Chapitre 15

Probabilités

1. <u>Dénombrements (rappels de M.P.S.I.)</u>

- 1.1. Cardinaux
- 1.2. Applications
- 1.3. Injections
- 1.4. Permutations de E
- 1.5. Parties d'un ensemble
- 1.6. Compléments
 - Formules de Pascal, de Pascal généralisée, de Vandermonde.

2. Espaces probabilisés

- 2.1. Tribus
 - a) Rappel du vocabulaire de M.P.S.I.
 - b) Tribu sur un ensemble Ω
 - Définitions : tribu, espace probabilisé, système complet d'événements
 - Exemples.

Propriétés : Soit \mathcal{T} une tribu sur un ensemble Ω .

- lacksquare $\mathcal T$ contient l'événement certain Ω et l'événement impossible \varnothing .
 - autrement dit : $\Omega \in \mathcal{T}$ et $\varnothing \in \mathcal{T}$
- $+\mathcal{I}$ est stable par réunion finie.
- \clubsuit \mathcal{T} est stable par intersection finie ou dénombrable.
- \clubsuit \mathcal{T} est stable par soustraction ensembliste.
 - Démonstration de la stabilité par intersection

2.2. Probabilité

- a) Rappel du vocabulaire de M.P.S.I.
- b) <u>Définition</u>: probabilité, espace probabilisé
- c) Détermination d'une probabilité lorsque Ω est fini (rappels M.P.S.I.)
- d) Détermination d'une probabilité lorsque Ω est dénombrable

2.3. Propriétés élémentaires (revisite de celles vues en M.P.S.I.)

2.4. Propriétés des suites d'événements

Propriété de la continuité croissante

Soit A_n une suite d'événements croissante pour l'inclusion autrement dit : $\forall n \in \mathbb{N} \ A_n \subset A_{n+1}$,

alors la suite $\ P \ A_n \ _{n \in \mathbb{N}}$ converge et $\lim_{n \to +\infty} P \ A_n \ = P \bigg(\bigcup_{n=0}^{+\infty} A_n \bigg).$

• Démonstration

Propriété de la continuité décroissante

Soit A_n une suite d'événements décroissante pour l'inclusion autrement dit : $\forall n \in \mathbb{N} \ A_{n+1} \subset A_n$,

alors la suite P A_n converge et $\lim_{n \to +\infty} P$ $A_n = P \left(\bigcap_{n=0}^{+\infty} A_n \right)$.

• Démonstration

Inégalité de Boole (sous-additivité)

Soit A_n une suite d'événements, alors $P\left(\bigcup_{n=0}^{+\infty}A_n\right)\leqslant \sum_{n=0}^{+\infty}P$.

• Démonstration

2.5. Evénements négligeables, événements presque sûrs.

<u>Propriété</u>: Toute réunion finie ou dénombrable d'événements négligeables est négligeable.

Démonstration

3. Probabilités conditionnelles

3.1. Définition

• L'application $P_{\!\scriptscriptstyle B}:\mathcal{T}\to\,0,1\,$ définit une probabilité sur $\,\Omega,\mathcal{T}\,$ Démo

3.2. Inversion des conditionnements

<u>Proposition</u> Soient A et B deux événements non négligeables.

Alors
$$P_B(A) = \frac{P(A) \times P_A(B)}{P B}$$

• Démonstration

3.3. Formule des probabilités composées

<u>Théorème</u>: formule des probabilités composées

Soit
$$A_{i \in 1,n} \in \mathcal{T}^n$$
 telle que $P\left(\bigcap_{i=1}^{n-1} A_i\right) > 0$. Alors
$$P\left(\bigcap_{i=1}^n A_i\right) = P A_1 \times P_{A_1} A_2 \times P_{A_1 \cap A_2} A_3 \times ... \times P_{A_1 \cap A_2 \cap ... \cap A_{n-1}} A_n.$$

• Démonstration

Formule des probabilités totales 3.4.

Théorème : formule des probabilités totales

Soit A_{n} un système complet d'événements non négligeables.

Soit $B \in \mathcal{T}$. Alors la série $\sum P \ B \cap A_{\!\scriptscriptstyle n} \$ converge et

$$P(B) = \sum_{n=0}^{+\infty} P \ B \cap A_n \ = \sum_{n=0}^{+\infty} P \ A_n \ imes P_{A_n} \ B$$

Démonstration

3.5.Formule de Bayes

Théorème : formule de Bayes

Soit A_{n} système complet d'événements non négligeables. Soit $B\in\mathcal{T}$.

Alors la série
$$\sum P$$
 $B \cap A_n$ converge et $P_B(A_j) = \frac{P$ A_j $\times P_{A_j}$ B $\sum_{n=0}^{+\infty} P$ A_n $\times P_{A_n}$ B

Démonstration

4. Evénements indépendants

- Couple d'événements indépendants 4.1.
 - a) Définition
 - b) <u>Propriétés</u>

<u>Propriété 1</u> Si P $A \neq 0$, A et B sont indépendants $\Leftrightarrow P_A$ B = P B.

Propriété 2 Si A et B sont indépendants, alors A et B sont indépendants.

Démonstration

4.2.Famille d'événements indépendants

- a) Définition: famille dévénements deux à deux (resp. mutuelement) indépendants
- b) <u>Propriétés</u>

Propriété 1 L'indépendance mutuelle entraîne l'indépendance deux à deux.

Si A_n est une suite d'événements mutuellement Propriété 2

$$\text{indépendants, alors}: \quad P\!\left(\bigcap_{n=0}^{+\infty}A_{n}\right) = \lim_{n \to +\infty}\prod_{k=0}^{n}P \ A_{k} \ = \prod_{n=0}^{+\infty}P \ A_{n} \ .$$

Démonstration

Si A_{i} est une famille d'événements mutuellement Propriété 3 indépendants, alors la famille $\ B_{i}_{\ i\in I}$ l'est aussi, où $\ \forall i\in I\ :\ B_{i}=A_{i}$ ou $\overline{A_{i}}$.

4.3. Schéma de Bernoulli, épreuves répétées

* Epreuve de Bernoulli, schéma de Bernoulli, formule $\binom{n}{k} p^k q^{n-k}$.