Lecture 25: Conclusion Open Problems

Reminder: A5

Recurrent networks, attention, Transformers

Due on **Tuesday 4/12**, 11:59pm ET

A6

Covers image generation and generative models:

Generative Models: GANs and VAEs

Network visualization: saliency maps, adversarial examples, class

visualizations

Style Transfer

Due Tuesday 4/26, 11:59pm ET

YOU CANNOT USE LATE DAYS ON A6!!!!

Mini-Project Submission

Mini-project due Monday, 4/25 11:59 ET

Submit project here:

https://forms.gle/CauLnF9kTuv6JGZA9

Justin Johnson Lecture 25 - 4 April 18, 2022

Today: Course Recap What's next?

This Course: Deep Learning for Computer Vision

Deep Learning for Computer Vision

Building artificial systems that process, perceive, and reason about visual data

Problem: Semantic Gap

What you see

This image by Nikita is licensed under CC-BY 2.0

Problem: Visual Data is Complex!

Viewpoint

Illumination

This image is CC0 1.0 public domain

Deformation

This image by Umberto Salvagnin is licensed under CC-BY 2.0

Occlusion

This image by jonsson is licensed under CC-BY 2.0

Clutter

This image is CCO 1.0 public domain

Intraclass Variation

This image is CC0 1.0 public domain

Machine Learning: Data-Driven Approach

- 1. Collect a dataset of images and labels
- 2. Use Machine Learning to train a classifier
- 3. Evaluate the classifier on new images

def train(images, labels): # Machine learning! return model def predict(model, test_images): # Use model to predict labels return test_labels

Example training set

Justin Johnson Lecture 25 - 10 April 18, 2022

Model: Deep Convolutional Networks

Krizhevsky, Sutskever, and Hinton, NeurIPS 2012

Justin Johnson Lecture 25 - 11 April 18, 2022

CVPR Papers

Submitted Accepted

Justin Johnson Lecture 25 - 14 April 18, 2022

Justin Johnson Lecture 25 - 15 April 18, 2022

Perceptron

Frank Rosenblatt, ~1957

Perceptron

Frank Rosenblatt, ~1957

Hubel and Wiesel, 1959

Justin Johnson Lecture 25 - 18 April 18, 2022

Justin Johnson Lecture 25 - 19 April 18, 2022

AlexNet

Krizhevsky, Sutskever, and Hinton, 2012

Justin Johnson Lecture 25 - 20 April 18, 2022

AlexNet

Krizhevsky, Sutskever, and Hinton, 2012

2018 Turing Award

Yoshua Bengio

Geoffrey Hinton

Yann LeCun

Justin Johnson Lecture 25 - 21 April 18, 2022

Winter 2022: This class

Justin Johnson Lecture 25 - 22 April 18, 2022

Simple Classifiers: kNN and Linear Classifiers

1-NN classifier

5-NN classifier

Linear Classifiers: y = Wx + b

Optimization with Gradient Descent


```
# Vanilla gradient descent
w = initialize_weights()
for t in range(num_steps):
   dw = compute_gradient(loss_fn, data, w)
   w -= learning_rate * dw
```

This image is CC0 1.0 public domain
Walking man image is CC0 1.0 public domain

Problems with Gradient Descent

Gradient Noise

Justin Johnson Lecture 25 - 25 April 18, 2022

Gradient Descent Improvements

Algorithm	Tracks first moments (Momentum)	Tracks second moments (Adaptive learning rates)	Leaky second moments	Bias correction for moment estimates
SGD	X	X	X	X
SGD+Momentum	✓	X	X	X
Nesterov	✓	X	X	X
AdaGrad	X	✓	X	X
RMSProp	X	✓	✓	X
Adam	✓	✓	✓	✓

Justin Johnson Lecture 25 - 26 April 18, 2022

More Complex Models: Neural Networks

$$f = W_2 \max(0, W_1 x)$$

Justin Johnson Lecture 25 - 27 April 18, 2022

More Complex Models: Neural Networks

$$f = W_2 \max(0, W_1 x)$$

Learns bank of templates

Justin Johnson Lecture 25 - 28 April 18, 2022

More Complex Models: Convolutional Networks

Fully-Connected Layers

Activation Function

Convolution Layers

Pooling Layers

Normalization

$$\hat{x}_{i,j} = \frac{x_{i,j} - \mu_j}{\sqrt{\sigma_j^2 + \varepsilon}}$$

Representing Networks: Computational Graphs

Justin Johnson Lecture 25 - 30 April 18, 2022

Computing Gradients: Backpropagation

Justin Johnson Lecture 25 - 31 April 18, 2022

CNN Architectures

AlexNet

VGG16 VGG19

GoogLeNet

ResNet

CNN Architectures: Efficiency

Canziani et al, "An analysis of deep neural network models for practical applications", 2017

CNN Architectures: Efficiency

ResNeXt:
Grouped convolution

MobileNets: Depthwise / Pointwise Convolution

Justin Johnson Lecture 25 - 34 April 18, 2022

Model Scaling

Starting from a given architecture, how should you scale it up to improve performance?

Tan and Le, "EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks", ICML 2019

Justin Johnson Lecture 25 - 35 April 18, 2022

Model Scaling: RegNets

At same FLOPs, RegNet models get similar accuracy as EfficientNets but are up to 5x faster in training (each iteration is faster)

Radosavovic et al, "Designing Network Design Spaces", CVPR 2020 Dollar et al, "Fast and Accurate Model Scaling", CVPR 2021

Justin Johnson Lecture 25 - 36 April 18, 2022

Deep Learning Hardware and Software

CPU GPU TPU

Static Graphs vs Dynamic Graphs PyTorch vs TensorFlow

Training Networks: Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU $\max(0.1x, x)$

tanh

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

ReLU

 $\max(0,x)$

GELU

$$\approx x\sigma(1.702x)$$

Training Networks: Weight Initialization

```
dims = [4096] * 7
hs = []
x = np.random.randn(16, dims[0])
for Din, Dout in zip(dims[:-1], dims[1:]):
    W = np.random.randn(Din, Dout) / np.sqrt(Din)
    x = np.tanh(x.dot(W))
    hs.append(x)
```

"Just right": Activations are nicely scaled for all layers!

Glorot and Bengio, "Understanding the difficulty of training deep feedforward neural networks", AISTAT 2010

Training Networks: Data Augmentation

Justin Johnson Lecture 25 - 40 April 18, 2022

Training Networks: Regularization

Training: Add randomness

Testing: Marginalize out randomness

Examples:

Batch Normalization Data Augmentation

Fractional pooling

Dropout

DropConnect

Cutout

Stochastic Depth

Mixup

Justin Johnson April 18, 2022 Lecture 25 - 41

Training Neural Networks: Learning Rate Schedules

Justin Johnson Lecture 25 - 42 April 18, 2022

Computer Vision Tasks

Classification

Semantic Segmentation

Object Detection

Instance **Segmentation**

CAT

No spatial extent

GRASS, CAT, TREE, SKY

DOG, DOG, CAT

DOG, DOG, CAT

Multiple Objects

Justin Johnson April 18, 2022 Lecture 25 - 43

Object Detection: Single Stage vs Two Stage

Single-Stage:

FCOS, YOLO, RetinaNet Make all predictions with a CNN

Two-Stage:

Faster R-CNN
Use RPN to predict proposals,
classify them with second stage

Justin Johnson Lecture 25 - 44 April 18, 2022

Semantic Segmentation: Fully Convolutional Network

Downsampling: Pooling, strided convolution

Design network as a bunch of convolutional layers, with downsampling and upsampling inside the network!

Upsampling: linterpolation, transposed conv

Input: 3 x H x W

High-res: $D_1 \times H/2 \times W/2$

High-res: D₁ x H/2 x W/2

Predictions: H x W

Loss function: Per-Pixel cross-entropy

Long, Shelhamer, and Darrell, "Fully Convolutional Networks for Semantic Segmentation", CVPR 2015 Noh et al, "Learning Deconvolution Network for Semantic Segmentation", ICCV 2015

Justin Johnson Lecture 25 - 45 April 18, 2022

Instance Segmentation: Detection + Segmentation

He et al, "Mask R-CNN", ICCV 2017

Justin Johnson Lecture 25 - 46 April 18, 2022

Recurrent Neural Networks: Process Sequences

Justin Johnson Lecture 25 - 47 April 18, 2022

Recurrent Neural Networks: Architectures

Vanilla Recurrent Network

Long Short Term Memory (LSTM)

Justin Johnson Lecture 25 - 48 April 18, 2022

Recurrent Neural Networks: Captioning

A dog is running in the grass with a frisbee

Two giraffes standing in a grassy field

A white teddy bear sitting in the grass

A man riding a dirt bike on a dirt track

Karpathy and Fei-Fei, "Deep Visual-Semantic Alignments for Generating Image Descriptions", CVPR 2015

Attention

Xu et al, "Show, Attend, and Tell: Neural Image Caption Generation with Visual Attention", ICML 2015

Justin Johnson Lecture 25 - 50 April 18, 2022

Self-Attention Layer

One query per input vector

Inputs:

Input vectors: X (Shape: $N_X \times D_X$) Key matrix: W_K (Shape: $D_X \times D_Q$) Value matrix: W_V (Shape: $D_X \times D_V$)

Query matrix: W_Q (Shape: $D_X \times D_Q$)

Computation:

Query vectors: $Q = XW_Q$

Key vectors: $K = XW_K$ (Shape: $N_X \times D_Q$)

Value Vectors: $V = XW_V$ (Shape: $N_X \times D_V$)

Similarities: $E = \mathbf{Q}\mathbf{K}^{\mathsf{T}}$ (Shape: $N_X \times N_X$) $E_{i,j} = \mathbf{Q}_i \cdot \mathbf{K}_j / \operatorname{sqrt}(D_Q)$

Attention weights: A = softmax(E, dim=1) (Shape: $N_X \times N_X$)

Output vectors: Y = AV (Shape: $N_X \times D_V$) $Y_i = \sum_j A_{i,j} V_j$

Processing Sequences

Recurrent Neural Network

Works on **Ordered Sequences**

- (+) Good at long sequences: After one RNN layer, h_T "sees" the whole sequence
- (-) Not parallelizable: need to compute hidden states sequentially

1D Convolution

Works on **Multidimensional Grids**

- (-) Bad at long sequences: Need to stack many conv layers for outputs to "see" the whole sequence
- (+) Highly parallel: Each output can be computed in parallel

Self-Attention

Works on **Sets of Vectors**

- (-) Good at long sequences: after one self-attention layer, each output "sees" all inputs!
- (+) Highly parallel: Each output can be computed in parallel
- (-) Very memory intensive

Attention is all you need: The Transformer

Vaswani et al, "Attention is all you need", NeurIPS 2017

Scaling up Transformers

Model	Layers	Width	Heads	Params	Data	Training
Transformer-Base	12	512	8	65M		8x P100 (12 hours)
Transformer-Large	12	1024	16	213M		8x P100 (3.5 days)
BERT-Base	12	768	12	110M	13 GB	
BERT-Large	24	1024	16	340M	13 GB	
XLNet-Large	24	1024	16	~340M	126 GB	512x TPU-v3 (2.5 days)
RoBERTa	24	1024	16	355M	160 GB	1024x V100 GPU (1 day)
GPT-2	48	1600	?	1.5B	40 GB	
Megatron-LM	72	3072	32	8.3B	174 GB	512x V100 GPU (9 days)
Turing-NLG	78	4256	28	17B	?	256x V100 GPU
GPT-3	96	12,288	96	175B	694GB	?
Gopher	80	16,384	128	280B	10.55 TB	4096x TPUv3 (38 days)
PaLM	118	18,432	48	540B		6144x TPUv4

Chowdhery et al, "PaLM: Scaling Language Modeling with Pathways", arXiv 2022

Justin Johnson Lecture 25 - 54 April 18, 2022

Vision Transformer (ViT)

Dosovitskiy et al, "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", ICLR 2021

<u>Cat image</u> is free for commercial use under a <u>Pixabay license</u>

Justin Johnson Lecture 25 - 55 April 18, 2022

Generative Models

Autoregressive Models directly maximize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{N} p_{\theta}(x_i|x_1,...,x_{i-1})$$

Good image quality, can evaluate with perplexity. Slow to generate data, needs tricks to scale up.

Variational Autoencoders introduce a latent z, and maximize a lower bound:

$$p_{\theta}(x) = \int_{Z} p_{\theta}(x|z)p(z)dz \ge E_{z \sim q_{\phi}(Z|X)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Latent z allows for powerful interpolation and editing applications.

Generative Adversarial Networks give up on modeling p(x), but allow us to draw samples from p(x). Difficult to evaluate, but best qualitative results today

Visualizing and Understanding CNNs

Maximally Activating Patches

Nearest Neighbor

(Guided) Backprop

Synthetic Images via Gradient Ascent

Feature Inversion

Making Art with CNNs

Justin Johnson Lecture 25 - 58 April 18, 2022

Self-Supervised Learning

Context Prediction

Contrastive Learning

Colorization

Justin Johnson Lecture 25 - 59 April 18, 2022

Adding a Dimension: 3D Shapes

Depth Map

Voxel Grid

Pointcloud

Mesh

Implicit Surface

Adding a Dimension: NeRF

Mildenhall et al, "Representing Scenes as Neural Radiance Fields for View Synthesis", ECCV 2020

Adding a Dimension: Deep Learning on Video 3D CNNs Two Stream Networks

Self-Attention

What's Next?

Bigger Models, More Data, More Compute GFLOP per Dollar

GPU (Tensor Core)

Justin Johnson Lecture 25 - 65 April 18, 2022

Amodei et al, "Al and Compute", 2018

Justin Johnson Lecture 25 - 66 April 18, 2022

Two examples that came out since the start of this class:

PaLM: Transformer Language Model with 540B parameters Trained on 780 billion tokens using 6144 TPU-v4 chips

DALL-E 2: Text-to-Image model trained on 650M image/text pairs

Both show qualitative leaps in performance over prior systems

Chowdhery et al, "PaLM: Scaling Language Modeling with Pathways", arXiv 2022 Ramesh et al, "Hierarchical Text-Conditional Image Generation with CLIP Latents", arXiv 2022

Model can explain jokes with zero-shot prompting!

Prompt:

I will explain these jokes:

- (1) The problem with kleptomaniacs is that they always take things literally. Explanation: This joke is wordplay. Someone who "takes things literally" is someone who doesn't fully understand social cues and context, which is a negative trait. But the definition of kleptomania is someone who literally takes things.
- (2) Always borrow money from a pessimist. They'll never expect it back. Explanation: Most people expect you to pay them back when you borrow money, however a pessimist is someone who always assumes the worst, so if you borrow money from them, they will expect that you won't pay them back anyways.

Model can explain jokes with zero-shot prompting!

Input: I tried 10,000 random restarts of my neural network, but I was accused of overfitting. I guess no good seed goes unpunished.

Model can explain jokes with zero-shot prompting!

Input: I tried 10,000 random restarts of my neural network, but I was accused of overfitting. I guess no good seed goes unpunished.

Model Output: This joke is a pun. A neural network is a computer program that can learn from data. A "seed" is a number that is used to initialize a random number generator. A "good seed" is a number that produces a good random number generator. The phrase "no good deed goes unpunished" means that if you do something good, you will be punished for it.

Model can explain jokes with zero-shot prompting!

Input: I was going to fly to visit my family on April 6th. My mom said "Oh great, your step dad's poetry reading is that night!" So now I'm flying in on April 7th.

Model can explain jokes with zero-shot prompting!

Input: I was going to fly to visit my family on April 6th. My mom said "Oh great, your step dad's poetry reading is that night!" So now I'm flying in on April 7th.

Model Output: The joke is that the speaker's mother is trying to get them to go to their step dad's poetry reading, but the speaker doesn't want to go, so they are changing their flight to the day after the poetry reading.

Bigger Models, More Data, More Compute: DALL-E 2

A rabbit detective sitting on a park bench and reading a newspaper in a victorian setting

A shark and a dolphin cruise hand-in-hand with an undersea city in the background

Robot dinosaurs versus monster trucks in the colosseum

Source: https://twitter.com/sama/status/1511724264629678084

Bigger Models, More Data, More Compute, More problems

ML Systems can encode bias Large models can lack common sense Who should control models and data? Bigger Models, More Data, More Compute, More problems

ML Systems can encode bias

Large models can lack common sense Who should control models and data?

Stepping Back: Why Build ML Systems?

Automate decision making, so machines can make decision instead of people.

Ideal: Automated decisions can be cheaper, more accurate, more impartial, improve our lives

Reality: If we aren't careful, automated decisions can encode bias, harm people, make lives worse

Allocative Harms

- Some systems decide how to allocate resources
- If the system is biased, it may allocate resources unfairly or perpetuate inequality
- Examples:
 - Sentencing criminals
 - Loan applications
 - Mortgage applications
 - Insurance rates
 - College admissions
 - Job applications

Barocas et al, "The Problem With Bias: Allocative Versus Representational Harms in Machine Learning", SIGCIS 2017 Kate Crawford, "The Trouble with Bias", NeurIPS 2017 Keynote

Example: Video Interviewing

Technology

A face-scanning algorithm increasingly decides whether you deserve the job

HireVue claims it uses artificial intelligence to decide who's best for a job. Outside experts call it

'profoundly disturbing.'

Source: https://www.washingtonpost.com/technology/2019/10/22/ai-hiring-face-scanning-algorithm-increasingly-decides-whether-you-deserve-job/

https://www.hirevue.com/platform/online-video-interviewing-software

Example Credit: Timnit Gebru

Representational Harms

A system reinforces harmful stereotypes

Justin Johnson Lecture 25 - 79 April 18, 2022

Representational Harms: Image classifiers

A system reinforces harmful stereotypes

Barocas et al, "The Problem With Bias: Allocative Versus Representational Harms in Machine Learning", SIGCIS 2017 Kate Crawford, "The Trouble with Bias", NeurIPS 2017 Keynote

Source: https://twitter.com/jackyalcine/status/615329515909156865 (2015)

Representational Harms: Machine Translation

Source: https://www.reddit.com/r/europe/comments/m9uphb/hungarian_has_no_gendered_pronouns_so_google

Representational Harms: Machine Translation

Justin Johnson Lecture 25 - 82 April 18, 2022

First
woman:
CEO
Barbie =(

Source: https://www.bbc.com/news/newsbeat-32332603

Chief executive officer - Wikipedia en.wikipedia.org

CEO vs. Owner: The Key Differences ... onlinemasters.ohio.edu

How to use 'CEO magic' when tryi... europeanceo.com

Odilon Almeida as President ... businesswire.com

You are the CEO of Your Life - Person... personalexcellence.co

Harvard study: What CEOs do all day enbe,com

CEO doesn't believe in CX ... heartofthecustomer.com

7 Personality Traits Every CEO Shoul... forbes.com

Roeland Baan new CEO of Haldor T ... blog.topsoe.com

Wartime CEOs are not the ideal leaders ... ft.com

Recent results more diverse

Justin Johnson April 18, 2022 Lecture 25 - 84

Representational Harm in Super-Resolution

Input: Low-Resolution Face

Output: High-Resolution Face

Menon et al, "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models", CVPR 2020 Example source: https://twitter.com/Chicken3gg/status/1274314622447820801

Representational Harm in DALL-E 2

Text Prompt: "lawyer"

Ramesh et al, "Hierarchical Text-Conditional Image Generation with CLIP Latents", arXiv 2022 https://github.com/openai/dalle-2-preview/blob/main/system-card.md

Representational Harm in DALL-E 2

Text Prompt: "nurse"

Ramesh et al, "Hierarchical Text-Conditional Image Generation with CLIP Latents", arXiv 2022 https://github.com/openai/dalle-2-preview/blob/main/system-card.md

Task: Gender Classification

Face++

■ IBM

Input: RGB Image

MSFT

Output: {Man, Woman} Prediction

Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", FAT* 2018

Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", FAT* 2018

Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", FAT* 2018

Justin Johnson Lecture 25 - 90 April 18, 2022

Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", FAT* 2018

Justin Johnson Lecture 25 - 91 April 18, 2022

Buolamwini and Gebru, "Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification", FAT* 2018

Justin Johnson Lecture 25 - 92 April 18, 2022

Datasheets for Datasets

Idea: A standard list of questions to answer when releasing a dataset. Who created it? Why? What is in it? How was it labeled?

A Database for Studying Face Recognition in Unconstrained Environments

Labeled Faces in the Wild

Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was there a specific gap trial needed to be filled? Please provide a description.

Labeled Faces in the Wild was created to provide images that can be used to study face recognition in the unconstrained setting where image characteristics (such as pose, illumination, resolution, focus), subject demographic makeup (such as age, gender, race) or appearance (such as hairstyle, makeup, clothing) cannot be controlled. The dataset was created for the specific task of pair matching; given a pair of images each containing a face, determine whether or not the images are of the same person.

Who created this dataset (u.g., which learn, research group) and on behalf of which entity (e.g., company, institution, organization)?

The initial version of the dataset was created by Gary B. Huang, Manu Ramesh, Tamara Berg, and Erik Learned-Miller, most of whom were researchers at the University of Massachusetts Amherst at the time of the dataset's release in 2007.

Who funded the creation of the dataset? If there is an associated grant, please provide the name of the grantor and the grant name and number. The construction of the LFW database was supported by a United

States National Science Foundation CAREER Award.

no known relationships between instances except for the fact that they are all individuals who appeared in news sources on line, and some individuals appear in multiple pairs.

The dataset does not contain all possible instances. There are

What data does each instance consist of? "Raw" data (e.g., improcessed text or images) of features? In either case, please provide a description:

Each instance contains a pair of images that are 250 by 250 pixels in JPBG 2.0 format.

Is there a label or target associated with each instance? If so, please provide a description.

Each image is accompanied by a label indicating the name of the person in the image.

Is any information missing from individual instances? If so, please provide a description, explaining why this information is missing (e.g., because if was unavailable). This does not include intentionally removed information, but might include, e.g., molected (ext.)

Everything is included in the dataset,

Are relationships between individual instances made explicit (e.g., users' movie ratings, social network links)? If so, please describe how those relationships are made explicit.

There are no known relationships between instances except for

Gebru et al, "Datasheets for Datasets", FAccT 2018

Model Cards

Idea: A standard list of questions to answer when releasing a trained model. Who created it? What data was it trained on? What should it be used for? What should it **not** be used for?

Model Card

- . Model Details. Basic information about the model.
 - Person or organization developing model
 - Model date
 - Model version
 - Model type
 - Information about training algorithms, parameters, fairness constraints or other applied approaches, and features
 - Paper or other resource for more information
 - Citation details
 - License
 - Where to send questions or comments about the model
- Intended Use. Use cases that were envisioned during development.
 - Primary intended uses
- Primary intended users
- Out-of-scope use cases
- Factors. Factors could include demographic or phenotypic groups, environmental conditions, technical attributes, or others listed in Section 4.3.
- Relevant factors

- Evaluation factors
- Metrics. Metrics should be chosen to reflect potential realworld impacts of the model.
 - Model performance measures
 - Decision thresholds
 - Variation approaches
- Evaluation Data. Details on the dataset(s) used for the quantitative analyses in the card.
 - Datasets
 - Motivation
 - Preprocessing
- Training Data. May not be possible to provide in practice.
 When possible, this section should mirror Evaluation Data.
 If such detail is not possible, minimal allowable information
 should be provided here, such as details of the distribution
 over various factors in the training datasets.
- Quantitative Analyses
 - Unitary results
 - Intersectional results
- Ethical Considerations
- Caveats and Recommendations

Mitchell et al, "Model Cards for Model Reporting", FAccT 2019

Model Cards

Out-of-Scope Use Cases

Some models are just for research and not to be deployed. Make it clear!

Any deployed use case of the model - whether commercial or not - is currently out of scope. Non-deployed use cases such as image search in a constrained environment, are also not recommended unless there is thorough in-domain testing of the model with a specific, fixed class taxonomy. This is because our safety assessment demonstrated a high need for task specific testing especially given the variability of CLIP's performance with different class taxonomies. This makes untested and unconstrained deployment of the model in any use case currently potentially harmful.

Certain use cases which would fall under the domain of surveillance and facial recognition are always out-of-scope regardless of performance of the model. This is because the use of artificial intelligence for tasks such as these can be premature currently given the lack of testing norms and checks to ensure its fair use.

https://github.com/openai/CLIP/blob/main/model-card.md

Bigger Models, More Data, More Compute, More problems

ML Systems can encode bias

Large models can lack common sense

Who should control models and data?

Large Models Lack Common Sense

Some plants surrounding a lightbulb

A lightbulb surrounding some plants

Large vision + language models cannot correctly pair images with captions

Thrush et al, "Winoground: Probing Vision and Language Models for Visio-Linguistic Compositionality", CVPR 2022

Large Models Lack Common Sense

Samples from DALL-E 2 for the prompt:

"a red cube on top of a blue cube"

Simple compositions of objects, attributes, relationships often not respected

Ramesh et al, "Hierarchical Text-Conditional Image Generation with CLIP Latents", arXiv 2022

Large Models Lack Common Sense: GPT-2

Bold = prompt written by humanItalic = completion written by GPT-2

I was born in 1950. In the year 2025 my age will be 35. That was only a few years ago. Most things in life just continue to improve.

I see a black dog and a brown horse. The bigger animal's color is black, and the smaller is brown.

Examples generated using https://talktotransformer.com/

Justin Johnson Lecture 25 - 99 April 18, 2022

Large Models Lack Common Sense: GPT-3

Bold = prompt written by humanItalic = completion written by GPT-3

At the party, I poured myself a glass of lemonade, but it turned out to be too sour, so I added a little sugar. I didn't see a spoon handy, so I stirred it with a paper napkin. But that turned out to be a bad idea because the napkin disintegrated in the glass. After I finished the drink, I threw the napkin away in a wastebasket—but when I picked up the glass to wash it out, there was a big black spot on my hand.

Source: https://cs.nyu.edu/~davise/papers/GPT3CompleteTests.html

Large Models Lack Common Sense

Open question: Can large models learn common sense about the world from lots of (internet) data? Or are there fundamental limitations?

Justin Johnson Lecture 25 - 101 April 18, 2022

Bigger Models, More Data, More Compute, More problems

ML Systems can encode bias

Large models can lack common sense

Who should control models and data?

Who should control data?

Image copyright != Consent to use in a dataset

Birhane and Prabhu, "Large Image Datasets: A Pyrrhic Win for Computer Vision?", WACV 2021

Justin Johnson Lecture 25 - 103 April 18, 2022

Who should control data?

Image copyright != Consent to use in a dataset

"One in two American adults is in a law enforcement face recognition network."

Garvie, Bedoya, and Frankle: "The Perpetual Line-Up", 2016, https://www.perpetuallineup.org/

Birhane and Prabhu, "Large Image Datasets: A Pyrrhic Win for Computer Vision?", WACV 2021

Who should control models?

The largest models (e.g. PaLM, DALL-E 2) can only be trained by large non-academic institutions. Is this a problem?

Justin Johnson Lecture 25 - 105 April 18, 2022

Who should control models?

The largest models (e.g. PaLM, DALL-E 2) can only be trained by large non-academic institutions. Is this a problem?

Should governments regulate the use of ML-based solutions?

Justin Johnson Lecture 25 - 106 April 18, 2022

Bigger Models, More Data, More Compute, More problems

ML Systems can encode bias Large models can lack common sense Who should control models and data?

Justin Johnson Lecture 25 - 107 April 18, 2022

Deep Learning is Here to Stay

Deep Learning is Here to Stay and will impact more than vision, speech, NLP

Deep Learning for Computer Science

Traditional Hash Table

Learn to assign keys to buckets in a way that minimizes hash collisions for the types of data you encounter

Kraska et al, "The Case for Learned Index Structures", SIGMOD 2018

Justin Johnson Lecture 25 - 110 April 18, 2022

Deep Learning for Mathematics

Convert mathematical expressions into graphs, process then with graph neural networks!

Applications: Theorem proving, symbolic integration

Wang et al, "Premise Selection for Theorem Proving by Deep Graph Embedding", NeurIPS 2017 Kaliszyk et al, "Reinforcement Learning of Theorem Proving", NeurIPS 2018 Lample and Charton, "Deep Learning for Symbolic Mathematics", arXiv 2019

Deep Learning for Graphics: NVIDIA DLSS

https://www.nvidia.com/en-us/geforce/news/nvidia-dlss-2-0-a-big-leap-in-ai-rendering/

Justin Johnson Lecture 25 - 112 April 18, 2022

Deep Learning for Science: Protein Folding

Input: 1D sequence of amino acids

Output: 3D protein structure

Justin Johnson Lecture 25 - 113 April 18, 2022

Deep Learning for Science: AlphaFold 2

https://deepmind.com/blog/article/alphafold-a-solution-to-a-50-year-old-grand-challenge-in-biology

Justin Johnson Lecture 25 - 114 April 18, 2022

Thanks GSIs and IAs!

The End!