ARITHMETIC Session 2

RETROALIMENTACIÓN

1. Si
$$(7-2)(7+3) = 7+x$$

Halle el valor de x^2 .

RECORDEMOS:

En conclusión
$$\binom{\circ}{n+a}\binom{\circ}{n+b}\binom{\circ}{n+c}...\binom{\circ}{n+m} = \binom{\circ}{n+a\cdot b\cdot c\cdot ...\cdot m}$$

$$(\overset{\circ}{7} - 2)(\overset{\circ}{7} + 3) = \overset{\circ}{7} + x$$

 $(\overset{\circ}{7} - 2 \times 3) = \overset{\circ}{7} + x$
 $(\overset{\circ}{7} - 6) = \overset{\circ}{7} + x$
 $(\overset{\circ}{7} + 1) = \overset{\circ}{7} + x$
 $x = 1$

$$x^2 = 1^2 = 1$$

2. Determine el residuo que se obtiene al dividir E entre 9.

$$E = 122345^{6789}$$

$$G = 122345^{6789}$$

$$G = (9 - 1)^{6789}$$

$$G = \overset{\circ}{9} - 1$$

$$G = \overset{\circ}{9} + 8$$

3. Carlitos cuenta sus monedas de propina y observa que si los agrupa de 6 en 6 la cantidad es exacta; pero si los agrupa de 7 en 7 le sobra 6 **¿Cuántas** monedas monedas tiene si es la máxima cantidad de dos cifras posible?

N =
$$\overset{\circ}{7}$$
 + 6
N = $\overset{\circ}{6}$ + 6

4. La central de emergencia de la policía recibe un llamado avisándoles que un auto sedan color rojo acaba de secuestrar a un empresario, indicándoles también parte de la placa del auto AMB578 ¿cuál era la placa del auto, si un testigo dice que la parte numérica es un valor 11?

Divisibilidad por 11

$$-+-+-+$$
abcdef = 11

-a + b - c + d - e + f = 11

5. Determine el valor de x si

$$\overline{\mathbf{x413}} = \overset{\circ}{\mathbf{7}}$$

Divisibilidad por 7

$$-x + 8 + 3 + 3 = \overset{\circ}{7}$$

 $14 - x = \overset{\circ}{7}$
 $x = 7$

6. Carolina **es** coleccionista de estampillas logro reunir la cantidad de x34y, si las clasifico en grupos de 72 le sobra ¿Cuántas ninguna. estampillas logró reunir?

RESOLUCION

$$\overline{x23y} = 72 \begin{pmatrix} 8 \\ 9 \end{pmatrix}$$

Divisibilidad por 8

Divisibilidad por 9

$$x + 2 + 3 + 2 = 9$$
 $x + 7 = 9$
 \downarrow
2

RPTA:

2232

7. Descomponga canónicamente al número 1800 e indique el producto de los factores primos.

RESOLUCION

$$1800 = 2^3 \times 3^2 \times 5^2 \dots (DC)$$

Factores primos: 2; 3 y 5

Producto de los factores primos

$$\therefore 2 \times 3 \times 5 =$$

8. El número 12500 se expresa canónicamente. ¿Cuál es el resultado de sumar los exponentes de sus factores primos?

RESOLUCION

12500 | 100 =
$$2^2 \times 5^2$$

125 | 5
25 | 5
5 | 5
1 | 1
12500 = $2^2 \times 5^2$

Suma de exponentes de sus factores primos

9.

Si
$$N = a^3 \times (3a-1)^2 \times (a+1).....$$
 (DC), calcule N

RESOLUCION

N =
$$a^3$$
 × (3a - 1)² × (a + 1)..... (DC),
N = 2^3 × 5^2 × 3^1 (DC)

Piden:

10. ¿Cuántos divisores simples tiene 240 y cuál es la suma de los divisores primos?

RESOLUCION

240 | 10 =
$$2^{1} \times 5^{1}$$

24 | 2
12 | 240 = $2^{4} \times 3^{1} \times 5^{1}$
6 | 2
3 | 3
1 |

Factores simples: 2; 3; 5 y 1

Suma de los factores primos

$$\therefore$$
 2 + 3 + 5 = 10

RPTA: 4 y 10