Alignement multimodal de contenus éducatifs Un stage de recherche en TALN

Matthieu Riou

10 juin 2014

Université de Nantes Licence 3 Informatique

Introduction

Présentation du Stage

- Stage de L3 Informatique
- Stage en recherche
- Du 14 Avril au 11 Juillet.
- Au LINA, dans l'équipe TALN

Contexte du Stage

- Maîtres de stage : Colin de la Higuera, Solen Quiniou, Olivier Aubert
- Encadrante universitaire : Irena Rusu

Introduction

La plateforme COCo

- COCo pour CominOpenCourseware
- Mise à disposition de contenus pédagogiques
- Des contenus dans plusieurs formats
- Tournant autour de la vidéo : la vidéo augmentée

3/32

Introduction

La plateforme COCo

- COCo pour CominOpenCourseware
- Mise à disposition de contenus pédagogiques
- Des contenus dans plusieurs formats
- Tournant autour de la vidéo : la vidéo augmentée

Les problématiques

- Beaucoup de contenus, difficiles à trier
- Des contenus riches, sous différentes formes
- Améliorer l'expérience de l'apprentissage en ligne

Objectif

Naviguer facilement entre différentes ressources éducatives

- Créer des liens entre les différentes ressources
 - Repérer les segments qui abordent un même sujet, une même idée
 - Créer des interfaces utilisateurs permettant de naviguer entre ces segments

Objectif

Naviguer facilement entre différentes ressources éducatives

- Créer des liens entre les différentes ressources
 - Repérer les segments qui abordent un même sujet, une même idée
 - Créer des interfaces utilisateurs permettant de naviguer entre ces segments

L'alignement multimodal

- Faire correspondre des segments de deux documents
- Multimodal = Entre plusieurs formats
 - Dans ce stage, entre une vidéo et un texte
 - Utilisation de la transcription de la vidéo
 - Prise en compte des erreurs

0/52

L'alignement

Trouver un alignement global

- Comparaison de documents similaires
 - Même sujet
 - Plan similaire
 - Changements dans l'ordre des parties
 - Les petites différences ont moins d'importance
- Le but final : faire correspondre les différentes parties des deux documents dans leur ensemble

L'alignement

Trouver un alignement global

- Comparaison de documents similaires
 - Même sujet
 - Plan similaire
 - Changements dans l'ordre des parties
 - Les petites différences ont moins d'importance
- Le but final : faire correspondre les différentes parties des deux documents dans leur ensemble

Trois étapes

- Découper la vidéo et le texte en segments cohérents
- Comparer les segments de la vidéo et du texte
- Trouver une correspondance global entre la vidéo et le texte

Découper la vidéo en segments cohérents

Comment?

- Découpage d'après le temps des slides
 - Chaque slide délimite une idée, une partie du discours
- Problème : les limites sont floues
- Découpage placé sur le plus grand silence autour du changement de slide

Découper la vidéo en segments cohérents

Comment?

- Découpage d'après le temps des slides
 - Chaque slide délimite une idée, une partie du discours
- Problème : les limites sont floues
- Découpage placé sur le plus grand silence autour du changement de slide

Résultats

- Résultats imparfaits, approximatifs
- Avantages : Simple et rapide

Découper le texte en segments cohérents

Comment?

- Découpage en paragraphes
 - Unité de texte standard
 - Suffisement grand pour contenir assez d'informations
 - Suffisement petit pour se concentrer une idée précise
- Utilisation seulement de la typographie
 - Alinéa
 - Écart entre deux paragraphes

Découper le texte en segments cohérents

Comment?

- Découpage en paragraphes
 - Unité de texte standard
 - Suffisement grand pour contenir assez d'informations
 - Suffisement petit pour se concentrer une idée précise
- Utilisation seulement de la typographie
 - Alinéa
 - Écart entre deux paragraphes

Résultats

- Résultats satisfaisants
- Paragraphes bien découpés
- Parfois trop découpés

Découper le texte en segments cohérents

where in (4) we used that $O_k(n)$ is a unit vector and $\mathbb{E}_{n-1}[O_k(n)]$ is a probability vector.

For i, j non-neighboring cells, let $i = i_0, i_1, \ldots, i_r = j$ the path used for the estimate in round n. Then $\mu_{(i,j)}(n)$ can be written as

$$\underline{\mu_{(i,j)}(n)} = \sum_{\mathbf{s}=1}^{\overline{\mathbb{Z}}} \underline{\mu_{(i_{s-1},i_{s})}(n)} = \sum_{\mathbf{s}=1}^{\overline{\mathbb{Z}}} \sum_{k \in A_{i_{s-1},i_{s}}} O_{k}(n)^{\top} v_{(i_{s-1},i_{s}),k} \,.$$

It is not hard to see that an action can only be in at most two neighborhood action sets in the path and so the double sum can be rearranged as

$$\sum_{k \in \bigcup A_{i_{s-1},i_0}} O_k(n)^\top (v_{(i_{\sigma_k-1},i_{\sigma_k}),k} + v_{(i_{\sigma_k}i_{\sigma_k+1}),k})\,,$$

and thus
$$\operatorname{Var}_{n-1}\left(\mu_{(i,j)}(n)\right) \le 2\sum_{s=1}^{r} \|v_{(i_{s-1},i_s)}\|_2^2 \le 2\sum_{\{i,j \text{ neighbors}\}} \|v_{(i,j)}\|_2^2$$
.

Lemma 7 The range of the estimates $\mu_{(i,j)}(n)$ is upper bounded by $R = \sum_{\{i,j \text{ neighbors}\}} \|v_{(i,j)}\|_1$.

Proof The bound trivially follows from the definition of the estimates.

Let δ be the confidence parameter used in BSTOPSTEP. Since, according to Lemmas 5, 6 and 7, $(\mu_{(i,j)})$ is a "shifted" martingale difference sequence with conditional mean $\alpha_{i,j}$.

Comparer les segments

Mesure de similarité

- Quantifier la similarité entre deux segments
 - Donner une valeur pour chaque couple de segments
 - Plus la valeur est forte, plus ils sont similaires
 - Permet d'ordonner les paragraphes d'après leur similarité à un passage de la vidéo
- Utilisée en fouille d'information

La similarité

- Similaires = Parlent de la même idée
- Comparaison des mots présents dans les segments

Un exemple

- m(1) "I am eating an apple"
- A) "I was sleeping under a tree"
- B) "An apple fell from the tree"
- C) "I ate the apple"

La phrase (1) correspond-elle plus à la phrase (A), (B) ou (C)?

Comparer les segments

Pré-traitement

- Tokenisation : Découpage en mots
- Suppression des mots trop courants, les stop words
- Lemmatisation : Chaque mot est remplacé par sa racine

Un exemple - Tokenisation

- (1) ["l", "am", "eating", "an", "apple"]
- (A) ["l", "was", "sleeping", "under", "a", "tree"]
- (B) ["An", "apple", "fell", "from", "the", "tree"]
- (C) ["l", "ate", "the", "apple"]

Un exemple - Stop words

- 1 ["eating", "apple"]
- (A) ["sleeping", "tree"]
- B ["apple", "fell", "tree"]
- (C) ["ate", "apple"]

Un exemple - Lemmatisation

- (1) ["eat", "apple"]
- (A) ["sleep", "tree"]
- (B) ["apple", "fall", "tree"]
- C ["eat", "apple"]

Tf-idf

- Donner une valeur au mot
 - Selon sa fréquence d'apparition dans le segment étudié
 - Selon sa fréquence d'apparition dans l'ensemble des segments
- Plus il apparaît dans un segment donné, plus il est significatif pour ce segment
- Plus il apparaît dans l'ensemble des segments, moins il est significatif pour un segment donné

Un exemple - Tf-idf

	eat	0.301	
	apple	0.125	
(1)	sleep	0.0	
	tree	0.0	
	fall	0.0	
	eat	0	

	apple	0.125
B)	sleep	0
_	tree	0.301
	fall	0.602

A	eat	0
	apple	0
	sleep	0.602
	tree	0.301
	fall	0
C	eat	0.301
	apple	0.125
	sleep	0
	tree	0
	fall	0

Mesure cosinus

- Vecteurs de mots à n dimensions (n mots)
- Possible de regarder l'angle entre deux vecteurs
 - Plus l'angle est petit, plus les vecteurs sont proches
 - Donc plus les segments sont similaires
- On utilise le cosinus de l'angle
 - Valeur croissante
 - Entre 0 et 1

Un exemple - Mesure cosinus

- 1 et B : 0.07 1 et C : 1.0

Résultats

- Une valeur de similarité pour chaque couple de segments vidéo/texte
- Un ordre des paragraphes les plus similaires pour un passage de vidéo donné
- Très dur à évaluer

Résultats

- Une valeur de similarité pour chaque couple de segments vidéo/texte
- Un ordre des paragraphes les plus similaires pour un passage de vidéo donné
- Très dur à évaluer

Évaluation

- À la main
- En trouvant des indicateurs
 - Moyenne, écart-type, pourcentage de zéro, ...
- Besoin d'interfaces de visualisation

Résultats

- Une valeur de similarité pour chaque couple de segments vidéo/texte
- Un ordre des paragraphes les plus similaires pour un passage de vidéo donné
- Très dur à évaluer

Évaluation

- À la main
- En trouvant des indicateurs
 - Moyenne, écart-type, pourcentage de zéro, ...
- Besoin d'interfaces de visualisation

Visualisation

- Rapide et complète
- Quelques bonnes nouvelles

Travail à venir

Analyse des résultats

Trouver un critère d'évaluation satisfaisant

Améliorer la visualisation

Améliorations

- Découpage des segments
- Mesure de similarité

Et après?

- L'alignement global
- Des interfaces

Conclusion

Bilan intermédiaire

- Des résultats encourageants
- Encore du travail à faire

Un stage enrichissant

- Notions de TALN
- Domaine de la recherche

28/32 Matthieu Riou

Tf-idf, un calcul en deux étapes

- Tf = Term frequency, le nombre d'apparition du mot dans le segment étudié
- Idf = Inverse Document Frequency, l'inverse du nombre d'apparition du mot dans le segment étudié
- Tf idf = Tf * Idf

tf		idf	
naturel	$tf_{t,d}$	no	1
logarithm	$\begin{cases} 1 + \log t f_{t,d} & \text{si } t f_{t,d} > 0 \\ 0 & \text{sinon} \end{cases}$	idf	$\log \frac{N}{df_t}$
augmented	$0.5 + \frac{0.5 * tf_{\mathbf{t},d}}{\max(tf_{\mathbf{t},d})}$	prob idf	$\max\{0,\log\frac{N-df_t}{df_t}\}$
boolean	$\left\{ \begin{array}{ll} 1 & si \ t f_{t,d} > 0 \\ 0 & sinon \end{array} \right.$		
log ave	$\frac{1 + \log(tf_{t,d})}{1 + \log(ave_{t \in d}(tf_{t,d}))}$		

30/32 Matthieu Riou

Alignement global

Des bases

- Commencé par Colin de la Higuera
- But : aligner les plus gros groupe de segments possibles
- Création d'un vecteur à 4 dimensions T[i, j, k, I]
 - [i, j] Les segments i à j du premier document
 - [k, l] Les segments k à l du deuxième document
- Calcul des coûts d'alignements pour chaque couple de groupe possible.
- Sélection des alignements les moins coûteux avec les plus grands groupes possibles

Alignement global

Des bases

- Commencé par Colin de la Higuera
- But : aligner les plus gros groupe de segments possibles
- Création d'un vecteur à 4 dimensions T[i, j, k, I]
 - [i,j] Les segments i à j du premier document
 - [k, l] Les segments k à l du deuxième document
- Calcul des coûts d'alignements pour chaque couple de groupe possible.
- Sélection des alignements les moins coûteux avec les plus grands groupes possibles

Résultats

• Un algorithme implémenté

• Très peu efficace : $O(n^4)$