Lecture 6: p.d.f. and transformation

Example 1.12. Let X be a random variable on (Ω, \mathcal{F}, P) whose c.d.f. F_X has a Lebesgue p.d.f. f_X and $F_X(c) < 1$, where c is a fixed constant. Let $Y = \min\{X, c\}$, i.e., Y is the smaller of X and c. Note that $Y^{-1}((-\infty, x]) = \Omega$ if $x \ge c$ and $Y^{-1}((-\infty, x]) = X^{-1}((\infty, x])$ if x < c. Hence Y is a random variable and the c.d.f. of Y is

$$F_Y(x) = \begin{cases} 1 & x \ge c \\ F_X(x) & x < c. \end{cases}$$

This c.d.f. is discontinuous at c, since $F_X(c) < 1$. Thus, it does not have a Lebesgue p.d.f. It is not discrete either. Does P_Y , the probability measure corresponding to F_Y , have a p.d.f. w.r.t. some measure? Define a probability measure on $(\mathcal{R}, \mathcal{B})$, called *point mass* at c, by

$$\delta_c(A) = \begin{cases} 1 & c \in A \\ 0 & c \notin A, \end{cases} \quad A \in \mathcal{B}$$

Then $P_Y \ll m + \delta_c$, where m is the Lebesgue measure, and the p.d.f. of P_Y is

$$\frac{dP_Y}{d(m+\delta_c)}(x) = \begin{cases} 0 & x > c\\ 1 - F_X(c) & x = c\\ f_X(x) & x < c. \end{cases}$$

Example 1.14. Let X be a random variable with c.d.f. F_X and Lebesgue p.d.f. f_X , and let $Y = X^2$. Since $Y^{-1}((-\infty, x])$ is empty if x < 0 and equals $Y^{-1}([0, x]) = X^{-1}([-\sqrt{x}, \sqrt{x}])$ if $x \ge 0$, the c.d.f. of Y is

$$F_Y(x) = P \circ Y^{-1}((-\infty, x])$$

= $P \circ X^{-1}([-\sqrt{x}, \sqrt{x}])$
= $F_X(\sqrt{x}) - F_X(-\sqrt{x})$

if $x \geq 0$ and $F_Y(x) = 0$ if x < 0. Clearly, the Lebesgue p.d.f. of F_Y is

$$f_Y(x) = \frac{1}{2\sqrt{x}} [f_X(\sqrt{x}) + f_X(-\sqrt{x})] I_{(0,\infty)}(x).$$

In particular, if

$$f_X(x) = \frac{1}{\sqrt{2\pi}}e^{-x^2/2},$$

which is the Lebesgue p.d.f. of the standard normal distribution N(0,1), then

$$f_Y(x) = \frac{1}{\sqrt{2\pi x}} e^{-x/2} I_{(0,\infty)}(x),$$

which is the Lebesgue p.d.f. for the chi-square distribution χ_1^2 (Table 1.2). This is actually an important result in statistics.

Proposition 1.8. Let X be a random k-vector with a Lebesgue p.d.f. f_X and let Y = g(X), where g is a Borel function from $(\mathcal{R}^k, \mathcal{B}^k)$ to $(\mathcal{R}^k, \mathcal{B}^k)$. Let $A_1, ..., A_m$ be disjoint sets in \mathcal{B}^k such that $\mathcal{R}^k - (A_1 \cup \cdots \cup A_m)$ has Lebesgue measure 0 and g on A_j is one-to-one with a nonvanishing Jacobian, i.e., the determinant $\operatorname{Det}(\partial g(x)/\partial x) \neq 0$ on A_j , j = 1, ..., m. Then Y has the following Lebesgue p.d.f.:

$$f_Y(x) = \sum_{j=1}^{m} |\text{Det} \left(\frac{\partial h_j(x)}{\partial x} \right)| f_X \left(h_j(x) \right),$$

where h_j is the inverse function of g on A_j , j = 1, ..., m.

In Example 1.14, $A_1 = (-\infty, 0)$, $A_2 = (0, \infty)$, $g(x) = x^2$, $h_1(x) = -\sqrt{x}$, $h_2(x) = \sqrt{x}$, and $|dh_i(x)/dx| = 1/(2\sqrt{x})$.

Example 1.15. Let $X = (X_1, X_2)$ be a random 2-vector having a joint Lebesgue p.d.f. f_X . Consider first the transformation $g(x) = (x_1, x_1 + x_2)$. Using Proposition 1.8, one can show that the joint p.d.f. of g(X) is

$$f_{q(X)}(x_1, y) = f_X(x_1, y - x_1),$$

where $y=x_1+x_2$ (note that the Jacobian equals 1). The marginal p.d.f. of $Y=X_1+X_2$ is then

$$f_Y(y) = \int f_X(x_1, y - x_1) dx_1.$$

In particular, if X_1 and X_2 are independent, then

$$f_Y(y) = \int f_{X_1}(x_1) f_{X_2}(y - x_1) dx_1.$$

Next, consider the transformation $h(x_1, x_2) = (x_1/x_2, x_2)$, assuming that $X_2 \neq 0$ a.s. Using Proposition 1.8, one can show that the joint p.d.f. of h(X) is

$$f_{h(X)}(z, x_2) = |x_2| f_X(zx_2, x_2),$$

where $z = x_1/x_2$. The marginal p.d.f. of $Z = X_1/X_2$ is

$$f_Z(z) = \int |x_2| f_X(zx_2, x_2) dx_2.$$

In particular, if X_1 and X_2 are independent, then

$$f_Z(z) = \int |x_2| f_{X_1}(zx_2) f_{X_2}(x_2) dx_2.$$

Example 1.16 (t-distribution and F-distribution). Let X_1 and X_2 be independent random variables having the chi-square distributions $\chi^2_{n_1}$ and $\chi^2_{n_2}$ (Table 1.2), respectively. The p.d.f.

of $Z = X_1/X_2$ is

$$f_{Z}(z) = \frac{z^{n_{1}/2-1}I_{(0,\infty)}(z)}{2^{(n_{1}+n_{2})/2}\Gamma(n_{1}/2)\Gamma(n_{2}/2)} \int_{0}^{\infty} x_{2}^{(n_{1}+n_{2})/2-1} e^{-(1+z)x_{2}/2} dx_{2}$$

$$= \frac{\Gamma[(n_{1}+n_{2})/2]}{\Gamma(n_{1}/2)\Gamma(n_{2}/2)} \frac{z^{n_{1}/2-1}}{(1+z)^{(n_{1}+n_{2})/2}} I_{(0,\infty)}(z)$$

Using Proposition 1.8, one can show that the p.d.f. of $Y = (X_1/n_1)/(X_2/n_2) = (n_2/n_1)Z$ is the p.d.f. of the F-distribution F_{n_1,n_2} given in Table 1.2.

Let U_1 be a random variable having the standard normal distribution N(0,1) and U_2 a random variable having the chi-square distribution χ_n^2 . Using the same argument, one can show that if U_1 and U_2 are independent, then the distribution of $T = U_1/\sqrt{U_2/n}$ is the t-distribution t_n given in Table 1.2.

Noncentral chi-square distribution

Let $X_1, ..., X_n$ be independent random variables and $X_i = N(\mu_i, \sigma^2)$, i = 1, ..., n. The distribution of $Y = (X_1^2 + \cdots + X_n^2)/\sigma^2$ is called the *noncentral chi-square* distribution and denoted by $\chi_n^2(\delta)$, where $\delta = (\mu_1^2 + \cdots + \mu_n^2)/\sigma^2$ is the noncentrality parameter. $\chi_k^2(\delta)$ with $\delta = 0$ is called a *central* chi-square distribution.

It can be shown (exercise) that Y has the following Lebesgue p.d.f.:

$$e^{-\delta/2} \sum_{j=0}^{\infty} \frac{(\delta/2)^j}{j!} f_{2j+n}(x)$$

where $f_k(x)$ is the Lebesgue p.d.f. of the chi-square distribution χ^2_k .

If $Y_1, ..., Y_k$ are independent random variables and Y_i has the noncentral chi-square distribution $\chi^2_{n_i}(\delta_i)$, i = 1, ..., k, then $Y = Y_1 + \cdots + Y_k$ has the noncentral chi-square distribution $\chi^2_{n_1 + \cdots + n_k}(\delta_1 + \cdots + \delta_k)$.

Noncentral t-distribution and F-distribution (in discussion)

Theorem 1.5. (Cochran's theorem). Suppose that $X = N_n(\mu, I_n)$ and

$$X^{\tau}X = X^{\tau}A_1X + \dots + X^{\tau}A_kX,$$

where I_n is the $n \times n$ identity matrix and A_i is an $n \times n$ symmetric matrix with rank n_i , i = 1, ..., k. A necessary and sufficient condition that $X^{\tau}A_iX$ has the noncentral chi-square distribution $\chi_{n_i}^2(\delta_i)$, i = 1, ..., k, and $X^{\tau}A_iX$'s are independent is $n = n_1 + \cdots + n_k$, in which case $\delta_i = \mu^{\tau}A_i\mu$ and $\delta_1 + \cdots + \delta_k = \mu^{\tau}\mu$.