ΑΡΧΗ 1ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

ΠΑΝΕΛΛΗΝΙΕΣ ΕΞΕΤΑΣΕΙΣ Γ΄ ΤΑΞΗΣ ΗΜΕΡΗΣΙΟΥ ΓΕΝΙΚΟΥ ΛΥΚΕΙΟΥ ΚΑΙ ΕΠΑΛ (ΟΜΑΔΑ Β΄) ΠΑΡΑΣΚΕΥΗ 25 ΜΑΪΟΥ 2012

ΕΞΕΤΑΖΟΜΕΝΟ ΜΑΘΗΜΑ: ΦΥΣΙΚΗ ΘΕΤΙΚΗΣ ΚΑΙ ΤΕΧΝΟΛΟΓΙΚΗΣ ΚΑΤΕΥΘΥΝΣΗΣ (ΚΑΙ ΤΩΝ ΔΥΟ ΚΥΚΛΩΝ) ΣΥΝΟΛΟ ΣΕΛΙΔΩΝ: ΕΠΤΑ (7)

ΘΕΜΑ Α

Στις ημιτελείς προτάσεις **Α1-Α4** να γράψετε στο τετράδιό σας τον αριθμό της πρότασης και δίπλα το γράμμα που αντιστοιχεί στη φράση η οποία τη συμπληρώνει σωστά.

- Α1. Κατά τη διάρκεια μιας εξαναγκασμένης ταλάντωσης
 - α. έχουμε πάντα συντονισμό
 - **β.** η συχνότητα ταλάντωσης δεν εξαρτάται από τη συχνότητα της διεγείρουσας δύναμης
 - γ. για δεδομένη συχνότητα του διεγέρτη το πλάτος της ταλάντωσης παραμένει σταθερό
 - δ. η ενέργεια που προσφέρεται στο σώμα δεν αντισταθμίζει τις απώλειες.

Μονάδες 5

- **Α2.**Η ταχύτητα διάδοσης ενός αρμονικού κύματος εξαρτάται από
 - α. τη συχνότητα του κύματος
 - β. τις ιδιότητες του μέσου διάδοσης
 - γ. το πλάτος του κύματος
 - **δ.** την ταχύτητα ταλάντωσης των μορίων του μέσου διάδοσης.

Μονάδες 5

- **Α3.** Σε κύκλωμα LC που εκτελεί αμείωτες ηλεκτοικές ταλαντώσεις η ολική ενέργεια είναι
 - α. ανάλογη του φορτίου του πυκνωτή
 - **β.** ανάλογη του ημ²($\sqrt{LC}t$)
 - γ. σταθερή
 - δ. ανάλογη της έντασης του φεύματος.

ΑΡΧΗ 2ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

- Α4. Στο φάσμα της ηλεκτρομαγνητικής ακτινοβολίας
 - α. οι ακτίνες Χ έχουν μεγαλύτερο μήκος κύματος από τα ραδιοκύματα και μεγαλύτερη συχνότητα από το υπέρυθρο
 - β. το ερυθρό φως έχει μεγαλύτερο μήκος κύματος από το πράσινο φως και μεγαλύτερη συχνότητα από τις ακτίνες Χ
 - γ. τα μικοοκύματα έχουν μικοότερο μήκος κύματος από τα ραδιοκύματα και μικρότερη συχνότητα από το υπεριώδες
 - δ. το ποςτοκαλί φως έχει μικςότεςο μήκος κύματος από τις ακτίνες X και μεγαλύτεςη συχνότητα από το υπεςιώδες.

Μονάδες 5

- **Α5.** Να γράψετε στο τετράδιό σας το γράμμα κάθε πρότασης και δίπλα σε κάθε γράμμα τη λέξη **Σωστό**, για τη σωστή πρόταση, και τη λέξη **Λάθος**, για τη λανθασμένη.
 - α. Βασιζόμενοι στο φαινόμενο Doppler μπορούμε να βγάλουμε συμπεράσματα για την ταχύτητα ενός άστρου σε σχέση με τη Γη.
 - β. Στην περίπτωση των ηλεκτρικών ταλαντώσεων ο κύριος λόγος απόσβεσης είναι η ωμική αντίσταση.
 - γ. Ο ουθμός μεταβολής της στοοφορμής μετριέται σε $kg\frac{m^2}{s}\;.$
 - δ. Σε στερεό σώμα που εκτελεί στροφική κίνηση και το μέτρο της γωνιακής του ταχύτητας αυξάνεται, τα διανύσματα της γωνιακής ταχύτητας και της γωνιακής επιτάχυνσης είναι αντίρροπα.
 - ε. Η ταυτόχοονη διάδοση δύο ή περισσοτέρων κυμάτων στην ίδια περιοχή ενός ελαστικού μέσου ονομάζεται συμβολή.

ΑΡΧΗ 3ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

OEMAB

Β1. Ακτίνα μονοχοωματικού φωτός, προερχόμενη από πηγή που βρίσκεται μέσα στο νερό, προσπίπτει στη διαχωριστική επιφάνεια νερού – αέρα υπό γωνία ίση με την κρίσιμη. Στην επιφάνεια του νερού ρίχνουμε στρώμα

λαδιού το οποίο δεν αναμιγνύεται με το νερό, έχει πυκνότητα μικρότερη από το νερό και δείκτη διάθλασης μεγαλύτερο από το δείκτη διάθλασης του νερού.

Τότε η ακτίνα

- α. θα εξέλθει στον αέρα
- β. θα υποστεί ολική ανάκλαση
- γ. θα κινηθεί παράλληλα προς τη διαχωριστική επιφάνεια λαδιού αέρα.

Να επιλέξετε τη σωστή πρόταση (μονάδες 2).

Να δικαιολογήσετε την επιλογή σας (μονάδες 6).

Μονάδες 8

Β2. Σε γραμμικό ελαστικό μέσο, κατά μήκος του ημιάξονα Οχ, δημιουργείται στάσιμο κύμα με κοιλία στη θέση x=0. Δύο σημεία K και Λ του ελαστικού μέσου βρίσκονται αριστερά και δεξιά του πρώτου δεσμού, μετά τη θέση x=0, σε αποστάσεις $\frac{\lambda}{6}$ και $\frac{\lambda}{12}$ από αυτόν αντίστοιχα, όπου λ το μήκος κύματος των κυμάτων που δημιουργούν το στάσιμο κύμα. Ο λόγος των μεγίστων ταχυτήτων $\frac{\upsilon_K}{\upsilon_\Lambda}$

των σημείων αυτών είναι:

$$α. \sqrt{3}$$
 $β. \frac{1}{3}$
 $γ. 3$

Να επιλέξετε τη σωστή πρόταση (μονάδες 2). Να δικαιολογήσετε την επιλογή σας (μονάδες 6).

ΑΡΧΗ 4ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Β3. Ανάμεσα σε δύο παράλληλους τοίχους ΑΓ και $B\Delta$, υπάρχει λείο οριζόντιο δάπεδο. Τα ευθύγραμμα τμήματα AB και $\Gamma\Delta$ είναι κάθετα στους τοίχους. Σφαίρα Σ_1 κινείται πάνω στο δάπεδο, με σταθερή ταχύτητα, μέτρου v, παράλληλη στους τοίχους, και καλύπτει τη διαδρομή από το AB μέχρι το $\Gamma\Delta$ σε χρόνο t_1 . Στη συνέχεια δεύτερη σφαίρα Σ_2 που έχει ταχύτητα μέτρου v συγκρούεται ελαστικά με τον ένα τοίχο υπό γωνία $\phi=60^\circ$ και, ύστερα από διαδοχικές ελαστικές κρούσεις με τους τοίχους, καλύπτει τη διαδρομή από το AB μέχρι το $\Gamma\Delta$ σε χρόνο t_2 . Οι σφαίρες εκτελούν μόνο μεταφορική κίνηση.

Τότε θα ισχύει:

$$\alpha$$
. $t_2 = 2t_1$

$$\beta$$
. $t_2 = 4t_1$

$$\gamma$$
. $t_2 = 8t_1$

Να επιλέξετε τη σωστή πρόταση (μονάδες 2). Να δικαιολογήσετε την επιλογή σας (μονάδες 7).

Δίνονται: ημ
$$60^0 = \frac{\sqrt{3}}{2}$$
, συν $60^0 = \frac{1}{2}$.

Μονάδες 9

ΘΕΜΑ Γ

Ομογενής και ισοπαχής δοκός (ΟΑ), μάζας M=6 kg και μήκους ℓ=0,3 m, μπορεί να στρέφεται χωρίς τριβές σε κατακόρυφο επίπεδο γύρω από οριζόντιο άξονα που περνά από το ένα άκρο της Ο. Στο άλλο της άκρο Α υπάρχει στερεωμένη μικρή σφαίρα Μ

$$\mu \acute{\alpha} \zeta \alpha \varsigma \ m = \frac{M}{2}.$$

ΑΡΧΗ 5ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Γ1. Βρείτε την ροπή αδράνειας του συστήματος δοκούσφαίρας ως προς τον άξονα περιστροφής του.

Μονάδες 6

Ασκούμε στο άκρο Α δύναμη, σταθερού μέτρου $F = \frac{120}{\pi} \, N$, που είναι συνεχώς κάθετη στη δοκό, όπως φαίνεται στο σχήμα.

Γ2. Βρείτε το έργο της δύναμης F κατά την περιστροφή του συστήματος μέχρι την οριζόντια θέση της.

Μονάδες 6

Γ3. Βρείτε την γωνιακή ταχύτητα του συστήματος δοκούσφαίρας στην οριζόντια θέση.

Μονάδες 6

Επαναφέρουμε το σύστημα δοκού-σφαίρας στην αρχική κατακόρυφη θέση του. Ασκούμε στο άκρο Α δύναμη, σταθερού μέτρου $F'=30\sqrt{3}\ N$, που είναι συνεχώς κάθετη στη δοκό.

Γ4. Βρείτε τη γωνία που σχηματίζει η δοκός με την κατακόρυφο τη στιγμή που η κινητική της ενέργεια γίνεται μέγιστη.

Μονάδες 7

<u>ΑΡΧΗ 6ΗΣ ΣΕΛΙΔΑΣ - **Γ΄ ΗΜΕΡΗΣΙΩΝ**</u>

ΘΕΜΑ Λ

Λείο κεκλιμένο επίπεδο έχει γωνία κλίσης φ=30°. Στα σημεία Α και στερεώνουμε τα άχρα δύο ελατηρίων ιδανικών $\mu\epsilon$ σταθερές k₁=60 N/m και k₂=140 N/m αντίστοιχα. Στα ελεύθερα άχρα των ελατηρίων, δένουμε σώμα Σ_1 , μάζας m_1 =2 kg και το κρατάμε στη θέση όπου τα ελατήρια έχουν το φυσικό

τους μήκος (όπως φαίνεται στο σχήμα).

Τη χρονική στιγμή t_0 =0 αφήνουμε το σώμα Σ_1 ελεύθερο.

Δ1. Να αποδείξετε ότι το σώμα Σ_1 εκτελεί απλή αφμονική ταλάντωση.

Μονάδες 5

Δ2. Να γράψετε τη σχέση που δίνει την απομάκουνση του σώματος Σ₁ από τη θέση ισορροπίας του σε συνάρτηση με το χρόνο. Να θεωρήσετε θετική φορά τη φορά από το Α προς το Β.

Μονάδες 7

Κάποια χρονική στιγμή που το σώμα Σ_1 βρίσκεται στην αρχική του θέση, τοποθετούμε πάνω του (χωρίς αρχική ταχύτητα) ένα άλλο σώμα Σ_2 μικρών διαστάσεων μάζας m_2 =6 kg. Το σώμα Σ_2 δεν ολισθαίνει πάνω στο σώμα Σ_1 λόγω της τριβής που δέχεται από αυτό. Το σύστημα των δύο σωμάτων κάνει απλή αρμονική ταλάντωση.

Δ3. Να βρείτε τη σταθερά επαναφοράς της ταλάντωσης του σώματος Σ_2 .

ΑΡΧΗ 7ΗΣ ΣΕΛΙΔΑΣ - Γ΄ ΗΜΕΡΗΣΙΩΝ

Δ4. Να βρείτε τον ελάχιστο συντελεστή οριακής στατικής τριβής που πρέπει να υπάρχει μεταξύ των σωμάτων Σ_1 και Σ_2 , ώστε το Σ_2 να μην ολισθαίνει σε σχέση με το Σ_1 .

Δίνονται: ημ30⁰ =
$$\frac{1}{2}$$
, συν30⁰ = $\frac{\sqrt{3}}{2}$, g = $10\frac{\text{m}}{\text{s}^2}$.

Μονάδες 7

ΟΔΗΓΙΕΣ (για τους εξεταζομένους)

- Στο τετράδιο να γράψετε μόνο τα προκαταρκτικά (ημερομηνία, εξεταζόμενο μάθημα). Να μην αντιγράψετε τα θέματα στο τετράδιο.
- 2. Να γράψετε το ονοματεπώνυμό σας στο πάνω μέρος των φωτοαντιγράφων αμέσως μόλις σας παραδοθούν. Δεν επιτρέπεται να γράψετε καμιά άλλη σημείωση. Κατά την αποχώρησή σας να παραδώσετε μαζί με το τετράδιο και τα φωτοαντίγραφα.
- 3. Να απαντήσετε στο τετοάδιό σας σε όλα τα θέματα.
- **4.** Να γράψετε τις απαντήσεις σας **μόνο** με μπλε ή **μόνο** με μαύρο στυλό. Μπορείτε να χρησιμοποιήσετε μολύβι μόνο για σχέδια, διαγράμματα και πίνακες.
- 5. Να μη χρησιμοποιήσετε χαρτί μιλιμετρέ.
- 6. Κάθε απάντηση τεμμηριωμένη είναι αποδεκτή.
- 7. Διάρκεια εξέτασης: τρεις (3) ώρες μετά τη διανομή των φωτοαντιγράφων.
- 8. Χρόνος δυνατής αποχώρησης: 10.00 π.μ.

ΚΑΛΗ ΕΠΙΤΥΧΙΑ ΤΕΛΟΣ ΜΗΝΥΜΑΤΟΣ