

专业班级 __交设 2105 __ 姓名 __欧宇恒_ 学号 _8212210728 成绩 __

一实验目的

- 1. 观察带传动的弹性滑动与打滑现象;
- 2. 测出带传动弹性滑动系数、效率和负载的关系, 绘出滑动曲线和效率曲线;
- 3. 掌握转速、转速差和转矩的测量方法。
- 二实验台的主要参数
- 1 带轮的直径 D1=120mm D2=120mm
- 2 测力杆臂长 L1 = mm L2 = mm
- 3 弹性滑动率公式

$$arepsilon=rac{
u_1-
u_2}{
u_1}=rac{n_1-n_2}{n_1}$$

4效率公式

$$\eta = rac{P_2}{P_1} = rac{T_2 n_2}{T_1 n_1} imes 100 \%$$

三实验内容与数据分析

1 实验内容

第一阶段:调试实验台

将皮带张紧, 打开电源, 旋转黑色的调速按钮降转速调到 1200 转/分左右

第二阶段: 启动计算机及皮带传动实验的控制程序

打开计算机,并启动程序,从出现的皮带传动彩图中观察皮带的弹性滑动,并且保存实验数据,绘制曲线便于实验结果分析

2 实验结果与分析

初拉力 F0=25N

プリナエノ										
加载	实测数据				计算结果					
次数	n ₁ (r/min)	n ₂ /min)	Q1(N)	Q2(N)	T ₁ (N.mm)	T ₂ N.mm)	ε	η	F 有效	
							(%)	(%)	圆周力	
									(N)	
1	1157.9	1154.7	0.92	0.84	111.4	101.2	0.3	90.9	10	
2	1148.3	1145.1	0.97	0.96	117.2	115.0	0.3	98.1	20	
3	1140.0	1136.7	1.10	1.05	130.8	124.7	0.3	95.4	30	
4	1138.8	1135.0	1.19	1.06	141.5	126.4	0.3	89.3	40	
5	1133.5	1129.9	1.21	1.16	143.8	136.8	0.3	95.1	50	
6	1128.9	1125.0	1.36	1.24	161.3	146.2	0.4	90.6	60	
7	1119.6	1108.5	1.33	1.18	155.5	143.8	1.0	92.5	70	
8	1125.4	775.3	1.32	1.20	155.7	98.8	31.1	63.5	80	

	·-·-	
平阅人	评阅日期	
干风八	广闪山别	

9)	1125.6	689.9	1.32	1.22	155.7	86.6	38.7	55.7	90
1	0	1125.6	660.9	1.32	1.18	156.2	82.0	41.3	52.5	100

四.绘制滑动曲线 ϵ -F 和效率曲线 η -F 的关系曲线

五思考题

1 机械传动有哪几种类型?

齿轮传动、带传动、链传动、蜗杆传动、套筒传动、摩擦传动

2 带传动有什么特点?

平稳传动、轻质化、可靠性高、适用性广、维护保养简单、功率传递低

3 带传动的工作能力与初拉力大小有什么关系?

当带传动初拉力过大时,会导致带子与轮毂之间的摩擦力增大,从而使带子容易滑动或磨损,从而降低传动能力。当带传动初拉力过小时,会导致带子与轮毂之间的摩擦力不足,从而使带子容易打滑或脱落,从而降低传动能力。