

REFRACTORY METAL/SILICIDE MULTIPHASE SYSTEMS FOR HIGH-TEMPERATURE STRUCTURAL APPLICATIONS

M.G. Mendiratta, S.K. Menon, and T.A. Parthasarathy Air Force Research Laboratory (*UES), Materials and Manufacturing Directorate, AFRL/MLLM, Wright-Patterson AFB, OH 45433-7817

Technical Interactions:

P.L. Martin, D.M. Dimiduk, AFRL/MLLM, Wright-Patterson AFB OH Mel Jackson and Colleagues, GE CRD, USA

Doug Berczik and Colleagues, P&W, USA

maintaining the data needed, and c including suggestions for reducing	nection of information is estimated to ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Infor	regarding this burden estimate of mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington		
1. REPORT DATE 18 MAR 2004		2. REPORT TYPE N/A		3. DATES COVE	RED		
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER				
Refractory Metal/S	mperature 5b. GRANT NUMBER						
Structural Applications				5c. PROGRAM ELEMENT NUMBER			
6. AUTHOR(S)					5d. PROJECT NUMBER		
					5e. TASK NUMBER		
					5f. WORK UNIT NUMBER		
Air Force Research	ZATION NAME(S) AND AE n Laboratory (*UES /MLLM, Wright-Pa), Materials and Ma	0	8. PERFORMING REPORT NUMB	GORGANIZATION ER		
9. SPONSORING/MONITO	RING AGENCY NAME(S) A	10. SPONSOR/MONITOR'S ACRONYM(S)					
		11. SPONSOR/MONITOR'S REPORT NUMBER(S)					
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release, distributi	on unlimited					
13. SUPPLEMENTARY NO See also ADM0016	otes 72., The original do	cument contains col	or images.				
14. ABSTRACT							
15. SUBJECT TERMS							
16. SECURITY CLASSIFIC		17. LIMITATION OF	18. NUMBER	19a. NAME OF			
a. REPORT NATO/unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	- ABSTRACT - UU	OF PAGES 22	RESPONSIBLE PERSON		

Report Documentation Page

Form Approved OMB No. 0704-0188

OPERATING TEMPERATURE VS SPECIFIC CORE POWER

High Operating Temperature ⇒ High Thrust
High Specific Strength ⇒ High Structural Efficiency

ADVANCED AIRCRAFT ENGINES - HOT SECTION MATERIALS

Temperature 600°C to 1350°C

<u>Properties</u> Oxidation Resistance

Toughness

Strength / Creep Resistance

<u>Candidates</u> Mo- Si - B

Nb - Ti - Cr - Si - Al -

Mo-Si-B PHASE DIAGRAM (1600°C) & MICROSTRUCTURE

PHASE SPACE OF INTEREST @ 1400°C: Nb/Nb Silicide Alloys

PHYSICAL PROPERTIES*

PROPERTY	Mo-Si-B	Nb-Ti-Cr-Hf-A1-Sn	
Density	~ 9.5 Mg/m³	~ 7 Mg/m³	
Melting Temperature	~ 2100°C	~ 1700 - 1800°C	
Thermal Expansion	7 - 11x10 ⁻⁶ μm/μm	8.1 - 8.6x10 ⁻⁶ μm/μm	
Elastic Modulus	327 - 171 GPa	158-130 GPa	
Thermal Conductivity	49.9 - 112 W/m-K	8.6 - 28 W/m-K	
Thermal Fatigue Resistance = $k K_{IC} / E\alpha$	~ 15 x 10 ⁴ (RT)	~ 7 x 10 ⁴ (RT)	
Impact Resistance	~ Very Low	Low (Acceptable)	

*Sources: Literature, GE CRD, P&W (Private Communications), NASA

CYCLIC OXIDATION KINETICS OF Mo-12Si-12B FROM 600-1400°C

600 - 700°C

800 - 1400°C

CYCLIC OXIDATION KINETICS OF Mo-12Si-12B FROM 600-1400°C

600 - 700°C

800 - 1400°C

OXIDE SCALE MICROSTRUCTURES: Mo-12Si-12B

OXIDATION KINETICS OF Nb / Nb SILCIDE ALLOYS

OXIDATION MICROSTRUCTURES

OXIDATION MECHANISM COMPARISON

Mo-Si-B

- Competition Between Formation of β-SiO₂ and Voltalization of Mo (MoO₃ Gas).
 - Below 800°C, Evaporation of Mo Dominates
 - Above 800°C, Protective β-SiO₂ Forms

Nb-Ti-Cr-Si-Al-Hf-Sn

- Formation of Complex (Nb Ti) and Si Oxides.
- Growth Stresses (Spallation) Limits Duration of Oxidation Protection.
- Low Temperature Substrate
 Silicide Cracking due to Internal
 Oxidation of Nb_{ss}.

PROCESSING

Mo-Si-B

- Small Button Casting + Heat Treatments
- Prealloyed Powder → Sintering +
 Hipping → Hot-Extrusion

Nb-Ti-Cr-Si-Al-Hf-Sn

- Induction Skull Melting (6.25 cm diam. X 60 cm long ingots) → Hot Extrusion.
- Plasma Rotating Electrode Process (PREP) Powder → Hot Extrusion.
- Gas-Atomization Powder
 Hot Extrusion.

Nb - 21.4Ti - 14.3Cr - 14.4Si - 2.1Hf - 2.4Al - 1.25Sn

MECHANICAL PROPERTIES: Mo-12Si-12B

FRACTURE SURFACES: Mo - 12Si - 12B

RT 1400°C

STRENGTH AND TOUGHNESS FOR Nb / Nb SILICIDE

FRACTURE MODES: Nb/Nb Silicides

Room Temperature

1100°C

LOW TEMPERATURE DAMAGE MECHANISMS: Nb/Nb Silicides

FATIGUE CRACK GROWTH: Nb and Mo Refractory Metal / Silicides

Choe et al: Mo-Si-B & Lewandowski: Nb/Nb Silicides

CREEP BEHAVIOR OF Mo- AND Nb-BASED ALLOYS

SUMMARY / CONCLUSION

- Both Systems Show Promising Microstructural Stability and Reasonable Mechanical Properties i.e., Strength, Creep Resistance and Toughness.
- Both Systems are Brittle at Low Temperatures. Mo-System Exhibits Poor Fatigue and Impact Resistance. Novel Design Methods will be Needed for these Brittle/Ductile Systems
- Oxidation Resistance: Mo System Adequate from 900-1350°C.
 Nb-System, Limited Protection (~100 h) up to 1200°C. Both Systems will Require Coating.
- Processing and Scale-up are Major Issues for Applications.
- Comprehensive Composition / Processing / Microstructure / Property Data Still Lacking.