Constellation Design for a Lunar Global Navigation Satellite System

Corso di Laurea Magistrale in Ingegneria Spaziale ed Astronautica Facoltà di Ingegneria Civile e Industriale

Candidate: Alessandro Di Muzio, 1743619

Advisor: Prof. Christian Circi

Co-Advisor: Prof. Emiliano Ortore

Co-Advisor: Dr. Marco Cinelli

21/03/2025

Tutti i diritti relativi al presente materiale didattico ed al suo contenuto sono riservati a Sapienza e ai suoi autori (o docenti che lo hanno prodotto). È consentito l'uso personale dello stesso da parte dello studente a fini di studio. Ne è vietata nel modo più assoluto la diffusione, duplicazione, cessione, trasmissione, distribuzione a terzi o al pubblico pena le sanzioni applicabili per legge

Introduction

GNSS = Satellite navigation system

Location: determining the user's position

Navigation: identifying the best route

Tracking: monitoring an object's movement

Mapping: creating maps of a specific area

Timing: computing precise timing

Control Segment

Main objective

Design a lunar

GNSS constellation

Minimal constellation (low T, low P, low h)

Mask angle of at least 5 deg

Simultaneuous coverage of 4 satellites

Good geometric properties

Complete coverage of the surface

Orbital stability

Fundamentals

Navigation equations

Unknowns are: x, y, z, τ

$$PR_i = \sqrt{(x_i - x)^2 + (y_i - y)^2 + (z_I - z)^2} + \tau$$

If the systems is 4-by-4, it can be solved for the user's position and clock offset.

4-fold coverage required

Constellation coverage

$$\theta = \cos^{-1}\left(\frac{R_p}{R_p + h}\cos\varepsilon\right) - \varepsilon$$

for an homogenous and circular constellations:

coverage properties are fixed for all satellites and over time

$$i_{max} \leq \frac{\pi}{2}$$
 to have prograde orbits $i_{min} \geq \frac{\pi}{2} - \theta$ to reach the poles

Orbital mechanics (1/2)

Perturbations

$$\vec{a}_{CE} = \mu_E \left(\frac{\vec{R}_{ME} - \vec{r}}{\left\| \vec{R}_{ME} - \vec{r} \right\|^3} - \frac{\vec{R}_{ME}}{R_{ME}^3} \right)$$

$$\vec{a}_{CS} = \mu_S \left(\frac{\vec{R}_{MS} - \vec{r}}{\left\| \vec{R}_{MS} - \vec{r} \right\|^3} - \frac{\vec{R}_{MS}}{R_{MS}^3} \right)$$

$$\vec{a}_{CMN} = \nabla U$$

$$\vec{a}_{CM} = -\frac{\mu_M}{r^3} \vec{r}$$

Selenopotential

potential

Dynamics equations

$$\begin{cases} \dot{\vec{v}} = \vec{a}_{CM} + \vec{a}_{CMN} + \vec{a}_{CE} + \vec{a}_{CS} \\ \dot{\vec{r}} = \dot{\vec{v}} \end{cases}$$

Orbital mechanics (2/2)

Repeating ground-track orbit

By considering only the J2 secular effects:

$$\dot{\Omega} - \frac{K_M}{a^{3.5}} (1 - e^2)^{-2} \cos i$$

$$\dot{\omega} = \frac{K_M}{a^{3.5}} (1 - e^2)^{-2} \left(2 - \frac{5}{2} \sin i^2 \right)$$

$$\dot{M} = \sqrt{\frac{\mu_M}{a^3}} + \frac{K_M}{a^{3.5}} (1 - e^2)^{-1.5} \left(1 - \frac{3}{2} \sin i^2 \right)$$

$$K_M = \frac{3}{2} J_{2M} R_M^2 \sqrt{\mu_M}$$

 $mD_n = RT_n$

conditions to have a RGTO

$$a^{3.5} + b_1 a^2 + b_2 = 0$$

Only constellations based on RGTO with m = 1 are considered, meaning that q = R

Constellation geometry (1/4)

Streets-of-Coverage constellations

Uniform distribution of satellites on planes
Handpicked distribution of orbital planes

Non-symmetric constellation

SoC constellations are defined by 6 parameters: $T, P, h, i, \Delta\Omega, \Delta M_{inter}$

Iridium constellation (SoC 66/6)

$$c_j = \cos^{-1}\left(\frac{\cos\theta}{\cos(j\pi/N_p)}\right)$$

$$\Delta\Omega_{anti} = 2\pi \left[\frac{k}{2} \right] + 2(-1)^{k+1} \sin^{-1} \left(\frac{\sin[\pi[1 - (k+1) \bmod 2] - c_1 - c_j]}{2(-1)^{k+1}} \right)$$

$$\Delta\Omega_{co} = 2\sin^{-1}\left(\frac{\sin[(\theta + c_j)/2]}{\sin i}\right)$$

$$\Delta M_{inter} = \frac{j \pi}{N_p} - 2 \cos^{-1} \left(\frac{\cos(\Delta \Omega_{co}/2)}{\cos[(\theta + c_i)/2]} \right)$$

n = jk	j = 1	j = 2	j = 3	<i>j</i> = 4	
k = 1	1	2	3	4	
k = 2	2	4	6	8	
k = 3	3	6	9	12	
k = 4	4	8	12	16	

Constellation geometry (2/4)

Streets-of-Coverage constellations

coverage obtained analytically

Input: T, P, i

Output: θ , $\Delta\Omega$, ΔM_{inter}

Constellation geometry (3/4)

Waker-Delta constellations

Uniform distribution of satellites on planes Uniform distribution of orbital planes

Symmetric constellation

Walker-Delta constellations are defined by 5 parameters: T, P, F, h, i

$$Z(T) = \sum_{P \in D(T)} P$$
 number of possible configurations given T satellites

$$R_{\Delta ABC} = \min \left\{ \max\{R_A, R_B, R_C\} \right\}$$
 Furthest point from any vertex

$$R_{Max} = \max_{t,j} \{R_{\Delta ABC}(t,j)\} \qquad \theta = R_{Max}$$

 R_{Max} is the minimum value that guarantee n-fold coverage

Constellation geometry (4/4)

Walker-Delta constellations

coverage obtained through numerical simulation

Input: T, P, F, i

$$\theta = R_{Max}$$

Output: θ

Longitude [deg]

Optimal Walker-Delta constellations are found with $i = 45^{\circ} \div 60^{\circ}$

$$T_{min} = \frac{4n}{[\theta(1-p^{-nk})]^2}$$

$$p = 0.26$$

 $k = 0.08$

Efficiency parameters

Excess coverage

Evaluates the total coverage available as a percentage of the total coverage required

$$cov = \frac{T(1 - cos \theta)}{2n}$$
 IDEAL VALUE = 1

Dilution of precision

By linearization of the navigation eqs:

$$\partial PR = A \partial X$$

Relation between uncertainties on pseudoranges and uncertainties on user's unknowns

$$Q = (A^{T}A)^{-1} = \begin{bmatrix} \sigma_{x}^{2} & \sigma_{xy} & \sigma_{xz} & \sigma_{x\tau} \\ \sigma_{yx} & \sigma_{y}^{2} & \sigma_{yz} & \sigma_{y\tau} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{z}^{2} & \sigma_{z\tau} \\ \sigma_{\tau x} & \sigma_{\tau y} & \sigma_{tz} & \sigma_{\tau}^{2} \end{bmatrix}$$

$$GDOP = tr(Q)$$

$$PDOP = tr(Q_{3x3})$$

$$TDOP = \sigma_{\tau}$$

dikilowiis	
GDOP = tr(Q)	
DDOD - tr(O)

GNSS	cov	GDOP
GPS	2.10	2.11
Galileo	2.03	2.23

Value	Interpretation	
>20	Poor	
10-20	Fair	
5-10	Moderate	
2-5	Good	
1-2	Excellent	
<1	Ideal	

Results (1/2)

Walker-Delta vs Streets-of-Coverage

Results (2/2)

Moon Walker-Delta tables

Tables that display the minimal constellations as a function of inclination and repeat factor (bottom) or altitude (right)

Minimum number of satellites T

h [km]

A fitting equation is useful to find more configurations

$$T_{min} = f(q, i)$$

Lunar GNSS proposition (1/2)

ID	h [km]	i [deg]	Т	Р	F	R	θ [deg]	cov	GDOP	# sats
12	6529.00	56.26	15	5	1	35	72.91	1.32	4.51	4.26
16	3621.71	61.87	18	6	2	67	66.16	1.34	2.60	4.53
17	4302.94	51.65	18	6	2	56	68.35	1.42	2.43	4.83
26	3517.77	65.02	20	5	1	69	65.77	1.47	2.65	4.62

ID	Δ <i>a</i> [km]	Δe	Δi [deg]	Δ <i>V</i> [m/s]	ΔV_{year} [m/s]
12	7.5861	0.0024	0.0040	4.47	58.16
16	1.2847	0.0005	0.0017	2.96	38.46
17	1.9226	0.0009	0.0027	15.87	206.35
26	1.1426	0.0006	0.0012	1.75	22.74

1 stationkeeping manuever each repeat cycle (27.32 days)

Kozai-Lidov mechanism:

It is easier to correct for e

$$C = \sqrt{1 - e^2} \cos i = const.$$

Lunar GNSS proposition (2/2)

Failure of a single satellite

Robustness: defined as the constellation performance to offer normal services, should one satellite fail.

Config	4-fold %	cov	GDOP	PDOP	TDOP	HDOP	VDOP	# sats
Mean	48.57	1.27	3.97	3.54	1.78	1.65	3.07	3.57
Worst	46.55	1.27	4.29	3.83	1.91	1.80	3.36	3.54
Best	52.71	1.27	3.76	3.35	1.67	1.57	2.90	3.61

SOLUTION 1

5-fold coverage,

but requires to start over analysis

SOLUTION 2

spare in-orbit satellite,

but phasing manuevers need to be considered

LOS algorithm

Originally for observation missions

It obtains the intersection with an ellipsoid

$$A = (c+h)^{2}(g_{x}^{2} + g_{y}^{2}) + (a+h)^{2}g_{z}^{2}$$

$$B = 2[(c+h)^{2}(r_{x}g_{x} + r_{y}g_{y}) + (a+h)^{2}r_{z}g_{z}]$$

$$C = (c+h)^{2}(r_{x}^{2} + r_{y}^{2}) + (a+h)^{2}(r_{z}^{2} - (c+h)^{2})$$

$$u = \frac{-B - \sqrt{B^2 - 4AC}}{2A}$$

$$\vec{e} = \vec{r} + u\vec{g}$$

If implemented along the **DEM**, it allows us to determine the <u>intersection</u> with the lunar surface

Case: Shackleton crater (1/2)

Shackleton crater: interesting crater for future human missions, located near the South Pole

Intersections with the DEM

only the highest one is visible from the satellite

Case: Shackleton crater (1/2)

Grey areas determination

Grey areas: critical areas where a satellite is lost due to topography of the surface.

Presence of grey areas on the northern edge of the crater basin, only at times.

Grey area	Max Time [min]	Acc. Time %
Worst	10	2.59
Mean	4.29	0.27

Average coverage (over the entire repeat cycle):

IDEAL COVERAGE

6.27

DETAILED COVERAGE

4.49

Area on the southern edge of the crater basin demonstrates an higher number of visible satellites on average: 4.6

Conclusions

Walker-Delta 18/6/2 constellation

with h = 3621.71 km

and i = 61.87 deg

4-fold global and continuous coverage

Mask angle of 5 deg

Good geometry

Relatively stable

18 satellites (suboptimal)

100% ideal, small gray areas on Shackleton crater

Elevation angle ≥ 5 deg

GDOP = 2.60

~ 13 stationkeeping manuevers per year