Суфф. массив (задачи) (06.10.17)

1. Поиск подстроки (напоминание)

Наивное решение с использованием суфф. массива

Асимптотика - O(|p| * log|s|)

mlr - оптимизация

1. Поиск подстроки. LCP (longest common prefix)

lcp[i]		0	1	2	1	1	0	0
Suf[i]	7	6	0	3	1	4	2	5
0	\$	а	а	а	а	а	b	С
1		\$	а	а	b	С	а	а
2			b	С	а	а	а	\$
3			а	а	а	\$	С	
4			а	\$	С		а	
5			С		а		\$	
6			а		\$			
7	_		\$					

1. Поиск подстроки. LCP (свойства)

LCP(s, t) - длина наибольшего общего префикса строк s и t.

$$LCP(S_{Suf[x]}, S_{Suf[z]}) = \min_{i=x+1...z} lcp[i]$$

1. Поиск подстроки. LCP (longest common prefix)

- 1. Построение суфф. массива
- 2. Построение массива LCP (алгоритм Касаи O(|s|), лекция)
- 3. Бинарный поиск по суфф.массиву с использованием LCP

1. Поиск подстроки. LCP (бин. поиск)

Хотим найти диапазон индексов [Ans_left, Ans_right] в суфф. массиве, для которых соответствующие суффиксы содержат искомый pattern в качестве префикса

Разберем для *Ans_left*.

1. Поиск подстроки. LCP (бин. поиск)

Исходные границы поиска I = 0, r = |s| - 1.

Найдем LCP для *pattern* и соответствующих суффиксов за O(|*pattern*|). Обозначим их: *lcp_I*, *lcp_r*

$$m = (I + r) / 2$$

Найдем (RMQ)
$$m_I$$
 = LCP(suff[/], suff[m]), m_r = LCP(suff[r], suff[m])

1. Поиск подстроки. LCP (бин. поиск, 1 случай)

без o.o.
$$lcp_l >= lcp_r$$

1. *m_l > lcp_l*. Сл-но продолжаем поиск справа. *lcp_l* остается без изменений

1. Поиск подстроки. LCP (бин. поиск, 2 случай)

m_I == lcp_I.
Сравниваем suff[m] с pattern, начиная с lcp_I -ого символа.
В зависимости от результата сравнения выбираем нужную половину (соответствующее LCP для pattern пересчитано)

1. Поиск подстроки. LCP (бин. поиск, 3 случай)

3. *m_l < lcp_l*. Продолжаем поиск слева. *lcp_r = m_l*.

1. Поиск подстроки. Итог

Асимптотика:

Препроцессинг: суфф. массив + LCP

Запрос: O(log|s| + |pattern|)

https://neerc.ifmo.ru/wiki/index.php?title=Алгоритм_поиска_ подстроки в строке с помощью суффиксного массива

2. Нахождение числа уникальных подстрок

- 1. Построение суфф. массива
- 2. Построение массива LCP
- 3. Подсчет результата

2. Нахождение числа уникальных подстрок

Проходимся по суффиксному массиву.

Для i -ого суффикса s_i добавляем $|s_i|$ - lcp[i] новых уникальных подстрок.

Асимптотика - O(|s|) + суфф. массив