CPEN 400Q Lecture 13 QFT and quantum phase estimation

Wednesday 26 February 2025

Announcements

- Quiz 6 on Monday
- Assignment 2 due tomorrow 23:59
- Assignment 3 coming next week last "big" technical assignment
- Fill out peer review survey by Friday (link in Piazza)

Last time

We introduced the quantum Fourier transform, and saw how it is the analog of the classical inverse discrete Fourier transform.

$$QFT|x\rangle = \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{xk} |k\rangle$$

$$QFT = \frac{1}{\sqrt{N}} \begin{pmatrix} 1 & 1 & 1 & \cdots & 1\\ 1 & \omega & \omega^{2} & \cdots & \omega^{N-1}\\ 1 & \omega^{2} & \omega^{4} & \cdots & \omega^{2(N-1)}\\ \vdots & \vdots & \vdots & \ddots & \vdots\\ 1 & \omega^{N-1} & \omega^{2(N-1)} & \cdots & \omega^{(N-1)(N-1)} \end{pmatrix}$$

where for *n* qubits, $N=2^n$, and $\omega=e^{2\pi i/N}$

Last time

We saw the circuits for some special cases.

Image credit: Xanadu Quantum Codebook node F.2, F.3

Last time

The general form of the circuit is:

Image credit: Xanadu Quantum Codebook node F.3

Learning outcomes

- Redevelop the circuit for the quantum Fourier transform
- Outline the steps of the quantum phase estimation (QPE) subroutine
- Use the QFT to implement QPE

Start with the one-qubit case:

$$QFT = H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & w \end{pmatrix}$$

$$0.01 \Rightarrow 0.25 = \frac{0}{2} + \frac{1}{4}$$

$$w = e^{\frac{2\pi i}{N}} = e^{\frac{2\pi i}{2}} = e^{\frac{\pi i}{N}}$$

$$01 \Rightarrow 0.25 = \frac{0}{2} + \frac{1}{4}$$

$$w = e^{\frac{2\pi i}{N}} = e^{\frac{2\pi i}{N}} = e^{\frac{2\pi i}{N}}$$

$$QFT |0\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$0.01 \Rightarrow 0.25 = \frac{0}{2} + \frac{1}{4}$$

$$\omega = e^{\frac{2\pi i}{N}} = e^{\frac{2\pi i}{2}} = e^{\pi i}$$

$$QFT | 0 \rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$QFT | 1 \rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle) = \frac{1}{\sqrt{2}} (|0\rangle + |0\rangle + |1\rangle)$$

$$QFT | X_1 \rangle = \frac{1}{\sqrt{2}} (|0\rangle + (-1)^{X_1} | 1\rangle) = \frac{1}{\sqrt{2}} (|0\rangle + |\omega^{X_1}| 1\rangle)$$

$$5 = \frac{0}{2} + \frac{1}{4}$$

$$\omega = e^{\frac{2\pi i}{N}} = e^{\frac{2\pi i}{N}}$$

$$\Rightarrow = \frac{1}{2} (10) + 10$$

with the one-qubit case:

$$QFT = H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & \omega \end{pmatrix}$$

$$0.25 = \frac{0}{2} + \frac{1}{4}$$

$$\omega = e^{\frac{2\pi i}{N}} = e^{\frac{2\pi i}{2}} = e^{\frac{2\pi i}{N}}$$

 $\frac{x_1}{2} = 2^{-1} \cdot x_1 = 0.x_1$

Next, consider the two-qubit case:

$$QFT = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & \omega & \omega^2 & \omega^3 \\ 1 & \omega^2 & \omega^4 & \omega^6 \\ 1 & \omega^3 & \omega^6 & \omega^9 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & i & -1 & -i \\ 1 & -1 & 1 & -1 \\ 1 & -i & -1 & i \end{pmatrix}$$

$$QFT = rac{1}{2} egin{pmatrix} 1 & 1 & 1 & 1 \ 1 & \omega & \omega^2 & \omega^3 \ 1 & \omega^2 & 1 & \omega^2 \ 1 & \omega^3 & \omega^2 & \omega^1 \end{pmatrix}$$

How does this affect the computational basis states?

A circuit for the QFT
$$\begin{pmatrix}
QFT | 00\rangle = \frac{1}{2} \left[(10\rangle + 11\rangle) | 10\rangle + (101) + (111\rangle) \\
QFT | 01\rangle = \frac{1}{2} \left[(10\gamma + w^{2}|1\rangle) | 10\rangle + (w|01\rangle + w^{3}|11\rangle \right] \\
QFT | 10\rangle = \frac{1}{2} \left[(10\gamma + w^{2}|11\rangle) | 10\rangle + (w^{2}|01\rangle + w^{2}|11\rangle \right] \\
QFT | 11\rangle = \frac{1}{2} \left[(10\gamma + w^{2}|11\rangle) | 10\rangle + (w^{3}|01\rangle + w|11\rangle \right]$$

$$QFT |00\rangle = \frac{1}{2} \int (10) + 10$$

 $QFT |00\rangle = \frac{1}{2} \int (10) + 10$

 $QFT[00] = \frac{1}{2} \left[(107+(17))[0] + (107+(17))[17] = \frac{1}{2} (107+(17))(107+(17)) \right]$ $QFT[017] = \frac{1}{2} \left[(107+w^2117)[107+w^2117] + (107+w^2117)[107+w^2117] \right]$

QFT $[107 = \frac{1}{2} [(10) + |17)](0) + (10) + |17] = \frac{1}{2} (|07 + |17) (|07 + |17)$ QFT $[11]^2 \frac{1}{2} [(10) + |w^2|17)](0) + (|07 + |w^2|17) |w^3|17] = \frac{1}{2} (|07 + |w^2|17) (|07 + |w^3|17)$

QFT $|X_1X_2\rangle = \frac{1}{2} (|0\rangle + \omega^{2x_2} |1\rangle) (|0\rangle + \omega^{2x_1+x_2} |1\rangle)$

QFT
$$|X_1X_2\rangle = \frac{1}{2} \left(|0\rangle + \omega^{2X_2} |1\rangle \right) \left(|0\rangle + \omega^{2X_1+X_2} |1\rangle \right)$$

$$= e^{2\pi i \cdot \frac{2X_2}{4}} = e^{2\pi i \cdot 0 \cdot X_2} \qquad e^{2\pi i \cdot \frac{2X_1+X_2}{4}} = e^{2\pi i \cdot \frac{X_1}{2} + \frac{X_2}{4}}$$

$$= \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_2} |1\rangle \right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

$$|X_1X_2\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1X_2} |1\rangle \right)$$

Three-qubit case:
$$QFT = \frac{1}{\sqrt{8}} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 & \cdots \\ 1 & \omega & \omega^2 & \omega^3 & \omega^4 & \cdots \\ 1 & \omega^2 & \omega^4 & \omega^6 & 1 & \cdots \\ 1 & \omega^3 & \omega^6 & \omega & \omega^4 & \cdots \\ 1 & \omega^4 & 1 & \omega^4 & 1 & \cdots \end{pmatrix}$$

$$QFT|_{X_1X_2X_3}\rangle = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i 0.x_3} |1\rangle \right) \otimes \frac{1}{\sqrt{2}} (|0\rangle + e^{2\pi i 0.x_2x_3} |1\rangle) \otimes \frac{1}{\sqrt{2}} (|0\rangle + e^{2\pi i 0.x_1x_2x_3} |1\rangle)$$

$$R_{\mathbf{k}} = \begin{pmatrix} 1 & 0 \\ 0 & e^{2\pi i / 2\mathbf{k}} \end{pmatrix}$$

$$R_{\mathbf{k}} = \mathcal{K}$$

$$R_{\mathbf{k}} = \mathcal{K}$$

General expression:

$$|x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{xk} |k\rangle$$

$$= \frac{\left(|0\rangle + e^{2\pi i 0.x_n} |1\rangle\right) \left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n} |1\rangle\right) \cdots \left(|0\rangle + e^{2\pi i 0.x_1 \cdots x_n} |1\rangle\right)}{\sqrt{N}}$$

Full mathematical derivation at end of slides.

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.x_1\cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

Starting with the state

$$|x\rangle = |x_1 \cdots x_n\rangle,$$

apply a Hadamard to qubit 1:

$$\frac{1}{\sqrt{2}}\left(\left[\begin{array}{c}0\right]+e^{2\pi i \cdot O \cdot x_{1}}\left(1\right)\right)\left(x_{2}\cdots x_{n}\right)$$

$$|x_1\rangle$$
 — H —

$$x_3\rangle$$
 —

$$|x_{n-1}\rangle = \frac{\vdots}{\vdots}$$

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right) \left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right) \cdots \left(|0\rangle + e^{2\pi i 0.x_1 \cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

Apply controlled
$$R_2$$
 from qubit
$$2 \to 1$$

$$|x_2\rangle$$

$$|x_2\rangle$$

$$|x_3\rangle$$

$$|x_3\rangle$$

$$|x_1\rangle + e^{2\pi i \cdot 0 \cdot x_1} e^{2\pi i \cdot 2^2 \cdot x_2} |x_1\rangle |x_2 - x_n\rangle$$

$$|x_3\rangle$$

$$|x_{n-1}\rangle$$

$$|x_{n-1}\rangle$$

$$|x_{n-1}\rangle$$

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.x_1\cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

Apply controlled
$$R_3$$
 from qubit $\begin{vmatrix} x_1 \rangle & H & R_2 & R_3 \\ 3 \rightarrow 1 & |x_2 \rangle & |x_3 \rangle & |x_3 \rangle \\ \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1 X_2} e^{2\pi i \cdot 0 \cdot X_1 X_2 X_3} |1\rangle \right) |X_2 - X_n \rangle & |x_{n-1} \rangle \\ = \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \cdot 0 \cdot X_1 X_2 X_3} |1\rangle \right) |X_2 - X_n \rangle & |x_n \rangle$

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.x_1\cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

Apply a controlled R_4 from $4 \rightarrow 1$, etc. up to the *n*-th qubit to get

$$\frac{1}{\sqrt{z}}\left(107+e^{2\pi i D. x_1\cdots x_n}\right) |x_2\cdots x_n\rangle$$

Similar thing with second qubit: apply H then controlled rotations from every qubit from 3 to n to get

$$\frac{1}{\sqrt{2}}\left(10\right)+e^{2\pi i \cdot 0.\chi_1-\chi_n}\left(1\right)\left(1\right)\left(1\right)+e^{2\pi i \cdot 0.\chi_2-\chi_n}\left(1\right)\left(1\right)\left(1\right)$$

Do this for all qubits to get that big ugly state from earlier:

$$|x\rangle \rightarrow \frac{\left(|0\rangle + e^{2\pi i 0.x_n}|1\rangle\right)\left(|0\rangle + e^{2\pi i 0.x_{n-1}x_n}|1\rangle\right)\cdots\left(|0\rangle + e^{2\pi i 0.x_1\cdots x_n}|1\rangle\right)}{\sqrt{N}}$$

Qubit order is backwards - easily fixed with SWAP gates.

Quantum Fourier transform

Reminder: where are we going?

Eigenvalues of unitary matrices

Eigenvalues of unitary matrices are complex numbers with magnitude 1, i.e.,

$$U|k\rangle = \lambda_k |k\rangle \Rightarrow \lambda_k = e^{2\pi i \theta_k}$$

where θ_k is a phase, $|\theta_k| \leq 1$. (See proof at end of slides)

What if we want to *estimate* an unknown θ_k ?

Eigenvalues of unitary matrices

Idea: apply ${\it U}$ to the relevant eigenvector, because that's "what makes the phase come out".

...but this is an unobservable global phase!

We have to do something different: eigenvalue estimation, or quantum phase estimation (QPE).

Quantum phase estimation

Given unitary U and eigenvector $|k\rangle$, estimate θ_k such that

$$U|k\rangle = e^{2\pi i \theta_k}|k\rangle$$

Must determine:

- lacksquare How to design a circuit that extracts θ_k
- What precision can we estimate it to
- What to do if we don't know a $|k\rangle$ in advance

(You will explore the last two in your homework!)

Quantum phase estimation

Let U be an n-qubit unitary; $|k\rangle$ is an n-qubit eigenstate.

Assume θ_k can be represented *exactly* using t bits:

the exactly using t bits: $\theta_k = 0.\theta_{k_1} \cdots \theta_{k_t}$

$$\begin{aligned}
\text{volled} \quad & \left(\frac{1}{\sqrt{2}} |0\rangle |k\rangle + \frac{1}{\sqrt{2}} |1\rangle |k\rangle + \frac{1}{\sqrt{2}} |1\rangle |k\rangle + \frac{1}{\sqrt{2}} |1\rangle |0\rangle |k\rangle \\
&= \frac{1}{\sqrt{2}} |0\rangle |k\rangle + \frac{1}{\sqrt{2}} |1\rangle |0\rangle |0\rangle |0\rangle |0\rangle \\
&= \frac{1}{\sqrt{2}} |0\rangle |k\rangle + \frac{1}{\sqrt{2}} |0\rangle |k\rangle + \frac{1}{\sqrt{2}} |1\rangle |k\rangle \\
&= \frac{1}{\sqrt{2}} |0\rangle |k\rangle + \frac{1}{\sqrt{2}} |0\rangle |k\rangle + \frac{1}{\sqrt{2}} |1\rangle |k\rangle \\
&= \frac{1}{\sqrt{2}} |0\rangle |k\rangle + \frac{1}{\sqrt{2}} |0\rangle |k\rangle + \frac{1}{\sqrt{2}} |1\rangle |k\rangle \end{aligned}$$

Use phase kickback
$$= \frac{1}{\sqrt{2}} \left(|0\rangle + e^{2\pi i \theta_{k} \cdot 2^{t-1}} |1\rangle \right) |k\rangle$$

$$\theta_{k} = 0 \cdot \theta_{k} \cdot \theta_{k} - \theta_{k}$$

Check second-last qubit (ignore the others)

Can show in the same way for the last qubit (ignore others)

After step 2, we have the state

$$\frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_t}}|1\rangle) \cdots \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_2} \cdots \theta_{k_t}}|1\rangle) \frac{1}{\sqrt{2}}(|0\rangle + e^{2\pi i 0.\theta_{k_1} \cdots \theta_{k_t}}|1\rangle)|k\rangle$$

Should look familiar!

Measure to learn the bits of θ_k .

Let's implement it.

Next time

Content:

- Quiz 6 on Monday
- Order finding

Action items:

- 1. Work on project (do peer assessment)
- 2. Finish assignment 2

Recommended reading:

- From today: Codebook QFT, QPE, Nielsen & Chuang 5.1-2
- For next class: Codebook SH, Nielsen & Chuang 5.3.1

Derivation of output state of QFT

We will reexpress k/N in fractional binary notation, then reshuffle and *factor* the output state to uncover the circuit structure.

$$|x\rangle \rightarrow \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} \omega^{xk} |k\rangle$$

$$= \frac{1}{\sqrt{N}} \sum_{k=0}^{N-1} e^{2\pi i x (k/N)} |k\rangle$$

$$= \frac{1}{\sqrt{N}} \sum_{k_1=0}^{1} \cdots \sum_{k_n=0}^{1} e^{2\pi i x \left(\sum_{\ell=1}^{n} k_{\ell} 2^{-\ell}\right)} |k_1 \cdots k_n\rangle$$

$$= \frac{1}{\sqrt{N}} \sum_{k_1=0}^{1} \cdots \sum_{k_n=0}^{1} \bigotimes_{\ell=1}^{n} e^{2\pi i x k_{\ell} 2^{-\ell}} |k_{\ell}\rangle$$

Derivation of output state of QFT

$$\begin{aligned}
&= \frac{1}{\sqrt{N}} \sum_{k_{1}=0}^{1} \cdots \sum_{k_{n}=0}^{n} \bigotimes_{\ell=1}^{n} e^{2\pi i x k_{\ell} 2^{-\ell}} |k_{\ell}\rangle \\
&= \frac{1}{\sqrt{N}} \bigotimes_{\ell=1}^{n} \left(\sum_{k_{\ell}=0}^{1} e^{2\pi i x k_{\ell} 2^{-\ell}} |k_{\ell}\rangle \right) \\
&= \frac{1}{\sqrt{N}} \bigotimes_{\ell=1}^{n} \left(|0\rangle + e^{2\pi i x 2^{-\ell}} |1\rangle \right) \\
&= \frac{\left(|0\rangle + e^{2\pi i 0.x_{n}} |1\rangle \right) \left(|0\rangle + e^{2\pi i 0.x_{n-1}x_{n}} |1\rangle \right) \cdots \left(|0\rangle + e^{2\pi i 0.x_{1} \cdots x_{n}} |1\rangle \right)}{\sqrt{N}}
\end{aligned}$$

Eigenvalues of unitary matrices

Fun fact: eigenvalues of unitaries are complex numbers with magnitude 1.

Proof: Let λ_k be the eigenvalue associated with eigenvector $|k\rangle$ of a unitary U:

$$U|k\rangle = \lambda_k |k\rangle$$

Take the conjugate transpose:

$$\langle k | U^{\dagger} = \langle k | \lambda_k^*$$

Multiply the two sides together:

$$\langle k | U^{\dagger} U | k \rangle = \langle k | \lambda_k^* \lambda_k | k \rangle$$

 $\langle k | k \rangle = |\lambda_k|^2 \langle k | k \rangle$
 $1 = |\lambda_k|^2$