Reply to Office Action of January 20, 2010

Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

 (Currently amended) A method for the production of an aromatic or hetroaromatic fluorine-labelled compound comprising fluoridation of an iodonium salt of Formula (I) or (ID:

$$Y^{-}$$
 R^{2}
 R^{3}
 R^{1}
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}

wherein:

Q is an electron deficient aromatic or heteroaromatic moiety;

each of R^1 , R^2 , R^3 , R^4 and R^5 is independently hydrogen, -O($C_{1\text{-}10}$ alkyl) or $C_{1\text{-}10}$ alkyl <u>or protected versions thereof;</u> and

 Y^{-} is a counter ion such as trifluoromethane sulfonate (triflate), perfluoro C_2 - C_{10} alkyl sulphonate, trifluoroacetate, methane sulfonate (mesylate), toluene sulfonate. (tosylate), tetraphenylborate:

to give a product of general formula (III):

Reply to Office Action of January 20, 2010

where Q is substituted with one or more substituents selected from C_{1-10} alkyl, $-O(C_{1-10}$ alkyl, $-C(=O)NR^6(C_{1-10}$ alkyl), $-(C_{1}-C_6$ alkyl)- $-(C_{1}-C_6$ alkyl), C_{5-14} aryl, $-O(C_{5-14}$ aryl, $-C(=O)NR^6(C_{5-14}$ aryl, $-C_{5-14}$ heteroaryl), $-C_{5-14}$ heteroaryl, $-C_{5-14}$ heteroaryl,

and wherein said fluoridation is carried out with a fluoride ion source characterised in that the reaction solvent is either 100% water or a mixture of water and a water miscible solvent.

- (Cancelled)
- (Cancelled)
- (Previously presented) A method as claimed in claim 1, wherein the water miscible solvent is acetonitrile, ethanol, methanol, tetrahydrofuran or dimethylformamide.
- (Previously Presented) A method as claimed in claim 1 wherein the volume:volume ratio of water:water-miscible solvent is between 1:99 and 1:1.
- (Original) A method as claimed in claim 5 wherein the volume:volume ratio of water:water-miscible solvent is from 10:90 to 30:70.
- (Previously Presented) A method as claimed in claim 1, wherein the fluoride ion source is potassium, caesium or sodium fluoride.
- 8. (Cancelled)

Reply to Office Action of January 20, 2010

- (Previously Presented) A method as claimed in claim 1, wherein each of R¹-R⁵ is independently selected from hydrogen, C₁₋₃ alkyl and -O-(C₁-C₃ alkyl).
- 10. (Previously Presented) A method as claimed in claim 1 wherein, in the compound of Formula II, the "solid support" is polystyrene, polyacrylamide, polypropylene or glass or silicon coated with such a polymer.
- 11. (Previously Presented) A method as claimed in claim 1 wherein the solid support is in the form of small discrete particles or is a coating on the inner surface of a reaction vessel.
- 12. (Previously Presented) A method as claimed in claim 1, wherein, in the compound of Formula II the "linker" is C₁₋₂₀ alkyl or C₁₋₂₀ alkoxy, attached to the resin by an amide ether or a sulphonamide bond or a polyethylene glycol (PEG) linker.
- (Previously Presented) A method as claimed in claim 1
 wherein R⁶ is H, C₁-C₆ alkyl, C₃-C₁₀ cycloalkyl, C₃-C₁₀ heterocyclyl, C₄-C₁₀ aryl or
 C₄-C₁₀ heteroaryl;

any of which may optionally be substituted with OH, NHR⁶, COOH or protected versions any of these groups; or alternatively

- any two adjacent substituents may form a four- to six-membered carbocyclic or heterocyclic ring, optionally fused to a further aromatic, heteroaromatic, carbocyclic or heterocyclic ring.
- 14. (Previously Presented) A method as claimed in claim 1, wherein the aromatic moiety O has an additional substituent selected from OH, NHR⁶ or halogen.
- 15. (Currently amended) A method as claimed in claim 1, wherein the group Q is substituted with an electron donating substituent, Q also contains one or more electron withdrawing groups to ensure Q is electron deficient and is one of the following:

wherein P1 to P3 are either independently hydrogen or a protecting group.

- (Previously Presented) A method as claimed in claim I, wherein the fluorine-labelled compound is an I¹⁸Fl-labelled compound and the fluoride ion source is a source of ¹⁸F.
- 17. (Currently amended) A method as claimed in claim 1, wherein <u>Q</u> is substituted with an electron donating substituent, <u>Q</u> also contains one or more electron withdrawing groups to ensure <u>Q</u> is electron deficient and further wherein the F-labelled compound is selected from the following:

Reply to Office Action of January 20, 2010

18. (Previously Presented) A method as claimed in claim 1, further including, in any order, one or more of the following steps: removal of excess ¹⁸F̄, for example by ion-exchange chromatography; and/or

- (i) removal of the protecting groups; and/or
- (ii) removal of organic solvent; and/or
- (iii) formulation of the resultant compound as an aqueous solution.
- (Currently amended) A kit for the production of an aromatic fluorine-labelled compound, the kit comprising:
- (i) a vial containing an aqueous solvent for dissolving the fluoride ion source; and
- (ii) a reaction vessel containing an iodonium salt of claim 1.
- 20. (Original) A kit as claimed in claim 19, wherein the solvent is 100% water.
- 21. (Original) A kit as claimed in claim 19 wherein the solvent is a mixture of water and a water miscible solvent.
- 22. (Original) A kit as claimed in claim 21, wherein the water miscible solvent is acetonitrile, ethanol, methanol, tetrahydrofuran or dimethylformamide.
- 23. (Previously Presented) A kit as claimed in claim 21 wherein the volume:volume ratio of water:water-miscible solvent is between 1:99 and 1:1.
- 24. (Original) A kit as claimed in claim 23 wherein the volume:volume ratio of water-water-miscible solvent is from 10:90 to 30:70.
- (Currently amended) A kit as claimed in claim 19 wherein the iodonium salt is compound of general formula (I) or (II) wherein

$$Y^{-}$$
 R^{2}
 R^{3}
 R^{4}
 R^{5}
 R^{5}

further wherein:

O is an electron deficient aromatic or heteroaromatic moiety;

each of R¹, R², R³, R⁴ and R⁵ is independently hydrogen, -O(C₁₋₁₀ alkyl) or C₁₋₁₀ alkyl; and

Y is a counter ion such as trifluoromethane sulfonate (triflate), perfluoro C₂-C₁₀ alkyl sulphonate, trifluoroacetate, methane sulfonate (mesylate), toluene sulfonate. (tosylate), tetraphenylborate;

to give a product of general formula (III):

O-F (III)

where O is substituted with one or more substituents selected from $C_{1:10}$ alkyl, $-O(C_{1:10}$ alkyl, $-C(C_{1:10}$ alkyl, $-C(C_{1:10}$ alkyl), $-C(C_{1:10}$ aryl, $-C(C_{1:10}$ aryl, $-C(C_{1:10}$ aryl, $-C(C_{1:10}$ aryl, $-C(C_{1:10}$ aryl, $-C(C_{1:10}$ aryl, $-C(C_{1:10}$ cycloalkyl), $-C(C_{1:10}$ cycloalkyl), $-C(C_{1:10}$ cycloalkyl), $-C(C_{1:10}$ beterocyclyl), $-C(C_{1:10}$ bete

and wherein said fluoridation is carried out with a fluoride ion source characterised in that the reaction solvent is either 100% water or a mixture of water and a water miscible solvent,

26. (Currently amended) A kit as claimed in claim 20 wherein the iodonium salt is a compound of general formula (II) and the solid support comprises a coating on the surface of the reaction vessel wherein

SOLID SUPPORT-LINKER
$$\stackrel{R^2}{\longrightarrow} \stackrel{R^1}{\longrightarrow} Q$$
 (II)

further wherein:

Q is an electron deficient aromatic or heteroaromatic moiety;

each of R¹, R², R³, R⁴ and R⁵ is independently hydrogen, -O(C₁₋₁₀ alkyl) or C₁₋₁₀ alkyl; and

Y is a counter ion such as trifluoromethane sulfonate (triflate), perfluoro C₂-C₁₀ alkyl sulphonate, trifluoroacetate, methane sulfonate (mesylate), toluene sulfonate. (tosylate), tetraphenylborate;

to give a product of general formula (III):

where O is substituted with one or more substituents selected from C_{l-10} alkyl, $-O(C_{l-10}$ alkyl, $-C(=O)NR^6(C_{l-10}$ alkyl), $-(C_{l-10}C_{l-10})$ aryl, $-(C_{l-10}C_{l-10})$ aryl, $-(C_{l-10}C_{l-10})$ aryl, $-(C_{l-10}C_{l-10})$ aryl, $-(C_{l-10}C_{l-10})$ aryl, $-(C_{l-10}C_{l-10})$ aryl, $-(C_{l-10}C_{l-10})$ and $-(C_{l-10}C_{l-10})$ and $-(C_{l-10}C_{l-10})$ aryl, $-(C_{l-10}C_{l-10})$ and $-(C_{l-10}C_{l-10})$ and $-(C_{l-10}C_{l-10})$ are a contains one or more electron withdrawing groups to ensure O is electron deficient;

Reply to Office Action of January 20, 2010

and wherein said fluoridation is carried out with a fluoride ion source characterised in that the reaction solvent is either 100% water or a mixture of water and a water miscible solvent.

- 27. (Previously Presented) A kit as claimed in claim 19, wherein the reaction vessel is a cartridge or a microfabricated vessel.
- 28. (Previously Presented) A kit as claimed in claim 19, further comprising a source of fluoride ions.