

Минимизация конкретной функции ошибок на практике

1. Она минимизируется напрямую

RMSE – Ridge

2. Она может быть приближена (имитирована другой) RLMSE

- 3. Реализация минимизации конкретной ф-ии
- XGBoost прописываем метрику и производные
 - ниже расщепление в деревьях для AUC

4. Решаем одной, донастариваем на другую При раннем останове смотрим на значение целевой функции Идеология РП

Прямая настройка – идеология РП

$$F(\underbrace{B}_{\text{стандартна } 9} \cdot \underbrace{C_c}_{\text{простое PP}})
ightarrow \min_{c}$$

Как в задаче CrowdFlower (выбор порогов)

AUC ROC: Полностью бинарный случай $a \in \{0,1\}^m$, $y \in \{0,1\}^m$

$$S = \frac{xy}{2} + \frac{(1-x)(1-y)}{2} + (1-x)y$$
$$S = \frac{1-x+y}{2}$$

$$AUC = \frac{1 - FPR + TPR}{2} = \frac{1}{2} \left(1 - \frac{FP}{FP + TP} + TPR \right) = \frac{1}{2} \left(1 - \frac{FP}{FP + TN} + \frac{TP}{TP + FN} \right) = \frac{1}{2} \left(\frac{TN}{FP + TN} + \frac{TP}{TP + FN} \right)$$

AUC ROC: Полностью бинарный случай $a \in \{0,1\}^m$, $y \in \{0,1\}^m$

$$AUC = \frac{R_0 + R_1}{2}$$

Среднее арифметическое полноты по классам 0 и 1... это же сбалансированная точность!

А если выровнять мощности (как?), то можно смотреть на точность...

Максимизация AUC ~

$$TPR-FPR \rightarrow max$$

Реальный случай: Сбербанк

Использование «тайных знаний» на практике

Строим деревья в решающем лесе – хотим минимизировать AUC ROC

Хотим выбирать оптимальный порог

 $m_{\scriptscriptstyle i}$ – числа точек в листах $m_{\scriptscriptstyle i}$ – числа объектов первого класса в листах

$$m = m_1 + m_0$$
$$n = n_1 + n_0$$

Хотим выбирать оптимальный порог

$$AUC = \frac{1}{2} \left[\frac{m_1}{m} + \frac{n_0 - m_0}{n - m} \right] =$$

$$= \frac{1}{2} \left[\frac{m_1}{m} + \frac{(n - m) - (n_1 - m_1)}{n - m} \right] =$$

$$= \frac{1}{2} + \frac{1}{2} \left[\frac{m_1}{m} - \frac{n_1 - m_1}{n - m} \right]$$

Хотим выбирать оптимальный порог

Логично
$$|AUC-0.5| \rightarrow \max$$

$$\left| \frac{m_1}{m} - \frac{n_1 - m_1}{n - m} \right| \to \max$$

Модуль разностей вероятностей классов «0», «1» в правом листе

$$\left| \frac{m_1 n - n_1 m}{m(n-m)} \right| \to \max$$

$$|m_1 n - n_1 m| \rightarrow \max$$

А ведь тогда просто реализовать перебор порогов в скриптовых языках

RF для AUC

Получили «новую» модель алгоритмов!

ДЗ Исследовать подобный критерий.... помогает ли в оптимизации AUC ROC?

Дьяконов А.Г. (Москва, МГУ)

Задача классификации {0,1} с ответами на [0,1]

Реальный случай

Пусть ошибка:

$$|y_i - a_i| \cdot \begin{cases} 0.8, & y_i = 1, \\ 0.2, & y_i = 0, \end{cases}$$
 (*)

где $y_i \in \{0,1\}$ – верная классификация i-го объекта, $a_i \in [0,1]$ – ответ нашего алгоритма.

Заказчик: важно получать значения из отрезка [0,1] и интерпретировать как вероятности принадлежности к классу 1

Вычисление матожидания ошибки

Пусть i-й объект принадлежит к классу 1 с вероятностью p

Посчитаем матожидание нашей ошибки:

$$0.8 | 1 - a_i | p + 0.2 | a_i | (1 - p) =$$

$$= 0.8p - 0.8pa_i + 0.2a_i - 0.2pa_i =$$

$$= 0.8p - (p - 0.2)a_i$$

Вычисление матожидания ошибки

$$0.8p - (p - 0.2)a_i \rightarrow \min$$

Оптимальное решение (которое минимизирует матожидание ошибки)

$$a_i = \begin{cases} 0, & p < 0.2, \\ 1, & p \ge 0.2. \end{cases}$$

Функционал (*) вынуждает нас выдавать значения из множества {0,1}.

В чём ошибка заказчика, как исправить?

Неправильный выбор функционала

Интересно... матожидание ошибки (при оптимальном решении) в зависимости от р.

Задачи с интервальными признаками... Как решать

Качество измеряем, например так:

$$\frac{|A \cap B|}{|A \cup B|}$$

1 способ

Две задачи:

Целевой признак – начало интервала, Целевой признак – конец интервала

- на практике работает не очень хорошо
- надо дорабатывать классические алгоритмы

(т.к. в случае начала интервала лучше занижать...)

2 способ

Целевой признак – середина интервала, плюс оцениваем отклонение от середины

- иногда противоречит природе данных (интервал заходит в отрицательную область)

Концепция решающего правила

Как всё-таки минимизировать нужный функционал...

1. Есть предварительный ответ

2. Формируем окончательный параметрический...

$$\left[\frac{a+b}{2} - \varepsilon \frac{b-a}{2}, \frac{a+b}{2} - \varepsilon \frac{b+a}{2}\right]$$

3. Настраиваем параметр

Прямой перебор – явная минимизация

Можно и по-другому...

Ho:

- 1. Есть базовые алгоритмы (операторы)
 - 2. Есть параметризованный способ перевода их ответов в нужные
- 3. Прямая минимизация функционала

Из задачи Rossmann Store Sales

Root Mean Square Percentage Error (RMSPE)

$$\sqrt{\frac{1}{|\{i \mid y_i > 0\}|} \sum_{i: y_i > 0} \left(\frac{a_i - y_i}{y_i}\right)^2} \, \mathbf{M}$$

Оправдание деформации логарифмом...

Оправдание деформации логарифмом...

Ищем деформацию

$$\frac{a-y}{y} \approx F(a) - F(y)$$

чтобы функционал превратился в RMSE

$$\sqrt{\frac{1}{|\{i \mid y_i > 0\}|} \sum_{i: y_i > 0} (F(a_i) - F(y_i))^2}$$

Пусть
$$a = y + \delta$$
, тогда

$$\frac{\delta}{y} \approx F(y+\delta) - F(y) = F'\delta + o(\delta)$$

решим уравнение

$$\frac{\delta}{y} = F'\delta$$

Оправдание деформации логарифмом...

$$\frac{1}{y} = \frac{\partial F}{\partial y}$$

$$F(y) = \ln|y| + C$$

Выбираем деформацию $F(y) = \ln |y|$

Но, возможно, всё проще...

при логарифмировании отклонения похожи на нормальные

Распределения покупок

Метод градиентного спуска

Задача оптимизации

$$J(\widetilde{w}) \rightarrow \min$$

пусть это ФУНКЦИЯ ОШИБКИ (ПАРАМЕТРЫ АЛГОРИТМА)

$$\widetilde{w}\coloneqq\widetilde{w}-lpharac{\partial J}{\partial\widetilde{w}}\Big|_{\widetilde{w}}$$

Возьмём конкретную задачу и метод

Качество: LOG LOSS

Метод: логистическая регрессия
(правильнее: сигмоида!)

$$LOGLOSS = -\frac{1}{q} \sum_{i=1}^{q} (y_i \log a_i + (1 - y_i) \log(1 - a_i))$$

$$a = \frac{1}{1 + e^{-z}}$$

z = z(w) – может как-то зависеть от параметров w.

На конкретном объекте:

$$J(w) = -\begin{cases} \log a, & y = 1, \\ \log(1-a), & y = 0. \end{cases}$$

Итак,

$$J(w) = -\begin{cases} \log\left(\frac{1}{1 + e^{-z}}\right), & y = 1, \\ \log\left(1 - \frac{1}{1 + e^{-z}}\right), & y = 0. \end{cases}$$

$$J(w) = -\begin{cases} -\log(1+e^{-z}), & y = 1, \\ -z - \log(1+e^{-z}), & y = 0. \end{cases}$$

$$\frac{\partial \log(1+e^{-z})}{\partial w} = -\frac{1}{1+e^{-z}}e^{-z}\frac{\partial z}{\partial w}$$

$$\frac{\partial J(w)}{\partial w} = -\frac{\partial z}{\partial w} \begin{cases} \frac{e^{-z}}{1 + e^{-z}}, & y = 1, \\ -1 + \frac{e^{-z}}{1 + e^{-z}}, & y = 0. \end{cases}$$

Поэтому

$$\frac{\partial J(w)}{\partial w} = -\frac{\partial z}{\partial w} \begin{cases} 1 - \frac{1}{1 + e^{-z}}, & y = 1, \\ 0 - \frac{1}{1 + e^{-z}}, & y = 0. \end{cases} = -\frac{\partial z}{\partial w} (y - a)$$

Получаем формулу для коррекции весов:

$$w = w + \alpha (y - a) \frac{\partial z}{\partial w}$$

Очень логичная: изменение зависит от величины ошибки (y-a)

В классической логистической регрессии

$$a = \frac{1}{1 - \sum_{t=1}^{n} w_{t}[x]_{t}}$$

$$1 + e^{-\sum_{t=1}^{n} w_{t}[x]_{t}}$$

(линейная комбинация признаков)

Поэтому

$$w = w + \alpha (y - a)x$$

x – признаковое описание объекта

Вопрос с подвохом

Качество: LOG LOSS Метод: линейная регрессия

$$J(w) = -\begin{cases} \log(z), & y = 1, \\ \log(1-z), & y = 0. \end{cases}$$
$$\frac{\partial J(w)}{\partial w} = -\frac{\partial z}{\partial w} \begin{cases} 1/z, & y = 1, \\ -1/(1-z), & y = 0, \end{cases} = \frac{1}{z+y-1} \frac{\partial z}{\partial w}$$

тогда

$$w = w - \frac{\alpha}{z + y - 1} \frac{\partial z}{\partial w}$$

Что смущает в этой формуле? Почему так получилось?

Вопрос с подвохом

$$w = w - \frac{1}{z + y - 1} \frac{\partial z}{\partial w}$$

Коррекция происходит даже при абсолютно правильном ответе...

$$J(w) = -\begin{cases} \log(z) & y = 1, \\ \log(1-z), & y = 0. \end{cases}$$

Нужны ещё ограничения

В логистической регрессии

$$\frac{1}{1+e^{-z}} \in [0,1]$$

Линейная регрессия с НСКО

$$J(\widetilde{w}) = (\widetilde{w}^{\mathrm{T}} \cdot \widetilde{x} - y)^2 \rightarrow \min$$

 \widetilde{x} – объект,

у – его регрессионная метка

$$\frac{\partial J}{\partial \widetilde{w}} = 2 \cdot (\widetilde{w}^{\mathsf{T}} \cdot \widetilde{x} - y) \cdot \widetilde{x}$$

$$\widetilde{w} := \widetilde{w} - \alpha \cdot (\widetilde{w}^{\mathsf{T}} \cdot \widetilde{x} - y) \cdot \widetilde{x}$$

Выберем α

Коррекция такая же как в логистической регрессии с logloss-om!

Метод наискорейшего спуска

$$((\widetilde{w} - \alpha \cdot (\widetilde{w}^{\mathsf{T}} \cdot \widetilde{x} - y) \cdot \widetilde{x})^{\mathsf{T}} \cdot \widetilde{x} - y)^{2} \to \min$$

$$\widetilde{w}^{\mathsf{T}} \cdot \widetilde{x} - \alpha \cdot (\widetilde{w}^{\mathsf{T}} \cdot \widetilde{x} - y) \cdot \widetilde{x}^{\mathsf{T}} \cdot \widetilde{x} - y = 0$$

$$\widetilde{w}^{\mathsf{T}} \cdot \widetilde{x} - y = \alpha \cdot (\widetilde{w}^{\mathsf{T}} \cdot \widetilde{x} - y) \cdot \widetilde{x}^{\mathsf{T}} \cdot \widetilde{x}$$

$$\alpha = \frac{1}{\widetilde{x}^{\mathsf{T}} \cdot \widetilde{x}}$$

Задача 1.

Качество: СКО

$$J = \frac{1}{q} \sum_{i=1}^{q} (y_i - a_i)^2$$

Метод: логистическая регрессия

$$a = \frac{1}{1 + e^{-z}}$$

Вычислить формулу для коррекции весов методом стохастического градиентного спуска

Задача 2.

Качество: СКО

$$J = \frac{1}{q} \sum_{i=1}^{q} (y_i - a_i)^2$$

Метод: $a = \ln(1 + e^z)$

Вычислить формулу для коррекции весов методом стохастического градиентного спуска

Задача 2. Ответ

$$w = w - \alpha \frac{(a - y)}{1 + e^{-z}} \frac{\partial z}{\partial w}$$

Почти классический вариант (линейная регрессия + СКО), но с поправкой на отрицательной оси...

$$w = w - \alpha \frac{(a - y)}{1 + e^{-z}} \frac{\partial z}{\partial w}$$
сигмоида

$$\frac{(a-y)}{1+e^{-z}} \approx \begin{cases} (a-y), & z >> 0 \\ 0, & z << 0 \end{cases}$$

Всё очень логично!

Задача 1. Ответ

$$w = w - \alpha \cdot a(a-1)(a-y) \frac{\partial z}{\partial w}$$

$$w = w - \alpha \cdot a(a-1)(a-y) \frac{\partial z}{\partial w}$$

$$w = w - \alpha \cdot a(a-1)(a-y) \frac{\partial z}{\partial w}$$

Вопрос: что плохого в это формуле?

классика

Задача 1. Ответ

$$w = w - \alpha \cdot a(a-1)(a-y) \frac{\partial z}{\partial w}$$

что-то новое...

$$w = w - \alpha \cdot a(a-1)(a-y) \frac{\partial z}{\partial w}$$
классика

Вопрос: что плохого в это формуле?

В случае полностью неправильного ответа, например

$$y = 0, a \approx 1$$

коррекции почти не будет:

$$a(a-1)(a-y) \approx 0$$

Вопрос: что с этим делать?

Задача. Вычислить Cohen's Kappa

	yes	no
yes	20	5
no	10	15

	yes	no
yes	45	15
no	25	15

	yes	no	
yes	30	10	
no	10	5	

	yes	no
yes	30	20
no	10	15

0.4

~0.13

~0.08

~0.18

```
from sklearn.metrics import cohen_kappa_score cohen_kappa_score(a, y) # HO DTO NO OTBETAM!
```

Рассматривается задача классификации на два класса. На рисунке показаны объекты в пространстве ответов двух алгоритмов. Вычислить AUC ROC для алгоритмов.

Дьяконов А.Г. (Москва, МГУ)

Упражнение №1 - Решение

1. Смотрим проекции на оси – ответы алгоритмов

Первый алгоритм:Второй алгоритм:

Дьяконов А.Г. (Москва, МГУ)

2. По проекциям строим ROC - кривые:

3. Вычисляем площади под ROC - кривыми:

Какие значения F₁-меры могут быть у классификатора в задаче с двумя непересекающимися классами и тремя объектами?

Упражнение №2 – Решение.

Можно честно рассмотреть все возможные случаи:

Упражнение №2 - Решение.

Получаем, что F1-мера – среднее гармоническое чисел из пар (1, 1), (1/2, 1), (2/3, 1), (1/3, 1), (1/2, 1/2), (0, 0)

Все возможные значения F1-меры: 1, 0.8, 2/3, 0.5, 0

Но можно быстрее догадаться до ответа...

11 октября 2018 года

Вычислить ap@k:

ap@5(actual = [1, 2, 3], predict = [1, 4, 5, 2, 6, 3])

ap@3(actual = [1, 2, 3], predict = [1, 4, 5, 2, 6, 3])

ap@3(actual = [1], predict = [1, 2, 3, 4, 5, 6])

ap@3(actual = [1, 3], predict = [1, 2, 3, 4, 5, 6])

ap@2(actual = [1, 3], predict = [1, 2, 3, 4, 5, 6])

Решение:

На ответах алгоритма $a(x) \in [0,1]$ объекты класса 0 распределены с плотностью $p_0(a) = 2-2a$, а объекты класса 1 – с плотностью $p_1(a) = 2a$. Построить ROC-кривую и вычислить площадь под ней.

Решение

TPR(x) =
$$1 - \frac{1}{2}x2x = 1 - x^2$$

FPR(x) = $\frac{1}{2}(1-x)(2-2x) = (1-x)^2$

Площадь под параметрической кривой

$$\int_{1}^{0} \text{TPR}(x) \cdot \text{FPR}'(x) \partial x = 2 \int_{0}^{1} (1 - x^{2}) (1 - x) \partial x$$

или

$$TPR = 2\sqrt{FPR} - FPR.$$

$$\int_0^1 (2\sqrt{t} - t)\partial t = \frac{5}{6} \approx 0.83.$$

Задачи на вычисление Вычислить коэффициент Мэттьюса

$$MCC = \frac{TP \cdot TN - FP \cdot FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

для следующих векторов меток и ответов

истина	ответ	MCC
[1,1,1,1,0,0,0,0]	[1,1,1,0,0,0,1,1]	0.258
[1,1,1,1,0,0,0,0]	[1,1,1,1,0,1,1]	0.378
[1,1,1,1,1,0,0]	[1,1,1,1,1,0,1,1]	-0.218

Задачи на вычисление

Проверить иллюстрацию из лекции про многомерный AUC матрица классификаций матрица ответов

		class	1	class 2	class 3				lass 1	class 2	cla	ss 3	
	0		1	0	0			0	0.75	0.00		0.25	
	1		0	1	0			1	0.00	0.50		0.25	
	2		0	0	1			2	0.25	1.00		0.25	
	3		1	1	0			3	0.00	0.25		0.75	
macr	0	micro	W	eighted	samples	_			class	0 clas	s 1	clas	s 2
0.4	9	0.53		0.52	0.56		AUC_per_	_clas	s 0.	62	0.5	0	.33
							P_per_	_clas	s 0.	50	0.5	0	.25

	class 0	class 1	class 2	class 3
AUC_per_instance	1.0	1.0	0.25	0.0

Очень полезно «чувствовать функции»

Пример из жизни: лайки

L	D			
+100	0	Совсем хорошо		
+10	0	Хорошо		
+1	-0	Мало статистики, но		
		нет минусов		
+2	-1	Есть минусы		
+10	-9	Много минусов		
+100	-100	Неоднозначно		
+1	–1	Мало статистики		
+9	-10	Много плюсов		
+1	-2	Мало плюсов		
0	-1	Нет плюсов		

Как придумать один признак на базе двух?

Очень полезно «чувствовать функции»

Пример из жизни: лайки

L	D	$(L - D)/\sqrt{ L + D }$
+100	0	10.0000
+10	0	3.1623
+1	9	1.0000
+2	1	0.5774
+10	9	0.2294
+100	-100	0
+1	-1	0
+9	-10	-0.2294
+1	-2	-0.5774
0	-1	-1.0000