CMA-ES

Antoni Zajko

Warsaw University of Technology

2023

CMA-ES wysokopoziomowo

Cel: Zminimalizować funkcję f

- 1. Zainicjalizuj parametry:
 - $1.1 \Sigma^{(0)} = I$
 - $1.2 \ \mu^{(0)} \in \mathbb{R}^n$
 - $1.3 \ \sigma^{(0)} \in \mathbb{R}$
- 2. Dopóki nie zostanie spełnione ustalone kryterium:
 - 2.1 Wygeneruj p punktów x_i tak, że : $x_i \sim \mathcal{N}(\mu^{(g)}, \sigma^{(g)}\Sigma^{(g)})$
 - 2.2 Zaktualizuj μ , Σ , σ na podstawie najlepszych punktów z x_i

Wizualizacja działania

https://blog.otoro.net/assets/20171031/rastrigin/cmaes.gif

Aktualizacja μ (wartości oczekiwanej rozkładu)

- 1. Wybierz $q \leqslant p$ "najlepszych" punktów spośród x
- 2. Posortuj te punkty od najlepszych do najgorszych
- 3. $\mu^{(g+1)} = \mu^{(g)} + c_{\mu} \sum_{i=1}^{q} w_i (x_i \mu)'$

Aktualizacja μ (wartości oczekiwanej rozkładu)

- q jest hiperparametrem tej metody.
- **C**zęsto $w_i = \frac{1}{q}$, chociaż niekoniecznie.
- ► Często się przyjmuje, że $\sum_{i=1}^{q} w_i = 1$, chociaż tak niekoniecznie musi być. Suma tych wag nie musi być nawet dodatnia.
- $ightharpoonup c_{\mu}$ jest parametrem uczenia dla μ (jednym z wielu w tej metodzie).

Variance effective selection mass

$$q_{ ext{eff}} = \left(rac{||w||_1}{||w||_2}
ight)^2 = rac{1}{\sum_{i=1}^q w_i^2}$$

Dobór wag

- 1. Dla $w_i = \frac{1}{a}$, $q_{eff} = q$
- 2. Uważa się, że jeżeli $q_{\it eff} pprox {q\over 2}$, to dobór wag jest w porządku
- 3. Przykładowy dobór wag: $w_i \propto q i + 1$, gdzie $q \approx \frac{p}{2}$

Adaptacja macierzy kowariancji

Estymacja macierzy kowariancji

$$\Sigma = \sum_{i=1}^{q} w_i (x_i - \mu) (x_i - \mu)^{\top}$$

Rank-q-update

$$\Sigma^{(g+1)} = (1 - c_q) \Sigma^{(g)} + c_q \sum_{i=1}^q w_i \left(\frac{x_i - \mu}{\sigma^{(g)}}\right) \left(\frac{x_i - \mu}{\sigma^{(g)}}\right)^\top$$

Gdzie c_q to jest learning rate. Ważny jest odpowiedni jego dobór. Za mały learning rate będzie powodował zbyt wolne uczenie, natomiast za duży spowoduje degeneracje macierzy kowariancji. Eksperymenty pokazują, że $c_q \approx \frac{q_{eff}}{n^2}$ jest optymalnym wyborem.

Ścieżka ewolucji

$$ho_c^{(g)} = egin{cases} 0, & g = 0 \ (1 - c_c)
ho_c^{(g-1)} + \sqrt{c_c (2 - c_c) \mu_{eff}} rac{m^{(g)} - m^{(g-1)}}{c_m \sigma^{(g)}}, & g > 0 \end{cases}$$

Gdzie c_c jest kolejnym learning rate.

Rank-One-Update

Wykorzystując ścieżkę ewolucji, można aktualizować macierz kowariancji:

$$\Sigma^{(g+1)} = (1-c_1)\Sigma^{(g)} + c_1 p_c^{(g+1)} (p_c^{(g+1)})^{\top}$$

Gdzie c_1 jest kolejnym learning rate.

Finalny rezultat

$$egin{aligned} \Sigma^{(g+1)} &= (1 - c_1 - c_q) \Sigma^{(g)} \ &+ c_1 p_c^{(g+1)} (p_c^{(g+1)})^{ op} \ &+ c_q \sum_{i=1}^q w_i \left(rac{x_i - \mu^{(g)}}{\sigma^{(g)}}
ight) \left(rac{x_i - \mu^{(g)}}{\sigma^{(g)}}
ight)^{ op} \end{aligned}$$

Zalety

- Dużo lepiej sobie radzi z optimami lokalnymi, niż tradycyjne algorytmy np. BFGS,
- Nie wymaga dużej populacji, dzięki odpowiedniemu dopasowaniu współczynników uczenia,
- Inwariancja ze względu na skalowanie, transformacje monotnoniczne, transformacje przestrzeni zachowujące kąty.

Wady

- Kosztowność obliczeniowa, ponieważ w każdej iteracji jest wymagane policzenie kilku macierzy kowariancji,
- inwariancja ze względu na skalowanie, transformacje monotnoniczne, transformacje przestrzenie zachowujące kąty,
- Nie nadaje się do problemów z dynamicznym zbiorem, po którym się optymalizuje tzn. takim, którego postać zależy od optymalizowanych parametrów,
- Nie działa ze zmiennymi kategorycznymi.

Zbieżność

Function	$f_{ m stop}$	init	n	CMA-ES	DE	RES LOS
$f_{ m Ackley}(m{x})$	1e-3	$[-30, 30]^n$	20	2667		. 6.0e4
, ,			30	3701	12481	1.1e5 9.3e4
			100	11900	36801	
$f_{ m Griewank}(m{x})$	1e-3	$[-600, 600]^n$	20	3111	8691	
			30	4455	11410 *	8.5e-3/2e5 .
			100	12796	31796	
$f_{ m Rastrigin}(m{x})$	0.9	$[-5.12, 5.12]^n$	20	68586	12971	. 9.2e4
		DE: $[-600, 600]^n$	30	147416	20150 *	$1.0e5 \ 2.3e5$
			100	1010989	73620	
$f_{\mathrm{Rastrigin}}(\boldsymbol{A}\boldsymbol{x})$	0.9	$[-5.12, 5.12]^n$	30	152000	171/1.25e6 *	
			100	1011556	944/1.25e6 *	
$f_{ m Schwefel}(m{x})$	1e-3	$[-500, 500]^n$	5	43810	2567 *	. 7.4e4
			10	240899	5522 *	. 5.6e5

Bibliografia

- 1. Opis algorytmu
- 2. Benchmark algorytmu