The System

We are analysing calls to a taxi company. This is a multiple server system with unknown interarrival time and service time distributions.

The company already uses queuing theory to optimise performance. This business process is commercially sensitive, so we will be modeling a reduced system with single stage service.

The simplified system is still complex because there is more than one type of job and many of the system's characteristics are unknown.

Data

The arrival time (timestamp), answer time (seconds after timestamp) and completion time (seconds after timestamp) are kept thusly:

<u>Call Received:</u>	Call Answered: 7:51:21 PM	Call Completed: 7:51:50 PM
7:51:11 PM	10	39

Business process

The business process and the data it produces are shown below.

Timestamp	The center receives a call	Inter-arrival time
-	The call enters the queue	
Call answered	The call is transferred to an available operator	L_q/W_q
-	The customer requests a taxi; they are served	Service time
Call completed	The call leaves the system	L_s/W_s

Estimating Distributions

Our first step in analyzing our dataset was to look at rolling averages and standard deviations. We did two graphs; inter-arrival times and service times. The graphs show

running statistics for 50 observations. Averages are shown in blue and standard deviations are in green.

The graphs show:

- Inter-arrival times are not constant.
- Service times are consistent except for a short period of less than half an hour at the end of the observation period.
- The standard deviation of service times spikes at 4000 seconds past 5pm (about 6.05pm) and again at 9000 seconds (7.30pm).

We started our data analysis looking to estimate the most consistent period in the system.

Estimation of parameters

Inter-Arrival Times:

We know the arrival rate is not constant. To test the deviation of the inter-arrival times we regressed them against the hour of day the call was received (5, 6 or 7pm). The mean for 5pm was 40 seconds. At 6pm the mean was 19 seconds and at 7pm it was 14 seconds. It is clear the first hour of the data cannot be used to model the later hours. The full regression output is in appendix B.

Service Time Outliers:

The spike in standard deviation at 6.05pm is a cause for concern. At 6.07pm a call is received that lasts for over 10 minutes. We looked for more outliers.

Checking our exploratory distribution, we have a mean of 40.5 and a standard deviation of 53.7. Using a 99% confidence interval we classed outliers as having service times greater than 177 seconds (2 minutes, 57 seconds). There are 12 observations, listed in appendix C.

9 of the outliers occur in the last half of the observation period. 7 of them are in the last quarter of the observation period.

The Final Distribution

Finalising the subsets:

Our final dataset removed calls before 6pm and calls with service times over 177 seconds. This subset has much lower kurtoses and skewness for both time distributions. The full results are in appendix D.

We tested the beta, Poisson/exponential and gamma distributions for both data sets. The most accurate fit was a gamma distribution. The full output for the gamma distribution is in appendix D with distribution characteristics in appendices E and F.

Parameters

The best fit for both inter-arrival and service times is the gamma distribution. The parameters are shown below.

Gamma Distributions

Inter-arrival times		Service times	
shape	0.70437192	shape	1.76935387
rate	0.03439354	rate	0.04071883

Density Graphs:

Appendix A Exploratory analysis of inter-arrival and service times.

We analysed inter-arrival and service times using R and the distrfitplus library.

First, we did an exploratory command called 'descdist'. This command tests the data for appropriate distributions and generates a Cullen-Frey graph. The graph shows estimated distributions based on the data's skewness and kurtosis. Skewness indicates the horizontal symmetry of the distribution's probability density function. Kurtosis measures the probability density function's height and sheerness (Brown, 2015).

Inter-arrival times	Service times	
descdist(a\$Interarrival.time)	descdist(a\$Service.time)	
summary statistics	summary statistics	
min: 0 max: 177	min: 0 max: 608	
median: 13	median: 30	
mean: 20.488	mean: 43.45	
estimated sd: 23.28489	estimated sd: 53.69818	
estimated skewness: 2.714051	estimated skewness: 6.145044	
estimated kurtosis: 13.23815	estimated kurtosis: 52.98694	
summary(fitdist(a\$Interarrival.time,'gamma'))	summary(fitdist(a\$Service.time,	
Fitting of the distribution ' gamma ' by	'gamma'))	
maximum likelihood	Fitting of the distribution 'gamma' by	
Parameters :	maximum likelihood	
estimate Std. Error	Parameters :	
shape 0.70437192 0.037958558	estimate Std. Error	
rate 0.03439354 0.002603604	shape 1.76935387 0.102963703	
Loglikelihood: -1986.589 AIC: 3977.178	rate 0.04071883 0.002734107	
BIC: 3985.607	Loglikelihood: -2344.617 AIC: 4693.233	
Correlation matrix:	BIC: 4701.662	
shape rate	Correlation matrix:	
shape 1.0000000 0.7108808	shape rate	
rate 0.7108808 1.0000000	shape 1.0000000 0.8657891	
	rate 0.8657891 1.0000000	

Appendix B *Interarrival time regression*

Regression showed that the hour the call received had a significant impact on the expected inter-arrival time. Below is a linear model using hour to predict inter-arrival time.

lm(formula = a\$Interarrival.time ~ factor(a\$Hour))
Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
5pm	39.753	2.270	17.511	< 2e-16 ***
6pm	-20.857	2.746	-7.594	1.55e-13 ***
7pm	-25.698	2.692	-9.545	< 2e-16 ***

Appendix C *Service time outliers*

> a[a\$Service.time>177,] Received time Answer s

	Received.time	Answer.seconds	Completion.seconds	Service.time	Interarrival.time
66	2730	10	218	208	12
106	3975	22	381	359	11
110	4066	12	620	608	44
176	5399	8	202	194	11
292	7335	10	226	216	16
329	7936	20	277	257	5
342	8169	22	395	373	32
397	9064	12	582	570	11
447	9719	22	212	190	1
468	9944	12	241	229	2
484	10047	63	354	291	5
486	10051	80	404	324	3

Appendix D The finalized subsets

There are 89 calls before 6pm (1 Service time outlier). There are 12 service time outliers (1 before 6pm). The final subset has 400 observations.

Inter-arrival times	Service times
descdist(a\$Interarrival.time)	descdist(a\$Service.time)
summary statistics	summary statistics
min: 0 max: 82	min: 0 max: 157
median: 12	median: 30
mean: 16.4125	mean: 37.98
estimated sd: 15.68814	estimated sd: 25.49371
estimated skewness: 1.749913	estimated skewness: 2.157215
estimated kurtosis: 6.360868	estimated kurtosis: 8.74182
summary(fitdist(a\$Interarrival.time,'gamma')	summary(fitdist(a\$Service.time,'gamma')
))
Fitting of the distribution 'gamma' by	Fitting of the distribution 'gamma' by
maximum likelihood	maximum likelihood
Parameters :	Parameters :
estimate Std. Error	estimate Std. Error
shape 0.81018103 0.049469967	shape 2.64961522 0.176720944
rate 0.04936669 0.004072817	rate 0.06974988 0.005120118
Loglikelihood: -1512.929 AIC: 3029.858	Loglikelihood: -1772.312 AIC: 3548.624
BIC: 3037.841	BIC: 3556.607
Correlation matrix:	Correlation matrix:
shape rate	shape rate
shape 1.0000000 0.7396077	shape 1.0000000 0.9082801
rate 0.7396077 1.0000000	rate 0.9082801 1.0000000

Appendix E Inter-arrival distribution characteristics graph

Appendix F Service rate distribution characteristics graph

Appendix G Inter-arrival distribution characteristics graph

There is an automated message at the start of every call that lasts 7 seconds. Those seconds are included in the time a job spends in the system but are potentially misleading for measuring the efficiency of the server.