Proposition: For all $r, n \in \mathbb{N}$ where $r \leq n$, it follows that $S_n : \sum_{i=0}^n {i \choose r} = {n+1 \choose r+1}$.

Proof. (Induction).

Basis step. Suppose n=1, then r=1. Observe that $\sum_{i=0}^{1} {i \choose r} = {0 \choose 1} + {1 \choose 1} = 0 + 1 = {1+1 \choose 1+1}$. Thus S_1 . Inductive step. Suppose S_k for $r, k \in \mathbb{N}$ and $r \leq k$.

We now show S_k implies S_{k+1} . Observe that

$$\sum_{i=0}^{k+1} \binom{i}{r} = \left[\sum_{i=0}^{k} \binom{i}{r}\right] + \binom{k+1}{r} \tag{1}$$

$$= \binom{k+1}{r+1} + \binom{k+1}{r} \tag{2}$$

$$= \binom{(k+1)+1}{r+1}$$
 (Def. of Pascal's triangle). (3)

Thus S_{k+1} .

It follows by mathematical induction that S_n for all $r, n \in \mathbb{N}$ where $r \leq n$.