_								
Data								
Date		 	 					

A CONSOLIDATED QUESTION PAPER-CUM-ANSWER BOOKLET

MAINS TEST SERIES-2021

(JUNE. to DEC.-2021)

IAS/IFoS

MATHEMATICS

Under the guidance of K. Venkanna

FULL SYLLABUS (PAPER-I)

TEST CODE: TEST-11: IAS(M)/17-0CT.-2021

BATCH-I

Time: 3 Hours

INSTRUCTIONS

- 1. This question paper-cum-answer booklet has <u>52</u> pages and has
 - <u>32 PART/SUBPART</u> questions. Please ensure that the copy of the question paper-cum-answer booklet you have received contains all the questions.
- 2. Write your Name, Roll Number, Name of the Test Centre and Medium in the appropriate space provided on the right side.
- 3. A consolidated Question Paper-cum-Answer Booklet, having space below each part/sub part of a question shall be provided to them for writing the answers. Candidates shall be required to attempt answer to the part/sub-part of a question strictly within the pre-defined space. Any attempt outside the pre-defined space shall not be evaluated."
- 4. Answer must be written in the medium specified in the admission Certificate issued to you, which must be stated clearly on the right side. No marks will be given for the answers written in a medium other than that specified in the Admission Certificate.
- Candidates should attempt Question Nos. 1 and 5, which are compulsory, and any THREE of the remaining questions selecting at least ONE question from each Section.
- The number of marks carried by each question is indicated at the end of the question. Assume suitable data if considered necessary and indicate the same clearly.
- 7. Symbols/notations carry their usual meanings, unless otherwise indicated.
- 8. All questions carry equal marks.
- All answers must be written in blue/black ink only. Sketch pen, pencil or ink of any other colour should not be used.
- All rough work should be done in the space provided and scored out finally.
- 11. The candidate should respect the instructions given by the invigilator.
- The question paper-cum-answer booklet must be returned in its entirety to the invigilator before leaving the examination hall. Do not remove any page from this booklet.

READ	INSTR	UCT	ONS	ON	THE
LEFT	SIDE	ΟF	THIS	S P	AGE
CAREI	FULLY				

Maximum Marks: 250

	· - -
Name	
Roll No.	
Test Centre	

Do not write your Roll Number or Name
anywhere else in this Question Paper
cum-Answer Booklet

Medium

					_					•									$\overline{}$	$\overline{}$
l _	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

I have read all the instructions and shall abide by them

Signature of the Candidate

I have verified the information filled by the candidate above

Signature of the invigilator

IMPORTANT NOTE:

Whenever a question is being attempted, all its parts/ sub-parts must be attempted contiguously. This means that before moving on to the next question to be attempted, candidates must finish attempting all parts/ sub-parts of the previous question attempted. This is to be strictly followed. Pages left blank in the answer-book are to be clearly struck out in ink. Any answers that follow pages left blank may not be given credit.

DO NOT WRITE ON THIS SPACE

INDEX TABLE

QUESTION	No.	PAGE NO.	MAX. MARKS	MARKS OBTAINED
1	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
2	(a)			
	(b)			
	(c)			
	(d)			
3	(a)			
	(b)			
	(c)			
	(d)			
4	(a)			
	(b)			
	(c)			
	(d)			
5	(a)			
	(b)			
	(c)			
	(d)			
	(e)			
6	(a)			
	(b)			
	(c)			
	(d)			
7	(a)			
	(b)			
	(c)			
	(d)			
8	(a)			
	(b)			
	(c)			
	(d)			
			Total Marks	

DO NOT WRITE ON THIS SPACE

SECTION - A

1. (a) For the matrix A below, compute the dimension of the null space of A, dim (N(A)).

$$A = \begin{bmatrix} 2 & -1 & -3 & 11 & 9 \\ 1 & 2 & 1 & -7 & -3 \\ 3 & 1 & -3 & 6 & 8 \\ 2 & 1 & 2 & -5 & -3 \end{bmatrix}$$
 [10]

1.	(b)	(i) Suppose that A is a square matrix. Prove that the constant term of the
		characteristic polynomial of A is equal to the determinant of A. (ii) Suppose that A is a square matrix. Prove that a single vector may not be as
		(ii) Suppose that A is a square matrix. Prove that a single vector may not be an eigenvector of A for two different eigenvalues. [10]

1.	(e)	If O be the centre of a sphere of radius unity and A, B, be two points in a line with O such that OA \bullet OB = 1, and if P be a variable point on the sphere, show that PA : PB = constant. [10]

2. (a) (i) Let $A = \begin{bmatrix} 1 & 2 & 3 & 1 & 0 \\ 2 & -1 & 1 & 0 & 1 \\ 1 & 2 & -1 & -2 & 1 \\ 1 & 3 & 2 & 1 & 2 \end{bmatrix}$ and let $T : \mathbb{C}^5 \to \mathbb{C}^4$ be given by T(x) = Ax. Is T injective?

(ii) Let $T: \mathbb{C}^3 \to \mathbb{C}^3$ be given by $T \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} a+b+2c \\ 2c \\ a+b+c \end{bmatrix}$. Find a basis of R(T). Is T

surjective? [18]

2.	(b)	Prove that the function $f(x,y)=\sqrt{ xy }$ is not differentiable at the point (0, 0), but that f_x and f_y both exist at the origin and have the value 0. Hence deduce that these two partial derivatives are continuous except at the origin. [15]

- 2. (c) (i) Prove that the locus of a line which meets the lines $y = \pm mx$, $z = \pm c$ and the circle $x^2 + y^2 = a^2$, z = 0 is $c^2m^2 (cy mxz)^2 + c^2 (yz cmx)^2 = a^2 m^2 (z^2 c^2)^2.$
 - (ii) The plane x/a+y/b+z/c = 1 meets the coordinate axes in A, B, C. Prove that the equation of the cone generated by lines drawn from O to meet the circle

ABC is
$$yz\left(\frac{b}{c} + \frac{c}{b}\right) + zx\left(\frac{c}{a} + \frac{a}{c}\right) + xy\left(\frac{a}{b} + \frac{b}{a}\right) = 0$$
. [8+9=17]

3.	(a)	(i) Suppose U and W are two-dimensional subspace of \mathbf{R}^3 . Show that U \cap W \neq
		$\{0\}$. In particular, find the possible dimensions of $U \cap W$.
		(ii) Show that the real field R is a vector space of infinite dimension over the
		rational field Q. (iii) Let V be the vector space of ordered pairs of complex numbers over the real
		field R . Show that V is of dimension 4. [20]

3.	(b)	The ellipsoid with equation $x^2 + 2y^2 + z^2 = 4$ is heated so that its temperature at
	` ,	(x, y, z) is given by $T(x, y, z) = 70 + 10(x + z)$. find the hottest and coldest points
		on the ellipsoid. [13]
1		

3.	(c)	Prove that $z(ax + by + cz) + \alpha x + \beta y = 0$ represents a paraboloid and the equations to the axis are $ax + by + 2cz = 0$, $(a^2 + b^2)z + a\alpha + b\beta = 0$. [17]

4.	(a)	(i)	Let T be the linear operator on R^3 which is represented in the standard ordered basis by the matrix $\begin{bmatrix} -9 & 4 & 4 \\ -8 & 3 & 4 \\ -16 & 8 & 7 \end{bmatrix}$
		(ii)	Prove that T is diagonalizable by exhibiting a basis for R^3 , each vector of which is a characteristic vector of T. Suppose that A is a 2×2 matrix with real entries which is symmetric ($A^t = A$). Prove that A is similar over R to a diagonal matrix. [19]

4.	(c)	If the axes are rectangular, find the locus of the equal conjugate diameters of the ellipsoid $x^2/a^2+y^2/b^2+z^2/c^2$ = 1. [16]

SEC1	rto	TAT	_ 1	D
SEC	ш	ווע	_	О

5.	(a)	Solve (D ³ + 1) $y = e^{2x} \sin x + e^{x/2} \sin$	$\left(\sqrt{3}\times/2\right)$.	[10]

5.
(b)
Find the $r = 2a/(1$
e equation + cos θ),
of the where a
system o
of orthog rameter.
onal traj
iectories
of the
parabolas [10]

5.	(c)	Four uniform rods are freely jointed at their extremities and form a parallelogram ABCD, which is suspended by the joint A, and is kept in shape by a string AC. Prove that the tension of the string is equal to half the weight of all the four rods. [10]

5.	(d)	Prove that for the curve $\vec{r} = a(3t-t^3)\hat{i} + 3at^2\hat{j} + a(3t+t^3)\hat{k}$, th torsion.	e curvature	equals [10]

5.	(e)	Apply Green's theorem to evaluate $\int_{C} (2x^2 - y^2) dx + (x^2 + y^2) dy$ where C is the
		boundary of the area enclosed by the x-axis and the upper -half of the circle $x^2 + y^2 = a^2$. [10]

6.	(a)	(i) (ii)	Solve $(d^3y/dx^3) - 3(d^2y/dx^2) + 4 (dy/dx) - 2y = e^x + \cos x$. Find the general and singular solution of $p^2y^2 \cos^2 \alpha - 2pxy \sin^2 \alpha + y^2 - \sin^2 \alpha = 0$.	

6.	(b)	Find the length of an endless chain which will hang over a circular pulley of radius a so as to be in contact with the two thirds of the circumference of the pulley. [14]

- **6.** (c) (i) The temperature of points in space is given by $T(x, y, z) = x^2 + y^2 z$. A mosquito located at (1, 1, 2) desires to fly in such a direction that it will get warm as soon as possible. In what direction should it move?
 - (ii) Show that the vector filed given by $A = 3x^2y \ \hat{i} + (x^3 2yz^2)\hat{j} + (3z^2 2y^2z)k \text{ is irrotational but not so olenoidal. Also}$ find ϕ (x, y, z) such that $\nabla \phi = A$.

[16]

7 .	(b)	A particle moves under a force	
		$m\mu \{3au^4 - 2(a^2 - b^2) u^5\}, a > b$	
		and is projected from an apse at a distance (a + b) with velocity $\sqrt{\mu/(a + b)}$.	Show
		that the equation of its path is $r = a + b \cos \theta$.	[16]

7.	(c)	Evaluate $\int_{\mathbf{S}} (\nabla \times \mathbf{F}) \cdot \mathbf{n} d\mathbf{s}$, where $\mathbf{F} = (\mathbf{x}^2 + \mathbf{y} - 4) \mathbf{i} + 3\mathbf{x}\mathbf{y} \mathbf{j} + (2\mathbf{x}\mathbf{z} + \mathbf{z}^2) \mathbf{k}$ and \mathbf{S} is the
		surface of the paraboloid $z = 4 - (x^2 + y^2)$ above the xy-plane. [16]

8. (a) (i) Find L {F(t)}, where F(t) = $\begin{cases} \sin\left(t - \frac{\pi}{3}\right), & t > \frac{\pi}{3} \\ 0, & t < \frac{\pi}{3} \end{cases}$

(ii) Solve $(D^2 + 1)$ y = sin t sin 2t. t > 0 if y = 1, Dy = 0 when t = 0.

[17]

8.	(b)	If v ₁ , v ₂ , v ₃ are the velocities at three points P, Q, R of the path of projectile	where
		the inclinations to the horizon are α , $\alpha - \beta$, $\alpha - 2\beta$ and if t_1 , t_2 be the time	mes of
		describing the arcs PQ, QR respectively, prove that $v_3t_1 = v_1t_2$	a n d
		1 1 0 0	

$$\frac{1}{v_1} + \frac{1}{v_3} = \frac{2\cos\beta}{v_2} \,. \tag{15}$$

-	
ROUGH SP	ACE
ROUGHSP	ACE
ROUGH SP	ACE
ROUGHSP	ACE
ROUGH SP	ACE

No.1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS IN IFoS (FROM 2008 TO 2019)

OUR RANKERS AMONG TOP 10 IN IFoS

DISSII KIIMAD AIR-01 IFoS-2019

PRATAP SINGH AIR-01 IFoS-2015

PRATEEK JAIN AIR-03 IFoS-2016

STONARTHA GUPTA AIR-03 IFoS-2014

VARIIN CUNTURALLI AIR-04 IFoS-2014

AIR-04 IFoS-2010

O IMPRIM IGTARN AIR-05 IFoS-2019

DESHAL DAN AIR-05 IFoS-2017

PARTH JAISWAL AIR-05 IFoS-2014

HIMANSHU GUPTA AIR-05 IFoS-2011

ASHISH REDOY MY AIR-06 IFoS-2015

ANUPAH SHUKLA AIR-07 IFoS-2012

ARMCHAL SPINASTAW AIR-09 IFoS-2018

HARSHVARDHAM AIR-10 IFoS-2017

AIR-30

AIR-93

AIR-22

AIR-21

AIR-67

101 AIR-13

AIR-72 AIR-11 AIR-36 ONLY IMS PROVIDES SCIENTIFIC & INNOVATIVE TEACHING METHODOLOGIES FULLY REVISED STUDY MATERIALS AND FULLY REVISED TEST SERIES.

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9 © Ph.:011-45629987, 9999197625 💋 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152

No. 1 INSTITUTE FOR IAS/IFOS EXAMINATIONS

OUR ACHIEVEMENTS (FROM 2008 TO 2019)

HEAD OFFICE: 25/8, Old Rajender Nagar, Delhi-60. BRANCH OFFICE: 105-106, Top Floor, Mukherjee Tower Mukherjee Nagar, Delhi-9

© Ph.:011-45629987, 9999197625 www.ims4maths.com @ e-Mail: ims4maths@gmail.com

Regional Office: H.No. 1-10-237, 2nd Floor, Room No. 202 R.K'S-Kancham's Blue Sapphire Ashok Nagar, Hyderabad-20. Ph.: 9652351152, 9652661152