

SEGMENTACIÓN DE CLIENTES CON MACHINE LEARNING

Patricia Díez

Abril 2025

ÍNDICE

- Introducción
- Descripción del Dataset
- Análisis Exploratorio de Datos (EDA)
- Preprocesamiento
- Técnicas de Clustering Aplicadas
- Comparación de Resultados
- Elección del Modelo Final
- Conclusiones
- Resultados
- Posibles mejoras del proyecto

INTRODUCCIÓN

OBJETIVO DEL PROYECTO

La segmentación de los clientes mayoristas, basado en sus patrones de compras haciendo uso de Machine Learning para ayudarnos.

¿ PARA QUÉ SIRVE?

Lo que esta segmentación permitirá será llevar a cabo distintas estrategias de marketing para cada grupo creado.

DESCRIPCIÓN DEL DATASET

WHOLESALE CUSTOMERS

- Dataset público de Kaggle
- Contiene información sobre el gasto por 8 categorías de 440 clientes mayoristas.
- Variables recogidas:
 - Variables numéricas: Fresh, Milk, Grocery,
 Frozen, Detergents_Paper, Delicassen
 - Variables categóricas: Region y Channel

PREPROCESAMIENTO Y EDA

MUCHOS OUTLIERS

MUCHO SESGO HACIA LA DERECHA

PREPROCESAMIENTO Y EDA

ESCALADO

LOGARITMO

PREPROCESAMIENTO Y EDA

ONE - HOT ENCODING DE CHANNEL

ELIMINAMOS REGION

REDUCCIÓN DE DIMENSIONALIDAD (PCA)

- Con 2 componentes: se explica el 89% de la varianza total
- Con 3 componentes: el 94%
- Con 4 componentes: el 97%

K = 2 EN KMEANS

- Probamos con valores de k entre 2 y 10
- Método del codo: no ha sido concluyente
- Silhouette Score: el valor máximo con k=2

COMPARACIÓN DE RESULTADOS

Algoritmo	Silhouette Score
KMeans (sin PCA)	0.64
KMeans (con PCA)	0.69
DBSCAN	0.79
Agglomerative	0.78

ELECCIÓN DEL MODELO FINAL

MODELO FINAL ELEGIDO = KMEANS CON PCA

CONCLUSIONES

• Probamos 3 modelos: KMeans, DBSCAN y Agglomerative

- Aunque DBSCAN y Agglomerative han tenido mejor Silhouette score, elegimos KMeans con PCA como modelo final:
 - Simplicidad y velocidad: Rápido de entrenar y fácil de interpretar.
 - Estabilidad: No depende de parámetros sensibles como en DBSCAN.
 - Generalización: Es aplicable a nuevos datos
 - Interpretabilidad: Permite analizar bien las variables de cada grupo

RESULTADOS

POSIBLES MEJORAS

Este sistema es útil para segmentación y estrategia de marketing \rightarrow futuras mejoras incluirían:

OPTIMIZACIÓN DE PARÁMETROS

TRATAMIENTO DE OUTLIERS

GRACIAS!