Report 0 - Optical Counterparts for Pulsar candidates using Gaia

Link to GitHub

The Dataset of pulsars that I used

These are the pulsars that I used, directly from the paper on <u>arXiv</u>

Number 16 I added manually to test something.

Execution

My plan was from the coordinate of the pulsar I do a cone search first around each pulsar with a radius of 2 * arcsec up until $\pm 20\%$ (= tol) around the pulsar distance

After loading in the CSV file, I first converted the RA and DEC from sexagesimal coordinates to degrees using SkyCoord. Why? Because Gaia ADQL expects decimal degrees in ICRS.

Here are all the columns that I retrieved using my ADQL query to gaiadr3.gaia_source

```
gaia.source_id, gaia.ra, gaia.dec,
gaia.parallax, gaia.parallax_error,
gaia.pmra, gaia.pmdec, gaia.pmra_error, gaia.pmdec_error,
gaia.phot_g_mean_mag, gaia.bp_rp,
gaia.ruwe, gaia.astrometric_excess_noise,
gaia.phot_bp_rp_excess_factor
```

(All this was different for each pulsar as I had a loop running that would call this query function)

After receiving back the data I stored it in a pandas Dataframe, I then went towards Parallax and distance handling.

Gaia parallax is in milliarcseconds (mas) → distance_pc = 1000 / parallax_mas

(I did find this information while doing this, but I'm not really sure I understand it at this moment: Caveat: naive inversion is only reliable when parallax_over_error is sufficiently high (commonly >~5). For low S/N parallexes you must use a Bayesian estimator (e.g., Bailer-Jones distances) or treat parallax as a noisy constraint.)

I also had a parallax filter, that removed a match from Pulsar 9 after filtering

- "parallax" is not NaN (missing)
- "parallax" is positive (> 0)
- "parallax_error" is positive (> 0)

I then found the angular seperation between the pulsars and their Gaia candidate every time using SkyCoord.

```
I also find the Absolute Magnitude using M=m-5\log_{10}\frac{d}{10} [ d - distance in Parsecs ; m = apparent magnitude ( phot_g_mean_mag) ]
```

I then tag the data with their name and distance and append it to matches.

After the loop, I save the current data as "gaia_matches_raw.csv" (here I still got 1 match for 1 pulsar)

I then apply some more filters, namely:

 RUWE < 1.4; Renormalized Unit Weight Error; Gaia's global goodness-of-fit; values ≥1.4-1.6 indicate astrometric problems (binary, crowding, extended source).

This part I'm not sure I understand fully, I just saw others doing the same and decided to do it. Nevertheless it didn't change my matches.

My question was if RUWE ≥ 1.4-1.6 indicate unresolved binaries, why wouldn't I want that in my matches?

I then add a filter that flags solutions which have excess of (2) Astrometric Noise; Using (astrometric_excess_noise)

After all this I ended up with one match to one pulsar

Saved the data to gaia_matches_filtered.csv

gaia_matches_filtered

I then made some plots, but since I got only one match, it didn't make much sense

The match & Pulsar

The pulsar was - J1843-1448

Gaia Source id - 4103495111344644480

Parameter	Value	Description/Interpretation		
source_id	4103495111344644480	Unique Gaia DR3 object identifier		
RA (deg)	280.7561460834939	Right ascension in degrees (J2000, ICRS)		
Dec (deg)	-14.80364714484038	Declination in degrees (J2000, ICRS)		
parallax (mas)	0.35976485	Gaia parallax in milliarcseconds		
parallax_error (mas)	0.19761348	Parallax uncertainty (1σ, milliarcseconds)		
parallax S/N	1.82	Significance: low (<3 is generally low-confidence for distance)		
dist_pc (from parallax)	2779.59	Inverse parallax, in parsecs (1/parallax in arcseconds × 1000)		
target_dist_pc	3470.0	Pulsar's estimated distance, for comparison		
sep_arcsec	1.54	Angular separation from pulsar position (arcsec)		
pmra (mas/yr)	-2.68	Proper motion in RA		
pmdec (mas/yr)	1.85	Proper motion in Dec		
pmra_error (mas/yr)	0.19	Uncertainty in RA proper motion		
pmdec_error (mas/yr)	0.17	Uncertainty in Dec proper motion		
phot_g_mean_mag	18.57	Apparent G-band magnitude (faint)		
bp_rp	1.50	Gaia color (BP - RP)		
M_G (abs mag)	6.35	Absolute G-band magnitude		
ruwe	0.98	Well within threshold—astrometric solution is trustworthy		
astrometric_excess_noise	0.0	Perfect: no unexplained astrometric noise		
phot_bp_rp_excess_factor	1.29	Indicates quality of photometric colors; ~1.3 is typical		

Searching up this pulsar, I found out from a paper that its an Isolated MSP

PSRs J1552-4937 and J1843-1448 bring the total number of isolated MSPs known in the Galactic disc to 37

the 2015 paper

Gaia's algorithms also strongly classify this as a star through 26 observations

- classprob_dsc_combmod_star = 1.00
- classprob_dsc_combmod_galaxy ≈ 0
- classprob_dsc_combmod_quasar ≈ 0

I think the star with Gaia Source_id 4103495111344644480 can be a candidate counterpart

After Adding PSR J1012+5307, which is known to be a Binary System with a white dwarf companion, and changing up the filters:

- Search Radius = 5 * arcsec
- Distance Tol = 1.0 ($\pm 100\%$ of PSR distance)

I got 11 matches before RUWE / Noise Filter and 9 after.

Out of these most parallaxes are low-significance (S/N < 3), except for J1012+5307 and one match in J1843-1448.

Again decided to change up the filters:

- Search Radius = 3 * arcsec
- Distance Tol = 0.8 ($\pm 80\%$)

Now, this time I ended up with 6, 6 Matches

Pulsar	Source ID	Parallax (mas)	Error (mas)	S/N	Distance (pc, Gaia)	Reliable?
J1546-59	5834212557702108288	0.341	0.377	0.90	2936	No (very low)
J1546-59	5834212557702111104	0.398	0.119	3.34	2514	Marginal/Borderline
J1843-1448	4103495111344644480	0.360	0.198	1.82	2779	No (low)
J1843-1448	4103495115680543616	0.708	0.107	6.62	1412	Yes (robust)
J1843-1113	4106823440438736384	1.063	0.519	2.05	941	No (low)
J1012+5307	851610861391010944	1.745	0.291	6.00	573	Yes (robust)

Anirudh Bhat EP24BTECH11004