Мультиагентное управление в динамической сети

Олег Николаевич Граничин

Санкт-Петербургский государственный университет, математико-механический факультет

24 октября 2012

Топология динамической сети

Рассмотрим сетевую систему, состоящую из набора динамических подсистем (агентов) $N=\{1,2,\ldots,n\}$ с входами u_t^i , выходами $y_t^{i,i}$ и состояниями x_t^i , взаимодействующих в соответствии с ориентированным графом (N,E), где E — множество дуг.

Топология динамической сети

Рассмотрим сетевую систему, состоящую из набора динамических подсистем (агентов) $N=\{1,2,\ldots,n\}$ с входами u_t^i , выходами $y_t^{i,i}$ и состояниями x_t^i , взаимодействующих в соответствии с ориентированным графом (N,E), где E — множество дуг.

- ullet Множеством соседей узла i называется $N^i = \{j: (j,i) \in E\}.$
- Структура связей динамической сети описывается с помощью последовательности орграфов $\{(N,E_t)\}_{t\geq 0}$, где $E_t\subseteq E$ меняется во времени.

Динамика состояний узлов

Каждому агенту $i \in N$ (узлу графа) в момент времени $t=0,1,2\dots,T$ сопоставляется изменяющееся во времени состояние $x_t^i \in \mathbb{R}$, динамика которого описывается разностным уравнением:

$$x_{t+1}^{i} = x_{t}^{i} + f^{i}(x_{t}^{i}, u_{t}^{i}),$$
 (1)

с управлением $u_t^i\in\mathbb{R}$, воздействие которого на изменение состояния x_t^i определяется некоторой функцией $f^i(\cdot,\cdot):\mathbb{R}\times\mathbb{R}\to\mathbb{R}$, зависящей от текущего состояния агента x_t^i и задаваемого управления u_t^i .

Наблюдения

Для формирования управления каждый узел $i \in N$ имеет информацию о своем собственном состоянии:

$$y_t^{i,i} = x_t^i + w_t^{i,i}, (2)$$

и, если $N_t^i
eq \emptyset$, наблюдения о состояниях соседей:

$$y_t^{i,j} = x_{t-d_t^{i,j}}^j + w_t^{i,j}, j \in N_t^i,$$
(3)

где $w_t^{i,i}, w_t^{i,j}$ — помехи (шум), а $0 \leq d_t^{i,j} \leq \bar{d}$ — целочисленная задержка, \bar{d} — максимально возможная задержка.

Положим $w_t^{i,j}=0$ и $d_t^{i,j}=0$ для всех остальных пар (i,j), для которых они не были определены. Так как система начинает работу при t=0, неявное требование к множеству соседей: $j\in N_t^i\Rightarrow t-d_t^{i,j}\geq 0$.

Основные сведения из теории графов

- Сопоставим каждой дуге $(j,i) \in E$ вес $a^{i,j} > 0$ и определим матрицу смежности (или связности) $A = [a^{i,j}]$ графа $\mathscr{G}_A = (N,E)$.
- Определим взвешенную полустепень захода вершины i как сумму i-й строки матрицы A: $d^i = \sum_{i=1}^n a^{i,j}$;
- $d_{\max}(A)$ максимальная полустепень захода графа \mathscr{G}_A ;
- $D(A) = \operatorname{diag}\{d^i(A)\};$
- $\mathscr{L}(A) = D(A) A$ лапласиан графа.
- Направленный путь из узла i_1 в узел i_s состоит из последовательности узлов $i_1,\ldots,i_s,\ s\geq 2$ таких, что $(i_k,i_{k+1})\in E, k\in\{1,2,\ldots,s-1\}.$
- Граф называется **связным**, если для всех пар различных узлов (i,j) есть направленный путь из i в j.
- Связный граф, в котором число дуг на одну меньше числа вершин, называется **деревом**. Дерево, являющееся частичным графом связного графа, называется **остовным деревом**.

Задача консенсуса на графах

- Будем называть протоколом управления в динамической сети с топологией (N, E_t) обратную связь по наблюдениям состояний $u_t^i = K_t^i(y_t^{i,j_1}, \dots, y_t^{i,j_{m_i}})$, где множество $\{j_1, \dots, j_{m_i}\} \subset \{i\} \bigcup \bar{N}_t^i, \ \bar{N}_t^i \subseteq N_t^i.$
- Узлы i и j называются **согласованными** в сети в момент времени t тогда и только тогда, когда $x_t^i = x_t^j$.
- Задача о достижении консенсуса в момент времени t это согласование всех узлов между собой в момент времени t.
- n узлов достигают *среднеквадратичного* \mathcal{E} -консенсуса в момент времени t, если $E||x_t^i||^2<\infty,\ i\in \mathcal{N}$ и существует случайная величина x^* такая, что $E||x_t^i-x^*||^2\leq \mathcal{E}$ для всех $i\in \mathcal{N}$.

Консенсусное управление — управление, обеспечивающее достижение консенсуса.

Протокол локального голосования

$$u_t^i = \alpha_t \sum_{j \in \bar{N}_t^i} b_t^{i,j} (y_t^{i,j} - y_t^{i,i}),$$
 (4)

где $lpha_t>0$ — размеры шагов протокола управления, $b_t^{i,j}>0, \ \forall j\in ar{N}_t^i.$ Положим $b_t^{i,j}=0$ для всех остальных пар i,j.

Протокол распределения заданий в децентрализованной вычислительной сети

Рассмотрим протокол управления (4), в котором $\forall \ i \in N, \ \forall \ t$ определим $\bar{N}_t^i = N_t^i$ и $b_t^{i,j} = r_t^j/r_t^i, \ , j \in N_t^i.$

Динамика замкнутой системы перераспределяющей задания в вычислительной сети для протокола (4) в рассматриваемом случае имеет вид:

$$x_{t+1}^{i} = x_{t}^{i} - 1 + z_{t}^{i}/r_{t}^{i} + \alpha_{t} \sum_{j \in N_{t}^{i}} b_{t}^{i,j} (y_{t}^{i,j}/r_{t}^{j} - y_{t}^{i,i}/r_{t}^{i}),$$
 (5)

где α_t — последовательность положительных размеров шагов, $y_t^{i,j}$ — наблюдения (с помехами и задержками) о длине очереди j-го узла, z_t^i — размер нового задания, поступившего на узел i в момент времени t.