Bullet Notes on Computational Complexity

Albert Atserias, Universitat Politècnica de Catalunya

MIRI, MAMME, MPAL February-June, 2020.

Last modified: March 19, 2020.

1 Probabilistic computation

1.1 The model

- The model of non-deterministic TM will also serve as our model of randomized algorithm.
- Let $M = (Q, \Gamma, \delta_0, \delta_1, q_0, q_F)$ be an NTM.
- Think of the machine as making an independent and fair coin-flip at each step.
- Let $c_i \in \{0,1\}$ be the outcome of the *i*-th coin-flip.
- The machine takes the random computation path given by the sequence $\delta_{c_1}, \ldots, \delta_{c_t}$.
- Fix an input $x \in \Gamma^*$ and let $t = T_M(x)$.
- For $c = (c_1, c_2, \dots, c_t) \in \{0, 1\}^t$:
- Notation: $M_c(x)$: the output of M on input x when it uses δ_{c_i} in its i-th step.
- Notation: $\Pr[E] := |E|/2^t$ for any event $E \subseteq \{0,1\}^t$.
- For example, for $y \in \Gamma^*$ and $E = \{c \in \{0,1\}^t : M_c(x) = y\}$, what is Pr[E]?
- It's the probability that (a random computation path of) M on input x outputs y.
- In this interpretation, if $L \in NP$ and M is a NTM that decides L with $t_M(n) \leq p(n)$, then:
- \bullet For every input x we have
- 1) if $x \in L$, then $\Pr[M(x) = 1] > 0$,
- 2) if $x \notin L$, then $\Pr[M(x) = 1] = 0$.
- But note that, in case $x \in L$, the probability $\Pr[M(x) = 1]$ can be as small as $1/2^{p(|x|)}$.
- If p(n) is, say, n^2 , this probability could be useless even for rather small n.
- For n = 200, it is smaller than the probability of the planet exploding in the next second.
- We want NTMs that for $x \in L$ achieve good probability of acceptance.
- Say 0.99, instead of $1/2^{40000}$.

1.2 Example: primality testing

- COMPOSITENESS/PRIMALITY:
- Input: An m bit number n.
- Output: Is n composite or prime?
- The naive algorithm that tests x|n for all $x \leq |\sqrt{n}|$ takes exponential time: $O(2^{m/2})$.
- Recall Miller-Rabin test for compositeness:
- 1. given an odd $n \geq 3$,
- 2. write $n-1=2^sq$ where q is odd; i.e., repeatedly divide n-1 by 2 until odd,
- 3. choose a random $a \in \{1, \ldots, n-1\}$,
- 4. compute $x_0 := a^q \mod n$ by modular repeated squaring,
- 5. for $i = 0, 1, 2, \dots, s 1$, compute $x_{i+1} := x_i^2 \mod n$,
- 6. if we find some $i \in \{0, ..., s-1\}$ with $x_i \neq \{+1, -1\}$ and $x_{i+1} = 1$, then output 'composite'.
- 7. else output 'probably prime'.
- The test is sound:
- If n is prime, then the only two roots of $x^2 1 \mod n$ are +1 and -1.
- This follows from the fact that $\mathbb{Z}/n\mathbb{Z}$ is a field when n is prime.
- The test succeeds with good probability:
- If n is not prime, then at least 3/4 fraction of $a \in \{1, \ldots, n-1\}$ output 'composite'.
- This follows from a little bit of basic number theory (beyond the scope here).
- The probability of error can be made exponentially small in t by repeating the test t many times.
- How is this implemented in a NTM?
- Modular arithmetic has efficient algorithms; for exponentiation we use repeated squaring.
- But how is $a \in \{1, ..., n-1\}$ chosen uniformly at random?
- It is not:
- 1) find k such that $2^k \le n 1 < 2^{k+1}$,
- 2) draw k+1 many independent coin-flips and interpret them as a number $x \in \{0, \dots, 2^{k+1}-1\}$,
- 3) if $x \notin \{1, \ldots, n-1\}$, repeat; else, output x.
- The probability that nothing is output after t iterations is $\leq (1-(n-1)/2^{k+1})^t \leq (1/2)^t$.
- Conditioned on success: x is uniformly distributed in $\{1, \ldots, n-1\}$.
- If we stop after t unsuccessful iterations, the probabilities get biased by no more than $1/2^t$.

1.3 Example: polynomial identity testing

- POLYNOMIAL IDENTITY TESTING:
- Input: An arithmetic expression F with variables x_1, \ldots, x_n and constants +1 and -1,
- Output: Does F compute the identically zero polynomial in $\mathbb{R}[x_1,\ldots,x_n]$?
- Example 1: $(x_1 + x_2)(x_2 x_3) x_1x_2 + x_1x_3 x_2^2 + x_2x_3$ is identically zero.
- Example 2: $x_1x_3x_5\cdots x_{n-1} \prod_{i=1}^{n/2}(x_{2i-1}-x_{2i}) + x_2x_4x_6\cdots x_n$ is not identically zero.
- The second example shows that naively expanding the expression could take exponential time.
- The "mindless" test:
- 1. given an arithmetic expression $F(x_1, \ldots, x_n)$ with n variables and m operations,
- 2. for i = 1, ..., n, choose a random $a_i \in \{1, ..., 20m\}$, independently,
- 3. evaluate $F(x_1/a_1,\ldots,x_n/a_n)$,
- 4. if output is not zero, output 'not the identically zero polynomial'
- 5. else, output 'probably the identically zero polynomial'.
- The test is sound:
- This is obvious: how could $F(x_1, \ldots, x_n)$ be identically 0 if $F(x_1/a_1, \ldots, x_n/a_n) \neq 0$?
- The test succeeds with high probability:
- This relies on the following two facts.
- Lemma 1:
- Assume $F(x_1, \ldots, x_n)$ is an arithmetic expression with n variables and m subexpressions.
- Then F computes a polynomial $p \in \mathbb{R}[x_1, \dots, x_n]$ of degree at most 2m-1.
- Proof:
- Let size(F) denote the number of subexpressions of F.
- Let deg(F) denote the degree of the polynomial computed by F.
- Proof is by induction on size(F).
- ullet Base case: F is a variable or a constant. Obvious.
- Inductive cases: F = G + H or $F = G \times H$ for subexpressions F and H.
- Let $m_1 = \operatorname{size}(F)$ and $m_2 = \operatorname{size}(G)$, so $m = m_1 + m_2 + 1$.
- F = G + H: Then $\deg(F) = \max\{\deg(G), \deg(H)\} \le \max\{2m_1 1, 2m_2 1\} \le 2m 1$.

- $F = G \times H$: Then $\deg(F) = \deg(G) + \deg(H) \le 2m_1 1 + 2m_2 1 = 2m 1$.
- QED
- Lemma 2 [Schwartz-Zippel Lemma]:
- Assume $p \in \mathbb{R}[x_1, \dots, x_n]$ has degree at most d and let $S \subseteq \mathbb{R}$.
- Then p has at most $d|S|^{n-1}$ many roots in S^n , unless it is identically zero.
- Proof: Induction on n.
- Base case: n = 1.
- This follows from the fundamental theorem of algebra:
- Over fields, non-zero univariate polynomials of degree d have at most d roots.
- Inductive case: $n \geq 2$.
- Write $p = \sum_{i=0}^{d} p_i(x_1, \dots, x_{n-1}) x_n^i$ and assume p is not identically zero.
- Then there exists a maximal $d^* \in [d]$ so that p_{d^*} is not identically zero.
- Note that p_{d^*} has degree at most $d-d^*$ and at most n-1 variables.
- Now fix a root $(a_1, \ldots, a_n) \in S^n$ of p.
- Then, either (a_1, \ldots, a_{n-1}) is a root of p_{d^*} , or it isn't and a_n is a root of $\sum_{i=0}^{d^*} p_i(a_1, \ldots, a_{n-1}) x_n^i$.
- Of the first type we have no more than $(d-d^*)|S|^{n-2}|S|$ (by the induction hypothesis).
- Of the second type we have no more than $|S|^{n-1}d^*$ (by the base case).
- This leaves a total of at most $(d d^*)|S|^{n-2}|S| + |S|^{n-1}d^* = d|S|^{n-1}$.
- QED
- The test succeeds with high probability (continued):
- \bullet Assume F is not identically zero.
- By Lemma 1, we have $\deg(F) \leq 2m 1$.
- By Lemma 2 with $S = \{1, \dots, 20m\}$ we have:
- For random and independent $a_1, \ldots, a_n \in S$:
- The probability that $F(x_1/a_1,...,x_n/a_n)=0$ is at most $(2m-1)(20m)^{n-1}/(20m)^n \leq 1/10$.
- Thus the algorithm outputs "probably not identically zero" with probability at least 9/10.

1.4 Probabilistic complexity classes: BPP, RP, co-RP, ZPP

- BPP: Bounded-error Probabilistic Polynomial-time.
- Class of all $L \subseteq \{0,1\}^*$ for which there exist NTM M and $c \ge 0$ such that $t_M = O(n^c)$ and:
- For all $x \in \{0,1\}^*$:
- 0) $\Pr[M(x) \in \{0,1\}] = 1.$
- 1) if $x \in L$, then $\Pr[M(x) = 1] \ge 3/4$ (hence $\Pr[M(x) = 0] \le 1/4$),
- 2) if $x \notin L$, then $\Pr[M(x) = 1] \le 1/4$ (hence $\Pr[M(x) = 0] \ge 3/4$).
- RP: Randomized Polynomial-time with 1-sided error and no false positives.
- Class of all $L \subseteq \{0,1\}^*$ for which there exist NTM M and $c \ge 0$ such that $t_M = O(n^c)$ and:
- For all $x \in \{0,1\}^*$:
- 0) $\Pr[M(x) \in \{0,1\}] = 1.$
- 1) if $x \in L$, then $\Pr[M(x) = 1] \ge 1/2$ (hence $\Pr[M(x) = 0] \le 1/2$),
- 2) if $x \notin L$, then $\Pr[M(x) = 1] = 0$ (hence $\Pr[M(x) = 0] = 1$).
- RP': Randomized Polynomial-time with 1-sided error and no false negatives.
- Class of all $L \subseteq \{0,1\}^*$ for which there exist NTM M and $c \ge 0$ such that $t_M = O(n^c)$ and:
- For all $x \in \{0, 1\}^*$:
- 0) $\Pr[M(x) \in \{0,1\}] = 1.$
- 1) if $x \in L$, then $\Pr[M(x) = 1] = 1$ (hence $\Pr[M(x) = 0] = 0$),
- 2) if $x \notin L$, then $\Pr[M(x) = 1] \le 1/2$ (hence $\Pr[M(x) = 0] \ge 1/2$).
- ZPP: Zero-error Probabilistic Polynomial-time.
- Class of all $L \subseteq \{0,1\}^*$ for which there exist NTM M and $c \ge 0$ such that $t_M = O(n^c)$ and:
- For all $x \in \{0, 1\}^*$:
- 0) $\Pr[M(x) \in \{0, 1, ?\}] = 1$ and $\Pr[M(x) = ?] \le 1/2$.
- 1) if $x \in L$, then $\Pr[M(x) = 0] = 0$ (hence $\Pr[M(x) = 1] \ge 1/2$),
- 2) if $x \notin L$, then $\Pr[M(x) = 1] = 0$ (hence $\Pr[M(x) = 0] \ge 1/2$).
- I.e., algorithm is never wrong (zero-error), but may fail to give a definite (i.e. 0/1) answer.
- Obvious relationships:
- RP = co-RP' and RP' = co-RP.
- RP \subseteq NP and co-RP \subseteq co-NP.

- RP \subseteq BPP and co-RP \subseteq BPP.
- In order to see $RP \subseteq BPP$ (and $co-RP \subseteq BPP$):
- Start at a NTM M that witnesses $L \in RP$.
- Produce an NTM M' that on input x, makes two runs of M(x) with independent coin-flips.
- If both runs return 0, then return 0; else return 1.
- Note that if $x \notin L$, then $\Pr[M'(x) = 1] = 0$.
- And if $x \in L$, then $\Pr[M'(x) \neq 1] \leq (1/2)(1/2) = 1/4$; hence $\Pr[M'(x) = 1] \geq 3/4$.
- Thus M' witnesses that $L \in BPP$.
- More:
- Theorem: $ZPP = RP \cap co-RP$
- Proof:
- Recall co-RP = RP', so we prove $ZPP = RP \cap RP'$.
- The inclusion from left to right is still obvious:
- The same NTM with? replaced by 0 does the job for RP.
- The same NTM with? replaced by 1 does the job for RP'.
- For the reverse inclusion, fix $L \in \mathbb{RP} \cap \mathbb{RP}'$.
- Let M_1 and M_0 be the NTM that witness $L \in \mathbb{RP}$ and $L \in \mathbb{RP}'$, respectively.
- Consider the following NTM M:
- 1. Given input x of length n,
- 2. Run $M_1(x)$ with independent coin-flips; let $a_1 \in \{0,1\}$ be the output,
- 3. Run $M_0(x)$ with independent coin-flips; let $a_0 \in \{0,1\}$ be the output,
- 4. If $a_1 = 1$, output 1,
- 5. If $a_0 = 0$, output 0,
- 6. Else, output?.
- Analysis:
- If $x \in L$, then $\Pr[M(x) = 0] \le \Pr[M_0(x) = 0] = 0$.
- $\Pr[M(x) = ?] \le \Pr[M_1(x) \ne 1 \text{ and } M_0(x) \ne 0] \le (1/2) \cdot (1) = 1/2.$
- If $x \notin L$, then $\Pr[M(x) = 1] \leq \Pr[M_1(x) = 1] = 0$.
- $\Pr[M(x) = ?] \le \Pr[M_1(x) \ne 1 \text{ and } M_0(x) \ne 0] \le (1) \cdot (1/2) = 1/2.$

1.5 Error reduction a.k.a. success probability amplification

- Repeat several runs with independent coin-flips.
- Rule by unanimity (for RP and RP').
- Rule by majority (for BPP and ZPP).
- This reduces the error probability exponentially.
- Details follow.
- Lemma: For all $L \in \mathbb{RP}$ and d > 0, there exist NTM M and $c \geq 0$ such that $t_M = O(n^c)$ and:
- For all $x \in \{0,1\}^*$ of length n:
- 0) $\Pr[M(x) \in \{0,1\}] = 1.$
- 1) if $x \in L$, then $\Pr[M(x) = 1] \ge 1 1/2^{n^d}$,
- 2) if $x \notin L$, then $\Pr[M(x) = 1] = 0$.
- Proof:
- Suppose M witnesses $L \in \mathbb{RP}$ and $t_M(n) = O(n^c)$ for some c > 0.
- Let M' be the following NTM:
- 1. Given x of length n.
- 2. Run M(x) with independent coin-flips $m:=n^d$ many times.
- 3. Let $a_1, \ldots, a_m \in \{0, 1\}$ be the outputs.
- 4. If all $a_i = 1$, then output 1, else output 0.
- The running time is $O(mn^c)$, so $O(n^{c+d})$.
- Analysis of probabilities:
- If $x \in L$, then $\Pr[M'(x) \neq 1] \leq (1/2)^m \leq 1/2^{n^d}$, so $\Pr[M'(x) = 1] \geq 1 1/2^{n^d}$.
- If $x \notin L$, then $\Pr[M'(x) = 1] = 0$.
- Lemma: For all $L \in BPP$ and d > 0, there exist NTM M and $c \ge 0$ such that $t_M = O(n^c)$ and:
- For all $x \in \{0,1\}^*$ of length n:
- 0) $\Pr[M(x) \in \{0,1\}] = 1.$
- 1) if $x \in L$, then $\Pr[M(x) = 1] \ge 1 1/2^{n^d}$,
- 2) if $x \notin L$, then $\Pr[M(x) = 1] \le 1/2^{n^d}$.
- Proof:
- Suppose M witnesses $L \in BPP$ and $t_M(n) = O(n^c)$ for some c > 0.
- Let M' be the following NTM:

- 1. Given x of length n.
- 2. Run M(x) with independent coin-flips $m := 8n^d + 1$ many times.
- 3. Let $a_1, \ldots, a_m \in \{0, 1\}$ be the outputs.
- 4. If $\sum_{i=1}^{m} a_i \ge m/2$, then output 1, else output 0.
- The running time is $O(mn^c)$, so $O(n^{c+d})$.
- Analysis of probabilities:
- For $i \in [m]$, let X_i = "indicator that a_i is wrong" (i.e., $X_i = 1$ if $a_i \neq \chi_L(x)$, and 0 otherwise).
- Note $p := \Pr[X_i = 1]$ is independent of i, and $p \le 1/4$ by definition.
- Let $X := \sum_{i=1}^{m} X_i$ is a sum of independent Bernoulli's and $\mathbb{E}[X] = pm \leq m/4$.
- Note X is the number of errors among a_1, \ldots, a_m , so $\Pr[M'(x) \neq \chi_L(x)] = \Pr[X \geq m/2]$.
- By independence and Hoeffding inequality we have $\Pr[X \mathbb{E}[X] \ge t] \le e^{-2t^2/m}$.
- Now $\Pr[M'(x) \neq \chi_L(x)] \leq \Pr[X \geq m/2] \leq \Pr[X \mathbb{E}[X] \geq m/4] \leq e^{-2m/16} \leq 2^{-n^d}$.
- I.e.:
- If $x \in L$, then $\Pr[M'(x) = 1] \ge 1 1/2^{n^d}$.
- If $x \notin L$, then $\Pr[M'(x) = 1] \le 1/2^{n^d}$.