Złożoność obliczeniowa algorytmów Problemy NP-zupełne

Kordian A. Smoliński

Wydział Fizyki i Informatyki Stosowanej

2024/2025

Treść wykładu

- 🚺 SAT
 - 3SAT
 - MAX2SAT
- Problemy grafowe
 - Pokrycie wierzchołkowe
 - Zbiór niezależny i klika
 - Cykl Hamiltona i droga Hamiltona
- Problemy na zbiorach i liczbach
 - Skojarzenie trójdzielne
 - Problemy dot. pokryć
 - Problemy liczbowe

Aby dowieść, że język (problem decyzyjny) L jest \mathbf{NP} -zupełny, należy:

Aby dowieść, że język (problem decyzyjny) L jest **NP**-zupełny, należy:

dowieść, że język L należy do klasy NP;

Aby dowieść, że język (problem decyzyjny) L jest **NP**-zupełny, należy:

- dowieść, że język L należy do klasy NP;
- $oldsymbol{\circ}$ skonstruować redukcję wybranego znanego języka $oldsymbol{\mathsf{NP}}$ -zupełnego L' do L.

Aby dowieść, że język (problem decyzyjny) L jest NP-zupełny, należy:

- dowieść, że język L należy do klasy NP;
- ${f 2}$ skonstruować redukcję wybranego znanego języka ${f NP}$ -zupełnego ${\it L'}$ do ${\it L}$.

Rozpoczynamy zatem od dowiedzenia **NP**-zupełności kilku klasycznych problemów.

Definicja

Definicja

Formuła rachunku zdań może być:

zmienną zdaniową x_i;

Definicja

- zmienną zdaniową x_i;
- ullet negacją formuły rachunku zdań ϕ_i ;

Definicja

- zmienną zdaniową x_i;
- negacją formuły rachunku zdań ϕ_i ;
- alternatywą formuł rachunku zdań $\phi_i \lor \phi_j$;

Definicja

- zmienną zdaniową x_i;
- negacją formuły rachunku zdań ϕ_i ;
- alternatywą formuł rachunku zdań $\phi_i \lor \phi_j$;
- koniunkcją formuł rachunku zdań $\phi_i \wedge \phi_j$.

Definicja

Formuła rachunku zdań może być:

- zmienną zdaniową x_i;
- negacją formuły rachunku zdań φ_i;
- alternatywą formuł rachunku zdań $\phi_i \lor \phi_j$;
- koniunkcją formuł rachunku zdań $\phi_i \wedge \phi_j$.

Definicja

Wartościowanie logiczne to odwzorowanie ze skończonego zbioru zmiennych zdaniowych w zbiór wartości logicznych {prawda, fałsz}.

Definicja

Formuła rachunku zdań może być:

- zmienną zdaniową x_i;
- negacją formuły rachunku zdań ϕ_i ;
- alternatywą formuł rachunku zdań $\phi_i \lor \phi_j$;
- koniunkcją formuł rachunku zdań $\phi_i \wedge \phi_j$.

Definicja

Wartościowanie logiczne to odwzorowanie ze skończonego zbioru zmiennych zdaniowych w zbiór wartości logicznych {prawda, fałsz}.

Definicja

Wartościowanie T spełnia formułę ϕ , $T \vDash \phi$, jeżeli dla tego wartościowania $\phi \mapsto \mathbf{prawda}$.

Definicja

 ϕ jest spełnialna, jeżeli $\exists T : T \vDash \phi$.

Definicja

 ϕ jest spełnialna, jeżeli $\exists T : T \vDash \phi$.

Definicja

 ϕ jest prawdziwa, $\models \phi$, jeżeli $\forall T : T \models \phi$.

Definicja

 ϕ jest spełnialna, jeżeli $\exists T : T \vDash \phi$.

Definicja

 ϕ jest prawdziwa, $\models \phi$, jeżeli $\forall T : T \models \phi$.

Definicje

literał — zmienna zdaniowa x_i lub jej negacja x_i ;

Definicja

 ϕ jest spełnialna, jeżeli $\exists T : T \vDash \phi$.

Definicja

 ϕ jest prawdziwa, $\models \phi$, jeżeli $\forall T : T \models \phi$.

Definicje

literał — zmienna zdaniowa x_i lub jej negacja x_i ; klauzula — alternatywa C_i co najmniej jednego literału;

Definicja

 ϕ jest spełnialna, jeżeli $\exists T : T \vDash \phi$.

Definicja

 ϕ jest prawdziwa, $\models \phi$, jeżeli $\forall T : T \models \phi$.

Definicje

literał — zmienna zdaniowa x_i lub jej negacja x_i ; klauzula — alternatywa C_i co najmniej jednego literału; implikant — koniunkcja D_i co najmniej jednego literału;

Definicja

 ϕ jest spełnialna, jeżeli $\exists T : T \vDash \phi$.

Definicja

 ϕ jest prawdziwa, $\models \phi$, jeżeli $\forall T : T \models \phi$.

Definicje

literał — zmienna zdaniowa x_i lub jej negacja x_i ; klauzula — alternatywa C_i co najmniej jednego literału; implikant — koniunkcja D_i co najmniej jednego literału; koniunktywna postać normalna — koniunkcja skończonej liczby klauzul: $\phi = \bigwedge_{i=1}^n C_i \ (n \geqslant 1)$;

Definicja

 ϕ jest spełnialna, jeżeli $\exists T : T \vDash \phi$.

Definicja

 ϕ jest prawdziwa, $\models \phi$, jeżeli $\forall T : T \models \phi$.

Definicje

literał — zmienna zdaniowa x_i lub jej negacja x_i ;

klauzula — alternatywa C_i co najmniej jednego literału;

implikant — koniunkcja D_i co najmniej jednego literału;

koniunktywna postać normalna — koniunkcja skończonej liczby klauzul: $\phi = \bigwedge_{i=1}^{n} C_i \ (n \ge 1)$;

dysjunktywna postać normalna — alternatywa skończonej liczby implikantów: $\phi = \bigvee_{i=1}^{n} D_{i} \ (n \ge 1)$.

Twierdzenie

Dla każdej formuły rachunku zdań istnieje równoważna formuła w koniunktywnej postaci normalnej oraz równoważna formuła w dysjunktywnej postaci normalnej.

Twierdzenie

Dla każdej formuły rachunku zdań istnieje równoważna formuła w koniunktywnej postaci normalnej oraz równoważna formuła w dysjunktywnej postaci normalnej.

Problem (SAT)

Czy dla danej formuły rachunku zdań zapisanej w koniunktywnej postaci normalnej istnieje wartościowanie ją spełniające?

Twierdzenie

Dla każdej formuły rachunku zdań istnieje równoważna formuła w koniunktywnej postaci normalnej oraz równoważna formuła w dysjunktywnej postaci normalnej.

Problem (SAT)

Czy dla danej formuły rachunku zdań zapisanej w koniunktywnej postaci normalnej istnieje wartościowanie ją spełniające?

Fakt (Cook-Lewin)

Problem SAT jest **NP**-zupełny.

Problem (3SAT)

Czy dla danej formuły rachunku zdań zapisanej w koniunktywnej postaci normalnej, w której wszystkie klauzule mają co najwyżej trzy literały, istnieje wartościowanie ją spełniające?

Problem (3SAT)

Czy dla danej formuły rachunku zdań zapisanej w koniunktywnej postaci normalnej, w której wszystkie klauzule mają co najwyżej trzy literały, istnieje wartościowanie ją spełniające?

Fakt

Problem 3SAT jest **NP**-zupełny.

Problem (3SAT)

Czy dla danej formuły rachunku zdań zapisanej w koniunktywnej postaci normalnej, w której wszystkie klauzule mają co najwyżej trzy literały, istnieje wartościowanie ją spełniające?

Fakt

Problem 3SAT jest **NP**-zupełny.

Dowód.

3SAT jest podproblemem SAT, który jest w NP, więc sam jest w NP.

Problem (3SAT)

Czy dla danej formuły rachunku zdań zapisanej w koniunktywnej postaci normalnej, w której wszystkie klauzule mają co najwyżej trzy literały, istnieje wartościowanie ją spełniające?

Fakt

Problem 3SAT jest **NP**-zupełny.

Dowód.

3SAT jest podproblemem SAT, który jest w **NP**, więc sam jest w **NP**. Redukcja z SAT do 3SAT: Niech $\phi = \bigwedge_{i=1}^m C_i$ nad x_1, \ldots, x_n , gdzie $C_i = \bigvee_{j=1}^k x_{i_j}$, a x_{i_j} są parami różne $(j = 1, \ldots, k)$.

Dowód (dokończenie).

Jeżeli w C_i mamy k>3, to dodajemy k-3 nowych zmiennych $y_{i_2},\ldots,y_{i_{k-2}}$ i zastępujemy C_i przez

$$C'_{i} = (x_{i_{1}} \vee x_{i_{2}} \vee y_{i_{2}}) \wedge (\neg y_{i_{2}} \vee x_{i_{3}} \vee y_{i_{3}}) \wedge \cdots \wedge (\neg y_{i_{k-2}} \vee x_{i_{k-1}} \vee x_{i_{k}}).$$

Dowód (dokończenie).

Jeżeli w C_i mamy k>3, to dodajemy k-3 nowych zmiennych $y_{i_2},\ldots,y_{i_{k-2}}$ i zastępujemy C_i przez

$$C'_{i} = (x_{i_{1}} \vee x_{i_{2}} \vee y_{i_{2}}) \wedge (\neg y_{i_{2}} \vee x_{i_{3}} \vee y_{i_{3}}) \wedge \cdots \wedge (\neg y_{i_{k-2}} \vee x_{i_{k-1}} \vee x_{i_{k}}).$$

Jeżeli C_i jest spełnialna, to można dobrać wartościowanie dla $y_{i_2}, \ldots, y_{i_{k-2}}$, aby C_i' była spełnialna.

Dowód (dokończenie).

Jeżeli w C_i mamy k>3, to dodajemy k-3 nowych zmiennych $y_{i_2},\ldots,y_{i_{k-2}}$ i zastępujemy C_i przez

$$C'_{i} = (x_{i_{1}} \lor x_{i_{2}} \lor y_{i_{2}}) \land (\neg y_{i_{2}} \lor x_{i_{3}} \lor y_{i_{3}}) \land \cdots \land (\neg y_{i_{k-2}} \lor x_{i_{k-1}} \lor x_{i_{k}}).$$

Jeżeli C_i jest spełnialna, to można dobrać wartościowanie dla $y_{i_2}, \ldots, y_{i_{k-2}}$, aby C_i' była spełnialna.

Jeżeli C_i' jest spełniona dla pewnego wartościowania

 $x_{i_1}, \ldots, x_{i_k}, y_{i_2}, \ldots, y_{i_{k-2}}$, to $\exists l \in \{1, \ldots, k\} \colon x_{i_l} = \mathbf{prawda}$. Istotnie, gdyby $x_{i_1} = x_{i_2} = \mathbf{fatsz}$, to z 1. klauzuli w C_i' wynika, że $y_{i_2} = \mathbf{prawda}$. Zatem z 2. klauzuli jest $x_{i_3} = \mathbf{prawda}$ lub $y_{i_3} = \mathbf{prawda}$. Przypadek 1. kończy rozumowanie, w przypadku 2. kontynuujemy na kolejnej klauzuli itd.

Dowód (dokończenie).

Jeżeli w C_i mamy k>3, to dodajemy k-3 nowych zmiennych $y_{i_2},\ldots,y_{i_{k-2}}$ i zastępujemy C_i przez

$$C'_{i} = (x_{i_{1}} \vee x_{i_{2}} \vee y_{i_{2}}) \wedge (\neg y_{i_{2}} \vee x_{i_{3}} \vee y_{i_{3}}) \wedge \cdots \wedge (\neg y_{i_{k-2}} \vee x_{i_{k-1}} \vee x_{i_{k}}).$$

Jeżeli C_i jest spełnialna, to można dobrać wartościowanie dla $y_{i_2}, \ldots, y_{i_{k-2}}$, aby C_i' była spełnialna.

Jeżeli C_i' jest spełniona dla pewnego wartościowania

 $x_{i_1},\ldots,x_{i_k},y_{i_2},\ldots,y_{i_{k-2}}$, to $\exists l\in\{1,\ldots,k\}\colon x_{i_l}=$ **prawda**. Istotnie, gdyby $x_{i_1}=x_{i_2}=$ **fałsz**, to z 1. klauzuli w C_i' wynika, że $y_{i_2}=$ **prawda**. Zatem z 2. klauzuli jest $x_{i_3}=$ **prawda** lub $y_{i_3}=$ **prawda**. Przypadek 1. kończy rozumowanie, w przypadku 2. kontynuujemy na kolejnej klauzuli itd. Po przekształceniu kolejnych klauzul powstaje równoważna formuła o co najwyżej 3-składnikowych klauzulach.

Dowód (dokończenie).

Jeżeli w C_i mamy k>3, to dodajemy k-3 nowych zmiennych $y_{i_2},\ldots,y_{i_{k-2}}$ i zastępujemy C_i przez

$$C'_{i} = (x_{i_{1}} \vee x_{i_{2}} \vee y_{i_{2}}) \wedge (\neg y_{i_{2}} \vee x_{i_{3}} \vee y_{i_{3}}) \wedge \cdots \wedge (\neg y_{i_{k-2}} \vee x_{i_{k-1}} \vee x_{i_{k}}).$$

Jeżeli C_i jest spełnialna, to można dobrać wartościowanie dla $y_{i_2}, \ldots, y_{i_{k-2}}$, aby C_i' była spełnialna.

Jeżeli C_i' jest spełniona dla pewnego wartościowania

 $x_{i_1},\ldots,x_{i_k},y_{i_2},\ldots,y_{i_{k-2}}$, to $\exists l\in\{1,\ldots,k\}\colon x_{i_l}=$ **prawda**. Istotnie, gdyby $x_{i_1}=x_{i_2}=$ **fałsz**, to z 1. klauzuli w C_i' wynika, że $y_{i_2}=$ **prawda**. Zatem z 2. klauzuli jest $x_{i_3}=$ **prawda** lub $y_{i_3}=$ **prawda**. Przypadek 1. kończy rozumowanie, w przypadku 2. kontynuujemy na kolejnej klauzuli itd. Po przekształceniu kolejnych klauzul powstaje równoważna formuła o co najwyżej 3-składnikowych klauzulach.

Maszyna Turinga potrzebuje pamięci roboczej tylko na licznik bieżącej klauzuli C_i oraz licznik wygenerowanych nowych zmiennych. Wystarcza pamięć logarytmiczna, więc redukcja dokonuje się w czasie wielomianowym.

Problem (MAX2SAT)

Czy dla danej formuły rachunku zdań zapisanej w koniunktywnej postaci normalnej, w której wszystkie klauzule mają co najwyżej dwa literały, istnieje wartościowanie spełniające przynajmniej k klauzul?

Problem (MAX2SAT)

Czy dla danej formuły rachunku zdań zapisanej w koniunktywnej postaci normalnej, w której wszystkie klauzule mają co najwyżej dwa literały, istnieje wartościowanie spełniające przynajmniej k klauzul?

Fakt

Problem MAX2SAT jest NP-zupełny.

Dowód.

Dla formuły $\phi = \bigwedge_{i=1}^n C_i$ z przypadku problemu 3SAT, każdą klauzulę $C_i = x_i \vee y_i \vee z_i$ przekształcamy na zbiór 10 klauzul postaci:

$$X_i \wedge y_i \wedge Z_i \wedge w_i$$
$$\wedge (\neg x_i \vee \neg y_i) \wedge (\neg y_i \vee \neg z_i) \wedge (\neg x_i \vee \neg z_i) \wedge (x_i \vee w_i) \wedge (y_i \vee \neg w_i) \wedge (z_i \vee \neg w_i).$$

Z powyższych klauzul co najwyżej 7 może być spełnionych, co ma miejsce wtedy i tylko wtedy, gdy C_i jest spełniona.

Dowód.

Dla formuły $\phi = \bigwedge_{i=1}^n C_i$ z przypadku problemu 3SAT, każdą klauzulę $C_i = x_i \vee y_i \vee z_i$ przekształcamy na zbiór 10 klauzul postaci:

$$X_i \wedge Y_i \wedge Z_i \wedge W_i$$
$$\wedge (\neg X_i \vee \neg Y_i) \wedge (\neg Y_i \vee \neg Z_i) \wedge (\neg X_i \vee \neg Z_i) \wedge (X_i \vee W_i) \wedge (Y_i \vee \neg W_i) \wedge (Z_i \vee \neg W_i).$$

Z powyższych klauzul co najwyżej 7 może być spełnionych, co ma miejsce wtedy i tylko wtedy, gdy C_i jest spełniona.

Jeżeli w przypadku problemu dla 3SAT jest n klauzul, to zredukowaliśmy ten przypadku dla MAX2SAT o k=7n.

MAX2SAT

Dowód.

Dla formuły $\phi = \bigwedge_{i=1}^n C_i$ z przypadku problemu 3SAT, każdą klauzulę $C_i = x_i \lor y_i \lor z_i$ przekształcamy na zbiór 10 klauzul postaci:

$$X_i \wedge y_i \wedge Z_i \wedge W_i$$

$$\wedge (\neg x_i \vee \neg y_i) \wedge (\neg y_i \vee \neg z_i) \wedge (\neg x_i \vee \neg z_i) \wedge (x_i \vee w_i) \wedge (y_i \vee \neg w_i) \wedge (z_i \vee \neg w_i).$$

Z powyższych klauzul co najwyżej 7 może być spełnionych, co ma miejsce wtedy i tylko wtedy, gdy C_i jest spełniona.

Jeżeli w przypadku problemu dla 3SAT jest n klauzul, to zredukowaliśmy ten przypadku do przypadku dla MAX2SAT o k=7n.

To, że MAX2SAT \in **NP** i że powyższa redukcja może być wykonana w pamięci logarytmicznej, jest oczywiste.

Definicja

Graf G to para G = (V, E), gdzie

Definicja

Graf G to para G = (V, E), gdzie

Definicja

Graf G to para G = (V, E), gdzie

 $V \neq \emptyset$ — zbiór wierzchołków,

 $E \subseteq \{\{v, w\}: v \in V \land w \in V \land v \neq w\}$ — zbiór krawędzi.

Definicja

Graf G to para G = (V, E), gdzie

 $V \neq \emptyset$ — zbiór wierzchołków,

 $E \subseteq \{\{v, w\}: v \in V \land w \in V \land v \neq w\}$ — zbiór krawędzi.

Rysunek: Graf

Definicja

Pokrycie wierzchołkowe grafu G = (V, E) to zbiór $V' \subseteq V$ taki, że

$$\{v, w\} \in E \implies v \in V' \lor w \in V'.$$

Definicja

Pokrycie wierzchołkowe grafu G = (V, E) to zbiór $V' \subseteq V$ taki, że

 $\{v, w\} \in E \implies v \in V' \lor w \in V'.$

Problem (NODE COVER)

Definicja

Pokrycie wierzchołkowe grafu G = (V, E) to zbiór $V' \subseteq V$ taki, że

 $\{v, w\} \in E \implies v \in V' \lor w \in V'.$

Problem (NODE COVER)

Wejście:
$$G = (V, E), \mathbb{N} \ni k \leqslant |V|$$

Definicja

Pokrycie wierzchołkowe grafu G = (V, E) to zbiór $V' \subseteq V$ taki, że

 $\{v, w\} \in E \implies v \in V' \lor w \in V'.$

Problem (NODE COVER)

Wejście: $G = (V, E), \mathbb{N} \ni k \leqslant |V|$

Wyjście: tak, jeżeli G ma pokrycie wierzchołkowe V'

i |V'| = k, **nie** w przeciwnym razie.

Definicja

Pokrycie wierzchołkowe grafu G = (V, E) to zbiór $V' \subseteq V$ taki, że

 $\{v, w\} \in E \implies v \in V' \lor w \in V'.$

Problem (NODE COVER)

Wejście: $G = (V, E), \mathbb{N} \ni k \leqslant |V|$

Wyjście: tak, jeżeli G ma pokrycie wierzchołkowe V'

i |V'| = k, **nie** w przeciwnym razie.

Fakt

Problem NODE COVER jest NP-zupełny.

Definicja

Zbiór niezależny w grafie G = (V, E) to zbiór $V' \subseteq V$ taki, że

$$(v \in V' \land w \in V') \implies \{v, w\} \not \in E.$$

Definicja

Zbiór niezależny w grafie G = (V, E) to zbiór $V' \subseteq V$ taki, że

$$(v \in V' \land w \in V') \implies \{v, w\} \not \in E.$$

Problem (INDEPENDENT SET)

Definicja

Zbiór niezależny w grafie G = (V, E) to zbiór $V' \subseteq V$ taki, że

$$(v \in V' \land w \in V') \implies \{v, w\} \not\in E.$$

Problem (INDEPENDENT SET)

Wejście:
$$G = (V, E), \mathbb{N} \ni k \leqslant |V|$$

Definicja

Zbiór niezależny w grafie G = (V, E) to zbiór $V' \subseteq V$ taki, że

 $(v \in V' \land w \in V') \implies \{v, w\} \not\in E.$

Problem (INDEPENDENT SET)

Wejście: $G = (V, E), \mathbb{N} \ni k \leqslant |V|$

Wyjście: tak, jeżeli G ma zbiór niezależny V' i |V'| = k,

nie w przeciwnym razie.

Definicja

Zbiór niezależny w grafie G = (V, E) to zbiór $V' \subseteq V$ taki, że

 $(v \in V' \land w \in V') \implies \{v, w\} \not\in E.$

Problem (INDEPENDENT SET)

Wejście: $G = (V, E), \mathbb{N} \ni k \leqslant |V|$

Wyjście: tak, jeżeli G ma zbiór niezależny V' i |V'| = k,

nie w przeciwnym razie.

Fakt

Problem INDEPENDENT SET jest NP-zupełny.

Definicja

Klika w grafie G = (V, E) to zbiór $V' \subseteq V$ taki, że

$$(v \in V' \land w \in V' \land v \neq w) \implies \{v, w\} \in E.$$

Definicja

Klika w grafie G = (V, E) to zbiór $V' \subseteq V$ taki, że

$$(v \in V' \land w \in V' \land v \neq w) \implies \{v, w\} \in E.$$

Problem (CLIQUE)

Definicja

Klika w grafie G = (V, E) to zbiór $V' \subseteq V$ taki, że

$$(v \in V' \land w \in V' \land v \neq w) \implies \{v, w\} \in E.$$

Problem (CLIQUE)

Wejście:
$$G = (V, E), \mathbb{N} \ni k \leqslant |V|$$

Definicja

Klika w grafie G = (V, E) to zbiór $V' \subseteq V$ taki, że

 $(v \in V' \land w \in V' \land v \neq w) \implies \{v, w\} \in E.$

Problem (CLIQUE)

Wejście: $G = (V, E), \mathbb{N} \ni k \leqslant |V|$

Wyjście: tak, jeżeli G ma klikę V' i |V'| = k, nie

w przeciwnym razie.

Definicja

Klika w grafie G = (V, E) to zbiór $V' \subseteq V$ taki, że

$$(v \in V' \land w \in V' \land v \neq w) \implies \{v, w\} \in E.$$

Problem (CLIQUE)

Wejście: $G = (V, E), \mathbb{N} \ni k \leqslant |V|$

Wyjście: tak, jeżeli G ma klikę V' i |V'| = k, nie

w przeciwnym razie.

Fakt

Problem CLIQUE jest NP-zupełny.

Definicja

Ścieżka łącząca w grafie G = (V, E) wierzchołki $v_1 \in V$ i $v_n \in V$ to ciąg $(v_1, v_2, \ldots, v_n) \in V^n$ taki, że $\forall i \in \{1, \ldots, n-1\} : \{v_i, v_{i+1}\} \in E$.

Definicja

Ścieżka tącząca w grafie G = (V, E) wierzchołki $v_1 \in V$ i $v_n \in V$ to ciąg $(v_1, v_2, \ldots, v_n) \in V^n$ taki, że $\forall i \in \{1, \ldots, n-1\} \colon \{v_i, v_{i+1}\} \in E$.

Definicja

Droga to ścieżka, której wszystkie wierzchołki wewnętrzne są różne: $\forall i, j \in \{1, ..., n\}: i \neq j \implies v_i \neq v_j$.

Definicja

Ścieżka tącząca w grafie G = (V, E) wierzchotki $v_1 \in V$ i $v_n \in V$ to ciąg $(v_1, v_2, \ldots, v_n) \in V^n$ taki, że $\forall i \in \{1, \ldots, n-1\} \colon \{v_i, v_{i+1}\} \in E$.

Definicja

Droga to ścieżka, której wszystkie wierzchołki wewnętrzne są różne: $\forall i, j \in \{1, ..., n\}: i \neq j \implies v_i \neq v_j$.

Definicja

Cykl w grafie G = (V, E) to droga zamknięta $(v_1, v_2, ..., v_n, v_1) \in V^{n+1}$.

Definicja

Cykl Hamiltona w grafie G = (V, E) to cykl $(v_1, v_2, ..., v_{|V|}, v_1) \in V^{|V|+1}$ przechodzący przez wszystkie wierzchołki grafu, tzn. $\forall v \in V \exists i \in \{1, ..., |V|\}: v = v_i$.

Definicja

Cykl Hamiltona w grafie G = (V, E) to cykl $(v_1, v_2, ..., v_{|V|}, v_1) \in V^{|V|+1}$ przechodzący przez wszystkie wierzchołki grafu, tzn. $\forall v \in V \ \exists i \in \{1, ..., |V|\}: v = v_i$.

Problem (HAMILTONIAN CYCLE)

Definicja

Cykl Hamiltona w grafie G = (V, E) to cykl $(v_1, v_2, ..., v_{|V|}, v_1) \in V^{|V|+1}$ przechodzący przez wszystkie wierzchołki grafu, tzn. $\forall v \in V \exists i \in \{1, ..., |V|\}: v = v_i$.

Problem (HAMILTONIAN CYCLE)

Wejście:
$$G = (V, E)$$

Definicja

Cykl Hamiltona w grafie G = (V, E) to cykl $(v_1, v_2, ..., v_{|V|}, v_1) \in V^{|V|+1}$ przechodzący przez wszystkie wierzchołki grafu, tzn. $\forall v \in V \ \exists i \in \{1, ..., |V|\}: v = v_i$.

Problem (HAMILTONIAN CYCLE)

Wejście: G = (V, E)

Wyjście: tak, jeżeli G ma cykl Hamiltona; nie

w przeciwnym razie.

Definicja

Cykl Hamiltona w grafie G = (V, E) to cykl $(v_1, v_2, ..., v_{|V|}, v_1) \in V^{|V|+1}$ przechodzący przez wszystkie wierzchołki grafu, tzn. $\forall v \in V \ \exists i \in \{1, ..., |V|\}: v = v_i$.

Problem (HAMILTONIAN CYCLE)

Wejście: G = (V, E)

Wyjście: tak, jeżeli G ma cykl Hamiltona; nie

w przeciwnym razie.

Fakt

Problem HAMILTONIAN CYCLE jest NP-zupełny.

Definicja

Droga Hamiltona w grafie G = (V, E) to droga $(v_1, v_2, ..., v_{|V|}) \in V^{|V|}$ przechodząca przez wszystkie wierzchołki grafu, tzn. $\forall v \in V \exists i \in \{1, ..., |V|\}: v = v_i$.

Definicja

Droga Hamiltona w grafie G = (V, E) to droga $(v_1, v_2, ..., v_{|V|}) \in V^{|V|}$ przechodząca przez wszystkie wierzchołki grafu, tzn. $\forall v \in V \exists i \in \{1, ..., |V|\}: v = v_i$.

Problem (HAMILTONIAN PATH)

Definicja

Droga Hamiltona w grafie G = (V, E) to droga $(v_1, v_2, ..., v_{|V|}) \in V^{|V|}$ przechodząca przez wszystkie wierzchołki grafu, tzn. $\forall v \in V \exists i \in \{1, ..., |V|\}: v = v_i$.

Problem (HAMILTONIAN PATH)

Wejście:
$$G = (V, E)$$

Definicja

Droga Hamiltona w grafie G = (V, E) to droga $(v_1, v_2, ..., v_{|V|}) \in V^{|V|}$ przechodząca przez wszystkie wierzchołki grafu, tzn. $\forall v \in V \exists i \in \{1, ..., |V|\}: v = v_i$.

Problem (HAMILTONIAN PATH)

Wejście: G = (V, E)

Wyjście: tak, jeżeli G ma drogę Hamiltona; nie

w przeciwnym razie.

Definicja

Droga Hamiltona w grafie G = (V, E) to droga $(v_1, v_2, \ldots, v_{|V|}) \in V^{|V|}$ przechodząca przez wszystkie wierzchołki grafu, tzn. $\forall v \in V \ \exists i \in \{1, \ldots, |V|\}: v = v_i$.

Problem (HAMILTONIAN PATH)

Wejście: G = (V, E)

Wyjście: tak, jeżeli G ma drogę Hamiltona; nie

w przeciwnym razie.

Fakt

Problem HAMILTONIAN PATH jest NP-zupełny.

Problemy na zbiorach i liczbach

- Problemy na zbiorach i liczbach
 - Skojarzenie trójdzielne
 - Problemy dot. pokryć
 - Problemy liczbowe

Skojarzenie trójdzielne

Problem (TRIPARTITE MATCHING)

Skojarzenie trójdzielne

Problem (TRIPARTITE MATCHING)

Wejście: zbiory skończone X, Y, Z, parami rozłączne oraz relacja $R \subset X \times Y \times Z$

Problem (TRIPARTITE MATCHING)

Wejście: zbiory skończone X, Y, Z, parami rozłączne oraz relacja $R \subset X \times Y \times Z$

Wyjście: tak, jeżeli istnieje skojarzenie:

 $\exists M \subseteq R: (x, y, z) \in M \land (x', y', z') \in M \land (x, y, z) \neq \emptyset$

 $\exists M \subseteq K : (x, y, z) \in M \land (x, y, z) \in M \land (x, y, z) \neq (x', y', z') \implies x \neq x' \land y \neq y' \land z \neq z';$ nie

w przeciwnym razie.

Problem (TRIPARTITE MATCHING)

Wejście: zbiory skończone X, Y, Z, parami rozłączne oraz relacia $R \subset X \times Y \times Z$

Wyjście: tak, jeżeli istnieje skojarzenie:

 $\exists M \subseteq R \colon (x, y, z) \in M \land (x', y', z') \in M \land (x, y, z) \neq (x', y', z') \implies x \neq x' \land y \neq y' \land z \neq z'; \mathbf{nie}$

w przeciwnym razie.

Fakt

Problem TRIPARTITE MATCHING jest NP-zupełny.

Problem (TRIPARTITE MATCHING)

Wejście: zbiory skończone X, Y, Z, parami rozłączne oraz

relacja $R \subset X \times Y \times Z$

Wyjście: tak, jeżeli istnieje skojarzenie:

 $\exists M \subseteq R \colon (x, y, z) \in M \land (x', y', z') \in M \land (x, y, z) \neq$

 $(x', y', z') \implies x \neq x' \land y \neq y' \land z \neq z';$ **nie** w przeciwnym razie.

Fakt

Problem TRIPARTITE MATCHING jest NP-zupełny.

Idea dowodu.

Redukcja z 3SAT.

Dla porównania:

Problem (BIPARTITE MATCHING)

Dla porównania:

Problem (BIPARTITE MATCHING)

Wejście: zbiory skończone X, Y, rozłączne oraz relacja $R \subset X \times Y$

Dla porównania:

Problem (BIPARTITE MATCHING)

Wejście: zbiory skończone X, Y, rozłączne oraz relacja

 $R \subset X \times Y$

Wyjście: tak, jeżeli istnieje skojarzenie: $\exists M \subseteq R : (x, y) \in M \land (x', y') \in M \land (x, y) \neq (x', y') \implies x \neq x' \land y \neq y'$:

nie w przeciwnym razie.

Dla porównania:

Problem (BIPARTITE MATCHING)

Wejście: zbiory skończone X, Y, rozłączne oraz relacja

 $R \subset X \times Y$

Wyjście: tak, jeżeli istnieje skojarzenie: $\exists M \subseteq R: (x,y) \in M \land (x',y') \in M \land (x,y) \neq (x',y') \longrightarrow x \neq x' \land y \neq y'$

 $M \land (x', y') \in M \land (x, y) \neq (x', y') \implies x \neq x' \land y \neq y';$

nie w przeciwnym razie.

Fakt

BIPARTITE MATCHING $\in \mathbf{P}$.

Dla porównania:

Problem (BIPARTITE MATCHING)

Wejście: zbiory skończone X, Y, rozłączne oraz relacja $R \subset X \times Y$

Wyjście: tak, jeżeli istnieje skojarzenie: $\exists M \subseteq R : (x,y) \in M \land (x',y') \in M \land (x,y) \neq (x',y') \implies x \neq x' \land y \neq y';$ nie w przeciwnym razie.

Fakt

BIPARTITE MATCHING $\in \mathbf{P}$.

Rozwiązanie

Skojarzenie dla BIPARTITE MATCHING można wyznaczyć za pomocą algorytmu Hopcrofta–Karpa, który wymaga czasu $O(|R|\sqrt{|X|+|Y|})$.

Problem (EXACT COVER BY 3-SETS)

Problem (EXACT COVER BY 3-SETS)

Wejście: zbiór X taki, że $\exists n \in \mathbb{N} : |X| = 3n$, rodzina podzbiorów $S \subset \mathcal{P}(X)$ taka, że $\forall U \in S : |U| = 3$

Problem (EXACT COVER BY 3-SETS)

Wejście: zbiór X taki, że $\exists n \in \mathbb{N} : |X| = 3n$, rodzina podzbiorów $S \subset \mathcal{P}(X)$ taka, że $\forall U \in S : |U| = 3$

Wyjście: tak, jeżeli $\exists C \subseteq S : (\cup_{U \in C} = X) \land (\forall x \in X : x \in U \in C \land x \in U' \in C \implies U = U')$; **nie** w przeciwnym razie.

Problem (EXACT COVER BY 3-SETS)

Wejście: zbiór X taki, że $\exists n \in \mathbb{N} : |X| = 3n$, rodzina podzbiorów $S \subset \mathcal{P}(X)$ taka, że $\forall U \in S : |U| = 3$

Wyjście: tak, jeżeli $\exists C \subseteq S : (\cup_{U \in C} = X) \land (\forall x \in X : x \in U \in C \land x \in U' \in C \implies U = U')$; nie w przeciwnym

razie.

Fakt

Problem EXACT COVER BY 3-SETS jest NP-zupełny.

Problem (SET COVERING)

Problem (SET COVERING)

Wejście: zbiór X, $rodzina S \subset \mathcal{P}(X)$, $liczba \mathbb{N} \ni k \leqslant |S|$

Problem (SET COVERING)

Wejście: zbiór X, rodzina $S \subset \mathcal{P}(X)$, liczba $\mathbb{N} \ni k \leqslant |S|$ *Wyjście:* tak, jeżeli $\exists \mathcal{C} \subseteq S \colon \bigcup_{U \in \mathcal{C}} = X \land |\mathcal{C}| = k$; nie w przeciwnym razie.

Problem (SET COVERING)

Wejście: zbiór X, rodzina $S \subset \mathcal{P}(X)$, liczba $\mathbb{N} \ni k \leqslant |S|$ *Wyjście:* tak, jeżeli $\exists \mathcal{C} \subseteq S \colon \bigcup_{U \in \mathcal{C}} = X \land |\mathcal{C}| = k$; nie w przeciwnym razie.

Fakt

Problem SET COVERING jest NP-zupełny.

Problem (SUBSET SUM)

Problem (SUBSET SUM)

Wejście: skończony zbiór A, funkcja $s: A \to \mathbb{N} \cup \{0\}$, liczba $B \in \mathbb{N} \cup \{0\}$

Problem (SUBSET SUM)

Wejście: skończony zbiór A, funkcja $s: A \to \mathbb{N} \cup \{0\}$, liczba $B \in \mathbb{N} \cup \{0\}$

Wyjście: tak, jeżeli $\exists A' \subseteq A: \sum_{a \in A'} s(a) = B$; nie w przeciwnym razie.

Problem (SUBSET SUM)

Wejście: skończony zbiór A, funkcja $s: A \to \mathbb{N} \cup \{0\}$, liczba $B \in \mathbb{N} \cup \{0\}$

Wyjście: tak, jeżeli $\exists A' \subseteq A: \sum_{a \in A'} s(a) = B$; nie w przeciwnym razie.

Fakt

Problem SUBSET SUM jest NP-zupełny.

Problem (SUBSET SUM)

Wejście: skończony zbiór A, funkcja s: $A \to \mathbb{N} \cup \{0\}$, liczba $B \in \mathbb{N} \cup \{0\}$

Wyjście: tak, jeżeli $\exists A' \subseteq A: \sum_{a \in A'} s(a) = B$; nie w przeciwnym razie.

Fakt

Problem SUBSET SUM jest NP-zupełny.

Idea dowodu.

Redukcja z EXACT COVER BY 3-SETS.

2024/2025

Problem (PARTITION)

Problem (PARTITION)

Wejście: skończony zbiór A, funkcja $s: A \to \mathbb{N} \setminus \{0\}$

Problem (PARTITION)

Wejście: skończony zbiór A, funkcja $s: A \to \mathbb{N} \setminus \{0\}$

Wyjście: tak, jeżeli $\exists A' \subseteq A$: $\sum_{a \in A'} s(a) = \sum_{a \in A \setminus A'} s(a)$;

nie w przeciwnym razie.

Problem (PARTITION)

Wejście: skończony zbiór A, funkcja $s: A \to \mathbb{N} \setminus \{0\}$

Wyjście: tak, jeżeli $\exists A' \subseteq A$: $\sum_{a \in A'} s(a) = \sum_{a \in A \setminus A'} s(a)$;

nie w przeciwnym razie.

Fakt

Problem PARTITION jest NP-zupełny.

Problem (KNAPSACK)

Problem (KNAPSACK)

Wejście: skończony zbiór A, funkcje $s: A \to \mathbb{N} \cup \{0\}$, $v: A \to \mathbb{N} \cup \{0\}$, liczby $B \in \mathbb{N} \cup \{0\}$, $K \in \mathbb{N} \cup \{0\}$

Problem (KNAPSACK)

Wejście: skończony zbiór A, funkcje $s: A \to \mathbb{N} \cup \{0\}$,

 $v: A \to \mathbb{N} \cup \{0\}$, liczby $B \in \mathbb{N} \cup \{0\}$, $K \in \mathbb{N} \cup \{0\}$

Wyjście: tak, jeżeli

 $\exists A' \subseteq A: \ \sum_{a \in A'} s(a) \leqslant B \land \sum_{a \in A'} v(a) \geqslant K$; nie

w przeciwnym razie.

Problem (KNAPSACK)

Wejście: skończony zbiór A, funkcje $s: A \to \mathbb{N} \cup \{0\}$,

 $v: A \to \mathbb{N} \cup \{0\}, \ liczby \ B \in \mathbb{N} \cup \{0\}, \ K \in \mathbb{N} \cup \{0\}$

Wyjście: tak, jeżeli

 $\exists A' \subseteq A: \ \sum_{a \in A'} s(a) \leqslant B \land \sum_{a \in A'} v(a) \geqslant K$; nie

w przeciwnym razie.

Fakt

Problem KNAPSACK jest NP-zupełny.

