

Cátedra: INGENIERIA SANITARIA

AÑO 2017

Trabajo Practico Nº 1: "POBLACIÓN DE DISEÑO"

Estimar la población de cada una de las siguientes localidades para los años:

- na (actual inicio obra),
- n₀ (inicio operación del sistema),
- n₁ (fin primer subperíodo de proyecto),
- n₂ (fin período de proyecto).

Analizar la consistencia de cada método a partir del dato post sensual 2016.

Efectuar los cálculos con los métodos que se detallan en el Anexo, con los siguientes datos, extraídos de los últimos censos de población nacionales:

Población/Año	1991	2001	2010
COMODORO RIVADAVIA	125.725	137.061	173.266
TRELEW	79.340	89.547	99.201
PUERTO MADRYN	45.047	57.791	80.101
ESQUEL	23.411	28.486	31.787
SARMIENTO	7.459	8.292	11.124
RAWSON	19.161	22.493	11.124
DOLAVON	2.126	2.494	3.163
GAIMAN	3.205	4.292	6.627
GDOR. COSTA	1.913	2.185	2.269
CHOLILA	846	1.286	2.228
CAMARONES	868	1.079	1.288
PASO DE INDIOS	2.213	1.883	1.867
PASO DEL SAPO	322	384	396

<u>Fuente</u>: INDEC. Censo Nacional de Población y Vivienda 1991, Censo Nacional de Población, Hogares y Viviendas 2001 y Censo Nacional de Población y Vivienda 2010.

Cátedra: INGENIERIA SANITARIA

AÑO 2017

MÉTODOS DE ESTIMACIÓN DE LA POBLACIÓN DE DISEÑO

I. Método de las Tasas Medias Anuales Decrecientes

$$i_I = \left(\frac{P_2}{P_1}\right)^{\frac{1}{n_1}} - 1 \quad i_{II} = \left(\frac{P_3}{P_2}\right)^{\frac{1}{n_2}} - 1$$

Donde:

- i_I = Tasa media anual de variación de la población urbana, durante el penúltimo período intercensal.
- o i_{II} = Ídem durante el último período intercensal.
- o P₁ = Población urbana, según el antepenúltimo censo
- P₂ = Ídem según el penúltimo censo
- P₃ = Ídem según el último censo
- N₁= Cantidad de años entre el penúltimo y el antepenúltimo censo
- N₂ = Cantidad de años entre el último y el penúltimo censo

Período A₃ (fecha del último censo) a B₁ (fecha de finalización del primer período de diseño)

$$i_1 = i_1$$

Población Actual = PA

Expresada en número de habitantes, existente a la fecha de ejecución del proyecto.

 n_a = Cantidad de años entre el último censo y el año del inicio de la ejecución del proyecto

$$P_A = P_3 (1 + i_1) n_a$$

Población inicial = Po

Población prevista para el año de habilitación de la obra.

$$P_0 = P_A (1 + i_1)^{n_0}$$

- n₀ = intervalo entre el año de ejecución del proyecto y el de la habilitación de la obra.
- Proyección poblacional para el primer subperíodo de diseño n₁

Cátedra: INGENIERIA SANITARIA

AÑO 2017

$$P_{n_1} = P_0 (1 + i_1)^{n_1}$$

Período B₁ hasta B₂ (fecha de finalización del segundo período de diseño)

$$i_2 = (i_{11} + i_{1})/2$$

- \rightarrow Si $i_2 < i_1$, entonces la tasa para el segundo subperíodo es i_2
- Si i ₂ > i ₁, entonces la tasa para el segundo subperíodo es i ₂ = i ₁
- Proyección poblacional para los restantes n2
 - P₂₀ = Población Final.

$$P_{20} = P_{10} (1 + i_2)^{n_2}$$

Cátedra: INGENIERIA SANITARIA

AÑO 2017

II. Método de la Proyección Aritmética (Tasa del último período censal)

Se determina la constante de crecimiento del último período censal:

$$k_a = \frac{\left(P_2 - P_1\right)}{\left(t_2 - t_1\right)}$$

Donde:

P₁ = Población urbana, según el penúltimo censo.

o P₂ = Ídem según el último censo

$$P_A = P_3 + k_a \bullet n_a$$

$$P_0 = P_A + k_a \bullet n_0$$

$$P_{10} = P_0 + k_a \bullet n_{10}$$

$$P_{20} = P_{10} + k_a \bullet n_{20}$$

III. Método de la Proyección Aritmética (Tasa de los dos últimos períodos censales)

Se determina la constante de crecimiento de los dos últimos períodos censales y se obtiene su promedio:

$$k_{a1} = \frac{(P_3 - P_2)}{(t_3 - t_2)}$$
 $k_{a2} = \frac{(P_2 - P_1)}{(t_2 - t_1)}$ $k_a = \frac{k_{a1} + k_{a2}}{2}$

Donde:

o P₁ = Población urbana, según el antepenúltimo

o P2 = Ídem según el penúltimo censo

o P₃ = Ídem según el último censo

$$P_{A} = P_{3} + k_{a} \bullet n_{a}$$
 $P_{0} = P_{A} + k_{a} \bullet n_{0}$
$$P_{10} = P_{0} + k_{a} \bullet n_{10}$$
 $P_{20} = P_{10} + k_{a} \bullet n_{20}$

Cátedra: INGENIERIA SANITARIA

AÑO 2017

IV. Método de la Proyección Geométrica

Se determina la constante de crecimiento geométrico del último período censal:

$$k_g = \frac{\left(\ln P_2 - \ln P_1\right)}{\left(t_2 - t_1\right)}$$

Donde:

- P₁ = Población urbana, según el penúltimo censo
- P₂ = Idem según el último censo

$$\ln P_A = \ln P_2 + k_g \bullet (t_A - t_2)$$

$$\ln P_0 = \ln P_2 + k_g \bullet \left(t_{_0} - t_2\right)$$

$$\ln P_{10} = \ln P_2 + k_g \bullet (t_{10} - t_2)$$

$$\ln P_{20} = \ln P_2 + k_g \bullet (t_{20} - t_2)$$

V. Método de la relación – tendencia

Se basa en efectuar relaciones entre la población provincia / país y localidad / provincia

- Se conocen: PT₁, PT₂, PT₃, y PT₀, PTn₁, PTn₂₀
- a partir de datos INDEC
- Se obtendrán (prov.) p₁, p₂, p₃, y p₀, pn₁, pn₂₀
- Determinar R₁= p₁/PT₁ , R₂= p₂/PT₂ y R₃= p₃/PT₃

Entre los períodos intercensales

$$I_1 = log R_2 - log R_1$$
 (período intercensal N_1)

$$I_2 = log R_3 - log R_2$$
 (período intercensal N_2)

Cátedra: INGENIERIA SANITARIA

AÑO 2017

Período Intercensal (años)	Último censo - año inicial n0	Primer período de diseño n₁ =B₁-B₀	Segundo período de diseño n ₂ =B ₂ -B ₁
$N_1 = A_2 - A_1$	$C_{10}= 1/((A_3+n_0/2)-(A_1+N_1/2))$	$C_{11}= 1/((B_0+n_1/2)-(A_1+N_1/2))$	$C_{12} = 1/((B_1+n_2/2)-(A_1+N_1/2))$
$N_2 = A_3 - A_2$	$C_{20}= 1/((A_3+n_0/2)-(A_2+N_2/2))$	$C_{21}= 1/((B_0+n_1/2)-(A_2+N_2/2))$	$C_{12} = 1/((B_1+n_2/2)-(A_2+N_2/2))$

Calculo R₄, R₅ y R₆ (para los años: n₀ n₁, n₂₀)

$$log R_4 = log R_3 + (I_1 C_{10} + I_2 C_{20})/(C_{10} + C_{20})$$

$$log R_5 = log R_4 + (I_1 C_{11} + I_2 C_{21})/(C_{11} + C_{21})$$

$$log R_6 = log R_5 + (I_1 C_{12} + I_2 C_{22})/(C_{12} + C_{22})$$

Determinar la relación de poblaciones localidad / provincia: L1= P_1/p_1 , L2= P_1/p_2 y L3= P_3/p_3

Entre los períodos intercensales:

$$I_1 = \log L_2 - \log L_1$$
 (período intercensal N₁)

$$I'_2 = \log L_3 - \log L_2$$
 (período intercensal N_2)

Calculo L_4 , L_5 y L_6 (para los años: $n_0 n_1$, n_{20}):

$$log L_4 = log L_3 + (I'_1 C_{10} + I'_2 C_{20})/(C_{10} + C_{20})$$

$$log L_5 = log L_4 + (I'_1 C_{11} + I'_2 C_{21})/(C_{11} + C_{21})$$

$$log L_6 = log L_5 + (I'_1 C_{12} + I'_2 C_{22})/(C_{12} + C_{22})$$

Calculo de las poblaciones

Provincia:

$$p_0 = R_4 PT_0$$
, $p_{n1} = R_5 PT_{n1}$, $p_{20} = R_4 PT_{20}$

Localidad:

$$P_0 = L_4 p_0$$
, $P_1 = L_5 p_{n1}$, $P_{20} = L_6 p_{20}$