BATBAMBAMMBA: Boolean and Arithmetic Languages Oregon Programming Languages Summer School

Ronald Garcia 4 July 2017

BA: Boolean Arithmetic Language

Program Static Syntax

```
t \in \text{Term}, \quad n \in \mathbb{N}, \quad b \in \mathbb{B}, \quad p \in \text{Pgm} = \text{Term}
t ::= true \mid false \mid if t then t else t
     n \mid \mathsf{succ}(t) \mid \mathsf{pred}(t) \mid \mathsf{zero}?(t)
b ::= true \mid false
```

Program Runtime Syntax

```
E \in \mathsf{ECTXT}, v \in \mathsf{VALUE}, r \in \mathsf{REDEX} \subseteq \mathsf{PGM}, f \in \mathsf{FAULTY} \subseteq \mathsf{PGM}, err \in \mathsf{ERROR}, c \in \mathsf{CONFIG} o \in \mathsf{OBS}
   v ::= b \mid n
  E ::= \square \mid \text{if } E \text{ then } p \text{ else } p \mid \text{succ}(E) \mid \text{pred}(E) \mid \text{zero}?(E)
   r ::= \text{if } v \text{ then } p \text{ else } p \mid \text{succ}(v) \mid \text{pred}(v) \mid \text{zero?}(v)
   f ::= if n then p else p | succ(b) | pred(b) | zero?(b)
err ::= mismatch \mid underflow
   c ::= p \mid err
   o ::= v \mid err
```


$\rightarrow^* \subseteq \mathsf{CONFIG} \times \mathsf{CONFIG}$

Multi-step Reduction

$$(incl) \xrightarrow{c_1 \longrightarrow c_2} c_1 \xrightarrow{}^* c_2$$

$$(refl) \xrightarrow{c \longrightarrow^* c}$$

$$(incl) \frac{c_1 \longrightarrow c_2}{c_1 \longrightarrow^* c_2} \qquad (refl) \frac{c_1 \longrightarrow^* c_2}{c \longrightarrow^* c_3} \qquad (trans) \frac{c_1 \longrightarrow^* c_2 \quad c_2 \longrightarrow^* c_3}{c_1 \longrightarrow^* c_3}$$

$eval_{BA}: PGM \rightarrow OBS$

$$eval_{BA}(p) = b \text{ if } p \longrightarrow^* b$$

 $eval_{BA}(p) = n \text{ if } p \longrightarrow^* n$
 $eval_{BA}(p) = \text{mismatch if } p \longrightarrow^* \text{mismatch}$
 $eval_{BA}(p) = \text{underflow if } p \longrightarrow^* \text{underflow}$

Safety (AKA Coherence AKA Definedness)

Proposition 1 (Progress). *For all* $p \in PGM$ *one of the following is true:*

- 1. $p \in VALUE$;
- 2. $p \longrightarrow p'$ for some $p' \in PGM$;
- 3. $p \longrightarrow err$ for some $err \in Error$.

Proposition 2 (Preservation (Vacuous)). *If* $p_1 \longrightarrow p_2$ *then* $p_2 \in PGM$. (*uhh...?!?*)

TBA: Typed Boolean Arithmetic Language

Program Static Syntax

```
\begin{array}{ll} t \in \mathsf{TERM}, & n \in \mathbb{N}, \quad b \in \mathbb{B}, \quad \mathsf{Same \ as \ BA} \\ T \in \mathsf{TYPE}, & p \in \mathsf{PGM} = \{\, t \in \mathsf{TERM} \mid \exists T \in \mathsf{TYPE}. \, \vdash t : T \,\} \\ T ::= \mathsf{Nat} \mid \mathsf{Bool} \end{array}
```

Program Runtime Syntax

```
E \in \mathsf{ECTXT}, \quad v \in \mathsf{VALUE}, \quad r \in \mathsf{REDEX} \subseteq \mathsf{PGM}, \quad \textbf{Same} \ \textit{grammar} \ \textbf{as} \ \textbf{BA} \ \textbf{(over updated p)} \\ err \in \mathsf{ERROR}, \quad c \in \mathsf{CONFIG} \quad o \in \mathsf{OBS} \\ v \ ::= \ b \mid n \\ r \ ::= \ \text{if} \ v \ \text{then} \ p \ \text{else} \ p \mid \mathsf{succ}(v) \mid \mathsf{pred}(v) \mid \mathsf{zero?}(v) \\ err \ ::= \ \mathsf{underflow} \\ c \ ::= \ p \mid err \\ o \ ::= \ v \mid err \\ \end{cases}
```

ightharpoonup
ig

$$\begin{array}{c} r \leadsto p \\ \hline E[r] \longrightarrow E[p] \end{array} \hspace{2cm} \hline E[\mathsf{pred}(0)] \longrightarrow \mathsf{underflow} \\ \end{array}$$

 $\models \cdot : \cdot \subseteq \mathsf{TERM} \times \mathsf{TYPE}$ **Semantic Typing** $\models t : \mathsf{Bool}$ if and only if $t \longrightarrow^* b \text{ or } t \longrightarrow^* \mathsf{underflow}$ $\models t : \mathsf{Nat}$ if and only if $t \longrightarrow^* n \text{ or } t \longrightarrow^* \mathsf{underflow}$

 $\vdash \cdot : \cdot \subseteq TERM \times TYPE$ Syntactic Typing

Evaluator $eval_{TBA} : PGM \rightarrow OBS$

$$eval_{TBA}(p) = b \text{ if } p \longrightarrow^* b$$

 $eval_{TBA}(p) = n \text{ if } p \longrightarrow^* n$
 $eval_{TBA}(p) = \text{underflow if } p \longrightarrow^* \text{underflow}$

Safety

Proposition 3 (Progress). *For all* $p \in PGM$ *one of the following is true:*

- 1. $p \in VALUE$;
- 2. $p \longrightarrow p'$ for some $p' \in PGM$;
- 3. $p \longrightarrow underflow$.

Proposition 4 (Preservation). *If* $\vdash p_1 : T$ *and* $p_1 \longrightarrow p_2$ *then* $\vdash p_2 : T$.

Proposition 5 (Semantic Type Soundness). *If* $\vdash t : T$ *then* $\models t : T$.

2 MBA: Mixed Boolean and Arithmetic Language

Missing!

3 mMBA: Minimal Mixed Boolean and Arithmetic Language

Missing!