Deep learning in computer vision - image segmentation

Sean, 201807

Quick Review: Tasks in computer vision

Semantic segmentation

Instance segmentation

Classification

The birth of computer vision: backbone of other tasks

Classification is an easy problem?

NO

Imagenet Large Scale Visual Recognition Challenge (ILSVRC)
of classification

2010 - 2017

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

Human performance: ~5% error rate

https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

Classification is an easy problem?

- No, there are lots of problems you'll met in classification problems.
 - · data imbalance
 - noisy label
 - ultra big image
 - 3d image (e.g. PET/CT) or multi-sources (e.g. radiology + pathology)
 - •
- To overcome these problems, you might need to ...
 - Have a better pre-processing pipeline (e.g. generator & multi-processing)
 - Do lots of reasonable augmentation
 - Batching skills
 - Modify network structures
 - Modify loss functions

Classification is an easy problem?

- No, there are lots of problems you'll met in classification problems.
 - data imbalance
 - noisy label
 - ultra big image
 - 3d image (e.g. PET/CT) or multi-sources (e.g. radiology + pathology)
 - But these are not problems TODAY!
- To overcome these problems, you might need to ...
 - Have a better pre-processing pipeline (e.g. generator & multi-processing)
 - Do lots of reasonable augmentation
 - Batching skills
 - Modify network structures
 - Modify loss functions

Today's talk

- Semantic segmentation Sean
- Instance segmentation Jimmy

Semantic segmentation

Examples of semantic segmentation

CityScape

Digital pathology

Prediction

Data labeling

Credit: https://www.jeremyjordan.me/semantic-segmentation/#advanced_unet

Model.01 – AE-like DCNN

- Intuition
 - Input size = output size
 - Output: softmax with n-classes masks
 - Model = feature extractor

Encoder

Original

Decoder

Reconstruction

Compressed

Model.01 – AE-like DCNN

- Intuition
 - Input size = output size
 - Output: softmax with n-classes masks

- OOM! (Out-of-Memory)
- Filters cannot build-up larger components (Receptive field)

OOM issue in DCNN-AE

 Intuition: with all convolution net, parameters are far less than MLP-like network, it should cost less

Receptive fields

From small to larger, from simple to complex

Model.02 – DCNN – down-sampling + up-sampling

- Intuition
 - Input size = output size
 - Down-sample to encode features and upsampling to build map
 - Output: softmax with n-classes masks

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Predictions: H x W

Method to up-sampling images

Directly unpool, no params (not learnable)

Unpool with parameters

> There is side effect: if overlap between filters, checkerboard artifact will emerge.

Checkerboard artifacts

https://distill.pub/2016/deconv-checkerboard/

Problems in down-sampling – up-sampling FCN

Ground truth target

Predicted segmentation

- Spatial resolution loss
 - Cannot do fine-grained segmentations

Model.03 – up/down-sampling + skip connections

U-Net

Model.03 – up/down-sampling + skip connections

 Modified U-net: with different backbone or add residual/skips connections

Model.04 – Dilate convolution module

- Convolution multiple times and maxpool/stride
 - Receptive field problem
 - Do we need to use multiple pooling / strides to get larger receptive fields?

Model.04 – Dilate convolution module

Loss functions

- Do we only have cross-entropy?
 - potential problems
 - if your various classes have unbalanced representation in the image, as training can be dominated by the most prevalent class

$$-y\log\hat{y}-(1-y)\log(1-\hat{y})$$

Fully Convolutional Networks for Semantic Segmentation

- Simple method to overcome classes imbalance problem
 - Just evaluate the intersection of union (Dice-loss)
 - It will become very important issue for bio-medical images
 - Jaccard Index

$$Dice = \frac{2 \cdot |mask \cap prediction|}{|mask| + |prediction|}$$

Generalised Dice overlap as a deep learning loss function for highly unbalanced segmentations

Loss functions

X-loss

X-loss + Jaccard loss

GT

Codes on Multi-Organ-Nuceli-Segmentation

- https://monuseg.grand-challenge.org/
- Instance segmentation task
- Current path
 - Semantic segmentation → Instance segmentation
 - Unet version
 - DeeplabV3+ version
 - ---
 - Loss function modification with metric learning (discriminative loss)
 - Semantic Instance Segmentation via Deep Metric Learning
 - Recurrent Pixel Embedding for Instance Grouping
 - Direct instance segmentation (with Mask-RCNN)

Loss function modification with metric learning

$$L_{var} = \frac{1}{C} \sum_{c=1}^{C} \frac{1}{N_c} \sum_{i=1}^{N_c} \left[\|\mu_c - x_i\| - \delta_{\mathbf{v}} \right]_+^2$$
 (1)

$$L_{dist} = \frac{1}{C(C-1)} \sum_{\substack{c_A=1 \ c_B=1 \\ c_A \neq c_B}}^{C} \sum_{\substack{c_B=1 \ c_B=1}}^{C} \left[2\delta_{d} - \|\mu_{c_A} - \mu_{c_B}\| \right]_{+}^{2}$$
 (2)

$$L_{reg} = \frac{1}{C} \sum_{c=1}^{C} ||\mu_c|| \tag{3}$$

$$L = \alpha \cdot L_{var} + \beta \cdot L_{dist} + \gamma \cdot L_{reg} \tag{4}$$

Semantic Instance Segmentation via Deep Metric Learning

Network architecture proposed in Semantic Instance Segmentation via Deep Metric Learning

Recurrent Pixel Embedding for Instance Grouping

New tasks in computer vision: Pantropic segmentation labeling all the things!

https://arxiv.org/pdf/1801.00868.pdf