spectral invariance and C -spectrality
Differential norms and smooth algebras
smooth crossed product by R
Frechet (D^*_∞) - algebras
Algebras with a C^* -enveloping algebra
non commutative differential forms and de Rham algebra
Second and higher order differential structure defined by a

Differential structures in C*-algebras

S.J. Bhatt

Sardar Patel University

July 13-14, 2012

- 1. A structural analogy between C^* -algebras and Uniform Banach algebras
- $2.\ \,$ Harmonic analysis on locally compact groups and semigroups with weights
 - 3. Differential Structures in C^* algebras

Let M be a C^{∞} -manifold, assumed compact for simplicity.

Algebras encoding the structure of M are the following.

- (1) $C(M) \rightarrow \text{pointset topology} \text{Commutative } C^*\text{-algebra}$
- (2) $C^{\infty}(M) \to \text{differential structure}$ —dense Frechet subalgebra
- (3) $L^{\infty}(M), L^{p}(M)$ \rightarrow integration structure —abelian von Neumann algebra
 - (4) $\Omega^*(M)$ de Rham algebra \rightarrow homological structure
 - (5) Lip(M) Lipschitz algebra \rightarrow metric structure

Geometric structure on $M \to \text{algebraic}$ structure associated with M

(Gelfand-Naimark) A C^* -algebra A — topological data (a noncommutative virtual compact space)

Differential structure on A specified by a dense *-subalgebra B -functional analytic characterization of $C^\infty(M)$? -

regularity properties expected from B.

- (1) spectral invariance
- (2) closure under holomorphic functional calculus
- (3) closure under C^{∞} -functional calculus
- (4) K-theory isomorphism
- (5) hermiticity
- (6) suitable complete locally convex topology preferably nuclear
- (7) automatic continuity, extendability and domain invariance of morphism
 - (8) ideal structure $I \to I \cap B$
 - (9) derivation like structure
 - (10) admitting C^* -enveloping algebra

Aspects of Theory

- (1) General theory differential seminorm approach and growth conditions on seminorms
 - (2) Methods: smooth crossed products and deformation
- (3) concrete examples of non commutative smooth algebras non commutative Torus, non commutative \mathbb{R}^n non commutative cylinders and spheres-

```
A= a locally convex *-algebra C^*(A)= enveloping C^*-algebra, j:A\to C^*(A) natural map spectral seminorm \{x:p(x)<1\}\subset A^{qr}, spectral invariance of A via j, spectral representation \pi sp_A(x)=sp_{C^*(\pi)}(\pi(x))
```

(JOT 2003; Rendi.Cir.Math.Palermo 1998) The following are equivalent.

- (1) A is spectrally invariant.
- (2) A is C^* -spectral.
- (3) A is spectral and hermitian.
- (4) A is local and rad(A) = srad(A).
- (5)A is spectral and stable.
- (6) A admits a spectral continuous bounded operator representation on a Hilbert space.
- (7) Every algebraically irreducible representation of A on a vector space is similar to a continuous algebraically irreducible
- * -representation on a Hilbert space.
- (8) Every algebraically irreducible representation of A on a vector space extends to a topologically irreducible *-representation of $C^*(A)$ on a Hilbert space.

(JOT 2003). Let A be a Frechet *-algebra each element of which is bounded. Let A be spectrally invarient. Then $K_*(A) = K_*(C^*(A))$.

This leads to unbounded spectral representation and unbounded *-seminorms.

Philosophy of unbounded operator representations

- (1) naturality of unbounded representations of *-algebra
- (2) Examples from Quantum Theory and group representations
- (3) Pathologies and choice of well behaved representations; e.g. self adjoint, standard, weakly unbounded, well behaved,

A = a *-algebra

unbounded C^* -seminorm p in A having domain D(p), $kerp = N_p$ and defining left ideal $\mathcal{N}_p = \{x \in D(p) : Ax \subset D(p)\}.$

$$A_p$$
=Hausdorff completion of $D(p)/N_p$.

For $\Pi_p \in Rep(A_p)$, define an unbounded operator representation $(\pi_p, D(\pi_p), H)$ of A as $D(\pi_p) = span\{\Pi_p(x+N_p)\psi : x \in \mathcal{N}_p \ \psi \in H_{\Pi_p}\}$ $H_{\pi_p} = \text{closure of } D(\pi_p)$ $\pi_p(a)(\Pi_p(x+N_p)\psi = \Pi_p(ax+N_p)\psi$

An unbounded representation $(\pi, D(\pi), H)$ is well behaved if there exists an unbounded C^* -seminorm p in A such that $\pi = \pi_p$ with $H = H_{\pi_p} = H_{\Pi_p}$.

Theorem

- (JOT 2001; JMSJ 2004)
- (1) p is hereditary spectral iff p is spectral and stable.
- (2) A admits a spectral well behaved *-representation iff A is spectrally invariant.

Well behaved representations include

- (1) standard representations of polynomial algebras
- $\left(2\right)$ integrable representations of universal enveloping algebra of Lie algebra
- (3) standard representations of Heisenberg commutation relations
 - (4) Moyal quantization map of the Moyal algebra.

 C^{∞} -spectral representations and C^{∞} -spectral seminorms?

Given $\pi:A\to B(H),\ x=x^*\in A$ and $f\in C^\infty(sp(\pi(x))),$ there exists $y=y^*\in A$ such that $\pi(y)=f(\pi(x))$ and $sp_A(x)=sp_{C^*(\pi)}(\pi(x)).$

(approach to smooth algebras initiated by Blackadar and Cuntz) Two steps :

- (a) smooth structures defined by a differential norm
- (b) take appropriate limits over differential norms
- (a) $(\mathcal{U}, \|\cdot\|_0) = C^*$ -normed algebra C^* -algebra completion A. differential norm on \mathcal{U}

 $T: x \in \mathcal{U} \to (T_k(x) \in \text{non negative sequences})$

$$T_0(x) \le ||x||_0$$

$$T(x+y) \le T(x) + T(y)$$

$$T(\lambda x) = |\lambda| T(x)$$

$$T(xy) \le T(x)T(y)$$
 convolution

$$T(x) = 0$$
 implies $x = 0$.

In the absence of l^1 -summability, take

$$l^1(\mathcal{U},T)=\{x\in\mathcal{U}:T_{tot}(x)<\infty\}, T_{tot}(x)=\sum T_k(x)$$
 normed algebra

 U_T = completion differential Banach *-algebra

$$p_k(x) = \sum_{i=0}^{i=k} T_i(x), C^k(\mathcal{U}, T) = (\mathcal{U}, p_k)$$
 completion = a Banach *-algebra

$$C^{\infty}(\mathcal{U},T) = \lim_{k \to \infty} C^k(\mathcal{U},T) = \mathcal{U}_{\tau} = a$$
 differential Frechet algebra

(JOT 2011)

- (1) \mathcal{U}_{τ} is a C^* -spectral algebra.
- (2) \mathcal{U}_{τ} is spectrally invarient in A.
- (3) \mathcal{U}_{τ} is a hermitian Q-algebra.
- (4) U_{τ} is closed under holomorphic functional calculus and C^{∞} -functional calculus of self adjoint elements.

Analytic and entire analytic structure defined by T given by the following sub algebras obtained by taking inverse limits and direct limits as $n \to \infty$.

$$\begin{split} C^{\omega}(\mathcal{U},T) &= \cup_{t>0} \mathcal{U}_{T(t)} = \lim_{\stackrel{\longrightarrow}{n \to \infty}} \mathcal{U}_{T(1/n)} \\ C^{e\omega}(\mathcal{U},T) &= \lim_{\stackrel{\longleftarrow}{n \to \infty}} \mathcal{U}_{T(n)} \\ C^{\omega}(\mathcal{U}_{\tau},T) &= \lim_{\stackrel{\longrightarrow}{n \to \infty}} \mathcal{U}_{\tau}^{\omega}(1/n) - \text{lmc Q-algebra} \\ C^{e\omega}(\mathcal{U}_{\tau},T) &= \lim_{\stackrel{\longleftarrow}{n \to \infty}} \mathcal{U}_{\tau}^{\omega}(n) - \text{Frechet algebra} \\ \text{Here } \mathcal{U}_{\tau}^{\omega}(k) &= l^{1}(\mathcal{U}_{\tau}^{\omega},T(k))[T(k)_{tot}]. \end{split}$$

analytic seminorm p : $\limsup_{s\to\infty}\{\log(x_1x_2x_3...x_s)/s\}\leq 0$ for $\|x_i\|_0\leq 1.$

T analytic on \mathcal{U} if for some t > 0, $T(t)_{tot}$ is analytic on $l^1(\mathcal{U}, T(t))$; T is entire analytic if this holds for all t > 0.

$$l^{\omega} = \inf\{t \text{ as above}\}. \ T(t)_k(x) = t^k T_k(x)$$

 $\mathcal{U}^{\omega} = \bigcup_{t>l^{\omega}} \mathcal{U}_{T(t)}$ complete *m*-convex algebra.

 $\widetilde{\mathcal{U}^{e\omega}} = \bigcap_{t>0} \mathcal{U}_{T(t)}$ a Frechet algebra.

Theorem

- (1) If T is analytic on \mathcal{U} , then $\mathcal{U}^{\overline{\omega}}$ is C^* -spectral hermitian Q-algebra closed under holomorphic functional calculus of A.
- (2) It T is entire analytic, similar conclusion holds for $\widetilde{\mathcal{U}^{e\omega}}$.

The analytic structure on \mathcal{U}_{τ} defined by T is described by the topological algebras $\mathcal{U}_{\tau}^{\omega}$ and $\mathcal{U}_{\tau}^{e\omega}$, and similar results hold for them.

(b) T is of total order $\leq k$ if for each T - bounded sequence $\{x_s\}$ in \mathcal{U} ,

$$\limsup_{s\to\infty}\log T_{tot}(x_1x_2x_3....x_s)/\log s\leq k. \text{ i.e. } T_{tot}(x^s)\ O(s^k)$$
 for $s\to\infty.$

a derived norm α on \mathcal{U} is the quotient norm of the total norm of a differential norm of total order $\leq k$ for some k.

 Λ_{cd} = all closable derived norms on \mathcal{U} ; $\Lambda_{cd}^{\leq k}$ = closable derived norms of order $\leq k$.

smooth envelope of
$$\mathcal{U} = \mathcal{S}(\mathcal{U}) = \text{completion of } (\mathcal{U}, \Lambda_{cd}).$$

$$C^k$$
-envelope of $\mathcal{U} = \mathcal{S}^k(\mathcal{U}) = \text{completion of } (\mathcal{U}, \Lambda_{cd}^{\leq k}).$

Following chain of topological algebras

$$\mathcal{U} \subset \mathcal{S}\mathcal{U} = \lim_{\leftarrow} \mathcal{S}^k \mathcal{U} \subset \mathcal{S}^{k+1} \mathcal{U} \subset \mathcal{S}^k \mathcal{U} \subset A.$$

 \mathcal{U} is smooth if $\mathcal{U} = \mathcal{S}\mathcal{U}$.

 C^k -completion = $C^k\mathcal{U}$ = completion of \mathcal{U} in all closable flat differential norms of order $\leq k$.

$$C^{\infty}$$
-completion = $\cap_k C^k(\mathcal{U})$.

 \mathcal{U} is a C^{∞} -algebra if $\mathcal{U} = C^{\infty}\mathcal{U}$.

Chain of topological algebras

 $\mathcal{U}\subset\mathcal{S}\mathcal{U}\subset C^\infty\mathcal{U}\subset C^{k+1}\mathcal{U}\subset C^k\mathcal{U}\subset A.$

Theorem

(JOT 2011) The smooth algebras and the C^{∞} -algebras have the desired regularity properties.

Examples

(1) function algebras of smooth functions

$$C^{\infty}[0,1], C^{k}[0,1], CBV[0,1], AC_{p}[0,1], W^{m,p}[0,1], Lip[0,1]$$

 $C_{0}^{\infty}(R), C_{0}^{k}(R), \mathcal{S}(R)$

- (2)operator algebras defined by derivations
- (a) Given a finite set of closed unbounded derivations in a C^* -algebra A,

$$C^{n}(A)=C^{n}$$
-elements of A defined by these derivations,

$$C^{\infty}(A)$$
- C^{∞} -elements

(b) Lie group G acting on a C^* -algebra A,

$$C^{\infty}(A,\alpha), C^k(A,\alpha)$$

- (c) non commutative torus T_{θ}^{n}
- (d) smooth operator algebra crossed product defined by an action of ${\cal R}$ / any Lie group?
- (3) differential structures defined by almost commuting self adjoint operators as well as by an n-tuple of strongly commuting self adjoint operators

Programme: smooth compact operators – $\mathcal{S}(\mathbb{Z}^2)$ acting on $l^2(\mathbb{Z})$ - smooth trace class, smooth Hilbert-Schmidt and smooth von Neuman-Schatten class operators - Search for smooth bounded operators? - differential algebras of bounded operators?

 $(G, A, \alpha) = a C^*$ -dynamical system

crossed product C^* -algebra $C^*(G, A, \alpha) = C^*(L^1(G, A), \text{twisted}$ convolution) encodes the C^* -dynamics

non commutative analogue of covariance algebra for G acting on a locally compact space.

smooth crossed product = a non commutative analogue of algebras of smooth functions encoding differential dynamics given by action of a Lie group G on a manifold M.

(Schwaitzer) a general method of constructing spectrally invariant sub algebras of crossed product C^* -algebras

Is there a non commutative smooth structure lurking behind?

(PMSIASc 2006) Let α be a strongly continuos action of \mathbb{R} by continuos *-automorphisms of a Frechet *-algebra A.

(a) Let A admits a bai contained in A^{∞} (C^{∞} -elements)which is bai for the Frechet algebra A^{∞} . Then

$$E(S(\mathbb{R},A^{\infty},\alpha))=C^*(\mathbb{R},E(A),\alpha)$$

$$= E(L^1(\mathbb{R}, A, \alpha))$$
 if α is isometric.

enveloping $\sigma - C^*$ -algebra of smooth Schwartz Frechet algebra crossed product = continuous crossed product of enveloping C^* -algebra

(b) Let A be hermitian and Q. Then

$$RK_*(S(\mathbb{R}, A^{\infty}, \alpha)) = K_*(C^*(\mathbb{R}, A, \alpha))$$

 $\alpha =$ an action of $\mathbb R$ on a C^* -algebra A leaving a dense *-sub algebra $\mathcal U$ invariant.

 $\widetilde{\mathcal{U}} = \alpha$ -invariant smooth envelope

=completion of \mathcal{U} in α -invariant differential seminorms

(smooth Frechet analogue of Connes analogue of Thom isomorphism)

Theorem

(PMSIASc 2006)

(a)
$$RK_*(S(\mathbb{R}, \mathcal{U}_{\tau}^{\infty}, \alpha)) = K_{*+1}(A)$$

(b) If $\widetilde{\mathcal{U}}$ is metrizable, then

$$RK_*(S(\mathbb{R}, \mathcal{U}_{\tau}^{\infty}, \alpha)) = K_{*+1}(A).$$

Let A be a C^* -algebra. The Frechet algebras $S(\mathbb{R}, A, \alpha)$ and $S(\mathbb{R}, A^{\infty}, \alpha)$ are differential Frechet algebras; and are smooth sub algebras of the crossed product C^* -algebra $C^*(\mathbb{R}, A, \alpha)$.

Definition

Let $(A, \|\cdot\|_0)$ be a C^* -algebra. Let B be a dense *-subalgebra of A. Then B is called a $Frechet\ (D_\infty^*)$ -subalgebra of A if there exists a sequence of seminorms $\{\|\cdot\|_i: 0 \leq i < \infty\}$ such that the following hold.

- For all $i, 1 \le i < \infty$, for all x, y in B, $||xy||_i \le ||x||_i ||y||_i, ||x^*||_i = ||x||_i$.
- ② For each $i, 1 \le i < \infty$, there exists $D_i > 0$ such that $||xy||_i \le D_i(||x||_i||y||_{i-1} + ||x||_{i-1}||y||_i)$ holds for all x, y in B.
- **3** B is a Hausdorff Frechet *-algebra with the topology τ defined by the seminorms $\{\|\cdot\|_i: 0 \le i < \infty\}$.

(Kissin and Shulman) A Banach (D_k^*) -algebra is defined by a (D_k^*) family $\{\|\cdot\|_i: 0 \leq i \leq k\}$ with $(B,\|\cdot\|_k)$ a Banach *-algebra-n/c analogue of C^k -functions- Frechet (D_∞^*) -algebra proposed as n/c analogue of $C^\infty[a,b]$

Theorem

Let $(B, \{\|\cdot\|_i\}_0^\infty)$ be a Frechet D_∞^* -subalgebra of a C^* -algebra $(A, \|\cdot\|_0)$. Then there exists a sequence $(B_k, \|\cdot\|_k)$ of dense Banach *-subalgebras of A such that the following hold.

- Each B_k is a Banach (D_k^*) -subalgebra of A continuously embedded in A.
- ② The sequence B_k forms an inverse limit sequence of Banach *-algebras and $B = \lim_{\leftarrow k \to \infty} B_k$, the inverse limit of B_k .

A Frechet (D_{∞}^*) sub algebra of a C^* -algebra has properties analogous to $C^{\infty}[a,b]$.

- (a) It can not be a Banach algebra under any norm.
- (b) If a Banach algebra contains B, it must contain some B_k .
- (c) The norm closed ideals of B are precisely the intersections with B of norm closed ideals of the C^* -algebra A.
 - (d) Its morphisms are continuous in the C^* -norm.

A Frechet (D_{∞}^*) -sub algebra of a C^* -algebra has desired regularity properties.

A Frechet (D_1^*) -algebra is one in which the defining seminorms $\|\cdot\|_i$ satisfy the first order growth condition

 $||xy||_i \le ||x||_0 ||y||_i + ||x||_i ||y||_0$. These smooth sub algebras of a C^* -algebra presumably have a richer structure. Examples include

- (1) $C^{\infty}[a,b], \{f \in C_0(R) : f' \in C(R)\}$
- (2) C^{∞} elements of a C^* -algebra defined by a derivation that is a generator
 - (3) C^{∞} -domain of a closed unbounded multiplier on a C^* -algebra
- (4) Certain algebras defined by Schatten-von Neumann classes as well as by Fredhom modules

A = a locally convex *-algebra/ a Frechet *-algebra.

Representation theoretic universal object for A can be constructed by two ways.

- (1) In the frame work of representations into bounded Hilbert space operators, one gets a family of C^* -seminorms (Gelfand-Namark C^* -seminorms) corresponding to a defining family of seminorms. The Hausdorff completion produces a pro- C^* -algebra E(A) universal for continuous bounded operator representations.
- (2) In the frame work of unbounded operator representation theory, one takes direct sum π_u of unbounded GNS representations defined by states and produce a universal unbounded operator algebra O(A).

(PMSIASc 2001; JMAA 2007)

- (1) Let A be a Frechet *-algebra. Then E(A) is the completion of
- O(A). Then A is an algebra with a C^* -enveloping algebra iff Every operator representation of A map A necessarily into bounded operators.
- (2) Let A be a complete locally m-convex * -algebra. The following are equivalent.
- (i) A admits a greatest continuous C^* -semi norm.
- (ii) The hermitian spectral radius is dominated by a continuous semi norm.

$$(A, \|\cdot\|) = C^*$$
-normed algebra + Banach *-algebra with norm |.|. $\widetilde{A} = C^*$ -algebra completion $A \otimes A$ an A -bimodule $d: A \to A \otimes A, da:= 1 \otimes a - a \otimes a$ derivation $\Omega^1 A:=$ sub module generated by $\{adb=a \otimes b-ab \otimes 1: a,b \in A\}$ $\Omega^k(A):=\Omega^1 A \otimes_A \Omega^1 A \otimes_A \dots \otimes_A \Omega^1 A$ k -times $\Omega^* A:=\bigoplus_{n=0}^\infty \Omega^n A$ abstract non commutative differential forms over A graded *-algebra with derivation $d(a_0da_1da_2...da_n)=da_0da_1da_2....da_n$

For
$$r \in R^+$$
, $|\omega = \sum \omega_k|_r := \sum r^k |\omega_k|_{\pi}$ norms on $\Omega^* A$ $\Omega^r A = \text{completion of } (\Omega^* A, |.|_r)$ Banach *-algebra (Arveson) $\Omega_{\infty} A := \lim_{\substack{\longleftarrow \\ r \to 0}} \Omega_r A$ inverse limit (Connes) $\Omega_{\epsilon} A := \lim_{\substack{\longleftarrow \\ r \to 0}} \Omega_r A$ direct limit

(PMSIASc 2008)

- (1) The bounded part of the Frechet algebra $\Omega_{\infty}A$ coincides with the Banach *-algebra A; and there exists a continuous *-homomorphism from $E(\Omega_{\infty}A)$ to \widetilde{A} .
- (2) The algebra $\Omega_{\epsilon}A$ is a spectral m-convex Q-algebra; and $E(\Omega_{\epsilon}A) = C^*(A)$.

Given a K-cycle $(\pi, H.D)$ with $\pi: A \to B(H)$ a representation of A, π extends as a representation of $\pi: \Omega^*A \to B(H)$, let $J_0 = \ker \pi$ and $J = J_0 + dJ_0$, $\Omega_D^* = \Omega^*A/J$; viz. $\Omega_D^k = \pi(\Omega^k A)/\pi(d(J_0 \cup \Omega^{k-1}A)).$

 $\Omega_D^k = \bigoplus_{k=0}^{k=\infty} \Omega_D^k \dots n/c$ de Rham algebra

Assume A to be closed under holomorphic functional calculus of \widetilde{A} . The algebra Ω_D^* can be topologized in several ways.

(a)
$$\|\cdot\|_{k,\pi}$$
 = projective tensor product norm on Ω_A^k . $\|\cdot\|_{\pi,q}$ = quotient norm on Ω_D^k . $\Omega_{r,\pi}(A,D)$ = the completion of Ω_D^* in $\|\omega\| = \sum r^k \|\omega\|_{\pi,q}$ $\Omega_{r,\pi}^h(A,D)$ = functional calculus closure of Ω_D^* . Then taking limits $\Omega_{\infty,\pi}^h(A,D) := \lim_{\substack{\leftarrow r \to \infty \\ \epsilon, \pi}} \Omega_{r,\pi}^h(A,D) := \lim_{\substack{\leftarrow r \to \infty \\ \epsilon, \pi}} \Omega_{r,\pi}^h(A,D) = \Omega_{\infty,\pi}(A,D)$ $\Omega_{\epsilon,\pi}^h(A,D) := \lim_{\substack{\rightarrow r \to 0 \\ r \to 0}} \Omega_{r,\pi}^h(A,D) := \Omega_{\epsilon,\pi}^h(A,D)$ $\Omega_{r,\pi}^h(A,D) = \Omega_{\epsilon,\pi}^h(A,D)$

- (b) $\|\cdot\|_q$ = quotient norm on Ω_D^k from the operator norm $\Omega_T(A,D)$ = Banach *-algebra obtained by completing Ω_D^* in the
- corresponding norm

Taking holomorphic functional calculus closure and appropriate limits, we get

$$\Omega^h_\infty(A,D) := \lim_{\leftarrow r \to \infty} \Omega^h_r(A,D) \subset \lim_{\leftarrow r \to \infty} \Omega_r(A,D) = \Omega_\infty(A,D)$$

$$\Omega^h_\epsilon(A,D) := \lim_{\rightarrow r \to 0} \Omega^h_r(A,D) \subset \lim_{\rightarrow r \to 0} \Omega_r(A,D) = \Omega_\epsilon(A,D)$$

(PMSIASc, 2008)

(1) $\Omega_{\epsilon}^{h}(A, D)$ is Q-algebra spactrally invariant in $\Omega_{\epsilon}(A, D)$ and having \widetilde{A} as its enveloping C^* -algebra.

(2) $\Omega^h_{\infty}(A,D)$ (respectively $\Omega^h_{\infty,\pi}(A,D)$) is closed under the holomorphic functional calculus of $\Omega_{\infty}(A,D)$ (respectively $\Omega_{\infty,\pi}(A,D)$).

Quantized Integrals(TAMS, 1999; PMSIASc, 2008)

Given a spectral triple (π, H, D) on a *-algebra A, various quantized integrals on Ω^*A like d-dimensional volume integrals and infinite dimensional integrals are defined using Dixmier trace depending on growth conditions on spectral triple. A unified approach to these integrals can be developed using quasi weights and the integrals might be extended to limit algebras like $\Omega_{\infty}A$ and $\Omega_{\epsilon}A$.

a positive linear functional on A - a non commutative analogue of complex Borel measure necessarily finite.

a weight on a von Meumann algebra - non commutative analogue of infinite positive measure

a quasi weight on A is tailored to suit unbounded operator algebras

a subspace N of A,

For a sub space N of A, let

$$P(N) = \{\sum_{finite} x_k^* x_k; x_k \in A\}$$

a weight $\phi: P(A) \to R_{\perp} \cup \{\infty\}$ satisfying additivity and positive

Let \mathcal{N} be a left ideal of A.

A quasi weight on $P(\mathcal{N})$ is a map $\phi: P(\mathcal{N}) \to R_+$ that is additive and positive homogeneous. Then $\mathcal{N} = \mathcal{N}_{\phi}$.

Given a quasi weight $(\phi, \mathcal{N}_{\phi})$ on a *-algebra A, GNS construction can be carried on with it resulting into a strongly cyclic unbounded operator representation $(\pi_{\phi}, D(\pi_{\phi}), H_{\phi})$ of A.

 ϕ is admissible if π_{ϕ} represents A into bounded operators.

Non C^* -like phenomema of weak admissibility and strict inadmissibility.

- (1) Quasi weight on a smooth sub algebra of a C^* -algebra is admissible.
- (2) A quasi weight on an unbounded operator algebra defined by a weighted trace is strictly inadmissable. In perticular, this holds for equilibrium states for BCS-Bogolubov model and interacting Bosons.
- (3) The quasi weight defined on Ω^*A by the Dixmier trace is admissible.
- (4) The finite dimensional volume integral on A extends as an admissible quasi weight on $\Omega_{\infty}A$; and the GNS representation so defined is unitarily equivalent to extension of the left action of A.

S closed symmetric operator with a dense domain D(S)in a Hilbert space \mathcal{H} .

 $\mathcal{B}(\mathcal{H}) = C^*$ -algebra of bounded operators

 $\mathcal{K}(\mathcal{H}) = C^*$ -algebra of compact operators on \mathcal{H} .

first order differential structure

(Kissin and Shulman)

$$\mathcal{A}_S^1 = \{A \in \mathcal{B}(\mathcal{H}): AD(S) \subset D(S), A^*D(S) \subset D(S),$$

$$(SA - AS)^- \in \mathcal{B}(\mathcal{H}).$$

$$A_S := (SA - AS)^-.$$

 \mathcal{A}_S^1 = a Banach *-algebras with norm $||A||_1 := ||A|| + ||A_S||, ||\cdot||$ denoting the operator norm.

 \mathcal{U}_S be the C^* -algebra obtained by completing \mathcal{A}_S^1 in $\|\cdot\|$.

$$\mathcal{U}_S$$
 — analogue of $C[a,b]$

$$\mathcal{A}_{S}^{1}$$
—analogue of $Lip[a,b]$

$$\mathcal{K}_S^1 := \mathcal{A}_S^1 \cap \mathcal{K}(\mathcal{H});$$

first order differential structure

(Kissin and Shulman)

$$\mathcal{A}_S^1 = \{A \in \mathcal{B}(\mathcal{H}): AD(S) \subset D(S), A^*D(S) \subset D(S),$$

$$(SA - AS)^- \in \mathcal{B}(\mathcal{H}).$$

$$A_S := (SA - AS)^-.$$

 \mathcal{A}_S^1 = a Banach *-algebras with norm $||A||_1 := ||A|| + ||A_S||, ||\cdot||$ denoting the operator norm.

 \mathcal{U}_S be the C^* -algebra obtained by completing \mathcal{A}_S^1 in $\|\cdot\|$.

$$\mathcal{U}_S$$
 — analogue of $C[a,b]$

$$\mathcal{A}_{S}^{1}$$
—analogue of $Lip[a,b]$

$$\mathcal{K}_S^1 := \mathcal{A}_S^1 \cap \mathcal{K}(\mathcal{H});$$

$$\mathcal{J}_S^1 := \{ A \in \mathcal{K}(\mathcal{H}) : A_S \in \mathcal{K}(\mathcal{H}) \},$$

$$\mathcal{F}_S^1 \text{ be the closure in the norm } \| \cdot \|_1 \text{ of all finite rank operators in } \mathcal{A}_S^1.$$

 \mathcal{A}_S^1 is a $Banach\ D$ -algebra; a dense *-sub algebra of a C^* -algebra satisfying $\|TR\|_1 \leq D(\|T\|_1\|R\| + \|T\|\|R\|_1)$ for all T, R in \mathcal{A}_S . $\mathcal{F}_S^1 \subset \mathcal{J}_S^1 \subset \mathcal{K}_S^1 \subset \mathcal{A}_S^1$.

These algebras represent the non commutative Lipschitz structure of order 1 defined by S.

The non commutative C^1 - structure defined by S as follows.

$$\mathcal{A}_{S}^{(1)} := \{ A \in \mathcal{U}_{S} : AD(S) \subset D(S), A^{*}D(S) \subset D(S), (SA - AS)^{-} \in \mathcal{U}_{S} \},$$

$$\mathcal{K}_{S}^{(1)} := \mathcal{K}(\mathcal{H}) \cap \mathcal{A}_{S}^{(1)},$$

$$\mathcal{J}_{S}^{(1)} := \{ A \in \mathcal{K}_{S}^{(1)} : A_{S} \in \mathcal{K}_{S}^{(1)} \}, \text{ and }$$

$$\mathcal{F}_{S}^{(1)} = \| \cdot \|_{1}\text{-closure of finite rank operators in } \mathcal{A}_{S}^{(1)}.$$

These exhibit the first order differential structure defined by S described in terms of the derivation δ_S formally defined by S as $\delta_S(A) := i(SA - AS)^-$ and considered in the C^* -algebra \mathcal{U}_S as well as

 $\delta_S(A) := i(SA - AS)$ and considered in the C^* -algebra \mathcal{U}_S as we the in von Neumann algebra \mathcal{M}_S generated by S.

second order differential structure

$$\mathcal{A}_S^2 := \{ A \in \mathcal{A}_S^1 : \delta_S(A) \in \mathcal{A}_S^1 \}, \text{ a Banach *-algebra with norm } \|A\|_2 = \|A\| + \|\delta_S(A)\| + (1/2!)\|\delta_S^2(A)\|;$$

$$\mathcal{K}_S^2 = \mathcal{A}_S^2 \cap \mathcal{K}(\mathcal{H});$$

$$\mathcal{J}_S^2 = \{ A \in \mathcal{K}_S^1 : \delta_S^1 \in \mathcal{J}_S^1 \},$$

$$\mathcal{F}_S^2 = \text{closure in } \| \cdot \|_2 \text{ of finite rank operators in } \mathcal{A}_S^2.$$

Notice that for A in \mathcal{A}_S^2 , $\delta_S(A) \in \mathcal{U}_S$; and thus the algebra \mathcal{A}_S^2 corresponds to the algebra of C^1 -functions whose derivative is Lipschitzian.

The analogues of the algebra of C^2 -functions are given as follows. $\mathcal{A}_S^{(2)} = \{A \in \mathcal{A}_S^{(1)} : \delta_S(A) \in \mathcal{A}_S^{(1)}\}\$ a closed sub algebra of \mathcal{A}_S^2 , $\mathcal{K}_S^{(2)} = \mathcal{A}_S^{(2)} \cap \mathcal{K}(\mathcal{H}),$ $\mathcal{J}_S^{(2)} = \{A \in \mathcal{K}_S^{(2)} : \delta_S(A) \in \mathcal{K}_S^{(2)}\},$ $\mathcal{F}_S^{(2)} = \text{closure in } \mathcal{A}_S^{(2)} \text{ of finite rank operators in } \mathcal{A}_S^{(2)}.$

Thus the non commutative second order differential structure defined by A is manifested as the following complex of Banach algebras which are dense smooth sub algebras of C^* -algebras.

Proposition

The Banach *-algebras (A_S^2) , $\|\cdot\|_2$, $(K_S^2, \|\cdot\|_2)$, $(\mathcal{J}_S^2, \|\cdot\|_2)$ and $(\mathcal{F}_S^2, \|\cdot\|_2)$ are semisimple; \mathcal{F}_S^2 has no closed two sided ideals; and $\mathcal{F}_S^2 \subset \mathcal{I}$ for any closed *-ideal \mathcal{I} of $(A_S^2, \|\cdot\|_2)$.

We consider the Lipschtz structure defined by \mathcal{A}_S^1 and \mathcal{A}_S^2 .

 $\mathcal{M} \subset \mathcal{N}$ be von Neumann algebras with same unit.

A W^* -derivation $\delta: \mathcal{M} \to \mathcal{N} =$ an unbounded linear map whose domain dom (δ) is a unital *-sub algebra of \mathcal{M}

- (i) dom (δ) is ultra weakly dense in \mathcal{M}
- (ii) the graph of δ is ultra weakly closed in $\mathcal{M} \bigoplus \mathcal{N}$ and
- (iii) δ is a *-derivation.

 $dom(\delta) = a W^*$ -domain algebra.

(Weaver) a W^* -domain algebra = non commutative metric space It is a Banach *-algebra with norm $||x||_1 := ||x|| + ||\delta(x)||$.

Let $\mathcal{M}_S := W^*(\mathcal{U}_S)$ the von Neumann algebra generated by the C^* -algebra \mathcal{U}_S .

Notice that $\mathcal{M}_S = W^*(\mathcal{A}_S^1), \mathcal{U}_S = C^*(\mathcal{A}_S^1).$

Proposition

Let S be as above.

- (1) The derivation $\delta_S : \mathcal{M}_S \to \mathcal{B}(\mathcal{H})$ with domain $dom(\delta_S) = \mathcal{A}_S^1$ is a W^* -derivation.
- (2) The Banach *-algebra \mathcal{A}_S^1 is dual of a Banach space; and the weak*-topology σ^1 on \mathcal{A}_S^1 is described as $A_\alpha \to A$ in weak*-if and only if $A_\alpha \to A$ ultra weakly in \mathcal{M} and $\delta_S(A_\alpha) \to \delta_S(A)$ ultra weakly in $\mathcal{B}(\mathcal{H})$.

Theorem

Let S be as above.

- (1) Let $X = X^* \in \mathcal{A}_S^1$. let $f \in Lip(sp(X))$. Let $\delta_S(X)$ commutes with
- X. Then $f(X) \in \mathcal{A}_S^1$ and $\|\delta_S(f(X))\| \le L(f)\|\delta_S(X)\|$.
- (2) Let \mathcal{J} be a σ^1 -closed *-ideal of \mathcal{A}^1_S . Then \mathcal{J} is the σ^1 -closure of
- $(\mathcal{J})^2$, where $(\mathcal{J})^2$ is the linear span of $\{AB : A \in \mathcal{J}, B \in \mathcal{J}\}$.
- (3) Let \mathcal{J} be a *-ideal of \mathcal{A}_S^1 . Then $\delta_S(\mathcal{J})$ is contained in the ultra weak closure of \mathcal{J} in $\mathcal{B}(\mathcal{H})$.
- (4) Let \mathcal{I} and \mathcal{J} be *-ideals of \mathcal{A}_S^1 . Then $\mathcal{I} \cap \mathcal{J}$ is contained in the σ^1 -closure of $\mathcal{I}\mathcal{J}$; and if \mathcal{I} and \mathcal{J} are σ^1 -closed, then $\mathcal{I} \cap \mathcal{J}$ is the σ^1 -closure of $\mathcal{I}\mathcal{J}$.

$$\begin{split} \operatorname{Lip}^2[a,b] &= \{f \in \operatorname{Lip}[a,b] : f' \in \operatorname{Lip}[a,b] \} \\ \{f \in C^1[a,b] : f' \in \operatorname{Lip}[a,b] \} \\ \text{a Banach *-algebra with norm} \\ \|f\|_{\operatorname{Lip}^2} &= \|f\|_{\infty} + \|f'\|_{\infty} + \|f''\|_{\infty}. \\ \phi &: \mathcal{A}_S^2 \to \mathcal{M}_S \bigoplus \mathcal{M}_S \bigoplus \mathcal{B}(\mathcal{H}), \phi(A) = (A,\delta_S(A),\delta_S^2(A)). \\ \text{The operator } \delta_S^2 : \mathcal{A}_S^1 \to \mathcal{B}(\mathcal{H}), \ \delta_S^2(A) = \delta_S(\delta_S(A)) \text{ with domain } \\ dom(\delta_S^2) &= \mathcal{A}_S^2. \\ \mathcal{A}_S^2 \text{ is ultra weakly dense in } \mathcal{M}_S; \text{ and is } \sigma^1\text{-dense in } \mathcal{A}_S^1. \end{split}$$

Theorem

- (1) The graph of the operator $\delta_S^2: \mathcal{A}_S^1 \to \mathcal{B}(\mathcal{H})$ given by $G(\delta_S^2) = \{(A, \delta_S^2(A)) : A \in \mathcal{A}_S^2\}$ is closed in $\mathcal{A}_S^1 \bigoplus \mathcal{B}(\mathcal{H})$ where \mathcal{A}_S^1 carries the σ^1 -topology and $\mathcal{B}(\mathcal{H})$ carries the ultra weak topology; and range of ϕ is an ultra weakly closed sub-space of $\mathcal{M}_S \bigoplus \mathcal{M}_S \bigoplus \mathcal{B}(\mathcal{H})$ with the product ultra weak topology.
- (2) The algebra A_S^2 is dual of a Banach space, and the weak *-topology on A_S^2 denoted by σ^2 is given as $A_\alpha \to A$ in σ^2 if and only if $A_\alpha \to A$ ultra weakly, $\delta_S(A_\alpha) \to \delta_S(A)$ ultra weakly and $\delta_S^2(A_\alpha) \to \delta_S^2(A)$ ultra weakly.
- (3)Let $X = X^* \in \mathcal{A}_S^2$. Let $f \in Lip^2(sp(X))$. Let X commutes with $\delta_S(X)$. Then $f(X) \in \mathcal{A}_S^2$ and $\|\delta^2(Y)\| \leq \|f(f)\|\delta^2(Y)\| + \|f(f')\|(\delta_S(Y))^2\|$
- $\|\delta_S^2(X)\| \le L(f)\|\delta_S^2(X)\| + L(f')\|(\delta_S(X))^2\|.$
- (4) Let \mathcal{J} be a σ^2 -closed *-ideal of \mathcal{A}_S^2 . Then $\mathcal{J} = \sigma^2$ -closure of \mathcal{J}_S^2 .

Theorem

The operator S is self adjoint iff \mathcal{F}_S^2 has bounded approximate identity. In this case, $\mathcal{F}_S^2 = \mathcal{J}_S^2$.

$$D(S^2) = \text{a Hilbert space},$$

$$\langle x, y \rangle = (x, y) + (Sx, Sy) + (S^2x, S^2y)$$
For $K \subset D(S^2)$,
$$I_l(K) = \text{closure in } \langle, \rangle \text{ of span } \{x \bigotimes y : x \in K, y \in D(S^2)\}$$
For a left ideal I of \mathcal{F}_S^2 ,
$$L(I) = \{x \in D(S^2) : x \bigotimes y \in I \text{ for all } y \in D(S^2)\}.$$

Theorem

The map $I \to L(I)$ gives a one one correspondence from non trivial closed essential left ideals of \mathcal{F}_S^2 to non trivial closed sub spaces of $D(S^2)$; and its inverse is $K \to I_l(K)$.

- S.J.Bhatt, Enveloping σC^* -algebra of a smooth Schwartz crossed product by R, K-theory and differential structure in C^* -algebras, Proc. Math. Sc. Indian Acad. Sci.116(2006)161-173
- S.J.Bhatt, A.Inoue and H.Ogi, Admissibility of weights in non normed *-algebras, Trans. American Math. Soc. 351(1999)4629-4653
- S.J.Bhatt, A.Inoue and H.Ogi, Unbounded C*-seminorms and unbounded *-spectral algebras, Jr. Operator Theory 45(2001)53-80
- S.J.Bhatt, A.Inoue and H.Ogi, Spectral invariance, K-theory isomorphism and application to differential structure in C^* -algebras, Jr. Operator Theory 49(2003)389-405

S.J.Bhatt, A.Inoue and H.Ogi, Differential structure in C^* -algebras, Jr. Operator Theory 66(2011)301-334

S.J.Bhatt, A.Inoue and K.D.Kurstein, Well behaved unbounded operator representations and unbounded C^* -seminorms, Jr. Math. Soc. Japan 56(2004)417-445

S.J.Bhatt, M.Fragolopoulou, A.Inoue, and D.J.Karia, Hermitian spectral theory, automatic continuity and locally convex *-algebras with a C^* -enveloping algebras, Jr. Math. Anal. Appl.331(2007)169-190

S.J.Bhatt, M.Fragolopoulou and A.Inoue, Existence of spectral well behaved *-representations, Jr. Math. Anal. Appl.317(2006)475-495

S.J.Bhatt, D.J.Karia and Meetal Shah, On a class of smooth Frechet sub algebras of a C^* -algebra, submitted

S.J.Bhatt and A.Inoue, Limit algebras of differential forms in non- commutative geometry, PMS IASc 118(2008)425-441.