a) Longest Common Subsequence

A subsequence is a sequence that appears in the same relative order, but not necessarily contiguous. In LCS, we have to find the Longest Common Subsequence that is in the same relative order.

In the give question, let the name of Group Member 1 is **D**anish and Group member 2 is Salman, so:

```
2
                           3
                                      5
i
                                A
0
    X_i
            0
                 0
                       0
                            0
                                  0
                                       0
1
    A
                       0
    B
2
3
            0
            0
5
    D
            0
6
            0
7
     B
```

LCS-LENGTH(X, Y)

```
1 m = X.length
 2 \quad n = Y.length
    let b[1..m, 1..n] and c[0..m, 0..n] be new tables
     for i = 1 to m
 4
          c[i,0] = 0
 5
     for j = 0 to n
          c[0, j] = 0
     for i = 1 to m
 8
 9
          for j = 1 to n
10
               if x_i == y_i
                    c[i, j] = c[i-1, j-1] + 1

b[i, j] = "\"
11
12
               elseif c[i - 1, j] \ge c[i, j - 1]
13
                    c[i, j] = c[i - 1, j]
b[i, j] = "\uparrow"
14
15
               else c[i, j] = c[i, j - 1]
b[i, j] = "\leftarrow"
16
17
18
     return c and b
```

```
PRINT-LCS(b, X, i, j)

1 if i == 0 or j == 0

2 return

3 if b[i, j] == \text{``\[]}

4 PRINT-LCS(b, X, i - 1, j - 1)

5 print x_i

6 elseif b[i, j] == \text{``\[]}

7 PRINT-LCS(b, X, i - 1, j)

8 else PRINT-LCS(b, X, i, j - 1)
```

(b) Shortest-Common-Supersequence

Example Problem

S1 = "abdul"

S2 = "muhammad"

Now we first need to find the LCS of both strings by dynamic programming approach.

Now for the shortest common supersequence we need to find the following;

1) Length of shortest common supersequnce

Length of SCS = (length of S1 + length of S2) - Length of LCS

$$=(5+8) - 2$$

= 11

So in our example the length of SCS will be 11

Find SCS:

Note:

- 1. Add LCS characters only once.
- 2. Assume first common character belongs to LCS character.
- Add non LCS characters in order of either S1 then S2 or vice versa.

SCS = muhabmmadul

So "muhabmmadul" is the SCS in our example of length **11**

Algorithm

```
int p1=0,p2=0;
    for(char c: lcs)
    while(str1[p1]!=c) //Add all non-LCS chars from str1
        ans += str1[p1++];
    while(str2[p2]!=c) //Add all non-LCS chars from str2
        ans += str2[p2++];
    ans += c; //Add LCS-char and increment both ptrs
    ++p1
    ++p2
```

Return ans

c) Longest Increasing subsequence

Alan Di
Algo Assignment #3 Roll No. of Date:
TO OF MAIL
Problem# longer of Member # 1 = 18K-0264
(R) 4 Proceeding Subsequences
10
Algorithm usels-
1/:\
L(j) = 1 + max(L(j)) where Dejet and array[j] & array[j]; Solution: Solution:
Solution: Making making making making making making making making
Steration was new away of some cope will
Solution: Making new away of same size with all valves of same size with a
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1
2 1 2 1 1 1
* iteration #20) :=2, j=0 => array[j]> array[j], j++
iteration # 2(i) i=2, j=1 => army[j] > ormy[j], j++, i==j, non :tanton
* iteration #3(1) i=3, j=0=> amay(j)> amay[i], j++
· iteration #3(ii) i=3, j=1=> array[j]> array[j], j++
iteration #3 (iii) i=3,j=d=> array[9]) array[j], j++, i==j, new Herdish
"Hexation # 4(i) i=4, j=0 => areay[i] < array[i], adol 1, j++
1 2 1 1 2
Heration # 4(0) 9=4, =1 =) array[i] comay[i], add 1 to the position of jtt
(1) =4 == => array[i] (array[i] jth position
Hention # 4(111) i=4, j=2 => army[j] (array[i] the position but we) jew
distributed Page No.
most value present

iteration #4(iv)		Date:		
#4(iv)	i=4 j=3=) aray[i] Larray[i]	we didn't add because it is is many value alerady. It's is is present,		
So longet	Common SULSequence is=	3 new iteration		

d) Levenshtein-Distance

The minimum edit distance between two strings is the minimum number of editing operations:

- Insertion
- Deletion
- Substitution

Needed to transform one into the other.

Examples include Spell correction, computational biology etc.

Normally, each operation has cost of 1. However, in Levenshtein, the substitution cost can be taken as 2.

For two strings X of length n Y of length m. We define D(i,j) the edit distance between X[1..i] and Y[1..i] i.e., the first i characters of X and the first j characters of Y. The edit distance between X and Y is thus D(n,m).

Algorithm

```
\label{eq:continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous_continuous
```

Example: Transform "PLASMA" into "ALTRUISM"

The steps are

Step	Comparison	Edit necessary	Total Editing
1.	"" to ""	no edits necessary!	"" to "" in 0 edits
2.	"P" to "A"	replace: +1 edit	"P" to "A" in 1 edit
3.	"L" to "L"	no edits necessary!	"PL" to "AL" in 1 edit
4.	"A" to "T"	replace: +1 edit	"PLA" to "ALT" in 2 edits
5.	"A" to "R"	insert: +1 edit	"PLA" to "ALTR" in 3 edits
6.	"A" to "U"	insert: +1 edit	"PLA" to "ALTRU" in 4 edits
7.	"A" to "I"	insert: +1 edit	"PLA" to "ALTRUI" in 5 edits
8.	"S" to "S"	no edits necessary!	"PLAS" to "ALTRUIS" in 5 edits
9.	"M" to "M"	no edits necessary!	"PLASM" to "ALTRUISM" in 5 edits
10.	"A" to "M"	delete: +1 edit	"PLASMA" to "ALTRUISM" in 6 edits

The above steps are shown as the yellow blocks below with the solid red arrows pointing in the opposite direction from the process above:

	-								
	***	А	L	Т	R	U	1	S	M
	0	1	2	3	4	5	6	7	8
Р	1	1	2	3	4	5	6	7	8
L	2	2	1	2 4	□ 3 €	_ ⁴ ⋉	5	6	7
А	3	2	2	2	3 🕇	4	5	6	7
s	4	3	3	3	3	4	5	5	6
м	5	4	4	4	4	4	5	6	5
А	6	5	5	5	5	5	5	6	6

```
e) Matrix Chain Multiplication
   Input: p[] = {40, 20, 30, 10, 30}
   Output: 26000
   There are 4 matrices of dimensions 40x20, 20x30, 30x10 and 10x30.
   Let the input 4 matrices be A, B, C and D. The minimum number of
   multiplications are obtained by putting parenthesis in following way
   (A(BC))D --> 20*30*10 + 40*20*10 + 40*10*30
   Input: p[] = {10, 20, 30, 40, 30}
   Output: 30000
   There are 4 matrices of dimensions 10x20, 20x30, 30x40 and 40x30.
   Let the input 4 matrices be A, B, C and D. The minimum number of
   multiplications are obtained by putting parenthesis in following way
   ((AB)C)D --> 10*20*30 + 10*30*40 + 10*40*30
   Input: p[] = \{10, 20, 30\}
   Output: 6000
   There are only two matrices of dimensions 10x20 and 20x30. So there
   is only one way to multiply the matrices, cost of which is 10*20*30
#include <bits/stdc++.h>
```

```
using namespace std;
// Matrix Ai has dimension p[i-1] x p[i]
// for i = 1..n
int MatrixChainOrder(int p[], int i, int j)
    if (i == j)
       return 0;
    int k;
    int min = INT MAX;
    int count;
    // place parenthesis at different places
    // between first and last matrix, recursively
    // calculate count of multiplications for
    // each parenthesis placement and return the
    // minimum count
    for (k = i; k < j; k++)
        count = MatrixChainOrder(p, i, k)
                + MatrixChainOrder(p, k + 1, j)
                + p[i - 1] * p[k] * p[j];
        if (count < min)
            min = count;
    }
```

f) Knapsack Problem

Given a set 'S' of 'n' items,

such that each item i has a positive value vi and positive weight wi

The goal is to find maximum-benefit subset that does not exceed the given weight W.

Algorithm

```
\begin{split} &\text{Knapsack}(j,w) \\ &\text{for } i \leftarrow 0 \text{ to } n \\ & \qquad \qquad M[i,0] \leftarrow 0 \\ &\text{for } w \leftarrow 0 \text{ to } W \\ & \qquad \qquad M[0,w] \leftarrow 0 \\ &\text{for } j \leftarrow 1 \text{ to } n \\ & \qquad \qquad \text{for } w \leftarrow 0 \text{ to } W \\ & \qquad \qquad \text{if } w_j > w \\ & \qquad \qquad M[j,w] = M[j-1,w)) \\ & \qquad \qquad \text{else } M[j,w] \leftarrow \text{MAX}(v_j + M[j-1,w-w_j], \\ M[j-1,w]) \\ &\text{return } M[n,W] \end{split}
```

Problem Question:

The maximum benefit/value = 11

The selected items' indexes are: $s_i = [1,0,0,1,0]$

g) Partition Problem

Given a set of positive integers, check if it can be divided into two subsets with equal sum.

First. The sum of all elements in the set is calculated. If sum is odd, we can't divide the array into two sets. If sum is even, check if a subset with sum/2 exists or not.

Let the first three alphabets converted to numbers:

Group member 1: Abid 1,2,9

Group member 2: Adam 1,4,1

Set= 1,2,9,1,4,1

Sum=18 (Since the sum is even, so partition might be possible)

Sum/2=9

We will make table of size 9, and if the last element results in True, then the partition is possible, otherwise not.

This somewhat resembles to the 0/1 knapsack problem.

	6	7	8	9
F	F	F	F	F
F	F	F	F	F
F	F	F	F	F
F	F	F	F	Т
F	F	F	F	Т
т	т	т	Т	Т
т	т	т	т	т
	F F F	F F F F T T	F F F F F F F T T T	F F F F F F F F F F F F F F F F F F F

The last box of the table is true, that shows that the partition is possible.

The result showed that set can be partitioned into $S1 = \{9\}$, and $S2 = \{1,2,1,4,1\}$, with each subset having a sum of 9. However, note that the size of sets are not equal.

h) Rod Cutting Problem

Rod cutting problem is a type of allocation problem. Allocation problem involves the distribution of resources among the competing alternatives in order to minimize the total costs or maximize total return (profit).

In the rod cutting problem we have given a rod of length n, and an array that contains the prices of all the pieces smaller than n, determine the maximum profit you could obtain from cutting up the rod and selling its pieces.

Length[] = {1,2,3,4,5,6,7,8}

price[] = {1,5,8,9,10,16,18,20}

Rod Length: 8

Price (i)	Length (i)	0	1	2	3	4	5	6	7	8
1	1	0	1	2	3	4	5	6	7	8
5	2	0	1	5	6	10	11	15	16	20
8	3	0	1	5	8	10	13	16	17	21
6	4	0	1	5	8	10	13	16	17	21
10	5	0	1	5	8	10	13	16	17	21
16	6	0	1	5	8	10	13	17	17	21
18	7	0	1	5	8	10	13	17	18	19
20	8	0	1	5	8	10	13	17	18	20

Maximum Profit = 20

Selected Pieces = 8 pieces of Rod Length 2, to get maximum profit for rod length 20.

i) Coin Change Making Problem

The coin change problem addresses the question of finding the minimum number of coins (of certain denominations) that add up to a given amount of money. It is special case of integer knapsack problem. Let C[p] be the minimum number of coins of denominations d1, d2, . . . , dk needed to make change for p cents.

$$C[p] = \begin{cases} 0 & \text{if } p = 0 \\ & \text{mini } \{1 + C[p - di]\} \end{cases}$$
 if $p > 0$

```
CHANGE(d, k, n)
1 \quad C[0] \leftarrow 0
2 for p \leftarrow 1 to n
3
            min \leftarrow \infty
            for i \leftarrow 1 to k
4
                if d[i] \leq p then
5
                    if 1 + C[p - d[i]] < min then
6
                        min \leftarrow 1 + C[p - d[i]]
7
                        coin \leftarrow i
8
            C[p] \leftarrow min
9
            S[p] \leftarrow coin
10
11 return C and S
```

Make-Change(S, d, n)

- 1 while n > 02 Print S[n]
- $3 \qquad n \leftarrow n d[S[n]]$

All coins 1,5,6, and 8
Coin 1,5 and 6
Coin 1 and 5
Coin1
No coin

Coin	Weight													
	0	1	2	3	4	5	6	7	8	9	10	11	12	13
8	0	1	2	3	4	1	1	2	1	2	2	2	2	2
6	0	1	2	3	4	1	1	2	3	4	2	2	3	4
5	0	1	2	3	4	1	2	3	4	5	2	3	4	5
1	0	1	2	3	4	5	6	7	8	9	10	11	12	13
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

j) Word Break

Given an input string and a dictionary of words, find out if the input string can be segmented into a space-separated sequence of dictionary words.

We will try to search from the left of the string to find a valid word when a valid word is found, we will search for words in the next part of that string.

For Word Break Problem, S = {i, like, ice, cream, icecream, mobile, apple}

INPUT:

Ilikeapple

OUTPUT:

i like apple

		i	I	i	k	е	а	р	р	I	е
		0	1	2	3	4	5	6	7	8	9
i	0	T	F	F	F	Т	F	F	F	F	_
1	1		F	F	F	Т	F	F	F	F	F
i	2			Т	F	F	F	F	F	F	F
k	3				F	F	F	F	F	F	F
е	4					F	F	F	F	F	F
а	5						F	F	F	F	Т
р	6							F	F	F	F
р	7								F	F	F
ı	8									F	F
е	9										F