$(1) + \frac{1}{7} = \frac{1}{7}$ $\frac{R}{12} \frac{1}{12}$ b) / f (<=), f is isomorphism and fourjective Then (correspondance 76m) Kilony Y: R-7 R' is surjective. Viry hemmoghism, Iden(s in & 12n taining Ky < idents in R14 · If I > K, Ihn (12) 13 an idal · If I is so ideal in R', then

So
$$r(x,y) = r(x)$$
, and $r(t,t^2) = r(t) = 0$
and $r(t) = 0 = 0$ $r = 0$.
So $g = f(t)$
[deals containing $(y-x^2)$
(-) challs in $C(t)$.
 $(f(t))$.

$$t-\lambda$$
 divides $h(t)$ areans
$$h(\lambda) = 0 \cdot (Vse \text{ division with remainder})$$

$$So f = |t-1| \cdot or (t+1).$$
If $hay f = 2 \cdot f = t^2 - 1$.

Verfor facts: $7 = 1a$.
$$7 = 1b$$
.
$$1 = 1b$$

7 CJ iff b divides a.

Adjoining elements. $\frac{P}{a}$ $2/(a \cdot b)$ =G. (Z[i)/i-2) Z(i) is the image of $Z[x] \rightarrow ($ $Z(i) = Z(x)/(x^2-1).$

Why: $\gamma: \mathbb{Z}(X) \to \mathbb{C}$ $\times 1 \rightarrow i$. $|ur| = (x^2 + 1)$ 1 f g (x) c far g thin g(i)=0, g(-i)=0 $\int O \left(\frac{1}{x} \right) = \left(\frac{x^2}{1} \right) \cdot \frac{1}{2} \left(\frac{x}{x} \right) + \frac{1}{x} \right)$ leg r = 1, but i & Z, (0 rx)=0. $\frac{2(x)}{1\times^2+1}$ x-2 = 2(x)/(x-2)= 2/15) 1-1erc we use $\mathbb{Z}(x)/(x-2) \geq \mathbb{Z}$