import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.preprocessing import StandardScaler from sklearn.neighbors import KNeighborsClassifier from sklearn.model selection import train test split from sklearn.metrics import confusion matrix, f1 score, recall df = pd.read_csv("diabetes.csv")

df.head()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI	DiabetesPedigre
0	6	148	72	35	0	33.6	
1	1	85	66	29	0	26.6	
2	8	183	64	0	0	23.3	
3	1	89	66	23	94	28.1	
4	0	137	40	35	168	43.1	
4							>

df.shape

(768, 9)

df.describe()

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insulin	BMI
count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000
mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578
std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160
min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000
25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000
50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000
75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000
max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000
						>

```
#replace zeros
zero not accepted=["Glucose","BloodPressure","SkinThickness","B
for column in zero not accepted:
 df[column]=df[column].replace(0,np.NaN)
 mean=int(df[column].mean(skipna=True))
 df[column]=df[column].replace(np.NaN,mean)
df["Glucose"]
         148.0
   1
         85.0
         183.0
         89.0
         137.0
   763
         101.0
   764
        122.0
        121.0
   765
        126.0
   766
         93.0
   767
   Name: Glucose, Length: 768, dtype: float64
#split dataset
X=df.iloc[:,0:8]
y=df.iloc[:,8]
X train, X test, y train, y test=train test split(X, y, random state
#feature Scaling
sc X=StandardScaler()
X train=sc X.fit transform(X train)
X test=sc X.transform(X test)
knn=KNeighborsClassifier(n neighbors=11)
knn.fit(X train,y train)
   KNeighborsClassifier(n_neighbors=11)
y pred=knn.predict(X test)
#Fvaluate The Model
cf matrix=confusion matrix(y test,y pred)
```

```
ax = sns.heatmap(cf_matrix, annot=True, cmap='Blues')
ax.set_title('Seaborn Confusion Matrix with labels\n\n');
ax.set_xlabel('\nPredicted Values')
ax.set_ylabel('Actual Values ');
## Display the visualization of the Confusion Matrix.
plt.show()
```

Seaborn Confusion Matrix with labels

#The accuracy rate is equal to (tn+tp)/(tn+tp+fn+fp)
accuracy_score(y_test,y_pred)

0.7559055118110236

#The precision is the ratio of tp/(tp + fp)
precision_score(y_test,y_pred)

0.6617647058823529

##The recall is the ratio of tp/(tp + fn)
recall_score(y_test,y_pred)

0.5357142857142857

#error rate=1-accuracy which is lies bertween 0 and 1
error_rate=1-accuracy_score(y_test,y_pred)

error_rate

0.2440944881889764

Colab paid products - Cancel contracts here