New neural activity patterns emerge with long-term learning

Emily R. Oby, Matthew D. Golub, Jay A. Hennig, Alan D. Degenhart, Elizabeth C. Tyler-Kabara, Byron M. Yu, Steven M. Chase, and Aaron P. Batista

Flexible Learning Reading Group 6.9.2019

The neuroscience of learning

Dan & Poo '14

Schultz et al. '97

Brain-Computer Interface (BCI) directly links neural activity to behavior

Spikes u Factors z Velocities v

Dimensionality reduction with **Factor Analysis**:

Low-d factors: $z_t \sim N(0, I)$

Neural activity $u_t|z_t \sim N(\Lambda z_t, \psi)$

BCI mapping with **Kalman Filter**: Intrinsic Manifold: span(Λ)

Hidden velocity:

$$v_t | v_{t-1} \sim N(Av_{t-1}, Q)$$
 $\hat{v}_t = M_1 \hat{v}_{t-1} + M_2 u_t + m_0$

Inferred factors:

$$\hat{z}_t | v_t \sim N(Cv_t + d, R)$$

Encourage learning by perturbing the BCI mapping

Outside Manifold Perturbation (OMP)

$$\hat{v}_t = M_1 \hat{v}_{t-1} + M_2 \eta_{OM} u_t + m_0$$

Within Manifold Perturbation (OMP)

Learning outside Manifold Perturbations (OMPs) requires multiple days

Video!

New activity patterns emerge with multi-day learning

Controls to test if new patterns cause behavior

Progress: movement to target

New patterns correlated with improvement

New patterns specific to OMP

Learning partly happens by changes in the neural correlation structure

