Cours Probabilités Conditionnelles

Delhomme Fabien

13 février 2022

Table des matières

Ι	\mathbf{Les}	probabilités conditionnelles	1
	I.1	Définitions	1
	I.2	Formule de Bayes	1
	I.3	Formule des probabilités totales	2
	I.4	Exemples pour bien comprendre	2
		I.4.1 Des dés cachottiers	2
		I.4.2 Qui porte des lunettes?	3

Les probabilités conditionnelles

Définitions

Probabilités conditionnelles

Soit A et B deux événements, avec B un événement de probabilité non nulle. Alors, on définit $\mathbb{P}_B(A)$

$$\mathbb{P}_B(A) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

D'où vient cette définition? Et bien, du dessin suivant. Rappelez-vous que, dans ces dessins, la probabilité de chaque événement est donnée par l'aire des patates qui les représentent.

Sur cette image, $\mathbb{P}_B(A)$ calcule la proportion qu'occupe l'intersection des deux événements, par rapport à l'événement A.

En effet, dans ce cas, on effectue une division par 0, ce qui n'a pas de sens.

Formule de Bayes

C'est l'une des formules les plus puissantes qui existe. Elle est utile dans énormément de domaines différents.

\bigcirc Proposition

Soit A et B deux événements, de probabilités non nulles (pour les deux). Alors :

$$\mathbb{P}_B(A) = \frac{\mathbb{P}_A(B) \times \mathbb{P}(A)}{\mathbb{P}(B)}$$

Cette formule permet **d'échanger** d'une certaine manière les rôles de A et B, c'est-à-dire qu'elle donne un moyen de calculer $\mathbb{P}_B(A)$ à partir de $\mathbb{P}_A(B)$, et vice versa.

I.3 Formule des probabilités totales

Cette formule forme un combo avec la précédente.

Proposition

Soit A un événement, et B un événement de probabilité non nulle. Alors, si on note \bar{B} l'événement contraire à B on a :

$$\mathbb{P}(A) = \mathbb{P}(B)\mathbb{P}_B(A) + \mathbb{P}(\bar{B})\mathbb{P}_{\bar{B}}(A)$$

Autrement dit, on disseque l'événement A selon B ou selon \bar{B} .

I.4 Exemples pour bien comprendre

La formule de Bayes peut s'appliquer dans de très très nombreux exemples. En voici quelques uns.

I.4.1 Des dés cachottiers

1. Énoncé

Charlie a deux dés de 6 faces avec lui. Mais ses dés sont spéciaux. Voici les faces du premier dé:

$$\{1; 1; 1; 2; 2; 3\}$$

Voici les faces du deuxième dé:

$$\{1; 1; 2; 2; 3; 3\}$$

Charlie prend un dé au hasard. Chaque dé a autant de chances d'être pris. Il lance le dé qu'il a pris, et obtient le nombre 3. Quelle est la probabilité qu'il ait pris le premier dé?

2. Correction

Charlie <u>choi</u>si un dé Il choisi lechesside déuxième dé Il obtien**li 3'article présidés présides désentes dé**deuxième dé

desCachotiers On note:

A = «Charlie a pris le premier dé»

et

B = «Charlie obtient le nombre 3 »

On cherche à calculer le nombre $\mathbb{P}(A)$.

Dans cet exemples, on a cette correspondance:

Symbolisme mathématiques	Traduction française dans cet exemple
$\overline{\mathbb{P}_B(A)}$	La probabilité d'avoir choisi le premier dé sachant que l'on a obtenu 3
$\mathbb{P}_A(B)$	La probabilité d'obtenir 3 sachant que l'on a choisi le premier dé
$\mathbb{P}(B)$	La probabilité d'obtenir 3 quelque soit le dé considéré
$\mathbb{P}(A)$	La probabilité que Charlie ait pris le premier dé
$\mathbb{P}(A \cap B)$	La probabilité que Charlie ait pris le premier dé et d'obtenir 3

On peut calculer facilement le terme $\mathbb{P}_A(B)$. Si on *imagine* qu'il a pris le premier dé, alors il a une seule chance sur six d'obtenir 3. Donc :

$$\mathbb{P}_A(B) = \frac{1}{6}$$

On peut donc utiliser la formule des probabilités totales :

$$\mathbb{P}(A) = \mathbb{P}(B)\mathbb{P}_B(A) + \mathbb{P}(\bar{B})\mathbb{P}_{\bar{B}}(A)$$

Il nous faut donc calculer $\mathbb{P}(B)$, et $\mathbb{P}_B(A)$.

I.4.2 Qui porte des lunettes?

On considère une classe de 17 élèves. On compte parmi eux :

- 8 filles, et 9 garçons
- $--\,$ 12 personnes qui portent des lunettes, dont 5 qui sont des filles.

On a donc le tableau suivant .

	lunettes	pas lunettes	total
garçons	7	2	9
filles	5	3	8
total	12	5	17