

François POULET

Université de Rennes 1 - IRISA

Ressources - Bibliographie

- U.Fayyad, G.Piatetsky-Shapiro, P.Smith,
 R.Uthurusamy: Advances in Knowledge Discovery and Data Mining, AAAI Press, 1996
- T.Hastie, R.Tibshirani, J.Friedman: *The Elements of Statistical Learning: Data Mining, Inference and Prediction*, Springer Verlag, 2001
- L.Breiman, J.Friedman, R.Olshen, C.Stone: Classification and Regression Trees, Wadsworth, 1984
- D.Hand, H.Mannila, P.Smyth, *Principles of Data Mining*, MIT press, 2000

Ressources - Bibliographie

- www.kdnuggets.com
- www.kdnet.org
- www.mlnet.org
- www.learningtheory.org
- · www.kernel-machines.org
- www.acm.org/sigs/sigkdd
- www.classification-society.org (IFCS)
- archives:
 - UCI ML Repository : www.ucs.uci.edu/~mlearn/MLRepository.html
 - UCR: www.cs.ucr.edu/~eamonn/TSDMA/main.php
 - Kent Ridge Bio Medical Data Set Repository : sdmc.lit.org.sd/GEDatasets/Datasets.html
- www.infovis.net

Ressources - Bibliographie

Logiciels (libres):

Weka (Université de Waikato)

Tanagra (Université Lyon2)

Mineset (SGI -> Purple Insight)

R

... www.kdnuggets.com/software

arbres de décision:

C4.5 (Quinlan)

• OC1 (Murthy et al)

• CART, Random Forest (Breiman)

• (Mineset, Weka, Tanagra)

Froughte de données

Ressources - Bibliographie

SVM:

● libSVM (Chang, Lin)

● SVMTorch (Collobert et al)

● SVMLight (T.Joachims)

• ... www.kernel-machines.org/software.html

- Fourle de données François Poule
- Introduction

- introduction fouille de données
- principaux algorithmes de fouille de données
 - classification supervisée
 - arbres de décision
 - SVM Séparateurs à Vaste Marge (Support Vector Machine)
 - Naive-Bayes
 - classification non supervisée
 - k-NN
 - k-means
- le traitement de grandes quantités de données?

Y-Fouville de données François Poule

Introduction - fouille de données

- quelques chiffres:
 - puissance des machines double 18 mois
 - qté de données double 9 mois
 - + de données dans les 3 ans à venir que jamais
 - 2004 : ~5 exa octets (10¹⁸) 1000000 Tera octets

1-Foujile de données

Introduction – fouille de données

- internautes > 2 milliards (1.2 dans pays en voie de développement: + 317% Afrique, 294% M-Orient, 143% Asie)
- 5.3 milliards abonnement mobile
- accessible pour 90% (80% en zone rurale)
- croissance mobile :
 - pays développés : constant (+1.6%)
 - en voie de développement : +18%

V- Foujfie de données

François P.

Introduction - fouille de données

- en augmentation :
 - blogs, radio, TV... Twitter: 1734 twitts/sec, zettabyte sur IP 2016 (milliard de To)
 - images (Flickr > 5 milliards d'images, 3500 photos /sec), 90% tel. portables font appareil photo => 300 millions de clichés / jour, 100000 photos/utilisateur, nouveau capteur CMOS Sony: 18 Mp
- vidéos (YouTube > 35h vidéo / mn, Youku, 11 jours visualisés / sec)
- SMS : 6100 milliards in 2010, 200 000 / sec. (coût 0.07US\$ = 14000\$/sec = 10150€/ sec)
- pub en ligne: 16.5 milliards \$ Google, 3.5 Yahoo!, 2.9 FaceBook...
- quantité de données explose : comment y retrouver ce qui nous intéresse?

Vo - Foyfille de données

François Poulte

Introduction - fouille de données

- un exemple : Yahoo! (source U.Fayyad)
 - 73% utilisateurs internet US utilisent Yahoo!
 - 500 millions utilisateurs
 - 25 To de données collectées / jour
 - entrepôt de données : 5000 To
- Texmex: 100 To (6 mois TF1, France 2, France Info...)

1 - Foyfille de données
François Poul

Introduction - fouille de données

- quantité de données explose : comment y retrouver ce qui nous intéresse?
- fouille de données : à quoi ça sert ?
- exemple 1 : je cherche une image de jaguar

3 - Fortille de données

François Poulet

Introduction - fouille de données

- quasiment impossible faire le tri "manuellement" :
- résultats 1 20 sur un total d'environ 21 700 000 pour jaguar
- exemple 2 : Yahoo!, plubicité contextuelle
- "traquer" les utilisateurs, détecter intentions
- réponse dans l'heure

14 - Forfille de données

François Pouls

Introduction - fouille de données

- étude du cheminement utilisateur
- intention d'acheter une voiture
 - 70% ont acheté dans les 3 mois
 - 24% ont acheté dans le mois
- Yahoo! Autos
 - spécifications modèles
 - calculateur emprunt
 - comparateur de véhicules
 - configuration et prix

5 - Foyfille de données François Poul Introduction - fouille de données

- Yahoo! search
 - fabricants automobiles
 - concessionnaires
 - guides d'achat
- Yahoo! local
 - recherche dans les concessions locales
- gains Yahoo! (2007) > 200 millions \$

6 - Foyfille de données
François Paulet
Introduction - fouille de données

- mais aussi ... exemple 3 :
- 7 sept. 2008 article Chicago Tribune, repris sur Florida Sun-Sentinel, dépôt de bilan de United Airlines (2^e compagnie mondiale)
 - réalité : article de 2002, suite au 11 sept.2001
- article indexé par robot de Google -> Google news
- newsletter de Bloomberg envoyée à des milliers de personnes
- résultat : -75% action UAL dans la journée

7 - Foyfille de données
François Poule

Introduction - fouille de données

- fouille de données
- nécessité de traiter ces données
- MIT Technology Review 2001:
- KDD = 1 des 10 technologies émergentes XXIe

8 - Foyfille de données

François Poulce

Introduction - fouille de données

- coopération entre :
 - visualisation (d'informations)
 - statistiques
 - analyse de données
 - bases de données
 - \bullet IA : apprentissage automatique

- Forille de données			François
Introdi	ıctio	on	
Method 2007	votes		
Decision Trees/Rule	es 127	62.6%	+ grandes progressions
Regression	104	51.2%	AG
Clustering	102	50.2%	Boosting
Statistics	94	46.3%	Visualization
Visualization	66	32.5%	Hybrid methods
Association rules	53	26,1%	Bagging
Sequence analysis	35	17.2%	
Neural networks	35	17.2%	déclin relatif
SVM	32	15.8%	SVM
BN / Naive Bayes	32	15.8%	Association rules
Boosting	30	14.8%	
Nearest neighbor	42	19.7%	
Hybrid methods	24	11.8%	
Other	23	11.3%	
Genetic algorithms	23	11.3%	
Bagging	22	10,8%	

Introduction - Classification • classification supervisée

- (clustering = non supervisée)
- grand nombre de méthodes
 - arbres de décision : C4.5, CART, OC1, ...
 - réseaux de neurones

88 - Fortille de données

- statistiques / analyse de données
- SVM (Séparateur à Vaste Marge Support Vector Machine [Vapnik, 1995])

- SVM
 - www.kernel-machines.org
 - www.support-vector.net

[Breiman et al, 2001]

- romie de données	
Introduction - Classificati	on
• modes de fonctionnement :	
• ensemble de données initial	
• partage en deux sous-ensembles	:
 apprentissage 	
• test	
• f(taille):	
 petits ensembles : validation croisé 	ée (simule ens. + gd)
 n-fold cross validation : répète n fois 	
 divise en n sous-ensembles : training 	: n-1, test : 1
 moyenne 	
 très petits ensembles : leave one ou 	ıt

ville de données					François P
Arbra	s de déci	icion			
Aibie	s ue uec	ision			
• exemple	e simple :				
nom	long.	poids	age	sexe	
	cheveux	1			
M1	0"	250	36	M	
F1	9"	150	34	F	
M2	2"	90	10	M	
F2	6"	78	8	F	
F3	4"	20	1	F	
M3	1"	170	70	M	
F4	8"	160	41	F	
M4	10"	180	38	M	
M5	7"	200	45	M	

	Arbres de décision									
_	• entropy(4F,5M) = $-(4/9)\log_2(4/9) - (5/9)\log_2(5/9) = 0.9911$									
	• élimine les noms !!!									
	test coupe long.cheveux : tri suivant valeurs croissantes									
	nom	long. cheveux	poids	age	sexe					
ł	M1	0	250	36	M	1				
İ	M3	1	170	70	M	1				
Ī	M2	2	90	10	M	<u> </u>				
Ī	F3	4	20	1	F					
Ī	F2	6	78	8	F	.				
ı	M5	7	200	45	M	<u> </u>				
Ī	F4	8	160	41	F					
Ī	F1	9	150	34	F	<u> </u>				
[M4	10	180	38	M					

1 - Foyfille de données

52 - Forfille de données	François Poulet
Arbres de décision	
 coupes possibles aux changements de classe coupes possibles : >2, >6, >7, >9 	
chaque coupe possible : calcule entropie	
• garde la coupe avec + faible entropie	
• idem autres attributs	
 garde le min global = coupe sur attribut avec valeur poids > 160 	•
• (Gain(poids>160)=0.9911-(5/9 * 0.7219 + 4/9 * 0)=0.5900)

Arbres de décision

• coupe unaire (une seule coupe)

• coupe univariée (selon une seule variable)

• CART, C4.5, Random Forest, ...

• OC1 (Oblique Cut) : arbre oblique

Arbres de décision

OC1

coupe hyperplan en dimension n (données dimension n)

avantage: arbre bcp + pt

inconvénient: compréhensibilité

Arbre de décision

OC1:

• recherche meilleure coupe unaire, univariée
• NP-complet

• complexité augmentée
• coupe : n variables

Arbres de décision

OC1:
 recherche meilleur hyperplan de séparation des données
 recherche exhaustive impossible
 heuristique:
 tirage aléatoire pour
 coefficients hyperplan ("pente")
 scalaire ("position")
 très coûteux temps exécution

OC1 : exemple de résultat
Australian : 14 dimensions, 2 classes, 690 individus
Root Hyperplane: Left = [303,30], Right = [44,244], (87.83%) 85.51% accuracy
-187.354065 x[1] + -6.004185 x[2] + 0.110710 x[3] + -16.884249 x[4] + 2.762119 x[5] + 0.641304 x[6] + 50.861160 x[7] + 406.713806 x[8] + 104.010483 x[9] + 21.005371 x[10] + -38.602798 x[11] + -55.722027 x[12] + -0.002645 x[13] + 0.063269 x[14] + -0.312639 = 0

• 1 coupe = hyperplan 14-D, 2 feuilles

François Poule

66 - Foyfille de données

Arbres de décision CART: 85.5%, C4.5: 84.5% (85 feuilles) avantages: arbre très compact meilleure coupe que univariée meilleure précision inconvénients: coût calcul compréhensibilité du résultat

• application cartes de crédit (tout modifié)

- maximisation de la marge + minimisation des erreurs min $f(z,w,b) = (v/2) \|z\| + (1/2) \|w\|^2$ avec D(Aw eb) + z >= e (1) où z >= 0 variable de ressort et v constante positive
- \blacksquare résolution du programme quadratique (1) : w, b
- classification d'un nouvel individu $x : sign(x^Tw b)$

103 - Fouille de données

François Poulet

Clustering

- clustering hiérarchique
 - ascendant : part de chaque ind. cherche la meilleure paire à assembler, réitère ua 1 cluster
 - descendant : part d'un cluster, cherche la meilleure coupe en deux, réitère ua 1 individu / cluster

04 - Fouille de données François Pous

Clustering

- conclusion méthodes hiérarchiques
 - pas besoin de fixer k (nb clusters)
 - facilement interprétable pour certaines applications
 - passage a l'échelle difficile (O(n2))
 - problème des optima locaux
 - interprétation subjective
 - pas la meilleure partition en k

105 - Fouille de données François Pou

Clustering

- méthodes de partitionnement
 - non hiérarchique
 - utilisateur doit préciser le nb de clusters souhaité

Clustering

• k-means
• choix valeur de k
• init: k centres de clusters
• tant que pas fini
• pour tous les points
• assigne le point au cluster dont le centre est le plus proche
• fpour
• pour chaque cluster
• calcul le nouveau centre
• fpour
• si aucun point n'a changé de cluster=> fini
• ftantque

27 - Fouille de données François Pau Clustering - k-NN > > t

- nouveau cluster
- inconvénients :
 - t ?
 - dépendant ordre

