

Error Analysis

Carrying out error analysis

Look at dev examples to evaluate ideas

> 10% ocurag

Should you try to make your cat classifier do better on dogs?

Error analysis:

- 5 Get ~100 mislabeled dev set examples.
- · Count up how many are dogs.

Evaluate multiple ideas in parallel

Ideas for cat detection:

- Fix pictures of dogs being recognized as cats
- Fix great cats (lions, panthers, etc..) being misrecognized <

• Improve performance on blurry images —

Image	Dog	Carent Cats	Rlury	Instagram	Comments
1	/				Pitbull
2			/	V	
3		\checkmark	V		Rainy day at 200
:	:	· · ·		7	
% of total	8 %	(430/2)	(6/0/0)	12%	
		←	←		

Error Analysis

Cleaning up Incorrectly labeled data

Incorrectly labeled examples

DL algorithms are quite robust to random errors in the training set.

Systematic escoss

Error analysis

•	Image	Dog	Great Cat	Blurry	Incorrectly labeled	Comments					
	98				\checkmark	Labeler missed cat in background	\leftarrow				
	99		\checkmark								
\bigcup	100				\bigcirc	Drawing of a cat; Not a real cat.	\leftarrow				
	% of total	8%	43%	$\underline{61\%}$	6%						
Overall dev set error											
Errors due incorrect labels 0.6°/. 6.6°/.											
Errors due to other causes 9.4% 1.4%											
				1		2.10/0	1.9./6				

Goal of dev set is to help you select between two classifiers A & B.

Correcting incorrect dev/test set examples

- Apply same process to your dev and test sets to make sure they continue to come from the same distribution
- Consider examining examples your algorithm got right as well as ones it got wrong.
- Train and dev/test data may now come from slightly different distributions.

Error Analysis

Build your first system quickly, then iterate

Speech recognition example

- → Noisy background
 - Café noise
 - → Car noise
- Accent Guideline:

Young Build your first Stutter system quickly, then iterate

- → Set up dev/test set and metric
 - Build initial system quickly
 - Use Bias/Variance analysis & Error analysis to prioritize next steps.

Mismatched training and dev/test data

Training and testing on different distributions

Cat app example

Data from webpages

neb

(mr. 792,000

Data from mobile app

Andrew Ng

Speech recognition example

Training

Purchased data ×, y

Smart speaker control

Voice keyboard

500,000 utbrances

Dev/test

Speech activated rearview mirror

Mismatched training and dev/test data

Bias and Variance with mismatched data distributions

Cat classifier example

Assume humans get $\approx 0\%$ error.

Training error

Dev error

10%

Training-dev set: Same distribution as training set, but not used for training

Bias/variance on mismatched training and dev/test sets

More general formulation

Reason millor

deeplearning.ai

Mismatched training and dev/test data

Addressing data mismatch

Addressing data mismatch

 Carry out manual error analysis to try to understand difference between training and dev/test sets

 Make training data more similar; or collect more data similar to dev/test sets

Artificial data synthesis

"The quick brown fox jumps over the lazy dog."

Car noise

Synthesized in-car audio

Artificial data synthesis

Car recognition:

Learning from multiple tasks

Transfer learning

When transfer learning makes sense

Travely from A -> B

• Task A and B have the same input x.

• You have a lot more data for $\underbrace{Task A}_{\uparrow}$ than $\underbrace{Task B}_{\checkmark}$.

• Low level features from A could be helpful for learning B.

deeplearning.ai

Learning from multiple tasks

Multi-task learning

Simplified autonomous driving example

Neural network architecture

Andrew Ng

When multi-task learning makes sense

• Training on a set of tasks that could benefit from having shared lower-level features.

• Usually: Amount of data you have for each task is quite

similar. A 1,000
A 1,000
A 1,000
A 1,000
A 1,000

• Can train a big enough neural network to do well on all the tasks.

End-to-end deep learning

What is end-to-end deep learning

What is end-to-end learning?

Face recognition

[Image courtesy of Baidu]

Andrew Ng

More examples

Machine translation

Estimating child's age:

End-to-end deep learning

Whether to use end-to-end learning

Pros and cons of end-to-end deep learning

Pros:

- Let the data speak
- Less hand-designing of components needed

- May need large amount of data
- Excludes potentially useful hand-designed components

Applying end-to-end deep learning

Key question: Do you have sufficient data to learn a function of the complexity needed to map x to y?

