Paper Review (Lu Lu, Aug 16, 2019 @ Crunch Seminar)

Improving Simple Models with Confidence Profiles

Amit Dhurandhar*
IBM Research,
Yorktown Heights, NY
adhuran@us.ibm.com

Ronny Luss IBM Research, Yorktown Heights, NY rluss@us.ibm.com Karthik Shanmugam IBM Research, Yorktown Heights, NY

Yorktown Heights, NY karthikeyan.shanmugam2@ibm.com

Peder Olsen IBM Research, Yorktown Heights, NY pederao@us.ibm.com

NIPS 2018

Motivation

- A trained deep neural network that has a high test accuracy
- ➤ A simpler interpretable model or a very shallow network with a priori low test accuracy

Why?

- Interpretability, e.g., medical decision
- Memory/power constrained, e.g., Internet-of-Things, mobile devices

Question:

▶ How to enhance the performance of simple models?

ProfWeight

Add probes (logistic classifier, softmax(Wx + b)) to the intermediate layers of a deep neural networks

Algorithm

- Train a deep network (no probes), and a simple model on a dataset.
- 2. Train probes.
- 3. For each data, learn its weight.
- 4. Train the simple model on the weighted dataset.

Weight computation I

Intuition: inform the simple model to ignore **hard** examples (**small** weight) and expend more effort on **easy** examples (**large** weight).

Confidence profile

- ightharpoonup I: all probes that are more accurate than the simple model by a margin lpha
- ► AUC (area under the curve)

$$w_i = \frac{1}{|I|} \sum_{u \in I} c_{iu}$$

Weight computation II

$$S^* = \min_{\beta} \mathbb{E}[\lambda(S_{\beta}(x) - y)] \Rightarrow S^* = \min_{w \in \mathcal{C}} \min_{\beta} \mathbb{E}[\lambda(S_{w,\beta}(x) - y)]$$

 \mathcal{C} is a neural network: $c_{iu} \rightarrow w_i$

Algorithm

- lnit weights w = 1.
- ► Loop
 - Update β , i.e., training the simple model S on the weighted dataset.
 - Update weights

$$w = \arg\min_{w \in \mathcal{C}} \mathbb{E}[\lambda(S_{w,\beta}(x) - y)] + \gamma \mathcal{R}(w)$$

$$\mathcal{R}(w) = (\frac{1}{m} \sum_{i} w_i - 1)^2$$

Experiments: CIFAR-10

- Complex model: ResNet with 15 blocks
- ▶ Simple models: ResNets with 3, 5, 7, and 9 blocks

	SM-3	SM-5	SM-7	SM-9
Standard	$73.15(\pm 0.7)$	$75.78(\pm0.5)$	$78.76(\pm0.35)$	$79.9(\pm 0.34)$
ConfWeight	$76.27 (\pm 0.48)$	$78.54 (\pm 0.36)$	81.46 (±0.50)	82.09 (±0.08)
Distillation	$65.84(\pm0.60)$	70.09 (±0.19)	$73.4(\pm0.64)$	$77.30 (\pm 0.16)$
ProfWeight ^{ReLU}	77.52 (±0.01)	$78.24(\pm 0.01)$	$80.16(\pm0.01)$	81.65 (±0.01)
ProfWeight ^{AUC}	$76.56 (\pm 0.62)$	79.25 (±0.36)	81.34 (±0.49)	82.42 (±0.36)

▶ ConfWeight: w_i = the confidence score of the last probe

Experiments: Manufacturing dataset

Predict the quantity of metal etched on each wafer by 5104 inputs: acid concentrations, electrical readings . . .

- Complex model: FNN (5 hidden layers, 1024)
- ► Simple models: decision tree

