Ispitna pitanja iz predmeta Uvod u elektroniku

Prvi kolokvijum

1. Istorijat i razvoj elektronike

- 1. Navesti pet perioda kroz koje se može sagledati razvoj elektronike.
- 2. Odgovoriti šta je to stepen integracije, navesti generacije integrisanih kola prema stepenu integracije i tipičan broj komponenata na integrisanom kolu.
- 3. Kako glasi Murov (Gordon Moore) zakon?
- 4. Navesti trendove razvoja elektronike.
- 5. Navesti korake u proizvodnji jednog integrisanog kola, od sirovine do gotovog proizvoda.
- 6. Navesti oblasti istraživanja fizičke elektronike.
- 7. Navesti oblasti istraživanja analogne elektronike.
- 8. Navesti oblasti istraživanja digitalne elektronike.
- 9. Navesti oblasti istraživanja računarske elektronike.
- 10. Navesti oblasti istraživanja elektronike VLSI integrisanih kola.
- 11. Navesti oblasti istraživanja energetske i industrijske elektronike.

2. Osnovni pojmovi o električnim signalima

- 12. Definicija signala (opšti pojam) i definicija električnog signala.
- 13. Objasniti šta su šumovi i smetnje.
- 14. Objasniti šta je transdukcija i transduktor. Ilustrovati na primeru.
- 15. Objasniti šta je senzor. Navesti različite vrste senzora.
- 16. Objasniti šta je izvor signala i kako se predstavlja u električnom kolu.
- 17. Navesti prednosti električnih signala u odnosu na ostale fizičke signale.
- 18. Navesti kriterijume podele električnih signala.
- 19. Objasniti šta je analogni signal. Navesti osobine analognih signala.
- 20. Objasniti šta su to periodični signali. Nacrtati talasni oblik proizvoljnog periodičnog signala i obeležiti period. Navesti osobine periodičnih signala.
- 21. Definicija srednje vrednosti signala. Izračunati srednju vrednost za zadati signal.
- 22. Definicija efektivne vrednosti signala. Izračunati efektivnu vrednost za zadati signal.
- 23. Objasniti šta su prosto-periodični signali.
- 24. Objasniti Furijeovu teoremu i napisati njen matematički oblik.
- 25. Primenom Furijeove transformacije, pronaći ortogonalnu komponentu A_k za zadati periodičan signal (funkciju).
- 26. Primenom Furijeove transformacije, pronaći ortogonalnu komponentu B_k za zadati periodičan signal (funkciju).
- 27. Primenom Furijeove transformacije, pronaći amplitude harmonika V_k za zadate vrednosti ortogonalnih komponenti A_k i B_k .
- 28. Primenom Furijeove transformacije, pronaći faze harmonika ϕ_k za zadate vrednosti ortogonalnih komponenti A_k i B_k .
- 29. Objasniti šta je to spektar signala.

- 30. Objasniti u čemu se razlikuju analiza kola u vremenskom i frekvencijskom domenu.
- 31. Objasniti šta su digitalni signali. Navesti osobine digitalnih signala.
- 32. Objasniti šta je nivo digitalnog signala.
- 33. Objasniti šta je semplovanje signala.
- 34. Objasniti šta su binarni (logički) digitalni signali. Navesti osobine binarnih (logičkih) digitalnih signala.
- 35. Nacrtati naponske nivoe binarnog digitalnog signala. Označiti i objasniti margine šuma i nedozvoljenu oblast digitalnog signala.
- 36. Objasniti šta je kodiranje i navesti nekoliko načina kodiranja.

3. Poluprovodnički elementi u električnim kolima

- 37. Objasniti šta su to pasivni elementi električnog kola i koje su njihove osobine.
- 38. Objasniti šta su to linearni elementi električnog kola i koje su njihove osobine.
- 39. Definicija strujno-naponske karakteristike dvopola. Nacrtati karakteristiku (kratkog spoja, otvorene grane prekida, otpornika, idealnog naponskog, idealnog strujnog, realnog generatora).
- 40. Objasniti šta su poluprovodnički elementi i navesti neke elemente.
- 41. Objasniti šta su poluprovodnički materijali, koji slobodni nosioci naelektrisanja postoje u poluprovodnicima i od čega zavisi njihova koncentracija.
- 42. Objasniti šta je dopiranje poluprovodnika.
- 43. Objasniti mehanizme kretanja nosilaca naelektrisanja u poluprovodnicima.
- 44. Objasniti šta je poluprovodnička dioda, nacrtati strukturu i simbol PN diode.
- 45. Nacrtati PN spoj, koncentracije nosilaca naelektrisanja i oblasti. Objasniti mehanizme koji dovode do formiranja oblasti prostornog naelektrisanja.
- 46. Nacrtati strujno-naponsku karakteristiku PN diode, označiti oblasti i napisati izraz za struju diode u oblasti direktne polarizacije.
- 47. Objasniti šta su modeli diode, nacrtati model idealne diode i objasniti ponašanje diode u različitim oblastima.
- 48. Polutalasno usmeravanje naizmeničnog napona električna šema, princip rada i talasni oblici napona.
- 49. Punotalasno usmeravanje naizmeničnog napona električna šema, princip rada i talasni oblici napona.
- 50. Srednja vrednost (jednosmerna komponenta) punotalasno usmerenog napona. Izračunati odnos transformacije primara i sekundara za dati mrežni napon i potreban jednosmerni napon.
- 51. Objasniti šta je tranzistor, koja su dve klase tranzistora i koja je najznačajnija osobina tranzistora.
- 52. Nacrtati principijelnu šemu kola sa aktivnim elementom (tranzistorom) i označiti odgovarajuće napone i struje. Navesti karakteristike tranzistora.
- 53. Objasniti šta je bipolarni tranzistor, nacrtati uprošćenu strukturu i simbol tranzistora i označiti priključke.
- 54. Režimi rada bipolarnog tranzistora naponi između priključaka, polarizacija spojeva, nazivi režima i ponašanje.

- 55. Nacrtati ulaznu karakteristiku bipolarnog tranzistora u aktivnom režimu zavisnost struje baze I_B od napona V_{BE} .
- 56. Napisati zavisnost struje kolektora I_C i struje emitora I_E od struje baze I_B bipolarnog tranzistora u aktivnom režimu.
- 57. Napisati uprošćeni izraz za struju kolektora I_C i nacrtati prenosnu karakteristiku bipolarnog tranzistora u aktivnom režimu zavisnost struje kolektora I_C od napona V_{RF} .
- 58. Nacrtati izlazne karakteristike bipolarnog tranzistora zavisnost struje kolektora I_C od napona V_{CE} i označiti aktivnu i oblast zasićenja.
- 59. Objasniti šta je MOSFET, nacrtati uprošćenu strukturu i simbol tranzistora i označiti priključke.
- 60. Objasniti tranzistorski efekat kod MOSFET-a.
- 61. Režimi rada MOSFET-a naponi između priključaka, zavisnost struje kanala od napona, nazivi režima i ponašanje.
- 62. Nacrtati prenosnu karakteristiku MOSFET-a u triodnom režimu zavisnost struje kanala I_D od napona V_{GS} .
- 63. Nacrtati izlaznu karakteristiku MOSFET-a u triodnom režimu zavisnost struje kanala I_D od napona V_{DS} .
- 64. Nacrtati prenosnu karakteristiku MOSFET-a u režimu zasićenja zavisnost struje kanala I_D od napona V_{GS} .
- 65. Nacrtati izlazne karakteristike MOSFET-a zavisnost struje kanala I_D od napona V_{DS} i označiti triodnu oblast i oblast zasićenja.

4. Pojam elektronskog kola, osnovni pojmovi o četvoropolima, model i karakteristike jednostavnog pojačavača

- 66. Nacrtati topologiju, označiti napone i struje i navesti osobine četvoropola.
- 67. Objasniti šta je pojačavač i koje su njegove najznačajnije osobine. Dati definiciju pojačanja signala.
- 68. Napisati uopšteni izraz za zavisnost izlaznog signala idealnog pojačavača od ulaznog signala u vremenskom domenu, Ilustrovati pojačanje, kašnjenje i naponski ofset na periodičnom signalu proizvoljnog talasnog oblika.
- 69. Ilustrovati pojačanje idealnog pojačavača na periodičnom signalu proizvoljnog spektra.
- 70. Nacrtati principijelnu šemu idealnog pojačavača realizovanog primenom kontrolisanog strujnog generatora i izvesti izraz za pojačanje.
- 71. Nacrtati pojednostavljenu šemu pojačavača sa bipolarnim tranzistorom, označiti i napisati jednačine za napone i struje tranzistora.
- 72. Napisati jednačinu za struju kolektora i_C u zavisnosti od ulaznog napona i napona polarizacije emitorskog spoja i ilustrovati to na prenosnoj karakteristici bipolarnog tranzistora.
- 73. Napisati uslov i izraz za aproksimaciju eksponencijalne funkcije, odrediti uslov i napisati izraz za aproksimaciju struje kolektora. Ilustrovati to na prenosnoj karakteristici bipolarnog tranzistora.

- 74. Objasniti pojmove radne tačke i linearizacije karakteristike bipolarnog tranzistora i ilustrovati to na prenosnoj karakteristici.
- 75. Napisati izraz za struju kolektora $i_{\mathbb{C}}$ i ilustrovati zavisnost amplitude vremenski promenljive komponente od položaja radne tačke na prenosnoj karakteristici bipolarnog tranzistora.
- 76. Dati definiciju i izvesti izraz za transkonduktansu bipolarnog tranzistora.
- 77. Ilustrovati zavisnost transkonduktanse od položaja radne tačke na prenosnoj karakteristici bipolarnog tranzistora.
- 78. Objasniti pojam i napisati jednačinu radne prave pojačavača sa bipolarnim tranzistorom.
- 79. Napisati izraz za izlazni napon i pojačanje pojačavača sa bipolarnim tranzistorom i ilustrovati promenu izlaznog napona na izlaznoj karakteristici bipolarnog tranzistora.
- 80. Objasniti polarizaciju bipolarnog tranzistora.
- 81. Objasniti ograničenja prilikom određivanja radne tačke bipolarnog tranzistora koja se odnose na talasni oblik signala.
- 82. Objasniti ograničenja prilikom određivanja radne prave pojačavača sa bipolarnim tranzistorom koja se odnose na maksimalnu dozvoljenu snagu.
- 83. Nacrtati pojednostavljenu šemu pojačavača sa MOSFET-om, označiti i napisati jednačine za napone i struje tranzistora.
- 84. Napisati jednačinu za struju kanala i_D u zavisnosti od ulaznog napona i jednosmernog napona između gejta i sorsa i ilustrovati to na prenosnoj karakteristici MOSFET-a.
- 85. Napisati uslov i izraz za aproksimaciju kvadratne funkcije, odrediti uslov i napisati izraz za aproksimaciju struje kanala. Ilustrovati to na prenosnoj karakteristici MOSFET-a.
- 86. Objasniti pojmove radne tačke i linearizacije karakteristike MOSFET-a i ilustrovati to na prenosnoj karakteristici.
- 87. Napisati izraz za struju kanala i_D i ilustrovati zavisnost amplitude vremenski promenljive komponente od položaja radne tačke na prenosnoj karakteristici MOSFET-a.
- 88. Dati definiciju i izvesti izraz za transkonduktansu MOSFET-a.
- 89. Ilustrovati zavisnost transkonduktanse od položaja radne tačke na prenosnoj karakteristici MOSFET-a.
- 90. Objasniti pojam i napisati jednačinu radne prave pojačavača sa MOSFET-om.
- 91. Napisati izraz za izlazni napon i pojačanje pojačavača sa MOSFET-om i ilustrovati promenu izlaznog napona na izlaznoj karakteristici MOSFET-a.
- 92. Objasniti polarizaciju MOSFET-a.
- 93. Objasniti ograničenja prilikom određivanja radne tačke MOSFET-a koja se odnose na talasni oblik signala.
- 94. Objasniti ograničenja prilikom određivanja radne prave pojačavača sa MOSFET-om koja se odnose na maksimalnu dozvoljenu snagu.
- 95. Objasniti princip superpozicije i uslov pod kojim se on može primeniti.

Drugi kolokvijum

5. Metodi analize u elektronici

- 96. Navesti koji su najznačajniji metodi analize u elektronici, zašto su neophodni i koje su njihove najvažnije osobine.
- 97. Objasniti zašto se koristi simulacija i šta su prednosti simulacije u odnosu na fizičku verifikacije kola.
- 98. Nacrtati uprošćeni algoritam procesa realizacije elektronskog kola.
- 99. Navesti tipove elektronskih kola, njihove elemente i tipove signala.
- 100. Navesti najznačajnije tipove simulacije elektronskih kola.
- 101. Navesti osnovne zadatke simulacije elektronskih kola.
- 102. Navesti tri osnovne analize (simulacije) koje programi za simulaciju elektronskih kola omogućavaju.
- 103. Odgovoriti koji metod za formulisanje sistema jednačina koje opisuju kolo koristi SPICE simulator.
- 104. Objasniti šta podrazumeva jednosmerna analiza, koje su osobine sistema jednačina koje opisuju kolo u jednosmernom režimu i kojim metodima ih je moguće rešiti.
- 105. Objasniti šta podrazumeva naizmenična analiza, pod kojim uslovima je ovakva analiza moguća koje su osobine sistema jednačina koje opisuju kolo u naizmeničnom režimu.
- 106. Objasniti šta podrazumeva analiza prelaznih režima, koje su osobine sistema jednačina koje opisuju kolo u prelaznom režimu i kojim metodima ih je moguće rešiti.
- 107. Nacrtati uprošćeni algoritam procesa numeričkog rešavanja sistema nelinearnih diferencijalnih jednačina.
- 108. Objasniti šta su modeli poluprovodničkih elemenata, koje dve klase modela postoje i koje su njihove osobine.
- 109. Nacrtati hibridni π model bipolarnog tranzistora.
- 110. Nacrtati hibridni π model MOSFET-a.

(Vežba 3) Osnove SPICE simulatora

- 111. Šta je SPICE program i čemu služi?
- 112. Šta mora da bude prva linija SPICE netliste?
- 113. Kojim simbolom počinju nazivi direktiva (komandi) u SPICE-u?
- 114. Koji numerički karakter je rezervisan za modelovanje čvora mase u SPICE-u?
- 115. U tabeli ispod, pored naziva elementa kola upisati odgovarajući slovni simbol kojim se element opisuje u SPICE-u.

Naziv elementa	Opis u SPICE-u
Bipolarni trazistor	
Otpornik	
MOS-FET trazistor	
Kondezator	
Dioda	
Kalem	
Naponski generator	
Strujni generator	
Naponski generator kontrolisan naponom	

Strujni generator kontrolisan naponom	
Naponski generator kontrolisan strujom	
Strujni generator kontrolisan strujom	

116. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Operating Point* anlize. Vrednosti elemenata kola su: I_1 =1mADC, V_1 =2V, V_2 =350mVDC, R_1 =10k Ω , R_2 =50 Ω , R_3 =0.5k Ω . (vrednosti elemenata i topologija kola se mogu razlikovati).

117. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Alternate Current* anlize. Analizirati kolo u opsegu od 100Hz do 100MHz. Opseg frekvencija zadati u logaritamskoj razmeri sa 50 tačaka po dekadi. Vrednosti elemenata kola su: $R_r=1k\Omega$, $L_r=100$ mH, $C_r=22$ nF, $V_1=0$ VDC (1VAC) (vrednosti elemenata i topologija kola se mogu razlikovati).

118. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Direct Current sweep* anlize. Analizirati kolo za opseg napona V1 od -10V do 10V, sa korakom od 0.01V. Naziv modela diode je **DMOD** i ima sledeće parametre: **Is=1e-14 Vj=0.75 BV=6.8 M=0.5 Rs=5**. Vrednosti elemenata kola su: V₁=1VDC, R₁=1kΩ (vrednosti elemenata i topologija kola se mogu razlikovati).

119. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Direct Current sweep* anlize. Analizirati kolo za opseg napona V1 od 0V do 5V, sa korakom 0.01V i za listu struja I1: 10μA, 20μA, 30μA i 40μA. Naziv modela tranzistora je **NBJT** i ima sledeće parametre: **Is=1e-15 Vje=0.7 Bf=120 Vaf=150**. Vrednosti elemenata kola su: I₁=10μADC, V₁=1VDC (vrednosti elemenata i topologija kola se mogu razlikovati).

120. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Direct Current sweep* analize. Analizirati kolo za opseg napona V1 od 0V do 5V, sa korakom 0.01V i za listu napona V2: 0.5V, 0.75V, 1V, 1.25V. Naziv modela tranzistora je **NFET** sa sledećim parametrima: **Kp=100e-6**

Vto=0.4 Lambda=0.05. Elemenati kola su: V_1 =1VDC, V_2 =1VDC (vrednosti elemenata i topologija kola se mogu razlikovati).

(Vežba 4) Simulacija usmerača u SPICE simulatoru

- 121. Kojim elementima se modeluju primar i sekundar idealnog transformatora u SPICE-u?
- 122. Za koju vrstu usmeravanja napona se koristi transformator sa srednjim izvodom na sekundaru?
- 123. Koliki odnos induktivnosti spregnutih kalemova treba odabrati da bi se u SPICE-u modelovao idealni transformator sa odnosom transforamcije 1:16 12V (vrednosti parametara se mogu razlikovati)?
- 124. Koliki je maksimalni očekivani napon na izlazu jednostranog usmerača sa jednom diodom čiji je parametar VJ=0.6V, ako je maksimalni napon na izlazu sekundara transformatora 12V (vrednosti parametara se mogu razlikovati)?
- 125. Kojim elementima se modeluju najjednostavnija kola za ograničavanje napona (*clampers*) u SPICE-u?
- 126. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Simulacija kola treba da obuhvati 4 periode pobudnog signala. Naziv modela diode je **1N4001** i definisan je u fajlu **diode.mod**. Elementi kola su: R_1 =0.1 Ω , R_L =1 $k\Omega$, C_F =10 μ F, L_1 =10mH, L_2 =10 μ H, K=1, V_1 =(310V)sin(2 π (50Hz)t) (vrednosti elemenata i topologija kola se mogu razlikovati).

127. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* i *Direct Current sweep* analize. *Transient* analiza treba da obuhvati 2 periode ulaznog pobudnog signala. Za *Direct Current* analizu zadati opseg ulaznog napona od -10V do 10V, sa korakom od 0.01V. Naziv modela dioda je 1N914 i definisan je u fajlu standard.dio. Elementi kola su: R₁=1kΩ, V₁=2V, V₂=3V, V₁=1VDC + (5V)sin(2π(1kHz)t) (vrednosti elemenata i topologija kola se mogu razlikovati).

128. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* i *Direct Current sweep* analize. *Transient* analiza treba da obuhvati 2 periode ulaznog pobudnog signala. Za *Direct Current* analizu zadati opseg ulaznog napona od -10V do 10V, sa korakom od 0.01V. Naziv modela dioda je **BZX84C6V2L** i definisan je u fajlu **standard.dio**. Elementi kola su $R_1=1k\Omega$, $V_1=(12V)\sin(2\pi(1kHz)t)$ (vrednosti elemenata i topologija kola se mogu razlikovati).

129. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. *Transient* analiza treba da traje jednu periodu ulaznog signala koji se najsporije menja. Naziv modela dioda je **DMOD** i ima zadat parametar **Vj=0.75**. Otpornost u kolu je: R₁=1kΩ. Pobudne signale modelovati SPICE pulsnim generatorima koji imaju sledeće parametre (vrednosti parametara i topologija kola se mogu razlikovati):

Va = {Vinit=0, Von=5, Tdelay=1m, Trise=1n, Tfall=1n, Ton=1m, Tperiod=2m} Vb = {Vinit=0, Von=5, Tdelay=2m, Trise=1n, Tfall=1n, Ton=2m, Tperiod=4m}

130. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. *Transient* analiza treba da traje jednu periodu ulaznog signala. Naziv modela dioda je **1N4148** i definisan je u fajlu **standard.dio**. Elementi kola su: $R_1=10k\Omega$, $C_1=10\mu F$ i $V_i=1VDC+(10V)\sin(2\pi(0.5kHz)t)$ (vrednosti elemenata i topologija kola se mogu razlikovati).

(Vežba 5) Simulacija pojačavača u SPICE simulatoru

- 131. Kojim tipom kontrolisanog generatora se modeluje naponski pojačavač u SPICE-u?
- 132. Nabrojati najmanje četiri SPICE analize koje se obavezno koriste prilikom verifikacije i projektovanja pojačavača.

- 133. Koja SPICE analiza se koristi za procenu prenosne funkcije, ulazne i izlazne otpornosti pojačavača za male signale?
- 134. Koja SPICE analiza se koristi za procenu ekvivalentnog napona šuma na ulazu i izlazu pojačavača?
- 135. Koja SPICE analiza se koristi za procenu propusnog opsega pojačavača?
- 136. Napisati SPICE netlistu za model naponskog pojačavača sa sledećim parametrima: $R_{ulp}=10M\Omega$, $R_{izp}=10\Omega$, $A_o=100$. Model enkapsulirati u pod-kolo pod nazivom **VAMP**. Usvojiti sledeći redosled navođenja portova: inp, inm, outp, outm. Pod-kolo VAMP instancirati i pobuditi generatorom, $V_u=10$ mVDC, koji ima unutrašnju otpornost, $R_u=10$ k Ω . Otpornost potrošača je, $Rp=100\Omega$. Zadati *Transfer Function* analizu (vrednosti parametara i topologija kola se mogu razlikovati).

137. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transfer function* analize. Izlaz pojačavača je na emitoru tranzistora, a ulaz pojačavača je pobuđen generatorom V_i . Naziv modela tranzistora je **2N2222** i definisan je u fajlu **standard.bjt**. Elementi kola su: R_1 =150 $k\Omega$, R_2 =300 Ω , V_i =0.8VDC, V_{CC} =5VDC (vrednosti parametara i topologija kola se mogu razlikovati).

138. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Alternate Current* analize. Analizirati kolo u opsegu od 1Hz do 100MHz. Opseg frekvencija zadati u logaritamskoj razmeri sa 2 tačke po oktavi. Naziv modela tranzistora je **BCW60A** i definisan je u fajlu **standard.bjt**. Elementi kola su: R_u =100 Ω , R_B =100 $k\Omega$, R_C =450 Ω , R_p =10 $k\Omega$, C_{S1} = C_{S1} =1 μ F, V_{CC} =12VDC, V_i =0VDC (1VAC) (vrednosti parametara i topologija kola se mogu razlikovati).

139. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati 5 perioda ulaznog signala. Naziv modela tranzistora je **BSP89** i definisan je u fajlu **standard.mos**. Elementi kola su: R_{G1} =100 $k\Omega$, R_{G2} =70 $k\Omega$, R_{D} =650 Ω , R_{S} =100 Ω , R_{U} =50 Ω ,

 $R_p=5k\Omega$, $C_{S1}=C_{S2}=1\mu F$, $C_{S3}=150nF$, $V_{DD}=5VDC$ i $V_i=1VDC+(10mV)cos(2\pi(10kHz)t)$ (vrednosti parametara i topologija kola se mogu razlikovati).

140. Za kolo sa slike napisati SPICE netlistu sa komandom za pokretanje *Direct Current sweep* i *Noise* analize. Za *Direct Curent* analizu zadati promenu napona Vi od -10V do 10V sa korakom od 0.01V. *Noise* analizu zadati u opsegu od 10Hz do 10MHz sa 20 tačaka po dekadi. Izlazni napon pojačavača je napon čvora 5. Operacioni pojačavač je opisan kao pod-kolo pod nazivom **OP747** čiji se opis nalazi u fajlu **ADI.lib**. Elementi kola su: R₁=1kΩ, R₂=3kΩ, R₃=5kΩ, R₄=10kΩ, Rρ=100Ω, Cρ=270nF, V_{CC}=V_{EE}=5VDC (vrednosti parametara i topologija kola se mogu razlikovati).

(Vežba 6) Simulacija oscilatora u SPICE simulatoru

- 141. Navesti tri osnovna elementa kojima se modeluju LC oscilatori u SPICE-u.
- 142. Navesti tri osnovna elementa kojima se modeluju RC oscilatori u SPICE-u.
- 143. Kojim elementima kola se obično ograničava izlazni napon oscilatora?
- 144. Koja je osnovna SPICE analiza koja se koristi prilikom verifikacije i projektovanja kola oscilatora?
- 145. Nakon SPICE simulacije i obrade izlaznog signala oscilatora dobijen je spektar prikazan na slici. Na osnovu slike spektra proceniti osnovnu frekvenciju oscilovanja oscilatora.

146. Za kolo *Colpitts* sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati najmanje 500 perioda signala oscilatora. Naziv modela tranzistora je

BCW60A i definisan je u fajlu **standard.bjt**. Elementi kola su: L_r =10mH, C_1 =240nF, C_2 =24nF, C_s =1 μ F, R_1 =10k Ω , R_2 =500 Ω i V_{CC} =5V (vrednosti parametara i topologija kola se mogu razlikovati).

147. Za kolo *Colpitts* oscilatora sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati najmanje 300 perioda signala oscilatora. Naziv modela tranzistora je **BSP89** i definisan je u fajlu **standard.mos**. Elementi kola su: L_r =10mH, C_1 =500nF, C_2 =50nF, C_{S1} =0.1 μ F, C_{S2} =1 μ F, R_{G1} =100k Ω , R_{G2} =70k Ω , R_D =650 Ω , R_S =500 Ω i V_{DD} =5V (vrednosti parametara i topologija kola se mogu razlikovati).

148. Za kolo *Colpitts* oscilatora sa slike napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati 800 perioda signala oscilatora. Naziv modela tranzistora je **BCW60A** i definisan je u fajlu **standard.bjt**. Elementi kola su: $L_C=300$ mH, $L_r=10$ mH, $C_1=40$ nF, $C_2=400$ nF, $C_{S1}=0.1$ µF, $C_{S2}=10$ nF, $R_{B1}=10$ k Ω , $R_{B2}=4.7$ k Ω , $R_E=1.5$ k Ω i $V_{CC}=5$ V (vrednosti parametara i topologija kola se mogu razlikovati).

149. Za kolo oscilatora sa *Wien* mostom prikazano na slici napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati 150 perioda signala oscilatora. Operacioni pojačavač je opisan kao pod-kolo pod nazivom **OP747** čiji se opis nalazi u fajlu **ADI.lib**. Naziv modela dioda je **1N914** i definisan je u fajlu **standard.dio.** Elementi kola su:

 $R_1=1k\Omega$, $R_2=2.5k\Omega$, $R_3=R_4=R=10k\Omega$, $C_3=C_4=C=10nF$ i $V_{CC}=V_{EE}=5V$ (vrednosti parametara i topologija kola se mogu razlikovati).

150. Za kolo *Phase-shift* oscilatora prikazano na slici napisati SPICE netlistu sa komandom za pokretanje *Transient* analize. Analiza treba da obuhvati 1000 perioda signala oscilatora. Operacioni pojačavač je opisan kao pod-kolo pod nazivom **OP747** čiji se opis nalazi u fajlu **ADI.lib**. Naziv modela dioda je **1N914** i definisan je u fajlu **standard.dio.** Elementi kola su: R₁=R₂=R₃=R=1kΩ, R₄=40kΩ, C₁=C₂=C₃=C=10nF i V_{CC}=V_{EE}=5V (vrednosti parametara i topologija kola se mogu razlikovati).

6. Digitalna elektronska kola

- 151. Napisati definiciju i osobine digitalnih elektronskih kola.
- 152. Objasniti šta su logička ćelija, tip logičke ćelije i familija logičke ćelije.
- 153. Navesti osnovne osobine i karakteristike CMOS tehnologije.
- 154. Invertor realizovan primenom bipolarnog tranzistora, bipolarni tranzistor kao naponom kontrolisani prekidač električna šema, analiza kola.
- 155. Invertor realizovan primenom n-kanalnog MOSFET-a (NMOS), NMOS tranzistor kao naponom kontrolisani prekidač električna šema, analiza kola, talasni oblici napona.
- 156. Invertor realizovan primenom p-kanalnog MOSFET-a (PMOS), PMOS tranzistor kao naponom kontrolisani prekidač električna šema, analiza kola, talasni oblici napona.
- 157. Invertor realizovan primenom komplementarnih MOSFET-ova (CMOS), CMOS par kao naponom kontrolisani prekidač električna šema, analiza kola, talasni oblici napona.
- 158. Invertor funkcija, logički simbol, tabela istinitosti i talasni oblici signala.

- 159. Objasniti šta je potpuni skup logičkih operacija (funkcija) i navesti primere.
- 160. Objasniti šta su univerzalne logičke operacije (funkcije).
- 161. NAND funkcija, realizacija u CMOS tehnologiji, logički simbol, tabela istinitosti i talasni oblici signala.
- 162. NOR funkcija, realizacija u CMOS tehnologiji, logički simbol, tabela istinitosti i talasni oblici signala.
- 163. AND funkcija, realizacija u CMOS tehnologiji, logički simbol, tabela istinitosti i talasni oblici signala.
- 164. OR funkcija, realizacija u CMOS tehnologiji, logički simbol, tabela istinitosti i talasni oblici signala.
- 165. XOR funkcija, realizacija u CMOS tehnologiji, logički simbol, tabela istinitosti i talasni oblici signala.
- 166. Objasniti postupke logičke sinteze digitalnog kola.
- 167. Objasniti šta su kombinaciona i sekvencijalna digitalna kola.
- 168. Objasniti osobine sekvencijalnih digitalnih kola.
- 169. Objasniti razliku između sinhronih i asinhronih sekvencijalnih digitalnih kola.
- 170. SR leč kolo princip rada, realizacija primenom NOR ćelija, simbol, tabela istinitosti.
- 171. SR leč kolo princip rada, realizacija primenom NAND ćelija, simbol, tabela istinitosti.
- 172. SR leč kolo sa signalom dozvole princip rada, realizacija primenom NAND ćelija, simbol, tabela istinitosti.
- 173. D leč kolo princip rada, realizacija, simbol, tabela istinitosti.
- 174. Objasniti osobine i načine okidanja flip-flop kola.
- 175. SR MS flip-flop kolo princip rada, realizacija, simbol, tabela istinitosti.

(Vežba 7) Simulacija osnovnih logičkih kola u SPICE-u

- 176. Koliko tranzistora je potrebno za realizaciju invertora u CMOS tehnologiji?
- 177. Koliko tranzistora je potrebno za realizaciju logičke funkcije sa dva ulaza i jednim izlazom u CMOS tehnologiji?
- 178. Koji parametar specijalne funkcije u LTSpice-u određuje nivo logičke nule?
- 179. Koji parametar specijalne funkcije u LTSpice-u određuje nivo logičke jedinice?
- 180. Kojim logičkim kolima se opisuju potpuni i polu-sabirač?
- 181. Napisati SPICE netlistu za kolo statičkog CMOS bafera prikazano na slici. Naziv modela PMOS/NMOS tranzistora je **NM/PM** i definisan je u fajlu **180nm_bulk.txt**. Dimenzije NMOS tranzistora su W_n=320nm i L_n=180nm. Dimenzije PMOS tranzistora su W_p=620nm i L_p=180nm. Model enkapsulirati u pod-kolo pod nazivom **BUF1x1**. Usvojiti sledeći redosled navođenja portova: a, dd, ss i y. Pod-kolo instancirati i pobuditi naponskim generatorom koji ima sledeće parametre:

 $Va = \{Vinit=0, Von=1.8, Tdelay=0.5u, Trise=1n, Tfall=1n, Ton=0.498n, Tperiod=1u\}$ Instacirano pod-kolo analizirati u vremenskom domenu. *Transient* analiza treba da obuhvati jednu periodu pobudnog signala. Nivoi logičke nule i jedinice su $V_{SS}=0V$ i $V_{DD}=1.8V$, respektivno. Kolo opteretiti kapacitivnim opterećenjem od $C_L=1pF$ (vrednosti parametara i topologija kola se mogu razlikovati).

182. Napisati SPICE netlistu za kolo statičkog CMOS NOR gejta prikazano na slici. Naziv modela PMOS/NMOS tranzistora je **NM/PM** i definsan je u fajlu **180nm_bulk.txt**. Dimenzije svih NMOS tranzistora su W_n=320nm i L_n=180nm. Dimenzije PMOS tranzistora su W_p=1.28um i L_p=180nm. Model enkapsulirati u pod-kolo pod nazivom **NOR2x1**. Usvojiti sledeći redosled navođenja portova: A, DD, SS i Y. Pod-kolo instancirati i pobuditi naponskim generatorima koji imaju sledeće parametre:

Va = {Vinit=0, Von=1.8, Tdelay=0.5u, Trise=1n, Tfall=1n, Ton=0.498n, Tperiod=1u}

Vb = {Vinit=0, Von=1.8, Tdelay=1u, Trise=1n, Tfall=1n, Ton=1.998u, Tperiod=2u}

Instancirano pod-kolo analizirati u vremenskom domenu. *Transient* analiza treba da obuhvati jednu periodu pobudnog signala koji se sporije menja. Nivoi logičke nule i jedinice su $V_{SS}=0V$ i $V_{DD}=1.8V$, respektivno. Kolo opteretiti kapacitivnim opterećenjem od $C_L=1pF$ (vrednosti parametara i topologija kola se mogu razlikovati).

183. Napisati SPICE netlistu za kolo multipleksera 2 u 1 prikazano na slici. Za opis gejtova koristiti specijalne funkcije u LTspice-u. Model enkapsulirati u pod-kolo pod nazivom MUX2x1. Usvojiti sledeći redosled navođenja portova: A, B, SEL i Y. Pod-kolo instancirati i pobuditi naponskim generatorima koji imaju sledeće parametre:

Vsel = {Vinit=0, Von=1.8, Tdelay=0.5u, Trise=1n, Tfall=1n, Ton=0.498n, Tperiod=1u} Va = {1.8VDC}, Vb={0VDC}

Instacirano pod-kolo analizirati u vremenskom domenu. *Transient* analiza treba da obuhvati dve periode selektorskog signala, SEL. Nivoi logičke nule i jedinice su V_{SS} =0V i V_{DD} =1.8V, respektivno. Kolo opteretiti kapacitivnim opterećenjem od C_L =1pF (vrednosti parametara i topologija kola se mogu razlikovati).

184. Napisati SPICE netlistu za kolo potpunog sabirača prikazano na slici. Za opis gejtova koristiti specijalne funkcije u LTspice-u. Model enkapsulirati u pod-kolo pod nazivom **FA**. Usvojiti sledeći

redosled navođenja portova: A, B, Ci, Co i S. Pod-kolo instancirati i pobuditi naponskim generatorima koji imaju sledeće parametre:

Vci = {Vinit=0, Von=1.8, Tdelay=0.5u, Trise=1n, Tfall=1n, Ton=0.498n, Tperiod=1u}

Vb = {Vinit=0, Von=1.8, Tdelay=1u, Trise=1n, Tfall=1n, Ton=0.998n, Tperiod=2u}

Va = {Vinit=0, Von=1.8, Tdelay=2u, Trise=1n, Tfall=1n, Ton=1.998n, Tperiod=4u}

Instacirano pod-kolo analizirati u vremenskom domenu. *Transient* analiza treba da obuhvati dve periode selektorskog signala. Nivoi logičke nule i jedinice su V_{SS} =0V i V_{DD} =1.8V, respektivno. Izlaze kolo opteretiti kapacitivnim opterećenjem od C_L =1pF (vrednosti parametara i topologija kola se mogu razlikovati).

185. Napisati SPICE netlistu za kolo trobitnog sabirača prikazano na slici. Model enkapsulirati u podkolo pod nazivom **ADD3b**. Usvojiti sledeći redosled navođenja portova: A2, A1, A0, B2, B1, B0, S2, S1, S0, Co. Opis pod-kola **FA** i **HA** se nalazi u fajlu **logic.ckt**. Redosled portova pod-kola FA je A, B, Ci, Co i S. Redosled portova pod-kola HA je A, B, Co i S. Pod-kolo CNT3b instancirati i pobuditi naponskim generatorima koji imaju sledeće parametre:

Vb2 = {0VDC}, Vb1={1.8VDC}, Vb0={1.8VDC}

Va2 = {0VDC}, Va1={1.8VDC}, Va0={0VDC}

Zadati *Operating Point* analizu. Nivoi logičke nule i jedinice su V_{SS} =0V i V_{DD} =1.8V, respektivno. Izlaze kolo opteretiti kapacitivnim opterećenjem od C_L =1pF (vrednosti parametara i topologija kola se mogu razlikovati).

