

(j)

|          |  |  |  | Subject Code: KOE037 |  |  |  |  |  |
|----------|--|--|--|----------------------|--|--|--|--|--|
| Roll No: |  |  |  |                      |  |  |  |  |  |

Printed Page: 1 of 3

5

# BTECH (SEM III) THEORY EXAMINATION 2021-22 ANALOG ELECTRONICS

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If you require any missing data, then choose suitably.

#### SECTION A

|       | SECTION A                                                                                                       |        |
|-------|-----------------------------------------------------------------------------------------------------------------|--------|
| Atten | npt all questions in brief. 2*1                                                                                 | 0 = 20 |
| Qno   | Questions                                                                                                       | CO     |
| (a)   | Write name of any four diode circuits and draw low frequency hybrid- $\pi$ model of BJT.                        | 1      |
| (b)   | What is objective of different biasing schemes for BJT and FET amplifier?                                       | 1      |
| (c)   | Define different parameters used in high frequency hybrid- $\pi$ model.                                         | 2      |
| (d)   | What is effect of negative feedback on gain and bandwidth?                                                      | 2      |
| (e)   | In an RC phase shift oscillator, R = 200 K $\Omega$ and C = 200pF. Find the frequency of BJT –based oscillator. | 3      |
| (f)   | Explain Barkhausen criterion.                                                                                   | 3      |
| (g)   | Differentiate between CMRR and ICMR for a differential amplifier.                                               | 4      |
| (h)   | Determine the range of differential-mode operation of MOS differential                                          | 4      |
|       | Pair of overdrive voltage (V <sub>ov</sub> ) is 1V.                                                             |        |
| (i)   | Draw the circuit of precision half wave rectifier and its ideal transfer characteristic.                        | 5      |

#### **SECTION B**

What are the limitations of an ideal integrator?

| 2. | Atten | upt any three of the following: | 10*3 = 30 |  |
|----|-------|---------------------------------|-----------|--|
|    | Qno   | Questions                       | CO        |  |

| Qno | Questions                                                                                     | CO |
|-----|-----------------------------------------------------------------------------------------------|----|
| (a) | Draw the small signal AC equivalent circuit of a Common Drain FET                             | 1  |
|     | amplifier. Derive the expression for voltage gain, input impedance and                        |    |
|     | output impedance.                                                                             |    |
| (b) | Why class AB power amplifiers are preferred over Class B operations?                          | 2  |
|     | A transformer-coupled class A power amplifier supplies to an $80\Omega$ load                  |    |
|     | connected across the secondary of a step-down transformer having a                            |    |
|     | turn-ratio 5:1. Determine the maximum power output for a zero signal                          |    |
|     | collector of 120 mA.                                                                          |    |
| (c) | Draw the neat circuit diagram of RC phase shift oscillator and derive its                     | 3  |
|     | frequency of oscillations.                                                                    |    |
| (d) | Discuss the basic topology of current mirror and its variants with V-I                        | 4  |
|     | characteristics.                                                                              |    |
| (e) | Sketch the three-input inverting summing circuit and derive an                                | 5  |
|     | expression for the output voltage. Find out the voltages V <sub>2</sub> and V <sub>3</sub> of |    |
|     | the given network.                                                                            |    |



Printed Page: 2 of 3
Subject Code: KOE037
Roll No:

## BTECH (SEM III) THEORY EXAMINATION 2021-22 ANALOG ELECTRONICS



#### **SECTION C**

3. Attempt any *one* part of the following: 10\*1 = 10

| Qno | Questions                                                                                          | CO |
|-----|----------------------------------------------------------------------------------------------------|----|
| (a) | What is the significance of stability factor in transistor operation? A                            | 1  |
|     | voltage divider circuit has $R_1 = 39K\Omega$ , $R_2 = 82 K\Omega$ , $R_C = 3.3 K\Omega$ , $R_E=1$ |    |
|     | $K\Omega$ and $V_{CC}$ =18V. The silicon transistor used has β=120. Find Q-point                   |    |
|     | and stability factor.                                                                              |    |
| (b) | Why does gain of amplifier falls at low and high frequencies? Specify                              | 1  |
|     | different schemes of coupling in multistage amplifiers. Compare their                              |    |
|     | merits and demerits.                                                                               |    |

4. Attempt any *one* part of the following: 10 \*1 = 10

| Qno | Questions                                                                                                                                                                                                                                                                                                                                                                                                          | CO |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| (a) | Find the midband gain and the upper 3-db frequency of the common-emitter amplifier shown in given figure for the following case: $V_{CC} = V_{EE} = 10V$ , $I = 1 \text{mA}$ , $R_B = 100 \text{ K}\Omega$ , $R_C = 8 \text{ K}\Omega$ , $R_{Sig} = 5 \text{ K}\Omega$ , $R_L = 5 \text{ K}\Omega$ , $\beta_0 = 100$ , $V_A = 100V$ , $C\mu = 1 \text{pF}$ , $f_T = 800 \text{ MHZ}$ and $f_T = 500 \text{ MHZ}$ . | 2  |
| (b) | Explain the block diagram of a feedback amplifier. Draw the block diagram of voltage series feedback amplifier and find the effect of feedback on input and output impedances.                                                                                                                                                                                                                                     | 2  |



Printed Page: 3 of 3
Subject Code: KOE037
Roll No:

## BTECH (SEM III) THEORY EXAMINATION 2021-22 ANALOG ELECTRONICS

5. Attempt any *one* part of the following:

10\*1 = 10

| Qno | Questions                                                                  | CO |
|-----|----------------------------------------------------------------------------|----|
| (a) | Draw the circuit of Wien-bridge oscillator and discuss its basic           | 3  |
|     | principle of operation. Also determine frequency of oscillation.           |    |
| (b) | With a neat circuit diagram, explain the operation of Colpitts oscillator. | 3  |
|     | Derive the expression for frequency of oscillation and the minimum         |    |
|     | gain for sustained oscillations.                                           |    |

6. Attempt any *one* part of the following:

10\*1 = 10

| Atten | inpt any one part of the following.                                                                                                                                                                                                                                          | 1 – 10 |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Qno   | Questions                                                                                                                                                                                                                                                                    | CO     |
| (a)   | Write short notes on any two of the following: (i)Minimum sustainable voltage(VON) (ii)Maximum usable load (iii) Differential gain and Common mode gain                                                                                                                      | 4      |
| (b)   | Give the differential half-circuit of the differential amplifier shown in given figure. Assume that $Q_1$ and $Q_2$ are perfectly matched. Neglecting $r_0$ , determine the differential voltage gain. $ V_{DD} \\ V_{CM} + \frac{v_{id}}{2} $ $ V_{CM} - \frac{v_{id}}{2} $ | 4      |

7. Attempt any *one* part of the following: 10\*1 = 10

|     | -p                                                                                         |    |
|-----|--------------------------------------------------------------------------------------------|----|
| Qno | Questions                                                                                  | CO |
| (a) | Explain how a Schmitt Trigger circuit works with a neat diagram.                           | 5  |
|     | Design an Schmitt trigger with $V_{UT} = 2V$ , $V_{LT} = -1V$ . Assume $\pm V_{Sat} = -1V$ |    |
|     | ±13V                                                                                       |    |
| (b) | How is order of filter decided? Design a wide band pass filter to meet                     | 5  |
|     | the following specifications: $f_1 = 5kHz$ , $f_2 = 15kHz$ and Pass band                   |    |
|     | gain=2.                                                                                    |    |