CNN/RNN

Q3 Recurrent NeuralNetwork

- 01. 순차 데이터란?
- 02. 딥러닝을 활용한 순차 데이터 처리 예시
- 03. Recurrent Neural Network
- 04. Vanilla RNN

01

순차데이터란?

01 순차 데이터란?

❷ 왜 RNN과 순차 데이터인가?

- RNN(Recurrent Neural Network)은 CNN과 함께 대표적인 딥러닝 모델
- 시계열 데이터 같은 순차 데이터(Sequential Data) 처리를 위한 모델
- RNN의 이해에는 순차 데이터가 가지는 특징의 이해가 필요

01 순차 데이터란?

❷ 순차 데이터란?

- 순서(Order)를 가지고 나타나는 데이터
- 날짜에 따른 기온 데이터나 단어들로 이루어진 문장 등으로 유명
 - 데이터 내 각 개체 간의 순서가 중요

01 순차 데이터란? /* elice */

☑ 시계열 데이터 (Time-Series Data)

- 일정한 시간 간격을 가지고 얻어낸 데이터
- 예) 연도별 대한민국의 평균 기온, 시간별 주식 가격 기록 등

01 순차 데이터란?

☑ 자연어 데이터 (Natural Language)

- 인류가 말하는 언어를 의미
- 주로 문장 내에서 단어가 등장하는 순서에 주목

딥러닝을 활용한 순차 데이터 처리 예시

❷ 경향성 파악

Figure 5. The forecasting result of the method based on EMD and SVM.

- 주가 예측
- 기온 예측
- 이외에도 다양한 시계열 특징을 가지는 데이터에 적용 가능

❷ 음악 장르 분석

- 오디오 파일은 본질적으로 시계열 데이터
- 음파 형태 등을 분석하여 오디오 파일의 장르를 분석

☑ 강수량 예측 (Precipitation Forecasting)

구글에서 이미지 처리 기술과 결합하여 주도적으로 연구 (예: MetNet)

❷ 음성 인식 (Speech Recognition)

Apple Siri

음성에 포함된 단어나 소리를 추출 예) Apple Siri, Google Assistant

● 번역기 (Translator)

- 두 언어 간 문장 번역을 수행
- 딥러닝의 발전 이후 번역의 자연스러움이 향상
- 이미지 처리와 결합하여 실시간 번역도 제공
- 예) 구글 번역, 네이버 파파고 등

챛봇 (Chatbot)

- 사용자의 질문에 사람처럼 응답하고자 하는 프로그램
- 사용자의 질문을 분석 후 질문에 적절한 응답을 생성

Recurrent Neural Network

❷ Fully-connected Layer와 순차 데이터

- FC Layer는 입력 노드 개수와 출력 노드 개수가 정해짐
- 순차 데이터는 하나의 데이터를 이루는 개체 수가 다를 수 있음
 - 문장은 모두 서로 다른 개수의 단어로 이루어짐
- 또한 FC Layer는 순서 고려가 불가능

03 Recurrent Neural Network

Recurrent Neural Network

- 따라서 순차 데이터 처리를 위한 딥러닝 모델이 등장
- RNN의 대표적인 구성 요소
 - Hidden State: 순환 구조를 구현하는 핵심 장치

❷ 입력 데이터 구조

- $x_1, x_2, x_3, ..., x_n$ 과 같이 데이터의 나열
- 각 x_t 의의미
 - 시계열 데이터: 일정 시간 간격으로 나눠진 데이터 개체 하나
 - 자연어 데이터: 문장 내의 각 단어

❷ 시계열 데이터의 벡터 변환

	p (mbar)			Tdew (degC)		VPmax (mbar)			sh (g/kg)			wv (m/s)	max. wv (m/s)	wd (deg)
5	996.50	-8.05	265.38	-8.78	94.4	3.33	3.14	0.19	1.96	3.15	1307.86	0.21	0.63	192.7
11	996.62	-8.88	264.54	-9.77	93.2	3.12	2.90	0.21	1.81	2.91	1312.25	0.25	0.63	190.3
17	996.84	-8.81	264.59	-9.66	93.5	3.13	2.93	0.20	1.83	2.94	1312.18	0.18	0.63	167.2
23	996.99	-9.05	264.34	-10.02	92.6	3.07	2.85	0.23	1.78	2.85	1313.61	0.10	0.38	240.0
29	997.46	-9.63	263.72	-10.65	92.2	2.94	2.71	0.23	1.69	2.71	1317.19	0.40	0.88	157.0

- 입력 데이터의 각 x_t 는 벡터 형태
- 시계열 데이터의 경우 각 데이터를 이루는 Feature 값들을 원소로 하여 벡터로 변환

❷ 자연어 데이터의 벡터 변환

나는
$$\longrightarrow$$
 [1000] x_1 배가 \longrightarrow [0100] x_2 너무 \longrightarrow [0010] x_3 고프다 \longrightarrow [0001] x_4

One-hot Encoding

Word2Vec

- 임베딩(Embedding): 각 단어들을 숫자로 이루어진 벡터로 변환
- 대표적인 임베딩 기법
 - One-hot Encoding
 - Word2Vec: 주어진 단어들을 벡터로 변환하는 기계학습 모델

04

Vanilla RNN

✔ Vanilla RNN 소개

- 가장 간단한 형태의 RNN 모델: Simple
 RNN이라고도 불림
- 내부에 세개의 FC Layer로 구성
 - W_{hh} : hidden state(h_{t-1})를 변환하는 Layer의 가중치 행렬
 - W_{xh} : 한 시점의 **입력값** (x_t) 을 변환하는 Layer의 가중치 행렬
 - W_{hy} : 한 시점의 <mark>출력값 (y_t) </mark> 을 변환하는 Layer의 가중치 행렬

✔ Vanilla RNN 연산 과정

- 현재 입력값(x_t)에 대한 \mathbf{Mz} 은 hidden state 계산
- $h_t = \tanh(h_{t-1}W_{hh} + x_tW_{xh})$
 - tanh는 tangent hyperbolic 함수

✔ Vanilla RNN 연산 과정

- 현재 입력값 (x_t) 에 대한 새로운 출력값 계산
- $y_t = W_{hy}h_t$
 - 앞서 계산한 hidden state를 이용

☑ 시간순으로 보는 Vanilla RNN의 연산 과정

- 모델에 들어오는 각 시점의 데이터 x_t 마다 앞서 설명한 연산 과정을 수행
- 입력값에 따라 반복해서 출력값과 hidden state를 계산
- 이전 시점에 생성된 hidden state를 다음 시점에 사용

Hidden state의 의미

- 모델이 내부적으로 계속 가지는 값이므로 일종의 메모리(Memory)로 볼 수 있음
- 컴퓨터의 메모리와 일맥상통

Parameter Sharing

- Hidden state와 출력값 계산을 위한 FC Layer를 모든 시점의 입력값이 재사용
- FC Layer 세 개가 모델 파라미터의 전부

04 Vanilla RNN

✔ Vanilla RNN의 종류

다대일 구조 (many-to-one)

다대다 구조 (many-to-many)

사용할 입력값과 출력값의 구성에 따라 여러 종류의 RNN이 존재

- 다대일(many-to-one): 출력값을 한 시점의 값만 사용
- 다대다(many-to-many): 여러 시점의 입력값과 여러 시점의 출력값을 사용
 - 입력값과 출력값에 사용하는 시점의 개수는 같을 수도 있고 다를 수도 있음

04 Vanilla RNN

✔ Vanilla RNN의 종류

인코더-디코더(Encoder-Decoder): 입력값들을 받아 특정 hidden state로 인코딩한 후, 이 hidden state로 새로운 출력값을 만드는 구조

✔ Vanilla RNN의 문제점

- RNN은 출력값이 시간 순서에 따라 생성
- 각 시점의 출력값과 실제값을 비교하여 손실(Loss)값을 계산
- 역전파 알고리즘이 시간에 따라 작동 → Back-propagation Through Time (BPTT)

04 Vanilla RNN

✔ Vanilla RNN의 문제점

- 입력값의 길이가 매우 길어질 경우
 - 초기 입력값과 나중 출력값 사이에 전파되는 기울기 값이 매우 작아질 가능성이 높음
- 기울기 소실(Vanishing Gradient) 문제가 발생하기 쉬움
 - 다른 말로 <mark>장기 의존성(Long-term Dependency)</mark>을 다루기가 어려움

크레딧

/* elice */

코스 매니저 김창환

콘텐츠 제작자 김창환

강사 김창환

감수자

디자이너 강혜정

연락처

TEL

070-4633-2015

WEB

https://elice.io

E-MAIL

contact@elice.io

