МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики»

ФАКУЛЬТЕТ ПРОГРАММНОЙ ИНЖЕНЕРИИ И КОМПЬЮТЕРНОЙ ТЕХНИКИ

ЛАБОРАТОРНАЯ РАБОТА №5

по дисциплине «Основы профессиональной деятельности»

Вариант № 3422

Выполнил:

Студент группы Р3110 Конкин Вадим Вадимович

Преподаватель:

Бострикова Дарья Константиновна

Содержание

Текст задания	3
Описание программы	3
Вывод	6
Таблица трассировки	7

Текст задания

По выданному преподавателем варианту разработать программу асинхронного обмена данными с внешним устройством. При помощи программы осуществить ввод или вывод информации, используя в качестве подтверждения данных сигнал (кнопку) готовности ВУ.

- 1. Программа осуществляет асинхронный ввод данных с ВУ-2
- 2. Программа начинается с адреса 246₁₆. Размещаемая строка находится по адресу 5DA₁₆.
- 3. Строка должна быть представлена в кодировке ISO-8859-5.
- 4. Формат представления строки в памяти: АДР1: СИМВ2 СИМВ1 АДР2: СИМВ4 СИМВ3 ... СТОП СИМВ.
- 5. Ввод или вывод строки должен быть завершен по символу с кодом 00 (NUL). Стоп символ является обычным символом строки и подчиняется тем же правилам расположения в памяти что и другие символы строки.

Описание программы

Передаваемое сообщение: «Привет»

В кодировке ISO-8859-5: BF E0 D8 D2 D5 E2

В кодировке UTF-8: D0 9F D1 80 D0 B8 D0 B2 D0 B5 D1 82 В кодировке UTF-16: 1F 04 40 04 38 04 32 04 35 04 42 04

Текст программы на ассемблере:

```
ORG 0x246 ; адрес начала программы
```

RESULT: WORD 0x5DA; ссылка на результат

TEMP: WORD ? ; ячейка для временного содержания

STOPWORD: WORD 0x00; стоп-слово

START:

CLA

S1:

IN 5 ; ожидание ввода первого символа

AND #0x40; готов?

BEQ S1; спин-луп

IN 4 ; ввод первого символа

ST (RESULT); сохраняем символ в результат

ST TEMP ; сохраняем символ во временную переменную

CMP STOPWORD; стоп-слово?

BEQ EXIT; на выход!

CLA

S2:

IN 5 ; ожидание ввода второго символа

AND #0x40; готов?

BEQ S2 ; спин-луп

IN 4 ; ввод второго символа

SWAB ; перемещаем второй символ в старший байт

OR TEMP ; в младший байт первый символ пишем

ST (RESULT); сохраняем все в результат

SUB TEMP ; вычитаем первый символ

SWAB ; второй символ отправляем отдыхать в младший байт

CMP STOPWORD; стоп-слово?

BEQ EXIT ; домой!

LD (RESULT)+ ;увеличиваем ссылочку на результат

CLA ; подчищаем следы

JUMP S1 ; идем в начало

EXIT: HLT

Текст исходной программы:

Адрес	Код команды	Мнемоника	Комментарии					
246	05DA	result	Ссылка на результат					
247	0000	temp	Ячейка для записи нечетных символов					
248	0000	stopword	Стоп-символ					
249	+ 0200	CLA	Очистка аккумулятора					
24A	1207	IN 5	Чтение регистра состояния ВУ-2					
24B	2F40	AND #0x40	Проверка на наличие введенного символа					
24C	F0FD	BEQ IP-3	Нет - "Спин-луп"					
24D	1206	IN 4	Чтение регистра данных ВУ-2					
24E	E8F7	ST (IP-9)	Сохраняем символ в результат					
24F	EEF8	ST IP-9	Сохраняем символ во временную переменную					
250	7EF6	CMP IP-9	Проверяем на стоп-символ					
251	F00F	BEQ IP+15	Если стоп-символ - выход					
252	0200	CLA	Очистка аккумулятора					
253	1207	IN 5	Чтение регистра состояния ВУ-2					

254	2F40	AND #0x40	Проверка на наличие введенного символа					
255	F0FD	BEQ IP-3	Нет - "Спин-луп"					
256	1206	IN 4	Чтение регистра данных ВУ-2					
257	0680	SWAB	Обмен старшего и младшего байтов					
258	3EEF	OR IP-18	Логическое или $^(MEM & ^AC) \rightarrow AC$					
259	E8EC	ST (IP-20)	Сохраняем в память по ссылки					
25A	6EED	SUB IP-20	Вычитание $AC - MEM \rightarrow AC$					
25B	0680	SWAB	Обмен старшего и младшего байтов					
25C	7EEA	CMP IP-21	Проверяем на стоп-символ					
25D	F003	BEQ IP+3	Если стоп-символ - выход					
25E	AAE7	LD (IP-25)+	Инкрементируем ссылку на результат					
25F	0200	CLA	Очистка аккумулятора					
260	CEE9	JUMP IP-23	Возвращаемся в начало цикла					
261	0100	HLT	Остановка программы					
5DA	0000	0000	Строка результата					

Описание программы

Программа осуществляет посимвольный асинхронный ввод данных с ВУ-2, посимвольно записывает их в память. Программа будет получать символы до тех пор, пока на ВУ-2 не будет введен стопсимвол с кодировкой 0х00, который она запишет в память и прекратит свое выполнение.

Область представления

- result 11-разрядная ячейка со ссылкой на результат.
- stopword 16-разрядная константа.
- temp 16-разрядная ячейка для временного хранения введенных символов.
- 5DA ? 16-разрядные ячейки, хранящие в себе по два символа в кодировке ISO-8859-5.

Расположение данных в памяти

- 249-261 команды;
- 246, 247, 248 исходные данные;
- 5DA ? результат.

Адреса первой и последней выполняемой команды

• Адрес первой команды: 249

• Адрес последней команды: 261

Область допустимых значений

- result (указатель на ячейки массива, хранящий результат ввода) ∈ [5DA;2047]
- temp (ячейка для записи нечетных символов) ∈ [0;255], т.к. в нее записывается только 1 символ из 8 бит.
- Введенный символ: [00; FF]

Адрес первого элемента массива равен 5DA по условию. Т.к. 2047 - 1498 = 549 – кол-во ячеек, которые могут использоваться для записи результата => 549*2 = 1098 – максимально возможное колво введенных символов (т.к. в данной кодировке символ занимает 1 байт), включая обязательный стоп-символ => Кол-во введенных символов \in [1;1098].

Вывод

При выполнении данной лабораторной работы я познакомился с асинхронным вводом-выводом данных в БЭВМ, узнал о внешних устройствах, их регистрах и принципах работы. Также, я познакомился с представлением данных в различных кодировках и попрактиковался с вводом данных на ВУ-2.

Таблица трассировки

Строка для трассировки: «Привет», кодировка Windows-1251: CF F0 E8 E2 E5 F2

Трассировка производится для первых двух символов.

Таблица трассировки:												
Адр	Знчн	ΙP	CR	AR	DR	SP	BR	AC	PS	NZVC	Адр	Знчн
072	0200	072	0000	000	0000	000	0000	0000	004	0100		
072	0200	073	0200	072	0200	000	0072	0000	004	0100		
073	1207	074	1207	073	1207	000	0073	0000	004	0100		
074	2F40	075	2F40	074	0040	000	0040	0000	004	0100		
075	F0FD	073	F0FD	075	F0FD	000	FFFD	0000	004	0100		
073	1207	074	1207	073	1207	000	0073	0000	004	0100		
074	2F40	075	2F40	074	0040	000	0040	0000	004	0100		
075	F0FD	073	F0FD	075	F0FD	000	FFFD	0000	004	0100		
073	1207	074	1207	073	1207	000	0073	0000	004	0100		
074	2F40	075	2F40	074	0040	000	0040	0000	004	0100		
075	F0FD	073	F0FD	075	F0FD	000	FFFD	0000	004	0100		
073	1207	074	1207	073	1207	000	0073	0040	004	0100		
074	2F40	075	2F40	074	0040	000	0040	0040	000	0000		
075	F0FD	076	F0FD	075	F0FD	000	0075	0040	000	0000		
076	1206	077	1206	076	1206	000	0076	00CF	000	0000		
077	E8F7	078	E8F7	562	00CF	000	FFF7	00CF	000	0000	562	00CF
078	EEF8	079	EEF8	071	00CF	000	FFF8	00CF	000	0000	071	00CF
079	7EF6	07A	7EF6	070	000A	000	FFF6	00CF	001	0001		
07A	F00F	07B	F00F	07A	F00F	000	007A	00CF	001	0001		
07B	0200	07C	0200	07B	0200	000	007B	0000	005	0101		
07C	1207	07D	1207	07C	1207	000	007C	0000	005	0101		
07D	2F40	07E	2F40	07D	0040	000	0040	0000	005	0101		
07E	F0FD	07C	F0FD	07E	F0FD	000	FFFD	0000	005	0101		
07C	1207	07D	1207	07C	1207	000	007C	0040	005	0101		
07D	2F40	07E	2F40	07D	0040	000	0040	0040	001	0001		
07E	F0FD	07F	FØFD	07E	F0FD	000	007E	0040	001	0001		
07F	1206	080	1206	07F	1206	000	007F	00F0	001	0001		
080	0680	081	0680	080	0680	000	0080	F000	009	1001		
081	3EEF	082	3EEF	071	00CF	000	0F30	F0CF	009	1001		
082	E8EC	083	E8EC	562	F0CF	000	FFEC	F0CF	009	1001	562	F0CF
083	6EED	084	6EED	071	00CF	000	FFED	F000	009	1001		
084	0680	085	0680	084	0680	000	0084	00F0	001	0001		
085	7EEA	086	7EEA	070	000A	000	FFEA	00F0	001	0001		
086	F003	087	F003	086	F003	000	0086	00F0	001	0001		
087	AAE7	088	AAE7	562	F0CF	000	FFE7	F0CF	009	1001	06F	0563
088	0200	089	0200	088	0200	000	0088	0000	005	0101		
089	CEE9	073	CEE9	089	0073	000	FFE9	0000	005	0101		
073	1207	074	1207	073	1207	000	0073	0000	005	0101		
074	2F40	075	2F40	074	0040	000	0040	0000	005	0101		
075	F0FD	073	F0FD	075	F0FD	000	FFFD	0000	005	0101		
073	1207	074	1207	073	1207	000	0073	0040	005	0101		
074	2F40	075	2F40	074	0040	000	0040	0040	001	0001		
075	F0FD	076	F0FD	075	F0FD	000	0075	0040	001	0001		
076	1206	077	1206	076	1206	000	0076	000A	001	0001		
077	E8F7	078	E8F7	563	000A	000	FFF7	000A	001	0001	563	000A
078	EEF8	079	EEF8	071	000A	000	FFF8	000A	001	0001	071	000A
079	7EF6	07A	7EF6	070	000A	000	FFF6	000A	005	0101		

07A	F00F	08A	F00F	07A	F00F	000	000F	000A	005	0101		
08A	AAE4	08B	AAE4	563	000A	000	FFE4	000A	001	0001	06F	0564
08B	0100	08C	0100	08B	0100	000	008B	αααΔ	001	0001		