ELŐSZÓ

"Semmiből egy új, más világot teremtettem." Bolyai János

Marosvásárhely, az egykori Székelyföld fővárosa, a két Bolyai által vált a matematika fővárosává is. Az általuk elindított folyamatot a Ferenc József és a Bolyai Tudományegyetemek teljesítették ki.

A semmiből egy új világot teremtve, az erdélyi matematika tanárok és diákok serege, 1990-ben többfordulós versenyként elindította Brassóból az Erdélyi Magyar Matematikaversenyt.

Az EMMV immár három éve kétfordulós versennyé strukturálódott, egyik iránya a romániai matematika verseny megyei és országos szakaszához csatlakozik. Így a Tanügy-Minisztérium elismert versenyeként, a hivatalos oklevelek mellett anyagi támogatásban is részesül az idén. A másik iránya a Kárpát-medencét átfogó Nemzetközi Magyar Matematikaverseny erdélyi válogató szakasza.

Az EMMV vonulatát a hozzáépült Wildt József, Radó Ferenc, Neumann János és Benkő József versenyek gazdagítják.

Olyan fehér és árva a sík, fölötte álom-éneket dúdolnak a hideg axiómák. Az Univerzum vajon mit álmodik? Ezt az álmot fejtegetik évezredek óta a matematikusok. Titkaikat megosztják versenyeinken is, ami a tanároknak így a vándorgyűlés szerepét is betölti.

Köszönet a Romániai Tanügy-Minisztériumnak, a Bolyai Farkas Elméleti Líceum tanári karának, a Sapientia-EMTE marosvásárhelyi karának, Marosvásárhelynek, a támogatóknak, a szülőknek, hogy az idén is egy rangos versenyen vehettünk részt.

Bencze Mihály

FELADATOK

I. FORDULÓ

IX. OSZTÁLY

1. Oldd meg a természetes számok halmazán az $x + y + \frac{x}{y} = 19$ egyenletet! *Kovács Béla, Szatmárnémeti*

2. Adott az $A=\{1,2,3,4,...,121\}$ halmaz. Határozd meg azoknak az $(a_i)_{i=\overline{1,k}}$, $3\leq k$, véges számtani haladványoknak a számát, amelyek állandó különbsége legalább 1 és legfeljebb 6 valamint minden tagja az A halmazban van.

Csapó Hajnalka, Csíkszereda

3. Egy konvex hatszög alakú földterületet az átlók mentén parcelláznak fel, majd teleszórják búzamaggal. Összesen 1000001 búzamagot vetnek el. Igazold, hogy van olyan parcella, amelyre legalább 40001 búzamagot szórnak!

Csapó Hajnalka, Csíkszereda

4. Az ABC háromszög [AB] oldalának hossza prímszám. BM az \widehat{ABC} szögfelezője ($M \in (AC)$). $N \in (BC)$ és $T \in (BM)$ úgy, hogy $MN \parallel AB$ és $NT \parallel AC$. Ha $T_{BAT} = \frac{9}{25} T_{ABC}$, igazold, hogy a [BC] oldal hossza is prímszám!

Szilágyi Jutka, Kolozsvár

5. Az ABC háromszögben AB < BC. Legyen AD és CE a háromszög két magassága $(D \in (BC), E \in (AB))$ és M az (AC) oldal felezőpontja. Az \widehat{EMD} szögfelezője az (AB) oldalt F-ben metszi. Az AB egyenesen felvesszük a K pontot úgy, hogy (CA a \widehat{BCK} szögfelezője legyen. Bizonyítsd be, hogy a BFD és BCK háromszögek hasonlók!

Olosz Ferenc, Szatmárnémeti

6. Egy bolha ugrál egy kör kerületén az óramutatók járásának irányába. Első ugrásának egy 1°-os középponti szög felel meg, második ugrásának 2°-os középponti szög felel meg és általában a k-adik ugrásának k°-os szög felel meg. Hányadik ugrásával kerül először olyan pontra, ahol már járt?

Demeter Albert, Kolozsvár

X. OSZTÁLY

1. Határozd meg a p,q prímszámokat, ha $16^p = 2765 + q^3$.

Szilágyi Jutka, Kolozsvár

2. Egy $3n \times 3n$ táblát n^2 darab 3×3 -as táblára bontunk és mindenik 3×3 -as középső mezejét kivesszük a táblából (lásd a mellékelt ábrát). A megmaradt rész bal alsó sarkából egy huszárral indulunk (ló lépésben lépünk) és a jobb felső sarokba kell jutnunk. Legalább hány lépés szükséges ehhez?

András Szilárd, Nagy Örs, Kolozsvár

3. Egy konvex hétszög alakú földterületet az átlók mentén parcelláznak fel, majd teleszórják búzamaggal. Összesen 2000001 búzamagot vetnek el. Igazold, hogy van olyan parcella, amelyre legalább 40001 búzamagot szórnak.

Csapó Hajnalka, Csíkszereda

4. Az $A_1A_2A_3A_4A_5A_6$ konvex hatszög oldalaira kifele megszerkesztjük az $A_iM_iA_{i+1}$, $i\in\{1,2,3,4,5,6\}$ háromszögeket ($A_7=A_1$), amelyekben $m\left(\widehat{A_iM_iA_{i+1}}\right)=120^\circ$. Igaz-e, hogy a szerkesztett háromszögek köré írt körök által meghatározott körlapok lefedik a hatszöget?

Szász Róbert, Marosvásárhely

5. Az ABC háromszögben AB=5, BC=6 és AC=7. Legyen $D\in(BC)$ és $E\in(AC)$ úgy, hogy AD=AB és $17\cdot AE=10\cdot AC$. Bizonyítsd be, hogy az ABD

háromszögbe írt kör középpontja, az $ADC\,$ háromszög súlypontja és az $E\,$ pont egy egyenesen helyezkednek el!

Olosz Ferenc, Szatmárnémeti

6. Igazold, hogy ha
$$2-\frac{1}{n} < x < 2+\frac{1}{n}$$
, ahol $n \in \mathbb{N}$, $n \geq 1$, akkor
$$2-\frac{1}{n+k} < \sqrt{2+\sqrt{2+\dots+\sqrt{2+x}}} < 2+\frac{1}{n+k}$$
,

ahol $k \in \mathbb{N}^*$ a négyzetgyökök száma.

Bencze Mihály, Brassó

XI-XII. OSZTÁLY

1. Egy bolha ugrál egy kör kerületén az óramutatók járásának irányába. Első ugrásának egy 1° -os középponti szög felel meg, második ugrásának 2° -os középponti szög felel meg, és általában a k-adik ugrásnak 2^{k-1} fokos szög felel meg. Hányadik ugrásával kerül először olyan pontra, ahol már járt?

Demeter Albert, Kolozsvár

2. a) Adott
$$n\in\mathbb{N}$$
 szám esetén határozd meg az
$$\begin{cases} x+y\geq n+1\\ x\leq n\\ y\leq n \end{cases},$$

 $(x,y) \in \mathbb{N}^2$ rendszer megoldásainak számát!

b) Egy szavazáson három pártra lehetett szavazni, összesen 2009-en szavaztak és minden szavazat érvényes (minden szavazó pontosan egy pártra szavazott). Hányféleképpen lehetséges ez, ha tudjuk, hogy egyik bármelyik két pártnak több szavazata van, mint a harmadiknak!

Szász Róbert, Marosvásárhely

3. Egy táblára felírtuk az $1,2,3,\ldots,2009$ számokat. Egy lépésben a táblán levő számok közül letörlünk hármat. Ha a letörölt számok $a \le b \le c$, akkor helyettük visszaírjuk a $b^{2009} - a^{2009}$ és a $c^{2009} - a^{2009}$ számokat. Lehetséges-e, hogy a végén $2009^{2009} - 2008^{2009}$ és $1001^{2009} - 1000^{2009}$ maradjon a táblán?

Csapó Hajnalka, Csíkszereda

- **4. a)** Az ABC háromszögben $M \in [BC]$, $N \in [CA]$ és $P \in [AB]$ úgy, hogy az MN és MP az \widehat{AMC} illetve \widehat{AMB} szögfelezője. Igazold, hogy $AM \cap BN \cap CP \neq \varnothing$.
- **b)** Bizonyítsd be, hogy ha az ABC háromszögben $M \in [BC]$, $N \in [CA]$ és $P \in [AB]$ úgy, hogy $AM \cap BN \cap CP \neq \varnothing$ valamint $m(\widehat{PMN}) = 90^\circ$, akkor MN és MP az \widehat{AMC} illetve \widehat{AMB} szögfelezője.

András Szilárd, Kolozsvár

5. Legyen O és H az ABC háromszög köré írt körének középpontja illetve magasságpontja, valamint G_1 , G_2 és G_3 a HBC, HAC, illetve HAB háromszög súlypontja. Igazold, hogy az AG_1 , BG_2 és CG_3 egyenesek összefutók és a $G_1G_2G_3$ háromszög súlypontja az OM egyenesen van!

Bencze Mihály, Brassó

6. Adott az $a \in \mathbb{R}$ szám. Az $f : \mathbb{R} \to \mathbb{R}$ függvény esetén

$$\left[f^{3}\left(x+y\right)\right]=\left[f^{3}\left(x+a\right)\right]+\left[f^{3}\left(y-a\right)\right],\;\forall x,y\in\mathbb{R}\;,$$

ahol [x] az x valós szám egészrészét jelöli.

a) Igazold, hogy
$$\left[f^{3}\left(x+y\right)\right]=\left[f^{3}\left(x\right)\right]+\left[f^{3}\left(y\right)\right],\ \forall x,y\in\mathbb{R}$$
,

b) Igazold, hogy $f^2(x) \le f(x) + 1$ minden x valós szám esetén!

Demeter Albert, Kolozsvár

II. FORDULÓ

IX. OSZTÁLY

1. Határozd meg az $x_1, x_2, \ldots, x_n \in \mathbb{N}^*$ számokat, $n \in \mathbb{N}^*$ ha tudjuk, hogy

$$x_1 + \ldots + x_n = 4n - 4$$
 és $\frac{1}{x_1} + \ldots + \frac{1}{x_n} = 1$.

Farkas Csaba, Kolozsvár

2. Számítsd ki a
$$\sum_{k=1}^n \sqrt{1+rac{1}{k^2}+rac{1}{\left(k+1
ight)^2}}$$
 összeget az $n\in\mathbb{N}^*$

függvényeként!

Bencze Mihály, Brassó

- **3.** Adott az $a_1, a_2, ..., a_n > 0$, $n \ge 3$ számtani haladvány.
 - **a)** Igazold, hogy $a_1 a_6 + a_3 a_4 \le 2a_2 a_5$.
 - **b)** Határozd meg azon $k \in \{1,2,...,n\}$ számokat, amelyekre $a_1a_n + a_2a_{n-1} + ... + a_{n-1}a_2 + a_na_1 \le na_ka_{n-k+1}$.

Bencze Mihály, Brassó

4. A mellékelt ábrán az M és N pontszerű testeket egy rögzített hosszúságú madzag köti össze. Kezdeti állapotban az M test a B pontban és az N az A pontban van, majd addig mozog amíg az M test az A pontba kerül (AB < AC). Mi a mértani helye a két testet összekötő szakasz felezőpontjának?

Csapó Hajnalka, Csíkszereda

X. OSZTÁLY

1. Határozd meg azokat az $x_1, x_2, ..., x_n \in (1, \infty)$ számokat, amelyekre

$$\begin{cases} x_1 \cdot x_2 \cdot \dots \cdot x_n = 8 \\ \log_{x_1} 2 + \log_{x_2} 2 + \dots + \log_{x_n} 2 = 3 \end{cases}$$

Longáver Lajos, Nagybánya

2. Határozd meg az $f: \mathbb{Z} \to \mathbb{Z}$ függvényeket, amelyekre

$$2009f(x) - 2007f(f(x)) = 2x, \ \forall x \in \mathbb{Z}$$

Farkas Csaba, Kolozsvár

- **3.** Határozd meg a $2^{\frac{x^2+1}{4x}}=\cos\frac{\pi x}{4}+\sin\frac{\pi x}{4}$ egyenlet pozitív megoldásait! Van-e negatív megoldása ennek az egyenletnek? Szilágyi Jutka, Kolozsvár
- **4.** Az ABC_{\triangle} oldalaira kifele megszerkesztjük az ABD és CAE egyenlőszárú, derékszögű háromszögeket úgy, hogy $m(\widehat{ABD}) = m(\widehat{CAE}) = 90^{\circ}$. Számítsd ki az \widehat{MNP} mértékét, ahol M,N és P rendre az AC,AB illetve a DE felezőpontja!

András Szilárd, Kolozsvár

XI. OSZTÁLY

1. Az $A\in M_3\left(\mathbb{Z}\right)$ mátrix esetén $A^3=2I_3$. Bizonyítsd be, hogy $\det\left(A^2-I_3\right)=3$.

Kacsó Ferenc, Marosvásárhely

- **2.** A $P \in \mathbb{Z}[X]$ harmadfokú polinomra P(1) = 2009, P(2009) = 1 és a P polinom egyik gyöke egész szám.
- **a)** Határozd meg a P polinomnak az $X^2 2010X + 2009$ -cel való osztási maradékát!

b) Határozd meg a P polinomot!

Kacsó Ferenc, Marosvásárhely

- **3. a)** Határozd meg az $x_{n+2}=6x_{n+1}-4x_n$, $x_0=2$, $x_1=6$ sorozat általános tagjának képletét!
- **b)** Igazold, hogy $\left[\left(3+\sqrt{5}\right)^n\right]+1$ osztható 2^n -nel minden $n\in\mathbb{N}$ esetén, ahol [x] az x valós szám egészrészét jelöli.

Szász Róbert, Marosvásárhely

- **4.** Az $(x_n)_{n\geq 0}$ valós számsorozat esetén $\,x_n\, ig(x_{n+1}-1ig)=1$, $\, \forall n\in \mathbb{N}$.
- **a)** Határozd meg a sorozat általános tagját és $x_0 \in \mathbb{R}$ azon értékeit, amelyekre a sorozat jól értelmezett!
 - b) Számítsd ki a sorozat határértékét!

Bencze Mihály, Brassó

XII. OSZTÁLY

- **1.** A (G,\cdot) csoportban érvényes a következő implikáció: Ha $xy^{2009}=z^{2009}x$, akkor y=z.
 - a) Igazold, hogy (G,\cdot) kommutatív csoport!
- **b)** Adj példát legalább 2009 elemű véges csoportra, amelyben teljesül az implikáció.

2. Lehet-e az $e^x=a_nx^n+a_{n-1}x^{n-1}+\ldots+a_1x+a_0$ egyenletnek (n+2) páronként különböző valós megoldása, ha $a_0,a_1,a_2,\ldots,a_n\in\mathbb{R}$?

3. Bizonyítsd be, hogy ha az $\left(a_n\right)_{n\geq 1}$ sorozat tagjai nullától különböző természetes számok, a sorozat szigorúan növekvő és az $f:\mathbb{N}^* \to \mathbb{N}^*$ függvény injektív, akkor az

$$x_{\scriptscriptstyle n} = \frac{1}{f(a_{\scriptscriptstyle 1})} + \frac{1}{f(a_{\scriptscriptstyle 1}) + f(a_{\scriptscriptstyle 2})} + \ldots + \frac{1}{f(a_{\scriptscriptstyle 1}) + f(a_{\scriptscriptstyle 2}) + \ldots + f(a_{\scriptscriptstyle n})}$$

sorozat konvergens.

Kacsó Ferenc, Marosvásárhely

4. Adott az $y=\frac{1}{4}x^2$ egyenletű parabola. A F(0,1) pontból húzott Oy-nal nem párhuzamos egyenesnek a parabolával való egyik metszéspontját jelöljük M-mel. Az M pontban a parabolához húzott érintő az Oy tengelyt N-ben metszi. Határozd meg az F pont MN-re vonatkozó szimmetrikusának mértani helyét!

András Szilárd, Kolozsvár

MEGOLDÁSOK

I. FORDULÓ

IX. OSZTÁLY

1.
$$x = \frac{y(19-y)}{y+1} \in \mathbb{N}$$
 és $(y,y+1) = 1 \Rightarrow (y+1)|(19-y) \Rightarrow$

$$(y+1)|20 \text{ és } y \neq 0 \Rightarrow y \in \{1,3,4,9,19\}$$

A megfelelő x értékek: 9,2,12,9,0. Tehát a megoldáshalmaz:

$$\{(9,1),(12,3),(12,4),(9,9),(0,19)\}$$

- **2.** Számoljuk össze az $r \in \{1, 2, ..., 6\}$ állandó különbségű számtani sorozatokat!
- 3 tagú sorozatok:

$$(1,1+r,1+2r)$$
, $(2,2+r,2+2r)$, ..., $(121-2r,121-r,121)$

4 tagú sorozatok:

$$(1,1+r,1+2r,1+3r)$$
, $(2,2+r,2+2r,2+3r)$, ..., $(121-3r,121-2r,121-r,121)$

m tagú sorozatok:

$$(1,1+r,...,1+(m-1)r), (2,2+r,...,2+(m-1)r), ...,$$

 $(121-(m-1)r,121-(m-2)r,...,121)$

...

 $\frac{120}{r}$ tagú sorozat:

$$(1, r+1,...,121)$$
, (mert $120 : r$, $\forall r \in \{1, 2,...6\}$)

Tehát az r állandó különbségű sorozatok száma:

$$(121 - 2r) + (121 - 3r) + \dots + \left(121 - \left(\frac{120}{r} - 1\right)r\right) + 1 = \frac{(120 - r)(122 - 2r)}{2r}$$

Tehát az összes keresett sorozat száma:

$$\begin{aligned} &\frac{119 \cdot 120}{2} + \frac{118 \cdot 118}{4} + \frac{117 \cdot 116}{6} + \frac{116 \cdot 114}{8} + \frac{115 \cdot 112}{10} + \\ &+ \frac{114 \cdot 110}{12} = 16869 \,. \end{aligned}$$

3. A legtöbb parcella abban az esetben keletkezik, ha minden átlót behúzunk és nincs három összefutó átló.

Egy konvex ötszög átlói, ha hármanként nem futnak össze, akkor 11 részre osztják az ötszöget

Konvex ötszögből konvex hatszöget kapunk, ha valamely oldalhoz (nevezzük *a*-nak) illesztünk egy háromszöget úgy, hogy az így kapott hatszög konvex legyen. Ezzel egy új parcellát kapunk. Így az új átlók nélkül 12 parcella van. Három új átlónk lesz, amelyekből kettőt az új csúcsból a két második "szomszédhoz" húzzuk, így további 2-2 átlót, illetve az eredeti ötszög *a* oldalát metszi, ezzel mindkét átló 4-gyel növeli a parcellák számát. Az ötödik csúccsal összekötve az új csúcsot, az metszi

az *a* oldalt és további 3 átlót (az ötödik csúcsból induló két átló kivételével az ötszög minden átlóját metszi). Ezzel 5-tel növeli a parcellák számát. Tehát összesen 25 parcellára osztják az átlók a hatszög alakú termőföldet.

Ha minden parcellára legfeljebb 40000 magot szórnának, akkor legfeljebb 1000000 mag kerülne a termőföldre. Tehát van legalább egy parcella, amelyre legalább 40001 magot szórtak.

4.

 $\begin{array}{llll} \textbf{5.} & \text{Az} & ADC & \text{\'es} & AEC & \text{der\'eksz\"og\'u} \\ \text{h\'aromsz\"ogekben} & \text{az} & \text{\'atfog\'ora} & \text{h\'uzott} \\ \text{oldalfelez\"okre\'irhatjuk:} \\ \end{array}$

$$DM = EM = \frac{AC}{2}$$
.

Az MDE egyenlő szárú háromszögben MF szögfelező és oldalfelező merőleges is (szimmetria tengely). Ha az ABC háromszög szögeinek mértékét A, B, C-vel jelöljük, akkor az MCD és MAE egyenlő szárú háromszögekben a $m\left(\widehat{CDM}\right)=C$,

$$\begin{split} m\left(\widehat{AEM}\right) &= A \text{ \'es \'igy} \\ m\left(\widehat{AME}\right) &= 180^{\circ} - 2A \,, \ m\left(\widehat{CMD}\right) = 180^{\circ} - 2C \,, \text{ ahonnan k\"ovetkezik} \\ m\left(\widehat{DMF}\right) &= m\left(\widehat{EMF}\right) = 90^{\circ} - B \,, \qquad m\left(\widehat{EDM}\right) = m\left(\widehat{DEM}\right) = B \,, \\ m\left(\widehat{EDF}\right) &= m\left(\widehat{DEF}\right) = C \,, \quad m\left(\widehat{DFM}\right) = m\left(\widehat{EFM}\right) = 90^{\circ} - C \quad \text{\'es} \\ m\left(\widehat{BFD}\right) &= 2C \,. \end{split}$$

$$\begin{array}{l} \text{Mivel } m\left(\widehat{DBF}\right) = m\left(\widehat{KBC}\right) = B \text{ \'es } m\left(\widehat{BFD}\right) = m\left(\widehat{BCK}\right) = 2C \text{ ,} \\ \text{ez\'ert } BFD_{\Delta} \sim BCK_{\Delta} \,. \end{array}$$

- **5.** A háromszög köré írt kör középpontját origónak tekintjük. Így h=a+b+c (minden pont affixumát a megfelelő kisbetűvel jelöljük), $g_1=\frac{a+2b+2c}{3}, \quad g_2=\frac{2a+b+2c}{3}$ és $g_3=\frac{2a+2b+c}{3}$. Így $\frac{1}{4}\big(3g_1+a\big)=\frac{1}{4}\big(3g_2+b\big)=\frac{1}{4}\big(3g_3+c\big)=\frac{a+b+c}{6},$ tehát az $\frac{a+b+c}{6}$ affixumú pont rajta van az AG_1 , BG_2 és CG_3 egyeneseken.
- **b)** A $G_1G_2G_3$ háromszög súlypontjának affixuma $g=\frac{5(a+b+c)}{9}$, tehát $G\in OH$.
- **6.** A k-adik ugrás után a bolha helyzetét jellemző középponti szög mértéke $1+2+3+\ldots+k=\frac{k\,(k+1)}{2}$. Így a k-adik és m-edik lépés után pontosan akkor kerül ugyanabba a pontba a bolha (m>k), ha $\frac{m\,(m+1)}{2}-\frac{k\,(k+1)}{2}=360v$, ahol $v\in\mathbb{N}^*$. Ez ekvivalens az $(m-k)\,(m+k+1)=720v\,(=2^4\cdot 5\cdot 3^2\cdot v)$ egyenlettel. Mivel az m-k és m+k+1 paritása nem azonos, az előbbi egyenlőség csak akkor teljesülhet, ha (m-k):16 vagy (m+k+1):16. Mivel m>k és a legkisebb megoldást keressük, az $\begin{cases} m-k=16\\ m+k+1=45 \end{cases}$ és

 $\begin{cases} m-k=15\\ m+k+1=48 \end{cases}$ rendszereket érdemes megvizsgálni. Az első esetben

m=30 és k=14, míg a második esetben m=31 és k=16. Látható tehát, hogy m=30 a kisebb megoldás, tehát a bolha $30\,$ ugrás után kerül először olyan pontba, amit már korábban is érintett.

X. OSZTÁLY

1. Ha p=3, akkor $q^3=16^3-2765=1331$, ahonnan q=11, tehát p=3, q=11 megoldás.

Ha
$$p>3$$
, akkor $p=3k+1$ vagy $p=3k+2$, így $16^p=8^p\cdot 2^p=2^{3p}\cdot 2^p=2^{3p}\cdot 2^{3k+1}=2\cdot (7+1)^p(7+1)^k=2\cdot (7l+1)(7l+1)=2\cdot (7l+1)=7l+2$ vagy $16^p=2^{3p}\cdot 2^{3k+2}=4\cdot (7+1)^p\cdot (7+1)^k=4\cdot (7l+1)=7l+4$. Tehát, ha $p>3$, akkor $16^p\equiv 2(\bmod 7)$ vagy $16^p=4(\bmod 7)$. Másrészt $2765=395\cdot 7$, így $2765\equiv 0\, (\bmod 7)$ és mivel q -nak 7 -tel való osztási maradékai $1,2,3,4,5,6$ lehetnek, a $q^3\equiv 1(\bmod 7)$ vagy $q^3\equiv 6\, (\bmod 7)$, így $2765+q^3\equiv 1(\bmod 7)$ vagy

Tehát a jobb és a bal oldalnak héttel való osztási maradékai nem egyenlők, így ha p>3 az egyenletnek nincs megoldása.

 $2765 + q^3 \equiv 6 \pmod{7}$.

2. A tábla bal alsó sarkából indulva írjuk minden szabad mezőbe azt a lépésszámot, amelyben a huszár leggyorsabban eljuthat oda (lásd az alábbi ábrákat). A táblát kitöltve észrevehető, hogy a főátló mentén a $4,2,4,4,6,6,8,8,10,10,\ldots$ számok jelennek meg. Belátható, hogy a jobb felső sarokban, azaz a (3n,3n) mezőben a 2n szám szerepel minden $n \geq 2$ esetén, hiszen bármely 1 < i < n esetén (3i,3i) mezőből a (3i+3,3i+3) mezőbe 2 lépésben juthatunk el: $(3i,3i) \rightarrow (3i+2,3i+1) \rightarrow (3i+3,3i+3)$. Tehát n=1 esetén legkevesebb 4, míg $n \geq 2$ esetén legkevesebb 2n lépés szükséges a jobb felső sarokba való eljutáshoz.

				1 1	•					
						1				
	3		3					Ī		
3		3		3						
2		2	3		3				_	_
3	2	3	2	3		3				
	1		3	2	3					
3		1	2			3				
0	3		3	2	3					

7	6	7	6	7	6	7	6	7	8	7	8
6		6	5		5	6		6	7		7
5	6	5	6	5	6	5	6	7	6	7	8
4	5	4	5	4	5	6	5	6	7	6	7
5		5	4		4	5		5	6		6
4	3	4	3	4	5	4	5	6	5	6	7
3	4	3	4	3	4	5	4	5	6	5	6
2		2	3		3	4		4	5		7
3	2	3	2	3	4	3	4	5	6	5	6
4	1	4	3	2	3	4	5	4	5	6	7
3		1	2		4	3		5	6		6
0	3	4	3	2	3	4	5	4	5	6	7

3. Először igazoljuk, hogy egy konvex hatszög átlói legfeljebb 25 részre osztják a hatszöget. A parcellák száma abban az esetben a legnagyobb, ha nincs három összefutó átló

Egy konvex ötszög átlói, ha hármanként nem futnak össze, akkor 11 részre osztják az ötszöget

Konvex ötszögből konvex hatszöget kapunk, ha valamely oldalhoz (nevezzük *a*-nak) illesztünk háromszöget úgy, hogy az kapott hatszög konvex legven. Ezzel egy új parcellát kapunk. Így az új átlók nélkül 12 parcella van. Három új átlónk lesz, amelyekből kettőt az csúcsból a két új második "szomszédhoz" húzzuk, így további 2-2 átlót, illetve az eredeti ötszög a oldalát metszi, ezzel mindkét átló 4gyel növeli a parcellák számát. Az ötödik csúccsal összekötve az úi csúcsot, az metszi az a oldalt és további 3 átlót (az ötödik csúcsból induló két átló kivételével az ötszög minden átlóját metszi). Ezzel 5-tel

növeli a parcellák számát. Tehát összesen 25 részre osztják az átlók a hatszöget.

Konvex hatszögből konvex hétszöget kapunk, ha valamely oldalhoz (nevezzük *b*-nek) illesztünk egy háromszöget úgy, hogy az így kapott hétszög konvex legyen. Ezzel egy új parcellát

kapunk. Így az új átlók nélkül 26 parcella van. Négy új átlónk lesz, amelyekből kettőt az új csúcsból a két második "szomszédhoz" húzzuk, így további 3-3 átlót, illetve az eredeti hatszög *b* oldalát metszi, ezzel mindkét átló 5-tel növeli a parcellák számát. A másik két csúccsal összekötve az új csúcsot, azok metszik a *b* oldalt és további 5 átlót. Ezzel mindkét átló 7-tel növeli a parcellák számát.

Tehát összesen 25 parcellára osztják az átlók a hétszög alakú termőföldet

Ha minden parcellára legfeljebb 40000 magot szórnának, akkor legfeljebb 2000000 mag kerülne a termőföldre. Tehát van legalább egy parcella, amelyre legalább 40001 magot szórtak.

4. Tekintsünk az $A_1A_2A_3A_4A_5A_6$ hatszög belsejében egy M pontot, és kössük össze a hatszög csúcsival. Az M pont körül keletkező szögek között biztos lesz 60° -osnál nagyobb mértékű, legyen ez például $\widehat{A_2MA_3}$ (lásd a mellékelt ábrát). Mivel $m(A_2M_2A_3)=120^\circ$ és $m(\widehat{A_2MA_3})>60^\circ$, ezért az M pont az $A_2M_2A_3$ háromszög köré írt kör belsejében helyezkedik el. Mivel bármelyik M belső pont esetén keletkezik 60° -osnál nagyobb mértékű szög, amely a megfelelő kör belsejében lesz, ezért a körlapok lefedik a hatszöget. Szabályos hatszög esetén a középpont éppen a körök metszéspontja lesz.

Megjegyzés: A feladat általánosítható n -szögekre. Ekkor

$$m(\widehat{A_iM_iA_{i+1}}) = \frac{(n-2)\cdot 180^\circ}{n} \text{ , és az } A_iM_iA_{i+1} \text{ háromszögek köré írt körök lefedik az } n \text{ -szöget.}$$

5. Először kiszámoljuk, hogy BD=2 és DC=4 (a Heron-képlettel kiszámoljuk az ABC háromszög területét $(6\sqrt{6})$, majd az A-ból húzott magasságot $(h=2\sqrt{6})$ és a Pitagorász tételével $BD=2\sqrt{AB^2-h^2}=2$; vagy dolgozhatunk a Stewart-tétellel)

Felírjuk az ABD háromszögbe írt kör I középpontjának helyzetvektorát: $\overrightarrow{AI} = \frac{5 \cdot \overrightarrow{AB} + 5 \cdot \overrightarrow{AD}}{2 + 5 + 5}$ és tudjuk, hogy D a (BC)

szakaszt $\frac{1}{2}$ arányban osztja: $\overrightarrow{AD} = \frac{2 \cdot \overrightarrow{AB} + \overrightarrow{AC}}{3}$, tehát $\overrightarrow{AI} = \frac{25 \cdot \overrightarrow{AB} + 5 \cdot \overrightarrow{AC}}{36}$.

Felírjuk az \overrightarrow{ADC} háromszög G súlypontjának a helyzetvektorát: $\overrightarrow{AG} = \frac{\overrightarrow{AC} + \overrightarrow{AD}}{3}$, behelyettesítjük a \overrightarrow{AD} vektort és kapjuk: $\overrightarrow{AG} = \frac{2 \cdot \overrightarrow{AB} + 4 \cdot \overrightarrow{AC}}{9}$. Tudjuk, hogy $\overrightarrow{AE} = \frac{10}{17} \cdot \overrightarrow{AC}$.

Ezek alapján:

$$\overrightarrow{IG} = \overrightarrow{AG} - \overrightarrow{AI} = \frac{-17 \cdot \overrightarrow{AB} + 11 \cdot \overrightarrow{AC}}{36}$$
 és
$$\overrightarrow{GE} = \overrightarrow{AE} - \overrightarrow{AG} = \frac{-34 \cdot \overrightarrow{AB} + 22 \cdot \overrightarrow{AC}}{9 \cdot 17},$$

ahonnan $\overrightarrow{IG} = \frac{17}{8} \cdot \overrightarrow{GE}$, tehát *I, G, E* egy egyenesen elhelyezkedő pontok.

6. k -szerinti indukciót alkalmazunk. Mivel

$$\sqrt{x+2} < \sqrt{2+\frac{1}{n}+2} = \sqrt{4+\frac{1}{n}} < 2+\frac{1}{n+1} \text{ \'es}$$

$$\sqrt{2+x} > \sqrt{4-\frac{1}{n}} > 2-\frac{1}{n+1} \text{ ez\'ert}$$

$$2-\frac{1}{n+1} < \sqrt{2+x} < 2+\frac{1}{n+1} \text{, teh\'at } k=1\text{-re igaz.}$$

Feltételezzük, hogy igaz k-ig, azaz

$$2 - \frac{1}{n+k} < \underbrace{\sqrt{2 + \sqrt{2 + \ldots + \sqrt{2 + x}}}}_{k-szor} < 2 + \frac{1}{n+k}.$$

1. FORDULÓ MEGOLDÁSOK XIX. ERDÉLYI MAGYAR MATEMATIKAVERSENY

Bizonyítjuk
$$(k+1)$$
-re. Legyen $t=\sqrt{2+\sqrt{2+\ldots+\sqrt{2+x}}}$, ekkor
$$2-\frac{1}{n+k} < t < 2+\frac{1}{n+k}$$
. Alkalmazva az első esetet
$$2-\frac{1}{n+k+1} < \sqrt{2+t} < 2+\frac{1}{n+k+1}$$
, azaz
$$2-\frac{1}{n+k+1} < \sqrt{2+\sqrt{2+\ldots+\sqrt{2+x}}} < 2+\frac{1}{n+k+1}$$
. Ezzel

állításunkat igazoltuk.

XI. ÉS XII. OSZTÁLY

1. A k-adik ugrás után a bolha helyzetét jellemző középponti szög mértéke $1+2+2^2+\ldots+2^{k-1}=2^k-1$. Így a k-adik és m-edik lépés után pontosan akkor kerül ugyanabba a pontba a bolha (m>k), ha $(2^m-1)-(2^k-1)=360v$, ahol $v\in\mathbb{N}^*$.

Tehát $2^k \left(2^{m-k}-1\right)=2^3\cdot 5\cdot 3^2\cdot v$. Így k=3 és m-k legkiseb értéke az a p szám, amelyre az előbbi egyenlőség csak akkor teljesülhet, ha (m-k):16 vagy (2^p-1) :45.

 $(2^p-1) \vdots 9 \Leftrightarrow p \vdots 6$ és $(2^p-1) \vdots 5 \Leftrightarrow p \vdots 4$. Tehát a legkisebb p érték 12 . Így k=3 és m=15 .

- **2. a)** Az adott feltételeket teljesítő (x,y) számpároknak megfelelő M(x,y) pontok rácspontok, a $[0,n] \times [0,n]$ négyzet belsejében vagy az oldalain helyezkednek el az y=n+1-x egyenesen vagy fölötte. Az ilyen rácspontok száma $1+2+3+\ldots+n=\frac{n(n+1)}{2}$ (a négyzet átlójával párhuzamos egyenesek szerint csoportosítva a pontokat).
- **b)** Ha x és y két párt szavazatainak a száma, akkor a harmadik pártnak 2009-x-y szavazata van. Az adott feltétel az x+y>2009-x-y, x+2009-x-y>y és y+2009-x-y>x egyenlőtlenségeket jelenti. Így az $x+y\geq 1005$, $x\leq 1004$ és $y\leq 1004$ egyenlőtlenségekhez jutunk. Az a) alpont alapján $\frac{1004\cdot 1005}{2}=502\cdot 1005$ lehetséges eredmény jöhet létre.
- **3.** Egy természetes számnak és 2009-ik hatványának 3-mal való osztási maradéka ugyanaz. Egy törlés után nem változik a számok összegének 3-mal való osztási

Egy torles utan nem valtozik a szamok osszegenek 3-mal valo osztasi maradéka, ugyanis az új összeg és az előző közötti különbség.

1. FORDULÓ MEGOLDÁSOK XIX. ERDÉLYI MAGYAR MATEMATIKAVERSENY

 $a^{2009}+b^{2009}+c^{2009}-3a^{2009}-a-b-c\,,$ ami osztható 3-mal. Így a számok összegének 3-mal való osztási maradéka nem változik. Az eredetileg táblán levő számok összege $50\cdot 101\,,$ ennek 3-mal való osztási maradéka $1\,.$ A $2009^{2009}-2008^{2009}+1001^{2009}-1000^{2009}$ összeg 3-mal való osztási maradéka $2\,.$ Tehát nem lehetséges, hogy ez a két szám maradjon a táblán.

4. a)

A szögfelező tétele alapján az AMB és AMC háromszögekben, kapjuk : $\frac{AP}{PB} = \frac{AM}{BM}$ és $\frac{CN}{NA} = \frac{CM}{AM}$. Így $\frac{AP}{PB} \cdot \frac{BM}{MC} \cdot \frac{CN}{NA} = \frac{AM}{BM} \cdot \frac{BM}{MC} \cdot \frac{CM}{AM} = 1$, ahonnan Ceva tételének

fordított tétele alapján következik, hogy AM , CP és BM összefutók.

Legyen T és Q az A ponton át a BC egyenessel húzott párhuzamos metszéspontja a PM, illetve MN egyenessel.

Ceva tétele alapján
$$\frac{AP}{PB} \cdot \frac{BM}{MC} \cdot \frac{CN}{NA} = 1$$

$$BPM_{\Delta} \sim APT_{\Delta} \qquad \text{és} \qquad MNC_{\Delta} \sim QNA_{\Delta} \quad \Rightarrow \quad \frac{AP}{PB} = \frac{AT}{BM}$$

$$\frac{CN}{NA} = \frac{CM}{A \, Q} \, .$$

$$\begin{split} &\operatorname{Így} \ \frac{A\,T}{BM} \cdot \frac{BM}{MC} \cdot \frac{CM}{A\,Q} = 1 \ \Rightarrow \ A\,T = A\,Q \ . \ \text{Tehát az} \ MTQ \ \operatorname{derékszögű} \\ &\operatorname{háromszögben} \ MA \ \operatorname{oldalfelező} \ \Rightarrow \ MA = A\,T = A\,Q \ \Rightarrow \ MA\,T_{\Delta} \\ &\operatorname{egyenlőszárú} \ \Rightarrow \ m\left(\widehat{AMT}\right) = m\left(\widehat{T}\right), \ \operatorname{ugyanakkor} \ m\left(\widehat{BMP}\right) = m\left(\widehat{T}\right), \\ &\operatorname{tehát} \ MP \ \operatorname{az} \ \widehat{AMB} \ \operatorname{szögfelezője}. \ \operatorname{Hasonlóan} \ MN \ \operatorname{az} \ \widehat{AMC} \\ &\operatorname{szögfelezője}. \end{split}$$

- $\begin{array}{ll} \textbf{5.} \ \ \text{A háromszög köré írt kör középpontját origónak tekintjük. Így} \\ h=a+b+c \ \ \text{(minden pont affixumát a megfelelő kisbetűvel jelöljük),} \\ g_1=\frac{a+2b+2c}{3}, \quad g_2=\frac{2a+b+2c}{3} \quad \text{ és } \quad g_3=\frac{2a+2b+c}{3} \, . \quad \text{Így} \\ \frac{1}{4}\big(3g_1+a\big)=\frac{1}{4}\big(3g_2+b\big)=\frac{1}{4}\big(3g_3+c\big)=\frac{a+b+c}{6}, \quad \text{ tehát } \quad \text{az} \\ \frac{a+b+c}{6} \quad \text{affixumú pont rajta van az } A\,G_1, \, BG_2 \, \text{ és } CG_3 \, \text{ egyeneseken.} \end{array}$
- **b)** A $G_1G_2G_3$ háromszög súlypontjának affixuma $g=\frac{5(a+b+c)}{9}$, tehát $G\in OH$.
- **6. a)** Ha a feladatbeli egyenlőségben $x \to x a$ és $y \to y + a$ helyettesítéseket végezzük, akkor az $\left[f^3\left(x + y\right)\right] = \left[f^3\left(x\right)\right] + \left[f^3\left(y\right)\right]$, $\forall x,y \in \mathbb{R}$ egyenlőséghez jutunk.
- **b)** A $g: \mathbb{R} \to \mathbb{Z}$, $g(x) = [f^3(x)]$ függvény esetén

1. FORDULÓ MEGOLDÁSOK XIX. ERDÉLYI MAGYAR MATEMATIKAVERSENY

$$\begin{split} g\left(x+y\right) &= g\left(x\right) + g\left(y\right)\,, \quad \forall x,y \in \mathbb{R} \;. \quad \text{Matematikai} \quad \text{indukcióval} \\ \text{igazolható,} \quad \text{hogy} \quad g\left(nx\right) &= ng\left(x\right)\,, \quad \forall x \in \mathbb{R} \quad \Rightarrow \quad g\left(x\right) = ng\left(\frac{x}{n}\right), \\ \forall x \in \mathbb{R} \;, \quad \text{tehát} \quad n \left| g\left(x\right)\,, \quad \forall x \in \mathbb{R} \quad \Rightarrow \quad g\left(x\right) = 0\,, \quad \forall x \in \mathbb{R} \;. \quad \text{Így} \\ \left[f^{3}\left(x\right)\right] &= 0\,, \quad \forall x \in \mathbb{R} \quad \Rightarrow \quad f^{3}\left(x\right) \in \left[0,1\right), \quad \forall x \in \mathbb{R} \quad \Rightarrow \quad f\left(x\right) \in \left[0,1\right), \\ \forall x \in \mathbb{R} \; \Rightarrow \; f^{2}\left(x\right) \leq f\left(x\right)\,, \quad \forall x \in \mathbb{R} \; \Rightarrow \; f^{2}\left(x\right) \leq f\left(x\right) + 1\,, \quad \forall x \in \mathbb{R} \;. \end{split}$$

II. forduló

IX. OSZTÁLY

$$2. \sum_{k=1}^{n} \sqrt{1 + \frac{1}{k^2} + \frac{1}{(k+1)^2}} = \sum_{k=1}^{n} \sqrt{\left(1 + \frac{1}{k} - \frac{1}{k+1}\right)^2} =$$

$$= \sum_{k=1}^{n} \left(1 + \frac{1}{k} - \frac{1}{k+1}\right) = n + 1 - \frac{1}{n+1}$$

$$3. \sum_{i=1}^{n} a_i a_{n-i+1} = \sum_{i=1}^{n} \left(a_1 + (i-1)r\right) \left(a_1 + (n-i)r\right) =$$

$$= n a_1^2 + n (n-1) a_1 r + \left(-n^2 + (n+1) \sum_{i=1}^{n} i - \sum_{i=1}^{n} i^2\right) r^2 =$$

$$= n a_1^2 + n (n-1) a_1 r + \left(-n^2 + \frac{n (n+1)^2}{2} - \frac{n (n+1)(2n+1)}{6}\right) r^2 =$$

$$= n a_1^2 + n (n-1) a_1 r + \frac{n (n-1)(n-2)}{6} r^2$$

$$n a_k a_{n-k+1} = n \left(a_1 + (k-1)r\right) \left(a_1 + (n-k)r\right) =$$

$$= n a_1^2 + n (n-1) a_1 r + n \left(-k^2 + (n+1)k - n\right) r^2$$

Tehát az a kérdés, hogy milyen $k \in \{1, 2, ..., n\}$ értékekre áll fenn az

$$\frac{(n-1)(n-2)}{6} \le -k^2 + (n+1)k - n$$

egyenlőtlenség. Ennek az egyenlőtlenségnek a megoldásai a valós számok halmazán

$$\begin{split} & \left[\frac{1}{2} \left(n + 1 - \sqrt{\frac{n^2 - 1}{3}} \right), \frac{1}{2} \left(n + 1 + \sqrt{\frac{n^2 - 1}{3}} \right) \right], \\ & \text{de } \frac{1}{2} \left(n + 1 - \sqrt{\frac{n^2 - 1}{3}} \right) > 0 \text{ \'es } \frac{1}{2} \left(n + 1 - \sqrt{\frac{n^2 - 1}{3}} \right) < n \text{ , teh\'at} \\ & k \in \left[\frac{1}{2} \left(n + 1 - \sqrt{\frac{n^2 - 1}{3}} \right), \frac{1}{2} \left(n + 1 + \sqrt{\frac{n^2 - 1}{3}} \right) \right] \cap \mathbb{N} \; . \end{split}$$

4. Legyen AB = c, AC = b és $AN = x \in [0, c]$, ekkor $\overrightarrow{AM} = \frac{c - x}{c} \overrightarrow{AB}$ és $\overrightarrow{AM} = \frac{x}{b} \overrightarrow{AC}$. Tehát $\overrightarrow{AP} = \frac{\overrightarrow{AM} + \overrightarrow{AN}}{2} = \frac{\overrightarrow{AB}}{2} + \frac{x}{2} \left(\frac{\overrightarrow{AC}}{b} - \frac{\overrightarrow{AB}}{c} \right)$

Ha $K \in (AB)$ és $L \in (AC)$ úgy, hogy \overrightarrow{AK} és \overrightarrow{AL} egységnyi hosszúságú vektorok, akkor $\frac{\overrightarrow{AC}}{b} = \overrightarrow{AL}$ és $\frac{\overrightarrow{AB}}{c} = \overrightarrow{AK}$, így $\overrightarrow{AP} = \overrightarrow{AQ} + \frac{x}{2}\overrightarrow{KL} \Rightarrow \overrightarrow{QP} = \frac{x}{2}\overrightarrow{KL}$ ahol Q az [AB] szakasz felezőpontja. Tehát P a Q ponton át a KL egyenessel húzott párhuzamoson van. x=0 esetén $\overrightarrow{AP} = \frac{\overrightarrow{AB}}{2}$, tehát P=Q és x=c

esetén $\overrightarrow{AP}=\frac{c\overrightarrow{AC}}{2b}$, tehát $P\in AC$. Tehát a P pont mértani helye a [QT] szakasz, ahol T a Q ponton át a KL egyenessel húzott párhuzamos és az AC oldal metszéspontja.

X. OSZTÁLY

1. Logaritmáljuk az első összefüggést:

$$\log_2 x_1 + \log_2 x_2 + \ldots + \log_2 x_n = 3\,,$$
 majd az $\left(a_1 + a_2 + \ldots + a_n\right) \cdot \left(\frac{1}{a_1} + \frac{1}{a_2} + \ldots + \frac{1}{a_n}\right) \geq n^2$ pozitív számok közötti egyenlőtlenséget alkalmazzuk, ahonnan $n^2 \leq 9 \Rightarrow n \in \left\{1,2,3\right\}$ feltételt kapjuk. $n=1$ esetben az
$$\begin{cases} x_1 = 8 \\ \log_{x_1} 2 = 3 \end{cases}$$
 egyenletrendszer nem összeférhető.

$$\begin{split} n &= 2 \text{ esetben } \begin{cases} x_1 \cdot x_2 = 8 \\ \log_{x_1} 2 + \log_{x_2} 2 = 3 \end{cases} \text{ megoldásai:} \\ \left\{ \, x_1 \, , x_2 \right\} &= \left\{ 2^{\frac{3 - \sqrt{5}}{2}} \, , \, 2^{\frac{3 + \sqrt{5}}{2}} \right\}. \\ n &= 3 \text{ esetben } \begin{cases} x_1 \cdot x_2 \cdot x_3 = 8 \\ \log_{x_1} 2 + \log_{x_2} 2 + \log_{x_3} 2 = 3 \end{cases} \text{ megoldása:} \\ x_1 &= x_2 = x_3 = 2 \, . \end{split}$$

2. A g(x)=f(x)-x függvényre 2007g(f(x))=2g(x). Ha $y\in\mathbb{Z}$ rögzített értelmezhetjük a következő sorozatot: $x_0=y$, $f(x_0)=x_1$ és általában $x_n=f(x_{n-1})$. Ezek alapján $g(x_0)=\frac{2007}{2}g(x_1)=\ldots=\frac{2007^n}{2^n}g(x_n)$, vagyis $2007^ng(x_n)=2^ng(x_0)$. Ebből 2007^n osztja $g(x_0)$ -t minden n-re, tehát $g(x_0)=0$. Ez alapján a függvényegyenlet megoldása f(y)=y.

3. $\forall x > 0$ -ra $x + \frac{1}{x} \ge 2 \Rightarrow \frac{x^2 + 1}{x} \ge 2 \Rightarrow \frac{x^2 + 1}{4x} \ge \frac{1}{2}$. Másrészt a 2^x függvény szigorúan növekvő, amiből következik, hogy $2^{\frac{x^2 + 1}{4x}} \ge 2^{\frac{1}{2}} = \sqrt{2}$, $\forall x > 0$ -ra.

$$\begin{split} \cos\frac{\pi x}{4} + \sin\frac{\pi x}{4} &= \cos\frac{\pi x}{4} + \cos\left(\frac{\pi}{2} - \frac{\pi x}{4}\right) = \\ &= 2\cos\frac{\pi}{4} \cdot \cos\left(\frac{\pi x}{4} - \frac{\pi}{4}\right) = \sqrt{2}\cos\frac{\pi (x-1)}{4} \le \sqrt{2} \;,\; \forall\; x \in \mathbb{R}_+ \text{-ra}. \end{split}$$

Így $2^{\frac{x^2+1}{4x}} = \cos\frac{\pi x}{4} + \sin\frac{\pi x}{4}$ csak akkor, ha

$$2^{\frac{x^2+1}{4x}} = \sqrt{2} = \cos\frac{\pi x}{4} + \sin\frac{\pi x}{4}, \text{ azaz csak ha} \begin{cases} x + \frac{1}{x} = 2\\ \cos\frac{\pi(x-1)}{4} = 1 \end{cases},$$

ahonnan következik, hogy x = 1 az egyetlen megoldás.

Ha x < 0, akkor $\frac{x^2+1}{4x} \le -\frac{1}{2}$, tehát $2^{\frac{x^2+1}{4x}} \le \frac{1}{\sqrt{2}}$. Így a bal oldal a $\left(0,\frac{1}{\sqrt{2}}\right)$ intervallumban változik és növekvő. A jobb oldal a $\left(-\sqrt{2},\sqrt{2}\right)$ intervallumban periodikusan változik, tehát az egyenletnek végtelen sok negatív megoldása van.

4. Az A pontot tekintjük origónak, a B és C pont affixumát jelöljük b illetve c-vel (minden pont affixumát a megfelelő kis betűvel jelöljük). Így e=ic és d-b=-ib, tehát $m=\frac{c}{2}$, $n=\frac{b}{2}$ és $p=\frac{b-ib+ic}{2}$. Ez alapján $m-n=\frac{c-b}{2}$ és $p-n=i\frac{c-b}{2}$, tehát $m=\frac{c-b}{2}$ és $m=\frac{c-b}{2}$. Ez alapján $m=n=\frac{c-b}{2}$ és $m=\frac{c-b}{2}$.

XI. OSZTÁLY

1.
$$A^3 = 2I_3 \Rightarrow A^3 - I_3 = I_3 \Rightarrow (A - I_3)(A^2 + A + I_3) = I_3$$
.

Következik, hogy

$$\det(A - I_3) \det(A^2 + A + I_3) = 1$$
,

ahol $\det(A - I_3) \in \mathbb{Z}$, $\det(A^2 + A + I_3) \in \mathbb{Z}$ és

$$\det(A^2 + A + I_3) = \det \left[\left(A + \frac{1}{2} I_3 \right)^2 + \left(\frac{\sqrt{3}}{2} I_3 \right)^2 \right] \ge 0 \,,$$

ezért innen következik, hogy

$$\det(A - I_3) = 1 \text{ \'es} \tag{1}$$

Mivel
$$(A+I_3)^3=A^3+I_3+3A(A+I_3)$$
 és $A^3=2I_3$, ezért
$$(A+I_3)^3=3I_3+3A(A+I_3)=3(A^2+A+I_3),$$

és (1) alapján innen következik, hogy

$$[\det(A+I_3)]^3 = 3^3 \det(A^2 + A + I_3) = 3^3,$$

tehát

$$\det(A + I_3) = 3$$

és így $\det(A^2-I_3)=\det(A-I_3)\det(A+I_3)=3$.

Megjegyzés. Létezik olyan mátrix , mely teljesíti a feladat feltételeit, például

$$A = \begin{pmatrix} 3 & -10 & 3 \\ 1 & -2 & 0 \\ 1 & 0 & -1 \end{pmatrix}.$$

2. a) A maradékos osztás tétele alapján

$$P(X) = (X - 1)(X - 2009)Q(X) + AX + B,$$

ahol Q elsőfokú polinom. Az osztási algoritmus elvégzési módjából következik, hogy Q együtthatói, valamint A és B egész számok. Az első két feltételből következik, hogy A+B=2009 és 2009A+B=1. Innen A=-1, B=2010. Megjegyzendő, hogy ha

ezekre nem kaptunk volna egész számokat, akkor a feladatnak nem lett volna megoldása. Következik, hogy

$$P(X) = (X-1)(X-2009)Q(X) - X + 2010$$
.

b) Legyen x a P egész gyöke. Így (x-2009)[(x-1)Q(x)-1]=-1, ahol a szorzótényezők egész számok, tehát csak két eset lehetséges.

Az egyik lehetőség: x-2009=-1, (x-1)Q(x)-1=1, amiből következik, hogy x=2008 és 2007Q(2008)=2, amely lehetetlen, mert 2 nem osztható 2007-tel.

A másik lehetőség: x-2009=1, (x-1)Q(x)-1=-1. Ebben az esetben x=2010 és Q(2010)=0. Mivel Q egész együtthatójú elsőfokú polinom, a második egyenlőségből következik, hogy Q(X)=m(X-2010), ahol $m\neq 0$ egész szám. Így

$$P(X) = m(X-1)(X-2009)(X-2010) - X + 2010.$$

3. a) A karakterisztikus egyenlet $r^2-6r+4=0$. A gyökök $r_{1,2}=3\pm\sqrt{5}$, tehát

$$x_n=c_1(3+\sqrt{5})^n+c_2(3-\sqrt{5})^n$$
. Az $x_0=2$ és $x_1=6$ feltételből az $x_n=(3+\sqrt{5})^n+(3-\sqrt{5})^n$ alakhoz jutunk.

b) $0<3-\sqrt{5}<1$, $x_n\in\mathbb{Z}$ alapján írhatjuk, hogy $[(3+\sqrt{5})^n]+1=x_n$, tehát azt kell igazolni, hogy x_n : $2^n, \forall \, n\geq 0$. Ezt matematikai indukcióval igazoljuk:

n=0 esetén $x_0=2$:1

n=1 esetén $x_1=6:2$.

Feltételezzük, hogy $x_k : 2^k, \forall k \leq n$. Így

 $x_{n+2}=6x_{n+1}-4x_n=3(2x_{n+1})-2^2x_n$ és ez osztható 2^{n+2} -vel. A matematikai indukció elve alapján $x_n \vdots 2^n, \ \forall n \in \mathbb{N}$.

4. a) Az
$$x_n(x_{n+1}-1)=1$$
 összefüggésből $x_{n+1}=1+\frac{1}{x_n}$, $\forall n\in\mathbb{N}$.

$$\begin{split} & \text{Teh\'at } x_1 = \frac{x_0 + 1}{x_0}, \ x_2 = \frac{x_1 + 1}{x_1} = \frac{\frac{x_0 + 1}{x_0} + 1}{\frac{x_0 + 1}{x_0}} = \frac{2x_0 + 1}{x_0 + 1}, \\ & x_3 = \frac{3x_0 + 2}{2x_0 + 1}, \ x_4 = \frac{5x_0 + 3}{3x_0 + 2}, \ x_5 = \frac{8x_0 + 5}{5x_0 + 3}. \ \text{\'eszrevehetj\"uk, hogy} \\ & x_n = \frac{F_{n+1}x_0 + F_n}{F_nx_0 + F_{n-1}}, \ \forall n \geq 2 \ , \ \text{ahol} \ \left(F_n\right)_{n \geq 0} \ \text{a Fibonacci sorozat (ez indukcióval igazolható). Teh\'at a sorozat pontosan akkor \'ertelmezhető, ha $x_0 \neq -\frac{F_{n-1}}{F}, \ n \geq 0 \ . \end{split}$$$

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} \frac{F_{n+1} x_0 + F_n}{F_n x_0 + F_{n-1}} = \lim_{n \to \infty} \frac{F_n}{F_{n-1}} \frac{\frac{F_{n+1}}{F_n} x_0 + 1}{\frac{F_n}{F_{n-1}} x_0 + 1}.$$
 Mivel

 $\lim_{n\to\infty}\frac{F_n}{F_{n-1}}=\frac{1+\sqrt{5}}{2}\;,\quad \text{az}\quad \text{előbbi}\quad \text{határérték}\quad x_0\neq -\frac{2}{1+\sqrt{5}}\quad \text{esetén}$ $\lim_{n\to\infty}x_n=\frac{1+\sqrt{5}}{2}\;.$

$$x_0=-\frac{2}{1+\sqrt{5}} \ \ \text{eset\'en a} \ \ \lim_{n\to\infty}\frac{\frac{F_{n+1}}{F_n}\,x_0\,+1}{\frac{F_n}{F_{n-1}}\,x_0\,+1} \ \ \text{hat\'ar\'ert\'ekre alkalmazzuk a}$$

Cesaro-Stolz kritériumot. E célból kiszámítjuk a

$$\lim_{n \to \infty} \frac{\frac{F_{n+1}}{F_n} - \frac{F_{n+2}}{F_{n+1}}}{\frac{F_n}{F_{n-1}} - \frac{F_{n+1}}{F_n}} = \lim_{n \to \infty} \frac{F_{n+1}^2 - F_n F_{n+2}}{F_n^2 - F_{n-1} F_{n+1}} = -1 \qquad \text{határértéket} \qquad \text{(enneket)}$$

kiszámítására használjuk az $F_n^2-F_{n-1}F_{n+1}=(-1)^n$ egyenlőséget). Így $x_0=-\frac{2}{1+\sqrt{5}}\ \text{esetén}\ \lim_{n\to\infty}x_n=-\frac{1+\sqrt{5}}{2}\,.$

XII. OSZTÁLY

1. Tetszőleges $x,y\in G$ esetén az $y\to yx$ és $z\to xy$ helyettesítésekkel

$$x(yx)^{2009} = \underbrace{xyxy...xyx}_{4019} = (xy)^{2009}x$$

tehát a feltétel alapján xy = yx.

A 2010-ed rendű egységgyökök csoportja teljesíti a feltételt.

- **2.** Ha az adott egyenletnek van legalább (n+2) különböző gyöke, akkor a Rolle tétel alapján az $f(x)=e^x-a_nx^n-a_{n-1}x^{n-1}-\ldots-a_0$ függvény deriváltjának van legalább (n+1) páronként különböző gyöke. Így az f'' függvénynek van legalább n páronként különböző gyöke és így tovább. Tehát az $f^{(n+1)}$ függvénynek is van legalább egy gyöke. Ez viszont ellentmondás, mert $f^{(n+1)}(x)=e^x$.
- **3.** Mivel f injektív és $f(x) \in \mathbb{N}^*$, $\forall x \in \mathbb{N}^*$

$$f(a_1) + f(a_2) + \dots + f(a_n) \ge 1 + 2 + \dots + n = \frac{n(n+1)}{2}$$
.

Így
$$x_n \leq 1 + \frac{2}{1 \cdot 2} + \frac{2}{2 \cdot 3} + \ldots + \frac{2}{n(n+1)} < 3$$
 , tehát az $\left(x_n\right)_{n \geq 1}$ sorozat

felülről korlátos. Az értelmezése alapján látható, hogy növekvő is, tehát a sorozat konvergens.

4. Az (x_0, y_0) pontban húzott érintő egyenlete

$$e:\!\left(y-\frac{1}{4}\,x_{\!\scriptscriptstyle 0}^2\right)\!=\frac{1}{2}\,x_{\!\scriptscriptstyle 0}\left(x-x_{\!\scriptscriptstyle 0}\right)$$
 . Az F -ből erre húzott merőleges

egyenlete $d:(y-1)=\frac{-2}{x_0}\,x$, tehát ha $M(x_1,y_1)$ az F vetülete az

érintőre, akkor $x_1=\dfrac{2x_0+\dfrac{1}{2}x_0^3}{x_0^2+4}$ és $y_1=0$. Így az F -nek a d szerinti

2. FORDULÓ MEGOLDÁSOK XIX. ERDÉLYI MAGYAR MATEMATIKAVERSENY

szimmetrikusa rajta van az y=-1 egyenletű egyenesen. Ugyanakkor az x_1 értékkészlete az egész $\mathbb R$ és így a mértani hely a teljes y=-1 egyenletű egyenes.

Megjegyzés. A parabola értelmezése és az optikai tulajdonsága alapján számolás nélkül is azonnal belátható, hogy az F-nek a d szerinti szimmetrikusa a parabola vezéregyenesén van.

IX. osztály

Bordi Eszter	Bolyai Farkas Elméleti Líceum	Marosvásárhely		
Budai Kinga	Nagy Mózes Elméleti Líceum	Kézdivásárhely		
Cseh Júlia	Nagy Mózes Elméleti Líceum	Kézdivásárhely		
Deák Norbert	Báthory István Elméleti Líceum	Kolozsvár		
Demény Dávid	Tamási Áron Elméleti Líceum	Székelyudvarhely		
Dobai Gábor	Tamási Áron Elméleti Líceum	Székelyudvarhely		
Farkas Domokos	Baróti Szabó Dávid Iskolacsoport	Barót		
Fülöp Balogh Beátrix	Báthory István Elméleti Líceum	Kolozsvár		
German- Salló Zsófia	Bolyai Farkas Elméleti Líceum	Marosvásárhely		
Gilyen Hunor	János Zsigmond Unitárius Kollégium	Kolozsvár		
György Szabolcs	Mihai Eminescu	Sepsiszentgyörgy		
Halász Hajnalka	Mihai Eminescu	Sepsiszentgyörgy		
Jakobi Zsuzsanna	Ady Endre Elmeleti Liceum	Sepsiszentgyörgy		
Kegyes Krisztina	Báthory István Elméleti Líceum	Kolozsvár		
Kémenes Endre	Salamon Ernő Gimnázium	Arad		
Kerestély Árpád	Áprily Lajos Főgimnázium	Sepsiszentgyörgy		
Kilyén Nándor-Alpár	Székely Mikó Kollégium	Sepsiszentgyörgy		
Koman Zsombor	Áprily Lajos Főgimnázium	Sepsiszentgyörgy		
Kurunczi-Papp Kondrád	Csiky Gergely Iskolacsoport	Sepsiszentgyörgy		
Kúti-Kreszács Mátyás	Octavian GogaFőgimnázium	Arad		
Lakatos Tamás	Kölcsey Ferenc Főgimnázium	Arad		
Lázár Zsolt	Tamási Áron Elméleti Líceum	Székelyudvarhely		
Mester Ágnes	Székely Mikó Kollégium	Sepsiszentgyörgy		
Miklós Erik	Nagy Mózes Elméleti Líceum	Kézdivásárhely		
Móritz Sándor	Silvania Főgimnázium	Sepsiszentgyörgy		
Nagy Tamás	Márton Áron Gimnázium	Csíkszereda		
Páll Tamás	Tamási Áron Elméleti Líceum	Székelyudvarhely		
Péter Emőke	Márton Áron Gimnázium	Csíkszereda		
Pisak Lukáts Borbála	Bolyai Farkas Elméleti Líceum	Marosvásárhely		
Porsche Endre	Tamási Áron Elméleti Líceum	Székelyudvarhely		

DIÁKOK	NÉVSORA
DIANUN	MEYSONA

XIX. ERDÉLYI MAGYAR MATEMATIKAVERSENY

Sajtos István	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Sandy Endre Kristóf	Márton Áron Gimnázium	Csíkszereda
Saszet Kata	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Szabó Zsolt	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Szabó-Györke István	Márton Áron Gimnázium	Csíkszereda
Szántó Zoltán-György	Bartók Béla Elméleti Líceum	Temesvár
Szász Attila	Salamon Ernő Gimnázium	Sepsiszentgyörgy
Szederjesi Arnold	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Szika Ottó Zsolt	Németh László Elméleti Líceum	Arad
Tomos Réka	Áprily Lajos Főgimnázium	Sepsiszentgyörgy
Tóth Evelyn	Csiky Gergely Iskolacsoport	Sepsiszentgyörgy
Vámos Timea-Imelda	Csiky Gergely Iskolacsoport	Sepsiszentgyörgy
Vass Gergely	Bolyai Farkas Elméleti Líceum	Marosvásárhely

X. OSZTÁLY

Aczél Andrea	Székely Mikó Kollégium	Arad
Antal Enikő	Áprily Lajos Főgimnázium	Nagyvárad
Balázs Norbert Mihály	Arany János Főgimnázium	Nagyvárad
Bartalis Szilárd	Salamon Ernő Gimnázium	Zilah
Bartos Júlia	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Bekő Timea	Mikes Kelemen Főgimnázium	Zilah
Benedek Annabella	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Bogosi Réka	Ady Endre Elmeleti Liceum	Nagyvarad
Bondici László	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Borsos Zalan	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Brassai Beáta	Tamási Áron Elméleti Líceum	Székelyudvarhely
Csiki Timea	Tamási Áron Elméleti Líceum	Székelyudvarhely
Csiszér Ágnes	Márton Áron Gimnázium	Csíkszereda
Csorvasi Arnold	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Dávid Erika	Tamási Áron Elméleti Líceum	Székelyudvarhely
Dénes Károly	Ady Endre Elmeleti Liceum	Nagyvarad
Durugy Ákos	Báthory István Elméleti Líceum	Kolozsvár
Farczádi Albert	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Fazekas Norbert	Mihai Eminescu	Nagyvarad
Fehér Áron	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Forró Timea	Nagy Mózes Elméleti Líceum	Kézdivásárhely
Gábor Szabolcs-László	Salamon Ernő Gimnázium	Zilah
Grecu Marius Iustin	Márton Áron Gimnázium	Csíkszereda
Guba Anett	Ady Endre Elmeleti Liceum	Nagyvarad
Hamar Beáta	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Héjja Rudolf	Székely Mikó Kollégium	Nagyvarad
Illyés Attila	Márton Áron Gimnázium	Csíkszereda
Incze Zoltán	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Kulik Árpád	Németh László Elméleti Líceum	Nagyszalonta
László Alma	Silvania Főgimnázium	Nagyvarad

Lőrinczi Ábel	Mikes Kelemen Főgimnázium	Szekelyhid
Major Lajos-Attila	Petőfi Sándor Elmeleti Liceum	Nagyvarad
Marton Sándor	Ady Endre Elmeleti Liceum	Nagyvarad
Máté Ákos	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Nagy Zoltán	Tamási Áron Elméleti Líceum	Székelyudvarhely
Nyulas Dorottya	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Orbán A. Szabolcs	Székely Mikó Kollégium	Arad
Orbán M. Szabolcs	Székely Mikó Kollégium	Arad
Orbán Ottó	Márton Áron Gimnázium	Csíkszereda
Pásztor Timea	Tamási Áron Elméleti Líceum	Székelyudvarhely
Rab Enikő-Sarolta	Székely Mikó Kollégium	Arad
Rend Melitta	Octavian GogaFőgimnázium	Zilah
Sándor Péter	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Sebestyén Ágnes	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Spir Anita	Csiky Gergely Iskolacsoport	Nagyvarad
Szabó Enikő	Baróti Szabó Dávid Iskolacsoport	Barót
Szilveszter István	Bartók Béla Elméleti Líceum	Temesvár
Takács Petra	Báthory István Elméleti Líceum	Kolozsvár
Takács Tímea	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Tempfli Arnold	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Tikosi Kinga	Tamási Áron Elméleti Líceum	Székelyudvarhely
Vajda Szabolcs	Báthory István Elméleti Líceum	Kolozsvár
Varga Roland-József	Arany János Főgimnázium	Nagyvarad
Várhelyi Melinda	Báthory István Elméleti Líceum	Kolozsvár
Vass Balázs	Tamási Áron Elméleti Líceum	Székelyudvarhely
Vitályos Zsolt	Nagy Mózes Elméleti Líceum	Kézdivásárhely
Zsogon Csilla	Nagy Mózes Elméleti Líceum	Kézdivásárhely

XI. OSZTÁLY

Bedő Anita	Márton Áron Gimnázium	Csíkszereda
Bodor Zoltán	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Boros Zoltán-János	Csiky Gergely Iskolacsoport	Brassó
Brudașcă Renáta	Báthory István Elméleti Líceum	Kolozsvár
Buslig Szabolcs	Márton Áron Gimnázium	Csíkszereda
Csiki Szabolcs	Áprily Lajos Főgimnázium	Brassó
Ferencz-Hanke Réka	Márton Áron Gimnázium	Csíkszereda
Fülöp Annamária	Márton Áron Gimnázium	Csíkszereda
Garda Ingrid	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Gencsi Márta	Tamási Áron Elméleti Líceum	Székelyudvarhely
Gurza László	Bolyai Farkas Elméleti Líceum	Marosvásárhely
György Levente	Salamon Ernő Gimnázium	Sepsiszentgyörgy
Hadnagy Kinga	Csiky Gergely Iskolacsoport	Brassó
Ilyés Beatrix	Tamási Áron Elméleti Líceum	Székelyudvarhely
Jakab Lilla	Octavian GogaFőgimnázium	Sepsiszentgyörgy
János Csongor	Márton Áron Gimnázium	Csíkszereda
Kakucs Szende Gizella	Baróti Szabó Dávid Isk .cs.	Barót
Kassay Farkas Ákos	János Zsigmond Unit. Kollégium	Kolozsvár
Kecseti Hunor	Salamon Ernő Gimnázium	Sepsiszentgyörgy
Keresztes Lehel	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Kocs Kinga	Áprily Lajos Főgimnázium	Brassó
Kolcza Tünde	Márton Áron Gimnázium	Csíkszereda
Kolumbán József	Báthory István Elméleti Líceum	Kolozsvár
Konnerth Rajmund	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Lakatos István	Székely Mikó Kollégium	Brassó
Lőrincz Emma	Áprily Lajos Főgimnázium	Brassó
Lukács Bettina	Áprily Lajos Főgimnázium	Brassó

-	,
DIAKOK	NÉVSORA
DIAION	THE FOUNA

XIX. ERDÉLYI MAGYAR MATEMATIKAVERSENY

Mandici Szilárd	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Módis László	Németh László Elméleti Líceum	Sepsiszentgyörgy
Nagy Orsolya	Petru Maior Iskolaközpont	Régen
Nemes Kinga Gabriella	Bartók Béla Elméleti Líceum	Temesvár
Pál Levente	Tamási Áron Elméleti Líceum	Székelyudvarhely
Péterfi Zsuzsánna	Silvania Főgimnázium	Brassó
Polcz Péter	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Sasu Róbert	Székely Mikó Kollégium	Brassó
Sebestyén Balázs	Báthory István Elméleti Líceum	Kolozsvár
Sipos Lehel	Székely Mikó Kollégium	Nagyszalonta
Sütő Szabolcs	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Szabó Ágnes	Nagy Mózes Elméleti Líceum Baczkamadarasi Kis Gergely	Kézdivásárhely
Szakács Csilla	Református Kollégium	Székelyudvarhely
Szász Mátyás	Áprily Lajos Főgimnázium	Brassó
Székely Noémi	Petru Maior Iskolaközpont	Régen
Szép László Zoltán	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Török Tamás	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Várady Emese	Németh László Elméleti Líceum	Gyergyószentmiklós

XII. OSZTÁLY

Akácsos Tibor	Baróti Szabó Dávid Iskolacsoport	Barót
Aszalos Csongor	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Bajnóczi Tamás	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Bajzát Brigitta	Mikes Kelemen Főgimnázium	Margitta
Balázs Béla	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Bánházi Botond	Octavian GogaFőgimnázium	Nagybánya
Biró Emese	Tamási Áron Elméleti Líceum	Székelyudvarhely
Biró Zsolt	Tamási Áron Elméleti Líceum	Székelyudvarhely
Hodgyai Zoltán	Márton Áron Gimnázium	Csíkszereda
Illyés Ágota	Márton Áron Gimnázium	Csíkszereda
Ilyés Zoltán	Silvania Főgimnázium	Margitta
Izsák István	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Károly Réka	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Kelemen Iringó	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Kerestély Enikő	Tamási Áron Elméleti Líceum	Székelyudvarhely
Kilyen Attila-Örs	Székely Mikó Kollégium	Gyergyószentmiklós
Kinczel Lajos Roland	Petru Maior Iskolaközpont	Régen
Kis Kálmán	Tamási Áron Elméleti Líceum	Székelyudvarhely
Kisfaludi-Bak Zsombor	Székely Mikó Kollégium	$Gyergy\'oszent mikl\'os$
Kolcsár Kálmán Imre	Salamon Ernő Gimnázium	Nagybánya
Korpos Andor	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Kovács Ákos	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Kovács Zsolt Péter	Salamon Ernő Gimnázium	Nagybánya
Lestyán Erika	Nagy Mózes Elméleti Líceum	Kézdivásárhely
Matanie Ábel	Csiky Gergely Iskolacsoport	Gyergyószentmiklós
Menyhárt Bálind	Petru Maior Iskolaközpont	Régen
Mihály Kinga	Tamási Áron Elméleti Líceum	Székelyudvarhely
Nagy Tímea	Márton Áron Gimnázium	Csíkszereda

-	,
DIAKOK	NÉVSORA
DIAION	THE FOUNA

XIX. ERDÉLYI MAGYAR MATEMATIKAVERSENY

Nikora Nárcisz	Kölcsey Ferenc Főgimnázium	Szatmárnémeti
Padrah István	Leővey Klára Líceum	Máramarossziget
Papp Ingrid	Ady Endre Elmeleti Liceum	Gyergyószentmiklós
Rangyák Eszter	Márton Áron Gimnázium	Csíkszereda
Simon Levente	Székely Mikó Kollégium	Gyergyószentmiklós
Szabó Péter	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Szakács Zselyke	Ady Endre Elmeleti Liceum	Margitta
Szász Zsigmond	Áprily Lajos Főgimnázium	Margitta
Szatmári Barna	Bolyai Farkas Elméleti Líceum	Marosvásárhely
Tiba Attila	Csiky Gergely Iskolacsoport	Gyergyószentmiklós
Tóth Miklós-János	Bartók Béla Elméleti Líceum	Temesvár
Tóth Orsolya	Ady Endre Elmeleti Liceum	Gyergyószentmiklós
Vas Orsolya	Mikes Kelemen Főgimnázium	Sepsiszentgyörgy
Visky Mária	Báthory István Elméleti Líceum	Kolozsvár

RÉSZTVEVŐ TANÁROK NÉVSORA

Dr. András Szilárd Babes-Bolyai Egyetem Áprily Lajos Főgimnázium Bencze Mihály Betuker Enikő Octavian GogaFőgimnázium Biró Judit Székely Mikó Kollégium Bíró Zoltán Salamon Ernő Gimnázium Both Gábor Székely Mikó Kollégium Márton Áron Gimnázium Csapó Hajnalka Dávid Géza Tamási Áron Elméleti Líceum Egyed Geza Nagy Mózes Elméleti Líceum

Farkas Csaba Babes-Bolyai Egyetem

György Gabriella Bolyai Farkas Elméleti Líceum Hatházi Annamária Báthory István Elméleti Líceum

István Zoltán Ady Endre Liceum

Kacsó Ferenc Bolyai Farkas Elméleti Líceum Kató Enikő Kölcsey Ferenc Főgimnázium

Kéry Hajnal Ady Endre Liceum

Kovács Béla Kölcsey Ferenc Főgimnázium
Kovács Lajos Tamási Áron Elméleti Líceum
Mátéfi István Bolyai Farkas Elméleti Líceum
Mészár Julianna Arany János Főgimnázium
Nagy Örs Babes-Bolyai Egyetem
Nemes András Bartók Béla Elméleti Líceum
Oláh-Ilkei Árpád Baróti Szabó Dávid Iskolacsoport

Páll Olga Márton Áron Gimnázium
Péter András Csiky Gergely Iskolacsoport
Sebestyén József Orbán Balázs Gimnázium
Stan Ágota Bolyai Farkas Elméleti Líceum
Szász Árpád Mikes Kelemen Főgimnázium

Dr. Szász Róbert Sapientia Erdélyi MagyarTudományegyetem

Szilágyi Emőke Bolyai Farkas Elméleti Líceum Szilágyi Jutka Báthory István Elméleti Líceum

Takács Attila *Leővey Klára Liceum*Tamási Csaba *Márton Áron Gimnázium*

MEGHÍVOTTAK

Matekovics Mihály, a tanügyi és kutatási tárca nemzeti kisebbségek oktatásáért felelős vezérigazgatója

Csegzi Sándor, Marosvásárhely alpolgármestere

Simon János, matematika szakos tanfelügyelő, Maros megye

Dr. Weszely Tibor, Sapientia Erdélyi MagyarTudományegyetem

	IX. osztály		
1.Deák Norbert	Báthory István Elméleti Líceum	63	I díj
2.Fülöp Balogh Beátrix	Báthory István Elméleti Líceum	54	II díj
3.Komán Attila Zsombor	r Áprily Lajos Főgimnázium	53	II díj
4.Péter Emőke	Márton Áron Gimnázium	53	II díj
5.Sandy Endre Kristóf	Márton Áron Gimnázium	52	III díj
6.Szabó-Györke István	Márton Áron Gimnázium	52	III díj
7.Nagy Tamás	Márton Áron Gimnázium	50	III díj
8.Porsche Endre	Tamási Áron Elméleti Líceum	45	Dicséret
9.Lakatos Tamás	Kölcsey Ferenc Főgimnázium	45	Dicséret
10.Kegyes Krisztina	Báthory István Elméleti Líceum	44	Dicséret
11.Saszet Kata	Bolyai Farkas Elméleti Líceum	44	Dicséret
12.Móritz Sándor	Silvania Főgimnázium	44	Dicséret
13.Pisak Lukáts Borbála	Bolyai Farkas Elméleti Líceum	40	Dicséret
14.Budai Kinga	Nagy Mózes Elméleti Líceum	40	Dicséret
15. Szántó Zoltán-György	Bartók Béla Elméleti Líceum	37	Dicséret
16.Halász Hajnalka	Mihai Eminescu Főgimnázium	37	Dicséret
17.Mester Ágnes	Székely Mikó Kollégium	36	Dicséret
18. Vass Gergely	Bolyai Farkas Elméleti Líceum	35	Dicséret
19.Kémenes Endre	Salamon Ernő Gimnázium	34	Dicséret
20.Kilyén Nándor-Alpár	Székely Mikó Kollégium	33	Dicséret
21. György Szabolcs	Mihai Eminescu Főgimnázium	32,5	Dicséret
22.Szederjesi Arnold	Bolyai Farkas Elméleti Líceum	29	Dicséret
23.Cseh Júlia	Nagy Mózes Elméleti Líceum	29	Dicséret
24.Farkas Domokos	Baróti Szabó Dávid Isk. Cs.	27	Dicséret
25.Germán- Salló Zsófia	Bolyai Farkas Elméleti Líceum	27	Dicséret

Megjegyzés. A vonal fölötti díjazottak képviselik Erdélyt a XVIII. Nemzetközi Magyar Matematika Versenyen, 2009. március 12-16. között Gyulán.

X. osztály

1.Borsos Zalán	Bolyai Farkas Elméleti Líceum	72	I. díj
2.Bondici László	Kölcsey Ferenc Főgimnázium	69,5	I. díj
3. Vass Balázs	Tamási Áron Elméleti Líceum	66	I. díj
4.Benedek Annabella	Bolyai Farkas Elméleti Líceum	45	II. díj
5.Tikosi Kinga	Tamási Áron Elméleti Líceum	40	II. díj
6. Takács Petra	Báthory István Elméleti Líceum	37	III. díj
7.Fehér Áron	Bolyai Farkas Elméleti Líceum	35	Dicséret
8.Lőrinczi Ábel	Mikes Kelemen Főgimnázium	35	Dicséret
9.Orbán M. Szabolcs	Székely Mikó Kollégium	35	Dicséret
10. Várhelyi Melinda	Báthory István Elméleti Líceum	34,5	Dicséret
11.Csiszér Ágnes	Márton Áron Gimnázium	29	Dicséret
12.László Alma	Silvania Főgimnázium	33	Dicséret
13.Fazekas Norbert	Mihai Eminescu Főgimnázium	32	Dicséret
14.Bartalis Szilárd	Salamon Ernő Gimnázium	29	Dicséret
15.Zsögön Csilla	Nagy Mózes Elméleti Líceum	29	Dicséret
16.Illyés Attila	Márton Áron Gimnázium	28	Dicséret
17.Sándor Péter	Kölcsey Ferenc Főgimnázium	27,5	Dicséret
18.Dénes Károly	Ady Endre Elmeléti Líceum	27	Dicséret
19.Grecu Marius Iustin	Márton Áron Gimnázium	27	Dicséret
20.Tempfli Arnold	Kölcsey Ferenc Főgimnázium	27	Dicséret
21.Csiki Timea	Tamási Áron Elméleti Líceum	26	Dicséret
22.Hevele Balázs	Orbán Balázs Gimnázium	26	Dicséret
23.Szilveszter István	Bartók Béla Elméleti Líceum	26	Dicséret
24. Vajda Szabolcs	Báthory István Elméleti Líceum	26	Dicséret

XI. OSZTÁLY

1.Kolumbán József	Báthory István Elméleti Líceum	47,5	I. díj
2.Sasu Róbert	Székely Mikó Kollégium	42,5	II. díj
3. Mandici Szilárd	Kölcsey Ferenc Főgimnázium	41	II. díj
4.Sipos Lehel	Székely Mikó Kollégium	40	II. díj
5.Hevele István	Orbán Balázs Gimnázium	38	III. díj
6.Polcz Péter	Kölcsey Ferenc Főgimnázium	36,5	III. díj
7.Pál Levente	Tamási Áron Elméleti Líceum	34,5	III. díj
8.Bodor Zoltán-Márk	Kölcsey Ferenc Főgimnázium	32	Dicséret
9.Módis László	Németh László Elméleti Líceum	29	Dicséret
10.Gencsi Márta	Tamási Áron Elméleti Líceum	28,5	Dicséret
11.Farkas Ágnes	Orbán Balázs Gimnázium	27,5	Dicséret
12.Ferencz-Hanke Réka	Márton Áron Gimnázium	27	Dicséret
13.Boros Zoltán-János	Csiky Gergely Iskolacsoport	26,5	Dicséret
14.Hadnagy Kinga	Csiky Gergely Iskolacsoport	26,5	Dicséret
15.Kecseti Hunor	Salamon Ernő Gimnázium	26,5	Dicséret
16.Sebestyén Balázs	Báthory István Elméleti Líceum	26,5	Dicséret
17.Buslig Szabolcs	Márton Áron Gimnázium	26	Dicséret
18.Péterfi Zsuzsánna	Silvania Főgimnázium	24,5	Dicséret
19.Kassay Farkas Ákos	János Zsigmond Unit.Kollégium	24	Dicséret
20.Brudașcă Renáta	Báthory István Elméleti Líceum	22,5	Dicséret
21.Bedő Anita	Márton Áron Gimnázium	22	Dicséret
22.György Levente	Salamon Ernő Gimnázium	22	Dicséret
23.Ilyés Beatrix	Tamási Áron Elméleti Líceum	22	Dicséret

XII. OSZTÁLY

1.Kovács Zsolt-Péter	Salamon Ernő Gimnázium	43 I. díj
2.Illyés Ágota	Márton Áron Gimnázium	41 I. díj
3.Kisfaludi-Bak Zsombor	Székely Mikó Kollégium	41 I. díj
4.Nagy Tímea	Márton Áron Gimnázium	38 III. díj
5.Bajnóczi Tamás	Bolyai Farkas Elméleti Líceum	34 Dicséret
6.Biró Zsolt	Tamási Áron Elméleti Líceum	32 Dicséret
7.Károly Réka	Bolyai Farkas Elméleti Líceum	32 Dicséret
8.Kilyén Attila-Örs	Székely Mikó Kollégium	30 Dicséret
9.Bánházi Botond László	Octavian Goga Főgimnázium	28 Dicséret
10.Izsák István	Bolyai Farkas Elméleti Líceum	27 Dicséret
11.Rangyák Eszter	Márton Áron Gimnázium	27 Dicséret
12.Kiss Kálmán	Tamási Áron Elméleti Líceum	26 Dicséret
13.Simon Levente	Székely Mikó Kollégium	25 Dicséret
14.Szász Zsigmond-Attila	Áprily Lajos Főgimnázium	25 Dicséret
15.Visky Mária	Báthory István Elméleti Líceum	25 Dicséret