main

October 1, 2021

1 Exploring the eigen values and correlation with phenotypes

```
[1]: suppressPackageStartupMessages({
    library(ComplexHeatmap)
    library(tidyverse)
    library(ggpubr)
})
```

1.1 Prepare data

1.1.1 Load phenotypes data

```
[2]: pheno = data.table::fread("../../../input/phenotypes/merged/_m/

→merged_phenotypes.csv")

pheno %>% head(2)
```

```
V1
                              BrNum
                                        RNum
                                                 Region
                                                            RIN
                                                                              Sex
                                                                                       Race
                                                                                                Dx
                                                                     Age
                                                                                                         mito
                     <chr>
                              <chr>
                                        <chr>
                                                 <chr>
                                                            <dbl>
                                                                              <chr>
                                                                                       <chr>
                                                                                                <chr>
                                                                                                         <db]
                                                                     <dbl>
A data.table: 2 \times 12
                              Br1303
                                        R12864
                                                 Caudate
                                                            9.6
                                                                     42.98
                                                                              \mathbf{F}
                                                                                       AA
                                                                                                Schizo
                                                                                                         0.032
                     R12865
                              Br1320
                                        R12865
                                                 Caudate
                                                            9.5
                                                                     53.12
                                                                              М
                                                                                       AA
                                                                                                Schizo
                                                                                                        0.019
```

```
[3]: ancestry = data.table::fread("../../../input/ancestry_structure/structure.

out_ancestry_proportion_raceDemo_compare")
ancestry %>% head(2)
```

```
Afr
                                       Eur
                     id
                                                group
                              <dbl>
                     <chr>
                                       <dbl>
                                                <chr>
A data.table: 2 \times 4
                     Br2374
                              0.007
                                       0.993
                                                CAUC
                     Br1857
                              0.001
                                       0.999
                                                CAUC
```

1.1.2 Load eigen values

```
[4]: eigen = data.table::fread("../../_m/eigengenes.csv")
modules = eigen %>% select(-V1) %>% colnames
eigen %>% dim
eigen[1:2, 1:5]
```

1.872.40

```
MEblack
                    V1
                                           MEblue
                                                         MEbrown
                                                                      MEcyan
                              < dbl >
                                            <dbl>
                                                         < dbl >
                                                                       < dbl >
                    <chr>
A data.table: 2 \times 5
                    R10700
                              -0.02635168
                                           -0.03415886
                                                         -0.02078395
                                                                      0.05489625
                    R10706
                             -0.06053349
                                           -0.07077148
                                                         -0.03261367
                                                                      0.07795030
```

1.1.3 Merge data

```
[5]: dt = eigen %>% left_join(pheno, by="V1") %>%
    inner_join(ancestry, by=c("BrNum"="id"))
dt %>% dim
dt[1:2, 1:5]
```

1.872.54

```
V1
                             MEblack
                                          MEblue
                                                       MEbrown
                                                                     MEcyan
                                                                     <dbl>
                    <chr>
                             <dbl>
                                          <dbl>
                                                        <dbl>
A data.table: 2 \times 5
                    R10700
                             -0.02635168
                                          -0.03415886
                                                        -0.02078395
                                                                     0.05489625
                    R10706
                             -0.06053349
                                          -0.07077148
                                                       -0.03261367
                                                                     0.07795030
```

1.2 Examine correlation of modules with ancestry

1.2.1 Linear model

```
[6]: pvals = c()
for(mod in modules){
    model = paste0("Eur ~ ", mod)
    res = anova(lm(model, data=dt))
    pvals = c(pvals, res[mod, "Pr(>F)"])
}
fdr <- p.adjust(pvals, method="fdr")
df1 = data.frame("Modules"=modules, "Pvalue"=pvals, "FDR"=fdr)
df1 %>% filter(FDR < 0.05)</pre>
```

```
Pvalue
                                                     FDR
                    Modules
                    <chr>
                                       <dbl>
                                                     <dbl>
                    MEblack
                                       7.602563e-03
                                                     4.966458e-02
                    MEdarkgrey
                                       7.190295e-04
                                                     9.347383e-03
                    MEdarkolivegreen
                                       1.664925e-03
                                                     1.623302e-02
A data.frame: 8 \times 3
                                       9.032128e-06 1.761265e-04
                    MEgrey
                    MEgrey60
                                       4.711608e-08 1.837527e-06
                    MElightcyan
                                       9.443591e-03
                                                     4.966458e-02
                    MEmagenta
                                       7.749418e-03
                                                     4.966458e-02
                    MEskyblue
                                       1.018761e-02
                                                     4.966458e-02
```

```
[7]: df1 %>% mutate(Tissue="Dentate Gyrus") %>% data.table::fwrite("eigen_correlation_ancestry.tsv", sep='\t')
```

1.2.2 Pearson correlation

```
[8]: pvals = c(); est = c()
     for(mod in modules){
         res = cor.test(dt[["Eur"]], dt[[mod]], method="pearson")
         pvals = c(pvals, res$p.value)
         est = c(est, res$estimate[[1]])
     fdr <- p.adjust(pvals, method="fdr")</pre>
     df2 = data.frame("Modules"=modules, "Rho"=est, "Pvalue"=pvals, "FDR"=fdr)
     df2 %>% filter(FDR < 0.05)
```

	Modules	Rho	Pvalue	FDR
A data.frame: 8×4	<chr></chr>	<dbl $>$	<dbl></dbl>	<dbl></dbl>
	MEblack	0.2843511	7.602563e-03	4.966458e-02
	MEdarkgrey	-0.3558145	7.190295e-04	9.347383e-03
	MEdarkolivegreen	0.3322760	1.664925 e-03	1.623302 e-02
	MEgrey	-0.4560540	9.032128e-06	1.761265e-04
	MEgrey60	0.5453477	4.711608e-08	1.837527e-06
	MElightcyan	0.2768170	9.443591e-03	4.966458e-02
	MEmagenta	-0.2836943	7.749418e-03	4.966458 e-02
	MEskyblue	0.2741344	1.018761e-02	4.966458e-02

Clustering modules 1.3

1.3.1 Eigengene clustering

```
[9]: set.seed(13)
     mat = eigen %>% column_to_rownames("V1") %>% as.matrix
     pdf("eigengene_heatmap.pdf", width=10, height=8)
     Heatmap(mat, name="Eigengene", column_dend_height=unit(3, "cm"),
             show_row_names=FALSE, show_row_dend=FALSE, column_km=4)
     dev.off()
```

png: 2

1.3.2 clustering within significant module violet

```
[10]: load("../../_m/01.RData", verbose=TRUE)
      biomart_file = "../../../input/biomart/biomart.csv"
      biomart = data.table::fread(biomart_file)
     Loading objects:
       datExpr
       sample_table
       datTraits
[11]: get_module_mat <- function(mod){</pre>
          MEmodule = data.table::fread("../../_m/modules.csv", header=TRUE) %>%
```

```
filter(module == mod)
    mat0 = datExpr %>% as.data.frame %>%
        select(any_of(MEmodule$V1)) %>% as.matrix
    annot = data.frame("Geneid"=colnames(mat0),
                       "ensembl_gene_id"=gsub("\\..*", "", colnames(mat0))) %>%
        left_join(biomart, by="ensembl_gene_id") %>%
        distinct(ensembl_gene_id, .keep_all=TRUE) %>%
        mutate(external_gene_name=coalesce(external_gene_name,ensembl_gene_id))
    #annot$external gene name %>% is.na %>% sum
    colnames(mat0) <- annot$external_gene_name</pre>
    return(mat0)
}
plot_module_heatmap <- function(mod, w, h){</pre>
    pdf(paste0(mod,"_module_heatmap.pdf"), width=w, height=h)
    set.seed(13)
    row_ha = rowAnnotation(EA = dt$Eur, AA = dt$Afr)
    ht = Heatmap(get_module_mat(mod),
            name="Residualized\nExpression",
            column_dend_height=unit(1, "cm"), row_km=2,
            show_row_names=FALSE, show_row_dend=TRUE,
            row dend width=unit(2, "cm"),
            right_annotation = row_ha)
    draw(ht)
    dev.off()
}
```

[12]: df1 %>% filter(FDR < 0.05)

	<chr $>$	<dbl $>$	<dbl $>$
A data.frame: 8×3	MEblack	7.602563e- 03	4.966458e-02
	MEdarkgrey	7.190295e-04	9.347383e-03
	MEdarkolivegreen	1.664925 e - 03	1.623302 e-02
	MEgrey	9.032128e-06	1.761265 e-04
	MEgrey60	4.711608e-08	1.837527e-06
	MElightcyan	9.443591e-03	4.966458e-02
	MEmagenta	7.749418e-03	4.966458e-02
	MEskyblue	1.018761e-02	4.966458e-02

Modules

```
[13]: plot_module_heatmap("black", 24, 8)
    plot_module_heatmap("darkgrey", 16, 8)
    plot_module_heatmap("darkolivegreen", 12, 8)
    plot_module_heatmap("grey60", 20, 8)
    plot_module_heatmap("lightcyan", 20, 8)
    plot_module_heatmap("magenta", 20, 8)
    plot_module_heatmap("skyblue", 14, 8)
```

Pvalue

FDR

```
png: 2
     png: 2
     png: 2
     png: 2
     png: 2
     png: 2
     png: 2
[14]: plot_module_heatmap("grey", 20, 8)
     The automatically generated colors map from the minus and plus 99°th of
     the absolute values in the matrix. There are outliers in the matrix
     whose patterns might be hidden by this color mapping. You can manually
     set the color to `col` argument.
     Use `suppressMessages()` to turn off this message.
     `use_raster` is automatically set to TRUE for a matrix with more than
     2000 columns You can control `use_raster` argument by explicitly
     setting TRUE/FALSE to it.
     Set `ht_opt$message = FALSE` to turn off this message.
     'magick' package is suggested to install to give better rasterization.
     Set `ht_opt$message = FALSE` to turn off this message.
     png: 2
     1.4 Reproducibility Information
```

ui X11 language (EN)

collate en_US.UTF-8
ctype en_US.UTF-8
tz America/New_York

date 2021-10-01

Packages

package	*	version	date	lib	source
abind		1.4-5	2016-07-21	[1]	CRAN (R 4.0.2)
assertthat		0.2.1	2019-03-21	[1]	CRAN (R 4.0.2)
backports		1.2.1	2020-12-09	[1]	CRAN (R 4.0.2)
base64enc		0.1-3	2015-07-28	[1]	CRAN (R 4.0.2)
BiocGenerics		0.36.1	2021-04-16	[1]	Bioconductor
broom		0.7.9	2021-07-27	[1]	CRAN (R 4.0.3)
Cairo		1.5-12.2	2020-07-07	[1]	CRAN (R 4.0.2)
car		3.0-11	2021-06-27	[1]	CRAN (R 4.0.3)
carData		3.0-4	2020-05-22	[1]	CRAN (R 4.0.2)
cellranger		1.1.0	2016-07-27	[1]	CRAN (R 4.0.2)
circlize		0.4.13	2021-06-09	[1]	CRAN (R 4.0.3)
cli		3.0.1	2021-07-17	[1]	CRAN (R 4.0.3)
clue		0.3-59	2021-04-16	[1]	CRAN (R 4.0.3)
cluster		2.1.0	2019-06-19	[2]	CRAN (R 4.0.3)
colorspace		2.0-2	2021-06-24	[1]	CRAN (R 4.0.3)
${\tt ComplexHeatmap}$	*	2.6.2	2020-11-12	[1]	Bioconductor
crayon		1.4.1	2021-02-08	[1]	CRAN (R 4.0.3)
curl		4.3.2	2021-06-23	[1]	CRAN (R 4.0.3)
data.table		1.14.2	2021-09-27	[1]	CRAN (R 4.0.3)
DBI		1.1.1	2021-01-15	[1]	CRAN (R 4.0.2)
dbplyr		2.1.1	2021-04-06	[1]	CRAN (R 4.0.3)
digest		0.6.28	2021-09-23	[1]	CRAN (R 4.0.3)
dplyr	*	1.0.7	2021-06-18	[1]	CRAN (R 4.0.3)
ellipsis		0.3.2	2021-04-29	[1]	CRAN (R 4.0.3)
evaluate		0.14	2019-05-28	[1]	CRAN (R 4.0.2)
fansi		0.5.0	2021-05-25	[1]	CRAN (R 4.0.3)
fastmap		1.1.0	2021-01-25	[1]	CRAN (R 4.0.2)
forcats	*	0.5.1	2021-01-27	[1]	CRAN (R 4.0.2)
foreign		0.8-80	2020-05-24	[2]	CRAN (R 4.0.3)
fs		1.5.0	2020-07-31	[1]	CRAN (R 4.0.2)
generics		0.1.0	2020-10-31	[1]	CRAN (R 4.0.2)
${\tt GetoptLong}$		1.0.5	2020-12-15	[1]	CRAN (R 4.0.2)
ggplot2	*	3.3.5	2021-06-25	[1]	CRAN (R 4.0.3)
ggpubr	*	0.4.0	2020-06-27	[1]	CRAN (R 4.0.2)
ggsignif		0.6.3	2021-09-09	[1]	CRAN (R 4.0.3)
GlobalOptions		0.1.2	2020-06-10	[1]	CRAN (R 4.0.2)
glue		1.4.2	2020-08-27	[1]	CRAN (R 4.0.2)
gtable		0.3.0	2019-03-25	[1]	CRAN (R 4.0.2)
haven		2.4.3	2021-08-04	[1]	CRAN (R 4.0.3)

hma		1.1.1	2021-00-26	Γ 1]	CRAN (R	4 0 2)
hms htmltools		0.5.2	2021-09-26 2021-08-25	[1]		4.0.3)
httr		1.4.2	2021-08-25	[1]		4.0.3)
		2.24.1		[1]	Biocond	
IRanges			2020-12-12	[1]		
IRdisplay IRkernel		1.0	2021-01-20			4.0.2)
		1.2	2021-05-11	[1]		4.0.3)
jsonlite		1.7.2	2020-12-09	[1] [1]	CRAN (R	
lifecycle		1.0.1				4.0.3)
lubridate		1.7.10	2021-02-26	[1]		4.0.3)
magrittr		2.0.1	2020-11-17	[1]		4.0.2)
matrixStats		0.61.0	2021-09-17	[1]		4.0.3)
modelr		0.1.8	2020-05-19	[1]		4.0.2)
munsell		0.5.0	2018-06-12	[1]		4.0.2)
openxlsx		4.2.4	2021-06-16	[1]		4.0.3)
pbdZMQ		0.3-5	2021-02-10	[1]	CRAN (R	
pillar		1.6.3		[1]		4.0.3)
pkgconfig		2.0.3	2019-09-22	[1]		4.0.2)
png		0.1-7	2013-12-03	[1]		4.0.2)
purrr	*	0.3.4	2020-04-17	[1]		4.0.2)
R6		2.5.1	2021-08-19	[1]		4.0.3)
RColorBrewer		1.1-2	2014-12-07	[1]		4.0.2)
Rcpp		1.0.7	2021-07-07	[1]		4.0.3)
readr	*	2.0.2	2021-09-27		CRAN (R	
readxl		1.3.1	2019-03-13	[1]		4.0.2)
repr		1.1.3	2021-01-21	[1]		4.0.2)
reprex		2.0.1	2021-08-05	[1]		4.0.3)
rio		0.5.27	2021-06-21	[1]		4.0.3)
rjson		0.2.20	2018-06-08	[1]		4.0.2)
rlang		0.4.11	2021-04-30	[1]		4.0.3)
rstatix		0.7.0	2021-02-13	[1]		4.0.3)
rstudioapi		0.13	2020-11-12	[1]		4.0.2)
rvest		1.0.1	2021-07-26	[1]	CRAN (R	4.0.3)
S4Vectors		0.28.1	2020-12-09	[1]	Biocond	uctor
scales		1.1.1	2020-05-11	[1]	CRAN (R	4.0.2)
sessioninfo		1.1.1	2018-11-05	[1]	CRAN (R	4.0.2)
shape		1.4.6	2021-05-19	[1]	CRAN (R	4.0.3)
stringi		1.7.4	2021-08-25	[1]	CRAN (R	4.0.3)
stringr	*	1.4.0	2019-02-10	[1]	CRAN (R	4.0.2)
tibble	*	3.1.4	2021-08-25	[1]	CRAN (R	4.0.3)
tidyr	*	1.1.4	2021-09-27	[1]	CRAN (R	4.0.3)
tidyselect		1.1.1	2021-04-30	[1]	CRAN (R	4.0.3)
tidyverse	*	1.3.1	2021-04-15	[1]	CRAN (R	4.0.3)
tzdb		0.1.2	2021-07-20	[1]	CRAN (R	4.0.3)
utf8		1.2.2	2021-07-24	[1]	CRAN (R	4.0.3)
uuid		0.1-4	2020-02-26	[1]	CRAN (R	4.0.2)
vctrs		0.3.8	2021-04-29	[1]	CRAN (R	4.0.3)
withr		2.4.2	2021-04-18	[1]	CRAN (R	4.0.3)
xm12		1.3.2	2020-04-23	[1]	CRAN (R	4.0.2)

zip 2.2.0 2021-05-31 [1] CRAN (R 4.0.3)

- [1] /home/jbenja13/R/x86_64-pc-linux-gnu-library/4.0
- [2] /usr/lib/R/library