Partial Differential Equations and its Applications (MAT231)

Instructor: Mayamma Joseph (<u>mayamma.joseph@christuniversity.in</u>)

Practice Problems

Formation of Partial Differential Equations

Form the partial differential Equations corresponding to the following equations.

1. $z = (x - a)^2 + (y - b)^2$	$2. \ 2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$
3. $x^2 + y^2 = (z - c)^2 tan^2 \alpha$	4. $x^2 + y^2 + (z - c)^2 = a^2$
$5. \ z = (x+a)(y+b)$	6. $2z = (ax + y)^2 + b$
$7. \ ax^2 + by^2 + z^2 = 1$	$8. \ z = axy + b$
9. $z = xy + y\sqrt{x^2 - a^2} + b$	$10.z = ax + a^2y^2 + b$
$11.z = \left(\frac{ax}{y}\right) + b$	$12.z = (x^2 + a)(y^2 + b)$
$13.\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$	14.f(xyz, x + y + z) = 0
$15.f(x + y + z, x^2 + y^2 - z^2) = 0$	$16.f(z, x^2 + y^2) = 0$
$17.f(x^2 + y^2 + z^2, z^2 - 2xy) = 0$	$18.f(xyz, x^2 + y^2 + z^2) = 0$
$19.f(xy + z^2, x + y + z) = 0$	$20.z = e^{mx} f(x+y)$
21.z = f(x + ay) + g(x - ay)	$22.v = \left(\frac{1}{r}\right)[f(r-at) + F(r+at)]$
23.z = yf(x) + xg(y)	$24.z = \left(\frac{1}{y}\right) [f(x+ay) + g(x-ay)]$
25.z = f(x + ay)	$26.z = f\left(\frac{xy}{z}\right)$
27.z = f(xy) + g(x+y)	28.z = f(x+iy) + F(x-iy)
$29.z = y^2 + 2f\left(\frac{1}{x} + logy\right)$	$30.lx + my + nz = f(x^2 + y^2 + z^2)$
$31.xyz = \varphi(x+y+z)$	$32.f(x + y + z, x^2 + y^2 + z^2) = 0$
$33.f(x^2 + y^2, z - xy) = 0$	$34.f(x^2 + y^2, y^2 + z^2) = 0$

35. Find the PDE of all spheres of radius 3 units and having their centres in the *xy*-plane.