Helmut-Schmidt-Universität Universität der Bundeswehr Hamburg Fakultät für Maschinenbau

Prof. Dr. Thomas Carraro Dr. Frank Gimbel Janna Puderbach

Mathematik II

Blatt 5

WT 2022

Newtonverfahren, Taylorentwicklung

Einführende Bemerkungen

- Vermeiden Sie die Verwendung von Taschenrechnern oder Online-Ressourcen.
- Die mit einem Stern *) markierten (Teil-)Aufgaben entfallen in diesem Trimester. Stattdessen werden einzelne Online-Aufgaben im ILIAS-Kurs kenntlich gemacht, zu denen Sie dort Ihre Lösungswege zur Korrektur hochladen können.
- Die mit zwei Sternen **) markierten (Teil-)Aufgaben richten sich an Studierende, die die übrigen Aufgaben bereits gelöst haben und die Inhalte weiter vertiefen möchten.

Aufgabe 5.1: Taylor-Entwicklung in einer Variablen

Bestimmen Sie die Taylor-Entwicklung zweiter Ordnung der Exponentialfunktion e^x um den Punkt $x_0 = 0$ in dem Intervall $0 \le x \le 1$ einschließlich des Restgliedtermes. Zeigen Sie damit die Abschätzung:

$$e \leq 3$$
.

Lösung 5.1:

Wir beginnen mit der Taylor-Entwicklung der Exponentialfunktion in dem Intervall $0 \le x \le 1$:

$$e^x = 1 + x + \frac{1}{2}x^2 + \frac{e^{\xi}}{3!}x^3,$$

mit $0 \le \xi \le 1$.

Da die Exponentialfunktion monoton steigend ist und $\xi \leq 1$, gilt $e^{\xi} \leq e^1$. Daher gilt die folgende Abschätzung

$$e^x \le 1 + x + \frac{1}{2}x^2 + \frac{e}{3!}x^3,$$

für $0 \le x \le 1$. Der obige Ausdruck an der Stelle x = 1 ausgewertet führt zu

$$e \le 1 + 1 + \frac{1}{2} + \frac{e}{6},$$

 $\frac{5}{6} e \le \frac{5}{2},$
 $e \le 3.$

Aufgabe 5.2: Taylor-Polynom

- a) Geben Sie das Taylorpolynom n-ter Ordnung der folgenden Funktionen um den angegebenen Entwicklungspunkt x_0 an:
 - i) $f(x) = \sin(x) \cdot \cos(x)$ um $x_0 = 0, n = 4$
 - ii) $g(x) = \cos(x)$ um $x_0 = \pi/2$, n = 4
 - iii) $h(x) = e^{1-x}(x^2 2x)$ um $x_0 = 1, n = 2$
- **b**) Geben Sie die Nullstellen der Funktionen sowie der Taylor-Polynome im Intervall [0,5] an.
- c) Skizzieren Sie die Funktionen und deren Taylor-Polynome.

Lösung 5.2:

1

a) i) Zunächst werden die ersten vier Ableitungen ermittelt:

$$f(x) = \sin x \cos x = \frac{1}{2}\sin(2x), \qquad f'(x) = \cos(2x), \quad f''(x) = -2\sin(2x)$$

$$f'''(x) = -4\cos(2x), \qquad f^{(4)}(x) = 8\sin(2x)$$

Damit ist das Taylorpolynom

$$T_4(x) = \sum_{k=0}^4 \frac{f^{(k)}(0)}{k!} (x-0)^k$$
$$= 0 + \frac{1}{1!} x - 0 - \frac{4}{3!} x^3 + 0 = x - \frac{2}{3} x^3.$$

ii) Die Ableitungen von g(x) sind:

$$g(x) = \cos x, \qquad g'(x) = -\sin x, \qquad g''(x) = -\cos x$$

$$g'''(x) = \sin x, \qquad g^{(4)}(x) = \cos x$$

Damit hat man dann

$$T_4(x) = \sum_{k=0}^4 \frac{g^{(k)}(\pi/2)}{k!} \left(x - \frac{\pi}{2}\right)^k$$
$$= 0 - \frac{1}{1} \left(x - \frac{\pi}{2}\right) + 0 + \frac{1}{6} \left(x - \frac{\pi}{2}\right)^3 + 0$$
$$= -\left(x - \frac{\pi}{2}\right) + \frac{1}{6} \left(x - \frac{\pi}{2}\right)^3.$$

iii) Es ist

$$h(x) = e^{1-x}(x^2 - 2x)$$

$$h'(x) = e^{1-x}(-x^2 + 2x + 2x - 2) = e^{1-x}(-x^2 + 4x - 2)$$

$$h''(x) = e^{1-x}(x^2 - 4x + 2 - 2x + 4) = e^{1-x}(x^2 - 6x + 6),$$

und damit

$$T_2(x) = -1 + (x - 1) + \frac{1}{2}(x - 1)^2.$$

i) Die Nullstellen im Intervall [0, 5] liegen bei:

$$f(x) = 0 \text{ für } x \in \left\{0, \frac{\pi}{2}, \pi, \frac{3}{2}\pi\right\}$$
$$T_4(x) = 0 \text{ für } x \in \left\{0, \sqrt{\frac{3}{2}}\right\}$$

ii)

$$g(x) = 0 \text{ für } x \in \left\{ \frac{\pi}{2}, \frac{3}{2}\pi \right\}$$

$$T_4(x) = 0 \text{ für } x \in \left\{ \frac{\pi}{2}, \frac{\pi}{2} + \sqrt{6} \right\}$$

iii)

$$h(x) = 0$$
 für $x \in \{0, 2\}$
 $T_2(x) = 0$ für $x \in \{\sqrt{3}\}.$

 $\mathbf{c})$

i)

ii)

iii)

Aufgabe 5.3: Kurvendiskussion, Taylorentwicklung

Gegeben sei die Funktion

$$f(x) = e^{-x^2/2}(2x - 3).$$

- a) Bestimmen Sie den Definitionsbereich von f.
- **b**) Bestimmen Sie die Nullstellen der Funktion f.
- c) Bestimmen Sie eine Asymptote von f, also eine Gerade g(x) = a + bx mit

$$\lim_{x \to \pm \infty} (f(x) - g(x)) = 0.$$

- d) Bestimmen Sie die kritischen Punkte der Funktion f und charakterisieren Sie diese **ohne** Berechnung der zweiten Ableitung.
- e) Geben Sie die Taylorentwicklung in den Extrempunkten bis zum Grad 2 an.
- f) Skizzieren Sie die Funktion, die Asymptote, sowie die Taylorapproximationen.

Lösung 5.3:

- a) Die Funktion f ist auf ganz \mathbb{R} definiert.
- **b**) Die einzige Nullstelle der Funktion ist $x_0 = \frac{3}{2}$.
- c) Die Funktion g(x) = 0 ist Asymptote der Funktion f(x):

$$\lim_{x \to \pm \infty} (f(x) - g(x)) = \lim_{x \to \pm \infty} (e^{-x^2/2}(2x - 3) - 0)$$

$$= \lim_{x \to \pm \infty} \frac{2x - 3}{e^{x^2/2}}$$

$$= \lim_{x \to \pm \infty} \frac{2}{xe^{x^2/2}}, \quad \text{(L'Hospital)}$$

$$= 0$$

d) Kritische Punkte sind Nullstellen der ersten Ableitung von f:

$$0 \stackrel{!}{=} f'(x) = e^{-x^2/2}(-x(2x-3)+2) = e^{-x^2/2}(-2x^2+3x+2)$$

$$\Leftrightarrow 0 = x^2 - \frac{3}{2}x - 1$$

$$\Leftrightarrow x_{1,2} = \frac{3}{4} \pm \sqrt{\frac{9}{16} + 1} = \begin{cases} 2\\ -\frac{1}{2} \end{cases}$$

Da die Funktion f(x) zwischen den beiden kritischen Punkten x_1 und x_2 bei x_0 eine Nullstelle hat und links davon negativ und rechts von x_0 positiv ist und sich asymptotisch der x-Achse annähert, muss in $x_1 = 2$ ein Maximum und in $x_2 = \frac{1}{2}$ ein Minimum liegen.

e) Zur Bestimmung der Taylorpolynome wird die zweite Ableitung von f benötigt:

$$f''(x) = e^{-x^2/2}(2x^3 - 3x^2 - 2x - 4x + 3) = e^{-x^2/2}(2x^3 - 3x^2 - 6x + 3)$$

Die Taylor-Polynome in den beiden Extrempunkten sind damit

in
$$x_1 = 2$$
: $T_{2;2}(x) = f(x_1) + \frac{f'(x_1)}{1!}(x - x_1) + \frac{f''(x_1)}{2!}(x - x_1)^2$

$$= e^{-2} + 0 + \frac{e^{-2} \cdot (-5)}{2}(x - 2)^2 = e^{-2} \left(1 - \frac{5}{2}(x - 2)^2\right)$$
in $x_2 = -1/2$: $T_{2;-1/2}(x) = f(x_2) + \frac{f'(x_2)}{1!}(x - x_2) + \frac{f''(x_2)}{2!}(x - x_2)^2$

$$= e^{-1/8}(-4) + 0 + 5e^{-1/8}\frac{\left(x + \frac{1}{2}\right)^2}{2}$$

$$= e^{-1/8}\left(-4 + \frac{5}{2}\left(x + \frac{1}{2}\right)^2\right)$$

 \mathbf{f}

Aufgabe 5.4: Newton-Verfahren

Gegeben sei die Funktion

$$f(x) = 17x^3 - 468x^2 + 2849x - 2294.$$

- a) Skizzieren Sie die Funktion im Intervall $-5 \le x \le 20$.
- b) Führen Sie mindestens zwei Schritte des Newton-Verfahrens mit dem Startwert $x_0 = 13$ für die Funktion f(x) durch.
- c) Skizzieren Sie im Funktionsgraphen die berechneten Iterationen x_0, x_1, x_2, \ldots

Lösung 5.4:

a)/c)

b) Das Newtonverfahren mit der Iterationsvorschrift:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, \qquad n = 0, 1, 2, \dots$$

ergibt

n	x_n	$f(x_n)$	$f'(x_n)$	$-f(x_n)/f'(x_n)$
0	13.0000	-7000.0000	-700	-10.0000000
1	3.0000	2500.0000	500	-5.0000000
2	-2.0000	-10000.0000	4925	2.0304568
3	0.0304	-2207.6621	2821	0.7827090
4	0.8131	-277.6091	2122	0.1308489
5	0.9440	-7.2647	2011	0.0036127
6	0.9476	-0.0055	2008	0.0000027
7	0.9476			

Aufgabe 5.5: Newton-Verfahren

a) Gegeben seien die Funktionen

$$f(x) = \frac{x}{3} \text{ und } g(x) = \sin(x^2).$$

- Skizzieren Sie die Funktionen und bestimmen Sie Näherungen für die Schnittstelle der beiden Funktionsgraphen.
- ii) Bestimmen Sie die kleinste positive Schnittstelle mit dem Newton-Verfahren auf fünf Nachkommastellen genau.
- b) Führen Sie das Verfahren ebenso für die Funktionen

$$f(x) = x^3$$
 und $g(x) = \cos(2\pi x)$

und die betragskleinste Schnittstelle durch.

Lösung 5.5:

a)

i) Aus der Skizze kann man die ungefähren Schnittpunkte

$$(-2.3, -0.8), (-2, -0.7), (0, 0), (0.3, 0.1), (1.6, 0.5), (2.7, 0.9), (2.9, 0.9)$$

ablesen.

4

ii) Die kleinste positive Schnittstelle z liegt im Intervall [0.3, 0.4]. Sie ist Nullstelle der Funktion F(x) = f(x) - g(x) mit

$$F'(x) = \frac{1}{3} - 2x\cos(x^2).$$

Die Iterationsvorschrift für das Newton-Verfahren lautet:

$$x_{i+1} = x_i - \frac{F(x_i)}{F'(x_i)}.$$

Mit $x_0 = 0.35$ liefert sie

n	x_n	$F(x_n)$	$F'(x_n)$	$F(x_n)/F'(x_n)$
0	0.3500000	-0.0055272	-0.3614210	0.0152929
1	0.3347071	-0.0002256	-0.3318845	0.0006798
2	0.3340273	-0.0000004	-0.3305673	0.0000014
3	0.3340259	0.0000000	-0.3305647	-0.0000000

Bereits nach drei Schritten findet keine Korrektur der ersten sechs Nachkommastellen mehr statt, der gesuchte Schnittpunkt liegt also bei $z\approx 0.33403$.

b)

i) Aus der Skizze kann man die ungefähren Schnittpunkte

$$(-0.6, -0.4), (-0.2, 0.0), (0.2, 0.0), (0.9, 0.6), (1.0, 1.0)$$

ablesen.

ii) Die betraglich kleinste Schnittstelle z liegt im Intervall [0.2, 0.3]. Sie ist Nullstelle der Funktion G(x) = f(x) - g(x) mit

$$G'(x) = 3x^2 + 2\pi \sin(2\pi x).$$

Die Iterationsvorschrift für das Newton-Verfahren lautet:

$$x_{i+1} = x_i - \frac{G(x_i)}{G'(x_i)}.$$

Mit $x_0 = 0.25$ liefert sie

n	x_n	$G(x_n)$	$G'(x_n)$	$G(x_n)/G'(x_n)$
0	0.250000	0.015625	6.470685	0.002415
1	0.247585	0.000004	6.466358	0.000001
2	0.247585	0.000000	6.466356	0.000000
3	0.247585			

Für diesen Fall hat das Verfahren bereits nach zwei Schritten die gewünschte Genauigkeit erreicht und das Ergebnis ist $z\approx 0.24759$.

Aufgabe 5.6: Online Aufgabe

Bearbeiten Sie die aktuelle Online-Aufgabe im ILIAS-Kurs.

Beachten Sie, dass Sie dort auch die Lösungswege zu einzelnen Aufgaben zur Korrektur hochladen können.