

Question #A

Please derive the score function as a function of β for the Rayleigh distribution.

Solution:

The Rayleigh distribution is defined as:

$$f(x;\beta) = \frac{x}{\beta^2} e^{-x^2/2\beta^2} \tag{1}$$

And the score function (log-likelihood) is:

$$l(\theta) = logL(\theta) = \sum_{i=1}^{n} log f_{\theta}(x_i)$$
(2)

Therefore, the score function of the Rayleigh distribution is:

$$l(\beta) = \sum_{i=1}^{n} log(\frac{x_i}{\beta^2} e^{-x_i^2/2\beta^2}) = -nlog\beta^2 + \sum_{i=1}^{n} (logx_i - \frac{x_i^2}{2\beta^2})$$
(3)

Question #B

Please find the fitted value of β for the Rayleigh distribution. Also draw the score function.

Solution:

From last section, we have

$$l(\beta) = -n\log\beta^2 + \sum_{i=1}^{n} (\log x_i - \frac{x_i^2}{2\beta^2})$$
 (4)

To find the fitted value of β , we have to maximize $l(\beta)$, that is, solve $\frac{\partial l(\beta)}{\partial \beta} = 0$. Then we have:

$$\frac{\partial l(\beta)}{\partial \beta} = \frac{2n}{\beta} - \sum_{i=1}^{n} \frac{x_i^2}{4\beta^3} = 0 \tag{5}$$

Thus,

$$\beta_{MLE} = \sqrt{\frac{1}{2n} \sum_{i=1}^{n} x_i^2} = 7.872894308240928 \tag{6}$$

The following is the figure of the score function.

Question #C

Please draw the empirical function and the fitted Rayleigh distribution on the same plot. Comment on whether the Rayleigh assumption is plausible.

Solution:

The cumulative distribution function of Rayleigh distribution is:

$$F(x; \beta_{MLE}) = 1 - exp(\frac{-x^2}{2\beta_{MLE}^2})$$
(7)

And the empirical function is:

$$\overline{F}(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \le x)$$
(8)

Thus, the following is the figure of the empirical function and the fitted Rayleigh distribution on the same plot.

Since the two curves are very close, the parametric assumption is plausible. \square

Question #D

Please draw a Q-Q plot. Comment on whether the Rayleigh assumption is plausible.

Solution:

The following is the figure of the Q-Q plot.

Since the points are located along 45 degree line, the model assumption is plausible. □