Метод Эйлера (явный).

Метод Эйлера играет важную роль в теории численных методов решения ОДУ, хотя и не часто используется в практических расчетах из-за невысокой точности. Вывод расчетных соотношений для этого метода может быть произведен несколькими способами: с помощью геометрической интерпретации, с использованием разложения в ряд Тейлора, конечно разностным методом (с помощью разностной аппроксимации производной), квадратурным способом (использованием эквивалентного интегрального уравнения).

Рассмотрим вывод соотношений метода Эйлера геометрическим способом. Решение в узле x_0 известно из начальных условий рассмотрим процедуру получения решения в узле x_1 рис.4.1.

График функции $v^{(h)}$, которая является решением задачи Коши (1), представляет собой гладкую кривую, проходящую через точку (x_0, y_0) согласно условию $y(x_0) = y_0$, и имеет в этой точке касательную. Тангенс угла наклона касательной к оси Ох равен значению производной от решения в точке $x_{\scriptscriptstyle 0}$ и равен значению правой части дифференциального уравнения в точке (x_0, y_0) согласно выражению $y'(x_0) = f(x_0, y_0)$. В случае небольшого шага разностной сетки h график функции и график касательной не успевают сильно разойтись друг от друга и можно в качестве значения решения в узле x_i принять значение касательной y_i , вместо значения неизвестного точного решения y_{lncm} . При этом допускается погрешность $|y_1 - y_{1ncm}|$ геометрически представленная отрезком CD на рис.4.1. Из прямоугольного треугольника **ABC** находим CB=BA tg(CAB) или $\Delta y = hy'(x_0)$. Учитывая, что $\Delta y = y_1 - y_0$ и заменяя производную $y'(x_0)$ на правую часть дифференциального уравнения , получаем соотношение $y_1 = y_0 + hf(x_0, y_0)$. Считая теперь точку (x_1, y_1) начальной и повторяя все предыдущие рассуждения, получим значение y_2 в узле x_2 .

Погрешность метода Эйлера.

На каждом шаге метода Эйлера допускается локальная погрешность по отношению к точному решению, график которого проходит через крайнюю левую точку отрезка. Геометрически локальная погрешность изображается отрезком CD на первом шаге, C'D' на втором и т.д. Кроме того, на каждом шаге, начиная со второго, накапливается глобальная погрешность представляющая собой разность межу численным решением и точным решением исходной начальной задачи (а не локальной). Глобальная погрешность на втором шаге изображена отрезком C'E' на рис.4.1.

Локальная ошибка на каждом шаге выражается соотношением $\varepsilon_k^h = \frac{y^{rr}(\xi)}{2}h^2$, где $\xi \in [x_{k-1}, x_k]$. Глобальная погрешность метода Эйлера $\varepsilon_{T,T}^h = Ch$ в окрестности h = 0 ведет себя как линейная функция, и, следовательно, метод Эйлера имеет первый порядок точности относительно шага h.