Homework 6

Problem 1. Prove that if P = NP, then NP = coNP.

Solution. From the homework last week, we have proved that a problem $A \in P \iff \overline{A} \in P$. From the definition, we have $conP = {\overline{A} \mid A \in NP}$, so if P = NP, then $conP = {\overline{A} \mid A \in P}$. And this results in conP = P = NP.

Problem 2. For every 2-SAT instance φ of n variables, define graph G_{φ} of 2n vertices as follows. For each variable x_i in φ , G_{φ} has two vertices labeled by x_i and $\neg x_i$ respectively. There is a directed edge $\ell_i \to \ell_j$ if $(\neg \ell_i) \lor \ell_j$ or $\ell_j \lor (\neg \ell_i)$ is a clause of φ . For notational convenience, for literal $\ell_i = \neg x_{k_i}$, $\neg \ell_i$ is defined to be x_{k_i} . Prove that φ is unsatisfiable if and only if there exist paths from x_j to $\neg x_j$ and from $\neg x_j$ to x_j in G_{φ} for some j. Use the above fact to show that 2-SAT \in P.

Solution. Suppose φ is unsatisfiable, then for every assignment of variables, there must be two chains of clauses that coerce the assignment of x_j to be true and false respectively. For example,

$$(\neg x_j) \vee l_{k_1}, (\neg l_{k_1}) \vee l_{k_2}, \cdots, (\neg l_{k_{m-1}}) \vee (\neg x_j),$$

and

$$x_i \vee l_{p_1}, (\neg l_{p_1}) \vee l_{p_2}, \cdots, (\neg l_{p_{t-1}}) \vee x_i,$$

where l_{k_i} and l_{p_i} are variables x_t or its negation $\neg x_t$. The former chain ensures that $x_j =$ false, and the latter chain ensures that $x_j =$ true, which leads to a contradiction so that φ is unsatisfiable. From the first chain, we can see that there must be an edge from x_j to l_{k_1} , from l_{k_1} to l_{k_2} , \cdots , from $l_{k_{m-1}}$ to $\neg x_j$, forming a path from x_j to $\neg x_j$. And from the second chain, we can see that there must be an edge from $\neg x_j$ to l_{p_1} , from l_{p_1} to l_{p_2} , \cdots , from $l_{p_{t-1}}$ to x_j , forming a path from $\neg x_j$ to x_j .

Suppose there exist paths from x_j to $\neg x_j$ and from $\neg x_j$ to x_j in G_{φ} . Note that the path from x_j to $\neg x_j$ ensures that $x_j = \text{false}$, because of the following chain:

$$(\neg x_j) \lor l_{k_1}, (\neg l_{k_1}) \lor l_{k_2}, \cdots, (\neg l_{k_{m-1}}) \lor (\neg x_j),$$

where l_{k_i} is a variable x_t or its negation $\neg x_t$. Similarly, the path from $\neg x_j$ to x_j ensures that $x_j = \text{true}$, which is a contradiction. Then φ is unsatisfiable.

Homework 6 熊泽恩

Therefore, φ is unsatisfiable if and only if there exist paths from x_j to $\neg x_j$ and from $\neg x_j$ to x_j in G_{φ} for some j. It is easy to see that the existence of such paths can be checked in polynomial time, for we can use breadth-first search, starting from a vertex x_j , to find whether there is a path from x_j to $\neg x_j$ and vice versa. Thus, $2\text{-SAT} \in P$.

Problem 3. The Lehmer's theorem states that a natural number n is a prime number if and only if the following two conditions hold:

- 1. There is number a such that $a^{n-1} \equiv 1 \pmod{n}$.
- 2. For every prime factor q of n-1, $a^{(n-1)/q} \not\equiv 1 \pmod{n}$.

Use this theorem to show that $PRIME \in NP \cap coNP$. (Hint: To prove $PRIME \in NP$, you may need to use recursively defined witness.)

Solution. We first prove that PRIME \in NP. Given a number a and the prime factorization of n-1, we can verify in polynomial time:

- 1. $a^{n-1} \equiv 1 \pmod{n}$. This is because we can calculate $a^{n-1} \mod n$ in $O(\log n)$ time by exponentiation by squaring.
- 2. for every prime factor q of n-1, $a^{(n-1)/q} \not\equiv 1 \pmod{n}$. This is because we can calculate $a^{(n-1)/q} \mod n$ in $O(\log n)$ time by exponentiation by squaring, Also, there are only $O(\sqrt{n})$ such factor q for n-1, because factors appear in pairs. If one of the factor is greater than $\sqrt{n-1}$, then the other one must be less than $\sqrt{n-1}$. And an upper bound of the number of factors that n-1 have is $O(\sqrt{n})$, because n-1 can only have $\sqrt{n-1}$ factors that are the 'smaller ones.'

Therefore, $PRIME \in NP$.

Then we prove that PRIME \in coNP. Suppose n is not a prime number and given k where $k \mid n$, then we can verify this in polynomial time. Therefore, PRIME \in coNP. In conclusion, PRIME \in NP \cap coNP.