Retele Neurale Convolutionale II

Agenda

- LeNet (1998)
- ImageNet ILSVRC
- AlexNet (2012)
- VGGNet 16/19 (2014)
- GoogLeNet (2014)
- ResNet (2015)
- Inception-ResNet (2016)
- NasNet (2017)

Real-Time on Mobile:

MobileNets (2017)

Nice Reading

https://medium.com/@siddharthdas 32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

LeNet-5 [LeCun et al., 1998]

- 2 Convolutii 5x5 cu stride 1
- Subsampling: Max Pooling 2x2 cu stride 2
- 5 layere antrenabile (cu parametri)
- 2 operatii de maxpool
- [CONV-POOL-CONV-POOL-FC-FC]
- > 98.5 % accuracy on MNIST

ImageNet

- Peste 15M de imagini high-resolution (nu 32x32;))
- Aproximativ 22K categorii corespunzatoare synset-urilor din WordNet
 - WordNet: https://wordnet.princeton.edu/
- Colectate de pe internet si label-uite manual (Amazon Mechanical Turk)

ImageNet ILSVRC

ILSVRC (ImageNet Large Scale Visual Recognition Challenge)

- 1000 de clase
- Competitie de clasificare + localizare
- 1.2 milioane imagini de train
- 50K imagini de validare (publice)
- 150K imagini de test
- Evaluare acuratete top-5
 - Categoria corecta este in primele 5 categorii prezise?
- Pana in 2012 ~25% eroare decenta
- Necesitatea unei arhitecturi deep
- Deep revolution (2012): breakthrough ~16 % AlexNet

ImageNet ILSVRC

Specii de caine din rase diferite. Clase diferite

(a) Siberian husky

(b) Eskimo dog

Castigatorii ILSVRC

Human-level performance: 5.1 %

Imagenet ILSVRC

- Embedding in care imaginile sunt afisate exact in locatia proiectata
- Proiectam spatiul 4096-dimensional in 2 dimensiuni

t-SNE embeddings
https://lvdmaaten.github.io/tsne/
https://cs.stanford.edu/people/karpathy/cnnem
bed/

AlexNet [Krizhevsky et al. 2012]

- Castigatorul ILSVRC 2012;
- 16.4 % eroare top-5 ILSVRC
 - Prima data cu CNN
- ReLU (pt prima data)
- Grouping pe 2 GPUs
 - Limitat de 3 GB pt GPU
- Local Repsonse Normalization
 - Inlocuita de BatchNorm
- 8 layere antrenabile
 - o 5 CONV
 - o 3 FC

AlexNet

Castigatorii ILSVRC

Castigatorii ILSVRC: ZFNet [Zeiler and Fergus, 2013]

CONV1: schimba CONV (11x11 stride 4) in (7x7 stride 2) CONV3,4,5: in loc de 384, 384, 256 filtre folosim 512, 1024, 512

Castigatorii ILSVRC (2014)

VGGNet [Simonyan and Zisserman, 2014]

- Retea mai deep
- Runner-up in 2014 pe clasificare
 - Castigator pe restul task-urilor
 - 7.3 % eroare top-5 pe ILVSRC 2014
- Arhitectura simplificata
 - Doar CONV 3x3 cu stride 1, pad 1
 - Subsampling cu MaxPool 2x2 / 2
 - In general, dubleaza numarul de filtre dupa fiecare subsample
 - VGGNet-16: 13 CONV 3x3 + 3 FC
 - VGGNet-19: 16 CONV 3x3 + 3 FC
- VGG19 e doar putin mai bun

Softmax				
FC 1000				
FC 4096				
FC 4096				
Pool				
3x3 conv, 512				
3x3 conv, 512				
3x3 conv, 512				
Pool				
3x3 conv, 512				
3x3 conv, 512				
3x3 conv, 512				
Pool				
3x3 conv, 256				
3x3 conv, 256				
3x3 conv, 256				
Pool				
3x3 conv, 128				
3x3 conv, 128				
Pool				
3x3 conv, 64				
3x3 conv, 64				
Input				
1/00/40				

Softmax FC 1000 FC 4096 FC 4096 Input VGG19

VGG16

VGGNet [Simonyan and Zisserman, 2014]

- De ce conv mai mici 3x3?
- De ce doar conv 3x3 cu stride 1?

Softmax FC 1000 FC 4096 FC 4096 Input

FC 1000 FC 4096 FC 4096 Pool Input

Softmax

VGG16

VGG19

VGGNet [Simonyan and Zisserman, 2014]

- De ce conv mai mici 3x3?
- De ce doar conv 3x3 cu stride 1?
 - Convolutiile mari sunt ineficiente. 3x3 e lightweight
 - Mai deep decat 7x7
 - 3 conv 3x3 stack-uite au acelasi receptive field ca un singur layer 7x7. De ce?
 - Au mai multe non-linearitati decat un singur 7x7
- Pastrand constant pe nivel depth-ul D:
 - 3 x (3x3xDXD) parametri pentru 3 conv 3x3
 - 1 x (7x7xDxD) parametri pentru 1 conv 7x7
 - \circ $(7x7)/(3x3x3) \sim 1.81$ mai multi parametri pt 7x7

Softmax FC 1000 FC 4096 FC 4096 Input

Softmax FC 1000 FC 4096 FC 4096 Input

VGG16

VGG19

GoogLeNet (2014)

- 6.66% eroare de clasificare top 5 pe ImageNet
- Componenta de bază modulul *Inception* (practic o mini-rețea în cadrul unei rețele mai mari)

Modulul *Inception*

- Necesitatea alegerii tipului de convoluţie la nivelul fiecărui layer (3x3, 5x5...)
- Soluție: Le folosim pe toate și lăsăm rețeaua să decidă
- Adăugăm convoluțiile în paralel și concatenăm rezultatele înainte de a trece la nivelul următor

Modulul *Inception* - Arhitectură

- Varietate de convoluţii: 1x1, 3x3, 5x5
- Convoluții 1x1 înaintea convoluțiilor 'mari' (3x3, 5x5), pentru reducerea dimensionalității
- Maxpooling 3x3 din considerente istorice (toate arhitecturile bune aveau pooling)

Modulul *Inception* - Arhitectură naivă

 Exemplu: care este numărul de operații pe ramura 3 (convoluție 5x5)?

Modulul *Inception* - Arhitectură naivă

- Exemplu: care este numărul de operații pe ramura 3 (convoluție 5x5)?
- 5*5*28*28*192*32 = 120M

Modulul *Inception*

 Exemplu: care este numărul de operații pe ramura 3 (convoluție 5x5)?

Modulul *Inception*

- Exemplu: care este numărul de operații pe ramura 3 (convoluție 5x5)?
- 1*1*28*28*192*16 + 5*5*28*28*16*32 = 12M

ResNet (2015)

- 3.56% eroare de clasificare top 5 pe ImageNet
- Teorema Aproximării Universale: O rețea neurală feedforward cu un singur strat intermediar conținând un număr finit de neuroni (i.e perceptron multi-strat) poate aproxima orice funcție continuă
- Probleme: 1. posibil număr uriaș de neuroni; 2. predispunere la overfitting
- Soluție: rețele neurale mai adânci
- Problema rețelelor neurale adânci: diminuarea gradienților
- Soluţii:
 - adăugarea unor funcții de loss suplimentare în straturile intermediare (vezi GoogLeNet);
 - o adăugarea de conexiuni *reziduale*

ResNet - Arhitectură

Blocul Rezidual - Arhitectură

Blocul Rezidual - Variante

ResNeXt

Inception-ResNet (2016)

- 3.08% eroare de clasificare top-5 pe ImageNet
- Se pune întrebarea dacă există vreun beneficiu în adăugarea de conexiuni reziduale în arhitectura Inception

Inception-ResNet (2016)

- 3.08% eroare de clasificare top-5 pe ImageNet
- Se pune întrebarea dacă există vreun beneficiu în adăugarea de conexiuni reziduale în arhitectura Inception
- Conexiunile reziduale accelerează semnificativ antrenarea arhitecturilor Inception

Inception-ResNet (2016)

- 3.08% eroare de clasificare top-5 pe ImageNet
- Se pune întrebarea dacă există vreun beneficiu în adăugarea de conexiuni reziduale în arhitectura Inception
- Conexiunile reziduale accelerează semnificativ antrenarea arhitecturilor Inception

- 3.8% eroare de clasificare top-5 pe ImageNet
- 17.3% eroare de clasificare top-1 (cu 1.2% mai bine decât cea mai bună rețea inventată de om)

- 3.8% eroare de clasificare top-5 pe ImageNet
- 17.3% eroare de clasificare top-1 (cu 1.2% mai bine decât cea mai bună rețea inventată de om)
- Provocare: Automatizarea procesului de proiectare a reţelelor convoluţionale prin învăţarea de arhitecturi direct pe setul de date de interes (Google AutoML)

- 3.8% eroare de clasificare top-5 pe ImageNet
- 17.3% eroare de clasificare top-1 (cu 1.2% mai bine decât cea mai bună rețea inventată de om)
- Provocare: Automatizarea procesului de proiectare a reţelelor convoluţionale prin învăţarea de arhitecturi direct pe setul de date de interes (Google AutoML)
- Problemă: Găsirea unei arhitecturi bune pe ImageNet practic imposibilă datorită dimensiunii urișe a setului

- 3.8% eroare de clasificare top-5 pe ImageNet
- 17.3% eroare de clasificare top-1 (cu 1.2% mai bine decât cea mai bună rețea inventată de om)
- Provocare: Automatizarea procesului de proiectare a reţelelor convoluţionale prin învăţarea de arhitecturi direct pe setul de date de interes (Google AutoML)
- Problemă: Găsirea unei arhitecturi bune pe ImageNet practic imposibilă datorită dimensiunii urișe a setului
- Soluţie: Căutarea unei reţele bune pe un set mult mai mic (CIFAR-10) şi transferul acesteia pe ImageNet

- 3.8% eroare de clasificare top-5 pe ImageNet
- 17.3% eroare de clasificare top-1 (cu 1.2% mai bine decât cea mai bună rețea inventată de om)
- Provocare: Automatizarea procesului de proiectare a reţelelor convoluţionale prin învăţarea de arhitecturi direct pe setul de date de interes (Google AutoML)
- Problemă: Găsirea unei arhitecturi bune pe ImageNet practic imposibilă datorită dimensiunii urișe a setului
- Soluție: Căutarea unei rețele bune pe un set mult mai mic (CIFAR-10) și transferul acesteia pe ImageNet
- Pentru a fi scalabilă, complexitatea arhitecturii trebuie să fie independentă de adâncimea rețelei și de dimensiunea inputului => utilizarea celulelor convoluționale cu structură identică, dar parametri diferiți

Evolution of Depth

Nota: raza cercului: memory footprint

An Analysis of Deep Neural Network Models for Practical Applications, 2017.

Evolution of Depth (2)

Year	CNN	Developed by	Place	Top-5 error rate	No. of parameters
1998	LeNet(8)	Yann LeCun et al			60 thousand
2012	AlexNet(7)	Alex Krizhevsky, Geoffrey Hinton, Ilya Sutskever	1st	15.3%	60 million
2013	ZFNet()	Matthew Zeiler and Rob Fergus	1st	14.8%	
2014	GoogLeNet(1 9)	Google	1st	6.67%	4 million
2014	VGG Net(16)	Simonyan, Zisserman	2nd	7.3%	138 million
2015	ResNet(152)	Kaiming He	1st	3.6%	

MobileNets [Google, 2017]

Aproximeaza convolutia cu 2 operatii:

- **K x K x 1**: convolutie **depthwise** separata pe canale fiecare filtru vede un singur canal de input
- 1 x 1 x M: convolutie **pointwise** fiecare filtru se extinde in toata adancimea input-ului
- Reduce numarul de parametri:
 - Separabil: N x (K x K + M) parametri
 - Standard: N x (K x K x M) parametri

(a) Standard Convolution Filters

(b) Depthwise Convolutional Filters

(c) 1×1 Convolutional Filters called Pointwise Convolution in the context of Depthwise Separable Convolution

Convolutii Depthwise separabile

Convolutia normala (KxKXC)

- full depth in input
- kernel size in spatiu (h,w)

Convolutia depthwise (KxKx1)

- pe un singur canal in input
- Kernel size in spatiu (h,w)

Convolutia pointwise (1x1xC)

- full depth in input
- 1x1 in spatiu (h,w)

MobileNets

Type / Stride	Filter Shape	Input Size
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$
Conv dw / s1	$3 \times 3 \times 32$ dw	$112 \times 112 \times 32$
Conv / s1	$1 \times 1 \times 32 \times 64$	$112 \times 112 \times 32$
Conv dw / s2	$3 \times 3 \times 64$ dw	$112 \times 112 \times 64$
Conv / s1	$1\times1\times64\times128$	$56 \times 56 \times 64$
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1\times1\times128\times128$	$56 \times 56 \times 128$
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$
Conv / s1	$1\times1\times128\times256$	$28 \times 28 \times 128$
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1\times1\times256\times256$	$28 \times 28 \times 256$
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$
Conv / s1	$1\times1\times256\times512$	$14 \times 14 \times 256$
5× Conv dw / s1	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv/s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$
Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$
FC / s1	1024×1000	$1 \times 1 \times 1024$
Softmax / s1	Classifier	$1 \times 1 \times 1000$

Arhitecturi mobile:

- Convolutii depthwise separabile
- CONV cu striding pentru downsampling (fara maxpool)
- Shuffling (ShuffleNet)
- Global Average Pooling in loc de FC (7x7x512 -> 1x1x512 -> Flatten)

MobileNets este parametrizabila:

- Nu avem Fully Connected -> Spatial multiplier:
 - input size diferit pe acelasi model
- Regula generala:
 - dublam numarul de canale dupa fiecare downsampling
- **Depth multiplier**: putem modifica numarul de canale din primul strat:
 - Depth mult 1.0: conv1 32 canale
 - Depth mult 0.5: conv1 16 canale
 - Filtrele de la fiecare stride (scala) downstream sunt scalate cu depth multiplier

Convolutii Depthwise separabile

Acuratete ILSVRC:

- MobileNets cu input 224x224 si full depth Top-5 89.9 %
- Top-1: 70.9 %

Nota:

- GoogleNet: 69 % Top-1
- VGG-16: 68.5 % Top-1

MobileNets:

- 4.2M parametri
- 569M Operatii Multiply-Add (224x224)

VGG-16 Net:

- 138M parametri
- 15.5G operatii Multiply-add (224x224)