Software Security and Dependability ENGR5560G

Lecture 05

Advanced Encryption Standard (AES)

Dr. Khalid A. Hafeez Spring, 25

Reminder: Finite Field Arithmetic

- A field is a set in which we can do addition, subtraction, multiplication, and division without leaving the set
 - Division is defined with the following rule: $a/b = a(b^{-1})$
- An example of a finite field (one with a finite number of elements) is the set Z_p consisting of all the integers $\{0, 1, \ldots, p-1\}$, where p is a prime number and in which arithmetic is carried out modulo p
- If one of the operations used in the algorithm is division, then we need to work in arithmetic defined over a field
 - Division requires that each nonzero element have a multiplicative inverse
- For convenience and for implementation efficiency we would like to work with integers that fit exactly into a given number of bits with no wasted bit patterns
 - Integers in the range 0 through $2^n 1$, which fit into an n-bit word
- The set of such integers, \mathbb{Z}_2^n , using modular arithmetic, is **not a field**
 - For example, the integer 2 has no multiplicative inverse in \mathbb{Z}_2^n , that is, there is no integer b, such that 2b mod $2^n = 1$
- A finite field containing 2ⁿ elements is referred to as GF(2ⁿ)
 - Every polynomial in $GF(2^n)$ can be represented by an n-bit number

Advanced Encryption Standard (AES) - Background

- 1997 ← call for proposal for AES by National Institute of Standards and Technology (NIST)
- Aug 1998 ← about 15 algorithm submitted
- Aug 1999 ← 5 Finalist selected
- Oct 2000 ← Rijndael (Belgium) was choose as the AES
- AES Operations: addition, multiplication, and division/inverse are performed over the finite field GF(2⁸)
- Irreducible polynomial: $m(x) = x^8 + x^4 + x^3 + x + 1$

AES Encryption Process – Big Picture

- The input to the encryption and decryption algorithms is a single 128-bit block, depicted as a 4 * 4 square matrix of bytes
- The ordering of bytes within a matrix is by column.
 - The first 4 bytes will be put in the first column and so on
 - Example: Plaintext: 0123456789abcdeffedcba9876543210

01	89	fe	76
23	ab	dc	54
45	cd	ba	32
67	ef	98	10

in ₀	\dot{m}_4	in ₈	in ₁₂
in ₁	\dot{m}_5	in ₉	in ₁₃
in ₂	in ₆	\dot{m}_{10}	in ₁₄
in ₃	in ₇	in ₁₁	in ₁₅

s _{0,0}	s _{0,1}	s _{0,2}	s _{0,3}
s _{1,0}	s _{1,1}	s _{1,2}	s _{1,3}
s _{2,0}	s _{2,1}	s _{2,2}	\$2,3
s _{3,0}	s _{3,1}	s _{3,2}	s _{3,3}

State Array

AES Encryption Process – Big Picture

• AES Parameters

Key Size (words/bytes/bits)	4/16/128	6/24/192	8/32/256
Plaintext Block Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Number of Rounds	10	12	14
Round Key Size (words/bytes/bits)	4/16/128	4/16/128	4/16/128
Expanded Key Size (words/bytes)	44/176	52/208	60/240

AES Encryption Process

AES Encryption and Decryption – Detailed Structure

- 10 rounds: the first 9 has 4 stages each and the 10th round has only 3 stages
- Processes the entire data block as a single matrix during each round using substitutions and permutation
- The key that is provided as input is expanded into an array of forty-four 32-bit words, w[i]
- The cipher begins and ends with an AddRoundKey stage
- Four different stages are used:
- 1. Substitute bytes uses an S-box to perform a byte-by-byte substitution of the block
- 2. ShiftRows a simple permutation
- 3. MixColumns a substitution that makes use of arithmetic over GF(2⁸)
- 4. AddRoundKey a simple bitwise XOR of the current block with a portion of the expanded key

AES Encryption Process

• In each round:

- Can view the cipher as alternating operations of XOR encryption (AddRoundKey) of a block, followed by scrambling of the block (the other three stages), followed by XOR encryption, and so on
- Each stage is easily reversible
- The decryption algorithm makes use of the expanded key in reverse order, however the decryption algorithm is not identical to the encryption algorithm
- State is the same for both encryption and decryption
- Final round of both encryption and decryption consists of only three stages

AES - (1) Substitute bytes

- leftmost 4 bits of the byte are used as a row value and the rightmost 4 bits are used as a column value
- Row and column values serve as indexes into the S-box to select a unique 8-bit output value

(a) S-box

						_	
EA	04	65	85	87	F2	4D	97
83	45	5D	96	EC	6E	4C	90
5C	33	98	В0	4A	C3	46	E7
F0	2D	AD	CS	8C	D8	95	A6

										/		, <u>,</u>					
		0	1	2	3	4	5	6	7	8	9	<u> A</u> _	В	С	D	Е	F
	0	63	7C	77	7B	F2	6B	6F	C5	30	01	67	2B	FE	D7	AB	76
	1	CA	82	C9	7D	FA	59	47	F0	AD	D4	A2	AF	9C	A4	72	C0
	2	B7	FD	93	26	36	3F	F7	CC	34	A5	E5	F1	71	D8	31	15
	3	04	C 7	23	C3	18	96	05	9A	07	12	80	E2	EB	27	B2	75
	4	09	83	2C	1A	1B	6E	5A	Α0	52	3B	D6	В3	29	E3	2F	84
	5	53	D1	00	ED	20	FC	B1	5B	6A	СВ	BE	39	4A	4C	58	CF
	6	D0	EF	AA	FB	43	4D	33	85	45	F9	02	7F	50	3C	9F	A8
	7	51	А3	40	8F	92	9D	38	F5	ВС	В6	DA	21	10	FF	F3	D2
X	8	CD	0C	13	EC	5F	97	44	17	C4	A7	7E	3D	64	5D	19	73
	9	60	81	4F	DC	22	2A	90	88	46	EE	B8	14	DE	5E	0B	DB
	Α	E0	32	3A	0A	49	06	24	5C	C2	D3	AC	62	91	95	E4	79
	В	E7	C8	37	6D	8D	D5	4E	Α9	6C	56	F4	EA	65	7A	AE	08
	С	ВА	78	25	2E	1C	A6	B4	C6	E8	DD	74	1F	4B	BD	8B	8A
	Ď	70	3E	B5	66	48	03	F6	0E	61	35	5 Z	В9	86	C1	1D	9E
	(E	E1 (F8	98	11	69	D9	8E	94	9B	1E	87	E9	CE	55	28	DF
	F	8C	A1	89	0D	BF	E6	42	68	41	99	2D	0F	В0	54	BB	16

AES – (1) Substitute bytes [Example]

(b) Inverse S-box

										/							
		0	1	2	3	4	5	6	()	8	9	Α	В	С	D	Е	F
	0	52	09	6A	D5	30	36	A5	38	BF	40	A3	9E	81	F3	D7	FB
	1	7C	E3	39	82	9B	2F	FF	87	34	8E	43	44	C4	DE	E9	СВ
	2	54	7B	94	32	A6	C2	23	3D	EE	4C	95	0B	42	FA	C3	4E
	3	08	2E	A1	66	28	D9	24	B2	76	5B	A2	49	6D	8B	D1	25
	4	72	F8	F6	64	86	68	98	16	D4	A4	5C	CC	5D	65	В6	92
	5	6C	70	48	50	FD	ED	В9	DA	5E	15	46	57	Α7	8D	9D	84
	6	90	D8	AB	00	8C	ВС	D3	0A	F7	E4	58	05	В8	В3	45	06
	7	D0	2C	1E	8F	CA	3F	0F	02	C1	AF	BD	03	01	13	8A	6B
X	(8)	3A	91	11	41	4F	67	DC	(EA)	97	F2	CF	CE	F0	B4	E6	73
	9	96	AC	74	22	E7	AD	35	85	E2	F9	37	E8	1C	75	DF	6E
	Α	47	F1	1A	71	1D	29	C5	89	6F	В7	62	0E	AA	18	BE	1B
	В	FC	56	3E	4B	C6	D2	79	20	9A	DB	C0	FE	78	CD	5A	F4
	С	1F	DD	A8	33	88	07	C7	31	B1	12	10	59	27	80	EC	5F
	D	60	51	7F	Α9	19	B5	4A	0D	2D	E5	7A	9F	93	C9	9C	EF
	Е	Α0	E0	3B	4D	AE	2A	F5	В0	C8	EB	ВВ	3C	83	53	99	61
	F	17	2B	04	7E	BA	77	D6	26	E1	69	14	63	55	21	0C	7D

AES: S-Box Construction

- 1. Initialize the S-box with the byte values in ascending sequence row by row.
 - The first row contains $\{00\}, \{01\}, \{02\}, \dots, \{0F\};$
 - The second row contains {10}, {11}, etc.; and so on.
 - Thus, the value of the byte at row y, column x is $\{yx\}$.
- 2. Map each byte in the S-box to its multiplicative inverse in the finite field $GF(2^8)$; the value $\{00\}$ is mapped to itself.
- 3. Consider that each byte in the S-box consists of 8 bits labeled (*b*7, *b*6, *b*5, *b*4, *b*3, *b*2, *b*1, *b*0). Apply the following transformation to each bit of each byte in the S-box:

$$b_i' = b_i \oplus b_{(i+4) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+5) \bmod 8} \oplus b_{(i+6) \bmod 8} \oplus b_{(i+7) \bmod 8} \oplus c_i$$

• where c_i is the ith bit of byte c with the value $\{63\}_{16}$; that is, $(c_7c_6c_5c_4c_3c_2c_1c_0) = (01100011)$.

• S-Box Rationale:

- The S-box is designed to be resistant to known cryptanalytic attacks
- The design has a low correlation between input bits and output bits and the property that the output is not a linear mathematical function of the input
- The nonlinearity is due to the use of the multiplicative inverse

(a) Calculation of byte at row y, column x of S-box

AES: S-Box Construction – Example

• Example: As an example, consider the input value $\{95\}$. The multiplicative inverse in $GF(2^8)$ is $\{95\}^{-1} = \{8A\}$, which is 10001010

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \oplus \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \oplus \begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix}$$

The table of multiplicative inverse in GF(2⁸)

(a) Calculation of byte at row y, column x of S-box

AES: (2) ShiftRows Transformation

• Shift rows:

- To move individual bytes from one column to another and spread bytes over columns
- Decryption does reverse
- On encryption left rotate each row of State by 0,1,2,3 bytes respectively
- The inverse shift row transformation, performs the circular right shifts for each of the last three rows, with a one-byte circular right shift for the second row, and so on.

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

AES: (3) MixColumns Transformation

• Mix columns:

- Operates on each column individually
- Mapping each byte to a new value that is a function of all four bytes in the column using of equations over finite fields in $GF(2^8)$.
- Coefficients of a matrix based on a linear code with maximal distance between code words ensures a good mixing among the bytes of each column
- The mix column transformation combined with the shift row transformation ensures that after a few rounds all output bits depend on all input bits

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

$$s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$$

$$s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$$

$$s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$$

AES: (3) MixColumns Transformation - Example

)2	03	01
		04
01	02	03
01	01	02_

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A 6	8C	D8	95

47	40	A 3	4C
37	D4	70	9F
94	E4	3A	42
ED	A 5	A 6	BC

$$s'_{0,j} = (2 \cdot s_{0,j}) \oplus (3 \cdot s_{1,j}) \oplus s_{2,j} \oplus s_{3,j}$$

$$s'_{1,j} = s_{0,j} \oplus (2 \cdot s_{1,j}) \oplus (3 \cdot s_{2,j}) \oplus s_{3,j}$$

$$s'_{2,j} = s_{0,j} \oplus s_{1,j} \oplus (2 \cdot s_{2,j}) \oplus (3 \cdot s_{3,j})$$

$$s'_{3,j} = (3 \cdot s_{0,j}) \oplus s_{1,j} \oplus s_{2,j} \oplus (2 \cdot s_{3,j})$$

$$(\{02\} \cdot \{87\}) \oplus (\{03\} \cdot \{6E\}) \oplus \{46\}$$
 $\bigoplus \{A6\}$ = $\{47\}$
 $\{87\}$ $\bigoplus (\{02\} \cdot \{6E\}) \oplus (\{03\} \cdot \{46\}) \oplus \{A6\}$ = $\{37\}$
 $\{87\}$ $\bigoplus \{6E\}$ $\bigoplus (\{02\} \cdot \{46\}) \oplus (\{03\} \cdot \{A6\}) = \{94\}$
 $(\{03\} \cdot \{87\}) \oplus \{6E\}$ $\bigoplus \{46\}$ $\bigoplus (\{02\} \cdot \{A6\}) = \{ED\}$

Multiplication of a value by x (i.e., by $\{02\}$) can be implemented as a 1-bit left shift followed by a conditional bitwise XOR with $(0001\ 1011)$ if the leftmost bit of the original value (prior to the shift) is 1.

or do polynomial multiplication mod $m(x) = x^8 + x^4 + x^3 + x + 1$.

$$\{02\}$$
 • $\{87\}$ = 0001 0101
 $\{03\}$ • $\{6E\}$ = 1011 0010
 $\{46\}$ = 0100 0110
 $\{A6\}$ = 1010 0110
0100 0111 = $\{47\}$

$$\{02\} \cdot \{87\} = (0000\ 0010).(1000\ 0111)$$

= (0000\ 1110)\ XOR(\ 0001\ 1011) = 0001\ 0101

$$\{x\} \cdot \{x^7 + x^2 + x + 1\} = (x^8 + x^3 + x^2 + x) \mod (x^8 + x^4 + x^3 + x + 1)$$

= $x^4 + x^2 + 1 = 0001 \ 0101$

AES: (3) Inverse MixColumns Transformation

• The **inverse mix column transformation** is defined by the following matrix multiplication:

$$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

• Such that:

$$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

AES: (4) AddRoundKey Transformation

• 128 bits of State are bitwise XORed with the 128 bits of the round key

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A 6	BC

AC	19	28	57
77	FA	D1	5C
66	DC	29	00
F3	21	41	6A

1B

D6

• The inverse add round key transformation is identical to the forward add round key transformation, because the XOR operation is its own inverse.

Rationale:

Is as simple as possible and affects every bit of State

The complexity of the round key expansion plus the complexity of the other stages of AES ensure security

AES Key Expansion

- Takes as input a four-word (16 byte) key and produces a linear array of 44 words (176) bytes
- Key (round 0 key) is copied into the first four words of the expanded key
- The remainder (round 1 to 10) of the expanded key is filled in four words at a time
- Next four *words*:
 - W[i]= g(w[i-1]) XOR w[i-4] { if i mod 4 = 0}
 - Else W[i] = w[i-1] XOR w[i-4]

What is g()?

AES Key Expansion – Function g()

- The function g() consists of the following subfunctions.
- 1. RotWord performs a one-byte circular left shift on a word.

Example: Input word [B0, B1, B2, B3] → transformed into [B1, B2, B3, B0].

- 2. SubWord performs a byte substitution on each byte of its input word, using the S-box.
- 3. Result of step 2 is **XORed** with a round constant, Rcon[j].

RC1	RC2	RC3	RC4	RC5	RC6	RC7	RC8	RC9	RC10
01	02	04	08	10	20	40	80	1B	36
00	00	00	00	00	00	00	00	00	00
00	00	00	00	00	00	00	00	00	00
00	00	00	00	00	00	00	00	00	00

AES Key Expansion – Function g()

```
KeyExpansion (byte key[16], word w[44])
   word temp
   for (i = 0; i < 4; i++)
       w[i] = (key[4*i], key[4*i+1], key[4*i+2], key[4*i+3]);
   for (i = 4; i < 44; i++)
       temp = w[i - 1];
       if (i mod 4 = 0)
              temp = SubWord (RotWord (temp)) \bigoplus Rcon[i/4];
       w[i] = w[i-4] \oplus temp
```


AES Key Expansion – Function g() - Example

If the round key for round 8 is:

EA D2 73 21 B5 8D BA D2 31 2B F5 60 7F 8D 29 2F

What will be the key for round 9:

EA	B5	31	7F	AC
D2	8D	2B	8D	77
73	BA	F5	29	66
21	D2	60	2F	F3
				•

The first 4 bytes of the key 9 is: i=36

i ((decimal)	temp	After RotWord	After SubWord	Rcon (9)	After XOR with Rcon	w[i - 4]	$w[i] = temp$ $\oplus w[i - 4]$
	36	7F8D292F	8D292F7F	5DA515D2	1B000000	46A515D2	EAD27321	AC7766F3

More Examples

Key Expansion for AES Example

Key Words	Auxiliary Function
w0 = 0f 15 71 c9	RotWord (w3) = 7f 67 98 af = x1
w1 = 47 d9 e8 59	SubWord (x1) = d2 85 46 79 = y1
w2 = 0c b7 ad d6	Rcon (1) = 01 00 00 00
w3 = af 7f 67 98	y1
w4 = w0 \oplus z1 = dc 90 37 b0	RotWord (w7) = 81 15 a7 38 = x2
w5 = w4	SubWord (x2) = 0c 59 5c 07 = y2
w6 = w5 \oplus w2 = 97 fe 72 3f	Rcon (2) = 02 00 00 00
w7 = w6 \oplus w3 = 38 81 15 a7	y2
w8 = w4	RotWord (w11) = ff d3 c6 e6 = x3
w9 = w8	SubWord (x3) = 16 66 b4 83 = y3
w10 = w9	Rcon (3) = 04 00 00 00
$w11 = w10 \oplus w7 = e6 \text{ ff d3 c6}$	y3

Key Expansion for AES Example (Cont.)

Key Words	Auxiliary Function
w12 = w8	RotWord (w15) = ae 7e c0 b1 = x4
w13 = w12 \oplus w9 = 89 2f 6b 67	SubWord (x4) = $e4 f3 ba c8 = y4$
w14 = w13 \oplus w10 = 57 51 ad 06	Rcon (4) = 08 00 00 00
w15 = w14	y4
w16 = w12 \oplus z4 = 2c 5c 65 f1	RotWord (w19) = 8c dd 50 43 = x5
$w17 = w16 \oplus w13 = a5 73 0e 96$	SubWord (x5) = 64 c1 53 1a = y5
w18 = w17 w14 = f2 22 a3 90	Rcon(5) = 10 00 00 00
w19 = w18 \oplus w15 = 43 8c dd 50	y5
w20 = w16 \oplus z5 = 58 9d 36 eb	RotWord (w23) = 40 46 bd 4c = x6
$w21 = w20 \oplus w17 = fd ee 38 7d$	SubWord (x6) = 09 5a 7a 29 = y6
w22 = w21	Rcon(6) = 20 00 00 00
w23 = w22	y6 Rcon(6) = 29 5a 7a 29 = z6

Key Expansion for AES Example (Cont.)

Key Words	Auxiliary Function
$w24 = w20 \oplus z6 = 71 \text{ c7 4c c2}$ $w25 = w24 \oplus w21 = 8c 29 74 \text{ bf}$ $w26 = w25 \oplus w22 = 83 \text{ e5 ef 52}$ $w27 = w26 \oplus w23 = \text{ cf a5 a9 ef}$	RotWord (w27) = a5 a9 ef cf = x7 SubWord (x7) = 06 d3 bf 8a = y7 Rcon (7) = 40 00 00 00 y7 \bigoplus Rcon(7) = 46 d3 df 8a = z7
w28 = w24 \oplus z7 = 37 14 93 48 w29 = w28 \oplus w25 = bb 3d e7 f7 w30 = w29 \oplus w26 = 38 d8 08 a5 w31 = w30 \oplus w27 = f7 7d a1 4a	RotWord (w31) = 7d a1 4a f7 = x8 SubWord (x8) = ff 32 d6 68 = y8 Rcon (8) = 80 00 00 00 y8 ⊕ Rcon(8) = 7f 32 d6 68 = z8
w32 = w28 \oplus z8 = 48 26 45 20 w33 = w32 \oplus w29 = f3 1b a2 d7 w34 = w33 \oplus w30 = cb c3 aa 72 w35 = w34 \oplus w32 = 3c be 0b 3	RotWord (w35) = be 0b 38 3c = x9 SubWord (x9) = ae 2b 07 eb = y9 Rcon (9) = 1B 00 00 00 y9 ⊕ Rcon (9) = b5 2b 07 eb = z9
w36 = w32 \oplus z9 = fd 0d 42 cb w37 = w36 \oplus w33 = 0e 16 e0 1c w38 = w37 \oplus w34 = c5 d5 4a 6e w39 = w38 \oplus w35 = f9 6b 41 56	RotWord (w39) = 6b 41 56 f9 = x10 SubWord (x10) = 7f 83 b1 99 = y10 Rcon (10) = 36 00 00 00 y10 ⊕ Rcon (10) = 49 83 b1 99 = z10
w40 = w36 \oplus z10 = b4 8e f3 52 w41 = w40 \oplus w37 = ba 98 13 4e w42 = w41 \oplus w38 = 7f 4d 59 20 w43 = w42 \oplus w39 = 86 26 18 76	

AES Example

Start of Round	After SubBytes	After ShiftRows	After MixColumns	Round Key
01 89 fe 76				0f 47 0c af
23 ab dc 54				15 d9 b7 7f
45 cd ba 32				71 e8 ad 67
67 ef 98 10				c9 59 d6 98
0e ce f2 d9	ab 8b 89 35	ab 8b 89 35	b9 94 57 75	dc 9b 97 38
36 72 6b 2b	05 40 7f f1	40 7f f1 05	e4 8e 16 51	90 49 fe 81
34 25 17 55	18 3f f0 fc	f0 fc 18 3f	47 20 9a 3f	37 df 72 15
ae b6 4e 88	e4 4e 2f c4	c4 e4 4e 2f	c5 d6 f5 3b	b0 e9 3f a7
65 Of c0 4d	4d 76 ba e3	4d 76 ba e3	8e 22 db 12	d2 49 de e6
74 c7 e8 d0	92 c6 9b 70	c6 9b 70 92	b2 f2 dc 92	c9 80 7e ff
70 ff e8 2a	51 16 9b e5	9b e5 51 16	df 80 f7 c1	6b b4 c6 d3
75 3f ca 9c	9d 75 74 de	de 9d 75 74	2d c5 1e 52	b7 5e 61 c6
5c 6b 05 f4	4a 7f 6b bf	4a 7f 6b bf	b1 c1 0b cc	c0 89 57 b1
7b 72 a2 6d	21 40 3a 3c	40 3a 3c 21	ba f3 8b 07	af 2f 51 ae
b4 34 31 12	8d 18 c7 c9	c7 c9 8d 18	f9 1f 6a c3	df 6b ad 7e
9a 9b 7f 94	b8 14 d2 22	22 b8 14 d2	1d 19 24 5c	39 67 06 c0
71 48 5c 7d	a3 52 4a ff	a3 52 4a ff	d4 11 fe 0f	2c a5 f2 43
15 dc da a9	59 86 57 d3	86 57 d3 59	3b 44 06 73	5c 73 22 8c
26 74 c7 bd	f7 92 c6 7a	c6 7a f7 92	cb ab 62 37	65 0e a3 dd
24 7e 22 9c	36 f3 93 de	de 36 f3 93	19 b7 07 ec	f1 96 90 50
f8 b4 0c 4c	41 8d fe 29	41 8d fe 29	2a 47 c4 48	58 fd 0f 4c
67 37 24 ff	85 9a 36 16	9a 36 16 85	83 e8 18 ba	9d ee cc 40
ae a5 c1 ea	e4 06 78 87	78 87 e4 06	84 18 27 23	36 38 9b 46
e8 21 97 bc	9b fd 88 65	65 9b fd 88	eb 10 0a f3	eb 7d ed bd

AES Example (Cont.)

Start of Round	After SubBytes	After ShiftRows	After MixColumns	Round Key
72 ba cb 04	40 f4 1f f2	40 f4 1f f2	7b 05 42 4a	71 8c 83 cf
1e 06 d4 fa	72 6f 48 2d	6f 48 2d 72	1e d0 20 40	c7 29 e5 a5
b2 20 bc 65	37 b7 65 4d	65 4d 37 b7	94 83 18 52	4c 74 ef a9
00 6d e7 4e	63 3c 94 2f	2f 63 3c 94	94 c4 43 fb	c2 bf 52 ef
0a 89 c1 85	67 a7 78 97	67 a7 78 97	ec 1a c0 80	37 bb 38 f7
d9 f9 c5 e5	35 99 a6 d9	99 a6 d9 35	0c 50 53 c7	14 3d d8 7d
d8 f7 f7 fb	61 68 68 0f	68 Of 61 68	3b d7 00 ef	93 e7 08 a1
56 7b 11 14	b1 21 82 fa	fa b1 21 82	b7 22 72 e0	48 f7 a5 4a
db a1 f8 77	b9 32 41 f5	b9 32 41 f5	b1 1a 44 17	48 f3 cb 3c
18 6d 8b ba	ad 3c 3d f4	3c 3d f4 ad	3d 2f ec b6	26 1b c3 be
a8 30 08 4e	c2 04 30 2f	30 2f c2 04	0a 6b 2f 42	45 a2 aa 0b
ff d5 d7 aa	16 03 0e ac	ac 16 03 0e	9f 68 f3 b1	20 d7 72 38
f9 e9 8f 2b	99 1e 73 f1	99 1e 73 f1	31 30 3a c2	fd 0e c5 f9
1b 34 2f 08	af 18 15 30	18 15 30 af	ac 71 8c c4	0d 16 d5 6b
4f c9 85 49	84 dd 97 3b	97 3b 84 dd	46 65 48 eb	42 e0 4a 41
bf bf 81 89	08 08 0c a7	a7 08 08 0c	6a 1c 31 62	cb 1c 6e 56
cc 3e ff 3b	4b b2 16 e2	4b b2 16 e2	4b 86 8a 36	b4 ba 7f 86
a1 67 59 af	32 85 cb 79	85 cb 79 32	b1 cb 27 5a	8e 98 4d 26
04 85 02 aa	f2 97 77 ac	77 ac f2 97	fb f2 f2 af	f3 13 59 18
a1 00 5f 34	32 63 cf 18	18 32 63 cf	cc fa fb cf	52 4e 20 76
ff 08 69 64				
0b 53 34 14				
84 bf ab 8f				
4a 7c 43 b9				

Avalanche Effect in AES: Change in Plaintext

the result when the eighth bit of the plaintext is changed After 5 rounds, 68 bits have been changed

Round		Number of Bits that Differ
	0123456789abcdeffedcba9876543210 0023456789abcdeffedcba9876543210	1
0	0e3634aece7225b6f26b174ed92b5588 0f3634aece7225b6f26b174ed92b5588	1
1	657470750fc7ff3fc0e8e8ca4dd02a9c c4a9ad090fc7ff3fc0e8e8ca4dd02a9c	20
2	5c7bb49a6b72349b05a2317ff46d1294 fe2ae569f7ee8bb8c1f5a2bb37ef53d5	58
3	7115262448dc747e5cdac7227da9bd9c ec093dfb7c45343d689017507d485e62	59
4	f867aee8b437a5210c24c1974cffeabc 43efdb697244df808e8d9364ee0ae6f5	61
5	721eb200ba06206dcbd4bce704fa654e 7b28a5d5ed643287e006c099bb375302	68

Avalanche Effect in AES: Change in Plaintext (Cont.)

Round		Number of Bits that Differ
6	Oad9d85689f9f77bc1c5f71185e5fb14 3bc2d8b6798d8ac4fe36a1d891ac181a	64
7	db18a8ffa16d30d5f88b08d777ba4eaa 9fb8b5452023c70280e5c4bb9e555a4b	67
8	f91b4fbfe934c9bf8f2f85812b084989 20264e1126b219aef7feb3f9b2d6de40	65
9	cca104a13e678500ff59025f3bafaa34 b56a0341b2290ba7dfdfbddcd8578205	61
10	ff0b844a0853bf7c6934ab4364148fb9 612b89398d0600cde116227ce72433f0	58

Avalanche Effect in AES: Change in Key

- The change in State matrix values when the same plaintext is used, and the two keys differ in the eighth bit.
- After 5 rounds, 81 bits have been changed

Round		Number of Bits that Differ
	0123456789abcdeffedcba9876543210 0123456789abcdeffedcba9876543210	0
0	0e3634aece7225b6f26b174ed92b5588 0f3634aece7225b6f26b174ed92b5588	1
1	657470750fc7ff3fc0e8e8ca4dd02a9c c5a9ad090ec7ff3fc1e8e8ca4cd02a9c	22
2	5c7bb49a6b72349b05a2317ff46d1294 90905fa9563356d15f3760f3b8259985	58
3	7115262448dc747e5cdac7227da9bd9c 18aeb7aa794b3b66629448d575c7cebf	67
4	f867aee8b437a5210c24c1974cffeabc f81015f993c978a876ae017cb49e7eec	63
5	721eb200ba06206dcbd4bce704fa654e 5955c91b4e769f3cb4a94768e98d5267	81

Avalanche Effect in AES: Change in Key (Cont.)

Round		Number of Bits that Differ
6	0ad9d85689f9f77bc1c5f71185e5fb14 dc60a24d137662181e45b8d3726b2920	70
7	db18a8ffa16d30d5f88b08d777ba4eaa fe8343b8f88bef66cab7e977d005a03c	74
8	f91b4fbfe934c9bf8f2f85812b084989 da7dad581d1725c5b72fa0f9d9d1366a	67
9	cca104a13e678500ff59025f3bafaa34 0ccb4c66bbfd912f4b511d72996345e0	59
10	ff0b844a0853bf7c6934ab4364148fb9 fc8923ee501a7d207ab670686839996b	53