L1: RL Basics

Deep Reinforcement Learning Tsinghua University, 2025 Spring

Contents

L W	That & RL v.s. Supervised Learning
2 M	DP
2.1	Basic Concepts
2.2	2 Optimal Quantities & Bellman Equation
	alue Iteration olicy Iteration
	Policy Evaluation
	Policy Improvement
	Policy Iteration
5 Fr	om MDP to RL

1 What & RL v.s. Supervised Learning

Key differences:

- 1. No supervision, only reward signals.
- 2. Rewards are delayed.
- 3. Not i.i.d data, but sequential.

Figure 1: RL and its common algorithms

2 MDP

2.1 Basic Concepts

Markov Decision Process (MDP) problems are non-deterministic problems. The **definition** of MDP is as below:

- A set of states $s \in S$
- A set of observations $o \in O$ (sometimes)
- A set of actions $a \in A$
- A transition function T(s, a, s')
- A reward function R(s, a, s')

Markov Property:

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, ..., S_0 = s_0)$$

$$= P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$
(2.1)

Fully v.s. Partially Observability: Whether state is the same as observation. If not, transformed into POMDP.

Policy: A policy gives an action for each state. An optimal policy $(\pi^*: S \to A)$ is the one that maximizes expected utility (sum of rewards).

Discount Factor: Used in calculating the sum of rewards.

Why we introduce Discount Factor:

- Avoid cyclic reward
- Infinite horizon convergence
- Worry about future uncertainties
- Time value & Human like

Utility: Sum of discounted rewards.

2.2 Optimal Quantities & Bellman Equation

The optimal policy: $\pi^*(s) = \text{optimal action from a state s.}$

The optimal value (utility) of a state: $V^*(s)$ = expected utility starting in s and act optimally.

The optimal Q value: $Q^*(s, a) = \text{expected utility taking action a from state s and acting optimally.}$ (the action of this timestep is not necessarily the optimal)

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{*}(s')]$$
(2.2)

3 Value Iteration

Define $V_k(s)$ to be the <u>optimal</u> value of s if the game ends in k more time steps, $V_0(s) = 0$, then we can compute $V_{k+1}(s)$:

$$V_k(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^k(s')]$$
 (3.1)

Repeat this process until convergence.

NOTE

Some **problems** with value iteration:

- 1. Policy converges **earlier** than value.
- 2. The complexity of value iteration is $O(S^2A)$.

Value iteration <u>max over all actions</u> to compute the optimal values. If we consider some fixed policy $\pi(s)$ (generally non-optimal), the tree would be much simpler.

Define the utility of a state s, under a fixed policy: $V_{\pi}(s) = \text{expected}$ total discounted rewards starting in s and following π . And the recursive relation (one-step look-ahead) is as below.

$$V_{\pi}(s) = \sum_{s'} T(s, \pi, s') [R(s, \pi, s') + \gamma V_{\pi}(s')]$$
(3.2)

4 Policy Iteration

4.1 Policy Evaluation

Under a fixed policy, how to calculate the V function?

Idea 1: Turn recursive Bellman equations into updates (like value itera-

tion). $O(S^2)$ complexity.

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$
(4.1)

Idea 2: Without the maxes, the Bellman equations are just a linear system. Solve it. The complexity of matrix inversion operation (Gauss–Jordan elimination) is $O(S^3)$.

$$V = P(r + \gamma V)$$

$$V = (I - \gamma P)^{-1}R$$
ment
$$(4.2)$$

4.2 Policy Improvement

Imagine we have the values.

Withdraw policy from values through one-step look-up (e.g. optimal condition V^*):

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$
 (4.3)

One-step policy extraction:

$$\pi_{k+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^{\pi_i}(s')]$$
 (4.4)

4.3 Policy Iteration

We have converged $V^{\pi_k}(s)$ through policy evaluation, then extract the next policy π_{k+1} through "argmax_a" operation traversing the entire action space. While repeating, this "a" is different from $\pi_k(s)$.

NOTE

- Policy iteration is still optimal.
- It can converge much faster under some conditions.

5 From MDP to RL

Usually we do not know the transition, thus we introduced reinforcement learning method.

L1: RL Basics

Basic ideas:

- 1. Receive feedback in the form of rewards.
- 2. Utility is defined by the **reward** function.
- 3. Must act to maximize **expected rewards**.
- 4. All learning is based on observed samples of outcomes.

A comprehensive comparison between MDP and RL:

Aspect	MDP	RL
Definition	A mathematical model	A learning method to
	for sequential decision	solve sequential
	problems	decision problems
Scope	Theoretical foundation	Practical application
	of RL; RL problems	of MDP; learns to
	are typically modeled	solve MDP through
	as MDPs	interaction
Known Information	Assumes transition	Typically assumes
	probabilities and	transition probabilities
	reward functions are	and reward functions
	known	are unknown
Goal	Provides a framework	Learns the optimal
	to describe the	policy through
	$\operatorname{problem}$	interaction
Methods	Based on dynamic	Based on trial and
	programming (e.g.,	error (e.g., Q-learning,
	value iteration, policy	policy gradients)
	iteration)	

Table 1: Comparison between MDP and RL