데이터 분석의 기초와 실습

Wan Ju Kang

강의 목표

- 기계학습에 대해서 high-level 개념 이해 및 용어 소개
- 기계학습의 주요 알고리즘 소개 및 이해
- 주요 딥러닝 알고리즘 소개 및 이해
- 학습된 내용을 실제 python으로 구현 및 실습

파트 별 강의 개요

- Weeks 1~2) 데이터 분석의 기초와 실습
 - Part 1) 기계학습(machine learning) 및 python 소개, 선형 회귀(linear regression) 알고리즘
 - Part 2) 비선형 회귀(non-linear regression) 및 분류(classification) 알고리즘
- Weeks 3~4) 머신러닝 응용 알고리즘과 실습
 - Part 3) 비지도 학습(unsupervised learning) 개념 및 알고리즘 소개
 - Part 4) 앙상블 방법 및 의사 결정 나무(decision tree) 알고리즘 소개
- Weeks 5~6) 딥러닝 (deep learning) 알고리즘과 실습
 - Part 5) 퍼셉트론(perceptron) 및 역전파(backpropagation) 소개
 - Part 6) 합성곱 신경망(convolutional neural network) 및 회귀 신경망(recurrent neural network) 응용

Part 1) 기계학습 및 python 소개, 선형 회귀 알고리즘

1. 기계학습의 소개

- 1) 기계학습이 실생활에서 쓰이는 곳
- 2) 기계학습이란 무엇인가?
- 3) 기계학습의 종류

2. 회귀

- 1) 선형 회귀 분석 알고리즘 소개
- 2) 알고리즘 평가(evaluation) 방법 소개
- 3) 다중 선형 회귀 분석(multiple linear regression) 알고리즘 소개

이미지의 동물을 맞히는 알고리즘 어떻게?

개? 고양이? 구분하는 하는 법?

그림을 그리는 알고리즘

LANADA

- 생성적 적대 신경망
 - Generative Adversarial Network (GAN)

입력 사진

입력된 사진을 고흐 화풍으로 그려본 그림

고흐 화풍

추천 알고리즘

• Youtube, Netflix, 쿠팡 등등

매일우유 오리지낼 멸균, 200ml, 24팩 13,740원 🕜로켓와우 내일(목) 12/16 도착 보장

**** (116980)

⑤ 최대 687원 적립

탐사수, 500ml, 40개 8,390원 🖋 로켓배송

내일(목) 12/16 도착 보장 **** (893196)

③ 최대 420원 적립

제주삼다수, 2L, 12개 11,760원 🖋 💯

모레(금) 12/17 도착 예정 (일반

**** (435112) 실 최대 588원 적립

LANADA

쿠랑추천 추가할인 쿠폰 귤탐 당도선별 감귤 로열과, 3kg(S-M),

와무합인가 53% 29,900 13,900원 # 로켓프레시 (100g당 463원)

내일(목) 새벽 도착 보장 **** (14502)

⑤ 최대 695원 적립

곰곰 GAP고당도 제주감귤, 2.5kg, 1박

와우할인가 47% 24,920 12,990원 🖋 로켓프레시 내일(목) 새벽 도착 보장 **** (15786)

설 최대 650원 적립

펩시 콜라 제로 슈거 라임향, 210ml, 30

14,910원 🖋 로켓배송 내일(목) 12/16 도착 보장 새 상품, 박스 훼손 (28) 최저14,460원 **** (26693)

설대 745원 적립

제주삼다수, 2L, 24개

23,520원 🖋 🖘 (100ml당 49원) 모레(금) 12/17 도착 예정 (일반

**** (435111) 정대 1,176원 적립

매일 소화가 잘되는 우유, 190ml, 24개 15,180원 #로켓배송 (100ml당 333원)

내일(목) 12/16 도착 보장 ★★★★★ (45717)

설치대 759원 적립

바둑, 스타크래프트를 하는 알고리즘

AlphaGO

AlphaStar

이러한 알고리즘들은 모두 기계 학습을 기반으로 사람의 지능이 있어야만 가능하다고 여겨진 일들을 할 수 있음!

1. 기계학습의 소개

- 1) 기계학습이 실생활에서 쓰이는 곳
- 2) 기계학습이란 무엇인가?
 - 1. 기계학습 = 패턴 찾기
 - 2. 기계학습 vs 인공지능, 기계학습 vs 통계
- 3) 기계학습의 종류

2. 회귀

- 1) 선형 회귀 분석 알고리즘 소개
- 2) 알고리즘 평가(evaluation) 방법 소개
- 3) 다중 선형 회귀 분석(multiple linear regression) 알고리즘 소개

- 기계학습의 정의
 - 수집된 데이터 셋(data set)에 존재하는 특정 패턴을 학습하여
 - 유용한 알고리즘을 개발하는 컴퓨터 공학의 한 갈래

데이터

machine learning

알고리즘

machine learning

학습용 데이터 (개, 고양이)

개와 고양이를 구분하는 분류 알고리즘

$$y = x - 1$$

$$y = 2x - 1$$

$$y = x^2 + 1$$

고양이 =0, 개 =1

F는 상당히 복잡한 형태의 함수이기에 찾기 어렵다!

1. 기계학습의 소개

- 1) 기계학습이 실생활에서 쓰이는 곳
- 2) 기계학습이란 무엇인가?
 - 1. 기계학습 = 패턴 찾기
 - 2. 기계학습 vs 인공지능, 기계학습 vs 통계
- 3) 기계학습의 종류

2. 선형 회귀 분석

- 1) 선형 회귀 분석 알고리즘 소개
- 2) 알고리즘 평가(evaluation) 방법 소개
- 3) 다중 선형 회귀 분석(multiple linear regression) 알고리즘 소개

LANADA

인공지능 vs 기계학습

- 인공지능
 - 기계 혹은 시스템에 의해 만들어진 지능
 - 사람처럼 주변 환경과 상호작용하는 다양한 방법을 총칭
- 머신러닝
 - 기계(컴퓨터)가 직접 기본적인 규칙을 가지 고 입력받은 데이터를 분석
 - 데이터 안의 패턴 및 규칙성을 학습하여 유 용한 상호작용 방법
- 머신러닝은 인공지능의 한 방법!

규칙 기반 인공지능(Rule-based AI)

• 1999년에 이미 컴퓨터 대전 모드 존재

• 특징

- 사람이 미리 규칙을 정하여서 그 규칙대로 자신의 전략을 진행 (rule-based algorithm)
 - 일꾼 7마리 → 첫번째 건물 건설 → 8마리로 공격
- 데이터를 바탕으로 학습한 것이 아니라 사람의 직관을 바탕으로 정함
- 특정 상황에서는 상당히 강력함
- 사람이 미리 상정하지 않은 상황에서는 성 능이 매우 저하됨
- 인공지능이지만, 머신러닝은 아님!

VS computer

Rule-based algorithm

LANADA

스타크래프트: 머신러닝

- Alphastar
 - 머신러닝 기법을 활용하여서,
 - 사람의 실제 경기 데이터를 기반으로 실 제 경기와 비슷하게 플레이하는 알고리 즘 개발
 - 컴퓨터 알고리즘들 끼리 플레이한 경기 데이터를 기반으로 알고리즘들이 스스 로 자신들의 전략을 개선
 - 이 과정에서, 컴퓨터 알고리즘들은 스스로 '패스트 다크템플러' (극단적인 도박수)을 배움
 - 나중에는 이 전략을 카운터 치는 전략도 스스로 학습
 - 최종적으로 프로게이머 수준으로 성능이 올라감!

규칙 기반 알고리즘 vs 머신러닝

- 규칙 기반 알고리즘
 - 장점
 - 데이터가 없거나 적은 경우에도 개발 가능
 - 사람이 직접 만들기에, 알고리즘의 버그 등 이 발견되었을 때 개선이 쉬움
 - 최소한의 성능이 보장됨
 - 단점
 - 모든 상황을 다 고려해서 알고리즘을 만들 기가 어려움
 - 잠재적인 성능이 머신러닝에 비해서 떨어지

- 머신러닝
 - 장점
 - 데이터가 충분히 많다면, 최종적인 잠재력 이 높음
 - 사람이 직접 모든 경우의 수를 고려하지 않 아서 편리함
 - 단점
 - 충분한 양의 정확한 데이터가 필요함
 - 잘못된 방식으로 학습할 경우 성능이 불안 정한 경우가 종종 나옴
 - 학습을 하였는데, 성능이 잘 나오지 않을 경우 개선하기가 어려움

실제 상황에서는 두가지 방법의 장점을 균형 있게 섞어서 사용하는 것이 중요!

LANADA

기계학습 vs 통계

- 두 가지 방법 둘다 데이터를 기반으로 통계적 패턴을 분석하는 공통점이 있다.
- 다만, 통계는 주어진 데이터의 분석에 더 초점을 가지고 있고,
 - ex) 통계를 내보니, 사람들이 상품 A의 만족도가 90%, B는 80%이다.
- 기계학습의 경우에는, 분석을 바탕으로 자동적으로 변화하는 알고리즘까지 개발한다는 특징이 있다.
 - ex) 상품 A의 만족도가 x, B의 만족도가 y일 경우 상품 A를 추천 비율은 $\frac{x}{x+y}$ 로 하자.

1. 기계학습의 소개

- 1) 기계학습이 실생활에서 쓰이는 곳
- 2) 기계학습이란 무엇인가?
 - 1. 기계학습 = 패턴 찾기
 - 2. 기계학습 vs 인공지능, 기계학습 vs 통계
- 3) 기계학습의 종류
 - 1. 지도학습, 비지도학습, 강화학습
 - 2. 지도학습의 종류: 회귀, 분류

2. 선형 회귀 분석

- 1) 선형 회귀 분석 알고리즘 소개
- 2) 알고리즘 평가(evaluation) 방법 소개
- 3) 다중 선형 회귀 분석(multiple linear regression) 알고리즘 소개

기계학습의 3가지 방법

기계학습(Machine Learning)

지도학습 (Supervised Learning)

정답(Label)이 있는 data 를 받고, 새로운 문제에 대해서 정답을 맞추는 기 계학습

RECOGNITION 분류(classification) Label (개, 고양이)

비지도학습 (Unsupervised Learning)

정답 (Label)이 <mark>없는</mark> data 를 받고, data의 구조를 분석하는 기계학습

군집화(clustering)

강화학습 (Reinforcement Learning)

스스로 자신에게 가장 필 요한 data를 선택하면서 학습을 하는 기계학습

전략 시뮬레이션 학습

1. 기계학습의 소개

- 1) 기계학습이 실생활에서 쓰이는 곳
- 2) 기계학습이란 무엇인가?
 - 1. 기계학습 = 패턴 찾기
 - 2. 기계학습 vs 인공지능, 기계학습 vs 통계
- 3) 기계학습의 종류
 - 1. 지도학습, 비지도학습, 강화학습
 - 2. 지도학습의 종류: 회귀, 분류

2. 회귀

- 1) 선형 회귀 분석 알고리즘 소개
- 2) 알고리즘 평가(evaluation) 방법 소개
- 3) 다중 선형 회귀 분석(multiple linear regression) 알고리즘 소개

지도학습(Supervised Learning)

- 주어진 데이터 $(x_i, y_i)_{1 \le i \le n}$ 들의 관계를 보고
 - $\hat{y}(x_i) \approx y_i$ 가 되도록 추정함수 $\hat{y}(\cdot)$ 를 학습하는 것

지도학습의 2가지 종류

- 회귀 분석(Regression) (Part 1)
 - 목표로 하는 *Y*가 연속적일 때 (continuous)

- 분류(Classification) (Part 2)
 - 목표로 하는 Y가 이산적일 때 (discrete, categorical)

Y는 임의의 실수가 될 수 있다.

Y는 0 또는 1만 가능

1. 기계학습의 소개

- 1) 기계학습이 실생활에서 쓰이는 곳
- 2) 기계학습이란 무엇인가?
 - 1. 기계학습 = 패턴 찾기
 - 2. 기계학습 vs 인공지능, 기계학습 vs 통계
- 3) 기계학습의 종류
 - 1. 지도학습, 비지도학습, 강화학습
 - 2. 지도학습의 종류: 회귀, 분류

2. 회귀 분석

- 1) 회귀 문제 소개: 회귀란, 회귀 문제의 종류, 회귀 분석에 사용되는 알고리즘
- 2) 선형 회귀 분석 알고리즘 소개
- 3) 알고리즘 평가(evaluation) 방법 소개
- 4) 다중 선형 회귀 분석(multiple linear regression) 알고리즘 소개

회귀 분석

- X: 독립 변수 (independent variable)
 - 지능지수, 나이, 성별
- Y : 종속 변수(independent variable), 정답(label)
 - 연소득
 - continuous하다

- 목표
 - 주어진 (지능지수, 나이, 성별)에 대해서
 - 예상 연소득 값을 예측하자

IQ	나이	성별	연봉
107	22	여	6305
95	23	여	5730
114	57	여	8735
83	55	여	6735
101	21	여	6170
119	26	남	7805
92	22	남	6205
108	59	남	8830
129	44	남	9075
104	45	남	7935
94	20	남	6415
112	26	남	??

회귀 분석 문제의 종류

- 단순 회귀 분석 (Simple Regression)
 - X가 1차원인 경우
 - ex) 지능지수 → 연소득 or 나이 → 연소득 예측

- 다중 회귀 분석 (Multiple Regression)
 - *X*가 2차원 이상인 경우
 - ex) (지능지수, 나이) → 연소득

IQ	나이	성별	연봉
107	22	여	6305
95	23	여	5730
114	57	여	8735
83	55	여	6735
101	21	여	6170
119	26	남	7805
92	22	남	6205
108	59	山	8830
129	44	山	9075
104	45	山	7935
94	20	남	6415
112	26	남	??

회귀 분석에 사용되는 알고리즘 종류

LANADA

• 선형 회귀(Linear regression)

Part 1

- 인공신경망 회귀(Neural network regression)
 - 딥러닝 (Deep Learning)의 한 종류

Part 5

• 다항 함수 회귀(Polynomial regression), 베이시안 선형 회귀(Bayesian linear regression), 푸아송 회귀 (Poission regression)

1. 기계학습의 소개

- 1) 기계학습이 실생활에서 쓰이는 곳
- 2) 기계학습이란 무엇인가?
 - 1. 기계학습 = 패턴 찾기
 - 2. 기계학습 vs 인공지능, 기계학습 vs 통계
- 3) 기계학습의 종류
 - 1. 지도학습, 비지도학습, 강화학습
 - 2. 지도학습의 종류: 회귀, 분류

2. 회귀 분석

- 1) 회귀 문제 소개
- 2) 선형 회귀 분석 알고리즘 소개
- 3) 알고리즘 평가(evaluation) 방법 소개
- 4) 다중 선형 회귀 분석(multiple linear regression) 알고리즘 소개

단순 선형 회귀 분석(Simple Linear Regression)

- 지능지수(*X*)과 연소득(*Y*)에 선형 관계가 있다고 가정
 - $Y \approx \theta_0 + \theta_1 X$

- $F(X) = \theta_0 + \theta_1 X \text{ odd}$
 - 적절한 θ_0 (절편), θ_1 (기울기)를 찾은 후,

연소득

- 지능지수가 122 일 때 예상되는 연소득 값?
 - $\hat{Y} = \theta_0 + \theta_1 X = 8850$ 으로 예측

- 선형 회귀 분석에서는 적절한 θ_0, θ_1 을 찾는 것이 중요!
- 여러가지 후보들이 존재
- 적절함의 기준이 필요하다
 - 빨강 → 경향과 맞지 않는다, 주황 or 갈색 중에서는 누가 더 좋을까?

- 오차 = $y \hat{y}(x)$
 - ŷ: 예측 값
 - y: 실제 참 값 ($\hat{y} := \theta_0 + \theta_1 x$)
- x = 101일 때
 - \hat{y} : 예측 값= 7100
 - *y*: 실제 참 값= 6170
 - 오차 = -930

- MSE= $\frac{1}{n}\sum_{i=1}^{n}(y_i \hat{y}_i)^2$
 - $\hat{y}_i = \hat{y}(x_i)$

- (심화) 하필 왜 MSE가 적절함의 기준이 되는가?
 - $MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i \hat{y}_i| = \text{ Noth ABD}$

MAE도 기준으로 사용할 수 있다. 다만, 일반적인 가정에서 MSE가 가장 좋은 기준 이라는 것이 이론적으로 증명됨!

θ_0, θ_1 의 계산

- [목표] MSE $=\frac{1}{n}\sum_{i=1}^{n}(\theta_0+\theta_1x_i-y_i)^2$ 를 가장 작게 하는 θ_0,θ_1 을 찾자!
- [답] (통계 기법)

•
$$\theta_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} = 69.08$$

• $\overline{x} = \frac{1}{n} \sum_{i=1}^n x_i = \frac{1}{11} (107 + 95 + \dots + 94) = 104.2$
• $\overline{y} = \frac{1}{n} \sum_{i=1}^n y_i = \frac{1}{11} (4020 + 3660 + \dots + 4750) = 7267.3$

•
$$\theta_0 = \overline{y} - \theta_1 \cdot \overline{x}$$

•
$$\theta_0 = 7267.3 - 69.08 \cdot 104.2 = 69.2$$

$$\hat{y}(x) = 69.2 + 69.08x$$

IQ	나이	성별	연봉
$x_1 = x_1$	22	여	$y_1 = 6305$
$x_2 = 95$	23	여	$y_2 = {}_{5730}$
$x_3 = x_{112}$	57	여	$y_3 = {}_{8735}$
$x_4 = 83$	55	여	$y_4 = _{6735}$
103	. 21	여	6170
119	26	山	7805
92	22	山	6205
108	59	山	8830
129	44	山	9075
104	45	남	7935
$x_n = 92$	20	남	$y_n = 6415$

선형 회귀 분석을 통한 실제 예측

- 지능지수가 112인 사람의 예측 연 소득
 - $\hat{y}(x) = \theta_0 + \theta_1 x$
 - $\hat{y}(x) = 69.2 + 69.08 \cdot x$
 - $\hat{y}(112) = 69.2 + 69.08 \cdot 112 = 7806$

IQ	나이	성별	연봉
107	22	여	6305
95	23	여	5730
114	57	여	8735
83	55	여	6735
101	21	여	6170
119	26	남	7805
92	22	山	6205
108	59	山	8830
129	44	남	9075
104	45	남	7935
94	20	남	6415
112	26	남	??

선형 회귀 분석 $(Y = \theta_0 + \theta_1 X)$ 의 장단점

- 장점:
 - 단순한 만큼 쉽게 파라미터인 θ_0, θ_1 이 계산 가능
 - 생각보다 많은 종류의 문제에서 무난하게 동작

$$\begin{aligned} \bullet & \ \theta_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} \\ \bullet & \overline{x} = \frac{1}{n} \sum_{i=1}^n x_i, \overline{y} = \frac{1}{n} \sum_{i=1}^n y_i \\ \bullet & \ \theta_0 = \overline{y} - \theta_1 \cdot \overline{x} \end{aligned}$$

파라미터 계산 공식

• 단점

- 기본적으로 선형만 고려하기에, 주어진 데이터의 분포가 선형이 아닐 경우 어떤 θ_0 , θ_1 로도 잘 fit하지 않게 된다.
- 이 경우 비선형 회귀 분석 (Non-linear regression)을 진행
 - ex) 다항 회귀 분석(Polynomial regression)

선형 회귀모델이 잘 동작 안 하는 경우

(목차) 모델 평가(Model Evaluation)

LANADA

- 모델 평가(model evaluation)
- 학습 데이터 셋(train data set)과 검증 데이터 셋(test data set)
- K-fold 교차검증(K-fold cross validation) 기법
- 여러가지 평가지표들(evaluation metrics)

1. 기계학습의 소개

- 1) 기계학습이 실생활에서 쓰이는 곳
- 2) 기계학습이란 무엇인가?
 - 1. 기계학습 = 패턴 찾기
 - 2. 기계학습 vs 인공지능, 기계학습 vs 통계
- 3) 기계학습의 종류
 - 1. 지도학습, 비지도학습, 강화학습
 - 2. 지도학습의 종류: 회귀, 분류

2. 회귀 분석

- 1) 회귀 문제 소개
- 2) 선형 회귀 분석 알고리즘 소개
- 3) 알고리즘 평가(evaluation) 방법 소개
- 4) 다중 선형 회귀 분석(multiple linear regression) 알고리즘 소개

모델 평가(Model Evaluation)

LANADA

- 학습된 모델은 얼마만큼 정확한가?
- 학습이 완료된 모델의 예측을 얼마만큼 신뢰할 수 있는가?
- 다른 말로, 학습된 모델의 전반적인 오차의 크기는 얼마인가?

지능지수	연봉
107	6305
95	5730
114	8735
83	6735
101	6170
119	7805
92	6205
108	8830
129	9075
104	7935
94	6415

선형 회귀 학습

$$\hat{Y} = 69.2 + 69.08 \cdot X$$

예측이 100% 정확하리라 믿을 수는 없다... 그렇다면 얼마나 정확할까?

데이터셋

학습 데이터(Train Data) vs 검증 데이터(Test Data) 다음

검증 데이터에 예측값 🗘 계산

	예측	
X	\widehat{Y}	
104	7196.8	
94	6504.8	
112	7750.4	

$$MSE_{Test} = \frac{1}{n} \sum_{i \in Test}^{n} (y_i - \hat{y}_i)^2$$

학습 데이터(Train Data) vs 검증 데이터(Test Data) [유지수 다 40

- 전체 데이터를 두 종류로 나눔
 - 학습 데이터(Train Data)
 - 모델을 학습하는 데 사용되는 데이터
 - 검증 데이터(Test Data)
 - 학습이 완료된 모델을 검증하는 데 사용되는 데이터
- 학습 정확도(Training accuracy)
 - $MSE_{Train} = \frac{1}{n} \sum_{i \in Train}^{n} (\hat{y}_i y_i)^2$
- 검증 정확도(Test accuracy)
 - $MSE_{Test} = \frac{1}{n} \sum_{i \in Test}^{n} (\hat{y}_i y_i)^2$

	IQ	나이	성별	연봉
	107	22	여	6305
	95	23	여	5730
	114	57	여	8735
	83	55	여	6735
Train Data	101	21	여	6170
	119	26	남	7805
	92	22	남	6205
	108	59	남	8830
	129	44	남	9075
	104	45	남	7935
Test Data	94	20	남	6415
(112	26	남	7220

검증 정확도가 높다는 것은 처음 보는 (학습에 사용x) 데이터의 예측이 정확하다는 것 검증 정확도를 전체 모델의 정확도로 활용한다!

여보

7220

검증 데이터를 정하는 기준

- 일반적으로 전체 데이터 중 랜덤하게 다음 비율로 선택한다
 - 80%는 학습용
 - 20%는 검증용
- 통계와 마찬가지로 기계학습에서도 학습데이터 가 많을 수록 정확해짐
- 반대로 검증용 데이터가 너무 적으면, 검증 정확 도의 variance가 지나치게 커질 수 있음
- 상황에 따라 달라질 수 있다...

ΙŲ		O Z	10
107	22	여	6305
95	23	여	5730
114	57	여	8735
83	55	여	6735
101	21	여	6170
119	26	남	7805
92	22	남	6205
108	59	남	8830
129	44	남	9075
104	45	남	7935
94	20	늄	6415

26

서벼

남

Train Data

K-fold 교차검증(K-fold cross validation) 기법

LANADA

- 데이터를 K등분하고,
 - 그중 하나를 검증데이터로 사용한다
 - 나머지 K-1/K의 데이터는 학습데이터로
 - 이 과정을 K번 반복
- Ex) K=4인 경우

🔵 :검증 데이터 셋

:학습 데이터셋

평균 test accuracy =
$$\frac{1}{4}(60 + 78 + 76 + 82) = 74\%$$

MSE를 제외한 다른 종류의 정확도 측정

LANADA

- 검증 정확도(Test accuracy)는 여러가지 다른 척도(metric)이 사용 될 수 있다
 - $MSE_{Test} = \frac{1}{n} \sum_{i \in Test}^{n} (\hat{y}_i y_i)^2$ (Mean squared error) (L2 loss)
 - MAE_{Test} = $\frac{1}{n}\sum_{i \in Test}^{n} |\hat{y}_i y_i|$ (Mean absolute error) (L1 loss)
 - $RMSE_{Test} = \sqrt{\frac{1}{n}\sum_{i \in Test}^{n}(\hat{y}_i y_i)^2}$ (Root mean absolute error)
 - 일반적으로 가장 많이 쓰이는 방식
 - $RMSE = \sqrt{MSE}$ 이므로 본질적으로 MSE = 2 쓰는 것과 같다
 - 통계에서 분산(variance) 대신에 표준편차(deviation)를 사용하는 경우와 유사
 - RSE_{Test} = $\frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i \overline{y})^2}$ (Relative squared error)
 - $R_{Test}^2 = 1 RSE_{Test}$ (R squared error)
 - 값이 1에 가까울 수록 정확함

 R^2 예시: 파란색의 R^2 가 훨씬 1에 가깝다

1. 기계학습의 소개

- 1) 기계학습이 실생활에서 쓰이는 곳
- 2) 기계학습이란 무엇인가?
 - 1. 기계학습 = 패턴 찾기
 - 2. 기계학습 vs 인공지능, 기계학습 vs 통계
- 3) 기계학습의 종류
 - 1. 지도학습, 비지도학습, 강화학습
 - 2. 지도학습의 종류: 회귀, 분류

2. 회귀 분석

- 1) 회귀 문제 소개
- 2) 선형 회귀 분석 알고리즘 소개
- 3) 알고리즘 평가(evaluation) 방법 소개
- 4) 다중 선형 회귀 분석(multiple linear regression) 알고리즘 소개

다중 선형 회귀 분석(Multiple Linear Regression) LANADA

- 단순 선형 회귀 분석 (여태까지 배운 것)
 - 하나의 독립변수 X로 종속 변수 Y를 예측한다
 - *F*: *IQ* → 연봉
 - *F*:나이 → 연봉
- 다중 선형 회귀 분석
 - 동시에 여러 개의 독립변수 $X_1, X_2, ..., X_d$ 를 활용하여 Y 예측
 - *F*: (*IQ*, 나이, 성별) → 연봉

- 일반적으로 다중 선형 회귀 분석이 더 정확!
 - 더 많은 종류의 정보를 활용해서 예측하기에

IQ	나이	성별	연봉
107	22	여	6305
95	23	여	5730
114	57	여	8735
83	55	여	6735
101	21	여	6170
119	26	남	7805
92	22	남	6205
108	59	남	8830
129	44	남	9075
104	45	남	7935
94	20	남	6415
112	26	남	??

ANADA

다중 선형 회귀 분석(Multiple Linear Regression)

- 전반적으로 단순 선형 분석과 매우 유사함
- 연봉 = $\theta_0 + \theta_1 \cdot IQ + \theta_2 \cdot$ 나이 + $\theta_3 \cdot$ 성별

•
$$\hat{y} = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_3$$

•
$$\Leftrightarrow \hat{y} = \mathbf{W}^T X$$

•
$$\mathbf{W}^T = [\theta_0, \theta_1, \cdots, \theta_3]$$
 $X = \begin{bmatrix} 1 \\ x_1 \\ x_2 \\ \dots \\ x_3 \end{bmatrix}$

• 적절한 매개변수 $W^T = [\theta_0, \theta_1, \cdots, \theta_3]$ 를 찾는 것이 목표

다중 선형 회귀 모델에서의 MSE

- 오차(error)를 단순 선형 회귀 모델과 같은 식으로 정의
 - $error = y \hat{y}$
- 예시 (4번째 사람)
 - $\hat{y}_4 = W^T X_4 = 8760$
 - $y_4 = 8735$
- $error = y_4 \hat{y}_4 = 8735 8760 = -25$
- $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2$
 - 선형 모델과 마찬가지로 정의
- MSE를 가장 낮추는 $W^T = (\theta_0, \theta_1, \dots, \theta_3)$ 를 찾자

덩의		x_1, x_2, x_3		у	_
О — _і				†	
	IQ	나이	성별	연봉	
	107	22	여	6305	
	95	23	여	5730	
	83	55	여	6735	
X_4	114	57	여	8735	y_4
	101	21	여	6170	
	119	26	남	7805	
	92	22	남	6205	
	108	59	남	8830	
	129	44	남	9075	
	104	45	남	7935	
	94	20	남	6415	

최소 자승법(Ordinary Least Squares): 🛭 계산하기 👯 🕬

•
$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \frac{1}{n} ||Y - MW||^2$$

1	107	22	0
1	95	23	0
1	114	57	0
1	83	55	0
1	101	21	0
1	119	26	1
1	92	22	1
1	108	59	1
1	129	44	1
1	104	45	1
1	94	20	1
<i>M</i> :	$n \times (d$	+ 1) 항	l렬

W: (d + 1) × 1 행렬

	6205	
	6305	
	5730	
	8735	
	6735	
	6170	
	7805	
	6205	
	8830	
	9075	
	7935	
	6415	
<i>Y</i> :	n × 1 행렬	

IQ	나이	성별	연봉
107	22	여	6305
95	23	여	5730
114	57	여	8735
83	55	여	6735
101	21	여	6170
119	26	남	7805
92	22	남	6205
108	59	남	8830
129	44	남	9075
104	45	남	7935
94	20	남	6415

M, Y로 쪼개서 표현

최소 자승법(Ordinary Least Squares)에 의해서 $MSE = \frac{1}{n}||Y - MW||^2 는 W = (M^T M)^{-1} M^T Y$ 일 때 최소가 된다.

경사 하강법(Gradient Descent)

- 최소 자승법의 장점
 - 100% 정확하다
- 최소 자승법의 단점
 - $W = (M^T M)^{-1} M^T Y$ 의 역행렬계산 과정에서 계산 비용 큼

- 각 point에서 MSE를 낮추는 방향으로 조금씩 이동
- 다소 부정확할 수 있지만, 효율적임
- 깊은 신경망 학습에서도 사용됨
- 자세한 설명은 Part 4에서 진행!

다중 선형 회귀 분석에서 예측 예시

- $W^T = (100, 50, 60, 70)$ 인 경우 실제 예측 계산
- $\hat{y} = W^T \cdot X$
- $\hat{y} = 100 \cdot 1 + 50x_1 + 60x_2 + 70x_3$
- $\hat{y} = 100 + 50 \cdot IQ + 60 \cdot \text{나이} + 70 \cdot (\text{남자일경우})$
- 4번째 사람의 예측값

•
$$\hat{y}_4 = 100 \cdot 1 + 50 \cdot 114 + 60 \cdot 57 + 70 \cdot 0 = 9220$$

• 오차 =
$$y - \hat{y} = 8735 - 9220 = -85$$

100
50
60
70

여 여 여 여 y_4 남

나이

IQ

성별

연봉

W: (d + 1) × 1 행렬

Thank you!

Any Questions?

Part 2: 분류(Classification)

LANADA

- 1. 분류(Classification) 소개
 - 무엇을 하는 것인지? 회귀분석과의 차이점? 분류의 예시? 왜 중요한지? 분류 알고리즘 소개
- 2. K-NN 알고리즘(K-Nearest Neighbors)
 - 알고리즘 목표, 작동 원리, 좋은 k 찾기, 장단점
- 3. 서포트 벡터 머신(Support Vector Machine, SVM)
 - 알고리즘 목표, 작동 원리, 문제점, Kernel 함수, Fine-tuning, 장단점
- 4. 로지스틱 회귀 분석(Logistic regression)
 - 알고리즘 목표, 작동 원리, Sigmoid 함수, Log-loss (Cross entropy loss), 경사하강법(Gradient desscent)
- 5. 분류 알고리즘에서의 성능 평가
 - Test accuracy, Precision and recall, F1-score, Cross entropy loss

2-1. 분류(Classification) 소개

- 1. Classification (분류) 소개
 - 1) 지도학습(Supervised learning) 복습
 - 2) Classification의 문제 예시
 - 3) Classification 주요 알고리즘 소개
 - 4) 여러 개의 Label이 존재하는 경우
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀 분석(Logistic regression)
- 5. 알고리즘 성능 평가(Model Evaluation)

지도학습(Supervised Learning)

습된 모델
$$\hat{y}(x) = x - 1$$

- 회귀 분석(Regression) (Part 1)
 - 목표로 하는 *Y*가 연속적일 때 (continuous)

Regression

What is the temperature going to be tomorrow?

Y는 임의의 실수가 될 수 있다.

- 분류(Classification) (Part 2)
 - 목표로 하는 Y가 이산적일 때 (discrete, categorical)

- 1. Classification (분류) 소개
 - 1) 지도학습(Supervised learning) 복습
 - 2) Classification의 문제 예시
 - 3) Classification 주요 알고리즘 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀 분석(Logistic regression)
- 5. 알고리즘 성능 평가(Model Evaluation)

X: 독립

Y: 종속

- X: 독립 변수 (independent variable)
 - 지능지수, 연봉
- Y: 종속 변수(independent variable), 정답(label)
 - 성별 or 나이
 - 성별: 2가지 경우만 있다 → 이산 분류(binary classification)
 - 나이: 여러가지 후보 있음 → 다중 레이블 분류 (multi-label classification)

• 이산적이다(discrete)

학습데이터 (known data)

모	耳
\neg	—

- 주어진 (지능지수, 연봉, 성별)에 대해서
- 예상 성별 or 나이를 예측하자

목표 데이터 (unknown data)

IQ	연봉	나이	성별
107	6305	22	여
95	5730	23	여
114	8735	57	여
83	6735	55	여
101	6170	21	여
119	7805	26	늄
92	6205	22	남
108	8830	59	山
129	9075	44	늄
104	7935	45	늄
94	6415	20	남
112	7800	??	??

본 프레젠테이션에선 이산분류만 다루나, 모든 알고리즘은 다중 레이블에서도 확장 가능함!

분류 알고리즘 실제 사례

0	0	0	0	0	Ø	0	0	0	٥	0	0	0	0	0	0
1															
							7								
3															
4															
							5								
							9								
Ŧ	7	7	7	7	7	7	7	?	η	7	١	7	7	7	7
							8								
9	9	9	9	9	9	à	9	٩	Ф	٩	9	9	9	9	9

2 →2 4 →4

이미지 분류 (MNIST) X: image, Y: 0,1,...,9

음성 인식 후 자막 생성 알고리즘
X: 목소리 음성 파일, Y: 각각의 영어단어

- 1. Classification (분류) 소개
 - 1) 지도학습(Supervised learning) 복습
 - 2) Classification의 문제 예시
 - 3) Classification 주요 알고리즘 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀 분석(Logistic regression)
- 5. 알고리즘 성능 평가(Model Evaluation)

- KNN 알고리즘(K-Nearest Neighbors)
 - Section 2
- 서포트 벡터 머신(Support Vector Machines, SVM)
 - Section 3

- Section 4
- 의사결정 나무(Decision Tree)
 - Part 4
- 인공 신경망(Neural Network)
 - Part 5

Logistic Regression

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbors)
 - 1) 알고리즘 아이디어 소개
 - 2) K 정하기
 - 3) KNN의 장단점
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀 분석(Logistic regression)
- 5. 알고리즘 성능 평가(Model Evaluation)

Quiz: 노란색 원은 어느 클래스에 속할까?

LANADA

- 학습 데이터
 - 빨간색 원: class 1
 - 초록색 원: class 2

 X_2 : 두번째 독립변수

- 예측하고자 하는 원: 노란색
 - class 1 or class 2 둘 중에 하나의 색이라면
 - 무슨 색일까?

*X*₁: 첫번째 독립변수

직관적인 대답: 노란색원 → 빨강원일 가능성이 가능성이 높다!

왜 그렇게 생각했을까?

- 노란색 원과 비슷한 성질을 가지고 있는
 - (근처에 있는) or (주황색 원안에 있는)

• 원들이 주로 빨강색이였기 때문에!

KNN 알고리즘 작동 원리

- 1. 주어진 unknown 원을 중심으로 가까운 K개의 이웃 원들을 찾자 (K=3)
- 2. 이때 속하는 원들의 색이 노란색 원의 색이 될 것이다. (3개다 빨강)
- 3. 만약에 색이 갈린다면? → 다수결 (빨강 1, 초록 2) → 초록

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
 - 1) 알고리즘 아이디어 소개
 - 2) K 정하기
 - 3) KNN의 장단점
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀 분석(Logistic regression)
- 5. 알고리즘 성능 평가(Model Evaluation)

- 정답이 없다
- 각각의 K에 대한 직접 성능 평 가후 결정
 - K=1 \rightarrow 70%
 - $K=2 \rightarrow 72\%$
 - K=3 \rightarrow 73%
 - K=4 \rightarrow 75%

 - K=10 \rightarrow 50%
- K=4!
- 머신러닝의 단점
- 다만, 일반적으로 추천하는 $K = 5 \sim 15$ or $K = \sqrt{n}$
 - (n: 전체 sample 수)

 $n = 14, K \approx 4$

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
 - 1) 알고리즘 아이디어 소개
 - 2) K 정하기
 - 3) KNN의 장단점
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀 분석(Logistic regression)
- 5. 알고리즘 성능 평가(Model Evaluation)

KNN 장단점

- 장점
 - 단순하고 적용하기 쉽다
 - 성능이 안정적이다(robust)
 - 데이터 하나가 오류가 있어도 다수결로 안정적
 - 데이터 수가 적어도 (n이 작을 때) 잘 동작

- 전체 데이터의 수가 많을 때 (*n* 이 클때)
 - 새로운 unknown data (노란색 데이터포인트)가 생길때마다 일일이 나머지 모든 데이터들과의 거리 계산이 필요
 - 가장 가까운 K개의 원을 골라야하니까!
 - 다른 분류 알고리즘 보다 느리게 동작하는 편

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
 - 1) 알고리즘 작동 원리
 - 2) 문제점
 - 3) 해결책: C, Kernel 함수
 - 4) Fine tuning: C랑 Kernel을 찾자
 - 5) 장단점
- 4. 로지스틱 회귀 분석(Logistic regression)
- 5. 알고리즘 성능 평가(Model Evaluation)

Quiz: 노란색 원은 어느 클래스에 속할까?

- 학습 데이터
 - 빨간색 원: class 1
 - 초록색 원: class 2
- 예측하고자 하는 원: 노란색
 - class 1 or class 2 둘 중에 하나의 색이라면
 - 무슨 색일까?

*X*₁: 첫번째 독립변수

LANADA 71

• 왠지 파란색의 경계를 나누면 빨강구역, 초록 구역으로 나눠질 거 같다

• 빨강 구역의 원은 빨강색일거같다

빨강구역 X_2 : 두번째 독립변수 초록구역 주황색 경계의 경우에는, 결과가 아예 바뀐다! X_1 : 첫번째 독립변수

SVM 알고리즘 작동 원리

- 1. 주어진 원들을 기준으로 적절한 경계(hyperplane)를 그린다
- 2. 이때 노란색원이 경계를 기준으로 빨강색에 속하면 → 빨강

주어진 학습용 데이터에서 적절한 경계(hyperplane)란 무엇이 될까?

적절한 초평면(Hyperplane)의 기준

LANADA

- 가장 적절한 초평면(hyperplane)의 기준
 - 두 종류의 데이터들의 수직이등분선
- d는 (margin) 경계선을 기준으로 각각 가장 가까운 빨강원과 초록색원의 거리
 - 가장 가까운 두 원을 서포트 벡터(support vector) 라고 부름
- 이 margin이 가장 커지는 경계선을 그리는 것이 가 장 공평한 경계라고 할 수 있다

 X_1 : 첫번째 독립변수

굵은 실선의 폭과, 가는 점선을 기준으로 분리했을 때 폭이 다르다

최적의 초평면 찾는 법

- 경사하강법(Gradient Descent) 사용해서 계산 가능
 - Section 4) 로지스틱 회귀(Logistic Regression)에서 설명 예정

•

 $\min_{\mathbf{w}} ||\mathbf{w}||^2 \ \text{ subject to } y_i \left(\mathbf{w}^\top \mathbf{x}_i + b \right) \geq 1 \text{ for } i = 1 \dots N$

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
 - 1) 알고리즘 작동 원리
 - 2) 문제점
 - 3) 해결책: C, Kernel 함수
 - 4) Fine tuning: C랑 Kernel을 찾자
 - 5) 장단점
- 4. 로지스틱 회귀 분석(Logistic regression)
- 5. 알고리즘 성능 평가(Model Evaluation)

서포트 벡터 머신 문제점 1

LANADA

- 왼쪽 그림처럼 데이터를 정확히 분류 가능한 경우에도,
- 오른쪽 그림처럼 전체적인 폭을 넓히고 정확한 분류를 포기하는 것이 더 좋을 수 있다
 - 일부 특이점(outlier)를 적절히 무시할 필요가 생김

서포트 벡터 머신 문제점 2

- 사람은 쉽게 2개의 클래스를 구분 가능하지만, 선형 함수로는 구분이 불가능한 경우 존재
- 직선이 아닌 곡선의 초평면 필요

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
 - 1) 알고리즘 작동 원리
 - 2) 문제점
 - 3) 해결책: C, Kernel 함수
 - 4) Fine tuning: C랑 Kernel을 찾자
 - 5) 장단점
- 4. 로지스틱 회귀 분석(Logistic regression)
- 5. 알고리즘 성능 평가(Model Evaluation)

완화된 서프트 벡터 머신

- 새로운 매개 변수 C를 도입
 - C 가 크면 분류를 정확히 하는걸 우선
 - C 가 작을수록 몇몇 데이터를 무시하고 나머지 데이터들끼리의 폭을 최대화 하는 것을 목표
 - 기존 SVM은 *C* = ∞인 경우

적절한 C는 어떻게 고르는가?

Kernel 함수의 도입

LANADA

• 차원을 더 고차원으로 변형해서, hyperplane이 존재하도록 유도

적절한 Kernel은 어떻게 고르는가?

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
 - 1) 알고리즘 작동 원리
 - 2) 문제점
 - 3) 해결책: C, Kernel 함수
 - 4) Fine tuning: C랑 Kernel을 찾자
 - 5) 장단점
- 4. 로지스틱 회귀 분석(Logistic regression)
- 5. 알고리즘 성능 평가(Model Evaluation)

C와 Kernel에 따라 경계가 여러가지로 바뀐다

• 같은 데이터에서도 전혀 다른 boundary가 나온다

- Part 1의 선형회귀에서는 최적의 θ_0 , θ_1 를 계산가능
 - 선형회귀의 큰 장점!
- 일반적인 기계학습에서는 매개변수를 최적으로 정하는 공식은 없다
 - Ex)
 - KNN에서 K 정하기
 - SVM에서 C or Kernel 정하기

- 따라서, 여러 매개변수를 테스트해보면서 성능이 잘 찾아야함
 - 이 과정에서 데이터의 구조등을 고민하고 경험이 생기면 더 효율적으로 진행이 됨

C = 0.03Accuracy: 88.3%

Accuracy: 90.1%

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
 - 1) 알고리즘 작동 원리
 - 2) 문제점
 - 3) 해결책: C, Kernel 함수
 - 4) Fine tuning: C랑 Kernel을 찾자
 - 5) 장단점
- 4. 로지스틱 회귀 분석(Logistic regression)
- 5. 알고리즘 성능 평가(Model Evaluation)

SVM의 장단점

LANADA

• 장점

• 고차원적인 data에서도 잘 동작함

• 단점

- KNN의 경우에 오류 데이터가 있어도 다수 결로 robust 하지만
- SVM은 복잡한 경계를 그리려는 성질이 있 다

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀(Logistic regression)
 - 1) 일반적인 분류 문제와의 차이점
 - 2) 로지스틱 회귀를 사용하는 경우
 - 3) Sigmoid 함수
 - 4) Log-loss (Cross entropy loss)
- 5. 알고리즘 성능 평가(Model Evaluation)

Remind) 로지스틱 회귀(Logistic Regression)

- 회귀(Regression) (Part 1)
 - 목표로 하는 *Y*가 **연속적**일 때 (continuous)

Regression

What is the temperature going to be tomorrow?

- 분류(Classification) (Part 2)
 - 목표로 하는 Y가 이산적일 때 (discrete, categorical)

회귀와 분류는 다른 문제

그런데 왜 분류 문제를 푸는 로지스틱 회귀는 이름이 로지스틱 분류가 아니지?

학습

학습데이터

(known data)

목표 데이터

(unknown data)

- 일반적인 분류 문제
 - 학습데이터를 바탕으로 패턴을 익혀서
 - ??의 부분의 답을 맞힌다

• 로지스틱 회귀

- 학습데이터를 바탕으로 패턴을 익혀서
- ??에서 각 클래스가 나올 확률을 예측한다
 - 여기서 확률은 연속하다(continuous)
 - 따라서 회귀 알고리즘

원 문제에서의 로지스틱 회귀

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀(Logistic regression)
 - 1) 일반적인 분류 문제와의 차이점
 - 2) 로지스틱 회귀를 사용하는 경우
 - 3) Sigmoid 함수
 - 4) Log-loss (Cross entropy loss)
- 5. 알고리즘 성능 평가(Model Evaluation)

로지스틱 회귀를 사용하는 예1: 확률 예측

• 어떤 사건이 일어날 확률을 알고 싶을 때

일기예보:강수 확률 X: 현재 기상 정보, Y: 강수확률

코로나19 사망위험 예측모델 개발
X: 환자 중증도, Y: 30일 이내 사망 확률

학점 – 합격 확률 예측 X: 학점, Y: 합격률

로지스틱 회귀를 사용하는 예1: 일반 분류 문제

- 로지스틱 회귀에서 나온 확률을 보고 50%이상인 클래스를 고른다
 - 일반적인 분류 알고리즘: KNN, SVM과 같은 방식
- 암환자 같이 조금이라도 의심스러울 경우 무조건 예측 해야 할 시
 - 기준치를 50%보다 낮춰서 예측 가능 (ex, 10% 이상이면 예측)
 - 미리 boundary를 그리는 SVM은 불가능한 방식

로지스틱 회귀를 이용한 분류문제

암환자 예측에서의 로지스틱 회귀 안전할 확률이 더 높더라도 `위험' 으로 분류 필요

LANADA

선형 회귀와 차이점

- 선형 회귀
 - 타겟으로 하는 $\hat{y}(x) = \theta_0 + \theta_1 x$ 의 범위가 $(-\infty, \infty)$ 로 넓다
 - 자유로운 범위의 예측

- 로지스틱 회귀
 - $\hat{y}(x)$ 의 범위가 [0,1]로 제한됨
 - 주로 확률에 관련된 예측에 집중

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀(Logistic regression)
 - 1) 일반적인 분류 문제와의 차이점
 - 2) 로지스틱 회귀를 사용하는 경우
 - 3) Sigmoid 함수
 - 4) Log-loss (Cross entropy loss)
- 5. 알고리즘 성능 평가(Model Evaluation)

•
$$\hat{y}(x) = \frac{1}{1 + e^{-(\theta_0 + \theta_1 x)}} = \frac{1}{1 + e^{-W^T \cdot X}} W^T = (\theta_0, \theta_1), X = (1, x)$$

- $W^T \cdot x$ 값이 $+\infty$ 로 커질 수록 • $\hat{y}(x) \rightarrow 1$
- $W^T \cdot x$ 가 $-\infty$ 로 작아질 수록 • $\hat{y}(x) \to 0$
- $W^T \cdot x = 0$ 일 때, • $\hat{y}(x) = \frac{1}{2} \rightarrow$ 반반의 확률(전혀 모르겠다는 의미)
- 단 어떤 x에 대해서도 100% or 0% 존재하지 않음
 100% 완벽한 예측은 없다는 것

0: 여자, 1: 남자 일때,

 $\hat{y}(x_i) = p(y = 1|x_i) = 0.2 \rightarrow (남자: 20\%, 여자: 80\% 로 예측)$

 $\hat{y}(x_i) = p(y = 1|x_i) = 0.99 \rightarrow \text{(남자: 99\%, 여자: 1% 로 예측)}$

 $\hat{y}(x_i) = p(y = 1|x_i) = 0.5 \rightarrow \text{(남자: 50%, 여자: 50% 로 예측)}$

• $\theta_0 + \theta_1 x$ or $W^T \cdot x \rightarrow \Phi$ 현재 확률에 대한 믿음을 나타냄

- 1. Classification (분류) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀(Logistic regression)
 - 1) 일반적인 분류 문제와의 차이점
 - 2) 로지스틱 회귀를 사용하는 경우
 - 3) Sigmoid 함수
 - 4) Log-loss (Cross entropy loss)
- 5. 알고리즘 성능 평가(Model Evaluation)

로지스틱 회귀에서 목표 오차의 조건

- 오차
 - $Error(y_i, \hat{y}(x_i))$
 - ex) Error(0, 0.2)
 - y = 0 \rightarrow 실제 성별이 여자 였다는 의미
 - $\hat{y}(x_i) = 0.2 \rightarrow (\text{남자: 20\%, 여자: 80\%})$
 - ex) Error(1, 0.4)
 - y의 1 \rightarrow 실제 성별이 남자 였다는 의미
 - $\hat{y}(x_i) = 0.4 \rightarrow (\text{남자: 40\%, 여자: 60\%})$
- *Error*(0, 0.2) vs *Error*(1, 0.4) 무엇이 더 큰 오차?
 - *Error*(0,0.2): 남자 확률 20%라고 예상했는데, 실제로 여자 였던 경우
 - *Error*(1,0.4): 남자 확률 40%라고 예상했는데, 실제로 남자 였던 경우

Error(1, 0.4) >> Error(0, 0.2)

선형 회귀에서 사용했던 목표 오차 $MSE(y, \hat{y}) = mean(y - \hat{y})^2$

Log loss (Cross-Entropy Loss)

• $Error(y, \hat{y}) := Log_loss(y, \hat{y}) = -(y \cdot \log \hat{y} + (1 - y) \cdot \log(1 - \hat{y}))$

$$y = 1$$
 일 때 $Error(1, \hat{y})$ 그래프

100% 확신을 가졌다가 맞으면, 0 error 발생

100% 확신을 가졌다가 틀리면, ∞ error 발생

	오차 함수	학습방법
선형 회귀	$MSE(y, \hat{y}) = (y - \hat{y})^2$	직접 계산
로지스틱 회귀	$Log_{loss(y,\hat{y})} = -(y \cdot \log \hat{y} + (1 - y) \cdot \log(1 - \hat{y}))$	경사하강법

$$\theta_1 = \frac{\sum_{i=1}^n (x_i - \overline{x}) \cdot (y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2}$$
$$\theta_0 = \overline{y} - \theta_1 \cdot \overline{x}$$

(Remind) 선형회귀에서 학습 방법

- 1. 분류(Classification) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀(Logistic regression)
- 5. 분류 알고리즘 성능 평가(Model Evaluation)
 - 1) 선형 회귀와의 비교: 검증 데이터 셋 분리
 - 2) 검증 정확도(test accuracy)
 - 3) Precision and recall
 - 4) F1-score

- 분류 학습된 모델은 얼마만큼 정확한가?
 - KNN, SVM, 로지스틱 회귀
- 일반 회귀 학습의 모델 평가와 공통점과 차이점?
 - 검증 데이터 분리는 할 것인가? MSE나 MAE같은 오차함수 를 또 사용할 것인가?

지능지수	성별
107	0
95	0
114	0
83	0
101	0
119	0
92	1
108	1
129	1
104	1
94	1

분류 알고리즘

$$\hat{y}(x) = 0 \text{ or } 1$$

예측이 100% 정확하리라 믿을 수는 없다... 그렇다면 얼마나 정확할까?

데이터 셋

선형회귀와 공통점) 검증 데이터 분리

차이점) 다른 종류의 정확도 함수

- (Remind) 선형 회귀에서는 \hat{y} 가 연속한 값을 가짐
 - $MSE_{Test} = \frac{1}{n} \sum_{i \in Test}^{n} (\hat{y}_i y_i)^2$
 - MAE_{Test} = $\frac{1}{n} \sum_{i \in Test}^{n} |\hat{y}_i y_i|$
 - $RSE_{Test} = \frac{\sum_{i=1}^{n} (y_i \hat{y}_i)^2}{\sum_{i=1}^{n} (y_i \overline{y})^2}, R_{Test}^2 = 1 RSE_{Test}$
- 분류 문제에서는 (로지스틱 회귀를 제외하고) +-1 만 사용됨
 - 일반 분류 문제 정확도 평가
 - Test accuracy, precision and recall, F1-score
 - 로지스틱 회귀 정확도 평가
 - Log_loss: 로지스틱 학습에 쓰였던 그대로
 - $Error(y, \hat{y}) := Log_loss(y, \hat{y}) = -(y \cdot \log \hat{y} + (1 y) \cdot \log(1 \hat{y}))$

- 1. 분류(Classification) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀(Logistic regression)
- 5. 분류 알고리즘 성능 평가(Model Evaluation)
 - 1) 선형 회귀와의 비교: 검증 데이터 셋 분리
 - 2) 분류 정확도(Classification accuracy)
 - 3) Precision and recall
 - 4) F1-score

분류 정확도(Classification Accuracy)

• 이지 선다 시험문제 20문제 중에서 16문제를 맞혔다 → 80점 → 0.8 accuracy

분류 정확도가 사용되는 예시

- 가장 무난한 평가기준
- 일반적인 분류 문제의 평가에서 가장 많이 쓰임
 - 각각의 label이 서로 동등한 역할일 때 자주 쓰임 → 두루두루 잘 맞혀야 하는 상황

이 경우를 위한 다른 정확도 기준 존재

암 검진의 경우는 암(1) or 이상없음(0) 에서 암인 경우를 특히 잘 맞추는게 중요하다

이미지 분류 문제: 모든 클래스를 두루두루 잘 푸는게 목표

분류 정확도의 한계

- 예시)
 - 전체 1000명이 검진
 - 10명이 암환자, 990명은 정상
- 알고리즘 1
 - 모든 사람을 정상으로 분류하는 (바보같은) 알고리즘
 - 분류 정확도 = $\frac{990}{1000}$ = 99%
- 알고리즘 2
 - 50명의 사람을 의심환자, 950명의 사람을 정상으로 분류
 - 하지만, 10명의 암환자를 모두 검진 성공, 정상인 40명은 잘못 검진
 - 분류 정확도 = $\frac{1000-40}{1000}$ = 96%

- 1. 분류(Classification) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀(Logistic regression)
- 5. 분류 알고리즘 성능 평가(Model Evaluation)
 - 1) 선형 회귀와의 비교: 검증 데이터 셋 분리
 - 2) 분류 정확도(Classification accuracy)
 - 3) Precision and recall
 - 4) F1-score

혼동 행렬(Confusion Matrix)

• \hat{Y} : 분류 알고리즘 예측 이상 여부 (1: 암 의심, 0: 정상)

- Positive or Negative: 검진에서 이상소견이 나왔는지 아닌지
- True or False: 검진 결과가 실제랑 맞는지 아닌지
- $(Y = 1, \hat{Y} = 1)$: 암환자가 실제로 이상 소견을 받은 경우의 수 True Positive
- $(Y = 1, \hat{Y} = 0)$: 암환자가 검진에서 이상 없음을 받은 경우의 수 False Negative
- $(Y = 0, \hat{Y} = 1)$: 정상인이 이상소견을 받은 경우의 수 False Positive
- $(Y = 0, \hat{Y} = 0)$: 정상인이 이상 없음을 받은 경우의 수 • True Negative

Quiz: 다음 예시에서 분류 정확도는?

	$\hat{Y} = 1$	$\hat{Y} = 0$
Y = 1	(TP)	(FN)
Y = 0	(FP)	(TN)

혼동 행렬

	$\hat{Y} = 1$	$\hat{Y} = 0$
Y = 1	3	4
Y = 0	5	6

예시) 혼동 행렬

분류 정확도
$$=\frac{3+6}{(3+4+5+6)} = \frac{TP+TN}{TP+FP+TN+FN}$$

Precision and Recall

- Precision: 검출 정확도
 - 실제로 분류 알고리즘이 이상소견이 있을때 진짜 암환자일 확률

•
$$P(Y=1|\hat{Y}=1) = \frac{TP}{TP+FP}$$

- Recall: 민감도
 - 실제 암환자 중에서 검출로 이상이 나올 비율

•
$$P(\widehat{Y} = 1 | Y = 1) = \frac{TP}{TP + FN}$$

- 암의 검진에서는 Recall >> Precision
- 둘 다 높은 게 가장 좋다
- 일반적인 경우는? 분류 알고리즘의 목표에 따라 상황마다 다르다

	$\hat{Y} = 1$	$\hat{Y} = 0$
Y = 1	(TP)	(FN)
Y = 0	(FP)	(TN)

	$\hat{Y} = 1$	$\hat{Y} = 0$
Y = 1	3	4
Y = 0	5	6

- 1. 분류(Classification) 소개
- 2. K-NN 알고리즘(K-nearest neighbor)
- 3. 서포트 벡터 머신(Support vector machine, SVM)
- 4. 로지스틱 회귀(Logistic regression)
- 5. 분류 알고리즘 성능 평가(Model Evaluation)
 - 1) 선형 회귀와의 비교: 검증 데이터 셋 분리
 - 2) 분류 정확도(Classification accuracy)
 - 3) Precision and recall
 - 4) F1-score

F1-Score

• Precision 과 Recall를 동시에 고려하는 정확도 기준

• F1-score = $\frac{2 \cdot Precision \cdot Recall}{(Precision + Recall)}$ (조화 평균)

- 분류 정확도와 비교
 - $P(Y=1) \approx P(Y=0)$ 인 경우 (Balanced label) \rightarrow 분류 정확도
 - $P(Y=1) \ll P(Y=0)$ or $P(Y=1) \gg P(Y=0)$ 인 경우 (Unbalanced label) \rightarrow F1-score

Thank you!

Any Questions?