Model	Avantajları	Dezavantajları
Lojistik Regresyon	Olasılıksal yaklaşım, özelliklerin istatistiksel önemi hakkında bilgi verir.	Lojistik Regresyon Varsayımları
K-NN	Anlaması basit, hızlı ve verimli	Komşuların k sayısını doğru seçmek gerekir
SVM	Sonuca ulaşma performansı iyi, aykırı değerler hakkında önyargılı değil, aşırı öğrenmeye (overfittting) duyarlı değildir	Doğrusal olmayan problemler için uygun değildir, yüksek değerdeki özellikler için en iyi seçenek değildir
Kernel SVM	Doğrusal olmayan problemlerde yüksek performanslıdır, aykırı değerler hakkında hassas değil, aşırı öğrenmeye (overfitting) duyarlı değildir	Yüksek değerdeki özellikler için en iyi seçenek değil, daha karmaşık
Naive Bayes	Verimli, aykırı değerler hakkında önyargılı değil, doğrusal olmayan problemler üzerinde çalışır, olasılıksal yaklaşımdır	Özelliklerin aynı istatistiksel anlamlılığa sahip olduğu varsayımına dayanır
Karar Ağacı Sınıflandırması	Yorumlama, özellik ölçeklendirmesine gerek yoktur, hem doğrusal hem de doğrusal olmayan problemler üzerinde çalışır	Çok küçük veri kümeleri üzerinde zayıf sonuçlar, aşırı öğrenme (overfitting) kolaylıkla gerçekleşebilir