# HOUSE PRICES PREDICTION USING LINEAR REGRESSION MODEL IOE 591 Final Project

Jinxiang Ma, Shucen Zhao, Tianze Qu, Zitong Li

Group 11, December 2023

# **OVERVIEW**

- 1. Dataset Introduction and Description
- 2. Data Analysis
  - 2.1 Exploratory Data Analysis
  - 2.2 Correlation Analysis
  - 2.3 Categorical Predictors Analysis
- 3. Variable Selection
  - 3.1 Testing-based Approaches & 3.2 Criterion-Based Approaches
- 4. Diagnostic for Model AIC
- 5. Solve the Problem Appearing in Diagnostics
  - 5.1 Transform Y Box-Cox Method
  - 5.2 Weighted Least Square
  - 5.3 Robust Regression
- 6. Prediction
  - 6.1 Prediction with selected model & prediction interval
  - 6.2 LASSO and Ridge regression
- 7. Summary and Conclusion

# DATASET INTRODUCTION

In the realm of real estate, determining the factors that contribute to the pricing of residential properties is a complex undertaking. This dataset, encompassing 18 distinct predictors, showing the multifaceted nature of house price determination.

- Spatial and Locational Features
- Quality of Living Metrics
- Educational and Socio-Economic Indicators
- Infrastructure and Services
- Environmental Considerations
- Recreational and Green Spaces

This dataset aims to empower potential customers, urban planners and policymakers with a deeper understanding of the factors that collectively influence house prices. Our objective is selecting significant predictors to build robust linear regression model which plays an significant role for making informed decision.

# DATASET DESCRIPTION

The following table describe the predictor in the house price dataset.

| crime_rate | Crime rate in that neighborhood            | dist4       | Distance from employment hub 4 (miles)                  |
|------------|--------------------------------------------|-------------|---------------------------------------------------------|
| resid_area | Proportion of residential area in the town | teachers    | Number of teachers per thousand population              |
| air_qual   | Quality of air in that neighborhood        | poor_prop   | Proportion of poor population in the town               |
| room_num   | Average number of rooms in houses          | n_hos_beds  | Number of hospital beds per 1000 population in the town |
| age        | How old is the house construction in years | n_hot_rooms | Number of hotel rooms per 1000 population in the town   |
| dist1      | Distance from employment hub 1 (miles)     | rainfall    | The yearly average rainfall (centimeters)               |
| dist2      | Distance from employment hub 2 (miles)     | parks       | Proportion of land assigned as parks in the town        |
| dist3      | Distance from employment hub 3 (miles)     |             |                                                         |

TABLE: Numerical Variables

| Airport   | Is there an airport in the city? (Yes/No)                                              |
|-----------|----------------------------------------------------------------------------------------|
| Waterbody | What type of natural fresh water source is there in the city (lake/ river/ both/ none) |
| bus_ter   | Is there a bus terminal in the city? (Yes/No)                                          |

TABLE: Categorical Variables

There are 498 observations in the house price dataset. The response variable is house price(per \$10k).

# EDA

- 1. Set categorical variables:
  - two level airport, bus terminal (Yes, No)
  - four level waterbody (None, River, Lake, River and Lake)
- 2. Remove useless data: All "YES" in predictor bus terminal
- 3. Remove missing value (NA) from dataframe
- 4. Remove truncated data:  $R^2$  increases



FIGURE: Plots of raw data

# EDA



FIGURE: Plots of raw data

# CORRELATION

- 1. dist1, dist2, dist3, and dist4 have pretty high covariance (close to 1)
  - Consider dropping dist2, dist3 and dist4.
- 2. parks and air quality highly correlated (close to 1)
  - Consider dropping parks



# CATEGORICAL PREDICTORS ANALYSIS: AIRPORT

1. Boxplot: response variable price in terms of two groups categorical predictor - Is there an airport in the city? (Yes/No)



- 2. t-test for the difference between groups
  - -t = -2.9851, df = 480, p-value = 0.00298
  - 95 percent confidence interval: (-3.5147529, -0.7243667)

Conclusion: true difference in means between group (airport) NO and YES is not equal to 0

# CATEGORICAL PREDICTORS ANALYSIS: WATERBODY

1. Boxplot: response variable price in terms of four groups categorical predictor: type of waterbody in the city (lake/ river/ both/ none)



- 2. Set interaction term between numerical and categorical predictors
  - - Reference level: AirportNO and waterbodyNone
  - - Based on significant level 0.05, room number:airport is significant

# Variable Selection - Testing-Based

# 1. Backward Elimination (significant level 0.05)

| ## |      | Elimination Summary      |          |          |         |           |        |  |  |  |
|----|------|--------------------------|----------|----------|---------|-----------|--------|--|--|--|
| ## |      | Variable                 |          | Adj.     |         |           |        |  |  |  |
|    | Step | Removed                  | R-Square | R-Square | C(p)    | AIC       | RMSE   |  |  |  |
| ## |      |                          |          |          |         |           |        |  |  |  |
| ## | 1    | waterbody.Lake.and.River | 0.7681   | 0.7607   | 15.0486 | 2681.2868 | 3.8347 |  |  |  |
| ## | 2    | waterbody.River          | 0.7681   | 0.7611   | 13.1450 | 2679.3867 | 3.8310 |  |  |  |
| ## | 3    | rainfall                 | 0.7678   | 0.7613   | 11.8069 | 2678.0722 | 3.8296 |  |  |  |
| ## | 4    | n_hot_rooms              | 0.7674   | 0.7615   | 10.4771 | 2676.7652 | 3.8283 |  |  |  |
| ## | 5    | waterbody.Lake           | 0.7666   | 0.7611   | 10.1581 | 2676.4990 | 3.8311 |  |  |  |
| ## | 6    | n_hos_beds               | 0.7655   | 0.7605   | 10.3180 | 2676.7177 | 3.8358 |  |  |  |
| ## |      |                          |          |          |         |           |        |  |  |  |

FIGURE: Summary of Backward Elimination

# Variable Selection - Testing-Based

# 2. Forward Selection (significant level 0.05)

| ##<br>##<br>## |      | Selection Summary   |          |          |          |           |        |  |  |
|----------------|------|---------------------|----------|----------|----------|-----------|--------|--|--|
| ##             |      | Variable            |          | Adj.     |          |           |        |  |  |
| ##             | Step | Entered             | R-Square | R-Square | C(p)     | AIC       | RMSE   |  |  |
| ##             |      |                     |          |          |          |           |        |  |  |
| ##             | 1    | poor_prop           | 0.5821   | 0.5812   | 360.1834 | 2937.2306 | 5.0725 |  |  |
| ##             | 2    | room_num            | 0.6621   | 0.6607   | 201.7272 | 2836.8095 | 4.5660 |  |  |
| ##             | 3    | teachers            | 0.7158   | 0.7140   | 96.1099  | 2755.4641 | 4.1922 |  |  |
| ##             | 4    | air_qual            | 0.7278   | 0.7256   | 73.8717  | 2736.5235 | 4.1064 |  |  |
| ##             | 5    | dist1               | 0.7474   | 0.7447   | 36.6909  | 2702.6228 | 3.9604 |  |  |
| ##             | 6    | crime_rate          | 0.7547   | 0.7516   | 23.9579  | 2690.4000 | 3.9065 |  |  |
| ##             | 7    | resid_area          | 0.7587   | 0.7551   | 18.0085  | 2684.5478 | 3.8789 |  |  |
| ##             | 8    | age                 | 0.7615   | 0.7575   | 14.3859  | 2680.9158 | 3.8604 |  |  |
| ##             | 9    | room_num.airportYES | 0.7634   | 0.7589   | 12.6273  | 2679.1138 | 3.8493 |  |  |
| ##             | 10   | airport.YES         | 0.7655   | 0.7605   | 10.3180  | 2676.7177 | 3.8358 |  |  |
| ##             | 11   | n_hos_beds          | 0.7666   | 0.7611   | 10.1581  | 2676.4990 | 3.8311 |  |  |
| ##             | 12   | waterbody.Lake      | 0.7674   | 0.7615   | 10.4771  | 2676.7652 | 3.8283 |  |  |
| ##             |      |                     |          |          |          |           |        |  |  |

# FIGURE: Summary of Forward Selection

# Variable Selection - Testing-Based

# 3. Stepwise Selection (significant level 0.05)

#### Stepwise Selection Summary

|      |                     | Added/   |          | Adj.     |          |           |        |
|------|---------------------|----------|----------|----------|----------|-----------|--------|
| Step | Variable            | Removed  | R-Square | R-Square | C(p)     | AIC       | RMSE   |
| 1    | poor_prop           | addition | 0.582    | 0.581    | 360.1830 | 2937.2306 | 5.0725 |
| 2    | room_num            | addition | 0.662    | 0.661    | 201.7270 | 2836.8095 | 4.5660 |
| 3    | teachers            | addition | 0.716    | 0.714    | 96.1100  | 2755.4641 | 4.1922 |
| 4    | air_qual            | addition | 0.728    | 0.726    | 73.8720  | 2736.5235 | 4.1064 |
| 5    | dist1               | addition | 0.747    | 0.745    | 36.6910  | 2702.6228 | 3.9604 |
| 6    | crime_rate          | addition | 0.755    | 0.752    | 23.9580  | 2690.4000 | 3.9065 |
| 7    | resid_area          | addition | 0.759    | 0.755    | 18.0080  | 2684.5478 | 3.8789 |
| 8    | age                 | addition | 0.761    | 0.757    | 14.3860  | 2680.9158 | 3.8604 |
| 9    | room_num.airportYES | addition | 0.763    | 0.759    | 12.6270  | 2679.1138 | 3.8493 |
| 10   | room_num.airportYES | removal  | 0.761    | 0.757    | 14.3860  | 2680.9158 | 3.8604 |
| 11   | airport.YES         | addition | 0.763    | 0.758    | 13.4560  | 2679.9551 | 3.8526 |
| 12   | airport.YES         | removal  | 0.761    | 0.757    | 14.3860  | 2680.9158 | 3.8604 |

FIGURE: Summary of Stepwise Selection

# VARIABLE SELECTION - CRITERION-BASED

- 1. Akaike information criterion (AIC)
  - AIC = nln(RSS/n)+2(p+1)
  - Selected Model:

```
Step: ATC=1306.64
```

price ~ crime rate + resid area + air aual + room num + age + dist1 + teachers + poor\_prop + airport.YES + n\_hos\_beds + room\_num.airportYES 

|                       | υt | Sum of Sq | RSS    | ATC    |
|-----------------------|----|-----------|--------|--------|
| <none></none>         |    |           | 6898.3 | 1306.6 |
| - n_hos_beds          | 1  | 31.83     | 6930.1 | 1306.9 |
| - airport.YES         | 1  | 63.43     | 6961.7 | 1309.0 |
| - room_num.airportYES | 1  | 75.83     | 6974.1 | 1309.9 |
| - age                 | 1  | 103.27    | 7001.6 | 1311.8 |
| - resid_area          | 1  | 103.78    | 7002.1 | 1311.8 |
| - crime_rate          | 1  | 244.69    | 7143.0 | 1321.4 |
| - air_qual            | 1  | 278.87    | 7177.2 | 1323.7 |
| - dist1               | 1  | 746.77    | 7645.0 | 1354.2 |
| - room_num            | 1  | 766.93    | 7665.2 | 1355.5 |
| - poor_prop           | 1  | 1020.27   | 7918.6 | 1371.1 |
| - teachers            | 1  | 1221.89   | 8120.2 | 1383.2 |

#### Call:

lm(formula = price ~ crime\_rate + resid\_area + air\_qual + room\_num + age + dist1 + teachers + poor prop + airport.YES + n hos beds + room\_num.airportYES, data = hp\_data)

#### Coefficients:

| (Intercept) | crime_rate | resid_area  | air_qual   | room_num            |  |
|-------------|------------|-------------|------------|---------------------|--|
| 3.81829     | -0.09627   | -0.12288    | -12.81830  | 3.31533             |  |
| teachers    | poor_prop  | airport.YES | n_hos_beds | room_num.airportYES |  |
| 0.86919     | -0.35912   | -7.09212    | 0.17581    | 1.23765             |  |

-0.02858

DEC 2023

dis+1

-1.05308

# Variable Selection - Criterion-Based

- 2. Bayes information criterion (BIC)
  - BIC = nln(RSS/n)+(p+1)ln(n)
  - Selected Model:

```
Step: AIC=1348.11
price ~ crime rate + resid area + air aual + room num + dist1 +
    teachers + poor_prop
             Df Sum of Sa
                            RSS
                         7131.8 1348.1
<none>
                 117 13 7249 0 1349 8
- resid area 1
- crime_rate 1 215.12 7347.0 1356.3
- air_qual 1 424.99 7556.8 1369.8
- dist1
             1 704.86 7836.7 1387.4
- teachers
           1 1312.70 8444.5 1423.4
- poor_prop 1 1421.29 8553.1 1429.5
            1 1836.76 8968.6 1452.4
- room num
Call:
lm(formula = price ~ crime_rate + resid_area + air_qual + room_num +
    dist1 + teachers + poor prop. data = hp_data)
Coefficients:
(Intercept)
             crime_rate
                          resid_area
                                         air_aual
                                                      room_num
                                                                     dist1
                                                                               teachers
                                                                                           poor_prop
    1.18069
               -0.08956
                            -0.12973
                                        -15.21682
                                                       3.87622
                                                                  -0.94369
                                                                                0.89594
                                                                                            -0.39570
```

Conclusion: Since BIC penalized larger model more heavily than AIC, it tends to select fewer predictors.

# Variable Selection - Criterion-Based

# 3. Adjusted $R^2$

- Plot of No. parameters vs. Adjusted  $R^2$ 



- Selected Model (12 predictors) with largest adjusted  $R^2$ 

| dist1           | age<br>"*"  | room_num<br>"*"     | air_qual<br>"*" | resid_area          | crime_rate             |
|-----------------|-------------|---------------------|-----------------|---------------------|------------------------|
| waterbody.River | n_hot_rooms | n_hos_beds<br>"*"   | airport.YES     | poor_prop           | teachers<br>"*"        |
|                 |             | room_num.airportYES | rainfall        | oody.Lake.and.River | waterbody.Lake waterbo |

# Variable Selection - Criterion-Based

# 4. Mallows' $C_p$

- Plot of No. parameters vs. Mallows'  $C_p$ 



No. of Prameters

### - Selected Model (11 predictors) with smallest Mallows' $C_p$

| dist1           | age<br>"*"  | room_num<br>"*"     | air_qual<br>"*" | resid_area<br>"*"        | crime_rate<br>"*" |
|-----------------|-------------|---------------------|-----------------|--------------------------|-------------------|
| waterbody.River | n_hot_rooms | n_hos_beds          | airport.YES     | poor_prop                | teachers<br>"*"   |
|                 |             | room_num.airportYES | rainfall        | waterbody.Lake.and.River | waterbody.Lake    |

# VARIABLE SELECTION SUMMARY

1. Summary of result: Several selection methods give very similar fit

| 16 4 1      | Cuinna mata |            | ala anal       |                    |                   | 3:-41                   | 4        |                         |
|-------------|-------------|------------|----------------|--------------------|-------------------|-------------------------|----------|-------------------------|
| Methods     | Crime_rate  | resid_area | air_qual       | room_num           | age               | dist1                   | teachers | poor_prop               |
| Backward    | √           | √          | √              | √                  | √                 | √                       | <b>~</b> | √                       |
| Forward     | √           | √          | √              | √                  | √                 | √                       | √        | √                       |
| Stepwise    | √           | √          | √              | √                  | √                 | √                       | √        | √                       |
| AIC         | √           | √          | √              | √                  | √                 | √                       | <b>√</b> | ✓                       |
| BIC         | √           | √          | √              | √                  |                   | √                       | √        | ✓                       |
| Adjust R2   | √           | √          | √              | √                  | √                 | √                       | √        | √                       |
| Mallows' Cp | √           | √          | √              | √                  | √                 | √                       | √        | √                       |
| Methods     | airportYes  | n_hos_beds | n_hot_<br>room | waterbody<br>river | waterbody<br>lake | waterbody<br>lake&river | rainfall | room_num:<br>airportYes |
| Backward    | √           |            |                |                    |                   |                         |          | √                       |
| Forward     | √           | √          |                |                    | √                 |                         |          | √                       |
| Stepwise    |             |            |                |                    |                   |                         |          |                         |
| AIC         | √           | √          |                |                    |                   |                         |          | √                       |
| BIC         |             |            |                |                    |                   |                         |          |                         |
| Adjust R2   | √           | √          |                |                    | √                 |                         |          | ✓                       |
| Mallows' Cp | √           | √          |                |                    |                   |                         |          | √                       |

- 2. Similar fit model leads to similar fit, the data are not ambiguous.
- 3. Generally, criterion-based methods are preferred
- 4. Based on preference of criterion-based methods and similar conclusions from different models, we choose AIC model for further analysis.

# DIAGNOSTICS - NON-LINEARITY AND CONSTANT VARIANCE

# Heteroskedasticity:



# DIAGNOSTICS - NON-LINEARITY AND CONSTANT VARIANCE

No distinct patterns occurred in the residual plots.



Conjecture: The number of rooms in the house has a significant impact on the price.

# NORMALITY CHECK

## 1. QQ Plot and Histogram of Residuals





### 2. Shapiro-Wilk Test

- -W = 0.95024, p-value = 1.169e-11;
- Normality assumption failed.

# FIND LARGE LEVERAGE POINTS

Hat matrix:  $H = X(X^TX)^{-1}X^T$ .

Leverage:  $h_i = H_{ii}$ .

Rule of thumb: Leverages greater than 2(p+1)/n are considered high.



# USE STUDENTIZED RESIDUALS TO FIND OUTLIERS



Find outlier(s) with Bonferroni correction:
- Point 350.

# FIND INFLUENTIAL POINTS

# 1. Compute Cook's distance



# 2. Compare coefficients of models

#### - Original Model

| (Intercept) | crime_rate  | resid_area       | air_qual       | room_num | age    | dist1  | teachers |
|-------------|-------------|------------------|----------------|----------|--------|--------|----------|
| 3.818       | -0.096      | -0.123           | -12.818        | 3.315    | -0.029 | -1.053 | 0.869    |
| poor_prop   | airport.YES | n_hos_beds room_ | num.airportYES |          |        |        |          |
| -0.359      | -7.092      | 0.176            | 1.238          |          |        |        |          |

#### - Model without Influential Points

| (Intercept) | crime_rate  | resid_area      | air_qual        | room_num | age    | dist1  | teachers |
|-------------|-------------|-----------------|-----------------|----------|--------|--------|----------|
| -1.450      | -0.106      | -0.118          | -13.527         | 4.079    | -0.035 | -1.027 | 0.877    |
| poor_prop   | airport.YES | n_hos_beds room | _num.airportYES |          |        |        |          |
| -0.275      | -8.403      | 0.148           | 1.433           |          |        |        |          |

# SUMMARY OF DIAGNOSTICS

- 1. Non-linearity assumption is almost obeyed.
- 2. There is some heteroscedasticity problem shown in the residual plots. In the latter section, we will adopt weighted least squares and robust regression to try to solve it.
- 3. Some unusual points are found. Coefficients don't change too much after removal of them.
- 4. The dataset doesn't follow the normal distribution. We are going to use the Box-Cox method to handle it.

# Box-Cox method





Box-Cox transformation is needed.

- The optimal  $\lambda$ : 0.3434343.

# Box-Cox method



# WEIGHTED LEAST SQUARES

Since the unequal variance occurs in diagnostics, we applied iteratively reweighted least squares (IRWLS) to solve this problem (based on AIC model selected before).

```
Intercept: 3.818291
         crime rate
                              resid area
                                                     air qual
                                                                           room num
        -0.09627480
                             -0.12288455
                                                 -12.81830336
                                                                         3.31532896
                 age
                                   dist1
                                                     teachers
                                                                          poor_prop
        -0.02857932
                             -1.05308371
                                                   0.86918735
                                                                        -0.35912101
        airport.YES
                              n_hos_beds room_num.airportYES
        -7.09211736
                              0.17580648
                                                   1.23764740
Number of iterations: 1
```

# Robust Regression - Least Squares

Choose the loss function as  $L(z) = z^2$ ,

```
Call:
lm(formula = price ~ crime rate + resid area + air qual + room num +
   age + dist1 + teachers + poor prop + airport.YES + n hos beds +
   room num.airportYES. data = hp data)
Residuals:
           10 Median 30
   Min
                               Max
-10.062 -2.345 -0.644 1.915 18.274
Coefficients:
                  Estimate Std. Error t value Pr(>|t|)
(Intercept)
                 3.81829 4.53359 0.842 0.40009
crime_rate
                -0.09627 0.02358 -4.083 5.22e-05 ***
resid_area
               -0.12288 0.04621 -2.659 0.00810 **
air qual
                 -12.81830 2.94071 -4.359 1.61e-05 ***
                 3.31533 0.45864 7.229 1.99e-12 ***
room num
                  age
                 -1.05308 0.14764 -7.133 3.74e-12 ***
dist1
teachers
                 0.86919 0.09526 9.124 < 2e-16 ***
                 -0.35912 0.04307 -8.338 8.45e-16 ***
poor_prop
               -7.09212 3.41146 -2.079 0.03817 *
airport.YES
n_hos_beds
             0.17581 0.11939 1.473 0.14154
                            0.54452 2.273 0.02348 *
room_num.airportYES 1.23765
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```

# Robust regression - Least Absolute Deviations

# Choose the loss functions as L(z) = |z|,

```
Call: rq(formula = price ~ crime_rate + resid_area + air_qual + room_num +
   age + dist1 + teachers + poor_prop + airport.YES + n_hos_beds +
   room_num.airportYES, data = hp_data)
```

tau: [1] 0.5

#### Coefficients:

|                     | coefficients | lower bd  | upper bd |
|---------------------|--------------|-----------|----------|
| (Intercept)         | -1.18281     | -17.24150 | 14.61471 |
| crime_rate          | -0.12283     | -0.13847  | -0.07464 |
| resid_area          | -0.05077     | -0.14035  | 0.02719  |
| air_qual            | -12.36123    | -17.76264 | -7.04860 |
| room_num            | 3.70837      | 1.83361   | 5.91333  |
| age                 | -0.02698     | -0.04739  | -0.01024 |
| dist1               | -0.78087     | -1.13053  | -0.59252 |
| teachers            | 0.77480      | 0.66089   | 0.95947  |
| poor_prop           | -0.32565     | -0.41542  | -0.23272 |
| airport.YES         | -7.61772     | -19.64258 | 7.71649  |
| n_hos_beds          | 0.07557      | -0.10851  | 0.29735  |
| room num.airportYES | 1.33030      | -1.13276  | 3.31881  |

# ROBUST REGRESSION - HUBER'S METHOD

Combining the above two methods together (apply LS when z is close to zero and apply LAD when z is far away from zero),

```
Call: rlm(formula = price ~ crime_rate + resid_area + air_qual + room_num +
   age + dist1 + teachers + poor_prop + airport.YES + n_hos_beds +
   room_num.airportYES, data = hp_data)
Residuals:
   Min
            10 Median
                                  Max
-9.7481 -2.0303 -0.2095 2.2308 20.2465
Coefficients:
                   Value
                           Std. Error t value
(Intercept)
                    1.6011
                             3.9512
                                        0.4052
                    -0.1149
                            0.0206 -5.5892
crime rate
resid area
                   -0.0947 0.0403 -2.3501
air_qual
                   -11.8568
                            2.5629 -4.6262
                     3.5144
                            0.3997 8.7921
room_num
                            0.0094
age
                    -0.0313
                                       -3.3332
dist1
                    -0.9156
                            0.1287
                                       -7.1160
teachers
                    0.8083
                            0.0830
                                       9.7362
                    -0.3299
                            0.0375
                                       -8.7876
poor_prop
airport.YES
                    -9.3530
                            2.9732
                                       -3.1457
n hos beds
                    0.1220
                             0.1041
                                       1.1729
room_num.airportYES
                   1.5964
                             0.4746
                                        3.3639
```

Residual standard error: 3.08 on 470 degrees of freedom

# Robust Regression - Least Trimmed Squares

Least Trimmed Squares method will minimizes the sum of squares of q of n smallest residues.

| (Intercept) | crime_rate  | resid_area  | air_qual            |
|-------------|-------------|-------------|---------------------|
| -1.21721013 | -0.40551785 | -0.16498579 | 2.86747041          |
| room_num    | age         | dist1       | teachers            |
| 2.73108622  | -0.06435727 | -0.77025761 | 0.88879160          |
| poor_prop   | airport.YES | n_hos_beds  | room_num.airportYES |
| -0.12900842 | 1.63044620  | 0.04930835  | -0.25616092         |

# SUMMARY OF PROBLEM SOLVING

## Comparison between all the introduced methods.

| Methods                   | Intercept | Crime rate | resid area | air qual   | room num   | age                     |
|---------------------------|-----------|------------|------------|------------|------------|-------------------------|
| Box-Cox (lambda = 0.3)    | 3.8366    | -0.0191    | -0.0089    | -1.6099    | 0.2577     | -0.0021                 |
| Box-Cox (lambda = 0.34)   | 3.9995    | -0.021     | -0.0104    | -1.8118    | 0.2992     | -0.0025                 |
| Box-Cox (lambda = 0.4)    | 4.2431    | -0.0242    | -0.0131    | -2.1633    | 0.374      | -0.0031                 |
| Weighted least squares    | 3.8183    | -0.0963    | -0.1229    | -12.8183   | 3.3153     | -0.0286                 |
| Least Squares             | 3.8183    | -0.0963    | -0.1229    | -128183    | 3.3153     | -0.0286                 |
| Least Absolute Deviations | -1.1828   | -0.1228    | -0.0508    | -12.3612   | 3.7083     | -0.027                  |
| Huber's Method            | 1.6011    | -0.1149    | -0.0947    | -11.8568   | 3.5144     | -0.0313                 |
| Least Trimmed Squares     | -1.217    | -0.4055    | -0.165     | 2.8675     | 2.7311     | -0.0644                 |
| Methods                   | dist1     | teachers   | poor_prop  | airportYes | n_hos_beds | room_num:<br>airportYes |
| Box-Cox (lambda = 0.3)    | -0.1072   | 0.0917     | -0.0552    | -0.6073    | 0.0108     | 0.1102                  |
| Box-Cox (lambda = 0.34)   | -0.1222   | 0.1042     | -0.0614    | -0.6983    | 0.0128     | 0.1264                  |
| Box-Cox (lambda = 0.4)    | -0.1485   | 0.1263     | -0.0721    | -0.8611    | 0.0165     | 0.1553                  |
| Weighted least squares    | -1.0531   | 0.8692     | -0.3591    | -7.0921    | 0.1758     | 1.2376                  |
| Least Squares             | -1.0531   | 0.8692     | -0.3591    | -7.0921    | 0.1758     | 1.2376                  |
| Least Absolute Deviations | -0.7809   | 0.7748     | -0.3257    | -7.6177    | 0.0756     | 1.3303                  |
| Huber's Method            | -0.9156   | 0.8083     | -0.3299    | -0.953     | 0.122      | 1.5964                  |
| Least Trimmed Squares     | -0.7703   | 0.8888     | -0.129     | 1.6304     | 0.0493     | -0.2562                 |

# SUMMARY OF PROBLEM SOLVING

- 1. The Box-Cox transformation is needed. After comparison, the results of lambda choosing different values near the optimum are not sensitive. For convenience, we choose  $\lambda=0.34$  in the following steps.
- 2. The Box-Cox transformation is a function of logarithm, so the inverse transformation is exponential, both of them have good properties, which is very convenient.

# PREDICTION

Based on our previous analysis, we selected the box-cox transformed AIC model( $\lambda = 0.34$ ) with following predictors:

- crime\_rate
- resid area
- air\_qual
- room\_num
- age
- dist1
- teachers
- poor\_prop
- airport.YES
- n\_hos\_beds
- room\_num.airportYES

# PREDICTION

There is 482 observations in the house price dataset. We selected 80% of observations as training data, and 20% of observations as test data.

```
##Training set RMSE

rmse((mod.lm$fit*0.34 + 1)^(1/0.34), tr$price)

[1] 3.423345

"``{r}

#Test set RMSE

rmse((predict(mod.lm,newdata = te)*0.34 + 1)^(1/0.34), te$price)

[1] 3.589819
```

FIGURE: RMSE for Box-cox transformed AIC model

We fit the Box-cox transformed AIC model using our training data. Based on the R output, the training RMSE is 3.423345, and the test RMSE is 3.589819.

# PREDICTION INTERVAL

Question: What would be the 99% prediction interval for the house price for crime\_rate = 0.5, resid\_area = 30, air\_qual = 0.5, room\_num = 5, dist1 = 5, teacher = 20, poor\_prop = 10, airport.YES = 1, n\_hos\_beds = 5, room\_num.airportYES = 5?



Based on the result of prediction interval, the predicted house price for a community with given predictor values is approximately 17.66325. We are 99% confident that the house price with these predictor values will fall between approximately 10.75878 and 26.99399.

# SHRINKAGE METHOD - RIDGE REGRESSION

We would like to apply shrinkage method like ridge regression to prevent over-fitting during prediction. We need to find the best lambda that minimize the generalized cross-validation.



FIGURE: Select the best  $\lambda$  by LOOCV

From the above graph, we observed that the best lambda that yield smallest error is  $\lambda=0$ , which implies that the penalty term has no effect and coefficient are the same as least squares regression.

# SHRINKAGE METHOD - LASSO REGRESSION

Another shrinkage method we want to use is lasso regression. In order to control the strength of penalty we apply on absolute values of the coefficients, we need to find the fraction of the L1 penalty by cross-validation.



Based on the above graph, the best fraction of L1 norm that minimize cross validation error is 0.747474.

# SHRINKAGE METHOD - LASSO REGRESSION

```
```{r}
pred.lars.price1 <- predict(lmod.price, trainX, s=0.7474747.</pre>
mode="fraction")
#Training RMSE - Lasso
print(rmse((pred.lars.price1$fit*0.34 + 1)^(1/0.34), tr$price))
Г17 3.393679
```{r}
testX = as.matrix(te[,-1])
pred.lars.price2 <- predict(lmod.price, testX, s=0.7474747,</pre>
mode="fraction")
#Test RMSE - Lasso
rmse((pred.lars.price2fit*0.34 + 1)^(1/0.34), te$price)
Γ17 3.711059
```

FIGURE: RMSF for Lasso

The test RMSE for Lasso Regression stands at 3.711059, which is higher than the test RMSE of the Box-Cox transformed AIC model. Consequently, Lasso Regression has no improvement on our model's performance.

# CONCLUSION

| Model                                                     | Test RMSE |
|-----------------------------------------------------------|-----------|
| Box-Cox Transformed Least Square model ( $\lambda=0.34$ ) | 3.59      |
| Ridge Regression(No effect, $\lambda=0$ )                 | 3.59      |
| Lasso Regression                                          | 3.71      |

TABLE: Model Comparison

In conclusion, we selected the Box-cox transformed least square model(with  $\lambda \approx 0.34$ ) using AIC criterion and concluded that the following predictor have significant influence on house price, which includes: crime\_rate, resid\_area, air\_qual, room\_num, age, dist1, teachers, poor\_prop, airport.YES, n\_hos\_beds, and the interaction term room\_num\*airport.YES.

That's all for our presentation.

Thank You!