応用情報工学演習課題3シームカービング

谷口研究室

課題3

- シームカービングという画像処理技術を実装する
 - SeamCarving.pyの穴埋め
 - 詳細はseamcarving_ex.pdfを参照
- 提出締切: 11/28 (木) 16:00

- 提出物:
 - ソースコード(処理概要がわかるようにコメントを入れること)
- 提出先: LETUSの課題提出BOX

シームカービング (Seam Carving)

・画像のリサイズ技術の一つ

元画像

シームカービング

スケーリング (画像全体で一定の縮小)

クロッピング (切り出し)

シームカービング (Seam Carving)

・画像のリサイズ技術の一つ

元画像

シームカービング

スケーリング (画像全体で一定の縮小)

クロッピング (切り出し)

シームカービング

取り除いても目立たないシーム(画像の上から下まで走る幅 1画素の経路)を繰り返し取り除く

(i) エネルギーマップの計算 (目立つ場所ほど白い)

(ii) 最適なシームの計算

(iii) シームを取り除き, 1画素分だけ横幅を小さくする

(iv) 指定した横幅になるまで繰り返す

シームカービング

取り除いても目立たないシーム(画像の上から下まで走る幅 1画素の経路)を繰り返し取り除く

STEP 1

(i) エネルギーマップの計算 ↑ (目立つ場所ほど白い)

(ii) 最適なシームの計算

(iii) シームを取り除き, 1画素分だけ横幅を小さくする

(iv) 指定した横幅になるまで繰り返す

(i) エネルギーマップの計算

- 各画素でエネルギー(取り除くとどれだけ目立つか)を計算
 - エッジ付近(画素値が急激に変化する場所)は目立つ
 - →微分フィルタでエネルギーマップを計算する

シームカービング

取り除いても目立たないシーム(画像の上から下まで走る幅 1画素の連続な経路)を繰り返し取り除く

(i) エネルギーマップの計算 **↑** (目立つ場所ほど白い)

STEP 2

(ii) 最適なシームの計算

(iii) シームを取り除き, 1画素分だけ横幅を小さくする

(iv) 指定した横幅になるまで繰り返す

経路上のエネルギーの和が最小になるようなシーム(画像の上から下まで走る連続な経路)を見つける

経路上のエネルギーの和が最小になるようなシーム(画像の上から下まで走る連続な経路)を見つける

簡単なエネルギーマップの例を使って説明する

6	4			5	1	7
3	5	1	9	8	0	7
2	7	5	2	8	7	8
3	3	5	4	0	6	7

経路上のエネルギーの和が最小になるようなシーム(画像の上から下まで走る連続な経路)を見つける

簡単なエネルギーマップの例を使って説明する

6	4	2	0	5	1	7
3	5	1	9	8	0	7
2	7	5	2	8	7	8
3	3	5	4	0	6	7

最適なシーム(エネルギーの和は0+1+2+0=3)

- 動的計画法による見つけ方
 - 1. エネルギーの累積計算
 - 2. 最小値を見つける
 - 3. バックトラック

6	4	2	0	5	1	7
3	5	~	9	8	0	7
2	7	5	2	8	7	8
3	3	5	4	0	6	7

- 動的計画法による見つけ方
 - 1. エネルギーの累積計算
 - 2. 最小値を見つける
 - 3. バックトラック

6	<u>1</u> + 4	2	0	5	1	7
3	5	1	9	8	0	7
2	7	5	2	8	7	8
3	3	5	4	0	6	7

- 動的計画法による見つけ方
 - 1. エネルギーの累積計算
 - 2. 最小値を見つける
 - 3. バックトラック

6	4	2	0	5	1	7
7	5	1	9	8	0	7
2	7	5	2	8	7	8
3	3	5	4	0	6	7

- 動的計画法による見つけ方
 - 1. エネルギーの累積計算
 - 2. 最小値を見つける
 - 3. バックトラック

6	4	2		5	1	7
7	7	1	9	8	0	7
2	7	5	2	8	7	8
3	3	5	4	0	6	7

- 動的計画法による見つけ方
 - 1. エネルギーの累積計算
 - 2. 最小値を見つける
 - 3. バックトラック

6	4	2	0	5	1+1	7
7	7	1	9	8	+1	7
2	7	5	2	8	7	8
3	3	5	4	0	6	7

注目画素に到達可能な経路のうち、エネルギーの低いほうを選択して累積する ※この際に選んだ経路を保存しておく

16

- 動的計画法による見つけ方
 - 1. エネルギーの累積計算
 - 2. 最小値を見つける
 - 3. バックトラック

6	4	2	0	5	1	7
7	7	1	9	8	1	8
9	8+8	6	3	9	8	9
3	3	5	4	0	6	7

- 動的計画法による見つけ方
 - 1. エネルギーの累積計算
 - 2. 最小値を見つける
 - 3. バックトラック

6	4	2	0	5	1	7
7	7	1	9	8	1	8
9	8	6	3	9	8	9
11	9	8	7	3	14	7

注目画素に到達可能な経路のうち、エネルギーの低いほうを選択して累積する ※この際に選んだ経路を保存しておく

18

- 動的計画法による見つけ方
 - 1. エネルギーの累積計算
 - 2. 最小値を見つける
 - 3. バックトラック

6	4	2	0	5	1	7
7	7	1	9	8	1	8
9	8	6	3	9	8	9
11	9	8	7	3	14	15

一番下の行において最小値を見つける ※この値が考えられる全経路のうち最小の累積エネルギーとなっている

- ・動的計画法による見つけ方
 - 1. エネルギーの累積計算
 - 2. 最小値を見つける
 - 3. バックトラック

6	4	2	0	5	1	7
7	7	1	9	8	1	8
9	8	6	3	9	8	9
11	9	8	7	3	14	15

保存した経路を戻ることで最適なシームを求めることができる

経路上のエネルギーの和が最小になるようなシーム(画像の上から下まで走る連続な経路)を見つける

7

			夕リ				シームを表すベクトル
0	1	2	3	4	5	6	(各行で何番目の列を取り除くか) -
6	4	2	0	5	1	7	/3\
3	5	1	9	8	0	7	$\mathbf{c} - 2$
2	7	5	2	8	7	8	3 – (3)
3	3	5	4	0	6	7	\4/

シームカービング

取り除いても目立たないシーム(画像の上から下まで走る幅 1画素の連続な経路)を繰り返し取り除く

(i) エネルギーマップの計算 ↑ (目立つ場所ほど白い)

(ii) 最適なシームの計算

実装済み

(iii) シームを取り除き, 1画素分だけ横幅を小さくする

(iv) 指定した横幅になるまで繰り返す

実装済み

オプション課題

- 絶対に取り除かれたくない領域をマウスで指定できる機能を PyQtのGUIで実装しなさい
 - 実装済みの部分を好きに書き換えてよい
 - 取り組んだ場合はSeamCarving.pyとは別ファイルで提出すること

