Lab Summary Chemical Equilibrium

Initial Data

Solution	mL 2x10^-3 M	mL 2x10^-3 M	0.5 M	Absorbance @ 445
	Fe^3+	SCN^-	HNO_3	nm
1	5.0	1.0	4.0	0.066
2	5.0	2.0	3.0	0.170
3	5.0	3.0	2.0	0.251
4	5.0	4.0	1.0	0.342
5	5.0	5.0	0.0	0.423

Analysis

Initial volumes and molarities of ions were multiplied to find initial moles

Solution initial moles Fe^3+ initial moles SCN^-

1	1x10^-5	2x10^-6
2	1x10^-5	4x10^-6
3	1x10^-5	6x10^-6
4	1x10^-5	8x10^-6
5	1x10^-5	1x10^-5

The concentrations of FeSCN^2+ were found by dividing each absorbance number by the constant found last class (3820)

```
0.066 / 3820 = 1.7 x 10^-5 M

0.170 / 3820 = 4.5 x 10^-5 M

0.251 / 3820 = 6.6 x 10^-5 M

0.342 / 3820 = 9.0 x 10^-5 M

0.423 / 3820 = 1.1 x 10^-4 M
```

These concentrations were then multiplied by volume to find moles of FeSCN^2+ at equilibrium

```
1.7 \times 10^{-5} \text{ M} * 0.1 \text{ L} = 1.7 \times 10^{-6}

4.5 \times 10^{-5} \text{ M} * 0.1 \text{ L} = 4.5 \times 10^{-6}

6.6 \times 10^{-5} \text{ M} * 0.1 \text{ L} = 6.6 \times 10^{-6}

9.0 \times 10^{-5} \text{ M} * 0.1 \text{ L} = 9.0 \times 10^{-6}

1.1 \times 10^{-4} \text{ M} * 0.1 \text{ L} = 1.1 \times 10^{-5}
```

I am unfortunately unable to find the equilibrium concentrations for the reactants.