신 입 직 원 (종합기획직원 G5) 채 용 고 시 (2022. 9. 24. (토) 시행)

학 술 (통계학)

< 유의사항 >

- 1. 성명 및 접수번호는 때 페이지마다 기재하시기 바랍니다.
- 2. 문제지(또는 답안지)를 낱장으로 뜯어서 사용하는 경우에도 최종 제출시 **페이지 번호 순으로 정렬** 되었는지 확인하시기 바랍니다.
- 3. 필요시 답안을 영어로 작성할 수 있습니다.
- 4. 문제에 별도 안내가 없는 경우 답은 소수점 셋째 자리에서 반올림하여 소수점 둘째 자리까지 기재하시기 바랍니다.
- 5. 통계분포표는 본 문제지 15~18쪽에 수록되어 있으니 참고하시기 바랍니다.

Problem. 1. 다음 물음에 답하시오.

- (a) 큰 수의 법칙(Law of Large Numbers)에 대해 약술하시오.
- (b) 회귀분석에서 영향점(Influential Point)에 대해 약술하시오.
- (c) 시계열분석에서 율-워커 방정식(Yule-Walker Equation)에 대해 약술하시오.
- (d) 표본조사론에서 표본오차와 비표본오차의 차이에 대해 약술하시오.
- (e) 실험계획법에서 모수인자와 변량인자의 차이에 대해 약술하시오.

Problem. 2. 아래의 물음에 답하시오.

(a) 확률변수 X의 확률질량함수가 자연수 n에 대해

$$P(X=n) = \frac{1}{2^n}, \ n \ge 1$$

으로 주어진다. $\mathbb{E}[X]$ 의 값을 구하시오.

(b) 확률변수 Y의 확률질량함수가 자연수 n에 대해

$$P(Y = n) = P(Y = \frac{1}{n}) = \begin{cases} \frac{1}{2} & n = 1\\ \frac{1}{2^{n+1}} & n \ge 2 \end{cases}$$

으로 주어진다. $\mathbb{E}[Y]$ 의 값을 구하시오.

D 11	0	10 [[r [A	U 0 01	-L-1 11 A
Problem.	oj.	아데의	포를에	답아시 오.

(a) 서로 독립이며 U(0,1) 분포를 따르는 U_1, U_2 에 대하여, $U_1 + U_2$ 의 확률밀도함수를 구하시오.

Problem. 4. 아래의 물음에 답하시오.

(a) 회귀모형

$$y_i = \alpha + \beta x_i + \epsilon_i \quad \epsilon_i | x_i \sim N(0, \sigma^2 x_i^2)$$

이 참모형임을 가정하자. ϵ_i 들은 독립이다. $y_i'=y_i/x_i, x_i'=1/x_i$ 라 할 때, y_i' 를 반응변수로, x_i' 를 설명변수로 하는 새로운 회귀모형을 제시하여라. $i=1,2,\cdots,n$ 이다.

(b) 변환된 회귀모형 하에서의 OLS 추정량을 구하여라.

(c) (b)에서 구한 추정량이 (a)의 원래 회귀모형에서 얻은 WLS 추정량과 동일함을 보여라.

(d) 만약 $\sigma_i^2 = Var(\epsilon_i|x_i)$ 의 정확한 형태를 모르고 독립임만 알고 있다면, OLS 혹은 WLS의 수행에서 어떤 문제가 있는가? 이를 해결할 수 있는 방법을 제시하시오.

Problem. 5. 아래의 회귀분석 결과를 보고 물음에 답하여라.

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.341231 1.096730 2.135 0.044170 *

case 1.615907 0.170735 9.464 3.25e-09 ***

distance 0.014385 0.003613 3.981 0.000631 ***

Residual standard error: 3.259 on 22 degrees of freedom

Multiple R-Squared: 0.9596, Adjusted R-squared: 0.9559

F-statistic: 261.2 on 2 and 22 DF,

p-value: 4.441e-016

(a) 위 결과로부터 표본의 개수와 오차제곱합(SSE)을 구하여라.

(b) 회귀제곱합(SSR)을 구하여라.

(c)	ス저딘	겨저게스(Adime	ted R-Squared)	三 スト・�ーテトトー	이으에 때	레 야수하시ㅇ
101	107		icu it-Dyuurcu;	3 /1 A O 1 7	~ 1 7 1 - 11 - 91 1	M 7 2 0/11.

(d) 설명변수 case에 대한 회귀계수 추정량의 95퍼센트 신뢰구간을 구하여라.

(e) case가 3, distance가 100일 때 반응변수의 값을 추정하고, 그 95퍼센트 신뢰구간을 구하여라.

Problem.	6	01-211	무으레	ロネレ	10
Problem.	n.	णधा	포는데	답 OF ^ I	ΙΥ.

(a) 다중공선성의 문제에 대해 약술하시오.

(b) 다중공선성을 진단하기 위한 방법 중 분산팽창인자(VIF)에 대해 설명하시오.

(c) 다중공선성을 해결하기 위한 방법을 두 개 이상 제시하고, 각각에 대해 두 문장 내외로 설명하시오.

(d) 회귀모형

$$Y = X\beta + \epsilon$$

이 주어져 있다. Y는 n차원 랜덤벡터, X는 $n \times p$ 차원 행렬, β 는 p차원 계수벡터, ϵ 은 n차원 오차항 벡터이다. $\epsilon \sim N(0,\sigma^2I_n)$ 이며 ϵ 은 X와 독립적이다. 만약 β 에 대한 사전정보가 $\beta \sim N(0,\sigma_0^2I)$ 로 주어져 있을 때, β 의 베이즈추정량을 구하여라. 단 제곱오차를 기준으로 한다.

(e) (d)에서 구한 베이즈추정량이 특정한 조절모수(hyperparameter) 하에서의 능형회귀추정량과 같음을 보여라. Problem. 7. 아래의 물음에 답하시오.

 $(a) \ X_1, X_2, \cdots, X_n$ 은 확률밀도함수가

$$f(x) = \frac{a}{\theta^a} x^{a-1} I(0 < x < \theta)$$

인 모집단에서 얻은 랜덤표본이다. $a>1, \theta>0$ 이다. $X_{(1)}/X_{(n)}$ 과 $X_{(n)}$ 이 독립임을 보이시오.

(b) a와 θ 에 대한 최대가능도추정량을 구하여라.

(c) a가 알려져 있다고 할 때, $X_{(n)}$ 이 θ 에 대한 완비충분통계량임을 보여라.

(d) a가 알려져 있다고 할 때, θ 의 전역최소분산불편추정량(UMVUE)를 구하시오.

Problem. 8. 아래의 물음에 답하시오.

(a) X_1, \cdots, X_n 이 U(-0.5, 99.5) 에서의 랜덤표본이다. 이제 Y_i 를 X_i 를 반올림하여 얻은 토대가 $\{0, 1, \cdots, 99\}$ 인 이산분포라고 하자. 만약 X_i 가 67.2이라면 Y_i 는 67, X_i 가 33.5라면 Y_i 는 34이다. 예외적으로 $X_i = 99.5$ 라면 Y_i 는 99로 한다. 이때

$$Z = \sum_{i=1}^{n} X_i - \sum_{i=1}^{n} Y_i$$

로 정의한다면, n = 50일 때

$$P(|Z| \ge 3)$$

을 근사적으로 구하여라.

(b) 대한이는 총 60번의 가위바위보를 진행한다. 32번은 민국이와, 28번은 만세와 한다. 대한이가 민국이에게 가위바위보를 이길 확률은 0.5, 만세에게 가위바위보를 이길 확률은 0.7이다. 비길 확률은 없다. 40번 이상 이길 확률을 근사적으로 구하여라.

Problem. 9. 아래 물음에 답하시오.

(a) X_1,\cdots,X_n 이 $U(0,\theta)$ 로부터의 랜덤표본이라고 하자. θ 는 모수가 θ_0,α 인 파레토분포를 따른다고 믿어진다. $\theta_0\in(0,\infty)$, $\alpha>0$ 이다. 파레토분포의 확률밀도함수는

$$f(\theta; \theta_0, \alpha) = \frac{\alpha}{\theta_0} \left(\frac{\theta_0}{\theta} \right)^{\alpha+1} I_{(\theta_0, \infty)}(\theta)$$

으로 주어진다. 사후분포를 구하여라.

(b) θ의 사후평균을 구하여라.

(c) 제곱오차를 손실로 할 때의 θ 의 베이즈 추정량 $\hat{\theta}^{B}$ 를 구하여라.

(d) $\alpha=1$ 이고 $\theta_0 \to 0$ 일 때, $\hat{\theta}^B$ 의 편의가 수렴하는 값을 구하여라.

Problem.	10.	아래의	묵은에	당하시	P

(a) 시계열분석에서, 정상성이란 무엇인지 약술하시오.

(b) AR(1) 모형

$$X_t = \phi X_{t-1} + \epsilon_t$$

을 따르는 시계열 X_t 를 고려하자. $\epsilon_t \sim_{i.i.d.} N(0,\sigma^2)$ 인 백색잡음이다. X_t 가 정상시계열일 필요충분조 건을 제시하시오.

(c) (b)의 시계열이 정상시계열일 때, X_t 의 자기상관함수(ACF) $\rho_X(h)$ 를 구하시오.

(d) (b)의 시계열 X_t 에서 자기회귀구조가 존재하는지 검정하기 위하여

$$H_0: \phi = 0$$
 v.s. $H_1: \phi > 0$

이라는 가설을 세웠다. 이를 검정하는 방법에 대해 설명하시오. (단, 검정통계량과 그 기각역을 반드시 제시하여야만 한다.)

(e) (d)에서 만약 가설을

$$H_0: \phi = 1$$
 v.s. $H_1: |\phi| < 1$

으로 바꾼다면, 검정 방법은 어떻게 달라지는가? (단, 검정의 이름과 검정통계량만 제시하여도 괜찮 다.)

Problem. 11. 아래 물음에 답하시오.

(a) 서로 독립인 n번의 다항시행 $Multi(1,(p_1,\cdots,p_k)^T)$ 의 결과인 n개의 k차원 벡터 Z_1,\cdots,Z_n 이 주어져 있다. 이때 $p_1+\cdots+p_k=1$ 이며 각 p_i 는 모두 0보다 크다. Z_i 의 j번째 원소를 Z_{ij} 라 할 때,

$$X_j = \sum_{i=1}^{n} Z_{ij}, \quad (j = 1, 2, \dots, k)$$

를 이용하여 $p_f = (p_1, \cdots, p_k)^T$ 의 최대가능도추정량(MLE) \hat{p}_f 를 구하여라.

(b) $p = (p_1, \dots, p_{k-1})^T = (I_{k-1} \ 0_{k-1})p_f$ 의 정보량행렬 I(p)를 구하여라.

(c) p가 참모수일 때, 왈드의 검정통계량

$$n(\hat{p}-p)^T I(p)(\hat{p}-p)$$

을 X_i, p_i 로써 표현하여라. 이때 \hat{p} 는 $(I_{k-1} \ 0_{k-1})\hat{p}_f$ 으로 정의하자.

(d) p가 참모수일 때, 위 검정통계량이 가지는 점근분포를 구하고, 이로부터 유의수준 α 에서 왈드의 검정의 기각역을 구하여라. 또한, 이것이 일원배치법에서의 어떤 검정과 같은지 논하여라.

Problem. 12. XX중학교 학생 100명 중 15명을 비복원단순확률추출을 통해 뽑은 뒤 각자의 성별과 수학 점수를 물었다. 그 결과는 아래와 같다.

번호	성별	수학 점수
1	남	80
2	여	75
3	여	70
4	남	92
5	여	62
6	남 여	90
7	여	20
8	남	79
9	여	56
10	여	80
11	여	99
12	여	65
13	남	88
14	남 여	70
15	여	70

아래의 물음에 답하시오.

(a) 수학 점수의 평균을 추정하고, 그 분산추정량을 구하여라.

(b) 이 학교에 남학생이 60명, 여학생이 40명 있다고 한다. 위 표본조사에는 어떤 문제가 있는가? 사후층 화를 포함해 이를 해결할 수 있는 두 개 이상의 방법을 제시하고, 각각을 한 문장 이내로 설명하시오.

(c) 사후층화를 통하여 모평균의 새로운 추정량을 구하고, 그 분산추정량을 구하여라.

(d) (a)의 자료를 예비표본이라고 하자. 추후 이 자료로부터의 정보를 통하여 비례배정을 통한 층화표집을 수행하려 한다. 수학 점수 모평균의 오차한계를 $1.96\approx 2$ 으로 하려 할 때, 표본의 크기 n을 구하고 각 성별에 배분되는 표본수 n_1 과 n_2 를 구하여라.

Problem. 13. 어떤 원료가 가마니 속에 들어 있다. 다수의 가마니에서 랜덤하게 $3\eta(B_1,B_2,B_3)$ 를 취하여, 각 가마니에서 A_1 , A_2 , A_3 의 세 가지 위치에서 불순물의 양을 2번씩 측정하였다. 얻어진 자료는 아래와 같다.

	B_1	B_2	B_3
1	3.5	3.4	3.1
A_1	3.8	3.3	2.8
	2.5	2.7	2.4
A_2	2.8	2.6	2.9
	2.8	3.3	3.5
A_3	2.6	-	3.6

 A_3B_2 수준에서 실험 실수로 결측치가 하나 생기고 말았다. 아래의 물음에 답하시오.

(a) 결측치 자리에 y를 대신 넣는다고 할 때, 오차변동 S_E 를 최소화하는 y의 값은 무엇인가?

(b) (a)에서 구한 y의 값으로 결측치의 자리를 채워 넣은 뒤, 아래의 분산분석표를 작성하여라.

요인	S	$\phi(df)$	V	F_0
A				
B				
$A \times B$				
E				-
\overline{T}			-	-

(c) $\hat{\sigma}_B^2$ 과 $\hat{\sigma}_{A imes B}^2$ 을 구하여라. $\hat{\sigma}_B^2$ 의 추정량은 적절한가?

(d) 모평균 $\mu(A_1)$ 의 95퍼센트 신뢰구간을 구하여라. 단, $t_{0.025}(1.91)=4.5$ 임을 이용할 수 있다.

Problem. 14. 건강한 자원자 8명에 대하여 약물 A 투약 \hat{p} 혈압이 전에 비해 높아지는지를 알아보고자한다. 각 지원자들이 약물 A를 복용한 이후 혈압의 차이가 -5, -4, -3, -2, -2, -1, 0, 1로 나타났다. 아래의물음에 답하여라.

(a) 혈압 차이의 분포가 중앙값 θ 에 대해 대칭이라고 가정할 때, 유의수준 0.05에서 θ 가 0이 아니라고 말할 수 있는지 부호검정으로써 검정하시오.

(b) (a)와 같은 가정 하에서, 부호순위검정을 이용하여 θ 가 0이 아닌지를 검정하시오.

(c) 검정법의 점근상대효율(ARE)에 대해 두 문장 이내로 설명하고, t검정에 대한 비모수적 검정(부호검 정이나 부호순위검정)의 점근상대효율이 높아지는 대표적인 상황에 대해 소개하여라.

<표 1> 표준정규분포표 : Z
 $Z \sim N(0,1)$ 일 때 $P[Z \leq z_{\alpha}]$ 의 확률

	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0003
-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
-3.0	0.0013	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
-2.6	0.0047	0.0045	0.0044	0.0043	0.0041	0.0040	0.0039	0.0038	0.0037	0.0036
-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
-2.4	0.0082	0.0080	0.0078	0.0075	0.0073	0.0071	0.0069	0.0068	0.0066	0.0064
-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
-2.2	0.0139	0.0136	0.0132	0.0129	0.0125	0.0122	0.0119	0.0116	0.0113	0.0110
-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
-1.8	0.0359	0.0351	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559
-1.4	0.0808	0.0793	0.0778	0.0764	0.0749	0.0735	0.0721	0.0708	0.0694	0.0681
-1.3	0.0968	0.0951	0.0934	0.0918	0.0901	0.0885	0.0869	0.0853	0.0838	0.0823
-1.2	0.1151	0.1131	0.1112	0.1093	0.1075	0.1056	0.1038	0.1020	0.1003	0.0985
-1.1	0.1357	0.1335	0.1314	0.1292	0.1271	0.1251	0.1230	0.1210	0.1190	0.1170
-1.0	0.1587	0.1562	0.1539	0.1515	0.1492	0.1469	0.1446	0.1423	0.1401	0.1379
-0.9	0.1841	0.1814	0.1788	0.1762	0.1736	0.1711	0.1685	0.1660	0.1635	0.1611
-0.8	0.2119	0.2090	0.2061	0.2033	0.2005	0.1977	0.1949	0.1922	0.1894	0.1867
-0.7	0.2420	0.2389	0.2358	0.2327	0.2296	0.2266	0.2236	0.2206	0.2177	0.2148
-0.6	0.2743	0.2709	0.2676	0.2643	0.2611	0.2578	0.2546	0.2514	0.2483	0.2451
-0.5	0.3085	0.3050	0.3015	0.2981	0.2946	0.2912	0.2877	0.2843	0.2810	0.2776
-0.4	0.3446	0.3409	0.3372	0.3336	0.3300	0.3264	0.3228	0.3192	0.3156	0.3121
-0.3	0.3821	0.3783	0.3745	0.3707	0.3669	0.3632	0.3594	0.3557	0.3520	0.3483
-0.2	0.4207	0.4168	0.4129	0.4090	0.4052	0.4013	0.3974	0.3936	0.3897	0.3859
-0.1	0.4602	0.4562	0.4522	0.4483	0.4443	0.4404	0.4364	0.4325	0.4286	0.4247
0.0	0.5000	0.4960	0.4920	0.4880	0.4840	0.4801	0.4761	0.4721	0.4681	0.4641

 $< { ਼ } Z> \ { t-분포표} \ : \ t(\alpha,\nu)$ $t\sim t(\nu)$ 일 때 $P[t\geq t(\alpha,\nu)]=\alpha$ 를 만족하는 $t(\alpha,\nu)$ 값

-	I					
ν	0.25	0.10	0.05	lpha 0.025	0.010	0.005
1	1.000	3.078	6.314	12.706	31.821	63.657
2	0.816	1.886	2.920	4.303	6.965	9.925
3	0.765	1.638	2.353	3.182	4.541	5.841
4	0.741	1.533	2.132	2.776	3.747	4.604
5	0.727	1.476	2.015	2.571	3.365	4.032
6	0.718	1.440	1.943	2.447	3.143	3.707
7	0.711	1.415	1.895	2.365	2.998	3.499
8	0.706	1.397	1.860	2.306	2.896	3.355
9	0.703	1.383	1.383	2.262	2.821	3.250
10	0.700	1.372	1.812	2.228	2.764	3.169
11	0.697	1.363	1.796	2.201	2.718	3.106
12	0.695	1.356	1.782	2.179	2.681	3.055
13	0.694	1.350	1.771	2.160	2.650	3.012
14	0.692	1.345	1.761	2.145	2.624	2.977
15	0.691	1.341	1.753	2.131	2.602	2.947
16	0.690	1.337	1.746	2.120	2.583	2.921
17	0.689	1.333	1.740	2.110	2.567	2.898
18	0.688	1.330	1.734	2.101	2.552	2.878
19	0.688	1.328	1.729	2.093	2.539	2.861
20	0.687	1.325	1.725	2.086	2.528	2.845
21	0.686	1.323	1.721	2.080	2.518	2.831
22	0.686	1.321	1.717	2.074	2.508	2.819
23	0.685	1.319	1.714	2.069	2.500	2.807
24	0.685	1.318	1.711	2.064	2.492	2.797
25	0.684	1.316	1.708	2.060	2.485	2.787
26	0.684	1.315	1.706	2.056	2.479	2.779
27	0.684	1.314	1.703	2.052	2.473	2.771
28	0.680	1.313	1.701	2.048	2.467	2.763
29	0.683	1.311	1.699	2.045	2.462	2.756
				,		
30	0.683	1.310	1.697	2.042	2.457	2.750
40	0.681	1.303	1.684	2.021	2.423	2.704
60	0.679	1.296	1.671	2.000	2.390	2.660
120	0.677	1.289	1.658	1.980	2.358	2.617
∞	0.674	1.282	1.645	1.960	2.326	2.576
	I .					

<표 3> χ^2 -분포표 $X \sim \chi^2(n)$ 일 때 $\Pr[X \leq \chi^2_\alpha(n)] = \alpha$ 를 만족하는 $\chi^2_\alpha(n)$ 의 값을 표시

	α													
n	0.005	0.010	0.025	0.050	0.100	0.250	0.500	0.750	0.900	0.950	0.975	0.990	0.995	0.999
1	0.00	0.00	0.00	0.00	0.02	0.10	0.45	1.32	2.71	3.84	5.02	6.63	7.88	10.83
2	0.01	0.02	0.05	0.10	0.21	0.58	1.39	2.77	4.61	5.99	7.38	9.21	10.60	13.82
3	0.07	0.11	0.22	0.35	0.58	1.21	2.37	4.11	6.25	7.81	9.35	11.34	12.84	16.27
4	0.21	0.30	0.48	0.71	1.06	1.92	3.36	5.39	7.78	9.49	11.14	13.28	14.86	18.47
5	0.41	0.55	0.83	1.15	1.61	2.67	4.35	6.63	9.24	11.07	12.83	15.09	16.75	20.52
6	0.68	0.87	1.24	1.64	2.20	3.45	5.35	7.84	10.64	12.59	14.45	16.81	18.55	22.46
7	0.99	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.02	14.07	16.01	18.48	20.28	24.32
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.22	13.36	15.51	17.53	20.09	21.96	26.12
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.39	14.68	16.92	19.02	21.67	23.59	27.88
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.55	15.99	18.31	20.48	23.21	25.19	29.59
11	2.60	3.05	3.82	4.57	5.58	7.58	10.34	13.70	17.28	19.68	21.92	24.72	26.76	31.26
12	3.07	3.57	4.40	5.23	6.30	8.44	11.34	14.85	18.55	21.03	23.34	26.22	28.30	32.91
13	3.57	4.11	5.01	5.89	7.04	9.30	12.34	15.98	19.81	22.36	24.74	27.69	29.82	34.53
14	4.07	4.66	5.63	6.57	7.79	10.17	13.34	17.12	21.06	23.68	26.12	29.14	31.32	36.12
15	4.60	5.23	6.26	7.26	8.55	11.04	14.34	18.25	22.31	25.00	27.49	30.58	32.80	37.70
16	5.14	5.81	6.91	7.96	9.31	11.91	15.34	19.37	23.54	26.30	28.85	32.00	34.27	39.25
17	5.70	6.41	7.56	8.67	10.09	12.79	16.34	20.49	24.77	27.59	30.19	33.41	35.73	40.79
18	6.26	7.01	8.23	9.39	10.86	13.68	17.34	21.60	25.99	28.87	31.53	34.81	37.16	42.31
19	6.84	7.63	8.91	10.12	11.65	14.56	18.34	22.72	27.20	30.14	32.85	36.19	38.58	43.82
20	7.43	8.26	9.59	10.85	12.44	15.45	19.34	23.83	28.41	31.41	34.17	37.57	40.00	45.32
21	8.03	8.90	10.28	11.59	13.24	16.34	20.34	24.93	29.62	32.67	35.48	38.93	41.40	46.80
22	8.64	9.54	10.98	12.34	14.04	17.24	21.34	26.04	30.81	33.92	36.78	40.29	42.80	48.27
23	9.26	10.20	11.69	13.09	14.85	18.14	22.34	27.14	32.01	35.17	38.08	41.64	44.18	49.73
24	9.89	10.86	12.40	13.85	15.66	19.04	23.34	28.24	33.20	36.42	39.36	42.98	45.56	51.18
25	10.52	11.52	13.12	14.61	16.47	19.94	24.34	29.34	34.38	37.65	40.65	44.31	46.93	52.62
30	13.79	14.95	16.79	18.49	20.60	24.48	29.34	34.80	40.26	43.77	46.98	50.89	53.67	59.70
40	20.71	22.16	24.43	26.51	29.05	33.66	39.34	45.62	51.80	55.76	59.34	63.69	66.77	73.40
50	27.99	29.71	32.36	34.76	37.69	42.94	49.33	56.33	63.17	67.50	71.42	76.15	79.49	86.66
60	35.53	37.48	40.48	43.19	46.46	52.29	59.33	66.98	74.40	79.08	83.30	88.38	91.95	99.61
70	43.28	45.44	48.76	51.74	55.33	61.70	69.33	77.58	85.53	90.53	95.02	100.42	104.22	112.32
80	51.17	53.54	57.15	60.39	64.28	71.14	79.33	88.13	96.58	101.88	106.63	112.33	116.32	124.84
90	59.20	61.75	65.65	69.13	73.29	80.62	89.33	98.64	107.56	113.14	118.14	124.12	128.30	137.21
100	67.33	70.06	74.22	77.93	82.36	90.13	99.33	109.14	118.50	124.34	129.56	135.81	140.17	149.45

<표 4> F-분포표 (α=0.05) $F \sim F(\nu_1, \nu_2)$ 일 때 $\Pr(F \geq F(\alpha, \nu_1, \nu_2)) = \alpha$ 를 만족하는 $F(\alpha, \nu_1, \nu_2)$ 값 $(F(1-\alpha, \nu_1, \nu_2) = 1/F(\alpha, \nu_2, \nu_1))$

$\begin{array}{c} \nu_1 \\ \nu_2 \end{array}$	1	2	3	4	5	6	7	8	9	10	12	15	20	24	30	40	∞
1	161.45	199.50	215.71	224.58	230.16	233.99	236.77	238.88	240.54	241.88	243.91	245.95	248.01	249.05	250.10	251.14	254.31
2	18.51	19.00	19.16	19.25	19.30	19.33	19.35	19.37	19.38	19.40	19.41	19.43	19.45	19.45	19.46	19.47	19.50
3	10.13	9.55	9.28	9.12	9.01	8.94	8.89	8.85	8.81	8.79	8.74	8.70	8.66	8.64	8.62	8.59	8.53
4	7.71	6.94	6.59	6.39	6.26	6.16	6.09	6.04	6.00	5.96	5.91	5.86	5.80	5.77	5.75	5.72	5.63
5	6.61	5.79	5.41	5.19	5.05	4.95	4.88	4.82	4.77	4.74	4.68	4.62	4.56	4.53	4.50	4.46	4.37
6	5.99	5.14	4.76	4.53	4.39	4.28	4.21	4.15	4.10	4.06	4.00	3.94	3.87	3.84	3.81	3.77	3.67
7	5.59	4.74	4.35	4.12	3.97	3.87	3.79	3.73	3.68	3.64	3.57	3.51	3.44	3.41	3.38	3.34	3.23
8	5.32	4.46	4.07	3.84	3.69	3.58	3.50	3.44	3.39	3.35	3.28	3.22	3.15	3.12	3.08	3.04	2.93
9	5.12	4.26	3.86	3.63	3.48	3.37	3.29	3.23	3.18	3.14	3.07	3.01	2.94	2.90	2.86	2.83	2.71
10	4.96	4.10	3.71	3.48	3.33	3.22	3.14	3.07	3.02	2.98	2.91	2.85	2.77	2.74	2.70	2.66	2.54
11	4.84	3.98	3.59	3.36	3.20	3.09	3.01	2.95	2.90	2.85	2.79	2.72	2.65	2.61	2.57	2.53	2.40
12	4.75	3.89	3.49	3.26	3.11	3.00	2.91	2.85	2.80	2.75	2.69	2.62	2.54	2.51	2.47	2.43	2.30
13	4.67	3.81	3.41	3.18	3.03	2.92	2.83	2.77	2.71	2.67	2.60	2.53	2.46	2.42	2.38	2.34	2.21
14	4.60	3.74	3.34	3.11	2.96	2.85	2.76	2.70	2.65	2.60	2.53	2.46	2.39	2.35	2.31	2.27	2.13
15	4.54	3.68	3.29	3.06	2.90	2.79	2.71	2.64	2.59	2.54	2.48	2.40	2.33	2.29	2.25	2.20	2.07
16	4.49	3.63	3.24	3.01	2.85	2.74	2.66	2.59	2.54	2.49	2.42	2.35	2.28	2.24	2.19	2.15	2.01
17	4.45	3.59	3.20	2.96	2.81	2.70	2.61	2.55	2.49	2.45	2.38	2.31	2.23	2.19	2.15	2.10	1.96
18	4.41	3.55	3.16	2.93	2.77	2.66	2.58	2.51	2.46	2.41	2.34	2.27	2.19	2.15	2.11	2.06	1.92
19	4.38	3.52	3.13	2.90	2.74	2.63	2.54	2.48	2.42	2.38	2.31	2.23	2.16	2.11	2.07	2.03	1.88
20	4.35	3.49	3.10	2.87	2.71	2.60	2.51	2.45	2.39	2.35	2.28	2.20	2.12	2.08	2.04	1.99	1.84
21	4.32	3.47	3.07	2.84	2.68	2.57	2.49	2.42	2.37	2.32	2.25	2.18	2.10	2.05	2.01	1.96	1.81
22	4.30	3.44	3.05	2.82	2.66	2.55	2.46	2.40	2.34	2.30	2.23	2.15	2.07	2.03	1.98	1.94	1.78
23	4.28	3.42	3.03	2.80	2.64	2.53	2.44	2.37	2.32	2.27	2.20	2.13	2.05	2.01	1.96	1.91	1.76
24	4.26	3.40	3.01	2.78	2.62	2.51	2.42	2.36	2.30	2.25	2.18	2.11	2.03	1.98	1.94	1.89	1.73
25	4.24	3.39	2.99	2.76	2.60	2.49	2.40	2.34	2.28	2.24	2.16	2.09	2.01	1.96	1.92	1.87	1.71
26	4.23	3.37	2.98	2.74	2.59	2.47	2.39	2.32	2.27	2.22	2.15	2.07	1.99	1.95	1.90	1.85	1.69
27	4.21	3.35	2.96	2.73	2.57	2.46	2.37	2.31	2.25	2.20	2.13	2.06	1.97	1.93	1.88	1.84	1.67
28	4.20	3.34	2.95	2.71	2.56	2.45	2.36	2.29	2.24	2.19	2.12	2.04	1.96	1.91	1.87	1.82	1.65
29	4.18	3.33	2.93	2.70	2.55	2.43	2.35	2.28	2.22	2.18	2.10	2.03	1.94	1.90	1.85	1.81	1.64
30	4.17	3.32	2.92	2.69	2.53	2.42	2.33	2.27	2.21	2.16	2.09	2.01	1.93	1.89	1.84	1.79	1.62
31	4.16	3.30	2.91	2.68	2.52	2.41	2.32	2.25	2.20	2.15	2.08	2.00	1.92	1.88	1.83	1.78	1.61
32	4.15	3.29	2.90	2.67	2.51	2.40	2.31	2.24	2.19	2.14	2.07	1.99	1.91	1.86	1.82	1.77	1.59
33	4.14	3.28	2.89	2.66	2.50	2.39	2.30	2.23	2.18	2.13	2.06	1.98	1.90	1.85	1.81	1.76	1.58
34	4.13	3.28	2.88	2.65	2.49	2.38	2.29	2.23	2.17	2.12	2.05	1.97	1.89	1.84	1.80	1.75	1.57
35	4.12	3.27	2.87	2.64	2.49	2.37	2.29	2.22	2.16	2.11	2.04	1.96	1.88	1.83	1.79	1.74	1.56
36	4.11	3.26	2.87	2.63	2.48	2.36	2.28	2.21	2.15	2.11	2.03	1.95	1.87	1.82	1.78	1.73	1.55
37	4.11	3.25	2.86	2.63	2.47	2.36	2.27	2.20	2.14	2.10	2.02	1.95	1.86	1.82	1.77	1.72	1.54
38	4.10	3.24	2.85	2.62	2.46	2.35	2.26	2.19	2.14	2.09	2.02	1.94	1.85	1.81	1.76	1.71	1.53
39	4.09	3.24	2.85	2.61	2.46	2.34	2.26	2.19	2.13	2.08	2.01	1.93	1.85	1.80	1.75	1.70	1.52
40	4.08	3.23	2.84	2.61	2.45	2.34	2.25	2.18	2.12	2.08	2.00	1.92	1.84	1.79	1.74	1.69	1.51
60	4.00	3.15	2.76	2.53	2.37	2.25	2.17	2.10	2.04	1.99	1.92	1.84	1.75	1.70	1.65	1.59	1.39
120	3.92	3.07	2.68	2.45	2.29	2.18	2.09	2.02	1.96	1.91	1.83	1.75	1.66		1.55	1.50	1.25
∞	3.84	3.00	2.60	2.37	2.21	2.10	2.01	1.94	1.88	1.83	1.75	1.67	1.57		1.46	1.39	1.00