National Water Conditions

UNITED STATES
Department of the Interior
Geological Survey

CANADA

Department of the Environment Water Resources Branch

JULY 1989

Heavy rains caused floods exceeding previous peaks of record and also the 100-year recurrence interval on some streams in northern Delaware. Three persons drowned and damages in New Castle County were estimated at \$5 million.

Streamflow was in the normal to above-normal range at 68 percent of the index stations in southern Canada, the United States, and Puerto Rico during July, compared with 73 percent in those ranges during June. Below-normal range streamflow occurred in 29 percent of southern Canada and the conterminous United States during July compared with 27 percent during June. Total July flow for the index stations in the conterminous United States and southern Canada was 16 percent above median after a 28 percent decrease in streamflow from June to July. New monthly extremes occurred at 10 index stations during July, compared with 12 new extremes during June.

July streamflow ranged from 39 percent below median to 214 percent above median in five areas affected by the drought of 1988. Flow increased from that during June in California and the Southeast, and decreased in the other three areas

The combined flow of the 3 largest rivers in the lower 48 States--Mississippi, St. Lawrence, and Columbia--averaged 18 percent above median and in the above-normal range during July.

Monthend index reservoir contents for July 1989 were in the below-average range at 32 of 100 reporting sites, compared with 30 of 100 during June 1989. About the same number of reservoirs had contents in the above-average range.

Mean July elevations at the four master gages on the Great Lakes (provisional National Ocean Service data) were in the normal range on all four lakes.

Utah's Great Salt Lake declined 0.65 foot to 4,205.35 feet above National Geodetic Vertical Datum of 1929 on July 31.

SURFACE-WATER CONDITIONS DURING JULY 1989

Heavy rains caused floods exceeding previous peaks of record and also the 100-year recurrence interval on some streams in northern New Castle County, Delaware. The Elsmere, Wilmington, Stanton, and Newark areas were most severely affected. Three persons drowned and damages in New Castle County were estimated at \$5 million.

Hydrologic drought continued in parts of the central and western United States during July. Persistence of non-normal range streamflow from June to July is shown on page 4. Streamflow was in the normal to above-normal range at 68 percent of the 190 index stations in southern Canada, the United States, and Puerto Rico during July, compared with 73 percent of 190 stations in those ranges during June, and 48 percent of 191 stations in those ranges during July 1988. Below-normal range streamflow occurred in 29 percent of southern Canada and the conterminous United States during July compared with 27 percent during June, and 50 percent during July 1988. Total July flow of 2,116,010 cfs for the 180 reporting index stations in the conterminous United States and southern Canada was 16 percent above median after a 28 percent decrease in streamflow from June to July, and 101 percent more than flow during July 1988. (See graphs on page 4.)

Streamflow conditions during July 1989 and July 1988 are shown by maps on page 5. In 1989, flows are in the above-normal range in much of the East, and in the Gulf Coast States, except Florida. The total area covered by above-normal range flow is 19 percent. More than one-third of the rest of southern Canada and the United States is covered by below-normal range flow: from southern California to eastern Wisconsin. By contrast, below-normal range flow occurred in 50 percent of the area and above-normal range flow occurred in only 6 percent of

the area during July 1988.

New monthly extremes (table and graphs on pages 6-7) occurred at 10 index stations during July, compared with 12 during June. There were new lows at stations in Quebec (2) and in Iowa, and new highs at stations in South Carolina, Tennessee, Louisiana (2), Arkansas, Texas, and Hawaii.

July streamflow ranged from 39 percent below median (Northern Great Plains) to 214 percent above median (Southeast) in five areas (graphs on page 8) affected by the drought of 1988. Flow increased from that during June in California (23 percent) and the Southeast (11 percent), but decreased in the Pacific Northwest (53 percent), Northern Great Plains (35 percent), and the Western Great Lakes (59 percent). Graphs of actual streamflow in the five areas for each month of the 1988 and 1989 water years, and also 1951-80 median streamflow for each month are on page 9.

The combined flow of the 3 largest rivers in the lower 48 States—Mississippi, St. Lawrence, and Columbia—averaged 1,146,200 cfs (18 percent above median and in the above-normal range) during July, but 18 percent less than during June. Flow of the Columbia River was in the below-normal range for the second consecutive month. Flow of the Mississippi River was in the above-normal range for the second consecutive month after a below-normal range for the second consecutive month after was in the normal range for the second consecutive month after below-normal range flow during April and May. Hydrographs for both the combined and individual flows of the "Big 3" are on page 10. Dissolved solids and water temperatures at five large river stations are also given on page 10. Flow data for the "Big 3" and 42 other large rivers are given in the Flow of Large Rivers table on page 11.

CONTENTS

P	age
Streamflow (map)	1
Surface-water conditions	2
July 1989 streamflow ranges (map), Summary of July 1989 streamflow (graphs), and	
Comparison of total monthly means with total monthly medians (graphs)	4
Streamflow during July 1989 and Streamflow during July 1988 (maps)	
New extremes at streamflow index stations.	6
Monthly mean discharge of selected streams (graphs)	6
Monthly departure of actual streamflow (October 1983-July 1989) from median streamflow (1951-80) (graphs)	8
Actual monthly streamflow, 1988 and 1989 water years, compared with median monthly streamflow, 1951-80 (graphs)	9
Hydrographs for the "Big 3" rivers - combined and individual flows (graphs)	
Dissolved solids and water temperatures at downstream sites on five large rivers	10
Flow of large rivers	
Usable contents of selected reservoirs (graphs)	12
Usable contents of selected reservoirs	13
Great Lakes elevations (graphs)	14
Fluctuations of the Great Salt Lake, January 1982 through July 1989 (graph)	. 14
Total precipitation and Percentage of normal precipitation (maps)	15
Ground-water conditions	
Drought severity (long-term, Palmer), July 1 and 29 (maps)	
Temperature and precipitation outlooks for August-October 1989 (maps)	
Explanation of data	19

FLOODS OF JULY 1989 IN DELAWARE

Provisional data: subject to revision

FLOOD DATA FOR SELECTED SITES IN DELAWARE, JULY 1989

WRD Station number		Drainage area (square miles)	Period of known floods	Maximum flo	od previous	sly known	Maximum during present flood					
	Stream and place of determination							Dis	scharge		Recur-	
				known	Date	Stage (feet)	Discharge (cfs)	Date	Stage (feet)	Cfs	Cfs per square mile	rence interval (years)
	DELAWARE RIVER BASIN											
01477800	Shellpot Creek at Wilmington	7.46	1945-	Sept. 13, 1971	11.91	6,850	July 5	13.76	8,040	1,077	a1.15	
01478000	Christina River at Coochs Bridge	20.5	1943-	May 1, 1947	12.41	4,330	5	13.12	5,530	270	a1.12	
01478040	Christina River near Bear	40.6	1978-	May 19, 1988	11.57	3,470	5	14.34	7,500	185	a1.05	
01479000	White Clay Creek near Newark	89.1	1932-36, 1943-57, 1959-	June 22, 1972	17.74	9,080	5	16.55	11,600	130	*1.05	
01480100	Little Mill Creek near Elsmere	6.70	1963-	Aug. 10, 1967	8.58	3,960	5	8.8	4,400	657	46	
01482298	Red Lion Creek near Red Lion	3.08	1978-	Feb. 26, 1979	6.51	221	5	7.4	330	107	ь	

aRecurrence interval greater than 100 years. Value shown is approximate ratio of discharge to that of 100-year flood.

Monthend index reservoir contents for July 1989 were in the below-average range (below the monthend average for the period of record by more than 5 percent of normal maximum contents) at 32 of 100 reporting sites, compared with 30 of 100 during June 1989, including most reservoirs in Nebraska, the Dakotas, Wyoming, Montana, California, Nevada, and Colorado. About the same number of reservoirs had contents in the above-average range, including most reservoirs in Canada, Massachusetts, New Jersey, the Carolinas, the Tennessee Valley, Alabama, Oklahoma, Texas, and Arizona. Reservoirs with contents in the below-average range and lower than last year (with normal maximum contents of at least 1,000,000 acre-feet) were: International Falcon and Lake Travis, Texas: Lake McConaughy, Nebraska; Lake Sakakawea, North Dakota; Lake Oahe and Lake Francis Case, South Dakota; Canyon Ferry and Fort Peck, Montana; the Pathfinder and associated reservoirs, Wyoming; Bear Lake, Idaho-Utah; Pend Oreille Lake, Idaho; Franklin D. Roosevelt Lake, Washington; and also Pine Flat, Clair Engle Lake, and Lake Berryessa, all in California. Graphs of contents for seven reservoirs are shown on page 12 with contents for the 100 reporting reservoirs given on page 13.

Mean July elevations at the four master gages on the Great Lakes (provisional National Ocean Service data) were in the normal range on all four lakes. Levels rose from those for June on Lake Superior and Lake Huron, but declined on Lake Erie and Lake Ontario. July 1989 levels ranged from 0.11 foot (Lake Huron) higher to 0.07 foot lower (Lake Ontario) than those for

June. Monthly means have been in the normal range for 9 months on Lake Superior, 24 months on Lake Huron, 16 months on Lake Erie, and 3 months on Lake Ontario. July 1989 levels ranged from 1.09 feet higher (Lake Superior) to 0.12 foot lower (Lake Huron) than those for July 1988. Stage hydrographs for the master gages on Lake Superior, Lake Huron, Lake Erie, and Lake Ontario are on page 14.

Utah's Great Salt Lake (graph on page 14) declined 0.65 foot to 4,205.35 feet above National Geodetic Vertical Datum of 1929 on July 31. The lake has declined 1.45 feet since the seasonal high of May 1-15, is 2.70 feet lower than at the end of July 1988, and is also 6.50 feet lower than the maximum of record which occurred in June 1986 and March-April 1987.

Precipitation in the United States during July 1989 (provisional National Weather Service) was highly variable (maps on page 15), with sharp contrasts in many areas. For example, 50-75 percent of normal precipitation fell in the area comprising western Virginia, eastern Kentucky, and southern West Virginia, while 150-200 percent of normal precipitation fell in areas to the east, south, and west. The Palmer Drought Severity maps for July 1 and 29, 1989 are shown on page 18.

August-October 1989 outlook maps for both temperature and precipitation are on page 19. Precipitation is likely to be above median in an area of varying width from the western Great Lakes to southeastern Louisiana-southwestern Mississippi. Below-median precipitation is likely in an area extending from southwestern Texas to southeastern Arizona.

b Not determined

SUMMARY OF JULY 1989 STREAMFLOW

COMPARISON OF TOTAL MONTHLY MEANS WITH TOTAL MONTHLY MEDIANS

NEW EXTREMES DURING JULY 1989 AT STREAMFLOW INDEX STATIONS

			(Previous Jul extremes period of reco		July 1989					
Station	Stream and place of determination	Drainage area (square miles)	Years of record	Monthly mean in cfs (year)	Daily mean in cfs (year)	Monthly mean in cfs	Percent of median	Daily mean in cfs	Day		
number	Stream and place of determination		W F7 OWE	4 ,	(Jean)	III CIS	писции	III CIS	Lay		
		LO	w FLOWS								
02QB001	Matane River near Matane, Quebec	636	62	318 (1955)	191 (1955)	269	36	***	•••		
02NG001	St. Maurice River at Grand Mere, Quebec	16,200	69	8,300 (1933)	7,420 (1969)	8,200	41	***	***		
05464500	Cedar River at Cedar Rapids, Iowa	6,510	86	538 (1911)	236 (1934)	533	16	399	15		
		HIC	H FLOWS	3							
02131000	Pee Dee River at Peedee, South Carolina	8,830	50	21,520 (1975)	58,000 (1975)	26,450	465	***			
03434500	Harpeth River near Kingston Springs, Tennessee	681	64	988 (1972)	13,000 (1972)	1,064	477	4,390	6		
07352000	Saline Bayou near Lucky, Louisiana.	154	48	278 (1940)	1,460 (1940)	992	3,690	6,550	1		
07363500	Saline River near Rye, Arkansas	2,102	51	3,141 (1960)	14,500 (1960)	8,185	3,480	14,300	26		
08013500	Calcasieu River near Oberlin, Louisiana	753	52	3,574 (1941)	7,900 (1941)	9,082	5,400	51,100	1		
08033500	Neches River near Rockland, Texas	3,636	85	6,657 (1905)	16,900 (1919)	11,420	4,140	41,500	2		
16700000	Waiakea Stream near Mountain View, Hawaii, Hawaii	17.4	58	24.0 (1967)	50 (1958)	24.1	319	35	20		

MONTHLY MEAN DISCHARGE OF SELECTED STREAMS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

1988

MONTHLY MEAN DISCHARGE OF SELECTED STREAMS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

MONTHLY DEPARTURE OF ACTUAL STREAMFLOW (OCTOBER 1983-JULY 1989) FROM MEDIAN STREAMFLOW (1951-80)

ACTUAL MONTHLY STREAMFLOW, 1988 AND 1989 WATER YEARS, COMPARED WITH MEDIAN MONTHLY STREAMFLOW, 1951-80

DISCHARGE, IN THOUSAND CUBIC FEET PER SECOND

HYDROGRAPHS FOR THE "BIG THREE" RIVERS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period.

Provisional data; subject to revision

DISSOLVED SOLIDS AND WATER TEMPERATURES, FOR JULY 1989, AT DOWNSTREAM SITES ON FIVE LARGE RIVERS

Station number		July data of	Stream discharge during	Wilder of the William		Di	is	Water temperature ^b			
	Station name	following calendar years	Mean (cfs)	Mini- mum (mg/L)	Maxi- mum (mg/L)	Mean (Mini- mum tons per day	Maxi- mum	Mean in °C	Mini- mum in °C	Maxi- mum in °C
01463500	Delaware River at Trenton, N.J. (Morrisville, Pa.)	1989 1945-88 (Extreme yr)	8,378 7,174 °4,822	97 57 (1947)	124 145 (1978)	2,494 2,193	1,689 465 (1965)	3,947 16,700 (1969)	24.5 25.5	22.0 18.5	28.0 33.5
07289000	Mississippi River at Vicksburg, Miss.	1989 1976-88 (Extreme yr)	673,935 481,600	188 200 (1981)	243 330 (1988)	369,757 321,500	252,573 114,300 (1988)	551,123 633,000 (1980)	27.5 29.0	26.0 23.5	29.0 34.5
03612500	Ohio River at lock and dam 53, near Grand Chain, III. (stream- flow station at Metropolis, III.)	1989 1955-88 (Extreme yr)	333,400 153,900	167 124 (1965)	222 276 (1968,	****	92,400 23,700 (1988)	288,000 237,000 (1958)	***	23.0 16.5	25.0 31.0
06934500	Missouri River at Hermann, Mo. (60 miles west of St. Louis, Mo.)	1989 1976-88 (Extreme yr)		348 201 (1981)	1988) 461 501 (1985)	55,026 92,430	45,000 44,700 (1977)	59,600 208,000 (1984)	27.0 28.0	23.0 22.0	30.0 32.5
14128910	Columbia River at Warrendale, Oreg. (streamflow station at The Dalles, Oreg.)	1989 1976-88 (Extreme yr)	°75,690 172,600 °279,500	60 (1976)	93 (1977)	34,850	12.500 (1977)	65,100 (1981)	19.0	15.5	22.0

[®]Dissolved-solids concentrations, when not analyzed directly, are calculated on basis of measurements of specific conductance.

[®]To convert °C to °F: [(1.8 X °C) + 32] = °F.

^cMedian of monthly values for 30-year reference period, water years 1951-80, for comparison with data for current month.

FLOW OF LARGE RIVERS DURING JULY 1989

			Average discharge through September e 1985	July 1989						
		Drainage		Monthly mean discharge	Percent of median	Change in discharge from	Discharge near end of month			
Station	Stream and place of determination	area (square miles)	(cubic feet per second)	(cubic feet per second)	monthly discharge 1951-80	month	Cubic feet per	Million gallons	Date	
						(percent)	second	per day		
01014000	St. John River below Fish River at Fort Kent, Maine	5,665	9,758	2,876	62	-75	1,970	1,270	31	
01318500	Hudson River at Hadley, New York	1,664	2,908	1,470	142	-48	1,150	743	31	
01357500	Mohawk River at Cohoes, New York	3,456	5,683	2,390	128	-69	1,050	678	31	
01463500	Delaware River at Trenton, New Jersey	6,780	11,670	8,380	174	-53	5,240	3,390	31	
01570500	Susquehanna River at Harrisburg, Pennsylvania	24,100	34,340	39,400	332	-37	30,100	19,400	26	
01646500	Potomac River near Washington, District of Columbia	11,560	111,500	112,600	314	-9	11,300	7,300	31	
02105500	Cape Fear River at William O. Huske Lock, near Tarheel, North Carolina	4,852	5,002	4,754	243	-4	***	•••	***	
02131000	Pee Dee River at Peedee, South Carolina	8,830	9,871	26,450	465	213	9,600	6,200	30	
02226000	Altamaha River at Doctortown, Georgia	13,600	13,730	14,130	213	105	19,600	12,670	31	
02320500	Suwannee River at Branford, Florida	7,880	6,986	4,706	91	55	***	***	***	
02358000	Apalachicola River at Chattahoochee, Florida	17,200	22,420	33,620	249	32	20,200	13,100	31	
02467000	Tombigbee River at Demopolis lock and dam, near Coatopa, Alabama	15,385	23,520	47,160	750	9	24,300	15,700	31	
02489500	Pearl River near Bogalusa, Louisiana	6,573	9,880	13,170	407	-40	7,240	4,680	31	
03049500	Allegheny River at Natrona, Pennsylvania	11,410	119,580	115,360	256	-67	7,300	4,720	30	
03085000	Monongahela River at Braddock, Pennsylvania	7,337	112,480	110,930	271	-30	10,500	6,790	30	
03193000	Kanawha River at Kanawha Falls, West Virginia	8,367	12,550	9,583	187	-35	7,470	4,830	30	
03234500	Scioto River at Higby, Ohio	5,131	4,583	3,931	233	-60	4,220	2,730	31	
03294500	Ohio River at Louisville, Kentucky ²	91,170	115,800	111,100	227	-51	93,700	60,560	30	
03377500	Wabash River at Mount Carmel, Illinois	28,635	27,660	25.010	161	-53	27,800	17,970	31	
03469000	French Broad River below Douglas Dam, Tennessee	4,543	16,739	19,167	222	-16				
04084500	Fox River at Rapide Croche Dam, near Wrightstown, Wisconsin ²	6,010	4,238	2,006	84	-76	1,980	1,280	31	
04264331	St. Lawrence River at Cornwall, Ontario, near Massena, New York ³	298,800	243,900	281,000	103	8	277,000	179,000	31	
02NG001	St. Maurice River at Grand Mere, Quebec	16,300	24,910	8,200	41	-74	1,500	970	31	
05082500		30,100	2,593	927	35	-57	556	359	27	
05133500	Rainy River at Manitou Rapids, Minnesota	19,400	12,920	26,000	158	-2	20,000	13,000	22	
05330000		16,200	3,680	724	17	-31	690	445	31	
05331000		36,800	111,020	5,662	43	-31	4,370	2,820	31	
05365500		5,650	5,149	2,875	91	-37	2,370	1,530	31	
05407000		10,400	8,710	3,580	63	-69	3,460	2,230	31	
05446500	· · · · · · · · · · · · · · · · · · ·	9,549	6.080	2,010	58	-41	3,120	2,020	31	
05474500		119,000	63,790	25,590	41	-53	18,100	11,700	31	
06214500		11,795	7,056	11,090	74	-51	6,740	4,360	31	
06934500	6,	524,200	80,880	47,880	63	-16	58,000		31	
07289000			584,000	673,900	160	-12	414,000		28	
07331000		7,202	1,402	1,760	423	-79	917		31	
08276500		9,730	742	246	75	-53	254		27	
09315000	Green River at Green River, Utah	44,850	6,391	1,525	27	-71	1,160		27	
11425500		21,251	19,430	15,690	161	45	18,160		23	
13269000		69,200	18,520	8,800	79	-31	9,630		31	
13317000		13,550	11,390	7,480	51	-70	4,640		31	
13342500		9,570	15,510	7,720	70	-77	4,040		31	
14105700		237,000	1193,500	1191,300	68	-49	111,500		26	
14191000	Willamette River at Salem, Oregon	7,280	123,690	15,063	92	-59	5,890		2.7	
15515500		25,600	23,810	68,600	118	33	60,000	39,000	31	
08MF005		83,800	96,250	146,100	77	-31	116,200	75,100	31	

Adjusted.

2Records furnished by Corps of Engineers.

3Records furnished by Buffalo District, Corps of Engineers, through International St. Lawrence River Board of Control. Discharges shown are considered to be the same as discharge at Ogdensburg, N.Y., when adjusted for storage in Lake St. Lawrence.

4Records of daily discharge computed jointly by Corps of Engineers and Geological Survey.

USABLE CONTENTS OF SELECTED RESERVOIRS AND RESERVOIR SYSTEMS

PERCENT OF NORMAL MAXIMUM

USABLE CONTENTS OF SELECTED RESERVOIRS NEAR END OF JULY 1989

[Contents are expressed in percent of reservoir (system) capacity. The usable storage capacity of each reservoir (system) is shown in the column headed "Normal maximum"]

Principal uses: 2-Plood control	Percent of normal maximum					Principal uses: F-Flood control I-Irrigation					
-Irrigation			End		M-Municipal	End	End				
d-Municipal			Average		N1			End	Average		N1
Power	of	of	for	of	Normal	P-Power	of	of	for	of	Normal
R-Recreation	July	July 1988	end of July	June 1989	maximum (acre-feet) ^a	R-Recreation W-Industrial	July 1989	July 1988	end of July	June 1989	maximum
W-Industrial	1989	1988	July	1989	(acre-roct)*		1969	1988	эшу	1989	(acre-feet) ^a
NOVA SCOTIA Rossignol, Mulgrave, Falls Lake, St. Margaret's Bay,						NEBRASKA Lake McConaughy (IP)	64	71	75	74	1,948,000
Black, and Ponhook Reservoirs (P)	69	55	60	76	b226,300	OKLAHOMA Eufaula (FRP)	98	94	90 94 97	104	2,378,000
QUEBEC	80	81	76	88	280,600	Keystone (FPR)	92 104	81 100	94	102 100	661,000 628,200
Allard (P)	65	40	69	68	6,954,000	Lake Altus (FIMR)	82 96	79 93	65 91	99 97	133,000 1,492,000
MAINE Seven Reservoir Systems (MP)	78	68	78	90	4,107,000	OKLAHOMA-TEXAS Lake Texoma (FMPRW)	99	88	100	132	2,722,000
NEW HAMPSHIRE First Connecticut Lake (P)	78	87	88	87	76,450 99,310 165,700	TEXAS					
ake Francis (FPR)	82	77	86	92	99,310	Bridgeport (IMW)	100	77	54 82	100	386,400
ake Winnipesaukee (PR)	94	97	88	98	165,700	Carryon (FMR)	93 85	106	76	96 87	385,600 3,497,000
VERMONT						International Amistad (FIMPW)	57	97 72	66	61	2,668,000
Harriman (P)	79	84	79	90	116,200	Livingston (IMW)	100	88	89 96 25	109	1,788,000
Somerset (P)	85	77	82	95	57,390	Possum Kingdom (IMPRW)	97	69	96	99	570,200
MASSACHHERTTE						Red Bluff (P)	36 100	61 85	23 89	103	307,000 4,472,000
MASSACHUSETTS Cobble Mountain and						Twin Buttes (FIM)	61	77	31	68	177,800
Borden Brook (MP)	93	82	83	96	77,920	Lake Kemp (IMW)	92	71	89 38	100	268,000
			-			Lake Meredith (FMW)	41	41	38	42	796,900
NEW YORK	00		64	100	201 201	Lake Travis (FIMPRW)	73	85	79	81	1,144,000
Great Sacandaga Lake (FPR)	90 96	76 97	83 91	100 97	786,700	MONTANA					
Indian Lake (FMP)	96	84	90	100	1,680,000	Canyon Ferry (FIMPR)	74	80	91	78	2,043,000
New 1 GER City Reservoir System (MW).	>	04	90	100	1,000,000	Fort Peck (FPR)	68	75	90	69	18,910,000
NEW JERSEY						Hungry Horse (FIPR)	86	55	96	87	3,451,000
Wanaque (M)	93	76	82	100	77,450						
						WASHINGTON		-		00	
PENNSYLVANIA	47	44	45	70	1,180,000	Ross (PR) Franklin D. Roosevelt Lake (IP)	99 86	99 88	96 99	98 80	1,052,00 5,022,00
Allegheny (FPR)	99	89	93	106	188,000	Lake Chelan (PR)	99	99	98	95	676,10
Raystown Lake (FR)	68	67	63	68	761,900	Lake Cushman (PR)	93	100	100	92	359,50
Lake Wallenpaupack (PR)	71	75	74	76	157,800	Lake Merwin (P)	102	105	105	106	245,60
MANUTAND.						IDANO					
MARYLAND Baltimore Municipal System)	98	90	91	99	261,900	IDAHO Boise River (4 Reservoirs) (FIP)	70	37	75	79	1,235,00
Datumore Municipal System,	90	90	21	"	201,500	Coeur d'Alene Lake (P)	100	97	82	99	238,50
NORTH CAROLINA						Pend Oreille Lake (FP)	90	97	96	95	1,561,00
Bridgewater (Lake James) (P)	96	92	90	95	288,800	TD - 110 1111/01/11/0					
Narrows (Badin Lake) (P)	94 91	94 59	97 77	95 95	128,900 234,800	IDAHO-WYOMING	50	40	71	83	4,401,00
High Rock Lake (P)	91	39	"	93	234,800	Upper Snake River (8 Reservoirs) (MP)	30	40	11	63	4,401,00
SOUTH CAROLINA						WYOMING					
Lake Murray (P)	93	88	78	93	1,614,000	Boysen (FIP)	86	65	89	80	802,00
Lakes Marion and Moultrie (P)	89	74	72	102	1,862,000	Buffalo Bill (IP)	88	55	100	88	421,30
SOUTH CAROLINA-GEORGIA						Keyhole (F)	25	33	48	30	193,80
Strom Thurmond Lake (FP)	71	35	69	58	1,730,000	Glendo, and Guernsey Reservoirs (I)	47	67	62	57	3,056,00
Suom rinamons Cans (11)	**	33	0,	50	1,150,000	Citato, and Carriery Farm Const		-			
GEORGIA						COLORADO					
Burton (PR)	97	97	92	99	104,000	John Martin (FIR)	16	43	23	27	364,40
Sinclair (MPR)	89	89	90	85	214,000	Taylor Park (IR) Colorado-Big Thompson Project (I)	95 58	92 85	91 73	94 68	106,20 730,30
Lake Sidney Lanier (FMPR)	68	42	60	63	1,686,000	Colorado-Big Indiapson Project (i)	36	65	13	00	130,30
ALABAMA						COLORADO RIVER STORAGE					
Lake Martin (P)	99	88	90	99	1,375,000	PROJECT					
						Lake Powell; Flaming Gorge,					
TENNESSEE VALLEY						Fontenelle, Navajo, and Blue Mesa Reservoirs (IFPR)	83	90		85	31,620,00
Clinch Projects: Norris and Melton Hill Lakes (FPR)	75	39	55	83	2,293,000	Did the Reservois (if Fr)	93	,,,	***	0.5	
Douglas Lake (FPR)	89	36	61	95	1,395,000	UTAH-IDAHO					
Hiwassee Projects: Chatuge,						Bear Lake (IPR)	57	67	69	64	- 1,421,00
Nottely, Hiwasace, Apalachia,						CALIFORNIA					
Blue Ridge, Ocoee 3, and Parksville Lakes (FPR)	94	63	76	96	1,012,000	CALIFORNIA Folsom (FIP)	73	32	76	88	1,000,00
Holston Projects: South Holston,	-	0.3	70	90	1,012,000	Hetch Hetchy (MP)	94	80	80	100	360,4
Watauga, Boone, Fort Patrick Henry,						Isabeila (FIR)	24	18	45	31	568,1
and Cherokee Lakes (FPR)	85	47	62	90	2,880,000	Pine Flat (FI)	5	10	56	22	1,001,0
Little Tennessee Projects: Nantahala,						Clair Engle Lake (Lewiston) (P)		80	85	79	2,438,00
Thorpe, Fontana, and Chilhowee	02	**	75	00	1 479 000	Lake Berryessa (FIMW)	86 56	82 67	65 82	91 59	1,600,0
Lakes (FPR)	93	55	75	99	1,478,000	Millerton Lake (FI)	36	39	65	65	503,2
WISCONSIN						Shasta Lake (FIPR)	60	49	78	70	4,377,0
Chippewa and Plambeau (PR)	82	79	83 74	92	365,000						
Wisconsin River (21 Reservoirs) (PR)	68	54	74	82	399,000	CALIFORNIA-NEVADA	-	10	70	26	244.6
						Lake Tahoe (IPR)	24	18	70	26	744,6
MINNESOTA Mississippi River Headwater						NEVADA					
System (FMR)	40	32	38	46	1,640,000		. 25	24	71	32	194,3
NORTH DAKOTA					20 722 200	ARIZONA-NEVADA	63	96	26	83	27,970,0
Lake Sakakawea (Garrison) (FIPR)	66	71	92	67	22,700,000	Lake Mead and Lake Mohave (FIMP)	. 82	88	76	8.5	27,970,0
SOUTH DAKOTA						ARIZONA					
Angostura (i)	44	54	83	50	130,770	San Carlos (IP)	. 16	35	22	25	935,1
W II FI 1 /B	37	41	55	60	185,200	Salt and Verde River System (IMPR)	. 60	83	46	67	2,019,1
Belle Fourche (I)				81	4,589,000						
Lake Francis Case (FIP)	. 78	79	85		4,367,000	NEW MENICO					
Lake Francis Case (FIP) Lake Cahe (FIP) Lake Sharpe (FIP)	61	79 76 103	101	63	22,240,000	NEW MEXICO	. 66	83	81	60	315,7

a1 acre-foot = 0.04356 million cubic feet = 0.326 million gallons = 0.504 cubic feet per second per day.
bThousands of kilowatt-hours (the potential electric power that could be generated by the volume of water in storage)

GREAT LAKES ELEVATIONS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates median of monthly values for reference period, 1951-80. Heavy line indicates mean for current period. Data from National Ocean Service.

ELEVATION, IN FEET ABOVE NATIONAL GEODETIC VERTICAL DATUM OF 1929

Fluctuations of Great Salt Lake, January 1982 through July 1989

(From Weekly Weather and Crop Bulletin prepared and published by the NOAA/USDA Joint Agricultural Weather Facility)

GROUND-WATER CONDITIONS DURING JULY 1989

Ground-water levels remained above normal in most of the southern two-thirds of the Northeast Region in spite of seasonal declines. In the north, levels remained in the normal range. Water levels rose only in south-central Pennsylvania and western Maryland. Levels remained essentially unchanged in a few areas in the central and southern parts of the Northeast and in the coastal areas of New Jersey and Long Island, New York.

Ground-water levels throughout most of the southeastern States were mixed with respect to last month. Levels declined in West Virginia and Louisiana and rose in Florida. Levels were above long-term averages in most areas except for Arkansas and Louisiana, where they were mixed, and Florida, where they were consistently below average. Monthly high levels were recorded at key wells in West Virginia, Kentucky, and Virginia at Glenville, the Viola well in Graves County, and the Tyler well in Louisa County, respectively. A record low level occurred in Arkansas at the Pine Bluff well in Jefferson County.

In the central and western Great Lakes States

ground-water levels fell throughout most of Minnesota, Michigan, and Ohio. Levels were mixed elsewhere in the region with respect to levels last

Map showing ground-water storage near end of June and change in ground-water storage from end of May to end of June.

MONTHEND GROUND-WATER LEVELS IN KEY WELLS

Area between light-weight solid lines indicates range between highest and lowest record for the month. Dashed line indicates average of monthly levels in previous years. Heavy line indicates level for current period.

month. Water levels were below long-term averages throughout Minnesota, but were at or above average in most of Michigan and Ohio and mixed with respect to average in lowa. A July high level occurred in a key well in Franklin County in central Ohio.

Ground-water levels continued to fall in most of the Western States, except in Idaho and Texas where changes were mixed with respect to last month. Levels were below long-term averages in much of the west, including Washington, Idaho, North Dakota, California, Kansas, and Arizona. Elsewhere levels were mixed with respect to average. All-time low water levels occurred in key wells in the Las Vegas area of Nevada, the Holladay area of Utah, and in Kansas in Harvey County, and at the Kansas Agricultural Experimental Station in Thomas County where water levels have set monthly or all-time record lows every month since September 1987. A July record low occurred in a key well in El Paso, Texas.

Provisional data; subject to revision

WATER LEVELS IN KEY OBSERVATION WELLS IN SOME REPRESENTATIVE AQUIFERS IN THE CONTERMINOUS UNITED STATES--JULY 1989

	Water level in feet with ref- erence to land-	Departure from average	Net chang		Year records	
Aquifer and Location	surface datum	in feet	Last month Last year		began	Remarks
Glacial drift at Hanska, south-central Minnesota	-7.88	-1.44	-0.23	+1.12	1942	
Glacial drift at Roscommon in north-central part of Lower Peninsula, Michigan.	-4.84	-0.19	-0.76	+0.57	1935	
Glacial drift at Marion, Iowa	-5.16	+0.04	+1.16	+2.26	1941	
Glacial drift at Princeton in northwestern Illinois	-10.00	+1.73	-1.82	+0.64	1943	
Petersburg Granite, southeastern Piedmont near Fall Zone, Colonial Heights, Virginia.	-15.02	+0.60	-0.69	+1.13	1939	
Glacial outwash sand and gravel, Louisville, Kentucky (U.S. well no. 2).	-18.78	+5.67	+0.24	+1.25	1946	
500-foot sand aquifer near Memphis, Tennessee (U.S. well no. 2).	-106.43	-15.86	+0.03	+1.19	1941	
Weathered granite, Mocksville area, Davie County, western Piedmont, North Carolina.	-16.65	+3.38	-0.62	+3.04	1932	
Sparta Sand in Pine Bluff industrial area, Arkansas	-238.00	-29.95	-0.50	-2.67	1958	July low
Eutaw Formation in the City of Montgomery, Alabama (U.S. well no. 4).	-25.1	-2.1	-0.2	-3.1	1952	
Upper Floridan aquifer on Cockspur Island, Savannah area, Georgia (U.S. well no. 6).	-37.54	-9.08	+0.13	+1.31	1956	
Sand and gravel in Puget Trough, Tacoma, Washington.	-115.78	-4.63	-1.40	-1.50	1952	
Pleistocene glacial outwash gravel, North Pole, northern Idaho (U.S. well no. 3).	-466.2	-6.6	+1.1	+1.6	1929	
Snake River Group: Snake River Plain Aquifer, at Eden, Idaho (U.S. well no. 4).	-121.9	-4.1	+2.3	-1.3	1957	
Alluvial valley fill in Flowell area, Millard County, Utah (U.S. well no. 9).	-35.30	+4.12	-2.35	-8.78	1929	
Alluvial sand and gravel, Platte River Valley, Ashland, Nebraska (U.S. well no. 6).	-7.55	-2.14	-0.38	-0.67	1935	
Alluvial valley fill in Steptoe Valley, Nevada	-8.23	+4.51	-0.87	-0.19	1950	
Pleistocene terrace deposits in Kansas River valley, at Lawrence, northeastern Kansas.	-24.60	-4.18	-0.50	-2.28	1953	
Alluvium and Paso Robles clay, sand, and gravel, Santa Maria Valley, California.	-146.0	-6.15	-0.25	-11.34	1957	
Valley fill, Elfrida area, Douglas, Arizona (U.S. well no. 15).	-99.91	-16.27	-0.02	+1.42	1951	
Hueco bolson, El Paso area, Texas	-272.66	-19.82	+1.03	-1.12	1965	July low
Evangeline aquifer, Houston area, Texas	-295.53	+6.17	-0.04	+5.65	1965	

(From Weekly Weather and Crop Bulletin prepared and published by the NOAA/USDA Joint Agricultural Weather Facility)

NATIONAL WATER CONDITIONS

JULY 1989

Based on reports from the Canadian and U.S. Field offices; completed August 15, 1989

TECHNICAL

Thomas G. Ross, Editor

STAFF

Judy D. Fretwell, Assistant Editor

Krishnaveni V. Sarma

COPY PREPARATION

Thomas G. Ross Kristina L. Herzog

AKATION

Kristina L. Herzog Krishnaveni V. Sarma

GRAPHICS

Thomas G. Ross Krishnaveni V. Sarma Kristina L. Herzog

The National Water Conditions is published monthly. Subscriptions are free on application to the U.S. Geological Survey, 419 National Center, Reston, VA 22092.

EXPLANATION OF DATA (Revised April 1989)

Cover map shows generalized pattern of streamflow for the month based on provisional data from 183 index gaging stations—18 in Canada, 163 in the United States, and 2 in the Commonwealth of Puerto Rico. Alaska, Hawaii, and Puerto Rico inset maps show streamflow only at the index gaging stations that are located near the point shown by the arrows. Classifications on map are based on comparison of streamflow for the current month at each index station with the flow for the same month in the 30-year reference period, 1951-80. Shorter reference periods are used for one Canadian index station, two Kansas index stations, and the Puerto Rico index stations because of the limited records available.

The streamflow ranges map shows where streamflow has persisted in the above- or below-normal range from last month to this month and also where streamflow is in the above- or below-normal range this month after being in a different range last month. Three pie charts show: the percent of stations reporting discharges in each flow range for both the conterminous United States and southern Canada, and also the percent of area in each flow range for the conterminous United States and southern Canada. The bar graph shows total mean and total median flow for all reporting stations in the conterminous United States and southern Canada.

The comparative data are obtained by ranking the 30 flows for each month of the reference period in order of decreasing magnitude—the highest flow is given a ranking of 1 and the lowest flow is given a ranking of 30. Quartiles (25-percent points) are computed by averag-

ing the 7th and 8th highest flows (upper quartile), 15th and 16th highest flows (middle quartile and median), and the 23rd and 24th highest flows (lower quartile). The upper and lower quartiles set off the highest 25 percent of flows and lowest 25 percent of flows, respectively, for the reference period. The median (middle quartile) is the middle value by definition. For the reference period, 50 percent of the flows are greater than the median, 50 percent are less than the median, 50 percent are between the upper and lower quartiles (in the normal range), 25 percent are greater than the upper quartile (above normal), and 25 percent are less than the lower quartile (below normal). Flow for the current month is then classified as: in the above-normal range if it is greater than the upper quartile, in the normal range if it is between the upper and lower quartiles, and in the below-normal range if it is less than the lower quartile. Change in flow from the previous month to the current month is classified as seasonal if the change is in the same direction as the change in the median. If the change is in the opposite direction of the change in the median, the change is classified as contraseasonal (opposite to the seasonal change). For example: at a particular index station, the January median is greater than the December median; if flow for the current January increased from December (the previous month), the increase is seasonal; if flow for the current January decreased from December, the decrease is contraseasonal.

PRECIPITATION OUTLOOK FOR AUGUST THROUGH OCTOBER 1989

Flood frequency analyses define the relation of flood peak magnitude to probability of occurrence or recurrence interval. Probability of occurrence is the chance that a given flood magnitude will be exceeded in any one year. Recurrence interval is the reciprocal of probability of occurrence and is the average number of years between occurrences. For example, a flood having a probability of occurrence of 0.01 (1 percent) has a recurrence interval of 100 years. Recurrence intervals imply no regularity of occurrence; a 100-year flood might be exceeded in consecutive years or it might not be exceeded in a 100-year period.

Statements about ground-water levels refer to conditions near the end of the month. The water level in each key observation well is compared with average level for the end of the month determined from the 30-year reference period, 1951-80, or from the entire past record for that well when only limited records are available. Comparative data for ground-water levels are obtained in the same manner as comparative data for streamflow. Changes in ground-water levels, unless described otherwise, are from the end of the previous month to the end of the current month.

Dissolved solids and temperature data are given for five stream-sampling sites that are part of the National Stream Quality Accounting Network (NASQAN). Dissolved solids are minerals dissolved in water and usually consist predominately of silica and ions of calcium, magnesium, sodium, potassium, carbonate, bicarbonate, sulfate, chloride, and nitrate. Dissolved-solids discharge represents the total daily amount of dissolved minerals carried by the stream. Dissolved-solids concentrations are generally higher during periods of low streamflow, but the highest dissolved-solids discharges occur during periods of high streamflow because the total quantities of water, and therefore total load of dissolved minerals, are so much greater than at times of low flow.

DEPARTMENT OF THE INTERIOR GEOLOGICAL SURVEY UNITED STATES

NATIONAL CENTER, STOP 419 RESTON, VIRGINIA 22092

OFFICIAL BUSINESS

change, including ZIP code). if change of address is needed [(indicate NOT wish to receive this material , or Return this sheet to above address, if you do

> U.S. DEPARTMENT OF THE INTERIOR POSTAGE AND FEES PAID INT 413

FIRST CLASS

SPECIAL PROCESSING DEPT MARCIA KOZLOWSKI XEROX/UNIVERSITY MICROFILMS ANN ARBOR, MI 48106