

1 Decay Scheme

Le Tl-204 se désintègre par capture électronique (2,92 %) vers le niveau fondamental de Hg-204 et par émission bêta moins (97,08 %) vers le niveau fondamental de Pb-204.

Tl-204 disintegrates 97.08 (13)% by beta minus emission and 2.92 (13)% by electron capture transition to the ground states of Pb-204 and Hg-204, respectively.

2 Nuclear Data

 $T_{1/2}(^{204}\text{Tl})$: 3,788 (15) a $Q^{-}(^{204}\text{Tl})$: 763,72 (18) keV $Q^{+}(^{204}\text{Tl})$: 345,0 (13) keV

2.1 β^- Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$
$\beta_{0,0}^{-}$	763,7 (2)	97,08 (13)	Unique 1st Forbidden	10,1

2.2 Electron Capture Transitions

	Energy keV	Probability × 100	Nature	$\lg ft$	P_K	P_L	P_{M+}
$\epsilon_{0,0}$	347,5 (15)	2,92 (13)	Unique 1st Forbidden	9,6	0,5843 (14)	0,3024 (10)	0,1133 (5)

3 Atomic Data

3.1 Hg

3.1.1 X Radiations

		Energy keV		Relative probability
X_{K}				
11K	$K\alpha_2$	68,895		58,99
	$K\alpha_1$	70,82		100
	$K\beta_3$	79,823	}	
	$\mathrm{K}eta_1$	80,254	}	
	$\mathrm{K}eta_5^{\prime\prime}$	80,762	}	34,3
	$\mathrm{K}eta_2$	82,435	}	
	$K\beta_4$	82,776	} } }	10,04
	$KO_{2,3}$	83,028	Ĵ	,
X_{L}	,			
_	$\mathrm{L}\ell$	8,721		
	$L\alpha$	$9,\!898-9,\!989$		
	$\mathrm{L}\eta$	10,647		
	$L\beta$	$11,\!924-11,\!822$		
	${ m L}\gamma$	$-14,\!847$		

3.1.2 Auger Electrons

	Energy keV	Relative probability
Auger K KLL KLX KXY Auger L	53,17 - 58,28 $64,59 - 70,81$ $75,92 - 83,08$ $5,1 - 14,8$	100 55,2 7,62

3.2 Pb

 $\omega_K : 0,963 (4)$ $\bar{\omega}_L : 0,379 (15)$ $n_{KL} : 0,811 (5)$

3.2.1 X Radiations

		Energy keV		Relative probability
X_{K}	$egin{array}{c} \mathrm{K}lpha_2 \ \mathrm{K}lpha_1 \end{array}$	72,8049 74,97		59,5 100
	$K\beta_3$ $K\beta_1$ $K\beta_5''$	84,451 84,937 85,47	} } }	34,2
	$\begin{array}{c} \mathrm{K}\beta_2 \\ \mathrm{K}\beta_4 \\ \mathrm{KO}_{2,3} \end{array}$	87,238 87,58 87,911	} } }	10,3

4 Electron Emissions

		Energy keV	Electrons per 100 disint.
e_{AL}	(Hg)	5,1 - 14,8	1,48 (3)
e _{AK}	(Hg) KLL KLX KXY	0 -,00 .0,0-	0,065 (8) } }
$\beta_{0,0}^{-}$ $\beta_{0,0}^{-}$	max: avg:	763,7 (2) 243,9 (1)	97,08 (13)

5 Photon Emissions

5.1 X-Ray Emissions

		Energy keV		Photons per 100 disint.	
XL	(Hg)	8,721 — 14,847		0,787 (20)	
$XK\alpha_2$ $XK\alpha_1$	(Hg) (Hg)	68,895 $70,82$		0,474 (20) 0,812 (34)	$K\alpha$
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5^{"} \\ XK\beta_2 \end{array}$	(Hg) (Hg) (Hg) (Hg)	79,823 80,254 80,762 82,435	<pre>} } } }</pre>	0,273 (10)	$K'\beta_1$
$XK\beta_4$ $XKO_{2,3}$	(Hg) (Hg)	82,776 83,028	}	0,081 (3)	${ m K}'eta_2$
$XK\alpha_2$ $XK\alpha_1$	(Pb) (Pb)	$72,8049 \\ 74,97$		$0,0044 (3) \\ 0,0061 (3)$	} Kα }
$\begin{array}{c} XK\beta_3 \\ XK\beta_1 \\ XK\beta_5^{"} \\ XK\beta_2 \end{array}$	(Pb) (Pb) (Pb) (Pb)	84,451 84,937 85,47 87,238	<pre>} } } }</pre>	0,0027 (2)	$\operatorname{K}'\beta_1$
$XK\beta_4$ $XKO_{2,3}$	(Pb) (Pb)	87,58 87,911	} }	0,00073 (2)	${ m K}'eta_2$

6 Main Production Modes

 $\begin{cases} Tl - 203(n,\gamma)Tl - 204 & \sigma: 11,0 (5) \text{ barns} \\ Possible impurities: None \end{cases}$

7 References

- M.H.BIAVATI, S.J.NASSIFF, C.S.Wu. Phys. Rev. 125,4 (1961) 1364 (Q)
- B.R.JOSHI. Proc. Phys.Soc. 77 (1961) 1205 (PL/PK ratio)
- H.LEUTZ, K.ZIEGLER. Z. Phys. 166 (1962) 582 (Half-life)
- P.CHRISTMAS. Nucl. Phys. 55 (1964) 577 (Beta emission energies X-ray emission probabilities)
- S.C.Anspach, *et al.*. Report NBS 260-9 (1965) (Half-life)
- H.KLEIN, H. LEUTZ. Nucl. Phys. 79 (1966) 27
- D.L.HORROCKS. Nucl. Phys. A110 (1968) 238 (Half-life)

- J.J.H.Park, P.Christmas. Can. J. Phys. 45 (1968) 2621 (K Auger/B-)
- G.BORTELS. Int. J. Appl. Radiat. Isotop. 20 (1969) 613 (Half-life)
- K.C.JORDAN, J.H BIRDEN, B.C BLANKE. J. Inorg. Nucl. Chem. 31 (1969) 2641 (Half-life)
- G.HARBOTTLE. Radiochim. Acta 13 (1970) 132 (Half-life)
- H.Lancman, A.Bond. Phys. Rev. C 7, 6 (1973) 2600 (Q)
- A.ZIDE, H.LANCMAN. Phys. Rev. C19 (1979) 1053 (Q)
- U.Schötzig. Nucl. Instrum. Methods A286 (1990) 523 (X-ray emission intensities)
- M.R.SCHMORAK. Nucl. Data Sheets 72,3 (1994) 409 (Spin and Parity)
- G. Audi, A. H. Wapstra. Nucl. Phys. A 595 (1995) 409 (Q)
- E.Schönfeld, H.Janssen. Nucl. Instrum. Methods A369 (1996) 527 (Atomic Data)
- I.Bergström, et al. Nucl. Instrum. Methods A487 (2002) 618 (Atomic mass)

