The okicmd and okithm Packages

Taihei Oki

April 27, 2020

1 The okicmd Package

1.1 Letters

Input	Output	IATEX equivalent
1	ℓ	\ell
\ell	l	1
\epsilon	arepsilon	\varepsilon
\varepsilon	ϵ	\epsilon
\phi	arphi	\varphi
\varphi	ϕ	\phi

1.2 Parentheses

Input	Output	LATEX (almost) equivalent
\prn{\cdot}	(.)	\left(\cdot\right) ¹
\prn*{\cdot}	(\cdot)	(\cdot)
\prn[\big]{\cdot}	(\cdot)	\bigl(\cdot\bigr)
\prn[\Big]{\cdot}	(\cdot)	\Bigl(\cdot\Bigr)
\prn[\bigg]{\cdot}	(\cdot)	\biggl(\cdot\biggr)
\prn[\Bigg]{\cdot}	$\left(\cdot\right)$	\Biggl(\cdot\Biggr)
\curl{\cdot}	$\{\cdot\}$	\left\{\cdot\right\}
\sqbr{\cdot}	[.]	\left[\cdot\right]
\agbr{\cdot}	$\langle \cdot \rangle$	\left\langle\cdot\right\rangle
\dbbr{\cdot}	$\llbracket \cdot rbracket$	\left\llbracket\cdot\right\rrbracket
<pre>\pipe{\cdot}</pre>	Ī•Ī	\left \cdot\right
\dbpp{\cdot}	$\ \cdot\ $	\left\ \cdot\right\
\floor{\cdot}	$\lfloor \cdot \rfloor$	\left\lfloor\cdot\right\rfloor
\ceil{\cdot}	آ٠J	\left\lceil\cdot\right\rceil

 $[\]label{left(\normalized)} $$ The exactly equivalent Lagrange \equivalent \equivalent Lagrange \equivalent \equiv$

1.3 Logic

Input	Output	ĿTEX equivalent
\bigland	\wedge	\bigwedge
\biglor	V	\bigvee
a \defeq b	$a \coloneqq b$	a \coloneqq b
a \eqdef b	b =: a	a \eqqcolon b
P \defiff Q	$P \stackrel{\mathrm{def}}{\iff} Q$	<pre>P \overset{\mathrm{def}}{\iff} Q</pre>

1.4 Sets

Input	Output	IATEX (almost) equivalent
\set{a \in S}	$\{a \in S\}$	\left\{a \in S\right\}
\set{a \in S}[a^2 = 1]	$\left\{a \in S \mid a^2 = 1\right\}$	<pre>\left\{a \in S\middle a^2 = 1\right\}^2</pre>
\card{X}	X	\left X\right
X \symdif Y	$X \triangle Y$	<pre>X \mathbin{\triangle} Y</pre>
\setN	\mathbb{N}	\mathbb{N}
\setZ	${\mathbb Z}$	\mathbb{Z}
\setQ	$\mathbb Q$	\mathbb{Q}
\setR	\mathbb{R}	\mathbb{R}
\setC	$\mathbb C$	\mathbb{C}
\setH	\mathbb{H}	\mathbb{H}
\setF	\mathbb{F}	\mathbb{F}
\setK	\mathbb{K}	\mathbb{K}
\setZp	$\mathbb{Z}_{\geq 0}$	\mathbb{Z}_{\ge0}
\setQp	$\mathbb{Q}_{\geq 0}^-$	\mathbb{Q}_{\ge0}
\setRp	$\mathbb{R}_{\geq 0}^-$	$\mathbb{R}_{\leq 0}$
\setNpp	$\mathbb{N}_{>0}^-$	\mathbb{N}_{<>0}
\setZpp	$\mathbb{Z}_{>0}$	\mathbb{Z}_{>0}
\setQpp	$\mathbb{Q}_{>0}$	\mathbb{Q}_{<>0}
\setRpp	$\mathbb{R}_{>0}$	\mathbb{R}_{<>0}

1.5 Maps

Input	Output	LATEX (almost) equivalent
\doms{X}{Y}	$X \to Y$	{X}\to{Y}
\funcdoms{f}{X}{Y}	$f:X\to Y$	<pre>{f}\vcentcolon{X}\to{Y}</pre>
\restr{f}{S}	$f _S$	\left.f\right _{S}
\id_K	id_K	\operatorname{id}_K
\dom f	$\operatorname{dom} f$	\operatorname{dom} f
\cod f	$\operatorname{cod} f$	\operatorname{cod} f
\supp f	$\operatorname{supp} f$	\operatorname{supp} f

The exactly equivalent LATEX code is \mathopen{\left\{\vphantom{a \in Sa^2 = 1}\kern-\nulldelimiterspace\right.}a \in S\mathrel{\left.\kern-\nulldelimiterspace\vphantom{a \in Sa^2 = 1}\middle|\kern-\nulldelimiterspace\right.}a^2 = 1\mathclose{\left.\kern-\nulldelimiterspace\vphantom{a \in Sa^2 = 1}\right\}}. This is the same for other parenthesis commands with middle bars.

1.6 Lattices

Input	Output	ĿT _E X equivalent
x \meet y x \join y	$\begin{array}{c} x \wedge y \\ x \vee y \end{array}$	<pre>x \mathbin{\wedge} y x \mathbin{\vee} y</pre>
\bigmeet	\ \ \	\bigwedge
\bigjoin	V	\bigvee

1.7 Algebra

Input	Output	LATEX (almost) equivalent
\Hom(G)	$\operatorname{Hom}(G)$	\operatorname{Hom}(G)
∖End R	$\operatorname{End} R$	\operatorname{End} R
\Aut_k K	$\operatorname{Aut}_k K$	\operatorname{Aut}_k K
$\gcd\{a, b\}$	$\langle a,b \rangle$	\left\langlea, b\right\rangle
\gen{a, b}[ab = e]	$\langle a,b \mid ab = e \rangle$	<pre>\left\langlea, b\middle ab = e\right\rangle</pre>
\abel{G}	$G_{ m ab}$	G_{\mathrm{ab}}
$\operatorname{Comm}\{G\}$	[G,G]	<pre>\left[G, G\right]</pre>
\ord G	$\operatorname{ord} G$	\operatorname{ord} G
\sym_n	\mathfrak{S}_n	\mathfrak{S}_n
\sgn(\sigma)	$\operatorname{sgn}(\sigma)$	\operatorname{sgn}(\sigma)
\mult{R}	$R^{ imes}$	R^{\times}
$M_{m,n}(R)$	$M_{m,n}(R)$	\operatorname{M}_{m,n}(R)
$\GL_n(R)$	$\mathrm{GL}_n(R)$	\operatorname{GL}_n(R)
$\SL_n(R)$	$\mathrm{SL}_n(R)$	\operatorname{SL}_n(R)
\0(n)	$\mathrm{O}(n)$	\operatorname{0}(n)
\SO(n)	SO(n)	\operatorname{SO}(n)
$\U(n)$	$\mathrm{U}(n)$	\operatorname{U}(n)
\SU(n)	SU(n)	\operatorname{SU}(n)
$\GL(q)$	$\mathrm{GL}(q)$	\operatorname{GL}(q)
L \extends K	L / K	L \mathbin{/} K

1.8 Number Theory

Input	Output	LATEX (almost) equivalent
\abs{x} \intset{n}	x	\left x\right \left[n\right]
a \coprime b	$n \brack a \perp b$	a \mathrel{\bot} b
a \divides b	$a \mid b$	a \mid b
a \ndivides b	$a \nmid b$	a \nmid b

1.9 Linear Algebra

Input	Output
\tr A	$\operatorname{tr} A$
\rank A	$\operatorname{rank} A$
\trank A	$\operatorname{t-rank} A$
\Pf A	$\operatorname{Pf} A$
$\widetilde{a_1}, \operatorname{ldots}, a_n)$	$\operatorname{diag}(a_1,\ldots,a_n)$
\blockdiag(A_1, \ldots, A_n)	block-diag (A_1,\ldots,A_n)
<pre>\vectorize(A)</pre>	$\operatorname{vec}(A)$
\Row(A)	Row(A)
\Col(A)	$\mathrm{Col}(A)$
\onevec	11
\trsp{A}	$A^{ op}$
\adjo{A}	A^*
\inpr{x}{y}	$\langle x,y \rangle$

1.10 Analysis

Input	Output
\intoo{a, b}	(a,b)
\intoc{a, b}	(a, b]
\intco{a, b}	[a,b)
\intcc{a, b}	[a,b]
\e	e
\d	d
$\displaystyle \operatorname{dif}\{f\}\{x\}$	$\frac{\mathrm{d}f}{\mathrm{d}x}$
$\pdif{f}{x}$	$\frac{\partial f}{\partial x}$
$\dif{f}{x}$	$\frac{\mathrm{d}f}{\mathrm{d}x}$
\dpdif{f}{x}	$\frac{\partial f}{\partial x}$

1.11 Complex Analysis

Input	Output
\i	i
∖Re z	$\operatorname{Re} z$
\Im z	$\operatorname{Im} z$
\Arg z	$\operatorname{Arg} z$
\Loc z	$\operatorname{Log} z$
\Sin z	$\operatorname{Sin} z$
\Cos z	$\cos z$
\Tan z	$\operatorname{Tan} z$
$\Res_{z=0} f(z)$	$\operatorname{Res}_{z=0} f(z)$

1.12 Optimization

Input	Output
<pre>\argmin_{x \in S} f(x) \argmax_{x \in S} f(x) \Order(n)</pre>	$\underset{\text{O}(n)}{\operatorname{argmin}_{x \in S} f(x)}$
\order(n)	o(n)

2 The okithm Package

2.1 Theorems

If the language is set to Japanese like by \usepackage [main = japanese] {babel}, okithm will translate all the environment titles (Theorem, Definition, etc.) into Japanese. You can disable theorems by giving the option notheorem to okicmd.

```
1 \begin{theorem}[Awesome theorem]
    The square root \scriptstyle \ of two is irrational.
  \end{theorem}
5 \begin{definition}[Coprime]
    Integers $a$ and $b$ are said to be \emph{coprime} if their greatest common
    divisor is one.
7 \end{definition}
  \begin{lemma}
    If a and b are coprime, so are a^2 and b^2.
11 \end{lemma}
12
  \begin{proposition}
    If \sqrt{2} = a/b, then a^2 = 2b^2.
  \end{proposition}
15
16
17 \begin{corollary}
    If $\sqrt{2} = a/b$ with $a$ and $b$ being coprime, then $a$ is even.
18
19 \end{corollary}
20
    If a = 2 and b = 1, then a is even but \left| \frac{2}{ne} \right|
22
23 \end{example}
25 \begin{remark}
    Note that $a$ and $b$ must be integers.
26
27 \end{remark}
29 \begin{proof}[of Awesome theorem]
    Suppose to the contrary that \sqrt{2} = a/b with coprime $a$ and $b$.
    Then both $a$ and $b$ are even, which contradicts the assumption.
32 \end{proof}
```

Theorem 2.1 (Awesome theorem). The square root $\sqrt{2}$ of two is irrational.

Definition 2.2 (Coprime). Integers a and b are said to be *coprime* if their greatest common divisor is one.

Lemma 2.3. If a and b are coprime, so are a^2 and b^2 .

Proposition 2.4. If $\sqrt{2} = a/b$, then $a^2 = 2b^2$.

Corollary 2.5. If $\sqrt{2} = a/b$ with a and b being coprime, then a is even.

Example 2.6. If a = 2 and b = 1, then a is even but $\sqrt{2} \neq a/b$.

Remark 2.7. Note that a and b must be integers.

Proof (of Awesome theorem). Suppose to the contrary that $\sqrt{2} = a/b$ with coprime a and b. Then both a and b are even, which contradicts the assumption.

2.2 Algorithms

You can disable algorithms by setting the option noalgorithm.

```
| \begin{algorithmic} [1] | \lambda \limbda \
```

2.3 Optimization Problems

You can change minimize, maximize and subject to into min, max and s.t., respectively, by setting the option optstyle = short.