Comprehensive Verification of the RISC-V Memory Management Unit: Challenges and Solutions

Huda Sajjad, Hammad Bashir, Yazan Hussnain, Fatima Saleem

10xEngineers

Introduction

The Memory Management Unit (MMU) enables virtual address translation, memory protection, and multitasking. Ensuring compliance with the RISC-V Privileged ISA is crucial for interoperability. However, its configurability — supporting multiple paging schemes and superpage translations — poses significant verification challenges, especially in open-source cores where edge cases and ambiguities can cause critical flaws.

Test Planning

A robust and unified design verification (DV) plan forms the foundation for validating all critical aspects of the MMU.

• Transaction Access Validation:

Verified read, write, and execute transactions by evaluating PTE permission bits (**R**/**W**/**X**) in leaf entries across all page table levels in both supervisor and user modes.

• PTE Global Mapping:

Verified the functionality of the Global bit (pte.**G**) in PTEs, across all levels, for different address spaces identified by satp.**ASID**.

• Address Translation in M-Mode:

Verified the functionality of mstatus. MPRV allowing address translation in M-Mode for data accesses while bypassing translation for eXecute accesses.

• Supervisor-User Memory Access:

Verified the functionality of mstatus. SUM, enabling S-Mode to access U-Mode pages mapped with the pte. U bit set.

• Read Access on eXecutable Pages:

Verified the functionality of mstatus. MXR, enabling read access on execute-only pages (pte.R=0, pte.X=1).

Checkout Core-V Wally
Github Repository

For more information, visits 10xEngineers.ai

Results/Findings

This work was implemented and validated on Core-V Wally, a 5-stage pipelined processor supporting configurations from RV32E to a full RV64GC application processor. The proposed test suite successfully uncovered a critical bug in the MMU through the reserved_pte_s_mode test. The bug caused Core-V Wally to fail in triggering a page fault when accessing memory regions mapped by Page Table Entries (PTEs) with reserved RWX encoding (pte.W=1 and pte.R=0), violating the RISC-V Privileged ISA specification.

Conclusion

- Enhanced verification framework for RISC-V MMUs
- Discovered a major flaw in Core-V Wally's MMU implementation
- Improved compliance testing for open-source processor designs

Our methodology strengthens MMU validation for opensource RISC-V cores, ensuring better reliability and compliance.

References

- 1. **RISC-V Foundation**. RISC-V Privileged Architectures Manual, Version 1.12. Accessed: 2025-01-27. 2021. url: https://github.com/riscv/riscv-isa-manual.
- 2. **RISC-V Software Source**. RISCOF: RISC-V Architectural Compliance Framework. Accessed: 2025-01-27. 2025. url: https://github.com/riscv-software-src/riscof.
- 3. **OpenHW Group**. CVW: Core Verification Workflows. Accessed: 2025-01-27. 2025. url: https://github.com/openhwgroup/cvw.
- 4. **RISC-V Verification Group**. RISC-V ISA Coverage Analysis Tool (riscvISACOV). Accessed: 2025-01-27. 2025. url: https://github.com/riscv-verification/riscvISACOV.
- 5. **RISC-V Foundation**. RISC-V Architecture Test Framework. Accessed: 2025-01-27. 2025. url: https://github.com/riscv-non-isa/riscv-arch-test.
- 6. **OpenHW Group**. CVW Architectural Verification. Ac-cessed: 2025-01-27. 2025. url: https://github.com/openhwgroup/cvw-arch-verif.
- 7. **Synopsys**. ImperasDV RISC-V Processor Design Verification. Accessed: 29-Jan-2025. 2025. url: https://www.synopsys.com/verification/imperasdv.html.
- 8. **OpenHW Group**. GitHub Issue #1198: CVW Repository. Accessed: 2025-01-27. 2025. url: https://github.com/openhwgroup/cvw/issues/1198.

