TOPOLOGY OPTIMIZATION

PROJECT 3 REPORT

YONESHWAR BABU

ASU ID:1220454365

MAE 598: Design Optimization (Fall 2021)

DECEMBER 11, 2021

Under the guidance of

Yi Ren

Assistant Professor of Aerospace and Mechanical
Engineering School for Engineering of Matter, Transport
and Energy Arizona State University

ACKNOWLEDGEMENT

I consider myself highly fortunate for the opportunity to do this project under the guidance of **YI (MAX) REN** who provided us a sample template code and instructions to work on.

ABSTRACT

In this project, you will learn to implement an optimization algorithm for minimizing the compliance of a cantilever beam with a point load in y direction at its equilibrium state with respect to its topology.

Table of Contents

```
START ITERATION 2
FE-ANALYSIS 2
%%%% AN 88 LINE TOPOLOGY OPTIMIZATION CODE Nov, 2010 %%%%
nelx=300;
nely=150;
volfrac=0.3;
penal=3;
rmin=1.5;
%function Designproject3(nelx,nely,volfrac,penal,rmin,ft)
```

MATERIAL PROPERTIES

```
E0 = 1;
Emin = 1e-9;
nu = 0.3;
```

PREPARE FINITE ELEMENT ANALYSIS

```
A11 = [12 \ 3 \ -6 \ -3; \ 3 \ 12 \ 3 \ 0; \ -6 \ 3 \ 12 \ -3; \ -3 \ 0 \ -3 \ 12];
A12 = [-6 -3 \ 0 \ 3; -3 -6 -3 -6; \ 0 -3 -6 \ 3; \ 3 -6 \ 3 -6];
B11 = \begin{bmatrix} -4 & 3 & -2 & 9; & 3 & -4 & -9 & 4; & -2 & -9 & -4 & -3; & 9 & 4 & -3 & -4 \end{bmatrix};
B12 = [2 -3 \ 4 -9; -3 \ 2 \ 9 -2; \ 4 \ 9 \ 2 \ 3; -9 -2 \ 3 \ 2];
KE = 1/(1-nu^2)/24*([A11 A12;A12' A11]+nu*[B11 B12;B12' B11]);
nodenrs = reshape(1:(1+nelx)*(1+nely),1+nely,1+nelx);
edofVec = reshape(2*nodenrs(1:end-1,1:end-1)+1,nelx*nely,1);
edofMat = repmat(edofVec, 1, 8) + repmat([0 1 2*nely+[2 3 0 1] - 2)
 -1],nelx*nely,1);
iK = reshape(kron(edofMat,ones(8,1))',64*nelx*nely,1);
jK = reshape(kron(edofMat,ones(1,8))',64*nelx*nely,1);
% DEFINE LOADS AND SUPPORTS (HALF MBB-BEAM)
F = sparse(2,1,-1,2*(nely+1)*(nelx+1),1);
U = zeros(2*(nely+1)*(nelx+1),1);
fixeddofs = union((1:2:2*(nely+1)),(2*(nelx+1)*(nely+1)));
alldofs = (1:2*(nely+1)*(nelx+1));
```

```
freedofs = setdiff(alldofs,fixeddofs);
```

PREPARE FILTER

```
iH = ones(nelx*nely*(2*(ceil(rmin)-1)+1)^2,1);
jH = ones(size(iH));
sH = zeros(size(iH));
k = 0;
for i1 = 1:nelx
    for j1 = 1:nely
        e1 = (i1-1)*nely+j1;
        for i2 = max(i1-(ceil(rmin)-1),1):min(i1+(ceil(rmin)-1),nelx)
            for j2 = max(j1-(ceil(rmin)-1),1):min(j1+(ceil(rmin)-1),nely)
                e2 = (i2-1)*nely+j2;
                k = k+1;
                iH(k) = e1;
                jH(k) = e2;
                sH(k) = max(0,rmin-sqrt((i1-i2)^2+(j1-j2)^2));
            end
        end
    end
end
H = sparse(iH, jH, sH);
Hs = sum(H,2);
```

INITIALIZE ITERATION

```
x = repmat(volfrac,nely,nelx);
xPhys = x;
loop = 0;
change = 1;
```

START ITERATION

```
while change > 0.01
loop = loop + 1;
```

FE-ANALYSIS

```
sK= reshape(KE(:)*(Emin+xPhys(:)'.^penal*(E0-Emin)),64*nelx*nely,1);
K = sparse(iK,jK,sK); K = (K+K')/2;
U(freedofs) = K(freedofs,freedofs)\F(freedofs);
```

OBJECTIVE FUNCTION AND SENSITIVITY ANALYSIS

```
ce = reshape(sum((U(edofMat)*KE).*U(edofMat),2),nely,nelx); % element-wise
strain energy
```

```
c = sum(sum((Emin+xPhys.^penal*(E0-Emin)).*ce)); % total strain energy
dc = -penal*(E0-Emin)*xPhys.^(penal-1).*ce; % design sensitivity
dv = ones(nely,nelx);
```

FILTERING/MODIFICATION OF SENSITIVITIES

```
ft=heaviside(x);
   if ft == 2
        dc(:) = H*(x(:).*dc(:))./Hs./max(1e-3,x(:));
   elseif ft == 3
        dc(:) = H*(dc(:)./Hs);
        dv(:) = H*(dv(:)./Hs);
   end
```

OPTIMALITY CRITERIA UPDATE OF DESIGN VARIABLES AND PHYSICAL DENSITIES

PRINT RESULTS

```
fprintf(' It.: %5i Obj.: %11.4f Vol.: %7.3f ch.: %7.3f \n',loop,c, ...
      mean(xPhys(:)),change);
It.:
      1 Obj.: 2018.6979 Vol.: 0.300 ch.: 0.200
It.:
      2 Obj.: 1051.4536 Vol.: 0.300 ch.: 0.200
It.:
      3 Obj.:
               719.4513 Vol.: 0.300 ch.: 0.200
It.:
      4 Obj.:
                544.0387 Vol.: 0.300 ch.: 0.200
It.:
      5 Obj.:
                446.0797 Vol.: 0.300 ch.: 0.200
It.: 6 Obj.:
               384.1671 Vol.: 0.300 ch.: 0.200
               343.3330 Vol.: 0.300 ch.: 0.200
It.:
      7 Obj.:
```

```
It.:
      8 Obj.:
                309.5958 Vol.: 0.300 ch.: 0.200
It.:
      9 Obj.:
                281.9777 Vol.: 0.300 ch.: 0.200
It.:
      10 Obj.:
                281.9777 Vol.: 0.300 ch.: 0.200
It.:
      11 Obj.:
                297.3464 Vol.: 0.300 ch.:
                                           0.200
                297.3464 Vol.: 0.300 ch.:
It.:
      12 Obj.:
                                           0.200
It.:
      13 Obj.:
                298.3209 Vol.: 0.300 ch.: 0.200
It.:
      14 Obj.:
                298.3209 Vol.: 0.300 ch.: 0.200
It.:
      15 Obj.:
                298.3209 Vol.: 0.300 ch.: 0.200
It.:
                298.3209 Vol.: 0.300 ch.: 0.200
      16 Obj.:
It.:
      17 Obj.:
                298.3209 Vol.: 0.300 ch.: 0.200
It.:
      18 Obj.:
               298.3209 Vol.: 0.300 ch.: 0.000
```

PLOT DENSITIES

colormap(gray); imagesc(1-xPhys); caxis([0 1]); axis equal; axis off; drawnow;

end

Published with MATLAB® R2021b

References:

- 1. Efficient topology optimization in MATLAB using 88 lines of code-Erik Andreassen, Anders Clausen, Mattias Schevenels, Boyan S. Lazarov, Ole Sigmund.
- 2. A 99 line topology optimization code written in Matlab Ole Sigmond.
- 3. Topology optimization tutorial Yi (Max) Ren.