Sequence Labeling with Hidden Markov Models

Kevin Duh

Intro to NLP, Fall 2019

Sequence Labeling/Tagging Problem

- Input: a sequence of T words (e.g. a sentence)
- Output: a sequence of T labels/tags, one for each word

- In contrast, text classification:
 - Input: a sequence of **T** words
 - Output: 1 label

A naive implementation

- Treat each **T** word as independent
- Apply a classifier to each input word independently

- But this ignores sequence structure
 - e.g. maybe some labels are more likely to follow others

Part-of-Speech Tagging

- Input: The grand jury commented on a number of topics
- Ouput: DT JJ NN VBD IN DT NN IN NNS

Named Entity Recognition

- Task: Find text spans that refer to a proper name and label its type, e.g.
 - [George Washington PERSON] was the first president.
 - [Washington ORGANIZATION] won the World Series
- Input: George Washington was the first president
- Output: B-PER I-PER O O O

 It's 2799. You're a climatologist studying the history of global warming. You have Jason Eisner's diary from 2007, which lists how many ice creams he ate every day.

- It's 2799. You're a climatologist studying the history of global warming. You have Jason Eisner's diary from 2007, which lists how many ice creams he ate every day.
 - Assume there are two kinds of days: Cold (C) and Hot (H)

- It's 2799. You're a climatologist studying the history of global warming. You have Jason Eisner's diary from 2007, which lists how many ice creams he ate every day.
 - Assume there are two kinds of days: Cold (C) and Hot (H)
- Task: given a sequence of diary observations O, figure out the correct <u>hidden sequence Q of weather states</u>.

- It's 2799. You're a climatologist studying the history of global warming. You have Jason Eisner's diary from 2007, which lists how many ice creams he ate every day.
 - Assume there are two kinds of days: Cold (C) and Hot (H)
- Task: given a sequence of diary observations O, figure out the correct <u>hidden sequence Q of weather states</u>.
 - e.g. Jason ate 3 icecreams on Day 1, 1 icecream on Day 2, and 3 icecreams on Day 3. What's the weather on those three days?

This lecture

- We'll discuss in-depth Hidden Markov Models (HMM)
 - Later in the course, we will also cover Conditional Random Fields (CRF), etc.
- HMM is a very useful pedagogical tool to illustrate:
 - How to probabilistically model the sequence labeling problem
 - How to efficiently compute with Dynamic Programming
 - How a model's parameters can be learned by either supervised and unsupervised learning (for the latter, we'll focus on Expectation-Maximization)

Outline

- Motivation/Examples
- HMM: Basic Definition & Three Problems
- Problem 1: Likelihood
- Problem 2: Decoding
- Problem 3: Learning
 - Supervised
 - Unsupervised: EM

Markov Chains

- A Markov Chain is specified by:
 - $Q = q_1q_2...q_N$: a set of N states
 - $A = a_{11}a_{12}...a_{ij}...a_{NN}$: a transition probability matrix
 - $\pi = \pi_1 \pi_2 ... \pi_N$: initial probability distribution
- Markov Assumption: $P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$

- A Hidden Markov Model (HMM) is specified by:
 - $Q = q_1q_2...q_N$: a set of N states
 - $A = a_{11}a_{12}...a_{ij}...a_{NN}$: a transition probability matrix
 - $\pi = \pi_1 \pi_2 ... \pi_N$: initial probability distribution
 - $B = b_i(o_t)$: emission probabilities
 - $O = o_1o_2...o_T$: a sequence of T observations
- Markov Assumption: $P(q_i|q_1...q_{i-1}) = P(q_i|q_{i-1})$
- Output Independence: P(o_i|q₁...q_T,o₁...o_T)=P(o_i|q_i)

Three Problems for HMM

	Problem 1:	Problem 2:	Problem 3:
	Likelihood	Decoding	Learning
Given	HMM parameters λ = (A,B)	HMM parameters λ = (A,B)	Supervised: O and Q
	Observation O	Observation O	Unsupervised: O
Goal	Likelihood P(O λ)	Most likely hidden sequence Q	HMM parameters λ = (A,B) that maximize likelihood
Method	Forward Algorithm	Viterbi Algorithm	Supervised: Count Unsupervised: Forward- Backward Algorithm

HMM has two states: Cold (C) and Hot (H)

- HMM has two states: Cold (C) and Hot (H)
- We have a sequence of integer observations, e.g.

- HMM has two states: Cold (C) and Hot (H)
- We have a sequence of integer observations, e.g.
 - **3 1 3** (3 icecream on day 1, 1 icecream on day 2,...)

- HMM has two states: Cold (C) and Hot (H)
- We have a sequence of integer observations, e.g.
 - **3 1 3** (3 icecream on day 1, 1 icecream on day 2,...)
- Likelihood: What's the probability of 3 1 3 occurring under our HMM model?

- HMM has two states: Cold (C) and Hot (H)
- We have a sequence of integer observations, e.g.
 - **3 1 3** (3 icecream on day 1, 1 icecream on day 2,...)
- Likelihood: What's the probability of 3 1 3 occurring under our HMM model?
- Decoding: What's the most likely weather sequence for 3 1 3? Hot Cold Hot?

- HMM has two states: Cold (C) and Hot (H)
- We have a sequence of integer observations, e.g.
 - **3 1 3** (3 icecream on day 1, 1 icecream on day 2,...)
- Likelihood: What's the probability of 3 1 3 occurring under our HMM model?
- Decoding: What's the most likely weather sequence for 3 1 3? Hot Cold Hot?
- Learning: How to estimate the HMM parameters?

- HMM has two states: Cold (C) and Hot (H)
- We have a sequence of integer observations, e.g.
 - 3 1 3 (3 icecream on day 1, 1 icecream on day 2,...)
- Likelihood: What's the probability of 3 1 3 occurring under our HMM model?
- Decoding: What's the most likely weather sequence for 3 1 3? Hot Cold Hot?
- Learning: How to estimate the HMM parameters?
 - Supervised: given 3 1 3 and H C H

- HMM has two states: Cold (C) and Hot (H)
- We have a sequence of integer observations, e.g.
 - 3 1 3 (3 icecream on day 1, 1 icecream on day 2,...)
- Likelihood: What's the probability of 3 1 3 occurring under our HMM model?
- Decoding: What's the most likely weather sequence for 3 1 3? Hot Cold Hot?
- Learning: How to estimate the HMM parameters?
 - Supervised: given 3 1 3 and H C H
 - Unsupervised: given 3 1 3 only

Outline

- Motivation/Examples
- HMM: Basic Definition & Three Problems
- Problem 1: Likelihood
- Problem 2: Decoding
- Problem 3: Learning
 - Supervised
 - Unsupervised: EM

Likelihood: $P(O|\lambda = (A,B))$

Joint probability is easy:

$$P(O,Q) = P(O|Q)P(Q) = \prod_{t=1}^T P(o_t|q_t) \times \prod_{t=1}^T P(q_t|q_{t-1})$$
 Note: λ = (A,B) is implicit; dropped for

notational simplicity

• For example: Q = H H C, O = 3 1 3

Then P(O,Q) = P(3|H)P(1|H)P(3|C) x P(H|start)P(H|H)P(C|H)
= b₂(3) b₂(1) b₁(3) x
$$\pi_2$$
 a₂₂ a₂₁

Likelihood: $P(O|\lambda = (A,B))$

Joint probability is easy:

$$P(O,Q) = P(O|Q)P(Q) = \prod_{t=1}^T P(o_t|q_t) \times \prod_{t=1}^T P(q_t|q_{t-1})$$
 Note: λ = (A,B) is

implicit; dropped for

notational simplicity

• Since we don't know Q, sum over it

$$P(O) = \sum_{allQ} P(O, Q)$$

e.g.
$$P(O=313) = P(O=313,Q=HHH)+P(O=313,Q=CCC)+...$$

For N states and T-length sequence, there are N^T hidden sequences!

Efficient enumeration by Dynamic Programming: Forward Algorithm

- Prepare a trellis data structure
- Each cell represents probability of being in state j after seeing the first t observations:

$$\alpha_t(j) = P(o_1, o_2, \dots, o_t, q_t = j | \lambda)$$

• DP subproblem recursion:

$$\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i) a_{ij} b_j(o_t)$$

$$\alpha_t(j) = P(o_1, o_2, \dots, o_t, q_t = j | \lambda)$$

Figure A.5 The forward trellis for computing the total observation likelihood for the ice-cream events 3 1 3. Hidden states are in circles, observations in squares. The figure shows the computation of $\alpha_t(j)$ for two states at two time steps. The computation in each cell follows Eq. A.12: $\alpha_t(j) = \sum_{i=1}^{N} \alpha_{t-1}(i)a_{ij}b_j(o_t)$. The resulting probability expressed in each cell is Eq. A.11: $\alpha_t(j) = P(o_1, o_2 \dots o_t, q_t = j | \lambda)$.

Jurafsky & Martin (2019) Speech & Language Processing, 3rd ed. https://web.stanford.edu/~jurafsky/slp3/A.pdf

function FORWARD(observations of len T, state-graph of len N) returns forward-prob

create a probability matrix *forward[N,T]*

for each state s from 1 to N do ; initialization step

 $forward[s,1] \leftarrow \pi_s * b_s(o_1)$

for each time step t from 2 to T do ; recursion step

for each state s from 1 to N do

$$forward[s,t] \leftarrow \sum_{s'=1}^{N} forward[s',t-1] * a_{s',s} * b_{s}(o_{t})$$

 $forwardprob \leftarrow \sum_{s=1}^{N} forward[s,T]$; termination step

return forwardprob

Figure A.7 The forward algorithm, where *forward*[s,t] represents $\alpha_t(s)$.

Jurafsky & Martin (2019) Speech & Language Processing, 3rd ed. https://web.stanford.edu/~jurafsky/slp3/A.pdf

Outline

- Motivation/Examples
- HMM: Basic Definition & Three Problems
- Problem 1: Likelihood
- Problem 2: Decoding
- Problem 3: Learning
 - Supervised
 - Unsupervised: EM

Decoding (Viterbi Algorithm): very similar to Likelihood Computation (Forward Algo.)

• <u>Likelihood</u>: Each cell in trellis represents probability of being in state j after seeing the first t observations:

$$\alpha_t(j) = P(o_1, o_2, \dots, o_t, q_t = j | \lambda)$$

 <u>Decoding</u>: Each cell in trellis represents probability of being in state j after seeing the first t observations and passing through the most probable state sequence q₁..q_{t-1}

$$v_t(j) = \max_{q_1, \dots, q_{t-1}} P(o_1, o_2, \dots, o_t, q_1, \dots, q_{t-1}, q_t = j, |\lambda)$$

• DP subproblem recursion: $v_t(j) = \max_{i=1,...,N} v_{t-1}(i) a_{ij} b_j(o_t)$

Forward Algo: Computes likelihood of observation

Viterbi Algo: Decode most probable states given observation

Note: we're just changing sum to max. In later lectures we'll discuss general structures & semirings

Note: even though the HMM equation with $P(q_t|q_{t-1})$ seems unidirectional, it actually models the whole sequence and both future/past observations matter

If o₃=1 it's possible there may be a different best path at t=2

```
function VITERBI(observations of len T, state-graph of len N) returns best-path, path-prob
create a path probability matrix viterbi[N,T]
for each state s from 1 to N do
                                                         ; initialization step
     viterbi[s,1] \leftarrow \pi_s * b_s(o_1)
     backpointer[s,1] \leftarrow 0
for each time step t from 2 to T do
                                                         ; recursion step
  for each state s from 1 to N do
     viterbi[s,t] \leftarrow \max_{s'=1}^{N} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
     backpointer[s,t] \leftarrow \underset{\sim}{\operatorname{argmax}} viterbi[s',t-1] * a_{s',s} * b_s(o_t)
bestpathprob \leftarrow \max_{s}^{N} viterbi[s, T]; termination step
bestpathpointer \leftarrow arg^N_{max} \ \ viterbi[s,T] ; termination step
bestpath \leftarrow the path starting at state bestpathpointer, that follows backpointer[] to states back in time
return bestpath, bestpathprob
```

Outline

- Motivation/Examples
- HMM: Basic Definition & Three Problems
- Problem 1: Likelihood
- Problem 2: Decoding
- Problem 3: Learning
 - Supervised
 - Unsupervised: EM

Suppose we're given a dataset with both O and Q.

```
3 3 2 1 1 2 1 2 3 hot hot cold cold cold cold cold hot hot
```

It's easy to estimate HMM paramaters by counting:

```
e.g.
P(hot) = Cnt(hot)/3
P(3|hot)=Cnt(3,hot)/Cnt(hot)
```

Suppose we're given a dataset with both O and Q.

```
3 3 2 1 1 2 1 2 3 hot hot cold cold cold cold cold hot hot
```

It's easy to estimate HMM paramaters by counting:

```
e.g.
P(hot) = Cnt(hot)/3
P(3|hot)=Cnt(3,hot)/Cnt(hot)
```

Initial Probability:

$$\pi_h = 1/3$$
 $\pi_c = 2/3$

Suppose we're given a dataset with both O and Q.

It's easy to estimate HMM paramaters by counting:

e.g. P(hot) = Cnt(hot)/3P(3|hot)=Cnt(3,hot)/Cnt(hot)

Emission Probability (B):

$$P(1|hot) = 0/4 = 0$$
 $p(1|cold) = 3/5 = .6$
 $P(2|hot) = 1/4 = .25$ $p(2|cold = 2/5 = .4$
 $P(3|hot) = 3/4 = .75$ $p(3|cold) = 0$

Initial Probability:

$$\pi_h = 1/3$$
 $\pi_c = 2/3$

Suppose we're given a dataset with both O and Q.

cold hot hot

It's easy to estimate HMM paramaters by counting:

e.g. P(hot) = Cnt(hot)/3 P(3|hot)=Cnt(3,hot)/Cnt(hot)

Initial Probability:

$$\pi_h = 1/3$$
 $\pi_c = 2/3$

Emission Probability (B):

$$P(1|hot) = 0/4 = 0$$
 $p(1|cold) = 3/5 = .6$
 $P(2|hot) = 1/4 = .25$ $p(2|cold = 2/5 = .4$
 $P(3|hot) = 3/4 = .75$ $p(3|cold) = 0$

Transition Probability (A):

$$p(hot|hot) = 2/3$$
 $p(cold|hot) = 1/3$
 $p(cold|cold) = 2/3$ $p(hot|cold) = 1/3$

We're only given observations O.

3 3 2 1 1 2 1 2 3

We're only given observations O.

3 3 2 1 1 2 1 2 3

 How to estimate HMM parameters? Don't know hidden states associated with observation, can't get counts.

We're only given observations O.

3 3 2 1 1 2 1 2 3

- How to estimate HMM parameters? Don't know hidden states associated with observation, can't get counts.
- The Baum-Welch / Forward-Backward Algorithm does this by iteratively estimating the counts, and using this to re-derive initial/transition/emission probabilities.

We're only given observations O.

3 3 2 1 1 2 1 2 3

- How to estimate HMM parameters? Don't know hidden states associated with observation, can't get counts.
- The Baum-Welch / Forward-Backward Algorithm does this by iteratively estimating the counts, and using this to re-derive initial/transition/emission probabilities.
- This is an instance of Expecation-Maximization (EM) Algo.

Forward Probability

$$\alpha_t(j) = P(o_1, o_2, \dots, o_t, q_t = j | \lambda)$$

Backward Probability

$$\beta_t(i) = P(o_{t+1}, o_{t+2}, \dots, o_T | q_t = i, \lambda)$$

Recursion for Backward Probability

$$\beta_t(i) = \sum_{j=1}^{N} a_{ij} b_j(o_{t+1}) \beta_{t+1}(j) \qquad P(O|\lambda) = \sum_{j=1}^{N} \pi_j b_j(o_1) \beta_1(j)$$

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j | O, \lambda)$$

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j | O, \lambda)$$

not-quite-
$$\xi_t(i, j) = P(q_t = i, q_{t+1} = j, O | \lambda)$$

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j | O, \lambda)$$

not-quite-
$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j, O|\lambda) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j | O, \lambda)$$

not-quite-
$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j, O|\lambda) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

Figure A.12 Computation of the joint probability of being in state i at time t and state j at time t+1. The figure shows the various probabilities that need to be combined to produce $P(q_t = i, q_{t+1} = j, O | \lambda)$: the α and β probabilities, the transition probability a_{ij} and the observation probability $b_j(o_{t+1})$. After Rabiner (1989) which is ©1989 IEEE.

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j | O, \lambda) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\sum_{i=1}^N \alpha_t(j) \beta_t(j)}$$

not-quite-
$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j, O|\lambda) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

Figure A.12 Computation of the joint probability of being in state i at time t and state j at time t+1. The figure shows the various probabilities that need to be combined to produce $P(q_t = i, q_{t+1} = j, O | \lambda)$: the α and β probabilities, the transition probability a_{ij} and the observation probability $b_j(o_{t+1})$. After Rabiner (1989) which is ©1989 IEEE.

$$P(O|\lambda) = \sum_{j=1}^{N} \alpha_t(j) \beta_t(j)$$

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j | O, \lambda) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\sum_{j=1}^N \alpha_t(j) \beta_t(j)}$$

not-quite-
$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j, O|\lambda) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

Figure A.12 Computation of the joint probability of being in state i at time t and state j at time t+1. The figure shows the various probabilities that need to be combined to produce $P(q_t = i, q_{t+1} = j, O | \lambda)$: the α and β probabilities, the transition probability a_{ij} and the observation probability $b_j(o_{t+1})$. After Rabiner (1989) which is ©1989 IEEE.

$$P(O|\lambda) = \sum_{j=1}^N lpha_t(j)eta_t(j)$$

$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j | O, \lambda) = \frac{\alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)}{\sum_{j=1}^N \alpha_t(j) \beta_t(j)}$$

not-quite-
$$\xi_t(i,j) = P(q_t = i, q_{t+1} = j, O|\lambda) = \alpha_t(i) a_{ij} b_j(o_{t+1}) \beta_{t+1}(j)$$

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

Figure A.12 Computation of the joint probability of being in state i at time t and state j at time t+1. The figure shows the various probabilities that need to be combined to produce $P(q_t = i, q_{t+1} = j, O | \lambda)$: the α and β probabilities, the transition probability a_{ij} and the observation probability $b_j(o_{t+1})$. After Rabiner (1989) which is ©1989 IEEE.

$$\gamma_t(j) = P(q_t = j | O, \lambda)$$

$$\gamma_t(j) = P(q_t = j|O,\lambda) = \frac{P(q_t = j,O|\lambda)}{P(O|\lambda)}$$

$$\gamma_t(j) = P(q_t = j | O, \lambda) = \frac{P(q_t = j, O | \lambda)}{P(O | \lambda)} = \frac{\alpha_t(j)\beta_t(j)}{P(O | \lambda)}$$

$$\gamma_t(j) = P(q_t = j | O, \lambda) = \frac{P(q_t = j, O | \lambda)}{P(O | \lambda)} = \frac{\alpha_t(j)\beta_t(j)}{P(O | \lambda)}$$

Figure A.13 The computation of $\gamma_t(j)$, the probability of being in state j at time t. Note that γ is really a degenerate case of ξ and hence this figure is like a version of Fig. A.12 with state i collapsed with state j. After Rabiner (1989) which is © 1989 IEEE.

$$\gamma_t(j) = P(q_t = j | O, \lambda) = \frac{P(q_t = j, O | \lambda)}{P(O | \lambda)} = \frac{\alpha_t(j)\beta_t(j)}{P(O | \lambda)}$$

$$\hat{b}_{j}(v_{k}) = \frac{\sum_{t=1}^{T} s.t.O_{t} = v_{k}}{\sum_{t=1}^{T} \gamma_{t}(j)}$$

Figure A.13 The computation of $\gamma_t(j)$, the probability of being in state j at time t. Note that γ is really a degenerate case of ξ and hence this figure is like a version of Fig. A.12 with state i collapsed with state j. After Rabiner (1989) which is © 1989 IEEE.

function FORWARD-BACKWARD(observations of len T, output vocabulary V, hidden state set Q) **returns** HMM=(A,B)

initialize A and B iterate until convergence

E-step

$$\gamma_{t}(j) = \frac{\alpha_{t}(j)\beta_{t}(j)}{\alpha_{T}(q_{F})} \,\forall \, t \text{ and } j$$

$$\xi_{t}(i,j) = \frac{\alpha_{t}(i)a_{ij}b_{j}(o_{t+1})\beta_{t+1}(j)}{\alpha_{T}(q_{F})} \,\forall \, t, \, i, \, \text{and } j$$

M-step

$$\hat{a}_{ij} = \frac{\sum_{t=1}^{t=1} \xi_t(i,j)}{\sum_{t=1}^{T-1} \sum_{k=1}^{N} \xi_t(i,k)}$$

$$\hat{b}_j(v_k) = \frac{\sum_{t=1}^{T} \chi_t(j)}{\sum_{t=1}^{T} \chi_t(j)}$$

return A, B

- Data likelihood is non-decreasing at each iteration
- In practice, initialization may be important

Figure A.14 The forward-backward algorithm.

Expectation-Maximization (EM) Algorithm

- Why does the algorithm on the previous slide work?
 Baum-Welch/Forward-Backward in an instance of EM
- EM is a general method for finding maximum-likelihood estimate of parameters when the data has missing values
- In HMM unsupervised learning, we want to find λ that
 maximize likelihood P(O,Q|λ) but we only observe O not Q

• We want λ that maximize log P(O,Q| λ) but we're missing Q

- We want λ that maximize log P(O,Q| λ) but we're missing Q
- Define <u>complete-data log-likelihood</u>:

- We want λ that maximize log P(O,Q| λ) but we're missing Q
- Define <u>complete-data log-likelihood</u>:
 - $L(\lambda, \lambda^{t-1}) = E[\log p(O, Q|\lambda)|O, \lambda^{t-1}]$

- We want λ that maximize log P(O,Q| λ) but we're missing Q
- Define complete-data log-likelihood:
 - $L(\lambda, \lambda^{t-1}) = E[\log p(O, Q|\lambda)|O, \lambda^{t-1}]$
 - λ^{t-1} are current parameter estimate to compute expectation. λ are new parameters we wish to optimize

- We want λ that maximize log P(O,Q| λ) but we're missing Q
- Define complete-data log-likelihood:
 - $L(\lambda, \lambda^{t-1}) = E[\log p(O, Q|\lambda)|O, \lambda^{t-1}]$
 - λ^{t-1} are current parameter estimate to compute expectation. λ are new parameters we wish to optimize
 - Note O and λ^{t-1} are constants. λ is a variable we wish to adjust, and Q is a random variable governed by distribution p(Q|O, λ^{t-1}).

- We want λ that maximize log P(O,Q| λ) but we're missing Q
- Define complete-data log-likelihood:
 - $L(\lambda, \lambda^{t-1}) = E[\log p(O, Q|\lambda)|O, \lambda^{t-1}]$
 - λ^{t-1} are current parameter estimate to compute expectation. λ are new parameters we wish to optimize
 - Note O and λ^{t-1} are constants. λ is a variable we wish to adjust, and Q is a random variable governed by distribution p(Q|O, λ^{t-1}).
 - So $L(\lambda, \lambda^{t-1})$ is a deterministic function of λ . We can optimize it.

- We want λ that maximize log P(O,Q| λ) but we're missing Q
- Define complete-data log-likelihood:
 - $L(\lambda, \lambda^{t-1}) = E[\log p(O, Q|\lambda)|O, \lambda^{t-1}]$
 - λ^{t-1} are current parameter estimate to compute expectation. λ are new parameters we wish to optimize
 - Note O and λ^{t-1} are constants. λ is a variable we wish to adjust, and Q is a random variable governed by distribution p(Q|O, λ^{t-1}).
 - So $L(\lambda, \lambda^{t-1})$ is a deterministic function of λ . We can optimize it.
- E-step corresponds to computing this expectation

- We want λ that maximize log P(O,Q| λ) but we're missing Q
- Define complete-data log-likelihood:
 - $L(\lambda, \lambda^{t-1}) = E[\log p(O, Q|\lambda)|O, \lambda^{t-1}]$
 - λ^{t-1} are current parameter estimate to compute expectation. λ are new parameters we wish to optimize
 - Note O and λ^{t-1} are constants. λ is a variable we wish to adjust, and Q is a random variable governed by distribution p(Q|O, λ^{t-1}).
 - So $L(\lambda, \lambda^{t-1})$ is a deterministic function of λ . We can optimize it.
- E-step corresponds to computing this expectation

- We want λ that maximize log P(O,Q| λ) but we're missing Q
- Define complete-data log-likelihood:
 - $L(\lambda, \lambda^{t-1}) = E[\log p(O, Q|\lambda)|O, \lambda^{t-1}]$
 - λ^{t-1} are current parameter estimate to compute expectation. λ are new parameters we wish to optimize
 - Note O and λ^{t-1} are constants. λ is a variable we wish to adjust, and Q is a random variable governed by distribution p(Q|O, λ^{t-1}).
 - So $L(\lambda, \lambda^{t-1})$ is a deterministic function of λ . We can optimize it.
- E-step corresponds to computing this expectation

• M-step corresponds to maximizing this expectation: argmax_{λ} L(λ , λ ^{t-1})

- We want λ that maximize log P(O,Q| λ) but we're missing Q
- Define <u>complete-data log-likelihood</u>:
 - $L(\lambda, \lambda^{t-1}) = E[\log p(O, Q|\lambda)|O, \lambda^{t-1}]$
 - λ^{t-1} are current parameter estimate to compute expectation. λ are new parameters we wish to optimize
 - Note O and λ^{t-1} are constants. λ is a variable we wish to adjust, and Q is a random variable governed by distribution p(Q|O, λ^{t-1}).
 - So $L(\lambda, \lambda^{t-1})$ is a deterministic function of λ . We can optimize it.
- E-step corresponds to computing this expectation

- M-step corresponds to maximizing this expectation: argmax_{λ} L(λ , λ ^{t-1})
- Each iter won't degrade log-likelihood; we're guaranteed local optimum

- We want λ that maximize log P(O,Q| λ) but we're missing Q
- Define <u>complete-data log-likelihood</u>:
 - $L(\lambda, \lambda^{t-1}) = E[\log p(O, Q|\lambda)|O, \lambda^{t-1}]$
 - λ^{t-1} are current parameter estimate to compute expectation. λ are new parameters we wish to optimize
 - Note O and λ^{t-1} are constants. λ is a variable we wish to adjust, and Q is a random variable governed by distribution p(Q|O, λ^{t-1}).
 - So $L(\lambda, \lambda^{t-1})$ is a deterministic function of λ . We can optimize it.
- E-step corresponds to computing this expectation

$$\gamma_t(j) = P(q_t = j | O, \lambda) \quad \xi_t(i, j) = P(q_t = i, q_{t+1} = j | O, \lambda)$$

- M-step corresponds to maximizing this expectation: argmax_{λ} L(λ , λ ^{t-1})
- Each iter won't degrade log-likelihood; we're guaranteed local optimum

Summary

- Motivation/Examples
- HMM: Basic Definition & Three Problems
- Problem 1: Likelihood
- Problem 2: Decoding
- Problem 3: Learning
 - Supervised
 - Unsupervised: EM