Predicting the Best Place for Indonesian Restaurant in Toronto

Yosia Azarya

June 24, 2020

1. Introduction

1.1 Background

Indonesian cuisine is a great food for people in Toronto, especially during winter season, because it contained various spices. In reality, there is no restaurant that served Indonesian cuisine there. So, it is a good idea to open an Indonesian restaurant in Toronto. It is quite challenging to find a place or area to open the Indonesian restaurant. This project will help the enterpreneur to find the most suitable location.

1.2 Problem

The main problem is to find the most suitable location based on the density of restautant in the area.

1.3 Interest

Enterpreneur(s) who wants to open Indonesian restaurant in Toronto, Canada.

2. Data

2.1 Data needed

Data needed for this project are shown below:

- List of neighborhood in Toronto, Canada

	Postal Code	Borough	Neighbourhood
0	M1B	Scarborough	Malvern, Rouge
1	M1C	Scarborough	Rouge Hill, Port Union, Highland Creek
2	M1E	Scarborough	Guildwood, Morningside, West Hill
3	M1G	Scarborough	Woburn
4	M1H	Scarborough	Cedarbrae

- Latitude and Longitude data for every neighborhood in Toronto, Canada

	Postal C	ode	Latitude	Longitude
0	N	И1B	43.806686	-79.194353
1	N	/11C	43.784535	-79.160497
2	N	И1E	43.763573	-79.188711
3	N	/I1G	43.770992	-79.216917
4	I.	Л1H	43.773136	-79.239476

- Venue data related to restaurant in neighborhoods of Toronto, Canada

	Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
0	The Beaches	43.676357	-79.293031	Glen Manor Ravine	43.676821	-79.293942	Trail
1	The Beaches	43.676357	-79.293031	The Big Carrot Natural Food Market	43.678879	-79.297734	Health Food Store
2	The Beaches	43.676357	-79.293031	Grover Pub and Grub	43.679181	-79.297215	Pub
3	The Beaches	43.676357	-79.293031	Upper Beaches	43.680563	-79.292869	Neighborhood
4	The Beaches	43.676357	-79.293031	Seaspray Restaurant	43.678888	-79.298167	Asian Restaurant

2.2 Data Extraction

The extraction of data needed are shown below:

- Scrapping data of Toronto neighborhoods via Wikipedia and stored into dataframe

```
[ ] url = "https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M"
    page = requests.get(url)

[ ] df_html = pd.read_html(url, header=0, na_values = ['Not assigned'])[0]
    df_html.head()
```

- Getting location coordinates via Geospacial Data given by Coursera

```
[ ] url_csv = 'http://cocl.us/Geospatial_data'
    df_coordinates = pd.read_csv(url_csv)
```

- Getting the venue data via API call to FourSquare API

```
[ ] def getNearbyVenues(names, latitudes, longitudes, radius=500):
    venues_list=[]
    for name, lat, lng in zip(names, latitudes, longitudes):
        print(name)

# create the API request URL

url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client
        CLIENT_ID,
        CLIENT_SECRET,
        VERSION,
        lat,
        lng,
        radius,
        LIMIT)

# make the GET request
    results = requests.get(url).json()["response"]['groups'][0]['items']
```

3. Methodology

3.1 Scrapping Toronto Neighborhoods Data

The Toronto Neighborhood data was scrapped from Wikipedia with pandas library in Python.

```
[ ] url = "https://en.wikipedia.org/wiki/List_of_postal_codes_of_Canada:_M"
   page = requests.get(url)
   if page.status_code == 200:
        print('Page download successful')
   else:
        print('Page download error. Error code: {}'.format(page.status_code))
```

Page download successful

After that, convert the html data into dataframe with pandas.

```
[ ] df_html = pd.read_html(url, header=0, na_values = ['Not assigned'])[0] df_html.head()
```

₽		Postal Code	Borough	Neighborhood
C→ 0 1 2 3	0	M1A	NaN	NaN
	0 1 2	M2A	NaN	NaN
0 1 2	МЗА	North York	Parkwoods	
	3	M4A	North York	Victoria Village
	4	M5A	Downtown Toronto	Regent Park, Harbourfront

3.2 Cleaning Toronto Neighborhoods Data

The Toronto neighborhood contained "NaN" value in Borough and Neighborhood. Delete all rows contained "NaN" values of Borough and Neighborhood.

[]	df_html.d df_html.h		subset=['Borough']], inplace=True)
₽	Posta	1 Code	Borough	Neighborhood
	2	МЗА	North York	Parkwoods
	3	M4A	North York	Victoria Village
	4	M5A	Downtown Toronto	Regent Park, Harbourfront
	5	M6A	North York	Lawrence Manor, Lawrence Heights
	6	M7A	Downtown Toronto	Queen's Park, Ontario Provincial Government

Group the dataframe with the same borough.

[]		odes.re	set_index(inp	by(['Postal Code','Borough']).Neig lace=True)
₽	Posta	al Code	Borough	Neighbourhood
	0	M1B	Scarborough	Malvern, Rouge
	1	M1C	Scarborough	Rouge Hill, Port Union, Highland Creek
	2	M1E	Scarborough	Guildwood, Morningside, West Hill
	3	M1G	Scarborough	Woburn
	4	M1H	Scarborough	Cedarbrae

Save the cleaned Toronto neighborhood data into csv file

```
[ ] df_postcodes.to_csv("torontodata.csv")
```

3.3 Combining Cleanned Data with Geospacial Data

Call the geospacial data with the link given in Coursera and store into dataframe

```
[ ] url_csv = 'http://cocl.us/Geospatial_data'
df_coordinates = pd.read_csv(url_csv)
```

Call the Toronto Neighborhood data from csv file and store into dataframe

```
[ ] df_neighborhoods = pd.read_csv("torontodata.csv",index_col=[0])
    df_neighborhoods.head()
```

Merge both datasets with Pandas

```
[ ] df_neighborhoods_coordinates = pd.merge(df_neighborhoods, df_coordinates, on='Postal Code') df_neighborhoods_coordinates.head()
```

₽		Postal Code	Borough	Neighbourhood	Latitude	Longitude
	0	M1B	Scarborough	Malvern, Rouge	43.806686	-79.194353
	1	M1C	Scarborough	Rouge Hill, Port Union, Highland Creek	43.784535	-79.160497
	2	M1E	Scarborough	Guildwood, Morningside, West Hill	43.763573	-79.188711
	3	M1G	Scarborough	Woburn	43.770992	-79.216917
	4	M1H	Scarborough	Cedarbrae	43.773136	-79.239476

Filter the data only with the Borough contained "Toronto" value

```
[ ] df_toronto = dfa[dfa['Borough'].str.contains('Toronto')]
    df_toronto.reset_index(inplace=True)
    df_toronto.drop('index', axis=1, inplace=True)
    df_toronto.tail()
```

```
[ ] print(df_toronto.groupby('Borough').count()['Neighbourhood'])
```

Borough
Central Toronto 9
Downtown Toronto 19
East Toronto 5
West Toronto 6

Name: Neighbourhood, dtype: int64

Show the coordinates of toronto

```
[ ] lat_toronto = df_toronto['Latitude'].mean()
    lon_toronto = df_toronto['Longitude'].mean()
    print('The geographical coordinates of Toronto are {}, {}'.format(lat_toronto, lon_toronto))
```

The geographical coordinates of Toronto are 43.66713498717948, -79.38987324871795

Show the map of Toronto with Folium

3.4 Using Foursquare API to Explore Neighborhood

Define the credential and create a function to call Foursquare API

```
[ ] CLIENT_ID = #inputclientid

CLIENT_SECRET = #inputclientsecret

VERSION = #YYYYMMDD

LIMIT = 100

radius = 500
```

Get the top 100 venues within 500m radius

```
def getNearbyVenues(names, latitudes, longitudes, radius=500):
    venues_list=[]
    for name, lat, lng in zip(names, latitudes, longitudes):
        print(name)

# create the API request URL
    url = 'https://api.foursquare.com/v2/venues/explore?&client_id={}&client_secret={}&v={}&ll={},{}&radius={}&limit={}'.format(client_secret, VERSION, lat, lng, radius, LIMIT)
```

Store the data from Foursquare API to dataframe

[]	toronto_venues.to_csv("A	onto_venues.to_csv("APIfq1.csv")										
	df_hasilfq = pd.read_csv("APIfq1.csv",index_col=0) df_hasilfq											
₽		Neighborhood	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category				
	0	The Beaches	43.676357	-79.293031	Glen Manor Ravine	43.676821	-79.293942	Trail				
	1	The Beaches	43.676357	-79.293031	The Big Carrot Natural Food Market	43.678879	-79.297734	Health Food Store				
	2	The Beaches	43.676357	-79.293031	Grover Pub and Grub	43.679181	-79.297215	Pub				
	3	The Beaches	43.676357	-79.293031	Upper Beaches	43.680563	-79.292869	Neighborhood				
	4	The Beaches	43.676357	-79.293031	Seaspray Restaurant	43.678888	-79.298167	Asian Restaurant				

Select only venues category contained "Restaurant" in it because we only need neighborhood with restaurant

```
[ ] array1 = df_hasilfq['Venue Category'].unique()

[ ] array1[0]

[ → 'Trail'

Select only venues category with "Restaurant" in it.

[ ] kumpulan_restaurant = []
    for i in range(len(array1)):
        # print(i)
        if "Restaurant" in array1[i]:
            kumpulan_restaurant.append(array1[i])

print(kumpulan_restaurant)

[ → ['Asian Restaurant', 'Greek Restaurant', 'Italian Restaurant', 'Restaurant', 'Caribbean Restaurant',
```

3.5 Eliminate Neighborhoods which have no Restaurant

To get neighborhoods with restaurant, eliminate the neighborhoods which have no restaurant. In order to do that, sum all the values of restaurant column in dataframe, and eliminate rows with restaurant value of 0.

```
[ ] to_filtering = to_grouped[["Neighborhoods"]]
   to_filtering["Sum of Restaurant"] = to_asian[kumpulan_restaurant].sum(axis=1)
   to_filtering.head()
```

	Neighborhoods	Sum of Restaurant
0	Berczy Park	0.214286
1	Brockton, Parkdale Village, Exhibition Place	0.083333
2	Business reply mail Processing Centre, South C	0.125000
3	\ensuremath{CN} Tower, King and Spadina, Railway Lands, Har	0.000000
4	Central Bay Street	0.281250

Check the shape of dataframe before the filtering

```
[ ] to_filtering.shape

[ → (39, 2)
```

Filter the dataframe and check the final shape of dataframe

```
[ ] resto = to_filtering["Sum of Restaurant"].values
    resto
- array([0.21428571, 0.08333333, 0.125
                                            , 0.
                                                        , 0.28125
           0.11764706, 0.29333333, 0.3
                                            , 0.27272727, 0.
           0.0625
                   , 0.3 , 0.16666667, 0.22 , 0.12
                    , 0.20833333, 0.30645161, 0. , 0.36363636,
           0.33333333, 0.2 , 0.26666667, 0.11764706, 0.09090909,
           0.23913043, 0. , 0. , 0.26315789, 0.26923077, 0.23913043, 0.20833333, 0.2 , 0.25 , 0.14285714,
           0.2 , 0.39534884, 0.26
                                           , 0.29411765])
[ ] buangindex = []
    for i in range(len(resto)):
      if resto[i] == 0:
        buangindex.append(i)
[ ] buangindex
[3, 9, 18, 26, 27]
[ ] to_filtering = to_filtering.drop(to_filtering.index[buangindex])
    to_filtering.shape
[ (34, 2)
```

There are 5 index dropped from dataframe, it means there are 5 neighborhood with no Restaurant.

3.6 Clustering

Use the Kmeans for clustering. Kmeans used for clustering because this project aimed to find the best location based on density of neighborhood with restaurant. Kmeans clustering will use coordinates data from filtered neighborhood data.

Prepare the dataframe for fitting in Kmeans clustering

```
[ ] to_clustering = to_filtering[["Neighborhood Latitude", "Neighborhood Longitude"
[ ] to clustering.head()
\otimes
         Neighborhood Latitude Neighborhood Longitude
      0
                      43.644771
                                               -79.373306
      0
                      43.644771
                                               -79.373306
      0
                      43.644771
                                               -79.373306
      0
                      43.644771
                                               -79.373306
                      43.644771
                                               -79.373306
```

In order to find the best number of K, simulate Kmeans with K value ranged from 2-10, and check the silhouette score to decide number or K

```
[ ] sil = []
    kmax = 10
# dissimilarity would not be defined for a single cluster, thus, minimum number of clusters should be 2
    for k in range(2, kmax+1):
        kmeansx = KMeans(n_clusters = k).fit(to_clustering)
        labels = kmeansx.labels_
        sil.append(silhouette_score(to_clustering, labels, metric = 'euclidean'))

plt.plot (list(range(2,11)),sil)
```


From the graph shown above, K=4 showed the best result based on Silhouette Score, so later K=4 will be used for Kmeans clustering.

```
[ ] # set number of clusters
    K = 4

# run k-means clustering
kmeans = KMeans(n_clusters=K, random_state=0).fit(to_clustering)

# check cluster labels generated for each row in the dataframe
kmeans.labels_[0:10]
[> array([0, 0, 0, 0, 0, 0, 0, 0, 0], dtype=int32)
```

Add the cluster label to dataframe

₽		Neighborhood	Sum of Restaurant	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category	Cluster Labels
	38	University of Toronto, Harbord	0.294118	43.662696	-79.400049	Magic Noodle	43.662728	-79.403602	Noodle House	0
	38	University of Toronto, Harbord	0.294118	43.662696	-79.400049	DT Bistro	43.662375	-79.405734	Café	0
	38	University of Toronto, Harbord	0.294118	43.662696	-79.400049	Comfort Zone	43.658397	-79.400274	Nightclub	0
	38	University of Toronto, Harbord	0.294118	43.662696	-79.400049	The Beer Store	43.665385	-79.403477	Beer Store	0
	38	University of Toronto, Harbord	0.294118	43.662696	-79.400049	East of Brunswick	43.665609	-79.403324	Pub	0

Sort the value by the cluster label

[] # sort the results by Cluster Labels
to_merged.sort_values(["Cluster Labels"], inplace=True)
to_merged.tail()

₽		Cluster Labels	Neighborhood	Sum of Restaurant	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
	34	3	The Annex, North Midtown, Yorkville	0.142857	43.672710	-79.405678	Shoppers Drug Mart	43.674959	-79.407986	Pharmacy
	34	3	The Annex, North Midtown, Yorkville	0.142857	43.672710	-79.405678	Subway	43.675650	-79.410255	Sandwich Place
	34	3	The Annex, North Midtown, Yorkville	0.142857	43.672710	-79.405678	Tim Hortons	43.675800	-79.403532	Coffee Shop
	34	3	The Annex, North Midtown, Yorkville	0.142857	43.672710	-79.405678	LCBO	43.675344	-79.405327	Liquor Store
	8	3	Davisville	0.272727	43.704324	-79.388790	Meow Cat Cafe	43.702927	-79.388190	Café

3.7 Clustering Visualization

For the visualization, use the folium to show the clusters with different color each cluster

3.8 Clusters Examination

Cluster 0 (Red)

Cluster 0 has the most dense location with restaurant with 1181 restaurant located in this area.

Cluster 1 (Purple)

Cluster 1 has 179 restaurent located in this area.

Cluster 2 (Blue)

Cluster 2 has 126 restaurant located in this area.

o_merge	_merged.loc[to_merged['Cluster Labels'] == 2]								
	Cluster Labels	Neighborhood	Sum of Restaurant	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
36	2	The Danforth West, Riverdale	0.395349	43.679557	-79.352188	Carrot Commons	43.677485	-79.353076	Restauran
36	2	The Danforth West, Riverdale	0.395349	43.679557	-79.352188	Dough Bakeshop	43.676643	-79.356846	Baker
36	2	The Danforth West, Riverdale	0.395349	43.679557	-79.352188	IL FORNELLO on Danforth	43.678604	-79.346904	Italian Restauran
36	2	The Danforth West, Riverdale	0.395349	43.679557	-79.352188	Simone's Caribbean Restaurant	43.678655	-79.346582	Caribbear Restauran
36	2	The Danforth West, Riverdale	0.395349	43.679557	-79.352188	Athen's Pastries	43.678166	-79.348927	Greek Restauran
35	2	The Beaches	0.200000	43.676357	-79.293031	The Big Carrot Natural Food Market	43.678879	-79.297734	Health Food Store
35	2	The Beaches	0.200000	43.676357	-79.293031	Glen Manor Ravine	43.676821	-79.293942	Trai
32	2	Studio District	0.200000	43.659526	-79.340923	Jimmie Simpson Park	43.659230	-79.345063	Park
32	2	Studio District	0.200000	43.659526	-79.340923	Saulter Street Brewery	43.658412	-79.346392	Brewery
32	2	Studio District	0.200000	43.659526	-79.340923	McQueens Pub	43.661483	-79.338072	Gastropub

Cluster 3 (Green-Yellow)

Cluster 3 has the least dense location with restaurant with 99 restaurant located in this area.

[] to_merged.loc[to_merged['Cluster Labels'] == 3]									
•	Cluster Labels	Neighborhood	Sum of Restaurant	Neighborhood Latitude	Neighborhood Longitude	Venue	Venue Latitude	Venue Longitude	Venue Category
8	3	Davisville	0.272727	43.704324	-79.388790	Pizza Pizza	43.706138	-79.389292	Pizza Place
21	3	North Toronto West, Lawrence Park	0.200000	43.715383	-79.405678	Milkcow	43.715907	-79.400125	Ice Cream Shop
21	3	North Toronto West, Lawrence Park	0.200000	43.715383	-79.405678	Drake General Store	43.714713	-79.400157	Gift Shop
21	3	North Toronto West, Lawrence Park	0.200000	43.715383	-79.405678	Olly Shoes	43.714990	-79.400119	Shoe Store
21	3	North Toronto West, Lawrence Park	0.200000	43.715383	-79.405678	St. Clements - Yonge Parkette	43.712062	-79.404255	Park
34	3	The Annex, North Midtown, Yorkville	0.142857	43.672710	-79.405678	Shoppers Drug Mart	43.674959	-79.407986	Pharmacy
34	3	The Annex, North Midtown, Yorkville	0.142857	43.672710	-79.405678	Subway	43.675650	-79.410255	Sandwich Place
34	3	The Annex, North Midtown, Yorkville	0.142857	43.672710	-79.405678	Tim Hortons	43.675800	-79.403532	Coffee Shop
34	3	The Annex, North Midtown, Yorkville	0.142857	43.672710	-79.405678	LCBO	43.675344	-79.405327	Liquor Store
8	3	Davisville	0.272727	43.704324	-79.388790	Meow Cat Cafe	43.702927	-79.388190	Café
99 rouse	× 9 columns								

4. Conclusion and Recommendation

The conclusion is, the best location to open Indonesian Restaurant is in cluster 0 around Richmond Adelaide, Commerce Court, Berczy Park, and other location located in cluster 0 because cluster 0 has the most dense location with restaurant with 1181 restaurant located in the area. Even though Indonesian Restaurant would be new in Toronto, but it is worth to try, because Indonesian cuisine has a great taste and authentic.