Document Title	HSD150PX14 Product Information	Page No.	1/27
Document No.		Revision	1.0

HannStar Product Information

Model: HSD150PX14

-A07

(A07: Sub-Model Code)

Note: 1. Please contact HannStar Display Corp. before designing your product based on this module specification.

2. The information contained herein is presented merely to indicate the characteristics and performance of our products. No responsibility is assumed by HannStar for any intellectual property claims or other problems that may result from application based on the module described herein.

Document Title	HSD150PX14 Product Information	Page No.	2/27
Document No.		Revision	1.0

Record of Revisions					
Rev.	Date		Description of change		
Rev. 1.0		•	Description of change HSD150PX14-A Product Information was first issued.		

Document Title	HSD150PX14 Product Information	Page No.	3/27
Document No.		Revision	1.0

Contents

1.0	General description	p.4
2.0	Absolute maximum ratings	p.5
3.0	Optical characteristics	p.7
4.0	Electrical characteristics	p.12
5.0	Block diagram	p.14
6.0	Interface pin connection	p.15
7.0	Interface timing	p.20
8.0	Outline dimension	p.23
9.0	Lot mark	p.25
10.0	General precaution	p.26

Document Title	HSD150PX14 Product Information	Page No.	4/27
Document No.		Revision	1.0

1.0 GENERAL DESCRIPTION

1.1 Introduction

HannStar Display model HSD150PX14-A is a color active matrix thin film transistor (TFT) liquid crystal display(LCD) that uses amorphous silicon TFT as a switching device. This model is composed of a TFT LCD panel, a driving circuit and a back light system. This TFT LCD has a 15.0 inch diagonally measured active display area with XGA resolution (768 vertical by 1024 horizontal pixel array) and can display up to 262,144 colors.

1.2 Features

- 15.0 XGA for Notebook PC
- LVDS interface system
- SPWG style-B standard

1.3 Applications

- Notebook PC
- Moniputers
- Display terminals for AV applications
- Monitors for industrial applications

1.4 General information

Item	Item Specification	
Display area	304.128(H) x 228.096(V)	mm
Number of Pixel	1024(H) x 768(V)	pixels
Pixel pitch	0.297(H) x 0.297(V)	mm
Pixel arrangement	RGB Vertical stripe	
Display color	262,144	colors
Display mode	Normally white	
Surface treatment	Antiglare, Hard-Coating(3H)	
Weight	600	g
Back-light	Single CCFL (Side-Light type)	
Input signal	1-ch LVDS	
Optimum viewing direction	6 o'clock	

Document Title	HSD150PX14 Product Information	Page No.	5/27
Document No.		Revision	1.0

1.5 Mechanical Information

Item		Min.	Тур.	Max.	Unit
Module	Horizontal(H)		317.3		mm
Size	Vertical(V)		242.0		mm
Oize	Depth(D)			6.5	mm
Weight (Without inverter)			600		g

2.0 ABSOLUTE MAXIMUM RATINGS

2.1 Absolute Rating of Environment

Item	Symbol	Min.	Max.	Unit	Note
Storage temperature	T _{STG}	-20	60	°C	
Operating temperature	T _{OPR}	0	50	°C	
Vibration(non-operating)	V_{NOP}		1.5	G	(1)
Shock(non-operating)	S _{NOP}	180		G	(2)
Storage humidity	H _{STG}	10	90	%RH	(3)
Operating humidity	H _{OP}	10	80	%RH	(3)
Low pressure(operating)	P _{LOP}	697		hPa	(4)
Low pressure(non-operating)	P _{LNOP}	116		hPa	(5)

Note (1) 5-500Hz sweep/cycle, X,Y,Z each directions, 30min each

- (2) 2ms, ±X, ±Y, ±Z direction, one time each. For this shock test, it is necessary to fill the silicon rubber between the shock jig as buffer.
- (3) Max wet bulb temp.=39°C

(4) 2hrs. (10000 feet)(5) 24hrs. (50000 feet)

Document Title	HSD150PX14 Product Information	Page No.	6/27
Document No.		Revision	1.0

2.2 Electrical Absolute Rating

2.2.1 TFT LCD Module

Item	Symbol	Min.	Max.	Unit	Note
Power supply voltage	V_{DD}	-0.3	4.0	V	(1)
Logic input voltage	V_{IN}	-0.3	V _{DD} +0.3	V	(1)

2.2.2 Back-Light Unit

Item	Symbol	Min.	Max.	Unit	Note
Lamp voltage	V_{FL}	0	2000	$V_{(rms)}$	(1)
Lamp current	Ι _L		7.0	mA	(1)
Lamp frequency	f_L	0	100	kHz	(1)

Note (1) Permanent damage may occur to the LCD module if beyond this specification.

Functional operation should be restricted to the conditions described under normally operating conditions.

Document Title	HSD150PX14 Product Information	Page No.	7/27
Document No.		Revision	1.0

3.0 OPTICAL CHARACTERISTICS

3.1 Optical specification

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Note
Contrast		CR		100	250	_		(1)(2)
Response	Rising	T _R		_	TR +TF	-		(4)(2)
time	Falling	T _F		_	= 35	-	msec	(1)(3)
White luminan (Average of 5		Y _L		120	150		cd/m ²	(1)(4)(5) (I _L =6.0mA)
	Ded	R _x	⊖=0 ⊕=0	0.53	0.56	0.59		
	Red	R _y	⊕=0 Normal	0.31	0.34	0.37		
Color		G _x	viewing	0.29	0.32	0.35		
Color Gree chromaticity (CIE1931)	Green	Gy	angle	0.53	0.56	0.59		
	D.	B _x		0.12	0.15	0.18		
	Blue	B _y		0.10	0.13	0.16		
	\A/I=:4=	W _x		0.28	0.31	0.34		(1)(4)
	White	W _y		0.30	0.33	0.36		
		θι		35	40	_		
Viewing angle	Hor.	Θ_{R}		35	40	_		
rierinig aliigie		θυ	CR>10	15	20	_		
	Ver.	Θ_{D}		35	40	_		
Brightness uniformity		B _{UNI}	⊖=0	65	_	_	%	(6)
Crosstalk		CT(n)	Ф=0		_	1.3	%	(7)

3.2 Measuring Condition

■ Measuring surrounding: dark room

■ Lamp current I_{FL}: 6.0±0.1mA(rms), Inverter: HIU-757

■ V_{DD}=3.3V±0.05V

■ Surrounding temperature: 25±2°C

■ 30min. warm-up time.

Document Title	HSD150PX14 Product Information	Page No.	8/27
Document No.		Revision	1.0

3.3 Measuring Equipment

- LCD-7000 of Otsuka Electrics Corp., which utilized MCPD-7000 for Chromaticity and BM-5 for other optical characteristics.
- Measuring spot size : 10 ~ 12 mm

Note (1) Definition of Viewing Angle:

Note (2) Definition of Contrast Ratio(CR): measured at the center point of panel

Document Title	HSD150PX14 Product Information	Page No.	9/27
Document No.		Revision	1.0

Document Title	HSD150PX14 Product Information	Page No.	10/27
Document No.		Revision	1.0

Average Luminance =
$$\frac{Y_1+Y_2+Y_3+Y_4+Y_5}{5}$$

Note (6) Definition of brightness uniformity

	mannetar Bropias corp.		
Document Title	HSD150PX14 Product Information	Page No.	11/27
Document No.		Revision	1.0

Note (7) Definition of crosstalk $CT(1) \sim CT(4)$

CT(n) =
$$\frac{|L(n) - LB(n)|}{L(n)}$$
 x 100%, n = 1 ~ 4

Where L(n) = Luminance of point "n" at pattern A (cd/m²) , n=1 \sim 4 LB(n) = Luminance of point "n" at pattern B (cd/m²) , n=1 \sim 4 The location measured will be exactly the same in both patterns.

L0 : Luminance with all pixels black L63 : Luminance with all pixels white

Pattern B

Document Title	HSD150PX14 Product Information	Page No.	12/27
Document No.		Revision	1.0

4.0 ELECTRICAL CHARACTERISTICS

4.1 TFT LCD Module

Item	Item		Min.	Тур.	Max.	Unit	Note
Voltage of power s	Voltage of power supply		3.0	3.3	3.6	V	
Input voltage	High	V _{IH}	2.4		3.6	V	
input voitage	Low	V_{IL}	0		0.9	V	
Current of power supply	Mosaic	I _{DD}		555		mA	(1)
Vsync frequency		f _V		60	_	Hz	(2)
Hsync frequency		f _H		48.36	_	KHz	
Frequency		f _{DCLK}		65.00	_	MHz	

Note (1) Mosaic: Dot checker image

Note (2) When f_v is too low, a flicker may be occurred on the display.

Document Title	HSD150PX14 Product Information	Page No.	13/27
Document No.		Revision	1.0

4.2 Back-Light Unit

The back-light system is an edge-lighting type with 1 CCFL(Cold Cathode Fluorescent Lamp). The characteristics of the lamp is shown in the following tables.

	•					
Item	Symbol	Min.	Тур.	Max.	Unit	Note
Lamp current	IL	3.0	6.0	7.0	mA(rms)	(1)
Lamp voltage	VL		800	880	V(rms)	I _L =6.0mA
Frequency	fL	20	50	100	KHz	(2)
Operating life time	Hr	10,000			Hour	(3)
Startup voltage	\/c	1150			V(rms)	25 ℃
Startup voltage	Vs	1350		_ -	V(rms)	0℃

Note (1) Lamp current is measured with current meter for high frequency as shown below. Specified valued are for a lamp.

- Note (2) Lamp frequency may produce interference with horizontal synchronous frequency and this may cause line flow on the display. Therefore lamp frequency shall be detached from the horizontal synchronous frequency and its harmonics as far as possible in order to avoid interference.
- Note (3) Life time (Hr) can be defined as the time in which it continues to operate under the condition : $Ta=25\pm3^{\circ}C$, $I_{L}=6.0mA(rms)$ and $I_{L}=50kHz$ until one of the following event occurs :
 - 1. When the brightness becomes 50%
 - 2. When the startup voltage(Vs) at 0°C becomes higher than the maximal Value of Vs specified above.
- Note (4) Max. startup voltage shall be defined as max. voltage which CCFL can be startup. When the customer select the inverter, the min. value of startup voltage must be higher than CCFL's max. startup voltage.

Document Title	HSD150PX14 Product Information	Page No.	14/27
Document No.		Revision	1.0

Document Title	HSD150PX14 Product Information	Page No.	15/27
Document No.		Revision	1.0

6.0 INTERFACE PIN CONNECTION

6.1 TFT LCD Module

N1¹⁾ INPUT SIGNAL (FI-XB30S-HF10 /JAPAN AVIATION ELECTRONICS INDUSTRY,LTD.)¹⁾

MATING CONNECTOR: FI-X30M,FI-X30MR

Terminal no.	Symbol	Function
1	GND	Ground
2	VDD	Power Supply: +3.3V
3	VDD	Power Supply: +3.3V
4	VEDID	DDC 3.3V power
5	NC	Reserved for supplier test point
6	CIKEDID	DDC clock
7	DATAEDID	DDC data
8	EIN0-	EVEN Transmission Data of Pixels 0 (Negative : -)
9	EIN0+	EVEN Transmission Data of Pixels 0 (Positive : +)
10	GND	Ground
11	EIN1-	EVEN Transmission Data of Pixels 1 (Negative : -)
12	EIN1+	EVEN Transmission Data of Pixels 1 (Positive : +)
13	GND	Ground
14	EIN2-	EVEN Transmission Data of Pixels 2 (Negative : -)
15	EIN2+	EVEN Transmission Data of Pixels 2 (Positive : +)
16	GND	Ground
17	ECLK-	EVEN Sample Clock (Negative : -)
18	ECLK+	EVEN Sample Clock (Positive : +)
19	GND	Ground
20	NC	Reserved for supplier test point
21	NC	Reserved for supplier test point
22	GND	Ground
23	NC	Reserved for supplier test point
24	NC	Reserved for supplier test point
25	GND	Ground
26	NC	Reserved for supplier test point
27	NC	Reserved for supplier test point
28	GND	Ground
29	NC	Reserved for supplier test point
30	NC	Reserved for supplier test point

Note 1) Please connects NC pin to nothing. Don't connect it to ground nor to other signal input. (NC pin should be open.)

6.2 Back-Light Unit

CN2 CCFL Power Source (**BHSR-02VS-1**) / JAPAN SOLDERLESS TERMINAL MFG CO., LTD. Mating Connector: (**SBHT-002T-P0.5**) / JAPAN SOLDERLESS TERMINAL MFG CO., LTD.

Terminal no.	Symbol	Function
1	$ m V_L$	CCFL power supply (high voltage)
2	$G_{ m L}$	CCFL power supply (low voltage)

Document Title	HSD150PX14 Product Information	Page No.	16/27
Document No.		Revision	1.0

6.3 Relationship Between Displayed Color and Input MSB MSB LSB MSB LSB LSB Gray scale R1 R0 G5 G4 G3 G2G1 G0 B5 B4 B3 B2 B1 R5 R4 R3 R2 B0 level Display LL Black L L LL L L L L Blue L LH Н Η Н Green Н Н H|L Н Basic Light Blue L L Η Н Н Η HH Η Η Η Н color LL L Red Η Н Η Н HL L L L L L L L L Purple Η Η L LH Η Н Н lΗ Η Н H|LL L L Н Н Yellow Н Н Η Н HH Н Н Η Н HL L L L L L $H \mid H$ White Η Н Η Н Н Н Η Н HH Н Η Н Н Н Black L LL L L0 L Н Η LL L2 L Dark Gray L3...L60 scale of Red Light L61 Н Н Н L HIL L L LL L L L Н Н Η Н L L L L L LL L L L L L L62 Red Н LL L L Red L63 Η Н Η Н L L L L L L Black L L L LL L L0 Т L L HL L L L1 L2 L Η LL Dark Gray scale of L3...L60 Green Light L61 LH Н H|IН LH Н Н Н LL L L62 Н Green L Н Н Н Н Green L63 H|LL Black LL L0 L L1 LL L2 Dark Gray scale of L3...L60 Blue Light L61 L L LlH Н L LH Н Н L L62 Н Η Blue L L LH Н Н Н Н Blue L63 Black 1 LL L L L L L0 Τ L L Н L HL L L1 L L Η L L L LIL L L Н L L2 Gray Dark scale of L3...L60 White & Black Light L61 Η Η Н HH Η Η Н L НН Н Н Н Н Н Н Н Н LH Н Н Н Н LH Н Н Н Н L L62 White Н White L63 Н Н Н Н HH Н Н Η Н HH Н Н Н Н

Document Title	HSD150PX14 Product Information	Page No.	17/27
Document No.		Revision	1.0

Document Title	HSD150PX14 Product Information	Page No.	18/27
Document No.		Revision	1.0

6.5 RECOMMENDED TRANSMITTER TO HSD150PX14-A INTERFACE ASSIGNMENT

Case1: DATA (6bit transmitter)

	DS90CF363		LTM15	LTM15C425S		
Input T	erminal No.		Input Signal	Output Signal	Inter	face
			(Graphics controller output signal)	Symbol	(CN1)	
Symbol	Terminal	Symbol	Function		Terminal	Symbol
TIN0	44	R0	Red Pixels Display Data (LSB)			
TIN1	45	R1	Red Pixels Display Data			
TIN2	47	R2	Red Pixels Display Data	TOUT0-	No.8	INO-
TIN3	48	R3	Red Pixels Display Data	TOUT0+	No.9	IN0+
TIN4	1	R4	Red Pixels Display Data			
TIN5	3	R5	Red Pixels Display Data (MSB)			
TIN6	4	G0	Green Pixels Display Data (LSB)			
TIN7	6	G1	Green Pixels Display Data			
TIN8	7	G2	Green Pixels Display Data Green Pixels Display Data TOUT1-		No.11 IN1-	
TIN9	9	G3				
TIN10	10	G4	Green Pixels Display Data	No.12	IN1+	
TIN11	12	G5	Green Pixels Display Data (MSB)			
TIN12	13	B0	Blue Pixels Display Data (LSB)			
TIN13	15	B1	Blue Pixels Display Data			
TIN14	16	B2	Blue Pixels Display Data			
TIN15	18	B3	Blue Pixels Display Data			
TIN16	19	B4	Blue Pixels Display Data	TOUT2-	No.14	IN2-
TIN17	20	B5	Blue Pixels Display Data (MSB)	TOUT2+	No.15	IN2+
TIN18	22	NC	Non Connection (open)			
TIN19	23	NC	Non Connection (open)			
TIN20	25	ENAB	Compound Synchronization Signal			
CLK IN	26	NCLK	Data Sampling Clock	TCLK OUT-	No.17	CLK-
				TCLK OUT+	No.18	CLK+

Note: Please connect NC pin to nothing. Don't connect it to ground nor to other signal input.

Document Title	HSD150PX14 Product Information	Page No.	19/27
Document No.		Revision	1.0

			DS90CF383		LTM15	C425S	
Input Te	erminal No.		Input Signal	Output	Inter	face	
			(Graphics controller output signal)	Signal		CN1)	
Symbol	Terminal	Symbol	Function	Symbol	Terminal	Symbo	
TIN0	51	R0	Red Pixels Display Data (LSB)				
TIN1	52	R1	Red Pixels Display Data				
TIN2	54	R2	Red Pixels Display Data	No.8	INO-		
TIN3	55	R3	Red Pixels Display Data	TOUT0+	No.9	IN0+	
TIN4	56	R4	Red Pixels Display Data				
TIN6	3	R5	Red Pixels Display Data (MSB)				
TIN7	4	G0	Green Pixels Display Data(LSB)				
TIN8	6	G1	Green Pixels Display Data				
TIN9	7	G2	Green Pixels Display Data				
TIN12	11	G3	Green Pixels Display Data	TOUT1-	No.11	IN1-	
TIN13	12	G4	Green Pixels Display Data	TOUT1+	No.12	IN1+	
TIN14	14	G5	Green Pixels Display Data(MSB)				
TIN15	15	В0	Blue Pixels Display Data (LSB)				
TIN18	19	B1	Blue Pixels Display Data				
TIN19	20	B2	Blue Pixels Display Data				
TIN20	22	В3	Blue Pixels Display Data				
TIN21	23	B4	Blue Pixels Display Data	TOUT2-	No.14	IN2- IN2+	
TIN22	24	B5	Blue Pixels Display Data (MSB)	TOUT2+	No.15		
TIN24	27	NC	Non Connection (open)				
TIN25	28	NC	Non Connection (open)				
TIN26	30	ENAB	Compound Synchronization Signal				
TIN27	50	NC	Non Connection (open)				
TIN5	2	NC	Non Connection (open)				
TIN10	8	NC	Non Connection (open)	TOUT3-			
TIN11	10	NC	Non Connection (open)	TOUT3+			
TIN16	16	NC	Non Connection (open)				
TIN17	18	NC	Non Connection (open)				
TIN23	25	NC	Non Connection (open)				
CLK IN	31	NCLK	Data Sampling Clock	TCLK OUT-	No.17	CLK-	
				TCLK OUT+	No.18	CLK+	

Note: Please connect NC pin to nothing. Don't connect it to ground nor to other signal input.

Document Title	HSD150PX14 Product Information	Page No.	20/27
Document No.		Revision	1.0

7.0 INTERFACE TIMING 1)2)3)4)5)6)

7.1 Timing Parameters (DE mode)

Ite	Item		Min.	Тур.	Max.	Unit	Remarks	
	Period	t1	778×t4	806×t4	860×t4	_	1) 5)	
			_	16.67	_	ms	- 1) 5) ms - 1) ms - 1) ms - 1) ms - 1) 5) μs - 1) μs - 1) μs - 1) μs - 1)	
Vertical	Active	t2	_	768×t4	_	_	1)	
Display term		_		15.88		ms		
	Display start	t3	4×t4	_	_	_	1)	
						ms		
	Period	t4	1180×t7	1344×t7	1400×t7	_	1) 5)	
	1 01104		_	20.68	_	μS		
Horizontal	Active	Active	t5		1024×t7		_	1)
Display term		10	_	15.76	_	μS		
	Display Start	t6	32×t7	_	_	_	1)	
	,		_		_	μS		
	Period	t7	12.50	15.38		ns	5)	
Clock	Low time	t8	5	1	1	ns		
	High time	t9	5	_	_	ns		
Data	Setup time	t10	2	_	_	ns		
Data	Hold time	t11	5	_	_	ns		

- Note 1) Refer to TIMING CHART at Chapter 7.2.
- Note 2) In case of using the long frame period, the deterioration of display quality, noise etc. may be occurred.
- Note 3) When ENAB is fixed to "L" level after NCLK input, the panel is displayed as black. However, a flicker may be occurred on the display. When ENAB is fixed to "H" level after NCLK input, the panel will be damaged.
- Note 4) Do not fix NCLK to "H" or "L" level while the V_{DD} (+3.3V) is supplied. If NCLK is fixed to "H" level or "L" level for certain period while the V_{DD} (+3.3V) is supplied, the panel may be damaged.
- Note 5) Do not change t1 and t4 values in the operation. When t1 or t4 is changed, the panel is displayed as black.
- Note 6) Please adjust LCD operating signal timing and FL driving frequency, to optimize the display quality. There is a possibility that flicker is observed by the

interference

of LCD operating signal timing and FL driving condition (especially driving frequency).

Document Title	HSD150PX14 Product Information	Page No.	21/27
Document No.		Revision	1.0

Document Title	HSD150PX14 Product Information	Page No.	22/27
Document No.		Revision	1.0

Power ON/OFF Sequence

Item	Min.	Тур.	Max.	Unit	Remark
T1	0	_	10	msec	
T2	0	_	50	msec	
Т3	0	_	50	msec	
T4	400	_	_	msec	
T5	200	_	_	msec	
T6	200	_	_	msec	

Note (1) The supply voltage of the external system for the module input should be the same as the definition of V_{DD} .

- (2) Apply the lamp volatge within the LCD operation range. When the back-light turns on before the LCD operation or the LCD truns off before the back-light turns off, the display may momentarily become white.
- (3) In case of V_{DD} = off level, please keep the level of input signal on the low or keep a high impedance.
- (4) T4 should be measured after the module has been fully discharged between power off and on period.
- (5) Interface signal shall not be kept at high impedance when the power is on.

Document Title	HSD150PX14 Product Information	Page No.	23/27
Document No.		Revision	1.0

Document Title	HSD150PX14 Product Information	Page No.	24/27
Document No.		Revision	1.0

Document Title	HSD150PX14 Product Information	Page No.	25/27
Document No.		Revision	1.0

9.0 LOT MARK

9.1 Lot Mark

code 1,2,3,4,5,6: HannStar internal flow control code.

code 7: production location.

code 8: production year. code 9: production month.

code 10,11,12,13,14,15: serial number.

Note (1) Production Year

Year	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008
Mark	9	0	1	2	3	4	5	6	7	8

Note (2) Production Month

Month	Jan.	Feb.	Mar.	Apr.	May.	Jun.	Jul.	Aug.	Sep.	Oct	Nov.	Dec.
Mark	1	2	3	4	5	6	7	8	9	Α	В	С

9.2 Location of Lot Mark

- (1) The label is attached to the backside of the LCD module.
- (2) This is subject to change without prior notice.
- (3) ED X.X: X means number 0~9.

Document Title	HSD150PX14 Product Information	Page No.	26/27
Document No.		Revision	1.0

10.0 GENERAL PRECAUTION

10.1 Use Restriction

This product is not authorized for use in life supporting systems, aircraft navigation control

systems, military systems and any other application where performance failure could be life-threatening or otherwise catastrophic.

10.2 Disassembling or Modification

Do not disassemble or modify the module. It may damage sensitive parts inside LCD module, and may cause scratches or dust on the display. HannStar does not warrant the module, if customers disassemble or modify the module.

10.3 Breakage of LCD Panel

- 10.3.1 If LCD panel is broken and liquid crystal spills out, do not ingest or inhale liquid crystal, and do not contact liquid crystal with skin.
- 10.3.2 If liquid crystal contacts mouth or eyes, rinse out with water immediately.
- 10.3.3 If liquid crystal contacts skin or cloths, wash it off immediately with alcohol and rinse thoroughly with water.
- 10.3.4 Handle carefully with chips of glass that may cause injury, when the glass is broken.

10.4 Electric Shock

- 10.4.1 Disconnect power supply before handling LCD module.
- 10.4.2 Do not pull or fold the CCFL cable.
- 10.4.3 Do not touch the parts inside LCD modules and the fluorescent lamp's connector or cables in order to prevent electric shock.

10.5 Absolute Maximum Ratings and Power Protection Circuit

- 10.5.1 Do not exceed the absolute maximum rating values, such as the supply voltage variation, input voltage variation, variation in parts' parameters, environmental temperature, etc., otherwise LCD module may be damaged.
- 10.5.2 Please do not leave LCD module in the environment of high humidity and high temperature for a long time.
- 10.5.3 It's recommended to employ protection circuit for power supply.

10.6 Operation

- 10.6.1 Do not touch, push or rub the polarizer with anything harder than HB pencil lead.
- 10.6.2 Use fingerstalls of soft gloves in order to keep clean display quality, when persons handle the LCD module for incoming inspection or assembly.
- 10.6.3 When the surface is dusty, please wipe gently with absorbent cotton or other soft material.

Document Title	HSD150PX14 Product Information	Page No.	27/27
Document No.		Revision	1.0

- 10.6.4 Wipe off saliva or water drops as soon as possible. If saliva or water drops contact with polarizer for a long time, they may causes deformation or color fading.
- 10.6.5 When cleaning the adhesives, please use absorbent cotton wetted with a little petroleum benzine or other adequate solvent.

10.7 Mechanism

Please mount LCD module by using mouting holes arranged in four corners tightly.

10.8 Static Electricity

- 10.8.1 Protection film must remove very slowly from the surface of LCD module to prevent from electrostatic occurrence.
- 10.8.2 Because LCD module use CMOS-IC on circuit board and TFT-LCD panel, it is very

weak to electrostatic discharge. Please be careful with electrostatic discharge. Persons who handle the module should be grounded through adequate methods.

10.9 Strong Light Exposure

The module shall not be exposed under strong light such as direct sunlight. Otherwise, display characteristics may be changed.

10.10 Disposal

When disposing LCD module, obey the local environmental regulations.