CS3063 Theory of Computing

Semester 4 (21 Intake), Jan – May 2024

Lecture 12

Turing Machines: Session 3

Announcements

- Assignment 2: was due 22 April
 - Being graded, marks will be on Moodle in a few days
- Quizzes are over (we had 10 Quizzes); best 8 counted
- Next week (the last week of the semester)
 - Lecture 13 and Lecture 14
- Please fill Student Feedback on Moodle
- Final Exam
 - 17th May, 1.00-3.00pm
 - Past exam papers will be on Moodle

Outline: Lecture 12

Turing Machines - 3

Turing Machines and Their Languages

- Recursive Languages & Recursively Enumerable Languages
- Unrestricted Grammars
- Context-Sensitive Grammars/ Languages
- Chomsky Hierarchy

Outline:

Lecture 12

Turing Machines - 3

Turing Machines and Their Languages

- Recursive Languages & Recursively Enumerable Languages
- Unrestricted Grammars
- Context-Sensitive Grammars/ Languages
- Chomsky Hierarchy

Recall: Accepting vs Deciding

- A TM, T, with input alphabet Σ accepts a language L in Σ* if L(T) = L
- A TM, T, decides L if T computes its characteristic function
 - That is: T decides L if T halts in state h_a for every string x in Σ^* , producing output 1 if x is in L and output 0 otherwise

Recognize: use with care

Some Terminology

Procedure

 A finite sequence of instructions that can be mechanically carried out, given any input (for solving a problem)

Algorithm

 A procedure that terminates after a finite number of steps for any input

Some Terminology ...contd

- Recursive set
 - A set X for which we have an algorithm to determine whether a given element belongs to X or not
- Recursively-enumerable set
 - A set for which we have a procedure to determine belongingness

A recursive set is recursively enumerable

Recursive Languages & Recursively Enumerable Languages

- A language L is recursively enumerable if there is a TM that accepts L
 - Also called *Turing-acceptable*

- A language L is recursive if there is a TM that decides L
 - Also called *Turing-decidable* (or *decidable*)

Recursive Languages & Recursively Enumerable Languages ...contd

Properties

- Every recursive language is recursively enumerable
- i.e., there are recursively enumerable languages that are not recursive
- If a TM accepts a language L, there can be strings not in L for which the TM loops forever (never produces output)

Recursive Languages & Recursively Enumerable Languages ...contd

Properties

– If L_1 and L_2 are recursively enumerable languages, then L_1 U L_2 and L_1 \cap L_2 are also recursively enumerable

– If L is recursive, so is its complement L'= Σ^* -L

Enumerating a Language

- Enumerate: list all elements one at a time
 - Enumerable: can list all elements
- Definition: A TM Enumerating a Language
 - T is a k-tape TM and L is a subset of Σ*; we say T enumerates
 L if it operates as follows
 - Tape head on 1st tape never moves to left; no non-blank symbol on it never modified later
 - For every string x in L, at some point 1st tape will contain x₁#x₂#...#x_n#x# for some n≥0, where the strings x₁, x₂,..., x_n, x are distinct elements of L. If L is finite, nothing is printed after # following the last

Enumerating a Language

- From Definition
 - If L is finite
 - T can halt when all elements of L appear on 1st tape or continue moves without printing
 - If L is infinite
 - T will continue to move forever
- Theorem 10.6, p. 369
 - A language is recursively enumerable (i.e., can be accepted by some TM) iff it can be enumerated by some TM

Enumerating a Language ...contd

 A language is recursive iff there is a TM that enumerates it in canonical order

 Canonical order: 2 strings of different lengths, shorter one comes first; same length means alphabetical or numerical order

Enumerating a Language ...contd

Summary

 A language is *recursively enumerable* if there is an algorithm for listing its elements

 A language is *recursive* if there is an algorithm for listing its elements in canonical order

Outline:

Lecture 12

Turing Machines - 3

Turing Machines and Their Languages

- Recursive Languages & Recursively Enumerable Languages
- Unrestricted Grammars
- Context-Sensitive Grammars/ Languages
- Chomsky Hierarchy

Unrestricted Grammars

- Grammars, languages, abstract machines
 - Regular grammars, regular expressions, FA
 - CFG's, context-free languages, PDA

- A TM is the most general machine
 - More general grammar than CFG needed to generate a recursively-enumerable language

Unrestricted Grammars ...contd

- Recall: the "context-freeness" of CFG's
 - LHS of a production has a single non-terminal and the production can be applied whenever that non-terminal appears in a string (no matter what the context is)
 - Allows to prove the pumping lemma for CFG's

- Can relax the rules of CFGs
 - E.g., LHS of a production with >1 non-terminal

Unrestricted Grammars ...contd

Example

$$\alpha A\beta \rightarrow \alpha \gamma \beta$$

- Replace non-terminal A by γ (only when A is immediately preceded by α and followed by β ; i.e., context dependent)
- Easier to write general productions as:

$$\alpha \rightarrow \beta$$

- Production: simply a substitution of a string
- But, LHS must contain ≥ 1 non-terminal

Unrestricted Grammars ...contd

- Definition: An unrestricted (or phrase-structure) grammar is a 4-tuple G=(V, Σ, S, P) where:
 - V and ∑ are disjoint sets of non-terminals and terminals, respectively
 - S is the start symbol
 - P is the set of productions of the form

$$\alpha \rightarrow \beta$$

where α , β in $(V \cup \Sigma)^*$ and α contains at least one non-terminal

• Unrestricted grammar for $L=\{a^ib^ic^i\mid i\geq 1\}$

$$S \rightarrow FS_1$$

 $BA \rightarrow AB$

 $FA \rightarrow a$

 $bB \rightarrow bb$

$$S_1 \rightarrow ABCS_1$$

 $CA \rightarrow AC$

$$aA \rightarrow aa$$

$$bC \rightarrow bc$$

$$S_1 \rightarrow ABC$$

$$CB \rightarrow BC$$

$$aB \rightarrow ab$$

$$cC \rightarrow cc$$

How to derive the string aabbcc from L?

 $aabBCC \Rightarrow aabbCC \Rightarrow aabbcC \Rightarrow aabbcC$

- Consider $L=\{ss \mid s \text{ is in } \{a,b\}^*\}$
 - (E.g. 10.2, p. 374)
 - Unrestricted grammar for L would be:

$$S \rightarrow FM$$

 $Aa \rightarrow aA$

 $Bb \rightarrow bB$

 $F \rightarrow \Lambda$

$$F \rightarrow FaA$$

 $Ab \rightarrow bA$

 $AM \rightarrow Ma$

 $M \rightarrow \Lambda$

$$F \rightarrow FbB$$

$$Ba \rightarrow aB$$

 $BM \rightarrow Mb$

How to derive the string abbabb from L?

$$S => FM => FbBM => FbMb => FbBbMb => FbbBMb$$

=> FbbMbb => FaAbbMbb => FabAbMbb => FabbAMbb

 \Rightarrow FabbMabb \Rightarrow abbMabb \Rightarrow abbabb

Unrestricted Grammars & TMs

Theorems

– For any unrestricted grammar $G=(V, \Sigma, S, P)$, there is a TM, T, with input alphabet Σ and L(T)=L(G)

 For any recursively enumerable language L, there is an unrestricted grammar G generating L

Outline:

Lecture 12

Turing Machines - 3

Turing Machines and Their Languages

- Recursive Languages & Recursively Enumerable Languages
- Unrestricted Grammars
- Context-Sensitive Grammars/ Languages
- Chomsky Hierarchy

Context-Sensitive Grammars

- More general than CFG, less general than unrestricted grammars
- A context-sensitive grammar (CSG) is an unrestricted grammar in which every product has the form
 - $\alpha \rightarrow \beta$ with $|\beta| \ge |\alpha|$

 A context-sensitive language (CSL) can be generated by a CSG

Context-Sensitive Grammars ...contd

 A language is context-sensitive iff it can be generated by a grammar in which every production has the form:

$$\alpha A\beta \rightarrow \alpha X\beta$$

where α , β and X are strings of non-terminals and/or terminals, $X \neq \Lambda$ and A is a non-terminal

May allow A to be replaced by X depending on the context

- CSG for $\{a^nb^nc^n \mid n \ge 1\}$
 - Example 10.5 on p. 381

$$S \rightarrow \mathcal{A}BCS_1 \mid \mathcal{A}BC$$

$$S_1 \rightarrow ABCS_1 \mid ABC$$

$$BA \rightarrow AB$$
 $CA \rightarrow AC$

$$\mathcal{A} \rightarrow a$$
 $aA \rightarrow aa$

$$bB \rightarrow bb$$
 $bC \rightarrow bc$

$$CB \rightarrow BC$$

$$aB \rightarrow ab$$

$$cC \rightarrow cc$$

Linear-Bounded Automata (LBA)

- CSG correspond to linear-bounded automata that lie between PDA and TM
- An LBA is a non-deterministic TM with a limit on the length of tape
 - Head cannot move beyond specified bounds
 - Length moved bound linearly to input length

(Ref: pp. 382-384 for Definition, details)

CSG/CSL and LBA

Theorems

- If L is a CSL, there is a LBA accepting L

– If there is an LBA accepting the language L, a subset of Σ^* , then there is a CSG generating L – $\{\Lambda\}$

Chomsky Hierarchy

- We studied 4 classes of languages
 - Regular, context-free, context-sensitive and recursivelyenumerable
- These are called the Chomsky Hierarchy
 - Chomsky denoted them as type 3, 2, 1 and 0

Table next slide (p. 385)

The Chomsky Hierarchy

Type	Languages (Grammars)	Form of productions	Accepting Device
3	Regular	$A \rightarrow aB, A \rightarrow a$ (A, B in V, a in Σ)	Finite automaton
2	Context-free	$A \rightarrow \alpha$ (A in V, α in (VU Σ)*)	Pushdown automaton
1	Context- sensitive	$\alpha \rightarrow \beta$ $(\alpha, \beta \text{ in } (VU\Sigma)^*, \beta \ge \alpha ,$ $\alpha \text{ has a } V)$	Linear-bounded automaton
0	Recursively enumerable	$\alpha \rightarrow \beta$ (α , β in (VU Σ)*, α has a V)	Turing machine

unrestricted or *phrase-structure*

Languages not accepted by a TM?

- Not all languages are recursively enumerable
- Proof based on counting set elements
 - Main idea: the set of languages bigger than the set of TM's (a TM can accept one language)
 - Both are infinite sets but the 1st set is bigger !!

- Ref: Section 10.5 and Chapter 11
- More discussion next lecture

L12: Conclusion

- Today we discussed
 - Languages: recursive, recursively enumerable
 - Unrestricted grammars
 - Context-sensitive grammars
 - Chomsky Hierarchy