オペレーティングシステムの機能を使ってみよう 第3章 高水準入出力と低水準入出力

高水準入出力と低水準入出力

ファイルを読み書きするための機能

(API: Application Proguram Interface)

- 高水準入出力(高水準 I/O)
 多くの高機能な関数群
 (fprintf(), fscanf(), fputc(), fgetc(), ...)
- 低水準出力(高水準 I/O)
 システムコールのこと
 少なく、かつ、シンプルな API
 (open(), read(), write(), lseek(), close())

高水準I/Oのデータ構造(書き込み)

- ファイルポインタ (fp)
- FILE 構造体
- バッファリング
- write システムコール

高水準I/Oのデータ構造(読み出し)

- ファイルポインタ (fp)
- FILE 構造体
- read システムコール
- バッファリング

標準入出力(標準入出力ストリーム)

	fd	fp	通常の接続先
標準入力ストリーム	0	stdin	キーボード
標準出力ストリーム	1	stdout	ディスプレイ
標準エラー出力ストリーム	2	stderr	ディスプレイ

fd:ファイルディスクリプタ

fp: ファイルポインタ

ユニファイド I/O

標準ストリーム	同じ意味の呼出し	役割り	
scanf()	<pre>fscanf(stdin,)</pre>	書式付きの入力	
<pre>getchar()</pre>	fgetc(stdin)	1 文字入力	
_	fgets(stdin,)	1 行入力	
<pre>printf()</pre>	<pre>fprintf(stdout,)</pre>	書式付きの出力	
<pre>putchar(c)</pre>	<pre>fputc(c, stdout)</pre>	1 文字出力	
puts(buf)	fputs(buf, stdout)	1 行出力	

- printf(...) と fprintf(stdout,...) は同じ
- fp の代わりに stdin, stdout 等が使用できる.
- キーボードやディスプレイ(入出力装置)とファイルを同じ要領で 操作できる。
- 入出力装置をファイルに統合= (ユニファイド I/O)

標準入力ストリーム

- ファイルポインタは stdin
- ファイルディスクリプタは 0 番
- ファイルディスクリプタ 0 は通常キーボードに接続
- ファイルポインタと FILE 構造体はプログラム起動時に初期化
- シェルはファイルディスクリプタ 0 をリダイレクト可能

標準出力ストリーム

- ファイルポインタは stdout
- ファイルディスクリプタは1番
- ファイルディスクリプタ1は通常ディスプレイに接続
- ファイルポインタと FILE 構造体はプログラム起動時に初期化
- シェルはファイルディスクリプタ1をリダイレクト可能

標準エラー出力ストリーム

- エーラメッセージ出力用のストリーム
- ファイルポインタは stderr
- ファイルディスクリプタは2番
- ファイルディスクリプタ 2 は通常ディスプレイに接続
- ファイルポインタと FILE 構造体はプログラム起動時に初期化
- シェルはファイルディスクリプタ2をリダイレクト可能

性能比較(1/2)

1 プログラムを準備する

mycp : 高水準 I/O 版

mycp2_1 : 低水準 I/O 版 (バッファサイズ= 1 バイト)

mycp2_1024 : 低水準 I/O 版 (バッファサイズ = 1,024 バイト)

2 大きめのファイルを作る

```
$ dd if=/dev/random of=aaa bs=1024 count=10240 <-- 10MiBのファイル aaa を作る 10240+0 records in 10240+0 records out 10485760 bytes transferred in 1.019062 secs (10289621 bytes/sec) $ ls -l aaa -rw-r--- 1 sigemura staff 10485760 Apr 15 17:35 aaa <-- できている $
```

性能比較 (2/2)

3 実行時間を測定方法

```
$ rm bbb <--- 念のため bbb を消す
rm: bbb: No such file or directory
$ time ./mycp2_1 aaa bbb
real 1m31.664s
user 0m11.653s
sys 1m16.554s
$ cmp aaa bbb <--- コピー結果が正常かチェック
$
```

4 実行時間の測定

mycp2_1							
	1回目	2回目	3回目	4回目	5回目	平均	
real	18.021	17.812	17.709	17.744	17.679	17.793	
user	1.707	1.674	1.695	1.723	1.692	1.698	
sys	16.253	16.096	15.977	15.976	15.935	16.047	

課題 No.2: 三つのプログラムの性能比較

上記の性能比較を実際に行う. 提出物は以下の通りとする.

- 1 三つのプログラムについて実行結果を整理したもの
- 2 使用したプログラムのソースコード
- 3 感想・考察 (ソースコードの余白に記入する)