

BUNDESREPUBLIK **DEUTSCHLAND**

PATENT- UND MARKENAMT

® Off nl gungsschrift

[®] DE 101 18 327 A 1

101 18 327.5 12. 4.2001

43 Offenlegungstag: 17. 10. 2002

(21) Aktenzeichen:

② Anmeldetag:

(f) Int. Cl.⁷: F 01 N 3/10 F 01 N 3/021

(71) Anmelder:

Emitec Gesellschaft für Emissionstechnologie mbH, 53797 Lohmar, DE

(74) Vertreter:

Kahlhöfer - Neumann - Herzog - Fiesser, Patentanwälte, 40210 Düsseldorf

(2) Erfinder:

Brück, Rolf, 51429 Bergisch Gladbach, DE

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

- (54) Abgassystem
- Abgabesystem (1) zur Reinigung eines Abgases einer Verbrennungskraftmaschine (2), insbesondere eines Dieselmotors eines Automobils, das von dem Abgas in einer Strömungsrichtung (3) durchströmbar ist, wobei das Abgassystem (1) in Strömungsrichtung (3) hintereinander einen katalytischen Konverter (4), insbesondere zur Umsetzung von im Abgas enthaltenen Kohlenmonoxiden und Kohlenwasserstoffen, einen Oxidationskatalysator (5), insbesondere zur Umsetzung von im Abgas enthaltenen Stickstoffmonoxid, und einer Partikelfalle (6) zum Auffangen von im Abgas enthaltenen Partikeln umfasst. Dieses Abgassystem (1) gewährleistet eine sehr effektive Umsetzung von im Abgas enthaltenen Schadstoffen, wobei zusätzlich ein besonders positiver Effekt in Hinblick auf die Regenerierung der Partikelfalle (6) auftritt.

Beschreibung

[0001] Die vorliegende Erfindung betrifft ein Abgassystem zur Reinigung eines Abgases einer Verbrennungskraftmaschine, insbesondere zur Reinigung von Abgasen eines Dieselmotors eines Automobils.

[0002] Aufgrund gesetzlicher Bestimmungen, welche immer höhere Anforderungen an die Abgassysteme im Automobilbau stellen, wurden diese Abgassysteme in der Vergangenheit stetig weiter entwickelt. Dabei werden eine Vielzahl von Komponenten eingesetzt, die jeweils unterschiedliche Funktionen innerhalb des Abgassystems erfüllen. Es sind beispielsweise Startkatalysatoren bekannt, die ein besonders kleines Volumen haben und somit schnell nach einem Kaltstart der Verbrennungskraftmaschine ihre zur katalytischen Umsetzung erforderliche Starttemperatur erreichen. Weiterhin sind beispielsweise elektrisch beheizbare Katalysatoren bekannt, die ebenfalls ein verbessertes Kaltstartverhalten des Abgassystems ermöglichen. Sogenannte Adsorber haben im Abgassystem einer Verbrennungskraft- 20 maschine die Aufgabe, bestimmte, im Abgas enthaltene Schadstoffe für einen gewissen Zeitraum zu adsorbieren, wobei diese vorzugsweise so lange gespeichert werden, bis ein nachgeschalteter Katalysator seine Betriebstemperatur erreicht hat. Insbesondere in Abgassystemen von Dieselmo- 25 toren werden zudem Partikelfallen beziehungsweise Partikelfilter eingesetzt, welche im Abgas enthaltene Rußpartikel auffangen, wobei die aufgefangenen Partikelansammlungen kontinuierlich oder diskontinuierlich umgesetzt werden, beispielsweise durch Zufuhr hoher thermischer Energie.

[0003] Aufgabe der vorliegenden Erfindung ist es, ein Abgassystem zur Reinigung eines Abgases einer Verbrennungskraftmaschine anzugeben, insbesondere zur Reinigung von Abgasen eines Dieselmotors eines Automobils, welches eine besonders effektive Umsetzung von im Abgas 35 enthaltenen Schadstoffen gewährleistet, wobei eine kontinuierliche Regeneration einer im Abgassystem angeordneten Partikelfalle sichergestellt ist.

[0004] Diese Aufgabe wird gelöst durch ein Abgassystem mit den Merkmalen des Anspruchs 1. Weitere vorteilhafte Ausgestaltungen des Abgassystems sind in den abhängigen Ansprüchen beschrieben.

[0005] Das erfindungsgemäße Abgassystem zur Reinigung eines Abgases einer Verbrennungskraftmaschine, insbesondere eines Dieselmotors eines Automobils, ist von 45 dem Abgas in einer bevorzugten Strömungsrichtung durchströmbar, wobei das Abgassystem in Strömungsrichtung hintereinander folgende Komponenten aufweist:

- 1. einen katalytischen Konverter, insbesondere zur 50 Umsetzung von im Abgas enthaltenen Kohlenmonoxiden und Kohlenwasserstoffen,
- 2. einen Oxidationskatalysator, insbesondere zur Umsetzung von im Abgas enthaltenem Stickstoffrnonoxid,
- 3. eine Partikelfalle zum Auffangen von im Abgas enthaltenen Partikeln.

[0006] Die vorgeschlagene Anordnung der genannten Komponenten in dem Abgassystem hat besonders positive 60 Effekte im Hinblick auf die Regeneration der Partikelfalle. Diese positiven Effekte ergeben sich in unerwarteter Weise aus dieser Hintereinanderschaltung der oben genannten Komponenten, wie im folgenden genauer erläutert wird. [0007] Der stromaufwärts angeordnete katalytische Kon- 65 verter dient insbesondere der Umsetzung von Kohlenmonoxiden und Kohlenwasserstoffen. Der Kohlenmonoxid-Anteil im Abgas von Dieselmotoren ist insgesamt relativ nied-

rig und steigt lediglich bei Annäherung an die Rußgrenze stärker an. Dies hat seinen Ursprung insbesondere in der zumeist mageren (mit Luftüberschuß) Betriebsstrategie des Dieselmotors im Hinblick auf die Verbrennung des Kraftstoffs. Dabei werden erhöhte Kohlenwasserstoff-Anteile beispielsweise in zu stark abgemagerten Bereichen des Kraftstoff-Luftgemisches verursacht, die bei niedrigen Temperaturen im Brennraum (Teillast) nicht rechtzeitig umgesetzt werden können. Ein Anstieg der Kohlenwasserstoff-Anteile im Abgas ist auch bei zeitweise sehr fetter (mit Luftmangel) Verbrennung gegeben. Der katalytische Konverter setzt, insbesondere bei einer motornahen Anordnung, bevorzugt ganz bestimmte im Abgas enthaltenen Schadstoffe (insbesondere Kohlenmonoxid und ungesättigte Kohlenwasserstoffe) um, wobei diese Prozesse durch die hohen Temperaturen in Motornähe schnell und nahezu vollständig ablaufen.

[0008] Aufgrund der Tatsache, dass der katalytische Konverter bereits den wesentlichen Anteil von Kohlenmonoxiden und ungesättigten Kohlenwasserstoffen umgesetzt hat, dient der Oxidationskatalysator stromabwärts insbesondere der Umsetzung von noch im Abgas enthaltenen Stickoxiden. Stickoxide treten insbesondere bei einer nahezu stöchiometrischen Verbrennung bis hin zu einem mittleren Luftüberschuß (etwa bis $\lambda = 3$) verstärkt auf. Dabei beträgt der Stickstoffdioxid-Anteil im Abgas üblicherweise zwischen 5 und 15%. Der Oxidationskatalysator weist nun eine katalytisch aktive Beschichtung auf, die eine Konvertierung der Stickstoffmonoxide in Stickstoffdioxide bewirkt. Somit wird der Stickstoffdioxid-Anteil im Abgas deutlich erhöht, vorzugsweise auf einen Anteil im Abgas von größer 50%, insbesondere höher 80% oder sogar 95%. Solche Umsatzraten werden dabei erreicht, weil der stromaufwärts angeordnete katalytische Konverter weitere Schadstoffe bereits im wesentlichen in unschädliche Bestandteile umgewandelt hat. Der vom Oxidationskatalysator so erzeugte hohe Stickstoffdioxid-Anteil hat besonders positive Wirkung im Hinblick auf die Regeneration der stromabwärts angeordneten Partikelfalle.

[0009] Partikel und insbesondere Ruß treten im Abgas bei der Verbrennung des Kraftstoffes unter extremem Luftmangel auf und sind aufgrund des örtlich sehr inhomogenen Kraftstoff-Luft-Gemisches typisch für die Verbrennung im Dieselmotor. Die Partikel lagern sich üblicherweise oft an den Beschichtungen der Komponenten und/oder an der Außenwand, wie zum Beispiel im Abgasstrang, des Abgassystems ab. Bei Laständerungen werden sie dann in Form einer Partikelwolke ausgestoßen. Diesé Partikel werden mit der, erfindungsgemäß stromabwärts angeordneten, Partikelfalle aufgrund von Diffusions- und Adsorptionsvorgängen zurückgehalten und kontinuierlich chemisch umgesetzt. Dadurch ist eine kontinuierliche Regeneration der Partikelfalle sichergestellt und ein Verstopfen der Strömungswege im Inneren der Partikelfalle verhindert. Dieser Regenerationsprozess wird in überraschend effektiver Weise durch das zuvor vom Oxidationskatalysator erzeugte Stickstoffdioxid begünstigt. Folglich wird einerseits eine effektive Umsetzung der Rußpartikel sichergestellt und andererseits ein Druckanstieg im Abgassystem aufgrund verstopfter Strömungswege vermieden. Bevorzugt ist dabei die Anordnung aller Komponenten in Motornähe, d. h. insbesondere nicht am Unterboden eines Automobils. Somit werden über die Betriebsdauer der Verbrennungskraftmaschine ausreichend hohe Temperaturen gewährleistet (auch direkt nach einem Kaltstart), so dass die derzeit geltenden Abgasrichtwerte hinsichtlich der einzelnen, im Abgas verbleibenden Schadstoffe deutlich unterschritten werden. [0010] Gemäß einer weiteren Ausgestaltung des Abgassy-

3

stems weist dieses einen Turbolader auf, wobei der katalytische Konverter in Strömungsrichtung vor und der Oxidationskatalysator nach dem Turbolader angeordnet sind. Die Aufladung ist ein Verfahren zur Leistungssteigerung eines Verbrennungsmotors, welches insbesondere in Verbindung mit Dieselmotoren verwendet wird. Bei der Aufladung wird durch eine Arbeitsmaschine, die für den motorischen Verbrennungsprozess benötigte Luft verdichtet, so dass pro Arbeitsspiel der Verbrennungskraftmaschine eine größere Luftmasse in den Zylinder bzw. Brennraum gelangt. Der 10 Verdichter wird hierzu beispielsweise von einem Turbolader angetrieben, der die Abgasenergie ausnutzt. Die Kopplung mit dem Motor ist dabei nicht mechanisch, sondern verläuft rein thermisch, wobei im Automobilbau hauptsächlich das Prinzip der Stauaufladung angewandt wird. Die Anordnung 15 des katalytischen Konverters stromaufwärts eines derartigen Turboladers gewährleistet ein sehr schnelles Erreichen der Betriebstemperatur des katalytischen Konverters, da auf diese Weise eine Wärmeabfuhr des Abgases aufgrund des Kontaktes mit Bauteilen des Turboladers vermieden wird. 20 Zudem wird die motornahe Anordnung des katalytischen Konverters sichergestellt. Dabei ist es besonders vorteilhaft, dass der katalytische Konverter direkt mit der Verbrennungskraftmaschine verbunden und insbesondere in einem Abgaskrümmer angeordnet ist. Auch ist es möglich mehrere 25 kleine Konverter jeweils in einen getrennten Abgasstrang eines Abgaskrümmers einzubauen, wobei diese vorzugsweise direkt anmit der Verbindungsstelle von Abgaskrümmer und Verbrennungskraftmaschine befestigt sind. Aufgrund der Nähe zu den Brennräumen beziehungsweise den 30 Zylindern der Verbrennungskraftmaschine wird das thermische Anspringverhalten des katalytischen Konverters deutlich unterstützt.

[0011] Gemäß noch einer weiteren Ausgestaltung des Abgassystems weist der Oxidationskatalysator mindestens 35 zwei Zonen auf, wobei die von der Verbrennungskraftmaschine am weitesten entfernteste Zone mit einer höheren spezifischen Wärmekapazität ausgeführt ist als die restlichen der mindestens zwei Zonen. Der Oxidationskatalysator weist üblicherweise eine Wabenstruktur auf, wobei Trenn- 40 wände für ein Abgas durchströmbare Kanäle bilden. Die Erhöhung der spezifischen Wärmekapazität (insbesondere der oberflächenspezifischen Wärmekapazität) kann beispielsweise durch eine dickere Ausführung der Trennwände gewährleistet werden. Haben die Trennwände beispielsweise 45 in der stromaufwärts angeordneten Zone des Oxidationskatalysators eine Dicke kleiner 0,03 mm, so weisen die Trennwände in einer mittleren Zone eine Dicke von etwa 0,03 bis 0,06 mm auf, wobei eine stromabwärts angeordnete Zone zum Beispiel mit einer Dicke der Trennwände ausgeführt 50 ist, die mindestens 0,08 mm beträgt. Die Anzahl der Zonen sowie die Dicke der Trennwände ist insbesondere in Hinblick auf die Zusammensetzung des Abgases und dessen thermische Energie auszurichten. Die in Strömungsrichtung zunehmende spezifische Wärmekapazität hat zur Folge, 55 dass der Oxidationskatalysator in stromaufwärts angeordneten Zonen bereits sehr frühzeitig seine Betriebstemperatur erreicht, wobei die dort angestoßene katalytische Reaktion soviel exotherme Energie liefert, dass die stromabwärts angeordneten Zonen ebenfalls schnell aufgeheizt werden. Da- 60bei stellt die Zone mit der hohen Wärmekapazität auch nach dem Abschalten der Verbrennungskraftmaschine eine Art Wärmespeicher dar, der beispielsweise die Kaltstartphase nach einem Wiederstart deutlich verkürzt.

[0012] Gemäß noch einer weiteren Ausgestaltung des Ab- 65 gassystems ist die Partikelfalle in Strömungsrichtung unmittelbar hinter dem Oxidationskatalysator angeordnet, vorzugsweise mit einem Abstand kleiner als 50 mm, insbeson-

4

dere sogar kleiner als 20 mm. Dies erlaubt eine besonders platzsparende Anordnung von Oxidationskatalysator und Partikelfalle, wobei dies insbesondere in Hinblick auf eine motornahe Anordnung des Abgassystems von Bedeutung ist

[0013] Gemäß einer weiteren Ausgestaltung weist die Partikelfalle ein Gesamtvolumen (Wände plus Hohlräume) auf, das kleiner als 75% eines Hubraumvolumens der Verbrennungskraftmaschine ist. Mit Hubraumvolumen ist dabei die Summe der Volumina der Zylinder bzw. Brennräume der Verbrennungskraftmaschine gemeint, in denen die Verbrennung des Kraftstoffs stattfindet. Die Partikelfalle weist somit ein sehr kleines Gesamtvolumen auf, wobei einerseits eine platzsparende Anordnung und andererseits eine effektive chemische Umsetzung der Partikel gewährleistet wird. Die Partikelfalle kann insbesondere dadurch so klein ausgeführt werden, da der stromaufwärts angeordnete Oxidationskatalysator soviel Stickstoffdioxid produziert, dass eine kontinuierliche Regeneration der Partikelfalle sichergestellt und ein großes Speichervolumen für noch umzusetzende Rußpartikel nicht erforderlich ist.

[0014] Dabei ist es besonders vorteilhaft, dass die Partikelfalle frei durchgängige Kanäle aufweist, in denen Verwirbelungsstellen und Beruhigungsstellen und/oder Umlenkeinrichtungen angeordnet sind. Dadurch wird in einfacher Weise die Wahrscheinlichkeit zur Reaktion von Partikeln mit Stickstoffoxid erhöht, in dem die Verweilzeit von Partikeln (insbesondere Ruß) in der Partikelfalle verlängert wird. Dies geschieht bei an sich frei durchgängigen Strömungswegen durch eine genügende Anzahl von Verwirbelungsund Beruhigungsstellen und/oder durch Umlenkungen, die die Ablagerung der Partikel an den Wänden begünstigen. Während ein mit dem Abgasstrom fliegendes Partikel nur geringe Chancen für die Reaktion mit anderen Abgasbestandteilen hat, erhöhen sich diese Chancen drastisch, wenn das Partikel in einer Verwirbelungs- oder Beruhigungsstelle aufgehalten oder an einer Trennwand abgelagert wird. Alle vorbeikommenden Stickstoffdioxide kommen dann für eine Reaktion in Frage und bauen so die Partikel schnell ab. Die Partikelfalle kann daher nicht verstopfen, sondern wird stetig regeneriert.

[0015] Gemäß einer weiteren Ausgestaltung weist der katalytische Konverter ein Konvertervolumen auf, das höchstens halb so groß ist, wie ein Katalysatorvolumen des Oxidationskatalysators. Mit dem Konvertervolumen und dem Katalysatorvolumen sind jeweils die Außenvolumina (Wände plus Kanäle) des mindestens einen Konverters beziehungsweise des Oxidationskatalysators gemeint. Eine so kleine Ausführung des katalytischen Konverters unterstützt das Anspringverhalten sowie eine platzsparende Anordnung.

Gemäß noch einer weiteren Ausgestaltung des Abgassystems weist mindestens eine, vorzugsweise jede Komponente des Abgassystems eine Wabenstruktur mit für ein Abgas durchströmbaren Kanälen auf, die mit zumindest teilweise strukturierten Blechfolien gebildet ist. Die Wabenstruktur des Konverters und/oder des Oxidationskatalysators weist dabei mindestens eine Kanaldichte von 600 cpsi ("cells per square inch"), insbesondere größer 1000 cpsi auf. Die Partikelfalle benötigt gegebenenfalls etwas größere Kanalquerschnitte, so dass diese mit einer Kanaldichte größer 200 cpsi, insbesondere 400 cpsi oder 600 cpsi auszuführen ist, wobei stets ausreichen Oberfläche zur Anlagerung der Partikel zur Verfügung gestellt wird. Ist der Oxidationskatalysator mit einer solchen Blechfolien umfassenden Wabenstruktur ausgeführt, so weisen die Blechfolien vorzugsweise eine Dicke kleiner als 0,06 mm, insbesondere kleiner 0,03 mm auf.

[0017] Das erfindungsgemäße Abgassystem wird nun anhand der in den Zeichnungen dargestellten besonders bevorzugten Ausführungsformen ausführlich erläutert. Es zeigen: [0018] Fig. 1 eine Ausführungsform des Abgassystems, [0019] Fig. 2 eine Draufsicht auf eine Komponente des Abgassystems mit einer Wabenstruktur, und

[0020] Fig. 3 eine Ausführungsform der Partikelfalle des Abgassystems in einer schematischen Detailansicht.

[0021] Fig. 1 zeigt schematisch und perspektivisch ein Abgassystem 1 zur Reinigung eines Abgases eines Diesel- 10 motors. Dabei strömt das Abgas ausgehend von der Verbrennungskraftmaschine 2 bzw. dem Dieselmotor durch das Abgassystem 1 mit einer bevorzugten Strömungsrichtung 3. Das Abgassystem 1 umfasst in Strömungsrichtung 3 hintereinander einen katalytischen Konverter 4, insbesondere zur Umsetzung von im Abgas enthaltenen Kohlenmonoxiden und Kohlenwasserstoffen, einen Oxidationskatalysator S. insbesondere zur Umsetzung von im Abgas enthaltenen Stickstoffmonoxiden, und eine Partikelfalle 6 zum Auffangen von im Abgas enthaltenen Partikeln, insbesondere Ruß. 20 Da das dargestellte Abgassystem 1 teilweise mehrere Abgasstränge stromaufwärts eines Turboladers 7 aufweist, ist die dargestellte Ausführungsform mit zwei katalytischen Konvertern 4 ausgestattet, die sehr nahe an der Verbrennungskraftmaschine 2 angeordnet sind. Dabei ist es auch 25 möglich, die katalytischen Konverter 4 in den Abgassträngen einen bzw. mehrerer Abgaskrümmer 8 anzuordnen, der direkt mit der Verbrennungskraftmaschine 2 verbunden ist. Der dargestellte Oxidationskatalysator 5 weist mehrere Zonen 9 auf, wobei die Zonen 9 in Strömungsrichtung 3 des 30 Abgases eine zunehmende spezifische Wärmekapazität aufweisen. Mit einem Abstand 10 kleiner als 50 mm ist die Partikelfalle 6 in Strömungsrichtung 3 unmittelbar hinter dem Oxidationskatalysator 5 angeordnet. Die Partikelfalle 6 weist dabei ein Gesamtvolumen 11 auf, das vorzugsweise 35 kleiner als 75% eines Hubraumvolumens 12 der Verbrennungskraftmaschine 2 ist. Das Hubraumvolumen 12 entspricht der Summe der einzelnen Volumina der Zylinder 21 der Verbrennungskraftmaschine 2. Weiterhin sind die katalytischen Konverter 4 mit einem Konvertervolumen 17 ausgeführt, das höchstens halb so groß ist, wie ein Katalysatorvolumen 18 des Oxidationskatalysators S. Hierbei ist mit dem Konvertervolumen 17 die Summe der Volumina der katalytischen Konverter 4 gemeint.

[0022] Das dargestellte Abgassystem 1 ist vorzugsweise 45 in direkter Nähe der Verbrennungskraftmaschine 2 anzuordnen. Dabei ist insbesondere zu vermeiden, dass eine der Komponenten 4, 5, 6 im Unterboden eines Automobils an-

[0023] Fig. 2 zeigt eine Draufsicht auf einen katalytischen geordnet ist. Konverter 4 beziehungsweise einen Oxidationskatalysator 5 mit einer Wabenstruktur 19. Die Wabenstruktur 19 weist für ein Abgas durchströmbare Kanäle 13 auf, die mit zumindest teilweise strukturierten Blechfolien 20 gebildet ist. Hierzu wurden glatte Blechfolien 23 und strukturierte Blechfolien 55 25 Öffnung 20 zunächst gestapelt und anschließend miteinander verwunden, wobei die Wabenstruktur 19 zur Erhöhung der Stabilität der Komponente in einem Mantelrohr 22 angeordnet sind. Die Wabenstruktur 19 ist bevorzugt mit einer katalytischen Beschichtung ausgeführt, die sich insbesondere durch 60 eine sehr zerklüftete Oberfläche und folglich auch durch eine hohe Effektivität betreffend die Schadstoffumsetzung

[0024] Fig. 3 zeigt schematisch und perspektivisch eine auszeichnet. Detailansicht einer Partikelfalle 6. Die Partikelfalle 6 ist aus 65 einer strukturierten Blechfolie 20 und einer glatten Blechfolie 23 mit Durchbrechungen 24 aufgebaut und bildet frei durchgängige Kanäle 13. Flügelähnliche Umlenkeinrichtun-

gen 16 mit Öffnungen 25 führen zu den Effekten, wie sie oben beschrieben sind. Die Umlenkeinrichtungen 16 weisen Beruhigungsstellen 15 und Verwirbelungsstellen 14 auf, wobei die Umlenkeinrichtungen 16 das Abgas verwirbeln, so dass sich die Partikel länger in der Partikelfalle 6 aufhalten und somit leichter mit anderen Bestandteilen des Abgases reagieren können. Je nach der genauen Ausgestaltung der Umlenkeinrichtungen 16 werden auch Partikel gegen die Blechfolien 20 und 23 geschleudert, wo diese haften bleiben. Dort werden die Rußpartikel mit dem durchströmenden Stickstoffdioxid so effektiv und kontinuierlich chemisch umgesetzt, dass eine freie Durchströmung der Kanale zu jedem Zeitpunkt gewährleistet ist.

[0025] Das erfindungsgemäße Abgassystem gewährleistet eine sehr effektive Umsetzung von im Abgas eines Dieselmotors enthaltenen Schadstoffen (insbesondere Kohlenmonoxid, ungesättigten Kohlenwasserstoffen, Stickoxiden, Ruß), wobei zusätzlich ein besonders positiver Effekt in Hinblick auf die Regenerierung der Partikelfalle auftritt. Genauer gesagt, hat die erhöhte Stickstoff-Dioxid-Produktion des Oxidationskatalysators wegen des vorgeschalteten katalytischen Konverters zur Folge, dass der Partikelfalle eine ausreichende Menge an Stickstoffdioxid zur Verfügung gestellt wird, um eine kontinuierliche Regenerierung zu gewährleisten. Dadurch werden verstopfte Kanäle verhindert und die derzeit geltenden Abgasgrenzwerte deutlich unterschritten.

Bezugszeichenliste

1 Abgassystem

- 2 Verbrennungskraftmaschine
- 3 Strömungsrichtung
- 4 Konverter
- 5 Oxidationskatalysator
- 6 Partikelfalle
- 7 Turbolader
- 8 Abgaskrümmer
- 9 Zone
- 10 Abstand
 - 11 Gesamtvolumen
 - 12 Hubraumvolumen
 - 13 Kanal
 - 14 Verwirbelungsstelle
- 15 Beruhigungsstelle
- 16 Umlenkeinrichtung
- 17 Konvertervolumen 18 Katalysatorvolumen
- 19 Wabenstruktur
- 20 strukturierte Blechfolie
 - 21 Zylinder
 - 22 Mantelrohr
 - 23 glatte Blechfolie
 - 24 Durchbrechung.

Patentansprüche

1. Abgassystem (1) zur Reinigung eines Abgases einer Verbrennungskraftmaschine (2), insbesondere eines Dieselmotors eines Automobils, das von dem Abgas in einer Strömungsrichtung (3) durchströmbar ist, wobei das Abgassystem (1) in Strömungsrichtung (3) hintereinander einen katalytischen Konverter (4), insbesondere zur Umsetzung von im Abgas enthaltenen Kohlenmonoxiden und Kohlenwasserstoffen, einen Oxidationskatalysator (5), insbesondere zur Umsetzung von im Abgas enthaltenen Stickstoffmonoxid, und eine Partikelfalle (6) zum Auffangen von im Abgas enthaltenen Partikeln umfasst.

- 2. Abgassystem (1) nach Anspruch 1, wobei das Abgassystem (1) einen Turbolader (7) aufweist, dadurch gekennzeichnet, dass der katalytische Konverter (4) in 5 Strömungsrichtung (3) vor und der Oxidationskatalysator (5) nach dem Turbolader (7) angeordnet sind.
- 3. Abgassystem (1) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der katalytische Konverter (4) nahe der Verbrennungskraftmaschine (2) angeordnet 10 ist, insbesondere in einen Abgaskrümmer (8), der direkt mit der Verbrennungskraftmaschine (2) verbunden ist
- 4. Abgassystem (1) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Oxidationskatalysator (5) mindestens zwei Zonen (9) aufweist, wobei die von der Verbrennungskraftmaschine (2) am weitesten entfernteste Zone (9) mit einer höheren spezifischen Wärmekapazität ausgeführt ist als die restlichen der mindestens zwei Zonen (9).
- 5. Abgassystem (1) nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Partikelfalle (6) in Strömungsrichtung (3) unmittelbar hinter dem Oxidationskatalysator (5) angeordnet ist, vorzugsweise mit einem Abstand (10) kleiner als 50 mm, insbesondere sogar kleiner als 20 mm.
- 6. Abgassystem (1) nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Partikelfalle (6) ein Gesamtvolumen (11) hat, das kleiner als 75% eines Hubraumvolumen (12) der Verbrennungskraftma- 30 schine (2) ist.
- 7. Abgassystem (1) nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Partikelfalle (6) frei durchgängige Kanäle (13) aufweist, in denen Verwirbelungsstellen (14) und Beruhigungsstellen (15) und/ 35 oder Umlenkeinrichtungen (16) angeordnet sind.
- 8. Abgassystem (1) nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der katalytische Konverter (4) ein Konvertervolumen (17) aufweist, das höchstens halb so groß ist, wie ein Katalysatorvolumen (18) 40 des Oxidationskatalysators (5).
- 9. Abgassystem (1) nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass mindestens eine, vorzugsweise jede Komponente (4, 5, 6) des Abgassystems (1) eine Wabenstruktur (19) mit für ein Abgas 45 durchströmbaren Kanälen (13) aufweist, die mit zumindest teilweise strukturierten Blechfolien (20) gebildet ist.

Hierzu 2 Seite(n) Zeichnungen

50

60

55

- Leerseite

Nummer: Int. Cl.⁷: Offenlegungstag:

DE 101 18 327 A1 F 01 N 3/1017. Oktober 2002

