Capítulo 4

Problema 01.

(a)

Grau de Instrução						
Procedência	1° grau	2° grau	Superior	Total		
Interior	3 (0,083)	7 (0,194)	2 (0,056)	12 (0,33)		
Capital	4 (0,111)	5 (0,139)	2 (0,056)	11 (0,31)		
Outra	5 (0,139)	6 (0,167)	2 (0,056)	13 (0,36)		
Total	12 (0,33)	18 (0,50)	6 (0,17)	36 (1,00)		

(b) Dos funcionários dessa empresa, 50% têm o segundo grau.

(c) Dos funcionários dessa empresa, 19,4% têm o segundo grau e são oriundos do interior.

(d) Dentre os funcionários do interior, 7/12 (58,3%) têm o segundo grau.

Problema 02.

(a) No sorteio de um indivíduo dentre os 36, é maior a probabilidade de o mesmo ter o segundo grau.

(b) Quanto à região de procedência, a maior probabilidade está associada com a região identificada por "Outra".

(c) A probabilidade de um indivíduo sorteado aleatoriamente ter grau superior de instrução é 0,17.

(d) A probabilidade pedida é $\frac{0,056}{0,330} = 0,17$.

(e) Nesse caso, temos $P(Superior/Capital) = \frac{0,056}{0,310} = 0,18$

Problema 03.

(a) Temos que md(X) = 2.0 e md(Y) = 2.5. Assim,

	7		
X	Baixo	Alto	Total
Baixo	1 (0,025)	7 (0,175)	8 (0,20)
Alto	19 (0,475)	13 (0,325)	32 (0,80)
Total	20 (0,50)	20 (0,50)	40 (1,00)

(b) Da tabela, tem-se que 2,5% dos indivíduos encontram-se nessas condições.

(c) 50%.

(d) Dentre as pessoas com baixa rotatividade, 12,5% ganham pouco.

(e) A probabilidade em (c) foi bastante modificada. Isto indica que a maioria das pessoas que ganham pouco têm rotatividade.

Problema 04.

(a)

Região de	Grau de Instrução						
Procedência	1° grau 2° grau Superio						
Interior	0,250	0,583	0,167				
Capital	0,364	0,455	0,182				
Outra	0,385	0,462	0,154				

(b) Em caso de independência entre a região de procedência e grau de escolaridade, em cada tabela deveria existir 33% com 1° grau, 50% com 2° grau e 17% com grau Superior.

Problema 05.

Tabela do total de linhas

	`	Y	
X	Baixo	Alto	Total
Baixo	1 (12,5%)	7 (87,5%)	8 (100,0%)
Alto	19 (59,4%)	13 (40,6%)	32 (100,0%)
Total	20 (50,0%)	20 (50,0%)	40 (100,0%)

Tabela do total de colunas.

		Y	
X	Baixo	Alto	Total
Baixo	1 (5,0%)	7 (35,0%)	8 (20,0%)
Alto	19 (95,0%)	13 (65,0%)	32 (80,0%)
Total	20 (100,0%)	20 (100,0%)	40 (100,0%)

As tabelas acima indicam existência de relação entre as variáveis rotatividade e salário, pois as proporções marginais não se repetem no interior da tabela.

Problema 06.

- (a) A proporção de homens entre os indivíduos que usaram o hospital é: $\frac{100}{250} = 0.4$
- (b) A proporção de homens entre os indivíduos que não usaramo hospital é: $\frac{900}{1750} = 0,514$
- (c) Tabela do total de colunas.

Usaram o hospital	100 (0,10)	150 (0,15)	0,25
Não usaram o hospital	900 (0,90)	850 (0,85)	0,75
	1,00	1,00	1,00

Independentemente do sexo, 25% das pessoas usam e 75% não usam o hospital. Essas porcentagens deveriam ser iguais nas duas colunas e não são. Portanto, o uso do hospital depende do sexo do segurado.

Problema 07.

Veja a tabela a seguir. Entre parênteses, encontram-se os valores esperados em caso de independência das variáveis.

Grau de Instrução						
Procedência	1° grau	2° grau	Superior	Total		
Interior	3 (4,00)	7 (6,00)	2 (2,00)	12		
Capital	4 (3,67)	5 (5,50)	2 (1,83)	11		
Outra	5 (4,33)	6 (6,50)	2 (2,17)	13		
Total	12	18	6	36		

Com isso, os cálculos ficam assim:

$$\chi^{2} = \sum \frac{(o_{i} - e_{i})^{2}}{e_{i}} = 0.25 + 0.17 + 0 + 0.03 + 0.05 + 0.02 + 0.10 + 0.04 + 0.01 = 0.67$$

$$C = \sqrt{\frac{\chi^{2}}{\chi^{2} + n}} = \sqrt{\frac{0.67}{0.67 + 36}} = 0.81$$

Problema 08.

Para os dados do problema 3, tem-se:

	<u> </u>		
X	Baixo	Alto	Total
Baixo	1 (4)	7 (4)	8
Alto	19 (16)	13 (16)	32
Total	20	20	40

De modo que,

$$\chi^{2} = \sum \frac{(o_{i} - e_{i})^{2}}{e_{i}} = 2,25 + 2,25 + 0,5625 + 0,5625 = 5,625$$

$$C = \sqrt{\frac{\chi^{2}}{\chi^{2} + n}} = \sqrt{\frac{5,625}{5,625 + 40}} = 0,351$$

$$T = \sqrt{\frac{\chi^{2}}{(r - 1) \times (s - 1)}} = \sqrt{\frac{5,625}{40}} = 0,375$$

Para os dados do problema 6, tem-se:

	Homens	Mulheres	Total
Usaram o hospital	100 (125)	150 (125)	250
Não usaram o hospital	900 (875)	850 (875)	1750
Total	1000	1000	2000

De modo que,

$$\chi^{2} = \sum \frac{(o_{i} - e_{i})^{2}}{e_{i}} = 5,00 + 5,00 + 0,71 + 0,71 = 11,42$$

$$C = \sqrt{\frac{\chi^{2}}{\chi^{2} + n}} = \sqrt{\frac{11,42}{11,42 + 2000}} = 0,075$$

$$T = \sqrt{\frac{\chi^{2}}{(r - 1) \times (s - 1)}} = \sqrt{\frac{11,42}{2000}} = 0,076$$

Problema 09.

Os dados podem ser assim representados:

Companhia	Duração de efeito de dedetização					
Companna	Menos de 4 meses	De 4 a 8 meses	Mais de 8 meses			
X	0,32	0,60	0,08			
Y	0,35	0,58	0,07			
Z	0,34	0,60	0,06			

Essas proporções indicam que não há diferenças da duração de efeito de dedetização entre as três empresas.

Problema 10.

Problema 11.

(a) Diagrama de dispersão

(b) O gráfico do item (a) indica dependência linear entre as variáveis.

(c)
$$Corr(X,Y) = \frac{1}{8} \sum_{i=1}^{8} \left[\left(\frac{x_i - 4,887}{3,62} \right) \times \left(\frac{y_i - 24,48}{8,63} \right) \right] = 0,86$$

(d) As regiões de Porto Alegre e Fortaleza apresentam comportamento diferente das demais. Retirando-se esses elementos do cálculo resulta Corr(X,Y) = 0.91.

Problema 12.

(a)

		Y					
X	1	2	3	4	5	6	Total
1	1	0	0	1	4	2	8
2	3	2	1	4	3	2	15
3	2	7	2	0	0	0	11
4	3	2	0	1	0	0	6
Total	9	11	3	6	7	4	40

(b) Como existem pontos que coincidiriam no caso de um diagrama de dispersão, pode-se representar os pontos coincidentes no gráfico com número de repetições. Outra alternativa,

válida do ponto de vista descritivo é adicionar uma perturbação aos pontos. Soma-se uma quantidade pequena às coordenadas, de modo a não haver mais coincidências. A seguir, o gráfico com a perturbação:

(c) O coeficiente de correlação entre X e Y é 0,59, indicando uma dependência linear moderada entre as variáveis.

Problema 13.

(a) Gráfico de dispersão

(b) O coeficiente de correlação entre as variáveis é 0,74.

Problema 14.

X: idade

Estado Civil	n	- x	dp(X)	var(X)	X ₍₁₎	q_1	q_2	q_3	X _n
solteiro	16	34,33	7,69	59,11	20,83	27,50	35,75	40,68	46,58
casado	20	35,63	5,95	35,36	26,08	31,37	34,91	39,81	48,92
Total	36	34,58	6,74	45,39	20,00	30,00	34,50	40,00	48,92

$$\overline{\text{var}(X)} = \frac{16 \times 59,11 + 20 \times 35,36}{36} \cong 45,39$$

$$R^2 = \frac{\overline{\text{var}(X)}}{\text{var}(X)} = 1 - \frac{45,39}{45,39} = 0$$

Problema 15. X: Nota em Estatística.

Seção	N	$\frac{\overline{x}}{x}$	dp(X)	var(X)	X ₍₁₎	q_1	q_2	q_3	X _n
P	7	8,71	0,75	0,57	8	8	9	9	10
T	7	8,29	1,11	1,24	7	7,5	8	9	10
V	11	7,91	1,64	2,69	4	7	8	9	10
Total	25	8.24	1.30	1.69	4	8	8	9	10

$$\overline{\text{var}(X)} = \frac{7 \times 0,57 + 7 \times 1,24 + 11 \times 2,69}{25} = \frac{3,99 + 8,68 + 29,59}{25} = \frac{42,26}{25} = 1,69$$

$$R^2 = \frac{\overline{\text{var}(X)}}{\text{var}(X)} = 1 - \frac{45,39}{45,39} = 0$$

Logo, Seção não serve para explicar nota.

Problema 16.

Problema 17.

Pode-se perceber que os pontos estão razoavelmente dispersos abaixo em relação a reta (x=y). Logo, parece que os salários dos professores secundários é menor que o dos administradores.

Problema 18.

(a)

		Salário		
Estado Civil	Menos de 10 SM	Entre 10 e 20 SM	Mais de 20 SM	Total
Solteiro	0,12	0,19	0,09	0,40
Casado	0,08	0,31	0,21	0,60
Total	0,20	0,50	0,30	1,00

(b) Considere-se a tabela do total de colunas:

		Salário		
Estado Civil	Menos de 10 SM	Entre 10 e 20 SM	Mais de 20 SM	Total
Solteiro	0,60	0,38	0,30	0,40
Casado	0,40	0,62	0,70	0,60
Total	1,00	1,00	1,00	1,00

Pelas diferenças entre as proporções marginais e as do interior da tabela, parece haver relação entre as variáveis.

Problema 19.

(a)

Opinião	Local de residência			
Оринао	Urbano	Suburbano	Rural	Total
A favor	0,33	0,58	0,70	0,50
Contra	0,67	0,42	0,30	0,50

(b) A opinião parece depender do local de residência do indivíduo.

Oninião	Local de residência			
Opinião	Urbano	Suburbano	Rural	Total
A favor	30 (45)	35 (30)	35 (25)	100
Contra	60 (45)	25 (30)	15 (25)	100

Contra 60 (45) 25 (30) 15 (25)
$$\chi^2 = \sum \frac{(o_i - e_i)^2}{e_i} = 5,00 + 5,00 + 0,83 + 0,83 + 4,00 + 4,00 = 19,66$$

$$C = \sqrt{\frac{\chi^2}{\chi^2 + n}} = \sqrt{\frac{19,66}{19,66 + 200}} = 0,30$$

Problema 20.

Considere a tabela com os valores observados e os esperados:

Propriedade		Atividade		
Propriedade	Costeira	Fluvial	Internacional	Total
Estatal	5 (33,64)	141 (129,02)	51 (34,34)	197
Particular	92 (63,64)	231 (242,98)	48 (64,66)	371

$$\chi^2 = \sum \frac{(o_i - e_i)^2}{e_i} = 24,38 + 1,11 + 8,08 + 12,64 + 0,59 + 4,29 = 51,09$$

Parece existir associação entre o tipo de atividade e propriedade das embarcações.

Problema 21.

Considere a tabela com os valores observados e esperados :

Participaram	Cidade				
Farticiparaili	São Paulo	Campinas	Rib. Preto	Santos	
Sim	50 (64,76)	65 (80,95)	105 (97,14)	120 (97,14)	
Não	150 (135,24)	185 (169,05)	195 (202,86)	180 (202,86)	

$$\chi^2 = \sum \frac{(o_i - e_i)^2}{e_i} = 3,36 + 3,14 + 0,64 + 5,38 + 1,61 + 1,50 + 0,30 + 2,58 = 18,51$$

Os dados da tabela indicam que a participação em atividades esportivas depende da cidade.

Problema 22.

(a) Tabela dos totais de colunas.

Pretende	Classe social			
continuar?	Alta	Média	Baixa	Total
Sim	0,50	0,44	0,38	0,40
Não	0,50	0,56	0,72	0,60

Há evidências de que a distribuição das respostas afirmativas e negativas não coincidem.

(b) Tabela dos valores observados e esperados:

Pretende	Classe social			
continuar?	Alta	Média	Baixa	Total
Sim	200 (160)	220 (200)	380 (440)	800
Não	200 (240)	280 (300)	720 (660)	1200

$$\chi^2 = \sum \frac{(o_i - e_i)^2}{e_i} = 10,00 + 2,00 + 8,18 + 6,67 + 1,33 + 5,45 = 33,63$$

Existe dependência entre as variáveis.

(c) Se houvesse tal modificação, a dependência entre as variáveis seria apenas menor $(\chi^2 = 7.01)$.

Problema 23.

$$\frac{n_{11}}{n_{.1}} = \frac{30}{90} = 0.33 \text{ e } \frac{n_{21}}{n_{.1}} = \frac{60}{90} = 0.67$$

$$\frac{n_{12}}{n_{.2}} = \frac{35}{60} = 0.58 \text{ e } \frac{n_{22}}{n_{.2}} = \frac{25}{60} = 0.42$$

$$\frac{n_{13}}{n_{.3}} = \frac{35}{50} = 0.70 \text{ e } \frac{n_{23}}{n_{.3}} = \frac{15}{50} = 0.30$$

Problema 24.

$$Corr(X,Y) = \frac{1}{n} \sum_{i} \left[\left(\frac{x_{i} - \overline{x}}{dp(X)} \right) \left(\frac{y_{i} - \overline{y}}{dp(Y)} \right) \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y} - y_{i}\overline{x} + \overline{x}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{x}^{2}\right) \left(\sum_{i} y_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y} - y_{i}\overline{x} + \overline{x}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y} - y_{i}\overline{x} + \overline{x}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y} - y_{i}\overline{x} + \overline{x}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y} - y_{i}\overline{x} + \overline{x}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y} - y_{i}\overline{x} + \overline{x}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y} - y_{i}\overline{x} + \overline{x}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y} - y_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y} - y_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y} - y_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline{y}^{2}\right) / n^{2}}} \right] = \frac{1}{n} \sum_{i} \left[\frac{x_{i}y_{i} - x_{i}\overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n\overline$$

$$= \frac{\sum_{i} x_{i} y_{i} - \overline{y} \sum_{i} x_{i} - \overline{x} \sum_{i} y_{i} + n \overline{x} \overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n \overline{x}^{2}\right) \left(\sum_{i} y_{i}^{2} - n \overline{y}^{2}\right)}} = \frac{\sum_{i} x_{i} y_{i} - n \overline{x} \overline{y}}{\sqrt{\left(\sum_{i} x_{i}^{2} - n \overline{x}^{2}\right) \left(\sum_{i} y_{i}^{2} - n \overline{y}^{2}\right)^{2}}}$$

Problema 25.

O coeficiente de correlação linear entre X e Y é -0,92, indicando forte correlação linear entre as variáveis.

$$Corr(X,Y) = \frac{53 - 5 \times (3,2) \times (4,4)}{\sqrt{62 - 5 \times (3,2)^2 \times \left[130 - 5 \times (4,4)^2\right]}} = -\frac{17,4}{18,93} = -0.92$$

Problema 26.

Pode-se calcular, com os dados fornecidos, Corr(X,Y) = 0.95 e Corr(X,Z) = 0.71. Como o valor mais alto encontrado é 0.95, a variável Y é a mais indicada para explicar a variação de X.

Problema 27.

(a)

	Sal		
Idade	[0,15)	[15,30)	Total
[0,30)	4	4	8
[30,40)	6	12	18
[40,50)	3	7	10
Total	13	23	36

- (b) O cálculo do coeficiente de correlação neste caso, poderia ser feito utilizando-se os pontos médios de cada categoria.
- (c) Com a idéia que foi descrita no item anterior, o cálculo do coeficiente de correlação agrupados poderia ser feito com a fórmula usual, onde haveria 4 pares (15;7,5) repetidos, 6 pares (35;7,5) repetidos, etc. Assim a fórmula seria:

$$Corr(X,Y) = \frac{1}{n} \sum_{i=1}^{6} \frac{\left[n_i(x_i - \overline{x})\right] \left[n_i(y_i - \overline{y})\right]}{dp(X)} \frac{\left[n_i(y_i - \overline{y})\right]}{dp(Y)}$$

onde x_i , y_i são os pontos médios, $n_1 = n_2 = 4$, $n_3 = 6$, $n_4 = 12$, $n_5 = 3$, $n_6 = 7$

Problema 28.

(a) Tabela dos valores observados e dos observados:

	Cara	Coroa	Total
Cara	24 (23,92)	22 (22,08)	46
Coroa	28 (28,08)	26 (25,92)	54
Total	52	48	100

Total 52 48 100
$$\chi^2 = \sum \frac{(o_i - e_i)^2}{e_i} = 0,0002 + 0,0002 + 0,0002 + 0,0002 = 0,0008$$

Logo, não há associação entre os resultados das moedas de um real e de um quarto de dólar.

(b) O coeficiente de correlação linear entre as variáveis X_1 e X_2 é 0, pois X_1 e X_2 são independentes. Esse resultado está de acordo com o resultado do item anterior.

Problema 29.

- (a) O salário anual médio dos homens é 15 e o desvio-padrão 3,87.
- (b) O salário anual médio das mulheres é 10 e o desvio-padrão 3,16.

(c)

(d)
$$Corr(X,Y) = \frac{1550 - 1500}{\sqrt{[2400 - 2250] \times [1100 - 1000]}} = 0.41$$

- (e) O salário médio familiar é 25. A variância do salário familiar é 35.
- (f) Descontando 8% dos salários de todos os homens da amostra e 6% do salário de todas as mulheres, o salário médio familiar cai para 23,2 e a variância vai a 30,18.

Problema 30.

(a) Histograma

(b) A média da variável V é 30,2 e a variância 130,6. Como dp(V)=11,43, $\overline{v} + 2dp(V) = 53,05$ é o limite para se considerar um vendedor excepcional. Acima desse valor, há apenas 1 dentre os 15 indivíduos analisados.

- (c) O primeiro quartil da distribuição de V é 23,5.
- (d) Os box-plots a seguirindicam que existe alguma diferença entre a distribuição das vendas nas três diferentes zonas. Assim, não é justo aplicar um mesmo critério para todas as zonas.

(e) Corr(T,V) = 0.71, Corr(E,V) = 0.26, logo a variável teste parece ser a mais importante na contratação de um empregado.

(f)

Conceito do		Zona		Total
gerente	Norte	Sul	Leste	Total
Bom	4 (2,7)	3 (2,7)	1 (2,7)	8
Mau	1 (2,3)	2(2,3)	4 (2,3)	7
Total	5	5	5	15

$$\chi^2 = \sum \frac{(o_i - e_i)^2}{e_i} = 3.76$$

Logo, existe uma baixa associação entre o Conceito do gerente e a Zona.

(g) Considere X: resultado do teste.

Conceito do gerente	n	média	dp	var
Bom	8	6,00	2,14	4,57
Mau	7	6,14	1,68	2,81
Total	15	6,07	1,87	3,50

$$\overline{\text{var}(X)} = \frac{8 \times 4,57 + 7 \times 2,81}{15} \cong 3,50$$

$$R^2 = \frac{\overline{\text{var}(X)}}{\text{var}(X)} = 1 - \frac{3,50}{3,50} = 0$$

Considere agora X: vendas:

Zona	n	média	dp	var
Norte	5	29,8	14,4	207,7
Sul	5	34,6	13,56	183,8
Oeste	5	26,2	4,6	21,2
Total	15	30,2	11,43	130,6

$$\overline{\text{var}(X)} = \frac{5 \times 207, 7 + 5 \times 183, 8 + 5 \times 21, 2}{15} \cong 130,5$$

$$R^2 = \overline{\frac{\text{var}(X)}{\text{var}(X)}} = 1 - \frac{130,5}{130,6} = 0,0008$$

Problema 31.

(a)

- **(b)** me(X) = 4.2; md(X) = 5.0; var(X) = 5.2
- $\textbf{(c)} \hspace{0.5cm} (A,A),...,(A,E),(B,A),...,(B,E),(C,A),...,(C,E),(D,A),...,(D,E),(E,A),...,(E,E) \\$
- (d) \overline{X} 1 2 3 4 5 6 7 Freq. 0,04 0,08 0,20 0,24 0,24 0,16 0,04

(e)
$$me(\overline{X}) = 4.2$$
; $md(\overline{X}) = 4.0$; $var(\overline{X}) = 2.6$
Vemos que $me(\overline{X}) = me(X)$ e $var(\overline{X}) = \frac{var(X)}{2}$

(f)

S^2	0	1	4	9
Freq.	7	10	6	2
	25	$\overline{25}$	25	25

(g)
$$me(S^2) = 2.08$$
; $var(S^2) = 6.39$.

(h)

	X_2				
X_1	1	3	5	7	Total
1	0,04	0,04	0,08	0,04	0,20
3	0,04	0,04	0,08	0,04	0,20
5	0,08	0,08	0,16	0,08	0,40
7	0,04	0,04	0,08	0,04	0,20
Total	0,20	0,20	0,40	0,20	1,00

- (i) As variáveis são independentes, pois $P(X_1 = i, X_2 = j) = P(X_1 = i) \times P(X_2 = j)$
- (j) São iguais entre si e à distribuição de X.
- (k) Não tem esse item.
- (I) Teremos $5^3 = 125$ triplas.
- (m) Histograma mais próximo de uma normal; $me(\overline{X}) = me(X)$, $var(\overline{X}) = var(X)$
- (n) Histograma com assimetria à direita.
- (o) Distribuições marginais iguais à distribuição de X.

Problema 32.

- (a) Não tem.
- (b) Não tem.
- $\textbf{(c)} \hspace{0.5cm} (A,B),...,(A,E),(B,A),...,(B,E),(C,A),...,(C,E),(D,A),...,(D,E),(E,A),...,(E,D) \\$

	l	2	4	<i>F</i>	, ,, , , ,	
X	2	3	4	3	O	
Freq.	0,10	0,20	0,30	0,20	0,20	

(d) $me(\overline{X}) = 4.2$; $md(\overline{X}) = 4.0$; $var(\overline{X}) = 1.6$ Vemos que $me(\overline{X}) = me(X)$

(e)

S^2	0	1	4	9
Freq.	2	10	6	2
	20	20	$\overline{20}$	20

(f) $me(S^2) = 2,60$; $var(S^2) = 6,64$.

	X_2				
X_{l}	1	3	5	7	Total
1	0,04	0,04	0,08	0,04	0,20
3	0,04	0,04	0,08	0,04	0,20
5	0,08	0,08	0,16	0,08	0,40
7	0,04	0,04	0,08	0,04	0,20
Total	0,20	0,20	0,40	0,20	1,00

- (g) As variáveis são independentes, pois $P(X_1 = i, X_2 = j) = P(X_1 = i) \times P(X_2 = j)$
- (h) São iguais entre si e à distribuição de X.
- (i) Não tem esse item.
- (j) Teremos 60 triplas.
- (k) Histograma mais próximo de uma normal; $me(\overline{X}) = me(X)$, $var(\overline{X}) = var(X)$
- (I) Histograma com assimetria à direita.
- (m) Distribuições marginais iguais à distribuição de X.

Problema 34.

Problema 35.

Dotplot para as regiões de procedência:

cap04 - 16 -

Pode-se observar que os salários da Capital têm variabilidade maior e distribuição mais assimétrica. As médias e medianas são similares.

Problema 36.

Os gráficos de dispersão não mostram tendências particulares.

Problema 37.

Os boxplots acima mostram que todas as distribuições são assimétricas, sendo que a região Sul se destaca pelo seu aspecto peculiar. A região Sudeste tem variabilidade maior, pela inclusão do estado de São Paulo, que é bastante populoso.

Problema 38.

Telebrás	Ibov	Total	
Telebras	Baixa	Alta	Total
Baixa	14 (5,4)	0 (8,6)	14
Alta	1 (9,6)	24 (15,4)	25
Total	15	24	39

$$\chi^{2} = \sum \frac{(o_{i} - e_{i})^{2}}{e_{i}} = 34,83$$

$$\chi^{2} / n = 0.94$$

Logo, percebe-se grande associação entre os preços das ações da Telebrás e Ibovespa.

Problema 39.

