AN EXPOSITION OF THE RIBES-ZALESSKII PRODUCT THEOREM

ZHAOSHEN ZHAI

ABSTRACT. We give a detailed proof of the Ribes-Zalesskii product theorem for pro- \mathcal{C} topologies, where \mathcal{C} is a pseudovariety of groups closed under extensions. The proof relies on geometric properties of the profinite Cayley graph of the pro- \mathcal{C} completion of free groups, which we develop here following [Rib17].

The pro-C **topology.** A *pseudovariety of groups* is a non-empty class C of finite groups that is closed under taking subgroups, finite direct products, and quotients.

A pseudovariety \mathcal{C} is said to be *closed under extensions* (with abelian kernel) if $G \in \mathcal{C}$ whenever $N, G/N \in \mathcal{C}$ for any normal (abelian) subgroup $N \subseteq G$. Throughout, fix a pseudovariety \mathcal{C} of groups.

Definition. Let G be a group. The collection $\mathcal{N}_{\mathcal{C}}(G)$ of all normal subgroups $N \subseteq G$ such that $G/N \in \mathcal{C}$ forms a neighborhood base around the identity, which generates the $pro-\mathcal{C}$ topology on G. We say that G is $residually-\mathcal{C}$ if $\bigcap \mathcal{N}_{\mathcal{C}}(G) = \{1\}$, which occurs iff the pro- \mathcal{C} topology on G is Hausdorff.

The goal of this note is to prove the following generalization of the Ribes-Zalesskii Theorem [RZ93].

Theorem A (Ribes-Zalesskii [RZ94, Theorem 5.1]). Let C be a pseudovariety of groups that is closed under extensions. If F is a free group of finite rank and $H, K \leq F$ are finite generated subgroups which are closed in the pro-C topology of F, then the double coset HK is also closed in the pro-C topology of F.

Remark. Ribes and Zalesskii actually proved that for any $n \in \mathbb{N}$, the *n*-product coset $H_1 \cdots H_n$ is closed in the pro- \mathcal{C} topology of F whenever H_1, \ldots, H_n are finitely generated subgroups which are closed in the pro- \mathcal{C} topology of F. We chose to present the proof only for the case n=2 since the general case requires some more careful bookkeeping, but all essential ideas of their proof are present here.

Remark. The condition that \mathcal{C} is closed under extensions is needed in two important parts of the proof.

- 1. It ensures that the pro- \mathcal{C} topology on an open subgroup $H \leq_o G$ coincides with the topology induced by the pro- \mathcal{C} topology on G; see Lemma 1.5.
- 2. A weaker condition that C is closed under extensions with abelian kernel is needed to show that the profinite Cayley graph of free groups are \mathbb{Z}_{C} -trees; see Theorem 2.12.

Auinger and Steinberg [AS05] discovered another proof of Theorem A, which, among other things, weakened the hypothesis by only requiring that \mathcal{C} is closed under extensions with abelian kernel.

Remark. When C is the class of all finite groups (in which case we write *profinite* for 'pro-C'), we can drop the hypotheses that H and K are closed in the profinite topology of F since all finitely generated subgroups of F are closed; this is Hall's Theorem (see, for instance, [Sta83, Section 6]).

This note is organized as follows. In Section 1, we gather some basic facts about the pro- \mathcal{C} topology of a residually- \mathcal{C} group G and the interaction between G, its subgroups, and its pro- \mathcal{C} completion $G_{\mathcal{C}}$. Section 2 is a summary of results in profinite graph theory needed to develop the basic properties of profinite Cayley graphs of free groups, which we use to prove Theorem A in Section 3.

Acknowledgements. I would like to thank Professor Marcin Sabok for supervising me for this project, for his consistent support, patience, and feedback, and for guiding me through this fulfilling research experience. I also thank Julian Cheng for helpful discussions. This work was partially supported by McGill University's summer 2025 SURA (Science Undergraduate Research Award) grant.

Date: July 17, 2025.

2020 Mathematics Subject Classification. 20E10, 20E18, 20E08, 20J05.

Key words and phrases. Double-coset separability, pseudovariety, profinite, pro-C, profinite graphs, C-trees, arborescent.

1. Pro- \mathcal{C} topologies and Completions

Throughout, fix a residually- \mathcal{C} group G and equip it with its pro- \mathcal{C} topology. The residually- \mathcal{C} condition on G ensures that G embeds into its $pro-\mathcal{C}$ completion (see Section 1.2), which will be important later on. We will apply the results in this chapter to free groups, so we need free groups to be residually- \mathcal{C} .

Fact 1.1 ([RZ10, Proposition 3.3.15]). If \mathcal{C} is closed under extensions, then every free group is residually \mathcal{C} .

1.1. **Subgroups.** The following lemmas characterize when a subgroup $H \leq G$ is open or closed in G. Let $H_G := \bigcap_{g \in G} gHg^{-1}$ be the *normal core* of H in G. Note that if H has finite index in G, then so does H_G .

Lemma 1.2. A subgroup $H \leq G$ is open if and only if $H_G \in \mathcal{N}_{\mathcal{C}}(G)$.

Proof. If H is open, then H has finite-index in G, so H_G is open as well. Thus $N \leq H_G$ for some $N \in \mathcal{N}_{\mathcal{C}}(G)$, so $G/N \twoheadrightarrow G/H_G$, whence $G/H_G \in \mathcal{C}$. Conversely, if $G/H_G \in \mathcal{C}$, then H_G is open, and hence so is H.

Lemma 1.3. A subgroup $H \leq G$ is closed iff H is the intersection of all open subgroups of G containing H.

Proof. First, note that the intersection of all open subgroups of G containing H coincides with $\bigcap_{N \in \mathcal{N}_{\mathcal{C}}(G)} HN$ since if $x \in \bigcap_{N \in \mathcal{N}_{\mathcal{C}}(G)} HN$ and $H \subseteq K \leq_o G$, then $K_G \in \mathcal{N}_{\mathcal{C}}(G)$ by Lemma 1.2, so $x \in HK_G \leq K$.

If H is closed in the pro-C-topology on G, then for all $x \in G \setminus H$, take $N \in \mathcal{N}_{\mathcal{C}}(G)$ such that $xN \cap H = \emptyset$, so $x \notin HN$, and hence $H = \bigcap_{N \in \mathcal{N}_{\mathcal{C}}(G)} HN$. Conversely, note that open subgroups are closed.

The pro- \mathcal{C} topology on a subgroup $H \leq G$ is, in general, finer than the topology induced from the pro- \mathcal{C} topology on G: if $N \in \mathcal{N}_{\mathcal{C}}(G)$, then the natural map $H/(H \cap N) \to G/N \in \mathcal{C}$ is injective, so $H/(H \cap N) \in \mathcal{C}$. The topologies need not coincide (see [RZ10, Example 3.1.3]). However, there are important cases where the two topologies on H do coincide, in which case we say that H is \mathcal{C} -compatible with G.

Lemma 1.4. If G = H * K, then (the image of) H is C-compatible with G.

Proof. Observe that $G = H \ltimes K'$ where K' is the normal closure of K in G, so we instead prove the statement for when $G = H \ltimes K$. In this case, take $N \in \mathcal{N}_{\mathcal{C}}(H)$ and note that $G/KN \cong H/N \in \mathcal{C}$, so KN is open in the pro- \mathcal{C} topology of G. Observe that $N = H \cap KN$, so N is open in the induced topology.

Lemma 1.5. If $H \leq_o G$ is open and C is closed under extensions, then H is C-compatible with G.

Proof. We show that $\mathcal{N}_{\mathcal{C}}(H) \subseteq \mathcal{N}_{\mathcal{C}}(G)$, so take $N \in \mathcal{N}_{\mathcal{C}}(H)$. It suffices to show that $G/N_G \in \mathcal{C}$, since then $G/N \in \mathcal{C}$ as $G/N_G \to G/N$, and [G:N] = [G:H][H:N] is finite as H is open in G.

Since it is not necessarily the case that $N \leq H_G$, we work with $M := H_G \cap N$ instead, which is harmless as $N_G = M_G$. Observe that $G/H_G \cong (G/M_G)/(H_G/M_G)$, which by Lemma 1.2 lies in $\mathcal C$ since H is open in G, so it suffices to show that $H_G/M_G \in \mathcal C$ as $\mathcal C$ is closed under extensions. Since [G:M] is finite, there exist $g_1, \ldots, g_n \in G$ such that $M_G = \bigcap_{i=1}^n g_i M g_i^{-1}$, for some $n \in \mathbb N$. As $H_G/M_G \hookrightarrow \prod_{i=1}^n H_G/g_i M g_i^{-1}$, it suffices to show that each $H_G/g_i M g_i^{-1} \in \mathcal C$. To this end, note that

$$\frac{H_G}{M} = \frac{H_G}{H_G \cap N} \cong \frac{H_G N}{N} \leq \frac{H}{N} \in \mathcal{C},$$

where $H/N \in \mathcal{C}$ by choice of N, so $H_G/M \in \mathcal{C}$, and hence $H_G/g_iMg_i^{-1} \cong H_G/M \in \mathcal{C}$ via conjugation.

1.2. Completions. A pro- \mathcal{C} group is an inverse limit of groups in \mathcal{C} . Given a residually- \mathcal{C} group G, its pro- \mathcal{C} completion is the group $G_{\mathcal{C}} := \lim_{N \in \mathcal{N}_{\mathcal{C}}(G)} G/N$, which is a pro- \mathcal{C} group, and the canonical map $G \to G_{\mathcal{C}}$ is injective. The first thing to check is that the pro- \mathcal{C} topology on G is induced by the topology of $G_{\mathcal{C}}$. In the sequel, given a subset $X \subseteq G$, we let \overline{X} denote its closure in $G_{\mathcal{C}}$.

Lemma 1.6. The topology of $G_{\mathcal{C}}$ induces on G its pro- \mathcal{C} topology.

Proof. Recall that $G \hookrightarrow G_{\mathcal{C}}$ via $g \mapsto (gN)_{N \in \mathcal{N}_{\mathcal{C}}(G)}$. We wish to show that $H \subseteq G$ is open iff $H = G \cap K$ for some open subset $K \subseteq G_{\mathcal{C}}$, for which it suffices to show this for open subgroups $H \leq_o G$ and $K \leq_o G_{\mathcal{C}}$.

Claim. For any subgroup $H \leq G$, we have $H = G \cap \overline{H}$ and $[G : H] = [G_{\mathcal{C}} : \overline{H}]$.

Proof. Clearly we have $H \subseteq G \cap \overline{H}$, so take $g \in G \cap \overline{H}$. Since $\overline{H} = \lim_N HN/N$, we see that $g \in HN$ for each $N \in \mathcal{N}_{\mathcal{C}}(G)$. By Lemma 1.2, we have $H_G \in \mathcal{N}_{\mathcal{C}}(G)$, so $g \in HH_G = H$. For the second claim, let $\kappa := [G_{\mathcal{C}} : \overline{H}]$. Since G is dense in $G_{\mathcal{C}}$, we have $G\overline{H} = G_{\mathcal{C}}$, so take a left transversal $\{g_{\xi} \in G : \xi < \kappa\}$ of \overline{H} in $G_{\mathcal{C}}$. Note that $g_{\xi}H = G \cap g_{\xi}\overline{H}$, so $G = G \cap \bigsqcup_{\xi < \kappa} g_{\xi}\overline{H} = \bigsqcup_{\xi < \kappa} g_{\xi}H$, and thus $\kappa = [G : H]$. \square

Thus if $H \leq_o G$, then $[G_{\mathcal{C}} : \overline{H}] = [G : H]$ is finite, and hence $\overline{H} \leq_o G_{\mathcal{C}}$ is an open subgroup too. Conversely, if $K \leq_o G_{\mathcal{C}}$ is an open subgroup of $G_{\mathcal{C}}$, then $G \cap K = G \cap \lim_N KN/N = \bigcap_N KN$ is closed by Lemma 1.3. Note that $\overline{G \cap K} = K$ since G is dense in $G_{\mathcal{C}}$. By the claim, we have $[G : G \cap K] = [G_{\mathcal{C}} : \overline{G \cap K}] = [G_{\mathcal{C}} : K]$, which is finite since K is open in $G_{\mathcal{C}}$, and hence $G \cap K$ is open in $G_{\mathcal{C}}$.

Corollary 1.7. A subset $X \subseteq G$ is closed in the pro-C topology of G if and only if $X = G \cap \overline{X}$.

Proof. Let \overline{X}_G be the closure of X in G. Since $X \subseteq G \cap \overline{X}$ is closed in G, we have $\overline{X}_G \subseteq G \cap \overline{X}$. Conversely, take $x \in G \cap \overline{X}$ and note that every neighborhood of x in G contains a neighborhood of the form $x(G \cap U)$ for some open subgroup $U \leq_o G_C$, and $X \cap x(G \cap U) = X \cap (G \cap xU) = X \cap xU \neq \emptyset$ since $x \in \overline{X}$.

2. Profinite Graphs and Trees

In this section, we follow [Rib17] to give the necessary background on profinite graphs to study the geometric properties of the profinite Cayley graphs of free groups.

2.1. **Graphs.** A graph is a set Γ together with a subset $V(\Gamma) \subseteq \Gamma$, whose elements are called vertices, and maps $d_0, d_1 : \Gamma \to V(\Gamma)$ such that $d_i | V(\Gamma) = \mathrm{id}_{V(\Gamma)}$; the elements of $E(\Gamma) := \Gamma \setminus V(\Gamma)$ are called edges. A morphism of graphs is a function $\varphi : \Gamma \to \Gamma'$ such that $\varphi d_i = d_i \varphi$ for i = 0, 1 (so φ sends vertices to vertices, but does not necessarily send edges to edges). A quotient of Γ is a morphic image of Γ .

Example 2.1. If $\Delta \subseteq \Gamma$ is a subgraph, then the map $p:\Gamma \to \Gamma/\Delta$ obtained by collapsing Δ to a point (as discrete spaces) gives rise to a graph Γ/Δ with $V(\Gamma/\Delta) := p(V(\Gamma))$ and $d_i(p(m)) := p(d_i(m))$ for $m \in \Gamma$ and i = 0, 1. Then $p:\Gamma \to \Gamma/\Delta$ is a morphism sending each edge in Δ to the distinguished vertex in $V(\Gamma/\Delta)$.

Every graph Γ has an associated sequence $0 \longrightarrow A[E(\Gamma)] \xrightarrow{\partial} A[V(\Gamma)] \xrightarrow{\varepsilon} A \longrightarrow 0$ for any commutative ring A, where ∂ and ε are defined by extending $\partial(e) := d_1(e) - d_0(e)$ and $\varepsilon(v) := 1$. Clearly im $\partial \leq \ker \varepsilon$, so we define the homology A-modules as $H_0(\Gamma, A) := \ker \varepsilon / \operatorname{im} \partial$ and $H_1(\Gamma, A) := \ker \partial$.

Fact 2.2 ([DD89, Section 6]). A finite graph Γ is connected iff $H_0(\Gamma, A) = 0$ and is acyclic iff $H_1(\Gamma, A) = 0$, independently of A. In particular, a finite graph is a tree iff its associated sequence is exact.

We now pass to the profinite category by taking inverse limits in the above category of graphs. Explicitly, a profinite graph Γ is a profinite space with a closed subset $V(\Gamma) \subseteq \Gamma$ and continuous maps $d_0, d_1 : \Gamma \twoheadrightarrow V(\Gamma)$ such that $d_i|V(\Gamma) = \mathrm{id}_{V(\Gamma)}$; it can be written as an inverse limit of its finite quotient graphs (see Lemma 2.6). A morphism of profinite graphs is a continuous map $\varphi : \Gamma \to \Gamma'$ such that $\varphi d_i = d_i \varphi$ for i = 0, 1.

Example 2.3. Let $G = \lim_{N \leq_o G} G/N$ be a profinite group and let $X \subseteq G$ be a finite subset of G such that $1 \notin X$. The profinite Cayley graph of G with respect to X is the profinite graph $\Gamma(G,X) := G \times (X \cup \{1\})$ with $V(\Gamma(G,X)) := G \times \{1\} \cong G$ and incidence maps $d_0(g,x) := g$ and $d_1(g,x) := gx$.

Any continuous homomorphism $\varphi: G \to H$ of profinite groups induces a morphism $\Gamma(G, X) \to \Gamma(H, \varphi(X))$ of profinite Cayley graphs, and we have $\Gamma(G, X) \cong \lim_{N \to_{\circ} G} \Gamma(G/N, \pi_N(X))$.

Lemma 2.4. Let $p:\Gamma \to X$ be a surjection onto a profinite space X. There is at-most one graph structure on X such that p is a morphism, which exists iff $p(d_i^{\Gamma}(m)) = p(d_i^{\Gamma}(m'))$ for all $m, m' \in \Gamma$ such that p(m) = p(m').

Proof. For p to be a morphism, it is necessary that we set $V(X) := p(V(\Gamma))$ and $d_i^X(x) := p(d_i^{\Gamma}(m))$ for any $m \in p^{-1}(x)$, which is well-defined iff the stated condition holds.

Remark 2.5. In general, the edge set $E(\Gamma) := \Gamma \setminus V(\Gamma)$ need not be closed in Γ , and so $E(\Gamma)$ need not be a profinite graph. To remedy this, we use the (pointed) quotient graph $E^*(\Gamma, *) := (\Gamma/V(\Gamma), *)$ where * is the image of $V(\Gamma)$ under the projection, which is now a profinite graph with one vertex (see Figure 1).

Figure 1: A profinite graph Γ whose vertex set is the one-point compactification of \mathbb{N} . Its edge set is *not* closed since $\lim_n e_n = \infty$, so we collapse $V(\Gamma)$ in Γ to obtain the rose with countably-many petals, which is now a pointed profinite graph encoding the edges of Γ .

Lemma 2.6. Every profinite graph is the inverse limit of its finite quotient graphs.

Proof. Let Γ be a profinite graph and let \mathcal{R} be the collection of all open equivalence relations on Γ , so Γ/R is finite for each $R \in \mathcal{R}$. Order \mathcal{R} by reverse inclusion, so (\mathcal{R}, \leq) is directed by taking common refinements. If $R_1 \geq R_2$, then there is a continuous map $\varphi_{R_1,R_2} : \Gamma/R_1 \to \Gamma/R_2$ sending $mR_1 \mapsto mR_2$.

Claim. We have $\Gamma \cong \lim_{R \in \mathcal{R}} \Gamma/R$ as topological spaces.

Proof. Let $\psi: \Gamma \to \lim_{R \in \mathcal{R}} \Gamma/R$ be the map induced by the quotients $p_R: \Gamma \twoheadrightarrow \Gamma/R$, so ψ is surjective. If $m, m' \in \Gamma$, then there is a clopen subset $U \subseteq \Gamma$ such that $m \in U \not\ni m'$, so the equivalence relation on X with classes $\{U, U^c\}$ separates m and m' in the quotient.

Now, let $\mathcal{R}_0 \subseteq \mathcal{R}$ be the subcollection of those equivalence relations $R \in \mathcal{R}$ such that Γ/R admits a graph structure and $p_R : \Gamma \to \Gamma/R$ is a morphism. We show that $\Gamma \cong \lim_{R \in \mathcal{R}_0} \Gamma/R$, for which it suffices to show that \mathcal{R}_0 is cofinal in \mathcal{R} , so let $R \in \mathcal{R}$. The projection p_R induces a map $\widetilde{p}_R : \Gamma \to \Gamma/R \times \Gamma/R \times \Gamma/R$ sending m to $(p_R(m), p_R(d_0m), p_R(d_1m))$, whose image admits a unique graph structure making \widetilde{p}_R a morphism by Lemma 2.4. Thus $\widetilde{p}_R(\Gamma) \cong \Gamma/R_0$ for some $R_0 \in \mathcal{R}_0$, whose equivalences classes are of the form $\widetilde{p}_R^{-1}(x)$ for $x \in \widetilde{p}_R(\Gamma)$, and $R_0 \geq R$ since if $\widetilde{p}_R(m) = \widetilde{p}_R(m')$, then in particular $p_R(m) = p_R(m')$.

To define the associated sequence of a profinite graph Γ , we consider profinite A-modules over a profinite commutative ring A (see, for instance, [Ser97] or [RZ10]). The free profinite A-module over a profinite space $X := \lim_i X_i$ is the profinite A-module $A[\![X]\!] := \lim_i A[X_i]$, which satisfies the usual universal property: every continuous map $\varphi : X \to M$ to a profinite A-module M extends uniquely to a homomorphism $\overline{\varphi} : A[\![X]\!] \to M$ of profinite A-modules. Letting $\partial : A[\![E^*(\Gamma,*)]\!] \to A[\![V(\Gamma)]\!]$ and $\varepsilon : A[\![V(\Gamma)]\!] \to A$ extend $e^* \mapsto d_1(e) - d_0(e)$ and $v \mapsto 1$, where $e^* \in E^*(\Gamma,*)$ is the image of $e \in E(\Gamma)$ in $\Gamma/V(\Gamma)$, the sequence

$$0 \longrightarrow A \llbracket E^*(\Gamma, *) \rrbracket \stackrel{\partial}{\longrightarrow} A \llbracket V(\Gamma) \rrbracket \stackrel{\varepsilon}{\longrightarrow} A \longrightarrow 0$$

is the associated sequence of a profinite graph Γ , with homology groups $H_i(\Gamma, A)$ defined in the obvious way.

Definition 2.7. A profinite graph is A-connected if $H_0(\Gamma, A) = 0$ and A-acyclic if $H_1(\Gamma, A) = 0$.

A morphism $\varphi: \Gamma_1 \to \Gamma_2$ of profinite graphs induces homomorphisms $\varphi_V: A[\![V(\Gamma_1)]\!] \to A[\![V(\Gamma_2)]\!]$ and $\varphi_E: A[\![E^*(\Gamma_1,*)]\!] \to A[\![E^*(\Gamma_2,*)]\!]$ of profinite A-modules such that

commutes, so φ induce homomorphisms $H_i(\Gamma_1, A) \to H_i(\Gamma_2, A)$ for i = 0, 1. Thus $H_i(-, A)$ are functors, and a diagram chase show that both $H_i(-, A)$ preserve limits, $H_0(-, A)$ preserve epimorphisms, and $H_1(-, A)$ preserve monomorphisms. This gives us the following results, which we will quote without further reference.

- 1. A profinite graph is A-connected iff all of its finite quotients are connected in the combinatorial sense. In particular, A-connectedness is independent of the ring A, so we have a notion of profinite-connectedness.
- 2. An inverse limit of A-acyclic finite graphs is A-acyclic. The converse fails precisely because the quotient of an A-acyclic graph need not be A-acyclic. It turns out that the dependence on A cannot be removed.
- 3. Every subgraph of an A-acyclic graph is a A-acyclic.

Example 2.8. Let G be a pro- \mathcal{C} group. If $X \subseteq G$ is a topological generating set of G (i.e., $\overline{\langle X \rangle} = G$), then its profinite Cayley graph $\Gamma(G,X)$ is profinitely-connected since $\Gamma(G,X) \cong \lim_{N \to_{G}} \Gamma(G/N,\pi_{N}(X))$.

2.2. **Trees.** A profinite graph Γ is said to be an A-tree if Γ is profinitely-connected and A-acyclic. We give some lemmas justifying our usage of this term. Moreover, we show that under certain conditions on \mathcal{C} , the profinite Cayley graphs of the pro- \mathcal{C} completions of free groups are $\mathbb{Z}_{\mathcal{C}}$ -trees (see Theorem 2.12).

Lemma 2.9. Let $\{\Gamma_{\alpha}\}$ be a family of profinitely-connected subgraphs of an A-tree Γ . The intersection $\bigcap_{\alpha} \Gamma_{\alpha}$ is an A-tree, and if $\bigcap_{\alpha} \Gamma_{\alpha} \neq \emptyset$, then their union $\bigcup_{\alpha} \Gamma_{\alpha}$ is an A-tree too.

Proof. Since Γ is an A-tree, it suffices to show that both $\bigcap_{\alpha} \Gamma_{\alpha}$ and $\bigcup_{\alpha} \Gamma_{\alpha}$ are profinitely-connected. Indeed, for the first, observe that $A[V(\bigcap_{\alpha} \Gamma_{\alpha})] = \bigcap_{\alpha} A[V(\Gamma_{\alpha})]$ and $A[E^*(\bigcap_{\alpha} \Gamma_{\alpha}, *)] = \bigcap_{\alpha} A[E^*(\Gamma_{\alpha}, *)]$, so letting

$$0 \longrightarrow A\llbracket E^*(\Gamma,*) \rrbracket \stackrel{\partial}{\longrightarrow} A\llbracket V(\Gamma) \rrbracket \stackrel{\varepsilon}{\longrightarrow} A \longrightarrow 0$$

be the associated sequence of Γ , which is exact by hypothesis, we have

$$\ker\left(\varepsilon|\bigcap_{\alpha}\Gamma_{\alpha}\right) = A\llbracket V\bigl(\bigcap_{\alpha}\Gamma_{\alpha}\bigr) \rrbracket \cap \ker\varepsilon = \bigcap_{\alpha}A\llbracket V(\Gamma_{\alpha}) \rrbracket \cap \ker\varepsilon = \bigcap_{\alpha}\ker(\varepsilon|\Gamma_{\alpha}),$$

and similarly $\operatorname{im}(\partial|\bigcap_{\alpha}\Gamma_{\alpha})\subseteq\bigcap_{\alpha}\operatorname{im}(\partial|\Gamma_{\alpha})$. Since ∂ is injective, the preceding inclusion is an equality. Each Γ_{α} is profinitely-connected, so $\ker(\varepsilon|\Gamma_{\alpha})=\operatorname{im}(\partial|\Gamma_{\alpha})$ for each α , and hence $\ker(\varepsilon|\bigcap_{\alpha}\Gamma_{\alpha})=\operatorname{im}(\partial|\bigcap_{\alpha}\Gamma_{\alpha})$.

For the second claim, let $\alpha: \bigcup_{\alpha} \Gamma_{\alpha} \twoheadrightarrow \Delta$ be a morphism onto a finite graph Δ , so for each α , the image $\alpha(\Gamma_{\alpha}) \subseteq \Delta$ is connected. Note that $\bigcap_{\alpha} \alpha(\Gamma_{\alpha}) \supseteq \alpha(\bigcap_{\alpha} \Gamma_{\alpha}) \neq \emptyset$, so $\Delta = \bigcup_{\alpha} \alpha(\Gamma_{\alpha})$ is connected too.

In view of the above lemma, for any two vertices v and w of an A-tree Γ , the intersection of all profinitely-connected subgraphs of Γ containing v and w is an A-tree; it is the *geodesic* between v and w, denoted [v, w].

Lemma 2.10. Let Γ be an A-tree. A subgraph $\Delta \subseteq \Gamma$ is an A-tree iff $[v, w] \subseteq \Delta$ for all $v, w \in V(\Delta)$.

Proof. The forward direction is clear. Conversely, write $\Gamma \cong \lim_i \varphi_i(\Gamma)$ as an inverse limit of its finite quotient graphs, so $\Delta \cong \lim_i \varphi_i(\Delta)$. We claim that each $\varphi_i(\Delta)$ is connected, so Δ is an A-tree as desired.

Indeed, take $\overline{v}, \overline{w} \in V(\varphi_i(\Delta))$, which are projections of some $v, w \in V(\Delta)$, so $[v, w] \subseteq \Delta$ by hypothesis. Since [v, w] is profinitely-connected, its image $\varphi_i([v, w])$ is a connected subgraph of $\varphi_i(\Delta)$ containing \overline{v} and \overline{w} , so $\varphi_i(\Delta)$ is connected.

Lemma 2.11. Let Γ be a profinitely-connected profinite graph and let $\Delta \subseteq \Gamma$ be an A-subtree of Γ . Then the map $H_1(\Gamma, A) \to H_1(\Gamma/\Delta, A)$ induced from the collapsing map $\Gamma \twoheadrightarrow \Gamma/\Delta$ is an isomorphism. In particular, if Γ is an A-tree, then so is Γ/Δ .

Proof. Let $i: \Delta \hookrightarrow \Gamma$ and consider the following commutative diagram of profinite A-modules, whose rows are exact since Δ is an A-tree and Γ and Γ/Δ are both connected. Since $p_E: A[\![E^*(\Gamma,*)]\!] \to A[\![E^*(\Gamma/\Delta,*)]\!]$ has kernel $i_E(A[\![E^*(\Delta,*)]\!])$, the first column is exact; similarly for the second column.

$$0 \longrightarrow A\llbracket E^*(\Delta,*) \rrbracket \xrightarrow{d^{\Delta}} A\llbracket V(\Delta) \rrbracket \xrightarrow{\varepsilon^{\Delta}} A \longrightarrow 0$$
 It can be easily seen by diagram chasing (or, by applying a generalization of the Nine Lemma) that $\ker d^{\Gamma} \to \ker d^{\Gamma/\Delta}$ is an isomorphism.
$$\downarrow^{i_E} \qquad \downarrow^{i_V} \qquad \parallel \qquad \qquad A\llbracket E^*(\Gamma,*) \rrbracket \xrightarrow{d^{\Gamma}} A\llbracket V(\Gamma) \rrbracket \xrightarrow{\varepsilon^{\Gamma}} A \longrightarrow 0$$

$$\downarrow^{p_E} \qquad \downarrow^{p_V} \qquad \parallel \qquad \qquad A\llbracket E^*(\Gamma/\Delta,*) \rrbracket \xrightarrow{d^{\Gamma/\Delta}} A\llbracket V(\Gamma/\Delta) \rrbracket \xrightarrow{\varepsilon^{\Gamma/\Delta}} A \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\downarrow^{p_E} \qquad \qquad \downarrow^{p_V} \qquad \qquad \downarrow$$

$$\downarrow^{p_V} \qquad \qquad \downarrow^{p_V} \qquad \qquad \downarrow^$$

Recall that the Cayley graph of any free group of finite rank is a tree (or, in the homological language above, a \mathbb{Z} -tree). It is thus natural to ask whether the profinite Cayley graph of the pro- \mathcal{C} completion of any free group of finite rank is a $\mathbb{Z}_{\mathcal{C}}$ -tree. Let us call a pseudovariety \mathcal{C} arborescent [AW94] if this is the case.

Theorem 2.12. A pseudovariety C is arborescent iff C is closed under extensions with abelian kernel.

The converse direction, which is what we need for Theorem A, was first proved in [GR78, Theorem 1.2]; for the forward direction and the consequences of this equivalence, see [AW94, Theorem 2.1].

Proof of Theorem 2.12 (\Leftarrow). Let F be a free group of finite rank and consider the profinite Cayley graph $\Gamma := \Gamma(F_{\mathcal{C}})$ of the pro- \mathcal{C} completion of F, with the standard generating set $X \subseteq F$. Observe that $E(\Gamma) = F_{\mathcal{C}} \times X$ is closed in Γ , so we can identify $E(\Gamma)$ with $E^*(\Gamma, *)$. Since $\Gamma \cong \lim_{N \leq_o F_{\mathcal{C}}} \Gamma(F_{\mathcal{C}}/N, \pi_N(X))$ and each $\Gamma(F_{\mathcal{C}}/N, \pi_N(X))$ is connected in the combinatorial sense, we see that Γ is profinitely-connected.

Thus it suffices to show that $H_1(\Gamma, \mathbb{Z}_C) = 0$, or, in other words, that the map $\partial : \mathbb{Z}_C\llbracket F_C \times X \rrbracket \to \mathbb{Z}_C\llbracket F_C \rrbracket$ is a bijection onto the augmentation ideal $I := \operatorname{im} \partial = \ker \varepsilon$ of $\varepsilon : \mathbb{Z}_C\llbracket F_C \rrbracket \to \mathbb{Z}_C$. To this end, let us make $\mathbb{Z}_C\llbracket F_C \rrbracket$ into a profinite \mathbb{Z}_C -algebra by taking the continuous linear extension of the multiplication on F_C , so it is in particular a profinite commutative ring. Observe then that $\mathbb{Z}_C\llbracket F_C \times X \rrbracket$ is a free profinite $\mathbb{Z}_C\llbracket F_C \rrbracket$ -module on $\{1\} \times X$, where $\mathbb{Z}_C\llbracket F_C \rrbracket$ acts on $\mathbb{Z}_C\llbracket F_C \times X \rrbracket$ by extending the left-multiplication action of F_C on $F_C \times X$. Since $\partial (1,x) = x - 1$, it suffices to show that I is freely-generated by $\iota(X)$ as a profinite $\mathbb{Z}_C\llbracket F_C \rrbracket$ -module, where $\iota : X \to M$ sends $\iota(x) \coloneqq x - 1$.

Claim. The augmentation ideal I is the profinite $\mathbb{Z}_{\mathcal{C}}\llbracket F_{\mathcal{C}} \rrbracket$ -module generated by $\iota(X)$.

Proof. Since $F_{\mathcal{C}} = \lim_{N \in \mathcal{N}_{\mathcal{C}}(F_{\mathcal{C}})} F_{\mathcal{C}}/N$ and each $F_{\mathcal{C}}/N$ is a finite group generated by X, it suffices to prove that for a finite group G, the augmentation ideal $\ker(\mathbb{Z}[G] \xrightarrow{\varepsilon} \mathbb{Z})$ is generated by $\{x - 1 : x \in X\}$. Indeed, if $\sum_{g \in G} a_g = 0$ for $a_g \in \mathbb{Z}$, then for any fixed $x \in X$, we have $a_x = -\sum_{g \neq x} a_g$, and so

$$\sum\nolimits_g a_g g = a_x x + \sum\nolimits_{g \neq x} a_g g = \sum\nolimits_{g \neq x} a_g (g-x) = \sum\nolimits_{g \neq x} a_g x (x^{-1}g-1) \in \langle h-1 : h \in G \rangle.$$

Now write each $h \in G$ as $h = x_1 \cdots x_n$ for $x_i \in X$, so that $h - 1 = \sum_{i \le n} x_1 \cdots x_{i-1} (x_i - 1)$.

Thus it remains to show that I is freely-generated as a profinite $\mathbb{Z}_{\mathcal{C}}\llbracket F_{\mathcal{C}} \rrbracket$ -module by $\iota(X)$, so let $\varphi: X \to M$ be a continuous map to a profinite $\mathbb{Z}_{\mathcal{C}}\llbracket F_{\mathcal{C}} \rrbracket$ -module M; we need to show that there is a continuous $\mathbb{Z}_{\mathcal{C}}\llbracket F_{\mathcal{C}} \rrbracket$ -module homomorphism $\overline{\varphi}: I \to M$ such that $\overline{\varphi}\iota = \varphi$, which is then unique by the claim.

Since M is a profinite $\mathbb{Z}_{\mathcal{C}}[\![F_{\mathcal{C}}]\!]$ -module, we have, in particular, a continuous action of $F_{\mathcal{C}}$ on M, and hence a semidirect product $M \rtimes F_{\mathcal{C}}$ such that the map $\varphi \times \mathrm{id} : X \to M \rtimes F_{\mathcal{C}}$ is continuous. Now M is abelian as a pro- \mathcal{C} group, so as \mathcal{C} is closed under extensions of abelian kernels, we see from an inverse limit argument that $M \rtimes F_{\mathcal{C}}$ is a pro- \mathcal{C} group. Hence $\varphi \times \mathrm{id} : X \to M \rtimes F_{\mathcal{C}}$ extends to a unique continuous group homomorphism $\varphi' : F_{\mathcal{C}} \to M \rtimes F_{\mathcal{C}}$, so the composite $\delta_0 := p_1 \varphi' : F_{\mathcal{C}} \to M$ is a continuous map such that $\varphi'(x) = (\delta_0(x), x)$ for all $x \in X$. We have $\delta_0(xy) = \delta_0(x) + x\delta_0(y)$ for all $x, y \in X$; since F is topologically generated by X and δ_0 is continuous, we see that δ_0 is a derivation in the sense that $\delta_0(gh) = \delta_0(g) + g\delta_0(h)$ for all $g, h \in F_{\mathcal{C}}$.

All maps relevant to the construction of $\overline{\varphi}:I\to M$, fitted into a commutative diagram; the hooked arrows are subsets and the dashed arrows are induced by universal properties.

Let $\delta: \mathbb{Z}_{\mathcal{C}}\llbracket F_{\mathcal{C}} \rrbracket \to M$ be the unique continuous $\mathbb{Z}_{\mathcal{C}}$ -module homomorphism extending δ_0 and let $\overline{\varphi} \coloneqq \delta | I$, so we have $\overline{\varphi}(x-1) = \delta(x-1) = \delta_0(x) - \delta_0(1) = \delta_0(x) = \varphi(x)$ for all $x \in X$. We claim that $\overline{\varphi}$ is $\mathbb{Z}_{\mathcal{C}}\llbracket F_{\mathcal{C}} \rrbracket$ -linear, so it is the desired continuous $\mathbb{Z}_{\mathcal{C}}\llbracket F_{\mathcal{C}} \rrbracket$ -module homomorphism extending φ . Indeed, this follows since the set $\mathbb{Z}_{\mathcal{C}}[F_{\mathcal{C}}]$ of all finite $\mathbb{Z}_{\mathcal{C}}$ -linear combinations of $F_{\mathcal{C}}$ is dense in $\mathbb{Z}_{\mathcal{C}}\llbracket F_{\mathcal{C}} \rrbracket$, so by continuity, it suffices to observe that $\delta(\alpha\beta) = \varepsilon(\beta)\delta(\alpha) + \alpha\delta(\beta)$ for all $\alpha, \beta \in \mathbb{Z}_{\mathcal{C}}[F_{\mathcal{C}}]$; in particular, $\beta \coloneqq x - 1 \in I = \ker \varepsilon$ for all $x \in X$.

2.3. Actions. Lastly, we need to study the behaviour of actions of a profinite group G on a profinite graph Γ , which are continuous actions $G \cap \Gamma$ such that $d_i(gm) = gd_i(m)$ for each $m \in \Gamma$ and i = 0, 1.

Lemma 2.13. If $G \curvearrowright \Gamma$, then $\Gamma \cong \lim_i \Gamma_i$ where each Γ_i is a finite quotient G-graph.

Proof. Proceed as in Lemma 2.6, taking \mathcal{R}_0 to be the open G-invariant equivalence relations on Γ , so that $p_R : \Gamma \to \Gamma/R$ is a G-map of G-spaces. Then \mathcal{R}_0 is cofinal in the collection \mathcal{R} of all open equivalence relations on Γ , so that $\Gamma \cong \lim_{R \in \mathcal{R}_0} \Gamma/R$ is as desired.

Corollary 2.14. Let $G \cap \Gamma$ and suppose that $G = \langle X \rangle$ for some $X \subseteq G$. If $\Delta \subseteq \Gamma$ is a subgraph such that $\Delta \cap x\Delta \neq \emptyset$ for all $x \in X$, then $G\Delta := \bigcup_{g \in G} g\Delta$ is profinitely-connected.

Proof. Writing $\Gamma \cong \lim_i \varphi_i(\Gamma)$ as an inverse limit of its finite quotient G-graphs, we have $G\Delta = \lim_i G\varphi_i(\Delta)$ and $\varphi_i(\Delta) \cap x\varphi_i(\Delta) \neq \emptyset$ for all $x \in X$, so we can assume without loss of generality that Γ is finite.

In this case, the kernel of $G \to \operatorname{Aut}(\Gamma)$ is an open normal subgroup of G, so after passing to the quotient, we may assume that G is finite. Now both G and Γ are finite, and the result is immediate.

Finally, we will need the existence of connected transversals of $G \curvearrowright \Gamma$. If Γ is finite, then such transversals always exist (see, for instance, [DD89]). This is not the case in general, but if G acts freely on Γ with finite quotient, then the existence of transversals follow from the same argument as in the finite case.

Lemma 2.15. Let G be a profinite group acting on a profinite graph Γ and fix a vertex $v_0 \in V(\Gamma)$. If Γ/G is finite and $G \cap \Gamma$ freely, then there is a (finite) connected transversal $\Sigma \subseteq \Gamma$ of the action containing v_0 .

Proof. Let \mathcal{T} be the set of all finite subtrees $T_0 \subseteq \Gamma$ containing v_0 such that $T_0 \hookrightarrow \Gamma \twoheadrightarrow \Gamma/G$ is an injection, and let $T \in \mathcal{T}$ be maximal with respect to inclusion. Clearly T' := p(T) is a subtree of Γ/G .

We claim that T' is a spanning subtree of Γ/G . If not, then since Γ/G is finite and T' is connected, there is an edge $e' \in \Gamma/G - T'$ such that $d_i(e') \in T'$ but $d_{1-i}(e') \notin T'$ for some i = 0, 1, say with i = 0. Choose $v \in V(T)$ and $e_0 \in E(T)$ such that $p(v) = d_0(e')$ and p(e) = e'. Observe that $p(v) = p(d_0(e))$, so under the action of G, we can assume that $v = d_0(e)$. But $T \sqcup \{e, d_1(e)\} \in \mathcal{T}$, which contradicts the maximality of T.

Set $\Sigma := d_0^{-1}(V(T))$, so clearly $v_0 \in T \subseteq \Sigma$. It remains to show that Σ is a transversal of $G \cap \Gamma$. Since $p|T:T \to T'$ is a bijection and $V(T') = V(\Gamma/G)$, it suffices to show that for each edge $e' \in \Gamma/G - T'$, there is a unique edge $e \in \Sigma - T$ such that p(e) = e'. Indeed, let $e \in E(\Gamma)$ project to e', which under the action of G can be chosen so that $d_0(e) \in V(T)$, and hence $e \in \Sigma - T$. If $e_1, e_2 \in \Sigma - T$ both project to e', then $e_2 = ge_1$ for some $g \in G$. But $p(d_0(e_i)) = d_0(p(e_i)) = d_0(e') \in V(T')$ for both i = 1, 2, and since $d_0(e_i) \in V(T)$, we see from injectivity of p|T that $d_0(e_1) = d_0(e_2)$, and hence $d_0(e_1) = d_0(e_2) = d_0(ge_1) = gd_0(e_1)$. This forces g = 1 by freeness of the action, and hence $e_1 = e_2$ as desired.

3. Proof of the Ribes-Zalesskii Theorem

In this section, we prove the Ribes-Zalesskii Theorem for pro- \mathcal{C} free groups, where \mathcal{C} is a pseudovariety of groups closed under extensions. Let F be a free group of finite rank. By Fact 1.1, F is residually- \mathcal{C} , so F embeds into its pro- \mathcal{C} completion $F_{\mathcal{C}}$. This embedding extends to an embedding $\Gamma(F) \hookrightarrow \Gamma(F_{\mathcal{C}})$ of profinite graphs, where $\Gamma(F_{\mathcal{C}})$ is a $\mathbb{Z}_{\mathcal{C}}$ -tree by Theorem 2.12.

Let $H, K \leq F$ be finitely generated subgroups which are closed in the pro- \mathcal{C} topology of F. We will show that the double coset HK is also closed in the pro- \mathcal{C} topology by studying actions on the profinite Cayley graph $\Gamma(F_{\mathcal{C}})$. To this end, we make some useful reductions, which require the following lemma.

Lemma 3.1. If $K \leq_c F$ is a finitely generated closed subgroup of F, then there is an open subgroup $U \leq_o F$ containing K such that K is a free factor of U.

Proof. Let Γ be the Cayley graph of F with respect to a fixed basis. By Lemma 1.3, we can write $K = \bigcap_i U_i$ as the intersection of all open subgroups $U_i \leq_o F$ containing K. For each i, let $p_i : \Gamma/K \to \Gamma/U_i$ be the natural quotient map. Note that for any finite $\Delta \subseteq \Gamma/K$, there is some i such that $p_i | \Delta$ is injective.

Since K is finitely generated, the fundamental group of Γ/K is supported on a finite subgraph $\Delta \subseteq \Gamma/K$. Choosing i so that $\Delta \hookrightarrow \Gamma/U_i$, we see that $K \cong \pi_1(\Gamma/K) \cong \pi_1(\Delta)$ is a free factor of $\pi_1(\Gamma/U_i) \cong U_i$.

Claim. We can assume that (1) K is a free factor of F, (2) K is C-compatible with F, and (3) $\overline{K} = K_C$.

Proof. Applying Lemma 3.1 so that K is a free factor of an open subgroup $U \leq_o F$, we see that K is C-compatible with U and U is C-compatible with E by Lemmas 1.4 and 1.5, respectively. Let E be a finite transversal of E in E in E in E is closed in the pro-E topology of E since E is still finitely generated by Howson's Theorem (see [Sta83, Corollary 5.6]).

In particular, we can assume that the following diagram on the left commutes, so that $\Gamma(K) = \underline{\Gamma(\overline{K})} \cap \Gamma(F)$ by Corollary 1.7. Now, we start the actual proof. By Corollary 1.7 again, it suffices to show that $\overline{HK} \cap F = HK$. Since $F_{\mathcal{C}}$ is compact, so are \overline{H} and \overline{K} , and hence $\overline{H} \times \overline{K}$ is compact too by Tychonoff's Theorem. By continuity of multiplication, we see that \overline{HK} is compact too, hence closed, so $\overline{HK} \subseteq \overline{HK}$. Thus, overall, it suffices to show that $\overline{HK} \cap F \subseteq HK$. Take $h \in \overline{H}$ and $k \in \overline{K}$ such that $hk \in F$. We need to show that $hk \in HK$.

Since $hk \in F$, the geodesic [1, hk] in $\Gamma(F_C)$ is a finite path, so $[h^{-1}, k] = h^{-1}[1, hk]$ is a finite path as well. Let $k_0 \in [h^{-1}, k]$ be closest to h^{-1} such that $k_0 \in \Gamma(\overline{K})$. If $k_0 = h^{-1}$, then $h \in \overline{K}$, so $hk \in \overline{K} \cap F = K \subseteq HK$ and we are done. Otherwise, observe that $k_0k^{-1} \in K$ since $[k_0, k] \subseteq \Gamma(\overline{K})$ is finite, so $hk \in HK$ iff $hk_0 \in HK$. Hence, we can assume without loss of generality that $k = k_0$.

- (a) We can regard $\Gamma(K)$ as a subgraph of $\Gamma(F_c)$, and $\Gamma(K) \subseteq \Gamma(\overline{K}) \cap \Gamma(F) = \Gamma(\overline{K} \cap F)$ is an equality.
- (b) Collapsing the two geodesics induces a cycle since e lies outside said geodesics and $[h^{-1},k]$ is finite.

Claim. There is a free action of $\overline{H} \cap \overline{K}$ on a profinite graph $\Delta \subseteq \Gamma(\overline{K})$ containing k with finite quotient.

Proof. Let $\Lambda \coloneqq \bigcup_{i=1}^n \overline{H}[1,h_i]$ where h_1,\ldots,h_n are the free generators of H, and set $\Delta \coloneqq \Gamma(\overline{K}) \cap \Lambda$ so that $\overline{H} \cap \overline{K}$ acts freely on Δ by left-multiplication. Observe that Λ is \overline{H} -invariant and the quotient map $p:\Lambda \to \Lambda/\overline{H}$ induces a map $\widetilde{p}:\Delta/(\overline{H} \cap \overline{K}) \to p(\Lambda)$, which we claim is injective. Indeed, if $t_2=t_1x$ for some $x \in \overline{H}$ and $t_1,t_2 \in \Delta$, then the vertices of t_i lie in $V(\Gamma(\overline{K}))$, so $t_2=t_1x'$ for some $x' \in \overline{K}$, which forces $x=x' \in \overline{H} \cap \overline{K}$ by freeness. In particular, since $p(\Lambda)$ is finite, so is $\Delta/(\overline{H} \cap \overline{K})$.

By Corollary 2.14, Λ is a $\mathbb{Z}_{\mathcal{C}}$ -tree since $\Lambda = \bigcup_{h \in \overline{H}} h\Lambda_0$ and $\Lambda_0 \cap h_i\Lambda_0 \neq \varnothing$, where $\Lambda_0 := \bigcup_{i=1}^n [1, h_i]$. We claim that $k \in [h^{-1}, 1]$, so that $k \in [h^{-1}, 1] \subseteq \Lambda$ by Lemma 2.10. Suppose otherwise, so there is an edge $e \in [h^{-1}, k] \setminus [h^{-1}, 1]$ such that $e \notin \Gamma(\overline{K})$ but k is a vertex of e. Then, collapsing the $\mathbb{Z}_{\mathcal{C}}$ -subtree $[h^{-1}, 1] \cup [1, k]$ of the $\mathbb{Z}_{\mathcal{C}}$ -tree $[h^{-1}, 1] \cup [1, k] \cup [h^{-1}, k]$ (see Lemma 2.9) induces a cycle at $h \sim k$ since $[1, k] \subseteq \Gamma(\overline{K})$ and $e \notin [h^{-1}, 1] \cup [1, k]$, which contradicts Lemma 2.11.

By Lemma 2.15, there is a finite connected transversal $\Sigma \subseteq \Delta$ containing 1. Since $k \in \Delta$, there is an element $g \in \overline{H} \cap \overline{K}$ such that $gk \in \Sigma$. But Σ is finite and connected, so $\Sigma \subseteq \Gamma(F)$, and hence $\Sigma \subseteq \Gamma(\overline{K}) \cap \Gamma(F) = \Gamma(K)$. Thus we have $gk \in K$, so $hg^{-1} \in \overline{H} \cap F = H$ by Corollary 1.7, and hence $hk = (hg^{-1})(gk) \in HK$.

REFERENCES

- [AW94] J. Almeida and P. Weil. "Reduced Factorizations in Free Profinite Groups and Join Decompositions of Pseudovarieties". In: *International Journal of Algebra and Computation* 4.3 (1994), pp. 375–403.
- [AS05] K. Auinger and B. Steinberg. "A constructive version of the Ribes-Zalesskii product theorem". In: *Mathematische Zeitschrift* 250 (2005), pp. 287–297.
- [DD89] W. Dicks and M. J. Dunwoody. *Groups Acting on Graphs*. Vol. 17. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1989.
- [GR78] D. Gildenhuys and L. Ribes. "Profinite Groups and Boolean Graphs". In: Journal of Pure and Applied Algebra 12 (1978), pp. 21–47.
- [Rib17] L. Ribes. *Profinite Graphs and Groups*. Vol. 66. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer Cham, 2017.
- [RZ93] L. Ribes and P. Zalesskii. "On The Profinite Topology on a Free Group". In: Bulletin of the London Mathematical Society 25.1 (1993), pp. 37–43.
- [RZ94] L. Ribes and P. Zalesskii. "The Pro-p Topology of a Free Group and Algorithmic Problems in Semigroups". In: *International Journal of Algebra and Computation* 4.3 (1994), pp. 359–374.
- [RZ10] L. Ribes and P. Zalesskii. *Profinite Groups*. 2nd ed. Vol. 40. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. Springer Berlin, Heidelberg, 2010.
- [Ser97] J. P. Serre. *Galois Cohomology*. Springer Monographs in Mathematics. English translation of *Cohomologie Galoisienne* (LNM 5; 1994). Springer Berlin, Heidelberg, 1997.
- [Sta83] J. R. Stallings. "Topology of Finite Graphs". In: *Inventiones Mathematicae* 71 (1983), pp. 551–565.

Department of Mathematics and Statistics, McGill University, 805 Sherbrooke Street West, Montreal, QC, H3A 0B9, Canada

 $Email\ address: {\tt zhaoshen.zhai@mail.mcgill.ca}$