

Description

The VST05P076 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- V_{DS} =-50V, I_D =-80A $R_{DS(ON)}$ =7.6m Ω (typical) @ V_{GS} =-10V
- Excellent gate charge x R_{DS(on)} product(FOM)
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST05P076-TC	VST05P076	TO-220C	-	-	-

Absolute Maximum Ratings (T_c=25℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	-50	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	-80	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100°C)	-56.5	Α	
Pulsed Drain Current	I _{DM}	-320	Α	
Maximum Power Dissipation	P _D	180	W	
Derating factor		1.2	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	1024	mJ	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	$R_{ heta JC}$	0.83	°C/W

Shenzhen VSEEI Semiconductor Co., Ltd

Electrical Characteristics (T_C=25°C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics	•		•			
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =-250μA	-50		-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =-50V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS},I_{D}=-250\mu A$	-1.5	-2.5	-3.5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =-10V, I _D =-40A	-	7.6	9	mΩ
Forward Transconductance	g _{FS}	V _{DS} =-5V,I _D =-40A	-	35	-	S
Dynamic Characteristics (Note4)	<u>.</u>					
Input Capacitance	C _{lss}	\/ - 25\/\/ -0\/	-	2636	-	PF
Output Capacitance	Coss	V_{DS} =-25V, V_{GS} =0V, F=1.0MHz	-	1155	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0IVInz	-	22	-	PF
Switching Characteristics (Note 4)	<u>.</u>					
Turn-on Delay Time	t _{d(on)}		-	12.5	-	nS
Turn-on Rise Time	t _r	V_{DD} =-25V, I_D =-40A V_{GS} =-10V, R_G =1.6 Ω	-	10	-	nS
Turn-Off Delay Time	t _{d(off)}		-	35	-	nS
Turn-Off Fall Time	t _f		-	8	-	nS
Total Gate Charge	Qg	V _{DS} =-25V,I _D =-40A,	-	31.2	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} 25 V_{ID} 40A, V_{GS} 10V	-	9.4	-	nC
Gate-Drain Charge	Q _{gd}	VGS10V	-	7.5	-	nC
Drain-Source Diode Characteristics			•			
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =-40A	-		-1.2	V
Diode Forward Current (Note 2)	Is		-	-	-80	Α
Reverse Recovery Time	t _{rr}	T _J = 25°C, I _F =-40A	-	30	-	nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	75	-	nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\text{C}$,V_DD=-25V,V_G=-10V,L=0.5mH,Rg=25 Ω

Typical Electrical and Thermal Characteristics

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson-Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance