

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

AI58

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :	A1	(11) International Publication Number:	WO 96/26736
A61K 38/17, C07K 14/47, 16/18, C12N 5/02, 5/06, 15/12, 15/70, 15/79, C12Q 1/68, G01N 33/53		(43) International Publication Date:	6 September 1996 (06.09.96)
(21) International Application Number:	PCT/US96/02957	(81) Designated States:	AU, CA, CN, FI, JP, NO, NZ, European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).
(22) International Filing Date:	1 March 1996 (01.03.96)		
(30) Priority Data:		Published	
08/397,651 08/469,427 08/569,063	1 March 1995 (01.03.95) 6 June 1995 (06.06.95) 6 December 1995 (06.12.95)	US US US	With international search report. With amended claims.
(71) Applicants:	LUDWIG INSTITUTE FOR CANCER RESEARCH [US/US]; 1345 Avenue of the Americas, New York, NY 10105 (US). HELSINKI UNIVERSITY LICENSING LTD., OY [FI/FI]; P.O. Box 26, FIN-00014 Helsinki (FI).		
(72) Inventors:	ERIKSSON, Ulf; Haegervaegeen 27, S-746 34 Balsta (SE). OLOFSSON, Birgitta; Kling, Hornsgatan 106, 3 tr. S-117 26 Stockholm (SE). ALITALO, Kari; Nyyrikintie 4 A, FIN-02100 Espoo (FI). PAJUSOLA, Katri; Kasteholmantie 4 A 8, FIN-00900 Helsinki (FI).		
(74) Agent:	EVANS, Joseph, D.; Evenson, McKeown, Edwards & Lenahan, Suite 700, 1200 G Street N.W., Washington, DC 20005 (US).		

(54) Title: VASCULAR ENDOTHELIAL GROWTH FACTOR-B

(57) Abstract

VEGF-B polypeptides from the PDGF family of growth factors having the property of promoting mitosis and proliferation of vascular endothelial cells, DNA sequences encoding these polypeptides, pharmaceutical compositions containing them and antibodies which react with them. The VEGF-B polypeptides are useful in stimulating angiogenesis as well as in diagnostic applications.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgyzstan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic of Korea	SD	Sudan
CF	Central African Republic	KR	Republic of Korea	SE	Sweden
CG	Congo	KZ	Kazakhstan	SG	Singapore
CH	Switzerland	LI	Liechtenstein	SI	Slovenia
CI	Côte d'Ivoire	LK	Sri Lanka	SK	Slovakia
CM	Cameroon	LR	Liberia	SN	Senegal
CN	China	LT	Lithuania	SZ	Swaziland
CS	Czechoslovakia	LU	Luxembourg	TD	Chad
CZ	Czech Republic	LV	Latvia	TG	Togo
DE	Germany	MC	Monaco	TJ	Tajikistan
DK	Denmark	MD	Republic of Moldova	TT	Trinidad and Tobago
EE	Estonia	MG	Madagascar	UA	Ukraine
ES	Spain	ML	Mali	UG	Uganda
FI	Finland	MN	Mongolia	US	United States of America
FR	France	MR	Mauritania	UZ	Uzbekistan
GA	Gabon			VN	Viet Nam

VASCULAR ENDOTHELIAL GROWTH FACTOR-B

Background of the Invention

Angiogenesis, or the proliferation of new capillaries from pre-existing blood vessels, is a fundamental process necessary for normal growth and development of tissues. It 5 is a prerequisite for the development and differentiation of the vascular tree, as well as for a wide variety of fundamental physiological processes including embryogenesis, somatic growth, tissue and organ repair and regeneration, cyclical growth of the corpus luteum and endometrium, and 10 development and differentiation of the nervous system. In the female reproductive system, angiogenesis occurs in the follicle during its development, in the corpus luteum following ovulation and in the placenta to establish and maintain pregnancy. Angiogenesis additionally occurs as 15 part of the body's repair processes, e.g. in the healing of wounds and fractures. Angiogenesis is also a factor in tumor growth, since a tumor must continuously stimulate growth of new capillary blood vessels in order to grow.

Capillary blood vessels consist of endothelial cells 20 and pericytes. These two cell types carry all of the genetic information to form tubes, branches and entire capillary networks. Specific angiogenic molecules can initiate this process. In view of the physiological importance of angiogenesis, much effort has been devoted to 25 the isolation, characterization and purification of factors that can stimulate angiogenesis. A number of polypeptides which stimulate angiogenesis have been purified and

characterized as to their molecular, biochemical and biological properties. For reviews of such angiogenesis regulators, see Klagsbrun et al., "Regulators of Angiogenesis", *Ann. Rev. Physiol.*, 53:217-39 (1991); and 5 Folkman et al., "Angiogenesis," *J. Biol. Chem.*, 267:10931-934 (1992). Recent results have implicated several endothelial receptor tyrosine kinases (RTKs) in the establishment and maintenance of the vascular system.

One such growth factor, which is highly specific as a 10 mitogen for vascular endothelial cells, is termed vascular endothelial growth factor (VEGF). See Ferrara et al., "The Vascular Endothelial Growth Factor Family of Polypeptides," *J. Cellular Biochem.*, 47:211-218 (1991); Connolly, "Vascular Permeability Factor: A Unique Regulator of Blood Vessel 15 Function," *J. Cellular Biochem.*, 47:219-223 (1991). VEGF is a potent vasoactive protein that has been detected in media conditioned by a number of cell lines including bovine pituitary follicular cells. VEGF is a glycosylated cationic 46-48 kD dimer made up of two 24 kD subunits. It is 20 inactivated by sulphydryl reducing agents, resistant to acidic pH and to heating, and binds to immobilized heparin. VEGF is sometimes referred to as vascular permeability factor (VPF) because it increases fluid leakage from blood vessels following intradermal injection. It also has been 25 called by the name vasculotropin.

Four different molecular species of VEGF have been detected. The 165 amino acid species has a molecular weight of approximately 46 kD and is the predominant molecular form found in normal cells and tissues. A less abundant, shorter 30 form with a deletion of 44 amino acids between positions 116 and 159 (VEGF_{121}), a longer form with an insertion of 24 highly basic residues in position 116 (VEGF_{189}), and another longer form with an insertion of 41 amino acids (VEGF_{206}), which includes the 24 amino acid insertion found in VEGF_{189} , 35 are also known. VEGF_{121} and VEGF_{165} are soluble proteins. VEGF_{189} and VEGF_{206} appear to be mostly cell-associated. All

of the isoforms of VEGF are biologically active. For example, each of the species when applied intradermally is able to induce extravasation of Evans blue.

The various species of VEGF are encoded by the same gene and arise from alternative splicing of messenger RNA. This conclusion is supported by Southern blot analysis of human genomic DNA, which shows that the restriction pattern is identical using either a probe for VEGF₁₆₅ or one which contains the insertion in VEGF₂₀₆. Analysis of genomic clones in the area of putative mRNA splicing also shows an intron/exon structure consistent with alternative splicing.

10 The different isoforms of VEGF have different chemical properties which may regulate cellular release, compartmentalization, bioavailability and possibly also modulate the signalling properties of the growth factors.

15 Analysis of the nucleotide sequence of the VEGF gene indicates that VEGF is a member of the platelet-derived growth factor (PDGF) family. VEGF and PlGF are ligands for two endothelial RTKs, flt-1 (VEGF receptor 1, VEGFR1) and flk-1/KDR (VEGF receptor 2, VEGFR2). The amino acid sequence of VEGF exhibits approximately 20% homology to the sequences of the A and B chains of PDGF, as well as complete conservation of the eight cysteine residues found in both mature PDGF chains. VEGF₁₆₅, VEGF₁₈₉, and VEGF₂₀₆ also contain 20 eight additional cysteine residues within the carboxy-terminal region. The amino-terminal sequence of VEGF is preceded by 26 amino acids corresponding to a typical signal sequence. The mature protein is generated directly following signal sequence cleavage without any intervening prosequence. The existence of a potential glycosylation site at Asn⁷⁴ is consistent with other evidence that VEGF is a glycoprotein, but the polypeptide has been reported to exist in both glycosylated and deglycosylated species.

25 30 Like other cytokines, VEGF can have diverse effects that depend on the specific biological context in which it is found. VEGF and its high affinity receptors flt-1 and

KDR/flk-1 are required for the formation and maintenance of the vascular system as well as for both physiological and pathological angiogenesis. VEGF is a potent endothelial cell mitogen and directly contributes to induction of angiogenesis *in vivo* by promoting endothelial cell growth during normal embryonic development, wound healing, and tissue regeneration and reorganization. VEGF is also involved in pathological processes such as growth and metastasis of solid tumors and ischemia-induced retinal disorders. A most striking property of VEGF is its specificity. It is mitogenic *in vitro* at 1 ng/ml for capillary and human umbilical vein endothelial cells, but not for adrenal cortex cells, corneal or lens epithelial cells, vascular smooth muscle cells, corneal endothelial cells, granulosa cells, keratinocytes, BHK-21 fibroblasts, 3T3 cells, rat embryo fibroblasts, human placental fibroblasts and human sarcoma cells. The target cell specificity of VEGF is thus restricted to vascular endothelial cells. VEGF can trigger the entire sequence of events leading to angiogenesis and stimulates angiogenesis *in vivo* in the cornea and in a healing bone graft model. It is able to stimulate the proliferation of endothelial cells isolated from both small and large vessels. Expression of VEGF mRNA is temporally and spatially related to the physiological proliferation of capillary blood vessels in the ovarian corpus luteum or in the developing brain. VEGF expression is triggered by hypoxia so that endothelial cell proliferation and angiogenesis appear to be especially stimulated in ischemic areas. VEGF is also a potent chemoattractant for monocytes. In addition, VEGF induces plasminogen activator and plasminogen activator inhibitor in endothelial cells.

Tumor cells release angiogenic molecules such as VEGF, and monoclonal antibodies to VEGF have been shown to inhibit the growth of certain types of tumor such as rhabdomyosarcoma. See Kim et al., "Inhibition of Vascular

5 Endothelial Growth Factor-Induced Angiogenesis Suppresses Tumor Growth *in vivo*," *Nature*, 362:841-844 (1993). This suggests that blocking VEGF action is of potential therapeutic significance in treating tumors in general, and
highly-vascularized, aggressive tumors in particular.

Summary of the Invention

10 It is an object of the invention to provide a new growth factor having the property of promoting proliferation of endothelial cells.

Another object of the invention is to provide isolated DNA sequences which encode a new growth factor which promotes proliferation of endothelial cells.

15 It is also an object of the invention to provide new products which may be useful in diagnostic and/or therapeutic applications.

20 These and other objects are achieved in accordance with the present invention by providing an isolated DNA which codes for a protein exhibiting the following characteristic amino acid sequence (SEQ ID NO:16):

25 Pro-Xaa-Cys-Val-Xaa-Xaa-Xaa-Arg-Cys-Xaa-Gly-Cys-Cys and having the property of promoting proliferation of endothelial cells or mesodermal cells, the DNA being selected from the group consisting of the DNA of Figures 1 and 2 (SEQ ID NO:1), the DNA of Figure 3 (SEQ ID NO:4), the DNA of Figure 5 (SEQ ID NO:6); the DNA of Figure 7 (SEQ ID NO:8), the DNA of Figure 10 (SEQ ID NO:10), the DNA of Figure 12 (SEQ ID NO:12), the DNA of Figure 14 (SEQ ID NO:14), and DNA's which hybridize under stringent conditions
30 with at least one of the foregoing DNA sequences.

In accordance with further aspects of the invention, the objects are also achieved by providing a protein exhibiting the following characteristic amino acid sequence

35 Pro-Xaa-Cys-Val-Xaa-Xaa-Xaa-Arg-Cys-Xaa-Gly-Cys-Cys (SEQ ID NO:16) and having the property of promoting proliferation of endothelial cells or mesodermal cells,

which protein comprises a sequence of amino acids substantially corresponding to an amino acid sequence selected from the group consisting of the amino acid sequence of Figure 1 (SEQ ID NO:2), the amino acid sequence of Figure 2 (SEQ ID NO:3), the amino acid sequence of Figure 4 (SEQ ID NO:5), the amino acid sequence of Figure 6 (SEQ ID NO:7), the amino acid sequence of Figure 8 (SEQ ID NO:9), the amino acid sequence of Figure 11 (SEQ ID NO:11), the amino acid sequence of Figure 13 (SEQ ID NO:13), and the amino acid sequence of Figure 15 (SEQ ID NO:15).

In further aspects of the invention, the objects are achieved by providing pharmaceutical preparations which comprise such proteins; and by providing antibodies which react with or recognize such proteins.

The novel growth factor of the present invention, referred to hereinafter as vascular endothelial growth factor B or VEGF-B, has close structural similarities to VEGF and to placenta growth factor (PlGF). All of the VEGF-B forms contain the characteristic amino acid sequence

Pro-Xaa-Cys-Val-Xaa-Xaa-Arg-Cys-Xaa-Gly-Cys-Cys
(SEQ ID NO:16) (wherein Xaa represents a variable residue), which is an earmark of the PDGF/VEGF family of growth factors. This characteristic amino acid sequence can be found at amino acids 70 to 82 in Figures 4, 6, 8, 11, 13 and 15.

Clinical applications of the invention include diagnostic applications, acceleration of angiogenesis in wound healing, and inhibition of angiogenesis. Quantitation of VEGF-B in cancer biopsy specimens may be useful as an indicator of future metastatic risk. Topical application of VEGF-B preparations to chronic wounds may accelerate angiogenesis and wound healing. VEGF-B may be used in a manner analogous to VEGF.

According to yet further aspects of the invention, the objects are achieved by providing diagnostic/prognostic means typically in the form of test kits. For example, in

one embodiment of the invention there is provided a diagnostic/prognostic test kit comprising antibodies to the new growth factor of the invention and means for detecting, and more preferably evaluating, binding between the 5 antibodies and the new growth factor of the invention. In one preferred embodiment of the diagnostic/prognostic means according to the invention, either the antibody or the new growth factor is labelled, and either the antibody or the growth factor is substrate-bound, such that the growth 10 factor-antibody interaction can be established by determining the amount of label attached to the substrate following binding between the antibody and the growth factor. In a particularly preferred embodiment of the invention, the diagnostic/prognostic means may be provided 15 as a conventional ELISA kit.

In another alternative embodiment, the diagnostic/prognostic means may comprise PCR means for establishing the genomic sequence structure of a VEGF-B gene of a test individual and comparing this sequence structure 20 with that disclosed in this application in order to detect any abnormalities, with a view to establishing whether any aberrations in VEGF-B expression are related to a given disease condition.

A yet further aspect of the invention concerns an 25 antibody which recognizes VEGF-B and which is suitably labelled.

Another aspect of the invention concerns the provision of a pharmaceutical composition comprising either VEGF-B protein or antibodies thereto. Compositions which comprise 30 VEGF-B protein may optionally further comprise either VEGF or heparin or both.

According to an additional aspect of the invention the manufacture of a medicament is provided which comprises VEGF-B protein and heparin for treating conditions 35 characterized by lack of, or reduction in, angiogenesis.

In another aspect, the invention relates to a protein dimer comprising VEGF-B protein, particularly a disulfide-linked dimer. The protein dimers of the invention include both homodimers of VEGF-B protein and heterodimers of VEGF-B and VEGF.

According to a yet further aspect of the invention there is provided a method for facilitating release of VEGF and/or VEGF-B from a cell comprising exposing a cell which expresses either or both of the aforementioned growth factors to heparin.

Another aspect of the invention involves providing a vector comprising an anti-sense nucleotide sequence which is complementary to at least a part of the DNA sequences disclosed herein which encode the new growth factor of the invention which promotes proliferation of endothelial cells. According to a yet further aspect of the invention such a vector comprising an anti-sense sequence may be used to inhibit, or at least mitigate, VEGF-B expression. The use of a vector of this type to inhibit VEGF-B expression is favored in instances where VEGF-B expression is associated with a disease such as in instances where tumors produce VEGF-B in order to provide for angiogenesis. Transformation of such tumor cells with a vector containing an anti-sense nucleotide sequence would suppress or retard angiogenesis and so would inhibit or retard growth of the tumor.

Brief Description of the Drawings

Figure 1 shows the nucleotide sequence of the (partial) cDNA clone of VEGF-B (SEQ ID NO:1) and the amino acid sequence of the protein segment (SEQ ID NO:2) coded by the first reading frame of the cDNA;

Figure 2 repeats the nucleotide sequence of the (partial) cDNA clone of VEGF-B (SEQ ID NO:1) and the amino acid sequence of the protein segment (SEQ ID NO:3) coded by the second reading frame of the cDNA;

Figure 3 shows the nucleotide sequence of the coding region of a full length cDNA clone of murine VEGF-B₁₆₇, (SEQ ID NO:4);

5 Figure 4 shows the amino acid sequence of murine VEGF-B₁₆₇, (SEQ ID NO:5);

Figure 5 shows the nucleotide sequence of the coding region of a cDNA clone of VEGF-B₁₇₄, (SEQ ID NO:6);

Figure 6 shows the amino acid sequence of VEGF-B₁₇₄, (SEQ ID NO:7);

10 Figure 7 shows the nucleotide sequence of a cDNA clone of VEGF-B₁₁₂, (SEQ ID NO:8);

Figure 8 shows the amino acid sequence of VEGF-B₁₁₂, (SEQ ID NO:9);

15 Figure 9 shows a comparison of the amino acid sequences of mVEGF-B₁₆₇, mVEGF₁₆₄, hPlGF, mPDGF A, and mPDGF B;

Figure 10 shows the nucleotide sequence of a clone of human VEGF-B₁₆₇, (SEQ ID NO:10);

Figure 11 shows the amino acid sequence of human VEGF-B₁₆₇, (SEQ ID NO:11); and

20 Figure 12 shows the nucleotide sequence of murine VEGF-B₁₈₆, (SEQ ID NO:12);

Figure 13 shows the amino acid sequence of murine VEGF-B₁₈₆, (SEQ ID NO:13);

25 Figure 14 shows the nucleotide sequence of human VEGF-B₁₈₆, (SEQ ID NO:14);

Figure 15 shows the amino acid sequence of human VEGF-B₁₈₆, (SEQ ID NO:15);

30 Figure 16 shows an amino acid sequence comparison of murine and human VEGF-B₁₆₇, and VEGF-B₁₈₆ isoforms (SEQ ID NOS: 5, 11, 13 & 15).

Figure 17 shows the schematic structure of mouse and human genes for VEGF-B;

Figure 18 shows a hydrophilicity analysis of murine VEGF-B₁₆₇, and VEGF-B₁₈₆ isoforms;

35 Figure 19 shows a phylogenetic analysis of the VEGF/PDGF family of growth factors;

Figure 20 is a graph showing the induction of [³H]thymidine incorporation by VEGF-B, VEGF and bFGF for human umbilical vein endothelial cells (HUVEC) and bovine capillary endothelial (BCE) cells;

5 Figure 21 is a Northern blot analysis of the expression of VEGF-B₁₈₆ transcripts in several mouse and human tissues;

10 Figure 22 shows the results of immunoprecipitation and SDS-PAGE analysis of cell culture media and detergent solubilized cell lysates from Cos-1 cells transiently transfected with a murine VEGF-B cDNA;

15 Figure 23A shows the results of immunoprecipitation and SDS-PAGE analysis of cell culture media from transfected Cos-1 cells separately expressing murine VEGF-B₁₈₆ and human VEGF₁₆₅;

20 Figure 23B shows the results of immunoprecipitation and SDS-PAGE analysis of cell culture media (M) and detergent solubilized cell lysates (L) of Cos-1 cells which coexpress murine VEGF-B₁₈₆ and human VEGF₁₆₅;

25 Figure 23C shows the results of immunoprecipitation and SDS-PAGE analysis of cell culture media from Cos-1 cells expressing murine VEGF-B₁₈₆ and human VEGF, either separately or in combination, and from mock transfected control cells;

Figure 24 is a schematic illustration of the derivation of VEGF-B promoter-reporter clones; and

25 Figure 25 shows the nucleotide sequence of a 1.55 kb human VEGF-B promoter fragment (SEQ ID NO:17).

Detailed Description of Preferred Embodiments

The present invention thus is directed to new vascular endothelial growth factors, hereinafter referred to as VEGF-B growth factors, which share the angiogenic and other properties of VEGF, but which are distributed and expressed in tissues differently from VEGF.

VEGF-B growth factors are members of the family of platelet derived growth factors and are a growth factors which promote mitosis and proliferation of vascular

endothelial cells and/or mesodermal cells. They are produced by expression of DNA sequences which correspond to, or which are hybridizable under stringent conditions with, any one of the DNA sequences depicted in Figures 1 and 2 (SEQ ID NO:1), Figure 3 (SEQ ID NO:4), Figure 5 (SEQ ID NO:6), Figure 7 (SEQ ID NO:8), Figure 10 (SEQ ID NO:10), Figure 12 (SEQ ID NO:12) or Figure 14 (SEQ ID NO:14). It is intended to include within the scope of the invention all angiogenic proteins encoded by DNA sequences which hybridize under stringent conditions to any one of the foregoing DNA sequences. Suitable hybridization conditions include, for example, 50% formamide, 5 x SSPE buffer, 5 x Denhardts solution, 0.5% SDS and 100 µg/ml of salmon sperm DNA at 42°C overnight, followed by washing 2 x 30 minutes in 2 x SSC at 55°C.

The invention is also directed to an isolated and/or purified DNA which corresponds to, or which hybridizes under stringent conditions with, any one of the foregoing DNA sequences.

In a further aspect, the invention is directed to antibodies of VEGF-B growth factors, and particularly to monoclonal antibodies.

VEGF-B proteins are believed to interact with protein tyrosine kinase growth factor receptors. Details of such receptors are known in the art [See e.g. Wilks, A.F., "Protein Tyrosine Kinase Growth Factor Receptors and Their Ligands in Development, Differentiation, and Cancer," *Adv. Cancer Res.*, 60:43-73 (1993)].

Various adult mouse tissues were tested for expression of transcripts corresponding to VEGF-B by Northern blotting. The size of the mRNA was 1.3-1.4 kb. A mouse multiple tissue Northern blot (MTN, Clontech) was probed with the ~0.9 kb SalI/NotI fragment derived from the pPC67 yeast expression vectors described above. The probe was labelled with ³²P-dCTP using random priming (specific activity 10⁸-10⁹ cpm/µg of DNA). The blot was hybridized overnight at 42°C

using 50% formamide, 5 x SSPE buffer, 2% SDS, 10 x Denhardts solution, 100 µg/ml salmon sperm DNA and 1×10^6 cpm of the labelled probe/ml. The blot was washed at room temperature for 2 x 30 min in 2 x SSC containing 0.05% SDS and then for 5 2 x 20 min at 52°C in 0.1 x SSC containing 0.1% SDS. The blot was then exposed at -70°C for three days using intensifying screens. Kodak XAR film was used. The relative expression levels as determined by visual examinations of the film are listed in the following table:

10

Table 1
Distribution of VEGF-B Transcripts in the Adult Mouse

Tissue	Relative Expression Level
Heart	+++++
Brain	+++
Spleen	(+)
Lung	++
Liver	+
Skeletal Muscle	+++
Kidney	+++
Testis	(+)

+++++ = very strong expression; ++ = rather weak expression;
+++ = strong expression; + = weak expression;
++ = moderate expression; (+) = very weak expression.

25

A human multiple tissue Northern blot (MNT) from Clontech was probed using the murine partial cDNA to determine relative VEGF-B expression levels in various human tissues. The size of the transcript was 1.3-1.4 kb. The 30 conditions were identical to those used for the mouse Northern blot described above. The relative VEGF-B transcript levels for the human Northern blot are listed in the following Table 2. For comparison purposes, Table 2

also lists relative expression level data from the literature for VEGF in various mammalian systems.

Table 2

Tissues	Relative Expression Levels			
	VEGF-B (Northern blot)	VEGF (from literature)		
		human	human	murine
heart	+++++	++	+++	+++
brain	+		+	+
placenta	+			
lung	+	++++		++
liver	(+)	++	(+)	+
skeletal muscle	++++		+++	+
kidney	+	++	+	++
pancreas	+++			
spleen	++		-	+
thymus	+		-	
prostate	+++			
testis	++			(+)
ovary	+++			-
small intestine	++			
colon	+++			
peripheral blood leucocytes	+			

From a comparison of Table 1 and Table 2 it can be seen that mouse and human tissue expression levels of VEGF-B transcripts are relatively similar with the highest expression levels being found in heart and skeletal muscle. Significant differences may be seen in brain and kidney tissue. It should also be noted that tissues containing a

large proportion of both muscular and epithelial cells, such as prostate, pancreas and colon from which some of the most common human tumors originate, express relatively high levels of VEGF-B.

5 A comparison of the relative expression levels of VEGF and VEGF-B in human tissues shows some striking differences. VEGF is expressed rather weakly by human heart tissue, but VEGF-B is very strongly expressed by the same tissue. On the other hand, VEGF is strongly expressed by human lung 10 tissue, but VEGF-B is only weakly expressed by human lung tissue. In a similar vein, human liver tissue expresses VEGF at a moderate level, but VEGF-B is expressed only very weakly. These data evidence that despite their general similarities, the actions of VEGF and VEGF-B are not 15 completely identical.

The expression of VEGF-B transcripts was further analyzed in mouse and human tissues by Northern blotting and compared with the expression of VEGF transcripts. Mouse and human multiple tissue Northern (MTN) blots (Clontech) were 20 hybridized with a ^{32}P -labelled mouse VEGF-B probe (~ 0.9 kb SalI/NotI insert of the clone pcif 2). VEGF expression was analyzed with ^{32}P -labelled VEGF₁₆₅ cDNA as the probe. The hybridizations were carried out at 42°C in 50% deionized formamide, 5 x SSC pH 7.0, 1% SDS, 5 x Denhardt's solution 25 and 100 µg/ml of denatured salmon sperm DNA. The filters were washed 2 x 30 min at 52°C in 2 x SSC containing 0.5% SDS and exposed to Kodak XAR film for 2-5 days at -70°C using intensifying screens. In situ hybridization analysis of adult mouse tissues from CBA mice and of embryos derived 30 from matings of CBA and NMRI mice were carried out essentially as previously described by Korhonen et al., *Blood*, 80, 2548-55 (1992). The RNA probes (a 383 bp antisense probe and a 169 bp sense probe) were generated from a linearized plasmid containing a 440 bp Sal I/Sac I 35 fragment derived from the pcif 2 cDNA clone. Radiolabelled RNA was synthesized using T7 and SP6 RNA polymerases and

[³⁵S]UTP (Amersham Inc.). Alkaline hydrolysis of the probes was omitted. Hematoxylin was used for counterstaining. Control hybridizations with sense strand and RNase A-treated sections did not give signals above background.

5 In mouse tissues the most abundant expression of the 1.4 kb VEGF-B transcript was detected in heart, brain, skeletal muscle, and kidney. The major 3.7 kb VEGF transcript was expressed in heart, brain, lung, skeletal muscle and kidney. In human tissues, the most abundant
10 expression of the 1.4 kb VEGF-B transcript and the major 3.7 and 4.5 kb VEGF transcripts were detected in heart, skeletal muscle, pancreas and prostate. Thus, although clear quantitative differences exist, it appears that VEGF-B and VEGF are coexpressed in many human and mouse tissues.

15 The expression of VEGF-B transcripts was further examined by *in situ* hybridization in sections from adult mouse heart and skeletal muscle and from the early (E 10) mouse embryo. In the adult heart, VEGF-B transcripts are prominently expressed in the myocardium, while no specific
20 signal is detected in arterial smooth muscle. In adult striated muscle, VEGF-B transcripts are expressed by some of the myofibers whereas others seem to lack the transcript. In the E 10 mouse embryo, VEGF-B transcripts are detected mainly in the developing heart. The myocardium of the adult
25 mouse heart has a prominent signal. In striated muscle, VEGF-B expression is seen in subpopulations of myofibers. Strong signals were also obtained in the developing heart of the E10 mouse embryo. Other embryonic structures expressed lower or undetectable levels of transcripts for VEGF-B.
30 Taken together, these tests indicate that VEGF-B transcripts are expressed primarily in muscular tissues. VEGF-B is particularly abundant in heart and skeletal muscle and is co-expressed with VEGF in these and other tissues. In transfected cells, VEGF-B forms cell surface associated,
35 disulfide-linked homodimers and heterodimers with VEGF when coexpressed. A Northern blot analysis of the expression of

VEGF-B₁₈₆ transcripts in several mouse and human tissues using a VEGF-B₁₈₆ isoform specific probe is shown in Figure 21.

The chromosomal location of the VEGF-B gene was assessed by Southern blotting and polymerase chain reaction analysis of somatic cell hybrids and fluorescense *in situ* hybridization (FISH) of metaphase chromosomes. The VEGF-B gene was found on chromosome 11q13, proximal of the cyclin D1 gene. It is interesting that although the cyclin D1 gene is amplified in a number of human carcinomas, the VEGF-B gene was not amplified in several mammary carcinoma cell lines which contained amplified cyclin D1. Nevertheless, mutations in the VEGF-B gene may be related to vascular malformations and/or cardiovascular diseases.

Unless otherwise indicated, the following Examples used standard molecular biology techniques and procedures as disclosed in Ausubel et al. (eds.), *Current Protocols in Molecular Biology*, John Wiley & Sons, New York (1992).

Example 1: Partial cDNA clone with two reading frames.
A partial cDNA clone encoding murine VEGF-B was identified as follows. A cDNA library (E 14.5) derived from poly A+ mRNA isolated from 14.5 day old mouse embryos [Chevray P. and Nathans D., "Protein interaction cloning in yeast: Identification of mammalian proteins that react with the leucine zipper of Jun," *Proc. Natl. Acad. Sci. USA*, 89:5789-93 (1992)] was screened for cellular proteins which potentially might interact with cellular retinoic acid-binding protein type 1 (CRABP-I) using a yeast two-hybrid interaction trap screening technique as described by Gyuris J., Golemis E., Chertkov H. and Brent R., "Cdk1, a Human G1 and S Phase Protein Phosphatase That Associates with Cdk2," *Cell*, 75:791-803 (1993). This screening technique involves a fusion protein that contains a binding domain and that is known to be transcriptionally inert (the "bait"); reporter genes that have no basal transcription and that are bound by the bait; and an expression library which encodes proteins

expressed as chimeras and whose amino termini contain an activation domain and other useful moieties (the "prey"). The screened library was a 14.5 day mouse embryo plasmid library in the yeast expression vector pPC67 obtained from Dr. Pierre Chevray of the Johns Hopkins University, School of Medicine, 725 North Wolfe St., Baltimore, MD 21205. A positive cDNA clone (pcif-2) was recovered from the screening. The positive clone was sequenced using well known, conventional techniques and found to encode a protein highly homologous to VEGF and the other members of the PDGF family of growth factors. The ≈0.9 kb SalI/NotI insert in the plasmid pPC67 was cloned into pBluescript and fully sequenced using T7 and T3 vector primers together with internal primers. The plasmid pBluescript is commercially available from Stratagene Inc., LaJolla, California. The cDNA insert was found to be 886 base pairs long and to encode two polypeptides in different reading frames which were homologous to the N-terminal end and the C-terminal end, respectively, of VEGF. This novel growth factor is referred to hereinafter as VEGF-B. The clone is partial and lacks several amino acids in the amino terminal region and the entire signal sequence.

Figure 1 shows the nucleotide sequence (SEQ ID NO:1) of this partial cDNA clone of VEGF-B and the amino acid sequence (SEQ ID NO:2) encoded in the first reading frame thereof. The DNA sequence of Figure 1 was obtained by conventional sequencing of a clone (pcif-2) in the yeast expression vector pPC67. The clone comprised 886 base pairs and encoded a part of murine VEGF-B.

The isolated cDNA sequence will hybridize with the mammalian genomic DNA, e.g. either murine or human, which contains the VEGF-B gene. In addition to the coding sequence, the genomic DNA will contain one or more promoter sequence(s) which give and direct expression of VEGF-B in one or more specific tissues. Thus the coding sequence of VEGF-B may be linked to muscle-specific promoter elements

which in turn are specific to certain types of muscle fibers.

The nucleotide sequence is translated in two different reading frames into two different amino acid sequences. 5 There is a stop codon (TGA) within the coding sequence at base pairs 309-311. Thus, VEGF-B comes in several splicing variants. The 5' end of the cloned cDNA sequence encodes an 102 amino acid long protein with significant homology to the N-terminal domains of VEGF, PlGF and PDGF A and B. In 10 particular, a number of cysteine residues are perfectly conserved within this group of proteins. In addition to the nucleotide sequence (SEQ ID NO:1), Figure 1 further depicts the deduced amino acid sequence (SEQ ID NO:2) of this first protein.

15 Translation of the C-terminal end of the cDNA (base pairs 308-475) in a different reading frame results in a protein which is highly homologous to the C-terminal part of VEGF₁₆₅, VEGF₁₈₉, and VEGF₂₀₆. Figure 2 again shows the nucleotide sequence (SEQ ID NO:1) of Figure 1, but this time 20 includes the deduced amino acid sequence (SEQ ID NO:3) of the second protein, which is encoded in the second reading frame and is 54 amino acids long. It thus appears that the VEGF-B gene encodes different proteins using alternative splicing of the primary transcript. The last part of the clone, 25 encoding the second peptide might be expressed as a functional protein in other spliced variants of VEGF-B.

The aforescribed proteins may exist in combined association with an additional N-terminal sequence of approximately five (5) to ten (10) amino acids, as well as 30 a further leader sequence of approximately twenty-one (21) to twenty-eight (28) amino acids. Inasmuch such combined amino acid sequences exhibit the property of promoting the proliferation of endothelial cells and the DNA sequences which code for such combined peptide sequences will 35 hybridize under stringent conditions with the DNA sequence of Figures 1 and 2, such amino acid sequences and the DNA

which codes for them are expressly contemplated to be within the scope of the present invention.

Example 2: Cloning of full length cDNA's for mouse VEGF-B.

5 Using the approximately 0.9 kb SalI/NotI cDNA insert of the previously identified cDNA clone of Example 1 as a probe, an adult mouse heart lambda ZAP-II cDNA library obtained from Stratagene Inc., of La Jolla, California was screened using standard techniques. The library was
10 titrated and plated as recommended and filters were prepared. Following prehybridization at 42 °C in 50 % formamide, 5 x SSPE, 5 x Denharts solution, 1 % SDS and 100 ug of salmon sperm DNA/ml, the filters were hybridized at the same temperature and in the same solution containing the
15 denatured radiolabelled probe using 10⁶ cpm/ml of hybridization solution. The probe was labelled using a random priming kit (Amersham). After 16 hours the filters were washed in 2 x SSC containing 0.5 % SDS for 2 x 30 mins at 52 °C. The filters were exposed overnight using
20 intensifying screens at -70 °C. Positive clones were rescreened two times until all plaques on a plate were positive. The inserts from several positive clones were subcloned into the plasmid pBluescript SK+ by *in vivo* excision as recommended by the supplier.

25 Several clones were mapped by restriction enzyme analysis and were found to fall into two distinct groups characterized by the length of a SpeI/BamH1 restriction fragment. The first of these groups comprised three of the restriction mapped clones which each had a 240 bp SpeI/BamH1
30 restriction fragment. The other group comprised a clone which had a 340 bp SpeI/BamH1 fragment. Analysis of this fragment is described in Example 5.

The three clones which exhibited the 240 bp SpeI/BamH1 restriction fragment were fully or partially sequenced
35 (Sequenase 2.0, U.S. Biochemicals), and the characteristics of the clones are summarized as follows:

Nucleotide sequence analyses revealed that two of the cDNA clones were substantially identical, although they differed in length, and one had a mutation. One of the clones was full length and contained an open reading frame 5 encoding 188 amino acid residues in which the first 21 amino acids are a clevable signal sequence. The other of the two substantially identical clones terminated at the G of the start initiation codon. It could be inferred by sequence analysis of additional clones that the sequence preceding 10 the G reads ACCAT. Both of the clones were found to have the same coding region nucleotide sequence, which is depicted in Figure 3 (SEQ ID NO:4). The figure omits the initial thymine and adenine of the start codon (TAG) which were not present in the isolated clones. The deduced amino 15 acid sequence of the open reading frame of the coding region of both of these two cDNA clones is shown in Figure 4 (SEQ ID NO:5). The resulting protein encoded by this sequence is referred to hereinafter as VEGF-B₁₆₇. In each of the protein names used herein, the subscript number refers to the number 20 of amino acids in the mature protein without the signal sequence.

As would be expected, a comparison of the amino acid sequence encoded by these two clones with the partial amino acid sequence deduced from cDNA clone of Example 1 showed a 25 striking similarity. However, the two open reading frames in the clone of Example 1, each of which encoded an amino acid sequence homologous to a different portion of VEGF, are both present in the same reading frame in each of these two clones according to Example 2. The frame shift in the clone 30 of Example 1 is caused by an insertion of two extra adenine units which displace the C-terminal part of the clone of Example 1 out of frame. The reason for this is not presently understood, but may be due to a cloning artifact.

The coding part of the third clone had a nucleotide sequence identical to those of the preceding two clones except for a 21 bp insertion. Figure 5 shows the nucleotide 35

sequence of this third clone (SEQ ID NO:6). To facilitate identification, the 21 extra bases are underlined in the Figure. This insertion gives rise to 7 additional amino acid residues in the mature protein. Thus the resulting 5 protein encoded by this longer cDNA is termed VEGF-B₁₇₄. The amino acid sequence of the protein encoded by the cDNA of Figure 5 is depicted in Figure 6 (SEQ ID NO:7). The seven additional amino acids also are underlined in the figure for ease of identification. The additional amino acids are 10 inserted into the sequence in a splice site, and sequencing of mouse genomic DNA clones indicates that these additional amino acids are the result of true alternative splicing. Furthermore, based on what is known about the receptor binding site locations of PDGF, the insertion occurs in a 15 position in the protein which is probably part of a receptor binding site. The insertion is thus likely to affect receptor binding and could be of functional importance in influencing antagonist and/or different receptor specificity.

20

Example 3: Hybrid cDNA clone.

As previously pointed out this original cDNA clone of Example 1 was not full length and may contain an artifact. However, if the extreme 5' nucleotide sequence of the clones 25 which encode VEGF-B₁₆₇ and/or VEGF-B₁₇₄ is added, the open reading frame encodes a protein of 133 amino acids, yielding a mature protein which is 112 amino acids long and hence is named VEGF-B₁₁₂. The hybrid cDNA sequence encoding VEGF-B₁₁₂ (SEQ ID NO:8) is shown in Figure 7, and the amino acid 30 sequence of the corresponding protein (SEQ ID NO:9) is illustrated in Figure 8.

Figure 9 shows a multiple amino acid sequence alignment for comparison purposes of the 167 amino acid variant of mouse Vascular Endothelial Growth Factor B (mVEGF-B₁₆₇), mouse 35 Vascular Endothelial Growth Factor (mVEGF₁₆₄), human Placenta Growth Factor (hPlGF), mouse Platelet Derived Growth Factor

A (mPDGF A), and mouse Platelet Derived Growth Factor B (mPDGF B). Amino acid residues identical to mouse VEGF-B₁₆₇ are boxed. The homologous relationship of the sequences is apparent, and the figure clearly demonstrates the conserved structure of the growth factors belonging to the PDGF/VEGF family of growth factors, and that VEGF-B is a structural homolog of the other growth factors of this group. Pairwise comparisons of the amino acid sequences show that mouse VEGF-B is approximately 43% identical to mouse VEGF₁₆₄, approximately 30% identical to human PlGF, and approximately 20% identical to mouse PDGF A and B. The conserved cysteine residues are particularly noteworthy. It can be seen that the first eight cysteine residues in the N-terminal domains (i.e. the PDGF-like domains) of the five growth factors are shared by all members of this family, and it is thus evident that the eight cysteine residues, which are involved in intramolecular and intermolecular disulfide bonding, are invariant among these growth factors. Furthermore, the C-terminal domains of mouse VEGF-B₁₆₇ and VEGF₁₆₄ also display a significant similarity with eight additional conserved cysteine residues and several stretches of basic amino acids.

Example 4: Cloning of human VEGF-B cDNA.

10⁶ λ-clones of human fibrosarcoma cDNA library HT1080 in λgt11 (Clontech) were screened with the ~0.9 kb insert of the mouse VEGF-B clone pcif 2 according to standard procedures. Among several positive clones, one, termed H.1 was analyzed more carefully and its nucleotide sequence was determined. The nucleotide sequence indicated that a 207 amino acid isoform of human VEGF-B was encoded. Analysis of this isoform is described subsequently in Example 6. Based on the H.1 sequence two oligonucleotides were designed that would amplify the whole coding region of putative human cDNA corresponding to mouse VEGF-B₁₆₇ isoform:

5' - CACCATGAGCCCTCTGCTCC-3' (forward) (SEQ ID NO:18)

5' - GCCATGTGTCACCTTCGCAG-3' (reverse) (SEQ ID NO:19)

These oligonucleotides were used to amplify by polymerase chain reaction (PCR) the whole coding region of human VEGF-B from oligo-dT primed human erythroleukemia cell (HEL) RNA. The amplified product was cloned into the pCR II-vector of TA cloning kit (Invitrogen) and sequenced using standard techniques. The nucleotide sequence of the human VEGF-B cDNA clone is shown in Fig. 10 (SEQ ID NO:10), and the deduced amino acid sequence of human VEGF-B₁₆₇ is shown in Fig. 11 (SEQ ID NO:11).

The full length mouse cDNA clone of Example 2 and the full length human cDNA clone of Example 4 each encode a polypeptide of 188 amino acids containing an N-terminal hydrophobic putative signal sequence. In analogy with VEGF, the signal peptidase cleavage site is believed to be located between Ala 21 and Pro 22. The putative cleavage site of the signal peptidase is indicated in Figure 16 by an arrow. Accordingly, the processed VEGF-B polypeptides of these two clones each contain 167 amino acids.

Example 5:

The clone which exhibited the 340 bp SpeI/BamH1 fragment isolated in Example 2 was analyzed, and the major portion was found to be identical to the first two clones of Example 2 which exhibited the 240 bp SpeI/BamH1 fragment. The difference is due to the presence of an insertion in the C-terminal part of the sequence.

This 340 bp SpeI/BamH1 DNA fragment encodes a further isoform of mouse VEGF-B containing 207 amino acids. The coding portion of the DNA encoding this protein (SEQ ID NO:12) is illustrated in Figure 12, and the translated amino acid sequence (SEQ ID NO:13) is illustrated in Figure 13. After cleavage of the 21 amino acid leader sequence, the mature protein contains 186 amino acids and is referred to as mVEGF-B₁₈₆. This isoform is clearly a result of

alternative DNA splicing as described below with reference to Figure 17.

Example 6:

5 The H.1 clone isolated as described in Example 4 was found to encode a 207 amino acid isoform of human VEGF-B. The coding portion of the DNA (SEQ ID NO:14) encoding this protein is illustrated in Figure 14 and the translated amino acid sequence (SEQ ID NO:15) is illustrated in Figure 15.
10 Again, this isoform, which is designated hVEGF-B₁₈₆, appears to be a product of alternative splicing.

Both the mVEGF-B₁₈₆ of Example 5 and the hVEGF-B₁₈₆ of Example 6 include a 101 base pair insertion between nucleotides 414 and 415 of the coding sequence of VEGF-B₁₆₇.
15 Following the insertion, the nucleotide sequences of these cDNA clones were identical to the corresponding VEGF-B₁₆₇ sequences. The position of the 101 base pair insertion corresponds to the exon 5-exon 6 junction in VEGF. The insertion results in a frameshift which causes the C-terminal domains of the two VEGF-B isoforms to be entirely different.

The divergence of the C-terminal amino acid sequences starting at amino acid 116 in SEQ ID NOS 11 and 15, which correspond to the two principal VEGF-B isoforms, VEGF-B₁₆₇ and VEGF-B₁₈₆, is reflected by the different biochemical characteristics of the two isoforms. The C-terminal domain of VEGF-B₁₆₇ is strongly basic (net charge +13) and binds heparin. The C-terminal domain of VEGF-B₁₈₆ is weakly basic (net charge +5) and has a long stretch of hydrophobic amino acid residues in its C-terminus. The hydrophobic tail in VEGF-B₁₈₆ is unlikely to behave as a transmembrane domain since this variant of VEGF-B is secreted from cells. Therefore, despite an identical N-terminal domain, these two principal isoforms of VEGF-B have very different biochemical properties. The absence of the highly basic heparin-binding domain from VEGF-B₁₈₆ allows the protein to be freely secreted

from cells. However, the secretion of VEGF-B₁₈₆ is remarkably slow; in a pulse chase experiment using transfected cells, VEGF-B₁₈₆ homodimers were not found in the medium before 1 hour. In contrast, VEGF homodimers and VEGF-B₁₈₆-VEGF dimers 5 appear in the medium within 30 minutes.

Figure 16 shows the aligned amino acid sequences of mouse and human VEGF-B₁₆₇ and VEGF-B₁₈₆ (SEQ ID NOS:5, 11, 13 & 15) in one-letter code. Identical residues are enclosed in boxes, while amino acid residues which differ between 10 mouse and human VEGF-B₁₆₇ and VEGF-B₁₈₆ isoforms are outside the boxes. Mouse and human VEGF-B display approximately 88 % amino acid sequence identity and are highly basic, especially in their C-terminal regions. The C-terminal domains of murine and human VEGF-B₁₈₆ are approximately 85% 15 identical at the amino acid level. The C-terminal domains of murine and human VEGF-B₁₆₇ are approximately 84% identical at the amino acid level. Both polypeptides lack the consensus sequence for N-linked glycosylation (N-X-T/S). The arrow indicates the putative cleavage site for the 20 signal peptidase between Ala²¹ and Pro²². Excluding the signal sequences, the mouse and human VEGF-B₁₆₇ amino acid sequences are highly homologous with only 20 replacements out the the 167 residues. The replacements are clustered in 25 the N-terminus, in two regions around amino acids 60 and 145. All cysteine residues in both VEGF-B₁₆₇ proteins are invariant, but the eight cysteine residues in the C-terminal end of VEGF-B₁₆₇, are not conserved in the VEGF-B₁₈₆ isoforms. It is notable that the mouse and human sequences in the 30 region between residues 66 and 129 are identical apart from one evolutionarily conserved replacement (Q105R). This is of importance since the receptor binding domains are found within this portion of the protein (compared to PDGF structure). From this it can be concluded that it is likely 35 that mouse and human VEGF-B will exhibit cross-reactive binding on the receptor level and thus display identical or similar biological activities.

Example 7: Exon-intron structures of mouse and human VEGF-B genes.

The structure of the human VEGF-B gene was determined by restriction mapping and nucleotide sequence analysis of 5 cloned PCR fragments obtained from PCR reactions employing human genomic DNA as the template, except in the case of the first exon and intron, which were identified from a genomic λ-clone. The structure of the mouse gene was determined by restriction mapping and nucleotide sequence analysis of 10 cloned PCR fragments amplified using different combinations of primers. As a template in these PCR amplifications an isolated genomic λ clone containing the entire mouse VEGF-B gene was used.

Procedure.

15 Several λ clones for the mouse VEGF-B gene were isolated from a 129/Sw λFIX genomic library as recommended by the supplier (Stratagene, Inc.). The ≈0.9 kb SalI/NotI insert of the pcif2 cDNA for VEGF-B (SEQ ID NO:1) was used as the probe. λ DNA from several positive clones were 20 isolated from plate lysates. One of the positive λ-clones (clone 10) was subcloned as BamH1 fragments into pBluescript SK (Stratagene Inc.). Isolated DNA from this same clone was also used as the template in PCR reactions (100 ng of λ DNA/reaction) and the coding parts of the mouse VEGF-B gene 25 were amplified using different combinations of primers. The nucleotide sequences of these primers were derived from the cDNA clones encoding murine VEGF-B₁₆, and murine VEGF-B_{18ε}. Taq DNA polymerase (2.5 U/reaction) was used. The generated PCR fragments were directly cloned into the TA-cloning 30 vector pCR II (Invitrogen Inc.). The exon-intron structure of the mouse VEGF-B gene was established by nucleotide sequence analysis of the subcloned Bam H1 genomic fragments and of the cloned PCR products.

A human genomic λ-clone was isolated by screening 1 × 35 10⁶ clones of a human genomic library in EMBL-3 SP6/T7 (Clontech) using high stringency conditions with a 90 bp

PCR-fragment spanning 5' sequences of human VEGF-B cDNA as the probe. The washing conditions were: one wash at 1 x SSC at room temperature for 30 minutes and two washes at 1 x SSC at 65°C for 30 minutes. Primers for the PCR were:

5 5'-CACCATGAGCCCTCTGCTCC-3' (forward) (SEQ ID NO:18) and
 5'-GGGCATCAGGCTGGGAGACAG-3' (reverse) (SEQ ID NO:19).

The positive λ-clone was subcloned as SacI fragments into pGEM 3Z vector (Promega) and was found to carry the 5'-region of the gene. The remaining parts of the human VEGF-B 10 gene were amplified by PCR using genomic DNA as the template. Different combinations of primers derived from the human cDNA sequence were used. Dynazyme DNA polymerase (2.5 U/reaction, Finnzymes) was used. The amplified PCR fragments were directly cloned into the TA-cloning vector 15 pCR II (Invitrogen Inc.). The exon-intron boundaries and the length of the short introns of the mouse and human VEGF-B genes were determined by nucleotide sequence analysis using vector specific primers or suitable primers derived from the cDNA sequences. The length of the larger introns 20 were calculated based on the length of the amplified PCR fragments when analyzed by agarose gel electrophoresis.

Results.

The results showed that the coding parts of the mouse and human VEGF-B genes span approximately 4 kb of DNA and 25 both genes are divided into seven coding exons ranging from 19 bp (E7) to 236 bp in length (E6). Figure 17 is a schematic representation of the structures of the mouse and human genes for VEGF-B. The exon sizes in base pairs are noted inside the boxes, and the sizes of the introns are 30 noted between the boxes. The introns are not shown to scale. The structures of the untranslated flanking regions of mouse and human VEGF-B genes were not established and are represented by gray boxes. The exon-intron junctions in both genes are listed in the following Table 3:

Table 3

Exon Length	Donor Site	Intron Length (bp)	Acceptor Site
Mouse			
E1 60	T CGC ACC CAG/gtacgtgcgt a Arg Thr Gln	~590	tttcccacag/GCC CCT GTG T Ala Pro Val S
E2 43	CAG AAG AAA G/gtaataatag Gln Lys Lys V	287	ctgcccacag/TG GTG CCA TG al Val Pro Tr
E3 197	C CGA ATG CAG/gtaccaggc l Arg Met Gln	161	ctgagcacag/ATC CTC ATG A Ile Leu Met I
E4 74	GT GAA TGC AG/gtgccagcca ys Glu Cys Ar	178	ctcctcctag/G GTT GCC ATA g Val Ala Ile
mVEGF-B₁₆₆			
E5 36	AG CCA GAC AG/gtgagtttt ys Pro Asp Ar	~200	ctcctcctag/G GTT GCC ATA g Val Ala Ile
E6A 211	Stop codon in exon 6 (TAG)	---	-----
mVEGF-B₁₆₇			
E5 36	AG CCA GAC AG/gtgagtttt ys Pro Asp Se	~300	cccactccag/C CCC AGG ATA r Pro Arg Ile
E6B 135	AC ACC TGT AG/gtaaggagtc sp Thr Cys Ar	~2.6 kb	cactccccag/G TGC CGG AAG g Cys Arg Lys
E7 19	Stop codon in exon 7 (TGA)	---	-----
Human			
E1 60	C CCC GCC CAG/gtacgtgcgg a Pro Ala Gln	~760	tctcccacag/GCC CCT GTC T Ala Pro Val S
E2 43	CAG AGG AAA G/gtaataactta Gln Arg Lys V	275	ctgctcccaag/TG GTG TCA TG al Val Ser Tr
E3 197	C CGG ATG CAG/gtactggca l Arg Met Gln	244	ctgagcacag/ATC CTC ATG A Ile Leu Met I
E4 74	GT GAA TGC AG/gtgccagcca ys Glu Cys Ar	~710	tactttcag/A CCT AAA AAA q Pro Lys Lys
hVEGF-B₁₆₆			
E5 35	AG CCA GAC AG/gtgagtttt ys Pro glu Ar	200	tcctccctag/G GCT GCC ACT q Ala Ala Thr
E6A 211	Stop codon in exon 6 (TAG)	---	-----
hVEGF-B₁₆₇			
E5 36	AG CCA GAC AG/gtgagtttt ys Pro Glu Se	~300	cccactccag/C CCC AGG CCC r Pro Arg Pro
E6B 135	AC ACC TGC AG/gtaggtttgg sp Thr Cys Ar	736	ccctccctag/G TGC CGG AAG g Cys Arg Lys
E7 19	Stop codon in exon 7 (TGA)	---	-----

As previously stated, exon 6 contains an alternative splice acceptor site which enables the gene to produce two different transcripts for VEGF-B isoforms. VEGF-B₁₆₇ uses exons 1-5, the last part of exon 6, and exon 7 (TGA). VEGF-B₁₈₆ uses exons 1 through 5, the first part of exon 6, and terminates in the last part of exon 6 (TAG). Exon 7 is not translated in VEGF-B₁₈₆ since the insertion of the first part of exon 6 introduces a frame shift and gives rise to a stop codon in the last part of exon 6. The position of the stop codon (TAG) for VEGF-B₁₈₆ is marked in exon 6B, and the stop codon (TGA) for VEGF-B₁₆₇ is marked in exon 7.

The introns in both genes vary from 161 bp to approximately 2.6 kb. The length of each exon and the locations of the splice junctions in the two genes were identical, and all splice donor and acceptor sites follow the canonical GT/AG rules, Padgett et al., *Annual Rev. of Biochemistry*, 55:1119-50 (1986). The only notable difference between the mouse and the human genes are the length of introns 1, 4 and 6 which are longer in the mouse gene. All exon-intron boundaries were found to be conserved between VEGF-B and VEGF, but the introns in the VEGF-B genes were generally smaller than in the VEGF gene.

The 300 bp-intron after the exon 5 in VEGF-B differs from the corresponding one in VEGF, which is 3 kb in length and contains an alternatively spliced exon found in the transcripts for VEGF₁₈₉ and VEGF₂₀₆, encoding many basic amino acid residues. When this intron in VEGF-B was analyzed more carefully, no exon corresponding to the 6th exon of VEGF could be found. Instead, the 3' end of this intron and the following exon were found to be identical with the corresponding sequences of the cDNA clones encoding VEGF-B₁₈₆. This is explainable by the fact that the mRNA for VEGF-B₁₈₆ is formed by use of an alternative splice acceptor site during mRNA splicing, resulting in an insertion of a 101 bp intron sequence into these mRNAs.

Figure 18 shows a comparative hydrophilicity analysis of murine VEGF-B₁₆₇ and VEGF-B₁₈₆. The profiles were generated according to Kyle and Dolittle using a window of nine (9) residues. As would be expected, the pattern of hydrophilicity/hydrophobicity is essentially identical from amino acid 1 through amino acid 115. After amino acid 115, the hydrophilicity/hydrophobicity patterns diverge because of the frame shift introduced by the first part of exon 6. Thus, VEGF-B₁₆₇ and VEGF-B₁₈₆ can be expected to exhibit both similar and dissimilar activities.

Figure 19 is a dendrogram showing the phylogenetic relationship of the amino acid sequences of five members of the VEGF/PDGF family of growth factors. The number of replacements or substitutions decreases from the left to the right of the chart. It can be seen that VEGF-B lies between VEGF and the platelet derived growth factor (PDGF) group.

The multiple amino acid sequence alignments of Figures 9 and 16 and the phylogenetic analysis of Figure 19 were carried out according to Hein, *Methods in Enzymology*, Vol. 183, pp. 626-45, Academic Press Inc., San Diego (1990) using the PAM 250 distance table.

Example 8: Antibody Production.

a. Antiserum to Mouse VEGF-B.

Antisera to mouse VEGF-B were raised by immunizing rabbits with a 18-mer oligopeptide comprising the N-terminal region of processed VEGF-B, coupled to keyhole limpet hemocyanin. Cysteine residues were introduced as the N-terminal and C-terminal amino acid residues to allow coupling of the peptide to the carrier protein using SPDP (Pharmacia). The sequence of the oligopeptide was

C-P-V-S-Q-F-D-G-P-S-H-Q-K-K-V-V-P-C (SEQ ID NO:21).

Each rabbit received a subcutaneous injection with 300 µg of the peptide conjugate emulsified in Complete Freunds Adjuvant. Subcutaneous booster injections were given every second week with the same amount of antigen emulsified in

Incomplete Freunds Adjuvant. Sera were obtained after the second booster injections.

b. Antiserum to Human VEGF-B.

Antipeptide antiserum to human VEGF-B was generated by 5 immunizing rabbits with a branched 23-mer oligopeptide comprising the following N-terminal region amino acid residue sequence (SEQ ID NO:22):

S-Q-P-D-A-P-G-H-Q-R-K-V-V-S-W-I-D-V-Y-T-R-A-T.

The branched 23-mer oligo peptide was synthesized according 10 to Tam, "Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system", *Proc. Natl. Acad. Sci. USA*, Vol. 85, pages 5409-413 (1988). In the first immunization, rabbits were 15 subcutaneously injected with 500 µg of the branched peptide emulsified in Complete Freunds Adjuvant. In the subsequent boosters, 200 µg of the antigen emulsified in Incomplete Freunds Adjuvant was injected. Antisera were collected after the second and third boosters by conventional techniques.

20

Example 9: Biochemical properties of VEGF-B₁₆₇, homo-dimerization, and heterodimerization with VEGF.

The biochemical properties of human VEGF-B₁₆₇ were examined in transfected human embryonic kidney 293EBNA cells 25 (Invitrogen, Inc.). cDNA inserts encoding human VEGF-B₁₆₇ and human VEGF₁₆₅ [see Keck et al., *Science*, Vol. 246, pages 1309-312 (1989)] were individually cloned into the pREP7 expression vector (Invitrogen, Inc.). Human embryo kidney 293EBNA cells (expressing Epstein-Barr virus nuclear 30 antigen-1) were transfected by transient transfection with the respective expression plasmids using calcium phosphate precipitation, and the cells were incubated for 48 hours. As a control, cells also were transfected with an expression vector containing the VEGF-B₁₆₇ cDNA in reverse orientation. 35 Monolayers of cells were incubated in methionine-free and cysteine-free medium for 30 minutes followed by labeling

with 100 μ Ci/ml [35 S]methionine and [35 S]cysteine (Promix, Amersham Inc.) in the same medium for 2 hours. The labeling medium was replaced with normal medium without serum, and labelled proteins were chased for 6 hours. Heparin was 5 included during the chase when indicated (100 μ g/ml). Media were collected after the chase period, and cells were solubilized in 10 mM Tris pH 7.5, 50 mM NaCl, 0.5% sodium deoxycholate, 0.5% Nonidet P-40, 0.1% SDS and 0.1 U/ml aprotinin.

10 VEGF-B₁₆₇ was expressed in the cells transfected with the plasmids containing the VEGF-B₁₆₇ DNA. Aliquots of the culture supernatants from cells treated or untreated with heparin and detergent solubilized cell lysates were subjected to immunoprecipitation with the specific 15 antipeptide antiserum to VEGF-B obtained as described in Example 8 and analyzed by SDS-PAGE under reducing conditions unless otherwise indicated. The data show that VEGF-B₁₆₇ homodimers and VEGF-B₁₆₇ - VEGF₁₆₅ heterodimers are released from cells by heparin. By heparin treatment (1-100 μ g/ml) 20 or 1.2 M NaCl, VEGF-B₁₆₇ was released from cells and found in the supernatant. If cells were not treated with heparin, VEGF-B₁₆₇ remained cell-associated and was not released into the culture medium. Under the same conditions, VEGF₁₆₅ homodimers are secreted from the cells and found in the 25 culture supernatants without heparin treatment.

Under reducing conditions, human VEGF-B₁₆₇ migrated with a Mr of 21 kDa. Analysis of culture supernatants under non-reducing conditions showed that VEGF-B₁₆₇ migrated as an 30 Mr 42 kDa species indicating a dimeric structure. These results suggest that VEGF-B₁₆₇ forms disulfide-linked dimers associated with the cell surface, probably through ionic interactions with extracellular heparan sulfate proteoglycans. The association is likely to be mediated by the C-terminal basic domain, as observed for the longer 35 splice variants of VEGF.

Since VEGF has been shown to form heterodimers with PlGF, it was decided to test whether VEGF₁₆₅ could also form heterodimers with VEGF-B₁₆₇. For this purpose 293EBNA cells were co-transfected with expression vectors encoding both 5 human VEGF₁₆₅ and human VEGF-B₁₆₇, and VEGF-B₁₆₇ was expressed in combination with VEGF₁₆₅. Metabolically labelled proteins were chased in the presence of heparin, and immunoprecipitations were carried out with antisera to either VEGF-B₁₆₇ or VEGF₁₆₅. The antiserum to human VEGF was 10 from R&D Systems. Under non-reducing conditions the VEGF-B₁₆₇-VEGF₁₆₅ heterodimers migrated as Mr 42-46 kDa species. The results show that VEGF-B can form disulfide linked heterodimers with VEGF, which, in the absence of heparin, remain cell-associated. Since homodimers of VEGF₁₆₅ 15 are efficiently secreted into the media, VEGF-B appears to determine the secretion of the heterodimer.

VEGF-B is synthesized normally in the endoplasmic reticulum of the source cell for subsequent export. Recombinant VEGF-B may be produced by inserting a DNA 20 sequence encoding the VEGF-B protein together with suitable operatively linked promoter and control sequences into a suitable vector, such as the well known plasmid pBR322 or a derivative thereof, transforming or transfecting a suitable host cell, such as *E. coli* or a Cos cell, with the resulting 25 vector or other systems well known in the art, screening the resulting transformants or transfectants for VEGF-B expression, and then culturing cell lines or bacterial cell strains which are positive for the expression of VEGF-B. Either a eukaryotic vector or a prokaryotic vector may be 30 used, depending on the type of cell which is to be transfected or transformed therewith. A particularly preferred system for production of recombinant VEGF-B is the baculovirus - insect cell system, which has proved capable of producing excellent yields of recombinant protein.

Example 10: VEGF-B expression using the baculovirus system.

10.1 VEGF-B with its own signal peptide.

a) Cloning and Transfection.

The complete human VEGF-B₁₆₇ gene was inserted into a commercially available plasmid pCRII (Invitrogen Corp.). The HindIII-XbaI fragment from the resulting plasmid pCRII-VEGF-B₁₆₇, which encodes the whole open reading frame of VEGF-B₁₆₇, then was cloned into pFASTBAC1, and both the 3'- and 5'-junctions were sequenced. Bacmid-DNA was prepared according to the manufacturers instructions for the "Bac-To-Bac™ Baculovirus Expression System" (Life Technologies Inc.) and lipofected to Sf900II-adapted Sf9 cells (obtained from Dr. Christian Oker-Blom). Sf9 cells are from the American Type Culture Collection Cell Repository Line Bank, Rockville MD (ATCC CRL-1711). The transfected cells were then cultured on standard TMN-FH medium in 25 cm² culture dishes.

b) Assay for protein expression.

About 72 hours after transfection, the cells were lysed and 1 ml of culture supernatant and the cell lysate were assayed for expressed VEGF-B by immunoprecipitation as described in Example 9 and Western blotting. Lysates from three out of four independently transfected cell cultures were found positive for VEGF-B, although the intensity of the signal in the Western blot varied. The expressed VEGF-B polypeptide in each case was found to correspond in size to the protein expressed in mammalian cells in Example 9.

The viral stock from the cells that gave the strongest signal in Western blotting was amplified two rounds by infecting cells and collecting new virus from the medium. The resulting supernatant was analyzed. Uninfected cells were also analyzed as a negative control. Time course analysis showed that cells harvested between 48 and 72 hours after infection contained the greatest amount of VEGF-B. After 96 hours post infection, as a result of virus-induced cell lysis, VEGF-B could also be detected in the culture supernatant by immunoprecipitation and Western blotting.

Recombinant VEGF-B could be precipitated from the lysate between 20% and 40% $(\text{NH}_4)_2\text{SO}_4$.

10.2 VEGF-B with the Melittin signal peptide (pVTBac).

a) Cloning and transfection.

5 A polymerase chain reaction (PCR) fragment from nucleotide position 68 to 141 was used to introduce a BamHI restriction site immediately after the signal cleavage site in the plasmid pCRII-VEGF-B₁₆, from Example 10.1. The BamHI fragment from this modified pCRII-VEGF-B₁₆, construct was
10 cloned into BamHI opened pVTBac [Tessier et al., "Enhanced secretion from insect cells of a foreign protein fused to the honeybee mellitin signal peptide", Gene, Vol. 98, page 177 (1991)]. Both 3'- and 5'-junctions were sequenced. Sf9
15 cells were cotransfected with the aforescribed pVTBac vector which contained the human VGEF-B₁₆, gene, and with linearized baculovirus DNA (Insectin™, Invitrogen Corp.). The transfected cells then were cultured in TMN-FH medium.

b) Assay for protein expression.

20 Forty-eight hours after transfection, the supernatant was collected and subjected to primary screening by immunoprecipitation. Four positive plaques were isolated.

10.3 A cDNA insert encoding murine VEGF-B₁₈₆ (EcoR1 cut cDNA fragment from a murine VEGF-B₁₈₆ cDNA (SEQ ID NO:12) clone) was cloned into pFASTBAC 1. An EcoR1 cut cDNA
25 fragment from murine VEGF-B₁₆, (SEQ ID NO:4) was also cloned into pFASTBAC 1. The resulting plasmids were transformed into bacteria as described in 10.1 above, and recombined plasmids were isolated and lipofected into Sf9 and Sf21 cells. Supernatants containing recombinant baculovirus were
30 amplified by several rounds of reinfection of Sf21 cells. The final titers of the baculovirus stocks were determined by plaque titration and found to vary between 4×10^6 and 2×10^9 baculovirus particles per milliliter of stock supernatant.

Example 11: Large Scale Production of Recombinant VEGF-B.

Sf21 cells [see Vaughn et al., *In Vitro*, 13:213-17 (1977)] were infected with the baculovirus stocks of Example 10 at a multiplicity of infection of 10 virus particles per 5 cell. The infected Sf21 cells were grown in roller flasks and seeded at a density of 2×10^6 cells per ml of serum free medium (SF900II, Gibco-BRL) for 96 hours. Culture media and cells were then harvested. Aliquots of the cell lysates and of the media were analyzed by SDS-PAGE. Total protein 10 patterns were visualized by staining the gels with Coomassie Brilliant Blue and the presence of expressed VEGF-B isoforms were visualized by immunoblotting using specific antipeptide antibodies to human and mouse VEGF-B as described above in Example 8. The analysis revealed that both human and mouse 15 VEGF-B₁₆₅ polypeptides were of the expected sizes of 21.5 kDa. Both proteins were retained intracellularly in the infected cells and not released into the medium. In contrast, mouse VEGF-B₁₆₅ was readily secreted into the medium in a dimeric form. The VEGF-B₁₆₅ homodimers migrated as a 52-54 kDa 20 species which suggested that insect cell produced protein did not undergo the same covalent modification as found for VEGF-B₁₆₅ secreted from transfected Cos-1 cells.

Example 12: Transfection and analysis of Cos-1 cells
25 expressing VEGF-B₁₆₅.

cDNA inserts encoding mouse VEGF-B₁₆₅ and human VEGF₁₆₅ were cloned into the pSG5 expression vector [Green et al., *Nucleic Acid Res.*, 16:369 (1988)]. Cos-1 cells were maintained in minimal essential medium (MEM) containing 10% 30 fetal calf serum, 2mM glutamine and appropriate antibiotics. For transfections, the cells were replated into 90 mm Petri dishes. The cells were transfected with the expression vectors, separately or in combination, using calcium phosphate precipitation and incubated for 36-48 hours. 35 Monolayers of cells were incubated in medium free of methionine and cysteine for 30 min and then incubated in the

same medium containing 100 μ Ci/ml of [35 S]-methionine and [35 S]-cysteine for 2 hours (Promix Amersham Inc.).

For the pulse-chase experiments, the cells were labeled for 30 minutes, washed twice with normal medium and then 5 incubated for up to 6 hours in MEM without fetal calf serum. Media were collected after the chase period and the cells were solubilized in 10 mM Tris buffer pH 7.5 containing 50 mM NaCl, 0.5% deoxycholate, 0.5% nonidet P-40 and 0.1% SDS. Aliquots of the media and the cell lysates were subjected to 10 immunoprecipitation using the specific antiserum to mouse VEGF-B from Example 8a and a specific antiserum to human VEGF commercially available from R&D Systems. The precipitates were analyzed by SDS-PAGE.

15 Example 13: Biochemical properties of VEGF-B₁₈₆ expressed in transfected Cos-1 cells.

The biochemical properties of mouse VEGF-B₁₈₆ were examined in Cos-1 cells transiently transfected as described in Example 12 with an appropriate expression vector. The 20 cells were metabolically labelled, and proteins from the labelled cells were immunoprecipitated using an antipeptide antibody to VEGF-B. The precipitated material was subjected to SDS-PAGE analysis under reducing conditions. Both the cell culture medium (M) and a detergent solubilized cell 25 lysate (L) were analyzed. The results are shown in Figure 22. It can be seen that cell associated VEGF-B₁₈₆ migrated as an approximately M_r 24,000 polypeptide under reducing conditions. In contrast, VEGF-B₁₈₆ present in the medium of transfected cells migrated as a M_r 32,000 species, suggesting 30 that the protein was covalently modified during its intracellular transport and secretion. The corresponding molecules were not detected in cell lysates or media from mock transfected Cos-1 cells used as a control.

Immunoprecipitation of media and SDS-PAGE analysis 35 under non-reducing conditions, showed an approximately M_r 60,000 species suggesting that VEGF-B₁₈₆ formed disulfide-

linked homodimers. Including 100 ug/ml of heparin during the labelling did not affect the secretion or release of VEGF-B₁₈₆ homodimers from the transfected cells.

5 Example 14: Biosynthesis of VEGF-B₁₈₆ homodimers.

The biosynthesis of VEGF-B₁₈₆ homodimers was examined by pulse-chase experiments. Transfected Cos-1 cells were metabolically labelled for 30 minutes and then chased for up to 4 hours. Immunoprecipitation and SDS-PAGE analysis of 10 detergent solubilized cell lysates and media showed that the cell-associated approximately M_r 24,000 species was readily detected in the lysates throughout the chase period. The decrease in the intensity of this molecular species was associated with an increase in the M_r 32,000 protein present 15 in the media. The M_r 32,000 species appeared in the medium after 1 hour of chase. Highest levels of secreted VEGF-B₁₈₆ were obtained after the 4 hour chase period. No intermediates were detected in the cell lysates, but the secreted M_r 32,000 protein appeared slightly heterogenous. 20 The nature of the modification is presently unknown, but N-linked glycosylation can be excluded in the absence of consensus sites for this modification.

25 Example 15: Formation of heterodimers by VEGF-B₁₈₆.

As noted above, VEGF-B and VEGF are coexpressed in many tissues and VEGF-B₁₆₇-VEGF₁₆₅ heterodimers are readily formed when coexpressed in transfected cells. To examine whether VEGF-B₁₈₆ also could form heterodimers with VEGF₁₆₅, Cos-1 30 cells were transfected as described above with the appropriate expression vectors, either alone or in combination. Metabolically labelled proteins present in the media from the transfected cells were subjected to immunoprecipitations using antisera to VEGF-B and VEGF. Figure 23A shows the results of SDS-PAGE analysis under 35 reducing conditions of the immunoprecipitates from the cell culture media of transiently transfected Cos-1 cells

separately expressing VEGF-B₁₈₆ and VEGF, respectively. It can be seen that the antisera were specific for VEGF-B and VEGF, respectively, with no detectable cross-reactivity.

Cos-1 cells were cotransfected with expression vectors for VEGF-B₁₈₆ and VEGF₁₆₅. Cell culture media (M) and detergent solubilized lysates (L) from the resulting cells which coexpressed VEGF-B₁₈₆ and VEGF₁₆₅ were subjected to immunoprecipitation and SDS-PAGE analysis under reducing conditions. The results are shown in Figure 23B. The test showed that murine VEGF-B₁₈₆ and human VEGF₁₆₅ form intracellular and secreted heterodimers.

Culture media from cells expressing murine VEGF-B₁₈₆ and human VEGF₁₆₅, either separately or in combination, were subjected to immunoprecipitation using antibodies to VEGF-B and VEGF and analyzed by SDS-PAGE under non-reducing conditions. As a control, cell culture medium from mock transfected cells was analyzed. The results are shown in Figure 23C. It was found that VEGF-B₁₈₆ forms secreted disulfide-linked homodimers and that VEGF-B₁₈₆ and VEGF₁₆₅ together form secreted disulfide-linked heterodimers.

To analyze whether heterodimer formation with VEGF affected the secretion and release of VEGF-B₁₈₆, pulse-chase experiments were carried out using Cos-1 cells transiently transfected with expression vectors for VEGF-B₁₈₆ and VEGF₁₆₅. Cell associated disulfide-linked heterodimers could be recovered following the 30 minute labelling period, and secreted heterodimers were recovered from the medium already after a 30 minute chase period. The secreted heterodimers accumulated in the medium for up to 2 hours post labelling. In the 4 hour chase time point there was a decrease in the amount of heterodimers in the medium, possibly due to the degradation of the complex. Some VEGF-B₁₈₆-VEGF heterodimers remained cell-associated throughout the chase. These results suggested that heterodimer formation with VEGF promoted the secretion of VEGF-B₁₈₆ compared to the secretion of VEGF-B₁₈₆ homodimers. Furthermore, the presence of

heterodimers already following the 30 minute labelling period suggested that the slow release of VEGF-B₁₈₆ homodimers was not due an impaired ability of VEGF-B₁₈₆ to dimerize.

5 Example 16: Purification of Secreted VEGF-B₁₈₆ Homodimers.

Secreted VEGF-B₁₈₆ homodimers were isolated from serum free culture media of baculovirus infected Sf21 cells as follows:

a. Initial Separation.

10 The major contaminating protein in the culture media was the baculovirus protein gp64/67, an acidic protein secreted by baculovirus infected cells. To remove this protein, the culture media was concentrated twenty-fold by ultrafiltration and then passed over a Sephadex G-25 column 15 equilibrated in 20 mM phosphate buffer pH 6.5 containing 20 mM NaCL. Eluted proteins were then passed over a CM-Sephadex (Pharmacia) ion-exchange column equilibrated in the same buffer. The column was washed with the phosphate buffer to remove unbound proteins, and bound proteins were 20 eluted by stepwise increasing the NaCl concentration of the elution buffer. The major gp64/67 baculovirus encoded protein did not bind to the ion-exchange column under those conditions while VEGF-B₁₈₆ homodimers eluted at a NaCl concentration of 90 mM. As judged by SDS-PAGE analysis of 25 the eluted fraction, VEGF-B₁₈₆ homodimers were 5-15% pure by this procedure.

b. Purification to Homogeneity.

30 The VEGF-B₁₈₆ homodimers are purified to homogeneity on a MonoS column coupled to a FPLC system (Pharmacia). Bound protein is eluted with a linear gradient of NaCl in 20 mM phosphate buffer pH 6.5.

Example 17:

35 In order to find out whether the two VEGF-B splice isoforms exhibited a differential tissue distribution and whether additional isoforms existed, an RT-PCR analysis was

carried out using total RNA extracted from mouse brain, heart, liver and kidney and from human embryonic heart and skeletal muscle. The transcripts were analyzed by PCR using four pairs of specific primers covering exons 4 to 7 and 5 exons 3 to 7 in the mouse and human VEGF-B genes, respectively.

Procedure.

Total RNA from mouse and human tissues were isolated using standard procedures as disclosed by Chirgwin et al., 10 *Biochemistry*, 18:5294-99 (1979). Two to five µg of total RNA per reaction were used for first strand cDNA synthesis using avian myelostosis virus reverse transcriptase (20 U/reaction). The reactions were primed with oligo-(dT)₁₆. Aliquots of these reactions were used as templates in PCR 15 reactions using Taq DNA polymerase (2.5 U/reaction). To amplify mouse cDNA, two pairs of primers were used. These pairs were obtained by combining a common 5'-primer

5' -CACAGCCAATGTGAATGCA (forward) (SEQ ID NO:23), located in exon 4 with two different 3'-primers
20 5' -GCTCTAACGCCCGCCCTTGGCAATGGAGGAA (reverse) (SEQ ID NO:24) and 5' -ACGTAGATCTTCACTTCGCGGCTTCCG (reverse) (SEQ ID NO:25) (this last primer has a Bgl II site and 4 extra bases in the 5' end) located in exons 6B and 7, respectively. Following analysis by agarose gel electrophoresis, the amplified bands 25 were transferred onto a nylon filter (Genescreen Plus) and sequentially hybridized with oligonucleotide probes specific for exons 6A and 6B. The oligonucleotide probes were 5' -CTCTGTTCCGGGCTGGACTCTA (exon 6A) (SEQ ID NO:26) and 5' -TCAGGGCGTTGACGGCGCTGGTGCAA (exon 6B) (SEQ ID NO:27).
30 The oligonucleotide probes were labeled with [³²P]dCTP using terminal transferase to high specific activity. Hybridizations, using 1 x 10⁶ cpm of labeled probe/ml of solution, were carried out at 37° C in 6 x SSC containing 5 X Denhardt's solution, 0.5% SDS and 100 µg/ml of salmon 35 sperm DNA. The filters were washed at the same temperature

in 6 x SSC containing 0.5% SDS for 2 x 15 min and exposed to film.

The two pairs of primers used for amplification of human cDNA were combined using two different 5'-primers,

5 5' -CCTGACGATGGCCTGGAGTGT (forward) (SEQ ID NO:28), located in exon 3 and

5' -TGTCCCTGGAAGAACACAGCC (forward) (SEQ ID NO:29), located in exon 4, with a common 3'-primer,

5' -GCCATGTGTCACCTCGCAG (reverse) (SEQ ID NO:19)

10 located in exon 7. Aliquots of the amplified products were analyzed by agarose gel electrophoresis. The aliquots were directly cloned in the TA-cloning vector pCR II (Invitrogen, Inc.), and generated plasmids were analyzed by nucleotide sequencing. Amplification of GAPDH served as a control.

15 Results.

Analysis of amplified PCR products by agarose gel electrophoresis showed two major bands of 215 and 316 bp, respectively. These sizes are consistent with the two mRNAs corresponding to VEGF-B₁₆₇, and VEGF-B₁₈₆. These two bands were 20 of the same intensity suggesting that the two isoforms were expressed at approximately equal levels in all mouse and human tissues examined.

To verify the identity of the amplified products from mouse tissues, the PCR-amplified DNA was transferred to a 25 filter and probed with specific oligonucleotide probes for exons 6A and 6B, respectively. The autoradiograms showed that an exon 6-specific probe hybridized with the 316 bp band while the exon 6B specific probe hybridized with both the 215 bp and the 316 bp amplified bands. These results 30 are consistent with the alternative usage of acceptor site in exon 6 to create the two isoforms of VEGF-B and thus all the amplified products corresponded to those predicted from the sequences of VEGF-B₁₆₇, and VEGF-B₁₈₆ isoforms.

Agarose gel electrophoresis of products of PCR analysis 35 of total RNA isolated from human embryonic heart and muscle visualized two major amplified bands of 329 bp and 430 bp.

Taken together, these data demonstrate that VEGF-B₁₆₇ and VEGF-B₁₈₆ are the two major isoforms of VEGF-B in tissues. The pattern of the PCR products and the location of the primers indicate that if any still longer splice isoforms exist for VEGF-B, such transcripts use a splice acceptor site located a little more 5' than in the case of VEGF-B₁₈₆. Furthermore, PCR products corresponding to VEGF₁₂₁, which lacks heparin binding domains, i.e. sequences corresponding to exon 6 in VEGF-B, were not detected. However, splicing of exon 5 to exon 7 would give rise to a transcript encoding an isoform of VEGF-B corresponding to VEGF₁₂₁, and this putative isoform of VEGF-B might be expressed in tissues other than those analyzed in this example.

15 Example 18: Stimulation of Cell Proliferation.

The ability of VEGF-B₁₆₇ to stimulate endothelial cell proliferation was established through analysis of [³H]thymidine incorporation in human umbilical vein endothelial cells (HUVEC) and in bovine capillary endothelial (BCE) cells.

293EBNA cells were transfected as described above with expression vectors for VEGF-B₁₆₇, VEGF₁₆₅ or empty vector (mock) in the presence of 1 µg/ml heparin. Conditioned media from these cells were diluted in respective media, applied to human umbilical vein endothelial cells (HUVEC) and to bovine capillary endothelial (BCE) cells and incorporation of [³H]thymidine was measured. As a positive control recombinant bFGF was added to BCE cells.

To elaborate, conditioned media containing human VEGF-B and human VEGF₁₆₅ were collected from 293EBNA cells transfected with the appropriate expression vectors or with empty vector (mock) in the presence of heparin (1 µg/ml) 48 hours posttransfection. Second passage HUVEC were plated into 96-well plates (4 x 10³ cells/well) in M-199 medium supplemented with 10% fetal bovine serum and incubated for 24 hours. Conditioned media were diluted with the growth

medium, and cells were stimulated for 48 hours. Fresh conditioned media containing 10 μ Ci/ml of [³H]thymidine (Amersham Inc.) were added to the cells, and stimulations were continued for another 48 hours. Cells were washed with PBS and trypsinized, and incorporated radioactivity was determined by liquid scintillation counting. BCE cells were seeded into 24-well plates and grown until confluence in minimal essential medium (MEM) supplemented with 10% fetal calf serum. Cells were starved in MEM supplemented with 3% fetal calf serum for 72 hours, after which conditioned media diluted into serum-free medium were added to the cells and the cells were stimulated for 24 hours. [³H]Thymidine was included during the last 4 hours of the stimulation (1 μ Ci/ml). Stimulations with bFGF were carried out as above using 6 ng/ml of recombinant bFGF (Synergen Inc.). Cells were washed with PBS, lysed with NaOH, and incorporated radioactivity was determined by liquid scintillation counting.

Figure 20 is a bar graph showing fold of induction of [³H]thymidine incorporation by VEGF-B₁₆₇ in human umbilical vein endothelial cells (HUVEC) and in bovine capillary endothelial (BCE) cells, as compared to basal activity induced by conditioned medium from the mock transfected cells. For comparison purposes, the induction by VEGF₁₆₅ and by bFGF are also shown. The bars show the mean \pm standard deviation of parallel samples. Similar results were obtained in several other independent experiments. The test results clearly show that VEGF-B induced [³H]thymidine incorporation in both HUVEC and BCE cells and stimulated proliferation of endothelial cells in vitro, thereby demonstrating that VEGF-B is an endothelial growth factor.

Example 19: Identification of human VEGF-B promoter DNA clones and activity.

A human genomic DNA library in bacteriophage λ EMBL was screened using a 5' PCR fragment containing the sequences

from the VEGF-B first and second exons as a probe. Two positive clones were obtained, and one of these was subcloned in the Bluescript SKII plasmid as Sac I fragments. A 1.4 kb fragment was obtained, which contained about 0.4 kb 5 of sequences upstream from an Nco I site present in the cDNA (located less than 100 bp upstream of the ATG translational initiation site).

In addition, an XhoI fragment of about 6 kb from the other λ clone was subcloned into the pGEMEX plasmid. This 10 subclone contained about 1.5 kb of sequences upstream from the NcoI site. The SacI/NcoI fragment and an EcoRI (polylinker) - NcoI fragment were subcloned into pGL3 basic vector (Promega) in the respective transcriptional orientation. DNA of these subclones, and from the pGL3 15 control vector containing the SV40 promoter, was transfected into HeLa cells using calcium phosphate precipitation. Two days after transfection, the luciferase activities were measured from lysates of the transfected cells. The results indicated that the 400 bp SacI/NcoI fragment has promoter 20 activity equal to about 30% of the activity of the pGL3 control vector, while the 1.5 kb fragment gave only background activity. Use of a stronger or more active promoter, for example the CMV promoter or the elongation factor 1-alpha promoter, would probably give higher activity 25 in human cells and tissues. The structure of the cloned fragments is illustrated in Figure 24.

The 1.5 kb fragment upstream of the Nco I site was sequenced. The resulting sequence (SEQ ID NO:17) is 30 illustrated in Figure 25. The sequence obtained revealed a putative silencer element [Weissman and Singer, *Molecular and Cellular Biology*, 11:4228-234 (1991)] composed of two eight-base pair stretches between nucleotides 166-187 (boxed in the drawing). This silencer may be responsible for the relative lack of activity of the 1.5 kb fragment.

Example 20: Analysis of VEGF-B mRNA in melanomas, normal skin and muscle by RT-PCR.

Normal skin and melanoma tissues were obtained from patients attending the Department of Radiotherapy and Oncology, Helsinki University Central Hospital. Four metastatic melanoma specimens were obtained freshly after surgical excision, immediately embedded in Tissue-tek (Miles) and frozen in liquid nitrogen. Samples of normal skin were obtained from volunteer patients undergoing surgery for mammary carcinoma and excision of a cutaneous naevus. All specimens were inspected by a pathologist to confirm the diagnosis.

Total RNA was isolated by the guanidium isothiocyanate procedure [Chomczynski et al., *Anal. Biochem.* 162:156-159 (1987)]. cDNA was synthesized using 0.2 µg of random hexadeoxynucleotide primers, 5 units of murine reverse transcriptase, 5 µg of total RNA as a template and a first-strand cDNA synthesis kit (Pharmacia). After incubation at 37°C for 1 hour, the reaction mixture was stored at -70°C. Negative control samples for PCR amplification were prepared similarly except that reverse transcriptase was not added. β-actin also was tested as an internal standard because it is expressed at a constitutive high level, and its expression does not show much variation in different cells.

For PCR amplification, the primer sequences were selected from the VEGF-B and β-actin genes as follows:
VEGF-B sense: 5'-GCCATGTGTCACCTTCGCAG-3' (SEQ ID NO:19)
VEGF-B antisense: 5'-TGTCCCTGGAAGAACACAGCC-3' (SEQ ID NO:29)
β-actin sense: 5'-CGGGAAATCGTGCCTGACAT-3' (SEQ ID NO:30)
β-actin antisense: 5'-GGAGTTGAAGGTAGTTCTTG-3' (SEQ ID NO:31)
[β-actin sequences comprise nucleotides 2105-2125 and 2411-2432 from Ng et al., *Mol. Cell Biol.* 5:2720-732 (1985)]. An aliquot of 4 µl from the cDNA reaction product was heated to 94°C for 5 minutes and used as a template for PCR amplification with 20 pmol of primers, 10x PCR buffer, 1µl of 20 mM dNTPs and 2.5 U of Taq polymerase. Final volume

was adjusted to 100 μ l with DEPC treated water. Denaturation was at 95°C for 1 minute, annealing at 62°C for 45 seconds, and polymerization at 72°C for 50 seconds, for a total of 35 cycles for VEGF-B and 25 cycles for β -actin.

5 After every 5 cycles, 15 μ l aliquots were taken for analysis.

Electrophoresis of 5 μ l of the PCR reaction mix was performed in a 2% agarose gel containing ethidium bromide. The size marker DNA fragments ranged in length from 24 to 10 726 base pairs (Φ X174 DNA/Hinf I marker from Promega, Madison, WI, USA). The tested samples thus included four metastatic melanomas, muscle, normal skin, a negative control (without reverse transcriptase), and the Φ X174 DNA/Hinf I size marker. The results of the RT-PCR analysis 15 for VEGF-B (PCR product lengths 323 and 234 bp) and for β -actin show that VEGF-B is highly expressed in all melanomas studied, at levels approximately similar to the expression in muscle tissue. On the other hand, normal skin has very 20 little of the VEGF-B RNA. Similar conclusions can be drawn from Northern blotting and hybridization analysis.

The foregoing results indicate that that VEGF-B is a novel growth factor for endothelial cells which plays a role in vascularization, in particular of muscle. Collateral artery growth in ischemic heart or limb may be promoted by 25 arterial administration of a VEGF-B bolus using techniques described by Takeshita et al., *Am. J. Pathol.*, 147:1649-60 (1995). The cell-association of VEGF-B may have several implications for regulation of vascularization and endothelial cell growth. In developing embryos and in 30 contractile tissues, cell-associated VEGF-B may provide spatial cues to outgrowing endothelial cells during establishment and maintenance of the vascular tree. It could also, through its cell-association, support the regeneration of damaged endothelium in adult vessels. 35 Reendothelialization of arterial injury may be promoted by direct application of VEGF-B using techniques described by

Asahara et al., *Circulation*, 91(11):2793-802 (1995). The ability of VEGF-B to modulate the secretion of VEGF by heterodimer formation suggests an indirect role of VEGF-B in VEGF signalling, thereby regulating receptor binding and/or activation as described by Potgens et al., *J. Biol. Chem.*, 269(52):32879-85 (1994). The formation of multiple heterodimeric complexes of these growth factors could provide a basis for a diverse array of regulatory signals for endothelial cells.

VEGF-B can be used as a growth factor for populations of endothelial cells *in vitro*. VEGF-B may be used to promote desirable angiogenesis, i.e. the formation of new blood vessels and capillaries; see Takeshita et al., *supra*. For example, it may be useful in promoting the development of the corpus luteum and endometrium as an aid to initiating and/or maintaining pregnancy. It would also be useful in bone repair by virtue of its action on endothelial cells. Administration of VEGF-B may also be useful in supporting embryogenesis, as well as somatic growth and vascular development and differentiation. Topical application of VEGF-B to wounds may be useful in promoting wound healing, and oral administration of VEGF-B may be useful to accelerate the healing of gastric and/or duodenal ulcers. The ability of VEGF-B to modulate the secretion of VEGF by heterodimer formation could provide a therapeutic role for VEGF-B in diseases where VEGF agonists would be useful; see Potgens et al., *supra*.

VEGF-B may exert proliferative effects on mesodermal cells either directly or via improvements in the blood supply.

VEGF-B has been found to be overexpressed in tumors, such as melanomas. Consequently, assays for VEGF-B expression can be used as tools in tumor diagnosis, and suppression of VEGF-B expression, for example with monoclonal antibodies, may be useful to retard tumor growth.

Tumor assays for VEGF-B may be useful as indicators of metastatic risk. For example, use of VEGF-B antibodies analogous to the procedures described by Takahashi et al., *Cancer Res.*, 55:3964-68 (1995) in order to quantitate neovascularization and proliferation could be used as an indicator of metastatic risk from colon cancer. Assays of VEGF-B in body fluids or the tumor itself by histochemistry may be useful as a tumor prognostic factor. An ELISA analogous to the procedure described by Kondo et al., *Biochimica et Biophysica Acta*, 1221(2):211-14 (1994) may be useful to detect VEGF-B upregulation as a tumor screen. An enzyme linked immunoabsorbent assay of VEGF-B expression using techniques described by Boocock et al., *J. Natl. Cancer Inst.*, 87:506-16 (1995) may be useful as a diagnostic index of ovarian cancer. An assay of VEGF-B expression similar to the VEGF assay described by Weindel et al., *Neurosurgery*, 35:439-48 (1994) may be useful as an indicator of malignancy in brain tumors.

Furthermore, because tumor growth requires angiogenesis, administration of VEGF-B may also be useful in promoting tumor growth in laboratory animals in order to test anti-tumorigenic drugs. VEGF-B may also be useful to increase the microvascularity of hypoxic areas of tumors and make them more sensitive to radiation, radiation sensitizing drugs, etc.

The angiogenic action of VEGF-B may be useful in treating ischemic conditions. Administration of an intra-arterial bolus of VEGF-B by the techniques described in Bauters et al., *American Journal of Physiology*, 267(4 Pt 2):H1263-71 (1994) may be useful to treat lower extremity ischemia and increase perfusion in the extremities. Using procedures described by Mesri et al., *Circulation Research*, 76:161-67 (1995) an angiogenic response may be produced in tissue injected with fibroblast cells transduced with a virus which expresses VGEF-B in order to treat tissue ischemia (e.g. myocardial ischemia). VEGF-B or agonists

could be used to stimulate the development of collateral circulation in cases of arterial and/or venous obstruction, e.g. myocardial infarcts, ischaemic limbs, deep venous thrombosis, and/or postpartum vascular problems; see
5 Takeshita et al, *supra*.

A VEGF-B/VEGF-B receptor system may be used as an assay system to detect small molecules as agonists/antagonists for development as new drugs. Examples of small molecules which could be detected include, but are not limited to, organic
10 chemicals, peptides, and RNA molecules.

Pharmaceutical compositions may be produced by admixing a pharmaceutically effective amount of VEGF-B protein with one or more suitable carriers or adjuvants such as water, mineral oil, polyethylene glycol, starch, talcum, lactose,
15 thickeners, stabilizers, suspending agents, etc. Such compositions may be in the form of solutions, suspensions, tablets, capsules, creams, salves, ointments, or other conventional forms.

As demonstrated in Example 7, VEGF-B protein also can
20 be used to produce antibodies. In general, conventional antibody production techniques may be used to produce VEGF-B antibodies. For example, specific monoclonal antibodies may be produced via immunization of fusion proteins obtained by recombinant DNA expression.

25 Labelled monoclonal antibodies, in particular, should be useful in screening for conditions associated with abnormal levels of VEGF-B in the body. For example, an assay of VEGF-B in synovial fluids and/or joint tissue by immunofluorometric techniques analogous to the procedure
30 described by Fava et al., *Journal of Experimental Medicine*, 180:341-46 (1994) may be useful as a diagnostic indicator of rheumatoid arthritis. A radioimmunoassay of VEGF-B in ocular fluid using techniques described by Aiello et al., in *New England Journal of Medicine*, 331(22):1480-87 (1994)
35 may be useful as a diagnostic indicator of diabetic retinopathy, neovascularization of the iris or retinal vein

occlusion. Immunoassays of VEGF-B levels in blood, urine or other bodily fluids may be useful also as a tumor marker; see Kondo et al., *supra*. These monoclonal antibodies to VEGF-B also may be useful in inhibiting angiogenesis 5 associated with high levels of VEGF-B in the body, e.g. in rapidly proliferating, angiogenesis-dependent tumors in mammals, and thereby may retard the growth of such tumors. Treatment with a monoclonal antibody specific for VEGF-B using techniques analogous to those described by Kim et al., 10 in *Nature*, 362(6243):841-44 (1993) may be useful to suppress or inhibit tumor growth *in vivo*. Intravenous and/or subcutaneous injection of monoclonal antibodies to VEGF-B using procedures like those described by Asano et al., in *Cancer Research*, 55:5296-5301 (1995) may be useful to 15 inhibit neovascularization and primary and metastatic growth of solid tumors. For the therapy of humans, chiaserization or humanization of such monoclonal antibodies is to be preferred. Treatment may be effected, e.g., by twice weekly intraperitoneal injection of 10 to 500 µg, preferably 50-100 20 µg of monoclonal antibody.

VEGF-B antagonists such as antibodies also may be useful to inhibit new blood vessels in diabetic retinopathy, psoriasis, arthropathies and/or vascular tumors such as haemangiomas; see Aiello et al., *supra*.

25 The foregoing description and examples have been set forth merely to illustrate the invention and are not intended to be limiting. Since modifications of the disclosed embodiments incorporating the spirit and substance of the invention may occur to persons skilled in the art, 30 the invention should be construed to include everything within the scope of the appended claims and equivalents thereof.

SEQUENCE LISTING

(1) GENERAL INFORMATION:

(i) APPLICANT: ERIKSSON, Ulf
OLOFSSON, Birgitta
ALITALO, Kari
PAJUSOLA, Katri

(ii) TITLE OF INVENTION: VASCULAR ENDOTHELIAL GROWTH FACTOR-B AND
DNA CODING THEREFOR

(iii) NUMBER OF SEQUENCES: 31

(iv) CORRESPONDENCE ADDRESS:

(A) ADDRESSEE: Evenson, McKeown, Edwards & Lenahan
(B) STREET: 1200 G Street, N.W., Suite 700
(C) CITY: Washington
(D) STATE: DC
(E) COUNTRY: US
(F) ZIP: 20005

(v) COMPUTER READABLE FORM:

(A) MEDIUM TYPE: Floppy disk
(B) COMPUTER: IBM PC compatible
(C) OPERATING SYSTEM: PC-DOS/MS-DOS
(D) SOFTWARE: PatentIn Release #1.0, Version #1.25

(vi) CURRENT APPLICATION DATA:

(A) APPLICATION NUMBER: US
(B) FILING DATE: 01-MAR-1996

(vii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/397,651
(B) FILING DATE: 01-MAR-1995

(viii) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/469,427
(B) FILING DATE: 06-JUN-1995

(ix) PRIOR APPLICATION DATA:

(A) APPLICATION NUMBER: US 08/569,063
(B) FILING DATE: 06-DEC-1995

(x) ATTORNEY/AGENT INFORMATION:

(A) NAME: EVANS, Joseph D
(B) REGISTRATION NUMBER: 26,269
(C) REFERENCE/DOCKET NUMBER: 1064/41979PCT

(xi) TELECOMMUNICATION INFORMATION:

(A) TELEPHONE: (202) 628-8800
(B) TELEFAX: (202) 628-8844

(2) INFORMATION FOR SEQ ID NO:1:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 886 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:
 (F) TISSUE TYPE: mouse embryo

(vii) IMMEDIATE SOURCE:
 (B) CLONE: pcif2

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

CGGGACGCC	AGTGGTGCCA	TGGATAGACG	TTTATGCACG	TGCCACATGC	CAGCCCAGGG	60
AGGTGGTGGT	GCCTCTGAGC	ATGGAACTCA	TGGGCAATGT	GGTCAAACAA	CTAGTGCCCA	120
GCTGTGTGAC	TGTGCAGCGC	TGTGGTGGCT	GCTGCCCTGA	CGATGGCCTG	GAATGTGTGC	180
CCACTGGGCA	ACACCAAGTC	CGAATGCAGA	TCCTCATGAT	CCAGTACCCG	AGCAGTCAGC	240
TGGGGGAGAT	GTCCCTGGAA	GAACACAGCC	AATGTGAATG	CAGACCAAAA	AAAAAAAGGA	300
GAGTGCTGTG	AAGCCAGACA	GCCCCAGGAT	CCTCTGCCCG	CCTTGCACCC	AGGCCGTCA	360
ACGCCCTGAC	CCCCGGACCT	GCCGCTGCCG	CTGCAGACGC	CGCCGCTTCC	TCCATTGCCA	420
AGGGCGGGGC	TTAGAGCTCA	ACCCAGACAC	CTGTAGGTGC	CGGAAGCCGC	GAAAGTGACA	480
AGCTGCTTTC	CAGACTCCAC	GGGCCCGGCT	GCTTTTATGG	CCCTGCTTCA	CAGGGACGAA	540
GAGTGGAGCA	CAGGCAAACC	TCCTCAGTCT	GGGAGGTCAC	TGCCCCAGGA	CCTGGACCTT	600
TTAGAGAGCT	CTCTCGCCAT	CTTTTATCTC	CCAGAGCTGC	CATCTAACAA	TTGTCAAGGA	660
ACCTCATGTC	TCACCTCAGG	GGCCAGGGTA	CTCTCTCACT	TAACCACCCCT	GGTCAAGTGA	720
GCATCTTCTG	GCTGGCTGTC	TCCCCTCACT	ATGAAAACCC	CAAAC TTCTA	CCAATAACGG	780
GATTTGGGTT	CTGTTATGAT	AACTGTGACA	CACACACACA	CTCACACTCT	GATAAAAGAG	840
AACTCTGATA	AAAGAGATGG	AAGACACTAA	AAAAAAAAAA	AAAAAAA		886

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 102 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:
 (F) TISSUE TYPE: mouse embryo

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Gly	Arg	Pro	Val	Val	Pro	Trp	Ile	Asp	Val	Tyr	Ala	Arg	Ala	Thr	Cys
1															15
Gln	Pro	Arg	Glu	Val	Val	Val	Pro	Leu	Ser	Met	Glu	Leu	Met	Gly	Asn
															30
Val	Val	Lys	Gln	Leu	Val	Pro	Ser	Cys	Val	Thr	Val	Gln	Arg	Cys	Gly
															45

Gly Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His
 50 55 60

Gln Val Arg Met Gln Ile Leu Met Ile Gln Tyr Pro Ser Ser Gln Leu
 65 70 75 80

Gly Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys
 85 90 95

Lys Lys Arg Arg Val Leu
 100

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 55 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (F) TISSUE TYPE: mouse embryo

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Lys Pro Asp Ser Pro Arg Ile Leu Cys Pro Pro Cys Thr Gln Arg Arg
 1 5 10 15

Gln Arg Pro Asp Pro Arg Thr Cys Arg Cys Arg Cys Arg Arg Arg Arg
 20 25 30

Phe Leu His Cys Gln Gly Arg Gly Leu Glu Leu Asn Pro Asp Thr Cys
 35 40 45

Arg Cys Arg Lys Pro Arg Lys
 50 55

(2) INFORMATION FOR SEQ ID NO:4:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 565 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (F) TISSUE TYPE: adult mouse heart

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

GAGCCCCCTG CTCCGTGCC TGCTGCTTGT TGCAGTGCTG CAGCTGGCTC GCACCCAGGC	60
CCCTGTGTCC CAGTTGATG GCCCCAGCCA CCAGAAGAAA GTGGTGCCAT GGATAGACGT	120

TTATGCACGT	GCCACATGCC	AGCCCAGGGA	GGTGGTGGTG	CCTCTGAGCA	TGAAACTCAT	180
GGGCAATGTG	GTCAAACAAC	TAGTGCCAG	CTGTGTGACT	GTGCAGCGCT	GTGGTGGCTG	240
CTGCCCTGAC	GATGGCCTGG	AATGTGTGCC	CACTGGCAA	CACCAAGTCC	GAATGCAGAT	300
CCTCATGATC	CAGTACCCGA	GCAGTCAGCT	GGGGGAGATG	TCCCTGGAAG	AACACAGCCA	360
ATGTGAATGC	AGACCAAAAAA	AAAAGGAGAG	TGCTGTGAAG	CCAGACAGCC	CCAGGATCCT	420
CTGCCCGCCT	TGCACCCAGC	GCCGTCAACG	CCCTGACCCC	CGGACCTGCC	GCTGCCGCTG	480
CAGACGCCGC	CGCTTCCTCC	ATTGCCAAGG	GCGGGGCTTA	GAGCTCAACC	CAGACACCTG	540
TAGGTGCCGG	AAGCCGCGAA	AGTGA				565

(2) INFORMATION FOR SEQ ID NO:5:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 188 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (F) TISSUE TYPE: adult mouse heart

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

Met	Ser	Pro	Leu	Leu	Arg	Arg	Leu	Leu	Leu	Val	Ala	Leu	Leu	Gln	Leu
1							5							15	
Ala	Arg	Thr	Gln	Ala	Pro	Val	Ser	Gln	Phe	Asp	Gly	Pro	Ser	His	Gln
							20						25		30
Lys	Lys	Val	Val	Pro	Trp	Ile	Asp	Val	Tyr	Ala	Arg	Ala	Thr	Cys	Gln
							35					40		45	
Pro	Arg	Glu	Val	Val	Val	Pro	Leu	Ser	Met	Glu	Leu	Met	Gly	Asn	Val
							50					55		60	
Val	Lys	Gln	Leu	Val	Pro	Ser	Cys	Val	Thr	Val	Gln	Arg	Cys	Gly	Gly
							65				70		75		80
Cys	Cys	Pro	Asp	Asp	Gly	Leu	Glu	Cys	Val	Pro	Thr	Gly	Gln	His	Gln
							85				90		95		
Val	Arg	Met	Gln	Ile	Leu	Met	Ile	Gln	Tyr	Pro	Ser	Ser	Gln	Leu	Gly
							100				105		110		
Glu	Met	Ser	Leu	Glu	Glu	His	Ser	Gln	Cys	Glu	Cys	Arg	Pro	Lys	Lys
							115				120		125		
Lys	Glu	Ser	Ala	Val	Lys	Pro	Asp	Ser	Pro	Arg	Ile	Leu	Cys	Pro	Pro
							130				135		140		
Cys	Thr	Gln	Arg	Arg	Gln	Arg	Pro	Asp	Pro	Arg	Thr	Cys	Arg	Cys	Arg
							145				150		155		160

Cys Arg Arg Arg Arg Phe Leu His Cys Gln Gly Arg Gly Leu Glu Leu
 165 170 175

Asn Pro Asp Thr Cys Arg Cys Arg Lys Pro Arg Lys
 180 185

(2) INFORMATION FOR SEQ ID NO:6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 591 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (F) TISSUE TYPE: adult mouse heart

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

ACCATGAGCC	CCCTGCTCCG	TCGCCTGCTG	CTTGTTCAC	TGCTGCAGCT	GGCTCGCACC	60
CAGGCCCTG	TGTCCCAGTT	TGATGGCCCC	AGCCACCAGA	AGAAAGTGGT	GCCATGGATA	120
GACGTTTATG	CACGTGCCAC	ATGCCAGCCC	AGGGAGGTGG	TGGTGCCTCT	GAGCATGGAA	180
CTCATGGGCA	ATGTGGTCAA	ACAACTAGTG	CCCAGCTGTG	TGACTGTGCA	GCGCTGTGGT	240
GGCTGCTGCC	CTGACGATGG	CCTGGAATGT	GTGCCCACTG	GGCAACACCA	AGTCCGAATG	300
CAGGTACCAAG	GGCCTATGGG	TCAGATCCTC	ATGATCCAGT	ACCCGAGCAG	TCAGCTGGGG	360
GAGATGTCCC	TGGAAGAACCA	CAGCCAATGT	GAATGCAGAC	CAAAAAAAA	GGAGAGTGCT	420
GTGAAGCCAG	ACAGCCCCAG	GATCCTCTGC	CCGCCTTGCA	CCCAGCGCCG	TCAACGCCCT	480
GACCCCGGA	CCTGCCGCTG	CCGCTGCAGA	CGCCGCCGCT	TCCTCCATTG	CCAAGGGCGG	540
GGCTTAGAGC	TCAACCCAGA	CACCTGTAGG	TGCCGGAAGC	CGCGAAAGTG	A	591

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 195 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (F) TISSUE TYPE: adult mouse heart

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Met	Ser	Pro	Leu	Leu	Arg	Arg	Leu	Leu	Leu	Val	Ala	Leu	Leu	Gln	Leu
1															15

Ala Arg Thr Gln Ala Pro Val Ser Gln Phe Asp Gly Pro Ser His Gln
 20 25 30

Lys Lys Val Val Pro Trp Ile Asp Val Tyr Ala Arg Ala Thr Cys Gln
 35 40 45

Pro Arg Glu Val Val Pro Leu Ser Met Glu Leu Met Gly Asn Val
 50 55 60

Val Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly
 65 70 75 80

Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln
 85 90 95

Val Arg Met Gln Val Pro Gly Pro Met Gly Gln Ile Leu Met Ile Gln
 100 105 110

Tyr Pro Ser Ser Gln Leu Gly Glu Met Ser Leu Glu Glu His Ser Gln
 115 120 125

Cys Glu Cys Arg Pro Lys Lys Lys Glu Ser Ala Val Lys Pro Asp Ser
 130 135 140

Pro Arg Ile Leu Cys Pro Pro Cys Thr Gln Arg Arg Gln Arg Pro Asp
 145 150 155 160

Pro Arg Thr Cys Arg Cys Arg Cys Arg Arg Arg Arg Phe Leu His Cys
 165 170 175

Gln Gly Arg Gly Leu Glu Leu Asn Pro Asp Thr Cys Arg Cys Arg Lys
 180 185 190

Pro Arg Lys
 195

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 405 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

ACCATGAGCC CCCTGCTCCG TCGCCTGCTG CTTGTTGCAC TGCTGCAGCT GGCTCGCACC	60
CAGGCCCTG TGTCCCAGTT TGATGGCCCC AGCCACCAGA AGAAAGTGGT GCCATGGATA	120
GACGTTTATG CACGTGCCAC ATGCCAGCCC AGGGAGGTGG TGGTGCCTCT GAGCATGGAA	180
CTCATGGGCA ATGTGGTCAA ACAACTAGTG CCCAGCTGTG TGACTGTGCA GCGCTGTGGT	240
GGCTGCTGCC CTGACCGATGG CCTGGAATGT GTGCCCACTG GGCAACACCA AGTCCGAATG	300
CAGATCCTCA TGATCCAGTA CCCGAGCAGT CAGCTGGGG AGATGTCCCT GGAAGAACAC	360
AGCCAATGTG AATGCAGACC AAAAAAAA AGGAGAGTGC TGTGA	405

(2) INFORMATION FOR SEQ ID NO:9:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 133 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

Met	Ser	Pro	Leu	Leu	Arg	Arg	Leu	Leu	Val	Ala	Leu	Leu	Gln	Leu	
1														15	
Ala	Arg	Thr	Gln	Ala	Pro	Val	Ser	Gln	Phe	Asp	Gly	Pro	Ser	His	Gln
														30	
Lys	Lys	Val	Val	Pro	Trp	Ile	Asp	Val	Tyr	Ala	Arg	Ala	Thr	Cys	Gln
														45	
Pro	Arg	Glu	Val	Val	Val	Pro	Leu	Ser	Met	Glu	Leu	Met	Gly	Asn	Val
														60	
Val	Lys	Gln	Leu	Val	Pro	Ser	Cys	Val	Thr	Val	Gln	Arg	Cys	Gly	Gly
														80	
Cys	Cys	Pro	Asp	Asp	Gly	Leu	Glu	Cys	Val	Pro	Thr	Gly	Gln	His	Gln
														95	
Val	Arg	Met	Gln	Ile	Leu	Met	Ile	Gln	Tyr	Pro	Ser	Ser	Gln	Leu	Gly
														110	
Glu	Met	Ser	Leu	Glu	Glu	His	Ser	Gln	Cys	Glu	Cys	Arg	Pro	Lys	Lys
														125	
Lys	Arg	Arg	Val	Leu											
														130	

(2) INFORMATION FOR SEQ ID NO:10:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 570 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (F) TISSUE TYPE: human fibrosarcoma

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

ACCATGAGCC	CTCTGCTCCG	CCGCCTGCTG	CTCGCCGCAC	TCCTGCAGCT	GGCCCCGCC	60
CAGGCCCTG	TCTCCCAGCC	TGATGCCCT	GGCCACCAGA	GGAAAGTGGT	GTCATGGATA	120
GATGTGTATA	CTCGCGCTAC	CTGCCAGCCC	CGGGAGGTGG	TGGTGCCCTT	GACTGTGGAG	180
CTCATGGGCA	CCGTGGCCAA	ACAGCTGGTG	CCCAGCTGCG	TGACTGTGCA	GCGCTGTGGT	240

GGCTGCTGCC	CTGACGATGG	CCTGGAGTGT	GTGCCCACTG	GGCAGCACCA	AGTCGGATG	300
CAGATCCTCA	TGATCCGGTA	CCCGAGCAGT	CAGCTGGGGG	AGATGTCCCT	GGAAGAACAC	360
AGCCAGTGTG	AATGCAGACC	TAAAAAAAAG	GACAGTGCTG	TGAAGCCAGA	CAGCCCCAGG	420
CCCCTCTGCC	CACGCTGCAC	CCAGCACCAAC	CAGGCCCTG	ACCCCCGGAC	CTGCCGCTGC	480
CGCTGCCGAC	GCCGCAGCTT	CCTCCGTTGC	CAAGGGCGGG	GCTTAGAGCT	CAACCCAGAC	540
ACCTGCAGGT	GCCGGAAGCT	GCGAAGGTGA				570

(2) INFORMATION FOR SEQ ID NO:11:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 188 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (F) TISSUE TYPE: human fibrosarcoma

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Met	Ser	Pro	Leu	Leu	Arg	Arg	Leu	Leu	Leu	Ala	Ala	Leu	Leu	Gln	Leu
1															15
Ala	Pro	Ala	Gln	Ala	Pro	Val	Ser	Gln	Pro	Asp	Ala	Pro	Gly	His	Gln
						20		25						30	
Arg	Lys	Val	Val	Ser	Trp	Ile	Asp	Val	Tyr	Thr	Arg	Ala	Thr	Cys	Gln
						35		40						45	
Pro	Arg	Glu	Val	Val	Val	Pro	Leu	Thr	Val	Glu	Leu	Met	Gly	Thr	Val
						50		55						60	
Ala	Lys	Gln	Leu	Val	Pro	Ser	Cys	Val	Thr	Val	Gln	Arg	Cys	Gly	Gly
						65		70						80	
Cys	Cys	Pro	Asp	Asp	Gly	Leu	Glu	Cys	Val	Pro	Thr	Gly	Gln	His	Gln
						85		90						95	
Val	Arg	Met	Gln	Ile	Leu	Met	Ile	Arg	Tyr	Pro	Ser	Ser	Gln	Leu	Gly
						100		105						110	
Glu	Met	Ser	Leu	Glu	Glu	His	Ser	Gln	Cys	Glu	Cys	Arg	Pro	Lys	Lys
						115		120						125	
Lys	Asp	Ser	Ala	Val	Lys	Pro	Asp	Ser	Pro	Arg	Pro	Leu	Cys	Pro	Arg
						130		135						140	
Cys	Thr	Gln	His	His	Gln	Arg	Pro	Asp	Pro	Arg	Thr	Cys	Arg	Cys	Arg
						145		150						160	
Cys	Arg	Arg	Arg	Ser	Phe	Leu	Arg	Cys	Gln	Gly	Arg	Gly	Leu	Glu	Leu
						165		170						175	
Asn	Pro	Asp	Thr	Cys	Arg	Cys	Arg	Lys	Leu	Arg	Arg				
						180		185							

(2) INFORMATION FOR SEQ ID NO:12:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 624 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

(vi) ORIGINAL SOURCE:

- (F) TISSUE TYPE: mouse

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

ATGAGCCCCC	TGCTCCGTCG	CCTGCTGCTT	GTTGCAGTC	TGCAGCTGGC	TCGCACCCAG	60
GCCCCCTGTGT	CCCAGTTGA	TGGCCCCAGC	CACCAGAAGA	AAGTGGTGCC	ATGGATAGAC	120
GTTCATGCAC	GTGCCACATG	CCAGCCCAGG	GAGGTGGTGG	TGCCTCTGAG	CATGGAACTC	180
ATGGGCAATG	TGGTCAAACA	ACTAGTGC	AGCTGTGTGA	CTGTGCAGCG	CTGTGGTGGC	240
TGCTGCCCTG	ACGATGGCCT	GGAATGTGTG	CCCAC	GGG	AACACCAAGT CCGAATGCAG	300
ATCCTCATGA	TCCAGTACCC	GAGCAGTCAG	CTGGGGGAGA	TGTCCCTGGA	AGAACACAGC	360
CAATGTGAAT	GCAGACCAAA	AAAAAAGGAG	AGTGTGTGA	AGCCAGACAG	GGTTGCCATA	420
CCCCACCAACC	GTCCCCAGCC	CCGCTCTGTT	CCGGGCTGGG	ACTCTACCC	GGGAGCATCC	480
TCCCCAGCTG	ACATCATCCA	TCCCAC	CCCCAGGAT	CCTCTGCCCG	CCTTGCACCC	540
AGCGCCGTCA	ACGCCCTGAC	CCCCGGACCT	GCCGCTGCCG	CTGCAGACGC	CGCCGCTTCC	600
TCCATTGCCA	AGGGCGGGGC	TTAG				624

(2) INFORMATION FOR SEQ ID NO:13:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 207 amino acids
- (B) TYPE: amino acid
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(vi) ORIGINAL SOURCE:

- (F) TISSUE TYPE: mouse

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Met	Ser	Pro	Leu	Leu	Arg	Arg	Leu	Leu	Leu	Val	Ala	Leu	Leu	Gln	Leu
1							5					10			15
Ala	Arg	Thr	Gln	Ala	Pro	Val	Ala	Gln	Phe	Asp	Gly	Pro	Ser	His	Gln
							20					25		30	
Lys	Lys	Val	Val	Pro	Trp	Ile	Asp	Val	Tyr	Ala	Arg	Ala	Thr	Cys	Gln
							35					40		45	

Pro	Arg	Glu	Val	Val	Val	Pro	Leu	Ser	Met	Glu	Leu	Met	Gly	Asn	Val
50						55				60					
Val	Lys	Gln	Leu	Val	Pro	Ser	Cys	Val	Thr	Val	Gln	Arg	Cys	Gly	Gly
65					70				75					80	
Cys	Cys	Pro	Asp	Asp	Gly	Leu	Glu	Cys	Val	Pro	Thr	Gly	Gln	His	Gln
					85				90					95	
Val	Arg	Met	Gln	Ile	Leu	Met	Ile	Gln	Tyr	Pro	Ser	Ser	Gln	Leu	Gly
		100					105							110	
Glu	Met	Ser	Leu	Glu	Glu	His	Ser	Gln	Cys	Glu	Cys	Arg	Pro	Lys	Lys
		115					120					125			
Lys	Glu	Ser	Ala	Val	Lys	Pro	Asp	Arg	Val	Ala	Ile	Pro	His	His	Arg
		130				135					140				
Pro	Gln	Pro	Arg	Ser	Val	Pro	Gly	Trp	Asp	Ser	Thr	Pro	Gly	Ala	Ser
		145				150				155				160	
Ser	Pro	Ala	Asp	Ile	Ile	His	Pro	Thr	Pro	Ala	Pro	Gly	Ser	Ser	Ala
				165				170					175		
Arg	Leu	Ala	Pro	Ser	Ala	Val	Asn	Ala	Leu	Thr	Pro	Gly	Pro	Ala	Ala
				180				185					190		
Ala	Ala	Ala	Asp	Ala	Ala	Ala	Ser	Ser	Ile	Ala	Lys	Gly	Gly	Ala	
				195				200				205			

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 624 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(vi) ORIGINAL SOURCE:

- (F) TISSUE TYPE: human

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

ATGAGCCCTC	TGCTCCGCCG	CCTGCTGCTC	GCCGCACCTCC	TGCAGCTGGC	CCCCGCCAG	60
GCCCCTGTCT	CCCAGCCTGA	TGCCCCCTGGC	CACCAGAGGA	AAGTGGTGTC	ATGGATAGAT	120
GTGTATACTC	GCGCTACCTG	CCAGCCCCGG	GAGGTGGTGG	TGCCCTTGAC	TGTGGAGCTC	180
ATGGGCACCG	TGGCCAAACA	GCTGGTGCCC	AGCTGCGTGA	CTGTGCAGCG	CTGTGGTGGC	240
TGCTGCCCTG	ACGATGGCCT	GGAGTGTGTG	CCCACGGGC	AGCACCAAGT	CCGGATGCAG	300
ATCCTCATGA	TCCGGTACCC	GAGCAGTCAG	CTGGGGGAGA	TGTCCCTGGA	AGAACACAGC	360
CAGTGTGAAT	GCAGACCTAA	AAAAAAGGAC	AGTGCTGTGA	AGCCAGACAG	GGCTGCCACT	420
CCCCACCACC	GTCCCCAGCC	CCGTTCTGTT	CCGGGCTGGG	ACTCTGCCCC	CGGAGCACCC	480
TCCCCAGCTG	ACATCACCCA	TCCCACCTCCA	GCCCCAGGCC	CCTCTGCCCA	CGCTGCACCC	540

AGCACCACCA GCGCCCTGAC CCCCGGACCT GCCGCCGCCG CTGCCGACGC CGCAGCTTCC	600
TCCGTTGCCA AGGGCGGGGC TTAG	624

(2) INFORMATION FOR SEQ ID NO:15:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 207 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: protein

(vi) ORIGINAL SOURCE:
 (F) TISSUE TYPE: human

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

```

Met Ser Pro Leu Leu Arg Arg Leu Leu Ala Ala Leu Leu Gln Leu
1           5                  10                   15

Ala Pro Ala Gln Ala Pro Val Ser Gln Pro Asp Ala Pro Gly His Gln
20          25                  30

Arg Lys Val Val Ser Trp Ile Asp Val Tyr Thr Arg Ala Thr Cys Gln
35          40                  45

Pro Arg Glu Val Val Pro Leu Thr Val Glu Leu Met Gly Thr Val
50          55                  60

Ala Lys Gln Leu Val Pro Ser Cys Val Thr Val Gln Arg Cys Gly Gly
65          70                  75                  80

Cys Cys Pro Asp Asp Gly Leu Glu Cys Val Pro Thr Gly Gln His Gln
85          90                  95

Val Arg Met Gln Ile Leu Met Ile Arg Tyr Pro Ser Ser Gln Leu Gly
100         105                 110

Glu Met Ser Leu Glu Glu His Ser Gln Cys Glu Cys Arg Pro Lys Lys
115         120                 125

Lys Asp Ser Ala Val Lys Pro Asp Arg Ala Ala Thr Pro His His Arg
130         135                 140

Pro Gln Pro Arg Ser Val Pro Gly Trp Asp Ser Ala Pro Gly Ala Pro
145         150                 155                 160

Ser Pro Ala Asp Ile Thr His Pro Thr Pro Ala Pro Gly Pro Ser Ala
165         170                 175

His Ala Ala Pro Ser Thr Thr Ser Ala Leu Thr Pro Gly Pro Ala Ala
180         185                 190

Ala Ala Ala Asp Ala Ala Ser Ser Val Ala Lys Gly Gly Ala
195         200                 205

```

(2) INFORMATION FOR SEQ ID NO:16:

(i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 13 amino acids

(B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

Pro Xaa Cys Val Xaa Xaa Xaa Arg Cys Xaa Gly Cys Cys
 1 5 10

(2) INFORMATION FOR SEQ ID NO:17:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 1550 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

CTCGAGATCT GTTTGTTGTC TTGGAACAAT ACGGTTAGA GGTGACTGGC GGGTGACGAG	60
AACATATGCG AGTCACCTA AGAGAAAAGC TGAATGAGGC AATGCCTCTT CCTGACCATA	120
TCTCTTACTC AGATAACTAT AGAATTATT GTCCAGTAAA GGGTATATTAA AAAAATCATA	180
TTAAAAGTCA TACAGTGAAG TTGTCCAGGG AAATCAAGAC TTAACAGTCT CACTCTGACA	240
ATAATGAACA GGGGGATTCC CTCAAGATAG ACTAGGACAT GACCCCACAC TGGCAGGTAG	300
TAGTACCAAGA AAAGAACGCA TGGAAAATCT TTACCTTATG CTTGAGGTAG GGACCAGGCT	360
AAAGTGAAGG CCAGACCTAA AATTCTATCT AAAATAAATC CACAATCGAA GAAAATATGT	420
GGTGTACAGG TATAGAATGT CTTTACTGGA TCATTGAAAT AGTAAGATAA ATTCAACTTT	480
TTACATTGTT TTCTTTCTT CCAGTTAGGG CTTGAGACCT TCGTCTCTGG AGAGTGACTG	540
TCAATTGGAG CCCTGCTTTC TGGGTTCTG GCCAGGGGG TTGTGGATGC TTAACATGTG	600
CCTTCACAG GACACTTCCT TACCCCAGCA GTGCCANTGT GTGCATCCCA CGACCAGGCC	660
TCCCTCTCAC GGAACATCTG TTGAGACTAG GAGATGCCTG GTGACTGTTG CCTGACCTGT	720
GTCCTGTGTA TTTCTGACAA GAGCCACTCT CAAAGACCCCT GGCCAGGAGG AGAGTTAGGT	780
TCCAGTGTAG GTCAGCTCAG ACAGATGGAG GCCACAGAAN CAAACATGGG AAATCACAGA	840
AGTAGGTTA TTACTCACAG ATCCCTATCC CAACCACCCA GGTGCCCTCT CCTCCAGGGC	900
CAACAGAGGC ATCCTTCAGC AGGAGCGACA ACGGCTAGGG CAGCGGCAAG CCGCCACCAT	960
CCGAGCCAAC CCAGGCCCG AGATCGTGCC CCGGGCGCC GGCCCTGAG GGGCTCACCT	1020
GGATGGGGCC TGCATGCGTT CCCGCTTGC TTCCTTCCCT GGACGGCCCG CTCCCCCGAA	1080
ACGCGCCGCC AATAAAAGTGA TTCGCAGAGC TCGTGTGCGG CTCCCTCCTT AAGGCCCGAC	1140
GCCCCCGGCC CCGGCCTCGC CAAGGGCAGC GCCCGGCCT CCGGGTAGTG GCGGCCGGCG	1200

ACTGGGGAGC CCAGCCTCCT GGGCGGTGCG TCCCCTTCCC CCTGCCGC GG CGGGAGGC GG	1260
GAGGGGGTGT GTGGAGGAGG CGGGCCCCGC CGACGGCCTC GCCCCCCCAC CCCGCCGCC	1320
CGCCCCCGCC CCACGGGCC CGTGGGGAGC GCGTGTCTGG GTCACATGAG CCGCCTGCC	1380
GCCAGCCCGG GCCCAGCCCC CCGCCGCC CGCCGTCCCC GCCGCCGCTG CCCGCCGCA	1440
CCGGCCGCC CGCCGCCGG CTCCCTCCGGC CGCCTTCGCT GCGCTGCNTG CGCTGCCTGC	1500
ACCCAGGGCT CGGGAGGGGG CCGCGGAGGA GCCGCCCGGCC	1550

(2) INFORMATION FOR SEQ ID NO:18:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

CACCATGAGC CCTCTGCTCC

20

(2) INFORMATION FOR SEQ ID NO:19:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 20 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

GCCATGTGTC ACCTTCGCAG

20

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

GGGCATCAGG CTGGGAGACA G

21

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 18 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Cys Pro Val Ser Gln Phe Asp Gly Pro Ser His Gln Lys Lys Val Val
1 5 10 15
Pro Cys

(2) INFORMATION FOR SEQ ID NO:22:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 23 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: peptide

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Ser Gln Pro Asp Ala Pro Gly His Gln Arg Lys Val Val Ser Trp Ile
1 5 10 15
Asp Val Tyr Thr Arg Ala Thr
20

(2) INFORMATION FOR SEQ ID NO:23:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 19 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

CACAGCCAAT GTGAATGCA

19

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 31 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

GCTCTAACGCC CCGCCCTTGG CAATGGAGGA A

31

(2) INFORMATION FOR SEQ ID NO:25:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 28 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

ACGTAGATCT TCACTTTCGC GGCTTCCG

28

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 23 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

CTCTGTTCCG GGCTGGGACT CTA

23

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 27 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

TCAGGGCGTT GACGGCGCTG GGTGCAA

27

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

CCTGACGATG GCCTGGAGTG T

21

(2) INFORMATION FOR SEQ ID NO:29:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 21 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single

(D) TOPOLOGY: linear
(ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

TGTCCCTGGA AGAACACAGC C

21

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 20 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

CGGGAAATCG TGC GTGACAT

20

(2) INFORMATION FOR SEQ ID NO:31:

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: cDNA
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

GGAGTTGAAG TAGTTTCGT G

21

What is claimed is:

1. An isolated DNA which codes for a protein which comprises a characteristic amino acid sequence
Pro-Xaa-Cys-Val-Xaa-Xaa-Xaa-Arg-Cys-Xaa-Gly-Cys-Cys
(SEQ ID NO:16) and has the property of promoting proliferation of endothelial cells or mesodermal cells, said DNA being selected from the group consisting of the DNA of Figures 1 and 2 (SEQ ID NO:1), the DNA of Figure 3 (SEQ ID NO:4), the DNA of Figure 5 (SEQ ID NO:6), the DNA of Figure 7 (SEQ ID NO:8), the DNA of Figure 10 (SEQ ID NO:10), the DNA of Figure 12 (SEQ ID NO:12), the DNA of Figure 14 (SEQ ID NO:14), and DNA which hybridizes under stringent conditions with at least one of the foregoing DNA sequences.
2. A DNA according to claim 1, wherein said DNA is a cDNA.
3. A DNA according to claim 1, comprising a cDNA corresponding to the DNA of Figures 1 and 2 (SEQ ID NO:1).
4. A DNA according to claim 1, wherein said DNA sequence is a mammalian DNA.
5. A DNA according to claim 4, wherein said DNA is a murine DNA.
6. A DNA according to claim 4, wherein said DNA is a human DNA.
7. A DNA according to claim 1, wherein said DNA codes for a protein which promotes proliferation of vascular endothelial cells.
8. A DNA according to claim 1, comprising a cDNA corresponding to the DNA of Figure 3 (SEQ ID NO:4).

9. A DNA according to claim 1, comprising a cDNA corresponding to the DNA of Figure 5 (SEQ ID NO:6).

10. A DNA according to claim 1, comprising a cDNA corresponding to the DNA of Figure 7 (SEQ ID NO:8).

11. A DNA according to claim 1, comprising a cDNA corresponding to the DNA of Figure 10 (SEQ ID NO:10).

12. A DNA according to claim 1, comprising a cDNA corresponding to the DNA of Figure 12 (SEQ ID NO:12).

13. A DNA according to claim 1, comprising a cDNA corresponding to the DNA of Figure 14 (SEQ ID NO:14).

14. A vector comprising a DNA according to claim 1.

15. A vector according to claim 14, wherein said vector is a eukaryotic vector.

16. A vector according to claim 14, wherein said vector is a prokaryotic vector.

17. A vector according to claim 14, wherein said vector is a plasmid.

18. A protein which exhibits a characteristic sequence Pro-Xaa-Cys-Val-Xaa-Xaa-Xaa-Arg-Cys-Xaa-Gly-Cys-Cys (SEQ ID NO:16) and has the property of promoting proliferation of endothelial cells or mesodermal cells, said protein comprising a sequence of amino acids substantially corresponding to an amino acid sequence selected from the group consisting of the amino acid sequence of Figure 1 (SEQ ID NO:2), the amino acid sequence of Figure 2 (SEQ ID NO:3), the amino acid sequence of Figure 4 (SEQ ID NO:5), the amino acid sequence of Figure 6 (SEQ ID NO:7), the amino acid

sequence of Figure 8 (SEQ ID NO:9), the amino acid sequence of Figure 11 (SEQ ID NO:11), the amino acid sequence of Figure 13 (SEQ ID NO:13), and the amino acid sequence of Figure 15 (SEQ ID NO:15).

19. A protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 1 (SEQ ID NO:2).

20. A protein according to claim 18, wherein said protein comprises an amino acid sequence corresponding to the amino acid sequence of Figure 2 (SEQ ID NO:3).

21. A protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 4 (SEQ ID NO:5).

22. A protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 6 (SEQ ID NO:7).

23. A protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 8 (SEQ ID NO:9).

24. A protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 11 (SEQ ID NO:11).

25. A protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 13 (SEQ ID NO:13).

26. A protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 15 (SEQ ID NO:15).

27. A protein according to claim 18, wherein said protein is a mammalian protein.

28. A protein according to claim 27, wherein said protein is a murine protein.

29. A protein according to claim 27, wherein said protein is a human protein.

30. A protein according to claim 18, wherein said protein promotes proliferation of vascular endothelial cells.

31. A protein produced by expression of a DNA selected from the group consisting of the DNA of Figures 1 and 2 (SEQ ID NO:1), the DNA of Figure 3 (SEQ ID NO:4), the DNA of Figure 5 (SEQ ID NO:6), the DNA of Figure 7 (SEQ ID NO:8), the DNA of Figure 10 (SEQ ID NO:10), the DNA of Figure 12 (SEQ ID NO:12), the DNA of Figure 14 (SEQ ID NO:14), and DNA which hybridizes under stringent conditions with at least one of the foregoing DNA sequences.

32. A pharmaceutical composition comprising an effective endothelial or mesodermal cell proliferation promoting amount of a protein according to claim 18, and at least one conventional pharmaceutical carrier or diluent.

33. An antibody which reacts with a protein according to claim 18.

34. An antibody according to claim 33, wherein said antibody is a monoclonal antibody.

35. A host cell transformed or transfected with a vector according to claim 14, such that said host cell expresses a protein having the property of promoting proliferation of endothelial or mesodermal cells.

36. A transfected host cell according to claim 35, wherein said host cell is a eukaryotic cell.

37. A transfected host cell according to claim 35, wherein said host cell is a COS cell.

38. A transformed host cell according to claim 35, wherein said host cell is a prokaryotic cell.

39. A transformed host cell according to claim 35, wherein said host cell is a 293EBNA cell.

40. A transformed host cell according to claim 35, wherein said host cell is an insect cell.

41. A diagnostic means for quantitatively detecting VEGF-B in a test sample, said means comprising an antibody according to claim 33, which reacts with VEGF-B in order to detect the amount of VEGF-B in the sample.

42. A diagnostic means according to claim 41, wherein said antibody is a labelled antibody.

43. A diagnostic means for detecting VEGF-B in a test sample, said means comprising at least one pair of primers complementary to a DNA sequence according to claim 1, for amplifying a test VEGF-B gene by polymerase chain reaction in order to facilitate a sequence comparison of the test VEGF-B gene with the DNA sequence according to claim 1.

44. A pharmaceutical composition comprising an effective VEGF-B-binding amount of antibodies according to claim 33.

45. A pharmaceutical composition comprising an effective endothelial or mesodermal cell proliferation promoting amount of a protein according to claim 18, and VEGF.

46. A pharmaceutical composition according to claim 45, further comprising an amount of heparin effective to assure that a cell proliferation promoting amount of said protein is present free from association with a cell.

47. A pharmaceutical composition according to claim 32, further comprising an amount of heparin effective to assure that a cell proliferation promoting amount of said protein is present free from association with a cell.

48. A pharmaceutical composition comprising an effective angiogenesis stimulating amount of a protein according to claim 18, and heparin.

49. A protein dimer comprising a protein according to claim 18.

50. A protein dimer according to claim 49, wherein said protein dimer is a homodimer of said protein.

51. A protein dimer according to claim 49, wherein said protein dimer is a heterodimer of said protein and VEGF.

52. A protein dimer according to claim 49, wherein said protein dimer is a disulfide-linked dimer.

53. A method of promoting release of at least one protein selected from the group consisting of proteins according to claim 18, and VEGF from a cell which expresses said at least one protein, said method comprising exposing the cell to heparin.

54. A vector comprising an anti-sense nucleotide sequence complementary to at least part of a DNA sequence according to claim 1.

55. A method of retarding expression of VEGF-B from a cell which expresses VEGF-B, said method comprising transfecting said cell with a vector according to claim 54.

56. A method according to claim 55, wherein said cell is a tumor cell.

57. An isolated DNA comprising a nucleotide sequence corresponding to the sequence of Figure 25 (SEQ ID NO:17) or a DNA which hybridizes under stringent conditions to said nucleotide sequence.

AMENDED CLAIMS

[received by the International Bureau on 14 August 1996 (14.08.96);
original claims 1-14, 18-31, 43, 44, 49-52 and 57 amended;
new claims 58-63 added; remaining claims unchanged (8 pages)]

1. An isolated nucleic acid which codes for a protein which comprises a characteristic amino acid sequence

Pro-Xaa-Cys-Val-Xaa-Xaa-Xaa-Arg-Cys-Xaa-Gly-Cys-Cys
(SEQ ID NO:16) and has the property of promoting proliferation of endothelial cells or mesodermal cells, said nucleic acid being selected from the group consisting of the DNA of Figures 1 and 2 (SEQ ID NO:1), the DNA of Figure 3 (SEQ ID NO:4), the DNA of Figure 5 (SEQ ID NO:6), the DNA of Figure 7 (SEQ ID NO:8), the DNA of Figure 10 (SEQ ID NO:10), the DNA of Figure 12 (SEQ ID NO:12), the DNA of Figure 14 (SEQ ID NO:14), and nucleic acid which hybridizes under stringent conditions with at least one of the foregoing DNA sequences.

2. A nucleic acid according to claim 1, wherein said nucleic acid is a cDNA.

3. A nucleic acid according to claim 1, comprising a cDNA corresponding to the DNA of Figures 1 and 2 (SEQ ID NO:1).

4. A nucleic acid according to claim 1, wherein said nucleic acid sequence is a mammalian DNA.

5. A nucleic acid according to claim 4, wherein said nucleic acid is a murine DNA.

6. A nucleic acid according to claim 4, wherein said nucleic acid is a human DNA.

7. A nucleic acid according to claim 1, wherein said nucleic acid codes for a protein which promotes proliferation of vascular endothelial cells.

8. A nucleic acid according to claim 1, comprising a cDNA corresponding to the DNA of Figure 3 (SEQ ID NO:4).

9. A nucleic acid according to claim 1, comprising a cDNA corresponding to the DNA of Figure 5 (SEQ ID NO:6).

10. A nucleic acid according to claim 1, comprising a cDNA corresponding to the DNA of Figure 7 (SEQ ID NO:8).

11. A nucleic acid according to claim 1, comprising a cDNA corresponding to the DNA of Figure 10 (SEQ ID NO:10).

12. A nucleic acid according to claim 1, comprising a cDNA corresponding to the DNA of Figure 12 (SEQ ID NO:12).

13. A nucleic acid according to claim 1, comprising a cDNA corresponding to the DNA of Figure 14 (SEQ ID NO:14).

14. A vector comprising a nucleic acid according to claim 1, operably linked with a promoter sequence.

15. A vector according to claim 14, wherein said vector is a eukaryotic vector.

16. A vector according to claim 14, wherein said vector is a prokaryotic vector.

17. A vector according to claim 14, wherein said vector is a plasmid.

18. An isolated protein which exhibits a characteristic sequence

Pro-Xaa-Cys-Val-Xaa-Xaa-Xaa-Arg-Cys-Xaa-Gly-Cys-Cys
(SEQ ID NO:16) and has the property of promoting proliferation of endothelial cells or mesodermal cells, said protein comprising a sequence of amino acids substantially corresponding to an amino acid sequence selected from the group consisting of the amino acid sequence of Figure 1 (SEQ ID NO:2), the amino acid sequence of Figure 2 (SEQ ID NO:3), the amino acid sequence of Figure 4 (SEQ ID NO:5), the amino acid sequence of Figure 6 (SEQ ID NO:7), the amino acid

sequence of Figure 8 (SEQ ID NO:9), the amino acid sequence of Figure 11 (SEQ ID NO:11), the amino acid sequence of Figure 13 (SEQ ID NO:13), and the amino acid sequence of Figure 15 (SEQ ID NO:15).

19. An isolated protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 1 (SEQ ID NO:2).

20. An isolated protein according to claim 18, wherein said protein comprises an amino acid sequence corresponding to the amino acid sequence of Figure 2 (SEQ ID NO:3).

21. An isolated protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 4 (SEQ ID NO:5).

22. An isolated protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 6 (SEQ ID NO:7).

23. An isolated protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 8 (SEQ ID NO:9).

24. An isolated protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 11 (SEQ ID NO:11).

25. An isolated protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 13 (SEQ ID NO:13).

26. An isolated protein according to claim 18, wherein said protein comprises a sequence of amino acids corresponding to the amino acid sequence of Figure 15 (SEQ ID NO:15).

27. An isolated protein according to claim 18, wherein said protein is a mammalian protein.

28. An isolated protein according to claim 27, wherein said protein is a murine protein.

29. An isolated protein according to claim 27, wherein said protein is a human protein.

30. An isolated protein according to claim 18, wherein said protein promotes proliferation of vascular endothelial cells.

31. An isolated protein produced by expression of a DNA selected from the group consisting of the DNA of Figures 1 and 2 (SEQ ID NO:1), the DNA of Figure 3 (SEQ ID NO:4), the DNA of Figure 5 (SEQ ID NO:6), the DNA of Figure 7 (SEQ ID NO:8), the DNA of Figure 10 (SEQ ID NO:10), the DNA of Figure 12 (SEQ ID NO:12), the DNA of Figure 14 (SEQ ID NO:14), and DNA which hybridizes under stringent conditions with at least one of the foregoing DNA sequences.

32. A pharmaceutical composition comprising an effective endothelial or mesodermal cell proliferation promoting amount of a protein according to claim 18, and at least one conventional pharmaceutical carrier or diluent.

33. An antibody which reacts with a protein according to claim 18.

34. An antibody according to claim 33, wherein said antibody is a monoclonal antibody.

35. A host cell transformed or transfected with a vector according to claim 14, such that said host cell expresses a protein having the property of promoting proliferation of endothelial or mesodermal cells.

36. A transfected host cell according to claim 35, wherein said host cell is a eukaryotic cell.

37. A transfected host cell according to claim 35, wherein said host cell is a COS cell.

38. A transformed host cell according to claim 35, wherein said host cell is a prokaryotic cell.

39. A transformed host cell according to claim 35, wherein said host cell is a 293EBNA cell.

40. A transformed host cell according to claim 35, wherein said host cell is an insect cell.

41. A diagnostic means for quantitatively detecting VEGF-B in a test sample, said means comprising an antibody according to claim 33, which reacts with VEGF-B in order to detect the amount of VEGF-B in the sample.

42. A diagnostic means according to claim 41, wherein said antibody is a labelled antibody.

43. A diagnostic means for detecting VEGF-B in a test sample, said means comprising at least one pair of primers complementary to a nucleic acid sequence according to claim 1, for amplifying a test VEGF-B gene by polymerase chain reaction in order to facilitate a sequence comparison of the test VEGF-B gene with the nucleic acid sequence according to claim 1.

44. A pharmaceutical composition comprising an effective VEGF-B-binding amount of antibodies according to claim 33, and at least one pharmaceutically acceptable carrier or adjuvant.

45. A pharmaceutical composition comprising an effective endothelial or mesodermal cell proliferation promoting amount of a protein according to claim 18, and VEGF.

46. A pharmaceutical composition according to claim 45, further comprising an amount of heparin effective to assure that a cell proliferation promoting amount of said protein is present free from association with a cell.

47. A pharmaceutical composition according to claim 32, further comprising an amount of heparin effective to assure that a cell proliferation promoting amount of said protein is present free from association with a cell.

48. A pharmaceutical composition comprising an effective angiogenesis stimulating amount of a protein according to claim 18, and heparin.

49. An isolated protein dimer comprising a protein according to claim 18.

50. An isolated protein dimer according to claim 49, wherein said protein dimer is a homodimer of said protein.

51. An isolated protein dimer according to claim 49, wherein said protein dimer is a heterodimer of said protein and VEGF.

52. An isolated protein dimer according to claim 49, wherein said protein dimer is a disulfide-linked dimer.

53. A method of promoting release of at least one protein selected from the group consisting of proteins according to claim 18, and VEGF from a cell which expresses said at least one protein, said method comprising exposing the cell to heparin.

54. A vector comprising an anti-sense nucleotide sequence complementary to at least part of a nucleic acid sequence according to claim 1.

55. A method of retarding expression of VEGF-B from a cell which expresses VEGF-B, said method comprising transfecting said cell with a vector according to claim 54.

56. A method according to claim 55, wherein said cell is a tumor cell.

57. An isolated nucleic acid comprising a nucleotide sequence corresponding to the sequence of Figure 25 (SEQ ID NO:17) or a nucleic acid which hybridizes under stringent conditions to said nucleotide sequence.

58. A host cell transformed or transfected with vector comprising a nucleic acid sequence according to claim 1, operatively linked to a suitable promoter, such that said host cell expresses a VEGF-B protein.

59. A host cell according to claim 58, wherein said VEGF-B protein comprises a sequence of amino acids substantially corresponding to an amino acid sequence selected from the group consisting of the amino acid sequence of Figure 1 (SEQ ID NO:2), the amino acid sequence of Figure 2 (SEQ ID NO:3), the amino acid sequence of Figure 4 (SEQ ID NO:5), the amino acid sequence of Figure 6 (SEQ ID NO:7), the amino acid sequence of Figure 8 (SEQ ID NO:9), the amino acid sequence of Figure 11 (SEQ ID NO:11), the amino acid sequence of Figure 13 (SEQ ID NO:13), and the amino acid sequence of Figure 15 (SEQ ID NO:15).

60. A diagnostic means for detecting VEGF-B in a test sample, said means comprising at least one pair of primers complementary to a nucleic acid sequence according to claim 1.

61. A method for obtaining at least one protein selected from the group consisting of proteins according to claim 18, and VEGF from a cell which expresses said at least one protein, said method comprising

- exposing the cell to heparin to induce release of said at least one protein, and
- collecting the released protein.

62. A method of making a vector suitable for expression of VEGF-B protein, said method comprising incorporating a nucleotide sequence according to claim 1, into a vector in operatively linked relation with a suitable promoter.

63. An isolated nucleic acid molecule which encodes a human VEGF-B molecule, wherein said isolated nucleic acid molecule hybridizes to a nucleic acid molecule encoding murine VEGF-B, at 42°C in 50% formamide, 5 x SSC pH 7.0 or 5 x SSPE buffer, 1% to 2% SDS, 5 to 10 x Denhardt's solution and 100 µg/ml of salmon sperm DNA.

(SEO ID NOS: 1 & 2)

FIG.

1 CGGGACGCC
 10 CAGTGGCATGGATAGACCTTTATGCCACGTGCCACATGCCACGTGGTGGTGGCTCT
 17 GAGCATGGAACTCATGGCAATGGTCAAACAACTAGTGCCTGGCAGGGCTGT
 24 GGTGGCTGCTGCCACTGGGAATGGCCACTGGCTGGCAGGGATGTCAGCTGGAGATGTCAGCTGGAGA
 31 TCCTCATGATCCAGTACCGAGTACCCAGTACCGAGCTCAGGAGATGGAAAGAACAGCAATGTGA
 38 LYS PRO ASP SER PRO ARG
 45 AAG CCA GAC AGC CCC AGG
 52 Arg Pro Pro Cys Thr Gln Arg Arg Gln Arg Pro Arg Thr
 60 CGT CAA CGG CCT GAC CCC CGG ACC
 67 Cys Arg Cys Arg Cys Arg Arg Arg Arg Arg Arg Arg Arg Arg
 74 TGC CGC TGC CGC TGC AGA CGA CGC CGC CGC CGC CGC CGC CGC
 81 Leu Glu Leu Asn Pro Asp Thr Cys Arg Cys Arg Lys Pro Arg Lys Stop
 88 TTA GAG CTC AAC CCA GAC ACC TGT AGG TGC CGA AAG TGA CAA
 95 GCTGCTTTCCAGACTCCACGGCCCTGCTTATGGCCATTGAGGCTGGACCTGGACCTGGCTCT
 102 CACAGGCAACCTCCTCAGTGGAGGTCACTGCCACTGGCTGGACCTGGACCTGGCTCT
 109 GCCATCTTATCTCCAGGCTGGCCATTCAACATTGTCAAGGCACTTCACTGGCTGGCTCT
 116 CCAGGGTACTCTCACTAACCAACCCTGGTCAAGTCAGCTGGCTGGCTCT
 123 TATGAAACCCAAACTTCAACCAATAACGGGATTGGTTATGATAACTGTGACACACACA
 130 CACACTCACACTCTGATAAACAGAGACTCTGAAAGAGATGGAAGACACTAA
 137 AAA
 144 2/22
 151 56
 158 41
 165 24
 172 7
 179 21
 186 10
 193 1
 200 17
 207 21
 214 28
 221 35
 228 42
 235 49
 242 56
 249 63
 256 70
 263 77
 270 84
 277 91
 284 98
 291 105
 298 112
 305 119
 312 126
 319 133
 326 140
 333 147
 340 154
 347 161
 354 168
 361 175
 368 182
 375 189
 382 196
 389 203
 396 210
 403 217
 410 224
 417 231
 424 238
 431 245
 438 252
 445 259
 452 266
 459 273
 466 280
 473 287
 480 294
 487 301
 494 308
 501 315
 508 322
 515 329
 522 336
 529 343
 536 350
 543 357
 550 364
 557 371
 564 378
 571 385
 578 392
 585 399
 592 406
 599 413
 606 420
 613 427
 620 434
 627 441
 634 448
 641 455
 648 462
 655 469
 662 476
 669 483
 676 490
 683 497
 690 504
 697 511
 704 518
 711 525
 718 532
 725 539
 732 546
 739 553
 746 560
 753 567
 760 574
 767 581
 774 588
 781 595
 788 602
 795 609
 802 616
 809 623
 816 630
 823 637
 830 644
 837 651
 844 658
 851 665
 858 672
 865 679
 872 686
 879 693
 886 699
 893 706
 900 713
 907 720
 914 727
 921 734
 928 741
 935 748
 942 755
 949 762
 956 769
 963 776
 970 783
 977 790
 984 797
 991 804
 998 811
 1005 818
 1012 825
 1019 832
 1026 839
 1033 846
 1040 853
 1047 860
 1054 867
 1061 874
 1068 881
 1075 888
 1082 895
 1089 902
 1096 909
 1103 916
 1110 923
 1117 930
 1124 937
 1131 944
 1138 951
 1145 958
 1152 965
 1159 972
 1166 979
 1173 986
 1180 993
 1187 1000
 1194 1007
 1201 1014
 1208 1021
 1215 1028
 1222 1035
 1229 1042
 1236 1049
 1243 1056
 1250 1063
 1257 1070
 1264 1077
 1271 1084
 1278 1091
 1285 1098
 1292 1105
 1299 1112
 1306 1119
 1313 1126
 1320 1133
 1327 1140
 1334 1147
 1341 1154
 1348 1161
 1355 1168
 1362 1175
 1369 1182
 1376 1189
 1383 1196
 1390 1203
 1397 1210
 1404 1217
 1411 1224
 1418 1231
 1425 1238
 1432 1245
 1439 1252
 1446 1259
 1453 1266
 1460 1273
 1467 1280
 1474 1287
 1481 1294
 1488 1301
 1495 1308
 1502 1315
 1509 1322
 1516 1329
 1523 1336
 1530 1343
 1537 1350
 1544 1357
 1551 1364
 1558 1371
 1565 1378
 1572 1385
 1579 1392
 1586 1399
 1593 1406
 1600 1413
 1607 1420
 1614 1427
 1621 1434
 1628 1441
 1635 1448
 1642 1455
 1649 1462
 1656 1469
 1663 1476
 1670 1483
 1677 1490
 1684 1497
 1691 1504
 1698 1511
 1705 1518
 1712 1525
 1719 1532
 1726 1539
 1733 1546
 1740 1553
 1747 1560
 1754 1567
 1761 1574
 1768 1581
 1775 1588
 1782 1595
 1789 1602
 1796 1609
 1803 1616
 1810 1623
 1817 1630
 1824 1637
 1831 1644
 1838 1651
 1845 1658
 1852 1665
 1859 1672
 1866 1679
 1873 1686
 1880 1693
 1887 1700
 1894 1707
 1901 1714
 1908 1721
 1915 1728
 1922 1735
 1929 1742
 1936 1749
 1943 1756
 1950 1763
 1957 1770
 1964 1777
 1971 1784
 1978 1791
 1985 1798
 1992 1805
 1999 1812
 2006 1819
 2013 1826
 2020 1833
 2027 1840
 2034 1847
 2041 1854
 2048 1861
 2055 1868
 2062 1875
 2069 1882
 2076 1889
 2083 1896
 2090 1903
 2097 1910
 2104 1917
 2111 1924
 2118 1931
 2125 1938
 2132 1945
 2139 1952
 2146 1959
 2153 1966
 2160 1973
 2167 1980
 2174 1987
 2181 1994
 2188 2001
 2195 2008
 2202 2015
 2209 2022
 2216 2029
 2223 2036
 2230 2043
 2237 2050
 2244 2057
 2251 2064
 2258 2071
 2265 2078
 2272 2085
 2279 2092
 2286 2099
 2293 2106
 2300 2113
 2307 2120
 2314 2127
 2321 2134
 2328 2141
 2335 2148
 2342 2155
 2349 2162
 2356 2169
 2363 2176
 2370 2183
 2377 2190
 2384 2197
 2391 2204
 2398 2211
 2405 2218
 2412 2225
 2419 2232
 2426 2239
 2433 2246
 2440 2253
 2447 2260
 2454 2267
 2461 2274
 2468 2281
 2475 2288
 2482 2295
 2489 2302
 2496 2309
 2503 2316
 2510 2323
 2517 2330
 2524 2337
 2531 2344
 2538 2351
 2545 2358
 2552 2365
 2559 2372
 2566 2379
 2573 2386
 2580 2393
 2587 2400
 2594 2407
 2601 2414
 2608 2421
 2615 2428
 2622 2435
 2629 2442
 2636 2449
 2643 2456
 2650 2463
 2657 2470
 2664 2477
 2671 2484
 2678 2491
 2685 2498
 2692 2505
 2699 2512
 2706 2519
 2713 2526
 2720 2533
 2727 2540
 2734 2547
 2741 2554
 2748 2561
 2755 2568
 2762 2575
 2769 2582
 2776 2589
 2783 2596
 2790 2603
 2797 2610
 2804 2617
 2811 2624
 2818 2631
 2825 2638
 2832 2645
 2839 2652
 2846 2659
 2853 2666
 2860 2673
 2867 2680
 2874 2687
 2881 2694
 2888 2701
 2895 2708
 2902 2715
 2909 2722
 2916 2729
 2923 2736
 2930 2743
 2937 2750
 2944 2757
 2951 2764
 2958 2771
 2965 2778
 2972 2785
 2979 2792
 2986 2799
 2993 2806
 3000 2813
 3007 2820
 3014 2827
 3021 2834
 3028 2841
 3035 2848
 3042 2855
 3049 2862
 3056 2869
 3063 2876
 3070 2883
 3077 2890
 3084 2897
 3091 2904
 3098 2911
 3105 2918
 3112 2925
 3119 2932
 3126 2939
 3133 2946
 3140 2953
 3147 2960
 3154 2967
 3161 2974
 3168 2981
 3175 2988
 3182 2995
 3189 3002
 3196 3009
 3203 3016
 3210 3023
 3217 3030
 3224 3037
 3231 3044
 3238 3051
 3245 3058
 3252 3065
 3259 3072
 3266 3079
 3273 3086
 3280 3093
 3287 3100
 3294 3107
 3301 3114
 3308 3121
 3315 3128
 3322 3135
 3329 3142
 3336 3149
 3343 3156
 3350 3163
 3357 3170
 3364 3177
 3371 3184
 3378 3191
 3385 3198
 3392 3205
 3399 3212
 3406 3219
 3413 3226
 3420 3233
 3427 3240
 3434 3247
 3441 3254
 3448 3261
 3455 3268
 3462 3275
 3469 3282
 3476 3289
 3483 3296
 3490 3303
 3497 3310
 3504 3317
 3511 3324
 3518 3331
 3525 3338
 3532 3345
 3539 3352
 3546 3359
 3553 3366
 3560 3373
 3567 3380
 3574 3387
 3581 3394
 3588 3401
 3595 3408
 3602 3415
 3609 3422
 3616 3429
 3623 3436
 3630 3443
 3637 3450
 3644 3457
 3651 3464
 3658 3471
 3665 3478
 3672 3485
 3679 3492
 3686 3499
 3693 3506
 3700 3513
 3707 3520
 3714 3527
 3721 3534
 3728 3541
 3735 3548
 3742 3555
 3749 3562
 3756 3569
 3763 3576
 3770 3583
 3777 3590
 3784 3597
 3791 3604
 3798 3611
 3805 3618
 3812 3625
 3819 3632
 3826 3639
 3833 3646
 3840 3653
 3847 3660
 3854 3667
 3861 3674
 3868 3681
 3875 3688
 3882 3695
 3889 3702
 3896 3709
 3903 3716
 3910 3723
 3917 3730
 3924 3737
 3931 3744
 3938 3751
 3945 3758
 3952 3765
 3959 3772
 3966 3779
 3973 3786
 3980 3793
 3987 3800
 3994 3807
 4001 3814
 4008 3821
 4015 3828
 4022 3835
 4029 3842
 4036 3849
 4043 3856
 4050 3863
 4057 3870
 4064 3877
 4071 3884
 4078 3891
 4085 3898
 4092 3905
 4099 3912
 4106 3919
 4113 3926
 4120 3933
 4127 3940
 4134 3947
 4141 3954
 4148 3961
 4155 3968
 4162 3975
 4169 3982
 4176 3989
 4183 3996
 4190 4003
 4197 4010
 4204 4017
 4211 4024
 4218 4031
 4225 4038
 4232 4045
 4239 4052
 4246 4059
 4253 4066
 4260 4073
 4267 4080
 4274 4087
 4281 4094
 4288 4101
 4295 4108
 4302 4115
 4309 4122
 4316 4129
 4323 4136
 4330 4143
 4337 4150
 4344 4157
 4351 4164
 4358 4171
 4365 4178
 4372 4185
 4379 4192
 4386 4199
 4393 4206
 4400 4213
 4407 4220
 4414 4227
 4421 4234
 4428 4241
 4435 4248
 4442 4255
 4449 4262
 4456 4269
 4463 4276
 4470 4283
 4477 4290
 4484 4297
 4491 4304
 4498 4311
 4505 4318
 4512 4325
 4519 4332
 4526 4339
 4533 4346
 4540 4353
 4547 4360
 4554 4367
 4561 4374
 4568 4381
 4575 4388
 4582 4395
 4589 4402
 4596 4409
 4603 4416
 4610 4423
 4617 4430
 4624 4437
 4631 4444
 4638 4451
 4645 4458
 4652 4465
 4659 4472
 4666 4479
 4673 4486
 4680 4493
 4687 4500
 4694 4507
 4701 4514
 4708 4521
 4715 4528
 4722 4535
 4729 4542
 4736 4549
 4743 4556
 4750 4563
 4757 4570
 4764 4577
 4771 4584
 4778 4591
 4785 4598
 4792 4605
 4799 4612
 4806 4619
 4813 4626
 4820 4633
 4827 4640
 4834 4647
 4841 4654
 4848 4661
 4855 4668
 4862 4675
 4869 4682
 4876 4689
 4883 4696
 4890 4703
 4897 4710
 4904 4717
 4911 4724
 4918 4731
 4925 4738
 4932 4745
 4939 4752
 4946 4759
 4953 4766
 4960 4773
 4967 4780
 4974 4787
 4981 4794
 4988 4801
 4995 4808
 5002 4815
 5009 4822
 5016 4829
 5023 4836
 5030 4843
 5037 4850
 5044 4857
 5051 4864
 5058 4871
 5065 4878
 5072 4885
 5079 4892
 5086 4899
 5093 4906
 5100 4913
 5107 4920
 5114 4927
 5121 4934
 5128 4941
 5135 4948
 5142 4955
 5149 4962
 5156 4969
 5163 4976
 5170 4983
 5177 4990
 5184 4997
 5191 5004
 5198 5011
 5205 5018
 5212 5025
 5219 5032
 5226 5039
 5233 5046
 5240 5053
 5247 5060
 5254 5067
 5261 5074
 5268 5081
 5275 5088
 5282 5095
 5289 5102
 5296 5109
 5303 5116
 5310 5123
 5317 5130
 5324 5137
 5331 5144
 5338 5151
 5345 5158
 5352 5165
 5359 5172
 5366 5179
 5373 5186
 5380 5193
 5387 5198
 5394 5205
 5401 5212
 5408 5219
 5415 5226
 5422 5233
 5429 5240
 5436 5247
 5443 5254
 5450 5261
 5457 5268
 5464 5275
 5471 5282
 5478 5289
 5485 5296
 5492 5303
 5499 5310
 5506 5

(SEQ ID NOS: 1 & 3)

2
6

SUBSTITUTE SHEET (RULE 26)

GAGCCCCCTG CTCCGTCGCC TGCTGCTTGT TGCACTGCTG CAGCTGGCTC
 GCACCCAGGC CCCCTGTGTC CAGTTTGATG GCCCCAGCCA CCAGAAGAAA
 GTGGTGCCAT GGATAGACGT TTATGCACGT GCCACATGCC AGCCCAGGGA
 CCTCTGAGCA TGGAACTCAT GGGCAATGTC GTCAAACAAC
 TAGTCCCCAG CTGTGTGACT GTGCAGGCC GTGGTGGCTG CTGCCCCTGAC
 GATGGCTGG AATGTGGCC CACTGGCAA CACAAGTCC GAATGCAGAT
 CCTCATGATC CAGTACCGA GCAGTCAGCT GGCGGAGATG TCCCTGGAG
 AACACCCA ATGTGAATGC AGACCAAAA AAAGGAGAG TGCTGTGAAG
 CCAGACAGCC CCAGGATCCT CTGGCCCGCT TGCACCCAGC GCCGTCACCG
 CCCTGACCC CGGACCTGCC GCTGGCCGCTG CAGACGCC CGCTTCCTCC
 ATTGCCAAGG GCGGGGCTTA GAGCTCAACC CAGACACCTG TAGGTGCCGG
 AAGCCGGAA AGTGA

(SEQ ID NO : 4)

FIG. 3

MSPLRRLLL VALLQLARTQ APVSQFDGPS HQKKVVVPWID VYARATCQPR
 EVVPLSMEI MGNVVKQLVP SCVTVQRCCG CCPDDGLECV PTGQHQVRM**Q**
 ILMIQYPSSQ LGEMSLEEHS QCECRPKKE SAVKPDSPRI LCPPCTQRRQ
 RPDPRTCR CRRRRFILHCQ GRGLELNPD**T** CRCRKPRK
 (SEQ ID NO : 5)

FIG. 4

ACCATGAGCC CCCTGCTCCG TCGCCTGCTG CTTGTTGCAC TGCTGCCAGCT
 GGCTCCACC CAGGCCCTG TGATGGCCC AGCCACCAAGA
 AGAAACTGGT GCCATGGATA GACGTTTATG CACGGTGCAC ATGCCAGCCC
 AGGGAGGTGG TGGTGCCTCT GAGCATGGAA CTCATGGCA ATGTGGTCAA
 ACAACTAGTG CCCAGCTGTG TGACTGTGCA GCGCTGTGGT GGCTGCTGCC
 CTGACCGATGG CCTGGAATGT GTGCCCACTG GCGAACACCA AGTCCGAATG
 CAGGTACCAAG GGCCTATGGG TCAGATCCTC ATGATCCACT ACCCGAGCAG
 TCAGCTGGGG GAGATGTTCCC TGGAAAGAACAA CAGCCAATGT GAATGCCAGAC
 CAAAAAAA GGAGAGTGCT GTGAAGCCAG ACAGCCCCAG GATCCTCTGC
 CCGCCTTGCA CCCAGGCCCG TCAACGCCCT GACCCCCCGA CCTGGCGCTG
 CCGCTGGAGA CGCCGCCGCT TCCTCCATTG CCAAGGGCGG GGCTTAGAGC
 TCAACCCAGA CACCTGTAGG TGCCGAAGC CGCGAAAGTC A
 (SEQ ID NO: 6)

4/22

SUBSTITUTE SHEET (RULE 26)

FIG. 5

MSPLLRLLL VALLQLARTQ APVSQFDGPS HQKKVVVPWID VYARATCQPR
 EVVVPPLSMEL MGNVVKQLVP SCVTVQRQCGG CCPDDGLECV PTGQHQVRMQ
VPGPMGQILM IQYPSSSQLGE MSLEEHSQCE CRPKKKESAV KPDSPRILCP
PCTQRRQRPD PRTCRRCRR RRFLHQCGRG LELNPDTCRC RKPRK
 (SEQ ID NO: 7)

FIG. 6

ACCATGAGCC CCCTGCTCCG TCGCCTGCTG CTTGTTCAC
 GGCTCGCAC CAGGCCCTG TGTCCTCAGTT TGATGGCCC
 AGAAACTGGT GCCATGGATA GACGTTTATG CACGGCCAC
 AGGGAGCTGG TGTTGCCCT GAGCATGGAA CTCATGGCA ATGCCAGCCC
 ACAACTAGTG CCCAGCTGTG TGACTGTGCA GCGCTGTGGT GGCTGCTGCC
 CTGACCGATGG CCTGGAATGT GTGCCCACTG GGCACACCCA AGTCCGAATG
 CAGATCCTCA TGATCCAGTA CCCGAGCAGT CAGCTGGGG AGATGTCCCC
 GGAAGAACAC AGCCAATGTG AATGCAGACC AAAAAGAAA AGGAGAGTC
 TGTGA
 (SEQ ID NO: 8)

FIG. 7

MSPLLRLLL VALLQLARTQ APVSQFDGPS HQKKVVVPWID VYARATCQPR
 EVVVPLSMEL MGNVVKQLVP SCVTVQRCCG CCPDDGLECV PTGQHQVRMQ
 ILMIQYPSSQ LGEMSLEEHS QCECRPKKKR RVL
 (SEQ ID NO: 9)

FIG. 8

mVEGF-B	167	L V A L L Q L A R T Q A P V S Q F D G P S H Q K V V P W I
mVEGF	164	L Y L H H A K W S Q A Q A P - T T E G E Q K S H E V I K F M
hPLGF		L A C L A L P A V P P Q W A L S - A G N G S S E V E V V P
mPDGF A		L S L R A H G S H A I N H V P E K R P V P I R K R S I E
mPDGF B		E T S D L N M T R A H S G V E L E S S R G R R S L G S L A A F

MEGF-B 167	D V Y A R A T	- - C Q P R E V V P L S M E L M G N V V K Q
MEGF 164	D V Y Q R S Y - - C R P I E T L V D I F Q E Y P D E I E Y I	
hPIGF	F Q E V W G R S Y - - C R A L E R L V D V V S E Y P S E V E H M	
mPDGF A	E A I P A V - - C K T R T V I Y E I P R S Q V D P T S A N	
mPDGF B	P A V I A E - - C K T R T E V F O I S R N I T D B T N A N	

FIG. 9A

mVEGF-B 167
mVEGF 164
hPIGF
mPDGF A
mPDGF B

L	- - V P S C V T V Q R C G G C P D D G L E C V P T G Q H
E	- - K P S C V P L M R C A G C N D E A L E C V P T S E S
F	- - S P S C V S L L R C T G C G D E N L H C V P V E T A
F	L I W P P G V E V K R C T G C G C N T S S V K C Q P S R V H
F	L V W P P G V E V Q R C S G C G C N N R N V Q C R A S Q V Q

mVEGF-B 167
mVEGF 164
hPIGF
mPDGF A
mPDGF B

Q	V R M Q I L M I Q Y P S S Q - - - - L G E M S L E E H S Q
N	I T M Q I M R I K P H Q S Q - - - - H I G E M S F L Q H S R
N	V T M Q L L K I R S G D R P - - - - S Y V E L T F S Q H V R
H	R S V K V A K V E Y V R K K P K L K E V Q V R L E E H L E
M	R P V Q V R K I E I V R K K P I F K K A T V T L E D H L A

mVEGF-B 167
mVEGF 164
hPIGF
mPDGF A
mPDGF B

C	E R P K K E S A V K P D S P R I L C P P C T Q R R Q R
C	E C R P K K D R T - - K P E N H - - C E P C S E R R Q R
C	E C R P L R E K M - - K P E - - R C G D A V P R R
C	A C A T S N L N P D H R E E E T D V R
C	K C E T I V T P R P V T R S P G T S R E Q R A K T P Q A R

mVEGF-B 167
mVEGF 164
hPIGF
mPDGF A
mPDGF B

L	F V Q D P Q T C K C S C K N T D - S R C K A R Q L E L N E
---	---

mVEGF-B 167
mVEGF 164
hPIGF
mPDGF A
mPDGF B

V T I R T V R I R R P P K G K H R K F K H T H D K A A L K E

D T C R C R K P R K
R T C R C D K P R R

T L G A

FIG. 9B

ACCATGAGCC CTCCTGCTCCG CCGCCTGCTG TGATCCCCGCC
 GGGCCCCCC CAGGCCCCCTG GTCATGGATA GATGTGTATA
 CGAAAGTGGT TGGTGCCTT GACTGTGGAG CCTCATGGCA
 CGGGAGGTGG ACAGCTGGCG CCCAGCTGGC
 CCTGACCGATGG CCTGGAGTGT TGACTGTGCA
 CAGATCCTCA TGATCCGGTA CCCGAGCAGT
 CGAACGAAACAC AGCCAGTGTG AATGCAGACC
 TGAAGCCAGA CAGCCCCAGG CCCCTCTGCC
 CAGCCGCCCTG ACCCCCCGAC CTGCCGCTGC
 CCTCCGTTGC CAAGGGGGG GCTTAGAGCT
 GCGGAAGCT GCGAAGGTGA
 (SEQ ID NO: 10)

8/22

FIG. 10

MSPLIIRRLLL AALLQLAPAQ APVSQPDAPG HQRKVVSWID VYTRATCQPR
 EVVVPPLTVEL MGTVAKQLVP SCVTVQRCGG CCPDDGLECV PTGQHQVRMQ
 ILMIRYPSSQ LGEMSLEEHS QCECRPKKKD SAVKPDSPPR P LCPRCTQHHQ
 RPDPRTCR CRRRSFLRCQ GRGLELNPDTCRCKLRR
 (SEQ ID NO: 11)

FIG. 11

ATGAGCCCCC TGCTCCGTG
 TCGCACCCAG GCCCCTGTGT CCTGCTGCTT
 AAGTGGTGCC ATGGATAGAC CCCAGTTTGA
 GAGGTGGTGG TGCCTCTGAG GTGCCACAC
 ACTAGTCCC AGCTGTGTGA GTGCCACATG
 ACGATGGCCT GGAATGTGTG CATGGCAACTC
 ATCCTCATGA TCCAGTACCC CTGTGGTGGC
 AGAACACAG CAATGTGAAT AACACCAAGT
 AGCCAGACAG GGTGTGCCATA TCCAGTCAAG
 CCGGGCTGG ACTCTACCCC GAGCAGACAA
 TCCCACTCCA GCCCCAGGGAT CCCACCC
 ACGCCCTGAC CCCGGACCT GCGCTGCCG
 TCCATTGCCA AGGGGGGGC TTAG
 (SEQ ID NO : 12)

FIG. 12

9/22

SUBSTITUTE SHEET (RULE 26)

MSPLLRLLL VALLQLARTQ APVSQFDGPS HQKKVVVPWID VYARATCQPR
 EVVPLSMEI MGNVVVKQLVP SCVTVQRCCG CCPDDGLECV PTGQHQVRMQ
 ILMIQYPSSQ LGEMSLEEH S QCECRPKKE SAVKPDRVAI PHRPQPRSV
 PGWDSTPGAS SPADIHPTP APGSSARLAP SAVNALTPGP AAAADAAAS
 SIAKGGAA
 (SEQ ID NO : 13)

FIG. 13

ATGAGCCCTC TGCTCCGCC
 CCCGCCAG GCCCCTGTCT
 AACTGTC
 GAGGTGGTGG
 GCTGGTGC
 AGATGGC
 ATCCTCATGA
 AGAACACAG
 AGCCAGACAG
 CCGGGCTGG
 TCCCACCCA
 GCCGCCCTGAC
 TCCGTGCCA
 (SEQ ID NO: 14)

10/22

SUBSTITUTE SHEET (RULE 26)

FIG. 14

MSPLRRLL
 EVVPLTVEL
 ILMIRYPSSQ
 PGWDSAPGAP
 SVAKGGA
 AALLQLAPAQ
 MGTVAKQLVP
 LGEMSLEHHS
 SPADITHPTP
 APGPSAHAAP
 APVSQPDAPG
 SCVTVQRCCG
 QCECRPKKKD
 SAVKPDRRAAT
 STTSALTPGP
 HQRKVWSWID
 CCPDDGLECV
 PHHRPQPRSV
 AAAADAAAS

FIG. 15

mVEGF-B186
hVEGF-B186
mVEGF-B167
hVEGF-B167

mVEGF-B186
hVEGF-B186
mVEGF-B167
hVEGF-B167

mVEGF-B186
hVEGF-B186
mVEGF-B167
hVEGF-B167

mVEGF-B186
hVEGF-B186
mVEGF-B167
hVEGF-B167

M	S	P	L	L	R	R	L	L	V	A	L	L	Q	L	A	R	T	Q	A	P	V	S	Q	F	D	G	P	S
M	S	P	L	L	R	R	L	L	A	[A]	A	L	L	Q	L	A	P	A	P	V	S	Q	P	D	A	P	G	
M	S	P	L	L	R	R	L	L	V	A	L	L	Q	L	A	R	T	Q	A	P	V	S	Q	F	D	G	P	S
M	S	P	L	L	R	R	L	L	A	A	L	L	Q	L	A	P	A	P	V	S	Q	P	D	A	P	G		

H	Q	K	V	V	P	W	I	D	V	Y	A	R	A	T	C	Q	P	R	E	V	V	P	L	S	M	E	L	
H	Q	[R]	K	V	V	[S]	W	I	D	V	Y	[T]	R	A	T	C	Q	P	R	E	V	V	P	L	T	V	E	L
H	Q	K	V	V	P	W	I	D	V	Y	A	R	A	T	C	Q	P	R	E	V	V	P	L	S	M	E	L	
H	Q	[R]	K	V	V	S	W	I	D	V	Y	[T]	R	A	T	C	Q	P	R	E	V	V	P	L	T	V	E	L

M	G	N	V	V	K	Q	L	V	P	S	C	V	T	V	Q	R	C	G	C	C	P	D	D	G	L	E	C	V
M	G	T	V	A	K	Q	L	V	P	S	C	V	T	V	Q	R	C	G	C	C	P	D	D	G	L	E	C	V
M	G	N	V	V	K	Q	L	V	P	S	C	V	T	V	Q	R	C	G	C	C	P	D	D	G	L	E	C	V
M	G	T	V	A	K	Q	L	V	P	S	C	V	T	V	Q	R	C	G	C	C	P	D	D	G	L	E	C	V

P	T	G	Q	H	Q	V	R	M	Q	I	L	M	I	Q	Y	P	S	S	Q	L	G	E	M	S	L	E	H	S
P	T	G	Q	H	Q	V	R	M	Q	I	L	M	I	[R]	Y	P	S	S	Q	L	G	E	M	S	L	E	H	S
P	T	G	Q	H	Q	V	R	M	Q	I	L	M	I	Q	Y	P	S	S	Q	L	G	E	M	S	L	E	H	S
P	T	G	Q	H	Q	V	R	M	Q	I	L	M	I	[R]	Y	P	S	S	Q	L	G	E	M	S	L	E	H	S

11/22

SUBSTITUTE SHEET (RULE 26)

FIG. 16A

mVEGF-B186
hVEGF-B186
mVEGF-B167
hVEGF-B167

Q	C	E	R	P	K	K	E	S	A	V	K	P	D	R	V	A	I	P	H	H	R	P	Q	P	R	S	V
Q	C	E	R	P	K	K	D	S	A	V	K	P	D	R	A	A	T	P	H	H	R	P	Q	P	R	S	V
Q	C	E	R	P	K	K	E	S	A	V	K	P	D	S	P	R	I	L	C	P	P	C	T	Q	R	R	Q
Q	C	E	R	P	K	K	D	S	A	V	K	P	D	S	P	R	P	L	C	P	R	C	T	Q	H	H	Q

mVEGF-B186
hVEGF-B186
mVEGF-B167
hVEGF-B167

P	G	W	D	S	T	P	G	A	S	S	P	A	D	I	I	H	P	T	P	A	P	G	S	S	A	R	L	A	P
P	G	W	D	S	A	P	G	A	P	S	P	A	D	I	T	H	P	T	P	A	P	G	P	S	A	H	A	A	P
R	P	D	P	R	T	C	R	C	R	R	R	F	L	H	C	Q	G	R	G	L	E	L	N	P	D	T	T	T	
R	P	D	P	R	T	C	R	C	R	R	R	S	F	L	R	C	Q	G	R	G	L	E	L	N	P	D	T	T	

mVEGF-B186
hVEGF-B186
mVEGF-B167
hVEGF-B167

S	A	V	N	A	L	T	P	G	P	A	A	D	A	A	S	S	I	A	K	G	G	A				
S	T	T	S	A	L	T	P	G	P	A	A	D	A	A	S	S	V	A	K	G	G	A				
C	R	C	R	K	P	R	K	C	R	C	R	K	L	R	R	R										

FIG. 16B

FIG. 17

FIG. 17A

FIG. 18

FIG. 18A

FIG. 19

FIG. 20

FIG. 21

FIG. 22

17/22

SUBSTITUTE SHEET (RULE 26)

FIG. 23A

FIG. 23B

FIG. 23C

FIG. 24

1 ctcgagatct gtttgttgtc tggaaacaat acggtttaga ggtgactggc
 51 Xba I gggtagacgag aacatatgcg agttcaccta agagaaaaagc tgaatgggc
 101 aatgccttt cctgaccata tctcttactc agataactat agaattttt
 151 gtccaggtaaa gggatatta aaaaatcatata **ttaaaaagtca tacagtgaag**
 201 ttgtccagg aaatcaagac **silencer binding site 2** Taacaggct cactctgaca ataatgaaaca
 251 gggggattcc ctcaaggatag actaggacat gaccccacac tggcaggtag
 301 tagtaccaga aaagaacgca tggaaaaatct ttaccttatg cttgaggtag
 351 ggaccaggct aaagtggagg ccagacctaa aattcttatct aaaaataaattc
 401 cacaatcgaa gaaaatatgt ggtgtacagg tatagaatgt ctttacttggaa
 451 tcattgaaat agtaagataa attcaacttt ttacattgtt ttcttttcct
 501 ccaggtaggg cttagacact tcgtctctgg agagtgactg tcaattggag
 551 ccttgctttc tgggtttctg gccagggggg ttgtggatgc ttacatgtg
 601 ctttcacag gacacttc tacccagca gtggccangt gtgcattcca

FIG. 25A

FIG. 25B

21/22

1301 gccccccac cccggccccc cgccccccgccc ccacgggcc cggggggc
1351 gcgtgtctgg gtcacatgag ccgcctgcc cccaggccc gcccaggccc
1401 ccgcggcccgcc cgccgtcccc gccggccgctg cccggccca cggggccccc
1451 gccccccgg ctccctccgg cgccttcgtc gactgcgtc gactgc
1501 acccaggct cggagggg ccgcggagg a gccggccccc gcgcccgcc
... Nco I site is about 30 bp downstream) (SEQ ID NO:17)

FIG. 25C

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/02957

A. CLASSIFICATION OF SUBJECT MATTER

IPC(6) :Please See Extra Sheet.

US CL :Please See Extra Sheet.

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 435/6, 7.1, 240.2, 320.1; 514/2; 530/350, 387.9, 388.1, 388.24; 536/23.5

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)

Please See Extra Sheet.

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	FERRARA et al. The Vascular Endothelial Growth Factor Family of Polypeptides. Journal of Cellular Biochemistry. 1991, Vol. 47, pages 211-218, especially the abstract.	1-57
A, P	WO 95/24473 A (HUMAN GENOME SCIENCES, INC.) 14 September 1995, see entire document.	1-57
A	KLAGSBRUN et al. Regulators of Angiogenesis. Annual Review of Physiology. 1991, Vol. 53, pages 217 to 239, see entire document.	1-57
A	FOLKMAN et al. Angiogenesis. The Journal of Biological Chemistry. 05 June 1992, Vol. 267, No. 16, pages 10931 to 10934, see entire document.	1-57

<input type="checkbox"/>	Further documents are listed in the continuation of Box C.	<input type="checkbox"/>	See patent family annex.
A	Special categories of cited documents:	*T*	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
E	document defining the general state of the art which is not considered to be of particular relevance	*X*	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
L	earlier document published on or after the international filing date	*Y*	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
O	document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	*&*	document referring to an oral disclosure, use, exhibition or other means
P	document published prior to the international filing date but later than the priority date claimed		document member of the same patent family

Date of the actual completion of the international search

31 MAY 1996

Date of mailing of the international search report

21 JUN 1996

Name and mailing address of the ISA/US
Commissioner of Patents and Trademarks
Box PCT
Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

TERRY A. MCKELVEY

Telephone No. (703) 308-0196

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/02957

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)

This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:

2. Claims Nos.:
because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:

3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

Please See Extra Sheet.

1. As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:

4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

The additional search fees were accompanied by the applicant's protest.

No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No.

PCT/US96/02957

A. CLASSIFICATION OF SUBJECT MATTER:

IPC (6):

A61K 38/17; C07K 14/47, 16/18; C12N 5/02, 5/06, 15/12, 15/70, 15/79; C12Q 1/68; G01N 33/53**A. CLASSIFICATION OF SUBJECT MATTER:**

US CL :

435/6, 7.1, 240.2, 320.1; 514/2; 530/350, 387.9, 388.1, 388.24; 536/23.5**B. FIELDS SEARCHED**

Electronic data bases consulted (Name of data base and where practicable terms used):

APS, DIALOG

search terms: VEGF, VEGF-B, vector?, plasmid?, pharmaceutic?, antibod?, monoclonal?, 293EBNA, insect, COS endothelial, mesodermal, diagnost?, detect?, polymerase chain reaction, dimer?, heparin

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING

This ISA found multiple inventions as follows:

This application contains the following inventions or groups of inventions which are not so linked as to form a single inventive concept under PCT Rule 13.1. In order for all inventions to be examined, the appropriate additional examination fees must be paid.

Group I, claims 1-17, 35-40 and 43, drawn to DNA encoding VEGF-B protein, vector comprising said DNA, host cell comprising said protein, diagnostic method using said DNA.

Group II, claims 18-32 and 45-53, drawn to VEGF-B protein and method of promoting release of said protein.

Group III, claims 33-34, 41-42 and 44, drawn to anti-VEGF-B antibody, diagnostic method using said antibody.

Group IV, claims 54-56, drawn to antisense vector and method of retarding expression using said vector.

Group V, claim 57, drawn to DNA comprising VEGF-B promoter fragment.

The inventions listed as Groups I-V do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: the DNA encoding VEGF-B, VEGF-B protein, antibody against VEGF-B, vector encoding VEGF-B antisense molecule, and DNA comprising VEGF-B promoter are chemically, biochemically, structurally, and functionally different and distinct from each other and thus share no common technical feature. The methods of each Group also do not share a common technical feature because each method comprises steps different from the steps of the other methods, and the products of the other groups are neither required for nor used in the methods of the inventions of the other groups. Accordingly, the claims are not so linked by a special technical feature within the meaning of PCT Rule 13.2 so as to form a single inventive concept.