Integration and its Applications

MATHEMATICS FOR COMPUTING (IT1030)

Indefinite Integration

Introduction

- Calculus involves two basic operations:
 - differentiation
 - integration (or anti differentiation)
- > The two operations (integration & differentiation) are inverses of each other.

Definition of Anti derivative

A function F is an anti derivative of a function f if for every x in the domain of f, it follows that F'(x) = f(x)

If F(x) is an anti derivative of f(x), then F(x) + c, where c is any constant, F(x) is also an anti derivative of f(x).

Notation for Anti derivatives and Indefinite Integrals

Integral Sign

Finding Anti-Derivatives

The inverse relationship between the operations of integration and differentiation can be shown symbolically, as follows.

$$\frac{d}{dx} \left[\int f(x) \right] = f(x)$$
$$\int f'(x) dx = f(x) + C$$

```
1. \int k dx = kx + C ; k is a constant
2. \int k f(x) dx = k \int f(x) dx
```

3.
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

4.
$$\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx$$

5.
$$\int x^n dx = \frac{x^{n+1}}{n+1} + C$$
 , $n \neq -1$

Example

Finding Indefinite Integrals

Find each indefinite integral.

$$\mathbf{a.} \quad \int \frac{1}{2} \, dx$$

b.
$$\int 1 dx$$

a.
$$\int \frac{1}{2} dx$$
 b. $\int 1 dx$ **c.** $\int -5 dt$

SOLUTION

a.
$$\int \frac{1}{2} dx = \frac{1}{2}x + C$$

b.
$$\int 1 dx = x + C$$

a.
$$\int \frac{1}{2} dx = \frac{1}{2}x + C$$
 b. $\int 1 dx = x + C$ **c.** $\int -5 dt = -5t + C$

Example

Finding an Indefinite Integral

Find
$$\int 3x \, dx$$

$$\int 3x \, dx = 3 \int x \, dx$$
Constant Multiple Rule
$$= 3 \int x^1 \, dx$$
Rewrite x as x^1 .
$$= 3\left(\frac{x^2}{2}\right) + C$$
Simple Power Rule with $n = 1$

$$= \frac{3}{2}x^2 + C$$
Simplify.

Example

Finding an Indefinite Integral

Original Integral

$$\mathbf{a.} \int \frac{1}{x^3} \, dx$$

b.
$$\int \sqrt{x} \, dx$$

Rewrite Integrate Simplify
$$\int x^{-3} dx \qquad \frac{x^{-2}}{-2} + C \qquad -\frac{1}{2x^2} + C$$

$$\int x^{1/2} dx \qquad \frac{x^{3/2}}{3/2} + C \qquad \frac{2}{3}x^{3/2} + C$$

Example

Integrating Polynomial Functions

Find (a)
$$\int (x + 2) dx$$
 and (b) $\int (3x^4 - 5x^2 + x) dx$.

SOLUTION

a.
$$\int (x + 2) dx = \int x dx + \int 2 dx$$
$$= \frac{x^2}{2} + C_1 + 2x + C_2$$
$$= \frac{x^2}{2} + 2x + C$$

b.
$$\int (3x^4 - 5x^2 + x) dx = 3\left(\frac{x^5}{5}\right) - 5\left(\frac{x^3}{3}\right) + \frac{x^2}{2} + C$$
$$= \frac{3}{5}x^5 - \frac{5}{3}x^3 + \frac{1}{2}x^2 + C$$

Definite Integration

Definition of a Definite Integral

Let f be nonnegative and continuous on the closed interval [a,b]. The area of the region bounded by the graph of f, the x – axis, and the lines x = a and x = b Is denoted by,

$$Area = \int_{a}^{b} f(x)$$

 \triangleright The expression $\int_a^b f(x)$

is called the definite integral from a to b, where a is the lower limit of integration and b is the upper limit of integration.

The Fundamental Theorem of Calculus

 \triangleright If is f is nonnegative and continuous on the closed interval [a, b], then,

$$\int_{a}^{b} f(x) = F(b) - F(a)$$

where f is any function such that F'(x) = f(x) for all x in [a, b].

Properties of definite integrals

- 1. $\int_a^b kf(x) dx = k \int_a^b f(x) dx$, k is a constant.
- 2. $\int_a^b [f(x) \pm g(x)] dx = \int_a^b f(x) dx \pm \int_a^b g(x) dx$
- 3. $\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx$, a < c < b
- 4. $\int_{a}^{a} f(x) dx = 0$
- 5. $\int_{a}^{b} f(x) dx = -\int_{b}^{a} f(x) dx$

Example

Example

Finding Area by the Fundamental Theorem

Find the area of the region bounded by the x-axis and the graph of

$$f(x) = x^2 - 1, \quad 1 \le x \le 2.$$

Example

SOLUTION Note that $f(x) \ge 0$ on the interval $1 \le x \le 2$, as shown in Figure 5.9. So, you can represent the area of the region by a definite integral. To find the area, use the Fundamental Theorem of Calculus.

Area =
$$\int_{1}^{2} (x^{2} - 1) dx$$
 Definition of definite integral
= $\left[\frac{x^{3}}{3} - x\right]_{1}^{2}$ Find antiderivative.
= $\left(\frac{2^{3}}{3} - 2\right) - \left(\frac{1^{3}}{3} - 1\right)$ Apply Fundamental Theorem.
= $\frac{2}{3} - \left(-\frac{2}{3}\right)$
= $\frac{4}{3}$ Simplify.