NASA LEC Robotic Mining

Milestone Four Progress Evaluation

Members:

Taylor Ertrachter - tertrachter2017@my.fit.edu

Bailey Hamant - <u>bhamant2017@my.fit.edu</u>

James Spies - <u>ispies2017@my.fit.edu</u>

Faculty Advisor:

Dr. Marius Silaghi - msilaghi@fit.edu

TASK ONE

ZED Camera feature testing

ZED Camera Feature Testing

- Depth Sensor
- Pre-built ROS wrapper samples
 - Created our own tests

Depth Sensing Example Photos

Initial Vision of Room

Vision of Room After Moving Camera Around

TASK TWO Updated simulation model

Updated Gazebo Simulation Model

- Added two arms to the front of the robot that are able to move on the z-axis
 - Simulates the movement of the conveyor belt arms on the physical robot that are used for mining
- In the future, looking to add more parts so that more of the physical robot can be simulated

Updated Gazebo Simulation Model

TASK THREE

Orientation tracking demos

Orientation Tracking Demos

- First Demo modified ZED ROS wrapper to become familiarized with library
- Second Demo utilizes the depth feature of the camera to accurately give the distance between the camera and the specified object
- Determined that the camera's accuracy slowly degrades as the object gets out of it's rated field of distance

Estimating Distance Example

Actual Measure Distance

Distance Estimation

```
INFO] [1613099827.001344039]: Center distance : 1.73731 m INFO] [1613099827.068147025]: Center distance : 1.73411 m INFO] [1613099827.132274329]: Center distance : 1.71048 m INFO] [1613099827.201431842]: Center distance : 1.70319 m INFO] [1613099827.266744633]: Center distance : 1.70934 m INFO] [1613099827.332866842]: Center distance : 1.71285 m INFO] [1613099827.400112394]: Center distance : 1.71631 m INFO] [1613099827.533484444]: Center distance : 1.70864 m
```

Milestone Five Plan

01

Further testing with the ZED camera code

02

Use camera with physical robot

01

- Find and use more tutorials as a basis
- Understand how the physical camera works with the machine
 - Start making new code for use of the robot

02

- Attach camera
- Hook up camera to the Jetson
- Use our written code to implement camera in real simulation

THANKS!