E. Odcinki

Dostępna pamięć: 128 MB

Dla zadanego zbioru odcinków należy wypisać wszystkie punkty ich przecięć. Punkt przecięcia definiujemy jako punkt wspólny dwóch odcinków; żadna para odcinków ze zbioru nie będzie miała więcej niż jednego punktu wspólnego. Odcinki tworzą z osią OX (i OY również) kąt, który jest wielokrotnością 45 stopni.

Koniec odcinka należy też do odcinka, zatem za punkt przecięcia uznajemy również koniec odcinka zawierający się w innym odcinku czy też koniec odcinka równy końcowi innego odcinka.

Specyfikacja danych wejściowych

W pierwszym wierszu danych wejściowych znajduje się liczba całkowita $n \in [2,200\,000]$. W każdym z kolejnych n wierszy znajduje się opis jednego odcinka, będący czterema liczbami całkowitymi $x_1^i, y_1^i, x_2^i, y_2^i,$ gdzie (x_1^i, y_1^i) oznacza współrzędne jednego końca odcinka i, zaś (x_2^i, y_2^i) drugiego. Te cztery liczby są oddzielone pojedynczymi spacjami i każda z nich należy do przedziału $[0,10^6]$. Wiadomo, że wszystkich punktów przecięć będzie co najwyżej $200\,000$.

Specyfikacja danych wyjściowych

Jeśli żadna para odcinków nie przecina się, w pierwszym i jedynym wierszu wyjścia Twój program powinien wypisać słowo BRAK.

W przeciwnym przypadku Twój program powinien wypisać współrzędne wszystkich punktów przecięć, po jednym punkcie (tj. parę współrzędnych) w każdym wierszu wyjścia. Współrzędne punktu powinny być oddzielone pojedynczą spacją. Łatwo zauważyć, że wszystkie współrzędne będą wielokrotnościami 1/2. Wszystkie współrzędne należy wypisać z jedną cyfrą po kropce dziesiętnej, czyli każda wypisywana liczba powinna kończyć się ciągiem .5 lub .0.

Każdy punkt powinien zostać wypisany dokładnie raz. Punkty przecięć powinny być wypisane w porządku leksykograficznym, tj. punkt (x,y) powinien zostać wypisany przed (x',y'), jeśli zachodzi x < x' lub zachodzi x = x' i y < y'.

Przykład A

Wejście:	Wyjście
2	1.5 1.5
1 1 2 2	
2 1 1 2	

Przykład B

Wejście:	Wyjście:
6	1.0 1.0
0 0 3 3	1.0 2.0
3 0 0 3	1.5 1.5
0 1 3 1	2.0 1.0
0 2 3 2	2.0 2.0
1 0 1 3	
2 0 2 3	

Przykład C

Wejście:	Wyjście:
6	2.0 3.0
0 3 6 3	2.5 2.5
1 1 4 4	3.0 3.0
1 2 5 6	4.0 5.0
3 6 6 3	5.0 3.0
2 3 3 2	6.0 3.0
5 0 5 3	