STAT40810 — Stochastic Models

Brendan Murphy

Week 3

- Suppose we have a dataset with values $(x_1, y_1), \dots, (x_n, y_n)$.
- We want to study the relationship between the x and the y values.
- In other words, we want to estimate the function $f(x_i)$, where $y_i = f(x_i) + \epsilon_i$.
- A crucial input into kernel smoothing is the kenrel and the bandwidth (h).
- The bandwidth is a number greater than 0; it controls the smoothness of the estimate $\hat{f}(x)$.

Kernel Function

• A kernel is a function K(x) such that

$$K(x) > 0$$
 and $\int_{\mathcal{X}} K(x) dx = 1$.

- Most kernels are also symmetric, so K(x) = K(-x).
- Some commonly used kernels are:

$$K(x)=rac{1}{\sqrt{2\pi}}\exp\left(-rac{x^2}{2}
ight)$$
 Gaussian Kernel $K(x)=\left\{egin{array}{ll} 1-|x| & ext{for } |x|<1 \ 0 & ext{otherwise} \end{array}
ight.$ Triangular Kernel

Yet More Kernels

$$K(x) = \begin{cases} \frac{1}{2} & \text{for } |x| < 1 \\ 0 & \text{otherwise} \end{cases}$$

$$K(x) = \begin{cases} \frac{3}{4\sqrt{5}} \left(1 - \frac{x^2}{5}\right) & \text{for } |x| < \sqrt{5} \\ 0 & \text{otherwise} \end{cases}$$

$$K(x) = \begin{cases} \frac{15}{16} \left(1 - x^2\right)^2 & \text{for } |x| < 1 \\ 0 & \text{otherwise} \end{cases}$$

Rectangular Kernel

Epanechnikov Kernel

Biweight Kernel

Various Kernels

Bandwidth

• If we take a kernel function K(x), any x_0 and a bandwidth h>0 and compute

$$\frac{1}{h}K\left(\frac{x-x_0}{h}\right).$$

- This has the effect of shifting the kernel to being centred on x₀ instead of 0.
- It also has the effect of:
 - Making the kernel narrower and taller, if h < 1.
 - Making the kernel wider and lower, if h > 1.
- The value of h is called the bandwidth.

Kernel Plot

• An example of what

$$\frac{1}{h}K\left(\frac{x-x_0}{h}\right)$$

looks like is:

- Kernel smoothing requires us to specify a kernel and a bandwidth.
- The value of the response variable is predicted using $\hat{f}(x_i) = \hat{y}_i = \sum_{i=1}^n w_{ij} y_j$ where

$$w_{ij} = \frac{\frac{1}{h}K\left(\frac{x_i - x_j}{h}\right)}{\frac{1}{h}\sum_{k=1}^{n}K\left(\frac{x_i - x_k}{h}\right)}$$

Kernel Smoothing Steps (1)

• Suppose we want to compute $\hat{f}(x_i)$. Suppose h = 0.5 and n = 24.

Kernel Smoothing Steps (2)

• The kernel function $(1/h)K\left(\frac{x-x_i}{h}\right)$ is computed. A Gaussian kernel is shown.

Kernel Function: h=0.5

Kernel Smoothing Steps (3)

• The weights are computed.

Kernel Smoothing Steps (4)

• A weighted mean is calculated

Weighted Mean

Kernel Smoothing Steps (5)

• The fitted value is found (it's just the weighted mean!)

Kernel Smoothing Fits

• The steps are repeated for each i = 1, 2, ..., n. This gives the kernel smoothed curve.

Kernel Smoothing: h=0.5

Kernel Smoothing (h=0.1)

• If the bandwidth is smaller, then we get a more "wiggly" fit.

Kernel Smoothing: h=0.1

Kernel Smoothing (h=100)

• If the span is very large, then we get a constant function, equal to the mean of the ys.

Kernel Smoothing: h=100

Variants

- Variants of kernel smoothing exist which use weighted polynomial regression instead of weighted means.
- Can you see the similarity with LOWESS?

- Kernel Smoothing is very easy to implement in R.
- Here's code to model the motorcycle data.

```
# Load the data
library(MASS)
data(mcycle)

# Plot the data
plot(mcycle)

# Fit a kernel smoothing
# The bandwidth needs to be specified
fit <- ksmooth(mcycle$times,mcycle$accel,kernel="normal",bandwidth=3)

# Add the fitted values to the plot
points(fit,pch=3,col="red")

# Assess fit using mean squared error (MSE)
MSE <- mean((mcycle$accel-fit$y)^2)
MSE</pre>
```