and since $\epsilon = \pm 1$, we have $\epsilon^2 = 1$, so we get

$$a' = -\epsilon b$$
.

By adding and subtracting the equations on the third row we obtain

$$c = c' = 0$$
.

Since A is invertible, $c'' \neq 0$, and since A is determined up to a nonzero scalar we may assume that c'' = 1, and we conclude that

$$A = \begin{pmatrix} a & -\epsilon b & a'' \\ b & \epsilon a & b'' \\ 0 & 0 & 1 \end{pmatrix}.$$

If h maps \mathbb{R}^2 into itself, then

$$\begin{pmatrix} a & -\epsilon b & a'' \\ b & \epsilon a & b'' \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix}$$

must be real for all $x, y \in \mathbb{R}$, which implies that $a, b, a'', b'' \in \mathbb{R}$.

The following proposition from Berger [11] (Chapter 8, Proposition 8.8.5.1) gives a convenient characterization of the affine similarities.

Proposition 26.30. Let $(E, \overrightarrow{E}, \langle -, - \rangle)$ be a Euclidean affine space of finite dimension $n \geq 2$. An affine map $f \in \mathbf{GA}(E)$ is an affine similarity iff \overrightarrow{f} preserves orthogonality; that is, for any two vectors $u, v \in \overrightarrow{E}$, if $\langle u, v \rangle = 0$, then $\langle \overrightarrow{f}(u), \overrightarrow{f}(v) \rangle = 0$.

Proof. Assume that $f \in \mathbf{GA}(E)$ is an affine map such that for any two vectors $u, v \in \overrightarrow{E}$, if $\langle u, v \rangle = 0$, then $\langle \overrightarrow{f}(u), \overrightarrow{f}(v) \rangle = 0$. Fix any nonzero $u \in \overrightarrow{E}$ and consider the linear form φ_u given by

$$\varphi_u(v) = \langle \overrightarrow{f}(u), \overrightarrow{f}(v) \rangle, \quad v \in \overrightarrow{E}.$$

Since \overrightarrow{f} is invertible, $\varphi_u(u) \neq 0$. For any $v \in \overrightarrow{E}$ such that $\langle u, v \rangle = 0$, we have

$$\varphi_u(v) = \langle \overrightarrow{f}(u), \overrightarrow{f}(v) \rangle = 0,$$

thus φ_u is a nonzero linear form vanishing on the hyperplane H orthogonal to u, which is the kernel of the linear form $v \mapsto \langle u, v \rangle$. Therefore, there is some nonzero scalar $\rho(u) \in \mathbb{R}$ such that

$$\varphi_u(v) = \rho(u)\langle u, v \rangle$$
 for all $v \in \overrightarrow{E}$.

Evaluating φ_u at u, we see that $\rho(u) > 0$. If we can show that $\rho(u)$ is a constant $\rho > 0$ independent of u, we will have shown that

$$\langle \overrightarrow{f}(u), \overrightarrow{f}(v) \rangle = \rho \langle u, v \rangle$$
 for all $u, v \in \overrightarrow{E}$,