复变函数与积分变换复习总结

为什么复习复食? 窓行り他使有且 不管、后发给你的多块图 为什么用多吗? QAFRH 4.?

	easy and of little commerce		
-001	第一章 复数与复变函数	081	§ 4.4 洛朗(Laurent)级数
001	§ 1.1 复数 Complex variables 12 2222	087	本章小结
004	§ 1.2 复数的三角表示 rong ray Prising	087	
012	§ 1.3 平面点集的一般概念) 开建 闭键		思考 医
016	§ 1.4 无穷大与复球面 条	087	习题四
018	\$1.5 复变函数 (xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	-089	第五章 留数及其应用
022	本章小结	089	§ 5.1 孤立奇点 则环的一种级化情形是一点的去心等域、而当函数在一点的去心等域内为解析不在该点解析的时候,这一点就是函数的孤立奇点。所以洛朗级数使很自然地成为6
023	思考題 銀衛年四段 丁咖啡	097	§ 5.2 图数 记忆主作和 医文学 (这点样在下一个有列).
023	习题— important but easy 斯斯山西 科林	105	§ 5.3 留数在定积分计算中的应用
-025	第二章 解析函数 ACR+5%	110	*§ 5.4 对数留数与辐角原理
025	§ 2.1 解析函数的概念 的 以 是	115	本章小结
030	§ 2.2 解析函数和调和函数的关系	115	思考题
034	\$ 2.3 初等函数 31650 importer 数数 克州· 在版	115	习题五
042	本章小结	-118	第六章 共形映射
PP FE)=(3)	118	§ 6.1 共形映射的概念
(W, V)	2 to timper an and difficult.	121	§ 6.2 共形映射的基本问题
046	第三章 复变函数的积分 6月多美观线织	124	§ 6.3 分式线性映射
makabit 1		135	§ 6.4 几个初等函数构成的共形映射
401491	c+(z)		本章小结
056	新加州	143	习题六
**************************************	5代收章小结 行为的表演一一种	AM 45	第七章 解析函数在平面场的应用
065	/: 1	#XJ45	§ 7.1 复势的概念
065	思考题	150	§ 7.2 复势的应用
—067	习題三 イル (しじ)	154	§ 7.3 用共形映射的方法研究平面场
067	ANGUS WAY BAL.	157	本章小结
070	84.2 复变函数项级数 收敛门饭	157	思考题
075	§ 4.3 泰勒(Taylor) 级数	158	习题七
U		-159	第八章 傅里叶变换
2/	图	159	88.1 傅里叶变换的概念
18	,	167	§ 8.2 单位冲激函数(δ函数)
19		171	88.3 傅里叶变换的性质
20		182	本意小结
20		183	习题人
20	5 习题九	-186	
-20	77 附录 1 傅里叶变换简表		
-21	111.11.	186	§ 9.1 拉普拉斯变换的概念
-21	6 部分习题答案		

-001	第一章	章 复数与复变函数
001	§ 1.1	基本要求与内容提要
004	§ 1.2	典型例题与解题方法
019	§ 1.3	教材习题同步解析
028	8 § 1.4	自测题
-030	第二章	章 解析函数
030	§ 2.1	基本要求与内容提要
033	§ 2.2	典型例题与解题方法
056	§ 2.3	教材习题同步解析
070	§ 2.4	自测题
-072	第三章	章 复变函数的积分
072	§ 3.1	基本要求与内容提要
076	§ 3.2	典型例题与解题方法
101	§ 3.3	教材习题同步解析
108	§ 3.4	自测题
-111	第四1	章 解析函数的级数表示
111	§ 4.1	基本要求与内容提要
114	4 § 4.2	典型例题与解题方法
140	§ 4.3	教材习题同步解析
147	8 4.4	自测题
-149	第五章	章 留数及其应用
149	§ 5.1	基本要求与内容提要
154	4 § 5.2	典型例题与解题方法
189	§ 5.3	教材习题同步解析
202	§ 5.4	自测题
-204	4 第六	章 共形映射
204	4 § 6.1	基本要求与内容提要
208	8 § 6.2	典型例题与解题方法
227	§ 6.3	教材习题同步解析
238		自测题
-240		章 傅里叶变换
240), U	基本要求与内容提要
244	0	典型例题与解题方法
249		
261		
-263	第八	章 拉普拉斯变换
263	§ 8.1	基本要求与内容提要
266	§ 8.2	典型例题与解题方法
272	§ 8.3	教材习题同步解析
286	§ 8.4	自测题
		11 174742

解析函数的导数和实变函数的导数具有相同形式意味着什么?
D 图则运算法则
D 多台函数丰导法M
① 国则运算法则 ② 复台函数求导法则 ③ 反运数的求导法则
四 2名以大法则
图 络以达法则 ⑤ 等效天荡小 但注意无等效是伤人

为什么CR法则出现可以用来做解析的一些思考

失关记录数形式

$$f'(z) = \lim_{\substack{\Delta X \to 0 \\ \Delta Y \to 0}} \frac{\Delta U + \Delta V i}{\Delta X + \Delta Y i}$$

$$\Delta V = \frac{\partial U}{\partial x} \Delta X + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial y} \Delta Y \rightarrow \bar{g}^{4} \chi + \frac{\partial U}{\partial$$

So
$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial x}i = \frac{\partial v}{\partial y} + \frac{\partial v}{\partial y}i$$

$$\frac{\partial U}{\partial x}$$
 \dot{z} $-\frac{\partial V}{\partial x}$ $-\frac{\partial U}{\partial y}$ $+\frac{\partial V}{\partial y}$ \dot{z}

)连续到到

调和函数的性质与物理含义

- ① 起鲁拉斯第子 $\Delta = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i}$ ills连敬。 做足 $\Delta + = 0$ ($\exists = 1$ 所偏至 $2n \ge 2$)
- ② 予切^{グ δ δ δ} 简单来说,就是函数u在一点x的值等于函数在以x为中 心的球区域中体积积分或面积积分的平均值(通过简单 的积分计算可以证明,这两种积分平均值是等价的):

DU-0: 超达一个稳定的状态。 9: 混成场、引力的以3. 类似加速后和为0. 稳态

7. V=0 7 x V=0 i16/4013						
现的物质的热头数型的多数						
PV TU = V						
https://www.sohu.com/a/387112575_348129						
https://wenku.baidu.com/view/ e524df94aa00b52acec7ca3a.html						
https://zhuanlan.zhihu.com/p/54548572						
图像——场站大量到。						

VU PO V V 正文 ,即两端横坡 正文
https://www.zhihu.com/column/c_1187367236074909696
W) L K/13 23 25 26 (kè)
处印表为

共轭调和函数的几何意义

初等函数

因为复微分是线性的,并且服从积、商、链式法则,所以全纯函数的 和、积和复合是全纯的,而两个全纯函数的商在所有分母非 的地方全 纯。

每个全纯函数在每一点无穷可微。它和它自己的泰勒级数相等,而泰勒级数在每个完全位于定义域内的开圆盘上收敛。泰勒级数也可能在一个更大的圆盘上收敛;例如,对数的泰勒级数在每个不包含0的圆盘上收敛,甚至在复实轴的附近也是如此。证明请参看全纯函数解析。全纯函数满足Cauchy-Riemann方组,该方程组含有两个偏微分方程,也可以用复偏导算子写成一个。

在非 导数的点的附近,全纯函数是共形的 (或保角的,实际上就是相似在局部的推广)。因为它保持了图形的局部角度和形状 (但尺寸可能改变)。

Cauchy 积分公式表明每个全纯函数在圆盘内的值由它在盘边界上的取值所完全决定。

例 3.2 计算 $\oint_C \frac{\mathrm{d}z}{(z-z_0)^n}$,其中 n 为任意整数 ,C 为以 z_0 为中心 ,r 为半径的圆周.

解 C的参数方程为

$$z = z_0 + re^{i\theta}, \quad 0 \le \theta \le 2\pi,$$

由(3.4)式得

$$\oint_{C} \frac{\mathrm{d}z}{(z-z_{0})^{n}} = \int_{0}^{2\pi} \frac{\mathrm{i}r \mathrm{e}^{\mathrm{i}\theta}}{r^{n} \mathrm{e}^{\mathrm{i}n} \theta} \mathrm{d}\theta = \frac{\mathrm{i}}{r^{n-1}} \int_{0}^{2\pi} \mathrm{e}^{-\mathrm{i}(n-1)\theta} \mathrm{d}\theta$$

$$= \frac{\mathrm{i}}{r^{n-1}} \int_{0}^{2\pi} \cos(n-1) \theta \mathrm{d}\theta + \frac{1}{r^{n-1}} \int_{0}^{2\pi} \sin(n-1) \theta \mathrm{d}\theta$$

$$= \begin{cases} 2\pi \mathrm{i}, & n=1, \\ 0, & n \neq 1. \end{cases}$$

此例的结果很重要,以后经常要用到.以上结果与积分路径圆周的中心和半径无关,应记住这一特点.

关于复变函数积分的一些理解

[公式]

积分的实部是向量场沿 [公式] 的环量,虚部是向量场沿 [公式] 的通量(二维通量,可视为柱形三维通量的投影)!

$$\int_L f(z)dz = \int_L (Pdx + Qdy) + i\int_L (-Qdx + Pdy) = \Gamma + i\Phi$$

https://zhuanlan.zhihu.com/p/74716952

有关柯西积分公式

https://www.zhihu.com/column/c_1196023055833497600

定理 3.7 设 f(z) 在简单闭曲线 C 所围成的区域 D 内解析,在 $\overline{D} = D \cup C$ 上连续; $z_0 \in D$ 内任一点,则

$$f(z_0) = \frac{1}{2\pi i} \oint_{C} \frac{f(z)}{z - z_0} dz \quad i d\theta \qquad (3.10)$$

$$f(z) M h h h h h f f f f f ds$$

$$\left| \int_{c} \frac{f(z)}{z - z_0} \mathrm{d}z - 2\pi \mathrm{i} f(z_0) \right| < 2\pi\varepsilon,$$

即(3.10)式成立.

公式(3.10)称为柯西积分公式. 这个公式说明:如果一个函数在简单闭曲线 C 的内部解析,在 C 上连续,则函数在 C 内部的值完全可由 C 上的值而定. 它不仅提供了计算某些复变函数沿简单闭曲线积分的一种方法,而且可以帮助我们研究解析函数的许多重要性质.

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_{C} \frac{f^{(2)}}{(z-z_0)^{n+1}} dz$$

幂级数的收敛半径为何存在

定理 4.5 若幂级数(4.3)在点 $z_1(z_1\neq z_0)$ 收敛,则级数(4.3)在圆域 $|z-z_0|<|z_1-z_0|$ 内绝对收敛.

证 设z为圆域 $|z-z_0| < |z_1-z_0|$ 内任一点(图 4.1(a)). 因为

$$\sum_{n=0}^{\infty} C_n (z_1 - z_0)^n$$

收敛,由定理4.3

$$\lim_{n \to \infty} C_n (z_1 - z_0)^n = 0.$$

因此,存在一个常数 M>0,对于任意非负整数 n 均有 $|C_n(z_1-z_0)^n| \leq M$.

于是

$$\left| \; C_{\scriptscriptstyle n} (\, z \, - z_{\scriptscriptstyle 0} \,)^{\, n} \; \right| \, = \, \left| \; C_{\scriptscriptstyle n} (\, z_{\scriptscriptstyle 1} \, - z_{\scriptscriptstyle 0} \,)^{\, n} \; \right| \; \left| \frac{z \, - z_{\scriptscriptstyle 0}}{z_{\scriptscriptstyle 1} \, - z_{\scriptscriptstyle 0}} \right|^{\, n} \, \leqslant \, M \, \left| \frac{z \, - z_{\scriptscriptstyle 0}}{z_{\scriptscriptstyle 1} \, - z_{\scriptscriptstyle 0}} \right|^{\, n} \, ,$$

而当 $|z-z_0| < |z_1-z_0|$ 时, $\left|\frac{z-z_0}{z_1-z_0}\right| < 1$, 因而级数

072 第四章 解析函数的级数表示

$$\sum_{n=0}^{\infty} \left(M \left| \frac{z - z_0}{z_1 - z_0} \right|^n \right)$$

收敛. 再根据正项级数比较判别法,即知

$$\sum_{n=0}^{\infty} |C_n(z-z_0)^n|$$

收敛,从而

$$\sum_{n=0}^{\infty} C_n (z-z_0)^n$$

绝对收敛. 由于 z 在圆域 $|z-z_0| < |z_1-z_0|$ 内的任意性,故定理得证.

- (1) 幂级数的和 $f(z) = \sum_{n=0}^{\infty} C_n(z-z_0)^n$ 在收敛圆的内部是一个解析函数.
- (2) 在收敛圆的内部,幂级数的和 $f(z) = \sum_{n=0}^{\infty} C_n (z-z_0)^n$ 可以逐项求导及逐项积分任意次.
 - (1) 比值法:若 $\lim_{n\to\infty} \left| \frac{C_{n+1}}{C_n} \right| = \lambda$,则级数 $\sum_{n=0}^{\infty} C_n (z-z_0)^n$ 的收敛半径 $R = \frac{1}{\lambda}$.
 - (2) 根值法:设 $\lim_{n\to\infty}\sqrt[n]{|C_n|}=\lambda$,则级数 $\sum_{n=0}^{\infty}C_n(z-z_0)^n$ 的收敛半径 $R=\frac{1}{\lambda}$.

https://www.zhihu.com/column/c_1196023055833497600

理解为何解析(或者说奇点?) 可以是它的收敛域

是会. 设船推进分级船长

如果 f(z) 解析,满足高阶导数公式,有 $c_k=rac{1}{2\pi i}\oint_Crac{f(\zeta)}{(\zeta-z_0)^{k+1}}d\zeta$,把它代回泰勒级数,有

$$\sum_{n=0}^{\infty}c_n(z-z_0)^n=\sum_{n=0}^{\infty}rac{1}{2\pi i}\oint_Crac{f(\zeta)}{\zeta-z_0}igg(rac{z-z_0}{\zeta-z_0}igg)^nd\zeta$$

这里面有个等比级数,当 $|z-z_0|<|\zeta-z_0|$ 的时候,等比级数收敛,有

$$egin{aligned} oxed{\pm\vec{\pi}} &= rac{1}{2\pi i} \oint_C rac{f(\zeta)}{\zeta - z_0} \Biggl(rac{1}{1 - rac{z - z_0}{\zeta - z_0}}\Biggr) \, d\zeta = rac{1}{2\pi i} \oint_C rac{f(\zeta)}{\zeta - z} d\zeta = f(z) \end{aligned}$$

我可以让路径 C 在 f(z) 解析的范围内尽可能地大,那么 $|z-z_0|<|\zeta-z_0|$ 的范围 也就尽可能地大。当 f(z) 在一个圆域内解析时, C 可以任意靠近这个圆的边界, z 也可以任意靠近这个圆的边界,如下图所示:

常用泰勒展开

$$e^z = \sum_{n=0}^{\infty} rac{z^n}{n!} = 1 + z + rac{z^2}{2!} + rac{z^3}{3!} + rac{z^4}{4!} + \cdots$$

$$\sin z = \sum_{n=0}^{\infty} (-1)^n rac{z^{2n+1}}{(2n+1)!} = z - rac{z^3}{3!} + rac{z^5}{5!} - rac{z^7}{7!} + \cdots$$

$$\cos z = \sum_{n=0}^{\infty} (-1)^n rac{z^{2n}}{(2n)!} = 1 - rac{z^2}{2!} + rac{z^4}{4!} - rac{z^6}{6!} + \cdots$$

$$\frac{1}{1-z} = \sum_{n=0}^{\infty} z^n = 1 + z + z^2 + z^3 + z^4 + \cdots$$

洛朗级数的理解

复数影的数数多年人为李州色用不

我好像之前这里概念理解错了

- (1) 在(5.4)式中,如果当 $n=1,2,3,\cdots$ 时, $C_n=0,$ 那么z=∞ 是函数 f(z)的**可去**奇点.
- (2) 在(5.4)式中,如果只有有限个(至少一个)整数n>0,使得 $C_n\neq 0$,那么 $z=\infty$ 是函数f(z)的极点. 设对于正整数 m, $C_m\neq 0$;而当n>m时, $C_n=0$,那么 $z=\infty$ 是f(z)的 m 阶极点.
- (3) 在(5.4)式中,如果有无穷个整数 n>0,使得 $C_n \neq 0$,那么 $z=\infty$ 是函数 f(z)的本性奇点.

与有限点的情形相反,无穷远点作为函数的孤立奇点时,它的分类是以函数在无穷远点邻域的洛朗展开中正次幂的系数取零值的多少作为依据的.

无宪运 总数 2 C-1

RE CI

the Res[f(z), ∞] = -Res[f(\frac{1}{z})\frac{1}{z\tau}\frac{1}{z\tau}\frac{1}{z\tau}

极点与零点想法

MARAS ->MESTA	
M所 變差 ———————————————————————————————————	
南平 神風風	
型子作风。 等作之污灯大奶剪净。	
₹ 1 × 11 × 11 × 11 × 11 × 11 × 11 × 11	
本质上,求3数、化-放气为可式考点 f(1) mh	
g(z) = &-2)m+(z) E945/£.	
f(z) C-1 & 9(x) Cm-1	
$\frac{1}{(m+1)!} \frac{g(m+1)(Z_0)}{(m+1)!} $ why? $\rightarrow for \qquad g(z) : 0 + (2 \cdot Z_0) + ($	
(Per).	
(生) (Z-Zo) f(z) m) まらがな。 (M-1)! を~~ (約分を一个日子)	
(约)(有)(1)(1)	

还没等况 多别似 CD. 围道积分方法 φ f(z) dz - φ f(z(θ)) z'(θ) dθ $\int_{-\infty}^{+\infty} R(x) dx$ $R(Z) = \frac{p(Z)}{Q(Z)}$ (Q(3) V(p (3) 12 milk Q(2)240202