Chapter 1

Probability

1.1 Basic concepts and results

- · Random experiment
- Sample space
- Event
- Probability measure and its properties
- · Conditional probability
- · Total probability theorem
- · Bayes' theorem
- Random variable
- Distribution function of a random variable
- Discrete random variable
- Continuous random variable
- Functions of a random variable
 - 1. Expected value
 - 2. Raw moment of order k
 - 3. Central moment of order k
 - 4. Moment generating function
- Bivariate random variables
 - 1. Marginal distributions
 - 2. Expectation of Z = h(X, Y)
 - 3. Conditional distributions
 - 4. Conditional expectations
 - 5. Raw moment of order (r, s)
 - 6. Central moment of order (r, s)
 - 7. Covariance
- · Law of iterated expectation
- Stochastic independence

- Other forms of independence
 - 1. Mean independence
 - 2. Uncorrelatedness

1.2 Convergence of sequences of random variables

- Notions of Convergence
 - 1. Pointwise convergence
 - 2. Uniform convergence
 - 3. Convergence in L^P
 - 4. Convergence in measure
- Convergence for random variables
 - 1. Almost surely
 - 2. In the rth mean
 - 3. In probability
 - 4. In distribution
- Skorokhod representation theorem
- Continuous mapping theorem
- Slutsky theorem

1.3 Important asymptotic results

- Weak law of large numbers
- Strong law of large numbers
- Central limit theorem
- · Lévy's continuity theorem
- Applications
 - 1. Bernoulli
 - 2. Simple Monte Carlo
- Delta method and its applications
 - 1. Log odds
 - 2. Variance stabalizing