

CHAPTER SIXTEEN

*Metal Oxide Semiconductor Field
Effect Transistors
[MOSFET]*

Digital Electronics.

Introduction

MOSFET transistors have smaller size than BJT transistors

MOSFET transistors have lower power consumption than that of BJT transistors

Types of MOSFETs

© Dr. Anas

Ch
16

✓ faster (*mobility of electrons is higher than of holes*)

Types of MOSFETs

© Dr. Anas

Ch
16

N- MOSFET

© Dr. Anas

Ch
16

The Drain-to-Source current (electrons are emitted from the source to the drain) $I_{DS} > 0$

$$V_{GS} > V_{TN} \quad \& \quad V_D > V_S$$

V_{TN} is the threshold voltage and defined as the minimum V_{GS} needed to create a channel between the source and the drain

N- MOSFET (Modes of Operation)

© Dr. Anas

There are three modes of operation of N-channel MOSFET (assuming the substrate and the source are connected)

Cut-Off

① Mode

Ch
16

$$(V_{GS} < V_{TN})$$

6

$$I_{DS} = 0$$

N- MOSFET (Modes of Operation)

There are three modes of operation of N-channel MOSFET (assuming the substrate and the source are connected)

② Linear Mode

$$(V_{GS} \geq V_{TN})$$

$$V_{DS} \leq V_{GS} - V_{TN}$$

$$I_{DS} = \frac{K_n}{2} [2 \times (V_{GS} - V_{TN}) V_{DS} - V_{DS}^2]$$

N- MOSFET (Modes of Operation)

There are three modes of operation of N-channel MOSFET (assuming the substrate and the source are connected)

Saturation Mode

3

$$(V_{GS} \geq V_{TN})$$

$$V_{DS} \geq V_{GS} - V_{TN}$$

$$I_{DS} = \frac{K_n}{2} (V_{GS} - V_{TN})^2$$

$$I_{DS} = \frac{K_n}{2} (V_{GS} - V_{TN})^2 (1 + \lambda V_{DS})$$

channel-length modulation parameter

N- MOSFET (Modes of Operation)

© Dr. Anas

There are three modes of operation of P-channel MOSFET (assuming the substrate and the source are connected)

Cut-Off

1 Mode

Ch
16

$$(V_{GS} > V_{TP}) \quad V_{TP}^{(-)}$$

9

$$I_{SD} = 0$$

P- MOSFET (Modes of Operation)

There are three modes of operation of P-channel MOSFET (assuming the substrate and the source are connected)

② Linear Mode

$$(V_{GS} \leq V_{TP})$$

$$V_{DS} \geq V_{GS} - V_{TP}$$

$$I_{SD} = \frac{K_p}{2} [2 \times (V_{GS} - V_{TP}) V_{DS} - V_{DS}^2] \text{ OR } I_{SD} = \frac{K_p}{2} [2 \times (V_{SG} + V_{TP}) V_{SD} - V_{SD}^2]$$

P- MOSFET (Modes of Operation)

There are three modes of operation of P-channel MOSFET (assuming the substrate and the source are connected)

Saturation Mode

3

$$(V_{GS} < V_{TP})$$

$$V_{DS} \leq V_{GS} - V_{TP}$$

$$I_{SD} = \frac{K_P}{2} (V_{GS} - V_{TP})^2$$

OR

$$I_{SD} = \frac{K_P}{2} (V_{SG} + V_{TP})^2$$

● Example

Determine the drain current of an NMOS transistor assuming $K_n = 20\mu\text{A}/\text{V}^2$, $V_{TN} = 1\text{V}$, $\lambda = 0$, and $V_{GS} = 3\text{V}$

● Solution

$$I_{DS}(sat) = \frac{K_n}{2} (V_{GS} - V_{TN})^2 (1 + \lambda V_{DS})$$

$$I_{DS}(sat) = \frac{20 \times 10^{-6}}{2} (3 - 1)^2 (1 + 0 \times V_{DS})$$

$$I_{DS}(sat) = 40 \mu\text{A}$$

$$V_{DS}(sat) = V_{GS} - V_{TN} = 2\text{V}$$

Skip the MOSFET capacitances (sec. 6.7) and the fabrication processes of MOSFET devices