Julius-Maximilians-UNIVERSITÄT WÜRZBURG

Overview

- I Artificial Intelligence
- II Problem Solving
- III Knowledge, Reasoning, Planning
 - 7. Logical Agents
 - 8. First-Order Logic
 - 9. Inference in First-Order Logic
 - 10. Knowledge Representation
 - 11. Automated Planning
- IV Uncertain Knowledge and Reasoning
- V Machine Learning
- VI Communicating, Perceiving, and Acting

VIIConclusions

First-Order Logic

- Representation Revisited
- Syntax and Semantics of First-Order Logic
- Using First-Order Logic
- Knowledge Engineering in First-Order Logic

Nature of Representations

- Programming languages
- Propositional logic
- Language of Thought

Representations in Programming Languages

- Largest class of formal languages in common use
- Data Structure: Facts (variables), e.g. array like "World[2,2] == Pit" in wumpus world
- Disadvantages in comparison to (propositional) logic
 - No general mechanism for deriving facts from other facts
 - Needs domain-specific procedures
 - No easy way to represent partial information, e.g "there is a pit in [2,2] or [3,1]"

Propositional Logic

- **Declarative language:** Truth relation between sentences and possible words; separation of data and inference
- Partial information can be represented using disjunction and negation
- Compositionality: Meaning of a sentence is a function of the meaning of the parts
- Disadvantages in comparison to natural language
 - Lacks expressiveness
 - Cannot represent statements like "All squares adjacent to pits are breezy"
 - Needs a separate rule for each square like ${}_{n}B_{1,1} \Leftrightarrow (P_{1,2} \vee P_{2,1})^{n}$

Language of Thought

- Natural languages are very expressive
- Modern view: They serve for communication rather than pure representation
 - Meaning results from sentence and context (e.g. "Look")
 - Contains ambiguity (e.g. "spring" as season, technical term, or water origin)
 - Context usually solves ambiguity

Sapir-Whorf hypothesis:

- "Our understanding of the world is strongly influenced by the language we speak."
- Example: Bridge is masculine in Spanish and feminine in German. When asking to describe a picture of a bridge, Spanish speakers chose terms like "big, dangerous, strong, towering" whereas German speakers chose "beautiful, elegant, fragile, slender".
- "Framing" of the same question with different words results in differences in surveys
- In learning tasks, "Occam's Razor" or "simplicity first" prefers the most succinct theory, whereby simplicity depends on the representation (i.e. language).

First-Order Logic

- More expressive than propositional logic, but less expressive than natural languages
- World contains not only facts, but also objects with attributes (unary and n-ary relations)
 - Objects: e.g. people, houses, squares, pits
 - Relations:
 - unary relations (properties) like red(x), green(x), round(x)
 - n-ary relations: brother-of(x,y), bigger-than(x,y), inside(x,y), part-of(x,y)
 - **Functions:** Relations, in which there is only one value for a given input, e.g. father-of(x)

Examples for First-Order Logic (FOL)

- Example 1: One plus two equals three
 - Objects: One, two, three
 - Relation: equals
 - Function: plus
 - FOL: equals (plus (one, two), three)
- Example 2: Squares adjacent to a wumpus are smelly.
 - Objects: Square, wumpus
 - Relation: adjacent
 - Property: smelly
 - FOL: \forall x square (x) \land adjacent (x, wumpus) \Rightarrow smelly (x)
- Example 3: Evil king John ruled England in 1200
 - Objects: John, England, 1200; Relation: ruled-during; Properties: evil, king
 - FOL: Ruled-During (John, England, 1200) ∧ evil (John) ∧ king (John)

Other Logics

Logics can be classified according to different commitments:

- Ontological commitments: Related to reality
- Epistemological commitments: Related to knowledge of agents

Language	Ontological Commitment (What exists in the world)	Epistemological Commitment (What an agent believes about facts)
Propositional logic First-order logic Temporal logic Probability theory Fuzzy logic	facts facts, objects, relations facts, objects, relations, times facts facts facts with degree of truth $\in [0,1]$	true/false/unknown true/false/unknown true/false/unknown degree of belief ∈ [0, 1] known interval value

Models in Logic

- Semantic of representation language: Defines truth of sentences with respect to each possible world (model)
 - **Possible world:** (Potentially) real environment
 - Model: Mathematical abstraction with a truth value (true or false) for each sentence
 - In propositional logic, each variable (proposition symbol) has a truth value
 - In first-order logic, models are more interesting, since objects and relations must be related to something meaningful
 - There are many (nearly infinite many) models for a FOL description
 - Usually, only one model is intended

Models of First-Order Logic

11

A model containing 5 objects, 2 binary relations (brother, on-head), 3 unary relations (person, king, crown) and one unary function (left-leg)

- Besides the intended interpretation there are many other possible interpretations, e.g. mapping the constant symbol Richard (R) to the crown (or to another of the 5 objects).
- To rule out unintended interpretations, additional statements may be necessary (e.g. that Richard and John are distinct)

Syntax of First-Order Logic

- **Term:** Refer to an object, e.g. John, Leftleg (John)
- AtomicSentence (atom): Predicate optionally with terms, e.g. Brother (Richard, John)
- ComplexSentence: Uses the same logical connectives as propositional logic, e.g. ¬King(Richard) ⇒ King(John)
- Quantifiers: Express properties over collections of objects:
 - Univeral Quantifier: ∀ (for all ...)
 - Existential Quantier: ∃ (There exists ...)
 - Order of quantifier important, e.g.
 - \forall x (\exists y Loves (x,y)) versus \exists x (\forall y Loves (x,y))
 - Connections similar to de Morgan's rules, e.g.
 - ∀ x Likes (x, IceCream) is equivalent to
 ¬∃ y ¬Likes (x, IceCream)
- Equality: 2 terms refer to same object,
 e.g. Father(John) = Henry

Function \rightarrow Mother | LeftLeg | ...

OPERATOR PRECEDENCE : $\neg,=,\wedge,\vee,\Rightarrow,\Leftrightarrow$

Capturing Semantics

- Assume, Richard has two brothers, John and Geoffry.
 - Brother (John, Richard) ∧ Brother (Geoffry, Richard)
 - Not correct in First-Order Logic: It does not exclude, that their is only one brother
 if (John = Geoffry) or that there are further brothers
 - Might lead to wrong conclusions!
 - Brother (John, Richard) ∧ Brother (Geoffry, Richard) ∧ John ≠ Geoffry ∧
 ∀ x Brother (x, Richard) ⇒ (x = John) ∨ (x = Georffy)
 - Correct but cumbersome
- Alternate semantic: **Database semantic** with 3 more assumptions to allow first statement:
 - Unique name assumption: Every constant refers to a different object
 - Closed-world assumption: Unknown sentences are false
 - Domain closure: There are no more elements than those named by constant symbols

Using First-Order Logic (1)

Example: Kinship-domain

- Unary predicates: Male, Female, ...
- Binary predicates: Parent, Sibling, Brother, Sister, Child, Daughter, Son, Spouse, Wife, Husband, Grandparent, Grandchild, Cousin, Aunt, Uncle, ...
- Functions: Father, Mother, ...
- Axioms:
 - \forall m,c Mother (c) = m \Leftrightarrow Female (m) \land Parent (m, c)
 - \forall w,h Husband (h,w) \Leftrightarrow Male (h) \land Spouse (h, w)
 - \forall p,c Parent (p,c) \Leftrightarrow Child (c,p)
 - \forall g,c Grandparent (g,c) $\Leftrightarrow \exists$ p Parent (g,p) \land Parent (p, c)
 - \forall x,y Sibling (x,y) \Leftrightarrow x \neq y \land \exists p Parent (p,x) \land Parent (p, y)
 - ...
- **Theorems** (are entailed in the axioms):
 - \forall x,y Sibling (x,y) \Leftrightarrow Sibling (y,x), ...
- Axioms for facts, e.g. Male (Jim) and Spouse (Jim, Laura), ...

Using First-Order Logic (2)

Example: Numbers, sets, and lists

- Peano axioms define natural numbers (Natnum) and addition:
 - NatNum(0)
 - \forall n NatNum (n) \Rightarrow NatNum (S (n))
 - \forall n 0 \neq S(n)
 - \forall m,n m \neq n \Rightarrow S(m) \neq S(n)
 - \forall m NatNum (m) \Rightarrow + (0,m) = m
 - \forall m,n NatNum (m) \land NatNum (n) \Rightarrow + (S(m),n) = S(+ (m,n))
 - in infix-notation: \forall m,n NatNum (m) \land NatNum (n) \Rightarrow (m+1) + n = (m+n) + 1
- Similar for sets and lists

Using First-Order Logic (3)

Example: Wumpus world (much easier than in propositional logic)

- A typical percept at time step 5 would be: Percept (Stench, Breeze, Glitter, None, None), 5)
 - Percept is a binary predicate and Stench, Breeze, etc. are constants
- Actions:
 - Turn (Right), Turn (Left), Forward, Shoot, Crab, Climb
- To determine, which action is the best, the agent program executes a query:
 - AskVars (KB, BestAction(a, 5)
 - Returns a binding list like (a/Grab)
- The raw percept data implies certain facts about the current state:
 - ∀t,s,g,w,c Percept ([s, Breeze, g, w, c], t) ⇒ Breeze(t)
 - \forall t,s,g,w,c Percept ([s, None, g, w, c], t) $\Rightarrow \neg$ Breeze(t)
- Simple "reflex behaviour" can be formalized easily: $\forall t$ Glitter (t) \Rightarrow BestAction (Grab, t)
- Defining Ajacency: $\forall x,y,a,b$ Adjacent ([x,y], [a,b]) \Leftrightarrow (x=a \land (y=b-1 \lor y=b+1)) \lor (y=b \land (x=a-1 \lor x=a+1))

Wumpus example continued

- If an agent is at a square and perceives a breeze, then that square is breezy. Since pits cannot move, "breezy" needs no time parameter:
 - \forall s,t At(Agent, s, t) \land Breeze (t) \Rightarrow Breezy (s)
- However, shooting an arrow needs a time parameter:
 - \forall t HaveArrow (t+1) \Leftrightarrow (HaveArrow t) $\land \neg$ Action (Shoot, t)
- Causal rules (from causes to effects), e.g.:
 - \forall s [\forall r Adjacent (r, s) $\Rightarrow \neg$ Pit (r)] $\Rightarrow \neg$ Breezy (s)
 - \forall r Pit (r) \Rightarrow [\forall s Adjacent (r, s) \Rightarrow Breezy (s)]
- Diagnostic rules (from effect to causes), e.g.:
 - \forall s Breezy (s) $\Rightarrow \exists$ r Adjacent (r, s) \land Pit (r)
 - \forall s \neg Breezy (s) $\Rightarrow \neg \exists$ r Adjacent (r, s) \land Pit (r) (equivalent to) \forall r \neg Adjacent (r, s) $\lor \neg$ Pit (r)

Knowledge Engineering

- A knowledge engineer should know:
 - Domain knowledge about objects and relations
 - General knowledge about the knowledge representation and inference procedure
- Seven steps to build a knowledge base:
 - 1. Identify the questions: Task understanding, PEAS process
 - 2. Assemble the relevant knowledge
 - 3. Decide on the vocabulary (ontology) of predicates, functions, constants
 - 4. Encode general knowledge about the domain
 - 5. Encode a description of the problem instance
 - 6. Pose questions to the inference procedure and get answers
 - 7. Debug and evaluate the knowledge base (should be easier than debugging code)

Example for Knowledge Engeering: A Digital Circuit

Figure 8.6 A digital circuit C_1 , purporting to be a one-bit full adder. The first two inputs are the two bits to be added, and the third input is a carry bit. The first output is the sum, and the second output is a carry bit for the next adder. The circuit contains two XOR gates, two AND gates, and one OR gate.

Task Description

- Possible tasks:
 - Does the circuit work correctly?
 - e.g. if all inputs are high, what is the output at gate A2?
 - Can errors be recognized (diagnosis)?
 - Can the efficiency improved?
- Tasks concerning the structure of the ciruit
 - Does it contain feedback loops?
 - Are there timing delays?
- General tasks:
 - Power consumption, production costs, etc.
- > The knowledge to be acquired depends on the task!

Assembly of Relevant Knowledge

- Circuits are composed of wires and gates with terminal (for input and output)
 - There are four types of gates: AND, OR, XOR, NOT
- Level of detail depends on the task:
 - Here: Does the circuit work correctly?
 - For diagnosis, we need e.g. statements about wires (which need not be modelled if correct functioning is assumend)
 - For effiency analysis, we need additional knowledge about duration of gates and wires

Decide on Vocabulary

- Representation of gates:
 - As objects named with constants. For gate types we introduce a function "Type", e.g.
 Type (X1) = XOR
- Representation of terminals:
 - Instead of constants better with functions of the gates, e.g. In (1, X1), In (2, X1), Out (1, X1) etc.
- Representation of connections between gates:
 - With predicates, e.g. Connected (Out (1, X1), In (1, X2))
- Representation of signals
 - With constants for the signal values 1 and 0 representing "on" and "off" and a function signal (t), that denotes the signal value for the terminal t.

Encoding General Knowledge of the Domain

- 1. If two terminals are connected, then they have the same signal:
 - $\forall t_1, t_2 \ Terminal(t_1) \land Terminal(t_2) \land Connected(t_1, t_2) \Rightarrow Signal(t_1) = Signal(t_2).$
- 2. The signal at every terminal is either 1 or 0:

$$\forall t \ Terminal(t) \Rightarrow Signal(t) = 1 \lor Signal(t) = 0$$
.

3. Connected is commutative:

$$\forall t_1, t_2 \ Connected(t_1, t_2) \Leftrightarrow Connected(t_2, t_1)$$
.

4. There are four types of gates:

$$\forall g \; Gate(g) \land k = Type(g) \Rightarrow k = AND \lor k = OR \lor k = XOR \lor k = NOT$$
.

5. An AND gate's output is 0 if and only if any of its inputs is 0:

$$\forall g \; Gate(g) \land Type(g) = AND \Rightarrow$$

 $Signal(Out(1,g)) = 0 \Leftrightarrow \exists n \; Signal(In(n,g)) = 0.$

6. An OR gate's output is 1 if and only if any of its inputs is 1:

$$\forall g \; Gate(g) \land Type(g) = OR \Rightarrow$$

 $Signal(Out(1,g)) = 1 \Leftrightarrow \exists n \; Signal(In(n,g)) = 1$.

7. An XOR gate's output is 1 if and only if its inputs are different:

```
\forall g \; Gate(g) \land Type(g) = XOR \Rightarrow

Signal(Out(1,g)) = 1 \Leftrightarrow Signal(In(1,g)) \neq Signal(In(2,g)).
```

8. A NOT gate's output is different from its input:

$$\forall g \; Gate(g) \land Type(g) = NOT \Rightarrow$$

 $Signal(Out(1,g)) \neq Signal(In(1,g)).$

9. The gates (except for NOT) have two inputs and one output.

$$\forall g \; Gate(g) \land Type(g) = NOT \Rightarrow Arity(g, 1, 1) .$$

 $\forall g \; Gate(g) \land k = Type(g) \land (k = AND \lor k = OR \lor k = XOR) \Rightarrow Arity(g, 2, 1)$

10. A circuit has terminals, up to its input and output arity, and nothing beyond its arity: $\forall c, i, j \; Circuit(c) \land Arity(c, i, j) \Rightarrow$

$$\forall n \ (n \leq i \Rightarrow Terminal(In(n,c))) \land (n > i \Rightarrow In(n,c) = Nothing) \land \\ \forall n \ (n \leq j \Rightarrow Terminal(Out(n,c))) \land (n > j \Rightarrow Out(n,c) = Nothing)$$

- 11. Gates, terminals, and signals are all distinct. $\forall g, t, s \; Gate(g) \land Terminal(t) \land Signal(s) \Rightarrow g \neq t \land g \neq s \land t \neq s$.
- 12. Gates are circuits.

$$\forall g \; Gate(g) \Rightarrow Circuit(g)$$

Encoding the Specific Problem Instance

$$Circuit(C_1) \land Arity(C_1, 3, 2)$$

 $Gate(X_1) \land Type(X_1) = XOR$
 $Gate(X_2) \land Type(X_2) = XOR$
 $Gate(A_1) \land Type(A_1) = AND$
 $Gate(A_2) \land Type(A_2) = AND$
 $Gate(O_1) \land Type(O_1) = OR$.

Pose Queries to the Inference Procedure

What combinations of inputs would cause the first output of C_1 (the sum bit) to be 0 and the second output of C_1 (the carry bit) to be 1?

$$\exists i_1, i_2, i_3 \ Signal(In(1, C_1)) = i_1 \land Signal(In(2, C_1)) = i_2 \land Signal(In(3, C_1)) = i_3 \land Signal(Out(1, C_1)) = 0 \land Signal(Out(2, C_1)) = 1.$$

The answers are substitutions for the variables i_1 , i_2 , and i_3 such that the resulting sentence is entailed by the knowledge base. ASKVARS will give us three such substitutions:

$$\{i_1/1, i_2/1, i_3/0\}$$
 $\{i_1/1, i_2/0, i_3/1\}$ $\{i_1/0, i_2/1, i_3/1\}$.

What are the possible sets of values of all the terminals for the adder circuit?

$$\exists i_1, i_2, i_3, o_1, o_2 \ Signal(In(1, C_1)) = i_1 \land Signal(In(2, C_1)) = i_2 \land Signal(In(3, C_1)) = i_3 \land Signal(Out(1, C_1)) = o_1 \land Signal(Out(2, C_1)) = o_2.$$

The last query will return a complete input-output table for the circuit (kind of total check)

Debug the Knowledge Base

- The first queries to the inference procedure usually yield buggy answers
- Debugging is simplified by:
 - The inference procedure should be correct
 - There should be an explanation component showing the trace of used rules and facts for answering the query
- Often, errors result from missing axioms (e.g. if we forget to assert that $1 \neq 0$)

