Isomorphism classes of abelian varieties over finite fields

Marseglia Stefano

Utrecht University

ICERM - January 31, 2019

1/11

- equivalence of categories
 - Deligne (ordinary over \mathbb{F}_q)
 - Centeleghe-Stix (over \mathbb{F}_p away from real primes)

2/11

- equivalence of categories
 - Deligne (ordinary over \mathbb{F}_q)
 - Centeleghe-Stix (over \mathbb{F}_p away from real primes)
- isomorphism classes of AV
 - square-free case : ideal class monoid
 - power of a sq-free : only Bass orders

- equivalence of categories
 - Deligne (ordinary over \mathbb{F}_q)
 - Centeleghe-Stix (over \mathbb{F}_p away from real primes)
- isomorphism classes of AV
 - square-free case : ideal class monoid
 - power of a sq-free : only Bass orders
- polarizations
 - square-free ordinary case : working algorithm
 - square-free Centeleghe-Stix case: working algorithm (conjectural)
 - power of a sq-free : no algorithm :(

- equivalence of categories
 - Deligne (ordinary over \mathbb{F}_q)
 - Centeleghe-Stix (over \mathbb{F}_p away from real primes)
- isomorphism classes of AV
 - square-free case : ideal class monoid
 - power of a sq-free : only Bass orders
- polarizations
 - square-free ordinary case: working algorithm
 - square-free Centeleghe-Stix case : working algorithm (conjectural)
 - power of a sq-free : no algorithm :(
- bottle-necks
 - over-orders (Tommy Hofmann?)
 - weak eq. classes (I have a conjecture)
 - CM-type (need to compute a splitting field)
 - polarizations (it should be possible to spread them)

ICERM - January 31, 2019

Deligne's equivalence

Theorem (Deligne '69)

Let $q = p^r$, with p a prime. There is an equivalence of categories:

 $\{Ordinary\ abelian\ varieties\ over\ \mathbb{F}_q\}$

A

Deligne's equivalence

Theorem (Deligne '69)

Let $q = p^r$, with p a prime. There is an equivalence of categories:

Deligne's equivalence

Theorem (Deligne '69)

Let $q = p^r$, with p a prime. There is an equivalence of categories:

$$\left\{ \begin{array}{ll} \textit{Ordinary abelian varieties over} \, \mathbb{F}_q \right\} & A \\ & \downarrow & \downarrow \\ \\ \textit{pairs } \left(T, F \right), \ \textit{where } \, T \simeq_{\mathbb{Z}} \mathbb{Z}^{2g} \ \textit{and } \, T \xrightarrow{F} T \ \textit{s.t.} \\ -F \otimes \mathbb{Q} \ \textit{is semisimple} \\ -\textit{the roots of } \text{char}_{F \otimes \mathbb{Q}}(x) \ \textit{have abs. value } \sqrt{q} \\ -\textit{half of them are } \textit{p-adic units} \\ -\exists V: T \rightarrow T \ \textit{such that } FV = VF = q \\ \end{array} \right\}$$

Remark

- If dim(A) = g then Rank(T(A)) = 2g;
- Frob(A) \rightsquigarrow F(A).

3/11

Centeleghe-Stix' equivalence

Theorem (Centeleghe-Stix '15)

Let p be a prime. There is an equivalence of categories:

{abelian varieties over F_p away from real primes}

4

Centeleghe-Stix' equivalence

Theorem (Centeleghe-Stix '15)

Let p be a prime. There is an equivalence of categories:

Centeleghe-Stix' equivalence

Theorem (Centeleghe-Stix '15)

Let p be a prime. There is an equivalence of categories:

Remark

- If dim(A) = g then Rank(T(A)) = 2g;
- Frob(A) \rightsquigarrow F(A).

Marseglia Stefano ICERM - January 31, 2019

equivalences in the square-free case

Let h be a square-free characteristic q-Weil polynomial. Assume that h is **ordinary** or, q = p and $\mathbf{h}(\sqrt{\mathbf{p}}) \neq \mathbf{0}$.

 \rightsquigarrow an isogeny class \mathscr{C}_h (by Honda-Tate).

equivalences in the square-free case

Let h be a square-free characteristic q-Weil polynomial. Assume that h is **ordinary** or, q = p and $\mathbf{h}(\sqrt{\mathbf{p}}) \neq \mathbf{0}$.

 \rightsquigarrow an isogeny class \mathscr{C}_h (by Honda-Tate).

Put

$$K := \mathbb{Q}[x]/(h)$$

$$F := x \mod (h)$$

$$R := \mathbb{Z}[F, q/F] \subset K$$

5 / 11

equivalences in the square-free case

Let h be a square-free characteristic q-Weil polynomial. Assume that h is **ordinary** or, q = p and $\mathbf{h}(\sqrt{p}) \neq \mathbf{0}$.

 \rightsquigarrow an isogeny class \mathscr{C}_h (by Honda-Tate).

Put

$$K := \mathbb{Q}[x]/(h)$$

$$F := x \mod (h)$$

$$R := \mathbb{Z}[F, q/F] \subset K$$

We get:

Theorem (M.)

 $\label{eq:an_equivalence} \text{an equivalence \mathcal{C}_h} \longleftrightarrow \left\{ \text{fractional R-ideals } \right\}$ and $\mathcal{C}_{h/_{\simeq}} \longleftrightarrow \left\{ \text{fractional R-ideals } \right\}_{\cong_{R} =: \text{ICM}(R)$ ideal class monoid}$

5 / 11

The case "power of a square-free"

Consider \mathscr{C}_h for $h = g^r$ with g a square-free q-Weil polynomial. Assume that g is **ordinary** or, q = p and $g(\sqrt{p}) \neq 0$.

The case "power of a square-free"

Consider \mathscr{C}_h for $h = g^r$ with g a square-free q-Weil polynomial. Assume that g is **ordinary** or, q = p and $\mathbf{g}(\sqrt{\mathbf{p}}) \neq \mathbf{0}$.

$$K := \mathbb{Q}[x]/(g)$$

$$F := x \mod (g)$$

$$R := \mathbb{Z}[F, q/F] \subset K$$

The case "power of a square-free"

Consider \mathscr{C}_h for $h = g^r$ with g a square-free q-Weil polynomial. Assume that g is **ordinary** or, q = p and $\mathbf{g}(\sqrt{\mathbf{p}}) \neq \mathbf{0}$.

$$K := \mathbb{Q}[x]/(g)$$

$$F := x \mod (g)$$

$$R := \mathbb{Z}[F, q/F] \subset K$$

We get:

Theorem (M.)

We have an equivalence

 $\mathscr{C}_h \longleftrightarrow \{\text{fin. gen. torsion-free } R\text{-modules } M \text{ s.t. } M \otimes_R K \simeq K^r\} =: \mathscr{B}(g^r)$

Recall that an R-module M is torsion-free if the canonical morphism

$$M \to M \otimes_R K$$

is injective.

Recall that an R-module M is torsion-free if the canonical morphism

$$M \to M \otimes_R K$$

is injective.

We can think of modules $M \in \mathcal{B}(g^r)$ as **embedded** in K^r .

Recall that an R-module M is torsion-free if the canonical morphism

$$M \to M \otimes_R K$$

is injective.

We can think of modules $M \in \mathcal{B}(g^r)$ as **embedded** in K^r .

The category $\mathcal{B}(g^r)$ becomes more explicit and computable under certain assumption on the order R.

An order R is called Bass if one of the following equivalent conditions holds:

Recall that an R-module M is torsion-free if the canonical morphism

$$M \to M \otimes_R K$$

is injective.

We can think of modules $M \in \mathcal{B}(g^r)$ as **embedded** in K^r .

The category $\mathcal{B}(g^r)$ becomes more explicit and computable under certain assumption on the order R.

An order R is called Bass if one of the following equivalent conditions holds:

• every over-order $R \subseteq S \subseteq \mathcal{O}_K$ is Gorenstein (i.e. S^t is invertible in S).

7 / 11

Recall that an R-module M is torsion-free if the canonical morphism

$$M \to M \otimes_R K$$

is injective.

We can think of modules $M \in \mathcal{B}(g^r)$ as **embedded** in K^r .

The category $\mathcal{B}(g^r)$ becomes more explicit and computable under certain assumption on the order R.

An order R is called Bass if one of the following equivalent conditions holds:

- every over-order $R \subseteq S \subseteq \mathcal{O}_K$ is Gorenstein (i.e. S^t is invertible in S).
- every fractional R-ideal I is invertible in (I:I).

Recall that an R-module M is torsion-free if the canonical morphism

$$M \to M \otimes_R K$$

is injective.

We can think of modules $M \in \mathcal{B}(g^r)$ as **embedded** in K^r .

The category $\mathcal{B}(g^r)$ becomes more explicit and computable under certain assumption on the order R.

An order R is called Bass if one of the following equivalent conditions holds:

- every over-order $R \subseteq S \subseteq \mathcal{O}_K$ is Gorenstein (i.e. S^t is invertible in S).
- every fractional R-ideal I is invertible in (I:I).
- $ICM(R) = \bigsqcup_{R \subseteq S \subseteq \mathcal{O}_K} Pic(S)$.

Corollary

Assume that R is Bass. Then for every $M \in \mathcal{B}(g^r)$ there are over orders $S_1 \subseteq ... \subseteq S_r$ of R and a fractional ideal I invertible in S_r such that

$$M \simeq S_1 \oplus \ldots \oplus S_{r-1} \oplus I$$

Corollary

Assume that R is Bass. Then for every $M \in \mathcal{B}(g^r)$ there are over orders $S_1 \subseteq ... \subseteq S_r$ of R and a fractional ideal I invertible in S_r such that

$$M \simeq S_1 \oplus \ldots \oplus S_{r-1} \oplus I$$

We have a simple description of morphisms in $\mathcal{B}(g^r)$. For example, for M as above:

Corollary

Assume that R is Bass. Then for every $M \in \mathcal{B}(g^r)$ there are over orders $S_1 \subseteq ... \subseteq S_r$ of R and a fractional ideal I invertible in S_r such that

$$M \simeq S_1 \oplus \ldots \oplus S_{r-1} \oplus I$$

We have a simple description of morphisms in $\mathscr{B}(g^r)$. For example, for M as above:

$$\operatorname{End}_{R}(M) = \begin{pmatrix} S_{1} & S_{2} & \dots & S_{r-1} & I \\ (S_{1}:S_{2}) & S_{2} & \dots & S_{r-1} & I \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (S_{1}:S_{r-1}) & (S_{2}:S_{r-1}) & \dots & S_{r-1} & I \\ (S_{1}:I) & (S_{2}:I) & \dots & (S_{r-1}:I) & (I:I) \end{pmatrix}$$

and

◆□▶ ◆□▶ ◆■▶ ◆■▶ ■ り<0</p>

Corollary

Assume that R is Bass. Then for every $M \in \mathcal{B}(g^r)$ there are over orders $S_1 \subseteq ... \subseteq S_r$ of R and a fractional ideal I invertible in S_r such that

$$M \simeq S_1 \oplus \ldots \oplus S_{r-1} \oplus I$$

We have a simple description of morphisms in $\mathcal{B}(g^r)$. For example, for M as above:

$$\mathsf{End}_{R}(M) = \begin{pmatrix} S_{1} & S_{2} & \dots & S_{r-1} & I \\ (S_{1}:S_{2}) & S_{2} & \dots & S_{r-1} & I \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ (S_{1}:S_{r-1}) & (S_{2}:S_{r-1}) & \dots & S_{r-1} & I \\ (S_{1}:I) & (S_{2}:I) & \dots & (S_{r-1}:I) & (I:I) \end{pmatrix}$$

and

$$\operatorname{Aut}_R(M) = \left\{ A \in \operatorname{End}_R(M) \cap \operatorname{GL}_r(K) : A^{-1} \in \operatorname{End}_R(M) \right\}.$$

Corollary

Assume $R = \mathbb{Z}[F, q/F]$ is Bass. Then

Corollary

•

Assume $R = \mathbb{Z}[F, q/F]$ is Bass. Then

$$\mathscr{C}_{h/\simeq} \longleftrightarrow \left\{ (S_1 \subseteq S_2 \subseteq \ldots \subseteq S_r, [I]_\simeq) : I \text{ a frac. } R\text{-ideal} \right\}$$

$$\text{with } (I:I) = S_r$$

Corollary

Assume $R = \mathbb{Z}[F, q/F]$ is Bass. Then

$${}^{\mathscr{C}} h/_{\simeq} \longleftrightarrow \left\{ (S_1 \subseteq S_2 \subseteq \ldots \subseteq S_r, [I]_{\simeq}) : I \text{ a frac. } R\text{-ideal} \\ \text{with } (I:I) = S_r \right\}$$

• for every $A \in \mathcal{C}_h$, say $A \sim B^r$ with $h_B = g$, there are everything is a product

Corollary

Assume $R = \mathbb{Z}[F, q/F]$ is Bass. Then

$${}^{\mathscr{C}} h/_{\simeq} \longleftrightarrow \left\{ (S_1 \subseteq S_2 \subseteq \ldots \subseteq S_r, [I]_{\simeq}) : I \text{ a frac. } R\text{-ideal} \\ \text{with } (I:I) = S_r \right\}$$

- for every $A \in \mathcal{C}_h$, say $A \sim B^r$ with $h_B = g$, there are $C_1, \ldots, C_r \sim B$ such that $A \simeq C_1 \times \ldots \times C_r$ everything is a product
- if $A \longleftrightarrow \bigoplus_k I_k \text{ and } B \longleftrightarrow \bigoplus_k J_k$ then $\mu \in \operatorname{Hom}(A,B) \longleftrightarrow \Lambda \in \operatorname{Mat}_{r \times r}(K) \text{ s.t. } \Lambda_{h,k} \in (J_h : I_k)$

Corollary

Assume $R = \mathbb{Z}[F, q/F]$ is Bass. Then

$${}^{\mathscr{C}} h/_{\simeq} \longleftrightarrow \left\{ (S_1 \subseteq S_2 \subseteq \ldots \subseteq S_r, [I]_{\simeq}) : I \text{ a frac. } R\text{-ideal} \\ \text{with } (I:I) = S_r \right\}$$

- for every $A \in \mathcal{C}_h$, say $A \sim B^r$ with $h_B = g$, there are everything $C_1, \ldots, C_r \sim B$ such that $A \simeq C_1 \times \ldots \times C_r$ is a product
- if $A \longleftrightarrow \bigoplus_{k} I_{k} \text{ and } B \longleftrightarrow \bigoplus_{k} J_{k}$

then $\mu \in \text{Hom}(A, B) \longleftrightarrow \Lambda \in \text{Mat}_{r \times r}(K) \text{ s.t. } \Lambda_{h,k} \in (J_h : I_k)$

Moreover, μ is an isogeny if and only if $det(\Lambda) \in K^{\times}$

Using Howe ('95) in the ordinary square-free case:

Theorem (M.)

If $A \leftrightarrow I$, then:

Using Howe ('95) in the ordinary square-free case:

Theorem (M.)

If $A \leftrightarrow I$, then:

 $\bullet \ A^{\vee} \leftrightarrow \overline{I}^t.$

Using Howe ('95) in the ordinary square-free case:

Theorem (M.)

If $A \leftrightarrow I$, then:

- $A^{\vee} \leftrightarrow \overline{I}^t$.
- a polarization μ of A corresponds to a $\lambda \in K^{\times}$ such that
 - $\lambda I \subseteq \overline{I}^t$ (isogeny);
 - λ is totally imaginary $(\overline{\lambda} = -\lambda)$;
 - λ is Φ -positive, where Φ is a specific CM-type of K. Bottleneck 3

Also: $\deg \mu = [\overline{I}^t : \lambda I].$

Using Howe ('95) in the ordinary square-free case:

Theorem (M.)

If $A \leftrightarrow I$, then:

- $A^{\vee} \leftrightarrow \overline{I}^t$.
- a polarization μ of A corresponds to a $\lambda \in K^{\times}$ such that
 - $\lambda I \subseteq \overline{I}^t$ (isogeny);
 - λ is totally imaginary $(\overline{\lambda} = -\lambda)$;
 - λ is Φ -positive, where Φ is a specific CM-type of K. Bottleneck 3 Also: $\deg \mu = [\overline{I}^t : \lambda I]$.
- if $(A, \mu) \leftrightarrow (I, \lambda)$ and S = (I : I) then $\begin{cases} non\text{-isomorphic} \\ polarizations of } A \end{cases} \longleftrightarrow \frac{\{totally\ positive\ u \in S^{\times}\}}{\{v\overline{v} : v \in S^{\times}\}}." \textit{Bottleneck" } 4$

Using Howe ('95) in the ordinary square-free case:

Theorem (M.)

If $A \leftrightarrow I$, then:

- $A^{\vee} \leftrightarrow \overline{I}^t$.
- a polarization μ of A corresponds to a $\lambda \in K^{\times}$ such that
 - $\lambda I \subseteq \overline{I}^t$ (isogeny);
 - λ is totally imaginary $(\overline{\lambda} = -\lambda)$;
 - λ is Φ -positive, where Φ is a specific CM-type of K. Bottleneck 3 Also: $\deg \mu = [\overline{I}^t : \lambda I]$.
- if $(A, \mu) \leftrightarrow (I, \lambda)$ and S = (I:I) then $\begin{cases} non\text{-isomorphic} \\ polarizations of } A \end{cases} \longleftrightarrow \frac{\{totally\ positive\ u \in S^{\times}\}}{\{v\overline{v}: v \in S^{\times}\}}." \textit{Bottleneck"} 4$
- and $Aut(A, \mu) = \{torsion \ units \ of \ S\}.$

Work in progress and Bottlenecks

Work in progress

- 1: polarizations in the non-ordinary (Centeleghe-Stix) square-free case (with Jonas Bergström)
- 2: group of rational points (and level structure)

Work in progress and Bottlenecks

Work in progress

- 1: polarizations in the non-ordinary (Centeleghe-Stix) square-free case (with Jonas Bergström)
- 2: group of rational points (and level structure)

Bottlenecks

- 1: over-orders (Tommy Hoffman ?)
- 2: weak equivalence class monoid (I have a conjecture)
- 3: CM-type (need to compute a splitting field. can be done locally?)
- 4: polarizations (it should be possible to "spread" them)