Randomized complete block design

Table of Contents

- 1 RCBD Analysis
 - 1.1 Manual calculations for RCBD analysis
 - 1.2 RCBD Calculation from Statsmodel
 - 1.3 Visualizing Interaction Assumption
 - 1.4 Normality Check Plotting function
- 2 Your Turn -- Activity I: RCBD Analysis

```
print('\nEnabling interactive shell outputs ...')
In [1]:
         print(' Use command pass; to disable cell text outputs')
         from IPython.core.interactiveshell import InteractiveShell
         InteractiveShell.ast node interactivity = "all"
         import warnings
         warnings.filterwarnings('ignore')
         warnings.simplefilter(action="ignore", category=UserWarning)
         warnings.simplefilter(action="ignore", category=FutureWarning)
         import pandas as pd
         import numpy as np
         import matplotlib.pyplot as plt
         import seaborn as sns
         from scipy import stats
         import statsmodels.api as sm
         %matplotlib inline
         %config InlineBackend.figure formats = {'png', 'retina'}
```

Enabling interactive shell outputs ...
Use command pass; to disable cell text outputs

RCBD Analysis

0 1.3 1.6 0.5 1.2 1.1

```
    0
    1
    2
    3
    4

    1
    2.2
    2.4
    0.4
    2.0
    1.8

    2
    1.8
    1.7
    0.6
    1.5
    1.3

    3
    3.9
    4.4
    2.0
    4.1
    3.4
```

Out[3]:	Strength	ChemType	Fabric
0	1.3	C1	F1
1	1.6	C1	F2
2	0.5	C1	F3
3	1.2	C1	F4
4	1.1	C1	F5
5	2.2	C2	F1
6	2.4	C2	F2
7	0.4	C2	F3
8	2.0	C2	F4
9	1.8	C2	F5
10	1.8	C3	F1
11	1.7	C3	F2
12	0.6	C3	F3
13	1.5	C3	F4
14	1.3	C3	F5
15	3.9	C4	F1
16	4.4	C4	F2
17	2.0	C4	F3
18	4.1	C4	F4
19	3.4	C4	F5

```
ChemType Fabric Strength
                           1.3
0
         C1
                 F1
1
         C2
                 F1
                           2.2
2
         С3
                 F1
                           1.8
3
         C4
                 F1
                           3.9
4
         C1
                 F2
                           1.6
5
         C2
                 F2
                           2.4
6
         С3
                 F2
                           1.7
7
         C4
                 F2
                           4.4
```

```
C1
                   F3
8
                              0.5
9
           C2
                   F3
                              0.4
           C3
                   F3
10
                              0.6
11
           C4
                   F3
                              2.0
                   F4
12
           C1
                              1.2
                   F4
13
           C2
                              2.0
14
                   F4
           C3
                              1.5
15
           C4
                   F4
                              4.1
16
           C1
                   F5
                              1.1
                   F5
17
           C2
                              1.8
                   F5
18
           C3
                              1.3
19
           C4
                   F5
                              3.4
```

```
In [6]: sns.boxplot(x='ChemType',y='Strength',data=strength_data);
```


Manual calculations for RCBD analysis

```
In [7]:
         # Compute variables
         a = len(strength_data.ChemType.unique())
         b = len(strength data.Fabric.unique())
         total y = sum(strength data.Strength)
         SST = sum(strength_data.Strength**2) - (total_y**2)/(a*b)
         # Compute SS terms
         yi_dot = strength_data.groupby('ChemType').aggregate({'Strength':'sum'}).Strength
         SSTr = sum(yi dot**2)/b - (total y**2)/(a*b)
         ydot_j = strength_data.groupby('Fabric').aggregate({'Strength':'sum'}).Strength
         SSB = sum(ydot j**2)/a - (total y**2)/(a*b)
         SSE = SST - SSB - SSTr
         print("SST = {:.3f}, SSTr = {:.3f}, SSB = {:.3f}, SSE = {:.3f}".format(SST, SSTr, SSB,
         # Compute MS Terms
         MSTr = SSTr/(a-1)
         MSB = SSB/(b-1)
         MSE = SSE/((a-1)*(b-1))
         F0 = MSTr/MSE
         p value = stats.f.sf(F0, a-1,(a-1)*(b-1))
         print("MSTr = {0:.3f}, MSE = {1:.3f}, F0 = {2:.3f}, P-value = {3:.3f}".format(MSTr, MSE
        SST = 25.688, SSTr = 18.044, SSB = 6.693, SSE = 0.951
        MSTr = 6.015, MSE = 0.079, FO = 75.895, P-value = 0.000
```

RCBD Calculation from Statsmodel

```
from statsmodels.formula.api import ols # Require patsy version 5.0.1+
In [8]:
         from statsmodels.stats.anova import anova lm
         mod = ols('Strength ~ ChemType + Fabric', strength data).fit()
         anova_table = sm.stats.anova_lm(mod)
         print(anova table)
                    df
                        sum sq
                                 mean_sq
                                                            PR(>F)
                                           75.894848 4.518310e-08
        ChemType
                   3.0
                        18.044
                                6.014667
        Fabric
                                1.673250
                   4.0
                         6.693
                                           21.113565
                                                      2.318913e-05
        Residual 12.0
                         0.951
                                0.079250
```

Visualizing Interaction Assumption

Normality Check Plotting function

```
In [10]:
          def check anova normality(group, x):
              kws = dict(color='blue', marker='o', markersize=7, alpha=0.5)
              sns1_kws = dict(color='blue', marker='o', s=80, alpha=0.5)
              sns2_kws = dict(marker='o', s=8, alpha=0.5)
              T = len(x)
              fig = plt.figure(figsize=(10,8))
              ax1 = fig.add subplot(221)
              ax2 = fig.add subplot(222)
              ax3 = fig.add_subplot(223)
              ax4 = fig.add_subplot(224)
              #ax1.plot(x, color='blue', alpha=0.5, linestyle='--', marker='o', ms=4)
              n=len(x)
              sns.residplot(np.linspace(1,n,n), x, ax=ax1, scatter_kws=sns1_kws) # color='blue',
              #sns.scatterplot(np.linspace(1,n,n), x, ax=ax1, **sns1_kws)
              ax1.set_title('Sequence plot')
```

```
# Scatter plot
#ax2.scatter(x, x.shift(), alpha=0.5, color='red')
#ax2.set_title(r'Scatter plot of $e_n$ vs $e_{n+1}$')
# Residual groupplot
resid_df = pd.DataFrame({'Group':group, 'Resid':x})
sns.stripplot(x='Group', y='Resid', data=resid_df, ax=ax2, **sns2_kws)
ax2.set_title('Residuals by treatments')
# Box plot
#ax2.boxplot(x,showmeans=True)
#ax2.set_title('Boxplot')
# histogram plot
sns.distplot(x, hist=True, kde=True, ax=ax3)
ax3.set_title('Histogram')
# qq plot
sm.graphics.qqplot(x,line='q',ax=ax4, **kws)
ax4.set title('Q-Q plot')
plt.tight_layout()
```

In [9]: check_anova_normality(strength_data['ChemType'], mod.resid)

Friedman Test

```
In [11]: from scipy.stats import friedmanchisquare

y1=[1.3, 1.6, 0.5, 1.2, 1.1]
y2=[2.2, 2.4, 0.4, 2.0, 1.8]
y3=[1.8, 1.7, 0.6, 1.5, 1.3]
y4=[3.9, 4.4, 2.0, 4.1, 3.4]

stat, p = friedmanchisquare(y1, y2, y3, y4)
print('Test statistics = {:.2f}, p-value = {:.4f}'.format(stat, p))
# interpret
alpha = 0.05
if p > alpha:
    print('No effect (fail to reject H0)')
else:
    print('Effect observed (reject H0)')
```

Test statistics = 12.12, p-value = 0.0070 Effect observed (reject H0)

Your Turn -- Activity I: RCBD Analysis

```
In [15]:
          ### Load dataset as dataframe
          df = pd.read_excel('lect04-blocking.xlsx', sheet_name='Algorithm Running Time',header=N
          print(df)
          a = df.shape[0]
          b = df.shape[1]
          algor data = pd.DataFrame({'Algorithm': df.stack().values,
                                        'Type': np.repeat(['A1','A2','A3','A4'],b),
                                        'DataSet': ['D1','D2','D3','D4','D5', 'D6']*a})
          algor_data
                           2
                                              5
                     1
                                  3
           90.3 84.2 98.2 93.9 79.4 97.9
            92.5 89.5 90.6 94.7
                                     86.0 95.8
         2 85.5 90.8 89.6 86.2
                                     80.1 93.4
         3 82.5 89.5 85.6 87.4
                                    70.9 90.7
Out[15]:
             Algorithm Type DataSet
          0
                                 D1
                  90.3
                         Α1
          1
                  84.2
                         Α1
                                 D2
          2
                  98.2
                         Α1
                                 D3
          3
                  93.9
                         Α1
                                 D4
          4
                  79.4
                                 D5
                         Α1
          5
                  97.9
                         Α1
                                 D6
          6
                  92.5
                                 D1
                         A2
          7
                  89.5
                         A2
                                 D2
          8
                  90.6
                         A2
                                 D3
                  94.7
          9
                         A2
                                 D4
          10
                  86.0
                         A2
                                 D5
```

11

95.8

A2

D6

	Algorithm	Туре	DataSet
12	85.5	А3	D1
13	90.8	A3	D2
14	89.6	A3	D3
15	86.2	A3	D4
16	80.1	A3	D5
17	93.4	A3	D6
18	82.5	A4	D1
19	89.5	A4	D2
20	85.6	A4	D3
21	87.4	A4	D4
22	70.9	A4	D5
23	90.7	A4	D6

```
In [16]: sns.boxplot(x='Type',y='Algorithm',data=algor_data);
```


RCBD Analysis

```
In [17]: # Compute variables
    a = len(algor_data.Type.unique())
    b = len(algor_data.DataSet.unique())
    total_y = sum(algor_data.Algorithm)
    SST = sum(algor_data.Algorithm**2) - (total_y**2)/(a*b)

# Compute SS terms
    yi_dot = algor_data.groupby('Type').aggregate({'Algorithm':'sum'}).Algorithm
    SSTr = sum(yi_dot**2)/b - (total_y**2)/(a*b)
    ydot_j = algor_data.groupby('DataSet').aggregate({'Algorithm':'sum'}).Algorithm
    SSB = sum(ydot_j**2)/a - (total_y**2)/(a*b)
    SSE = SST - SSB - SSTr
    print("SST = {:.3f}, SSTr = {:.3f}, SSB = {:.3f}, SSE = {:.3f}".format(SST, SSTr, SSB,
    # Compute MS Terms
```

```
MSTr = SSTr/(a-1)
          MSB = SSB/(b-1)
          MSE = SSE/((a-1)*(b-1))
          F0 = MSTr/MSE
          p_{value} = stats.f.sf(F0, a-1,(a-1)*(b-1))
          print("MSTr = \{0:.3f\}, MSE = \{1:.3f\}, F0 = \{2:.3f\}, P-value = \{3:.3f\}".format(MSTr, MSE)
          SST = 912.060, SSTr = 186.363, SSB = 539.360, SSE = 186.337
          MSTr = 62.121, MSE = 12.422, F0 = 5.001, P-value = 0.013
In [18]:
          from statsmodels.formula.api import ols # Require patsy version 5.0.1+
          from statsmodels.stats.anova import anova lm
          mod = ols('Algorithm ~ Type + DataSet', algor_data).fit()
          anova table = sm.stats.anova lm(mod)
          print(anova_table)
                      df
                                                               PR(>F)
                              sum_sq
                                         mean_sq
                                                             0.013367
          Type
                     3.0
                          186.363333
                                       62.121111
                                                   5.000716
                                      107.872000
         DataSet
                     5.0
                          539.360000
                                                   8.683637
                                                             0.000494
          Residual
                    15.0
                          186.336667
                                       12.422444
```

In [22]: from statsmodels.graphics.factorplots import interaction_plot

CRD Analysis

```
In [23]: from statsmodels.formula.api import ols # Require patsy version 5.0.1+
    from statsmodels.stats.anova import anova_lm
    import statsmodels.api as sm
    import matplotlib.pyplot as plt
    import seaborn as sns

fig = plt.figure(figsize=(6,4));
    sns.boxplot(x='Type',y='Algorithm',data=algor_data);
    plt.tight_layout()
    pass;
```



```
In [24]: ### Generate ANOVA table
algor_app_model = ols('Algorithm ~ Type', data=algor_data).fit()
df['resid'] = algor_app_model.resid
aov_table = sm.stats.anova_lm(algor_app_model, typ=1)
aov_table
```

Out[24]:		df	sum_sq	mean_sq	F	PR(>F)
	Туре	3.0	186.363333	62.121111	1.712041	0.196681
	Residual	20.0	725.696667	36.284833	NaN	NaN

จากการทำ RCBD และ CRD จะพบว่า การ blocking ทำให้ โมเดลมีผลที่ถูกต้องมากขึ้นและ p-value ตกในช่วงที่ reject H0 ทำให้สรุปได้ว่า ค่าเฉลี่ยของ running time ต่างกัน