Aug 15, 2024 | ☐ RV Performance Events TG

Attendees: Beeman Strong Dmitriy Ryabtsev tech.meetings@riscv.org

Notes

- Attendees: Dmitriy, Beeman, Snehasish, Bruce
- Slides/video here
- Breakdown of TOPDOWN.BAD SPEC
 - o Add CONTROL_FLOW and MEM_ORDERING sub-events
 - Any other sources would be represented by OTHER metric, should be very small
 - Intel has L2 events sum to L1, but L3/L4 are often estimate metrics and do not
 - E.g., CORE_BOUND and MEM_BOUND sum up to BACKEND_BOUND
- Breakdown of MEMORY BOUND
 - Add ADDR and DATA sub-events
 - ADDR sub-events: AGEN, L1TLB, L2TLB, ..., MMU
 - DATA sub-events: L1, L2, L3, ...
 - AGEN probably won't get slots, but covers all address
 - Haven't added TLB levels yet
 - Last level could be PGWALK, TLBMISS
 - TLBMISS sounds like L1TLB, so prefer PGWALK
 - Or just LxMISS?
 - How are these counted?
 - If blocking op doesn't have a VA, count towards AGEN
 - If blocking op has a VA, count just like L1/L2/etc cache events (formulas based on L1TLB_MISS, L2TLB_MISS, etc)
 - How many levels of cache/TLB to define? How will tools know which ones apply?
 - Should define enough for any foreseeable implementation (implementations can always add custom additions if needed)
 - Tools will know which are supported using the ison file
 - How to deal with different memory end-points?
 - Cache misses aren't always to DRAM, may hit HBM, device, CXL, ...
 - For implementation that support those, may be nice to know which end points are causing bottlenecks
 - But such events are expensive to implement. Without a simple hierarchy, can't use formulas of X_MISS events, like what's proposed for L1_BOUND, L2_BOUND, etc.
 - Instead, have to count cycles/slots for LLC miss, and wait for data to return with the data source. Then add the accumulated count to the proper event.
 - Some implementations may opt to support that, but many will not.
 Leave it up to them

- Easiest solution is to simply use L3_MISS to catch everything beyond the caches
 - What about implementations that have a different number of caches? Better to use LLC_MISS?
 - LLC is confusing since the level varies
 - Already need Lx_MISS events for Lx_BOUND formulas, so just use whichever is the last one as the catch-all for external access
- L1_BOUND/L2_BOUND implementation
 - L1_BOUND like just MEMORY_BOUND.DATA L1.MISS, L2_BOUND = MEMORY_BOUND.DATA L2.MISS, ...
- Fix L2_BOUND formula typo
- Should rename DRAM BOUND to something more generic
 - EXT BOUND? EXTERNAL MEMORY?
- Where does serialization fit in to TMA?
 - FENCE.I will naturally cause FE_BOUND, since it blocks fetch while waiting for stores
 - FENCE/FENCE.TSO arguably should be MEM_BOUND, since waiting on mem ops to complete
 - CSR write serialization could be CORE BOUND
 - Intel lumps all serialization into CORE BOUND
 - Not sure they have anything like FENCE.I?
 - May be due to original MEM_BOUND implementation being formulas based on cache misses, etc. So everything else just fell in CORE_BOUND
 - Want to support both simple and complex implementations, but don't want to require something unnatural
 - E.g., making FENCE.I be CORE_BOUND would be unnatural because it would cause the FE to not deliver uops, which is fundamentally FE_BOUND
 - o Al Beeman (et al) to check with implementers on what might work best here
- Exception events
 - Not sure how useful for performance, other than maybe page fault and misaligned
 - Switch "load page fault" to "data page fault", since even post-retire stores typically do translation before retire
 - Have all exceptions event?
 - Yes, could have EXCEPTIONS.ALL
 - This could complicate virtualization use
 - A VM can count most exceptions, but shouldn't see virt-inst exceptions or guest page faults (second-level), otherwise virtualization hole
 - Want to avoid standardizing events that might require a hypervisor to trap on event selector writes to filter the value
 - Out of time, finish this discussion on mailing list

Action items

	Beeman Strong - Aug 15, 2024 - check on implementation of TMA events for
	serialization
\checkmark	rdb197@gmail.com - Aug 8, 2024 - Add MEM_BOUND breakdown to PR for review
	rdb197@gmail.com - Aug 8, 2024 - Include Bfloat16
	rdb197@gmail.com - Aug 8, 2024 - Check on single/double vs 32/64 terminology for
	FP events
\checkmark	rdb197@gmail.com Aug 8, 2024 Check on including metrics in metric formulas
	Answer: nested metrics are allowed
	rdb197@gmail.com - Aug 8, 2024 - Consider adding events for VSETVL, div/sqrt, etc
\Box	Reeman Strong May 23, 2024, check on idea to count remote HITMs locally