Overview: Autonomous Sequential Circuit Design

- * Introduction
- * Bistable Elements
- * Latches & Flip-Flops
- * Analysis Procedure
- * Design Procedure

Chapter 7 – "Digital Design: Principles and Practices" book

Introduction

- Autonomous circuits do not have primary inputs, they have only secondaries (plus a clock signal).
- Secondaries, form input circuits, and consist of combinational logic that feeds back from flip-flop outputs to flip-flop inputs.
- There may also be output logic.

Introduction

Method

- 1)Draw-up a table of present and next states. Need to take account of the characteristic equation of the flip-flop
- 2)Draw a Karnaugh map for each next state output in terms of the present state.
- 3) Minimise the logic using Karnaugh map simplification techniques.
- 4) Draw-up the corresponding circuit diagram for the FSM.

- Design an autonomous sequential circuit using D-type flip-flops to generate the following sequence of states: 001, 100, 010, 101, 110, 111, 011.
- Step 1 Complete a table of present and next states.
- To complete this task we need to consider the functional operation (i.e. the characteristic equation) of the flip-flop used.
- D-type flip-flops have been used. So, input to A flip-flop, i.e. D_A , is equal to next state of A flip-flop Q_A^* i.e.: $D_A = Q_A^*$

The table of present and next states is given below.

Р	Present State			Next State			
Q_A	Q_B	Q_{C}	Q_A^*	Q_B^*	Q_{C}^{*}		
0	0	1	1	0	0		
1	0	0	0	1	0		
0	1	0	1	0	1		
1	0	1	1	1	0		
1	1	0	1	1	1		
1	1	1	0	1	1		
0	1	1	0	0	1		

 Step 2 – Draw a Karnaugh map for each next output state in terms of the present state.

Qc 0 0 0 1 1 10 1 1 0 0 1	Input Logic K-Map		Q_AQ_B					
Q _c 0 - 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			00	01	11	10		
1 1 0 0 1	Q _C	0	-	1	1	0		
		1	1	0	0	1		

•
$$Q_A^* = D_A = Q_B Q_C' + Q_B' Q_C = Q_B \oplus Q_C$$

Characteristic equation

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Qc	0	-	0	1	1		
	1	0	0	1	1		

•
$$Q_B^* = D_B = Q_A$$

 Q_R

Input Logic K-Map		$Q_{A}Q_{B}$					
		00	01	11	10		
Qc	0	-	1	1	0		
	1	0	1	1	0		

• $Q_C^* = D_C = Q_B$

Step 4 – We can now draw the circuit diagram for the FSM.

- Design a 3 bit binary counter using JK flip-flops.
- We need 3 flip-flops, one for each bit.
- Let's recap. the steps in the method

Method

- 1)Draw-up a table of present and next states. Need to take account of the characteristic equation of the flip-flop
- 2)Draw a Karnaugh map for each next state output in terms of the present state.
- 3) Minimise the logic using Karnaugh map simplification techniques.
- 4) Draw-up the corresponding circuit diagram for the FSM.

- Step 1 Complete the table of present and next states.
- Use the JK transition table to complete entries in the table corresponding to the inputs to J and K.

The table of present and next states is given below.

F	resent State	е	Next State			JK inputs			
Q_A	Q_B	Q_{C}	Q_A^*	$\mathbf{Q_B}^*$	$\mathbf{Q_{c}}^{*}$	J_AK_A	J_BK_B	J_cK_c	
0	0	0	0	0	1	0x	0x	1x	
0	0	1	0	1	0	0x	1x	x1	
0	1	0	0	1	1	0x	х0	1x	
0	1	1	1	0	0	1x	x1	x1	
1	0	0	1	0	1	х0	0x	1x	
1	0	1	1	1	0	х0	1x	x1	
1	1	0	1	1	1	х0	х0	1x	
1	1	1	0	0	0	x1	x1	x1	

• Steps 2 & 3 – Now draw 6 Karnaugh maps, one for each of the J and K inputs, in terms of the present states

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Qc	0	0	0	х	х		
	1	0	1	х	×		

• $J_A = Q_B \cdot Q_C$

Input Log	gic K-Map		Q_AQ_B				
		00	01	11	10		
Qc	0	х	х	0	0		
	1	х	Х	1	0		
					K _A		

• $K_A = Q_{B_1}Q_{C}$

Input Logic K-Map		Q_AQ_B				
		00	01	11	10	
Qc	0	0	х	х	0	
	1	1	х	х	1	
	ı	1	1	I	J _B	

• $J_B=Q_C$

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Q _C	0	х	0	0	х		
	1	Х	1	1	Х		
	1		1		K _B		

• $K_B = Q_C$

Input Logic K-Map		$Q_{\mathbb{A}}Q_{\mathbb{B}}$				
		00	01	11	10	
Qc	0	1	1	1	1	
	1	х	x	х	x	
					J _C	

• J_C=1

Input Logic K-Map		$Q_{\mathbb{A}}Q_{\mathbb{B}}$				
		00	01	11	10	
Qc	0	X	х	х	Х	
	1	1	1	1	1	
					K _C	

• K_C=1

Step 4 – We can now draw the circuit diagram for the FSM.

- Design a 6-state counter using the first six binary numbers.
 Use JK flip-flops.
- What is the result if either of the cannot happen input states (marked – in the maps) does happen?
- Step 1 Complete the table of present and next states.
- Use the JK transition table to complete the table for the inputs to J and K.

The table of present and next states is given below

P	resent State	е	Next State			JK inputs		
Q_A	Q_B	\mathbf{Q}_{C}	$\mathbf{Q_A}^*$	$\mathbf{Q_B}^*$	$\mathbf{Q}_{C}^{^*}$	J_AK_A	J_BK_B	J_cK_c
0	0	0	0	0	1	0x	0x	1x
0	0	1	0	1	0	0x	1x	x1
0	1	0	0	1	1	0x	х0	1x
0	1	1	1	0	0	1x	x1	x1
1	0	0	1	0	1	х0	0x	1x
1	0	1	0	0	0	x1	0x	x1
-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-

 Steps 2 & 3 – Now draw the 6 Kmaps for the J and K inputs.

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Qc	0	0	0	-	х		
	1	0	1	-	Х		
					J_{A}		

• $J_A = Q_B \cdot Q_C$

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Qc	0	х	х	-	0		
	1	Х	х	-	1		
		1	I		K _A		

• $K_A = Q_C$

Input Logic K-Map		$Q_{A}Q_{B}$					
00			01	11	10		
Qc	0	0	х	-	0		
	1	1	х	-	0		
	•	•			J _B		

• $J_B=Q_A'.Q_C$

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Q _C	0	х	0	-	х		
	1	Х	1	-	Х		
					K _B		

• $K_B = Q_C$

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Qc	0	1	1	-	1		
	1	Х	х	-	X		
					Jc		

• J_C=1

Input Logic K-Map		Q_AQ_B					
		00	01	11	10		
Qc	0	X	х	-	X		
	1	1	1	-	1		
					Kc		

• K_C=1

• Step 4 – Then we can draw the circuit diagram.......

- To think about the "cannot happen" input states......
 Because we have minimised the logic circuits by grouping "1s" with "cannot happens" and "don't cares", we are forcing the next states of a cannot happen.
- We can look at our K-maps and make the following table:

Present State			JK inputs			Next State		
Q_A	Q_B	Q_{C}	J _A K _A J _B K _B J _C K _C			${\sf Q_A}^*$	$\mathbf{Q_B}^*$	$\mathbf{Q_{c}}^{*}$
1	1	0	00	00	11	1	1	1
1	1	1	11 01 11			0	0	0

• So, if state 6 is entered the next state is state 7, and if state 7 is entered the next state is state 0.

So the state diagram is:

- Repeat example 3 this time using T-flip-flops (i.e. 6 state counter using the first 6 binary numbers).
- Step 1 Complete the present state and next state table, adding the toggle input (T) of each flip-flop. Put a 1 for the T input if the bit needs to change state.

The table of present and next states is given below

F	Present State			Next State			T input		
Q_A	Q_B	\mathbf{Q}_{C}	$\mathbf{Q_A}^*$	$\mathbf{Q_B}^*$	Q _c *	T _A	T _B	T _C	
0	0	0	0	0	1	0	0	1	
0	0	1	0	1	0	0	1	1	
0	1	0	0	1	1	0	0	1	
0	1	1	1	0	0	1	1	1	
1	0	0	1	0	1	0	0	1	
1	0	1	0	0	0	1	0	1	
-	-	-	-	-	-	-	-	-	
-	-	-	-	-	-	-	-	-	

• Steps 2 & 3 – Now draw the 3 K-maps, one for each flip-flop input.

Input Logic K-Map		$Q_{A}Q_{B}$					
		00	01	11	10		
Qc	0	0	0	-	0		
	1	0	1	<u> </u>	1		
			•		T		

• $T_A = Q_A \cdot Q_C + Q_B \cdot Q_C$

Input Log	Input Logic K-Map		$Q_{\mathtt{A}}Q_{\mathtt{B}}$					
		00	01	11	10			
Q _C	0	0	0	-	0			
	1	1			0			
					T _B			

• $T_B = Q_A' \cdot Q_C + Q_B \cdot Q_C$

Input Logic K-Map		$Q_{A}Q_{B}$					
		00	01	11	10		
Qc	0	1	1	-	T		
	1	1	1	-	1		
	•	•			To		

• $T_C=1$

Step 4 – Now we can draw the circuit diagram......

AND

Q

 For the two cannot happen states based on our groupings for the T inputs a "1" in the T input means "change state"

Present State			T Input			Next State		
Q_A	Q_B	Q_{C}	T _A T _B T _C			$\mathbf{Q_A}^*$	$\mathbf{Q_B}^*$	$\mathbf{Q_{c}}^{*}$
1	1	0	0	0	1	1	1	1
1	1	1	1	0	1	0	1	0

 So, if state 6 is entered the next state is state7. If state 7 is entered the next state is state 2.

