Graphs and Tables and SOM: Supplementray Online Material for paper

Adam Okulicz-Kozaryn* Rutgers - Camden Micah Altman[†] MIT

Draft: Friday 26th September, 2014

Contents

1	PAPER Tables and Graphs	2
2	Only ONLINE APPENDIX	3
3	General Considerations	3
	3.1 Electricty use: residential and non-residential	3
	3.2 TODO Petroleum use: residential and non-residential	3
	3.3 TODO Natural Gas use: residential and non-residential	3
4	countries	3
	4.1 europe-mannheim	4
	4.2 world	5
5	Census Divisions	6
6	States	6
7	Counties	14
8	Counties-SMART version	18
	*EMAIL: adam.okulicz.kozaryn@gmail.com I thank XXX. All mistakes are n	nine.

[†]EMAIL: ???

1 PAPER Tables and Graphs

Table 1: Variable definitions

name	description
happiness	"All things considered, how satisfied are you with your life as a whole these days?" $1=$ "dis-
	satisfied" to 10="satisfied"; WVS
PCGDP	GDP per capita (constant 2005 US\$); Code: NY.GDP.PCAP.KD; "GDP per capita is gross
	domestic product divided by midyear population. GDP is the sum of gross value added
	by all resident producers in the economy plus any product taxes and minus any subsidies
	not included in the value of the products. It is calculated without making deductions for
	depreciation of fabricated assets or for depletion and degradation of natural resources. Data
	are in constant 2005 U.S. dollars."; WB
energy use, pc	Energy use (kg of oil equivalent per capita); Code: EG.USE.PCAP.KG.OE "Energy use
	refers to use of primary energy before transformation to other end-use fuels, which is equal
	to indigenous production plus imports and stock changes, minus exports and fuels supplied
	to ships and aircraft engaged in international transport."; WB
unemployment, %	Unemployment, total (% of total labor force) (modeled ILO estimate); Code:
	SL.UEM.TOTL.ZS; "Unemployment refers to the share of the labor force that is without
	work but available for and seeking employment."; WB
co2 emissions, pc	CO2 emissions (metric tons per capita); Code: EN.ATM.CO2E.PC; "Carbon dioxide emis-
·	sions are those stemming from the burning of fossil fuels and the manufacture of cement.
	They include carbon dioxide produced during consumption of solid, liquid, and gas fuels and
	gas flaring."; WB
female life expectancy	Life expectancy at birth, female (years); Code: SP.DYN.LE00.FE.IN; "Life expectancy at
	birth indicates the number of years a newborn infant would live if prevailing patterns of
	mortality at the time of its birth were to stay the same throughout its life."
road sector gasoline fuel con-	Road sector gasoline fuel consumption per capita (kg of oil equivalent); Code:
sumption, pc	IS.ROD.SGAS.PC; "Gasoline is light hydrocarbon oil use in internal combustion engine such
	as motor vehicles, excluding aircraft."; WB
percent urban	population (% of total); Code: SP.URB.TOTL.IN.ZS; "Urban population refers to people
	living in urban areas as defined by national statistical offices. It is calculated using World
	Bank population estimates and urban ratios from the United Nations World Urbanization
	Prospects."
maximum temperature in Jan-	"near-surface temperature maximum (degrees Celsius)"; TYN_CY
uary	
maximum temperature in July	"near-surface temperature maximum (degrees Celsius)"; TYN_CY

Variable sources. WVS: World Values Survey www.worldvaluessurvey.org; TYN_CY: Tyndall Centre (www.tyndall.ac.uk) Mitchell, T.D., Hulme, M., and New, M., 2002: Climate data for political areas. Area 34:109-112. http://www.cru.uea.ac.uk/~timm/cty/obs/TYN_CY_1_1_var-table.html; WB: World Bank http://data.worldbank.org

2 Only ONLINE APPENDIX

[note: this section will NOT be a part of the final version of the manuscript, but will be available online instead]
!!!TODO look more carefully at energy definitions!!

3 General Considerations

3.1 Electricty use: residential and non-residential

How is electricity used in United States homes? This is an important consideration because it really shows what we do with this electricity—how we consume it, what are the end uses. Data are shown in table 2. Furthermore end uses of energy changed over time, for instance from 1993 to 2009: applianes share increased from 24% to 35% and space heating dropped from 53% to 41% http://www.eia.gov/todayinenergy/detail.cfm?id=10271&src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy% 20Consumption%20Survey%20%28RECS%29-b1. Also, the good news is that average energy consumption per household dropped from 114 m BTU in 1980 to 90 m BTU in 2009 http://www.eia.gov/consumption/residential/reports/2009/consumption-down.cfm?src=%E2%80%B9%20Consumption%20%20%20%20%20%20Residential%20Energy%20Consumption%20Survey%20%28RECS%29-b5.

Table 2: Estimated U.S. Residential Electricity Consumption by End Use, 2012 www.eia.gov/tools/faqs/faq.cfm?id=96&t=3

End Use	Quadrillion		
Btu	Billion		
kilowatthours	Share of		
total			
Space cooling	0.85	250	18.00%
Lighting	0.64	186	14.00%
Water heating	0.45	130	9.00%
Refrigeration	0.38	111	8.00%
Televisions and related equipment 1	0.33	98	7.00%
Space heating	0.29	84	6.00%
Clothes dryers	0.2	59	4.00%
Computers and related equipment2	0.12	37	3.00%
Cooking	0.11	31	2.00%
Dishwashers3	0.1	29	2.00%
Furnace fans and boiler circulation pumps	0.09	28	2.00%
Freezers	80.0	24	2.00%
Clothes washers3	0.03	9	1.00%
Other uses4	1.02	299	22.00%
Total consumption	4.69	1375	

3.2 TODO Petroleum use: residential and non-residential

3.3 TODO Natural Gas use: residential and non-residential

4 countries

Literature about happiness across countries usually focuses on role of income, with a well known Easterlin Paradox, where economic growth does not lead to greater happiness over time.¹. Yet, in space, across countries it is agreed upon that richer countries are happier at least with quadratic relationship.

¹veenhoven's criticsim-have it somewhere-easterlin delusion etc

In this study we aregue that countries that consumer more enrgy are not happier when controlling for income—and interpret this as another argument for energy conservation. Also it counters commoin wisodom—one could think that greater energy consumption leasd to greater happiness—if not then whatt;s the point of energy consumption.

One explanation is that sustainable people are happy (cite that i think ecological economics paper-should be in ebib)

4.1 europe-mannheim

4.2 world

very interesting-when controlling fpr gdp, energy becomes negativbe!!

5 Census Divisions

Figure 1: Census divisions.

have a ts graph here showing happiness by division and lectricity consumption-guess smooth them

6 States

This paper started as one author frequently flies from NJ to TX and noticed from the air and on the ground huge differences in energy use between the two states. Bigger houses, roads, cars, indeed everything is big in Texas! And indeed differences are striking—Texas consumee about twice as much enbrgy as NJ does per capita; yet interestingly not a big difference in residential energy consumption—perhaps everything is newer in TX and hence more energy efficient. The biggest differences are in transportation ?? v ?? -ii

TETPB	Total energ	y consumption per	capita, m BTU	
TERPB	Total energ	y consumption per	capita in the	residential sector, m BTU
TEAPB	Total energy	y consumption per	capita in the	transportation sector, m BTU
TECPB	Total energ	y consumption per	capita in the	commercial sector, m BTU
TEIPB	Total energy	v consumption per	capita in the	industrial sector, m BTU

sorted on TETPB, this is for 2009

state	TETPB	TERPB	TEAPB	TECPB	TEIPB
RI	182	58	60	44	20
NY	192	56	56	62	18
HI	205	27	100	31	48
MA	211	65	69	42	35
CA	212	40	84	41	47
CT AZ FL NH	215 219 222 227 244	71 59 66 69 58	68 76 77 80 80	52 52 54 51 43	23 31 25 27 63
VT MD OR NC	248 256 269 273 273	80 74 68 78 68	85 81 87 76 103	47 74 51 63 72	36 27 63 56 31
MI	274	76	75	61	62
UT	274	59	86	55	74
PA	287	73	77	54	83
DE	294	77	79	71	67
CO	296	68	85	60	83
IL	303	76	78	63	86
GA	304	76	98	57	73
WA	307	77	91	59	80
VA	308	81	93	78	56
ME	311	68	94	48	101
WI	313	76	76	63	98
MO	313	89	96	69	59
OH	321	81	82	61	98
DC	324	61	34	222	7
NM	325	57	99	59	110
I ID TN MN SC AR	326	82	80	55	109
	333	84	96	60	93
	340	77	90	66	108
	345	79	99	57	110
	360	78	100	57	125
MS WV AL KS OK	379	75	122	54	128
	382	94	92	60	136
	384	78	98	54	153
	402	84	102	75	141
	403	80	121	65	137
IN NE MT KY	423	87	92	59	186
	431	88	99	77	168
	431	90	116	81	144
	449	89	110	60	191
	452	64	110	58	219
SD IA ND LA AK	453	90	113	77	173
	477	81	100	68	227
	656	103	133	98	321
	841	79	150	62	550
	904	77	273	89	465
WY	933	85	217	111	519

(obs=306)

	ļ 	TERPB	TEAPB	TECPB	TEIPB	TETPB
TERPB TEAPB TECPB TEIPB TETPB	 	1.0000 0.2141 0.2132 0.3914 0.4418	1.0000 0.1255 0.7993 0.8620	1.0000 0.1818 0.3274	1.0000 0.9757	1.0000

(obs=306)

	l .	TERPB	TEAPB	TECPB	TEIPB	TETPB	ls
TERPB TEAPB TECPB	 	1.0000 0.2141 0.2132	1.0000 0.1255	1.0000			

```
TEIPB | 0.3914 0.7993 0.1818 1.0000
TETPB | 0.4418 0.8620 0.3274 0.9757 1.0000
ls | 0.0952 0.2740 0.1246 0.2629 0.2839 1.0000
```

ls is happiness

Furthermore, interestingly transportation corrlates negatively with commerce–DC one of the most efficient in trasportation (61) is least efficient in commerce (222). Total energy consumption correlates most with transportation (.86) and especially industry (.9). Happiness does correlate positively with all energy uses, mostly with transport and industry and total (about .3).

Figure 2: IfTERPBIs

Figure 3: IfTEAPBIs

Figure 4: no alaska; IfTEAPBIsNoAk

Figure 5: IfTECPBIs

Figure 6: IfTECPBIsNoDc

Figure 7: IfTEIPBIs

Figure 8: IfTETPBIs

We expect the more dense and more urban areas are less happy. Note that ppulation density and percent urban are very different variables—population density is largely driven by history-when state was established—Western States (except California) are less dense than North Eestern states. It is also driven by size of state—large states like Pennsylvania are less dense than smaller states like Rhode Island. Percent urban is different—and it reflects administrative processes such as zoning and is sensitive to a definition of urban area. There are large differences in both variables. In some North Eastern states there are more than 1,000 people per square mile (NJ, RI), in most Western states, on the other hand, there are fewer than 100 people per square mile. Several states are above 90% urban, yet few states are mostly non urban. Below a table sorted on population density.

Finally, we will look at 2 key variables for happiness, social support, one measure of social capital, and the other "harder" measure—general health. States in West and North are more supportive with an exception of Delaware, which is very supportive and surrounded by unsupportive states.

st	tate	popDen	perUrb		+		+
	AK	.0012512	66.02	<u> </u>	state 	supp	gh
!	WY	.0058089	64.76	!	HI HI	4.03	3.52
!	MT ND	.0068089	55.89 59.9	!	I NY I CA	4.05 4.09	3.60 3.53
1	SD	.0107636	56.65	i	l DC	4.10	3.72 l
i				i	TX	4.11	3.46
!	NM	.0170242	77.43	!			
-	ID NE	.0190094 .0238206	70.58 73.13	!	MS AZ	4.11 4.13	3.30 3.57
i	NV	.0236206	94.2	i	CT	4.15	3.71
i	UT	.0337594	90.58	i	PA	4.15	3.55
ļ				!	FL	4.16	3.52
!	KS	.0349687	74.2	!		4 47	
-	OR ME	.0399737 .0430245	81.03 38.66	:	MI SC	4.17 4.18	3.53 3.47
i	CO	.0487062	86.15	i	l NV	4.18	3.51
i	IA	.0546036	64.02	i	RI	4.19	3.64
				İ	IN	4.19	3.48
!	OK	.0548	66.24	!		4 00	
!	AR AZ	.056154 .0564202	56.16 89.81	!	l KY I MO	4.20 4.20	3.35 3.48
-	MS	.0632948	49.35	¦	l MM	4.21	3.51
i	MN	.0666861	73.27	i	AR.	4.21	3.42
j				İ	MT	4.21	3.59
İ	VT	.0679205	38.9	!			
!	WV	.0771272	48.72	!	OH T	4.21	3.51
!	MO AL	.0872253	70.44 59.04	!	IL NE	$\frac{4.21}{4.22}$	3.53 3.61
1	TX	.0966383	84.7	:	I AL	4.22	3.34 l
i				i	I AL I NH	4.22	3.69
į	WA	.1014513	84.05	į			i
!	WI	.1050449	70.15	!	l NJ	4.22	3.61
!	LA KY	.1051988 .110114	73.19 58.38	!	l OR I CO	4.23	3.58
1	ΝY	.110114	56.38	ı	i Cu	4.23	3.69

NH	.1471073	60.3		NC WA	4.23	3.47 3.59
TN	.1541655	66.39	i i		4.24	
l sc	. 1542213	66.33		ME	4.24	3.60
[GA	.1688821	75.07	!!	SD	4.25	3.64
MI MI	. 1746762	74.57	!!	VT	4.25	3.74
l IN	.1811528	72.44	!!	ID	4.25	3.57
 NC	. 1966354	66.09	!!	OK	4.25	3.38
I VA	.2031902	75.45		MA	4.26	3.74
l HI	.2123741	91.93	; ;	MD	4.26	3.63
l IL	.2312725	88.49	i i	VA	4.27	3.63
L CA	.2396597	94.95	i i	LA	4.27	3.40
			i i	WY	4.27	3.63
і он	. 2825454	77.92	i i			
l PA	. 2840687	78.66	į į	KS	4.27	3.60
l FL	.3514421	91.16		GA	4.28	3.54
l NY	.4116164	87.87		WI	4.28	3.61
DE DE	.4618843	83.3	!!	AK	4.28	3.64
			!!	UT	4.29	3.71
MD am	.596153	87.2	!!		4 00	
CT	.7391024	87.99	!!	IA	4.29	3.60
MA D D T	.8414038 1.018562	91.97 90.73		ND	4.30	3.59 3.26
RI NJ	1.018562	90.73		WV MN	4.30 4.31	3.26
NJ 	1.191	J4.00		DE	4.31	3.62
l DC		100	; ;			
, DO +	·		<u>.</u>	TN	4.32	3.42
				111	1.02	J. 12

Below regressions follow. We have seen that there is a weak to modearte relationshipe between energy use per capita in different sectors and in general and happiness. How do these relationships hold in regrressions? We proceed in a following way. We look at three major energy uses: residential, commericial ,and transport and also total. We leave off industrial hence this energy is less liekly to impact werllbeing of people directly and it may bias it—because this energy use is dicatted by industry—there may be indiorect effects—thourgh employment, wages adn development, but that should be picked up by GDP. First, we consider a model where we control for level of economic development (per capita incoime). Then we add environmental factors, density, percent urban and avergae temoertaures in Jan and Jul follwoning Abdallah et al. (2008), Brereton et al. (2008)—we use average for each month Jun and Jul and not the single max day. Finally, and this is perhaps innovation in ecological literature, we add at state level two aggregated from BRFSS key person level prodictors of happiness—social support and happiness—tehre is substantial variation on these variables as discussed earlier.

We do not control for crime that is distributed unevenly within each state, and hence global control in not informative.

Let's start with residential energy, TERPB. In column 1, relationship is positive However, once controlling in column 2 for population density and percent urban and tempoeratures, the relationship between TERPB and happiness disappears. Likewise, when added in column 3 controls for social support and general health, the raltionship stays non-existent.

In transportation (TEAPB), on the other hand, the relationship is positive, and if anything it increases with added controls, which is puzzling. There are at least 2 explanations—perhaps thrill of travel Also, Americans prefer (Fuguitt and Brown 1990, Fuguitt and Zuiches 1975) and are happier (Okulicz-Kozaryn 2014, Berry and Okulicz-Kozaryn 2011) in suburbs than in big cities, and there are likely to be more consumption of energyu in ransportatin in states woith more suburbs. Likewise, when considering total energy use (TETPB) a positive relationship persists. This warrants further exploration.

Table 3: ols1

	TERPB1	TERPB2	TERPB3	TEAPB1	TEAPB2	TEAPB3	TETPB1	TETPB2	TETPB3
Total energy consumption per	0.000+	0.000	0.000						
capita in the residential sector, m									
BTU									
Total energy consumption per				0.000***	0.000**	0.000***			
capita in the transportation sec-									
tor, m BTU									
Total energy consumption per							0.000***	0.000+	0.000***
capita, m BTU									
Real gross domestic product, m	0.000+	0.002***	0.001***	0.000*	0.002***	0.000+	0.000	0.002***	0.000
chain 05usd, PC									
popukation density, thosands per		-0.029***	-0.023***		-0.022**	-0.012**		-0.024**	-0.012*
sq m									
perUrb		-0.001***	-0.001***		-0.000**	-0.000***		-0.001**	-0.000***
avgJanTemp		-0.000	0.001***		-0.000	0.001***		-0.000	0.001***
avgJulTemp		0.001*	0.002***		0.001*	0.002***		0.001*	0.002***
gh			0.204***			0.221***			0.233***
supp			0.203***			0.201***			0.191***
constant	3.368***	3.261***	1.654***	3.369***	3.256***	1.605***	3.373***	3.263***	1.616***
N	306	288	288	306	288	288	306	288	288

⁺p<0.10 *p<0.05 **p<0.01 ***p<0.001; robust standard errors

First considering energy use in residential and in commerce (columns a), interestingly it appears that the positive relationship is driven by commerce, residential energyu use indeed turns negative. Then in columns b, when considering all, three, residential, commerce, and transportation, thw first two remain insignificant and transportation coomes out positive

Table 4: ols2

	a1	a2	a3	b1	b2	b3
Total energy consumption per	0.000	-0.000	-0.000+	0.000	-0.000	-0.000
capita in the residential sector, m						
BTU						
Total energy consumption per				0.000***	0.000	0.000***
capita in the transportation sec-						
tor, m BTU						
TET*						
Total energy consumption per	0.000	0.001***	0.001***	-0.000	0.000	-0.000
capita in the commercial sector,						
m BTU						
Real gross domestic product, m	0.000	0.002***	0.000*	0.000	0.002***	0.000 +
chain 05usd, PC						
popukation density, thosands per		-0.023**	-0.018***		-0.022**	-0.012**
sq m						
perUrb		-0.001***	-0.001***		-0.001**	-0.000**
avgJanTemp		-0.000	0.001***		-0.000	0.001***
avgJulTemp		0.001*	0.002***		0.001*	0.002***
gh			0.201***			0.218***
supp			0.208***			0.204***
constant	3.374***	3.280***	1.665***	3.350***	3.276***	1.603***
N	306	288	288	306	288	288

⁺p<0.10 *p<0.05 **p<0.01 ***p<0.001; robust standard errors

These findings are lagrly replicated with fixed effects estimation—there is no increase in happiness from energy use in residential or total, but tehre is an increase in transportation. Note, hausman test indicates that we should use fixed, not random effect.

Table 5: fe1

	TERPB1	TERPB2	TERPB3	TEAPB1	TEAPB2	TEAPB3	TETPB1	TETPB2	TETPB3
Total energy consumption per	-0.001+	-0.001	-0.000						
capita in the residential sector, m									
BTU									
Total energy consumption per				-0.000+	-0.000	0.000+			
capita in the transportation sec-									
tor, m BTU									
Total energy consumption per							-0.000	0.000	0.000
capita, m BTU									
Real gross domestic product, m	0.003***	0.003***	0.003***	0.003***	0.003**	0.002**	0.003***	0.002*	0.002**
chain 05usd, PC									
popukation density, thosands per		0.456	0.027		0.532	0.175		0.687 +	0.135
sq m									
perUrb		0.011***	0.008**		0.011***	0.008**		0.011***	0.008**
avgJanTemp		0.000	0.000		0.000 +	0.000		0.001*	0.000
avgJulTemp		0.003***	0.002***		0.002***	0.001**		0.002***	0.002***
gh			0.212***			0.220***			0.212***
supp			0.162***			0.168***			0.161***
constant	3.307***	2.211***	1.168***	3.288***	2.193***	1.033***	3.285***	2.140***	1.134***
N	306	288	288	306	288	288	306	288	288

⁺p<0.10 *p<0.05 **p<0.01 ***p<0.001; robust standard errors

7 Counties

Figure 9: California climate divisions correspondencies with California counties. http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/regional_monitoring/CLIM_DIVS/california.gif.

Note, as shown in figure 9, there is not always an exact overlap between counties and climate divisions. They were matched in the following way

The limitation of states is that, well, it is very ecological—large areas! and second, there is not much difference is happijess ascross states, buit there is much more across counties.

Here in bivariate case, too, like across states, there is a positive relationshipe between energy consumption and happiness, yet it is somewhat weaker.

Figure 10: IfELERESIs

Figure 11: IfGASIs

SORTED OON ELERES

county	eleres	eletot
Trinity Monterey Inyo Santa Barbara San Francisco	0.8 1.8 1.9 1.9	8.1 5.9 4.5 7.5 7.3
Los Angeles	2.0	6.8
Alameda	2.0	7.2
San Benito	2.1	5.6
San Diego	2.1	6.1
Ventura	2.1	6.5
Santa Clara	2.2	9.3
San Bernardino	2.2	6.5
San Mateo	2.3	6.6
Kings	2.3	9.7
Orange	2.3	6.9
Santa Cruz	2.3	4.8
Solano	2.4	7.5
San Luis Obispo	2.4	6.1

San Joaquin	2.4	8.1
Yolo	2.5	8.2
Kern	2.5	17.7
Tulare	2.5	8.5
Merced	2.6	14.1
Contra Costa	2.6	8.8
Madera	2.7	9.1
Fresno	2.7	7.5
Napa	2.8	7.5
Marin	2.8	5.6
Sonoma	2.8	5.9
Sutter	2.8	6.3
Yuba	2.8	6.7
Riverside	2.8	6.2
Imperial	2.8	8.0
Colusa	3.0	12.0
Lassen	3.0	11.5
Stanislaus	3.2	8.9
Sacramento	3.2	7.5
Glenn	3.3	10.7
Butte	3.3	6.5
Humboldt	3.6	6.8
Tehama	3.7	7.8
Amador	3.7	8.4
Placer	3.8	8.4
Mendocino	3.9	6.8
Mariposa	4.0	6.2
Tuolumne	4.1	8.1
Shasta	4.2	8.8
El Dorado	4.2	6.9
Nevada	4.3	6.7
Calaveras	4.4	7.1
Lake	4.6	7.0
Del Norte	4.8	8.1
Plumas	5.2	10.2
Siskiyou	5.4	11.2
Mono	6.6	14.5
Alpine Sierra Modoc	· :	

SORTED ON GASRES

county	gasres	gastot
Lake	0.0	0.0
Lassen	0.0	0.0
Trinity	0.2	0.5
Calaveras	1.0	2.0
Imperial	4.4	17.6
Madera	5.8	28.3
Amador	5.8	24.1
Tehama	6.9	17.3
Mendocino	7.3	12.1
Glenn	9.5	27.6
Kings	10.2	44.9
Merced	10.6	45.3
Yuba	10.7	16.6
San Diego	10.9	18.1
Colusa	11.1	121.9
Shasta	11.4	19.2
Riverside	12.1	18.3
Kern	12.1	276.3
San Benito	12.2	23.7
Fresno	12.3	30.3
Tulare	12.4	35.3
El Dorado	12.7	17.3
Stanislaus	12.9	33.6
San Bernardino	13.2	24.1
Orange	13.4	21.2
Nevada	13.4	19.1
Butte	13.4	21.6
Yolo	13.5	30.9
San Joaquin	13.5	28.9
Sutter	13.8	22.7

Los Angeles	13.8	31.8
Monterey	13.9	26.0
Santa Cruz	13.9	21.9
Santa Clara	14.5	25.6
Sacramento	14.8	22.2
Ventura	14.9	24.3
San Luis Obispo	15.0	29.3
Solano	15.1	54.6
Santa Barbara	15.5	29.9
Humboldt	15.7	24.7
Alameda	15.8	27.7
Sonoma	16.0	23.7
Napa	16.6	29.2
Placer	17.6	26.1
Contra Costa	17.8	96.4
San Mateo San Francisco Marin Modoc Alpine	18.4 19.0 22.6	30.7 32.7 31.4 .
Del Norte Siskiyou Inyo Plumas Mono	: : : :
Sierra Mariposa Tuolumne	: : :	 . . .

And now regressions. Natural gas usage is a function of its availabily, not necassarily gas hunger—for instance Lassen County has zero natural gas use. Furthermore if gas is unused then it may be compensated with other sources, hence electricity and gas in one regression. And as expected, no effect in happiness.

Table 6: CAols1

	eleres1	eleres2	eleres3	eletot1	eletot2	eletot3	gasres1	gasres2	gasres3	gastot1	gastot2
m kWh per 1k people	0.020	0.023	0.009				0.041**	0.041*	0.016		
per capita personal income	0.000**	0.000***	0.000	0.000*	0.000**	0.000	0.000	0.000	-0.000	0.000***	0.000***
popDen		-0.000*	-0.000		-0.000**	-0.000		-0.000+	-0.000		-0.000**
avgJanTemp		0.001	0.002		-0.001	0.002		0.001	0.002		-0.002
avgJulTemp		0.003	0.003		0.003	0.003		-0.000	0.001		0.002
gh			0.135*			0.146**			0.105 +		
supp			0.183*			0.185*			0.194*		
m kWh per 1k people				0.001	0.001	0.002				0.007	0.006
m Therms 100k people							0.005	0.005	0.004		
m Therms 100k people										-0.000	-0.000
constant	3.227***	2.916***	1.773***	3.294***	3.085***	1.764***	3.134***	3.092***	1.966***	3.229***	3.160***
N	219	219	219	219	219	219	198	198	198	198	198

⁺p<0.10 *p<0.05 **p<0.01 ***p<0.001; robust standard errors

and in table 7 a bit of bummer –elecricity residential appears to have effect on happiness if in fixed effects model adn together with natural gas:(

Table 7: CAfe1

	eleres1	eleres2	eleres3	gasres1	gasres2	gasres3
m kWh per 1k people	0.053*	0.062*	0.037	0.154***	0.164***	0.149***
per capita personal income	-0.000	0.000	0.000	-0.000	0.000	0.000
popDen		-0.000	0.000		-0.000	-0.000
avgJanTemp		0.005	0.005		0.005	0.006 +
avgJulTemp		0.001	0.006		-0.001	0.001
gh			0.175**			0.177***
supp			0.148**			0.067
m Therms 100k people				-0.007	-0.004	0.005
constant	3.363***	2.975***	1.322+	3.056***	2.799***	1.533*
N	219	219	219	198	198	198

⁺p<0.10 *p<0.05 **p<0.01 ***p<0.001; robust standard errors

8 Counties-SMART version

A limitation of BRFSS data at county level is that it is not representatoibe of counties. And there are likely problems–for instance Mono county increased happiness from 2.82 in 2008 to 3.62, which is an extermely large increase and likely due to sampling. To perform a robustness check whether these results may be due to sampling, we have rerun m,odels using SMART verion of data that is representative of counties

!!TODO!!

References

ABDALLAH, S., S. THOMPSON, AND N. MARKS (2008): "Estimating worldwide life satisfaction," Ecological Economics, 65, 35–47.

BERRY, B. J. AND A. OKULICZ-KOZARYN (2011): "An Urban-Rural Happiness Gradient," Urban Geography, 32, 871–883.

Brereton, F., J. Clinch, and S. Ferreira (2008): "Happiness, Geography and the Environment," *Ecological Economics*, 65, 386–396.

FUGUITT, G. V. AND D. L. BROWN (1990): "Residential Preferences and Population Redistribution: 72-1988," *Demography*, 27, 589–600.

FUGUITT, G. V. AND J. J. ZUICHES (1975): "Residential Preferences and Population Distribution," Demography, 12, 491-504.

OKULICZ-KOZARYN, A. (2014): "Natural Sprawl," Forthcoming in Administration & Society (Disputatio Sine Fine section).