

| <b>ઇ</b> (૯) | If M. in Splane enclose   enciscle 'p' poles of G(s) then contour G' in G(s) - plane will enclose enfinity or enciscle origin 'p' times in anticlockerise direction  Let N be the no of encisclements, 'z' be the no of zerox & poles enclosed   enciscled by contour T'.  Define  N = Z - P  N - +ve clockerise direction  Nve anticlockerise direction  N - 0 |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              | S-plane                                                                                                                                                                                                                                                                                                                                                         |
|              | M, PESU<br>X                                                                                                                                                                                                                                                                                                                                                    |
|              |                                                                                                                                                                                                                                                                                                                                                                 |
|              | <u>E</u> Z → P                                                                                                                                                                                                                                                                                                                                                  |
|              | is positive. Here Origin is eneithed by                                                                                                                                                                                                                                                                                                                         |
|              | contour C, N times en clockwise direction                                                                                                                                                                                                                                                                                                                       |
| **           | Z=P  O  X  X  O  O  O  O  O  O  O  O  O  O                                                                                                                                                                                                                                                                                                                      |
|              | N is zero. Hence, origin not encluded by the contone 'C'                                                                                                                                                                                                                                                                                                        |
| 3            | Z < P                                                                                                                                                                                                                                                                                                                                                           |
|              | N is negative. Hence, the contour C enclose infrity / creicele origin   N   times in anticlocknike direction                                                                                                                                                                                                                                                    |
|              | N  times in anticlocknique direction                                                                                                                                                                                                                                                                                                                            |

| Nyquist Stability Giferia:                                   |
|--------------------------------------------------------------|
| Let G(s)+H(s) be the open loop transfer function. then the   |
| Closed loop transfer function is                             |
| T(s) = G(s)                                                  |
| 1 + G(s)H(s)                                                 |
| The charecturatic equation                                   |
| q(s) = 1 + q(s) + t(s)                                       |
|                                                              |
| Let $G(S)+H(S) = K(S+2_1) \dots (S+2_m)$                     |
| (StPi) (StPn) then                                           |
| $- (G(S) = 1 + K(S+Z_1) \cdot \cdot (S+R_m)$                 |
| $(S+P_1)$ $(S+P_n)$                                          |
| $q(s) = \frac{(s+p_1)(s+p_2)(s+p_n) + k(s+z_1)(s+z_m)}{2}$   |
| $(s+p_1) = -(s+p_n)$                                         |
| Comparing egn 1 with 2                                       |
| The poles of G(s) H(s) is same as poles q(s)                 |
| The zerox of g(s) are poles of closed loop transfer function |
| S plane 1+ G(s) H(s)                                         |
| /                                                            |
| C C                                                          |
|                                                              |
| Given with his                                               |
| contone C                                                    |
| $\uparrow$                                                   |
| G(s)+1(s)                                                    |
|                                                              |
| -1.                                                          |
| ·                                                            |

## Statement of Nygniet Stability Criteria.

|                                       | IP 17 0 17 0 11 1                     |                                      |
|---------------------------------------|---------------------------------------|--------------------------------------|
|                                       |                                       | P poles in right half 5-plan         |
| , , , , , , , , , , , , , , , , , , , | · · · · · · · · · · · · · · · · · · · | G(s)+1(s) plane unst eneincle        |
| -1+j0                                 | point P. lines in anti/com            | nter clockwise direction             |
|                                       | WKt, N= Z-P                           |                                      |
|                                       | Z = N+P = 0                           |                                      |
|                                       | → N= -P                               | system ^ poles / zero of q(s)        |
|                                       | Z - no of closed loop                 | system 1 poles / zero of 9/(5)       |
|                                       | N - No of encirclement                | around - 1+j0 point in G(s)+(s) - pl |
|                                       | p - No of poles of G(s) H             | (s) / poles of g(s) in RH S-plane    |
|                                       |                                       |                                      |
| 4_"                                   | fredback sixtem is stable is          | ff the contour in the G(s) fl(s) pl  |
|                                       |                                       | when the poles of G(s)H(s) (OLTF)    |
| In the                                | Right half 5-plane is zero"           |                                      |
| -                                     |                                       | <b>^</b>                             |
| Σ                                     | Jin                                   |                                      |
| <u>=</u>                              | 100                                   |                                      |
| ajii                                  | K                                     |                                      |
| 2                                     | 0                                     | M30 7                                |
|                                       |                                       |                                      |
|                                       |                                       |                                      |
|                                       | -jm                                   |                                      |
|                                       |                                       | 1                                    |
|                                       | T.                                    | •                                    |
|                                       |                                       |                                      |
|                                       |                                       |                                      |
|                                       |                                       |                                      |
|                                       |                                       |                                      |
|                                       |                                       |                                      |
|                                       |                                       |                                      |





$$Re \{GGW HGW\} = Re \{GGW)HGW\}$$

$$Im \{GGWHGW\} = -Im \{GGWHGW\}$$

Since the contour G in G(s)+(s) piene does not entirely (-1,0) point therefore N=0

$$Z = D+D$$



$$N = 0 \text{ Y } P = 0 \Rightarrow Z = N + P$$

$$Z = 0$$
The closed loop system is deable

$$J. \quad K = K \quad \text{(i.t., c = 1)}$$

$$Ele \quad K = 1$$

$$North open loop poles in RAP p = 0$$

$$S = plane$$

$$G[ija] = I$$

$$G[$$





$$Re[G(j\omega)]|_{\omega=\sqrt{14}} = \frac{K(8-7x/4)}{15x/8} = -\frac{K/3}{-} = -2.6c K=8$$



Segment 
$$M_2$$
: Pake 6cd

$$S = Re^{j\Theta} \qquad R \rightarrow \infty \qquad \Theta \rightarrow +90 \rightarrow 0 \rightarrow -90$$

$$\lim_{R \rightarrow \infty} G(Re^{j\Theta}) = \lim_{R \rightarrow \infty} \frac{K(Re^{j\Theta} + 1)}{Re^{j\Theta} - 1)(Re^{j\Theta} - 1)} \approx \lim_{R \rightarrow \infty} \frac{KRe^{j\Theta}}{Re^{j\Theta}}$$

= 0 | - 0

Segment M3: Path da

Misson image of path ab

The contour G encircles -1 point twice in anticlockwise direction : N=-2

To find the range of k for system to be stable.

$$\frac{K(8-7\omega^{2})}{(\omega^{2}+1)(\omega^{2}+4)} < -1$$

$$\frac{k(8-3\mu)}{(w^{2}+0)(w^{2}+a)} < -1$$

$$\frac{(8-3\mu)}{(5\kappa 16)} < -1$$

$$-\frac{k}{3} > 1$$

$$=) k > 3$$
The higher is stable for k > 3

Gain Margin:

The gain margin is the sectional of the magnitude  $|G(j_{0})|$  at the frequency at which the phase angle is  $-180$ .

W

$$\frac{k(8-3\mu)}{(5\kappa 16)} < -1$$

$$=) k > 3$$
The hargin is the sectional of the magnitude  $|G(j_{0})|$  at the frequency at which the phase angle is  $-180$ .

W

$$\frac{k(8-3\mu)}{(5\kappa 16)} < -1$$

$$=) k > 3$$
The frequency at which  $|G(j_{0})|$ 

Phase hargin:

The brokener frequency at which  $|G(j_{0})|$  is unity sectional to as Gain crossover frequency we get.

The mark the angle from 0 to the magnitude plot plan has signed as  $p$ .

Phase wargin =  $180^{\circ} + p$ 

## Positive phase margin Rajini M



```
\lim_{R \to \infty} G(Re^{j\theta}) = \lim_{R \to \infty} \frac{k_1}{Re^{j\theta}(Re^{j\theta}-1)}
                                                  = 0 1-20
Segment M3: path de
             Mirror image of path ab
Segment M<sub>4</sub>: Path efa
S = \Re e^{j\phi} \qquad \Re \to 0 \qquad \phi \to -90 \to 0 \to 90
G(\Re e^{j\phi}) = \lim_{\Re \to 0} \frac{k_1}{\Re e^{j\phi}(\Re e^{j\phi} - 1)}
                                                                                                                                 -1=e
                                                         llm
8-30 Reja ejx
  PESU
                                                         m 1+180 - 4
                                                          D [270 → 180 → 90
 Yalling N = +1 p = 1 2 = N+p 2 = 2 2 = 2
                 2 = N+P

= 2

⇒ The closed loop system is unstable
           \frac{\mathsf{G}(\mathsf{S}) = \frac{\mathsf{K}_1 \left( 1 + \mathsf{K}_2 \mathsf{S} \right)}{\mathsf{S} \left( \mathsf{S} - 1 \right)}
                                                                                                       \frac{1+k_2S=0}{S=-\frac{1}{k_2}}
p = 1
Segment H, : path ab
S = jW
                                   G(j\omega) = \frac{k_1(1+k_2 j\omega)}{j\omega(j\omega-1)}
                                                                                            90 - 90 - 180 + 90
                                              = K_1 \sqrt{1 + k_2^2 w^2} \left[ \tan^{-1}(k_2 w) - 90 - (180 - \tan^{-1}(w)) \right]
                                                      W\sqrt{W^2+1}
                                              = \frac{1}{j} \frac{K_1(1+k_2\omega)(-j\omega-i)}{\omega(+j\omega-i)(-j\omega-i)} = -\frac{1}{j} \frac{K_1(-j\omega-i)-jk_2\omega^2-k_2\omega^2}{\omega(i+\omega^2)}
```

. PESU

Rajini M.

Ne get 
$$N = -1$$
 $Z = N + P$ 
 $Z = -1 + 1$ 
 $Z = 0$ 

Note  $PD$  [  $i + k_1 \le 0$ ]

Note  $PD$  [  $i + k_2 \le 0$ ]

Note  $PD$  [  $i + k_3 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note  $PD$  [  $i + k_4 \le 0$ ]

Note



path esa, 
$$S = re^{i\phi}$$
,  $\phi = 3 - 96 \Rightarrow 6 \Rightarrow 96$ 

$$G(S) = \frac{K(re^{i\phi}C(t+1))}{r^{\frac{3}{2}}d^{\frac{3}{2}}} = \frac{K}{r^{\frac{3}{2}}} \cdot e^{i\frac{3}{2}}d^{\frac{3}{2}}$$

$$= \frac{K}{r^{\frac{3}{2}}} \cdot e^{i\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}$$

$$= \frac{K}{r^{\frac{3}{2}}} \cdot e^{i\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}d^{\frac{3}{2}}$$

| Example, GLS = K(1+25) Find the range of K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| s(1+5)(1+5+52) for which the system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sol: path ab, Sejw 5=0, -1, -1 ± drs is stable in Nyquist                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $G(i\omega) = \frac{K(i+2i\omega)}{K(i+2i\omega)}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ju [1+ jw] (1+ jw+ (jw)2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| = K (1+ 2 ju)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| In (1+in) (1-m3+in)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| = K(1+2jw)(-jw-w2)(1-w2-jw)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $\frac{1}{\omega^2(1+\omega^2)(u-\omega^2)^2+\omega^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $\omega^2(1+i\alpha^2)$ ( $\omega^2(1+i\alpha^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Note that the second se |
| $ G(i\omega)  = k \sqrt{1+\omega^2}$ $\omega \sqrt{1+\omega^2} \sqrt{1+\omega^4} \omega^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| (31/w) = ten (2w) - 90 - ten b -ten b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (Guin) Re Im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| M 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -270 O O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| -Ki-16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| - 246 0 0 - KI-ILK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| N=0 , P=0 =) Z=0<br>N=0 , P=0 =) Z=0<br>Exposed for KX 0.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| where it unto the real anis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <u>î</u> m (((())) 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1+20 <sup>1</sup> -26 <sup>4</sup> = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $\Delta \omega^{4} - 2\omega^{2} - 1 = 0$ = $\omega^{2} = 2 \pm \sqrt{4 + 8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ω = 1·1 L 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Pa / (-11w) )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Re (GL(W)) / w=1-168 = - K3 w3 = - K1-165 = - K1-165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| For the system to be stable, N=0 : P=0, : -1<1.165 >-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| K < 1.165                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 04×20-86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |