KG4Vis: A Knowledge Graph-Based Approach for Visualization Recommendation

Haotian Li HKUST, SMU Yong Wang **SMU**

Songheng Zhang SMU

Yangqiu Song **HKUST**

Huamin Qu **HKUST**

Problem Statement

Related Works

Rule-based approaches

- An explicit and manual list of rules and heuristics by expert judgment.
- Difficult and tedious to compile a complete rule list.
- Rules may not be generalizable to different datasets or visualization choices.

Machine-learning-based approaches

- Train a deep learning model to learn from dataset-visualization examples.
- Do not need to manually specify the rules.
- Work as a black box, difficult to tell why such visualization is recommended.
- Users may not trust in the recommended visualizations.

Overall Workflow and Details

Step 2

Step 3 **Embedding Learning**

TransE

Each edge is represented as (head entity, relation, tail entity) i.e., a triplet for short

Data type:

Each edge with two entities and a relation has a corresponding embedding vector:

$$(\vec{h}, \vec{r}, \vec{t})$$

Train the embeddings to achieve:

 $\vec{h} + \vec{r} \approx \vec{t}$

Score for a relation (h, r, t)

$$g(h,r,t) = -\|\vec{h} + \vec{r} - \vec{t}\|_{2}$$

When $\vec{h} + \vec{r}$ is closer to \vec{t} , score is higher

Original TransE Loss Function for Training Embeddings

$$L = \sum_{(h,r,t)\in S} \sum_{(h',r,t')\in S'} ReLU(\gamma + g(h,r,t) - g(h',r,t'))$$

TransE-adv (with Self-adversarial Negative Sampling) Loss Function for Training **Embeddings**

$$L = -\log\sigma(\gamma - g(h, r, t))$$
$$-\sum_{(h', r, t') \in S'} w(h', r, t') \log\sigma(g(h', r, t') - \gamma)$$

- γ : Margin parameter, $\gamma > 0$
- S: Triplets (h, r, t) in the graph
- Generated negative triplets (h', r, t')
- Sigmoid function
- The triplet's probability of being true

Step 4 **Embedding-based Inference**

Bar	Values in a column is not sorted
Вох	Values are not evenly distributed
Line	The column is not the only one in dataset
Scatter	Values in a column are numerical
Histogram	Outlier exists in a column (3Std)

Data Feature → **Visual Design Choice**

For a feature f_i ,

 $\overrightarrow{f_i} + \overrightarrow{r_i} = \overrightarrow{d_{im}}$

where r_i is a relation connecting to f_i $\overrightarrow{d_{im}}$ represents an imaginary data column

Relation r_{target} maps data to a vector $\overrightarrow{v_c}$

$$\overrightarrow{d_{im}} + \overrightarrow{r_{target}} = \overrightarrow{v_c}$$

Given f_i , for each visual choice v_n , define a score indicating how much v_n is preferred

$$g_{f_i \to v_n} = - \| \overrightarrow{f_i} + \overrightarrow{r_i} + \overrightarrow{r_{target}} - \overrightarrow{v_n} \|$$

New Data → Visual Design Choice

Given a new data d_{new} , extract all its features F_{new} For each visual choice v_n

define a score indicating which v_n is recommended

$$\begin{split} g(d_{new}, v_n) &= \frac{1}{|F_{new}|} \sum_{f_i \in F_{new}} g_{f_i \to v_n} \\ &= \frac{-1}{|F_{new}|} \sum_{f_i \in F_{new}} \left\| \overrightarrow{f_i} + \overrightarrow{r_i} + \overrightarrow{r_{target}} - \overrightarrow{v_n} \right\| \end{split}$$

Visualization choice v_n with a higher score is better

Evaluation Setup

A word or symbol "x", "y", "id", "time",

digit, whitespace, "\$", "€", "£", "Y"

is in the column name.

Visualization Corpus

id_in_name

time_in_name

digit_in_name

dollar_in_name pounds_in_name

euro_in_name yen_in_name

whitespace_in_name

VisML corpus

• 88,548 dataset-visualization pairs

About Knowledge Graph

9,679,463 Triplets

1,000 Embedding Dimension

Quantitative Evaluation

Two Inference Tasks

- Inference of visualization types
- Inference of visualization axis

Try different embedding learning models

	Axis	Visualization Type	
	Accuracy	MR	Hits@2
TransE-adv	0.7350	1.9567	0.7489
TransE	0.7214	1.9718	0.7445
RotatE	0.7193	1.9608	0.7458

Qualitative Evaluation

Rules and recommendation results - Case study Values in a column are numerical Scatter Outlier exists in a column (1.5IQR) Scatter Values are not evenly distributed The entropy of values is large Box Values are monotonic Line The data type of a column is decimal Nov-16 Sep-16 Sep-16 Sep-16 Sep-16 Sep-16 Sep-16 Sep-16 Sep-18 Se The column is not the only one in dataset All values in a column are unique Bar Values in a column is not sorted

Participants and Procedure of Expert Interviews

- 12 researchers who have conducted research in data visualization for at least 1 year.
- Experts were asked to finish the three tasks through online meetings

Tasks of Expert Interviews

Task 1

Provided top-5 rules of each visualization type. Give each generated rule a score ranging from 1 (the least reasonable) to 5 (the most reasonable).

Feedbacks

Overall, the generated rules are appreciated by experts.

Task 2

Provided 30 datasets and corresponding top-2 recommended visualizations by our approach. Give each recommended visualization a score ranging

Feedbacks

Average score is 3.7944, thought to be of high quality.

from 1 (the least reasonable) to 5 (the most reasonable).

Task 3

Provided 30 datasets, ask the experts to select top-2 visualization types, for collecting their preferred design choices.

Acknowledgment:

This poster is originally made by Mr. Yuzheng Cai for course "Data Visualization: Application and Implementation" instructed by Dr. Siming Chen, Fudan University, October 2021.