

Documentation

Description of the model of the Fortran Based SMA Hybrid Controller for power flow and stability studies in PSS®E

Model Generation G Document Revision 10 Feb 06, 2024

Note

The following PSS®E versions are currently supported:

- version 32 (Intel Visual Fortran Compiler 11.1),
- version 33 (Intel Visual Fortran Compiler 11.1),
- version 34 (Intel Visual Fortran Compiler 11.1 and Intel Visual Fortran Compiler 15.0 (x86)).

Please contact SMA if models for other simulation platforms are required.

SMA model support

In case you require support from SMA Solar Technology AG regarding questions of model handling, model parameterization, or interpretation of simulation results, please send all relevant files to SMA including:

- The models you were using, or a reference to the model versions,
- the network in *.raw or *.sav format,
- the dyr file,
- simulation scripts in *.idv or *.py (Python) format that exactly replicate the relevant scenario,
- information on the PSS/E version.

Model history

SMAHYCF_AR_P_Cc.obj is the model object file of SMAHYCF, where A is the model generation, R is model revision, P is the PSS®E version for which the model was built, C is the compiler type, c is the compiler revision. (e.g. SMAHYCF_G10_34_IVF111.obj is model generation G in revision 1.0 for PSS®E version 34, compiled with Intel Visual Fortran Compiler 11.1).

Model version	Description			
G1.0	First release of SMAHYCF for PSS®E			
	Note: This model does not contain the implementation of Hybrid functionality in this			
	version. Also, functionalities of FCAS are not implemented in this model so parameters			
	related to these functions are 'don't care'			
G1.1	1. P, Q Measurement filters using PT1_psse were moved from MW to pu for removing			
	the DSTATE errors			
	2. Introduction of Meas structure to segregate all V, f, P, Q measurements within one			
	structure			
G1.2	Addition of Grid Voltage Control functionality			
	Addition of Hybrid Control Functionality			
	Addition of DC-DC only to Sys Cfg and associated functionality with DC-DC systems			
	BugFix: MIDTRM line of code. Was not working properly. Giving error "Model is not			
	available in MSTRT & MRUN"			
	Removal of "Use Kernel32", "Use INTRINSIC" and "IMPLICIT NONE" to be compila-			
	ble with PSS/E 35			
G1.3	Addition of a separate Bus for voltage measurement			
	Addition of FCAS and HandlePrioFrqResp			
G1.4	BugFix: PF control mode rectified			
G1.5	1. Update to software release v17			
	2. BugFix : Docu() function returns an incorrect number of CONs and VARs.			
	3. Provision of reverse P, Q measurement to take into account the removal of			
	dummy bus line/tie line			
	4. Fixing of active power limits based on reactive power setpoint			
	5. Additional three PVFro – PVTo and BESSFro – BESSTo buses to take into ac-			
	count multiple PV and BESS inverters			
	6. Bug fix in the RampPVBatMaxMin function			
01.4	7. Changed the logic for turning VAR(L+47) high			
G1.6	1. Update to firmware version 18 and 19			
	2. Removed un-used CONS from the structures to remove confusion for the user			
C1.7	3. Q(P) Limitation function - part of firmware 19 in PwrApPrioModeAt			
G1.7	1. BugFix: Initialization issue with SMAGF model			
G1.8	BugFix: Misalignment of VARs for AutoPoicontrolMode_PoCo			
01.0	2. BugFix: Frt Detection Bus filter not added.			
G1.9	1. Change of flag L+47 to 1.0 when there is a setpoint change instead of using			
	KPAUSE			

	2. Modification of initialization of Hybrid PoCo Logic	
G2.0	1. Removal of Pv available power switch when L+47 turns high	
	2. Reduction of threshold for detection of frequency change used for turning	
	L+47 to 1.0	
	3. Removal of filter over voltage at PCC measurement and voltage over FRT bus	
	4. Introduction of CON(J+20) as PvSetpoint	

Model validity

For simulation of the SMA Sunny Central solar and storage inverters the model "SMASC" must be used.

Contents

1		Intro	oduction and background	6
			9	
2	[Dyn	namic model	7
	2.1		Initialization	
	2.2		Dyr file entry	8
	2.3	R	Reference Changes to the Model	8
	2.4	٨	Model parameters	8
	2	2.4.	.1 ICONs	9
	2	2.4.	.2 CONs	10
	2	2.4.	.3 VARs	25
	2	2.4.	.4 STATEs	34
3	[Disc	claimer	35

1 Introduction and background

This document is intended to provide guidance to the PSS®E user in deploying the SMA Hybrid Controller model for controlling various quantities of battery storage or photovoltaic (PV) solar parks at the point of common coupling (PCC, or point of interconnection, POI). Combination of storage and PV components is possible, too.

2 Dynamic model

The Fortran Based Hybrid Controller model has been implemented as a PSS®E User Bus model ('USRBUS') called "SMAHYCF" (s. Figure 1).

Figure 1: Hybrid Controller block diagram.

The model has three sources of excitation which are: the grid voltage magnitude at the "remote" bus and the active and reactive power flowing from the "from" bus to the "to" bus. The "remote" bus is the bus whose voltage must be controlled by the Hybrid Controller (HC). The "from" bus is the bus from which the active power and the reactive power are flowing to the "to" bus – were the active and reactive power are quantities to be controlled by the HC. The model's outputs are the actuating variables active and reactive power which are sent to the inverter model SMASC using the SMAHYC's VAR(L+56) and VAR(L+57) in case of PV generator and VAR(L+58) and VAR(L+59) in case of Battery generator.

Please note the quantities measured at the POI can be accessed through variables VAR(L+1) ... VAR(L+3).

Please find below the architecture of a PV + BESS plant and its associated configuration in correspondence with the ICONs and CONs.

Figure 2: Hybrid Controller Configuration.

2.1 Initialization

SMAHYC initializes from the steady-state solution and adjusts all internal variables and states accordingly provided the active, reactive, apparent power limits are not exceeded. If that's the case, then a flat run is not possible and the hybrid controller will try to adjust the active power and reactive power in such a way that the associated power is within the limits.

2.2 Dyr file entry

The model's dyr file entry is as follows:

BusNum 'USRBUS' 1 'SMAHYCF20' 504 0 34 252 10 404 FBN TBN -1 1 ICON(M+4) ICON(M+5) ... ICON(M+33) CON(J) CON(J+1) ... CON(J+251)

FBN: "FromBusNumber"

TBN: "ToBusNumber"

2.3 Reference Changes to the Model

Following VARs can be used to change the various references to the Hycon Model

- 1. VAR(L+18) Active power reference change at Poi in case of PV or Hybrid system
- 2. VAR(L+13) Active power reference change at Poi in case of BESS System or for BESS setpoint in case of Hybrid systems
- 3. VAR(L+14) Reactive power reference change at Poi in case of both PV, BESS or Hybrid systems
- 4. VAR(L+16) Voltage reference change at Poi (Used for VtgPwrRtDroop, GridVtgCtrl)
- 5. VAR(L+17) Frequency reference change at Poi (Used for FrqDroop, FCASCont)
- 6. VAR(L+15) Power Factor reference change at Poi (Used for FixCosPhi)

2.4 Model parameters

In this section there is given a standard parameterization only. Please consider contacting SMA to obtain the parameter set for the controller that must be simulated in your study.

2.4.1 ICONs

ICON	Parameter	Description	Default
М	RBus	Bus number of the remotely voltage	
		regulated bus	
		(The voltage measurement at this bus	
		is used for functions like FrtDetection,	
		VoltageDroop, GridVtgControl, etc)	
M+1	FroBus	Bus number of the PCC from bus	n/a
		(P, Q are measured between FroBus	
		and ToBus and used as measurement	
		value for various functions)	
M+2	ToBus	Bus number of the PCC to bus	n/a
		(P, Q are measured between FroBus	
		and ToBus and used as measurement	
		value for various functions)	
M+3	CID	Circuit id for power measurement rou-	-1
		tine FLOW	
M+4	FrtBusNumber	Bus number of the Frt detection bus.	0
		Set this to the bus number whose volt-	
		age you want to use for Frt detection.	
		Else set it O. In that case RBus will be	
		used for Frt detection	
M+5	PowerFlowReverse	Reverse the power flow measured us-	0
		ing PCC From and To Bus	
		(Set this to 1 if you would like to re-	
		verse the power flow measured. This	
		is provided in case you don't want to	
		have a dummy tie line at PCC or have	
		a T-connection at the PCC	
M+6	Reserved	Reserved	0
M+7	OUTPUT_LOG_EN	Enable output write to LPDEV	1
M+8	Reserved	Reserved	0
M+9	SysCfg	1: PV only	
		2: BESS only	
		3: PV/BESS Hybrid configuration	
		4: DC-DC configuration	
M+10	PV1_Fro	Bus number of the PV1 from bus	
M+11	PV1_To	Bus number of the PV1 to bus	
M+12	CID	Circuit id for power measurement rou-	
		tine FLOW	
M+13	PV2_Fro	Bus number of the PV2 from bus	
M+14	PV2_To	Bus number of the PV2 to bus	

M+15	CID	Circuit id for power measurement rou-
		tine FLOW
M+16	PV3_Fro	Bus number of the PV3 from bus
M+17	PV3_To	Bus number of the PV3 to bus
M+18	CID	Circuit id for power measurement rou-
		tine FLOW
M+19	PV4_Fro	Bus number of the PV4 from bus
M+20	PV4_To	Bus number of the PV4 to bus
M+21	CID	Circuit id for power measurement rou-
		tine FLOW
M+22	BESS1_Fro	Bus number of the BESS1 from bus
M+23	BESS1_To	Bus number of the BESS1 to bus
M+24	CID	Circuit id for power measurement rou-
		tine FLOW
M+25	BESS2_Fro	Bus number of the BESS2 from bus
M+26	BESS2_To	Bus number of the BESS2 to bus
M+27	CID	Circuit id for power measurement rou-
		tine FLOW
M+28	BESS3_Fro	Bus number of the BESS3 from bus
M+29	BESS3_To	Bus number of the BESS3 to bus
M+30	CID	Circuit id for power measurement rou-
		tine FLOW
M+31	BESS4_Fro	Bus number of the BESS4 from bus
M+32	BESS4_To	Bus number of the BESS4 to bus
M+33	CID	Circuit id for power measurement rou-
		tine FLOW

2.4.2 CONs

CON	Parameter	Description	Default
J+0	CycleTime	Hybrid Controller cycle time in s	40
		Frequency measurement filter time constant in	
J+1	Poi_freq_flt_tm	s	0.02
		Power and Voltage measurement filter time	
J+2	Poi_power_flt_tm	constant in s	0.02
J+3	Poi_Base_KV	POI base V	-
		HYC to inverter comm time delay in s (Active	
J+4	HyconToInv_AtPwr_TmDelay	Power) implemented as PT1 filter	0.02
		HYC to inverter comm time delay in s (Reac-	
J+5	HyconToInv_RtPwr_TmDelay	tive Power) implemented as PT1 filter	0.02
J+6	PvPwrAtMaxTot	Cumulative PV active power rating in kW	-

		Cumulative PV reactive power rating in kVAr	
J+7	PvPwrRtMaxTot	(0.6 times the PvPwrAtMaxTot)	-
J+8	PvPwrApMaxTot	Cumulative PV apparent power rating in kVA	-
J+9	BESSPwrAtMaxTot	Cumulative BESS active power rating in kW	-
		Cumulative BESS reactive power rating in	
J+10	BESSPwrRtMaxTot	kVAr (0.6 times the BESSPwrAtMaxTot)	-
		Cumulative BESS apparent power rating in	
J+11	BESSPwrApMaxTot	kVA	-
J+12	Reserved	Reserved	-
J+13	ExtPwrApLim	Apparent power limitation at PCC in kVA	-
	·	Maximum active power limitation at PCC in	
J+14	ExtPwrAtLimHi	kW	-
		Minimum active power limitation at PCC in	
J+15	ExtPwrAtLimLo	kW	-
		Maximum active power limitation (Sales) at	
J+16	PwrAtLimSale	PCC in kW	-
		Maximum reactive power limitation at PCC in	
J+1 <i>7</i>	ExtPwrRtLimHi	kVAr	-
		Minimum reactive power limitation at PCC in	
J+18	ExtPwrRtLimLo	kVAr	-
J+19	QVARScale	Please set this to 0.6	0.6
		If this CON is set to 0.0, then PvTarget is	
		equal to cumulative load flow PV power else	
		it is equal to 'PvPwrAtSpt in kW. This CON is	
		only relevant in case of Hybrid systems. The	
		Hycon will try to increase the Pv active power	
		to its PvTarget in case the PV has a higher pri-	
		ority compared to Battery. You can set this	
		equal to CON(J+8) if you don't want to re-	
J+20	PvPwrAtSpt	strict the PV power to its load flow value.	0.0
J+21	Reserved		-
J+22	Reserved		-
J+23	Reserved		-
		Control parameter integral gain for the power	
J+24	BatPwrAtCtrl.CtrlKi	PI controller	0.4
		Control parameter proportional gain for the	
J+25	BatPwrAtCtrl.CtrlKp	power PI controller	0
	BatPwrAtCtrl.DynSpntSwitchH	Hysteresis for switching to the limit if measure-	
J+26	ysPc	ment exceeds the limit, in % of PwrAtNomPoi	0
		Enables the PI controller for active power con-	
J+27	BatPwrAtCtrl.Ena	trol	0

	1	Enables adaptive control (Yes: related to the	
		connected nominal device power / No: re-	
J+28	BatPwrAtCtrl.EnaAdapCtrl	lated to PwrAtRtNomPoi	1
	BatPwrAtCtrl.Ena-	Enables dynamic setpoint switching if limits	
J+29	DynSpntSwitch	are exceeded	0
		Enables resetting of the integrator if step	
J+30	BatPwrAtCtrl.EnaStepReset	change is detected	0
	BatPwrAtCtrl.FeedForwardOff-	A constant offset which will be added to the	
J+31	set	setpoint	0
J+32	BatPwrAtCtrl.MeasFilterTm	Filter time for actual measurement in s	0
	BatPwrAtCtrl.OvershootRe-	Offset for detecting a overshoot, in % of	
J+33	setPc	PwrAtNomPoi	100
		The upper and lower limit of the output of the	
J+34	BatPwrAtCtrl.PiCtrlLimPc	PI controller for active power control	5
J+35	BatPwrAtCtrl.PilotControlGain	The gain factor for the pilot control	1
	BatPwrAtCtrl.SpntDelaySam-		
J+36	ples	To delay the active power setpoint	3
	BatPwrAtCtrl.StepReset-	Threshold for detecting a step change, in % of	
J+37	ThrsldPc	PwrAtNomPoi	20
		Enables reduction of pv setpoint by the maxi-	
J+38	Dispatch.EnaPrioBatPwrAt	mum P(f) battery response	1
		To split the reactive power setpoint between	
		the PV and battery system. (80% -> PV =	
J+39	Dispatch.PvBatSpntSplitPc	80%, Battery = 20%)	80
		Defines the reactive power dispatching to PV	
		and Battery inverters	
		1:PWR_RT_DISPATCH_MODE_NOM	
J+40	Dispatch.PwrRtDispatchMode	0:PWR_RT_DISPATCH_MODE_SPLIT	0
		Charging from PV is limited to this value. (in %	
		based on the maximum charge power of the	
J+41	EgyShift.ChrFromPvSpntLimPc	battery system)	50
		The battery provides this amount of power if	
		the EnergyShifting function wants to discharge	
		the battery system (in % based on the maxi-	
J+42	EgyShift.DisBatSpntLimPc	mum discharge power of the battery system)	10
		Activation time for the Delayed Raise (Lower)	
J+43	FCASCont.DelayedActTm	Service after a Frequency Disturbance in s	60
		Maximum time to deliver the Delayed Raise	
		(Lower) Service after a Frequency Disturb-	
J+44	FCASCont.DelayedDelTm	ance in s	600
J+45	FCASCont.Ena	Enables function	0
J+46	FCASCont.EnaDelayedLower	Enables the Delayed Lower Service	1

J+47	FCASCont.EnaDelayedRaise	Enables the Delayed Raise Service	1
J+48	FCASCont.EnaFastLower	Enables the Fast Lower Service	1
J+49	FCASCont.EnaFastRaise	Enables the Fast Raise Service	1
J+50	FCASCont.EnaSlowLower	Enables the Slow Lower Service	1
J+51	FCASCont.EnaSlowRaise	Enables the Slow Raise Service	1
		Maximum time to deliver the Fast Raise	
		(Lower) Service after a Frequency Disturb-	
J+52	FCASCont.FastDelTm	ance in s	60
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+53	FCASCont.FrqOffsets[1]	creasing)	1.6
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+54	FCASCont.FrqOffsets[2]	creasing)	-1
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+55	FCASCont.FrqOffsets[3]	creasing)	-0.15
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+56	FCASCont.FrqOffsets[4]	creasing)	0.15
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+57	FCASCont.FrqOffsets[5]	creasing)	1
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+58	FCASCont.FrqOffsets[6]	creasing)	1.1
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+59	FCASCont.FrqOffsets[7]	creasing)	1.2
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+60	FCASCont.FrqOffsets[8]	creasing)	1.3
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+61	FCASCont.FrqOffsets[9]	creasing)	1.4
		Frequency Offsets to the nominal frequency to	
		define the droop curve in Hz (need to be in-	
J+62	FCASCont.FrqOffsets[10]	creasing)	1.5
	FCASCont.FrqRecoverOff-	Frequency Offsets to the nominal frequency to	
J+63	sets[1]	define the recovery thresholds	-0.1
	FCASCont.FrqRecoverOff-	Frequency Offsets to the nominal frequency to	
J+64	sets[2]	define the recovery thresholds	0.1

		The active power data corresponding to the	
		frequency offsets in % relative to	
J+65	FCASCont.PwrAtDataPc[1]	PwrAtNomPoi	-100
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+66	FCASCont.PwrAtDataPc[2]	PwrAtNomPoi	100
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+67	FCASCont.PwrAtDataPc[3]	PwrAtNomPoi	0
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+68	FCASCont.PwrAtDataPc[4]	PwrAtNomPoi	0
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+69	FCASCont.PwrAtDataPc[5]	PwrAtNomPoi	-100
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+70	FCASCont.PwrAtDataPc[6]	PwrAtNomPoi	-100
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+71	FCASCont.PwrAtDataPc[7]	PwrAtNomPoi	-100
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+72	FCASCont.PwrAtDataPc[8]	PwrAtNomPoi	-100
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+73	FCASCont.PwrAtDataPc[9]	PwrAtNomPoi	-100
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+74	FCASCont.PwrAtDataPc[10]	PwrAtNomPoi	-100
		Activation time for the Slow Raise (Lower) Ser-	
J+75	FCASCont.SlowActTm	vice after a Frequency Disturbance in s	6
		Maximum time to deliver the Slow Raise	
		(Lower) Service after a Frequency Disturb-	
J+76	FCASCont.SlowDelTm	ance in s	300
		Defines the excitation of the external CosPhi	
		septoint for active power export /	
J+77	FixCosPhi.CosPhiExtModExp	1041:FIXCOSPHI_SIGN_MODE_OVER_EX	1041
		Defines the excitation of the external CosPhi	
		septoint for active power import /	
J+78	FixCosPhi.CosPhiExtModImp	1041:FIXCOSPHI_SIGN_MODE_OVER_EX	1041
J+79	FixCosPhi.CosPhiLimLo	External CosPhi setpoint is limited to this value	0.8

1		Defines if the external setpoint CosPhiSpntExp	ĺ
		should be used as well for active power im-	
J+80	FixCosPhi.ExtSpntMode	port 1:FIXCOSPHI_SPNT_MODE_IMP_EXP	1
		First order filter time constant for the ac-	
J+81	FixCosPhi.PwrAtFilterTm	tive+reactive power of the genset system	1
J+82	FrqDroop.ActDelay	Activation delay for P(f)-characteristic	0.1
	, ,	Defines the characteristic of the droop curve	
		2:FRQDROOP_MODE_HOLD	
		3:FRQDROOP_MODE_HOLDNOM	
J+83	FrqDroop.DroopMode	1:FRQDROOP_MODE_NOM	3
J+84	FrqDroop.Ena	Enables function	0
J+85	FrqDroop.EnaActFrt	Enables activation during	1
		Enables prioritization of frequency response	
J+86	FrqDroop.EnaPrioFrqResp	setpoints (PRL,DS3,FCAS,FFR or EFR)	0
		Enables ramp after frequency event. The	
		ramp refers to PwrAtRateMax (PwrAtMode)	
J+87	FrqDroop.EnaRamp	0:ENA_NO / 1:ENA_YES	1
		Enables the shifting of the pre-fault value with	
		the external setpoint PwrAtLimSale	
J+88	FrqDroop.EnaShiftPreFaultVal	0: ENA_NO / 1: ENA_YES	0
		Frequency Offsets to define the droop curve	
J+89	FrqDroop.FrqOffsets[1]	in Hz (need to be increasing)	1.3
		Frequency Offsets to define the droop curve	
J+90	FrqDroop.FrqOffsets[2]	in Hz (need to be increasing)	-0.8
		Frequency Offsets to define the droop curve	
J+91	FrqDroop.FrqOffsets[3]	in Hz (need to be increasing)	-0.5
		Frequency Offsets to define the droop curve	
J+92	FrqDroop.FrqOffsets[4]	in Hz (need to be increasing)	0
		Frequency Offsets to define the droop curve	
J+93	FrqDroop.FrqOffsets[5]	in Hz (need to be increasing)	0.5
		Frequency Offsets to define the droop curve	
J+94	FrqDroop.FrqOffsets[6]	in Hz (need to be increasing)	0.8
		Frequency Offsets to define the droop curve	
J+95	FrqDroop.FrqOffsets[7]	in Hz (need to be increasing)	0.9
		Frequency Offsets to define the droop curve	
J+96	FrqDroop.FrqOffsets[8]	in Hz (need to be increasing)	1
		Frequency Offsets to define the droop curve	
J+97	FrqDroop.FrqOffsets[9]	in Hz (need to be increasing)	1.1
		Frequency Offsets to define the droop curve	
J+98	FrqDroop.FrqOffsets[10]	in Hz (need to be increasing)	1.2
		Maximum absolute power decrease at over	
J+99	FrqDroop.MaxPwrDecrease	frequency events in %PwrAtNomPoi	200

Ī		Maximum relative power increase in % of dif-	
		ference between PwrAtNomPoi and pre-fault	100000
J+100	FrqDroop.MaxRelPwrIncrease	power	0
		Minimum hold time if function becomes active	
J+101	FrqDroop.MinHoldTm	and ResetMode = ERCOT, in s	0.5
		Absolute minimum power setpoint generated	
J+102	FrqDroop.MinPwrSpnt	by P(f)-characteristic in %PwrAtNomPoi	-100
		Mode of power decrease during over fre-	
		quency event	
		2: FRQDROOP_LIMIT_EXTERNAL_LIMIT	
		1: FRQDROOP_LIMIT_LIMITED	
J+103	FrqDroop.OverFrqMode	0: FRQDROOP_LIMIT_UNLIMITED	0
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+104	FrqDroop.PwrAtDataPc[1]	PwrAtNomPoi	0
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+105	FrqDroop.PwrAtDataPc[2]	PwrAtNomPoi	200
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+106	FrqDroop.PwrAtDataPc[3]	PwrAtNomPoi	100
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+107	FrqDroop.PwrAtDataPc[4]	PwrAtNomPoi	100
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+108	FrqDroop.PwrAtDataPc[5]	PwrAtNomPoi	100
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+109	FrqDroop.PwrAtDataPc[6]	PwrAtNomPoi	0
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+110	FrqDroop.PwrAtDataPc[7]	PwrAtNomPoi	0
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+111	FrqDroop.PwrAtDataPc[8]	PwrAtNomPoi	0
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+112	FrqDroop.PwrAtDataPc[9]	PwrAtNomPoi	0
		The active power data corresponding to the	
		frequency offsets in % relative to	
J+113	FrqDroop.PwrAtDataPc[10]	PwrAtNomPoi	0

1		Maximum rate of active power setpoint after	
		a frequency disturbance in MW/min. Is ac-	
		tive for the time ResetTm if Reset Mode is	
J+114	FrqDroop.PwrAtRateMax	Ramp	10
J+115	FrqDroop.ResetFrqOffset[1]	Reset frequency offsets	-0.2
J+116	FrqDroop.ResetFrqOffset[2]	Reset frequency offsets	0.2
3 1 1 0	114210001.1401101[2]	Defines where to use the reset mode	0.2
		4: FRQDROOP_RESET_BOTH	
		6: FRQDROOP_RESET_ERCOT	
		1: FRQDROOP_RESET_OFF	
		2: FRQDROOP_RESET_OVERFRQ	
		5: FRQDROOP_RESET_RAMP	
J+11 <i>7</i>	FrqDroop.ResetMode	3: FRQDROOP_RESET_UNDERFRQ	1
J+118	FrqDroop.ResetTm	Switch off delay for reset frequency	0
3 113	1142100011111	Mode of power increase during under fre-	
		quency event	
		2: FRQDROOP_LIMIT_EXTERNAL_LIMIT	
		1: FRQDROOP_LIMIT_LIMITED	
J+119	FrqDroop.UnderFrqMode	0: FRQDROOP_LIMIT_UNLIMITED	0
3		Uses the battery power to fulfill the frequency	
J+120	FrqDroop.UseBatPwr	droop	0
J+121	FrtDetection.Ena	Enables function	0
J+122	FrtDetection.FilterTm	Filter time for upper and lower limits in sec	300
J+123	FrtDetection.PreFrtSamples	Re-initializes pi controllers to the pre frt output	5
	<u>'</u>	Defines the reference point for FRT detection	
		1: FRTDETECT_REF_MODE_DEDICATED	
J+124	FrtDetection.RefMode	0: FRTDETECT_REF_MODE_POI	0
J+125	FrtDetection.StopDelay	Stop delay for leaving state FRT in sec	2
	, ,	Selects the source for the calculation of upper	
		and lower thresholds	
		0: FRTDETECT_MODE_MEAS	
J+126	FrtDetection.ThrsldMode	1: FRTDETECT_MODE_NOM	1
		Lower voltage threshold for FRT detection in	
J+127	FrtDetection.VtgLoLimPc	percentage of VtgNom	50
		Upper voltage threshold for FRT detection in	
J+128	FrtDetection.VtgUpLimPc	percentage of VtgNom	150
		Enables frequency response (FFR, EFR, PRL,	
J+129	GridService.EnaFrqRespForPv	DS3, FCAS) for pv systems.	0
	-		
	GridService.EnaPrioBat-	Enables the prioritization of the activated bat-	

		Compensation factor for measured frequency	
	GridService.FrqPoiCompFac-	if fast active power changes is causing phase	
J+131	tor	angle jumps	0
		This mode determines if the POI frequency	
		should be directly used, filtered or ramped.	
		1: FRQ_POI_DYNMODE_FILTERTM	
		0: FRQ_POI_DYNMODE_OFF	
J+132	GridService.FrqPoiDynMod	2: FRQ_POI_DYNMODE_RAMP	1
J+133	GridService.FrqPoiFilterTm	Filter time for actual frequency in s	0
		Maximum allowed rate for actual frequency	
J+134	GridService.FrqPoiRateMax	at POI in Hz/s. \$18443\$	0.04
		Defines which device class is controlling the	
		active power of the POI	
		3:POI_CTRL_MODE_AUTO	
		2: POI_CTRL_MODE_BAT	
		1: POI_CTRL_MODE_PV	
		Please set this parameter to 3 in case of	
	GridService.PoiPwrAtCtrl-	PV+BESS, 1 in case of PV and 2 in case of	
J+135	Mode	Battery system	3
J+136	GridService.PwrApNomPoi	Nominal apparent power at POI in kVA	2000
		Defines the prioritization to limit the apparent	
		power	
		1: PWR_AP_PRIO_MODE_ACTIVE	
		0: PWR_AP_PRIO_MODE_OFF	
		2: PWR_AP_PRIO_MODE_REACTIVE	
		3:PWR_AP_PRIO_MODE_REACTIVE_FRQD	
J+137	GridService.PwrApPrioMode	ROOP	1
		Nominal active power at point of interest in	
J+138	GridService.PwrAtNomPoi	kW	1000
		Filter time for actual active power at POI in s	
J+139	GridService.PwrAtPoiFilterTm	which is used for apparent power limitation	0
J+140	GridService.PwrRtNomPoi	Nominal reactive power at POI in kVar	1000
		Filter time for actual reactive power at POI in	
J+141	GridService.PwrRtPoiFilterTm	s which is used for apparent power limitation	0
J+142	GridVtgCtrl.Ena	Enables function	0
J+143	GridVtgCtrl.IntGain	Integral gain for voltage control (ki)	5
J+144	GridVtgCtrl.IntLimAwu	Integral limit for voltage control (anti windup)	0.5
J+145	GridVtgCtrl.PropGain	Proportional gain for voltage control (kp)	0
J+146	GridVtgCtrl.VtgFilterTm	Filter time of actual voltage in s	0
		Control parameter integral gain for the power	
J+147	PvPwrAtCtrl.CtrlKi	PID controller	0.4

AtCtrl.CtrlKp	Control parameter proportional gain for the	
	power PI controller	0
AtCtrl.DynSpntSwitchHy	Hysteresis for switching to the limit if measure-	-
sPc ment exceeds the limit, in % of PwrAtNomPoi		0
AtCtrl Eng	· · · · · · · · · · · · · · · · · · ·	0
	•	
AtCtrl.EnaAdapCtrl	· · ·	1
·		
	are exceeded	0
	Enables resetting of the integrator if step	
AtCtrl.EnaStepReset		0
•	9	
		0
AtCtrl MeasFilterTm	•	0
AtCtrl OvershootResetPc		1
Wellie Versille on Cestille		
AtCtrl PiCtrll imPc	·	5
		1
	The gain racion for the pilot control	•
ACIII. Opiii Deidy Odiii-	To delay the active power setpoint	2
AtCtrl StenResetThrsldPc	·	1
чет.огеркезеттизга с		'
	·	
PwrRtCtrlMode		303
WHITE CHILLING		
`trl CtrlKi		0.4
5	•	J,
Ctrl CtrlKp		0
	'	
Ctrl.DvnSpntSwitchHvsPc		0
2 /5 / / / / // // // // // // // // /		
Ctrl. Eng	· ·	0
	·	
Ctrl.EnaAdapCtrl	lated to PwrAtRtNomPoi)	1
	AtCtrl.EnaAdapCtrl AtCtrl.Ena- ntSwitch AtCtrl.EnaStepReset AtCtrl.FeedForwardOff- AtCtrl.MeasFilterTm AtCtrl.PiCtrlLimPc AtCtrl.PilotControlGain AtCtrl.SpntDelaySam- AtCtrl.StepResetThrsldPc AtCtrl.CtrlKi Ctrl.CtrlKp Ctrl.DynSpntSwitchHysPc Ctrl.Ena	Enables adaptive control (Yes: related to the connected nominal device power / No: related to PwrAt(Rt)NomPoi) AtCtrl.Ena- AtCtrl.Ena- IntSwitch Enables dynamic setpoint switching if limits are exceeded Enables resetting of the integrator if step change is detected (PV) AtCtrl.EnaStepReset AtCtrl.EnaStepReset AtCtrl.MeasFilterTm Eilter time for actual measurement in s Offset for detecting a overshoot, in % of PwrAtNomPoi The upper and lower limit of the output of the Pl controller AtCtrl.SpntDelaySam- AtCtrl.SpntDelaySam- To delay the active power setpoint Threshold for detecting a step change, in % of PwrAtNomPoi Defines which reactive power function is used 1074: PWR_RT_MODE_FIX_COSPHI 1984: PWR_RT_MODE_OFF 1069: PWR_RT_MODE_VTG_DROOP 1070:PWR_RT_MODE_VTG_DROOP 1070:PWR_RT_MODE_VTG_DROOP 1070:PWR_RT_MODE_VTG_DROOP 1070:PWR_RT_MODE_VTG_DROOP 1070:PWR_RT_MODE_VTG_DROOP 1070:PWR_RT_MODE_VTG_DROOP_EXT_SPNT Control parameter intregral gain for the power Pl controller Ctrl.CtrlKp Hysteresis for switching to the limit if measurement exceeds the limit, in % of PwrRtNomPoi Enables adaptive control (Yes: related to the connected nominal device power / No: re-

		Enables dynamic setpoint switching if limits	
J+167	PwrRtCtrl.EnaDynSpntSwitch	are exceeded	0
	, , ,	Enables reseting of the integrator if step	
J+168	PwrRtCtrl.EnaStepReset	change is detected	0
	· ·	A constant offset which will be added to the	
J+169	PwrRtCtrl.FeedForwardOffset	setpoint	0
J+170	PwrRtCtrl.MeasFilterTm	Filter time for actual measurement in s	0
		Offset for detecting a overshoot, in % of	
J+171	PwrRtCtrl.OvershootResetPc	PwrRtNomPoi	100
		The upper and lower limit of the output of the	
J+172	PwrRtCtrl.PiCtrlLimPc	PI controller for reactive power control	5
J+173	PwrRtCtrl.PilotControlGain	The gain factor for the pilot control	1
J+174	PwrRtCtrl.SpntDelaySamples	To delay the active power setpoint	3
		Threshold for detecting a step change, in % of	
J+1 <i>75</i>	PwrRtCtrl.StepResetThrsldPc	PwrRtNomPoi	20
		Enables function / 0: ENA_NO / 1:	
J+1 <i>7</i> 6	PwrRtPwrAtLim.Ena	ENA_YES	0
		_	
J+1 <i>77</i>	PwrRtPwrAtLim.PwrAtFilterTm	Filter time for active power measurement in s	0
		The active power breakpoints for the upper	
	PwrRtPwrAtLim.PwrAtLim-	reactive power limits in % relative to	
J+178	HiPc[1]	PwrAtNomPoi	0
		The active power breakpoints for the upper	
	PwrRtPwrAtLim.PwrAtLim-	reactive power limits in % relative to	
J+1 <i>7</i> 9	HiPc[2]	PwrAtNomPoi	50
		The active power breakpoints for the upper	
	PwrRtPwrAtLim.PwrAtLim-	reactive power limits in % relative to	
J+180	HiPc[3]	PwrAtNomPoi	70
		The active power breakpoints for the upper	
	PwrRtPwrAtLim.PwrAtLim-	reactive power limits in % relative to	
J+181	HiPc[4]	PwrAtNomPoi	100
		The active power breakpoints for the upper	
	PwrRtPwrAtLim.PwrAtLim-	reactive power limits in % relative to	
J+182	HiPc[5]	PwrAtNomPoi	101
		The active power breakpoints for the upper	
	PwrRtPwrAtLim.PwrAtLim-	reactive power limits in % relative to	
J+183	HiPc[6]	PwrAtNomPoi	102
		The active power breakpoints for the upper	
	PwrRtPwrAtLim.PwrAtLim-	reactive power limits in % relative to	
J+184	HiPc[7]	PwrAtNomPoi	103
		The active power breakpoints for the upper	
	PwrRtPwrAtLim.PwrAtLim-	reactive power limits in % relative to	
J+185	HiPc[8]	PwrAtNomPoi	104

		The active power breakpoints for the upper	
	PwrRtPwrAtLim.PwrAtLim-	reactive power limits in % relative to	
J+186	HiPc[9]	PwrAtNomPoi	105
		The active power breakpoints for the upper	
	PwrRtPwrAtLim.PwrAtLim-	reactive power limits in % relative to	
J+187	HiPc[10]	PwrAtNomPoi	106
		The active power breakpoints for the lower re-	
	PwrRtPwrAtLim.PwrAtLim-	active power limits in % relative to	
J+188	LoPc[1]	PwrAtNomPoi	0
		The active power breakpoints for the lower re-	
	PwrRtPwrAtLim.PwrAtLim-	active power limits in % relative to	
J+189	LoPc[2]	PwrAtNomPoi	50
		The active power breakpoints for the lower re-	
	PwrRtPwrAtLim.PwrAtLim-	active power limits in % relative to	
J+190	LoPc[3]	PwrAtNomPoi	70
		The active power breakpoints for the lower re-	
	PwrRtPwrAtLim.PwrAtLim-	active power limits in % relative to	
J+191	LoPc[4]	PwrAtNomPoi	100
3 . , ,	201 0[1]	The active power breakpoints for the lower re-	
	PwrRtPwrAtLim.PwrAtLim-	active power limits in % relative to	
J+192	LoPc[5]	PwrAtNomPoi	101
J 1 1 / Z	[5]		101
	PwrRtPwrAtLim.PwrAtLim-	The active power breakpoints for the lower re-	
J+193		active power limits in % relative to PwrAtNomPoi	102
J+193	LoPc[6]		102
	D. DiD. Ail' D. Ail'	The active power breakpoints for the lower re-	
1.104	PwrRtPwrAtLim.PwrAtLim-	active power limits in % relative to	100
J+194	LoPc[7]	PwrAtNomPoi	103
	D DiD Ails D Ails	The active power breakpoints for the lower re-	
	PwrRtPwrAtLim.PwrAtLim-	active power limits in % relative to	
J+195	LoPc[8]	PwrAtNomPoi	104
		The active power breakpoints for the lower re-	
	PwrRtPwrAtLim.PwrAtLim-	active power limits in % relative to	
J+196	LoPc[9]	PwrAtNomPoi	105
		The active power breakpoints for the lower re-	
	PwrRtPwrAtLim.PwrAtLim-	active power limits in % relative to	
J+197	LoPc[10]	PwrAtNomPoi	106
		The reactive power breakpoints for the upper	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+198	HiPc[1]	PwrRtNomPoi	60
		The reactive power breakpoints for the upper	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+199	HiPc[2]	PwrRtNomPoi	60

		The reactive power breakpoints for the upper	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+200	HiPc[3]	PwrRtNomPoi	40
		The reactive power breakpoints for the upper	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+201	HiPc[4]	PwrRtNomPoi	40
		The reactive power breakpoints for the upper	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+202	HiPc[5]	PwrRtNomPoi	40
		The reactive power breakpoints for the upper	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+203	HiPc[6]	PwrRtNomPoi	40
		The reactive power breakpoints for the upper	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+204	HiPc[7]	PwrRtNomPoi	40
		The reactive power breakpoints for the upper	
ı	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+205	HiPc[8]	PwrRtNomPoi	40
		The reactive power breakpoints for the upper	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+206	HiPc[9]	PwrRtNomPoi	40
		The reactive power breakpoints for the upper	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+207	HiPc[10]	PwrRtNomPoi	40
		The reactive power breakpoints for the lower	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+208	LoPc[1]	PwrRtNomPoi	-60
		The reactive power breakpoints for the lower	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+209	LoPc[2]	PwrRtNomPoi	-60
		The reactive power breakpoints for the lower	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+210	LoPc[3]	PwrRtNomPoi	-60
		The reactive power breakpoints for the lower	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+211	LoPc[4]	PwrRtNomPoi	-60
		The reactive power breakpoints for the lower	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+212	LoPc[5]	PwrRtNomPoi	-60
		The reactive power breakpoints for the lower	
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
J+213	LoPc[6]	PwrRtNomPoi	-60

J+230	2]	PwrRtNomPoi	5
	VtgPwrRtDroop.PwrRtDataPc[voltage breakpoints in % relative to	
		The reactive power data corresponding to the	
J+229	1]	PwrRtNomPoi	-5
	VtgPwrRtDroop.PwrRtDataPc[voltage breakpoints in % relative to	
		The reactive power data corresponding to the	
J+228	blo	PwrRtNomPoi	0
	VtgPwrRtDroop.PwrRtDataPcD-	Lower deadband reactive power limit in % of	
J+227	bHi	centage of PwrRtNomPoi	0
	VtgPwrRtDroop.PwrRtDataPcD	Higher deadband reactive power limit in per-	
J+226	SpntRamp.PwrRtSpntFilterTm	than 0 ramps are disabled.	0
	1	Reactive power setpoint filter time, if greater	
J+225	SpntRamp.PwrRtRateMax	hole system in MVar/min	100
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	maximum rate of reactive power setpoint for	
J+224	SpntRamp.PwrAtSpntFilterTm	than 0 ramps are disabled	0
J · ZZU	opinicamp.i wizikeseiiiisiarc	Active power setpoint filter time, if greater	<u> </u>
J+223	SpntRamp.PwrAtResetThrsldPc	point to the actual measurement in % of PwrAtNomPoi	5
		Threshold for reseting the active power set-	
J+222	SpntRamp.PwrAtRateMax	hole system in MW/min	100
1.000		maximum rate of active power setpoint for	100
J+221	SpntRamp.PwrAtRampTm	Time to ramp a setpoint change	300
J+220	Max	power)	5
1.000	SpntRamp.PvPwrAtRiseRate-	point for pv system in %/s (of related actual	_
		maximum positive rate of active power set-	
J+219	Max	tual power)	20
	SpntRamp.BatPwrAtRiseRate-	point for battery system in %/s (of related ac-	
		maximum positive rate of active power set-	
J+218	SpntRamp.EnaPwrAtRampTm	0: ENA_NO / 1: ENA_YES	0
		Enables time ramp with PwrAtRampTm	
J+217	LoPc[10]	PwrRtNomPoi	-60
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
		The reactive power breakpoints for the lower	
J+216	LoPc[9]	PwrRtNomPoi	-60
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
		The reactive power breakpoints for the lower	
J+215	LoPc[8]	PwrRtNomPoi	-60
	PwrRtPwrAtLim.PwrRtLim-	reactive power limits in % relative to	
		The reactive power breakpoints for the lower	
J+214	LoPc[7]	PwrRtNomPoi	-60
	PwrRtPwrAtLim.PwrRtLim-	The reactive power breakpoints for the lower reactive power limits in % relative to	

		The reactive power data corresponding to the	
	VtgPwrRtDroop.PwrRtDataPc[voltage breakpoints in % relative to	
J+231	3]	PwrRtNomPoi	4
		The reactive power data corresponding to the	
	VtgPwrRtDroop.PwrRtDataPc[voltage breakpoints in % relative to	
J+232	4]	PwrRtNomPoi	3
		The reactive power data corresponding to the	
	VtgPwrRtDroop.PwrRtDataPc[voltage breakpoints in % relative to	
J+233	5]	PwrRtNomPoi	2
		The reactive power data corresponding to the	
	VtgPwrRtDroop.PwrRtDataPc[voltage breakpoints in % relative to	
J+234	6]	PwrRtNomPoi	1
		The reactive power data corresponding to the	
	VtgPwrRtDroop.PwrRtDataPc[voltage breakpoints in % relative to	
J+235	7]	PwrRtNomPoi	-1
		The reactive power data corresponding to the	
	VtgPwrRtDroop.PwrRtDataPc[voltage breakpoints in % relative to	
J+236	8]	PwrRtNomPoi	-2
		The reactive power data corresponding to the	
	VtgPwrRtDroop.PwrRtDataPc[voltage breakpoints in % relative to	
J+237	9]	PwrRtNomPoi	-3
		The reactive power data corresponding to the	
	VtgPwrRtDroop.PwrRtDataPc[voltage breakpoints in % relative to	
J+238	10]	PwrRtNomPoi	-4
		Selects the setpoint source for the voltage set-	
		point	
		2: VTG_SPNTSRC_MODE_EXTSPNT	
		3: VTG_SPNTSRC_MODE_MEAS	
J+239	VtgPwrRtDroop.SpntSrc	1: VTG_SPNTSRC_MODE_PARAM	1
	VtgPwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the	
J+240	points[1]	nominal voltage	5
	VtgPwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the	
J+241	points[2]	nominal voltage	-5
	VtgPwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the	
J+242	points[3]	nominal voltage	-4
	VtgPwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the	
J+243	points[4]	nominal voltage	-3
	VtgPwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the	
J+244	points[5]	nominal voltage	-2
	VtgPwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the	
J+245	points[6]	nominal voltage	-1

	VtgPwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the	
J+246	points[7]	nominal voltage	1
	VtgPwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the	
J+247	points[8]	nominal voltage	2
	VtgPwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the	
J+248	points[9]	nominal voltage	3
	VtgPwrRtDroop.VtgBreak-	The voltage breakpoints in % relative to the	
J+249	points[10]	nominal voltage	4
J+250	VtgPwrRtDroop.VtgFilterTm	Filter time for voltage measurement	0
	VtgPwrRtDroop.VtgSpntFil-		
J+251	terTm	Filter time for the voltage setpoint in s	3

2.4.3 VARs

VAR(L+O)	Reserved
VAR(L+1)	Volt_RB
VAR(L+2)	P_pcc
VAR(L+3)	Q_pcc
VAR(L+4)	S_pcc
VAR(L+5)	Volt_RBFrt
VAR(L+6)	Volt_RB_init
VAR(L+7)	P_pcc_init
VAR(L+8)	Q_pcc_init
VAR(L+9)	STEPCOUNTER
VAR(L+10)	Reserved
VAR(L+11)	Reserved
VAR(L+12)	Reserved
VAR(L+13)	BESS_W_Spt
VAR(L+14)	POI_Var_Spt
VAR(L+15)	POI_PF_Spt
VAR(L+16)	POI_Vol_Spt
VAR(L+17)	POI_Hz_Spt
VAR(L+18)	PwrAtLimSales
VAR(L+19)	ExtPwrAtLimLo
VAR(L+20)	ExtPwrAtLimHi
VAR(L+21)	Frq_pcc
VAR(L+22)	PV_P_pu_add
VAR(L+23)	PV_Q_pu_add
VAR(L+24)	PV_S_pu_add
VAR(L+25)	BESS_P_pu_add
VAR(L+26)	BESS_Q_pu_add
VAR(L+27)	BESS_S_pu_add
VAR(L+28)	PvPwrAtAvail
VAR(L+29)	BatPwrAtAvail

VAR(L+30)	BESS_W_Spt_init
VAR(L+31)	POI_Var_Spt_init
VAR(L+32)	POI_PF_Spt_init
VAR(L+33)	POI_Vol_Spt_init
VAR(L+34)	POI_Hz_Spt_init
VAR(L+35)	PwrAtLimSales_init
VAR(L+36)	ExtPwrAtLimLo init
VAR(L+37)	ExtPwrAtLimHi_init
VAR(L+38)	Reserved
VAR(L+39)	Reserved
VAR(L+40)	HybridPwrAtMaxTot
VAR(L+41)	Plant_Base
VAR(L+42)	HybridPwrAtTot
VAR(L+43)	Ppv_com
VAR(L+44)	Qpv_com
VAR(L+45)	Pbess_com
VAR(L+46)	Qbess_com
VAR(L+47)	Inv_read_Flg
VAR(L+48)	Ppv_inv_init
VAR(L+49)	Qpv_inv_init
VAR(L+50)	Pbess_inv_init
VAR(L+51)	Qbess_inv_init
VAR(L+52)	DCDC_PBase
VAR(L+53)	PInitTotDCDC
VAR(L+54)	Reserved
VAR(L+54)	Reserved
VAR(L+56)	Ppv_cmd_inv_filt
VAR(L+57)	Qpv_cmd_inv_filt
VAR(L+58)	Pbess_cmd_inv_filt
VAR(L+59)	Qbess_cmd_inv_filt
VAR(L+60)	BatWSptMax
VAR(L+61)	BatWSptMin
VAR(L+62)	Ppv_cmd_inv
VAR(L+63)	Qpv_cmd_inv
VAR(L+64)	Pbess_cmd_inv
VAR(L+65)	Qbess_cmd_inv
VAR(L+66)	Reserved
VAR(L+67)	Reserved
VAR(L+68)	Reserved
VAR(L+69)	Reserved
VAR(L+70)	Reserved
VAR(L+71)	Reserved
VAR(L+72)	Reserved
VAR(L+73)	Reserved
VAR(L+74)	Reserved
VAR(L+75)	FrtActive
VAN(LI/J)	THACING

VAR(L+76)	FRT_ExitTm
VAR(L+77)	VoltPoiFilt
VAR(L+78)	PwrAtPoi_pu_hist
VAR(L+79)	PoiFrqComp
VAR(L+80)	FrqPoi_processed
VAR(L+81)	Pfrq_Poi_Filtered
VAR(L+82)	PvBatMaxOut
VAR(L+83)	PvBatMinOut
VAR(L+84)	PwrAtLimPrioRt
VAR(L+85)	PwrRtPoi_Filt
VAR(L+86)	PwrAtSpnt_FCAS
VAR(L+87)	Active_State
VAR(L+88)	FrequencyOutsideDB
VAR(L+89)	State_Fast
VAR(L+90)	FastState_timer
VAR(L+91)	FastDone
VAR(L+92)	State_Slow SlowState_timer
VAR(L+93)	SlowDone SlowDone
VAR(L+94)	
VAR(L+95)	State_Delayed
VAR(L+96)	DelayedState_timer
VAR(L+97)	DelayedDone
VAR(L+98)	FrqRespPwrAtMaxNom
VAR(L+99)	FrqRespPwrAtMinNom
VAR(L+100)	Flag_FrqOutsideDb
VAR(L+101)	TimeDelay for FrqDroop
VAR(L+102)	Frq_After_Delay
VAR(L+103)	Reset
VAR(L+104)	Reset_delay
VAR(L+105)	EnaRamp
VAR(L+106)	EnaRamp_delay
VAR(L+107)	State_ResetTm
VAR(L+108)	ResetTm_Time
VAR(L+109)	Reset_OR_FrqOutside
VAR(L+110)	PwrSpntPu_hold
VAR(L+111)	PwrSpntPu_hold
VAR(L+112)	InPrefaultVal
VAR(L+113)	ShiftPreFaultVal
VAR(L+114)	PreFaultVal
VAR(L+115)	RateLimiter_Input
VAR(L+116)	HoldValue_delay
VAR(L+117)	Unused
VAR(L+118)	HoldValue_delay2
VAR(L+119)	HoldValue_delay3
VAR(L+120)	HoldValue_delay4
VAR(L+121)	EnaShiftPreFaultVal

VAR(L+122)	PvBatMaxOut
VAR(L+123)	PvBatMinOut
VAR(L+124)	FrqDroopActive
VAR(L+125)	PwrAtLimSales
VAR(L+126)	PwrAtSpntFilterTm
VAR(L+127)	PvBatMax_Hold
VAR(L+128)	PvBatMin_Hold
VAR(L+129)	IsFrqLo
VAR(L+130)	IsFrqLo_delay
VAR(L+131)	FrqDroopActive_delay1
VAR(L+132)	FrqDroopActive_delay2
VAR(L+133)	FrqDroopActive_delay3
VAR(L+134)	FrqDroopActive_delay4
VAR(L+135)	HoldSpnt_Flag
VAR(L+136)	ExtBatPwrAtSpnt
VAR(L+137)	EnaCritGridRamp_delay1
VAR(L+138)	EnaCritGridRamp_delay2
VAR(L+139)	EnaCritGridRamp_Out
VAR(L+140)	FrqDroopActive_Out
VAR(L+141)	BatPwrAtSpnt_Out
VAR(L+142)	FrtActive_delay
VAR(L+142)	ResetSpntMax
VAR(L+144)	ResetSpntMin
VAR(L+144)	ResetMax_delay
VAR(L+146)	PvBatMax_delay
VAR(L+147)	ResetMin_delay
VAR(L+148)	PvBatMin_delay
VAR(L+149)	FrqDroop_delay
VAR(L+150)	FrqDroop_delay2
VAR(L+150)	PvBatMaxOut
VAR(L+151)	PvBatMinOut
VAR(L+152)	PvBatMaxOut_delay
VAR(L+153) VAR(L+154)	PvBatMaxOut_delay2
VAR(L+154)	PvBatMinOut_delay
VAR(L+155)	PvBatMinOut_delay2
VAR(L+157)	EnaCritGridRamp_dly
VAR(L+157)	EnaCritGridRamp_dly2
VAR(L+159)	EnaCritGridRamp_local
VAR(L+160) VAR(L+161)	FrqDroopActive_local PvBatMaxOut_filter
VAR(L+161) VAR(L+162)	PvBatMinOut_filter
VAR(L+163)	FrqDroopActive_Dly1
VAR(L+164)	FrqDroopActive_Dly2
VAR(L+165)	FrqDroop_SR
VAR(L+166)	PvBatMaxAddRstThshld_Delay
VAR(L+167)	PvBatMinSubRstThshld_Delay

VAR(L+168)	InitCond
VAR(L+169)	FrtActive_delay
VAR(L+170)	Setpoint_delay1
VAR(L+171)	Setpoint_delay2
VAR(L+172)	Setpoint_delay3
VAR(L+173)	Setpoint_delay4
VAR(L+174)	Setpoint_delay5
VAR(L+175)	Setpoint_delay6
VAR(L+176)	PvBatMaxOut
VAR(L+177)	PvBatMinOut
VAR(L+178)	PrioFrqResp_state
VAR(L+179)	PrioFrqResp_state_delay
VAR(L+180)	FrqRespPwrAtSpnt_temp
VAR(L+181)	PvBatMaxOut
VAR(L+182)	PvBatMinOut
VAR(L+183)	FreqRespPwrAtMax
VAR(L+184)	FreqRespPwrAtMin
VAR(L+185)	ExtPwrRtSpntOut
VAR(L+186)	PwrRtSpnt
VAR(L+187)	InitVtgSpnt
VAR(L+188)	VtgSpnt_Filt
VAR(L+189)	VtgPoi_Filt
VAR(L+190)	PwrAtPoi_filter
VAR(L+191)	CosPhiSpnt
VAR(L+192)	PwrRtOut
VAR(L+193)	InitCosPhi
VAR(L+194)	Unused
VAR(L+195)	Unused
VAR(L+196)	PwrRtRateMax_Out
VAR(L+197)	PwrRtSpntTot
VAR(L+198)	LimitRtHi
VAR(L+199)	LimitRtLo
VAR(L+200)	PwrAtPoiFilterTm
VAR(L+201)	PwrRtSpntFilterTm
VAR(L+202)	InitCond
VAR(L+203)	FrtActive_delay
VAR(L+204)	Setpoint_delay1
VAR(L+205)	Setpoint_delay2
VAR(L+206)	Setpoint_delay3
VAR(L+207)	Setpoint_delay4
VAR(L+208)	Setpoint_delay5
VAR(L+209)	Setpoint_delay6
VAR(L+210)	PwrRtPwrAtLimHi
VAR(L+211)	PwrRtPwrAtLimLo
VAR(L+212)	PwrAtPoi_filt
VAR(L+213)	PvPwrAtLim
1711/L . 7 101	I M MICHELLI

VAR(L+214)	BatPwrAtSpntOut
VAR(L+215)	PwrCtlOut
VAR(L+216)	PwrSpnt_delay
VAR(L+217)	Reset_Timer
VAR(L+218)	Reset_Signal
VAR(L+218)	ResetOut_delay
	,
VAR(L+220)	HoldInt_Out_delay
VAR(L+221)	HoldInt_Active
VAR(L+222)	PwrMsTot_Filt
VAR(L+223)	FrtActive_delay
VAR(L+224)	PiCtrlWithLimit_out
VAR(L+225)	PwrCtl_Integrator
VAR(L+226)	PiCtrl_int_delay1
VAR(L+227)	PiCtrl_int_delay2
VAR(L+228)	PiCtrl_int_delay3
VAR(L+229)	PiCtrl_int_delay4
VAR(L+230)	PiCtrl_int_delay5
VAR(L+231)	PiCtrl_int_delay6
VAR(L+232)	PiCtrl_SetIC_Freeze
VAR(L+233)	PwrCtlOut
VAR(L+234)	PwrSpnt_delay
VAR(L+235)	Reset_Timer
VAR(L+236)	Reset_Signal
VAR(L+237)	ResetOut_delay
VAR(L+238)	HoldInt_out_dly
VAR(L+239)	HoldInt_Active
VAR(L+240)	PwrMsTot_Filt
VAR(L+241)	FrtActive_delay
VAR(L+242)	PiCtrlWithLimit
VAR(L+243)	PwrCtl_Integrator
VAR(L+244)	PiCtrl_int_delay1
VAR(L+245)	PiCtrl_int_delay2
VAR(L+246)	PiCtrl_int_delay3
VAR(L+247)	PiCtrl_int_delay4
VAR(L+248)	PiCtrl_int_delay5
VAR(L+249)	PiCtrl_int_delay6
VAR(L+250)	PiCtrl_SetIC_Freeze
VAR(L+251)	PvPwrAtSpnt
VAR(L+252)	AutoMode
VAR(L+253)	BatPwrAtSpnt
VAR(L+254)	DisablePvRrc
VAR(L+255)	DevAtUpLimitPv DevAtUpLimitPv
VAR(L+256)	TimeOutTimerPVup
VAR(L+257)	DevAtLoLimitPv
VAR(L+258)	TimeOutTimerPVDown
VAR(L+258)	
VAK(LTZJY)	DevAtUpLimitBat

VAR(L+260)	TimeOutTimerBatup
VAR(L+261)	DevAtLoLimitBat
VAR(L+262)	TimeOutTimerBatDown
VAR(L+263)	TargetPVOut
VAR(L+264)	TargetBatOut
VAR(L+265)	PvPwrAtLimTotOut_delay1
VAR(L+266)	PvPwrAtLimTotOut_delay2
VAR(L+267)	PvPwrAtLimTotOut_delay3
VAR(L+268)	BatPwrAtLimTOotOut_delay1
VAR(L+269)	BatPwrAtLimTotOut_delay2
VAR(L+270)	BatPwrAtLimTotOut_delay3
VAR(L+271)	TimeOutReachedCtrlPrioChange
VAR(L+272)	TimeOutTimerCtrlPrioChange
VAR(L+273)	WsptOldSumHold
VAR(L+274)	PwrAtPoiHold
VAR(L+275)	Hold_delay
VAR(L+276)	Hold_delay2
VAR(L+277)	LimHiFlag_hold
VAR(L+278)	PwrAtPoiHoldMax
VAR(L+279)	PwrAtPoiHoldMin
VAR(L+280)	PwrAtPoiDelay
VAR(L+281)	PwrAtPoiDelayHold
VAR(L+282)	TimeOutReachedHoldChange
VAR(L+283)	TimeOutTimerHoldChange
VAR(L+284)	ForcePrioUp5Delay
VAR(L+285)	ForcePrioUp
VAR(L+286)	POICtrlState
VAR(L+287)	WSpt_Delay1
VAR(L+288)	WSpt_Delay2
VAR(L+289)	SetCtrlPrio_entry
VAR(L+290)	Trigger_state
VAR(L+291)	Trigger_state_timer1
VAR(L+292)	Trigger_state_timer2
VAR(L+293)	CtrlPrio
VAR(L+294)	CtrlPrio_delayed
VAR(L+295)	PrioUp
VAR(L+296)	UseWMax
VAR(L+297)	UpLim2Target
VAR(L+298)	LoLim2Target
VAR(L+299)	Relnit
VAR(L+300)	IC
VAR(L+301)	Holds(1)_delay
VAR(L+302)	Holds(2)_delay
VAR(L+303)	Holds(3)_delay
VAR(L+304)	Holds(4)_delay
VAR(L+305)	Holds(5)_delay

VAR(L+306)	WSpt_pu(1)_delay
VAR(L+307)	WSpt_pu(2)_delay
VAR(L+308)	WSpt_pu(3)_delay
VAR(L+309)	WSpt_pu(4)_delay
VAR(L+310)	WSpt_pu(5)_delay
VAR(L+311)	IsClosedLoop_delay
VAR(L+312)	NumWSptPrio_send(1)_delay
VAR(L+313)	NumWSptPrio_send(2)_delay
VAR(L+314)	NumWSptPrio_send(3)_delay
VAR(L+315)	NumWSptPrio_send(4)_delay
VAR(L+316)	NumWSptPrio_send(5)_delay
VAR(L+317)	Trigg(1)_delay
VAR(L+318)	Trigg(2)_delay
VAR(L+319)	Trigg(3)_delay
VAR(L+320)	Trigg(4)_delay
VAR(L+321)	Trigg(5)_delay
VAR(L+322)	EnaRateLimit(1)_delay
VAR(L+323)	EnaRateLimit(2)_delay
VAR(L+324)	EnaRateLimit(3)_delay
VAR(L+325)	EnaRateLimit(4)_delay
VAR(L+326)	EnaRateLimit(5)_delay
VAR(L+327)	OpenLoop_WSpt(1)
VAR(L+328)	OpenLoop_WSpt(2)
VAR(L+329)	OpenLoop_WSpt(3)
VAR(L+330)	OpenLoop_WSpt(4)
VAR(L+331)	OpenLoop_WSpt(5)
VAR(L+332)	OpenLoop_WSpt(1)_delay
VAR(L+333)	OpenLoop_WSpt(2)_delay
VAR(L+334)	OpenLoop_WSpt(3)_delay
VAR(L+335)	OpenLoop_WSpt(4)_delay
VAR(L+336)	OpenLoop_WSpt(5)_delay
VAR(L+337)	OpenLoop_WSpt_lim(1)
VAR(L+338)	OpenLoop_WSpt_lim(2)
VAR(L+339)	OpenLoop_WSpt_lim(3)
VAR(L+340)	OpenLoop_WSpt_lim(4)
VAR(L+341)	OpenLoop_WSpt_lim(5)
VAR(L+342)	CtrlPrio_ne5_delay
VAR(L+343)	NumWSptPrio_send_delay
VAR(L+344)	QFRT
VAR(L+345)	NotFRT_delay
VAR(L+346)	Ctl_Spt_delay1
VAR(L+347)	Ctl_Spt_delay2
VAR(L+348)	Ctl_Spt_delay3
VAR(L+349)	Ctl_Spt_delay4
VAR(L+350)	Ctl_Spt_delay5
VAR(L+351)	Ctl_Spt_delay6
	r/-

VAR(L+352)	Ctrl_Spt_SetIC_Freeze
VAR(L+353)	Ctrl_Spt (Output)
VAR(L+354)	u-y_delay
VAR(L+355)	Ctrl_Spt_int
VAR(L+356)	Ena_delay
VAR(L+357)	Ctrl_Spt_delay
VAR(L+358)	PvPwrAtLimTotOut
VAR(L+359)	BatPwrAtLimTotOut
VAR(L+360)	RtPwrNomTot
VAR(L+361)	PwrCtlOut
VAR(L+362)	PwrSpnt_delay
VAR(L+363)	Reset_Timer
VAR(L+364)	Reset_Signal
VAR(L+365)	ResetOut_delay
VAR(L+366)	HoldInt_Out_dly
VAR(L+367)	HoldInt_Active
VAR(L+368)	PwrMsTot_Filt
VAR(L+369)	FrtActive_delay
VAR(L+370)	PiCtrlWithLimit_out
VAR(L+371)	PwrCtl_Integrator
VAR(L+372)	PiCtrl_int_delay1
VAR(L+373)	PiCtrl_int_delay2
VAR(L+374)	PiCtrl_int_delay3
VAR(L+374) VAR(L+375)	PiCtrl_int_delay4
VAR(L+375) VAR(L+376)	PiCtrl_int_delay5
VAR(L+377)	·
· ' '	PiCtrl_int_delay6 PiCtrl_SetIC_Freeze
VAR(L+378) VAR(L+379)	
VAR(L+379) VAR(L+380)	PwrRtSpntOut RtPwrNomTot
VAR(L+381)	Vtg_Poi_Flt
VAR(L+381)	HiLimit_Flag
	
VAR(L+383)	LoLimit_Flag
VAR(L+384)	PwrCtlOut
VAR(L+385)	PwrSpnt_delay
VAR(L+386)	Reset_Timer
VAR(L+387)	Reset_Signal
VAR(L+388)	ResetOut_delay
VAR(L+389)	HoldIntegrator_Out_delay
VAR(L+390)	HoldIntegrator_Active
VAR(L+391)	PwrMsTot_Filt
VAR(L+392)	FrtActive_delay
VAR(L+393)	PiCtrlWithLimit_output
VAR(L+394)	PwrCtl_Integrator
VAR(L+395)	PiCtrl_int_delay1
VAR(L+396)	PiCtrl_int_delay2
VAR(L+397)	PiCtrl_int_delay3

VAR(L+398)	PiCtrl_int_delay4
VAR(L+399)	PiCtrl_int_delay5
VAR(L+400)	PiCtrl_int_delay6
VAR(L+401)	PiCtrl_SetIC_Freeze
VAR(L+402)	PvPwrRtSpnt
VAR(L+403)	BatPwrRtSpnt

2.4.4 STATEs

STATE	Description
К	Reserved
K+1	Filtered remote bus frequency
K+2	Filtered remote bus voltage
K+3	Filtered POI active power
K+4	Filtered POI reactive power
K+5	Filtered PV active power
K+6	Filtered PV reactive power
K+7	Filtered BESS active power
K+8	Filtered BESS reactive power
K+9	Frt Detection Voltage Filter

3 Disclaimer

This document and the associated models have been prepared to facilitate the behavioral simulation of the response of SMA Hybrid Controller operating together with SMA Sunny Central storage and/or solar inverters to grid and parameter disturbances. The modeling data presented herein are intended to produce simulation results that closely approximate the response of the Hybrid Controller and the inverters to these disturbances.