

Selected Topics in Visual Recognition using Deep Learning Homework 2 announcement

TA: 楊証琨, Jimmy

Ph.D. student at National Taiwan Universitiy

d08922002@ntu.edu.tw

Homework 1 reminder!

- Deadline: 11/12, Thr at 23:59
 - 1. Finish the Kaggle competition (check the leaderboard)

#	Team Name	Notebook	Team Members	Score @	Entries	Last
1	0856600		9	0.95440	19	2d
2	309505013		(1)	0.94720	2	3d
3	0856622		9	0.94460	11	10h
4	Auditors		1	0.94420	1	7d
5	0716041		9	0.94420	6	3d
6	0856087			0.93900	13	4d

2. Upload your reports to E3 systems

Homework 2: Digits detection

- Deadline: 11/26, Thr at 23:59
 - 1. Upload your **report.pdf** to E3
 - 2. Submit prediction file to this Google drive
 - 3. Test your model inference speed by the Google colab

My D	rive > NCTU_CS_T0828 > HW2 > submission	
(i)	My Drive trash is changing. Starting October 13, items will be automatically del	eted forev
Name		Owner
	FAIL_AssertionErrorlen(pred)_should_equal_to_13068_wrong_submission_sample.j	me
	mAP_0.36898_BASELINE_submission_sample.json 🚢	me
	README.txt 🚢	me

HW3 Introduction: Street View House Numbers

- SVHN dataset contains 33,402 trianing images, 13,068 test images
- Train a not only accurate but fast digit detector!

HW3 Get the dataset

- Download the dataset from this <u>Google Drive</u>
- The annotations are save in .h5 file. <u>Here</u> are Python code to parse the annotation file

```
def get name(index, hdf5 data):
    name = hdf5 data['/digitStruct/name']
    return ''.join([chr(v[0]) for v in hdf5 data[name[index][0]].value])
def get bbox(index, hdf5 data):
    attrs = {}
    item = hdf5 data['digitStruct']['bbox'][index].item()
    for key in ['label', 'left', 'top', 'width', 'height']:
        attr = hdf5 data[item][key]
        values = [hdf5_data[attr.value[i].item()].value[0][0]
                  for i in range(len(attr))] if len(attr) > 1 else [attr.value[0][0]]
        attrs[key] = values
    return attrs
```


Upload your submission.json file to **HERE**

- Free version Kaggle doesn't provide metrics of detection :(
- Upload you submission file into the Google Drive, we will inference it and return the performance on your filename
- Filename should be <STUDENT_ID>.json

File format of submission.json

- List of dictionaries, len(list)=number of test images. Order matters!
- Each dictionary contains three keys
 - "bbox": list of bounding boxes in (y1, x1, y2, x2). (top,left,right,bottom)
 - "score": list of probability for the class
 - "label": list of label

Submission.json file format

• E.g., your model predict two boxes on an image, the dictionary should be

```
dict = {"bbox": [(1, 3, 6, 7), (4, 5, 8, 12)],
       "score":[0.87, 0.61],
        "label": [3, 5]}
```


Evaluation metrics: mean Average Precision

- Practical metric for object detection
- Measure the precision on different threshold then average it

	AP	time
[A] YOLOv2 [†] [27]	21.6	25
[B] SSD321 [22]	28.0	61
[C] DSSD321 [9]	28.0	85
[D] R-FCN [‡] [3]	29.9	85
[E] SSD513 [22]	31.2	125
[F] DSSD513 [9]	33.2	156
[G] FPN FRCN [20]	36.2	172
RetinaNet-50-500	32.5	73
RetinaNet-101-500	34.4	90
RetinaNet-101-800	37.8	198

Model speed benchmark by **Google Colab**

- To evaluate your model by GPU, you need to transfer the code and weights of your model into Colab. Then run inference to test the speed of your model
- Please include this part in your reports

Grading policy: Model performance (70 points)

- 50 points for the accuracy ranking
- 20 points for the speed benchmark ranking
- Pass the each baseline will get 80% of that points

- mAP baseline: 0.36898
- Speed baseline: 558 ms per image

Grading policy: Reports (20 points)

- Document your work (in PDF)
 - ☐ GitHub/ GitLab link of your code
 - ☐ reference if you used code from GitHub
 - ☐ Speed benchmark
 - Brief introduction
 - ☐ Methodology (Data pre-process, Model architecture, Hyperparameters,...)
 - Findings or Summary

Grading policy: Code readability (10 points)

 Write beautiful Python code with <u>PEP8 guidelines</u> for readability. Base requirement: use whitespace correctly!

```
# Recommended
def function(default_parameter=5):
    # ...

# Not recommended
def function(default_parameter = 5):
    # ...
```

```
# Recommended
my_list = [1, 2, 3]

# Not recommended
my_list = [ 1, 2, 3, ]
```

```
Python

x = 5
y = 6

# Recommended
print(x, y)

# Not recommended
print(x , y)
```


Late Policy

- We will deduct a late penalty of 20 points per additional late day
- For example, If you get 90% of HW but delay for two days, your will get only 90 points- (20 points x 2) = 50 points!

Keywords

- Beat the baseline
 - yolo, SSD, Retina-Net, Faster RCNN

- Rank Top 3!
 - Read some paper from CVPR'2020, ECCV'2020 and try to implement it!

FAQ

- Can I use any code/tools/Library from GitHub or other resources?
 - Yes! We encourage you to learn how to apply existing tools on your own task, such as <u>Keras-Retinanet</u>, <u>Pytorch-mmdetection</u>, <u>TF-object-detection-API</u>

But DO NOT copy code from your classmate!

- Why my testing results are so bad?
 - If you have done any image translation (resize, padding), you will need to transfer the coordinates into original image dimension
- How do I set the score threshold for box predictions?
 - ☐ Figure out how mAP is computed, you will get the answer!

Notice

- Check your email regularly, we will mail you if there are any updates or problems of the homework
- If you have any questions or comments for the homework, please mail me and cc Prof. Lin
 - ☐ Prof. Lin: <u>lin@cs.nctu.edu.tw</u>
 - ☐ Jimmy: d08922002@ntu.edu.tw (3pm-4pm, Thur., EC118)
 - □ 佳諭: mylifeai1116@gmail.com (3pm-4pm, Thur., EC118)
 - □ 玉霖: <u>oscar861201@gmail.com</u> (3pm-4pm, Thur., EC118)

Have fun!

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

