Advanced Methods in Text Analytics Transformers

Why Transformers?

- Most successful and commonly used deep learning architecture in NLP
 - By far!
- Resilient technology
 - RNNs improved over FNNs
 - LSTMs improved over vanilla RNNs
 - Attention improved over vanilla encoder-decoder architectures
 - Transformer proposed in 2017/2018, still largely unchanged
 - Alternative architectures do exist/are proposed, e.g. <u>Mamba</u>, <u>LSTMs</u>
- Main advantages over RNNs (previous state-of-the-art models)
 - Attention over arbitrarily large inputs, i.e. no recurrent connections
 - Flexible/powerful attention mechanism
 - Scalable! Parallelizable, important contrast to RNN-based models

Outline

1. Recap: Attention

2. Self-Attention

3. The Transformer Architecture

Recap: Attention

Encoder-Decoder Architecture

- Goal: create contextually appropriate sequence of arbitrary length
 - Known as seq2seq models
- Components
 - Encoder: typically, an RNN
 - Context vector: produced by encoder (typically last hidden state in RNN)
 - **Decoder:** RNN, produces task-dependent output based on context vector
 - Thus, input sequence represented entirely by context vector
- Common applications: machine translation, dialogue systems, etc.

Attention (1)

- Seminal work in machine translation: <u>Bahdanau et al.</u> (2015)
- Recall: RNNs have a hard time using information far back in time
 - Thus, the context vector may not encode everything we need
 - LSTMs somewhat address this, but...
- Why not allow decoder to access input sequence?
- In encoder-decoder architecture:
 - Decoder accesses input via hidden states of encoder
 - Context vector is now weighted sum of hidden states in encoder
- Important: context vector dependent on decoder state!
 - Thus, model "attends to" different parts of input to produce different parts of output
- Let's look at all of this in more detail!

Attention (2)

- c_i is context vector for output i, defined as $c_i = \sum_{j=1}^n \alpha_{ij} h_j^e$
 - That is, c_i is a weighted sum of encoder hidden states
- Coefficients α_{ii} known as **attention weights**
 - Encode how much attention is paid to input j to produce output i
 - Decoder output h_{i-1}^d necessary, encodes output i-1 (dashed lines)

Attention (3)

UNIVERSITY
OF MANNHEIM
School of Business Informatics
and Mathematics

- Entry i,j corresponds to attention weight for input i given target token j
- We can see most words are translated 1-to-1, i.e. look at nth input word to produce nth output word
- But some are not so simple!
- To produce word *européenne*, the 7th output word, model looks at 5th input word, the actual relevant one!
- Relevant input can be far!
 - "Ich habe heute Abend Bratwurst mit Bröt und Kartoffeln gegessen."
 - "Tonight I ate..."

How to Compute Attention Weights?

- Two steps:
 - 1. Compute attention scores
 - 2. Combine attention scores to produce attention weights
- Attention scores: how relevant each input is to encoder's last state
 - Each input -> hidden states in encoder h_i^e
 - Each output -> decoder hidden states h_i^d
- Common approach: dot-product attention
 - score(output i, input j) = $(\mathbf{h}_i^d)^T \mathbf{h}_i^e$
 - Used to compute output i + 1
 - Relevance seen as similarity
- Similarities computed between each input token and last decoder state
 - We still don't know the *relative* relevance across input words
- Attention weights: encode relative relevance across input words
 - $\alpha_{ij} = softmax(score(output\ i,\ input\ j))$, i.e. mass of α_{ij} w.r.t. all other $\alpha_{ij'}$

Attention: In Short

- To produce output *i+1*:
 - 1. Compute **attention scores** using last hidden state of decoder's \mathbf{h}_i^d , e.g. with dot-product attention: $score(\text{output } i, \text{ input } j) = (\mathbf{h}_i^d)^T \mathbf{h}_i^e$
 - 2. Compute **attention weights**, e.g. using softmax across all attention scores
 - 3. Compute **context vector** \mathbf{c}_i as linear combination of encoder hidden states, where coefficients are attention weights, i.e. $\mathbf{c}_i = \Sigma_j \alpha_{ij} \mathbf{h}_j^e$
 - 4. Use c_i , along with y_i and h_i^d , to produce output y_{i+1}

- Thus, attention allows a seq2seq model to see dynamic representation of input at each output step
 - Different operations can be used to compute scores and weights

Self-Attention

Dr. Daniel Ruffinelli - FSS 2025

The Heart of Transformers

- Transformers were introduced by <u>Vaswani et al.</u> in 2017
- Virtually all of state-of-the-art NLP is based on transformers, e.g.
 - BERT and other masked language models that provide word representations (covered soon)
 - The **GPT family** of text-generating language models (covered soon)
- Deep architecture with many components
- Key component of the transformer architecture: self-attention
 - They proposed to drop the RNNs and "simply" focus on attention
 - In reality, more components aside from attention
 - But self-attention is main innovation, allowed for flexible and scalable attention over long sequences
 - More on this later
- First, let's focus on self-attention
 - Then on the overall architecture of the model

Attention as Information Retrieval

- Useful intuition about attention comes from information retrieval
- Say you open YouTube and input the query "cats dressed as Batman"
- The search system represents each video with a set of keys
 - Think attributes, class properties
 - For example: title, description, channel_name, publication_date, etc.
- For any query-key match the system finds, it returns a value
 - In this case, values are relevant videos, e.g. those with text similar to your query in the title, description, etc.
- We can see attention as such a query-keys-values system
 - Given attention score score (output i, input j) = $(\mathbf{h}_i^d)^T \mathbf{h}_j^e$, decoder state \mathbf{h}_i^d is a query, encoder state \mathbf{h}_i^e is a key
 - Context vector \mathbf{c}_i represents retrieved values, but as linear combination?
 - Yes, so $c_i = \sum_j \alpha_{ij} h_j^e$ where h_j^e are again used as values
- Thus, attention can be seen as a soft-retrieval system
 - It returns relevant values, but each weighted by how relevant they are

Self-Attention (1)

- Attention: compare item of interest to collection of other items in a way that reveals their relevance in the current context
 - In encoder-decoder architecture, item of interest is *decoder* state, i.e. output sequence so far
 - Collection of other items is hidden states of *encoder*, i.e. input sequence
- **Self-attention:** compare each token in given sequence, to all other tokens in the *same sequence*, i.e. item of interest is in same collection of items to compare with
- Thus, we use representations from the same sequence as queries, keys and values
 - score(input i, input j) = $(\mathbf{x}_i^e)^T \mathbf{x}_i^e$
 - α_{ij} = softmax(score(input i, input j))
 - $\mathbf{y}_i = \Sigma_j \, \alpha_{ij} \, \mathbf{x}_j^e$

where x_i are representations of given sequence, and y_i are representations after attention, i.e. **contextualized** representations

Self-Attention (2)

- Again, to produce each output token we compute (potentially)
 different context vectors
 - Thus, encoders produce different representations at each output step
 - These representations depend on context, i.e. output produced so far, other tokens in input sequence
 - Hence, contextualized representations (unlike static word embeddings)

Dr. Daniel Ruffinelli - FSS 2025

Self-Attention Layer (1)

- **Input:** sequence of *n* tokens
- **Output:** sequence of *n* contextualized tokens

- Layer is **parameterized by** matrices W^Q , W^K and W^V
 - Each a linear transformation applied to input tokens x_i
 - Each transformation is applied when tokens are used in the different roles: queries, keys and values

Self-Attention Layer (2)

- Note the contrast to attention so far, which was not parameterized!
 - Attention scores: dot-product
 - Attention weights: softmax
- Before, model had to learn token representations that could be combined to provide useful context vectors
 - The parameters in self-attention allow for a more flexible attention mechanism
- Specifically, $\mathbf{q}_i = \mathbf{W}^Q \mathbf{x}_i$, $\mathbf{k}_i = \mathbf{W}^K \mathbf{x}_i$ and $\mathbf{v}_i = \mathbf{W}^V \mathbf{x}_i$
- Then:
 - $score(input i, input j) = \mathbf{q}_i^T \mathbf{k}_i$
 - α_{ij} = softmax(score(input i, input j))
 - $\mathbf{y}_i = \Sigma_j \; \alpha_{ij} \; \mathbf{v}_j$
- Note that for dot product attention, we require that \mathbf{W}^{Q} , $\mathbf{W}^{K} \in R^{D \times D'}$
 - In general, \mathbf{W}^Q , \mathbf{W}^K and \mathbf{W}^V can be of any size allowed by the required computations for scores and weights

Self-Attention Layer (3)

UNIVERSITY
OF MANNHEIM
School of Business Informatics
and Mathematics

- Here, model attends only to previous tokens
 - Design choice, depends on task
- Note:
 - Transformations to k,
 q and v
 - Dot products with one q and each k to compute scores
 - Softmax to compute weights
 - Linear combination with each v to get contextualized representation y

Self-Attention Layer (4)

- The original model actually used scaled dot-product attention
 - score(input i, input j) = $\mathbf{q}_i^T \mathbf{k}_i / \sqrt{D_k}$ where D_k is size of keys and query vectors
 - Done to avoid numerical stability issues when using softmax
- We can represent the computation for all \mathbf{y}_i as matrix products
 - Let $X \in R^{N \times D}$ be the matrix of N input tokens of size D
 - Then: $\mathbf{Q} = \mathbf{X}\mathbf{W}^Q \in R^{N \times D'}$, $\mathbf{K} = \mathbf{X}\mathbf{W}^K \in R^{N \times D'}$, $\mathbf{V} = \mathbf{X}\mathbf{W}^V \in R^{N \times D}$
 - All relevant dot products, i.e. attention scores, are in $QK^T \in R^{N \times N}$
 - Apply row-wise softmax for attention weights: $softmax(QK^T \mid VD_k) \in R^{N\times N}$
 - Then multiply by V to get final stacked contextualized representations
- All together: Self-Attention($\mathbf{Q}, \mathbf{K}, \mathbf{V}$) = softmax($\mathbf{Q}\mathbf{K}^T \mid VD_k$) \mathbf{V}
- Cost: each y_i computed independently, thus highly parallelizable
 - But attention quadratic in input size (every item with every other item)
 - Thus, size of input sequence a fundamental limitation of this architecture
 - Transformers as FNNs, not RNNs: max. input size fixed, grows with model

The Transformer Architecture

Dr. Daniel Ruffinelli - FSS 2025

The Transformer Architecture

UNIVERSITY
OF MANNHEIM
School of Business Informatics
and Mathematics

- Originally an encoder-decoder architecture
- Encoder: multi-head attention
 - Plus additional components
- Decoder: multi-head attention
 - Plus additional components
- Interaction between encoder/decoder:
 - Multi-head attention
- Hence the name: Attention is All you Need
- Multi-head attention: multiple selfattention layers (discussed soon)
- Additionally, other components:
 - Positional encoding
 - Layer normalization
 - Residual connections
 - FNN
- Let's look at them in more detail, but first...

The Animated Transformer

- From Google's blog, here's now representations are built/interact
 - 3 encoder layers are stacked for depth (still deep learning)
 - 3 decoder layers are also stacked

Multi-Head Attention (1)

- Single-head attention: self-attention layer
- Multi-head attention: multiple independent self-attention layers
 - Output concatenated, then projected down to input size

Dr. Daniel Ruffinelli - FSS 2025

Multi-Head Attention (2)

- Specifically, each attention head i has parameters W_i^Q , W_i^K and W_i^V
 - Since we have a projection layer at the end, dimensions of queries, keys and values can more freely change
 - We denote size of queries and keys by D_k (the same because dot product)
 - We denote size of values by D_v
 - Then $W_i^Q \in R^{DxDk}$, $W_i^K \in R^{DxDk}$ and $W_i^V \in R^{DxDv}$ where D is size of input tokens
- As before, stack inputs of size D to form matrix X
 - Then, $\mathbf{Q}_i = \mathbf{X} \mathbf{W}_i^Q$, $\mathbf{K}_i = \mathbf{X} \mathbf{W}_i^{K_i} \mathbf{V}_i = \mathbf{X} \mathbf{W}_i^V$
- We thus have head; = Self-Attention(Q, K, V)
- Outputs of each head is concatenated, projected down to D via W^O
 - $MultiHeadAttention(X) = (head_1(+) head_2(+) ... (+) head_H) W^O$, where (+) denotes concatenation

Multi-Head Attention (3)

- Perhaps more important: why?
 - What is the intuition behind this?
 - How can we think about multi-head attention?
- Different words in a sentence relate to each other in different ways
 - "They happily played Mario Kart until the sun came out."
 - "Mario Kart" is the object of verb played
 - "Mario Kart" described further by indirect complement "until the...", etc.
- A single-head attention must capture all of these dependencies
 - A multi-head attention splits the workload into independent heads
 - Think of tasking a set of people to do one job, e.g. memorize a book
- Thus, multi-head attention is more powerful
 - But more difficult to train (more parameters)
- Additional intuition: multiple convolution filters in convolution layer
 - Similar principle: many patterns to capture, multiple filters allows model to capture different patterns using different filters

Positional Encoding (1)

- In the transition from RNNs to transformers, we lost something!
 - We no longer "see" relative positions (order) of each token in the input sequence
 - Each token attends to each other token, wherever they are
- Think about a self-attention layer
 - It produces contextualized representations for each input token
 - If we **shuffle the input sequence**, the output of the **linear combination** that produces contextualized representations is **still the same**
- But relative position of tokens matters in a sequence!
- Solution: modify input embeddings to encode position before applying attention
 - For example, learn position embeddings just as you do word embeddings
 - E.g. embedding for position 1, 2, etc.
 - Then combine embeddings of positions with words before multi-head attention, e.g. by adding them up -> $\mathbf{w}_1 + \mathbf{w}_{the}$

Positional Encoding (2)

- Other types of positional encodings, e.g. non-parameterized ones
 - We'll see some in detail in tutorials

Layer Normalization

- Goal: normalize output of any layer in a network
 - Not exclusive to transformers, commonly used in deep learning models
 - Improves gradient-based training
- It's a form of centering the data
 - Given output vector \mathbf{x} for some hidden layer, compute its mean μ and standard deviation σ
 - Then center $\mathbf{x'} = (\mathbf{x} \mathbf{\mu}) / \mathbf{\sigma}$
- Final value is actually LayerNorm = $\gamma x' + \beta$
 - Both γ , β are learnable parameters
- Layer normalization can play important role during training
 - First proposed by <u>Ba et al. (2016)</u>
 - Subsequent <u>studies</u> have focused on its impacts
 - Recent architectures include more layer normalization in other parts
 - E.g. after input embeddings, before and after self-attention
 - More on this when discussing LLMs

Residual Connections

- Recall the vanishing gradient problem:
 - Most operators have impact on the gradient that flows backward during training
 - Generally, input gradients are multiplied by an operator-specific Jacobian
 - This factor can make output gradient smaller than input gradient
 - With depth, gradients can thus vanish
- Residual connections designed to address this issue (<u>He et al. 2015</u>)
- Main idea: given operator, add its input back to its output
 - Addition operator has no impact on gradient, passes it backward unchanged!
 - Also not exclusive to transformers, commonly done in deep models
- In transformers, z = LayerNorm(X + Self-Attention(X))
 - Thus, whatever impact Self-Attention has on the gradient, the full gradient is still preserved by the additive term X during backpropagation
 - We discuss this in a bit more detail in tutorials

Projection FNN and Cross-Attention

- OF M
 - and Mathematics

- Often described as MLP
- FNN used to transform output of multihead-attention
 - In reality, two linear projections, usually project up, then back down
 - ReLU (non-linear) activation between
 - Unclear exactly why, more soon
- Important: cross-attention
 - Attention across different sequences
 - Note two attention layers in decoder
 - One attends to output of encoder
- Different transformer architectures
 - Encoder-decoder
 - Encoder-only, decoder-only
- More in lecture on LLMs

Dropout

- Proposed by <u>Srivastava et al. (2014)</u>
- Idea: randomly drop units in network (along with their connections)
 - It's a form of regularization, thus, only applied during training, not at inference time
 - Intuitively, network is dynamic during training
 - Prevents model from relying too much on static architecture by introducing variability, promoting generalization
- In practice, each units "zeroed" with probability p (hyperparameter)
 - E.g. see implementation in <u>PyTorch</u>
- Original transformer used dropout in two places
 - Specifically, before applying layer normalization and residual connection
 - That is, z = LayerNorm(X + Dropout(Self-Attention(X)))
 - Also after adding positional embeddings, i.e. $x = Dropout(x_1 + x)$
- Dropout still very common regularization method in LLMs

Inductive Bias in Transformers

- Inductive bias: set of assumptions made by a learning model
- Common story: self-attention is main innovation
 - But many more components in transformers

Transformer block:

- Two main components: self-attention and MLP
- With corresponding layer normalizations and residual connections
- Let's see the role of each

Self-attention:

- Linear operations between different input tokens
- I.e. there is "inter-token" communication
- Linearities useful for parallelization, but not expressive for learning

MLP:

- Transformations applied at each token independently
- I.e. "Intra-token" phase
- Non-linearities introduced here for expressivity

Ablation

- There is no fundamental theory behind the design of deep learning models
 - No way to accurately predict how a model will behave given its architecture
 - No equation that tells us exactly which components a model should have to perform a given task
- Thus, ablation studies are essential!
 - Ablation: remove one component of the model at a time to test its impact
 - E.g. remove normalization layer, run model again, how does performance change?
 - Or remove/change positional encodings. What impact does this have in performance?
- With ablation, we may gain some understanding of why a model works

Summary

- Self-attention: main innovation in transformer architecture
 - Each input token contextualized based on entire input sequence
- Architecture has many components
 - Self-attention
 - Positional encodings
 - Layer normalization
 - FNN
- Architectures are normally deep (stacked transformer blocks)
- Different flavors
 - Encoder-decoder, decoder-only, etc.
- Large language models (LLMs) based on transformers, with variations
 - More layer normalizations
 - Different positional embeddings
 - Etc.

References

- Speech and Language Processing, Jurafsky et al., 2024
 - Chapter 10
- References linked in corresponding slides

© University of Mannheim