OEMA 4

4.1. Ισχύει $\Delta K_{AB} = W_{\vec{F}_{\eta\lambda}}$, $K_B - K_A = -e \cdot V_{AB}$, $V_{AB} = -45$,5 V , V = 45,5 V .

Μονάδες 6

4.2. Ισχύει
$$K=\frac{1}{2}\cdot m_e\cdot v^2$$
 , $v=\sqrt{\frac{2\cdot K}{m_e}}=\sqrt{\frac{2\cdot 45,5\cdot 1,6\cdot 10^{-19}}{9,1\cdot 10^{-31}}}\,\frac{m}{s}=4\,\cdot\,10^6\,\frac{m}{s}.$

Μονάδες 6

4.3. Ισχύει $E = \frac{V}{\Delta x} = 455 \frac{N}{c}$.

Μονάδες 6

4.4. Η ηλεκτρική δύναμη που ασκείται στο ηλεκτρόνιο έχει μέτρο $F_{\eta\lambda}=E\cdot e$. Η επιτάχυνση με την οποία επιταχύνεται το ηλεκτρόνιο έχει μέτρο $\alpha=\frac{F_{\eta\lambda}}{m_e}=\frac{E\cdot e}{m_e}$. Το ηλεκτρόνιο επιταχύνεται για χρονικό διάστημα $v=\alpha\cdot \Delta t$, $\Delta t=\frac{v}{\alpha}=\frac{v\cdot m_e}{E\cdot e}$. Έτσι, ο μέσος ρυθμός αύξησης της κινητικής ενέργειας του ηλεκτρονίου, κατά την επιτάχυνσή του είναι $\frac{\overline{\Delta K}}{\Delta t}=\frac{K}{\Delta t}=\frac{K\cdot E\cdot e}{v\cdot m_e}=1,456\cdot 10^{-10}\,\frac{J}{s}$

Μονάδες 7