- در این پروژه یک مدل ساده با دو لایه LSTM و دو لایه Dense داریم و داده های ورودی ما قیمت سهام و مقدار حجم میباشد و لیبل داده ها مقدار درصد تغییر قیمت روز بعد نسبت به امروز میباشد.
- برای ساخت داده های ورودی و لیبل به این صورت عمل کردم که مقدار درصد تغییر را بدست آورده و در صورتی که بین ۵- و ۵+ درصد تغییر کرده بود از داده های این روز استفاده میکنیم و اگر خارج این بازه بود از این نقطه برای آمورش مدل استفاده نمیشود.
 - خلاصه مدل ساخته شده:

Model: "sequential_1"		
Layer (type)	Output Shape	Param #
lstm_2 (LSTM)	(None, 2, 50)	10400
lstm_3 (LSTM)	(None, 50)	20200
dense_2 (Dense)	(None, 10)	510
dense_3 (Dense)	(None, 1)	11
Total params: 31,121		
Trainable params: 31,121		
Non-trainable params: 0		

• در ادامه به بررسی مدل روی داده های سهم های مختلف میپردازیم:

√ خودرو:

💠 در این قسمت به بررسی پراکندگی کلی داده ها (نرمال شده) میپردازیم.

💠 در این بخش مقدار loss مدل را در زمان آموزش مدل می بینیم.

✓ وبصادر:

💠 در این قسمت به بررسی پراکندگی کلی داده ها (نرمال شده) میپردازیم.

🍫 در این بخش مقدار loss مدل را در زمان آموزش مدل می بینیم.

✓ شتران:

💠 در این قسمت به بررسی پراکندگی کلی داده ها (نرمال شده) میپردازیم.

💠 در این بخش مقدار loss مدل را در زمان آموزش مدل می بینیم.

✓ فملى:

💠 در این قسمت به بررسی پراکندگی کلی داده ها (نرمال شده) میپردازیم.

💠 در این بخش مقدار loss مدل را در زمان آموزش مدل می بینیم.

• ساختار کلی مدل:

```
model = Sequential()
model.add(LSTM(units=50, return_sequences=True, dropout=0.2))
model.add(LSTM(units=50, return_sequences=False))
model.add(Dense(10))
model.add(Dense(1))
model.compile(optimizer='adam', loss= tf.keras.losses.MeanAbsoluteError(), metrics=['acc'])
```