Programiranje I — 4. domača naloga

Rok za oddajo: nedelja, 4. december 2016, ob 23:55

Modulska aritmetika

Uvod

Za podano praštevilo p, imenovano modul, definirajmo množico $\mathbb{Z}_p = \{0, 1, ..., p-1\}$. Za števila iz te množice sta operaciji modulskega seštevanja (\oplus) in modulskega množenja (\otimes) definirani takole:

$$a \oplus b = (a+b) \mod p$$

 $a \otimes b = ab \mod p$

Zapis $s \mod t$ predstavlja ostanek pri deljenju števila s s številom t.

Modulska nasprotna vrednost števila a je število \overline{a} , za katero velja $a \oplus \overline{a} = 0$. Modulska obratna vrednost števila $a \neq 0$ je število a^* , za katero velja $a \otimes a^* = 1$. Sedaj lahko definiramo tudi operaciji modulskega odštevanja (\bigcirc) in modulskega deljenja (\bigcirc) :

$$a \ominus b = a \oplus \overline{b}$$

 $a \oslash b = a \otimes b^* \text{ (pri pogoju } b \neq 0\text{)}$

Na primer, elementi množice \mathbb{Z}_7 se med sabo modulsko seštevajo, odštevajo, množijo in delijo takole:

\oplus	0	1	2	3	4	5	6		\ominus	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6		0	0	6	5	4	3	2	1
1	1	2	3	4	5	6	0		1	1	0	6	5	4	3	2
2	2	3	4	5	6	0	1		2	2	1	0	6	5	4	3
3	3	4	5	6	0	1	2		3	3	2	1	0	6	5	4
4	4	5	6	0	1	2	3		4	4	3	2	1	0	6	5
5	5	6	0	1	2	3	4		5	5	4	3	2	1	0	6
6	6	0	1	2	3	4	5		6	6	5	4	3	2	1	0
								•								
\otimes	0	1	2	3	4	5	6		\oslash	0	1	2	3	4	5	6
$\frac{\otimes}{0}$	0	1 0	2 0	3	4 0	5	6		∅0	0	1 0	2	3	4 0	5	6
0	0	0	0	0	0	0	0		0	-	0	0	0	0	0	0
0 1	0	0	0 2	0 3	0 4	0 5	0 6		0 1	-	0	0 4	0 5	0 2	0 3	0 6
$egin{array}{c} 0 \\ 1 \\ 2 \end{array}$	0 0 0	0 1 2	0 2 4	0 3 6	0 4 1	0 5 3	0 6 5		0 1 2	- - -	0 1 2	0 4 1	0 5 3	0 2 4	0 3 6	0 6 5
$0 \\ 1 \\ 2 \\ 3$	0 0 0 0	0 1 2 3	0 2 4 6	0 3 6 2	0 4 1 5	0 5 3 1	0 6 5 4		0 1 2 3	- - -	0 1 2 3	0 4 1 5	0 5 3 1	0 2 4 6	0 3 6 2	0 6 5 4

 $Modulska\ potenca\ mpow(a,\ t)$, pri čemer je $a\in\mathbb{Z}_p,\ t$ pa je lahko $poljubno\ celo\ število$, je definirana takole:

$$\operatorname{mpow}(a, t) = \begin{cases} 1 & \text{pri } t = 0 \\ a \otimes \operatorname{mpow}(a, t - 1) & \text{pri } t > 0 \\ \operatorname{mpow}(a, -t)^{\star} & \text{pri } t < 0 \end{cases}$$

Na primer, pri p = 7 velja mpow(5,0) = 1, mpow(5,1) = 5, mpow $(5,2) = 5 \otimes 5 = 4$, mpow $(5,3) = 5 \otimes 5 \otimes 5 = 6$, mpow $(5,-1) = 5^* = 3$, mpow $(5,-2) = (5 \otimes 5)^* = 4^* = 2$ itd.

Definirajmo še modulski kvadratni koren (msqrt):

$$msqrt(a) = \{b \in \mathbb{Z}_p \mid b \otimes b = a\}$$

Za razliko od običajnega kvadratnega korena modulski ni enolično določen, zato ga definiramo kot množico vseh števil, ki pri modulskem množenju s samim seboj dajo podano število. Na primer, pri p=7 velja msqrt $(0)=\{0\}$, msqrt $(1)=\{1,6\}$, msqrt $(2)=\{3,4\}$, msqrt $(3)=\emptyset$, msqrt $(4)=\{2,5\}$, msqrt $(5)=\emptyset$ in msqrt $(6)=\emptyset$.

Število $n \in \mathbb{Z}_p$ je multiplikativni generator množice \mathbb{Z}_p , če je množica

$$P(n) = \{ \text{mpow}(n, i) \mid i \in \{0, 1, \dots, p-1\} \}$$

enaka množici $\mathbb{Z}_p\setminus\{0\}=\{1,\,2,\,\ldots,\,p-1\}$. Na primer, pri p=7 velja $P(0)=\{0\},\,P(1)=\{1\},\,P(2)=\{1,2,4\},\,P(3)=\{1,2,3,4,5,6\},\,P(4)=\{1,2,4\},\,P(5)=\{1,2,3,4,5,6\}$ in $P(6)=\{1,6\}$. Multiplikativna generatorja množice \mathbb{Z}_7 sta torej števili 3 in 5.

Naloga

Napišite razred Zp, čigar objekt predstavlja množico \mathbb{Z}_p za podani modul p. Razred naj vsebuje sledeče javno dostopne konstruktorje in metode:¹

- \bullet public Zp(int modul) [J1-J10, S1-S50]:
 - Izdela objekt, ki predstavlja množico $\mathbb{Z}_{\mathtt{modul}}$. V vseh testnih primerih je \mathtt{modul} praštevilo z intervala [2, 97].
- public int vrniModul() [J1, S1-S5]:

Vrne modul množice this (oziroma, če smo natančnejši, modul množice, ki jo predstavlja objekt, na katerega se sklicuje referenca this).

• public String toString() [J2, S6-S10]:

Vrne niz oblike Z_p , kjer je p modul množice this. Na primer, če objekt this predstavlja množico \mathbb{Z}_7 , naj metoda vrne niz Z_7 .

• public int vsota(int prvo, int drugo) [J3, S11-S15]:

Vrne modulsko vsoto števil prvo in drugo v okviru množice this. V vseh testnih primerih se parametra prvo in drugo nahajata v intervalu [0, p-1], kjer je p modul množice this. Ta pripomba velja tudi za ostale metode, razen kjer je izrecno navedeno drugače.

• public int zmnozek(int prvo, int drugo) [J4, S16-S20]:

Vrne modulski zmnozek števil prvo in drugo.

¹V oglatih oklepajih so navedeni testni primeri, ki vsebujejo klice pripadajočih konstruktorjev oz. metod.

- public int nasprotno(int stevilo) [J5, S21-S25]: Vrne modulsko nasprotno vrednost števila stevilo.
- public int razlika(int prvo, int drugo) [J5, S21-S25]: Vrne modulsko razliko števil prvo in drugo.
- public int obratno(int stevilo) [J6, S26-S30]:
 Vrne modulsko obratno vrednost števila stevilo. V vseh testnih primerih se parameter stevilo nahaja v intervalu [1, p 1].
- public int kolicnik(int prvo, int drugo) [J6, S26–S30]:
 Vrne modulski količnik števil prvo in drugo. V vseh testnih primerih se parameter prvo nahaja v intervalu [0, p-1], parameter drugo pa v intervalu [1, p-1].
- public int potenca(int stevilo, long eksponent) [J7, J10, S31–S35, S48–S50]: Vrne modulsko potenco števila stevilo na število eksponent. V testnih primerih J7 in S31–S35 se parameter eksponent nahaja v intervalu [-10^3 , 10^3], v primerih J10 in S48–S50 pa v intervalu [-10^{18} , 10^{18}]. Parameter stevilo se nahaja v intervalu [1, p-1].
- public int steviloKvadratnihKorenov(int stevilo) [J8, S36–S40]: Vrne moč množice modulskih kvadratnih korenov števila stevilo, torej število števil $b \in \mathbb{Z}_p$, za katera je produkt $b \otimes b$ enak številu stevilo.
- public boolean jeMultiplikativniGenerator(int stevilo) [J9–J10, S41–S47]: Vrne true natanko v primeru, če je število stevilo multiplikativni generator množice this. Parameter stevilo se nahaja v intervalu [1, p-1].

Namig

Kako bi učinkovito izračunali potenco a^e (oziroma njeno modulsko različico), kjer je eksponent e veliko pozitivno celo število? Če je e sod, se nam a^e splača izračunati kot $(a^{e/2})^2$, saj lahko potenco $a^{e/2}$ izračunamo na enak način kot potenco a^e , le eksponent je za polovico manjši. Lahko podoben trik uporabimo tudi pri lihih eksponentih?

Oddaja naloge

Oddajte datoteko z nazivom Zp. java. V prvi vrstici datoteke v komentarju navedite vašo vpisno številko. Če je, denimo, vaša vpisna številka enaka 63160999, mora datoteka izgledati takole:

```
// 63160999

public class Zp {
    ...
}
```

Testiranje

Program tj.exe boste tokrat pognali takole:

tj.exe <mapa_z_vašim_razredom> <mapa_s_testnimi_razredi> <mapa_z_rezultati>

Če si želite postopek testiranja karseda poenostaviti, postavite datoteko Zp. java v mapo, kjer se nahajajo testni razredi. Znotraj te mape boste namreč lahko program tj.exe pognali preprosto takole:

tj.exe

To je okrajšava za ukaz

tj.exe . . .

kar pomeni, da se vse, tudi bodoči rezultati, nahaja v trenutni mapi. Če se vaš program nahaja v isti mapi kot testni razredi, boste testne razrede lahko prevajali in poganjali tudi ročno (npr. javac Test01. java in java Test01 za prvi testni razred).