Dissecting green returns

Ľuboš Pástor, Robert F. Stambaugh, Lucian A. Taylor (JFE, 2022)

1.Introduction

Past performance is a popular marketing tool, and indeed a number of studies report superior historical returns to sustainable strategies (e.g., Edmans, 2011; Nagy et al., 2016; In et al., 2019).

- Warning: past performance does not necessarily predict future performance.
- → Q: Should green stocks' recent outperformance lead one to expect high green returns going forward?
- No, likely reflects an unanticipated increase in environmental concerns: bad news about climate change→green stocks >brown←hedges against climate shocks.

1.Introduction

Address this question empirically, guided by the equilibrium model of Pástor et al. (2021, henceforth PST).

- PST model predicts that green assets have lower expected returns than brown: investors have green tastes, and greener assets are a better hedge against climate risk.

 central: wedge
- green assets can have higher realized returns while agents' demands shift
 unexpectedly in the green direction: investors' demand for green assets
 can increase, directly driving up green asset prices; consumers' demand
 for green products can strengthen—driving up green firms'profits and
 thus their stock prices.

stock expected returns hard to estimate→bond: yield to maturity

- highlights the gap between expected and realized returns in the context of German twin bonds.
- compares the realized performance of green versus brown stocks.
- implements two approaches to estimating the expected return on the green-minus-brown stock portfolio.
- documents the delayed reaction of stock prices to climate news.
- construct the green factor and explore its role in pricing value and momentum.

2.1. measure greenness for U.S. stocks

Stock-level environmental scores--MSCI ESG Ratings data:

- world' s largest provider
- covers more firms than other ESG raters
- the least noisy among the eight ESG data vendors
- MSCI's composite ESG rating is industry-adjusted--choose granular data

E_score (0-10): firm' s weighted-average score across 13 environmental issues related to climate change, natural resources, pollution and waste, and environmental opportunities --resilience to longterm environmental risks.

E_weight (0-100): firms in the same industry, importance of environmental issues relative to social and governance issues.

$$G_{i,t-1} = -(10 - E_score_{i,t-1}) \times E_weight_{i,t-1}/100,$$
 (1)

2.1. measure greenness for U.S. stocks

greenness score of firm i at the beginning of month t as:

i's most recent MSCI ratings date before month t

$$G_{i,t-1} = -(10 - E_score_{i,t-1}) \times E_weight_{i,t-1} / 100,$$
 (1)

- $10 E_score_{i,t-1}$ measures how far the company is from a perfect environment score of 10.
- $(10 E_score_{i,t-1}) \times E_weight_{i,t-1}$ measures how brown the firm is
- Interaction of how badly the firm scores on environmental issues and how large the environmental impacts are for the industry' s typical firm

eg: oil and gas companies have larger environmental impacts than consumer retail companies.

2.Research design 2.1. measure greenness for U.S. stocks

Environmental score:

$$g_{i,t} = G_{i,t} - \overline{G}_t,$$

- \overline{G}_t : value-weighted average of $G_{i,t}$ across all firms i.
- measures the company's greenness relative to the market portfolio

$$\dot{w_t}g_t=0$$

 w_t and g_t denote the vectors containing stocks' market weights and $g_{i,t}$ values

GMB: monthly return diff greenness scores in the top third-bottom third.

2.2. estimating the expected return

Define the equity greenium as the expected return on the GMB spread:

- uses ex ante data: implied cost of capital (ICC), which is the discount rate that equates the stock's current price to the present value of expected future cash flows
- uses ex post data: purged of unanticipated shocks to quantities affecting the return--PST green demand--increased concerns about climate change--climate concern shocks and earnings news shocks

2.2. estimating the expected return

uses ex ante data: implied cost of capital (ICC)-Hou(2012)

 r_e: the internal rate of return that equates the present value of future dividends to the current stock price:

$$P_{i,t} = B_{i,t} + \sum_{\tau=1}^{\infty} \frac{E_t[EPS_{i,t+\tau}] - r_e E_t[B_{i,t+\tau}]}{(1+r_e)^{\tau}},$$

$$P_t = B_t + \sum_{\tau=1}^{11} \frac{E_t[(ROE_{t+\tau} - r_e)B_{t+\tau-1}]}{(1 + r_e)^{\tau}} + \frac{E_t[(ROE_{t+12} - r_e)B_{t+11}]}{r_e(1 + r_e)^{11}}.$$

 $EPS_{i,t+\tau}$ is the forecast of earnings per share in year $t+\tau$, and $B_{i,t+\tau}$ is the book value per share; earnings equal ROE times book equity

2.2. estimating the expected return

Inferring expected return from past realizations-PST green demand:

- addresses the general problem of inferring an asset's unconditional expected return, $\mu = E\{r_t\}$, using ex post data.
 - use the asset's sample average return, \overline{r} as the estimate of μ .
 - exploit the additional information in the contemporaneous history of another variable, x_t , that is correlated with the return and for which $E\{x_t\} = 0$ -- x_t : unanticipated change in climate concerns.

$$r_t = a + bx_t + \epsilon_t$$

 $a = \mu$ because x_t has zero mean ex ante. Therefore, we can estimate μ by the sample estimate of a.

2.2. estimating the expected return

$$r_t = a + bx_t + \epsilon_t$$

Estimator 1: \bar{r}

Estimator 2: $\hat{a} = \bar{r} - b\bar{x}$.

- signed $\hat{b}>0$,suppose the realizations of x_t exceed their expectation on average,so that $\bar{x}>0$. $\to \bar{r}$ overstates μ by $b\bar{x}$ on average.
- x_t --Measuring shocks to **climate concerns** and earnings
 - concerns about climate change with the Media Climate Change
 Concerns index (MCCC) of Ardia et al. (2021).(2003.1 2018.6),
 constructed by using data from eight major U.S. newspapers.
 - → measure shocks to climate concerns as prediction errors from AR(1) (36 months)models applied to the underlying MCCC index.

$$\rightarrow x_t : \Delta C_t, \Delta C_{t-1}$$

2.2. estimating the expected return

- x_t --Measuring shocks to climate concerns and **earnings**
 - a large portion of earnings news occurs on days when firms make earnings related announcements (Beyer et al., 2010): quarterly earnings & voluntary forward guidance regarding future earnings.
 - → compute stock returns in excess of the market during the threetrading-day windows
 - → add the excess returns within a given stock-quarter→explains 20%var
 - captures news about **long-term earnings**: analysts' forecasts of each firm's long-run earnings growth rate.
 - \rightarrow i,t: earliest mean analyst forecast in quarter t+1 minus latest in t-1
 - → significantly related to quarterly stock-level returns but explains <1%var

3.1. German government bond yields and returns:

	Green bond	Non-green bond	Difference				
Panel A. Yields to maturity (basis points per year)							
Average	-46.72	-42.09	-4.63				
	(-13.53)	(-10.90)	(-6.19)				
First day	-51.20	-49.60	-1.60				
Last day	-40.60	-34.40	-6.20				
Panel B. Realized returns							
Average	-0.47	-0.59	0.12				
	(-0.35)	(-0.44)	(2.19)				
Cumulative	-1.53	-1.90	0.37				

green bond always has a lower expected return than the non-green bond.

greenium

 the positive average return of the longshort portfolio

3.2. Realized green stock returns:

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Constant	0.65	0.71	0.50	0.47	0.50	0.50	0.55	0.49
	(3.23)	(2.91)	(2.23)	(2.14)	(2.25)	(2.38)	(2.28)	(1.99)
Mkt-RF		-0.05	0.02	0.05	0.01	0.04	-0.00	0.01
		(-0.78)	(0.32)	(0.87)	(0.21)	(0.77)	(-0.05)	(0.23)
SMB			-0.14	-0.11	-0.16	-0.26		
			(-1.49)	(-1.23)	(-1.56)	(-2.59)		
HML			-0.26	-0.18	-0.26	-0.21		
			(-3.36)	(-1.99)	(-3.26)	(-2.60)		
UMD				0.13				
				(2.00)				
LIQ					0.04			
					(0.60)			
RMW						-0.39		
						(-2.90)		
CMA						-0.10		
						(-0.60)		
ME							-0.15	-0.13
							(-1.48)	(-1.28)
I/A							-0.30	-0.25
							(-2.21)	(-1.59)
Roe							0.09	0.02
							(0.99)	(0.20)
Eg								0.12
								(0.67)
Observations	98	98	98	98	98	98	98	98
R^2	0.00	0.01	0.19	0.22	0.19	0.26	0.13	0.14

- This strong performance of GMB cannot be explained by exposures to return factors prominent in the asset pricing literature.
- Its exposures to SMB, HML, and UMD indicate that GMB tilts toward large stocks, growth stocks, and recent winners.

3.3. ICC estimates of the equity greenium

Panel A: ICCs of green and brown portfolios

Green Brown

Weam ICC (%) between the second second

Panel B: ICC spread (equity greenium)

consistently negative equity greenium→-12 bps per month.

$$r_t = a + bx_t + \epsilon_t$$

3.4. Estimates of the equity greenium using past realizations

	Dependent variable					
Independent variable	GMB	return	GMB alpha			
Δ Climate concerns (same month)	4.08	3.75	3.95	3.44		
	(2.70)	(2.69)	(2.79)	(2.70)		
Δ Climate concerns (prev. month)	2.98	2.86	2.64	2.33		
THE SOURCE AND THE SOURCE SECTION TO SERVICE SECTION STATES OF THE SOURCE SECTION SECT	(1.86)	(1.77)	(1.97)	(1.82)		
Earnings announcement returns		0.77		0.63		
		(2.64)		(2.31)		
Δ Earnings forecasts		6.93		14.16		
		(0.44)		(0.96)		
Constant	0.05	-0.04	-0.10	-0.15		
	(0.20)	(-0.15)	(-0.41)	(-0.66)		
Observations	68	68	68	68		
R^2	0.14	0.25	0.14	0.26		

- an increase in climate concerns is worse news for brown stocks than green stocks
- the equity greenium, intercept $\widehat{\alpha}$, -4 bps per month.

3.4. Estimates of the equity greenium using past realizations

Counterfactual GMB performance.

 absent shocks to climate concerns and earnings, GMB' s performance is slightly downward-trending,

3.5. Greenness and individual stock returns

	(1)	(2)	(3)	(4)
$g_{i,t-1}$	0.21	0.00	-0.02	-0.04
	(2.24)	(0.02)	(-0.23)	(-0.41)
$g_{i,t-1} \times \Delta C_t$		0.83	0.81	0.72
		(1.42)	(1.59)	(1.28)
$g_{i,t-1} \times \Delta C_{t-1}$		1.70	1.54	1.65
		(2.66)	(2.78)	(2.68)
[Earnings announcement ret.] $_{i,t}$			0.32	0.32
			(13.28)	(12.38)
$[\Delta \text{ Earnings forecast}]_{i,t}$			5.89	5.91
			(5.02)	(4.58)
Observations	218,208	153,884	133,290	114,355
R^2	0.18	0.11	0.18	0.19
Additional controls	No	No	No	Yes

• absent shocks to climate concerns and earnings, GMB' s performance is slightly downward-trending,

3.6. Industry greenness

the greenness of the firm's industry and the relative greenness of the firm within its industry.

$$g_{i,t} = gAcross_{i,t} + gWithin_{i,t},$$

• $gAcross_{i,t}$ equal to the average $g_{i,t}$ of all firms within the **same industry** as stock i in month t

3.6. Industry greenness

$$g_{i,t} = gAcross_{i,t} + gWithin_{i,t}$$

	(1)	(2)	(3)	(4)
$gAcross_{i,t-1}$	0.25	-0.00	-0.02	-0.05
	(2.14)	(-0.01)	(-0.18)	(-0.39)
$gWithin_{i,t-1}$	0.07	0.02	-0.02	-0.01
	(1.11)	(0.28)	(-0.27)	(-0.11)
$gAcross_{i,t-1} \times \Delta C_t$		1.08	1.05	0.94
		(1.49)	(1.66)	(1.33)
$gWithin_{i,t-1} \times \Delta C_t$		-0.13	-0.08	-0.09
		(-0.28)	(-0.17)	(-0.16)
$gAcross_{i,t-1} \times \Delta C_{t-1}$		2.01	1.86	1.94
		(2.58)	(2.74)	(2.57)
$gWithin_{i,t-1} \times \Delta C_{t-1}$		0.49	0.34	0.56
		(1.05)	(0.70)	(1.00)
[Earnings announcement ret.] $_{i,t}$			0.32	0.32
			(13.28)	(12.38)
$[\Delta \text{ Earnings forecast}]_{i,t}$			5.85	5.88
			(5.01)	(4.57)
Observations	218,208	153,884	133,290	114,355
R^2	0.18	0.11	0.18	0.19
Additional contrls	No	No	No	Yes

• **industry greenness** is the key component of a firm's greenness, capturing both the superior past performance of green stocks as well as the climate-shock source of that performance.

3.7. Delayed stock price reaction to climate news

	ΔC (same month)			Δ	ΔC (prev. month)			
Portfolio	Small	Large	Lg Sm.	Small	Large	Lg Sm.		
GMB	2.83 (1.23)	3.91 (2.46)	1.08 (0.56)	7.49 (2.99)	2.79 (1.74)	-4.70 (-2.35)		
Green	0.03 (0.01)	2.27 (3.19)	2.24 (0.75)	-0.14 (-0.06)	0.62 (0.83)	0.75 (0.28)		
Brown	-1.81 (-0.61)	-1.39 (-1.26)	0.42 (0.15)	-8.49 (-2.71)	-2.35 (-2.10)	6.14 (2.29)		

- the reaction is significantly more delayed in the small-cap segment.
- the effect of climate news on small stocks is limited to brown stocks.

3.8. The green factor-PST

factor's realizations can be estimated month by month by running cross-sectional regressions of market-adjusted excess stock returns on the stocks' greenness, with no intercept.

$$\hat{f}_{gt} = \frac{g'_{t-1}\hat{r}^e_t}{g'_{t-1}g_{t-1}}$$

• where $\tilde{r}_t^e \equiv \tilde{r}_t - \beta_{m,t-1}\tilde{r}_{mt}$ is the vector of stocks' market adjusted excess returns.

	Val	ue	Mome	entum
Constant	-0.71	-0.15	0.66	-0.06
	(-1.93)	(-0.50)	(1.92)	(-0.22)
Mkt-RF	0.14	0.07	-0.37	-0.27
	(1.18)	(0.70)	(-3.75)	(-3.14)
Green factor		-0.80		1.05
		(-4.55)		(6.18)
Observations	98	98	98	98
R^2	0.04	0.35	0.17	0.49

 While exposure to the green factor explains most or all of HML and UMD, the reverse is not true--brown nature of value stocks

5. Conclusion

- the portfolio's recent outperformance vanishes after removing the effects of unexpected increases in climate concerns; the reaction is significantly more delayed in the small-cap segment.
- A two-factor asset pricing model featuring a theoretically motivated green factor absorbs much of the historic underperformance of value stocks in the 2010s.
- Key: new approach to estimate expected return: removes unanticipated shocks from the realized average return→ Future research can apply to estimate expected returns in other settings.