

CompoNET: a geometric deep learning approach in Architecture

Alberto Tono, Meher Shashwat Nigam, Cecilia Bolognesi, Amirhossein Ahmadnia

Computational Design Institute, IIIT Hyderabad, Politecnico di Milano,

Alberto.tono@cd.institute, meher.shashwat@students.iiit.ac.in, cecilia.bolognesi@polimi.it, amirhossein.ahmadnia@mail.polimi.it

Agenda

- 1. Use Cases: Picture2BIM
- 2. Approach
- 3. Related Work
- 4. Solution
- 5. Future Research

Scan Building
Expensive Process
Expensive Equipment
Several Man Hours
Level of Detail
Point Clouds

RGBD Pictures
Accessible
R&D required
Granular Level of Detail
High-Resolution Images

Augmented Reality Applications

Scan to BIM

Autonomous Driving: Urban Design

Robotics in the AEC

Assembly

Surveys

Aerospacial, Rover

Authoring 3D Content

Learning to Infer and Execute 3D Shape Programs, Yonglong Tian, Andrew Luo, Xingyuan Sun, Kevin Ellis, William T. Freeman, Joshua B. Tenenbaum, Jiajun Wu

Graphics

Approach

Lucy Reading-Ikkanda/Quanta Magazine

Related Work

- Procedural Approach
- 3D-R2N2
- Pix2Mesh
- Occupancy Network
- N3MR
- NeRF
- Mesh R-CNN
- 3D-Part Assembly

3

DeepFacade: A Deep Learning Approach to Facade Parsing Hantang Liu, Jialiang Zhang, Jianke Zhu, Steven C.H. Hoi, Alibaba-Zhejiang

Procedural Modeling of a Building from a Single Image Gen Nishida, Adrien Bousseau, Daniel G. Aliaga

(a) Images of objects we wish to reconstruct (b) Overview of the network

3D-R2N2: A Unified Approach for Single and Multi-view 3D Object Reconstruction Christopher B. Choy Danfei Xu, JunYoung Gwak, Kevin Chen Silvio Savarese

3

Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images Nanyang Wang, Yinda Zhang, Zhuwen Li, Yanwei Fu, Wei Li, Yu-Gang Jiang

3

Convolution Occupacy Network: Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, Andreas Geiger

Occupancy Networks: Learning 3D Reconstruction in Function Space Lars Mescheder, Michael Oechsle, Michael Niemeyer, Sebastian Nowozin, Andreas Geiger

Figure 1. Pipelines for single-image 3D mesh reconstruction (upper) and 2D-to-3D style transfer (lower).

Figure 7. 2D-to-3D style transfer. The leftmost images represent styles. The style images are *Thomson No. 5 (Yellow Sunset)* (D. Coupland, 2011), *The Tower of Babel* (P. Bruegel the Elder, 1563), *The Scream* (E. Munch, 1910), and *Portrait of Pablo Picasso* (J. Gris, 1912).

Neural 3D Mesh Renderer, Hiroharu Kato, Yoshitaka Ushiku, Tatsuya Harada

2

NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, Ren Ng

Neural Radiance Fields (NeRF) for unconstrained photo collection

Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, Daniel Duckworth

Mesh R-CNN Georgia Gkioxari ,Jitendra Malik, Justin Johnson

3

Learning 3D Part Assembly from a Single Image Yichen Li, Kaichun Mo, Lin Shao, Minhyuk Sung, and Leonidas Guibas

Solution

Mesh R-CNN + 3D Part Assembly

つ

3

4

Input Image

Image Recognition

3D Voxels

3D meshes

Accelerating 3D Deep Learning with PyTorch3D Nikhila Ravi, Jeremy Reizenstein, David Novotny, Taylor Gordon, Wan-Yen Lo, Justin Johnson, Georgia Gkioxari

```
# install dependencies: (use cu101 because colab has CUDA 10.1)
               !pip install -U torch==1.5 torchvision==0.6 -f https://download.pytorch.org/whl/cu101/torch_stable.html
               !pip install pyyaml==5.1 pycocotools>=2.0.1
               !pip install -U fvcore
               !pip install detectron2==0.1.3 -f https://dl.fbaipublicfiles.com/detectron2/wheels/cu101/torch1.5/index.html
               !pip install 'git+https://github.com/facebookresearch/pytorch3d.git
               print(torch.__version__, torch.cuda.is_available(),torch.cuda.device_count())
               !gcc --version
               !python --version
               Invcc --version
               !nvidia-smi
               !python -m detectron2.utils.collect_env
               !git clone https://github.com/facebookresearch/meshrcnn.git
               !cd meshrcnn && pip install -e .
https://cdinstitute.github.io/CompoN
               !./meshrcnn/datasets/pix3d/download_pix3d.sh
               from google.colab import files
               uploaded = files.upload()
               !python ./meshrcnn/demo/demo.py --config-file ./meshrcnn/configs/pix3d/meshrcnn_R50_FPN.yaml \
               --input /content/test.jpg --output output_demo --onlyhighest MODEL.WEIGHTS meshrcnn://meshrcnn_R50.pth
               filename = 'test.jpg' Wcheck the name is the same as the file you uploaded
               maskposition = '0_mask_sofa_1.000.png' # Make sure to change the file name with the appropriate mask change 'test/0_mask_sofa_1.000.png'
               %matplotlib inline
               import matplotlib.pyplot as plt
               plt.figure(figsize=(10,10))
               img = plt.imread("/content/" + filename)
               plt.imshow(img)
               plt.axis('off')
               plt.show()
               plt.figure(figsize=(10,10))
               img = plt.imread("/content/output_demo/test/" + maskposition)
               plt.imshow(img)
               plt.axis('off')
               plt.show()
              name = 'sofa' # change file name accordingly
               from google.colab import files
               files.download('/content/output_demo/test/0_mesh_'+ name + '_1.000.obj')
```


CompoNET: Geometric Deep Learning for Architecture

Authors

Alberto Tono, Cecilia Bolognesi, Amirhossein Ahmadnia, Meher Shashwat Nigam (2020) alberto.tono@cd.institute cecilia.bolognesi@polimi.it amirhossein.ahmadnia@mail.polimi.it meher.shashwat@students.iiit.ac.in

Examples

Torri Turati Muzio

3

Mattioni

Torre Breda

Results

2

3

4

5

- Limitations
 - Current segmentation not optimize for buildings
 - Lack of an heterogenous dataset
 - Poor evaluation metrics
 - Lack of good generalization
 - Lack of main topological properties

 Optimize Loss Function, Evaluation Metrics and Mesh Refinement Branch

- Creation of a comprehensive and heterogeneous Dataset
- Introducing BIM
- Establishment of an Open Collaboration Framework

Thanks

urati Muzio

Breda Mattioni

Magistretti

Pirellone

Montecatini Ponti

