Introduction to Complex Analysis

MATHEMATICS 185 FALL 2016

Professor Hongbin Sun Scribe: Sinho Chewi

Contents

1	August 25	4
	1.1 Complex Numbers	4
	1.2 Operations on Complex Numbers	4
	1.3 Polar Representation	5
	1.4 Solving Equations	6
2	Average 20	7
4	August 30 2.1 Complex Numbers	7
	2.2 Polynomials	7
	2.2.1 Polynomials as Functions	7
	2.3 An Alternative Way to See the Complex Plane	7
		8
	2.3.1 Geometric Picture of $\bar{\mathbb{C}}$	
		8
	2.5 Inverse Function of Exponential Function	9
3	September 1	10
	3.1 Review of Mathematics 53/104 & Applications to Complex Numbers	10
	3.1.1 Limits of Sequences	10
	3.1.2 Continuous Functions	11
	3.1.3 Topology of $\mathbb C$	12
	3.1.4 Derivatives	12
4		10
4	September 6	13
	4.1 Complex Differentiation	13
	4.2 Cauchy-Riemann Equations	14
	4.2.1 Trigonometric Functions	16
	4.2.2 Power Functions	16
5	September 8	17
	5.1 Analytic Functions	17
	5.2 Inverse Function Theorem	18
•		
6	September 13	20
	6.1 Harmonic Functions	20
	6.1.1 Algebraic/Analytic Property of $u + iv$	20
	6.1.2 Harmonic Conjugates	21
	6.2 Conformal Mappings	22
7	September 15	23
	7.1 Conformal Mappings	23
	7.2 Fractional Linear Transformations	
		0.5

CONTENTS 2

8	Sept	sember 22				
	8.1	Line Integrals				
	8.2	Green's Theorem				
		8.2.1 Independence of Path				
9	September 27					
	9.1	Line Integrals				
	9.2	Applications to Harmonic Functions				
10	Sept	sember 29				
		Recap				
		Complex Line Integral				
	_	10.2.1 Line Integral in Mathematics 53				
		10.2.2 ML Estimation				
	10.3	Primitives				
11		ober 4 Compley Line Internels				
		Complex Line Integrals 37 Cauchy Integral Formula 38				
	11.2					
		11.2.1 Computation				
12	Octo	ber 6				
		Cauchy's Estimate				
		Liouville's Theorem				
		Analytic Functions				
		12.3.1 Part 1				
		12.3.2 Part 2				
		12.3.3 Morera's Theorem				
13	Octo	ober 11 44				
10		Power Series				
		Sequences of Functions				
14		bber 13				
	14.1	Power Series				
15	Octo	bber 18 50				
10		Power Series				
		Analytic at ∞				
	10.2	15.2.1 Analytic at ∞				
		10.2.1 Many the at the control of th				
16	Octo	54 54 54 54 54 54 54 54 54 54 54 54 54 5				
	16.1	Manipulation of Power Series				
	16.2	Zeros of Analytic Functions				
		16.2.1 Zero at ∞				
17	Octo	bber 25				
		Laurent Series				
		17.1.1 Complex Line Integral				
18		ember 1 60				
	18.1	Isolated Singularities				

CONTENTS 3

19	November 3	63
	19.1 Isolated Singularities	63
	19.2 Singularity at ∞	63
	19.3 Meromorphic Functions	
20	November 8	66
	20.1 Residue Theorem	66
	20.2 Applications of Residue Theorem	
21	November 10	70
	21.1 Residue Theorem	70
22	November 15	73
	22.1 Key Hole Domains	73
	22.2 Fractional Residues	
23	November 17	76
	23.1 Logarithmic Integral	76
24	November 22	79
	24.1 Argument Principle	79
	24.1.1 More Applications	
	24.2 Number of Zeros Under Uniform (Normal) Convergence	
25	November 29	82
	25.1 Univalent Functions	82
	25.2 Open Mapping	
26	December 1	84
	26.1 Riemann Mapping Theorem	84

August 25

1.1 Complex Numbers

Complex numbers correspond to \mathbb{R}^2 .

Complex numbers are used to solve equations:

- $x^2 = 1$ has the solutions 1, -1.
- $x^2 = 2$ has the solutions $\sqrt{2}, -\sqrt{2}$.
- $x^2 = -1$ has no solutions in \mathbb{R} , since $y^2 > 0$ for $y \in \mathbb{R}$.

Introduce a new "number" i with the property that $i^2 = -1$. Next, invent a new number system from \mathbb{R} and i. $3 \cdot i$ and 2 + i are also "numbers" in this number system.

Definition 1.1. A complex number is an expression as z = x + iy for $x, y \in \mathbb{R}$.

 ${all\ complex\ numbers} = \mathbb{C}$

real numbers $\begin{cases} x = \text{Re } z \text{ is the real part of } z \\ y = \text{Im } z \text{ is the imaginary part of } z \end{cases}$

1.2 Operations on Complex Numbers

Addition:

$$(2+2i) + (1+5i) = (2+1) + (2+5)i$$

Subtraction:

$$(2+2i) - (1+5i) = (2-1) + (2-5)i$$
$$= 1-3i$$

Addition satisfies:

- $z_1 + z_2 = z_2 + z_1$
- $(z_1 + z_2) + z_3 = z_1 + (z_2 + z_3)$

Multiplication:

$$(2+2i)\cdot(1+5i) = 2(1+5i) + 2i(1+5i)$$

$$= 2 + 10i + 2i + \underbrace{(-10)}^{2i \cdot 5i}$$

= -8 + 12i

Multiplication satisfies:

- $\bullet \ z_1 \cdot z_2 = z_2 \cdot z_1$
- $(z_1 \cdot z_2) \cdot z_3 = z_1 \cdot (z_2 \cdot z_3)$
- \bullet $z_1(z_2+z_3)=z_1z_2+z_1z_3$

Division:

$$\frac{2+2i}{1+5i} = \frac{(2+2i)(1-5i)}{(1+5i)(1-5i)} = \frac{(2+2i)(1-5i)}{26}$$

The last equality follows from

$$(1+5i)(1-5i) = 1 \cdot 1 + 1 \cdot (-5i) + 5i \cdot 1 + 5i \cdot (-5i)$$

= $1+25=26$

If z = x + iy, then $\bar{z} = x - iy$ is the conjugation of z. We have that $z \cdot \bar{z} = x^2 + y^2$. Using the conjugate, complex division can be performed:

$$\frac{w}{z} = \frac{w \cdot \bar{z}}{z \cdot \bar{z}} = \frac{w \cdot \bar{z}}{x^2 + y^2}$$

Additionally, the real and imaginary parts of z can be written as

$$\operatorname{Re} z = \frac{z + \bar{z}}{2}$$

$$\operatorname{Im} z = \frac{z - \bar{z}}{2i}$$

Some other properties that the complex conjugate satisfies:

- $\bullet \ \bar{z}_1 + \bar{z}_2 = \overline{z_1 + z_2}$
- $\bullet \ \overline{z_1 \cdot z_2} = \bar{z}_1 \cdot \bar{z}_2$

1.3 Polar Representation

There is a correspondence:

$$x + iy \leftrightarrow (x, y) \in \mathbb{R}^2$$

 $2 + 2i \leftrightarrow (2, 2)$

addition/subtraction of complex numbers \leftrightarrow addition/subtraction of vectors

$$z \cdot \bar{z} = x^2 + y^2 \leftrightarrow \begin{cases} & \text{modulus of } z \\ |z| = \sqrt{x^2 + y^2} = \sqrt{z \cdot \bar{z}} \end{cases}$$

$$\begin{cases} z \mapsto \bar{z} \\ x + iy \mapsto x - iy \end{cases} \leftrightarrow \text{reflection along } x \text{ axis}$$

To understand multiplication, use polar coordinates.

$$(x,y) \leftrightarrow (r,\theta)$$

The change in coordinates is given by

$$x = r \cos \theta$$
 $r = \sqrt{x^2 + y^2}$
 $y = r \sin \theta$ $\theta = \tan^{-1} \frac{y}{x}$

A complex number can be written (with multivariable calculus) as

$$z = x + iy = r(\cos\theta + i\sin\theta)$$

r is the modulus of z. We can take $\theta \in (-\pi, \pi]$, and $\theta \in (-\pi, \pi]$ is the principle argument of z: $\theta = \operatorname{Arg} z$.

The ordinary arg function is multi-valued:

$$\arg z = \{ \operatorname{Arg} z + 2k\pi \mid k \in \mathbb{Z} \}$$

Notation: Write $r(\cos \theta + i \sin \theta)$ as $r \cdot e^{i\theta}$.

Multiplying arbitrary complex numbers in polar coordinates gives

$$r_1(\cos\theta_1 + i\sin\theta_1) \cdot r_2(\cos\theta_2 + i\sin\theta_2) = r_1r_2(\cos\theta_1\cos\theta_2 - \sin\theta_1\sin\theta_2 + i\cos\theta_1\sin\theta_2 + i\sin\theta_1\cos\theta_2)$$
$$= r_1 \cdot r_2(\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2))$$

In summary, complex multiplication is given by multiplying the modulus and adding the argument.

In the other notation, $r_1 \cdot e^{i\theta_1} \cdot r_2 \cdot e^{i\theta_2} = r_1 \cdot r_2 e^{i(\theta_1 + \theta_2)}$. The usage of exponential notation is consistent with $e^x \cdot e^y = e^{x+y}$, $x, y \in \mathbb{R}$.

In particular, $(r(\cos\theta + i\sin\theta))^n = (re^{i\theta})^n = r^n e^{in\theta} = r^n (\cos n\theta + i\sin n\theta)$.

1.4 Solving Equations

We can use complex numbers to solve equations. For example, the equation $z^3=1$ has one real solution: z=1. Writing $r^3e^{i3\theta}=1\cdot e^{i0}$, then r=1 and $\theta=0,\frac{2\pi}{3},\frac{4\pi}{3}$. Therefore, there are three complex solutions:

$$\begin{split} z &= e^{i0}, e^{i2\pi/3}, e^{i4\pi/3} \\ &= 1, -\frac{1}{2} + i\frac{\sqrt{3}}{2}, -\frac{1}{2} - i\frac{\sqrt{3}}{2} \end{split}$$

In general, write $z = re^{i\theta}$. Then if $z^n = \rho e^{i\psi}$, the nth roots are

$$\rho^{1/n}e^{i(\psi/n+2\pi k/n)}, \quad k=0,1,\ldots,n-1$$

because $r^n = \rho$ and $n\theta = \psi + 2k\pi$.

August 30

2.1 Complex Numbers

Complex numbers are the real numbers with i, where $i^2 = -1$: z = x + iy, $x, y \in \mathbb{R}$.

Division is performed by

$$\frac{w}{z} = \frac{w\bar{z}}{z\bar{z}}$$

In polar coordinates, we write

$$z = x + iy = r(\cos\theta + i\sin\theta) = re^{i\theta}$$

Using polar coordinates, we can multiply:

$$r_1 e^{i\theta_1} r_2 e^{i\theta_2} = r_1 r_2 e^{i(\theta_1 + \theta_2)}$$

To solve $z^n = \rho e^{i\theta_0}$, suppose that $z = re^{i\theta}$. We get $r^n e^{in\theta} = \rho e^{i\theta_0}$. These imply

$$r^n = \rho$$
 $r = \rho^{1/n}$ $n\theta = \theta_0 + 2k\pi, k \in \mathbb{Z}$ $\theta = \frac{\theta_0}{n} + \frac{2k\pi}{n}, k \in \mathbb{Z}$

Actually, k = 0, 1, ..., n - 1.

2.2 Polynomials

Consider a polynomial $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_0$, $a_i \in \mathbb{C}$, $a_n \neq 0$. We will show the Fundamental Theorem of Algebra: Any polynomial with complex coefficients $p(z) = a_n z^n + \cdots + a_0$ has a root in \mathbb{C} . Moreover, there is a unique factorization $p(z) = a_n (z - z_1)^{m_1} \cdots (z - z_k)^{m_k}$.

2.2.1 Polynomials as Functions

View a polynomial as a function $z \mapsto p(z)$. The geometric picture of the Fundamental Theorem of Algebra is that there exists a point (in fact, n points) which maps to 0. Using the Fundamental Theorem of Algebra, we can solve any polynomial equation, say $p(z) = w_0$, by solving $p(z) - w_0 = 0$.

2.3 An Alternative Way to See the Complex Plane

Compare the complex numbers 2+2i and 1+4i: we can compare their moduli. We say z is "small" if |z| is small or z is close to 0. z is big if |z| is big.

Define the augmented complex plane as $\mathbb{C} \cup \{\infty\} = \bar{\mathbb{C}}$.

2.3.1 Geometric Picture of $\bar{\mathbb{C}}$

We draw a 3-dimensional geometric picture of $\bar{\mathbb{C}}$. The geometric model of \bar{C} will be a sphere:

$$\{(x, y, z) : x^2 + y^2 + z^2 = 1\}$$

For any point (x, y, z) on the sphere, we draw a line from N = (0, 0, 1) through (x, y, z) and associate with (x, y, z) the complex number which is the intersection of the line and the plane $\{(x, y, 0)\} \cong \mathbb{C}$. We associate $N = (0, 0, 1) \sim \infty$. The function is given by

sphere
$$\setminus \{N\} \to \mathbb{C}$$

 $P \mapsto (xy\text{-plane}) \cap (\text{line going through } P \text{ and } N)$

The southern hemisphere maps to the inside of the unit disk. The northern hemisphere maps to outside of the unit disk. A point close to N maps to a point far from the origin.

A point is represented as $P = (X, Y, Z) \in \text{sphere} - \{N\}.$

A line going through P and N is represented as (1-t)(0,0,1)+t(X,Y,Z). The intersection with the xy-plane is when the third coordinate is (1-t)+tZ=0. Using this, we solve for t:

$$t = \frac{1}{1 - Z}$$

The intersection point is

$$\left(\frac{X}{1-Z}, \frac{Y}{1-Z}, 0\right)$$

Therefore the mapping is

$$\begin{array}{c} \operatorname{Sphere} \setminus \{N\} & \xrightarrow{\operatorname{stereographic projection}} \mathbb{C} \\ \{(X,Y,Z) \mid X^2 + Y^2 + Z^2 = 1, Z \neq 1\} \to \left\{ \left(\frac{X}{1-Z}, \frac{Y}{1-Z}\right) \right\} \\ \\ \operatorname{Sphere} & \xrightarrow{1\text{-}1 \text{ correspondence}} \mathbb{C} \cup \{\infty\} \end{array}$$

The inverse is given by

$$\mathbb{C} \to \text{Sphere} \setminus \{N\}$$

 $(x,y) \mapsto \left(\frac{2x}{|z|^2 + 1}, \frac{2y}{|z|^2 + 1}, \frac{|z|^2 - 1}{|z|^2 + 1}\right)$

2.4 Exponential Function

The exponential function $z \mapsto e^z$ has been defined for

$$x + 0i \mapsto e^{x}$$
$$0 + yi \mapsto e^{yi} = \cos y + i \sin y$$

For $x, x' \in \mathbb{R}$, $e^{x+x'} = e^x \cdot e^{x'}$.

Define:

$$e^{x+iy} = e^x \cdot e^{iy} = e^x (\cos y + i \sin y)$$

We have $e^{x+iy} \cdot e^{x'+iy'} = e^{x+x'+i(y+y')}$. e^x is the modulus and y is the argument. Hence, $e^z = e^{z+2k\pi i}$.

Viewing e^z as a mapping from the complex plane to the complex plane, fixing x and changing y traces out a circle. A different value of x yields a different radius for the circle. Fixing y and changing x traces out a ray from the origin.

2.5 Inverse Function of Exponential Function

For z, we must find w such that $e^w=z$. When x>0, the function is $\log x$. For $z\neq 0$, $z=re^{i\theta}$. Suppose that w=x+iy. Then

$$e^w = z \Leftrightarrow e^x \cdot e^{iy} = re^{i\theta}$$

Therefore, we can take

$$\begin{aligned} x &= \log r = \log |z| \\ y &= \theta + 2k\pi, \quad k \in \mathbb{Z} \\ &= \operatorname{Arg} z + 2k\pi \end{aligned}$$

The single-valued inverse is $\log z = \log |z| + \operatorname{Arg} z$ (where $\operatorname{Arg} z \in (-\pi, \pi]$). The inverse as a multi-valued function is $\log z = \log |z| + \operatorname{arg} z$.

Log z is not continuous on $\mathbb{C} \setminus \{0\}$, but Log z is continuous on $\mathbb{C} \setminus (-\infty, 0]$. We can paste infinitely many slit complex planes together to form a Riemann surface.

September 1

3.1 Review of Mathematics 53/104 & Applications to Complex Numbers

3.1.1 Limits of Sequences

Consider a sequence of real numbers $\{x_n\}$ with $\lim_{n\to\infty} s_n = s$. Then

$$\exists \varepsilon > 0, \ \exists N \text{ s.t. } \forall n > N \ |s - s_n| < \varepsilon$$

Definition 3.1. Let $\{z_n\}$ be a sequence of complex numbers. Then z_n converges to z or $\lim z_n = z$ if

$$\exists \varepsilon > 0, \ \exists N \text{ s.t. } \forall n > N \ |z - z_n| < \varepsilon$$

• $\lim z_n = z$ if and only if

$$\lim \operatorname{Re}(z_n) = \operatorname{Re}(z)$$
$$\lim \operatorname{Im}(z_n) = \operatorname{Im}(z)$$

• If $\lim z_n = z$, $\lim w_n = w$, then

$$\lim (z_n + w_n) = z + w$$

$$\lim (z_n w_n) = zw$$

$$\lim (z_n / w_n) = z / w, \quad \text{if } w \neq 0$$

$$\lim \overline{z_n} = \overline{z}$$

$$\lim |z_n| = |z|$$

Cauchy Sequences

 $\{z_n \in \mathbb{C}\}\$, a sequence of complex numbers, is a **Cauchy sequence** if

$$\forall \varepsilon > 0 \ \exists N \ \text{s.t.} \ \forall m, n > N \ |z_m - z_n| < \varepsilon$$

Theorem 3.2. $\{z_n\}$ converges iff $\{z_n\}$ is a Cauchy sequence.

Proof. " \Rightarrow ": Follow the definition.

"\(\epsilon\)": If $\{z_n\}$ is Cauchy, then $|z-z_n| \ge |\operatorname{Re} z_n - \operatorname{Re} z|$ implies that $\{\operatorname{Re} z_n\}$ is Cauchy. Similarly, $\{\operatorname{Im} z_n\}$

is Cauchy. From Mathematics 104, we know that Re $z_n \to x_0$ and Im $z_n \to y_0$, so $z_n \to x_0 + iy_0$.

Theorem 3.3. Any bounded sequence of complex numbers has a convergent subsequence.

Proof. If $\{z_n\}$ is bounded, then $\{\text{Re }z_n\}$ and $\{\text{Im }z_n\}$ are bounded. From Mathematics 104, there exists a subsequence such that the real part converges. Apply the theorem again: there exists a further subsequence such that the imaginary part converges.

3.1.2 Continuous Functions

Consider $f: \mathbb{C} \to \mathbb{C}$ or $f: D \subseteq \mathbb{C} \to \mathbb{C}$. One complex number is mapped to one complex number. The "functions" arg z and $\log z$ are multi-valued functions, not functions!

$$f:D\to\mathbb{C}$$

f is continuous at $z \in D$ if

- (preferred by textbook author) for any sequence $\{z_n\}$ with $z_n \in D$ and $\lim z_n = z_0$, $\lim f(z_n) = f(z_0)$.
- (equivalent definition) $\forall \varepsilon > 0 \; \exists \delta > 0 \; \text{s.t.} \; \forall z \in D \; \text{with} \; |z z_0| < \delta, |f(z) f(z_0)| < \varepsilon$

If f, g are both continuous at z_0 , then so are f+g, f-g, $f \cdot g$, and f/g ($g(z_0) \neq 0$).

If a function is continuous at a point z_0 , then for any line/curve going through z_0 , f is continuous on this line.

To prove a function is not continous at a point, we can find a sequence $z_n \to z_0$ but $f(z_n) \not\to f(z_0)$.

Definition 3.4. f is **continuous on a region** $U \subseteq \text{dom}(f)$ if f is continuous on each point in U.

The function $\operatorname{Arg}: \mathbb{C}\setminus\{0\}\to\mathbb{R}$ is not continuous on $\mathbb{C}\setminus\{0\}$, but it is continuous on $\mathbb{C}\setminus(-\infty,0]$. The same is true for $\operatorname{Log} z$.

We can view functions as:

$$f:\mathbb{C}\to\mathbb{C}$$

or

$$f(z) = f(x+iy) = u(x,y) + iv(x,y)$$

where

$$u: \mathbb{R}^2 \to \mathbb{R}$$

$$v: \mathbb{R}^2 \to \mathbb{R}$$

A complex-valued function is made of two real-valued 2-variable functions. f is continuous on U iff u and v are both continuous on U.

- f(z) = z is continuous on \mathbb{C} .
- $g(z) = P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + z_0$ is continuous on \mathbb{C} .
- h(z) = P(z)/Q(z), where P(z) and Q(z) are polynomials, is continuous on $\mathbb{C} \setminus \underbrace{\{z \mid Q(z) = 0\}}_{\text{not empty!}}$
- $j(z) = e^z$ is continuous on \mathbb{C} .

3.1.3 Topology of \mathbb{C}

Definition 3.5. U is an open set if $\forall z \in U, \exists \varepsilon > 0 \text{ s.t. } B(z, \varepsilon) \subseteq U$, where

$$B(z,\varepsilon) = \{ w \in \mathbb{C} \mid |w - z| < \varepsilon \}.$$

If f is continuous at z_0 , then any sequence $\{z_n\} \to z_0$, $z_n \in \text{dom}(f)$, has $f(z_n) \to f(z_0)$. If dom(f) is open, we can throw away the condition that $z_n \in \text{dom}(f)$.

Definition 3.6. $U \subseteq \mathbb{C}$ is a **domain** if

- 1. U is an open set.
- 2. For any $x, y \in U$ there exists a path from x to y which consists of finitely many line segments (parallel to the x-axis or the y-axis).

Theorem 3.7. If $h: D \to \mathbb{C}$, $\frac{\partial h}{\partial x}$, $\frac{\partial h}{\partial y}$ both exist, and

$$\nabla h = \left(\frac{\partial h}{\partial x}, \frac{\partial h}{\partial y}\right) = (0, 0) = \mathbf{0}$$

on D, then h is a constant on D.

Proof. The condition

$$\frac{\partial h}{\partial x} = 0$$

implies that h is constant on a segment. By induction, h(x) = h(y).

Definition 3.8. $A \subseteq \mathbb{C}$ is a closed set if

- (always prefer this one) for any sequence $\{z_n\}$ with $z_n \in A$ and $\lim z_n = z_0$, then $z_0 \in A$.
- (equivalently) $\mathbb{C} \setminus A$ is open.

Theorem 3.9. If $f: A \subseteq \mathbb{C} \to \mathbb{R}$, A is closed and bounded (compact), and f is continuous on A, then f is bounded, and its supremum/infimum are attained at some points $z_0, w_0 \in A$.

3.1.4 Derivatives

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

If the limit exists, f is **complex differentiable** at z_0 . $f'(z_0)$ is the complex derivative.

- If f is (complex) differentiable at z_0 , then it is continuous at z_0 .
- (f+g)'(z) = f'(z) + g'(z)
- $\bullet (f \cdot g)'(z) = f'(z)g(z) + f(z)g'(z)$
- $(f/g)'(z) = \frac{f'(z)g(z) f(z)g'(z)}{g^2(z)}$
- Chain Rule: $(f \circ g)'(z) = f'(g(z)) \cdot g'(z)$

September 6

4.1 Complex Differentiation

If D is an open set in \mathbb{C} , then $f:D\to\mathbb{C}$ is **complex-differentiable** at $z_0\in D$ if

$$\underbrace{f'(z_0)}_{\text{complex derivative at }z_0} = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

exists.

Example 4.1. Let f(z) = z. Then

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{z - z_0}{z - z_0} = 1$$

Example 4.2. Let $f(z) = \overline{z} \ (f(x+iy) = x-iy)$. Then

$$f'(z_0) = \lim_{z \to z_0} \frac{\bar{z} - \bar{z_0}}{z - z_0} \stackrel{\text{write } z - z_0 = \Delta z}{=} \lim_{\Delta \to 0} \frac{\bar{\Delta}z}{\Delta z}$$
$$= \lim_{r \to 0} \frac{re^{-i\theta}}{re^{i\theta}} = \lim_{r \to 0} e^{-2i\theta}$$

does not exist. Or, take $\Delta z_n = 1/n$. Then

$$\frac{\overline{\Delta z_n}}{\Delta z_n} = 1$$

and if $\Delta w_n = (1/n)i$, then

$$\frac{\overline{\Delta w_n}}{\Delta w_n} = \frac{-(1/n)i}{(1/n)i} = -1$$

Hence,

$$\lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$$

does not exist! f(z) is not complex-differentiable at any point in \mathbb{C} . This also implies that

$$f(z) = \operatorname{Re} z$$

$$g(z) = \operatorname{Im} z$$

are not complex-differentiable at any point in \mathbb{C} , e.g. by noticing that $\bar{z}=2\operatorname{Re} z-z$, and z is \mathbb{C} -differentiable (so if $\operatorname{Re} z$ is also \mathbb{C} -differentiable). Similarly, $\bar{z}=z-2i\operatorname{Im} z$.

From last time: $\lim z_n = z_0$ iff

$$\lim \operatorname{Re} z_n = \operatorname{Re} z_0$$
$$\lim \operatorname{Im} z_n = \operatorname{Im} z_0$$

Other complex-differentiable functions:

$$P(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0$$

$$P'(z) = n a_n z^{n-1} + (n-1) a_{n-1} z^{n-2} + \dots + a_1$$

and P(z)/Q(z) is \mathbb{C} -differentiable on $\mathbb{C} \setminus \{\text{zero points of } Q\}$.

$$f(z) = e^{z}$$

$$f'(z) = \lim_{z \to z_{0}} \frac{e^{z} - e^{z_{0}}}{z - z_{0}} = \lim_{\Delta z \to 0} \frac{e^{z_{0} + \Delta z} - e^{z_{0}}}{\Delta z}$$

$$= \lim_{\Delta z \to 0} e^{z_{0}} \frac{e^{\Delta z} - 1}{\Delta z}$$

Writing $\Delta z = \Delta x + i \Delta y$,

$$\frac{e^{\Delta z} - 1}{\Delta z} = \frac{(e^{\Delta x}\cos\Delta y - 1) + ie^{\Delta x}\sin\Delta y}{\Delta x + i\Delta y}$$

The limit requires some computation. To solve this, we want a closer study of

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

4.2 Cauchy-Riemann Equations

Write f(z) as f(x,y) = u(x,y) + iv(x,y), where $u,v: \mathbb{R}^2 \to \mathbb{R}$.

As $\Delta z \to 0$, we consider

$$\Delta z \to 0$$
 along x-axis $\Delta z \to 0$ along y-axis

If

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

exists, take

1. $\Delta z = \Delta x + i0$, $z_0 = x_0 + iy_0$:

$$f'(z_0) = \lim_{\Delta x \to 0} \frac{u(x_0 + \Delta x, y_0) + iv(x_0 + \Delta x, y_0) - u(x_0, y_0) - iv(x_0, y_0)}{\Delta x}$$

$$= \frac{\partial u}{\partial x}(x_0, y_0) + i\frac{\partial v}{\partial x}(x_0, y_0)$$
(4.1)

2. $\Delta z = 0 + i\Delta y$:

$$f'(z_0) = \lim_{\Delta y \to 0} \frac{u(x_0, y_0 + \Delta y) + iv(x_0, y_0 + \Delta y) - u(x_0, y_0) - iv(x_0, y_0)}{i\Delta y}$$

$$= \frac{1}{i} \frac{\partial u}{\partial y}(x_0, y_0) + \frac{\partial v}{\partial y}(x_0, y_0)$$

$$= \frac{\partial v}{\partial y}(x_0, y_0) - i\frac{\partial u}{\partial y}(x_0, y_0)$$
(4.2)

Since (4.1) = (4.2), then

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

at (x_0, y_0) . These are the Cauchy-Riemann equations. To memorize them, consider u = x and v = y. This tells you which one has a negative sign.

Definition 4.3. Let $D \subseteq \mathbb{C}$ be open. $f: D \to \mathbb{C}$ is analytic if

- 1. f is complex-differentiable at all points in D.
- 2. f' is continuous on D.

Actually, it will be proven later that $1 \implies 2$.

(53: To write $df = f_x dx + f_y dy$, we need f_x, f_y to be continuous.)

$$f'(z) = u_x + iv_x \tag{4.3}$$

$$= v_y - iv_y \tag{4.4}$$

C-R equations:

$$u_x = v_y$$
$$u_y = -v_x$$

Theorem 4.4. $f: D \to \mathbb{C}$ is analytic iff

- (a) writing f = u + iv, then the C-R equations hold on D.
- (b) u_x, u_y, v_x, v_y are continuous on D.

Proof. $1+2 \implies (a)+(b)$: Actually,

$$1 \implies (a)$$
 C-R equations (4.3)
$$2 \implies (b)$$

 $(a) + (b) \implies 1 + 2$: We need to show that f'(z) exists, and then $(4.3) + (b) \implies 2$.

$$\lim_{\Delta x + i\Delta y \rightarrow 0} \frac{u(x + \Delta x, y + \Delta y) + iv(x + \Delta x, y + \Delta x) - u(x, y) - iv(x, y)}{\Delta x + i\Delta y}$$

$$u(x + \Delta x, y + \Delta y) - u(x, y) = u_x \Delta x + u_y \Delta y + o(|\Delta z|)$$

$$v(x + \Delta x, y + \Delta y) - v(x, y) = v_x \Delta x + v_y \Delta y + o(|\Delta z|)$$

because u_x, u_y, v_x, v_y are continuous. Justification:

$$\begin{split} u(x+\Delta x,y+\Delta y) - u(x,y) &= u(x+\Delta x,y+\Delta y) - u(x+\Delta x,y) + u(x+\Delta x,y) - u(x,y) \\ &= u_y(x+\Delta x,y+\Delta y')\Delta y + u_x(x+\Delta x',y)\Delta x \\ &= u_y(x,y)\Delta y + u_x(x,y)\Delta x + o(|\Delta z|) \end{split}$$

Therefore,

$$\frac{f(z + \Delta z) - f(z)}{\Delta z} = \frac{u_x \Delta x + u_y \Delta y + (\underbrace{v_x}^{-u_y} \Delta x + \underbrace{v_y}^{u_x} \Delta y)i + o(|z|)}{\Delta x + i\Delta y}$$

$$= \frac{u_x (\Delta x + i\Delta y) + u_y (\Delta y - i\Delta x) + o(|z|)}{\Delta x + i\Delta y}$$

$$= u_x - iu_y + \underbrace{\underbrace{o(|z|)}_{\Delta x + i\Delta y}}_{\rightarrow 0}$$

$$f' = u_x - iu_y$$

Consider

$$f(z) = e^z = e^{x+iy} = \underbrace{e^x \cos y}_{u(x,y)} + i \underbrace{e^x \sin y}_{v(x,y)}$$

Then, we can write

$$u_x = e^x \cos y$$
 $v_x = e^x \sin y$
 $u_y = -e^x \sin y$ $v_y = e^x \cos y$

The C-R equations hold, so $f(z) = e^z$ is analytic on \mathbb{C} . $f'(z) = u_x + iv_x = e^x \cos y + ie^x \sin y = e^z$.

4.2.1 Trigonometric Functions

$$\begin{split} e^{iy} &= \cos y + i \sin y, \qquad y \in \mathbb{R} \\ \text{formally:} \quad e^{iz} &= \underbrace{\cos z + i \sin z}_{\text{want to define}}, \qquad z \in \mathbb{C} \end{split}$$

Also,

$$e^{-iy} = \cos(-y) + i\sin(-y)$$
$$= \cos y - i\sin y$$
$$e^{-iz} = \cos z - i\sin z$$

Define:

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} \qquad \qquad \sin z = \frac{e^{iz} - e^{-iz}}{2i}$$

The trigonometric functions are analytic on \mathbb{C} .

4.2.2 Power Functions

We will define z^{1+i} and z^{α} for $\alpha \in \mathbb{C}$. z^{α} is a multi-valued function, so we define the principal branch. Since $z = e^{\text{Log } z}$, define

$$z^{\alpha} = e^{\alpha \cdot \text{Log } z}$$
$$z^{\alpha} = e^{\alpha \cdot (\text{Log } z + 2\pi i)}$$

September 8

5.1 Analytic Functions

Let f be a \mathbb{C} -valued function defined on an open set $U \subseteq \mathbb{C}$. f is analytic on U if

1. f is complex-differentiable at any $z \in U$, i.e.

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

exists.

2. f'(z) is continuous on U.

If we write f(x+iy) = u(x,y) + iv(x,y) and if f'(z) exists:

$$f'(z) = \lim_{\Delta x \to 0} \frac{f(z + \Delta x) - f(z)}{\Delta x} = u_x + iv_x$$
$$= \lim_{\Delta y \to 0} \frac{f(z + i\Delta y) - f(z)}{i\Delta y} = v_y - iu_x$$

Cauchy-Riemann equations:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
$$f'(z) = u_x + iv_x$$
$$= v_y - iu_y$$

f is analytic on U iff

- (a) C-R equations hold on U,
- (b) u_x, u_y, v_x, v_y are continuous on U.

Example 5.1. Let $f(z) = e^{|z|}$. Does

$$\lim_{\Delta z \to 0} \frac{e^{|z+\Delta z|} - e^{|z|}}{\Delta z}$$

exist? We need some work. We write:

$$f(x+iy) = \underbrace{e^{\sqrt{x^2+y^2}}}_{u(x,y)} + i \underbrace{0}_{v(x,y)}$$

$$v_x = v_y = 0$$
 \Longrightarrow $u_x = u_y = 0$

which is a contradiction! $f(z) = e^{|z|}$ is not analytic on any open set $U \subset \mathbb{C}$.

Proposition 5.2. If $f: U \subseteq \mathbb{C} \to \mathbb{C}$ for an open set U, and if $f(z) \in \mathbb{R}$ for any z and f is analytic on U, then $f'(z) \equiv 0$.

Proposition 5.3. If $f: U \subseteq \mathbb{C} \to \mathbb{C}$ with U a domain, if $f(z) \in \mathbb{R}$ for any z, and f is analytic on U, then f is constant.

Proof.

$$f'(z) = 0 \implies \nabla f = \nabla u + i \nabla v = 0 \implies f \text{ is constant}$$

If f(U) is a subset of the real line and f is analytic, then f is constant!

What about if f(U) is a subset of a curve? We need some multivariable analysis.

5.2 Inverse Function Theorem

Let $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}^2$, with f(x,y) = (u(x,y), v(x,y)).

The Jacobian of f is:

$$J_f(x,y) = \begin{pmatrix} \frac{\partial u}{\partial x}(x,y) & \frac{\partial u}{\partial y}(x,y) \\ \frac{\partial v}{\partial x}(x,y) & \frac{\partial v}{\partial y}(x,y) \end{pmatrix}$$

Theorem 5.4. Suppose $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}^2$ with D an open set, and suppose that u_x, u_y, v_x, v_y exist and are continuous. If for $(x_0, y_0) \in D$, det $J_f(x_0, y_0) \neq 0$, then

- 1. There exists an open disk U containing (x_0, y_0) such that f is one-to-one on U.
- 2. $f(U) \subseteq \mathbb{R}^2$ is an open set.

f is locally a 1-1 correspondence.

1. If $f: \mathbb{R} \to \mathbb{R}$, $f'(x_0) \neq 0$, assume that $f'(x_0) > 0$. Then f' > 0 near x_0 , which implies that f is strictly increasing in $(x_0 - \varepsilon, x_0 + \varepsilon)$.

If f = u + iv is analytic,

$$J_f = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} u_x & -v_x \\ v_x & u_x \end{pmatrix}$$

so det $J_f = u_x^2 + v_x^2 = |f'(z)|^2$. Therefore,

$$\det J_f(x,y) = 0 \Leftrightarrow f'(x+iy) = 0$$

Proposition 5.5. If $f: D \subseteq \mathbb{C} \to \mathbb{C}$ is analytic, where D is a domain, and f(D) does not contain any open sets, then f is constant.

Proof.

$$f'(z_0) \neq 0 \implies \det J_f(x_0, y_0) \neq 0 \implies f(D)$$
 contains an open set

Theorem 5.6 (Inverse Function Theorem for 185). If $f: D \subseteq \mathbb{C} \to \mathbb{C}$ is analytic, where D is open, if for some $z_0 \in D$, $f'(z_0) \neq 0$, then

- 1. There exists a small open disk U containing z_0 such that f is one-to-one on U.
- 2. $V = f(U) \subseteq \mathbb{R}^2$ is an open set.
- 3. $f: U \to V$ is a 1-1 correspondence. Take $z \in U$ and $w \in V$. For the local inverse of $f, g: V \to U$, g is also analytic and

$$g'(w) = \frac{1}{f'(g(w))}$$

f is locally a 1-1 correspondence.

Proof. Proof of 3:

$$g'(w) = \lim_{\Delta w \to 0} \frac{g(w + \Delta w) - g(w)}{\Delta w}$$

Take $\Delta w_i \to 0$, and study

$$\frac{g(w + \Delta w_i) - g(w)}{(w + \Delta w_i) - w}$$

Since w = f(z), then $w + \Delta w_i = f(z + \Delta z_i)$, and as $\Delta w_i \to 0$, then $\Delta z_i \to 0$.

$$\lim \frac{g(w + \Delta w_i) - g(w)}{w + \Delta w_i - w} = \lim \frac{\overbrace{g(f(z + \Delta z_i)) - g(f(z))}^{z + \Delta z_i}}{f(z + \Delta z_i) - f(z)}$$
$$= \lim \frac{\Delta z_i}{f(z + \Delta z_i) - f(z)} = \frac{1}{f'(z)} = \frac{1}{f'(g(w))}$$

f is analytic " \Longrightarrow " f^{-1} is analytic has potential problems:

- 1. f is not a one-to-one function.
- 2. f'(z) = 0 at some point.

Actually, we will later show that if f is one-to-one and analytic, then f' is never 0.

 $f(z) = e^z$ is analytic on \mathbb{C} . The inverse is $\log z$ or $\log z$.

$$\{x + iy \mid y \in (-\pi, \pi)\} \xleftarrow{e^z}_{\text{Log } z} \mathbb{C} \setminus (-\infty, 0]$$

is a 1-1 correspondence. Log $z = \text{Log } \sqrt{x^2 + y^2} + i \arctan(y/x)$ is analytic on $\mathbb{C} \setminus (-\infty, 0]$.

$$(\text{Log } w)' = \frac{1}{e^{g(w)}} = \frac{1}{e^{\text{Log } w}} = \frac{1}{w}$$

The principal branch of z^{α} , $\alpha \in \mathbb{C}$, is $e^{\alpha \log z}$, defined on $\mathbb{C} \setminus (-\infty, 0]$, is an analytic function.

$$(e^{\alpha \operatorname{Log} z})' = \alpha z^{\alpha - 1}$$
$$= \alpha e^{(\alpha - 1) \operatorname{Log} z}$$

September 13

6.1 Harmonic Functions

 $f:D\subseteq\mathbb{C}\to\mathbb{C}$, where D is open and f is continuous, is analytic if

1.

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

exists.

2. f'(z) is continuous on D.

Equivalently, if f = u + iv,

- (a) $u_x = v_y$ and $u_y = -v_x$.
- (b) u_x, u_y, v_x, v_y are continuous.

6.1.1 Algebraic/Analytic Property of u + iv

Which functions $u:D\subseteq\mathbb{C}\to\mathbb{R}$ are the real part of an analytic function?

$$u(x,y) = x$$

$$u(x,y) = e^x \cos y$$

$$u(x,y) = x^2 + y^2$$

$$f(x+iy) = x+iy$$

$$f(x+iy) = e^{x+iy}$$
?

$$u_x = v_y = 2x \qquad \qquad -u_y = v_x = -2y$$

Compute the 2nd order partial derivatives.

$$(v_y)_x = 2$$
$$(v_x)_y = -2$$

From 53, the second-order partial derivatives should equal to each other.

From the C-R equations:

$$\begin{cases} u_x &= v_y \\ u_y &= -v_x \end{cases} \implies \begin{cases} (u_x)_x &= (v_y)_x \\ (u_y)_y &= (-v_x)_y \end{cases}$$

 $v_{yx} = v_{xy}$ if the 2nd-order partial derivatives are continuous, so $u_{xx} + u_{yy} = 0$.

$$\Delta u = 0$$

is the harmonic equation.

Definition 6.1. $u: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ is **harmonic** if u, the 1st-order, and 2nd-order partial derivatives exist and are continuous, and $u_{xx} + u_{yy} = 0$.

Theorem 6.2. If $f: D \subseteq \mathbb{C} \to \mathbb{C}$ is analytic, f = u + iv, and u, v, the 1st-order and 2nd-order partial derivatives exist and are continuous, then u is a harmonic function, and so is v.

If f = u + iv, $-i \cdot f = v - iu$ is analytic.

6.1.2 Harmonic Conjugates

Given a harmonic u, find a v such that u + iv is analytic (if possible).

Example 6.3. Consider $u(x,y) = x^3 - 3xy^2$. Is u harmonic?

$$u_x = 3x^2 - 3y^2$$

$$u_y = -6xy$$

$$u_{yy} = -6x$$

u is harmonic.

Find a v with the C-R equations:

$$v_x = -u_y = 6xy \tag{6.1}$$

$$v_y = u_x = 3x^2 - 3y^2 (6.2)$$

(6.1)
$$v(x,y) = \int 6xy \, dx = 3x^2y + c(y)$$
(6.2)
$$v_y = 3x^2 - 3y^2 = 3x^2 + c'(y)$$

$$c(y) = -y^{3} + c'$$

$$v = 3x^{2}y - y^{3} + c'$$

$$u + iv = (x + iy)^{3} + ic'$$

v is unique up to a constant.

v is a harmonic conjugate of u, which means that u + iv is analytic and u, v satisfy the C-R equations.

If v is harmonic, what is a harmonic conjugate of v? v - iu is analytic, so -u is a harmonic conjugate of v.

Consider $u = \text{Log } \sqrt{x^2 + y^2} = \text{Log } |z|$, where Log z = Log |z| + i Arg z. Then v = Arg z, but v is not continuous on $\mathbb{C} \setminus \{0\}$. This implies that $u = \log \sqrt{x^2 + y^2}$ has a harmonic conjugate on $\mathbb{C} \setminus (-\infty, 0]$, but does not have a harmonic conjugate $\mathbb{C} \setminus \{0\}$. The harmonic conjugate does not always exist!

The harmonic conjugate always locally exists.

Theorem 6.4. If $u: D \to \mathbb{R}$, where D is an open disk or an open rectangle, is harmonic, then there exists a harmonic conjugate on D.

If we are looking for a v such that

$$v_x = -u_y$$

$$v_y = u_x$$

then we can suppose that $v(x_0, y_0) = 0$. Then

$$v(x, y_0) = \int_{x_0}^x v_x(s, y_0) \, ds$$
$$v(x, y) = v(x, y_0) + \int_{y_0}^y v_y(x, t) \, dt$$

Therefore,

$$v(x,y) = \int_{x_0}^{x} (-u_y)(s,y_0) ds + \int_{y_0}^{y} u_x(x,y) dt$$

Then,

$$v_y(x,y) = 0 + u_x(x,y)$$

$$v_x(x,y) = -u_y(x,y_0) + \int_{y_0}^y u_{xx}(x,t) dt$$

$$= -u_y(x,y_0) - \int_{y_0}^y u_{yy}(x,t) dt$$

$$= -u_y(x,y_0) - (u_y(x,y) - u_y(x,y_0))$$

The C-R equations are satisfied.

6.2 Conformal Mappings

To picture complex functions, we typically look at the image of the horizontal and vertical lines.

For $z_0 \in \mathbb{C}$, consider $\gamma : [0,1] \to \mathbb{C}$ such that $\gamma(0) = z_0$, where $\gamma = x(t) + iy(t)$. The tangent vector of γ at 0 is $\gamma'(0) = x'(0) + iy'(0)$.

If $f: D \subseteq \mathbb{C} \to \mathbb{C}$ is analytic, with $\gamma: [0,1] \to D$ such that $\gamma(0) = z_0$, then

$$(f \circ \gamma)'(0) = f'(\gamma(0)) \cdot \gamma'(0) = f'(z_0) \cdot \gamma'(0)$$

If $f'(z_0) \neq 0$, $\gamma_1'(0) \neq 0$, $\gamma_2'(0) \neq 0$, then the angle between $\gamma_1'(0)$ and $\gamma_2'(0)$ is equal to the angle between $(f \circ \gamma_1)'(0)$ and $(f \circ \gamma_2)'(0)$.

September 15

7.1 Conformal Mappings

Let $\gamma:[0,1]\to\mathbb{C}$ with $\gamma(0)=z_0$. If we write $\gamma(t)=x(t)+iy(t)$, then the tangent vector at t=0 is $\gamma'(0)=x'(0)+iy'(0)$.

Lemma 7.1. If $f: D \subseteq \mathbb{C} \to \mathbb{C}$ is analytic, $\gamma: [0,1] \to D \subseteq \mathbb{C}$, $\gamma(0) = z_0 \in D$, and $f \circ \gamma: [0,1] \to \mathbb{C}$, then $(f \circ \gamma)'(0) = f'(z_0) \cdot \gamma'(0)$.

Theorem 7.2. Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$ be analytic, $z_0 \in D$, such that $f'(z_0) \neq 0$. If we have curves $\gamma_1, \gamma_2: [0,1] \to D$ such that $\gamma_1(0) = \gamma_2(0) = z_0$, where $\gamma'_1(0)$ and $\gamma'_2(0)$ are non-zero vectors, then the angle between $\gamma'_1(0)$ and $\gamma'_2(0)$ is equal to the angle between $(f \circ \gamma_1)'(0)$ and $(f \circ \gamma_2)'(0)$.

In this case, we say f is **conformal** at z_0 .

Proof. Consider

$$J_f(z_0) = \begin{pmatrix} u_x(x_0, y_0) & u_y(x_0, y_0) \\ v_x(x_0, y_0) & v_y(x_0, y_0) \end{pmatrix}$$

Using the C-R equations, we have

$$J_f(z_0) = \begin{pmatrix} u_x & -v_x \\ v_x & u_x \end{pmatrix} = |f'(z_0)| \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

where $\theta = \operatorname{Arg} f'(z_0)$. This is angle-preserving.

If $f: D \to \mathbb{C}$, where D is a domain, where f is conformal at all points in D, then f or \bar{f} is analytic. (Practice Problem)

A conformal mapping is a 1-1 correspondence and also conformal everywhere.

Definition 7.3. $f:D\subseteq\mathbb{C}\to U\subseteq\mathbb{C}$, where D and U are open, is a **conformal mapping** if

- \bullet f is continuous and u, v have continuous 1st-order partial derivatives,
- f is a one-to-one map,
- f is conformal at all points in D.

 $f^{-1}: U \to D$ is also a conformal mapping.

Example 7.4. Consider the map $z \mapsto \lambda z$, where $\lambda \in \mathbb{C} \setminus \{0\}$. This is a conformal mapping $\mathbb{C} \to \mathbb{C}$.

Example 7.5. Consider the map $z \mapsto z + z_0$, where $z_0 \in \mathbb{C} \setminus \{0\}$. This is a conformal mapping $\mathbb{C} \to \mathbb{C}$.

Example 7.6. The map $z \mapsto 1/z$ is a conformal mapping $\mathbb{C} \setminus \{0\} \to \mathbb{C} \setminus \{0\}$.

Example 7.7. The map $z \mapsto z^2$, which maps $re^{i\theta} \mapsto r^2e^{2i\theta}$ is a conformal mapping $\{x + iy \mid x > 0\} \to \mathbb{C} \setminus (-\infty, 0]$.

Example 7.8. The map $z \mapsto e^z$ is a conformal mapping $\{x + iy \mid y \in (A, B)\} \to \{z \mid \operatorname{Arg} z \in (A, B)\}$, where $B - A < 2\pi$, with $-\pi < A, B < \pi$.

Example 7.9. The map $z \mapsto z^{3/2} = e^{(3/2) \log z}$ is a conformal mapping from the sector $\theta \in (-\pi/6, \pi/6)$ to the sector $\theta \in (-\pi/4, \pi/4)$.

7.2 Fractional Linear Transformations

The maps

$$z \mapsto \lambda z$$
 (7.1)

$$z \mapsto z + z_0 \tag{7.2}$$

$$z \mapsto \frac{1}{z} \tag{7.3}$$

are all 1-1 correspondences $\mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$, or $\bar{\mathbb{C}} \to \bar{\mathbb{C}}$. The functions are "analytic" on $\bar{\mathbb{C}}$.

Take compositions:

$$z\mapsto \frac{az+b}{cz+d}, \qquad a,b,c,d\in\mathbb{C},\; ad-bc\neq 0$$

The expression above is indeed a composition of the three functions. If $c \neq 0$:

$$z \xrightarrow{(7.1)+(7.2)} cz + d \xrightarrow{(7.3)} \frac{1}{cz+d} \xrightarrow{(7.1)} \frac{(bc-ad)/c}{cz+d} \xrightarrow{+a/c} \frac{az+b}{cz+d}$$

These are called **fractional linear transformations**.

Remarks:

1. $ad - bc \neq 0$? If we have the matrix

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

then, we are saying the determinant is 0. If (a, b) and (c, d) are linearly dependent, then (az+b)/(cz+d) is a constant.

2. Under composition:

$$\frac{az+b}{cz+d} \circ \frac{\alpha z+\beta}{\gamma z+\delta} = \frac{a\frac{\alpha z+\beta}{\gamma z+\delta}+b}{c\frac{\alpha z+\beta}{\gamma z+\delta}+d}$$

The coefficients come from matrix multiplication:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix}$$

3.

$$\left(\frac{az+b}{cz+d}\right)^{-1}$$

is also a FLT.

Observe that

$$\frac{az+b}{cz+d} = \frac{(2a)z + (2b)}{(2c)z + (2d)}$$

Although there are 4 parameters, "essentially" we only need 3 parameters to determine a FLT.

How many points determine a FLT?

Theorem 7.10. For any three distinct points $z_0, z_1, z_2 \in \overline{\mathbb{C}}$, and three distinct points $w_0, w_1, w_2 \in \overline{\mathbb{C}}$, there exists a unique FLT such that $f(z_n) = w_n$ for n = 0, 1, 2.

Proof by Example. Suppose that f(0) = 1, f(1) = i, $f(\infty) = -1$. Can we find f?

$$\frac{a \cdot 0 + b}{c \cdot 0 + d} = 1$$

$$\frac{a \cdot 1 + b}{c \cdot 1 + d} = i$$

$$(7.4)$$

$$\frac{a \cdot 1 + b}{c \cdot 1 + d} = i \tag{7.5}$$

$$\frac{a \cdot \infty + b}{c \cdot \infty + d} = -1 \qquad \to \qquad \frac{a}{c} = -1 \tag{7.6}$$

(If
$$\frac{az+b}{cz+d} = \infty$$
, then $cz+d=0$.)

(7.4) implies that b = d, and (7.6) implies that a = -c. (7.5) implies that

$$\underbrace{a}_{-c} + \underbrace{b}_{d} = i(c+d)$$
$$-c+d = i(c+d)$$
$$(1-i)d = (1+i)c$$

Up to scaling, c = 1 - i and d = 1 + i, or c = 1 and d = i (and then a = -1 and b = i).

$$f(z) = \frac{-1 \cdot z + i}{1 \cdot z + i} = \frac{-z + i}{z + i}$$

7.2.1Geometric Picture

What is the image of the x-axis?

We know that $0, 1, \infty \in x$ -axis, with f(0) = 1, f(1) = i, and $f(\infty) = -1$. The answer is the circle |z| = 1. Three points determine a circle.

Theorem 7.11. All FLTs map lines and circles to lines and circles. (Lines are circles going through ∞ . Lines and circles are determined by 3 points in \mathbb{C} .)

Proof. For $z \mapsto \lambda z$ and $z \mapsto z + z_0$, the statement holds trivially. $z \mapsto 1/z$ needs some computation. Lines are given by ax + by = c and circles are given by $|z - z_0|^2 = \gamma^2$.

September 22

8.1 Line Integrals

Two line integrals were introduced in 53: $\int_{\gamma} f \, ds$ and $\int_{\gamma} (P \, dx + Q \, dy)$. We will discuss the 2nd type only.

 $\gamma:[a,b]\to\mathbb{R}^2$, where γ is continuous, is a path. γ is a function, and the curve is the image of γ .

Suppose that $\phi: [a',b'] \to [a,b]$ is an increasing 1-1 correspondence. Then $\gamma \circ \phi: [a',b'] \to \mathbb{R}^2$ is a different function (path), but with the same image as γ .

Any path $\gamma:[a,b]\to\mathbb{R}^2$ can be written as $\gamma(t)=(x(t),y(t)).$

" γ is smooth" means that x, y have as many derivatives as you want. $x', x'', x''', x^{(4)}, \ldots$ exist. A piecewise smooth curve is a concatenation of finitely many smooth paths.

In a closed path, the initial point is the same as the terminal point.

If $\gamma:[a,b]\to\mathbb{R}^2,\mathbb{C}$ is piecewise smooth, and $P,Q:D\to\mathbb{C}$, where $D\supseteq \mathrm{Im}(\gamma)$, then the line integral is

$$\begin{split} \int_{\gamma} (P \, \mathrm{d}x + Q \, \mathrm{d}y) &= \lim_{\varepsilon > 0} \sum_{\varepsilon > 0} (P(x(t_i), y(t_i))(x(t_{i+1}) - x(t_i)) + Q(x(t_i), y(t_i))(y(t_{i+1}) - y(t_i))) \\ &= \int_{a}^{b} (P(x(t), y(t))x'(t) + Q(x(t), y(t))y'(t)) \, \mathrm{d}t \\ &= \int_{a'}^{b'} (P(\tilde{x}(s), \tilde{y}(s))\tilde{x}'(s) + Q(\tilde{x}(s), \tilde{y}(s))\tilde{y}'(s)) \, \mathrm{d}s \end{split}$$

where $a = t_0 < t_1 < \dots < t_n = b$, $|t_i - t_{i+1}| < \varepsilon$, and $\tilde{\gamma} : [a', b'] \to \mathbb{R}^2$ is a reparameterization of γ . The line integral does not depend on parameterization, but it depends on the orientation (can be negative).

8.2 Green's Theorem

Theorem 8.1 (Green's Theorem). Let $D \subseteq \mathbb{R}^2$ be bounded, and ∂D be finitely many piecewise smooth closed curves. The orientation of ∂D is such that D lies to the left when walking along ∂D . Let $P,Q:D\cup\partial D\to\mathbb{C}$ be continuous. Then

$$\int_{\partial D} (P \, dx + Q \, dy) = \iint_{D} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \, dx \, dy$$

(In $P dx + Q dy \mapsto P_y dy dx + Q_x dx dy$, to switch the order of dy dx, we need a negative sign.)

8.2.1 Independence of Path

Let $h: D \to \mathbb{C}$ be differentiable (possibly not complex differentiable). Let $dh = h_x(x, y) dx + h_y(x, y) dy$, and let

$$\gamma_1 : [a_1, b_1] \to D$$

 $\gamma_2 : [a_2, b_2] \to D$

be two piecewise smooth paths with $\gamma_1(a_1) = \gamma_2(a_2)$ and $\gamma_1(b_1) = \gamma_2(b_2)$. Then

$$\int_{\gamma_1} dh = \int_{\gamma_2} dh$$

$$= \int_a^b (h_x(x_1(t), x_2(t))x_1'(t) + h_y(x_1(t), y_1(t))y_1'(t)) dt$$

$$= \int_a^b \frac{d}{dt} (h(x_1(t), y_1(t))) dt = h(x_1(b), y_1(b)) - h(x_1(a), x_2(b))$$

Theorem 8.2. Let $P, Q: D \to \mathbb{C}$, where D is a domain. If P dx + Q dy is independent of path in D, then $\exists h: D \to \mathbb{C}$ such that dh = P dx + Q dy.

Proof. Define h: take $z_0 \in D$ and any $z \in D$. Define $h(z) = \int_{\gamma} (P \, \mathrm{d}x + Q \, \mathrm{d}y)$, where $\gamma : [a, b] \to D$ such that $\gamma(a) = z_0$ and $\gamma(b) = z$. h is well-defined since the integral is independent of path. Check: $h_x = P$ and $h_y = Q$. Take a special path to z_0 .

Independence of path is equivalent to P dx + Q dy = dh. We call P dx + Q dy an exact form. If $Q_x = P_y$, then P dx + Q dy is a closed form. "Exact" implies "closed" when P, Q are differentiable, because

$$\mathrm{d}h = \underbrace{h_x}_P \, \mathrm{d}x + \underbrace{h_y}_Q \, \mathrm{d}y$$

so $Q_x = h_{y,x}$ and $P_y = h_{x,y}$. When is the reverse implication true?

Consider

$$\frac{y}{x^2 + y^2} \, \mathrm{d}x + \frac{x}{x^2 + y^2} \, \mathrm{d}y$$

defined on $\mathbb{R}^2 \setminus \{0\}$. Then $Q_x = P_y$. We get h by integrating P:

$$h(x,y) = \int \frac{y}{x^2 + y^2} dx + c(y)$$
$$= \arctan \frac{x}{y} + c(y)$$

which is not continuous on $\mathbb{R}^2 \setminus \{0\}$.

Theorem 8.3. Let D be a star-shaped domain, that is, there is some $z_0 \in D$ such that $\forall z \in D$, the straight line segment between z_0 and z lies in D. If P dx + Q dy, defined on D, is a closed form, then it is exact.

Proof. Define $h(z) = \int_{\gamma} (P dx + Q dy)$, where γ is the straight line segment from z_0 to z. Let $\tilde{\gamma}$ be the path which starts from z_0 , but takes a horizontal path to z at the end of the path. We show that

$$\int_{\gamma} (P \, \mathrm{d}x + Q \, \mathrm{d}y) = \int_{\tilde{\gamma}} (P \, \mathrm{d}x + Q \, \mathrm{d}y)$$

Then

$$\int_{\gamma} - \int_{\tilde{\gamma}} = \iint_{D} \underbrace{(Q_x - P_y)}_{\text{closed form}} \, \mathrm{d}x \, \mathrm{d}y = 0$$

This implies that $h_x = P$. Similarly, $h_y = Q$.

For any two paths γ_1, γ_2 in D with the same initial and terminal point, we can deform γ_1 to γ_2 continuously.

September 27

9.1 Line Integrals

Let $\gamma:[a,b]\to\mathbb{C}$ (\mathbb{R}^2) be piecewise smooth, where $\gamma(t)=x(t)+iy(t)$. Consider also $P,Q:D\subseteq\mathbb{C}\to\mathbb{C}$, where $D\supseteq \mathrm{Im}(\gamma)$. Then the line integral is $\int_{\gamma}(P\,\mathrm{d}x+Q\,\mathrm{d}y)$. $P\,\mathrm{d}x+Q\,\mathrm{d}y$ is defined on $D\subseteq\mathbb{C}$. We showed that the line integral is independent of path on D if and only if $P\,\mathrm{d}x+Q\,\mathrm{d}y$ is an exact form, i.e. $\exists h:D\to\mathbb{C}$ such that $P\,\mathrm{d}x+Q\,\mathrm{d}y=\mathrm{d}h$, which implies that $P\,\mathrm{d}x+Q\,\mathrm{d}y$ is closed, i.e. $Q_x=P_y$.

If D is a star-shaped domain, then closed implies exact. We defined h by $h(z) = \int_{\gamma} (P dx + Q dy)$, where γ is the line segment from z_0 to z. Green's Theorem states that

$$\int_{\gamma} (P \, \mathrm{d}x + Q \, \mathrm{d}y) = \int_{\gamma_1} (P \, \mathrm{d}x + Q \, \mathrm{d}y) = \int_{\gamma_2} (P \, \mathrm{d}x + Q \, \mathrm{d}y)$$

Theorem 9.1. Let P dx + Q dy be a closed form on a domain D. Let $\gamma_s : [0,1] \to D$ be a continuous family of paths, $s \in [0,1]$. If $\gamma_s(0) = A \forall s \in [0,1]$ and $\gamma_s(1) = B \forall s \in [0,1]$, then

$$\int_{\gamma_0} (P \, \mathrm{d}x + Q \, \mathrm{d}y) = \int_{\gamma_1} (P \, \mathrm{d}x + Q \, \mathrm{d}y)$$

Proof. Consider

$$\Gamma: \underbrace{[0,1]}_t \times \underbrace{[0,1]}_s \to D$$

where $\Gamma(t,s) = \gamma_s(t)$. Write $\Gamma(t,s) = (X(t,s),Y(t,s))$. Then

$$\int_{\gamma_s} (P \, \mathrm{d}x + Q \, \mathrm{d}y) = \int_0^1 \left(P(\gamma_s(t)) \frac{\partial X}{\partial t} + Q(\gamma_s(t)) \frac{\partial Y}{\partial t} \right) \, \mathrm{d}t$$

Take the partial derivative with respect to s: it equals 0, using $P_y = Q_x$, $\gamma_s(0) = A$, $\gamma_s(0) = B$.

We can rewrite the condition that D is a star-shaped domain to use any $z_0, z_1 \in D$, for any two paths $\gamma_0, \gamma_1 : [0, 1] \to D$, with $\gamma_0(0) = \gamma_1(0) = z_0$ and $\gamma_0(1) = \gamma_1(1) = z_1$, such that γ_0 and γ_1 can be connected by a continuous family of paths starting at z_0 and ending at z_1 .

9.2 Applications to Harmonic Functions

Given $u: D \to \mathbb{R}$, a harmonic function, can we determine whether a harmonic conjugate v exists on D? Last chapter: If D is a rectangle or a disk, then v exists.

We need

$$u_x = v_y$$
$$u_y = -v_x$$

or equivalently, find a v such that

$$dv = v_x dx + v_y dy$$
$$= -u_y dx + u_x dy$$

Check: $-u_y dx + u_x dy$ is a closed form. We need $Q_y = P_x$, which is $u_{xx} = -u_{yy}$. This holds since u is harmonic.

Theorem 9.2. Let $D \subseteq \mathbb{C}$ be a star-shaped domain and $u : D \to \mathbb{R}$ be harmonic. There exists a harmonic conjugate v of u.

Let D be a domain and $u: D \to \mathbb{R}$ be harmonic. Local property of u: take $z_0 \in D$. There exists $\rho > 0$ such that $B(z_0, \rho) \subseteq D$. There exists $v: B(z_0, \rho) \to \mathbb{R}$, which is a harmonic conjugate of u. For any $0 < r < \rho$,

$$0 = \int_{|z-z_0|=r} (-u_y \, dx + u_x \, dy) = \int_0^{2\pi} \int_0^{2\pi} (-u_y (z_0 + re^{i\theta})(-r\sin\theta) \, d\theta + u_x (z_0 + re^{i\theta})(r\cos\theta) \, d\theta)$$

$$\int_0^{2\pi} (-u_y (z_0 + re^{i\theta})(-r\sin\theta) \, d\theta + u_x (z_0 + re^{i\theta})(r\cos\theta) \, d\theta)$$

$$= \int_0^{2\pi} r(u_y(z_0 + re^{i\theta})\sin\theta + u_x(z_0 + re^{i\theta})\cos\theta) d\theta$$

Since u = u(x, y), then $u = u(x_0 + r \cos \theta, y_0 + r \sin \theta)$. Then

$$u_r = u_x \cdot x_r + u_y \cdot y_r = u_x \cos \theta + u_y \sin \theta$$

This implies that

$$0 = \int_0^{2\pi} u_r(z_0 + re^{i\theta}) d\theta = \frac{d}{dr} \left(\int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta \right)$$

so $\int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$ is a constant function of r. In particular, take r = 0 and we obtain $2\pi u(z_0)$.

Theorem 9.3 (Mean Value Property). Let $u: D \to \mathbb{R}$ be harmonic and $B(z_0, \rho) \subseteq D$. Then

$$\frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta = u(z_0) \qquad \forall 0 < r < \rho$$

Theorem 9.4 (Strict Maximal Principle (Real Version)). Let D be a domain, $u: D \to \mathbb{R}$ is harmonic, where $u(z) \leq M$ for any $z \in D$. If $\exists z_0 \in D$ such that u(z) = M, then u(z) = M for any $z \in D$.

Proof. Let $\emptyset \neq U = \{z \in D \mid u(z) = M\}$ and $V = \{z \in D \mid u(z) < M\}$. Then $D = U \cup V$ and $U \cap V = \emptyset$. u is continuous, so V is open. 9.3 implies that U is open. Therefore, $V = \emptyset$.

Theorem 9.5 (Strict Maximal Principle (Complex Version)). Let D be a domain, $f: D \to \mathbb{C}$ (complex-valued) is harmonic. (Analytic functions are harmonic.) If $|f(z)| \le M \ \forall z \in D$ and $\exists z_0 \in D$ such that $|f(z_0)| = M$, then f is a constant function on D, equal to $f(z_0)$.

Proof. Consider $g(z)=e^{-i\operatorname{Arg} f(z_0)}\cdot f(z)$. g is a $\mathbb C$ -valued harmonic function with $|g(z)|\leq M$. Also, $g(z_0)=e^{-i\operatorname{Arg} f(z_0)}f(z_0)=|f(z_0)|$. Consider Re g. Then Re g is a $\mathbb R$ -valued harmonic function with $\operatorname{Re}(g)\leq M$ and $\operatorname{Re}(g)(z_0)=M$. Therefore, $\operatorname{Re} g\equiv M$ and $\operatorname{Im} g\equiv 0$.

Theorem 9.6 (Maximal Principle). If $f: D \to \mathbb{C}$ is harmonic, where D is a bounded domain, and f continuously extends to a function $D \cup \partial D \to \mathbb{C}$, then $|f(z)| \leq M$ on ∂D implies that $|f(z)| \leq M$ on D.

September 29

10.1 Recap

If $D \subseteq \mathbb{C}$ is a domain, with two functions $P, Q : D \to \mathbb{C}$, then P dx + Q dy is a form on D. Independence of path is equivalent to P dx + Q dy = dh, an exact form, where $h : D \to \mathbb{C}$. An exact form is a closed form, i.e. $Q_x = P_y$, and the reverse implication is true when D is star-shaped.

Consider $u:D\subseteq\mathbb{C}\to\mathbb{R}$, and take $z_0\in D$ with $B(z_0,\rho)\subseteq D$. We showed the Mean Value Property:

$$u(z_0) = \frac{1}{2\pi} \int_0^{2\pi} u(z_0 + re^{i\theta}) d\theta$$

for all $0 < r < \rho$. This implies the maximal principle of harmonic functions (the \mathbb{R} -valued version and the \mathbb{C} -valued version). (If $u(z_0) \ge u(z)$ for any $z \in D$, then the Mean Value Property implies that $u(z) = u(z_0)$ for all $z \in B(z_0, \rho)$.)

10.2 Complex Line Integral

Let $f:D\subseteq\mathbb{C}\to\mathbb{C}$ and γ be a path in D. We will discuss the complex line integral, $\int_{\gamma}f(z)\,\mathrm{d}z$, which behaves well if f is analytic.

Writing z = x + iy, we define dz = dx + i dy. Then

$$\int_{\gamma} f(z) dz \stackrel{\text{def}}{=} \int_{\gamma} f(z) (dx + i dy)$$
$$= \int_{\gamma} \underbrace{(f(z))}_{P} dx + \underbrace{if(z)}_{Q} dy)$$

Example 10.1.

$$\int_{|z|=R} z^m \, dz = \int_0^{2\pi} \int_0^{2\pi} (Re^{i\theta})^m (\underbrace{-R\sin\theta \, d\theta}_{dx} + i\underbrace{R\cos\theta \, d\theta}_{dy})$$

$$= \int_0^{2\pi} R^{m+1} e^{im\theta} (-\sin\theta + i\cos\theta) \, d\theta$$

$$= \int_0^{2\pi} R^{m+1} e^{im\theta} i(\cos\theta + i\sin\theta) \, d\theta$$

$$= iR^{m+1} \int_0^{2\pi} e^{i(m+1)\theta} d\theta$$

$$= \begin{cases} \frac{iR^{m+1}}{i(m+1)} e^{i(m+1)\theta} \Big|_{\theta=0}^{2\pi} = 0, & m \neq -1 \\ 2\pi i, & m = -1 \end{cases}$$

We could also write γ as z(t) = x(t) + iy(t).

$$\int_{a}^{b} f(z(t)) \cdot \underbrace{z'(t) \, \mathrm{d}t}_{\mathrm{d}z}$$

Then we have

$$\int_{|z|=R} z^m dz = \int_{\substack{z=Re^{i\theta} \\ dz=iRe^{i\theta} d\theta}} \int_0^{2\pi} (Re^{i\theta})^m \cdot iRe^{i\theta} d\theta$$

If $\gamma : [a, b] \to D$, then $a = t_0 < t_1 < \dots < t_n = b$. The line integral is formally defined as

$$\int_{\gamma} f(z) dz = \lim_{\max\{t_{k+1} - t_k\} \to 0} \sum_{k=0}^{n-1} f(z(t_k)) \cdot (z(t_{k-1}) - z(t_k))$$

10.2.1 Line Integral in Mathematics 53

There is also another line integral:

$$\int_{\gamma} h(x,y) \underbrace{ds}_{\text{arc length}} = \lim_{\max\{t_{k+1} - t_k\} \to 0} \sum_{k=0}^{n-1} h(z(t_k)) \cdot |z(t_{k+1}) - z(t_k)|$$

This gives

$$\int_{\gamma} |f(z)| \, \mathrm{d}s \ge \left| \int_{\gamma} f(z) \, \mathrm{d}z \right|$$

because $|z_1| + |z_2| + \cdots + |z_n| \ge |z_1 + z_2 + \cdots + z_n|$.

The line integral was computed by

$$\int_{\gamma} h \, ds = \int_{a}^{b} h(x(t), y(t)) \sqrt{x'(t)^{2} + y'(t)^{2}} \, dt$$

We can define

$$|dz| = |dx + i dy|$$

$$= \sqrt{(dx)^2 + (dy)^2} = \int_{\text{if curve is given by } x(t) + iy(t)} \sqrt{(x'(t))^2 + (y'(t))^2} dt$$

We write

$$\int_{\gamma} f(z) |dz|$$
 for $\int_{\gamma} f(z) ds$

so

$$\int_{\gamma} |f(z)| \cdot |\mathrm{d}z| \ge \left| \int_{\gamma} f(z) \, \mathrm{d}z \right|$$

10.2.2 ML Estimation

If $M = \sup\{|f(z)| \mid z \in \gamma\}$, then

$$\left| \int_{\gamma} f(z) \, dz \right| \le \int_{\gamma} |f(z)| \, |dz|$$

$$\le M \int_{\gamma} 1 \cdot |dz| = M \cdot L$$

where L is the length of γ .

10.3 Primitives

From calculus, $F(x) = \int_0^x f(t) dt \Rightarrow F'(x) = f(x)$.

Let $f: D \subseteq \mathbb{C} \to \mathbb{C}$. We want to find $F: D \to \mathbb{C}$ such that F'(z) = f(z) (F is called a "primitive" of f). Since we always assume that f is continuous, this implies that F is analytic. Write f = u + iv and assume that u, v have continuous 1st-order partial derivatives. By the midterm problem, f is analytic on D.

The function $f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = \bar{z}$ is not analytic, so by the discussion above, there does not exist F such that F' = f. Therefore, we will only think about analytic functions and their primitives.

Theorem 10.2. If $f: D \to \mathbb{C}$ has a primitive $F: D \to \mathbb{C}$, then for $\gamma: [a,b] \to D$ $(z \mapsto \gamma(t))$,

$$\int_{\gamma} f(z) dz = F(\gamma(b)) - F(\gamma(a))$$

In particular, f(z) dz is independent of path.

Proof.

$$\int_{\mathcal{S}} f(z) dz = \int_{a}^{b} f(\gamma(t)) \cdot \gamma'(t) dt = \int_{a}^{b} \frac{d}{dt} \left((F \circ \gamma)(t) \right) dt = F(\gamma(b)) - F(\gamma(a))$$

The primitive does not always exist (even for analytic functions).

Example 10.3. The function 1/z is defined on $C \setminus \{0\} \to \mathbb{C}$.

$$\oint_{|z|=R} \frac{1}{z} \, \mathrm{d}z = 2\pi i$$

Therefore, there does not exist a primitive for 1/z.

Proposition 10.4. f is analytic if and only if f(z) dz is a closed form.

Proof. Write f = u + iv. Then

$$f(z) dz = (u + iv) dx + i(u + iv) dy$$
$$= \underbrace{(u + iv)}_{P} dx + \underbrace{(-v + iu)}_{Q} dy$$

Closed means that $Q_x = P_y$, so $-v_x + iu_x = u_y + iv_y$, which is equivalent to $-v_x = u_y$ and $u_x = v_y$, which are the C-R equations.

Theorem 10.5. If D is a star-shaped domain, and $f: D \to \mathbb{C}$ is analytic, then $\exists F: D \to \mathbb{C}$ such that $F_x \, \mathrm{d}x + F_y \, \mathrm{d}y = f(z) \, \mathrm{d}z$. Actually, F'(z) = f(z).

Proof. We have

$$F_x = u + iv$$

$$F_y = i(u + iv)$$

$$= -v + iu$$

Hence, C-R holds for F, and $F' = F_x = f$.

October 4

11.1 Complex Line Integrals

$$\int_{\gamma} f(z) dz = \int_{dz = dx + i dy} \int_{\gamma} (f(z) dx + i f(z) dy)$$

Theorem 11.1. f is analytic if and only if f(z) dz is a closed form (by the C-R equations).

Consider $f: D \to \mathbb{C}$. A **primitive** of f is $F: D \to \mathbb{C}$, such that F'(z) = f(z). If f has a primitive, then f is analytic. If f is analytic and D is a star-shaped domain, then f has a primitive. Define

$$F(z) = \int_{z_0}^z f(w) \, \mathrm{d}w$$

where z_0 is a fixed point and the integral is along any path from z_0 to z.

Theorem 11.2 (Cauchy's Theorem). Let D be a bounded domain with a piecewise smooth boundary. Let $f: D \to \mathbb{C}$ be an analytic function which extends smoothly to ∂D . (In applications of the theorem, $f: U \to \mathbb{C}$ is analytic, with $U = D \cup \partial D$.) Then

$$\int_{\partial D} f(z) \, \mathrm{d}z = 0$$

Suppose that $f: D \setminus \{z_0\}$ is analytic. Apply Cauchy's Theorem to $D \setminus B(z_0, r)$. Then

$$0 = \int_{\partial(D \setminus B(z_0, r))} f(z) dz = \int_{\partial D} f(z) dz - \int_{|z - z_0| = r} f(z) dz$$

where the last line integral is taken in a counterclockwise orientation. Therefore,

$$\int_{|z-z_0|=r} f(z) \, \mathrm{d}z = \int_{\partial D} f(z) \, \mathrm{d}z$$

The last integral is independent of r as long as $B(z_0, r) \subseteq D$.

Take $f(z)/(z-z_0)$. If f is analytic on D, then $f(z)/(z-z_0)$ is analytic on $D \setminus \{z_0\}$. We get:

$$\int_{|z-z_0|=r} \frac{f(z)}{z-z_0} dz = \int_{\partial D} \frac{f(z)}{z-z_0} dz$$
$$= \int_0^{2\pi} \frac{f(z_0 + re^{i\theta})}{re^{i\theta}} i(re^{i\theta}) d\theta$$

$$= i \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta = 2\pi i \cdot f(z_0)$$

where $z = z_0 + re^{i\theta}$. The last line follows from the Mean Value Property (f is analytic, so f is harmonic). Here, we assume that u, v have continuous 2nd-order partial derivatives.

$$\int_{|z-z_0|=r} \frac{f(z)}{z-z_0} \, \mathrm{d}z \qquad \text{is independent of } r$$

Let $r \to 0$. We still get the same number:

$$\lim_{r \to 0} i \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta = i \int_0^{2\pi} f(z_0) d\theta = 2\pi i \cdot f(z_0)$$

11.2 Cauchy Integral Formula

Theorem 11.3 (Cauchy Integral Formula). Let D be a bounded domain with a piecewise smooth boundary. Let $f: D \to \mathbb{C}$ be analytic which extends smoothly to ∂D . Then

$$\forall z_0 \in D$$
 $f(z_0) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(z)}{z - z_0} dz$

Written another way:

$$\forall z \in D$$
 $f(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{w - z} dw$

The RHS is an analytic function of z on D. Take the complex derivative of z. Since

$$\frac{\mathrm{d}}{\mathrm{d}z} \left(\frac{1}{w-z} \right) = -\frac{1}{(w-z)^2} \frac{\mathrm{d}}{\mathrm{d}z} (w-z)$$
$$= \frac{1}{(w-z)^2}$$

we have

$$f'(z) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(w)}{(w-z)^2} \, \mathrm{d}w$$

Looking at the LHS, we do not know if f'(z) is complex differentiable. On the RHS, however, we can compute further complex derivatives of $1/(w-z)^2$. Since the RHS is still complex differentiable, this implies that f'(z) is complex differentiable. Inductively, $f^{(m)}(z)$ exists and

$$f^{(m)}(z) = \frac{m!}{2\pi i} \int_{\partial D} \frac{f(w)}{(w-z)^{m+1}} \, \mathrm{d}w$$

If $f: U \to \mathbb{C}$, where U is open, apply the Cauchy Integral Formula on a small disk D such that $D \cup \partial D \subseteq U$.

Theorem 11.4. If $f: U \to \mathbb{C}$ is analytic, where U is open, then f', f'', \ldots exist on U and are also analytic. For any $z \in U$,

$$f^{(m)}(z) = \frac{m!}{2\pi i} \int_{|w-z|=r} \frac{f(w)}{(w-z)^{m+1}} dw$$

where $B(z,r) \cup \partial B(z,r) \subseteq U$.

This rigorously shows that if f is analytic, then f is harmonic.

11.2.1 Computation

$$\int_{|z|=2} \frac{1}{z^3 (z+1)^2} \, \mathrm{d}z$$

If f were analytic on |z| < 2, then the line integral would be 0. We know that the function is analytic on $\{z \mid |z| < 2\} - \{0, -1\}$ (or alternatively, $\mathbb{C} - \{0, -1\}$). Apply Cauchy's Theorem:

$$\int_{|z|=2} \frac{\mathrm{d}z}{z^3(z+1)} = \int_{|z|=\varepsilon} \frac{\mathrm{d}z}{z^3(z+1)^2} + \int_{|z+1|=\varepsilon} \frac{\mathrm{d}z}{z^3(z+1)^2}$$

We compute the first integral.

$$\int_{|z|=\varepsilon} \frac{\mathrm{d}z}{z^3(z+1)^2} = \int_{|z|=\varepsilon} \frac{1/(z+1)^2}{(z-0)^3} \,\mathrm{d}z = \frac{2\pi i}{2!} \left(\frac{1}{(z+1)^2}\right)'' \Big|_{z=0}$$
$$= 6\pi i$$

since $1/(z+1)^2$ is analytic on $|z|<\varepsilon$. (3=2+1, so take m=2.) Next:

$$\int_{|z+1|=\varepsilon} \frac{\mathrm{d}z}{z^3(z+1)^2} = \int_{|z+1|=\varepsilon} \frac{1/z^3}{(z-(-1))^2} \,\mathrm{d}z = \frac{2\pi i}{1!} \left(\frac{1}{z^3}\right)' \Big|_{z=-1} = -6\pi i$$

where m=1.

October 6

12.1 Cauchy's Estimate

If D is a bounded domain, and $f: D \to \mathbb{C}$ is analytic, then

 $1. \int_{\partial D} f(w) \, \mathrm{d}w = 0$

2.

$$f(z) = \frac{1}{2\pi i} \int_{\partial D} \underbrace{\frac{f(w)}{w - z}}_{g(w)} dw, \qquad z \in D$$

g(w) is analytic on $D \setminus \{z\}$.

3. $f^{(m)}(z)$ exists for all $z \in D$.

$$f^{(m)}(z) = \frac{m!}{2\pi i} \int_{\partial D} \frac{f(w)}{(w-z)^{m+1}} dw$$

3 implies the Cauchy estimation of $f^{(m)}(z)$:

$$\begin{split} f^{(m)}(z) &= \frac{m!}{2\pi i} \int_{|w-z|=r} \frac{f(w)}{(w-z)^{m+1}} \, \mathrm{d}w \qquad \text{if } \{w \mid |w-z| \leq r\} \in D \\ \left| f^{(m)}(z) \right| &\leq \frac{m!}{2\pi} \int_{|w-z|=r} \frac{|f(w)|}{|w-z|^{m+1}} \, |\mathrm{d}w| \\ &\leq \frac{m!}{2\pi} \int_{|w-z|=r} \frac{M}{r^{m+1}} \, |\mathrm{d}w| \\ &= \frac{m!}{2\pi} \frac{M}{r^{m+1}} 2\pi r = \frac{m!}{r^m} \end{split}$$

if $|f(w)| \leq M$ on |w-z| = r. This is Cauchy's estimate:

$$\left| f^{(m)}(z) \right| \le \frac{m! \, M}{r^m}$$

From M, a bound for f, we obtain some bound for $f^{(m)}$.

Such a bound is not possible in the real numbers. The function

$$f_n(x) = \frac{1}{n}\sin(n^2x)$$

is bounded by

$$|f_n| \le \frac{1}{n}$$
 small

but the derivative is bounded by

$$f'_n = n\cos(n^2 x)$$

$$f'_n(0) = n large$$

12.2 Liouville's Theorem

Theorem 12.1 (Liouville's Theorem). If $f : \mathbb{C} \to \mathbb{C}$ is analytic (an **entire** function) and also bounded, then f is a constant function.

Proof. If $\exists M > 0$ such that $|f(z)| \leq M$, then $\forall z \in \mathbb{C}$,

$$|f'(z)| \le \frac{1!\,M}{r^1} = \frac{M}{r}$$

as long as $\{w \mid |w-z| \leq r\} \subseteq \mathbb{C}$, which is always true. Letting $r \to \infty$, then f'(z) = 0, which implies that f(z) is constant.

12.3 Analytic Functions

 $f:D\to\mathbb{C}$ is analytic if

- 1. f'(z) exists for any $z \in D$,
- 2. f' is continuous on D.

Actually, 1 implies 2.

12.3.1 Part 1

Theorem 12.2 (Morera's Theorem). If $f: D \to \mathbb{C}$ is continuous, where D is a domain, if for any closed rectangle $R \subseteq D$,

$$\int_{\partial R} f(z) \, \mathrm{d}z = 0$$

then f is analytic.

Proof. Find an analytic $F:D\to\mathbb{C}$ such that F'=f (this implies that F''=f' exists and is continuous). This is equivalent to $\mathrm{d}F(z)=f(z)\,\mathrm{d}z$.

To define F: do the line integral of f(z) dz. Consider the line integral on a disk $B \subseteq D$.

$$F(z) = \int_{\gamma_0} f(z) dz = \int_{\gamma_1} f(z) dz$$

where γ_0 and γ_1 differ by a rectangular path. To show that F is analytic, use the Cauchy-Riemann equations: F = U + iV and f = u + iv.

$$F_x = \lim_{\Delta x \to 0} \frac{F(z + \Delta x) - F(z)}{\Delta x} = \lim_{\Delta x \to 0} \frac{\int_{x_0}^{x_0 + \Delta x} f(t + iy) dt - \int_{x_0}^{x} f(t + iy) dt}{\Delta x}$$
$$= f(x + iy) = u + iv$$

$$F_y = \lim_{\Delta y \to 0} \frac{F(z + \Delta y) - F(z)}{\Delta y} \underbrace{=}_{\gamma_1} \inf_{\text{formula}} if(x + iy) = i(u + iv)$$

so

$$F' = F_x = U_x + iV_x = u + iv$$

$$F_y = U_y + iV_y = -v + iu$$

which imply

$$U_x = V_y = u$$
$$U_y = -V_x = -v$$

which are all continuous. The C-R equations hold for F, which implies that F is analytic.

12.3.2 Part 2

Theorem 12.3 (Goursat's Theorem). If $f: D \to \mathbb{C}$ is continuous, if f'(z) exists for any $z \in D$, then f' is continuous on D.

Proof. Use Morera's Theorem, 12.2, and then show that $\int_{\partial R} f(z) dz = 0$.

Suppose that $\int_{\partial R} f(z) dz = A \neq 0$ for some closed rectangle $R \subseteq D$. There exists R_1 ("= R/2") such that

$$\left| \int_{\partial R_1} f(z) \, \mathrm{d}z \right| \ge \frac{|A|}{4}$$

Then there exists R_2 ("= $R/2^2$ ") such that

$$\left| \int_{\partial R_2} f(z) \, \mathrm{d}z \right| \ge \frac{|A|}{4^2}$$

Continue inductively. There exists R_n ("= $R/2^n$ ") such that

$$\left| \int_{\partial R_n} f(z) \, \mathrm{d}z \right| \ge \frac{|A|}{4^n}$$

Then $\bigcap_{n=1}^{\infty} R_n = \{z_0\}$. We want to find a contradiction on $\int_{\partial R_n} f(z) dz$ for large n.

In R_n , any two points are $\leq \sqrt{2}L/2^n$ apart. We know that

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = f'(z_0)$$

For $\varepsilon = |A|/(8L^2)$, there exists n such that $\forall z \in R_n$,

$$\left| \frac{f(z) - f(z_0)}{z - z_0} - f'(z_0) \right| \le \varepsilon$$

Then, we estimate the integral.

$$\frac{|A|}{4^n} \le \left| \int_{\partial R_n} f(z) \, \mathrm{d}z \right| = \left| \int_{\partial R_n} [f(z) - f(z_0) - f'(z_0)(z - z_0)] \, \mathrm{d}z \right|
\le \int_{\partial R_n} |f(z) - f(z_0) - f'(z_0)(z - z_0)| \cdot |\mathrm{d}z|
\le \int_{\partial R_n} \varepsilon |z - z_0| \cdot |\mathrm{d}z| \le \int_{\partial R_n} \sqrt{2} \frac{L}{2^n} \varepsilon \, |\mathrm{d}z| \le \sqrt{2} \frac{L}{2^n} \cdot 4 \frac{L}{2^n} \frac{|A|}{8L^2} = \frac{|A|}{\sqrt{2} \cdot 4^n}$$

12.3.3 Morera's Theorem

If $f: D \to \mathbb{C}$ is continuous, with $\int_{\partial R} f(z) dz = 0$ for any closed rectangle $R \subseteq D$, then f is analytic.

Example 12.4. Let $g: D \to \mathbb{C}$ be analytic, with $g(z_0) = 0$, for some $z_0 \in D$. Define a new function

$$f(z) = \begin{cases} \frac{g(z) - g(z_0)}{z - z_0}, & \text{if } z \in D \setminus \{z_0\} \\ g'(z_0), & z = z_0 \end{cases}$$

f is analytic on $D \setminus \{z_0\}$ and continuous on D. This implies that f is analytic on D (by Morera's Theorem, 12.2).

Consider a rectangle $R \subseteq D$. If $z_0 \notin R$, then $\int_{\partial R} f(z) dz = 0$. If $z_0 \in \partial R$, then push the rectangle up by a distance of ε to R_{ε} . Since f is continuous,

$$\int_{\partial R} f(z) dz = \lim_{\varepsilon \to 0} \int_{\partial R_{\varepsilon}} f(z) dz = 0$$

If $z_0 \in R$, then we can divide R into R_1 and R_2 , then

$$\int_{\partial R} f(z) dz = \int_{\partial R_1} f(z) dz + \int_{\partial R_2} f(z) dz = 0$$

The same argument applies if $f: D \to \mathbb{C}$ is continuous and analytic on $D \setminus \mathbb{R}$. Then f is analytic on \mathbb{R} .

October 11

13.1 Power Series

Suppose that $f:\{|z-z_0|< r\}\to\mathbb{C}$ is analytic. Our main goal is to write f as a power series

$$\sum_{k=0}^{\infty} a_k (z - z_0)^k$$

We will review and develop series of complex numbers, and sequences and series of (analytic) functions.

Let $a_k \in \mathbb{C}$. Then the series of complex numbers $\sum_{k=0}^{\infty} a_k$ converges if $\lim_{n\to\infty} \sum_{k=0}^{n} a_k$ exists.

 $\sum_{k=0}^{\infty} a_k$ converges if and only if $\sum_{k=0}^{\infty} \text{Re}(a_k)$ and $\sum_{k=0}^{\infty} \text{Im}(a_k)$ both converge.

If $\sum_{k=0}^{\infty} a_k$ converges, then $\lim_{k\to\infty} a_k = 0$.

Theorem 13.1 (Comparison Test). If $r_k \in \mathbb{R}$, $r_k \geq 0$ and $\sum_{k=0}^{\infty} r_k$ converges, if $a_k \in \mathbb{C}$, $|a_k| \leq r_k$, then $\sum_{k=0}^{\infty} a_k$ converges and

$$\left| \sum_{k=0}^{\infty} a_k \right| \le \sum_{k=0}^{\infty} r_k$$

Proof. $|\operatorname{Re}(a_k)| \leq |a_k| \leq r_k$, so $\sum \operatorname{Re}(a_k)$ converges.

 $|\operatorname{Im}(a_k)| \le |a_k| \le r_k$, so $\sum \operatorname{Im}(a_k)$ converges. Therefore, $\sum a_k$ converges.

$$\left| \sum_{k=0}^{n} a_k \right| \le \sum_{k=0}^{n} |a_k| \le \sum_{k=0}^{n} r_k$$

Then, let $n \to \infty$.

 $\sum a_k$ absolutely converges if $\sum |a_k|$ converges.

An important sequence r_k that we will use is $\sum_{k=0}^{\infty} s^k = 1/(1-s)$, for $s \in (0,1)$. Another convergent series is $\sum_{k=0}^{\infty} 1/k^s$, where s > 1.

13.2 Sequences of Functions

Let $f_n: D \subseteq \mathbb{C} \to \mathbb{C}$ be a sequence of functions.

 $\{f_n\}$ pointwisely converges to $f:D\to\mathbb{C}$ if for all $z\in D$, $\lim_{n\to\infty}f_n(z)=f(z)$, i.e.

$$\forall z \in D \ \forall \varepsilon > 0 \ \exists N \ \text{such that} \ \forall n > N \ |f_n(z) - f(z)| < \varepsilon$$

N depends on ε, z .

 $\{f_n\}$ uniformly converges $(N \text{ only depends on } \varepsilon) \text{ to } f:D\to\mathbb{C} \text{ if }$

$$\forall \varepsilon > 0 \; \exists N \text{ such that } \forall n > N \; \forall z \in D \; |f_n(z) - f(z)| < \varepsilon$$

If $f_n \xrightarrow{\text{uniformly}} f$ on D, then $f_n \xrightarrow{\text{pointwise}} f$ on D.

 $\sum_{k=0}^{\infty} f_k$ pointwise converges on D if $\sum_{k=0}^{n} f_k$ pointwise converges on D.

 $\sum_{k=0}^{\infty} f_k$ uniformly converges on D if $\sum_{k=0}^{n} f_k$ uniformly converges on D.

Theorem 13.2 (Weierstrass M-Test). Suppose $M_k \geq 0$ and $\sum_{k=0}^{\infty} M_k$ converges. For $f_k : D \to \mathbb{C}$, if $|f_k(z)| \leq M_k$ for all $z \in D$, then $\sum_{k=0}^{\infty} f_k$ uniformly converges on D.

Usually, we will use the case where $M_k = s^k$ for $s \in (0,1)$.

Theorem 13.3. If $f_n: D \subseteq \mathbb{C} \to \mathbb{C}$, where $f_n \xrightarrow{uniformly} f$ on D,

- 1. If every f_n is continuous on D, then f is continuous on D.
- 2. If the f_n are continuous on $D, \gamma: [a,b] \to D$ is piecewise smooth, then

$$\lim_{n \to \infty} \int_{\gamma} f_n(z) \, \mathrm{d}z = \int_{\gamma} f(z) \, \mathrm{d}z$$

Proof. 1. The proof in 104 works for all functions from metric spaces to metric spaces.

2. If L is the length of γ ,

$$\forall \varepsilon > 0 \ \exists N \ \forall n > N \ \forall z \in D \ |f_n(z) - f(z)| < \frac{\varepsilon}{L}$$

For n > N,

$$\left| \int_{\gamma} f_n(z) \, dz - \int_{\gamma} f(z) \, dz \right| \le \int_{\gamma} |f_n(z) - f(z)| \cdot |dz| \le \frac{\varepsilon}{L} \cdot L = \varepsilon$$

Suppose that $f_n \xrightarrow{\text{uniformly}} f$ on $D \subseteq \mathbb{R} \to \mathbb{C}$.

- 1. f'_n exists does not imply that f' exists.
- 2. f'_n, f' exist does not imply that $f'_n \to f'$ pointwise.

Consider $f_n = (1/n)\sin(n^2x)$. Then $f_n \xrightarrow{\text{uniformly}} f$, where $f(x) \equiv 0$. Here, $f'_n = n\cos(n^2x)$, and f'_n does not converge pointwise to f'.

Theorem 13.4. If $f_n: D \to \mathbb{C}$ is analytic, where D is an open set in \mathbb{C} , $f_n \xrightarrow{uniformly} f$ on D, then

- 1. f' also exists, i.e. f is analytic on D.
- 2. $f_n^{(m)} \xrightarrow{uniformly} f^{(m)}$ on W, where W is a slightly smaller set, for any m > 0. There exists $\delta > 0$

such that $\forall w \in W \ \forall z \notin D \ |w - z| > \delta$.

Proof. 1. We cannot use real analysis methods. Use Morera's Theorem: $\forall R \subseteq D$, where R is a closed rectangle, if $\int_{\partial R} f(z) dz = 0$, then f is analytic.

$$\int_{\partial R} f(z) dz = \lim_{n \to \infty} \int_{\partial R} f_n(z) dz = 0$$

where the first equality uses $f_n \xrightarrow{\text{uniformly}} f$ and the second equality follows because f_n is analytic.

2. Uniform continuity says $\forall \varepsilon > 0 \ \exists N \ \text{such that} \ \forall n > N \ \forall z \in D \ |f_n(z) - f(z)| < \varepsilon$. Apply Cauchy's Integral Formula:

$$\left| f_n^{(m)}(z_0) - f^{(m)}(z_0) \right| = \left| \frac{m!}{2\pi i} \int_{|z-z_0|=\delta} \frac{f_n(z) - f(z)}{(z-z_0)^{m+1}} \, \mathrm{d}z \right|$$

$$\leq \frac{m!}{2\pi} \int_{|z-z_0|=\delta} \frac{|f_n(z) - f(z)|}{|z-z_0|^{m+1}} \cdot |\mathrm{d}z|$$

$$\leq \frac{m!}{2\pi} \frac{\varepsilon}{\delta^{m+1}} 2\pi \delta = \frac{m!}{\delta^m} \varepsilon$$

We need $\{|z - z_0| \le \delta\} \subseteq D$.

 $f_n \xrightarrow{\text{normally}} f$ on D if for any closed disk $B \subseteq D$, $f_n \xrightarrow{\text{uniformly}} f$ on B. If we use the hypothesis that $f_n \xrightarrow{\text{normally}} f$ in the above theorem, then we can replace the second statement by $f_n^{(m)} \xrightarrow{\text{normally}} f^{(m)}$ on D (for any m > 0).

October 13

14.1 Power Series

Let $f:\{|z-z_0|< r\}\to \mathbb{C}$ be analytic. Today, we will write f(z) as a power series $\sum_{k=0}^{\infty}a_k(z-z_0)^k$.

A **power series** is a series $\sum_{k=0}^{\infty} a_k z^k$, $a_k \in \mathbb{C}$. For which $z \in \mathbb{C}$ does a power series converge?

Theorem 14.1. There exists R (the **radius of convergence**), $0 \le R \le +\infty$, such that $\sum_{k=0}^{\infty} a_k z^k$ absolutely converges pointwise on $\{|z| < R\}$.

 $\sum_{k=0}^{\infty} a_k z^k$ diverges for any $z \in \mathbb{C}$, |z| > R.

 $\sum_{k=0}^{\infty} a_k z^k$ uniformly converges on $\{|z| < r\}$, for any r < R.

If R=0, then the power series converges only at z=0.

If $R = +\infty$, then the power series converges on \mathbb{C} , then the power series uniformly converges on $\{|z| < r\}$, for all r > 0.

Proof. If $\sum_{k=0}^{\infty} a_k z^k$ converges for $z \in \mathbb{C}$, then $\lim_{k \to \infty} |a_k z^k| = 0$, which implies that $|a_k \cdot z^k|$ is bounded.

Let $R = \sup \{r \mid \{|a_k r^k|\}_{k=0}^{\infty} \text{ is bounded}\}$. We consider two cases.

- 1. |z| < R
- 2. |z| > R
- 1. If |z| < R, then there exists r such that |z| < r < R. Then

$$|a_k z^k| = \underbrace{|a_k r^k|}_{\text{bounded } \leq M, \text{ any } k} \cdot \left(\frac{|z|}{r}\right)^k \leq M \cdot \left(\frac{|z|}{r}\right)^k$$

Then $\sum (|z|/r)^k$ converges, because |z|/r < 1, which implies that $\sum a_k z^k$ absolutely converges on $\{|z| < R\}$ and uniformly converges on $\{|z| < r\}$ for r < R.

2. If |z| > R, then $\{|a_k z^k|\}_{k=0}^{\infty}$ is not bounded.

 $\sum_{k=0}^{\infty} a_k z^k$ uniformly converges on $\{|z| < r\}$ for any r < R. This means:

$$\left\{ \sum_{k=0}^{n} a_k z^k \right\}_{n=0}^{\infty} \xrightarrow{\text{uniformly}} \sum_{k=0}^{\infty} a_k z^k \quad \text{on } \{|z| < r\}$$

The finite series are polynomials, which are analytic. Therefore, the power series is also analytic on $\{|z| < R\}$.

In general: $R = 1/(\limsup_{k \to \infty} |a_k|^{1/k})$.

For special $\sum a_k z^k$, $R = 1/(\lim_{k\to\infty} |a_k|^{1/k})$. Alternatively,

$$R = \lim_{k \to \infty} \left| \frac{a_k}{a_{k+1}} \right|$$

if the limit exists.

Example 14.2. Take $\sum_{k=0}^{\infty} z^k/k = -\log(1-z)$. Here, R=1. If z=1, then the power series diverges. If z=-1, then the power series converges. If |z|=1, for $z\neq \pm 1$, the power series converges.

Example 14.3. Take $\sum_{k=0}^{\infty} z^k/k^2$. Here, R=1. $|z^k/k^2| \le 1/k^2$ if |z| < 1, so the power series uniformly converges on $\{|z| \le 1\}$ and is analytic on $\{|z| < 1\}$.

For an analytic function $f(z) = \sum_{k=0}^{\infty} a_k z^k$ on $\{|z| < R\}$,

$$f'(z) = \sum_{k=1}^{\infty} k a_k z^{k-1}$$

$$f''(z) = \sum_{k=2}^{\infty} k(k-1) a_k z^{k-2}$$
:

If $f_n \xrightarrow{\text{uniformly}} f$ on $\{|z| < R\}$, then $f_n^{(m)} \xrightarrow{\text{uniformly}} f^{(m)}$ on $\{|z| < r\}$ for any r < R. For all of these derivatives, the radius of convergence is R. We can also see

$$f^{(m)}(0) = m! \cdot a_m$$

Suppose $f:\{|z|< R\}\to \mathbb{C}$ is analytic. One candidate for a power series is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(0)}{k!} z^k$$

In 104, we studied remainders:

$$f(z) - \sum_{k=0}^{n} \frac{f^{(k)}(0)}{k!} z^{k}$$

We estimated remainders by using special properties of f.

For analytic functions, we have the Cauchy integral formula.

$$f(z) = \frac{1}{2\pi i} \int_{|\xi|=r} \frac{f(\xi)}{\xi - z} \,\mathrm{d}\xi$$

for $|\xi| < r < R$. We will try to write the integral as a power series.

We have the conditions $|\xi| = r$ and |z| < r. We want to write $1/(\xi - z)$ in a way similar to

$$\frac{1}{1-w} = 1 + w + w^2 + \cdots$$

for |w| < 1. Therefore,

$$\frac{1}{\xi - z} = \frac{1}{\xi} \frac{1}{1 - z/\xi} = \frac{1}{\xi} \sum_{k=0}^{\infty} \left(\frac{z}{\xi}\right)^k$$

Plug it in.

$$f(z) = \frac{1}{2\pi i} \int_{|\xi| = r} \sum_{k=0}^{\infty} \frac{f(\xi)}{\xi^{k+1}} z^k d\xi$$
$$= \sum_{k=0}^{\infty} \left(\frac{1}{2\pi i} \int_{|\xi| = r} \frac{f(\xi)}{\xi^{k+1}} d\xi \right) z^k$$

We need the fact that

$$\frac{f(\xi)}{\xi} \sum_{k=0}^{\infty} \left(\frac{z}{\xi}\right)^k$$

uniformly converges on $|\xi| = r$. Fix z and use the Weierstrass M-test.

Therefore,

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$

where

$$a_k = \frac{1}{2\pi i} \int_{|\xi|=r} \frac{f(\xi)}{\xi^{k+1}} \,d\xi$$
$$= \frac{1}{k!} f^{(k)}(0)$$

for |z| < r < R. Also,

$$\int_{|\xi|=r} \frac{f(\xi)}{\xi^{k+1}} \, \mathrm{d}\xi = \int_{|\xi|=r'} \frac{f(\xi)}{\xi^{k+1}} \, \mathrm{d}\xi$$

so we can take any r < R. Hence, $\sum_{k=0}^{\infty} a_k z^k$ for any |z| < R, where

$$a_k = \frac{f^{(k)}(0)}{k!}$$

Let us return to

$$\frac{1}{1-w} = 1 + w + w^2 + \cdots$$

On the RHS, we need |w| < 1. On the LHS, we only need $w \neq 1$, so there is a difference between analytic functions and power series.

In 104, consider

$$\frac{1}{1+x^2} = 1 - x^2 + x^4 - x^6 + \cdots$$

The expression on the LHS makes sense for $x \in \mathbb{R}$. The expression on the RHS makes sense only for |x| < 1.

In 185,

$$\frac{1}{1+z^2} = 1 - z^2 + z^4 - z^6 + \cdots$$

On the LHS, $z \in \mathbb{C} \setminus \{i, -i\}$. On the RHS, |z| < 1. Then, we can only define the power series of $1/(1 + z^2)$ on the disk.

October 18

15.1 Power Series

Last time, we proved that (almost) all analytic functions are power series.

Theorem 15.1. If $f:\{|z-z_0|<\rho\}\to\mathbb{C}$ is analytic, then f(z) has a power series expansion

$$f(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k$$

on $\{|z - z_0| < \rho\}$ and

$$a_k = \frac{f^{(k)}(z_0)}{k!} = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{(w-z_0)^{k+1}} dw$$

for any $r \in (0, \rho)$.

Example 15.2. Consider the power series at 0 of

$$f(z) = \frac{1}{1+z^2}$$

We can use the geometric series

$$\frac{1}{1-w} = 1 + w + w^2 + \cdots$$

to write

$$\frac{1}{1+z^2} = 1 - z^2 + z^4 - \dots = \sum_{k=0}^{\infty} (-1)^k z^{2k}$$

The radius of convergence is 1.

Example 15.3. Consider $f(z) = e^z$. Then $f^{(k)}(z) = e^z$, so $f^{(k)}(0) = 1$. Therefore,

$$e^z = 1 + \frac{1}{1!}z + \frac{1}{2!}z^2 + \frac{1}{3!}z^3 + \cdots$$

= $\sum_{k=0}^{\infty} \frac{z^k}{k!}$ (convention: $0! = 1$)

Here,

$$R = \lim_{k \to \infty} \frac{a_k}{a_{k+1}} = \lim_{k \to \infty} \frac{1/k!}{1/(k+1)!} = \lim_{k \to \infty} (k+1) = \infty$$

Initially, we defined $e^{i\theta} = \cos \theta + i \sin \theta$. Take the power series:

$$e^{i\theta} = \sum_{k=0}^{\infty} \frac{(i\theta)^k}{k!} = \sum_{\substack{k \text{ even} \\ k=2n}} (-1)^{k/2} \frac{\theta^k}{k!} + \sum_{\substack{k \text{ odd} \\ k=2n+1}} i(-1)^{(k-1)/2} \frac{\theta^k}{k!}$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n+1}}{(2n+1)!}$$
$$= \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n}}{(2n)!} + i \sum_{n=0}^{\infty} (-1)^n \frac{\theta^{2n+1}}{(2n+1)!}$$

 $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$ is determined by $a_0, a_1, \dots, a_n, \dots (f(z_0), f(z_0)/1!, \dots, f^{(n)}(z_0)/n!, \dots)$.

Proposition 15.4. If $f, g : \{|z - z_0| < \rho\} \to \mathbb{C}$ are analytic functions, with $f^{(k)}(z_0) = g^{(k)}(z_0)$ for all $k = 0, 1, 2, \ldots$, then f = g.

Proposition 15.5. If D is a domain, $f, g: D \to \mathbb{C}$ are analytic, if for some $z_0 \in D$, $f^{(k)}(z_0) = g^{(k)}(z_0)$ for all $k = 0, 1, 2, \ldots$, then $f \equiv g$ on D.

Proof. f and g have power series expansions on $\{|z-z_0|<\rho\}\subseteq D$. Therefore, f=g on $\{|z-z_0|<\rho\}$. Write

$$U = \{ z \in D \mid f^{(k)}(z) = f^{(k)}(z), k = 0, 1, \dots \}$$

$$V = \{ z \in D \mid \exists n \text{ s.t. } f^{(n)}(z) \neq g^{(n)}(z) \}$$

$$D = U \cup V$$

$$U \cap V = \emptyset$$

U is open: use 15.4. V is open: use $f^{(n)} - g^{(n)}$ is continuous. $U \neq \emptyset$ implies that $V = \emptyset$.

In 104, there was a function

$$f(z) = \begin{cases} e^{-1/x^2}, & x > 0\\ 0, & x \le 0 \end{cases}$$

 $f^{(n)}(x)$ exists and is continuous, and $f^{(n)}(0) = 0$ for all n.

Consider e^{-1/z^2} , defined on $\mathbb{C} \setminus \{0\}$. If we define

$$f(z) = \begin{cases} e^{-1/z^2}, & z \neq 0 \\ 0, & z = 0 \end{cases}$$

then f is not continuous. On the y-axis, $f(iy) = e^{-1/(iy)^2} = e^{1/y^2} \to \infty$ as $y \to 0$.

We can predict the radius of convergence. 15.1 implies that $R \ge \rho$.

Example 15.6. Consider the power series of

$$\frac{(z^6 - z^3 + 1)(z^3 + 1)}{(z^3 - 1)(z^3 + 1)} = \frac{z^9 + 1}{z^6 - 1}$$

at 0. $z^6 - 1$ has zeros at $1, e^{i\pi/3}, e^{i(2\pi/3)}, -1, e^{i(4\pi/3)}, e^{i(5\pi/3)}$, which lie on $\{|z| = 1\}$. The function is analytic on the open disk, so we can conclude that R = 1.

Consider the power series at -2. Here, $R = \left| -2 - e^{i(2\pi/3)} \right| = \sqrt{3}$.

15.2 Analytic at ∞

Consider f(z) = 1/z, which is defined on $\mathbb{C} \setminus \{0\}$. As $z \to \infty$, $f(z) \to 0$. Define " $f(\infty) = 0$ ". We have $1/z : \infty \leftrightarrow 0$. More generally, $\{|z| > R\} \leftrightarrow \{0 < |z| < 1/R\}$.

Let D be a domain which contains $\{|z| > R\}$ (a neighborhood of ∞). Take a function $f: D \to \mathbb{C}$. Define g(w) = f(1/w), defined on $\{0 < |z| < 1/R\}$. f is continuous at ∞ if we can extend g to $\{|z| < 1/R\}$ such that g is continuous (give a value to g(0) such that g is continuous).

Consider

$$f(z) = \frac{z^2 + z - 1}{4z^2 - z + 5}$$

$$g(w) = f\left(\frac{1}{w}\right) = \frac{(1/w)^2 + (1/w) - 1}{4(1/w)^2 - (1/w) + 5} \cdot \frac{w^2}{w^2} = \frac{1 + w - w^2}{4 - w + 5w^2}$$

g(w) is not defined for w = 0, but we can see that g(0) should be 1/4. For any function P(z)/Q(z) with deg $P \le \deg Q$, we can perform the same procedure.

Consider

$$f(z) = e^{z}$$

$$g(w) = f\left(\frac{1}{w}\right) = e^{1/w}$$

If w = x, then as $x \to 0^+$, we have $g(w) \to \infty$. As $x \to 0^-$, $g(w) \to 0$. Therefore, f is not continuous at ∞ .

15.2.1 Analytic at ∞

If $f:\{|z|>R\}\to\mathbb{C}$ is analytic, g(w)=f(1/w) is analytic on $\{0<|z|<1/R\}$. If g is continuous at 0, then g is continuous on $\{|z|<1/R\}$. Therefore, g is analytic on $\{|z|<1/R\}$.

If g is analytic on $\{|w| < 1/R\}$, we can write

$$g(w) = \sum_{k=0}^{\infty} b_k w^k$$
$$f(z) = g\left(\frac{1}{z}\right) = \sum_{k=0}^{\infty} \frac{b_k}{z^k}$$

If z is big, then b_k/z^k is small. This is the power series of f at ∞ , as long as f is analytic on $\{|z| > R\}$ and continuous at ∞ .

What are the b_k ? One way to get b_k is to use the formula of the power series of g. Another way:

$$\int_{|z|=\rho} f(z)z^l \, \mathrm{d}z$$

for $\rho > R$.

$$f(z) \cdot z^{l} = \sum_{k=0}^{\infty} b_{k} z^{l-k}$$

so we have

$$\oint_{|z|=\rho} \sum_{k=0}^{\infty} b_k z^{l-k} \, \mathrm{d}z$$

and the only non-zero contribution is for l-k=-1. This yields the formula

$$b_k = \frac{1}{2\pi i} \oint_{|z|=\rho} f(z) z^{k-1} \,\mathrm{d}z$$

October 20

16.1 Manipulation of Power Series

If $f, g: \{|z-z_0| < \rho\} \to \mathbb{C}$ are analytic, we can write $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$ and $g(z) = \sum_{k=0}^{\infty} b_k (z-z_0)^k$.

 $f+g,f-g,f\cdot g:\{|z-z_0|<\rho\}\to\mathbb{C}$ are also analytic. The power series for f+g is

$$(f+g)(z) = \sum_{k=0}^{\infty} (a_k + b_k)(z - z_0)^k$$

Similarly, we can write down a power series for $f \cdot g$:

$$(f \cdot g)(z) = \sum_{k=0}^{\infty} a_k (z - z_0)^k \cdot \sum_{l=0}^{\infty} b_l (z - z_0)^l$$
$$(f \cdot g)(z) = \sum_{m=0}^{\infty} \underbrace{c_m}_{q_1 h} (z - z_0)^m$$

The definition of the power series is

$$\lim_{n \to \infty} \sum_{m=0}^{n} c_m (z - z_0)^m = f(z) \cdot g(z)$$

We can write

$$f(z) = \lim_{K \to \infty} \sum_{k=0}^{K} a_k (z - z_0)^k$$

$$g(z) = \lim_{L \to \infty} \sum_{l=0}^{L} b_l (z - z_0)^l$$

$$f(z) \cdot g(z) = \lim_{K, L \to \infty} \sum_{k=0}^{K} a_k (z - z_0)^k \cdot \sum_{l=0}^{L} b_l (z - z_0)^l$$

They are not the same thing! It is not easy to show $\lim_{n\to\infty}\sum_{m=0}^n c_m(z-z_0)^m=f(z)\cdot g(z)$ by 104.

Instead, we will show $c_m = (f \cdot g)^{(m)}(z_0)/m!$ (using the fact that the functions are analytic).

$$(f \cdot g)^{(m)}(z_0) = \sum_{k=0}^{m} {m \choose k} f^{(k)}(z_0) \cdot g^{(m-k)}(z_0) \qquad \text{(induction)}$$

$$= \sum_{k=0}^{m} \frac{m!}{k! (m-k)!} k! a_k (m-k)! b_{m-k} = m! \sum_{k=0}^{m} a_k b_{m-k} = m! \cdot c_m$$

Now, consider $(f/g)(z_0)$. Assume that $g(z_0) \neq 0$ on a small disk $\{|z - z_0| < \varepsilon\}$.

$$\frac{f}{g}(z) = f(z) \cdot \frac{1}{g}(z)
\frac{1}{g}(z) = \frac{1}{b_0 + b_1(z - z_0) + b_2(z - z_0)^2 + \dots} = \frac{1}{b_0} \cdot \frac{1}{1 + \frac{b_1}{b_0}(z - z_0) + \frac{b_2}{b_0}(z - z_0)^2 + \dots}
= \frac{1}{b_0} \cdot \left(1 - \left(\frac{b_1}{b_0}(z - z_0) + \frac{b_2}{b_0}(z - z_0)^2 + \dots\right) + (\dots)^2 - (\dots)^3 + \dots\right)$$

The denominator is small as long as $|z - z_0|$ is small.

16.2 Zeros of Analytic Functions

Let $f: D \to \mathbb{C}$ be an analytic function. We will study $\{z \in D \mid f(z) = 0\}$. The zeros form a closed set (by continuity). For example, $x \cdot \sin(1/x)$ has the zero set $\{1/(n\pi)\} \cup \{0\}$.

Assume that f is not constantly 0. $z_0 \in D$ is a zero (point) of f if $f(z_0) = 0$. Consider the power series $f(z) = a_0 + a_1(z - z_0) + a_2(z - z_0)^2 + \cdots$. Then $a_0 = f(z_0) = 0$. If $a_1 \neq 0$, then the order of z_0 is 1. More generally, the **order of** z_0 is the number $N \in \mathbb{Z}_+$ such that $a_0 = \cdots = a_{N-1} = 0$ and $a_N \neq 0$.

If all $a_n = 0$, then f(z) = 0 on a small disk $\{|z - z_0| < \varepsilon\}$. Use the fact that D is a domain to conclude that f(z) = 0 on D. If D is a domain, $f \not\equiv 0$, then the order of a zero point of f is defined.

Suppose that $z_0 \in D$ is an order 5 zero point of f. Then

$$f(z) = \underbrace{a_5}_{\neq 0} (z - z_0)^5 + a_6 (z - z_0)^6 + \cdots$$

$$= (z - z_0)^5 \cdot \underbrace{(a_5 + a_6 (z - z_0) + a_7 (z - z_0)^2 + \cdots)}_{\text{analytic function}}$$

$$= (z - z_0)^5 \cdot h(z), \qquad h(z_0) = a_5 \neq 0$$

On a small disk $\{|z-z_0|<\varepsilon\}$, there are no other zero points of f, since: $h(z_0)\neq 0$ and h is continuous imply that $\exists \varepsilon>0$ such that h is never 0 on $\{|z-z_0|<\varepsilon\}$. Therefore

$$\underbrace{f(z)}_{\neq 0} = \underbrace{(z - z_0)^5}_{\neq 0} \underbrace{h(z)}_{\neq 0} \quad \text{on} \quad \{0 < |z - z_0| < \varepsilon\}$$

Theorem 16.1. Let $f: D \to \mathbb{C}$ be analytic, where D is a domain, not constantly 0. Then the zero point set $Z = \{z \in D \mid f(z) = 0\}$ is isolated (i.e. there does not exist a sequence $\{z_n\}$, $z_n \in Z$, such that $\lim z_n = z_\infty \in Z$). More rigorously, $\forall z \in Z \ \exists \varepsilon > 0$ such that $\{|z - z_0| < \varepsilon\} \cap Z = \{z_0\}$.

We know that $\cos^2 \theta + \sin^2 \theta = 1$ for $\theta \in \mathbb{R}$. Now, consider $f(z) = \cos^2 z + \sin^2 -1$. Is f(z) constantly 0? Yes, because the zero point set must be isolated if $f \not\equiv 0$. Without this technique, we would have to compute

$$\cos z = 1 - \frac{z^2}{2} + \frac{z^4}{24} - \dots$$
$$\sin z = z - \frac{z^3}{6} + \frac{z^5}{120} - \dots$$

After computation, we would conclude $\cos^2 z + \sin^2 z - 1 = 0$.

Corollary 16.2. Let $f: D \to \mathbb{C}$ be analytic, not constantly 0. If $E \subseteq D$ is closed and bounded, then $E \cap Z$ is a finite set.

Warning: Z itself might be infinite. $\{z_n\}$ can converge to ∂D for $z_n \in Z$.

Consider the analytic function

$$\sin\frac{1}{1-z}:\{|z|<1\}\to\mathbb{C}$$

Then $Z = \{1 - 1/(n\pi) \mid n \in \mathbb{Z}_+\}$. Then $1 - 1/(n\pi) \to 1 \in D$ as $n \to \infty$.

16.2.1 Zero at ∞

Suppose that $f:\{|z|>R\}\to\mathbb{C}$ is analytic and continuous at ∞ (so it is analytic at ∞) if g(w)=f(1/w) can be continuously extended to $\{|z|<1/R\}$ from $\{0<|z|<1/R\}$.

$$f(\infty) = g(0)$$

 ∞ is a zero of f if g(0) = 0. ∞ is an order N zero point of f if 0 is an order N zero point of g.

If $g(w) = b_0 + b_1 w + \cdots$, $g(w) \neq 0$ on $\{0 < |w| < \varepsilon\}$, then $f(z) = b_0 + b_1/z + b_2/z^2 + \cdots$ and $f(z) \neq 0$ on $\{|z| > 1/\varepsilon\}$.

Corollary 16.3. If $f, g : \{|z| > R\} \to \mathbb{C}$ are analytic, both analytic at ∞ , if $\exists z_n \to \infty$ with every $z_n \in \{|z| > R\}$ such that $f(z_n) = g(z_n)$ for all n, then f = g.

We do need f, g to be analytic at ∞ . Otherwise, take $f = \sin z$ and g = 0. (f is not analytic at ∞ .) Here $\sin(n\pi) = 0$, and $n\pi \to \infty$.

October 25

17.1 Laurent Series

In Chapter V, we studied power series. For $f:\{|z-z_0|<\rho\}\to\mathbb{C}$, an analytic function, then we have $f(z)=\sum_{k=0}^\infty a_k(z-z_0)^k,\,|z|<\rho.$

$$a_k = \frac{f^{(k)}(z_0)}{k!} = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{(w-z_0)^{k+1}} dw$$
 (17.1)

for all $0 < r < \rho$.

In Chapter VI, we study analytic functions $f: \{\sigma < |z - z_0| < \rho\} \to \mathbb{C}$, for $0 \le \sigma < \rho \le +\infty$. For example, we could take $\sigma = 0$ or $\rho = +\infty$. For $\sigma = 0$ and $\rho = +\infty$, the function is analytic on $\mathbb{C} \setminus \{0\}$.

If $f: \{\sigma < |z-z_0| < \rho\} \to \mathbb{C}$ is analytic, it may be $f(z) = \sum_{k=0}^{\infty} a_k (z-z_0)^k$ with radius of convergence $\geq \rho$. (For example, $f(z) = 1/(z-z_0)$. Another possibility is

$$\sum_{k=0}^{\infty} a_k (z - z_0)^k + \underbrace{\sum_{l=-\infty}^{-1} b_l (z - z_0)^l}_{\sum_{l=1}^{\infty} b_l \cdot 1/(z - z_0)^l}$$

which is analytic on $\{\sigma < |z - z_0| < \rho\}$, if the radii of convergence are correct.

We want to show that this is always the case, that is $f: \{\sigma < |z-z_0| < \rho\} \to \mathbb{C}$ is analytic implies that $f(z) = \sum_{k=-\infty}^{+\infty} a_k (z-z_0)^k$.

The formula $a_k = f^{(k)}(z_0)/k!$ does not work for Chapter VI, but the formula

$$a_k = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{(w-z_0)^{k+1}} \, \mathrm{d}w$$

still works in Chapter VI.

17.1.1 Complex Line Integral

To prove the original formula, we used the Cauchy Integral Formula

$$f(z) = \frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{w-z} \, \mathrm{d}w$$

for r > |z|.

f(z) cannot be written as a single complex line integral here because f is not analytic in the interior of the disk. Take r_1, r_2 such that $\sigma < r_1 < |z| < r_2 < \rho$. Use the Cauchy Integral Formula:

$$f(z) = \frac{1}{2\pi i} \left(\int_{|w-z_0|=r_2} \frac{f(w)}{w-z} \, dw - \int_{|w-z_0|=r_1} \frac{f(w)}{w-z} \, dw \right)$$
 (17.2)

for any z such that $r_1 < |z| < r_2$. Write

$$f_0(z) = \frac{1}{2\pi i} \int_{|w-z_0|=r_1} \frac{f(w)}{w-z} dw$$

which is analytic on $z \in \{|z - z_0| \neq r_1\}$. If $|z - z_0| < r_1$, it is not interesting in our setting. For z such that $|z - z_0| > r_1$, $f_0(z)$, $f_0(z)$ is analytic on $\{|z - z_0| > r_1\}$. Write

$$f_1(z) = \frac{1}{2\pi i} \int_{|w-z_0|=r_2} \frac{f(w)}{w-z} dw$$

which is analytic on $\{|z-z_0| < r_2\}$. Then $f(z) = f_1(z) - f_2(z)$ on the annulus, where $f_0(z)$ is analytic for $|z-z_0| > r_1$ and $f_1(z)$ is analytic for $|z-z_0| < r_2$. This is the **Laurent decomposition**. f_1 has a power series $\sum_{k=0}^{\infty} a_k(z-z_0)^k$. As $z \to \infty$, $f_0(z) \to 0$, so f_1 has a power series, $\sum_{k=1}^{\infty} b_k \cdot 1/(z-z_0)^k$.

Write (17.2) as a bi-infinite power series of $z - z_0$ for $r_1 < |z - z_0| < r_2$. For $|w - z_0| = r_2$,

$$\frac{1}{w-z} = \underbrace{\frac{1}{(w-z_0)} - \underbrace{(z-z_0)}_{|\cdot|=r_2} - \underbrace{(z-z_0)}_{|\cdot|< r_2}} = \frac{1}{w-z} \cdot \frac{1}{1 - \underbrace{\frac{z-z_0}{w-z_0}}_{|\cdot|<1}} = \frac{1}{w-z_0} \cdot \sum_{k=0}^{\infty} \left(\frac{z-z_0}{w-z_0}\right)^k$$

For $|w - z_0| = r_1$,

$$\frac{1}{w-z} = \underbrace{\frac{1}{(w-z_0)} - \underbrace{(z-z_0)}_{l,l > r}}_{l,l > r} = \frac{1}{z-z_0} \frac{1}{1 - \frac{w-z_0}{z-z_0}} = \frac{1}{z-z_0} \sum_{l=0}^{\infty} \left(\frac{w-z_0}{z-z_0}\right)^l$$

Then, we obtain

$$f(z) = \frac{1}{2\pi i} \left(\sum_{k=0}^{\infty} \left(\int_{|w-z_0|=r_1} \frac{f(w)}{(w-z_0)^{k+1}} \, \mathrm{d}w \right) \cdot (z-z_0)^k + \sum_{k=0}^{\infty} \left(\int_{|w-z_0|=r_2} f(w)(w-z_0)^l \, \mathrm{d}w \right) (z-z_0)^{-l-1} \right)$$

$$= \frac{1}{2\pi i} \left(\sum_{k=0}^{\infty} \left(\int_{|w-z_0|=r_2} \frac{f(w)}{(w-z_0)^{k+1}} \, \mathrm{d}w \right) (z-z_0)^k + \sum_{k=-\infty}^{-1} \left(\int_{|w-z_0|=r_1} \frac{f(w)}{(w-z_0)^{k+1}} \, \mathrm{d}w \right) (z-z_0)^k \right)$$

We are computing the complex line integral of $f(w)/(w-z_0)^{k+1}$, which is analytic on $\{\sigma < |z-z_0| < \rho\}$.

$$\int_{|w-z_0|=r} \frac{f(w)}{(w-z_0)^{k+1}} \, \mathrm{d}w$$

is independent of r as long as $r \in (\sigma, \rho)$. Our final formula is

$$f(z) = \sum_{k=-\infty}^{\infty} \left(\frac{1}{2\pi i} \int_{|w-z_0|=r} \frac{f(w)}{(w-z_0)^{k+1}} \, \mathrm{d}w \right) (z-z_0)^k$$

for any $r \in (\sigma, \rho)$, any $z \in {\sigma < |z - z_0| < \rho}$. This is the **Laurent expansion**.

Example 17.1. 1/(z(z-1)(z-2)) is analytic on $\mathbb{C} \setminus \{0,1,2\}$. Consider the annulus centered at 0, where the function is analytic.

1.
$$\{0 < |z| < 1\}$$

2.
$$\{1 < |z| < 2\}$$

3.
$$\{2 < |z| < \infty\}$$

We write

$$\frac{1}{z(z-1)(z-2)} = \frac{1}{z} \left(\frac{1}{z-2} - \frac{1}{z-1} \right)$$

1. On $\{0 < |z| < 1\}$:

$$\frac{1}{z} \left(\frac{1}{1-z} - \frac{1}{2} \frac{1}{1-z/2} \right) = \frac{1}{z} \left(\sum_{k=0}^{\infty} z^k - \frac{1}{2} \sum_{k=0}^{\infty} \left(\frac{z}{2} \right)^k \right) = \frac{1}{z} \sum_{k=0}^{\infty} \left(1 - \frac{1}{2^{k+1}} \right) z^k$$
$$= \frac{1}{2z} + \sum_{k=0}^{\infty} \left(1 - \frac{1}{2^{k+1}} \right) z^k$$

2. $\{1 < |z| < 2\}$:

$$\frac{1}{z} \left(\frac{1}{z - 2} - \frac{1}{z - 1} \right) = \frac{1}{z} \left(-\frac{1}{2} \frac{1}{1 - z/2} - \frac{1}{z} \frac{1}{1 - 1/z} \right)$$
$$= \frac{1}{z} \left(-\frac{1}{2} \sum_{k=0}^{\infty} \left(\frac{z}{2} \right)^k - \frac{1}{z} \sum_{k=0}^{\infty} \left(\frac{1}{z} \right)^k \right)$$

3. $\{|z| > 2\}$:

$$\frac{1}{z} \left(\frac{1}{z - 2} - \frac{1}{z - 1} \right) = \frac{1}{z^2} \left(\frac{1}{1 - 2/z} - \frac{1}{1 - 1/z} \right)$$
$$= \frac{1}{z^2} \left(\sum_{k=0}^{\infty} \left(\frac{2}{z} \right)^k - \sum_{k=0}^{\infty} \left(\frac{1}{z} \right)^k \right)$$

There are only negative powers since $f(\infty) = 0$.

Special/Important Case. Let $f:\{0<|z-z_0|<\rho\}\to\mathbb{C}$ be analytic. Then 0 is a singularity. There are three possibilities:

- 1. f can be extended to $\{|z z_0| < \rho\}$ analytically
- 2. $f \to \infty$ as $z \to z_0$
- 3. essential singularity

November 1

18.1 Isolated Singularities

Last Tuesday: if $f: \{\sigma < |z-z_0| < \rho\} \to \mathbb{C}$ is analytic, then $f(z) = \sum_{k=-\infty}^{\infty} a_k z^k$ and

$$a_k = \frac{1}{2\pi i} \int_{|w-z_0|=r} f(w)(w-z_0)^{-k-1} dw$$

for any $r \in (\sigma, \rho)$.

We will use the above theory to study isolated singularities. We take $\sigma = 0$, so we consider the disk minus a point, $\{|z - z_0| < \rho\} \setminus \{z_0\}$. Suppose that $f : \{0 < |z - z_0| < \rho\} \to \mathbb{C}$ is analytic. Then z_0 is an **isolated singularity**.

Suppose that z_0 is an isolated singularity.

1. Trivial case: Actually f is defined on $\{|z-z_0|<\rho\}$. Then we say z_0 is a **removable singularity**. f extends to $\{|z-z_0|<\rho\}\to\mathbb{C}$ analytically (a continuous extension of f), so $f(k)=\sum_{k=0}^\infty a_k(z-z_0)^k$, so a_{-1},a_{-2},\ldots vanish. For example, $(\sin z)/z$ has a removable singularity at 0. The Laurent series is $\sum_{k=0}^\infty a_k(z-z_0)^k$. If f has z_0 as a removable singularity, then $f(z)\to f(z_0)$ as $z\to z_0$.

Theorem 18.1 (Riemann's Theorem for Removable Singularities). If f is bounded on a smaller disk $\{0 < |z - z_0| < \varepsilon\}$, then z_0 is a removable singularity.

Proof. Take any k < 0 and check $a_k = 0$.

$$|a_k| \le \frac{1}{2\pi} \int_{|w-z_0|=r} |f(w)| \cdot \left| (w-z_0)^{-k-1} \right| \cdot |\mathrm{d}w|$$

$$\le \frac{1}{2\pi} M \cdot r^{-k-1} \cdot 2\pi r$$

$$= Mr^{-k}$$

for $r < \varepsilon$. Let $r \to 0$ and we get $a_k = 0$.

2. Less trivial case: some $a_k \neq 0$ for k < 0. For example, take $(\cos z)/z$. At z = 0, $\cos z = 1$ and z = 0. The power series is

$$\frac{1 - z^2/2 + z^4/24 - \dots}{z} = \frac{1}{z} - \frac{z}{2} + \frac{z^3}{24} - \dots$$

In this case, we can write

$$f(z) = \frac{g(z)}{(z - z_0)^N}$$

where $g:\{|z-z_0|<\rho\}\to\mathbb{C}$ is analytic. Assume that $g(z_0)\neq 0$. z_0 is a **pole** of f of order N.

Since g(z) is analytic on the disk, $g(z) = \sum_{k=0}^{\infty} b_k (z-z_0)^k$ with $b_0 \neq 0$. The Laurent expansion of f is

$$f(z) = \underbrace{\frac{b_0}{(z-z_0)^N} + \frac{b_1}{(z-z_0)^{N+1}} + \dots + \frac{b_{N-1}}{z-z_0}}_{\text{principal part of } f \text{ at } z_0} + \underbrace{\frac{b_N + b_{N+1}(z-z_0) + \dots}_{\text{power series/analytic function}}}_{\text{power series/analytic function}}$$

There are only finitely many $a_k \neq 0$ with k < 0. N is the order of z_0 as a pole. f – principal part is analytic on $\{|z - z_0| < \rho\}$.

In our less trivial case, z_0 is a pole and

$$f(z) = \frac{g(z)}{(z - z_0)^N}$$

where g is analytic on $\{|z-z_0|<\rho\}$. The Laurent expansion is $\sum_{k=-N}^{\infty}a_k(z-z_0)^k$.

Theorem 18.2. Let $f: \{0 < |z-z_0| < \rho\} \to \mathbb{C}$ be analytic. z_0 is a pole if and only if $|f(z)| \to \infty$ as $z \to z_0$.

Proof. If z_0 is a pole, then $|f(z)| \to \infty$.

If $|f(z)| \to \infty$, then we must prove that there are finitely many $a_k \neq 0$, k < 0. Take

$$h(z) = \frac{1}{f(z)}$$

which is analytic on $\{0 < |z - z_0| < \varepsilon\}$. $|h(z)| \to 0$ as $z \to z_0$, so z_0 is a removable singularity of h (not constantly 0). Therefore,

$$h(z) = (z - z_0)^N k(z)$$

with $k(z_0) \neq 0$.

$$f(z) = \frac{1}{h(z)} = \frac{1/k(z)}{(z - z_0)^N}$$

Example 18.3. Consider

$$\frac{ze^z}{(z^2+1)^2} = \frac{ze^z}{(z+i)^2(z-i)^2}$$

which is analytic everywhere except i and -i, which are poles of order 2. The principal part at i is

$$\frac{?}{(z-i)^2} + \frac{?}{(z-i)}$$

where the first coefficient is given by

$$\left(\frac{ze^z}{(z+i)^2}\right)\Big|_{z=i} = -\frac{i}{4}e^i$$

and the second coefficient is given by

$$\left(\frac{ze^z}{(z+i)^2}\right)'\Big|_{z=i}$$

Definition 18.4. A meromorphic function on \mathbb{C} (or a domain D) is a function f on \mathbb{C} (D) which is analytic on D – {isolated singularities} such that all singularities are poles.

If we have f(z)/g(z), where $f,g:D\to\mathbb{C}$ (D is a domain) are analytic, $g\not\equiv 0$, then f/g is a meromorphic function.

3. Non-trivial case. $f(z) = \sum_{k=-\infty}^{\infty} a_k (z-z_0)^k$, where $a_k \neq 0$ for infinitely many k < 0. Here, z_0 is an essential singularity.

In our non-trivial case, z_0 is an essential singularity and the Laurent expansion is $\sum_{k=-\infty}^{\infty} a_k (z-z_0)^k$. It is not clear how to write this case in terms of analytic functions.

Example 18.5. Consider $e^{1/z}$. We could also consider $\sin(1/z)$ or $\cos(1/z)$, but they are the same.

The power series expansion is

$$e^{w} = 1 + w + \frac{w^{2}}{2!} + \dots = \sum_{k=0}^{\infty} \frac{w^{k}}{k!}$$

$$e^{1/z} = 1 + \frac{1}{z} + \frac{\left(\frac{1}{z}\right)^{2}}{2!} + \dots = \sum_{k=0}^{\infty} \frac{1}{k!} z^{-k}$$

$$= \sum_{k=-\infty}^{0} \frac{1}{(-k)!} z^{k}$$

As $z \to 0$, $e^{1/z} \not\to \infty$. Take $z_n = 1/(ni)$ and $\left|e^{1/z_n}\right| = 1$, so it is not a pole. $e^{1/z}$ is not bounded, because we can take $z_n = 1/n$ and $e^{1/z_n} = e^n \to \infty$, so the singularity is not removable.

Theorem 18.6. If z_0 is an essential singularity of f, then for any $w_0 \in \mathbb{C}$, $\exists z_n \to z_0$ such that $f(z_n) \to w_0$.

The values of f are **dense** in \mathbb{C} "everywhere".

Proof. Consider

$$g(z) = \frac{1}{f(z) - w_0}$$

If g is not defined on any small punctured disk $\{0 < |z - z_0| < \varepsilon\}$, then we can find a sequence $z_n \to z_0$ with $f(z_n) = w_0$. Otherwise, if g is defined on $\{0 < |z - z_0| < \varepsilon\}$, then z_0 is not a removable singularity of g, so $1/(f(z) - w_0)$ is not bounded, which implies that there exists $z_n \to z_0$ such that $f(z_n) \to w_0$.

November 3

19.1 Isolated Singularities

Last time, we said that if $f: \{0 < |z - z_0| < \rho\} \to \mathbb{C}$ is analytic, then z_0 is an isolated singularity.

For a removable singularity, f extends to $\{|z-z_0|<\rho\}$ analytically, $f(z)=\sum_{k=0}^{\infty}a_k(z-z_0)^k$. **Theorem**: z_0 is a removable singularity of f if and only if f is bounded near z_0 .

For a pole, we can write

$$f(z) = \frac{g(z)}{(z - z_0)^N}$$

where $g:\{|z-z_0|<\rho\}\to\mathbb{C}$ is analytic, $g(z_0)\neq 0$. The Laurent expansion is $f(z)=\sum_{k=-N}^\infty a_k(z-z_0)^k$, $a_{-N}\neq 0$. **Theorem**: z_0 is a pole of f if and only if $|f(z)|\to\infty$ as $z\to z_0$. z_0 is a pole of order N. The principal part of z_0 is $\sum_{k=-N}^{-1} a_k(z-z_0)^k$.

For an essential singularity, the Laurent expansion is $\sum_{k=-\infty}^{+\infty} a_k(z-z_0)^k$. **Theorem**: For any $\varepsilon > 0$, the image of $\{0 < |z-z_0| < \varepsilon\}$ under f is dense in \mathbb{C} .

19.2 Singularity at ∞

Suppose that $f: D \to \mathbb{C}$ is analytic, where D is a "neighborhood" of ∞ (we require $D \supseteq \{|z| > R\}$).

Recall the definition of f being continuous/analytic at ∞ : Consider g(w) = f(1/w). Then g is defined on $\{0 < |z| < 1/R\}$. $w = 0 \leftrightarrow 1/w = \infty$. f is analytic at ∞ if and only if 0 is a removable singularity of g if and only if ∞ is a removable singularity of f. We have

$$g(w) = \sum_{k=0}^{\infty} b_k w^k$$

$$f(z) = g\left(\frac{1}{z}\right) = \sum_{k=0}^{\infty} \frac{b_k}{z^k}$$

$$f(\infty) = b_0 + \underbrace{\frac{b_1}{\infty}}_{=0} + \underbrace{\frac{b_2}{\infty}}_{=0} + \dots = b_0$$

All of the powers are negative. If z is large, then b_k/z^k is small. Example: consider polynomials.

 ∞ is a pole of f if and only if 0 is a pole of g.

$$g(w) = \frac{b_{-k}}{w^k} + \dots + \frac{b_{-1}}{w} + b_0 + b_1 w + \dots$$

$$f(z) = \underbrace{b_{-k}z^k + \dots + b_{-1}z + b_0}_{\text{principal part of } f \text{ at } \infty} + \frac{b_1}{z} + \frac{b_2}{z^2} + \dots$$

 ∞ is an essential singularity of f if and only if 0 is an essential singularity of g. We have $\sum_{k=-\infty}^{+\infty} a_k z^k$, so there are infinitely many non-vanishing positive power terms. As an example, consider e^z , $\sin z$, or $\cos z$.

Example 19.1. Consider

$$\frac{1}{1-z}$$

If $z = \infty$, then the function goes to 0. We can write the power series as $1 + z + z^2 + \cdots$, but the power series expansion is only valid in the unit disk. We need an expansion on the complement of a disk:

$$\frac{1}{1-z} = -\frac{1}{z} \frac{1}{1-1/z}$$
$$= -\frac{1}{z} \left(1 + \frac{1}{z} + \frac{1}{z^2} + \cdots \right)$$

19.3 Meromorphic Functions

We have been considering $f: D \subseteq \mathbb{C} \to \mathbb{C}$. We could also consider $f: D \subseteq \mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$, but we prefer to think about $f: D \setminus \{\text{isolated singularities}\} \to \mathbb{C}$.

f is a **meromorphic function** on $D \subseteq \mathbb{C} \cup \{\infty\}$ if f is defined and analytic on $D \setminus \{\text{isolated singularities}\}$ and all singularities are poles. If z_0 is a pole, then 1/f(z) has z_0 as a removable singularity.

A meromorphic function $D \to \mathbb{C}$ is equivalent to an "analytic function" $D \to \mathbb{C} \cup \{\infty\}$. Today, we consider a meromorphic function $\mathbb{C} \cup \{\infty\} \to \mathbb{C} \cup \{\infty\}$.

- 1. If ∞ is an isolated singularity, then it is either removable or a pole, so f is analytic on $\{|z| > R\}$ for some R > 0. (All singularities lie in a disk.)
- 2. Since the singularities are isolated, there are only finitely many singularities.

Proposition 19.2. *If* f *is a meromorphic function on* $\mathbb{C} \cup \{\infty\}$ *, then* f *has only finitely many singularities.*

The singularities are: $\infty, z_1, z_2, \dots, z_n$.

With knowledge of singularities, we can find f. The singularities tell us the principal parts of f.

$$P_{\infty}(z) = b_0 + b_1 z + \dots + b_m z^m$$

$$P_j(z) = \frac{a_1}{(z - z_j)} + \dots + \frac{a_{N_j}}{(z - z_j)^{N_j}}$$

 P_{∞} is analytic on \mathbb{C} , and P_j is analytic on $\mathbb{C} \setminus \{z_j\}$, with $P(\infty) = 0$.

Claim: $f(z) = P_{\infty}(z) + \sum_{j=1}^{n} P_{j}(z)$.

Proof. Consider $f - P_j(z)$. f is analytic on $\mathbb{C} \setminus \{z_1, \dots, z_n\}$ and P_j is analytic on $\mathbb{C} \setminus \{z_j\}$. Therefore, this function is analytic on $(\mathbb{C} \setminus \{z_1, z_2, \dots, z_n\}) \cup \{z_j\}$. Therefore, $f - \sum_{j=1}^n P_j(z)$ is analytic on \mathbb{C} .

We have that $f(z) - \sum_{j=1}^{n} P_j(z)$ is analytic on \mathbb{C} . Then $h(z) = f(z) - \sum_{j=1}^{n} P_j(z) - P_{\infty}(z)$ is analytic on \mathbb{C} . We know

$$(f(z) - P_{\infty}(z))\Big|_{z=\infty} = 0$$

because

$$f(z) = \underbrace{b_m z^m + \dots + b_0}_{P_{\infty}(z)} + \frac{b_{-1}}{z} + \frac{b_{-2}}{z^2} + \dots$$

and $P_j(\infty) = 0$, so $h(\infty) = 0$ $(h(z) \to 0$ as $z \to \infty)$. This implies that h is bounded, so h is a constant function: $h \equiv 0$.

 P_{∞} is a polynomial and P_{j} is the quotient of two polynomials.

Theorem 19.3. Any meromorphic function on $\mathbb{C} \cup \{\infty\}$ is a rational function, i.e. $\frac{polynomial}{polynomial}$

If we write a rational function as

$$f(z) = P_{\infty}(z) + \sum_{j=1}^{n} P_j(z)$$

this is called the partial fraction decomposition. We can use this to solve integrals such as

$$\int \frac{x^4 + 2x + 5}{(x-1)(x+1)^2} \, \mathrm{d}x = \int \left(\underbrace{\text{polynomial}}_{P_{\infty}} + \underbrace{\frac{?}{x-1}}_{P_1} + \underbrace{\frac{?}{x+1} + \frac{?}{(x+1)^2}}_{P_2} \right) \, \mathrm{d}x$$

with the principal parts at 1 and -1.

November 8

20.1 Residue Theorem

Recall Cauchy's Theorem: If $D \subseteq \mathbb{C}$ is a domain with a bounded, piecewise smooth boundary ∂D , $f: D \to \mathbb{C}$ is analytic and extends continuously to ∂D , then

$$\int_{\partial D} f(z) \, \mathrm{d}z = 0$$

Now, suppose that $D \subseteq \mathbb{C}$ is a domain, bounded with a piecewise smooth boundary, and we have that $f: D - \{z_1, \ldots, z_n\} \to \mathbb{C}$ is analytic and extends smoothly to ∂D (z_k are isolated singularities).

$$\int_{\partial D} f(z) \, \mathrm{d}z = ?$$

Take $\varepsilon > 0$ such that $\{|z-z_j| < \varepsilon\} \cap \{|z-z_k| < \varepsilon\} = \emptyset$ and $\{|z-z_j| < \varepsilon\} \subseteq D$. We will work on $D_{\varepsilon} = D - (\bigcup_{j=1}^n \{|z-z_j| < \varepsilon\})$. f is analytic on D_{ε} , and by Cauchy's Theorem,

$$\int_{\partial D_z} f(z) \, \mathrm{d}z = 0$$

Therefore,

$$\int_{\partial D} f(z) dz = \sum_{j=1}^{n} \int_{|z-z_j|=\varepsilon} f(z) dz$$

In the Laurent expansion centered at z_j ,

$$f(z) = \sum_{k=-\infty}^{\infty} a_k (z - z_j)^k$$

$$a_k = \frac{1}{2\pi i} \int_{|z - z_j| = \varepsilon} f(z) (z - z_j)^{-k-1} dz$$

$$a_{-1} = \frac{1}{2\pi i} \int_{|z - z_j| = \varepsilon} f(z) dz \stackrel{\text{def}}{=} \text{Res}[f(z), z_j]$$

This is the residue of f at the isolated singularity z_i . Hence,

$$\int_{\partial D} f(z) dz = \sum_{j=1}^{n} \int_{|z-z_j|=\varepsilon} f(z) dz = 2\pi i \left(\sum_{j=1}^{n} \operatorname{Res}[f(z), z_j] \right)$$

Theorem 20.1 (Residue Theorem). Let $D \subseteq \mathbb{C}$ be a domain, bounded, with a piecewise smooth boundary. Let $f: D - \{z_1, \ldots, z_n\} \to \mathbb{C}$ be analytic, extending to ∂D , where z_k are the isolated singularities.

$$\int_{\partial D} f(z) dz = 2\pi i \left(\sum_{j=1}^{n} \operatorname{Res}[f(z), z_j] \right)$$

The residue of f at z_j Res $[f(z), z_j]$ is the coefficient of $(z - z_j)^{-1}$ in the Laurent expansion.

To find $\int_{\partial D} f(z) dz$,

- 1. Find all singularities (usually only finitely many).
- 2. Find all residues $Res[f(z), z_j]$.

To find the residues:

Method 0: Write down the Laurent expansion (sometimes, this is very complicated).

Method 0.5: z_j is a removable singularity.

$$\operatorname{Res}[f(z), z_i] = 0$$

Method 1: z_j is a simple pole of f.

$$f(z) = \frac{a_{-1}}{z - z_j} + a_0 + a_1(z - z_j) + \cdots$$

$$\lim_{z \to z_j} (z - z_j) f(z) = a_{-1} = \text{Res}[f(z), z_j]$$

or $(z - z_j) f(z)|_{z=z_j}$.

Method 2: Suppose

$$f(z) = \frac{g(z)}{h(z)}$$

where g, h are analytic near z_i . Assume $g(z_i) \neq 0$ and z_i is a simple zero of h.

$$\operatorname{Res}[f(z), z_{j}] = \lim_{z \to z_{j}} (z - z_{j}) \frac{g(z)}{h(z)} = g(z_{j}) \lim_{z \to z_{j}} \frac{(z - z_{j})}{h(z) - h(z_{j})}$$
$$= \frac{g(z_{j})}{h'(z_{j})}$$

since

$$\lim_{z \to z_j} \frac{h(z) - h(z_j)}{z - z_j} = h'(z_j)$$

Method 3: z_j is a double pole of f(z).

$$f(z) = \frac{a_{-2}}{(z - z_j)^2} + \frac{a_{-1}}{z - z_j} + a_0 + \cdots$$
$$(z - z_j)^2 f(z) = a_{-2} + a_{-1}(z - z_j) + a_0(z - z_j)^2 + \cdots$$
$$[(z - z_j)^2 f(z)]' = a_{-1} + 2a_0(z - z_j) + \cdots$$
$$\operatorname{Res}[f(z), z_j] = \lim_{z \to z_j} [(z - z_j)^2 f(z)]'$$

Suppose

$$f(z) = \frac{g(z)}{h(z)}$$

where g, h are analytic near z_j , $g(z_j) \neq 0$, and z_j is a double pole of h.

$$\operatorname{Res}[f(z), z_j] = \lim_{z \to z_j} \left((z - z_j)^2 \frac{g(z)}{h(z)} \right)'$$

$$\neq \frac{g(z)}{h''(z)}$$

which is fairly complicated.

20.2 Applications of Residue Theorem

We will compute $\int_a^b f(x) dx$, where x is a real variable and f is a real-valued function in calculus.

Step 1: Using f as a hint, "guess" some analytic function g(z).

Step 2: Using f and [a, b], "guess" some domain D_R , where R is some parameter.

Step 3: Use the Residue Theorem: $\int_{\partial D_R} g(z) dz = 2\pi i \sum \text{Res.}$

Step 4: Do some simplification/limiting process. Get a relation between $\int_a^b f(x) dx$ and $\int_{\partial D_B} g(z) dz$.

Example 20.2.

$$\int_{-\infty}^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x$$

In calculus, we can write

$$\frac{1}{1+x^4} = \frac{1}{(1+x^2)^2 - (\sqrt{2}x)^2} = \frac{ax+b}{x^2 + \sqrt{2}x + 1} + \frac{cx+d}{x^2 - \sqrt{2}x + 1}$$

and the integral is maybe something like $\ln(x^2 + 2\sqrt{x} + 1) + \tan^{-1}(\cdot)$.

Step 1:

$$g(z) = \frac{1}{1+z^4}$$

is analytic $\mathbb{C} \setminus \{4 \text{ points}\} \to \mathbb{C}$.

Step 2: Take the bounded domain D_R :

$$D_R = \{ z \in \mathbb{C} \mid |z| < R, \text{Im } z > 0 \}$$

Step 3: Use the Residue Theorem. $1+z^4=0$ when $z^4=-1=e^{i\pi}$, so $z=e^{i\pi/4},e^{i(3\pi/4)},e^{i(5\pi/4)},e^{i(7\pi/4)}$. Only $e^{i\pi/4},e^{i(3\pi/4)}\in D_R$.

$$\int_{\partial D_R} \frac{1}{1+z^4} dz = 2\pi i \left(\text{Res} \left[\frac{1}{1+z^4}, e^{i\pi/4} \right] + \text{Res} \left[\frac{1}{1+z^4}, e^{i(3\pi/4)} \right] \right)$$

$$= 2\pi i \left(\frac{1}{4z^3} \Big|_{z=e^{i\pi/4}} + \frac{1}{4z^3} \Big|_{z=e^{i(3\pi/4)}} \right)$$

$$= 2\pi i \cdot \frac{1}{4} \left(\underbrace{e^{-i(3\pi/4)}}_{\cos(3\pi/4) - i\sin(3\pi/4)} + \underbrace{e^{-i\pi/4}}_{\cos(\pi/4) - i\sin(\pi/4)} \right) = 2\pi i \cdot \frac{1}{4} \cdot (-2i\sin(\pi/4))$$

$$= \frac{\sqrt{2}\pi}{2}$$

Since $e^{i\pi/4}$ and $e^{i(3\pi/4)}$ are simple poles, we applied Method 2 with

$$\frac{g(z)}{h(z)} = \frac{1}{1+z^4}$$

and $(1+z^4)' = 4z^3$.

Step 4: Let $R \to \infty$.

$$\begin{split} \frac{\sqrt{2}\pi}{2} &= \int_{\partial D_R} \frac{1}{1+z^4} \, \mathrm{d}z = \int_{-R}^R \frac{1}{1+x^4} \, \mathrm{d}x + \int_{\gamma_R} \frac{1}{1+z^4} \, \mathrm{d}z \\ \frac{\sqrt{2}\pi}{2} &= \int_{-\infty}^\infty \frac{1}{1+x^4} \, \mathrm{d}x + \lim_{R \to \infty} \int_{\gamma_R} \frac{1}{1+z^4} \, \mathrm{d}z \end{split}$$

$$\left| \int_{\gamma_R} \frac{1}{1 + z^4} \, \mathrm{d}z \right| \le \underbrace{\frac{1}{R^4 - 1}}_{M} \cdot \underbrace{\pi R}_{L} \to 0$$

as $R \to \infty$ by the ML estimation, since |z| = R on the circle, with Im z > 0. Therefore,

$$\int_{-\infty}^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x = \frac{\sqrt{2}}{2} \pi$$

November 10

21.1 Residue Theorem

If $D \subseteq \mathbb{C}$ is a domain which is bounded, with a piecewise smooth boundary (so the integral $\int_{\partial D} \cdots$ exists), and $f: D - \{z_1, \dots, z_n\} \to \mathbb{C}$ is analytic (where $\{z_1, \dots, z_n\}$ are isolated singularities) and extends to ∂D continuously (so $\int_{\partial D} f(z) dz$ exists), then

$$\int_{\partial D} f(z) dz = 2\pi i \left(\sum_{j=1}^{n} \operatorname{Res}[f(z), z_j] \right)$$

where $\text{Res}[f(z), z_j]$ is the complex number which is the coefficient of $(z - z_j)^{-1}$ in the Laurent expansion of f centered at z_j .

With the Residue Theorem, we can compute definite integrals in calculus. Last lecture, we computed $\int_{-\infty}^{\infty} 1/(1+x^4) dx$, which is an integral along a line. With the Residue Theorem, we calculate the integral along loops.

$$\int_{-\infty}^{\infty} \frac{1}{1+x^4} \, \mathrm{d}x = \lim_{R \to \infty} \int_{-R}^{R} \frac{1}{1+x^4} \, \mathrm{d}x$$

We found that

$$\begin{split} \underbrace{\frac{\sqrt{2}\pi}{2}}_{\text{constant independent of }R} &= \lim_{R \to \infty} \int_{\partial D_R} \frac{1}{1+z^4} \, \mathrm{d}z \\ &= \lim_{R \to \infty} \int_{-R}^R \frac{1}{1+x^4} \, \mathrm{d}x + \lim_{R \to \infty} \underbrace{\int_{\gamma_R} \frac{1}{1+z^4} \, \mathrm{d}z}_{\leq 1/(R^4-1) \cdot \pi R \to 0} \\ &= \int_{-\infty}^\infty \frac{1}{1+x^4} \, \mathrm{d}x \end{split}$$

where γ_R is a half-circle.

We can also solve the integral $\int_{-\infty}^{\infty} P(x)/Q(x) dx$ with the conditions

- 1. P, Q are both polynomials.
- 2. $Q(z) \neq 0$ for any $z \in \mathbb{R}$.
- 3. $\deg Q \ge \deg P + 2$.

The last two conditions guarantee that the improper integral exists.

$$\int_{-\infty}^{\infty} \frac{P(x)}{Q(x)} dx = 2\pi i \sum_{\text{zeros of } Q \text{ in upper half-plane}} \text{Res} \left[\frac{P(z)}{Q(z)}, z_j \right]$$
$$= 2\pi i \sum_{\text{zeros of } Q \text{ in lower half-plane}} \text{Res} \left[\frac{P(z)}{Q(z)}, z_j \right]$$

The answer should be a real number.

We will compute $\int_{-\infty}^{\infty} \cos x/(1+x^2) dx = A$. Consider $\int_{-R}^{R} \cos x/(1+x^2) dx$. Then

$$\cos z = \frac{e^{iz} + e^{-iz}}{2} = \underbrace{\frac{e^{-y+ix} + e^{y-ix}}{2}}_{z=x+iy}$$

but since $e^{i\theta}=\cos\theta+i\sin\theta$, then the dependence is $\sim e^{|z|}/2$, so $\cos z/(1+z^2)$ is big on the arc. Try something else. Compute: $\int_{-\infty}^{\infty} e^{ix}/(1+x^2) \, \mathrm{d}x = A+iB$, and we know that $e^{ix}=\cos x+i\sin x$. On the upper half-plane, $\left|e^{iz}\right|=\left|e^{i(x+iy)}\right|=\left|e^{-y+ix}\right|=e^{-y}\leq 1$.

Compute:

$$\int_{\partial D_R} \frac{e^{iz}}{1+z^2} \, \mathrm{d}z = 2\pi i \operatorname{Res} \left[\frac{e^{iz}}{1+z^2}, i \right] = 2\pi i \frac{e^{iz}}{(z^2+1)'} \Big|_{z=i} = \frac{\pi}{e}$$

$$\frac{\pi}{e} = \lim_{R \to \infty} \int_{\partial D_R} \frac{e^{iz}}{1+z^2} \, \mathrm{d}z$$

$$= \lim_{R \to \infty} \int_{-R}^{R} \frac{e^{ix}}{1+x^2} \, \mathrm{d}x + \lim_{R \to \infty} \underbrace{\int_{\gamma_R} \frac{e^{iz}}{1+z^2} \, \mathrm{d}z}_{\leq 1/(R^2-1) \cdot \pi R \to 0}$$

$$\frac{\pi}{e} = \int_{-\infty}^{\infty} \frac{\cos x + i \sin x}{1+x^2} \, \mathrm{d}x$$

where γ_R is a half-circle. We used the fact that $|e^{iz}| \leq 1$, and the ML estimate as $R \to \infty$. Therefore,

$$\int_{-\infty}^{\infty} \frac{\cos x}{1+x^2} dx = \frac{\pi}{e}$$

$$\int_{-\infty}^{\infty} \frac{\sin x}{1+x^2} dx = 0$$

which can be seen because $\sin x/(1+x^2)$ is an odd function.

We cannot use $e^{iz}/(1+z^2)$ if we use the lower half-plane, since $\left|e^{iz}\right|\gg 1$ on the arc. Instead, use $e^{-iz}/(1+z^2)$, so $\left|e^{-iz}\right|\leq 1$ if $\mathrm{Im}\,z\leq 0$.

Next, we will compute $\int_0^\infty x^{1/3}/(1+x^3) \, dx$. We can use the analytic function $z^{1/3}/(1+z^3)$, where we define $z^{1/3} = e^{(1/3) \log z}$, which is analytic on $\mathbb{C} \setminus (-\infty, 0]$. The domain D_R consists of the sector with angle $2\pi/3$, for which the denominator is $1 + (ze^{i(2\pi/3)})^3$.

$$\int_{\partial D_R} \frac{z^{1/3}}{1+z^3} \, \mathrm{d}z = \int_0^R \frac{x^{1/3}}{1+x^3} \, \mathrm{d}x - \int_0^R \frac{\left(xe^{i(2\pi/3)}\right)^{1/3}}{1+\left(xe^{i(2\pi/3)}\right)^3} \, \mathrm{d}\left(xe^{i(2\pi/3)}\right) + \underbrace{\int_{\gamma_R} \frac{z^{1/3}}{1+z^3} \, \mathrm{d}z}_{\leq R^{1/3}/(R^3-1)\cdot(2\pi/3)R \to 0}$$

$$= (1 - e^{i(8\pi/9)}) \int_0^R \frac{x^{1/3}}{1 + x^3} dx + \underbrace{\int_{\gamma_R} \frac{z^{1/3}}{1 + z^3} dz}_{\to 0}$$
$$\int_0^\infty \frac{x^{1/3}}{1 + x^3} dx = \frac{\lim_{R \to \infty} \int_{\partial D_R} z^{1/3} / (1 + z^3) dz}{1 - e^{i(8\pi/9)}}$$

since $(xe^{i(2\pi/3)})^{1/3} = x^{1/3}e^{i(2\pi/9)}$ and $(xe^{i(2\pi/3)})^3 = x^3$

$$\int_{\partial D_R} \frac{z^{1/3}}{1+z^3} dz = 2\pi i \operatorname{Res} \left[\frac{z^{1/3}}{1+z^3}, e^{i\pi/3} \right]$$
$$= 2\pi i \left(\frac{z^{1/3}}{3z^2} \right) \Big|_{z=e^{i\pi/3}}$$
$$= \frac{2\pi}{3} i e^{-i(5/9)\pi} = \frac{2\pi}{3} e^{-i\pi/18}$$

since $i = e^{i\pi/2}$.

$$\int_{-\infty}^{\infty} \frac{x^{1/3}}{1+x^3} \, \mathrm{d}x = \frac{2\pi}{3} \frac{e^{-i\pi/18}}{1+e^{-i\pi/9}} = \frac{2\pi}{3} \frac{1}{e^{i(1/18)\pi} + e^{-i(1/18)\pi}} = \frac{\pi}{3\cos(\pi/18)}$$

since the denominator is $2\cos(\pi/18)$.

Consider $\int_0^{2\pi} (1+\sin\theta)/(2+\cos\theta) \, d\theta$. Since $[0,2\pi]$ is the unit circle, we can use $z=e^{i\theta}$ with $\theta\in[0,2\pi]$, so the integral is the complex line integral on $\{|z|=1\}$. With this change of variables, $dz=ie^{i\theta} \, d\theta$, and $ie^{i\theta}=iz$. Therefore, $d\theta=dz/(iz)$, and we use $\cos\theta=(e^{i\theta}+e^{-i\theta})/2$ and $\sin\theta=(e^{i\theta}-e^{-i\theta})/(2i)$. Also, $e^{i\theta}=z$ and $e^{-i\theta}=1/z$. We now have the integral

$$\int_{|z|=1} \frac{1 + (z - 1/z)/(2i)}{2 + (z + 1/z)/2} \frac{dz}{iz} = \int_{|z|=1} \frac{2z - i(z^2 - 1)}{4z + (z^2 + 1)} \frac{dz}{iz}$$
$$= \frac{1}{i} \int_{|z|=1} \frac{-iz^2 + 2z + i}{z(z^2 + 4z + 1)} dz$$

(We multiplied the numerator and denominator by 2z.) The singularities are at $0, -2 + \sqrt{3}, -2 - \sqrt{3}$. Only the first two singularities lie in the unit disk.

$$\frac{2\pi i}{i} \left(\text{Res}[\cdots, 0] + \text{Res}[\cdots, -2 + \sqrt{3}] \right) = \frac{2\pi}{\sqrt{3}}$$

November 15

22.1 Key Hole Domains

Recall the Residue Theorem: If $D \subseteq \mathbb{C}$ is a domain with a bounded, piecewise smooth boundary $(\int_{\partial D} \text{ exists})$ and $f: D - \{z_1, \dots, z_n\} \to \mathbb{C}$ (where z_1, \dots, z_n are isolated singularities) is analytic and extends continuously to ∂D $(\int_{\partial D} f(z) \, \mathrm{d}z \text{ exists})$, then $\int_{\partial D} f(z) \, \mathrm{d}z = 2\pi i \cdot \sum_{j=1}^{n} \mathrm{Res}[f(z), z_j]$.

Last lecture, we computed $\int_0^\infty x^{1/3}/(1+x^3) \, dx$. We considered $z^{1/3}/(1+z^3)$, which is analytic on $\mathbb{C}\setminus(-\infty,0]$ (since we defined $z^{1/3}=e^{(1/3)\log z}$). On the real line from 0 to R, $z^{1/3}/(1+z^3)=|z|^{1/3}/(1+|z|^3)$. On the ray of angle $2\pi/3$, $z^{1/3}/(1+z^3)=|z|^{1/3}e^{i(2\pi/9)}/(1+|z|^3)$. Finally,

$$\int_{\partial D_R} \frac{z^{1/3}}{1+z^3} \, \mathrm{d}z = \left(1 - e^{i(8\pi/9)}\right) \int_0^R \frac{x^{1/3}}{1+x^3} \, \mathrm{d}x + \underbrace{\int_{\gamma_R} \frac{z^{1/3}}{1+z^3} \, \mathrm{d}z}_{\leq R^{1/3}/(R^3-1)\cdot 2\pi R/3 \to 0 \text{ as } R \to \infty}$$

Hence.

$$\begin{split} \lim_{R \to \infty} \int_{\partial D_R} \frac{z^{1/3}}{1 + z^3} \, \mathrm{d}z &= (1 - e^{i(8\pi/9)}) \int_0^\infty \frac{x^{1/3}}{1 + x^3} \, \mathrm{d}x \\ &= 2\pi i \operatorname{Res} \left[\frac{z^{1/3}}{1 + z^3}, e^{i\pi/3} \right] = 2\pi i \frac{z^{1/3}}{(1 + z^3)'} \Big|_{z = e^{i\pi/3}} = \frac{2\pi i}{3} e^{-i(5\pi/9)} \end{split}$$

since $e^{i(\pi/3)}$ is a simple pole. Therefore, we obtain the answer $\pi/(3\cos(\pi/18))$.

Take the integral $\int_0^\infty x^{1/3}/(1+x^3)\,\mathrm{d}x$. We have the function $z^{1/3}/(1+z^3)$. We can use a new domain which is 2/3 of a disk. Another possible domain is the entire disk, but we cut out the positive half of the horizontal axis. Define $z^{1/3}=e^{(1/3)(\log|z|+i\arg z)}$ where $\arg z\in[0,2\pi)$. We also need a key hole of size ε at the origin. If $D=\{|z|\leq R\}\setminus[0,R]$, then ∂D is not the union of closed curves.

$$\int_{\partial D_{R,\varepsilon}} \frac{z^{1/3}}{1+z^3} \, \mathrm{d}z = \int_{\varepsilon}^{R} \frac{x^{1/3}}{1+x^3} \, \mathrm{d}x - \int_{\varepsilon}^{R} \frac{e^{i(2\pi/3)}x^{1/3}}{1+x^3} \, \mathrm{d}x + \underbrace{\int_{\gamma_R} \frac{z^{1/3}}{1+z^3} \, \mathrm{d}z}_{< R^{1/3}/(R^3-1)\cdot 2\pi R \to 0} - \underbrace{\int_{\gamma_{\varepsilon}} \frac{z^{1/3}}{1+z^3} \, \mathrm{d}z}_{\varepsilon^{1/3}/(1-\varepsilon^3)\cdot 2\pi \varepsilon \to 0}$$

as $R \to \infty$ and $\varepsilon \to 0$, by the ML-estimation. Let $R \to \infty$ and $\varepsilon \to 0$:

$$\begin{split} \lim_{\substack{R \to \infty \\ \varepsilon \to 0}} \int_{\partial D_{R,\varepsilon}} \frac{z^{1/3}}{1+z^3} \, \mathrm{d}z &= (1-e^{i(2\pi/3)}) \int_0^\infty \frac{x^{1/3}}{1+x^3} \, \mathrm{d}x \\ &= 2\pi i \sum_{k=0}^2 \mathrm{Res} \left[\frac{z^{1/3}}{1+z^3}, e^{i((2k+1)\pi/3)} \right] \end{split}$$

$$\begin{split} &= 2\pi i \sum_{k=0}^{2} \frac{z^{1/3}}{3z^{2}} \Big|_{z=e^{i((2k+1)\pi/3)}} \\ &= \frac{2\pi i}{3} [e^{-i(5\pi/9)} + e^{-i(5\pi/3)} + e^{-i(25\pi/9)}] \end{split}$$

since we have simple poles. After some computation:

$$\int_0^\infty \frac{x^{1/3}}{1+x^3} \, \mathrm{d}x = \frac{2}{3\sqrt{3}}\pi \left(1-\cos\left(\frac{\pi}{9}\right)\right)$$

The sector that we used previously only works for special cases. The key hole domain works for more general functions with branches, such as Log z and $z^{1/n}$. For example, consider

$$\int_0^\infty \frac{x^{1/4}}{(x+1)(x+2)} \, \mathrm{d}x = \sqrt{2}\pi (2^{1/4} - 1)$$

Use the key hole domain $D_{R,\varepsilon}$ with $R \to \infty$ and $\varepsilon \to 0$.

$$(1 - e^{i\pi/2}) \int_0^\infty \frac{x^{1/4}}{(x+1)(x+2)} \, \mathrm{d}x = 2\pi i \left(\text{Res} \left[\frac{z^{1/4}}{(z+1)(z+2)}, -1 \right] + \text{Res} \left[\frac{z^{1/4}}{(z+1)(z+2)}, -2 \right] \right)$$

22.2 Fractional Residues

Consider

$$\int_0^\infty \frac{1 - \cos x}{x^2} \, \mathrm{d}x = \frac{1}{2} \int_{-\infty}^\infty \frac{1 - \cos x}{x^2} \, \mathrm{d}x$$

Note that

$$1 - \cos x = 1 - \left(1 - \frac{x^2}{2} + \frac{x^4}{24} - \cdots\right)$$
$$= \frac{x^2}{2} - \frac{x^4}{24} + \cdots$$

We would like to integrate on the half-circle, which contains $\int_{-R}^{R} (1-\cos x)/x^2 dx$ and a contribution that is hopefully small. However, the function $(1-\cos z)/z^2$ is not small on the circular arc. Instead, replace $\cos z \mapsto e^{iz}$. The function $(1-e^{iz})/z^2$ is analytic on the upper half-plane, and

$$|1 - \underbrace{e^{iz}}_{=e^{-y+ix}}| \le 2$$

However,

$$1 - e^{iz} = 1 - \left(1 + iz + \frac{(iz)^2}{2} + \cdots\right)$$

= $-iz + \cdots$

so 0 is a simple pole. The function cannot be extended continuously to 0, so we cannot apply the Residue Theorem to the half-disk! Consider the domain $D_{R,\varepsilon}$, where the large disk has radius R and we remove a small disk of radius ε from the origin.

$$0 = \int_{\partial D_{R,\varepsilon}} \frac{1 - e^{iz}}{z^2} dz = \int_{\varepsilon}^{R} \frac{1 - e^{ix}}{x^2} dx + \int_{-R}^{-\varepsilon} \frac{1 - e^{ix}}{x^2} dx + \int_{\gamma_R} \frac{1 - e^{iz}}{z^2} dz - \int_{\gamma_{\varepsilon}} \frac{1 - e^{iz}}{z^2} dz$$

since there are no singularities in $D_{R,\varepsilon}$. By our choice of numerator,

$$\left|\frac{1 - e^{iz}}{z^2}\right| \le \frac{2}{R^2}$$

so the integral over γ_R goes to 0 as $R \to \infty$.

$$0 = \int_{\varepsilon}^{R} \frac{(1 - e^{ix}) + (1 - e^{-ix})}{x^{2}} dx + \underbrace{\int_{\gamma_{R}} \frac{1 - e^{iz}}{z^{2}} dz}_{\to 0} + \int_{\gamma_{\varepsilon}} \frac{1 - e^{iz}}{z^{2}} dz$$

where the last integral is on the half-circle. If we integrate over the full circle:

$$\int_{|z|=\varepsilon} \frac{1 - e^{iz}}{z^2} dz = 2\pi i \cdot \text{Res}$$
$$= 2\pi i (-i)$$
$$= 2\pi$$

The last integral should be π . Then

$$\int_0^\infty \frac{2 - 2\cos x}{x^2} \, \mathrm{d}x = \pi$$

so the original integral should be $\pi/2$.

Theorem 22.1 (Fractional Residue Theorem). Suppose that z_0 is a simple pole of f and suppose we have $C_{\varepsilon} = \{|z - z_0| = \varepsilon, \arg(z - z_0) \in [\theta_0, \theta_0 + \alpha]\}$ where θ_0, α are fixed numbers. Then

$$\lim_{\varepsilon \to 0} \int_{C_{\varepsilon}} f(z) \, \mathrm{d}z = \alpha i \cdot \mathrm{Res}[f(z), z_0]$$

Proof. Let $f(z) = g(z) + a_{-1}/(z - z_0)$, which is analytic near z_0 . Then $\int_{C_{\varepsilon}} g(z) dz \to 0$ by the ML-estimation, and as $\varepsilon \to 0$, $\int_{C_{\varepsilon}} a_{-1}/(z - z_0) dz = \alpha i \cdot a_{-1}$.

November 17

23.1 Logarithmic Integral

Residue Theorem: Let $D \subseteq \mathbb{C}$ be a domain which is bounded, with a piecewise smooth boundary. Let $f: \{z_1, \ldots, z_n\} \to \mathbb{C}$ be analytic, extending continuously to ∂D . Then

$$\int_{\partial D} f(z) dz = 2\pi i \sum_{j=1}^{n} \operatorname{Res}[f(z), z_j]$$

Let $f: D - \{z_1, \ldots, z_n\} \to \mathbb{C}$ be analytic, with f not constantly zero. Consider f'(z)/f(z), defined and analytic on $D - \{z_1, \ldots, z_n\} - \{z \in D \mid f(z) = 0\}$. (Potentially, $\{z \in D \mid f(z) = 0\}$ is an infinite set.)

Add more conditions:

- 1. z_j are all poles of f. f is a meromorphic function on D. (There are no zeros among the z_j .)
- 2. f extends analytically to ∂D . f is analytic on D' (slightly bigger than D) and f' exists on ∂D . (There are no zeros on ∂D .)

Then, f'(z)/f(z) is defined on $D \cup \partial D$ – finitely many points.

For the function f'(z)/f(z), let $\gamma:[a,b]\to D$ – finitely many points be smooth. Consider $\int_{\gamma}f'(z)/f(z)\,\mathrm{d}z$. Then $(\operatorname{Log} w)'=1/w$, so $(\operatorname{Log} f(z))'=(1/f(z))\cdot f'(z)$, so $\int_{\gamma}f'(z)/f(z)\,\mathrm{d}z=\int_{\gamma}\mathrm{d}\operatorname{Log} f(z)$.

"Log $f(\gamma(t))$ " represents infinitely many compelx numbers which differ by $2\pi i \cdot n$. Fix a complex number for Log $f(\gamma(a))$ (where $f(\gamma(a)) \in \mathbb{C}$), with $f(\gamma(a)) \neq 0$. Then, we continuously define Log $f(\gamma(t))$ on [a, b] and get Log $f(\gamma(b))$. For $|t - a| < \varepsilon$, $|f(\gamma(t)) - f(\gamma(a))|$ is small. Choose Log $f(\gamma(t))$ close to Log $f(\gamma(a))$.

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \operatorname{Log} f(\gamma(b)) - \operatorname{Log} f(\gamma(a))$$

Log $f(\gamma(t))$ is continuously defined on [a,b]. Log $f(\gamma(b)) - \text{Log } f(\gamma(a))$ is determined by $\gamma(b), \gamma(a)$, up to $2\pi i \cdot \mathbb{Z}$. For a curve that intersects itself, $\gamma(r) = \gamma(s)$, it is possible for Log $f(\gamma(r)) \neq \text{Log } f(\gamma(s))$.

Example 23.1. Take f(z) = z, so f'/f = 1/z. Consider $\gamma : [0,1] \to \mathbb{C}$, with $\gamma(t) = e^{2\pi i t}$. Then

$$\operatorname{Log} f(\gamma(t)) = \operatorname{Log} e^{2\pi i t}$$

Fix Log $f(\gamma(0)) = 0$. Then Log $f(\gamma(t)) = 2\pi i t$ and Log $f(\gamma(1)) = 2\pi i$.

Most interesting application: γ is a closed curve, i.e. $\gamma(a) = \gamma(b)$, $f(\gamma(a)) = f(\gamma(b))$. Then

$$\int_{\gamma} \frac{f'(z)}{f(z)} dz = \operatorname{Log} f(\gamma(b)) - \operatorname{Log} f(\gamma(a))$$
$$= i(\operatorname{arg} f(\gamma(b)) - \operatorname{arg} f(\gamma(a)))$$
$$= 2\pi i \cdot (\operatorname{an integer})$$

since $\text{Log } z = \log|z| + i \arg z$, where $\arg z$ is the only ambiguity. We can read this integer from a picture, as the number of times that $f \circ \gamma$ goes around the origin in a counterclockwise direction.

The logarithmic integral equals $2\pi i$ times the number of times that $f \circ \gamma$ goes around the origin.

Let f be a meromorphic function on D, and let $D' \cup \partial D' \subseteq D$, with f(z) never 0 on $\partial D'$ and does not have a pole on $\partial D'$. f'(z)/f(z) is defined on D'.

Theorem 23.2.

$$\int_{\partial D'} \frac{f'(z)}{f(z)} \, \mathrm{d}z = 2\pi i (\# \text{ of zeros of } f - \# \text{ of poles of } f)$$

counted with multiplicity.

Proof. We know that the integral equals $2\pi i \cdot \sum_{\text{singularities in } D'} \text{Res}[f'/f, z_j]$. For example, suppose that z_0 is an order N zero. Then

$$f(z) = \underbrace{a_N}_{\neq 0} (z - z_0)^N + a_{N+1} (z - z_0)^{N+1} + \cdots$$
$$f'(z) = N \cdot a_N (z - z_0)^{N-1} + (N+1) \cdot a_{N+1} (z - z_0)^N + \cdots$$

Therefore,

$$\frac{f'(z)}{f(z)} = \frac{1}{z - z_0} \frac{Na_N + (N+1)a_{N+1}(z - z_0) + \cdots}{a_N + a_{N+1}(z - z_0) + \cdots}$$

where $a_N \neq 0$. We have found

$$\operatorname{Res}\left[\frac{f'(z)}{f(z)}, z_0\right] = N \qquad \qquad \Box$$

More generally: suppose that D is a domain and f is a meromorphic function on D which extends analytically to ∂D and never vanishes on D.

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f'}{f} dz = N_0 - N_{\infty}$$
= # of times $f(\partial D)$ (with the correct orientation) goes around the origin

Example 23.3. Take $f(z) = z^5 + 2z^3 - z^2 + z + 1$. Find the number of zeros on $\{\text{Re } z > 0\}$.

- 1. f(z) has no zero on $\{|z| \ge 3\}$.
- 2. f(z) has no zero on the y-axis.

$$f(iy) = (y^2 + 1) + (y^5 - 2y^3 + y)i$$

3. Use the geometric picture of $f(\partial D)$. Assume that $R \gg 0$.

$$f(-iR) \approx (-iR)^5 = -iR^5$$

and arg $f(-iR) = -\pi/2$. Around a half-circle of radius R, the behavior is as z^5 , which changes by 5π .

$$f(iR) \approx (iR)^5 = iR^5$$

so $\arg f(iR) \approx -\pi/2 + 5\pi$. Along the imaginary axis, f(it) has $\mathrm{Re} > 0$, so in order to go from $-\pi/2 + 5\pi \to -\pi/2 + 2n\pi$, it must be that we have $-\pi/2 + 4\pi = \arg f(-iR)$, the terminal point.

$$\frac{\arg f(\gamma(b)) - \arg f(\gamma(a))}{2\pi} = 2$$

November 22

24.1 Argument Principle

Recall the Argument Principle: if D is a bounded domain with a piecewise smooth boundary, f is a meromorphic function on D that extends to be analytic on ∂D , $f(z) \neq 0$ for all $z \in \partial D$ (there exists a bigger open set $D' \supseteq D \cup \partial D$ where f is meromorphic on D' and analytic on a neighborhood of ∂D), then

$$\frac{1}{2\pi i} \int_{\partial D} \frac{f'(z)}{f(z)} dz = \underbrace{N_0}_{\text{# of zeros of } f \text{ in } D} - \underbrace{N_{\infty}}_{\text{# of poles of } f \text{ in } D}$$

counted with multiplicity.

We can also write the integral as

$$\frac{1}{2\pi i} \int_{\partial D} \mathrm{d}(\log f(z)) \underbrace{=}_{\text{imaginary part}} \frac{1}{2\pi} \int_{\partial D} \mathrm{d}(\arg f(z)) = \# \text{ of times } f(\partial D) \text{ goes around the origin}$$

Define $\log f(z)$ or $\arg f(z)$ continuously on each component of ∂D , except at one point. At this point, we obtain another number which differs from $\log f(z)$ by $2\pi i \cdot n$.

Applications: We can count the number of zeros of an analytic function in a certain domain (last lecture, homework).

24.1.1 More Applications

Theorem 24.1 (Rouche's Theorem). Let D be a bounded domain with a piecewise smooth boundary. Let f,h be analytic functions on $D \cup \partial D$ (a neighborhood of $D \cup \partial D$). If |f(z)| > |h(z)| on ∂D , then the number of zeros of f in D equals the number of zeros of f + h in D.

Proof. Consider the sun, earth, and moon. |f| > |h| on ∂D means dist(sun, moon) > dist(earth, moon). If the earth goes around the sun one time, then so does the moon.

We will compare $(2\pi)^{-1} \int_{\partial D} d(\arg f(z))$ and $(2\pi)^{-1} \int_{\partial D} d(\arg (f+h)(z))$. Both of these quantities are integers! Start from $z_0 \in \partial D$. Fix $\arg f(z_0)$, $\arg (f+h)(z_0)$ such that

$$\left|\arg\left(f+h\right)(z_0)-\arg f(z_0)\right|<\pi/2$$

Continuously define $\arg f(z)$, $\arg (f+h)(z)$ on ∂D . Then

$$\left|\arg(f+h)(z) - \arg f(z)\right| < \frac{\pi}{2}$$

We find that

$$\int_{\partial D} d(\arg f(z)) = \arg f(\underbrace{z_0}_{\text{as terminal point}}) - \arg f(\underbrace{z_0}_{\text{as initial point}})$$

$$\int_{\partial D} d(\arg (f+h)(z)) = \arg (f+h)(z_0) - \arg (f+h)(z_0)$$

Therefore,

$$\left| \int_{\partial D} \mathrm{d}(\arg f(z)) - \int_{\partial D} \mathrm{d}(\arg (f+h)(z)) \right| < \pi$$

$$\left| \frac{1}{2\pi} \int_{\partial D} \mathrm{d}(\arg f(z)) - \frac{1}{2\pi} \int_{\partial D} \mathrm{d}(\arg (f+h)(z)) \right| < \frac{1}{2}$$

(The proof assumes that ∂D is one circle.)

Example 24.2. Find the number of zeros of $p(z) = 2z^5 + 6z - 1$ on $\{|z| < 1\}$ and $\{1 < |z| < 2\}$.

1. Use Rouche's Theorem 24.1. On $\{|z|=1\}$, p=f+h, with |f|>|h|. Here, take

$$(6z) + (2z^5 - 1)$$

 $|\cdot|=6$ $|\cdot| \le 2+1=3 < 6$

The number of zeros of p in $\{|z| < 1\}$ is the same as the number of zeros of 6z in $\{|z| < 1\}$, which is 1

2. $|2z^5 + 6z| > 1$ on $\{|z| = 1 \text{ or } 2\}$ (this needs some work). Alternatively, we find the number of zeros in $\{|z| < 2\}$. On $\{|z| = 2\}$,

$$\underbrace{2z^5}_{|\cdot|=2\cdot 2^5=64} + (\underbrace{6z-1}_{|\cdot|\le 6\cdot 2+1=13})$$

The number of zeros of p in $\{|z| < 2\}$ is the number of zeros of $2 \cdot z^5$ in $\{|z| < 2\}$, which is 5. The number of zeros in $\{1 < |z| < 2\} = 4$.

24.2 Number of Zeros Under Uniform (Normal) Convergence

Theorem 24.3 (Hurwitz's Theorem). Let $f_k: D \to \mathbb{C}$ be analytic and $\{f_k\}$ uniformly (normally) converges to $f: D \to \mathbb{C}$. Suppose z_0 is an order N zero of f (f is not constant). Then, $\exists \rho > 0$ such that for any large k, f_k has N zeros in $\{|z - z_0| < \rho\}$ and these zeros go to z_0 as $k \to \infty$.

Proof. $f(z) = (z - z_0)^N \cdot g(z)$, where $g(z_0) \neq 0$. Then $\exists \rho > 0$ such that $f(z) \neq 0$ in $\{0 < |z - z_0| \leq \rho\}$ (we need $g \neq 0$ in $\{|z - z_0| \leq \rho\}$). Then

$$\inf \{ |f(z)| \mid |z - z_0| = \rho \} = \alpha > 0$$

Write $f_k = f + (f_k - f)$. If k is large, $|f_k - f| < \alpha$ on $\{|z - z_0| = \rho\}$. By Rouche's Theorem 24.1, the number of zeros of f_k equals the number of zeros of f in $\{|z - z_0| < \rho\}$. This also holds for any $r \in (0, \rho)$. Let $\rho \to 0$ and the zeros of f_k (N such zeros) go to z_0 .

Definition 24.4. $f: D \to \mathbb{C}$ is **univalent** if f is analytic and one-to-one.

Theorem 24.5. Suppose that $f_k: D \to \mathbb{C}$ are univalent functions, and $\{f_k\}$ uniformly converges to $f: D \to \mathbb{C}$. Then, f is either univalent or constant.

For example, consider $D = \{|z| < 1\}, f_k(z) = z/k$. Then $f_k \xrightarrow{\text{uniformly}} 0$.

Proof. Consider z_1, z_2 with $f(z_1) = f(z_2) = w_0$. Then $f(z) - w_0$ has zeros in small disks around z_1 and z_2 . If f is not constantly zero, then $f_k - w_0$ has zeros in the disks. Therefore, f_k is not one-to-one, which is impossible.

November 29

25.1 Univalent Functions

Rouche's Theorem: Let D be a domain which is bounded, with a piecewise smooth boundary. Consider $f, h: D \to \mathbb{C}$ be analytic, extending to be analytic on ∂D . If |f(z)| > |h(z)| for $z \in \partial D$, then the number of zeros of f in D equals the number of zeros of f + h (and f - h, $f + e^{i\theta}h$) in D.

A univalent function is analytic and one-to-one.

Hurwitz's Theorem: If f_k are univalent, $f_k \xrightarrow{\text{uniformly}} f$ on D, f is either univalent or constant.

Recall: If $f: D \to \mathbb{C}$ is analytic, $z_0 \in D$, $f'(z_0) \neq 0$ (as a multivariable real-valued function), then the Inverse Function Theorem says that f is one-to-one on a small disk $D(z_0, \varepsilon)$ (locally-one-to-one). If f is one-to-one, then $f'(z_0) \neq 0$ only has to hold for most points in D.

Theorem 25.1. If $f: D \to \mathbb{C}$ is univalent, then for any $z_0 \in D$, $f'(z_0) \neq 0$.

Proof. Rough Idea: If $f'(z_0) = 0$, then for $g(z) = f(z) - f(z_0) = a_2(z - z_0)^2 + a_3(z - z_0)^3 + \cdots$, z_0 is an order 2 zero of g(z). What about $g(z) - \varepsilon$, which is $f(z) - (f(z_0) + \varepsilon)$? Does this also have 2 zeros?

Rigorous Proof: Assume $f'(z_0) = 0$ for some $z_0 \in D$. Take $\varepsilon > 0$ such that $\{|z - z_0| \le \varepsilon\} \subseteq D$. Then

$$\frac{1}{2\pi i} \int_{|z-z_0|=\varepsilon} \frac{(f(z)-f(z_0))'}{f(z)-f(z_0)} \, \mathrm{d}z = \text{order of zero of } f(z)-f(z_0) \text{ at } z_0 = N \ge 2$$

Choose δ such that $\{|w-f(z_0)| \leq \delta\}$ is within $f(\{|z-z_0| = \varepsilon\})$, e.g. by choosing

$$0 < \delta < \inf \{ |f(z) - f(z_0)| \mid |z - z_0| \le \varepsilon \}$$

For all $w \in \{|w - f(z_0)| \le \delta\}$, there exists N zeros of f(z) - w in $\{|z - z_0| \le \varepsilon\}$, by applying Rouche's Theorem to $(f(z) - f(z_0)) - (w - f(z_0))$ $(|f(z) - f(z_0)| > |f(z_0) - w|$ on $\{|z - z_0| = \varepsilon\}$). There is a order N zero of $f(z) - w_0$ in the disk, which implies that f'(z) = 0 at this point. Since there are infinitely points in $\{|w - f(z)| \le \delta\}$, there are infinitely many zeros of f'(z) in $\{|z - z_0| \le \varepsilon\}$. If an analytic function has infinitely many zeros in a closed, bounded region, then $f' \equiv 0$, so f is constant, which is a contradiction!

If $f: D \to \mathbb{C}$ is univalent, let $f^{-1}: f(D) \subseteq \mathbb{C} \to D \subseteq \mathbb{C}$ be the inverse function (f(D)) is the image. f' is never zero implies that f^{-1} is also analytic and univalent (using multivariable analysis), so $(f^{-1})'$ exists!

25.2 Open Mapping

A univalent function attains each complex number ≤ 1 time.

For $f: D \to \mathbb{C}$, and $\{|z - z_0| \le \varepsilon\} \subseteq D$, let

$$\begin{split} N(w) &= \# \text{ of } \{z \mid |z-z_0| \leq \varepsilon, f(z) = w\} \text{ with multiplicity} = \# \text{ of zeros of } f(z) - w \text{ in } \{|z-z_0| \leq \varepsilon\} \\ &= \frac{1}{2\pi i} \int_{|z-z_0| = \varepsilon} \frac{f'(z)}{f(z) - w} \, \mathrm{d}z \end{split}$$

We need $w \notin f(\{|z - z_0| = \varepsilon\})$

N(w) is a locally constant function on $\{w \mid w \notin f(\{|z-z_0|=\varepsilon\})\}$. Compare $f(z)-w_1$ v.s. $f(z)-w_2$.

$$f(z) - w_1 = \underbrace{f(z) - w_2}_{\geq \delta \text{ on } \{|z - z_0| = \varepsilon\}} + w_2 - w_1$$

where δ depends on w_2 . As long as $|w_2 - w_1| < \delta$, $N(w_1) = N(w_2)$. $N(f(z_0)) \ge 1$ implies that $\exists \delta > 0$ such that $\forall w \in \{w \mid |w - f(z_0)| < \delta\}$, $N(w) \ge 1$.

Theorem 25.2 (Open Mapping Theorem). If $f: D \to \mathbb{C}$ is analytic and not constant, where D is an open set, then f(D) is an open set in \mathbb{C} .

Proof. $\forall w_0 \in f(D) \ \exists z_0 \in D \ \text{such that} \ f(z_0) = w_0. \ N(w_0) \ge 1 \ \text{implies that there exists} \ \delta > 0 \ \text{such that}$ for all $w \in \{|w - w_0| < \delta\}, \ N(w) \ge 1, \ \text{so} \ w \in f(D). \ f(D) \ \text{is open.}$

(This is true if f' is never zero by the Inverse Function Theorem.)

Alternative Proof of Open Mapping Theorem 25.2. Let $f: D \to \mathbb{C}$ be analytic, $w_0 \in f(D)$, and write $w_0 = f(z_0)$ for $z_0 \in D$. If $f'(z_0) \neq 0$, then the theorem is true by the Inverse Function Theorem in multivariable analysis. If $f'(z_0) = 0$, then, for $N \geq 2$ and $a_N \neq 0$,

$$f(z) - f(z_0) = a_N (z - z_0)^N + a_{N+1} (z - z_0)^{N+2} + \cdots$$

$$= (z - z_0)^N \cdot \underbrace{g(z)}_{g(z_0) \neq 0}$$

$$= \left((z - z_0) \cdot g^{1/N}(z) \right)^N$$

Choose a branch near z_0 . We can view f as the composition of $(z-z_0)g^{1/N}(z)$ (analytic) and $w^N + f(z_0)$. Take the derivative.

$$((z - z_0) \underbrace{h(z)}_{=g^{1/N}})'\Big|_{z=z_0} = (h(z) + (z - z_0) \cdot h'(z))\Big|_{z=z_0}$$
$$= h(z_0) = g^{1/N}(z_0)$$
$$\neq 0$$

The function w^N also maps disks to disks.

Let $f:\{|z-z_0|\leq \varepsilon\}\to\mathbb{C}$ be analytic. If $f'(z_0)\neq 0$, then f is locally one-to-one. For all w in the image $f(\{|z-z_0|\leq \varepsilon\})$, we can find the formula for $f^{-1}(w)$:

$$\frac{1}{2\pi i} \int_{|z-z_0|=\varepsilon} \frac{zf'(z)}{f(z)-w} \,\mathrm{d}z$$

December 1

Lecturer: Professor Lin Lin

26.1 Riemann Mapping Theorem

A conformal map with $D, V \subseteq \mathbb{C}$ is one-to-one, onto, and angle-preserving.

In the homework, we proved that a function f is angle-preserving if and only if f or \bar{f} is analytic. We are only interested in the case when f is analytic.

Last class: if f is analytic and one-to-one (univalent), then $f' \neq 0$. $f^{-1}: V \to D$ is analytic, which implies that it is conformal. We will prove that given any region D, we can find an analytic function f that maps the region to $\mathbb{D} = \{z : |z| < 1\}$.

Example 26.1. Let us find a mapping $D = \{z : |z| < R\} \to \mathbb{D}$. Here, the mapping is

$$f(z) = \frac{z}{R}$$

Example 26.2. Take $D = \{z : \text{Im } z > 0\}$. We can use a Möbius transform.

$$f(z) = \frac{i-z}{i+z}$$

$$f(0) = 1$$

$$f(1) = \frac{i-1}{i+1}$$

$$f(\infty) = -1$$

$$f(i) = 0$$

This function indeed maps D to the interior of the unit disk.

Example 26.3. Consider the sector $D = \{z : 0 < \arg z < \theta\}$. Use the function $z^{\pi/\theta} = e^{(\pi/\theta) \log z}$ to map the region to the upper-half plane, and then compose this with the previous mapping:

$$f(z) = \frac{i - z^{\pi/\theta}}{i + z^{\pi/\theta}}$$

When $\theta = 2\pi$,

$$D = \{z : 0 < \arg z < 2\pi\}$$
$$\equiv \mathbb{C} \setminus [0, \infty)$$

Here, our mapping is

$$f(z) = \frac{i - z^{1/2}}{i + z^{1/2}}$$

Example 26.4. Consider the domain $D = \{z : -1 < \text{Im } z < 1\}$ and the map e^z .

$$|e^z| = \left| e^{x+iy} \right| = e^x \in (0, \infty)$$

$$\arg e^z = y \in (-1, 1)$$

Therefore, e^z maps the region to a sector. We compose the map $z \mapsto e^z$ with $w \mapsto e^{(\pi/2)(\log w + i)}$ and the map $u \mapsto (i - u)/(i + u)$.

$$f(z) = \frac{i - e^{(\pi/2)(z+i)}}{i + e^{(\pi/2)(z+i)}}$$

This not always doable:

Example 26.5. Let $D = \mathbb{C}$. $f: D \to \mathbb{D}$ does not exist, by the Liouville Theorem: if f is analytic on \mathbb{C} and bounded, then f is constant.

Example 26.6. Take $D = \mathbb{D} \setminus \{0\}$. There is a topological obstruction: we start with a contour in \mathbb{D} , $C = \{z : |z| = 1/2\}$, such that the origin lies within the pre-image. Shrink the contour to $rC = \{z : |z| = r/2\}$. Take the limit as $r \to \infty$, and the contour shrinks to $\{0\}$. However, $f^{-1}(0)$ exists, and by a continuity argument, $f^{-1}(0)$ must be 0.

Definition 26.7. $D \subseteq \mathbb{C}$ is a **simply connected domain** if any loop can deformed to a point. More precisely, for any $\gamma : [a,b] \to D$, $\gamma(a) = \gamma(b)$, there exists $\Gamma : [a,b] \times [0,1] \to D$ such that Γ is continuous, $\Gamma(s,0) = \gamma(s)$, $\Gamma(s,1) = x \in D$, and $\Gamma(a,t) = \Gamma(b,t)$, $\forall 0 \le t \le 1$.

For example, to deform the contour from 26.6 into 0, take $\Gamma: [0, 2\pi] \times [0, 1] \to D$ with

$$\Gamma(s,0) = \frac{1}{2}e^{i\theta}$$

$$\Gamma(s,t) = \frac{1-t}{2}e^{i\theta}$$

Theorem 26.8 (Riemann Mapping). Let $D \subseteq \mathbb{C}$ be simply connected, $D \neq \mathbb{C}$. Then, there exists an analytic function $f: D \to \mathbb{D}$ which is conformal.

Idea of Proof. 1. There exists analytic $h: D \to V \subseteq \mathbb{D}$. Use $D \neq \mathbb{C}$. Find $a \in \mathbb{C}$, $a \notin D$. If $B(a,\varepsilon) \subseteq \mathbb{C} \setminus D$, then the map $\varepsilon/(z-a)$ works. Here, $|z-a| > \varepsilon \ \forall z \in D$, then $|\varepsilon/(z-a)| < 1$, so $V \subseteq \mathbb{D}$. Otherwise, choose $a \in \mathbb{C} \setminus D$ and a single branch of $g(z) = \sqrt{z-a}$ (this uses the assumption that D is simply connected). If $w_0 \in g(D)$, then $B(w_0,\varepsilon) \subseteq g(D)$, which means that $B(-w_0,\varepsilon) \notin g(D)$. Then, we can use the composition of this with the previous case.

2. There are too many degrees of freedom! Pick any $z_0 \in D$. There exists an analytic function $l: D \to V \subseteq \mathbb{D}$, with $l(z_0) = 0$, $l'(z_0) > 0$. We only need to find $K: V \to \mathbb{D}$, with $K(h(z_0)) = 0$

and $K'(h(z_0)) \cdot h'(z_0) > 0$. Take l = K(h(z)). To do this, find a Möbius transform.

3. Find the mapping that maximizes $l'(z_0)$, f(z). This is a conformal mapping $D \to \mathbb{D}$. This requires a compactness argument in function space. If the maximizer is not what we need, then $f(D) \neq \mathbb{D}$. Choose $a \in \mathbb{D} \setminus f(D)$. Then, we can find a map $K : f(D) \to \tilde{V} \subseteq \mathbb{D}$ with K(0) = 0, K'(0) > 1 (technical point). Then,

$$(K \circ f)(z_0) = K(f(z_0)) = 0$$

 $(K \circ f)'(z_0) = K'(0) \cdot f'(z_0) > f'(z_0)$