

Computer Graphics and Image Processing

Part 3: Image Processing

3 – Histogram Equalisation

Martin Urschler, PhD

Contrast stretching example

 $f_{\text{low}} = f_{\text{min}} = 38$; $f_{\text{high}} = f_{\text{max}} = 224$; $g_{\text{min}} = 0$; $g_{\text{max}} = 255$:

Count 50499

Mean: 125.761

StdDev: 23,861

Count: 50499 Mean: 120.307

Count: 50499 Min: 0
Mean: 120.307 Max: 255
StdDev: 32.711 Mode: 117 (994)

255

Max: 224 Mode: 123 (994)

Min: 38

Contrast stretching example

 Often histogram has values nearly between full range, making simple contrast stretching ineffective

Count: 1080000 Mean: 180.315 StdDev: 34.952

Min: 14 Max: 251 Mode: 213 (50408)

Count: 1080000 Mean: 178.923 StdDev: 37.592

Min: 0 Max: 255 Mode: 214 (50408)

Percentile Based Mapping

Percentile (see also: http://en.wikipedia.org/wiki/Percentile)

The pixel-wise intensity below which a certain percent of pixels fall.

The $\alpha - \beta$ percentile range \Rightarrow to the max range 0 - 255:

- ① Collect the histogram $H=(H(q): q\in \mathbf{Q})$ and compute the cumulative histogram $C=(C(q): q\in \mathbf{Q}); C(q)=\sum_{i=0}^q H(j).$
- ② Find the smallest value, q_{α} , such that $C(q_{\alpha})$ is larger than $\alpha\%$ of the overall number K of pixels.
- 3 Find the largest value, q_{β} , such that $C(q_{\beta})$ is smaller than $\beta\%$ of the overall number K of pixels.
- 4 Perform linear mapping: $g(x,y) = \frac{255}{q_{\beta} q_{\alpha}} (f(x,y) q_{\alpha}).$
 - Keep values g(x,y) below 0 at 0 and above 255 at 255.

Cumulative histogram?

$$H = [40, 0, 18, 6, 10, 3, 7, 16] \rightarrow C = [40, 40, 58, 64, 74, 77, 84, 100]$$

A cumulative histogram $C = [C(q): q = 0, \dots, 255]$

is a mapping that counts the total number of pixel intensities in all the histogram's bins up to the current bin q: $C(q) = \sum_{i=0}^q H(i)$.

The cumulative histogram is useful for some pixel-wise intensity corrections, e.g. percentile based mapping, histogram equalisation.

Cumulative histogram - example

Cumulative histogram - example

Percentile Based Mapping

Percentile (see also: http://en.wikipedia.org/wiki/Percentile)

The pixel-wise intensity below which a certain percent of pixels fall.

The $\alpha - \beta$ percentile range \Rightarrow to the max range 0 - 255:

- ① Collect the histogram $H=(H(q): q\in \mathbf{Q})$ and compute the cumulative histogram $C=(C(q): q\in \mathbf{Q}); C(q)=\sum_{i=0}^q H(j).$
- ② Find the smallest value, q_{α} , such that $C(q_{\alpha})$ is larger than $\alpha\%$ of the overall number K of pixels.
- 3 Find the largest value, q_{β} , such that $C(q_{\beta})$ is smaller than $\beta\%$ of the overall number K of pixels.
- 4 Perform linear mapping: $g(x,y) = \frac{255}{q_{\beta} q_{\alpha}} (f(x,y) q_{\alpha}).$
 - Keep values g(x,y) below 0 at 0 and above 255 at 255.

Back to Percentile Based Mapping

Percentile (see also: http://en.wikipedia.org/wiki/Percentile)

The pixel-wise intensity below which a certain percent of pixels fall.

The $\alpha - \beta$ percentile range \Rightarrow to the max range 0 - 255:

- ① Collect the histogram $H=(H(q): q\in \mathbf{Q})$ and compute the cumulative histogram $C=(C(q): q\in \mathbf{Q}); C(q)=\sum_{j=0}^q H(j).$
- 2 Find the smallest value, q_{α} , such that $C(q_{\alpha})$ is larger than $\alpha\%$ of the overall number K of pixels.
- 3 Find the largest value, q_{β} , such that $C(q_{\beta})$ is smaller than $\beta\%$ of the overall number K of pixels.
- **4** Perform linear mapping: $g(x,y) = \frac{255}{q_{\beta} q_{\alpha}} (f(x,y) q_{\alpha}).$
 - Keep values g(x,y) below 0 at 0 and above 255 at 255.

1 – 99 percentile mapping example

Count: 1080000 Mean: 180.315 StdDev: 34.952 Min: 14 Max: 251

Mode: 213 (50408)

After 1-99 percentile contrast stretching

$$f_{low} = f_{1\%} = 67$$
; $f_{high} = f_{99\%} = 216$; $g_{min} = 0$; $g_{max} = 255$

Count: 1080000 Mean: 194.052 StdDev: 59.097 Min: 0 Max: 255 Mode: 250 (50408)

- A non-linear mapping of pixel-wise intensities aimed at flattening the image histogram (distributing evenly the output intensities).
 - □ It increases the dynamic range and as a result increases image contrast.
 - It may be useful in images where foreground and background are both either bright or dark.
 - □ It tends to reveal details that would be otherwise hidden.
 - □ It often produces unrealistic effects in photographs, but is very useful in scientific (e.g. x-ray, satellite, or thermal) images.
- It differs from contrast stretching in the use of non-linear transfer functions to map between the input and output intensities.
 - ☐ The mapping function is derived from the image histogram, and aims at **flattening the cumulative histogram** of the equalised image.

Histogram equalisation algorithm

Given an image f and its histogram $H = (H(q): q = 0, 1, \dots, Q)$:

1: Compute the cumulative histogram C

```
for q = 1,...,Q do C[q] = C[q-1] + H[q], C[0] = H[0]
```

2: Convert C into the LUT (lookup table) T

```
q_{min} : minimum q for which C[q] is larger than 0 for q = 0,..., Q do  \text{Smallest q for which C[q]}  if q < q_{min} T[q] = 0 is equal to #pixels (K) else T[q] = Q * ( C[q] - C[q_{min}])/(C[Q] - C[q_{min}]) end for
```

3. Using the LUT T, transform f into the equalised image g

for all pixels
$$(x,y)$$
 do $g[x,y] = T[f[x,y]]$

Collecting the histogram H

q	64	76	89	102	115
H[q]	1	6	2	8	5
q	128	153	179	205	
H[q]	6	4	2	2	

Computing the cumulative histogram ${\cal C}$ and the LUT ${\cal T}$

q	64	76	89	102	115	128	153	179	205
H[q]	1	6	2	8	5	6	4	2	2
C[q]	1	7	9	17	22	28	32	34	36
T[q]	0	44	58	117	153	197	226	240	255

$$C[q] = \sum_{j=0}^{q} H[q]$$

$$T[q] = \text{round} \left\{ 255 \cdot \frac{C[q] - C[64]}{C[205] - C[64]} \right\}$$

$$= \text{round} \left\{ 255 \cdot \frac{C[q] - 1}{36 - 1} \right\}$$

$$= \text{round} \left\{ 7.286 \cdot (C[q] - 1) \right\}$$

 $\operatorname{round}\{z\}$ — the closest to z integer number: e.g. $\operatorname{round}\{3.45\}=3$ and $\operatorname{round}\{3.51\}=4$.

Transforming **f** in line with the LUT T: g(x,y) = T[f(x,y)].

0	117	117	117	44	44
117	226	255	197	153	197
117	226	255	240	226	197
153	197		240	117	153
44	117	197	153	117	197
58	117	44	58	44	44

q	0	44	58	117	153
$H_{\mathbf{g}}[q]$	1	6	2	8	5
q	197	226	240	255	
$H_{\mathbf{g}}[q]$	6	4	2	2	

Image histograms (H) and cumulative histograms (C)

Before equalisation (image f):

After equalisation (image g):

Count: 1080000 Mean: 180.315

000 Min: 14 15 Max: 251

StdDev: 34.952 Mode: 213 (50408)

Count: 1080000 Mean: 178.923 StdDev: 37.592 Min: 0 Max: 255

7.592 Mode: 214 (50408)

Count: 1080000 Mean: 194.052

1: 194.052 Max: 255

StdDev: 59.097 Mode: 250 (50408)

Min: 0

Count: 1080000 Mean: 129.707 Min: 0 Max: 255

StdDev: 75.030 Mode: 242 (50408)

Outlook state of the art

Count: 1080000 Mean: 168.763 StdDev: 57.569 Min: 0 Max: 255

: 57.569 Mode: 206 (45837)

ImageJ:

blocksize: 127 histo bins: 256

max slope: 3.0

K. Zuiderveld: Contrast Limited Adaptive Histogram Equalization. In: P. Heckbert: Graphics Gems IV, Academic Press 1994, ISBN 0-12-336155-9