The logarithmic negativity in random spin chains

Authors (Dated: January 18, 2016)

I. INTRODUCTION

II. THE DISORDERED XX CHAIN

The disordered XX chain is defined by the Hamiltonian

$$\mathcal{H}_{XX} = \sum_{i=1}^{L-1} J_i(S_i^x S_{i+1}^x + S_i^y S_{i+1}^y) + h \sum_{i=1}^L S_i^z, \quad (1)$$

with $S_i^{x,y,z} \equiv \sigma_i^{x,y,z}/2$, σ_i^{α} being the Pauli matrices acting on site i. For periodic boundary conditions one has an extra term in Eq. (1) connecting site L with site 1. Hereafter we fix h=0 and choose J_i uniformily distributed in [0,1]. After the Jordan-Wigner transformation

$$c_i = \left(\prod_{m=1}^{i-1} \sigma_m^z\right) \frac{\sigma_i^x - i\sigma_i^y}{2},\tag{2}$$

(1) is recast in the free-fermionic form

$$\mathcal{H}_{XX} = \frac{1}{2} \sum_{i=1}^{L-1} J_i (c_i^{\dagger} c_{i+1} + c_{i+1}^{\dagger} c_i) + \frac{h}{2} \sum_{i=1}^{L-1} c_i^{\dagger} c_i, \quad (3)$$

with c_i spinless fermionic operators satisfying the canonical anticommutation relations $\{c_m,c_n^{\dagger}\}=\delta_{m,n}$. The mapping between Eq. (1) and Eq. (3) is exact apart from boundary terms (that we neglect here) giving a vanishing contribution (as 1/L) to physical quantities in the large chain limit.

By imposing that the single-particle eigenstates $|\Psi_q\rangle$ (with q an integer labelling the different eigenstates) of (3) are of the form

$$\eta_q^\dagger |0\rangle \equiv |\Psi_q\rangle = \sum_i \Phi_q(i) c_i^\dagger |0\rangle, \tag{4}$$

with $|0\rangle$ the vacuum and $\Phi_q(i)$ the eigenstate amplitudes. The Schrödinger equation gives the equation for $\Phi_q(i)$ as

$$(J_i\Phi_q(i+1) + J_{i-1}\Phi_q(i-1))/2 = \epsilon_q\Phi_q(i), \quad i = 1,\dots, L,$$
(5)

and $J_L=0$. Eq. (5) corresponds to finding the eigenvectors of the banded matrix $T=(J_j\delta_{i,j+1}+J_{j-1}\delta_{i,j-1})/2$. The eigenvalues corresponds to the single-particle eigenergies ϵ_q .

The ground state $|GS\rangle$ of (1) is obtained by filling all the negative modes ϵ_q as

$$|GS\rangle = \eta_{q_M}^{\dagger} \eta_{q_{M-1}}^{\dagger} \cdots \eta_{q_1}^{\dagger} |0\rangle.$$
 (6)

One has the anticommutation relations

$$\{\eta_q^{\dagger}, c_j^{\dagger}\} = \{\eta_q, c_j\} = 0 \tag{7}$$

FIG. 1.

and

$$\{\eta_q^{\dagger}, c_j\} = \Phi_q(j)\delta_{k,j}, \quad \{\eta_q, c_j^{\dagger}\} = \Phi^*(j)\delta_{k,j}$$
 (8)

These imply that the expectation value of the two-point function in a generic eigenstate of (1) is given as

$$\langle c_i^{\dagger} c_j \rangle = \sum_q \Phi_q^*(i) \Phi_q(j),$$
 (9)

where the sum if over the q single-particle excitations forming the eigenstate.

One can show that the eigenvalus of the matrix T are organized in pairs with opposite sign. Given the components $\Phi_1(i)$ of the eigenvector with eigenvalue ϵ_q , the components of the eigenvector with $-\epsilon_q$ are given as $(-1)^{i+1}\Phi_q(i)$. This also implies that the ground state of (1) is in the sector with M=L/2 fermions.

The reduced density matrix for a subsystem A is determined by the correlation matrix restricted to A as

$$C_{ij} \equiv \langle c_i^{\dagger} c_j \rangle, \tag{10}$$

where $i, j \in A$. In particular, given the eigenvalues λ_k of C, the entanglement entropy S_A is given as

$$S_A = -\sum_k (\lambda_k \log \lambda_k + (1 - \lambda_k) \log(1 - \lambda_k)). \tag{11}$$

III. THE ENTANGLEMENT NEGATIVITY IN DMRG

Here we show how to calculate the logarithmic negativity in DMRG simulations.

We consider a generic 1D lattice of L sites. We restrict ourselves to the situation with open boundary conditions. On each site i of the lattice we consider a local Hilbert space \mathbb{H}_i of finite dimension d (e.g., for spin-1/2 systems one has d=2). A generic wavefunction $|\Psi\rangle$ corresponding to a pure stae living in $\mathbb{H}^{\otimes L}$ can be written in Matrix-Product-State (MPS) language as

$$|\Psi\rangle = \sum_{\sigma_1, \sigma_2, \dots, \sigma_L} A_{\alpha_1}^{\sigma_1} A_{\alpha_1 \alpha_2}^{\sigma_2} \cdots A_{\alpha_L}^{\sigma_L} | \sigma_1, \dots, \sigma_L \rangle.$$
 (12)

Here $1 \le \sigma_i \le d$ is the so-called physical index that labels the states in the local Hilbert space, whereas $1 \le \alpha_i \le \chi_i$ are the virtual indices, and χ_i is the bond dimension of the MPS.

In (12) we the sum over the repeated indices α_i is assumed and $|\sigma_1, \sigma_2, \dots, \sigma_L\rangle \equiv |\sigma_1\rangle \otimes |\sigma_2\rangle \cdots |\sigma_L\rangle$, with $|\sigma_i\rangle$ an element of the base of the Hilbert space at site i.

At each site 1 < i < L, for each fixed σ_i , $A^{\sigma_i}_{\alpha_{i-1}\alpha_i}$ is a $\chi_i \times \chi_i$ matrix, while $A^{\sigma_1}_{\alpha_1}$ and $A^{\sigma_L}_{\alpha_L}$ are vectors.

The MPS in (12) can be pictorially represented as in Fig. From (12) one obtains that $\langle \Psi |$ is given as

$$\langle \Psi | = \langle \sigma_1, \dots, \sigma_L | \sum_{\sigma_1, \sigma_2, \dots, \sigma_L} \bar{A}_{\alpha_1}^{\sigma_1} \bar{A}_{\alpha_1 \alpha_2}^{\sigma_2} \cdots \bar{A}_{\alpha_L}^{\sigma_L}$$
 (13)

where the bar in $\bar{A}^{\sigma_i}_{\alpha_{i-1}\alpha_i}$ represents the complex conjugation. The full system density matrix $\rho \equiv |\Psi\rangle\langle\Psi|$ is obtained as

$$\rho = \sum_{\substack{\sigma_1, \dots, \sigma_L \\ \sigma'_1, \dots, \sigma'_L}} (A_{\alpha_1}^{\sigma_1} \bar{A}_{\alpha'_1}^{\sigma'_1}) (A_{\alpha_1, \alpha_2}^{\sigma_2} \bar{A}_{\alpha'_1, \alpha'_2}^{\sigma'_2}) \cdots (A_{\alpha_L}^{\sigma_L} \bar{A}_{\alpha'_L}^{\sigma'_L}) |\sigma_1\rangle \langle \sigma'_1| \otimes \cdots \otimes |\sigma_L\rangle \langle \sigma'_L|.$$

$$(14)$$

The pictorial representation of ρ is shown in Fig. ...

We now introduce a tripartition of the system as $S = A_1 \cup A_1 \cup B$, where A_1 and A_2 are the subintervals of interest and B the remaining part of the system. To be specific we consider the case of two intervals of length ℓ_1 and ℓ_2 at mutual distance

d with $A_1=[s+1,\ldots,s+\ell_1]$ $A_2=[s+\ell_1+d+1,\ldots,s+\ell_1+d+\ell_2]$ with A_1 shifted from the left boundary of the chain by s sites. The reduced density matrix $\rho_{A1\cup A_2}$ is obtained by tracing over the degrees of freedom of B as

$$\rho_{A_{1}\cup A_{2}} = \sum_{\substack{\{\sigma_{i}^{(1)}, \sigma_{i}^{\prime(1)}\}\\ \{\sigma_{i}^{(2)}, \sigma_{i}^{\prime(2)}\}}} M_{\alpha', \beta'}^{\alpha, \beta} A_{\gamma, \nu_{1}}^{\sigma_{1}^{(1)}} \bar{A}_{\gamma, \nu_{1}^{\prime}}^{\sigma_{1}^{\prime(1)}} \prod_{n=2}^{\ell_{1}-1} A_{\nu_{n-1}, \nu_{n}}^{\sigma_{n}^{(1)}} \bar{A}_{\nu_{n-1}^{\prime}, \nu_{n}^{\prime}}^{\sigma_{\ell_{1}}^{(1)}} A_{\nu_{\ell_{1}-1}, \alpha}^{\sigma_{\ell_{1}}^{(1)}} \bar{A}_{\nu_{\ell_{1}-1}^{\prime}, \alpha'}^{\sigma_{\ell_{1}}^{\prime(1)}}$$

$$(15)$$

081103(R) (2010).

F. Iglói, R. Juhász, and H. Rieger, Phys. Rev. B 61, 11552 (2000).
 P. Pippan, S. R. White, and H. G. Evertz, Phys. Rev. B 81,