第八次作业

院(系)	班级	学号	姓名_		
一、填空题					
				ニューズラー から	į
当 μ 和 σ² 未知时,则检	$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_{i}$	$Q^{2} = \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$	2 , = 1	5/n= Q/(n+)	
当 μ 和 σ^2 未知时,则检	i验假设 H _o : μ = μ _o ,	所使用统计量是	Q/1-1.		
	对于给定的显著性				
3. 设总体 X ~ N(从	(σ²), μ 已知, 给定	2显著性水平α,假	$议 H_0: \sigma^2 = \sigma_0^2, H$	$H_1:\sigma^2\geq\sigma_0^2$ 的	
拒绝域为人父人父二	$\frac{1}{2}(X_1-M)^2 > \chi_2^2(N)$)			
4. 设 X_i ($i = 1, 2, \dots, j$	n) 是米自总体 X~	$N(\mu,\sigma^2)$ 的容量为 n	的简单随机样本	、方差σ²已	
知,检验假设 $H_0: \mu = \mu_0$	$H_{\iota}: \mu \neq \mu_{0}$,检验统	计量为 $u = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$ ~	· N(0,1),在显著	性水平α下,	
拒绝域为 イルハ州ンル	9) .				
二、选择题					
1. 在假设检验中,	原假设 H。, 备择仍	\mathbb{R}^{H_1} ,则(B)	为犯第二类错误	₹ •	
(A) H ₀ 为真,接	受 <i>H</i> ₁ .				
(B) H ₀ 不真,接	受 H ₀ .				
(C) H ₀ 为真,拒	绝 H _: .				
(D). H _o 不真, 扎	巨绝 H _o .				
2. 设总体 X ~ N(μ	$(1, \sigma_1^2), Y \sim N(\mu_2, \sigma_2^2)$,检验假设 H _o : σ _i ² =	$= \sigma_2^2, H_1: \sigma_1^2 \neq \sigma_2^2$, $\alpha = 0.10$,	
从 X 中抽取容量 n ₁ = 12	的样本,从Y中抽取	容量 n ₂ = 10 的样本,	算得 S ₁ ² = 118.4,	$S_2^2 = 31.93$.	
正确的检验方法与结论是	E (B).		$\frac{\zeta_{\nu}^{\prime}}{\zeta_{\nu}}$	=3708 Footlagh=3.	1
(A) 用 t 检验法,	临界值 t _{o os} (17) = 2.1	1, 拒绝 H。.	S	=3.708 Fo.0x(10.9)=3. Fo.0x(11.9)=3.10	o,
(B) 用 F 检验法,	临界值 Foos(11,9)=	$3.10, F_{0.95}(11, 9) = 0.3$	34,拒绝 H _o ·F	10.05 (11.9) = Foox (9,11)	
(C) 用F检验法.	临界值 F(11.9)=	$0.34, F_{-}(11, 9) = 3.1$	0. 接受 H.	11. 12 Food (1'11)	

(D) 用F 检验法,临界值 $F_{001}(11,9) = 5.18$, $F_{0\infty}(11,9) = 0.21$,接受 H_0 . $-\frac{1}{2.90}$ = 0.34

(C) 用 F 检验法,临界值 $F_{0.05}(11,9)=0.34, F_{0.05}(11,9)=3.10$,接受 H_{0} .

3. 设总体 $X\sim N(\mu,\sigma^2)$, σ^2 未知, 假设 $H_0:\mu=\mu_0$ 的拒绝域为 $\mu\leq -\mu_\sigma$, 则备择假 设H,为(C)。

- (A) $\mu \neq \mu_0$. (B) $\mu > \mu_n$. (C) $\mu < \mu_n$.
- (D) $\mu \leq \mu_0$.

4.设总体 $X\sim N(\mu,\sigma^2)$, σ^2 未知, 假设检验 $H_0:\mu\leq 1;\mu>1(\alpha=0.05)$, 则拒绝域为

(B).

(A) $|\bar{X}-1| > u_{0.05}$. (B) $\bar{X} > 1 + I_{0.05} (n-1) \frac{S}{\sqrt{n}}$.

(C) $|\bar{X} - 1| > t_{0.05} (n-1) \frac{S}{\sqrt{n}}$. (D) $\bar{X} < 1 - t_{0.05} (n-1) \frac{S}{\sqrt{n}}$.

- (C) 必拒绝 H_o.
- (D) 不接受,也不拒绝 H₀.

三、计算题

A) 1. 某车间用一台包装机包装葡萄糖,包得的袋装葡萄糖的净重 X (单位 kg) 是一个 随机变量,它服从正态分布 $N(\mu,\sigma^2)$,当机器工作正常时,其均值为 0.5kg,根据经验知标 准差为0.015 kg(保持不变),某日开工后,为检验包装机的工作是否正常,从包装出的葡 葡糖中随机地抽取9袋,称得净重为

试在显著性水平α=0.05 下检验机器工作是否正常.

解 X~NM.可) 0=0.015

松验假设 Ho. M=as Hi, M=as

由题意的、检验统计量为又一处。——又一0.5 ~ N(O.1) (当的镇时)

拒绝域形式为W={N/W=N=}当220.05时,查表知Wao25=1.96

经计算 Z=0511. N= 2-0.18 = 2.271.96

t上拒绝 h. 即认为机器工作不正常

2. 设某次考试的考生成绩服从正态分布, 从中随机抽取 36 位考生的成绩, 算得平均 成绩为 66.5 分,标准差为 15 分,间在显著性水平 α = 0.05 下,是否可以认为这次考试全体 考生的平均成绩为70分?并给出检验过程.

解设定电影试的考生成绩为X 则X~NUL.67

拒绝域 W二(七)出言也(m))

当 2=2.05mt 七0.025 (35)=2.0301

故接受原假设物即可见认为发力考试全体安生的平均成绩为70分

A 3. 设有甲, 乙两种零件, 彼此可以代用, 但乙种零件比甲种零件制造简单, 造价低, 经过试验获得抗压强度(单位: kg/cm²)为

甲种零件: 88, 87, 92, 90, 91,

乙种零件: 89, 89, 90, 84, 88.

假设甲乙两种零件的抗压强度均服从正态分布,且方差相等,试问两种零件的抗压强 度有无显著差异(取α=0.05)?设于零件抗压强度为义, 乙零件抗压强度为义, χ~Nlu, σ) Υ~Nlu, σ) 解检验假证Ho, MI=W. HI, MI+M

拒絶域もW=くもしけしてまれれている=くもしたしろものから(8) (こくもしたしなるの) あれこれらる.

$$5L=89.6$$
. $y=88$. $SW=\frac{4\times4.3+4\times5.5}{5+5-2}=4.9$. $SW\approx2.214$ 经计算 $t=\frac{89.6-88}{2.214\times15+5}=1.144<2.3.06$ 39

拉接受儿 即认为西班惠什的状态强度于见著美异

4. 某无线电厂生产的一种高频管, 其中一项指标服从正态分布 N(μ,σ²), 从一批产品中抽取 8 只, 测得该指标数据如下:

66, 43, 70, 65, 55, 56, 60, 72,

- (1) 总体均值 $\mu = 60$, 检验 $\sigma^2 = 8^2$ (収 $\alpha = 0.05$);
- (2) 总体均值 μ 未知时, 检验 $\sigma^2 = 8^2$ ($\Psi \alpha = 0.05$).

解,本题是在显著性水平又二0.05工,检验假设

Ho. 0= 50=82. Hi. 52 + 82.

いかいこします

检验统计量、水= 0 是(x,-1)~水(8)(H+1)的) 拒绝域 W=(水)水水(8)(1)(水)水(8)(1)

= {xi | x2 x2, n3(8)=17,535} 4 {x (x 2 x2,975(8)=2.180)

经计算水=9.9219, 杜接受比即认为了=87,

的从秘的时

检验统计量水=少小分子-75~水(7)(比遍时)

拒絶域 いこくないなってを(れい)しくないならならを(いい)

= {x | x = x o. mg (7) = 16.013} U {x | x = x o. A75(1) = 1.690}

经计算 龙= 75 = 7×93.196 =10.1933 比接受 Ho. 即认为 0=82

Z=60.875 S=93.196