Análisis de *VENTAS de AUTOS* de una agencia de alquiler de autos de Panamá entre 2022 y 2024

Universidad Tecnológica de Panamá Modelos Predictivos Ionel Rodríguez

Abril 2025

¿De qué trata?

Es un estudio predictivo basado en las ventas de autos de una agencia de alquiler de autos de Panamá.

Los datos comprenden las ventas mensuales de 8 modelos de autos populares comprendidos entre los años 2022 y 2024.

Se espera que el estudio pueda definir los mecanísmos necesarios para realizar pronósticos que beneficien a la toma de decisiones de la agencia.

¿En qué consiste?

Análisis Descriptivo

Preparar y adecuar el dataset.

Realizar análisis preliminares de los datos.

Análisis Predictivo

Evaluar tendencias y comportamientos estacionales.

Escoger los modelos predictivos para el estudio y evaluarlos.

Comparación de Modelos

Utilizar otros mecanismos de evaluación de modelos predictivos.

Detalles del Dataset

Nombre	Tipo	Descripción
año	int	Año de la venta
mes	texto	Mes de la venta
marca	texto	Marca del auto
modelo	texto	Modelo del auto
cantidad	int	Cantidad de autos
		vendidos en el mes
costo	int	Costo por unidad
		vendida de auto

	fecha	marca_id	modelo_id	cantidad	costo
count	288	288	288	288	2.880000e+02
sum	NaN	540	1008	3129	7.272000e+06
mean	2023-07-16 05:20:00	1.875	3.5	10.864583	2.525000e+04
median	2023-07-15 12:00:00	2.5	3.5	7	2.200000e+04
mode	2022-01-31 00:00:00	3	0	1	1.300000e+04
min	2022-01-31 00:00:00	0	0	1	1.200000e+04
max	2024-12-31 00:00:00	3	7	68	4.700000e+04
std dev.	NaN	1.270820	2.295276	12.218356	1.175446e+04
std error	NaN	0.074884	0.135250	0.719974	6.926380e+02
variance	NaN	1.614983	5.268293	149.288219	1.381672e+08
skewness	NaN	-0.501979	0	2.210746	6.616893e-01
kurtosis	NaN	-1.474216	-1.238736	5.135318	-9.887815e-01
quantile 25%	2022-10-23 06:00:00	0.75	1.75	3	1.550000e+04
quantile 75%	2024-04-07 12:00:00	3	5.25	12	3.100000e+04

Venta de autos

Comparación entre la cantidad de autos vendidos vs costos totales de ventas (en miles).

Descomposición Estacional

Comportamiento observado, tendencias, estacionalidad y residuos para:

Accent, Fortuner, Hilux, Jimny

Descomposición Estacional

Comportamiento observado, tendencias, estacionalidad y residuos para:

Prado, RAV4, Rio, Tucson

Modelos Predictivos

Se utilizan los modelos predictivos del estudio para los 8 modelos de autos en el dataset.

- Regresión de Poisson
- Regresión Lineal
- Regresión Polinomial (grado 3 y 9)
- Suavización Exponencial, Holt y Winters.

Coeficientes y errores calculados

Se calculan los coeficientes de error MAD, MAPE, MSE, RMSE.

También se calculan la desviación estandar y el coeficiente de determinación R^2.

Esto se realiza para cada modelo de auto en el dataset.

	MAD	MAPE	MSE	RMSE	std_dev	R^2
Poisson	7.679329	28.006687	87.709994	9.365361	11.886413	0.619342
Regresión Lineal	8.213399	30.485108	92.495431	9.617455	11.743987	0.598573
Regresión Polinomial (grado 3)	6.503760	20.802849	68.137397	8.254538	12.738888	0.704286
Regresión Polinomial (grado 9)	6.143679	19.883415	61.408551	7.836361	13.003622	0.733489
Exp. Suavizada Simple	0.908813	2.808810	1.419556	1.191451	14.391928	0.993583
Holt	1.554446	5.102472	4.062459	2.015554	15.520863	0.981637
Exp. Suavizada	5.660789	22.349840	54.245595	7.365161	12.670427	0.743540

Errores y coeficientes de los modelos predictivos para Hilux

Coeficientes y errores calculados

Como criterio de evaluación, se considera mejor modelo predictivo aquel que tenga su coeficiente de error MAD más bajo y un coeficiente de determinación positivo más alto.

El modelo de Exponenciación Suavizada Simple posee el MAD más bajo para todos los vehículos.

Modelo de Auto	Modelo Predictivo	MAD	MAPE	R ²
Accent	Exp. Suavizada Simple	0.389756	6.485940	0.986150
Fortuner	Exp. Suavizada Simple	0.187063	6.827259	0.990631
Hilux	Exp. Suavizada Simple	0.908813	2.808810	0.993583
Jimny	Exp. Suavizada Simple	0.114207	6.410393	0.985699
Prado	Exp. Suavizada Simple	0.585836	5.191019	0.983813
RAV4	Exp. Suavizada Simple	0.263167	8.283727	0.991151
Rio	Exp. Suavizada Simple	0.632584	4.814629	0.993753
Tucson	Exp. Suavizada Simple	0.272594	6.260352	0.989472

Errores y coeficientes de los modelos predictivos.

Comparación con otros modelos predictivos

Se utiliza lazypredict, la cual cuenta con más de 40 modelos predictivos disponibles para evaluar.

No posee modelos de exponenciación suavizada.

Se escogen los seis modelos predictivos que posean su R² más alto.

No muchos modelos de autos poseen modelos predictivos satisfactorios.

	Adjusted R-Squared	R-Squared	RMSE	Time Taken
RANSACRegressor	-0.40	-0.27	11.75	0.02
PoissonRegressor	-0.45	-0.32	11.97	0.01
KNeighborsRegressor	-0.87	-0.70	13.57	0.01
LinearRegression	-0.91	-0.73	13.72	0.01
TransformedTargetRegressor	-0.91	-0.73	13.72	0.01
Lars	-0.91	-0.73	13.72	0.01

Coeficientes de los mejores modelos predictivos evaluados.

Conclusiones y Oportunidades de Mejora

Es recomendable contar con una mayor cantidad de datos que puedan ayudar a mejorar los modelos predictivos.

No obstante, los análisis de tendencias y de estimaciones sustentan el argumento propuesto en el análisis descriptivo sobre los modelos de vehículos apropiados para la hipótesis planteada.

Si nos basamos en los valores MAD y MAPE de la Exponenciación Suavizada Simple de cada modelo de auto, el Hilux y Rio poseen los menores valores. Esto sugiere que producirán estimaciones más confiables que el resto.

Esto sustenta la hipótesis elaborada en el análisis descriptivo del estudio.

Gracias.