Miara i calka

speedrun przed terminem 0

by a MEEEE

21.03.2137

ROZDZIAŁ 1

 $\mathrm{Bor}(\mathbb{R})$ to najmniejsze $\sigma\text{-ciało}$ zawierające wszystkie zbiory otwarte z \mathbb{R}

Dla $\mathscr{R} \subseteq \mathscr{P}(X)$ funkcję $\mu : \mathscr{R} \to [0, \infty]$ nazywamy addytywną funkcją zbioru (*miarą skończenie addytywną*), jeżeli

$$\hookrightarrow \mu(\emptyset) = 0$$

 $\hookrightarrow A \cap B = \emptyset \implies \mu(A \cup B) = \mu(A) + \mu(B).$

Przeliczalnie addytywna funkcja zbioru to μ takie, że dla parami rozłącznych A_n zachodzi $\mu(\bigcup A_i) = \sum \mu(A_i)$. Jeżeli nie są rozłączne, to $\mu(\bigcup A_i) \leq \sum \mu(A_i)$.

Następujące warunki są równoważne:

- $\hookrightarrow \mu$ przeliczalnie addytywna
- $\hookrightarrow \mu$ jest ciągła z dołu, czyli jeśli $A_n \uparrow A$, to zachodzi $\lim_n \mu(A_n) = \mu(A)$
 - $\hookrightarrow \mu$ jest ciągła z góry, jeśli $A_n \downarrow A$ to $\lim_n \mu(A_i) = \mu(A)$
- $\hookrightarrow \mu$ jest ciągła z góry na zbiorze \emptyset , czyli dla $A_n \downarrow \emptyset$ mamy $\lim_n \mu(A_n) = 0$

 $[a_n,b_n)$ jest ciągiem parami rozłącznych przedziałów zawartych w [a,b), to $\sum (b_n-a_n)\leq b-a$. Natomiast, jeżeli $[a,b)\subseteq\bigcup [a_n,b_n)$, to $b-a\leq\sum (b_n-a_n)$.

 μ jest σ -skończona na pierścieniu \mathcal{R} , jeżeli istnieją X_n

takie, że X = $\bigcup X_n$ i $\mu(X_n) < \infty$.

Twierdzenie o konstrukcji miary: funckja σ -skończona oraz przeliczalnie addytywna rozszerza się do jednoznacznie do miary na $\sigma(\mathcal{R})$.

Dla każdego A $\in \sigma(\mathscr{R})$ o $\mu(A) < \infty$ i $\varepsilon > 0$ istnieje R $\in \mathscr{R}$ takie, że $\mu(A \triangle R) < \varepsilon$.

Przestrzeń miarową (X, Σ, μ) nazywamy skończoną jeśli $\mu(X) < \infty$, probabilistyczną, jeżeli $\mu(X) = 1$ lub σ -skończoną jeżeli istnieją $X_k \in \Sigma$, $X = \bigcup X_k$ i $\mu(X_k) < \infty$.

Przestrzeń miarowa jest zupełna, jeśli dla każdego A $\in \Sigma$, μ (A) = 0 oznacza, że wszystkie podzbioru A należą do Σ . Wtedy Σ jest σ -ciałem zupełnym względem μ .

Dla każdej przestrzeni miarowej (X, Σ, μ) istnieje przestrzeń miarowa $(X, \hat{\Sigma}, \hat{\mu})$ taka, że $\Sigma \subseteq \hat{\Sigma}$ oraz $\hat{\mu}$ jest rozszerzeniem μ .

Zbiory mierzalne w sensie Lesbegue'a $[\mathfrak{L}]$ to zbiory które można zapisać jako $A = B\Delta N$ gdzie $B \in Bor(\mathbb{R})$ i N jest podzbiorem zbioru miary zero.

Dla każdego zbioru mierzalnego $A \in \mathfrak{L}$ istnieje zbiór otwarty V i zbiór domknięty F takie, że $F \subseteq A \subseteq V$ i $\lambda(V \setminus F) < \varepsilon$. Dla $\lambda(A) < \infty$ możemy znaleźć skończoną sumę odcinków J taką, że $\lambda(A \triangle J) < \varepsilon$ oraz K zwarty zawarty w A taki, że $\lambda(A \setminus K) < \varepsilon$.

Dla dowolnego B \in Bor(\mathbb{R}) i $x \in \mathbb{R}$ mamy $x + B \in$ Bor(\mathbb{R}) oraz $\lambda(B) = \lambda(x + B)$.

Rodzinę $\mathscr{M}\subseteq\mathscr{P}(X)$ nazywamy klasą monotoniczną, jeśli dla dowolnego $A_n\in\mathscr{M}$ mamy $A_n\uparrow A$ lub $A_n\downarrow A$, to $A\in\mathscr{M}$.

Klasa monotoniczna zawierająca pierścień to zawiera też σ -pierścień przez niego generowany. Niech μ będzie

przeliczalnie addytywną funkcją zbioru na pierścieniu, załóżmy że X = $\bigcup S_k$ dla $S_k \in \mathcal{R}$ takich, że $\mu(S_k) < \infty$, wtedy μ ma co co najwyżej jedno przedłużenie do miary na $\sigma(\mathcal{R})$.

ROZDZIAŁ 2

Funkcja Σ -mierzalna $f: X \to \mathbb{R}$ to funkcja, która dla każdego $f^{-1}[B] \in \Sigma$ spełnia $B \in Bor(\mathbb{R})$, równoważnie jeżeli $\mathscr{G} \subseteq Bor(\mathbb{R})$ takie, że $\sigma(\mathscr{G}) = Bor(\mathbb{R})$, to wystarczy dla każdego $G \in \mathscr{G}$ $f^{-1}[G] \in \Sigma$.

Każdy z poniższych pociąga mierzalność:

 $\{x : f(x) < t\} \in \Sigma$ $\{x : f(x) \le t\} \in \Sigma$

 $\{ \mathbf{x} \ : \ \mathbf{f}(\mathbf{x}) > \mathbf{t} \} \in \Sigma$ $\{ \mathbf{x} \ : \ \mathbf{f}(\mathbf{x}) \geq \mathbf{t} \} \in \Sigma$

Jeżeli funkcja $f:X\to\mathbb{R}$ jest Σ -mierzalna, a $g:\mathbb{R}\to\mathbb{R}$ jest ciągła, to $g\circ f:X\to\mathbb{R}$ jest Σ -mierzalna.

Granica punktowa zbieżnego ciągu funkcji mierzalnych jest mierzalna.

Każdą Σ -mierzalna funkcję $f:X \to \mathbb{R}$ można zapisać w

postaci f⁺ – f⁻, różnicy funkcji mierzalnych i nieujemnych.

Funkcja prosta to funkcja o skończonym zbiorze wartości, czyli kombinacja liniowa skończenie wielu funkcji charakterystycznych

Ciąg funkcji mierzalnych jest zbieżny prawie wszędzie, jeżeli $\lim_{n} f_n(x) = f(x)$ poza zbiorem miary zero.

Dla każdej λ -mierzalnej funkcji f istnieje borelowska funkcja g taka, że f = g λ -prawie wszędzie.

Jeżeli $f_n \rightarrow f$ prawie wszędzie, to dla każdego $\varepsilon > 0$ istnieje A $\in \Sigma$ o μ (A) < ε i f_n jest jednostajnie zbieżny do j na zbiorze A^c.

Ciąg funkcji mierzalnych jest niemal jednostajnie zbieżny,

jeżeli dla każdego ε > 0 ciąg f_n zbiega jednostajnie na dopełnieniu pewnego zbioru miary $< \varepsilon$.

Mówimy, że ciąg jest zbieżny według miary, jeżeli dla każdego $\varepsilon \lim_n \mu(\{x : |f_n(x) - f(x)| \ge \varepsilon\}) = 0.$

- → Zbieżny niemal jednostajnie ⇒ zbieżny według miary.
- → Zbieżny prawie wszędzie w mierze skończonej ⇒ zbieżny według miary.

Twierdzenie Riesza: jeżeli ciąg funkcji spełnia warunek Cauchy'ego według miary, czyli dla dowolnego ε > 0

$$\lim_{n \to \infty} \mu(\{x : |f_n(x) - f_m(x)| \ge \varepsilon\}) = 0$$

to f_n jest zbieżny według miary do pewnego f oraz istnieje podciąg liczb naturalnych n(k) taki, że f_{n(k)} jest zbieżny prawie wszędzie oraz według miary.

ROZDZIAŁ 3

Całkę po funkcji prostej f = $\sum a_i \chi_{A_i}$ definiujemy jako

$$\int_{X} f d\mu = \sum a_{i} \mu(A_{i})$$

Dla nieujemnej mierzalnej funkcji f definiujemy

$$\int_X f d\mu = \sup \{ \int_X s d\mu \ : \ 0 \le s \le f \},$$

czyli jeżeli s $_1 \leq s_2 \leq ...$ jest ciągiem funkcji prostych takich, że $\lim_{n} s_n = f$ prawie wszędzie, to

$$\int_{\mathcal{X}} f d\mu = \lim_{\mathcal{X}} \int_{\mathcal{X}} s_{n} d\mu.$$

Funkcja mierzalna jest całkowalna, jeżeli $\int_X |f| d\mu < \infty$, wtedy definiujemy całkę wzorem $\int_X f d\mu = \int_X f^+ d\mu - \int_X f^- d\mu$ dla $f = f^{x} - f^{-}$ nieujemnych.

Dla f, g całkowalnych i h mierzalnej:

- $\hookrightarrow \int_X (af + gb) d\mu = a \int_X f d\mu + b \int_X g d\mu$ $\hookrightarrow h = 0$ prawie wszędzie, to $\int_X h d\mu = 0$

- $\begin{array}{l} \hookrightarrow \mathsf{f} \leq \mathsf{g} \text{ prawie wszędzie, to } \int_{\mathsf{X}}^{\mathsf{X}} \mathsf{f} \mathsf{d} \mu \leq \int_{\mathsf{X}} \mathsf{g} \mathsf{d} \mu \\ \hookrightarrow |\int_{\mathsf{X}} (\mathsf{f} + \mathsf{g}) \mathsf{d} \mu| \leq \int_{\mathsf{X}} |\mathsf{f}| \mathsf{d} \mu + \int_{\mathsf{X}} |\mathsf{g}| \mathsf{d} \mu \\ \hookrightarrow \mathsf{a} \leq \mathsf{f} \leq \mathsf{b} \text{ prawie wszędzie, to } \mathsf{a} \mu(\mathsf{X}) \leq \int_{\mathsf{X}} \mathsf{f} \mathsf{d} \mu \leq \end{array}$
- \hookrightarrow dla A,B \in Σ jeżeli A \cap B = \emptyset , to $\int_{\mathsf{A}\cup\mathsf{B}}\mathsf{fd}\mu$ = $\int_{\mathsf{A}} \mathsf{fd} \mu + \int_{\mathsf{B}} \mathsf{fd} \mu$

Twierdzenie o zbieżności monotonicznej: niech f_n będzie ciągiem nieujemnych funkcji mierzalnych takich, że f $_1 \le$ $f_2 \leq ...$ zbieżnych prawie wszędzie do f = $\lim_n f_n$

$$\int_{X} f d\mu = \lim_{n} \int_{X} f_{n} d\mu$$

Lemat Fatou: dla dowolnego ciągu funkcji nieujemnych fn zachodzi

$$\int_{X} \lim \inf f_n d\mu = \lim \inf \int_{X} f_n d\mu$$

Twierdzenie Lesbeque'a o zbieżności ograniczonej: niech f_n, g będą mierzalne, że dla każdego n $|f_n| \leq g$ zachodzi prawie wszędzie przy czym $\int_X g d\mu < \infty$. Jeżeli f = $\lim_n f_n$ prawie wszędzie, to

$$\lim_{n} \int_{X} |f_{n} - f| d\mu = 0$$

$$\lim_{n} \int_{X} f d\mu = \lim_{n} \int_{X} f_{n} d\mu$$

Jeżeli teraz $\mu(X) < \infty$ oraz f_n są wspólnie ograniczone i $\int_{X} \lim_{n} f_{n} d\mu = \lim_{n} \int_{X} f_{n} d\mu$.

Jeżeli f jest mierzalna i nieujemna, to funkcja $\nu:\Sigma
ightarrow$ $[0,\infty]$

$$\nu(A) = \int_A f d\mu$$

jest miarą na Σ .

Jeżeli $f:[a,b] \to \mathbb{R}$ jest całkowalna w sensie Riemanna, to jest λ -mierzalna i obie całki są sobie równe: $\int_a^b f(x)dx = \int_{[a,b]} fd\lambda.$

Niech (X, Σ) i (Y, Θ) będą przestrzeniami z Σ , Θ będącymi σ -ciałami. W X \times Y możemy zdefiniować następujące σ -ciało:

$$\Sigma \otimes \Theta = \sigma(\{A \times B : A \in \Sigma, B \in \Theta\}),$$

wtedy $\Sigma \otimes \Theta$ jest produktem σ -ciał Σ i Θ .

Zbiór $F \subseteq X \times Y$ należy do ciała prostokątów na Σ, Θ wtw $F = \bigcup A_i \times B_i$ dla $A_i \in \Sigma$ i $B_i \in \Theta$.

Jeżeli $E \in \Sigma \otimes \Theta$, to dla każdego $x \in X$ i $y \in Y$ definiujemy cięcia pionowe i poziome $E_X = \{z \in Y : (x,z) \in E\}$ i $E^y = \{z \in Z : (z,y) \in E\}$.

Jeżeli E $\in \Sigma \otimes \Theta$, a funkcja f : X \times Y $\to \mathbb{R}$ jest $\Sigma \otimes \Theta$ -mierzalna, to funkcja f_x jest θ -mierzalna, a f^y jest Σ -mierzalna.

$$Bor(\mathbb{R}) \otimes Bor(\mathbb{R}) = Bor(\mathbb{R} \times \mathbb{R})$$

Miarę na produkcie przestrzeni (X, Σ , μ) i (Y, Θ , ν) definiujemy:

$$\mu \otimes \nu(A \times B) = \mu(A) \cdot \mu(B)$$

.....

Na σ -ciele $\Sigma \otimes \Theta$ istnieje jedyna miara spełniająca dla każdego A $\in \Sigma$ i B $\in \Theta$

$$\mu \otimes \nu(A \times B) = \mu(A) \cdot \nu(B)$$

a dla dowolnego $E \in \Sigma \otimes \Theta$ funkcja $x \mapsto \nu(E_x)$ i $y \mapsto \mu(E^y)$ są mierzalne i zachodzą wzory:

$$\mu \otimes \nu(\mathsf{E}) = \int_{\mathsf{X}} \nu(\mathsf{E}_{\mathsf{X}}) \mathrm{d}\mu(\mathsf{x}) = \int_{\mathsf{Y}} \mu(\mathsf{E}^{\mathsf{y}}) \mathrm{d}\nu(\mathsf{y})$$

Twierdzenie Fubiniego: jeżeli funkcja f : X \times Y \to $\mathbb R$ jest $\Sigma \otimes \Theta$ -mierzalna oraz f jest nieujemna lub f jest $\mu \otimes \nu$ -całkowalna, to wtedy

$$I: x \mapsto \int_{Y} f(x, y) d\nu(y)$$

$$J: y \mapsto \int_{Y} f(x, y) d\mu(x)$$

są mierzalne względem Σ i odpowiednio Θ , oraz

$$\begin{split} \int_{\mathsf{X}\times\mathsf{Y}} \mathsf{f} \mathsf{d} \mu \otimes \nu &= \int_{\mathsf{X}} \left(\int_{\mathsf{Y}} \mathsf{f}(\mathsf{x},\mathsf{y}) \mathsf{d} \nu(\mathsf{y}) \right) \mathsf{d} \mu(\mathsf{x}) = \\ &= \int_{\mathsf{Y}} \left(\int_{\mathsf{X}} \mathsf{f}(\mathsf{x},\mathsf{y}) \mathsf{d} \mu(\mathsf{x}) \right) \mathsf{d} \nu(\mathsf{y}) \end{split}$$

Czyli możemy bezkarnie zamieniać granice całkowania.

......

Jeżeli rozważamy przestrzenie metryczne (X_i, Σ_i, μ_i) dla i=1,...,n, to na σ -ciele $\bigotimes_{i\leq n} \Sigma_i$ podzbiorów $\prod_{i\leq n} X_i$ generowanym przez wszystkie kostki mierzalne $A_1\times...\times A_n$, to istnieje jedyna miara $\mu=\bigotimes \mu_i$ spełniająca dla wszystkich $A_i\in \Sigma_i$

$$\mu(A_1 \times ... \times A_n) = \mu_1(A_1) \cdot ... \cdot \mu_n(A_n)$$

.....

 $K=\{0,1\}^{\mathbb{N}}$ - przestrzeń ciągów 0,1, wtedy możemy określić metrykę $d(x,y)=\frac{1}{n}$ gdzie n to pierwszy indeks gdzie te dwa ciągi się różnią.

Funkcja f : K \rightarrow [0,1] zadana f(x) = $\sum\limits_{n=1}^{\infty} \frac{2x(n)}{3^n}$ jest homeomorfizmem między K a zbiorem Cantora. Dla funkcji $\psi:\mathbb{N}\supseteq A \rightarrow \{0,1\}$ oznaczamy zbiór

$$[\psi] = \{ \mathsf{x} \in \mathsf{K} \ : \ \mathsf{x}(\mathsf{i}) = \psi(\mathsf{i}) \ \mathsf{i} \in \mathsf{A} \}.$$

Cylindry ten postaci są otwarto-domknięte w K i stanowią bazę topologii w K. Oznaczmy przez $\mathscr C$ ciało podzbiorów K generowanych przez wszystkie cylindry. Zbiór C jest w $\mathscr C$ wtw istnieje n i C' $\subseteq \{0,1\}^n$ takie, że C = C' $\times \{0,1\} \times ...$

Dla $C \in \mathscr{C}$ definiujemy miarę na K:

$$\nu(\mathsf{C}) = \frac{|\mathsf{C}'|}{2^{\mathsf{n}}}$$

która spełnia własność:

 $(\forall B \in Bor(K))(\forall \varepsilon > 0)(\exists C \in \mathscr{C}) \nu(B\Delta C) < \varepsilon.$

ROZDZIAŁ 5

Miara znakowana $\alpha: \Sigma \to [-\infty, \infty]$ to funkcja która przyjmuje co najwyżej jedną z wartości nieskończonych oraz

$$\alpha(\emptyset) = 0$$

$$\alpha(\bigcup_{n} A_n) = \sum_{n} \alpha(A_n)$$

dla każdego ciągu rozłącznych Ai.

Rozkłada Hahna: jeśli α jest miarą znakowaną na σ -ciele Σ podzbiorów X, to istnieją rozłączne zbioru X⁺ i X⁻ takie, że X = X⁺ \cup X⁻, X = X⁺ \cup X⁻ oraz dla dowolnego A \in Σ , to \hookrightarrow jeżeli A \subseteq X⁺, to α (A) \geq 0,

$$\hookrightarrow$$
 a jeżeli A \subseteq X $^-$, to α (A) \le 0.

Rozkład Jordana: jeżeli α jest miarą znakowaną na Σ , to istnieją miary α^+, α^- takie, że $\alpha = \alpha^+ - \alpha^-$.

.....

Miara ν jest absolutnie ciągła względem miary μ , jeżeli (\forall A \in Σ) μ (A) = 0 \implies ν (A) = 0. Oznaczamy $\nu \ll \mu$.

Miara ν jest singularna względem miary μ , jeżeli istnieją A, B $\in \Sigma$ takie, że X = A \cup B, A \cap B = \emptyset , μ (A) = 0 i ν (B) = 0. Relację tę oznaczamy $\mu \perp \nu$.

Absolutne wahanie miary znakowanej α to $|\alpha| = \alpha^+ + \alpha^-$. Jeżeli α, β są określone na tym samym Σ , przyjmujemy $\alpha \ll \beta$ qdy $|\alpha| \ll |\beta|$, tak samo $\alpha \perp \beta$ jeżeli $|\alpha| \perp |\beta|$. ν jest miarą skończoną na Σ , to dla dowolnej μ na Σ

 $\nu \ll \mu \iff (\forall \varepsilon > 0)(\exists \delta)(\forall A \in \Sigma) \mu(A) < \delta \implies \nu(A) < \varepsilon$

$$\nu \ll \mu \iff (\forall \ \varepsilon > 0)(\exists \ \delta)(\forall \ \mathsf{A} \in \Sigma) \ \mu(\mathsf{A}) < \delta \implies \nu(\mathsf{A}) < \varepsilon$$

 μ, ν - skończone miary na Σ takie, że $\nu \neq 0$ i $\nu \ll \mu$. Wtedy istnieje P $\in \Sigma$ takie, że μ (P) > 0 i P jest pozytywny dla miary znakowanej ν – $\varepsilon\mu$, to znaczy $\nu(B) \geq \varepsilon\mu(B)$ dla każdego mierzalnego B \subseteq P.

Twierdzenie Radona-Nikodyma: $(X, \Sigma, \mu) - \sigma$ -skończona przestrzeń miarowa i ν jest miarą znakowaną na Σ , że $|\nu|$ jest σ -skończone. Jeśli $\nu \ll \mu$, to istnieje f : X $\to \mathbb{R}$ takie, że dla wszystkich $A \in \Sigma$

$$\nu(A) = \int_{A} f d\mu$$

Funkcja f spełniająca tezę twierdzenia Radona-Nikodyma bywa oznaczana f = $\frac{d\nu}{d\mu}$ i mówi się na nią pochodna Radona-Nikodyma miary ν względem miary μ .

Dla miar μ i ν jak w twierdzeniu wyżej

$$\int_{X} g d\nu = \int_{X} g \cdot \frac{d\nu}{d\mu} d\mu$$

dla każdej ν -całkowalnej funkcji g.

Dla A $\in \Sigma$ w σ -skończonej przestrzeni miarowej, dla σ ciała $\Sigma_0 \subseteq \Sigma$, istnieje Σ_0 -mierzalna funkcja f taka, że dla każdego B $\in \Sigma_0$

$$\mu(A \cap B) = \int_B f d\mu$$

Dla μ , ν σ -skończonych miar na tym samym ciele, wtedy istnieje $\nu = \nu_a + \nu_s$ taki, że $\nu_a \ll \mu$ i $\nu_s \perp \mu$.

Jeżeli μ, ν są miarami na Bor(\mathbb{R}) i dla każdego a < b mamy μ [a, b) = ν [a, b) < ∞ , to μ = ν .

Miara Lebesque'a-Stieltjesa λ_{F} : dla każdej $\mathsf{F}:\mathbb{R}\to\mathbb{R}$ lewostronnie ciągłej, niemalejącej istnieje jedyna miara λ_{F} określona na Bor(\mathbb{R}) taka, że:

$$\lambda_{\mathsf{F}}[\mathsf{a},\mathsf{b}) = \mathsf{F}(\mathsf{b}) - \mathsf{F}(\mathsf{a})$$

Jeżeli F niemalejąca ma ciągłą pochodną, to dla każdej λ_{F} -całkowalnej g:

$$\int_{\mathbb{R}} g d\lambda_{\mathsf{F}} = \int_{\mathbb{R}} g \cdot \mathsf{F}' d\lambda$$

ROZDZIAŁ 6

Dla dowolnych liczb dodatnich a, b, p, q takich, że $\frac{1}{p} + \frac{1}{q} = 1$ zachodzi

$$ab \leq \frac{a^p}{p} + \frac{b^q}{q}$$

p-norma całkowa funkcji to $\|\mathbf{f}\|_{p} = \left(\int_{X} |\mathbf{f}|^{p} d\mu\right)^{\frac{1}{p}}$.

Nierówność Cauchy'ego-Höldera: dla dowolnych f, g i p, q > 0 jak wyżej zachodzi

$$\int_{\mathsf{X}} |\mathsf{fg}| \mathsf{d}\mu \leq \|\mathsf{f}\|_{\mathsf{p}} \|\mathsf{g}\|_{\mathsf{q}}$$

Nierówność Minkowskiego: $\|f + g\|_p \le \|f\|_p + \|g\|_p$

Warunki, aby || ⋅ || było normą:

$$\hookrightarrow \|\mathbf{x}\| = 0 \iff \mathbf{x} = \mathbf{0}$$

$$\hookrightarrow \|cx\| = |c|\|x\|$$

$$\Leftrightarrow \|cx\| = |c|\|x\|
\Leftrightarrow \|x + y\| \le \|x\| + \|y\|$$

Możemy określić na podstawie normy metrykę p(x, y) = ||x - y||. Jeżeli przestrzeń unormowana z taką metryką jest zupełna, to jest nazywana przestrzenią Banacha.

Symbol $L_p(\mu)$ oznacza przestrzeń wszystkich funkcji mierzalnych f : X $ightarrow \mathbb{R}$ dla których $\|f\|_p < \infty$. Elementy z $L_p(\mu)$ są utożsamiane jeżeli są równe prawie wszędzie. Jest to przestrzeń Banacha.