1 Семинар 1. Вперёд, в рукопашную!

Минитеория:

- 1. https://github.com/bdemeshev/pr201/wiki или http://pokrovka11.wordpress.com
- 2. Константы. Строчные английские буквы, a, x, z.
- 3. События. Заглавные английский буквы начала алфавита A, B, C, D. Вероятность $\mathbb{P}(A)$.
- 4. Случайные величины. Заглавные английский буквы конца алфавита X, Y, W, Z. Математическое ожидание $\mathbb{E}(X)$.

Задачи:

- 1. В вазе пять неотличимых с виду конфет. Две без ореха и три с орехом. Маша ест конфеты выбирая их наугад до тех пор, пока не съест первую конфету с орехом. Обозначим X число съеденных конфет. Найдите $\mathbb{P}(X=2)$, $\mathbb{P}(X>1)$, $\mathbb{E}(X)$
- 2. Неправильную монетку с вероятностью «орла» равной p подбрасывают до первого «орла». Чему равно среднее количество подбрасываний? Орлов? Решек? Какова вероятность того, что будет чётное число бросков?
- 3. Саша и Маша по очереди подбрасывают кубик. Посуду будет мыть тот, кто первым выбросит шестерку. Маша бросает первой. Каковы ее шансы отдохнуть за «Cosmo»?
- 4. Вы играете в следующую игру. Кубик подкидывается неограниченное число раз. Если на кубике выпадает 1, 2 или 3, то соответствующее количество монет добавляется на кон. Если выпадает 4 или 5, то игра оканчивается и Вы получаете сумму, лежащую на кону. Если выпадает 6, то игра оканчивается, а Вы не получаете ничего.
 - а) Чему равен ожидаемый выигрыш в эту игру?
 - б) Изменим условие: если выпадает 5, то набранная сумма сгорает, а игра начинается заново. Чему будет равен ожидаемый выигрыш?
- 5. Саша и Маша подкидывают монетку до тех пор, пока не выпадет последовательность POO или OOP. Если игра закончится выпадением POO, то выигрывает Саша, если OOP, то Маша. Случайная величина X общее количество подбрасываний, Y количество выпавших решек.
 - (а) У кого какие шансы выиграть?
 - (b) $\mathbb{P}(X=4)$, $\mathbb{P}(Y=1)$, $\mathbb{E}(X)$, $\mathbb{E}(Y)$
 - (с) Решите аналогичную задачу для ОРО и ООР.
- 6. «Amoeba». A population starts with a single amoeba. For this one and for the generations thereafter, there is a probability of 3/4 that an individual amoeba will split to create two amoebas, and a 1/4 probability that it will die out without producing offspring. Let the random variable X be the number of generations before the death of all the amoebas. Find the probabilities $\mathbb{P}(X=2)$, $\mathbb{P}(X=3)$, $\mathbb{P}(X=\infty)$
- 7. Вася подкидывает кубик. Если выпадает единица, или Вася говорит «стоп», то игра оканчивается, если нет, то начинается заново. Васин выигрыш последнее выпавшее число. Как выглядит оптимальная стратегия? Как выглядит оптимальная стратегия, если за каждое подбрасывание Вася платит 35 копеек?
- 8. Suppose the probability to get a head when throwing an unfair coin is p, what's the expected number of throwings in order to get two consecutive heads? The expected number of tails?
- 9. Саша и Маша решили, что будут заводить новых детей до тех пор, пока в их семье не будут дети обоих полов. Обозначим X количество детей в их семье. Найдите $\mathbb{P}(X=4)$, $\mathbb{E}(X)$
- 10. В каждой вершине треугольника по ёжику. Каждую минуту с вероятностью 0.7 каждый ежик независимо от других двигается по часовой стрелке, с вероятностью 0.3 против часовой стрелки. Обозначим T время до встречи всех ежей в одной вершине. Найдите $\mathbb{P}(T=3), \mathbb{E}(T)$.

2 Семинар 2. Хочу ещё задач!

- 1. Две команды равной силы играют в волейбол до трех побед одной из них, не обязательно подряд. Ничья невозможна. Из-за равенства сил можно считать, что вероятность победы каждой равна 0.5. Величина N количество сыгранных партий. Составьте табличку возможных значений N с их вероятностями. Найдите $\mathbb{P}(N$ четное), $\mathbb{E}(N)$
- 2. Какова вероятность того, что у 10 человек не будет ни одного совпадения дней рождений?
- 3. Наугад из четырех тузов разных мастей выбираются два. \mathbb{P} (они будут разного цвета)?
- 4. События A и B несовместны, т.е. не могут произойти одновременно. Известно, вероятности $\mathbb{P}(A) = 0, 3, \, \mathbb{P}(B) = 0, 4.$ Найдите $\mathbb{P}(A^c \cap B^c)$
- 5. Вероятность $\mathbb{P}(A) = 0, 3, \mathbb{P}(B) = 0, 8$. В каких пределах может лежать $\mathbb{P}(A \cap B)$?
- 6. Множество исходов $\Omega = \{a, b, c\}$, $\mathbb{P}(\{a, b\}) = 0, 8$, $\mathbb{P}(\{b, c\}) = 0, 7$. Найдите $\mathbb{P}(\{a\})$, $\mathbb{P}(\{b\})$, $\mathbb{P}(\{c\})$
- 7. Вася нажимает на пульте телевизора кнопку «On-Off» 100 раз подряд. Пульт старый, поэтому в первый раз кнопка срабатывает с вероятностью $\frac{1}{2}$, затем вероятность срабатывания падает. Какова вероятность того, что после всех нажатий телевизор будет включен, если сейчас он выключен?
- 8. Вам предложена следующая игра. Изначально на кону 0 рублей. Раз за разом подбрасывается правильная монетка. Если она выпадает орлом, то казино добавляет на кон 100 рублей. Если монетка выпадает решкой, то все деньги, лежащие на кону, казино забирает себе, а Вы получаете красную карточку. Игра прекращается либо когда Вы получаете третью красную карточку, либо в любой момент времени до этого по Вашему выбору. Если Вы решили остановить игру до получения трех красных карточек, то Ваш выигрыш равен сумме на кону. При получении третьей красной карточки игра заканчивается и Вы не получаете ничего.
 - (а) Как выглядит оптимальная стратегия в этой игре?
 - (b) Чему при этом будет равен средний выигрыш?
- 9. Есть три комнаты. В первой из них лежит сыр. Если мышка попадает в первую комнату, то она находит сыр через одну минуту. Если мышка попадает во вторую комнату, то она ищет сыр две минуты и покидает комнату. Если мышка попадает в третью комнату, то она ищет сыр три минуты и покидает комнату. Покинув комнату, мышка выходит в коридор и выбирает новую комнату наугад (т.е. может зайти в одну и ту же). Сейчас мышка в коридоре. Сколько времени ей в среднем потребуется, чтобы найти сыр?
- 10. Илье Муромцу предстоит дорога к камню. От камня начинаются ещё три дороги. Каждая из тех дорог снова оканчивается камнем. И от каждого камня начинаются ещё три дороги. И каждые те три дороги оканчиваются камнем...И так далее до бесконечности. На каждой дороге живёт трёхголовый Змей Горыныч. Каждый Змей Горыныч бодрствует с вероятностью (хм, Вы не поверите!) одна третья. У Василисы Премудрой существует Чудо-Карта, на которой видно, какие Змеи Горынычи бодрствуют, а какие нет. Какова вероятность того, что Василиса Премудрая сможет указать Илье Муромцу бесконечный жизненный путь проходящий исключительно мимо спящих Змеев Горынычей?
- 11. У Пети монетка, выпадающая орлом с вероятностью $p \in (0;1)$. У Васи с вероятностью $q \in (0;1)$. Они одновременно подбрасывают свои монетки до тех пор, пока у них не окажется набранным одинаковое количество орлов. В частности, они останавливаются после первого подбрасывания, если оно дало одинаковые результаты. Сколько в среднем раз им придётся подбросить монетку?
- 12. Треугольник с вершинами (0;0), (2;0) и (1;1). Внутри него случайным образом выбирается точка, X абсцисса точки. Найдите $\mathbb{P}(X > 1)$, $\mathbb{P}(X \in [0.5;1])$, $\mathbb{E}(X)$
- 13. Треугольник с вершинами (0;0), (2;0) и (2;1). Внутри него случайным образом выбирается точка, X абсцисса точки. Найдите $\mathbb{P}(X > 1)$, $\mathbb{P}(X \in [0.5;1])$. Что больше, $\mathbb{E}(X)$ или 1?

3 Семинар 3. К чёрту условности!

- 1. Имеется три монетки. Две «правильных» и одна с «орлами» по обеим сторонам. Петя выбирает одну монетку наугад и подкидывает ее два раза. Оба раза выпадает «орел». Какова условная вероятность того, что монетка «неправильная»?
- 2. Два охотника одновременно выстрелили в одну утку. Первый попадает с вероятностью 0,4, второй с вероятностью 0,6. В утку попала ровно одна пуля. Какова условная вероятность того, что утка была убита первым охотником?
- 3. Кубик подбрасывается два раза. Найдите вероятность получить сумму равную 8, если при первом броске выпало 3.
- 4. Игрок получает 13 карт из колоды в 52 карты. Какова вероятность, что у него как минимум два туза, если известно, что у него есть хотя бы один туз? Какова вероятность того, что у него как минимум два туза, если известно, что у него есть туз пик?
- 5. В урне 7 красных, 5 желтых и 11 белых шаров. Два шара выбирают наугад. Какова вероятность, что это красный и белый, если известно, что они разного цвета?
- 6. В урне 5 белых и 11 черных шаров. Два шара извлекаются по очереди. Какова вероятность того, что второй шар будет черным? Какова вероятность того, что первый шар белый, если известно, что второй шар черный?
- 7. Примерно 4% коров заражены «коровьим бешенством». Имеется тест, который дает ошибочный результат с вероятностью 0,1. Судя по тесту, новая партия мяса заражена. Какова вероятность того, что она действительно заражена?
- 8. В школе три девятых класса, «А», «Б» и «В», одинаковые по численности. В «А» классе 30% обожают учителя географии, в «Б» классе 40% и в «В» классе 70%. Девятиклассник Петя обожает учителя географии. Какова вероятность того, что он из «Б» класса?
- 9. Ген карих глаз доминирует ген синих. Т.е. у носителя пары bb глаза синие, а у носителя пар BB и Bb карие. У диплоидных организмов (а мы такие :)) одна аллель наследуется от папы, а одна от мамы. В семье у кареглазых родителей два сына кареглазый и синеглазый. Кареглазый женился на синеглазой девушке. Какова вероятность рождения у них синеглазого ребенка?
- 10. Из колоды в 52 карты извлекается одна карта наугад. Являются ли события «извлечен туз» и «извлечена пика» независимыми?
- 11. Из колоды в 52 карты извлекаются по очереди две карты наугад. Являются ли события «первая карта туз» и «вторая карта туз» независимыми?
- 12. Известно, что $\mathbb{P}(A) = 0, 3, \mathbb{P}(B) = 0, 4, \mathbb{P}(C) = 0, 5$. События A и B несовместны, события A и C независимы и $\mathbb{P}(B|C) = 0, 1$. Найдите $\mathbb{P}(A \cup B \cup C)$.

4 Семинар 4. Use R

5 Семинар 5. Use R or die!

- 1. Самая простая. Случайная величина N имеет пуассоновское распределение с $\lambda=2$. С помощью симуляций оцените $\mathbb{E}(N^3)$, $\mathbb{P}(N\geqslant 4)$, $\mathbb{P}(N\geqslant 10\mid N\geqslant 5)$, $\mathbb{E}(N\mid N\geqslant 5)$. Функция rpois может помочь :)
- 2. Случайные величины X_1, \ldots, X_5 имеют равномерное распределение на отрезке [0;1] и независимы. С помощью симуляций оцените $\mathbb{P}(\min\{X_1,\ldots,X_5\}>0.2), \mathbb{P}(\min\{X_1,\ldots,X_5\}>0.2 \mid X_1+X_2<0.5), \mathbb{E}(\min\{X_1,\ldots,X_5\}), \mathbb{E}(\min\{X_1,\ldots,X_5\}\mid X_1+X_2<0.5)$
- 3. Случайные величины X_1, X_2 независимы и обе имеют биномиальное распределение с параметрами n=16, p=0.7. Величина Y задана формулой $Y=X_1/(1+X_2)$. С помощью симуляций оцените $\mathbb{P}(Y>0.5), \mathbb{E}(Y), \mathbb{P}(Y>0.5\mid X_1>10), \mathbb{E}(Y\mid X_1>10)$. Функция rbinom в помощь!

- 4. В колоде 52 карты. Мы вытаскиваем карты из колоды до первого туза, пусть X количество вытянутых карт. С помощью симуляций оцените $\mathbb{E}(X^2)$, $\mathbb{P}(X>10)$, $\mathbb{P}(X>5\mid X<15)$, $\mathbb{E}(X^2\mid X<15)$
- 5. Иван Федорович Крузенштерн случайным образом с возможностью повторов выбирает 10 натуральных чисел от 1 до 100. Пусть X минимум этих чисел, а Y максимум. С помощью симуляций оцените $\mathbb{P}(Y>3X), \mathbb{E}(XY), \mathbb{P}(Y>3X\mid Y< X^2), \mathbb{E}(XY\mid Y< X^2)$

6 Семинар 6. Разлагай и влавствуй!

- 1. Из грота ведут 10 штреков, с длинами 100м, 200м, ... 1000м. Самый длинный штрек оканчивается выходом на поверхность. Остальные тупиком. Вася выбирает штреки наугад, в тупиковый штрек два раза не ходит. Какова вероятность того, что Вася посетит самый короткий штрек? Какой в среднем путь он нагуляет прежде чем выберется на поверхность? Дисперсия длины пути?
- 2. У Маши 30 разных пар туфель. И она говорит, что мало! Пес Шарик утащил без разбору на левые и правые 17 туфель. Какова вероятность того, что у Маши останется ровно 13 полных пар? Сколько полных пар в среднем осталось? Сколько полных пар в среднем досталось Шарику?
- 3. У меня в кармане 3 рубля мелочью. Среди монет всего одна монета достоинством 50 копеек. Я извлекаю монеты по одной наугад до извлечения 50 копеечной монеты. Какую сумму в среднем я извлеку?
- 4. «Модница». В шкатулке у Маши 100 пар сережек. Каждый день утром она выбирает одну пару наугад, носит ее, а вечером возвращает в шкатулку. Проходит год.
 - а) Сколько в среднем пар окажутся ни разу не надетыми?
 - б) Сколько в среднем пар окажутся одетыми не менее двух раз?
 - в*) Как изменятся ответы, если каждый день Маша покупает себе новую пару сережек и вечером добавляет ее в шкатулку?
- 5. Вовочка получает пятерку с вероятностью 0.1, четверку с вероятностью 0.2, тройку с вероятностью 0.3 и двойку с вероятностью 0.4. В этом четверти он писал 20 контрольных. Какова вероятность того, что все оценки у Вовочки одинаковые? Сколько разных оценок он в среднем получит?
- 6. «Судьба Дон Жуана» У Васи n знакомых девушек (их всех зовут по-разному). Он пишет им n писем, но, по рассеянности, раскладывает их в конверты наугад. С.в. X обозначает количество девушек, получивших письма, написанные лично для них. Найдите $\mathbb{E}(X)$, $\mathrm{Var}(X)$.
- 7. Над озером взлетело 20 уток. Каждый из 10 охотников стреляет в утку по своему выбору. Каково ожидаемое количество убитых уток, если охотники стреляют без промаха? Как изменится ответ, если вероятность попадания равна 0,7? Каким будет ожидаемое количество охотников, попавших в цель?
- 8. Вокруг новогодней ёлки танцуют хороводом 27 детей. Мы считаем, что ребенок высокий, если он выше обоих своих соседей. Сколько высоких детей в среднем танцует вокруг елки? Вероятность совпадания роста будем считать равной нулю.
- 9. По 10 коробкам наугад раскладывают 7 карандашей. Каково среднее количество пустых коробок?
- 10. Внутри каждой упаковки шоколадки находится наклейка с изображением одного из 30 животных. Предположим, что все наклейки равновероятны. Какое количество шоколадок в среднем нужно купить, чтобы собрать полную коллекцию наклеек? Как это объяснить ребёнку?
- 11. Из колоды в 52 карты извлекается 5 карт. Сколько в среднем извлекается мастей? Досто-инств? Тузов?
- 12. За круглым столом сидят в случайном порядке n супружеских пар, всего 2n человек. Величина X число пар, где супруги оказались напротив друг друга. Найдите $\mathbb{E}(X)$ и $\mathrm{Var}(X)$
- 13. В задачнике N задач. Из них a Вася умеет решать, а остальные не умеет. На экзамене предлагается равновероятно выбираемые n задач. Величина X число решенных Васей задач на экзамене. Найдите $\mathbb{E}(X)$ и $\mathrm{Var}(X)$
- 14. Кубик подбрасывается n раз. Величина X_1 число выпадений 1, а X_6 число выпадений 6. Найдите $\mathrm{Corr}(X_1,X_6)$