Simple Classifiers: using linear and kNN approaches

Alípio Jorge

February 2021

Where are we?

- A program learns when it improves with experience (Mitchell simplified)
 - improves: makes better decisions in a task
 - experience: data
- The true decision function is unknown
- ML as function approximation
 - use the observed data to induce a function

Machine Learning tasks

- Regression
- Classification
- Recommendation
- Clustering
- Outlier detection

Classification is perhaps the most popular machine learning task.

- Distinguish our enemies from our allies
- Poisonous mushrooms from edible ones
- Good days to go hunting from good days to stay put
- Sort different kinds of seeds for human feeding, animal feeding, sowing and throwing away.

In many aspects, it is very similar to Regression.

- Both can be used for understanding the past
- For real time decision and action
- And for **predicting** the future

We can also see classification as function approximation.

• An underlying unknown function that maps objects to classes C_i

$$f(\mathbf{X}): \{input \ domain\} \rightarrow \{C_1, C_2, ..., C_K\}$$

ullet The aim is to find a **classifier**: a function that approximates $f(\mathbf{X})$

We want to discover a function $\hat{f}(\mathbf{X})$ that approximates the real function.

- The discovery process is done by **learning** from examples
 - observed data.

Questions:

- What **kind of function** do we consider?
- What is a **good approximation**?
- How do we **obtain** the function from data?

What we will do next

- We simulate a dataset with two classes
- We see how different approaches work
- We observe the decision boundaries

First we simulate a classification dataset, with **two classes**.

We now want to obtain a function that is a **good approximation** of the unknown original function.

- If we represent each class as a number, we can treat the discrete function as a continuous one.
- In our case, the class blue will be represented by 0 and orange by 1.

```
x1 x2 y
1 5.535692 3.809123 0
2 7.618419 4.591018 0
101 5.791766 9.581688 1
102 7.733957 3.805342 1
```

Ad-hoc approach

We can use the least squares approach to learn a linear classifier.

- Learn a regression model that finds a regression plane for the multivariate regression problem.
- Given a point (x1, x2), we use the regression model to estimate y
- if y < 0.5 the class is **blue**, otherwise the class is **orange**.

Ad-hoc approach

For example:

- Let $y = -0.4 + 0.01x_1 + 0.14x_2$
- For point (6, 4) we have:
- y = -0.4 + 0.06 + 0.56 = 0.22
- Class is blue

- Visualize the decision boundary
 - the line that separates the classes
- How is the decision boundary obtained in this case?
 - The linear model is a plane with equation $y = a_0 + a_1x_1 + a_2x_2$.
 - The boundary will be defined by y = 0.5.
 - The line of x_2 as a function of x_1 is:

$$a_0 + a_1 x_1 + a_2 x_2 = 0.5 \equiv x_2 = \frac{0.5 - a_0}{a_2} - \frac{a_1}{a_2} x_1$$

• Plot the data and plot the **decision boudary**.

What is the actual classification model?

```
m$coefficients
(Intercept)
                       x1
                                    x2
-0.48636124 0.01662712 0.14609943
lscm <- function(regmodel, observation){</pre>
  val <- predict(regmodel, observation)</pre>
  sapply(val,function(v) if(v<0.5) 'blue' else 'orange' )</pre>
}
lscm(m,data.frame(x1=c(4,4),x2=c(8,5),y=NA))
```

"blue"

"orange"

Some notes

- Linear regression optimizes the regression problem
 - Not necessarily the classification problem
- Is the threshold of 0.5 always the best option?
- Other linear classifiers optimize classification
 - Logistic regression
 - Linear discriminant
 - SVM with a linear kernel
- We will see this in future lectures

Can we have a classification model with a better fit?

- We decided that the decision boundary was linear
- However, other classes of functions could find a more accurate boundary
- But remember, expressive classes of functions can also incur in overfitting more easily.

Linear models can be optimal when we have linear decision boundaries.

- This is typically not the case.
- However, linear models can be very useful, even when it is not the case

Can we have a more flexible approach?

- The Nearest Neighbours approach is radically different
- It can flexibly adapt to decision boundaries with arbitrary shapes
- It can be used for regression and classification
- But not without disadvantages.

Given a data set (\mathbf{X}, \mathbf{y}) , the prediction y of a new point x is calculated as

$$\hat{\mathbf{y}}(x) = \frac{1}{k} \sum_{x_i \in N(x)} y_i$$

- *k* is the **number of neighbours** used to obtain the estimate.
- N(x) is the set of k nearest neighbours of x
- The distance function in this case is the Euclidean distance
 - But we can use any distance/similarity function

What about classification?

- A classifier can be obtained by thresholding:
 - if $\hat{\mathbf{y}}(x) < 0.5$ then class = blue
 - else *class* = *orange*
- But we can have it **directly** from classification data

$$\hat{\mathbf{y}}(x) = \operatorname{argmax}_{C_j} \ \#\{\ x_i \in \mathit{N}(x) \ | \ y_i = C_j\}$$

Using function ${\tt knn}$ from the class library with 3 neighbours.

	x1	x2	<pre>pred.classes</pre>
90	6.619307	4.150111	blue
86	4.537817	5.158983	blue
115	6.040686	8.156749	orange
134	3.632576	10.274317	orange
124	7.143040	6.778603	orange
105	3.185431	12.954132	orange

Looking at a sample of points we see they **mostly agree** with the linear model

- What is the precise decision boundary produced by kNN?
- What is the effect of the parameter k on the decision boundary?

To answer these questions we will plot a fine **grid of points** over the data points.

 We will also compare with the decision boundary given by the linear model

• k = 1

• k = 3

• k = 15

Alípio Jorge

Simple Classifiers: using linear and kNN appro

February 2021

• k = 100

Observations

- The boundary given by kNN is more detailed than the linear one
 - The linear boundary is **smooth**
 - The kNN approach has fewer assumptions
- In other words
 - The linear model approach has high bias and low variance
 - The kNN approach has low bias and high variance
 - Especially if k is low

- There is no model in kNN, we have to **store** the data.
 - This can be inefficient.
 - Sampling can be used to reduce the load.
 - Stored data points can be selected.
 - But there is search effort (lazy learning)
- Is this learning?
 - Where is **compression**?

- Linear regression
 - coefficients are the parameters to learn
- What are the parameters of kNN?
 - k is a hyperparameter
 - it is not learned, but it can be tuned

The parameters of kNN

- Imagine the simpler scenario
 - N points and k neighbors
 - no neighborhood overlap
- How many different values?
 - p=N/k
- Our approximate function is defined with p values
 - These values would be the parameters
- These parameters are not learned
 - They are estimated at prediction time
- But we do not have to worry about that with kNN

kNN and Least Squares

- Can we choose the *k* that **minimizes** RSS?
 - that would always be k=1
 - Why?

Summary

- ML can be seen as function approximation
- How do we find a good approximation?
 - Linear Regression:
 - Parameter estimation
 - Least Squares
 - We can adapt linear regression to binary classification
 - But this is in general not a good idea
 - k Nearest Neighbors:
 - Lazy learning
 - Value estimation in a neighborhood
- There are other strategies
- Why do they work?
 - We will soon look into statistical decision theory

Activities

- (1) Use the data set iris that comes with R (data(iris)). Consider the two variables 'Petal.Length' and 'Sepal.Length' and use them to plot the 3 classes in 2 dimensions. Apply kNN to predict the Species. Plot the decision boundaries for different values of k.
- (2) Consider the data set **iris** and make the classes **setosa** and **virginica** as a single class **setinica**. Compare the application of the linear approach and of the kNN approach to this two-class data set.

Activities

(3) Visualize the result of kNN for the regression problem of predicting the final position of a football team given its budget. Use the function knn.reg from the FNN package to make the predictions using the *log* transformation. Plot the regression line produced by kNN.

```
budget <- c(100, 70, 36, 15, 6, 5.5, 4, 3.6, 3.4, 3.4, 2.5, 2)
position <- c(1,2,7,4,10,9,8,13,11,6,3,5,15,16,14,12)
```

Activities

(4) Produce the following plot that "draws" the function discovered by knn.

End of lesson

Bibliography

 Hastie, T., Tibshirani, R., Friedman, J. (2008). The Elements of Statistical Learning, Second Edition. New York, NY, USA: Springer New York Inc. (Chapter 2)