

Memory Compiler

Xiaofu Pei 23rd Oct, 2019

Memory Compiler

- Use of Standard Library 130nm to 250nm SRAM generators to create instances with a variety of parameters and views
- One can generate single and dual-port, high speed and high density SRAM.
- Located at: /courses/ee6321/share/mem_comp

SRAM Generator Features

- Optimized for High Speed/Density or Low-Power or High Density
- Aspect Ratio Control for Efficient Floor Planning
- Memory Operation and Retention at Low Frequency
- Low Active Power and Leakage-Only Standby Power
- Timing and Power Models for Industry-Leading Design Tools
- Configurable Word-Write Mask Option

Generating SRAM example (1)

- Create "mem_comp" folder in your directory
- Copy the contents from /courses/ee6321/share/mem_comp to your local folder
- Use

```
For one-port memory
```

"/courses/ee6321/share/mem_comp/rf1shd/bin/rf1shd"

For two-port memory

"/courses/ee6321/share/mem_comp/ra2shd_v20/bin/ra2shd_v20"

SRAM Standard Support

- PostScript Datasheet
- ASCII Datatable
- Verilog Model (.v)
- VHDL Model
- Synopsys Model (.lib)
- PrimeTime Model (.data .mod)
- TLF Model
- VCLEF Footprint
- GDSII Layout
- LVS Netlist

Generating SRAM example (2)

! There is a limited range for each parameters

Number of Words

- [16, 256]

Number of Bits

- [4, 128]

Choose output file listed in slide 4

Generating SRAM example (3)

Outputs You Need

Instantiation name

Sram Ports

Figure 3-1. Single-Port SRAM Basic Pins

Table 3-2 provides the single-port SRAM generator pin descriptions.

Table 3-2. Pin Descriptions for Single-Port SRAM Generators

Name	Type	Description				
Basic Pins						
A[m-1:0]	Input	Addresses $(A[0] = LSB)$				
D[n-1:0]	Input	Data inputs (D[0] = LSB)				
CEN	Input	Chip Enable active low				
WEN [*]	Input	Write Enable, active low. If word-write mask is enabled, this becomes a bus.				
CLK	Input	Clock				
Q[n-1:0]	Output	Data outputs (Q[0] = LSB)				
OEN	Output	Tristate Output Enable ¹				

¹ The OEN pin applies to some 180nm generators.

Detailed function description

Table 3-3. Single-Port Register File Basic Functions

CEN	WEN[]	Data Output	Mode	Function
Н	X	Last Data	Standby	Address inputs are disabled; data stored in the memory is retained, but memory cannot be accessed for new reads or writes. Data outputs remain stable.
L	L	Data In	Write	Word-write: Data on the data input bus, D[n-1:0], is written to the memory location specified by the address bus, A[m-1:0]; and is driven through to the data output bus Q[n-1:0]
				Bit-write: The corresponding data partition is selected by the write enables. WEN[k-1:0]; and that data is written to the memory location specified by the address bus, A[m-1:0], and is driven through to the data output bus Q[n-1:0].
				Data on the data input bus, D[n-1:0], is written to the memory location specified by the address bus, A[m-1:0]; and is driven through to the data output bus Q[n-1:0]
L	Н	SRAM data	Read	Data on the data output bus Q[n-1:0] is read from the memory location specified on the address bus A[m-1:0].

All the details of the sram will be in ra2shd_v20.pdf (Artisan User Manual)

Design & memory-compiler.pdf is slides for memory compiler from ARES Lab

Sram Read Timing Diagram

Figure 3-7. Single-Port Register File (rf1sh, rf1shd) Read-Cycle Timing

Data (Q) will be available after the rising edge of the clock (1 clock cycle delay)

Sram Write Timing Diagram

Figure 3-8. Single-Port Register File (rf1sh, rf1shd) Write-Cycle Timing

Summary

Suggestions on Lab Assignment 4

- 1. Make sure you are familiar with previous labs
- Take a look at the Memory Generator User Manual to learn the architecture & timing specification of SRAM.
- 3. First simulate the sram block you generated from memory compiler and then try to build the larger block. (*RTL on-chip memory model guide.pdf* as reference).
- 4. When running DC, you do **not** need to use read_verilog to include the [mem_cell_name].v generated by memory compiler and you do not need to use command to **black-box your sram**. You only need to include the correct db file. (.db file is generated by compiling .lib file through DC, codes are in **/courses/ee6321/share/4823-fall2020/lib2db/**).
- 5. You can use the same db file as above in your PT
- 6. Start early. This one will take some time.