Semaine n° 3 : du 15 septembre au 19 septembre

Lundi 15 septembre

- Cours à préparer : Chapitre II Fonctions usuelles
 - Partie 6 : Fonction exponentielle, fonction logarithme; fonction $x \mapsto x^a$ pour a réel quelconque; exponentielle de base a, logarithme de base a; racines énièmes; croissances comparées.
 - Partie 7.1 : Fonctions arcsin, arccos, arctan : définitions, propriétés, dérivabilité, dérivées, variations.
- Exercices à rendre en fin de TD
 - Feuille d'exercices n° 2 : exercices 1, 2, 4, 6, 7.

Mardi 16 septembre

- Cours à préparer : Chapitre II Fonctions usuelles
 - Partie 7.2 : Fonction arctan : définitions, propriétés, dérivabilité, dérivées, variations.
 - Partie 8 : Fonctions hyperboliques sh, ch, th : définitions, propriétés, dérivabilité, dérivées, variations.
- Exercices à corriger en classe
 - Feuille d'exercices n° 2 : exercices 3 et 5.

Jeudi 18 septembre

- Cours à préparer : Chapitre III Calculs algébriques
 - Partie 1 : Somme simple : propriétés, décalage d'indice, renversement d'indices, simplification télescopique; somme double, permutation des Σ ; somme d'une famille finie.
 - Partie 2: Produit d'une famille finie; factorielle; simplification télescopique.
 - Partie 3.1 : Sommes classiques : $\sum_{k=0}^{n} k$, $\sum_{k=0}^{n} k^2$.
- Exercices à corriger en classe
 - Feuille d'exercices n° 2 : exercices 8, 10 et 15.

Vendredi 19 septembre

- Cours à préparer : Chapitre III Calculs algébriques
 - Partie 3.2 : Coefficients binomiaux, formule de Pascal.
 - Partie 3.3 : Formule du binôme de Newton.

Échauffements

Mardi 16 septembre

- Déterminer le module et un argument de $e^{i\frac{5\pi}{4}} + e^{-i\frac{\pi}{3}}$.
- Cocher toutes les assertions vraies :

Soit f une fonction continue sur [a, b[, strictement décroissante sur [a, b[.

- \Box Alors d'après le théorème de la bijection, il existe un unique réel c de a,b tel que a,b
- \square Alors d'après le théorème de la bijection, f est bijective de [a, b[vers]f(a), f(b)[.
- \square Alors f est bijective et f^{-1} est continue et strictement décroissante.
- \square Alors f est dérivable sur a, b et $\forall t \in a, b$, f'(t) < 0.

Jeudi 18 septembre

- Calculer $\frac{\mathrm{d}}{\mathrm{d}x} \left(\ln \sqrt{\frac{1+x}{1-x}} \right)$.
- Cocher toutes les assertions vraies : Soient n un entier naturel et t un réel.
 - $\Box \sin(2(n+1)t) \sin(2nt) = 2\sin(t)\cos((2n+1)t).$
 - $\Box \cos(t)\cos((2n+1)t) = \frac{1}{2}(\cos(2(n+1)t) + \cos(2nt)).$
 - $\Box \cos(nt) = \sqrt{1 \sin^2(nt)}.$
- Cocher toutes les assertions vraies : Soit $z = \cos\left(\frac{5\pi}{6}\right) e^{i\frac{\pi}{4}}$.
 - $\Box |z| = \cos\left(\frac{5\pi}{6}\right)$
 - $\Box |z| = -\cos\left(\frac{5\pi}{6}\right)$ $\Box \arg(z) = \frac{\pi}{4}$

 - $\square \arg(z) = -\frac{11\pi}{4}$

Vendredi 19 septembre

- Calculer $\lim_{x\to 0} (1+x)^{1/x}$ et $\lim_{x\to 0} 2x \ln(x+\sqrt{x})$. Cocher toutes les assertions vraies : Soit $x\in\mathbb{R}$. Alors
- - $\Box \cos(\pi x) = \cos(x)$
 - $\Box \sin(\pi x) = \sin(x)$
 - $\Box \sin(\pi + x) = \sin(x)$

 - $\Box \sin\left(\frac{\pi}{2} x\right) = \sin(x)$ $\Box \sin\left(\frac{\pi}{2} x\right) = \cos(x)$ $\Box \sin\left(\frac{\pi}{2} + x\right) = \cos(x)$