CI-6227 Data Mining

Lecture 6

Association Rules: Advanced Concepts and Algorithms

Asymmetric Binary Attributes

If the values of a binary attribute are not equally important, the binary attribute is called **asymmetric**.

Usually, denotes presence or absence of something.

Continuous and Categorical Attributes

How to apply association analysis formulation to attributes that are NOT asymmetric binary variables?

Session Id	Country	Session Length (sec)	Number of Web Pages viewed	Gender	Browser	os
1	USA	982	8	Male	IE	Win
2	China	811	10	Female	Chrome	Win
3	USA	2125	45	Female	Firefox	Mac
4	Germany	596	4	Male	IE	Linux
5	Australia	123	9	Male	Firefox	Win
	•••	•••	•••		•••	•••

Example of Association Rule:

(Browser=Firefox) \land (OS=Mac) \rightarrow (Session Length < 45sec) \land (No. of Pages < 2)

Handling Categorical Attributes

- Transform categorical attribute into asymmetric binary variables
- Introduce a new "item" for each distinct attributevalue pair
 - Example: replace "Browser" attribute with
 - Browser is Internet Explorer
 - Browser is Firefox
 - Browser is Chrome

Session Id	Country	Number of Web Pages viewed		is	Browser is Chrome	os
		 	 •••	***	•••	•••

Handling Categorical Attributes

- Potential Issues
 - What if attribute has many possible values
 - Example: attribute country has more than 200 possible values
 - Many of the attribute values may have very low support
 - Potential solution: Aggregate the low-support attribute values
 - What if distribution of attribute values is highly skewed
 - Example: 90% of the visitors have OS=Win
 - Most of the items will be associated with (OS=Win) item
 - Potential solution: drop the highly frequent items

Handling Continuous Attributes

- Different kinds of rules:
 - $-Age \in [21,35) \land Salary \in [70k,120k) \rightarrow Buy$
 - —Salary∈[70k,120k) \land Buy \rightarrow Age: μ =28, σ =4
- Different methods:
 - Discretization-based
 - —Statistics-based
 - Non-discretization based
 - minApriori

Handling Continuous Attributes

Approach 1: Discretization

- Equal-width binning
- Equal-depth (equal-freq) binning
- Clustering

Discretization Issues

Size of the discretized intervals affect support & confidence

```
{Refund = No, (Income = $51,250)} \rightarrow {Cheat = No} {Refund = No, (60k \leq Income \leq 80k)} \rightarrow {Cheat = No} {Refund = No, (0k \leq Income \leq 1bn)} \rightarrow {Cheat = No}
```

- —If intervals too small
 - may not have enough support
- —If intervals too large
 - may not have enough confidence
- Potential solution: use all possible intervals

Discretization Issues

- Execution time
 - —If intervals contain n values, there are on average $O(n^2)$ possible ranges

Too many rules

```
{Refund = No, (Income = $51,250)} \rightarrow {Cheat = No} {Refund = No, (51k \le Income \le 52k)} \rightarrow {Cheat = No} {Refund = No, (50k \le Income \le 52k)} \rightarrow {Cheat = No}
```

Statistics-based Methods

Example:

Browser=Chrome \land OS=Mac \rightarrow Age: μ =23

- Rule consequent consists of a continuous variable, characterized by their statistics
 - —mean, median, standard deviation, etc.
- Approach:
 - —Withhold the target variable from the rest of the data
 - Apply existing frequent itemset generation on the rest of the data
 - For each frequent itemset, compute the descriptive statistics for the corresponding target variable
 - Frequent itemset becomes a rule by introducing the target variable as rule consequent
 - Apply statistical test to determine interestingness of the rule

Statistics-based Methods

- How to determine whether an association rule is interesting?
 - —Compare the statistics for segment of population covered by the rule vs. segment of population not covered by the rule:

Statistical hypothesis testing:
$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

—Statistical hypothesis testing:

- Null hypothesis H_0 : $\mu' = \mu + \Delta$
- Alternative hypothesis $H_1: \mu' > \mu + \Delta$
- $\circ Z \sim N(0,1)$ under null hypothesis

Statistics-based Methods

Example:

r: Browser=Chrome
$$\land$$
 OS=Mac \rightarrow Age: μ =23

- —Rule is interesting if difference between μ and μ' is greater than 5 years (i.e., $\Delta=5$)

$$n_1 = 50, s_1 = 3.5$$

-For r, suppose: $n_1 = 50, s_1 = 3.5$ -For r' (complement): $n_2 = 250, s_2 = 6.5$

$$n_2 = 250, s_2 = 6.5$$

$$Z = \frac{\mu' - \mu - \Delta}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} = \frac{30 - 23 - 5}{\sqrt{\frac{3.5^2}{50} + \frac{6.5^2}{250}}} = 3.11$$

- —For 1-sided test at 95% confidence level, critical Z-value for rejecting null hypothesis is 1.64.
- —Since Z is greater than 1.64, r is an interesting rule

Min-Apriori (Han et al., 1997)

Document-term matrix:

DId	W1	W2	W3	W4	W 5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

• Example:

—W1 and W2 tends to appear together in the same document

Min-Apriori

- Data contains only continuous attributes of the same "type"
 - —e.g., frequency of words in a document

Dld	W1	W2	W3	W4	W5
D1	2	2	0	0	1
D2	0	0	1	2	2
D3	2	3	0	0	0
D4	0	0	1	0	1
D5	1	1	1	0	2

- Potential solutions:
 - —Convert into 0/1 matrix and then apply existing algorithms
 - lose word frequency information
 - Discretization does not apply as users want association among words not ranges of word frequencies:

data \land mining vs. data $\in [1,4] \land$ mining $\in [2,3]$

Min-Apriori

- How to determine the support of a word?
 - —If we simply sum up its frequency, support count will be greater than total number of documents!
 - \circ Normalize the word vectors e.g., using L_1 norm
 - Each word has a support of 1.0

Dld	W1	W2	W3	W4	W5		Dld	W1	W2	W3	W4	W5
D1	2	2	0	0	1		D1	0.4	0.33	0	0	0.17
D2	0	0	1	2	2	Normalize	D2	0	0	0.33	1.00	0.33
D3	2	3	0	0	0		D3	0.4	0.5	0	0	0
D4	0	0	1	0	1		D4	0	0	0.33	0	0.17
D5	1	1	1	0	2		D5	0.2	0.17	0.33	0	0.33

Min-Apriori

• New definition of support:

Normalized frequency of word j in document i

$$\sup(C) = \sum_{i \in T} \min_{j \in C} D(i,j)$$
Across all documents

Across all words in C

Dld	W1	W2	W3	W4	W5
D1	0.4	0.33	0	0	0.17
D2	0	0	0.33	1.00	0.33
D3	0.4	0.5	0	0	0
D4	0	0	0.33	0	0.17
D5	0.2	0.17	0.33	0	0.33

Example:

$$\sup(W1, W2, W3) = 0 + 0 + 0 + 0 + 0 + 0 + 0.17 = 0.17$$

Anti-monotone Property of Support

Dld	W1	W2	W3	W4	W5
D1	0.4	0.33	0	0	0.17
D2	0	0	0.33	1.00	0.33
D3	0.4	0.5	0	0	0
D4	0	0	0.33	0	0.17
D5	0.2	0.17	0.33	0	0.33

Example:

$$\sup(W1) = 0.4 + 0 + 0.4 + 0 + 0.2 = 1$$

$$\sup(W1, W2) = 0.33 + 0 + 0.4 + 0 + 0.17 = 0.9$$

$$\sup(W1, W2, W3) = 0 + 0 + 0 + 0 + 0.17 = 0.17$$

- Why should we incorporate concept hierarchy?
 - Rules at lower levels may not have enough support to appear in any frequent itemsets
 - Rules at lower levels of the hierarchy are overly specific

```
\circ E.g., skim milk \rightarrow white bread, 2% milk \rightarrow wheat bread, skim milk \rightarrow wheat bread, etc.
```

indicate general association between milk and bread

- How do support and confidence vary as we traverse the concept hierarchy?
 - —If X is the parent item for both X1 and X2, then $\sigma(X) \le \sigma(X1) + \sigma(X2)$
 - -If $\sigma(X1 \cup Y1) \ge minsup$, and X is parent of X1, Y is parent of Y1 then $\sigma(X \cup Y1) \ge minsup$, $\sigma(X1 \cup Y) \ge minsup$ $\sigma(X \cup Y) \ge minsup$
 - —If $conf(X1 \Rightarrow Y1) \ge minconf$, then $conf(X1 \Rightarrow Y) \ge minconf$

Approach 1:

 Extend current association rule formulation by augmenting each transaction with higher level items

```
Original Transaction: {skim milk, wheat bread}
Augmented Transaction:
{skim milk, wheat bread, milk, bread, food}
```

• Issues:

- Items that reside at higher levels have much higher support counts
 - If support threshold is low, too many frequent patterns involving items from the higher levels
- Increased dimensionality of the data
- Redundant rules (although, easy to eliminate)

Approach 2:

- —Generate frequent patterns at highest level first
- —Then, generate frequent patterns at the next highest level, and so on

• Issues:

- —I/O requirements will increase dramatically because we need to perform more passes over the data
- May miss some potentially interesting cross-level association patterns

Sequence Data

Sequence Database:

Object	Timestamp	Events
А	10	2, 3, 5
Α	20	6, 1
А	23	1
В	11	4, 5, 6
В	17	2
В	21	7, 8, 1, 2
В	28	1, 6
С	14	1, 7, 8

Examples of Sequence Data

Sequence Database	Sequence	Element (Transaction)	Event (Item)
Customer	Purchase history of a given customer	A set of items bought by a customer at day \emph{d}	Books, diary products, CDs, etc
Web Data	Browsing activity of a particular Web visitor	A collection of files viewed by a Web visitor in a session	Pages URLs
Event data	History of events generated by a given sensor	Events generated by a sensor at time t	Specific messages generated by sensors
Genome sequences	DNA sequence of a particular species	An element of the DNA sequence	Bases A,T,G,C

Formal Definition of a Sequence

A sequence is an ordered list of elements (transactions)

$$s = \langle e_1 e_2 e_3 \rangle$$

Each element contains a collection of events (items)

$$e_i = \{i_1, i_2, \dots, i_k\}$$

- Each element is attributed to a specific time or location
- Length of a sequence, |s|, is given by the number of elements of the sequence
- A k-sequence is a sequence that contains k events (items)

Examples of Sequence

Web sequence:

```
< {Homepage} {Electronics} {Digital Cameras}
{Canon Digital Camera} {Shopping Cart} {Order Confirmation}
{Return to Shopping} >
```

 Sequence of initiating events causing the nuclear accident at Three-Mile Island:

(http://stellar-one.com/nuclear/staff reports/summary SOE the initiating event.htm)

```
< {clogged resin} {outlet valve closure} {loss of feedwater}
{condenser polisher outlet valve shut} {booster pumps trip}
{main waterpump trips} {main turbine trips}
{reactor pressure increases} >
```

- Sequence of books checked out at a library:
 - < {Fellowship of the Ring, The Two Towers} {Return of the King} >

Formal Definition of a Subsequence

A sequence $< a_1 \ a_2 \ ... \ a_n >$ is **contained** in another sequence $< b_1 \ b_2 \ ... \ b_m > (m \ge n)$ if there exist integers $i_1 < i_2 < \cdots < i_n$ such that $a_1 \subseteq b_{i_1}, a_2 \subseteq b_{i_2}, ..., a_n \subseteq b_{i_n}$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {8} >	< {2} {3,5} >	Yes
< {1,2} {3,4} >	< {1} {2} >	No
< {2,4} {2,4} {2,5} >	< {2} {5} >	Yes

- The support of a subsequence w is defined as the fraction of data sequences that contain w
- A sequential pattern is a frequent subsequence (i.e., a subsequence whose support is ≥ minsup)

Sequential Pattern Mining: Definition

• Given:

- a database of sequences
- a user-specified minimum support threshold,
 minsup

• Task:

—Find all subsequences with support $\geq minsup$

Sequential Pattern Mining: Challenge

- Given a sequence: <{a b} {c d e} {f} {g h i}>
 - Examples of subsequences:

$$\{a\} \{c d\} \{f\} \{g\} >, \{c d e\} >, \{b\} \{g\} >, etc.$$

• How many k-subsequences can be extracted from a given n-sequence?

Sequential Pattern Mining: Example

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
Е	1	1, 3
E	2	2, 4, 5

Minsup = 50%Examples of Frequent Subsequences: $<\{1,2\}>$ $<\{0,3\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}>$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,4\}$ $<\{0,$

Extracting Sequential Patterns

- Given n events: i_1 , i_2 , i_3 , ..., i_n
- Candidate 1-subsequences:

$$\langle \{i_1\} \rangle, \langle \{i_2\} \rangle, \langle \{i_3\} \rangle, ..., \langle \{i_n\} \rangle$$

Candidate 2-subsequences:

Candidate 3-subsequences:

Generalized Sequential Pattern (GSP)

Step 1:

 Make the first pass over the sequence database D to yield all the 1-element frequent sequences

• Step 2:

Repeat until no new frequent sequences are found

— Candidate Generation:

• Merge pairs of frequent subsequences found in the $(k-1)^{th}$ pass to generate candidate sequences that contain k items

— Candidate Pruning:

• Prune candidate k-sequences that contain infrequent (k-1)-subsequences

— Support Counting:

 \circ Make a new pass over the sequence database D to find the support for these candidate sequences

— Candidate Elimination:

 \circ Eliminate candidate k-sequences whose actual support is less than *minsup*

Candidate Generation

- Base case (k = 2):
 - —Merging two frequent 1-sequences $<\{i_1\}>$ and $<\{i_2\}>$ will produce two candidate 2-sequences: $<\{i_1\}$ $\{i_2\}>$ and $<\{i_1,i_2\}>$
- General case (k > 2):
 - —A frequent (k-1)-sequence w_1 is merged with another frequent (k-1)-sequence w_2 to produce a candidate k-sequence if the subsequence obtained by removing the first event in w_1 is the same as the subsequence obtained by removing the last event in w_2
 - $^{\circ}$ The resulting candidate after merging is given by the sequence w_1 extended with the last event of w_2
 - If the last two events in w_2 belong to the same element, then the last event in w_2 becomes part of the last element in w_1
 - Otherwise, the last event in w_2 becomes a separate element appended to the end of w_1

Candidate Generation Examples

- Merging the sequences w_1 =<{1} {2 3} {4}> and w_2 =<{2 3} {4 5}> will produce the candidate sequence < {1} {2 3} {4 5}> because the last two events in w_2 (4 and 5) belong to the same element
- Merging the sequences w_1 =<{1} {2 3} {4}> and w_2 =<{2 3} {4} {5}> will produce the candidate sequence < {1} {2 3} {4} {5}> because the last two events in w_2 (4 and 5) do not belong to the same element
- We do not have to merge the sequences $w_1 = <\{1\}\{2\}\{3\}>$ and $w_2 = <\{1\}\{2\}\}>$ to produce the candidate $<\{1\}\{2\}\{3\}>$ because if the latter is a viable candidate, then it can be obtained by merging w_2 with $<\{2\}\{3\}>$

The procedure is *complete*

GSP Example

Frequent 3-sequences

- < {1} {2} {3} >
- < {1} {2 5} >
- < {1} {5} {3} >
- < {2} {3} {4} >
- < {2 5} {3} >
- < {3} {4} {5} >
- < {5} {3 4} >

Candidate Generation

- < {1} {2} {3} {4} >
- < {1} {2 5} {3} >
- < {1} {5} {3 4} >
- < {2} {3} {4} {5} >
- < {2 5} {3 4} >

Candidate Pruning

< {1} {2 5} {3} >

Timing Constraints (I)

x_g: max-gap

n_g: min-gap

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, $m_s = 4$

Data sequence	Subsequence	Contain?
< {2,4} {3,5,6} {4,7} {4,5} {8} >	< {6} {5} >	Yes
< {1} {2} {3} {4} {5}>	< {1} {4} >	No
< {1} {2,3} {3,4} {4,5}>	< {2} {3} {5} >	Yes
< {1,2} {3} {2,3} {3,4} {2,4} {4,5}>	< {1,2} {5} >	No

Mining Sequential Patterns with Timing Constraints

Approach 1:

- —Mine sequential patterns without timing constraints
- Postprocess the discovered patterns

Approach 2:

- Modify GSP to directly prune candidates that violate timing constraints
- —Question:
 - Does Apriori principle still hold?

Apriori Principle for Sequence Data

Object	Timestamp	Events
А	1	1,2,4
А	2	2,3
А	3	5
В	1	1,2
В	2	2,3,4
С	1	1, 2
С	2	2,3,4
С	3	2,4,5
D	1	2
D	2	3, 4
D	3	4, 5
E	1	1, 3
Е	2	2, 4, 5

Suppose:

$$x_g = 1 \text{ (max-gap)}$$

 $n_g = 0 \text{ (min-gap)}$
 $m_s = 5 \text{ (maximum span)}$
 $minsup = 60\%$

Problem exists because of max-gap constraint

No such problem if max-gap is infinite

Contiguous Subsequences

s is a contiguous subsequence of

$$w = \langle e_1 e_2 ... e_k \rangle$$

if any of the following conditions hold:

- 1. s is obtained from w by deleting an item from either e_1 or e_k
- 2. s is obtained from w by deleting an item from any element e_i that contains more than 2 items
- 3. s is a contiguous subsequence of s' and s' is a contiguous subsequence of w (recursive definition)
- Examples: $s = < \{1\} \{2\} >$
 - —is a contiguous subsequence of <{1} {2 3}>, <{1 2} {2} {3}>, and <{3 4} {1 2} {2 3} {4}>
 - —is not a contiguous subsequence of
 <{1} {3} {2}> and <{1, 2} {1} {3} {2}>

Modified Candidate Pruning Step

Modified Apriori: if a k-sequence is frequent, all of its contiguous (k-1)-subsequences must be frequent

- Without maxgap constraint:
 - —A candidate k-sequence is pruned if at least one of its (k-1)-subsequences is infrequent
- With maxgap constraint:
 - —A candidate k-sequence is pruned if at least one of its **contiguous** (k-1)-subsequences is infrequent

Timing Constraints (II)

x_g: max-gap

n_g: min-gap

ws: window size

m_s: maximum span

$$x_g = 2$$
, $n_g = 0$, ws = 1, $m_s = 5$

Data sequence	Subsequence	Contain?	
< {3,4} {4} {5} {6,7} {8} >	< {3,4,6} {8} >	No	
< {1} {2} {3} {4} {5}>	< {1,2} {3} >	Yes	
< {1,2} {2,3} {3,4} {4,5}>	< {1,2} {3,4} >	Yes	

Modified Support Counting Step

Given a candidate pattern: <{a, c}>
 Any data sequences that contain

```
<... {a c} ...>,
<... {a} ... {c}...> (where time({c}) – time({a}) ≤ ws)
<... {c} ... {a} ...> (where time({a}) – time({c}) ≤ ws)
```

Will contribute to the support count of candidate pattern

Another Formulation

- In some domains, we may have only one very long time series
 - —Example:
 - monitoring network traffic events for attacks
 - monitoring telecommunication alarm signals
- Goal is to find frequent sequences of events in the time series
 - —This problem is also known as frequent episode mining

Pattern: <E1> <E3>

General Support Counting Schemes

Assume:

 $x_g = 2 \text{ (max-gap)}$

 $n_g = 0$ (min-gap)

ws = 0 (window size)

 $m_s = 2$ (maximum span)

Frequent Subgraph Mining

- Extend association rule mining to finding frequent subgraphs
- Useful for Web Mining, computational chemistry, bioinformatics, spatial data sets, etc.

Graph Definitions

(a) Labeled Graph

(b) Subgraph

(c) Induced Subgraph

Representing Transactions as Graphs

Each transaction is a clique of items

		TID: 2
Transaction Id	Items	B
1	$\{A,B,C,D\}$	
2	{A,B,C,D} {A,B,E}	
3	{B,C}	
4	$\{A,B,D,E\}$	
5	{B,C,D}	E

Representing Graphs as Transactions

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G3							

Challenges

- Node may contain duplicate labels
- Support and confidence
 - —How to define them?
- Additional constraints imposed by pattern structure
 - —Support and confidence are not the only constraints
 - Assumption: frequent subgraphs must be connected
- Apriori-like approach:
 - —Use frequent k-subgraphs to generate frequent (k+1)-subgraphs
 - What is *k*?

Challenges...

- Support:
 - —number of graphs that contain a particular subgraph
- Apriori principle still holds
- Level-wise (Apriori-like) approach:
 - —Vertex growing:
 - k is the number of vertices
 - —Edge growing:
 - *k* is the number of edges

Vertex Growing

Edge Growing

Apriori-like Algorithm

- Find frequent 1-subgraphs
- Repeat
 - Candidate generation
 - \circ Use frequent (k-1)-subgraphs to generate candidate k-subgraph
 - Candidate pruning
 - $^{\circ}$ Prune candidate subgraphs that contain infrequent (k-1)-subgraphs
 - —Support counting
 - Count the support of each remaining candidate
 - —Eliminate candidate k-subgraphs that are infrequent

In practice, it is not as easy. There are many other issues

Example: Dataset

	(a,b,p)	(a,b,q)	(a,b,r)	(b,c,p)	(b,c,q)	(b,c,r)	 (d,e,r)
G1	1	0	0	0	0	1	 0
G2	1	0	0	0	0	0	 0
G3	0	0	1	1	0	0	 0
G4	0	0	0	0	0	0	 0

Example

Minimum support count = 2

k=1 Frequent Subgraphs

 (a)

b

c

 $\left(\mathbf{d}\right)$

 (e)

k=2 Frequent Subgraphs

(d)(c)

́е` C

k=3 Candidate Subgraphs

(Pruned candidate)

Candidate Generation

- In Apriori:
 - —Merging two frequent k-itemsets will produce a candidate (k+1)-itemset
- In frequent subgraph mining (vertex/edge growing)
 - —Merging two frequent k-subgraphs may produce more than one candidate (k+1)-subgraph

Multiplicity of Candidates (Vertex Growing)

Multiplicity of Candidates (Edge growing)

Multiplicity of Candidates (Edge growing)

 Case 2: Core contains identical labels Core: The (k-1) subgraph that is common

between the joint graphs

b)

Multiplicity of Candidates (Edge growing)

Case 3: Core multiplicity

Adjacency Matrix Representation

	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A(1)	1	1	1	0	1	0	0	0
A(2)	1	1	0	1	0	1	0	0
A(3)	1	0	1	1	0	0	1	0
A(4)	0	1	1	1	0	0	0	1
B(5)	1	0	0	0	1	1	1	0
B(6)	0	1	0	0	1	1	0	1
B(7)	0	0	1	0	1	0	1	1
B(8)	0	0	0	1	0	1	1	1

	A	(2)	A(1)		
	В	(7)	В	(6)	
	В	(5)	В	(8)	
\		(2)		(4)	
	A	(3)	A	(4)	

	A(1)	A(2)	A(3)	A(4)	B(5)	B(6)	B(7)	B(8)
A(1)	1	1	0	1	0	1	0	0
A(2)	1	1	1	0	0	0	1	0
A(3)	0	1	1	1	1	0	0	0
A(4)	1	0	1	1	0	0	0	1
B(5)	0	0	1	0	1	0	1	1
B(6)	1	0	0	0	0	1	1	1
B(7)	0	1	0	0	1	1	1	0
B(8)	0	0	0	1	1	1	0	1

The same graph can be represented in many ways

Graph Isomorphism

 A graph is isomorphic if it is topologically equivalent to another graph

Graph Isomorphism

- Test for graph isomorphism is needed:
 - During candidate generation step, to determine whether a candidate has been generated
 - —During candidate pruning step, to check whether its (k-1)-subgraphs are frequent
 - During candidate counting, to check whether a candidate is contained within another graph

Graph Isomorphism

- Use canonical labeling to handle isomorphism
 - —Map each graph into an ordered string representation (known as its code) such that two isomorphic graphs will be mapped to the same canonical encoding
 - —Example:
 - Lexicographically largest adjacency matrix

String: 0010001111010110

Canonical: 0111101011001000