Istruzioni esame

- Scrivere nome, cognome e matricola su OGNI foglio negli appositi spazi.
- Tutte le risposte vanno riportate sul testo d'esame, eventualmente utilizzando il retro dei fogli se necessario. Non verranno ritirati e corretti eventuali fogli di brutta.
- La prova si considera superata se si ottengono ALMENO 18 punti in totale, di cui ALMENO 10 punti nel primo esercizio (quesiti a risposta multipla).

Cognome, nome e matricola: _	
------------------------------	--

Esercizio 1

_	ondere alle seguenti domande a risposta multipla, segnando TUTTE le risposte ette (per ogni domanda ci può essere una, nessuna o diverse risposte corrette).	
(a)	Siano P e Q due formule proposizionali tali che P $\not\models$ Q. Allora possiamo	2 punti
	concludere con certezza che	
	■ Pè soddisfacibile	
	$\square \ Q \models P$	
	■ Q non è valida	
	\blacksquare P \land ¬Q è soddisfacibile	
(b)	Sia $f \colon \mathbb{R}^2 \to \mathbb{R}_{\geq 0}$, dove $\mathbb{R}_{\geq 0} = \{r \in \mathbb{R} \mid r \geq 0\}$, la funzione che misura la	2 punti
	distanza tra due punti sulla retta reale, ovvero $f(x,y) = y-x $. Allora	
	\Box f è iniettiva	
	\blacksquare f è suriettiva	
	\Box f è biettiva	
	\square esistono $x,y\in\mathbb{R}$ tali che $x\neq y$ ma $f(x,y)=0$	
(c)	Sia φ la formula $\exists x \exists y \forall z (z = x \lor z = y)$. Allora	2 punti
	\square φ non è un enunciato	
	\Box φ è un enunciato valido	
	\square se $\mathcal{A} \models \varphi$ allora \mathcal{A} contiene esattamente due elementi	
	\square se $\mathcal{A} \models \varphi$ allora \mathcal{A} contiene almeno due elementi	
(d)	Sia A un insieme non vuoto e $S\subseteq A^{<\mathbb{N}}$ l'insieme delle sequenze di lunghezza	2 punti
	almeno 2 il cui primo e ultimo elemento coincidono. Quali delle seguenti	
	affermazioni sono corrette?	
	$\Box A = S $, qualunque sia A.	
	\square Se A è finito allora lo è anche S .	
	\blacksquare Se $A = \mathbb{Q}$ allora S è numerabile.	

 \blacksquare S è infinito, qualunque sia A.

(e) Quali delle seguenti sono formalizzazioni corrette dell'affermazione

2 punti

"xè un numero dispari"

nel linguaggio $L=\{+,2\}$ relativamente alla struttura $\langle \mathbb{N},+,2\rangle ?$

- $\Box \ \forall z \, (z + z = x \to z \notin \mathbb{N})$
- $\Box \neg (2 \mid x)$ con | relazione di divisibilità
- $\Box \ \exists z \, \neg (z + z = x)$
- $\Box \forall x \forall z \neg (x = z + z)$
- (f) Siano A e B due insiemi. Quali delle seguenti affermazioni sono corrette?

2 punti

- \square Se $A \subseteq B$, allora A e B non possono essere disgiunti.
- Se $A \cap B \neq \emptyset$ allora $A \setminus B \neq A$.
- Se $A \cup B = A \setminus B$ allora $B = \emptyset$.
- \square Se $A \cup B = A$ allora $A \subseteq B$.
- (g) Sia R la relazione su $A = \{a, b, c, d, e\}$ rappresentata dal seguente diagramma, 2 punti dove x R y se e solo se c'è una freccia che va da x a y.

Allora R è

- □ riflessiva
- simmetrica
- \square antisimmetrica
- \Box transitiva

Punteggio totale primo esercizio: 14 punti

Esercizio 2 9 punti

Sia $L=\{f,g\}$ un linguaggio del prim'ordine, dove f e g sono entrambi simboli di funzione binari. Sia $\varphi(x)$ la formula

$$f(x,x) = g(x,x).$$

Consideriamo le L-strutture $S_0 = \langle \mathbb{Q}, +, \cdot \rangle$ e $S_1 = \langle \mathbb{Q}, +, - \rangle$.

1. Determinare tutti gli $r \in \mathbb{Q}$ per cui si ha

$$S_0 \models \varphi(x)[x/r]$$

e tutti gli $r \in \mathbb{Q}$ per cui vale

$$S_1 \models \varphi(x)[x/r].$$

2. Stabilire se

$$S_0 \models \exists x \exists y (\neg (x = y) \land \varphi(x) \land \varphi(y))$$

e se

$$S_1 \models \exists x \exists y (\neg (x = y) \land \varphi(x) \land \varphi(y)).$$

Soluzione:

1. In S_0 l'interpretazione della formula $\varphi(x)$ è

$$x + x = x \cdot x$$

ovvero l'equazione $x^2 = 2x$. Tale equazione è verificata solo quando ad x assegniamo i valori 0 e 2 (ovvero le soluzioni dell'equazione). Quindi $S_0 \models \varphi(x)[x/r]$ se e solo se r = 0 oppure r = 2.

In maniera analoga, in S_1 l'interpretazione della formula $\varphi(x)$ è

$$x + x = x - x$$

ovvero l'equazione 2x = 0. Tale equazione è verificata solo quando ad x assegniamo il valore 0 (ovvero l'unica soluzione dell'equazione). Quindi $S_1 \models \varphi(x)[x/r]$ se e solo se r = 0.

2. L'interpretazione di $\exists x \exists y \, (\neg(x=y) \land \varphi(x) \land \varphi(y))$ in \mathcal{S}_0 è "esistono due numeri razionali p,q diversi tra loro per cui vale $p^2=2p$ e $q^2=2q$ ", ovvero "l'equazione $x^2=2x$ ammette due soluzioni distinte in \mathbb{Q} ". Quindi per il punto precedente $\mathcal{S}_0 \models \exists x \exists y \, (\neg(x=y) \land \varphi(x) \land \varphi(y))$ in quanto $x^2=2x$ ammette effettivamente le due soluzioni distinte (e razionali) 0 e 2.

L'interpretazione di $\exists x \exists y \, (\neg(x=y) \land \varphi(x) \land \varphi(y))$ in \mathcal{S}_1 è "esistono due numeri razionali p,q diversi tra loro per cui vale 2p=0 e 2q=0", ovvero "l'equazione 2x=0 ammette due soluzioni distinte in \mathbb{Q} ". Ma come discusso nel punto precedente, tale equazione ammette un'unica soluzione, ovvero il numero 0. Quindi $\mathcal{S}_1 \not\models \exists x \exists y \, (\neg(x=y) \land \varphi(x) \land \varphi(y)).$

Esercizio 3 9 punti

Formalizzare le seguenti affermazioni nel linguaggio $L = \{<, |, +\}$, dove | è la relazione di divisibilità, relativamente alla struttura $\langle \mathbb{N}, <, |, + \rangle$:

- 1. x è dispari,
- 2. xè uguale ad 1,
- $3. x \ e primo,$
- 4. Ogni numero dispari sufficientemente grande è somma di tre primi, non necessariamente distinti.

Soluzione:

- 1. x è dispari se e solo se x non è pari. Quindi x è dispari se e solo se D(x), dove D(x) è la formula $\neg \exists y (x = y + y)$.
- 2. x è uguale ad 1 se e solo se U(x), dove U(x) è la formula $\forall y(x \mid y)$.
- 3. x è primo se e solo se Pr(x), dove Pr(x) è la formula

$$\neg U(x) \land \forall y (y \mid x \to y = x \lor U(y)).$$

4. "Ogni numero dispari sufficientemente grande è somma di tre primi, non necessariamente distinti" si formalizza:

$$\exists x \forall y \big(x < y \land \mathrm{D}(y) \to \exists z_1, z_2, z_3 \big(\mathrm{Pr}(z_1) \land \mathrm{Pr}(z_2) \land \mathrm{Pr}(z_3) \land y = z_1 + z_2 + z_3 \big) \big)$$

Se sostituiamo a D e Pr le loro espressioni usando \leq , |, + otteniamo

$$\exists x \forall y \big(x < y \land \underbrace{\neg \exists w (y = w + w)}_{D(y)} \rightarrow \underbrace{\exists z_1, z_2, z_3 \big(\neg U(z_1) \land \forall w (w \mid z_1 \rightarrow w = z_1 \lor U(w))}_{Pr(z_1)} \land \underbrace{\neg U(z_2) \land \forall w (w \mid z_2 \rightarrow w = z_2 \lor U(w))}_{Pr(z_2)} \land \underbrace{\neg U(z_3) \land \forall w (w \mid z_3 \rightarrow w = z_3 \lor U(w))}_{Pr(z_3)} \land y = z_1 + z_2 + z_3 \big) \big)$$

ovvero

$$\exists x \forall y \Big(x < y \land \neg \exists w (y = w + w) \rightarrow \\ \exists z_1, z_2, z_3 \Big(\neg \underbrace{\forall u (u \mid z_1)}_{U(z_1)} \land \forall w \Big(w \mid z_1 \rightarrow w = z_1 \lor \underbrace{\forall u (u \mid w)}_{U(w)} \Big) \\ \land \neg \underbrace{\forall u (u \mid z_2)}_{U(z_2)} \land \forall w \Big(w \mid z_2 \rightarrow w = z_2 \lor \underbrace{\forall u (u \mid w)}_{U(w)} \Big) \\ \land \neg \forall u (u \mid z_3) \land \forall w \Big(w \mid z_3 \rightarrow w = z_3 \lor \underbrace{\forall u (u \mid w)}_{U(w)} \Big) \\ \land y = z_1 + z_2 + z_3 \Big) \Big)$$