Polygon Partitioning

Partitioning the Polygon to Monotone polygons

A monotone polygon

- A polygon P is said to be monotone with respect to line L if ∂P can be split in to two polygonal chains such that each chain is monotone with respect to L
- The two chains share a vertex at either end

y-monotone polygon: left and right chains

We will also assume that the polygon is strictly y-monotone, i.e. it is y-monotone and has no horizontal edges.
Additionally, you may assume that no two vertices have the same y-coordinate

Triangulation of a monotone polygon

Input and Output

Time complexity

Identify the major steps contributing to the time complexity

- Algorithm: Triangulation of a Monotone Polygon
 Sort vertices by decreasing y-coordinate, resulting in po, . . . , pn.
 Push po.
 Push p1.
 for i = 2 to n 1 do
 - **if** *pi* is adjacent to *vo* **then**
 - begin
 - while t > 0 do
 - begin
 - Draw diagonal pi → >vt.
 - Pop
 - end
 - Pop
 - Push vt
 - Push pi
 - end
 - **else if** *pi* is adjacent to *vt* **then**
 - begin
 - **while** t > 0 and v_t is not reflex **do**
 - begin
 - − Draw diagonal pi → > vt-1
 - Pop
 - end
 - Push *pi*
 - end

Major steps: Time complexity

- Sorting in linear time
- Each vertex is pushed
 at most twice on the stack,
 once as pi and once as vi.
- Examination of the code shows that for each Push there is a corresponding Pop, and thus the algorithm requires O(n) time.

i	stack	condn	while	diag
2	0,1	else	No (1 refl)	
3	0,1,2	else	No(2 refl)	
4	0,1,2,3	else	No(3 refl)	
5	0,1,2,3, 4	else	Yes(4 notref)	5,3
5	0,1,2,3	Yes(angle 532 or angle 3 not reflex)		5,2
5	0,1,2	Yes(angle 521 or angle 2 not reflex)		5,1
5	0,1		No(1 ref)	
5	0,1,5 as pi			
6	0,1,5 as vt	if	Yes	6,5
6	0,1		Yes	6,1
6	0		No	
6	5,6			

Triangulation of a monotone polygon

Triangulation of a monotone polygon can be done in linear time

- Is it possible to use this algorithm (triangulation of a monotone polygon) to triangulate a non-monotone polygon (normal polygon) efficiently?
- The time complexity of the algorithm for triangulation of a normal polygon - O(n²)

Algorithm to triangulate a non-monotone (normal) polygon

- Step 1: Partition a Polygon to monotone pieces
- Step 2 :Triangulate each monotone piece (can be done in linear time)
- If step 1 can be done efficiently (less than O(n²)), then we can develop an efficient algorithm than the current O(n²) algorithm for triangulating a polygon
- We proceed focusing on a normal polygon

Is P monotone?

What characteristic makes P non-monotone?

Interior cusps

To make P monotone:

- Remove/ Break interior cusps
- Consider vertex 8

• Δ6 7 8 is monotone

To break non-monotonicity of vertex 8:

We draw
 a line between 8 & 6

How do we select a vertex (eg: vertex 6) from many choices?

Restrict our choice of a vertex to connect to:

If we can restrict the choice of a vertex

- Trapezoid
- What is a trapezoid?

Trapezoid

- Trapezoid: A convex quadrilateral with two parallel edges
- To summarize what we are doing up to now:
- We are trying to break the interior cusps of a Polygon
- By connecting vertex v₁ (reflex vertex which caused non-monotonicity) to another vertex v₂
- By introducing a trapezoid structure, we are restricting the choice for v₂
- First we trapezoidalize the polygon, then we divide it in to monotone pieces by breaking the interior cusps

Trapezoidalization

How do we trapezoidalize P?

Trapezoidalization

What have we done in this example?

Trapezoidalization[Chazelle & Incerpi,1984]

- We have drawn horizontal lines through a vertex of a polygon
- We can either draw horizontal / vertical lines
- It can be a horizontal or vertical trapezoidalization.
- We focus on horizontal trapezoidalization.
- Assumption: No two vertices lie on a horizontal line

Horizontal trapezoidalization

 Polygon will be partitioned in to Trapezoids by drawing horizontal lines through a vertex of a polygon

P completely trapezoidalized?

References

- J. O'Rourke: Art Gallery Theorems and Algorithms
- J. O Rourke, Computational Geometry in C,
 2/e, Cambridge University Press, 1998)
- https://www.cs.jhu.edu/~misha/Spring16/05.
 pdf
 - From John Hopkins University

Thank you