NASA

Evaluation of OSAM-1 Camera Focus Shift in a Simulated Orbital Pressure Environment

Kevin H. Miller¹, Sarah E. Eckert¹, and Stephen Cheney²

¹NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

²NASA Marshall Space Flight Center, Huntsville, Alabama, USA

- OSAM-1 Overview & Concept of Operations
- Long Range Inspection Camera & Test Motivation
- Test Facility & Configuration
- Results
- Conclusions

-

OSAM-1 Mission Overview

Category/Class	Category 1 / Class C	
Mission Life	1 year	
Launch	2026	
Launch Vehicle	Atlas V or Falcon-9	
Launch Site	VAFB or KSC	
Servicing	Landsat 7	
Assembly	Ka Antenna	
Manufacturing	Beam	

OSAM-1 will demonstrate:

- Autonomous rendezvous and inspection
- · Autonomous capture of client satellite
- Tele-operated robotic servicing
- · Refueling of client satellite
- · Relocation of client satellite
- Release and safely depart from client
- · On-orbit assembly of an antenna
- On-orbit manufacturing of a beam

Robotic Servicing

OSAM-1 Concept of Operations: Servicing

Long Range Inspection Camera (LRIC) Overview

LRIC is a custom instrument that will meet the long-range inspection requirements of OSAM-1;
 namely, to detect a 1 cm sized object at 100 m distance.

LRIC Component Specifications		
Camera: Detector: Type: Resolution: Pixel Pitch: ADC:	Malin Space Science Systems (MSSS) VSS Camera ON-Semi Python 5000 Color CMOS w/ global shutter 2592 (H) x 2048 (V) pixels 4.8 µm On-chip 8 or 10 bit	
Optics: Focal Length: Field of View: Aperture: Focus Distance: Depth of Field: Optical Design:	Custom Lens Design by Ruda Cardinal, Inc. 182 mm 3.0° (H) x 3.0° (V) f/8.5 84 meters ~60 m - ~150 m x7 optical elements, designed to withstand space env.	
Baffle: Coating:	1000:1 out-of-field stray light rejection Z306 Paint	
Focus Spacer:	Interchangeable vacuum & air focus spacers	

LRIC FOV at 100 m

LRIC Engineering Test unit

Test Facility

- NASA Marshall Space Flight Center's Stray Light Test Facility
 - 101 m long vacuum chamber built in late 60's
 - Combination of rotary, turbo & cryo pumps achieve 10⁻⁷ Torr base pressure
 - 40x ports of various sizes for feedthroughs, etc.

Test Configuration

- Target with 1 & 2 cm line pair knockouts fixed to outside of source window
- Collimated light from return of OAP back illuminated target
 - Energetiq EQ99 light source with translucent window
- LRIC mounted on hexapod 1 m inside of detector side chamber door
 - Images captured at various exposure times, bit depths, and pressures

Sheet Metal Target

Source End

Detector End

Air Spacer in Air vs. Vacuum Spacer in Vacuum

Bar target contrast in air (air spacer) is within 1% of that in vac (vac spacer)

Model (MTF) vs. Measurement (Contrast)

- Bar target contrast is not equivalent to Modulation Transfer Function (MTF)
 - A relative comparison between the two metrics is made easier for a diffraction limited system with no center obscuration
- Error terms added in quadrature and propagated through contrast equation

Lens-only MTF from model

Configuration	Predicted System MTF	Measured Contrast
Air spacer, 760 Torr	0.63	0.66 ± 0.10
Vac spacer, 760 Torr	0.21	0.26 ± 0.05
Vac spacer, 2.7x10 ⁻⁵ Torr	0.63	0.67 ± 0.09

Optimum Exposure Time

- Bar target response is a function of camera exposure time
 - With increasing exposure time, the contrast reaches a max then declines due to increasing bias level
 - Optimum exposure time determined to be 25 ms

Predicted Focus Shift & Contrast vs. Pressure

- Predicted focus shift vs. pressure (model) levels-off at a 39 Torr; Measured contrast vs. pressure levels off at 147 Torr
 - Difference may be attributed to depth of focus of lens.

Conclusions

- Bar target contrast of back-illuminated 1 cm line pair pattern at 100m in vacuum (vac spacer) recovers to within 1% of values in air (air spacer).
 - Validates model used to determine spacer thickness.
- Demonstrated ability to detect a 1 cm object with an acceptable contrast in a static scene.
 - Predicted 5 ms exposure on-orbit bounds motion MTF loss.
- Compared measured contrast vs. pressure to modeled focus shift vs. pressure
 - Hypothesis of leveling-off pressure linked to depth of focus.