

365 CFA® Level 1

Formula Sheet
Part I

Contents

Lontents	
Ethics	3
Quantitative Methods	!
Economics	14
Corporate Finance	19
Alternative Investments	2!

Ethical and Professional Standards

01

Ethical and Professional Standards

I. Professionalism

- I(A) Knowledge of the Law.
- I(B) Independence and Objectivity.
- I(C) Misrepresentation.
- I(D) Misconduct.

II. Integrity of Capital Markets

II(A) Material Non-public Information.

II(B) Market Manipulation.

III. Duties to Clients

III(A) Loyalty, Prudence, and Care.

III(B) Fair Dealing.

III(C) Suitability.

III(D) Performance Presentation.

III(E) Preservation of Confidentiality.

IV. Duties to Employers

IV(A) Loyalty.

IV(B) Additional Compensation Arrangements.

IV(C) Responsibilities of Supervisors.

V. Investment Analysis, Recommendations, and Actions

V(A) Diligence and Reasonable Basis.

V(B) Communication with Clients and Prospective Clients.

V(C) Record Retention.

VI. Conflicts of Interest

VI(A) Disclosure of Conflicts.

VI(B) Priority of Transactions.

VI(C) Referral Fees.

VII. Responsibilities as a CFA Institute Member or CFA Candidate

VII(A) Conduct as Participants in CFA Institute Programs.

VII(B) Reference to CFA Institute, the CFA Designation, and the CFA Program.

02

TIME VALUE OF MONEY

Effective Annual Rate (EAR)

Effective annual rate =
$$\left(1 + \frac{\text{Stated annual rate}}{\text{m}}\right)^{\text{m}} - 1$$

Single Cash Flow

$$PV = \frac{FV_N}{(1+r)^N}$$

 $FV_N = PV \times (1 + r)^N$

r = Interest rate per period

PV = Present value of the investment

FV_N = Future value of the investment N periods from today

(Simplified formula)

$$FV_N = PV \times \left(1 + \frac{r_s}{m}\right)^{mN}$$

Investments paying interest more than once a year

$$\mathbf{PV} = \frac{\mathsf{FV}_{\mathsf{N}}}{\left(1 + \frac{\mathsf{r}_{\mathsf{S}}}{\mathsf{m}}\right)^{\mathsf{mN}}}$$

rs = Stated annual interest rate

m = Number of compounding periods per year

N = Number of years

Future Value (FV) of an Investment with Continuous $FV_N = PVe^{r_sN}$ Compounding

$$FV_N = PVe^{r_SN}$$

Ordinary Annuity

$$PV = A \times \left[\frac{1 - \frac{1}{(1+r)^N}}{r} \right]$$

 $\mathbf{FV}_{N} = A \times \left[\frac{(1+r)^{N}-1}{r} \right]$

N = Number of time periods

A = Annuity amount

r = Interest rate per period

FV A_{Due} = FV A_{Ordinary} x (1 + r) = A x
$$\left[\frac{(1 + r)^{N} - 1}{r}\right]$$
 x (1 + r)

Annuity Due

PV Abue = FV Aordinary x (1 + r) = A x
$$\left[\frac{1 - \frac{1}{(1+r)^N}}{r} \right]$$
 x (1 + r)

A = Annuity amount

r = The interest rate per period corresponding to the frequency of annuity paments (for example, annual, quarterly, or monthly)

N = Number of annuity payments

TIME VALUE OF MONEY

Present Value	(PV)	of
a Perpetuity		

$$PV_{Perpetuity} = \frac{A}{r}$$

cost of capital

$$\mathbf{FV_N} = \text{Cash flow}_1(1+r)^1 + \text{Cash flow}_2(1+r)^2 \dots \text{Cash flow}_N(1+r)^N$$

$$NPV = \sum_{t=0}^{N} \frac{CFt}{(1+r)^t}$$

NPV =
$$CF_0 + \frac{CF_1}{(1 + IRR)^1} + \frac{CF_2}{(1 + IRR)^2} + ... + \frac{CF_N}{(1 + IRR)^N} = 0$$

Holding Period Return (HPR) No cash flows

Holding Period Return (HPR)

$$\textbf{HPR} = \frac{\begin{array}{c} \text{Ending seginning to Cash flow} \\ \text{value} \end{array} \begin{array}{c} \text{Beginning to Cash flow} \\ \text{Value} \end{array} + \begin{array}{c} \text{Cash flow} \\ \text{received} \end{array} \\ = \frac{P_1 - P_0 + D_1}{\text{Beginning value}}$$

P₁ = Ending ValueP₀ = Beginning ValueD = Cash flow/dividend received

$$r_{BD} = \frac{D}{F} \times \frac{360}{t}$$

difference between the face value of the bill (F) and its purchase price (P_o)

F = Face value of the T-bill

t = Actual number of days remaining to maturity

Effective annual yield (EAY) EAY =
$$(1 + HPR)^{\frac{360}{t}} - 1$$

EAY =
$$(1 + HPR)^{\frac{360}{t}} - 1$$

Money market yield (CD equivalent yield)

Money market yield = HPR x
$$\left(\frac{360}{t}\right) = \frac{360 \times r_{BankDiscount}}{360 \cdot (t \times r_{BankDiscount})}$$

STATISTICAL CONCEPTS AND MARKET RETURNS

Interval Width

Interval Width =
$$\frac{\text{Range}}{k}$$

Range = Largest observation number - Smallest Observation or number **k** = Number of desired intervals

Relative Frequency Formula

Population Mean

$$\mu = \frac{\sum_{i=1...n}^{N} x_i}{N} = \frac{x_1 + x_2 + x_3 + ... + x_N}{N}$$

$$\mathbf{N} = \text{Number of observations in the entire population}$$

$$\mathbf{X}_i = \text{the } i^{\text{th}} \text{ observation}$$

Sample Mean

$$\overline{\mathbf{x}} = \frac{\sum_{i=1...n}^{n} x_i}{n} = \frac{x_1 + x_2 + x_3 + ... + x_n}{n}$$

Geometric Mean

G =
$$\sqrt[n]{X1X2X3 ... Xn}$$

n = Number of observations

Harmonic Mean

$$\overline{\mathbf{x}}_{n} = \frac{n}{\sum_{i=1,\dots,n}^{n} \left(\frac{1}{X_{i}}\right)}$$

Median for odd numbers

$$Median = \left\{ \frac{(n+1)}{2} \right\}$$

Median of even numbers

$$Median = \left\{ \frac{(n+2)}{2} \right\}$$

Median =
$$\frac{n}{2}$$

STATISTICAL CONCEPTS AND MARKET RETURNS

Weighted	Mean
vvcigiicca	WICHII

$$\overline{\mathbf{x}}_{\mathbf{w}} = \sum_{i=1...n}^{n} \mathbf{w}_{i} \mathbf{x}_{i}$$

$$\mathbf{r}_{p} = \mathbf{w}_{a} \mathbf{r}_{a} + \mathbf{w}_{b} \mathbf{r}_{b} + \mathbf{w}_{c} \mathbf{r}_{c} + \dots + \mathbf{w}_{n} \mathbf{r}_{n}$$

Position of the Observation at a Given Percentile y

$$L_y = \left\{ (n+1) \frac{y}{100} \right\}$$

L_y = The location (L) of the percentile (Py) in the array sorted in ascending order

Range

Range = Maximum value - Minimum value

Mean Absolute Deviation

$$MAD = \frac{\sum_{i=1...n}^{n} |x_i - \overline{x}|}{n}$$

n = Number of observations in the sample

Population Variance

$$\sigma^2 = \frac{\sum_{i=1...n}^{N} (x_i - \mu)^2}{N}$$

$$\mu$$
 = Population mean

N = Size of the population

Population Standard Deviation

$$\sigma = \sqrt{\frac{\sum_{i=1...n}^{N} (x_i - \mu)^2}{N}}$$

Sample Variance

$$\mathbf{s}^{2} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{n - 1}$$

STATISTICAL CONCEPTS AND MARKET RETURNS

Sample Standard
Deviation

$$s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

X = Sample mean

n = Number of observations in the sample

n = Total number of observations

Percentage of observations within k standard deviations $> 1 - \frac{1}{k^2}$ **k** = Number of standard deviations from the integral k = Number of standard

deviations from the mean

Coefficient of Variation

$$CV = \frac{S}{\overline{X}}$$

s = Sample standard deviation

 \overline{x} = Sample mean

Sharpe Ratio

Sharpe Ratio =
$$\frac{R_p - R_f}{\sigma_p}$$

 $\mathbf{R}_{\mathbf{p}}$ = Mean return to the portfolio $\mathbf{R}_{\mathbf{p}}$ = Mean return to a risk-free asset $\mathbf{\sigma}_{\mathbf{p}}$ = Standard deviation of return on the portfolio

Skewness

$$\mathbf{s_k} = \left[\frac{n}{(n-1)(n-2)}\right] \times \frac{\displaystyle\sum_{i=1...n}^{n} (x_i - \overline{x})^3}{s^3}$$

$$\mathbf{n} = \text{Number of observations in the sample}$$

$$\mathbf{s} = \text{Sample standard deviation}$$

Kurtosis

$$\mathbf{K}_{E} = \left[\frac{n (n + 1)}{(n - 1)(n - 2)(n - 3)} \times \frac{\sum_{i=1...n}^{n} (x_{i} - \overline{x})^{4}}{S^{4}}\right] - \frac{3 (n - 1)^{2}}{(n - 2)(n - 3)}$$

n = Sample size

s = Sample standard deviation

	PROBABILITY CONCEPTS	
	PROBABILITY CONCEPTS	
Odds FOR E	Odds FOR E = $\frac{P(E)}{1 - P(E)}$	E = Odds for event P(E) = Probability of event
Conditional Probability	$P(A \mid B) = \frac{P(A \cap B)}{P(B)}$	where P(B) ≠ 0
Additive Law (The Addition Rule)	$P(A \cup B) = P(A) + P(B) - P(A \cap B)$	
The Multiplication Rule (Joint Probability)	$P(A \cap B) = P(A \mid B) \times P(B)$	
The Total Probability Rule	$P(A) = P(A S_1) \times P(S_1) + P(A S_2) \times \times P(S_2) + + P(A S_n) \times P(S_n)$	S1, S2,, Sn are mutually exclusive and exhaustive scenarios or events
Expected Value	$E(X) = P(A)X_A + P(B)X_B + + P(n)X_n$	$P(n)$ = Probability of an variable X_n = Value of the variable
Covariance	$COV_{xy} = \frac{(x - \overline{x})(y - \overline{y})}{n - 1}$	 x = Value of x X = Mean of x values y = Value of y y = Means of y n = Total number of values
Correlation	$\mathbf{\rho} = \frac{COV_{xy}}{\sigma_{x}\sigma_{y}}$	σ_x = Standard Deviation of x σ_y = Standard Deviation of y COV_{xy} = Covariance of x and y
Variance of a Random Variable	$\sigma^2 X = \sum_{i=1n}^{n} (x - E(x))^2 \times P(x)$	The sum is taken over all values of x for which p(x) > 0
Portfolio Expected Return	$E(R_P) = E(w_1r_1 + w_2r_2 + w_3r_3 + + w_nr_n)$	w = Constant r = Random variable
Portfolio Variance	$Var(R_p) = E[(R_p - E(R_p)^2] = [w_1^2 \sigma_1^2 + w_2^2 \sigma_2^2 + w_3^2 \sigma_3^2 + 2w_1 w_2 Cov(R_1 R_2) + 2w_2 w_3 Cov(R_2 R_3) + 2w_1 w_3 Cov(R_1 R_3)]$	R _p = Return on Portfolio
Bayes' Formula	$P(A \mid B) = \frac{P(B \mid A) \times P(A)}{P(B)}$	
The Combination Formula	$\mathbf{nCr} = \binom{n}{c} = \frac{n!}{(n-r)! \ r!}$	n = Total objectsr = Selected objects
The Permutation Formula	$\mathbf{nPr} = \frac{\mathbf{n!}}{(\mathbf{n-r})!}$	

365 III Careers

COMMON PROBABILITY DISTRIBUTIONS

The Binomial Probability Formula	$P(x) = \frac{n!}{(n-x)! \ x!} p^{x} \times (1-p)^{n-x}$	 n = Number of trials x = Up moves p^x = Probability of up moves (1 - p)^{n-x} = Probability of down moves
Binomial Random Variable	E(X) = np Variance = np(1 - p)	n = Number of trialsp = Probability
For a Random Normal Variable X	90% confidence interval for X is \overline{x} - 1.65s; \overline{x} + 1.65s 95% confidence interval for X is \overline{x} - 1.96s; \overline{x} + 1.96s 99% confidence interval for X is \overline{x} - 2.58s; \overline{x} + 2.58s	s = Standard error 1.65 = Reliability factor x = Point estimate
Safety-First Ratio	$SF_{Ratio} = \left[\frac{E(R_p) - R_L}{\sigma_p} \right]$	R_p = Portfolio Return R_L = Threshold level σ_p = Standard Deviation
Continuously Compounded Rate of Return	$FV = PV \times e^{i \times t}$	 i = Interest rate t = Time ln e = 1 e = The exponential function, equal to 2.71828

SAMPLING AND ESTIMATION

Sampling Error of the Mean	Sample Mean - Population Mean	
Standard Error of the Sample Mean (Known Population Variance)	$SE = \frac{\sigma}{\sqrt{n}}$	n = Number of samples σ = Standard deviation
Standard Error of the Sample Mean (Unknown Population Variance)	$SE = \frac{S}{\sqrt{n}}$	s = Standard deviation in unknown population's sample
Z-score	$Z = \frac{X - \mu}{\sigma}$	x = Observed value $σ$ = Standard deviation $μ$ = Population mean
Confidence Interval for Population Mean with z	$\overline{X} - Z_{\underline{\alpha}} \times \frac{\sigma}{\sqrt{n}}$; $\overline{X} + Z_{\underline{\alpha}} \times \frac{\sigma}{\sqrt{n}}$	 Z_{α/2} = Reliability factor x̄ = Mean of sample σ = Standard deviation n = Number of trials/size of the sample
Confidence Interval for Population Mean with t	$\overline{X} - t_{\underline{\alpha}} \times \frac{S}{\sqrt{n}}; \overline{X} + t_{\underline{\alpha}} \times \frac{S}{\sqrt{n}}$	 t_{a/2} = Reliability factor n = Size of the sample s = Standard deviation
z or t-statistic?	 Z → known population, standard deviation σ, no matter the sample size t unknown population, standard deviation s, and sample size below 30 	

Z — unknown population, standard deviation s, and sample size above 30

HYPOTHESIS TESTING

Test Statistics: Population Mean

$$\mathbf{z}_{\alpha} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{D}}}$$
, $\mathbf{t}_{n-1, \alpha} = \frac{\overline{X} - \mu}{\frac{S}{\sqrt{D}}}$

t_{n-1}= t-statistic with n – 1 degrees of freedom (*n* is the sample size)

 $\overline{\mathbf{x}}$ = Sample mean

μ = Hypothesized value of the population mean

s = Sample standard deviation

Test Statistics: Difference in Means - Sample Variances Assumed Equal (Independent samples)

t-statistic =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\left(\frac{S_p^2}{n_1} + \frac{S_p^2}{n_2}\right)^{\frac{1}{2}}}$$

Number of degrees of freedom = $n_1 + n_2 - 2$

 $\mathbf{s_p}^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$

Test Statistics: Difference in Means - Sample Variances Assumed Unequal (Independent samples)

t-statistic =
$$\frac{(\overline{x}_1 - \overline{x}_2) - (\mu_1 - \mu_2)}{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^{\frac{1}{2}}}$$

degrees of freedom
$$= \frac{\left(\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}\right)^2}{\frac{\left(\frac{S_1^2}{n_1}\right)^2}{n_1} + \frac{\left(\frac{S_2^2}{n_2}\right)^2}{n_2}}$$

S = Standard deviation of respective sample

n = Total number of observations in the respective population

Test Statistics: Difference in Means - Paired Comparisons Test

(Dependent samples)

$$t = \frac{\overline{d} - \mu_{d0}}{S_d}$$
, where $\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$

degrees of freedom = n - 1

n = Number of paired observations

d = Sample mean difference

 S_d = Standard error of d

Test Statistics: Variance Chi-square Test

$$\chi_{n-1}^2 = \frac{(n-1)s^2}{\sigma_0^2}$$

degrees of freedom = n - 1 **s**² = Sample variance

 σ_0^2 = Hypothesized variance

Test Statistics: Variance F-Test

$$\mathbf{F} = \frac{S_1^2}{S_2^2}$$
, where $S_1^2 > S_2^2$

degrees of freedom = n_1 - 1 and n_2 - 1 $\mathbf{s_1}^2$ = Larger sample variance $\mathbf{s_2}^2$ = Smaller sample variance

03

TOPICS IN DEMAND AND SUPPLY ANALYSIS

Price Elasticity =
$$\frac{\%\Delta \text{ Quantity demanded } (Qx)}{\%\Delta \text{ Price } (Px)}$$

 $0 > e > -1 \longrightarrow Inelastic demand$

 $-1 > e > -\infty$ Elastic demand

e = -1 → Unit elastic demand

e = 0 → Perfectly inelastic demand e = -∞ → Perfectly elastic demand

Income Elasticity =
$$\frac{\%\Delta \text{ Quantity demanded } (Qx)}{\%\Delta \text{ Income } (Ix)}$$

e > 0 → Normal goods e < 0 → Inferior goods

 ε_{v} = Income elasticity

Cross-price Elasticity =
$$\frac{\%\Delta \text{ Quantity demanded } (Qx)}{\%\Delta \text{ Price of a related good } (Py)}$$

y = Related product ε_{pv} = Cross-price elasticity

THE FIRM AND MARKET STRUCTURES

For all market structures, Max Profit \rightarrow when MC = MR

MC = Marginal cost

MR = Marginal revenue

Breakeven points \longrightarrow AR = ATC (perfect competition)
TR = TC (imperfect competition)

ATC = Average Total Cost

AR = Average Revenue

TR = Total Revenue

TC = Total Cost

AR = ATC holds true in imperfect competition

Short-run shutdown points AR < AVC (perfect competition) TR < TVC (imperfect competition)

Market structures:

Perfect Competition Monopolistic Competition Oligopoly Monopoly

AGGREGATE OUTPUT, PRICES, AND ECONOMIC GROWTH

Total GDP = Final value of goods and services produced (market value)

+ Government services (at cost)

+ Rental value of owner-occupied housing (an estimate)

GDP Deflator =
$$\frac{\text{Nominal GDP}}{\text{Real GDP}} \times 100$$

Nominal GDPt = $Pt \times Qt$

Real GDPt = $Pb \times Qt$

t = Current year

b = Base year

Pt = Prices in year t

Pb = Prices in base year

Qt = Quantity produced in year t

Expenditure Approach

Real GDP = Consumption spending (C) + Investment (I)

+ Government spending (G) + Net exports (X-M)

X = Exports

M = Imports

Income Approach

Real GDP = National income + Capital consumption allowance + Statistical discrepancy

Real GDP = Consumption spending (C) + Savings (S) + Taxes (T)

Savings (S) = Investments (I) + Fiscal Balance (G-T) + Trade Balance (X-M)

S – I = Fiscal Balance (G-T) + Trade Balance (X-M)

National Income = Employees' compensation

+ Corporate and government profits before taxes

+ Interest income

+ Unincorporated business net income (business owners' incomes)

+ Rent

+ Indirect business taxes

- Subsidies

Personal Income = National income

+ Transfer payments (social insurance, unemployment or disability payments)

Indirect business taxes

Corporate income taxes

Undistributed corporate profits

AGGREGATE OUTPUT, PRICES, AND ECONOMIC GROWTH

Personal Disposable Income = Personal income - Personal taxes

Potential GDP = Aggregate hours worked x Labor productivity

- → Aggregate hours worked = Labor force x Average hours worked per week
- → Growth in Potential GDP = Growth in labor force + Growth in labor productivity

The Production Function

 $Y = A \times f(K, L)$

Y = Aggregate output

A = Total Factor Productivity (TFP)

K = Capital

L = Labor

Growth in Potential GDP = Growth in technology + WL x (growth in labor) + WC x (growth in capital)

WL = Labor's percentage share of national income

WC = Capital's percentage share of national income

UNDERSTANDING BUSINESS CYCLES

Unemployment Rate = Number of unemployed people
Total labor force

Participation Rate (Activity Ratio) = Total labor force

Total working-age population

Labor Force = Unemployed people + Employed people

Unemployed = Looking for job

Consumer Price Index = $\frac{\text{Cost of basket at current-year prices}}{\text{Cost of basket at base-year prices}} \times 100$

Laspeyres' Index = $\frac{\sum (Current-year price \times Base-year quantity)}{\sum (Base-year price \times Base-year quantity)}$

Fisher's Index = $\sqrt{\text{(Laspeyres' Index)}} \times \text{(Paasche Price Index)}$

Paasche Price Index = $\frac{\Sigma \text{ (Current-year price x Current-year quantity)}}{\Sigma \text{ (Base-year price x Base-year quantity)}}$

MONETARY AND FISCAL POLICY

Money Multiplier = 1
Reserve requirement

Fiscal Multiplier = $\frac{1}{1 - MPC \times (1 - t)}$

MPC = Marginal propensity to consume

t = Tax rate

Equation of Exchange

MV = PY (Money supply x Velocity = Price x Real output)

Fisher Effect

Nominal Interest Rate = Real interest rate + Expected inflation rate

Neutral Interest Rate

Neutral interest rate = Real trend rate of economic growth + Inflation target

INTERNATIONAL TRADE AND CAPITAL FLOWS

GDP = C + I + G + X - M

C = Consumption **I** = Investments

G = Government Spending **X** = Export

 $\mathbf{X} = \text{Export}$ $\mathbf{M} = \text{Import}$

Balance of Payments

Current Account + Capital Account + Financial Account = 0

Trade Balance

X - M = Private Savings

+ Government Savings

- Investments in domestic capital

CURRENCY EXCHANGE RATES

Real Exchange Rate = Nominal exchange rate x CPI base currency

04

CAPITAL BUDGETING

Net present value (NPV)

$$NPV = \sum_{t=0}^{N} \frac{CF_t}{(1+r)^t}$$

CF_t = After-tax cash flow at time t
 r = Required rate of return for the investment

Internal Rate of Return (IRR)

$$\sum_{t=0}^{N} \frac{\mathsf{CF}_{t}}{(1+\mathsf{IRR})^{t}} = 0$$

Average Accounting Rate of Return (AAR)

$$\mathbf{AAR} = \frac{\mathbf{Average net income}}{\mathbf{Average book value}}$$

Profitability Index (PI)

$$PI = \frac{PV \text{ of future cash flows}}{Initial Investment} = 1 + \frac{NPV}{Initial Investment}$$

7	\frown	$\sim \Lambda$	T / A
		$\mathbf{L} \cdot \mathbf{\Delta}$	TAL

COST OF CAPITAL			
Weighted Average Cost of Capital (WACC)	WACC = $w_d r_d (1 - t) + w_p r_p + w_e r_e$	 w_d = Proportion of debt that the company uses when it raises new funds r_d = Before-tax marginal cost of debt t = Company's marginal tax rate w_p = Proportion of preferred stock the company uses when it raises new funds r_p = Marginal cost of preferred stock w_e = Proportion of equity that the company uses when it raises new funds r_e = Marginal cost of equity 	
Tax shield	Tax shield = Deduction × Tax rate	е	
Cost of Preferred Stock	$\mathbf{r}_{p} = \frac{D_{p}}{P_{p}}$	\mathbf{P}_{p} = Current preferred stock price per share \mathbf{D}_{p} = Preferred stock dividend per share \mathbf{r}_{p} = Cost of preferred stock	
Cost of Equity (Dividend discount model approach)	$\mathbf{r}_{\mathbf{e}} = \frac{D_1}{P_0} + g$	 P₀ = Current market value of the equity market index D₁ = Dividends expected next period on the index r_e = Required rate of return on the market g = Expected growth rate of dividends 	
Growth Rate	$\mathbf{g} = \left(1 - \frac{D}{EPS}\right) \times ROE$	(D/EPS) = Assumed stable dividend payout ratio ROE = Historical return on equity	
Cost of Equity (Bond yield plus risk premium)	r e = r _d + Risk Premium	Risk premium = Additional yield on a company's stock relative to its bonds	
Capital Asset Pricing Model (CAPM)	$\mathbf{E}(\mathbf{R}_{i}) = \mathbf{R}_{F} + \beta_{i}[\mathbf{E}(\mathbf{R}_{M}) - \mathbf{R}_{F}]$	 β_i = Return sensitivity of stock i to changes in the market return E(R_M) = Expected return on the market E(R_M) - R_F = Expected market risk premium RF = Risk-free rate of interest 	
Beta of a Stock	$\beta_{i} = \frac{\text{Cov}(R_{i'} R_{M})}{\text{Var}(R_{M})}$	 Rm = Average expected rate of return on the market R_i = Expected return on an asset i Cov = Covariance Var = Variance 	

COST OF CAPITAL

Pure-play Method Project Beta

(De-lever)

 $\beta_{\text{Unlevered, Comparable}} = \frac{P_{\text{Levered, Comparable}}}{\left[1 + \left((1 - t_{\text{Comparable}}) \frac{D_{\text{Comparable}}}{E_{\text{Comparable}}}\right)\right]}$

Pure-play Method for Subject Firm

(Re-lever)

 $\beta_{\text{Levered, Project}} = \beta_{\text{Unlevered, Comparable}} \left[1 + \left((1 - t_{\text{Project}}) \frac{D_{\text{Project}}}{E_{\text{Project}}} \right) \right]$

Adjusted CAPM

(for country risk premium)

 $\mathbf{E}(\mathbf{R}_{i}) = \mathbf{R}_{F} + \beta_{i} [\mathbf{E} (\mathbf{R}_{M}) - \mathbf{R}_{F} + \mathbf{Country risk premium}]$

Country Risk Premium

CRP = Sovereign yield spread x $\frac{\sigma \text{ of equity}}{\sigma \text{ of sovereign bond market in terms}}$ of the developed market currency

 σ = Standard deviation

t = Tax rate D = Debt

E = Equity

Break Point

Amount of capital at which the source's cost of capital changes Break point = Proportion of new capital

raised from the source

MEASURES OF LEVERAGE

Degree of Operating Leverage

Degree of Operating = Percentage change in operating income Leverage Percentage change in units sold

Degree of Financial Leverage Degree of Financial Leverage = Percentage change in Net Income Percentage change in EBIT

Degree of Total Leverage Degree of Total Leverage = Percentage change in Net Income Percentage change in number of Units Sold

Return on Equity (ROE)

Return on Equity = Net Income
Shareholders' Equity

The Breakeven Quantity of Sales $Q_{Breakeven} = \frac{F + C}{P - V}$

P = Price per unit

V = Variable cost per unit

F = Fixed operating costs **C** = Fixed financial cost

C = Fixed financial cost

Q = Quantity of units produced and sold

Operating Breakeven Quantity of Sales

 $Q_{Operating Breakeven} = \frac{F}{P - V}$

P = Price per unit

V = Variable cost per unit **F** = Fixed operating costs

wo	DRKING CAPITAL MANAGEMENT	
Current Ratio	Current Ratio = Current assets Current liabilities	
Quick Ratio	Quick Ratio = Cash + Receivables + Short-term marketable investments Current liabilities	
Accounts Receivable Turnover	Accounts Receivable Turnover = Credit sales Average receivables	
Number of Days of Receivables	Number of days of receivables = 365 Accounts receivable turnover	
Inventory Turnover	Inventory Turnover = Cost of goods sold Average Inventory	
Number of Days of Inventory	Number of Days of Inventory = $\frac{365}{\text{Inventory turnover}}$	
Payables Turnover	Payables Turnover Ratio = Purchases Average accounts payables	
Number of Days of Payables	Number of Days of Payables = $\frac{365}{\text{Payables turnover ratio}}$	
Net Operating Cycle	Net operating cycle = Number of days of inventory + Number of days of receivables - Number of days of payables	
Yield on a Bank Discount Basis (BDY)	$\mathbf{r}_{\mathrm{BD}} = \frac{D}{F} \times \frac{360}{t}$ $\mathbf{p} = \text{Dollar discount, which is equal to the difference between the face value of the bill (F) and its purchase price (P0) \mathbf{F} = \text{Face value of the T-bill} \mathbf{t} = \text{Actual number of days remaining to maturity} \mathbf{r}_{\mathrm{BD}} = \text{Annualized yield on a bank discount basis}$	
Effective Annual Yield (EAY)	EAY = $(1 + HPR)^{\frac{360}{t}} - 1$	
Holding Period Return	HPR = (Cashflow ending value - Beginning value + Cashflow received) Beginning value	
Cost of Trade Credit	Cost of trade credit = $\left(1 + \frac{\text{\%Discount}}{1 - \text{\%Discount}}\right)^{\frac{360}{\text{Number of days}}} - 1$	
Cost of Borrowing	Cost of borrowing = Interest + Dealer's commission + Other costs Loan amount - Interest	

Alternative Investments

05

Alternative Investments

Leverage Ratio*	$Leverage = \frac{Total Debt}{Total Equity}$	* This is one of several definitions and formulas for leverage, also known as Debt-to-Equity ratio
Volatility (standard deviation of returns) - population	$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (R_i - R_{avg})^2}{n}}$	 R_i = Individual returns data points R_{avg} = Average of all return data points in the set n = Number of data points
Volatility (standard deviation of returns) - sample	$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (R_i - R_{avg})^2}{n-1}}$	 R_i = Individual returns data points R_{avg} = Average of all return data points in the set n = Number of data points
Sharpe Ratio	Sharpe Ratio = $\frac{R_p - R_f}{\sigma_p}$	R_p = Portfolio return R_f = Risk-free rate of return σ_p = Standard deviation (volatility) of portfolio return
Sortino Ratio	Sortino Ratio = $\frac{R_p - R_f}{\sigma_d}$	R_p = Portfolio return R_f^p = Risk-free rate of return σ_p = Standard deviation (volatility) of the downside ("downside risk")
Downside Risk (semi-deviation) - population	$\sigma_{d} = \sqrt{\frac{\sum_{i=1}^{n} (R_{i} - R_{treshold})^{2}}{n}}$	 R_i = Individual returns data points R_{treshold} = Return threshold (determined by the user, for example the risk-free rate, hard target return or 0% can be used) n = Number of data points
Downside Risk (semi-deviation) - sample	$\sigma_{d} = \sqrt{\frac{\sum_{i=1}^{n} (R_{i} - R_{treshold})^{2}}{n - 1}}$	Ri = Individual returns data points Rtreshold = Return threshold (determined by the user, for example the risk-free rate, hard target return or 0% can be used) n = Number of data points
Discounted Cash Flow DCF = Net Present Value (NPV) of an investment	$DCF = NPV = \sum_{t=0}^{N} \frac{CF_t}{(1+r)^t}$	CF _t = Cash flow in time t r = Discount rate
Capitalization Rate (Cap Rate)	Cap rate = Net Operating Income (NOI) Market Value (or purchase price of property)	
Funds From Operations (FFO)	FFO = Net Income + Depreciation (and other non-cash items) - Gains/Losses from property sales (and other non-recurring items)	
Adjusted Funds From Operations (AFFO)	AFFO = FFO – Recurring Capital Expenditures (CAPEX)	
Net Asset Value per share (NAV per share)	NAV per share = $\frac{\text{NAV}}{\text{Total number of shares outstanding}}$	

365 III Careers