Кинематика твёрдого тела

▼ Прошлые темы

- как задаётся движение?
- Что такое скорость?
- Что такое ускорение?
- Что такое тангенциальное и нормальное ускорения?
- Вычислите производную от $3x^2$ по x
- Вычислите производную от $3x^2$ по t
- ullet Вычислите производную от 1/t-sin(t)+2 по t

Виды движения твёрдого тела:

- Поступательное
- Вращательное
- Плоское движение
- Сферическое
- Общий случай движения твёрдого тела

▼ Поступательное движение твёрдого тела

Поступательное движение твёрдого тела — движение при котором, все точки твёрдого тела двигаются по одной траектории

Уравнения движения

$$x_C = f_1(t)$$

$$y_C=f_2(t)$$

$$z_C=f_3(t)$$

где (x_C, y_C, z_C) – точка принадлежащая телу.

• Если известна координата одной точки тела, то можно вычислить и координату любой другой точки тела

$$\overrightarrow{r_B} = \overrightarrow{r_C} + \overrightarrow{BC}$$

• Скорости всех точек одинаковы

$$\overrightarrow{v_A} = \overrightarrow{v_B}$$
, где А и В – любые точки тела

• Ускорения всех точек одинаковы

$$\overrightarrow{a_A} = \overrightarrow{a_B}$$
, где A и B -- любые точки тела

Примеры

- движение любого тела, без поворота
- движение кабинки колеса обозрения (без учёта раскачивания)

Какие из частей шагающего механизма Чебышёва двигаются поступательно?

Вращательное движение

Вращательное движение — движение вокруг неподвижной оси, при котором любая точка тела описывает окружность (кроме точек, лежащих на оси).

Уравнение движения

$$\varphi = f(t)$$

где φ -- угол поворота. Измеряется в градусах, радианах, оборотах, ...

- линейные скорости (v) и ускорения (a) всех точек тела могут отличатся
- Поэтому для описания движения тела вводится их угловые аналоги
- угловая скорость тела $\omega = rac{darphi}{dt}.$
 - Измеряется в градусах/с, радианах/с, оборотах/с, ...
 - угловая скорость -- псевдовектор, направленный вдоль оси движения в ту сторону, откуда вращение выглядит происходящим против хода часовой стрелки
 - на схемах обозначается либо вектором либо дуговой стрелкой
- угловое ускорение тела $arepsilon = rac{d\omega}{dt}$.
 - Измеряется в градусах/с2 радианах/с2, оборотах/с2, ...
 - угловое ускорение -- псевдовектор, направленный вдоль оси движения
 - на схемах обозначается либо вектором либо дуговой стрелкой
 - если угловая скорость и угловое ускорение сонаправлены, то вращение ускоренное, иначе -- замедленное

Частота вращения и угловая скорость

▼ Линейная скорость точки и угловая скорость тела

$$v = r \cdot \omega$$

где r -- расстояние от оси вращения до точки

Чтобы получить скорость точки м/с нужно поставить ω в формулу в рад/с = 1/с

Например

• • •

▼ Задача 1

для самостоятельного решения

Определите скорости точек, вращающихся вместе с Землёй на широтах городов

- 1. Чита
- 2. Хельсинки
- 3. Майами
- 4. Кито
- 5. Сидней
- 6. Норильск
- 7. Воркута

 $r = Rcos \varphi$

arphi -- широта

 $v = \omega r$

 ω = 1 об/сутки = 1/(246060) об/с = 2 π 1/(246060) 1/с

▼ Задача 2

для самостоятельного решения

Определите линейную скорость спутника дистанционного зондирования Земли Ресурс-ДК1 если считать его траекторию круговой

Вопрос

Почему поезд может поворачивать, если при повороте колесо, идущее по внутреннему рельсу должно пройти меньшее расстояние чем колесо, что идёт по внешнему рельсу?

Плоскопараллельное движение

Плоскопараллельное движение (плоское движение) — вид движения абсолютно твёрдого тела, при котором траектории всех точек тела располагаются в плоскостях, параллельных заданной плоскости.

- скорости и ускорения разных точек в плоскости движения отличны
- скорости и ускорения точек лежащих в параллельных плоскостях на одном перпендикуляре одинаковы

Разложение плоского движения

- Плоское движение = поступательное движение в плоскости + вращательное движение
- Уравнения движения

• Движение полюса (некоторой, связанной с телом, точки О)

$$x_O = f_1(t)$$

$$y_O=f_2(t)$$

• Вращение вокруг полюса О

$$arphi_O=f_3(t)$$

это вращение не зависит от выбора полюса

Примеры

- движение тела по плоскости (исключая качение)
- движение шайбы по льду
- движение корпуса болида F1 (в первом приближении, без отрыва колёс от поверхности)
- движение раскачивающейся (в плоскости || плоскости вращению колеса) кабинка на колесе обозрения
- движение многих механизмов, передающих движение в одной плоскости

Теорема о скоростях точек плоской фигуры

Скорость любой точки плоской фигуры при плоскопараллельном движении равна геометрической сумме скорости выбранного полюса и скорости точки во вращательном движении фигуры вокруг полюса.

$$\overrightarrow{v_A} = \overrightarrow{v_O} + \overrightarrow{v_{AO}}$$

 $\stackrel{
ightarrow}{v_O}$ – скорость полюса О

 $\overrightarrow{v_{AO}}$ — скорость точки A относительно полюса O, т.е. скорость с которой т. A поворачивается вокруг полюса O

$$\overrightarrow{v_{AO}} = \overrightarrow{\omega_O} imes \overrightarrow{r_{OA}}$$

следствие 1: теорема о проекции скоростей двух точек твёрдого тела

проекции скоростей точек плоской фигуры, расположенных на одной прямой, на направление этой прямой, равны друг другу

$$v_{Ax}=v_{Dx}=v_{Bx}$$

следствие 2

концы векторов скоростей точек прямолинейного отрезка на плоской фигуре располагаются на одной прямой и делят её на части, пропорциональные расстояниям между точками

▼ Мгновенный центр скоростей

Мгновенный центр скоростей — при плоскопараллельном движении абсолютно твёрдого тела точка, связанная с этим телом, которая обладает следующими свойствами: а) её скорость в данный момент времени равна нулю; б) относительно неё в данный момент времени вращается тело.

Она существует в любой момент времени, но её положение меняется со временем за исключением одного случая— вращательного движения.

Чем дольше точка от МЦС тем больше её линейная скорость

Определение положения МЦС

- необходимо знать направления скоростей любых двух различных точек тела, скорости которых не параллельны.
- провести перпендикуляры к прямым, параллельным линейным скоростям выбранных точек тела. В точке пересечения этих перпендикуляров и будет находиться мгновенный центр скоростей.
- В том случае, если векторы линейных скоростей двух различных точек тела параллельны друг другу, и отрезок, соединяющий эти точки, не перпендикулярен векторам этих скоростей, то перпендикуляры к этим векторам также параллельны. В этом случае говорят, что мгновенный центр скоростей находится в бесконечности, и тело движется мгновенно поступательно.
- Если известны скорости двух точек, и эти скорости параллельны друг другу, и кроме того, указанные точки лежат на прямой, перпендикулярной скоростям, то положение мгновенного центра скоростей определяется так, как показано на рис. 2.

МЦС колеса, двигающегося по поверхности без проскальзывания

■ Передаточные механизмы

...

Пример: кривошипно-шатунный механизм

Разобрать самостоятельно

см. задачу определения скоростей точек шатуна из [1]: задача 63, в параграфе 57

Элипсограф

Сферическое движение

Общий случай движения твёрдого тела

Инверсная кинематика

Литература

- 1. Краткий курс теоретической механики. Тарг С.М., издания после 2000 г.
- 2. Курс теоретической механики в 2 т. Яблонский А. А., Никифорова В. М., издания после 2000 г.

Дополнительные ссылки

- Theo Jansen's Wind Sculpture (Fully 3D Printed) https://www.youtube.com/watch?
 v=EArh3YdpylE
- Skeletal 'beests' walk the shoreline BBC News https://www.youtube.com/watch?
 v=3ZePhxfXlns
- Chebyshev's Lambda Mechanism
 https://en.wikipedia.org/wiki/Chebyshev%27s_Lambda_Mechanism