Introduction to Homotopy Type Theory

Egbert Rijke

Contents

	Prej		vi		
	Intr	oduction	ı	viii	
I	Ma	Martin-Löf's Dependent Type Theory			
	1	Depe	Dependent type theory		
		1.1	Judgments and contexts in type theory	3	
		1.2	Type families	5	
		1.3	Inference rules	6	
		1.4	Derivations	10	
		Exerc	cises	11	
	2	Depe	Dependent function types		
		2.1	The rules for dependent function types	12	
		2.2	Ordinary function types	15	
		cises	20		
	3	The r	natural numbers	21	
		3.1	The formal specification of the type of natural		
			numbers	21	
		3.2	Addition on the natural numbers	24	
		3.3	Pattern matching	27	
		Exercises		28	
	4	More inductive types		29	
		4.1	The idea of general inductive types	29	
		4.2	The unit type	30	
		4.3	The empty type	31	
		4.4	Coproducts	33	
		4.5	The type of integers	35	

		4.6	Dependent pair types	37
		Exerci	ses	39
	5	Identi	ty types	41
		5.1	The inductive definition of identity types	42
		5.2	The groupoidal structure of types	44
		5.3	The action on identifications of functions	47
		5.4	Transport	48
		5.5	The uniqueness of refl	49
		5.6	The laws of addition on \mathbb{N}	50
		Exerci	ses	53
	6	Unive	rses	56
		6.1	Specification of type theoretic universes	57
		6.2	Assuming enough universes	59
		6.3	Observational equality of the natural numbers	61
		6.4	Peano's seventh and eighth axioms	64
		Exerci	ses	65
	7	Modu	lar arithmetic via the Curry-Howard interpretation	67
		7.1	The Curry-Howard interpretation	68
		7.2	The congruence relations on \mathbb{N}	72
		7.3	The standard finite types	73
		7.4	The natural numbers modulo $k + 1$	76
		7.5	The cyclic groups	81
		Exerci	ses	83
	8	Decida	ability in elementary number theory	86
		8.1	Decidability and decidable equality	87
		8.2	Constructions by case analysis	90
		8.3	The well-ordering principle of $\mathbb N$	94
		8.4	The greatest common divisor	95
		8.5	The infinitude of primes	99
		8.6	Boolean reflection	101
		Exerci	ses	103
II	The I	The Univalent Foundations of Mathematics		
	9	Equiva	alences	111
		9.1	Homotopies	111
		9.2	Bi-invertible maps	115
		9.3	Characterizing the identity types of Σ -types	119
		Exerci		121

10	Contr	actible types and contractible maps	124	
	10.1	Contractible types	125	
	10.2	Singleton induction	126	
	10.3	Contractible maps	127	
	10.4	Equivalences are contractible maps	129	
	Exerc	ises	133	
11	The fu	andamental theorem of identity types	135	
	11.1	Families of equivalences	135	
	11.2	The fundamental theorem	138	
	11.3	Equality on the natural numbers	140	
	11.4	Embeddings	142	
	11.5	Disjointness of coproducts	143	
	11.6	The structure identity principle	144	
	Exercises			
12	Propo	Propositions, sets, and the higher truncation levels		
	12.1	Propositions	151	
	12.2	Subtypes	153	
	12.3	Sets	155	
	12.4	General truncation levels	157	
	Exerc	Exercises		
13	Function extensionality			
	13.1	Equivalent forms of function extensionality	165	
	13.2	Identity systems on Π-types	168	
	13.3	Universal properties	171	
	13.4	Composing with equivalences	173	
	13.5	The strong induction principle of $\mathbb N$	175	
	Exercises			
14	Propositional truncations			
	14.1	The universal property of propositional trunca-		
		tions	185	
	14.2	Propositional truncations as higher inductive		
		types	188	
	14.3	Logic in type theory	192	
	14.4	Mapping propositional truncations into sets	194	
	Exercises			
15	Image	e factorizations	201	
	15.1	The image of a map	201	

209 210 212 215 218 223 225 226 228 230
212 215 218 223 225 226 228 230
212 215 218 223 225 226 228 230
215218223225226228230
218 223 225 226 228 230
223225226228230
225226228230
226228230
228230
230
232
235
238
241
246
247
250
257
260
263
267
272
273
275
277
279
282
285
289
295
295
300
302

		20.5	Extensional W-types	305
		20.6	Russell's paradox in type theory	307
		Exerci	ises	313
III	The c	ircle		319
	21	The ci	rcle	320
		21.1	The induction principle of the circle	320
		21.2	The (dependent) universal property of the circle	322
		21.3	Multiplication on the circle	326
		Exerci	ises	328
	22	The u	niversal cover of the circle	331
		22.1	The universal cover of the circle	331
		22.2	Working with descent data	334
		22.3	The (dependent) universal property of the integers	337
		22.4	The fundamental group of the circle	340
		Exerci	ises	343
	Index			347
	Biblio	graphy		366

Preface

This book started as a set of lecture notes for an Introduction to Homotopy Type Theory course that I taught at Carnegie Mellon University in the spring of 2018. The goal of that course was to give students from a wide variety of backgrounds, including mathematics, computer science, and philosophy majors, a solid foundational understanding of what univalent mathematics is about, and that is also the purpose of this book.

This book would not exist without the consistent and generous support of three people: Steve Awodey, Dan Grayson, and Andrej Bauer. Back in 2017, Steve proposed that I would teach an introductory course to homotopy type theory at Carnegie Mellon University, where I was a PhD student at the time. When the course was finished he took the course notes to Cambridge University Press to propose a book project. Throughout the entire process of writing this book I have relied on Steve's advice, and I owe him a big univalent thanks. After my graduation from CMU, I held a postdoc position at the University of Illinois at Urbana-Champaign, where Dan Grayson was my mentor. The formalization project of the book started to take off during this year, and the book has benefited from many enjoyable discussions with Dan about writing, about formalization, and univalent mathematics, and his support extended much beyond the book project. After one year in Illinois I moved to Ljubljana, where Andrej generously offered me a stable, multiple year postdoc position. What once was a set of course notes now transformed into a textbook, and some of the clearest explanations on how to think in type theory and how to define concepts correctly have their origin in the many conversations with Andrej. I cannot thank you enough.

Furthermore, this book project has benefited from insightful discussions

and many people using an early version of this book. I would like to thank William Barnett, Katja Berčič, Marc Bezem, Ulrik Buchholtz, Ali Caglayan, Dan Christensen, Thierry Coquand, Peter Dybjer, Jacob Ender, Martín Escardó, Sam van Gool, Kerem Güneş, Bob Harper, Matej Jazbec, Urban Jezernik, Tom de Jong, Ivan Kobe, Anders Mortberg, Clive Newstead, Charles Rezk, Emily Riehl, Mike Shulman, Elif Uskuplu, Chetan Vuppulury, and Blaž Zupančič for sharing their thoughts about the book, their support, finding typos, and generally for their many helpful comments on the early drafts of this book.

Egbert Rijke December 19th 2022, Ljubljana

The author gratefully acknowledges the support by the Air Force Office of Scientific Research through MURI grant FA9550-15-1-0053, grants FA9550-17-1-0326 and FA9550-21-1-0024, and support by the Slovenian Research Agency research programme P1-0294.

Introduction

This is an introductory textbook to univalent mathematics and homotopy type theory, a mathematical foundation that takes advantage of the structural nature of mathematical definitions and constructions. It is common in mathematical practice to consider equivalent objects to be the same, for example, to identify isomorphic groups. In set theory it is not possible to make this common practice formal. For example, there are as many distinct trivial groups in set theory as there are distinct singleton sets. Type theory, on the other hand, takes a more structural approach to the foundations of mathematics that accommodates the univalence axiom. This, however, requires us to rethink what it means for two objects to be equal.

The origins of homotopy type theory

Homotopy type theory emerged about 10 years ago, following the discovery of the homotopy interpretation of Martin-Löf's dependent type theory by Awodey and Warren [3] and independently by Voevodsky [25], and Voevodsky's discovery of the univalence axiom [26]. Martin-Löf's dependent type theory [19] is a foundational language for mathematics which is used in many of today's computer proof assistants.

In dependent type theory there are primitive objects called types and primitive objects called elements. Martin-Löf's dependent type theory contains type formation rules for many operations that we are familiar with from traditional mathematics, such as products, sums, and inductive types such as

the type of natural numbers. It is called *dependent* type theory because both types and elements may be parametrized by elements of other types.

One of the distinguishing features of Martin-Löf's dependent type theory is the *identity type*. The identity type

$$Id_A(a,b)$$

is an example of a dependent type because it is parametrized by two elements a, b: A. The elements of the identity type are called identifications, and the type theoretical way to assert that a and b are equal elements of type A is to assert that there is an element in the identity type $Id_A(a, b)$. In other words, to prove in type theory that two elements a and b in a type A are equal, one has to define an identification p: $Id_A(a, b)$. It is therefore common to write a = b for the identity type $Id_A(a, b)$, or if we want to be explicit about the ambient type we can write a = A b.

The rules for the identity type postulate that it is inductively generated by one single element

$$refl_a : a =_A a$$

parametrized by a:A. This raises an important question. Since the identity type is a type, it could be possible that there are many identifications $p:a=_Ab$ between any two elements a,b:A. On the other hand, the identity type is generated inductively by only one element, i.e., by reflexivity. Is it possible to prove, using the rules of the identity type, that there is indeed at most one identification between any two elements of a type?

The pioneers of type theory have already been aware that this seemed impossible, but it was not until Hofmann and Streicher constructed the groupoid model of Martin-Löf's dependent type theory [15] that the question was settled. In their model, types are groupoids and the type of identifications between two objects in a groupoid is the set of isomorphisms between them. Since there can be multiple isomorphisms between two objects in a groupoid, there can be multiple identifications between two objects. Furthermore, they showed that under this interpretation, the identity type indeed satisfies the rule that it is inductively generated by reflexivity. In other words, they soundly refuted the idea that identity types have at most one element. This is quite unlike ordinary mathematics, where two elements of a set are either equal or they aren't. At the end of their paper they even wondered whether there could be a similar model of type theory using higher groupoids, but

the theory of higher groupoids had still been underdeveloped at that point in time. Nevertheless, the stage was set for the homotopy interpretation of type theory to emerge.

In the homotopy interpretation of type theory, we think of types as spaces. Their elements are points in those spaces, and for any two points in a space there is a *space of paths* from one to the other. Analogously, for any two elements in a type there is a *type of identifications* from one to the other. This way of thinking about types turned out to be very fruitful, and it opened the door to rethinking the foundations of mathematics with a prominent role for homotopy theory. It is important, however, to step back and ask the question:

How is it possible that type theoretic foundations for mathematics can be so different from the usual set theoretic foundations for mathematics?

At first glance, types seem to be objects that contain stuff just like sets. There is a type \mathbb{N} of natural numbers, a type \mathbb{Z} of integers, standard finite types Fin_k , function types $A \rightarrow B$ and product types $A \times B$, and all of them are not very different from their set theoretic counterparts. The type of natural numbers contains the natural numbers; the type $A \rightarrow B$ contains functions from A to B; the type $A \times B$ contains pairs (a, b) consisting of elements a : A and b : B, and so on. A big difference between type theory and set theory, however, is that in type theory types and elements are separate entities, whereas in classical set theory there is a global elementhood relation: everything in set theory is a set, and for any two sets x and y we can ask the question whether the proposition $x \in y$ holds. In type theory, on the other hand, there are things called types and separately there are things called elements. Furthermore, every element in type theory has a designated type. For example, true and false are specified to be elements of type bool; the numbers 0_N , 1_N , 2_N , and so on, are specified to be elements of type \mathbb{N} ; the successor function $\mathsf{succ}_{\mathbb{N}}$ is an element of type $\mathbb{N} \to \mathbb{N}$, and the identification refl_a is an element of type $a =_A a$. In other words, types in Martin Löf's dependent type theory don't share their elements. Whereas in set theory a set *x* is uniquely determined by its relation $y \in x$ with respect to all other sets y, types in type theory are constructed out of a small set of type forming operations, and each type forming operation comes with set of structural rules that postulate how to construct elements of that type and how elements of that type can be used. This simple change of setup has deep implications for how the foundational

system works, and ultimately it opens the door to new ways of thinking about the foundations of mathematics, including the homotopy interpretation of type theory.

First of all it turns out to be extremely useful for computers if we keep track of the types of elements. Most of the widely used computer proof assistants such as Agda, Coq, or Lean, are based on a type theory. Given that every element comes equipped with a designated type, the computer can verify whether a function has been applied to elements of the correct type and outputs elements of the specified type. Such type checking algorithms are at the heart of every proof assistant, and they can be used to verify the correctness of mathematical constructions as well as proofs.

Furthermore, the identity type only compares elements in the same type. The question whether true = $1_{\mathbb{N}}$ simply doesn't make sense in type theory, because true is a boolean and $1_{\mathbb{N}}$ is a natural number. However, if the identity type can only compare two elements in the same type, how can we hope to prove that two types are the same? This is possible with universes, which are types of which the elements themselves encode types. Given two types A and B in the same universe \mathcal{U} , we can ask whether there is an identification $A =_{\mathcal{U}} B$ in the universe \mathcal{U} . The univalence axiom gives a characterization of this identity type. It asserts that an identification of types is equivalently described as an equivalence of types: There is an equivalence

$$(A =_{\mathcal{U}} B) \simeq (A \simeq B)$$

for any two types A and B in the same universe \mathcal{U} . Roughly speaking, there are as many identifications between A and B in \mathcal{U} as there are equivalences between them. For example, there are k! equivalences from the standard finite type Fin_k to itself, so the univalence axiom implies that there must be k! identifications from Fin_k to itself. Extending this example, the type $\mathsf{Set}_{\mathcal{U}}$ of all sets in a universe \mathcal{U} should be thought of as the groupoid of all sets, because the identifications in $\mathsf{Set}_{\mathcal{U}}$ correspond to equivalences between sets. This directly violates the principles of Zermelo-Fraenkel set theory, because in set theory two sets are equal if and only if they contain exactly the same elements, whereas in type theory the identifications between two types are equivalently described by equivalences between them. For example, there are many distinct singleton sets in Zermelo-Fraenkel set theory, but they are all the same in univalent mathematics.

That raises the question: Is the univalence axiom consistent? The answer is a

resounding yes. Voevodsky proposed a model of Martin-Löf's dependent type theory in which he interpreted types as Kan simplicial sets. Kan simplicial sets are the higher groupoids that Hofmann and Streicher alluded to at the end of their paper about the groupoid model of type theory. The simplicial model of type theory with the univalence axiom was later published in [16].

At this point it became clear that Martin-Löf's dependent type theory together with the univalence axiom could serve as a new foundational system for mathematics, which has homotopy theory built into its core. The famous HoTT book [24] was the first textbook exploring this exciting new subject. It was written during the special year 2012-2013 at the Institute for Advanced Study in Princeton as a collaborative effort by over 50 participants. The HoTT book opened up many new avenues of research, including general mathematics from a univalent point of view, (higher) group theory [4], synthetic homotopy theory [8], and modal homotopy type theory [10, 21].

It has now been 10 years since the HoTT book was published. Since the publication of the HoTT book, some important open problems have been solved. It was conjectured that homotopy type theory should be modeled by all higher toposes. Higher toposes are ∞ -categories in which the objects resemble homotopy types of spaces. The simplest ∞ -topos is the ∞ -category of simplicial sets, i.e., Voevodsky's model of univalence. The question whether all ∞ -toposes model Martin-Löf's dependent type theory with univalent universes was settled affirmatively by Michael Shulman in [23]. In other words, all theorems proven in Homotopy Type Theory are valid in all ∞ -toposes.

Another problem was whether it is possible to find a constructive model of univalence. In the simplicial model of type theory, Voevodsky used the axiom of choice to construct univalent universes. However, type theory is traditionally considered a foundation for constructive mathematics, so it was natural to ask whether it was possible to justify univalence constructively. This question was solved when Bezem, Coquand, and Huber found a model of dependent type theory and univalence in cubical sets [5, 6]. The cubical extension of the Agda proof assistant is based on this model. By the constructive interpretation of univalence in the cubical model it becomes possible to compute with the univalence axiom. Axel Ljungström has recently used cubical Agda to compute and formally verify that Brunerie's number [8], which is a number n such that $\pi_4(\mathbf{S}^3) \cong \mathbb{Z}/n$, is 2.

About this book

Type theory can be confusing for people who are new to the subject, since mathematical training traditionally focuses on sets, and the differences between set theory and type theory may appear to be rather subtle to the untrained eye. The book therefore starts with a chapter that focuses on Martin-Löf's dependent type theory, without going into homotopy theory. We first introduce the system of type dependency, gradually introduce all the type formers with their rules, and show how to get some basic mathematics off the ground in type theory.

In the second chapter we build the univalent foundation of mathematics. The central concepts of univalent mathematics are the notion of equivalence, contractibility, the hierarchy of truncation levels which includes propositions and sets, and eventually the univalence axiom. It should be noted that the univalence axiom can technically be introduced as soon as equivalences are defined, but this tends to be confusing rather than enlightening. For a good understanding of the univalence axiom, the student should have a good working knowledge of type theory, and in order to use univalence effectively they should be familiar with some of the subtleties in introducing mathematical concepts in univalent mathematics. I have three particular examples in mind: the definitions of the image of a map, surjectivity of a map, and finiteness of a type all require some type theoretical finesse. We cover those topics before we cover the univalence axiom, which will then also serve as a source of illustrative applications of the univalence axiom.

In the final chapter of the book we define the circle. The circle was the first example of a higher inductive type, and Shulman's proof using the univalence axiom of the fact that its fundamental group is \mathbb{Z} is a pure gem [17]. It led to the realization that the methods of algebraic topology equally apply to univalent type theory, and perhaps it is because of this proof that our subject is called *homotopy type theory*.

Each chapter is divided into sections that are roughly the length of one lecture, and at the end of each section there is a set of exercises. There is a total of 216 exercises in this book. These exercises are an essential part of the material, and they will be referred to throughout the text. We encourage the reader to read through them, and make sure that they understand what the exercises are asking. When you see an exercise referred to in the text, we hope

that you will feel encouraged to try it, or feel rewarded if you have already put in the hard work.

The more ambitious student may even try to formalize the solutions of some of the exercises in a computer proof assistant. Proof assistants provide an excellent way to become familiar with type theory, because they give instant feedback on your work. This book, including the solutions to most of its exercises, has also been formalized in the agda-unimath library [22]. For practice with formalization, especially the exercises in the first chapter on Martin-Löf's dependent type theory are all very suitable.

Martin-Löf's Dependent Type Theory

Dependent type theory is a formal system to organize all mathematical objects, structure, and knowledge. Dependent type theory is about types, or more generally dependent types, and their elements. There are many ways to think about type theory, types, and its elements. Types can be interpreted as sets, i.e., there is an interpretation of type theory into Zermelo-Fraenkel set theory, but there are some important differences between type theory and set theory, and the interpretation of types as sets has significant limitations. One of the differences is that in type theory, every element comes equipped with its type. We will write a:A for the judgment that a is an element of type A. This leads us to a second important difference between type theory and set theory. Set theory is axiomatized in the formal system of first order logic, whereas type theory is its own formal system. Types and their elements are constructed by following the rules of this formal system, and the only way to construct an element is to construct it as an element of a previously constructed type. The expression a:A is therefore not considered to be a proposition, i.e., something which one can assert about an arbitrary element and an arbitrary type, but it is considered to be a judgment, i.e., an assessment that is part of the construction of the element a:A.

In type theory there is a much stronger focus on equality of elements than there is in set theory. It is said that a type is not fully understood until (i) one understands how to construct an element of the type and (ii) one understands precisely how to show that two elements of the type are equal. Equality in type theory is governed by the identity type. Unlike in classical set theory, where equality is a decidable proposition of first order logic, the $type \ x = y$ of

identifications of two elements x, y: A is itself a type, and therefore it could possess intricate further structure.

Dependent type theory is built up in several stages. At the first stage we give structural rules, which express the general theory of type dependency. There is no ambient deductive system of first order logic in type theory. Type theory is its own deductive system, and the structural rules are at the heart of this system. The basic operations that are governed by the structural rules are substitution and weakening operations. After the general system of dependent type theory has been set up, we introduce the ways in which we can form types. The most fundamental class of types are dependent function types, or Π -types. They are used for practically everything. Next, we introduce the type of natural numbers, where we use type-dependency to formulate a type-theoretic version of the induction principle. By the type-theoretic nature of this induction principle, it can be used in two ways: it can be used to construct the many familiar operations on \mathbb{N} , such as addition and multiplication, and it can also be used to prove properties about those operations.

The next idea is that we can consider induction principles for many other types as well. This leads to the idea of more general inductive types. In Section 4 we introduce the unit type, the empty type, the booleans, coproducts, dependent pair types, and cartesian products. All of these are examples of inductive types, and their induction principles can be used to construct the basic operations on them, as well as to prove properties about those operations.

Then we come to the most characteristic ingredient of Martin Löf's dependent type theory: the identity type. The identity type $x =_A y$ is an example of a *dependent* type, because it is indexed by x, y : A, and it is inductively generated by the reflexivity element $\operatorname{refl}_x : x =_A x$. The catch is, however, that the identity type $x =_A y$ is just another type, and it could potentially have many different elements.

The last class of types that we introduce are universes. Universes are type families that are closed under the operations of type theory: Π -types, Σ -types, identity types, and so on. Universes play a fundamental role in the theory. One important reason for introducing universes is that they can be used to define type families over inductive types via their induction principles. For example, this allows us to define the ordering relations \leq and < on the

natural numbers. We will also use the universes to show the Peano axioms asserting that $succ_{\mathbb{N}}$ is injective, and that $0_{\mathbb{N}}$ is not a successor.

In the final two sections of this chapter, we start developing mathematics in type theory. In Section 7 we study the Curry-Howard interpretation, and use it to develop modular arithmetic in type theory. In Section 8 we study the concept of decidability, and use it to obtain basic theorems in elementary number theory, such as the well-ordering theorem, the construction of the greatest common divisor, and the infinitude of primes. Both of these sections can be viewed as tutorials in type theory, designed to give you some practical experience with type theory before diving into the intricacies of the univalent foundations of mathematics.

1 Dependent type theory

Dependent type theory is a system of inference rules that can be combined to make *derivations*. In these derivations, the goal is often to construct an element of a certain type. Such an element can be a function if the type of the constructed element is a function type; a proof of a property if the type of the constructed element is a proposition; but it can also be an identification if the type of the constructed element is an identity type, and so on. In some respect, a type is just a collection of mathematical objects and constructing elements of a type is the everyday mathematical task or challenge. The system of inference rules that we call type theory offers a principled way of engaging in mathematical activity.

1.1 Judgments and contexts in type theory

A mathematical argument or construction consists of a sequence of deductive steps, each one using finitely many premises in order to get to the next stage in the proof or construction. Such steps can be represented by **inference rules**, which are written in the form

$$\frac{\mathcal{H}_1 \quad \mathcal{H}_2 \quad \dots \quad \mathcal{H}_n}{C}$$

Inference rules contain above the horizontal line a finite list $\mathcal{H}_1, \mathcal{H}_2, \dots, \mathcal{H}_n$ of *judgments* for the **premises**, and below the horizontal line a single judgment

C for the **conclusion**. The system of dependent type theory is described by a set of such inference rules.

A straightforward example of an inference rule that we will encounter in Section 2 when we introduce function types, is the inference rule

$$\frac{\Gamma \vdash a : A \quad \Gamma \vdash f : A \to B}{\Gamma \vdash f(a) : B.}$$

This rule asserts that in any context Γ we may use an element a:A and a function $f:A\to B$ to obtain an element f(a):B. Each of the expressions

$$\Gamma \vdash a : A$$

$$\Gamma \vdash f : A \longrightarrow B$$

$$\Gamma \vdash f(a) : B$$

are examples of judgments.

Definition 1.1.1 There are four kinds of **judgments** in Martin-Löf's dependent type theory:

(i) A is a (well-formed) type in context Γ . We express this judgment as

$$\Gamma \vdash A$$
 type.

(ii) A and B are judgmentally equal types in context Γ . We express this judgment as

$$\Gamma \vdash A \doteq B \text{ type.}$$

(iii) a is an element of type A in context Γ . We express this judgment as

$$\Gamma \vdash a : A$$
.

(iv) a and b are **judgmentally equal elements** of type A in context Γ . We express this judgment as

$$\Gamma \vdash a \doteq b : A$$
.

We see that any judgment is of the form $\Gamma \vdash \mathcal{J}$, consisting of a *context* Γ and a *judgment thesis* \mathcal{J} asserting either that A is a type, that A and B are equal types, that a is an element of type A, or that a and b are equal elements of type A. The role of a context is to declare what **hypothetical elements** are assumed, along with their types. Hypothetical elements are commonly called **variables**.

Definition 1.1.2 A **context** is a finite list of **variable declarations**

$$x_1: A_1, x_2: A_2(x_1), \ldots, x_n: A_n(x_1, \ldots, x_{n-1})$$
 (1.1.1)

satisfying the condition that for each $1 \le k \le n$ we can derive the judgment

$$x_1: A_1, \ldots, x_{k-1}: A_{k-1}(x_1, \ldots, x_{k-2}) \vdash A_k(x_1, \ldots, x_{k-1})$$
 type,

using the inference rules of type theory. We may use variable names other than x_1, \ldots, x_n , as long as no variable is declared more than once.

The condition in Definition 1.1.2 that each of the hypothetical elements is assigned a type, is checked recursively. In other words, to check that a list of variable declarations as in Eq. (1.1.1) is a context, one starts on the left and works their way to the right, verifying that each hypothetical elements x_k is assigned a type.

Note that there is a context of length 0, the **empty context**, which declares no variables. This context satisfies the requirement in Definition 1.1.2 vacuously. A list of variable declarations $x_1 : A_1$ of length one is a context if and only if A_1 is a type in the empty context. We will soon encounter the type $\mathbb N$ of natural numbers, which is an example of a type in the empty context.

The next case is that a list of variable declarations $x_1 : A_1$, $x_2 : A_2(x_1)$ of length two is a context if and only if A_1 is a type in the empty context, and $A_2(x_1)$ is a type in context $x_1 : A_1$. This process repeats itself for longer contexts.

1.2 Type families

It is a feature of *dependent* type theory that all judgments are context dependent, and indeed that even the types of the variables in a context may depend on any previously declared variables. For example, if n is a natural number and we know from the context that n is prime, then we don't have enough information yet to decide whether or not n is odd. However, if we also know from the context that n+2 is prime, then we can derive that n must be odd. Context dependency is everywhere – not only in mathematics, but also in language and in everyday life – and it gives rise to the notion of *type families* and their *sections*.

Definition 1.2.1 Consider a type A in context Γ . A **family** of types over A in

context Γ is a type B(x) in context Γ , x:A. In other words, in the situation where

$$\Gamma$$
, $x : A \vdash B(x)$ type,

we say that B is a family of types over A in context Γ . Alternatively, we say that B(x) is a type **indexed** by x : A, in context Γ .

We think of a type family B over A in context Γ as a type B(x) varying along x:A. A basic example of a type family occurs when we introduce *identity types* in Section 5. They are introduced as follows:

$$\frac{\Gamma \vdash a : A}{\Gamma, \ x : A \vdash a = x \text{ type.}}$$

This rule asserts that given an element a:A in context Γ , we may form the type a=x in context Γ , x:A. The type a=x in context Γ , x:A is an example of a type family over A in context Γ .

Definition 1.2.2 Consider a type family *B* over *A* in context Γ. A **section** of the family *B* over *A* in context Γ is an element of type B(x) in context Γ, x : A, i.e., in the judgment

$$\Gamma$$
, $x : A \vdash b(x) : B(x)$

we say that b is a section of the family B over A in context Γ . Alternatively, we say that b(x) is an element of type B(x) **indexed** by x: A in context Γ .

Note that in the above situations A, B, and b also depend on the variables declared in the context Γ , even though we have not explicitly mentioned them. It is indeed common practice to not mention every variable in the context Γ in such situations.

1.3 Inference rules

We are now ready to present the system of inference rules that underlies dependent type theory. These rules are known as the **structural rules** of type theory, since they establish the basic mathematical framework for type dependency. There are six sets of inference rules:

- (i) Rules about the formation of contexts, types, and their elements
- (ii) Rules postulating that judgmental equality is an equivalence relation.
- (iii) Variable conversion rules.

- (iv) Substitution rules.
- (v) Weakening rules.
- (vi) The generic element.

Rules about the formation of contexts, types, and their elements

In the definition of well-formed contexts, types, and elements we specified that for a type B(x) to be well-formed in context Γ , x: A, it must be the case that A is a well-formed type in context Γ . The following rules follow from the presuppositions about contexts, types, and their elements, and may be used freely in derivations:

$$\frac{\Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash A \text{ type}} \qquad \frac{\Gamma \vdash A \stackrel{.}{=} B \text{ type}}{\Gamma \vdash A \text{ type}} \qquad \frac{\Gamma \vdash A \stackrel{.}{=} B \text{ type}}{\Gamma \vdash B \text{ type}}$$

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash A \text{ type}} \qquad \frac{\Gamma \vdash a \stackrel{.}{=} b : A}{\Gamma \vdash a : A} \qquad \frac{\Gamma \vdash a \stackrel{.}{=} b : A}{\Gamma \vdash b : A}$$

Judgmental equality is an equivalence relation

The rules postulating that judgmental equality on types and on elements is an equivalence relation simply postulate that these relations are reflexive, symmetric, and transitive:

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash A \doteq A \text{ type}} \qquad \frac{\Gamma \vdash A \doteq B \text{ type}}{\Gamma \vdash B \doteq A \text{ type}} \qquad \frac{\Gamma \vdash A \doteq B \text{ type}}{\Gamma \vdash A \doteq C \text{ type}}$$

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash a \doteq a : A} \qquad \frac{\Gamma \vdash a \doteq b : A}{\Gamma \vdash b \doteq a : A} \qquad \frac{\Gamma \vdash a \doteq b : A}{\Gamma \vdash a \doteq c : A}$$

Variable conversion rules

The **variable conversion rules** are rules postulating that we can convert the type of a variable to a judgmentally equal type. The first variable conversion rule states that

$$\frac{\Gamma \vdash A \doteq A' \text{ type} \quad \Gamma, \ x : A, \ \Delta \vdash B(x) \text{ type}}{\Gamma, \ x : A', \ \Delta \vdash B(x) \text{ type}}$$

In this conversion rule, the context Γ , x:A, Δ is just any extension of the context Γ , x:A, i.e., it is a context of the form

$$x_1: A_1, \ldots, x_{n-1}: A_{n-1}, x: A, x_{n+1}: A_{n+1}, \ldots, x_{n+m}: A_{n+m}.$$

Similarly, there are variable conversion rules for judgmental equality

of types, for elements, and for judgmental equality of elements. To avoid having to state essentially the same rule four times, we state all four variable conversion rules at once using a *generic judgment thesis* \mathcal{J} , which can be any of the four kinds described in Definition 1.1.1:

$$\frac{\Gamma \vdash A \doteq A' \text{ type} \quad \Gamma, \ x : A, \ \Delta \vdash \mathcal{J}}{\Gamma, \ x : A', \ \Delta \vdash \mathcal{J}}.$$

An analogous *element conversion rule*, stated in Exercise 1.1, converting the type of an element to a judgmentally equal type, is derivable using the rules from the rules presented in this section.

Substitution

Consider an element f(x): B(x) indexed by x: A in context Γ , and suppose we also have an element a: A. Then we can simultaneously substitute a for all occurrences of x in f(x) to obtain a new element f[a/x], which has type B[a/x]. A precise definition of substitution requires us to get too deep into the theory of the syntax of type theory, but a mathematician is of course no stranger to substitution. For example, substituting 0 for x in the polynomial

$$1 + x + x^2 + x^3$$

results in the number $1 + 0 + 0^2 + 0^3$, which can be computed to the value 1. Type theoretic substitution is similar. Type theoretic substitution is in fact a bit more general than what we have described above. Suppose we have a type

$$\Gamma$$
, $x : A$, $y_1 : B_1$, ..., $y_n : B_n \vdash C$ type

and an element a: A in context Γ . Then we can simultaneously substitute a for all occurrences of x in the types B_1, \ldots, B_n and C, to obtain

$$\Gamma$$
, $y_1 : B_1[a/x], \ldots, y_n : B_n[a/x] + C[a/x]$ type.

Note that the variables y_1, \ldots, y_n are assigned new types after performing the substitution of a for x. Similarly, we can substitute a for x in an element c : C to obtain the element c[a/x] : C[a/x], and we can substitute a for x in a judgmental equality thesis, either of types or elements, by simply substituting on both sides of the equation. The **substitution rule** are therefore stated using a generic judgment \mathcal{J} :

$$\frac{\Gamma \vdash a : A \quad \Gamma, \ x : A, \ \Delta \vdash \mathcal{J}}{\Gamma, \ \Delta[a/x] \vdash \mathcal{J}[a/x]} \ S.$$

Furthermore, we add two more 'congruence rules' for substitution, postulating that substitution by judgmentally equal elements results in judgmentally equal types and elements:

$$\frac{\Gamma \vdash a \doteq a' : A \quad \Gamma, \ x : A, \ \Delta \vdash B \text{ type}}{\Gamma, \ \Delta[a/x] \vdash B[a/x] \doteq B[a'/x] \text{ type}}$$

$$\frac{\Gamma \vdash a \doteq a' : A \quad \Gamma, \ x : A, \ \Delta \vdash b : B}{\Gamma, \ \Delta[a/x] \vdash b[a/x] \doteq b[a'/x] : B[a/x].}$$

To see that these rules make sense, we observe that both B[a/x] and B[a'/x] are types in context $\Delta[a/x]$, provided that $a \doteq a'$. This is immediate by recursion on the length of Δ .

Definition 1.3.1 When *B* is a family of types over *A* in context Γ, and if we have a : A, then we also say that B[a/x] is the **fiber** of *B* at *a*. We will usually write B(a) for the fiber of *B* at *a*.

When b is a section of the family B over A in context Γ , we call the element b[a/x] the **value** of b at a. Again, we will usually write b(a) for the value of b at a.

Weakening

If we are given a type A in context Γ , then any judgment made in a longer context Γ , Δ can also be made in the context Γ , x:A, Δ , for a fresh variable x. The **weakening rule** asserts that weakening by a type A in context preserves well-formedness and judgmental equality of types and elements.

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma, \ \Delta \vdash \mathcal{J}}{\Gamma, \ x : A, \ \Delta \vdash \mathcal{J}} \ W.$$

This process of expanding the context by a fresh variable of type *A* is called **weakening** (by *A*).

In the simplest situation where weakening applies, we have two types A and B in context Γ . Then we can weaken B by A as follows

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma, \ x : A \vdash B \text{ type}} W$$

in order to form the type B in context Γ , x : A. The type B in context Γ , x : A is called the **constant family** B, or the **trivial family** B.

The generic elements

If we are given a type A in context Γ , then we can weaken A by itself to obtain that A is a type in context Γ , x:A. The rule for the **generic element** now asserts that any hypothetical element x:A in the context Γ , x:A is also an element of type A in context Γ , x:A.

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma, \ x : A \vdash x : A} \ \delta.$$

This rule is also known as the **variable rule**. One of the reasons for including the generic element is to make sure that the variables declared in a context—i.e., the hypothetical elements—are indeed *elements*. It also provides the *identity function* on the type A in context Γ .

1.4 Derivations

A **derivation** in type theory is a finite tree in which each node is a valid rule of inference. At the root of the tree we find the conclusion, and in the leaves of the tree we find the hypotheses. We give two examples of derivations: a derivation showing that any variable can be changed to a fresh one, and a derivation showing that any two variables that do not mutually depend on one another can be swapped in order.

Given a derivation with hypotheses $\mathcal{H}_1, \dots, \mathcal{H}_n$ and conclusion C, we can form a new inference rule

$$\frac{\mathcal{H}_1 \quad \cdots \quad \mathcal{H}_n}{C}$$

Such a rule is called **derivable**, because we have a derivation for it. In order to keep proof trees reasonably short and manageable, we use the convention that any derived rules can be used in future derivations.

Changing variables

Variables can always be changed to fresh variables. We show that this is the case by showing that the inference rule

$$\frac{\Gamma,\;x:A,\;\Delta\vdash\mathcal{J}}{\Gamma,\;x':A,\;\Delta[x'/x]\vdash\mathcal{J}[x'/x]}\;x'/x$$

is derivable, where x' is a variable that does not occur in the context Γ , x:A, Δ . Indeed, we have the following derivation using substitution, weakening, and the generic element:

$$\frac{\frac{\Gamma \vdash A \text{ type}}{\Gamma, \ x' : A \vdash x' : A} \ \delta \quad \frac{\Gamma \vdash A \text{ type} \quad \Gamma, \ x : A, \ \Delta \vdash \mathcal{J}}{\Gamma, \ x' : A, \ \Delta [x'/x] \vdash \mathcal{J}[x'/x]} \ \mathcal{S}.}{\Psi}$$

In this derivation it is the application of the weakening rule where we have to check that x' does not occur in the context Γ , x : A, Δ .

Interchanging variables

The **interchange rule** states that if we have two types A and B in context Γ , and we make a judgment in context Γ , x : A, y : B, Δ , then we can make that same judgment in context Γ , y : B, x : A, Δ where the order of x : A and y : B is swapped. More formally, the interchange rule is the following inference rule

$$\frac{\Gamma \vdash B \text{ type} \quad \Gamma, \ x : A, \ y : B, \ \Delta \vdash \mathcal{J}}{\Gamma, \ y : B, \ x : A, \ \Delta \vdash \mathcal{J}}.$$

Just as the rule for changing variables, we claim that the interchange rule is a derivable rule.

The idea of the derivation for the interchange rule is as follows: If we have a judgment

$$\Gamma$$
, $x : A$, $y : B$, $\Delta \vdash \mathcal{J}$,

then we can change the variable y to a fresh variable y' and weaken the judgment to obtain the judgment

$$\Gamma$$
, $y : B$, $x : A$, $y' : B$, $\Delta[y'/y] \vdash \mathcal{J}[y'/y]$.

Now we can substitute y for y' to obtain the desired judgment Γ , y : B, x : A, $\Delta \vdash \mathcal{J}$. The formal derivation is as follows:

$$\frac{\Gamma \vdash B \text{ type}}{\Gamma, \ y : B \vdash y : B} \qquad \frac{\Gamma, \ x : A, \ y : B, \ \Delta \vdash \mathcal{J}}{\Gamma, \ x : A, \ y : B, \ \Delta[y'/y] \vdash \mathcal{J}[y'/y]}$$

$$\frac{\Gamma, \ y : B, \ x : A \vdash y : B}{\Gamma, \ y : B, \ x : A, \ \Delta \vdash \mathcal{J}} \qquad \Gamma, \ y : B, \ x : A, \ \Delta \vdash \mathcal{J}$$

Exercises

1.1 (a) Give a derivation for the following **element conversion rule**:

$$\frac{\Gamma \vdash A \doteq A' \text{ type} \quad \Gamma \vdash a : A}{\Gamma \vdash a : A'}$$

(b) Give a derivation for the following **congruence rule** for element conversion:

$$\frac{\Gamma \vdash A \doteq A' \text{ type} \quad \Gamma \vdash a \doteq b : A}{\Gamma \vdash a \doteq b : A'}.$$

2 Dependent function types

A fundamental concept of dependent type theory is that of a dependent function. A dependent function is a function of which the type of the output may depend on the input. For example, when we concatenate a vector of length m with a vector of length n, we obtain a vector of length m+n. Dependent functions are a generalization of ordinary functions, because an ordinary function $f:A\to B$ is a function of which the output f(x) has type B regardless of the value of x.

2.1 The rules for dependent function types

Consider a section b of a family B over A in context Γ , i.e., consider

$$\Gamma$$
, $x : A \vdash b(x) : B(x)$.

From one point of view, such a section b is an operation or assignment $x \mapsto b(x)$, or a program, that takes as input x : A and produces a term b(x) : B(x). From a more mathematical point of view we see b as a choice of an element of each B(x). In other words, we may see b as a function that takes x : A to b(x) : B(x). Note that the type B(x) of the output may depend on x : A. The assignment $x \mapsto b(x)$ is in this sense a *dependent* function. The type of all such dependent functions is called the **dependent function type**, and we will write

$$\prod_{(x:A)} B(x)$$

for the type of dependent functions. There are four principal rules for Π -types:

- (i) The *formation rule*, which tells us how we may form dependent function types.
- (ii) The *introduction rule*, which tells us how to introduce new terms of dependent function types.

- (iii) The *elimination rule*, which tells us how to use arbitrary terms of dependent function types.
- (iv) The computation rules, which tell us how the introduction and elimination rules interact. These computation rules guarantee that every term of a dependent function type is indeed a dependent function taking the values by which it is defined.

In the cases of the formation rule, the introduction rule, and the elimination rule, we also need rules that assert that all the constructions respect judgmental equality. Those rules are called **congruence rules**, and they are part of the specification of dependent function types.

The Π -formation rule

The Π-**formation rule** tells us how Π-types are constructed. The idea of Π-types is that $\prod_{(x:A)} B(x)$ is a type of **dependent functions**, for any type family B of types over A, so the Π-formation rule is as follows:

$$\frac{\Gamma, x : A \vdash B(x) \text{ type}}{\Gamma \vdash \prod_{(x:A)} B(x) \text{ type}} \Pi.$$

This rule simply states that in order to form the type $\prod_{(x:A)} B(x)$ in context Γ , we must have a type family B over A in context Γ .

We also require that the operation of forming dependent function types respects judgmental equality. This is postulated in the **congruence rule** for Π -types:

$$\frac{\Gamma \vdash A \doteq A' \text{ type} \quad \Gamma, x : A \vdash B(x) \doteq B'(x) \text{ type}}{\Gamma \vdash \prod_{(x:A)} B(x) \doteq \prod_{(x:A')} B'(x) \text{ type}} \Pi\text{-eq}.$$

The Π -introduction rule

The introduction rule for dependent functions tells us how we may construct dependent functions of type $\prod_{(x:A)} B(x)$. The idea is that a dependent function $f:\prod_{(x:A)} B(x)$ is an operation that takes an x:A to f(x):B(x). Hence the introduction rule of dependent functions postulates that, in order to construct a dependent function one has to construct a term b(x):B(x) indexed by x:A in context Γ , i.e.:

$$\frac{\Gamma, x : A \vdash b(x) : B(x)}{\Gamma \vdash \lambda x. \, b(x) : \prod_{(x:A)} B(x)} \, \lambda.$$

This introduction rule for dependent functions is also called the λ -abstraction rule, and we also say that the λ -abstraction λx . b(x) binds the variable x in b. Just like ordinary mathematicians, we will sometimes write $x \mapsto b(x)$ for a function λx . b(x). The map $n \mapsto n^2$ is an example.

We will also require that λ -abstraction respects judgmental equality. Therefore we postulate the **congruence rule** for λ -abstraction, which asserts that

$$\frac{\Gamma, x : A \vdash b(x) \doteq b'(x) : B(x)}{\Gamma \vdash \lambda x. \, b(x) \doteq \lambda x. \, b'(x) : \prod_{(x:A)} B(x)} \lambda \text{-eq.}$$

The Π -elimination rule

The elimination rule for dependent function types provides us with a way to use dependent functions. The way to use a dependent function is to evaluate it at an argument of the domain type. The Π -elimination rule is therefore also called the **evaluation rule**:

$$\frac{\Gamma \vdash f: \prod_{(x:A)} B(x)}{\Gamma, x: A \vdash f(x): B(x)} \ ev.$$

This rule asserts that given a dependent function $f: \prod_{(x:A)} B(x)$ in context Γ we obtain a term f(x) of type B(x) indexed by x:A in context Γ . Again we require that evaluation respects judgmental equality:

$$\frac{\Gamma \vdash f \doteq f' : \prod_{(x:A)} B(x)}{\Gamma, x : A \vdash f(x) \doteq f'(x) : B(x)} \, ev\text{-eq}.$$

The Π -computation rules

We now postulate rules that specify the behavior of functions. First, we have a rule that asserts that a function of the form λx . b(x) behaves as expected: when we evaluate it at x:A, then we obtain the value b(x):B(x). This rule is called the β -rule

$$\frac{\Gamma, x : A \vdash b(x) : B(x)}{\Gamma, x : A \vdash (\lambda y. b(y))(x) \doteq b(x) : B(x)} \beta.$$

Second, we postulate a rule that asserts that all elements of a Π -type are (dependent) functions. This rule is known as the η -rule

$$\frac{\Gamma \vdash f : \prod_{(x:A)} B(x)}{\Gamma \vdash \lambda x. f(x) \doteq f : \prod_{(x:A)} B(x)} \eta.$$

In other words, the computation rules (β and η) for dependent function types postulate that λ -abstraction rule and the evaluation rule are mutual inverses. This completes the specification of dependent function types.

2.2 Ordinary function types

An important special case of Π -types arises when both A and B are types in context Γ . In this case, we can first weaken B by A and then apply the Π -formation rule to obtain the type $A \to B$ of *ordinary* functions from A to B, as in the following derivation:

$$\frac{\Gamma \vdash A \text{ type} \qquad \Gamma \vdash B \text{ type}}{\frac{\Gamma, x : A \vdash B \text{ type}}{\Gamma \vdash \prod_{(x:A)} B \text{ type}}} \Pi$$

A term $f: \prod_{(x:A)} B$ is a function that takes an argument x:A and returns f(x):B. In other words, terms of type $\prod_{(x:A)} B$ are indeed ordinary functions from A to B. Therefore, we define the type $A \to B$ of **(ordinary) functions** from A to B by

$$A \to B := \prod_{(x:A)} B$$
.

If $f : A \to B$ is a function, then the type A is also called the **domain** of f, and the type B is also called the **codomain** of f.

Sometimes we will also write B^A for the type $A \to B$. Formally, we make such definitions by adding one more line to the above derivation:

$$\frac{\Gamma \vdash A \text{ type} \qquad \Gamma \vdash B \text{ type}}{\frac{\Gamma, x : A \vdash B \text{ type}}{\Gamma \vdash \prod_{(x:A)} B \text{ type}} \Pi} W$$
$$\frac{\Gamma \vdash A \to B := \prod_{(x:A)} B \text{ type}}{\Gamma \vdash A \to B := \prod_{(x:A)} B \text{ type}}.$$

Remark 2.2.1 More generally, we can make definitions at the end of a derivation if the conclusion is a certain type in context, or if the conclusion is a certain term of a type in context. Suppose, for instance, that we have a derivation

$$\frac{\mathcal{D}}{\Gamma \vdash a : A,}$$

in which the derivation \mathcal{D} makes use of the premises $\mathcal{H}_1, \ldots, \mathcal{H}_n$. If we wish to make a definition $\mathbf{c} := a$, then we can extend the derivation tree with

$$\frac{\mathcal{D}}{\Gamma \vdash a : A}$$
$$\Gamma \vdash \mathbf{c} := a : A.$$

The effect of such a definition is that we have extended our type theory with a new constant c, for which the following inference rules are valid

$$\frac{\mathcal{H}_1 \quad \mathcal{H}_2 \quad \dots \quad \mathcal{H}_n}{\Gamma \vdash \mathbf{c} : A} \qquad \qquad \frac{\mathcal{H}_1 \quad \mathcal{H}_2 \quad \dots \quad \mathcal{H}_n}{\Gamma \vdash \mathbf{c} \doteq a : A}$$

In our example of the definition of the ordinary function type $A \rightarrow B$, we therefore have by definition the following valid inference rules

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \to B \text{ type}} \qquad \frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \to B \doteq \prod_{(x:A)} B \text{ type}}.$$

There are of course many such definitions throughout the development of dependent type theory, the univalent foundations of mathematics, and synthetic homotopy theory. They are all included in the index at the end of this book.

Remark 2.2.2 By the term conversion rules of Exercise 1.1 we can now use the rules for λ -abstraction, evaluation, and so on, to obtain corresponding rules for the ordinary function type $A \to B$. We give a brief summary of these rules, omitting the congruence rules.

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \to B \text{ type}} \to$$

$$\frac{\Gamma \vdash B \text{ type} \quad \Gamma, x : A \vdash b(x) : B}{\Gamma \vdash \lambda x . b(x) : A \to B} \lambda \qquad \frac{\Gamma \vdash f : A \to B}{\Gamma, x : A \vdash f(x) : B} ev$$

$$\frac{\Gamma \vdash B \text{ type} \quad \Gamma, x : A \vdash b(x) : B}{\Gamma, x : A \vdash (\lambda y . b(y))(x) \doteq b(x) : B} \beta \qquad \frac{\Gamma \vdash f : A \to B}{\Gamma \vdash \lambda x . f(x) \doteq f : A \to B} \eta$$

Now we can use these rules to construct some familiar functions, such as the identity function $id : A \to A$ on an arbitrary type A, and the composition $g \circ f : A \to C$ of any two functions $f : A \to B$ and $g : B \to C$.

Definition 2.2.3 For any type *A* in context Γ, we define the **identity function** $id_A : A \rightarrow A$ using the generic term:

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma, x : A \vdash x : A}$$

$$\frac{\Gamma \vdash \lambda x. x : A \to A}{\Gamma \vdash \text{id}_A := \lambda x. x : A \to A}$$

The identity function therefore satisfies the following inference rules:

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \text{id}_A : A \to A} \qquad \frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash \text{id}_A \doteq \lambda x. \ x : A \to A.}$$

Next, we define the composition of functions. We will introduce the composition operation itself as a function comp that takes two arguments: the first argument is a function $g: B \to C$, and the second argument is a function $f: A \to B$. The output is a function $comp(g, f): A \to C$, for which we often write $g \circ f$.

Remark 2.2.4 Since composition is a function that takes multiple arguments, we need to know how to represent such functions. Types of functions with multiple arguments can be formed by iterating the Π -formation rule or the \rightarrow -formation rule. For example, a function

$$f: A \to (B \to C)$$

takes two arguments: first it takes an argument x : A, and the output f(x) has type $B \to C$. This is again a function type, so f(x) is a function that takes an argument y : B, and its output f(x)(y) has type C. We will usually write f(x,y) for f(x)(y).

Similarly, when C(x, y) is a family of types indexed by x : A and y : B(x), then we can form the dependent function type $\prod_{(x:A)} \prod_{(y:B(x))} C(x, y)$. In the special case where C(x, y) is a family of types indexed by two elements x, y : A of the same type, then we often write

$$\prod_{(x,y:A)} C(x,y)$$

for the type $\prod_{(x:A)} \prod_{(y:A)} C(x, y)$.

With the idea of iterating function types, we see that type of the composition operation comp is

$$(B \to C) \to ((A \to B) \to (A \to C)).$$

It is the type of functions, taking a function $g : B \to C$, to the type of functions $(A \to B) \to (A \to C)$. Thus, $\mathsf{comp}(g)$ is again a function, mapping a function $f : A \to B$ to a function of type $A \to C$.

Definition 2.2.5 For any three types *A*, *B*, and *C* in context Γ, there is a **composition** operation

$$\mathsf{comp}: (B \to C) \to ((A \to B) \to (A \to C)).$$

We will usually write $g \circ f$ for comp(g, f).

Construction The idea of the definition is to define comp(g, f) to be the function λx . g(f(x)). The function comp is therefore defined as

comp :=
$$\lambda g. \lambda f. \lambda x. g(f(x)).$$

The derivation we use to construct comp is as follows:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma, f : B^A, x : A \vdash f(x) : B} \text{ (a)} \qquad \frac{\frac{\Gamma \vdash B \text{ type} \quad \Gamma \vdash C \text{ type}}{\Gamma, g : C^B, g : B^A, y : B \vdash g(y) : C}}{\frac{\Gamma, g : C^B, f : B^A, x : A \vdash f(x) : B}{\Gamma, g : C^B, f : B^A, x : A, y : B \vdash g(y) : C}}{\frac{\Gamma, g : C^B, f : B^A, x : A \vdash g(f(x)) : C}{\Gamma, g : C^B, f : B^A \vdash \lambda x . g(f(x)) : C^A}}{\frac{\Gamma, g : B \to C \vdash \lambda f . \lambda x . g(f(x)) : B^A \to C^A}{\Gamma \vdash \lambda g . \lambda f . \lambda x . g(f(x)) : C^B \to (B^A \to C^A)}}{\Gamma \vdash \text{comp} := \lambda g . \lambda f . \lambda x . g(f(x)) : C^B \to (B^A \to C^A)}}$$

Note, however, that we haven't derived the rules (a) and (b) yet. These rules assert that the *generic functions* of $A \to B$ and $B \to C$ can also be evaluated. The formal derivation of this fact is as follows:

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type}}{\Gamma \vdash A \to B \text{ type}}$$

$$\frac{\Gamma, f : A \to B \vdash f : A \to B}{\Gamma, f : A \to B, x : A \vdash f(x) : B.}$$

This completes the construction of comp.

In the remainder of this section we will see how to use the given rules for function types to derive the laws of a category for functions. These are the laws that assert that function composition is associative and that the identity function satisfies the unit laws.

Lemma 2.2.6 Composition of functions is associative, i.e., we can derive

$$\frac{\Gamma \vdash f : A \to B \quad \Gamma \vdash g : B \to C \quad \Gamma \vdash h : C \to D}{\Gamma \vdash (h \circ g) \circ f \doteq h \circ (g \circ f) : A \to D.}$$

Proof The main idea of the proof is that both $((h \circ g) \circ f)(x)$ and $(h \circ (g \circ f))(x)$ evaluate to h(g(f(x))), and therefore $(h \circ g) \circ f$ and $h \circ (g \circ f)$ must be judgmentally equal. This idea is made formal in the following derivation:

$$\frac{\Gamma \vdash g : B \to C}{\Gamma, x : A \vdash f(x) : B} = \frac{\Gamma \vdash g : B \to C}{\Gamma, y : B \vdash g(y) : C} = \frac{\Gamma \vdash h : C \to D}{\Gamma, x : A, y : B \vdash g(y) : C}$$

$$\frac{\Gamma, x : A \vdash g(f(x)) : C}{\Gamma, x : A \vdash g(f(x)) : C} = \frac{\Gamma \vdash h : C \to D}{\Gamma, x : A, z : C \vdash h(z) : D}$$

$$\frac{\Gamma, x : A \vdash h(g(f(x))) : D}{\Gamma, x : A \vdash h(g(f(x))) : b}$$

$$\frac{\Gamma, x : A \vdash h(g(f(x))) : D}{\Gamma, x : A \vdash (h \circ g)(f(x)) : b}$$

$$\frac{\Gamma, x : A \vdash ((h \circ g) \circ f)(x) : h((g \circ f)(x)) : D}{\Gamma, x : A \vdash ((h \circ g) \circ f)(x) : b}$$

$$\frac{\Gamma, x : A \vdash ((h \circ g) \circ f)(x) : h((g \circ f))(x) : D}{\Gamma, x : A \vdash ((h \circ g) \circ f)(x) : D}$$

Lemma 2.2.7 Composition of functions satisfies the left and right unit laws, i.e., we can derive

$$\frac{\Gamma \vdash f : A \to B}{\Gamma \vdash \operatorname{id}_B \circ f \doteq f : A \to B}$$

and

$$\frac{\Gamma \vdash f : A \to B}{\Gamma \vdash f \circ \operatorname{id}_A \doteq f : A \to B.}$$

Proof Note that it suffices to derive that id(f(x)) = f(x) in context Γ , x : A, because once we derived this equality we can finish the derivation with

$$\frac{\vdots}{\Gamma, x: A \vdash \operatorname{id}(f(x)) \doteq f(x): B}}{\frac{\Gamma \vdash \lambda x. \operatorname{id}(f(x)) \doteq \lambda x. f(x): A \to B}{\Gamma \vdash \operatorname{id} \circ f \doteq f: A \to B}} \frac{\Gamma \vdash f: A \to B}{\Gamma \vdash \lambda x. f(x) \doteq f: A \to B}$$

The derivation of the equality id(f(x)) = f(x) in context Γ , x : A is as follows:

$$\frac{\Gamma \vdash f : A \to B}{\Gamma, x : A \vdash f(x) : B} \qquad \frac{\Gamma \vdash B \text{ type}}{\Gamma, y : B \vdash \text{id}(y) \stackrel{.}{=} y : B}$$

$$\frac{\Gamma, x : A \vdash f(x) : B}{\Gamma, x : A, y : B \vdash \text{id}(y) \stackrel{.}{=} y : B}$$

$$\frac{\Gamma, x : A \vdash \text{id}(f(x)) \stackrel{.}{=} f(x) : B}{\Gamma, x : A, y : B \vdash \text{id}(y) \stackrel{.}{=} y : B}$$

Exercises

2.1 The η -rule is often seen as a judgmental extensionality principle. Use the η -rule to show that if f and g take equal values, then they must be equal, i.e., give a derivation for the rule

$$\Gamma \vdash f : \prod_{(x:A)} B(x)$$

$$\Gamma \vdash g : \prod_{(x:A)} B(x)$$

$$\Gamma, x : A \vdash f(x) \doteq g(x) : B(x)$$

$$\Gamma \vdash f \doteq g : \prod_{(x:A)} B(x).$$

- 2.2 Give a derivation for the right unit law of Lemma 2.2.7.
- 2.3 (a) Construct the **constant map**

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma, y : B \vdash \mathsf{const}_{y} : A \to B.}$$

(b) Show that

$$\frac{\Gamma \vdash f : A \to B}{\Gamma, z : C \vdash \mathsf{const}_z \circ f \doteq \mathsf{const}_z : A \to C.}$$

(c) Show that

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash g : B \to C}{\Gamma, y : B \vdash g \circ \text{const}_y \doteq \text{const}_{g(y)} : A \to C.}$$

2.4 (a) Define the **swap function**

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type} \quad \Gamma, x : A, y : B \vdash C(x, y) \text{ type}}{\Gamma \vdash \sigma : \left(\prod_{(x:A)} \prod_{(y:B)} C(x, y)\right) \rightarrow \left(\prod_{(y:B)} \prod_{(x:A)} C(x, y)\right)}$$

that swaps the order of the arguments.

(b) Show that

$$\frac{\Gamma \vdash A \text{ type} \quad \Gamma \vdash B \text{ type} \quad \Gamma, x : A, y : B \vdash C(x, y) \text{ type}}{\Gamma \vdash \sigma \circ \sigma \doteq \text{id} : \Big(\prod_{(x:A)} \prod_{(y:B)} C(x, y)\Big) \rightarrow \Big(\prod_{(x:A)} \prod_{(y:B)} C(x, y)\Big).}$$

3 The natural numbers

The set of natural numbers is the most important object in mathematics. We quote Bishop, from his Constructivist Manifesto, the first chapter in Foundations of Constructive Analysis [7], where he gives a colorful illustration of its importance to mathematics.

"The primary concern of mathematics is number, and this means the positive integers. We feel about number the way Kant felt about space. The positive integers and their arithmetic are presupposed by the very nature of our intelligence and, we are tempted to believe, by the very nature of intelligence in general. The development of the theory of the positive integers from the primitive concept of the unit, the concept of adjoining a unit, and the process of mathematical induction carries complete conviction. In the words of Kronecker, the positive integers were created by God. Kronecker would have expressed it even better if he had said that the positive integers were created by God for the benefit of man (and other finite beings). Mathematics belongs to man, not to God. We are not interested in properties of the positive integers that have no descriptive meaning for finite man. When a man proves a positive integer to exist, he should show how to find it. If God has mathematics of his own that needs to be done, let him do it himself."

A bit later in the same chapter, he continues:

"Building on the positive integers, weaving a web of ever more sets and ever more functions, we get the basic structures of mathematics: the rational number system, the real number system, the euclidean spaces, the complex number system, the algebraic number fields, Hilbert space, the classical groups, and so forth. Within the framework of these structures, most mathematics is done. Everything attaches itself to number, and every mathematical statement ultimately expresses the fact that if we perform certain computations within the set of positive integers, we shall get certain results."

3.1 The formal specification of the type of natural numbers

The type \mathbb{N} of **natural numbers** is the archetypal example of an inductive type. The rules we postulate for the type of natural numbers come in four sets, just as the rules for Π -types:

- (i) The formation rule, which asserts that the type $\mathbb N$ can be formed.
- (ii) The introduction rules, which provide the zero element 0_N and the successor function $succ_N$.
- (iii) The elimination rule. This rule is the type theoretic version of the induction principle for \mathbb{N} .

(iv) The computation rules, which assert that any application of the elimination rule behaves as expected on the constructors $0_{\mathbb{N}}$ and $\mathsf{succ}_{\mathbb{N}}$ of \mathbb{N} .

The formation rule of \mathbb{N}

The type $\mathbb N$ is formed by the $\mathbb N$ -formation rule

$$\overline{\vdash \mathbb{N} \text{ type}} \mathbb{N}\text{-form}.$$

In other words, \mathbb{N} is postulated to be a type in the empty context.

The introduction rules of \mathbb{N}

Unlike the set of positive integers in Bishop's remarks, Peano's first axiom postulates that 0 is a natural number. The introduction rules for \mathbb{N} equip it with the **zero element** and the **successor function**.

Remark 3.1.1 Every element in type theory always comes equipped with its type. Therefore it is possible in type theory that all elements have a *unique* type. In general, it is therefore good practice to make sure that every element is given a unique name, and in formalized mathematics in computer proof assistants this is even required. For example, the element $0_{\mathbb{N}}$ has type \mathbb{N} , and it is not also a type of \mathbb{Z} . This is why we annotate the terms $0_{\mathbb{N}}$ and $\operatorname{succ}_{\mathbb{N}}$ with their type in the subscript. The type \mathbb{Z} of the integers will be introduced in the next section, which will come equipped with a zero element $0_{\mathbb{Z}}$ and a successor function $\operatorname{succ}_{\mathbb{Z}}$.

The induction principle of $\mathbb N$

The classical induction principle of the natural numbers tells us what we have to do in order to show that $\forall_{(n \in \mathbb{N})} P(n)$ holds, for a predicate P over \mathbb{N} . Recall that a predicate P on a set X is just a proposition P(x) about an arbitrary $x \in X$. For example, the assertion that 'n is divisible by five' is a predicate on the natural numbers.

In dependent type theory we may think of a type family P over \mathbb{N} as a predicate over \mathbb{N} . The type theoretical induction principle of \mathbb{N} is therefore formulated using a type family P over \mathbb{N} :

$$\Gamma, n : \mathbb{N} \vdash P(n) \text{ type}$$

$$\Gamma \vdash p_0 : P(0_{\mathbb{N}})$$

$$\frac{\Gamma \vdash p_S : \prod_{(n:\mathbb{N})} P(n) \to P(\mathsf{succ}_{\mathbb{N}}(n))}{\Gamma \vdash \mathsf{ind}_{\mathbb{N}}(p_0, p_S) : \prod_{(n:\mathbb{N})} P(n)} \mathbb{N}\text{-ind}.$$

In other words, the type theoretical induction principle of \mathbb{N} tells us what we need to do in order to construct a dependent function $\prod_{(n:\mathbb{N})} P(n)$. Just as in the classical induction principle, there are two things to be constructed given a type family P over \mathbb{N} : in the **base case** we need to construct an element $p_0: P(0_{\mathbb{N}})$, and for the **inductive step** we need to construct a function of type $P(n) \to P(\mathsf{succ}_{\mathbb{N}}(n))$ for all $n:\mathbb{N}$.

Remark 3.1.2 We might alternatively present the induction principle of \mathbb{N} as the following inference rule

$$\frac{\Gamma, n : \mathbb{N} \vdash P(n) \text{ type}}{\Gamma \vdash \text{ind}_{\mathbb{N}} : P(0_{\mathbb{N}}) \to \left(\left(\prod_{(n:\mathbb{N})} P(n) \to P(\text{succ}_{\mathbb{N}}(n)) \right) \to \prod_{(n:\mathbb{N})} P(n) \right).}$$

In other words, for any type family P over \mathbb{N} there is a *function* ind \mathbb{N} that takes two arguments, one for the base case and one for the inductive step, and returns a section of P. We claim that this rule is *interderivable* with the rule \mathbb{N} -ind above.

To see that indeed we get such a function from the rule \mathbb{N} -ind, we use generic elements. First, we let Γ' be the context

$$\Gamma$$
, $p_0: P(0_{\mathbb{N}})$, $p_S: \prod_{(n:\mathbb{N})} P(n) \to P(\operatorname{succ}_{\mathbb{N}}(n))$.

By weakening we obtain that

$$\Gamma'$$
, $n : \mathbb{N} \vdash P(n)$ type
 $\Gamma' \vdash p_0 : P(0_{\mathbb{N}})$
 $\Gamma' \vdash p_5 : \prod_{(n:\mathbb{N})} P(n) \to P(\mathsf{succ}_{\mathbb{N}}(n)).$

Therefore, the induction principle of $\mathbb N$ provides us with a dependent function

$$\Gamma' \vdash \operatorname{ind}_{\mathbb{N}}(p_0, p_S) : \prod_{(n:\mathbb{N})} P(n).$$

Now we proceed by λ -abstraction twice to obtain a function

$$\operatorname{ind}_{\mathbb{N}}: P(0_{\mathbb{N}}) \to \left(\left(\prod_{(n:\mathbb{N})} P(n) \to P(\operatorname{succ}_{\mathbb{N}}(n))\right) \to \prod_{(n:\mathbb{N})} P(n)\right)$$

in the original context Γ . This shows that we can define the function $ind_{\mathbb{N}}$

from the rule \mathbb{N} -ind. Conversely, we can derive the rule \mathbb{N} -ind from the rule that presents $\mathsf{ind}_{\mathbb{N}}$ as a function. We conclude that the "official" rule \mathbb{N} -ind and the rule that presents $\mathsf{ind}_{\mathbb{N}}$ as a function are indeed interderivable.

The computation rules of \mathbb{N}

The computation rules for \mathbb{N} postulate that the dependent function

$$\operatorname{ind}_{\mathbb{N}}(p_0, p_S) : \prod_{(n:\mathbb{N})} P(n)$$

behaves as expected when it is applied to 0_N or a successor. There is one computation rule for each step in the induction principle, covering the base case and the inductive step.

The computation rule for the base case is

$$\Gamma, n : \mathbb{N} \vdash P(n) \text{ type}$$

$$\Gamma \vdash p_0 : P(0_{\mathbb{N}})$$

$$\Gamma \vdash p_S : \prod_{(n:\mathbb{N})} P(n) \to P(\operatorname{succ}_{\mathbb{N}}(n))$$

$$\Gamma \vdash \operatorname{ind}_{\mathbb{N}}(p_0, p_S, 0_{\mathbb{N}}) \doteq p_0 : P(0_{\mathbb{N}}).$$

The computation rule for the inductive step has the same premises as the computation rule for the base case:

$$\Gamma, n : \mathbb{N} \vdash \operatorname{ind}_{\mathbb{N}}(p_0, p_S, \operatorname{succ}_{\mathbb{N}}(n)) \doteq p_S(n, \operatorname{ind}_{\mathbb{N}}(p_0, p_S, n)) : P(\operatorname{succ}_{\mathbb{N}}(n)).$$

This completes the formal specification of the type $\ensuremath{\mathbb{N}}$ of natural numbers.

3.2 Addition on the natural numbers

The type theoretic induction principle of \mathbb{N} can be used to do all the usual constructions of operations on \mathbb{N} , and to derive all the familiar properties about natural numbers. Many of those properties, however, require a few more ingredients of Martin-Löf's dependent type theory. For example, the traditional inductive proof that the triangular numbers can be calculated by

$$1+\cdots+n=\frac{n(n+1)}{2}$$

is analogous in type theory, but it requires the identity type to state this equation. We will introduce the identity type in Section 5. Until we have fully specified all the ways of forming types in Martin-Löf's dependent type theory, we are a bit limited in what we can do with the natural numbers, but at the

present stage we can define some of the familiar operations on \mathbb{N} . We give in this section the type theoretical construction the **addition operation** by induction on \mathbb{N} , along with the complete derivation tree.

Definition 3.2.1 We define a function

$$add_{\mathbb{N}}: \mathbb{N} \to (\mathbb{N} \to \mathbb{N})$$

satisfying the specification

$$\operatorname{add}_{\mathbb{N}}(m, 0_{\mathbb{N}}) \doteq m$$

 $\operatorname{add}_{\mathbb{N}}(m, \operatorname{succ}_{\mathbb{N}}(n)) \doteq \operatorname{succ}_{\mathbb{N}}(\operatorname{add}_{\mathbb{N}}(m, n)).$

Usually we will write m + n for $add_{\mathbb{N}}(m, n)$.

Construction. We will construct the binary operation $\mathsf{add}_\mathbb{N} : \mathbb{N} \to (\mathbb{N} \to \mathbb{N})$ by induction on the second variable. In other words, we will construct an element

$$m: \mathbb{N} \vdash \mathsf{add}_{\mathbb{N}}(m): \mathbb{N} \to \mathbb{N}.$$

The context Γ we work in is therefore $m:\mathbb{N}$. The induction principle of \mathbb{N} is used with the family of types $P(n) \coloneqq \mathbb{N}$ indexed by $n:\mathbb{N}$ in context $m:\mathbb{N}$. Therefore we need to construct

$$m: \mathbb{N} \vdash \mathsf{add}\text{-}\mathsf{zero}_{\mathbb{N}}(m): \mathbb{N}$$

 $m: \mathbb{N} \vdash \mathsf{add}\text{-}\mathsf{succ}_{\mathbb{N}}(m): \mathbb{N} \to (\mathbb{N} \to \mathbb{N}),$

in order to obtain

$$m: \mathbb{N} \vdash \mathsf{add}_{\mathbb{N}}(m) \coloneqq \mathsf{ind}_{\mathbb{N}}(\mathsf{add}\text{-}\mathsf{zero}_{\mathbb{N}}(m), \mathsf{add}\text{-}\mathsf{succ}_{\mathbb{N}}(m)) : \mathbb{N} \to \mathbb{N}.$$

The element $\operatorname{add-zero}_{\mathbb{N}}(m):\mathbb{N}$ in context $m:\mathbb{N}$ is of course defined to be $m:\mathbb{N}$, i.e., by the generic element, because adding zero should just be the identity function. To see how the function $\operatorname{add-succ}_{\mathbb{N}}(m):\mathbb{N}\to(\mathbb{N}\to\mathbb{N})$ should be defined, we look at the specification of $\operatorname{add}_{\mathbb{N}}(m)$ when it is applied to a successor:

$$\mathsf{add}_{\mathbb{N}}(m,\mathsf{succ}_{\mathbb{N}}(n)) \doteq \mathsf{succ}_{\mathbb{N}}(\mathsf{add}_{\mathbb{N}}(m,n)).$$

This shows us that we should define

$$add-succ_{\mathbb{N}}(m,n,x) \doteq succ_{\mathbb{N}}(x),$$

because with this definition we will have

$$\operatorname{\mathsf{add}}_{\mathbb{N}}(m,\operatorname{\mathsf{succ}}_{\mathbb{N}}(n)) \doteq \operatorname{\mathsf{ind}}_{\mathbb{N}}(\operatorname{\mathsf{add-zero}}_{\mathbb{N}}(m),\operatorname{\mathsf{add-succ}}_{\mathbb{N}}(m),\operatorname{\mathsf{succ}}_{\mathbb{N}}(n))$$

$$\doteq \operatorname{\mathsf{add-succ}}_{\mathbb{N}}(m,n,\operatorname{\mathsf{add}}_{\mathbb{N}}(m,n))$$

$$\doteq \operatorname{\mathsf{succ}}_{\mathbb{N}}(\operatorname{\mathsf{add}}_{\mathbb{N}}(m,n)).$$

The formal derivation for the construction of add-succ_{\mathbb{N}} is as follows:

$$\frac{ \begin{array}{c} & \\ \vdash \mathbb{N} \text{ type} \end{array} \quad \overline{\vdash \mathbb{N} \text{ type}} \quad \overline{\vdash \text{succ}_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}} \\ \hline \\ & \underline{m : \mathbb{N}, n : \mathbb{N} \vdash \text{succ}_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}} \\ \hline \\ & \underline{m : \mathbb{N} \vdash \lambda n. \text{succ}_{\mathbb{N}} : \mathbb{N} \to (\mathbb{N} \to \mathbb{N})} \\ \hline \\ m : \mathbb{N} \vdash \text{add-succ}_{\mathbb{N}}(m) := \lambda n. \text{succ}_{\mathbb{N}} : \mathbb{N} \to (\mathbb{N} \to \mathbb{N}). \end{array}$$

We combine this derivation with the induction principle of $\mathbb N$ to complete the construction of addition:

$$\begin{array}{c} \vdots \\ \underline{m: \mathbb{N} \vdash \mathsf{add}\text{-}\mathsf{zero}_{\mathbb{N}}(m) \coloneqq m: \mathbb{N}} \\ \hline \underline{m: \mathbb{N} \vdash \mathsf{ind}_{\mathbb{N}}(\mathsf{add}\text{-}\mathsf{zero}_{\mathbb{N}}(m), \mathsf{add}\text{-}\mathsf{succ}_{\mathbb{N}}(m)) \colon \mathbb{N} \to \mathbb{N}} \\ \hline \underline{m: \mathbb{N} \vdash \mathsf{ind}_{\mathbb{N}}(\mathsf{add}\text{-}\mathsf{zero}_{\mathbb{N}}(m), \mathsf{add}\text{-}\mathsf{succ}_{\mathbb{N}}(m)) \colon \mathbb{N} \to \mathbb{N}} \\ \hline \underline{m: \mathbb{N} \vdash \mathsf{add}_{\mathbb{N}}(m) \coloneqq \mathsf{ind}_{\mathbb{N}}(\mathsf{add}\text{-}\mathsf{zero}_{\mathbb{N}}(m), \mathsf{add}\text{-}\mathsf{succ}_{\mathbb{N}}(m)) \colon \mathbb{N} \to \mathbb{N}}. \end{array}$$

The asserted judgmental equalities then hold by the computation rules for \mathbb{N} .

Remark 3.2.2 By the computation rules for $\mathbb N$ it follows that

$$m + 0_{\mathbb{N}} \doteq m$$
, and $m + \operatorname{succ}_{\mathbb{N}}(n) \doteq \operatorname{succ}_{\mathbb{N}}(m + n)$.

A simple consequence of this definition is that $\operatorname{succ}_{\mathbb{N}}(n) \doteq n+1$, as one would expect. However, the rules that we provided so far are not sufficient to also conclude that $0_{\mathbb{N}} + n \doteq n$ and $\operatorname{succ}_{\mathbb{N}}(m) + n \doteq \operatorname{succ}_{\mathbb{N}}(m+n)$. In fact, dependent type theory with its inductive types does not provide any means to prove such judgmental equalities.

Nevertheless, once we have introduced the *identity type* in Section 5 we will be able to *identify* $0_{\mathbb{N}} + n$ with n, and $\operatorname{succ}_{\mathbb{N}}(m) + n$ with $\operatorname{succ}_{\mathbb{N}}(m+n)$. See Propositions 5.6.1 and 5.6.2.

3.3 Pattern matching

Note that in definition Definition 3.2.1 we stated that $add_{\mathbb{N}}$ is a function of type $\mathbb{N} \to (\mathbb{N} \to \mathbb{N})$ satisfying the specification

$$\operatorname{add}_{\mathbb{N}}(m, 0_{\mathbb{N}}) \doteq m$$

 $\operatorname{add}_{\mathbb{N}}(m, \operatorname{succ}_{\mathbb{N}}(n)) \doteq \operatorname{succ}_{\mathbb{N}}(\operatorname{add}_{\mathbb{N}}(m, n)).$

Such a specification is enough to characterize the function $\mathsf{add}_\mathbb{N}(m)$ entirely, because it postulates the behaviour of $\mathsf{add}_\mathbb{N}(m)$ at the constructors of \mathbb{N} . It is therefore convenient to present the definition of $\mathsf{add}_\mathbb{N}$ recursively in the following way:

$$\operatorname{add}_{\mathbb{N}}(m, 0_{\mathbb{N}}) := m$$

 $\operatorname{add}_{\mathbb{N}}(m, \operatorname{succ}_{\mathbb{N}}(n)) := \operatorname{succ}_{\mathbb{N}}(\operatorname{add}_{\mathbb{N}}(m, n)).$

More generally, if we want to define a dependent function $f: \prod_{(n:\mathbb{N})} P(n)$ by induction on n, using

$$\begin{aligned} p_0 : P(0_{\mathbb{N}}) \\ p_S : \prod_{(n:\mathbb{N})} P(n) &\to P(\mathsf{succ}_{\mathbb{N}}(n)), \end{aligned}$$

we can present that definition by writing

$$f(0_{\mathbb{N}}) \coloneqq p_0$$

 $f(\operatorname{succ}_{\mathbb{N}}(n)) \coloneqq p_S(n, f(n)).$

When the definition of f is presented in this way, we say that f is defined by **pattern matching** on the variable n. To see that f is fully specified when it is defined by pattern matching, we have to recover the dependent function

$$p_S: \prod_{(n:\mathbb{N})} P(n) \to P(\mathsf{succ}_\mathbb{N}(n))$$

from the expression $p_S(n, f(n))$ that was used in the definition of f. This can of course be done by replacing all occurrences of the term f(n) in the expression $p_S(n, f(n))$ with a fresh variable x : P(n). In other words, when a subexpression of $p_S(n, f(n))$ matches f(n), we replace that subexpression by x. This is where the name pattern matching comes from. Many computer proof assistants have the pattern matching mechanism built in, because it is a concise way of presenting a recursive definition. Another advantage of presenting definitions by pattern matching is that the judgmental equalities by which the object is defined are immediately displayed. Those judgmental

equalities are all that is known about the defined object, and often proving things about it amounts to finding a way to apply those judgmental equalities.

Pattern matching can also be used in more complicated situations, such as defining a function by pattern matching on multiple variables, or by iterated pattern matching. For example, an alternative definition of addition on \mathbb{N} could be given by pattern matching on both variables:

$$\begin{split} \operatorname{add}_{\mathbb{N}}'(0_{\mathbb{N}},0_{\mathbb{N}}) &\coloneqq 0_{\mathbb{N}} \\ \operatorname{add}_{\mathbb{N}}'(0_{\mathbb{N}},\operatorname{succ}_{\mathbb{N}}(n)) &\coloneqq \operatorname{succ}_{\mathbb{N}}(n) \\ \operatorname{add}_{\mathbb{N}}'(\operatorname{succ}_{\mathbb{N}}(m),0_{\mathbb{N}}) &\coloneqq \operatorname{succ}_{\mathbb{N}}(m) \\ \operatorname{add}_{\mathbb{N}}'(\operatorname{succ}_{\mathbb{N}}(m),\operatorname{succ}_{\mathbb{N}}(n)) &\coloneqq \operatorname{succ}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(\operatorname{add}_{\mathbb{N}}'(m,n)). \end{split}$$

An example of a definition by iterated pattern matching is the **Fibonacci function** $F : \mathbb{N} \to \mathbb{N}$. This function is defined by

$$\begin{split} F(0_{\mathbb{N}}) &\coloneqq 0_{\mathbb{N}} \\ F(1_{\mathbb{N}}) &\coloneqq 1_{\mathbb{N}} \\ F(\mathsf{succ}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(n))) &\coloneqq F(\mathsf{succ}_{\mathbb{N}}(n)) + F(n). \end{split}$$

However, since $F(\operatorname{succ}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(n)))$ is defined using both $F(\operatorname{succ}_{\mathbb{N}}(n))$ and F(n), it is not immediately clear how to present F by the usual induction principle of \mathbb{N} . It is a nice puzzle, which we leave as Exercise 3.5, to find a definition of the Fibonacci sequence with the usual induction principle of \mathbb{N} .

Exercises

3.1 (a) Define the **multiplication** operation

$$\text{mul}_{\mathbb{N}} : \mathbb{N} \to (\mathbb{N} \to \mathbb{N}).$$

- (b) Define the **exponentiation function** $n, m \mapsto m^n$ of type $\mathbb{N} \to (\mathbb{N} \to \mathbb{N})$.
- 3.2 Define the binary min and max functions

$$\min_{\mathbb{N}}, \max_{\mathbb{N}} : \mathbb{N} \to (\mathbb{N} \to \mathbb{N}).$$

3.3 (a) Define the **triangular numbers**

$$1 + \cdots + n$$
.

- (b) Define the **factorial** operation $n \mapsto n!$.
- 3.4 Define the **binomial coefficient** $\binom{n}{k}$ for any $n, k : \mathbb{N}$, making sure that $\binom{n}{k} \doteq 0$ when n < k.
- 3.5 Use the induction principle of $\mathbb N$ to define the **Fibonacci sequence** as a function $F: \mathbb N \to \mathbb N$ that satisfies the equations

$$\begin{split} F(0_{\mathbb{N}}) &\doteq 0_{\mathbb{N}} \\ F(1_{\mathbb{N}}) &\doteq 1_{\mathbb{N}} \\ F(\operatorname{succ}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(n))) &\doteq F(\operatorname{succ}_{\mathbb{N}}(n)) + F(n). \end{split}$$

3.6 Define division by two rounded down as a function $\mathbb{N} \to \mathbb{N}$ in two ways: first by pattern matching, and then directly by the induction principle of \mathbb{N} .

4 More inductive types

In the previous section we introduced the type of natural numbers. Many other types can also be introduced as inductive types. In this section we will see by example how that works. We will introduce the unit type, the empty type, coproducts, dependent pair types, and cartesian products as inductive types, and in the next section the identity type will be introduced as an inductive family of types.

From this section on, we will also start using a more informal style. The inductive types will be specified by a description of their constructors and induction principles in terms of operations on dependent function types, which is more tightly connected with how we will use them, but we will not display the formal rules. It is a good exercise for the reader to formally specify at least some of the inductive types of this section by stating their formal rules.

4.1 The idea of general inductive types

Just like the type of natural numbers, other inductive types are also specified by their *constructors*, an *induction principle*, and their *computation rules*:

(i) The constructors tell what structure the inductive type comes equipped

- with. There may be any finite number of constructors, even no constructors at all, in the specification of an inductive type.
- (ii) The induction principle specifies the data that should be provided in order to construct a section of an arbitrary type family over the inductive type. The idea of the induction principle is always the same: in order to define a dependent function $f: \prod_{(x:A)} B(x)$, one has to specify the behaviour of f at the constructors of A.
- (iii) The computation rules assert that the inductively defined section agrees on the constructors with the data that was used to define the section. Thus, there is a computation rule for every constructor.

Since any inductively defined function is entirely determined by its behavior on the constructors, we can again present such inductive definitions by pattern matching. Therefore, we will also specify for each inductive type how to give definitions by pattern matching.

4.2 The unit type

A straightforward example of an inductive type is the *unit type*, which has just one constructor. Its induction principle is analogous to just the base case of induction on the natural numbers.

Definition 4.2.1 We define the **unit type** to be a type **1** equipped with a term

satisfying the induction principle that for any family of types P(x) indexed by x : 1, there is a function

$$\operatorname{ind}_{\mathbf{1}}: P(\star) \to \prod_{(x:\mathbf{1})} P(x)$$

for which the computation rule

$$\operatorname{ind}_{\mathbf{1}}(p,\star) \doteq p$$

holds. Alternatively, a definition of a dependent function $f: \prod_{(x:1)} P(x)$ by induction using $p: P(\star)$ can be presented by pattern matching as

$$f(\star) := p$$
.

A special case of the induction principle arises when P does not actually depend on **1**. If we are given a type A, then we can first weaken it to obtain the constant family over **1**, with value A. Then the induction principle of the unit type provides a function

$$ind_1: A \to (1 \to A).$$

In other words, by the induction principle for the unit type we obtain for every x : A a function $\operatorname{pt}_x := \operatorname{ind}_1(x) : 1 \to A$.

4.3 The empty type

The empty type is a degenerate example of an inductive type. It does *not* come equipped with any constructors, and therefore there are also no computation rules. The induction principle merely asserts that any type family has a section. In other words: if we assume the empty type has a term, then we can prove anything.

Definition 4.3.1 We define the **empty type** to be a type \emptyset satisfying the induction principle that for any family of types P(x) indexed by $x : \emptyset$, there is a term

$$\operatorname{ind}_{\emptyset}:\prod_{(x:\emptyset)}P(x).$$

It is again a special case of the induction principle that we have a function

$$ex$$
-falso := $ind_{\emptyset} : \emptyset \rightarrow A$

for any type A. Indeed, to obtain this function one first weakens A to obtain the constant family over \emptyset with value A, and then the induction principle gives the desired function. The function ex-falso can be used to draw any conclusion after deriving a contradiction, because ex falso quodlibet.

We can also use the empty type to define the negation operation on types.

Definition 4.3.2 For any type *A* we define **negation** of *A* by

$$\neg A := A \rightarrow \emptyset$$
.

We also say that a type A is **empty** if it comes equipped with an element of type $\neg A$. Therefore, we also define

$$\mathsf{is\text{-}empty}(A) \coloneqq A \to \emptyset.$$

Remark 4.3.3 Since $\neg A$ is the type of functions from A to \emptyset , a proof of $\neg A$ is given by assuming that A holds, and then constructing an element of the empty type. In other words, we prove $\neg A$ by assuming A and deriving a contradiction. This proof technique is called **proof of negation**.

Proofs of negation should not be confused with proofs by contradiction. Even though a proof of negation involves deriving a contradiction, in logic a **proof by contradiction** of a proposition P is an argument where we conclude that P holds after showing that $\neg P$ implies a contradiction. In other words, a proof by contradiction uses the logical step $\neg \neg P \Rightarrow P$, which is also called **double negation elimination**.

In type theory, however, note that the type $\neg \neg A$ is the type of functions

$$(A \to \emptyset) \to \emptyset$$
.

This type is quite different from the type A itself, and with the given rules of type theory it is not possible to construct a function $\neg \neg A \rightarrow A$ unless more is known about the type A. In other words, before one can prove by contradiction that there is an element in A, one has to construct a function $\neg \neg A \rightarrow A$, and it depends on the specific type A whether this is possible at all. In Exercise 4.3 (d) we will see a situation where we can indeed construct a function $\neg \neg A \rightarrow A$. In practice, however, we will rarely use double negation elimination.

In the following proposition we illustrate how to work with the type theoretic definition of negation.

Proposition 4.3.4 For any two types P and Q, there is a function

$$(P \to Q) \to (\neg Q \to \neg P).$$

Proof The desired function is defined by λ-abstraction, so we begin by assuming that we have a function $f: P \to Q$. Then we have to construct a function $\neg Q \to \neg P$, which is again constructed by λ-abstraction. We assume that we have $\tilde{q}: \neg Q$. By our definition of $\neg Q$ we see that \tilde{q} is a function $Q \to \emptyset$. Now we have to construct a term of type $\neg P$, which is the type of functions $P \to \emptyset$. We apply λ-abstraction once more, so we assume p: P. Now we have

$$f: P \to Q$$
$$\tilde{q}: Q \to \emptyset$$
$$p: P,$$

and our goal is to construct a term of the empty type.

Since we have $f: P \to Q$ and p: P, we obtain f(p): Q. Moreover, we have $\tilde{q}: Q \to \emptyset$, so we obtain $\tilde{q}(f(p)): \emptyset$. This completes the proof. The function we have constructed is

$$\lambda f. \lambda \tilde{q}. \lambda p. \tilde{q}(f(p)): (P \to Q) \to (\neg Q \to \neg P).$$

We leave it to the reader to construct the corresponding natural deduction tree, that formally constructs a function

$$(P \to Q) \to (\neg Q \to \neg P).$$

4.4 Coproducts

Definition 4.4.1 Let A and B be types. We define the **coproduct** A + B to be a type that comes equipped with

$$inl: A \rightarrow A + B$$

 $inr: B \rightarrow A + B$.

satisfying the induction principle that for any family of types P(x) indexed by x : A + B, there is a term

$$\mathsf{ind}_+: \left(\textstyle\prod_{(x:A)} P(\mathsf{inl}(x))\right) \to \left(\left(\textstyle\prod_{(y:B)} P(\mathsf{inr}(y))\right) \to \textstyle\prod_{(z:A+B)} P(z)\right)$$

for which the computation rules

$$\operatorname{ind}_+(f, g, \operatorname{inl}(x)) \doteq f(x)$$

 $\operatorname{ind}_+(f, g, \operatorname{inr}(y)) \doteq g(y)$

hold. Alternatively, a definition of a dependent function $h: \prod_{(x:A+B)} P(x)$ by induction using $f: \prod_{(x:A)} P(\mathsf{inl}(x))$ and $g: \prod_{(y:B)} P(\mathsf{inr}(y))$ can be presented by pattern matching as

$$h(\operatorname{inl}(x)) \coloneqq f(x)$$

 $h(\operatorname{inr}(y)) \coloneqq g(y).$

Sometimes we write [f, g] for the function $\operatorname{ind}_+(f, g)$. The coproduct of two types is sometimes also called the **disjoint sum**.

By the induction principle of coproducts we obtain a function

$$\mathsf{ind}_+ : (A \to X) \to \big((B \to X) \to (A + B \to X) \big)$$

for any type X. Note that this special case of the induction principle of coproducts is very similar to the elimination rule of disjunction in first order logic: if P, P', and Q are propositions, then we have

$$(P \to Q) \to ((P' \to Q) \to (P \lor P' \to Q)).$$

Indeed, we can think of *propositions as types* and of terms as their constructive proofs. Under this interpretation of type theory the coproduct is indeed the disjunction.

Remark 4.4.2 A simple application of the induction principle for coproducts gives us a map

$$f + g : A + B \rightarrow A' + B'$$

for every $f: A \to A'$ and $g: B \to B'$. Indeed, the map f + g is defined by

$$(f+g)(\mathsf{inl}(x)) \coloneqq \mathsf{inl}(f(x))$$
$$(f+g)(\mathsf{inr}(y)) \coloneqq \mathsf{inr}(g(y)).$$

Proposition 4.4.3 *Consider two types A and B, and suppose that B is empty. Then there is a function*

$$(A + B) \rightarrow A$$
.

Remark 4.4.4 In other words, there is a function

is-empty(
$$B$$
) \rightarrow (($A + B$) \rightarrow A),

for any two types A and B. Similarly, there is a function

$$is-empty(A) \rightarrow ((A+B) \rightarrow B),$$

for any two types A and B.

Proof We will construct the function $(A + B) \rightarrow A$ with the induction principle of the coproduct A + B. Therefore, we must construct two functions:

$$f: A \to A$$
$$g: B \to A.$$

The function f is simply defined to be the identity function $id : A \to A$. Recall that we have assumed that B is empty, so we have a function $\tilde{b} : B \to \emptyset$.

Furthermore, we always have the function ex-falso : $\emptyset \to A$. Therefore, we can define $g := \text{ex-falso} \circ \tilde{b}$ to complete the proof.

4.5 The type of integers

The set of integers is usually defined as a quotient of the set $\mathbb{N} \times \mathbb{N}$, by the equivalence relation

$$((n,m) \sim (n',m')) := (n+m'=n'+m).$$

We haven't introduced the identity type yet, in order to consider the type of identifications n + m' = n' + m, but more importantly there are no quotient types in Martin-Löf's dependent type theory. We will only discuss quotient types in Section 18 after we have assumed the univalence axiom and propositional truncations, because we will use the univalence axiom and propositional truncations to define them and derive their basic properties. Nevertheless, the type of integers is also definable in dependent type theory without set quotients, but we have to settle for a more pedestrian version of the integers that is defined using coproducts.

Definition 4.5.1 We define the **integers** to be the type $\mathbb{Z} := \mathbb{N} + (1 + \mathbb{N})$. The type of integers comes equipped with inclusion functions of the positive and negative integers

$$\begin{aligned} \text{in-pos} &\coloneqq \text{inr} \circ \text{inr} &: \mathbb{N} \to \mathbb{Z} \\ \text{in-neg} &\coloneqq \text{inl} &: \mathbb{N} \to \mathbb{Z} \end{aligned}$$

and with the constants

$$\begin{aligned} -1_{\mathbb{Z}} &\coloneqq \mathsf{in}\text{-neg}(0) \\ 0_{\mathbb{Z}} &\coloneqq \mathsf{inr}(\mathsf{inl}(\bigstar)) \\ 1_{\mathbb{Z}} &\coloneqq \mathsf{in}\text{-pos}(0). \end{aligned}$$

The definition of the integers as the coproduct $\mathbb{N} + (1 + \mathbb{N})$ can be pictured

as follows:

Remark 4.5.2 The type of integers is built entirely out of inductive types. Therefore it is possible to derive an induction principle especially tailored for the type \mathbb{Z} , which can be used to define the basic operations on \mathbb{Z} , such as the successor map, addition and multiplication. This induction principle asserts that for any type family P over \mathbb{Z} , we can define a dependent function $f: \prod_{(k:\mathbb{Z})} P(k)$ recursively by

$$\begin{split} f(-1_{\mathbb{Z}}) &\coloneqq p_{-1} \\ f(\mathsf{in-neg}(\mathsf{succ}_{\mathbb{N}}(n))) &\coloneqq p_{-S}(n, f(\mathsf{in-neg}(n))) \\ f(0_{\mathbb{Z}}) &\coloneqq p_0 \\ f(1_{\mathbb{Z}}) &\coloneqq p_1 \\ f(\mathsf{in-pos}(\mathsf{succ}_{\mathbb{N}}(n))) &\coloneqq p_S(n, f(\mathsf{in-pos}(n))), \end{split}$$

where the types of p_{-1} , p_{-S} , p_0 , p_1 , and p_S are

$$\begin{split} p_{-1}: P(-1_{\mathbb{Z}}) \\ p_{-S}: &\prod_{(n:\mathbb{N})} P(\mathsf{in-neg}(n)) \to P(\mathsf{in-neg}(\mathsf{succ}_{\mathbb{N}}(n))) \\ p_0: &P(0_{\mathbb{Z}}) \\ p_1: &P(1_{\mathbb{Z}}) \\ p_S: &\prod_{(n:\mathbb{N})} P(\mathsf{in-pos}(n)) \to P(\mathsf{in-pos}(\mathsf{succ}_{\mathbb{N}}(n))). \end{split}$$

Definition 4.5.3 We define the **successor function** on the integers $succ_{\mathbb{Z}}$: $\mathbb{Z} \to \mathbb{Z}$ using the induction principle of Remark 4.5.2, taking

$$\begin{split} \operatorname{succ}_{\mathbb{Z}}(-1_{\mathbb{Z}}) &\coloneqq 0_{\mathbb{Z}} \\ \operatorname{succ}_{\mathbb{Z}}(\operatorname{in-neg}(\operatorname{succ}_{\mathbb{N}}(n))) &\coloneqq \operatorname{in-neg}(n) \\ & \operatorname{succ}_{\mathbb{Z}}(0_{\mathbb{Z}}) \coloneqq 1_{\mathbb{Z}} \\ & \operatorname{succ}_{\mathbb{Z}}(1_{\mathbb{Z}}) \coloneqq \operatorname{in-pos}(1_{\mathbb{N}}) \\ \operatorname{succ}_{\mathbb{Z}}(\operatorname{in-pos}(\operatorname{succ}_{\mathbb{N}}(n))) &\coloneqq \operatorname{in-pos}(\operatorname{succ}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(n))). \end{split}$$

4.6 Dependent pair types

Given a type family B over A, we may consider pairs (a, b) of terms, where a : A and b : B(a). Note that the type of b depends on the first term in the pair. Therefore we call such a pair a **dependent pair**. The type of such dependent pairs is the inductive type that is generated by the dependent pairs.

Definition 4.6.1 Consider a type family B over A. The **dependent pair type** (or Σ -**type**) is defined to be the inductive type $\sum_{(x:A)} B(x)$ equipped with a **pairing function**

pair :
$$\prod_{(x:A)} (B(x) \to \sum_{(y:A)} B(y))$$
.

The induction principle for $\sum_{(x:A)} B(x)$ asserts that for any family of types P(p) indexed by $p : \sum_{(x:A)} B(x)$, there is a function

$$\operatorname{ind}_{\Sigma}: \Big(\textstyle\prod_{(x:A)}\textstyle\prod_{(y:B(x))} P(\operatorname{pair}(x,y))\Big) \to \Big(\textstyle\prod_{(z:\sum_{(x:A)}B(x))} P(z)\Big).$$

satisfying the computation rule

$$\operatorname{ind}_{\Sigma}(g,\operatorname{pair}(x,y)) \doteq g(x,y).$$

Alternatively, a definition of a dependent function $f:\prod_{(z:\sum_{(x:A)}B(x))}P(z)$ by induction using a function $g:\prod_{(x:A)}\prod_{(y:B(x))}P((x,y))$ can be presented by pattern matching as

$$f(\mathsf{pair}(x,y)) \coloneqq g(x,y).$$

We will usually write (x, y) for pair(x, y).

The induction principle of Σ -types can be used to define the projection functions.

Definition 4.6.2 Consider a type *A* and a type family *B* over *A*.

(i) The first projection map

$$\operatorname{pr}_1: \left(\sum_{(x:A)} B(x)\right) \to A$$

is defined by induction as

$$\operatorname{pr}_1(x,y) \coloneqq x.$$

(ii) The second projection map is a dependent function

$$\operatorname{pr}_2: \prod_{(p:\sum_{(x:A)}B(x))} B(\operatorname{pr}_1(p)),$$

defined by induction as

$$\operatorname{pr}_2(x,y) \coloneqq y.$$

Remark 4.6.3 If we want to construct a function

$$f:\prod_{(z:\sum_{(x:A)}B(x))}P(z)$$

by Σ -induction, then we get to assume a pair (x, y) consisting of x : A and y : B(x) and our goal will be to construct an element of type P(x, y). The induction principle of Σ -types is therefore converse to the **currying operation**, a familiar concept from the theory of programming languages, which is given by the function

$$\text{ev-pair}: \left(\textstyle\prod_{(z:\sum_{(x:A)}B(x))}P(z)\right) \to \left(\textstyle\prod_{(x:A)}\prod_{(y:B(x))}P(x,y)\right)$$

given by $f \mapsto \lambda x$. λy . f(x, y). The induction principle ind_{Σ} is therefore also known as the **uncurrying operation**.

A common special case of the Σ-type occurs when the B is a constant family over A, i.e., when B is just a type weakened by A. In this case, the type $\sum_{(x:A)} B$ is the type of *ordinary* pairs (x,y) where x:A and y:B, where the type of y does not depend on x. The type of ordinary pairs (x,y) consisting of x:A and y:B is of course the *product* of A and B, so we see that product types arise as a special case of Σ -types in a similar way to how function types were defined as a special case of Π -types.

Definition 4.6.4 Consider two types A and B. Then we define the **(cartesian) product** $A \times B$ of A and B by

$$A \times B := \sum_{(x:A)} B$$
.

Remark 4.6.5 Since $A \times B$ is defined as a Σ -type, it follows that cartesian products also satisfy the induction principle of Σ -types. In this special case, the induction principle for $A \times B$ asserts that for any type family P over $A \times B$ there is a function

$$\operatorname{ind}_{\times}: \left(\textstyle\prod_{(x:A)}\textstyle\prod_{(y:B)} P(x,y)\right) \to \left(\textstyle\prod_{(z:A\times B)} P(z)\right)$$

that satisfies the computation rule

$$\operatorname{ind}_{\times}(g,(x,y)) \doteq g(x,y).$$

The projection maps are defined similarly to the projection maps of Σ -types. When one thinks of types as propositions, then $A \times B$ is interpreted as the conjunction of A and B.

Exercises

- 4.1 (a) Define the predecessor function $\operatorname{pred}_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}$.
 - (b) Define the group operations

$$\operatorname{add}_{\mathbb{Z}}: \mathbb{Z} \to (\mathbb{Z} \to \mathbb{Z})$$

 $\operatorname{neg}_{\mathbb{Z}}: \mathbb{Z} \to \mathbb{Z}.$

- (c) Define the multiplication operation $\text{mul}_{\mathbb{Z}} : \mathbb{Z} \to (\mathbb{Z} \to \mathbb{Z})$.
- 4.2 The type of **booleans** is defined to be an inductive type bool that comes equipped with

The induction principle of the booleans asserts that for any family of types P(x) indexed by x: bool, there is a term

$$\mathsf{ind}\text{-bool}: P(\mathsf{false}) \to \Big(P(\mathsf{true}) \to \textstyle\prod_{(x:\mathsf{bool})} P(x)\Big)$$

for which the computation rules

$$ind-bool(p_0, p_1, false) \doteq p_0$$

 $ind-bool(p_0, p_1, true) \doteq p_1$

hold.

- (a) Construct the **boolean negation** function neg-bool : bool \rightarrow bool.
- (b) Construct the **boolean conjunction** operation $\land : bool \rightarrow (bool \rightarrow bool)$.
- (c) Construct the **boolean disjunction** operation $\lor : bool \rightarrow (bool \rightarrow bool)$.
- 4.3 Let P and Q be types. We will write $P \leftrightarrow Q$ for the type of **biimplications** $(P \to Q) \times (Q \to P)$. Use the fact that $\neg P$ is defined as the type $P \to \emptyset$ of functions from P to the empty type to give type theoretic proofs of the constructive tautologies in this exercise.
 - (a) Show that

(i)
$$\neg (P \times \neg P)$$

- (ii) $\neg (P \leftrightarrow \neg P)$.
- (b) Construct the following maps in the structure of the **double negation monad**:
 - (i) $P \rightarrow \neg \neg P$
 - (ii) $(P \rightarrow Q) \rightarrow (\neg \neg P \rightarrow \neg \neg Q)$
 - (iii) $(P \rightarrow \neg \neg Q) \rightarrow (\neg \neg P \rightarrow \neg \neg Q)$.
- (c) Prove that the following double negations of classical laws hold:
 - (i) $\neg \neg (\neg \neg P \rightarrow P)$
 - (ii) $\neg \neg (((P \rightarrow Q) \rightarrow P) \rightarrow P)$
 - (iii) $\neg\neg((P \to Q) + (Q \to P))$
 - (iv) $\neg \neg (P + \neg P)$.
- (d) Show that
 - (i) $(P + \neg P) \rightarrow (\neg \neg P \rightarrow P)$
 - (ii) $\neg \neg (Q \to P) \leftrightarrow ((P + \neg P) \to (Q \to P)).$
- (e) Prove the following tautologies, showing that $\neg P$, $P \rightarrow \neg \neg Q$, and $\neg \neg P \times \neg \neg Q$ are **double negation stable**:
 - (i) $\neg \neg \neg P \rightarrow \neg P$
 - (ii) $\neg\neg(P \to \neg\neg Q) \to (P \to \neg\neg Q)$
 - (iii) $\neg \neg ((\neg \neg P) \times (\neg \neg Q)) \rightarrow (\neg \neg P) \times (\neg \neg Q).$
- (f) Show that
 - (i) $\neg \neg (P \times Q) \leftrightarrow (\neg \neg P) \times (\neg \neg Q)$
 - (ii) $\neg \neg (P + Q) \leftrightarrow \neg (\neg P \times \neg Q)$
 - (iii) $\neg \neg (P \to Q) \leftrightarrow (\neg \neg P \to \neg \neg Q)$.
- 4.4 For any type A we can define the type list(A) of lists of elements of A as the inductive type with constructors

$$\begin{aligned} & \text{nil}: \mathsf{list}(A) \\ & \text{cons}: A \to (\mathsf{list}(A) \to \mathsf{list}(A)). \end{aligned}$$

- (a) Write down the induction principle and the computation rules for list(*A*).
- (b) Let *A* and *B* be types, suppose that b:B, and consider a binary operation $\mu:A\to (B\to B)$. Define a function

$$fold-list(\mu): list(A) \rightarrow B$$

that iterates the operation μ , starting with fold-list(μ , nil) := b.

(c) Define the operation

$$\mathsf{map-list}: (A \to B) \to (\mathsf{list}(A) \to \mathsf{list}(B))$$

for any two types *A* and *B*.

- (d) Define a function length-list : $list(A) \rightarrow \mathbb{N}$.
- (e) Define the functions

sum-list : list(
$$\mathbb{N}$$
) $\to \mathbb{N}$ product-list : list(\mathbb{N}) $\to \mathbb{N}$,

where sum-list adds all the elements in a list of natural numbers, and product-list takes their product.

(f) Define a function

concat-list :
$$list(A) \rightarrow (list(A) \rightarrow list(A))$$

that concatenates any two lists of elements in A.

(g) Define a function

$$flatten-list : list(list(A)) \rightarrow list(A)$$

that concatenates all the lists in a lists of lists in *A*.

(h) Define a function reverse-list : $list(A) \rightarrow list(A)$ that reverses the order of the elements in any list.

5 Identity types

From the perspective of types as proof-relevant propositions, how should we think of *equality* in type theory? Given a type A, and two elements x, y: A, the equality x = y should again be a type. Indeed, we want to *use* type theory to prove equalities. *Dependent* type theory provides us with a convenient setting for this: the identity type x = y is dependent on x, y: A.

Then, if x = y is to be a type, how should we think of the elements of x = y. An element p : x = y witnesses that x and y are equal elements of type A. In other words p : x = y is an *identification* of x and y. In a proof-relevant world, there might be many elements of type x = y. I.e., there might be many identifications of x and y. And, since x = y is itself a type, we can form the type p = q for any two identifications p, q : x = y. That is, since x = y is a type, we may also use the type theory to prove things *about* identifications (for

instance, that two given such identifications can themselves be identified), and we may use the type theory to perform constructions with them. As we will see in this section, we can give every type a groupoidal structure.

Clearly, the equality type should not just be any type dependent on x, y: A. Then how do we form the equality type, and what ways are there to use identifications in constructions in type theory? The answer to both these questions is that we will form the identity type as an *inductive* type, generated by just a reflexivity identification providing an identification of x to itself. The induction principle then provides us with a way of performing constructions with identifications, such as concatenating them, inverting them, and so on. Thus, the identity type is equipped with a reflexivity element, and further possesses the structure that are generated by its induction principle and by the type theory. This inductive construction of the identity type is elegant, beautifully simple, but far from trivial!

The situation where two elements can be identified in possibly more than one way is analogous to the situation in *homotopy theory*, where two points of a space can be connected by possibly more than one *path*. Indeed, for any two points x, y in a space, there is a *space of paths* from x to y. Moreover, between any two paths from x to y there is a space of *homotopies* between them, and so on. From Chapter II on we will take full advantage of this idea in order to develop the univalent foundations of mathematics.

5.1 The inductive definition of identity types

Definition 5.1.1 Consider a type A and let a:A. Then we define the **identity type** of A at a as an inductive family of types $a =_A x$ indexed by x:A, of which the constructor is

$$refl_a : a =_A a$$
.

The induction principle of the identity type postulates that for any family of types P(x, p) indexed by x : A and $p : a =_A x$, there is a function

$$ind-eq_a: P(a, refl_a) \rightarrow \prod_{(x:A)} \prod_{(p:a=Ax)} P(x, p)$$

that satisfies ind-eq_a $(u, a, refl_a) \doteq u$, give $u : P(a, refl_a)$.

An element of type $a =_A x$ is also called an **identification** of a with x, and sometimes it is called a **path** from a to x. The induction principle for identity types is sometimes called **identification elimination** or **path induction**. We

also write Id_A for the identity type on A, and often we write a = x for the type of identifications of a with x, omitting reference to the ambient type A.

Remark 5.1.2 We see that the identity type is not just an inductive type, like the inductive types \mathbb{N} , \emptyset , and $\mathbf{1}$ for example, but it is an inductive *family* of types. Even though we have a type $a =_A x$ for any x : A, the constructor only provides an element $\text{refl}_a : a =_A a$, identifying a with itself. The induction principle then asserts that in order to prove something about all identifications of a with some x : A, it suffices to prove this assertion about refl_a only. We will see in the next sections that this induction principle is strong enough to derive many familiar facts about equality, namely that it is a symmetric and transitive relation, and that all functions preserve equality.

Remark 5.1.3 Since the identity types require getting used to, we provide the formal rules for identity types. The identity type is formed by the formation rule:

$$\frac{\Gamma \vdash a : A}{\Gamma, x : A \vdash a =_A x \text{ type}}$$

The constructor of the identity type is then given by the introduction rule:

$$\frac{\Gamma \vdash a : A}{\Gamma \vdash \mathsf{refl}_a : a =_A a}$$

The induction principle is now given by the elimination rule:

$$\frac{\Gamma \vdash a : A \qquad \Gamma, x : A, p : a =_A x \vdash P(x, p) \text{ type}}{\Gamma \vdash \text{ind-eq}_a : P(a, \text{refl}_a) \rightarrow \prod_{(x : A)} \prod_{(p : a =_A x)} P(x, p)}$$

And finally the computation rule is:

$$\frac{\Gamma \vdash a : A \qquad \Gamma, x : A, p : a =_A x \vdash P(x, p) \text{ type}}{\Gamma, u : P(a, \text{refl}_a) \vdash \text{ind-eq}_a(u, a, \text{refl}_a) \doteq u : P(a, \text{refl}_a)}$$

Remark 5.1.4 One might wonder whether it is also possible to form the identity type at a *variable* of type A, rather than at an element. This is certainly possible: since we can form the identity type in *any* context, we can form the identity type at a variable x : A as follows:

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma, x : A, y : A \vdash x =_A y \text{ type}}$$

In this way we obtain the 'binary' identity type. Its constructor is then also indexed by x : A. We have the following introduction rule

$$\frac{\Gamma, x : A \vdash x : A}{\Gamma, x : A \vdash \mathsf{refl}_x : x =_A x}$$

and similarly we have elimination and computation rules.

5.2 The groupoidal structure of types

We show that identifications can be *concatenated* and *inverted*, which corresponds to the transitivity and symmetry of the identity type.

Definition 5.2.1 Let *A* be a type. We define the **concatenation** operation

concat:
$$\prod_{(x,y,z;A)} (x=y) \rightarrow ((y=z) \rightarrow (x=z)).$$

We will write $p \cdot q$ for concat(p, q).

Construction We first construct a function

$$f(x): \prod_{(y:A)} (x=y) \rightarrow \prod_{(z:A)} (y=z) \rightarrow (x=z)$$

for any x : A. By the induction principle for identity types, it suffices to construct

$$f(x, x, \text{refl}_x) : \prod_{(z:A)} (x = z) \rightarrow (x = z).$$

Here we have the function λz . $id_{(x=z)}$. The function f(x) we obtain via identity elimination is explicitly thus defined as

$$f(x) := \operatorname{ind-eq}_x(\lambda z.\operatorname{id}) : \prod_{(y:A)}(x=y) \to \prod_{(z:A)}(y=z) \to (x=z).$$

To finish the construction of concat, we use Exercise 2.4 to swap the order of the third and fourth variable of f, i.e., we define

$$concat_{x,y,z}(p,q) := f(x,y,p,z,q).$$

Definition 5.2.2 Let *A* be a type. We define the **inverse operation**

inv :
$$\prod_{(x,y:A)} (x = y) \rightarrow (y = x)$$
.

Most of the time we will write p^{-1} for inv(p).

Construction By the induction principle for identity types, it suffices to construct

$$inv(refl_x): x = x$$
,

П

for any x : A. Here we take $inv(refl_x) := refl_x$.

The next question is whether the concatenation and inverting operations on identifications behave as expected. More concretely: is concatenation of identifications associative, does it satisfy the unit laws, and is the inverse of an identification indeed a two-sided inverse?

For example, in the case of associativity we are asking to compare the identifications

$$(p \cdot q) \cdot r$$
 and $p \cdot (q \cdot r)$

for any p: x = y, q: y = z, and r: z = w in a type A. The computation rules of the identity type are not strong enough to conclude that $(p \cdot q) \cdot r$ and $p \cdot (q \cdot r)$ are judgmentally equal. However, both $(p \cdot q) \cdot r$ and $p \cdot (q \cdot r)$ are elements of the same type: they are identifications of type x = w. Since the identity type is a type like any other, we can ask whether there is an *identification*

$$(p \cdot q) \cdot r = p \cdot (q \cdot r).$$

This is a very useful idea: while it is often impossible to show that two elements of the same type are judgmentally equal, it may be the case that those two elements can be *identified*. Indeed, we identify two elements by constructing an element of the identity type, and we can use all the type theory at our disposal in order to construct such an element. In this way we can show, for example, that addition on the natural numbers or on the integers is associative and satisfies the unit laws. And indeed, here we will show that concatenation of identifications is associative and satisfies the unit laws.

Definition 5.2.3 Let *A* be a type and consider three consecutive identifications

$$x \stackrel{p}{=} y \stackrel{q}{=} z \stackrel{r}{=} w$$

in A. We define the **associator**

$$\mathsf{assoc}(p,q,r):(p \cdot q) \cdot r = p \cdot (q \cdot r).$$

Construction By the induction principle for identity types it suffices to show that

$$\prod_{(z:A)} \prod_{(q:x=z)} \prod_{(w:A)} \prod_{(r:z=w)} (\mathsf{refl}_x \boldsymbol{\cdot} q) \boldsymbol{\cdot} r = \mathsf{refl}_x \boldsymbol{\cdot} (q \boldsymbol{\cdot} r).$$

Let q: x = z and r: z = w. Note that by the computation rule of identity types we have a judgmental equality $\operatorname{refl}_x \cdot q \doteq q$. Therefore we conclude that

$$(\operatorname{refl}_x \cdot q) \cdot r \doteq q \cdot r.$$

Similarly we have a judgmental equality $\operatorname{refl}_x \cdot (q \cdot r) \doteq q \cdot r$. Thus we see that the left-hand side and the right-hand side in

$$(\operatorname{refl}_x \cdot q) \cdot r = \operatorname{refl}_x \cdot (q \cdot r)$$

are judgmentally equal, so we can simply define $assoc(refl_x, q, r) := refl_{q \cdot r}$. \Box

Definition 5.2.4 Let *A* be a type. We define the left and right **unit law operations**, which assigns to each p : x = y the identifications

$$left-unit(p) : refl_x \cdot p = p$$

right-unit(p) : $p \cdot refl_y = p$,

respectively.

Construction By identification elimination it suffices to construct

$$left-unit(refl_x) : refl_x \cdot refl_x = refl_x$$

right-unit(refl_x) : $refl_x \cdot refl_x = refl_x$.

In both cases we take $refl_{refl_x}$.

Definition 5.2.5 Let *A* be a type. We define left and right **inverse law operations**

$$\begin{aligned} &\mathsf{left}\text{-}\mathsf{inv}(p): p^{-1} \boldsymbol{\cdot} p = \mathsf{refl}_y \\ &\mathsf{right}\text{-}\mathsf{inv}(p): p \boldsymbol{\cdot} p^{-1} = \mathsf{refl}_x. \end{aligned}$$

Construction By identification elimination it suffices to construct

$$\operatorname{left-inv}(\operatorname{refl}_x) : \operatorname{refl}_x^{-1} \cdot \operatorname{refl}_x = \operatorname{refl}_x$$

 $\operatorname{right-inv}(\operatorname{refl}_x) : \operatorname{refl}_x \cdot \operatorname{refl}_x^{-1} = \operatorname{refl}_x.$

Using the computation rules we see that

$$\operatorname{refl}_{x}^{-1} \cdot \operatorname{refl}_{x} \doteq \operatorname{refl}_{x} \cdot \operatorname{refl}_{x} \doteq \operatorname{refl}_{x}$$

so we define $\mathsf{left\text{-}inv}(\mathsf{refl}_x) \coloneqq \mathsf{refl}_{\mathsf{refl}_x}$. Similarly it follows from the computation rules that

$$\operatorname{refl}_{x} \cdot \operatorname{refl}_{x}^{-1} \doteq \operatorname{refl}_{x}^{-1} \doteq \operatorname{refl}_{x}$$

so we again define right-inv(refl_x) := refl_{refl_x}.

Remark 5.2.6 We have seen that the associator, the unit laws, and the inverse laws, are all proven by constructing an identification of identifications. And indeed, there is nothing that would stop us from considering identifications of those identifications of identifications. We can go up as far as we like in the *tower of identity types*, which is obtained by iteratively taking identity types.

The iterated identity types give types in homotopy type theory a very intricate structure. One important way of studying this structure is via the homotopy groups of types, a subject that we will gradually be working towards.

5.3 The action on identifications of functions

Using the induction principle of the identity type we can show that every function preserves identifications. In other words, every function sends identified elements to identified elements. Note that this is a form of continuity for functions in type theory: if there is an identification that identifies two points x and y of a type A, then there also is an identification that identifies the values f(x) and f(y) in the codomain of f.

Definition 5.3.1 Let $f: A \to B$ be a map. We define the **action on paths** of f as an operation

$$\mathsf{ap}_f:\prod_{(x,y:A)}(x=y) \to (f(x)=f(y)).$$

Moreover, there are operations

$$\begin{aligned} \operatorname{ap-id}_A: \textstyle\prod_{(x,y:A)} \textstyle\prod_{(p:x=y)} p = \operatorname{ap}_{\operatorname{id}_A}(p) \\ \operatorname{ap-comp}(f,g): \textstyle\prod_{(x,y:A)} \textstyle\prod_{(p:x=y)} \operatorname{ap}_g(\operatorname{ap}_f(p)) = \operatorname{ap}_{g\circ f}(p). \end{aligned}$$

 ${\it Construction}$ First we define ${\it ap}_f$ by the induction principle of identity types, taking

$$ap_f(refl_x) := refl_{f(x)}$$
.

Next, we construct ap- id_A by the induction principle of identity types, taking

$$\operatorname{ap-id}_A(\operatorname{refl}_x) := \operatorname{refl}_{\operatorname{refl}_x}$$
.

Finally, we construct ap-comp(f, g) by the induction principle of identity types, taking

$$ap\text{-}comp(f, g, refl_x) := refl_{refl_{g(f(x))}}.$$

Definition 5.3.2 Let $f: A \rightarrow B$ be a map. Then there are identifications

$$\begin{aligned} \operatorname{ap-refl}(f,x): \operatorname{ap}_f(\operatorname{refl}_x) &= \operatorname{refl}_{f(x)} \\ \operatorname{ap-inv}(f,p): \operatorname{ap}_f(p^{-1}) &= \operatorname{ap}_f(p)^{-1} \\ \operatorname{ap-concat}(f,p,q): \operatorname{ap}_f(p \cdot q) &= \operatorname{ap}_f(p) \cdot \operatorname{ap}_f(q) \end{aligned}$$

for every p : x = y and q : x = y.

Construction To construct ap-refl(f, x) we simply observe that ap $_f(\text{refl}_x) \doteq \text{refl}_{f(x)}$, so we take

$$\operatorname{ap-refl}(f, x) := \operatorname{refl}_{\operatorname{refl}_{f(x)}}$$
.

We construct ap-inv(f, p) by identification elimination on p, taking

$$\operatorname{ap-inv}(f, \operatorname{refl}_{x}) := \operatorname{refl}_{\operatorname{ap}_{f}(\operatorname{refl}_{x})}.$$

Finally we construct $\operatorname{ap-concat}(f, p, q)$ by identification elimination on p, taking

$$\operatorname{ap-concat}(f,\operatorname{refl}_x,q)\coloneqq\operatorname{refl}_{\operatorname{ap}_f(q)}.$$

5.4 Transport

Dependent types also come with an action on identifications: the *transport* functions. Given an identification p : x = y in the base type A, we can transport any element b : B(x) to the fiber B(y).

Definition 5.4.1 Let *A* be a type, and let *B* be a type family over *A*. We will construct a **transport** operation

$$\operatorname{tr}_B:\prod_{(x,y:A)}(x=y)\to (B(x)\to B(y)).$$

Construction We construct $tr_B(p)$ by induction on $p: x =_A y$, taking

$$\operatorname{tr}_B(\operatorname{refl}_x) := \operatorname{id}_{B(x)}.$$

Thus we see that type theory cannot distinguish between identified elements x and y, because for any type family B over A one obtains an element of B(y) from the elements of B(x).

As an application of the transport function we construct the *dependent* action on paths of a dependent function $f: \prod_{(x:A)} B(x)$. Note that for such a dependent function f, and an identification $p: x =_A y$, it does not make sense to directly compare f(x) and f(y), since the type of f(x) is B(x) whereas the type of f(y) is B(y), which might not be exactly the same type. However, we can first *transport* f(x) along p, so that we obtain the element $\operatorname{tr}_B(p, f(x))$ which is of type B(y). Now we can ask whether it is the case that $\operatorname{tr}_B(p, f(x)) = f(y)$. The dependent action on paths of f establishes this identification.

Definition 5.4.2 Given a dependent function $f : \prod_{(a:A)} B(a)$ and an identification p : x = y in A, we construct an identification

$$\operatorname{apd}_f(p) : \operatorname{tr}_B(p, f(x)) = f(y).$$

Construction The identification $apd_f(p)$ is constructed by the induction principle for identity types. Thus, it suffices to construct an identification

$$\operatorname{apd}_f(\operatorname{refl}_x) : \operatorname{tr}_B(\operatorname{refl}_x, f(x)) = f(x).$$

Since transporting along refl_x is the identity function on B(x), we simply take $\operatorname{apd}_f(\operatorname{refl}_x) := \operatorname{refl}_{f(x)}$.

5.5 The uniqueness of refl

The identity type is an inductive *family* of types. This has some subtle, but important implications. For instance, while the type a = x indexed by x : A is inductively generated by refl_a , the type a = a is *not* inductively generated by refl_a . Hence we cannot use the induction principle of identity types to show that $p = \text{refl}_a$ for any p : a = a. The obstacle, which prevents us from applying the induction principle of identity types in this case, is that the endpoint of p : a = a is not free.

Nevertheless, the identity type a = x is generated by a single element refl_a : a = a, so it is natural to wonder in what sense the reflexivity identification is unique. An identification with an element a is specified by first giving the endpoint x with which we seek to identify a, and then giving the identification

p: a = x. It is therefore only the pair $(a, refl_a)$ which is unique in the type of all pairs

$$(x,p): \sum_{(x:A)} a = x.$$

We prove this fact in the following proposition.

Proposition 5.5.1 Consider an element a: A. Then there is an identification

$$(a, refl_a) = y$$

in the type $\sum_{(x:A)} a = x$, for any $y : \sum_{(x:A)} a = x$.

Proof By Σ -induction it suffices to show that there is an identification

$$(a, refl_a) = (x, p)$$

for any x : A and p : a = x. We proceed by the induction principle of identity types. Therefore it suffices to show that

$$(a, refl_a) = (a, refl_a).$$

П

We obtain such an identification by reflexivity.

Proposition 5.5.1 shows that there is, up to identification, only one element in Σ -type of the identity type. Such types are called contractible, and they are the subject of Section 10.

5.6 The laws of addition on \mathbb{N}

Now that we have introduced the identity type, we can start proving equations. We will prove here that there are identifications

$$0 + n = n$$

$$\operatorname{succ}_{\mathbb{N}}(m) + n = \operatorname{succ}_{\mathbb{N}}(m+n)$$

$$(m+n) + k = m + (n+k)$$

$$m + 0 = m$$

$$m + \operatorname{succ}_{\mathbb{N}}(n) = \operatorname{succ}_{\mathbb{N}}(m+n)$$

$$m + n = n + m.$$

The unit laws, associativity, and commutativity of addition are of course familiar. The successor laws will be useful to prove commutativity. In Exercise 5.5 you will be asked to prove the laws of multiplication on \mathbb{N} . There will again be *successor laws* as part of this exercise, because they are useful intermediate steps in the more complicated laws.

Recall that addition on the natural numbers is defined in such a way that

$$m + 0 \doteq m$$
 $m + \operatorname{succ}_{\mathbb{N}}(n) \doteq \operatorname{succ}_{\mathbb{N}}(m + n).$

These two judgmental equalities are all we currently know about the function $m, n \mapsto m + n$ on \mathbb{N} . Consequently, we will have to find ways to apply these two judgmental equalities in our proofs of the laws of addition. Of course, the judgmental equalities coincide with two of the six laws. For the remaining four laws, we will have to proceed by induction on \mathbb{N} .

Proposition 5.6.1 *For any natural number n, there are identifications*

left-unit-law-add_N
$$(n)$$
: $0 + n = n$
right-unit-law-add_N (n) : $n + 0 = n$.

Proof We can define

$$right-unit-law-add_{\mathbb{N}}(n) := refl_n$$
,

because the computation rule for addition gives us that $n + 0 \doteq n$.

It remains to define the left unit law. We proceed by induction on n. In the base case we have to show that 0 + 0 = 0, which holds by reflexivity. For the inductive step, assume that we have an identification p : 0 + n = n. Our goal is to show that $0 + \mathsf{succ}_{\mathbb{N}}(n) = \mathsf{succ}_{\mathbb{N}}(n)$. However, it suffices to construct an identification

$$succ_{\mathbb{N}}(0+n) = succ_{\mathbb{N}}(n),$$

because by the computation rule for addition we have that $0 + \text{succ}_{\mathbb{N}}(n) \doteq \text{succ}_{\mathbb{N}}(0+n)$. Now we use the action on paths of $\text{succ}_{\mathbb{N}} : \mathbb{N} \to \mathbb{N}$ to obtain

$$\operatorname{ap}_{\operatorname{succ}_{\mathbb{N}}}(p) : \operatorname{succ}_{\mathbb{N}}(0+n) = \operatorname{succ}_{\mathbb{N}}(n).$$

The left unit law is therefore defined by

$$\mathsf{left}\text{-}\mathsf{unit}\text{-}\mathsf{law}\text{-}\mathsf{add}_{\mathbb{N}}(n) \coloneqq \mathsf{ind}_{\mathbb{N}}(\mathsf{refl}_0, \lambda p.\,\mathsf{ap}_{\mathsf{succ}_{\mathbb{N}}}(p)). \qquad \qquad \Box$$

Proposition 5.6.2 For any natural numbers m and n, there are identifications

left-successor-law-add
$$_{\mathbb{N}}(m,n)$$
: $\operatorname{succ}_{\mathbb{N}}(m)+n=\operatorname{succ}_{\mathbb{N}}(m+n)$
right-successor-law-add $_{\mathbb{N}}(m,n)$: $m+\operatorname{succ}_{\mathbb{N}}(n)=\operatorname{succ}_{\mathbb{N}}(m+n)$.

Proof We can define

right-successor-law-add_N
$$(m, n) := refl_{succ_N(m+n)}$$

because we have a judgmental equality $m + succ_{\mathbb{N}}(n) \doteq succ_{\mathbb{N}}(m+n)$ by the computation rules for $add_{\mathbb{N}}$.

The left successor law is constructed by induction on n. In the base case

we have to construct an identification $succ_{\mathbb{N}}(m) + 0 = succ_{\mathbb{N}}(m+0)$, which is obtained by reflexivity. For the inductive step, assume that we have an identification $p : succ_{\mathbb{N}}(m) + n = succ_{\mathbb{N}}(m+n)$. Our goal is to show that

$$\operatorname{succ}_{\mathbb{N}}(m) + \operatorname{succ}_{\mathbb{N}}(n) = \operatorname{succ}_{\mathbb{N}}(m + \operatorname{succ}_{\mathbb{N}}(n)).$$

Note that we have the judgmental equalities

$$\operatorname{succ}_{\mathbb{N}}(m) + \operatorname{succ}_{\mathbb{N}}(n) \doteq \operatorname{succ}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(m) + n)$$

 $\operatorname{succ}_{\mathbb{N}}(m + \operatorname{succ}_{\mathbb{N}}(n)) \doteq \operatorname{succ}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(m + n))$

Therefore it suffices to construct an identification

$$succ_{\mathbb{N}}(succ_{\mathbb{N}}(m) + n) = succ_{\mathbb{N}}(succ_{\mathbb{N}}(m + n)).$$

П

Such an identification is given by $ap_{succ_{\mathbb{N}}}(p)$.

Proposition 5.6.3 Addition on the natural numbers is associative, i.e., for any three natural numbers m, n, and k, there is an identification

associative-add_N
$$(m, n, k)$$
: $(m + n) + k = m + (n + k)$.

Proof We construct associative-add_N(m, n, k) by induction on k. In the base case we have the judgmental equalities

$$(m+n)+0 \doteq m+n \doteq m+(n+0).$$

Therefore we define associative-add_N $(m, n, 0) := refl_{m+n}$.

For the inductive step, let p:(m+n)+k=m+(n+k). Our goal is to show that

$$(m+n) + \operatorname{succ}_{\mathbb{N}}(k) = m + (n + \operatorname{succ}_{\mathbb{N}}(k)).$$

Note that we have the judgmental equalities

$$(m+n) + \operatorname{succ}_{\mathbb{N}}(k) \doteq \operatorname{succ}_{\mathbb{N}}((m+n)+k)$$

 $m + (n + \operatorname{succ}_{\mathbb{N}}(k)) \doteq m + (\operatorname{succ}_{\mathbb{N}}(n+k))$
 $\doteq \operatorname{succ}_{\mathbb{N}}(m+(n+k))$

Therefore it suffices to construct an identification

$$\operatorname{succ}_{\mathbb{N}}((m+n)+k) = \operatorname{succ}_{\mathbb{N}}(m+(n+k)),$$

which we have by $ap_{succ_{\mathbb{N}}}(p)$.

Proposition 5.6.4 Addition on the natural numbers is commutative, i.e., for any two natural numbers m and n there is an identification

commutative-add_N
$$(m, n)$$
: $m + n = n + m$.

Proof We construct commutative-add_N(m, n) by induction on m. In the base case we have to show that 0 + n = n + 0, which holds by the unit laws for n, proven in Proposition 5.6.1.

For the inductive step, let p: m+n=n+m. Our goal is to construct an identification $\operatorname{succ}_{\mathbb{N}}(m)+n=n+\operatorname{succ}_{\mathbb{N}}(m)$. Now it is clear why we first proved the successor laws: we compute

$$succ_{\mathbb{N}}(m) + n = succ_{\mathbb{N}}(m+n)$$

= $succ_{\mathbb{N}}(n+m)$
= $n + succ_{\mathbb{N}}(m)$.

The first identification is obtained by Proposition 5.6.2, and the second identification is the identification $ap_{SUCC}(p)$.

Exercises

5.1 Show that the operation inverting identifications distributes over the concatenation operation, i.e., construct an identification

distributive-inv-concat
$$(p,q):(p \cdot q)^{-1}=q^{-1} \cdot p^{-1}$$
.

for any p : x = y and q : y = z.

5.2 For any p: x = y, q: y = z, and r: x = z, construct maps

$$\operatorname{inv-con}(p,q,r): (p \cdot q = r) \to (q = p^{-1} \cdot r)$$
$$\operatorname{con-inv}(p,q,r): (p \cdot q = r) \to (p = r \cdot q^{-1}).$$

5.3 Let *B* be a type family over *A*, and consider an identification p : a = x in *A*. Construct for any b : B(a) an identification

$$\mathsf{lift}_B(p,b):(a,b)=(x,\mathsf{tr}_B(p,b)).$$

In other words, an identification p : x = y in the *base type A lifts* to an identification in $\sum_{(x:A)} B(x)$ for every element in B(x), analogous to the path lifting property for fibrations in homotopy theory.

5.4 Consider four consecutive identifications

$$a \stackrel{p}{=} b \stackrel{q}{=} c \stackrel{r}{=} d \stackrel{s}{=} e$$

in a type *A*. In this exercise we will show that the **Mac Lane pentagon** for identifications commutes.

(a) Construct the five identifications $\alpha_1, \ldots, \alpha_5$ in the pentagon

where α_1 , α_2 , and α_3 run counter-clockwise, and α_4 and α_5 run clockwise.

(b) Show that

$$(\alpha_1 \cdot \alpha_2) \cdot \alpha_3 = \alpha_4 \cdot \alpha_5.$$

- 5.5 In this exercise we show that the operations of addition and multiplication on the natural numbers satisfy the laws of a commutative **semi-ring**.
 - (a) Show that multiplication satisfies the following laws:

$$m \cdot 0 = 0$$
 $m \cdot 1 = m$ $m \cdot \operatorname{succ}_{\mathbb{N}}(n) = m + m \cdot n$
 $0 \cdot m = 0$ $1 \cdot m = m$ $\operatorname{succ}_{\mathbb{N}}(m) \cdot n = m \cdot n + n$.

(b) Show that multiplication on \mathbb{N} is commutative:

$$m \cdot n = n \cdot m$$
.

(c) Show that multiplication on $\mathbb N$ distributes over addition from the left and from the right, i.e., show that we have identifications

$$m \cdot (n+k) = m \cdot n + m \cdot k$$

 $(m+n) \cdot k = m \cdot k + n \cdot k$.

(d) Show that multiplication on \mathbb{N} is associative:

$$(m \cdot n) \cdot k = m \cdot (n \cdot k).$$

5.6 Show that

$$\operatorname{succ}_{\mathbb{Z}}(\operatorname{pred}_{\mathbb{Z}}(k)) = k$$
 and $\operatorname{pred}_{\mathbb{Z}}(\operatorname{succ}_{\mathbb{Z}}(k)) = k$

for any $k : \mathbb{Z}$, where $\mathsf{pred}_{\mathbb{Z}}$ is the predecessor function on the integers, defined in Exercise 4.1 (a).

- 5.7 In this exercise we will show that the laws for abelian groups hold for addition on the integers, using the group operations on \mathbb{Z} defined in Exercise 4.1 (b).
 - (a) Show that addition satisfies the left and right unit laws, i.e., show that

$$0 + x = x$$
$$x + 0 = x.$$

(b) Show that the following successor and predecessor laws hold for addition on \mathbb{Z} .

$$\begin{aligned} \operatorname{pred}_{\mathbb{Z}}(x) + y &= \operatorname{pred}_{\mathbb{Z}}(x+y) & \operatorname{succ}_{\mathbb{Z}}(x) + y &= \operatorname{succ}_{\mathbb{Z}}(x+y) \\ x + \operatorname{pred}_{\mathbb{Z}}(y) &= \operatorname{pred}_{\mathbb{Z}}(x+y) & x + \operatorname{succ}_{\mathbb{Z}}(y) &= \operatorname{succ}_{\mathbb{Z}}(x+y). \end{aligned}$$

(c) Use part (b) to show that addition on the integers is associative and commutative, show that

$$(x + y) + z = x + (y + z)$$
$$x + y = y + x.$$

(d) Show that addition satisfies the left and right inverse laws:

$$(-x) + x = 0$$
$$x + (-x) = 0.$$

- 5.8 In this exercise we will show that \mathbb{Z} satisfies the axioms of a **ring**, using the multiplication operation defined in Exercise 4.1 (c).
 - (a) Show that multiplication on \mathbb{Z} satisfies the following laws for 0 and 1:

$$0 \cdot x = 0 \qquad 1 \cdot x = x$$
$$x \cdot 0 = 0 \qquad x \cdot 1 = x.$$

(b) Show that multiplication on $\mathbb Z$ satisfies the predecessor and successor laws:

$$\operatorname{pred}_{\mathbb{Z}}(x) \cdot y = x \cdot y - y \qquad \operatorname{succ}_{\mathbb{Z}}(x) \cdot y = x \cdot y + y$$
$$x \cdot \operatorname{pred}_{\mathbb{Z}}(y) = x \cdot y - x \qquad y \cdot \operatorname{succ}_{\mathbb{Z}}(y) = x \cdot y + x.$$

(c) Show that multiplication on \mathbb{Z} distributes over addition, both from the left and from the right:

$$x \cdot (y + z) = x \cdot y + x \cdot z$$
$$(x + y) \cdot z = x \cdot z + y \cdot z.$$

(d) Show that multiplication on *Z* is associative and commutative:

$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

 $x \cdot y = y \cdot x.$

6 Universes

To complete our specification of dependent type theory, we introduce type theoretic *universes*. Universes can be thought of as types that consist of types. In reality, however, a universe consists of a type $\mathcal U$ equipped with a type family $\mathcal T$ over $\mathcal U$. For any $X:\mathcal U$ we think of X as an *encoding* of the type $\mathcal T(X)$. The type family $\mathcal T$ is called a *universal type family*.

There are several reasons to equip type theory with universes. One important reason is that it enables us to define new type families over inductive types, using their induction principle. We use this way of defining type families to define many familiar relations over \mathbb{N} , such as the ordering relations \leq and <. We also introduce a relation Eq $_{\mathbb{N}}$ called the *observational equality* on \mathbb{N} . This equivalence relation can be used to show that $0_{\mathbb{N}} \neq 1_{\mathbb{N}}$.

The idea of introducing an observational equality relation for a particular type is that it should help us thinking about the identity type. The identity type has been introduced in a very generic and uniform way. In specific cases, however, we have a clear idea of what the equality relation *should be*. In the case of the natural numbers, for instance, we will use the observational equality $Eq_{\mathbb{N}}$ to characterize the identity type of \mathbb{N} . Characterizing identity types is one of the main themes in homotopy type theory.

A second reason to introduce universes is that it allows us to define many

types of types equipped with structure. One of the most important examples is the type of groups, which is the type of types equipped with the group operations satisfying the group laws, and for which the underlying type is a set. We won't discuss the condition for a type to be a set until Section 12, so the definition of groups in type theory will be given much later.

6.1 Specification of type theoretic universes

A universe consists of a type \mathcal{U} of which the elements can be thought of as 'codes' for types. A universe also comes equipped with a type family \mathcal{T} indexed by \mathcal{U} . Given an element $X:\mathcal{U}$, we think of the type $\mathcal{T}(X)$ as the type of elements of X. The family \mathcal{T} is called the **universal type family**.

One of the distinguishing features of universes is that they are closed under all the type constructors. Given a universe $\mathcal U$ with universal type family $\mathcal T$, how do we express that $\mathcal U$ is closed under Σ -types, for example? Recall that a Σ -type is formed using a type A and a type family B over A. Thus, if A is a type in $\mathcal U$ and B is a family of types in $\mathcal U$, we would like to express that the Σ -type is also a type in $\mathcal U$. However, we cannot just assert that $\sum_{(x:A)} B(x)$ is an element of the universe, because type theory carefully distinguishes between types and elements.

We express that $\mathcal U$ is closed under Σ -types using a new operation $\check{\Sigma}$, which takes two arguments. The first argument is an element $X:\mathcal U$, and the second argument is a family of types in $\mathcal U$ indexed by the elements of X, i.e., a map $\mathcal T(X) \to \mathcal U$. Thus we say that $\mathcal U$ is closed under Σ -types by asserting that $\mathcal U$ comes equipped with an operation

$$\check{\Sigma}:\prod_{(X:\mathcal{U})}(\mathcal{T}(X)\to\mathcal{U})\to\mathcal{U}$$

Furthermore, we ask that the element $\check{\Sigma}(X,Y)$: ${\cal U}$ satisfies the judgmental equality

$$\mathcal{T}(\check{\Sigma}(X,Y)) \doteq \sum_{(x:\mathcal{T}(X))} \mathcal{T}(Y(x)).$$

This judgmental equality asserts that the element $\check{\Sigma}(X,Y)$ of the universe \mathcal{U} represents the Σ -type $\sum_{(x:\mathcal{T}(X))} \mathcal{T}(Y(x))$.

We will similarly assume that universes are closed under Π -types and the other ways of forming types. However, there is an important restriction: it would be inconsistent to assume that the universe is contained in itself. One way of thinking about this is that universes are types of *small* types,

and it cannot be the case that the universe is small with respect to itself. In Section 20.6 we will use a variant of Russell's paradox to derive a contradiction when $\mathcal U$ is assumed to be (equivalent to a type) in $\mathcal U$. Instead of assuming that the universe contains itself, we will assume that there are plenty of universes: enough universes so that any type family can be obtained by substituting into the universal type family of some universe.

Definition 6.1.1 A **universe** in type theory is a type \mathcal{U} in the empty context, equipped with a type family \mathcal{T} over \mathcal{U} called a **universal family**, that is closed under the type forming operations in the sense that it comes equipped with the following structure:

(i) $\mathcal U$ is closed under Π , in the sense that it comes equipped with a function

$$\check{\Pi}: \textstyle\prod_{(X:\mathcal{U})}(\mathcal{T}(X) \to \mathcal{U}) \to \mathcal{U}$$

for which the judgmental equality

$$\mathcal{T}(\check{\Pi}(X,Y)) \doteq \prod_{(x:\mathcal{T}(X))} \mathcal{T}(Y(x)).$$

holds, for every $X : \mathcal{U}$ and $Y : \mathcal{T}(X) \to \mathcal{U}$.

(ii) ${\mathcal U}$ is closed under Σ in the sense that it comes equipped with a function

$$\check{\Sigma}:\prod_{(X:\mathcal{U})}(\mathcal{T}(X)\to\mathcal{U})\to\mathcal{U}$$

for which the judgmental equality

$$\mathcal{T}(\check{\Sigma}(X,Y)) \doteq \sum_{(x:\mathcal{T}(X))} \mathcal{T}(Y(x))$$

holds, for every $X : \mathcal{U}$ and $Y : \mathcal{T}(X) \to \mathcal{U}$.

(iii) \mathcal{U} is closed under identity types, in the sense that it comes equipped with a function

$$\check{\mathbf{I}}: \prod_{(X:\mathcal{U})} \mathcal{T}(X) \to (\mathcal{T}(X) \to \mathcal{U})$$

for which the judgmental equality

$$\mathcal{T}\big(\check{\mathrm{I}}(X,x,y)\big) \doteq (x=y)$$

holds, for every $X : \mathcal{U}$ and $x, y : \mathcal{T}(X)$.

(iv) ${\cal U}$ is closed under coproducts, in the sense that it comes equipped with a function

$$\check{+}:\mathcal{U}\to(\mathcal{U}\to\mathcal{U})$$

that satisfies $\mathcal{T}(X + Y) \doteq \mathcal{T}(X) + \mathcal{T}(Y)$.

(v) $\mathcal U$ contains elements $\check{\emptyset}$, $\check{\mathbf 1}$, $\check{\mathbb N}$: $\mathcal U$ that satisfy the judgmental equalities

$$\mathcal{T}(\check{\emptyset}) \doteq \emptyset$$
$$\mathcal{T}(\check{\mathbf{1}}) \doteq \mathbf{1}$$

$$\mathcal{T}(\check{\mathbb{N}}) \doteq \mathbb{N}.$$

Consider a universe \mathcal{U} and a type A in context Γ . We say that A is a type in \mathcal{U} , or that \mathcal{U} contains A, if \mathcal{U} comes equipped with an element $\check{A}:\mathcal{U}$ in context Γ , for which the judgment

$$\Gamma \vdash \mathcal{T}(\check{A}) \doteq A \text{ type}$$

holds. If A is a type in \mathcal{U} , we usually write simply A for \check{A} and also A for $\mathcal{T}(\check{A})$.

Remark 6.1.2 Since ordinary function types are defined as a special case of dependent function types, we don't have to assume separately that universes are closed under ordinary function types. Similarly, it follows from the assumption that universes are closed under dependent pair types that universes are closed under cartesian product types.

6.2 Assuming enough universes

Most of the time we will get by with assuming one universe \mathcal{U} , and indeed we recommend on a first reading of this text to simply assume that there is one universe \mathcal{U} . However, sometimes we might want to consider the universe \mathcal{U} itself to be a type in some universe. In such situations we cannot get by with a single universe, because the assumption that \mathcal{U} is a element of itself would lead to inconsistencies like the Russell's paradox.

Russell's paradox is the famous argument that there cannot be a set of all sets. If there were such a set *S*, then we could consider Russell's subset

$$R := \{ x \in S \mid x \notin x \}.$$

Russell then observed that $R \in R$ if and only if $R \notin R$, so we reach a contradiction. A variant of this argument reaches a similar contradiction when we assume that \mathcal{U} is a universe that contains an element $\check{\mathcal{U}} : \mathcal{U}$ such that $\mathcal{T}(\check{\mathcal{U}}) \doteq \mathcal{U}$. In order to avoid such paradoxes, Russell and Whitehead formulated the *ramified theory of types* in their book *Principia Mathematica*. The ramified theory of types is a precursor of Martin Löf's type theory that we are studying in this book.

Even though the universe is not an element of itself, it is still convenient if every type, including any universe, is in *some* universe. Therefore we will assume that there are sufficiently many universes:

Postulate 6.2.1 We assume that there are **enough universes**, i.e., that for every finite list of types in context

$$\Gamma_1 \vdash A_1 \text{ type} \qquad \cdots \qquad \Gamma_n \vdash A_n \text{ type},$$

there is a universe $\mathcal U$ that contains each A_i in the sense that $\mathcal U$ comes equipped with

$$\Gamma_i \vdash \check{A}_i : \mathcal{U}$$

for which the judgment

$$\Gamma_i \vdash \mathcal{T}(\check{A}_i) \doteq A_i \text{ type}$$

holds.

With this assumption it will rarely be necessary to work with more than one universe at the same time. Using the assumption that for any finite list of types in context there is a universe that contains those types, we obtain many specific universes.

Definition 6.2.2 The **base universe** \mathcal{U}_0 is the universe that we obtain using Postulate 6.2.1 with the empty list of types in context.

In other words, the base universe is a universe that is closed under all the ways of forming types, but it isn't specified to contain any further types.

Definition 6.2.3 The **successor universe** of a universe \mathcal{U} is the universe \mathcal{U}^+ obtained using Postulate 6.2.1 with the finite list

$$\vdash \mathcal{U}$$
 type $X : \mathcal{U} \vdash \mathcal{T}(X)$ type.

Remark 6.2.4 The successor universe \mathcal{U}^+ of \mathcal{U} therefore contains the type \mathcal{U} as well as every type in \mathcal{U} , in the following sense

$$\vdash \check{\mathcal{U}} : \mathcal{U}^{+} \qquad \qquad \vdash \mathcal{T}^{+}(\check{\mathcal{U}}) \doteq \mathcal{U} \text{ type}$$

$$X : \mathcal{U} \vdash \check{\mathcal{T}}(X) : \mathcal{U}^{+} \qquad \qquad X : \mathcal{U} \vdash \mathcal{T}^{+}(\check{\mathcal{T}}(X)) \doteq \mathcal{T}(X) \text{ type}.$$

In particular, we obtain a function $i: \mathcal{U} \to \mathcal{U}^+$ that includes the types in \mathcal{U} into \mathcal{U}^+ , given by

$$i := \lambda X. \check{\mathcal{T}}(X).$$

Using successor universes we can create an infinite tower

$$\mathcal{U}$$
, \mathcal{U}^+ , \mathcal{U}^{++} , ...

of universes, starting at any universe \mathcal{U} , in which each universe is contained in the next. However, such towers of universes need not be exhaustive in the sense that it might not be the case that every type is contained in a universe in this tower.

Definition 6.2.5 The **join** of two universes \mathcal{U} and \mathcal{V} is the universe $\mathcal{U} \sqcup \mathcal{V}$ that we obtain using Postulate 6.2.1 with the two types

$$X : \mathcal{U} \vdash \mathcal{T}_{\mathcal{U}}(X)$$
 type $Y : \mathcal{V} \vdash \mathcal{T}_{\mathcal{V}}(Y)$ type.

Remark 6.2.6 Since the join $\mathcal{U} \sqcup \mathcal{V}$ contains all the types in \mathcal{U} and \mathcal{V} , there are maps

$$i: \mathcal{U} \to \mathcal{U} \sqcup \mathcal{V}$$

 $j: \mathcal{V} \to \mathcal{U} \sqcup \mathcal{V}$

Note that we don't postulate any relations between the universes. In general it will therefore be the case that the universes $(\mathcal{U} \sqcup \mathcal{V}) \sqcup \mathcal{W}$ and $\mathcal{U} \sqcup (\mathcal{V} \sqcup \mathcal{W})$ will be unrelated.

6.3 Observational equality of the natural numbers

Using universes, we can define many relations on the natural numbers. We give here the example of *observational equality* of \mathbb{N} . The idea of observational equality is that, if we want to prove that m and n are observationally equal, we may do so by looking at m and n:

- (i) If both m and n are 0_N , then they are observationally equal.
- (ii) If one of them is 0_N and the other is a successor, then they are not observationally equal.

(iii) If both m and n are successors, say $m \doteq \mathsf{succ}_{\mathbb{N}}(m')$ and $n \doteq \mathsf{succ}_{\mathbb{N}}(n')$, then m and n are observationally equal if and only if their predecessors m' and n' are observationally equal.

Thus, observational equality is an inductively defined relation, which gives us an algorithm for checking equality on \mathbb{N} . Indeed, it can be used to show that equality of natural numbers is *decidable*, i.e., there is a program that decides for any two natural numbers m and n whether they are equal or not.

Definition 6.3.1 We define the **observational equality** of \mathbb{N} as binary relation $\mathsf{Eq}_{\mathbb{N}}: \mathbb{N} \to (\mathbb{N} \to \mathcal{U}_0)$ satisfying

$$\begin{split} \mathsf{Eq}_{\mathbb{N}}(0_{\mathbb{N}},0_{\mathbb{N}}) &\doteq \mathbf{1} & \mathsf{Eq}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(n),0_{\mathbb{N}}) &\doteq \emptyset \\ \mathsf{Eq}_{\mathbb{N}}(0_{\mathbb{N}},\mathsf{succ}_{\mathbb{N}}(n)) &\doteq \emptyset & \mathsf{Eq}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(n),\mathsf{succ}_{\mathbb{N}}(m)) &\doteq \mathsf{Eq}_{\mathbb{N}}(n,m). \end{split}$$

Construction We define $Eq_{\mathbb{N}}$ by double induction on \mathbb{N} . By the first application of induction it suffices to provide

$$E_0: \mathbb{N} \to \mathcal{U}_0$$

$$E_S: \mathbb{N} \to ((\mathbb{N} \to \mathcal{U}_0) \to (\mathbb{N} \to \mathcal{U}_0))$$

We define E_0 by induction, taking $E_{00} := \mathbf{1}$ and $E_{0S}(n, X, m) := \emptyset$. The resulting family E_0 satisfies

$$E_0(0_{\mathbb{N}}) \doteq \mathbf{1}$$

$$E_0(\operatorname{succ}_{\mathbb{N}}(n)) \doteq \emptyset.$$

We define E_S by induction, taking $E_{S0} := \emptyset$ and $E_{SS}(n, X, m) := X(m)$. The resulting family E_S satisfies

$$E_S(n, X, 0_{\mathbb{N}}) \doteq \emptyset$$

$$E_S(n, X, succ_{\mathbb{N}}(m)) \doteq X(m)$$

Therefore we have by the computation rule for the first induction that the judgmental equality

$$\begin{split} \mathsf{Eq}_{\mathbb{N}}(0_{\mathbb{N}}, m) &\doteq E_0(m) \\ \mathsf{Eq}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(n), m) &\doteq E_S(n, \mathsf{Eq}_{\mathbb{N}}(n), m) \end{split}$$

holds, from which the judgmental equalities in the statement of the definition follow.

The observational equality of the natural numbers is important because it can be used to prove equalities and negations of equalities. Proposition 6.3.3 enables us to do so.

Lemma 6.3.2 Observational equality of \mathbb{N} is a reflexive relation, i.e., we have

$$\mathsf{refl}\text{-}\mathsf{Eq}_{\mathbb{N}}:\prod_{(n:\mathbb{N})}\mathsf{Eq}_{\mathbb{N}}(n,n).$$

Proof The function refl-Eq $_{\mathbb{N}}$ is defined by induction on n, taking

$$\operatorname{refl-Eq}_{\mathbb{N}}(0_{\mathbb{N}}) \coloneqq \star$$

$$\operatorname{refl-Eq}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(n)) \coloneqq \operatorname{refl-Eq}_{\mathbb{N}}(n).$$

Proposition 6.3.3 *For any two natural numbers m and n, we have*

$$(m = n) \leftrightarrow \mathsf{Eq}_{\mathbb{N}}(m, n).$$

Proof The function $(m = n) \to \mathsf{Eq}_{\mathbb{N}}(m,n)$ is defined by the induction principle of identity types, using the reflexivity of $\mathsf{Eq}_{\mathbb{N}}$.

The converse $\mathsf{Eq}_{\mathbb{N}}(m,n) \to (m=n)$ is defined by induction on m and n. If both m and n are zero, we have $\mathsf{refl}_{\mathbb{O}_{\mathbb{N}}} : \mathbb{O}_{\mathbb{N}} = \mathbb{O}_{\mathbb{N}}$. If one of m and n is zero and the other is a successor, then $\mathsf{Eq}_{\mathbb{N}}(m,n)$ is empty and we have a function $\emptyset \to (m=n)$ by the induction principle of the empty type. In the inductive step, suppose we have a function $f : \mathsf{Eq}_{\mathbb{N}}(m,n) \to (m=n)$. Then we can define a function

$$\operatorname{Eq}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(m), \operatorname{succ}_{\mathbb{N}}(n)) \to (\operatorname{succ}_{\mathbb{N}}(m) = \operatorname{succ}_{\mathbb{N}}(n))$$

as the composite

Note that the map on the left is the identity function, because we have the judgmental equality $\mathsf{Eq}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(m),\mathsf{succ}_{\mathbb{N}}(n)) \doteq \mathsf{Eq}_{\mathbb{N}}(m,n)$ by definition of $\mathsf{Eq}_{\mathbb{N}}$.

6.4 Peano's seventh and eighth axioms

Using the observational equality of \mathbb{N} , we can prove Peano's seventh and eighth axioms. In his *Arithmetices Principia* [20], the natural numbers are based at 1, but today it is customary to have the natural numbers based at 0. Adapting for this, the seventh and eighth axioms assert that

(P7) For any two natural numbers m and n, we have

$$(m = n) \leftrightarrow (\operatorname{succ}_{\mathbb{N}}(m) = \operatorname{succ}_{\mathbb{N}}(n)).$$

(P8) For any natural number n, we have $0_{\mathbb{N}} \neq \operatorname{succ}_{\mathbb{N}}(n)$.

Theorem 6.4.1 For any two natural numbers m and n, we have

$$(m = n) \leftrightarrow (\operatorname{succ}_{\mathbb{N}}(m) = \operatorname{succ}_{\mathbb{N}}(n)).$$

Proof The forward implication is given by the action on paths of the successor function

$$\operatorname{ap}_{\operatorname{succ}_{\mathbb{N}}}: (m=n) \to (\operatorname{succ}_{\mathbb{N}}(m) = \operatorname{succ}_{\mathbb{N}}(n)).$$

The direction of interest is the converse, which asserts that the successor function is injective.

Here we use Proposition 6.3.3, which asserts that $(m = n) \leftrightarrow \mathsf{Eq}_{\mathbb{N}}(m,n)$ for all $m, n : \mathbb{N}$. Furthermore, we have $\mathsf{Eq}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(m), \mathsf{succ}_{\mathbb{N}}(n)) \doteq \mathsf{Eq}_{\mathbb{N}}(m,n)$. Therefore, we obtain

$$(\operatorname{succ}_{\mathbb{N}}(m) = \operatorname{succ}_{\mathbb{N}}(n)) \xrightarrow{----} (m = n)$$

$$\downarrow \qquad \qquad \uparrow$$

$$\operatorname{Eq}_{\mathbb{N}}(\operatorname{succ}_{\mathbb{N}}(m), \operatorname{succ}_{\mathbb{N}}(n)) \xrightarrow{\operatorname{id}} \operatorname{Eq}_{\mathbb{N}}(m, n),$$

and we define the function $(\operatorname{succ}_{\mathbb{N}}(m) = \operatorname{succ}_{\mathbb{N}}(n)) \to (m = n)$ as the composite of the maps going down, then right, and then up.

Theorem 6.4.2 For any natural number n, we have $0_{\mathbb{N}} \neq \text{succ}_{\mathbb{N}}(n)$.

Proof By Proposition 6.3.3 it follows that there is a family of maps

$$(0_{\mathbb{N}} = n) \to \mathsf{Eq}_{\mathbb{N}}(0_{\mathbb{N}}, n).$$

indexed by $n : \mathbb{N}$. Since $Eq_{\mathbb{N}}(0_{\mathbb{N}}, succ_{\mathbb{N}}(n)) \doteq \emptyset$ it follows that

$$(0_{\mathbb{N}}=\mathrm{succ}_{\mathbb{N}}(n))\to\emptyset,$$

which is precisely the claim.

Exercises

6.1 (a) Show that

$$(m = n) \leftrightarrow (m + k = n + k)$$

 $(m = n) \leftrightarrow (m \cdot (k + 1) = n \cdot (k + 1))$

for all $m, n, k : \mathbb{N}$. In other words, adding k and multiplying by k + 1 are injective functions.

(b) Show that

$$(m+n=0) \leftrightarrow (m=0) \times (n=0)$$
$$(mn=0) \leftrightarrow (m=0) + (n=0)$$
$$(mn=1) \leftrightarrow (m=1) \times (n=1)$$

for all $m, n : \mathbb{N}$.

(c) Show that

$$m \neq m + (n + 1)$$

 $m + 1 \neq (m + 1)(n + 2)$

for all $m, n : \mathbb{N}$.

- 6.2 (a) Define observational equality Eq-bool by induction on the booleans.
 - (b) Show that

$$(x = y) \leftrightarrow \mathsf{Eq\text{-}bool}(x, y)$$

for any x, y: bool.

- (c) Show that $b \neq \mathsf{neg\text{-}bool}(b)$ for any b: bool. Conclude that false \neq true.
- 6.3 The ordering relation \leq on \mathbb{N} is defined recursively by

$$(0_{\mathbb{N}} \le 0_{\mathbb{N}}) := \mathbf{1}$$
 $(0_{\mathbb{N}} \le n+1) := \mathbf{1}$ $(m+1 \le 0_{\mathbb{N}}) := \emptyset$ $(m+1 \le n+1) := (m \le n).$

- (a) Show that \leq satisfies the axioms of a *poset*, i.e., show that \leq is
 - (i) reflexive,
 - (ii) antisymmetric, and
 - (iii) transitive.

(b) Show that

$$(m \le n) + (n \le m)$$

for any $m, n : \mathbb{N}$.

(c) Show that

$$(m \le n) \leftrightarrow (m + k \le n + k)$$

holds for any $m, n, k : \mathbb{N}$.

(d) Show that

$$(m \le n) \leftrightarrow (m \cdot (k+1) \le n \cdot (k+1))$$

holds for any $m, n, k : \mathbb{N}$.

- (e) Show that $k \leq \min_{\mathbb{N}}(m, n)$ holds if and only if both $k \leq m$ and $k \leq n$ hold, and show that $\max_{\mathbb{N}}(m, n) \leq k$ holds if and only if both $m \leq k$ and $n \leq k$ hold.
- 6.4 The strict ordering relation < on \mathbb{N} is defined recursively by

$$(0_{\mathbb{N}} < 0_{\mathbb{N}}) := \emptyset$$
 $(0_{\mathbb{N}} < n+1) := 1$
 $(m+1 < 0_{\mathbb{N}}) := \emptyset$ $(m+1 < n+1) := (m < n).$

- (a) Show that the strict ordering relation is
 - (i) antireflexive,
 - (ii) antisymmetric, and
 - (iii) transitive.
- (b) Show that n < n + 1 and

$$(m < n) \rightarrow (m < n + 1)$$

for any $m, n : \mathbb{N}$.

(c) Show that

$$(m < n) \leftrightarrow (m + 1 \le n)$$

 $(m < n) \leftrightarrow (n \le m)$

for any $m, n : \mathbb{N}$.

6.5 The distance function

$$\mathsf{dist}_{\mathbb{N}}: \mathbb{N} \to (\mathbb{N} \to \mathbb{N})$$

is defined recursively by

$$\begin{split} \operatorname{dist}_{\mathbb{N}}(0,0) &\coloneqq 0 & \operatorname{dist}_{\mathbb{N}}(0,n+1) \coloneqq n+1 \\ \operatorname{dist}_{\mathbb{N}}(m+1,0) &\coloneqq m+1 & \operatorname{dist}_{\mathbb{N}}(m+1,n+1) \coloneqq \operatorname{dist}_{\mathbb{N}}(m,n). \end{split}$$

In other words, the distance between two natural numbers is the *symmetric difference* between them.

- (a) Show that $dist_{\mathbb{N}}$ satisfies the axioms of a metric:
 - (i) $(m = n) \leftrightarrow (\operatorname{dist}_{\mathbb{N}}(m, n) = 0)$,
 - (ii) $\operatorname{dist}_{\mathbb{N}}(m, n) = \operatorname{dist}_{\mathbb{N}}(n, m)$,
 - (iii) $\operatorname{dist}_{\mathbb{N}}(m, n) \leq \operatorname{dist}_{\mathbb{N}}(m, k) + \operatorname{dist}_{\mathbb{N}}(k, n)$.
- (b) Show that $\operatorname{dist}_{\mathbb{N}}(m, n) = \operatorname{dist}_{\mathbb{N}}(m, k) + \operatorname{dist}_{\mathbb{N}}(k, n)$ if and only if either both $m \le k$ and $k \le n$ hold or both $n \le k$ and $k \le m$ hold.
- (c) Show that dist_N is translation invariant and linear:

$$\operatorname{dist}_{\mathbb{N}}(a+m,a+n) = \operatorname{dist}_{\mathbb{N}}(m,n),$$

 $\operatorname{dist}_{\mathbb{N}}(k\cdot m,k\cdot n) = k\cdot \operatorname{dist}_{\mathbb{N}}(m,n).$

- (d) Show that $x + \operatorname{dist}_{\mathbb{N}}(x, y) = y$ for any $x \leq y$.
- 6.6 Construct the absolute value function

$$|-|: \mathbb{Z} \to \mathbb{N}$$

and show that it satisfies the following three properties:

- (i) $(x = 0) \leftrightarrow (|x| = 0)$,
- (ii) $|x + y| \le |x| + |y|$,
- (iii) |xy| = |x||y|.

7 Modular arithmetic via the Curry-Howard interpretation

We have now fully described Martin-Löf's dependent type theory. It is now up to us to start developing some mathematics in it, and Martin-Löf's dependent type theory is great for elementary mathematics, such as basic number theory, some algebra, and combinatorics. The fundamental idea that is used to develop basic mathematics in type theory is the Curry-Howard interpretation. This is a translation of logic into type theory, which we will use to express concepts of mathematics such as divisibility, the congruence relations, and so on.

We will also introduce the family Fin of the standard finite types, indexed by \mathbb{N} , and show how each Fin_{k+1} can be equipped with the group structure of integers modulo k+1. Our goal here is to demonstrate how to do those things in type theory, so we will aim for a high degree of accuracy.

7.1 The Curry-Howard interpretation

The *Curry-Howard interpretation* is an interpretation of logic into type theory. Recall that in type theory there is no separation between the logical framework and the general theory of collections of mathematical objects the way there is in the more traditional setup with Zermelo-Fraenkel set theory, which is postulated by axioms in first order logic. These two aspects of the foundations of mathematics are unified in type theory. The idea of the Curry-Howard interpretation is therefore to express propositions as types, and to think of the elements of those types as their proofs. We illustrate this idea with an example.

Example 7.1.1 A natural number d is said to divide a natural number n if there exists a natural number k such that $d \cdot k = n$. To represent the divisibility predicate in type theory, we need to define a *type*

$$d \mid n$$
,

of which the elements are witnesses that d divides n. In other words, $d \mid n$ should be the type that consists of natural numbers k equipped with an identification $d \cdot k = n$. In general, the type of x : A equipped with y : B(x) is represented as the type $\sum_{(x:A)} B(x)$. The interpretation of the existential quantification (\exists) into type theory via the Curry-Howard interpretation is therefore using Σ -types.

Definition 7.1.2 Consider two natural numbers d and n. We say that d divides n if there is a element of type

$$d \mid n \coloneqq \sum_{(k:\mathbb{N})} d \cdot k = n.$$

Remark 7.1.3 This type-theoretical definition of the divisibility relation using Σ -types has two important consequences:

(i) The principal way to show that $d \mid n$ holds is to construct a pair (k, p) consisting of a natural number k and an identification $p : d \cdot k = n$.

(ii) The principal way to use a hypothesis $H: d \mid n$ in a proof is to proceed by Σ -induction on the variable H. We then get to assume a natural number k and an identification $p: d \cdot k = n$, in order to proceed with the proof.

Example 7.1.4 Just as existential quantification (\exists) is translated via the Curry-Howard interpretation to Σ -types, the translation of the universal quantification (\forall) in type theory via the Curry-Howard interpretation is to Π -types. For example, the assertion that every natural number is divisible by 1 is expressed in type theory as

$$\prod_{(x:\mathbb{N})} 1 \mid x$$
.

In other words, in order to show that every number $x : \mathbb{N}$ is divisible by 1 we need to construct a dependent function

$$\lambda x. p(x) : \prod_{(x:\mathbb{N})} 1 \mid x.$$

We do this by constructing an element

$$p(x): \sum_{(k:\mathbb{N})} 1 \cdot k = x$$

indexed by $x : \mathbb{N}$. Such an element p(x) is constructed as the pair (x, q(x)), where the identification $q(x) : 1 \cdot x = x$ is obtained from the left unit law of multiplication on \mathbb{N} , which was constructed in Exercise 5.5.

Similarly, the type theoretic proof that every natural number k divides 0, i.e., that $k \mid 0$, is the pair (0, p) consisting of the natural number 0 and the identification $p: k \cdot 0 = 0$ obtained from the right annihilation law of multiplication on \mathbb{N} . This identification was also constructed in Exercise 5.5.

In the following proposition we will see examples of how a hypothesis of type $d \mid x$ can be used.

Proposition 7.1.5 Consider three natural numbers d, x and y. If d divides any two of the three numbers x, y, and x + y, then it also divides the third.

Proof We will only show that if d divides x and y, then it divides x + y. The remaining two claims, that if d divides y and x + y then it divides x, and that if d divides x and x + y then it divides y, are left as Exercise 7.1.

Suppose that d divides both x and y. By assumption we have elements

$$H: \sum_{(k:\mathbb{N})} d \cdot k = x$$
, and $K: \sum_{(k:\mathbb{N})} d \cdot k = y$.

Since the types of the variables H and K are Σ -types, we proceed by Σ -induction on H and K. Therefore we get to assume a natural number $k:\mathbb{N}$ equipped with an identification $p:d\cdot k=x$, and a natural number $l:\mathbb{N}$ equipped with an identification $q:d\cdot l=y$. Our goal is now to construct an identification

$$d \cdot (k+l) = x + y.$$

We construct such an identification as a concatenation $\alpha \cdot (\beta \cdot \gamma)$, where the types of the identifications α , β , and γ are as follows:

$$d \cdot (k+l) \stackrel{\alpha}{===} d \cdot k + d \cdot l \stackrel{\beta}{===} x + d \cdot l \stackrel{\gamma}{===} x + y.$$

The identification α is obtained from the fact that multiplication on \mathbb{N} distributes over addition, which was shown in Exercise 5.5 (c). The identifications β and γ are constructed using the action on paths of a function:

$$\beta := \operatorname{ap}_{(\lambda t. t+d \cdot l)}(p), \quad \text{and} \quad \gamma := \operatorname{ap}_{(\lambda t. x+t)}(q)$$

To conclude the proof that $d \mid x + y$, note that we have constructed the pair

$$(k+l, \alpha \cdot (\beta \cdot \gamma)) : \sum_{(k:\mathbb{N})} d \cdot k = x+y.$$

The full Curry-Howard interpretation of logic into type theory also involves interpretations of disjunction, conjunction, implication, and equality.

The introduction and elimination rules for disjunction are, for instance,

$$\frac{P}{P \lor Q}$$
 $\frac{Q}{P \lor Q}$ and $\frac{P \Rightarrow R \quad Q \Rightarrow R}{P \lor Q \Rightarrow R}$

The two introduction rules assert that $P \lor Q$ holds provided that P holds, and that $P \lor Q$ holds provided that Q holds. These rules are analogous to the introduction rules for coproduct, which assert that there are functions inl : $A \to A + B$ and inr : $B \to A + B$. Furthermore, the non-dependent elimination principle for coproducts gives a function

$$(A \to C) \to ((B \to C) \to (A + B \to C))$$

for any type *C*, which is again analogous to the elimination rule of disjunction. The Curry-Howard interpretation of disjunction into type theory is therefore as coproducts.

To interpret conjunction into type theory we observe that the introduction

The Curry-Howard interpretation			
Propositions	Types		
Proofs	Elements		
Predicates	Type families		
Т	1		
T	Ø		
$P \vee Q$	A + B		
$P \wedge Q$	$A \times B$		
$P \Rightarrow Q$	$A \rightarrow B$		
$\neg P$	$A \to \emptyset$		
$\exists_x P(x)$	$\sum_{(x:A)} B(x)$		
$\forall_x P(x)$	$\prod_{(x:A)} B(x)$		
x = y	x = y		

Table I.1 The Curry-Howard interpretation of logic into type theory.

rule and elimination rules for conjunction are

$$\frac{P \quad Q}{P \land Q}$$
 and $\frac{P \land Q}{P}$ $\frac{P \land Q}{Q}$

Product types possess such structure, where we have the pairing operation pair : $A \to (B \to A \times B)$ and the projections $\operatorname{pr}_1: A \times B \to A$ and $\operatorname{pr}_2: A \times B \to B$ give interpretations of the introduction and elimination rules for conjunction. The Curry-Howard interpretation of conjunction into type theory is therefore by products. We summarize the full Curry-Howard interpretation in Table I.1.

Remark 7.1.6 We should note, however, that despite the similarities between logic and type theory that are highlighted in the Curry-Howard interpretation, there are also some differences. One important difference is that types may contain many elements, whereas in logic, propositions are usually considered to be *proof irrelevant*. This means that to establish the truth of a proposition it only matters *whether* it can be proven, not in how many different ways it can be proven. To address this dissimilarity between general types and logic, we will introduce in Chapter II a more refined way of interpreting logic into type theory. In Section 12 we will define the type is-prop(A), which expresses the propositional truncation operation in Section 14, which we will use to interpret

logic into type theory in such a way that all logical assertions are interpreted as types that satisfy the condition of being a proposition.

7.2 The congruence relations on \mathbb{N}

Relations in the Curry-Howard interpretation of logic into type theory are also type valued. More specifically, a binary relation on a type A is a family of types R(x, y) indexed by x, y : A. Such relations are sometimes called *typal*.

Definition 7.2.1 Consider a type A. A **(typal) binary relation** on A is defined to be a family of types R(x, y) indexed by x, y : A. Given a binary relation R on A, we say that R is **reflexive** if it comes equipped with

$$\rho: \prod_{(x:A)} R(x,x),$$

we say that *R* is **symmetric** if it comes equipped with

$$\sigma: \prod_{(x,y:A)} R(x,y) \to R(y,x),$$

and we say that *R* is **transitive** if it comes equipped with

$$\tau: \prod_{(x,y,z:A)} R(x,y) \to (R(y,z) \to R(x,z)).$$

A **(typal) equivalence relation** on *A* is a reflexive, symmetric, and transitive binary typal relation on *A*.

To define the congruence relation modulo k in type theory using the Curry-Howard interpretation, we will define for any three natural numbers x, y, and k, a type

$$x \equiv y \mod k$$

consisting of the proofs that x is congruent to y modulo k. We will define this type by directly interpreting Gauss' definition of the congruence relations in his *Disquisitiones Arithmeticae* [12]: two numbers x and y are congruent modulo k if k divides the symmetric difference $\text{dist}_{\mathbb{N}}(x,y)$ between x and y. Recall that $\text{dist}_{\mathbb{N}}(x,y)$ was defined in Exercise 6.5 recursively by

$$\begin{split} \operatorname{dist}_{\mathbb{N}}(0,0) &\coloneqq 0 & \operatorname{dist}_{\mathbb{N}}(0,y+1) &\coloneqq y+1 \\ \operatorname{dist}_{\mathbb{N}}(x+1,0) &\coloneqq x+1 & \operatorname{dist}_{\mathbb{N}}(x+1,y+1) &\coloneqq \operatorname{dist}_{\mathbb{N}}(x,y). \end{split}$$

Definition 7.2.2 Consider three natural numbers k, x, y: \mathbb{N} . We say that x is **congruent to** y **modulo** k if it comes equipped with an element of type

$$x \equiv y \mod k \coloneqq k \mid \operatorname{dist}_{\mathbb{N}}(x, y).$$

Example 7.2.3 For example, $k \equiv 0 \mod k$. To see this, we have to show that $k \mid \operatorname{dist}_{\mathbb{N}}(k,0)$. Since $\operatorname{dist}_{\mathbb{N}}(k,0) = k$ it suffices to show that $k \mid k$. That is, we have to construct a natural number l equipped with an identification p:kl=k. Of course, we choose $l\coloneqq 1$, and the equation k1=k holds by the right unit law for multiplication on \mathbb{N} , which was shown in Exercise 5.5.

Proposition 7.2.4 *For each* $k : \mathbb{N}$ *, the congruence relation modulo* k *is an equivalence relation.*

Proof Reflexivity follows from the fact that $\operatorname{dist}_{\mathbb{N}}(x,x) = 0$, and any number divides 0. Symmetry follows from the fact that $\operatorname{dist}_{\mathbb{N}}(x,y) = \operatorname{dist}_{\mathbb{N}}(y,x)$ for any two natural numbers x and y.

The non-trivial part of the claim is therefore transitivity. Here we use the fact that for any three natural numbers x, y, and z, at least one of the equalities

$$\begin{aligned} \operatorname{dist}_{\mathbb{N}}(x,y) + \operatorname{dist}_{\mathbb{N}}(y,z) &= \operatorname{dist}_{\mathbb{N}}(x,z) \\ \operatorname{dist}_{\mathbb{N}}(y,z) + \operatorname{dist}_{\mathbb{N}}(x,z) &= \operatorname{dist}_{\mathbb{N}}(x,y) \\ \operatorname{dist}_{\mathbb{N}}(x,z) + \operatorname{dist}_{\mathbb{N}}(x,y) &= \operatorname{dist}_{\mathbb{N}}(y,z) \end{aligned}$$

holds. A formal proof of this fact is given by case analysis on the six possible ways in which x, y, and z can be ordered:

```
x \le y and y \le z, x \le z and z \le y, y \le z and z \le x, y \le x and x \le z, z \le x and x \le y, z \le y and y \le x.
```

Therefore it follows by Exercise 6.5 (b) and Proposition 7.1.5 that $k \mid \operatorname{dist}_{\mathbb{N}}(x, z)$ if $k \mid \operatorname{dist}_{\mathbb{N}}(x, y)$ and $k \mid \operatorname{dist}_{\mathbb{N}}(y, z)$.

7.3 The standard finite types

The standard finite sets are classically defined as the sets $\{x \in \mathbb{N} \mid x < k\}$. This leads to the question of how to interpret a subset $\{x \in A \mid P(x)\}$ in type theory.

Since type theory is set up in such a way that elements come equipped with their types, subsets aren't formed the same way as in set theory, where the comprehension axiom is used to form the set $\{x \in A \mid P(x)\}$ for any predicate P over A. The Curry-Howard interpretation dictates that predicates are interpreted as dependent types. Therefore, a set of elements $x \in A$ such

that P(x) holds is interpreted in type theory as the type of terms x: A equipped with an element (a proof) p: P(x). In other words, we interpret a subset $\{x \in A \mid P(x)\}$ as the type $\sum_{(x:A)} P(x)$.

Remark 7.3.1 The alert reader may now have observed that the interpretation of a subset $\{x \in A \mid P(x)\}$ in type theory is the same as the interpretation of the proposition $\exists_{(x \in A)} P(x)$, while indeed the subset $\{x \in A \mid P(x)\}$ has a substantially different role in mathematics than the proposition $\exists_{(x \in A)} P(x)$. This points at a slight problem of the Curry-Howard interpretation of the existential quantifier. While the Curry-Howard interpretation of the existential quantifier is nevertheless useful and important, we will reinterpret the existential quantifier in type theory in Section 14.3.

Since subsets are interpreted as Σ -types, the 'classical' definition of the standard finite types is

classical-Fin_k :=
$$\sum_{(x:\mathbb{N})} x < k$$
.

This is a perfectly fine definition of the standard finite types. However, the usual definition of the standard finite types in Martin-Löf's dependent type theory is a more direct, recursive definition, which takes full advantage of the inductive constructions of dependent type theory.

Definition 7.3.2 We define the type family Fin of the **standard finite types** over \mathbb{N} recursively by

$$\mathsf{Fin}_0 := \emptyset$$

$$\mathsf{Fin}_{k+1} := \mathsf{Fin}_k + \mathbf{1}.$$

We will write i for the inclusion inl : $Fin_k \to Fin_{k+1}$ and we will write \star for the point $inr(\star)$.

In Exercise 7.7 you will be asked to show that the types classical-Fin_k and Fin_k are isomorphic.

Remark 7.3.3 The type family Fin over \mathbb{N} can be given its own induction principle, which is, at least for the time being, the principal way to make constructions on Fin_k for arbitrary $k : \mathbb{N}$ and to prove properties about those constructions. The induction principle of the standard finite types tells us

that the family of standard finite types is inductively generated by

$$i: \operatorname{Fin}_k \to \operatorname{Fin}_{k+1}$$

 $\star: \operatorname{Fin}_{k+1}$.

In other words, we can define a dependent function $f: \prod_{(k:\mathbb{N})} \prod_{(x:\mathsf{Fin}_k)} P_k(x)$ by defining

$$g_k: \prod_{(x:\mathsf{Fin}_k)} P_k(x) \to P_{k+1}(i(x))$$

 $p_k: P_{k+1}(\bigstar)$

for each $k : \mathbb{N}$. The function f defined in this way then satisfies the judgmental equalities

$$f_{k+1}(i(x)) \doteq g_k(x, f_k(x))$$

$$f_{k+1}(\star) \doteq p_k.$$

These judgmental equalities completely determine the function f, and therefore we may also present such inductive definitions by pattern matching:

$$f_{k+1}(i(x)) := g_k(x, f_k(x))$$

 $f_{k+1}(\star) := p_k.$

We will often use definitions by pattern matching for two reasons: (i) such definitions are concise, and (ii) they display the judgmental equalities that hold for the defined object. Those judgmental equalities are the only thing we know about that object, and proving a claim about it often amounts to finding a way to apply these judgmental equalities.

To illustrate this way of working with the standard finite types, we define the inclusion functions $Fin_k \to \mathbb{N}$, and show that these are injective. In order to show that ι_k is injective, we will also show that ι_k is bounded.

Definition 7.3.4 We define the inclusion $\iota_k : \operatorname{Fin}_k \to \mathbb{N}$ inductively by

$$\iota_{k+1}(i(x)) := \iota_k(x)$$

 $\iota_{k+1}(\star) := k.$

Lemma 7.3.5 *The function* ι : $\mathsf{Fin}_k \to \mathbb{N}$ *is bounded, in the sense that* $\iota(x) < k$ *for each* x : Fin_k .

Proof The proof is by induction. In the base case there is nothing to show.

In the inductive step, we have the inequalities $\iota_{k+1}(i(x)) \doteq \iota_k(x) < k < k+1$, where the first inequality holds by the inductive hypothesis, and we also have

$$\iota_{k+1}(\star) \doteq k < k+1.$$

Proposition 7.3.6 *The inclusion function* $\iota_k : \mathsf{Fin}_k \to \mathbb{N}$ *is injective, for each* $k : \mathbb{N}$.

Proof We define a function $\alpha_k(x, y) : (\iota_k(x) = \iota_k(y)) \to (x = y)$ recursively by

$$\begin{split} \alpha_{k+1}(i(x),i(y),p) &\coloneqq \operatorname{ap}_i(\alpha_k(x,y,p)) \qquad \alpha_{k+1}(i(x),\star,p) \coloneqq \operatorname{ex-falso}(f(p)) \\ \alpha_{k+1}(\star,i(y),p) &\coloneqq \operatorname{ex-falso}(g(p)) \qquad \qquad \alpha_{k+1}(\star,\star,p) \coloneqq \operatorname{refl}, \end{split}$$

where $f: (\iota_{k+1}(i(x)) = \iota_{k+1}(\star)) \to \emptyset$ and $g: (\iota_{k+1}(\star) = \iota_{k+1}(i(y))) \to \emptyset$ are obtained from the fact that $\iota_{k+1}(i(z)) \doteq \iota_k(z) < k$ for any $z: \mathsf{Fin}_k$, and the fact that $\iota_{k+1}(\star) \doteq k$.

7.4 The natural numbers modulo k + 1

Given an equivalence relation \sim on a set A in classical mathematics, the quotient A/\sim comes equipped with a quotient map $q:A\to A/\sim$ that satisfies two important properties: (1) The map q satisfies the condition

$$q(x) = q(y) \leftrightarrow x \sim y,$$

and (2) the map q is surjective. The first condition is called the **effectiveness** of the quotient map.

In classical mathematics, a map $f:A\to B$ is said to be surjective if for every $b\in B$ there exists an element $a\in A$ such that f(a)=b. Following the Curry-Howard interpretation, a map $f:A\to B$ is therefore surjective if it comes equipped with a dependent function

$$\prod_{(b:B)} \sum_{(a:A)} f(a) = b.$$

However, there is a subtle issue with this interpretation of surjectivity. It is somewhat stronger than the classical notion of surjectivity, because a dependent function $\prod_{(b:B)} \sum_{(a:A)} f(a) = b$ provides for every element b:B an *explicit* element a:A equipped with an explicit identification p:f(a)=b, whereas in the classical notion of surjectivity such an element $a \in A$ is merely asserted to exist. To emphasize that the Curry-Howard interpretation of

surjectivity is stronger than intended we make the following definition, and we will properly introduce surjective maps in Section 15.2.

Definition 7.4.1 Consider a function $f : A \to B$. We say that f is **split surjective** if it comes equipped with an element of type

is-split-surjective
$$(f) := \prod_{(b:B)} \sum_{(a:A)} f(a) = b$$
.

Martin-Löf's dependent type theory doesn't have a general way of forming quotients of types. However, in the specific case of the congruence relations on \mathbb{N} we can define the type of natural numbers modulo k+1 as the standard finite type Fin_{k+1} . We will show that Fin_{k+1} comes equipped with a map

$$[-]_{k+1}: \mathbb{N} \to \mathsf{Fin}_{k+1}$$

for each $k : \mathbb{N}$, and we will show in Theorems 7.4.7 and 7.4.8 that this map satisfies conditions (1) and (2) in the split surjective sense.

To prepare for the definition of the quotient map $[-]_{k+1}$, we will first define a zero element of Fin_{k+1} and successor function on each Fin_k . We will also define an auxiliary function $\mathsf{skip}\text{-}\mathsf{zero}_k : \mathsf{Fin}_k \to \mathsf{Fin}_{k+1}$, which is used in the definition of the successor function. The map $[-]_{k+1}$ is then defined by iterating the successor function.

Definition 7.4.2

(i) We define the **zero element** $zero_k$: Fin_{k+1} recursively by

$$\mathsf{zero}_0 \coloneqq \star$$

 $\mathsf{zero}_{k+1} \coloneqq i(\mathsf{zero}_k).$

Since there is a mismatch between the index of $zero_k$ and the index of its type, we will often simply write zero or 0 for the zero element of Fin_{k+1} .

(ii) We define the function $skip-zero_k : Fin_k \rightarrow Fin_{k+1}$ recursively by

$$\begin{split} \mathsf{skip-zero}_{k+1}(i(x)) &\coloneqq i(\mathsf{skip-zero}_k(x)) \\ \mathsf{skip-zero}_{k+1}(\bigstar) &\coloneqq \bigstar. \end{split}$$

(iii) We define the **successor function** $\operatorname{succ}_k : \operatorname{Fin}_k \to \operatorname{Fin}_k$ recursively by

$$succ_{k+1}(i(x)) := skip-zero_k(x)$$

 $succ_{k+1}(\star) := zero_k.$

Definition 7.4.3 For any $k : \mathbb{N}$, we define the map $[-]_{k+1} : \mathbb{N} \to \mathsf{Fin}_{k+1}$ recursively on x by

$$[0]_{k+1} := 0$$

 $[x+1]_{k+1} := \operatorname{succ}_{k+1}[x]_{k+1}.$

Our next intermediate goal is to show that $x \equiv \iota[x]_{k+1} \mod k + 1$ for any natural number x. This fact is a consequence of the following simple lemma, that will help us compute with the maps $\iota : \operatorname{Fin}_k \to \mathbb{N}$.

Lemma 7.4.4 We make three claims:

(i) For any $k : \mathbb{N}$ there is an identification

$$\iota(\mathsf{zero}_k) = 0$$

(ii) For any $k : \mathbb{N}$ and any $x : \operatorname{Fin}_k$, we have

$$\iota(\mathsf{skip\text{-}zero}_k(x)) = \iota(x) + 1.$$

(iii) For any $k : \mathbb{N}$ and any $x : \operatorname{Fin}_k$, we have

$$\iota(\operatorname{succ}_k(x)) \equiv \iota(x) + 1 \mod k.$$

Proof For the first claim, we define an identification α_k : $\iota(\mathsf{zero}_k) = 0$ recursively by

$$\alpha_0 \coloneqq \mathsf{refl}$$
 $\alpha_{k+1} \coloneqq \alpha_k.$

For the second claim, we define an identification $\beta_k(x)$: $\iota(\mathsf{skip\text{-}zero}_k(x)) = \iota(x) + 1$ recursively by

$$\beta_{k+1}(i(x)) := \beta_k(x)$$

 $\beta_{k+1}(\star) := \text{refl.}$

For the third claim, we again define an element $\gamma_k(x)$: $\iota(\mathsf{succ}_k(x)) \equiv \iota(x) + 1 \mod k$ recursively. To obtain

$$\gamma_{k+1}(i(x)): \iota(\operatorname{succ}_{k+1}(i(x))) \equiv \iota(i(x)) + 1 \ \operatorname{mod} \, k + 1,$$

we calculate

$$\iota(\mathsf{succ}_{k+1}(i(x))) \doteq \iota(\mathsf{skip\text{-}zero}(x))$$
 by definition of succ
= $\iota(x) + 1$ by claim (ii).

Since the congruence relation modulo k+1 is reflexive, we obtain $\gamma_{k+1}(i(x))$ from the identification of the above calculation. To obtain

$$\gamma_{k+1}(\star): \iota(\operatorname{succ}_{k+1}(\star)) \equiv \iota(\star) + 1 \mod k + 1$$
,

we calculate

$$\iota(\operatorname{succ}_{k+1}(\star)) \doteq \iota(0)$$
 by definition of succ
= 0 by claim (i)
 $\equiv k+1$ by Example 7.1.4
 $\doteq \iota(\star)+1$ by definition of ι .

Proposition 7.4.5 *For any* $x : \mathbb{N}$ *we have*

$$\iota[x]_{k+1} \equiv x \mod k + 1.$$

Proof The proof by induction on *x*. The fact that

$$\iota[0]_{k+1} \equiv 0 \mod k + 1$$

is immediate from the fact that $\iota[0]_{k+1} \doteq \iota(0) = 0$, which was shown in Lemma 7.4.4. In the inductive step, we have to show that

$$\iota[x+1]_{k+1} \equiv x+1 \mod k+1.$$

This follows from the following computation

$$\iota[x+1]_{k+1} \doteq \iota(\mathsf{succ}_{k+1}[x]_{k+1})$$
 by definition of $[-]_{k+1}$ $\equiv \iota[x]_{k+1} + 1$ by Lemma 7.4.4 $\equiv x+1$ by the inductive hypothesis. \square

We need one more fact before we can prove Theorems 7.4.7 and 7.4.8.

Proposition 7.4.6 *For any natural number x < d we have*

$$d \mid x \leftrightarrow x = 0.$$

Consequently, for any two natural numbers x and y such that $dist_{\mathbb{N}}(x, y) < k$, we have

$$x \equiv y \mod k \leftrightarrow x = y$$
.

Proof Note that the implication $x = 0 \rightarrow d \mid x$ is trivial, so it suffices to prove the forward implication

$$d \mid x \rightarrow x = 0.$$

This implication clearly holds if $x \doteq 0$. Therefore we only have to show that $d \mid x+1$ implies x+1=0, if we assume that x+1< d. In other words, we will derive a contradiction from the hypotheses that x+1< d and $d \mid x+1$. To reach a contradiction we use Exercise 6.4 (c), by which it suffices to show that $d \le x+1$.

We proceed by Σ -induction on the (unnamed) variable of type $d \mid x+1$, so we get to assume a natural number k equipped with an identification p:dk=x+1. In the case where $k \doteq 0$ we reach an immediate contradiction via Theorem 6.4.2, because we obtain that $0=d\cdot 0=x+1$. In the case where $k \doteq \mathsf{succ}_{\mathbb{N}}(k')$ it follows that

$$d < dk' + d \doteq dk = x + 1.$$

Theorem 7.4.7 *Consider a natural number k. Then we have*

$$[x]_{k+1} = [y]_{k+1} \leftrightarrow x \equiv y \mod k + 1,$$

for any $x, y : \mathbb{N}$.

Proof First note that, since ι is injective by Proposition 7.3.6, we have

$$[x]_{k+1} = [y]_{k+1} \leftrightarrow \iota[x]_{k+1} = \iota[y]_{k+1}.$$

Since the inequalities $\iota[x]_{k+1} < k+1$ and $\iota[y]_{k+1} < k+1$ hold by Lemma 7.3.5, it follows by Proposition 7.4.6 that

$$\iota[x]_{k+1} = \iota[y]_{k+1} \leftrightarrow \iota[x]_{k+1} \equiv \iota[y]_{k+1} \mod k + 1.$$

The latter condition is by Proposition 7.4.5 equivalent to the condition that $x \equiv y \mod k + 1$.

Theorem 7.4.8 *For any* $x : Fin_{k+1}$ *there is an identification*

$$[\iota(x)]_{k+1} = x.$$

In other words, the map $[-]_{k+1} : \mathbb{N} \to \mathsf{Fin}_{k+1}$ *is split surjective.*

Proof Since ι : Fin_{k+1} $\to \mathbb{N}$ is injective by Proposition 7.3.6, it suffices to show that

$$\iota[\iota(x)]_{k+1} = \iota(x).$$

Now observe that $\iota[\iota(x)]_{k+1} < k+1$ and $\iota(x) < k+1$. By Proposition 7.4.6 it therefore suffices to show that

$$\iota[\iota(x)]_{k+1} \equiv \iota(x) \mod k + 1.$$

7.5 The cyclic groups

We can now define the cyclic groups \mathbb{Z}/k for each $k : \mathbb{N}$. Note that \mathbb{Z}/k must come equipped with the structure of a quotient \mathbb{Z}/\equiv of \mathbb{Z} by the congruence relation modulo k. In the case where $k \doteq 0$, we have that $x \equiv y \mod 0$ if and only if x = y. This motivates the following definition:

Definition 7.5.1 We define the type \mathbb{Z}/k for each $k : \mathbb{N}$ by

$$\mathbb{Z}/0 := \mathbb{Z}$$
 and $\mathbb{Z}/(k+1) := \operatorname{Fin}_{k+1}$.

Recall from Exercise 5.7 that $\mathbb{Z}/0$ already comes equipped with the structure of a group, but the group structure on $\mathbb{Z}/(k+1)$ remains to be defined.

Definition 7.5.2 We define the **addition** operation on $\mathbb{Z}/(k+1)$ by

$$x + y := [\iota(x) + \iota(y)]_{k+1},$$

and we define the **additive inverse** operation on $\mathbb{Z}/(k+1)$ by

$$-x := [\operatorname{dist}_{\mathbb{N}}(\iota(x), k+1)]_{k+1}.$$

Remark 7.5.3 The following congruences modulo k + 1 follow immediately from Proposition 7.4.5:

$$\iota(0) \equiv 0$$

$$\iota(x+y) \equiv \iota(x) + \iota(y)$$

$$\iota(-x) \equiv \mathsf{dist}_{\mathbb{N}}(\iota(x), k+1).$$

Before we show that addition on \mathbb{Z}/k satisfies the group laws, we have to show that addition on \mathbb{N} preserves the congruence relation.

Proposition 7.5.4 Consider $x, y, x', y' : \mathbb{N}$. If any two of the following three properties hold, then so does the third:

- (i) $x \equiv x' \mod k$,
- (ii) $y \equiv y' \mod k$,
- (iii) $x + y \equiv x' + y' \mod k$.

Proof Recall that the distance function $dist_{\mathbb{N}}$ is translation invariant by Exercise 6.5 (c). Therefore it follows that

$$a \equiv b \mod k \leftrightarrow a + c \equiv b + c \mod k.$$
 (*)

We will use this observation to prove the claim.

First, suppose that $x \equiv x'$ and $y \equiv y'$ modulo k. Then it follows by Eq. (*) that

$$x + y \equiv x' + y \equiv x' + y'.$$

This shows that (i) and (ii) together imply (iii).

Next, suppose that $x \equiv x'$ and $x + y \equiv x' + y'$ modulo k. Then it follows that

$$x + y \equiv x' + y' \equiv x + y'.$$

Applying Eq. (*) once more in the reverse direction, we obtain that $y \equiv y'$ modulo k. This shows that (i) and (iii) together imply (ii).

The remaining claim, that (ii) and (iii) together imply (i), follows by commutativity of addition from the fact that (i) and (iii) together imply (ii).

Theorem 7.5.5 *The addition operation on* \mathbb{Z}/k *satisfies the laws of an abelian group:*

$$0 + x = x$$
 $x + 0 = x$
 $(-x) + x = 0$ $x + (-x) = 0$
 $(x + y) + z = x + (y + z)$ $x + y = y + x$.

Proof The fact that the addition operation on $\mathbb{Z}/0$ satisfies the laws of an abelian group was stated as Exercise 5.7. Therefore we will only show that addition on $\mathbb{Z}/(k+1)$ satisfies the laws of an abelian group.

We first note that by commutativity of addition on \mathbb{N} , it follows immediately that addition on $\mathbb{Z}/(k+1)$ is commutative.

To prove associativity, note that by Theorem 7.4.7 it suffices to show that

$$\iota(x+y) + \iota(z) \equiv \iota(x) + \iota(y+z) \mod k + 1.$$

Since addition on $\mathbb{Z}/(k+1)$ maps preserves the congruence relation, and since we have the congruences

$$\iota(x+y) \equiv \iota(x) + \iota(y) \mod k + 1$$

$$\iota(y+z) \equiv \iota(y) + \iota(z) \mod k + 1,$$

it suffices to show that

$$(\iota(x) + \iota(y)) + \iota(z) \equiv \iota(x) + (\iota(y) + \iota(z)) \mod k + 1.$$

This follows immediately by associativity of addition on \mathbb{N} .

To show that addition on $\mathbb{Z}/(k+1)$ satisfies the right unit law, we first observe that it suffices to show that

$$[\iota(x) + \iota(0)]_{k+1} = [\iota(x)]_{k+1}$$

because there is an identification $[\iota(x)]_{k+1} = x$ by Theorem 7.4.8. By Theorem 7.4.7 it now suffices the show that

$$\iota(x) + \iota(0) \equiv \iota(x) \mod k + 1.$$

This follows immediately from the fact that $\iota(0) = 0$. The left unit law now follows from the right unit law by commutativity. We leave the inverse laws as an exercise.

Exercises

- 7.1 Complete the proof of Proposition 7.1.5.
- 7.2 Show that the divisibility relation satisfies the axioms of a poset, i.e., that it is reflexive, antisymmetric, and transitive.
- 7.3 Construct a dependent function

$$\prod_{(x:\mathbb{N})} (x \neq 0) \to ((x \leq n) \to (x \mid n!))$$

for every $n : \mathbb{N}$.

7.4 Define $1 := [1]_{k+1}$: Fin_{k+1}. Show that

$$\mathsf{succ}_{k+1}(x) = x + 1$$

for any $x : Fin_{k+1}$.

7.5 The observational equality on Fin_k is a binary relation

$$\mathsf{Eq}_k : \mathsf{Fin}_k \to (\mathsf{Fin}_k \to \mathcal{U}_0)$$

defined recursively by

$$\begin{aligned} \mathsf{Eq}_{k+1}(i(x),i(y)) &\coloneqq \mathsf{Eq}_k(x,y) & \mathsf{Eq}_{k+1}(i(x),\star) &\coloneqq \emptyset \\ \mathsf{Eq}_{k+1}(\star,i(y)) &\coloneqq \emptyset & \mathsf{Eq}_{k+1}(\star,\star) &\coloneqq \mathbf{1}. \end{aligned}$$

(a) Show that

$$(x = y) \leftrightarrow \mathsf{Eq}_k(x, y)$$

for any two elements x, y: Fin $_k$.

- (b) Show that the function $i : Fin_k \to Fin_{k+1}$ is injective, for each $k : \mathbb{N}$.
- (c) Show that

$$succ_{k+1}(i(x)) \neq 0$$

for any $x : Fin_k$.

- (d) Show that function $succ_k : Fin_k \to Fin_k$ is injective, for each $k : \mathbb{N}$.
- 7.6 The predecessor function $\operatorname{pred}_k : \operatorname{Fin}_k \to \operatorname{Fin}_k$ is defined in three steps, just as in the definition of the successor function on Fin_k .
 - (i) We define the element $neg-two_k$: Fin_{k+1} by

$$\mathsf{neg\text{-}two}_0 \coloneqq \bigstar$$

$$\mathsf{neg\text{-}two}_{k+1} \coloneqq i(\bigstar).$$

(ii) We define the function $\mathsf{skip}\text{-neg-two}_k : \mathsf{Fin}_k \to \mathsf{Fin}_{k+1}$ recursively by

$$\begin{aligned} \text{skip-neg-two}_{k+1}(i(x)) &\coloneqq i(i(x)) \\ \text{skip-neg-two}_{k+1}(\star) &\coloneqq \star. \end{aligned}$$

(iii) Finally, we define the **predecessor function** $\operatorname{pred}_k : \operatorname{Fin}_k \to \operatorname{Fin}_k$ recursively by

$$\begin{split} \operatorname{pred}_{k+1}(i(x)) &\coloneqq \operatorname{skip-neg-two}_k(\operatorname{pred}_k(x)) \\ \operatorname{pred}_{k+1}(\star) &\coloneqq \operatorname{neg-two}_k. \end{split}$$

Show that $pred_k$ is an inverse to $succ_k$, i.e., construct identifications

$$\operatorname{succ}_k(\operatorname{pred}_k(x)) = x$$
, and $\operatorname{pred}_k(\operatorname{succ}_k(x)) = x$

for each $x : Fin_k$.

7.7 Recall that

classical-Fin_k :=
$$\sum_{(x:\mathbb{N})} x < k$$
.

(a) Show that

$$(x = y) \leftrightarrow (\mathsf{pr}_1(x) = \mathsf{pr}_1(y))$$

for each x, y: classical-Fin $_k$.

(b) By Lemma 7.3.5 it follows that the map $\iota : \mathsf{Fin}_k \to \mathbb{N}$ induces a map $\iota : \mathsf{Fin}_k \to \mathsf{classical}\mathsf{-Fin}_k$. Construct a map

$$\alpha_k$$
: classical-Fin_k \rightarrow Fin_k

for each $k : \mathbb{N}$, and show that

$$\alpha_k(\iota(x)) = x$$
 and $\iota(\alpha_k(y)) = y$

for each x: Fin $_k$ and each y: classical-Fin $_k$.

7.8 The multiplication operation $x, y \mapsto xy$ on $\mathbb{Z}/(k+1)$ is defined by

$$xy := [\iota(x)\iota(y)]_{k+1}.$$

- (a) Show that $\iota(xy) \equiv \iota(x)\iota(y) \mod k + 1$ for each $x, y : \mathbb{Z}/(k+1)$.
- (b) Show that

$$xy \equiv x'y' \mod k$$

for any $x, y, x', y' : \mathbb{N}$ such that $x \equiv x'$ and $y \equiv y' \mod k$.

(c) Show that multiplication on $\mathbb{Z}/(k+1)$ satisfies the laws of a commutative ring:

$$(xy)z = x(yz)$$

$$1x = x$$

$$x(y+z) = xy + xz$$

$$(x+y)z = xz + yz.$$

- 7.9 (Euclidean division) Consider two natural numbers *a* and *b*.
 - (a) Construct two natural numbers q and r such that $(b \neq 0) \rightarrow (r < b)$, along with an identification

$$a = qb + r.$$

(b) Show that for any four natural numbers q, q' and r, r' such that the implications $(b \neq 0) \rightarrow (r < b)$ and $(b \neq 0) \rightarrow (r' < b)$ hold, and for which there are identifications

$$a = qb + r$$
 and $a = q'b + r'$,

we have q = q' and r = r'.

7.10 The type \mathbb{N}_k of k-ary natural numbers is an inductive type with the following constructors:

$$constant_{\mathbb{N}_k} : Fin_k \to \mathbb{N}_k$$

unary-op_{$$\mathbb{N}_k$$}: Fin _{k} \to (\mathbb{N}_k \to \mathbb{N}_k).

A k-ary natural number can be converted back into an ordinary natural number via the function $f_k : \mathbb{N}_k \to \mathbb{N}$, which is defined recursively by

$$f_k(\mathsf{constant}_{\mathbb{N}_k}(x)) \coloneqq \iota(x)$$

 $f_k(\mathsf{unary-op}_{\mathbb{N}_k}(x,n)) \coloneqq k(f_k(n)+1) + \iota(x).$

- (a) Show that the type \mathbb{N}_0 is empty.
- (b) Show that the function $f_k : \mathbb{N}_k \to \mathbb{N}$ is injective.
- (c) Show that the function $f_{k+1} : \mathbb{N}_{k+1} \to \mathbb{N}$ has an inverse, i.e. construct a function

$$g_k : \mathbb{N} \to \mathbb{N}_{k+1}$$

equipped with identifications

$$f_{k+1}(g_k(n)) = n$$

$$g_k(f_{k+1}(x)) = x$$

for each $n : \mathbb{N}$ and each $x : \mathbb{N}_{k+1}$.

8 Decidability in elementary number theory

Martin-Löf's dependent type theory is a foundation for constructive mathematics, but in constructive mathematics there is no way to show that $P \vee \neg P$ holds for an arbitrary proposition P. Likewise, in type theory there is no way to construct an element of type $A + \neg A$ for an arbitrary type A. Consequently, if we want to reason by case analysis over whether A is empty or nonempty, we first have to *show* that $A + \neg A$ holds.

A type A that comes equipped with an element of type $A + \neg A$ is said to be *decidable*. Even though we cannot show that all types are decidable, many types are indeed decidable. Examples include the empty type and any type that comes equipped with a point, such as the type of natural numbers.

Decidability is an important concept with many applications in number theory and finite mathematics, and in this section we will explore the applications of decidability to elementary number theory. For example, the natural numbers satisfy a well-ordering principle with respect to decidable type families over the natural numbers; decidability can be used to construct the greatest common divisor of any two natural numbers; and it can also be used to show that there are infinitely many prime numbers.

8.1 Decidability and decidable equality

Definition 8.1.1 A type *A* is said to be **decidable** if it comes equipped with an element of type

$$is\text{-decidable}(A) := A + \neg A.$$

A family P over a type A is said to be **decidable** if P(x) is decidable for every x : A.

Example 8.1.2 The principal way to show that a type A is decidable is to either construct an element a:A, or to construct a function $A\to\emptyset$. For example, the types **1** and \emptyset are decidable. Indeed, we have

$$\mathsf{inl}(\star)$$
: $\mathsf{is-decidable}(1)$
 $\mathsf{inr}(\mathsf{id})$: $\mathsf{is-decidable}(\emptyset)$.

Furthermore, any type A equipped with an element a:A is decidable because we have inl(a):is-decidable(A) for such A.

Example 8.1.3 The principal way to use a hypothesis that *A* is decidable is to proceed by the induction principle of coproducts, i.e., to proceed by case analysis.

For example, if A and B are decidable types, then the types A + B, $A \times B$, and $A \to B$ are also decidable. This is straightforward to prove directly by pattern-matching on the variables of type is-decidable(A) and is-decidable(B). When we go through these proofs, the familiar truth table emerges:

is-decidable				
A	В	A + B	$A \times B$	$A \rightarrow B$
inl(a)	inl(b)	inl(inl(a))	inl(a, b)	$inl(\lambda x. b)$
inl(a)	inr(g)	inl(inl(a))	$\operatorname{inr}(g \circ \operatorname{pr}_2)$	$\operatorname{inr}(\lambda h.g(h(a)))$
inr(f)	inl(b)	inl(inr(b))	$inr(f \circ pr_1)$	$inl(ex\text{-}falso\circ f)$
inr(f)	inr(g)	inr[f,g]	$inr(f \circ pr_1)$	$inl(ex\text{-falso}\circ f)$

Since $A \to B$ is decidable whenever both A and B are decidable, it also follows that the negation $\neg A$ of any decidable type A is decidable.

Example 8.1.4 Since the empty type and the unit type are both decidable types, it also follows that the types $Eq_{\mathbb{N}}(m, n)$, $m \le n$ and m < n are decidable for each $m, n : \mathbb{N}$. The proofs in each of the three cases is by induction on m and n.

For instance, to show that $Eq_{\mathbb{N}}(m,n)$ is decidable for each $m,n:\mathbb{N}$, we simply note that the types

$$\begin{aligned} \mathsf{Eq}_{\mathbb{N}}(0_{\mathbb{N}},0_{\mathbb{N}}) &\doteq \mathbf{1} \\ \mathsf{Eq}_{\mathbb{N}}(0_{\mathbb{N}},\mathsf{succ}_{\mathbb{N}}(n)) &\doteq \emptyset \\ \mathsf{Eq}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(m),0_{\mathbb{N}}) &\doteq \emptyset \end{aligned}$$

are all decidable, and that the type $\mathsf{Eq}_{\mathbb{N}}(\mathsf{succ}_{\mathbb{N}}(m),\mathsf{succ}_{\mathbb{N}}(n)) \doteq \mathsf{Eq}_{\mathbb{N}}(m,n)$ is decidable by the inductive hypothesis.

The fact that \mathbb{N} has decidable observational equality also implies that equality itself is decidable on \mathbb{N} . This leads to the general concept of decidable equality, which is important in many results about decidability.

Definition 8.1.5 We say that a type A has **decidable equality** if the identity type x = y is decidable for every x, y : A. We will write

has-decidable-eq(
$$A$$
) := $\prod_{(x,y:A)}$ is-decidable($x = y$).

Before we show that \mathbb{N} has decidable equality, let us show that if $A \leftrightarrow B$ and A is decidable, then B must be decidable.

Lemma 8.1.6 Consider two types A and B, and suppose that $A \leftrightarrow B$. Then A is decidable if and only if B is decidable.

Proof Since we have functions $f: A \rightarrow B$ and $g: B \rightarrow A$ by assumption, we obtain by Proposition 4.3.4 the functions

$$\tilde{f}: \neg B \to \neg A$$

 $\tilde{g}: \neg A \to \neg B.$

By Remark 4.4.2 we have therefore the functions

$$f + \tilde{g} : (A + \neg A) \to (B + \neg B)$$

$$g + \tilde{f} : (B + \neg B) \to (A + \neg A).$$

Proposition 8.1.7 *Equality on the natural numbers is decidable.*

Proof Recall from Proposition 6.3.3 that we have

$$(m = n) \leftrightarrow \mathsf{Eq}_{\mathbb{N}}(m, n).$$

The claim therefore follows by Lemma 8.1.6, since we have observed in Example 8.1.4 that $Eq_{\mathbb{N}}(m, n)$ is decidable for every $m, n : \mathbb{N}$.

It is certainly not provable with the given rules of type theory that every type has decidable equality. In fact, we will show in Theorem 12.3.5 that if a type has decidable equality, then it is a *set*. However, it is also not provable that every set has decidable equality unless one assumes the *law of excluded middle*. We will discuss this principle in Section 14.3. For now, it is important to remember that in order to use decidability, we must first *prove that it holds*, and many familiar types do indeed have decidable equality.

Proposition 8.1.8 *The standard finite type* Fin_k *has decidable equality for each* $k : \mathbb{N}$.

Proof Recall from Exercise 7.5 that we constructed an observational equality relation Eq_k on Fin_k for each $k : \mathbb{N}$, which satisfies

$$(x = y) \leftrightarrow \mathsf{Eq}_k(x, y).$$

The type $Eq_k(x, y)$ is decidable, since it is recursively defined using the decidable types \emptyset and $\mathbf{1}$.

We can use the fact that the finite types Fin_k have decidable equality to show that the divisibility relation on \mathbb{N} is decidable.

Theorem 8.1.9 *For any* d, x : \mathbb{N} , the type $d \mid x$ is decidable.

Proof Note that $0 \mid x$ is decidable because $0 \mid x$ if and only if x = 0, which is decidable by Proposition 8.1.7. Therefore it suffices to show that $d + 1 \mid x$ is decidable.

By Theorem 7.4.7 it follows that $d + 1 \mid x$ holds if and only if we have an identification $[x]_{d+1} = 0$ in Fin_{d+1} . Therefore the claim follows from the fact that Fin_{d+1} has decidable equality.

8.2 Constructions by case analysis

A common way to construct functions and to prove properties about them is by case analysis. For example, a famous function of Collatz is specified by case analysis on whether n is even or odd:

$$collatz(n) = \begin{cases} n/2 & \text{if } n \text{ is even} \\ 3n+1 & \text{if } n \text{ is odd.} \end{cases}$$

The Collatz function is of course uniquely determined by this specification, but it is important to note that there is a bit of work to be done in order to define the Collatz function according to the rules of dependent type theory. First we note that, since the Collatz function is specified by case analysis on whether n is even or odd, we will have to use a dependent function witnessing the fact that every number is either even or odd. In other words, we will make use of the dependent function

$$d:\prod_{(n:\mathbb{N})}$$
is-decidable $(2\mid n)$,

which we have by Theorem 8.1.9. The type is-decidable($2 \mid n$) is the coproduct $(2 \mid n) + (2 \nmid n)$, so the idea is to proceed by case analysis on whether d(n) is of the form inl(x) or inr(x), i.e., by the induction principle of coproducts. However, d(n) is not a free variable of type is-decidable($2 \mid n$). Before we can proceed by induction, we must therefore first *generalize* the element d(n) to a free variable y: is-decidable($2 \mid n$). In other words, we will first define a function

$$h: \prod_{(n:\mathbb{N})} (\text{is-decidable}(2 \mid n) \to \mathbb{N})$$

by the induction principle of coproducts, and then we obtain the Collatz function by substituting d(n) for y in h(n, y). Putting these ideas together, we obtain the following type theoretical definition of the Collatz function.

Definition 8.2.1 Write $d: \prod_{(n:\mathbb{N})}$ is-decidable $(2 \mid n)$ for the function deciding $2 \mid n$, given in Theorem 8.1.9.

(i) We define a function $h: \prod_{(n:\mathbb{N})} (\text{is-decidable}(2 \mid n) \to \mathbb{N})$ by

$$h(n, \operatorname{inl}(m, p)) := m$$

 $h(n, \operatorname{inr}(f)) := 3n + 1.$

(ii) We define the collatz function collatz : $\mathbb{N} \to \mathbb{N}$ by

$$collatz(n) := h(n, d(n)).$$

Remark 8.2.2 The general ideas behind the formal construction of the Collatz function lead to the type theoretic concept of *with-abstraction*. With-abstraction is a type-theoretically precise generalization of case analysis.

In full generality, if our goal is to define a dependent function $f: \prod_{(x:A)} C(x)$, and we already have a function $g: \prod_{(x:A)} B(x)$, then it suffices to define a dependent function

$$h: \prod_{(x:A)} B(x) \to C(x).$$

Indeed, given g and h as above, we can define $f := \lambda x$. h(x, g(x)). In other words, to define f(x) using g(x) : B(x), we generalize g(x) to an arbitrary element g(x) and proceed to define an element g(x) and g(x) to an arbitrary element g(x) and proceed to define an element g(x) are

With-abstraction is a concise way to present such a definition. In a definition by with-abstraction, we may write

$$f(x)$$
 with $[g(x)/y] := h(x,y)$,

to define a function $f: \prod_{(x:A)} C(x)$ that satisfies the judgmental equality $f \doteq \lambda x. h(x, g(x))$. In other words, f(x) is defined to be h(x, y) with g(x) for y.

The definition of the Collatz function can therefore be given by withabstraction as

$$collatz(n)$$
 with $[d(n)/y] := h(x, y)$.

However, recall that the function h was defined by pattern matching on y. We can combine with-abstraction and pattern matching to obtain a *direct* definition of the Collatz function that doesn't explicitly mention the function h anymore. This gives us the following concise way to define the Collatz function:

$$collatz(n)$$
 with $[d(n)/inl(m,p)] := m$
 $collatz(n)$ with $[d(n)/inr(f)] := 3n + 1$.

Notice that in addition to the information in the specification of the Collatz function, the definition by with-abstraction also tells us which decision procedure was used to decide whether n is even or not. The combination of with-abstraction and pattern matching, which allows us to skip the explicit definition of the function h, is what makes with-abstraction so useful.

Using with-abstraction we can find a slight improvement of the decidability

results of $A \rightarrow B$ and $A \times B$ in Example 8.1.3, and we will use these improved claims in the construction of the greatest common divisor.

Proposition 8.2.3 Consider a decidable type A, and let B be a type equipped with a function

$$A \rightarrow \text{is-decidable}(B)$$
.

Then the types $A \times B$ and $A \rightarrow B$ are also decidable.

Proof We only prove the claim about the decidability of $A \to B$, since the claim about the decidability of $A \times B$ is proven similarly. Since A is assumed to be decidable, we proceed by case analysis on $A + \neg A$. In the case where we have $f : \neg A$, we have the functions

$$A \xrightarrow{f} \emptyset \xrightarrow{\text{ex-falso}} B.$$

Therefore we obtain the element $\operatorname{inl}(\operatorname{ex-falso} \circ f)$: is-decidable($A \to B$). In the case where we have an element a:A, we have to construct a function

$$d: (A \rightarrow \mathsf{is\text{-}decidable}(B)) \rightarrow \mathsf{is\text{-}decidable}(A \rightarrow B)$$

Given $H:A\to \mathsf{is\text{-}decidable}(B)$, we can use with-abstraction to proceed by case analysis on $H(a):B+\neg B$. The function d is therefore defined as

$$d(H) \ with \ [H(a)/\mathsf{inl}(b)] \coloneqq \mathsf{inl}(\lambda x. b)$$

$$d(H) \ with \ [H(a)/\mathsf{inr}(g)] \coloneqq \mathsf{inr}(\lambda h. \ g(h(a))).$$

For a general family of decidable types P over \mathbb{N} , we cannot prove that the type

$$\prod_{(x:\mathbb{N})} P(x)$$

is decidable. However, if we know in advance that P(x) holds for any $m \le x$, then we can decide $\prod_{(x:\mathbb{N})} P(x)$ by checking the decidability of each P(x) until m.

Proposition 8.2.4 Consider a decidable type family P over \mathbb{N} equipped with a natural number m such that the type

$$\prod_{(x:\mathbb{N})} (m \le x) \to P(x)$$

is decidable. Then the type $\prod_{(x:\mathbb{N})} P(x)$ is decidable.

Proof Our proof is by induction on m, but we will first make sure that the inductive hypothesis will be strong enough by quantifying over all decidable type families over \mathbb{N} . Of course, we cannot do this directly. However, by the assumption that there are enough universes (Postulate 6.2.1), there is a universe \mathcal{U} that contains P. We fix this universe, and we will prove by induction on m that for every decidable type family $Q: \mathbb{N} \to \mathcal{U}$ for which the type

$$\prod_{(x:\mathbb{N})} (m \le x) \to Q(x),$$

is decidable, the type $\prod_{(x:\mathbb{N})} Q(x)$ is again decidable.

In the base case, it follows by assumption that the type $\prod_{(x:A)} Q(x)$ is decidable. For the inductive step, let $Q: \mathbb{N} \to \mathcal{U}$ be a decidable type family for which the type

$$\prod_{(x:\mathbb{N})} (m+1 \leq x) \to Q(x)$$

is decidable. Since Q is assumed to be decidable, we can proceed by case analysis on $Q(0) + \neg Q(0)$. In the case of $\neg Q(0)$, it follows that $\neg \prod_{(x:\mathbb{N})} Q(x)$. In the case where we have q:Q(0), consider the type family $Q':\mathbb{N} \to \mathcal{U}$ given by

$$Q'(x) := Q(x+1).$$

Then Q' is decidable since Q is decidable, and moreover it follows that the type $\prod_{(x:\mathbb{N})}(m \le x) \to Q'(x)$ is decidable. The inductive hypothesis implies therefore that the type $\prod_{(x:\mathbb{N})} Q'(x)$ is decidable. In the case where $\neg \prod_{(x:\mathbb{N})} Q'(x)$, it follows that $\neg \prod_{(x:\mathbb{N})} Q(x)$, and in the case where we have a function $g:\prod_{(x:\mathbb{N})} Q'(x)$, we can construct a function $f:\prod_{(x:\mathbb{N})} Q(x)$ by

$$f(0) := q$$

$$f(x+1) := g(x).$$

Corollary 8.2.5 Consider two decidable families P and Q over \mathbb{N} , and suppose that P comes equipped with an upper bound m. Then the type

$$\prod_{(n:\mathbb{N})} P(n) \to Q(n)$$

is decidable.

Proof Since *m* is assumed to be an upper bound for *P*, it follows $P(n) \rightarrow Q(n)$ for any $m \le n$. With this observation we apply Proposition 8.2.4. □

8.3 The well-ordering principle of \mathbb{N}

The well-ordering principle of the natural numbers in classical mathematics asserts that any nonempty subset of $\mathbb N$ has a least element. To formulate the well-ordering principle in type theory, we will use type families over $\mathbb N$ instead of subsets of $\mathbb N$. Moreover, the classical well-ordering principle tacitly assumes that subsets are decidable. The type theoretic well-ordering principle of $\mathbb N$ is therefore formulated using *decidable* families over $\mathbb N$.

Definition 8.3.1 Let *P* be a family over \mathbb{N} , not necessarily decidable.

(i) We say that a natural number *n* is a **lower bound** for *P* if it comes equipped with an element of type

is-lower-bound
$$_P(n) := \prod_{(x:\mathbb{N})} P(x) \to (n \le x)$$
.

(ii) We say that a natural number n is an **upper bound** for P if it comes equipped with an element of type

is-upper-bound_P
$$(n) := \prod_{(x:\mathbb{N})} P(x) \to (x \le n)$$
.

A minimal element of P is therefore a natural number n for which P(n) holds, and which is also a lower bound for P. The well-ordering principle of \mathbb{N} asserts that such an element exists for any decidable family P, as soon as P(n) holds for some n.

Theorem 8.3.2 (Well-ordering principle of \mathbb{N}) *Let* P *be a decidable family over* \mathbb{N} , *where* d *witnesses that* P *is decidable. Then there is a function*

$$\mathbf{w}(P,d): \left(\sum_{(n:\mathbb{N})} P(n)\right) \to \left(\sum_{(m:\mathbb{N})} P(m) \times \text{is-lower-bound}_P(m)\right).$$

Proof By the assumption that there are enough universes (Postulate 6.2.1), there is a universe \mathcal{U} that contains P. Instead of proving the claim for the given type family P, we will show by induction on $n : \mathbb{N}$ that there is a function

$$Q(n) \to \left(\sum_{(m:\mathbb{N})} Q(m) \times \text{is-lower-bound}_{\mathbb{Q}}(m)\right)$$
 (*)

for every decidable family $Q: \mathbb{N} \to \mathcal{U}$. Note that we are now also quantifying over the decidable families $Q: \mathbb{N} \to \mathcal{U}$. This slightly strengthens the inductive hypothesis, which we will be able to exploit.

The base case is trivial, since 0_N is a lower bound of every type family over N. For the inductive step, assume that Eq. (*) holds for every decidable

type family $Q: \mathbb{N} \to \mathcal{U}$. Furthermore, let $Q: \mathbb{N} \to \mathcal{U}$ be a decidable type family equipped with an element $q: Q(\mathsf{succ}_{\mathbb{N}}(n))$. Our goal is to construct an element of type

$$\sum_{(m:\mathbb{N})} Q(m) \times \text{is-lower-bound}_Q(m).$$

Since $Q(0_N)$ is assumed to be decidable, it suffices to construct a function

$$(Q(0_{\mathbb{N}}) + \neg Q(0_{\mathbb{N}})) \to \sum_{(m:\mathbb{N})} Q(m) \times \text{is-lower-bound}_{Q}(m).$$

Therefore we can proceed by case analysis on $Q(0_{\mathbb{N}}) + \neg Q(0_{\mathbb{N}})$. In the case where we have an element of type $Q(0_{\mathbb{N}})$, it follows immediately that $0_{\mathbb{N}}$ must be minimal. In the case where $\neg Q(0_{\mathbb{N}})$, we consider the decidable subset Q' of \mathbb{N} given by

$$Q'(n) := Q(\operatorname{succ}_{\mathbb{N}}(n)).$$

Since we have q:Q'(n), we obtain a minimal element in Q' by the inductive hypothesis. Of course, by the assumption that $Q(0_{\mathbb{N}})$ doesn't hold, the minimal element of Q' is also the minimal element of Q.

8.4 The greatest common divisor

The greatest common divisor of two natural numbers a and b is a natural number gcd(a, b) that satisfies the property that

$$x \mid a \text{ and } x \mid b$$
 if and only if $x \mid \gcd(a, b)$

for any $x : \mathbb{N}$. In other words, any number $x : \mathbb{N}$ that divides both a and b also divides the greatest common divisor. Moreover, since gcd(a, b) divides itself, it follows from the reverse implication that gcd(a, b) divides both a and b.

This property can also be seen as the *specification* of what it means to be a greatest common divisor of a and b. In formal developments of mathematics, when you're about to construct an object that satisfies a certain specification, it can be useful to start out with that specification. For example, there is more than one way to define the greatest common divisor. We will define it here in Definition 8.4.6 using the well-ordering principle, but an alternative definition using Euclid's algorithm is of course just as good, since both definitions satisfy the specification that uniquely characterizes it. Hence we make the following specification of the greatest common divisor.

Definition 8.4.1 Consider three natural numbers *a*, *b*, and *d*. We say that *d* is a **greatest common divisor** of *a* and *b* if it comes equipped with an element of type

$$is\text{-gcd}_{a,b}(d) := \prod_{(x:\mathbb{N})} (x \mid a) \times (x \mid b) \leftrightarrow (x \mid d).$$

The property of being a greatest common divisor uniquely characterizes the greatest common divisor, in the following sense.

Proposition 8.4.2 Suppose d and d' are both a greatest common divisor of a and b. Then d = d'.

Proof If both d and d' are a greatest common divisor of a and b, then both d and d' divide both a and b, and hence it follows that $d \mid d'$ and $d' \mid d$. Since the divisibility relation was shown to be a partial order in Exercise 7.2, it follows by antisymmetry that d = d'.

Note that for any two natural numbers a and b, the type

$$\sum_{(n:\mathbb{N})} \prod_{(x:\mathbb{N})} (x \mid a) \times (x \mid b) \to (x \mid n) \tag{*}$$

consists of all the multiples of the common divisors of a and b, including 0. On the other hand, the type

$$\sum_{(n:\mathbb{N})} \prod_{(x:\mathbb{N})} (x \mid n) \to (x \mid a) \times (x \mid b) \tag{**}$$

consists of all the common divisors of a and b except in the case where a = 0 and b = 0. In this case, the type in Eq. (**) consists of all natural numbers.

Eqs. (*) and (**) provide us with two ways to define the greatest common divisor. We can either define the greatest common divisor of a and b as the greatest natural number in the type in Eq. (**) or we can define it as the least *nonzero* natural number of the type in Eq. (*), provided that we make an exception in the case where both a = 0 and b = 0. Since we already have established the well-ordering principle of \mathbb{N} , we will opt for the second approach. In Exercise 8.10 you will be asked to show that any *bounded* decidable family over \mathbb{N} has a maximum as soon as it contains some natural number.

In order to correctly define the greatest common divisor using well-ordering principle of \mathbb{N} , we need a slight modification of the type family in Eq. (*). We define this family as follows:

Definition 8.4.3 Given $a, b : \mathbb{N}$, we define the type family M(a, b) over \mathbb{N} by

$$M(a,b,n) \coloneqq (a+b\neq 0) \to (n\neq 0) \times \Big(\textstyle\prod_{(x:\mathbb{N})} (x\mid a) \times (x\mid b) \to (x\mid n)\Big).$$

In other words, if a + b = 0 then the type $\sum_{(n:\mathbb{N})} M(a, b, n)$ consist of all the natural numbers. On the other hand, if $a + b \neq 0$ it consists of the nonzero natural numbers n with the property that any common divisor of a and b also divides n. These are exactly the nonzero multiples of the greatest common divisor of a and b.

Since we intend to apply the well-ordering principle, we must show that the family M(a,b) is decidable. This is a step that one can skip in classical mathematics, because all the subsets of $\mathbb N$ are decidable there. However, in our current setting we have no choice but to prove it.

Proposition 8.4.4 *The type family* M(a,b) *is decidable for each* $a,b:\mathbb{N}$.

Proof The type $a + b \neq 0$ is decidable because it is the negation of the type a + b = 0, which is decidable by Proposition 8.1.7. Therefore it suffices to show that the type

$$(n \neq 0) \times \prod_{(x:\mathbb{N})} (x \mid a) \times (x \mid b) \rightarrow (x \mid n)$$

is decidable, and by Proposition 8.2.3 we also get to assume that $a + b \neq 0$. The type $n \neq 0$ is again decidable by Proposition 8.1.7, so it suffices to show that the type

$$\prod_{(x:\mathbb{N})} (x \mid a) \times (x \mid b) \to (x \mid n)$$

is decidable. The types $(x \mid a) \times (x \mid b)$ and $(x \mid n)$ are decidable by Theorem 8.1.9, so by Corollary 8.2.5 it suffices to check that the family of types $(x \mid a) \times (x \mid b)$ indexed by $x : \mathbb{N}$ has an upper bound. If x is a common divisor of a and b, then it follows that x divides a + b. Furthermore, since we have assumed that $a + b \neq 0$, it follows that $x \leq a + b$. This provides the upper bound.

We are almost in position to apply the well-ordering principle of \mathbb{N} to define the greatest common divisor. It just remains to show that there is some $n : \mathbb{N}$ for which M(a, b, n) holds. We prove this in the following lemma.

Lemma 8.4.5 There is an element of type M(a, b, a + b).

Proof To construct an element of type M(a, b, a + b), assume that $a + b \neq 0$.

Then we have tautologically that $a + b \neq 0$, and any common divisor of a and b is also a divisor of a + b.

Definition 8.4.6 We define the **greatest common divisor** gcd : $\mathbb{N} \to (\mathbb{N} \to \mathbb{N})$ by the well-ordering principle of \mathbb{N} (Theorem 8.3.2) as the least natural number n for which M(a,b,n) holds, using the fact that M(a,b) is a decidable type family (Proposition 8.4.4) and that M(a,b,a+b) always holds (Lemma 8.4.5).

Lemma 8.4.7 For any two natural numbers a and b, we have gcd(a, b) = 0 if and only if a + b = 0.

Proof To prove the forward direction, assume that gcd(a,b) = 0. By definition of gcd(a,b) we have that M(a,b,gcd(a,b)) holds. More explicitly, the implication

$$(a + b \neq 0) \rightarrow (\gcd(a, b) \neq 0) \times \prod_{(x:\mathbb{N})} (x \mid a) \times (x \mid b) \rightarrow (x \mid \gcd(a, b))$$

holds. However, we have assumed that gcd(a, b) = 0, so it follows from the above implication that $\neg (a + b \neq 0)$. In other words, we have $\neg \neg (a + b = 0)$. The fact that equality on $\mathbb N$ is decidable implies via Exercise 4.3 (d) that $\neg \neg (a + b = 0) \rightarrow (a + b = 0)$, so we conclude that a + b = 0.

For the converse direction, recall that the inequality $gcd(a, b) \le a + b$ holds by minimality, since M(a, b, a + b) holds by Lemma 8.4.5. If a + b = 0, it therefore follows that $gcd(a, b) \le 0$, which implies that gcd(a, b) = 0.

Theorem 8.4.8 For any two natural numbers a and b, the number gcd(a, b) is a greatest common divisor of a and b in the sense of Definition 8.4.1.

Proof We give the proof by case analysis on whether a + b = 0. If we assume that a + b = 0, then it follows that both a = 0 and b = 0, and by Lemma 8.4.7 it also follows that gcd(a, b) = 0. Since any number divides 0, the claim follows immediately.

In the case where $a+b \neq 0$, it follows from Lemma 8.4.7 that also $gcd(a,b) \neq 0$. From the fact that M(a,b,gcd(a,b)) we therefore immediately obtain that

$$\prod_{(x:\mathbb{N})} (x \mid a) \times (x \mid b) \to (x \mid \gcd(a,b)).$$

Therefore it remains to show that if x divides gcd(a, b), then x divides both a and b. By transitivity of the divisibility relation it suffices to show that gcd(a, b) divides both a and b. We will show only that gcd(a, b) divides a, the proof that gcd(a, b) divides b is similar.

Since gcd(a, b) is nonzero, it follows by Euclidean division (Exercise 7.9) that there are numbers q and r < gcd(a, b) such that

$$a = q \cdot \gcd(a, b) + r$$
.

From this equation and Proposition 7.1.5 it follows that any number x which divides both a and b also divides r, because we have already noted that any such x divides gcd(a, b). This observation implies that r = 0, because we have r < gcd(a, b) by construction and gcd(a, b) is minimal. Therefore we conclude that gcd(a, b) divides a.

8.5 The infinitude of primes

When the natural numbers are ordered by the divisibility relation, the number 1 is at the bottom. Directly above 1 are the prime numbers. Above the prime numbers are the multiples of two primes, then the multiples of three primes, and so on. At the top of this ordering we find 0. For any natural number n, the numbers strictly below n are the proper divisors of n. A prime number is therefore a number of which has exactly one proper divisor.

Definition 8.5.1

(i) Consider two natural numbers *d* and *n*. Then *d* is said to be a **proper divisor** of *n* if it comes equipped with an element of type

is-proper-divisor
$$(n, d) := (d \neq n) \times (d \mid n)$$
.

(ii) A natural number *n* is said to be **prime** if it comes equipped with an element of type

is-prime
$$(n) := \prod_{(x:\mathbb{N})}$$
is-proper-divisor $(n, x) \leftrightarrow (x = 1)$.

Proposition 8.5.2 *For any* $n : \mathbb{N}$ *, the type* is-prime(n) *is decidable.*

Proof We will first show that is-prime $(n) \leftrightarrow$ is-prime'(n), where

is-prime'(n) :=
$$(n \neq 1) \times \prod_{(x:\mathbb{N})}$$
is-proper-divisor $(n, x) \to (x = 1)$.

For the forward direction, simply note that 1 is not a proper divisor of itself, and therefore 1 is not a prime. For the converse direction, suppose that $n \neq 1$ and that any proper divisor of n is 1. Then it follows that 1 is a proper divisor of n, which implies that n is prime.

Now we proceed by showing that the type is-prime'(n) is decidable for every $n : \mathbb{N}$. The proof is by case analysis on whether n = 0 or $n \neq 0$. In the case where n = 0, note that any nonzero number is a proper divisor of 0, and therefore is-prime'(0) doesn't hold. In particular, is-prime'(0) is decidable.

Now suppose that $n \neq 0$. In order to show that the type is-prime'(n) is decidable, note that the type $n \neq 1$ is decidable since it is the negation of the decidable type n = 1. Therefore it suffices to show that the type

$$\prod_{(x:\mathbb{N})}$$
 is-proper-divisor $(n, x) \to (x = 1)$

is decidable. Since the types $(x \neq n) \times (x \mid n)$ and x = 1 are decidable, it follows from Corollary 8.2.5 that it suffices to check that

$$((x \neq n) \times (x \mid n)) \to (x \leq n)$$

for any $x : \mathbb{N}$. This follows from the implication $(x \mid n) \to (x \le n)$, which holds because we have assumed that $n \ne 0$.

The proof that there are infinitely many primes proceeds by constructing a prime number larger than n, for any $n : \mathbb{N}$. The number n! + 1 is relatively prime with any number $x \le n$. Therefore there is a least number n < m that is relatively prime with any number $x \le n$, and it follows that this number m must be prime.

Definition 8.5.3 For any two natural numbers n and m, we define the type

$$R(n,m) := (n < m) \times \prod_{(x:\mathbb{N})} (x \le n) \longrightarrow ((x \mid m) \longrightarrow (x = 1)).$$

Lemma 8.5.4 *The type* R(n, m) *is decidable for each* $n, m : \mathbb{N}$.

Proof The type n < m and, and for each $x : \mathbb{N}$ both types $x \le n$ and $(x \mid m) \to (x = 1)$ are decidable, so it follows via Corollary 8.2.5 that the product

$$\prod_{(x:\mathbb{N})} (x \le n) \to ((x \mid m) \to (x = 1))$$

is decidable.

Lemma 8.5.5 *There is an element of type* R(n, n! + 1) *for each* $n : \mathbb{N}$.

Proof The fact that n < n! + 1 follows from the fact that $n \le n!$, which is shown by induction. We leave this to the reader, and focus on the second aspect of the claim: that every $x \le n$ that divides n! + 1 must be equal to 1.

To see this, note that any divisor of n! + 1 is automatically nonzero, and

recall that any nonzero $x \le n$ divides n! by Exercise 7.3. Therefore it follows that any $x \le n$ that divides n! + 1 also divides n!, and consequently it divides 1 as well. Now we are done, because if x divides 1 then x = 1.

We finally show that there are infinitely many primes.

Theorem 8.5.6 For each $n : \mathbb{N}$, there is a prime number $p : \mathbb{N}$ such that n < p.

Proof It suffices to show that for each *nonzero* n : \mathbb{N} , there is a prime number p : \mathbb{N} such that n ≤ p. Let n be a nonzero natural number.

Since the type R(n, m) is decidable for each $m : \mathbb{N}$, and since R(n, n! + 1) holds by Lemma 8.5.5, it follows by the well-ordering principle of \mathbb{N} (Theorem 8.3.2) that there is a minimal $m : \mathbb{N}$ such that R(n, m) holds. In order to prove the theorem, we will show that this number m is prime, i.e., that there is an element of type

$$(m \neq 1) \times \prod_{(x \in \mathbb{N})} \text{is-proper-divisor}(m, x) \to (x = 1).$$

First, we note that $m \ne 1$ because n < m holds by construction, and n is assumed to be nonzero. Therefore it suffices to show that 1 is the only proper divisor of m. Let x be a proper divisor of m. Since R(n, m) holds by construction, we will prove that x = 1 by showing that $x \le n$ holds.

Since m is nonzero, it follows from the assumption that $x \mid m$ that x < m. By minimality of m, it therefore follows that $\neg R(n,x)$ holds. However, any divisor of x is also a divisor of m by transitivity of the divisibility relation. Therefore it follows that any $y \le n$ that divides x must be 1. In other words:

$$\prod_{(y:\mathbb{N})} (y \le n) \to ((y \mid x) \to (y = 1))$$

holds. Since $\neg R(n, x)$ holds, we conclude now that $n \not< x$. To finish the proof, it follows that $x \le n$.

8.6 Boolean reflection

We have shown that the type is-prime(n) is decidable for every n. In other words, there is an element d(n): is-decidable(is-prime(n)) for every n. In principle, we can therefore check whether any *specific* natural number n is prime by inspecting the element d(n): if it is of the form $\mathrm{inl}(x)$ for some x: is-prime(n), then n is prime; if it is of the form $\mathrm{inr}(f)$ for some f: \neg is-prime(n), then n is not prime. In other words, we evaluate the element d(n) using the computation rules of type theory, and then we see whether n is prime or not.

Computers can perform such evaluations, but it is often unfeasible to carry out such evaluations by hand. Moreover, even for computers the task of evaluating a proof term like is-decidable-is-prime(n) may quickly get out of hand. With the formalization of the material in this book, the proof assistant Agda returns a proof term of 430 lines of code when we simply ask it to evaluate the term is-decidable-is-prime(7), and it returned a proof term of 69373 lines of code when we asked it to evaluate the term is-decidable-is-prime(37). There is a much better way to do this: *boolean reflection*.

Definition 8.6.1 For any type *A* we define the map

booleanization : is-decidable(A) \rightarrow bool

by

booleanization(
$$inl(a)$$
) := true
booleanization($inr(f)$) := false.

Theorem 8.6.2 (Boolean reflection principle) For any type A and any decision d: is-decidable(A), there is a map

reflect : (booleanization(
$$d$$
) = true) $\rightarrow A$

such that $reflect(inl(a)) \doteq a$.

Proof First, recall that by Exercise 6.2 there is a map γ : (false = true) $\rightarrow \emptyset$. We use this to construct reflect by pattern matching as follows:

Remark 8.6.3 Since the number 37 is a prime, it follows that the booleanization of the term

$$d(37)$$
: is-decidable(is-prime(37))

has the value booleanization(d(37)) \doteq true. By boolean reflection it therefore follows that

is-prime-37 := reflect(
$$d(37)$$
, refl) : is-prime(37). (*)

The term in is-prime-37 does not, however, contain any explicit information as to why the number 37 is prime. The reason that it type checks is simply that d(37) is judgmentally equal to some term of the form

inl(t): is-decidable(is-prime(37)) and therefore it follows that refl is an identification of type

booleanization(
$$d(37)$$
) = true.

To see that is-prime-37 is indeed an element of type is-prime(37) therefore requires us to evaluate the term d(37). This is not doable by hand. Computer proof assistants, however, are capable of performing this task. In a proof assistant, we may therefore use boolean reflection to offload the task of evaluating the decision algorithm of a decidable type to the computer. This technique has been essential in the formalization of the Feit-Thompson theorem in Coq [13]. The book *Mathematical Components* [18] contains more information about using boolean reflection effectively in formalized mathematics.

Do not, however, "solve" your homework problems with boolean reflection. If your teaching assistant cannot evaluate your solution, they will conclude that you haven't demonstrated your clear understanding of the problem.

Exercises

- 8.1 (a) State Goldbach's conjecture in type theory.
 - (b) State the twin prime conjecture in type theory.
 - (c) State the Collatz conjecture in type theory.

If you have a solution to any of these open problems, you should certainly formalize it before you submit it to the Annals of Mathematics.

8.2 Show that

$$\mathsf{is\text{-}decidable}(\mathsf{is\text{-}decidable}(P)) \to \mathsf{is\text{-}decidable}(P)$$

for any type P.

8.3 For any family P of decidable types indexed by Fin_k , construct a function

$$\neg \Big(\prod_{(x:\mathsf{Fin}_k)} P(x)\Big) \to \sum_{(x:\mathsf{Fin}_k)} \neg P(x).$$

- 8.4 (a) Define the **prime function** prime : $\mathbb{N} \to \mathbb{N}$ for which prime(n) is the n-th prime.
 - (b) Define the **prime-counting function** $\pi : \mathbb{N} \to \mathbb{N}$, which counts for each $n : \mathbb{N}$ the number of primes $p \le n$.
- 8.5 For any natural number n, show that

is-prime
$$(n) \leftrightarrow (2 \le n) \times \prod_{(x : \mathbb{N})} (x \mid n) \to (x = 1) + (x = n).$$

- 8.6 Consider two types *A* and *B*. Show that the following are equivalent:
 - (i) There are functions

$$B \rightarrow \text{has-decidable-eq}(A)$$

$$A \rightarrow \mathsf{has}\mathsf{-decidable}\mathsf{-eq}(B).$$

(ii) The product $A \times B$ has decidable equality.

Conclude that if both A and B have decidable equality, then so does $A \times B$.

8.7 Consider two types A and B, and consider the observational equality Eq-copr on the coproduct A + B defined by

$$\begin{aligned} \mathsf{Eq\text{-}copr}(\mathsf{inl}(x),\mathsf{inl}(x')) &\coloneqq x = x' & \mathsf{Eq\text{-}copr}(\mathsf{inl}(x),\mathsf{inr}(y')) &\coloneqq \emptyset \\ \mathsf{Eq\text{-}copr}(\mathsf{inr}(y),\mathsf{inl}(x')) &\coloneqq \emptyset & \mathsf{Eq\text{-}copr}(\mathsf{inr}(y),\mathsf{inr}(y')) &\coloneqq y = y'. \end{aligned}$$

- (a) Show that $(x = y) \leftrightarrow \mathsf{Eq\text{-}copr}(x, y)$ for every x, y : A + B.
- (b) Show that the following are equivalent:
 - (i) Both *A* and *B* have decidable equality.
 - (ii) The coproduct A + B has decidable equality.

Conclude that \mathbb{Z} has decidable equality.

- 8.8 Consider a family *B* over *A*, and consider the following three conditions:
 - (i) The type *A* has decidable equality.
 - (ii) The type B(x) has decidable equality for each x : A.
 - (iii) The type $\sum_{(x:A)} B(x)$ has decidable equality.

Show that if (i) holds, then (ii) and (iii) are equivalent, and show that if B has a section $b:\prod_{(x:A)}B(x)$, then (ii) and (iii) together imply (i).

- 8.9 Consider a family *B* of types over Fin_k , for some $k : \mathbb{N}$.
 - (a) Show that if each B(x) is decidable, then $\prod_{(x:Fin_k)} B(x)$ is again decidable.
 - (b) Show that if each B(x) has decidable equality, then $\prod_{(x:Fin_k)} B(x)$ also has decidable equality.
- 8.10 Consider a decidable type family P over \mathbb{N} equipped with an upper bound m.
 - (a) Show that the type $\sum_{(n:\mathbb{N})} P(n)$ is decidable.
 - (b) Construct a function

$$\Big(\textstyle\sum_{(n:\mathbb{N})} P(n)\Big) \to \Big(\textstyle\sum_{(n:\mathbb{N})} P(n) \times \text{is-upper-bound}_P(n)\Big).$$

- (c) Use the function of part (b) to give a second construction of the greatest common divisor, and verify that it satisfies the specification of Definition 8.4.1.
- 8.11 (a) For any three natural numbers x, y, and z, show that the type

$$\sum_{(k:\mathbb{N})} \sum_{(l:\mathbb{N})} \mathsf{dist}_{\mathbb{N}}(kx, ly) = z$$

is decidable.

(b) (Bézout's identity) For any two natural numbers x and y, construct two natural numbers k and l equipped with an identification

$$\operatorname{dist}_{\mathbb{N}}(kx, ly) = \gcd(x, y).$$

- 8.12 (a) Show that every natural number $n \ge 2$ has a prime factor.
 - (b) Define a function

prime-factors :
$$\left(\sum_{(n:\mathbb{N})} 2 \le n\right) \to \operatorname{list}(\mathbb{N})$$

such that prime-factors(n) is an increasing list of primes, and n is the product of the primes in the list prime-factors(n).

- (c) Show that any increasing list l of primes of which the product is n is equal to the list prime-factors(n).
- 8.13 Show that there are infinitely many primes $p \equiv 3 \mod 4$.
- 8.14 Show that for each prime p, the ring \mathbb{Z}/p of integers modulo p is a field, i.e., construct a multiplicative inverse

$$(-)^{-1}:\prod_{(x:\mathbb{Z}/p)}\to (x\neq 0)\to \mathbb{Z}/p$$

equipped with identifications

$$x^{-1}x = 1 xx^{-1} = 1.$$

8.15 Let $F : \mathbb{N} \to \mathbb{N}$ be the Fibonacci sequence. Construct the **cofibonacci sequence**, i.e., the function $G : \mathbb{N} \to \mathbb{N}$ such that

$$(G_m \mid n) \leftrightarrow (m \mid F_n)$$

for all $m, n : \mathbb{N}$. Hint: for m > 0, G_m is the least x > 0 such that $m \mid F_x$.

The Univalent Foundations of Mathematics

The univalent foundations program is an approach to mathematics in which mathematics is formalized in dependent type theory, using the homotopy interpretation and the univalence axiom. The homotopy interpretation of type theory fully embraces the idea that between any two elements of a type there is a *type* of identifications, much like between any two points in a topological space there is a *space* of paths between them. This idea was first explored by Awodey and Warren in [3] and independently by Voevodsky in [25]. With the homotopy interpretation of type theory, outlined in the table below, we think of types as spaces, type families as fibrations, and identifications as paths.

Voevodsky's univalence axiom characterizes the identity type of the universes in type theory, asserting that for any two types A and B in a universe \mathcal{U} , we have an equivalence

$$(A =_{\mathcal{U}} B) \simeq (A \simeq B).$$

In other words, identifications of types are equivalent to equivalences of types. A consequence of the univalence axiom is that many kinds of isomorphic

Type theory	Homotopy theory	
Types	Spaces	
Dependent types	Fibrations	
Elements	Points	
Dependent pair type	Total space	
Identity type	Path fibration	

objects in mathematics, such as isomorphic groups or isomorphic rings, can be identified.

The concept of equivalences generalizes the concept of set-isomorphisms to type theory in a way that is suitable for the homotopy interpretation of type theory. Equivalent types are the same for all practical purposes, just as isomorphic objects are practically the same in everyday mathematics. By the univalence axiom, isomorphic objects get identified.

However, the informal practice of identifying isomorphic objects is technically inconsistent with the set theoretic foundations of mathematics. The extensionality axiom of Zermelo-Fraenkel set theory implies, for instance, that there are many different singleton sets $\{x\}$. All those singleton sets are isomorphic, so the univalence axiom identifies them, which would be inconsistent within Zermelo-Fraenkel set theory. The assumption of the univalence axiom therefore marks our definitive departure from the set-theoretic foundations of mathematics.

Since the univalence axiom characterizes the identity type of the universe, it is important to understand the general task of characterizing the identity type of any given type. It is a crucial observation, which we already made when we discussed the uniqueness of refl in Section 5.5, that for any a:A, the type

$$\sum_{(x:A)} a = x$$

is contractible. Contractible types are types that are singletons up to homotopy, i.e., they are types A that come equipped with a point a:A such that a=x for every x:A. We have seen in Proposition 5.5.1 that the total space of all paths starting at a is such a type, so it is an example of a contractible type. The fundamental theorem of identity types asserts that a type family B over A with b:B(a) has a contractible total space

$$\sum_{(x:A)} B(x)$$

if and only if $(a = x) \simeq B(x)$ for all x : A. The fundamental theorem of identity types can be used to characterize the identity types of virtually any type that we will encounter. Since types are only fully understood if we also have a clear understanding of their identity types, it is one of the core tasks of a homotopy type theorist to characterize identity types, and the fundamental theorem (Theorem 11.2.2) is the main tool.

Not all types have very complicated identity types. For example, some types

have the property that all their identity types are contractible. For example, the types \emptyset and $\mathbf{1}$ satisfy this condition. Any two terms of such a type can therefore be identified, so in this sense they are *proof irrelevant*. The only thing that matters about such types is whether or not they are inhabited by a term. Analogously, this is also the case for propositions in the propositional calculus or first order logic. Therefore we call such types propositions, and we see that propositions are present in type theory as certain types.

Next, there are the types of which the identity types are propositions. In other words, the identity types of such types have the property of proof irrelevance. We are familiar with this situation from set theory, because equality in set theory is a proposition. Therefore we call such types sets. The types \mathbb{N} , \mathbb{Z} , and Fin_k are all examples of sets.

It is now clear that there is a hierarchy arising: at the bottom of the hierarchy we have the contractible types; then we have the propositions, of which the identity types are contractible; after the propositions we have the sets, of which the identity types are propositions. Defining sets to be of truncation level 0, we define a type to be of truncation level k + 1 if its identity types are of truncation level k. Types of truncation level k for $k \ge 1$ are also called k-types or k-groupoids.

This hierarchy of truncation levels is due to Voevodsky, who recognized that, when you are formalizing mathematics in type theory, it is important to specify the truncation level in which you are working. Most mathematics, for example, takes place at truncation level 0, the level of sets. Groups, rings, posets, and so on are all set-level objects. Categories, on the other hand, are objects of truncation level 1, the level of the 1-groupoids. This is because two objects in a category are considered equal if they are isomorphic, and between any two objects in a category there is a set of isomorphisms.

The fundamental theorem of identity types and the basic facts about truncation levels are proved without assuming any axioms. In other words, they are theorems of Martin-Löf's dependent type theory, as introduced in Chapter I. In particular, the rules of dependent type theory are sufficient to characterize the identity types of Σ -types and of the type of natural numbers, and also to prove the disjointness of coproducts. However, there are still two important characterizations of identity types missing: those of Π -types and those of universes. For those two cases we need axioms:

(i) For any two dependent functions f, g: $\prod_{(x:A)} B(x)$, the canonical map

$$(f = g) \rightarrow (f \sim g)$$

that maps $refl_f$ to the constant homotopy, is an equivalence.

(ii) For any two types A and B in a universe \mathcal{U} , the canonical map

$$(A = B) \rightarrow (A \simeq B)$$

that maps $refl_A$ to the identity equivalence, is an equivalence.

The function extensionality axiom (i) characterizes the identity types of Π -types, and the univalence axiom (ii) characterizes the identity types of universes.

With the addition of the function extensionality axiom and the univalence axiom, we have almost fully specified the univalent foundations of mathematics. The one ingredient missing is that of quotients. In order to obtain quotients, we will postulate two more axioms:

- (iii) We will assume that every type *A* has a propositional truncation.
- (iv) We will assume the type theoretic replacement axiom.

Propositional truncations are the simplest kind of quotients, identifying all the elements in a type A. In other words, the propositional truncation of a type A is a proposition $\|A\|$ that is true if and only if A is inhabited. Using propositional truncations we can construct the homotopy image of a map. A quotient of a type A by an equivalence relation R can then be constructed as the type of all equivalence classes of R, i.e., as the image of the map $R:A \to (A \to \mathsf{Prop}_{\mathcal{U}})$. With this construction of the quotient, we immediately obtain a surjective map $q:A \to A/R$, and by the univalence axiom it follows that the quotient is *effective*, i.e., that for any x,y:A we have

$$(q(x) = q(y)) \simeq R(x, y).$$

However, this construction does not guarantee that the quotient A/R is small with respect to the universe \mathcal{U} , because it is constructed as a subtype of the type $A \to \mathsf{Prop}_{\mathcal{U}}$. This is why we assume the replacement axiom, which will imply that the quotient A/R is *essentially* small. Essentially small types are types that are equivalent to a small type, and the replacement axiom asserts that if $f: A \to B$ is a map from an essentially small type A into a type B of which the identity types are essentially small, then the image of f is also essentially small. The role of the replacement axiom in type theory is similar

to the role of the replacement axiom in Zermelo-Fraenkel set theory: to ensure that quotients are small.

We have two goals in this chapter. The first goal is to fully describe the univalent foundations of mathematics and its most important concepts. Our second goal is to show how to we can start doing ordinary mathematics from a univalent point of view. We therefore show how to derive the strong induction principle for the natural numbers using function extensionality; we give a new interpretation of logic in univalent mathematics using our definition of propositions and the propositional truncations; we show how Cantor's diagonal argument works in univalent mathematics; and we introduce finite types, binomial types, set quotients, the univalent type of all groups. We end this chapter with a variant of Russell's paradox, showing that for any univalent universe $\mathcal U$ there can be no type $U:\mathcal U$ that is equivalent to $\mathcal U$. We hope that after seeing these familiar examples, you will be able to do your own mathematics from a univalent point of view.

9 Equivalences

In this section we will define equivalences of types. However, we have to be a bit careful in how we define the condition for a map to be an equivalence. It turns out to be important that being an equivalence is a *property* of maps, and not a *structure* on maps. In other words, we want to define the type

$$is-equiv(f)$$

in such a way that we will be able to prove that the type is-equiv(f) is a *proposition*. Propositions will be defined in Section 12, and in Section 13 we will be able to prove that is-equiv(f) is indeed a proposition.

It turns out that if we naively define a function f to be an equivalence if it has an inverse, then we won't be able to show that is-equiv(f) is a property. We will therefore say that f is an equivalence if it has a separate left and right inverse. This may look odd, but when we define equivalences in this way we will be able to show that is-equiv(f) is a property.

9.1 Homotopies

In type theory we are very limited in constructing identifications of functions. The following example illustrates a case where type theory provides no rules to construct an identification between two maps, even though they are pointwise equal.

Remark 9.1.1 Consider the negation function neg-bool: bool \rightarrow bool on the booleans, which was defined in Exercise 4.2. Type theory does not provide any means to show that

$$neg-bool \circ neg-bool = id.$$

The best we can do is to construct an identification

$$neg-neg-bool(b) : neg-bool(neg-bool(b)) = b$$

for any b: bool. Indeed, neg-neg-bool is defined using the induction principle of bool, by

$$neg-neg-bool(true) := refl_{true}$$

 $neg-neg-bool(false) := refl_{false}$.

Therefore we see that, while we cannot identify neg-bool oneg-bool with id, we can define a *pointwise identification* between the values of neg-bool oneg-bool and id.

The observations in Remark 9.1.1 are an instance of a general phenomenon in type theory: it is often much easier to construct a *pointwise identification* between the values of two maps, than it is to construct an identification between those two maps. In fact, the prevalent notion of sameness of maps is the notion of pointwise identification. Since they are so important, we will give them a name and call them *homotopies*.

Definition 9.1.2 Let f, g : $\prod_{(x:A)} B(x)$ be two dependent functions. The type of **homotopies** from f to g is defined as the type of pointwise identifications, i.e., we define

$$f \sim g \coloneqq \prod_{(x:A)} f(x) = g(x).$$

Example 9.1.3 By Remark 9.1.1 we have a homotopy

neg-neg-bool : neg-bool \circ neg-bool \sim id.

Remark 9.1.4 We will use homotopies, for example, to express the commutativity of diagrams. For example, we say that a triangle

$$A \xrightarrow{h} B$$

$$f \xrightarrow{X} g$$

commutes if it comes equipped with a homotopy $H: f \sim g \circ h$. Similarly, we say that a square

$$\begin{array}{ccc}
A & \xrightarrow{g} & A' \\
f \downarrow & & \downarrow f' \\
B & \xrightarrow{h} & B'
\end{array}$$

commutes if it comes equipped with a homotopy $h \circ f \sim f' \circ g$.

Note that the type of homotopies $f \sim g$ is defined for dependent functions, and moreover the type of homotopies is itself a dependent function type. The definition of homotopies is therefore set up in such a way that we may also consider homotopies *between* homotopies, and even further homotopies between those higher homotopies. More concretely, if $H, K: f \sim g$ are two homotopies, then the type of homotopies $H \sim K$ between them is just the type

$$\prod_{(x:A)} H(x) = K(x).$$

Since homotopies are pointwise identifications, we can use the groupoidal structure of identity types to also define the groupoidal structure of homotopies. In this case, however, we state the groupoid laws as *homotopies* and *homotopies between homotopies* rather than as identifications.

Definition 9.1.5 For any type family *B* over *A* we define the operations on homotopies

$$\begin{split} \text{refl-htpy} : & \prod_{(f:\prod_{(x:A)}B(x))}f \sim f \\ \text{inv-htpy} : & \prod_{(f,g:\prod_{(x:A)}B(x))}(f \sim g) \rightarrow (g \sim f) \\ \text{concat-htpy} : & \prod_{(f,g,h:\prod_{(x:A)}B(x))}(f \sim g) \rightarrow ((g \sim h) \rightarrow (f \sim h)) \end{split}$$

pointwise by

$$refl-htpy(f) := \lambda x. refl_{f(x)}$$

$$\mathsf{inv-htpy}(H) \coloneqq \lambda x. \, H(x)^{-1}$$

$$\mathsf{concat-htpy}(H,K) \coloneqq \lambda x. \, H(x) \cdot K(x).$$

We will often write H^{-1} for inv-htpy(H), and $H \cdot K$ for concat-htpy(H, K).

Proposition 9.1.6 *Homotopies satisfy the groupoid laws:*

(i) Concatenation of homotopies is associative up to homotopy, i.e., there is a homotopy

$$\mathsf{assoc\text{-}htpy}(H,K,L):(H\boldsymbol{\cdot} K)\boldsymbol{\cdot} L\sim H\boldsymbol{\cdot} (K\boldsymbol{\cdot} L)$$

for any homotopies $H: f \sim g$, $K: g \sim h$ and $L: h \sim i$.

(ii) Homotopies satisfy the left and right unit laws up to homotopy, i.e., there are homotopies

$$\label{eq:hologonetric} \begin{split} \text{left-unit-htpy}(H): \text{refl-htpy}_f \bullet H \sim H \\ \text{right-unit-htpy}(H): H \bullet \text{refl-htpy}_{\mathfrak{g}} \sim H \end{split}$$

for any homotopy H.

(iii) Homotopies satisfy the left and right inverse laws up to homotopy, i.e., there are homotopies

$$\begin{split} & \mathsf{left\text{-}inv\text{-}htpy}(H): H^{-1} \bullet H \sim \mathsf{refl\text{-}htpy}_{g} \\ & \mathsf{right\text{-}inv\text{-}htpy}(H): H \bullet H^{-1} \sim \mathsf{refl\text{-}htpy}_{f} \end{split}$$

for any homotopy H.

Proof The homotopy assoc-htpy(H, K, L) is defined pointwise by

$$\mathsf{assoc}\text{-htpy}(H,K,L,x) \coloneqq \mathsf{assoc}(H(x),K(x),L(x)).$$

The other homotopies are similarly defined pointwise.

Apart from the groupoid operations and their laws, we will occasionally need *whiskering* operations. Whiskering operations are operations that allow us to compose homotopies with functions. There are two situations where we want this:

$$A \longrightarrow B \longrightarrow C$$
 $A \longrightarrow B \longrightarrow C$.

Definition 9.1.7 We define the following **whiskering** operations on homotopies:

(i) Suppose $H: f \sim g$ for two functions $f, g: A \rightarrow B$, and let $h: B \rightarrow C$. We define

$$h \cdot H := \lambda x. \operatorname{ap}_h(H(x)) : h \circ f \sim h \circ g.$$

(ii) Suppose $f: A \to B$ and $H: g \sim h$ for two functions $g, h: B \to C$. We define

$$H \cdot f := \lambda x. H(f(x)) : g \circ f \sim h \circ f.$$

9.2 Bi-invertible maps

We use homotopies to define sections and retractions of a map f, and to define what it means for a map f to be an equivalence.

Definition 9.2.1 Let $f : A \rightarrow B$ be a function.

(i) The type of **sections** of *f* is defined to be the type

$$\sec(f) \coloneqq \sum_{(g:B\to A)} f \circ g \sim \mathrm{id}_B.$$

In other words, a **section** of f is a map $g: B \to A$ equipped with a homotopy $f \circ g \sim id$.

(ii) The type of **retractions** of f is defined to be the type

$$\operatorname{retr}(f) \coloneqq \sum_{(h:B\to A)} h \circ f \sim \operatorname{id}_A.$$

If a map $f: A \to B$ has a retraction, we also say that A is a **retract** of B.

(iii) We say that a function $f:A\to B$ is an **equivalence** if it has both a section and a retraction, i.e., if it comes equipped with an element of type

$$is-equiv(f) := sec(f) \times retr(f)$$
.

We will write $A \simeq B$ for the type $\sum_{(f:A \to B)}$ is-equiv(f) of all equivalences from A to B. For any equivalence $e:A \simeq B$ we define e^{-1} to be the section of e.

Remark 9.2.2 An equivalence, as we defined it here, can be thought of as a *bi-invertible map*, since it comes equipped with a separate left and right inverse. Explicitly, if f is an equivalence, then there are

$$g: B \to A$$
 $h: B \to A$ $G: f \circ g \sim \mathrm{id}_B$ $H: h \circ f \sim \mathrm{id}_A.$

Example 9.2.3 For any type A, the identity function $id : A \rightarrow A$ is an equivalence, since it is its own section and its own retraction

Example 9.2.4 Since we have seen in Remark 9.1.1 that the negation function neg-bool: bool \rightarrow bool on the booleans is its own inverse, it follows that neg-bool is an equivalence.

Example 9.2.5 The successor and predecessor functions on \mathbb{Z} are equivalences by Exercise 5.6. Furthermore, the function

$$x \mapsto x + k$$

is an equivalence from \mathbb{Z} to \mathbb{Z} , for each $k : \mathbb{Z}$. This follows from the group laws on \mathbb{Z} , proven in Exercise 5.7. Indeed, the inverse of $x \mapsto x + k$ is the map $x \mapsto x + (-k)$. Finally, it also follows from the group laws on \mathbb{Z} that the map $x \mapsto -x$ is an equivalence.

The same holds for the finite types: the maps $succ_k$, $pred_k$, $add_k(x)$ and neg_k are all equivalences on Fin_k .

Remark 9.2.6 More generally, if f has an inverse in the sense that we have a function $g: B \to A$ equipped with homotopies $f \circ g \sim \mathrm{id}_B$ and $g \circ f \sim \mathrm{id}_A$, then f is an equivalence. We write

has-inverse
$$(f) := \sum_{(g:B \to A)} (f \circ g \sim id_B) \times (g \circ f \sim id_A)$$
.

However, we did *not* define equivalences to be functions that have inverses. The reason is that we would like that being an equivalence is a *property*, not a non-trivial structure on the map f. This fact requires the function extensionality axiom, but we can already say that if a map f is an equivalence, then it has up to homotopy only one section and only one retraction (see Exercise 13.4).

The type has-inverse(f) on the other hand, turns out to be homotopically complicated. In Exercise 22.5 we will see that the identity function $id_{S^1}: S^1 \to S^1$ on the circle is an example of a map for which

$$\mathsf{has}\text{-}\mathsf{inverse}(\mathsf{id}_{\mathbf{S}^1})\simeq \mathbb{Z}.$$

Even though is-equiv(f) and has-inverse(f) can be wildly different types, there are maps back and forth between the two. We have already observed in Remark 9.2.6 that there is a map

$$has-inverse(f) \rightarrow is-equiv(f)$$
.

The following proposition gives the converse implication.

Proposition 9.2.7 Any map $f: A \to B$ which is an equivalence, can be given the structure of an invertible map i.e., there is a map

$$is-equiv(f) \rightarrow has-inverse(f)$$
.

Proof First we construct for any equivalence f with right inverse g and left inverse h a homotopy $K: g \sim h$. For any g : g, we have

$$g(y) = \frac{H(g(y))^{-1}}{hfg(y)} = hfg(y) = h(y).$$

In other words, the homotopy $K : g \sim h$ is defined to be $(H \cdot g)^{-1} \cdot (h \cdot G)$. Using the homotopy K we are able to show that g is also a left inverse of f. For x : A we have the identification

$$gf(x) \xrightarrow{K(f(x))} hf(x) \xrightarrow{H(x)} x.$$

Corollary 9.2.8 The inverse of an equivalence is again an equivalence.

Proof Let $f: A \to B$ be an equivalence. By Proposition 9.2.7 it follows that the section of f is also a retraction. Therefore it follows that the section is itself an invertible map, with inverse f. Hence it is an equivalence.

Example 9.2.9 Types, just as sets in classical mathematics, satisfy the usual laws of coproducts and products, such as unit laws, commutativity, and associativity. These laws are formulated as equivalences:

$$\emptyset + B \simeq B \qquad A + \emptyset \simeq A$$

$$A + B \simeq B + A \qquad (A + B) + C \simeq A + (B + C)$$

$$\emptyset \times B \simeq \emptyset \qquad A \times \emptyset \simeq \emptyset$$

$$\mathbf{1} \times B \simeq B \qquad A \times \mathbf{1} \simeq A$$

$$A \times B \simeq B \times A \qquad (A \times B) \times C \simeq A \times (B \times C)$$

$$A \times (B + C) \simeq (A \times B) + (A \times C) \qquad (A + B) \times C \simeq (A \times C) + (B \times C).$$

All of these equivalences are constructed in a similar way: the maps back and forth as well as the required homotopies are constructed using induction, or, more efficiently, using pattern matching. For example, to show that cartesian products distribute from the left over coproducts, we construct maps

$$\alpha: A \times (B+C) \rightarrow (A \times B) + (A \times C)$$

$$\beta: (A \times B) + (A \times C) \rightarrow A \times (B + C)$$

as follows:

$$\alpha(x, \mathsf{inl}(y)) \coloneqq \mathsf{inl}(x, y)$$
 $\beta(\mathsf{inl}(x, y)) \coloneqq (x, \mathsf{inl}(y))$ $\alpha(x, \mathsf{inr}(z)) \coloneqq \mathsf{inr}(x, z)$ $\beta(\mathsf{inr}(x, z)) \coloneqq (x, \mathsf{inr}(z)).$

The homotopies $G: \alpha \circ \beta \sim \text{id}$ and $H: \beta \circ \alpha \sim \text{id}$ are then defined by

$$G(\operatorname{inl}(x,y)) \coloneqq \operatorname{refl}$$
 $H(x,\operatorname{inl}(y)) \coloneqq \operatorname{refl}$ $G(\operatorname{inr}(x,z)) \coloneqq \operatorname{refl}$ $H(x,\operatorname{inr}(z)) \coloneqq \operatorname{refl}$.

We encourage the reader to write out the definitions of at least a few of these equivalences.

Example 9.2.10 The laws for cartesian products can be generalized to arbitrary Σ -types. The absorption laws and unit laws, for instance, are as follows:

$$\sum_{(x:\emptyset)} B(x) \simeq \emptyset \qquad \qquad \sum_{(x:A)} \emptyset \simeq \emptyset$$
$$\sum_{(x:A)} B(x) \simeq B(\star) \qquad \qquad \sum_{(x:A)} \mathbf{1} \simeq A.$$

Note that the right absorption law and the right unit law are exactly the same as the right absorption and unit laws for cartesian products. The left absorption and unit laws are, however, formulated with a type family B over \emptyset and over $\mathbf{1}$, and therefore they are slightly more general.

Commutativity cannot be generalized to Σ -types. Associativity, on the other hand, can be expressed in two ways:

$$\begin{array}{c} \sum_{(w:\sum_{(x:A)}B(x))}C(w)\simeq \sum_{(x:A)}\sum_{(y:B)}C(\mathsf{pair}(x,y))\\ \sum_{(w:\sum_{(x:A)}B(x))}C(\mathsf{pr}_1(w),\mathsf{pr}_2(w))\simeq \sum_{(x:A)}\sum_{(y:B(x))}C(x,y). \end{array}$$

In the first of these equivalences associativity is stated using a type family C over $\sum_{(x:A)} B(x)$ while in the second it is stated using a family of types C(x,y) indexed by x:A and y:B(x).

Finally, we note that Σ also distributes over coproducts. In other words, there are the following two equivalences:

$$\begin{split} \sum_{(x:A)} & B(x) + C(x) \simeq \left(\sum_{(x:A)} B(x) \right) + \left(\sum_{(x:A)} C(x) \right) \\ & \sum_{(w:A+B)} C(w) \simeq \left(\sum_{(x:A)} C(\mathsf{inl}(x)) \right) + \left(\sum_{(y:B)} C(\mathsf{inr}(y)) \right). \end{split}$$

Remark 9.2.11 We haven't stated any laws involving function types or dependent function types, because it requires the function extensionality principle to prove them.

9.3 Characterizing the identity types of Σ -types

In this section we characterize the identity type of a Σ -type as a Σ -type of identity types. Characterizing identity types is a task that a homotopy type theorist routinely performs, so we will follow the general outline of how such a characterization goes:

- (i) First we define a binary relation $R:A\to A\to \mathcal{U}$ on the type A that we are interested in. This binary relation is intended to be equivalent to its identity type.
- (ii) Then we will show that this binary relation is reflexive, by constructing a dependent function of type

$$\prod_{(x:A)} R(x,x)$$

(iii) Using the reflexivity we will show that there is a canonical map

$$(x = y) \rightarrow R(x, y)$$

for every x, y: A. This map is just constructed by path induction, using the reflexivity of R.

(iv) Finally, it has to be shown that the map

$$(x = y) \rightarrow R(x, y)$$

is an equivalence for each x, y : A.

The last step is usually the most difficult, and we will refine our methods for this step in Section 11, where we establish the fundamental theorem of identity types.

In this section we consider a type family *B* over *A*. Given two pairs

$$(x,y),(x',y'):\sum_{(x:A)}B(x),$$

if we have a path $\alpha : x = x'$ then we can compare y : B(x) to y' : B(x') by first transporting y along α , i.e., we consider the identity type

$$\operatorname{tr}_B(\alpha, y) = y'$$
.

Thus it makes sense to think of (x, y) to be identical to (x', y') if there is

an identification $\alpha: x = x'$ and an identification $\beta: \operatorname{tr}_B(\alpha, y) = y'$. In the following definition we turn this idea into a binary relation on the Σ -type.

Definition 9.3.1 We will define a relation

$$\mathsf{Eq}_\Sigma: \left(\sum_{(x:A)} B(x)\right) o \left(\sum_{(x:A)} B(x)\right) o \mathcal{U}$$

by defining

$$\mathsf{Eq}_{\Sigma}(s,t) \coloneqq \sum_{(\alpha:\mathsf{pr}_1(s)=\mathsf{pr}_1(t))} \mathsf{tr}_B(\alpha,\mathsf{pr}_2(s)) = \mathsf{pr}_2(t).$$

Lemma 9.3.2 *The relation* Eq_{Σ} *is reflexive, i.e., we can construct*

reflexive-Eq_{$$\Sigma$$} : $\prod_{(s:\sum_{(s:A)}B(x))}$ Eq _{Σ} (s,s) .

Construction The element reflexive-Eq $_{\Sigma}$ is constructed by Σ -induction on $s:\sum_{(x:A)}B(x)$. Thus, it suffices to construct a dependent function of type

$$\prod_{(x:A)} \prod_{(y:B(x))} \sum_{(\alpha:x=x)} \operatorname{tr}_B(\alpha, y) = y.$$

Here we take λx . λy . (refl_x, refl_y).

Definition 9.3.3 Consider a type family *B* over *A*. Then for any $s,t:\sum_{(x:A)} B(x)$ we define a map

$$pair-eq: (s=t) \to Eq_{\Sigma}(s,t)$$

by path induction, taking pair-eq(refl_s) := reflexive-Eq_{Σ}(s).

Theorem 9.3.4 Let B be a type family over A. Then the map

$$\mathsf{pair-eq}: (s=t) \to \mathsf{Eq}_\Sigma(s,t)$$

is an equivalence for every s, t: $\sum_{(x:A)} B(x)$.

Proof The maps in the converse direction

eq-pair :
$$Eq_{\Sigma}(s,t) \rightarrow (s=t)$$

are defined by repeated Σ -induction. By Σ -induction on s and t we see that it suffices to define a map

eq-pair :
$$\left(\sum_{(p:x=x')} \operatorname{tr}_B(p,y) = y'\right) \to ((x,y) = (x',y')).$$

A map of this type is again defined by Σ -induction. Thus it suffices to define a dependent function of type

$$\prod_{(p:x=x')} (\operatorname{tr}_B(p,y) = y') \to ((x,y) = (x',y')).$$

Such a dependent function is defined by double path induction by sending $(refl_x, refl_y)$ to $refl_{(x,y)}$. This completes the definition of the function eq-pair.

Next, we must show that eq-pair is a section of pair-eq. In other words, we must construct an identification

$$pair-eq(eq-pair(\alpha,\beta)) = (\alpha,\beta)$$

for each (α, β) : $\sum_{(\alpha: x = x')} \operatorname{tr}_B(\alpha, y) = y'$. We proceed by path induction on α , followed by path induction on β . Then our goal becomes to construct an identification of type

$$pair-eq(eq-pair(refl_x, refl_y)) = (refl_x, refl_y)$$

By the definition of eq-pair we have eq-pair(refl_x, refl_y) \doteq refl_(x,y), and by the definition of pair-eq we have pair-eq(refl_(x,y)) \doteq (refl_x, refl_y). Thus we may take refl_(refl_x,refl_y) to complete the construction of the homotopy pair-eq \circ eq-pair \sim id.

To complete the proof, we must show that eq-pair is a retraction of pair-eq. In other words, we must construct an identification

$$eq-pair(pair-eq(p)) = p$$

for each p: s = t. We proceed by path induction on p: s = t, so it suffices to construct an identification

$$eq-pair(refl_{pr_1(s)}, refl_{pr_2(s)}) = refl_s.$$

Now we proceed by Σ -induction on $s:\sum_{(x:A)}B(x)$, so it suffices to construct an identification

Since eq-pair(refl_x, refl_y) computes to refl_(x,y), we may simply take refl_{refl_(x,y)}. \Box

Exercises

9.1 Show that the functions

$$\operatorname{inv}: (x = y) \to (y = x)$$

$$\operatorname{concat}(p): (y = z) \to (x = z)$$

$$\operatorname{concat}'(q): (x = y) \to (x = z)$$

$$\operatorname{tr}_B(p): B(x) \to B(y)$$

are equivalences, where $\operatorname{concat}'(q, p) := p \cdot q$. Give their inverses explicitly.

- 9.2 (a) Use Exercise 6.2 (c) to show that the constant function $const_b$: bool \rightarrow bool is not an equivalence, for any b: bool.
 - (b) Show that bool $\neq 1$.
 - (c) Show that $\mathbb{N} \not\simeq \operatorname{Fin}_k$ for any $k : \mathbb{N}$.
- 9.3 (a) Consider two functions f, $g: A \rightarrow B$ and a homotopy $H: f \sim g$. Then

$$is-equiv(f) \leftrightarrow is-equiv(g)$$
.

- (b) Show that for any two homotopic equivalences $e, e': A \simeq B$, their inverses are also homotopic.
- 9.4 Consider a commuting triangle

with $H: f \sim g \circ h$.

(a) Suppose that the map h has a section $s: B \to A$. Show that the triangle

commutes, and that f has a section if and only if g has a section.

(b) Suppose that the map g has a retraction $r: X \to B$. Show that the triangle

$$A \xrightarrow{f} X$$

$$A \xrightarrow{f} X$$

$$B.$$

commutes, and that f has a retraction if and only if h has a retraction.

(c) (The **3-for-2 property** for equivalences.) Show that if any two of the functions

$$f$$
, g , h

- are equivalences, then so is the third. Conclude that any section and any retraction of an equivalence is again an equivalence.
- 9.5 (a) Let A and B be types, and let C be a family over x:A,y:B. Construct an equivalence

$$\left(\sum_{(x:A)}\sum_{(y:B)}C(x,y)\right)\simeq\left(\sum_{(y:B)}\sum_{(x:A)}C(x,y)\right).$$

(b) Let *A* be a type, and let *B* and *C* be type families over *A*. Construct an equivalence

$$\left(\sum\nolimits_{(u:\sum_{(x:A)}B(x))}\!\mathsf{C}(\mathsf{pr}_1(u))\right)\simeq \left(\sum\nolimits_{(v:\sum_{(x:A)}C(x))}\!B(\mathsf{pr}_1(v))\right).$$

9.6 Recall from Remark 4.4.2 that coproducts have a **functorial action**, i.e., that for every $f: A \rightarrow A'$ and every $g: B \rightarrow B'$ we have a map

$$f + g : (A + B) \rightarrow (A' + B').$$

- (a) Show that $id_A + id_B \sim id_{A+B}$.
- (b) Show that for any two pairs of composable functions

$$A \xrightarrow{f} A' \xrightarrow{f'} A''$$
 and $B \xrightarrow{g} B' \xrightarrow{g'} B''$

there is a homotopy $(f' \circ f) + (g' \circ g) \sim (f' + g') \circ (f + g)$.

(c) Show that if $H: f \sim f'$ and $K: g \sim g'$, then there is a homotopy

$$H + K : (f + g) \sim (f' + g').$$

- (d) Show that if both f and g are equivalences, then so is f + g. (The converse of this statement also holds, see Exercise 11.7.)
- 9.7 (a) Construct for any two maps $f: A \rightarrow A'$ and $g: B \rightarrow B'$, a map

$$f \times g : A \times B \rightarrow A' \times B'$$

- (b) Show that $id_A \times id_B \sim id_{A \times B}$.
- (c) Show that for any two pairs of composable functions

$$A \xrightarrow{f} A' \xrightarrow{f'} A''$$
 and $B \xrightarrow{g} B' \xrightarrow{g'} B''$

there is a homotopy $(f' \circ f) \times (g' \circ g) \sim (f' \times g') \circ (f \times g)$.

(d) Show that if $H: f \sim f'$ and $K: g \sim g'$, then there is a homotopy

$$H \times K : (f \times g) \sim (f' \times g').$$

- (e) Show that for any two maps $f: A \to A'$ and $g: B \to B'$, the following are equivalent:
 - (i) The map $f \times g$ is an equivalence.
 - (ii) There are functions

$$\alpha: B \to \text{is-equiv}(f)$$

 $\beta: A \to \text{is-equiv}(g).$

9.8 Construct equivalences

$$\operatorname{Fin}_{k+l} \simeq \operatorname{Fin}_k + \operatorname{Fin}_l$$

 $\operatorname{Fin}_{kl} \simeq \operatorname{Fin}_k \times \operatorname{Fin}_l$.

9.9 A map $f: X \to X$ is said to be **finitely cyclic** if it comes equipped with an element of type

is-finitely-cyclic(
$$f$$
) := $\prod_{(x,y:X)} \sum_{(k:\mathbb{N})} f^k(x) = y$.

- (a) Show that any finitely cyclic map is an equivalence.
- (b) Show that succ : $Fin_k \rightarrow Fin_k$ is finitely cyclic for any $k : \mathbb{N}$.

10 Contractible types and contractible maps

A contractible type is a type which has, up to identification, only one element. In other words, a contractible type is a type that comes equipped with a point, and an identification of this point with any point.

We may think of contractible types as singletons up to homotopy, and indeed we show that the unit type is an example of a contractible type. Moreover, we show that contractible types satisfy an induction principle that is very similar to the induction principle of the unit type.

Another case of an inductive type with a single constructor is the type of identifications p: a = x with a fixed starting point a: A. To specify such an identification, we have to give its end point x: A as well as the identification p: a = x, and the path induction principle asserts that in order to show something about all such identifications, it suffices to show that thing in the case where the end point is a, and the path is refl_a . This suggests that the total space

$$\sum_{(x:A)} a = x$$

of all paths with starting point a:A is contractible. This important fact will be shown in Theorem 10.1.4, and it is the basis for the fundamental theorem of identity types (Section 11).

Next, we introduce the *fiber* of a map $f:A \to B$. The fiber of f at b:B consists of the type of elements a:A equipped with an identification p:f(a)=b. In other words, the fiber of f at b is the preimage of f at b. In Theorems 10.3.5 and 10.4.6 we show that a map is an equivalence if and only if its fibers are contractible. The condition that the fibers of a map are contractible is analogous to the set theoretic notion of bijective map, or 1-to-1-correspondence.

10.1 Contractible types

Definition 10.1.1 We say that a type *A* is **contractible** if it comes equipped with an element of type

is-contr(A) :=
$$\sum_{(c:A)} \prod_{(x:A)} c = x$$
.

Given a pair (c, C): is-contr(A), we call c: A the **center of contraction** of A, and we call C: $\prod_{(x:A)} c = x$ the **contraction** of A.

Remark 10.1.2 Suppose A is a contractible type with center of contraction c and contraction C. Then the type of C is (judgmentally) equal to the type

$$const_c \sim id_A$$
.

In other words, the contraction C is a *homotopy* from the constant function to the identity function.

Example 10.1.3 The unit type is easily seen to be contractible. For the center of contraction we take \star : **1**. Then we define a contraction $\prod_{(x:1)} \star = x$ by the induction principle of **1**. Applying the induction principle, it suffices to construct an identification of type $\star = \star$, for which we just take refl_{*}.

Theorem 10.1.4 *For any a* : *A, the type*

$$\sum_{(x:A)} a = x$$

is contractible.

Proof For the center of contraction we take

$$(a, refl_a): \sum_{(x:A)} a = x.$$

10.2 Singleton induction

Contractible types are singletons up to homotopy. Indeed, every element of a contractible type can be identified with the center of contraction. Therefore we can prove an induction principle for contractible types that is similar to the induction principle of the unit type.

Definition 10.2.1 Suppose A comes equipped with an element a:A. Then we say that A satisfies **singleton induction** if for every type family B over A, the map

ev-pt :
$$\left(\prod_{(x:A)} B(x)\right) \to B(a)$$

defined by $\operatorname{ev-pt}(f) \coloneqq f(a)$ has a section. In other words, if A satisfies singleton induction we have a function and a homotopy

$$ind\text{-sing}_a: B(a) \to \prod_{(x:A)} B(x)$$

 $comp\text{-sing}_a: ev\text{-pt} \circ ind\text{-sing}_a \sim id$

for any type family *B* over *A*.

Example 10.2.2 Note that the singleton induction principle is almost the same as the induction principle for the unit type, the difference being that the 'computation rule' in the singleton induction for *A* is stated using an *identification* rather than as a judgmental equality. The unit type **1** comes equipped with a function

$$\operatorname{ind}_1: B(\star) \to \prod_{(x:1)} B(x)$$

for every type family B over $\mathbf{1}$, satisfying the judgmental equality $\operatorname{ind}_{\mathbf{1}}(b, \star) \doteq b$ for every $b: B(\star)$ by the computation rule. Therefore, we obtain the homotopy

$$\lambda b$$
. refl_b : ev-pt \circ ind₁ \sim id,

and we conclude that the unit type satisfies singleton induction.

Theorem 10.2.3 *Let A be a type. The following are equivalent:*

- (i) The type A is contractible.
- (ii) The type A comes equipped with an element a: A, and satisfies singleton induction.

Proof Suppose A is contractible with center of contraction a and contraction C. First we observe that, without loss of generality, we may assume that C comes equipped with an identification $p: C(a) = \text{refl}_a$. To see this, note that we can always define a new contraction C' by

$$C'(x) := C(a)^{-1} \cdot C(x),$$

which satisfies the requirement by the left inverse law, constructed in Definition 5.2.5.

To show that A satisfies singleton induction let B be a type family over A, and suppose we have b : B(a). Our goal is to define

$$\operatorname{ind-sing}_a(b): \prod_{(x:A)} B(x).$$

Let x : A. Since we have an identification C(x) : a = x, and an element b in B(a), we may transport b along the path C(x) to obtain

$$\operatorname{ind-sing}_a(b, x) := \operatorname{tr}_B(C(x), b) : B(x).$$

Therefore, the function $\operatorname{ind-sing}_a(b)$ is defined to be the dependent function λx . $\operatorname{tr}_B(C(x),b)$. Now we have to show that $\operatorname{ind-sing}_a(b,a)=b$. Then we have the identifications

$$\operatorname{tr}_B(C(a),b) \stackrel{\operatorname{ap}_{\lambda\omega.\operatorname{tr}_B(\omega,b)}(p)}{=\!=\!=\!=\!=\!=} \operatorname{tr}_B(\operatorname{refl}_a,b) \stackrel{\operatorname{refl}_b}{=\!=\!=\!=} b.$$

This shows that the computation rule is satisfied, which completes the proof that *A* satisfies singleton induction.

For the converse, suppose that a:A and that A satisfies singleton induction. Our goal is to show that A is contractible. For the center of contraction we take the element a:A. By singleton induction applied to B(x):=a=x we have the map

$$ind-sing_a : a = a \rightarrow \prod_{(x:A)} a = x.$$

Therefore ind-sing $_a(refl_a)$ is a contraction.

10.3 Contractible maps

Definition 10.3.1 Let $f : A \rightarrow B$ be a function, and let b : B. The **fiber** of f at b is defined to be the type

$$fib_f(b) := \sum_{(a:A)} f(a) = b.$$

In other words, the fiber of f at b is the type of a: A that get mapped by f to b. One may think of the fiber as a type theoretic version of the preimage of a point.

It will be useful to have a characterization of the identity type of a fiber. In order to identify any (x, p) and (x', p') in $fib_f(y)$, we may first construct an identification $\alpha : x = x'$. Then we obtain a triangle

$$f(x) \stackrel{\mathsf{ap}_{f}(\alpha)}{=\!\!\!=\!\!\!=} f(x')$$

$$y,$$

so we may consider the type of identifications $\beta: p = \mathsf{ap}_f(\alpha) \cdot p'$. We will show that the type of all identifications (x,p) = (x',p') is equivalent to the type of such pairs (α,β) .

Definition 10.3.2 Let $f : A \to B$ be a map, and let $(x, p), (x', p') : fib_f(y)$ for some y : B. Then we define

Eq-fib_f
$$((x, p), (x', p')) := \sum_{(\alpha: x = x')} p = ap_f(\alpha) \cdot p'$$

The relation $\operatorname{Eq-fib}_f:\operatorname{fib}_f(y)\to\operatorname{fib}_f(y)\to\mathcal{U}$ is a reflexive relation, since we have

$$\lambda(x,p).(\mathsf{refl}_x,\mathsf{refl}_p):\prod_{((x,p):\mathsf{fib}_f(y))}\mathsf{Eq ext{-}fib}_f((x,p),(x,p)).$$

Proposition 10.3.3 *Consider a map* $f : A \rightarrow B$ *and let* y : B. *The canonical map*

$$((x,p)=(x',p')) \to \mathsf{Eq\text{-}fib}_f((x,p),(x',p'))$$

induced by the reflexivity of Eq-fib_f is an equivalence for any (x, p), (x', p'): fib_f(y).

Proof The converse map

Eq-fib_f
$$((x, p), (x', p')) \rightarrow ((x, p) = (x', p'))$$

is easily defined by Σ -induction, and then path induction twice. The homotopies witnessing that this converse map is indeed a right inverse as well as a left inverse are similarly constructed by induction.

Now we define at the notion of contractible map.

Definition 10.3.4 We say that a function $f: A \rightarrow B$ is **contractible** if it comes equipped with an element of type

$$is-contr(f) := \prod_{(b:B)} is-contr(fib_f(b)).$$

Theorem 10.3.5 Any contractible map is an equivalence.

Proof Let $f: A \to B$ be a contractible map. Using the center of contraction of each fib f(y), we obtain the dependent function

$$\lambda y.(g(y),G(y)):\prod_{(y:B)}\mathsf{fib}_f(y).$$

Thus, we get map $g : B \to A$, and a homotopy $G : \prod_{(y:B)} f(g(y)) = y$. In other words, we get a section of f.

It remains to construct a retraction of f. Taking g as our retraction, we have to show that $\prod_{(x:A)} g(f(x)) = x$. Note that we get an identification p: f(g(f(x))) = f(x) since g is a section of f. Therefore, it follows that $(g(f(x)), p): \mathsf{fib}_f(f(x))$. Moreover, since $\mathsf{fib}_f(f(x))$ is contractible we get an identification $g: (g(f(x)), p) = (x, \mathsf{refl}_{f(x)})$. The base path $\mathsf{ap}_{\mathsf{pr}_1}(q)$ of this identification is an identification of type g(f(x)) = x, as desired.

10.4 Equivalences are contractible maps

In Theorem 10.4.6 we will show the converse to Theorem 10.3.5, i.e., we will show that any equivalence is a contractible map. We will do this in two steps.

First we introduce a new notion of *coherently invertible map*, for which we can easily show that such maps have contractible fibers. Then we show that any equivalence is a coherently invertible map.

Recall that an invertible map is a map $f: A \to B$ equipped with $g: B \to A$ and homotopies

$$G: f \circ g \sim id$$
 and $H: g \circ f \sim id$.

Then we observe that both $G \cdot f$ and $f \cdot H$ are homotopies of the same type

$$f \circ g \circ f \sim f$$
.

A coherently invertible map is an invertible map for which there is a further homotopy $G \cdot f \sim f \cdot H$.

Definition 10.4.1 Consider a map $f : A \rightarrow B$. We say that f is **coherently invertible** if it comes equipped with

$$g: B \to A$$

 $G: f \circ g \sim id$
 $H: g \circ f \sim id$

$$K: G \cdot f \sim f \cdot H$$
.

We will write is-coh-invertible(f) for the type of quadruples (g, G, H, K).

Although we will encounter the notion of coherently invertible map on some further occasions, the following proposition is our main motivation for considering it.

Proposition 10.4.2 Any coherently invertible map has contractible fibers.

Proof Consider a map $f: A \rightarrow B$ equipped with

$$g: B \to A$$

 $G: f \circ g \sim id$
 $H: g \circ f \sim id$
 $K: G \cdot f \sim f \cdot H$,

and let y: B. Our goal is to show that $fib_f(y)$ is contractible. For the center of contraction we take (g(y), G(y)). In order to construct a contraction, it suffices to construct a dependent function of type

$$\prod_{(x:A)} \prod_{(p:f(x)=y)} \mathsf{Eq\text{-fib}}_f((g(y),G(y)),(x,p)).$$

By path induction on p: f(x) = y it suffices to construct a dependent function of type

$$\prod_{(x:A)} \mathsf{Eq\text{-}fib}_f((g(f(x)),G(f(x))),(x,\mathsf{refl}_{f(x)})).$$

By definition of Eq-fib_f, we have to construct for each x:A an identification $\alpha:g(f(x))=x$ equipped with a further identification

$$G(f(x)) = \operatorname{ap}_f(\alpha) \cdot \operatorname{refl}_{f(x)}$$
.

Such a dependent function is constructed as λx . (H(x), K'(x)), where the homotopy $H: g \circ f \sim \text{id}$ is given by assumption, and the homotopy

$$K': \prod_{(x:A)} G(f(x)) = \operatorname{ap}_f(H(x)) \cdot \operatorname{refl}_{f(x)}$$

is defined as

$$K' := K \cdot \text{right-unit-htpy}(f \cdot H)^{-1}.$$

Our next goal is to show that for any map $f: A \rightarrow B$ equipped with

$$g: B \to A$$
, $G: f \circ g \sim id$, and $H: g \circ f \sim id$,

we can improve the homotopy G to a new homotopy $G': f \circ g \sim \operatorname{id}$ for which there is a further homotopy

$$f \cdot H \sim G' \cdot f$$
.

Note that this situation is analogous to the situation in the proof of Theorem 10.2.3, where we improved the contraction C so that it satisfied C(c) = refl. The extra coherence $f \cdot H \sim G' \cdot f$ is then used in the proof that the fibers of an equivalence are contractible.

Definition 10.4.3 Let f, g : $A \rightarrow B$ be functions, and consider H : $f \sim g$ and p : x = y in A. We define the identification

$$\mathsf{nat-htpy}(H,p) \coloneqq \mathsf{ap}_f(p) \cdot H(y) = H(x) \cdot \mathsf{ap}_g(p)$$

witnessing that the square

$$f(x) \xrightarrow{H(x)} g(x)$$

$$||ap_{f}(p)|| \qquad ||ap_{g}(p)|$$

$$f(y) \xrightarrow{H(y)} g(y)$$

commutes. This square is also called the **naturality square** of the homotopy H at p.

Construction By path induction on p it suffices to construct an identification

$$\operatorname{ap}_f(\operatorname{refl}_x) \cdot H(x) = H(x) \cdot \operatorname{ap}_g(\operatorname{refl}_x)$$

since $\operatorname{ap}_f(\operatorname{refl}_x) \doteq \operatorname{refl}_{f(x)}$ and $\operatorname{ap}_g(\operatorname{refl}_x) \doteq \operatorname{refl}_{g(x)}$, and since $\operatorname{refl}_{f(x)} \cdot H(x) \doteq H(x)$, we see that the path right-unit $(H(x))^{-1}$ is of the asserted type.

Definition 10.4.4 Consider $f: A \to A$ and $H: f \sim \mathrm{id}_A$. We construct an identification $H(f(x)) = \mathrm{ap}_f(H(x))$, for any x: A.

Construction By the naturality of homotopies with respect to identifications the square

$$ff(x) \stackrel{H(f(x))}{===} f(x)$$

$$p_f(H(x)) \parallel \qquad \qquad \parallel_{H(x)}$$

$$f(x) \stackrel{H(x)}{===} x$$

commutes. This gives the desired identification $H(f(x)) = ap_f(H(x))$.

Lemma 10.4.5 Let $f: A \to B$ be a map equipped with an inverse, i.e., consider

$$g: B \to A$$

 $G: f \circ g \sim \mathrm{id}$
 $H: g \circ f \sim \mathrm{id}$.

Then there is a homotopy $G': f \circ g \sim id$ equipped with a further homotopy

$$K: f \cdot H \sim G' \cdot f$$
.

Thus we obtain a map has-inverse(f) \rightarrow is-coh-invertible(f).

Proof For each y : B, we construct the identification G'(y) as the concatenation

$$fg(y) \xrightarrow{G(fg(y))^{-1}} fgfg(y) \xrightarrow{\mathsf{ap}_f(H(g(y)))} fg(y) \xrightarrow{G(y)} y.$$

In order to construct a homotopy $f \cdot H \sim G' \cdot f$, it suffices to show that the square

$$fgfgf(x) = G(fgf(x)) = fgf(x)$$

$$ap_f(H(gf(x))) = gf(x) = gf(x)$$

$$fgf(x) = G(f(x)) = f(x)$$

commutes for every x:A. Recall from Definition 10.4.4 that we have $H(gf(x))=\operatorname{ap}_{gf}(H(x))$. Using this identification, we see that it suffices to show that the square

$$fgfgf(x) = \frac{(G \cdot f)(gf(x))}{} fgf(x)$$

$$||ap_{fgf}(H(x))|| || ||ap_{f}(H(x))$$

$$fgf(x) = \frac{}{} (G \cdot f)(x)$$

commutes. Now we observe that this is just a naturality square the homotopy $G \cdot f : fgf \sim f$, which commutes by Definition 10.4.3.

Now we put the pieces together to conclude that any equivalence has contractible fibers.

Theorem 10.4.6 Any equivalence is a contractible map.

Proof We have seen in Proposition 10.4.2 that any coherently invertible map is a contractible map. Moreover, any equivalence has the structure of an invertible map by Proposition 9.2.7, and any invertible map is coherently invertible by Lemma 10.4.5.

The following corollary is very similar to Theorem 10.1.4, which asserts that the type $\sum_{(x:A)} a = x$ is contractible. However, we haven't yet established that the equivalence $(a = x) \simeq (x = a)$ induces an equivalence on total spaces. However, using the fact that equivalences are contractible maps we can give a direct proof.

Corollary 10.4.7 *Let A be a type, and let a : A. Then the type*

$$\sum_{(x:A)} x = a$$

is contractible.

Proof By Example 9.2.3, the identity function is an equivalence. Therefore, the fibers of the identity function are contractible by Theorem 10.4.6. Note that $\sum_{(x:A)} x = a$ is exactly the fiber of id_A at a:A.

Exercises

- 10.1 Show that if *A* is contractible, then for any x, y : *A* the identity type x = y is also contractible.
- 10.2 Suppose that *A* is a retract of *B*. Show that

$$is-contr(B) \rightarrow is-contr(A)$$
.

- 10.3 (a) Show that for any type A, the map $\mathsf{const}_{\star}: A \to \mathbf{1}$ is an equivalence if and only if A is contractible.
 - (b) Apply Exercise 9.4 to show that for any map $f: A \rightarrow B$, if any two of the three assertions
 - (i) *A* is contractible
 - (ii) *B* is contractible
 - (iii) f is an equivalence

hold, then so does the third.

- 10.4 Show that Fin_k is not contractible for all $k \neq 1$.
- 10.5 Show that for any two types *A* and *B*, the following are equivalent:
 - (i) Both *A* and *B* are contractible.

- (ii) The type $A \times B$ is contractible.
- 10.6 Let A be a contractible type with center of contraction a:A. Furthermore, let B be a type family over A. Show that the map

$$y \mapsto (a, y) : B(a) \to \sum_{(x:A)} B(x)$$

is an equivalence.

10.7 Let *B* be a family of types over *A*, and consider the projection map

$$\operatorname{pr}_1: \left(\sum_{(x:A)} B(x)\right) \to A.$$

(a) Show that for any a : A, the map

$$\lambda((x,y),p).\operatorname{tr}_B(p,y):\operatorname{fib}_{\operatorname{pr}_1}(a)\to B(a),$$

is an equivalence.

- (b) Show that the following are equivalent:
 - (i) The projection map pr_1 is an equivalence.
 - (ii) The type B(x) is contractible for each x : A.
- (c) Consider a dependent function $b: \prod_{(x:A)} B(x)$. Show that the following are equivalent:
 - (i) The map

$$\lambda x.(x,b(x)):A \to \sum_{(x:A)} B(x)$$

is an equivalence.

- (ii) The type B(x) is contractible for each x : A.
- 10.8 Construct for any map $f: A \to B$ an equivalence $e: A \simeq \sum_{(y:B)} \mathsf{fib}_f(y)$ and a homotopy $H: f \sim \mathsf{pr}_1 \circ e$ witnessing that the triangle

commutes. The projection $\operatorname{pr}_1: (\sum_{(y:B)}\operatorname{fib}_f(y)) \to B$ is sometimes also called the **fibrant replacement** of f, because first projection maps are fibrations in the homotopy interpretation of type theory.

11 The fundamental theorem of identity types

For many types it is useful to have a characterization of their identity types. For example, we have used a characterization of the identity types of the fibers of a map in order to conclude that any equivalence is a contractible map. The fundamental theorem of identity types is our main tool to carry out such characterizations, and with the fundamental theorem it becomes a routine task to characterize an identity type whenever that is of interest. We note that the fundamental theorem also appears as Theorem 5.8.4 in [24].

In our first application of the fundamental theorem of identity types we show that any equivalence is an embedding. Embeddings are maps that induce equivalences on identity types, i.e., they are the homotopical analogue of injective maps. In our second application we characterize the identity types of coproducts.

Throughout this book we will encounter many more occasions to characterize identity types. For example, we will show in Theorem 11.3.1 that the identity type of the natural numbers is equivalent to its observational equality, and we will show in Theorem 22.4.1 that the loop space of the circle is equivalent to \mathbb{Z} .

In order to prove the fundamental theorem of identity types, we first prove the basic fact that a family of maps is a family of equivalences if and only if it induces an equivalence on total spaces.

11.1 Families of equivalences

Definition 11.1.1 Consider a family of maps

$$f: \prod_{(x:A)} B(x) \to C(x)$$
.

We define the map

$$tot(f): \sum_{(x:A)} B(x) \to \sum_{(x:A)} C(x)$$

by $\lambda(x, y)$. (x, f(x, y)).

Lemma 11.1.2 For any family of maps $f: \prod_{(x:A)} B(x) \to C(x)$ and any $t: \sum_{(x:A)} C(x)$, there is an equivalence

$$\mathsf{fib}_{\mathsf{tot}(f)}(t) \simeq \mathsf{fib}_{f(\mathsf{pr}_1(t))}(\mathsf{pr}_2(t)).$$

Proof We first define

$$\varphi: \prod_{(t:\sum_{(x:A)}C(x))} \mathsf{fib}_{\mathsf{tot}(f)}(t) \to \mathsf{fib}_{f(\mathsf{pr}_1(t))}(\mathsf{pr}_2(t))$$

by pattern matching by

$$\varphi((x, f(x, y)), ((x, y), refl)) := (y, refl).$$

For the proof that $\varphi(t)$ is an equivalence, for each $t:\sum_{(x:A)}C(x)$, we construct a map

$$\psi(t): \mathsf{fib}_{f(\mathsf{pr}_1(t))}(\mathsf{pr}_2(t)) \to \mathsf{fib}_{\mathsf{tot}(f)}(t)$$

equipped with homotopies $G(t): \varphi(t) \circ \psi(t) \sim \operatorname{id}$ and $H(t): \psi(t) \circ \varphi(t) \sim \operatorname{id}$. Each of these definitions is given by pattern matching, as follows:

$$\psi((x,f(x,y)),(y,\text{refl})) \coloneqq ((x,y),\text{refl})$$

$$G((x,f(x,y)),(y,\text{refl})) \coloneqq \text{refl}$$

$$H((x,f(x,y)),((x,y),\text{refl})) \coloneqq \text{refl}.$$

Theorem 11.1.3 *Let* $f: \prod_{(x:A)} B(x) \to C(x)$ *be a family of maps. The following are equivalent:*

- (i) For each x : A, the map f(x) is an equivalence. In this case we say that f is a family of equivalences.
- (ii) The map $tot(f): \sum_{(x:A)} B(x) \to \sum_{(x:A)} C(x)$ is an equivalence.

Proof By Theorems 10.3.5 and 10.4.6 it suffices to show that f(x) is a contractible map for each x:A, if and only if tot(f) is a contractible map. Thus, we will show that $fib_{f(x)}(c)$ is contractible if and only if $fib_{tot(f)}(x,c)$ is contractible, for each x:A and c:C(x). However, by Lemma 11.1.2 these types are equivalent, so the result follows by Exercise 10.3.

Now consider the situation where we have a map $f: A \to B$, and a family C over B. Then we have the map

$$\lambda(x,z).(f(x),z):\sum_{(x:A)}C(f(x))\to\sum_{(y:B)}C(y).$$

We claim that this map is an equivalence when f is an equivalence. The technique to prove this claim is the same as the technique we used in Theorem 11.1.3: first we note that the fibers are equivalent to the fibers of f, and then we use the fact that a map is an equivalence if and only if its fibers are contractible to finish the proof.

The converse of the following lemma does not hold. Why not?

Lemma 11.1.4 Consider a map $f: A \to B$, and let C be a type family over B. If f is an equivalence, then the map

$$\sigma_f(C) \coloneqq \lambda(x,z).\,(f(x),z): \sum_{(x:A)} C(f(x)) \to \sum_{(y:B)} C(y)$$

is an equivalence.

Proof We claim that for each $t: \sum_{(y:B)} C(y)$ there is an equivalence

$$fib_{\sigma_f(C)}(t) \simeq fib_f(pr_1(t)).$$

We obtain such an equivalence by constructing the following functions and homotopies:

$$\begin{split} \varphi(t) : & \operatorname{fib}_{\sigma_f(C)}(t) \to \operatorname{fib}_f(\operatorname{pr}_1(t)) & \varphi((f(x),z),((x,z),\operatorname{refl})) \coloneqq (x,\operatorname{refl}) \\ \psi(t) : & \operatorname{fib}_f(\operatorname{pr}_1(t)) \to \operatorname{fib}_{\sigma_f(C)}(t) & \psi((f(x),z),(x,\operatorname{refl})) \coloneqq ((x,z),\operatorname{refl}) \\ G(t) : & \varphi(t) \circ \psi(t) \sim \operatorname{id} & G((f(x),z),(x,\operatorname{refl})) \coloneqq \operatorname{refl} \\ H(t) : & \psi(t) \circ \varphi(t) \sim \operatorname{id} & H((f(x),z),((x,z),\operatorname{refl})) \coloneqq \operatorname{refl}. \end{split}$$

Now the claim follows, since we see that φ is a contractible map if and only if f is a contractible map. \Box

Now we use Lemma 11.1.4 to obtain a generalization of Theorem 11.1.3.

Definition 11.1.5 Consider a map $f : A \rightarrow B$ and a family of maps

$$g: \prod_{(x:A)} C(x) \to D(f(x)),$$

where *C* is a type family over *A*, and *D* is a type family over *B*. In this situation we also say that *g* is a **family of maps over** *f*. Then we define

$$tot_f(g): \sum_{(x:A)} C(x) \to \sum_{(y:B)} D(y)$$

by $tot_f(g)(x, z) := (f(x), g(x, z)).$

Theorem 11.1.6 Suppose that g is a family of maps over f as in Definition 11.1.5, and suppose that f is an equivalence. Then the following are equivalent:

- (i) The family of maps g over f is a family of equivalences.
- (ii) The map $tot_f(g)$ is an equivalence.

Proof Note that we have a commuting triangle

$$\sum_{(x:A)} C(x) \xrightarrow{\operatorname{tot}_{f}(g)} \sum_{(y:B)} D(y)$$

$$\downarrow \\ \sum_{(x:A)} D(f(x))$$

By the assumption that f is an equivalence, it follows that the map

$$\sum_{(x:A)} D(f(x)) \rightarrow \sum_{(y:B)} D(y)$$

is an equivalence. Therefore it follows that $tot_f(g)$ is an equivalence if and only if tot(g) is an equivalence. Now the claim follows, since tot(g) is an equivalence if and only if g if a family of equivalences.

11.2 The fundamental theorem

The fundamental theorem of identity types (Theorem 11.2.2) is a general theorem that can be used to characterize the identity type of a given type. It describes necessary and sufficient conditions on a type family B over a type A equipped with a point a:A to obtain an equivalence $(a=x) \simeq B(x)$ for each x:A.

One of those conditions is that the family *B* satisfies an induction principle that is similar to the identification elimination principle. Such families are called *identity systems*, which we will introduce now.

Definition 11.2.1 Let A be a type equipped with a term a : A. A **(unary) identity system** on A at a consists of a type family B over A equipped with b : B(a), such that for any family of types P(x, y) indexed by x : A and y : B(x), the function

$$h\mapsto h(a,b):\left(\prod_{(x:A)}\prod_{(y:B(x))}P(x,y)\right)\to P(a,b)$$

has a section.

In other words, if B is an identity system on A at a and P is a family of types indexed by x : A and y : B(x), then there is for each p : P(a, b) a dependent function

$$f: \prod_{(x:A)} \prod_{(y:B(x))} P(x,y)$$

such that f(a, b) = p. This is of course a variant of identification elimination,

where the computation rule is given by an identification rather than as a judgmental equality.

We will state the fundamental theorem of identity types in a way that makes it maximally applicable. The fundamental theorem starts off with assuming a type A equipped with a base point a:A, and a type family B over A equipped with a point b:B(a). Furthermore it assumes an arbitrary family of maps

$$f: \prod_{(x:A)} (a=x) \to B(x)$$

equipped with an identification $f(a, refl_a) = b$. The theorem asserts conditions that are equivalent to f being a family of equivalences.

In the setup of the fundamental theorem of identity types we can always construct the family of maps

$$f := \text{ind-eq}_a(b) : \prod_{(x:A)} (a = x) \rightarrow B(x)$$

for which the judgmental equality $f(a, \text{refl}_a) \doteq b$ holds. So you may wonder why we choose to formulate the fundamental theorem of identity types using a general family of maps f. The reason is that it is somewhat common to apply the fundamental theorem of identity types in order to conclude that f is a family of equivalences, even when f is not by definition the canonical family of maps, and we want to be free to do so.

The most important implication in the fundamental theorem is that (ii) implies (i). Occasionally we will also use the third equivalent statement.

Theorem 11.2.2 (The fundamental theorem of identity types) Let A be a type with a:A, and let B be a type family over A equipped with a point b:B(a). Furthermore, consider a family of maps

$$f: \prod_{(x:A)} (a=x) \to B(x)$$

equipped with an identification $f(a, refl_a) = b$. Then the following are equivalent:

- (i) The family of maps f is a family of equivalences.
- (ii) The total space

$$\sum_{(x:A)} B(x)$$

is contractible.

(iii) The family B equipped with b: B(a) is an identity system.

In particular, we see that for any b : B(a), the canonical family of maps

$$ind-eq_a(b): \prod_{(x:A)} (a=x) \rightarrow B(x)$$

is a family of equivalences if and only if $\sum_{(x:A)} B(x)$ is contractible.

Proof First we show that (i) and (ii) are equivalent. By Theorem 11.1.3 it follows that the family of maps f is a family of equivalences if and only if it induces an equivalence

$$\left(\sum_{(x:A)} a = x\right) \simeq \left(\sum_{(x:A)} B(x)\right)$$

on total spaces. We have that $\sum_{(x:A)} a = x$ is contractible, so it follows by Exercise 10.3 that tot(f) is an equivalence if and only if $\sum_{(x:A)} B(x)$ is contractible.

Now we show that (ii) and (iii) are equivalent. Note that we have the following commuting triangle

In this diagram the top map has a section. Therefore it follows by Exercise 9.4 that the left map has a section if and only if the right map has a section. Recall from Definition 10.2.1 that the type $\sum_{(x:A)} B(x)$ satisfies singleton induction if and only if the left map in the triangle has a section for each P. Therefore we conclude our proof with Theorem 10.2.3, which shows that the type $\sum_{(x:A)} B(x)$ satisfies singleton induction if and only if it is contractible. \square

11.3 Equality on the natural numbers

As a first application of the fundamental theorem of identity types, we characterize the identity type of the natural numbers. We will use the observational equality $Eq_{\mathbb{N}}$ on \mathbb{N} . Recall from Definition 6.3.1 that $Eq_{\mathbb{N}}$ is defined by

$$\begin{aligned} \mathsf{Eq}_{\mathbb{N}}(0_{\mathbb{N}},0_{\mathbb{N}}) &\coloneqq \mathbf{1} & \mathsf{Eq}_{\mathbb{N}}(0_{\mathbb{N}},n+1) &\coloneqq \emptyset \\ \mathsf{Eq}_{\mathbb{N}}(m+1,0_{\mathbb{N}}) &\coloneqq \emptyset & \mathsf{Eq}_{\mathbb{N}}(m+1,n+1) &\coloneqq \mathsf{Eq}_{\mathbb{N}}(m,n). \end{aligned}$$

This relation is an equivalence relation. In particular, the reflexivity term $refl-Eq_N(m)$: $Eq_N(m,m)$ is defined inductively by

$$\operatorname{refl-Eq}_{\mathbb{N}}(0_{\mathbb{N}}) := \star$$
 $\operatorname{refl-Eq}_{\mathbb{N}}(m+1) := \operatorname{refl-Eq}_{\mathbb{N}}(m).$

Using the reflexivity term, we obtain a canonical map

$$(m=n) \rightarrow \mathsf{Eq}_{\mathbb{N}}(m,n)$$

for every $m, n : \mathbb{N}$.

Theorem 11.3.1 *For each* m, n : \mathbb{N} , *the canonical map*

$$(m=n)\to \mathsf{Eq}_{\mathbb{N}}(m,n)$$

is an equivalence.

Proof By Theorem 11.2.2 it suffices to show that the type

$$\sum_{(n:\mathbb{N})} \mathsf{Eq}_{\mathbb{N}}(m,n)$$

is contractible, for each $m:\mathbb{N}$. The center of contraction is defined to be $(m, \mathsf{refl}\mathsf{-Eq}_{\mathbb{N}}(m))$.

The contraction

$$\gamma(m):\prod_{(n:\mathbb{N})}\prod_{(e:\mathsf{Eq}_{\mathbb{N}}(m,n))}(m,\mathsf{refl}\mathsf{-Eq}_{\mathbb{N}}(m))=(n,e)$$

is defined for each m by induction on m, $n : \mathbb{N}$. In the base case we define

$$\gamma(0_{\mathbb{N}}, 0_{\mathbb{N}}, \star) \coloneqq \mathsf{refl}.$$

If one of m and n is zero and the other is a successor, then the type $Eq_{\mathbb{N}}(m, n)$ is empty, so the desired path can be obtained via the induction principle of the empty type.

The inductive step remains, in which we have to define the identification

$$\gamma(m+1, n+1, e) : (m+1, \text{refl-Eq}_{\mathbb{N}}(m+1)) = (n+1, e)$$

for each $m, n : \mathbb{N}$ equipped with $e : \mathsf{Eq}_{\mathbb{N}}(m, n)$. We first observe that there is a map

$$\left(\, \textstyle \sum_{(n:\mathbb{N})} \mathsf{Eq}_{\mathbb{N}}(m,n) \right) \stackrel{f}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \left(\, \textstyle \sum_{(n:\mathbb{N})} \mathsf{Eq}_{\mathbb{N}}(m+1,n) \right)$$

given by $(n, e) \mapsto (n + 1, e)$. With this definition of f we have

$$f(m, \text{refl-Eq}_{\mathbb{N}}(m)) \doteq (m+1, \text{refl-Eq}_{\mathbb{N}}(m+1)).$$

Therefore we can define

$$\gamma(m+1,n+1,e) := \operatorname{ap}_f(\gamma(m,n,e)).$$

11.4 Embeddings

In our second application of the fundamental theorem we show that equivalences are embeddings. The notion of embedding is the homotopical analogue of the set theoretic notion of injective map.

Definition 11.4.1 An **embedding** is a map $f: A \rightarrow B$ that satisfies the property that

$$\operatorname{ap}_f: (x = y) \to (f(x) = f(y))$$

is an equivalence, for every x, y : A. We write is-emb(f) for the type of witnesses that f is an embedding, and we define

$$A \hookrightarrow B := \sum_{(f:A \to B)} \text{is-emb}(f).$$

Another way of phrasing the following statement is that equivalent types have equivalent identity types.

Theorem 11.4.2 *Any equivalence is an embedding.*

Proof Let $e: A \simeq B$ be an equivalence, and let x: A. Our goal is to show that

$$\operatorname{ap}_e: (x = y) \to (e(x) = e(y))$$

is an equivalence for every y:A. By Theorem 11.2.2 it suffices to show that

$$\sum_{(y:A)} e(x) = e(y)$$

is contractible. Now observe that there is an equivalence

$$\sum_{(y:A)} e(x) = e(y) \simeq \sum_{(y:A)} e(y) = e(x)$$

$$= \text{fib}_{e}(e(x))$$

by Theorem 11.1.3, since for each y : A the map

$$\mathsf{inv}: (e(x) = e(y)) \to (e(y) = e(x))$$

is an equivalence by Exercise 9.1. The fiber $\operatorname{fib}_e(e(x))$ is contractible by Theorem 10.4.6, so it follows by Exercise 10.3 that the type $\sum_{(y:A)} e(x) = e(y)$ is indeed contractible.

11.5 Disjointness of coproducts

In our third application of the fundamental theorem of identity types, we characterize the identity types of coproducts. Our goal in this section is to prove the following theorem.

Theorem 11.5.1 *Let A and B be types. Then there are equivalences*

$$(\mathsf{inl}(x) = \mathsf{inl}(x')) \simeq (x = x')$$
$$(\mathsf{inl}(x) = \mathsf{inr}(y')) \simeq \emptyset$$
$$(\mathsf{inr}(y) = \mathsf{inl}(x')) \simeq \emptyset$$
$$(\mathsf{inr}(y) = \mathsf{inr}(y')) \simeq (y = y')$$

for any x, x' : A and y, y' : B.

In order to prove Theorem 11.5.1, we first define a binary relation Eq-copr_{A,B} on the coproduct A + B.

Definition 11.5.2 Let *A* and *B* be types. We define

$$\mathsf{Eq\text{-}copr}_{A.B}: (A+B) \to (A+B) \to \mathcal{U}$$

by double induction on the coproduct, postulating

$$\begin{split} & \mathsf{Eq\text{-}copr}_{A,B}(\mathsf{inl}(x),\mathsf{inl}(x')) \coloneqq (x = x') \\ & \mathsf{Eq\text{-}copr}_{A,B}(\mathsf{inl}(x),\mathsf{inr}(y')) \coloneqq \emptyset \\ & \mathsf{Eq\text{-}copr}_{A,B}(\mathsf{inr}(y),\mathsf{inl}(x')) \coloneqq \emptyset \\ & \mathsf{Eq\text{-}copr}_{A,B}(\mathsf{inr}(y),\mathsf{inr}(y')) \coloneqq (y = y'). \end{split}$$

The relation Eq-copr $_{A,B}$ is also called the **observational equality of coproducts**.

Lemma 11.5.3 *The observational equality relation* Eq-copr_{A,B} *on* A+B *is reflexive, and therefore there is a map*

Eq-copr-eq:
$$\prod_{(s,t:A+B)} (s=t) \rightarrow \text{Eq-copr}_{A,B}(s,t)$$
.

Construction The reflexivity term ρ is constructed by induction on t: A + B, using

$$\begin{split} \rho(\mathsf{inl}(x)) &\coloneqq \mathsf{refl}_x : \mathsf{Eq\text{-}copr}_{A,B}(\mathsf{inl}(x),\mathsf{inl}(x)) \\ \rho(\mathsf{inr}(y)) &\coloneqq \mathsf{refl}_y : \mathsf{Eq\text{-}copr}_{A,B}(\mathsf{inr}(y),\mathsf{inr}(y)). \end{split} \qed$$

To show that Eq-copr-eq is a family of equivalences, we will use the fundamental theorem of identity types, Theorem 11.2.2. Therefore, we need to prove the following proposition.

Proposition 11.5.4 *For any* s : A + B *the total space*

$$\sum_{(t:A+B)} \mathsf{Eq ext{-}copr}_{A,B}(s,t)$$

is contractible.

Proof For convenience, let us write $E := \mathsf{Eq\text{-}copr}_{A,B}$. By induction on s, it suffices to show that the total spaces

$$\sum_{(t:A+B)} E(\mathsf{inl}(x), t)$$
 and $\sum_{(t:A+B)} E(\mathsf{inr}(y), t)$

are contractible. The two proofs are similar, so we only prove that the type on the left is contractible. By the laws of coproducts and Σ -types given in Examples 9.2.9 and 9.2.10, we simply compute

$$\sum_{(t:A+B)} E(\mathsf{inl}(x), t)$$

$$\simeq \left(\sum_{(x':A)} E(\mathsf{inl}(x), \mathsf{inl}(x'))\right) + \left(\sum_{(y':B)} E(\mathsf{inl}(x), \mathsf{inr}(y'))\right)$$

$$\simeq \left(\sum_{(x':A)} x = x'\right) + \left(\sum_{(y':B)} \emptyset\right)$$

$$\simeq \sum_{(x':A)} x = x'.$$

The last type in this computation is contractible by Theorem 10.1.4, so we conclude that the total space of E(inl(x)) is contractible.

Proof of Theorem 11.5.1 The proof is now concluded with an application of Theorem 11.2.2, using Proposition 11.5.4. □

11.6 The structure identity principle

We often encounter a type consisting of certain objects equipped with further structure. For example, the fiber of a map $f: A \to B$ at b: B is the type of elements a: A equipped with an identification p: f(a) = b. Such *structure* types occur all over mathematics, and it is important to have an efficient characterization of their identity types. A general structure type is just a Σ -type, and we're asking for a characterization of its identity type.

Recall from Theorem 9.3.4 that the identity type of the type $\sum_{(x:A)} B(x)$ at a pair (a, b) can be characterized as

$$((a,b)=(x,y))\simeq \textstyle\sum_{(p:a=x)} {\rm tr}_B(p,b)=y.$$

However, this characterization of the identity type of $\sum_{(x:A)} B(x)$ is not as clear and useful as we like it to be, because it uses the transport function, which is completely generic. Our plan is to use identity systems on A and on B(a) to arrive at a more useful characterization of the identity type of $\sum_{(x:A)} B(x)$.

In order to abstract away this characterization of the identity type of $\sum_{(x:A)} B(x)$, let $C: A \to \mathcal{U}$ be the family of types given by C(x) := (a = x), and let

$$D:\prod_{(x:A)}B(x)\to (C(x)\to\mathcal{U})$$

be the family of types given by $D(x, y, p) := \operatorname{tr}_B(p, b) = y$. Then C is an identity system on A at a, and the type family $y \mapsto D(a, y, \operatorname{refl})$ is an identity system on B(a) at b. This suggests the following definition of dependent identity systems.

Definition 11.6.1 Consider a type A equipped with an identity system C based at a : A, and let c : C(a). Furthermore, consider a type family B over A. A **dependent identity system** over C at b : B(a) consists of a type family

$$D: \prod_{(x:A)} B(x) \to (C(x) \to \mathcal{U})$$

equipped with an element d: D(a,b,c) such that $y \mapsto D(a,y,c)$ is an identity system at b.

Theorem 11.6.2 (Structure identity principle) Consider a type family B over A, elements a: A and b: B(a), and an identity system C of A with c: C(a). Furthermore, consider a type family

$$D: \prod_{(x:A)} B(x) \to (C(x) \to \mathcal{U})$$

equipped with an element d: D(a,b,c). Then the following are equivalent:

(i) Any family of maps

$$(b=y) \rightarrow D(a,y,c)$$

indexed by y: B(a) is a family of equivalences.

(ii) The total space

$$\textstyle\sum_{(y:B(a))} D(a,y,c)$$

is contractible.

- (iii) D is a dependent identity system over C at b: B(a).
- (iv) Any family of maps

$$((a,b)=(x,y)) \to \sum_{(z:C(x))} D(x,y,z))$$

indexed by (x, y): $\sum_{(x:A)} B(x)$ is a family of equivalences.

(v) The total space

$$\sum_{((x,y):\sum_{(x:A)}B(x))}\sum_{(z:C(x))}D(x,y,z)$$

is contractible.

(vi) The type family

$$(x,y) \mapsto \sum_{(z:C(x))} D(x,y,z)$$

is an identity system at (a,b): $\sum_{(x:A)} B(x)$.

Proof The first three statements as well as the last three statements are equivalent by Theorem 11.2.2. Therefore it suffices to show that (ii) and (v) are equivalent. Note that there is an equivalence

$$\sum_{((x,y):\sum_{(x:A)}B(x))} \sum_{(z:C(x))} D(x,y,z)$$

$$\simeq \sum_{((x,z):\sum_{(x:A)}C(x))} \sum_{(y:B(x))} D(x,y,z).$$

This equivalence, its inverse, and the homotopies witnessing that the inverse is indeed an inverse are all straightforward to construct using pattern matching. Furthermore, notice that the type $\sum_{(x:A)} C(x)$ is contractible with center of contraction (a,c) since C is assumed to be an identity system at a:A. Therefore it follows that

$$\textstyle \sum_{((x,y): \sum_{(x:A)} B(x))} \sum_{(z:C(x))} D(x,y,z) \simeq \sum_{(y:B(a))} D(a,y,c). \qquad \Box$$

Example 11.6.3 By the structure identity principle of Theorem 11.6.2 in combination with the fundamental theorem of identity types (Theorem 11.2.2), it becomes completely routine to characterize identity types of structures: We only have to show that the types

$$\sum_{(x:A)} C(x)$$
 and $\sum_{(y:B(a))} D(a, y, c)$

are contractible. To illustrate this use of the structure identity principle, we

give an alternative characterization of the fiber of a map $f: A \rightarrow B$ at b: B. We claim that

$$((x, p) = (y, q)) \simeq \mathsf{fib}_{\mathsf{ap}_f}(p \cdot q^{-1})$$

$$\doteq \sum_{(\alpha: x = y)} \mathsf{ap}_f(\alpha) = p \cdot q^{-1}.$$

To see this, we apply Theorem 11.6.2. Note that $\sum_{(y:A)} x = y$ is contractible by Theorem 10.1.4 with center of contraction $(x, \text{refl}_{f(x)})$. Therefore it suffices to show that the type

$$\sum_{(q:f(x)=b)} \mathsf{refl}_{f(x)} = p \cdot q^{-1}$$

is contractible. Of course, this type is equivalent to $\sum_{(q:f(x)=b)} p = q$, which is again contractible by Theorem 10.1.4.

Exercises

- 11.1 (a) Show that the map $\emptyset \to A$ is an embedding for every type A.
 - (b) Show that inl : $A \rightarrow A + B$ and inr : $B \rightarrow A + B$ are embeddings for any two types A and B.
 - (c) Show that inl : $A \rightarrow A + B$ is an equivalence if and only if B is empty, and that inr : $B \rightarrow A + B$ is an equivalence if and only if A is empty.
- 11.2 Consider an equivalence $e: A \simeq B$. Construct an equivalence

$$p \mapsto \tilde{p} : (e(x) = y) \simeq (x = e^{-1}(y))$$

for every x : A and y : B, such that the triangle

$$e(x) = \underbrace{\operatorname{ap}_{e}(\tilde{p})}_{p} \quad e(e^{-1}(y))$$

$$\downarrow \qquad \qquad \downarrow G(y)$$

$$\downarrow \qquad \qquad \downarrow G(y)$$

commutes for every p: e(x) = y. In this diagram, the homotopy $G: e \circ e^{-1} \sim \operatorname{id}$ is the homotopy witnessing that e^{-1} is a section of e.

11.3 Show that

$$(f \sim g) \rightarrow (\mathsf{is\text{-}emb}(f) \leftrightarrow \mathsf{is\text{-}emb}(g))$$

for any f, $g: A \rightarrow B$.

11.4 Consider a commuting triangle

with $H : f \sim g \circ h$.

- (a) Suppose that g is an embedding. Show that f is an embedding if and only if h is an embedding.
- (b) Suppose that *h* is an equivalence. Show that *f* is an embedding if and only if *g* is an embedding.
- 11.5 Consider two embeddings $f: A \hookrightarrow B$ and $g: B \hookrightarrow C$. Show that the following are equivalent:
 - (i) The composite $g \circ f$ is an equivalence.
 - (ii) Both f and g are equivalences.
- 11.6 Consider two maps $f: A \to C$ and $g: B \to C$. Use Exercise 11.1 (b) to show that the following are equivalent:
 - (i) The map $[f,g]: A+B \to C$ is an embedding.
 - (ii) Both f and g are embeddings, and

$$f(a) \neq g(b)$$

for all a : A and b : B.

- 11.7 Consider two maps $f: A \rightarrow A'$ and $g: B \rightarrow B'$.
 - (a) Show that if the map

$$f + g : (A + B) \rightarrow (A' + B')$$

is an equivalence, then so are both f and g (this is the converse of Exercise 9.6 (d)).

- (b) Show that f + g is an embedding if and only if both f and g are embeddings.
- 11.8 (a) Let f, $g: \prod_{(x:A)} B(x) \to C(x)$ be two families of maps. Show that

$$\left(\prod_{(x:A)} f(x) \sim g(x)\right) \to \left(\operatorname{tot}(f) \sim \operatorname{tot}(g)\right).$$

(b) Let $f: \prod_{(x:A)} B(x) \to C(x)$ and let $g: \prod_{(x:A)} C(x) \to D(x)$. Show that

$$tot(\lambda x. g(x) \circ f(x)) \sim tot(g) \circ tot(f).$$

(c) For any family *B* over *A*, show that

$$tot(\lambda x. id_{B(x)}) \sim id.$$

- (d) Let a : A, and let B be a type family over A. Use Exercise 10.2 to show that if each B(x) is a retract of a = x, then B(x) is equivalent to a = x for every x : A.
- (e) Conclude that for any family of maps

$$f: \prod_{(x:A)} (a=x) \to B(x),$$

if each f(x) has a section, then f is a family of equivalences.

11.9 Use Exercise 11.8 to show that for any map $f: A \rightarrow B$, if

$$\operatorname{ap}_f: (x = y) \to (f(x) = f(y))$$

has a section for each x, y: A, then f is an embedding.

11.10 (Shulman) We say that a map $f : A \to B$ is **path-split** if f has a section, and for each x, y : A the map

$$\operatorname{ap}_f(x, y) : (x = y) \to (f(x) = f(y))$$

also has a section. We write is-path-split(f) for the type

$$sec(f) \times \prod_{(x,y:A)} sec(ap_f(x,y)).$$

Show that for any map $f : A \rightarrow B$ the following are equivalent:

- (i) The map f is an equivalence.
- (ii) The map f is path-split.
- 11.11 Consider a triangle

with a homotopy $H: f \sim g \circ h$ witnessing that the triangle commutes.

(a) Construct a family of maps

$$fib$$
-triangle $(h, H) : \prod_{(x:X)} fib_f(x) \to fib_g(x)$,

for which the square

commutes, where the vertical maps are as constructed in Exercise 10.8.

(b) Show that h is an equivalence if and only if fib-triangle(h, H) is a family of equivalences.

12 Propositions, sets, and the higher truncation levels

The set theoretic foundations of mathematics arise in two stages. The first stage is to specify the formal system of first order logic; the second stage is to give an axiomatization of set theory in this formal system. Unlike set theory, type theory is its own formal system. The logic of dependent types, as given by the inference rules, is all we need.

However, even though type theory is not built upon a separate system of logic such as first order logic, we can find logic in type theory by recognizing certain types as propositions. Note that the propositions of first order logic have a virtue that could be rather useful sometimes: First order logic does not offer any way to distinguish between any two proofs of the same proposition. Therefore we say that propositions in type theory are those types that have at most one element.

This condition can be expressed with the identity type: any two elements must be equal. Examples of such types include the empty type \emptyset and the unit type **1**. We call such types propositions. Propositions are useful, because if we know that a certain type is a proposition, then we know that any of its inhabitants are equal. Many important conditions, such as the condition that a map is an equivalence, will turn out to be propositions. This fact implies that two equivalences $A \simeq B$ are equal if and only if their underlying maps $A \to B$ are equal. However, the claim that being an equivalence is a proposition requires function extensionality, the topic of the next section.

In this section we use the idea of propositions in a different way. After we establish some basic properties of propositions, we will introduce the sets as the types of which the identity types are propositions. This is again reminiscent of the situation in set theory, where equality is a predicate in first order logic. We will see in Example 12.3.2 that the type of natural numbers is a set.

Next, one might ask about the types of which the identity types are *sets*. Such types are called 1-*types*. There is an entire hierarchy of special types that arises this way, where a type is said to be a (k + 1)-type if its identity types are k-types. Since the identity types of the 1-types are sets, we see that sets are in fact 0-types. Most of mathematics takes place at this level, the level of sets. The types in higher levels, as well as types that do not belong to any finite level in this hierarchy, are studied extensively in synthetic homotopy theory.

However, we can also go a step further down: Since the identity types of sets are propositions, we see that the propositions are (-1)-types. Moreover, the identity types of propositions are contractible. Hence we find at the bottom of this hierarchy the contractible types as the (-2)-types. There is no point in going down further, since we have seen in Exercise 10.1 that the identity types of contractible types are again contractible.

12.1 Propositions

Definition 12.1.1 A type *A* is said to be a **proposition** if its identity types are contractible, i.e., if it comes equipped with a term of type

$$is-prop(A) := \prod_{(x,y:A)} is-contr(x = y).$$

Given a universe \mathcal{U} , we define $\mathsf{Prop}_{\mathcal{U}}$ to be the type of all small propositions, i.e.,

$$\mathsf{Prop}_{\mathcal{U}} \coloneqq \sum_{(X:\mathcal{U})} \mathsf{is-prop}(X).$$

Example 12.1.2 Any contractible type is a proposition by Exercise 10.1. In particular, the unit type is a proposition. The empty type is also a proposition, since we have

$$\prod_{(x,y:\emptyset)}$$
is-contr $(x=y)$

by the induction principle of the empty type.

There are many conditions on a type A that are equivalent to the condition that A is a proposition. In the following proposition we state four such conditions.

Proposition 12.1.3 *Let A be a type. Then the following are equivalent:*

- (i) *The type A is a proposition.*
- (ii) Any two terms of type A can be identified, i.e., there is a dependent function of type

is-prop'(
$$A$$
) := $\prod_{(x,y:A)} x = y$.

(iii) The type A is contractible as soon as it is inhabited, i.e., there is a function of type

$$A \rightarrow \text{is-contr}(A)$$
.

(iv) The map const_{*} : $A \rightarrow \mathbf{1}$ is an embedding.

Proof If *A* is a proposition, then we can use the center of contraction of the identity types of *A* to identify any two terms in *A*. This shows that (i) implies (ii).

To show that (ii) implies (iii), suppose that A comes equipped with p: $\prod_{(x,y:A)} x = y$. Then for any x : A the dependent function $p(x) : \prod_{(y:A)} x = y$ is a contraction of A. Thus we obtain the function

$$\lambda x. (x, p(x)) : A \rightarrow \text{is-contr}(A).$$

To show that (iii) implies (iv), suppose that $A \to \text{is-contr}(A)$. We first make the simple observation that

$$(X \to \mathsf{is\text{-}emb}(f)) \to \mathsf{is\text{-}emb}(f)$$

for any map $f: X \to Y$, so it suffices to show that $A \to \text{is-emb}(\text{const}_{\star})$. However, assuming we have x: A, it follows by assumption that A is contractible. Therefore, it follows by Exercise 10.3 that the map $\text{const}_{\star}: A \to \mathbf{1}$ is an equivalence, and any equivalence is an embedding by Theorem 11.4.2.

To show that (iv) implies (i), note that if $A \to 1$ is an embedding, then the identity types of A are equivalent to contractible types and therefore they must be contractible.

One useful feature of propositions, is that in order to construct an equivalence $e: P \simeq Q$ between propositions, it suffices to construct maps back and forth between them.

Proposition 12.1.4 A map $f: P \to Q$ between two propositions P and Q is an

equivalence if and only if there is a map $g:Q\to P$. Consequently, we have for any two propositions P and Q that

$$(P \simeq Q) \leftrightarrow (P \leftrightarrow Q).$$

Proof Of course, if we have an equivalence $e: P \simeq Q$, then we get maps back and forth between P and Q. Therefore it remains to show that

$$(P \leftrightarrow Q) \rightarrow (P \simeq Q).$$

Suppose we have $f: P \to Q$ and $g: Q \to P$. Then we obtain the homotopies $f \circ g \sim \operatorname{id}$ and $g \circ f \sim \operatorname{id}$ by the fact that any two elements in P and Q can be identified. Therefore f is an equivalence with inverse g.

12.2 Subtypes

In set theory, a set y is said to be a subset of a set x, if any element of y is an element of x, i.e., if the condition

$$\forall_z (z \in y) \rightarrow (z \in x)$$

holds. We have already noted that type theory is different from set theory in that terms in type theory come equipped with a *unique* type. Moreover, in set theory the proposition $x \in y$ is well-formed for any two sets x and y, whereas in type theory we can only judge that a : A by applying the rules of inference of type theory in such a manner that we arrive at the conclusion that a : A. Because of these differences we must find a different way to talk about subtypes.

Note that in set theory there is a correspondence between the subsets of a set x, and the *predicates* on x. A predicate on x is just a proposition P(z) that varies over the elements $z \in x$. Indeed, if y is a subset of x, then the corresponding predicate is the proposition $z \in y$. Conversely, if P is a predicate on x, then we obtain the subset

$$\{z \in x \mid P(z)\}$$

of x. This observation suggests that in type theory we should define a subtype of a type A to be a family of propositions over A.

Definition 12.2.1 A type family B over A is said to be a **subtype** of A if for each x : A the type B(x) is a proposition. When B is a subtype of A, we also say that B(x) is a **property** of x : A.

One reason why subtypes are important and useful, is that for any

$$(x, p), (y, q) : \sum_{(x:A)} P(x)$$

in a subtype of A, we have (x, p) = (y, q) if and only if x = y. In other words, two terms of a subtype of A are equal if and only if they are equal as terms of A. This fact is properly expressed using embeddings: we claim that the projection map

$$\operatorname{pr}_1: \left(\sum_{(x:A)} P(x)\right) \to A$$

is an embedding, for any subtype *P* of *A*. This claim can be strengthened slightly. We will prove the following two closely related facts:

- (i) A map $f: A \rightarrow B$ is an embedding if and only if its fibers are propositions.
- (ii) A family of types *B* over *A* is a subtype of *A* if and only if the projection map

$$\left(\sum_{(x:A)} B(x)\right) \to A$$

is an embedding.

The first fact is analogous to the fact that a map is an equivalence if and only if its fibers are contractible, which we saw in Theorems 10.3.5 and 10.4.6. To prove the above claims, we will need that propositions are closed under equivalences.

Lemma 12.2.2 Let A and B be types, and let $e: A \simeq B$. Then we have

$$is-prop(A) \leftrightarrow is-prop(B)$$
.

Proof We will show that is-prop(B) implies is-prop(A). This suffices, because the converse follows from the fact that $e^{-1}: B \to A$ is also an equivalence.

Since e is assumed to be an equivalence, it follows by Theorem 11.4.2 that

$$\mathsf{ap}_e:(x=y) \to (e(x)=e(y))$$

is an equivalence for any x, y : A. If B is a proposition, then in particular the type e(x) = e(y) is contractible for any x, y : A, so the claim follows from Theorem 10.4.6.

Theorem 12.2.3 Consider a map $f: A \rightarrow B$. The following are equivalent:

(i) The map f is an embedding.

(ii) The fiber $fib_f(b)$ is a proposition for each b:B.

Proof By the fundamental theorem of identity types, it follows that f is an embedding if and only if

$$\sum_{(x:A)} f(x) = f(y)$$

is contractible for each y : A. In other words, f is an embedding if and only if $fib_f(f(y))$ is contractible for each y : A. Note that we obtain equivalences

$$\operatorname{fib}_f(f(y)) \simeq \operatorname{fib}_f(b)$$

for any b: B and p: f(y) = b, by transporting along p. Therefore it follows by Lemma 12.2.2 that $\operatorname{fib}_f(f(y))$ is contractible for each y: A if and only if $\operatorname{fib}_f(b)$ is contractible for each y: A, and each b: B such that p: f(y) = b. The latter condition holds if and only if we have

$$fib_f(b) \rightarrow is\text{-contr}(fib_f(b))$$

for any b: B, which is by Proposition 12.1.3 equivalent to the condition that each fib_f(b) is a proposition.

Corollary 12.2.4 Consider a family B of types over A. The following are equivalent:

- (i) The map $\operatorname{pr}_1:(\sum_{(x:A)}B(x))\to A$ is an embedding.
- (ii) The type B(x) is a proposition for each x : A.

Proof This corollary follows at once from Exercise 10.7, where we showed that

$$fib_{pr_1}(x) \simeq B(x).$$

12.3 Sets

Definition 12.3.1 A type *A* is said to be a **set** if its identity types are propositions, i.e., if it comes equipped with a term of type

$$is\text{-set}(A) \coloneqq \prod_{(x,y:A)} is\text{-prop}(x=y).$$

Example 12.3.2 The type of natural numbers is a set. To see this, recall from Theorem 11.3.1 that we have an equivalence

$$(m=n)\simeq \mathsf{Eq}_{\mathbb{N}}(m,n)$$

for every $m, n : \mathbb{N}$. Therefore it suffices to show that each $\mathsf{Eq}_{\mathbb{N}}(m, n)$ is a proposition. This follows easily by induction on both m and n.

Proposition 12.3.3 Consider a type A. The following are equivalent:

- (i) The type A is a set.
- (ii) The type A satisfies **axiom K**, i.e., if and only if it comes equipped with a term of type

axiom-K(A) :=
$$\prod_{(x:A)} \prod_{(y:x=x)} refl_x = p$$
.

Proof If A is a set, then x = x is a proposition, so any two of its elements are equal. This implies axiom K.

For the converse, if A satisfies axiom K, then for any p, q: x = y we have $p \cdot q^{-1} = \text{refl}_x$, and hence p = q. This shows that x = y is a proposition, and hence that A is a set.

Theorem 12.3.4 *Let* A *be a type, and let* $R: A \rightarrow A \rightarrow \mathcal{U}$ *be a binary relation on* A *satisfying*

- (i) Each R(x, y) is a proposition,
- (ii) *R* is reflexive, as witnessed by $\rho : \prod_{(x:A)} R(x,x)$,
- (iii) There is a map

$$R(x, y) \rightarrow (x = y)$$

for each x, y : A.

Then any family of maps

$$\prod_{(x,y:A)} (x = y) \to R(x,y)$$

is a family of equivalences. Consequently, the type A is a set.

Proof Let $f: \prod_{(x,y:A)} R(x,y) \rightarrow (x=y)$. Since R is assumed to be reflexive, we also have a family of maps

$$\operatorname{ind-eq}_x(\rho(x)):\prod_{(y:A)}(x=y)\to R(x,y).$$

Since each R(x, y) is assumed to be a proposition, it therefore follows that each R(x, y) is a retract of x = y. Therefore it follows that $\sum_{(y:A)} R(x, y)$ is a retract of $\sum_{(y:A)} x = y$, which is contractible. We conclude that $\sum_{(y:A)} R(x, y)$ is contractible, and therefore that any family of maps

$$\prod_{(y:A)} (x = y) \to R(x, y)$$

is a family of equivalences.

Now it also follows that A is a set, since its identity types are equivalent to propositions, and therefore they are propositions by Lemma 12.2.2.

Theorem 12.3.5 (Hedberg) Any type with decidable equality is a set.

Proof Let A be a type, and let $d: \prod_{(x,y:A)}(x=y) + (x \neq y)$ be the witness that A has decidable equality. Furthermore, let \mathcal{U} be a universe containing the type A. We will prove that A is a set by applying Theorem 12.3.4.

For every x, y: A, we first define a type family R'(x, y): $((x = y) + (x \neq y)) \rightarrow \mathcal{U}$ by

$$R'(x, y, \operatorname{inl}(p)) \coloneqq \mathbf{1}$$

 $R'(x, y, \operatorname{inr}(p)) \coloneqq \emptyset.$

Note that R'(x, y, q) is a proposition for each x, y : A and $q : (x = y) + (x \neq y)$. Now we define R(x, y) := R'(x, y, d(x, y)). Then R is a reflexive binary relation on A, and furthermore each R(x, y) is a proposition. In order to apply Theorem 12.3.4, it therefore it remains to show that R implies identity.

Since R is defined as an instance of R', it suffices to construct a function

$$f(q): R'(q) \rightarrow (x=y).$$

for each $q:(x=y)+(x\neq y)$. Such a function is defined by

$$f(\operatorname{inl}(p), r) := p$$

 $f(\operatorname{inr}(p), r) := \operatorname{ex-falso}(r).$

12.4 General truncation levels

Consider a type A in a universe \mathcal{U} . The conditions

is-contr(
$$A$$
) := $\sum_{(a:A)} \prod_{(x:A)} a = x$
is-prop(A) := $\prod_{(x,y:A)}$ is-contr($x = y$)
is-set(A) := $\prod_{(x,y:A)}$ is-prop($x = y$)

define the first few layers of the hierarchy of truncation levels. This hierarchy starts at the level of the contractible types, which we call level -2. The next level is the level of propositions, and at level 0 we have the sets.

The indexing type of the truncation levels, which will be equivalent to the type $\mathbb{Z}_{\geq -2}$ of integers greater than -2, is an inductive type \mathbb{T} equipped with the constructors

$$-2_{\mathbb{T}}:\mathbb{T}$$

$$\operatorname{succ}_{\mathbb{T}}: \mathbb{T} \to \mathbb{T}.$$

The natural inclusion $i : \mathbb{N} \to \mathbb{T}$ is defined recursively by

$$i(0_{\mathbb{N}}) \coloneqq \mathsf{succ}_{\mathbb{T}}(\mathsf{succ}_{\mathbb{T}}(-2_{\mathbb{T}}))$$

 $i(\mathsf{succ}_{\mathbb{N}}(n)) \coloneqq \mathsf{succ}_{\mathbb{T}}(i(n)).$

Of course, we will simply write -2 for $-2_{\mathbb{T}}$ and k+1 for $\mathsf{succ}_{\mathbb{T}}(k)$.

Definition 12.4.1 We define is-trunc : $\mathbb{T} \to \mathcal{U} \to \mathcal{U}$ recursively by

$$is-trunc_{-2}(A) := is-contr(A)$$

 $is-trunc_{k+1}(A) := \prod_{(x,y:A)} is-trunc_k(x = y).$

For any type A, we say that A is k-truncated, or a k-type, if there is a term of type is-trunc $_k(A)$. We also say that a type A is a **proper** (k + 1)-type if A is a (k + 1)-type and not a k-type.

Given a universe \mathcal{U} , we define the universe $\mathcal{U}^{\leq k}$ of k-truncated types by

$$\mathcal{U}^{\leq k}\coloneqq \sum_{(X:\mathcal{U})}\mathsf{is-trunc}_k(X).$$

Furthermore, we say that a map $f : A \rightarrow B$ is k-truncated if its fibers are k-truncated.

Remark 12.4.2 There is a subtlety in the definition of is-trunc regarding universes. Note that the truncation levels are defined with respect to a universe \mathcal{U} . To be completely precise, we should therefore write is-trunc $_k^{\mathcal{U}}(A)$ for the type is-trunc $_k(A)$ defined with respect to the universe \mathcal{U} . If A is also contained in a second universe \mathcal{V} , then it is legitimate to ask whether

$$\operatorname{is-trunc}_k^{\mathcal{U}}(A) \leftrightarrow \operatorname{is-trunc}_k^{\mathcal{V}}(A).$$

A simple inductive argument shows that this is indeed the case, where the base case follows from the judgmental equalities

$$\begin{split} \text{is-trunc}_{-2}^{\mathcal{U}}(A) &\doteq \sum_{(x:A)} \prod_{(y:A)} x = y \\ \text{is-trunc}_{-2}^{\mathcal{V}}(A) &\doteq \sum_{(x:A)} \prod_{(y:A)} x = y. \end{split}$$

We may therefore safely omit explicit reference to the universes when considering truncatedness of a type.

We show in the following theorem that the truncation levels are successively contained in one another.

Proposition 12.4.3 *If* A *is a* k-type, then A *is also a* (k + 1)-type.

Proof We have seen in Example 12.1.2 that contractible types are propositions. This proves the base case. For the inductive step, note that if any k-type is also a (k+1)-type, then any (k+1)-type is a (k+2)-type, since its identity types are k-types and therefore (k+1)-types.

It is immediate from the proof of Proposition 12.4.3 that the identity types of k-types are also k-types.

Corollary 12.4.4 *If A is a k-type, then its identity types are also k-types.* \Box

Proposition 12.4.5 *If* $e : A \simeq B$ *is an equivalence, and* B *is a* k-type, then so is A.

Proof We have seen in Exercise 10.3 that if *B* is contractible and $e: A \simeq B$ is an equivalence, then *A* is also contractible. This proves the base case.

For the inductive step, assume that the k-types are stable under equivalences, and consider $e:A\simeq B$ where B is a (k+1)-type. In Theorem 11.4.2 we have seen that

$$\operatorname{ap}_e: (x = y) \to (e(x) = e(y))$$

is an equivalence for any x, y. Note that e(x) = e(y) is a k-type, so by the induction hypothesis it follows that x = y is a k-type. This proves that A is a (k + 1)-type.

Corollary 12.4.6 *If* $f : A \rightarrow B$ *is an embedding, and* B *is a* (k + 1)*-type, then so is* A.

Proof By the assumption that f is an embedding, the action on paths

$$\operatorname{\mathsf{ap}}_f : (x = y) \to (f(x) = f(y))$$

is an equivalence for every x, y : A. Since B is assumed to be a (k + 1)-type, it follows that f(x) = f(y) is a k-type for every x, y : A. Therefore we conclude by Proposition 12.4.5 that x = y is a k-type for every x, y : A. In other words, A is a (k + 1)-type.

We end this section with a theorem that characterizes (k + 1)-truncated maps. Note that it generalizes Theorem 12.2.3, which asserts that a map is an embedding if and only if its fibers are propositions.

Theorem 12.4.7 *Let* $f : A \rightarrow B$ *be a map. The following are equivalent:*

(i) The map f is (k + 1)-truncated.

(ii) For each x, y : A, the map

$$\operatorname{ap}_f: (x = y) \to (f(x) = f(y))$$

is k-truncated.

Proof First we show that for any s, t: fib $_f(b)$ there is an equivalence

$$(s = t) \simeq \mathsf{fib}_{\mathsf{ap}_f}(\mathsf{pr}_2(s) \cdot \mathsf{pr}_2(t)^{-1})$$

We do this by Σ -induction on s and t, and then we calculate

$$\begin{split} ((x,p) &= (y,q)) \simeq \mathsf{Eq\text{-}fib}_f((x,p),(y,q)) \\ &\doteq \sum_{(\alpha:x=y)} p = \mathsf{ap}_f(\alpha) \cdot q \\ &\simeq \sum_{(\alpha:x=y)} \mathsf{ap}_f(\alpha) \cdot q = p \\ &\simeq \sum_{(\alpha:x=y)} \mathsf{ap}_f(\alpha) = p \cdot q^{-1} \\ &\doteq \mathsf{fib}_{\mathsf{ap}_f}(p \cdot q^{-1}). \end{split}$$

By these equivalences, it follows that if ap_f is k-truncated, then for each s, t: $fib_f(b)$ the identity type s=t is equivalent to a k-truncated type, and therefore we obtain by Proposition 12.4.5 that f is (k+1)-truncated.

For the converse, note that we have equivalences

$$fib_{ap_f}(p) \simeq ((x, p) = (y, refl_{f(y)})).$$

It follows that if f is (k + 1)-truncated, then the identity type $(x, p) = (y, refl_{f(y)})$ in $fib_f(f(y))$ is k-truncated for any p : f(x) = f(y). We conclude by Proposition 12.4.5 that the fiber $fib_{ap_f}(p)$ is k-truncated.

Exercises

- 12.1 Show that bool is a set by applying Theorem 12.3.4 with the observational equality on bool defined in Exercise 6.2.
- 12.2 Recall that a **partially ordered set (poset)** is defined to be a type *A* equipped with a relation

$$- \leq -: A \to (A \to \mathsf{Prop}_{\mathcal{U}})$$

that is reflexive, antisymmetric, and transitive. Show that the underlying type of any poset is a set.

- 12.3 (a) Show that any injective map $f: A \to B$ into a set B is an embedding, and conclude that A is automatically a set in this case.
 - (b) Show that $n \mapsto m + n$ is an embedding, for each $m : \mathbb{N}$. Moreover, conclude that there is an equivalence

$$(m \le n) \simeq \sum_{(k:\mathbb{N})} m + k = n.$$

(c) Show that $n \mapsto mn$ is an embedding, for each nonzero number $m : \mathbb{N}$. Conclude that the divisibility relation

$$d \mid n$$

is a proposition for each d, $n : \mathbb{N}$ such that d > 0.

- 12.4 (a) Show that for any two contractible types A and B, the coproduct A + B is not contractible.
 - (b) Show that for any two propositions *P* and *Q*, we have a logical equivalence

$$is-contr(P+Q) \leftrightarrow P \oplus Q$$

where the **exclusive disjunction** $P \oplus Q$ is defined by

$$P \oplus Q := (P \times \neg Q) + (Q \times \neg P).$$

- (c) Show that for any two propositions P and Q, the coproduct P + Q is a proposition if and only if $P \rightarrow \neg Q$.
- (d) Show that for any two (k + 2)-types A and B, the coproduct A + B is again a (k + 2)-type. Conclude that \mathbb{Z} is a set.
- 12.5 Let *A* be a type, and let the **diagonal** of *A* be the map $\delta_A : A \to A \times A$ given by $\lambda x. (x, x)$.
 - (a) Show that

$$is-equiv(\delta_A) \leftrightarrow is-prop(A)$$
.

- (b) Construct an equivalence $fib_{\delta_A}(x, y) \simeq (x = y)$ for any x, y : A.
- (c) Show that *A* is (k + 1)-truncated if and only if $\delta_A : A \to A \times A$ is k-truncated.
- 12.6 (a) Consider a type family *B* over a *k*-truncated type *A*. Show that the following are equivalent:
 - (i) The type B(x) is k-truncated for each x : A.
 - (ii) The type $\sum_{(x:A)} B(x)$ is *k*-truncated.

Hint: for the base case, use Exercises 10.3 and 10.6.

- (b) Consider a map $f : A \rightarrow B$ into a k-type B. Show that the following are equivalent:
 - (i) The type *A* is *k*-truncated.
 - (ii) The map f is k-truncated.
- 12.7 Consider two types *A* and *B*. Show that the following are equivalent:
 - (i) There are functions

$$f: B \to \text{is-trunc}_{k+1}(A)$$

 $g: A \to \text{is-trunc}_{k+1}(B).$

(ii) The type $A \times B$ is (k + 1)-truncated.

Conclude with Exercise 10.5 that, if both A and B come equipped with an element, then both A and B are k-truncated if and only if the product $A \times B$ is k-truncated.

12.8 (a) Consider a section-retraction pair

$$A \xrightarrow{i} B \xrightarrow{r} A$$

with $H: r \circ i \sim \text{id}$. Show that x = y is a retract of i(x) = i(y).

- (b) Use Exercise 10.2 to show that if *A* is a retract of a *k*-type *B*, then *A* is also a *k*-type.
- 12.9 Consider an arbitrary type *A*. Recall that concatenation of lists was defined in Exercise 4.4. Show that the map

$$f: \operatorname{list}(A) \times \operatorname{list}(A) \to \operatorname{list}(A)$$
.

given by f(x, y) := concat-list(x, y) is 0-truncated.

- 12.10 Show that a type *A* is a (k+1)-type if and only if the map $const_x : \mathbf{1} \to A$ is k-truncated for every x : A.
- 12.11 Consider a commuting triangle

$$A \xrightarrow{h} B$$

$$f \searrow g$$

$$X$$

with $H: f \sim g \circ h$, and suppose that g is k-truncated. Show that f is k-truncated if and only if h is k-truncated.

12.12 Let $f: \prod_{(x:A)} B(x) \to C(x)$ be a family of maps. Show that the following are equivalent:

- (i) For each x : A the map f(x) is k-truncated.
- (ii) The induced map

$$tot(f): \left(\sum_{(x:A)} B(x)\right) \to \left(\sum_{(x:A)} C(x)\right)$$

is *k*-truncated.

- 12.13 Consider a type *A*. Show that the following are equivalent:
 - (i) The type A is (k + 1)-truncated.
 - (ii) For any type family *B* over *A* and any *a* : *A*, the **fiber inclusion**

$$i_a: B(a) \to \sum_{(x:A)} B(x)$$

given by $y \mapsto (a, y)$ is a k-truncated map.

In particular, if *A* is a set then any fiber inclusion $i_a : B(a) \to \sum_{(x:A)} B(x)$ is an embedding.

12.14 Consider a type *A* equipped with an element *a* : *A*. We say that *a* is an **isolated element** of *A* if it comes equipped with an element of type

is-isolated(a) :=
$$\prod_{(x:A)} (a = x) + (a \neq x)$$
.

- (a) Show that a is isolated if and only if the map $const_a : \mathbf{1} \to A$ has decidable fibers.
- (b) Show that if a is isolated, then a = x is a proposition, for every x : A. Conclude that if a is isolated, then the map $\mathsf{const}_a : \mathbf{1} \to A$ is an embedding.

13 Function extensionality

The function extensionality axiom asserts that for any two dependent functions f, g: $\prod_{(x:A)} B(x)$, the type of identifications f = g is equivalent to the type of homotopies $f \sim g$ from f to g. In other words, two (dependent) functions can only be distinguished by their values. The function extensionality axiom therefore provides a characterization of the identity type of (dependent) function types. By the fundamental theorem of identity types it follows immediately that the function extensionality axiom has at least three equivalent forms. There is, however, a fourth useful equivalent form of the function extensionality axiom: the *weak* function extensionality axiom. This axiom asserts that any dependent product of contractible types is again

contractible. A simple consequence of the weak function extensionality axiom is that any dependent product of a family of *k*-types is again a *k*-type.

The function extensionality axiom is used to derive many important properties in type theory. One class of such properties are (dependent) universal properties. Universal properties give a characterization of the type of functions into, or out of a type. For example, the universal property of the coproduct A + B characterizes the type of maps $(A + B) \rightarrow X$ as the type of pairs of maps (f, g) consisting of $f: A \rightarrow X$ and $g: B \rightarrow X$, i.e., the universal property of the coproduct A + B is an equivalence

$$((A + B) \rightarrow X) \simeq (A \rightarrow X) \times (B \rightarrow X).$$

Note that there are function types on both sides of this equivalence. Therefore we will need function extensionality in order to construct the homotopies witnessing that the inverse map is both a left and a right inverse. In fact, we leave this particular universal property as Exercise 13.8. The universal properties that we do show in the main text, are the universal properties of Σ -types and of the identity type.

We end this section with two further applications of the function extensionality axiom. In the first, Theorem 13.4.1, we show that precomposition by an equivalence is again an equivalence. More precisely we show that $f: A \to B$ is an equivalence if and only if for every type family P over B, the precomposition map

$$-\circ f: \left(\prod_{(y:B)} P(y)\right) \to \left(\prod_{(x:A)} P(f(x))\right)$$

is an equivalence. To prove this fact we will make use of coherently invertible maps, which were introduced in Section 10.4. In the second application, Theorem 13.5.1, we prove the strong induction principle of the natural numbers. Function extensionality is needed in order to derive the computation rule for the strong induction principle.

Many important consequences of the function extensionality axiom are left as exercises. For example, in Exercise 13.3 you are asked to show that both is-contr(A) and is-trunc $_k(A)$ are propositions, and in Exercise 13.4 you are asked to show that is-equiv(f) is a proposition. The universal properties of \emptyset , 1, and A + B are left as Exercises 13.6 to 13.8. A few more advanced properties, such as the fact that post-composition

$$g \circ - : (A \to X) \to (A \to Y)$$

by a k-truncated map $g: X \to Y$ is itself a k-truncated map, appear in the later exercises. We encourage you to read through all of them, and get at least a basic idea of why they are true.

13.1 Equivalent forms of function extensionality

The function extensionality principle characterizes the identity type of an arbitrary dependent function type. It asserts that the type f = g of identifications between two dependent functions is equivalent to the type of homotopies $f \sim g$. By Theorem 11.2.2 there are three equivalent ways of doing this.

Proposition 13.1.1 *Consider a dependent function* $f : \prod_{(x:A)} B(x)$ *. The following are equivalent:*

(i) The function extensionality principle holds at f: for each g: $\prod_{(x:A)} B(x)$, the family of maps

$$\mathsf{htpy-eq}: (f = g) \to (f \sim g)$$

defined by $htpy-eq(refl_f) := refl-htpy_f$ *is a family of equivalences.*

(ii) The total space

$$\sum_{(g:\Pi_{(x:A)}B(x))} f \sim g$$

is contractible.

(iii) The principle of **homotopy induction**: for any family of types P(g, H) indexed by $g: \prod_{(x:A)} B(x)$ and $H: f \sim g$, the evaluation function

$$\left(\prod_{(g:\prod_{(x:A)}B(x))}\prod_{(H:f\sim g)}P(g,H)\right)\to P(f,\mathsf{refl-htpy}_f),$$

given by $s \mapsto s(f, \mathsf{refl-htpy}_f)$, has a section.

Proof This theorem follows directly from Theorem 11.2.2.

There is, however, yet a fourth condition equivalent to the function extensionality principle: the *weak* function extensionality principle. The weak function extensionality principle asserts that any dependent product of contractible types is again contractible.

The following theorem is stated with respect to an arbitrary universe \mathcal{U} , because we will use it in Theorem 17.3.2 to show that the univalence axiom implies function extensionality.

Theorem 13.1.2 Consider a universe \mathcal{U} . The following are equivalent:

(i) The function extensionality principle holds in \mathcal{U} : For every type family B over A in \mathcal{U} and any f, g: $\prod_{(x:A)} B(x)$, the map

$$\mathsf{htpy\text{-}eq}: (f = g) \to (f \sim g)$$

is an equivalence.

(ii) The **weak function extensionality principle** holds in U: For every type family B over A in U one has

$$\left(\prod_{(x:A)} \mathsf{is\text{-}contr}(B(x))\right) \to \mathsf{is\text{-}contr}\left(\prod_{(x:A)} B(x)\right).$$

Proof First, we show that function extensionality implies weak function extensionality, suppose that each B(a) is contractible with center of contraction c(a) and contraction $C_a:\prod_{(y:B(a))}c(a)=y$. Then we take $c:=\lambda a. c(a)$ to be the center of contraction of $\prod_{(x:A)}B(x)$. To construct the contraction we have to define a term of type

$$\prod_{(f:\prod_{(x:A)}B(x))}c=f.$$

Let $f: \prod_{(x:A)} B(x)$. By function extensionality we have a map $(c \sim f) \rightarrow (c = f)$, so it suffices to construct a term of type $c \sim f$. Here we take $\lambda a. C_a(f(a))$. This completes the proof that function extensionality implies weak function extensionality.

It remains to show that weak function extensionality implies function extensionality. By Proposition 13.1.1 it suffices to show that the type

$$\sum_{(g:\prod_{(x:A)}B(x))}f\sim g$$

is contractible for any $f: \prod_{(x:A)} B(x)$. In order to do this, we first note that we have a section-retraction pair

$$\left(\sum_{(g:\prod_{(x:A)}B(x))}f\sim g\right) \stackrel{i}{\longrightarrow} \left(\prod_{(x:A)}\sum_{(b:B(x))}f(x)=b\right)$$
$$\stackrel{r}{\longrightarrow} \left(\sum_{(g:\prod_{(x:A)}B(x))}f\sim g\right)$$

Here we have the functions

$$i := \lambda(g, H). \lambda x. (g(x), H(x))$$

$$r := \lambda p. (\lambda x. \operatorname{pr}_1(p(x)), \lambda x. \operatorname{pr}_2(p(x))).$$

Their composite is homotopic to the identity function by the computation rule for Σ -types and the η -rule for Π -types:

$$r(i(g,H)) \doteq r(\lambda x. (g(x),H(x)))$$

$$\doteq (\lambda x. g(x), \lambda x. H(x))$$

$$\doteq (g, H).$$

Now we observe that the type $\prod_{(x:A)} \sum_{(b:B(x))} f(x) = b$ is a product of contractible types, so it is contractible by our assumption of the weak function extensionality principle. The claim now follows, because retracts of contractible types are contractible by Exercise 10.2.

We will henceforth assume the function extensionality principle as an axiom.

Axiom 13.1.3 (Function Extensionality) For any type family *B* over *A*, and any two dependent functions f, g: $\prod_{(x:A)} B(x)$, the map

$$\mathsf{htpy\text{-}eq}: (f = g) \to (f \sim g)$$

is an equivalence. We will write eq-htpy for its inverse.

Remark 13.1.4 The function extensionality axiom is added to type theory by adding the rule

$$\frac{\Gamma, x: A \vdash B(x) \text{ type} \quad \Gamma \vdash f: \prod_{(x:A)} B(x) \quad \Gamma \vdash g: \prod_{(x:A)} B(x)}{\Gamma \vdash \text{ funext: is-equiv(htpy-eq}_{f,g})}$$

In the following theorem we extend the weak function extensionality principle to general truncation levels.

Theorem 13.1.5 For any type family B over A one has

$$\Big(\prod_{(x:A)} \mathsf{is\text{-}trunc}_k(B(x))\Big) \to \mathsf{is\text{-}trunc}_k\Big(\prod_{(x:A)} B(x)\Big).$$

Proof The theorem is proven by induction on $k \ge -2$. The base case is just the weak function extensionality principle, which was shown to follow from function extensionality in Theorem 13.1.2.

For the inductive step, assume that the k-truncated types are closed under Π -types, and consider a family B of (k+1)-truncated types. To show that the type $\prod_{(x:A)} B(x)$ is (k+1)-truncated, we have to show that the type f=g is k-truncated for every $f,g:\prod_{(x:A)}$. By function extensionality, the type f=g is equivalent to $f\sim g$ for any two dependent functions $f,g:\prod_{(x:A)} B(x)$. Now observe that $f\sim g$ is a dependent product of k-truncated types, and therefore it is k-truncated by the inductive hypothesis. Since the k-truncated types are closed under equivalences by Proposition 12.4.5, it follows that the type f=g is k-truncated.

Corollary 13.1.6 *Suppose B is a k-type. Then A* \rightarrow *B is also a k-type, for any type A.*

Remark 13.1.7 It follows that $\neg A$ is a proposition for each type A. Note that it requires function extensionality even just to prove that $\neg P$ is a proposition for any proposition P.

13.2 Identity systems on Π -types

Recall from Section 11.6 that the *structure identity principle* is a way to obtain an identity system on a Σ -type. Identity systems were defined in Definition 11.2.1. In this section we will describe how to obtain identity systems on a Π -type. We will first show that Π -types distribute over Σ -types. This theorem is sometimes called the *type theoretic principle of choice* because it can be seen as the Curry-Howard interpretation of the axiom of choice.

Theorem 13.2.1 Consider a family of types C(x, y) indexed by x : A and y : B(x). Then the map

$$\text{choice}: \left(\textstyle\prod_{(x:A)}\textstyle\sum_{(y:B(x))}\!C(x,y)\right) \to \left(\textstyle\sum_{(f:\prod_{(x:A)}B(x))}\!\prod_{(x:A)}\!C(x,f(x))\right)$$

given by

$$\mathsf{choice}(h) := (\lambda x. \, \mathsf{pr}_1(h(x)), \lambda x. \, \mathsf{pr}_2(h(x))).$$

is an equivalence.

Proof We define the map

$$\mathrm{choice}^{-1}: \left(\textstyle\sum_{(f:\prod_{(x:A)}B(x))}\prod_{(x:A)}C(x,f(x))\right) \to \prod_{(x:A)}\textstyle\sum_{(y:B(x))}C(x,y)$$

by $\operatorname{choice}^{-1}(f,g) := \lambda x. (f(x),g(x))$. Then we have to construct homotopies

$$\mbox{choice} \circ \mbox{choice}^{-1} \sim \mbox{id}, \qquad \mbox{and} \qquad \mbox{choice}^{-1} \circ \mbox{choice} \sim \mbox{id}.$$

For the first homotopy it suffices to construct an identification

$$choice(choice^{-1}(f,g)) = (f,g)$$

for any $f: \prod_{(x:A)} B(x)$ and any $g: \prod_{(x:A)} C(x, f(x))$. We compute the left-hand side as follows:

choice(choice⁻¹
$$(f,g)$$
) \doteq choice $(\lambda x. (f(x), g(x)))$
 $\doteq (\lambda x. f(x), \lambda x. g(x)).$

By the *η*-rule for Π-types we have the judgmental equalities $f \doteq \lambda x$. f(x) and $g \doteq \lambda x$. g(x). Therefore we have the identification

$$\operatorname{refl}_{(f,g)}: \operatorname{choice}(\operatorname{choice}^{-1}(f,g)) = (f,g).$$

This completes the construction of the first homotopy.

For the second homotopy we have to construct an identification

$$choice^{-1}(choice(h)) = h$$

for any $h: \prod_{(x:A)} \sum_{(y:B(x))} C(x,y)$. We compute the left-hand side as follows:

$$\begin{aligned} \mathsf{choice}^{-1}(\mathsf{choice}(h)) &\doteq \mathsf{choice}^{-1}(\lambda x.\,\mathsf{pr}_1(h(x)),(\lambda x.\,\mathsf{pr}_2(h(x)))) \\ &\doteq \lambda x.\,(\mathsf{pr}_1(h(x)),\mathsf{pr}_2(h(x))) \end{aligned}$$

However, it is *not* the case that $(\operatorname{pr}_1(h(x)),\operatorname{pr}_2(h(x))) \doteq h(x)$ for any $h:\prod_{(x:A)}\sum_{(y:B(x))}C(x,y)$. Nevertheless, we have the identification

$$\mathsf{eq}\text{-}\mathsf{pair}(\mathsf{refl},\mathsf{refl}):(\mathsf{pr}_1(h(x)),\mathsf{pr}_2(h(x)))=h(x).$$

Therefore we obtain the required homotopy by function extensionality:

$$\lambda h$$
. eq-htpy $(\lambda x$. eq-pair $(\text{refl}_{\text{pr}_1(h(x))}, \text{refl}_{\text{pr}_2(h(x))}))$: choice $^{-1} \circ \text{choice} \sim \text{id}$.

The fact that Π -types distribute over Σ -types has many useful consequences. The most straightforward consequence is the following.

Corollary 13.2.2 For any two types A and B, and any type family C over B, we have an equivalence

$$(A \to \sum_{(y:B)} C(y)) \simeq (\sum_{(f:A \to B)} \prod_{(x:A)} C(f(x))).$$

Another direct consequence of the distributivity of Π -types over Σ -types is the fact that

$$\prod_{(b:B)} \mathsf{fib}_f(b) \simeq \sum_{(g:B \to A)} f \circ g \sim \mathsf{id}.$$

In the following corollary we use the distributivity of Π -types over Σ -types to show that dependent functions are sections of projection maps.

Corollary 13.2.3 Consider a type family B over A, and consider the projection map

$$\operatorname{pr}_1: \left(\sum_{(x:A)} B(x)\right) \to A.$$

Then we have an equivalence

$$sec(pr_1) \simeq \prod_{(x:A)} B(x).$$

Proof Theorem 13.2.1 gives the first equivalence in the following calculation:

$$\begin{split} \sum_{(h:A \to \sum_{(x:A)} B(x))} & \operatorname{pr}_1 \circ h \sim \operatorname{id} \simeq \sum_{((f,g): \sum_{(f:A \to A)} \prod_{(x:A)} B(f(x)))} f \sim \operatorname{id} \\ & \simeq \sum_{((f,H): \sum_{(f:A \to A)} f \sim \operatorname{id})} \prod_{(x:A)} B(f(x)) \\ & \simeq \prod_{(x:A)} B(x) \end{split}$$

In the second equivalence we used Exercise 9.5 to swap the family $f \mapsto \prod_{(x:A)} B(f(x))$ with the family $f \mapsto f \sim \mathrm{id}$, and in the third equivalence we used the fact that

$$\sum_{(f:A \to A)} f \sim \mathrm{id}$$

is contractible, with center of contraction (id, refl-htpy). One way to see that it is contractible is by Exercise 13.1. A direct way to see this, is by another application of Theorem 13.2.1. This gives an equivalence

$$\left(\sum_{(f:A \to A)} f \sim \operatorname{id}\right) \simeq \left(\prod_{(x:A)} \sum_{(y:A)} y = x\right)$$
 ,

and the right-hand side is a product of contractible types.

In the final application of distributivity of Π -types over Σ -types we obtain a general way of constructing identity systems of Π -types.

Theorem 13.2.4 Consider a family B of types over A, and for each b : B(a) consider an identity system E(b) at b. Furthermore, consider a dependent function $f : \prod_{(x:A)} B(x)$. Then the family of types

$$\prod_{(x:A)} E(f(x),g(x))$$

indexed by $g: \prod_{(x:A)} B(x)$ is an identity system at f.

Proof By Theorem 11.2.2 it suffices to show that the type

$$\sum_{(g:\prod_{(x:A)}B(x))}\prod_{(x:A)}E(f(x),g(x))$$

is contractible. By Theorem 13.2.1 it follows that this type is equivalent to the type

$$\prod_{(x:A)} \sum_{(y:B(x))} E(f(x), y).$$

This is a product of contractible types because each E(f(x)) is an identity system at f(x): B(x). This product is therefore contractible by the weak function extensionality principle.

13.3 Universal properties

The function extensionality principle allows us to prove *universal properties*. Universal properties are characterizations of all maps out of or into a given type, so they are very important. Among other applications, universal properties characterize a type up to equivalence. We prove here the universal properties of dependent pair types and of identity types. In the exercises, you are asked to prove the universal properties of 1, 0, and coproducts.

The universal property of Σ -types

The **universal property of** Σ**-types** characterizes maps *out of* a dependent pair type $\sum_{(x:A)} B(x)$. It asserts that the map

$$\text{ev-pair}: \left(\left(\textstyle\sum_{(x:A)} B(x)\right) \to X\right) \to \left(\textstyle\prod_{(x:A)} (B(x) \to X)\right),$$

given by $f \mapsto \lambda x. \lambda y. f(x, y)$, is an equivalence for any type X. In fact, we will prove a slight generalization of this universal property. We will prove the **dependent universal property** of Σ -types, which characterizes *dependent* functions out of $\sum_{(x,A)} B(x)$.

Theorem 13.3.1 Let B be a type family over A, and let C be a type family over $\sum_{(x:A)} B(x)$. Then the map

$$\text{ev-pair}: \left(\prod_{(z:\sum_{(x:A)}B(x))}C(z)\right) \to \left(\prod_{(x:A)}\prod_{(y:B(x))}C(x,y)\right),$$

given by $f \mapsto \lambda x. \lambda y. f(x, y)$, is an equivalence.

Proof The map in the converse direction is obtained by the induction principle of Σ -types. It is simply the map

$$\operatorname{ind}_{\Sigma}: \Big(\textstyle\prod_{(x:A)}\textstyle\prod_{(y:B(x))}\!C(x,y)\Big) \to \Big(\textstyle\prod_{(z:\sum_{(x:A)}B(x))}\!C(z)\Big).$$

By the computation rule for Σ -types we have the homotopy

refl-htpy: ev-pair
$$\circ$$
 ind $_{\Sigma} \sim$ id.

This shows that ind_{Σ} is a section of ev-pair.

To show that $\operatorname{ind}_{\Sigma} \circ \operatorname{ev-pair} \sim \operatorname{id}$ we will apply the function extensionality principle. Therefore it suffices to show that $\operatorname{ind}_{\Sigma}(\lambda x.\lambda y.f(x,y)) = f$. We apply function extensionality again, so it suffices to show that

$$\prod_{(t:\sum_{(x:A)}B(x))}\operatorname{ind}_{\Sigma}(\lambda x.\lambda y.f(x,y))(t)=f(t).$$

We obtain this homotopy by another application of Σ -induction.

Corollary 13.3.2 *Let A, B, and X be types. Then the map*

ev-pair :
$$(A \times B \to X) \to (A \to (B \to X))$$

given by $f \mapsto \lambda a. \lambda b. f(a, b)$ is an equivalence.

The universal property of identity types

The universal property of identity types is the fact that families of maps out of the identity type are uniquely determined by their action on the reflexivity identification. More precisely, the map

$$\text{ev-refl}: \left(\prod_{(x:A)} (a=x) \to B(x)\right) \to B(a)$$

given by λf . $f(a, \text{refl}_a)$ is an equivalence, for every type family B over A. Since this result is similar to the Yoneda lemma of category theory, the universal property of identity types is sometimes referred to as the *type theoretic Yoneda lemma*. We will prove the *dependent* universal property of identity types, a slight generalization of the universal property.

Theorem 13.3.3 Consider a type A equipped with a:A, and consider a family of types B(x, p) indexed by x:A and p:a=x. Then the map

$$\text{ev-refl}: \left(\textstyle\prod_{(x:A)}\textstyle\prod_{(p:a=x)} B(x,p)\right) \to B(a,\text{refl}_a),$$

given by λf . $f(a, refl_a)$, is an equivalence.

Proof The inverse is the function

$$ind-eq_a: B(a, refl_a) \to \prod_{(x:A)} \prod_{(y:a=x)} B(x, p).$$

It is immediate from the computation rule of the path induction principle that ev-refl \circ ind-eq_a \sim id.

To see that $\operatorname{ind-eq}_a \circ \operatorname{ev-refl} \sim \operatorname{id}$, let $f: \prod_{(x:A)} (a=x) \to B(x,p)$. To show that $\operatorname{ind-eq}_a(f(a,\operatorname{refl}_a)) = f$ we apply function extensionality twice. Therefore it suffices to show that

$$\prod_{(x:A)} \prod_{(p:a=x)} \mathsf{ind-eq}_a(f(a,\mathsf{refl}_a),x,p) = f(x,p).$$

This follows by path induction on p, since $\operatorname{ind-eq}_a(f(a,\operatorname{refl}_a),a,\operatorname{refl}_a) \doteq f(a,\operatorname{refl}_a)$ by the computation rule of path induction.

13.4 Composing with equivalences

We show in the following theorem that a map $f : A \to B$ is an equivalence if and only if precomposing by f is an equivalence.

Theorem 13.4.1 For any map $f: A \rightarrow B$, the following are equivalent:

- (i) f is an equivalence.
- (ii) For any type family P over B the map

$$\left(\prod_{(y:B)} P(y)\right) \to \left(\prod_{(x:A)} P(f(x))\right)$$

given by $h \mapsto h \circ f$ is an equivalence.

(iii) For any type X the map

$$(B \to X) \to (A \to X)$$

given by $g \mapsto g \circ f$ is an equivalence.

Proof To show that (i) implies (ii), we first recall from Lemma 10.4.5 that any equivalence is also coherently invertible. Therefore f comes equipped with

$$g: B \to A$$

 $G: f \circ g \sim id_B$
 $H: g \circ f \sim id_A$
 $K: G \cdot f \sim f \cdot H$.

Then we define the inverse of $-\circ f$ to be the map

$$\varphi: \left(\prod_{(x:A)} P(f(x))\right) \to \left(\prod_{(y:B)} P(y)\right)$$

given by $h \mapsto \lambda y$. $\operatorname{tr}_P(G(y), h(g(y)))$.

To see that φ is a section of $-\circ f$, let $h:\prod_{(x:A)}P(f(x))$. By function extensionality it suffices to construct a homotopy $\varphi(h)\circ f\sim h$. In other words, we have to show that

$$tr_P(G(f(x)), h(g(f(x))) = h(x)$$

for any x:A. Now we use the additional homotopy K from our assumption that f is coherently invertible. Since we have $K(x):G(f(x))=\operatorname{ap}_f(H(x))$ it suffices to show that

$$\operatorname{tr}_P(\operatorname{ap}_f(H(x)), h(g(f(x)))) = h(x).$$

A simple path-induction argument yields that

$$\operatorname{tr}_P(\operatorname{ap}_f(p)) \sim \operatorname{tr}_{P \circ f}(p)$$

for any path p : x = y in A, so it suffices to construct an identification

$$\operatorname{tr}_{P \circ f}(H(x), h(g(f(x)))) = h(x).$$

We have such an identification by $apd_h(H(x))$.

To see that φ is a retraction of $-\circ f$, let $h:\prod_{(y:B)}P(y)$. By function extensionality it suffices to construct a homotopy $\varphi(h\circ f)\sim h$. In other words, we have to show that

$$tr_P(G(y), h(f(g(y)))) = h(y)$$

for any y : B. We have such an identification by $\operatorname{apd}_h(G(y))$. This completes the proof that (i) implies (ii).

Note that (iii) is an immediate consequence of (ii), since we can just choose P to be the constant family X.

It remains to show that (iii) implies (i). Suppose that

$$-\circ f:(B\to X)\to (A\to X)$$

is an equivalence for every type X. Then its fibers are contractible by Theorem 10.4.6. In particular, choosing $X \doteq A$ we see that the fiber

$$\mathsf{fib}_{-\circ f}(\mathsf{id}_A) \doteq \textstyle \sum_{(h:B \to A)} h \circ f = \mathsf{id}_A$$

is contractible. Thus we obtain a function $h: B \to A$ and a homotopy $H: h \circ f \sim \operatorname{id}_A$ showing that h is a retraction of f. We will show that h is also a section of f. To see this, we use that the fiber

$$fib_{-\circ f}(f) \doteq \sum_{(i:B\to B)} i \circ f = f$$

is contractible (choosing X := B). Of course we have $(id_B, refl_f)$ in this fiber. However we claim that there also is an identification $p : (f \circ h) \circ f = f$, showing that $(f \circ h, p)$ is in this fiber, because

$$(f \circ h) \circ f \doteq f \circ (h \circ f)$$
$$= f \circ id_A$$
$$\doteq f$$

From the contractibility of the fiber we obtain an identification $(id_B, refl_f) = (f \circ h, p)$. In particular we obtain that $id_B = f \circ h$, showing that h is a section of f.

13.5 The strong induction principle of \mathbb{N}

In the final application of the function extensionality principle we prove the strong induction principle for the type of natural numbers. Function extensionality is used to derive the computation rules of the strong induction principle.

Theorem 13.5.1 (Strong induction for the natural numbers) *Consider a type family P over* \mathbb{N} *equipped with*

$$\begin{aligned} p_0: P(0) \\ p_S: \prod_{(n:\mathbb{N})} \left(\prod_{(m:\mathbb{N})} (m \leq n) \to P(m)\right) &\to P(n+1). \end{aligned}$$

Then there is a dependent function

strong-ind_N
$$(p_0, p_S) : \prod_{(n:N)} P(n)$$

that satisfies the following computation rules

$$\mathsf{strong}\text{-}\mathsf{ind}_{\mathbb{N}}(p_0, p_S, 0) = p_0$$

$$\mathsf{strong}\text{-}\mathsf{ind}_{\mathbb{N}}(p_0, p_S, n + 1) = p_S(n, (\lambda m. \lambda p. \mathsf{strong}\text{-}\mathsf{ind}_{\mathbb{N}}(p_0, p_S, m))).$$

In order to construct strong-ind_N(p_0 , p_S), we first define the type family \tilde{P} over \mathbb{N} by

$$\tilde{P}(n) := \prod_{(m:\mathbb{N})} (m \le n) \to P(m).$$

The idea is then to first use p_0 and p_S to construct

$$\begin{split} \tilde{p}_0 : \tilde{P}(0) \\ \tilde{p}_S : \prod_{(n:\mathbb{N})} \tilde{P}(n) &\to \tilde{P}(n+1). \end{split}$$

The ordinary induction principle of $\ensuremath{\mathbb{N}}$ then gives a function

$$\operatorname{ind}_{\mathbb{N}}(\tilde{p}_0, \tilde{p}_S) : \prod_{(n:\mathbb{N})} \tilde{P}(n),$$

which can be used to define a function $\prod_{(n:\mathbb{N})} P(n)$.

Before we start by the proof of Theorem 13.5.1 we state two lemmas in which we construct \tilde{p}_0 and \tilde{p}_S with computation rules of their own. We will assume a type family P over \mathbb{N} equipped with

$$p_0: P(0)$$

 $p_S: \prod_{(n:\mathbb{N})} \tilde{P}(n) \to P(n+1),$

as in the hypotheses of Theorem 13.5.1.

Lemma 13.5.2 *There is an element* $\tilde{p}_0 : \tilde{P}(0)$ *that satisfies the judgmental equality*

$$\tilde{p}_0(0,p) \doteq p_0$$

for any $p:0 \le 0$.

Proof The fact that we have such a dependent function \tilde{p}_0 follows immediately by induction on m and $p: m \le 0$.

Lemma 13.5.3 *There is a function*

$$\tilde{p}_S: \prod_{(n:\mathbb{N})} \tilde{P}(n) \to \tilde{P}(n+1)$$

equipped with

(i) an identification

$$\tilde{p}_S(n,H,m,p) = H(m,q)$$

for every $H: \tilde{P}(n)$ and every $p: m \le n+1$ and $q: m \le n$, and

(ii) an identification

$$\tilde{p}_S(n,H,n+1,p) = p_S(n,H)$$

for every $p:n+1\leq n+1$.

Proof To define the function $\tilde{p}_S(n, H)$, note that there is a function

$$f: (m \le n+1) \to (m \le n) + (m = n+1)$$
 (*)

which can be defined by induction on n and m. Using the fact that the domain and codomain of this map are both propositions, this function is easily seen to be an equivalence. Therefore we define first a function

$$h(n,H):\prod_{(m:\mathbb{N})}((m\leq n)+(m=n+1))\to P(m)$$

by case analysis on $x: (m \le n) + (m = n + 1)$. There are two cases to consider: one where we have $q: m \le n$, and one where we have q: m = n + 1. Note that in the second case it suffices to make a definition for $q \doteq \text{refl}$. Therefore we define

$$h(n,H,m,x) = \begin{cases} H(m,q) & \text{if } x \doteq \text{inl}(q) \\ p_S(n,H) & \text{if } x \doteq \text{inr}(\text{refl}). \end{cases}$$

Now we define \tilde{p}_S by

$$\tilde{p}_S(n,H,m,p)\coloneqq h(n,H,m,f(p)),$$

where $f:(m \le n+1) \to (m \le n) + (m = n+1)$ is the map we mentioned in (*).

To construct the identifications claimed in (i) and (ii), note that there is an equivalence

$$\left(\tilde{p}_S(n,H,m,p)=y\right)\simeq \left(h(n,H,m,x)=y\right),$$

for any y: P(m). This equivalence is obtained from the fact that f(p) = x for any $x: (m \le n) + (m = n + 1)$, i.e., the fact that $(m \le n) + (m = n + 1)$ is a proposition. Now the identifications in (i) and (ii) are obtained as a simple consequence of the computation rule for coproducts.

We are now ready to finish the proof of Theorem 13.5.1.

Proof of Theorem 13.5.1 Using \tilde{p}_0 and \tilde{p}_S , we obtain by induction on n a function

$$\tilde{s}:\prod_{(n:\mathbb{N})}\tilde{P}(n)$$

satisfying the computation rules

$$\tilde{s}(0) \doteq \tilde{p}_0$$

 $\tilde{s}(n+1) \doteq \tilde{p}_s(n, \tilde{s}(n)).$

Now we define

$$\operatorname{strong-ind}_{\mathbb{N}}(p_0, p_S, n) \coloneqq \tilde{s}(n, n, \operatorname{refl-leq}_{\mathbb{N}}(n)),$$

where $\operatorname{refl-leq}_{\mathbb{N}}(n) : n \leq n$ is the proof of reflexivity of \leq .

It remains to show that strong-ind $_{\mathbb{N}}$ satisfies the computation rules of the strong induction principle. The identification that computes strong-ind $_{\mathbb{N}}$ at 0 is easy to obtain, because we have the judgmental equalities

$$\begin{split} \mathsf{strong\text{-}ind}_{\mathbb{N}}(p_0, p_S, 0) &\doteq \tilde{s}(0, 0, \mathsf{refl\text{-}leq}_{\mathbb{N}}(0)) \\ &\doteq \tilde{p}_0(0, \mathsf{refl\text{-}leq}_{\mathbb{N}}(0)) \\ &\doteq p_0. \end{split}$$

To construct the identification that computes strong-ind $_{\mathbb{N}}$ at a successor, we start by a similar computation:

$$\begin{aligned} \mathsf{strong\text{-}ind}_{\mathbb{N}}(p_0, p_S, n+1) &\doteq \tilde{s}(n+1, n+1, \mathsf{refl\text{-}leq}_{\mathbb{N}}(n+1)) \\ &\doteq \tilde{p}_S(n, \tilde{s}(n), n+1, \mathsf{refl\text{-}leq}_{\mathbb{N}}(n+1)) \\ &= p_S(n, \tilde{s}(n)). \end{aligned}$$

The last identification is obtained from Lemma 13.5.3 (ii). Therefore we see that, in order to show that

$$p_S(n, \tilde{s}(n)) = p_S(n, (\lambda m, \lambda p, \tilde{s}(m, m, \text{refl-leq}_{\mathbb{N}}(m)))),$$

we need to prove that

$$\tilde{s}(n) = \lambda m. \lambda p. \tilde{s}(m, m, \text{refl-leq}_{\mathbb{N}}(m)).$$

Here we apply function extensionality, so it suffices to show that

$$\tilde{s}(n, m, p) = \tilde{s}(m, m, \text{refl-leq}_{\mathbb{N}}(m))$$

for every $m : \mathbb{N}$ and $p : m \le n$. We proceed by induction on $n : \mathbb{N}$. The base case is trivial. For the inductive step, we note that

$$\tilde{s}(n+1,m,p) = \tilde{p}_{S}(n,\tilde{s}(n),m,p) = \begin{cases} \tilde{s}(n,m,p) & \text{if } m \leq n \\ p_{S}(n,\tilde{s}(n)) & \text{if } m = n+1. \end{cases}$$

Therefore it follows by the inductive hypothesis that

$$\tilde{s}(n+1,m,p) = \tilde{s}(m,m,\text{refl-leq}_{\mathbb{N}}(m))$$

if $m \le n$ holds. In the remaining case, where m = n + 1, note that we have

$$\tilde{s}(n+1, n+1, \text{refl-leq}_{\mathbb{N}}(n+1)) = \tilde{p}_{S}(n, \tilde{s}(n), n+1, \text{refl-leq}_{\mathbb{N}}(n+1))$$

= $p_{S}(n, \tilde{s}(n))$.

Therefore we see that we also have an identification

$$\tilde{s}(n+1,m,p) = \tilde{s}(m,m,\text{refl-leq}_{\mathbb{N}}(m))$$

when m = n + 1. This completes the proof of the computation rules for the strong induction principle of \mathbb{N} .

Exercises

13.1 Show that the functions

$$\begin{split} &\text{inv-htpy}: (f\sim g) \to (g\sim f)\\ &\text{concat-htpy}(H): (g\sim h) \to (f\sim h)\\ &\text{concat-htpy'}(K): (f\sim g) \to (f\sim h) \end{split}$$

are equivalences for every f, g, h: $\prod_{(x:A)} B(x)$. Here, concat-htpy'(K) is the function defined by $H \mapsto H \cdot K$.

- 13.2 Characterize the identity types of the following types:
 - (a) The type $\sum_{(h:A\to B)} h(a) = b$ of **pointed maps**, where a:A and b:B are given.
 - (b) The type $\sum_{(h:A\to B)} f \sim g \circ h$ of commuting triangles

$$A \xrightarrow{h} B$$

$$f \searrow g$$

$$X,$$

where $f: A \to X$ and $g: B \to X$ are given.

(c) The type $\sum_{(h:X\to Y)} h \circ f \sim g$ of commuting triangles

where $f: A \to X$ and $g: A \to Y$ are given.

(d) The type $\sum_{(i:A\to X)} \sum_{(j:B\to Y)} j \circ f \sim g \circ i$ of commuting squares

$$\begin{array}{ccc}
A & \xrightarrow{i} & X \\
f \downarrow & & \downarrow g \\
B & \xrightarrow{j} & Y,
\end{array}$$

where $f: A \rightarrow B$ and $g: X \rightarrow Y$ are given.

- 13.3 (a) Show that for any type A the type is-contr(A) is a proposition.
 - (b) Show that for any type A and any $k \ge -2$, the type is-trunc $_k(A)$ is a proposition.

13.4 Let $f : A \rightarrow B$ be a function.

- (a) Show that if f is an equivalence, then the type $\sum_{(g:B\to A)} f \circ g \sim \mathrm{id}$ of sections of f is contractible.
- (b) Show that if f is an equivalence, then the type $\sum_{(h:B\to A)} h \circ f \sim \mathrm{id}$ of retractions of f is contractible.
- (c) Show that is-equiv(f) is a proposition.
- (d) Show that for any two equivalences $e, e': A \simeq B$, the canonical map

$$(e=e') \to (e \sim e')$$

is an equivalence.

- (e) Show that the type $A \simeq B$ is a k-type if both A and B are k-types.
- 13.5 (a) Show that is-path-split(f) and is-coh-invertible(f) are propositions for any map $f: A \to B$. Conclude that we have equivalences

$$is-equiv(f) \simeq is-path-split(f) \simeq is-coh-invertible(f)$$
.

(b) Construct for any type *A* an equivalence

has-inverse(
$$id_A$$
) \simeq ($id_A \sim id_A$).

Note: We will use this fact in Exercise 22.5 to show that there are types for which has-inverse(id_A) \neq is-equiv(id_A).

- 13.6 Consider a type *A*. Show that the following are equivalent:
 - (i) The type *A* is empty.
 - (ii) The type $\prod_{(x:A)} P(x)$ is contractible for any family P of types over A. This property is the **dependent universal property of an empty type**.
 - (iii) The type $A \to X$ is contractible for any type X. This property is the **universal property of an empty type**.
- 13.7 Consider a type *A*. Show that the following are equivalent:
 - (i) The type *A* is contractible.
 - (ii) The type A comes equipped with a point a:A, and the map

$$\left(\prod_{(x:A)} P(x)\right) \to P(a)$$

given by $f \mapsto f(a)$ is an equivalence for any type family P over A. This property is the **dependent universal property of a contractible type**.

(iii) The type A comes equipped with a point a:A, and the map

$$(A \to X) \to X$$

given by $f \mapsto f(a)$ is an equivalence for any type X. This property is the **universal property of a contractible type**.

(iv) The type A comes equipped with a point a:A, and the map

$$(A \to A) \to A$$

given by $f \mapsto f(a)$ is an equivalence.

(v) The map

$$X \to (A \to X)$$

given by $x \mapsto \lambda y$. x is an equivalence for any type X.

(vi) The map

$$A \to (A \to A)$$

given by $x \mapsto \lambda y$. x is an equivalence.

13.8 Consider two types *A* and *B*. Show that the map

$$\left(\prod_{(z:A+B)}P(z)\right) \to \left(\prod_{(x:A)}P(\mathsf{inl}(x))\right) \times \left(\prod_{(y:B)}P(\mathsf{inr}(b))\right)$$

given by $f \mapsto (f \circ \mathsf{inl}, f \circ \mathsf{inr})$ is an equivalence for any type family P over A + B. This property is the **dependent universal property of the coproduct of** A **and** B. Conclude that the map

$$(A + B \rightarrow X) \rightarrow (A \rightarrow X) \times (B \rightarrow X)$$

given by $f \mapsto (f \circ \mathsf{inl}, f \circ \mathsf{inr})$ is an equivalence for any type X. This latter property is the **universal property of the coproduct of** A **and** B.

- 13.9 Consider a type A equipped with an element a: A and consider a type family B over A equipped with an element b: B(a). Show that the following are equivalent:
 - (i) The map

$$\operatorname{ev}_b: \left(\prod_{(x:A)} B(x) \to C(x)\right) \to C(a)$$

given by $ev_b(h) := h(a, b)$ is an equivalence for any type family C over A.

(ii) The map

$$h: \prod_{(x:A)} (a=x) \to B(x)$$

given by h(a, refl) := b is an equivalence.

13.10 Prove the **universal property of** \mathbb{N} : For any type X equipped with x: X and $f: X \to X$, the type

$$\sum_{(h:\mathbb{N}\to X)} (h(0_{\mathbb{N}}) = x) \times (h \circ \mathsf{succ}_{\mathbb{N}} \sim f \circ h)$$

is contractible.

13.11 Show that $\mathbb N$ satisfies **ordinal induction**, i.e., construct for any type family P over $\mathbb N$ a function ord-ind $\mathbb N$ of type

$$\left(\prod_{(k:\mathbb{N})} \left(\prod_{(m:\mathbb{N})} (m < k) \to P(m)\right) \to P(k)\right) \to \prod_{(n:\mathbb{N})} P(n).$$

Moreover, prove that

$$\operatorname{ord-ind}_{\mathbb{N}}(h, n) = h(n, \lambda m, \lambda p, \operatorname{ord-ind}_{\mathbb{N}}(h, m))$$

for any $n : \mathbb{N}$ and any $h : \prod_{(k:\mathbb{N})} \left(\prod_{(m:\mathbb{N})} (m < k) \to P(m) \right) \to P(k)$.

13.12 (a) Consider a family of k-truncated maps $f_i: A_i \to B_i$ indexed by i: I. Show that the map

$$\lambda h. \lambda i. f_i(h(i)) : \left(\prod_{(i:I)} A_i\right) \to \left(\prod_{(i:I)} B_i\right)$$

is also *k*-truncated.

(b) Consider an equivalence $e: I \simeq J$, and a family of equivalences $f_i: A_i \simeq B_{e(i)}$ indexed by i: I, where A is a family of types indexed by I and B family of types indexed by J. Show that the map

$$\lambda h. \lambda j. f_{e^{-1}(j)}(h(e^{-1}(j))) : \left(\prod_{(i:I)} A_i\right) \to \left(\prod_{(j:J)} B_j\right)$$

is an equivalence.

- (c) Consider a family of maps $f_i : A_i \rightarrow B_i$ indexed by i : I. Show that the following are equivalent:
 - (i) Each f_i is k-truncated.
 - (ii) For every map $\alpha: X \to I$, the map

$$\lambda h. \lambda x. f_{\alpha(x)}(h(x)) : \left(\prod_{(x:X)} A_{\alpha(x)}\right) \to \left(\prod_{(x:X)} B_{\alpha(x)}\right)$$

is k-truncated.

- (d) Show that for any map $f : A \rightarrow B$ the following are equivalent:
 - (i) The map f is k-truncated.
 - (ii) For every type *X*, the postcomposition function

$$f \circ -: (X \to A) \to (X \to B)$$

is *k*-truncated.

In particular, f is an equivalence if and only if $f \circ -$ is an equivalence, and f is an embedding if and only if $f \circ -$ is an embedding.

13.13 Show that Π -types distribute over coproducts, i.e., construct for any type X and any two families A and B over X an equivalence from the type $\prod_{(x:X)} A(x) + B(x)$ to the type

$$\sum_{(f:X\to \operatorname{Fin}_2)} \left(\prod_{(x:X)} A(x)^{f(x)=0}\right) \times \left(\prod_{(x:X)} B(x)^{f(x)=1}\right).$$

13.14 Consider a commuting triangle

$$A \xrightarrow{h} B$$

$$f \times g$$

$$X$$

with $H : f \sim g \circ h$.

- (a) Show that if h has a section, then sec(g) is a retract of sec(f).
- (b) Show that if g has a retraction, then retr(h) is a retract of sec(f).
- 13.15 For any two maps $f:A\to X$ and $g:B\to X$, define the type of **morphisms from** f **to** g **over** X by

$$hom_X(f,g) := \sum_{(h:A \to B)} f \sim g \circ h.$$

In other words, the type $hom_X(f,g)$ is the type of maps $h:A\to B$ equipped with a homotopy witnessing that the triangle

$$A \xrightarrow{h} B$$

$$f \searrow g$$

$$X$$

commutes.

(a) Consider a family *P* of types over *X*. Show that the map

$$\left(\prod_{(x:X)}\mathsf{fib}_f(x) \to P(x)\right) \to \left(\prod_{(a:A)} P(f(a))\right)$$

given by $h \mapsto h_{f(a)}(a, \text{refl}_{f(a)})$ is an equivalence.

(b) Construct three equivalences α , β , and γ as shown in the following diagram, and show that this triangle commutes:

$$(\prod_{(x:X)}\operatorname{fib}_f(x) \to \operatorname{fib}_g(x)) \xrightarrow{\gamma} \prod_{(a:A)}\operatorname{fib}_g(f(a)).$$

Given a morphism (h, H): $hom_X(f, g)$ over X, we also say that $\alpha(h, H)$ is its **action on fibers**.

- (c) Given (h, H): hom $_X(f, g)$, show that the following are equivalent:
 - (i) The map $h: A \rightarrow B$ is an equivalence.
 - (ii) The action on fibers

$$\alpha(h, H) : \prod_{(x:X)} \mathsf{fib}_f(x) \to \mathsf{fib}_g(x)$$

is a family of equivalences.

(iii) The precomposition function

$$-\circ (h,H): \mathsf{hom}_X(g,i) \to \mathsf{hom}_X(f,i)$$

given by $(k, K) \circ (h, H) := (k \circ h, H \cdot (K \cdot h))$ is an equivalence for each map $i : C \to X$.

Conclude that the type $\sum_{(h:A \simeq B)} f \sim g \circ h$ is equivalent to the type of families of equivalences

$$\prod_{(x:X)} \mathsf{fib}_f(x) \simeq \mathsf{fib}_g(x).$$

13.16 Let A and B be sets. Show that type $A \simeq B$ of equivalences from A to B is equivalent to the type $A \cong B$ of **isomorphisms** from A to B, i.e., the type of quadruples (f, g, H, K) consisting of

$$f: A \to B$$

$$g: B \to A$$

$$H: f \circ g = id_B$$

$$K: g \circ f = id_A.$$

13.17 Suppose that $A: I \to \mathcal{U}$ is a type family over a set I with decidable equality. Show that

$$\left(\prod_{(i:I)} \text{is-contr}(A_i)\right) \leftrightarrow \text{is-contr}\left(\prod_{(i:I)} A_i\right).$$

13.18 (Shulman) Consider a section-retraction pair

$$A \xrightarrow{i} X \xrightarrow{r} A$$

with $H: r \circ i \sim \operatorname{id}$ and define $f := i \circ r$. Construct an equivalence

$$A \simeq \sum_{(x:\mathbb{N} \to X)} \prod_{(n:\mathbb{N})} f(x_{n+1}) = x_n.$$

14 Propositional truncations

It is common in mathematics to express the property that a certain type of objects is inhabited, without imposing extra structure on those objects. For example, when we assert the property that a set is finite, then we only claim that there exists a bijection to a standard finite set $\{0, \ldots, n-1\}$ for some n, not that the set is equipped with such a bijection. There is indeed a conceptual difference between a finite set and a set equipped with a bijection to a standard finite set. The latter concept is that of a finite *totally ordered* set. This difference is due to the fact that finiteness is a property, whereas there may be many different bijections to a standard finite set.

A similar observation can be made in the case of the image of a map. Note that being in the image of a given map $f:A\to B$ is a property. When we claim that b:B is in the image of f, then we only claim that the type of a:A such that f(a)=b is inhabited. On the other hand, we saw in Exercise 10.8 that the type of b:B equipped with an a:A such that f(a)=b is equivalent to the type A, i.e., we have an equivalence

$$A \simeq \sum_{(b:B)} \sum_{(a:A)} f(a) = b.$$

Something is clearly off here, because the type A is often not a subtype of the type B, while we would expect the image of f to be a subtype of B. Therefore we see that the type $\sum_{(a:A)} f(a) = b$ does not quite capture the concept of b being in the image of f. The difference is again due to the fact that $\mathsf{fib}_f(b)$ is often not a proposition, whereas we are looking to express the proposition that the preimage of f at b is inhabited.

To correctly capture the concepts of finiteness and the image of a map in type theory, and many further mathematical concepts, we need a way to assert the *proposition* that a type is inhabited. The proposition that a type A is inhabited is called the propositional truncation of A.

14.1 The universal property of propositional truncations

The propositional truncation of a type A is a proposition ||A|| equipped with a map

$$\eta: A \to ||A||$$
.

This map ensures that if we have an element a:A, then the proposition ||A|| that A is inhabited holds. The complete specification of the propositional

truncation includes the universal property of the map η . In this section we will specify in full generality when a map $f:A\to P$ into a proposition P is a propositional truncation.

Definition 14.1.1 Let A be a type, and let $f: A \rightarrow P$ be a map into a proposition P. We say that f is a propositional truncation of A if for every proposition Q, the precomposition map

$$-\circ f:(P\to Q)\to (A\to Q)$$

is an equivalence. This property of f is called the **universal property of the propositional truncation of** A.

Remark 14.1.2 Using the fact that equivalences are maps that have contractible fibers, we can reformulate the universal property of the propositional truncation. Note that the fiber of the precomposition map $- \circ f : (P \to Q) \to (A \to Q)$ at a map $g : A \to Q$ is the type.

$$\textstyle\sum_{(h:P\to Q)}h\circ f=g$$

Therefore we see that if f satisfies the universal property of the propositional truncation, then these fibers are contractible. In other words, for each map $g:A\to Q$ into a proposition Q there is a unique map $h:P\to Q$ for which $h\circ f=g$. We also say that every map $g:A\to Q$ into a proposition Q extends uniquely along f, as indicated in the diagram

Remark 14.1.3 For any two propositions P and P', a map $f: P \to P'$ is an equivalence if and only if there is a function $g: P' \to P$. To see this, simply note that any such function g is an inverse of f, because any two elements in P and any two elements in P' are equal.

Note that the type $X \to Q$ is a proposition, for any type X and any proposition Q. Using the previous observation, it therefore follows that the map $(P \to Q) \to (A \to Q)$ is an equivalence as soon as there is a map in the converse direction. In other words, to prove that a map $f: A \to P$ into a proposition P satisfies the universal property of the propositional truncation of A, it suffices to construct a function

$$(A \to Q) \to (P \to Q)$$

for every proposition Q.

In the following proposition we show that the propositional truncation of a type *A* is uniquely determined up to equivalence, if it exists. In other words, any two propositional truncations of a type *A* must be equivalent.

Proposition 14.1.4 *Let A be a type, and consider two maps*

$$f: A \to P$$
 and $f': A \to P'$

into two propositions P and P'. If any two of the following three assertions hold, so does the third:

- (i) The map f is a propositional truncation of A.
- (ii) The map f' is a propositional truncation of A.
- (iii) There is a (unique) equivalence $P \simeq P'$.

Proof We first show that (i) and (ii) together imply (iii). If f and f' are both propositional truncations of A, then we have maps $P \to P'$ and $P' \to P$ by the universal properties of f and f'. Since P and P' are both propositions, it follows that $P \simeq P'$. For the uniqueness claim, note that the type $P \simeq P'$ is itself a proposition.

Finally we show that (iii) implies that (i) holds if and only if (ii) holds. Suppose we have an equivalence $P \simeq P'$, let Q be an arbitrary proposition, and consider the triangle

$$(A \to Q)$$

$$(P \to Q) \longleftrightarrow (P' \to Q),$$

where the fact that $(P \to Q) \leftrightarrow (P' \to Q)$ holds follows from the assumption that P is equivalent to P'. We see from this triangle that

$$\Big((A \to Q) \to (P \to Q)\Big) \leftrightarrow \Big((A \to Q) \to (P' \to Q)\Big),$$

and this implies that (i) holds if and only if (ii) holds.

Remark 14.1.5 One might be tempted to think that a type is inhabited if and only if it is nonempty. Recall that a type A is nonempty if it satisfies the property $\neg\neg A$. Indeed, the type $\neg\neg A$ is a proposition, and it comes equipped with a map $A \rightarrow \neg\neg A$. It is therefore natural to wonder whether the map $A \rightarrow \neg\neg A$ satisfies the universal property of the propositional truncation.

Recall that we have shown in Exercise 4.3 (b) that any map $A \to \neg \neg Q$ extends to a map $\neg \neg A \to \neg \neg Q$, as indicated in the diagram

It follows that the natural map

$$(\neg \neg A \rightarrow \neg \neg Q) \rightarrow (A \rightarrow \neg \neg Q)$$

given by precomposition by $A \to \neg \neg A$ is an equivalence. However, this only gives us a universal property with respect to doubly negated propositions and there is no way to prove the more general universal property of the propositional truncation for the map $A \to \neg \neg A$. In fact, propositional truncations are not guaranteed to exist in Martin Löf's dependent type theory, the way it is set up in Chapter I. We will therefore add new rules to the type theory to ensure their existence.

14.2 Propositional truncations as higher inductive types

We have given a specification of the propositional truncation of a type A, and we have seen that this specification by a universal property determines the propositional truncation up to equivalence if it exists. However, the propositional truncation is not guaranteed to exist, so we will add new rules to the type theory that ensure that any type has a propositional truncation. We do this by presenting the propositional truncation of a type A as a higher inductive type. The propositional truncation $\|A\|$ of a type A was one of the first examples of a higher inductive type, along with the circle, which we will discuss in Sections 21 and 22.

The idea of higher inductive types is similar to the idea of ordinary inductive types, with the added feature that constructors of higher inductive types can also be used to generate *identifications*. In other words, higher inductive types may be specified by two kinds of constructors:

- (i) The *point constructors* are used to generate elements of the higher inductive types.
- (ii) The *path constructors* are used to generate identifications between elements of the higher inductive type.

The induction principle of the higher inductive type then tells us how to construct sections of families over it. The rules for higher inductive types therefore come in four sets, just as the rules for ordinary inductive types in Section 4: the formation rule, the constructors, the induction principle, and the computation rules.

The formation rules and the constructors

The formation rule of the propositional truncation postulates that for every type A we can form the propositional truncation of A. The formation rule is therefore as follows:

$$\frac{\Gamma \vdash A \text{ type}}{\Gamma \vdash ||A|| \text{ type.}}$$

Furthermore, we will assume that all universes are closed under propositional truncations. In other words, for any universe $\mathcal U$ we will assume the rules

$$\overline{X : \mathcal{U} \vdash ||X||^* : \mathcal{U}}$$
 $\overline{X : \mathcal{U} \vdash \mathcal{T}(||X||^*) \doteq ||\mathcal{T}(X)|| \text{ type}}$

The constructors of a (higher) inductive type tell what structure the type comes equipped with. In the case of a higher inductive type there may be point constructors and path constructors. The point constructors generate elements of the higher inductive type, and the path constructors generate identifications between those elements. In the case of the propositional truncation, there is one point constructor and one path constructor:

$$\eta: A \to ||A||$$

$$\alpha: \prod_{(x,y:||A||)} x = y.$$

The point constructor η is sometimes called the **unit** of the propositional truncation. It gives us that any element of A also generates an element of $\|A\|$. The path constructor α simply identifies any two elements of $\|A\|$. Therefore it follows immediately that $\|A\|$ is a proposition.

Lemma 14.2.1 For any type
$$A$$
, the type $||A||$ is a proposition.

The induction principle and computation rules

The induction principle for the propositional truncation tells us how to construct dependent functions

$$h: \prod_{(t:||A||)} Q(t).$$

The induction principle will imply that such a dependent function h is entirely determined by its behavior on the constructors of ||A||. The type ||A|| has two constructors: a point constructor η and a path constructor α , so we have two cases to consider:

(i) Applying h to points of the form $\eta(a)$ gives us a dependent function

$$h \circ \eta : \prod_{(a:A)} Q(\eta(a)).$$

The induction principle of ||A|| has therefore the requirement that we can construct

$$f:\prod_{(a:A)}Q(\eta(a))$$

(ii) To apply h to the paths $\alpha(x, y)$, we need to use the dependent action on paths from Definition 5.4.2. For each x, y : ||A|| we obtain an identification

$$\operatorname{apd}_h(\alpha(x,y)) : \operatorname{tr}_Q(\alpha(x,y),h(x)) = h(y)$$

in the type Q(y). Note, however, that h(x) and h(y) are not determined by our choice of $f: \prod_{(a:A)} Q(\eta(a))$. The second requirement of the induction principle of $\|A\|$ is therefore that, no matter what values h takes, they must always be related via the dependent action on paths of h. This second requirement is therefore that

$$\operatorname{tr}_P(\alpha(x,y),u)=v$$

for any u : Q(x) and v : Q(y).

Definition 14.2.2 The **induction principle** of the propositional truncation ||A|| of A asserts that for any family Q of types over ||A||, if we have

$$f:\prod_{(a:A)}Q(\eta(a))$$

and if we can construct identifications

$$tr_O(\alpha(x, y), u) = v$$

for any u: Q(x), v: Q(y) and any x, y: ||A||, then we obtain a dependent function

$$h: \prod_{(t:||A||)} Q(t)$$

equipped with a homotopy $h \circ \eta \sim f$.

Remark 14.2.3 In fact, a family Q over ||A|| satisfies the second requirement in the induction principle of the propositional truncation if and only if Q is a family of propositions. To see this, simply note that transporting along $\alpha(x, y)$ is an embedding. Therefore we have

$$(\operatorname{tr}_{\mathcal{Q}}(\alpha(x,y),u) = \operatorname{tr}_{\mathcal{Q}}(\alpha(x,y),v)) \simeq (u=v)$$

for any u, v : Q(x). By assumption, there is an identification on the left hand side, so any two elements u and v in Q(x) are equal.

Since the induction principle of the propositional truncation is only applicable to families of propositions over ||A||, it also follows that there are no interesting computation rules to state: any identification in a proposition just holds.

The universal property

We have now completed the description of the propositional truncation as a higher inductive type, so it is time to show that it meets the specification we gave for the propositional truncations. In other words, we have to show that the map $\eta: A \to \|A\|$ satisfies the universal property of the propositional truncation.

Theorem 14.2.4 The map $\eta: A \to ||A||$ satisfies the universal property of the propositional truncation.

Proof In order to prove that $\eta: A \to ||A||$ satisfies the universal property of the propositional truncation of A, it suffices to construct a map

$$(A \to Q) \to (\|A\| \to Q)$$

for any proposition Q. Consider a map $f:A\to Q$. Then we will construct a function $\|A\|\to Q$ by the induction principle of the propositional truncation. We have to provide a function $A\to Q$, which we have assumed already, and we have to show that

$$\mathsf{tr}_{\lambda x.\,Q}(\alpha(x,y),u)=v.$$

for any u, v : Q and any x, y : ||A||. However, we have such identifications by the assumption that Q is a proposition, so the proof is complete.

One simple application of the universal property of the propositional truncation is that $\|-\|$ acts on functions in a functorial way.

Proposition 14.2.5 *There is a map*

$$||-||: (A \to B) \to (||A|| \to ||B||)$$

for any two types A and B, such that

$$\begin{aligned} &\|\mathrm{id}\| \sim \mathrm{id} \\ &\|g \circ f\| \sim \|g\| \circ \|f\|. \end{aligned}$$

Proof For any $f: A \to B$, the map $||f||: ||A|| \to ||B||$ is defined to be the unique extension

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ \eta \downarrow & & \downarrow \eta \\ \|A\| & \xrightarrow{-\frac{1}{\|f\|}} & \|B\|. \end{array}$$

To see that $\|-\|$ preserves identity maps and compositions, simply note that $\mathrm{id}_{\|A\|}$ is an extension of id_A , and that $\|g\| \circ \|f\|$ is an extension of $g \circ f$. Hence the homotopies are obtained by uniqueness.

14.3 Logic in type theory

In Section 7 we interpreted logic in type theory via the Curry-Howard correspondence, which stipulates that disjunction (\lor) is interpreted by coproducts and the existential quantifier (\exists) is interpreted by Σ -types. However, when the existential quantifier is interpreted by Σ -types, then it is not possible to express certain concepts correctly, such as finiteness of a type or being in the image a map, and therefore we will add a second interpretation of logic in type theory, where logical propositions are interpreted by type theoretic propositions, i.e., the types of truncation level $\neg 1$.

We have seen that the propositions are closed under cartesian products, implication, and dependent products indexed by arbitrary types. However, they are not closed under coproducts, and if P is a family of propositions over a type A, then it is not necessarily the case that $\sum_{(x:A)} P(x)$ is a proposition. We will therefore use propositional truncations to interpret disjunctions and existential quantifiers in type theory.

Definition 14.3.1 Given two propositions P and Q, we define their **disjunction**

$$P \vee Q := ||P + Q||$$
.

Proposition 14.3.2 Consider two propositions P and Q. Then the disjunction $P \lor Q$ comes equipped with maps $i: P \to P \lor Q$ and $j: Q \to P \lor Q$. Moreover, the proposition $P \lor Q$ satisfies the universal property of the disjunction: For any proposition P, we have

$$(P \lor Q \to R) \leftrightarrow ((P \to R) \times (Q \to R)).$$

Proof The maps i and j are defined by

$$i := \eta \circ \text{inl}$$

 $j := \eta \circ \text{inr.}$

Now consider the following composition of maps, for an arbitrary proposition *R*:

$$(P \vee Q \to R) \xrightarrow{-\circ \eta} (P + Q \to R) \xrightarrow{h \mapsto (h \circ \mathsf{inl}, h \circ \mathsf{inr})} (P \to R) \times (Q \to R).$$

The first map is an equivalence by the universal property of the propositional truncation, and the second map is an equivalence by the universal property of coproducts (Exercise 13.8).

Definition 14.3.3 Given a family P of propositions over a type A, we define the **existential quantification**

$$\exists_{(x:A)} P(x) \coloneqq \left\| \sum_{(x:A)} P(x) \right\|.$$

Proposition 14.3.4 Consider a family P of propositions over a type A. Then the existential quantification $\exists_{(x:A)}P(x)$ comes equipped with a dependent function

$$\prod_{(a:A)} (P(a) \to \exists_{(x:A)} P(x)).$$

Furthermore, the proposition $\exists_{(x:A)}P(x)$ satisfies the universal property of the existential quantification: For any proposition Q, we have

$$\left(\left(\exists_{(x:A)}P(x)\right)\to Q\right)\leftrightarrow\left(\prod_{(x:A)}P(x)\to Q\right).$$

Proof The dependent function $\varepsilon: \prod_{(a:A)} (P(a) \to \exists_{(x:A)} P(x))$ is given by $\varepsilon(a,p) := \eta(a,p)$. Now consider the following composition of maps

$$\left(\left(\exists_{(x:A)}P(x)\right)\to Q\right)\to \left(\left(\sum_{(x:A)}P(x)\right)\to Q\right)\to \left(\prod_{(x:A)}P(x)\to Q\right).$$

The first map in this composite is an equivalence by the universal property of the propositional truncation, and the second map is an equivalence by the universal property of Σ -types (Theorem 13.3.1).

In the following table we give an overview of the interpretation of the logical connectives using the propositions in type theory.

logical connective	interpretation in type theory
Т	1
\perp	Ø
$P \Rightarrow Q$	$P \to Q$
$P \wedge Q$	$P \times Q$
$P \vee Q$	P + Q
$P \Leftrightarrow Q$	$P \leftrightarrow Q$
$\exists_{(x:A)}P(x)$	$\left\ \sum_{(x:A)} P(x) \right\ $
$\forall_{(x:A)}P(x)$	$\prod_{(x:A)} P(x)$

14.4 Mapping propositional truncations into sets

The universal property of the propositional truncation only applies when we want to define a map into a proposition. However, in some situations we might want to map the propositional truncation into a type that is not a proposition. Here we will see what we might do in such a case.

One strategy, if we want to define a map $||A|| \to X$, is to find a type family P over X such that the type $\sum_{(x:X)} P(x)$ is a proposition. In that case, we may use the universal property of the propositional truncation to obtain a map $||A|| \to \sum_{(x:X)} P(x)$ from a map $A \to \sum_{(x:X)} P(x)$, and then we simply compose with the projection map.

Example 14.4.1 Consider a **decidable subtype** P of the natural numbers, i.e., a subtype $P : \mathbb{N} \to \mathsf{Prop}_{\mathcal{U}}$ such that each P(n) is decidable. We claim that there is a function

$$\left\| \sum_{(x:\mathbb{N})} P(x) \right\| \to \sum_{(x:\mathbb{N})} P(x).$$

Of course, we cannot directly use the universal property of the propositional

truncation here. However, there is at most one *minimal* natural number x in P. In other words, we claim that the type

$$\sum_{(x:\mathbb{N})} P(x) \times \text{is-lower-bound}_{P}(x) \tag{*}$$

is a proposition. To see this, note that the type is-lower-bound $_P(x)$ is a proposition. By the assumption that each P(x) is a proposition, it now follows that any two natural numbers x, y: $\mathbb N$ that are in P and that are both lower bounds of P are equal as elements in the type of Eq. (*) if and only if they are equal as natural numbers. Furthermore, since both x and y are lower bounds of P, it follows that $x \le y$ and $y \le x$, so indeed x = y holds.

By the observation that the type in Eq. (*) is a proposition, we may define a map

$$\left\|\sum_{(x:\mathbb{N})} P(x)\right\| \to \sum_{(x:\mathbb{N})} P(x) \times \text{is-lower-bound}_P(x)$$

by the universal property of the propositional truncation. A map

$$\sum_{(x:\mathbb{N})} P(x) \to \sum_{(x:\mathbb{N})} P(x) \times \text{is-lower-bound}_P(x)$$

was constructed in Theorem 8.3.2 using the decidability of *P*.

As a corollary of this observation, we observe that there is also a map

$$\left\| \sum_{(x:\mathsf{Fin}_k)} P(x) \right\| \to \sum_{(x:\mathsf{Fin}_k)} P(x)$$

for any decidable subtype P over Fin_k .

Remark 14.4.2 The function of type

$$\left\| \sum_{(x:\mathbb{N})} P(x) \right\| \to \sum_{(x:\mathbb{N})} P(x)$$

we constructed in Example 14.4.1 for decidable subtypes of \mathbb{N} is a rare case in which it is possible to obtain a function

$$||A|| \to A$$
.

We say that the type A satisfies the **principle of global choice** if there is such a function $||A|| \to A$. Using the univalence axiom, we will see in Corollary 17.5.3 that not every type satisfies the principle of global choice.

More generally, we may wish to define a map $||A|| \to B$ where the type B is a set. In this situation it is helpful to think of the propositional truncation of A as the quotient of the type A by the equivalence relation that relates every two elements of A with each other. Propositional truncations can therefore

also be characterized by the universal property of this quotient, which can be used to extend maps $f: A \to B$ to maps $||A|| \to B$ when the type B is a set. The idea is that a map $f: A \to B$ into a set B extends to a map $||A|| \to B$ if it satisfies f(x) = f(y) for all x, y: A.

Definition 14.4.3 A map $f : A \rightarrow B$ is said to be **weakly constant** if it comes equipped with an element of type

is-weakly-constant
$$(f) := \prod_{(x,y:A)} f(x) = f(y)$$
.

Remark 14.4.4 A constant map $A \to B$ is a map of the form $const_b$. A map $f: A \to B$ is therefore constant if comes equipped with an element b: B and a homotopy $f \sim const_b$. This is a stronger notion than the notion of weakly constant maps, which doesn't require there to be an element in B.

One of the differences between constant maps and weakly constant maps manifests itself as follows: A type *A* is contractible if and only if the identity map on *A* is constant, while a type *A* is a proposition if and only if the identity map on *A* is weakly constant.

Lemma 14.4.5 Consider a commuting triangle

$$\begin{array}{ccc}
A & & \\
\eta \downarrow & & \\
\|A\| & \xrightarrow{g} & B
\end{array}$$

where B is an arbitrary type. Then the map f is weakly constant.

Proof Since f is assumed to be homotopic to $g \circ \eta$, it suffices to show that $g \circ \eta$ is weakly constant. For any x, y : A, we have the identification $\alpha(x,y) : \eta(x) = \eta(y)$ in ||A||. Using the action on paths of g, we obtain the identification

$$\operatorname{ap}_{g}(\alpha(x,y)) : g(\eta(x)) = g(\eta(y))$$

in B.

We now show, in a theorem due to Kraus [9], that any weakly constant map $f: A \to B$ into a set B extends uniquely to a map $||A|| \to B$. We therefore conclude that, in order to define a map $||A|| \to B$ into a set B it suffices to define a map $f: A \to B$ and show that it is weakly constant.

Theorem 14.4.6 (Kraus) Let A be a type and let B be a set. Then the map

$$(\|A\| \to B) \to \sum_{(f:A \to B)} \prod_{(x,y:A)} f(x) = f(y)$$

given by $g \mapsto (g \circ \eta, \lambda x. \lambda y. ap_g(\alpha(x, y)))$ is an equivalence.

Proof Consider a map $f:A\to B$ equipped with $H:\prod_{(x,y:A)}f(x)=f(y)$. We first show that f extends in at most one way to a map $\|A\|\to B$. Let $g,h:\|A\|\to B$ be two maps equipped with homotopies $f\sim g\circ \eta$ and $f\sim h\circ \eta$. In order to construct a homotopy $g\sim h$, note that each identity type g(x)=h(x) is a proposition by the assumption that B is a set. We can therefore construct a homotopy $g\sim h$ by the induction principle of propositional truncations. By the induction principle, it suffices to construct a homotopy $g\circ \eta\sim h\circ \eta$, which we obtain from the homotopies $f\sim g\circ \eta$ and $f\sim h\circ \eta$.

Since we've already proven uniqueness, it remains to construct an extension of the map f. We first claim that the type

$$\sum_{(b:B)} \left\| \sum_{(x:A)} f(x) = b \right\|$$

is a proposition. To see this, consider two elements b and b' in this subtype of B. It suffices to show that b = b'. Since B is assumed to be a set, the identity type b = b' is a proposition. Therefore we may assume an element x : A equipped with p : f(x) = b and an element x' : A equipped with p' : f(x') = b'. Using the assumption that f is weakly constant, we obtain the identification

$$b \stackrel{p^{-1}}{=} f(x) \stackrel{H(x,x')}{=} f(x') \stackrel{p'}{=} b'.$$

Now we observe that the map $f: A \to B$ factors uniquely as follows

$$A \xrightarrow{f} \sum_{(b:B)} \left\| \sum_{(x:A)} f(x) = b \right\|$$

$$B.$$

Indeed, the map g is given by $x \mapsto (f(x), \eta(x, \text{refl}))$. Since the codomain of g is a proposition, we obtain via the universal property of the propositional truncation of A a unique map $h: ||A|| \to \sum_{(b:B)} ||\sum_{(x:A)} f(x)| = b||$ equipped

with a homotopy $g \sim h \circ \eta$. Now we obtain the map $\operatorname{pr}_1 \circ h : ||A|| \to B$ equipped with the concatenated homotopy

$$(\mathsf{pr}_1 \circ h) \circ \eta \doteq \mathsf{pr}_1 \circ (h \circ \eta) \sim \mathsf{pr}_1 \circ g \sim f.$$

Exercises

- 14.1 Let A be a type. Show that
 - (a) $|||A||| \leftrightarrow ||A||$.
 - (b) $\|\text{is-decidable}(A)\| \leftrightarrow \text{is-decidable}\|A\|$.
 - (c) is-decidable(A) \rightarrow ($||A|| \rightarrow A$).
 - (d) $\neg\neg ||A|| \leftrightarrow \neg\neg A$.
 - (e) $||A|| \vee ||B|| \leftrightarrow ||A + B||$.
 - (f) $\exists_{(x:A)} ||B(x)|| \leftrightarrow ||\sum_{(x:A)} B(x)||$.
 - (g) $\neg \neg (\|A\| \rightarrow A)$.
- 14.2 Show that the **mere equality** relation given by $x, y \mapsto ||x = y||$ is an equivalence relation on any type.
- 14.3 Consider two maps $f: A \to P$ and $g: B \to Q$ into propositions P and Q. Show that if both f and g are propositional truncations then the map $f \times g: A \times B \to P \times Q$ is also a propositional truncation. Conclude that

$$\|A\times B\|\simeq \|A\|\times \|B\|.$$

14.4 Consider a map $f: A \to P$ into a proposition P. We say that f satisfies the **dependent universal property of the propositional truncation** of A, if for any family Q of propositions over P, the precomposition function

$$-\circ f: \left(\prod_{(p:P)} Q(p)\right) \to \left(\prod_{(x:A)} Q(f(x))\right)$$

is an equivalence. Show that the following are equivalent:

- (i) The map f is a propositional truncation.
- (ii) The map f satisfies the dependent universal property of the propositional truncation.
- 14.5 Consider a map $f: A \rightarrow P$ into a proposition P.
 - (a) Show that if there is a map $g: P \to A$, then f is a propositional truncation. Conclude that for any type A equipped with a point a: A, the constant map

$$const_{+}: A \rightarrow 1$$

is a propositional truncation of *A*.

- (b) Show that if A is a proposition, then f is a propositional truncation if and only if f is an equivalence. Conclude that if A is a proposition, then the identity function id : $A \rightarrow A$ is a propositional truncation.
- 14.6 Consider a type A equipped with an element d: is-decidable(A).
 - (a) Define a function $f: A \to \sum_{(x:A)} \operatorname{inl}(x) = d$ and show that f is a propositional truncation of A.
 - (b) Consider the function π : is-decidable(A) \rightarrow Fin₂ defined by

$$\pi(\mathsf{inl}(x)) := 1$$
$$\pi(\mathsf{inr}(x)) := 0.$$

Define a function $g: A \rightarrow (\pi(d) = 1)$ and show that g is a propositional truncation of A.

14.7 Consider a family B of (k + 1)-truncated types over the propositional truncation ||A|| of a type A. Show that the map

$$\left(\prod_{(x:\|A\|)} B(x)\right) \to \left(\prod_{(x:A)} B(x)\right)$$

given by $f \mapsto f \circ \eta$ is a *k*-truncated map.

14.8 Consider a universe \mathcal{U} , let P_1 and P_2 be propositions in \mathcal{U} , and furthermore, let P be a family of propositions in \mathcal{U} over a type A in \mathcal{U} . Construct the following equivalences:

$$\begin{split} & \top \simeq \prod_{(Q:\mathsf{Prop}_{\mathcal{U}})} Q \to Q, \\ & \perp \simeq \prod_{(Q:\mathsf{Prop}_{\mathcal{U}})} Q, \\ & \|A\| \simeq \prod_{(Q:\mathsf{Prop}_{\mathcal{U}})} (A \to Q) \to Q, \\ & P_1 \lor P_2 \simeq \prod_{(Q:\mathsf{Prop}_{\mathcal{U}})} (P_1 \to Q) \to ((P_2 \to Q) \to Q), \\ & P_1 \land P_2 \simeq \prod_{(Q:\mathsf{Prop}_{\mathcal{U}})} (P_1 \to (P_2 \to Q)) \to Q, \\ & P_1 \Rightarrow P_2 \simeq \prod_{(Q:\mathsf{Prop}_{\mathcal{U}})} P_1 \to ((P_2 \to Q) \to Q), \\ & \neg A \simeq \prod_{(Q:\mathsf{Prop}_{\mathcal{U}})} A \to Q, \\ & \exists_{(x:A)} P(x) \simeq \prod_{(Q:\mathsf{Prop}_{\mathcal{U}})} \left(\prod_{(x:A)} P(x) \to Q\right) \to Q, \\ & \forall_{(x:A)} P(x) \simeq \prod_{(Q:\mathsf{Prop}_{\mathcal{U}})} \left(\prod_{(x:A)} P(x) \to Q\right) \to Q \end{split}$$

$$||a = x|| \simeq \prod_{(O:A \to \mathsf{Prop}_{q_i})} Q(a) \to Q(x).$$

These are the **impredicative encodings** of the logical operators. *Note:* It has the appearance that we could have defined ||A|| by its impredicative encoding. There is, however, a subtle issue if we take this as a definition: The map

$$A \to \prod_{(Q: \mathsf{Prop}_{q_I})} (A \to Q) \to Q$$

only satisfies the universal property of the propositional truncation with respect to propositions that are equivalent to propositions in \mathcal{U} .

14.9 In this exercise we introduce the **interval** as a higher inductive type \mathbb{I} , equipped with two point constructors and one path constructor

source, target :
$$\mathbb{I}$$
 path : source = target.

The induction principle of \mathbb{I} asserts that for any type family P over \mathbb{I} , if we have

$$u: P(\text{source})$$

 $v: P(\text{target})$
 $p: \text{tr}_P(\text{path}, u) = v,$

then there is a section $f: \prod_{(x:\mathbb{I})} P(x)$ equipped with identifications

$$\alpha : f(\text{source}) = u$$

 $\beta : f(\text{target}) = v$

and an identification γ witnessing that the square

$$\operatorname{tr}_P(\operatorname{path}, f(\operatorname{source})) \stackrel{\operatorname{apt}_{r_P(\operatorname{path})}(\alpha)}{=\!=\!=\!=\!=\!=} \operatorname{tr}_P(\operatorname{path}, u)$$
 $\operatorname{apd}_f(\operatorname{path}) \parallel \qquad \qquad \parallel^p$
 $f(\operatorname{target}) \stackrel{\beta}{=\!=\!=\!=} v$

commutes. Note that the constructors of $\ensuremath{\mathbb{I}}$ induce a map

$$\varepsilon: \left(\prod_{(x:\mathbb{I})} P(x)\right) \to \left(\sum_{(u:P(\mathsf{source}))} \sum_{(v:P(\mathsf{target}))} \mathsf{tr}_P(\mathsf{path}, u) = v\right).$$
 given by $f \mapsto (f(\mathsf{source}), f(\mathsf{target}), \mathsf{apd}_f(\mathsf{path})).$

(a) Characterize the identity types of the codomain of the map ε in the following way: Construct an equivalence from the type (u, v, q) = (u', v', q') to the type

$$\sum_{(\alpha: u=u')} \sum_{(\beta: v=v')} q \cdot \beta = \operatorname{ap}_{\operatorname{tr}_P(\operatorname{path})}(\alpha) \cdot q',$$

for any (u, v, q) and (u', v', q') in the codomain of ε .

- (b) Prove the dependent universal property of \mathbb{I} , i.e., show that the map ε is an equivalence.
- (c) Show that \mathbb{I} is contractible.

15 Image factorizations

The image of a map $f: A \to X$ can be thought of as the least subtype of X that contains all the values of f. More precisely, the image of f is an embedding $i: \operatorname{im}(f) \hookrightarrow X$ that fits in a commuting triangle

and satisfies the *universal property* of the image of f, which states that if a subtype $B \hookrightarrow X$ contains all the values of f, then it contains the image of f.

15.1 The image of a map

The universal property of the image

Recall from Exercise 13.15 that we made the following definition:

Definition 15.1.1 Let $f: A \to X$ and $g: B \to X$ be maps. A **morphism** from f to g over X consists of a map $h: A \to B$ equipped with a homotopy $H: f \sim g \circ h$ witnessing that the triangle

commutes. Thus, we define the type

$$hom_X(f,g) := \sum_{(h:A \to B)} f \sim g \circ h.$$

Composition of morphisms over *X* is defined by

$$(k, K) \circ (h, H) := (k \circ h, H \cdot (K \cdot h)).$$

Definition 15.1.2 Consider a commuting triangle

$$A \xrightarrow{q} I$$

$$f \xrightarrow{\chi} i$$

with $H: f \sim i \circ q$, where i is an embedding. We say that i satisfies the **universal property of the image of** f if the precomposition function

$$-\circ (q,H): \mathsf{hom}_X(i,m) \to \mathsf{hom}_X(f,m)$$

is an equivalence for every embedding $m: B \hookrightarrow X$.

Lemma 15.1.3 *For any* $f: A \to X$ *and any embedding* $m: B \to X$ *, the type* $hom_X(f, m)$ *is a proposition.*

Proof Recall from Exercise 13.15 that the type $hom_X(f, m)$ is equivalent to the type

$$\prod_{(a:A)} \mathsf{fib}_m(f(a)).$$

Furthermore, recall from Theorem 12.2.3 that a map is an embedding if and only if its fibers are propositions. Thus we see that the type $\prod_{(a:A)} \mathsf{fib}_m(f(a))$ is a product of propositions, hence it is a proposition by Theorem 13.1.5. \square

Proposition 15.1.4 Consider a commuting triangle

$$A \xrightarrow{q} I$$

$$f \xrightarrow{\chi} I$$

$$X$$

with $H: f \sim i \circ q$, where i is an embedding. Then the following are equivalent:

- (i) The embedding i satisfies the universal property of the image inclusion of f.
- (ii) For every embedding $m: B \to X$ there is a map

$$hom_X(f, m) \rightarrow hom_X(i, m)$$
.

Proof Since $hom_X(f, m)$ is a proposition for every embedding $m : B \to X$, the claim follows immediately by the observation made in Remark 14.1.2. \square

The existence of the image

The image of a map $f: A \to X$ can be defined using the propositional truncation.

Definition 15.1.5 For any map $f: A \to X$ we define the **image** of f to be the type

$$\operatorname{im}(f) \coloneqq \sum_{(x:X)} \|\operatorname{fib}_f(x)\|.$$

Furthermore, we define

(i) the image inclusion

$$i_f: \operatorname{im}(f) \to X$$

to be the projection pr_1 ,

(ii) the map

$$q_f: A \to \operatorname{im}(f)$$

to be the map given by $q_f(x) := (f(x), \eta(x, \text{refl}_{f(x)}))$, and

(iii) the homotopy I_f : $f \sim i_f \circ q_f$ witnessing that the triangle

$$A \xrightarrow{q_f} \operatorname{im}(f)$$

$$f \xrightarrow{X} i_f$$

commutes, to be given by $I_f(x) := \text{refl}_{f(x)}$.

Proposition 15.1.6 *The image inclusion* $i_f : \text{im}(f) \to X$ *of any map* $f : A \to X$ *is an embedding.*

Proof The claim follows directly by Corollary 12.2.4, because the type $\|\text{fib}_f(x)\|$ is a proposition for each x:X.

Theorem 15.1.7 *The image inclusion* $i_f : \text{im}(f) \to X$ *of any map* $f : A \to X$ *satisfies the universal property of the image inclusion of* f.

Proof Consider an embedding $m: B \hookrightarrow X$. Note that we have a commuting square

$$\begin{array}{cccc} \operatorname{hom}_X(i_f,m) & & \longrightarrow & \operatorname{hom}_X(f,m) \\ & & \downarrow & & \downarrow \\ \left(\prod_{(x:X)} \operatorname{fib}_{i_f}(x) & \to \operatorname{fib}_m(x)\right) & & \xrightarrow{h \mapsto \lambda x. \, h_x \circ \varphi_x} & \left(\prod_{(x:X)} \operatorname{fib}_f(x) & \to \operatorname{fib}_m(x)\right) \end{array}$$

in which all four types are propositions, and the vertical maps are equivalences. Therefore it suffices to construct a map

$$\left(\prod_{(x:X)}\mathsf{fib}_f(x)\to\mathsf{fib}_m(x)\right)\to\left(\prod_{(x:X)}\mathsf{fib}_{i_f}(x)\to\mathsf{fib}_m(x)\right)$$

The fiber $\mathsf{fib}_{i_f}(x)$ is equivalent to the propositional truncation $\|\mathsf{fib}_f(x)\|$ and the type $\mathsf{fib}_m(x)$ is a proposition by the assumption that m is an embedding. Therefore we obtain the desired map by the universal property of the propositional truncation.

The uniqueness of the image

We will now show that the universal property of the image implies that the image is determined uniquely up to equivalence.

Theorem 15.1.8 Let f be a map, and consider two commuting triangles

with $I: f \sim i \circ q$ and $I': f \sim i' \circ q'$, in which i and i' are assumed to be embeddings. Then, if any two of the following three properties hold, so does the third:

- (i) The embedding i satisfies the universal property of the image inclusion of f.
- (ii) The embedding i' satisfies the universal property of the image inclusion of f.
- (iii) The type of equivalences $e: B \simeq B'$ equipped with a homotopy witnessing that the triangle

commutes is contractible.

Proof First, we show that if (i) and (ii) hold, then (iii) holds. Note that the type $hom_X(i, i')$ is a proposition, since i' is assumed to be an embedding. Therefore it suffices to show that the unique map $h: B \to B'$ such that the triangle

$$B \xrightarrow{h} B'$$

$$X$$

$$X$$

commutes, is an equivalence. To see this, note that by Exercise 13.15 it suffices to show that the action on fibers

$$fib_i(x) \rightarrow fib_{i'}(x)$$

is an equivalence for each x: X. This follows from the universal property of i', since we similarly obtain a family of maps

$$fib_{i'}(x) \rightarrow fib_i(x)$$

indexed by x: X, and the types $fib_i(x)$ and $fib_{i'}(x)$ are propositions by the assumptions that i and i' are embeddings.

Now we will show that (iii) implies that (i) holds if and only if (ii) holds. We will assume a morphism (e, H): $hom_X(i, i')$ such that the map e is an equivalence. Furthermore, consider an embedding $m: C \to X$. Then the fact that (i) holds if and only if (ii) holds follows from the equivalence

$$(\mathsf{hom}_X(f,m) \to \mathsf{hom}_X(i,m)) \simeq (\mathsf{hom}_X(f,m) \to \mathsf{hom}_X(i',m)).$$

15.2 Surjective maps

A map $f: A \to B$ is surjective if for every b: B there is an *unspecified* element a: A that maps to b. We define this property using the propositional truncation.

Definition 15.2.1 A map $f: A \rightarrow B$ is said to be **surjective** if there is an element of type

is-surj
$$(f) := \prod_{(b:B)} \| \mathsf{fib}_f(b) \|$$
.

Example 15.2.2 Any equivalence is a surjective map, since its fibers are contractible. More generally, any map that has a section is surjective. Those are sometimes called **split epimorphisms**. Note that having a section is stronger than surjectivity, since in general we don't have a function $\|\operatorname{fib}_f(b)\| \to \operatorname{fib}_f(b)$.

In Exercise 14.4 we showed the dependent universal property of the propositional truncation: a map $f: A \to B$ into a proposition B satisfies the universal property of the propositional truncation if and only if for every family of propositions P over B, the precomposition map

$$-\circ f: \left(\prod_{(b:B)} P(b)\right) \to \left(\prod_{(a:A)} P(f(a))\right)$$

is an equivalence. In the following proposition we show that, if we omit the condition that B is a proposition, then f satisfies this dependent universal property if and only if f is surjective.

Proposition 15.2.3 *Consider a map* $f: A \to B$. *Then the following are equivalent:*

- (i) The map $f: A \to B$ is surjective.
- (ii) The map $f:A\to B$ satisfies the dependent universal property of a surjective map: For any family P of propositions over B, the precomposition map

$$-\circ f: \left(\prod_{(y:B)} P(y)\right) \to \left(\prod_{(x:A)} P(f(x))\right)$$

is an equivalence. In other words, any subtype of B that contains all the elements of the form f(x) contains all the elements of B.

(iii) For any $k \ge -2$, and for any family P of (k + 1)-truncated types over B, the precomposition map

$$-\circ f: \left(\prod_{(y:B)} P(y)\right) \to \left(\prod_{(x:A)} P(f(x))\right)$$

is a k-truncated map.

Proof To prove that (i) implies (ii), suppose first that f is surjective, and consider the commuting square

$$\left(\prod_{(y:B)} P(y) \right) \xrightarrow{-\circ f} \left(\prod_{(x:A)} P(f(x)) \right)$$

$$\left(\prod_{(y:B)} \|\mathsf{fib}_f(y)\| \to P(y) \right) \xrightarrow{h \mapsto h(-)\circ \eta} \left(\prod_{(y:B)} \mathsf{fib}_f(y) \to P(y) \right)$$

In this square, the bottom map is an equivalence by Exercise 13.12 and by the universal property of the propositional truncation of $fib_f(y)$. The map on the right is an equivalence by Exercise 13.15 (a). Furthermore, the map on the left is an equivalence by Exercises 13.7 and 13.12, because the type $||fib_f(y)||$ is contractible by the assumption that f is surjective. Therefore it follows that the top map is an equivalence, which completes the proof that (i) implies (ii).

The proof that (ii) implies (iii) is by induction on k. The base case holds by assumption. For the inductive step, it suffices by Theorem 12.4.7 to show that $\operatorname{ap}_{-\circ f}$ is k-truncated for any $g,h:\prod_{(y:B)}P(y)$. Notice that we have a commuting square

$$(g = h) \xrightarrow{\operatorname{ap}_{-\circ f}} (g \circ f = h \circ f)$$

$$\operatorname{htpy-eq} \downarrow \qquad \qquad \downarrow \operatorname{htpy-eq}$$

$$\prod_{(y:B)} g(y) = h(y) \xrightarrow{-\circ f} \prod_{(x:A)} g(f(x)) = h(f(x))$$

The vertical maps on the left and right are equivalences by function extensionality, and the bottom map is k-truncated by the inductive hypothesis. This implies that ap_{-of} is k-truncated.

To prove that (iii) implies (i), note that the assumption in (iii) implies that the precomposition function

$$-\circ f: \left(\prod_{(y:B)} \lVert \mathsf{fib}_f(y)\rVert\right) \to \left(\prod_{(x:A)} \lVert \mathsf{fib}_f(f(x))\rVert\right)$$

is an equivalence. Hence it suffices to construct an element of type $\|\text{fib}_f(f(x))\|$ for each x:A. This is easy, because we have

$$\eta(x, \mathsf{refl}_{f(x)}) : \|\mathsf{fib}_f(f(x))\|.$$

As a corollary we obtain that any surjective map into a proposition satisfies the universal property of the propositional truncation.

Corollary 15.2.4 For any map $f: A \to P$ into a proposition P, the following are equivalent:

- (i) The map f satisfies the universal property of the propositional truncation of A.
- (ii) The map f is surjective.

Using the characterization of surjective maps of Proposition 15.2.3, we can also give a new characterization of the image of a map.

Theorem 15.2.5 Consider a commuting triangle

$$A \xrightarrow{q} B$$

$$f \xrightarrow{X} m$$

in which m is an embedding. Then the following are equivalent:

- (i) The embedding m satisfies the universal property of the image inclusion of f.
- (ii) The map q is surjective.

Proof First assume that m satisfies the universal property of the image inclusion of f, and consider the composite function

$$\left(\sum_{(y:B)}\|\mathsf{fib}_q(y)\|\right) \stackrel{\mathsf{pr}_1}{\longrightarrow} B \stackrel{m}{\longrightarrow} X.$$

Note that $m \circ pr_1$ is a composition of embeddings, so it is an embedding. By the universal property of m there is a unique map h for which the triangle

$$B \xrightarrow[m]{h} \sum_{(y:B)} \|\mathsf{fib}_q(y)\|$$

commutes. Now note that $\mathsf{pr}_1 \circ h$ is a map such that $m \circ (\mathsf{pr}_1 \circ h) \sim m$. The identity function is another map for which we have $m \circ \mathsf{id} \sim m$, so it follows by uniqueness that $\mathsf{pr}_1 \circ h \sim \mathsf{id}$. In other words, the map h is a section of the projection map. Therefore we obtain by Corollary 13.2.3 a dependent function

$$\prod_{(b:B)} \| \mathsf{fib}_q(b) \|$$
,

showing that *q* is surjective.

For the converse, suppose that q is surjective. To prove that m satisfies the universal property of the image factorization of f, it suffices to construct a map

$$hom_X(f, m') \to hom_X(m, m'),$$

for any embedding $m': B' \to X$. To see that there is such an equivalence, we make the following calculation

$$hom_X(m, m') \simeq \prod_{(b:B)} fib_{m'}(m(b))$$
 (By Exercise 13.15)

$$\simeq \prod_{(a:A)} \mathsf{fib}_{m'}(m(q(a)))$$
 (By Proposition 15.2.3)
$$\simeq \prod_{(a:A)} \mathsf{fib}_{m'}(f(a))$$
 (By $f \sim m \circ q$)
$$\simeq \mathsf{hom}_X(f, m').$$
 (By Exercise 13.15)

Corollary 15.2.6 Every map factors uniquely as a surjective map followed by an embedding.

Proof Consider a map $f: A \rightarrow X$, and two factorizations

of f where m and m' are embeddings, and q and q' are surjective. Then both m and m' satisfy the universal property of the image factorization of f by Theorem 15.2.5. Now it follows by Theorem 15.1.8 that the type of (e, H): hom $_X(i, i')$ in which e is an equivalence, equipped with an identification

$$(e,H)\circ(q,I)=(q',I')$$

in $hom_X(f, i')$, is contractible.

15.3 Cantor's diagonal argument

Now that we have introduced surjective maps, we are in position to give Cantor's famous diagonal argument, which he used to show that there are infinite sets of different cardinality. The diagonal argument gives a proof that there is no surjective map from X to its power set $\mathcal{P}(X)$. The power set of a type X is of course defined with respect to a universe \mathcal{U} , as the type of families of propositions in \mathcal{U} indexed by X.

Definition 15.3.1 Consider a type X, and a universe \mathcal{U} . We define the \mathcal{U} -power set of X to be

$$\mathcal{P}_{\mathcal{U}}(X) := X \to \mathsf{Prop}_{\mathcal{U}}.$$

Theorem 15.3.2 For any type X and any universe U, there is no surjective function

$$f: X \to \mathcal{P}_{\mathcal{U}}(X)$$

Proof Consider a function $f: X \to (X \to \mathsf{Prop}_{\mathcal{U}})$, and suppose that f is surjective. Following Cantor's diagonalization argument, we define the subset $P: X \to \mathsf{Prop}_{\mathcal{U}}$ by

$$P(x) := \neg (f(x, x)).$$

Our goal is to reach a contradiction and f is assumed to be surjective. Therefore, it suffices to show that

$$\left\| \sum_{(x:X)} f(x) = P \right\| \to \emptyset.$$

The empty type is a proposition, so by the universal property of the propositional truncation it is equivalent to show that

$$\left(\sum_{(x:X)} f(x) = P\right) \to \emptyset.$$

Consider an element x: X equipped with an identification f(x) = P. Our goal is to construct an element of the empty type, i.e, to reach a contradiction. By the identification f(x) = P it follows that

$$f(x,y) \leftrightarrow P(y)$$

for all y: X. In particular, it follows that $f(x, x) \leftrightarrow P(x)$. However, since P(x) is defined as $\neg(f(x, x))$, we obtain that $f(x, x) \leftrightarrow \neg(f(x, x))$. By Exercise 4.3 (a) this gives us the desired contradiction.

Exercises

15.1 Consider a commuting triangle

$$A \xrightarrow{h} B$$

$$f \searrow g$$

$$X$$

where g is an embedding.

(a) Show that if there is a morphism

$$B \xrightarrow{k} A$$

$$X \xrightarrow{f}$$

over X, then g satisfies the universal property of the image of f.

- (b) Show that if *f* is an embedding, then *g* satisfies the universal property of *f* if and only if *h* is an equivalence.
- 15.2 (a) Show that for any proposition *P*, the constant map

$$const_{\star}: P \rightarrow 1$$

is an embedding. Use this fact to construct an equivalence

$$\left(\sum_{(A:\mathcal{U})} A \hookrightarrow \mathbf{1}\right) \simeq \mathsf{Prop}_{\mathcal{U}}.$$

- (b) Consider a map $f: A \rightarrow P$ into a proposition P. Show that the following are equivalent:
 - (i) The map f is a propositional truncation of A.
 - (ii) The constant map $P \to \mathbf{1}$ satisfies the universal property of the image of the constant map $A \to \mathbf{1}$.
- 15.3 Consider a map $f: A \rightarrow B$. Show that the following are equivalent:
 - (i) *f* is an equivalence.
 - (ii) *f* is both surjective and an embedding.
- 15.4 Consider a commuting triangle

with $H : f \sim g \circ h$.

- (a) Show that if f is surjective, then g is surjective.
- (b) Show that if both g and h are surjective, then f is surjective.
- (c) As a converse to Exercise 12.11, show that if f and h are k-truncated, then g is also k-truncated.
- 15.5 Prove **Lawvere's fixed point theorem**: For any two types A and B, if there is a surjective map $f: A \to B^A$, then for any $h: B \to B$ there exists an x: B such that h(x) = x, i.e., show that

$$\Big(\exists_{(f:A \to (A \to B))} \mathsf{is\text{-}surj}(f)\Big) \to \Big(\forall_{(h:B \to B)} \exists_{(b:B)} h(b) = b\Big).$$

16 Finite types

16.1 Counting in type theory

When someone counts the elements of a finite set A, they go through the elements of A one by one, at each stage keeping track of how many elements have been counted so far. This process results in the number |A| of elements of the set A, and moreover it gives a bijection from the standard finite set with |A| elements. In other words, to count the elements of A is to give an equivalence from one of the standard finite sets to the set A. We turn this into a definition.

Definition 16.1.1 For each type *A*, we define the type

$$\operatorname{count}(A) \coloneqq \sum_{(k:\mathbb{N})} (\operatorname{Fin}_k \simeq A).$$

The elements of count(A) are called **countings** of A. When we have (k, e): count(A), we also say that A has k elements.

Note that the type count(A) is often not a proposition. For instance, different equivalences of type $Fin_k \simeq Fin_k$ induce different elements of type $count(Fin_k)$.

Example 16.1.2 It follows immediately from the definition of countings that every standard finite type can be counted in a canonical way: For any $k : \mathbb{N}$ we have $(k, \mathsf{id}) : \mathsf{count}(\mathsf{Fin}_k)$. It also follows immediately from the definition of countings that types equipped with countings are closed under equivalences.

Example 16.1.3 Suppose A comes equipped with a counting (k, e): count(A). Then k = 0 if and only if A is empty. Indeed, the inverse of e is a map $e^{-1}: A \to \emptyset$. Conversely, if we have f: is-empty(A), then the map $f: A \to \emptyset$ is automatically an equivalence. This shows that $\operatorname{Fin}_k \cong \emptyset$, and a short argument by induction on k yields that k = 0.

Example 16.1.4 A type A has one element if and only if it is contractible. Indeed, the type Fin_1 is contractible, so it follows from the 3-for-2 property of contractible types (Exercise 10.2) that there is an equivalence $\mathsf{Fin}_1 \simeq A$ if and only if A is contractible.

Example 16.1.5 A proposition P comes equipped with a counting if and only if it is decidable. To see this, note that for any type X, if we have (k, e): count(X), then it follows that X is decidable. This is shown by induction on k. In the case where k = 0, it follows that X is empty, and hence that X is decidable. In

the case where k is a successor, the bijection e: Fin $_k \simeq X$ gives us the element $e(\star)$: X. Again we conclude that X is decidable.

Conversely, if P is decidable, then we can construct a counting of P by case analysis on $d: P + \neg P$. If P holds, then it is contractible and hence equivalent to Fin₁. If $\neg P$ holds, then P is equivalent to Fin₀.

Remark 16.1.6 We also note that any type A equipped with a counting $e : \operatorname{Fin}_k \simeq A$ has decidable equality. This follows from Proposition 8.1.8, where we showed that Fin_k has decidable equality, for any $k : \mathbb{N}$.

Theorem 16.1.7 We make the following claims about countings:

- (i) Consider two types A and B. The following are equivalent:
 - (a) Both A and B come equipped with a counting.
 - (b) The coproduct A + B comes equipped with a counting.
- (ii) Consider a type family B indexed by a type A. Consider the following three conditions:
 - (a) The type A comes equipped with a counting.
 - (b) The type B(x) comes equipped with a counting, for each x : A.
 - (c) The type $\sum_{(x:A)} B(x)$ comes equipped with a counting.
 - If (a) holds, then (b) holds if and only if (c) holds. Furthermore, if both (b) and
 - (c) hold and if B comes equipped with a section $f: \prod_{(x:A)} B(x)$, then (a) holds.

Consequently, if *P* is a subtype of a type *A* equipped with a counting, then we have

$$\operatorname{count}\Bigl(\textstyle\sum_{(x:A)} P(x)\Bigr) \leftrightarrow \textstyle\prod_{(x:A)} \operatorname{is-decidable}(P(x)).$$

Proof We will first prove the forward direction of (i). Then we will prove both claims in (ii), and we will prove the reverse direction of claim (i) last.

For the forward direction of claim (i), suppose we have equivalences $e: \operatorname{Fin}_k \simeq A$ and $f: \operatorname{Fin}_l \simeq B$. The equivalences e and f induce via Exercises 9.6 and 9.8 a composite equivalence

$$A + B \xrightarrow{\simeq} \operatorname{Fin}_k + \operatorname{Fin}_l \xrightarrow{\simeq} \operatorname{Fin}_{k+l}$$

from which we obtain an element of type count(A + B).

Next, we will prove the forward direction in the first claim of (ii), i.e., we will prove that if A comes equipped with an equivalence e: Fin $_k \simeq A$, and if B is a family of types over A equipped with

$$f:\prod_{(x:A)}\mathsf{count}(B(x)),$$

then the total space $\sum_{(x:A)} B(x)$ also has a counting. The proof is by induction on k. Note that in the base case, where k = 0, the type $\sum_{(x:A)} B(x)$ is empty, so it has a counting. For the inductive step, note Σ distributes from the right over coproducts. This gives an equivalence

$$\begin{split} \textstyle \sum_{(x:A)} & B(x) \simeq \sum_{(x:\mathsf{Fin}_{k+1})} B(e(x)) \\ & \simeq \left(\sum_{(x:\mathsf{Fin}_k)} B(e(\mathsf{inl}(x))) \right) + B(e(\mathsf{inr}(\bigstar))). \end{split}$$

The type $\sum_{(x:\text{Fin}_k)} B(e(\text{inl}(x)))$ has a counting by the inductive hypothesis, and the type $B(e(\text{inr}(\star)))$ has a counting by assumption. Therefore, it follows that the total space $\sum_{(x:A)} B(x)$ has a counting.

Now we will prove the converse direction of the first claim in (ii). Suppose that A comes equipped with $e: \operatorname{Fin}_k \simeq A$, and that $\sum_{(x:A)} B(x)$ comes equipped with $f: \operatorname{Fin}_l \simeq \sum_{(x:A)} B(x)$. By Example 16.1.5 it suffices to show that, for a: A, the type B(a) is a decidable subtype of $\sum_{(x:A)} B(x)$. Consider the map

$$i: B(a) \to \sum_{(x:A)} B(x)$$

given by $b \mapsto (a, b)$. For $(x, y) : \sum_{(x:A)} B(x)$, we have the equivalences

$$fib_{i}(x,y) \simeq \sum_{(b:B(a))} (a,b) = (x,y)$$

$$\simeq \sum_{(b:B(a))} \sum_{(p:a=x)} tr_{B}(p,b) = y$$

$$\simeq \sum_{(p:a=x)} fib_{tr_{B}(p)}(y)$$

$$\simeq a = x.$$

Here we used that $tr_B(p)$ is an equivalence, and therefore has contractible fibers. Now note that the type a = x is a decidable proposition by Remark 16.1.6.

Next, we will prove the second claim in (ii). Suppose that B is a family over A that comes equipped with a section $b:\prod_{(x:A)}B(x)$, and suppose that each B(x) has a counting, and that the total space $\sum_{(x:A)}B(x)$ has a counting. Then we have a map

$$g: A \to \sum_{(x:A)} B(x)$$

given by $a \mapsto (a, b(a))$. The fibers of g can be computed by the following equivalences:

$$fib_{g}(x,y) \simeq \sum_{(a:A)} (a,b(a)) = (x,y)$$
$$\simeq \sum_{(a:A)} \sum_{(v:a=x)} tr_{B}(p,b(a)) = y$$

$$\simeq \operatorname{tr}_B(p, b(x)) = y.$$

Note that the type $\operatorname{tr}_B(p, b(x)) = y$ is a decidable proposition by Remark 16.1.6. Now it follows by the forward direction of the first claim in (ii) that A has a counting.

It remains to prove the converse direction of (i). Note that the forward direction of the first claim in (ii) implies that countings on a type X induce countings on any decidable subtype of X. Note that both A and B are decidable subtypes of the coproduct A + B. Any counting of A + B therefore induces countings of A and of B.

Corollary 16.1.8 *Consider two types A and B. We make two claims:*

- (i) If both A and B come equipped with a counting, then the product $A \times B$ has a counting.
- (ii) If the product $A \times B$ comes equipped with a counting, then we have two functions

$$B \to \operatorname{count}(A)$$

 $A \to \operatorname{count}(B)$.

Proof The first claim follows from (ii)(a) in Theorem 16.1.7, and the second claim follows from (ii)(b) in Theorem 16.1.7. \Box

16.2 Double counting in type theory

In combinatorics, counting arguments often proceed by showing that two finite sets are isomorphic—or, in the language of type theory, by showing that two finite types are equivalent. The idea here is, of course, that when we count the elements of a type twice correctly, then both countings must result in the same number. However, this is something that we must prove before we can use it. In other words, we must show that

$$(\operatorname{Fin}_k \simeq \operatorname{Fin}_l) \to (k = l)$$

for any two natural numbers k and l. We will prove this claim as a consequence of the following general fact.

Proposition 16.2.1 For any two types X and Y, there is a map

$$(X + \mathbf{1} \simeq Y + \mathbf{1}) \rightarrow (X \simeq Y).$$

Proof We prove the claim in four steps. We will write i for inl : $X \to X + 1$ and also for inl : $Y \to Y + 1$, and we will write \star for inr(\star) : X + 1 and also for inr(\star) : Y + 1.

(i) We first show that for any equivalence $e: X + 1 \simeq Y + 1$ and any x: X equipped with an identification $p: e(i(x)) = \star$, that there is an element

$$star-value(e, x, p) : Y$$

equipped with an identification

$$\alpha : i(\text{star-value}(e, x, p)) = e(\star).$$

To see this, note that the map e is injective. The elements i(x) and \star are distinct, so it follows that the elements e(i(x)) and $e(\star)$ are distinct. In particular, we have $e(\star) \neq \star$. Therefore it follows that there is an element y: Y equipped with an identification $i(y) = e(\star)$.

(ii) Next, we construct for every equivalence $e: X + \mathbf{1} \simeq Y + \mathbf{1}$ a map $f: X \to Y$ equipped with identifications

$$\beta: \prod_{(y:Y)} (e(i(x)) = i(y)) \to (f(x) = y)$$
$$\gamma: \prod_{(y:e(i(x)) = \star)} f(x) = \text{star-value}(e, x, p).$$

In order to construct the map $f: X \to Y$, we first construct a dependent function

$$f': \prod_{(x:X)} \prod_{(u:Y+1)} ((e(i(x)) = u) \rightarrow Y).$$

This function is defined by pattern matching on u, by

$$f'(x, i(y), p) := y$$

 $f'(x, \star, p) := \text{star-value}(e, x, p)$

Then we define f(x) := f'(x, e(i(x)), refl). By the definition of f' it then follows that we have an identification

$$f(x) \doteq f'(x, e(i(x)), refl)$$
$$= f'(x, i(y), p)$$
$$\doteq y$$

for any y : Y and p : e(i(x)) = i(y), and that we have an identification

$$f(x) \doteq f'(x, e(i(x)), refl)$$

$$= f'(x, ★, p)$$

$$= star-value(e, x, p)$$

for any $p : e(i(x)) = \star$.

(iii) The inverse function $g: Y \to X$ is constructed in the same way as the function $f: X \to Y$, using the equivalence $e^{-1}: Y + \mathbf{1} \simeq X + \mathbf{1}$. This function comes equipped with

$$\delta: \prod_{(x:X)} (e^{-1}(i(y)) = i(x)) \to (g(y) = x)$$

$$\varepsilon: \prod_{(p:e^{-1}(i(y)) = \star} g(y) = \text{star-value}(e^{-1}, y, p).$$

(iv) It remains to show that f and g are inverse to each other. The proof that g is a retraction of f is similar to the proof that g is a section of f, so we will only prove the latter. In other words, we will construct an identification

$$f(g(y)) = y$$

for any y: Y. The proof is by case analysis on $(e^{-1}(i(y)) = \star) + (e^{-1}(i(y)) \neq \star)$. In the case where $p: e^{-1}(i(y)) = \star$, we have the identification

$$\varepsilon(p): g(y) = \text{star-value}(e^{-1}, y, p).$$

Furthermore, we have the identification

$$\gamma(q): f(g(y)) = \text{star-value}(e, g(y), q),$$

where $q : e(i(g(y))) = \star$ is the composite of the identifications

$$e(i(g(y))) = e(i(\text{star-value}(e^{-1}, y, p)))$$

= $e(e^{-1}(\star))$
= \star .

Using the identification $\gamma(q)$, we obtain

$$i(f(g(y))) = i(\text{star-value}(e, g(y), q))$$

$$= e(\star)$$

$$= e(e^{-1}(i(y)))$$

$$= i(y).$$

Since $i: Y \to Y + 1$ is injective, it follows that f(g(y)) = y.

Theorem 16.2.2 *For any two natural numbers k and l, there is a map*

$$(\operatorname{Fin}_k \simeq \operatorname{Fin}_l) \to (k = l).$$

Proof The proof is by induction on k and l. In the base case, where both k and l are zero, the claim is obvious. If k is zero and l is a successor, then we have 0: Fin_l . Any equivalence e: $\mathsf{Fin}_k \simeq \mathsf{Fin}_l$ now gives us the element

$$e^{-1}(0):\emptyset$$
,

which is of course absurd. Similarly, if k is a successor and l is zero, we obtain $e(0): \emptyset$, which is again absurd. If both k and l are a successor, then we have by Proposition 16.2.1 the composite

$$(\operatorname{Fin}_{k+1} \simeq \operatorname{Fin}_{l+1}) \longrightarrow (\operatorname{Fin}_k \simeq \operatorname{Fin}_l) \longrightarrow (k=l) \longrightarrow (k+1=l+1).$$

16.3 Finite types

The type of all finite types is the subtype of the base universe \mathcal{U}_0 consisting of all types X for which there exists an unspecified equivalence $\operatorname{Fin}_k \simeq X$ for some $k : \mathbb{N}$.

Definition 16.3.1 A type *X* is said to be **finite** if it comes equipped with an element of type

$$\text{is-finite}(X) := \left\| \sum_{(k:\mathbb{N})} \text{Fin}_k \simeq X \right\|$$

The type \mathbb{F} of all finite types is defined to be

$$\mathbb{F} := \sum_{(X:\mathcal{U}_0)} \text{is-finite}(X).$$

In other words, the type \mathbb{F} of finite types is the image of the map $Fin : \mathbb{N} \to \mathcal{U}_0$. We also define the type BS_k of k-element types by

$$BS_k := \sum_{(X:\mathcal{U}_0)} \| \mathsf{Fin}_k \simeq X \|.$$

Remark 16.3.2 It follows directly from the definition of finiteness that any type X equipped with a counting is finite. In particular, any Fin_k is finite. Furthermore, it follows that if X is equivalent to a finite type Y, then X is also finite. Indeed, we can use the functoriality of the propositional truncation to obtain a function

$$\left\| \sum_{(k:\mathbb{N})} \operatorname{Fin}_k \simeq Y \right\| \to \left\| \sum_{(k:\mathbb{N})} \operatorname{Fin}_k \simeq X \right\|$$

from a map $\left(\sum_{(k:\mathbb{N})}\operatorname{Fin}_k \simeq Y\right) \to \left(\sum_{(k:\mathbb{N})}\operatorname{Fin}_k \simeq X\right)$. Given an equivalence $e: X \simeq Y$, such a map is given as the map induced on total spaces from the family of maps $f \mapsto e^{-1} \circ f$.

Similarly, it follows that any finite type has decidable equality, and that every finite type is a set.

In the following proposition we will show that each finite type can be assigned a unique cardinality.

Theorem 16.3.3 For any type X, consider the type is-finite'(X) defined by

is-finite'(X) :=
$$\sum_{(k:\mathbb{N})} \| \operatorname{Fin}_k \simeq X \|$$
.

Then the type is-finite'(X) is a proposition, and there is an equivalence

$$is-finite(X) \leftrightarrow is-finite'(X)$$
.

If X is a finite type, then the unique number k such that $\|\operatorname{Fin}_k \simeq X\|$ is the cardinality of X. We write |X| for the cardinality of X.

Proof We first prove the claim that the type is-finite'(X) is a proposition. In other words, we need to show that any two natural numbers k and k' for which there are respective elements of the types $\|\operatorname{Fin}_k \simeq X\|$ and $\|\operatorname{Fin}_{k'} \simeq X\|$, can be identified.

Since the type of natural numbers is a set, the type k = k' is a proposition. Therefore, we may assume that we have equivalences $\operatorname{Fin}_k \simeq X$ and $\operatorname{Fin}_{k'} \simeq X$. Consequently, we have an equivalence $\operatorname{Fin}_k \simeq \operatorname{Fin}_{k'}$. Now it follows from Theorem 16.2.2 that k = k'.

The second claim is that the propositions is-finite(X) and is-finite(X) are equivalent, which we will show by constructing functions back and forth. Since we have shown that the type is-finite(X) is a proposition, we obtain a map is-finite(X) \rightarrow is-finite(X) via the universal property of the propositional truncation, from the map

$$\left(\sum_{(k:\mathbb{N})} \mathsf{Fin}_k \simeq X\right) \to \sum_{(k:\mathbb{N})} \|\mathsf{Fin}_k \simeq X\|$$

given by $(k, e) \mapsto (k, \eta(e))$.

To construct a map is-finite $'(X) \rightarrow$ is-finite(X), it suffices to construct a map

$$\|\operatorname{Fin}_{k'} \simeq X\| \to \left\| \sum_{(k:\mathbb{N})} \operatorname{Fin}_k \simeq X \right\|$$

for each k': \mathbb{N} . Again by the universal property of the propositional truncation, we obtain this map from the function

$$(\operatorname{Fin}_{k'} \simeq X) \to \left\| \sum_{(k:\mathbb{N})} \operatorname{Fin}_k \simeq X \right\|$$

given by $e \mapsto \eta(k', e)$.

Corollary 16.3.4 There is an equivalence

$$\mathbb{F} \simeq \sum_{(k:\mathbb{N})} BS_k$$
.

Proof This equivalence can be obtained by composing the equivalences

$$\begin{split} \textstyle \sum_{(X:\mathcal{U}_0)} & \text{is-finite}(X) \simeq \sum_{(X:\mathcal{U}_0)} \sum_{(k:\mathbb{N})} \| \text{Fin}_k \simeq X \| \\ & \simeq \sum_{(k:\mathbb{N})} \sum_{(X:\mathcal{U}_0)} \| \text{Fin}_k \simeq X \|. \end{split}$$

We now aim to extend Theorem 16.1.7 to obtain some closure properties of finite types. Before we do so, we prove the **principle of finite choice**.

Proposition 16.3.5 Consider a type family B over a finite type A. Then there is a finite choice map

$$\left(\prod_{(x:A)} \|B(x)\|\right) \to \left\|\prod_{(x:A)} B(x)\right\|$$

Proof Note that the type $\|\prod_{(x:A)} B(x)\|$ is a proposition. Therefore we may assume that the type A comes equipped with a counting e: $\mathsf{Fin}_k \simeq A$. By this equivalence, it suffices to show that for every type family B over Fin_k , there is a map

$$\left(\prod_{(x:\mathsf{Fin}_k)} \|B(x)\|\right) \to \left\|\prod_{(x:\mathsf{Fin}_k)} B(x)\right\|.$$

We proceed by induction on k. In the base case, Fin_k is empty and therefore the type $\prod_{(x:\operatorname{Fin}_k)} B(x)$ is contractible. The asserted function therefore exists.

For the inductive step, note that by the dependent universal property of coproducts (Exercise 13.8) we have the equivalences

$$\begin{split} \left(\prod_{(x:\mathsf{Fin}_{k+1})} \|B(x)\|\right) &\simeq \left(\prod_{(x:\mathsf{Fin}_k)} \|B(i(x))\|\right) \times \|B(\star)\| \\ \left\|\prod_{(x:\mathsf{Fin}_k)} B(x)\right\| &\simeq \left\|\left(\prod_{(x:\mathsf{Fin}_k)} B(i(x))\right) \times B(\star)\right\|. \end{split}$$

Recall from Exercise 14.3 that $||X \times Y|| \simeq ||X|| \times ||Y||$ for any two types X and Y. This fact together with the inductive hypothesis finishes the proof.

Theorem 16.3.6

- (i) For any two types X and Y, the following are equivalent:
 - (a) Both X and Y are finite.
 - (b) The coproduct X + Y is finite.
- (ii) For any two types X and Y, we make two claims:
 - (a) If both X and Y are finite, then the cartesian product $X \times Y$ is finite.
 - (b) If the type $X \times Y$ is finite, then we have two functions

$$Y \to \text{is-finite}(X)$$

 $X \to \text{is-finite}(Y).$

- (iii) Consider a type family B over A, and consider the following three conditions:
 - (a) The type A is finite.
 - (b) The type B(x) is finite for each x : A.
 - (c) The type $\sum_{(x:A)} B(x)$ is finite.

If (a) holds, then (b) is equivalent to (c). Moreover, if (b) and (c) hold, then (a) holds if and only if A is a set and the type $\sum_{(x:A)} \neg B(x)$ is finite. Furthermore, if (b) and (c) hold and B has a section, then (a) holds.

Proof To prove claim (i), first suppose that both X and Y are finite. Since the type is-finite(X + Y) is a proposition, we may assume that X and Y come equipped with countings. It follows from Theorem 16.1.7 that X + Y has a counting, so it is finite. Conversely, suppose that the type X + Y is finite. Since the types is-finite(X) and is-finite(Y) are both propositions, we may assume that the coproduct X + Y comes equipped with a counting. Again it follows from Theorem 16.1.7 that the types X and Y have countings, so they are finite.

The proof of claim (ii) is similar to the proof of claim (i), hence we omit it. It remains to prove claim (iii). First, suppose that the type A is finite, and that each B(x) is finite. By Proposition 16.3.5 we have a map

$$\left(\prod_{(x:A)} \mathsf{is\text{-}finite}(B(x))\right) \to \left\|\prod_{(x:A)} \mathsf{count}(B(x))\right\|.$$

Since our goal is to construct an element of a proposition, we may therefore assume that each B(x) comes equipped with a counting. We may also assume that A comes equipped with a counting. It follows from Theorem 16.1.7 that the type $\sum_{(x:A)} B(x)$ has a counting, so it is finite.

Next, assume that A is finite and that the type $\sum_{(x:A)} B(x)$ is finite, and let a:A. The type is-finite(B(a)) is a proposition, so we may assume that

the types A and $\sum_{(x:A)} B(x)$ come equipped with countings. It follows from Theorem 16.1.7 that B(a) has a counting, so it is finite.

The final claim has two parts. First, assume that each B(x) is finite, that the type $\sum_{(x:A)} B(x)$ is finite, and that the type family B has a section f: $\prod_{(x:A)} B(x)$. It follows that the map

$$A \to \sum_{(x:A)} B(x)$$

given by $x \mapsto (x, f(x))$ is a decidable embedding, because the fiber at (x, y) of this map is equivalent to the identity type f(x) = y in B(x), which is a decidable proposition. It follows from the fact that (a) and (b) together imply (c) that A is finite.

For the remaining part of the final claim, assume that A is a set. Note that the assumption that each B(x) is finite implies that each B(x) is either inhabited or empty. It follows that we have an equivalence

$$A \simeq \left(\sum_{(x:A)} \|B(x)\|\right) + \left(\sum_{(x:A)} \neg B(x)\right).$$

We assume that the type $\sum_{(x:A)} \neg B(x)$ is finite. In order to show that A is finite, it therefore suffices to show that the type $\sum_{(x:A)} \|B(x)\|$ is finite. Without loss of generality, we assume that each B(x) is inhabited. To finish the proof, it suffices to show that there is an element of type

$$\left\| \prod_{(x:A)} B(x) \right\|$$

using the assumption that $\prod_{(x:A)} \|B(x)\|$. To construct such an element, we may assume a counting $e: \operatorname{Fin}_k \simeq \sum_{(x:A)} B(x)$. We claim that there is a function

$$||B(a)|| \to B(a),$$

i.e., that the type B(a) satisfies the principle of global choice of Remark 14.4.2 for each a:A. Recall from Example 14.4.1 that the decidable subtypes of Fin $_k$ satisfy global choice. Therefore it also follows that the decidable subtypes of $\sum_{(x:A)} B(x)$ satisfy global choice. Thus, it suffices to show that B(x) is a decidable subtype of $\sum_{(x:A)} B(x)$.

The assumption that A is a set implies by Exercise 12.13 that the fiber inclusion $i_a : B(a) \to \sum_{(x:A)} B(x)$ is an embedding for each a : A. Furthermore, we note that we have the following equivalence computing the fibers of i_a at (x, y):

$$\left(\sum_{(z:B(a))}(a,z)=(x,y)\right)\simeq (a=x).$$

The type on the left hand side is decidable, so it follows that the type A has decidable equality. We conclude that each B(a) is a decidable subtype of $\sum_{(x:A)} B(x)$.

Exercises

- 16.1 (a) Construct an equivalence $\operatorname{Fin}_{n^m} \simeq (\operatorname{Fin}_m \to \operatorname{Fin}_n)$. Conclude that if A and B are finite types, then $A \to B$ is finite.
 - (b) Construct an equivalence $\operatorname{Fin}_{n!} \simeq (\operatorname{Fin}_n \simeq \operatorname{Fin}_n)$. Conclude that if A is finite, then $A \simeq A$ is finite.
- 16.2 Suppose that *A* is a retract of *B*. Show that $count(B) \rightarrow count(A)$. Conclude that is-finite(*B*) \rightarrow is-finite(*A*).
- 16.3 (a) Consider a family of decidable types A_i indexed by a finite type I. Show that the dependent product

$$\prod_{(i:I)} A_i$$

is decidable.

- (b) Show that is-emb(f) is decidable, for any map $f: I \to J$ between finite types.
- (c) Show that is-surj(f) is decidable, for any map $f: I \rightarrow J$ between finite types.
- (d) Show that is-equiv(f) is decidable, for any map $f: I \to J$ between finite types.
- 16.4 Consider a surjective map $f: A \rightarrow B$, and suppose that A is finite. Show that the following are equivalent:
 - (i) The type *B* has decidable equality.
 - (ii) The type *B* is finite.
- 16.5 Consider a family *B* of types over *A*.
 - (a) Show that if A is finite and if each B(x) is finite, then the type

$$\prod_{(x:A)} B(x)$$

is finite.

(b) Show that if *A* is finite and if $\prod_{(x:A)} B(x)$ is finite, then we have

$$\Big(\prod_{(x:A)} \|B(x)\|\Big) \to \Big(\prod_{(x:A)} \text{is-finite}(B(x))\Big).$$

(c) Show that if $\prod_{(x:A)} B(x)$ is finite and if each B(x) is finite, then A is finite if and only if the following three conditions hold:

- (i) A has decidable equality.
- (ii) The type

$$\sum_{(x:A)} |B(x)| \le 1$$

is finite.

(iii) The type

$$\prod_{(x:A)} (2 \le |B(x)|) \to B(x)$$

is finite.

- 16.6 Consider two finite types X and Y with m and n elements, respectively, and let $f: X \to Y$ be a map.
 - (a) Show that

$$is-inj(f) \rightarrow (m \leq n).$$

(b) Prove the **pigeonhole principle**, i.e., show that

$$(n > m) \to \exists_{(x,x':X)} (x \neq x') \times (f(x) = f(x')).$$

- (c) Show that there is no embedding $\mathbb{N} \hookrightarrow \mathsf{Fin}_k$, for any $k : \mathbb{N}$.
- 16.7 Consider a finite type *X*.
 - (a) Show that any embedding $f: X \to X$ is an equivalence. Sets X such that every embedding $X \hookrightarrow X$ is an equivalence are also called **Dedekind finite**.
 - (b) Show that any surjective map $f: X \to X$ is an equivalence.
- 16.8 Consider two arbitrary types *A* and *B*. For any 2-element type *X*, construct an equivalence

$$(A+B)^X \simeq A^X + X \times (A \times B) + B^X.$$

- 16.9 (a) Consider a set A and an arbitrary type B. Show that any embedding $A \hookrightarrow B$ factors uniquely through the embedding $(\mathbf{1} \hookrightarrow B) \hookrightarrow B$ given by $e \mapsto e(\star)$.
 - (b) A map $f: A \to B$ is said to be **decidable** if the type $\operatorname{fib}_f(b)$ is decidable for all b: B. Write $A \hookrightarrow_{\operatorname{d}} B$ for the type of decidable embeddings from A to B. Show that for any type A with decidable equality and an arbitrary type B, any decidable embedding $A \hookrightarrow_{\operatorname{d}} B$ factors uniquely through the embedding $(\mathbf{1} \hookrightarrow_{\operatorname{d}} B) \hookrightarrow B$.
 - (c) (Escardó) For any two types A and B, construct an equivalence

$$((A + 1) \simeq (B + 1)) \simeq (1 \hookrightarrow_{\mathsf{d}} (B + 1)) \times (A \simeq B).$$

16.10 (a) For any two types *A* and *B*, construct an equivalence

$$((A + 1) \hookrightarrow_{\mathsf{d}} (B + 1)) \simeq (1 \hookrightarrow_{\mathsf{d}} (B + 1)) \times (A \hookrightarrow_{\mathsf{d}} B).$$

(b) Construct an equivalence $\operatorname{Fin}_{(n)_m} \simeq (\operatorname{Fin}_m \hookrightarrow \operatorname{Fin}_n)$, where $(n)_m$ is the m-th falling factorial of n, which is defined recursively by

$$(0)_0 := 1$$
 $(0)_{m+1} := 0$
 $(n+1)_0 := 1$ $(n+1)_{m+1} := (n+1)(n)_m$.

Conclude that if *A* and *B* are finite with cardinality *m* and *n*, then the type $A \hookrightarrow B$ is finite with cardinality $(n)_m$.

16.11 (a) Consider an arbitrary type *A* and a type *B* with decidable equality. Construct an equivalence

$$((A+1) \twoheadrightarrow (B+1)) \simeq (B+1) \times (A \twoheadrightarrow B) + (A \twoheadrightarrow B+1).$$

(b) Construct an equivalence $\operatorname{Fin}_{S(m,n)} \simeq (\operatorname{Fin}_m \twoheadrightarrow \operatorname{Fin}_n)$, where S(m,n) is defined recursively by

$$S(0,0) := 1$$

 $S(0, n + 1) := 0$
 $S(m + 1, 0) := 0$
 $S(m + 1, n + 1) := (n + 1)S(m, n) + S(m, n + 1).$

Conclude that if A and B are finite with cardinality m and n, then the type A B is finite with cardinality S(m, n). Note: the number S(m, n) is $n! \binom{m}{n}$, where $\binom{m}{n}$ is the **Stirling number of the second kind** at (m, n).

17 The univalence axiom

The univalence axiom characterizes the identity type of a universe. Roughly speaking, it asserts that equivalent types are equal. The univalence axiom therefore postulates the common mathematical habit of identifying equivalent objects, such as equivalent types, isomorphic groups, isomorphic rings, logically equivalent propositions, subsets with the same elements, and so on. The univalence axiom is due to Voevodsky, who also showed that it is modeled in the simplicial sets. He also showed, in one of his first applications,

that the univalence axiom implies function extensionality, which we will also prove here.

One way to think about the univalence axiom is that it *expands* the notion of equality to encapsulate the notion of equivalence. It asserts that for each equivalence e between two types X and Y in a universe \mathcal{U} there is a unique identification $p_e: X = Y$ in the universe \mathcal{U} such that transporting along p_e in the universal type family over \mathcal{U} is homotopic to the original equivalence $e: X \simeq Y$.

Since there might be many distinct equivalences between two types X and Y, there will be equally many identifications those types. The univalence axiom is therefore inconsistent with the commonly assumed axiom that all identity types are propositions, i.e., that all types are sets. Indeed, there are two equivalences bool \simeq bool, so a univalent universe cannot be a set.

17.1 Equivalent forms of the univalence axiom

By the fundamental theorem of identity types, Theorem 11.2.2, it is immediate that the univalence axiom comes in three equivalent forms.

Theorem 17.1.1 Consider a universe \mathcal{U} . The following are equivalent:

(i) The universe \mathcal{U} is univalent: For any two types $A, B : \mathcal{U}$, the map

equiv-eq:
$$(A = B) \rightarrow (A \simeq B)$$

given by equiv-eq(refl) := id, is an equivalence.

(ii) The type

$$\sum_{(B:\mathcal{U})} A \simeq B$$

is contractible for each $A: \mathcal{U}$.

(iii) For any type $A: \mathcal{U}$, the family of types $A \simeq X$ indexed by $X: \mathcal{U}$ is an identity system on \mathcal{U} . In other words, the universe \mathcal{U} satisfies the principle of equivalence induction: For every $A: \mathcal{U}$ and for every type family of types P(X,e) indexed by $X: \mathcal{U}$ and $e: A \simeq X$, the map

$$\left(\prod_{(X:\mathcal{U})}\prod_{(e:A\simeq X)}P(X,e)\right)\to P(A,\mathsf{id})$$

given by $f \mapsto f(A, id)$ has a section.

Proof The claim is a special case of Theorem 11.2.2, the fundamental theorem of identity types.

One way to see that the univalence axiom is plausible, is by observing that all type constructors preserve equivalences. For example, in Theorem 11.1.6 we showed that for any type family B over A and any type family B' over A', if we have an equivalence $e:A\simeq A'$ and family of equivalences $f:\prod_{(x:A)}B(x)\simeq B'(e(x))$, then we obtain an equivalence

$$\left(\sum_{(x:A)} B(x)\right) \simeq \left(\sum_{(x':A')} B'(x')\right).$$

Under the same assumptions, we showed in Exercise 13.12 that we obtain an equivalence

$$\left(\prod_{(x:A)}B(x)\right)\simeq\left(\prod_{(x':A')}B'(x')\right).$$

Furthermore, for any two elements x, y : A any equivalence $e : A \simeq A'$ induces an equivalence $(x = y) \simeq (e(x) = e(y))$ by Theorem 11.4.2. In other words, all the standard type formers within a universe \mathcal{U} are *equivalence invariant*. Since identity types are not assumed to be propositions, we have the possibility to postulate the univalence axiom.

Axiom 17.1.2 (The univalence axiom) We will assume that all the universes generated by Postulate 6.2.1 are univalent. Given a univalent universe \mathcal{U} , we will write eq-equiv for the inverse of equiv-eq.

As a first application of the univalence axiom, let us show that for any type A the type of types in a univalent universe \mathcal{U} that are equivalent to A is a proposition.

Definition 17.1.3 Consider a univalent universe \mathcal{U} . A type X is said to be \mathcal{U} -small if it comes equipped with an element of type

$$\text{is-small}_{\mathcal{U}}(A) \coloneqq \textstyle \sum_{(X:\mathcal{U})} A \simeq X.$$

Similarly, a map $f: A \to B$ is said to be \mathcal{U} -small if all of its fibers are \mathcal{U} -small.

Example 17.1.4

- (i) Any type in $\mathcal U$ is $\mathcal U$ -small.
- (ii) Any contractible type is \mathcal{U} -small with respect to any universe \mathcal{U} .
- (iii) For any family P of \mathcal{U} -small types over a \mathcal{U} -small type A, the dependent product $\prod_{(x:A)} B(x)$ is \mathcal{U} -small.

(iv) The type of \mathcal{U} -small types in \mathcal{V} is equivalent to the type of \mathcal{V} -small types in \mathcal{U} . This follows from the equivalence

$$\left(\sum_{(Y:\mathcal{V})}\sum_{(X:\mathcal{U})}Y\simeq X\right)\simeq \left(\sum_{(X:\mathcal{U})}\sum_{(Y:\mathcal{V})}X\simeq Y\right).$$

(v) Any finite type is \mathcal{U} -small for any universe \mathcal{U} . Consequently, we get equivalences

$$\left(\textstyle\sum_{(X:\mathcal{U})}\mathsf{is\text{-finite}}(X)\right)\simeq\left(\textstyle\sum_{(Y:\mathcal{V})}\mathsf{is\text{-finite}}(Y)\right)$$

for any two univalent universes $\mathcal U$ and $\mathcal V$. This observation is the reason why we usually write $\mathbb F$ for the type of finite types (in $\mathcal U$), without referring to its universe.

(vi) In Theorem 20.6.10 we will show that \mathcal{U} cannot be \mathcal{U} -small, i.e., that there cannot be a type $U:\mathcal{U}$ equipped with an equivalence $U\simeq\mathcal{U}$.

Proposition 17.1.5 *For any univalent universe* \mathcal{U} *and any type* A*, the type* is-small_{\mathcal{U}}(A) *is a proposition.*

Proof By Proposition 12.1.3 it suffices to show that

$$is\text{-small}_{\mathcal{U}}(A) \to is\text{-contr}(is\text{-small}_{\mathcal{U}}(A)).$$

Let $X : \mathcal{U}$ be a type equipped with $e : A \simeq X$. Then we have an equivalence

$$\left(\textstyle\sum_{(Y:\mathcal{U})} A\simeq Y\right)\simeq \left(\textstyle\sum_{(Y:\mathcal{U})} X\simeq Y\right).$$

П

The latter type is contractible by Theorem 17.1.1.

Corollary 17.1.6 Consider a univalent universe \mathcal{U} and a univalent universe \mathcal{V} containing all types in \mathcal{U} . Then the universe inclusion $i: \mathcal{U} \to \mathcal{V}$ is an embedding.

Proof Since V is assumed to be univalent, it follows that

$$fib_i(A) \simeq is\text{-small}_{\mathcal{U}}(A)$$

for any type $A:\mathcal{V}$. The type is-small $_{\mathcal{U}}(A)$ is a proposition since \mathcal{U} is univalent. Hence the claim follows by Theorem 12.2.3.

17.2 Propositional extensionality

An important direct consequence of the univalence axiom is the principle of propositional extensionality. This principle asserts that any two logically

equivalent propositions P and Q can be identified. Propositional extensionality is an important principle on its own, which is sometimes assumed in formal systems without the univalence axiom.

In order to prove propositional extensionality, we first observe that the univalence axiom also characterizes the identity type of any subuniverse.

Proposition 17.2.1 Consider a universe \mathcal{U} , and let P be a family of propositions over \mathcal{U} . Then the family of maps

equiv-eq:
$$(A = B) \rightarrow (pr_1(A) \simeq pr_1(B))$$

indexed by A, B: $\sum_{(X:\mathcal{U})} P(X)$, given by equiv-eq(refl) := id is an equivalence.

Proof Since P is a subuniverse, it follows from Corollary 12.2.4 that the projection map is an embedding. Therefore we see that the asserted map is the composite of the equivalences

$$(A=B) \xrightarrow{\operatorname{ap}_{\operatorname{pr}_1}} (\operatorname{pr}_1(A)=\operatorname{pr}_1(B)) \xrightarrow{\operatorname{equiv-eq}} (\operatorname{pr}_1(A) \simeq \operatorname{pr}_1(B)). \qquad \square$$

Remark 17.2.2 Often, when P is a subuniverse, i.e., a subtype of the a universe \mathcal{U} , we will also write A for the type $\operatorname{pr}_1(A)$ if $A: \sum_{(X:\mathcal{U})} P(X)$. Using this shorthand notation, the equivalence in Proposition 17.2.1 is displayed as

$$(A = B) \simeq (A \simeq B).$$

Important examples of subuniverses include the subuniverse $\operatorname{Prop}_{\mathcal{U}}$ of propositions in \mathcal{U} , the subuniverse $\operatorname{Set}_{\mathcal{U}}$ of sets in \mathcal{U} , and the subuniverse $\mathcal{U}^{\leq k}$ of k-truncated types in \mathcal{U} . The subuniverse \mathbb{F} of finite types in \mathcal{U}_0 , and the subuniverses BS_k of k-element types are further important subuniverses to which Proposition 17.2.1 applies. Note that by the univalence axiom, any subuniverse is automatically closed under equivalences. Indeed, if we have $X \simeq Y$, then we have $P(X) \to P(Y)$ by transporting along the equality X = Y induced by univalence.

Theorem 17.2.3 *Propositions satisfy propositional extensionality: For any two propositions P and Q, the canonical map*

$$\mathsf{iff-eq}: (P = Q) \to (P \leftrightarrow Q)$$

defined by iff-eq(refl) := (id, id) is an equivalence. It follows that the type $\mathsf{Prop}_{\mathcal{U}}$ of propositions in \mathcal{U} is a set.

Proof Recall from Exercise 13.3 that is-prop(X) is a proposition for any type X. Proposition 17.2.1 therefore applies, which gives

$$(P=Q)\simeq (P\simeq Q)\simeq (P\leftrightarrow Q).$$

The last equivalence follows from Proposition 12.1.4, using the fact that $(P \simeq Q)$ is a proposition by Exercise 13.4.

Corollary 17.2.4 *The type*

$$\mathsf{DProp}_{\mathcal{U}} \coloneqq \sum_{(P:\mathsf{Prop}_{\mathcal{U}})} \mathsf{is\text{-decidable}}(P)$$

of decidable propositions in any universe $\mathcal U$ is equivalent to bool.

Proof Note that Σ distributes from the left over coproducts, so we have an equivalence

$$\left(\textstyle\sum_{(P:\mathsf{Prop}_{\mathcal{U}})}\!P + \neg P\right) \simeq \left(\textstyle\sum_{(P:\mathsf{Prop}_{\mathcal{U}})}\!P\right) + \left(\textstyle\sum_{(Q:\mathsf{Prop}_{\mathcal{U}})}\!\neg Q\right).$$

Therefore it suffices to show that both $\sum_{(P:\mathsf{Prop}_{\mathcal{U}})} P$ and $\sum_{(Q:\mathsf{Prop}_{\mathcal{U}})} \neg Q$ are contractible. At the centers of contraction we have $(\mathbf{1}, \star)$ and (\emptyset, id) , respectively. For the contractions, note that both types are subtypes of the types of propositions. Therefore it suffices to show that $\mathbf{1} = P$ for any proposition P equipped with P and that P and that P are quipped with P are quipped with P and P are quipped with P are quipped with P and P are quipped with P and P are quipped with P are quipped with P and P are quipped with P are quipped with P and P are quipped with P and P are quipped with P and P are quipped with P are quipped with P and P are quipped with P are quipped with P and P are quipped with P are P are quipped with P are P are P are P are P are P are P and P are P ar

17.3 Univalence implies function extensionality

One of the first applications of the univalence axiom was Voevodsky's theorem that the univalence axiom on a universe $\mathcal U$ implies function extensionality for types in $\mathcal U$. The proof uses the fact that weak function extensionality implies function extensionality. We will also make use of the following lemma.

Lemma 17.3.1 For any equivalence $e: X \simeq Y$ in a univalent universe \mathcal{U} , and any type A, the post-composition map

$$e \circ - : (A \to X) \to (A \to Y)$$

is an equivalence.

Note that this statement was also part of Exercise 13.12 (d). That exercise is solved using function extensionality. However, since our present goal is to derive function extensionality from the univalence axiom, we cannot make use of that exercise. Therefore we give a new proof, using the univalence axiom.

Proof Since \mathcal{U} is assumed to be a univalent universe, it satisfies by Theorem 17.1.1 the principle of equivalence induction. Therefore, it suffices to show that the post-composition map

$$\mathsf{id} \circ - : (A \to X) \to (A \to X)$$

is an equivalence. This post-composition map is of course just the identity map on $A \to X$, so it is indeed an equivalence.

Theorem 17.3.2 For any universe \mathcal{U} , the univalence axiom on \mathcal{U} implies function extensionality on \mathcal{U} .

Proof Note that by Theorem 13.1.2 it suffices to show that univalence implies weak function extensionality. We note that the proof of Theorem 13.1.2 also goes through when it is restricted to types in \mathcal{U} .

Suppose that $B: A \to \mathcal{U}$ is a family of contractible types. Our goal is to show that the product $\prod_{(x:A)} B(x)$ is contractible. Since each B(x) is contractible, the projection map $\operatorname{pr}_1: \left(\sum_{(x:A)} B(x)\right) \to A$ is an equivalence by Exercise 10.7.

Now it follows by Lemma 17.3.1 that $pr_1 \circ -is$ an equivalence. Consequently, it follows from Theorem 10.4.6 that the fibers of

$$\operatorname{pr}_1 \circ -: \left(A \to \sum_{(x:A)} B(x) \right) \to (A \to A)$$

are contractible. In particular, the fiber at id_A is contractible. Therefore it suffices to show that $\prod_{(x:A)} B(x)$ is a retract of $\sum_{(f:A \to \sum_{(x:A)} B(x))} \mathrm{pr}_1 \circ f = \mathrm{id}_A$. In other words, we will construct a section-retraction pair

$$\left(\prod_{(x:A)} B(x)\right) \stackrel{i}{\to} \left(\sum_{(f:A \to \sum_{(x:A)} B(x))} \mathsf{pr}_1 \circ f = \mathsf{id}_A\right) \stackrel{r}{\to} \left(\prod_{(x:A)} B(x)\right),$$

with $H: r \circ i \sim id$.

We define the function i by

$$i(f) := (\lambda x. (x, f(x)), refl_{id}).$$

To see that this definition is correct, we need to know that

$$\lambda x. \operatorname{pr}_1(x, f(x)) \doteq \operatorname{id}.$$

This is indeed the case, by the rule λ -eq for Π -types, on Page 14.

Next, we define the function r. Consider a function $h:A\to \sum_{(x:A)}B(x)$ equipped with an identification $p:\operatorname{pr}_1\circ h=\operatorname{id}$. Then we have the homotopy $\operatorname{htpy-eq}(p):\operatorname{pr}_1\circ h\sim\operatorname{id}$. Furthermore, we obtain $\operatorname{pr}_2(h(x)):B(\operatorname{pr}_1(h(x)))$. Using these ingredients, we define r by

$$r((h, p), x) := \operatorname{tr}_B(\operatorname{htpy-eq}(p, x), \operatorname{pr}_2(h(x))).$$

It remains to construct a homotopy $H: r \circ i \sim id$. We simply compute

$$r(i(f)) \doteq r(\lambda x. (x, f(x)), refl)$$

 $\doteq tr_B(\text{htpy-eq(refl}, x), pr_2(x, f(x)))$
 $\doteq tr_B(\text{refl}, f(x))$
 $\dot{=} f(x).$

Thus we see that $r \circ i \doteq id$ by an application of the η -rule for Π-types. Therefore we simply define $H(f) \coloneqq refl$.

17.4 Maps and families of types

Using the univalence axiom, we can establish a fundamental relation between maps into a type A, and families of types indexed by A. A special case of this relation asserts that the type of all pairs (X, e) consisting of a type X and an embedding $e: X \hookrightarrow A$ is equivalent to the type of all subtypes of A, i.e., the type of all families P of propositions indexed by A.

Theorem 17.4.1 For any type A and any univalent universe \mathcal{U} containing A, the map

$$\left(\sum_{(X:\mathcal{U})} X \to A\right) \to (A \to \mathcal{U})$$

given by $(X, f) \mapsto \mathsf{fib}_f$ is an equivalence.

Proof The map in the converse direction is given by

$$B \mapsto \left(\sum_{(x:A)} B(x), \operatorname{pr}_1\right).$$

To verify that this map is a section of the asserted map, we have to prove that

$$fib_{pr_1} = B$$

for any $B: A \to \mathcal{U}$. By function extensionality and the univalence axiom, this is equivalent to

$$\prod_{(x:A)} \mathsf{fib}_{\mathsf{pr}_1}(x) \simeq B(x).$$

Such a family of equivalences was constructed in Exercise 10.7. It remains to verify that

$$(X, f) = \left(\sum_{(x:A)} \mathsf{fib}_f(x), \mathsf{pr}_1\right).$$

Before we do this, we claim that the identity type

$$(X, f) = (Y, g)$$

in the type $\sum_{(X:\mathcal{U})} X \to A$ is equivalent to the type of pairs (e, f) consisting of an equivalence $e: X \simeq Y$ equipped with a homotopy $f \sim g \circ e$. This fact follows from Theorem 11.2.2, because the type

$$\textstyle \sum_{(Y:\mathcal{U})} \textstyle \sum_{(g:Y \to A)} \textstyle \sum_{(e:X \simeq Y)} f \sim g \circ e$$

is contractible by the structure identity principle, Theorem 11.6.2.

To finish the proof, it therefore suffices to construct an equivalence

$$e: X \simeq \sum_{(a:A)} \mathsf{fib}_f(a)$$

equipped with a homotopy $f \sim \operatorname{pr}_1 \circ e$. Such an equivalence e equipped with a homotopy was constructed in Exercise 10.8.

The following corollary is so important, that we call it again a theorem.

Theorem 17.4.2 Consider a type A and a univalent universe \mathcal{U} containing A. Furthermore, let P be a family of types indexed by \mathcal{U} , and write

$$\mathcal{U}_P := \sum_{(X:\mathcal{U})} P(X).$$

Then the map

$$\left(\sum_{(X:\mathcal{U})}\sum_{(f:X\to A)}\prod_{(a:A)}P(\mathsf{fib}_f(a))\right)\to (A\to\mathcal{U}_P)$$

given by $(X, f, p) \mapsto \lambda a$. (fib_f(a), p(a)) is an equivalence.

Proof The asserted map is homotopic to the composition of the equivalences

$$\begin{split} &\sum_{(X:\mathcal{U})} \sum_{(f:X\to A)} \prod_{(a:A)} P(\mathsf{fib}_f(a)) \\ &\simeq \sum_{((X,f):\sum_{(X:\mathcal{U})} X\to A)} \prod_{(a:A)} P(\mathsf{fib}_f(a)) \\ &\simeq \sum_{(B:A\to\mathcal{U})} \prod_{(a:A)} P(B(a)) \\ &\simeq A \to \sum_{(X:\mathcal{U})} P(X). \end{split}$$

Theorem 17.4.2 applies to any subuniverse. Examples include the subuniverse of k-types, for any truncation level k, the subuniverse of decidable propositions, the subuniverse of finite types, the subuniverse of inhabited types, and so on. It also applies to type families over $\mathcal U$ that aren't families of propositions. The families P := is-decidable and P := count are examples.

Corollary 17.4.3 Consider a type A and a univalent universe \mathcal{U} containing A. Then the map

$$\left(\textstyle\sum_{(X:\mathcal{U})} X \hookrightarrow A\right) \to (A \to \mathsf{Prop}_{\mathcal{U}})$$

given by $(X, f) \mapsto \mathsf{fib}_f$ is an equivalence.

In other words, a subtype of a type A is equivalently described as a type X equipped with an embedding $e: X \hookrightarrow A$. This brings us to an important point about equality of subtypes.

Remark 17.4.4 By function extensionality and propositional extensionality, it follows that two subtypes $P, Q: A \to \mathsf{Prop}_{\mathcal{U}}$ are the same if and only if

$$P(a) \leftrightarrow Q(a)$$

holds for all a: A. In other words, two subtypes of A are the same if and only if they contain the same elements of A.

On the other hand, by Corollary 17.4.3 we can also consider two types X and Y equipped with embeddings $f: X \hookrightarrow A$ and $g: Y \hookrightarrow A$ as subtypes of A. Using the structure identity principle, Theorem 11.6.2, we see that the identity type (X, f) = (Y, g) in the type $\sum_{(X:\mathcal{U})} X \hookrightarrow A$ is equivalent to the type

$$\sum_{(e:X\simeq Y)} f \sim g \circ e.$$

In other words, two subtypes (X, f) and (Y, g) of A are equal if and only if there is an equivalence $X \simeq Y$ that is compatible with the embeddings $f: X \hookrightarrow A$ and $g: Y \hookrightarrow X$. Indeed, this condition is equivalent to the

previous condition that two subtypes are the same if and only if they have the same elements.

We see that the combination of the structure identity principle and the univalence axiom automatically characterizes equality of subtypes in the most natural way, and we will see similar natural characterizations of identity types throughout the remainder of this book.

17.5 Classical mathematics with the univalence axiom

In classical mathematics, the axiom of choice asserts that for any collection X of nonempty sets, there is a choice function f such that $f(x) \in x$ for each $x \in X$. The univalence axiom is consistent with the axiom of choice, but we have to be careful in our formulation of the axiom of choice to make it about sets. A naive interpretation that would be applicable to all types, such as the assertion that every family B of inhabited types has a section, is not consistent with univalence. We will use the type BS_2 of 2-element types for a counterexample.

Proposition 17.5.1 *The type*

$$\sum_{(X:BS_2)} X$$

of pointed 2-element types is contractible. Consequently, the canonical family of maps

$$(\operatorname{Fin}_2 = X) \to X$$

indexed by $X : BS_2$, is a family of equivalences.

Proof By the univalence axiom it follows that the type $\sum_{(X:BS_2)} \operatorname{Fin}_2 \simeq X$ is contractible. In order to show that $\sum_{(X:BS_2)} X$ is contractible, it therefore suffices to show that the map

$$f: (\operatorname{Fin}_2 \simeq X) \to X$$

given by $f(e) := e(\star)$, is an equivalence. Since being an equivalence is a proposition by Exercise 13.4, we may assume an equivalence α : Fin₂ $\simeq X$, and we proceed by equivalence induction on α . Therefore, it suffices to show that the map

$$f: (\operatorname{Fin}_2 \simeq \operatorname{Fin}_2) \to \operatorname{Fin}_2$$

give by $f(e) := e(\star)$ is an equivalence. Using the notation from Section 7.3,

we define the inverse map g by

$$g(\star) \coloneqq \mathrm{id}$$
 $g(i(\star)) \coloneqq \mathrm{succ}_2,$

and it is a straightforward verification that f and g are inverse to each other.

Corollary 17.5.2 There is no dependent function

$$\prod_{(X:BS_2)} X$$
.

Proof By Proposition 17.5.1 and Exercise 13.12, we have an equivalence

$$\left(\prod_{(X:BS_2)} \operatorname{Fin}_2 = X\right) \simeq \left(\prod_{(X:BS_2)} X\right).$$

Note that $\prod_{(X:BS_2)} \operatorname{Fin}_2 = X$ is the type of contractions of BS_2 , using the center of contraction Fin_2 . Therefore it suffices to show that BS_2 is not contractible. Recall from Exercise 10.1 that the identity types of contractible types are contractible. On the other hand, it follows from Proposition 17.5.1 that the identity type $\operatorname{Fin}_2 = \operatorname{Fin}_2$ in BS_2 is equivalent to Fin_2 . This type isn't contractible by Exercise 10.4. We conclude that BS_2 is not contractible.

The family $X \mapsto X$ over BS_2 is therefore an example of a family of nonempty types for which there are provably no sections. In the following corollary we conclude more generally that there is no way to construct an element of an arbitrary inhabited type.

Corollary 17.5.3 If \mathcal{U} is a univalent universe, then there is no **global choice** function

$$\prod_{(A:\mathcal{U})} ||A|| \to A.$$

Proof Suppose $f: \prod_{(A:\mathcal{U})} ||A|| \to A$. By restricting f to the type of 2-element types in \mathcal{U} , we obtain a function

$$\prod_{(A:BS_2)} ||A|| \to A.$$

Note that every 2-element type is inhabited, i.e., there is an element of type $\|A\|$ for every 2-element type A. To see this, consider a type $A:\mathcal{U}$ such that $\|\mathsf{Fin}_2 \simeq A\|$. To obtain an element of type $\|A\|$, we may assume an equivalence $e: \mathsf{Fin}_2 \simeq A$. Then we have $\eta(e(0)): \|A\|$.

Since every 2-element type is inhabited, we obtain a function $\prod_{(A:BS_2)} A$, which is impossible by Corollary 17.5.2.

Corollary 17.5.3 is of philosophical importance. It shows that the **principle of global choice** is incompatible with the univalence axiom, i.e., that there is no way to obtain construct a function $||A|| \to A$ for all types A. In other words, we cannot obtain an element of A merely from the assumption that the type A is inhabited. What is the obstruction? It is the fact that no such choice of an element of A can be invariant under the automorphisms on A, i.e., under the self-equivalences on A. Indeed, in the example where A is the 2-element type Fin₂ there are no fixed point of the equivalence $\operatorname{succ}_2 : \operatorname{Fin}_2 \simeq \operatorname{Fin}_2$. By the univalence axiom, there is an identification $p : \operatorname{Fin}_2 = \operatorname{Fin}_2$ in $\mathcal U$, such that $\operatorname{tr}(p,x) = \operatorname{succ}_2(x)$. If we had a function

$$f: \prod_{(X:\mathcal{U})} ||X|| \to X$$

the dependent action on paths of f would give an identification

$$\operatorname{apd}_f(p):\operatorname{succ}_2(f(\operatorname{Fin}_2,p,H))=f(\operatorname{Fin}_2,p,\eta(0)).$$

In other words, it would give us a fixed point for the successor function on Fin₂.

This is perhaps a good moment to stress that the axiom of choice is really an axiom about *sets*, not about more general types. And indeed, when we restrict the axiom of choice to sets, it turns out to be consistent with the univalence axiom and therefore safe to assume. In this book, however, we will not have many applications for the axiom of choice and therefore we will not assume it, unless we explicitly say otherwise.

Definition 17.5.4 The **axiom of choice** asserts that for any family *B* of inhabited sets indexed by a set *A*, the type of sections of *B* is also inhabited, i.e., it asserts that there is an element of type

$$\mathsf{AC}_{\mathcal{U}}(A,B) \coloneqq \left(\prod_{(x:A)} \|B(x)\|\right) \to \left\|\prod_{(x:A)} B(x)\right\|,$$

for every $A : \mathsf{Set}_{\mathcal{U}}$ and $B : A \to \mathsf{Set}_{\mathcal{U}}$.

Similar care has to be taken with the type theoretic formulation of the law of excluded middle. It is again inconsistent to assume that every type is decidable.

Theorem 17.5.5 There is no global decidability function

$$\prod_{(X:\mathcal{U})}$$
is-decidable (X) .

Proof Suppose there is such a dependent function *d*. By restricting *d* to the subuniverse of 2-element types, we obtain a dependent function

$$d:\prod_{(X:BS_2)}$$
is-decidable(X).

However, each 2-element type *X* is inhabited. By Exercise 14.1 we obtain a function

$$is-decidable(X) \rightarrow X$$

for each 2-element type X. Therefore, we obtain from d a dependent function $\prod_{(X:BS_2)} X$, which does not exist by Corollary 17.5.2.

The law of excluded middle is really an axiom of propositional logic, and it is indeed consistent with the univalence axiom that every *proposition* is decidable.

Definition 17.5.6 The **law of excluded middle** asserts that every proposition is decidable, i.e.,

$$\mathsf{LEM}_{\mathcal{U}} \coloneqq \prod_{(P:\mathsf{Prop}_{\mathcal{U}})} \mathsf{is}\text{-decidable}(P).$$

We will again not assume the law of excluded middle, unless we say otherwise. Nevertheless, we have seen in Section 8 that some propositions are already decidable without assuming the law of excluded middle, and decidability remains an important concept in type theory and mathematics.

17.6 The binomial types

To wrap up this section on univalence, we will use the univalence axiom to construct for any two types A and B a type $\binom{A}{B}$ that has properties similar to the binomial coefficients $\binom{n}{k}$. Indeed, we will show that if A is an n-element type and B is a k-element type, then $\binom{A}{B}$ is an $\binom{n}{k}$ -element type. The binomial types are defined using decidable embeddings.

Definition 17.6.1 A map $f: A \rightarrow B$ is said to be **decidable** if it comes equipped with an element of type

is-decidable(
$$f$$
) := $\prod_{(b:B)}$ is-decidable(f ib $_f$ (b)).

We will write $A \hookrightarrow_d B$ for the type of **decidable embeddings** from A to B, i.e., for the type of embeddings that are also decidable maps.

Definition 17.6.2 Consider a type A and a universe \mathcal{U} . We define the **connected component** of \mathcal{U} at A by

$$\mathcal{U}_A := \sum_{(X:\mathcal{U})} ||A \simeq X||.$$

Example 17.6.3 Note that type $\mathcal{U}_{\mathsf{Fin}_n}$ is the type BS_n of all n-element types. Note also that if $A \simeq B$, then $\mathcal{U}_A \simeq \mathcal{U}_B$.

Definition 17.6.4 Consider two types *A* and *B* and a universe \mathcal{U} containing both *A* and *B*. We define the **binomial type** $\binom{A}{B}_{q_I}$ by

$$\begin{pmatrix} A \\ B \end{pmatrix}_{\mathcal{U}} \coloneqq \sum_{(X:\mathcal{U}_B)} X \hookrightarrow_{\mathsf{d}} A.$$

Remark 17.6.5 We define the binomial types using decidable embeddings because the usual properties of binomial coefficients generalize most naturally under the extra assumption of decidability. In particular the binomial theorem for types, which is stated as Exercise 17.14 and generalized in Exercise 18.14, rely on the use of decidable embeddings.

Proposition 17.6.6 Consider two types A and B, and a universe \mathcal{U} containing both A and B. Then we have an equivalence

$$\binom{A}{B}_{\mathcal{U}} \simeq \sum_{(P:A \to \mathsf{DProp}_{\mathcal{U}})} \left\| B \simeq \sum_{(a:A)} P(a) \right\|.$$

from the binomial type $\binom{A}{B}_{\mathcal{U}}$ to the type of decidable subtypes of A that are merely equivalent to B.

Proof This equivalence follows from Theorem 17.4.2, by which we have

$$\left(\sum_{(X:\mathcal{U})} X \hookrightarrow_{\mathsf{d}} A\right) \simeq (A \to \mathsf{DProp}_{\mathcal{U}}).$$

Remark 17.6.7 Combining Corollary 17.2.4 and Proposition 17.6.6, we obtain an equivalence

$$\binom{A}{B}_{\mathcal{U}} \simeq \sum_{(f:A \to \mathsf{bool})} \left\| B \simeq \sum_{(a:A)} f(a) = \mathsf{true} \right\|.$$

for any universe \mathcal{U} that contains both A and B. This equivalence is important, because the right hand side doesn't depend on the universe \mathcal{U} . Therefore we will simply write $\binom{A}{B}$ for $\binom{A}{B}_{\mathcal{U}'}$, if the universe \mathcal{U} contains both A and B.

Lemma 17.6.8 For any two types A and B, we have equivalences

$$\begin{pmatrix} \emptyset \\ \emptyset \end{pmatrix} \simeq \mathbf{1} \qquad \qquad \begin{pmatrix} A + \mathbf{1} \\ \emptyset \end{pmatrix} \simeq \mathbf{1}$$

$$\begin{pmatrix} \emptyset \\ B + \mathbf{1} \end{pmatrix} \simeq \emptyset \qquad \qquad \begin{pmatrix} A + \mathbf{1} \\ B + \mathbf{1} \end{pmatrix} \simeq \begin{pmatrix} A \\ B \end{pmatrix} + \begin{pmatrix} A \\ B + \mathbf{1} \end{pmatrix}.$$

Proof For the first two equivalences, we prove that $\binom{X}{\emptyset}$ is contractible for any type X. To see this, we first note that the type \mathcal{U}_{\emptyset} is contractible. Indeed, at the center of contraction we have the empty type, and any two types that are merely equivalent to the empty type are empty and hence equivalent. Therefore it follows that

$$\begin{pmatrix} X \\ \emptyset \end{pmatrix} \simeq \emptyset \hookrightarrow_{\mathsf{d}} X.$$

The type of decidable embeddings $\emptyset \hookrightarrow_d X$ is contractible, because the type $\emptyset \to X$ is contractible with the map ex-falso : $\emptyset \to X$ at the center of contraction, which is of course a decidable embedding.

Next, the fact that the binomial type $\binom{\emptyset}{B+1}$ is empty follows from the fact that the type of maps $X \to \emptyset$ is empty for any type X merely equivalent to B+1.

For the last equivalence we will use Proposition 17.6.6. Using the universal property of A + 1, we see that

$$\binom{A+\mathbf{1}}{B+\mathbf{1}} \simeq \sum_{(P:A\to\mathsf{DProp}_{\mathcal{U}})} \sum_{(Q:\mathsf{DProp}_{\mathcal{U}})} \|(B+\mathbf{1}) \simeq \sum_{(a:A)} P(a) + Q\|.$$

Using the fact that $\mathsf{DProp}_{\mathcal{U}} \simeq \mathsf{Fin}_2$, observe that we have an equivalence

$$\begin{split} & \sum_{(Q:\mathsf{DProp}_{\mathcal{U}})} \| (B+\mathbf{1}) \simeq (\sum_{(a:A)} P(a) + Q) \| \\ & \simeq \| (B+\mathbf{1}) \simeq (\sum_{(a:A)} P(a) + \mathbf{1}) \| + \| (B+\mathbf{1}) \simeq \sum_{(a:A)} P(a) \|. \end{split}$$

Furthermore, note that it follows from Proposition 16.2.1 that

$$\|(B+\mathbf{1})\simeq (\sum_{(a:A)}P(a)+\mathbf{1})\|\simeq \|B\simeq \sum_{(a:A)}P(a)\|.$$

Thus we see that

Theorem 17.6.9 If A and B are finite types of cardinality n and k, respectively, then the type $\binom{A}{B}$ is finite of cardinality $\binom{n}{k}$.

Proof The claim that the type $\binom{A}{B}$ is finite of cardinality $\binom{n}{k}$ is a proposition, so we may assume $e : \mathsf{Fin}_n \simeq A$ and $f : \mathsf{Fin}_k \simeq B$. The claim now follows by induction on n and k, using Lemma 17.6.8.

Remark 17.6.10 It is perhaps remarkable that the type $\sum_{(X:\mathcal{U}_B)} X \hookrightarrow_d A$ is a good generalisation of the binomial coefficients to types. Note that when A and B are finite types of cardinality n and k, respectively, then the type $B \hookrightarrow_d A$ has a factor k! too many elements. When we seemingly enlarge it by the type \mathcal{U}_B of all types merely equivalent to B, it turns out that we obtain the correct generalisation of the binomial coefficients.

One reason why it works is that the identity type of $\sum_{(X:\mathcal{U}_B)} X \hookrightarrow_d A$ is characterized, via the univalence axiom, by

$$((X,f)=(Y,g))\simeq \textstyle \sum_{(e:X\simeq Y)} f\sim g\circ e.$$

Therefore it follows that for any two decidable embeddings f, g : $B \hookrightarrow_d A$, if f and g are the same up to a permutation on B, then we get an identification (B, f) = (B, g) in the type $\sum_{(X:\mathcal{U}_B)} X \hookrightarrow_d A$.

From a group theoretic perspective we may observe that the automorphism group $B \simeq B$ acts freely on the set of decidable embeddings $B \hookrightarrow_d A$, and the type $\sum_{(X:\mathcal{U}_B)} X \hookrightarrow A$ can be viewed as the type of orbits of that action. Since this action of $\operatorname{Aut}(B)$ on $B \hookrightarrow_d A$ is free, we see that the number of orbits is $\frac{1}{k!}$ times the number of elements in $B \hookrightarrow_d A$.

Exercises

- 17.1 (a) Use the univalence axiom to show that the type $\sum_{(A:\mathcal{U})}$ is-contr(A) of all contractible types in \mathcal{U} is contractible.
 - (b) Use the univalence axiom and Exercises 13.3 and 13.4 to show that the universe of k-types

$$\mathcal{U}^{\leq k} \coloneqq \sum_{(X:\mathcal{I}_{k})} \mathsf{is}\mathsf{-trunc}_{k}(X)$$

is a (k + 1)-type, for any $k \ge -2$.

- (c) Show that $\mathsf{Prop}_{\mathcal{U}}$ is not a proposition.
- (d) Show that the universe $\mathsf{Set}_{\mathcal{U}}$ of sets in \mathcal{U} is not a set.

17.2 Give an example of a type family B over a type A for which the implication

$$\neg \Big(\prod_{(x:A)} B(x)\Big) \rightarrow \Big(\sum_{(x:A)} \neg B(x)\Big)$$

is false.

- 17.3 Show that the law of excluded middle holds if and only if every set has decidable equality.
- 17.4 Consider a type A and a univalent universe $\mathcal U$ containing A. Construct an equivalence

$$A \simeq \sum_{(B:A \to \mathcal{U})} \text{is-contr} \left(\sum_{(a:A)} B(a) \right).$$

- 17.5 Consider a map $f: A \rightarrow B$. Show that the following are equivalent:
 - (i) The map f is surjective.
 - (ii) For every set *C*, the precomposition function

$$-\circ f:(B\to C)\to (A\to C)$$

is an embedding.

Hint: To show that (ii) implies (i), use the assumption with the set $C := \mathsf{Prop}_{\mathcal{U}}$, where \mathcal{U} is a univalent universe containing both A and B.

17.6 (Escardó) Consider a type A in \mathcal{U} . Show that the identity type, seen as a function

$$\operatorname{Id}: A \to (A \to \mathcal{U}),$$

is an embedding.

17.7 (a) For any type A in \mathcal{U} , consider the function

$$\Sigma_A:(A\to\mathcal{U})\to\mathcal{U},$$

which takes a family B of \mathcal{U} -small types to its Σ -type. Show that the following are equivalent:

- (i) The type *A* is *k*-truncated.
- (ii) The map Σ_A is k-truncated.

Hint: Construct an equivalence $fib_{\Sigma_A}(X) \simeq (X \to A)$.

(b) Show that the map $+: \mathcal{U} \times \mathcal{U} \to \mathcal{U}$, which takes (A, B) to the coproduct A + B, is 0-truncated.

17.8 (Escardó) Consider a proposition P and a universe $\mathcal U$ containing P. Show that the map

$$\Pi_P: (P \to \mathcal{U}) \to \mathcal{U}$$

given by $A \mapsto \prod_{(p:P)} A(p)$, is an embedding.

17.9 Consider two types A and B and a universe \mathcal{U} containing both A and B. A **binary correspondence** $R:A\to (B\to \mathcal{U})$ is said to be a **function** if it satisfies the condition

$$is-function(R) := \prod_{(a:A)} is-contr \Big(\sum_{(b:B)} R(a,b) \Big),$$

and R is said to be an **opposite function** if the **opposite correspondence** $R^{op}: B \to (A \to \mathcal{U})$ given by $R^{op}(b, a) := R(a, b)$ is functional.

(a) Construct an equivalence

$$(A \to B) \simeq \sum_{(R:A \to (B \to \mathcal{U}))} \text{is-function}(R).$$

(b) Construct an equivalence

$$(A \simeq B) \simeq \sum_{(R:A \to (B \to \mathcal{U}))} \text{is-function}(R) \times \text{is-function}(R^{op}).$$

17.10 (a) For any $k : \mathbb{N}$, show that the type

$$\sum_{(X:BS_{k+1})} \operatorname{Fin}_k \hookrightarrow X$$

is contractible.

(b) More generally, construct for any $k, l : \mathbb{N}$ and any k-element type A an equivalence

$$\left(\sum_{(X:BS_{k+l})} A \hookrightarrow X\right) \simeq BS_l$$

17.11 (a) For any type A, construct an equivalence

$$\mathcal{U}_A \simeq \sum_{(X:\mathcal{U}_{A+1})} {X \choose 1}.$$

(b) For any $k : \mathbb{N}$, construct an equivalence

$$\left(\textstyle\sum_{(X:BS_{k+1})}\!X\right)\simeq BS_k.$$

In other words, show that the type of (k + 1)-element types equipped with a point is equivalent to the type of k-element

types. Conclude that the type of pointed finite types is equivalent to the type of finite types, i.e., conclude that we have an equivalence

$$\left(\sum_{(X:\mathbb{F})} X\right) \simeq \mathbb{F}.$$

17.12 (a) Show that for $k \neq 2$, the type

$$\prod_{(X:BS_k)} X \to X$$

is contractible. Conclude that the type $\prod_{(X:BS_k)} X \simeq X$ is also contractible. Hint: Use Exercise 17.11.

(b) Show that the type

$$\prod_{(X:BS_2)} X \to X$$

is equivalent to Fin₂. Conclude that the type $\prod_{(X:BS_2)} X \simeq X$ is also equivalent to Fin₂.

- 17.13 Consider a type A.
 - (a) Recall from Exercise 12.14 that an element a:A is isolated if and only if the map $const_a: \mathbf{1} \to A$ is a decidable embedding. Construct an equivalence

$$\begin{pmatrix} A \\ \mathbf{1} \end{pmatrix} \simeq \sum_{(a:A)} \text{is-isolated}(a).$$

(b) Construct an equivalence

$$\begin{pmatrix} A \\ \mathbf{1} \end{pmatrix} \simeq \Big(\sum_{(X:\mathcal{U})} (X + \mathbf{1}) \simeq A \Big).$$

Conclude that the map $X \mapsto X + \mathbf{1}$ on a univalent universe \mathcal{U} is 0-truncated.

(c) More generally, construct an equivalence

$$\begin{pmatrix} A \\ B \end{pmatrix} \simeq \sum_{(X:\mathcal{U}_B)} \sum_{(Y:\mathcal{U})} (X+Y\simeq A).$$

17.14 For any $(X, i) : \binom{A}{B}$, we define $A \setminus (X, i) := (A \setminus X, A \setminus i) : \binom{A}{B}$, where

$$A \setminus X := \sum_{(a:A)} \neg (\mathsf{fib}_i(a))$$

Now consider a finite type *X* and two arbitrary types *A* and *B*. Construct an equivalence

$$(A+B)^X\simeq \textstyle\sum_{(k:\mathbb{N})} \textstyle\sum_{((Y,i):\binom{X}{\mathsf{Fin}_k})} A^Y\times B^{X\setminus Y}.$$

- 17.15 Let \mathcal{U} be a univalent universe.
 - (a) Consider a section-retraction pair

$$A \xrightarrow{i} X \xrightarrow{r} A$$

with $H: r \circ i \sim \text{id}$. Show that if X is \mathcal{U} -small, then so is A. Hint: Use Exercise 13.18.

- (b) Consider two inhabited types A and B. Show that if the product $A \times B$ is \mathcal{U} -small, then so are the types A and B.
- 17.16 Consider a finite type X and a univalent universe \mathcal{U} containing X. Show that the type

$$\mathsf{Retr}_{\mathcal{U}}(X) \coloneqq \sum_{(A:\mathcal{U})} \sum_{(i:A \to X)} \sum_{(r:X \to A)} r \circ i \sim \mathsf{id}$$

of all retracts of *X* is finite.

17.17 Consider a k-truncated type X and a univalent universe $\mathcal U$ containing X. Show that the type

$$Retr_{\mathcal{U}}(X)$$

of all retracts of *X* is *k*-truncated.

17.18 For any type A and any $k \ge -1$, show that the type

$$\sum_{(X:\mathcal{U}^{\leq k})} A \twoheadrightarrow X$$

of k-truncated types X equipped with a surjective map $A \twoheadrightarrow X$ is k-truncated, even though the type $\mathcal{U}^{\leq k}$ itself is (k+1)-truncated.

17.19 (a) Show that for $k \ge 3$, the type

$$\prod_{(X:BS_k)} (X+X) \hookrightarrow (X\times X) + \mathbf{1}$$

is empty, even though the inequality $2k \le k^2 + 1$ holds for all $k : \mathbb{N}$.

(b) Show that the type

$$\prod_{(X:BS_2)}(X+X) \hookrightarrow (X\times X)+\mathbf{1}$$

is equivalent to Fin₈.

17.20 For any natural number n consider the type

$$\tilde{D}_n := \sum_{(X:BS_2)} \sum_{(Y:X \to \mathbb{F})} \Big(\mathsf{Fin}_n \simeq \prod_{(x:X)} Y(x) \Big).$$

- (a) Show that $\tilde{D}_1 \simeq BS_2$.
- (b) Show that \tilde{D}_n is contractible if and only if n is prime.
- (c) Show that \tilde{D}_n is a set if and only if n is not a square.

18 Set quotients

In this section we construct the quotient of a type by an equivalence relation. By an equivalence relation we understand a binary relation R which is reflexive, symmetric, transitive, and moreover, we require that the type R(x, y) relating x and y is a proposition. Therefore, if \mathcal{U} is a universe that contains R(x, y) for each x, y : A, then we can view R as a map

$$R: A \to (A \to \mathsf{Prop}_{\mathcal{U}}).$$

The quotient A/R is constructed as the type of equivalence classes, which is just the image of the map $R:A\to (A\to \mathsf{Prop}_\mathcal{U})$. This construction of the quotient by an equivalence relation is very much like the construction of a quotient set in classical set theory. Examples of set quotients are abundant in mathematics. We cover two of them in this section: the type of rational numbers and the set truncation of a type.

There is, however, a subtle issue with our construction of the set quotient as the image of the map $R:A\to (A\to \mathsf{Prop}_{\mathcal{U}})$. What universe is the quotient A/R in? Note that $\mathsf{Prop}_{\mathcal{U}}$ is a type in the successor universe \mathcal{U}^+ , constructed in Definition 6.2.3. Therefore the function type $A\to \mathsf{Prop}_{\mathcal{U}}$ as well as the quotient A/R are also types in \mathcal{U}^+ . That seems unfortunate, because in Zermelo-Fraenkel set theory the quotient of a set by an equivalence relation is an ordinary set, and not a more general class.

To address the size issues of set quotients, we will introduce the type theoretic replacement axiom. This axiom is analogous to the replacement axiom in Zermelo-Fraenkel set theory, which asserts that the image of a set under any function is again a set. The type theoretic replacement property asserts that for any map $f : A \to B$ from a type A in $\mathcal U$ to a type B of which the *identity types* are equivalent to types in $\mathcal U$, the image of f is also equivalent

to a type in \mathcal{U} . The replacement axiom can either be assumed, or it can be proven from the assumption that universes are closed under certain *higher inductive types*, and it is therefore considered to be a very mild assumption.

18.1 Equivalence relations and the replacement axiom

Definition 18.1.1 Consider a type A and a universe \mathcal{U} . Let $R: A \to (A \to \mathsf{Prop}_{\mathcal{U}})$ be a binary relation on A valued in the propositions in \mathcal{U} . We say that R is an **equivalence relation** if R comes equipped with

$$\rho: \prod_{(x:A)} R(x, x)$$

$$\sigma: \prod_{(x,y:A)} R(x, y) \to R(y, x)$$

$$\tau: \prod_{(x,y:A)} R(x, y) \to (R(y, z) \to R(x, z)),$$

witnessing that R is reflexive, symmetric, and transitive. We write Eq-Rel $_{\mathcal{U}}(A)$ for the type of all equivalence relations on A valued in the propositions in \mathcal{U} .

Definition 18.1.2 Let $R: A \to (A \to \mathsf{Prop}_{\mathcal{U}})$ be an equivalence relation. A subtype $P: A \to \mathsf{Prop}_{\mathcal{U}}$ is said to be an **equivalence class** if it satisfies the condition

is-equivalence-class(
$$P$$
) := $\exists_{(x:A)} \forall_{(y:A)} P(y) \leftrightarrow R(x,y)$.

We define A/R to be the type of equivalence classes, i.e., we define

$$A/R := \sum_{(P:A \to \mathsf{Prop}_{q_\ell})} \mathsf{is-equivalence-class}(P).$$

Furthermore, we define **equivalence class of** x : A to be

$$[x]_R \coloneqq R(x),$$

which is indeed an equivalence class. Sometimes we will write $q_R : A \to A/R$ for the map $x \mapsto [x]_R$.

In other words, A/R is the image of the map $R: A \to (A \to \mathsf{Prop}_{\mathcal{U}})$. In the following proposition we characterize the identity type of A/R. As a corollary, we obtain equivalences

$$([x]_R = [y]_R) \simeq R(x, y),$$

justifying that the quotient A/R is defined to be the type of equivalence classes. Note that in our characterization of the identity type of A/R we make use of propositional extensionality.

Proposition 18.1.3 *Let* $R: A \to (A \to \mathsf{Prop}_{\mathcal{U}})$ *be an equivalence relation. Furthermore, consider* x: A *and an equivalence class* P. *Then the canonical map*

$$([x]_R = P) \rightarrow P(x)$$

is an equivalence.

Proof By Theorem 11.2.2 it suffices to show that the total space

$$\sum_{(P:A/R)} P(x)$$

is contractible. The center of contraction is of course $[x]_R$, which satisfies $[x]_R(x)$ by reflexivity of R. It remains to construct a contraction. Since $\sum_{(P:A/R)} P(x)$ is a subtype of A/R, we construct a contraction by showing that

$$[x]_R = P$$

whenever P(x) holds. Since P is an equivalence class there exists an element y: A such that $P = [y]_R$. Note that our goal is a proposition, so we may assume that we have such a y. From the assumption that P(x) holds, it follows that R(x, y) holds. To complete the proof, it therefore is suffices to show that

$$[x]_R = [y]_R,$$

assuming that R(x, y) holds. By function extensionality and propositional extensionality, it is equivalent to show that

$$\prod_{(z:A)} R(x,z) \leftrightarrow R(y,z),$$

which follows directly from the assumption that *R* is an equivalence relation.

Corollary 18.1.4 Consider an equivalence relation R on a type A, and let x, y: A. Then there is an equivalence

$$([x]_R = [y]_R) \simeq R(x, y).$$

Remark 18.1.5 Notice that type of equivalence classes of an equivalence relation in \mathcal{U} is a type in the universe \mathcal{U}^+ that contains \mathcal{U} and every type in \mathcal{U} , or indeed in any universe \mathcal{V} containing \mathcal{U} and every type in \mathcal{U} . Indeed, the type

$$\mathsf{Prop}_{\mathcal{U}} \doteq \sum_{(X:\mathcal{U})} \mathsf{is-prop}(X)$$

of propositions in \mathcal{U} is a type in \mathcal{V} . It follows that the type $A \to \mathsf{Prop}_{\mathcal{U}}$ is a type in \mathcal{V} . The type of equivalence classes of an equivalence relation R on A

in \mathcal{U} is a subtype of $A \to \mathsf{Prop}_{\mathcal{U}}$ in \mathcal{U} , so we conclude that A/R is a type in \mathcal{V} .

In classical mathematics, on the other hand, we consider the class of equivalence classes of an equivalence relation to be a (small) set. We will introduce the replacement axiom in order to ensure that set quotients in type theory are small.

Recall that in set theory, the replacement axiom asserts that for any family of sets $\{X_i\}_{i\in I}$ indexed by a set I, there is a set X[I] consisting of precisely those sets x for which there exists an $i \in I$ such that $x \in X_i$. In other words: the image of a set-indexed family of sets is again a set. Without the replacement axiom, X[I] would be a class.

In type theory, we may similarly ask whether the image of a map $X:I\to \mathcal{U}$ is \mathcal{U} -small, assuming that I is \mathcal{U} -small. The replacement axiom settles a more general variant of this question. The key observation is that the identity types of \mathcal{U} are \mathcal{U} -small by the univalence axiom. In other words, univalent universes are *locally small* in the following sense.

Definition 18.1.6 Consider a universe \mathcal{U} . A type A is said to be **locally** \mathcal{U} -small if the identity type x = y is \mathcal{U} -small for every x, y : A. We write

is-locally-small_{$$\mathcal{U}$$} $(A) \coloneqq \prod_{(x,y:A)}$ is-small _{\mathcal{U}} $(x=y)$.

Similarly, a map $f: A \to B$ is said to be **locally** \mathcal{U} **-small** if all of its fibers are locally \mathcal{U} -small.

Example 18.1.7

- (i) Any \mathcal{U} -small type is also locally \mathcal{U} -small.
- (ii) Any proposition is locally small with respect to any universe \mathcal{U} .
- (iii) Any univalent universe ${\cal U}$ is locally ${\cal U}$ -small, because by the univalence axiom we have an equivalence

$$(A=B)\simeq (A\simeq B)$$

for each A, B: \mathcal{U} , and the type $A \simeq B$ is in \mathcal{U} .

(iv) For any family B of locally \mathcal{U} -small types over a \mathcal{U} -small type A, the dependent product $\prod_{(x:A)} B(x)$ is locally \mathcal{U} -small.

We are now ready to assume the replacement axiom.

Axiom 18.1.8 (The replacement axiom) For any universe \mathcal{U} , we assume that for any map $f: A \to B$ from a \mathcal{U} -small type A into a locally \mathcal{U} -small type B, the image of f is \mathcal{U} -small.

Example 18.1.9 For any type $A : \mathcal{U}$, the type \mathcal{U}_A of all types in \mathcal{U} merely equivalent to A is equivalent to the image of the constant map $\mathsf{const}_A : \mathbf{1} \to \mathcal{U}$ is small. Since $\mathbf{1}$ is small and \mathcal{U} is locally \mathcal{U} -small, it follows from the replacement axiom that \mathcal{U}_A is \mathcal{U} -small.

Example 18.1.10 The type $\mathbb F$ of all finite types in $\mathcal U$ is equivalent to be the image of the map

Fin :
$$\mathbb{N} \to \mathcal{U}$$
.

Since $\mathbb N$ is $\mathcal U$ -small and $\mathcal U$ is locally $\mathcal U$ -small, it follows from the replacement axiom that $\mathbb F$ is $\mathcal U$ -small.

Example 18.1.11 Consider a type A in \mathcal{U} and an equivalence relation R on A in \mathcal{U} . Then the type A/R is \mathcal{U} -small, since it is equivalent to the image of

$$R: A \to (A \to \mathsf{Prop}_{\mathcal{U}}),$$

which maps the \mathcal{U} -small type A into the locally \mathcal{U} -small type $A \to \mathsf{Prop}_{\mathcal{U}}$.

18.2 The universal property of set quotients

The quotient A/R is constructed as the image of R, so we obtain a commuting triangle

$$A \xrightarrow{q_R} A/R$$

$$\downarrow_{i_R}$$

$$\mathsf{Prop}_{\mathcal{U}}^A,$$

and the embedding $i_R: A/R \to \mathsf{Prop}_{\mathcal{U}}^A$ satisfies the universal property of the image of R. This universal property is, however, not the usual universal property of the quotient.

Definition 18.2.1 Consider a map $q:A\to B$ into a set B satisfying the property that

$$R(x,y) \to (q(x) = q(y))$$

for all x, y : A. We say that q : $A \rightarrow B$ is a set quotient of R, or that q satisfies

the **universal property of the set quotient by** R, if for every map $f: A \to X$ into a set X such that f(x) = f(y) whenever R(x, y) holds, there is a unique extension

$$\begin{array}{ccc}
A & & \\
q \downarrow & & \\
B & --- & X.
\end{array}$$

Remark 18.2.2 Formally, we express the universal property of the quotient by R as follows. Consider a map $q: A \rightarrow B$ that satisfies the property that

$$H: \prod_{(x,y;A)} R(x,y) \rightarrow (f(x) = f(y)).$$

Then there is for any set *X* a map

$$q^*: (B \to X) \to \Bigl(\textstyle \sum_{(f:A \to X)} \prod_{(x,y:A)} R(x,y) \to (f(x) = f(y))\Bigr).$$

This map takes a function $h: B \to X$ to the pair

$$q^*(h) := (h \circ q, \lambda x. \lambda y. \lambda r. \operatorname{ap}_h(H_{x,y}(r))).$$

The universal property of the set quotient of R asserts that the map q^* is an equivalence for every set X. It is important to note that the universal property of set quotients is formulated with respect to sets.

Theorem 18.2.3 Consider a type A and a universe \mathcal{U} containing A. Furthermore, let $R: A \to (A \to \mathsf{Prop}_{\mathcal{U}})$ be an equivalence relation, and consider a map $q: A \to B$ into a set B, not necessarily in \mathcal{U} . Then the following are equivalent.

(i) The map q satisfies the property that

$$q(x) = q(y)$$

for every x, y: A for which R(x, y) holds, and moreover q satisfies the universal property of the set quotient of R.

(ii) The map q is surjective and **effective**, which means that for each x, y: A we have an equivalence

$$(q(x)=q(y))\simeq R(x,y).$$

(iii) The map $R: A \to (A \to \mathsf{Prop}_{\mathcal{U}})$ extends along q to an embedding

and the embedding i satisfies the universal property of the image inclusion of R.

In Theorem 18.2.3 we don't assume that B is in the same universe as A and R, because we want to apply it to $B := \operatorname{im}(R)$. As we will see below, this extra generality only affects the proof that (ii) implies (iii).

Proof We first show that (ii) is equivalent to (iii), since this is the easiest part. After that, we will show that (i) is equivalent to (ii).

Assume that (iii) holds. Then q is surjective by Theorem 15.2.5. Moreover, we have

$$R(x,y) \simeq R(x) = R(y)$$

$$\simeq i(q(x)) = i(q(y))$$

$$\simeq q(x) = q(y)$$

In this calculation, the first equivalence holds by Corollary 18.1.4; the second equivalence holds since we have a homotopy $R \sim i \circ q$; and the third equivalence holds since i is an embedding. This completes the proof that (iii) implies (ii).

Next, we show that (ii) implies (iii). First, we want to define a map

$$i: B \to \mathsf{Prop}_{\mathcal{U}}^A$$
.

We would like to define i(b,a) := (b=q(a)). This direct definition does not go through, however, because the type B is not assumed to be in \mathcal{U} . Nevertheless, observe that by the assumption that q is surjective and effective, the type B is locally \mathcal{U} -small. To see this, first note that is-small $_U(X)$ is a proposition for any type X by Proposition 17.1.5. Using the assumption that q is surjective, it follows from Proposition 15.2.3 that it suffices to show that q(a) = q(a') is \mathcal{U} -small for each a, a': A. This follows by the assumption that q is effective. In particular, the identity type b = q(a) is a \mathcal{U} -small proposition, for every b: B and a: A. Let us write s(b,a) for the element of type is-small $_{\mathcal{U}}(b=q(a))$.

Now consider a universe V containing B. Then we can define a map

$$j: B \to \Big(A \to \sum_{(P: \mathsf{Prop}_{\mathcal{V}})} \mathsf{is\text{-small}}_{\mathcal{U}}(P)\Big)$$

by j(b, a) := (b = q(a), s(b, a)), and now we obtain i from j by defining

$$i(b,a) := \mathsf{pr}_1(s(b,a)).$$

Note that we have an equivalence $i(b, a) \simeq (b = q(a))$ for every b : B and a : A. Then the triangle

commutes, since we have an equivalence

$$i(q(a),a') \simeq (q(a) = q(a')) \simeq R(a,a')$$

for each a, a': A. To show that i is an embedding, recall from Exercise 12.3 (a) that it suffices to show that i is injective, i.e., that

$$\prod_{(b,b':B)}(i(b)=i(b'))\to (b=b'),$$

since the codomain of i is a set by Theorem 17.2.3. Note that injectivity of a map into a set is a property, and that q is assumed to be surjective. Hence by Proposition 15.2.3 it is sufficient to show that

$$\textstyle\prod_{(a,a':A)}(i(q(a))=i(q(a')))\to (q(a)=q(a')).$$

Since $R \sim i \circ q$, and q(a) = q(a') is assumed to be equivalent to R(a, a'), it suffices to show that

$$\prod_{(a,a':A)} (R(a) = R(a')) \to R(a,a'),$$

which follows directly from Corollary 18.1.4. Thus we have shown that the factorization $R \sim i \circ q$ factors R as a surjective map followed by an embedding. We conclude by Theorem 15.2.5 that the embedding i satisfies the universal property of the image factorization of R, which finishes the proof that (ii) implies (iii).

Now we show that (i) implies (ii). To see that q is surjective if it satisfies the

assumptions in (i), consider the image factorization

We claim that the map i_q has a section. To see this, we first note that we have

$$q_q(x) = q_q(y)$$

for any x, y: A satisfying R(x, y), because if R(x, y) holds, then q(x) = q(y) and hence $i_q(q_q(x)) = i_q(q_q(y))$ holds and i_q is an embedding. Since $\operatorname{im}(q)$ is a set, we may apply the universal property of q and we obtain a unique extension of q_q along q

$$\begin{array}{ccc}
A & & & & & & \\
q \downarrow & & & & & & \\
B & --\frac{1}{h} & & & & & & \\
\end{array}$$

Now we observe that the composite $i_q \circ h$ is an extension of q along q, so it must be the identity function by uniqueness. Thus we have established that h is a section of i_q . Since i_q is an embedding with a section, it follows that i_q is an equivalence. We conclude that q is surjective, because q is the composite $i_q \circ q_q$ of a surjective map followed by an equivalence.

Now we have to show that the map q is effective, i.e., that q(x) = q(y) is equivalent to R(x, y) for every x, y : A. We first apply the universal property of q to obtain for each x : A an extension of R(x) along q

$$\begin{array}{ccc}
A & & & \\
q \downarrow & & & \\
B & \xrightarrow{-} & & & \\
\tilde{R}(x) & & & & \\
\end{array}$$
Prop_{*U*}.

Since the triangle commutes, we have an equivalence $\tilde{R}(x, q(x')) \simeq R(x, x')$ for each x' : A. Now we apply Theorem 11.2.2 to see that the canonical family of maps

$$\prod_{(y:B)} (q(x) = y) \to \tilde{R}(x,y)$$

is a family of equivalences. Thus, we need to show that the type $\sum_{(y:B)} \tilde{R}(x,y)$ is contractible. For the center of contraction, note that we have q(x): B, and

the type $\tilde{R}(x, q(x))$ is equivalent to the type R(x, x), which is inhabited by reflexivity of R. To construct the contraction, it suffices to show that

$$\prod_{(y:B)} \tilde{R}(x,y) \to (q(x) = y).$$

Since this is a property, and since we have already shown that q is a surjective map, we may apply Proposition 15.2.3, by which it suffices to show that

$$\prod_{(x':A)} \tilde{R}(x, q(x')) \to (q(x) = q(x')).$$

Since $\tilde{R}(x, q(x')) \simeq R(x, x')$, this is immediate from our assumption on q. Thus we obtain the contraction, and we conclude that we have an equivalence $\tilde{R}(x, y) \simeq (q(x) = y)$ for each y : B. It follows that we have an equivalence

$$R(x, y) \simeq (q(x) = q(y))$$

for each x, y: A, which completes the proof that (i) implies (ii).

It remains to show that (ii) implies (i). Assume (ii), and let $f : A \to X$ be a map into a set X, satisfying the property that

$$\prod_{(a,a':A)} R(a,a') \to (f(a) = f(a')).$$

Our goal is to show that the type of extensions of f along q is contractible. By Exercise 17.5 it follows that there is at most one such an extension, so it suffices to construct one.

In order to construct an extension, we will construct for every b: B a term x: X satisfying the property

$$P(x) := \exists_{(a:A)} (f(a) = x) \land (q(a) = b).$$

Before we make this construction, we first observe that there is at most one such x, i.e., that the type of x : X satisfying P(x) is in fact a proposition. To see this, we need to show that x = x' for any x, x' : X satisfying P(x) and P(x'). Since X is assumed to be a set, our goal of showing that x = x' is a property. Therefore we may assume that we have a, a' : A satisfying

$$f(a) = x q(a) = b$$

$$f(a') = x' q(a') = b.$$

It follows from these assumptions that q(a) = q(a'), and hence that R(a, a') holds. This in turn implies that f(a) = f(a'), and hence that x = x'.

Now let b : B. Our goal is to construct an x : X that satisfies the property

$$\exists_{(a:A)}(f(a)=x) \land (q(a)=b).$$

Since q is assumed to be surjective, we have $\|\text{fib}_q(b)\|$. Moreover, since we have shown that at most one x: X exists with the asserted property, we get to assume that we have a: A satisfying q(a) = b. Now we see that x := f(a) satisfies the desired property.

Thus, we obtain a function $h: B \to X$ satisfying the property that for all b: B there exists an a: A such that

$$f(a) = h(b)$$
 and $q(a) = b$.

In particular, it follows that h(q(a)) = f(a) for all a : A, which completes the proof that (ii) implies (i).

Corollary 18.2.4 Consider an equivalence relation R over a type A. Then the quotient map

$$q: A \rightarrow A/R$$

is surjective and effective, and it satisfies the universal property of the set quotient.

Theorem 18.2.3 can be used to show that the type of equivalence relations is equivalent to the type of sets X equipped with a surjective map A woheadrightarrow X. This may seem remarkable if you haven't tried Exercise 17.18 yet, because at first glance one might think that the type of sets X equipped with a surjective map A woheadrightarrow X is a 1-type, while the type of equivalence relations on A is a set.

Theorem 18.2.5 For any type A and any universe \mathcal{U} containing A, we have an equivalence

$$\operatorname{Eq-Rel}_{\mathcal{U}}(A) \simeq \sum_{(X:\operatorname{Set}_{\mathcal{U}})} A \twoheadrightarrow X.$$

Proof Given an equivalence relation $R:A\to (A\to \mathsf{Prop}_\mathcal{U})$ on A we first use the replacement axiom, by which the set quotient A/R is \mathcal{U} -small, to obtain a set $Q(R):\mathsf{Set}_\mathcal{U}$, an equivalence $e:Q(R)\simeq A/R$, and a surjective map $f:A\to Q(R)$ such that the triangle

commutes. This defines a map

$$Q_A: \mathsf{Eq}\text{-Rel}_{\mathcal{U}}(A) o \sum_{(X:\mathsf{Set}_{\mathcal{U}})} A woheadrightarrow X.$$

The map
$$\mathcal{K}_A: \left(\sum_{(X:\mathsf{Set}_{\mathcal{U}})} A \twoheadrightarrow X\right) \to \mathsf{Eq}\text{-Rel}_{\mathcal{U}}(A)$$
 is given by
$$\mathcal{K}_A(X,f,x,y) \coloneqq K_f(x,y) \coloneqq (f(x)=f(y)).$$

Note that K_f is valued in propositions because X is assumed to be a set, and obviously it is an equivalence relation.

To see that $\mathcal{K}_A(Q_A(R)) = R$ note that by function extensionality and propositional extensionality it follows that two equivalence relations R and S on A are equal if and only if $R(x,y) \leftrightarrow S(x,y)$ for all x,y:A. Note that $\mathcal{K}_A(Q_A(R))(x,y) \leftrightarrow R(x,y)$ holds for all x,y:A if and only if $(q_R(x) = q_R(y)) \leftrightarrow R(x,y)$ holds for all x,y:A. This follows from Corollary 18.1.4.

It remains to show that $Q_A(\mathcal{K}_A(X, f)) = (X, f)$. Note that the type of identifications (Y, g) = (X, f) is by the univalence axiom equivalent to the type

$$\sum_{(e:Y\simeq X)}e\circ g\sim f.$$

Therefore it suffices to construct a commuting triangle

We obtain such an equivalence by combining Theorem 18.2.3 and Theorem 15.1.8.

18.3 Partitions

There are many equivalent ways of stating what an equivalence relation is. We saw in Theorem 18.2.5 that the type of equivalence relations on A is equivalent to the type of surjective maps out of A into a set. Here we will show that the type of equivalence relations on A is equivalent to the type of partitions of A. Another type that is equivalent to the type of equivalence relations of A is the type of set-indexed Σ -decompositions of A, i.e., the type of triples (X,Y,e) consisting of a set X, a family Y of inhabited types indexed by X, and an equivalence $e:A \cong \sum_{(x:X)} Y(x)$. The fact that the type of equivalence relations on A is equivalent to the type of set-indexed Σ -decompositions of A is stated as Exercise 18.4

In this section we show that equivalence relations on *A* are partitions of *A*. Recall that the type of inhabited subtypes of *A* is defined to be

$$\mathcal{P}^+_{\mathcal{U}}(A) \coloneqq \sum_{(Q:A \to \mathsf{Prop}_{\mathcal{U}})} \left\| \sum_{(a:A)} Q(a) \right\|.$$

The equivalence of equivalence relations and partitions requires some finesse regarding universes. This is why we set up the definition of partitions in the following way.

Definition 18.3.1 Let A be a type and let \mathcal{U} and \mathcal{V} be two universes. A $(\mathcal{U}, \mathcal{V})$ -partition of a type A is a subset

$$P: \mathcal{P}_{\mathcal{U}}^+(A) \to \mathsf{Prop}_{\mathcal{V}}$$

of the type of inhabited subsets of A such that for each x: A there is a unique inhabited subset Q of A in P that contains x, i.e., if it comes equipped with an element of type

$$\text{is-partition}(P) := \textstyle \prod_{(x:A)} \text{is-contr} \Big(\textstyle \sum_{(Q:\mathcal{P}^+_{\mathcal{U}}(A))} P(Q) \times Q(x) \Big)$$

The type of all $(\mathcal{U}, \mathcal{V})$ -partitions of A is defined by

$$\mathsf{Partition}_{\mathcal{U},\mathcal{V}}(A) \coloneqq \textstyle\sum_{(P:\mathcal{P}^+_{\mathcal{U}}(A) \to \mathsf{Prop}_{\mathcal{V}})} \mathsf{is}\text{-partition}(P)$$

Theorem 18.3.2 Consider a type A, a universe \mathcal{U} , and consider a universe \mathcal{V} containing both A and every type in \mathcal{U} . Then we have an equivalence

$$\operatorname{Eq-Rel}_{\mathcal{U}}(A) \simeq \operatorname{Partition}_{\mathcal{U},\mathcal{V}}(A).$$

Proof Consider an equivalence relation *R* on *A*. Then we define

$$P: \mathcal{P}_{\mathcal{U}}^+(A) \to \mathsf{Prop}_{\mathcal{V}}$$

by $P(Q) := \exists_{(x:A)} \forall_{(y:A)} Q(y) \leftrightarrow R(x,y)$. In other words, P is the subtype of equivalence classes of R, which are all inhabited. To show that P is a partition of A, let x : A. The type

$$\textstyle\sum_{(Q:\mathcal{P}_{\mathcal{U}}^+(A))} P(Q) \times Q(x)$$

is equivalent to the type

$$\sum_{(Q:\mathcal{P}_{a'}^+(A))} \prod_{(y:A)} Q(y) \leftrightarrow R(x,y)$$

since the proposition $\exists_{(z:A)} \forall_{(y:A)} Q(y) \leftrightarrow R(z,y)$ is equivalent to the type $\prod_{(y:A)} Q(y) \leftrightarrow R(x,y)$, given an element q:Q(x). By univalence it follows

that the latter type is equivalent to the identity type Q = R(x) in $\mathcal{P}_{\mathcal{U}}^+(A)$, so the total space is contractible. Thus we obtain a map

$$\psi: \operatorname{Eq-Rel}_{\mathcal{U}}(A) \to \operatorname{Partition}_{\mathcal{U},\mathcal{V}}(A).$$

For the converse map, we first define for any $(\mathcal{U}, \mathcal{V})$ -partition P of A a binary relation R_P such that $R_P(x)$ is at the center of contraction in the type

$$\sum_{(Q:\mathcal{P}_{at}^+(A))} P(Q) \times Q(x).$$

In other words, $R_P(x)$ is defined to be the unique block in the partition P such that $R_P(x,x)$ holds. It is immediate from its definition that $R_P(x,y)$ is a proposition in \mathcal{U} . To see that R_P is symmetric, note that if $R_P(x,y)$ holds, then $R_P(x)$ is an element of type

$$\sum_{(Q:\mathcal{P}_{\mathcal{U}}^+(A))} P(Q) \times Q(y).$$

By contractibility, this implies that R(x) = R(y), from which we obtain that R(y,x) holds. To see that R_P is transitive we observe similarly that if R(x,y) and R(y,z) hold, then we have an identification R(x) = R(y) and it follows that R(x,z) holds. Thus we obtain a map

$$\varphi: \operatorname{Partition}_{\mathcal{U},\mathcal{V}}(A) \to \operatorname{Eq-Rel}_{\mathcal{U}}(A).$$

It remains to prove that the maps ψ and φ are inverse to each other, first let R be an equivalence relation. In order to show that $\varphi(\psi(R)) = R$ it suffices by univalence to show that the equivalence relation obtained from the partition induced by R is given by

$$R'(x,y) := \textstyle \sum_{(Q:\mathcal{P}^+_{\mathcal{U}}(A))} \Bigl(\exists_{(u:A)} \forall_{(v:A)} Q(v) \leftrightarrow R(u,v) \Bigr) \times Q(x) \times Q(y).$$

is equivalent to R. Observe that the proposition R'(x, y) is equivalent to $R(x, x) \times R(x, y)$, which is equivalent to R(x, y). This shows that the composite

$$\mathsf{Eq}\text{-}\mathsf{Rel}_{\mathcal{U}}(A) \xrightarrow{\quad \psi \quad} \mathsf{Partition}_{\mathcal{U},\mathcal{V}}(A) \xrightarrow{\quad \varphi \quad} \mathsf{Eq}\text{-}\mathsf{Rel}_{\mathcal{U}}(A)$$

is homotopic to the identity function.

Finally, we have to show that for any partition P of A and any inhabited subtype Q of A we have $\psi(\varphi(P))(Q) \leftrightarrow P(Q)$. Note that this is a proposition, so we may assume an element x:A such that Q(x) holds. By univalence it follows that $\psi(\varphi(P))(Q)$ holds if and only if $Q = R_P(x)$, where R_P is the

equivalence relation constructed in the definition of the map φ . Now we see that P(Q) holds if and only if Q is in the contractible type

$$\sum_{(Q':\mathcal{P}_{qI}^{+}(A))} P(Q') \times Q'(x),$$

which is the case if and only if $Q = R_P(x)$. This shows that the composite

$$\mathsf{Partition}_{\mathcal{U},\mathcal{V}}(A) \xrightarrow{\quad \varphi \quad} \mathsf{Eq}\text{-Rel}_{\mathcal{U}}(A) \xrightarrow{\quad \psi \quad} \mathsf{Partition}_{\mathcal{U},\mathcal{V}}(A)$$

is homotopic to the identity function.

18.4 Unique representatives of equivalence classes

A common way to construct set quotients is by showing that the equivalence classes of an equivalence relation have a choice of unique representatives. In this section we show that if there is a choice of unique representatives, then the set quotient can be constructed as the type of those representatives. An important reason to define set quotients as the type of canonical representatives, if that is possible, is that the universe level of the set quotient can be kept as low as possible without needing to appeal to the replacement axiom.

Definition 18.4.1 Consider an equivalence relation R on a type A, and consider a family of types C(x) indexed by x : A. We say that C is a **choice of (unique) representatives** of the equivalence classes of R if C comes equipped with an element of type

$$\text{is-choice-of-reps}(C) \coloneqq \textstyle \prod_{(x:A)} \text{is-contr} \Big(\textstyle \sum_{(y:A)} C(y) \times R(x,y) \Big).$$

Theorem 18.4.2 Consider an equivalence relation R on a type A, and let C be a choice of representatives of the equivalence classes of R, with (h(x), c(x), r(x)) at the center of contraction of $\sum_{(y:A)} C(y) \times R(x,y)$. Then the map

$$q:A \to \sum_{(x:A)} C(x)$$

given by q(x) := (h(x), c(x)) is a map into a set such that q(x) = q(y) for every x, y : A such that R(x, y) holds, and moreover q satisfies the universal property of the set quotient of A by R.

Proof First, we will use Theorem 12.3.4 to show that the type $\sum_{(y:A)} C(y)$ is a set, such that

$$((x,c)=(y,d))\simeq R(x,y)$$

for any (x, c) and (y, d) in $\sum_{(y:A)} C(y)$. Note that we have a function

$$R(x, y) \rightarrow ((x, c) = (y, d)),$$

since for any r: R(x,y) both (x,c,r) and (y,d,r) are elements of the contractible type $\sum_{(y:A)} C(y) \times R(x,y)$. Since R is a reflexive relation valued in propositions, the claim follows. In particular, it follows that

$$(q(x) = q(y)) \simeq R(x, y)$$

for any x, y : A, i.e., q is effective.

To prove the universal property of set quotients, note that by characterization (ii) in Theorem 18.2.3 it suffices to show that q is surjective and effective. We have already shown above that q is effective, so it remains to show that q is surjective. In fact, we will prove the stronger claim that the projection map

$$\operatorname{pr}_1: \sum_{(x:A)} C(x) \to A$$

is a section of q. Let x : A and c : C(x). Then $(x, c, \rho(x))$ is an element of the type

$$\sum_{(y:A)} C(y) \times R(x,y),$$

which is contractible with center of contraction (h(x), c(x), r(x)). Therefore it follows that $q(x) \doteq (h(x), c(x)) = (x, c)$. In particular, we see that $q(\operatorname{pr}_1(x, c)) = (x, c)$, i.e., that pr_1 is a section of q.

Example 18.4.3 In Proposition 7.2.4 we constructed the congruence relations $x \equiv y \mod k$ on the natural numbers for every natural number k, and in Theorems 7.4.7 and 7.4.8 we showed that the map

$$x \mapsto [x]_{k+1} : \mathbb{N} \to \mathsf{Fin}_{k+1}$$

is effective and split surjective. By Theorem 18.2.3 it follows that the map

$$x \mapsto [x]_{k+1} : \mathbb{N} \to \mathsf{Fin}_{k+1}$$

satisfies the universal property of the set quotient of the equivalence relation $x, y \mapsto x \equiv y \mod k + 1$.

We also claim that there is a choice of representatives of the congruence relations. We define our choice of representatives by

$$C(y) := fib_{\iota}(y),$$

where $\iota: \mathsf{Fin}_{k+1} \to \mathbb{N}$ is the inclusion of Fin_{k+1} into \mathbb{N} constructed in Definition 7.3.4. To see that C is a choice of representatives, we have to prove that

$$\sum_{(y:\mathbb{N})} C(y) \times (x \equiv y \mod k + 1)$$

is contractible for each $x:\mathbb{N}$. At the center of contraction we have the triple $(\iota([x]_{k+1}),([x]_{k+1},\mathsf{refl}),p)$ where $p:x\equiv\iota([x]_{k+1})\mod k+1$ is the proof obtained via Theorems 7.4.7 and 7.4.8. In order to construct the contraction, note that both C(y) and $x\equiv y\mod k+1$ are propositions for each $y:\mathbb{N}$. Therefore it suffices to prove that for any $y:\mathbb{N}$ such that C(y) and $x\equiv y\mod k+1$ hold, we have

$$\iota([x]_{k+1}) = y.$$

Since C(y) holds, we see that $y = \iota([y]_{k+1})$. Therefore it suffices to prove that $[x]_{k+1} = [y]_{k+1}$. This follows from Theorem 7.4.7, since we assumed $x \equiv y \mod k + 1$.

Example 18.4.4 Consider the type of (integer) fractions

$$Q := \mathbb{Z} \times \sum_{(y:\mathbb{Z})} y \neq 0.$$

We define an equivalence relation on *Q* by

$$((x,y)\sim (x',y'))\coloneqq (xy'=x'y).$$

This equivalence relation has a choice of representatives defined by

$$C(x,y)\coloneqq (y>0)\wedge (\gcd(x,y)=1).$$

In other words, we say that (x, y) is a **reduced fraction** if y > 0 and x and y are coprime.

To see that *C* defines a choice of unique representatives, we first need to construct the center of contraction of

$$\textstyle\sum_{(q:Q)} C(q) \times ((x,y) \sim q).$$

Note that if y < 0 then $(x, y) \sim (-x, -y)$, and we have -y > 0. It is therefore safe to assume that y > 0. We claim that

$$(x/\gcd(x,y),y/\gcd(x,y)):Q$$

satisfies C and is equivalent to (x, y). It is immediate that $y/\gcd(x, y) > 0$

and that $(x, y) \sim (x/\gcd(x, y), y/\gcd(x, y))$. The fact that $x/\gcd(x, y)$ and $y/\gcd(x, y)$ are coprime follows from the fact that

$$\gcd(x/d, y/d) = \gcd(x, y)/d$$

for any common divisor *d* of *x* and *y*.

To construct a contraction, let (x', y'): Q such that C(x', y') and $(x, y) \sim (x', y')$. Since C(q) and $(x, y) \sim q$ are propositions for every q: Q it suffices to show that

$$x' = x/\gcd(x, y)$$
 and $y' = y/\gcd(x, y)$.

Since x' and y' are assumed to be coprime, it follows from the equation

$$x'y/\gcd(x,y) = xy'/\gcd(x,y)$$

that x' divides $x/\gcd(x,y)$. Similarly $x/\gcd(x,y)$ and $y/\gcd(x,y)$ are coprime, it follows from the same equation that $x/\gcd(x,y)$ divides x', so we conclude that $ux' = x/\gcd(x,y)$ for some $u = \pm 1$. The fact that $vy' = y/\gcd(x,y)$ for some $v = \pm 1$ is proven similarly. However, since both y and y' are positive, and the $\gcd(x,y)$ of any two integers is positive, it follows that v = 1. Using the assumption that $x'y/\gcd(x,y) = xy'/\gcd(x,y)$, this allows us to deduce that also u = 1.

We define the type of rational numbers by

$$\mathbb{Q} := \sum_{((x,y):O)} (y > 0) \land \gcd(x,y) = 1,$$

and we define the quotient map $(x, y) \mapsto x/y : Q \to \mathbb{Q}$ to be the quotient map q in Theorem 18.4.2. By Theorem 18.4.2 it also follows that $(x, y) \mapsto x/y$ satisfies the universal property of the set quotient of the equivalence relation \sim on Q.

18.5 Set truncations

An important instance of set quotients in the univalent foundations of mathematics is the notion of set truncation. Analogous to the propositional truncation, the set truncation of a type A is a map $\eta: A \to \|A\|_0$ into a set

 $||A||_0$ such that any map $f: A \to X$ into a set X extends uniquely along η :

$$\begin{array}{ccc}
A & & \\
\eta \downarrow & & \\
\|A\|_0 & --- \to X.
\end{array}$$

In other words, the set truncation $\eta: A \to ||A||_0$ is the universal way of mapping A into a set. We first specify what it means for a map $f: A \to B$ into a set B to be a set truncation of A.

Definition 18.5.1 We say that a map $f : A \to B$ into a set B is a **set truncation** if the precomposition function

$$-\circ f:(B\to X)\to (A\to X)$$

is an equivalence for every set *X*.

In the following theorem we prove several conditions that are equivalent to being a set truncation.

Theorem 18.5.2 Consider a map $f: A \rightarrow B$ into a set B. Then the following are equivalent:

- (i) The map f is a set truncation.
- (ii) The map f satisfies the **dependent universal property** of the set truncation: For every family X of sets over B, the precomposition function

$$-\circ f: \left(\prod_{(b:B)} X(b)\right) \to \left(\prod_{(a:A)} X(f(a))\right)$$

is an equivalence.

(iii) The map f is surjective and effective with respect to the equivalence relation $x, y \mapsto ||x = y||$, i.e., we have equivalences

$$(f(x) = f(y)) \simeq ||x = y||$$

for every x, y : A.

Proof The fact that (ii) implies (i) is immediate. Moreover, the fact that (i) is equivalent to (iii) follows from the fact that any map $h: A \to X$ into a set X comes equipped with a function

$$\|x=y\| \to (h(x)=h(y))$$

for every x, y: A.

It remains to prove that (i) implies (ii). Consider a family *X* of sets over *B*, and consider the commuting square

The side maps are equivalences by the distributivity of Π over Σ , and the bottom map is an equivalence by the assumption that f is a set truncation. Therefore it follows that the top map is an equivalence. Furthermore, note that the map

$$-\circ f:(B\to B)\to (A\to B)$$

is an equivalence by the assumption that f is a set truncation. Therefore it follows from Theorem 11.1.6 that the map

$$-\circ f: \left(\prod_{(b:B)} X(g(b))\right) \to \left(\prod_{(a:A)} X(g(f(a)))\right)$$

is an equivalence for every $g: B \to B$. Now we take g := id to complete the proof that (i) implies (ii).

Corollary 18.5.3 On any universe \mathcal{U} , there is an operation $\|-\|_0 : \mathcal{U} \to \mathsf{Set}_{\mathcal{U}}$ such that every type A in \mathcal{U} comes equipped with a map

$$\eta: A \to ||A||_0$$

that satisfies the universal property of the set truncation. The set $||A||_0$ is called the **set truncation** of A.

Proof By Theorem 18.5.2 it follows that a map $f: A \to B$ into a set B is a set truncation if and only if it is a quotient map with respect to the equivalence relation $x, y \mapsto \|x = y\|$. Given a type A in \mathcal{U} , the quotient of A by $x, y \mapsto \|x = y\|$ is equivalent to a type in \mathcal{U} by the replacement axiom. \square

Corollary 18.5.4 The set truncation $\eta: A \to ||A||_0$ is surjective and effective with respect to the equivalence relation $x, y \mapsto ||x = y||$, i.e., we have an equivalence

$$(\eta(x) = \eta(y)) \simeq ||x = y||$$

for each x, y : A.

By this corollary, we may think of the set truncation $||A||_0$ of A as the set of connected components of A. Indeed, if we have an unspecified identification ||x = y|| in A, then we think of x and y as being in the same connected component. For example, any k-element set is a type that is in the same connected component of $\mathcal U$ as the type Fin_k .

Definition 18.5.5 A type *A* is said to be **connected** if its set truncation $||A||_0$ is contractible. We define

$$is-conn(A) := is-contr||A||_0$$
.

Furthermore, we say that a map $f: A \rightarrow B$ is **connected** if all its fibers are connected.

Remark 18.5.6 In particular, every connected type is inhabited, because if $||A||_0$ is contractible, then we have equivalences

$$||A|| \simeq (||A||_0 \to ||A||) \simeq (A \to ||A||),$$

and the latter type contains the unit of the propositional truncation.

Using the notion of connectivity, we can add one more property to the list of equivalent characterizations of set truncations given in Theorem 18.5.2.

Theorem 18.5.7 Consider a map $f: A \to B$ into a set B. Then the following are equivalent:

- (i) The map f is a set truncation.
- (ii) The map f is connected.

Proof First, suppose that f is a set truncation, and consider b: B. Our goal is to show that the type

$$\|\mathsf{fib}_f(b)\|_0$$

is contractible. Since f is surjective by Theorem 18.5.2, there exists an element a:A equipped with an identification f(a)=b. We are proving a proposition, so it suffices to show that $\|\text{fib}_f(f(a))\|_0$ is contractible. At the center of contraction we have

$$\eta(a, \text{refl}) : \|\text{fib}_f(f(a))\|_0.$$

In order to construct the contraction, we use the dependent universal property of the set truncation, by which it suffices to construct a function

$$\prod_{(x:A)} \prod_{(p:f(x)=f(a))} \eta(a, \mathsf{refl}) = \eta(x, p)$$

Recall from Theorem 18.5.2 that the map f is effective, so we have an equivalence $e: \|x = a\| \simeq (f(x) = f(a))$ for every x: A. Furthermore, equality in set truncations are propositions, so we may even eliminate the propositional truncation from $\|x = a\|$. Therefore it suffices to prove

$$\prod_{(x:A)} \prod_{(p:x=a)} \eta(a, \mathsf{refl}) = \eta(x, e(\eta(p)))$$

This is immediate, since $e(\eta(\text{refl})) = \text{refl}$. This completes the proof of (i) implies (ii).

For the converse, suppose that f is connected, and consider a set X. Note that we have a commuting square

$$\left(\prod_{(b:B)} \|\mathsf{fib}_f(b)\|_0 \to X \right) \xrightarrow{h \mapsto \lambda b. \, \lambda t. \, h(b, \eta(t))} \left(\prod_{(b:B)} \mathsf{fib}_f(b) \to X \right)$$

$$h \mapsto \lambda b. \, \lambda u. \, h(b) \right) \qquad \qquad h \mapsto \lambda a. \, h(f(a), (a, \mathsf{refl})) \downarrow$$

$$(B \to X) \xrightarrow{-\circ f} (A \to X)$$

In this commuting square, the map on the left is an equivalence since $\|\mathsf{fib}_f(b)\|_0$ is contractible for each b:B. The top map is an equivalence because X is a set, and the right map is an equivalence by Exercise 13.15 (a). Therefore it follows that the bottom map is an equivalence, which completes the proof that (ii) implies (i).

Remark 18.5.8 There are truncation operations for every truncation level. That is, we can define for every type A a map $\eta:A\to \|A\|_k$ such that the map

$$-\circ \eta: (\|A\|_k \to X) \to (A \to X)$$

is an equivalence for every *k*-truncated type *X*. To learn more about general *k*-truncations, we refer to Chapter 7 of [24].

Exercises

18.1 Consider a proposition P, and define the relation \sim_P on bool by

$$(\mathsf{true} \sim_P \mathsf{true}) \coloneqq \mathbf{1} \qquad (\mathsf{true} \sim_P \mathsf{false}) \coloneqq P$$

 $(\mathsf{false} \sim_P \mathsf{true}) \coloneqq P \qquad (\mathsf{false} \sim_P \mathsf{false}) \coloneqq \mathbf{1}$

(a) Show that \sim_P is an equivalence relation.

- (b) Consider a universe \mathcal{U} containing the proposition P. Construct an embedding bool/ $\sim_P \hookrightarrow \mathsf{Prop}_{\mathcal{U}}$.
- (c) Use the quotient bool/ \sim_P to show that the axiom of choice implies the law of excluded middle.
- 18.2 Consider an equivalence relation $R: A \to (A \to \mathsf{Prop}_{\mathcal{U}})$ on A, where \mathcal{U} is a universe containing A. Show that type type

$$\sum_{(X:\mathcal{U})} \sum_{(f:A \to X)} \prod_{(x,y:A)} (f(x) = f(y)) \simeq R(x,y)$$

is contractible.

18.3 For any type *A*, show that the type of equivalence relations equipped with a choice of representatives of its equivalence classes is equivalent to the type of **set-based retracts** of *A*, i.e., the type

$$\mathsf{Retr}_{\mathsf{Set}_\mathcal{U}}(A) \coloneqq \sum_{(X:\mathsf{Set}_\mathcal{U})} \sum_{(i:X\to A)} \sum_{(q:A\to X)} q \circ i \sim \mathsf{id}.$$

18.4 A Σ -decomposition of a type A consists of a type X (the indexing type of the Σ -decomposition) equipped with a family Y of inhabited types indexed by X and an equivalence

$$e: A \simeq \sum_{(x:X)} Y(x)$$
.

In other words, the type of all Σ -decompositions of A is defined by

$$\Sigma\text{-decomp}_{\mathcal{U}}(A) \coloneqq \textstyle \sum_{(X:\mathcal{U})} \sum_{(Y:X \to \sum_{(Z:\mathcal{U})} \|Z\|)} A \simeq \sum_{(x:X)} Y(x).$$

(a) Construct an equivalence

$$\Sigma$$
-decomp $_{\mathcal{U}}(A) \simeq \sum_{(X:\mathcal{U})} A \twoheadrightarrow X.$

(b) A Σ -decomposition is said to be **set-indexed** if its indexing type is a set. We will write Σ -decomp_{Set_{\mathcal{U}}(A) for the type of all set-indexed Σ -decompositions of A in \mathcal{U} . Construct an equivalence}

$$\operatorname{Eq-Rel}_{\mathcal{U}}(A) \simeq \Sigma\operatorname{-decomp}_{\operatorname{Set}_{\mathcal{U}}}(A).$$

- 18.5 Consider a type *A* equipped with an element *a* : *A*. Show that the following are equivalent:
 - (i) The type *A* is connected.
 - (ii) There is an element of type ||a = x|| for any x : A.
 - (iii) For any family *B* over *A*, the fiber inclusion

$$i_a: B(a) \to \sum_{(x:A)} B(x)$$

defined in Exercise 12.13 is surjective.

18.6 Consider a preorder (A, \leq) , and define for any a: A the order preserving map

$$y_a : \mathsf{PreOrd}((A, \leq)^{\mathsf{op}}, (\mathsf{Prop}_{\mathcal{U}}, \rightarrow))$$

by $y_a(x) := (x \le a)$. Furthermore, define the **poset reflection** $||A||_{\mathsf{Pos}}$ to be the image of the map

$$a \mapsto y_a : A \to \mathsf{PreOrd}((A, \leq)^{\mathsf{op}}, (\mathsf{Prop}_{\mathcal{U}}, \to)).$$

(a) Show that the image of the map $a \mapsto y_a$ satisfies the universal property of the set quotient of the equivalence relation

$$x, y \mapsto (x \le y) \land (y \le x).$$

(b) Equip the type $\|A\|_{Pos}$ with the structure of a poset and construct an order preserving map $\eta:A\to \|A\|_{Pos}$ that satisfies the following universal property: For any poset P, any order preserving map $f:A\to P$ extends uniquely along η to an order preserving map $g:\|A\|_{Pos}\to P$, as indicated in the following diagram:

$$A \xrightarrow{f} P.$$

$$\downarrow \eta \qquad \qquad \downarrow \qquad \qquad \downarrow P.$$

$$|A||_{\mathsf{Pos}}$$

- 18.7 Consider a map $f : A \rightarrow B$.
 - (a) Show that the type of maps $||f||_0 : ||A||_0 \to ||B||_0$ equipped with a homotopy witnessing that the square

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ \eta \downarrow & & \downarrow \eta \\ \|A\|_0 & \xrightarrow{\|f\|_0} & \|B\|_0 \end{array}$$

commutes is contractible.

- (b) Show that if f is injective, then $||f||_0 : ||A||_0 \to ||B||_0$ is injective.
- (c) Show that the following are equivalent
 - (i) The map f is surjective.
 - (ii) the map $||f||_0 : ||A||_0 \to ||B||_0$ is surjective.

(d) Construct a map $h : \operatorname{im}(f) \to \operatorname{im} ||f||_0$ such that the squares

$$\begin{array}{cccc} A & \stackrel{q_f}{\longrightarrow} & \operatorname{im}(f) & \stackrel{i_f}{\longrightarrow} & B \\ \eta \Big\downarrow & & \downarrow \eta & & \downarrow \eta \\ \|A\|_0 & \stackrel{q_{\|f\|_0}}{\longrightarrow} & \operatorname{im} \|f\|_0 & \stackrel{i_{\|f\|_0}}{\longrightarrow} & \|B\|_0 \end{array}$$

commute, and show that h is a set truncation of im(f).

18.8 Consider a type A, and suppose that $||A||_0$ is a finite type with k elements. Show that there exists a map $f : \operatorname{Fin}_k \to A$ such that $\eta \circ f$ is an equivalence, i.e., prove the proposition

$$\exists_{(f: \mathsf{Fin}_k \to A)} \mathsf{is-equiv}(\eta \circ f).$$

18.9 Consider a type A and a universe \mathcal{U} containing A. Let

$$\tau:A\to ((A\to \mathsf{Prop}_{\mathcal{U}})\to \mathsf{Prop}_{\mathcal{U}})$$

be the map defined by $\tau(a) := \lambda f \cdot f(a)$. Show that the map

$$q_{\tau}: A \to \operatorname{im}(\tau)$$

obtained from the image factorization of *A* is a set truncation of *A*.

18.10 A map $f : A \rightarrow B$ is called **weakly path-constant** if it comes equipped with an element of type

is-weakly-path-constant
$$(f):\prod_{(x,y:A)}\prod_{(p,q:x=y)}\operatorname{ap}_f(p)=\operatorname{ap}_f(q).$$

In other words, f is weakly path-constant if for each x, y: A the map $ap_f: (x = y) \rightarrow (f(x) = f(y))$ is weakly constant in the sense of Definition 14.4.3.

(a) Show that every map $||A||_0 \to B$ is weakly path-constant. Use this to obtain a map

$$\alpha: \Big(\|A\|_0 \to B\Big) \to \Big(\sum_{(f:A \to B)} \text{is-weakly-path-constant}(f)\Big).$$

(b) Show that if *B* is a 1-type, then the map α is an equivalence. In other words, show that every weakly path-constant map $f: A \to B$ into

a 1-type *B* has a unique extension

$$\begin{array}{c}
A \xrightarrow{f} B. \\
\eta \downarrow \\
\|A\|_{0}
\end{array}$$

18.11 Consider two universes $\mathcal U$ and $\mathcal V$. Use the type theoretic replacement axiom to show that the type of locally $\mathcal V$ -small types in $\mathcal U$ is equivalent to the type

$$\sum_{(Y: \mathsf{Locally-}\mathcal{V}\mathsf{-Small-Set}_{\mathcal{U}})} \Big(Y \to \sum_{(Z:\mathcal{V})} \mathsf{is\text{-}conn}(Z) \Big)$$

of locally V-small sets Y in \mathcal{U} equipped with a family of connected types in V.

18.12 Show that every finite type is uniquely a product of finitely many finite types of prime cardinality, in the sense that the type

$$\textstyle \sum_{(X:\mathbb{F})} \sum_{(Y:X \to \sum_{(p: \mathsf{prime})} BS_p)} \left\| A \simeq \prod_{(x:X)} Y(x) \right\|$$

is connected for every finite type *A*.

18.13 Consider two types *A* and *B*. The **Stirling type of the second kind** is the type

$${A \brace B} := \sum_{(X:\mathcal{U}_B)} A \twoheadrightarrow X.$$

- (a) Show that if *B* is a *k*-type, then the type ${A \choose B}$ is also a *k*-type.
- (b) Suppose that B has decidable equality. Construct an equivalence

- (c) Suppose that A and B are finite types of cardinality n and k. Show that the Stirling type ${A \brace B}$ of the second kind is a finite type of cardinality ${n \brack k}$, where ${n \brack k}$ is the **Stirling number of the second kind**.
- 18.14 In this exercise we extend the definition of the binomial types to $\|\mathcal{U}\|_0$ as follows: For a type $X : \mathcal{U}$ and $k : \|\mathcal{U}\|_0$, we define

$$\begin{pmatrix} X \\ k \end{pmatrix} \coloneqq \textstyle \sum_{(Y: \mathsf{fib}_{\eta}(k))} Y \mathrel{\longleftrightarrow_{\mathsf{d}}} X.$$

Furthermore, for $(Y, i) : {X \choose k}$, define

$$X \setminus Y := \sum_{(x:X)} \neg(\mathsf{fib}_i(x)).$$

 $i^c := \mathsf{pr}_1.$

Now consider a type X and two type families A and B over X, and let \mathcal{U} be a universe containing X, A, and B. Show that the type $\prod_{(x:X)} A(x) + B(x)$ is equivalent to the type

$$\textstyle \sum_{(k:\|\mathcal{U}\|_0)} \textstyle \sum_{((Y,i):\binom{X}{k})} \Bigl(\prod_{(y:Y)} A(i(y))\Bigr) \times \Bigl(\prod_{(y:X\backslash Y)} B(i^{\mathtt{c}}(y))\Bigr).$$

19 Groups in univalent mathematics

In this section we demonstrate a very common way to use the univalence axiom, showing that isomorphic groups can be identified. When you introduce a certain kind of structure in type theory, such as groups or rings, you automatically obtain the type of all such structures. In other words, we define what a group is by defining the type of all groups, we define what a ring is by defining the type of all rings, and so on. The elements of the type of all groups are of course groups, such as the group of integers, integers modulo k, automorphism groups, and so on. The next important question is how two elements in the type of groups can be identified. This question is answered with the help of the univalence axiom: isomorphic groups can be identified. This is an instance of the *structure identity principle*, which we covered in Section 11.6.

Identifying isomorphic groups is a common *informal* practice in classical mathematics. For example, by the third isomorphism theorem we have an isomorphism

$$(G/N)/(K/N)\cong (G/K)$$

for any sequence $N \le K \le G$ of normal subgroups of G, and it is common to simply write (G/N)/(K/N) = G/K. Of course, classical mathematicians know that this convention is incompatible with the axioms of Zermelo-Fraenkel set theory, but that does not stop them from applying this useful abuse of notation. In univalent mathematics we make this informal practice precise and formal.

19.1 The type of all groups

In order to efficiently characterize the identity type of the type of all groups in a universe \mathcal{U} , we introduce the type of groups in two stages: first we introduce the type of semigroups, and then we introduce groups as semigroups that possess a unit element and inverses. Since semigroups can have at most one unit element and since elements of semigroups can have at most one inverse, it follows that the type of groups is a subtype of the type of semigroups, and this will help us with the characterization of the identity type of the type of all groups.

Remark 19.1.1 In order to show that isomorphic (semi)groups can be identified, it has to be part of the definition of a (semi)group that its underlying type is a set. This is an important observation: in many branches of algebra the objects of study are *set-level* structures.

A notable exception is formed by categories, which are objects at truncation level 1, i.e., at the level of *groupoids*. We will not cover categories in this book. For more about categories we recommend Chapter 9 of [24].

Definition 19.1.2 A **semigroup** in a universe \mathcal{U} is a triple (G, μ, α) consisting of a set G in \mathcal{U} equipped with a binary operation $\mu : G \to (G \to G)$ and a homotopy

$$\alpha: \prod_{(x,y,z:G)} \mu(\mu(x,y),z) = \mu(x,\mu(y,z))$$

witnessing that μ is **associative**. We write Semigroup_{\mathcal{U}} for the type of all semigroups in \mathcal{U} , i.e., for the type

$$\textstyle \sum_{(G:\mathsf{Set}_{\mathcal{U}})} \textstyle \sum_{(\mu:G \to (G \to G))} \prod_{(x,y,z:G)} \mu(\mu(x,y),z) = \mu(x,\mu(y,z)).$$

Definition 19.1.3 A semigroup G is said to be **unital** if it comes equipped with a **unit** e : G that satisfies the left and right unit laws

left-unit :
$$\prod_{(y:G)} \mu(e,y) = y$$

right-unit : $\prod_{(x:G)} \mu(x,e) = x$.

We write is-unital(G) for the type of such triples (e, left-unit, right-unit). Unital semigroups are also called **monoids**, so we define

$$\mathsf{Monoid}_{\mathcal{U}} \coloneqq \sum_{(G:\mathsf{Semigroup}_{\mathcal{U}})} \mathsf{is\text{-}unital}(G).$$

The unit of a semigroup is of course unique once it exists. In univalent mathematics we express this fact by asserting that the type is-unital(G) is a

proposition for each semigroup *G*. In other words, being unital is a *property* of semigroups rather than structure on it. This is typical for univalent mathematics: we express that a structure is a property by proving that this structure is a proposition.

Lemma 19.1.4 For a semigroup G the type is-unital(G) is a proposition.

Proof Let G be a semigroup. Note that since G is a set, it follows that the types of the left and right unit laws are propositions. Therefore it suffices to show that any two elements e, e': G satisfying the left and right unit laws can be identified. This is easy:

$$e = \mu(e, e') = e'.$$

Definition 19.1.5 Let *G* be a unital semigroup. We say that *G* has inverses if it comes equipped with an operation $x \mapsto x^{-1}$ of type $G \to G$, satisfying the left and right inverse laws

left-inv :
$$\prod_{(x:G)} \mu(x^{-1}, x) = e$$

right-inv : $\prod_{(x:G)} \mu(x, x^{-1}) = e$.

We write is-group'(G, e) for the type of such triples ($(-)^{-1}$, left-inv, right-inv), and we write

$$is-group(G) := \sum_{(e:is-unital(G))} is-group'(G, e)$$

A **group** is a unital semigroup with inverses. We write Group for the type of all groups in \mathcal{U} .

Lemma 19.1.6 *For any semigroup* G *the type* is-group(G) *is a proposition.*

Proof We have already seen that the type is-unital(G) is a proposition. Therefore it suffices to show that the type is-group'(G, e) is a proposition for any e: is-unital(G).

Since a semigroup *G* is assumed to be a set, we note that the types of the inverse laws are propositions. Therefore it suffices to show that any two inverse operations satisfying the inverse laws are homotopic.

Let $x \mapsto x^{-1}$ and $x \mapsto x^{-1'}$ be two inverse operations on a unital semigroup G, both satisfying the inverse laws. Then we have the following identifications

$$x^{-1} = \mu(e, x^{-1})$$

= $\mu(\mu(x^{-1'}, x), x^{-1})$

$$= \mu(x^{-1'}, \mu(x, x^{-1}))$$

= $\mu(x^{-1'}, e)$
= $x^{-1'}$

for any x : G. Thus the two inverses of x are the same, and the claim follows.

Example 19.1.7 The type \mathbb{Z} of integers has the structure of a group, with the group operation being addition. The fact that \mathbb{Z} is a set was shown in Exercise 12.4, and the group laws were shown in Exercise 5.7.

Example 19.1.8 Given a set *X*, we define the **automorphism group** of *X* by

$$Aut(X) := (X \simeq X).$$

The group operation of Aut(X) is given by composition of equivalences, and the unit of the group is the identity function. An important special case of the automorphism groups is the **symmetric group**

$$S_n := \operatorname{Aut}(\operatorname{Fin}_n).$$

19.2 Group homomorphisms

Definition 19.2.1 Let G and H be (semi)groups. A **homomorphism** of (semi)groups from G to H is a pair (f, μ_f) consisting of a function $f: G \to H$ between their underlying types, and a homotopy

$$\mu_f:\prod_{(x,y:G)}f(\mu_G(x,y))=\mu_H(f(x),f(y))$$

witnessing that f preserves the binary operation of G. We will write

for the type of all (semi)group homomorphisms from *G* to *H*.

Remark 19.2.2 Since it is a property for a function to preserve the multiplication of a semigroup, it follows easily that equality of semigroup homomorphisms is equivalent to the type of homotopies between their underlying functions. In particular, it follows that the type of homomorphisms of semigroups is a set.

Remark 19.2.3 The **identity homomorphism** on a (semi)group *G* is defined to be the pair consisting of

$$\label{eq:def} \begin{aligned} &\text{id}:G\to G\\ \lambda x.\, \lambda y.\, \text{refl}:\prod_{(x,y:G)}\!\mu_G(x,y) = \mu_G(x,y). \end{aligned}$$

Let $f: G \to H$ and $g: H \to K$ be (semi)group homomorphisms. Then the composite function $g \circ f: G \to K$ is also a (semi)group homomorphism, since we have the identifications

$$g(f(\mu_G(x,y))) = g(\mu_H(f(x),f(y))) = \mu_K(g(f(x)),g(f(y))).$$

Since the identity type of (semi)group homomorphisms is equivalent to the type of homotopies between (semi)group homomorphisms it is easy to see that (semi)group homomorphisms satisfy the laws of a category, i.e., that we have the identifications

$$id \circ f = f$$

$$g \circ id = g$$

$$(h \circ g) \circ f = h \circ (g \circ f)$$

for any composable (semi)group homomorphisms f, g, and h.

Definition 19.2.4 Let $h : \mathsf{hom}(G, H)$ be a homomorphism of (semi)groups. Then h is said to be an **isomorphism** if it comes equipped with an element of type $\mathsf{is\text{-iso}}(h)$, consisting of triples (h^{-1}, p, q) consisting of a homomorphism $h^{-1} : \mathsf{hom}(H, G)$ of semigroups and identifications

$$p: h^{-1} \circ h = id_G$$
 and $q: h \circ h^{-1} = id_H$

witnessing that h^{-1} satisfies the inverse lawsWe write $G \cong H$ for the type of all isomorphisms of semigroups from G to H, i.e.,

$$G \cong H := \sum_{(h: \mathsf{hom}(G,H))} \sum_{(k: \mathsf{hom}(H,G))} (k \circ h = \mathsf{id}_G) \times (h \circ k = \mathsf{id}_H).$$

If *f* is an isomorphism, then its inverse is unique. In other words, being an isomorphism is a property.

Lemma 19.2.5 For any semigroup homomorphism h : hom(G, H), the type

$$is-iso(h)$$

is a proposition. It follows that the type $G \cong H$ is a set for any two semigroups G and H.

Proof Let k and k' be two inverses of h. In Remark 19.2.2 we have observed that the type of semigroup homomorphisms between any two semigroups is a set. Therefore it follows that the types $h \circ k = \operatorname{id}$ and $k \circ h = \operatorname{id}$ are propositions, so it suffices to check that k = k'. In Remark 19.2.2 we also observed that the equality type k = k' is equivalent to the type of homotopies $k \sim k'$ between their underlying functions. We construct a homotopy $k \sim k'$ by the usual argument:

$$k(y) = k(h(k'(y)) = k'(y).$$

19.3 Isomorphic groups are equal

Lemma 19.3.1 A (semi)group homomorphism h : hom(G, H) is an isomorphism if and only if its underlying map is an equivalence. Consequently, there is an equivalence

$$(G \cong H) \simeq \sum_{(e:G \cong H)} \prod_{(x,y:G)} e(\mu_G(x,y)) = \mu_H(e(x),e(y))$$

Proof If $h: \mathsf{hom}(G,H)$ is an isomorphism, then the inverse semigroup homomorphism also provides an inverse of the underlying map of h. Thus we obtain that h is an equivalence. For the converse, suppose that the underlying map of $f: G \to H$ is an equivalence. Then its inverse is also a semigroup homomorphism, since we have

$$f^{-1}(\mu_H(x,y)) = f^{-1}(\mu_H(f(f^{-1}(x)), f(f^{-1}(y))))$$

$$= f^{-1}(f(\mu_G(f^{-1}(x), f^{-1}(y))))$$

$$= \mu_G(f^{-1}(x), f^{-1}(y)).$$

Definition 19.3.2 Let G and H be a semigroups in a univalent universe \mathcal{U} . We define the family of maps

$$iso-eq: (G = H) \rightarrow (G \cong H)$$

indexed by H: Semigroup_{\mathcal{U}} by iso-eq(refl) := id_G.

Theorem 19.3.3 Consider a semigroup G in a univalent universe \mathcal{U} . Then the family of maps

$$\mathsf{iso\text{-}eq}: (G = H) \to (G \cong H)$$

indexed by H: Semigroup_U is a family of equivalences.

Proof By the fundamental theorem of identity types Theorem 11.2.2 it suffices to show that the total space

$$\sum_{(H: Semigroup_{\mathcal{U}})} G \cong H$$

is contractible. Since the type of isomorphisms from G to H is equivalent to the type of equivalences from G to H it suffices to show that the type

$$\textstyle \sum_{(H: \mathsf{Semigroup}_{\mathcal{U}})} \textstyle \sum_{(e: G \simeq H)} \prod_{(x,y:G)} e(\mu_G(x,y)) = \mu_H(e(x),e(y)))$$

is contractible. Since $\mathsf{Semigroup}_{\mathcal{U}} \doteq \sum_{(H:\mathsf{Set}_{\mathcal{U}})} \mathsf{has}\text{-associative-mul}(H)$ we are in position to apply the structure identity principle stated in Theorem 11.6.2. Note that $H \mapsto G \simeq H$ is an identity system on $\mathsf{Set}_{\mathcal{U}}$ at the set G. By condition (v) of Theorem 11.6.2 it therefore suffices to show that the type

$$\sum_{(\mu': \mathsf{has-associative-mul}(G))} \prod_{(x,y:G)} \mu_G(x,y) = \mu'(x,y)$$

is contractible. This follows by function extensionality, since associativity of a binary operation on a set is a proposition.

Corollary 19.3.4 *The type* Semigroup_{\mathcal{U}} *is a* 1-*type*.

Proof The identity types of Semigroup $_{\mathcal{U}}$ are sets because they are equivalent to the sets of isomorphisms between semigroups.

We now turn to the proof that isomorphic groups are equal. Analogously to the map iso-eq of semigroups, we have a map iso-eq of groups. Note, however, that the domain of this map is now the identity type G = H of the *groups G* and H, so the maps iso-eq of semigroups and groups are not exactly the same maps.

Definition 19.3.5 Let G and H be groups in a univalent universe \mathcal{U} . We define the family of maps

$$iso-eq: (G = H) \rightarrow (G \cong H)$$

indexed by $H : \mathsf{Group}_{\mathcal{U}}$ by $\mathsf{iso-eq}(\mathsf{refl}) \coloneqq \mathsf{id}_G$.

Theorem 19.3.6 For any two groups G and H in a univalent universe \mathcal{U} , the map

$$\mathsf{iso\text{-}eq}: (G = H) \to (G \cong H)$$

is an equivalence.

Proof Let G and H be groups in \mathcal{U} , and write UG and UH for their underlying semigroups, respectively. Then we have a commuting triangle

$$(G = H) \xrightarrow{\operatorname{ap}_{\operatorname{pr}_1}} (UG = UH)$$

$$\operatorname{iso-eq} \qquad (G \cong H)$$

Since being a group is a property of semigroups it follows that the projection map $\operatorname{Group}_{\mathcal{U}} \to \operatorname{Semigroup}_{\mathcal{U}}$ forgetting the unit and inverses, is an embedding. Thus the top map in this triangle is an equivalence. The map on the right is an equivalence by Theorem 19.3.3, so the claim follows by the 3-for-2 property.

Corollary 19.3.7 *The type of groups is a* 1-*type.*

19.4 Homotopy groups of types

Since the identity type gives every type groupoidal structure, we can construct for every type A equipped with a base point a:A a sequence of groups $\pi_n(A,a)$ indexed by $n \ge 1$. In order to construct this sequence of groups, we first define the *loop space* operation, which takes pointed types to pointed types.

Definition 19.4.1 The type of **pointed types** in a universe $\mathcal U$ is defined as

$$\mathcal{U}_* := \sum_{(X:\mathcal{U})} X.$$

Given two pointed types A and B with base points a and b respectively, we define the type of **pointed maps**

$$(A \to_* B) \coloneqq \textstyle \sum_{(f:A \to B)} f(a) = b.$$

Definition 19.4.2 Consider a universe \mathcal{U} . We define the **loop space** operation

$$\Omega: \mathcal{U}_* \to \mathcal{U}_*$$

by $\Omega(A, a) := (a = a, refl)$. Furthermore, we define for every $A : \mathcal{U}_*$ the **iterated loop space** $\Omega^n(A)$ recursively by

$$\Omega^0(A) \coloneqq A$$

$$\Omega^{n+1}(A) \coloneqq \Omega(\Omega^n(A)).$$

Example 19.4.3 If A is a pointed 1-type, then the loop space $\Omega(A)$ is a set. Furthermore, it has the structure of a group. Its unit is refl, and the group operation is given by concatenation of identifications. This satisfies the group laws, since the group laws are just a special case of the groupoid laws for identity types, constructed in Section 5.2. Thus we see that the loop space of a pointed 1-type is a group.

If *A* is a pointed type, but not assumed to be 1-truncated, then we can still get

Definition 19.4.4 Consider a pointed type A with base point a:A, and let $n \ge 1$. Then we define the n-th homotopy group $\pi_n(A)$ of A at a to be the group with underlying set

$$\pi_n(A) := \|\Omega^n(A)\|_0$$

The unit of the group is $\eta(\text{refl})$ and the group operation is the unique binary operation such that

$$\eta(r)\eta(s) = \eta(r \cdot s)$$

for every $r, s : \Omega^n(A)$. The group $\pi_1(A)$ of a pointed type is called the **fundamental group** of A at its base point a : A.

Remark 19.4.5 Note that for n = 0, we can still define the set

$$\pi_0(A) \coloneqq \|A\|_0.$$

However, this set does not necessarily come equipped with the structure of a group.

Proposition 19.4.6 *For any pointed type A and any* $n \ge 1$ *we have an isomorphism*

$$\pi_{n+1}(A) \cong \pi_n(\Omega(A)).$$

Proof First, observe that we have a pointed equivalence

$$\Omega(\Omega^n(A)) \equiv_* \Omega^n(\Omega(A)).$$

This equivalence is constructed by induction on n, and also preserves the concatenation operation. Using this equivalence, we obtain a group isomorphism

$$\pi_{n+1}(A) \doteq \|\Omega(\Omega^n(A))\|_0 \cong \|\Omega^n(\Omega(A))\|_0 \doteq \pi_n(\Omega(A)). \quad \Box$$

Homotopy groups are important algebraic invariants of a type. For example, they can be used to show that two pointed types A and B are not equivalent by showing that two types A and B have non-isomorphic homotopy groups. The study of homotopy groups of types is an intricate and complicated subject, analogous to algebraic topology. Since the homotopy groups of types are obtained in such a canonical manner from the identity types, which are inductively generated by just the reflexivity identification, the subject of studying homotopy groups of types is also called *synthetic homotopy theory*. In the final section of this book we will show that the fundamental group of the circle, which is introduced as a *higher inductive type*, is \mathbb{Z} . In this section we will show that equivalent types have isomorphic homotopy groups, and that the homotopy groups $\pi_n(A)$ are abelian if $n \geq 2$.

Definition 19.4.7 Consider a pointed map $f : A \rightarrow_* B$ between two pointed types A and B, where p : f(a) = b. Then we define the pointed map

$$\Omega(f): \Omega(A) \to_* \Omega(B)$$

by $\Omega(f)(r) \coloneqq (p^{-1} \cdot \operatorname{ap}_f(r)) \cdot p$. The identification witnessing that this is indeed a pointed map is obtained from the fact that $\operatorname{ap}_f(\operatorname{refl}) \doteq \operatorname{refl}$ and $p^{-1} \cdot p = \operatorname{refl}$. Similarly, we define $\Omega^n(f) : \Omega^n(A) \to_* \Omega^n(B)$ recursively by

$$\Omega^0(f) \coloneqq f$$

$$\Omega^{n+1}(f) \coloneqq \Omega(\Omega^n(f)).$$

The functorial action of Ω^n together with the functorial action of set truncation yield a functorial action

$$\pi_n(f):\pi_n(A)\to\pi_n(B)$$

for every pointed map $f : A \rightarrow_* B$.

Remark 19.4.8 Since action of paths preserves path concatenation, it follows that $\Omega^n(f)$ preserves path concatenation, for each $n \ge 1$. Consequently, the maps

$$\pi_n(f):\pi_n(A)\to\pi_n(B)$$

are group homomorphisms.

Proposition 19.4.9 Consider a pointed equivalence $e: A \simeq_* B$ between two pointed types A and B. Then we obtain group isomorphisms

$$\pi_n(e):\pi_n(A)\cong\pi_n(B)$$

for all $n \geq 1$.

Proof For any pointed equivalence $e: A \simeq_* B$ it follows that $\pi_n(e)$ is also an equivalence. Using Lemma 19.3.1, the claim now follows.

19.5 The Eckmann-Hilton argument

The Eckmann-Hilton argument is used to show that $\pi_n(A)$ is an abelian group for all $n \ge 2$. This is achieved by constructing an identification

$$p \cdot q = q \cdot p$$

for all p, $q : \Omega^2(A)$. Note that identification elimination is not immediately applicable here, since both p and q are identifications of type $\mathsf{refl}_a = \mathsf{refl}_a$ with neither endpoint free. Therefore, we must come up with something else.

Definition 19.5.1 Consider a binary operation $f: A \to (B \to C)$. The **binary action on paths** of f is the family of functions

$$\mathsf{ap\text{-}binary}_f: (x=x') \to ((y=y') \to (f(x,y)=f(x',y'))$$

indexed by x, x' : A and y, y' : B given by ap-binary_f(refl, refl) := refl.

Lemma 19.5.2 *The binary action on paths of* $f: A \rightarrow (B \rightarrow C)$ *satisfies the following laws:*

$$ap-binary_f(refl, q) = ap_{f(x)}(q)$$

$$ap-binary_f(p, refl) = ap_{f(-,y)}(p)$$

and moreover both triangles in the following diagram commute:

Proof The proof is immediate by identification elimination on p and q, where applicable.

Example 19.5.3 One particular binary operation to which we can apply the binary action on paths is concatenation of identifications

$$-\boldsymbol{\cdot}-:(x=y)\to((y=z)\to(x=z))$$

This results in the horizontal concatenation operation

$$- \cdot_h - : (p = p') \rightarrow ((q = q') \rightarrow (p \cdot q = p' \cdot q')).$$

In other words, for any two identifications r: p = p' and s: q = q' as in the diagram

we obtain $r \cdot_h s := \text{ap-binary}_{---}(r, s) : p \cdot q = p' \cdot q'$. The **vertical concatenation** operation, which concatenates r : p = p' and r' : p' = p'' as in the diagram

is given by ordinary concatenation of identifications.

Lemma 19.5.4 Horizontal concatenation satisfies the following left and right unit laws:

$$\operatorname{refl}_{\operatorname{refl}} \cdot_h s = s$$
 $r \cdot_h \operatorname{refl}_{\operatorname{refl}} = r.$

Proof This follows by identification elimination on r and s, or alternatively via Lemma 19.5.2.

In the following lemma we establish the **interchange law** for horizontal and vertical concatenation.

Lemma 19.5.5 Consider a diagram of the form

Then there is an identification

$$(r \cdot r') \cdot_h (s \cdot s') = (r \cdot_h s) \cdot (r' \cdot_h s').$$

Proof We use path induction on both r and s. Then it suffices to show that

$$(refl \cdot r') \cdot_h (refl \cdot s') = (refl \cdot_h refl) \cdot (r' \cdot_h s')$$

Using the unit laws for ordinary concatenation, we see that both sides reduce to $r' \cdot_h s'$.

Theorem 19.5.6 Consider a pointed type A, and let r, $s : \Omega^2(A)$. Then there is an identification

$$r \cdot s = s \cdot r$$

Proof First we observe that $r \cdot s = r \cdot_h s$ by the following calculation using the unit laws from Lemma 19.5.4 and the interchange law from Lemma 19.5.5:

$$r \cdot s = (r \cdot_h \text{ refl}_{\text{refl}}) \cdot (\text{refl}_{\text{refl}} \cdot_h s)$$

= $(r \cdot \text{refl}_{\text{refl}}) \cdot_h (\text{refl}_{\text{refl}} \cdot s)$
= $r \cdot_h s$

Similarly, we observe that $r \cdot_h s = s \cdot r$ by the following calculation:

$$r \cdot_h s = (\text{refl}_{\text{refl}} \cdot r) \cdot_h (s \cdot \text{refl}_{\text{refl}})$$

= $(\text{refl}_{\text{refl}} \cdot_h s) \cdot (r \cdot_h \text{refl}_{\text{refl}})$
= $s \cdot r$.

These two calculations combined prove the claim.

Corollary 19.5.7 *For* $n \ge 2$ *, the* n*-th homotopy group of any pointed type is abelian.*

Proof By Proposition 19.4.6 it follows that $\pi_n(A)$ is isomorphic to the second homotopy group of some pointed type, for every $n \ge 2$. Therefore it suffices to prove the claim for $\pi_2(A)$ for every pointed type A.

Our goal is to show that

$$\prod_{(r,s:\pi_2(A))} rs = sr.$$

Since we are constructing an identification in a set, we can use the dependent universal property of 0-truncation on both r and s, stated in Theorem 18.5.2. Therefore it suffices to show that

$$\prod_{(r,s:\Omega^2(A))} \eta(r) \eta(s) = \eta(s) \eta(r).$$

The claim now follows, because

$$\eta(r)\eta(s) = \eta(r \cdot s) = \eta(s \cdot r) = \eta(s)\eta(r).$$

19.6 Concrete versus abstract groups in univalent mathematics

In univalent mathematics there is another exciting perspective on group theory. We won't be able to go in full details here, but we can sketch some of key ideas. To learn more about this beautiful univalent perspective on group theory, I recommend the forthcoming *Symmetry* book [4].

We saw in Example 19.4.3 that for every pointed connected 1-type X we obtain a group with underlying type $\Omega(X)$. All groups can be constructed in this way. In fact, for every group G in \mathcal{U} the type

$$\sum_{(B: Pointed-Connected-1-Type_{\mathcal{U}})} G \cong \Omega(B)$$

of pointed connected 1-types B equipped with a group isomorphism from G to $\Omega(B)$ is contractible. We write BG for the unique pointed connected 1-type whose loop space is isomorphic to G. The pointed type BG is also called the **delooping** of G, or the **classifying type** of G. The fact that the above type is contractible is of course heavily reliant on the univalence axiom.

Example 19.6.1 We have already seen that

$$S_n \cong \Omega(BS_n),$$

i.e., that the loop space of the type of all finite types of cardinality n is equivalent to the symmetric group S_n . The type BS_n is of course a pointed connected 1-type, so BS_n is indeed the classifying type of the symmetric group S_n .

Since the map

$$\Omega$$
: Pointed-Connected-1-Type _{\mathcal{U}} \rightarrow Group _{\mathcal{U}}

is an equivalence, we obtain two perspectives on the type of all groups. The elements of the type $\mathsf{Group}_{\mathcal{U}}$ are groups according to the traditional definition of groups. We call such groups **abstract groups**. On the other hand, pointed connected 1-types B are **concrete groups** in the sense that the contain an object *: B, and the group B represents is the group of self-identifications (i.e., symmetries) of the base point *: B. Thus we see that when we present a group as a pointed connected 1-type, then we *concretely* manifest that group as the group of symmetries of some object.

We can also bring group homomorphisms into the mix: for every group homomorphism $f: G \to H$ the type of pointed maps $b: BG \to_* BH$ equipped with a homotopy witnessing

$$G \xrightarrow{f} H$$

$$\cong \downarrow \qquad \qquad \downarrow \cong$$

$$\Omega(BG) \xrightarrow{\Omega(b)} \Omega(BH)$$

commutes is contractible. In other words, every group homomorphism $f: G \to H$ has a unique **delooping** $Bf: BG \to BH$.

We can do all of group theory in this way. For example, traditionally a G-set is defined to be a set X equipped with a group homomorphism $G \to \operatorname{Aut}(X)$. That is, the type of **abstract** G-sets is defined to be

$$G\operatorname{-Set}_{\mathcal{U}}\coloneqq \sum_{(X:\operatorname{Set}_{\mathcal{U}})} \operatorname{hom}(G,\operatorname{Aut}(X)).$$

However, this definition is equivalent to family $X: BG \to Set_{\mathcal{U}}$ of sets indexed by the classifying type BG. Therefore we define **concrete** G-**sets** to be type families $X: BG \to Set_{\mathcal{U}}$. Given a concrete G-set $X: BG \to Set_{\mathcal{U}}$, the set being acted upon is the set X(*), and the action of G on X(*) is given by transport, since the elements of G are equivalent to loops in BG.

The type of **orbits** of a concrete G-set $X:BG\to \mathsf{Set}_\mathcal{U}$ can then be defined as

$$X/G := \sum_{(u:BG)} X(u)$$

and the type of **fixed points** of *X* can be defined as

$$X_G := \prod_{(u:BG)} X(u).$$

To see that these definitions make sense, note that the fiber inclusion $X(*) \to X/G$ maps each element in the G-set X to its orbit. The fiber inclusion is surjective by Exercise 18.5, and it maps two elements x, y: X(*) to the same orbit precisely when there is a group element g such that gx = y. Similarly, for the type of fixed points notice that each $x: X_G$ determines an element $x_*: X(*)$, which comes equipped with an identification

$$apd_x(g): gx_* = x_*$$

since the group action of *G* on *X* is given by transport.

Also, notice that a subgroup H of G determines an inclusion homomorphism $i: H \to G$, and this inclusion function corresponds uniquely to a pointed map $Bi: BG \to BH$. Since $\Omega(Bi)$ is an embedding, we note that Bi must be a 0-truncated map. Therefore, a concrete subgroup of a concrete group BG is defined to be a concrete G-set X such that the type of orbits is connected. Such concrete G-sets are called **transitive**.

Dually, we say that a concrete G-set X is **free** if the type of orbits X/G is a set. To see that this definition makes sense, we use the following generalization of the fundamental theorem of identity types:

Theorem 19.6.2 Consider a connected type A equipped with an element a:A, and consider a family of types B(x) indexed by x:A. Then the following are equivalent:

(i) Every family of maps

$$f: \prod_{(x:A)} (a=x) \to B(x)$$

is a family of k-truncated maps.

(ii) The total space

$$\sum_{(x:A)} B(x)$$

is (k + 1)-truncated.

Proof Recall from Exercise 12.10 that the total space $\sum_{(x:A)} B(x)$ is (k + 1)-truncated if and only if the base point inclusion

$$(x,y):\mathbf{1}\to\textstyle\sum_{(x:A)}B(x)$$

is k-truncated for every (x, y): $\sum_{(x:A)} B(x)$. Since the type A is assumed to be connected, this is equivalent to the condition that every base point inclusion of the form

$$(a,y): \mathbf{1} \to \sum_{(x:A)} B(x)$$

is k-truncated. Base point inclusions of this form are homotopic to tot(f), where

$$f: \prod_{(x:A)} (a=x) \rightarrow B(x)$$

is given by $f(a, \mathsf{refl}) := y$. The condition that $\mathsf{tot}(f)$ is k-truncated is by Lemma 11.1.2 equivalent to the condition that f is a family of k-truncated maps. Furthermore, every family of maps $f: \prod_{(x:A)} (a=x) \to B(x)$ is of the above form by the type theoretic Yoneda lemma (Theorem 13.3.3), completing the proof.

By the previous theorem it follows that if the type of orbits of a concrete G-set X is a set, then the map $g \mapsto gx$ must be an embedding for every x : X(*). In other words, the action of G on X is free.

Remark 19.6.3 Theorem 19.6.2 can be generalized further. We include this generalization in Exercise 19.14.

Example 19.6.4 Consider two sets A and B, and a universe \mathcal{U} containing both of them. Then the automorphism group $\operatorname{Aut}(B)$ acts on the decidable embeddings $B \hookrightarrow_{\mathsf{d}} A$ by precomposition. Its type of orbits is the binomial type

$$\begin{pmatrix} A \\ B \end{pmatrix} \coloneqq \sum_{(X:\mathcal{U}_B)} X \hookrightarrow_{\mathsf{d}} A,$$

which we introduced in Definition 17.6.4. By Proposition 17.6.6 it follows that $\binom{A}{B}$ is a set, so the action of $\operatorname{Aut}(B)$ on $B \hookrightarrow_{\operatorname{d}} A$ is free. Note that we didn't need to assume that A and B are sets: the action of $\operatorname{Aut}(B)$ on $B \hookrightarrow_{\operatorname{d}} A$ is always free.

Similarly, we have an action of the automorphism group $\operatorname{Aut}(B)$ on the surjective maps $A \twoheadrightarrow B$ by postcomposition. Its type of orbits is the stirling type of the second kind

which we introduced in Exercise 18.13. Assuming that B is a set, it was shown in Exercise 18.13 that ${A \brace B}$ is a set. In other words, the action of A on $A \rightarrow B$ is free.

Example 19.6.5 In Exercise 17.20 we introduced the type

$$\tilde{D}_n := \sum_{(X:BS_2)} \sum_{(Y:X \to \mathbb{F})} \Big(\mathsf{Fin}_n \simeq \prod_{(x:X)} Y(x) \Big).$$

Notice that this type is the type of orbits of the $\mathbb{Z}/2$ -set D_n given by

$$D_n(X) := \sum_{(Y:X\to\mathbb{F})} \Big(\operatorname{Fin}_n \simeq \prod_{(x:X)} Y(x) \Big).$$

The fact that this is a family of sets is a nice exercise. Note that there is a surjective morphism of $\mathbb{Z}/2$ -sets from $D_n(\operatorname{Fin}_2)$ to the $\mathbb{Z}/2$ set of divisors of n, where the action is given by $d \mapsto n/d$. The concrete $\mathbb{Z}/2$ -action D_n is transitive precisely when n is either 1 or a prime, and it is is free precisely when n is not a square. Combining these two observations, we see that n is prime if and only if this action is both transitive and free. In other words, n is prime if and only if the type \tilde{D}_n of orbits is contractible.

G-sets which are both transitive and free are very special. Such G-sets are called G-torsors. Note that a G-set X is a G-torsor if and only if the type of orbits X/G is contractible. By the fundamental theorem of identity types, this implies that the family of maps

$$\prod_{(v:BG)}(u=v) \to X(v)$$

is a family of equivalences, where (u, x) is the center of contraction of X/G. It follows that a concrete G-set $X: BG \to \mathsf{Set}_{\mathcal{U}}$ is a G-torsor if and only if it is in the image of

$$Id: BG \to (BG \to Set_{\mathcal{U}}).$$

However, we know from Exercise 17.6 that this map is an embedding, so it follows that the type of concrete *G*-torsors is equivalent to *BG*. On the other hand, the type of concrete *G*-torsors is equivalent to the type of abstract *G*-torsors. This suggests that the classifying type *BG* of any group *G* can be constructed as the type of abstract *G*-torsors, and this is indeed one way to construct the classifying type of a group *G*.

Exercises

- 19.1 Consider a set X equipped with an associative binary operation $\mu:X\to (X\to X)$, and suppose that
 - (i) The type X is inhabited, i.e., ||X|| holds.
 - (ii) The maps $\mu(x, -)$ and $\mu(-, y)$ are equivalences, for each x, y : X. Show that X is a group.

19.2 Let f : hom(G, H) be a group homomorphism. Show that f preserves units and inverses, i.e., show that

$$f(e_G) = e_H$$

$$f(x^{-1}) = f(x)^{-1}.$$

19.3 Consider a group *G*. Show that the function

$$\mu_G: G \to (G \simeq G)$$

is an injective group homomorphism.

19.4 Let *X* be a set. Show that the map

equiv-eq:
$$(X = X) \rightarrow (X \simeq X)$$

is a group isomorphism.

19.5 Consider a group *G*. Show that the map

$$Group(\mathbb{Z}, G) \to G$$

given by $h \mapsto h(1_{\mathbb{Z}})$, is an equivalence. In other words, the group \mathbb{Z} satisfies the universal property of the **free group on one generator**.

- 19.6 Give a direct proof and a proof using the univalence axiom of the fact that all semigroup isomorphisms between unital semigroups preserve the unit. Conclude that isomorphic monoids are equal.
- 19.7 Consider an abelian group A, and let $D_A := A + A$ be the set equipped with $1 := \mathsf{inl}(0)$, the binary operation $-\cdot -: D_A \to (D_A \to D_A)$ defined by

$$inl(x) \cdot inl(y) := inl(x + y)$$

$$inl(x) \cdot inr(y) := inr(-x + y)$$

$$inr(x) \cdot inl(y) := inr(x + y)$$

$$inr(x) \cdot inr(y) := inl(-x + y),$$

and the unary operation $(-)^{-1}: D_A \to D_A$ defined by

$$\operatorname{inl}(x)^{-1} := \operatorname{inl}(-x)$$

 $\operatorname{inr}(x)^{-1} := \operatorname{inr}(x).$

Show that D_A equipped with these operations is a group. The group D_A is called the **generalized dihedral group** on A. The (ordinary) **dihedral group** D_k is defined to be $D_k := D_{\mathbb{Z}/k}$.

19.8 Recall that a **subgroup** of a group G in \mathcal{U} consists of a subtype

$$P: G \to \mathsf{Prop}_{\mathcal{U}}$$

such that *P* contains the unit and is closed under the group operation and under inverses.

(a) Consider a proposition P, and let N_P be the subtype of $\mathbb{Z}/2$ given by

$$N_P(x) := (x = 0) \vee P$$
.

Show that N_P is a subgroup of $\mathbb{Z}/2$.

(b) Show that the map $P \mapsto N_P$ is an embedding

$$\mathsf{Prop}_{\mathcal{U}} \hookrightarrow \mathsf{Subgroup}_{\mathcal{U}}(\mathbb{Z}/2).$$

19.9 Recall that a **normal subgroup** H of a group G is a subgroup of G such that xyx^{-1} is in H for every y:H and x:G. Show that the type of normal subgroups of G in $\mathcal U$ is equivalent to the type

$$\sum_{(H: \mathsf{Group}_{\mathcal{U}})} \sum_{(f: \mathsf{hom}(G,H))} \mathsf{is}\mathsf{-surj}(f).$$

19.10 For any type *A*, we define the type of **commutative binary operations** on *A* to be

$$\left(\sum_{(X:BS_2)} A^X\right) \to A.$$

If *A* is a set, show that the map

$$\left(\left(\sum_{(X:BS_2)}A^X\right)\to A\right)\to \left(\sum_{(f:A\to(A\to A))}\prod_{(x,y:A)}f(x,y)=f(y,x)\right)$$

given by $h\mapsto \lambda x.\,\lambda y.\,h(\mathsf{Fin}_2,(x,y))$ is an equivalence. In other words, show that every commutative operation $f:A\to (A\to A)$ extends uniquely along the map $f\mapsto (\mathsf{Fin}_2,f)$ as in the diagram

$$A^{\mathsf{Fin}_2}$$

$$f \mapsto (\mathsf{Fin}_2, f) \downarrow \qquad \qquad \mu$$

$$\sum_{(X:BS_2)} A^X - \cdots \to A.$$

Give an informal explanation of this fact in terms fixed points of the concrete $\mathbb{Z}/2$ -action on the set of binary operations $A \to (A \to A)$.

19.11 Consider a commutative monoid M. Define an operation

$$\prod_{(X:\mathbb{F})} M^X \to M$$

that extends the (binary) monoid operation to the finite unordered n-tuples of elements in M.

- 19.12 Show that the type of 3-element groups is equivalent to the type of 2-element types.
- 19.13 Show that the number of connected components in the type of all groups of order n is as follows, for $n \le 8$:

19.14 Consider a subtype

$$P: \mathcal{U} \to \mathsf{Prop}_{\mathcal{V}}$$

of a universe \mathcal{U} . We say that a type $A : \mathcal{U}$ is a P-type if P(A) holds, we say that a map $f : A \to B$ is a P-map if its fibers are P-types, and we say that A is P-separated if its identity types are P-types.

Now consider a connected type $A : \mathcal{U}$ equipped with an element a : A, and consider a family of types $B(x) : \mathcal{U}$ indexed by x : A. Show that the following are equivalent:

(i) Every family of maps

$$f: \prod_{(x:A)} (a=x) \to B(x)$$

is a family of *P*-maps.

(ii) The total space

$$\sum_{(x:A)} B(x)$$

is *P*-separated.

For readers familiar with the notion of k-connectedness: Conclude that every $f: \prod_{(x:A)} (a=x) \to B(x)$ is a family of k-connected maps if and only if $\sum_{(x:A)} B(x)$ is a (k+1)-connected type.

- 19.15 Consider a group G in a universe \mathcal{U} and a pointed connected 1-type B. In analogy with Theorem 18.2.3, show that the following are equivalent:
 - (i) The pointed connected 1-type ${\it B}$ comes equipped with a group homomorphism

$$\varphi:G\to\Omega(B)$$

and for every pointed connected 1-type C that comes equipped with a group homomorphism $\psi: G \to \Omega(C)$ there is a unique pointed map $f: B \to_* C$ equipped with a homotopy witnessing that the triangle

commutes.

(ii) The pointed connected 1-type *B* comes equipped with a group isomorphism

$$\varphi: G \cong \Omega(B)$$
.

(iii) There is an embedding $i: B \hookrightarrow G\operatorname{-Set}_{\mathcal{U}}$ such that the triangle

commutes, where Pr_G is the **principal** G**-set**, i.e., G acting on itself from the left.

19.16 Consider a group *G* and a pointed connected 1-type *B* equipped with a group isomorphism

$$\varphi:G\cong\Omega(B).$$

(a) Show that the map

$$ev_*: (B \to Set_{\mathcal{U}}) \to \sum_{(X:Set_{\mathcal{U}})} hom(G, Aut(X))$$

sending concrete G-sets to abstract G-sets defined by

$$ev_*(X) := (X(*), g \mapsto tr_X(\varphi(g)))$$

is an equivalence. In the remainder of this exercise we will write gx for $tr_X(\varphi(g), x)$.

(b) Show that the type $X_G := \prod_{(u:BG)} X(u)$ of concrete fixed points of X is equivalent to the type

$$\sum_{(x:X(*))} gx = x$$

of **fixed points** of the abstract G-set $ev_*(X)$.

(c) Show that the type X/G of orbits of X is connected if and only if the abstract G-set $ev_*(X)$ is transitive in the sense that

$$\forall_{(x:X(*))}$$
is-surj $(g \mapsto gx)$

(d) Show that the type X/G of orbits of X is a set if and only if the abstract G-set $ev_*(X)$ is free in the sense that

$$\forall_{(x:X(*))}$$
is-inj $(g \mapsto gx)$.

- (e) Show that the type of abstract *G*-torsors is equivalent to the type of families $X : B \to \mathsf{Set}_{\mathcal{U}}$ with contractible total space.
- 19.17 (Buchholtz) Consider a group *G* with classifying type *BG* equipped with a group isomorphism

$$\varphi: G \cong \Omega(BG).$$

Define the *G*-type Concrete-Subgroup $_{\mathcal{U}}(G):BG\to \mathcal{U}$ of **concrete subgroups** of G by

$$\mathsf{Concrete\text{-}Subgroup}_{\mathcal{U}}(G,u) \coloneqq \sum_{(X:BG \to \mathsf{Set}_{\mathcal{U}})} \sum_{(x:X(u))} \mathsf{is\text{-}conn}(X/G).$$

(a) Construct an equivalence

Concrete-Subgroup_{$$\mathcal{U}$$} $(G,*) \simeq Subgroup_{\mathcal{U}}(G)$.

(b) Show that G acts on Concrete-Subgroup_{\mathcal{U}}(G,*) by conjugation, i.e., show that for any g:G we have a commuting square

(c) Conclude that the type of normal subgroups of a group *G* is equivalent to the type of **concrete normal subgroups**

$$\prod_{(u:BG)}$$
Concrete-Subgroup _{\mathcal{U}} (G, u) .

(d) Show that the type of normal subgroups of a group *G* is also equivalent to the type

$$\sum_{(BH: \mathsf{Concrete-Group}_{qI})} \sum_{(f:BG \to_* BH)} \mathsf{is\text{-}conn}(f)$$

20 General inductive types

Most inductive types we have seen in this book have a finite number of constructors with finite arities. For example, the type \mathbb{N} has two constructors: one constant $0_{\mathbb{N}}$ and one unary constructor $\mathsf{succ}_{\mathbb{N}}$. However, there is no objection to having an nonfinite amount of constructors, possibly with nonfinite arities. W-types are general inductive types that have a *type* of constructors, whose arities are *types*. W-types are therefore specified by a type A of *symbols* for the constructors, and a type family B over A specifying the arities of the constructors that the symbols represent.

An example of a W-type is the type of finitely branching rooted trees. This inductive type has a constructor with arity X for each finite type X. In other words, a finitely branching rooted tree is obtained by attaching a finitely many finitely branching rooted trees to a root. The root itself is therefore a finitely branching tree, obtained from the 0-ary constructor corresponding to the empty type, and if we have any finite family finitely branching rooted trees, we can combine them all into one finitely branching rooted tree by attaching them to a new root.

20.1 The type of well-founded trees

Definition 20.1.1 Consider a type family B over A. The **W-type** W(A, B) is defined as the inductive type with constructor

tree :
$$\prod_{(x:A)} (B(x) \to W(A,B)) \to W(A,B)$$
.

The induction principle of the W-type W(A, B) asserts that, for any type family P over W(A, B), any dependent function

$$h: \textstyle\prod_{(x:A)}\textstyle\prod_{(\alpha:B(x)\to\mathsf{W}(A,B))}\Bigl(\textstyle\prod_{(y:B(x))}P(\alpha(x))\Bigr)\to P(\mathsf{tree}(x,\alpha))$$

determines a dependent function

$$\operatorname{ind}_{\mathsf{W}}(h):\prod_{(x:\mathsf{W}(A,B))}P(x)$$

that satisfies the judgmental equality

$$\operatorname{ind}_{\mathsf{W}}(h,\operatorname{tree}(x,\alpha)) \doteq h(x,\alpha,\lambda y.\operatorname{ind}_{\mathsf{W}}(h,\alpha(y))).$$

The elements of W-types are called **(well-founded) trees**.

Remark 20.1.2 Some authors write sup for the constructor of a W-type. The intuition that tree(a, α) is a supremum of the family of elements $\alpha(y)$ indexed by y: B(a) is, however, somewhat misleading, because tree(a, α) does not satisfy the defining properties of a supremum.

Remark 20.1.3 When we define a dependent function

$$f:\prod_{(x:W(A,B))}P(x)$$

via the induction principle of W-types, we will often display that definition by pattern matching. Such definitions are then displayed as

$$f(\text{tree}(x, \alpha)) := h(x, \alpha, \lambda y. f(\alpha(y))),$$

which contains all the information to carry out the construction via the induction principle of W-types. The advantage of definitions by pattern matching is that they directly display the defining judgmental equality the function being defined.

Remark 20.1.4 For any x : A, the function

$$tree(x): (B(x) \rightarrow W(A, B)) \rightarrow W(A, B)$$

takes a family of elements $\alpha(y)$: W(A,B) indexed by y:B(x) and collects them into an element $tree(x,\alpha):W(A,B)$. Since the element $tree(x,\alpha)$ has been constructed out of a family $\alpha(y)$ of elements of W(A,B) indexed by y:B(x), we say that the type B(x) is the **arity** of $tree(x,\alpha)$. In other words, there is a function

$$\operatorname{arity}: \operatorname{W}(A,B) \to \mathcal{U}$$

given by $\operatorname{arity}(\operatorname{tree}(x,\alpha)) := B(x)$. The element x:A is the **symbol** of the operation $\operatorname{tree}(x): (B(x) \to W(A,B)) \to W(A,B)$. Note that there might be many different symbols x,y:A for which the operations $\operatorname{tree}(x)$ and $\operatorname{tree}(y)$ have equivalent arities, i.e., for which $B(x) \simeq B(y)$.

Furthermore, the **components** of tree(x, α) are the elements $\alpha(y)$: W(A, B) indexed by y : B(x). In other words, we have

component :
$$\prod_{(w:W(A,B))} \operatorname{arity}(w) \to W(A,B)$$
,

given by component(tree(x, α)) := α .

In the special case where B(x) is empty, there is exactly one family of elements $\alpha(y)$: W(A,B) indexed by y:B(x). Therefore, it follows that any

x: A such that B(x) is empty induces a constant in the W-type W(A, B). More precisely, if we are given a map $h: B(x) \to \emptyset$, then we can define the **constant**

$$c_x(h) := \text{tree}(x, \text{ex-falso} \circ h).$$

The elements of w : W(A, B) for which the type B(arity(w)) is empty are called the **constants** of W(A, B). In other words, the predicate

is-constant_W:
$$W(A, B) \rightarrow Prop_{\mathcal{U}}$$

is defined by is-constant_W(w) := is-empty(B(arity(w))).

On the other hand, if each type B(x) is inhabited, then there are no such constants and we will see in the following proposition that the W-type W(A, B) is empty in this case.

Proposition 20.1.5 Consider a family B of types over A. Then the following are equivalent:

- (i) For each x : A, the type B(x) is nonempty.
- (ii) The W-type W(A, B) is empty.

In particular, if each B(x) is inhabited, then W(A, B) is empty.

Proof To prove that (i) implies (ii), assume that $\neg\neg(B(x))$ holds for each x:A. Our goal is to construct a function $f:W(A,B)\to\emptyset$. By the induction principle of W-types it suffices to construct a function of type

$$\textstyle \prod_{(x:A)} \prod_{(\alpha:B(x) \to \mathsf{W}(A,B))} \Bigl(\prod_{(y:B(x))} \emptyset\Bigr) \to \emptyset.$$

This type is judgmentally equal to the type

$$\prod_{(x:A)} \prod_{(\alpha:B(x)\to W(A,B))} \neg \neg (B(x)),$$

so we obtain the desired function from the assumption that $\neg\neg(B(x))$ holds for every x:A.

To prove that (ii) implies (i), suppose that W(A, B) is empty and let x : A. To show that $\neg \neg (B(x))$ holds, assume that $\neg (B(x))$ holds. In other words, assume a function $h : B(x) \to \emptyset$. Then we have the constant element $c_x(h) : W(A, B)$. This is impossible, since W(A, B) was assumed to be empty. \Box

Example 20.1.6 Consider the type family *P* over bool given by

$$P(\mathsf{false}) \coloneqq \emptyset$$
 and $P(\mathsf{true}) \coloneqq \mathbf{1}$.

We claim that the W-type N := W(bool, P) is equivalent to \mathbb{N} . The idea is

that the constructor tree of W(bool, P) splits into one nullary constructor with symbol false and arity $P(\text{false}) \doteq \emptyset$, and one unary constructor with symbol true and arity $P(\text{true}) \doteq \mathbf{1}$.

More formally, we define the zero element z:N and the successor function $s:N\to N$ by

$$z := \text{tree}(\text{false}, \text{ex-falso})$$
 and $s(x) := \text{tree}(\text{true}, \text{const}_x)$.

Thus, we obtain a function $f:\mathbb{N}\to N$ that satisfies $f(0_\mathbb{N})\doteq z$ and $f(\mathsf{succ}_\mathbb{N}(n))\doteq s(f(n))$. It's inverse $g:N\to\mathbb{N}$ is defined via the induction principle of W-types by

$$g(\mathsf{tree}(\mathsf{false}, \alpha)) \coloneqq 0_{\mathbb{N}}$$

 $g(\mathsf{tree}(\mathsf{true}, \alpha)) \coloneqq \mathsf{succ}_{\mathbb{N}}(g(\alpha(\star))).$

It is immediate from these definitions that g(f(n)) = n for all $n : \mathbb{N}$. It remains to construct an identification p(x) : f(g(x)) = x for all x : N. Such an identification is constructed inductively. First, there is an identification

$$p(\text{tree}(\text{false}, \alpha)) : \text{tree}(\text{false}, \text{ex-falso}) = \text{tree}(\text{false}, \alpha)$$

by the fact that ex-falso = α for any $\alpha : \emptyset \to N$. Second, there is an identification

$$p(\mathsf{tree}(\mathsf{true}, \alpha)) : \mathsf{tree}(\mathsf{true}, \mathsf{const}_{\alpha(\star)}) = \mathsf{tree}(\mathsf{true}, \alpha)$$

by the fact that $\mathsf{const}_{\alpha(\star)} = \alpha$ for any map $\alpha : \mathbf{1} \to N$. This completes the construction of the equivalence $\mathbb{N} \simeq N$.

Example 20.1.7 Consider the type family *B* over bool given by

$$B(false) := \emptyset$$
 and $B(true) := bool.$

Then the W-type W(bool, *B*) is equivalent to the type of **oriented binary rooted trees**, which is the inductive type with constructors

$$\begin{aligned} &\text{node}: T_2\\ [-,-]: T_2 \to (T_2 \to T_2). \end{aligned}$$

We leave the construction of the equivalence $T_2 \simeq W(bool, B)$ as Exercise 20.1 (a). The reason we call the elements of T_2 oriented binary rooted trees is that in a tree of the form $[T_1, T_2]$ we can see by inspection which branch is on the left and which branch is on the right.

Example 20.1.8 Consider the type $A := \mathbf{1} + BS_2$, where BS_2 is the type of 2-element types. We define the family B over A by pattern matching:

$$B(\operatorname{inl}(x)) := \emptyset$$

 $B(\operatorname{inr}(X)) := X.$

The type of **binary rooted trees** is the W-type W(A, B) for this choice of A and B. We can also present the type of binary rooted trees as an inductive type with the following constructors:

$$\label{eq:node:Bin-Tree} \begin{split} \text{node: Bin-Tree} \\ \text{bin-tree: } \prod_{(X:BS_2)} \text{Bin-Tree}^X &\to \text{Bin-Tree}. \end{split}$$

There is an important qualitative difference between the type of oriented binary rooted trees and the type of binary rooted trees. Given two distinct oriented binary rooted trees T_1 and T_2 , the two oriented binary rooted trees T_1 and T_2 , the other hand, given two binary rooted trees T_1 and T_2 , the binary rooted trees

bin-tree(bool, ind-bool(
$$T_1$$
, T_2))
bin-tree(bool, ind-bool(T_2 , T_1))

can always be identified. In the terminology of Exercise 19.10, the constructor bin-tree of Bin-Tree is equivalently described as a commutative binary operation on Bin-Tree.

Example 20.1.9 The W-type W(\mathbb{N} , Fin) is the type of **oriented finitely branching rooted trees**. On the other hand, we define the type of **(unoriented) finitely branching rooted trees** to be the W-type W(\mathbb{F} , \mathcal{T}). The qualitive difference between the types of oriented and unoriented finitely branching rooted trees is similar to the qualitative difference between types of oriented and unoriented binary rooted trees. In the type of oriented finitely branching rooted trees, we record the ordering of the branches while in the type of unoriented finitely branching rooted trees there are identifications between trees that have the same branches up to permutation.

20.2 Observational equality of W-types

Each element x : W(A, B) has symbol symbol(x) : A and a family of components component(x) : $B(\text{symbol}(x)) \to W(A, B)$. Therefore, we have a map

$$\eta: W(A, B) \to \sum_{(x:A)} (B(x) \to W(A, B))$$

given by $\eta(x) := (\operatorname{symbol}(x), \operatorname{component}(x))$.

Proposition 20.2.1 The map $\eta: W(A,B) \to \sum_{(x:A)} (B(x) \to W(A,B))$ is an equivalence.

Proof We define

$$\varepsilon: \left(\sum_{(x:A)} (B(x) \to \mathsf{W}(A,B))\right) \to \mathsf{W}(A,B)$$

by $\varepsilon(x, \alpha) := \text{tree}(x, \alpha)$. The fact that ε is an inverse of η follows easily. \square

The fact that we have an equivalence

$$W(A, B) \simeq \sum_{(x:A)} (B(x) \to W(A, B)),$$

suggests a way to characterize the identity type of W(A, B). Indeed, any equivalence is an embedding, and therefore we also have

$$(x = y) \simeq (\eta(x) = \eta(y)).$$

The latter is an identity type in a Σ -type, which can be characterized as a Σ -type of identity types. We therefore define the following observational equality relation on W(A, B).

Definition 20.2.2 Suppose *A* and each B(x) are in \mathcal{U} . We define a binary relation

$$Eq_W : W(A, B) \to W(A, B) \to \mathcal{U}$$

recursively by

Eq_W(tree
$$(x, \alpha)$$
, tree (y, β)) := $\sum_{(p:x=y)} \prod_{(z:B(x))} \alpha(z) = \beta(\operatorname{tr}_B(p, z))$

Theorem 20.2.3 *The observational equality relation* Eq_W *on* W(A, B) *is reflexive, and the canonical map*

$$(x = y) \rightarrow \mathsf{Eq_W}(x, y)$$

is an equivalence for each x, y: W(A, B).

Proof The element refl-Eq_W(x): Eq_W(x, x) is defined recursively as

$$refl-Eq_W(tree(x, \alpha)) := (refl_x, refl-htpy_\alpha).$$

This proof of reflexivity induces the canonical map $(x = y) \rightarrow \text{Eq}_W(x, y)$. To show that it is an equivalence for each x, y : W(A, B), we apply the fundamental theorem of identity types, by which it suffices to show that the type

$$\sum_{(y:W(A,B))} \mathsf{Eq_W}(x,y)$$

is contractible for each x : W(A, B). The center of contraction is the pair $(x, refl-Eq_W(x))$. For the contraction, we have to construct a function

$$h: \prod_{(y:W(A,B))} \prod_{(p:Eq_W(x,y))} (x, refl-Eq_W(x)) = (y,p).$$

By the induction principle of W-types, it suffices to define

$$h(\mathsf{tree}(y,\beta),(p,H)) \coloneqq (x,(\mathsf{refl},\mathsf{refl-htpy})) = (y,(p,H)).$$

Here we proceed by identification elimination on p: x = y, followed by homotopy induction on the homotopy $H: \alpha \sim \beta$. Thus, it suffices to construct an identification

$$(x, (refl, refl-htpy)) = (x, (refl, refl-htpy)),$$

which we have by reflexivity.

Theorem 20.2.4 Consider a type family B over a type A, and let $k : \mathbb{T}$ be a truncation level. If A is a (k + 1)-type, then so is W(A, B).

Proof Suppose that A is a (k+1)-type. In order to show that W(A, B) is a (k+1)-type, we have to show that its identity types are k-types. The proof is by induction on x, y : W(A, B). For $x \doteq \mathsf{tree}(a, \alpha)$ and $y \doteq \mathsf{tree}(b, \beta)$, we have the equivalence

$$(\operatorname{tree}(a, \alpha) = \operatorname{tree}(b, \beta)) \simeq \sum_{(p:a=b)} \prod_{(z:B(a))} \alpha(z) = \beta(\operatorname{tr}_B(p, z))$$

Note that the type a = b is a k-type by the assumption that A is a (k + 1)-type. Furthermore, the type $\alpha(z) = \beta(\operatorname{tr}_B(p, z))$ is a k-type by the induction hypothesis. Therefore it follows that the type on the right-hand side of the displayed equivalence is a k-type, and this completes the proof. \Box

20.3 Functoriality of W-types

Definition 20.3.1 Consider a type family B over A, and a type family B' over A'. Furthermore, consider a map $f: A' \to A$ and a family of equivalences

$$e_x: B'(x) \simeq B(f(x))$$

indexed by x:A'. Then we define the map $W(f,e):W(A',B')\to W(A,B)$ of W-types inductively by

$$W(f, e)(tree(x, \alpha)) := tree(f(x), W(f, g) \circ \alpha \circ e_x^{-1}).$$

Lemma 20.3.2 *For any morphism* $W(f, e) : W(A', B') \rightarrow W(A, B)$ *of W-types and any* tree $(x, \alpha) : W(A, B)$ *, there is an equivalence*

$$\mathsf{fib}_{\mathsf{W}(f,e)}(\mathsf{tree}(x,\alpha)) \simeq \mathsf{fib}_f(x) \times \prod_{(b:B(x))} \mathsf{fib}_{\mathsf{W}(f,e)}(\alpha(b)).$$

Proof First, note that by the characterization in Theorem 20.2.3 of the identity type of W(A, B), there is an equivalence between the fiber fib_{W(f,e)}(tree(x, α)) and the type

$$\begin{split} \sum_{(x':A')} & \sum_{(\alpha':B'(x') \to \mathsf{W}(A',B'))} \sum_{(p:f(x')=x)} \\ & \prod_{(b:B(f(x')))} \mathsf{W}(f,e)(\alpha'(e_{x'}^{-1}(b))) = \alpha(\mathsf{tr}_B(p,b)). \end{split}$$

By rearranging the Σ -type, we see that this type is equivalent to the type

$$\sum_{((x',p):\mathsf{fib}_f(x))} \sum_{(\alpha':B'(x')\to\mathsf{W}(A',B'))} \mathsf{W}(A',B'))$$

$$\prod_{(b:B(f(x')))} \mathsf{W}(f,e)(\alpha'(e_{x'}^{-1}(b))) = \alpha(\mathsf{tr}_B(p,b)).$$

Therefore, it suffices to show for each (x', p): fib_f(x), that the type

$$\sum_{(\alpha':B'(x')\to W(A',B'))} \prod_{(b:B(f(x')))} W(f,e)(\alpha'(e_{x'}^{-1}(b))) = \alpha(\operatorname{tr}_B(p,b))$$

is equivalent to the type $\prod_{(b:B(x))} \mathsf{fib}_{\mathsf{W}(f,e)}(\alpha(b))$. Since we have an identification p: f(x') = x and an equivalence $e_{x'}: B'(x') \simeq B(f(x'))$, it follows that the type above is equivalent to the type

$$\sum_{(\alpha':B(x)\to W(A',B'))} \prod_{(b:B(x))} W(f,e)(\alpha'(b)) = \alpha(b).$$

By distributivity of Π over Σ , i.e., by Theorem 13.2.1, this type is equivalent to the type

$$\prod_{(b:B(x))} \sum_{(w:W(A',B'))} W(f,e)(w) = \alpha(b),$$

completing the proof.

Theorem 20.3.3 Consider a morphism $W(f,e):W(A,B)\to W(A',B')$ of W-types. If the map $f:A\to A'$ is k-truncated, then so is the map W(f,e). In particular, if f is an equivalence or an embedding, then so is W(f,e).

Proof Suppose that the map f is k-truncated. We will prove recursively that the fibers of the morphism W(f,e) on W-types is k-truncated. We saw in Lemma 20.3.2 that there is an equivalence

$$\mathsf{fib}_{\mathsf{W}(f,e)}(\mathsf{tree}(x,\alpha)) \simeq \mathsf{fib}_f(x) \times \prod_{(b:B(x))} \mathsf{fib}_{\mathsf{W}(f,e)}(\alpha(b)).$$

The type $fib_f(x)$ is k-truncated by assumption, and each of the types

$$fib_{W(f,e)}(\alpha(b))$$

is *k*-truncated by the inductive hypothesis, so the claim follows.

20.4 The elementhood relation on W-types

The elements of a W-type W(A, B) are constructed out of families of elements of W(A, B) indexed by a type B(x) for some x : A. More precisely, for each tree(x, α) : W(A, B) we have a family of elements

$$\alpha(y): W(A, B)$$

indexed by y : B(x). Thus, we could say that $\alpha(y)$ is in tree(x, α), for each y : B(x). More abstractly, we can define an elementhood relation on W(A, B).

Definition 20.4.1 Given a W-type W(A, B) and a universe \mathcal{U} containing both A and each type in the family B, we define a type-valued relation

$$\in$$
 : W(A, B) \rightarrow W(A, B) \rightarrow \mathcal{U}

by
$$(x \in \text{tree}(a, \alpha)) := \sum_{(y:B(a))} \alpha(y) = x$$
.

Using the elementhood relation on W(A, B), we can reformulate the induction principle to, perhaps, a more recognizable form:

Theorem 20.4.2 For any family P of types over W(A, B), there is a function

$$i: \left(\prod_{(x: \mathsf{W}(A,B))} \left(\prod_{(y: \mathsf{W}(A,B))} (y \in x) \to P(y)\right) \to P(x)\right) \to \left(\prod_{(x:X)} P(x)\right)$$

that comes equipped with an identification

$$i(h,x) = h(x,\lambda y.\,\lambda e.\,i(h,y))$$

for every $h: \prod_{(x:W(A,B))} \left(\prod_{(y:W(A,B))} (y \in x) \rightarrow P(y)\right) \rightarrow P(x)$, and every x:W(A,B).

Proof For any type family P over W(A, B), we first define a new type family $\Box P$ over W(A, B) given by

$$\Box P(x) := \prod_{(y:W(A,B))} (y \in x) \to P(y).$$

The family $\Box P(x)$ comes equipped with a map

$$\eta: \left(\prod_{(x:W(A,B))} P(x)\right) \to \left(\prod_{(x:W(A,B))} \Box P(x)\right)$$

given by $\eta(f, x, y, e) := f(y)$. Conversely, there is a map

$$\varepsilon(h): \left(\prod_{(y:W(A,B))} \Box P(y)\right) \to \left(\prod_{(x:W(A,B))} P(x)\right)$$

for every $h: \prod_{(y:W(A,B))} \Box P(y) \to P(y)$, given by $\varepsilon(h,g,x) \coloneqq h(x,g(x))$. Note that the induction principle can now be stated as

$$i: \left(\prod_{(y:W(A,B))} \Box P(y) \to P(y)\right) \to \left(\prod_{(x:W(A,B))} P(x)\right),$$

and the computation rule states that

$$i(h, x) = h(x, \eta(i(h), x)).$$

Before we prove the induction principle, we prove the intermediate claim that there is a function

$$i': \left(\prod_{(y: \mathsf{W}(A,B))} \Box P(y) \to P(y)\right) \to \left(\prod_{(x: \mathsf{W}(A,B))} \Box P(x)\right)$$

equipped with an identification

$$i'(h, x, y, e) : i'(h, x, y, e) = h(y, i'(h, y))$$

for every $h: \prod_{(y:W(A,B))} \Box P(y) \to P(y)$ and every x,y:W(A,B) equipped with $e:y \in x$. Both i' and j' are defined by pattern matching:

$$i'(h, \text{tree}(a, f), f(b), (b, \text{refl})) := h(f(b), i'(h, f(b)))$$

 $j'(h, \text{tree}(a, f), f(b), (b, \text{refl})) := \text{refl}.$

Now we define $i(h) := \varepsilon(h, i'(h))$. Note that we have the judgmental equalities

$$i(h, x) \doteq \varepsilon(h, i'(h), x)$$

 $\doteq h(x, i'(h, x)),$

and

$$h(x, \lambda y. \lambda e. i(h, y)) \doteq h(x, \lambda y. \lambda e. \varepsilon(h, i'(h), y))$$
$$\doteq h(x, \lambda y. \lambda e. h(y, i'(h, y))).$$

The computation rule is therefore satisfied by the identification

$$h(x,i'(h,x)) \xrightarrow{\text{ap}_{h(x)}(\text{eq-htpy}(\lambda y.\,\text{eq-htpy}(j'(h,x,y))))} h(x,\lambda y.\,\lambda e.\,h(y,i'(h,y))). \quad \Box$$

20.5 Extensional W-types

It is tempting to think that an element w : W(A, B) is completely determined by the elements z : W(A, B) equipped with a proof $z \in w$. However, this may not be the case. For instance, a W-type W(A, B) might have two unary constructors, e.g., when A := 1 + bool and the family B over A is given by

$$B(\operatorname{inl}(x)) := \emptyset$$

 $B(\operatorname{inr}(y)) := \mathbf{1}.$

If we write f and g for the two unary constructors of W(A, B), then we see that for any element w : W(A, B), the elements

$$u := \text{tree}(\text{inr}(\text{false}), \text{const}_w)$$
 and $v := \text{tree}(\text{inr}(\text{true}), \text{const}_w)$

both only contain the element w. However, the elements u and v are distinct in W(A, B).

Something similar happens in the type of oriented binary rooted trees. Given two binary rooted trees S and T, there are two ways to combine S and T into a new binary tree: we have [S,T] and [T,S]. Both contain precisely the elements S and T, but they are distinct. Nevertheless, there are many important W-types in which the elements w are uniquely determined by the elements $z \in w$. Such W-types are called extensional.

Definition 20.5.1 We say that a W-type W(A, B) is **extensional** if the canonical map

$$(x = y) \rightarrow \prod_{(z:W(A,B))} (z \in x) \simeq (z \in y)$$

is an equivalence.

In the following theorem we give a precise characterization of the inhabited extensional W-types.

Theorem 20.5.2 Consider an inhabited W-type W(A, B). Then the following are equivalent:

- (i) The W-type W(A, B) is extensional.
- (ii) The family B is **univalent** in the sense that the map

$$\operatorname{tr}_B: (x = y) \to (B(x) \simeq B(y))$$

is an equivalence, for every x, y : A.

Remark 20.5.3 Note that if the W-type W(A, B) is empty, then it is vacuously extensional. However, we saw in Proposition 20.1.5 that any family B of inhabited types over A gives rise to an empty W-type W(A, B), so there is no hope of showing that B is a univalent family if W(A, B) is empty.

We also note that a type family B over A is univalent if and only if the map $B: A \to \mathcal{U}$ is an embedding. In other words, the claim in Theorem 20.5.2 is that an inhabited W-type W(A, B) is extensional if and only if B is the canonical type family over a subuniverse A of \mathcal{U} .

Proof We will first show that (ii) is equivalent to the following property:

(ii') The map

$$\operatorname{tr}_B : (\operatorname{symbol}(x) = y) \to (B(\operatorname{symbol}(x)) \simeq B(y))$$

is an equivalence for every x : W(A, B) and every y : A.

Clearly, (ii) implies (ii'). For the converse we use the assumption that W(A, B) is inhabited. Since the property in (ii) is a proposition, we may assume an element w: W(A, B). Using w, we obtain for every x: A the element

$$tree(x, const_w) : W(A, B)$$

The symbol of $\mathsf{tree}(x,\mathsf{const}_w)$ is x, and therefore the hypothesis that (ii') holds implies that the map $(x = y) \to (B(x) \simeq B(y))$ is an equivalence. This concludes the proof that (ii) is equivalent to (ii'). It remains to show that (i) is equivalent to (ii').

Let x : W(A, B). By the fundamental theorem of identity types, the W-type W(A, B) is extensional if and only if the total space

$$\sum_{(y:\mathsf{W}(A,B))} \prod_{(z:\mathsf{W}(A,B))} (z \in x) \simeq (z \in y)$$

is contractible, for any x : W(A, B). When x is of the form tree(a, α), the type

 $z \in x$ is just the fiber $fib_{\alpha}(z)$. Using this observation, we see that the above type is equivalent to the type

$$\sum_{(b:A)} \sum_{(\beta:B(b) \to W(A,B))} \prod_{(z:W(A,B))} \mathsf{fib}_{\alpha}(z) \simeq \mathsf{fib}_{\beta}(z). \tag{*}$$

By Exercise 13.15 (c) it follows that this type is equivalent to the type

$$\sum_{(y:A)} \sum_{(\beta:B(y)\to W(A,B))} \sum_{(e:B(x)\simeq B(y))} \alpha \sim e \circ \beta.$$

Note that the type $\sum_{(\beta:B(y)\to W(A,B))} \alpha \sim e \circ \beta$ is contractible for any equivalence $e:B(x)\simeq B(y)$. Therefore, it follows that the above type is contractible if and only if the type

$$\sum_{(y:A)} B(x) \simeq B(y)$$

is contractible, which is the case if and only if the map $(x = y) \rightarrow (B(x) \simeq B(y))$ is an equivalence for all y : A.

Example 20.5.4 The type *N* of Example 20.1.6, the type of binary rooted trees Example 20.1.8, and the type of finitely branching rooted trees Example 20.1.9 are all examples extensional W-types. On the other hand, the type of oriented binary rooted trees of Example 20.1.7 and the type of oriented finitely branching rooted trees of Example 20.1.9 are not extensional.

20.6 Russell's paradox in type theory

Russell's paradox tells us that there cannot be a set of all sets. If there were such a set *S*, then we could form the set

$$R \coloneqq \{x \in S \mid x \notin x\},\$$

for which we have $R \in R \leftrightarrow R \notin R$, a contradiction. To reproduce Russell's paradox in type theory, we first recall a crucial difference between the type theoritic judgment a:A and the set theoretic proposition $x \in y$. Although the judgment a:A plays a similar role in type theory as the elementhood relation, types and their elements are fundamentally different entities, whereas in Zermelo-Fraenkel set theory there are only sets, and the proposition $x \in y$ can be formed for any two sets x and y. In type theory, there is no relation on the universe that is similar to the elementhood relation.

However, we have seen in Section 20.5 that it is possible to define an elementhood relation on arbitrary W-types. We will use this elementhood

relation on the W-type $W(\mathcal{U}, \mathcal{T})$ to derive a paradox analogous to Russell's paradox, and we will see that \mathcal{U} cannot be equivalent to a type in \mathcal{U} .

The type $W(\mathcal{U}, \mathcal{T})$ possesses a lot of further structure. In fact, it can be used to encode constructive set theory in type theory. There is, however, one significant difference with ordinary set theory: the elementhood relation is type-valued. In other words, there may be many ways in which $x \in y$ holds. The type $W(\mathcal{U}, \mathcal{T})$ is therefore also called the type of **multisets**. It was first studied by Aczel in [1], with refinements in [11], and in the setting of univalent mathematics it has been studied extensively by Gylterud in [14].

Definition 20.6.1 Consider a $\mathcal U$ with universal type family $\mathcal T$. We define the type

$$\mathbb{M}_{\mathcal{U}} := \mathsf{W}(\mathcal{U}, \mathcal{T}),$$

and the elements of $M_{\mathcal{U}}$ are called **multisets in** \mathcal{U} . We will write

$${f(x) \mid x : A}$$

for the multiset in \mathcal{U} of the form tree(A, f). More generally, given an element $t(x_0, \ldots, x_n) : \mathbb{M}_{\mathcal{U}}$ in context $x_0 : A_0, \ldots, x_n : A_n(x_0, \ldots, x_{n-1})$, where each A_i is in \mathcal{U} , we will write

$$\{t(x_0,\ldots,x_n)\mid x_0:A_0,\ldots,x_n:A_n(x_0,\ldots,x_{n-1})\}$$

for the multiset in \mathcal{U} of the form

tree
$$\left(\sum_{(x_0:A_0)}\cdots A_n(x_0,\ldots,x_{n-1}),\lambda(x_0,\ldots,x_n).t(x_0,\ldots,x_n)\right)$$
.

Given a multiset $X \doteq \{f(x) \mid x : A\}$ in \mathcal{U} , the **cardinality** of X is the type A, and the **elements** of X are the multisets f(x) in \mathcal{U} , for each x : A.

In the notation of multisets, the elementhood relation \in : $\mathbb{M}_\mathcal{U} \to \mathbb{M}_\mathcal{U} \to \mathcal{U}^+$ is defined by

$$(X \in \{g(y) \mid y : B\}) \doteq \sum_{(y:B)} g(y) = X.$$

In other words, a multiset X is in a multiset of the form $\{g(y) \mid y : B\}$ if and only if X comes equipped with an element y : B and an identification g(y) = X. The W-type of multisets is extensional by Theorem 20.5.2 and the univalence axiom.

Recall from Definition 17.1.3 that for a universe \mathcal{U} , we say that a type A is (essentially) \mathcal{U} -small if A comes equipped with an element of type

$$\text{is-small}_{\mathcal{U}}(A)\coloneqq \sum_{(X:\mathcal{U})} A\simeq X.$$

Our goal in this section is to show, via Russell's paradox, that the universe \mathcal{U} is not \mathcal{U} -small, i.e., that there cannot be a type $U:\mathcal{U}$ equipped with an equivalence $\mathcal{U} \simeq U$. We will use a similar condition of smallness for multisets.

Definition 20.6.2 Let \mathcal{U} and \mathcal{V} be universes. We say that a multiset $\{f(x) \mid x : A\}$ in \mathcal{V} is \mathcal{U} -small if the type A is \mathcal{U} -small and if each mulitset f(x) in \mathcal{V} is \mathcal{U} -small. In other words, the type family

$$\operatorname{is-small}_{\mathbb{M}_{\mathcal{U}}}:\mathbb{M}_{\mathcal{V}} o \mathcal{V} \sqcup \mathcal{U}^+$$

is defined recursively by

$$\text{is-small}_{\mathcal{U}}(\{f(x) \mid x:A\}) \coloneqq \text{is-small}_{\mathcal{U}}(A) \times \prod_{(x:A)} \text{is-small}_{\mathcal{U}}(f(x)).$$

We will need quite a few properties of smallness before we can reproduce Russell's paradox. We begin with a simple lemma.

Lemma 20.6.3 Consider a \mathcal{U} -small multiset $\{f(x) \mid x : A\}$ in \mathcal{V} , and let B be a family of \mathcal{U} -small types over A. Then the multiset

$${f(x) | x : A, y : B(x)}$$

is again *U*-small.

Proof If the multiset $\{f(x) \mid x : A\}$ is \mathcal{U} -small, then the type A is \mathcal{U} -small. By the assumption that B is a family of \mathcal{U} -small types together with the fact that \mathcal{U} -small types are closed under formation of Σ -types, it follows that the type

$$\sum_{(x:A)} B(x)$$

is \mathcal{U} -small. Furthermore, since each f(x) is \mathcal{U} -small, we conclude that the multiset $\{f(x) \mid x : A, y : B(x)\}$ is \mathcal{U} -small.

The main purpose of the following lemma is to know that the elementhood relation takes values in the \mathcal{U} -small types, when it is applied to \mathcal{U} -small multisets. We will use the univalence axiom to prove this fact.

Proposition 20.6.4 Consider two univalent universes \mathcal{U} and \mathcal{V} , and let X and Y be \mathcal{U} -small multisets in \mathcal{V} . We make two claims:

- (i) The type X = Y is \mathcal{U} -small.
- (ii) The type $X \in Y$ is \mathcal{U} -small.

Proof For the first claim, let $X = \{f(x) \mid x : A\}$ and let $Y = \{g(y) \mid y : B\}$. The proof is by induction. Via Theorem 20.2.3 it follows that the type X = Y is equivalent to the type

$$\sum_{(p:A=B)} \prod_{(x:A)} f(x) = g(\mathsf{equiv-eq}(p)).$$

The type A = B is \mathcal{U} -small because it is equivalent to the type $A \simeq B$, which is \mathcal{U} -small. Therefore it suffices to show that the type

$$\prod_{(x:A)} f(x) = g(\mathsf{equiv-eq}(p))$$

is \mathcal{U} -small, for every p: A = B. Here we proceed by identification elimination, and the type $\prod_{(x:A)} f(x) = g(x)$ is a product of \mathcal{U} -small types by the induction hypothesis. This concludes the proof of the first claim.

For the second claim, let $Y = \{g(y) \mid y : B\}$. Then the type

$$\sum_{(y:B)} g(y) = X$$

is a dependent sum of \mathcal{U} -small types, indexed by an \mathcal{U} -small type, which is again \mathcal{U} -small. \Box

The condition that a multiset $\{f(x) \mid x : A\}$ in \mathcal{V} is \mathcal{U} -small suggests that there is an 'equivalent' multiset in \mathcal{U} .

Definition 20.6.5 Given two universes \mathcal{U} and \mathcal{V} , we define an inclusion function

$$i: \left(\sum_{(X:\mathbb{M}_{\mathcal{V}})} \mathsf{is\text{-small}}_{\mathbb{M}_{\mathcal{U}}}(X)\right) o \mathbb{M}_{\mathcal{U}}$$
 ,

of the ${\mathcal U}$ -small multisets in ${\mathcal V}$ into the multisets in ${\mathcal U}$, inductively by

$$i(\{f(x) \mid x : A\}) := \{i(f(e^{-1}(y))) \mid y : B\}.$$

for any multiset $\{f(x) \mid x : A\}$ of which the type A is equipped with an equivalence $e : A \simeq B$ for some B in \mathcal{U} , and such that the multiset f(x) in \mathcal{V} is \mathcal{U} -small for each x : A.

Proposition 20.6.6 The inclusion function i of \mathcal{U} -small multisets in \mathcal{V} into the multisets in \mathcal{U} satisfies the following properties

- (i) For each U-small multiset X in V, the multiset i(X) in U is V-small.
- (ii) The induced map

$$\left(\textstyle\sum_{(X:\mathbb{M}_{\mathcal{V}})} \text{is-small}_{\mathbb{M}_{\mathcal{U}}}(X)\right) \to \left(\textstyle\sum_{(Y:\mathbb{M}_{\mathcal{U}})} \text{is-small}_{\mathbb{M}_{\mathcal{V}}}(Y)\right)$$

is an equivalence.

Consequently, the inclusion function i is an embedding.

Proof To see that $i(\{f(x) \mid x : A\})$ is \mathcal{V} -small for each \mathcal{U} -small multiset $\{f(x) \mid x : A\}$ in \mathcal{V} , note that the assumption that $\{f(x) \mid x : A\}$ is \mathcal{U} -small gives us an equivalence $e : A \simeq B$ and an element H(x) : is-small $\mathbb{M}_{\mathcal{U}}(f(x))$ for each x : A. The type B is the indexing type of $i(\{f(x) \mid x : A\})$, and B is \mathcal{V} -small because it is equivalent to the type A in \mathcal{V} . Furthermore, each multiset $i(f(e^{-1}(y)))$ is \mathcal{V} -small by the inductive hypothesis. This completes the proof of the first claim.

We therefore have inclusion functions

$$\Big(\textstyle\sum_{(X:\mathbb{M}_{\mathcal{V}})} \mathsf{is\text{-small}}_{\mathbb{M}_{\mathcal{U}}}(X)\Big) \xleftarrow{i} \Big(\textstyle\sum_{(Y:\mathbb{M}_{\mathcal{U}})} \mathsf{is\text{-small}}_{\mathbb{M}_{\mathcal{V}}}(Y)\Big)$$

To see that the maps i and i are mutual inverses, it suffices to show that i(i(X)) = X. This follows by induction from the following calculation, where we assume an equivalence $e : A \simeq B$ into a B in \mathcal{U} .

$$i(i(\{f(x) \mid x : A\})) \doteq i(\{i(f(e^{-1}(y))) \mid y : B\})$$

$$\doteq \{i(i(f(e^{-1}(e(x))))) \mid x : A\}$$

$$= \{i(i(f(x))) \mid x : A\}$$

$$= \{f(x) \mid x : A\}.$$

For the last claim, note that we have factored i as an equivalence followed by an embedding

$$\Big(\textstyle\sum_{(X:\mathbb{M}_{\mathcal{V}})}\mathrm{is\text{-small}}_{\mathbb{M}_{\mathcal{U}}}(X)\Big)\, \longrightarrow\, \Big(\textstyle\sum_{(Y:\mathbb{M}_{\mathcal{U}})}\mathrm{is\text{-small}}_{\mathbb{M}_{\mathcal{V}}}(Y)\Big)\, \longrightarrow\, \mathbb{M}_{\mathcal{V}},$$

and therefore i is an embedding.

Furthermore, the embedding i induces equivalences on the elementhood relation on multisets.

Proposition 20.6.7 Consider a multiset X in \mathcal{U} and a multiset Y in \mathcal{V} . Furthermore, suppose that X is \mathcal{V} -small and that Y is \mathcal{U} -small. Then we have

$$(i(X) \in Y) \simeq (X \in i(Y)).$$

Proof Let $X \doteq \{f(x) \mid x : A\}$ and $Y \doteq \{g(y) \mid y : B\}$. By the assumption that Y is \mathcal{U} -small we have an equivalence $e : B \simeq B'$ to a type B' in \mathcal{U} . Then we have the equivalences

$$i(X) \in \{g(y) \mid y:B\} \doteq \sum_{(y:B)} g(y) = i(X)$$

$$\simeq \sum_{(y:B)} i(g(y)) = X$$

$$\simeq \sum_{(y':B')} i(g(e^{-1}(y'))) = X$$

$$\stackrel{\cdot}{=} X \in i(Y).$$

We are now almost in position to reproduce Russell's paradox. We will need one more ingredient: the universal tree, i.e., the multiset of all multisets in \mathcal{U} .

Definition 20.6.8 Let \mathcal{U} be a universe. Then we define the **universal tree** $\mathbb{Y}_{\mathcal{U}}$ to be the multiset

$$\mathbb{Y}_{\mathcal{U}} := \{i(X) \mid X : \mathbb{M}_{\mathcal{U}}\}\$$

in \mathcal{U}^+ , where $i: \mathbb{M}_{\mathcal{U}} \to \mathbb{M}_{\mathcal{U}^+}$ is the inclusion of the multisets in \mathcal{U} to the multisets in \mathcal{U}^+ given by the fact that each multiset in \mathcal{U} is \mathcal{U}^+ -small.

Proposition 20.6.9 Consider two universes \mathcal{U} and \mathcal{V} , and suppose that \mathcal{U} as well as each $X : \mathcal{U}$ are \mathcal{V} -small. Then the universal tree $\mathbb{Y}_{\mathcal{U}}$ is also \mathcal{V} -small.

Proof To show that the universal tree $\{i(X) \mid X : \mathbb{M}_{\mathcal{U}}\}$ is \mathcal{V} -small, we first have to show that the type $\mathbb{M}_{\mathcal{U}}$ is \mathcal{V} -small. This follows from the more general fact that the subuniverse of \mathcal{V} -small types is closed under the formation of \mathcal{W} -types. Indeed, if a type A is \mathcal{V} -small, and if B(x) is \mathcal{V} -small for each x:A, then we have an equivalence $\alpha:A\simeq A'$ to a type A' in \mathcal{V} , and for each x':A' we have an equivalence $B(\alpha^{-1}(x'))\simeq B'(x')$ in \mathcal{V} . These equivalences induce an equivalence

$$W(A, B) \simeq W(A', B')$$

into the type W(A', B'), which is in V. This concludes the proof that $\mathbb{M}_{\mathcal{U}}$ is V-small.

It remains to show that the multiset i(X) in \mathcal{U}^+ is \mathcal{V} -small, for each $X: \mathbb{M}_{\mathcal{U}}$. Equivalently, we have to show that each multiset X in \mathcal{U} is \mathcal{V} -small. This follows by recursion: given a multiset $\{f(x) \mid x:A\}$, the type A is \mathcal{V} -small by assumption, and the multiset f(x) is \mathcal{V} -small by the induction hypothesis. \square

We are finally ready to employ **Russell's paradox** to prove that a univalent universe cannot be equivalent to any type it contains.

Theorem 20.6.10 Consider a univalent universe \mathcal{U} . Then \mathcal{U} cannot be \mathcal{U} -small.

Proof Suppose that $\mathcal U$ is $\mathcal U$ -small, and consider the multiset

$$R := \{i(X) \mid X : M_{\mathcal{U}}, H : X \notin X\}$$

in \mathcal{U}^+ , where $i: \mathbb{M}_{\mathcal{U}} \to \mathbb{M}_{\mathcal{U}^+}$ is the inclusion of the multisets in \mathcal{U} to the multisets in \mathcal{U}^+ given by the fact that each multiset in \mathcal{U} is \mathcal{U}^+ -small.

First, we note that R is \mathcal{U} -small. This follows from Lemma 20.6.3, using the fact that the universal tree $\{i(X) \mid X : \mathbb{M}_{\mathcal{U}}\}$ is \mathcal{U} -small by Proposition 20.6.9, and the fact that $X \in X$ is \mathcal{U} -small by Proposition 20.6.4.

Since R is \mathcal{U} -small, there is a multiset $R' : \mathbb{M}_{\mathcal{U}}$ such that i(R') = R. Now it follows that

$$\begin{split} R \in R &\simeq \sum_{(X:\mathbb{M}_{\mathcal{U}})} \sum_{(H:X \notin X)} i(X) = R \\ &\simeq \sum_{(X:\mathbb{M}_{\mathcal{U}})} \sum_{(H:X \notin X)} X = R' \\ &\simeq R' \notin R' \\ &\simeq R \notin R. \end{split}$$

In the second step we used Proposition 20.6.6, where we showed that i is an embedding, and in the last step we used Proposition 20.6.7. Now we obtain a contradiction, because it follows from Exercise 4.3 (a) that no type is (logically) equivalent to its own negation.

Exercises

20.1 (a) Let $B: \mathsf{bool} \to \mathcal{U}$ be the type family defined in Example 20.1.7. Construct an equivalence

$$\mathbf{T}_2 \simeq \mathsf{W}(\mathsf{bool}, B).$$

- (b) Prove that W(bool, *B*) is not extensional.
- 20.2 Show that for any univalent universe $\mathcal U$ there is no type $U:\mathcal U$ equipped with a surjection $\mathcal U \twoheadrightarrow U$.
- 20.3 For a type family B over A, suppose that each B(x) is empty. Show that the type W(A, B) is equivalent to the type A.
- 20.4 (a) Show that the elementhood relation \in on W(A, B) is irreflexive, for any type family B over any type A.
 - (b) Use the previous fact along with Proposition 20.6.7 to give a second proof of the fact that there can be no type $U:\mathcal{U}$ equipped with an equivalence $\mathcal{U} \simeq U$.

20.5 For each x: W(A,B), let $x < (-): W(A,B) \to \mathcal{U}$ be the type family generated inductively by the following constructors:

$$i: \prod_{(y:W(A,B))} (x \in y) \to (x < y)$$
$$j: \prod_{(y,z:W(A,B))} (y \in z) \to ((x < y) \to (x < z)).$$

- (a) Show that the type-valued relation < is transitive and irreflexive.
- (b) Suppose that the type W(A, B) is inhabited and suppose that there exists an element a: A for which B(a) is inhabited. Show that the following are equivalent:
 - (i) The type x < y is a proposition for all x, y : W(A, B).
 - (ii) The type $x \in y$ is a proposition for all x, y : W(A, B).
 - (iii) The type A is a set and the type B(a) is a proposition for all a:A.

Thus, in general it is not the case that < is a relation valued in propositions.

(c) Show that W(A, B) satisfies the following **strong induction principle**: For any type family P over W(A, B), if there is a function

$$h: \prod_{(x: \mathsf{W}(A,B))} \left(\prod_{(y: \mathsf{W}(A,B))} (y < x) \to P(y) \right) \to P(x),$$

then there is a function $f:\prod_{(x:W(A,B))}P(x)$ equipped with an identification

$$f(x) = h(x, \lambda y, \lambda p, f(y))$$

for all x : W(A, B).

- (d) Show that there can be no sequence of elements $x : \mathbb{N} \to W(A, B)$ such that $x_{n+1} < x_n$ for all $n : \mathbb{N}$.
- 20.6 (Awodey, Gambino, Sojakova [2]) For any type family B over A, the **polynomial endofunctor** $P_{A,B}$ acts on types by

$$P_{A,B}(X) := \sum_{(x:A)} X^{B(x)},$$

and it takes a map $h: X \to Y$ to the map

$$P_{A,B}(h): P_{A,B}(X) \rightarrow P_{A,B}(Y)$$

defined by $P_{A,B}(h,(x,\alpha)) := (x,h \circ \alpha)$. Furthermore, there is a canonical map

$$(h \sim h') \rightarrow (P_{A,B}(h) \sim P_{A,B}(h'))$$

taking a homotopy $H: h \sim h'$ to a homotopy $P_{A,B}(H): P_{A,B}(h) \sim P_{A,B}(h')$.

A type X is said to be equipped with the **structure of an algebra** for the polynomial endofunctor $P_{A,B}$ if X comes equipped with a map

$$\mu: P_{A,B}(X) \to X.$$

Thus, **algebras** for the polynomial endofunctor $P_{A,B}$ are pairs (X, μ) where X is a type and $\mu : P_{A,B}(X) \to X$. Note that W(A,B) comes equipped with the structure of an algebra for $P_{A,B}$ by Proposition 20.2.1.

Given two algebras X and Y for the polynomial endofunctor $P_{A,B}$, we say that a map $h: X \to Y$ is equipped with the **structure of a homomorphism** of algebras if it comes equipped with a homotopy witnessing that the square

$$\begin{array}{ccc} P_{A,B}(X) & \xrightarrow{P_{A,B}(h)} & P_{A,B}(Y) \\ & & \downarrow^{\mu_X} & & \downarrow^{\mu_Y} \\ X & \xrightarrow{h} & Y \end{array}$$

commutes. The type $hom((X, \mu_X), (Y, \mu_Y))$ of homomorphisms of algebras for $P_{A,B}$ is therefore defined as

$$\mathsf{hom}((X,\mu_X),(Y,\mu_Y)) \coloneqq \sum_{(h:X\to Y)} h \circ \mu_X \sim \mu_Y \circ P_{A,B}(h).$$

(a) For any (x, α) , (y, β) : $P_{A,B}(X)$, construct an equivalence

$$((x,\alpha)=(y,\beta))\simeq \sum_{(p:x=y)}\alpha\sim\beta\circ {\sf tr}_B(p).$$

(b) For any two morphisms $(f, K), (g, L) : hom((X, \mu_X), (Y, \mu_Y))$ of algebras for $P_{A,B}$, construct an equivalence

$$((f,K)=(g,L))\simeq \textstyle \sum_{(H:f\sim g)} K \boldsymbol{\cdot} (\mu_Y \cdot P_{A,B}(H)) \sim (H \cdot \mu_X) \boldsymbol{\cdot} L.$$

(c) Show that the W-type W(A, B) equipped with the canonical structure ε of a $P_{A,B}$ -algebra, constructed in Proposition 20.2.1, is a **(homotopy) initial** $P_{A,B}$ -algebra in the sense that the type

$$hom((W(A, B), \varepsilon), (X, \mu))$$

is contractible, for each $P_{A,B}$ -algebra (X, μ) .

20.7 Consider the rank comparison relation \leq : W(A, B) \rightarrow (W(A, B) \rightarrow Prop_{\mathcal{U}}) defined recursively by

$$(\operatorname{tree}(a, \alpha) \leq \operatorname{tree}(b, \beta)) := \forall_{(x:B(a))} \exists_{(y:B(b))} \alpha(x) \leq \beta(y).$$

If $x \le y$ holds, we say that x has **lower rank** than y. Furthermore, we define the **strict rank comparison relation** \prec on W(A, B) by

$$(x < y) \coloneqq \exists_{(z \in y)} x \le z.$$

If x < y holds, we say that x has **strictly lower rank** than y.

- (a) Show that the rank comparison relation defines a preordering on W(A, B), i.e., show that \leq is reflexive and transitve. Furthermore, prove the following properties, in which < is the strict ordering on W(A, B) defined in Exercise 20.5:
 - (i) $(x \le y) \leftrightarrow \forall_{(x' < x)} \exists_{(y' < y)} x' \le y'$
 - (ii) $(x < y) \rightarrow (x \le y)$
 - (iii) $(x < y) \rightarrow (y \npreceq x)$
 - (iv) is-constant_W $(x) \leftrightarrow \forall_{(y:W(A,B))} x \leq y$.
- (b) Show that the relation \prec on W(A, B) is a strict ordering on W(A, B), i.e., show that it is irreflexive and transitive. Furthermore, prove the following properties:
 - (i) $(x < y) \rightarrow (x < y)$
 - (ii) $(x < y) \rightarrow (x \le y)$
 - (iii) $\forall_{(y \le y')} \forall_{(x' \le x)} (x < y) \rightarrow (x' < y')$.

Since \leq defines a preordering on W(A, B), it follows that the preorder (W(A, B), \leq) has a poset reflection, in the sense of Exercise 18.6. We will write

$$\eta: (\mathsf{W}(A,B), \leq) \to (\mathcal{R}(A,B), \leq)$$

for the poset reflection of $(W(A, B), \leq)$ and its quotient map. We will call the poset $(\mathcal{R}(A, B), \leq)$ the **rank poset** of the W-type W(A, B).

- (c) Show that if each B(x) is finite, then the rank poset $(\mathcal{R}(A, B), \leq)$ is either the empty poset, the poset with one element, or it is isomorphic to the poset (\mathbb{N}, \leq) .
- (d) Show that the strict ordering \prec extends to a relation \prec on $\mathcal{R}(A, B)$ with the following properties:
 - (i) We have $(x < y) \leftrightarrow (\eta(x) < \eta(y))$ for every x, y : W(A, B).

- (ii) We have $(x < y) \rightarrow (x \le y)$ for every $x, y : \mathcal{R}(A, B)$.
- (iii) The relation \prec is transitive and irreflexive on $\mathcal{R}(A, B)$.

We will call the strictly ordered set $(\mathcal{R}(A, B), \prec)$ the **(strict) rank** of the W-type W(A, B).

(e) A **strictly ordered set** (X, <), i.e., a set X equipped with a transitive, irreflexive relation < valued in the propositions, is said to be **well-founded** if for any family P of propositions over X, the implication

$$\Big(\forall_{(x:X)}\Big(\forall_{(y< x)}P(y)\Big) \to P(x)\Big) \to \forall_{(x:X)}P(x).$$

holds. Show that the rank $(\mathcal{R}(A, B), \prec)$ of W(A, B) is well-founded.

(f) A strictly ordered set (X, <) is said to be **extensional** if the logical equivalence

$$(x = y) \leftrightarrow \forall_{(z:X)} (z < x) \leftrightarrow (z < y)$$

holds for any x, y : X. Show that the rank ($\mathcal{R}(A, B)$, \prec) of W(A, B) is extensional.

III

The circle

Many spaces familiar from classical topology have a counterpart in homotopy type theory. For example, there are types representing spheres, projective spaces, and many other CW-complexes. Often such types are constructed as higher inductive types. The study of such types leads to the subject of synthetic homotopy theory. We conclude this book with a short window into this exciting new subject by introducing the circle as a higher inductive type.

We have seen many examples of inductive types. Those are specified by their (point) constructors, which tell us how we can construct their elements, and an induction principle that allows us to construct sections of type families over them. Inductive types are freely generated by their constructors. Higher inductive types are specified not only by their point constructors, but also by *path constructors*, which are identifications between the point constructors.

The presence of path constructors in a higher inductive type make it slightly more complicated to specify its induction principle. With ordinary inductive types the induction principle only took the point constructors into account. However, when we specify a higher inductive type, we also have to take the path constructors into account. We will see how this works in the example of the circle.

Univalence has a prominent role in the study of higher inductive types. In particular, when we want to characterize the identity type of a higher inductive type we will have to construct a type family over that higher inductive type using the induction principle. Any type family over a higher inductive type must be compatible with the path constructors, and this is where univalence comes in.

The prime example of a type family constructed over a higher inductive

type using the univalence axiom is the *universal cover* of the circle. We will see how the univalence axiom can be used to construct the universal cover, and how the universal cover can be used to construct the famous identification

$$\pi_1(\mathbf{S}^1) = \mathbb{Z}$$

in the type of groups, which asserts that the fundamental group of the circle is the group of integers.

21 The circle

21.1 The induction principle of the circle

The *circle* is specified as a higher inductive type S^1 that comes equipped with

base : S^1

loop: base = base.

Just like for ordinary inductive types, the induction principle for higher inductive types provides us with a way of constructing sections of dependent types. However, we need to take the *path constructor* loop into account in the induction principle.

The induction principle of the circle tells us how to define a section

$$f:\prod_{(x:\mathbf{S}^1)}P(x)$$

of an arbitrary type family P over \mathbf{S}^1 . To see what the induction principle of the circle should be, we start with an arbitrary section $f: \prod_{(x:\mathbf{S}^1)} P(x)$ and see how it acts on the constructors of \mathbf{S}^1 . By applying f to the base point of the circle, we obtain an element $f(\mathsf{base}): P(\mathsf{base})$. Moreover, using the dependent action on paths of f of Definition 5.4.2 we also obtain an identification

$$\operatorname{apd}_f(\mathsf{loop}) : \operatorname{tr}_P(\mathsf{loop}, f(\mathsf{base})) = f(\mathsf{base})$$

in the type P(base). In other words, we obtain a *dependent action on generators* for every section of a family of types.

Definition 21.1.1 Let *P* be a type family over the circle. The **dependent action on generators** is the map

$$\mathsf{dgen}_{\mathbf{S}^1}: \left(\prod_{(x:\mathbf{S}^1)} P(x)\right) \to \left(\sum_{(u:P(\mathsf{base}))} \mathsf{tr}_P(\mathsf{loop}, u) = u\right) \tag{21.1.1}$$

given by $dgen_{S^1}(f) := (f(base), apd_f(loop)).$

The induction principle of the circle states that in order to construct a section $f: \prod_{(x:S^1)} P(x)$, it suffices to provide an element $u: P(\mathsf{base})$ and an identification

$$\operatorname{tr}_P(\mathsf{loop}, u) = u.$$

More precisely, the induction principle of the circle is formulated as follows:

Definition 21.1.2 The **circle** is a type S^1 that comes equipped with

base : S^1

loop: base = base,

and satisfies the **induction principle of the circle**, which provides for each type family P over S^1 a map

$$\mathrm{ind}_{\mathbf{S}^1}: \left(\sum_{(u:P(\mathsf{base}))} \mathrm{tr}_P(\mathsf{loop},u) = u\right) \to \left(\prod_{(x:\mathbf{S}^1)} P(x)\right),$$

and a homotopy witnessing that ind_{S1} is a section of dgen_{S1}

$$\mathsf{comp}_{\mathbf{S}^1} : \mathsf{dgen}_{\mathbf{S}^1} \circ \mathsf{ind}_{\mathbf{S}^1} \sim \mathsf{id}$$

for the computation rules.

Remark 21.1.3 The type of identifications (u, p) = (u', p') in the type

$$\sum_{(u:P(\mathsf{base}))} \mathsf{tr}_P(\mathsf{loop},u) = u$$

is equivalent to the type of pairs (α, β) consisting of an identification $\alpha : u = u'$, and an identification β witnessing that the square

commutes. Therefore it follows from the induction principle of the circle that for any (u, p): $\sum_{(u:P(\mathsf{base}))} \mathsf{tr}_P(\mathsf{loop}, u) = u$, there is a dependent function $f: \prod_{(x:S^1)} P(x)$ equipped with an identification

$$\alpha: f(\mathsf{base}) = u$$
,

and an identification β witnessing that the square

$$\operatorname{tr}_P(\operatorname{loop}, f(\operatorname{base})) \stackrel{\operatorname{ap}_{\operatorname{tr}_P(\operatorname{loop})}(\alpha)}{=\!=\!=\!=\!=\!=\!=} \operatorname{tr}_P(\operatorname{loop}, u)$$
 $\operatorname{apd}_f(\operatorname{loop}) \parallel \qquad \qquad \parallel^p$
 $f(\operatorname{base}) \stackrel{\alpha}{=\!=\!=\!=\!=} u$

commutes.

21.2 The (dependent) universal property of the circle

We will now use the induction principle of the circle to derive the *dependent universal property* and the *universal property* of the circle. The universal property of the circle states that, for any type *X* the canonical map

$$\left(\mathbf{S}^1 \to X\right) \to \left(\sum_{(x:X)} x = x\right)$$

given by $f \mapsto (f(\mathsf{base}), \mathsf{ap}_f(\mathsf{loop}))$ is an equivalence. The type $\sum_{(x:X)} x = x$ is also called the type of **free loops** in X. In other words, the universal property of the circle states that a map $\mathbf{S}^1 \to X$ is the same thing as a free loop in X.

The *dependent universal property* of the circle similarly states that for any type family *P* over the circle, the canonical map

$$\mathsf{dgen}_{\mathbf{S}^1}: \left(\prod_{(x:\mathbf{S}^1)} P(x)\right) \to \left(\sum_{(y:P(\mathsf{base}))} \mathsf{tr}_P(\mathsf{loop},y) = y\right)$$

given by $f\mapsto (f(\mathsf{base}),\mathsf{apd}_f(\mathsf{loop}))$ is an equivalence. Note that the induction principle already states that this map has a section. The dependent universal property therefore improves on this by stating that this map also has a retraction.

Theorem 21.2.1 (The dependent universal property of the circle) *For any type family P over the circle, the map*

$$\mathrm{dgen}_{\mathbf{S}^1}: \left(\prod_{(x:\mathbf{S}^1)} P(x)\right) \to \left(\textstyle\sum_{(y:P(\mathsf{base}))} \mathrm{tr}_P(\mathsf{loop},y) = y\right)$$

given by $f \mapsto (f(\mathsf{base}), \mathsf{apd}_f(\mathsf{loop}))$ is an equivalence.

Proof By the induction principle of the circle we know that the map has a section, i.e., we have

$$\mathsf{ind}_{\mathbf{S}^1}: \left(\textstyle\sum_{(y:P(\mathsf{base}))} \mathsf{tr}_P(\mathsf{loop},y) = y\right) \to \left(\textstyle\prod_{(x:\mathbf{S}^1)} P(x)\right)$$

$$comp_{S^1}: dgen_{S^1} \circ ind_{S^1} \sim id$$

Therefore it remains to construct a homotopy

$$\mathsf{ind}_{S^1} \circ \mathsf{dgen}_{S^1} \sim \mathsf{id}.$$

Thus, for any $f: \prod_{(x:S^1)} P(x)$ our task is to construct an identification

$$\operatorname{ind}_{\mathbf{S}^1}(\operatorname{dgen}_{\mathbf{S}^1}(f)) = f.$$

By function extensionality it suffices to construct a homotopy

$$\prod_{(x:\mathbf{S}^1)} \mathsf{ind}_{\mathbf{S}^1} (\mathsf{dgen}_{\mathbf{S}^1}(f))(x) = f(x).$$

We proceed by the induction principle of the circle using the family of types $E_{g,f}(x) := g(x) = f(x)$ indexed by $x : \mathbf{S}^1$, where g is the function

$$g := \operatorname{ind}_{\mathbf{S}^1}(\operatorname{dgen}_{\mathbf{S}^1}(f)).$$

Thus, it suffices to construct

$$\alpha$$
 : $g(base) = f(base)$
 β : $tr_{E_{\sigma,f}}(loop, \alpha) = \alpha$.

An argument by path induction on p yields that

$$\left(\operatorname{apd}_{\boldsymbol{g}}(p)\boldsymbol{\cdot}\boldsymbol{r}=\operatorname{ap}_{\operatorname{tr}_{\boldsymbol{P}}(p)}(q)\boldsymbol{\cdot}\operatorname{apd}_{\boldsymbol{f}}(p)\right)\to\left(\operatorname{tr}_{E_{\boldsymbol{g},\boldsymbol{f}}}(p,q)=\boldsymbol{r}\right),$$

for any f, g: $\prod_{(x:X)} P(x)$ and any p: x = x', q: g(x) = f(x) and r: g(x') = f(x'). Therefore it suffices to construct an identification α : g(base) = f(base) equipped with an identification β witnessing that the square

commutes. Notice that we get exactly such a pair (α, β) from the computation rule of the circle, by Remark 21.1.3.

As a corollary we obtain the following uniqueness principle for dependent functions defined by the induction principle of the circle.

Corollary 21.2.2 Consider a type family P over the circle, and let

$$y : P(\mathsf{base})$$

 $p : \mathsf{tr}_P(\mathsf{loop}, y) = y.$

Then the type of functions $f:\prod_{(x:\mathbf{S}^1)}P(x)$ equipped with an identification

$$\alpha : f(\mathsf{base}) = y$$

and an identification β witnessing that the square

$$\operatorname{tr}_P(\operatorname{loop}, f(\operatorname{base})) \xrightarrow{\operatorname{ap}_{\operatorname{tr}_P(\operatorname{loop})}(\alpha)} \operatorname{tr}_P(\operatorname{loop}, y)$$
 $\operatorname{apd}_f(\operatorname{loop}) \parallel \qquad \qquad \parallel p$
 $f(\operatorname{base}) \xrightarrow{\alpha} y$

commutes, is contractible.

Now we use the dependent universal property to derive the ordinary universal property of the circle. It would be tempting to say that it is a direct corollary, but we need to address the transport that occurs in the dependent universal property.

Theorem 21.2.3 (The universal property of the circle) *For each type* X, *the action on generators*

$$\operatorname{gen}_{\mathbf{S}^1}: (\mathbf{S}^1 \to X) \to \sum_{(x:X)} x = x$$

given by $f \mapsto (f(\mathsf{base}), \mathsf{ap}_f(\mathsf{loop}))$ is an equivalence.

Proof We prove the claim by constructing a commuting triangle

in which the bottom map is an equivalence. Indeed, once we have such a triangle, we use the fact from Theorem 21.2.1 that dgen_{S^1} is an equivalence to conclude that gen_{S^1} is an equivalence.

To construct the bottom map, we first observe that for any constant type

family $const_B$ over a type A, any p: a = a' in A, and any b: B, there is an identification

$$tr\text{-const}_B(p, b) : tr_{const}(p, b) = b.$$

This identification is easily constructed by path induction on *p*. Now we construct the bottom map as the induced map on total spaces of the family of maps

$$l \mapsto \text{tr-const}_X(\text{loop}, x) \cdot l$$
,

indexed by x: X. Since concatenating by a path is an equivalence, it follows by Theorem 11.1.3 that the induced map on total spaces is indeed an equivalence.

To show that the triangle commutes, it suffices to construct for any $f : \mathbf{S}^1 \to X$ an identification witnessing that the triangle

$$\mathsf{tr}_{\mathsf{const}_X}(\mathsf{loop}, f(\mathsf{base})) \xrightarrow{\mathsf{tr-const}_X(\mathsf{loop}, f(\mathsf{base}))} f(\mathsf{base})$$

$$\mathsf{apd}_f(\mathsf{loop}) \qquad \mathsf{ap}_f(\mathsf{loop})$$

$$f(\mathsf{base})$$

commutes. This again follows from general considerations: for any $f: A \to B$ and any p: a = a' in A, the triangle

$$\operatorname{tr}_{\operatorname{const}_B}(p, f(a)) \xrightarrow{\operatorname{tr-const}_B(p, f(a))} f(a)$$

$$\operatorname{apd}_f(p) \qquad \operatorname{ap}_f(p)$$

commutes by path induction on p.

Corollary 21.2.4 For any loop l: x = x in a type X, the type of maps $f: \mathbf{S}^1 \to X$ equipped with an identification

$$\alpha: f(\mathsf{base}) = x$$

and an identification β witnessing that the square

$$\begin{array}{cccc} f(\mathsf{base}) & \stackrel{\alpha}{=\!=\!=\!=} & x \\ \mathsf{ap}_f(\mathsf{loop}) & & & \parallel l \\ f(\mathsf{base}) & \stackrel{\alpha}{=\!=\!=\!=} & x \end{array}$$

commutes, is contractible.

21.3 Multiplication on the circle

One way the circle arises classically, is as the set of complex numbers at distance 1 from the origin. It is an elementary fact that |xy| = |x||y| for any two complex numbers $x, y \in \mathbb{C}$, so it follows that when we multiply two complex numbers that both lie on the unit circle, then the result lies again on the unit circle. This operation puts a group structure on the classical circle.

This suggests that it should also be possible to construct a multiplication on the higher inductive type S^1 . More precisely, we will equip S^1 with an *H-space structure*, and in the exercises you will be asked to show that this multiplicative structure is associative, commutative, and has inverses.

Definition 21.3.1 Consider a pointed type A with a base point pt. An **H**-space structure on (A, pt) consists of a binary operation $\mu : A \to (A \to A)$ satisfying the following **coherent unit laws**:

$$\begin{split} \text{left-unit}_{\mu}(y) : \mu(\text{pt},y) &= y \\ \text{right-unit}_{\mu}(x) : \mu(x,\text{pt}) &= x \\ \text{coh-unit}_{\mu} : \text{left-unit}_{\mu}(\text{pt}) &= \text{right-unit}_{\mu}(\text{pt}). \end{split}$$

An **H-space** is a pointed type equipped with an H-space structure.

Remark 21.3.2 The data of an H-space structure is equivalently described by a family of base point preserving maps

$$\mu: \prod_{(x:A)} \sum_{(f:A \to A)} f(\mathsf{pt}) = x$$

equipped with an identification $\mu_{pt} = (id, refl)$. The data $\mu(a, pt) = a$ corresponds to the right unit law for μ , whereas the data $\mu_{pt} = (id, refl)$ combines the left unit law and the coherence in one single identification.

Note that for any identification α : x = y in A and two base-point preserving functions (f, p) : $\sum_{(f:A \to A)} f(\mathsf{pt}) = x$ and (g, q) : $\sum_{(f:A \to A)} f(\mathsf{pt}) = y$, we have

$$\tau: \left(\sum_{(H:f \sim g)} p \cdot \alpha = H(\mathsf{pt}) \cdot q \right) \to \mathsf{tr}(\alpha, (f, p)) = (g, q)$$

This function is easily constructed by identification elimination on α . We will be using this in our construction of the H-space structure on the circle.

Theorem 21.3.3 There is an H-space structure

$$\begin{aligned} &\text{mul}_{\mathbf{S}^1}:\mathbf{S}^1\to(\mathbf{S}^1\to\mathbf{S}^1)\\ &\text{left-unit}_{\mathbf{S}^1}:\prod_{(y:\mathbf{S}^1)}\!\text{mul}_{\mathbf{S}^1}(\text{base},y)=y \end{aligned}$$

right-unit_{S¹} :
$$\prod_{(x:S^1)} \text{mul}_{S^1}(x, \text{base}) = x$$

coh-unit_{S¹} : left-unit_{S¹}(base) = right-unit_{S¹}(base).

on the circle.

Construction By Remark 21.3.2 it suffices to construct a dependent function

$$\mu: \prod_{(x:\mathbf{S}^1)} \sum_{(f:\mathbf{S}^1 \to \mathbf{S}^1)} f(\mathsf{base}) = x$$

such that $\mu(\mathsf{base}) = (\mathsf{id}, \mathsf{refl})$. This provides us with a useful shortcut, because the identification will follow from the computation rule of the induction principle of the circle.

Let *P* be the family of types given by $P(x) := \sum_{(f:S^1 \to S^1)} f(\mathsf{base}) = x$. By the dependent universal property of the circle there is a unique

$$\mu: \prod_{(x:\mathbf{S}^1)} \sum_{(f:\mathbf{S}^1 \to \mathbf{S}^1)} f(\mathsf{base}) = x$$

equipped with an identification $\alpha: \mu(\mathsf{base}) = (\mathsf{id}, \mathsf{refl})$ and an identification witnessing that the square

$$\begin{array}{c} \operatorname{tr}_{P}(\mathsf{loop}, \mu(\mathsf{base})) \stackrel{\operatorname{ap}_{\operatorname{tr}_{P}(\mathsf{loop})}(\alpha)}{=\!=\!=\!=\!=\!=} \operatorname{tr}_{P}(\mathsf{loop}, (\mathsf{id}, \mathsf{refl})) \\ \\ \operatorname{apd}_{\mu}(\mathsf{loop}) \bigg\| \qquad \qquad \bigg\|_{\tau(H,r)} \\ \\ \mu(\mathsf{base}) \stackrel{\alpha}{=\!=\!=\!=\!=} (\mathsf{id}, \mathsf{refl}) \end{array}$$

commutes. In this square, τ is the function from Remark 21.3.2, and the homotopy $H: \mathrm{id} \sim \mathrm{id}$ equipped with an identification $r: \mathsf{loop} = H(\mathsf{base}) \cdot \mathsf{refl}$ remain to be defined.

We use the dependent universal property of the circle with respect to the family $E_{id,id}$ given by

$$E_{\mathsf{id},\mathsf{id}}(x) \coloneqq (x = x),$$

to define H as the unique homotopy equipped with an identification

$$\alpha: H(\mathsf{base}) = \mathsf{loop}$$

and an identification β witnessing that the square

commutes. Now it remains to define the path γ : $tr_{E_{id,id}}(loop, loop) = loop$ in the above square. To proceed, we first observe that a simple path induction argument yields a function

$$(p \cdot r = q \cdot p) \rightarrow (\operatorname{tr}_{E_{\mathsf{id},\mathsf{id}}}(p,q) = r),$$

for any p: base = x, q: base = base and r: x = x. In particular, we have a function

$$\Big(\mathsf{loop} \cdot \mathsf{loop} = \mathsf{loop} \cdot \mathsf{loop}\Big) \to \Big(\mathsf{tr}_{E_{\mathsf{id},\mathsf{id}}}(\mathsf{loop},\mathsf{loop}) = \mathsf{loop}\Big).$$

Now we apply this function to refl_{loop}. loop to obtain the desired identification

$$\gamma : \mathsf{tr}_{E_{\mathsf{id},\mathsf{id}}}(\mathsf{loop},\mathsf{loop}) = \mathsf{loop}.$$

Remark 21.3.4 For some of the exercises below it may be useful to know that the binary operation mul_{S^1} is the unique map $S^1 \to (S^1 \to S^1)$ equipped with an identification

$$\mathsf{base}\mathsf{-mul}_{\mathbf{S}^1}:\mathsf{mul}_{\mathbf{S}^1}(\mathsf{base})=\mathsf{id}$$

and an identification loop-muls1 witnessing that the square

commutes, where the homotopy $H: \mathrm{id} \sim \mathrm{id}$ is the one constructed in Theorem 21.3.3.

Exercises

21.1 (a) Show that for any type X and any x : X, the map

$$\operatorname{ind}_{\mathbf{S}^1}(x, \operatorname{refl}_x) : \mathbf{S}^1 \to X$$

is homotopic to the constant map $const_x$.

(b) Show that

$$\mathsf{ind}_{\mathbf{S}^1}(\mathsf{base},\mathsf{loop}):\mathbf{S}^1\to\mathbf{S}^1$$

is homotopic to the identity function.

(c) Consider a map $f: X \to Y$ and a free loop (x, l) in X. Construct a homotopy

$$\operatorname{ind}_{\mathbf{S}^1}(f(x),\operatorname{ap}_f(l)) \sim f \circ \operatorname{ind}_{\mathbf{S}^1}(x,l).$$

- 21.2 (a) Show that the circle is connected.
 - (b) Let $P : \mathbf{S}^1 \to \mathsf{Prop}$ be a family of propositions over the circle. Show that

$$P(\mathsf{base}) \to \prod_{(x:\mathbf{S}^1)} P(x).$$

- (c) Show that any embedding $m: \mathbf{S}^1 \to \mathbf{S}^1$ is an equivalence.
- (d) Show that for any embedding $m: X \to \mathbf{S}^1$, there is a proposition P and an equivalence $e: X \simeq \mathbf{S}^1 \times P$ for which the triangle

$$X \xrightarrow{e} \mathbf{S}^1 \times P$$

$$\mathbf{S}^1$$

$$\mathbf{S}^1$$

commutes. In other words, all the embeddings into the circle are of the form $S^1 \times P \rightarrow S^1$.

21.3 (a) Show that for any $x : \mathbf{S}^1$, both functions

$$\operatorname{\mathsf{mul}}_{\mathbf{S}^1}(x,-)$$
 and $\operatorname{\mathsf{mul}}_{\mathbf{S}^1}(-,x)$

are equivalences.

(b) Show that the function

$$\mathsf{mul}_{\mathbf{S}^1}:\mathbf{S}^1\to (\mathbf{S}^1\to\mathbf{S}^1)$$

is an embedding.

21.4 (a) Show that a type X is a set if and only if the map

$$\lambda x. \lambda t. x: X \to (\mathbf{S}^1 \to X)$$

is an equivalence.

(b) Show that a type *X* is a set if and only if the map

$$\lambda f. f(\mathsf{base}) : (\mathbf{S}^1 \to X) \to X$$

is an equivalence.

21.5 Show that the multiplicative operation on the circle is associative and commutative, i.e. construct an identifications

$$\operatorname{\mathsf{mul}}_{\mathbf{S}^1}(\operatorname{\mathsf{mul}}_{\mathbf{S}^1}(x,y),z) = \operatorname{\mathsf{mul}}_{\mathbf{S}^1}(x,\operatorname{\mathsf{mul}}_{\mathbf{S}^1}(y,z))$$

$$\operatorname{\mathsf{mul}}_{\mathbf{S}^1}(x,y) = \operatorname{\mathsf{mul}}_{\mathbf{S}^1}(y,x).$$

for every x, y, z: S^1 .

21.6 Show that the circle, equipped with the multiplicative operation mul_{S^1} is an abelian group, i.e. construct an inverse operation

$$\mathsf{inv}_{\mathbf{S}^1}:\mathbf{S}^1\to\mathbf{S}^1$$

and construct identifications

left-inv_{S¹} :
$$\operatorname{mul}_{S^1}(\operatorname{inv}_{S^1}(x), x) = \operatorname{base}$$

right-inv_{S¹} : $\operatorname{mul}_{S^1}(x, \operatorname{inv}_{S^1}(x)) = \operatorname{base}$.

Moreover, show that the square

commutes.

21.7 Show that for any multiplicative operation

$$\mu: \mathbf{S}^1 \to (\mathbf{S}^1 \to \mathbf{S}^1)$$

that satisfies the condition that $\mu(x, -)$ and $\mu(-, x)$ are equivalences for any $x : \mathbf{S}^1$, there is an element $e : \mathbf{S}^1$ such that

$$\mu(x, y) = \operatorname{\mathsf{mul}}_{\mathbf{S}^1}(x, \operatorname{\mathsf{mul}}_{\mathbf{S}^1}(\bar{e}, y))$$

for every $x, y : \mathbf{S}^1$, where $\bar{e} := \text{inv}_{\mathbf{S}^1}(e)$ is the complex conjugation of e on \mathbf{S}^1 .

21.8 Consider a pointed type (A, pt) equipped with a **noncoherent H-space structure** (μ, H, K) consisting of a binary operation $\mu : A \to (A \to A)$ and homotopies

$$H: \prod_{(y:A)} \mu(\mathsf{pt}, y) = y$$
$$K: \prod_{(x:A)} \mu(x, \mathsf{pt}) = x.$$

Show that the homotopy K can be adjusted to a new homotopy K': $\prod_{(x:A)} \mu(x,\mathsf{pt}) = x$ in such a way that

$$H(\mathsf{pt}) = K'(\mathsf{pt})$$

holds. In other words, any noncoherent H-space structure can be improved to an H-space structure with the same underlying binary operation. Hint: Take some inspiration from Lemma 10.4.5, where one of the homotopies of the invertibility of a map was adjusted to obtain coherent invertibility.

22 The universal cover of the circle

In this section we use the univalence axiom to construct the *universal cover* of the circle and show that the loop space of the circle is equivalent to \mathbb{Z} . The universal cover of the circle is a family of sets over the circle with contractible total space. Classically, the universal cover is described as a map $\mathbb{R} \to \mathbf{S}^1$ that winds the real line around the circle. In homotopy type theory the universal cover is constructed as a map $\mathbf{S}^1 \to \mathbf{S}$ et into the univalent type of all sets, and we will use the dependent universal property of the circle to show that its total space is contractible.

22.1 The universal cover of the circle

The type of small families over S^1 is just the function type $S^1 \to \mathcal{U}$. Therefore, we may use the universal property of the circle to construct type families over the circle.

By the universal property, \mathcal{U} -small type families over S^1 are equivalently described as pairs (X, p) consisting of a type $X : \mathcal{U}$ and an identification p : X = X. The univalence axiom implies that the map

$$\mathsf{eq\text{-}equiv}_{X,X}: (X \simeq X) \to (X = X)$$

is an equivalence. Therefore, type families over the circle are equivalently described as pairs (X, e), consisting of a type X and an equivalence $e: X \simeq X$. The type $\sum_{(X:\mathcal{U})} X \simeq X$ is also called the type of **descent data** for the circle.

Definition 22.1.1 Consider a type X and an equivalence $e: X \simeq X$. We will construct a dependent type $\mathcal{D}(X, e): \mathbf{S}^1 \to \mathcal{U}$ equipped with an equivalence

 $x \mapsto x_{\mathcal{D}} : X \simeq \mathcal{D}(X, e, base)$ for which the square

$$\begin{array}{ccc} X & \xrightarrow{\simeq} & \mathcal{D}(X,e,\mathsf{base}) \\ e \downarrow & & & \downarrow \mathsf{tr}_{\mathcal{D}(X,e)}(\mathsf{loop}) \\ X & \xrightarrow{\simeq} & \mathcal{D}(X,e,\mathsf{base}) \end{array}$$

commutes. We will write $d \mapsto d_X$ for the inverse of this equivalence, so that the relations

$$(x_{\mathcal{D}})_X = x$$
 $(e(x)_{\mathcal{D}}) = \operatorname{tr}_{\mathcal{D}(X,e)}(\operatorname{loop}, x_{\mathcal{D}})$ $(d_X)_{\mathcal{D}} = d$ $(\operatorname{tr}_{\mathcal{D}(X,e)}(d))_X = e(d_X)$

hold.

Construction An easy path induction argument reveals that

$$equiv-eq(ap_P(loop)) = tr_P(loop)$$

for each dependent type $P: \mathbf{S}^1 \to \mathcal{U}$. Therefore we see that the triangle

$$(\mathbf{S}^1 \to \mathcal{U})$$

$$\xrightarrow{\text{gen}_{\mathbf{S}^1}} \underbrace{\sum_{(X:\mathcal{U})} X = X} \xrightarrow{\text{tot}(\lambda X. \, \text{equiv-eq}_{X,X})} \underbrace{\sum_{(X:\mathcal{U})} X \simeq X}$$

commutes, where the map desc_{S^1} is given by $P \mapsto (P(\mathsf{base}), \mathsf{tr}_P(\mathsf{loop}))$ and the bottom map is an equivalence by the univalence axiom and Theorem 11.1.3. Now it follows by the 3-for-2 property that desc_{S^1} is an equivalence, since gen_{S^1} is an equivalence by Theorem 21.2.3. This means that for every type X and every $e: X \simeq X$ there is a type family $\mathcal{D}(X, e): \mathbf{S}^1 \to \mathcal{U}$ equipped with an identification

$$(\mathcal{D}(X, e, \mathsf{base}), \mathsf{tr}_{\mathcal{D}(X, e)}(\mathsf{loop})) = (X, e).$$

For convenience, we invert this identification. Now we observe that the type of identifications in $\sum_{(X:\mathcal{U})} X \simeq X$ can be characterized by

$$((X,e)=(X',e'))\simeq \textstyle\sum_{(\alpha:X\simeq X')}\!e'\circ\alpha\sim\alpha\circ e'.$$

This implies that we obtain an equivalence $x \mapsto x_{\mathcal{D}} : X \simeq D(X, e, \mathsf{base})$ such

that the square

$$\begin{array}{ccc} X & \xrightarrow{x \mapsto x_{\mathcal{D}}} & \mathcal{D}(X,e,\mathsf{base}) \\ e \downarrow & & & \downarrow \mathsf{tr}_{\mathcal{D}(X,e)}(\mathsf{loop}) \\ X & \xrightarrow{x \mapsto x_{\mathcal{D}}} & \mathcal{D}(X,e,\mathsf{base}) \end{array}$$

commutes.

Recall from Example 9.2.5 that the successor function $succ_{\mathbb{Z}} : \mathbb{Z} \to \mathbb{Z}$ is an equivalence. Its inverse is the predecessor function defined in Exercise 4.1 (a).

Definition 22.1.2 The **universal cover** of the circle is defined via Definition 22.1.1 to be the unique dependent type $\mathcal{E}_{S^1} := \mathcal{D}(\mathbb{Z}, \mathsf{succ}_{\mathbb{Z}}) : S^1 \to \mathcal{U}$. equipped with an equivalence $x \mapsto x_{\mathcal{E}} : \mathbb{Z} \to \mathcal{E}_{S^1}(\mathsf{base})$ and a homotopy witnessing that the square

$$\begin{array}{ccc} \mathbb{Z} & \xrightarrow{x \mapsto x_{\mathcal{E}}} & \mathcal{E}_{S^1}(\mathsf{base}) \\ \mathsf{succ}_{\mathbb{Z}} & & & \mathsf{tr}_{\mathcal{E}_{S^1}}(\mathsf{loop}) \\ \mathbb{Z} & \xrightarrow{x \mapsto x_{\mathcal{E}}} & \mathcal{E}_{S^1}(\mathsf{base}) \end{array}$$

commutes. We will occasionally write $y \mapsto y_{\mathbb{Z}}$ for the inverse of $x \mapsto x_{\mathcal{E}}$.

The picture of the universal cover is that of a helix over the circle. This picture emerges from the path liftings of loop in the total space. The segments of the helix connecting k to k+1 in the total space of the helix, are constructed in the following lemma.

Lemma 22.1.3 *For any* $k : \mathbb{Z}$ *, there is an identification*

segment-helix_k: (base,
$$k_{\mathcal{E}}$$
) = (base, $\operatorname{succ}_{\mathbb{Z}}(k)_{\mathcal{E}}$)

in the total space $\sum_{(t:\mathbf{S}^1)} \mathcal{E}(t)$.

Proof By Theorem 9.3.4 it suffices to show that

$$\prod_{(k:\mathbb{Z})} \sum_{(\alpha: \mathsf{base} = \mathsf{base})} \mathsf{tr}_{\mathcal{E}}(\alpha, k_{\mathcal{E}}) = \mathsf{succ}_{\mathbb{Z}}(k)_{\mathcal{E}}.$$

We just take $\alpha := \text{loop}$. Then we have $\text{tr}_{\mathcal{E}}(\alpha, k_{\mathcal{E}}) = \text{succ}_{\mathbb{Z}}(k)_{\mathcal{E}}$ by the commuting square provided in the definition of \mathcal{E} .

22.2 Working with descent data

The equivalence

$$(S^1 \to \mathcal{U}) \simeq \sum_{(X:\mathcal{U})} X \simeq X$$

yields that for any type family A over the circle the type of descent data (X,e) equipped with an equivalence $\alpha: X \simeq A(\mathsf{base})$ and a homotopy H witnessing that the square

$$\begin{array}{ccc} X & \xrightarrow{\alpha} & A(\mathsf{base}) \\ e \downarrow & & & \downarrow \mathsf{tr}_A(\mathsf{loop}) \\ X & \xrightarrow{\alpha} & A(\mathsf{base}) \end{array}$$

commutes is contractible. In the remainder of this section we study arbitrary type families over the circle equipped with such descent data, which will put us in a good position to prove things about the universal cover of the circle.

Proposition 22.2.1 Consider a type family A over the circle and consider descent data (X,e) equipped with an equivalence $\alpha:X\simeq A(\mathsf{base})$ and a homotopy witnessing that the square

$$\begin{array}{ccc} X & \stackrel{\alpha}{\longrightarrow} & A(\mathsf{base}) \\ e & & & \downarrow \mathsf{tr}_A(\mathsf{loop}) \\ X & \stackrel{\alpha}{\longrightarrow} & A(\mathsf{base}) \end{array}$$

commutes. Furthermore, consider two elements x , y : X . Then we have an equivalence

$$\bar{\alpha}: (e(x) = y) \simeq (\operatorname{tr}_A(\mathsf{loop}, \alpha(x)) = \alpha(y)).$$

Proof Note that the commutativity of the square implies that

$$\operatorname{tr}_A(\mathsf{loop}, \alpha(x)) = \alpha(e(x)).$$

By Theorem 11.2.2 it therefore suffices to prove that the total space

$$\sum_{(y:X)} \operatorname{tr}_A(\mathsf{loop}, \alpha(x)) = \alpha(y)$$

is contractible. This type is equivalent to $fib_{\alpha}(tr_{A}(loop, \alpha(x)))$, which is contractible because α is an equivalence.

In the following proposition we show that sections of a type family A equipped with descent data (X, e) are equivalently described as fixed points for $e: X \simeq X$.

Proposition 22.2.2 Consider a type family A over the circle and descent data (X,e) equipped with an equivalence $\alpha: X \simeq A(\mathsf{base})$ and a homotopy witnessing that the square

$$\begin{array}{ccc} X & \stackrel{\alpha}{\longrightarrow} & A(\mathsf{base}) \\ e & & & \downarrow \mathsf{tr}_A(\mathsf{loop}) \\ X & \stackrel{\alpha}{\longrightarrow} & A(\mathsf{base}) \end{array}$$

commutes. Then there is a commuting square

$$\prod_{(t:S^1)} A(t) \longrightarrow \sum_{(x:X)} e(x) = x$$

$$\text{ev}_{\text{base}} \downarrow \qquad \qquad \downarrow \text{pr}_1$$

$$A(\text{base}) \longrightarrow X$$

in which the top map is an equivalence.

Proof By the dependent universal property of the circle we have an equivalence

$$\left(\prod_{(t:\mathbf{S}^1)} A(t)\right) \simeq \sum_{(x:A(\mathsf{base}))} \mathsf{tr}_A(\mathsf{loop},x) = x.$$

This equivalence fits in a commuting triangle

where the map on the left is given by $s \mapsto (\alpha^{-1}(s(\mathsf{base})), \bar{\alpha}^{-1}(\mathsf{apd}_s(\mathsf{loop})))$. The bottom map and the map on the right are equivalences, so it follows by the 3-for-2 property of equivalences that the map on the left is an equivalence. \Box

The following corollary can be used to compare type families over the circle. In particular, we will use it to compare the identity type of the circle with the universal cover.

Corollary 22.2.3 *Consider two type families A and B over the circle equipped with descent data* (X, e) *and* (Y, f)*, equivalences* $\alpha : X \simeq A(base)$ *and* $\beta : Y \simeq B(base)$ *,*

and homotopies H and K witnessing that the squares

commute, respectively. Then there is a commuting square

$$\left(\begin{array}{ccc} \prod_{(t:\mathbf{S}^1)} A(t) \to B(t) \right) & \longrightarrow & \sum_{(h:X \to Y)} h \circ e \sim f \circ h \\ & & & & \downarrow \mathsf{pr}_1 \\ (A(\mathsf{base}) \to B(\mathsf{base})) & & & & \downarrow \mathsf{pr}_1 \end{array} \right)$$

in which the top map is an equivalence.

Proof The claim follows once we observe that $(Y^X, \lambda h. f \circ h \circ e^{-1})$ is descent data for the family of types $(A(t) \to B(t))$ indexed by $t : \mathbf{S}^1$. Indeed, we have the equivalence $h \mapsto \beta \circ h \circ \alpha^{-1} : Y^X \simeq B(\mathsf{base})^{A(\mathsf{base})}$ for which the square

commutes.

Corollary 22.2.4 Consider a type family A over the circle and descent data (X, e) equipped with an equivalence $\alpha: X \simeq A(\mathsf{base})$ and a homotopy witnessing that the square

$$\begin{array}{ccc} X & \stackrel{\alpha}{\longrightarrow} & A(\mathsf{base}) \\ e & & & \downarrow \mathsf{tr}_A(\mathsf{loop}) \\ X & \stackrel{\alpha}{\longrightarrow} & A(\mathsf{base}) \end{array}$$

commutes. Then there is a commuting square

$$\left(\begin{array}{ccc} \prod_{(t:\mathbf{S}^1)} \mathcal{E}_{\mathbf{S}^1}(t) \to A(t) \right) & \longrightarrow & \sum_{(h:\mathbb{Z} \to X)} h \circ \mathsf{succ}_{\mathbb{Z}} \sim e \circ h \\ & & & & \downarrow \mathsf{pr}_1 \\ (\mathcal{E}_{\mathbf{S}^1}(\mathsf{base}) \to A(\mathsf{base})) & \xrightarrow[h \mapsto \alpha^{-1} \circ h \circ (k \mapsto k_{\mathcal{E}})]{} (\mathbb{Z} \to X) \\ \end{array}$$

in which the top map is an equivalence.

In other words, a family of maps $\mathcal{E}_{S^1}(t) \to A(t)$ indexed by $t: S^1$ is equivalently described as a map $h: \mathbb{Z} \to X$ for which the square

$$\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{h} & X \\
\operatorname{succ}_{\mathbb{Z}} \downarrow & & \downarrow e \\
\mathbb{Z} & \xrightarrow{h} & X
\end{array}$$

commutes. It is now time to prove the universal property of the integers.

22.3 The (dependent) universal property of the integers

The dependent universal property precisely characterizes sections of families over the integers, for those families A(k) indexed by $k : \mathbb{Z}$ that come equipped with families of equivalences $A(k) \simeq A(k+1)$ for all $k : \mathbb{Z}$.

Lemma 22.3.1 *Let* B *be a family over* \mathbb{Z} *, equipped with an element* b_0 : B(0)*, and an equivalence*

$$e_k : B(k) \simeq B(\mathsf{succ}_{\mathbb{Z}}(k))$$

for each $k : \mathbb{Z}$. Then there is a dependent function $f : \prod_{(k:\mathbb{Z})} B(k)$ equipped with identifications $f(0) = b_0$ and

$$f(\operatorname{succ}_{\mathbb{Z}}(k)) = e_k(f(k))$$

for any $k : \mathbb{Z}$.

Proof The map is defined using the induction principle for the integers, stated in Remark 4.5.2. First we take

$$f(-1) := e_{-1}^{-1}(b_0)$$

 $f(0) := b_0$
 $f(1) := e_0(b_0).$

For the induction step on the negative integers we use

$$\lambda n. e_{\mathsf{in-neg(succ}_{\mathbb{N}}(n))}^{-1} : \prod_{(n:\mathbb{N})} B(\mathsf{in-neg}(n)) \to B(\mathsf{in-neg(succ}_{\mathbb{N}}(n)))$$

For the induction step on the positive integers we use

$$\lambda n. e_{\mathsf{in-pos}(n)} : \prod_{(n:\mathbb{N})} B(\mathsf{in-pos}(n)) \to B(\mathsf{in-pos}(\mathsf{succ}_\mathbb{N}(n))).$$

The computation rules follow in a straightforward way from the computation rules of \mathbb{Z} -induction and the fact that e^{-1} is an inverse of e.

Example 22.3.2 For any type A, we obtain a map $f : \mathbb{Z} \to A$ from any x : A and any equivalence $e : A \simeq A$, such that f(0) = x and the square

$$\begin{array}{ccc}
\mathbb{Z} & \xrightarrow{f} & A \\
\operatorname{succ}_{\mathbb{Z}} \downarrow & & \downarrow e \\
\mathbb{Z} & \xrightarrow{f} & A
\end{array}$$

commutes. In particular, if we take A := (x = x) for some x : X, then for any p : x = x we have the equivalence $\lambda q \cdot p \cdot q : (x = x) \rightarrow (x = x)$. This equivalence induces a map

$$k \mapsto p^k : \mathbb{Z} \to (x = x),$$

for any p: x = x. This induces the **degree** k **map** on the circle

$$deg(k): \mathbf{S}^1 \to \mathbf{S}^1$$
,

for any $k : \mathbb{Z}$, see Exercise 22.2.

In the following proposition we show that the dependent function constructed in Lemma 22.3.1 is unique. This is the **dependent universal property** of the integers.

Proposition 22.3.3 Consider a type family $B : \mathbb{Z} \to \mathcal{U}$ equipped with b : B(0) and a family of equivalences

$$e: \prod_{(k:\mathbb{Z})} B(k) \simeq B(\operatorname{succ}_{\mathbb{Z}}(k)).$$

Then the type

$$\textstyle \sum_{(f:\prod_{(k:\mathbb{Z})}B(k))} (f(0)=b) \times \prod_{(k:\mathbb{Z})} f(\mathrm{succ}_{\mathbb{Z}}(k)) = e_k(f(k))$$

is contractible.

Proof In Lemma 22.3.1 we have already constructed an element of the asserted type. Therefore it suffices to show that any two elements of this type can be identified. Note that the type (f, p, H) = (f', p', H') is equivalent to the type of triples (K, α, β) consisting of

$$\begin{split} K: f &\sim f' \\ \alpha: K(0) = p \cdot (p')^{-1} \\ \beta: \prod_{(k:\mathbb{Z})} K(\operatorname{succ}_{\mathbb{Z}}(k)) = (H(k) \cdot \operatorname{ap}_{e_k}(K(k))) \cdot H'(k)^{-1}. \end{split}$$

We obtain such a triple by applying Lemma 22.3.1 to the family C over \mathbb{Z} given by C(k) := f(k) = f'(k), which comes equipped with the base point

$$p \cdot (p')^{-1} : C(0),$$

and the family of equivalences

$$\prod_{(k:\mathbb{Z})} C(k) \simeq C(\operatorname{succ}_{\mathbb{Z}}(k))$$

given by
$$r \mapsto (H(k) \cdot \operatorname{ap}_{e_k}(r)) \cdot H'(k)^{-1}$$
.

The **universal property of the integers** is a simple corollary of the dependent universal property. One way of phrasing it is that \mathbb{Z} is the *initial type equipped with a point and an automorphism*.

Corollary 22.3.4 *For any type X equipped with a base point* $x_0 : X$ *and an automorphism* $e : X \simeq X$, the type

$$\sum_{(f:\mathbb{Z}\to X)} (f(0) = x_0) \times ((f \circ \mathsf{succ}_{\mathbb{Z}}) \sim (e \circ f))$$

is contractible.

Using the fact that equivalences are contractible maps, we can reformulate the dependent universal property of the integers as follows.

Theorem 22.3.5 For any type family A over \mathbb{Z} equipped with a family of equivalences

$$e: \prod_{(k:\mathbb{Z})} A(k) \simeq A(\operatorname{succ}_{\mathbb{Z}}(k)),$$

the map

$$\operatorname{ev}_0: \left(\textstyle\sum_{(f: \prod_{(k:\mathbb{Z})} A(k))} \prod_{(k:\mathbb{Z})} f(\operatorname{succ}_{\mathbb{Z}}(k)) = e_k(f(k))\right) \to A(0)$$

given by $(f, H) \mapsto f(0)$ is an equivalence.

Proof Note that the fibers of ev_0 are equivalent to the types that are shown to be contractible in Proposition 22.3.3.

The following corollary will be used to prove that the fundamental cover of the circle is equivalent to the identity type based at base : S^1 .

Corollary 22.3.6 For any type X equipped with an equivalence $e: X \simeq X$, the map

$$\left(\sum_{(f:\mathbb{Z}\to X)}f\circ\mathrm{succ}_{\mathbb{Z}}\sim e\circ f\right)\to X$$

given by $(f, H) \mapsto f(0)$ is an equivalence.

22.4 The fundamental group of the circle

We have two goals remaining in this book. The first goal is to prove that the universal cover of the circle is an identity system at base : S^1 , in the sense of Definition 11.2.1. Since the universal cover is a family of sets over the circle, this implies that the circle is a 1-type.

Theorem 22.4.1 The universal cover of the circle is an identity system at base : S^1 .

Proof By Exercise 13.9 it suffices to show that the map

$$f\mapsto f(0_{\mathcal{E}}):\left(\prod_{(t:\mathbf{S}^1)}\mathcal{E}_{\mathbf{S}^1}(t)\to A(t)\right)\to A(\mathsf{base})$$

is an equivalence for every type family \boldsymbol{A} over the circle. Note that we have a commuting triangle

$$\left(\prod_{(t:\mathbf{S}^1)} \mathcal{E}_{\mathbf{S}^1}(t) \to A(t) \right)$$

$$\downarrow \qquad \qquad f \mapsto f(0_{\mathcal{E}})$$

$$\sum_{(h:\mathbb{Z} \to A(\mathsf{base}))} h \circ \mathsf{succ}_{\mathbb{Z}} \sim \mathsf{tr}_A(\mathsf{loop}) \circ h \xrightarrow[(h,H) \mapsto h(0)]{} A(\mathsf{base})$$

in which the left map is the equivalence obtained in Corollary 22.2.4 and the bottom map is an equivalence by Corollary 22.3.6.

Corollary 22.4.2 *The circle is a* 1-*type and not a* 0-*type.*

Proof To see that the circle is a 1-type we have to show that s = t is a 0-type for every $s, t : \mathbf{S}^1$. By Exercise 21.2 it suffices to show that the loop space of the circle is a 0-type. This is indeed the case, because \mathbb{Z} is a 0-type, and we have an equivalence (base = base) $\simeq \mathbb{Z}$.

Furthermore, since \mathbb{Z} is a 0-type and not a (-1)-type, it follows that the circle is a 1-type and not a 0-type. \Box

Our second goal is to construct a group isomorphism

$$\pi_1(\mathbf{S}^1) \cong \mathbb{Z}.$$

However, Theorem 22.4.1 doesn't immediately show that the fundamental group of the circle is \mathbb{Z} . It only gives us an equivalence

$$\Omega(\mathbf{S}^1) \simeq \mathbb{Z}.$$

In order to compute the fundamental group of the circle we augment the fundamental theorem of identity types with the following proposition.

Proposition 22.4.3 Consider a type A equipped with a point a:A, and consider an identity system B on A at a equipped with b:B(a). Furthermore, suppose that there is a binary operation

$$\mu: B(a) \to (B(x) \to B(x))$$

for every x: A, equipped with a homotopy $\mu(-,b) \sim id$. Then we have

$$f(p \cdot q) = \mu(f(p), f(q))$$

for the unique family of maps

$$f: \prod_{(x:A)} (a=x) \to B(x)$$

such that f(refl) = b, and for every p : a = a and q : a = x.

Proof Consider a family of maps $f:(a=x)\to B(x)$ indexed by x:A such that f(refl)=b, and let p:a=a and q:a=x. By induction on q it suffices to show that

$$f(p) = \mu(f(p), f(\text{refl}))$$

This follows, since f(refl) = b and $\mu(f(p), b) = f(p)$.

We are now ready to prove that the fundamental group of the circle is \mathbb{Z} . Recall from Definition 22.1.2 that we write $y \mapsto y_{\mathbb{Z}}$ for the inverse of the equivalence

$$x \mapsto x_{\mathcal{E}} : \mathbb{Z} \simeq \mathcal{E}_{\mathbf{S}^1}(\mathsf{base}).$$

Theorem 22.4.4 There is a group isomorphism

$$\pi_1(\mathbf{S}^1) \cong \mathbb{Z}.$$

Proof First we observe that, since the circle is a 1-type, we have an isomorphism of groups $\pi_1(\mathbf{S}^1) \cong \Omega(\mathbf{S}^1)$. In order to show that the group $\Omega(\mathbf{S}^1)$ is isomorphic to \mathbb{Z} , we prove that the family of equivalences

$$\alpha:\prod_{(t:\mathbf{S}^1)}(\mathsf{base}=t) o \mathcal{E}_{\mathbf{S}^1}(t)$$

given by $\alpha(refl) := 0_{\mathcal{E}}$ satisfies

$$\alpha(p \cdot q)_{\mathbb{Z}} = \alpha(p)_{\mathbb{Z}} + \alpha(q)_{\mathbb{Z}}$$

for every p, q : $\Omega(\mathbf{S}^1)$.

To see that the claim holds, note that by Proposition 22.4.3 it suffices to construct a binary operation

$$\mu:\mathcal{E}_{\mathbf{S}^1}(\mathsf{base}) \to (\mathcal{E}_{\mathbf{S}^1}(x) \to \mathcal{E}_{\mathbf{S}^1}(x))$$

equipped with a homotopy $\mu(-,0_{\mathcal{E}}) \sim id$, such that

$$\mu(k_{\mathcal{E}}, l_{\mathcal{E}}) = (k+l)_{\mathcal{E}}$$

holds for every $k,l:\mathbb{Z}$. Equivalently, it suffices to construct for each $k:\mathbb{Z}$ a function

$$\mu(k_{\mathcal{E}}): \mathcal{E}_{\mathbf{S}^1}(x) \to \mathcal{E}_{\mathbf{S}^1}(x)$$

indexed by $x : \mathbf{S}^1$ equipped with an identification $\mu(k_{\mathcal{E}}, l_{\mathcal{E}}) = (k+l)_{\mathcal{E}}$ for each $k, l : \mathbb{Z}$. Since we have

$$k + (l + 1) = (k + l) + 1$$

for all $k, l : \mathbb{Z}$, such a function is obtained at once from Corollary 22.2.4. \square

In order to prove that the fundamental group of the circle is \mathbb{Z} , we first had to use the univalence axiom to construct the universal cover of the circle. This proof was originally discovered by Mike Shulman in 2011, and later published in [17]. Its importance of this proof to the field of homotopy type theory is hard to overestimate. The proof led to the discovery of the *encode-decode method*, which we presented in this book as the fundamental theorem of identity types, and it was the start of the field that is now sometimes called *synthetic homotopy theory*, where the induction principle for identity types and the univalence axiom are used along with methods from algebraic topology in order to compute algebraic invariants of types.

Exercises

22.1 (a) Show that

$$\prod_{(x:\mathbf{S}^1)} \|\mathsf{base} = x\|.$$

(b) On the other hand, use the universal cover of the circle to show that

$$\neg \Big(\prod_{(x:\mathbf{S}^1)}\mathsf{base} = x\Big).$$

(c) Use the circle to conclude that

$$\neg \Big(\textstyle\prod_{(X:\mathcal{U})} \lVert X\rVert \to X\Big).$$

22.2 (a) Show that for every x : X, we have an equivalence

$$\left(\sum_{(f:\mathbf{S}^1\to X)} f(\mathsf{base}) = x\right) \simeq (x = x)$$

(b) Show that for every $t : \mathbf{S}^1$, we have an equivalence

$$\left(\sum_{(f:\mathbf{S}^1\to\mathbf{S}^1)}f(\mathsf{base})=t\right)\simeq\mathbb{Z}$$

The base point preserving map $f: \mathbf{S}^1 \to \mathbf{S}^1$ corresponding to $k: \mathbb{Z}$ is the degree k map on the circle.

(c) Show that for every $t : \mathbf{S}^1$, we have an equivalence

$$\left(\sum_{(e:\mathbf{S}^1\simeq\mathbf{S}^1)}e(\mathsf{base})=t\right)\simeq\mathsf{bool}$$

- 22.3 The **(twisted) double cover** of the circle is defined as the type family $\mathcal{T} := \mathcal{D}(\mathsf{bool}, \mathsf{neg\text{-}bool}) : \mathbf{S}^1 \to \mathcal{U}$, where $\mathsf{neg\text{-}bool} : \mathsf{bool} \simeq \mathsf{bool}$ is the negation equivalence of Example 9.2.4.
 - (a) Show that $\neg(\prod_{(t:\mathbf{S}^1)} \mathcal{T}(t))$.
 - (b) Construct an equivalence $e: \mathbf{S}^1 \simeq \sum_{(t:\mathbf{S}^1)} \mathcal{T}(t)$ for which the triangle

commutes.

22.4 Construct an equivalence $(\mathbf{S}^1 \simeq \mathbf{S}^1) \simeq \mathbf{S}^1 + \mathbf{S}^1$ for which the triangle

$$(\mathbf{S}^1 \simeq \mathbf{S}^1) \xrightarrow{\simeq} (\mathbf{S}^1 + \mathbf{S}^1)$$
 ev-base
$$\mathbf{S}^1$$
 fold

commutes. Conclude that a univalent universe containing a circle is not a 1-type.

22.5 (a) Construct a family of equivalences

$$\prod_{(t:\mathbf{S}^1)} ((t=t) \simeq \mathbb{Z}).$$

- (b) Use Exercise 21.4 to show that $(id_{S^1} \sim id_{S^1}) \simeq \mathbb{Z}$.
- (c) Use Exercise 13.5 (b) to show that

has-inverse(
$$id_{S^1}$$
) $\simeq \mathbb{Z}$,

and conclude that has-inverse(id_{S^1}) \neq is-equiv(id_{S^1}).

22.6 Consider a map $i: A \to \mathbf{S}^1$, and assume that i has a retraction. Construct an element of type

$$is-contr(A) + is-equiv(i)$$
.

22.7 (a) Show that the multiplicative operation on the circle is associative, i.e. construct an identification

$$\mathrm{assoc}_{\mathbf{S}^1}(x,y,z): \mathrm{mul}_{\mathbf{S}^1}(\mathrm{mul}_{\mathbf{S}^1}(x,y),z) = \mathrm{mul}_{\mathbf{S}^1}(x,\mathrm{mul}_{\mathbf{S}^1}(y,z))$$
 for any $x,y,z:\mathbf{S}^1.$

(b) Show that the associator satisfies unit laws, in the sense that the following triangles commute:

$$\mathsf{mul}_{\mathbf{S}^1}(\mathsf{mul}_{\mathbf{S}^1}(x,\mathsf{base}),y) = \mathsf{mul}_{\mathbf{S}^1}(x,\mathsf{mul}_{\mathbf{S}^1}(\mathsf{base},y))$$

$$\mathsf{mul}_{\mathbf{S}^1}(x,y)$$

(c) State the laws that compute

$$\operatorname{assoc}_{S^1}(\operatorname{base},\operatorname{base},x)$$

 $\operatorname{assoc}_{S^1}(\operatorname{base},x,\operatorname{base})$
 $\operatorname{assoc}_{S^1}(x,\operatorname{base},\operatorname{base})$
 $\operatorname{assoc}_{S^1}(\operatorname{base},\operatorname{base},\operatorname{base}).$

Note: the first three laws should be 3-cells and the last law should be a 4-cell. The laws are automatically satisfied, since the circle is a 1-type.

22.8 For convenience, we will write $x \cdot_{S^1} y := \text{mul}_{S^1}(x, y)$ in this exercise. Construct the **Mac Lane pentagon** for the circle, i.e. show that the pentagon

$$((x \cdot_{\mathbf{S}^{1}} y) \cdot_{\mathbf{S}^{1}} z) \cdot_{\mathbf{S}^{1}} w = (x \cdot_{\mathbf{S}^{1}} y) \cdot_{\mathbf{S}^{1}} (z \cdot_{\mathbf{S}^{1}} w)$$

$$(x \cdot_{\mathbf{S}^{1}} (y \cdot_{\mathbf{S}^{1}} z)) \cdot_{\mathbf{S}^{1}} w = x \cdot_{\mathbf{S}^{1}} (y \cdot_{\mathbf{S}^{1}} z) \cdot_{\mathbf{S}^{1}} w$$

$$x \cdot_{\mathbf{S}^{1}} ((y \cdot_{\mathbf{S}^{1}} z) \cdot_{\mathbf{S}^{1}} w)$$

commutes for every $x, y, z, w : \mathbf{S}^1$.

22.9 Recall from Exercise 17.5 that if $f: A \rightarrow B$ is a surjective map, then the precomposition map

$$-\circ f:(B\to C)\to (A\to C)$$

is an embedding for every set C. Give an example of a surjective map $f: A \to B$, such that the precomposition function

$$-\circ f:(B\to \mathbf{S}^1)\to (A\to \mathbf{S}^1)$$

is *not* an embedding, showing that the condition that *C* is a set is essential.

22.10 In this exercise we give an alternative proof that the total space of \mathcal{E}_{S^1} is contractible.

(a) Construct a function

$$h: \prod_{(k:\mathbb{Z})} (\mathsf{base}, 0_{\mathcal{E}}) = (\mathsf{base}, k_{\mathcal{E}})$$

equipped with a homotopy

$$H: \prod_{(k:\mathbb{Z})} h(\operatorname{succ}_{\mathbb{Z}}(k)_{\mathcal{E}}) = h(k) \cdot \operatorname{segment-helix}(k).$$

- (b) Show that the total space $\sum_{(t:S^1)} \mathcal{E}_{S^1}(t)$ of the universal cover of the circle is contractible.
- 22.11 Consider the type C of families $A : \mathbf{S}^1 \to \mathbf{Set}$ of sets over the circle equipped with a point $a_0 : A(\mathsf{base})$, such that the total space

$$\sum_{(t:\mathbf{S}^1)} A(t)$$

is connected.

- (a) For any type family A over the circle equipped with a_0 : $A(\mathsf{base})$, show that the total space $\sum_{(t:\mathbf{S}^1)} A(t)$ is connected if and only if $\mathsf{tr}_A(\mathsf{loop}): A(\mathsf{base}) \to A(\mathsf{base})$ has a single orbit in the sense that the map $k \mapsto \mathsf{tr}_A(\mathsf{loop})^k(a_0): \mathbb{Z} \to A(\mathsf{base})$ is surjective.
- (b) Let (A, a_0) and (B, b_0) be in C. Show that the type

$$((A,a_0) \leq (B,b_0)) \coloneqq \sum_{(f:\prod_{(t:\mathbf{S}^1)}A(t) \to B(t))} f(\mathsf{base},a_0) = b_0$$

is a proposition. Furthermore, show that this inequality relation gives C the structure of a poset.

(c) Show that the poset C is isomorphic to the poset of subgroups of \mathbb{Z} .

Index

$\binom{A}{B}$, see binomial type	$A \simeq B$, see equivalence
$\binom{n}{k}$, see binomial coefficient, 29	$A \times B$, see cartesian product, 38
$(n)_m$, see falling factorial	A/R, see set quotient
(x, y), see dependent pair, 37	absolute value function on \mathbb{Z} , 67
$-1_{\mathbb{Z}}, 35$	absorption laws
$-2_{\mathbb{T}}$, 157	of dependent pair types, 118
A , see propositional truncation	abstract <i>G</i> -set, 286 , 293
$ A _0$, see set truncation	fixed point, 293
$ A _{Pos}$, see poset reflection	free abstract <i>G</i> -set, 294
$[x]_R$, 247	transitive abstract G-set, 294
${f(x) \mid x : A}, 308$	abstract group, 286
$\{t(x_0,\ldots,x_n)\mid x_0:A_0,\ldots,x_n:A_n\},$ 308	action on fibers, 184
${A \choose B}$, see Stirling type of the second kind	action on generators for the circle, 324
$\binom{n}{m}$, see Stirling number of the second kind	action on paths, 47, 47–48
~ <i>p</i> , 267	ap-binary $_f$, 282
∅, see empty type, 31	ap-comp, 47
0 _N , 22	ap-concat, 48
$0_{\mathbb{Z}}$, 35	ap-id, 47
1, see unit type, 30	ap-inv, 48
$1_{\mathbb{Z}}$, 35	ap-refl, 48
3-for-2 property	binary action on paths, 282
of contractible types, 133	$\operatorname{add}_{\mathbb{N}}$, 25
of equivalences, 122	$add_{\mathbb{N}}(m)$ is an embedding, 161
of propositional truncations, 187	$add_{\mathbb{Z}}, 39$
$\forall_{(x:A)} P(x)$, see universal quantification	addition on ℕ, 25 , 24–26
A + B, see coproduct	algebra of a polynomial endofunctor, 315
- + - is a 0-truncated map, 242	ap_f , see action on paths, 47
a = x, see identity type	ap-binary _{f} , 282
$A \rightarrow B$, see function type, 15	ap-comp, 47
$A \rightarrow_* B$, see pointed map	ap-concat, 48
$A \hookrightarrow B$, see embedding	ap-id, 47
$A \hookrightarrow_{d} B$, 224, see decidable embedding	ap-inv, 48

ap-refl, 48	binomial type, 239 , 238–241, 244, 288
apd _f , 49	extended definition, 271
arity, 296	is finite, 241
arity of constructor W-type, 296	recursive relations, 240
associative, 273	Bishop on the positive integers, 21
associativity	bool, see booleans, 39
of addition on \mathbb{N} , 50	is a set, 160
of addition on \mathbb{Z} , 55	boolean conjunction, 39
of cartesian products, 117	boolean disjunction, 39
of concatenation of identifications, 45	boolean reflection, 102, 101–103
of coproducts, 117	booleanization, 102
of dependent pair types, 118	booleans, 39
of function composition, 18	computation rules, 39
of multiplication on \mathbb{N} , 54	conjunction, 39
of multiplication on S^1 , 329, 344	const _b is not an equivalence, 122
of multiplication on \mathbb{Z} , 56	disjunction, 39
Aut(X), see automorphism group	false, 39
automorphism group, 275	false ≠ true, 65
axiom	induction principle, 39
axiom K, 156	neg-bool, 39
axiom of choice, 237	observational equality, 65
function extensionality, 167, 163–184	true, 39
law of excluded middle, 238, 242	BS ₂ , 244–246
replacement axiom, 250	characterization of identity type, 235
univalence, 227 , 225–246	is not contractible, 236
axiom K, 156	BS _n , 218 , 239, 243–245
axiom- $K(A)$, 156	is classifying type of symmetric group, 285
axiom of choice, 237	
implies law of excluded middle, 268	Cantor's diagonal argument, 209–210 cardinality
β-rule for $Π$ -types, 14	of a finite type, 219
B^A , see function type	of a multiset, 308
base, 320, 321	
base case, 23	cartesian product type, 38 , 38–39 associativity, 117
base universe, 60	•
	commutation rule 38
Bézout's identity, 105	computation rule, 38
bi-implication, 39, 194, 229	distributivity of propositional truncations over products, 198
bi-invertible map, <i>see</i> equivalence Bin-Tree, 299	distributivity over coproducts, 117
bin-tree, 299	ind _× , 38
binary action on paths, 282	induction principle, 38
binary correspondence, 243	products of small types are small, 245
function, 243	unit laws, 117
binary rooted tree, 299	universal property, 172
bin-tree, 299	zero laws, 117
is an extensional W-type, 307	case analysis, 90–93
node, 299 binomial coefficient, 29	category laws for functions, 18
binomial theorem, 245	center of contraction, 125

change of variables, 10	type family over S^1 , 331
characterization of identity type	universal cover, 333 , 331–346
fundamental theorem of identity types,	universal property, 324, 322–325
135–150	classifying type, 285
of a contractible type, 133	universal property, 292
of a universe, 226	cofibonacci sequence, 105
of BS ₂ , 235	coherent unit laws, 326
of coproducts, 143-144	coherently invertible map, 129
of Group $_{\mathcal{U}}$, 278	is a contractible map, 130
of Monoid $_{\mathcal{U}}$, 290	collatz, 90
of ℕ, 141	Collatz conjecture, 103
of Π-types, 165	Collatz function, 90
of Σ-types, 119–121	commutative binary operation, 291
of Semigroup _{\mathcal{U}} , 277	commutative diagram, 113
of set quotients, 248	commutativity
of subtypes of A, 234	of addition on \mathbb{N} , 50
of the circle, 340–342	of addition on \mathbb{Z} , 55
of the fiber of a map, 128, 147	of cartesian products, 117
of W-types, 300	of coproducts, 117
choice, 168	of multiplication on \mathbb{N} , 54
choice ⁻¹ , 168	of multiplication on S^1 , 329
choice of unique representatives, 260	of multiplication on \mathbb{Z} , 56
for integer fractions, 262	comp(g, f), see composition, of functions, 18
for the congruence relations on \mathbb{N} , 261	comp-sing, 126
circle, 321 , 320–346	component of an element pf a W-type, 296
associativity of multiplication, 329, 344	composition
base, 320, 321	of equivalences, 122
characterization of identity type, 340-342	of functions, 18
commutativity of multiplication, 329	of group homomorphisms, 276
computation rules, 321	of semigroup homomorphisms, 276
constant maps, 328	computation rules
deg(k), see degree k map, 338	for cartesian products, 38
degree k map, 338 , 343	for coproducts, 33
dependent action on generators, 320	for ℕ, 24 , 24
dependent universal property, 322, 322–325	for Σ -types, 37
descent data, 331, 334–337	for the booleans, 39
double cover, 343	for the circle, 321
fundamental group, 341	for the unit type, 30
H-space structure, 326 , 326–328	for W-types, 295
induction principle, 321	con-inv, 53
is a 1-type, 340	concat, 44
is connected, 329	is a family of equivalences, 121
is not a set, 340	concat', 122
loop, 320, 321	is a family of equivalences, 121
Mac Lane pentagon, 345	concat-htpy, 113
multiplication, 326 , 326–328	is a family of equivalences, 178
$\pi_1(\mathbf{S}^1) \cong \mathbb{Z},341$	concat-htpy'
twisted double cover, 343	is a family of equivalences, 178

concat-list, 41	satisfies singleton induction, 126
is a 0-truncated map, 162	universal property, 180
concatenation	weak function extensionality, 166
of identifications, 44	contraction, 125
of lists, 41	conversion rule
conclusion of an inference rule, 4	element, 11
concrete <i>G</i> -set, 286 , 293	variable, 7
fixed point, 286, 293	coproduct, 33 , 33–35
free concrete G-set, 287	associativity, 117
orbit, 286 , 294	characterization of identity type, 143-144
transitive concrete G-set, 287	commutativity, 117
concrete group, 286	computation rules, 33
concrete normal subgroup, 294	dependent universal property, 181
concrete subgroup, 294	disjointness, 143–144
Concrete-Subgroup _{\mathcal{U}} (G, u) , 294	distributivity of Π over coproducts, 183
congruence relations on N, 72	Eq-copr _{A,B} , 143
choice of unique representatives, 261	functorial action, 34, 123
conjugation, 294	ind ₊ , 33
conjunction, 194	induction principle, 33
impredicative encoding, 200	inl, 33
connected component	inr, 33
of a universe, 239	is a set, 161
connected map, 266	is a truncated type, 161
connected type, 266	observational equality, 143
connected types are inhabited, 266	unit laws, 117
cons(a, l), 40	universal property, 181
$const_x$, 20	correspondence
constant element in a W-type, 297	opposite correspondence, 243
constant family, 9	count(A), 212
constant map, 20	counting, 212–215
is an embedding, 211	countings of a type, 212
on the circle, 328	δ_A , see diagonal, of a type, 161
weakly constant map, 196	$\mathcal{D}(X, e)$, see type family, over S^1 , 331
context, 5 , 3–5	D_A , see generalized dihedral group, 290
empty context, 5	D_k , see dihedral group, 290
contractible map, 128, 127-133	$d \mid n$, see divisibility on \mathbb{N} , 68
is an equivalence, 129	is a proposition if $d > 0$, 161
contractible type, 125 , 124–134, 241	decidable embedding, 224, 238
3-for-2 property, 133	decidable equality, 88
center of contraction, 125	of cartesian products, 104
characterization of identity type, 133	of coproducts, 104
closed under cartesian products, 133	of Fin_k , 89
closed under retracts, 133	of N, 89
contraction, 125	of Σ -types, 104
dependent universal property, 180	of \mathbb{Z} , 104
is a proposition, 151	decidable family of types, 87
is equivalent to 1, 133	decidable map, 224, 238
is \mathcal{U} -small, 227	decidable proposition, 230
	± ± ·

decidable subtype, 194, 239	dependent type theory, 3–12
decidable type, 87 , 199	dependent universal property
empty type, 87	of contractible types, 180
type with an element, 87	of coproducts, 181
unit type, 87	of empty types, 180
Dedekind finite type, 224	of identity types, 172, 172
deg(k), see degree k map, 338	of propositional truncations, 198
degree <i>k</i> map, 338 , 343	of Σ-types, 171 , 171–172
delooping, 285	of set truncations, 264
dependent action on generators for the circle,	of surjective maps, 206
320	of the circle, 322, 322–325
dependent action on paths, 49, 320	of \mathbb{Z} , 338, 337–340
dependent function type, 13, 12–20	derivation, 10 , 10–11
β -rule, 14	$desc_{\mathbf{S}^1}$, 332
characterization of identity type, 165	descent data for the circle, 331, 334–337
computation rules, see β - and η -rules	dgen _{S1} , see circle, dependent action on
congruence rule, 13	generators, 320
distributivity of Π over coproducts, 183, 272	diagonal of a type, 161
elimination rule, see evaluation	dihedral group, 290
η-rule, 14	disjoint sum, see coproduct
evaluation, 14	disjointness of coproducts, 143–144
formation rule, 13	disjunction, 193, 194
identity system, 170	impredicative encoding, 200
introduction rule, see λ -abstraction	universal property, 193
is locally ${\mathcal U}$ -small, 249	$\operatorname{dist}_{\mathbb{N}}(x,y)$, 66
is \mathcal{U} -small, 227	distance function on N, 66
λ -abstraction, 14	distributivity
λ -congruence, 14	of cartesian product over coproduct, 117
dependent identity system, 145	of inv over concat, 53
dependent pair, 37	of mul_N over add_N , 54
dependent pair type, 37, 37-38	of $\operatorname{mul}_{\mathbb{Z}}$ over $\operatorname{add}_{\mathbb{Z}}$, 56
absorption laws, 118	of Π over coproducts, 183, 272
associativity, 118	of Π over Σ , 168
computation rule, 37	of propositional truncations over cartesian
dependent universal property, 171, 171–172	products, 198
distributivity over coproducts, 118	of Σ -types over coproducts, 118
Eq_{Σ} , 120	divisibility on N, 68
identity type, 119–121	is a proposition, 161
$\operatorname{ind}_{\Sigma}$, 37	is decidable, 89
induction principle, 37	double counting, 215–218
is truncated, 161	double cover of S^1 , 343
left unit law, 134	$DProp_{\mathcal{U}}$, see decidable proposition, 230
observational equality, 120	is equivalent to bool, 230
pair, 37	€, see elementhood relation on W-types, 303
pr ₁ , 37	$\exists_{(x:A)} P(x)$, see existential quantification, 193
pr ₂ , 37	$\mathcal{E}_{\mathbf{S}^1}$, see universal cover of \mathbf{S}^1 , 333
unit laws, 118	Eckmann-Hilton argument, 282–285
universal property, 171–172	effective map, 251

element, 4	choice of unique representatives, 260,
indexed element, 6	260–263
element conversion rule, 11	effective map, 251
element of a multiset, 308	equivalence class, 247
elementhood relation on W-types, 303-307	ev-pair, 171
is irreflexive, 313	is an equivalence, 171, 172
embedding, 142, 142, 154, 202, 234	ev-pt, 126
closed under homotopies, 147	ev-refl, 172
factorization, 209	is an equivalence, 172
empty context, 5	evaluation, 14
empty type, 31 , 31–33	exclusive disjunction, 161
dependent universal property, 180	existential quantification, 193, 194
ind _∅ , 31	impredicative encoding, 200
induction principle, 31	universal property, 193
is a proposition, 151	exponentiation function on \mathbb{N} , 28
is decidable, 87	extensional strict ordering, 317
universal property, 180	extensional W-type, 305
encoding of a type in a universe, 56	extensionality principle
enough universes, 60 , 59–61, 227	for functions, 167
Eq _N , 62 , 140–142	for propositions, 229
Eq_Σ , 120	for W-types, 305
Eqw, 300	F, see finite type, 218 , 244
Eq-bool, 65	is \mathcal{U} -small, 250
Eq-copr _{A,B} , 143	f + g, see functorial action, of coproducts, 34
eq-equiv, 227	
Eq-fib, 128	$f \sim g$, see homotopy, 112
eq-htpy, 167	factorial operation, 29
eq-pair, 120	falling factorial, 225 false, 39
Eq-Rel $_{\mathcal{U}}(A)$, see equivalence relation, 247	*
equiv-eq, 226	false ≠ true, 65
is a group isomorphism, 290	family of equivalences, 136 , 135–138
equivalence, 115 , 111–124	family of types, see type family, 5
3-for-2 property, 122	$fib_f(b)$, 127 , 232, 234
closed under homotopies, 122	fiber, 127
composition, 122	characterization of identity type, 128, 147
family of equivalences, 136	Eq-fib, 128
has an inverse, 117	of Σ_A , 242
inverse, 115	of $tot(f)$, 135
is a contractible map, 132	of $W(f, e)$, 302
	fiber inclusion, 163, 268
is an embedding, 142	is a truncated map, 163
precomposition, 173 equivalence class, 247	is an embedding, 163
choice of unique representatives, 260,	fiber of a type family, 9
260–263	Fibonacci sequence, 29
	has left adjoint, 105
equivalence induction, 226	fibrant replacement, 134
equivalence relation, 247 , 251	Fin_k , see standard finite type, 74
$[x]_R$, 247	has decidable equality, 89
	finite choice, 220

finite type, 218	of W-types, 302, 302–303
binomial type, 241	polynomial endofunctor, 314
closed under retracts, 223	set truncation, 269
Dedekind finite type, 224	fundamental group, 280
finite choice, 220	of the circle, 341
is \mathcal{U} -small, 228	fundamental theorem of identity types,
pigeonhole principle, 224	135–150, 165, 226, 278, 341
Retr $_{\mathcal{U}}(X)$ of a finite type X , 245	formulation with retractions, 149
Stirling type of the second kind, 271	formulation with sections, 149
finitely branching rooted tree, 299	full generalization, 292
is an extensional W-type, 307	generalization to truncated maps, 287
finitely cyclic type, 124	•
	<i>g</i> ∘ <i>f</i> , 18
first projection map, 37	G -Set _{\mathcal{U}} , see abstract G -set, 286
fixed point	$\Gamma \vdash a : A, 4$
of a concrete G-set, 286 , 293	$\Gamma \vdash a \doteq b : A, 4$
of an abstract G-set, 293	$\Gamma \vdash A \doteq B \text{ type, } 4$
flatten-list, 41	$\Gamma \vdash A \text{ type, } 4$
fold-list, 40	gcd, 98
fraction, 262	$gen_{S^1}, 324$
choice of unique representatives, 262	generalized dihedral group, 290
free abstract <i>G</i> -set, 294	generalized fundamental theorem of identity
free concrete <i>G</i> -set, 287	types, 292
free group with one generator, 290	truncated maps, 287
free loop, 322 , 329	generic element, 10
function	global choice, 236
action on paths, 47	global decidability, 237
binary correspondence, 243	Goldbach's conjecture, 103
composition, 18	greatest common divisor, 96, 98, 95-99
const, 20	Group $_{\mathcal{U}}$, 274
constant map, 20	characterization of identity type, 278
has a retraction, 115	is a 1-type, 279
has an inverse, 116	group, 57, 274 , 272–294
identity function, 16	abstract <i>G</i> -set, 286 , 293
is an equivalence, 115	abstract group, 286
opposite function, 243	automorphism group of a set, 275
section of a map, 115	classifying type, 285
swap, 20	concrete <i>G</i> -set, 286 , 293
function extensionality, 165 , 167 , 163–184	concrete group, 286
univalence implies function extensionality,	concrete normal subgroup, 294
231	concrete subgroup, 294
weak function extensionality, 166	conjugation, 294
function type, 4, 15	delooping, 285
functorial action	dihedral group, 290
of coproducts, 34, 123	
of Ω , 281	free group with one generator, 290
of Ω^n , 281	fundamental group, 280
of π_n , 281	generalized dihedral group, 290
of propositional truncations, 192	homomorphism, 275
or propositional dancations, 172	homotopy group, 280

isomorphism, 276	homotopy, 112, 111-115
loop space of a 1-type, 280	commutative diagram, 113
normal subgroup, 291, 294	concat-htpy, 113
principal G-set, 293	groupoid laws, 113–114
S _n , 275	inv-htpy, 113
subgroup, 291 , 294	iterated homotopy, 113
torsor, 289 , 294	nat-htpy, 131
ℤ, 275	naturality, 131
group homomorphism, 275	refl-htpy, 113
preserves units and inverses, 290	whiskering operations, 114
groupoid laws	homotopy fiber, see fiber
of homotopies, 113–114	homotopy group, 280 , 279–285
of identifications, 44–47	is abelian for $n \ge 2,284$
$H \cdot f$, see homotopy, whiskering operations,	homotopy induction, 165
115	homotopy interpretation, 107
	horizontal concatenation, 283
<i>h</i> · <i>H</i> , see homotopy, whiskering operations, 115	interchange law, 284
	unit laws, 283
H-space, 326 circle, 326	horizontal line, see inference rule
	htpy-eq, 167
coherent unit laws 326	is an equivalence, 167
coherent unit laws, 326	hypothetical elements, 4
noncoherent H-space, 330	
structure, 326	I, see interval, 200
has an inverse, 116	ld _A , see identity type, 43
has decidable equality	is an embedding, 242
Fin _k , 89	id _A , see identity function, 16
integers, 104	identification, 42
natural numbers, 89	identification elimination, 42
type equipped with a counting, 213	identity function, 10, 16
has k elements, 212	is an equivalence, 116
has-decidable-eq(A), 88	identity homomorphism
has-inverse(f), 116	of groups, 276
has-inverse(f) \rightarrow is-coh-invertible(f), 132	of semigroups, 276
has-inverse(id) \simeq (id \sim id), 180	identity system, 138, 138–140, 341
Hedberg's theorem, 157	dependent identity system, 145
helix, 333	of a dependent function type, 170
higher inductive type	universal cover of S ¹ , 340
circle, 321	identity type, 6, 42 , 41–56
interval, 200	action on paths, 47 , 47–48
propositional truncation, 188–191	con-inv, 53
$hom_X(f,g)$, 183 , see morphism from f to g	concatenation, 44
over X	dependent universal property, 172, 172
is a proposition, 202	distributive-inv-concat, 53
hom(G, H) for groups, 275	horizontal concatenation, 283
hom(G, H) for semigroups, 275	identification, 42
homomorphism	identification elimination, 42
of groups, 275 , 290	induction principle, 42
of semigroups, 275	inv-con, 53

inverse operation, 44	indexed element, 6
lift, 53	indexed type, 6
Mac Lane pentagon, 54	induction principle
of a contractible type, 133	for equivalences, 226
of a coproduct, 143-144	for homotopies, 165
of a fiber, 128, 147	identification elimination, 42
of a П-type, 167	of cartesian products, 38
of a Σ-type, 119–121	of coproducts, 33
of a universe, 226	of list(A), 40
of A/R , 248	of N, 22–24
of Group $_{\mathcal{U}}$, 278	of propositional truncation, 190, 189–191
of Monoid $_{\mathcal{U}}$, 290	of Σ -types, 37
of retract is retract, 162	of the booleans, 39
of Semigroup $_{\mathcal{U}}$, 277	of the circle, 321
of the natural numbers, 141	of the empty type, 31
of W(A, B), 300	of the identity type, 42
path, 42	of the unit type, 30
path induction, 42	of W-types, 295 , 303
ind-eq, 42	path induction, 42
refl, 42	singleton induction, 126 , 126–127
rules, 43	inductive step, 23
total space is contractible, 125	inductive type, 21–56, 295–317
tower of identity types, 47	binary rooted trees, 299
transport, 48	cartesian product, 38–39
uniqueness, 181	circle, 321 , 320–346
universal property, 172	coproduct, 33–35
vertical concatenation, 283	dependent pair type, 37–38
iff-eq, 229	empty type, 31–33
$\operatorname{im}(f)$, see image of a map, 203	identity type, 41–56
image inclusion, 203	lists of elements of A, 40
is an embedding, 203	natural numbers, 21
image of a map, 203	oriented binary rooted trees, 298
existence, 203–204	unit type, 30–31
uniqueness, 204–205	W-type, 295
	inference rule, see rule
universal property, 201–203, 208	conclusion, 4
implication, 194	premises, 3
impredicative encodings, 200	infinitude of primes, 101
impredicative encodings, 200	
ind ₊ , 33	inhabited type
$\operatorname{ind}_{\emptyset}$, 31	connected types are inhabited, 266
ind ₁ , 30	injective maps into sets are embeddings, 161
ind _N , 22	injective maps into sets are embeddings, 161
ind _{S1} , 321	inl, 33
$\operatorname{ind}_{\Sigma}$, 37	is an embedding, 147
ind _x , 38	inr, 33
ind-sing, 126	is an embedding, 147
ind-bool, 39	integers, 35–36, 39
ind _W , 295	$-1_{\mathbb{Z}}$, 35

$0_{\mathbb{Z}}$, 35	for identifications, 44
$1_{\mathbb{Z}}$, 35	is a contractible map, 128
absolute value function, 67	equivalence, 132
$\operatorname{add}_{\mathbb{Z}}, \operatorname{\underline{39}}$	is a greatest common divisor, 96
associativity of addition, 55	is a proposition
associativity of multiplication, 56	contractible type, 151
commutativity of addition, 55	δ_A is an equivalence, 161
commutativity of multiplication, 56	$d \mid n \text{ for } d > 0, 161$
decidable equality, 104	empty type, 151
distributivity of multiplication over	is-coh-invertible(f), 180
addition, 56	is-contr(A), 179
group laws, 55	is-equiv (f) , 179
in-neg, 35	is-path-split(f), 180
in-pos, 35	$is-trunc_k(A)$, 179
initial type with a point and an	propositional truncation, 189
automorphism, 339	is a propositional truncation, 186
integer fractions, 262	is a set, 155
inverse laws for addition, 55	coproduct, 161
is a ring, 55	natural numbers, 155
$\operatorname{mul}_{\mathbb{Z}}$, 39	is a truncated map
$neg_{\mathbb{Z}}, 39$	fiber inclusion, 163
$\operatorname{pred}_{\mathbb{Z}}$, 39	tot(f), 163
predecessor laws for addition, 56	is a truncated type
succ _ℤ , 36	$A \simeq B$, 180
successor laws for addition, 56	coproduct, 161
unit laws for addition, 55	Σ-type, 161
zero laws for multiplication, 55	is an embedding, 142
interchange law	$\emptyset \to A$, 147
of horizontal and vertical concatenation, 284	$add_{\mathbb{N}}(m)$, 161
interchange rule, 11	composite of embeddings, 148
interpretation of logic in type theory, 194	equivalence, 142
interval, 200	fiber inclusion, 163
inv, 44	Id_A , 242
is an equivalence, 121	if the action on paths have sections, 149
inv-con, 53	image inclusion, 203
inv-htpy, 113	injective map into a set, 161
is an equivalence, 178	inl (for coproducts), 147
inverse	inr (for coproducts), 147
of an equivalence, 115	left factor of embedding if right factor is an
is an equivalence, 117	equivalence, 148
inverse law operations	$\operatorname{mul}_{\mathbb{N}}(m)$ for $m > 0$, 161
for identifications, 46	mul_{S^1} , 329
inverse laws	right factor of embedding if left factor is an
for a group, 274	embedding, 148
for addition on \mathbb{Z} , 55	W(f,e), 303
for group isomorphisms, 276	is an equivalence, 115
for semigroup isomorphisms, 276	action on paths of an embedding, 142
inverse operation	choice, 168

concat'(q), 121	is-constant _W , 297
concat(p), 121	is-contr(A), see contractible type
concat-htpy $'(K)$, 178	is-contr(A)
concat-htpy (H) , 178	is a proposition, 179
contractible map, 129	is-contr(f), see contractible map
ev-pair, 171, 172	is-decidable (A) , 87
ev-refl, 172	is-emb (f) , 142
htpy-eq, 167	is-equiv (f) , 115
identity function, 116	is a proposition, 179
inv, 121	$is-equiv(f) \simeq is-coh-invertible(f), 180$
inv-htpy, 178	$is-equiv(f) \simeq is-path-split(f), 180$
inverse of an equivalence, 117	is-finite (X) , 218
is surjective and an embedding, 211	is-finite'(X), 219
$\text{mul}_{\mathbf{S}^1}(-,x)$, 329	is a proposition, 219
$\text{mul}_{\mathbf{S}^1}(x, -), 329$	is-function (R) , 243
neg-bool, 116	$is-gcd_{a,b}(d)$, 96
pair-eq, 120	is-group, 274
path-split map, 149	is a proposition, 274
pr ₁ of contractible family, 134	is-group', 274
$succ_{\mathbb{Z}}$, 116	is a proposition, 274
tot(f) of family of equivalences, 136	is-iso(h)
$tr_B(p)$, 121	for group homomorphisms, 276
W(f, e), 303	for semigroup homomorphisms, 276
is connected	is a proposition, 276
circle, 329	is-isolated(a), 163
is contractible	is-locally-small $_{\mathcal{U}}(A)$, 249
dependent function type, 166	is-lower-bound $_P(n)$, 94
factor of contractible cartesian product, 133	is-prime (n) , 99
fiber of an equivalence, 132	is decidable, 99
identity type of contractible type, 133	is-prop'(A), 152
is a property, 179	is-prop(A), 151
satisfies singleton induction, 126	$is-prop(A) \leftrightarrow (A \rightarrow is-contr(A)), 152$
total space of an identity system, 139	$is-prop(A) \leftrightarrow is-emb(const_{\star}), 152$
total space of identity type, 125	$is-prop(A) \leftrightarrow is-prop'(A)$, 152
total space of opposite identity type, 133	is-proper-divisor (n, d) , 99
unit type, 125	is-set(A), 155
is empty	$is-set(A) \leftrightarrow axiom-K(A), 156$
W-type, 297	is-small $_{\mathcal{U}}(A)$, 227, 308
is family of equivalences	is a proposition, 228
iff $tot(f)$ is an equivalence, 136	is-small $_{\mathcal{M}_{\mathcal{U}}}$, 309
is injective	is-surj (f) , see surjective map
$succ_N$, 64	is-trunc $_k(A)$, 158
is set quotient, 250	$is-trunc_k(A) \rightarrow is-trunc_{k+1}(A)$, 159
is truncated	is-unital, 273
W-type, 301	is a proposition, 274
is-coh-invertible (f) , 130	is-upper-bound $_P(n)$, 94
is a proposition, 180	is-weakly-constant (f) , 196
is-conn(A), 266	iso-eq for groups, 278

iso-eq for semigroups, 277	fold-list, 40
isolated element, 163	induction principle, 40
isolated point, 244	length-list, 41
isomorphism	nil, 40
of groups, 276	reverse-list, 41
of semigroups, 276	sum-list, 41
preserves unit, 290	locally small map, 249
of sets, 184	locally small type, 249, 271
is-trunc _k	dependent function type is locally small,
is a proposition, 179	249
iterated homotopies, 113	propositions are locally small, 249
iterated loop space, 279	small types are locally small, 249
	\mathcal{U} is locally \mathcal{U} -small, 249
join of universes, 61	logic, 192–194
judgment, 3–5	impredicative encodings, 200
$\Gamma \vdash a : A, 4$	interpretation of logic in type theory, 194
$\Gamma \vdash a \doteq b : A, 4$	loop, 320, 321
$\Gamma \vdash A \doteq B \text{ type, } 4$	loop space, 279
$\Gamma \vdash A \text{ type, } 4$	of a 1-type is a group, 280
judgmental equality	lower bound, 94
conversion rules, 7	
is an equivalence relation, 7	$M_{\mathcal{U}}$, see multiset, 308
of elements, 4	Mac Lane pentagon, 54, 345
of types, 4	maximum function, 28
k-truncated map, see truncated map	mere equality, 198
<i>k</i> -truncated type, <i>see</i> truncated type	impredicative encoding, 200
<i>k</i> -type, <i>see</i> truncated type, 167	minimum function, 28
universe of k-types, 241	Monoid $_{\mathcal{U}}$, 273
λ -abstraction, 14	monoid, 273
λ -congruence, 14	morphism from f to g over X , 183, 201
law of excluded middle, 238, 242	action on fibers, 184
Lawvere's fixed point theorem, 211	morphism of algebras
<	polynomial endofunctor, 315
on N, 66	mul _N , 28
	$\text{mul}_{\mathbb{N}}(m)$ is an embedding if $m > 0$, 161
left-inv, 46	$mul_{\mathbf{S}^1}, 326$
left-unit, 46 left unit law, see unit laws	$\operatorname{mul}_{\mathbb{Z}}, 39$
`	associativity, 56
of Σ -types, 134	commutativity, 56
length-list, 41	distributive over $add_{\mathbb{Z}}$, 56
≤ №	predecessor laws, 56
on N, 65	successor laws, 56
lift, 53	unit laws, 55
list(A), see lists in A , 162	zero laws, 55
lst(A), 40	multiplication
lists in A, 40	on N, 28
concat-list, 41	on the circle, 326–328
cons, 40	multiset, 308, 307–313
flatten-list, 41	$\{f(x) \mid x : A\}, 308$

$\{t(x_0,\ldots,x_n)\mid x_0:A_0,\ldots,x_n:A_n\},$ 308	n!, 29
cardinality, 308	$succ_{\mathbb{N}}$, 22
element, 308	triangle number, 28
is-small $_{\mathbb{M}_{\mathcal{U}}}$, 309	ordinal induction, 182
small multiset, 309	prime function, 103
universal tree, 312	prime number, 99
N, see natural numbers	rules for N
has decidable equality, 89	computation rules, 24
is a set, 155	elimination, see induction
≤, 161	formation, 22
¬A, see negation	induction, 24
nat-htpy, 131	induction principle, 22
natural number	introduction rules, 22
prime number, 99–101	semi-ring laws, 54
natural numbers, 5, 21–29	strong induction principle, 175, 175–178
addition, 25	successor laws for addition, 50
as W-type, 297	unit laws for addition, 50
associativity of addition, 50	unit laws for multiplication, 54
associativity of multiplication, 54	universal property, 181
Bézout's identity, 105	well-ordering principle, 94 , 94–95
characterization of identity type, 141	zero is not a successor, 64
cofibonacci sequence, 105	zero laws for multiplication, 54
commutativity of addition, 50	naturality square of homotopies, 131
commutativity of multiplication, 54	neg-bool, 112
congruence relations, 72	is an equivalence, 116
decidable equality, 89	neg-neg-bool, 112
distance function, 66	$\operatorname{neg}_{\mathbb{Z}}$, 39
	neg-bool, 39
distributivity of multiplication over	negation, 39
addition, 54	impredicative encoding, 200
divisibility, 68	of types, 31
Eq _N , 62	nil, 40
greatest common divisor, 95–99	noncoherent H-space, 330
identity type, 141	normal subgroup, 291 , 294
ind _N , 22	
infinitude of primes, 101	$\Omega(A)$, see loop space
is a set, 155	$\Omega^n(A)$, see iterated loop space
is an extensional W-type, 307	observational equality
observational equality, 62 , 61–63, 140–142	fiber, 128
operations on №	on bool, 65
0 _N , 22	on coproduct types, 143
$add_{\mathbb{N}}$, 25	on N, 62 , 61–63
addition, 24–26	on Σ-types, 120
binomial coefficient, 29	on W-types, 300–301
exponentiation, 28	opposite correspondence, 243
Fibonacci sequence, 29	opposite function, 243
$\max_{\mathbb{N}}$, 28	orbit, 286, 294
$\min_{\mathbb{N}}$, 28	order relation
$mul_{\mathbb{N}}$, 28	< on ℕ, 66

\leq on \mathbb{N} , 65	universal property, <mark>269</mark>
ordinal induction	power set, 209
of ℕ, 182	pr ₁ , see first projection map, 37
oriented binary rooted tree, 298, 313	of contractible family is an equivalence, 134
[-,-], 298	pr ₂ , see second projection map, 37
node, 298	pre-image, see fiber
oriented finitely branching rooted tree, 299	, see W-type, strict rank comparison relation
π , see prime counting function	≤, see W-type, rank comparison relation
$\pi_1(\mathbf{S}^1) \cong \mathbb{Z},341$	$\operatorname{pred}_{\mathbb{Z}}$, 39
$\pi_1(A)$, see fundamental group	predecessor function, 39
$\pi_n(A)$, see homotopy group	premise of an inference rule, 3
$\prod_{(x:A)} B(x)$, see dependent function type, 13	preorder
$P \oplus Q$, see exclusive disjunction	poset reflection, 269
Π_P	prime, see prime function
is an embedding, 243	prime counting function, 103
$\mathcal{P}_{\mathcal{U}}(X)$, see power set	prime function, 103
$P \lor Q$, see disjunction	prime number, 99, 99–101, 246, 288
P-map, 292	infinitude of primes, 101
<i>P</i> -separated type, 292	principal G-set, 293
<i>P</i> -type, 292	product of types, 38
pair, 37	program, 12
pair-eq, 120	projection map
is an equivalence, 120	first projection, 37
pairing function, 37	second projection, 37
partition, 258 , 257–260	proof by contradiction, 32
path, 42	proof of negation, 32
path constructor, 320	$Prop_{\mathcal{U}}$, 151, 241
path induction, 42	is a set, 229
ind-eq, 42	proper $(k+1)$ -type, 158
path-split, 149	proper divisor, 99
is a proposition, 180	property, 153
is-path-split(f), 149	proposition, 151 , 151–153
pattern matching, 27	closed under equivalences, 154
for W-types, 296	propositions are locally \mathcal{U} -small, 249
Π-type, see dependent function type	propositional extensionality, 229, 228–230
pigeonhole principle, 224	propositional truncation, 185–201
pointed 1-type, 280	3-for-2 property, 187
pointed map, 179, 279	$\alpha: \prod_{(x,y:A)} x = y, 189$
pointed type, 279	as higher inductive type, 188–191
pointwise identification, see homotopy, 112	dependent universal property, 198
polynomial endofunctor, 314	distributes over cartesian products, 198
algebra, 315	$\eta: A \to A , 189$
morphism of algebras, 315	functorial action, 192
poset	impredicative encoding, 200
is a set, 160	induction principle, 190, 189–191
poset reflection, 269	is a proposition, 189
poset reflection, 269	to be a propositional truncation, 186
is set quotient, 269	unit of propositional truncation, 189

universal property, 186, 191–192	set-based retract, 268
universal property into sets, 197	retraction, 115
universal property of the image of $A \rightarrow 1$,	reverse-list, 41
211	right-inv, 46
propositions as types	right-unit, 46
conjunction, 39	right unit law, see unit laws
pt_x , 31	ring
Q, see rational numbers	integers, 55
q _R , 247	rules
	for dependent function types
$r \cdot_h s$, see horizontal concatenation	β-rule, 14
R ^{op} , see opposite correspondence	congruence, 13
$\mathcal{R}(A,B)$, see W-type, rank poset	η-rule, 14
rank	evaluation, 14
of W-type, 317	formation, 13
is extensional, 317	λ -abstraction, 14
is well-founded, 317	λ -congruence, 14
rank comparison relation	for function types, 16
W-type, 316	for N
is a preordering, 316	computation rules, 24
rank poset	formation, 22
W-type, 316	induction principle, 22
rational numbers, 263	introduction rules, 22
refl, 42	for type dependency
refl-htpy, 113	change of variables, 10
reflect, 102 reflexive	element conversion, 11
	generic element, 10
≤ on N, 65	interchange, 11
relation	judgmental equality is an equivalence
equivalence relation, 247	relation, 7
order, 65	rules for substitution, 8–9
reflexive, 247 strict order, 66	rules for weakening, 9
symmetric, 247	variable conversion, 7, 7–8
transitive, 247	variable rule, 10
valued in propositions, 247	identity type, 43
replacement axiom, 250	Russell's paradox, 312 , 307–313
=	S ¹ , see circle, 321
Retr _{Set\mathcal{U}} (X), 268 is equivalent to equivalence relations with	Σ_A , see dependent pair type
	is a <i>k</i> -truncated map, 242
canonical representatives, 268 Retr $_{\mathcal{U}}(X)$	S_n , see symmetric group
	S((,m),n), 225
is a <i>k</i> -truncated type, 245 is finite, 245	Σ -decomposition, 268
retr(f), 115	indexing type, 268
retract	set indexed, 268
identity type, 162	Σ -type, see dependent pair type, 37
of a type, 115	sec(f), 115
retracts of small types are small, 245	second projection map, 37
remarks of small types are small, 210	section

of a map, 115	set quotient is \mathcal{U} -small, 250
section of a type family, 6	small types are locally small, 249
segment-helix _k , 333	$\mathcal U$ is not $\mathcal U$ -small, 312
semi-ring laws	standard finite type, 74
for N, 54	Stirling number of the second kind, 225
Semigroup $_{\mathcal{U}}$, 273	Stirling type of the second kind, 271, 288
identity type, 277	is finite, 271
is a 1-type, 278	is truncated, 271
semigroup, 273	strict ordering
has inverses, 274	extensional, 317
homomorphism, 275	on W-types, 314
isomorphism, 276	is irreflexive, 314
unital, 273	is transitive, 314
semigroup homomorphism, 275	strict rank comparison relation
$Set_\mathcal{U}$	W-type, 316
is not a set, 241	extends to rank poset, 316
set, 57, 155 , 155–157, 329	is a strict ordering, 316
automorphism group, 275	strictly ordered set, 317
Hedberg's theorem, 157	strong induction principle
isomorphism, 184	of N, 175 , 175–178
set quotient, 247, 250, 246–272	of W-types, 314
$[x]_R$, 247	strong-ind $_{\mathbb{N}}$, 175
characterization of identity type, 248	structure identity principle, 144-147, 235, 272
is \mathcal{U} -small, 250	subgroup, 291 , 294
partition, 258 , 257–260	substitution, 8–9
poset reflection, 269	subtype, 153 , 153–155, 234
set truncation, 264, 263–267	characterization of identity type, 234
surjective maps into sets are set quotients,	subuniverse
256	closed under equivalences, 229
universal property, 251, 250–257	succ _N , 22
set truncation, 264, 265, 263–267	$succ_{\mathbb{Z}}, 36$
dependent universal property, 264	is an equivalence, 116
functorial action, 269	successor function
universal property, 264	on ℕ, 22
set-based retract, 268	on \mathbb{Z} , 36
set-indexed Σ -decomposition, 268	is an equivalence, 116
set-level structure, 273	successor laws
singleton induction, 126 , 126–127	for addition on \mathbb{N} , 50
is contractible, 126	successor universe, 60
small map, 227	SUCCN
small multiset, 309	is injective, 64
small type, 227, 308	$succ_{\mathbb{T}}$, 157
contractible type, 227	sum-list, 41
dependent function type, 227	surjective map, 205, 242
\mathbb{F} is \mathcal{U} -small, 250	dependent universal property, 206
finite type, 228	factorization, 209
products of small types are small, 245	surjective maps into sets are set quotients,
retracts of small types are small, 245	256

universal property of the image of a map,	universe of k-types, 241
208	truncation level, 151–160, 163
swap function, 20	twin prime conjecture, 103
symbol of a constructor of a W-type, 296	twisted double cover of S^1 , 343
symmetric group, 275	type, 4
T, see truncation level	indexed type, 6
\mathcal{T} , see universal family	type family, 5 , 5–6, 232
⊥ , 194	constant family, 9
impredicative encoding, 200	fiber of a type family, 9
⊤, 194	fibers of projection map, 134
impredicative encoding, 200	of standard finite types, 74
torsor, 289 , 294	over S ¹ , 331
tot(f), 135	transport, 48
fiber, 135	trivial family, 9
is a truncated map, 163	univalent type family, 306
of family of equivalences is an equivalence,	universal family, 58
136	type theoretic choice, see distributivity, of Π
total space	over Σ
universal cover of S^1 , 333	<i>U, see</i> universe
$tot_f(g)$, 137	U_* , 279
tower of identity types, 47	\mathcal{U}^+ , see successor universe
tr _B , 48	\mathcal{U}_0 , see base universe
is a family of equivalences, 121	$\mathcal{U}_{A_{I}}$ 239
transitive abstract <i>G</i> -set, 294	is \mathcal{U} -small, 250
transitive concrete <i>G</i> -set, 287	$\mathcal{U}^{\leq k}$, 158, 241
transport, 48 , 48–49	is a <i>k</i> -type, 241
tree	$U \sqcup V$, see join of universes
binary rooted tree, 299	<i>U</i> -small map, 227
finitely branching rooted tree, 299	\mathcal{U} -small multiset, 309
oriented binary rooted tree, 298, 313	<i>U</i> -small type, 227 , 308
oriented finitely branching rooted tree, 299	\mathcal{U} is not \mathcal{U} -small, 312
universal tree, 312	unary identity system, see identity system
tree, 295	unit
triangle number, 28	of a unital semigroup, 273
trivial family, 9	unit laws
true, 39	coherent unit laws, 326
truncated map, 158 , 159	for a unital semigroup, 273
- + -, 242	for addition on \mathbb{N} , 50
- + 1 , 244	for addition on \mathbb{Z} , 55
concatenation of lists, 162	for cartesian products, 117
Σ_A , 242	for concatenation of identifications, 46
truncated type, 158, 151–160, 163	for coproducts, 117
closed under embeddings, 159	for dependent pair types, 118
closed under equivalences, 159	for function composition, 19, 20
closed under retracts, 162	for horizontal concatenation, 283
dependent function type, 167	for multiplication on \mathbb{N} , 54
function type, 168	for multiplication on S^1 , 326
Stirling type of the second kind, 271	for multiplication on \mathbb{Z} , 55

unit laws for multiplication, 55	connected component, 239
unit of propositional truncation, 189	enough universes, 60, 59-61, 227
unit type, 30 , 30–31	join of universes, 61
computation rules, 30	of contractible types, 241
induction principle, 30	of <i>k</i> -types, 241
ind ₁ , 30	is a <i>k</i> -type, 241
is contractible, 125	of propositions, 241
is decidable, 87	of sets, 241
singleton induction, 126	successor universe, 60
★,30	${\cal U}$ is locally ${\cal U}$ -small, 249
unital semigroup, 273	$\mathcal U$ is not $\mathcal U$ -small, 312
has inverses, 274	upper bound, 94
univalence axiom, 227, 225–246, 272	V, see universe
families over S^1 , 331	variable, 4
implies function extensionality, 231	variable conversion rules, 7
implies propositional extensionality, 229	variable declaration, 5
univalent type family, 306	variable rule, 10
univalent universe, 226	
universal cover of S ¹ , 333 , 331–346	vertical concatenation, 283
is an identity system, 340	interchange law, 284
segment-helix, 333	W(A, B), 295
total space, 333, 345	W(A, B), see W-type
universal family, 58 , 56–67	W(f, e), see W-type, functorial action, 302
universal property	fiber, 302
of cartesian products, 172	is a truncated map, 303
of contractible types, 180	is an embedding, 303
of coproducts, 181	is an equivalence, 303
of disjunction, 193	W-type, 295 , 295–317
of empty types, 180	arity, 296
of existential quantification, 193	arity of constructor, 296
of identity types, 172	binary rooted trees, 299
of N, 181	characterization of identity type, 300
of poset reflections, 269	component of an element, 296
of propositional truncations, 186 , 191–192	computation rule, 295
of propositional truncations into sets, 197	constant element, 297
of Σ -types, 171–172	∈, 303
of set quotients, 251 , 250–257	elementhood relation, 303-307
of set truncations, 264	is irreflexive, 313
of the circle, 324 , 322–325	Eqw, 300
	extensionality, 305
of the classifying type of a group, 292	finitely branching rooted trees, 299
of the image of a map, 202 , 201–203	functorial action, 302, 302–303
of \mathbb{Z} , 339, 337–340	ind _W , 295
universal quantification, 194	induction principle, 295, 303
impredicative encoding, 200	is empty, 297
universal tree, 312	is initial algebra of polynomial endofunctor,
universe, 58, 56–67	315
base universe, 60	is truncated, 301
characterization of identity type, 226	•

```
is-constant<sub>W</sub>, 297
  natural numbers, 297
  no infinitely descending sequences, 314
  observational equality, 300-301
  oriented binary rooted trees, 298
  oriented finitely branching rooted trees, 299
  pattern matching, 296
  rank, 317
    is extensional, 317
    is well-founded, 317
  rank comparison relation, 316
     is a preordering, 316
  rank poset, 316
  strict ordering, 314
    is irreflexive, 314
     is transitive, 314
  strict rank comparison relation, 316
     is a strict ordering, 316
  strong induction principle, 314
  symbol of a constructor, 296
  tree, 295
weak function extensionality, 166, 167, 231
weakening, 9
weakly constant map, 196
weakly path constant map, 270
well-formed type, 4
well-founded relation, 317
well-founded trees, 295
well-ordering principle of \mathbb{N}, 94, 94–95
w(P, d), 94
whiskering operations
  of homotopies, 114
with-abstraction, 90-93
\mathbb{Y}_{q_I}, see universal tree
\mathbb{Z}, see integers
  dependent universal property, 338, 337-340
  has decidable equality, 104
  is a group, 275
  is a set, 161
  is the free group with one generator, 290
  universal cover of S^1, 333
  universal property, 339, 337-340
zero laws
  for cartesian products, 117
  for mul_{\mathbb{Z}}, 55
```

Bibliography

- [1] Peter Aczel. "The type theoretic interpretation of constructive set theory". In: *Logic Colloquium* '77 (*Proc. Conf., Wrocław, 1977*). Vol. 96. Studies in Logic and the Foundations of Mathematics. North-Holland, Amsterdam-New York, 1978, pp. 55–66.
- [2] Steve Awodey, Nicola Gambino, and Kristina Sojakova. "Homotopy-initial algebras in type theory". In: J. ACM 63.6 (2017), Art. 51, 45. ISSN: 0004-5411. DOI: 10.1145/3006383. URL: https://doi.org/10.1145/3006383.
- [3] Steve Awodey and Michael A. Warren. "Homotopy theoretic models of identity types". In: *Math. Proc. Cambridge Philos. Soc.* 146.1 (2009), pp. 45–55. ISSN: 0305-0041. DOI: 10.1017/S0305004108001783. URL: http://dx.doi.org/10.1017/S0305004108001783.
- [4] Marc Bezem, Ulrik Buchholtz, Pierre Cagne, Bjørn Ian Dundas, and Daniel R. Grayson. *Symmetry*. https://github.com/UniMath/SymmetryBook. 2022.
- [5] Marc Bezem, Thierry Coquand, and Simon Huber. "A model of type theory in cubical sets". In: 19th International Conference on Types for Proofs and Programs. Vol. 26. LIPIcs. Leibniz Int. Proc. Inform. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 2014, pp. 107–128.
- [6] Marc Bezem, Thierry Coquand, and Simon Huber. "The univalence axiom in cubical sets". In: J. Automat. Reason. 63.2 (2019), pp. 159–171. ISSN: 0168-7433. DOI: 10.1007/s10817-018-9472-6. URL: https://doi.org/10.1007/s10817-018-9472-6.
- [7] Erret Bishop. *Foundations of constructive analysis*. New York: McGraw-Hill Book Co., 1967, pp. xiii+370.

- [8] G. Brunerie. "On the homotopy groups of spheres in homotopy type theory". In: *ArXiv e-prints* (June 2016). arXiv: 1606.05916 [math.AT].
- [9] Paolo Capriotti, Nicolai Kraus, and Andrea Vezzosi. "Functions out of Higher Truncations". In: 24th EACSL Annual Conference on Computer Science Logic (CSL) 2015). Vol. 41. Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 359–373. ISBN: 978-3-939897-90-3. DOI: http: //dx.doi.org/10.4230/LIPIcs.CSL.2015.359.
- [10] David Corfield. *Modal homotopy type theory*. The prospect of a new logic for philosophy. Oxford University Press, Oxford, 2020, pp. x+180. ISBN: 978-0-19-885340-4. DOI: 10.1093/oso/9780198853404.001.0001. URL: https://doi.org/10.1093/oso/9780198853404.001.0001.
- [11] Nicola Gambino and Peter Aczel. "The generalized type-theoretic interpretation of constructive set theory". In: *J. Symbolic Logic* 71.1 (2006), pp. 67–103. ISSN: 0022-4812. DOI: 10.2178/jsl/1140641163. URL: https://doi.org/10.2178/jsl/1140641163.
- [12] C.F. Gauss, W.C. Waterhouse, and A.A. Clarke. *Disquisitiones Arithmeticae*. Springer-Verlag, 1986. ISBN: 9783540962540.
- [13] Georges Gonthier, Andrea Asperti, Jeremy Avigad, and et al. "A machine-checked proof of the odd order theorem". In: *Interactive theorem proving*. Vol. 7998. Lecture Notes in Comput. Sci. Springer, Heidelberg, 2013, pp. 163–179. DOI: 10.1007/978-3-642-39634-2_14. URL: https://doi.org/10.1007/978-3-642-39634-2_14.
- [14] Håkon Robbestad Gylterud. "From multisets to sets in homotopy type theory". In: *J. Symb. Log.* 83.3 (2018), pp. 1132–1146. ISSN: 0022-4812. DOI: 10.1017/jsl.2017.84. URL: https://doi.org/10.1017/jsl.2017.84.
- [15] Martin Hofmann and Thomas Streicher. "The groupoid interpretation of type theory". In: *Twenty-five years of constructive type theory (Venice, 1995)*. Ed. by Giovanni Sambin and Jan M. Smith. Vol. 36. Oxford Logic Guides. New York: Oxford University Press, 1998, pp. 83–111.
- [16] Krzysztof Kapulkin and Peter LeFanu Lumsdaine. "The simplicial model of univalent foundations (after Voevodsky)". In: J. Eur. Math. Soc. (JEMS) 23.6 (2021), pp. 2071–2126. ISSN: 1435-9855. DOI: 10.4171/ JEMS/1050. URL: https://doi.org/10.4171/JEMS/1050.
- [17] Daniel R. Licata and Michael Shulman. "Calculating the fundamental group of the circle in homotopy type theory". In: 2013 28th Annual

- ACM/IEEE Symposium on Logic in Computer Science (LICS 2013). IEEE Computer Soc., Los Alamitos, CA, 2013, pp. 223–232.
- [18] Assia Mahboubi and Enrico Tassi. "Mathematical Components". 2018. URL: https://math-comp.github.io/mcb/.
- [19] Per Martin-Löf. *Intuitionistic type theory*. Vol. 1. Studies in Proof Theory. Lecture Notes. Notes by Giovanni Sambin. Bibliopolis, Naples, 1984, pp. iv+91. ISBN: 88-7088-105-9.
- [20] G. Peano. Arithmetices principia: nova methodo exposita. Fratres Bocca, 1889.
- [21] E. Rijke, M. Shulman, and B. Spitters. "Modalities in homotopy type theory". In: *Log. Methods Comput. Sci.* 16.1 (2020), Paper No. 2, 79 pp.
- [22] Egbert Rijke, Elisabeth Bonnevier, Jonathan Prieto-Cubides, et al. *Univalent mathematics in Agda*. https://unimath.github.io/agda-unimath/.url:https://github.com/UniMath/agda-unimath/.
- [23] Michael Shulman. "All (∞ , 1)-toposes have strict univalent universes". In: $arXiv\ e$ -prints, arXiv:1904.07004 (Apr. 2019), arXiv:1904.07004. arXiv:1904.07004 [math.AT].
- [24] The Univalent Foundations Program. *Homotopy Type Theory: Univalent Foundations of Mathematics*. Institute for Advanced Study: https://homotopytypetheory.org/book, 2013.
- [25] Vladimir Voevodsky. "A very short note on homotopy λ-calculus". 2006. URL: http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/Hlambda_short_current.pdf.
- [26] Vladimir Voevodsky. "Univalent Foundations Project". 2010. URL: http://www.math.ias.edu/~vladimir/Site3/Univalent_Foundations_files/univalent_foundations_project.pdf.