieve better separation.

Given that a linear kernel was sufficient for differentiating the two cases when using an SVC, does the result for question 2 make sense?

Solution

The PCA analysis indicates that the first two components capture most of the important variance in the dataset and distinguish between malignant and benign cases fairly well. This suggests that the data is nearly linearly separable, which supports the use of a linear SVC. Since the previous homework showed that a linear SVC achieved about 98% accuracy, the PCA results reinforce that a linear decision boundary is sufficient for this classification task.

Randomly select a subset containing 100 of the benign cases and perform PCA on this subset. Perform anomaly detection on the remaining benign and malignant cases using this new PCA transform. You will want to consider the information loss from keeping only a finite number of components.

Solution