# **Customer Segmentation and Purchase Patterns in Online Retail**

Dana Nunez 30/05/25

### **Dataset Overview**

Purpose: Study consumer behavior, purchase frequency, and patterns to support marketing strategies.

Name: Online Retail

Main Region: United Kingdom and other

European countries

Time Period: December 2010

Volume: Over 500,000 transaction

records

Customer data: CustomerID

**Invoice details**: InvoiceNo, InvoiceDate,

Country

Product info: Description, Quantity,

UnitPrice

|   | InvoiceNo | StockCode | Description                         | Quantity | InvoiceDate         | UnitPrice | CustomerID | Country        |
|---|-----------|-----------|-------------------------------------|----------|---------------------|-----------|------------|----------------|
| 0 | 536365    | 85123A    | WHITE HANGING HEART T-LIGHT HOLDER  | 6        | 2010-12-01 08:26:00 | 2.55      | 17850.0    | United Kingdom |
| 1 | 536365    | 71053     | WHITE METAL LANTERN                 | 6        | 2010-12-01 08:26:00 | 3.39      | 17850.0    | United Kingdom |
| 2 | 536365    | 84406B    | CREAM CUPID HEARTS COAT HANGER      | 8        | 2010-12-01 08:26:00 | 2.75      | 17850.0    | United Kingdom |
| 3 | 536365    | 84029G    | KNITTED UNION FLAG HOT WATER BOTTLE | 6        | 2010-12-01 08:26:00 | 3.39      | 17850.0    | United Kingdom |
| 4 | 536365    | 84029E    | RED WOOLLY HOTTIE WHITE HEART.      | 6        | 2010-12-01 08:26:00 | 3,39      | 17850.0    | United Kingdom |

# **Problem Statement & Objectives**

#### **Problem Statement**

How can we identify different types of customers based on their purchasing behavior to help the business take action?

#### **Project Goals**

- Segment customers using RFM (Recency, Frequency, Monetary) metrics
- Apply unsupervised learning (K-Means) to group customers by patterns
- Discover high-value vs low-engagement customers
- Analyze trends in purchasing and revenue
- Create an interactive dashboard for insights and decision-making

# Methodology

#### Data Cleaning & Preparation

#### **RFM Feature Engineering**

# Unsupervised Learning (K-Means Clustering)

- Removed duplicates and nulls
- Filtered non-positive values and canceled transactions

Number of duplicate rows: 5268

Calculated revenue per transaction

| Recency: Da | ys since | last p | purchase |
|-------------|----------|--------|----------|
|-------------|----------|--------|----------|

- Frequency: Number of transactions
- Monetary: Total amount spent

- Normalized RFM features
- Used Elbow Method to find optimal K=3
- Assigned customer segments based on
  - cluster membership

|       | o. aapara     |                               |               |               |
|-------|---------------|-------------------------------|---------------|---------------|
|       | Quantity      | InvoiceDate                   | UnitPrice     | CustomerID    |
| count | 541909.000000 | 541909                        | 541909.000000 | 406829.000000 |
| mean  | 9.552250      | 2011-07-04 13:34:57.156386048 | 4.611114      | 15287.690570  |
| min   | -80995.000000 | 2010-12-01 08:26:00           | -11062.060000 | 12346.000000  |
| 25%   | 1.000000      | 2011-03-28 11:34:00           | 1.250000      | 13953.000000  |
| 50%   | 3.000000      | 2011-07-19 17:17:00           | 2.080000      | 15152.000000  |
| 75%   | 10.000000     | 2011-10-19 11:27:00           | 4.130000      | 16791.000000  |
| max   | 80995.000000  | 2011-12-09 12:50:00           | 38970.000000  | 18287.000000  |
| std   | 218.081158    | NaN                           | 96.759853     | 1713.600303   |



|       | Quantity      | InvoiceDate                   | UnitPrice     | CustomerID    |
|-------|---------------|-------------------------------|---------------|---------------|
| count | 392732.000000 | 392732                        | 392732.000000 | 392732.000000 |
| mean  | 13.153718     | 2011-07-10 19:15:24.576301568 | 3.125596      | 15287.734822  |
| min   | 1.000000      | 2010-12-01 08:26:00           | 0.000000      | 12346.000000  |
| 25%   | 2.000000      | 2011-04-07 11:12:00           | 1.250000      | 13955.000000  |
| 50%   | 6.000000      | 2011-07-31 12:02:00           | 1,950000      | 15150.000000  |
| 75%   | 12.000000     | 2011-10-20 12:53:00           | 3.750000      | 16791,000000  |
| max   | 80995.000000  | 2011-12-09 12:50:00           | 8142.750000   | 18287.000000  |
| std   | 181,588420    | NaN                           | 22.240725     | 1713.567773   |



## Clustering Results & Customer Segments

#### K-Means with K=3 revealed 3 customer profiles:

| Cluster | Recency | Frequency | Monetary | Insight                                 |
|---------|---------|-----------|----------|-----------------------------------------|
| 0       | Low     | Low       | High     | High-value buyers, worth retaining      |
| 1       | Low     | Low       | Low      | Inactive or one-time customers          |
| 2       | Medium  | Low       | Medium   | Occasional buyers, potential for growth |

#### **Key Observations**

- Most customers purchase infrequently
- Cluster 0 customers spend more despite low frequency
- Visualizations:
  - RFM scatterplots helped identify patterns
  - o Clusters differ mainly in **Monetary** value



#### **Key Insights**

- → Most customers buy infrequently (low frequency)
- → A small segment contributes disproportionately high revenue (Cluster 0)
- → Many purchases are recent, showing current engagement
- → Returns and incomplete records influence sales trends at month-end

#### Recommendations

- Focus retention strategies on Cluster 0 (high spenders)
- Design reactivation campaigns for Cluster 1 (low spenders)
- Offer personalized incentives to boost frequency in Cluster 2
- Monitor monthly sales trends to anticipate inventory and marketing needs



#### **Visualizations - Clustering**





#### **Visualizations - Time Series**

Forecasted monthly revenue using ARIMA. No clear seasonality observed; sharp drop due to incomplete data in the last month.



## Conclusion

- The project successfully applied **RFM analysis** and **unsupervised machine learning (K-Means)** to segment customers and uncover valuable purchasing patterns.
- **Cluster 0** revealed a high-value group with low recency and high monetary scores ideal for retention strategies.
- The data cleaning process was deeply tailored to the business case, removing irrelevant transactions (like cancellations) and focusing only on active, revenue-generating purchases.

#### **Key Learnings**

- ★ Applied unsupervised clustering (K-Means) to segment customers.
- ★ Strengthened skills in **data cleaning** and business-focused analysis.
- ★ Focused on **data preprocessing** tailored to the RFM-based segmentation.

# Thank you