RegresionLogistica

March 16, 2023

0.1 Regresion Logistica

Grupo 90 Unad materia Analisis de datos

Se busca predecir si una persona puede tener diabetes en relacion a datos medicos

Metricas DataSet

Se Realiza la importacion de librerias necesarias para realizar la regresion linear

```
[]: import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
```

Leemos los datos del archivo CSV Diabetes2.csv en un DataFrame de pandas tomado de https://www.kaggle.com/datasets/kandij/diabetes-dataset

```
[]: hr_dataset=pd.read_csv("RegresionLogistica/diabetes2.csv")
```

Muestra de los encabezados del dataset * * *

```
[]: hr_dataset.head()
```

[]:	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	\
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	

	DiabetesPedigreeFunction	Age	Outcome
0	0.627	50	1
1	0.351	31	0
2	0.672	32	1
3	0.167	21	0
4	2.288	33	1

Ver tipos de datos existentes en las columnas verificando nulas * * *

[]: hr_dataset.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	${\tt DiabetesPedigreeFunction}$	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

memory usage: 54.1 KB

Analizamos la distribucion de los datos en las variables numericas * * * *

[]: hr_dataset.describe()

[]:		Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin
	count	768.000000	768.000000	768.000000	768.000000	768.000000
	mean	3.845052	120.894531	69.105469	20.536458	79.799479
	std	3.369578	31.972618	19.355807	15.952218	115.244002
	min	0.000000	0.000000	0.000000	0.000000	0.000000
	25%	1.000000	99.000000	62.000000	0.000000	0.000000
	50%	3.000000	117.000000	72.000000	23.000000	30.500000
	75%	6.000000	140.250000	80.000000	32.000000	127.250000
	max	17.000000	199.000000	122.000000	99.000000	846.000000

	BMI	${ t Diabetes Pedigree Function}$	Age	Outcome
count	768.000000	768.000000	768.000000	768.000000
mean	31.992578	0.471876	33.240885	0.348958
std	7.884160	0.331329	11.760232	0.476951
min	0.000000	0.078000	21.000000	0.000000
25%	27.300000	0.243750	24.000000	0.000000
50%	32.000000	0.372500	29.000000	0.000000
75%	36.600000	0.626250	41.000000	1.000000
max	67.100000	2.420000	81.000000	1.000000

Determinar si es nulo el dataset y realizar limpieza de esos datos nulos * * *

[]: hr_dataset.isna().sum()

```
[]: Pregnancies
                                 0
    Glucose
                                 0
    BloodPressure
                                 0
     SkinThickness
                                 0
     Insulin
                                 0
    BMI
                                 0
    DiabetesPedigreeFunction
                                 0
    Age
                                 0
     Outcome
                                 0
     dtype: int64
[]: hr_dataset = hr_dataset.fillna(hr_dataset.mean())
[]: hr_dataset.isna().sum()
[]: Pregnancies
                                 0
     Glucose
                                 0
     BloodPressure
                                 0
     SkinThickness
                                 0
     Insulin
                                 0
    BMI
                                 0
    DiabetesPedigreeFunction
                                 0
    Age
                                 0
                                 0
     Outcome
     dtype: int64
[]: print("Numero de 0's para Glucose:", hr_dataset['Glucose'].isin([0]).sum())
     print("Numero de 0's para Blood Pressure:", hr_dataset['BloodPressure'].
      \hookrightarrowisin([0]).sum())
     print("Numero de 0's para Skin Thickness:", hr_dataset['SkinThickness'].
      \Rightarrowisin([0]).sum())
     print("Numero de 0's para Insulin:", hr_dataset['Insulin'].isin([0]).sum())
     print("Numero de 0's para BMI:", hr_dataset['BMI'].isin([0]).sum())
    Numero de 0's para Glucose: 5
    Numero de 0's para Blood Pressure: 35
    Numero de 0's para Skin Thickness: 227
    Numero de 0's para Insulin: 374
    Numero de 0's para BMI: 11
[]: glucose = hr dataset['Glucose'].isin([0]).sum() / 768*100
     print("Porcentaje de datos que faltan para Glocuse: %.2f" % glucose)
     bloodpressure = hr_dataset['BloodPressure'].isin([0]).sum() / 768*100
     print("Porcentaje de datos que faltan paraBlood Pressure: %.2f" % bloodpressure)
     skinthickness = hr_dataset['SkinThickness'].isin([0]).sum() / 768*100,
```

```
print("Porcentaje de datos que faltan para Skin Thickness: %.2f" %
      ⇒skinthickness)
     insulin =hr dataset['Insulin'].isin([0]).sum() / 768*100
     print("Porcentaje de datos que faltan para Insulin: %.2f" % insulin)
     bmi = hr dataset['BMI'].isin([0]).sum() / 768*100
     print("Porcentaje de datos que faltan para BMI: %.2f" % bmi)
    Porcentaje de datos que faltan para Glocuse: 0.65
    Porcentaje de datos que faltan paraBlood Pressure: 4.56
    Porcentaje de datos que faltan para Skin Thickness: 29.56
    Porcentaje de datos que faltan para Insulin: 48.70
    Porcentaje de datos que faltan para BMI: 1.43
    Se limpia la data faltante de las variables
[]: hr dataset clean = hr dataset.copy()
[]: hr_dataset_clean['Glucose'] = hr_dataset_clean['Glucose'].
      →replace(0,hr_dataset['Glucose'].mean())
     hr_dataset_clean['BloodPressure'] = hr_dataset_clean['BloodPressure'].

¬replace(0,hr_dataset['BloodPressure'].mean())
     hr dataset clean['SkinThickness'] = hr dataset clean['SkinThickness'].
      →replace(0,hr_dataset['SkinThickness'].mean())
     hr dataset_clean['Insulin'] = hr_dataset_clean['Insulin'].

¬replace(0,hr_dataset['Insulin'].mean())
     hr_dataset_clean['BMI'] = hr_dataset_clean['BMI'].replace(0,hr_dataset['BMI'].
      ⊶mean())
    Se normaliza la cantidad de embarazos dejandolo como 0 y 1 para solo determinar si estuvo en este
    estado
[]: hr_dataset_clean['Pregnancies'].values[hr_dataset_clean['Pregnancies'] > 0] = 1
[]: hr_dataset_clean.describe
[ ]: <bound method NDFrame.describe of
                                            Pregnancies Glucose BloodPressure
     SkinThickness
                       Insulin
                                 BMI \
     0
                         148.0
                                         72.0
                                                    35.000000
                                                                79.799479
                                                                           33.6
                    1
     1
                    1
                          85.0
                                         66.0
                                                    29.000000
                                                                79.799479
                                                                           26.6
     2
                    1
                         183.0
                                         64.0
                                                    20.536458
                                                                79.799479
                                                                           23.3
     3
                    1
                          89.0
                                         66.0
                                                    23.000000
                                                                94.000000
                                                                           28.1
     4
                    0
                         137.0
                                         40.0
                                                    35.000000 168.000000 43.1
     763
                         101.0
                                         76.0
                                                    48.000000 180.000000 32.9
                    1
     764
                         122.0
                                         70.0
                                                    27.000000
                                                                79.799479 36.8
                    1
     765
                         121.0
                                         72.0
                    1
                                                    23.000000 112.000000 26.2
```

766 767	1 126.0 1 93.0		60.0 70.0	20.536458 31.000000	79.799479 79.799479	30.1 30.4
	DiabetesPedigreeFunction	Age	Outcome			
0	0.627	50	1			
1	0.351	31	0			
2	0.672	32	1			
3	0.167	21	0			
4	2.288	33	1			
	•••	•				
763	0.171	63	0			
764	0.340	27	0			
765	0.245	30	0			
766	0.349	47	1			
767	0.315	23	0			

[768 rows x 9 columns]>

```
[]: hr_dataset_clean.columns print(list(hr_dataset_clean.columns))
```

['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness', 'Insulin', 'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome']

Calculo de correlacion entre las columnas excluyendo valores nulos

[]: hr_dataset_clean.corr()

[]:		Pregnancies	Glucose	e BloodPressure	SkinThickness	\
	Pregnancies	1.000000	-0.017816	-0.038159	-0.067654	
	Glucose	-0.017816	1.000000	0.219666	0.160766	
	BloodPressure	-0.038159	0.219666	1.000000	0.134155	
	SkinThickness	-0.067654	0.160766	0.134155	1.000000	
	Insulin	-0.008117	0.396597	0.010926	0.240361	
	BMI	-0.161757	0.231478	0.281231	0.535703	
	${\tt DiabetesPedigreeFunction}$	-0.060780	0.137106	0.000371	0.154961	
	Age	0.197159	0.266600	0.326740	0.026423	
	Outcome	0.005705	0.492908	0.162986	0.175026	
		Insulin	BMI I)iabetesPedigreeF	unction \	
	Pregnancies	-0.008117 -0	.161757	-C	.060780	
	Glucose	0.396597 0	.231478	C	.137106	
	BloodPressure	0.010926 0	.281231	C	.000371	
	SkinThickness	0.240361 0	.535703	C	.154961	
	Insulin	1.000000 0	.189856	C	.157806	
	BMI	0.189856 1	.000000	C	.153508	
	${\tt DiabetesPedigreeFunction}$	0.157806 0	.153508	1	.000000	
	Age	0.038652 0	.025748	C	.033561	

Outcome	0.179185	0.312254	0.173844
	Age	Outcome	
Pregnancies	0.197159	0.005705	
Glucose	0.266600	0.492908	
BloodPressure	0.326740	0.162986	
SkinThickness	0.026423	0.175026	
Insulin	0.038652	0.179185	
BMI	0.025748	0.312254	
${\tt DiabetesPedigreeFunction}$	0.033561	0.173844	
Age	1.000000	0.238356	
Outcome	0.238356	1.000000	

Se agrega visualizacion de la relacion entre variables donde se encuentra la correlacion entre Glucosa,IMC y edad como uno de los principales factores para tener diabetes

[]: sns.pairplot(hr_dataset_clean, hue="Outcome") plt.show()

Revision de variables de estudio Outcome (resultado) y Pregnancies(embarazos)

```
[]: hr_dataset_clean['Outcome'].value_counts()
```

[]: 0 500 1 268

Name: Outcome, dtype: int64

- []: hr_dataset_clean['Pregnancies'].value_counts()
- []: 1 657 0 111

```
Name: Pregnancies, dtype: int64
```

Se divide el conjunto de datos en 2 la data de entrenamiento y la data de prueba en una relacion 80/20 * * *

```
[]: x_entrenamiento, x_prueba, y_entrenamiento, y_prueba = train_test_split(
    hr_dataset_clean.iloc[:, :-1], hr_dataset_clean.iloc[:, -1], test_size=0.2,__
    random_state=30)
```

Creamos modelo de la regresión logistica * * *

```
[ ]: modelo = LogisticRegression()
```

Entrenamos el modelo * * *

```
[ ]: modelo.fit(x_entrenamiento, y_entrenamiento)
```

[]: LogisticRegression()

Predecimos la ocurrencia de diabetes con el conjunto de prueba * * *

```
[]: predicciones = modelo.predict(x_prueba)
```

Calculo de la precision del modelo

```
[]: precision = modelo.score(x_prueba, y_prueba)
print(f"Precisión del modelo: {precision}")
```

Precisión del modelo: 0.8116883116883117

Prueba si un paciente puede tener diabetes

```
[]: Paciente normal
```

```
[]: paciente = [[0,120,90,0.11,70,25,0.87,45]]

#Embarazos,Glucosa,Presión arterial,Grosor de la piel,Insulina, IMC, Diabetes

→Función pedigrí, Edad

y_predicted = modelo.predict(paciente)

print("El paciente puede tener diabetes: ", y_predicted)
```

El paciente puede tener diabetes: [0]

Paciente con todo disparado

```
[]: paciente = [[0,280,150,2.9,180,27,0.87,32]]

#Embarazos,Glucosa,Presión arterial,Grosor de la piel,Insulina, IMC, Diabetes

→Función pedigrí, Edad

y_predicted = modelo.predict(paciente)

print("El paciente puede tener diabetes: ", y_predicted)
```

El paciente puede tener diabetes: [1]