18.06 Exam III Professor Strang May 4, 2015

Your	PRINTED	Name is:	
1001	1 1011 1 1 1 1	I TOULTE IN.	

Please CIRCLE your section:

R01	T10	26-302	Dmitry Vaintrob
R02	T10	26 - 322	Francesco Lin
R03	T11	26 - 302	Dmitry Vaintrob
R04	T11	26 - 322	Francesco Lin
R05	T11	26 - 328	Laszlo Lovasz
R.06	T12	36 - 144	Michael Andrews
R07	T12	26 - 302	Netanel Blaier
R08	T12	26 - 328	Laszlo Lovasz
R09	T1pm	26 - 302	Sungyoon Kim
R10	T1pm	36 - 144	Tanya Khovanova
R11	T1pm	26 - 322	Jay Shah
R12	T2pm	36 - 144	Tanya Khovanova
R13	T2pm	26 - 322	Jay Shah
R14	T3pm	26 - 322	Carlos Sauer
ESG			Gabrielle Stoy

Grading 1:

2:

3:

1. (33 points)

(a) Suppose A has the eigenvalues $\lambda_1 = 1, \lambda_2 = 0, \lambda_3 = -1$ with eigenvectors $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3$ in the columns of this $S = [\mathbf{x}_1 \mid \mathbf{x}_2 \mid \mathbf{x}_3]$:

$$S = \left[\begin{array}{rrr} -1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & -1 \end{array} \right].$$

What are the eigenvalues and eigenvectors of the matrix $B = A^9 + I$?

- (b) How could you find that matrix $B = A^9 + I$ using the eigenvectors in S and the eigenvalues 1, 0, -1?
- (c) Give a reason why the matrix B does have or doesn't have each of these properties:
 - i. B is invertible
 - ii. B is symmetric
 - iii. trace = $B_{11} + B_{22} + B_{33} = 3$.

2. (33 points)

(a) Show that $\lambda_1 = 0$ is an eigenvalue of A and find an eigenvector \mathbf{x}_1 with that zero eigenvalue:

$$A = \left[\begin{array}{rrr} -2 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 1 & -2 \end{array} \right]$$

- (b) Find the other eigenvalues λ_2 and λ_3 of this symmetric matrix. Does A have two more independent eigenvectors \mathbf{x}_2 and \mathbf{x}_3 ? Give a reason why or why not. (Not required to find \mathbf{x}_2 and \mathbf{x}_3 .)
- (c) Suppose $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$ starts from $\mathbf{u}(0) = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$.

Explain why this $\mathbf{u}(t)$ approaches a steady state $\mathbf{u}(\infty)$ as $t \to \infty$. You can use the general formula $\mathbf{u}(t) = c_1 e^{\lambda_1 t} \mathbf{x}_1 + c_2 e^{\lambda_2 t} \mathbf{x}_2 + c_3 e^{\lambda_3 t} \mathbf{x}_3$ or $e^{At} = Se^{\Lambda t}S^{-1}$ without putting in all eigenvectors. **Find** that steady state $\mathbf{u}(\infty)$.

3. (34 points)

- (a) If C is any symmetric matrix, show that e^C is a positive definite matrix. We can see that e^C is symmetric which test will you use to show that e^C is positive definite?
- (b) A is a 3 by 3 matrix. Suppose $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ are orthonormal eigenvectors (with eigenvalues 1, 2, 3) of the symmetric matrix A^TA . Show that $A\mathbf{v}_1, A\mathbf{v}_2, A\mathbf{v}_3$ are orthogonal by rewriting and simplifying $(A\mathbf{v}_i)^T(A\mathbf{v}_i)$.
- (c) For the 3 by 3 matrix A in part (b), find three matrices U, Σ, V that go into the Singular Value Decomposition $A = U\Sigma V^T$.
- (d) TRUE or FALSE: If A is any symmetric 4 by 4 matrix and M is any invertible 4 by 4 matrix, then $B = M^{-1}AM$ is also symmetric. Give a reason for true or false.

Scrap Paper

Exam 3 Solutions

Question 1

- (a) $A = S \operatorname{diag}(1, 0, -1)S^{-1}$. Thus $B = A^9 + I = S(\operatorname{diag}(1, 0, -1)^9 + I)S^{-1} = S \operatorname{diag}(2, 1, 0)S^{-1}$. So B has eigenvalues $\lambda_1 = 2$, $\lambda_2 = 1$ and $\lambda_3 = 0$ and the same eigenvectors as A.
- (b) Write $A = S \operatorname{diag}(1, 0, -1)S^{-1}$ and multiply to give $B = S \operatorname{diag}(2, 1, 0)S^{-1}$.
- (c) (i) B has 0 as an eigenvalue and so cannot be invertible.
 - (ii) B has distinct eigenvalues, with eigenvectors which are not orthogonal, and so it cannot be symmetric. (The point about distinct eigenvalues is not needed for full credit.)
 - (iii) True: the trace of B is the sum of the eigenvalues, 2 + 1 + 0 = 3.

Question 2

- (a) $A(1,1,1)^T = 0$ and so $x_1 = (1,1,1)^T$ is an eigenvector with eigenvalue $\lambda_1 = 0$.
- (b) Each of the columns of A + 3I is $(1,1,1)^T$ and so it is rank 1. In particular, the null space of A + 3I has dimension 2 and so the other eigenvalues are $\lambda_2 = -3 = \lambda_3$.
- (c) $u(t) = c_1 e^{0t} x_1 + c_2 e^{-3t} x_2 + c_3 e^{-3t} x_3 \longrightarrow u(\infty) = c_1 x_1$ as $t \longrightarrow \infty$. We just need to find c_1 . But $u(0) = c_1 x_1 + c_2 x_2 + c_3 x_3 = (1, 2, 3)^T$. Since x_1 is orthogonal to x_2 and x_3 we see, by dotting with x_1 , that $c_1 x_1 \cdot x_1 = (1, 2, 3)^T \cdot x_1$. Remembering that $x_1 = (1, 1, 1)^T$ we obtain $3c_1 = 6$ so that $c_1 = 2$ and $u(\infty) = (2, 2, 2)^T$.

Question 3

- (a) We can write $C = Q\Lambda Q^T$ for some orthogonal matrix Q and some diagonal matrix Λ . Then $e^C = Qe^{\Lambda}Q^T$, which immediately shows that e^C is symmetric. If $\Lambda = \operatorname{diag}(\lambda_1, \ldots, \lambda_n)$, then $e^{\Lambda} = \operatorname{diag}(e^{\lambda_1}, \ldots, e^{\lambda_n})$ so that each eigenvalue of e^C is of the form e^{λ} . In particular, it is positive, so that e^C is positive definite.
- (b) $(Av_i) \cdot (Av_j) = (Av_i)^T (Av_j) = v_i^T (A^T A) v_j = j v_i^T v_j = j v_i \cdot v_j$. Since v_1, v_2 and v_3 are orthogonal, we see that $(Av_i) \cdot (Av_j) = 0$ when $i \neq j$, i.e. Av_1, Av_2 and Av_3 are orthogonal.
- (c) $V = (v_1|v_2|v_3)$, $\Sigma = \text{diag}(1, \sqrt{2}, \sqrt{3})$, and $U = (Av_1|\frac{Av_2}{\sqrt{2}}|\frac{Av_3}{\sqrt{3}})$.

$$\text{(d) False. Take } A = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix} \text{ and } M = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}. \text{ Then } M^{-1}AM = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ \end{pmatrix}.$$

In fact, any diagonal A with distinct eigenvalues, together with any M with nonorthogonal columns, will provide a counterexample.

Almost full credit for correctly saying false, e.g. just a rewording that says less about M. An unsymmetric B can be similar to a symmetric (diagonal) Λ as in question 1.