```
!pip install seaborn
Requirement already satisfied: seaborn in c:\programdata\anaconda3\
lib\site-packages (0.13.2)
Requirement already satisfied: numpy!=1.24.0,>=1.20 in c:\programdata\
anaconda3\lib\site-packages (from seaborn) (2.1.3)
Requirement already satisfied: pandas>=1.2 in c:\programdata\
anaconda3\lib\site-packages (from seaborn) (2.2.3)
Requirement already satisfied: matplotlib!=3.6.1,>=3.4 in c:\
programdata\anaconda3\lib\site-packages (from seaborn) (3.10.0)
Requirement already satisfied: contourpy>=1.0.1 in c:\programdata\
anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn)
(1.3.1)
Requirement already satisfied: cycler>=0.10 in c:\programdata\
anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn)
(0.11.0)
Requirement already satisfied: fonttools>=4.22.0 in c:\programdata\
anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn)
Requirement already satisfied: kiwisolver>=1.3.1 in c:\programdata\
anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn)
(1.4.8)
Requirement already satisfied: packaging>=20.0 in c:\programdata\
anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn)
(24.2)
Requirement already satisfied: pillow>=8 in c:\programdata\anaconda3\
lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn) (11.1.0)
Requirement already satisfied: pyparsing>=2.3.1 in c:\programdata\
anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn)
(3.2.0)
Requirement already satisfied: python-dateutil>=2.7 in c:\programdata\
anaconda3\lib\site-packages (from matplotlib!=3.6.1,>=3.4->seaborn)
(2.9.0.post0)
Requirement already satisfied: pytz>=2020.1 in c:\programdata\
anaconda3\lib\site-packages (from pandas>=1.2->seaborn) (2024.1)
Requirement already satisfied: tzdata>=2022.7 in c:\programdata\
anaconda3\lib\site-packages (from pandas>=1.2->seaborn) (2025.2)
Requirement already satisfied: six>=1.5 in c:\programdata\anaconda3\
lib\site-packages (from python-dateutil>=2.7->matplotlib!=3.6.1,>=3.4-
>seaborn) (1.17.0)
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
df = pd.read excel(r"C:\Users\Lenovo\Downloads\train.csv.xlsx")
df.head()
   PassengerId Survived Pclass \
0
             1
                       0
                               3
```

```
1
                                1
2
             3
                        1
                                3
3
             4
                        1
                                1
                                3
                        0
                                                  Name
                                                           Sex
                                                                 Age
SibSp \
                              Braund, Mr. Owen Harris
                                                          male 22.0
1
1
   Cumings, Mrs. John Bradley (Florence Briggs Th... female 38.0
1
2
                               Heikkinen, Miss. Laina female 26.0
0
3
        Futrelle, Mrs. Jacques Heath (Lily May Peel) female 35.0
1
4
                             Allen, Mr. William Henry
0
   Parch
                     Ticket
                                Fare Cabin Embarked
0
                 A/5 21171
                              7.2500
       0
                                         0
                                                   C
                  PC 17599
1
       0
                             71.2833
                                       C85
2
                                                   S
       0
          STON/02. 3101282
                              7.9250
                                          0
3
                                                   S
       0
                     113803
                             53.1000
                                      C123
       0
                     373450
                              8.0500
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
                   Non-Null Count
     Column
                                   Dtype
 0
                  891 non-null
     PassengerId
                                   int64
 1
     Survived
                  891 non-null
                                   int64
 2
     Pclass
                   891 non-null
                                   int64
 3
                  891 non-null
     Name
                                   object
 4
     Sex
                  891 non-null
                                   object
 5
     Age
                  891 non-null
                                   float64
 6
                  891 non-null
     SibSp
                                   int64
 7
                  891 non-null
     Parch
                                   int64
 8
     Ticket
                  891 non-null
                                   object
                                   float64
 9
     Fare
                   891 non-null
 10
     Cabin
                   891 non-null
                                   object
 11
     Embarked
                  891 non-null
                                   object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
df.describe()
```

```
PassengerId
                       Survived
                                      Pclass
                                                                 SibSp
                                                      Age
        891.000000
                     891.000000
                                  891.000000
                                              891.000000
                                                           891.000000
count
mean
        446.000000
                       0.383838
                                    2.308642
                                               28.566970
                                                             0.523008
std
        257.353842
                       0.486592
                                    0.836071
                                                13.199572
                                                             1.102743
min
          1.000000
                       0.000000
                                    1.000000
                                                 0.420000
                                                             0.000000
25%
        223.500000
                       0.000000
                                    2.000000
                                                22.000000
                                                             0.000000
                                               24.000000
50%
        446.000000
                       0.000000
                                    3.000000
                                                             0.000000
75%
        668.500000
                       1.000000
                                    3.000000
                                                35.000000
                                                             1.000000
        891.000000
                       1.000000
                                               80.000000
max
                                    3.000000
                                                             8.000000
            Parch
                          Fare
       891.000000
                    891.000000
count
mean
         0.381594
                     32.204208
         0.806057
                     49.693429
std
min
         0.000000
                      0.000000
25%
         0.000000
                      7.910400
50%
         0.000000
                     14.454200
75%
         0.000000
                     31.000000
         6.000000
                    512.329200
max
df['Age'].value counts()
Age
24.00
         207
22.00
          27
18.00
          26
28.00
          25
30.00
          25
24.50
           1
0.67
           1
0.42
           1
34.50
           1
           1
74.00
Name: count, Length: 88, dtype: int64
num cols = df.select dtypes(include=['float64', 'int64']).columns
for col in num cols:
    plt.figure(figsize=(8, 4))
    sns.histplot(df[col], kde=True)
    plt.title(f'Distribution of {col}')
    plt.show()
```


Distribution of Survived

Distribution of Fare

#Each histogram shows the distribution of a numerical column. Note the shape — check if it's normal, skewed, or has multiple peaks.

#This helps understand how values are spread and if there are unusual patterns.

```
for col in num_cols:
   plt.figure(figsize=(8, 4))
   sns.boxplot(x=df[col])
   plt.title(f'Boxplot of {col}')
   plt.show()
```

Boxplot of PassengerId

Boxplot of Survived

Boxplot of Pclass

Boxplot of Age

Boxplot of SibSp

Each boxplot shows the spread and outliers for each numerical column.

Look for whiskers and points outside them — these are possible outliers that might affect your analysis.

```
plt.figure(figsize=(8, 6))
sns.scatterplot(data=df, x=num_cols[0], y=num_cols[1])
plt.title(f'Scatterplot of {num_cols[0]} vs {num_cols[1]}')
plt.show()
```


The scatterplot compares two numerical columns. Look for trends —

e.g.,a positive or negative slope suggests correlation. Check for clusters or unusual patterns.

```
sns.pairplot(df[num_cols])
plt.show()
```


The pairplot shows scatterplots for all pairs of numerical columns, plus histograms on the diagonal.

It helps spot relationships, correlations, and clusters across multiple variable pairs at once.

```
plt.figure(figsize=(10, 8))
corr = df[num_cols].corr()
sns.heatmap(corr, annot=True, cmap='coolwarm')
plt.title('Correlation Heatmap')
plt.show()
```


The heatmap shows correlation coefficients between numerical columns.

Strong positive (near +1) or negative (near -1) values mean strong relationships.

This helps choose important variables for deeper analysis.

```
numeric df = df.select dtypes(include=['number'])
correlation matrix = numeric df.corr()
print("Correlation Matrix:")
print(correlation_matrix)
Correlation Matrix:
            PassengerId Survived
                                   Pclass
                                                Age
                                                       SibSp
Parch \
PassengerId
               0.001652
              -0.005007 1.000000 -0.338481 -0.052872 -0.035322
Survived
0.081629
              -0.035144 -0.338481 1.000000 -0.356187 0.083081
Pclass
0.018443
               0.036186 -0.052872 -0.356187 1.000000 -0.232411 -
Age
0.155118
              -0.057527 -0.035322 0.083081 -0.232411 1.000000
SibSp
0.414838
              -0.001652 0.081629 0.018443 -0.155118 0.414838
Parch
1.000000
Fare
               0.012658 0.257307 -0.549500 0.107554 0.159651
0.216225
                Fare
PassengerId
            0.012658
Survived
            0.257307
           -0.549500
Pclass
Age
            0.107554
SibSp
            0.159651
Parch
            0.216225
Fare
            1.000000
```

```
means = numeric df.mean()
print("\nMeans of Numerical Columns:")
print(means)
Means of Numerical Columns:
PassengerId 446.000000
Survived
                0.383838
Pclass
               2.308642
               28,566970
Age
              0.523008
SibSp
Parch
               0.381594
Fare
               32.204208
dtype: float64
medians = numeric_df.median()
print("\nMedians of Numerical Columns:")
print(medians)
Medians of Numerical Columns:
PassengerId 446.0000
Survived
                0.0000
Pclass
               3.0000
             24.0000
Age
Age
SibSp
               0.0000
Parch
               0.0000
Fare
              14.4542
dtype: float64
```