Overview of Machine Learning: Opportunities and Challenges

John D. Lee and Linda Ng Boyle

10/28/2019

HF Considerations for ML and ML Considerations for HF

- Human-centered ML represents a looming societal need
- ML deployment sometimes neglects design and systems thinking
- ML mindset for data analysis might save us from the p-value ritual
- ML and Human-centered tradeoffs in model development (e.g., understanding and fairness)

Increasing Centrality of Machine Learning in System Design|Human implications of increasingly powerful algorithms

Design Thinking and Systems Thinking for ML

- Design thinking: Empathy and understanding for person-centered solutions
- Systems thinking: 5 whys? 5 whats?
- Sea-level and C-level support for success

Machine Learning versus Inferential Data Analysis

- Linear regression and logistic regression as machine learning?

ML mindset	Traditional inferential mindset
Prediction	Inference
Cross validation and prediction error	Hypothesis testing and p values
Practical significance	Statistical significance

Holdout validation and prediction error

Types of Machine Learning

- Supervised learning: Predicting a known output
- Unsupervised learning: Identifying unknown patterns or clusters
- Reinforcement learning: Learning through interactions with a system

Supervised Learning: More than curve fitting?

Essential Tradeoffs in ML Design|Variance-bias tradeoff of a model θ

 $\Omega(\theta)=$ Model complexity, ideally small variance and good generalization

 $L(\theta) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ = Model error, ideally small bias and precise predictions

Objective function $(\theta) = \Omega(\theta) + L(\theta)$

https://xgboost.readthedocs.io/en/latest/index.html

Essential Tradeoffs in ML Design Human-centered tradeoffs

 Different errors: Cost of a miss may differ than a cost of a false alarm

 $L(\theta) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$ Positive errors equally problematic as negative errors??

- Trust depends on more than AUC (Area Under the Receiver-Operator Curve): Hard hits don't compensate for easy misses
- People might value understandable models more than precise models

 $\Omega(\theta)$ Model complexity does not typically reflect perceived complexity

Essential Tradeoffs in ML Design | Hyperparameters

Hyperparameters (as in λ below) adjust algorithms to promote:

- A better model fit
- A more robust model
- A more understandable model

Standard regression:
$$RSS = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2$$

Ridge regression:

$$RSS = \sum_{i=1}^{n} (y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij})^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning. New York: Springer New York. https://doi.org/10.1007/978-1-4614-7138-7

HF Considerations for ML and ML Considerations for HF

- Human-centered ML represents a looming societal need
- $\boldsymbol{\mathsf{-}}$ Design and systems thinking is sometimes neglected with ML deployment
- ML mindset for data analysis might save us from the p-value ritual
- ML and Human-centered tradeoffs in model development