

# **Culinary Compass**

Flavour Meets Wellness

**Capstone Project** 

Neuefische Data Practitioner Bootcamp 07 April 2025



#### Hidden Hunger – The Global Challenge



**Hidden Hunger**: A form of malnutrition where individuals have enough calories but lack essential vitamins and minerals. Despite food abundance, many diets lack essential micronutrients.

Affects over 2 billion people globally.

#### Leads to:

- Impaired cognitive development.
- Increased susceptibility to infections.
- Chronic diseases.



# **Our Solution: Culinary Compass - Flavor Meets Wellness**

#### **Empowering Individuals with Informed Choices**

Personalized food and recipe recommendations based on nutritional needs.

#### Goal

Build a **Nutrition-Based Food and Recipe Recommendation system** that:

- Recommends food items based on nutritional deficiencies.
- Recommends recipes based on the suggested food items using NLP.



#### **Dataset Overview**

| Dataset                         | Food                                | Recipe                              |
|---------------------------------|-------------------------------------|-------------------------------------|
| Source                          | <u>USDA Website</u>                 | Food.com<br><u>Kaggle</u>           |
| Size                            | 1166                                | 522K<br>(Trained 20K)               |
| Features                        | 36 Features<br>22 Features utilised | 28 Features<br>15 Features utilised |
| Focus Recommend Food Items Reco |                                     | Recommend Recipes                   |



## **Data Preprocessing**



| Dataset | Cleaning                                                                                                                                                              | Preprocessing                                                                                                                 |
|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Food    | <ul> <li>Processed and cleaned food item names</li> <li>Converted micro nutrients like iron, vitamin D, Vitamin C etc to same unit (milligrams).</li> </ul>           | <ul> <li>Scaling - MinMax Scaler</li> <li>Creating Categories and<br/>Subcategories</li> </ul>                                |
| Recipe  | <ul> <li>Removing rows that has null values for macronutrients</li> <li>Converted macronutrients like protein, fat, carbohydrate etc to same unit (grams).</li> </ul> | <ul> <li>Batch processing of data to generate embeddings</li> <li>Embedding were generated for Recipe ingredients.</li> </ul> |

### **Top 10 Nutrient Subcategory Associations**





#### **Distribution Of Macronutrients**





## **Recipe Ingredients Co-occurrence**





### **System Architecture**









#### **Specifications**

Front End: Streamlit Back End: Fast API

**Model**: K Nearest Neighbor (KNN)

: Sentence Transformer

(paraphrase-MiniLM-L6-v2)

**App** : <u>Culinary Compass</u>

#### **Food Recommendation Using KNN**





User Input: Iron,Calcium, Niacin



Recommends **top N food** items that best match the deficiency. **Sorghum, Fireweed, Tofu ...** 



Create Binary Vector for Deficiencies Example:

[Iron: 1.0, Calcium: 1.0, Niacin:1.0, Zinc: 0.0, Sodium:0.0 ...]



Apply **KNN**Calculate **Euclidean distance** between
deficiency and nutrient
values.

#### KNN - Based Food Recommendation for Calcium, Iron, Niacin





### **Recipe Recommendation - NLP (Sentence Transformer)**





**Recipe Vectorization** 

#### **Ingredient - Nutrient Similarity With Cosine Distance**





#### Ingredient Similarity vs Nutrient Similarity vs Final Similarity Score





#### **Tried and Tested**

| Food recommendation      | Recipe Recommendation                                            |
|--------------------------|------------------------------------------------------------------|
| KNN , Euclidean distance | Sentence Transformer<br>all-MiniLM-L6-v2,<br>Euclidean distance  |
| KNN, Cosine similarity   | Sentence Transformer<br>all-mpnet-base-v2,<br>Euclidean distance |
| DBScan                   | Sentence Transformer paraphrase-MiniLM-L6-v2, Cosine similarity  |



#### **Future Improvements**

- Optimize Embedding Generation for Large-Scale Datasets
- Enhance Model Performance with OptimizedAlgorithms and Reduce Response Time
- 3. Integrate Collaborative Filtering to personalize recommendations based on user preferences





# Any Questions?

## Thanks!

