XUTN PARANÁ Análisis Matemático I

Series Numéricas

- **f utn** facultad regional paraná
- utnfrp
- **utn**parana

Almafuerte 1033 (3100) Paraná - E. Ríos Tel:054-343-4243054/4243694

Fax: 54-343-4243589

SERIES NUMÉRICAS INFINITAS

Dada la sucesión $\{a_n\}$ se llama serie numérica a la suma de los infinitos términos de una sucesión.

$$a_1 + a_2 + a_3 + \dots + a_n + \dots = \sum_{n=1}^{\infty} a_n$$

Nos preguntamos qué resultado dará la suma de infinitos números.

¿Tendrá un valor finito, dará infinito, podrá tener otro resultado?

Dada la serie $\sum_{n=1}^{\infty} \frac{1}{2^n}$ nos preguntamos si existirá la suma de esos infinitos números

$$\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \frac{1}{64} + \dots + \frac{1}{2^n} + \dots$$

Comenzamos a sumar los términos de la serie obteniendo:

$$s_1 = \frac{1}{2} = 0.5$$

$$s_2 = \frac{1}{2} + \frac{1}{4} = 0.75$$

$$s_3 = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = 0.875$$

n	Suma de los primeros n términos
1	0.50000000
2	0.75000000
3	0.87500000
4	0.93750000
5	0.96875000
6	0.98437500
7	0.99218750
10	0.99902344
15	0.99996948
20	0.99999905
25	0.9999997
4	

En la tabla se puede ver que cuando se suman más y más términos, estas *sumas parciales* se vuelven más y más cercanas a 1.

Así que es razonable decir que la suma de esta serie infinita es igual a 1 y escribir

$$\sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots + \frac{1}{2^n} + \dots = 1$$

Dada la serie $\sum_{n=1}^{\infty} a_n$ determinar si esa suma existe.

Planteamos las sumas parciales

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$
 \vdots
 $s_n = a_1 + a_2 + a_3 + ... + a_n = \sum_{i=1}^n a_i$ suma n-ésima

Con estas sumas parciales podemos armar una sucesión llamada sucesión de sumas parciales $\{s_n\} = \{s_1, s_2, s_3, ..., s_n, ...\}$

2 Definición Dada una serie $\sum_{n=1}^{\infty} a_n = a_1 + a_2 + a_3 + \cdots$, sea s_n la n-ésima suma parcial:

$$s_n = \sum_{i=1}^n a_i = a_1 + a_2 + \cdots + a_n$$

Si la sucesión $\{s_n\}$ es convergente y $\lim_{n\to\infty} s_n = s$ existe como un número real, entonces la serie $\sum a_n$ se dice **convergente** y se escribe

$$a_1 + a_2 + \cdots + a_n + \cdots = s$$
 o $\sum_{n=1}^{\infty} a_n = s$

El número s se llama **suma** de la serie. Si la sucesión $\{s_n\}$ es divergente, entonces la serie es **divergente**.

Por lo que la suma de una serie es el límite de la sucesión de sumas parciales.

$$\sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} \sum_{i=1}^{n} a_i$$

Número real Serie CONVERGENTE
$$\lim_{n\to\infty} s_n = s \qquad \infty \qquad \text{Serie DIVERGENTE}$$
Oscila Serie DIVERGENTE

EJEMPLO 2 Un importante ejemplo de una serie infinita es la serie geométrica

$$a + ar + ar^{2} + ar^{3} + \dots + ar^{n-1} + \dots = \sum_{n=1}^{\infty} ar^{n-1}$$
 $a \neq 0$

Cada término se obtiene a partir del término precedente multiplicándolo por la **razón** común r.

4 La serie geométrica

$$\sum_{n=1}^{\infty} ar^{n-1} = a + ar + ar^2 + \cdots$$

es convergente si |r| < 1 y su suma es

$$\sum_{n=1}^{\infty} ar^{n-1} = \frac{a}{1-r} \qquad |r| < 1$$

Si $|r| \ge 1$, la serie geométrica es divergente.

Condición necesaria de convergencia de una serie numérica

Teorema Si la serie $\sum_{n=1}^{\infty} a_n$ es convergente, entonces $\lim_{n\to\infty} a_n = 0$.

Demostración: Sea $S_n = a_1 + a_2 + \dots + a_n$ entonces despejando $a_n = S_n - S_{n-1}$

Como $\sum a_n$ es convergente, la sucesión $\{S_n\}$ es convergente

Sea $\lim_{n\to\infty} S_n = S$ y como $n-1\to\infty$ cuando $n\to\infty$ también $\lim_{n\to\infty} S_{n-1} = S$

Por lo que
$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} (s_n - s_{n-1}) = \lim_{n\to\infty} s_n - \lim_{n\to\infty} s_{n-1}$$
$$= s - s = 0$$

IMPORTANTE!!

En general, el inverso del teorema 6 no se cumple. Si $\lim_{n\to\infty} a_n = 0$, no podemos concluir que $\sum a_n$ es convergente.

7 La prueba de la divergencia Si $\lim_{n\to\infty} a_n$ no existe o si $\lim_{n\to\infty} a_n \neq 0$, entonces la

serie $\sum_{n=1}^{\infty} a_n$ es divergente.

La prueba de la divergencia se infiere del teorema 6 porque si la serie no es divergente, entonces es convergente y, por tanto, $\lim_{n\to\infty} a_n = 0$.

EJEMPLO 9 Demuestre que la serie $\sum_{n=1}^{\infty} \frac{n^2}{5n^2 + 4}$ es divergente.

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{n^2}{5n^2 + 4} = \lim_{n \to \infty} \frac{1}{5 + 4/n^2} = \frac{1}{5} \neq 0$$

De modo que la serie diverge de acuerdo con la prueba de la divergencia.

IMPORTANTE!!

Si encontramos que $\lim_{n\to\infty} a_n \neq 0$, sabemos que $\sum a_n$ es divergente. Si tiene que $\lim_{n\to\infty} a_n = 0$, nada sabemos con respecto a la convergencia o la divergencia de $\sum a_n$.

Por ejemplo este criterio no brinda información sobre el comportamiento de series como $\sum_{n=0}^{\infty} \frac{1}{2^n}$ o como $\sum_{n=1}^{\infty} \frac{1}{n}$ porque en ambos casos $\lim_{n\to\infty} a_n = 0$

 $\sum_{n=0}^{\infty} \frac{1}{2^n}$ es una serie convergente por ser una serie geométrica de razón $\frac{1}{2}$

 $\sum_{n=1}^{\infty} \frac{1}{n}$ se llama serie armónica y es divergente (lo veremos más adelante)

CONCLUSIÓN: Si $\lim_{n\to\infty} a_n = 0$, la serie $\sum_{n=1}^{\infty} a_n$ puede ser convergente o divergente

8 Teorema Si Σ a_n y Σ b_n son series convergentes, entonces también lo son las series Σ ca_n (donde c es una constante), Σ $(a_n + b_n)$ y Σ $(a_n - b_n)$, y

i)
$$\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$$

ii)
$$\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$$

iii)
$$\sum_{n=1}^{\infty} (a_n - b_n) = \sum_{n=1}^{\infty} a_n - \sum_{n=1}^{\infty} b_n$$

Series de términos positivos

Vamos a ver ahora algunos criterios (pruebas) que nos van a permitir determinar la convergencia o divergencia de series que tengan todos sus términos positivos. Teniendo en cuenta que el comportamiento de una serie no se modifica si suprimimos los N primeros términos de la misma.

Los siguientes criterios se aplicarán a series $\sum_{n=1}^{\infty} a_n$ donde $a_n > 0 \quad \forall n > N$

Prueba de la integral Suponga que f es una función continua, positiva y decreciente sobre $[1, \infty)$ y sea $a_n = f(n)$. Entonces la serie $\sum_{n=1}^{\infty} a_n$ es convergente si y sólo si la integral impropia $\int_{1}^{\infty} f(x) dx$ es convergente. En otras palabras:

- i) Si $\int_{1}^{\infty} f(x) dx$ es convergente, entonces $\sum_{n=1}^{\infty} a_n$ es convergente.
- ii) Si $\int_{1}^{\infty} f(x) dx$ es divergente, entonces $\sum_{n=1}^{\infty} a_n$ es divergente.

EJEMPLO 1 Pruebe la convergencia o divergencia de la serie $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$.

La función $f(x) = \frac{1}{n^2+1}$ es continua , positiva y decreciente en $[1, \infty)$ podemos aplicar el criterio de la integral:

$$\int_{1}^{\infty} \frac{1}{x^{2} + 1} dx = \lim_{t \to \infty} \int_{1}^{t} \frac{1}{x^{2} + 1} dx = \lim_{t \to \infty} \tan^{-1} x \Big]_{1}^{t}$$
$$= \lim_{t \to \infty} \left(\tan^{-1} t - \frac{\pi}{4} \right) = \frac{\pi}{2} - \frac{\pi}{4} = \frac{\pi}{4}$$

Por tanto, $\int_1^{\infty} 1/(x^2 + 1) dx$ es una integral convergente y si es así, de acuerdo con la prueba de la integral, la serie $\sum 1/(n^2 + 1)$ es convergente.

Serie P

1 La serie $p \sum_{n=1}^{\infty} \frac{1}{n^p}$ es convergente si p > 1 y divergente si $p \le 1$.

Ejemplo

a) La serie
$$\sum_{n=1}^{\infty} \frac{1}{n^3} = \frac{1}{1^3} + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \cdots$$
 es convergente porque es una serie p, con p = 3, p > 1

b) La serie
$$\sum_{n=1}^{\infty} \frac{1}{n^{1/3}} = \sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}} = 1 + \frac{1}{\sqrt[3]{2}} + \frac{1}{\sqrt[3]{3}} + \frac{1}{\sqrt[3]{4}} + \cdots$$
 es divergente porque es una serie p, con p = 1/3, p < 1

c) La serie
$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots$$
 Serie armónica es divergente porque es una serie p, con p=1

La prueba por comparación Supongamos que $\sum a_n$ y $\sum b_n$ son series con términos positivos.

- i) Si $\sum b_n$ es convergente y $a_n \le b_n$ para toda n, entonces $\sum a_n$ también es convergente.
- ii) Si $\sum b_n$ es divergente y $a_n \ge b_n$ para toda n, entonces $\sum a_n$ también es divergente.

EJEMPLO 1 Determine si la serie $\sum_{n=1}^{\infty} \frac{5}{2n^2 + 4n + 3}$ es convergente o divergente.

Prueba por comparación del límite Suponga que $\sum a_n$ y $\sum b_n$ son series con términos positivos. Si

$$\lim_{n\to\infty}\frac{a_n}{b_n}=c$$

donde c es un número finito y c>0, entonces ambas series convergen o ambas divergen.

EJEMPLO 3 Pruebe si la serie $\sum_{n=1}^{\infty} \frac{1}{2^n - 1}$ es convergente o divergente.

Prueba de la razón

- i) Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L < 1$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es absolutamente convergente (y, por tanto, convergente).
- ii) Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$, o bien, $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \infty$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.
- iii) Si $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = 1$, la prueba de la razón no es concluyente; es decir, no se puede sacar conclusión alguna con respecto a la convergencia o a la divergencia de $\sum a_n$.

EJEMPLO 5 Pruebe la convergencia de la serie $\sum_{n=1}^{\infty} \frac{n!}{(2n-1)!}$

Prueba de la raíz

- i) Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L < 1$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es absolutamente convergente (y, por tanto, convergente).
- ii) Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = L > 1$ o $\lim_{n\to\infty} \sqrt[n]{|a_n|} = \infty$, entonces la serie $\sum_{n=1}^{\infty} a_n$ es divergente.
- iii) Si $\lim_{n\to\infty} \sqrt[n]{|a_n|} = 1$, la prueba de la raíz no es concluyente.

EJEMPLO 6 Pruebe la convergencia de la serie $\sum_{n=1}^{\infty} \left(\frac{2n+3}{3n+2}\right)^n$.

Series alternante

Una **serie alternante** es una serie cuyos términos son alternadamente positivos y negativos. Aquí hay dos ejemplos:

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \frac{1}{5} - \frac{1}{6} + \dots = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n}$$

$$-\frac{1}{2} + \frac{2}{3} - \frac{3}{4} + \frac{4}{5} - \frac{5}{6} + \frac{6}{7} - \dots = \sum_{n=1}^{\infty} (-1)^n \frac{n}{n+1}$$

De acuerdo con estos ejemplos, el n-ésimo término de una serie alternante es de la forma

$$a_n = (-1)^{n-1}b_n$$
 $a_n = (-1)^n b_n$

 π

Prueba de la serie alternante Si la serie alternante

$$\sum_{n=1}^{\infty} (-1)^{n-1}b_n = b_1 - b_2 + b_3 - b_4 + b_5 - b_6 + \cdots \qquad b_n > 0$$

cumple con

- i) $b_{n+1} \leq b_n$ para toda n
- ii) $\lim_{n\to\infty}b_n=0$

entonces la serie es convergente.

EJEMPLO 1 La serie armónica alternante $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \cdots = \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}$

EJEMPLO 2 La serie $\sum_{n=1}^{\infty} \frac{(-1)^n 3n}{4n-1}$

MUCHAS GRACIAS