Ardışıl Devre Sentezi (Sequential Circuit Design)

Ardışıl devre tasarımı prosedürü:

Adım 1:

Problemin tanımına uygun olarak durum tablosunu yapılır. Tablo şimdiki durumları, girişleri, gelecek durumları ve çıkışları içermeli. (Bazen öncelikle diyagramı çizip ardından tabloya dönüştürmek daha kolay olmaktadır.)

Adım 2:

Durum tablosundaki durumlara binary kod atanır. n tane durum varsa, binary kodlar en az $[log_2 n]$ digit olmalıdır ve devrede en az $[log_2 n]$ tane flip-flop olacaktır.

Adım 3:

Her bir flip-flop için giriş değerleri bulunur. Bunun için flip-flop ters karakteristik tabloları kullanılabilir.

Adım 4:

Flip-flop giriş ve çıkışları için basitleştirilmiş ifadeler bulunur.

Adım 5:

Devre kurulur.

Dizi Yakalayıcısı (Sequence recognizers)

- Bir dizi yakalayıcısı devrenin girişinde özel bir bit dizisini arayan özel bir ardışıl devredir.
- Bu örnek yakalayıcı devrenin tek bir girişi vardır: X Girişin her bir biti bir saat periyotunda sağlanır.
- Tek bir çıkış vardır: Z. İstenen bit dizisi bulunduğunda 1 çıkışını verir.
- Örnek: Aranacak olan bit dizisi: 1001

Girişler: 11100110100100110... Çıkışlar: 00000100001001...

 Bu tasarımda bir ardışıl devre tasarlanması gerekmektedir. Çünkü devrenin diziyi yakalayabilmesi için birkaç önceki çıkışı da <u>hatırlayabilmesi</u> gerekmektedir.

Adım 1: Durum tablosu yapma

- Dizi yakalayıcısı için öncelikle durum diyagramı yapıp, ardından tabloyu oluşturalım:
 - Önceki saat periyotlarındaki girişleri hatırlamalı
 - Örneğin, eğer önceki üç giriş 100 ve şu anki giriş 1 ise, çıkış 1 olacaktır.
 - Genellikle, bu dizinin belli kısımlarının oluşumunu incelemek gerekiyor—bu örnekte: 1, 10, and 100
- Durum diyagramını çizmeye başlayalım:

Durum	Anlamı
Α	İstenilen dizinin (1001) başlangıcı henüz görülmedi.
В	İstenilen dizinin ilk biti (1) görüldü.
С	İstenilen dizinin ilk iki biti (10) görüldü.
D	İstenilen dizinin ilk üç biti (100) görüldü.

Not: Her bir nod için *iki* çıkış oku vardır: X=0 ve X=1 girişi için.

Şimdiki		Gel.	
durum	Giriş	durum	Çıkış
A	0	Α	0
A	1	В	0
В	0	C	0
В	1	В	0
C	0	D	0
C	1	В	0
Q	0	Α	0
D	1	В	1

Adım 2: Durumlara binary kod atamak

- Dört durumumuz var: ABCD. O halde en az iki flip-flop'a ihtiyacımız var: Q_1Q_0
- Bunun için en kolay yöntem: A için $Q_1Q_0 = 00$, B için 01, C için 10 ve D için 11.

Şimdiki		Gelecek	
Durum	Giriş	Durum	Çıkış
Α	0	Α	0
Α	1	В	0
В	0	C	0
В	1	В	0
C	0	D	0
С	1	В	0
D	0	A	0
D	1	В	1

Şim	diki		Gelecek		
Dur	um	Giriş	Dur	um	Çıkış
Q_1	Q_0	X	Q_1	Q_0	Z
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Adım 3: Flip-flop giriş değerlerinin bulunması

- Bu hangi tip flip-flop kullandığınıza göre değişir!
- İki tane JK FF kullanacağız. Her bir flip-flop için, şimdiki ve gelecek durumlarıa bakarak bu durum değişikliğini sağlayacak olan J_i ve K_i girişlerinin ne olması gerektiği belirlenir.

Şim	diki		Gele	ecek					
Dur	um	Giriş	Dur	rum	Fli	p flop	girişle	eri	Çıkış
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	Ko	Z
0	0	0	0	0					0
0	0	1	0	1					0
0	1	0	1	0					0
0	1	1	0	1					0
1	0	0	1	1					0
1	0	1	0	1					0
1	1	0	0	0					0
1	1	1	0	1					1

Flip-flop giriş değerlerinin bulunması

 JK FF için, giriş değerlerinin bulunması biraz "tricky". JK FF'a ait karakteristik tabloyu hatırlayalım:

J	K	Q(†+1)	İşlem
0	0	Q(†)	Değişmez
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Tümleme

- Eğer JK flip-flop'un şimdiki durumu 0 ise ve biz gelecek durumu 1 yapmak istiyorsak, bu durumda JK girişleri için iki seçenek söz konusudur:
 - JK= 10, gelecek durumu doğrudan 1 yapar.
 - JK=11, şimdiki durumun (0) tümleyenini alarak 1 gelecek durumu 1 yapar.
- O halde O'dan 1'e değişiklik için, J=1 yapılmalı, ancak K O veya 1 olabilir.
- Benzer şekilde, diğer olası durum geçişleri de iki farklı şekilde yapılır.

JK ters karakteristik tablosu (excitation table)

 Bir ters karakteristik tablo (excitation table) flip-flop'da istenilen durum değişikliğinin yapılabilmesi için girişlerinin ne olması gerektiğini gösterir. Bir başka deyişle, karakteristik tabloya tersten bakıştır:

Q(†)	Q(†+1)	J	K	İşlem
0	0	0	X	Değişmez/Reset
0	1	1	×	Set/Tümleme
1	0	×	1	Reset/Tümleme
1	1	×	0	Değişmez/Set

J	K	Q(†+1)	İşlem
0	0	Q(†)	Değişmez
0	1	0	Reset
1	0	1	Set
1	1	Q'(†)	Tümleme

Tüm flip-flop'lar için ters karakteristik tabloları

Q(†)	Q(†+1)	۵	İşlem
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

Q(†)	Q(†+1)	J	K	İşlem
0	0	0	X	Değişmez/Reset
0	1	1	X	Set/Tümleme
1	0	×	1	Reset/Tümleme
1	1	×	0	Değişmez /Set

Q(†)	Q(†+1)	T	İşlem
0	0	0	Değişmez
0	1	1	Tümleme
1	0	1	Tümleme
1	1	0	Değişmez

Örneğe geri dönersek...

 JK ters karakteristik tablosu kullanılarak her bir flip-flop'un girişleri bulunur. (şimdiki ve gelecek durumlara bakarak)

Q(†)	Q(†+1)	J	K
0	0	0	×
0	1	1	X
1	0	X	1
1	1	×	0

Şimdiki			Gelecek						
durum		Giriş	durum		Flip flop girişleri				Çıkış
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	Ko	Z
0	0	0	0	0	0	X	0	X	0
0	0	1	0	1	0	X	1	X	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	X	X	0	0
1	0	0	1	1	X	0	1	X	0
1	0	1	0	1	X	1	1	×	0
1	1	0	0	0	X	1	X	1	0
1	1	1	0	1	×	1	X	0	1

Adım 4: FF giriş ve çıkışları için denklemlerin bulunması

- Karnaugh diyagramı yardımıyla dört flip-flop'un her biri için girişlere ve çıkışa ait denklemler bulunur.
- Bu denklemler şimdiki durum ve girişler cinsindendir.
- JK FF kullanmanın avantajı: birkaç tane "don't care" durumuna sahip olmalarıdır. Bu sayede daha basit denklemler elde edilir.

Şimdiki			Gelecek						
dur	durum		durum		Flip flop girişleri				Çıkış
Q_1	Q_0	X	Q_1	Q_0	J_1	K_1	J_0	Ko	Z
0	0	0	0	0	0	X	0	×	0
0	0	1	0	1	0	X	1	×	0
0	1	0	1	0	1	X	X	1	0
0	1	1	0	1	0	X	X	0	0
1	0	0	1	1	×	0	1	X	0
1	0	1	0	1	X	1	1	×	0
1	1	0	0	0	×	1	X	1	0
1	1	1	0	1	×	1	×	0	1

$$J_1 = X' Q_0$$

 $K_1 = X + Q_0$

$$J_0 = X + Q_1$$
$$K_0 = X'$$

$$Z = Q_1Q_0X$$

Adım 5: Devrenin kurulumu

Son olarak, bu basitleştirilmiş denklemler temel alınarak devre kurulur.

$$J_0 = X + Q_1$$

$$K_0 = X'$$

$$Z = Q_1Q_0X$$

Aynı tasarımı D flip-flop ile gerçekleştirmek

• D FF'un tek girişi olduğu için tablo biraz daha basit olacak:

Şimdiki		. .	Gelecek		Flip-flop		
durum		Giriş	durum		girişleri		Çıkış
Q_1	Q_0	X	Q_1	Q_0	D_1	Do	Z
0	0	0	0	0			0
0	0	1	0	1			0
0	1	0	1	0			0
0	1	1	0	1			0
1	0	0	1	1			0
1	0	1	0	1			0
1	1	0	0	0			0
1	1	1	0	1			1

D flip-flop giriş değerleri (Adım 3)

 D FF ters karakteristik tablosu:

Q(†)	Q(†+1)	D	İşlem
0	0	0	Reset
0	1	1	Set
1	0	0	Reset
1	1	1	Set

Şimdiki		6 :	Gelecek		Flip flop		
durum		Giriş	durum		girişleri		Çıkış
Q_1	Q_0	X	Q_1	Q_0	D_1	D_0	Z
0	0	0	0	0	0	0	0
0	0	1	0	1	0	1	0
0	1	0	1	0	1	0	0
0	1	1	0	1	0	1	0
1	0	0	1	1	1	1	0
1	0	1	0	1	0	1	0
1	1	0	0	0	0	0	0
1	1	1	0	1	0	1	1

Denklemlerin bulunması (Adım 4)

Karnaugh diyagramı yardımıyla aynı denklemleri bulabiliriz:

$$D_1 = Q_1 Q_0' X' + Q_1' Q_0 X'$$

 $D_0 = X + Q_1 Q_0'$
 $Z = Q_1 Q_0 X$

Devrenin kurulumu (Adım 5)

