Noname manuscript No.

(will be inserted by the editor)

My Example Computed Manuscript Created in Rmarkdown

Jeffrey M. Perkel ·

Received: date / Accepted: date

Abstract A mock computed manuscript created in RStudio using {Rmarkdown}. The {Bookdown} and {Rticles} packages were used to output the text in Springer Nature's desired manuscript format.

Keywords

1 Introduction

This is an R Markdown document. Markdown is a simple formatting syntax for authoring HTML, PDF, and MS Word documents. For more details on using R Markdown see http://rmarkdown.rstudio.com.

Here we'll add some references from Zotero (Perkel 2020): (Fisch et al. 2015; Argelaguet et al. 2021; Lê Cao et al. 2021).

Markdown documents can include inline equations written in F_{EX} , such as F = ma. Here is an equation on its own line:

$$a^2 + b^2 = c^2$$

2 Results

2.1 Inline computation

The 'killer feature' of computed manuscripts is their ability to compute and insert values and figures into the text rather than requiring authors to input

Jeffrey M. Perkel

Springer Nature, 1 New York Plaza, New York, NY

E-mail: jeffrey.perkel@nature.com

2 Jeffrey M. Perkel,

them manually. That circumvents the possibility that the author will enter an incorrect number, or forget to update a figure or value should new data arise.

Imagine we are analyzing data from a clinical trial. We have grouped subjects in three bins and measured the concentration of some metabolite. (These data are simulated.)

Rather than analyzing those data and then copying the results into our manuscript, we can use the programming language R to do that in the manuscript itself. Simply enclose the code inside backticks, with the letter ${\tt r}$. For instance, to calculate the circumference and area of a circle with radius r=10, you could write "A = `r pi * r^2` and "C = `r 2 * pi * r`. Those evaluate to "A = 314.159 and C = 62.832".

Returning to our dataset, we have **99** (simulated) subjects in our study. The average metabolite concentration is **185.36** (range: **78-298**). We have **32** subjects in Group 1, **43** subjects in Group 2, and **24** in Group 3. (The numbers in **bold face type** throughout this document are computed values.)

Now suppose we get another tranche of data. There are 60 subjects in this new dataset. Their average concentration is 185.13 (range: 77-299).

Combining the two datasets, we have a total of **159** subjects (Table 1). The revised average metabolite concentration is **185.28** (range: **77-299**). We now have **55** subjects in Group 1, **60** subjects in Group 2, and **44** in Group 3.

2.2 Data tables

2.3 Plotting the data

We can also create and include figures during manuscript creation. Here we plot boxplots of our clinical trial data. The data are shown in Figure 1. Note that this figure number (as well as the table number above) is automatically generated.

3 Code

The following code was used to load, merge, and plot the (simulated) clinical trial data:

```
# load libraries
library(tidyverse)
library(ggbeeswarm)
library(bookdown)
```

```
# read in some initial data
df1 <- read_csv('data/example-data-1.csv')</pre>
```

 ${\bf Table~1}~{\rm Final~subject~data}$

ID	Class	Conc	_	ID	Class	Conc		ID	Class	Conc
ID ₋ 1	Group 2	153	_	ID_54	Group 2	280	_	ID_107	Group 3	170
ID_{-2}	Group 1	224	_	ID_55	Group 2	175	_	ID_108	Group 3	78
ID_{-3}	Group 2	127	_	$ID_{-}56$	Group 2	223	_	ID_109	Group 1	129
ID_{-4}	Group 2	194		$ID_{-}57$	Group 3	295	_	ID_110	Group 1	137
$ID_{-}5$	Group 1	251	_	$ID_{-}58$	Group 1	275	_	ID_111	Group 3	217
${\rm ID}_6$	Group 1	81		$ID_{-}59$	Group 2	120	_	$ID_{-}112$	Group 1	227
$\mathrm{ID}_{-}7$	Group 2	100		ID_60	Group 1	78		ID_113	Group 3	81
ID_8	Group 1	270	_	ID_61	Group 3	78	_	ID_114	Group 2	248
ID ₋ 9	Group 2	100		ID_62	Group 3	140	_	ID_115	Group 1	211
$ID_{-}10$	Group 1	161	_	ID_63	Group 3	294	_	ID_116	Group 1	113
ID_11	Group 3	158		ID_64	Group 3	295	_	ID_117	Group 1	216
$ID_{-}12$	Group 3	118	_	ID_{-65}	Group 3	285	_	ID_118	Group 3	91
ID_13	Group 2	143		ID_66	Group 2	129	_	ID_119	Group 3	258
ID_14	Group 2	258		ID_67	Group 3	148	_	ID_120	Group 2	85
$ID_{-}15$	Group 3	224	_	ID_68	Group 1	281	_	ID_121	Group 3	181
$ID_{-}16$	Group 3	254	_	$ID_{-}69$	Group 3	295	_	$ID_{-}122$	Group 3	216
$ID_{-}17$	Group 3	190	_	ID_70	Group 2	111	_	ID_123	Group 1	222
$ID_{-}18$	Group 2	148	_	$ID_{-}71$	Group 2	132	_	ID_124	Group 3	252
$ID_{-}19$	Group 1	89		ID_{-72}	Group 2	261	_	$ID_{-}125$	Group 1	166
$ID_{-}20$	Group 2	89	_	$ID_{-}73$	Group 1	122	_	ID ₋ 126	Group 2	204
$ID_{-}21$	Group 3	253	_	$ID_{-}74$	Group 2	124	_	$ID_{-}127$	Group 2	243
$ID_{-}22$	Group 3	231	_	$ID_{-}75$	Group 1	234		$ID_{-}128$	Group 3	198
$ID_{-}23$	Group 1	112	_	ID_76	Group 2	184	_	ID_129	Group 1	119
$ID_{-}24$	Group 2	277	_	$ID_{-}77$	Group 3	272	_	ID_130	Group 1	198
$ID_{-}25$	Group 2	197	_	$ID_{-}78$	Group 1	242	_	ID_131	Group 3	151
$ID_{-}26$	Group 2	208	_	$ID_{-}79$	Group 2	277	_	$ID_{-}132$	Group 3	115
$ID_{-}27$	Group 2	193	_	ID_80	Group 3	236	_	ID_133	Group 3	237
ID_28	Group 3	141		ID_81	Group 1	101	_	ID_134	Group 2	178
ID_29	Group 1	206		ID_82	Group 3	218	_	ID_135	Group 1	275
ID_30	Group 2	168	_	ID_83	Group 2	130	_	ID ₋ 136	Group 2	178
$ID_{-}31$	Group 2	298		ID84	Group 1	128	_	$ID_{-}137$	Group 3	267
$ID_{-}32$	Group 1	144	_	ID85	Group 3	252	_	ID_138	Group 1	95
ID_33	Group 2	241	_	ID_86	Group 1	198	_	ID_139	Group 1	108
ID_34	Group 2	221	_	ID_87	Group 1	169	_	ID_140	Group 2	77
$ID_{-}35$	Group 1	112	_	ID_88	Group 2	185	_	ID_141	Group 1	299
$ID_{-}36$	Group 3	246		ID_89	Group 1	216	_	$ID_{-}142$	Group 3	222
$ID_{-}37$	Group 2	190	_	ID_90	Group 2	185		ID_143	Group 1	85
ID_38	Group 1	177		ID_91	Group 2	97	_	ID_144	Group 1	273
ID_39	Group 1	148	_	ID_92	Group 2	165	_	ID_145	Group 3	115
$ID_{-}40$	Group 2	290	_	ID_93	Group 3	89	_	ID ₋ 146	Group 1	290
ID_41	Group 2	151	_	ID_94	Group 2	221	_	ID_147	Group 2	269
ID_42	Group 2	159		ID_95	Group 1	162	_	ID_148	Group 2	97
ID_43	Group 2	113		ID_96	Group 1	131	_	ID_149	Group 1	229
ID_44	Group 1	249	_	ID_97	Group 1	93	_	ID_150	Group 3	176
$ID_{-}45$	Group 1	124	_	ID_98	Group 2	240	_	ID_151	Group 2	164
ID_46	Group 3	87		ID_99	Group 2	86	_	ID_152	Group 3	172
ID_47	Group 1	166	_	ID_100	Group 2	219	_	ID_153	Group 1	222
ID_48	Group 1	196	_	ID_101	Group 2	243	_	ID_154	Group 1	285
ID_49	Group 1	112	_	ID_102	Group 2	213	_	ID_155	Group 2	153
$ID_{-}50$	Group 1	289	_	ID_103	Group 1	177	_	ID_156	Group 3	132
$ID_{-}51$	Group 2	161	_	$ID_{-}104$	Group 3	197	_	$ID_{-}157$	Group 2	156
$ID_{-}52$	Group 3	270		ID_105	Group 2	198	_	ID_158	Group 1	260
ID_53	Group 2	237		ID ₋ 106	Group 1	120	_	ID ₋ 159	Group 2	201

4 Jeffrey M. Perkel,

Fig. 1 Metabolite concentration of clinical trial subjects

```
# read new dataset
df2 <- read_csv('data/example-data-2.csv')

# merge datasets
final_data <- rbind(df1, df2)

# plot the data
final_data %>%
    ggplot(aes(x = class, y = conc, color = class)) +
    geom_boxplot() +
    ggbeeswarm::geom_quasirandom(width = 0.25) +
    xlab("") +
    ylab("Metabolite concentration") +
    theme_minimal() +
    theme(legend.position = "none")
```

References

Argelaguet, Ricard, Anna S. E. Cuomo, Oliver Stegle, and John C. Marioni. 2021. "Computational Principles and Challenges in Single-Cell Data Integration." *Nature Biotechnology*, May, 1–14. https://doi.org/10.1038/s41587-021-00895-7.

Fisch, K. M., T. Meissner, L. Gioia, J.-C. Ducom, T. M. Carland, S. Loguercio, and A. I. Su. 2015. "Omics Pipe: A Community-Based Framework for

- Reproducible Multi-Omics Data Analysis." *Bioinformatics* 31 (11): 1724–28. https://doi.org/10.1093/bioinformatics/btv061.
- Lê Cao, Kim-Anh, Al J. Abadi, Emily F. Davis-Marcisak, Lauren Hsu, Arshi Arora, Alexis Coullomb, Atul Deshpande, et al. 2021. "Community-Wide Hackathons to Identify Central Themes in Single-Cell Multi-Omics." Genome Biology 22 (1): 220. https://doi.org/10.1186/s13059-021-02433-9.
- Perkel, Jeffrey M. 2020. "Streamline Your Writing and Collaborations with These Reference Managers." *Nature* 585 (7823): 149–50. https://doi.org/10.1038/d41586-020-02491-2.