Name:			
Matric. no.:		Tutor group:	
March 2022	CA2	TIME A	LLOWED: 50 minutes

QUESTION 1. (16 marks)

- (a) [8 marks] Solve the following linear recurrence, that is, write a_n in terms of n: $a_n = 9a_{n-2}$ for each $n \ge 2$, with initial conditions $a_0 = 0$, $a_1 = 2$.
- (b) [8 marks] A sequence b_0, b_1, b_2, \ldots is defined by letting $b_0 = 3$ and $b_k = (b_{k-1})^2$ for every integer $k \ge 1$. Using induction, show that $b_n = 3^{2^n}$ for every integer $n \ge 0$.

1

For graders only:	Question	1(a)	1(b)	2(a)	2(b)	2(c)	2(d)	3(a)	3(b)	Total
	Marks									

QUESTION 2. (17 marks)

In this question **no justification is required**.

A computer programming team has 13 members.

- (a) [2 marks] How many ways can a group of seven be chosen to work on a project?
- (b) Suppose seven team members are women and six are men.
 - (i) [3 marks] How many groups of seven can be chosen that contain four women and three men?
 - (ii) [3 marks] How many groups of seven can be chosen that contain at least one man?
 - (iii) [3 marks] How many groups of seven can be chosen that contain at most three women?
- (c) [3 marks] Suppose two team members refuse to work together on projects. How many groups of seven can be chosen to work on a project?
- (d) [3 marks] Suppose two team members insist on either working together or not at all on projects. How many groups of seven can be chosen to work on a project?

9

QUESTION 3. (17 marks)

[Blank page for extra working]

- (a) Let $A = \{a, b\}$, $B = \{1, 2\}$, and $C = \{2, 3\}$. Find each of the following sets.
 - (i) [3 marks] $A \times (B \cup C)$
 - (ii) [3 marks] $(A \times B) \cap (A \times C)$
 - (iii) [3 marks] The power set P(B-C)
 - (iv) [3 marks] The power set $P(P(\emptyset))$
- (b) [5 marks] For all sets A and B, is the power set $P(A \times B)$ equal to $P(A) \times P(B)$? If so then prove it, if not then give a counterexample.

3