Given	
$f(x) = (2+3x)^{-3}, x < \frac{2}{3}$	
find the binomial expansion of $f(x)$, in ascending powers of x , up to in x^3 .	to and including the term
Give each coefficient as a simplified fraction.	
1	(5)

	1 2	
	$\frac{1}{(2+5x)^3}, \qquad x < \frac{2}{5}$	
in ascending powers o	of x , up to and including the term in x^3 .	
Give each coefficient	as a fraction in its simplest form.	(6)

3.	(a)	Find the binomial expansion of	
		$(4+5x)^{\frac{1}{2}}, x < \frac{4}{5}$	
		in ascending powers of x , up to and including the term in x^2 . Give each coefficient in its simplest form.	(5)
	(1.)	$\frac{1}{2}$. 1	(5)
	(b)	Find the exact value of $(4 + 5x)^{\frac{1}{2}}$ when $x = \frac{1}{10}$	
		Give your answer in the form $k\sqrt{2}$, where k is a constant to be determined.	(1)
	(c)	Substitute $x = \frac{1}{10}$ into your binomial expansion from part (a) and hence find an	
		approximate value for $\sqrt{2}$	
		Give your answer in the form $\frac{p}{q}$ where p and q are integers.	(2)

4.	(a) Find the first four terms, in ascending powers of x , of the binomial expansion of	
	$\left(1+8x\right)^{\frac{1}{2}}$	
	giving each term in simplest form.	(3)
	(b) Explain how you could use $x = \frac{1}{32}$ in the expansion to find an approximation for	$\sqrt{5}$
	There is no need to carry out the calculation.	(2)

5.	(a) Use the binomial expansion, in ascending powers of x , to show that	
	$\sqrt{(4-x)} = 2 - \frac{1}{4}x + kx^2 + \dots$	
	where k is a rational constant to be found.	(4)
	A student attempts to substitute $x = 1$ into both sides of this equation to find an approximate value for $\sqrt{3}$.	
	(b) State, giving a reason, if the expansion is valid for this value of x .	(1)

6.	(a) Find the first four terms, in ascending powers of x , of the binomial expansion of	
	$\sqrt{4-9x}$	
	writing each term in simplest form. A student uses this expansion with $x = \frac{1}{9}$ to find an approximation for $\sqrt{3}$	(4)
	Using the answer to part (a) and without doing any calculations,	
	(b) state whether this approximation will be an overestimate or an underestimate of $\sqrt{3}$ giving a brief reason for your answer.	(1)

7. Given that the binomial expansion of $(1 + kx)^{-4}$, $ kx < 1$, is	
$1-6x+Ax^2+\dots$	
(a) find the value of the constant k ,	(2)
(b) find the value of the constant A, giving your answer in its simplest form.	(3)

8.	$f(x) = (2 + kx)^{-3}$, $ kx < 2$, where k is a positive constant	
	The binomial expansion of $f(x)$, in ascending powers of x , up to and including the term in x^2 is	
	$A + Bx + \frac{243}{16}x^2$	
	where A and B are constants.	
	(a) Write down the value of A .	(1)
	(b) Find the value of k .	(3)
	(c) Find the value of <i>B</i> .	(2)

9.
$$f(x) = \frac{6}{\sqrt{9-4x}}, |x| < \frac{9}{4}$$

(a) Find the binomial expansion of f(x) in ascending powers of x, up to and including the term in x^3 . Give each coefficient in its simplest form.

(6)

Use your answer to part (a) to find the binomial expansion in ascending powers of x, up to and including the term in x^3 , of

(b)
$$g(x) = \frac{6}{\sqrt{9+4x}}, \quad |x| < \frac{9}{4}$$
 (1)

(c)
$$h(x) = \frac{6}{\sqrt{9-8x}}, \quad |x| < \frac{9}{8}$$
 (2)

10. (a) Find the first three terms, in ascending powers of x , of the binomial expansion of	
$\frac{1}{\sqrt{4-x}}$	
giving each coefficient in its simplest form.	(4)
	(4)
The expansion can be used to find an approximation to $\sqrt{2}$ Possible values of x that could be substituted into this expansion are:	
• $x = -14$ because $\frac{1}{\sqrt{4-x}} = \frac{1}{\sqrt{18}} = \frac{\sqrt{2}}{6}$	
• $x = 2$ because $\frac{1}{\sqrt{4-x}} = \frac{1}{\sqrt{2}} = \frac{\sqrt{2}}{2}$	
• $x = -\frac{1}{2}$ because $\frac{1}{\sqrt{4-x}} = \frac{1}{\sqrt{\frac{9}{2}}} = \frac{\sqrt{2}}{3}$	
(b) Without evaluating your expansion,	
(i) state, giving a reason, which of the three values of x should not be used	(1)
(ii) state, giving a reason, which of the three values of x would lead to the most accurate approximation to $\sqrt{2}$	
decurate approximation to \(\frac{7}{2} \)	(1)

11. (a) Use the binomial expansion to show that	
$\sqrt{\left(\frac{1+x}{1-x}\right)} \approx 1 + x + \frac{1}{2}x^2, x < 1$	(6)
(b) Substitute $x = \frac{1}{26}$ into	
$\sqrt{\left(\frac{1+x}{1-x}\right)} = 1 + x + \frac{1}{2}x^2$	
to obtain an approximation to $\sqrt{3}$	
Give your answer in the form $\frac{a}{b}$ where a and b are integers.	(3)

12.

$$f(x) = \frac{50x^2 + 38x + 9}{(5x + 2)^2(1 - 2x)} \qquad x \neq -\frac{2}{5} \quad x \neq \frac{1}{2}$$

Given that f(x) can be expressed in the form

$$\frac{A}{5x+2} + \frac{B}{(5x+2)^2} + \frac{C}{1-2x}$$

where A, B and C are constants

- (a) (i) find the value of B and the value of C
 - (ii) show that A = 0

(4)

(b) (i) Use binomial expansions to show that, in ascending powers of x

$$f(x) = p + qx + rx^2 + ...$$

where p, q and r are simplified fractions to be found.

(ii) Find the range of values of x for which this expansion is valid.

(7)

13.	In this question you must show all stages of your working.	
	Solutions relying entirely on calculator technology are not acceptable.	
(a)	Find the first three terms, in ascending powers of x , of the binomial expansion of	
	$(3+x)^{-2}$	
	writing each term in simplest form.	
	witting each term in simplest form.	(4)
(b)	Using the answer to part (a) and using algebraic integration, estimate the value of	
	$\int_{0.2}^{0.4} \frac{6x}{(3+x)^2} \mathrm{d}x$	
	giving your answer to 4 significant figures.	
		(4)
(c)	Find, using algebraic integration, the exact value of	
	$\int_{0.2}^{0.4} \frac{6x}{(3+x)^2} \mathrm{d}x$	
	giving your answer in the form $a \ln b + c$, where a, b and c are constants to	
	be found.	(5)
		(0)