Application No.: 10/616,560

AMENDMENTS TO THE CLAIMS

Please replace all prior versions and listings of claims with the amended claims as follows:

1. (Currently amended) A compound of formula I:

$$R^1$$
 R^1
 R^2
 R^2

or a pharmaceutically acceptable derivative salt thereof, wherein:

W is nitrogen;

G is hydrogen or C_{1-3} aliphatic wherein one methylene unit of G is optionally replaced by -C(O), -C(O)O, -C(O)NH, SO_2 , or $-SO_2NH$;

A is $-N-T_{(n)}-R$, oxygen, or sulfur;

 R^1 is selected from $-T_{(n)}-R$ or $-T_{(n)}-Ar^1$;

each n is independently 0 or 1;

T is a C_{1-4} alkylidene chain wherein one methylene unit of T is optionally replaced by – C(O)-, -C(O)O-, -C(O)NH-, - SO_2 -, or - SO_2NH -;

Ar¹ is a 3-7 membered monocyclic saturated, partially saturated or aromatic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 8-10 membered bicyclic saturated, partially saturated or aromatic ring having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein each member of Ar¹ is optionally substituted with one -Z-R³ and one to three additional groups independently selected from -R, halogen, oxo, -NO₂, -CN, -OR, -SR, -N(R)₂, -NRC(O)R, -NRC(O)N(R)₂, -NRCO₂R, -C(O)R, -CO₂R, -OC(O)R, -C(O)N(R)₂, -OC(O)R, or -C(O)C(O)R, -SO₂R, -SO₂N(R)₂, -NRSO₂R, -NRSO₂N(R)₂, -C(O)C(O)R, or -C(O)CH₂C(O)R;

Application No.: 10/616,560

each R is independently selected from hydrogen or a C₁₋₆ aliphatic, wherein said aliphatic is optionally substituted with one to three groups independently selected from oxo, -CO₂R', -OR', -N(R')₂, -SR', -NO₂, -NR'C(O)R', -NR'C(O)N(R')₂, -NR'CO₂R', -C(O)R', -C(O)R', -C(O)N(R')₂, -OC(O)N(R')₂, -S(O)R', -SO₂R', -SO₂N(R')₂, -NR'SO₂R', -NR'SO₂N(R')₂, -C(O)C(O)R', -C(O)CH₂C(O)R', halogen, or -CN, or two R bound to the same nitrogen atom are taken together with that nitrogen atom to form a five or six membered heterocyclic or heteroaryl ring having one to two additional heteroatoms independently selected from oxygen, nitrogen, or sulfur;

each R' is independently selected from hydrogen or C₁₋₆ aliphatic, wherein said aliphatic is optionally substituted with one to three groups independently selected from oxo, -CO₂H, -OH, -NH₂, -SH, -NO₂, -NHC(O)H, -NHC(O)NH₂, -NHCO₂H, -C(O)H, -OC(O)H, -C(O)NH₂, -OC(O)NH₂, -S(O)H, -SO₂H, -SO₂NH₂, -NHSO₂H, -NHSO₂NH₂, -C(O)C(O)H, -C(O)CH₂C(O)H, halogen, or -CN, or two R' bound to the same nitrogen atom are taken together with that nitrogen atom to form a five or six membered heterocyclic or heteroaryl ring optionally having one or two additional heteroatoms independently selected from nitrogen, oxygen, or sulfur;

Z is a C_1 - C_6 alkylidene chain wherein up to two non-adjacent methylene units of Z are optionally replaced by -C(O)-, -C(O)O-, -C(O)C(O)-, -C(O)N(R)-, -OC(O)N(R)-, -N(R)N(R)-, -N(R)N(R)C(O)-, -N(R)C(O)-, -N(R)C(O)O-, -N(R)C(O)N(R)-, -S(O)-, $-SO_2$ -, $-N(R)SO_2$ -, $-SO_2N(R)$ -, $-N(R)SO_2N(R)$ -, -O-, -S-, or -N(R)-; $-SO_2$ -, $-SO_2$ -, -SO

Ar² is selected from a 3-7 membered monocyclic saturated, <u>partially</u> saturated or aromatic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, or a 8-10 membered bicyclic saturated, <u>partially</u> saturated or aromatic ring having 0-5 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein each member of Ar² is optionally substituted with 1-5 groups independently selected from –Z-R³, -R, halogen, oxo, -NO₂, -CN, -OR, -SR, -N(R)₂, -NRC(O)R, -NRC(O)N(R)₂, -NRCO₂R, -C(O)R, -CO₂R, -OC(O)R, -C(O)N(R)₂, -OC(O)N(R)₂, -SO₂R, -SO₂N(R)₂, -N(R)SO₂R, -N(R)SO₂N(R)₂, -C(O)C(O)R, or -C(O)CH₂C(O)R;

Applicants: Mark

Mark Ledeboer et al.

Application No.:

10/616,560

Q is a C_{1-3} alkylidene chain wherein up to two non-adjacent methylene units of Q are optionally replaced by -C(O), -C(O)O, -C(O)C(O), -C(O)N(R), -

 R^3 is selected from -Ar 3 , -R, halogen, -NO $_2$, -CN, -OR, -SR, -N(R) $_2$, -NRC(O)R, -NRC(O)N(R) $_2$, -NRCO $_2$ R, -C(O)R, -CO $_2$ R, -OC(O)R, -C(O)N(R) $_2$, -OC(O)N(R) $_2$, -SO $_2$ R, -SO $_2$ N(R) $_2$, -NRSO $_2$ R, -NRSO $_2$ N(R) $_2$, -C(O)C(O)R, or -C(O)CH $_2$ C(O)R; and

Ar³ is a 5-6 membered saturated, partially saturated, or aromatic ring having 0-3 heteroatoms independently selected from nitrogen, oxygen, or sulfur, wherein each member of Ar³ is optionally substituted with halogen, oxo, -CN, -NO₂, -R', -OR', -N(R')₂, -N(R')C(O)R', -N(R')C(O)N(R')₂, -N(R')CO₂R', -C(O)R', -CO₂R', -OC(O)R', -C(O)N(R')₂, -OC(O)N(R')₂, or -SO₂R';

provided that when W is nitrogen and:

- (i) A is -N-T_(n)-R and R² is a saturated ring or
- (ii) A is sulfur,

then R¹ is other than an optionally substituted phenyl.

2. (Currently amended) The compound according to claim 1, wherein said compound has formula IIa:

or a pharmaceutically acceptable derivative salt thereof.

3. (Original) The compound according to claim 2, wherein said compound has one or more features selected from the group consisting of:

Applicants:

Mark Ledeboer et al.

Application No.:

10/616,560

- (a) R^1 is hydrogen, Ar^1 or -T- Ar^1 wherein T is a C_{1-4} alkylidene chain and Ar^1 is a 6-membered saturated, partially saturated, or aryl ring having zero to two heteroatoms independently selected from nitrogen, oxygen, or sulfur, and wherein each member of R^1 is optionally substituted with one -Z- R^3 and one to three additional groups independently selected from $-CO_2R$, -OR, halogen, $-NRSO_2R$, $-SO_2N(R)_2$, $-NRCON(R)_2$, $-NO_2$, or $-N(R)_2$;
- (b) R^2 is Ar^2 or $-CH_2$ - Ar^2 wherein Ar^2 is selected from 5-6 membered ring selected from carbocyclic, aryl, or a heterocyclyl or heteroaryl ring having one to two heteroatoms independently selected from nitrogen, oxygen or sulfur, and wherein Ar^2 is optionally substituted with one to five groups independently selected from -Z- R^3 , -R, halogen, $-NO_2$, -CN, -OR, -SR, $-N(R)_2$, -NRC(O)R, $-NRC(O)N(R)_2$, $-NRCO_2R$, -C(O)R, $-CO_2R$, $-C(O)N(R)_2$, $-OC(O)N(R)_2$, -S(O)R, $-SO_2R$, $-SO_2N(R)_2$, $-N(R)SO_2R$, $-N(R)SO_2N(R)_2$, -C(O)C(O)R, or $-C(O)CH_2C(O)R$; and
 - (c) G is hydrogen.
- 4. (Original) The compound according to claim 3, wherein said compound has one or more features selected from the group consisting of:
- (a) R¹ is selected from a phenyl, benzyl, pyridyl, piperidinyl, or cyclohexyl ring, wherein said ring is optionally substituted with benzyloxy, phenoxy, -SO₂NH₂, -OH, -NO₂, -NH₂, -OMe, -Br, -Cl, -CO₂Me, -NHSO₂Me, -NHSO₂Et, -NHCON(Me)₂, -NHCON(Et)₂, -NHCOpyrrolidin-1-yl, -NHCOmorpholin-4-yl, -O-CH₂-phenyl, -O(CH₂)₃OH, -O(CH₂)₃NH(CH₂)₂OH, -O(CH₂)₂NH(CH₂)₂OH, -O(CH₂)₃N(hydroxyethyl)(methyl), -O(CH₂)₃pyrrolidin-1-yl, -O(CH₂)₂morpholin-4-yl, -O(CH₂)₃N(Me)₂, -O(CH₂)₃N(Et)₂, -O(CH₂)₃(4-hydroxyethyl piperazin-1-yl), -O(CH₂)₃(4-hydroxypiperidin-1-yl), -O(CH₂)₃(4-hydroxypiperidin-1-yl), -O(CH₂)₃(4-hydroxypiperidin-1-yl), -NHCO(CH₂)₃NCOCH₃, -NHCOCH₂pyridin-2-yl, -NHCO(CH₂)₂N(Et)₂, -NHCO(CH₂)₂-O(CH₂

Application No.: 10/616,560

- (b) R² is selected from phenyl, pyridyl, pyrimidinyl, cyclohexyl, piperidinyl, furanyl, or benzyl, wherein R² is optionally substituted with phenyl, phenoxy, benzyl, benzyloxy, pyridyl, 3-hydroxyphenyl, 2-hydroxyphenyl, 3-aminophenyl, N-BOC-pyrrolyl, 4-chlorophenyl, 3-ethoxypyridyl, 2-methoxypyridyl, 2,5-dimethylisoxazolyl, 3-ethoxyphenyl, 4-isopropylphenyl, 4-F-3-Cl-phenyl, pyrrolyl, pyrimidinyl, chloro, bromo, fluoro, trifluoromethyl, -OH, -NH₂, methyl, methoxy, or ethoxy; and
 - (c) G is hydrogen.

5-11. (Canceled)

12. (Currently amended) The compound according to claim 1, wherein said compound has the formula **IVa**:

or a pharmaceutically acceptable derivative salt thereof.

- 13. (Original) The compound according to claim 12, wherein said compound has one or more features selected from the group consisting of:
- (a) R^2 is Ar^2 or $-CH_2$ - Ar^2 wherein Ar^2 is selected from 5-6 membered ring selected from carbocyclic, aryl, or a heterocyclyl or heteroaryl ring having one to two heteroatoms independently selected from nitrogen, oxygen or sulfur, and wherein Ar^2 is optionally substituted by wherein Ar^2 is optionally substituted with one to five groups independently selected from -Z- R^3 , -R, halogen, $-NO_2$, -CN, -OR, -SR, $-N(R)_2$, -NRC(O)R, $-NRC(O)N(R)_2$, $-NRCO_2R$, -C(O)R, $-CO_2R$, $-C(O)N(R)_2$, $-OC(O)N(R)_2$, -S(O)R, $-SO_2R$, $-SO_2N(R)_2$, $-N(R)SO_2R$, $-N(R)SO_2N(R)_2$, -C(O)C(O)R, or $-C(O)CH_2C(O)R$;
 - (b) G is hydrogen;

Application No.: 10/616,560

(c) Z is a C_{1-4} alkylidene chain wherein one methylene unit of Z is optionally replaced by $-O_{-}$, $-NH_{-}$, $-NHC(O)_{-}$, $-NHSO_{2-}$, $-C(O)NH_{-}$; and

- (d) R^3 is selected from $-N(R)_2$, -NHC(O)R, or Ar^3 wherein Ar^3 is a 5-6 membered heterocyclic or heteroaryl ring having one to two heteroatoms independently selected from nitrogen, oxygen, or sulfur and Ar^3 is optionally substituted with -R', -OR', $-N(R')_2$, or oxo.
- 14. (Original) The compound according to claim 13, wherein said compound has one or more features selected from the group consisting of:
- (a) R² is selected from phenyl, pyridyl, pyrimidinyl, cyclohexyl, piperidinyl, furanyl, or benzyl, wherein each member of R² is optionally substituted with phenyl, phenoxy, benzyl, benzyloxy, pyridyl, 3-hydroxyphenyl, 2-hydroxyphenyl, 3-aminophenyl, N-BOC-pyrrolyl, 4-chlorophenyl, 3-ethoxypyridyl, 2-methoxypyridyl, 2,5-dimethylisoxazolyl, 3-ethoxyphenyl, 4-isopropylphenyl, 4-F-3-Cl-phenyl, pyrrolyl, pyrimidinyl, chloro, bromo, fluoro, trifluoromethyl, -OH, -NH₂, methyl, methoxy, or ethoxy;
 - (b) G is hydrogen; and
- (c) $-Z-R^3$ is selected from $-O-CH_2$ -phenyl, $-O(CH_2)_3OH$, $-O(CH_2)_3NH(CH_2)_2OH$, $-O(CH_2)_2NH(CH_2)_2OH$, $-O(CH_2)_3N(hydroxyethyl)(methyl)$, $-O(CH_2)_3pyrrolidin-1-yl$, $-O(CH_2)_2morpholin-4-yl$, $-O(CH_2)_3N(Me)_2$, $-O(CH_2)_3N(Et)_2$, $-O(CH_2)_3(4-hydroxyethyl piperazin-1-yl)$, $-O(CH_2)_3piperazin-1-yl$, $-O(CH_2)_3(4-hydroxymethylpiperidin-1-yl)$, $-O(CH_2)_3(4-hydroxypiperidin-1-yl)$, $-NHCO(CH_2)_3N(Me)_2$, $-NHCO(CH_2)_3NCOCH_3$, $-NHCOCH_2pyridin-2-yl$, $-NHCOCH_2(2-aminothiazol-4-yl)$, $-NHCOCH_2cyclopropyl$, $-NHCO(CH_2)_2N(Et)_2$, $-NHCO(CH_2)_2$ -(piperazin-2,5-dione-3-yl), -NHC(O)-pyrrolidin-1-yl, -NHCOmorpholin-4-yl, $-NHCO_2CH_2tetrahydrofuran-2-yl$, $-NHCO_2tetrahydropyran-4-yl$, or $-NHCO_2CH_2tetrahydropyran-2-yl$.

·15-17. (Canceled)

Application No.: 10/616,560

18. (Currently amended) The compound according to claim 1 selected from one of the following compounds of formula IIa: those listed in Tables 1-3.

No. IIa-	G	-T _(n) -R	\mathbb{R}^1	\mathbb{R}^2
1	Н	Н	4-Cl-phenyl	Ph
2	Н	Н	4-F-phenyl	Ph
3	Н	Н	3-OMe-Ph	Ph
4	H	Н	3,5-(OMe) ₂ -Ph	Ph
5	H	CH ₃	4-Cl-phenyl	pyridin-3-yl
6	H	CH ₃	4-F-phenyl	pyridin-3-yl
7	Н	CH ₃	Ph	pyridin-3-yl
8	Н	CH ₃	3-BnO-Ph	pyridin-3-yl
9	H	CH ₃	6-Cl-pyridin-3-yl	pyridin-3-yl
10	Н	CH ₂ OCH ₃	4-Cl-phenyl	Ph
11	Н	CH ₂ OCH ₃	4-F-phenyl	Ph
12	Н	CH ₂ OCH ₃	Ph	Ph
13	Н	CH ₂ OCH ₃	4-NO ₂ -Ph	Ph
14	Н	CH ₂ OCH ₃	3-OMe-Ph	Ph
15	Н	CH ₂ OCH ₃	3,5-(OMe) ₂ -Ph	Ph
16	Н	CH ₂ OCH ₃	3-Br-Ph	Ph
17	Н	CH ₂ OCH ₃	3-BnO-Ph	Ph
18	H	CH ₃	3-OMe-Ph	pyridin-3-yl
19	H	CH ₃	3,5-(OMe) ₂ -Ph	pyridin-3-yl
20	H	CH ₃	3-Br-Ph	pyridin-3-yl
21	Н	CH ₃	4-NO ₂ -Ph	pyridin-3-yl
22	Н	CH ₃	3-CO ₂ CH ₃ -Ph	pyridin-3-yl
23	Н	H	4-Cl-Ph	-CH ₂ -(2,6-di-Cl)-Ph
24	Н	H	4-F-Ph	-CH ₂ -(2,6-di-Cl)-Ph
25	Н	Н	3-OMe-Ph	-CH ₂ -(2,6-di-Cl)-Ph
26	H	H	3,5-(OMe) ₂ -Ph	-CH ₂ -(2,6-di-Cl)-Ph
27	Н	Н	3-Br-Ph	-CH ₂ -(2,6-di-Cl)-Ph
28	Н	Н	Ph	-CH ₂ -(2,6-di-Cl)-Ph
29	Н	Н	3-BnO-Ph	-CH ₂ -(2,6-di-Cl)-Ph
30	Н	Н	4-NO ₂ -Ph	-CH ₂ -(2,6-di-Cl)-Ph
31	Н	H	3-CO ₂ CH ₃ -Ph	-CH ₂ -(2,6-di-Cl)-Ph
32	Н	Н	6-Cl-pyridin-3-yl	-CH ₂ -(2,6-di-Cl)-Ph

Mark Ledeboer et al.

Applicants:
Application No.: 10/616,560

No. IIa-	G	$-T_{(n)}-R$	\mathbb{R}^1	\mathbb{R}^2
33	Н	H	cyclohexyl	-CH ₂ -(2,6-di-Cl)-Ph
34	Н	CH ₂ OCH ₃	3-Cl-Ph	Ph
35	Н	CH ₃	3-Cl-Ph	pyridin-3-yl
36	Н	Н	Н	4-CO ₂ H-phenyl
37	Н	Н	Н	4-Cl-phenyl
38	Н	Н	Н	4-CF ₃ -phenyl
39	Н	Н	Н	4-CH ₃ -phenyl
40	Н	Н	H	2-Cl-phenyl
41	Н	Н	Н	4-OCH ₃ -phenyl
42	Н	Н	Ph	4-Cl-phenyl
43	Н	Н	Ph	4-CF ₃ -phenyl
44	Н	H	Ph	4-CH ₃ -phenyl
45	Н	Н	CH ₂ Ph	pyridin-3-yl
46	H	Н	COPh	4-Cl-phenyl
47	H	Н	COPh	4-CF ₃ -phenyl
48	H	H	COPh	4-CH ₃ -phenyl
49	H	Н	CONHCH ₂ Ph	4-Cl-phenyl
50	H	Н	CONHCH ₂ Ph	4-CF ₃ -phenyl
51	H	Н	CONHCH ₂ Ph	4-CH ₃ -phenyl
52	H	Н	SO ₂ Me	CH ₂ Ph
53	Н	Н	Ph	thiazol-2-yl
54	H	Н	cyclohexyl	piperidin-1-yl
55	Н	Н	cyclohexyl	4-CONHMe-phenyl
56	H	Н	Ph	Ph
57	H	Н	CH ₂ Ph	CH ₂ Ph
58	Н	Н	Н	CH ₂ Ph
59	Н	Н	Н	Ph
60	Н	Н	3-OBn-Ph	Ph
61	H	Н	3-SO ₂ NH ₂ -Ph	Ph
62	Н	Н	3-OH-Ph	Ph
63	Н	Н	4-OBn-Ph	Ph
64	Н	Н	3-NO ₂ -Ph	3-OMe-Ph
65	H	Н	3-NH ₂ -Ph	3-OMe-Ph
66	Н	Н	3-NO ₂ -Ph	3-OH-Ph
67	Н	Н	Ph	3-OBn-Ph
68	Н	Н	3-NO ₂ -Ph	3-OBn-Ph
69	Н	Н	3-NO ₂ -Ph	3-OBn-Ph
70	Н	Н	3-OBn-Ph	3-pyridyl
71	Н	Н	3-OH-Ph	3-pyridyl
72	Н	Н	3-NH ₂ -Ph	3-Br-Ph
73	Н	Н	3-NH ₂ -Ph	3-OPh-Ph
74	Н	Н	3-OBn-Ph	5-Br-3-pyridyl

Mark Ledeboer et al.

Applicants:
Application No.: 10/616,560

No. IIa-	G	-T _(n) -R	\mathbb{R}^1	\mathbb{R}^2
75	Н	Н	Ph	3-OPh-Ph
76	Н	Н	3-OH-Ph	3-OBn-Ph
77	Н	Н	3-OH-Ph	3-OPh-Ph
78	Н	Н	3-OH-Ph	3-OH-Ph
79	Н	Н	3-OH-Ph	3-Br-Ph
80	Н	Н	3-OBn-Ph	3-Br-Ph
81	Н	Н	3-OH-Ph	3-(3-OH-Ph)-Ph
82	Н	Н	3-OH-Ph	3-(3-OEt-Ph)-Ph
83	Н	Н	3-OH-Ph	3-(3-pyridyl)-Ph
84	Н	Н	3-OBn-Ph	5-Ph-pyridin-3-yl
85	Н	H	3-OBn-Ph	5-Br-3-pyridyl
86	Н	Н	3-OBn-Ph	5-Ph-3-pyridyl
87	Н	Н	4-OH-Ph	Ph
88	Н	Н	3-OH-Ph	5-Ph-pyridin-3-yl
89	H	Н	3-OH-Ph	3-(3-NH ₂ -Ph)-Ph
90	Н	Н	3-OH-Ph	3-(3-Cl,4-F-Ph)-Ph
91	Н	Н	3-OH-Ph	3-(4- <i>i</i> Pr-Ph)-Ph
92	H	Н	3-NO ₂ -Ph	5-Ph-pyridin-3-yl
93	Н	Н	3-OH-Ph	3-(3-N-Boc-pyrrol-2-yl)-Ph
94	Н	Н	3-NHSO ₂ Me-Ph	3-pyridyl
95	H	Н	3-NHSO ₂ Et-Ph	3-pyridyl
96	H	Н	3-SO ₂ NH ₂ -Ph	3-pyridyl
97	Н	Н	3-OH-Ph	3-(2-OH-Ph)-Ph
98	H	Н	3-OH-Ph	3-(3-pyrrol-2-yl)-Ph
99	Н	Н	3-OH-Ph	3-(6-OMe-pyridin-2-yl)-Ph
100	Н	Н	3-OH-Ph	3-(5-OMe-pyridin-2-yl)-Ph
101	Н	Н	3-OH-Ph	3-(2,5-Me ₂ -isoxazol-4-yl)-Ph
102	H	Н	3-OH-Ph	3-(pyridin-4-yl)-Ph
103	Н	CH ₃	Н	4-CO ₂ H-phenyl
104	Н	CH ₃	H	4-Cl-phenyl
105	Н	CH ₃	H	4-CF ₃ -phenyl
106	Н	CH ₃	Н	4-CH ₃ -phenyl
107	Н	CH ₃	Н	2-Cl-phenyl
108	Н	CH ₃	H	4-OCH ₃ -phenyl
109	Н	CH ₃	Ph	4-Cl-phenyl
110	Н	CH ₃	Ph	4-CF ₃ -phenyl
111	Н	CH ₃	Ph	4-CH ₃ -phenyl
112	Н	CH ₃	CH ₂ Ph	pyridin-3-yl
113	Н	CH ₃	COPh	4-Cl-phenyl
114	Н	CH ₃	COPh	4-CF ₃ -phenyl
115	Н	CH ₃	COPh	4-CH ₃ -phenyl
116	Н	CH ₃	CONHCH ₂ Ph	4-Cl-phenyl

Mark Ledeboer et al.

Applicants:
Application No.: 10/616,560

No. IIa-	G	-T _(n) -R	\mathbb{R}^1	\mathbb{R}^2
117	Н	CH ₃	CONHCH ₂ Ph	4-CF ₃ -phenyl
118	Н	CH ₃	CONHCH ₂ Ph	4-CH ₃ -phenyl
119	Н	CH ₃	SO ₂ Me	CH ₂ Ph
120	Н	CH ₃	Ph	thiazol-2-yl
121	Н	CH ₃	cyclohexyl	piperidin-1-yl
122	H	CH ₃	cyclohexyl	4-CONHMe-phenyl
123	H	CH ₃	Ph	Ph
124	H	CH ₃	CH ₂ Ph	CH ₂ Ph
125	Н	CH ₃	Н	CH ₂ Ph
126	Н	CH ₃	Н	Ph
127	Н	CH ₃	3-OBn-Ph	Ph
128	Н	CH ₃	3-SO ₂ NH ₂ -Ph	Ph
129	H	CH ₃	3-OH-Ph	Ph
130	Н	CH ₃	4-OBn-Ph	Ph
131	Н	CH ₃	3-NO ₂ -Ph	3-OMe-Ph
132	H	CH ₃	3-NH ₂ -Ph	3-OMe-Ph
133	H	CH ₃	3-NO ₂ -Ph	3-OH-Ph
134	Н	CH ₃	Ph	3-OBn-Ph
135	Н	CH ₃	3-NO ₂ -Ph	3-OBn-Ph
136	Н	CH ₃	3-NO ₂ -Ph	3-OBn-Ph
137	Н	CH ₃	3-OH-Ph	3-pyridyl
138	Н	CH ₃	3-NH ₂ -Ph	3-Br-Ph
139	Н	CH ₃	3-NH ₂ -Ph	3-OPh-Ph
_140	Н	CH ₃	3-OBn-Ph	5-Br-3-pyridyl
141	H	CH ₃	Ph	3-OPh-Ph
142	Н	CH ₃	3-OH-Ph	3-OBn-Ph
143	H	CH ₃	3-OH-Ph	3-OPh-Ph
144	H	CH ₃	3-OH-Ph	3-OH-Ph
145	Н	CH ₃	3-OH-Ph	3-Br-Ph
146	H	CH ₃	3-OBn-Ph	3-Br-Ph
147	Н	CH ₃	3-OH-Ph	3-(3-OH-Ph)-Ph
148	H	CH ₃	3-OH-Ph	3-(3-OEt-Ph)-Ph
149	H	CH ₃	3-OH-Ph	3-(3-pyridyl)-Ph
150	H	CH ₃	3-OBn-Ph	5-Ph-pyridin-3-yl
151	H	CH ₃	3-OBn-Ph	5-Br-3-pyridyl
152	Н	CH ₃	3-OBn-Ph	5-Ph-3-pyridyl
153	H	CH ₃	4-OH-Ph	Ph
154	Н	CH ₃	3-OH-Ph	5-Ph-pyridin-3-yl
155	Н	CH ₃	3-OH-Ph	3-(3-NH ₂ -Ph)-Ph
156	Н	CH ₃	3-OH-Ph	3-(3-Cl,4-F-Ph)-Ph
157	Н	CH ₃	3-OH-Ph	3-(4- <i>i</i> Pr-Ph)-Ph
158	Н	CH ₃	3-NO ₂ -Ph	5-Ph-pyridin-3-yl

Applicants:
Application No.: Mark Ledeboer et al.

10/616,560

No. IIa-	G	-T _(n) -R	\mathbb{R}^1	\mathbb{R}^2
159	Н	CH ₃	3-OH-Ph	3-(3-N-Boc-pyrrol-2-yl)-Ph
160	Н	CH ₃	3-NHSO ₂ Me-Ph	3-pyridyl
161	Н	CH ₃	3-NHSO ₂ Et-Ph	3-pyridyl
162	Н	CH ₃	3-OMe-Ph	Ph
163	Н	CH ₃	3-SO ₂ NH ₂ -Ph	3-pyridyl
164	Н	CH ₃	3-OH-Ph	3-(2-OH-Ph)-Ph
165	Н	CH ₃	3-OH-Ph	3-(3-pyrrol-2-yl)-Ph
166	Н	CH ₃	3-OH-Ph	3-(6-OMe-pyridin-2-yl)-Ph
167	Н	CH ₃	3-OH-Ph	3-(5-OMe-pyridin-2-yl)-Ph
168	Н	CH ₃	3-OH-Ph	3-(2,5-Me ₂ -isoxazol-4-yl)-Ph
169	Н	CH ₃	3-OH-Ph	3-(pyridin-4-yl)-Ph
170	Н	CH ₂ OCH ₃	H	4-CO ₂ H-phenyl
171	Н	CH ₂ OCH ₃	H	4-Cl-phenyl
172	Н	CH ₂ OCH ₃	H	4-CF ₃ -phenyl
173	Н	CH ₂ OCH ₃	H	4-CH ₃ -phenyl
174	Н	CH ₂ OCH ₃	H	2-Cl-phenyl
175	Н	CH ₂ OCH ₃	H	4-OCH ₃ -phenyl
176	Н	CH ₂ OCH ₃	Ph	4-Cl-phenyl
177	Н	CH ₂ OCH ₃	Ph	4-CF ₃ -phenyl
178	Н	CH ₂ OCH ₃	Ph	4-CH ₃ -phenyl
179	Н	CH ₂ OCH ₃	CH ₂ Ph	pyridin-3-yl
180	Н	CH ₂ OCH ₃	COPh	4-Cl-phenyl
181	Н	CH ₂ OCH ₃	COPh	4-CF ₃ -phenyl
182	Н	CH ₂ OCH ₃	COPh	4-CH ₃ -phenyl
183	Н	CH ₂ OCH ₃	CONHCH ₂ Ph	4-Cl-phenyl
184	Н	CH ₂ OCH ₃	CONHCH ₂ Ph	4-CF ₃ -phenyl
185	Н	CH ₂ OCH ₃	CONHCH ₂ Ph	4-CH ₃ -phenyl
186	Н	CH ₂ OCH ₃	SO ₂ Me	CH ₂ Ph
187	Н	CH ₂ OCH ₃	Ph	thiazol-2-yl
188	Н	CH ₂ OCH ₃	cyclohexyl	piperidin-1-yl
189	Н	CH ₂ OCH ₃	cyclohexyl	4-CONHMe-phenyl
190	Н	CH ₂ OCH ₃	CH ₂ Ph	CH ₂ Ph
191	Н	CH ₂ OCH ₃	Н	CH ₂ Ph
192	Н	CH ₂ OCH ₃	Н	Ph
193	Н	CH ₂ OCH ₃	3-SO ₂ NH ₂ -Ph	Ph
194	Н	CH ₂ OCH ₃	3-OH-Ph	Ph
195	Н	CH ₂ OCH ₃	4-OBn-Ph	Ph
196	Н	CH ₂ OCH ₃	3-NO ₂ -Ph	3-OMe-Ph
197	Н	CH ₂ OCH ₃	3-NH ₂ -Ph	3-OMe-Ph
198	Н	CH ₂ OCH ₃	3-NO ₂ -Ph	3-OH-Ph
199	Н	CH ₂ OCH ₃	Ph	3-OBn-Ph
200	Н	CH ₂ OCH ₃	3-NO ₂ -Ph	3-OBn-Ph

Application No.: 10/616,560

No. IIa-	G	-T _(n) -R	R ¹	\mathbb{R}^2
201	Н	CH ₂ OCH ₃	3-NO ₂ -Ph	3-OBn-Ph
202	H	CH ₂ OCH ₃	3-OBn-Ph	3-pyridyl
203	H	CH ₂ OCH ₃	3-OH-Ph	3-pyridyl
204	H	CH ₂ OCH ₃	3-NH ₂ -Ph	3-Br-Ph
205	H	CH ₂ OCH ₃	3-NH ₂ -Ph	3-OPh-Ph
206	H	CH ₂ OCH ₃	3-OBn-Ph	5-Br-3-pyridyl
207	H	CH ₂ OCH ₃	Ph	3-OPh-Ph
208	H	CH ₂ OCH ₃	3-OH-Ph	3-OBn-Ph
209	Н	CH ₂ OCH ₃	3-OH-Ph	3-OPh-Ph
210	H	CH ₂ OCH ₃	3-OH-Ph	3-OH-Ph
211	Н	CH ₂ OCH ₃	3-OH-Ph	3-Br-Ph
212	Н	CH ₂ OCH ₃	3-OBn-Ph	3-Br-Ph
213	H	CH ₂ OCH ₃	3-OH-Ph	3-(3-OH-Ph)-Ph
214	H	CH ₂ OCH ₃	3-OH-Ph	3-(3-OEt-Ph)-Ph
215	H	CH ₂ OCH ₃	3-OH-Ph	3-(3-pyridyl)-Ph
216	H	CH ₂ OCH ₃	3-OBn-Ph	5-Ph-pyridin-3-yl
217	H	CH ₂ OCH ₃	3-OBn-Ph	5-Br-3-pyridyl
218	H	CH ₂ OCH ₃	3-OBn-Ph	5-Ph-3-pyridyl
219	Н	CH ₂ OCH ₃	4-OH-Ph	Ph
220	H	CH ₂ OCH ₃	3-OH-Ph	5-Ph-pyridin-3-yl
221	H	CH ₂ OCH ₃	3-OH-Ph	3-(3-NH ₂ -Ph)-Ph
222	H	CH ₂ OCH ₃	3-OH-Ph	3-(3-Cl,4-F-Ph)-Ph
223	H	CH ₂ OCH ₃	3-OH-Ph	3-(4- <i>i</i> Pr-Ph)-Ph
224	H	CH ₂ OCH ₃	3-NO ₂ -Ph	5-Ph-pyridin-3-yl
225	H	CH ₂ OCH ₃	3-OH-Ph	3-(3-N-Boc-pyrrol-2-yl)-Ph
226	H	CH ₂ OCH ₃	3-NHSO ₂ Me-Ph	3-pyridyl
227	H	CH ₂ OCH ₃	3-NHSO ₂ Et-Ph	3-pyridyl
228	H	CH ₂ OCH ₃	3-SO ₂ NH ₂ -Ph	3-pyridyl
229	Н	CH ₂ OCH ₃	3-OH-Ph	3-(2-OH-Ph)-Ph
230	Н	CH ₂ OCH ₃	3-OH-Ph	3-(3-pyrrol-2-yl)-Ph
231	Н	CH ₂ OCH ₃	3-OH-Ph	3-(6-OMe-pyridin-2-yl)-Ph
232	Н	CH ₂ OCH ₃	3-OH-Ph	3-(5-OMe-pyridin-2-yl)-Ph
233	Н	CH ₂ OCH ₃	3-OH-Ph	3-(2,5-Me ₂ -isoxazol-4-yl)-Ph
234	H	CH ₂ OCH ₃	3-OH-Ph	3-(pyridin-4-yl)-Ph

19. (Currently amended) A composition comprising a compound according to any one of claims 1-4, 12-14 or 18 1-to 18, and a pharmaceutically acceptable carrier, adjuvant, or vehicle.

Applicants:

Mark Ledeboer et al.

Application No.:

10/616,560

20. (Currently amended) The composition according to claim 19, additionally comprising a therapeutic agent that is selected from an anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating liver disease, an anti-viral agent, an agent for treating blood disorders, an agent for treating diabetes, an agent for treating immunodeficiency disorders, or an agent for treating cancer.

21-22. (Canceled)

23. (Currently amended) A method of treating or lessening the severity of <u>colon</u> <u>cancer</u> an inflammatory disease, autoimmune disease, destructive bone disorder, proliferative disorder, infectious disease, neurodegenerative disease, allergy, reperfusion/ischemia in stroke, heart attack, angiogenic disorder, organ hypoxia, vascular hyperplasia, cardiac hypertrophy, thrombin induced platelet aggregation, or a condition associated with proinflammatory cytokines, comprising the step of administering to said patient a composition according to claim 19.

24-35. (Canceled)

36. (Currently amended) The method according to claim [[22]] 23, comprising the additional step of administering to said patient an additional therapeutic agent that is selected from an anti-proliferative agent, an anti-inflammatory agent, an immunomodulatory agent, a neurotrophic factor, an agent for treating cardiovascular disease, an agent for treating liver disease, an anti-viral agent, an agent for treating blood disorders, an agent for treating diabetes, or an agent for treating immunodeficiency disorders, wherein:

said additional therapeutic agent is appropriate for the disease being treated; and said additional therapeutic agent is administered together with said composition as a single dosage form or separately from said composition as part of a multiple dosage form.

Applicants:

Mark Ledeboer et al.

Application No.:

10/616,560

37. (Original) A composition for coating an implantable device comprising a compound according to claim 1 and a carrier suitable for coating said implantable device.

38. (Canceled)