KEY: Assignment Ch 3
3.1 # 2, 18, 32, 36, 40

2)
$$f(x) = x + \frac{32}{x^2} = x + 32x^{-2}$$
 $f'(x) = 1 - 64x^{-3} = 1 - \frac{64}{x^3}$
 $f'(x) = 1 - 64x^{-3} = 1 - \frac{64}{x^3}$
 $f'(x) = \frac{1}{2}(9-x^2)^{-1/2}(-2x)$
 $f'(x) = \frac{1$

 $(0, \infty)$ + increasing

avg. velocity 40) Avg. Velocity indicated by peak: 273 k: peak at ≈ 500 m/s 1273 k: ≈ 1000 m/s 1500 1000 2273k: ≈ 1500 m/s 273K: increases on (0,500) decrease on (500, 1000) 1273K: increase (0, 1000) decrease (1000, 2000) 2273k: Increase (0,1500) decream (1500, 3000) 3.2 #4, 6, 16, 30, 38, 48 4) $f(x) = -4x^2 + 4x + 1$ f'(x) = -8x + 4 $\Rightarrow f'(x) = 0$ when $x = \frac{1}{2}$ Interval Sign of f'(x) Conclusion

(-00, \frac{1}{2}) + increasing

(\frac{1}{2} m) there is a rel. maximum $a+(\frac{1}{2},2)$ $(\frac{1}{2}, \infty)$ (6) $q(x) = \frac{1}{5}x^{5} - x$ $g'(x) = x^4 - 1 = (x^2 + 1)(x^2 - 1) = (x^2 + 1)(x + 1)(x - 1)$ g'(x)=0 for x= ±1 Interval Sig f'(x) Concl. $(-\infty, -1)$ +increase f'(x) Concl.relative max. at f'(x) f'(x) f'(x) f'(x) f'(x) f'(x) f'(x)relative min. at f'(x) f'(x) f'(x) f'(x) f'(x) f'(x) f'(x) f'(x) f'(x)relative min. at f'(x) f'(x)relative min. at f'(x) f'(16) $f(x) = x + \frac{1}{x} = x + x^{-1}$ $f'(x) = 1 - x^{-2} = 1 - \frac{1}{x^2}$ undefined at x = 0. Zen at x= ±1 Increases $(-\infty, -1)$ } rel max at (-1, -2) decreax (-1, 0)decreax (0,1) } rel. min. at (1,2) increase $(1,\infty)$

30)
$$g(v) = \frac{4(1+\frac{1}{x},\frac{1}{x^2})}{1+\frac{1}{x}}$$
 on $[-4,5]$
 $= \frac{4(1+x^2+x^2)}{2}$ on $[-4,5]$
 $= \frac{4(1+x^2+x^2)}{2}$ and $[-4,5]$
 $= -\frac{4(1+x^2+x^2)}{2}$ and $[-4,5]$
 $= -\frac{4(1+x^2+x^2)}{2}$ and $[-4,5]$
 $= -\frac{4(1+x^2+x^2)}{2}$ and $[-4,5]$ an

23 th 2, 14, 36, 64, 67

2)
$$y: -x^2$$
; $3x^2 - 2$
 $y' = -3x^2 + 6x$
 $(-0, 1)$
 $y'' = -6x + 6$
 $(-6(x-1))$
 $y'' = 0$ when $x = 1$
 $|4|$ $f(x) = x + \frac{4}{x}$
 $= x + 4x^{-1}$
 $f'(x) = 1 - 4x^{-2}$
 $f''(x) = 1 - 4x^{-3} = x^{\frac{3}{2}}$ undefined at $x = 0$
 $f(x) = x + \frac{4}{x}$
 $f''(x) = 1 - 4x^{-3}$
 $f''(x) = -12x^{2} - 16x$
 $f''(x) = -12x^{2} - 16x$
 $f''(x) = -24x - 16$
 $f''(x) = 0$ when $-24x = 16$
 $f''(x) = -24x - 16$
 $f''(x) = -3x^{2} - \frac{1}{2}x^{2} - \frac{1}{3}x + 1$ on $[-2, 2]$
 $f''(x) = -24x - 16$
 $f''(x) = -3x^{2} - \frac{1}{6}x$
 $f''(x) = -3x^{2} + 124x$
 $f''(x) = -3x^{2} + 24x = -3x(1-8)$
 $f''(x) = -3x^{2} + 3x^{2} + 3x + 1$
 $f''(x) = -3x^{2} + 3x^{2} + 3x + 1$
 $f''(x) = -3x^{2} + 3x^{2} + 3x + 1$
 $f''(x) = -3x^{2} + 3x^{2} + 3x + 1$
 $f''(x) = -3x^{2} + 3x + 1$
 $f''(x) = -3x^{2} + 3x + 1$
 $f''(x) = -3x^{$

3.4 # 4, 16, 20, 32, 40

4) First =
$$\times$$
 Second = y , \times , $y > 0$
 $\times + 2y = 100 \rightarrow \times = 100 - 2y$
 $\times y$ is maximum

$$(100 - 2y)^{3}y = 100y - 2y^{2} \qquad 0 < y < 50$$

$$\frac{d}{dy} = 100 - 4y = 0$$

$$25 = y \text{ critical pt} \qquad (0, 25) \quad f'(10) = 60 > 0 \qquad \text{increase}$$

So $y = 25$, $\times = 100 - 50 = 50$

16)

Perimeter is 16 ft. Maximize area.

$$A = (\text{ectangle} + \frac{1}{2}\text{ arcle}$$

$$= xy + \frac{1}{2}\pi r^{2}$$

$$= xy + \frac{1}{2}\pi r^{2} = xy + \frac{\pi}{2} \times 2$$

$$0 < \times < \frac{32}{2 \cdot \pi} \approx 6.22 \quad P = \times + 2y + \frac{1}{2}(2\pi r)$$

$$16 = 2y + (1 + \frac{\pi}{2}) \times = 2y + \frac{2 + \pi}{2} \times 2$$

$$8 = y + \frac{2 + \pi}{4} \times y = \frac{32 - (2 + \pi)x}{4}$$

$$A = \times \left(\frac{32 - (2 + \pi)x}{4}\right) + \frac{\pi}{7} \times 2$$

$$= 8x - \frac{2 + \pi}{4} \times 2 + \frac{\pi}{8} \times 2 = 8x + \left(\frac{4 + 2\pi}{7} \times \frac{\pi}{7}\right) \times 2$$

$$= 8x - \frac{4 + \pi}{4} \times 2 - \frac{32}{4} \times 4 + \frac{1}{7} \times 2$$

$$= 8x - \frac{4 + \pi}{4} \times 2 - \frac{32}{4} \times 4 + \frac{1}{7} \times 4 +$$

20) 16 trees -> 80 apples/tree For each additional tree, yield decream by 4/tree. Yield = (# of trees) (apples per tree) let t = the number of trees over 16 trees. then # of trees = 16 +t apple /tree = 80 - 4t Domain: 16+ +>0 -> +>-16 Y = (16+t)(80-4t)80-4t>0 80 > 4t $\frac{24}{11} = (16+1)(-4) + (80-41)(1)$ t <20 = -64-t + 80-4t -16 < t < 20= 16 - 5t |6 = 5t (-16, 3.2) = 16 - 3.2 (-16, 3.2) = 2.2 → 16 = 5t $t = \frac{16}{5} = 3.2$ (3.2, 20) Maximum # of trees = 16 + 3.2 = 19.2 For 19 trees, t=3 and Y=(19)(68)=1292For 20 trees, t=4 and Y=(20)(64)=1216So 19 trees should be planted with a maximum yield of 1292 apples. length + girth = 108 32) y + 4x = 108 Maximize volume: V = x2y y = 108 - 4x, $0 < x < \frac{109}{4} = 27$ Interval Conclusion $V = x^{2}(108 - 4x) = 108x^{2} - 4x^{3}$ (0, 18) Increase $V' = 216x - 12x^2$ (18,27) Decrease = x(216 - 12x)V'=0 When x=0, $x=\frac{216}{12}=18$ Maximized at X= 18, y=36

$$S = kh^2$$
 $k > 0$ Constant $w^2 + h^2 = 24^2$ $w, h > 0$

$$h^2 = 24^2 - \nu^2$$

$$S = k(24^{2} - \omega^{2})\omega$$

$$= k(24^{2}\omega - \omega^{3})$$

$$S' = k(24^2 - 3\omega^2)$$

$$0 = k(576 - 3\omega^2)$$

$$0 = 576 - 3\omega^2$$
 $k > 0$

$$\omega \approx 13.8564$$

And
$$h^2 = 24^2 - 192$$

= 384

$$h \approx 19.5959$$

2)
$$f(x) = \frac{4}{(x-2)^3}$$

deg (numerator) = 0 } y=0 is a horizontal asymptote

14)
$$\lim_{x \to -2^{-}} \left(\frac{1}{x+2} \right) = -\infty$$

32)
$$\lim_{x\to\infty} \frac{5x^3+1}{10x^3-3x^2+7} = \frac{5}{10} = 0.5$$

42)
$$y = \frac{x-3}{x-2}$$
 asymptotes: $y=1$ $x=2$

(62)
$$C = \frac{3t-1}{2t^2+5}$$
, $t>0$

- a) Using Desmos, maybe around t=2.
- b) deg(denon) > deg(num), so horiz asymptote at y=0 Essentially medication concentration will eventually reach (rearly) Zero.