Practice Mid-term 2 PAYS2114

Question 1

a) i) Laplace's equation is
$$\nabla^2 V = 0$$
. In spherical coordinates.
$$\nabla^2 V = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial^2 V}{\partial \theta^2}$$

given Up ++ B which is dependent on r but not o or a.

$$\Rightarrow \frac{\partial V}{\partial \theta} = 0$$
 and $\frac{\partial V}{\partial \theta} = 0$.

$$\frac{r^2 \frac{\partial V}{\partial V}}{\partial V} = -\frac{r^2 A}{\Gamma^2} = -A.$$

$$\frac{\partial}{\partial r} \left(r^2 \frac{\partial V}{\partial r} \right) = \frac{\partial}{\partial r} \left(A \right) = 0.$$

 $\nabla^2 V = 0$ and this satisfies Laplace's equation. i) Poisson's equation kills us that $\nabla^2 V = -\frac{1}{6}$. As this is equal to $2en \Rightarrow 0 = -\frac{1}{6} \Rightarrow \rho = 0$. So charge density is 2en0 inside spherical shell.

6) i) I indicates it is an integral over a closed surface.
5) i) I indicates it is an integral over a closed surface. I is the volume current density, and, the amount of current flowing through a
surface perpendicular to the current flow.
du is an increment of surface and directed perpendicular and outwards from
the surface.
ii) A steady current is a continuous flow of current that has been going on Briver
without dranging.
iii) For a steady current any charge that enters the surface must be an again.
Thus the flux through the surface must be O. If this war not true then would
be a change in charge inside the surface
\$J.da = S(V.J) dt = - 1(3) dt =0
(h)
c) i) les, adding free charge will induce a change in the bound chargedonsity: 12 = (12) Pr
ii) Yes, this will balance the volume bound charges: bound charges in a volume is equal
and ofposite to those being pushed out through the surface: Spodt + 106dA=0
iii) Yes: these are the charges being added
iv) Can't say but it seems unlikely none would be added to the surface while they
of A ladia - II da di ladi I i i i i i i i i i i i i i i i i i i
v) Described in parts above: Ph= -(I+Ke)Px: JPbdt + Job dA=0
on being added to the volume. 1) Described in parts above: $p_b = -\frac{f_c}{1+K_c}P_c$; $J\rho_b dT + J\sigma_b dA = 0$ The placement of the free charges causes the bound charges to appear (separate).

b) The negative charge in the lower healt of the spher will perfectly balance the positive charge in the top halt, it is neutral. As Q=0 the monopole contribution dissapears.

at=rsinododadr

Each point on the disk being considered han another point: (x, y, Recse) and (-x, -y, Recse) for which the disk and dpy contributions are equal and apposite. These cancel each other out. Around the disk the dp. contribution is always in the $+\frac{2}{3}$ direction. These sum together.

Have how much each disk contributes need to integrate from z=-R to z=R. As there is a 121 in the function best to split it into two sections:

$$\int_{-R}^{R} 2\pi kz^{2}(R+z)dz + \int_{0}^{R} 2\pi kz^{2}(R-z)dz = \hat{z}$$

=
$$2\pi k \left(\int_{-R}^{0} (Rz^{2} + z^{3}) dz + \int_{0}^{R} (Rz^{2} - z^{3}) dz \right) \hat{z}$$

$$=2\pi R \left(\frac{R^{23}}{3} + \frac{2^4}{4} \right)^{0} + \frac{R^{23}}{3} + \frac{2^4}{4} \right)^{R}$$

$$= 2\pi k \left(\frac{R^4 - R^4 + R^4 - R^4}{3} - \frac{R^4}{4} \right) \frac{2}{2}$$

$$= 2\pi k R^4 \left(\frac{8-6}{126} \right) \frac{2}{2} = \pi k R^4 \left(\frac{2}{6} \right) \frac{2}{6} = \frac{1}{3}\pi k L^4 \frac{2}{3}$$

$$P = \frac{1}{3}\pi k R^4 \frac{2}{3} = \frac{kR}{4} \frac{2}{3}$$

e)
$$V_{dip} = \frac{1}{\sqrt{\pi k}} \frac{(\frac{1}{2}\pi k R^4 \frac{2}{2}) \cdot \hat{r}}{r^2}$$
 $\frac{2}{2} \cdot \hat{r} = \cos \theta$

f) As the dipole contribution to the potential is not zero, it is the highest order non-zero multipole contribution and so quickly dominates the potential as rincrases. Thus at large distances V2 Vd10.

c)
$$\nabla \times A = B$$
 and $\nabla \cdot A = 0$

A(s)= Nok (s+a+aln($\frac{a}{s}$)) $\frac{1}{s}$

In annohold coordinates

 $\nabla \cdot A = \frac{1}{2} \frac{(Nok(s+a+aln(\frac{a}{s})))}{(Nok(s+a+aln(\frac{a}{s})))} = 0$ as is required.

$$\nabla \times A = \frac{1}{s} \frac{1}{2} \frac{(Nok(s+a+aln(\frac{a}{s})))}{(Nok(s+a+aln(\frac{a}{s})))} = 0$$

$$= \frac{1}{s} \frac{1}{2} \frac{(Nok(s+a+aln(\frac{a}{s})))}{(Nok(s+a+aln(\frac{a}{s})))} = 0$$

$$= \frac{1}{s} \frac{1}{2} \frac{(Nok(s+a+aln(\frac{a}{s})))}{(Nok(s+a+aln(\frac{a}{s})))} = 0$$

$$= \frac{1}{s} \frac{$$

This agree with B Bund in part (b) showing this is the comet expression Br the rector potential.

d)
$$F_{\text{may}} = I \times J dl + B = 2\pi k (b-a) \cdot \ell \cdot B_0 \cdot \hat{y}$$

$$= 2\pi k B_0 (b-a) \cdot \hat{y}$$