1 写像について (全射・単射) の解答例

演習 1.1 それぞれのグラフを描いてみれば分かると思います.

- (1) 全単射である.
- (2) 全射でも単射でもない.
- (3) 全単射である.
- (4) 全射である. 単射ではない.
- (5) 単射である. 全射ではない.

演習 1.2 (1) g が全射であることから、任意の $c \in C$ に対し、ある $b \in B$ が存在して g(b) = c となる。 さらに、f が全射なので、この b に対してある $a \in A$ が存在して f(a) = b となる。このとき $(g \circ f)(a) = g(f(a)) = g(b) = c$. 従って、任意の $c \in C$ に対してある $a \in A$ が存在して $(g \circ f)(a) = c$ となることが言えたので、 $g \circ f$ は全射である。

- (2) $a,a'\in A,$ $(g\circ f)(a)=(g\circ f)(a')$ であったとする. すると, まず g(f(a))=g(f(a')) と g が単射であることにより, f(a)=f(a'). さらに, f が単射であることにより a=a' を得る. 従って, $g\circ f$ は単射である.
 - (3) 任意の $c \in C$ に対し、

$$(g \circ f)((f^{-1} \circ g^{-1})(c)) = g(f(f^{-1}(g^{-1}(c)))) = g(g^{-1}(c)) = c.$$

よって, $(g\circ f)^{-1}(c)=(f^{-1}\circ g^{-1})(c)$ となる $(g\circ f$ により c に移る A の元は唯一つであり, それが $(g\circ f)^{-1}(c)$ の定義だったので). 従って, 写像として $(g\circ f)^{-1}=f^{-1}\circ g^{-1}$ である.

演習 1.3 (全射) 任意の $b \in B$ に対し, $a = g(b) \in A$ とすれば, $f(a) = f(g(b)) = (f \circ g)(b) = \mathrm{id}_B(b) = b$. よって f は全射である.

(単射) $a, a' \in A$, f(a) = f(a') であったとすると, g(f(a)) = g(f(a')) となるが, $g \circ f = \mathrm{id}_A$ だからこれは a = a' を意味する. よって f は単射である.

以上より, f が全単射であることが言えたので, 逆写像の定義により $g=f^{-1}$ は明らか (任意の $b\in B$ に対し, f(g(b))=b より $g(b)=f^{-1}(b)$. よって $g=f^{-1}$.)