

Mansoura University Faculty of Computers and Information Sciences Department of Computer Science First Semester- 2020-2021

[CS422p] Compiler Construction

Grade: Fourth grade

By: Zeinab Awad

Compiler construction

intermediate code generation

BY: ZEINAB AWAD

Computer Science Department

Zeinab awad@mans.edu.eg

Intermediate code generation

Intermediate code representation

Intermediate code generation

- Intermediate code representation :
- Abstract syntax tree.
- II. Polish notation.
- III. Three address code.
- IV. Quadruples-triples-indirect triples.

1. Apply postfix notation for the following expression:

$$Z= (A-B) * (C-D) + (E+(F/G))$$

Solution:

2. Translate assignment statement a= b+ -c; into the three address code sequence.

Solution:
$$t_1$$
= unary-minus c
 t_2 =b+ t_1
a = t_2

- 3. Translate the arithmetic expression a + -(b + c) into:
- a) A syntax Tree
- b) Quadruples
- c) Triples
- d) Indirect Triples

Solution:

$$t_1 = b + c$$

 $t_2 = -t_1$
 $T_3 = a + t_2$

2-quadruples

	Operator	Argument-1	Argument-2	Result
0	+	b	С	t1
1	Unary minus	t1		t2
2	+	а	t2	t3

The three address code

Sequence:

t1=b+c

t2=-t1

t3=a+t2

2-Triples

	Operator	Argument-1	Argument-2
0	+	b	С
1	Unary minus	(0)	
2	+	а	(1)

The three address code

Sequence:

$$t_1=b+c$$

 $t_2=-t_1$
 $t_3=a+t_2$

2-Indirect Triples

AD ₀	AD ₁	
0	21	
1	22	
2	23	

AD ₁	Operator	Argument-1	Argument-2
21	+	b	С
22	Unary minus	(21)	
23	+	а	(22)

$$t3=a+t2$$

4. Repeat the previous exercise for the following assignment statements:

i.
$$a = b[i] + c[j]$$

ii.
$$a[i] = b*c - b*d$$

Solution:

1-The syntax tree:

The three address code

Sequence:t₁=b[i]

$$t_2 = c[j]$$
 $t_3 = t_1 + t_2$
 $a = t_3$

2-quadruples

	Operator	Argument-1	Argument-2	Result
0	=[]	b	i	t1
1	=[]	С	j	t2
2	+	t1	t2	t3
3	=	t3		а

Sequence:
$$t_1$$
=b[i]
 t_2 =c[j]
 t_3 = t_1 + t_2
 a = t_3

2-Triples

	Operator	Argument-1	Argument-2
0	=[]	b	i
1	=[]	С	j
2	+	(0)	(1)
3	=	а	(2)

Sequence:
$$t_1$$
=b[i]
 t_2 =c[j]
 t_3 = t_1 + t_2
 a = t_3

2-Indirect Triples

AD ₀	AD ₁	
0	21	
1	22	
2	23	
3	24	

AD ₁	Operator	Argument-1	Argument-2
21	=[]	b	i
22	=[]	С	j
23	+	(21)	(22)
24	=	а	(23)

Sequence:
$$t_1$$
=b[i]
 t_2 =c[j]
 t_3 = t_1 + t_2
 a = t_3

Solution:

1-The syntax tree:

2-quadruples

	Operator	Argument-1	Argument-2	Result
0	*	b	С	t1
1	*	b	d	t2
2	_	t1	t2	t3
3	=[]	а	i	t4
4	=	t3		t4

```
Sequence:t_1=b*c
t_2=b*d
t_3=t_1-t_2
t_4=a[i]
t_4=t_3
```

2-Triples

	Operator	Argument-1	Argument-2
0	*	b	С
1	*	b	d
2	-	(0)	(1)
3	=[]	а	i
4	=	(3)	(2)

```
Sequence:t_1=b*c
t_2=b*d
t_3=t_1-t_2
t_4=a[i]
t_4=t_3
```

2-Indirect Triples

AD_0	AD ₁	
0	21	
1	22	4
2	23	
3	24	
4	25	

AD ₁	Operator	Argument-1	Argument-2
21	*	b	i
22	*	b	j
23	-	(21)	(22)
24	=[]	Α	i
25	=	(24)	(23)

Sequence:
$$t_1$$
=b*c
 t_2 =b*d
 t_3 = t_1 - t_2
 t_4 =a[i]
 t_4 = t_3

Intermediate Code Representation

THANK YOU