COMP 543: Tools & Models for Data Science Relational Calculus

Chris Jermaine & Risa Myers

Rice University

Relational Calculus

- Nothing more than a First Order Logic predicate...
- Embedded within a set constructor

Example: Cold Brew Drinkers

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

? Query: Who goes to a cafe serving Cold Brew?

Example: Cold Brew Drinkers

```
LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)
```

Query: Who goes to a cafe serving Cold Brew?

```
{f.DRINKER | FREQUENTS(f) ∧ ∃(s)(SERVES(s)} ∧ s.COFFEE = 'Cold Brew' ∧ s.CAFE = f.CAFE)}
```

Example: Cold Brew Haters

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

? Query: Who has not gone to a cafe serving Cold Brew?

Example: Cold Brew Haters, Common Approach

```
LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)
```

Query: Who has not gone to a cafe serving Cold Brew?

```
{f.DRINKER | FREQUENTS(f) \land \neg \exists (s)(SERVES(s) 
 ∧ s.COFFEE = 'Cold Brew' ∧ s.CAFE = f.CAFE)}
```

Example: Cold Brew Haters, Common Approach

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

Query: Who has not gone to a cafe serving Cold Brew?

```
{f.DRINKER| FREQUENTS(f) \land \neg \exists (s)(SERVES(s) \land s.COFFEE = 'Cold Brew' \land s.CAFE = f.CAFE)}
```

- Wrong! This gives us "Who has gone to a cafe that does not serve Cold Brew"
- In parenthesis we have cafes that serve 'Cold Brew' that someone has visited.
- Negating it, and checking for existence, gives us cafes that someone has visited that do NOT serve Cold Brew.

Walk-through Data

FREQUENTS

DRINKER	CAFE			
Chris	Α			
Chris	В			
Chris	С			
Risa	Α			
Risa	В			

SERVES

<u> </u>					
CAFE	COFFEE				
Α	Drip				
Α	Cold Brew				
Α	Espresso				
В	Drip				
С	Espresso				

Common Approach

```
Who has gone to a cafe that does not serve 'Cold Brew'?  \{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \neg \exists (s) (\mathsf{SERVES}(s) \\ \land s.\mathsf{COFFEE} = \mathsf{'Cold Brew'} \land s.\mathsf{CAFE} = f.\mathsf{CAFE}) \}  For convenience, let's say:  \mathsf{hasCB} = \mathsf{SERVES}(s) \land s.\mathsf{CAFE} = f.\mathsf{CAFE} \land s.\mathsf{COFFEE} = \mathsf{'Cold Brew'})
```

Common Approach Steps

- Start with the FREQUENTS table
- 2 Then look at matches in the SERVES table, where s.CAFE = f.CAFE
- 3 Evaluate the predicate
- 4 Is it TRUE?
 - If Yes, then include f.DRINKER in the result set
- 5 When f.CAFE = 'B', Risa gets included in the result set.

DRINKER	CAFE	CAFE	COFFEE	hasCB	¬hasCB	Result Set
Risa	В	В	Drip	F	Т	{Risa}

6 When f.CAFE = 'A', Risa does NOT get add to the result set

DRINKER	CAFE	CAFE	COFFEE	hasCB	¬hasCB	Result Set	
		Α	Drip				
Risa	Risa A		Cold Brew	T	F	{}	
		Α	Espresso				

Common Approach Final Result

■ To get the final result set, we union together all the results from the final column

- The final result set is { Risa } ∪ { } = { Risa }
- However, Risa shouldn't be in the result set, because she frequents Cafe B, which serves Cold Brew
- Issue: We want to look at ALL of the coffees served at ALL of the cafes Risa frequents all at one time

Correct Approach

Who has not gone to a cafe serving 'Cold Brew'?

■ To answer this question, we need to introduce a second variable:

```
\{f_1.DRINKER \mid FREQUENTS(f_1) \land \neg \exists (f_2, s)(FREQ(f_2) \land SERVES(s) \land f_2.CAFE = s.CAFE \land s.COFFEE = 'Cold Brew' \land f_1.DRINKER = f_2.DRINKER'\}
```

Again, for convenience, let's say:

```
\begin{aligned} \mathsf{hasCB} &= (\mathit{FREQ}(f_2) \\ &\wedge \mathit{SERVES}(s) \wedge f_2.\mathit{CAFE} = s.\mathit{CAFE} \\ &\wedge \mathit{s.COFFEE} = \text{'Cold Brew'} \wedge f_1.\mathit{DRINKER} = f_2.\mathit{DRINKER}) \end{aligned}
```

Correct Approach

In this case, by having the second variable, we are able to look at all the data for every place Risa frequents as a whole.

- \blacksquare Here, we have another variable, f_2
- We consider each drinker in turn from the FREQUENTS relation. Basically, we are using this table as our master list of drinkers, and are ignoring the CAFE attribute.
 - Again, look just at Risa.
- Now, look at all the combinations of FREQUENTS and SERVES where the CAFE matches and the drinker is f_1 . DRINKER

f_1 .DRINKER	f_2 .DRINKER	CAFE	CAFE	COFFEE	hasCB	¬hasCB	Result Set
	Risa	Α	Α	Cold Brew			
Risa	Risa	Α	Α	Drip	Т	F	{}
	Risa	Α	Α	Espresso			
	Risa	В	В	Drip			

- If there is any tuple where the Coffee is 'Cold Brew', we exclude the drinker
- Now, in this case, one of the cafes that Risa frequents does serve Cold Brew, so Risa is not added to the result set

Example: People Who Like to Drink Coffee

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

? Query: Who goes to a cafe that serves a coffee they like?

Example: People Who Like to Drink Coffee

```
LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)
```

Query: Who goes to a cafe that serves a coffee they like?

```
 \begin{aligned} \{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \exists (s,l)(\mathsf{SERVES}(s) \land \mathsf{LIKES}(l) \\ & \land s.\mathsf{COFFEE} = l.\mathsf{COFFEE} \\ & \land s.\mathsf{CAFE} = f.\mathsf{CAFE} \\ & \land l.\mathsf{DRINKER} = f.\mathsf{DRINKER}) \} \end{aligned}
```

? We didn't refer to any table more than once. Why not?

Example: People Who Like to Drink Coffee

```
LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)
```

Query: Who goes to a cafe that serves a coffee they like?

```
 \{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \exists (s,l)(\mathsf{SERVES}(s) \land \mathsf{LIKES}(l) \\ \land s.\mathsf{COFFEE} = l.\mathsf{COFFEE} \\ \land s.\mathsf{CAFE} = f.\mathsf{CAFE} \\ \land l.\mathsf{DRINKER} = f.\mathsf{DRINKER}) \}
```

- We didn't refer to any table more than once. Why not?
- It wasn't needed since we didn't have any 'Always' or 'Never' predicates
- We were looking for 'Any'

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

? Query: Which people only go to cafes that serve a coffee they like?

LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)

? Query: Which people only go to cafes that serve a coffee they like?

```
LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)
```

Query: Which people only go to cafes that serve a coffee they like?

```
\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \forall (f_2) (\mathsf{if}\ f_2 \mathsf{ tells} \ \mathsf{us} \ \mathsf{a} \ \mathsf{cafe} \ \mathsf{that} \ f.\mathsf{DRINKER} \ \mathsf{goes} \ \mathsf{to} \ \mathsf{then} \ \mathsf{that} \ \mathsf{cafe} \ \mathsf{needs} \ \mathsf{to} \ \mathsf{serve} \ \mathsf{a} \ \mathsf{coffee} \ \mathsf{that} \ f.\mathsf{DRINKER} \ \mathsf{likes})\}
```

```
LIKES (DRINKER, COFFEE)
FREQUENTS (DRINKER, CAFE)
SERVES (CAFE, COFFEE)
```

Query: Which people only go to cafes that serve a coffee they like?

Implication

```
 \begin{aligned} &\{f.\mathsf{DRINKER} \mid \mathsf{FREQUENTS}(f) \land \forall (f_2)(\mathsf{FREQUENTS}(f_2) \\ &\land f.\mathsf{DRINKER} = f_2.\mathsf{DRINKER} \rightarrow \exists (s,l)(\mathsf{SERVES}(s) \\ &\land \mathsf{LIKES}(l) \land \ s.\mathsf{CAFE} = f_2.\mathsf{CAFE} \land \ l.\mathsf{COFFEE} = s.\mathsf{COFFEE} \\ &\land l.\mathsf{DRINKER} = f_2.\mathsf{DRINKER})) \end{aligned}
```

? Note: we invariably have a " \rightarrow " within a \forall quantifier. Why?

Implication

```
{f.DRINKER | FREQUENTS(f) ∧ \forall(f<sub>2</sub>)(FREQUENTS(f<sub>2</sub>)
 ∧ f.DRINKER = f<sub>2</sub>.DRINKER → \exists(s,l)(SERVES(s)
 ∧ LIKES(l) ∧ s.CAFE = f<sub>2</sub>.CAFE ∧ l.COFFEE = s.COFFEE
 ∧ l.DRINKER = f<sub>2</sub>.DRINKER))}
```

- Note: we invariably have a " \rightarrow " within a \forall quantifier. Why?
 - $lue{}$ ightarrow is a logical IF–THEN statement

Questions?