

Geometría Moderna I

Material para el curso intersemestral en línea

Autor: Tania Azucena Chicalote Jiménez & Jesús Ismael Garduño Maldonado

Instituto: Facultad de Ciencias

Fecha: Agosto, 2020

La victoria no vendrá a nosotros a menos que vayamos por ella.

Unidad 1. La geometría del triángulo

Triángulos pedales

Definición 0.1

Triángulo pedal de las medianas es el triángulo cuyos vértices son los pies de las medianas.

A este triángulo también se le conoce como triángulo mediano.

Definición 0.2

Triángulo pedal de las alturas es el triángulo cuyos vértices son los pies de las alturas. También es conocido como triángulo órtico.

Definición 0.3

Triángulo pedal de las bisectrices es el triángulo cuyos vértices son los pies de las bisectrices.

Teorema 0.1

Un triángulo ABC y su triángulo mediano LMN son semejantes y sus lados son paralelos. Además, la razón de proporcionalidad entre los triángulos es 2 : 1.

Demostración Este teorema fue demostrado en clase.

Teorema 0.2

El radio de un circuncírculo de un triángulo ABC es el doble del radio del circuncírculo de su triángulo mediano.

Demostración

Sea el $\triangle ABC$ y sea el $\triangle LMN$ su triángulo mediano. Trazamos las mediatrices (perpendiculares por los puntos medios L, M y N) del $\triangle ABC$, las cuales se intersecan en el circuncentro, llamado O.

Luego por los puntos medios N', L' y M' del $\triangle LMN$ tracemos las mediatrices a éste, las cuales se intersecan en el circuncentro P.

Ahora, como O y P están en las mediatrices de los triángulos correspondientes, entonces tenemos que un radio del circuncírculo del $\triangle ABC$ es OB y un radio del circuncírculo del $\triangle LMN$ es MP. Además por el teorema anterior sabemos que $\triangle ABC \approx \triangle LMN$ con razón de semejanza 2:1.

Por lo tanto OB = 2PM. **QED**

- Demuestra que las medianas de dos triángulos semejantes están en la misma proporción que sus lados.
- 2. Demuestra que las mediatrices de dos triángulos semejantes están en la misma proporción que sus lados.

Teorema 0.3

Los tres triángulos que determina el triángulo órtico, en un triángulo acutángulo, son semejantes al triángulo original.

Demostración

Sea ABC un triángulo acutángulo, es decir, cada uno de sus tres ángulos mide menos de un ángulo recto (90°). Sean h_a , h_b y h_c alturas del triángulo ABC con pies de las alturas D, E y F respectivamente, las cuales además se intersecan en el ortocentro H. Luego trazamos los segmentos DE, EF y FD que determinan el triángulo órtico.

Dado lo anterior, queremos demostrar que los triángulos $\triangle BDF$, $\triangle AFE$, $\triangle CED$ son semejantes al triángulo $\triangle ABC$.

Para hacer la demostración compararemos ciertas parejas de triángulos en particular.

Consideremos primero el triángulo $\triangle ABD$ el cual tiene un ángulo recto en D y el ángulo en B agudo. Consideremos también el triángulo $\triangle CBF$ el cual tiene un ángulo recto en F y también tiene el mismo ángulo agudo en B, es decir $\angle DBA = \angle CBF$.

De aquí tenemos que los dos triángulos tienen sus tres ángulos correspondientes iguales, por lo que $\triangle ABD \approx \triangle CBF$, luego entonces tenemos que:

$$\frac{DA}{FC} = \frac{DB}{FB} = \frac{AB}{CB} \tag{1}$$

Ahora consideremos los triángulos $\triangle BDF$ y $\triangle ABC$, los cuales comparten el ángulo en B. Además, de las igualdades obtenidas en 1 tenemos que $\frac{AB}{DB} = \frac{CB}{FB}$, entonces por el criterio de semejanza LAL, tenemos que $\triangle BDF \approx \triangle ABC$ que es lo que queríamos demostrar.

Esto implica que los lados semejantes correspondientes son AB con DB, CB con FB y CA con FD, además los otros ángulos correspondientes son $\angle FDB = \angle CAB$, $\angle BFD = \angle BCA$.

De manera análoga, podemos demostrar que los triángulos $\triangle DEC$ y $\triangle AFE$ son semejantes entre si y son semejantes al $\triangle ABC$.

Por lo tanto $\triangle BDF$, $\triangle AFE$, $\triangle CEA$ son semejantes al triángulo $\triangle ABC$.

Proposición 0.1

La mediana que pasa por un vértice de un triángulo, biseca cualquier paralela al lado opuesto a ese vértice.

Demostración

Sea ABC un triángulo. Tracemos la mediana m_a tal que pasa por el vértice A y por el punto medio A' del lado BC. Ahora, podemos trazar rectas paralelas al lado BC, en particular consideremos las rectas paralelas FE tales que F y E están sobre los lados AB y CA respectivamente.

Por el teorema de Thales tenemos que los triángulos generados por las paralelas al lado BC y con vértice A son semejantes al $\triangle ABC$ con una

proporción K. Llamemos D al punto de intersección del segmento FE con la mediana AA'. Luego consideremos los triángulos ABA' y AFD los cuales por el criterio de semejanza LAL también son semejantes, de igual manera tenemos que $\triangle AA'C \approx \triangle ADE$ por lo que

$$\frac{BA'}{FD} = \frac{A'C}{DE} = K \tag{2}$$

pero BA' = A'C pues A' es punto medio de BC luego FD = DE. Por tanto, la recta AA' biseca al segmento FE en el punto D. **QED**

Corolario 0.1

El centroide de un triángulo es también centroide de su triángulo mediano.

Demostración

Sea ABC un triángulo con triángulo mediano $\triangle A'B'C'$, es decir A', B' y C' son puntos medios de BC, CA y AB respectivamente. Sea G el centroide del triángulo $\triangle ABC$, es decir que las medianas AA', BB' y CC' concurren en G. Sabemos que los lados del triángulo A'B'C' por ser segmentos que unen los puntos medios de los lados del $\triangle ABC$ son paralelos a los lados de éste último. Luego, por el teorema anterior, las

medianas del triángulo $\triangle ABC$ bisecan a cada uno de los lados del triángulo $\triangle A'B'C'$ y además pasan por los vértices correspondientes, por lo que AA', BB' y CC' también son medianas del $\triangle A'B'C'$ y concurren en G. Por tanto G es centroide de $\triangle A'B'C'$. **QED**