CS47100 Introduction to Artificial Intelligence

Lecture 39: Final Review Dec 6th, 2024

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

1

Final Exam

- Time:
 - Thu Dec 12, 8:00 am 10:00 am
- Location:
 - BHEE 129
- What to bring:
 - Cheat Sheet
 - Calculator
 - University ID
 - Pen, Pencil

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Final Exam

- 6 Problems (Subject to change, but small variations):
 - First order logic
 - Bayes Net
 - MDP
 - RL
 - Supervised Learning
 - Multiple Choice

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

3

Exam Tips

- Answer box's size does not correlate with the solution
- Don't have to write the exam in order
 - Its order is based on course content
- Start with the content you are most familiar with
- Study the examples covered in lecture & homework

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

What to write on the page of note?

Recommend:

- Definitions
- Equations
- Algorithms / Procedure to a type of problem
- General facts/summary about a topic
- Organize the note based on topics

Not recommended:

- Print this slide into one page...
- Putting homework problems/solutions
- Writing too much (Too difficult to find during an exam)

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

5

First order logic

Jiaxin and Medha (Purdue) CS47100 (Fall 2024) 6

Basic syntactic elements of FOL

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

7

Universal quantification

- ∀<variables> <sentence>
- Everyone in CS471 is smart: ∀x in(x, CS471) ⇒ Smart(x)
- ∀x P is true in a model m iff P is true with x interpreted as each possible object in the model
- Roughly speaking, equivalent to the conjunction of instantiations of P

```
In(John, CS471) \Rightarrow Smart(John)

\land In(Jane, CS471) \Rightarrow Smart(Jane)
```

 Λ In(CS471, CS471) \Rightarrow Smart(CS471)

۸ ...

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Existential quantification

- 3<variables> <sentence>
- Someone in CS471 is smart: ∃x In(x, CS471) ∧ Smart(x)
- $\exists x \ P$ is true in a model m iff P is true with x interpreted as *some* possible object in the model
- Roughly speaking, equivalent to the disjunction of instantiations of P

```
In(John, CS471) ∧ Smart(John)
V In(Jane, CS471) ∧ Smart(Jane)
V In(CS471, CS471) ∧ Smart(CS471)
V ...
```

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

9

Unification

- Two sentences α , β can be unified with substitution θ if
 - SUBST $(\theta, \alpha) = SUBST(\theta, \beta)$
 - $\theta = \{x/v\}$ is a substitution of variable x with v

α	β	θ
Knows(John,x)	Knows(John, Jane)	{x/Jane}
Knows(John,x)	Knows(y, Steve)	{x/Steve,y/John}
Knows(John,x)	Knows(y, Mother(y))	{y/John,x/Mother(John)}
Knows(John,x)	Knows(x,Steve)	{fail}

Jiaxin and Medha (Purdue) CS47100 (Fall 2024) 10

Resolution

- First convert to CNF (as with propositional logic)
 - · Conjunction clauses of disjunction terms
 - (Term₁ V Term₂ V Term₃) \((Term₄ V Term₅)
- Negate the conclusion α and add it to the KB, i.e., add $\neg \alpha$ to KB
- Resolution Rule $\frac{\ell_1 \vee ... \vee \ell_k, \ m_1 \vee ... \vee m_n}{\ell_1 \vee ... \vee \ell_{i-1} \vee \ell_{i+1} \vee ... \vee \ell_k \vee m_1 \vee ... \vee m_{j-1} \vee m_{j+1} \vee ... \vee m_n}$
- where ℓ_i and m_j are complementary given a substitution.
 - i.e., $\neg SUBST(\theta, l_i) = SUBST(\theta, m_i)$
- Apply resolution and find contradiction, i.e., arrive at an empty clause

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

. . .

 $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land

 $\begin{array}{ll} \neg(\neg\alpha) \equiv \alpha & \text{double-negation elimination} \\ \Rightarrow \beta) \equiv (\neg\beta \Rightarrow \neg\alpha) & \text{contraposition} \\ \Rightarrow \beta) \equiv (\neg\alpha \lor \beta) & \text{implication elimination} \end{array}$

 $\begin{array}{ll} \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \wedge (\beta \Rightarrow \alpha)) & \text{biconditional eliminatio} \\ (\alpha \wedge \beta) \equiv (\neg \alpha \vee \neg \beta) & \text{De Morgan} \\ (\alpha \vee \beta) \equiv (\neg \alpha \wedge \neg \beta) & \text{De Morgan} \\ \beta \vee \gamma)) \equiv ((\alpha \wedge \beta) \vee (\alpha \wedge \gamma)) & \text{distributivity of } \wedge \text{ over } \vee \\ \beta \wedge \gamma)) \equiv ((\alpha \vee \beta) \wedge (\alpha \vee \gamma)) & \text{distributivity of } \vee \text{ over } \wedge \end{array}$

11

Resolution --- Example

- $\forall x \text{ King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)$
- King(John)
- ∀x Greedy(x) = ∀y Greedy(y) (Standardizing apart: eliminates
- Brother(Richard, John) overlap of variables)

 α : Evil(John)

Convert to CNF

- $\forall x \text{ King}(x) \land \text{Greedy}(x) \Rightarrow \text{Evil}(x)$
 - \neg (King(x) \land Greedy(x)) \lor Evil(x) (Implication Elimination)
 - \neg King(x) $\lor \neg$ Greedy(x) \lor Evil(x) (De Morgan)

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

12

Resolution --- Example

siaxiii ana meana (i araa

13

13

Probability

CS47100 (Fall 2024)

14

Jiaxin and Medha (Purdue)

Probabilities

Probability space (Ω, \mathcal{F}, P)

- Sample Space Ω (Possible outcomes)
- \mathcal{F} = Events = a set of subsets of Ω
 - An event is a subset of Ω
- P =Probability measure on \mathcal{F}
- P(A) = Probability of event A.

Dice roll:

 Ω ={1,2,3,4,5,6}

Event A = Getting 1 = {1}.
$$P(A) = P({1}) = \frac{1}{6}$$

Event B = Getting 1 or 3 = {1,3} $P(B) = P({1,3}) = \frac{2}{6}$

$$P(B) = P(\{1,3\}) = \frac{2}{6}$$

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

15

Expectations

- The expected value of a random variable is the average, weighted by the probability distribution over outcomes
- Example: How long to get to the airport?

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Independence

- Two variables are independent if:
 - This says that their joint distribution factors into a product two simpler distributions $\forall x, y : P(x, y) = P(x)P(y)$
 - Another form: $\forall x, y : P(x|y) = P(x)$
 - We write: $X \perp \!\!\! \perp Y$
- Independence is a simplifying modeling assumption
 - Empirical joint distributions at best "close" to independent
 - What could we assume for {Weather, Traffic, Cavity, Toothache}?

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

17

17

The Product Rule

• Sometimes have conditional distributions but want the joint distribution

$$P(y)P(x|y) = P(x,y)$$
 \longrightarrow $P(x|y) = \frac{P(x,y)}{P(y)}$

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

The Chain Rule

 More generally, can always write any joint distribution as an incremental product of conditional distributions

$$P(x_1, x_2, x_3) = P(x_1)P(x_2|x_1)P(x_3|x_1, x_2)$$

$$P(x_1, x_2, \dots, x_n) = \prod_{i=1}^n P(x_i|x_i, \dots, x_n)$$

- $P(x_1, x_2, \dots x_n) = \prod_i P(x_i | x_1 \dots x_{i-1})$
- · Why is this always true?
 - Repeated application of product rule

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

10

19

Bayes' Rule

• Two ways to factor a joint distribution over two variables:

$$P(x,y) = P(x|y)P(y) = P(y|x)P(x)$$

• Dividing P(y), we get:

$$P(x|y) = \frac{P(y|x)}{P(y)}P(x)$$

- Why is this at all helpful?
 - Let's us build one conditional from its reverse
 - Often one conditional is tricky but the other one is simple
 - · Foundation of many systems we'll see later

Reverend Thomas Bayes

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Bayesian Network

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

21

Bayesian Network (BN) Semantics

- A set of nodes, one per random variable X
- A directed, acyclic graph
- A conditional distribution for each node
 - A collection of probability distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$

- CPT: conditional probability table
- Description of a noisy "causal" process

 $P(X|A_1 \ldots A_n)$

Bayesian network = Topology (graph) + Local Conditional Probabilities

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Probabilities in BNs

Why are we guaranteed that BN results in a proper joint distribution?

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

- $P(x_1,x_2,\dots x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$ Chain rule (valid for all distributions): $P(x_1,x_2,\dots x_n) = \prod_{i=1}^n P(x_i|x_1\dots x_{i-1})$
- Assume conditional independence: $P(x_i|x_1,...x_{i-1}) = P(x_i|parents(X_i))$
 - \rightarrow Consequence: $P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$
- A BN cannot represent all possible joint distributions
 - The topology enforces certain conditional independencies

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

23

Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!
- A path is active if each triple is active:
 - Causal chain $A \to B \to C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendants is observed
- In a path, if one triple is inactive, the entire path is inactive

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

D-Separation

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1},...,X_{k_n}\}$?
- ullet Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence **not guaranteed**

$$X_i \searrow X_j | \{X_{k_1},...,X_{k_n}\}$$
 Maybe?

 Otherwise (i.e., if all paths are inactive), then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

25

25

Simple sampling

- Given an empty network (no evidence)
 - Begin with nodes without parents
 - Sample from CPDs sequentially to instantiate all nodes
- This will produce one sample from the joint distribution
- Do this many times to produce an empirical distribution that approximates the full joint distribution.

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Rejection sampling

- Sample the network as before
 - but discard samples that don't correspond with the evidence.
- Similar to real-world estimation procedures, which use observation
- However, it is hopelessly expensive for large networks where P(e) is small
 - Very few observations consistent with evidence...

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

27

27

Likelihood weighting

- Do simple sampling as before...
 - But only generate samples that are consistent with the evidence
 - And weight the likelihood of each sample based on the evidence
- More efficient than rejection-based sampling since we use all the samples generated
- ... but performance degrades as number of evidence variables increases
- Cannot deal with complex evidence (e.g., rain or sprinkler on).

 Jiaxin and Medha (Purdue)
 CS47100 (Fall 2024)
 28

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

29

29

Markov Decision Processes

- An MDP is defined by:
 - Set of states $s \in S$
 - Set of actions $a \in A$
 - Transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s'|s,a)
 - Also called the model or the dynamics
 - Reward function R(s, a, s')
 - Sometimes just R(s) or R(s')
 - Start state s₀
 - Maybe a terminal state
- MDPs are non-deterministic search problems

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

30

Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - · Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed
- Recursive definition of value (Bellman Equation):

$$\begin{split} V^*(s) &= \max_{a} Q^*(s, a) \\ Q^*(s, a) &= \sum_{s'} P(s'|s, a) \left[R(s, a, s') + \gamma V^*(s') \right] \\ V^*(s) &= \max_{a} \sum_{s'} P(s'|s, a) \left[R(s, a, s') + \gamma V^*(s') \right] \end{split}$$

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

24

31

Computing Actions from Values

- Let's imagine we have the optimal values $V^*(s)$
- How should we act?
 - Not so obvious...?
- We need to do a mini-expectimax (one step)

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Policy Iteration

- Evaluation: For fixed current policy π , find values with policy evaluation:
 - Solve n linear equations with n unknowns
 - Iterate until values converge:

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} P(s'|s, \pi_i(s)) \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- Improvement: For fixed values, get a better policy using policy extraction
 - One-step look-ahead:

$$\pi_{i+1}(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} P(s'|s, a) \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

 Jiaxin and Medha (Purdue)
 CS47100 (Fall 2024)
 33

33

Reinforcement Learning

Jiaxin and Medha (Purdue) CS47100 (Fall 2024) 34

Reinforcement Learning

- Assume a Markov decision process (MDP):
 - A set of states S
 - A set of actions (per state) A
 - A model *T*(*s*, *a*, *s*')
 - A reward function R(s, a, s')

- Still looking for a policy $\pi(s)$
- New twist: T or R is unknown
 - I.e., we don't know which states are good or what the actions do
 - Must try out actions and states to learn

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

35

35

Passive Reinforcement Learning

- Simplified task: policy evaluation
 - Input: a fixed policy $\pi(s)$
 - You don't know the transitions T(s, a, s')
 - You don't know the rewards R(s, a, s')
 - Goal: learn the state values $V^{\pi}(s)$

- In this case:
 - Learner is "along for the ride"
 - No choice about what actions to take
 - Just execute the policy and learn from experience
 - This is **NOT** offline planning. Agent **must take** actions in the world.

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Temporal Difference (TD) Learning

- Big idea: learn from every experience
 - Update V(s) each time we experience a transition (s, a, s', r)
 - Likely outcomes s' will contribute updates more often

- Temporal difference learning of values
 - Policy still fixed, still doing evaluation!
 - Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s):
$$V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$$

Same update:
$$V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$$
 "Temporal Difference"

CS47100 (Fall 2024)

Jiaxin and Medha (Purdue)

37

Q-Learning

Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s, a, s', r)
 - Consider your old estimate: Q(s,a)
 - · Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

Incorporate the new estimate into a running average:

$$Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) [sample]$$

this is TD Q-learning

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Active Reinforcement Learning

- Full Reinforcement learning: find optimal policies (like value iteration)
 - You don't know the transitions T(s, a, s')
 - You don't know the rewards R(s, a, s')
 - You choose the actions now
 - Goal: learn the optimal policy / values

• In this case:

- Learner makes choices
- Fundamental tradeoff: exploration vs. exploitation
- This is NOT offline planning. You must take actions in the world and find out what happens...

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

20

39

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε , act randomly
 - With (large) probability 1- ε , act on current policy
- Problems with random actions?
 - You do eventually explore the space but keep acting randomly once learning is done..
 - One solution: lower ε over time
 - Another solution: exploration functions

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Exploration Functions

- Random actions: explore a fixed amount
- Better idea: explore areas whose value has not (yet) established, eventually stop exploring
- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility (k>0), e.g., f(u, n) = u + k/n

 $\textbf{Regular Q-Update: } Q(s,a) \leftarrow (1-\alpha)Q(s,a) + \alpha[R(s,a,s') + \gamma \max_{a'} Q(s',a')]$

Modified Q-Update: $Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left[R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))\right]$

 Note: this propagates the "bonus" back to states that lead to unknown states as well!

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

11

41

Generalizing Across States

- Basic Q-Learning keeps a table of all Q-values
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training
 - Too many states to hold the Q-tables in memory

- Learn about some small number of training states from experience
- Generalize that experience to new, similar situations
- This is the fundamental idea in machine learning

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Linear Value Functions

• Using a feature representation, we can write a q function (or value function) for any state using a few weights:

$$V(s) = w_1 f_1(s) + w_2 f_2(s) + \dots + w_n f_n(s)$$

Advantage: our experience is summed up in a few powerful numbers

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

• Disadvantage: states may share features but are very different in value!

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

12

43

Approximate Q-Learning

• Q-learning with linear Q-functions:

$$Q(s,a) = w_1 f_1(s,a) + w_2 f_2(s,a) + \dots + w_n f_n(s,a)$$

transition
$$=(s, a, r, s')$$

$$\text{difference} = \left[r + \gamma \max_{a'} Q(s', a')\right] - Q(s, a)$$

$$Q(s,a) \leftarrow Q(s,a) + \alpha \, [\text{difference}]$$
 Exact Q's

 $w_i \leftarrow w_i + \alpha \, [ext{difference}] \, f_i(s,a)$ Approximate Q's

- Intuitive interpretation:
 - Adjust weights of active features, e.g., if something unexpectedly bad happens, blame the features that were on: "dis-prefer" all states with that state's features

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Supervised Learning

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

45

K-Nearest Neighbor Algorithm

- Classification Model:
 - Training set $\mathcal{D} = \left\{ \left(x^{(n)}, y^{(n)} \right) \right\}_{n=1}^{N}$
- In Nearest Neighbor, $\theta = \mathcal{D}$ (memorize the training set!)
- Given a "distance metric" d(x, x')
 - Find the K closest example to x, denoted as $\{n\} = S_K(x, \mathcal{D})$
- Model:

•
$$f_{\theta}(y|x) = \arg\max_{y} P(Y = y|x)$$

•
$$f_{\theta}(y|x) = \arg \max_{y} P(Y = y|x)$$

• $P(Y = y|x; D) = \frac{1}{K} \sum_{n \in S_K} \mathbf{1}[y^{(n)} = y]$

1(statement) = 1 ifstatement is true, else 0

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Naive Bayes --- Prediction

- Naïve Bayes: features are conditionally independent given target
- How to make a prediction?

• Compute the probability $argmax_y P(Y = y | x_1, x_2, ...)$

• How to compute $P(Y|x_1, x_2, ...)$?

•
$$P(Y|x_1, x_2, ...) = P(Y, x_1, x_2, ...)/P(x_1, x_2, ...)$$

 $\propto P(Y, x_1, x_2, ...)$

• $P(Y, x_1, x_2, ...) = P(Y) \prod_k P(x_k | Y)$

 X_1 X_2 X_K

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

47

47

Laplace's estimate (extended)

Pretend you saw every outcome k extra times

$$P_{LAP,k}(x) = \frac{c(x) + k}{N + k|X|}$$

- What's Laplace with k = 0? $P_{LAP,0}(X) =$
- k is the strength of the prior $P_{LAP,1}(X) = P_{LAP,100}(X) =$
- Laplace for conditionals:
 - Smooth each condition separately:

$$P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$$

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

Training/validation/test cycle

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

49

S-fold cross validation

White: training data; red: validation data.

Every data point serves in the training and the validation dataset:

- Split data into **S** equal parts.
- Use each part in turn as a validation dataset and use the others as a training dataset.
- Choose the hyperparameter leading to best average performance.
- Leave-one-out cross validation: every data point is used as the validation once.

• I.e.,
$$S = |\mathcal{D}|$$

Jiaxin and Medha (Purdue) CS47100 (Fall 2024)

Last slide!

- Course Evaluation
 - Survey End Date: 12/8/2024
- Time:
 - Thu 12/12 08:00AM 10:00AM
- Location:
 - BHEE 129
- What to bring:
 - Cheat Sheet
 - Calculator
 - University ID
 - Pen, Pencil

Jiaxin and Medha (Purdue)

CS47100 (Fall 2024)

51