COMP5046 Natural Language Processing

Lecture 7: Dependency Parsing

Semester 1, 2019
School of Computer Science
The University of Sydney, Australia

Lecture 7: Parsing

- 1. Linguistic Structure
- 2. Dependency Structure
- 3. Dependency Parsing Algorithms
- 4. Transition-based Dependency Parsing
- 5. Deep Learning-based Dependency Parsing

What is Syntax and Parsing

- Language is more than just a "bag of words"
- Grammatical rules apply to categories and groups of words, not individual words.
- Example a sentence includes a subject and a predicate.
 The subject is noun phrase and the predicate is a verb phrases.
 - Noun phrase: The lecture, Caren, He
 - Verb phrase: started, had dinner, went away

Parsing

 Associating tree structures to a sentence, given a grammar (Context Free Grammar or Dependency Grammar)

Parsing Computer Language

Parsing Natural Language (Human Language)

It is much more difficult than parsing computer language

Why?

- No types for words
- No brackets around phrases
- Ambiguity!

Syntactic Ambiguities

Grammars are declarative

They don't specify how the parse tree will be constructed

Ambiguity

- 1. Prepositional Phrase (PP) attachment ambiguity
- 2. Verb attachment ambiguity
- 3. Coordination Scope
- 4. Gaps
- 5. Particles or Prepositions
- 6. Gerund or adjective

Syntactic Ambiguities – PP attachment Ambiguity

I saw the man with the telescope

Syntactic Ambiguities – PP attachment Ambiguity Multiply

- A key parsing decision is how we 'attach' various constituents
 - PPs, adverbial or participial phrases, infinitives, coordinations

Syntactic Ambiguities – Coordination Scope Ambiguity

I ate red apples and bananas

Syntactic Ambiguities - Gaps

She never saw a dog and did not smile

Syntactic Ambiguities – Particles or Prepositions

Some verbs are followed by adverb particles.
 (e.g. put on, take off, give away, bring up, call in)

She ran up a large bill

Some particles are detached from the verb and put after the object.

He called the doctor in

Difference between an adverb particle and a preposition.

- the **particle** is closely tied to its verb to form idiomatic expressions
- the preposition is closely tied to the noun or pronoun it modifies.

Syntactic Ambiguities – Gerund or Adjective

Dancing shoes can provide nice experience

When and Where do we use Parsing?

Syntactic Analysis checks whether the generated tokens form a meaningful expression

- We need to understand sentence structure in order to be able to interpret language correctly
- Humans communicate complex ideas by composing words together into bigger units to convey complex meanings
- We need to know what is connected to what
- Grammar Checking
- Question Answering
- Machine Translation
- Information Extraction
- Chatbot

... and many others

Two main views of linguistic structure

Constituency Grammar (a.k.a context-free grammar, phrase structure grammar)

- Noam Chomsky (1928)
- Immediate constituent analysis
- Insists on classification and distribution

Dependency Grammar

- Lucien Tesniere (1893 1954)
- Functional dependency relations
- Emphasises the relations between syntactic units, thus adding meaningful links (semantics)

Two main views of linguistic structure

Constituency Parsing

Constituency grammars

One-to-one-or-more correspondence. For every word in a sentence, there is at least one node in the syntactic structure that corresponds to that word.

Dependency Parsing

Dependency grammars

one-to-one relation; for every word in the sentence, there is exactly one node in the syntactic structure that corresponds to that word

Constituency Grammar

- A basic observation about syntactic structure is that groups of words can act as single units
- Such groups of words are called constituents
- Constituents tend to have similar internal structure, and behave similarity with respect to other units

Examples

- noun phrases (NP)
 - she, the house, Robin Hood and his merry men, etc.
- verb phrases (VP)
 - blushed, loves Mary, was told to sit down and be quiet, lived happily ever after
- prepositional phrases (PP)
 - on it, with the telescope, through the foggy dew, etc.

A sample context-free grammar

I prefer a morning flight

- 1. Starting unit: words are given a category (part-of-speech)
- 2. Combining words into phrases with categories
- 3. Combining phrases into bigger phrases recursively

A sample context-free grammar

- 1. Starting unit: words are given a category (part-of-speech)
- 2. Combining words into phrases with categories
- 3. Combining phrases into bigger phrases recursively

I, prefer, a, morning, flight
PRP VBP DT NN NN

A sample context-free grammar

I, prefer, a, morning, flight

PRP VBP DT NN NN

Grammar rule	Example
$S \rightarrow NPVP$	I + want a morning flight
$NP \rightarrow Pronoun$	1
$NP \rightarrow Proper-Noun$	Sydney
$NP \rightarrow Det Nominal$	a flight
Nominal → Nominal Noun	morning flight
$Nominal \to Noun$	flights
VP → Verb	do
$VP \rightarrow Verb NP$	want + a flight
$VP \rightarrow Verb NPPP$	leave + Melbourne + in the morning
$VP \rightarrow VerbPP$	leaving + onThursday
PP → Preposition NP	from + Sydney

A sample context-free grammar

- 1. Starting unit: words are given a category (part-of-speech)
- 2. Combining words into phrases with categories
- 3. Combining phrases into bigger phrases recursively

A sample context-free grammar

A sample context-free grammar

Treebanks

Corpora where each sentence is annotated with a parse tree

- Treebanks are generally created by
 - parsing texts with an existing parser
 - having human annotators correct the result
- This requires detailed annotation guidelines for annotating different grammatical constructions
- Penn Treebank is a popular treebank for English (Wall Street Journal section)

Two main views of linguistic structure

Constituency Parsing

Constituency grammars

One-to-one-or-more correspondence. For every word in a sentence, there is at least one node in the syntactic structure that corresponds to that word.

Dependency Parsing

Dependency grammars

one-to-one relation; for every word in the sentence, there is exactly one node in the syntactic structure that corresponds to that word

Lecture 7: Parsing

- 1. Linguistic Structure
- 2. Dependency Structure
- 3. Dependency Parsing Algorithms
- 4. Transition-based Dependency Parsing
- 5. Deep Learning-based Dependency Parsing

Dependency Structure

Syntactic structure: lexical items linked by binary asymmetrical relations ("arrows") called **dependencies**

Red – modifier, dependent, child, subordinate

Hat - head, governor, parent, regent

Compound — **dependency relations** (e.g. subject, prepositional object, etc)

^{*}Head determines the syntactic/semantic category of the construct

^{*}The arrows are commonly typed with the name of grammatical relations

Dependency Relations

The following list shows the 37 universal **syntactic relations** used in UD v2. (de Marneffe et al. 2014).

- <u>acl</u>: clausal modifier of noun (adjectival clause)
- advcl: adverbial clause modifier
- advmod: adverbial modifier
- amod: adjectival modifier
- appos: appositional modifier
- <u>aux</u>: auxiliary
- case: case marking
- cc: coordinating conjunction
- ccomp: clausal complement
- clf: classifier
- compound: compound
- conj: conjunct
- cop: copula
- <u>csubj</u>: clausal subject
- dep: unspecified dependency
- <u>det</u>: determiner
- discourse: discourse element
- <u>dislocated</u>: dislocated elements
- expl: expletive

- <u>fixed</u>: fixed multiword expression
- · flat: flat multiword expression
- goeswith: goes with
- iobj: indirect object
- list: list
- mark: marker
- nmod: nominal modifier
- nsubj: nominal subject
- nummod: numeric modifier
- obj: object
- obl: oblique nominal
- orphan: orphan
- parataxis: parataxis
- punct: punctuation
- reparandum: overridden disfluency
- root:root
- vocative: vocative
- xcomp: open clausal complement

Dependency Structure

Example

Dependency Parsing

- Represents Lexical/syntactic dependencies between words
 - A sentence is parsed by choosing for each word what other word (including ROOT) is it a dependent of

Dependencies form a tree (connected, acyclic, single-head)

- How to make the dependencies a tree Constraints
 - Only one word is a dependent of ROOT (the main predicate of a sentence)
 - Don't want cycles $A \rightarrow B$, $B \rightarrow A$

Dependency Grammar/Parsing History

Panini's grammar (4th century BCE)

The notion of dependencies between grammatical units

Ibn Maḍā' (12th century)

The first grammarian to use the term dependency in the grammatical sense

Sámuel Brassai, Franz Kern, Heimann Hariton Tiktin (1800 - 1930)

The dependency seems to have coexisted side by side with that of phrase structure

Lucien Tesnière (1959)

Was dominant approach in "East" in 20th Century (Russia, China, ...) Good for free-er word order languages

David Hays (1962)

The great development surrounding dependency-based theories has come from computational linguistics

Dependency Grammar/Parsing

Some people draw the arrows one way; some the other way!

• Tesnière had them point from head to dependent...

Usually add a fake ROOT so every word is a dependent of precisely 1 other node

Projectivity vs Non-Projectivity

- There are no crossing dependency arcs when the words are laid out in their linear order, with all arcs above the words
- Dependencies parallel to a CFG tree must be projective
 - Forming dependencies by taking 1 child of each category as head
- But dependency theory normally does allow non-projective structures to account for displaced constituents

The rise of annotated data

- The idea of dependency structure goes back a long way
- [Universal Dependencies: http://universaldependencies.org/;
- cf. Marcus et al. 1993, The Penn Treebank, Computational Linguistics]
- Starting off, building a treebank seems a lot slower and less useful than building a grammar
- But a treebank gives us many things
 - Reusability of the labor
 - Many parsers, part-of-speech taggers, etc. can be built on it
 - Valuable resource for linguistics
 - Broad coverage, not just a few intuitions
 - Frequencies and distributional information
 - A way to evaluate systems

Dependency Conditioning Preferences

What are the sources of information for dependency parsing?

- Bilexical affinities
- Dependency distance
- Intervening material
- Valency of heads

Dependency Parsing

Exercise – Let's do it together!

- Simpler to parse than context-free grammars

ROOT I prefer the morning flight through Sydney

ROOT Unionised workers are usually better paid than their non-union counterparts

Lecture 7: Parsing

- 1. Linguistic Structure
- 2. Dependency Structure
- 3. Dependency Parsing Algorithms
- 4. Transition-based Dependency Parsing
- 5. Deep Learning-based Dependency Parsing

Dependency Parsing Approaches

Methods of Dependency Parsing

- Dynamic programming
 - Eisner (1996) gives a clever algorithm with complexity O(n3), by producing parse items with heads at the ends rather than in the middle
- Constraint Satisfaction
 - Edges are eliminated that don't satisfy hard constraints. Karlsson (1990)
- Graph-based Dependency Parsing
 - Create a *Minimum Spanning Tree* for a sentence McDonald et al.'s (2005) MSTParser scores dependencies independently using an Machine Learning classifier
- Transition-based Dependency Parsing
- Neural Network-based Dependency Parsing

Dependency Parsing Approaches

Graph-based dependency parsers

Compute a score for every possible dependency for each edge

e.g., picking the head for "big"

Dependency Parsing Approaches

Graph-based dependency parsers

- Compute a score for every possible dependency for each edge
 - Then add an edge from each word to its highest-scoring candidate head
 - And repeat the same process for each other word

e.g., picking the head for "big"

Dependency Parsing Approaches

Methods of Dependency Parsing

Graph-based Dependency Parsing

- Non-deterministic dependency parsing
- Build a complete graph with directed/weighted edges
- Find the highest scoring tree from a complete dependency graph

Transaction-based Dependency Parsing

- Deterministic dependency parsing
- Build a tree by applying a sequence of transition actions
- Find the highest scoring action sequence that builds a legal tree

Lecture 7: Parsing

- 1. Linguistic Structure
- 2. Dependency Structure
- 3. Dependency Parsing Algorithms
- 4. Transition-based Dependency Parsing
- 5. Deep Learning-based Dependency Parsing

Greedy transition-based parsing

- A simple form of greedy discriminative dependency parser
- Design a dumber but really fast algorithm and let the machine learning do the rest.
- Eisner's algorithm (Dynamic Programming-based Dependency Parsing) searches over many different dependency trees at the same time.
- A transition-based dependency parser only builds one tree, in one left-toright sweep over the input

Greedy transition-based parsing

- The arc-standard algorithm is a simple algorithm for transition-based dependency parsing.
- A sequence of bottom up actions
 - Roughly like "shift" or "reduce" in a shift-reduce parser, but the "reduce" actions are specialized to create dependencies with head on left or right
- It is implemented in most practical transition-based dependency parsers, including MaltParser.

Stack	Buffer
Dependency Graph	

Stack	Buffer	
ROOT	book me a morning flight	
Dependency Graph		

- Initial configuration:
 - All words are in the buffer.
 - The stack is empty or starts with the ROOT symbol
 - The dependency graph is empty.

Transition-based parsing – The arc-standard algorithm

Stack	Buffer
ROOT	book me a morning flight
Dependency Graph	

Possible Transaction

Shift

 Push the next word in buffer onto the stack

Left-Arc

- Add an arc from the topmost word to the 2nd-topmost word on the stack
- Remove 2nd word from stack

Right-Arc

- Add an arc from the 2nd-topmost word to the topmost word on the stack
- Remove the topmost word from stack

Stack		Buffer
ROOT	book me a	morning flight
Dependency Graph		
Possible Transaction		
Shift	Left-Arc	Right-Arc

Stack			Buffe	r
ROOT book		me a mor	ning	
Dependency Graph				
,				
				J
Possible Transaction				
Shift	Left-Arc		Right-Arc	

Stack		Buffer
ROOT book me		a morning flight
Dependency Graph		
Possible Transaction		
Shift	Left-Arc	Right-Arc

- Terminal configuration:
 - The buffer is empty.
 - The stack contains a single word.

Transition-based parsing – The arc-standard algorithm

Start:
$$\sigma = [ROOT], \beta = w_1, ..., w_n, A = \emptyset$$

- 1. Shift $\sigma, w_i | \beta, A \rightarrow \sigma | w_i, \beta, A$
- 2. Left-Arc_r $\sigma | w_i | w_j$, β , $A \rightarrow \sigma | w_j$, β , $A \cup \{r(w_j, w_i)\} \sigma | w_i | w_j$, β , $A \rightarrow \sigma | w_i | w_j$
- 3. Right-Arc_r $\sigma | w_i, \beta, A \cup \{r(w_i, w_j)\}$

Finish:
$$\sigma = [w], \beta = \emptyset$$

How to choose the next action?

Transition-based Parsing

How to choose the next action?

Stand back, You know machine learning!

Goal: Predict the next transition (class), given the current configuration.

- We let the parser run on gold-standard trees.
- Every time there is a choice to make, we simply look into the tree and do 'the right thing'.
- We collect all (configuration, transition) pairs and train a classifier on them.
- When parsing unseen sentences, we use the trained classifier as a guide.

What if the number of pairs is far too large?

Feature Representation

- Define a set of features of configurations that you consider to be relevant for the task of predicting the next transition.
- Example: word forms of the topmost two words on the stack and the next two words in the buffer
- Describe every configuration in terms of a feature vector.

- In practical systems, we have thousands of features and hundreds of transitions.
- There are several machine-learning paradigms that can be used to train a guide for such a task
- Examples: perceptron, decision trees, support-vector machines, memory-based learning

Transition-based parsing

(a) Arc-standard: is and example are eligible for arcs.

(b) Arc-eager: *example* and *with* are eligible for arcs.

(c) Easy-first: All unreduced tokens are active (bolded).

Evaluation of Dependency Parsing

Acc =	# cor	# correct deps					
	# of deps						
UAS =	4/5	= 80%					
LAS =	2/5	= 40%					

Go	ld		
1	2	She	nsubj
2	0	saw	root
3	5	the	det
4	5	video	nn
5	2	lecture	obj

Pa	rsed		
1	2	She	nsubj
2	0	saw	root
3	4	the	det
4	5	video	nsubj
5	2	lecture	ccomp

Lecture 7: Parsing

- 1. Linguistic Structure
- 2. Dependency Structure
- 3. Dependency Parsing Algorithms
- 4. Transition-based Dependency Parsing
- 5. Deep Learning-based Dependency Parsing

Deep Learning-based Parsing

Distributed Representations

- Represent each word as a d-dimensional dense vector (i.e., word embedding)
 - Similar words are expected to have close vectors.
 - NNS (plural noun) should be close to NN (singular noguon).
- Meanwhile, part-of-speech tags (POS) and dependency labels are also represented as d-dimensional vectors.
- The smaller discrete sets also exhibit many semantical similarities

Deep Learning-based Parsing

Distributed Representations

Softmax probabilities

Deep Learning-based Parsing

Neural Network Dependency Parsing

Accuracy and parsing speed on PTB + Stanford dependencies.

Parser	Dev		Test		Speed
Parser	UAS	LAS	UAS	LAS	(sent/s)
standard	90.2	87.8	89.4	87.3	26
eager	89.8	87.4	89.6	87.4	34
Malt:sp	89.8	87.2	89.3	86.9	469
Malt:eager	89.6	86.9	89.4	86.8	448
MSTParser	91.4	88.1	90.7	87.6	10
Our parser	92.0	89.7	91.8	89.6	654

Accuracy and parsing speed on CTB

Ромаом	Dev		Test		Speed
Parser	UAS	LAS	UAS	LAS	(sent/s)
standard	82.4	80.9	82.7	81.2	72
eager	81.1	79.7	80.3	78.7	80
Malt:sp	82.4	80.5	82.4	80.6	420
Malt:eager	81.2	79.3	80.2	78.4	393
MSTParser	84.0	82.1	83.0	81.2	6
Our parser	84.0	82.4	83.9	82.4	936

Chen, D., & Manning, C. (2014). A fast and accurate dependency parser using neural networks. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 740-750).

- PTB: English Penn Treebank
- CTB: Chinese Penn Treebank

Reference for this lecture

- Deng, L., & Liu, Y. (Eds.). (2018). Deep Learning in Natural Language Processing. Springer.
- Rao, D., & McMahan, B. (2019). Natural Language Processing with PyTorch: Build Intelligent Language Applications Using Deep Learning. "O'Reilly Media, Inc.".
- Manning, C. D., Manning, C. D., & Schütze, H. (1999). Foundations of statistical natural language processing.
 MIT press.
- Nivri, J (2016). Transition-based dependency parsing, lecture notes, Uppsala Universitet
- Manning, C 2017, Natural Language Processing with Deep Learning, lecture notes, Stanford University
- Chen, D., & Manning, C. (2014). A fast and accurate dependency parser using neural networks. In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) (pp. 740-750).
- Eisner, J. M. (1996, August). Three new probabilistic models for dependency parsing: An exploration. In Proceedings of the 16th conference on Computational linguistics-Volume 1 (pp. 340-345). Association for Computational Linguistics.