ESISAR AC367 Romain Siragusa

Année 2020 – 2021 3^{ème} Année

Contrôle de Traitement du signal déterministe Cours AC367

Documents interdits Calculatrice interdite

(Barème indicatif noté entre crochets)

Durée: 1h30

Exercice I [10 pts]

- 1. Calculez le spectre du signal périodique $x(t) = cos(200 \cdot \pi \cdot t)$ [1pts]
- 2. Calculez et tracez le spectre du signal $x_{obs}(t)$ correspondant au signal x(t) observé entre $t=-20\,ms$ et $t=+20\,ms$ avec une fenêtre rectangulaire. [1,5pts]
- 3. Calculez le spectre du signal $x_{obs}(t-20\cdot 10^{-3})$
- 4. Tracez le module et la phase du spectre du signal $x_{obs}(t-20\cdot 10^{-3})$ [1pts]
- 5. Calculez la puissance Px du signal x(t) [1,5pts]
- 6. Soit le filtre h avec la réponse impulsionnelle, $h(t) = \frac{1}{\tau} e^{-t/\tau}$ Calculez la fonction de transfert H(f) du filtre.

 [1pts]

 De quel type de filtre s'agit-il ? (Justifiez votre réponse)
- 7. Le signal x(t) est filtré par h. Montrez que la sortie S du filtre est : [1pts]

$$|S(f)|^2 = \frac{1}{8} (\delta(f+100) - \delta(f-100)) (en W/Hz)$$

8. Montrez que la puissance en sortie du filtre est égale à Px/2 [1pts]

Exercice II [6 pts]

- 1. Montrez que la fonction d'autocorrélation est la transformée de Fourier inverse de la densité spectrale d'énergie. Quel est le maximum de l'autocorrélation ? Pour quel temps est-il atteint ?
- 2. Soit le système radar décrit par la figure ci-dessous :

L'objectif est de mesurer la vitesse v_0 de la motoGP. Pour Cela, deux signaux a(t) et b(t), non corrélés, sont envoyés grâce à l'antenne 1 avec un écart de 0.5s. L'antenne 2 reçoit le signal c(t) correspondant aux signaux a(t) et b(t) atténués et retardés par le temps d'un aller-retour (AR) entre le radar et la moto. La vitesse d'une onde électromagnétique est la vitesse de la lumière, c_0 . a. Exprimez c(t) en fonction a(t), b(t) et de t_1 , temps d'un AR entre le radar et la moto.

- b. Exprimez z(t) en fonction de produit d'autocorrélation C_{aa} , C_{bb} et d'intercorrélation, C_{ab} et C_{ba} .
- c. Expliquez clairement comment il est possible de mesurer la vitesse de la motoGP avec ce système. (On suppose la vitesse v_0 constante). [2,5pts]

Exercice III [4 pts]

1. Soit le système défini par le schéma ci-dessous. En justifiant votre démarche, tracez les spectres des signaux $x_1(t)$ et $x_2(t)$. [2pts] Nous supposons que l'amplitude des spectres M(f) et A(f) est 1.

2. Donnez les étapes permettant de retrouver le message a(t) à partir des signaux $x_1(t)$ et $x_2(t)$. Justifiez votre réponse par des schémas et des calculs.