Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination Dec-2023

OE00061 Solar Energy & its Utilization

Programme: B.Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d. Assume suitable data if necessary. Notations and symbols have their usual meaning.

- Q.1 i. What is the primary unit of measurement for solar radiation?
 - (a) Watts per square meter (W/m²)
 - (b) Lumens per square meter (lm/m²)
 - (c) Kelvin (K)
 - (d) Megawatts (MW)
 - ii. Solar radiation can be divided into three main components. What are 1 they?
 - (a) Ultraviolet, visible, and infrared
 - (b) Direct, diffuse, and reflected
 - (c) Shortwave, longwave, and gamma radiation
 - (d) Conduction, convection, and radiation
 - iii. What is the primary purpose of solar thermal conversion?
 - (a) To generate electricity directly from sunlight
 - (b) To convert sunlight into heat energy
 - (c) To store solar energy in batteries
 - (d) To purify water using solar radiation
 - iv. Which of the following is not a type of solar thermal collector?
 - (a) Parabolic trough
- (b) Solar panel
- (c) Solar tower
- (d) Flat-plate collector
- v. What is the primary purpose of solar tracking systems in PV 1 installations?
 - (a) To improve the aesthetics of the system
 - (b) To reduce maintenance costs
 - (c) To increase energy production by tracking the sun's path
 - (d) To protect the panels from hail and snow

P.T.O.

1

[2]

[3

- OR iii. Discuss the various types of solar collectors used in solar water 7 heating systems, such as flat-plate collectors and evacuated tube collectors. What are the differences between these collector types, and when is each one suitable?
- Q.4 i. Describe the fundamental working principle of a photovoltaic system. 3
 - ii. Discuss the various types of PV panel technologies, such as 7 monocrystalline, polycrystalline, and thin-film. What are the advantages and disadvantages of each technology?
- OR iii. Explain the concept of Maximum Power Point Tracking (MPPT) in 7 PV systems. How does an MPPT controller optimize the performance of PV panels?
- Q.5 i. Explain the role of charge controllers in off-grid PV systems. How do they manage the charge and discharge of batteries to ensure a reliable power supply?
 - ii. Describe the primary components of an off-grid PV system, including **6** PV panels, charge controllers, batteries, and inverters. How do these components work together to provide electricity in remote locations?
- OR iii. Explain the concept of net metering in on-grid PV systems. How does 6 it enable homeowners to offset their electricity bills by exporting excess energy to the grid?
- Q.6 Attempt any two:
 - i. Describe the concept of "Return on Investment" (ROI) in the context 5 of solar energy projects. How is it calculated, and what does a positive ROI indicate?
 - ii. Describe the factors that influence the economic competitiveness of solar energy compared to conventional energy sources, such as coal or natural gas.
 - iii. Explain the concept of "carbon credits". How do solar energy systems 5 contribute to earning carbon credits?

Marking Scheme

OE00061 Solar Energy & its Utilization

Q.1		1 1						
	ii.	(b) Direct, diffuse, and reflected(b) To convert sunlight into heat energy						
	iii.							
	iv.	(b) Solar panel(c) To increase energy production by tracking the sun's path						
	v.							
	vi.	(a) 12 volts (a) Return on Investment (ROI)						
	vii.							
	ix.							
	х.	(b) Geographic location		1				
Q.2	i.	Explaining Difference.		2				
		(As per explanation)						
	ii.	Explain factors.	(1 Mark*3)	3				
	iii.	Importance of a pyrheliometer	3 Marks	5				
		Differ from design	2 Marks					
OR	iv.	Components and working principles	2 Marks	5				
		Typical solar radiation measurement system.	3 Marks					
Q.3 i.	i.	Explanation (A	s per explanation)	3				
	ii.	Working principle of a solar concentrating	2 Marks	7				
		Generate high-temperature heat What are	3 Marks					
		The advantages of this collector type	2 Marks					
OR i	iii.	Explaining different collector	4 Marks	7				
		Explaining difference	3 Marks					
•	i.	Fundamental system. (A	s per explanation)	3				
	ii.	Various types of PV panel technologies	4 Marks	7				
		Monocrystalline, polycrystalline, and thin-film.	4 Marks					
		Advantages and disadvantages of each technolo	gy 3 Marks					
OR	iii.	The concept (MPPT) in PV systems.	4 Marks	7				
		MPPT controllerof PV panels	3 Marks					
Q.5	i.	For explaining of charge controller	2 Marks	4				

		Managing reliable power supply		2 Marks	
	ii.	Each components controllers		3 Marks	6
		Explaining the working		3 Marks	
OR iii.		Concept of net metering in on-grid PV systems.		4 Marks	6
		Explaining offset their the grid		2 Marks	
Q.6 i.		•	` •	explanation)	5 5
	ii.	_	(As per explanation)		
	iii.	Concept carbon credits	(As per	explanation)	5

P.T.O.