EE25BTECH11003 - Adharvan Kshathriya Bommagani

Question:

Find the magnitude of each of the vectors ${\bf a}$ and ${\bf b}$, having the same magnitude such that the angle between them is 60° and their scalar product is $\frac{9}{2}$.

Solution:

We are given two vectors \mathbf{a} and \mathbf{b} with the same magnitude, and the angle between them is 60° . Also, their scalar product is given as:

$$\mathbf{a}^T \mathbf{b} = 2. \tag{1}$$

Let the common magnitude of the vectors be r, i.e., $\|\mathbf{a}\| = \|\mathbf{b}\| = r$. Let the magnitudes of the two vectors be equal:

$$\|\mathbf{a}\| = \|\mathbf{b}\| = r. \tag{2}$$

The cosine of the angle between the two vectors is given by:

$$\cos \theta = \frac{\mathbf{a}^T \mathbf{b}}{\|\mathbf{a}\| \|\mathbf{b}\|}.$$
 (3)

Substituting $||\mathbf{a}|| = ||\mathbf{b}|| = r$, this simplifies to:

$$\cos \theta = \frac{\mathbf{a}^T \mathbf{b}}{r^2}.\tag{4}$$

Since the angle between the vectors is 60° , we have $\cos 60^{\circ} = \frac{1}{2}$. The scalar product is given as $\mathbf{a}^T \mathbf{b} = \frac{9}{2}$. Substituting these values:

$$\frac{1}{2} = \frac{\frac{9}{2}}{r^2}. (5)$$

Multiply through by $2r^2$:

$$r^2 = 9. (6)$$

Taking the positive root (since magnitude cannot be negative):

$$r = +3. (7)$$

$$r = 3 \tag{8}$$

Therefore the magnitude of the vectors **a** and **b** is 3 each.

1

Fig. 0: Figure for 2.3.6