Introduce Substitutions 0.1

Substitutions as SNOC lists 0.1.1

$$\sigma ::= \diamond \mid \sigma, x := v \tag{1}$$

0.1.2Trivial Properties of substitutions

 $fv(\sigma)$

$$fv(\diamond) = \emptyset \tag{2}$$

$$fv(\sigma, x := v) = fv(\sigma) \cup fv(v)$$
(3)

 $dom(\sigma)$

$$\mathtt{dom}(\diamond) = \emptyset \tag{4}$$

$$\operatorname{dom}(\sigma, x := v) = \operatorname{dom}(\sigma) \cup \{x\} \tag{5}$$

 $x\#\sigma$

$$x\#\sigma \Leftrightarrow x \notin (\mathtt{fv}(\sigma) \cup \mathtt{dom}(\sigma')) \tag{6}$$

0.1.3 Effect of substitutions

We define the effect of applying a substitution σ as

 $t [\sigma]$

$$x \left[\diamond \right] = x \tag{7}$$

$$x\left[\sigma, x := v\right] = v \tag{8}$$

$$x \left[\sigma, x' := v' \right] = x \left[\sigma \right] \quad \text{If } x \neq x' \tag{9}$$

$$\mathbf{C}^A \left[\sigma \right] = \mathbf{C}^A \tag{10}$$

$$C^{A}[\sigma] = C^{A}$$

$$(\lambda x : A.C)[\sigma] = \lambda x : A.(C[\sigma]) \text{ If } x \# \sigma$$

$$(10)$$

$$(\mathsf{if}_{\epsilon,A} \ v \ \mathsf{then} \ C_1 \ \mathsf{else} \ C_2)[\sigma] = \mathsf{if}_{\epsilon,A} \ v[\sigma] \ \mathsf{then} \ C_1[\sigma] \ \mathsf{else} \ C_2[\sigma] \tag{12}$$

$$(v_1 \ v_2) [\sigma] = (v_1 [\sigma]) \ v_2 [\sigma] \tag{13}$$

$$(\operatorname{do} x \leftarrow C_1 \operatorname{in} C_2) = \operatorname{do} x \leftarrow (C_1 [\sigma]) \operatorname{in} (C_2 [\sigma]) \quad \text{If } x \# \sigma \tag{14}$$

(15)

(11)

0.1.4 Well Formedness

Define the relation

$$\Gamma' \vdash \sigma : \Gamma$$

by:

- $(Nil) \frac{\Gamma'0k}{\Gamma'\vdash \diamond : \diamond}$
- $\bullet \ (\text{Extend}) \frac{\Gamma' \vdash \sigma : \Gamma \ x \not\in \texttt{dom}(\Gamma) \ \Gamma' \vdash v : A}{\Gamma' \vdash (\sigma, x := v) : (\Gamma, x : A)}$

Simple Properties Of Substitution

If $\Gamma' \vdash \sigma$: Γ then: **TODO: Number these**

Property 1: Γ Ok and Γ 'Ok Since Γ 'Ok holds by the Nil-axiom. Γ Ok holds by induction on the well-formed-ness relation.

Property 2: $\omega : \Gamma'' \triangleright \Gamma'$ implies $\Gamma'' \vdash \sigma : \Gamma$. By induction over well-formed-ness relation. For each x := v in σ , $\Gamma'' \vdash v : A$ holds if $\Gamma' \vdash v : A$ holds.

Property 3: $x \notin (\text{dom}(\Gamma) \cup \text{dom}(\Gamma''))$ implies $(\Gamma', x : A) \vdash (\sigma, x := x) : (\Gamma, x : A)$ Since $\iota \pi : \Gamma', x : A \triangleright \Gamma'$, so by (Property 2) **TODO: Better referencing here**,

$$\Gamma', x : A \vdash \sigma : \Gamma$$

In addition, $\Gamma', x : A \vdash x : A$ trivially, so by the rule **Extend**, well-formed-ness holds for

$$(\Gamma', x : A) \vdash (\sigma, x := v) : (\Gamma, x : A) \tag{16}$$

0.2 Substitution Preserves Typing

We have the following non-trivial property of substitution:

$$\Gamma \vdash g: \tau \land \Gamma' \vdash \sigma: \Gamma \Rightarrow \Gamma' \vdash t [\sigma]: \tau \tag{17}$$

Assuming $\Gamma' \vdash \sigma: \Gamma$, we induct over the typing relation, proving $\Gamma \vdash t: \tau \to \Gamma' \vdash t: \tau$

0.2.1 Variables

Case Var By inversion $\Gamma = (\Gamma'', x : A)$ So

$$\Gamma'', x : A \vdash x : A \tag{18}$$

So by inversion, since $\Gamma' \vdash \sigma : \Gamma'', x : A$,

$$\sigma = \sigma', x := v \wedge \Gamma' \vdash v : A \tag{19}$$

By the defintion of the effect of substitutions, $x[\sigma] = v$, So

$$\Gamma' \vdash x \left[\sigma\right] : A \tag{20}$$

holds.

Case Weaken By inversion, $\Gamma = \Gamma'', y : B, x \neq y$, and there exists Δ such that

$$(\text{Weaken}) \frac{()\frac{\Delta}{\Gamma'' \vdash x : A}}{\Gamma'', y : B \vdash x : A} \tag{21}$$

By inversion, $\sigma = \sigma', y := v$ and:

$$\Gamma' \vdash \sigma' \colon \Gamma'' \tag{22}$$

So by induction,

$$\Gamma' \vdash x \left[\sigma'\right] : A \tag{23}$$

And so by definition of the effect of σ , $x[\sigma] = x[\sigma']$

$$\Gamma' \vdash x \left[\sigma\right] : A \tag{24}$$

0.2.2 Other Value Terms

Case Lambda By inversion, there exists Δ such that:

$$(\operatorname{Fn}) \frac{\left(\right) \frac{\Delta}{\Gamma, x: A \vdash C: M_{\epsilon}B}}{\Gamma \vdash \lambda x: A.C: A \to M_{\epsilon}B}$$

$$(25)$$

Using alpha equivalence, we pick $x \notin (dom(\Gamma) \cup dom(\Gamma'))$ Hence, by property 3, we have

$$(\Gamma', x : A) \vdash (\sigma, x := x) : \Gamma, x : A \tag{26}$$

So by induction using $\sigma, x := x$, we have Δ' such that:

$$(\operatorname{Fn}) \frac{\left(\right) \frac{\Delta'}{\Gamma', x : A \vdash C[\sigma, x := v] : \mathsf{M}_{\epsilon} B}}{\Gamma \vdash \lambda x : A . C[\sigma, x := x] : A \to \mathsf{M}_{\epsilon} B}$$

$$(27)$$

Since $\lambda x: A.(C[\sigma, x := x]) = \lambda x: A.(C[\sigma]) = (\lambda x: A.C)[\sigma]$, we have a typing derivation for $\Gamma' \vdash (\lambda x: A.C)[\sigma]: A \to M_{\epsilon}B$.

Case Constants We use the same logic for all constants, (), true, false, C^A : $\Gamma \vdash \sigma: \Gamma \Rightarrow \Gamma'$ 0k and:

$$C^{A}\left[\sigma\right] = C^{A} \tag{28}$$

So

$$(Const) \frac{\Gamma' 0k}{\Gamma' \vdash C^A: A}$$
 (29)

0.2.3 Computation Terms

Case Return By inversion, we have Δ_1 such that:

$$(Return) \frac{()\frac{\Delta_1}{\Gamma \vdash v:A}}{\Gamma \vdash \mathtt{return}v: \mathsf{M}_1 A}$$
(30)

By induction, we have Δ_1' such that

$$(\text{Return}) \frac{() \frac{\Delta_1'}{\Gamma' \vdash v[\sigma] : A}}{\Gamma' \vdash \text{return}(v[\sigma]) : M_1 A}$$
(31)

Since $(\mathtt{return}v)[\sigma] = \mathtt{return}(v[\sigma])$, the type derivation above holds for $\Gamma' \vdash (\mathtt{return}v)[\sigma] : M_1A$.

Case Apply By inversion, we have Δ_1 , Δ_2 such that:

$$(\text{Apply}) \frac{\left(\right) \frac{\Delta_1}{\Gamma \vdash v_1 : A \to M_e B} \right) \left(\right) \frac{\Delta_2}{\Gamma \vdash v_2 : A}}{\Gamma \vdash v_1 \ v_2 : M_e B}$$

$$(32)$$

By induction on Δ_1, Δ_2 , we have Δ'_1, Δ'_2 such that

$$(\text{Apply}) \frac{\left(\left(\frac{\Delta_{1}^{\prime}}{\Gamma^{\prime}\vdash v_{1}[\sigma]:A\to M_{\epsilon}B}\right)\left(\left(\frac{\Delta_{2}^{\prime}}{\Gamma^{\prime}\vdash v_{2}[\sigma]:A}\right)\right)}{\Gamma^{\prime}\vdash (v_{1}[\sigma])(v_{2}[\sigma]):M_{\epsilon}B}$$

$$(33)$$

Since $(v_1 \ v_2)[\sigma] = (v_1 [\sigma])(v_2 [\sigma])$, we the above derivation holds for $\Gamma' \vdash (v_1 \ v_2)[\sigma] : M_{\epsilon}B$

Case If By inversion, we have $\Delta_1, \Delta_2, \Delta_3$ such that:

$$(\mathrm{If}) \frac{()\frac{\Delta_{1}}{\Gamma \vdash v : \mathsf{Bool}} \ ()\frac{\Delta_{2}}{\Gamma \vdash C_{1} : \mathsf{M}_{\epsilon} A} \ ()\frac{\Delta_{3}}{\Gamma \vdash C_{2} : \mathsf{M}_{\epsilon} A}}{\Gamma \vdash \mathsf{if}_{\epsilon, A} \ v \ \mathsf{then} \ C_{1} \ \mathsf{else} \ C_{2} : \mathsf{M}_{\epsilon} A}$$

By induction on $\Delta_1, \Delta_2, \Delta_3$, we derive $\Delta_1', \Delta_2', \Delta_3'$ such that:

Since $(if_{\epsilon,A}\ v\ then\ C_1\ else\ C_2)\ [\sigma]=if_{\epsilon,A}\ (v\ [\sigma])\ then\ (C_1\ [\sigma])\ else\ (C_2\ [\sigma])$ The derivation above holds for $\Gamma'\vdash (if_{\epsilon,A}\ v\ then\ C_1\ else\ C_2)\ [\sigma]: \mathtt{M}_{\epsilon}A$

Case Bind By inversion, there exist Δ_1, Δ_2 such that:

$$(\text{Bind}) \frac{\left(\right) \frac{\Delta_1}{\Gamma \vdash C_1 : M_{\epsilon_1} A} \left(\right) \frac{\Delta_2}{\Gamma, x : A \vdash C_2 : M_{\epsilon_2} B}}{\Gamma \vdash \text{do } x \leftarrow C_1 \text{ in } C_2 : M_{\epsilon_1 \cdot \epsilon_2} B}$$

$$(36)$$

Using alpha-equivalence, we pick $x \notin (dom(\Gamma) \cup dom(\Gamma'))$. Hence by property 3,

$$(\Gamma, x : A) \vdash (\sigma, x := x) : (\Gamma, x : A)$$

By induction on Δ_1, Δ_2 , we have Δ_1', Δ_2' such that:

$$(\operatorname{Bind}) \frac{\left(\right) \frac{\Delta_{1}'}{\Gamma' \vdash C_{1}[\sigma]: \mathsf{M}_{\epsilon_{1}} A}}{\Gamma' \vdash \operatorname{do} x \leftarrow \left(C_{1}[\sigma]\right) \text{ in } \left(C_{2}[\sigma, x := x]: \mathsf{M}_{\epsilon_{2}} B}}{\Gamma' \vdash \operatorname{do} x \leftarrow \left(C_{1}[\sigma]\right) \text{ in } \left(C_{2}[\sigma, x := x]: \mathsf{M}_{\epsilon_{1} \cdot \epsilon_{2}} B}\right)}$$

$$(37)$$

Since $(\operatorname{\mathtt{do}} x \leftarrow C_1 \ \operatorname{\mathtt{in}} C_2)[\sigma] = \operatorname{\mathtt{do}} x \leftarrow (C_1[\sigma]) \ \operatorname{\mathtt{in}} (C_2[\sigma]) = \operatorname{\mathtt{do}} x \leftarrow (C_1[\sigma]) \ \operatorname{\mathtt{in}} (C_2[\sigma,x:=x]),$ the above derivation holds for $\Gamma' \vdash (\operatorname{\mathtt{do}} x \leftarrow C_1 \ \operatorname{\mathtt{in}} C_2)[\sigma] \colon \mathtt{M}_{\epsilon_1 \cdot \epsilon_2} B$

0.2.4 Sub-typing and Sub-effecting

Case Sub-type By inversion, there exists Δ such that

$$(\text{sub-type}) \frac{\left(\frac{\Delta}{\Gamma \vdash v: A} \mid A \leq : B\right)}{\Gamma \vdash v: B}$$
(38)

By induction on Δ we derive Δ' such that:

$$(\text{sub-type}) \frac{\left(\right) \frac{\Delta'}{\Gamma' \vdash \nu[\sigma] : A} \quad A \leq : B}{\Gamma \vdash \nu[\sigma] : B}$$
(39)

Case Sub-effect By inversion, there exists Δ such that

$$(\text{sub-effect}) \frac{()\frac{\Delta}{\Gamma \vdash C: M_{\epsilon_1} A} \quad A \leq : B \quad \epsilon_1 \leq : \epsilon_2}{\Gamma \vdash C: M_{\epsilon_2} B}$$

$$(40)$$

By induction on Δ we derive Δ' such that:

$$(\text{sub-effect}) \frac{\left(\left(\frac{\Delta'}{\Gamma' \vdash C[\sigma] : M_{\epsilon_1} A}\right) A \leq : B \quad \epsilon_1 \leq : \epsilon_2}{\Gamma' \vdash C[\sigma] : M_{\epsilon_2} B}$$

$$(41)$$

0.3 Semantics of Substitution

0.3.1 Denotation of Substitutions

We define the denotation of a well-formed-substitution as so:

$$\llbracket \Gamma' \vdash \sigma \colon \Gamma \rrbracket_M \colon \Gamma' \to \Gamma \tag{42}$$

- $(Nil) \frac{\Gamma' \mathbb{O} k}{\llbracket \Gamma' \vdash \diamond : \diamond \rrbracket_M = \langle \rangle_{\Gamma'}}$
- $\bullet \ \ (\text{Extend}) \frac{f = \llbracket \Gamma' \vdash \sigma : \Gamma \rrbracket_M \ g = \llbracket \Gamma' \vdash v : A \rrbracket_M}{\llbracket \Gamma' \vdash (\sigma, x := v : (\Gamma, x : A) \rrbracket_M = \langle f, g \rangle : \Gamma' \rightarrow (\Gamma \times A)}$

0.3.2 Extension Lemma

If $\Gamma' \vdash \sigma : \Gamma$ and $x \notin (dom(\Gamma') \cup dom(\Gamma))$ then the substitution in property 3 has denotation:

$$\llbracket (\Gamma', x : A) \vdash (\sigma, x := x) : (\Gamma, x : A) \rrbracket_{M} = (\llbracket \Gamma' \vdash \sigma : \Gamma \rrbracket_{M} \times \mathrm{Id}_{A}) \tag{43}$$

This holds since

$$\llbracket \Gamma', x : A \vdash x : A \rrbracket_M = \pi_2 \tag{44}$$

And $\iota \pi : (\Gamma', x : A) \triangleright \Gamma'$

$$\llbracket \iota \pi : (\Gamma', x : A) \triangleright \Gamma' \rrbracket_M = \pi_1 \tag{45}$$

So for each denotation $\llbracket \Gamma' \vdash v : B \rrbracket_M$ of each y := v in σ , we can prepend the denotation with the weakening denotation to yield:

$$\llbracket \Gamma', x : A \vdash v : B \rrbracket_M = \llbracket \Gamma' \vdash v : B \rrbracket_M \circ \pi_1 \tag{46}$$

Since π_1 appears in every branch of $\llbracket \Gamma', x : A \vdash \sigma : \Gamma \rrbracket_M$, it can be factored out to yield:

$$\llbracket \Gamma', x : A \vdash \sigma : \Gamma \rrbracket_M = \llbracket \Gamma' \vdash \sigma : \Gamma \rrbracket_M \circ \pi_1 \tag{47}$$

Hence,

$$\llbracket (\Gamma', x:A) \vdash (\sigma, x:=x) \colon \Gamma, x:A \rrbracket_{M} = \langle \llbracket \Gamma' \vdash \sigma \colon \Gamma \rrbracket_{M} \circ \pi_{1}, \pi_{2} \rangle = (\llbracket \Gamma' \vdash \sigma \colon \Gamma \rrbracket_{M} \times \operatorname{Id}_{A}) \tag{48}$$

0.3.3 Substitution Theorem

TODO: There is Tikz code here to draw the Substitution Theorem diagram, but it compiles \mathbf{v} slowly If Δ derives $\Gamma \vdash t : \tau$ and $\Gamma' \vdash \sigma : \Gamma$ then the derivation Δ' deriving $\Gamma' \vdash t [\sigma] : \tau$ satisfies:

$$\Delta' = \Delta \circ \llbracket \Gamma' \vdash \sigma : \Gamma \rrbracket_M \tag{49}$$

This is proved by induction over the derivation of $\Gamma \vdash t : \tau$. We shall use σ to denote $\llbracket \Gamma' \vdash \sigma : \Gamma \rrbracket_M$ where it is clear from the context.

0.3.4 Proof For Value Terms

Case Var By inversion $\Gamma = \Gamma'', x : A$

$$(\operatorname{Var}) \frac{\Gamma 0 \mathsf{k}}{\Gamma'', x : A \vdash x : A} \tag{50}$$

By inversion, $\sigma = \sigma', x := v$ and $\Gamma' \vdash v : A$.

Let

$$\sigma = \llbracket \Gamma' \vdash \sigma : \Gamma \rrbracket_M = \langle \sigma', \Delta' \rangle \tag{51}$$

$$\Delta = \llbracket \Gamma'', x : A \vdash x : A \rrbracket_M = \pi_2 \tag{52}$$

(53)

$$\Delta \circ \sigma = \pi_2 \circ \langle \sigma', \Delta' \rangle$$
 By definition (54)

$$=\Delta'$$
 By product property (55)

Case Weaken By inversion, $\Gamma = \Gamma', y : B$ and $\sigma = \sigma', y := v$ and we have Δ_1 deriving:

$$(\text{Weaken}) \frac{()\frac{\Delta_1}{\Gamma'' \vdash x : A}}{\Gamma'', y : B \vdash x : A}$$
 (56)

Also by inversion of the well-formedness of $\Gamma' \vdash \sigma : \Gamma$, we have $\Gamma' \vdash \sigma' : \Gamma''$ and

$$\llbracket \Gamma' \vdash \sigma \colon \Gamma \rrbracket_M = \langle \llbracket \Gamma' \vdash \sigma \colon \Gamma'' \rrbracket_M, \llbracket \Gamma' \vdash v \colon B \rrbracket_M \rangle \tag{57}$$

Hence by induction on Δ_1 we have Δ'_1 such that

$$()\frac{\Delta_1'}{\Gamma' \vdash x \, [\sigma] : A} \tag{58}$$

Hence

$$\Delta' = \Delta'_1$$
 By definition (59)

$$=\Delta_1 \circ \sigma'$$
 By induction (60)

$$= \Delta_1 \circ \pi_1 \circ \langle \sigma', \llbracket \Gamma' \vdash v : B \rrbracket_M \rangle \quad \text{By product property}$$
 (61)

$$= \Delta_1 \circ \pi_1 \circ \sigma \quad \text{By defintion of the denotation of } \sigma \qquad \qquad = \Delta \circ \sigma \quad \text{By defintion.} \tag{62}$$

Case Constants The logic for all constant terms (true, false, () \mathbb{C}^A) is the same. Let

$$c = [\![\mathbf{C}^A]\!]_M \tag{63}$$

$$\Delta' = c \circ \langle \rangle_{\Gamma'}$$
 By Definition (64)

$$=c\circ\langle\rangle_{G}\circ\sigma\quad\text{Terminal property}\tag{65}$$

$$= \Delta \circ \sigma$$
 By definition (66)

Case Lambda By inversion, we have Δ_1 such that

$$\Delta = (\operatorname{Fn}) \frac{\left(\right) \frac{\Delta_1}{\Gamma, x: A \vdash C: M_{\epsilon}B}}{\Gamma \vdash \lambda x: A. C: A \to M_{\epsilon}B}$$

$$(67)$$

By induction of Δ_1 we have Δ'_1 such that

$$\Delta' = (\operatorname{Fn}) \frac{\left(\right) \frac{\Delta_1'}{\Gamma', x: A \vdash (C[\sigma]) : M_{\epsilon} B}}{\Gamma \vdash (\lambda x : A.C) [\sigma] : A \to M_{\epsilon} B}$$

$$(68)$$

By induction and the extension lemma, we have:

$$\Delta_1' = \Delta_1 \circ (\sigma \times \mathrm{Id}_A) \tag{69}$$

Hence:

$$\Delta' = \operatorname{cur}(\Delta_1')$$
 By definition (70)

$$= \operatorname{cur}(\Delta_1 \circ (\sigma \times \operatorname{Id}_A)) \quad \text{By induction and extension lemma.} \tag{71}$$

$$= \operatorname{cur}(\Delta_1) \circ \sigma$$
 By the exponential property (Uniqueness) (72)

$$= \Delta \circ \sigma$$
 By Definition (73)

Case Sub-type By inversion, there exists derivation Δ_1 such that:

$$\Delta = (\text{Sub-type}) \frac{\left(\right) \frac{\Delta_1}{\Gamma \vdash v : A} \quad A \le : B}{\Gamma \vdash v : B}$$
 (75)

By induction on Δ_1 , we find Δ_1' such that $\Delta_1' = \Delta_1 \circ \sigma$ and:

$$\Delta' = (\text{Sub-type}) \frac{() \frac{\Delta'_1}{\Gamma' \vdash \nu[\sigma] : A} \quad A \le : B}{\Gamma' \vdash \nu[\sigma] : B}$$
(76)

Hence,

$$\Delta' = [A \le B]_M \circ \Delta_1' \quad \text{By definition}$$
 (77)

$$= [A \le B]_M \circ \Delta_1 \circ \sigma \quad \text{By induction}$$
 (78)

$$= \Delta \circ \sigma \quad \text{By definition} \tag{79}$$

(80)

(74)

0.3.5 Proof For Computation Terms

Case Return By inversion, we have Δ_1 such that:

$$\Delta = (\text{Return}) \frac{()\frac{\Delta_1}{\Gamma \vdash v : A}}{\Gamma \vdash \text{return} v : M_1 A}$$
(81)

By induction on Δ_1 , we find Δ_1' such that $\Delta_1' = \Delta_1 \circ \sigma$ and:

$$\Delta' = (\text{Return}) \frac{() \frac{\Delta'_1}{\Gamma' \vdash v[\sigma] : A}}{\Gamma' \vdash (\text{return}v) [\sigma] : M_1 A}$$
(82)

Hence,

$$\Delta' = \eta_A \circ \Delta'_1$$
 By Definition (83)

$$= \eta_A \circ \Delta_1 \circ \sigma \quad \text{By induction} \tag{84}$$

$$= \Delta \circ \sigma$$
 By Definition (85)

(86)

Case Apply By inversion, we find Δ_1, Δ_2 such that

$$\Delta = (\text{Apply}) \frac{\left(\right) \frac{\Delta_1}{\Gamma \vdash v_1 : A \to M_e B} \right) \left(\right) \frac{\Delta_2}{\Gamma \vdash v_2 : A}}{\Gamma \vdash v_1 \ v_2 : M_e B}$$
(87)

By induction we find Δ'_1, Δ'_2 such that

$$\Delta_1' = \Delta_1 \circ \sigma \tag{88}$$

$$\Delta_2' = \Delta_2 \circ \sigma \tag{89}$$

(90)

And

$$\Delta' = (\text{Apply}) \frac{\left(\frac{\Delta'_1}{\Gamma' \vdash v_1[\sigma]: A \to M_{\epsilon}B}\right) \left(\frac{\Delta'_2}{\Gamma' \vdash v_2[\sigma]: A}\right)}{\Gamma' \vdash (v_1 \ v_2) [\sigma]: M_{\epsilon}B}$$

$$(91)$$

Hence

$$\Delta' = \operatorname{app} \circ \langle \Delta'_1, \Delta'_2 \rangle$$
 By Definition (92)

$$= \operatorname{app} \circ \langle \Delta_1 \circ \sigma, \Delta_2 \circ \sigma \rangle \quad \text{By induction}$$
 (93)

$$= \operatorname{app} \circ \langle \Delta_1, \Delta_2 \rangle \circ \sigma \quad \text{By Product Property} \tag{94}$$

$$= \Delta \circ \sigma \quad \text{By Definition} \tag{95}$$

(96)

Case If By inversion, we find $\Delta_1, \Delta_2, \Delta_3$ such that

$$\Delta = (\mathrm{If}) \frac{\left(\right) \frac{\Delta_1}{\Gamma \vdash v : \mathsf{Bool}} \quad \left(\right) \frac{\Delta_2}{\Gamma \vdash C_1 : \mathsf{M}_{\epsilon} A} \quad \left(\right) \frac{\Delta_3}{\Gamma \vdash C_2 : \mathsf{M}_{\epsilon} A}}{\Gamma \vdash \mathsf{if}_{\epsilon, A} \ v \ \mathsf{then} \ C_1 \ \mathsf{else} \ C_2 : \mathsf{M}_{\epsilon} A}$$
(97)

By induction we find $\Delta'_1, \Delta'_2, \Delta'_3$ such that

$$\Delta_1' = \Delta_1 \circ \sigma \tag{98}$$

$$\Delta_2' = \Delta_2 \circ \sigma \tag{99}$$

$$\Delta_3' = \Delta_3 \circ \sigma \tag{100}$$

(101)

And

$$\Delta' = (\text{If}) \frac{\left(\left(\frac{\Delta'_1}{\Gamma' \vdash v[\sigma]: \text{Bool}}\right) \left(\left(\frac{\Delta'_2}{\Gamma' \vdash C_1[\sigma]: M_{\epsilon}A}\right) \left(\left(\frac{\Delta'_3}{\Gamma' \vdash C_2[\sigma]: M_{\epsilon}A}\right)\right)}{\Gamma' \vdash (\text{if}_{\epsilon} \land v \text{ then } C_1 \text{ else } C_2) [\sigma]: M_{\epsilon}A}$$

$$(102)$$

Since $\sigma: \Gamma' \to \Gamma$, Let $(T_{\epsilon}A)^{\sigma}: T_{\epsilon}A^{\Gamma} \to T_{\epsilon}A^{\Gamma'}$ be as defined in ExSh 3 (1) That is:

$$(T_{\epsilon}A)^{\sigma} = \operatorname{cur}(\operatorname{app} \circ (\operatorname{Id}_{T_{\epsilon}A} \times w)) \tag{103}$$

. And hence, we have:

$$\operatorname{cur}(f \circ (\operatorname{Id} \times \sigma)) = (T_{\epsilon}A)^{\sigma} \circ \operatorname{cur}(f) \tag{104}$$

And so:

¹https://www.cl.cam.ac.uk/teaching/1819/L108/exercises/L108-exercise-sheet-3.pdf

$$\Delta' = \operatorname{app} \circ (([\operatorname{cur}(\Delta'_2 \circ \pi_2), \operatorname{cur}(\Delta'_3 \circ \pi_2)] \circ \Delta'_1) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By Definition} \qquad (105)$$

$$= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \sigma \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \sigma \circ \pi_2)] \circ \Delta'_1) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By Induction} \qquad (106)$$

$$= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2 \circ (\operatorname{Id}_1 \times \sigma)), \operatorname{cur}(\Delta_3 \circ \pi_2 \circ (\operatorname{Id}_1 \times \sigma))] \circ \Delta_1 \circ \sigma) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By product property} \qquad (107)$$

$$= \operatorname{app} \circ (([(T_\epsilon A)^\sigma \circ \operatorname{cur}(\Delta_2 \circ \pi_2), (T_\epsilon A)^\sigma \circ \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1 \circ \sigma) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By } (T_\epsilon A)^\sigma \operatorname{ property} \qquad (108)$$

$$= \operatorname{app} \circ (((T_\epsilon A)^\sigma \circ [\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1 \circ \sigma) \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{Factor out transformation} \qquad (109)$$

$$= \operatorname{app} \circ (((T_\epsilon A)^\sigma \times \operatorname{Id}_{\Gamma'}) \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma'}) \circ (\sigma \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{Factor out Identity pairs} \qquad (110)$$

$$= \operatorname{app} \circ (\operatorname{Id}_{(T_\epsilon A)} \times \sigma) \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma'}) \circ (\sigma \times \operatorname{Id}_{\Gamma'}) \circ \delta_{\Gamma'} \quad \operatorname{By defintion of app}, (T_\epsilon A)^\sigma \qquad (111)$$

$$= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ (\sigma \times \sigma) \circ \delta_{\Gamma'} \quad \operatorname{Push through pairs} \qquad (112)$$

$$= \operatorname{app} \circ (([\operatorname{cur}(\Delta_2 \circ \pi_2), \operatorname{cur}(\Delta_3 \circ \pi_2)] \circ \Delta_1) \times \operatorname{Id}_{\Gamma}) \circ \delta_{\Gamma} \circ \sigma \quad \operatorname{By Definition of the diagonal morphism}. \qquad (113)$$

$$= \Delta \circ \sigma \qquad (114)$$

Case Bind By inversion, we have Δ_1, Δ_2 such that:

$$\Delta = (\text{Bind}) \frac{\left(\right) \frac{\Delta_1}{\Gamma \vdash C_1 : M_{\epsilon} A} \quad \left(\right) \frac{\Delta_2}{\Gamma, x : A \vdash C_1 : M_{\epsilon} B}}{\Gamma \vdash \text{do } x \leftarrow C_1 \text{ in } C_2 : M_{\epsilon_1 : \epsilon_2} B}$$

$$(115)$$

By property 3,

$$(\Gamma', x : A) \vdash (\sigma, x := x : (\Gamma, x : A) \tag{116}$$

With denotation (extension lemma)

$$[\![(\Gamma', x : A) \vdash (\sigma, x := x : (\Gamma, x : A)]\!]_M = \sigma \times \mathrm{Id}_A \tag{117}$$

By induction, we derive Δ'_1, Δ'_2 such that:

$$\Delta_1' = \Delta_1 \circ \sigma \tag{118}$$

$$\Delta_2' = \Delta_2 \circ (\sigma \times Id_A)$$
 By Extension Lemma (119)

And:

$$\Delta' = (\text{Bind}) \frac{\left(\right) \frac{\Delta_1'}{\Gamma' \vdash C_1[\sigma] : M_{\epsilon} A} \left(\right) \frac{\Delta_2'}{\Gamma', x : A \vdash C_1[\sigma] : M_{\epsilon} B}}{\Gamma' \vdash (\text{do } x \leftarrow C_1 \text{ in } C_2) [\sigma] : M_{\epsilon_1 \cdot \epsilon_2} B}$$

$$(120)$$

Hence:

$$\Delta' = \mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1} \Delta_2' \circ \mathsf{t}_{\epsilon_1, \Gamma', A} \circ \langle \mathsf{Id}_{\Gamma'}, \Delta_1' \rangle \quad \text{By Definition}$$
 (121)

$$= \mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1}(\Delta_2 \circ (\sigma \times \mathtt{Id}_A)) \circ \mathtt{t}_{\epsilon_1, \Gamma', A} \circ \langle \mathtt{Id}_{\Gamma'}, \Delta_1 \circ \sigma \rangle \quad \text{By Induction using the extension lemma}$$

$$\tag{122}$$

$$= \mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1}(\Delta_2) \circ \mathsf{t}_{\epsilon_1, \Gamma, A} \circ (\sigma \times \mathsf{Id}_{T_{\epsilon_1} A}) \circ \langle \mathsf{Id}_{\Gamma'}, \Delta_1 \circ \sigma \rangle \quad \text{By Tensor Strength}$$
 (123)

$$= \mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1}(\Delta_2) \circ \mathsf{t}_{\epsilon_1, \Gamma, A} \circ \langle \sigma, \Delta_1 \circ \sigma \rangle \quad \text{By Product rule}$$
 (124)

$$= \mu_{\epsilon_1, \epsilon_2, B} \circ T_{\epsilon_1}(\Delta_2) \circ \mathsf{t}_{\epsilon_1, \Gamma, A} \circ \langle \mathsf{Id}_{\Gamma}, \Delta_1 \rangle \circ \sigma \quad \text{By Product rule}$$
 (125)

$$= \Delta \circ \sigma$$
 By Defintion (126)

(127)

Case Subeffect By inversion, there exists derivation Δ_1 such that:

$$\Delta = (\text{Sub-effect}) \frac{()\frac{\Delta_1}{\Gamma \vdash C: M_{\epsilon_1} A} \quad A \leq : B \quad \epsilon_1 \leq \epsilon_2}{\Gamma \vdash C: M_{\epsilon_2} B}$$
(128)

By induction on Δ_1 , we find Δ'_1 such that $\Delta'_1 = \Delta_1 \circ \sigma$ and:

$$\Delta' = (\text{Sub-effect}) \frac{\left(\left(\frac{\Delta'_1}{\Gamma' \vdash C[\sigma]: M_{\epsilon_1} A}\right) A \leq : B \quad \epsilon_1 \leq \epsilon_2}{\Gamma' \vdash C[\sigma]: M_{\epsilon_2} B}$$
(129)

Hence, Let

$$h = [\![\epsilon_1 \le \epsilon_2]\!]_M \tag{130}$$

$$g = [A \le B]_M \tag{131}$$

$$\Delta' = h_B \circ T_{\epsilon_1} g \circ \Delta'_1$$
 By definition (132)

$$= h_B \circ T_{\epsilon_1} g \circ \Delta_1 \circ \sigma \quad \text{By induction}$$
 (133)

$$= \Delta \circ \sigma$$
 By definition (134)

(135)

0.4 The Identity Substitution

For each type environment Γ , define the identity substitution I_{Γ} as so:

- $I_{\diamond} = \diamond$
- $I_{(\Gamma,x:A} = (I_{\Gamma},x:=x)$

0.4.1 Properties of the Identity Substitution

Property 1 If $\Gamma \cap \Gamma \vdash I_{\Gamma} : \Gamma$, proved trivially by induction over the well formedness relation.

Property 2 $\llbracket \Gamma \vdash I_{\Gamma} : \Gamma \rrbracket_M = \mathrm{Id}_{\Gamma}$, proved trivially by induction over the definition of I_{Γ}

0.5 Single Substitution

If $\Gamma \vdash v : A$, let the single substitution $\Gamma \vdash [v/x] : \Gamma, x : A$, be defined as:

$$[v/x] = (I_{\Gamma}, x := v) \tag{136}$$

Then by properties 1, 2 of the identity substitution, we have:

$$\llbracket\Gamma \vdash [v/x] : \Gamma, x : A \rrbracket_{M} = \langle \operatorname{Id}_{\Gamma}, \llbracket\Gamma \vdash v : A \rrbracket_{M} \rangle : \Gamma \to (\Gamma \times A) \tag{137}$$

0.5.1 The Semantics of Single Substitution

The following diagram commutes:

$$\llbracket\Gamma \vdash t \, [v/x] : \tau \rrbracket_M = \llbracket\Gamma, x : A \vdash t : \tau \rrbracket_M \circ \langle \operatorname{Id}_{\Gamma}, \llbracket\Gamma \vdash v : A \rrbracket_M \rangle \tag{138}$$

TODO: Again, there is code here to draw a Commutative diagram, but for some reason pdflatex hangs when compiling it Since $\llbracket\Gamma\vdash(I_\Gamma,x:=v):(\Gamma,x:A)\rrbracket_M=\langle \mathrm{Id}_\Gamma,\llbracket\Gamma\vdash v:A\rrbracket_M\rangle$ And true $[v/x]=\mathrm{true}\,[I_\Gamma,x:=v]$