

Convergence bounds for the Random Walk Metropolis algorithm

Perspectives from Isoperimetry

Sam Power

University of Bristol

11 May, 2023

Links & Acknowledgements

- ✓ Main paper today: arXiv 2211.08959;
- ✓ All joint work with
 - Christophe Andrieu (Bristol)
 - Anthony Lee (Bristol)
 - ► Andi Q. Wang (Bristol ~> Warwick)

Setting: Task

- Motivating task: making sense of structured probability distributions in high-dimensional spaces
 - posterior inference in Bayesian statistics
 - latent variable models, hidden Markov models
 - generative modeling
 - non-convex optimisation
 - **...**

Markov Chain Monte Carlo (MCMC)

- k Task: Generate approximate samples from a probability distribution π to which we have *limited access*.
- MCMC: An iterative approach to this task.
 - Simulate a time-homogeneous Markov chain $(X_n)_{n>0}$ such that

$$\text{Law}(X_n) \to \pi \text{ as } n \to \infty.$$

(and hopefully, quickly)

 \checkmark Use samples to 'understand' π .

A Glimpse at Modern MCMC

- Current status:
 - ▶ Mature algorithmic field, many 'correct' solutions are known and practical.
 - Quantitative convergence theory is challenging; important.
 - ▶ 'Is (this algorithm) { performant, reliable, preferable, ... } ?'
 - 'Given π , which algorithm do I choose?'
- Many interesting mathematical questions about complexity of sampling
 - Parallels with optimisation
 - Interplay with convex geometry
- ⊌ Burgeoning trend: study approximate inference methodologies with same tools.

Random Walk Metropolis

- ✓ Today: Study the Random Walk Metropolis (RWM) algorithm
 - \triangleright Only requires access to density of π , up to a multiplicative constant (typical).
 - Widely-used, simple, 'representative' difficulties
- 1. At x.
 - 1.1 Propose $x' \sim \mathcal{N}(x, \sigma^2 \cdot I_d)$.
 - 1.2 Evaluate $r(x, x') = \frac{\pi(x')}{\pi(x)}$.
 - 1.3 With probability min $\{1, r(x, x')\}$, move to x'; otherwise, remain at x.
- \checkmark Leaves π invariant; ergodic under mild conditions.

Convergence Analysis of RWM

- k 'Soft' analysis: Exponential convergence $\stackrel{\approx}{\Longleftrightarrow}$ Lighter-than-Exponential Tails.
- 'Modern' analysis: convexity assumptions, 'optimisation-style' proofs, . . .
- Today: synthesis of the above.

Some Comments on our Results

- Lespite ubiquity, sharp complexity analysis of RWM has long been open.
 - Preferable to rejection sampling, quadrature, · · · ?
- We obtain a convincing complexity analysis with
 - sharp dependence on the dimension of the problem
 - conjecturally sharp dependence on the conditioning of the problem
- Our proof techniques are remarkably robust, and largely new to this area

Main Results

- - ► Target is $\pi(x) \propto \exp(-U(x))$,
 - ightharpoonup U is m-strongly convex, L-smooth,
 - Write $\kappa = L/m$ ('condition number').
- \bowtie Run RWM with $\sigma = \upsilon \cdot (L \cdot d)^{-1/2}$.
- ★ Then,
 - 1. Acceptance rate satisfies $\alpha(x) \geqslant \alpha_0 := \frac{1}{2} \cdot \exp\left(-\frac{1}{2}v^2\right)$.
 - 2. Spectral gap satisfies $\gamma_P \geqslant c(\upsilon) \cdot (\kappa \cdot d)^{-1}$.
 - 3. L² mixing time satisfies $T_*(\varepsilon) \lesssim \kappa \cdot d \cdot \log\left(\frac{\kappa \cdot d}{\varepsilon}\right)$
- ▶ Paper contains tools which imply simple bounds for much wider class of targets.
- Today: demystify those tools.

Proof Overview

- Roughly:
 - 1. Large-Scale Properties of Target
 - 2. + Small-Scale Properties of Sampler
 - 3. → Good Mixing.
- Precisely:
 - 'Isoperimetric' Profile of Target
 - + 'Close Coupling' of Kernels
 - ► ~ Isoperimetric Profile of Markov Chain
 - ightharpoonup ightharpoonup Good Mixing (in L²).
- True for fairly general Markov chains on metric spaces.
- - 'Metropolis-type' + Acceptance Control → Close Coupling.
- ✓ I will explain all of these terms.

Isoperimetry, Conductance, and Escapes

- ✓ For 'local' Markov chains, a powerful tool of analysis is the 'conductance' method.
- ★ The core idea is that if a chain cannot get stuck badly in a set of small mass, then the chain must be mixing well.
- \mathcal{L} Quantitatively: for any (small) set A, [the flow of the chain out of A and into A^{\complement}] is comparable to [the mass of A].
- If this condition holds, then the chain is mixing well.
 - Under some conditions, this is a theorem.
 - Weaker and stronger versions of this property are also useful.
 - These each lead to their own theorems.

Conductance Methods for Markov Chains

 κ Consider for $A \subseteq \mathbb{R}^d$

$$\pi(A) \coloneqq \int_{x \in A} \pi(x) \, \mathrm{d}x \ \pi \otimes P(A imes A^\complement) \coloneqq \int_{x \in A, y \in A^\complement} \pi(x) P(x,y) \, \mathrm{d}x \mathrm{d}y.$$

- $\mathbf{k} \text{ If } \pi \otimes P(A \times A^{\complement}) \geqslant c \cdot \pi(A), \text{ then } P(X_1 \notin A \mid X_0 \in A) \geqslant c,$
 - ▶ so if $c \gg 0$, then the set A is easy for P to escape.
- k If every set A is easy for P to escape, then P cannot get stuck ...
 - ... and hence must converge quickly.

Isoperimetric Profiles of Markov Chains

Define

$$J_{\pi,P}(p) := \mathsf{inf}\left\{\pi \otimes P\left(A imes A^{\complement}
ight) : \pi(A) = p
ight\}$$

- 'How hard is it for this Markov chain to leave sets of a given size?'
- \mathcal{L} Good lower bounds on $J_{\pi,P}$ translate into mixing time bounds for P.

$$T_*\left(arepsilonsymp 1
ight)\lesssim \int_{V^2\left(\log \pi
ight)^{-1}}^{1/2}rac{p\,\mathrm{d}p}{J_{\pi,P}(p)^2}.$$

- I will not go into the technical details of how this is achieved today.
 - ► (...but ∃ bonus slides).

Markov Isoperimetric Profiles: Interpretation

- Classical isoperimetry relates the mass of sets to the mass of their boundaries.
- ✓ For Markov chains, isoperimetry describes how difficult it is to escape a given set.
- \checkmark Escaping small sets $(p \rightarrow 0^+)$ happens to be the relevant limit.
- \mathbb{K} If you escape all sets equally easily $(J_{\pi,P}(p) \geqslant c \cdot p)$,
 - then you mix exponentially quickly.
- \checkmark If you also escape small sets particularly well $(J_{\pi,P}(p) \gg c \cdot p)$,
 - then things can be even better at the start.
- \mathbf{k} If small sets are particularly hard to escape $(J_{\pi,P}(p) \ll c \cdot p)$,
 - then things can be much worse.

Estimating the profile $J_{\pi,P}$

- \swarrow Directly computing $J_{\pi,P}$ involves a difficult infimum over measurable sets.
- \swarrow Our route will be to show that under verifiable conditions, we can estimate $J_{\pi,P}$.
- \checkmark These conditions are nicely decoupled as \approx :
 - 1. A global condition about the target measure π .
 - 2. A local condition about the kernel P.
- Remark: This part of the analysis should work for ~generic problems.
 - When guided by local information (e.g. gradients) to solve global problems (e.g. sampling), conditions of this form are relevant.
- ✓ I will explain the conditions, and then explain how they fit together.

Isoperimetric Profiles of Probability Measures

- $\mathsf{V} \mathsf{E} \mathsf{For}\ A \subseteq E \mathsf{and}\ r \geqslant 0, \mathsf{let}\ A_r := \{x \in E : \mathsf{d}\ (x,A) \leqslant r\}.$
- k Define the *Minkowski content* of A under π with respect to d by

$$\pi^{+}\left(A
ight)=\lim\inf_{r
ightarrow0^{+}}rac{\pi\left(A_{r}
ight)-\pi\left(A
ight)}{r}.$$

- ightharpoonup pprox 'boundary mass' of A under π
- \checkmark The *isoperimetric profile* of π with respect to the metric d is

$$I_{\pi}\left(p
ight):=\inf\left\{ \pi^{+}\left(A
ight):A\subseteq E$$
 , $\pi\left(A
ight)=p
ight\}$, $p\in\left(0,1
ight)$.

- \swarrow (usually) increasing on $\left[0,\frac{1}{2}\right]$, symmetric about 1/2.
- \mathbf{k} For experts: This is (basically) $J_{\pi,P}$ for the Langevin diffusion.

Isoperimetric Profiles: Examples (1)

$$\bowtie \pi(\mathrm{d}x) \propto \exp(-|x|) \mathrm{d}x$$
 has $I_{\pi}(p) = p$.

$$\text{ For } \alpha \in (1,2), \, \pi\left(\mathrm{d}x\right) \propto \exp\left(-\left|x\right|^{\alpha}\right) \, \mathrm{d}x \text{ has } I_{\pi}\left(p\right) \geqslant K\left(\alpha\right) \cdot p \cdot \left(\log \frac{1}{p}\right)^{1-1/\alpha}.$$

⟨ (many other explicit examples in one dimension)

Isoperimetric Profiles: Examples (2)

- ₭ For log-concave measures,
 - Essentially preserved under products.
 - Functional inequalities (PI, LSI, \cdots) directly imply bounds on I_{π} .
 - Heat flow improves things.
 - Implied by certain concentration inequalities.
- General transfer principles:
 - Pushforward by Lipschitz transport map.
 - Change of measure by log-bounded weight.
- ₭ In specific cases, it can be hard to obtain good bounds.
- Once you have a bound, it is typically very informative about { mixing, concentration, · · · }.

'Close Coupling' of Markov Kernels

 \swarrow Say that P is (d, δ, τ) -close coupling if for some **fixed** $\delta, \tau > 0$, it holds that

$$d(x, y) \leq \delta \implies TV(P_x, P_y) \leq 1 - \tau.$$

- ✓ If two chains get close enough, anywhere in the space,
 - then there is a decent chance to make them coalesce.
- In our experience,
 - weaker assumption than e.g. global contractivity of dynamics, and
 - typically holds with better constants than minorisation conditions.
- $\bowtie \delta$ is often small (\approx step-size).
- κ τ can be of constant order (e.g. 1/8).
- k Remark: this condition can hold, with good (δ, τ) , for chains which mix **badly**.

Obtaining $J_{\pi,P}$

 \mathbb{K} Suppose that π has profile I_{π} , and P is $(\mathsf{d}, \delta, \tau)$ -close coupling. Then

$$J_{\pi,P}(p) \gtrsim au \cdot \mathsf{min}\{p,\delta \cdot I_{\pi}(p)\}$$

- Interpretation:
 - ▶ If P is 'nice' at small scales,
 - \blacktriangleright and if π is 'nice' at large scales,
 - then P will mix well!
- k Alternatively: P mixes 'as well as' the Langevin diffusion, slowed down by (τ, δ) .
- k For algorithms: no point in making τ too big; think of it as a constant.
 - ► \rightsquigarrow Tune algorithm to find a good δ which gives a desired τ .

Isoperimetry: from π to P, to mixing

$$T_*\left(arepsilonsymp 1
ight)\lesssim au^{-2}\cdot \delta^{-2}\cdot \int_{Y^2(ext{tio},\pi)^{-1}}^{1/2}rac{p\,\mathrm{d}p}{I_\pi(p)^2}.$$

(overlooking an additional annoying term related to the min)

 \swarrow Corollary 2: for log-concave π , it holds that

$$\gamma_P \gtrsim au^2 \cdot \delta^2 \cdot I_\pi \left(rac{1}{2}
ight)^2.$$

 \swarrow Our target is fixed, now: look at the kernel P, and control (τ, δ) .

Close Coupling for RWM

Recall: want to show that

$$d(x, y) \leq \delta \implies TV(P_x, P_y) \leq 1 - \tau.$$

 \mathbf{k} For MH algorithms, natural to try using Δ inequality:

$$\mathrm{TV}\left(P_{x},P_{y}
ight)\leqslant\mathrm{TV}\left(P_{x},Q_{x}
ight)+\mathrm{TV}\left(Q_{x},Q_{y}
ight)+\mathrm{TV}\left(Q_{y},P_{y}
ight).$$

This appears to have some limitations.

Roughly: tail behaviour ruins two of the three terms.

Close Coupling for RWM (2)

We will see that being 'Metropolis-type' (not just 'Metropolis-Hastings-type')

$$\alpha(x, x') = \text{Monotone}(f(x')/f(x))$$

lets us do better.

- ► Key: no 'cross terms', as in general MH.
- We will see that if we can control the **marginal** acceptance rates of the chain, then we can guarantee the close coupling condition.
 - ightharpoonup need to control the regularity of π .

Total Variation Bound between Metropolis Kernels

$$\mathrm{TV}\left(P_{x},P_{y}\right)\leqslant\mathrm{TV}\left(Q_{x},Q_{y}\right)+(1-\alpha_{0}).$$

Proof: Explicitly construct a coupling (next slide).

Proof Sketch

- \bigvee WLOG, assume that $\pi(x) \geqslant \pi(y)$.
- \checkmark If both chains propose moving to z, then $\alpha(x,z) \leqslant \alpha(y,z)$.
- ★ Thus, can couple the acceptance steps so that almost surely,

x accepts move $\implies y$ accepts move

 \bigvee Use $P(A \cap B) \geqslant P(A) + P(B) - 1$ to see that

$$egin{split} P\left(X^{'}=Y^{'}
ight) &\geqslant P\left(ilde{X}= ilde{Y}
ight) + P\left(X^{'}= ilde{X}
ight) - 1 \ &\geqslant \left(1 - \operatorname{TV}\left(Q_{x},Q_{y}
ight)
ight) + lpha_{0} - 1 \ &= lpha_{0} - \operatorname{TV}\left(Q_{x},Q_{y}
ight). \end{split}$$

Conclude by coupling inequality.

Acceptance Rate Bounds for RWM

- Ke Recall that $\alpha(x, x') = \min \left\{ 1, \frac{\pi(x')}{\pi(x)} \right\}$: natural to control $U = -\log \pi$.
- \checkmark Smoothness assumption: for some ψ , it holds that

$$U\left(x+h\right)-U\left(x\right)-\left\langle \nabla U\left(x\right),h\right\rangle \leqslant \psi\left(\left|h\right|\right).$$

$$lpha(x)\geqslantrac{1}{2}\cdot\exp\left(-\int\mathcal{N}\left(\mathrm{d}z;0,I_{d}
ight)\cdot\psi\left(\sigma\cdot|z|
ight)
ight),$$

and taking $\sigma = v \cdot d^{-1/2}$ gives that

$$\alpha(x) \geqslant \frac{1}{2} \cdot \exp\left(-\psi(v) + O\left(d^{-1}\right)\right).$$

Close Coupling for RWM

- **L** Taking $\sigma = \upsilon \cdot d^{-1/2}$ allows for $\alpha_0 \geqslant \frac{1}{2} \cdot \exp\left(-\psi(\upsilon) + O\left(d^{-1}\right)\right)$.
- κ Taking $\delta = \sigma \cdot \alpha_0$ allows for

$$\mathsf{d}(x,y) \leqslant \delta \implies \mathrm{TV}\left(Q_x,Q_y
ight) \leqslant rac{1}{2} \cdot lpha_0.$$

- (compute KL between Gaussians; apply Csiszar-Kullback-Pinsker)
- Using the coupling result,

$$ext{TV}\left(P_{x},P_{y}
ight)\leqslant ext{TV}\left(Q_{x},Q_{y}
ight)+\left(1-lpha_{0}
ight) \ \leqslant 1-rac{1}{2}lpha_{0},$$

i.e. one may take $\tau = \frac{1}{2} \cdot \alpha_0$.

Isoperimetric Profile and Mixing of RWM

Recalling that

$$J_{\pi,P}(p) \gtrsim \tau \cdot \min\{p, \delta \cdot I_{\pi}(p)\}$$

and taking v so that $\alpha_0 \approx 1$, obtain that

$$egin{align} J_{\pi,P}(p) &\gtrsim \min\{p,\sigma \cdot I_{\pi}(p)\}, \ &\gamma_{P} &\gtrsim \sigma^{2} \cdot I_{\pi}\left(rac{1}{2}
ight)^{2} \ &T_{st}\left(arepsilon top 1
ight) &\lesssim \sigma^{-2} \cdot igg|_{Y^{2}\left(arphi_{\pi},\pi
ight)^{-1}}^{1/2} rac{p\,\mathrm{d}p}{I_{\pi}(p)^{2}}. \end{split}$$

Still very general at this stage.

Deducing main results (1)

⊌ Under m-strong log-concavity, can bound isoperimetric profile as

$$I_{\pi}(p) \geqslant c \cdot m^{1/2} \cdot p \cdot \left(\log rac{1}{p}
ight)^{1/2}$$

u Under L-smoothness, take $\sigma = v \cdot (L \cdot d)^{-1/2}$ and control acceptance ratio as

$$lpha_0\geqslantrac{1}{2}\cdot\exp\left(-rac{1}{2}arphi^2
ight).$$

- - Remark: Failure of these conditions corresponds to known failure modes for RWM.

Deducing main results (2)

$$egin{aligned} \gamma_P \gtrsim 1/\left(\kappa \cdot d
ight) \ T_*\left(arepsilon top 1
ight) \lesssim \sigma^{-2} \cdot m^{-1} \cdot \int_{\chi^2\left(\mu_0,\pi
ight)^{-1}}^{1/2} rac{\mathrm{d} p}{p \cdot \log\left(rac{1}{p}
ight)} \ \lesssim \kappa \cdot d \cdot \log\log\chi^2(\mu_0,\pi). \end{aligned}$$

- Same strategy works well for other targets:
 - Characterise the isoperimetric profile (out of your hands).
 - Control the acceptance rates.

Not discussed in detail

- & Sharpness of bounds w.r.t. d.
- 'Multi-phase convergence', initialisation.
- RWM on targets 'between exponential and Gaussian'.
- RWM on rougher targets.

Ongoing and future work

- RWM on Heavy-tailed targets.
- Other Metropolis algorithms.
- Other non-Metropolis algorithms.
- ✓ New algorithms inspired by proof techniques.

Beyond MCMC (1)

- Convexity of potentials is not essential to our results.
- ★ The key ingredient is really isoperimetry, which is a more robust notion.
- - A caveat: need to assume that we work in a fixed coordinate system.
 - This is because changing coordinates changes the isoperimetry.
 - For e.g. 'dense' VGA, might need a more refined analysis.

Beyond MCMC (2)

- We expect isoperimetric ideas to be insightful quite generally.
- \checkmark For fixed-covariance VGA, isoperimetry of π . . .
 - $ightharpoonup \sim \text{regularity of KL}(\cdot, \pi)$
 - ightharpoonup who bounds on quality of approximation in e.g. \mathcal{T}_2
- \mathbf{k} For normalising flows, isoperimetry of π . . .
 - \(\square\) (im)possibility of transport maps with good regularity
 \(\square\)
 \(\square\
 - yractical need for stable non-Lipschitz transport maps
- k For denoising diffusions, isoperimetry of π . . .
 - ▶ \rightsquigarrow how large T should be so that $\pi P_T \approx \mathcal{N}(0, I_d)$
 - regularity of backwards diffusion

Beyond MCMC (3)

- A general message: when processing probability measures to be 'nice',
 - 1. Prioritise good isoperimetry, and
 - 2. Prioritise good smoothness.
- ✓ { Preconditioning, Flow Transport, · · · } are particular instances of this idea.
- ★ It is difficult to have much better isoperimetry than a Gaussian measure.
 - This arguably justifies the routine use of Gaussian measures as references.
- Many algorithms will implicitly require either these properties.
 - ▶ When not, they tend to require something **very** different (e.g. Gibbs sampling, CAVI).

Recap

- RWM for MCMC sampling.
- MCMC Convergence analysis via:
 - ► Isoperimetry (of target), and
 - Close Coupling (of kernels).
- Explicit bounds with interpretable dependence on problem parameters.

Bonus Slides 1: Technical Details

$$\Phi_P(v) := \inf \left\{ rac{J_{\pi,P}(v)}{v} : 0 < v \leqslant rac{1}{2}
ight\}.$$
 (1)

$$\Lambda_P(v) \geqslant \frac{1}{2} \Phi_P(v)^2. \tag{2}$$

kinesize Spectral Profile to Functional Inequality: for $f \geqslant 0$,

$$\frac{\mathcal{E}\left(P,f\right)}{\operatorname{Var}_{\pi}\left(f\right)} \geqslant \frac{1}{2} \cdot \Lambda_{P}\left(4 \cdot \frac{\pi\left(f\right)^{2}}{\operatorname{Var}_{\pi}\left(f\right)}\right). \tag{3}$$

 \checkmark Functional Inequality to Mixing Time: consider $||P^n f||_2^2$ with $f = \frac{d\mu}{d\pi}$.

Bonus Slides 2 : Super-Poincaré Inequalities

✓ Spectral Profile to Super-Poincaré Inequality

$$\operatorname{Var}_{\pi}(f) \leqslant s \cdot \mathcal{E}(P, f) + \beta_{P}(s) \cdot \pi(|f|)^{2}; \tag{4}$$

can express β_P in terms of Λ_P .

Some Pointers to the Literature

- MCMC Overview: Roberts-Rosenthal (General MCMC, 'Qualitative' Analysis, Optimal Scaling), Vempala, Chewi, Lee-Vempala ('Convex' Perspectives)
 - ► (+ my thesis)
- Conductance: Lawler-Sokal, Jerrum-Sinclair (original papers),
 Douc-Moulines-Priouret-Soulier (Chapter on Spectral Theory); C. Sherlock (notes)
- 3. <u>Isoperimetric Profiles</u>: Bobkov-Houdré (1997 book), E. Milman (papers 2007-2010)
- 4. Functional Inequalities: Montenegro-Tetali (monograph), Diaconis-Saloff-Coste (papers)
 - (+ our tech report)