

Progettazione di basi di dati

Progettazione logica relazionale

Progettazione logica relazionale (1/2)

- □ Ristrutturazione dello schema ER
- □ Eliminazione delle gerarchie
- Partizionamento di concetti
- Eliminazione degli attributi multivalore
- Traduzione nel modello relazionale: entità e relazioni molti a molti
- $^{ extstyle e$

Progettazione logica relazionale (2/2)

- □ Traduzione nel modello relazionale: relazioni uno a uno
- □ Traduzione nel modello relazionale: relazioni ternarie

Progettazione logica

- □ Richiede di scegliere il modello dei dati
 - modello relazionale
- Obiettivo
 - definizione di uno schema logico relazionale corrispondente allo schema ER di partenza
- □ Aspetti importanti
 - semplificazione dello schema per renderlo rappresentabile mediante il modello relazionale
 - ottimizzazione per aumentare l'efficienza delle interrogazioni

Passi della progettazione logica

Schema ER

Ristrutturazione dello schema

Schema ER semplificato

Traduzione

Schema logico relazionale

Ristrutturazione dello schema ER

- □ Lo schema ER ristrutturato tiene conto di aspetti realizzativi
 - non è più uno schema concettuale
- Obiettivi
 - eliminazione dei costrutti per cui non esiste una rappresentazione diretta nel modello relazionale
 - trasformazioni volte ad aumentare l'efficienza delle operazioni di accesso ai dati

Attività di ristrutturazione

- □ Analisi delle ridondanze
- □ Eliminazione delle generalizzazioni
- Partizionamento e accorpamento di entità e relazioni
- □ Scelta degli identificatori primari

Analisi delle ridondanze

- □ Rappresentano informazioni significative, ma derivabili da altri concetti
 - decisione se conservarle
- □ Effetti delle ridondanze sullo schema logico
 - semplificazione e velocizzazione delle interrogazioni
 - maggiore complessità e rallentamento degli aggiornamenti
 - maggiore occupazione di spazio

Esempio di attributo ridondante

- utile per velocizzare le interrogazioni relative al calcolo della media dei voti degli studenti
- se conservato, occorre integrare lo schema relazionale con l'indicazione di ridondanza dell'attributo

Eliminazione delle gerarchie

- - sono sostituite da entità e relazioni
- - accorpamento delle entità figlie nell'entità padre
 - accorpamento dell'entità padre nelle entità figlie
 - sostituzione della gerarchia con relazioni

Esempio

Accorpamento nel padre

Attributi delle entità figlie

Relazioni con le entità figlie

Attributo discriminante

□ Tipo permette di distinguere a quale entità figlia appartiene ogni occorrenza

Accorpamento nel padre

- □ Applicabile per qualsiasi copertura
 - se sovrapposta, sono possibili molte combinazioni come valori di Tipo

Accorpamento nelle figlie

Attributi del padre

Relazioni con il padre

○ Occorre sdoppiare le relazioni con l'entità padre

Cardinalità della relazione Lavora in

Decorre sdoppiare le relazioni con l'entità padre

Accorpamento nelle figlie

Sostituzione con relazioni

Relazioni tra padre e figlie

Identificazione delle entità figlie

Cardinalità della relazione E' un

Sostituzione con relazioni

- ∑ Soluzione più generale e sempre applicabile
 - può essere dispendiosa per ricostruire l'informazione di partenza

Valutazione delle alternative

- □ L'accorpamento delle entità figlie nell'entità padre è appropriato quando
 - le entità figlie introducono differenziazioni non sostanziali (pochi valori nulli)
 - le operazioni d'accesso non distinguono tra occorrenze dell'entità padre e delle figlie (accesso più efficiente)

Valutazione delle alternative

- L'accorpamento dell'entità padre nelle entità figlie è appropriato quando
 - la generalizzazione è totale
 - le operazioni d'accesso distinguono tra occorrenze delle diverse entità figlie (accesso più efficiente)

Valutazione delle alternative

- ∑ Sono possibili anche soluzioni "miste"
 - le operazioni d'accesso distinguono tra occorrenze di alcune entità figlie (accesso più efficiente)
- Per le generalizzazioni a più livelli, si procede nello stesso modo, partendo dal livello inferiore

Partizionamento di concetti

- Partizionamento di entità o relazioni
 - rappresentazione migliore di concetti separati
 - separazione di attributi di uno stesso concetto che sono utilizzati da operazioni diverse
 - maggiore efficienza delle operazioni

Partizionamento di entità

Cardinalità della relazione Dati impiegato

Partizionamento di relazioni

Cardinalità della relazione Ha occupato

Cardinalità della relazione Occupa attualmente

Eliminazione degli attributi multivalore

- ∠ L'attributo multivalore è rappresentato mediante una nuova entità collegata da una relazione all'entità originale
 - attenzione alla cardinalità della nuova relazione

Eliminazione degli attributi multivalore

Cardinalità della relazione Ha conseguito

Eliminazione degli attributi multivalore

Cardinalità della relazione Ha telefono

Eliminazione degli attributi composti

- □ Due alternative
 - si rappresentano in modo separato gli attributi componenti
 - adatta se è necessario accedere separatamente a ciascun attributo
 - si introduce un unico attributo che rappresenta la concatenazione degli attributi componenti
 - adatta se è sufficiente l'accesso all'informazione complessiva

Rappresentazione separata degli attributi

Rappresentazione con un attributo unico

Scelta degli identificatori primari

- Necessaria per definire la chiave primaria delle tabelle
- □ Un buon identificatore
 - non assume valore nullo
 - è costituito da pochi attributi (meglio 1!)
 - possibilmente è interno
 - è utilizzato da molte operazioni d'accesso
- Può essere opportuno introdurre codici identificativi

Traduzione nel modello relazionale

- ∑ Si esegue sullo schema ER ristrutturato
 - senza gerarchie, attributi multivalore e composti
- - ad ogni entità corrisponde una tabella con gli stessi attributi
 - per le relazioni occorre considerare la cardinalità massima

Traduzione di entità

Persona(<u>CodiceFiscale</u>, Nome, Cognome, Professione*)

- □ Chiave primaria sottolineata
- □ Attributi opzionali indicati con asterisco

Traduzione di relazioni binarie molti a molti

- Ogni relazione molti a molti corrisponde a una tabella
 - la chiave primaria è la combinazione degli identificatori delle due entità collegate
 - è possibile ridenominare gli attributi della tabella che corrisponde alla relazione (necessario in caso di relazioni ricorsive)

Relazione binaria molti a molti

Studente(<u>Matricola</u>, Nome, Cognome) Corso(<u>CodCorso</u>, Nome) Esame(<u>Matricola</u>, <u>CodCorso</u>, Voto)

Relazione binaria molti a molti ricorsiva

Prodotto(<u>CodP</u>, Nome, Costo) Composizione(<u>CodComposto</u>, <u>CodComponente</u>, Quantità)

Relazione binaria uno a molti

- ∑ Sono possibili due modalità di traduzione
 - mediante attributi
 - mediante una nuova tabella

Relazione binaria uno a molti: entità

Persona(CodiceFiscale, Nome, Cognome)

Comune(NomeComune, Provincia)

Relazione binaria uno a molti

Persona(<u>CodiceFiscale</u>, Nome, Cognome, NomeComune, <u>DataTrasferimento</u>) Comune(<u>NomeComune</u>, Provincia)

Studente(<u>Matricola</u>, Nome, Cognome) Facoltà(<u>NomeFacoltà</u>, Città) Laurea(<u>Matricola</u>, NomeFacoltà, DataLaurea)

Studente(<u>Matricola</u>, Nome, Cognome, NomeFacoltà*, DataLaurea*)
Facoltà(<u>NomeFacoltà</u>, Città)

Relazione binaria uno a uno

- ∑ Sono possibili più traduzioni
 - dipende dal valore della cardinalità minima

Partecipazione obbligatoria da entrambi i lati

Rettore(<u>Matricola</u>, Nome, Cognome, *NomeUniversità*, *DataElezione*)

Università (Nome Università, Città)

Partecipazione obbligatoria da entrambi i lati

Rettore(<u>Matricola</u>, Nome, Cognome) Università(<u>NomeUniversità</u>, Città, <u>Matricola</u>, <u>DataElezione</u>)

Relazione binaria uno a uno: caso 2

□ Partecipazione opzionale da un lato

Relazione binaria uno a uno: entità

□ Partecipazione opzionale da un lato

Professore(<u>Matricola</u>, Nome, Cognome) Università(<u>NomeUniversità</u>, Città)

Relazione binaria uno a uno

□ Partecipazione opzionale da un lato

Professore(<u>Matricola</u>, Nome, Cognome) Università(<u>NomeUniversità</u>, Città, *Matricola*, *DataElezione*)

Relazione binaria uno a uno: caso 3

Partecipazione opzionale da entrambi i lati

Partecipazione opzionale da entrambi i lati

Professore(<u>Matricola</u>, Nome, Cognome)

Università (Nome Università, Città)

Rettore(Matricola, NomeUniversità, DataElezione)

Partecipazione opzionale da entrambi i lati

Professore(<u>Matricola</u>, Nome, Cognome)

Università (Nome Università, Città)

Rettore(Matricola, NomeUniversità, DataElezione)

Partecipazione opzionale da entrambi i lati

Professore(<u>Matricola</u>, Nome, Cognome) Università(<u>Nome</u>, Città, <u>Matricola</u>*, <u>DataElezione</u>*)

Entità con identificatore esterno

Università(<u>NomeUniversità</u>, Città) Studente(<u>Matricola</u>, <u>NomeUniversità</u>, Nome, Cognome)

□ La relazione è rappresentata insieme all'identificatore

Relazione ternaria: entità

Studente(<u>Matricola</u>, Nome, Cognome) Corso(<u>Codice</u>, Nome) Tempo(<u>Data</u>)

Relazione ternaria: identificatore

Studente(Matricola, Nome, Cognome)

Corso(Codice, Nome)

Tempo(Data)

Esame(Matricola, Codice, Data

Relazione ternaria: attributi

Studente(Matricola, Nome, Cognome)

Corso(Codice, Nome)

Tempo(Data)

Esame(Matricola, Codice, Data, Voto)

Vincoli d'integrità referenziale

□ Le relazioni rappresentano vincoli d'integrità referenziale

Integrità referenziale: relazione Esame

□ Tabelle coinvolte

Studente(<u>Matricola</u>, Nome, Cognome)

Corso(CodCorso, Nome)

Esame(<u>Matricola</u>, <u>CodCorso</u>, Voto)

Esame(Matricola) REFERENCES Studente(Matricola)

Integrità referenziale: relazione Esame

□ Tabelle coinvolte

Studente(<u>Matricola</u>, Nome, Cognome)

Corso(CodCorso, Nome)

Esame(<u>Matricola</u>, <u>CodCorso</u>, Voto)

Esame(Matricola) REFERENCES Studente(Matricola)

Esame(CodCorso) REFERENCES Corso(CodCorso)

