0 Notation

Let X, Y be sets. Then, we introduce some simple notation: inclusion

 $x \in X$

union

 $X \cup Y$

intersection

 $X \cap Y$

and the cartesian product

$$X\times Y=\{(x,y):x\in X,y\in Y\}$$

We call the Natural Numbers \mathbb{N} , Integers \mathbb{Z} , Rationals \mathbb{Q} (:= $\{\frac{a}{b}: a, b, \in \mathbb{Z}\}$), Reals \mathbb{R} , and Complex Numbers \mathbb{C} . Notice that $\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

1 Maps

Let X, Y be two sets. A map f between X and Y denoted as

$$f: X \to Y$$

is a rule that takes every element of $x \in X$ to an element $y = f(x) \in Y$.

1.1 Composition

Let X, Y, Z be sets. Suppose $X \xrightarrow{f} Y \xrightarrow{g} Z$. Then a function $h: X \to Z$, $h(x) - g(f(x)) \in Z$ is called the *composition* denoted as $h = g \circ f$.

1.2 Identity

The *identity map* is denoted as $\mathrm{Id}_x: X \to X$, and is defined to be $\mathrm{Id}(x) = x$

1.3 Properties

Let X, Y, Z be sets.

1.3.1 Injective

A map $f: X \to Y$ is *injective (into/one-to-one)* if for every $x_1, x_2 \in X$, we have $f(x_1) \neq f(x_2)$ Taking the contrapositve, we get the statement: If $f(x_1) = f(x_2)$, then $x_1 = x_2$. In shorthand, it is

$$\forall x_1, x_2 \in X, f(x_1) \neq f(x_2) \iff f(x_1) = f(x_2) \implies x_1 = x_2 \forall x_1, x_2 \in X$$

1.4 Surjective

A map $f: X \to Y$ is *surjective (onto)* if for every $y \in Y$, there exists some $x \in X$ such that y = f(x). In shorthand, it is

$$\forall y \in Y, \exists x \in X : y = f(x)$$

1.5 Bijective

A map $f: X \to Y$ is **bijective** if it is both *injective* and *surjective*.

1.6 Inverse Maps

Let $f: X \to Y$ be a map. A map $g: Y \to X$ is called the *inverse of* f if the composition is the Identity map; that is, $g \circ f = \mathrm{Id}_x$, $f \circ g = \mathrm{Id}_y$ and is denoted as $g = f^{-1}$.

Proposition

A map $f: X \to Y$ has an inverse if and only if f is bijective.

Proof. (\Longrightarrow) Let $g: Y \to X$ be an inverse of f. Then $g \circ f = \mathrm{Id}_x$, $f \circ g = Id_y$. Let $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$. Then,

$$\begin{aligned} x_1 &= \operatorname{Id}_x(x_1) \\ &= (g \circ f)(x_1) \\ &= g(f(x_1)) \\ &= g(f(x_2)) \\ &= (g \circ f)(x_2) \\ &= \operatorname{Id}_x(x_2) \\ x_1 &= x_2 \end{aligned}$$
 $f(x_1) = f(x_2)$ by assumption

so f is injective.

Take any $y \in Y$. Then x := g(y) for some $x \in X$. Then,

$$f(x) = f(g(y)) = (f \circ g)(y) = \mathrm{Id}_y(y) = y$$

so f is surjective. Because f is both injective and surjective, it is bijective.

(\Leftarrow) Assume f be bijective. Then let $g: Y \to X$. Take any $y \in Y$. There exists a unique $x \in X$ such that y = f(x) because f is bijective. Therefore, g is an inverse of f.

2 Integers

2.1 Induction I

Let $n_0 \in \mathbb{Z}$, and P(n) be a statement for all $n \geq n_0$. Suppose

- (i) $P(n_0)$ is true.
- (ii) $P(n) \implies P(n+1)$ for every $n \ge n_0$.

Then P(n) is true for all $n \geq n_0$.

Proposition

$$1 + 2 + \dots + n = \frac{n(n+1)}{2}$$

Proof. Let $P(n) := 1 + 2 + \cdots + n = \frac{n(n+1)}{2}$. We will induct on n.

- (i) P(1) is true.
- (ii) $P(n) \implies P(n+1)$

$$1 + 2 + \dots + n + (n+1) = \frac{n(n+1)}{2} + (n+1)$$
$$= \frac{(n+1)(n+2)}{2}$$

so P(n+1) is true, completing the induction.

2.2 Induction II (Strong Induction)

Let $n_0 \in \mathbb{Z}$, and P(n) be a statement for all $n \geq n_0$. Suppose

- (i) P(n) is true.
- (ii) For every $n > n_0$, if P(k) is true for every $n_0 \le k \le n$, then P(n) is true.

Then P(n) is true for all $n \ge n_0$.

Proposition

Every positive integer can be written in the form

$$n = 2^{K_1} + 2^{K_2} + \dots + 2^{K_m}$$

where $K_i \in \mathbb{Z}$ and $0 \le K_1, < K_2, \dots < K_m$.

Proof. We will induct on n.

- (i) P(1) is true.
- (ii) We know that P(k) is true for k = 1, 2, ..., n 1. Then for n, we find the largest s such that $2^s \le n$. There are two cases:
 - (i) $n = 2^s$. Then P(n) is true.
 - (ii) $2^s < n$, $p := n 2^s > 0$. Apply P(p): $p = 2^{K_1} + \cdots 2^{K_m}$, $0 \le K_1, < K_2 < \cdots K_m$. $\implies n = 2^{K_1} + \cdots 2^{K_m} + 2^s$ Then, $p > 2^{K_m}$, so $2^s > 2^{K_m}$ $\implies s > k_m$, completing the induction.

2.3 Division of Integers

Let $n, m \in \mathbb{Z}, m \neq 0$. Then, n is divisible by m if there exists some $q \in \mathbb{Z}$ such that $n = mq (\iff \frac{n}{m} \in \mathbb{Z})$ and we denote this as $m \mid n$, read as "m divides n".

2.3.1 Properties

- (i) $1 \mid n$ for every $n \in \mathbb{Z}$ and $m \mid 0$ for every $m \neq 0$.
- (ii) If $m \mid n_1$ and $m \mid n_2$, then $m \mid (n_1 \pm n_2)$.

Proof.
$$n_1 = mq_1$$
 and $n_2 = mq_2$
 $\implies n_1 \pm n_2 = mq_1 \pm mq_2 = m(q_1 + q_2) \implies m \mid (n_1 \pm n_2) \text{ since } q_1 + q_2 \in \mathbb{Z}.$

(iii) If $m \mid n$, then $m \mid an$ for all $a \in \mathbb{Z}$.

Proof.
$$n = m \cdot q, q \in \mathbb{Z}, an = m \cdot (aq), aq \in \mathbb{Z} \implies m \mid an$$
.

(iv) If $m \mid n_1$ and $m \mid n_2$, then $m \mid a_1n_1 + a_2n_2$ for every $a_1, a_2 \in \mathbb{Z}$.

Proof. By (iii),
$$m \mid a_1 n_1 \text{ and } m \mid a_2 n_2$$
. By (ii), $m \mid a_1 n_1 + a_2 n_2$.

(v) If $m \mid n, n \neq 0$, then |m| < |n|.

Proof.
$$n = m \cdot q, q \in \mathbb{Z}, q \neq 0, |n| = |m| \cdot |q| \ge |m|.$$

(vi) If $m \mid n$ and $n \mid m$, then $n = \pm m$.

Proof. By
$$(v)$$
, $|m| \le |n| \le |m| \implies n = \pm m$.

2.3.2 Division Algorithm

Theorem

Let $n, m \in \mathbb{Z}, m \neq 0$. Then, there are unique $q, r \in \mathbb{Z}$ such that

$$n = m \cdot q + r, \ 0 < r < m$$

where q is the partial quotient and r is the remainder on dividing n by m.

Proof. Existence Define an infinite set $S = \{n - mx, x \in \mathbb{Z}\}$ containing nonnegative integers. Take $S \cap \mathbb{Z}^{\geq 0} \neq \emptyset$, so S is non-empty. Then by the well ordering principle, every non-empty set of $\mathbb{Z}^{\geq 0}$ has a least element, $n - mx \in S \cap \mathbb{Z}^{\geq 0}$. Call $q = x, r := n - mx \geq 0$. Then n = mx + r = mq + r. To show that r < m, take $r - m = (n - mq) - m = n - m(q + 1) \in S$. This shows that r - m < r, but since we chose r to be the least element in $S \cap \mathbb{Z}^{\geq 0}$, $r - m \notin S$. So $r - m < 0 \implies r < m$.