(19) 日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出頭公開發号

特開平11-355584

(43)公開日 平成11年(1999)12月24日

(51) Int.CL*		線別配号	ΡI					
H04N	1/46		H04N 1/4	46	С			
GOBT	1/00		9/2	73	Z			
H04N	1/60				G			
	9/73		G06F 15/6	66	310			
			HO4N 1/4		D			
			•		部東項の数7	or	(全 13	舆)
(21) 出職番号		特顯平10-163318	17	000052 第士写真	201 真フイルム株式会社			
(22)出題日		平成10年(1998) 6月11日	*	神奈川県南足領市中宿210番地				
			(72) 宛明者 部	(72) 宛明者 高岡 直描				
			· ·		県足柄上都関成町宮含798番地 宮 フイルム株式会社内			
			(74)代理人 #	产 建全	中島 淳 (5	13名)		

(54) 【発明の名称】 関像処理装置

(57)【要約】

【課題】 入力がカラー画像データの場合に、顧客のニーズに十分対応可能な調整範囲を持ったモノトーン画像としてのカラーバランス調整機能を確立する。

【解決手段】 モノトーン画像を、予め定められた数パターンのカラーバランス調整値以外にも、顧客にニーズに合うカラーバランス調整値を設定でき、かつこのモノトーンモードを通常モードとは別に設け、モノトーンモードでは、画面に表示された各種パラメータを容易に設定することができる。また、試し焼きを実行することが可能であるため、仕上がり画像がどのようになるかを確認することができる。

【特許請求の範囲】

【請求項1】 カラー画像信号から輝度成分を生成し、 生成した輝度成分のカラーバランスを調整することでモ ノトーン画像データを作成する画像処理装置であって、 前記カラーバランス調整値を独立して各色成分毎に変更 可能なカラーバランス変更手段と、

前記カラーバランス調整値を表示する表示手段と、 前記表示手段で表示さたカラーバランス調整値を調整操 作する役化手段と、

前記操作手段によりカラーバランス調整値が操作された 10 時に、前記カラーバランス変更手段を制御して該操作に 応じたカラーバランス調整値に調整する制御手段と、を 有する画像処理結構。

【請求項2】 前記表示手段は各色毎に設けられたレベ ルゲージと、このレベルゲージ上を移動可能な指針部 と、で模成され、前記録作手段は、前記指針部をレベル ゲージ上を移動させる外部操作機器であることを特徴と する論求項1記載の回像処理装置。

【請求項3】 前記カラーバランスとして、白黒及びセ ピアを含む複数の予め定められた調整値を記憶する記憶 20 手段を、さらに有することを特徴とした請求項1又は請 求項2に記載の画像処理装置。

【請求項4】 前記カラーバランスは、各色間の相対 差、或いは所定のカラーバランス調整値を基準とした絶 対値、の少なくともいずれか一方で調整されることを特 徴とする請求項1万至請求項3の何れか1項記載の画像

【請求項5】 前記カラーバランスとして、R(レッ ド) G (グリーン)、B (ブルー)系の第1の表色 系、C (シアン)、M (マゼンタ)、Y (イエロー)系 30 客も、少数ではあるがあり得る。 の第2の豪色系、V (明度)、H (色相)、S (彩度) 系の第3の家色系の3種類の家色系を含む複数の表色系 の中から1つを選択する選択手段をさらに有することを 特徴とする請求項1万至請求項4の何れか1項記載の画 像処理基體。

【請求項6】 前記表示手段には、各色が調整されて生 成された色、又は前記色に対応して付された識別記号、 又は生成された色に対してオペレータが任意に入力した ファイル名の少なくとも1つが表示され、この色叉は識 別記号を指定することにより、新規登録、夏新保存並び 40 に読出等のアクセスが実行されることを特徴とする請求 項1乃至請求項5の何れか1項記載の固像処理装置。

【請求項7】 前記請求項1万至請求項6の何れか1項 記載の画像処理装置が、カラーバランスが調整された画 像データを出力するプリント指示手段と、前記プリント 指示手段を起勤する場合に操作されるプリント指示起動 手段と、を有し.

前記プリント指示起動手段が操作されたときに、前記表 示手段の表示内容として、前記調整されたカラーバラン スの種類が表示されると共に、該カラーバランス値が調 59 【0010】

整されたシーン。該シーンのプリント領域、をそれぞれ 選択する選択画面が表示されることを特徴とする画像処 到转圈。

【発明の詳細な説明】

100011

【発明の層する技術分野】本発明は、カラー画像信号か ら輝度成分を生成し、生成した輝度成分のカラーバラン スを調整することでモノトーン画像データを作成する画 像処理装置に関する。

100021

【従来の技術】近年では、ネガフィルムに記録されたコ マ画像をCCD等の読取センサによって光電的に読み取 り、該読み取りによって得られたデジタル画像データに 対し拡大縮小や各種稿正等の画像処理を実行し、画像処 理済のデジタル画像データに基づき変調したレーザ光に より記録材料へ画像を形成する技術が知られている。

【①①①3】とのようにCCD等の読取センサによりコ マ画像をデジタル的に読み取る技術では、精度の良い画 像読み取りを実現するために、コマ画像を予備的に読み 取り(いわゆるプレスキャン)、コマ画像の濃度等に応 じた読取条件(例えば、コマ画像に照射する光量やCC Dの電荷蓄積時間等)を決定し、決定した読取条件でコ マ画像を再度読み取っていた(いわゆるファインスキャ ン)、

【0004】ここで、基本的に読取られる画像データ は、カラー画像データであり、出力も当然カラー画像と して出力するのが一般的である。

【①①05】ところが、意図的に白黒画像やセピア色等 の所謂モノトーン画像を好んで、プリントを依頼する顧

【0006】とのため、特開平9-146721号公銀 では、予めいくつかのモノトーン画像に対応するカラー バランス調整値を延備(記憶)しておき、該モノトーン のブリント依頼があった場合には、との記憶された中か ら遊択してもらうことで対応している。

【0007】しかし、上記公報では、顧客の趣向に合う カラーバランス調整ができないため、顧客のニーズに完 全に合わせることが難しい。

【0008】なお、特関開9-200551号公報で は、カラーバランス調整について言及しているが、モノ トーンの操作そのものを対象としておらず、1つの条件 としてモノトーン画像もあり得ることが予測できるだけ で、その操作形態等の詳細までは全く記載されていな

【0009】本発明は上記事実を考慮し、入力がカラー 画像データの場合に、顧客のニーズに十分対応可能な調 整範囲を持ったモノトーン画像としてのカラーバランス 調整機能を確立することができる画像処理装置を得るこ とが目的である。

【課題を解決するための手段】請求項1に記載の発明は、カラー画像信号から輝度成分を生成し、生成した超度成分のカラーバランスを調整することでモノトーン画像データを作成する画像処理装置であって、前記カラーバランス調整値を独立して各色成分毎に変更可能なカラーバランス変更手段と、前記カラーバランス調整値を表示する表示手段と、前記表示手段で表示さたカラーバランス調整値を調整操作する操作手段と、前記操作手段によりカラーバランス調整値が操作された時に、前記カラーバランス変更手段を制御して鼓操作に応じたカラーバ 19ランス調整値に調整する副御手段と、を有している。

【0011】表示手段によりカラーバランス調整値が表示されるため、操作者は、この表示内容を見ながら、操作手段によって各色成分毎にカラーバランスを変更操作することができる。制御手段では、カラーバランス変更手段を制御し、操作手段で操作された内容に基づいてカラーバランスを調整し、所定のカラーバランス調整値を設定する。

【0012】このように、モノトーン画像として、予めいくつかのパターンから選択するのではなく、各色成分 26 年に容易に調整することができるため、その調整範囲は理論的には無限大となり、モノトーン画像のパリエーションを増加することができる。また、カラーバランス調整値は表示手段によって表示されるため、実際にプリントした場合にどのようになるかをある程度認識しながら操作でき、作業性がよい。

【①①13】請求項2に記載の発明は、前記請求項1記載の発明において、前記表示手段は各色毎に設けられたレベルゲージと、このレベルゲージ上を移動可能な指針部と、で構成され、前記操作手段は、前記指針部をレベルゲージ上を移動させる外部操作機器であることを特徴としている。

【①①14】請求項2に記載の発明によれば、表示手段には、カラーバランス調整値を示すものとして、例えば直線に対して目認が付与されたレベルゲージが表示され、このレベルゲージ上をツマミ形態の指針部がスライドする構成となっている。この指針部は、例えば、キーボード上の矢印キーやマウスポインタ等でドラッグし、レベルゲージ上をスライドさせることにより、調整することができる。

【0015】請求項3に記載の発明は、前記請求項1又 は請求項2に記載の発明において、前記カラーバランス として、白鳥及びセピアを含む複数の予め定められた調 整値を記憶する記憶手段を、さらに有することを特徴と している。

【0016】請求項3に記載の発明によれば、モノトーン画像として、代表的な白黒、セピアを含む複数のカラーバランス調整値は、予め記憶手段に記憶しておくことにより、その都度調整する必要がなく、操作性が容易となる。

【0017】請求項4に記載の発明は、前記請求項1万 至請求項3の何れか1項記載の発明において、前記カラ ーパランスは、各色間の相対差、或いは所定のカラーバ・ ランス調整値を基準とした絶対値、の少なくともいずれ か一方で調整されることを特徴としている。

【0018】請求項4に記載の発明によれば、カラーバランスは、例えば各色成分の相対差。すなわち、ある1色を0としたときのプラス値、マイナス値によって設定してもよいし、所定のカラーバランス調整値を基準とした絶対値、すなわち白黒モード時をそれぞれ各色成分の0値とし、数値を設定するようにしてもよい。それぞれに、利点があり、相対値調整の場合は調整を繰り返すことにより所整のカラーバランスを得るのに適しており、絶対値調整の場合はある程度各色成分を数値が既知である場合に適している、ということができる。

【0019】請求項5に記載の発明は、前記請求項1万空請求項4の何れか1項記載の発明において、前記カラーバランスとして、R(レッド)、G(グリーン)、B(ブルー)系の第1の裏色系、C(シアン)、M(マゼンタ)、Y(イエロー)系の第2の表色系、V(明

度)、H(色相)、S(彩度)系の第3の表色系の3種類の表色系を含む複数の表色系の中から1つを選択する 選択手段をさらに有するととを特徴としている。

【0020】 詰求項5に記載の発明によれば、カラーバランスを調整する場合、カラー画像データの表色系として、代表的なものはRGBの第1表色系(なお、Dとして濃度データを含む場合もある)、CMYの第2の表色系(なお、Kとしてブラックを含む場合もある)、VHSの第3の表色系があり、これらの中から1つを選択する選択機能を持たせることによって、顧客(オペレータ)の操作し易い環境を得ることができる。なお、標護表色系として一般的な、CIEXYZ系の表色系を選択範囲に入れても良い。

【0021】語求項6に記載の発明は、前記請求項1乃至語求項5の何れか1項記載の発明において、前記表示手段には、各色が調整されて生成された色、又は前記色に対応して付された識別記号、又は生成された色に対してオペレータが任意に入力したファイル名の少なくとも1つが表示され、この色又は協別記号を指定することにより、新規登録、見新保存並びに読出等のアクセスが実行されることを特徴としている。

[① ① 2 2] 請求項 6 に記載の発明によれば、表示手段により、カラーバランスが調整された色自体、核いはこの色を特定する識別記号、核いはオペレータによって入力されたファイル名が衰示され、この色目体が表示された領域をマウスポインタ等で指定するか、識別記号又はファイル名をキー入力することにより、調整されたカラーバランスの新規登録、更新保存及び読出等のアクセスが可能であり、各色成分毎の調整値を一つ一つ入力する50ような煩雑な作業を回避することができる。

5

【① 0 2 3】請求項7に記載の発明は、前記請求項1乃至請求項6の何れか1項記載の画像処理装置が、カラーバランスが調整された回像データを出力するプリント指示手段と、前記プリント指示起動手段を起動する場合に操作されるプリント指示起動手段が操作されたときに、前記表示手段の表示内容として、前記調整されたカラーバランスの種類が表示されると共に、該カラーバランス値が調整されたシーン。該シーンのプリント領域、をそれぞれ選択する選択画面が表示されることを特徴としている。

【10024】請求項7に記載の発明によれば、ブリントを実行する場合。プリント指示起動手段によりプリント指示を行うことにより、ブリント指示手段が起動し、カラーバランスが調整された画像データが出力される。

【0025】とのとき、表示手段では、調整されたカラーバランスの種類、該カラーバランス値が調整されたシーン。該シーンのプリント領域、をそれぞれ選択する選択画面が表示され、シーンとプリント領域については、この時点で設定することが可能であり、テストプリントとして、標準的な画像として予め記憶された画像を選択 20したり、極めて重要な領域(例えば、主被写体のみ)を指定したりできる。

[0026]

【発明の実施の形態】図1及び図2には、本実施形態に 係るディジタルラボシステム10の概略構成が示されて いる。

【0027】図1に示すように、このディジタルラボシステム10は、ラインCCDスキャナ14、画像処理部16、レーザブリンタ部18、及びプロセッサ部20を含んで構成されており、ラインCCDスキャナ14と画3の像処理部16は、図2に示す入力部26として一体化されており、レーザブリンタ部18及びプロセッサ部20は、図2に示す出力部28として一体化されている。

【0028】ラインCCDスキャナ14は、ネガフィルムやリバーサルフィルム等の写真フィルムに記録されているコマ画像を読み取るためのものであり、例えば135サイズの写真フィルム、110サイズの写真フィルム、及び透明な磁気層が形成された写真フィルム(240サイズの写真フィルム:所謂APSフィルム)、120サイズ及び220サイズ(ブローニサイズ)の写真フィルムのコマ画像を読取対象とすることができる。ラインCCDスキャナ14は、上記の読取対象のコマ画像をラインCCD30で読み取り、A/D変換部32においてA/D変換した後、画像データを画像処理部16へ出力する。

【0029】なお、本実緒の形態では、240サイズの 写真フィルム(APSフィルム)68を適用した場合の ディジタルラボンステム10として説明する。

【0030】画像処理部16は、ラインCCDスキャナ 両端面をそれぞれ、可能な限り写真フィルム614から出力された画像データ(スキャン画像データ) 50 インCCD30に接近させることが好ましい。

が入力されると共に、デジタルカメラ34等での撮影によって得られた画像データ、原稿(例えば反射原稿等)をスキャナ36(フラットベット型)で読み取ることで得られた画像データ、他のコンピュータで生成され、フロッピディスクドライブ38、MOドライブ又はCDドライブ40に記録された画像データ。及びモデム42を介して受信する通信画像データ等(以下、これらをファイル画像データと総称する)を外部から入力することも可能なように構成されている。

【0031】画像処理部16は、入力された画像データを画像メモリ44に記憶し、色階調処理部(モノトーンを含む)46、ハイパートーン処理部48、ハイパーシャープネス処理部50等の各種の領正等の画像処理を行って、記録用画像データとしてレーザブリンタ部18へ出力する。また、画像処理部16は、画像処理を行った画像データを画像ファイルとして外部へ出力する(例えばFD、MO、CD等の記憶媒体に出力したり、通信回線を介して他の情報処理機器へ送信する等)ことも可能とされている。

【0032】レーザプリンタ部18はR、G、Bのレーザ光漂52を備えており、レーザドライバ54を制御して、画像処理部16から入力された記録用画像データ(一旦、画像メモリ56に記憶される)に応じて変調したレーザ光を印画紙に照射して、走査変光(本実経の形態では、主としてポリゴンミラー58、f 伊レンズ60を用いた光学系)によって印画紙62に画像を記録する。また、プロセッサ部20は、レーザプリンタ部18で走査銭光によって画像が記録された印画紙62に対し、発色現像、漂白定者、水洗、乾燥の各処理を縮す。これにより、印画紙上に画像が形成される。

【0033】(ラインCCDスキャナの機成)次にラインCCDスキャナ14の構成について説明する。図1にはラインCCDスキャナ14の光学系の機略構成が示されている。この光学系は、写真フィルム68に光を照射する光源66を構えており、光源66の光射出側には、写真フィルム68に照射する光を拡散光とする光鉱散板72が配置されている。

【0034】写真フィルム68は、光鉱散板72が配設された側に配置されたフィルムキャリア74によって、コマ画像の画面が光輪と垂直になるように報送される。【0035】写真フィルム68を挟んで光源66と反対側には、光輪に沿って、コマ画像を透過した光を結像させるレンズユニット76、ラインCCD30が順に配置されている。なお、レンズユニット76として単一のレンズのみを示しているが、レンズユニット76は一実際には複数枚のレンズから構成されたズームレンズである。なお、レンズユニット76として、セルフォックレンズの両端面をそれぞれ、可能な限り写真フィルム68及びラマンCCD30に接近させることが好ました。

【0036】ラインCCD30は、複数のCCDセル鐵 送される写真フィルム68の幅方向に沿って一列に配置 され、かつ電子シャッタ機構が設けられたセンシング部 が、間隔を受けて互いに平行に3ライン設けられてお り、各センシング部の光入射側にR、G、Bの色分解フ ィルタの何れかが各々取付けられて構成されている(所 謂3ラインカラーCCD)。ラインCCD30は、各セ ンシング部の受光面がレンズユニット?6の結像点位置 に一致するように配置されている。

()とレンズユニット76との間にはシャッタが設けられ ている。

(画像処理部16の制御系の構成) 図3には、図1に示 す画像処理部16の主要構成である画像メモリ44、色 階調処理4.6、ハイパートーン処理4.8、ハイパーシャ ープネス処理5()の各処理を実行するための詳細な制御 ブロック図が示されている。

【0038】ラインCCDスキャナ14から出力された RGBの各デジタル信号は、データ処理部200におい て、暗時箱正、欠陥画素補正、シューディング補正等の 20 所定のデータ処理が施された後、Log 変換器202によ ってデジタル画像データ(濃度データ)に変換され、ブ レスキャンデータはプレスキャンメモリ204に記憶さ れ、メインスキャンデータはメインスキャンメモリ20 6に記憶される。

【0039】プレスキャンメモリ204に記憶されたプ レスキャンデータは、画像データ処理部208と画像デ ータ変換部210とで構成されたプレスキャン処理部2 12に送出される。一方、メインスキャンメモリ206 に記憶されたメインスキャンデータは、画像データ処理 30 部2 14と画像データ変換部2 16とで構成されたメイ ンスキャン処理部218へ送出される。

【0040】画像データ処理部208、216では、カ ラーバランス調整、コントラスト調整(色階調処理)、 明るさ縞正、彩度縞正(ハイパートーン処理)。ハイパ ーシャープネス処理等が、LUTやマトリクス(MT X) 海算等の周知の方法で実行されるようになってい

【0041】また、画像データ処理部208、216で は、画像の園辺(背景)の光畳を領正する園辺光量領正 40 富は焼き増し時で少数枚で指定されることが多いため、 も実行される。

【0042】プレスキャン側の画像データ変換部210 では、画像データ処理部208によって処理された画像 データを3D-LUTに基づいてモニタ16Mへ表示す るためのディスプレイ用画像データに変換している。一 方、メインスキャン側の画像データ変換部216では、 画像データ処理部214によって処理された画像データ を、3D-LUTに基づいてレーザブリンタ部18での ブリント用画像データに変換している。なお、上記ディ スプレイ用の画像データと、プリント用画像データと

は、表色系が異なるが、以下のような様々な箱正によっ て一致を図っている。

【0043】すなわち、プレスキャン処理部212及び メインスキャン処理部218には、条件設定部224が 接続されている。

【0044】条件設定部224は、セットアップ部22 6. キー舗正部228、パラメータ統合部230とで構 成されている。

【0045】セットアップ部226は、プレスキャンデ 【① 0 3 7 】また、図示は省略するが、ラインCCD 3 10 ータを用いて、メインスキャンの疎取条件を設定し、ラ インCCDスキャナ14に供給し、また、プレイスキャ ン処理部212及びメイスキャン処理部218の画像処 選条件を演算し、パラメータ統合部230に供給してい

> 【①①46】キー領正部228は、キーボード16Kに 設定された濃度、色、コントラスト、シャープネス、彩 度等を調整するキーやマウスで入力された各種の指示等 に応じて、画像処理条件の調整量を消算し、パラメータ 統合部230へ供給している。

【0047】バラメータ統合部230では、上記セット アップ部226及びキー補正部228から受け取った画 像処理条件をプレスキャン側及びメインスキャン側の画 像データ処理部208,214へ送り、画像処理条件を **浦正あるいは再設定する。この再設定された画像処理条** 件に基づいてプレスキャン側ではモニタ表示し、ファイ ンスキャン側ではプリント用画像データとして出力す る.

【① 048】上記が本装置における通常モードの処理内 容であり、この場合、入力されたカラー画像データに対 して適正な稿正を施し、結果としてカラー画像データを 出力する。これに対して、本装置では、顧客の要望等に より入力されたカラー画像データに基づいて、モノトー ン画像データを作成する機能を有している(モノトーン モード}。

【10049】通常モードとモノトーンモードとは、画像 コマ毎に切り替え可能であるが、ラインCCDスキャナ 14によるプレスキャン、ファインスキャンは同様に実 行され、その後の処理内容がモードによって変更される ようになっている。なお、モノトーン画像の要求は、通 同時プリントモードとして画像コマ毎にモードを判断せ ず、連続的に処理するモードを設けても良い。

【0050】上記モノトーンモードでは、図4亿示され る如く、プレスキャン後にモニタ16M上にモノトーン モード画面300が表示されるようになっている。

【0051】図5に示される如く、モノトーン画面30 ()の左上には、プレスキャンで読み取った画像或いはそ の後のカラーバランス調整後の画像が表示される画像表 示領域302が設けられており、オペレータはこの画像

る.

っている。

【0052】画像表示領域302の右側に隣接して色未選択ボタン304が設けられている。この色味選択ボタン304が操作されると(図5のように鎖線で示すマウスポインタ306により指示され、マウスボタンがクリックされると)。このモノトーン画面300に重なるように、図6に示されるような色味選択画面308が表示されるようになっている。

【0053】図6に示される如く、この色味選択園面308には、所謂カラーパッチ部310が設けられ、この10カラーパッチ部310の中から所望のカラーパッチを選択し、OKボタン312を操作することにより、前記画像表示領域302に表示された画像の色味が設定されるようになっている。なお、カラーパッチの選択時には、選択色味見本領域314に選択されたカラーパッチと同一の色が表示される。また、OKボタン312の下側には、選択されたカラーパッチをキャンセルボタン316が設けられている。

【0054】OKボタン312又はキャンセルボタン3 16が操作されると、色味選択画面308が消滅し、元 26 のモノトーン画面300が再度表示される。

【0055】 善味選択ボタン304のさらに古側には、5個のモノトーン選択ボタン318.320、323、324、326が縦列に配列されている。この内の上部2個のモノトーン選択ボタン318.320は、具体的にモノトーンの状態(上側が白黒、下側のセピア)がボタン上に表示されており、それでれを操作することにより表示されたモノトーン画像に最適なカラーバランスが読み出され、前記画像表示領域302に読み出されたカラーバランス調整費に基づく画像が表示される。なお、図5では、マウスボインタ306によって、セピア色に対応するモノトーン選択ボタン320が指示された状態であり、その後にマウスボタンを操作することにより、セピア色の画面が表示されることになる。

【0056】残りの3個のモノトーン選択ボタン32234、326はそれぞれ所定のカラーバランス調整値が登録されており(それぞれ、登録1、登録2、登録3と表示されている)。この選択ボタンのいずれかを操作することにより、登録されたカラーバランス調整置に基づく画像を表示することができる。

【0057】登録されるカラーバランスは、モノトーン回面300の下部にある。調整方法設定部328、調整登表示部330及び調整部332によって設定される。【0058】調整方法設定部328には、例示ボックスとしてRGBボックス334、CMYボックス336、HSVボックス338と表示され、それぞれの左側に選択ボイント部340、342、344が設けられている。ここで、図5では、RGBボックス340が選択されており(選択ポイント部340に無丸表示)、当該回像の入力データがRGB表色系であることを示してい

【0059】調整登表示部330には、例示ボックスとして絶対値ボックス346と、相対値ボックス348とが設けられ、それぞれに選択ボイント部350、352が設けられている。図5では、絶対値ボックス350が選択されている。調整置が絶対値の場合は、白黒画像を基準とした各色成分の調整量を指示してモノトーン画像が生成され、調整置が相対値の場合は、前配色味選択ボ

タン304の操作による色味選択機能によって選択された色味に対する各色成分の加減調整によってモノトーン 画像が生成される。

【0060】調整部332は、前記調整方法設定部32 8で設定された表色系を表示する表色系表示部354 と、この設定された表色系の各成分(RGB、CMYの場合には色成分)毎のスライド調整部356と、構成された画面が表示されている。

【0061】スライド調整部356は、等間隔の目盤がついたゲージ358と、このゲージ358上を倒えばマウスのドラッグ操作で移動可能なツマミ360と、を備えツマミが古にあるほどその成分を増加するための指示が行え、左にあるほどその成分を減少するための指示が行えるようになっている。

【0062】また、このモノトーン画面300には、登録ボタン362、取消ボタン364、確認ボタン36 6、試し焼きボタン368が配列されている。登録ボタン362では、それぞれ調整されたカラーバランスの登録(登録されると前記登録1万至登録3の何れかのボタンが送出しのスイッチとなって記憶される)が可能となっている。また、取消ボタン364は、文字通り設定が取り消され基の状態(回像を取り込んだ時の状態)に戻されると共に、このモノトーン画面が終了する。確認ボタン366は、設定したカラーバランスを確定したときに操作され、以後の調整が不可となると共に、登録はされないがこのモノトーン画面表示中は調整値が保持される

【0063】次に、試し焼きボタン368は、前記登録ボタン362或いは確定ボタン366が操作された後に有効となるボタンであり(すなわち、登録ボタン362或いは確定ボタン366の操作前は操作不可)。このボ 40 タンが操作されることにより、サブ画面としての試し焼き画面370(図7容照)が表示されるようになっている。

【0064】図7に示される如く、試し焼き回面370 は、色味表示部372、シーン表示部374、ブリント 領域表示部376及び試し焼き回像表示部378とで構

【0065】 色味表示部372は、前記モノトーン画面300における5個のモノトーン選択ボタン318、320、322、324、326と同一の配列とされてお50 り、設定されているモノトーンの色味が強調(例えば、

別色、斜線等)されている。また、登録1表示部32 2. 登録2表示部324に示すように、未登録の場合に は、×印が同時に表示されるようになっている。

11

【0066】シーン表示部374は、試し焼きを行うシ ーンを選択することが可能となっており、例示ボックス として読取シーンボックス380、バッチボックス38 2. 標準人物ボックス384、標準原景ボックス386 が表示され、それぞれの左側に選択ポイント部388、 390、392、394が設けられている。ここで、図 択ポイント部392に黒丸表示)、当該シーンが標準人 物であることを示している。

【0067】プリント領域表示部378は、試し焼きを 行う画像ん尾領域を選択することが可能となっており、 例示ボックスとして全画面ボックス396、選択領域ボ ックス398、中央付近ボックス400が表示され、そ れぞれの左側に選択ポイント部402、404、406 が設けられている。ここで、図7では、中央付近ボック ス400が選択されており(選択ポイント部406に黒 丸表示)、当該プリント領域が中央付近であることを示 20 意設定し登録した色味のカラーバランス調整値が読み出 している。

【①①68】なお、指定された画像領域は、試し漁き画 俊表示部378に表示された全画面の中に鎖線408に よって指示されるようになっている。また、選択領域ボ ックス398が指定された場合には、マウスポインタ3 0.6を操作して枠型け作業を行うことにより、鎖線4.0 8が表示される(具体的な操作は、選択したい領域の左 上角部でドラッグし、右下角部で解除する。なお、アス ベクト比は固定)。上記の設定が終了後、確認ボタン4 消ボタン412が操作されると、試し焼き画面370が 終了し、モントーン画面300に戻るようになってい

【①069】以下に、本実施の形態の作用を説明する。 (通常モード) オペレータがフィルムキャリアで4に写 真フィルム68を挿入し、画像処理部16のキーボード 16 Kによりコマ画像銃取開始を指示すると、フィルム キャリア74では、写真フィルム22を批送開始する。 この報送により、プレスキャンが実行される。すなわ ち、写真フィルム68を比較的高速で接送しながら、ラ 40 形態では、RGB)がツマミ360の位置によって衰現 インCCDスキャナ14によって、画像コマのみなら ず、写真フィルムの68の画像記録領域外の各種データ を含めて、読み取っていく。

【0070】次に磁気(光学)情報を説取り、コマ画像 のサイズを認識し、例えば、パノラマサイズのコマ画像 である場合には、パノラマサイズの画像特有の素抜け部 分(写真フィルムの幅方向両端側)を遮光する。

【0071】次に、撮影画像の画像処理パラメータであ る。カラー舗正量、濃度補正量、ハイパートーン補正

でファインスキャン時の読取条件(絞り)を算出する。 【0072】その後、ファインスキャンが真行され、緑 見画像の画像処理パラメータをセットし、撮影画像の箱 正を実行する。

(モノトーンモード)前記ラインCCDスキャナ 1.4 に よってプレスキャンが実行された後、モニタ16M上に モノトーン画面300が表示される(図4参照)。

【0073】図5に示される如く、このモノトーン画面 300では、まず、調整方法と調整量とを設定する。設 7では、標準人物ボックス384が選択されており(選 10 定された調整方法と調整量が、その後の画像処理のパラ メータとしてセットアップされる。

> 【0074】次に、どのようなモントーン(白黒)セピ ア、任意設定)にするかを選択する。

> 【0075】ここで、白黒調又はセピア調を選択する場 台には、それぞれのボタン(モノトーン選択ボタン31 8. 320)の何れかを操作することによって、予め設 定されたパラメータが読み出される。また、登録1万至 登録3のボタン(モノトーン選択ボタン322.32 4. 326)の何れかが操作された場合には、以前に任 される。

> 【0076】上記では、既にカラーバランス調整値が定 まっており、この定まっている調整値が読み出され、ス ライド調整部332のゲージ358上の所定の位置にツ マミ360が移動する。これにより、カラーバランス額 整値を目視によって確認することができる。

【0077】一方、色味遺訳ボタン304が操作される と、モノトーン画面300に重複するように色味選択画 面308が表示される(図6参照)。 色味選択画面30 10が蝶作されると、試し触きが関始される。また、取 30 8には、各色の色相、明度、彩度の異なる色味がマトリ クス状に配列され(カラーバッチ310)、オペレータ がこのカラーバッチから所望の色味を選択(マウスポイ ンタで指示後、クリック操作) することにより、選択色 **時見本領域314に選択した色味が表示される。その** 後、OKボタン312が操作されることにより、色味が 決定されると共に、色味遵釈画面308が終了し、モノ トーン画面300に戻る。

> 【0078】モノトーン画面300のスライド調整部3 32には、選択された色味における各調整置(本実施の される。

> 【0079】上記カラーバランス調整値の基準値が設定 された後、オペレータが手動で調整する場合には、前記 ゲージ358上のツマミ360をドラッグして、スライ 下させることにより、自由なカラーバランス調整値が設 定される。この調整値は、調整後に登録1万至登録3の 何れかのボタンを操作することにより、更新登録され

【0080】次に、試し窺きボタン368が操作される 置、周辺光堂補正置、歪曲収差領正量等を算出し、次い。59~と、モノトーン画面300から八女市焼き画面370

13

(図7を願) に画面が切り替わる。この試し焼き画面3 70には、モノトーン画面300で設定した色味が表示 されると共に、シーン及びプリント領域を設定する。 【0081】シーンの設定は、読取シーンボックス38 ①、バッチボックス382、標準人物ボックス384、 標準風景ボックス386から選択可能であり、何れか! つを選択する。また、プリント領域の設定は、全画面ボ ックス396、選択領域398、中央付近400から選 択可能であり、何れか1つを選択する。

【0082】 選択された画像及びプリント領域は、プリ 19 る。 ント領域表示部378に表示される(プリント領域が画 面より小さい場合は、鎖線408でその領域が指示され*

* **3.**) 。

【0083】以上がモニタ16Mでのモノトーンカラー バランス顕整量の設定であり、ここで設定されたパラメ ータに基づいて出力される画像信号が消算される。

【0084】ととで、入力画像信号 (RGB) に対する 出方画像信号(RGB)、への変換計算式及びその詳細 な計算手順について説明する。設定したモノトーンのカ ラーバランス調整量は、以下に示す(1)式の中の

「(SHIFT1)」及び「(SHIFT2)」で決ま

. . . (1)

[0085]

$$(RGB)^* = (MTX1)^{-1} \{ (MTX2)(MTX1)(RGB) + (SHIFT1) \} + (SHIFT2)$$

上記 (1) 式において、(MTX2)(MTX1)(RGB)では、NT SC方式のマトリクスを利用して、Y1、 in Q1の 表色系系から輝度成分 (Y.) のみを取り出している。 なお、以後 (RGB) をR.,, G.,, B., とい ※ ※い、(RGB) をRia、Gia、Bia という。 [0086] 【數1】

$$\begin{bmatrix} Y_1 \\ I_2 \\ Q_3 \end{bmatrix} = \begin{bmatrix} 1.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.0 \\ 0.211 & -0.522 & 0.311 \\ 0.0 & 0.0 & 0.0 \\ 0.0 & 0.0 & 0.$$

(2)式を計算し、

$$\begin{bmatrix}
Y_1 \\
I_1 \\
Q_1
\end{bmatrix} = \begin{bmatrix}
0.299 & 0.587 & 0.114 \\
0.0 & 0.0 & 0.0 \\
0.0 & 0.0 & 0.0
\end{bmatrix} \begin{bmatrix}
R_{in} \\
G_{fi}
\end{bmatrix} \cdots (3)$$

となる。

次に、(SHIFT1)は、VHSの表色系でカラーバ ランス調整量が指定された時の調整値を示し、これをY ! Qに変換する (Y.at . I.at 、Q.at)。 [0087]

【敎2】

なお、RGB又はCMYでカラーバランス調整量が指定 40 された場合は、(SHIFT1)はり、すなわち、

[0088]

【敎3】

$$\begin{bmatrix} Y \text{ adj} \\ I \text{ adj} \\ Q \text{ adj} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \cdots (5)$$

となる。

【0089】とれにより、(1)式の{}内をY。、 12. Q2として計算すると、

[0090]

【敎4】

$$\begin{pmatrix}
Y_2 \\
I_2 \\
Q_2
\end{pmatrix} = \begin{pmatrix}
Y_1 \\
I_1 \\
Q_1
\end{pmatrix} + \begin{pmatrix}
Y_{20j} \\
I_{30j} \\
Q_{00j}
\end{pmatrix} \cdots (6)$$

$$\downarrow \rightarrow (SHIFT1)$$

この計算値に (MTX1) の逆数 (MTX1) ***を請算 する(R₂、G₁、B₂)。

[0091]

【敎5】

$$\begin{bmatrix}
R_3 \\
G_3 \\
B_3
\end{bmatrix} = \begin{bmatrix}
1.000 & 0.956 & 0.623 \\
1.000 & -0.272 & -0.648 \\
1.000 & -1.105 & 1.705
\end{bmatrix}
\begin{bmatrix}
Y_2 \\
I_2 \\
Q_2
\end{bmatrix} \cdots (7)$$

最後に(SHIFT2)を加算することにより、上記(1)から、(RGB) を得ることができる。 【0092】

【敎6】

$$\begin{bmatrix}
R \text{ out} \\
G \text{ out} \\
B \text{ out}
\end{bmatrix} = \begin{bmatrix}
R \text{ s} \\
G \text{ 3} \\
B \text{ s}
\end{bmatrix} + \begin{bmatrix}
R \text{ ed} \\
G \text{ ed} \\
B \text{ ed}
\end{bmatrix} \cdot \cdot \cdot (8)$$

$$(R G B)' \rightarrow (S H 1 F T 2)$$

なお、カラーバランス調整が、HSVでなされている場合には、この(SHIFT2)は0. すなわち 【0093】

【数7】

$$\begin{bmatrix}
R_{\text{out}} \\
G_{\text{out}} \\
B_{\text{out}}
\end{bmatrix} = \begin{bmatrix}
R_{9} \\
G_{3} \\
B_{3}
\end{bmatrix} \cdots (9)$$

となる。

[0095]

【発明の効果】以上説明した如く本発明に係る画像処理 装置は、入力がカラー画像データの場合に、顧客のニーズに十分対応可能な調整箇囲を持ったモノトーン画像と してのカラーバランス調整機能を確立することができる という優れた効果を有する。 【図面の簡単な説明】

【図1】本発明の実施の形態に係るディジタルラボシステムの機略構成図である。

16

10 【図2】ディジタルラボシステムの外額図である。

【図3】本真ែの形態に係る画像処理部の制御プロック 図である。

【図4】モノトーンモード時にモニタに衰示されるモノトーン画面の状態を示す正面図である。

【図5】モノトーン画面が正面図である。

【図6】色味選択画面の正面図である。

【図7】試し焼き画面の正面図である。

【符号の説明】

10 ディジタルラボシステム

20 14 ラインCCDスキャケ

16 画像処理部

16M モニタ

66 光源部

68 写真フィルム

152 画像分離部

156 プレ選光画像メモリ

168、170 画像合成部

200 データ処理部

202 log 変換器

204 プレスキャンメモリ

206 メインスキャンメモリ

208 画像データ処理部

212 プレスキャン処理部

214 画像データ処理部

218 メインスキャン処理部

300 モノトーン画面

308 色味選択画面

370 試し焼き画面

[Ø1]

[図2]

[図3]

[図5]

[図6]

[図7]

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

CLAIMS

[Claim(s)]

[Claim 1] It is the image processing system which generates a brightness component and creates monotone image data by adjusting the color-balance of the generated brightness component from a color picture signal. It becomes independent about said color-balance adjustment value. The color-balance modification means which can be changed for every color component, A display means to display said color-balance adjustment value, and the actuation means which carries out adjustment actuation of the display **** color-balance adjustment value with said display means, The image processing system which has the control means which controls said color-balance modification means and is adjusted to the color-balance adjustment value according to this actuation when a color-balance adjustment value is operated by said actuation means.

[Claim 2] the image processing system according to claim 1 which said display means comes out of this level-gauge [which was prepared for every color], and level-gauge top with the movable guide section, is constituted, and is characterized by said actuation means being an external actuation device to which a level-gauge top is moved for said guide section.

[Claim 3] The image processing system according to claim 1 or 2 characterized by having further a storage means to memorize the adjustment value of the plurality containing black and white and sepia defined beforehand as said color-balance.

[Claim 4] Said color-balance is the image processing system of claim 1 characterized by the thing of absolute value ** on the basis of the relative difference or the predetermined color-balance adjustment value between each color adjusted by either at least thru/or claim 3 given in any 1 term. [Claim 5] As said color-balance, R (red), G (Green), the 1st color coordinate system of B (blue) system, C (cyanogen), M (Magenta), the 2nd color coordinate system of Y (yellow) system, The image processing system of claim 1 characterized by having further a selection means to choose one from two or more color coordinate systems including three kinds of color coordinate systems of the 3rd color coordinate system of V (lightness), H (hue), and S (saturation) system thru/or claim 4 given in any 1 term.

[Claim 6] The delimiter given to said display means corresponding to the color by which each color was adjusted and generated, or said color, Or by displaying at least one of the file names which the operator inputted into arbitration to the generated color, and specifying this color or delimiter The image processing system of claim 1 characterized by access of read-out etc. being performed by the new registration and updating preservation list thru/or claim 5 given in any 1 term.

[Claim 7] A print directions means by which the image processing system of said claim 1 thru/or claim 6 given in any 1 term outputs the image data to which the color-balance was adjusted, When it has the print directions starting means operated when starting said print directions means and said print directions starting means is operated The image processing system characterized by displaying the selection screen which chooses the print field of a scene and this scene where this color-balance value was adjusted, respectively as contents of a display of said display means while the class of said adjusted color-balance is displayed.

[Translation done.]

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DETAILED DESCRIPTION

[Detailed Description of the Invention] [0001]

[Field of the Invention] From a color picture signal, this invention generates a brightness component and relates to the image processing system which creates monotone image data by adjusting the color-balance of the generated brightness component.
[0002]

[Description of the Prior Art] The coma image recorded on the negative film is read in photoelectricity by reading sensors, such as CCD, image processings, such as enlarging or contracting and various amendments, are performed to the digital image data obtained by this reading, and the technique which forms an image in a record ingredient by the laser beam modulated based on digital image data [finishing / an image processing] is known for recent years.

[0003] Thus, in the technique of reading a coma image in digital one by reading sensors, such as CCD, in order to realize accurate image reading, the coma image was read preparatorily (the so-called press can), the reading conditions (for example, the quantity of light, the charge storage time of CCD, etc. which irradiate a coma image) according to the concentration of a coma image etc. were determined, and the coma image was again read on the determined reading conditions (the so-called fine scan).

[0004] Here, the image data read fundamentally is color picture data, and it is common to also output an output as a color picture naturally.

[0005] However, the so-called monotone images, such as monochrome image and sepia, are liked intentionally, and although the customer who requests a print is also a fraction, there may be. [0006] For this reason, at JP,9-146721,A, when the color-balance adjustment value corresponding to some monotone images is prepared beforehand (storage) and there is a print request of this monotone, it corresponds because I have you choose from from while [this] memorizing. [0007] However, since color-balance adjustment suitable for a customer's idea cannot be performed in the above-mentioned official report, it is difficult to double with a customer's needs completely. [0008] In addition, in a provisional-publication-of-a-patent open No. 200551 [nine to] official report, although reference is made about color-balance adjustment, it is not aimed at the actuation of a monotone itself and details, such as the actuation gestalt, are not indicated at all only by the ability to predict that there may also be a monotone image as one condition.

[0009] It is the purpose to obtain the image processing system which can establish the color-balance adjustment function as a monotone image with the adjustable range where this invention can sufficiently respond to a customer's needs in consideration of the above-mentioned fact when an input is color picture data.

[0010]

[Means for Solving the Problem] Invention according to claim 1 is an image processing system which generates a brightness component and creates monotone image data by adjusting the colorbalance of the generated brightness component from a color picture signal. It becomes independent about said color-balance adjustment value. The color-balance modification means which can be changed for every color component, A display means to display said color-balance adjustment value, and the actuation means which carries out adjustment actuation of the display **** color-balance adjustment value with said display means, When a color-balance adjustment value is operated by

said actuation means, it has the control means which controls said color-balance modification means and is adjusted to the color-balance adjustment value according to this actuation.

[0011] Since a color-balance adjustment value is displayed by the display means, an operator can do modification actuation of the color-balance for every color component with an actuation means, looking at these contents of a display. In a control means, a color-balance modification means is controlled, a color-balance is adjusted based on the contents operated with the actuation means, and a predetermined color-balance adjustment value is set up.

[0012] Thus, since it cannot choose from some patterns beforehand as a monotone image but can adjust easily for every color component, theoretically, the adjustable range becomes infinite and can increase the variation of a monotone image. Moreover, since a color-balance adjustment value is displayed by the display means, it can be operated recognizing to some extent what becomes, when it actually prints, and is good. [of workability]

[0013] invention according to claim 2 comes out of this level-gauge [in which said display means was formed for every color], and level-gauge top with the movable guide section in said invention according to claim 1, it is constituted, and said actuation means is characterized by being the external actuation device to which a level-gauge top is moved for said guide section.

[0014] According to invention according to claim 2, the level gauge by which the graduation was given to the display means to the straight line as what shows a color-balance adjustment value is displayed, and it has the composition that the guide section of a knob gestalt slides this level-gauge top. This guide section can be adjusted by dragging with an arrow key, a mouse pointer, etc. for example, on a keyboard, and making a level-gauge top slide.

[0015] Invention according to claim 3 is characterized by having further a storage means to memorize the adjustment value of the plurality containing black and white and sepia defined beforehand as said color-balance in said invention according to claim 1 or 2.

[0016] It is not necessary to adjust two or more color-balance adjustment values which contain typical black and white and sepia as a monotone image each time, and, according to invention according to claim 3, they become easy [operability] by memorizing for the storage means beforehand.

[0017] Invention according to claim 4 is characterized by the thing of absolute value [color-balance / said / on the basis of the relative difference or the predetermined color-balance adjustment value between each color] ** adjusted by either at least in invention of said claim 1 thru/or claim 3 given in any 1 term.

[0018] A color-balance may be set up with the plus value when setting the relative difference of for example, each color component, i.e., one certain color, to 0, and a minus value, and it makes the time of the absolute value on the basis of a predetermined color-balance adjustment value, i.e., monochrome mode, zero value of each color component, respectively, and you may make it set up a numeric value according to invention according to claim 4. There is an advantage, when it is relative-value adjustment, it is suitable for each obtaining a desired color-balance by repeating adjustment, and in absolute value adjustment, to some extent, each color component can be referred to as suitable, when a numeric value is known.

[0019] Invention according to claim 5 is set to invention of said claim 1 thru/or claim 4 given in any 1 term. As said color-balance, R (red), G (Green), the 1st color coordinate system of B (blue) system,

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

TECHNICAL FIELD

[Field of the Invention] From a color picture signal, this invention generates a brightness component and relates to the image processing system which creates monotone image data by adjusting the color-balance of the generated brightness component.

[Translation done.]

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

PRIOR ART

[Description of the Prior Art] The coma image recorded on the negative film is read in photoelectricity by reading sensors, such as CCD, image processings, such as enlarging or contracting and various amendments, are performed to the digital image data obtained by this reading, and the technique which forms an image in a record ingredient by the laser beam modulated based on digital image data [finishing / an image processing] is known for recent years.

[0003] Thus, in the technique of reading a coma image in digital one by reading sensors, such as CCD, in order to realize accurate image reading, the coma image was read preparatorily (the so-called press can), the reading conditions (for example, the quantity of light, the charge storage time of CCD, etc. which irradiate a coma image) according to the concentration of a coma image etc. were determined, and the coma image was again read on the determined reading conditions (the so-called fine scan).

[0004] Here, the image data read fundamentally is color picture data, and it is common to also output an output as a color picture naturally.

[0005] However, the so-called monotone images, such as monochrome image and sepia, are liked intentionally, and although the customer who requests a print is also a fraction, there may be. [0006] For this reason, at JP,9-146721,A, when the color-balance adjustment value corresponding to some monotone images is prepared beforehand (storage) and there is a print request of this monotone, it corresponds because I have you choose from from while [this] memorizing. [0007] However, since color-balance adjustment suitable for a customer's idea cannot be performed in the above-mentioned official report, it is difficult to double with a customer's needs completely. [0008] In addition, in a provisional-publication-of-a-patent open No. 200551 [nine to] official report, although reference is made about color-balance adjustment, it is not aimed at the actuation of a monotone itself and details, such as the actuation gestalt, are not indicated at all only by the ability to predict that there may also be a monotone image as one condition.

[0009] It is the purpose to obtain the image processing system which can establish the color-balance adjustment function as a monotone image with the adjustable range where this invention can sufficiently respond to a customer's needs in consideration of the above-mentioned fact when an input is color picture data.
[0010]

[Translation done.]

http://www4.ipdl.inpit.go.jp/cgi-bin/tran_web_cgi_ejje

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

EFFECT OF THE INVENTION

[Effect of the Invention] The image processing system applied to this invention as explained above has the outstanding effectiveness that the color-balance adjustment function as a monotone image with the adjustable range which can sufficiently respond to a customer's needs is establishable, when an input is color picture data.

[Translation done.]

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.**** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

DESCRIPTION OF DRAWINGS

[Brief Description of the Drawings]

[Drawing 1] It is the outline block diagram of the digital language laboratory system concerning the gestalt of operation of this invention.

[Drawing 2] It is the external view of digital language laboratory system.

[Drawing 3] It is the control-block Fig. of the image-processing section concerning the gestalt of this operation.

[Drawing 4] It is the front view showing the condition of the monotone screen displayed on a monitor at the time of monotone mode.

[Drawing 5] A monotone screen is a front view.

[Drawing 6] It is the front view of a tint selection screen.

[Drawing 7] It is the front view of a proof print screen.

[Description of Notations]

10 Digital Language Laboratory System

14 Rhine CCD Scanner

16 Image-Processing Section

16M Monitor

66 Light Source Section

68 Photographic Film

152 Image Separation Section

156 Pre Exposure Image Memory

168 170 Image composition section

200 Data-Processing Section

202 Log Converter

204 Press Can Memory

206 Maine Scan Memory

208 Image-Data-Processing Section

212 Press Can Processing Section

214 Image-Data-Processing Section

218 Maine Scanning-and-Processing Section

300 Monotone Screen

308 Tint Selection Screen

370 Proof Print Screen

[Translation done.]

JPO and INPIT are not responsible for any damages caused by the use of this translation.

- 1. This document has been translated by computer. So the translation may not reflect the original precisely.
- 2.*** shows the word which can not be translated.
- 3.In the drawings, any words are not translated.

MEANS

[Means for Solving the Problem] Invention according to claim 1 is an image processing system which generates a brightness component and creates monotone image data by adjusting the colorbalance of the generated brightness component from a color picture signal. It becomes independent about said color-balance adjustment value. The color-balance modification means which can be changed for every color component, A display means to display said color-balance adjustment value, and the actuation means which carries out adjustment actuation of the display **** color-balance adjustment value with said display means, When a color-balance adjustment value is operated by said actuation means, it has the control means which controls said color-balance modification means and is adjusted to the color-balance adjustment value according to this actuation.

[0011] Since a color-balance adjustment value is displayed by the display means, an operator can do modification actuation of the color-balance for every color component with an actuation means, looking at these contents of a display. In a control means, a color-balance modification means is controlled, a color-balance is adjusted based on the contents operated with the actuation means, and a predetermined color-balance adjustment value is set up.

[0012] Thus, since it cannot choose from some patterns beforehand as a monotone image but can adjust easily for every color component, theoretically, the adjustable range becomes infinite and can increase the variation of a monotone image. Moreover, since a color-balance adjustment value is displayed by the display means, it can be operated recognizing to some extent what becomes, when it actually prints, and is good. [of workability]

[0013] invention according to claim 2 comes out of this level-gauge [in which said display means was formed for every color], and level-gauge top with the movable guide section in said invention according to claim 1, it is constituted, and said actuation means is characterized by being the external actuation device to which a level-gauge top is moved for said guide section.

[0014] According to invention according to claim 2, the level gauge by which the graduation was given to the display means to the straight line as what shows a color-balance adjustment value is displayed, and it has the composition that the guide section of a knob gestalt slides this level-gauge top. This guide section can be adjusted by dragging with an arrow key, a mouse pointer, etc. for example, on a keyboard, and making a level-gauge top slide.

[0015] Invention according to claim 3 is characterized by having further a storage means to memorize the adjustment value of the plurality containing black and white and sepia defined beforehand as said color-balance in said invention according to claim 1 or 2.

[0016] It is not necessary to adjust two or more color-balance adjustment values which contain typical black and white and sepia as a monotone image each time, and, according to invention according to claim 3, they become easy [operability] by memorizing for the storage means beforehand.

[0017] Invention according to claim 4 is characterized by the thing of absolute value [color-balance / said / on the basis of the relative difference or the predetermined color-balance adjustment value between each color] ** adjusted by either at least in invention of said claim 1 thru/or claim 3 given in any 1 term.

[0018] A color-balance may be set up with the plus value when setting the relative difference of for example, each color component, i.e., one certain color, to 0, and a minus value, and it makes the time of the absolute value on the basis of a predetermined color-balance adjustment value, i.e.,

monochrome mode, zero value of each color component, respectively, and you may make it set up a numeric value according to invention according to claim 4. There is an advantage, when it is relative-value adjustment, it is suitable for each obtaining a desired color-balance by repeating adjustment, and in absolute value adjustment, to some extent, each color component can be referred to as suitable, when a numeric value is known.

[0019] Invention according to claim 5 is set to invention of said claim 1 thru/or claim 4 given in any 1 term. As said color-balance, R (red), G (Green), the 1st color coordinate system of B (blue) system, It is characterized by having further a selection means to choose one from two or more color coordinate systems including three kinds of color coordinate systems of the 3rd color coordinate system of 2nd color-coordinate-system [of C (cyanogen), M (Magenta), and Y (yellow) system], V (lightness) and H (hue), and S (saturation) system.

[0020] When adjusting a color-balance according to invention according to claim 5, as a color coordinate system of color picture data A typical thing The 1st color coordinate system of RGB (in addition, concentration data may be included as D), There are the 2nd color coordinate system (in addition, black may be included as K) of CMY and the 3rd color coordinate system of VHS, and the environment which a customer (operator) tends to operate can be acquired by giving the optional feature which chooses one from these. In addition, the general color coordinate system of a CIEXYZ system as standard colorimetric system may be put into the selection range.

[0021] Invention according to claim 6 is set to invention of said claim 1 thru/or claim 5 given in any 1 term. For said display means By displaying at least one of the file names which the operator inputted into arbitration to the delimiter attached corresponding to the color by which each color was adjusted and generated, or said color, or the generated color, and specifying this color or delimiter It is characterized by access of read-out etc. being performed by the new registration and updating preservation list.

[0022] The color itself to which the color-balance was adjusted by the display means according to invention according to claim 6 Or by specifying the field where the delimiter which specifies this color, or the file name inputted by the operator was displayed, and this color itself was displayed with a mouse pointer etc., or keying a delimiter or a file name Access of new registration of the adjusted color-balance, updating preservation, read-out, etc. is possible, and a complicated activity which inputs the adjustment values for every color component one by one can be avoided.

[0023] A print directions means by which invention according to claim 7 outputs the image data to which the color-balance was adjusted for the image processing system of said claim 1 thru/or claim 6 given in any 1 term, When it has the print directions starting means operated when starting said print directions means and said print directions starting means is operated As contents of a display of said display means, while the class of said adjusted color-balance is displayed, it is characterized by displaying the selection screen which chooses the print field of a scene and this scene where this color-balance value was adjusted, respectively.

[0024] According to invention according to claim 7, when performing a print, by performing print directions with a print directions starting means, a print directions means starts and the image data to which the color-balance was adjusted is outputted.

[0025] The scene to which the class of adjusted color-balance and this color-balance value were adjusted with the display means at this time, The selection screen which chooses the print field of this scene, respectively is displayed. About a scene and a print field It is possible to set up at this time, and the image beforehand memorized as a standard image as a test print can be chosen, or a very important field (for example, only the main photographic subject) can be specified. [0026]

[Embodiment of the Invention] The outline configuration of the digital language laboratory system 10 concerning this operation gestalt is shown in <u>drawing 1</u> and <u>drawing 2</u>.

[0027] As shown in <u>drawing 1</u>, this digital language laboratory system 10 is constituted including the Rhine CCD scanner 14, the image-processing section 16, the laser beam printer section 18, and the processor section 20, the Rhine CCD scanner 14 and the image-processing section 16 are unified as the input section 26 shown in <u>drawing 2</u>, and the laser beam printer section 18 and the processor section 20 are unified as the output section 28 shown in <u>drawing 2</u>.

[0028] The Rhine CCD scanner 14 is for reading the coma image currently recorded on photographic

films, such as a negative film and a reversal film, for example, can set the coma image of the photographic film of the photographic film of 135 sizes, the photographic film of 110 sizes and the photographic film (the photographic film of 240 sizes: the so-called APS film) with which the transparent magnetic layer was formed, 120 sizes, and 220 sizes (brownie size) as the reading object. After the Rhine CCD scanner 14 reads the coma image for [above] reading in Rhine CCD 30 and it carries out A/D conversion in the A/D-conversion section 32, it outputs image data to the image-processing section 16.

[0029] In addition, the gestalt of this operation explains as digital language laboratory system 10 at the time of applying the photographic film (APS film) 68 of 240 sizes.

[0030] While the image data (scanning image data) outputted from the Rhine CCD scanner 14 is inputted, the image-processing section 16 The image data obtained by photography in digital camera 34 grade, the image data obtained by reading manuscripts (for example, reflection copy etc.) with a scanner 36 (flat bed mold), The image data which was generated by other computers and recorded on the floppy disk drive 38, the MO drive, or the CD drive 40, And it is constituted so that it may also be possible to input from the outside the communication link image data which receives through a modem 42 (for these to be hereafter named file image data generically).

[0031] The image-processing section 16 memorizes the inputted image data to an image memory 44, performs image processings, such as various kinds of amendments of the color gradation processing section (a monotone is included) 46, the hyper-tone processing section 48, and hyper-sharpness processing section 50 grade, and outputs them to the laser beam printer section 18 as image data for record. Moreover, the thing (for example, output to storages, such as FD, MO, and CD, or it transmits to other information management systems through a communication line) of the image-processing section 16 outputted to the exterior by making into an image file the image data which performed the image processing is also made possible.

[0032] The laser beam printer section 18 is equipped with the laser light source 52 of R, G, and B, controls a laser driver 54, irradiates the laser beam modulated according to the image data for record (it once memorizes in an image memory 56) inputted from the image-processing section 16 at printing paper, and records an image on printing paper 62 by scan exposure (optical system which mainly used the polygon mirror 58 and the fitheta lens 60 with the gestalt of this operation). Moreover, the processor section 20 performs each processing of the color development, bleaching fixing, rinsing, and desiccation to the printing paper 62 in which the image was recorded by scan exposure in the laser beam printer section 18. Thereby, an image is formed on printing paper. [0033] (Configuration of the Rhine CCD scanner) The configuration of the Rhine CCD scanner 14 is explained below. The outline configuration of the optical system of the Rhine CCD scanner 14 is shown in drawing 1. This optical system equips the photographic film 68 with the light source 66 which irradiates light, and the optical diffusion plate 72 which makes the diffused light light which irradiates a photographic film 68 is arranged at the irradiation appearance side of the light source 66. [0034] A photographic film 68 is conveyed by the tape carrier package 74 arranged at the side in which the optical diffusion plate 72 was arranged so that the screen of a coma image may become an optical axis and a perpendicular.

[0035] On both sides of the photographic film 68, the lens unit 76 to which image formation of the light which penetrated the coma image is carried out, and Rhine CCD 30 are arranged in order in accordance with the optical axis in the light source 66 and the opposite side. In addition, although only the lens single as a lens unit 76 is shown, the lens unit 76 is the zoom lens which consisted of two or more lenses in fact. In addition, the SELFOC lens may be used as a lens unit 76. In this case, it is desirable to make the both-ends side of the SELFOC lens approach a photographic film 68 and Rhine CCD 30 as much as possible, respectively.

[0036] The sensing section in which it has been arranged at the single tier along the cross direction of two or more photographic films 68 by which CCD cel conveyance is carried out, and the electronic shutter style was prepared vacates spacing, and is prepared three lines in parallel mutually, it is respectively attached in the optical incidence side of each sensing section any of the color separation filter of R, G, and B they are, and Rhine CCD 30 is constituted (the so-called three-line color CCD). Rhine CCD 30 is arranged so that the light-receiving side of each sensing section may be in agreement with the image formation point location of the lens unit 76.

[0037] Moreover, although illustration is omitted, the shutter is formed between Rhine CCD 30 and the lens unit 76.

(Configuration of the control system of the image-processing section 16) The detailed control-block Fig. for performing each processing of the image memory 44 which is the main configuration of the image-processing section 16 shown in <u>drawing 1</u>, the color gradation processing 46, the hyper-tone processing 48, and the hyper-sharpness processing 50 is shown in <u>drawing 3</u>.

[0038] Each digital signal of RGB outputted from the Rhine CCD scanner 14 is Log after predetermined data processing, such as amendment, defect pixel amendment, and a shading compensation, was performed in the data-processing section 200 at the time of dark. By the transducer 202, it is changed into digital image data (concentration data), press can data are memorized by the press can memory 204, and the Maine scan data are memorized by the Maine scan memory 206.

[0039] The press can data memorized by the press can memory 204 are sent out to the press can processing section 212 which consisted of the image-data-processing section 208 and the image data-conversion section 210. On the other hand, the Maine scan data memorized by the Maine scan memory 206 are sent out to the Maine scanning-and-processing section 218 which consisted of the image-data-processing section 214 and the image data-conversion section 216.

[0040] In the image-data-processing sections 208 and 216, color-balance adjustment, contrast adjustment (color gradation processing), brightness amendment, saturation amendment (hyper-tone processing), hyper-sharpness processing, etc. are performed by the approach of common knowledge, such as LUT and a matrix (MTX) operation.

[0041] Moreover, in the image-data-processing sections 208 and 216, the amount amendment of ambient light which amends the surrounding (background) quantity of light of an image is also performed.

[0042] It has changed into the image data for a display for displaying the image data processed by the image-data-processing section 208 on monitor 16M based on 3D-LUT in the image data-conversion section 210 by the side of a press can. On the other hand, in the image data-conversion section 216 by the side of the Maine scan, the image data processed by the image-data-processing section 214 is changed into the image data for a print in the laser beam printer section 18 based on 3D-LUT. In addition, the image data and the image data for a print for the above-mentioned display are aiming at coincidence by following various amendments, although color coordinate systems differ.

[0043] That is, the conditioning section 224 is connected to the press can processing section 212 and the Maine scanning-and-processing section 218.

[0044] The conditioning section 224 consists of the setup section 226, the key amendment section 228, and the parameter integrated section 230.

[0045] Using press can data, the setup section 226 sets up the reading conditions of the Maine scan, supplies them to the Rhine CCD scanner 14, and calculates the image-processing conditions of the play scanning-and-processing section 212 and the mace can processing section 218, and supplies them to the parameter integrated section 230.

[0046] According to various kinds of directions inputted with the key which adjusts the concentration set as keyboard 16K, a color, contrast, sharpness, saturation, etc., or the mouse, the key amendment section 228 calculates the amount of adjustments of image-processing conditions, and supplies it to the parameter integrated section 230.

[0047] In the parameter integrated section 230, delivery and image-processing conditions are amended or reset to the image-data-processing section 208,214 by the side of a press can and the Maine scan for the image-processing conditions received from the above-mentioned setup section 226 and the key amendment section 228. Based on this image-processing condition that it reset, it is shown a monitor table by the press can side, and outputs as image data for a print in a fine scan side. [0048] It is the contents of processing of the normal mode in this equipment, and the above performs proper amendment to the color picture data inputted in this case, and outputs color picture data as a result. On the other hand, with this equipment, it has the function which creates monotone image data based on the color picture data inputted by the request of a customer etc. (monotone mode). [0049] For every image coma, although it is switchable, a press can with the Rhine CCD scanner 14

and a fine scan are performed similarly, and, as for the normal mode and monotone mode, the subsequent contents of processing are changed by the mode. in addition, the demand of a monotone image -- usually -- the time of an extra copy -- it is -- few -- since it is specified by several sheets in many cases, the mode may not be judged for every image coma as a coincidence printing mode, but the mode processed continuously may be formed.

[0050] In the above-mentioned monotone mode, as shown in <u>drawing 4</u>, the monotone mode screen 300 is displayed on monitor 16M after a press can.

[0051] As shown in <u>drawing 5</u>, the image display field 302 where the image read by the press can or the image after subsequent color-balance adjustment is displayed at the upper left of the monotone screen 300 is formed, and processing while looking at the image displayed on this image display field is possible for an operator.

[0052] The right-hand side of the image display field 302 is adjoined, and the **** selection carbon button 304 is formed. If this tint selection carbon button 304 is operated, the tint selection screen 308 as shown in <u>drawing 6</u> will be displayed so that it may lap with this monotone screen 300 (if it is directed by the mouse pointer 306 shown with the chain line like <u>drawing 5</u> and a mouse button is clicked).

[0053] As shown in <u>drawing 6</u>, the tint of the image displayed on said image display field 302 is set to this tint selection screen 308 by forming the so-called color patch section 310, choosing a desired color patch out of this color patch section 310, and operating the O.K. carbon button 312.