Tema 7. Extensiones de Q

7.0. Contenido y cocumentación

7.0. Contenido y cocumentación

7.1. El cuerpo Q

7.2. Extensiones de Q

7.2.1. Elemento neutro

7.3. Los número complejos

7.3.1. Conjugado complejo

7.3.2. Módulo

7.4. Representación polar

7.4.1. Multiplicación de números complejos dados en forma polar

7.5. Raíces de números complejos

H7 NumerosComplejos.pdf

7.1. El cuerpo $\mathbb Q$

En $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ definimos la relación de equivalencia \sim como $(m,n) \sim (k,l) \Leftrightarrow ml = nk$. De esta forma, podemos definir el conjunto \mathbb{Q} como el conjunto cociente $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})/_{\sim}$, donde las clases de equivalencia se definen como $[(m,n)] = \{(k,l) : ml = nk \text{ con } k,l \in \mathbb{Z} \setminus \{0\}\}$.

Después, definimos las operaciones suma (+) y producto escalar (·), de forma que $\lceil (m,n) \rceil$ +

$$[(k,l)] = [(ml+nk,nl)], \text{ cumpliéndose que } \frac{m}{n} + \frac{k}{l} = \frac{ml+nk}{nl}; \text{ y } [(m,n)] \cdot [(k,l)] = [(mk,nl)], \text{ cumpliéndose que } \frac{m}{n} \cdot \frac{k}{l} = \frac{mk}{nl}.$$

Como además, se cumplen todas las propiedades relativas a la suma (+) y el producto escalar (\cdot) , podemos concluir que $\mathbb Q$ es un **cuerpo**.

Además, se da que $\mathbb{Z}\subset\mathbb{Q}$, definiendo todo $m\in\mathbb{Z}$ como $[(m,1)]\in\mathbb{Q}.$

7.2. Extensiones de $\mathbb Q$

Teorema. Existe un cuerpo $\mathbb R$ tal que $\mathbb Q \subset \mathbb R$; y que posee una relación de orden total, así como la propiedad del supremo.

Nótese que $\mathbb Q$ no tiene la propiedad del supremo ya que $A=\{x\in\mathbb Q:x^2<2\}$ es un subconjunto de $\mathbb Q$ que está acotado superiormente y no tiene supremo en $\mathbb Q$. El mismo conjunto sí tiene supremo en $\mathbb R$, la extensión de $\mathbb Q$.

El conjunto de números reales, \mathbb{R} , puede construirse formalmente usando subconjuntos de \mathbb{Q} . Esto se hace a través de las **cortaduras** o cortes de Dedekind.

Definición. Un **corte** es un subconjunto $\alpha \in \mathbb{Q}$ tal que:

-
$$\alpha \neq \emptyset$$
 y $\alpha \neq \mathbb{Q}$.

- Sean $p \in \alpha$ y $q \in \mathbb{Q}$, si q < p, entonces, $q \in \alpha$.
- Sea $p \in lpha$, entonces, existe un $r \in lpha$ tal que p < r.

A partir de esto, definimos $\mathbb R$ como el conjunto de todos los cortes, de forma que $\mathbb R\subset\mathcal P(\mathbb Q)$. Añadimos además, que para $\alpha,\beta\in\mathbb R$, si $\alpha<\beta$ y $\alpha\subset\beta$, entonces $\alpha+\beta=\{r+s:r\in\alpha,s\in\beta\}$.

7.2.1. Elemento neutro

Identificamos el 0^* como el elemento neutro para la suma en \mathbb{R} . Esto es, para cada $\alpha \in \mathbb{R}$, se identifica un único $-\alpha \in \mathbb{R}$ tal que $\alpha + (-\alpha) = 0^*$. Además, se verifica que $\alpha < 0^* \Leftrightarrow -\alpha > 0^*$. Así, identificamos los números positivos como $\mathbb{R}_+ = \{\alpha \in \mathbb{R} : \alpha > 0^*\}$.

Para $\alpha, \beta \in \mathbb{R}_+$, se definen $\alpha\beta = \{p: \exists r \in \alpha, \exists s \in \beta \text{ con } r, s > 0 \text{ y } p \leq rs\}$ y $1^* = \{q: q < 1\}$. Para $\alpha, \beta < 0^*$, fijamos que $\alpha\beta = (-\alpha)(-\beta)$.

Por último, a cada $r \in \mathbb{Q}$ le asociamos un conjunto $r^* = \{p \in \mathbb{Q} : p < r\}$, que es un corte. Por lo tanto, $\mathbb{R} = \{\text{cortes}\}$ contiene a todos los cortes racionales $\{r^* : r \in \mathbb{Q}\}$ y las operaciones de \mathbb{Q} se extienden a \mathbb{R} .

7.3. Los número complejos

En el cuerpo $\mathbb R$ podemos resolver la ecuación $x^2=2$, pero no $x^2=-1$, puesto que $x\in\mathbb R\Rightarrow x^2\geq 0$. Es deseable extender $\mathbb R$ para obtener un cuerpo en el que eso sea posible, al que denotaremos $\mathbb C$ (cuerpo de **números complejos**).

Necesitamos que ese nuevo cuerpo contenga un nuevo elemento, denotado i (llamado **unidad imaginaria**), tal que $i^2=-1$. También necesitamos sumar y multiplicar con los números reales y los "números" como i, presentando la propiedades de las operaciones básicas.

- Asociativa. (a + bi) + c + di = a + c + (b + d)i.
- Distributiva. $(a+bi)(c+di) = ac+bic+adi+bdi^2 = ac-bd+(bc+ad)i$.

Esto lo conseguimos definiendo $\mathbb{C}=\mathbb{R}\times\mathbb{R}=\{(a,b):a,b\in\mathbb{R}\}$ con las operaciones suma (+) y producto escalar (·) definidas como:

- (a,b) + (c,d) = (a+c,b+d).
- $(a,b) \cdot (c,d) = (ac bd, bc ad).$

Ademas, el conjunto $\mathbb{R} \times \{0\} = \{(a,0) : a \in \mathbb{R}\} \subset \mathbb{C}$ es una "copia" de \mathbb{R} , por lo que podemos decir que \mathbb{C} es una extensión de \mathbb{R} y $\mathbb{C} \subset \mathbb{R}$.

Efectivamente, en \mathbb{C} existe un elemento i=(0,1) tal que $i^2=(0,1)\cdot(0,1)=(0-1,0-0)=(-1,0)=-(1,0)$, que denotaremos como -1^* .

Observamos que para $z=(a,b)\in\mathbb{C}$ y $\lambda=(\lambda,0)\in\mathbb{R}$ se tiene que $\lambda(a,b)=(\lambda,0)\cdot(a,b)=(\lambda a-0,\lambda b-0)=(\lambda a,\lambda b)$. Luego, $\forall a,b\in\mathbb{R}$ se tiene que $a\cdot 1^*+b\cdot i=a(1,0)+b(0,1)=(a,b)$. Por tanto, $\forall z=(a,b)\in\mathbb{C}$ se tiene que z=a+bi.

Una vez definido el conjunto $\mathbb C$ formalmente y comprobadas las propiedades, podemos definir las operaciones suma y producto escalar como:

- z + w = (a + bi) + (c + di) = a + c + (b + d)i.
- $z \cdot w = (a+bi) \cdot (c+di) = ac-bd + (bc+ad)i$.

Con $z,w\in\mathbb{C}$ definidos como z=a+bi y w=c+di. Para z=a+bi, decimos que a es la parte real, $a=\operatorname{Re} z$, y b es la parte imaginaria, $b=\operatorname{Im} z$.

Propiedad. Sean $z,w\in\mathbb{C}$. Si z=w, entonces, $\operatorname{Re} z=\operatorname{Re} w$ e $\operatorname{Im} z=\operatorname{Im} w$.

7.3.1. Conjugado complejo

Definición. Dado un número complejo $z=a+bi\in\mathbb{C}$. Definimos el **conjugado complejo** o número conjugado de z como $\overline{z}=a-bi$.

Algunas de las principales propiedades del conjugado complejo son:

- 1. Conjugado del conjugado. $\overline{(\overline{z})} = z$.
- 2. Conjugado de la suma. $\overline{z+w}=\overline{z}+\overline{w}$.
- 3. Conjugado del producto. $\overline{zw} = \overline{z} \cdot \overline{w}$.
- 4. Igualdad con el conjugado. Si $z=\overline{z}$, entonces, $z\in\mathbb{R}$.
- 5. Igualdad de las partes reales. Re $z = \operatorname{Re} \overline{z}$.
- 6. Conjugado del cociente. $\overline{\left(\frac{w}{z}\right)}=\frac{\overline{w}}{\overline{z}}$, siempre que $z\neq 0$.
- 7. Suma de conjugados. $z + \overline{z} = 2 \cdot \text{Re } z$.
- 8. Resta de conjugados. $z \overline{z} = 2i \cdot \operatorname{Im} z$.

7.3.2. Módulo

Definición. Dado un número complejo $z=x+yi\in\mathbb{C}$. Definimos su **módulo** como $|z|=\sqrt{x^2+y^2}$. Algunas propiedades del módulo son:

- 1. Valor positivo. $\forall z \in \mathbb{C}$ se tiene que $|z| \geq 0$, se da el caso |z| = 0 si y solo si z = 0.
- 2. Igualdad con el conjugado. $\forall z \in \mathbb{C}$ se tiene que $|z| = |\overline{z}|$.
- 3. Producto de conjugados. $\forall z \in \mathbb{C}$ se tiene que $z \cdot \overline{z} = |z|^2$.
- 4. Módulo del producto. $|zw| = |z| \cdot |w|$.
- 5. Cuadrado del módulo de la suma. $|z+w|^2=|z|^2+|w|^2+2\cdot \mathrm{Re}\left(z\overline{w}\right)=|z|^2+|w|^1+2\cdot \mathrm{Re}\left(\overline{z}w\right)$.
- 6. Módulo real e imaginario. $|\text{Re } z| \leq |z|$ y $|\text{Im } z| \leq |z|$.
- 7. Módulo de la suma (desigualdad triangular). $|z+w| \leq |z| + |w|$.
- 8. Módulo de la resta (desigualdad triangular invertida). $|z-w| \geq ||z|-|w||$.

7.4. Representación polar

Si $z \neq 0$, podemos formar un triángulo (rectángulo) definido por los punto 0, z y $x = \operatorname{Re} z$.

Definición. Dado el ángulo t entre los segmentos 0x y 0z en el sentido positivo. Decimos que t es el **argumento** de z.

Notación. $t = \arg z$.

Así, $z=x+yi=r\cos t+ir\sin t=r(\cos t+i\sin t)$, frecuentemente escrito como $e^{it}=\cos t+i\sin t$. Por tanto, $z=re^{it}$.

Algunas propiedades de la representación polar son:

- 1. Igualdad. Si z=w, entonces, |z|=|w| y $\arg z=\arg w+2\pi k$, con $k\in\mathbb{Z}$.
- 2. Agrupación de exponentes. $e^{is} \cdot e^{it} = e^{i(s+t)}$, con $s,t \in \mathbb{R}$.
- 3. Módulo. $\forall t \in \mathbb{R}$ se tiene que $|e^{it}|=1$.
- 4. Conjugado. $\overline{re^{it}}=re^{-it}$, con $t\in\mathbb{R}$.

7.4.1. Multiplicación de números complejos dados en forma polar

Basándonos en las propiedades anteriores, vemos que sean $z=r_1e^{is}$ y $w=r_2e^{it}$, con $r_1,r_2,s,t\in\mathbb{R}$, tenemos que $zw=r_1r_2e^{i(s+t)}$. Es decir, al multiplicar dos números complejos, se multiplican sus módulos y se suman sus argumentos.

Generalizando, $e^{is} \cdot e^{it} = e^{i(s+t)}$, obteniendo por inducción que $e^{it_1}e^{it_2}...e^{it_n} = e^{i(t_1+t_2+...+t_n)}$.

También hay que considerar el caso especial $t_1=t_2=...=t_n=t\in\mathbb{R}$, donde $(e^{it})^n=e^{int}$, es decir, $(\cos t+i\sin t)^n=\cos(nt)+i\sin(nt)$, conocido como la **fórmula de Abraham de Moivre**.

7.5. Raíces de números complejos

Definición. Dados un natural $n\in\mathbb{N}$, con $n\geq 2$ y un complejo $w\in\mathbb{C}\setminus\{0\}$. Decimos que $z\in\mathbb{C}$ es una raíz n-ésima de w si $z^n=w$.

Excluimos w=0 porque $z^n=0 \Leftrightarrow z=0$. Así, $\sqrt[n]{w}$ no es un valor único, de hecho, $\sqrt[n]{w}$ tendrá n valores diferente. Para hallarlos, se usa la representación polar y la fórmula de Moivre.