inferential_assignment_1_part2

treepruner

September 24, 2015

Description

This part of the exercise analyzes the effect of citamin C on tooth growth in guinea pigs. The ToothGrowth data in the R datasets package.

The response is the length of odontoblasts (teeth) in each of 10 guinea pigs at each of three dose levels of Vitamin C (0.5, 1, and 2 mg) with each of two delivery methods (orange juice or ascorbic acid).

Assumptions

I assumed that the guinea pigs were randomly assigned to the treatment groups and each guinea pig only received on type of supplement, e.g., they were NOT paired observations.

Exploratory Data Analyses

Determine the variables, class and sample values.

Comparison by Supplement Type

Data Summary

```
## Source: local data frame [6 x 9]
## Groups: supp
##
##
     supp dose n() mean(len) median(len) IQR(len)
                                                        sd(len) min(len) max(len)
## 1
            0.5
       OJ
                 10
                         13.23
                                      12.25
                                                6.475 4.459709
                                                                      8.2
                                                                               21.5
##
  2
       OJ
              1
                 10
                         22.70
                                      23.45
                                                5.350 3.910953
                                                                     14.5
                                                                               27.3
       OJ
              2
                 10
                         26.06
                                      25.95
                                                                     22.4
                                                                               30.9
##
   3
                                                2.500 2.655058
##
   4
       VC
            0.5
                 10
                          7.98
                                       7.15
                                                4.950 2.746634
                                                                      4.2
                                                                               11.5
## 5
       VC
                 10
                         16.77
                                      16.50
                                                2.025 2.515309
                                                                               22.5
              1
                                                                     13.6
       VC
              2
                 10
                                      25.95
                                                5.425 4.797731
## 6
                         26.14
                                                                     18.5
                                                                               33.9
```

Use Confidence Intervals and/or Hypothesis on ToothGrowth

Test 1

The highest dose of each supplement has the highest growth. At this level the mean and the median are approximately the same for each supplement, but VC has a wider spread than OJ. Is this difference significant? Perform a T Test on the dose2 subset.

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = -0.0461, df = 14.04, p-value = 0.9639
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -3.79807 3.63807
## sample estimates:
## mean in group OJ mean in group VC
## 26.06 26.14
```

The 95% confidence interval for Test 1 contains 0, so we can not reject the NULL hypothesis that there is no different between the means of the groups.

Test 2

There is an overlap in the boxplots for OJ at doses 1 and 2. Is this difference significant?

```
##
## Welch Two Sample t-test
##
## data: len by dose
## t = -2.2478, df = 15.842, p-value = 0.0392
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -6.5314425 -0.1885575
## sample estimates:
## mean in group 1 mean in group 2
## 22.70 26.06
```

The 95% confidence interval for Test 2 does not contain 0 and the p value is less than .05, so these results are significantly different from each other.

Test 3

There is an overlap in the boxplots dose .5. Is this difference significant?

```
##
## Welch Two Sample t-test
##
## data: len by supp
## t = 3.1697, df = 14.969, p-value = 0.006359
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## 1.719057 8.780943
## sample estimates:
## mean in group OJ mean in group VC
## 13.23 7.98
```

The 95% confidence interval for Test 3 does not contain 0 ad the p value is less than .05, so these resuls are significantly different from each other.

Conclusions

There sample sizes were very small, only 10 observations per supplement and dose combinations. The T-test is valid for small sample sizes.

If you want to maximize guinea pig tooth growth either orange juice or Vitamin C at dose = 2mg are effective and there isn't a significant difference in their performance. Choose the supplement based upon price or availability.

If you want to minimize guinea pig tooth growth, Vitamin C at the 0.5 mg dose is significantly lower than orange juice at 0.5 mg.