Structure—Affinity Relationship Study on N-[4-(4-Arylpiperazin-1-yl)butyl]arylcarboxamides as Potent and Selective Dopamine D_3 Receptor Ligands

Marcello Leopoldo,* Francesco Berardi, Nicola A. Colabufo, Paola De Giorgio, Enza Lacivita, Roberto Perrone, and Vincenzo Tortorella

Dipartimento Farmaco-Chimico, Università degli Studi di Bari, via Orabona, 4, 70126 Bari, Italy

Received June 4, 2002

The benzamide PB12 (N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide) (1),already reported as potent and selective dopamine D₄ receptor ligand, has been modified searching for structural features that could lead to D₃ receptor affinity. Changes in the aromatic ring linked to N-1 piperazine ring led to the identification of 2-methoxyphenyl and 2,3dichlorophenyl derivatives (compounds **6** and **13**) displaying moderate D_3 affinity ($K_i = 145$ and 31 nM, respectively). Intermediate alkyl chain elongation in compounds 1, 6, and 13 improved binding affinity for the D₃ receptor and decreased the D₄ affinity (compounds 18-**26**). Among these latter compounds, the N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-3methoxybenzamide (19) was further modified with the replacement or of the 2,3-dichlorophenyl moiety (compounds 27-30) or of the 3-methoxyphenyl ring (compounds 31-41). In this way, we identified several high-affinity D₃ ligands (0.13 nM $< K_i$'s < 4.97 nM) endowed with high selectivity over D_2 , D_4 , 5-HT_{1A}, and α_1 receptors. In addition, N-[4-[4-(2,3-dimethylphenyl)piperazin-1-yl]butyl]-3-methoxybenzamide ($\mathbf{27}$) and N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-7-methoxy-2-benzofurancarboxamide (41) appear to be valuable candidates for positron emission tomography (PET) because of their affinity values, lipophilicity properties, and liability of ¹¹C labeling in the O-methyl position.

Introduction

The cloning of the gene for dopamine D₃ receptor and subsequent identification of its distribution in brain and pharmacology allowed for serious consideration of the possibility that might be a target for antipsychotic and antiparkinsonian drugs. As early as 1990, the D₃ receptor was considered a potential target for developing antipsychotic agents because dopamine (DA) antagonists used in the treatment of schizofrenia were not selective for the D2 receptor, but they also exhibited high affinity for the D₃ receptor. Because D₃ receptor is highly expressed in limbic regions of the brain, but exhibited low expression in motor divisions, it would be a target for antipsychotics potentially devoid of unwanted motor side effects.² Another therapeutic use of D₃ agents is for treatment of Parkinson's disease (PD) because DA agonists used in PD therapy have, in many cases, as high or higher affinity for the D₃ receptor.³ Therefore, it remains tenable that the mesolimbic D₃ receptor could play a role in antiparkinsonian relief, and recently the D₃ preferring agonists pramipexole and ropinirole (Chart 1) have been introduced in therapy for effective treatment of PD.

The D_3 receptor subtype would also be involved in the pharmacological effects of psychostimulant drugs. 1,4 An early study on the D_3 -selective agonist 7-OH-DPAT suggested that D_3 receptors played a modulatory role in the self-administration of cocaine. 5 Also, the selective D_3 partial agonist BP 897 was found to attenuate

cocaine-seeking behavior,⁶ although a recent study suggested that it may be the dopamine D_3 receptor antagonist properties of BP 897 which have potential in the treatment of addiction and withdrawal.⁷ Despite the early encouraging results with 7-OH-DPAT, BP 897, and other D_3 agents, presently, the in vivo function of the D_3 receptor and its role in cocaine's actions remains debatable because of the lack of D_3 -receptor selectivity of these agents.

Therefore, D_3 ligands having subnanomolar affinities, high receptor subtype specificity, and improved bioavailability would greatly aid in understanding the role of the D_3 receptor. Additionally, the presence in the structure of such ligands of methoxy or N-methyl groups would give access to ^{11}C radioligands suitable for positron emission tomography (PET).^{8,9} To date, no effective D_3 -preferring PET radioligand for in vivo D_3 receptor imaging has been reported.¹⁰

In recent years, we have been interested in SAFIR studies on D_4 ligands represented by the potent and selective PB12 (1) (Table 1). 11,12 From a survey of the literature dealing with D_3 ligands, it emerged that compounds structurally related to PB12 were able to bind to D_3 receptor. 13 This ability depended upon the nature of the aromatic ring linked to the piperazine N-1 position. On the basis of this observation, a first set of compounds (derivatives 6-17) was designed by changing the aromatic ring linked to the piperazine ring. Some aromatic rings, such as phenyl, 2,3-diCl-phenyl, and 2-CH $_3$ O-phenyl, were selected because they were displayed by known arylpiperazine D_3 ligands. $^{13-15}$ Among these analogues of compound 1, only 2,3-diCl-

^{*} To whom correspondence should be addressed. Phone: +39-080-5442798. Fax: +39-080-5442231. E-mail: leopoldo@farmchim.uniba.it.

Chart 1. Dopamine D₃ Agents

phenyl and 2-CH₃O-phenyl derivatives (6 and 13, respectively) displayed moderate D₃ receptor affinity, along with high D₄ receptor affinity. Then, the effect of intermediate alkyl chain elongation on D₃ receptor affinity was evaluated by preparing a set of homologues of compounds 1, 6, and 13 (derivatives 18-26). This modification was considered because three high affinity D₃ ligands (i.e., BP 897, NGB 2904, ¹⁶ and SB 277011 ¹⁷) (Chart 1) displayed the four carbon butyl chain and also because alkyl chain elongation of compound 1 resulted in a decrease in D₄ receptor affinity. ¹² In line with the above considerations, D₃ affinity values of compounds 18-26 indicated that the four carbon alkyl chain was an important requisite for high D₃ affinity. Consequently, several *n*-butyl chain containing 1-arylpiperazine derivatives (compounds 27-41) were evaluated in the search for structural features that could enhance the selectivity over the other receptors capable of binding 1-arylpiperazines (i.e., D_2 , 5-HT_{1A}, and α_1 receptors). In particular, we prepared some compounds related to N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]-3-methoxybenzamide (19) by replacing the 2,3dichlorophenyl group with the 2,3-dimethylphenyl group (compound 27) or with a bicyclic aromatic nucleus (compounds **28–30**). Then, we also prepared N-[4-[4-(2,3-dichlorophenyl)piperazin-1-yl]butyl]arylcarboxamides 31-41, bearing an aryl group other than the 3-methoxyphenyl. These groups were chosen for their different contribution to lipophilicity (expressed as

ClogP values¹⁸) and also among those displayed by already reported D_3 ligands (i.e., 4-bromo-1-methoxy-2-naphthalenyl,¹⁹ 1-methoxy-2-naphthalenyl,²⁰ 1,1'-bi-phenyl,²¹ 4-quinolyl¹⁷).

Chemistry

Benzamides 8-17 were prepared by reacting the appropriate 1-arylpiperazine with *N*-(2-chloroethyl)-3methoxybenzamide (2),11 as depicted in Scheme 1. Similarly, benzamide 18 was prepared by condensing 1-(2,3-dichlorophenyl) piperazine with N-(3-chloropropyl)-3-methoxybenzamide (3). This latter compound was obtained by acylating 3-chloropropylamine with 3-methoxybenzoyl chloride. The synthesis of the benzamides 19, 20, 22, 23, 27-41 (Scheme 2) required the intermediate amines **5a**–**j**. Among these, amines **5a**–**d** were prepared by alkylating the appropriate 1-arylpiperazine with 4-chlorobutanenitrile or 5-chloropentanenitrile and subsequent reduction of nitriles 4a-d with boranemethyl sulfide complex,²² whereas amines **5e**–**j** were synthesized according to literature methods, as detailed in Experimental Section. Final compounds were achieved by condensing the amines 5a-j with appropriate acyl chloride or carboxylic acid in the presence of 1,1'carbonyldiimidazole as condensing agent.

Results and Discussion

Affinity values of the target compounds **6–41** for D_3 , D_4 , D_2 , 5-HT_{1A}, and α_1 receptors are listed in Table 2.

Table 1. Physical Properties of Target Compounds

compd	n	Ar	Ar'	formula ^a	mp, °C	CLogP
1 ^b (PB12)	2	3-CH ₃ O-Ph	4-Cl-Ph			3.72
6 ^b	2	3-CH ₃ O-Ph	2-CH ₃ O-Ph			2.86
7^b	2	3-CH ₃ O-Ph	2-Py			1.89
8	2	3-CH ₃ O-Ph	2-Cľ-Ph	$C_{20}H_{24}CIN_3O_2$	116 - 118	3.72
9	2	3-CH ₃ O-Ph	3-Cl-Ph	$C_{20}H_{24}ClN_3O_2$	147 - 149	3.72
10	2	3-CH ₃ O-Ph	4-CH ₃ -Ph	$C_{21}H_{27}N_3O_2$ ·HCl	229 - 231	3.33
11	2	3-CH₃O-Ph	4-CH ₃ O-Ph	$C_{21}H_{27}N_3O_3 \cdot 2HCl$	223 - 225	2.71
12	2	3-CH₃O-Ph	4-F-Ph	$C_{20}H_{24}FN_3O_2$	157 - 159	3.15
13	2	3-CH₃O-Ph	2,3-di-Cl-Ph	$C_{20}H_{23}Cl_2N_3O_2$ ·HCl	254 - 256	4.36
14	2	3-CH₃O-Ph	Ph	$C_{20}H_{25}N_3O_2$ ·HCl	234 - 236	2.83
15	2	3-CH₃O-Ph	1-naphthalenyl	$C_{24}H_{27}N_3O_2 \cdot (COOH)_2 \cdot H_2O$	177 - 179	4.01
16	2	3-CH₃O-Ph	4-Cl-2-Py	$C_{19}H_{23}ClN_4O_2 \cdot (COOH)_2$	239 - 240	2.67
17	2	3-CH₃O-Ph	4-CH ₃ -2-Py	$C_{20}H_{26}N_4O_2 \cdot 2HCl$	221 - 224	2.38
18	3	3-CH₃O-Ph	2,3-di-Cl-Ph	$C_{21}H_{25}Cl_2N_3O_2 \cdot HCl \cdot 4/5H_2O$	184 - 187	4.57
19	4	3-CH₃O-Ph	2,3-di-Cl-Ph	$C_{22}H_{27}Cl_2N_3O_2$ ·HCl	218 - 220	4.50
20	5	3-CH₃O-Ph	2,3-di-Cl-Ph	$C_{23}H_{29}Cl_2N_3O_2$ ·HCl	188 - 189	5.03
21 ^c	3	3-CH₃O-Ph	2-CH₃O-Ph			3.08
22	4	3-CH₃O-Ph	2-CH₃O-Ph	$C_{23}H_{31}N_3O_3 \cdot 2HCl$	185 - 186	3.00
23	5	3-CH₃O-Ph	2-CH₃O-Ph	$C_{24}H_{33}N_3O_3 \cdot 2HCl$	189 - 191	3.53
24^{c}	3	3-CH₃O-Ph	4-Cl-Ph			3.93
25^{c}	4	3-CH₃O-Ph	4-Cl-Ph			3.86
26 ^c	5	3-CH₃O-Ph	4-Cl-Ph			4.93
27	4	3-CH₃O-Ph	2,3-di-CH ₃ -Ph	$C_{24}H_{33}N_3O_2$ ·HCl	185 - 187	3.92
28	4	3-CH₃O-Ph	1-naphthalenyl	$C_{26}H_{31}N_3O_2 \cdot HCl \cdot 1/2H_2O$	184 - 186	4.15
29	4	3-CH₃O-Ph	1-isoquinolyl	$C_{25}H_{30}N_4O_2 \cdot 2(COOH)_2$	163 - 164	3.20
30	4	3-CH₃O-Ph	1,2-benzisoxazol-3 -yl	$C_{23}H_{28}N_4O_3$ ·HCl	111 - 113	2.85
31	4	4-Br-1-CH ₃ O-2-naphthalenyl	2,3-di-Cl-Ph	$C_{26}H_{28}BrCl_2N_3O_2$ ·HCl	204 - 206	6.60
32	4	1-CH ₃ O-2-naphthalenyl	2,3-di-Cl-Ph	$C_{26}H_{29}Cl_2N_3O_2 \cdot HCl \cdot 1/5H_2O$	190 - 192	5.61
33	4	2-naphthalenyl	2,3-di-Cl-Ph	$C_{25}H_{27}Cl_2N_3O\cdot HCl$	217 dec	5.28
34	4	4-quinolyl	2,3-di-Cl-Ph	$C_{24}H_{26}Cl_2N_4O\cdot(COOH)_2$	150 - 153	4.74
35	4	1,1'-biphenyl	2,3-di-Cl-Ph	$C_{27}H_{29}Cl_2N_3O\cdot HCl$	245 dec	6.00
36	4	2-benzofuranyl	2,3-di-Cl-Ph	$C_{23}H_{25}Cl_2N_3O_2$ ·HCl	236 dec	4.67
37	4	1 <i>H</i> -indol-2-yl	2,3-di-Cl-Ph	$C_{23}H_{26}Cl_2N_4O \cdot 2HCl$	245 dec	4.70
38	4	1 <i>H</i> -indol-3-yl	2,3-di-Cl-Ph	$C_{23}H_{26}Cl_2N_4O\cdot HCl$	265 dec	4.36
39	4	3-indazolyl	2,3-di-Cl-Ph	$C_{22}H_{25}Cl_2N_5O\cdot HCl\cdot H_2O$	267 dec	4.46
40	4	2-benzo[b]thienyl	2,3-di-Cl-Ph	C ₂₃ H ₂₅ Cl ₂ N ₃ OS·HCl	228 dec	5.33
41	4	7-CH ₃ O-2-benzofuranyl	2,3-di-Cl-Ph	$C_{24}H_{27}Cl_2N_3O_3$ ·HCl	212-214	4.98

^a All compounds were recrystallized from CH₃OH/Et₂O except **8**, **9**, **12** (from CHCl₃/ n-hexane), and **15**, **16**, **29** (CH₃OH). Analysis for C,H,N; results were within $\pm 0.4\%$ of the theoretical values for the formulas given. ^b See ref 11. ^c See ref 12.

Scheme 1^a

a Reagents: (A) thionyl chloride; (B) 2-chloroethylamine or 3-chloropropylamine; (C) 1-arylpiperazine.

The variation of the aromatic group linked to the piperazine ring N-1 position of compound 1 led to compounds 6-17 that were devoid of D_3 receptor affinity, except for compounds 6, 8, 13, 15, that showed moderate D₃ affinity (K_i's ranging between 31 and 146 nM). These compounds are characterized by a 2- or 2,3di-substituted phenyl ring or by a 1-naphthalenyl ring. On the other hand, compounds 6-17 can be considered

as high-affinity D4 ligands. In particular, compounds 8, 10, and 13 were equipotent to 1, showing subnanomolar D_4 affinity values (K_i 's ranging between 0.018 and 0.040 nM). Compounds 6-17 did not bind to D_2 receptor and displayed a wide range of 5-HT_{1A} and α_1 receptor affinities. Subsequently, we evaluated the effect on D₃ affinity of alkyl chain elongation in compounds 6 and **13**. This modification was also aimed at decreasing the D₄ affinity, because in a previous study¹² we observed that elongation of the alkyl chain in 1 resulted in a decrease in D₄ affinity (compounds **24–26**). The results made clear different structural requirements between D_3 and D_4 receptors. In fact, the D_3 affinities of compounds **18–26**, that are homologues of compounds **6**, **13**, and **1**, were ranked as follows: butyl \geq pentyl \geq propyl > ethyl. In particular, butyl derivatives **19**, **22**, and 25 displayed D₃ affinities ranging between 0.27 and 1.7 nM. On the other hand, D₄ affinity values are ordered oppositely: ethyl > propyl \ge butyl > pentyl. These opposite trends resulted in an increasing in specificity for the D₃ receptor, especially in compounds **19** and **25**, which were also selective versus D_2 , 5-H T_{1A} , and α_1 receptors. The observed lack of selectivity of compounds 6 and 21-23 over 5-HT_{1A} receptors should be mainly due to the 1-(2-methoxyphenyl)piperazine

Scheme 2^a

Table 2. Binding Affinities of Target Compounds

				$K_{\rm i} \pm { m S.E.M., nM}$				
compd	n	Ar	Ar'	D_3	D_4	D_2	5-HT _{1A}	α_1
1 (PB12)	2	3-CH ₃ O-Ph	4-Cl-Ph	>1000 (28%)a	0.040 ± 0.002	1900 ± 250	147 ± 14	245 ± 30
6	2	3-CH ₃ O-Ph	2-CH ₃ O-Ph	145 ± 16	1.1 ± 0.3	467 ± 33	0.060 ± 0.004	180 ± 20
7	2	3-CH ₃ O-Ph	2-Py	>850 (16%)	0.63 ± 0.04	> 1000 (35%)	27 ± 4	283 ± 15
8	2	3-CH ₃ O-Ph	2-Cl-Ph	146 ± 24	0.040 ± 0.007	> 1000 (19%)	27 ± 4	18 ± 2
9	2	3-CH ₃ O-Ph	3-Cl-Ph	472 ± 30	0.26 ± 0.02	>1000 (24%)	35 ± 9	224 ± 12
10	2	3-CH ₃ O-Ph	4-CH ₃ -Ph	>850 (30%)	0.025 ± 0.007	7460 ± 320	432 ± 27	454 ± 25
11	2	3-CH ₃ O-Ph	4-CH ₃ O-Ph	>850 (18%)	22.3 ± 8.0	> 1000 (15%)	>850 (27%)	5900 ± 350
12	2	3-CH ₃ O-Ph	4-F-Ph	>850 (33%)	11 ± 2	>1000 (13%)	$313 \pm 22^{'}$	134 ± 15
13	2	3-CH ₃ O-Ph	2,3-di-Cl-Ph	31 ± 7	0.018 ± 0.007	3680 ± 120	29 ± 5	425 ± 52
14	2	3-CH ₃ O-Ph	Ph	674 ± 35	2.2 ± 0.8	>8300 (26%)	59 ± 8	197 ± 20
15	2	3-CH ₃ O-Ph	1-naphthalenyl	70 ± 5	0.21 ± 0.01	> 1000 (12%)	0.60 ± 0.03	7.3 ± 0.6
16	2	3-CH ₃ O-Ph	4-Cl-2-Py	>1000 (22%)	3.95 ± 0.80	> 1000 (17%)	433 ± 17	115 ± 19
17	2	3-CH ₃ O-Ph	4-CH ₃ -2-Py	>850 (33%)	23.9 ± 8.0	>1000 (26%)	58.6 ± 6.0	2900 ± 180
18	3	3-CH ₃ O-Ph	2,3-di-Cl-Ph	2.3 ± 0.2	7.3 ± 0.6	1130 ± 120	117 ± 20	66.7 ± 6.0
19	4	3-CH ₃ O-Ph	2,3-di-Cl-Ph	0.27 ± 0.03	9.0 ± 0.8	1410 ± 80	123 ± 15	134 ± 9
20	5	3-CH ₃ O-Ph	2,3-di-Cl-Ph	3.0 ± 0.4	345 ± 25	1560 ± 200	78.7 ± 7.3	92.1 ± 4.0
21	3	3-CH ₃ O-Ph	2-CH ₃ O-Ph	124 ± 20	1.8 ± 0.4	2990 ± 110	19.8 ± 2.0	61.4 ± 8.0
22	4	3-CH ₃ O-Ph	2-CH ₃ O-Ph	1.7 ± 0.5	3.1 ± 0.7	680 ± 18	7.5 ± 1.1	26.4 ± 2.2
23	5	3-CH ₃ O-Ph	2-CH ₃ O-Ph	5.3 ± 0.8	55 ± 7	253 ± 12	4.5 ± 0.7	16.2 ± 2.4
24	3	3-CH ₃ O-Ph	4-Cl-Ph	586 ± 37	5.4 ± 0.7	3960 ± 150	>850 (23%)	437 ± 31
25	4	3-CH ₃ O-Ph	4-Cl-Ph	0.41 ± 0.05	25 ± 2	2350 ± 270	397 ± 92	406 ± 40
26	5	3-CH ₃ O-Ph	4-Cl-Ph	36 ± 3	241 ± 35	>850 (22%)	>850 (44%)	470 ± 25
27	4	3-CH ₃ O-Ph	2,3-di-CH ₃ -Ph	0.17 ± 0.05	63.6 ± 8.0	77.0 ± 5.2	268 ± 12	717 ± 24
28	4	3-CH ₃ O-Ph	1-naphthalenyl	0.54 ± 0.02	2.3 ± 1.5	930 ± 30	0.43 ± 0.06	57 ± 3
29	4	3-CH ₃ O-Ph	1-isoquinolyl	9.5 ± 0.8	168 ± 18	770 ± 15	12.7 ± 3.5	1120 ± 120
30	4	3-CH ₃ O-Ph	1,2-benzisoxazol-3-yl	46.5 ± 6.2	7.58 ± 0.50	210 ± 24	7730 ± 220	3119 ± 125
31	4	4-Br-1-CH ₃ O-2-naphthalenyl	2,3-di-Cl-Ph	4.97 ± 0.30	652 ± 85	3800 ± 130	>1000 (46%)	>1000 (25%)
32	4	1-CH ₃ O-2-naphthalenyl	2,3-di-Cl-Ph	0.60 ± 0.02	720 ± 225	830 ± 120	575 ± 230	5100 ± 150
33	4	2-naphthalenyl	2,3-di-Cl-Ph	0.58 ± 0.02	370 ± 80	5200 ± 350	335 ± 21	5 ± 5
34	4	4-quinolyl	2,3-di-Cl-Ph	0.72 ± 0.02	604 ± 50	430 ± 12	88.5 ± 8.2	138 ± 16
35	4	1,1'-biphenyl	2,3-di-Cl-Ph	1.15 ± 0.30	283 ± 15	>1000 (32%)	>1000 (41%)	>1000 (43%)
36	4	2-benzofuranyl	2,3-di-Cl-Ph	0.62 ± 0.03	890 ± 125	5740 ± 125	$126 \pm 20^{'}$	236 ± 24
37	4	1H-indol-2-yl	2,3-di-Cl-Ph	0.62 ± 0.02	>800 (24%)	135 ± 14	1660 ± 140	2050 ± 130
38	4	1 <i>H</i> -indol-3-yl	2,3-di-Cl-Ph	0.94 ± 0.02	>800 (30%)	63 ± 13	1110 ± 170	1880 ± 320
39	4	3-indazolyl (2,3-di-Cl-Ph	0.18 ± 0.02	>800 (39%)	107 ± 18	621 ± 12	1120 ± 230
40	4	2-benzo $[\check{b}]$ thienyl	2,3-di-Cl-Ph	0.14 ± 0.01	>800 (38%)	170 ± 10	5500 ± 220	656 ± 20
41	4	7-CH ₃ O-2-benzofuranyl	2,3-di-Cl-Ph	0.13 ± 0.01	720 ± 15	373 ± 20	184 ± 16	110 ± 21
haloperidol $28 \pm 2 0.74 \pm 0.08 0.12 \pm 0.04$								
clozapine 30.0 ± 0.3								
8-OH-DP	ΑT						2.1 ± 0.4	
phentolan	nine							18 ± 3

 $^{^{\}it a}$ Full $\it K_{\it i}$ not obtained, percentage inhibition at the concentration shown given in parentheses.

moiety that is often present in 5-HT $_{1A}$ receptor ligands. ²³ Therefore, we have identified the structure of N-[4-(4-arylpiperazin-1-yl)butyl]-3-methoxybenzamide as a framework to obtain potent D $_3$ ligands. At this point, a

further examination of the SAFIR was carried out on compound **19** that showed the highest D_3 affinity. Changes were made by replacing either the 2,3-dichorophenyl moiety (compounds **27–30**) or the 3-meth-

 $[^]a$ Reagents: (A) 4-chlorobutanenitrile or 5-chloropentanenitrile; (B) borane-methyl sulfide complex; (C) acyl chloride or carboxylic acid and 1,1'-carbonyldiimidazole.

oxyphenyl group (compounds 31-41). For the first modification, we replaced the two Cl atoms with two CH₃ groups (compound **27**), or we used a bicyclic aromatic ring to mimic the 2,3-dichlorophenyl group. The 2,3-dimethylphenyl derivative **27** displayed slightly higher D₃ affinity than the parent 2,3-dichlorophenyl derivative 19 and showed at least 300-fold selectivity over D_2 , D_4 , 5-HT_{1A}, and α_1 receptors. Also, 1-naphthalenyl derivative **28** displayed high D_3 affinity ($K_i = 0.54$ nM), but it proved to be nonselective over D₄ and 5-HT_{1A} receptors. Isoquinoline 29 and 1,2-benzisoxazole 30 were significantly less potent than **19** at D₃ receptor. However, data concerning derivatives **27–30** did not provide clear information for SAFIR on that part of the molecule.

For the second modification, we replaced the 3-methoxyphenyl ring of compound 19 with a variety of bicyclic aromatic rings including 4-bromo-1-methoxy-2-naphthalenyl, 19 1-methoxy-2-naphthalenyl, 20 1,1'-biphenyl, 21 4-quinolyl¹⁷ (compounds **31–41**) that are present in already reported D₃ ligands. All these compounds possessed high D_3 receptor affinity (0.13 nM < K_i < 4.97 nM) and high selectivity over D_2 , D_4 , 5-H T_{1A} , and α_1 receptors. Therefore, it seems clear that the replacement of the 3-methoxyphenyl ring attached to the amide moiety of compound 19 with a bicyclic aromatic ring did not change the D₃ affinity but greatly increased the specificity for the D_3 receptor.

In conclusion, structural modifications of the highaffinity D_4 ligand PB12 (1) have led to the identification of several N-[4-(4-arylpiperazin-1-yl)butyl]arylcarboxamides with high affinity for D₃ receptor. Moreover, the benzamides derived from aromatic bicyclic carboxylic acid were also highly selective over D₂, D₄, 5-HT_{1A}, and α_1 receptors. Finally, the in vitro binding profiles of compounds 27, 32, and 41 suggest that these highly potent and selective D₃ receptor ligands may be particularly attractive potential candidates for receptor imaging with PET. Moreover, it is generally more desirable to perform PET studies with competitive receptor antagonists, and compounds 27, 32, and 41 should also possess this property. In fact, they are structurally closely related to the D₃ receptor antagonists NGB 2904 and NGB 2849.16 The phenolic precursors of compounds 27, 32, and 41 will provide 11C radiolabeled derivatives that will be tested in PET studies for their ability of in vitro imaging of primate brain D₃ receptor.

Experimental Section

Chemistry. Column chromatography was performed with 1:30 ICN silica gel 60A (63–200 μ m) as the stationary phase. Melting points were determined in open capillaries on a Gallenkamp electrothermal apparatus. Elemental analyses (C, H, N) were performed on Eurovector Euro EA 3000 analyzer or on a Carlo Erba model 1106 instrument; the analytical results were within $\pm 0.4\%$ of the theoretical values for the formula given. ¹H NMR spectra were recorded at 90 MHz on a Varian EM-390 spectrometer or at 300 MHz on a Bruker AM 300 WB spectrometer or on a Varian Mercury-VX spectrometer. All chemical shift values are reported in ppm (δ). Recording of mass spectra was done on an HP6890-5973 MSD gas chromatograph/mass spectrometer; only significant m/zpeaks, with their percentage of relative intensity in parentheses, are reported. All spectra were in accordance with the

assigned structures. Purity of target compounds was checked by HPLC analysis on a Perkin-Elmer series 200 LC instrument using a Phenomenex Prodigy ODS-3 RP-18 column (250 imes 4.6 mm, 5 μ particle size) and equipped with a Perkin-Elmer 785A UV/vis detector setting $\lambda = 254$ nm. All compounds were eluted with CH₃OH/H₂O/Et₃N, 4:1:0.01, v/v, at a flow rate of 1 mL/ min. A standard procedure was used to transform final compounds into their hydrochloride or oxalate salts that were recrystallized as detailed in Table 1.

1-(2,3-Dichlorophenyl)piperazine was a kind gift by Clariant Life Science Molecules (Origgio, Varese, Italy). The following compounds were synthesized according to published procedures: 1-(1-naphthalenyl)piperazine, 24 1-(4-chloro-2-pyridinyl)piperazine, 25 1-(4-methyl-2-pyridinyl)piperazine, 25 1-(isoquinolin-1-yl)piperazine,²⁷ 4-bromo-2-methoxy-1-naphthoic acid,²⁸ 2-methoxy-1-naphthoic acid,²⁹ N-(2-chloroethyl)-3-methoxybenzamide (2), 11 4-(2,3-dichlorophenyl)-1-piperazinebutanamine (4e), 16 $3\hbox{-}[4\hbox{-}(4\hbox{-aminobutyl})\hbox{-}1\hbox{-}piperazinyl]\hbox{-}1,2\hbox{-}benzisoxazole\ (\textbf{4f}),^{30}\ 4\hbox{-}(2\hbox{-}2)$ methoxyphenyl)-1-piperazinebutanamine (4g),31 4-(2-methoxyphenyl)-1-piperazinepentanamine (4j).32

N-(3-Chloropropyl)-3-methoxybenzamide (3). To a cooled mixture containing 3-chloropropylamine hydrochloride (4.10 g, 31.5 mmol) in 1.2% aqueous NaOH (120 mL) was added dropwise under vigorous stirring a CH₂Cl₂ solution (50 mL) of 3-methoxybenzoyl chloride, prepared from the corresponding acid (5.05 g, 33.2 mmol) and SOCl₂ (10 mL). Then, the aqueous layer was separated and extracted with CH₂Cl₂. The combined organic layers were dried over Na2SO2 and evaporated to dryness under reduced pressure. The crude residue was chromatographed (CHCl₃ as eluent) to give pure benzamide 3 as a solid (4.53 g, 63% yield). 1 H NMR (90 MHz, CDCl₃): δ 1.93-2.25 (m, 2 H, 2 CH $_{2}$ CH $_{2}$ CH $_{2}$), 3.50-3.70 (m, 4H, 2 CH $_{2}$ -CH₂CH₂), 3.83 (s, 3H, CH₃), 6.83 (br s, 1H, NH), 6.90-7.45 (m, 4H, aromatic); GC/MS m/z 229 (M⁺ + 2, 3), 227 (M⁺, 9), 192 (58), 164 (20), 135 (100).

4-(2,3-Dichlorophenyl)-1-piperazinepentanenitrile (4a). A stirred mixture of 1-(2,3-dichlorophenyl)piperazine (1.71 g, 7.4 mmol), 5-chloropentanenitrile (0.70 mL, 6.2 mmol), and an excess of anhydrous Na₂CO₃ in acetonitrile (50 mL) was refluxed overnight. After cooling, the mixture was evaporated to dryness and water was added to the residue. The aqueous phase was extracted with CH_2Cl_2 (2 \times 30 mL) and the collected organic layers were dried over Na2SO4 and evaporated under reduced pressure. The crude residue was chromatographed (CHCl₃/AcOEt, 1:1 as eluent) to yield pure **4a** as a white semisolid (1.6 g, 86% yield). 1 H NMR (90 MHz, CDCl₃): δ 1.50-1.85 [m, 4H, $(CH_2)_2CH_2CN$], 2.25-2.70 [m, 8H, $(CH_2)_2$ -NCH₂, CH₂CN], 3.03 [br t, 4H, ArN(CH₂)₂], 6.80-7.25 (m, 3H, aromatic); GC/MS m/z 313 (M⁺ + 2, 18), 312 (M⁺ + 1, 7), 311 (M⁺, 27), 245 (72), 243 (100).

4-(2,3-Dimethylphenyl)-1-piperazinebutanenitrile (4b). As above, the title compound was obtained in 38% yield starting from 1-(2,3-dimethylphenyl)piperazine and 4-chlorobutanenitrile. 1 H NMR (90 MHz, CDCl₃): δ 1.75–2.10 (m, 2H, CH₂CH₂CN), 2.27 and 2.33 (2 s, 6H, 2 CH₃), 2.37-2.75 [m, 8H, $(CH_2)_2NCH_2$, CH_2CN , 2.95 [br t, 4H, $ArN(CH_2)_2$], 6.85-7.25 (m, 3H, aromatic); GC/MS m/z 259 (M⁺ + 2, 2), 258 (M⁺ + 1, 20), 257 (M⁺, 100), 217 (87), 203 (35).

4-(1-Naphthalenyl)-1-piperazinebutanenitrile (4c). Title compound was prepared as above in 85% yield starting from 1-(1-naphthalenyl)piperazine and 4-chlorobutanenitrile. H NMR (90 MHz, CDCl₃): δ 1.80–2.07 (m, 2H, C H_2 CH₂CN), 2.27 3.17 [m, 8H, (CH₂)₂NCH₂, CH₂CN], 3.60 [br t, 4H, ArN(CH₂)₂], 7.05–8.30 (m, 7H, aromatic); GC/MS m/z 281 (M⁺ + 2, 3), 280 $(M^+ + 1, 25), 279 (M^+, 100), 239 (49), 154 (53).$

4-(1-Isoquinolyl)-1-piperazinebutanenitrile (4d). As for compound 4a, nitrile 4d was prepared from 1-(1-isoquinolyl)piperazine and 4-chlorobutanenitrile. The crude residue was chromatographed with CHCl₃/CH₃OH, 19:1, as eluent, in 28% yield. ¹H NMR (90 MHz, CDCl₃): δ 1.75–2.05 (m, 2H, C H_2 -CH₂CN), 2.33-2.75 [m, 8H, (CH₂)₂NCH₂, CH₂CN], 3.45 [br t, 4H, ArN(CH₂)₂], 7.17-8.20 (m, 6H, aromatic); GC/MS m/z 281 $(M^{\scriptscriptstyle +} + 1, \, 3), \, 280 \, (M^{\scriptscriptstyle +}, \, 11), \, 171 \, (20), \, 157 \, (100), \, 144 \, (40).$

General Procedure for the Synthesis of Amines 5a-

very carefully until gas evolution ceased. The mixture was treated with 3 N HCl (20 mL) and was refluxed for 1 h. After cooling, the mixture was alkalized with 3 N NaOH and extracted with CH_2Cl_2 (2 \times 50 mL). The collected organic layers were dried over Na_2SO_4 and the solvent was evaporated under reduced pressure to give the pure amine as a colorless oil

4-(2,3-Dichlorophenyl)-1-piperazinepentanamine (5a). Nearly quantitative yield. ¹H NMR (90 MHz, CDCl₃): δ 1.25–1.80 [m, 8H, (C H_2)₃CH₂N H_2 , 2H D₂O exchanged], 2.15–2.80 [m, 8H, (CH₂)₂NCH₂, C H_2 NH₂], 3.15 [br t, 4H, ArN(C H_2)₂], 6.80–7.30 (m, 3H, aromatic); GC/MS m/z 315 (M⁺, 1), 245 (68), 243 (100), 200 (29), 172 (25), 141 (76).

4-(2,3-Dimethylphenyl)-1-piperazinebutanamine (5b). 77% Yield. 1 H NMR (90 MHz, CDCl₃): δ 1.53–2.10 [m, 6H, (C H_2)₂CH₂N H_2 , 2H D₂O exchanged], 2.27 and 2.33 (2 s, 6H, 2 CH₃), 2.50–2.80 [m, 8H, (CH₂)₂NCH₂, C H_2 NH₂], 3.00 [br t, 4H, ArN(C H_2)₂], 6.90–7.30 (m, 3H, aromatic); GC/MS m/z 262 (M⁺ + 1, 1), 261 (M⁺, 3), 203 (79), 160 (62), 146 (78), 132 (84), 127 (100).

4-(1-Naphthalenyl)-1-piperazinebutanamine (5c). 74% Yield. 1 H NMR (90 MHz, CDCl₃): δ 1.45–1.98 [m, 6H, (C H_2)₂-CH₂N H_2 , 2H D₂O exchanged], 2.30–2.90 [m, 8H, (CH₂)₂NCH₂, C H_2 NH₂], 3.15 [br t, 4H, ArN(C H_2)₂], 7.10–8.35 (m, 7H, aromatic); GC/MS m/z 284 (M⁺ + 1, 2), 283 (M⁺, 8), 225 (33), 182 (31), 154 (50), 127 (100).

4-(1-Isoquinolyl)-1-piperazinebutanamine (5d). 34% Yield. 1 H NMR (90 MHz, CDCl₃): δ 1.40–2.03 [m, 6H, (C H_2)₂-CH₂N H_2 , 2H D₂O exchanged], 2.33–3.00 [m, 8H, (CH₂)₂NCH₂, C H_2 NH₂], 3.35 [br t, 4H, ArN(C H_2)₂], 7.10–8.15 (m, 6H, aromatic); GC/MS m/z 284 (M⁺, 0.3), 157 (100).

General Procedure for the Synthesis of Benzamides 8–18. A stirred solution of the appropriate 1-arylpiperazine (6.0 mmol), chloroderivative 2 (5.0 mmol) (or compound 3 in the case of the benzamide 18), and triethylamine (4 mL) in toluene (50 mL) was refluxed for 20 h. Then the solvent was evaporated under reduced pressure and the residue taken up with a 20% aqueous Na_2CO_3 and extracted with AcOEt. The organic layer was dried (Na_2SO_4) and evaporated to dryness. The crude residue was chromatographed as detailed below to give target benzamides as pale yellow oils or solids.

N-[2-[4-(2-Chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (8). Eluted with CHCl₃/AcOEt, 1:1, in 59% yield. ¹H NMR (300 MHz, CDCl₃): δ 2.68 [br t, 6H, CH₂N-(CH₂)₂], 3.08 [br s, 4H, (CH₂)₂NAr], 3.57 (q, 2H, J = 5.6 Hz, NHCH₂), 3.84 (s, 3H, CH₃), 6.84 (br s, 1H, NH, D₂O exchanged), 6.92–7.38 (m, 8H, aromatic); GC/MS m/z 373 (M⁺, 1), 211 (36), 209 (100).

N-[2-[4-(3-Chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (9). Eluted with CHCl₃/AcOEt, 1:1, in 18% yield. ¹H NMR (300 MHz, CDCl₃): δ 2.65−2.69 [m, 6H, CH₂N-(CH₂)₂], 3.22 [br t, 4H, (C*H*₂)₂NAr], 3.59 (q, 2H, *J* = 5.6 Hz, NHC*H*₂), 3.83 (s, 3H, OCH₃), 6.75−7.38 (m, 9H, aromatic, NH, 1H D₂O exchanged); GC/MS *m*/*z* 374 (M⁺ + 1, 1), 373 (M⁺, 4), 211 (34), 209 (100), 166 (21).

N-[2-[4-(4-Methylphenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (10). Eluted with CHCl₃/AcOEt, 1:1, in 10% yield. ¹H NMR (300 MHz, CDCl₃): δ 2.27 (s, 3H, CH₃), 2.64 – 2.69 [m, 6H, CH₂N(CH₂)₂], 3.17 [br t, 4H, (CH₂)₂NAr], 3.58 (q, 2H, J = 5.6 Hz, NHCH₂), 3.85 (s, 3H, OCH₃), 6.84–7.39 (m, 9H, aromatic, NH, 1H D₂O exchanged); GC/MS m/z 354 (M⁺ + 1, 4), 353 (M⁺, 15), 189 (100).

N-[2-[4-(4-Methoxyphenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (11). Eluted with CHCl₃/CH₃OH, 19:1, in 44% yield. ¹H NMR (300 MHz, CDCl₃): δ 2.64–2.69 [m, 6H, CH₂N-(CH₂)₂], 3.11 [br t, 4H, (C*H*₂)₂NAr], 3.58 (q, 2H, J = 5.6 Hz, NHC*H*₂), 3.77 and 3.84 (2 s, 6H, 2 CH₃), 6.83–7.38 (m, 9H,

aromatic, NH, 1H D_2O exchanged); GC/MS m/z 371 (M⁺ + 2, 1), 370 (M⁺ + 1, 8), 369 (M⁺, 35), 205 (100), 135 (20).

N-[2-[4-(4-Fluorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (12). Eluted with CHCl₃/CH₃OH, 19:1, in 72% yield. ¹H NMR (300 MHz, CDCl₃): δ 2.63−2.69 [m, 6H, CH₂N-(CH₂)₂], 3.12 [br t, 4H, (CH₂)₂NAr], 3.57 (q, 2H, J = 5.6 Hz, NHCH₂), 3.82 (s, 3H, CH₃), 6.82−7.38 (m, 9H, aromatic, NH, 1H D₂O exchanged); GC/MS m/z 358 (M⁺ + 1, 2), 357 (M⁺, 10), 193 (100), 150 (26).

N-[2-[4-(2,3-Dichlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (13). Eluted with CHCl₃/AcOEt, 1:1, in 11% yield. ¹H NMR (300 MHz, CDCl₃): δ 2.67 [br t, 6H, CH₂N-(CH₂)₂], 3.07 [br s, 4H, (C*H*₂)₂NAr], 3.57 (q, 2H, J = 5.6 Hz, NHC*H*₂), 3.83 (s, 3H, CH₃), 6.82 (br s, 1H, NH, D₂O exchanged), 6.91–7.38 (m, 7H, aromatic); GC/MS m/z 409 (M⁺ + 2, 1), 407 (M⁺, 1), 245 (64), 243 (100).

N-[2-(4-Phenylpiperazin-1-yl)ethyl]-3-methoxybenzamide (14). Eluted with CHCl₃/AcOEt, 1:1, in 11% yield. 1 H NMR (300 MHz, CDCl₃): δ 2.64−2.69 [m, 6H, CH₂N(CH₂)₂], 3.21 [br t, 4H, (CH₂)₂NAr], 3.58 (q, 2H, J = 5.6 Hz, NHCH₂), 3.83 (s, 3H, CH₃), 6.82−7.38 (m, 10H, aromatic, NH, 1H D₂O exchanged); GC/MS m/z 340 (M $^+$ + 1, 1), 339 (M $^+$, 6), 175 (100), 132 (24).

N-[2-[4-(1-Naphthalenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (15). Eluted with CHCl₃/AcOEt, 1:1, in 10% yield. ¹H NMR (300 MHz, CDCl₃): δ 2.77 [t, 2H, J = 5.9 Hz, C H_2 N(CH₂)₂], 2.84 [br s, 4H, CH₂N(C H_2)₂], 3.17 [br s, 4H, (C H_2)₂NAr], 3.63 (q, 2H, J = 5.6 Hz, NHC H_2), 3.85 (s, 3H, CH₃), 6.99–8.19 (m, 12H, aromatic, NH, 1H D₂O exchanged); GC/MS m/z 391 (M⁺ + 2, 1), 390 (M⁺ + 1, 4), 389 (M⁺, 14), 225 (100).

N-[2-[4-(4-Chloro-2-pyridinyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (16). Eluted with CHCl₃/CH₃OH, 19:1, in 11% yield. ¹H NMR (300 MHz, CDCl₃): δ 2.60−2.67 [m, 6H, CH₂N(CH₂)₂], 3.49 [br t, 4H, (CH₂)₂NAr] 3.58 (q, 2H, J = 5.6 Hz, NHCH₂), 3.83 (s, 3H, OCH₃), 6.59 (d, 1H, J = 8.7 Hz, CCl=CH), 6.89 (br s, 1H, NH, D₂O exchanged), 6.99−7.38 (m, 5H, aromatic), 8.01 (d, 1H, J = 1.8 Hz, N=CH); GC/MS m/z 375 (M⁺ + 1, 1), 374 (M⁺, 4), 246 (31), 221 (21), 212 (31), 210 (100), 181 (33), 155 (35).

N-[2-[4-(4-Methyl-2-pyridinyl)piperazin-1-yl]ethyl]-3-methoxybenzamide (17). Eluted with CHCl₃/CH₃OH, 19:1, in 23% yield. ¹H NMR (300 MHz, CDCl₃): δ 2.19 (s, 3H, CH₃), 2.62–2.67 [m, 6H, CH₂N(CH₂)₂], 3.48–3.61 [m, 6H, (C*H*₂)₂NAr, NHC*H*₂], 3.84 (s, 3H, OCH₃), 6.59 (d, 1H, J = 8.4 Hz, C=CH), 6.90 (br s, 1H, NH, D₂O exchanged), 7.00–7.39 (m, 5H, aromatic), 8.01–8.02 (m, 1H, N=CH); GC/MS m/z 355 (M⁺ + 1, 2), 354 (M⁺, 9), 246 (74), 190 (100), 178 (22), 161 (44), 135 (99), 121 (99).

N-[3-[4-(2,3-Dichlorophenyl)piperazin-1-yl]propyl]-3-methoxybenzamide (18). Eluted with CHCl₃/CH₃OH, 19:1, in 56% yield. ¹H NMR (300 MHz, CDCl₃): δ 1.88–1.95 (m, 2H, NHCH₂C H_2), 2.65–2.90 [m, 6H, CH₂N(CH₂)₂], 3.10 [br s, 4H, (C H_2)₂NAr], 3.60 (q, 2H, J = 5.4 Hz, NHC H_2), 3.82 (s, 3H, CH₃), 6.90–7.48 (m, 7H, aromatic), 8.32 (br s, 1H, NH, D₂O exchanged); GC/MS m/z 423 (M⁺ + 2, 1), 421 (M⁺, 3), 386 (23), 245 (50), 243 (78), 221 (100), 192 (63).

General Procedure for the Synthesis of Benzamides 19, 20, 22, 23, 27–30, 32, 33, 35. To a cooled mixture containing the appropriate amine (5.0 mmol) in 1.2% aqueous NaOH (20 mL) was added dropwise under vigorous stirring a CH_2Cl_2 solution (50 mL) of acyl chloride, prepared from the corresponding acid (6.0 mmol) and SOCl_2 (5 mL). Then, the aqueous layer was separated and extracted twice with CH₂-Cl₂. The combined organic layers were dried over Na₂SO₄ and evaporated to dryness under reduced pressure. The crude residue was chromatographed as detailed below to give target benzamide as a pale yellow liquid.

N-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]-3-methoxybenzamide (19). Eluted with CHCl₃/CH₃OH, 19:1, in 65% yield. ¹H NMR (300 MHz, CDCl₃): δ 1.63–1.71 [m, 4H, NHCH₂(C H_2)₂], 2.46 [t, 2H, J = 6.8 Hz, C H_2 N(CH₂)₂], 2.61 [br s, 4H, CH₂N(C H_2)₂], 3.01 [br s, 4H, (C H_2)₂NAr], 3.45 (q, 2H, J = 6.1 Hz, NHC H_2), 3.83 (s, 3H, CH₃), 6.72 (br t, 1H,

NH), 6.87–7.40 (m, 7H, aromatic); GC/MS m/z 436 (M⁺ + 1, 1), 435 (M⁺, 2), 261 (32), 245 (50), 243 (79), 235 (100), 135 (53).

N-[5-[4-(2,3-Dichlorophenyl)piperazin-1-yl]pentyl]-3methoxybenzamide (20). Eluted with CHCl₃/AcOEt, 1:1, in 93% yield. 1 H NMR (300 MHz, CDCl₃): δ 1.41–1.49 (m, 2H, CH₂ČH₂CH₂), 1.59-1.71 (m, 4H, CH₂CH₂CH₂), 2.50 [t, 2H, J = 7.6 Hz, $CH_2N(CH_2)_2$], 2.71 [br s, 4H, $CH_2N(CH_2)_2$], 3.11 [br s, 4H, $(CH_2)_2NAr$], 3.47 (q, 2H, J = 6.4 Hz, $NHCH_2$), 3.84 (s, 3H, CH₃), 6.26 (br s, 1H, NH), 6.93-7.36 (m, 7H, aromatic); GC/MS m/z 450 (M⁺ + 1, 1), 449 (M⁺, 2), 275 (30), 263 (20), 249 (100), 245 (65), 243 (99).

N-[4-[4-(2-Methoxyphenyl)piperazin-1-yl]butyl]-3-methoxybenzamide (22). Eluted with CHCl₃/CH₃OH, 19:1, in 41% yield. ¹H NMR (300 MHz, CDCl₃): δ 1.65–1.69 [m, 4H, NHCH₂(C H_2)₂], 2.48 [t, 2H, J = 6.5 Hz, C H_2 N(CH₂)₂], 2.67 [br s, 4H, CH₂N(CH₂)₂], 3.07 [br s, 4H, (CH₂)₂NAr], 3.45-3.49 (m, 2H, NHCH₂), 3.82 and 3.85 (2 s, 6H, 2 CH₃), 6.83-7.36 (m, 9H, aromatic, NH); GC/MS m/z 398 (M⁺ + 1, 8), 397 (M⁺, 29), 382 (40), 235 (55), 205 (100), 190 (30).

N-[5-[4-(2-Methoxyphenyl)piperazin-1-yl]pentyl]-3methoxybenzamide (23). Eluted with CHCl₃/CH₃OH, 19:1, in 46% yield. ¹H NMR (300 MHz, CDCl₃): δ 1.40–1.47 (m, 2H, CH₂CH₂CH₂), 1.56–1.70 (m, 4H, CH₂CH₂CH₂), 2.44 [t, 2H, $J = 7.5 \text{ Hz}, \text{ C}H_2\text{N}(\text{CH}_2)_2$], 2.69 [br s, 4H, CH₂N(CH₂)₂], 3.11 [br s, 4H, $(CH_2)_2NAr$], 3.45 (q, 2H, J = 6.7 Hz, $NHCH_2$), 3.83 and 3.85 (2 s, 6H, 2 CH₃), 6.29 (br s, 1H, NH), 6.83-7.36 (m, 8H, aromatic); GC/MS m/z 412 (M⁺ + 1, 6), 411 (M⁺, 22), 396 (21), 249 (32), 205 (100), 135 (43).

N-[4-[4-(2,3-Dimethylphenyl)piperazin-1-yl]butyl]-3methoxybenzamide (27). Eluted with CHCl₃/AcOEt, 1:1, in 30% yield. ¹H NMR (300 MHz, CDCl₃): δ 1.72–1.65 [m, 4H, NHCH₂(C H_2)₂], 2.20 and 2.26 (2 s, 6H, 2 CH₃), 2.47 [t, 2H, J= 6.9 Hz, $CH_2N(CH_2)_2$], 2.61 [br s, 4H, $CH_2N(CH_2)_2$], 2.87 [br t, 4H, $(CH_2)_2NAr$], 3.45-3.51 (m, 2H, $NHCH_2$), 3.83 (s, 3H, OCH₃), 6.80 (br t, 1H, NH), 6.85-7.36 (m, 7H, aromatic); GC/ MS m/z 397 (M⁺ + 2, 1), 396 (M⁺ + 1, 3), 395 (M⁺, 13), 380 (21), 235 (100), 203 (85).

N-[4-[4-(1-Naphthalenyl)piperazin-1-yl]butyl]-3-methoxybenzamide (28). Eluted with CHCl₃/AcOEt, 1:1, in 54% yield. ^{1}H NMR (300 MHz, CDCl₃): δ 1.75–1.68 [m, 4H, NHCH₂(C H_2)₂], 2.54 [t, 2H, J = 6.7 Hz, C H_2 N(CH₂)₂], 2.75 [br s, 4H, CH₂N(CH₂)₂], 3.12 [br s, 4H, (CH₂)₂NAr], 3.52 (q, 2H, J = 5.6 Hz, $NHCH_2$), 3.83 (s, 3H, CH_3), 6.82 (br s, 1H, NH), 6.91-8.20 (m, 11H, aromatic); GC/MS m/z 419 (M⁺ + 2, 2), $418 \ (M^+ + 1, \ 11), \ 417 \ (M^+, \ 38), \ 402 \ (35), \ 235 \ (100), \ 225 \ (94).$

N-[4-[4-(1-Isoquinolyl)piperazin-1-yl]butyl]-3-methoxybenzamide (29). Eluted with CHCl₃/AcOEt, 1:1, in 24% yield. ¹H NMR (300 MHz, CDCl₃): δ 1.70 [br s, 4H, NHCH₂- $(CH_2)_2$], 2.51 [t, 2H, J = 6.7 Hz, $CH_2N(CH_2)_2$], 2.71 [br s, 4H, $CH_2N(CH_2)_2$, 3.43 [br s, 4H, $(CH_2)_2NAr$], 3.50 (q, 2H, J = 5.6Hz, NHCH₂), 3.83 (s, 3H, CH₃), 6.57 (br s, 1H, NH), 6.99-8.14 (m, 10H, aromatic); GC/MS m/z 418 (M⁺, 2), 157 (100).

N-[4-[4-(1,2-Benzisoxazol-3-yl)piperazin-1-yl]butyl]-3methoxybenzamide (30). Eluted with CHCl₃/AcOEt, 1:1, in 37% yield. 1 H NMR (300 MHz, CDCl₃): δ 1.62–1.69 [m, 4H, $NHCH_2(CH_2)_2$], 2.45 [t, 2H, J = 6.9 Hz, $CH_2N(CH_2)_2$], 2.62 [br t, 4H, $CH_2N(CH_2)_2$], 3.48 (q, 2H, J = 6.2 Hz, $NHCH_2$), 3.55 [br t, 4H, (CH₂)₂NAr], 3.82 (s, 3H, CH₃), 6.55 (br s, 1H, NH), 6.35-7.69 (m, 8H, aromatic); GC/MS m/z 408 (M⁺, 14), 249 (63), 216 (40), 206 (28), 161 (33), 135 (100).

N-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]-1methoxy-2-naphthalenecarboxamide (32). Eluted with CHCl₃/AcOEt, 19:1, in 45% yield. ¹H NMR (300 MHz, CDCl₃): δ 1.67–1.77 [m, 4H, NHCH₂(C H_2)₂], 2.50 [t, 2H, J = 7.0 Hz, $CH_2N(CH_2)_2$, 2.65 [br s, 4H, $CH_2N(CH_2)_2$], 3.02 [br s, 4H, $(CH_2)_2NAr$, 3.55–3.61 (m, 2H, NHC H_2), 4.00 (s, 3H, CH₃), 6.84-8.17 (m, 10H, aromatic, NH).

N-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]-2naphthalenecarboxamide (33). Eluted with CHCl₃/AcOEt, 1:1 in 48% yield. ¹H NMR (300 MHz, CDCl₃): δ 1.66–1.79 [m, 4H, NHCH₂(C H_2)₂], 2.48 [t, 2H, J = 6.7 Hz, C H_2 N(CH₂)₂], 2.62 [br s, 4H, $CH_2N(CH_2)_2$], 2.97 [br s, 4H, $(CH_2)_2NAr$], 3.54 (q, 2H, J = 6.2 Hz, NHC H_2), 6.71–8.33 (m, 11H, aromatic, NH).

N-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]-(1,1'biphenyl)-4-carboxamide (35). Eluted with CHCl₃/CH₃OH, 19:1, in 38% yield. 1 H NMR (300 MHz, CDCl₃): δ 1.68–1.75 [m, 4H, NHCH₂(C H_2)₂], 2.53 [t, 2H, J = 6.7 Hz, C H_2 N(CH₂)₂], 2.68 [br s, 4H, $CH_2N(CH_2)_2$], 3.05 [br t, 4H, $(CH_2)_2NAr$], 3.52 (q, 2H, J = 6.0 Hz, NHC H_2), 6.86-7.88 (m, 13H, aromatic,

General Procedure for the Synthesis of Benzamides 31, 34, 36-41. A mixture of the appropriate carboxylic acid (0.48 mmol) and 1,1'-carbonyldiimidazole (0.50 mmol) in 10 mL of anhydrous THF was stirred for 8 h. A solution of amine **5e** (0.5 mmol) in 10 mL of anhydrous THF was added and the resulting mixture was stirred for 1 h. The reaction mixture was partitioned between AcOEt and H2O. The organic layer was washed with aqueous Na₂CO₃ solution, dried (Na₂SO₄), and concentrated in vacuo. The crude residue was chromatographed with CHCl₃/CH₃OH, 19:1 to afford the pure benza-

N-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]-4bromo-1-methoxy-2-naphthalenecarboxamide (31). 36% Yield. ¹H NMR (300 MHz, CDCl₃): δ 1.66–1.76 [m, 4H, NHCH₂(C H_2)₂], 2.49 [t, 2H, J = 7.0 Hz, C H_2 N(CH₂)₂], 2.63 [br s, 4H, CH₂N(CH₂)₂], 3.01 [br t, 4H, (CH₂)₂NAr], 3.54-3.60 (m, 2H, NHC*H*₂), 3.99 (s, 3H, CH₃), 6.82–8.38 (m, 9H, aromatic,

N-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]-4quinolinecarboxamide (34). 49% Yield. ¹H NMR (300 MHz, CDCl₃): δ 1.68–1.82 [m, 4H, NHCH₂(CH₂)₂], 2.41–2.55 [m, 10H, $CH_2N(CH_2)_2$, $(CH_2)_2NAr$], 3.52-3.58 (m, 2H, $NHCH_2$), 6.44-8.91 (m, 10H, aromatic, NH); GC/MS m/z 458 (M⁺ + 2, 19), $457 (M^+ + 1, 9)$, $456 (M^+, 30)$, 256 (57), 245 (64), 243 (100).

N-[4-[4-(2,3-Dichlorophenyl)]piperazin-1-yl|butyl|-2benzofurancarboxamide (36). 66% Yield. ¹H NMR (300 MHz, CDCl₃): δ 1.64–1.71 [m, 4H, NHCH₂(C H_2)₂], 2.49 [t, 2H, $J = 6.9 \text{ Hz}, CH_2N(CH_2)_2$, 2.67 [br s, 4H, $CH_2N(CH_2)_2$], 3.09 [br s, 4H, $(CH_2)_2$ NAr], 3.51 (q, 2H, J = 6.5 Hz, $NHCH_2$), 6.90– 7.68 (m, 9H, aromatic, NH); $GC/MS m/z 447 (M^+ + 2, 1), 446$ $(M^+ + 1, 1), 445 (M^+, 2), 271 (21), 245 (100), 243 (62)$

N-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]-1Hindole-2-carboxamide (37). 7% Yield. ¹H NMR (300 MHz, DMSO- d_6): δ 1.45–1.62 [m, 4H, NHCH₂(C H_2)₂], 2.36 [br t, 2H, $CH_2N(CH_2)_2$, 2.51 [br s, 4H, $CH_2N(CH_2)_2$], 2.95 [br s, 4H, $(CH_2)_2NAr$, 3.36-3.42 (m, 2H, NHC H_2), 6.98-7.59 (m, 8H, aromatic), 8.44 (br t, 1H, NH), 11.51 (s, 1H, indole NH, D₂O exchanged); GC/MS m/z 446 (M⁺ + 2, 11), 445 (M⁺ + 1, 7), 444 (M⁺, 19), 270 (24), 245 (72), 244 (100), 243 (94).

N-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]-1Hindole-3-carboxamide (38). 11% Yield. ¹H NMR (300 MHz, DMSO- d_6): δ 1.44–1.58 [m, 4H, NHCH₂(C H_2)₂], 2.34 [br s, 2H, $CH_2N(CH_2)_2$], 2.50 [br t, 4H, $CH_2N(CH_2)_2$], 2.92 [br s, 4H, $(CH_2)_2NAr$, 3.20–3.28 (m, 2H, NHC H_2), 7.00–8.10 (m, 9H, aromatic, NH), 11.50 (s, 1H, indole NH, D₂O exchanged).

N-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]-1Hindazole-3-carboxamide (39). 39% Yield. ¹H NMR (300 MHz, DMSO- d_6): δ 1.76 [br s, 4H, NHCH₂(C H_2)₂], 2.15 [br s, 2H, $CH_2N(CH_2)_2$, 2.80 [br s, 4H, $CH_2N(CH_2)_2$], 3.18 [br s, 4H, $(CH_2)_2NAr$], 3.24 (br s, 2H, NHC H_2), 7.26-8.37 (m, 7H, aromatic), 8.52 (br s, 1H, CONH), 13.60 (s, 1H, indazole NH).

N-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]benzo[b]thiophene-2-carboxamide (40). 66% Yield. ¹H NMR (300 MHz, CDCl₃): δ 1.44–1.60 [m, 4H, NHCH₂(C H_2)₂], 2.38 [t, 2H, J = 6.5 Hz, $CH_2N(CH_2)_2$], 2.54 [br s, 4H, $CH_2N(CH_2)_2$], 2.94 [br s, 4H, $(CH_2)_2NAr$], 3.41 (q, 2H, J = 6.0 Hz, $NHCH_2$), 6.74–7.71 (m, 8H, aromatic), 8.74 (br t, 1H, NH); GC/MS m/z $463 (M^+ + 2, 1), 462 (M^+ + 1, 1), 461 (M^+, 3), 287 (32), 261$ (100), 245 (63), 243 (97).

N-[4-[4-(2,3-Dichlorophenyl)piperazin-1-yl]butyl]-7methoxy-2-benzofurancarboxamide (41). 70% Yield. ¹H NMR (300 MHz, CDCl₃): δ 1.64–1.73 [m, 4H, NHCH₂(C H_2)₂], 2.48 [t, 2H, J = 6.8 Hz, $CH_2N(CH_2)_2$], 2.66 [br s, 4H, CH_2N_2] $(CH_2)_2$], 3.08 [br s, 4H, $(CH_2)_2$ NAr], 3.51 (q, 2H, J = 6.5 Hz, $NHCH_2$), 3.69 (s, 3H, CH₃), 6.87-7.45 (m, 8H, aromatic, NH); GC/MS m/z 477 (M⁺ + 2, 1), 476 (M⁺ + 1, 1), 475 (M⁺, 3), 301 (30), 275 (100), 245 (57), 243 (83).

Biological Methods. 1. General. Human recombinant D_{4.4} dopamine receptor expressed in CHO cells, human recombinant D_{2L} dopamine receptor expressed in Sf9 cells, and rat recombinant D₃ dopamine receptor expressed in Sf9 cells were obtained from RBI (Research Biochemicals International, Natick, MA). For receptor binding studies, the compounds were dissolved in absolute ethanol. Male Wistar Hannover rats (200–250 g) were from Harlan (S. Pietro al Natisone, Italy). The animals were handled according to internationally accepted principles for care of laboratory animals (E. E. C. Council Directive 86/609, O. J. No. L358, December 18, 1986). 8-OH-DPAT hydrobromide was from RBI (Research Biochemicals International, Natick, MA); haloperidol, phentolamine hydrochloride, and clozapine were from Sigma-Aldrich (Milan, Italy); [3H]prazosin, [3H]8-OH-DPAT, and [3H]spiroperidol were obtained from NEN Life Science Products (Milan, Italy).

- 2. Radioligand Binding Assay at Rat-Cloned D₃ Dopaminergic Receptors. Binding of [3H]spiroperidol at rat-cloned D₃ receptor was performed according to Swarzenski et al.³³ with minor modifications. The reaction buffer consisted of 50 mM Tris, 5 mM MgCl₂, 5 mM EDTA, 5 mM KCl, 1.5 mM $CaCl_2,\,120$ mM NaČl (pH 7.4), including 100 μL of dopamine D_3 diluted membranes, 0.4 nM of [3H]spiroperidol ($K_d = 0.60$ nM), and 100 μ L of the drug solution (six to nine concentrations) for a total volume of $\tilde{1}$ mL. Samples were incubated at 27 °C for 60 min, then the incubation was stopped by rapid filtration through Whatman GF/C glass fiber filters (presoaked in 0.3% polyethylenimine). The filters were washed twice with 1 mL of ice-cold buffer (50 mM Tris, pH 7.4). Nonspecific binding was defined in the presence of 10 μ M haloperidol.
- 3. Radioligand Binding Assay at Human-Cloned D_{4.4} **Dopaminergic Receptors.** Binding of [3H]spiroperidol at human-cloned D_{4.4} receptor was performed according to Hadley et al.34 with minor modifications. The reaction buffer consisted of 50 mM Tris, 5 mM MgCl₂, 5 mM EDTA, 5 mM KCl, 1.5 mM CaCl₂ (pH 7.4), including 500 μL of dopamine D_{4.4} diluted membranes, 0.15 nM of [3 H]spiroperidol ($K_{d} = 0.17$ nM), and 100 μ L of the drug solution (six to nine concentrations) for a total volume of 1 mL. Samples were incubated at 25 °C for 60 min, then the incubation was stopped by rapid filtration through Whatman GF/A glass fiber filters (presoaked in 0.3% polyethylenimine). The filters were washed twice with 1 mL of ice-cold buffer (50 mM Tris, pH 7.4). Nonspecific binding was defined in the presence of 10 μM clozapine.
- 4. Radioligand Binding Assay at Human-Cloned D2L Dopaminergic Receptors. Binding of [3H]spiroperidol at human-cloned D_{2L} receptor was performed according to Hadley et al.³⁴ with minor modifications. The reaction buffer consisted of 50 mM Tris, 10 mM MgCl₂, 1 mM EDTA (pH 7.4), including 500 μL of dopamine D_{2L} receptor diluted membranes, 0.2 nM [3H]spiroperidol ($K_d = 0.20$ nM), and 100 μ L of the drug solution (six to nine concentrations) for a total volume of 1 mL. Samples were incubated at 27 °C for 60 min, then the incubation was stopped by rapid filtration through Whatman GF/C glass fiber filters (presoaked in 0.3% polyethylenimine). The filters were washed twice with 1 mL of ice-cold buffer (50 mM Tris, pH 7.4). Nonspecific binding was defined in the presence of 10 μ M haloperidol.
- 5. Radioligand Binding Assay at Rat Hippocampal Membranes 5-HT_{1A} Receptors. Binding experiments were performed according to Borsini et al.35 with minor modifications. Rats were killed by decapitation, the brain was quickly removed, and the hippocampus was dissected. The hippocampus (1.0 g) was homogenized with a Brinkman polytron (setting 5 for 3×15 s) in 25 mL of 50 mM Tris buffer, pH 7.6. The homogenate was centrifuged at 48000g for 15 min at 4 °C. The supernatant was discarded, and the pellet was resuspended in 25 mL of buffer, then preincubated for 10 min at 37 °C. The homogenate was centrifuged at 48000g for 15 min at 4 °C. The supernatant was discarded, and the final pellet was stored at -80 °C until used. Each tube received in a final volume of 1 mL of 50 mM Tris (pH 7.6) hippocampus membranes suspension and 1 nM [3H]-8-OH-DPAT. For competitive inhibition experiments, various concentrations of

drugs studied were incubated. Nonspecific binding was defined using 1 μ M 8-OH-DPAT. Samples were incubated at 37 °C for 20 min and then filtered on Whatman GF/B glass microfiber filters. The K_d value determined for 8-OH-DPAT was 8.8 nM.

- 6. Radioligand Binding Assay at Rat Cortical Membranes α_1 -Adrenoceptors. Binding experiments were performed according to Glossmann and Hornung³⁶ with minor modifications. Rats were killed by decapitation, the brain was quickly removed, and the cerebral cortex was dissected. The cerebral cortex (1.0 g) was homogenized with a Brinkman Polytron (setting 5 for 3×15 s) in 25 mL of buffer (50 mM Tris, 0.1 mM PMSF, pH 7.4). The homogenate was centrifuged at 1000g for 15 min at 4 °C. The supernatant was recovered and centrifuged at 50000g for 30 min at 4 °C. The final pellet was stored at -80 °C until used. Each tube received in a final volume of 1 mL of 50 mM Tris (pH 7.4) rat cerebral cortical membranes suspension and 1 nM [3H]prazosin. For competitive inhibition experiments, various concentrations of drugs studied were incubated. Nonspecific binding was defined using $10 \,\mu\mathrm{M}$ phentolamine. Samples were incubated at 25 °C for 50 min and then filtered on Whatman GF/B glass microfiber filters. The filters were presoaked for 50 min in Tris-polyethylenimine 0.5%. The K_d value determined for prazosin was 0.5 nM.
- 7. Statistical Analysis. The inhibition curves on the different binding sites of the compounds reported in Table 2 were analyzed by nonlinear curve fitting utilizing the Graph-Pad Prism program.³⁷ The value for the inhibition constant, K_i, was calculated by using the Cheng-Prusoff equation.³⁸

Acknowledgment. This study was supported by Research Grant No. 2001037552-003 from Università degli Studi di Bari and MURST (Italy) for the scientific program in CHIM/08 field (2002-2003).

References

- (1) Sokoloff, P.; Giros, B.; Martres, M. P.; Bouthenet, M. L.; Schwarz, J. C. Molecular cloning and characterization of a novel dopamine receptor (D₃) as a target of neuroleptics. Nature 1990, 347, 72-
- Sokoloff, P.; Giros, B.; Martres, M. P.; Andrieux, M.; Besancon, R.; Pilon, C.; Bouthenet, M. L.; Souil, E.; Schwartz, J. C. Localization and function of the D_3 dopamine receptor. *Arzneim*-Forsch./Drug Res. 1992, 42, 224-230.
- (3) Joyce, J. N. Dopamine D₃ receptor as a therapeutic target for antipsychotic and antiparkinsonian drugs. Pharmacol. Ther. **2001**, 90, 231–259.
- Schwartz, J. C.; Levesque, D.; Martres, M. P.; Sokoloff, P. Dopamine D3 receptor: basic and clinical aspects. Clin. Neuropharmacol. 1993, 16, 295-314.
- Caine, S. B.; Koob, G. F. Modulation of cocaine self-administration in the rat through D-3 dopamine receptors. Science 1993, 260, 1814-1816.
- Pilla, M.; Perachon, S.; Sautel, F.; Garrido, F.; Mann, A.; Wermuth, C. G.; Schwartz, J. C.; Everitt, B. J.; Sokoloff, P. Selective inhibition of cocaine-seeking behavior by a partial dopamine D₃ receptor agonist. *Nature* **1999**, *400*, 371–375. Wood, M. D.; Boyfield, I.; Nash, D. J.; Jewitt, F. R.; Avenell, K. Y.; Riley, G. J. Evidence for antagonist activity of the dopamine
- D_3 receptor partial agonist, BP 897, at human dopamine D_3 receptor. Eur. J. Pharmacol. 2000, 407, 47-51.
- (8) Halldin, C.; Gulyas, B.; Langer, O.; Farde, L. Brain radioligands state of the art and new trends. *Q. J. Nucl. Med.* **2001**, *45*, 139 - 152
- $Pilowsky,\,L.\,S.\,Probing\,targets\,for\,antipsychotic\,drug\,action\,with$ PET and SPET receptor imaging. Nucl. Med. Commun. 2001, 22, 829-833.
- (10) Huang, Y.; Martinez, D.; Simpson, N.; Guo, N.; Montoya, J.; Laruelle, M. Synthesis and evaluation of [11C]BP 897 as a potential PET radioligand for DA D₃ receptors. Abstr. Soc. Neurosci. 2000, 2154 (abstract no. 809.9).
- (11) Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V. N-[2-[4-(4-Chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide: a potent and selective dopamine D4 ligand. J. Med. Chem. **1998**, 41, 4903–4909.
- Perrone, R.; Berardi, F.; Colabufo, N. A.; Leopoldo, M.; Tortorella, V. A structure-affinity relationship study on derivatives of N-[2-[4-(4-chlorophenyl)piperazin-1-yl]ethyl]-3-methoxybenzamide, a high-affinity and selective D₄ receptor ligand. J. Med. Chem. **2000**, 43, 270-277.

- (13) Glase, S. A.; Akunne, H. C.; Heffner, T. G.; Johnson, S. J.; Kesten, S. R.; MacKenzie, R. G.; Manley, P. J.; Pugsley, T. A.; Wright, J. L.; Wise, L. D. 4-Bromo-1-methoxy-N-[2-(4-aryl-1piperazinyl)ethyl]-2-naphthalenecarboxamides: selective dopamine D₃ receptor partial agonists. Bioorg. Med. Chem. Lett. 1996, 6. 1361–1366.
- (14) Murray, P. J.; Harrison, L. E.; Johnson, M. R.; Robertson, G. M.; Scopes, D. I. C.; Bull, D. R.; Graham, E. A.; Hayes, A. G.; Kilpatrick, G. J.; Den Dass, I.; Large, C.; Sheehan, M. J.; Stubbs, J. C. M.; Turpin, M. P. A novel series of arylpiperazines with high affinity and selectivity for the dopamine D_3 receptor. *Bioorg.*
- Med. Chem. Lett. 1995, 5, 219–222.
 (15) Belliotti, T. R.; Kesten, S. R.; Rubin, J. R.; Wustrow, D. J.; Georgic, L. M.; Zoski, K. T.; Akunne, H. C.; Wise, L. D. Novel cyclo \bar{h} exyl amides as potent and selective D_3 dopamine receptor
- ligands. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 2403–2408. Yuan, J.; Chen, X.; Brodbeck, R.; Primus, R.; Braun, J.; Wasley, J. W. F.; Thurkauf, A. NGB 2904 and NGB 2849: two highly selective dopamine D₃ receptor antagonists. Bioorg. Med. Chem. Lett. 1998, 8, 2715-2718.
- (17) Stemp, G.; Ashmeade, T.; Branch, C. L.; Hadley, M. S.; Hunter, A. J.; Johnson, C. N.; Nash, D. J.; Thewlis, K. M.; Vong, A. K.; Austin, N. E.; Jeffrey, P.; Avenell, K. Y.; Boyfield, I.; Hagan, J. J.; Middlemiss, D. N.; Reavill, C.; Riley, G. J.; Routledge, C.; Wood, M. Design and synthesis of *trans-N*-[4-[2-(6-cyano-1,2,3,4tetrahydroisoquinolin-2-yl)ethyl]cyclohexyl]-4-quinolinecarboxamide (SB-277011): A potent and selective dopamine D₃ receptor antagonist with high oral bioavailability and CNS penetration in the rat. J. Med. Chem. 2000, 43, 1878-1885.
- (18) ClogP 4.0 (version for Windows); BioByte Corp.: Claremont, CA. (19) Huang, Y.; Luedtke, R. R.; Freeman, R. A.; Wu, L.; Mach, R. H. Synthesis and structure-activity relationships of naphthamides as dopamine D₃ receptor ligands. J. Med. Chem. 2001, 44, 1815
- (20) Pilla, M.; Perachon, S.; Sautel, F.; Garrido, F.; Mann, A.; Wermuth, C. G.; Schwartz, J. C.; Everitt, B. J.; Sokoloff, P. Selective inhibition of cocaine-seeking behaviour by a partial dopamine D₃ receptor agonist. Nature 1999, 400, 371-375.
- (21) Boyfield, I.; Coldwell, M. C.; Hadley, M. S.; Johnson, C. N.; Riley, G. J.; Scott, E. E.; Stacey, R.; Stemp, G.; Thewlis, K. M. A novel series of 2-aminotetralins with high affinity and selectivity for the dopamine D_3 receptor. *Bioorg. Med. Chem. Lett.* **1997**, *7*, 1995-1998.
- (22) Brown, H. C.; Choi, Y. M.; Narasimhan, S. Selective reductions. 29. A simple technique to achieve an enhanced rate of reduction of representative organic compounds by borane-dimethyl sulfide. J. Org. Chem. **1982**, 47, 3153—3163. (23) Cliffe, I. A.; Fletcher, A. Advances in 5-HT_{1A} antagonist research.
- Drugs Future **1993**, *18*, 631–642.
 Prelog, V.; Driza, G. J. The *N*-monoarylpiperazines and their
- derivatives. *Collect. Czech. Chem. Commun.* **1941**, *6*, 211–224. (25) Ishizumi, K.; Kojima, A.; Antoku, F. Synthesis and anxiolytic activity of N-substituted cyclic imides (1R*,2S*,3R*,4S*)-N-[4-[4-(2-pyrimidinyl)-1-piperazinyl]butyl]-2,3-bicyclo[2.2.1]heptanedicarboximide (tandospirone) and related compounds. *Chem. Pharm. Bull.* **1991**, *39*, 2288–2300.

- (26) Janssen, P. A. J.; 1-(2-Thienyl)-3-[4-(2-pyridyl)piperazine]-1propanol. U.S. Patent 2,973,360; Chem. Abstr. 1961, 55, 17668i.
- (27) Chen, X. Preparation of 1-(isoquinolin-1-yl)-4-(1-phenylmethyl)piperazines as dopamine receptor subtype specific ligands. U.S. Patent 6008352, 1999.
- Rognan, D.; Mann, A.; Wermuth, C. G.; Martres, M. P.; Giros, B.; Sokoloff, P.; Schwartz, J. C.; Lecomte, J. M.; Garrido, F. Preparation of N-[heterocyclyl(alkyl)]-2-naphthamides as dopaminergic antagonists. Eur. Pat. Appl. EP 539281, 1993.
- (29) Bretscher, E.; Rule, H. G.; Spence, J. Optical activity and the polarity of substituted groups. Part IX. Menthyl esters of methoxynaphthoic and of diphenyl-2-carboxylic acids. J. Chem. Soc. 1928, 1493-1504.
- (30) Norman, M. H.; Navas, F., III. Piperazine and piperidine derivatives, and their use as antipsychotics. PCT Int. Pat. Appl. WO 9316073, 1993
- (31) Perrone, R.; Berardi, F.; Leopoldo, M.; Tortorella, V.; Lograno, M. D.; Daniele, E.; Govoni, S. 5-HT_{1A} and D-2 receptor affinity of o-methoxyphenylpiperazine derivatives with terminal benzamide fragment on N-4 alkyl chain. 2. Farmaco 1995, 50, 505-
- (32) Wu, Y.; Smith, K. R.; Rayburn, J. W.; Kissel, J. W. Psychosedative agents. N-(4-Phenyl-1-piperazinylalkyl)-substituted cyclic imides. J. Med. Chem. 1969, 12, 876-881.
- Swarzenski, B. C.; Tang, L.; Oh, Y. J.; O'Malley, K. L.; Todd, R. D. Morphogenic potentials of D2, D3, and D4, dopamine receptors revealed in transfected neuronal cell lines. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 649-653.
- (34) Boyfield, I.; Brown, T. H.; Coldwell, M. C.; Cooper, D. G.; Hadley, M. S.; Hagan, J. J.; Healy, M. A.; Jones, A.; King, R. J.; Middlemiss, D. N.; Nash, D. J.; Riley, G. J.; Scott, E. E.; Smith, S. A.; Stemp, G. Design and synthesis of 2-naphthoate esters as selective dopamine D₄ antagonists. J. Med. Chem. 1996, 39, 1946-1948.
- (35) Borsini, F.; Giraldo, E.; Monferini, E.; Antonini, G.; Parenti, M.; Bietti, G.; Donetti, A. BIMT 17, a 5-HT_{2A} receptor antagonist and 5-HT_{1A} receptor full agonist in rat cerebral cortex. *Naunyn*. Schmiedebergs Arch. Pharmacol. 1995, 352, 276-282.
- Glossmann, H.; Hornung, R. α-Adrenoceptors in rat brain: sodium changes the affinity of agonists for prazosin sites. $\overline{\it Eur.}$ J. Pharmacol. 1980, 61, 407-408.
- GraphPad Prism Software (version for Windows); GraphPad Software, Inc.: San Diego, CA.
- Cheng, Y. C.; Prusoff, W. H. Relationship between the inhibition constant (K_i) and the concentration of inhibitor which causes 50% inhibition (IC₅₀) of an enzymatic reaction. Biochem. Pharmacol. 1973, 22, 3099-3108.

JM020952A