DL Assignment: 1

Name: Shrikrushna Zirape

Roll No: 41283 (BE-2)

Problem Statement: Linear Regression by using Deep Neural Network: Implement boston housing price prediction problem by Linear regression using Deep Neural network. Use Boston House price prediction dataset.

```
In [1]:
import pandas as pd
import matplotlib.pyplot as plt
```

Load Dataset

```
In [2]:
    df = pd.read_csv('data/Boston.csv')
    df.head(10)
```

2]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV	CAT. MEDV	Unnamed: 15	Unnamed: 16
	0	0.00632	18.0	2.31	0	0.538	6.575	65.2	4.0900	1	296	15.3	396.90	4.98	24.0	0	NaN	NaN
	1	0.02731	0.0	7.07	0	0.469	6.421	78.9	4.9671	2	242	17.8	396.90	9.14	21.6	0	NaN	NaN
	2	0.02729	0.0	7.07	0	0.469	7.185	61.1	4.9671	2	242	17.8	392.83	4.03	34.7	1	NaN	NaN
	3	0.03237	0.0	2.18	0	0.458	6.998	45.8	6.0622	3	222	18.7	394.63	2.94	33.4	1	NaN	NaN
	4	0.06905	0.0	2.18	0	0.458	7.147	54.2	6.0622	3	222	18.7	396.90	5.33	36.2	1	NaN	NaN
	5	0.02985	0.0	2.18	0	0.458	6.430	58.7	6.0622	3	222	18.7	394.12	5.21	28.7	0	NaN	NaN
	6	0.08829	12.5	7.87	0	0.524	6.012	66.6	5.5605	5	311	15.2	395.60	12.43	22.9	0	NaN	NaN
	7	0.14455	12.5	7.87	0	0.524	6.172	96.1	5.9505	5	311	15.2	396.90	19.15	27.1	0	NaN	NaN
	8	0.21124	12.5	7.87	0	0.524	5.631	100.0	6.0821	5	311	15.2	386.63	29.93	16.5	0	NaN	NaN
	9	0.17004	12.5	7.87	0	0.524	6.004	85.9	6.5921	5	311	15.2	386.71	17.10	18.9	0	NaN	NaN

```
In [3]: df.drop(columns=['Unnamed: 15','Unnamed: 16'],inplace=True)
```

In [4]: df.drop(columns=['CAT. MEDV'],inplace=True)

Checking for null values

In [6]: df.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
# Column
             Non-Null Count Dtype
0 CRIM
              506 non-null
                              float64
    ZN
              506 non-null
                              float64
2
    INDUS
              506 non-null
                              float64
    CHAS
              506 non-null
                              int64
4
5
    NOX
              506 non-null
                              float64
    RM
              506 non-null
                              float64
    AGE
              506 non-null
                              float64
    DIS
              506 non-null
                              float64
              506 non-null
                             int64
    RΔD
    TAX
              506 non-null
                              int64
10
    PTRATIO
             506 non-null
11 B
              506 non-null
                              float64
12 LSTAT
                              float64
float64
              506 non-null
              506 non-null
13 MEDV
dtypes: float64(11), int64(3)
memory usage: 55.5 KB
```

```
In [7]: df.describe()
```

Out[7]:		CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	MEDV
	count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000
	mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	12.653063	22.532806
	std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	7.141062	9.197104
	min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	1.730000	5.000000
	25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	6.950000	17.025000
	50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	11.360000	21.200000
	75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	16.955000	25.000000
	max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	37.970000	50.000000

Checking correlation with target variable MEDV

```
In [8]:
          df.corr()['MEDV'].sort_values()
Out[8]: LSTAT PTRATIO
                     -0.737663
                    -0.507787
         INDUS
                     -0.483725
         TAX
                     -0.468536
         NOX
                     -0.427321
         CRIM
                     -0.388305
         RAD
                     -0.381626
         AGE
CHAS
                     -0.376955
0.175260
         DIS
                      0.249929
                      0.333461
         ZN
                      0.360445
         RM
                      0.695360
         MEDV
                      1.000000
         Name: MEDV, dtype: float64
In [9]:
          X = df.loc[:,['LSTAT','PTRATIO','RM']]
Y = df.loc[:,"MEDV"]
          X.shape,Y.shape
Out[9]: ((506, 3), (506,))
```

Preparing training and testing data set

```
In [10]:
    from sklearn.model_selection import train_test_split
    x_train,x_test,y_train,y_test = train_test_split(X,Y,test_size=0.25,random_state=10)
```

Normalizing training and testing dataset

```
In [11]: from sklearn.preprocessing import StandardScaler

In [12]: scaler = StandardScaler()

In [13]: scaler.fit(x_train)

Out[13]: StandardScaler()

In [14]: x_train = scaler.transform(x_train)
    x_test = scaler.transform(x_test)
```

Preparing model

```
In [15]: from keras.models import Sequential
from keras.layers import Dense

In [16]: model = Sequential()

In [17]: model.add(Dense(128,input_shape=(3,),activation='relu',name='input'))
model.add(Dense(64,activation='relu',name='layer_1'))
model.add(Dense(1,activation='relu',name='output'))
model.compile(optimizer='adam', loss='mse', metrics=['mae'])
model.summary()
```

Model: "sequential"

Layer (type)	Output Shape	Param #
input (Dense)	(None, 128)	512
layer_1 (Dense)	(None, 64)	8256
output (Dense)	(None, 1)	65

Total narams: 8 833

Total params: 8,833 Trainable params: 8,833 Non-trainable params: 0

In [18]:

model.fit(x_train,y_train,epochs=100,validation_split=0.05)

```
Epoch 1/100
12/12 [=====
            Epoch 2/100
12/12 [=====
                                     - 0s 13ms/step - loss: 506.3215 - mae: 20.8718 - val_loss: 671.6750 - val_mae: 23.1712
Epoch 3/100
12/12 [=====
                    =========] - 0s 11ms/step - loss: 466.7391 - mae: 19.9747 - val_loss: 622.3312 - val_mae: 22.0846
Epoch 4/100
                                       0s 9ms/step - loss: 413.6024 - mae: 18.6774 - val_loss: 553.8527 - val_mae: 20.5076
12/12 [====
Epoch 5/100
12/12 [=====
                                     - 0s 11ms/step - loss: 340.0710 - mae: 16.8183 - val loss: 467.4739 - val mae: 18.4865
Epoch 6/100
12/12 [=====
                                       0s 12ms/step - loss: 254.0955 - mae: 14.3808 - val loss: 367.5447 - val mae: 16.0270
Epoch 7/100
12/12 [=====
                                      0s 9ms/step - loss: 163.4490 - mae: 11.4762 - val loss: 269.1692 - val mae: 13.0181
Epoch 8/100
12/12 [====
                                      0s 11ms/step - loss: 89.2134 - mae: 8.2882 - val_loss: 189.9538 - val_mae: 10.2955
Epoch 9/100
12/12 [=====
                                     - 0s 10ms/step - loss: 50.0832 - mae: 5.8525 - val loss: 143.4507 - val mae: 8.5330
Epoch 10/100
12/12 [=====
                                     - 0s 10ms/step - loss: 39.4145 - mae: 4.9155 - val_loss: 120.4480 - val_mae: 7.6250
Epoch 11/100
12/12 [=====
                   =========] - 0s 10ms/step - loss: 34.2234 - mae: 4.4500 - val loss: 109.6613 - val mae: 7.3691
Epoch 12/100
12/12 [=====
                                     - 0s 11ms/step - loss: 29.7919 - mae: 4.0989 - val_loss: 104.3488 - val_mae: 7.2210
Epoch 13/100
12/12 [=====
                                     - 0s 10ms/step - loss: 27.2405 - mae: 3.8908 - val_loss: 99.0083 - val_mae: 7.0297
Epoch 14/100
12/12 [======
                                      0s 13ms/step - loss: 25.6894 - mae: 3.7644 - val loss: 94.3940 - val mae: 6.8878
Epoch 15/100
12/12 [=====
                                      0s 9ms/step - loss: 24.4743 - mae: 3.6621 - val_loss: 91.3494 - val_mae: 6.7957
Enoch 16/100
12/12 [=====
                                     - 0s 13ms/step - loss: 23.6394 - mae: 3.5910 - val loss: 90.5867 - val mae: 6.7428
                      -----]
Epoch 17/100
12/12 [=====
                                       0s 11ms/step - loss: 22.8061 - mae: 3.5299 - val_loss: 89.8672 - val_mae: 6.7059
Epoch 18/100
12/12 [=====
                                     - 0s 11ms/step - loss: 22.1649 - mae: 3.4753 - val loss: 88.9616 - val mae: 6.6698
Epoch 19/100
12/12 [=====
                                       Os 11ms/step - loss: 21.4995 - mae: 3.4112 - val_loss: 88.1913 - val_mae: 6.6296
Epoch 20/100
12/12 [=====
                                     - 0s 9ms/step - loss: 20.9803 - mae: 3.3719 - val loss: 87.7182 - val mae: 6.5633
Epoch 21/100
12/12 [=====
                                       0s 10ms/step - loss: 20.4479 - mae: 3.3286 - val_loss: 86.6075 - val_mae: 6.4872
Epoch 22/100
12/12 [=====
                                      0s 9ms/step - loss: 19.9252 - mae: 3.2822 - val_loss: 85.9076 - val_mae: 6.4443
Epoch 23/100
12/12 [=====
                                       0s 10ms/step - loss: 19.5059 - mae: 3.2464 - val loss: 85.0506 - val mae: 6.3660
Epoch 24/100
12/12 [======
                                      0s 11ms/step - loss: 19.1466 - mae: 3.2179 - val_loss: 84.7840 - val_mae: 6.3247
Epoch 25/100
12/12 [=====
                                       Os 9ms/step - loss: 18.7148 - mae: 3.1727 - val_loss: 84.2077 - val_mae: 6.2782
Epoch 26/100
12/12 [=====
                                      0s 9ms/step - loss: 18.3745 - mae: 3.1370 - val_loss: 84.6847 - val_mae: 6.2667
Epoch 27/100
12/12 [=====
                                      0s 11ms/step - loss: 18.0907 - mae: 3.1021 - val_loss: 85.2562 - val_mae: 6.2282
Epoch 28/100
                                       0s 12ms/step - loss: 17.7178 - mae: 3.0764 - val_loss: 84.2055 - val_mae: 6.1324
12/12 [=====
Epoch 29/100
12/12 [======
                                     - 0s 10ms/step - loss: 17.4711 - mae: 3.0584 - val_loss: 83.9480 - val_mae: 6.0800
Epoch 30/100
12/12 [=====
                                       Os 10ms/step - loss: 17.1969 - mae: 3.0316 - val_loss: 81.6525 - val_mae: 5.9682
Enoch 31/100
12/12 [======
                                      0s 9ms/step - loss: 16.9258 - mae: 3.0162 - val loss: 81.8426 - val mae: 5.9305
Epoch 32/100
12/12 [=====
                                       0s 9ms/step - loss: 16.7039 - mae: 2.9899 - val loss: 82.5370 - val mae: 5.9237
Epoch 33/100
12/12 [=====
                                     - 0s 11ms/step - loss: 16.4305 - mae: 2.9622 - val loss: 82.4255 - val mae: 5.8946
Epoch 34/100
12/12 [=====
                                     - 0s 9ms/step - loss: 16.2343 - mae: 2.9363 - val_loss: 82.7476 - val_mae: 5.8871
Epoch 35/100
12/12 [=====
                                     - 0s 9ms/step - loss: 16.0647 - mae: 2.9212 - val loss: 82.2225 - val mae: 5.8660
Epoch 36/100
12/12 [=====
                   :===========] - 0s 10ms/step - loss: 15.8816 - mae: 2.9065 - val_loss: 81.7927 - val_mae: 5.8127
Epoch 37/100
12/12 [======
                   =========] - 0s 9ms/step - loss: 15.6419 - mae: 2.8874 - val_loss: 81.5825 - val_mae: 5.7658
Epoch 38/100
12/12 [=====
                                     - 0s 9ms/step - loss: 15.5342 - mae: 2.8722 - val loss: 81.2292 - val mae: 5.7214
Epoch 39/100
12/12 [=====
                                     - 0s 11ms/step - loss: 15.2873 - mae: 2.8372 - val_loss: 83.1768 - val_mae: 5.7727
Fnoch 40/100
12/12 [=====
                                      0s 9ms/step - loss: 15.2641 - mae: 2.8294 - val loss: 83.0453 - val mae: 5.7248
Epoch 41/100
12/12 [=====
                                     - 0s 9ms/step - loss: 15.1101 - mae: 2.8215 - val_loss: 82.4333 - val_mae: 5.6811
Epoch 42/100
                                     - 0s 10ms/step - loss: 14.9924 - mae: 2.8059 - val loss: 82.4092 - val mae: 5.6586
12/12 [=====
Epoch 43/100
12/12 [=====
                                       0s 9ms/step - loss: 14.8041 - mae: 2.7851 - val_loss: 81.6021 - val_mae: 5.6425
Epoch 44/100
12/12 [=====
                                     - 0s 11ms/step - loss: 14.6942 - mae: 2.7814 - val loss: 80.0983 - val mae: 5.5817
Epoch 45/100
12/12 [=====
                                       0s 9ms/step - loss: 14.6107 - mae: 2.7832 - val_loss: 80.3339 - val_mae: 5.5714
Epoch 46/100
12/12 [=====
                                     - 0s 9ms/step - loss: 14.4966 - mae: 2.7611 - val_loss: 83.5054 - val_mae: 5.6547
Epoch 47/100
12/12 [=====
                                     - 0s 9ms/step - loss: 14.4279 - mae: 2.7324 - val loss: 80.8443 - val mae: 5.5263
Epoch 48/100
12/12 [=====
                                     - 0s 9ms/step - loss: 14.3395 - mae: 2.7211 - val_loss: 79.9668 - val_mae: 5.4820
Epoch 49/100
12/12 [=====
                       ========] - 0s 9ms/step - loss: 14.3885 - mae: 2.7432 - val_loss: 80.5138 - val_mae: 5.4968
Epoch 50/100
```

```
Epoch 51/100
Epoch 52/100
12/12 [=====
                                    - 0s 9ms/step - loss: 13.8945 - mae: 2.6752 - val_loss: 80.6351 - val_mae: 5.4538
Epoch 53/100
                    :=========] - 0s 11ms/step - loss: 13.7842 - mae: 2.6697 - val_loss: 80.7124 - val_mae: 5.4556
12/12 [======
Epoch 54/100
                                      Os 11ms/step - loss: 13.6417 - mae: 2.6617 - val_loss: 79.1203 - val_mae: 5.4045
12/12 [=====
Epoch 55/100
12/12 [=====
                                    - 0s 14ms/step - loss: 13.5537 - mae: 2.6674 - val loss: 78.9995 - val mae: 5.4098
Epoch 56/100
12/12 [=====
                                       0s 10ms/step - loss: 13.5146 - mae: 2.6554 - val loss: 79.5111 - val mae: 5.4014
Epoch 57/100
12/12 [=====
                                      0s 10ms/step - loss: 13.3217 - mae: 2.6299 - val loss: 80.4437 - val mae: 5.3966
Epoch 58/100
12/12 [=====
                                      Os 14ms/step - loss: 13.3051 - mae: 2.6247 - val_loss: 80.7450 - val_mae: 5.3654
Epoch 59/100
12/12 [=====
                                     - 0s 11ms/step - loss: 13.2311 - mae: 2.6169 - val loss: 78.4653 - val mae: 5.2992
Epoch 60/100
12/12 [=====
                                    - 0s 11ms/step - loss: 13.1291 - mae: 2.6000 - val_loss: 80.9283 - val_mae: 5.3706
Epoch 61/100
12/12 [=====
                   ==========] - 0s 10ms/step - loss: 13.0746 - mae: 2.6052 - val loss: 80.2841 - val mae: 5.3396
Epoch 62/100
12/12 [=====
                                    - Os 9ms/step - loss: 12.9002 - mae: 2.5799 - val_loss: 79.4223 - val_mae: 5.2832
Epoch 63/100
12/12 [=====
                                    - 0s 10ms/step - loss: 12.8149 - mae: 2.5758 - val_loss: 79.8036 - val_mae: 5.2975
Epoch 64/100
12/12 [======
                                      0s 9ms/step - loss: 12.6747 - mae: 2.5782 - val loss: 77.6885 - val mae: 5.3033
Epoch 65/100
12/12 [=====
                                      0s 9ms/step - loss: 12.7076 - mae: 2.6089 - val_loss: 79.0439 - val_mae: 5.3087
Enoch 66/100
12/12 [=====
                                    - 0s 9ms/step - loss: 12.5774 - mae: 2.5850 - val loss: 80.4104 - val mae: 5.3045
                      -----]
Epoch 67/100
12/12 [=====
                                      0s 9ms/step - loss: 12.4626 - mae: 2.5475 - val_loss: 80.0999 - val_mae: 5.2504
Epoch 68/100
12/12 [=====
                                     - 0s 10ms/step - loss: 12.3070 - mae: 2.5222 - val loss: 80.7591 - val mae: 5.2228
Epoch 69/100
12/12 [=====
                                      0s 11ms/step - loss: 12.2507 - mae: 2.5117 - val_loss: 79.9018 - val_mae: 5.1961
Epoch 70/100
12/12 [=====
                                    - 0s 9ms/step - loss: 12.1783 - mae: 2.5151 - val loss: 81.2037 - val mae: 5.2096
Epoch 71/100
12/12 [=====
                                      Os 11ms/step - loss: 12.1537 - mae: 2.4968 - val_loss: 78.6277 - val_mae: 5.1478
Epoch 72/100
12/12 [=====
                                      Os 11ms/step - loss: 11.9795 - mae: 2.4785 - val_loss: 81.7577 - val_mae: 5.2033
Epoch 73/100
12/12 [=====
                                       0s 9ms/step - loss: 11.9696 - mae: 2.5019 - val loss: 81.8564 - val mae: 5.1975
Epoch 74/100
12/12 [======
                                    - 0s 9ms/step - loss: 11.8518 - mae: 2.5015 - val_loss: 80.2826 - val_mae: 5.1808
Epoch 75/100
12/12 [=====
                                      Os 10ms/step - loss: 11.7755 - mae: 2.4761 - val_loss: 80.4577 - val_mae: 5.1574
Epoch 76/100
12/12 [=====
                                      0s 9ms/step - loss: 11.7356 - mae: 2.4734 - val_loss: 81.1006 - val_mae: 5.1760
Epoch 77/100
12/12 [=====
                                      Os 9ms/step - loss: 11.7469 - mae: 2.4878 - val_loss: 79.5115 - val_mae: 5.1456
Epoch 78/100
                                       0s 10ms/step - loss: 11.5511 - mae: 2.4718 - val_loss: 82.7929 - val_mae: 5.2255
12/12 [=====
Epoch 79/100
12/12 [=====
                                    - 0s 10ms/step - loss: 11.6095 - mae: 2.4601 - val_loss: 81.9202 - val_mae: 5.1357
Epoch 80/100
12/12 [=====
                                       Os 10ms/step - loss: 11.4707 - mae: 2.4427 - val_loss: 80.8143 - val_mae: 5.1572
Fnoch 81/100
12/12 [======
                                      0s 10ms/step - loss: 11.3998 - mae: 2.4467 - val loss: 78.7451 - val mae: 5.0839
Epoch 82/100
12/12 [=====
                                      0s 9ms/step - loss: 11.3945 - mae: 2.4350 - val loss: 81.6314 - val mae: 5.1697
Epoch 83/100
12/12 [=====
                                     - 0s 9ms/step - loss: 11.2868 - mae: 2.4224 - val loss: 80.8796 - val mae: 5.1053
Epoch 84/100
12/12 [=====
                                    - 0s 9ms/step - loss: 11.2933 - mae: 2.4186 - val_loss: 80.8439 - val_mae: 5.0951
Epoch 85/100
12/12 [=====
                                    - 0s 9ms/step - loss: 11.3944 - mae: 2.4235 - val loss: 81.1154 - val mae: 5.0786
Epoch 86/100
12/12 [=====
                   =========] - 0s 9ms/step - loss: 11.3888 - mae: 2.4187 - val_loss: 83.2470 - val_mae: 5.2305
Epoch 87/100
12/12 [=======
                   ==========] - 0s 10ms/step - loss: 11.0781 - mae: 2.4028 - val_loss: 80.0263 - val_mae: 5.0942
Epoch 88/100
12/12 [=====
                                    - 0s 9ms/step - loss: 11.1180 - mae: 2.4127 - val loss: 80.8835 - val mae: 5.1160
Epoch 89/100
12/12 [=====
                                    - 0s 9ms/step - loss: 11.0975 - mae: 2.3980 - val_loss: 83.3732 - val_mae: 5.1746
Enoch 90/100
12/12 [=====
                                      0s 9ms/step - loss: 11.0572 - mae: 2.3984 - val loss: 81.9773 - val mae: 5.1214
Epoch 91/100
12/12 [=====
                                      Os 9ms/step - loss: 11.0261 - mae: 2.4112 - val_loss: 81.8094 - val_mae: 5.1724
Epoch 92/100
                                    - 0s 9ms/step - loss: 10.9577 - mae: 2.4006 - val loss: 82.4225 - val mae: 5.1415
12/12 [=====
                      -----1
Epoch 93/100
12/12 [=====
                                      0s 9ms/step - loss: 10.9168 - mae: 2.3853 - val_loss: 83.1790 - val_mae: 5.1393
Epoch 94/100
                                    - Os 9ms/step - loss: 10.9348 - mae: 2.3927 - val loss: 83.6329 - val mae: 5.1397
12/12 [=====
Epoch 95/100
12/12 [=====
                                      0s 9ms/step - loss: 11.0107 - mae: 2.4054 - val_loss: 81.2756 - val_mae: 5.1034
Epoch 96/100
12/12 [=====
                                    - 0s 9ms/step - loss: 10.9627 - mae: 2.3961 - val_loss: 84.8841 - val_mae: 5.1991
Epoch 97/100
12/12 [=====
                                    - 0s 9ms/step - loss: 10.7220 - mae: 2.3633 - val loss: 82.0974 - val mae: 5.0658
Epoch 98/100
12/12 [=====
                                    - 0s 9ms/step - loss: 10.8073 - mae: 2.3776 - val_loss: 81.4088 - val_mae: 5.1130
Epoch 99/100
12/12 [=====
                        ========] - 0s 10ms/step - loss: 10.7377 - mae: 2.3667 - val_loss: 83.0202 - val_mae: 5.1248
Epoch 100/100
```

```
Out[18]: <keras.callbacks.History at 0x2d2d819cd60>
In [23]: # Make predictions on the test set
         y_pred = model.predict(x_test)
         4/4 [======] - 0s 4ms/step
In [25]: from sklearn.metrics import mean_squared_error, mean_absolute_error, r2_score
In [26]: # Calculate metrics
          mse = mean_squared_error(y_test, y_pred)
          mae = mean_absolute_error(y_test, y_pred)
          r2 = r2_score(y_test, y_pred)
In [19]: | output = model.evaluate(x_test,y_test)
         In [27]:
         # Print metrics
print('Mean Squared Error:', mse)
print('Mean Absolute Error:', mae)
          print('R-squared:', r2)
         Mean Squared Error: 23.175983362100858
         Mean Absolute Error: 3.173217832009624
R-squared: 0.7675142758666804
In [28]: print(f"Mean Squared Error: {output[0]}"
               ,f"Mean Absolute Error: {output[1]}",sep="\n")
         Mean Squared Error: 23.175983428955078
         Mean Absolute Error: 3.1732177734375
In [29]: | y_pred = model.predict(x=x_test)
         4/4 [======] - 0s 2ms/step
         print(*zip(y_pred,y_test))
 In [ ]:
```