Lecture 14

Last time we did Numerical differentiation. We derived 3 formula f'(a) ~ f(a+h) - f(a) f(a+h) - f(a-h) $f(a) \approx -3f(a) + 4f(a+h) - f(a+2h)$ 0(42)

	Then we discussed on how
	Numerical differentiation is a "bad"
	procen.
	i.e if we reduce h (to decrease
	truncation error) ne end up increasing
	round-off error
	So Numerical diff has to be dono
	with cone
	One way to increase accuracy
	is to use Richardson extrapolatis
40	$a_1 = \underbrace{f(a+h) - f(a-h)}_{dh} + c_2 h^2 + c_4 h^4 + (gh^6 +$
	an Cz, (4, Co are constants.

Today we do
Numerical methods to solve
Linear system of equations
Suppose ue have o system of equation
,
aury + a,222+ + a, n 2n = b1
azi xi + azz xz+ + azn xn = bz
421 x1 x 422 x2+, - + 42n xn 2
•
, a 2 = bh
an, 2, + an 2 1/2 + + ann 2n = bn
we want to find a solution.
o c squi (o jour
In applications n is large (at least
· ·
(1000). So doing it by hand is out of question. We have to use
cut of question. We have to use
· ·
compaters.

It is convenient to use matric

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & - & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & - & - & a_{nn} \end{bmatrix}$$

$$\overline{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

$$\overline{A} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

This system either has

1) a unique solution

2) no solution

3) infinitely many solutions

Example

1)
$$x_1 + x_2 = 1$$
 has unique $x_1 - x_2 = 0$ solution $x_1 = x_2 = \frac{1}{2}$.

2)
$$\chi_i + \chi_z = 1$$
 has no solution $2\chi_i + 2\chi_z = 3$

3)
$$2 \times_{1} - \times_{2} = 3$$

 $4 \times_{1} - 2 \times_{2} = 6$
hos infinitely many sol's
 $\{(x_{1}, x_{2}) \mid 2x_{1} - x_{2} = 3\}$

For most application The system Ax=b has a unique Solution Theory

$$A\bar{x} = \bar{b}$$
 has unique solution
if A is an invertible matrix
i.e. there exists a matrix B slt
 $BA = AB = I_n$
 $I_n = n \times n$ identity matrix
 $I_n = n \times n$ identity matrix

B is usually denoted by A^{-1} $A^{-1}(A \times 1) = A^{-1}b$ $X = A^{-1}b$ is the

unique solution

In mactice Computation of A taken too many computations. usually we don't need it. In practice there is a two step procedure to find soln of Ax=b. Step1 (Gaussian Elimination) Ax= 5 is transfermed to an equivalent system Ux= b where U = (uij) is an upper triangular matrix
i-e luj = o for i>j

Ax=6 equivalent to Ux=6 means that \bar{X}_0 is a solution of Ax = b iff To i's a solution of Ux = 3 Solving U= = 6 we do step 2 first. note that by equivalence Ax=6Than a unique solution to
if Ux=6 has a unique solution Thus U is invertible matrix

Exercisa Show that an upper triangular matrix U= (uij) is invertible iff all diagonal entries (i-e un) is non-zero Stepl sol J Ux = 5 U11 X1 + 41242+ - - + 411 2 = 5, 422×2+- +42n xn Un-1, n-1 Xn-1 + Un-1, n Xn = 5n-Mn,n xn = Bn

$$x_{i} = \sum_{j>i} u_{ij} \times_{j}$$

لانذ

This process is called fack-subsitution

Example

$$3 \times_{1} + \lambda_{2} + \lambda_{3} = 6$$

$$4 \times_{2} + 2 \times_{3} = 7$$

$$3 \times_{3} = 9$$

$$- x_3 = 3$$

$$4 \times_{2} + 6 = 7$$

$$X_{2} = \frac{1}{4}$$

$$3 \times_{1} + \frac{1}{4} + 6 = 6$$

$$X_{1} = -\frac{1}{4}$$

Gaussian Eliminatias

Recall two linear systems Ax = band $\widetilde{A}x = \overline{b}$ are equivalent if any solution of one is a solution of the other

Theorem Let Ax = b be a linear system and suppose we subject this system to a sep of operations of the following kind

- (i) Multiplication of one equation by a men-zero constant
- (ii) Addition of a multiple of one equation to another equation
- (iii) Interchange of two equations If this system of operations produces a

new system Ax=b, then the systems Ax=b and Ax=b are equivalent.

In particular A is invertible iff A is invertible.

Gaussian Elimination

It is possible to convert

Ax=b to equivalent system

Ux=6-ley using the above 3 operation

Example

 $x_1 - x_2 + 2x_3 = -6$ $2x_1 - 2x_2 + 3x_3 = -14$

 $x_1 + x_2 + x_3 = -2$

$$\begin{bmatrix}
1 & -1 & 2 & -6 \\
2 & -2 & 3 & -14 \\
1 & 1 & 1 & -2
\end{bmatrix}$$

augn mente d metrix

$$\begin{bmatrix}
1 & -1 & 2 & -6 \\
0 & 0 & -1 & 1 & -2 \\
0 & 2 & -1 & 1 & 4
\end{bmatrix}$$

$$R_2 \leftrightarrow R_3$$

$$\begin{bmatrix} 1 & -1 & 2 & 1 & -6 \\ 0 & 2 & -1 & 1 & +4 \\ 0 & 0 & -1 & 1 & -2 \end{bmatrix}$$

$$-x_{3} = -2 \qquad x_{3} = 2$$

$$2x_{2} - x_{3} = 4 \qquad x_{2} = 3$$

$$x_{1} - x_{2} + 2x_{3} = -6$$

$$x_{1} - 3 + 4 = -6$$

$$x_{1} = -7$$

Algorithim for Gaussian Elimination

To solve $A \times = b$ - W = [A;b] "augumented matrix"

Step 1 for i = 1, -, n-1 do Steps 2,3,4

Step 2 det p be the smallest integra

with $i \le p \le n$ and $api \ne 0$ If no integra p can be found then

Output "no unique sol exists"

2 stop

Step3 of p \(i \) then interchange Row Ri \(\infty \) Row Rj Step4 for j=i+1,- ,, n do steps 5 &1 Step 5 Set $M_i = \frac{a_i}{a_{ii}}$ Step 6 perform R: - m; i Ri Step 7 9f ann = 0 then "no unique sel" exist". Step 8 U = first n column q W B= last column of W then Ax=b is equivalent where u is to Ux=6 upper triangular matrix.

Operation Count We count the number of multiplication / drisin 4 addition/substraction do GE. In general, the amount of time require: to perform a multiplicat or divisions on a computer is approximately the same and is considerably greater than that required to perform an addition or substraction No arithmetic operation is performed until Step 5 in the algorithms Step 5 requires that n-i division be performed

	In Step 6 we replace row Rj by
	Rj - mj. Ri
	This require my: be multiplied to
	This require the
	each term in Ri.
	each term in Ri. This repure (n-i) (n-i+1) multiplicative
	Afrawards each term of the resuming equalic
	Afterwards each term of the resulting equation is subtracted from the corresponding term
	(b) D: The Product (b)
	the Ry - this requires the cytheres
	in Rj. This requires (n-i) (n-i+1) substractions
Th	us for each i=1,2,-,n-1 the
	operation required on
EM	ultiplication/divisory
	n-i'+(n-i)(n-i+1)=(n-i')(n-i+2)
R-	
IA	ddition/substractis
	(n-i)(n-i+1)

Total multiplication / division $\sum_{(n-i)(n-i+2)}^{(n-i)} = 2n^3 + 3n^2 - 5n$ Total addition/substraction $\sum_{n=1}^{N-1} (n-i)(n-i+1) = \frac{m^3-n}{3}$ back substitut (i.e Step 2) One can show one require mutiplication / devision ntn addition / subtraction n2- h

Note that for large n
n3 is considerably larger than n2
for example when $n=100$ 100^2 is 1% of 100^3
Thus GE is O(N/3) operation
thus of the state

Tridigonal matrix

Ax=b for tridigenal systems can be solved in O(n) steps.

