MIPS Reference Data

		FOR-			OPCODE / FUNCT	
NAME, MNEMO		MAT	(0)		(Hex)	
Add	add	R	R[rd] = R[rs] + R[rt]	(1)	0 / 20 _{hex}	
Add Immediate	addi	I	R[rt] = R[rs] + SignExtImm	(1,2)	8_{hex}	
Add Imm. Unsigned	addiu	I	R[rt] = R[rs] + SignExtImm	(2)	9_{hex}	
Add Unsigned	addu	R	R[rd] = R[rs] + R[rt]		0 / 21 _{hex}	
And	and	R	R[rd] = R[rs] & R[rt]		$0/24_{hex}$	
And Immediate	andi	I	R[rt] = R[rs] & ZeroExtImm	(3)	c_{hex}	
Branch On Equal	beq	I	if(R[rs]==R[rt]) PC=PC+4+BranchAddr	(4)	4 _{hex}	
Branch On Not Equa	bne	I	if(R[rs]!=R[rt]) PC=PC+4+BranchAddr	(4)	$5_{ m hex}$	
Jump	j	J	PC=JumpAddr	(5)	2_{hex}	
Jump And Link	jal	J	R[31]=PC+8;PC=JumpAddr	(5)	3_{hex}	
Jump Register	jr	R	PC=R[rs]		0 / 08 _{hex}	
Load Byte Unsigned	lbu	I	R[rt]={24'b0,M[R[rs] +SignExtImm](7:0)}	(2)	24 _{hex}	
Load Halfword Unsigned	lhu	I	R[rt]={16'b0,M[R[rs] +SignExtImm](15:0)}	(2)	$25_{ m hex}$	
Load Linked	11	I	R[rt] = M[R[rs] + SignExtImm]	(2,7)	30_{hex}	
Load Upper Imm.	lui	I	$R[rt] = \{imm, 16'b0\}$		f_{hex}	
Load Word	lw	I	R[rt] = M[R[rs] + SignExtImm]	(2)		
Nor	nor	R	$R[rd] = \sim (R[rs] \mid R[rt])$		0 / 27 _{hex}	
Or	or	R	R[rd] = R[rs] R[rt]		0 / 25 _{hex}	
Or Immediate	ori	I	R[rt] = R[rs] ZeroExtImm	(3)	_	
Set Less Than	slt	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2a _{hex}	
Set Less Than Imm.	slti	I	R[rt] = (R[rs] < SignExtImm)? 1	: 0 (2)	a _{hex}	
Set Less Than Imm. Unsigned	sltiu	I	R[rt] = (R[rs] < SignExtImm) ? 1:0	(2,6)	b _{hex}	
Set Less Than Unsig.	sltu	R	R[rd] = (R[rs] < R[rt]) ? 1 : 0		0 / 2b _{hex}	
Shift Left Logical	sll	R	$R[rd] = R[rt] \ll shamt$	()	0 / 00 _{hex}	
Shift Right Logical	srl	R	R[rd] = R[rt] >> shamt		0 / 02 _{hex}	
Store Byte	sb	I	M[R[rs]+SignExtImm](7:0) = R[rt](7:0)	(2)	28 _{hex}	
Store Conditional	sc	I	M[R[rs]+SignExtImm] = R[rt]; R[rt] = (atomic) ? 1 : 0	(2,7)	38 _{hex}	
Store Halfword	sh	I	M[R[rs]+SignExtImm](15:0) = R[rt](15:0)	(2)	29 _{hex}	
Store Word	SW	I	M[R[rs]+SignExtImm] = R[rt]	(2)	2b _{hex}	
Subtract	sub	R	R[rd] = R[rs] - R[rt]		0 / 22 _{hex}	
Subtract Unsigned	subu	R	R[rd] = R[rs] - R[rt]	()	0 / 23 _{hex}	
(1) May cause overflow exception (2) SignExtImm = { 16{immediate[15]}, immediate } (3) ZeroExtImm = { 16{Ib'0}, immediate } (4) BranchAddr = { 14{immediate[15]}, immediate, 2'b0 } (5) JumpAddr = { PC+4[31:28], address, 2'b0 } (6) Operands considered unsigned numbers (vs. 2's comp.) (7) Atomic test&set pair; R[rt] = 1 if pair atomic, 0 if not atomic						
R opcode	r	s	rt rd shamt		funct	
	26 25		20 16 15 11 10	6.5	0	
I opcode		s	rt immed			
31 26 25 21 20 16 15 0 J opcode address						
opcode address						

ARITHMETIC CORE INSTRUCTION SET OPCODE / FMT /FT / FUNCT FOR-NAME, MNEMONIC MAT OPERATION (Hex) Branch On FP True bolt FI if(FPcond)PC=PC+4+BranchAddr (4) 11/8/1/--Branch On FP False bclf FI if(!FPcond)PC=PC+4+BranchAddr(4) 11/8/0/-- $\label{eq:loss_relation} \text{div} \quad R \quad Lo=R[rs]/R[rt]; \\ \text{Hi}=R[rs]\%R[rt]$ Divide 0/--/--/1aDivide Unsigned divu R Lo=R[rs]/R[rt]; Hi=R[rs]%R[rt](6) 0/--/--/1b FP Add Single add.s FR F[fd] = F[fs] + F[ft]11/10/--/0 add.d FR {F[fd],F[fd+1]} = {F[fs],F[fs+1]} + FP Add 11/11/--/0 Double {F[ft],F[ft+1]} FP Compare Single c.x.s* FR FPcond = (F[fs] op F[ft])? 1:0 11/10/--/v c.x.d* FR FPcond = $\{F[fs], F[fs+1]\}\ op$ FP Compare 11/11/--/y Double {F[ft],F[ft+1]})?1:0 * (x is eq. 1t, or 1e) (op is ==, <, or <=) (y is 32, 3c, or 3e) FP Divide Single div.s FR F[fd] = F[fs] / F[ft]11/10/--/3 $\label{eq:div_div_div} \text{div.d} \quad FR \quad \{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\} \; / \;$ FP Divide 11/11/--/3 Double FP Multiply Single mul.s FR F[fd] = F[fs] * F[ft] 11/10/--/2 $_{\texttt{mul.d.}} \text{ } \text{ } \{ F[\texttt{fd}], F[\texttt{fd}+1] \} = \{ F[\texttt{fs}], F[\texttt{fs}+1] \} \text{ } *$ FP Multiply 11/11/--/2 Double {F[ft],F[ft+1]} FP Subtract Single sub.s FR F[fd]=F[fs] - F[ft] 11/10/--/1 sub.d FR $\{F[fd],F[fd+1]\} = \{F[fs],F[fs+1]\}$ -FP Subtract 11/11/--/1 Double {F[ft],F[ft+1]} Load FP Single lwc1 I F[rt]=M[R[rs]+SignExtImm](2) 31/--/--F[rt]=M[R[rs]+SignExtImm]; Load FP (2) 35/--/--Double F[rt+1]=M[R[rs]+SignExtImm+4]0 /--/--/10 Move From Hi mfhi R R[rd] = HiMove From Lo mflo R R[rd] = Lo0 /--/--/12 Move From Control mfc0 R R[rd] = CR[rs]10 /0/--/0 0/--/--/18 Multiply mult $R = \{Hi, Lo\} = R[rs] * R[rt]$ (6) 0/--/--/19 Multiply Unsigned multu $R = \{Hi, Lo\} = R[rs] * R[rt]$ 0/--/-3 Shift Right Arith. sra R R[rd] = R[rt] >>> shamtStore FP Single (2) 39/--/-swc1 I M[R[rs]+SignExtImm] = F[rt]sdc1 I M[R[rs]+SignExtImm] = F[rt];Store FP .(2) 3d/--/--Double M[R[rs]+SignExtImm+4] = F[rt+1]FLOATING-POINT INSTRUCTION FORMATS FR opcode fmt fs fd funct 26 25 21 20 16 15 11 10 6 5 opcode fmt immediate 26 25 21 20 **PSEUDOINSTRUCTION SET** NAME MNEMONIC OPERATION Branch Less Than blt if(R[rs] < R[rt]) PC = LabelBranch Greater Than if(R[rs]>R[rt]) PC = LabelBranch Less Than or Equal $if(R[rs] \le R[rt]) PC = Label$ Branch Greater Than or Equal $if(R[rs] \ge R[rt]) PC = Label$ bge Load Immediate li R[rd] = immediateMove R[rd] = R[rs]

NAME	NUMBER	USE	PRESERVEDACROSS	
IVAIVIL	NOMBER	USE	A CALL?	
\$zero	0	The Constant Value 0	N.A.	
\$at	1	Assembler Temporary	No	
\$v0-\$v1	2-3	Values for Function Results and Expression Evaluation	No	
\$a0-\$a3	4-7	Arguments	No	
\$t0-\$t7	8-15	Temporaries	No	
\$s0-\$s7	16-23	Saved Temporaries	Yes	
\$t8-\$t9	24-25	Temporaries	No	
\$k0-\$k1	26-27	Reserved for OS Kernel	No	
\$gp	28	Global Pointer	Yes	
\$sp	29	Stack Pointer	Yes	
\$fp	30	Frame Pointer	Yes	
\$ra	31	Return Address	No	