Gradients, Hessians, and Positive Definiteness

Local Minima and Local Maxima

We want to consider the local minima (or maxima) of a function $f(w_1, w_2) : \mathbb{R}^2 \to \mathbb{R}$. First do a power series expansion and just keep the first three terms to get

$$f(w_{1}, w_{2}) \approx f(w_{01}, w_{02}) + \left[\frac{\partial f}{\partial w_{1}} \frac{\partial f}{\partial w_{2}} \right]_{|(w_{01}, w_{02})} \left[\frac{w_{1} - w_{01}}{w_{2} - w_{02}} \right] + \frac{1}{2} \left[w_{1} - w_{01} \right] \left[w_{2} - w_{02} \right] \left[\frac{\partial^{2} f}{\partial^{2} w_{1}} \frac{\partial^{2} f}{\partial w_{1} \partial w_{2}} \right]_{|(w_{01}, w_{02})} \left[w_{1} - w_{01} \right] \cdot \frac{1}{2} \left[w_{1} - w_{01} \right] \left[w_{2} - w_{02} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{2}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{2}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2} f}{\partial w_{1}} \left[w_{1} - w_{01} \right] \cdot \frac{\partial^{2$$

If (w_{01}, w_{02}) is a local minimum or a local maximum then

$$\begin{bmatrix} \frac{\partial f}{\partial w_1} \\ \frac{\partial f}{\partial w_2} \end{bmatrix}_{|(w_0, w_{00})} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

and

$$f(w_{1}, w_{2}) \approx f(w_{01}, w_{02}) + \frac{1}{2} \begin{bmatrix} w_{1} - w_{01} & w_{2} - w_{02} \end{bmatrix} \begin{bmatrix} \frac{\partial^{2} f}{\partial^{2} w_{1}} & \frac{\partial^{2} f}{\partial w_{1} \partial w_{2}} \\ \frac{\partial^{2} f}{\partial w_{2} \partial w_{1}} & \frac{\partial^{2} f}{\partial^{2} w_{2}} \end{bmatrix}_{|(w_{01}, w_{02})} \begin{bmatrix} w_{1} - w_{01} \\ w_{2} - w_{02} \end{bmatrix}.$$

If (w_{01}, w_{02}) is a local minimum then the Hessian¹ given by

$$\begin{bmatrix} \frac{\partial^2 f}{\partial^2 w_1} & \frac{\partial^2 f}{\partial w_1 \partial w_2} \\ \frac{\partial^2 f}{\partial w_2 \partial w_1} & \frac{\partial^2 f}{\partial^2 w_2} \end{bmatrix}_{|(w_{01}, w_{02})}$$

is positive definite. Why? On the other hand, if (w_{01}, w_{02}) is a local maximum then the Hessian

$$\begin{bmatrix} \frac{\partial^2 f}{\partial^2 w_1} & \frac{\partial^2 f}{\partial w_1 \partial w_2} \\ \frac{\partial^2 f}{\partial w_2 \partial w_1} & \frac{\partial^2 f}{\partial^2 w_2} \end{bmatrix}_{|(w_{01}, w_{02})}$$

is negative definite. Why?

¹Note that the Hessian is always symmetric.

Gradient Descent

For complicated functions such as neural networks, we cannot solve

$$\nabla f = \begin{bmatrix} \frac{\partial f}{\partial w_1} \\ \frac{\partial f}{\partial w_2} \end{bmatrix}_{|(w_{01}, w_{02})} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

for (w_{01}, w_{02}) . Instead, we start at a random point $(w_1^{(1)}, w_2^{(1)})$ and search for where $\nabla f = 0$. To do this we use the approximation

$$f(w_1^{(n+1)}, w_2^{(n+1)}) \approx f(w_1^{(n)}, w_2^{(n)}) + \begin{bmatrix} \frac{\partial f}{\partial w_1} & \frac{\partial f}{\partial w_2} \end{bmatrix}_{|(w_1^{(n)}, w_2^{(n)})} \begin{bmatrix} w_1^{(n+1)} - w_1^{(n)} \\ w_2^{(n+1)} - w_2^{(n)} \end{bmatrix}.$$

Then set $(w_1^{(n+1)}, w_2^{(n+1)})$ according to $(\eta > 0)$

$$(w_1^{(n+1)}, w_2^{(n+1)}) \triangleq (w_1^{(n)}, w_2^{(n)}) - \eta \nabla f_{|(w_1^{(n)}, w_2^{(n)})} = (w_1^{(n)}, w_2^{(n)}) - \eta \left[\begin{array}{cc} \frac{\partial f}{\partial w_1} & \frac{\partial f}{\partial w_2} \end{array} \right]_{|(w_1^{(n)}, w_2^{(n)})}.$$

This forces f to decrease as

$$\Delta f = f(w_1^{(n+1)}, w_2^{(n+1)}) - f(w_1^{(n)}, w_2^{(n)}) = \left[\frac{\partial f}{\partial w_1} \frac{\partial f}{\partial w_2} \right]_{|(w_1^{(n)}, w_2^{(n)})} \left[\frac{w_1^{(n+1)} - w_1^{(n)}}{w_2^{(n+1)} - w_2^{(n)}} \right]$$

$$= -\eta \left[\frac{\partial f}{\partial w_1} \frac{\partial f}{\partial w_2} \right]_{|(w_1^{(n)}, w_2^{(n)})} \left[\frac{\partial f}{\partial w_1} \right]_{|(w_1^{(n)}, w_2^{(n)})}$$

$$= -\eta \left(\left(\frac{\partial f}{\partial w_1} \right)^2 + \left(\frac{\partial f}{\partial w_2} \right)^2 \right) < 0$$

showing that f is decreasing in value.

Symmetric and Positive Definite Matrices

Definition 1 Symmetric Matrix

A matrix Q is symmetric if

$$Q^T = Q.$$

Definition 2 Positive Semidefinite Matrix

A symmetric matrix $Q \in \mathbb{R}^{m \times m}$ is positive semidefinite if for all $x \in \mathbb{R}^m$,

$$x^T Q x > 0.$$

Definition 3 Positive Definite Matrix

A symmetric matrix $Q \in \mathbb{R}^{m \times m}$ is positive definite if for all $x \in \mathbb{R}^m$

$$x^T Q x > 0$$

and

$$x^T Q x = 0$$

if and only if x is the zero vector, i.e., $x = 0_{n \times 1}$.

Example 1 Positive Definite Matrix

Let

$$Q_1 = \left[egin{array}{cc} 1 & 0 \ 0 & 2 \end{array}
ight]$$

and note that $Q_1 = Q_1^T$. Then

$$x^T Q_1 x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = x_1^2 + 2x_2^2 \ge 0 \text{ for all } x \in \mathbb{R}^2$$

and the only way it can equal zero is if $x_1 = 0$ and $x_2 = 0$. That is, Q_1 is positive definite.

Example 2 Positive Semidefinite Matrix

Let

$$Q_2 = \left[egin{array}{cc} 0 & 0 \ 0 & 2 \end{array}
ight]$$

and note that $Q_2 = Q_2^T$. Then

$$x^T Q_2 x = \begin{bmatrix} x_1 & x_2 \end{bmatrix}^T \begin{bmatrix} 0 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = 2x_2^2 \ge 0 \text{ for all } x \in \mathbb{R}^2.$$

Thus Q_2 is positive semidefinite. However, in this example, $x = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ makes $x^T Q_2 x = 0$, that is, Q_2 is not positive definite.

Example 3 Indefinite Matrix

Let

$$Q_3 = \left[egin{array}{cc} -1 & 0 \ 0 & 2 \end{array}
ight]$$

and note that $Q_3 = Q_3^T$. Then

$$x^{T}Q_{3}x = \begin{bmatrix} x_{1} & x_{2} \end{bmatrix}^{T} \begin{bmatrix} -1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = -x_{1}^{2} + 2x_{2}^{2}.$$

In this example, x^TQ_3x can be positive if $x=\begin{bmatrix}0\\1\end{bmatrix}$, or negative if $x=\begin{bmatrix}1\\0\end{bmatrix}$. Consequently, it is an indefinite matrix.

Check for definiteness matrices

$$Q \triangleq \begin{bmatrix} q_{11} & q_{12} & q_{13} \\ q_{21} & q_{22} & q_{23} \\ q_{31} & q_{32} & q_{33} \end{bmatrix} \text{ with } Q^T = Q.$$

Q is *positive* definite if and only if

$$q_{11} > 0$$
, det $\begin{bmatrix} q_{11} & q_{12} \\ q_{21} & q_{22} \end{bmatrix} > 0$, and det $Q > 0$.

- Equivalently, Q is positive definite if and only if all of its eigenvalues are positive.
- Q is negative definite if and only -Q is positive definite.