The PageRank citation ranking: Bringing order to the web.

Stanford InfoLab Technical Report (1999)

L Page, S Brin, R Motwani, T Winograd

CAU Junseo, Yu

DMAIS Lab Seminar 07.17.2025

Content

- □ Introduction
 - Why Rank the Web?
 - What Makes a Page Important?
- ☐ Intuition of PageRank
 - Recursive Importance
 - A Random Surfer Model
 - Rank Sink
 - Graph Mining Tools
- □ PageRank Formulation
 - Naïve Version
 - Modified Version
 - Personalized PageRank Version
 - Modern Version
- □ Applications
 - Search Engine
 - Other Domains
- ☐ Discussion & Implications

Why Do We Rank the Web?

- Web pages proliferate without quality control or publishing costs
 - Large Volume
 - Heterogeneity

Why Do We Rank the Web? (cont.)

■ Need Of Ranking

- The Web Is Full Of Countless Pages, Many Of Which Are Irrelevant Or Unhelpful
- Users Seek Relevant and Important Ones
 - <u>CAU Course Registration Page</u> vs <u>Personal Diary About Course Registration</u>
 - → Need For Ranking To Bring Order To The Chaos

What Makes a Page Important?

- Citation Analysis in Academia
- Web Hyperlink Structure
- Hubs and Authorities
- Backlink Count in Early Search Engines

- Citation Analysis in Academia
 - Citation as Importance Proxy
 - Analogy: Hyperlinks

 Citations
 - Epidemic Model of Information Flow
 - Intuition: immaterial things can spread via network
 - However, Unlike academic papers,
 web content is produced without rigorous verification
- Web Hyperlink Structure
- Hubs and Authorities
- Backlink Count in Early Search Engines

- Citation Analysis in Academia
- Web Hyperlink Structure
 - Many researchers attempted to analyze the web using its link structure
 - But these efforts did not lead to a quantitative measure of importance.
- Hubs and Authorities
- Backlink Count in Early Search Engines

- Citation Analysis in Academia
- Web Hyperlink Structure
- Hubs and Authorities
 - Kleinberg (1998) tried to divides the web into hubs and authorities via the HITS algorithm
 - Good **hubs** link to many authoritative pages, and **authoritative** pages are linked by many good hubs
 - Introduce eigenvector-based importance scoring
 - However, it was query-dependent and vulnerable to spam
- Backlink Count in Early Search Engines

- Citation Analysis in Academia
- Web Hyperlink Structure
- Hubs and Authorities
- Backlink Count in Early Search Engines
 - Many search engines have measured page quality based on the number of backlinks
 - Easily manipulated (e.g., spam, self-links)
 - No notion of link source credibility

- □ Requirements & Solutions
 - Query Independent Importance
 - Assign the absolute importance to the web pages
 - Measure the importance of web pages **objectively**, even **without** any human **intention**
 - Robust Against Manipulation
 - Need to reduce the impact of easily manipulated and meaningless backlinks
 - The influence of A backlink should depend on its quality
- ☐ The Link Structure of the web
 - There are objective information; Link structure
 - Of course, other types of information could be considered, but we will focus on the link structure
 - However, simply reflecting the link structure could not capture the importance effectively

Intuition of PageRank: Recursive Importance

- □ A Page Is Important, If It Is Connected With Important Pages By Backlinks
 - Not all imponrtance of backlinks are equal links from high-ranked pages matter more
 - Importance flows recursively through the web graph
 - As this process repeats, importance circulates through the graph
 - Over time, this flow converges to a stable and consistent distribution

Intuition of PageRank:

- Intuitive and helpful metaphor of PageRank
- ☐ The random surfer moves along the structure of the web pages
- ☐ The final PageRank value represents the probability
 that the surfer ends up at a specific node after infinitely many steps
- ☐ This simulates how users navigate by following links

Problems: Rank Sink

□ Problems

- Consider the situation
 - Spider Trap: Page cycles pointed by some other pages but no other outgoing link
 - Dangling Node (Dead end): A page pointed by some other pages but no other outgoing link
- This loop will accumulate rank but never distribute any rank outside
 - → Rank Sink
 - It is called a sink because the rank would sink into those points.
 - Once entered, the poor random surfer can not escape this sink

☐ Solutions

- Make the rank would be distributed
- Make the random suffer can exit
- To keep the door slightly open

PageRank as Graph Mining Tools

☐ Let A be a square matrix with the rows and column corresponding to web pages

$$A_{u,v} = egin{bmatrix} rac{1}{N_u} & ext{if there is an edge from } u ext{ to } v \ 0 & ext{otherwise} \end{pmatrix} A = egin{bmatrix} 0 & rac{1}{2} & rac{1}{2} \ 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix}$$

- ☐ If we treat R (the relative importance of each web page) as a vector over the web graph
 - $\blacksquare \quad R = cAR \Rightarrow AR = \frac{1}{c}R$
 - R is an eigenvector of the matrix A, and the constant c is the corresponding eigenvalue
 - Multiplying by A does not change the link structure of the web pages
 - The inherent **dominant eigenvector of A** can be computed by repeatedly applying **A** to any initial vector
 - Therefore, PageRank can be interpreted as a method for mining structural features of the graph

v is an eigenvector

w is not an eigenvector

PageRank Formulation: Naïve version

- ☐ Importance flows recursively through the web graph
- ☐ The importance of the node is the sum of the normalized importance of its backlinks
- ☐ The rank of a page is divided among its forward links evenly to contribute to the ranks of the pages they point to

$$R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v}$$

F_u: the set of forward pages of u (outward direction of u)

B_u: the set of backward pages of u (inward direction of u)

$$N_u = |F_u|$$

C: A factor used for normalization

PageRank Formulation: Navie version (cont.)

- ☐ Importance flows recursively through the web graph
- ☐ The importance of the node is the sum of the normalized importance of its backlinks
- ☐ The rank of a page is divided among its forward links evenly to contribute to the ranks of the pages they point to

$$R(u) = c \sum_{v \in B_u} \frac{R(v)}{N_v}$$

F_u: the set of forward pages of u (outward direction of u)

B_u: the set of backward pages of u (inward direction of u)

$$N_u = |F_u|$$

C: A factor used for normalization

Why do we need the constant c?

- ☐ If c > 1,
 the recursive amplification effect would become stronger,
 and the system may diverge
- Even when c = 1,the rank values can converge in some cases
- Introducing a damping factor c < 1, helps values gradually converges

PageRank Formulation: Modified version

□ Solutions of Rank Sink

- Make the rank would be distributed
- Make the random suffer can exit
- To keep the door slightly open

☐ Formulation

- E(u): A source of rank
 - This allows the random surfer to escape by jumping to a random page

$$R'(u) = c \sum_{v \in B_u} \frac{R'(v)}{N_v} + cE(u)$$

such that c is maximized and $||R'||_1 = 1$ ($||R'||_1$ denotes the L_1 norm of R').

PageRank Formulation: Personalized PageRank DMAIS Lab @ CAU

$$R'(u) = c \sum_{v \in B_u} \frac{R'(v)}{N_v} + cE(u)$$

- ☐ How to modify E(u) is up to the designer
 - In the default setting, **E(u)** is uniform over all nodes (Left side of the figure)
 - Can modify E(u) to consist entirely of a single node A (Right side of the figure)
 - → In the Personalized PageRank (PPR),

☐ Interpretation

- The random surfer always restarts at a single node
- This shifts the ranking from a global perspective to a local one, anchored in that node
- The importance of other nodes is determined by their proximity and connectivity to that node
- The final value of PPR becomes the relevance score with respect to that node

PageRank Formulation: PPR (cont.)

Applications

- Local Graph Clustering
 - Starting from a single node, the PPR vector naturally reveals its community
 - This happens because the random walk remains localized due to the fixed restart point
 - In a social network, starting from a person, PPR highlights their friend group
 - In a knowledge graph, starting from an entity, PPR uncovers semantically related concepts
- Personalized Search and Recommendation
 - PPR ranks nodes based on their proximity to a user's context

PageRank Formulation: Modern Form

☐ The Original Formulation of PageRank

$$R'(u) = c \sum_{v \in B_u} \frac{R'(v)}{N_v} + cE(u)$$

- Required manual normalization after iteration to maintain ||R||₁ = 1
- Update the importance value individually (Lacks global structural insight)
- ☐ The Modern Formulation of PageRank

$$R = (1 - c)E + cAR$$

- Clean probabilistic interpretation
 - random walk with prob c + teleport with prob 1-c
- Ensures at ||R||₁ = 1 every iteration
- Enables efficient computation via power iteration and better aligns

- 1. Topic-sensitive pagerank. TH Haveliwala. WWW 02
- 2. Deeper inside pagerank. AN Langville, CD Meyer. Internet Mathematics '04

Applications: Search Engine

- ☐ Traditional Search Engine such as Altavista returns random looking web pages that match the query
 - Altavista seems using URL length as a quality heuristic

Applications: Search Engine (cont.)

- ☐ However, by leveraging the PageRank
 - Universities we consider important are actually ranked at the top

Applications: Search Engine (cont.)

- □ PageRank have strong advantage in Common Case
 - Identifies globally important pages
 - Provided a global importance signal, resistant to keyword spamming
 - Prioritizes pages that are frequently cited or linked to by others
 - Reflects user preferences as a natural signal of importance
 - In the other hands, this might have disadvantage of precision perspective
 - PageRank provides query-independent global importance in a way
 - Google supplements this aspect by combining keyword search with "keyword"
 - Google utilizes a number of factors to rank search results
 (Including standard IR measures, proximity, anchor text, and PageRank)

- □ PageRank captures the structural importance of nodes by analyzing the overall link structure of the graph
- ☐ Therefore this method could be applied...
 - TextRank
 - Biological Network Analysis
 - Influence Detection in Citation Graphs
 - Product/Content Recommendation

- □ PageRank captures the structural importance of nodes by analyzing the overall link structure of the graph
- Therefore this method could be applied...
 - TextRank
 - Used in keyword or sentence extraction and summarization by modeling sentences or words as nodes
 - Biological Network Analysis
 - Influence Detection in Citation Graphs
 - Product/Content Recommendation

- □ PageRank captures the structural importance of nodes by analyzing the overall link structure of the graph
- Therefore this method could be applied...
 - TextRank
 - Biological Network Analysis
 - Identify essential proteins or genes by analyzing the structure of protein—protein interaction
 - Influence Detection in Citation Graphs
 - Product/Content Recommendation

- □ PageRank captures the structural importance of nodes by analyzing the overall link structure of the graph
- ☐ Therefore this method could be applied...
 - TextRank
 - Biological Network Analysis
 - Influence Detection in Citation Graphs
 - Helps measure the impact of scientific papers or authors by modeling citations as directed edges
 - Product/Content Recommendation

- □ PageRank captures the structural importance of nodes by analyzing the overall link structure of the graph
- ☐ Therefore this method could be applied...
 - TextRank
 - Biological Network Analysis
 - Influence Detection in Citation Graphs
 - Product/Content Recommendation
 - Ranks items based on their connections in user-item interaction graphs

Discussion & Implication

□ Structural Node Importance

- Provides a way to quantify the structural importance of nodes based on link topology
- Eigenvector-based Centrality
 - Acts as a powerful centrality measure that recursively reflects the influence of neighboring nodes

□ Domain-Agnostic Extensibility

- Can be adapted to any domain where relationships can be represented as a graph, without relying on domain-specific content
- Successfully applied to citation networks, biological systems, NLP, and recommender systems

Fast random walk with restart and its applications

ICDM(2006)

H Tong, C Faloutsos, JY Pan

CAU Junseo, Yu

DMAIS Lab Seminar 07.17.2025

Content

- □ Introduction
 - Background of Random Walk with Restart
 - Why RWR is Computationally Challenging
 - Two Key Properties of Real-World Graphs
- □ Proposed Methods
 - B_LIN
 - Time/Space Complexity of B_LIN
- **□** Experiments & Results
- □ Conclusion

Background of Random Walk with Restart

- ☐ The Rising Importance of defining the relevance score between two nodes
 - One very successful technique is based on random walk with restart (RWR) → Personalized PageRank

•
$$\vec{r}_i = c\tilde{\mathbf{W}}\vec{r}_i + (1-c)\vec{e}_i$$

- The PPR Value of node j (probability of the random suffer remaining node j) reflects its relevance to node i
- ☐ The RWR require tailored vector for specific queries (nodes)
 - The typical PageRank not personalized one only require one static vector invariance with specific queries
 - RWR need bunch of calculations
 - Therefore, the time/speed complexity become important problem

'Jet' 'Plane' 'Runway'

'Texture' 'Candy' 'Background'

Why RWR is Computationally Challenging

■ Need of Inversion Matrix

$$\mathbf{r}_i = c \cdot ilde{W} \cdot \mathbf{r}_i + (1-c) \cdot \mathbf{e}_i$$

$$\mathbf{r}_i - c \cdot ilde{W} \cdot \mathbf{r}_i = (1-c) \cdot \mathbf{e}_i$$

$$ullet (I-c\cdot ilde{W})\cdot \mathbf{r}_i = (1-c)\cdot \mathbf{e}_i$$

$$\mathbf{r}_i = (1-c)\cdot (I-c\cdot ilde{W})^{-1}\cdot \mathbf{e}_i$$

$$Q^{-1} = (I - c \cdot \tilde{W})^{-1}$$

Computation of inversion Q must be performed for every query node i
 → query-dependent calculation

□ Existing Method

- OnTheFly: Compute the rank vector on the fly (instantly) by power iteration
- PreCompute: Pre-compute and store the inversion of a matrix

W: the normalized weighted matrix associated with W

e_i: n × 1 starting vector, the i-th element 1 and 0 for other

Why RWR is Computationally Challenging

□ OnTheFly

- Don't store or precompute Q⁻¹
- Solve the linear system iteratively on the fly (instantly) in query-time

$$ec{r}_i = c \widetilde{W} ec{r}_i + (1-c) ec{e}_i$$

- However the space complexity become O(T m)
 - Why?
 - At query time, need m iterations: O(T)
 - Each iteration involves sparse matrix-vector multiplication: Cost per iteration = O(T) (T = number of non-zero elements in $\tilde{\mathbf{W}}$)

□ PreCompute

Why RWR is Computationally Challenging

- □ OnTheFly
- □ PreCompute
 - lacktriangle Pre-compute and store the $Q^{-1}=(I-c\widetilde{W})^{-1}$
 - ullet Can get result in real-time $ec{r}_i = (1-c)Q^{-1}ec{e}_i$
 - However the time/space compexitiy become O(n³) /O(n²)
 - Why **O(n³)** in time complexity?
 - Inverting an n×n matrix (Q) requires **cubic** time using:
 - Gaussian Elimination
 - LU Decomposition
 - Matrix inversion algorithms
 - Why **O(n²)** in space complexity?
 - Q⁻¹ is a dense **n x n matrix**

Two Key Properties of Real-World Graphs

- □ Block-wise / Community Structure
- ☐ Linear Correlation (Low-Rank Approximation)

Two Key Properties of Real-World Graphs

- **Block-wise / Community Structure**
 - In many real-world graphs, nodes are not connected uniformly
 - Nodes tend to form tightly connected groups, with sparse connections across groups (Homophily)
 - Can calculate block-by-block while still preserving most of the relevance information
 - Means the local/fine resolution estimation (within each group)

$$ilde{W} = egin{bmatrix} ext{dense} & ext{sparse} \ ext{sparse} & ext{dense} \end{bmatrix}$$

$$ilde{\mathbf{W}}_1 = egin{pmatrix} ilde{\mathbf{W}}_{1,1} & \mathbf{0} & ... & \mathbf{0} \ \mathbf{0} & ilde{\mathbf{W}}_{1,2} & ... & \mathbf{0} \ ... & ... & ... & ... \ \mathbf{0} & ... & \mathbf{0} & ilde{\mathbf{W}}_{1,k} \end{pmatrix}$$

Linear Correlation (Low-Rank Approximation)

Two Key Properties of Real-World Graphs (cont.)

- **☐** Block-wise / Community Structure
- Linear Correlation (Low-Rank Approximation)
 - In real-world graphs,
 - Nodes with shared neighbors often exhibit similar neighborhood patterns
 - Example: friends in the same community or authors in the same research area
 - This creates linear correlation among nodes
 - Linear correlation: one vector is a linear combination of another

Linear combination

Two Key Properties of Real-World Graphs (cont.)

- □ Block-wise / Community Structure
- □ Linear Correlation (Low-Rank Approximation)
 - Linear Correlation leads the matrix to low rank matrix
 - The rank of a matrix: The number of linearly independent rows/columns
 - Low rank → redundant or correlated structure

$$A = \left[\begin{array}{ccc} a & b & c \end{array} \right]$$

Two Key Properties of Real-World Graphs (cont.)

- □ Block-wise / Community Structure
- ☐ Linear Correlation (Low-Rank Approximation)
 - Use Singular Value Decomposition (SVD):
 - $\cdot A = U\Sigma V^T$
 - By keeping only the **top** $\mathbf{r} \ll$ n (The number of rank) singular values:
 - We get a compact, approximate version of the graph structure
 - Reduces computation and storage significantly
 - Efficient approximation of Q⁻¹

Proposed Method: B_LIN Overview

- □ Core Idea: Decompose the graph and reuse the structure
 - Split the graph into intra-community and cross-community links
 - Precompute inside partitions, and approximate across partitions
- □ Pre-computation Stage (Off-line)
 - Partition graph into k blocks (intra-community)
 - For each partition i, compute and store inverse of matrix
 - Do row-rank approximation of cross-community
 - Calculate and Store Q_1^{-1} cross-community influence $\tilde{\Lambda}$
- □ Query Stage (On-line)
 - For any query node *i*, calculate the results with in only a few matrix-vector multiplications

Proposed Method: B_LIN Detail (cont.)

□ Pre-computation Stage (Off-line)

- Partition graph into k blocks
- Decompose matrix: $\tilde{\mathbf{W}}_1 + \tilde{\mathbf{W}}_2$
 - $\tilde{\mathbf{W}}_1$: Block-diagonal submatrix for local computations
 - $\tilde{\mathbf{W}}_{2}$: Off-diagonal correction matrix for cross-block influence
- For each partition i, compute and store inverse of matrix:

•
$$Q_{1,i}^{-1} = (I - c\tilde{W}_{1,i})^{-1}$$

■ Calculate and Store \mathbf{Q}_1^{-1} cross-community influence $\tilde{\mathbf{\Lambda}}$

$$ilde{\mathbf{W}}_1 = egin{pmatrix} ilde{\mathbf{W}}_{1,1} & \mathbf{0} & ... & \mathbf{0} \ \mathbf{0} & ilde{\mathbf{W}}_{1,2} & ... & \mathbf{0} \ ... & ... & ... & ... \ \mathbf{0} & ... & \mathbf{0} & ilde{\mathbf{W}}_{1,k} \end{pmatrix}$$

$$\mathbf{Q}_1^{-1} = egin{pmatrix} \mathbf{Q}_{1,1}^{-1} & \mathbf{0} & ... & \mathbf{0} \ \mathbf{0} & \mathbf{Q}_{1,2}^{-1} & ... & \mathbf{0} \ ... & ... & ... & ... \ \mathbf{0} & ... & \mathbf{0} & \mathbf{Q}_{1,k}^{-1} \end{pmatrix}$$

(b) A partitioning result

Proposed Method: B_LIN Detail (cont.)

- \square Calculate and Store \mathbf{Q}_1^{-1} cross-community influence $\tilde{\mathbf{\Lambda}}$
 - For Calculating r_i

$$egin{aligned} \mathbf{r}_i &= c \cdot ilde{W} \cdot \mathbf{r}_i + (1-c) \cdot \mathbf{e}_i \ \mathbf{r}_i - c \cdot ilde{W} \cdot \mathbf{r}_i &= (1-c) \cdot \mathbf{e}_i \ (I-c \cdot ilde{W}) \cdot \mathbf{r}_i &= (1-c) \cdot \mathbf{e}_i \ \mathbf{r}_i &= (1-c) \cdot (I-c \cdot ilde{W})^{-1} \cdot \mathbf{e}_i \ Q^{-1} &= (I-c \cdot ilde{W})^{-1} \end{aligned}$$

After Decompostion, We can write the Q as

$$egin{aligned} Q &= I - c\,\widetilde{W} = I - c(\widetilde{W}_1 + \widetilde{W}_2) = Q_1 \ - \ c\,\widetilde{W}_2. \ & \ \widetilde{W}_2 pprox U\,S\,V \quad \Longrightarrow \quad c\,\widetilde{W}_2 pprox U\,(cS)\,V. \ & \ Q &= Q_1 - U\,(cS)\,V. \end{aligned}$$

The Woodbury matrix identity

$$\left(A + U \, C \, V\right)^{-1} = A^{-1} \, - \, A^{-1} \, U \left(C^{-1} + V \, A^{-1} \, U\right)^{-1} \! V \, A^{-1}$$

Therefore, we can do inversion of Q

The final form of Q is

$$egin{aligned} Q^{-1} &= (Q_1 - U(cS)V)^{-1} \ &= Q_1^{-1} + Q_1^{-1}\,U\,\left(c\,\widetilde{\Lambda}
ight)\,V\,Q_1^{-1} \ &= Q_1^{-1} + c\,Q_1^{-1}\,U\,\widetilde{\Lambda}\,V\,Q_1^{-1}. \end{aligned}$$

In the query-time, we could leverage the pre-compute results

$$\vec{r_i} = (1 - c)(\mathbf{Q}_1^{-1}\vec{e_i} + c\mathbf{Q}_1^{-1}\mathbf{U}\tilde{\boldsymbol{\Lambda}}\mathbf{V}\mathbf{Q}_1^{-1}\vec{e_i}).$$

Proposed Method: NB_LIN

- ☐ The number of partitions k determines the trade-off between local and global computation
- \square k = 1 \rightarrow PreCompute
 - The entire graph is treated as a single partition
 - $\tilde{W}_1 = \tilde{W} \& \tilde{W}_2 = 0$
- \square k = n \rightarrow NB_LIN (Simplified B_LIN)
 - Each node is its own partition

 no within-partition links
 - $\tilde{W}_1 = 0 \& \tilde{W}_2 = \tilde{W} \& Q_1 = I$
 - Off-line (Preprocessing):
 - Compute low-rank approximation: W
 ≈ U S V
 - Compute correction matrix: $\tilde{\Lambda} = (S^{-1} cVU)^{-1}$
 - On-line (Query):
 - For any query node i, compute: $(1-c)(\vec{e_i} + c\mathbf{U}\tilde{\mathbf{\Lambda}}\mathbf{V}\vec{e_i})$.
 - Implications
 - NB_LIN trades local precision for global speed.
 - Great when speed and memory are the top priorities.

Time/Space Complexity of B_LIN

□ On-line computational cost

only need a few matrix-vector multiplication operations

$$\vec{r}_0 \leftarrow \mathbf{Q}_1^{-1} \vec{e_i}$$
 $\vec{r}_i \leftarrow \mathbf{V} \vec{r}_0$
 $\vec{r}_i \leftarrow \tilde{\mathbf{\Lambda}} \vec{r}_i$
 $\vec{r}_i \leftarrow \mathbf{U} \vec{r}_i$
 $\vec{r}_i \leftarrow \mathbf{Q}_1^{-1} \vec{r}_i$
 $\vec{r}_i \leftarrow (1-c)(\vec{r}_0 + c\vec{r}_i)$

$$\vec{r_i} = (1 - c)(\mathbf{Q}_1^{-1}\vec{e_i} + c\mathbf{Q}_1^{-1}\mathbf{U}\tilde{\boldsymbol{\Lambda}}\mathbf{V}\mathbf{Q}_1^{-1}\vec{e_i}).$$

Time/Space Complexity of B_LIN (cont.)

- ☐ Pre-computational cost
 - Instead of computing the inverse of a full graph *n x n* matrix
 - B_LIN dramatically reduces computation
 - The main steps that require calculations
 - Inverse of each k small matrices
 - Low-rank Approximation
 - Inversion of Ñ
- ☐ Pre-storage cost
 - B LIN needs to store
 - k+1 small inverse matrices including Λ
 - One low-rank matrix U of size n x t
 - One matrix V of size t x n
 - Optimization
 - Sparsification: Most values in the matrices are very close to zero
 - Exploiting Symmetry:

If the graph is normalized with a symmetric Laplacian, only need to store half the values in each matrix

Experiments

□ Datasets Used:

- ColR (5K images, 774K edges) image retrieval (CBIR)
- CoMMG (52K nodes) cross-modal captioning (CMCD)
- AP (315K nodes, 1.8M edges) author-paper graph (Ceps, NF)

■ Applications Evaluated:

- CBIR = Content-Based Image Retrieval
- CMCD = Cross-Modal Correlation Discovery
- CePS = Center-Piece Subgraph Discovery
- NF = Neighborhood Formulation

□ Evaluation Metrics

- Relative Accuracy (RelAcu)
- Relative Score (RelScore)
- Efficiency Metrics
 - Query Time (QT)
 - Pre-computational Time (PT)
 - Pre-storage Cost (PS)

Experiments: ColR

Experiments: COMMG

(b) Accuracy vs. Log PT

(c) Accuracy vs. Log PS

Experiments: ColR

Relative Score vs. Pre-Storage Cost

(c) Accuracy vs. Log QS

Discussion

□ Contributions

Propose a fast and accurate approximation for Random Walk with Restart (RWR)
 by exploiting structural properties of real-world graphs

□ Discussion

- Low-rank approximation works well because nodes share similar connectivity patterns
 - But where does this correlation occur?
 - Likely within communities: Nodes in same group (e.g. same topic, organization) have high redundancy
 - Does it also appear across communities?

■ My Opinion

A interesting attempt to translate real-world characteristics into technology