Atomistic doping effects in the Na₃OCI antiperovskite electrolyte for solid-state batteries

Ben Goldmann, Matt Clarke, James Dawson and Saiful Islam

EPSRC Centre for Doctoral Training, Centre for Sustainable and Circular Technologies, University of Bath, BA2 7AY, UK email: bag27@bath.ac.uk, web: www.csct.ac.uk

Background: Solid-State Batteries

Advantages:

- stability
- safety
- energy density

Issues:

- ↓ ionic conductivity
- dopant effects
- interfaces
- grain boundaries

Sodium vs. Lithium

Sodium batteries:

- abundance
- cost
- sustainability
- for renewables

Lithium batteries:

- energy density
- for portable electronics

(a) (b)

Fig. 3 – Clustering of (a) intrinsic defects in undoped and (b) introduced defects in doped Na₃OCI.

Project Aims

Atomistic modelling of Na₃OCl solid electrolyte:

- intrinsic defect chemistry
- cation doping to increase defect concentration
- Na-ion conduction
- defect clustering

Fig. 2 – The antiperovskite Na₃OCI structure.

Fig. 4 – Temperature-dependent Na⁺ conductivities for Mg- and Ca-doped Na₃OCI.

Modelling doping and ion conduction

- Increased defect clustering in doped material
- Ionic migration limited in doped material at **lower Ts**
- Higher dopant conc. → increased conductivity

Fig. 5 – Na ion trajectories (blue) in (a) undoped and (b) doped Na₃OCI.