Exercícios: Raízes.

1) Encontre a raiz de $f(x)=x^3-9x+3$ no intervalo $x_1=2$ e $x_u=4$ empregando:

a) método da Bisseção (faça 3 iterações).

iteração	X ₁	f(x _l)	X _r	f(x _r)	X _u	f(x _u)	$\epsilon_a^{0/0}$
1		//	· T)				
2		1	· /)				
3							

b) método da Posição Falsa (faça 3 iterações).

iteração	XI	f(x _l)	Xr	f(x _r)	Xu	f(x _u)	$\epsilon_a\%$
1							
2							
3							

2) Encontre a raiz de $f(x)=x^3-9x+3$ empregando o método de Newton com aproximação inicial x_0 =4 (faça 3 iterações).

iteração	i	$\mathbf{x}_{\mathbf{i}}$	$f(x_i)$	$f'(x_i)$	\mathbf{X}_{i+1}	$\epsilon_a \%$
1	0					
2	1					
3	2					

3) Encontre a raiz de $f(x)=x^3-9x+3$ no intervalo $x_i=0$ e $x_u=1$ empregando:

a) método da Bisseção (faça 3 iterações).

iteração	Xl	f(x _l)	Xr	f(x _r)	Xu	f(x _u)	$\epsilon_a \%$
1							
2							
3							

b) método da Posição Falsa (faça 3 iterações).

iteração	XI	f(x _l)	Xr	f(x _r)	Xu	f(x _u)	$\epsilon_a\%$
1							
2							
3							

4) Encontre a raiz de $f(x)=x^3-9x+3$ empregando o método de Newton com aproximação inicial $x_0=1$ (faça 3 iterações).

iteração	i	Xi	f(x _i)	f'(x _i)	x_{i+1}	$\epsilon_a \%$
1	0					
2	1					
3	2					

5) Encontre a raiz de $f(x)=x^3-9x+3$ no intervalo $x_1=-4$ e $x_u=-3$ empregando:

a) método da Bisseção (faça 3 iterações).

iteração	Xl	f(x _l)	X _r	f(x _r)	Xu	f(x _u)	$\epsilon_a\%$
1							
2							
3							

b) método da Posição Falsa (faça 3 iterações).

iteração	Xl	f(x _l)	Xr	f(x _r)	X _u	f(x _u)	$\epsilon_a\%$
1							
2							
3							

6) Encontre a raiz de $f(x)=x^3-9x+3$ empregando o método de Newton com aproximação inicial $x_0=-3$ (faça 3 iterações).

iteração	i	Xi	f(x _i)	f'(x _i)	x_{i+1}	$\epsilon_a\%$
1	0					
2	1					
3	2					

Kesolucop:

Exercícios: Raízes.

1) Encontre a raiz de $f(x) = x^3 - 9x + 3$ no intervalo $x_1 = 2$ e $x_2 = 4$ empregando:

a) método da Bisseção (faça 3 iterações). 1:00l

iteração	X ₁	f(x _l)/	X _r	$f(x_r)$	Xu	f(x _u)	ε _a %
1	2	-77	3	3	4	31	\times
2	2	-7	2,5	-3,875	3 3	3	20/
3	2,5	-3,875	275	-0,953	3	3	9,09

$$X_{n} = \frac{X_{n} + X_{n}}{Z}$$
 Iteração $X_{n} = \frac{2+3}{2} = \frac{2}{5}$ Iteração $X_{n} = \frac{2}{5}$ Substituinable na expreção $\frac{2}{5}$ $\frac{2$

$$X_{n} = 2 + 3 = 2.5$$
 $Z_{n} = 2 + 3 = 2.5$
 $Z_{n} = 2.5 = 2.5$

Ear / 2,75 -3/. 100 = 9,09 %.

Exercícios: Raízes.

1) Encontre a raiz de $f(x)=x^3-9x+3$ no intervalo $x_1=2$ e $x_2=4$ empregando:

meson metiodo pe traca uma reta entre as 2 pontos

b) método da Posição Falsa (faça 3 iterações).

iteração	x ₁	f(x ₁)	Xr	f(x _r)	$\mathbf{x}_{\mathbf{u}}$	f(x _u)	$\epsilon_a\%$
1	2	-7	2,3694	-5,0303	4	_ 31	
2	23684	-5,0303	2,5961	-2,8679	4	31	8,77%
3	25961	-2,8679	27150	-1,4221	4	31	4,38%

	_
J-	· teracap

$$3^{2}$$
 iteração
 2^{2} ite

$$1^{2} = \frac{2,5969 - 2,3684}{2,5961} \cdot 100 = 8,77\%$$

3: itenacão

Exercício de cálculo numérico - raízes

Exercícios: Raízes.

1) Encontre a raiz de $f(x) = x^3 - 9x + 3$ no intervalo $x_1 = 2$ e $x_2 = 4$ empregando:

	40	f(x)= x ³ - 9x + 3	ideal	die
. 0	MÉTODO		mitoch	e de
F01 0	1 (500		newton	<i>l</i> '
QUE PE	7 (50 D		usolo	guona
ITERAS	3E		tinonn	
pl CHt	-GAIN	-1 0 1 2	etimal protinio	
11:1	THE PO VAL	A PROCURI	• U	
2) Encontre a i iterações).	raiz de $f(x)=x^3-9x+3$ empreg	gando o método de Newton	com aproximação inicial x ₀ =4	(faça 3

iteração	i	Xi	f(x _i)	f'(x _i)	\mathbf{x}_{i+1}	$\varepsilon_a^{0/0}$
1	0	4	31	39	3,2051	24,8%
2	1	3,2051	7,0790	21,8180	2.8806	11,26-1
3	2	2,5806	0,9774	15,8935	2,8178	2,23%

$$f(x) = x^3 - 9x + 3$$
1: vierecces

$$f(x) = x^{3} - 9x + 3$$

$$f'(x) = 3x^{2} - 9 - 1 \quad x_{i+1} = x_{i} \quad -f(x_{i}) = 4 - \frac{31}{39} = \frac{3}{32051}$$

$$= \frac{3}{3} \cdot \frac{2051 - 4}{3} - \frac{24}{3} \cdot \frac{87}{3} = \frac{3}{32051}$$

$$X_3 = X_2 - f(X_2)$$
 2,88% - 2,9974 = $f(X_2)$ 15,8935 Exercício de cálculo numérico - raízes

f(x) = x - 9x + 3a) método da Bisseção (faça 3 iterações).

				~ `		2/ >	0.1
iteração	X ₁	f(x ₁)	Xr	f(x _r)	Xu	f(x _u)	$\epsilon_a\%$
1	1110111	131111	10,511	111/135	1	-5	X
2	()	3	0,25	97656	0,5	-1,375	100
3	0,25	0,7656	0,376 -	-0,3223	$Q' \leq$	-1,375	33,33

ecript pet

3) Encontre a raiz de $f(x)=x^3-9x+3$ no intervalo $x_1=0$ e $x_u=1$ empregando:

b) método da Posição Falsa (faça 3 iterações).

iteração	Xl	f(x _l)	Xr	f(x _r)	X_{u}	f(x _u)	$\epsilon_a\%$
1			0,375	0,3223	1	-5	\sim
2			0,3386	-90088	0,375	-0,3223	10,7422/
3	0	3	0,3376	-0,0002	0,3386	-0,0086	0,286%

script peto

4) Encontre a raiz de $f(x)=x^3-9x+3$ empregando o método de Newton com aproximação inicial $x_0=1$ (faça 3 iterações).

iteração	i	xi	f(xi)	f'(xi)	\mathbf{x}_{i+1}	ε _a %
1	0	1	-5	- 6	0,1667	500%
2	1	0,1667	1,5043	-8,9166	0.3354	50,2998
3	2	9,3854	0,0191	-8,6075	0,3376	0,6541

script perto

5) Encontre a raiz de $f(x)=x^3-9x+3$ no intervalo $x_1=-4$ e $x_u=-3$ empregando:

a) método da Bisseção (faça 3 iterações).

iteração	XI	f(x _l)	X _r	f(x _r)	X_{u}	f(x _u)	$\epsilon_a^{0/0}$
1	4	-25	HB115111	1-8,375	1112	3	X
2	-3,5	-8,395	-3/2<	-2,0781		3	7,6923
3	-3,25	-2,0981		0,6014	-3	3	4

b) método da Posição Falsa (faça 3 iterações).

iteração	x _l	f(x ₁) \angle	X _f	f(x _r)	Xu	f(x _u)	$\epsilon_a^{0/0}$
1	-4	11125	-3,1071	0,9669	~ 3	3	\times
2	-4	125		0, 2971	- 3,1071	0,9617	1,0596
3	-4	-25	-3 1503	P,087	-3,1404	0,2926	0,3157

6) Encontre a raiz de $f(x)=x^3-9x+3$ empregando o método de Newton com aproximação inicial $x_0=-3$ (faça 3 iterações).

iteração	i	Xi	f(xi)	f'(xi)	X _{i+1}	ε _a %
1	0	-3	3	15	- 3,1667	5,2632
2	1	-3,1667	-0,2553		-3,1546	0,3839
3	2	-3,1546			-3, 1545	0,0024

