Algoritmos en Teoría de Invariantes

Ejercicios Semanas 5 y 6

- 1. Demuestre que un ideal I = (1) si y sólo si su base de Gröbner reducida es $\{1\}$.
- 2. Sea k un cuerpo, \overline{k} la clausura algebráica de k e $I\subseteq k[x_1,\ldots,x_n]$ un ideal radical con $\left|V_{\overline{k}}(I)\right|=m<\infty$. Demuestre que $\dim_k\left(k[x_1,\ldots,x_n]/I\right)=m$ de la siguiente forma
 - (a) Asuma que $k = \overline{k}$ y demuéstrelo.
 - (b) Si V es un espacio vectorial sobre k, muestre que

$$\dim_{k}(V) = \dim_{\overline{k}} \left(V \otimes_{k} \overline{k} \right).$$

(c) Demuestre que

$$(k[x_1, \ldots, x_n]/I) \otimes_k \overline{k} \cong \overline{k}[x_1, \ldots, x_n]/J,$$

donde J es el ideal definido por los generadores de I en $\overline{k}[x_1,\, \ldots\,,\, x_n].$

- (d) Si I es un ideal radical en $k[x_1,\ldots,x_n],\,J$ es un ideal radical en $\overline{k}[x_1,\ldots,x_n].$
- 3. Para R un anillo noetheriano e I un ideal de R se tiene que

$$I = [I + (f)] \cap (I : f^{\infty}).$$

4. Demuestre que la intersección arbitraria de ideales monomiales es un ideal monomial.