# CE 366 – SETTLEMENT (Problems & Solutions)

# P. 1) LOAD UNDER A RECTANGULAR AREA (1)

# Question:

The footing shown in the figure below exerts a uniform pressure of 300 kN/m<sup>2</sup> to the soil. Determine <u>vertical stress increase due to uniform pressure</u>, at a point of 4 m directly under; (a) point A, (b) point B.



L – Shaped Footing (Plan view)

### Solution:

# a) Point A;



$$\Delta \sigma_z = q.I_r$$

By the use of Figure 1.6 in Lecture Notes, page 10;

• For area 1 : A(abcfg)

$$z = 4 \text{ m}$$
  $mz = 4$   $m = 4/4 = 1$   $nz = 2$   $m = 2/4 = 0.5$   $I_r = 0.12$ 

• For area 2 : A(cdef)

$$z = 4 \text{ m}$$
  $mz = 2$   $m = 2/4 = 0.5$   $I_r = 0.085$   $n = 2/4 = 0.5$ 

 $\Delta \sigma_z = 300 (0.12 + 0.085) = 61.5 \text{ kPa}$ 

the stress at 4 m depth under point A due to 300 kN/m<sup>2</sup> uniform pressure

b) Point B;



Area 1 = Area 2 = Area 3

$$mz = nz = 2$$
  $m = n = 2/4 = 0.5$   $I_r = 0.085$ 

 $\Delta \sigma_z = 300 (3 \times 0.085)$ 

$$= 76.5 \text{ kPa}$$

the stress at 4 m depth under point B due to 300 kN/m<sup>2</sup> uniform pressure

# P. 2) LOAD UNDER A RECTANGULAR AREA (2)

### Question:

A rectangular footing as shown in figure below exerts a uniform pressure of 420 kN/m<sup>2</sup>. Determine the vertical stress due to uniform pressure at point A for a depth of 3 m.



Solution:



For area (abkh):

For area (bcdk):

$$\begin{array}{c} mz = 3.5 \\ nz = 2 \end{array} \right\} \quad \begin{array}{c} m = 3.5 \ / \ 3 = 1.17 \\ n = 2 \ / \ 3 = 0.67 \end{array} \right\} \qquad \qquad I_r = 0.151$$

For area (fghk):

For area (ijkm):

$$mz = nz = 2$$
  $\longrightarrow$   $m = n = 2 / 3 = 0.67$   $\longrightarrow$   $I_r = 0.117$ 

$$\Delta \sigma_{z} = \sigma \cdot I_{r}$$

$$= 420 [I_{r1} + I_{r2} + I_{r3} + I_{r4} - I_{r5}]$$

$$= 420 [0.195 + 0.151 + 0.105 + 0.133 - 0.117]$$

 $\Delta \sigma_z = 196.14 \text{ kPa}$ 

<u>Note:</u> Where do we use the vertical stress increase,  $\Delta \sigma_z$ , values?

For example, in a consolidation settlement problem, stress increase,  $\Delta \sigma_z$ , values are needed to calculate settlement under a foundation loading. We make the following calculations for a point located under the foundation at a certain depth (for example, at the mid-depth of the compressible layer):

- (1) First, calculate the initial effective vertical stress,  $\sigma'_{v,o}$ , before the building was constructed,
- (2) Then, find the vertical stress increase  $\Delta \sigma_z$  at that depth, by using Boussinesq stress distribution or by approximate methods (for example 2V: 1H approximation)
- (3) Find the final effective vertical stress,  $\sigma'_{v,f} = \sigma'_{v,o} + \Delta \sigma_z$ , after the building is constructed.
- (4) Use these values in calculating the settlement under the foundation.

### P. 3) IMMEDIATE SETTLEMENT

# Question:

A foundation 4  $^{m}$  × 2  $^{m}$ , carrying a net uniform pressure of 200 kN/m<sup>2</sup>, is located at a depth of 1.5 m in a layer of clay 5 m thick for which the value of  $E_{u}$  is 45 MN/m<sup>2</sup>. The layer is underlain by a second layer, 10 m thick, for which the value of  $E_{u}$  is 80 MN/m<sup>2</sup>. A hard stratum lies below the second layer. Ground water table is at depth of foundation. Determine the average immediate settlement under the foundation.

**Hint:** Since soil is SATURATED CLAY,  $v_s$ =0.5. So the following equation can be used:

$$S_i = \mu_0 \cdot \mu_1 \cdot \frac{q \cdot B}{E_u}$$

Solution:



$$S_i = \mu_0 \cdot \mu_1 \cdot \frac{q \cdot B}{E_u}$$



B is the smaller dimension!

We obtain,  $\mu_0 \ \ \text{from} \ D \ / \ B \\ \mu_1 \ \ \text{from} \ H \ / \ B \ \text{and} \ L \ / \ B$ 

D/B = 1.5/2 = 0.75  $\rightarrow \mu_0$  = 0.95 (Figure 3.3, p.62 Lecture Notes)

# (1) Consider the upper layer with $E_u = 45$ MPa.



$$H/B = 3.5/2 = 1.75$$
  
 $L/B = 4/2 = 2$   $\mu_1 = 0.65$ 

$$S_{i_1} = \mu_0 \cdot \mu_1 \cdot \frac{q \cdot B}{E_u} = (0.95) \cdot (0.65) \cdot \frac{(200) \cdot 2}{45} = 5.49 mm$$
Hard stratum

# (2) Consider the two layers combined with $E_u = 80$ MPa.



$$H / B = (3.5 + 10) / 2 = 6.75$$
 }  $\mu_1 = 0.9$   $L / B = 4 / 2 = 2$ 

$$S_{i2} = \mu_0 \cdot \mu_1 \cdot \frac{q \cdot B}{E_u} = (0.95) \cdot (0.9) \cdot \frac{(200) \cdot 2}{80} = 4.28mm$$

### (3) Consider the upper layer with $E_u = 80$ MPa.



$$\left. \begin{array}{l} H\,/\,B = 3.5\,/\,2 = 1.75 \\ L\,/\,B = 4\,/\,2 = 2 \end{array} \right\} \;\; \mu_1 = 0.65$$

$$S_{i3} = \mu_0 \cdot \mu_1 \cdot \frac{q \cdot B}{E_u} = (0.95) \cdot (0.65) \cdot \frac{(200) \cdot 2}{80} = 3.08mm$$

Using the principle of superposition, the settlement of the foundation is given by;

$$S_i = S_{i1} + S_{i2} - S_{i3}$$
  
 $S_i = 5.49 + 4.28 - 3.08$ 

$$S_i = 6.69 \text{ mm}$$

### P. 4) SCHMERTMAN

### Question:

A soil profile consists of deep, loose to medium dense sand ( $\gamma_{dry} = 16 \text{ kN/m}^3$ ),  $\gamma_{sat} = 18 \text{ kN/m}^3$ ). The ground water level is at 4 m depth. A 3.5 m x 3.5 m square footing rests at 3 m depth. The **total (gross) load** acting at the foundation level (footing weight + column load + weight of soil or footing) is 2000 kN. Estimate the elastic settlement of the footing 6 years after the construction using influence factor method (Schmertman, 1978).

End resistance values obtained from static cone penetration tests are;

| Depth (m)     | <u>q<sub>c</sub> (kN/m²)</u> |
|---------------|------------------------------|
| 0.00 - 2.00   | 8000                         |
| 2.00 - 4.75   | 10000                        |
| 4.75 - 6.50   | 8000                         |
| 6.50 - 12.00  | 12000                        |
| 12.00 - 15.00 | 10000                        |

*Note that;* 

| • | for square footing; | z (depth)(from foundation level) | <u>I<sub>z</sub> (strain factors)</u> |  |
|---|---------------------|----------------------------------|---------------------------------------|--|
|   |                     | 0                                | 0.1                                   |  |
|   |                     | B/2                              | 0.5                                   |  |
|   |                     | 2B                               | 0.0                                   |  |

Where; B: width of footing

•  $E_s = 2.0 q_c$ 

### Solution:

$$S_i = C_1 C_2 q_{net} \Sigma \frac{I_z}{E} \Delta z$$

 $q_{net}$  = net foundation pressure

$$C_1 = 1 - 0.5 \frac{\sigma'_o}{q_{net}}$$
 correction factor for footing depth

 $\sigma'_{o}$  = effective overburden pressure at foundation level

$$C_2 = 1 + 0.2 \log \frac{t}{0.1}$$
 correction factor for creep

t = time at which the settlement is required (in years)



$$q_{net} = \frac{2000}{3.5x3.5} - 3x16 = 115.26 \, kPa$$

gross pressure. initial effective overburden pressure

$$\sigma_{0} = 3x16 = 48 \text{ kPa}$$

$$C_1 = 1 - 0.5 \frac{48}{115.26} = 0.792$$

$$C_2 = 1 + 0.2 \log \frac{6}{0.1} = 1.356$$



 $E_s = 2.0 \, q_c$ 

| Layer No | Depth(m)   | $\Delta z(m)$ | <u>q<sub>c</sub>(kPa)</u> | Es(kPa) | $\underline{\mathbf{I}_{z}}$ | $(I_z/E_s) \Delta z$   |
|----------|------------|---------------|---------------------------|---------|------------------------------|------------------------|
| 1        | 3.00-4.75  | 1.75          | 10.000                    | 20.000  | 0.3                          | 2.65x10 <sup>-5</sup>  |
| 2        | 4.75-6.50  | 1.75          | 8.000                     | 16.000  | 0.416                        | $4.55 \times 10^{-5}$  |
| 3        | 6.50-8.25  | 1.75          | 12.000                    | 24.000  | 0.249                        | 1.82x10 <sup>-5</sup>  |
| 4        | 8.25-10.00 | 1.75          | 12.000                    | 24.000  | 0.083                        | $0.605 \times 10^{-5}$ |
|          |            |               |                           |         | _                            | 05                     |

 $\Sigma = 9.625 \text{x} 10^{-5}$ 

$$S_i = (0.792) (1.356) (115.26) (9.625 \times 10^{-5})$$
  
= 0.01191 m  $\longrightarrow$   $S_i = 11.91 \text{ mm}$ 

#### P5. CONSOLIDATION SETTLEMENT

### Question:

Ignore the immediate settlement, and calculate total consolidation settlement of soil profile composed of two different types of clay, i.e. Clay 1 and Clay 2 due to 150 kPa net foundation loading. Take unit weight of water as 10 kN/m<sup>3</sup> and assume that Skempton-Bjerrum Correction Factor is  $\mu = 0.7$  for both clay layers. Note that  $\sigma_c$  (or sometimes shown as  $\sigma_p$ ) is the preconsolidation pressure.



### Solution:

Settlement will take place due to loading ( $q_{net} = 150 \text{ kPa}$ ) applied at a depth of 2 m. Thus, all (consolidation) settlement calculations will be performed for clayey soil beneath the foundation (z > 2 m).

<u>Reminder:</u> General equation of 1D consolidation settlement (one dimensional vertical consolidation) for an overconsolidated clay is;

$$S_{c,1D} = \frac{C_r}{1 + e_o} H \log \left( \frac{\sigma_c'}{\sigma_{v,o}'} \right) + \frac{C_c}{1 + e_o} H \log \left( \frac{\sigma_{v,f}'}{\sigma_c'} \right)$$

Note that, all calculations are done for the **mid-depth** of the compressible layers under the loading.

### Consolidation settlement in Clay 1:

Initial effective overburden stress,  $\sigma'_{v,o} = (2*19) + (3*(20-10)) = 68 \text{ kPa}$ 

Stress increment due to foundation loading,  $\Delta \sigma = [150*(10*10)] / [(10+3)*(10+3)] = 88.8$  kPa

Final stress,  $\sigma'_{v,f} = 68 + 88.8 = 156.8 \text{ kPa}$ 

This is an overconsolidated clay (overconsolidation ratio OCR =  $\sigma_c^{'}$  /  $\sigma_{v,o}^{'}$  = 80 / 68 > 1.0); and the final stress,  $\sigma_{v,f}^{'}$  is greater than  $\sigma_c^{'}$  ( $\sigma_{v,f}^{'} > \sigma_c^{'}$ ) therefore we should use both  $C_r$  and  $C_c$  in consolidation settlement calculation (see figure below).



$$S_{c,1D} = \left\{ \frac{0.05}{1 + 0.80} (6) \log \left( \frac{80}{68} \right) \right\} + \left\{ \frac{0.15}{1 + 0.80} (6) \log \left( \frac{156.8}{80} \right) \right\} = 0.158m = 15.8 cm$$

### Consolidation settlement in Clay 2:

Initial effective overburden stress,  $\sigma_{v,0} = (2*19) + (6*(20-10)) + (3*(20-10)) = 128 \text{ kPa}$ 

Stress increment due to foundation loading,  $\Delta \sigma = [150*(10*10)] / [(10+9)*(10+9)] = 41.6$  kPa

Final stress,  $\sigma_{v,f} = 128 + 41.6 = 169.6 \text{ kPa}$ 

This is an overconsolidated clay (overconsolidation ratio OCR =  $\sigma_c^{'}/\sigma_{v,o}^{'}$  = 200 / 128 > 1.0); and the final stress,  $\sigma_{v,f}$  is less than  $\sigma_c$  ( $\sigma_{v,f} < \sigma_c$ ) therefore we should use only  $C_r$  in consolidation settlement calculation (see figure below).

[Note: If a soil would be a normally consolidated clay (OCR =  $\sigma_c^2 / \sigma_{v,o}^2 = 1.0$ ), we would use only  $C_c$  in consolidation settlement calculation.]



$$S_{c,1-D} = \left\{ \frac{0.03}{1 + 0.60} (6) \log \left( \frac{169.6}{128} \right) \right\} = 0.014 \, m = 1.4 \, cm$$

Total Consolidation Settlement (1D):

$$S_{c,1D} = 15.9 + 1.4 = 17.3cm$$

Corrected Settlement for 3D Consolidation (Skempton-Bjerrum Factor):

$$S_{c,3D} = S_{c,1D} * \mu = 17.3 * 0.7 = 12.1 cm$$