Experimental Design Note 3-1 Model Adequacy Checking

회귀진단 ...?

Keunbaik Lee

Sungkyunkwan University

Model checking and diagnoistics I

- Checking assumptions is important
 - Have we fit the right model?
 - Normality
 - Independence
 - Constant variance

$$y_{ij} = (\overline{y}_{..} + (\overline{y}_{i.} - \overline{y}_{..})) + (y_{ij} - \overline{y}_{i.})$$
 $y_{ij} = \hat{y}_{ij} + e_{ij}$
observed = predicted + residual

- Note that the predicted response at treatment i is $\hat{y}_{ij} = \bar{y}_{i}$...
- Diagnostics use predicted responses and residuals.

Model checking and diagnoistics II

- Normality
 - Histogram of residuals
 - Normal probability plot / QQ plot
 - Shapiro-Wilk Test
- Constant Variance
 - Plot $\hat{\epsilon}_{ij}$ vs \hat{y}_{ij} (residual plot)
 - Bartlett's or Levene's Test
- Independence
 - Plot $\hat{\epsilon}_{ij}$ vs time/space
 - Plot $\hat{\epsilon}_{ij}$ vs variable of interest
- Outliers

Normality Checking in the ANOVA

Examination of residuals

$$e_{ij} = y_{ij} - \hat{y}_{ij}$$
$$= y_{ij} - \bar{y}_{i}.$$

- Residual plots are very useful e.g., Q-Q plot
- Shapiro-Wilk, Kolmogorov-Smirnov, Anderson-Darling Tests

Outliers Checking

Use standardized residuals to check if there is outliers

$$d_{ij} = rac{e_{ij} \circ \mathcal{J}_{ii} \circ \mathcal{J}_{ii}}{\sqrt{MSE}}$$

- > 3 or < -3 is a potential outlier
- Be careful for removing outliers

Constant variance checking I

■ In some experiments, error variance (σ_i^2) depends on the mean response

$$E(y_{ij}) = \mu_i = \mu + \tau_i$$

So the constant variance assumption is violated.

- Size of error (residual) depends on mean response (predicted value)
- Residual plot
 - Plot $\hat{\epsilon}_{ij}$ vs \hat{y}_{ij}
 - Is the range constant for different levels of \hat{y}_{ij}
 - More formal tests: Bartlett's Test, Modified Levene's Test.
- Modified Levene's Test
 - For each fixed i, calculate the median m_i of $y_{i1}, y_{i2}, \cdots, y_{in_i}$.

Constant variance checking II

 Compute the absolute deviation of observation from sample median:

$$d_{ij} = |y_{ij} - m_i|$$

for $i = 1, 2, \dots, a$ and $j = 1, 2, \dots, n_i$.

- **Apply ANOVA** to the deviations: $d_{ij} \sim Suppose d_{ij} = J + T_i + E_{ij}$
- Use the usual ANOVA F-statistic for testing $H_0: \sigma_1^2 = \cdots = \sigma_2^2$ we down an an entropy $H_0: \sigma_1^2 = \cdots = \sigma_2^2$

Non-constant Variance: Impact and Remedy I

- Why concern?
 - Comparison of treatments depends on MSE
 - Incorrect intervals and comparison results
- Variance-Stabilizing Transformations
 - Common transformations

$$\sqrt{x}$$
, $\log(x)$, $1/x$, $\arcsin(\sqrt{x})$, and $1/\sqrt{x}$

- Box-Cox transformations
 - **a** approximate the relationship $\sigma_i = \theta \mu_i^{\beta}$, then the transformation is $X^{1-\beta}$
 - use maximum likelihood principle
- Ideas for finding proper transformations

Taylor's Theorem;
If the $(n-1)^{sf}$ derivative of $f(x)$, $f^{(n-1)}(x)$ is continuous on [9,6] and the n^{th} derivative $f^{(n)}(x)$ exists
on (a,b) , then for each $x \in [a,b]$, we have $f(x) = f(a) + \frac{f'(a)}{(!)}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \cdots + \frac{f^{(n-1)}(a)}{(n-1)!}(x-a)^{n-1} + \frac{f''(\xi)}{n!}(x-a)^n$, where $a < \xi < x$
4
위 이렇을 통해 $f(x) = e^x = \sum_{i=0}^{\infty} \frac{\chi^i}{i!}$ 가 유도된다
$f(x) = e^x$
$f'(x) = e^{x}$ $f'(x) = e^{x}$ $f^{(n)}(x) = e^{x}$
$f^{(n)}(x) = e^x$
$\Rightarrow \text{ fiven } a=0, f(x)=[+\frac{x}{1!}+\frac{x^2}{2!}+\frac{x^3}{3!}+\cdots+\frac{x^{n+1}}{(n+1)!}+\frac{x^n}{n!}+\cdots]$
~ Delta-method;
In Taylor's Theorem, we only consider 1^{st} order of $f(x)$,
$f(x) \approx f(a) + \frac{f'(a)}{1!}(x-a)$, now let Y be a random variable with $E(Y) = A$ and $Var(Y) = T^2$. Then we can find the mean
and variance of $f(Y)$.
Suppose $\alpha = M$, then $f(Y) = f(M) + \frac{f'(M)}{I!} (Y-M)$.
=> E[f(Y)] = f(A)
Variance - Stabilizing Transformation
1. If $T_i = \theta \mathcal{A}_i^{\beta}$, then $Y_i^{1-\beta}$ is the VST
$ f(Y_i) = Y_i^{1-\beta} = f(Y_i) = (1-\beta)Y_i^{-\beta} , var(Y_i^{1-\beta}) \approx (f(\mathcal{M}_i))^2 \nabla_i^2 = (1-\beta)^2 \mathcal{M}_i^{-2\beta} \theta^2 \mathcal{N}_i^{2\beta} = (1-\beta)^2 \theta^2 $
2. If $Y_i \sim P_{oisson}(M_i)$, then $f(Y_i) = \overline{Y_i}$ is the VST
pf) We have $E(Y_i) = Var(Y_i) = A_i$
$\Rightarrow Var\left\{f(Y_i)\right\} = Var\left(\sqrt{Y_i}\right) = \left(\frac{1}{2}M_i^{-\frac{1}{2}}\right)^2 \cdot M_i = \frac{1}{4}M_i^{-1} \cdot N_i = \frac{1}{4}$

Non-constant Variance: Impact and Remedy II

- Consider response Y with mean $E(Y) = \mu$ and variance $var(Y) = \sigma^2$.
- That σ^2 depends on μ leads to nonconsistent variances for different μ .
- Let f be a transformation and $\tilde{Y} = f(Y)$. What is the mean and variance of \tilde{Y} ?
- Approximate f(Y) by a linear function (Delta Method):

$$f(Y) \approx f(\mu) + (Y - \mu)f'(\mu)$$

Then

Mean:
$$\tilde{\mu} = E(\tilde{Y}) = E(f(Y)) \approx E(f(\mu)) + E((Y - \mu)f'(\mu))$$

= $f(\mu)$

Variance:
$$\tilde{\sigma}^2 = var(\tilde{Y}) \approx \left[f^{'}(\mu)\right]^2 var(Y) = \left[f^{'}(\mu)\right]^2 \sigma^2$$

Non-constant Variance: Impact and Remedy III

- f is a good transformation if $\tilde{\sigma}^2$ does not depend on $\tilde{\mu}$ anymore. So, \tilde{Y} has constant variance for different $f(\mu)$.
- Transformations
 - Suppose σ^2 is a function of μ , that is $\sigma^2 = g(\mu)$
 - Want to find transformation f such that $\tilde{Y} = f(Y)$ has constant variance: $var(\tilde{Y})$ does not depend on μ .
 - $\blacksquare \ \, \mathsf{Have \ shown} \ \, \mathit{var}(\tilde{Y}) \approx \left[f^{'}(\mu)\right]^2 \sigma^2 \approx \left[f^{'}(\mu)\right]^2 \mathsf{g}(\mu)$

■ Want to choose f such that $[f^{'}(\mu)]^2g(\mu)\approx c$

[(/ /] 0 (/ /		
Distribution	Variance	Transformation
Poisson	$g(\mu)=\mu$	$f(\mu) = \int \frac{1}{\sqrt{\mu}} d\mu \longrightarrow f(X) = \sqrt{X}$
Binomial	$g(\mu) = \mu(1-\mu)$	$f(\mu) = \int \frac{1}{\sqrt{\mu(1-\mu)}} d\mu \longrightarrow f(X) = \arcsin(\sqrt{X})$ $f(\mu) = \int \mu^{-\beta} d\mu \longrightarrow f(X) = X^{1-\beta}$
Box-Cox	$g(\mu) = \mu^{2\beta}$	$f(\mu) = \int \mu^{-\beta} d\mu \longrightarrow f(X) = X^{1-\beta}$
Box-Cox	$g(\mu) = \mu^2$	$f(\mu) = \int \frac{1}{\mu} d\mu \longrightarrow f(X) = \log X$

Non-constant Variance: Impact and Remedy IV

- Identify Box-Cox Transformation using Data: Approximate Method
 - From the previous slide, if $\sigma_i = \theta \mu_i^{\beta}$, the transformation is

$$f(Y) = \begin{cases} Y^{1-\beta}, & \beta \neq 1; \\ \log Y, & \beta = 1. \end{cases}$$

So it is crucial to estimate β based on data y_{ij} , $i = 1, \dots, a$.

- We have $\log \sigma_i = \log \theta + \beta \log \mu_i$.
- Let s_i and \bar{y}_i . be the sample standard deviations and means. Because $\hat{\sigma}_i = s_i$ and $\hat{\mu}_i = \bar{y}_i$., approximately,

$$\log s_i = \text{constant} + \beta \log \bar{y}_{i},$$

where $i = 1, \dots, a$.

■ We can plot $\log s_i$ against $\log \bar{y}_{i\cdot}$, fit a straight line and use the slope to estimate β .

Non-constant Variance: Impact and Remedy V

- Identify Box-Cox Transformation: Formal Method
 - For a fixed λ , perform analysis of variance on

$$y_{ij}(\lambda) = \begin{cases} \frac{y_{ij}^{\lambda}-1}{\lambda \dot{y}^{\lambda}-1}, & \lambda \neq 0; \\ \dot{y} \log y_{ij}, & \lambda = 0, \end{cases}$$

where $\dot{y}=\prod_{i=1}^{s}\prod_{j=1}^{n_{i}}y_{ij}^{1/N}$. governor where \dot{y}

Notice that we cannot select the value of λ by directly comparing the SSEs from the ANOVA on y^{λ} because for each value of λ , the SSEs are measured on different scales.

- Step 1 generates a transformed data $y_{ij}(\lambda)$. Apply ANOVA to the new data and obtain SS_E . Because SS_E depends on λ , it is denoted by $SS_E(\lambda)$.
- Repeat 1 and 2 for various λ in an interval, e.g., [-2,2], and record $SS_E(\lambda)$

Non-constant Variance: Impact and Remedy VI

- Find λ_0 which minimizes $SS_E(\lambda)$ and pick up a meaningful λ in the neighborhood of λ_0 . Denote it again by λ .
- Now the selected transformation is:

$$f(y_{ij}) = \begin{cases} y_{ij}^{\lambda_0}, & \text{if } \lambda_0 \neq 0; \\ \log y_{ij}, & \text{if } \lambda_0 = 0. \end{cases}$$

See Transformation.SAS.

Nonparametric methods for ANOVA I

 H_0 : a treatments are equal vs H_a : at least one not equal. (But normality assumption is unsatisfied)

- Kruskal-Wallis Test.
 - \blacksquare Rank the observations y_{ij} in ascending order
 - Replace each observation by its rank R_{ij} (assign average for tied observations)
 - Test statistic

$$H = \frac{1}{S^2} \left[\sum_{i=1}^{a} \frac{R_{i.}^2}{n_i} - \frac{N(N+1)^2}{4} \right] \approx \chi_{a-1}^2$$

where
$$S^2 = \frac{1}{N-1} \left[\sum_{i=1}^{a} \sum_{j=1}^{n_i} R_{ij}^2 - \frac{N(N+1)^2}{4} \right]_{i}$$

Nonparametric methods for ANOVA II

■ Decision Rule: reject H_0 if $H > \chi^2_{\alpha,a-1}$.

See Nonparametric.SAS.