Cauchy - Rieman equation and its linearization

1. Complexification

V vector space over 1R

complexification of V is VOR C= { VI+ J-1 V2 | VIEV}

cotegory

{ vector spaces } complexification } vector spaces over (R in dime = n)

is a functor $f:V \longrightarrow W \longrightarrow f:V \otimes_{\mathbb{R}} C \longrightarrow W \otimes_{\mathbb{R}} C$

Notestim. VORC denoted by Va.

- · Compare with V, Va admits an extra operation: complex carryation

 -: Va 5 V1+ J-1 V2 -> V1-J-1 V2
- * An inner product (,) on V includes a Hermitian inner product on $V_{\mathfrak{q}}$, by

 $(V_1 + J_4 V_2, W_1 + J_4 W_2) \approx (V_1, W_1) + (V_2, W_2) + J_{-1} ((V_2, W_1) - (V_1, W_2))$ take complex conjugation of the second input

Now, $J: V \rightarrow V$ is called a cpx str if $J^{\perp} = -1_{V}$.

By discussion above, complexification induces $J: V_{\mathcal{C}} \to V_{\mathcal{C}}$ by $J(v_1 + J_7 v_2) = J(v_1) + J_7 J(v_2)$, linear over C.

$$V_{\mathcal{L}} = \left(J_{-1} - \text{eigenspace of } J \right) \oplus \left(J_{-1} - \text{eigenspace of } J \right)$$
whatim
$$V_{\mathcal{L}, (I,0)} \oplus V_{\mathcal{L}, (0,1)}$$

$$= \left\{ V_{-}J_{-1}J_{V} \mid V \in V \right\} \oplus \left\{ V_{+}J_{-1}J_{V} \mid U \in V \right\}$$

Note that elements from $V_{\mathfrak{P},(l,o)}$ and $V_{\mathfrak{P},(l,o,l)}$ switch to each other by taking complex conjugation.

By definition.

Prop Consider $r: (V_{\mathcal{E}})^* \to (V^*)_{\mathcal{E}}$ by $r(\varphi) = \varphi|_{V}$, when r is an isomorphism. In particular $(V_{\mathcal{E}})^* \simeq (V^*)_{\mathcal{E}} (=V_{\mathcal{E}})$.

Prop Consider $r: (V_{\mathcal{E}})^* \to (V_{\mathcal{E}})^* = (V^*)_{\mathcal{E}} (=V_{\mathcal{E}})$.

Prop Consider $r: (V_{\mathcal{E}})^* = (V_{\mathcal{E}})^*$

Conjugation on $(V^*)_{\alpha}$: $\overline{\varphi_1 + J_{-1} \varphi_2} = : \varphi_1 - J_{-1} \varphi_2$

Conjugation on $(\sqrt{e})^{*}$, $\overline{\varphi} := \Upsilon^{-1}(\overline{\Gamma(\varphi)})$

 $\varphi(v) = \overline{\varphi}(v_1 + \overline{1} - v_2)$ $v = v_1 + \overline{1} - v_2 \in V_{\varepsilon} = (r^{-1}(\overline{r(\varphi)}))(v_1 + \overline{1} - v_1)$ $= \overline{r(\varphi)}(v_1) + \overline{1} - \overline{r(\varphi)}(v_1)$ $= \overline{\varphi(v_1)} + \overline{1} + \overline{\varphi(v_1)}$ $= \overline{\varphi(v_1)} - \overline{1} - \overline{\varphi(v_1)}$ $= \overline{\varphi(v_1)} - \overline{1} - \overline{\varphi(v_1)}$ $= \overline{\varphi(v_1)} - \overline{1} - \overline{\varphi(v_1)}$

 V^* is important in general by one can form tensor algebra or wedge after $V^* \sim 0$ $\otimes^k V^*$ or $\Lambda^k V^*$.

//

Similarly, one can define $N^{k}V_{\omega}^{*}=\{alternating cpx k-linear maps}$

cpx str. then we can defined a bi-graded algebra Λ^{i} V_{t}^{*} where each (p,q)-piece has cpx-dim $\binom{n}{p}\binom{q}{q}$.

More to the bold setting: (M^{2n}, T) J: T.M.S a cpx str.

More to the beld setting: (M, J) J: T.M.S. a cpx 1tr

Then (TRM, J) helps to form the cpx bundle

APP(TM) (T) M (x) each filer admits

S = section