ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ «ФИЗИКО-ТЕХНОЛОГИЧЕСКИЙ ИНСТИТУТ ИМ. К.А. ВАЛИЕВА РОССИЙСКОЙ АКАДЕМИИ НАУК»

На правах рукописи

Сидоров Федор Алексеевич

ФИЗИЧЕСКИЕ МЕХАНИЗМЫ СУХОГО ЭЛЕКТРОННО-ЛУЧЕВОГО ТРАВЛЕНИЯ

Специальность XX.XX.XX — «XXX»

Диссертация на соискание учёной степени кандидата физико-математических наук

Научный руководитель: кандидат физико-математических наук Рогожин Александр Евгеньевич

Оглавление

	Стр
Введение	3
Список литературы	9
Публикании автора по теме лиссертании	Ç

Введение

Актуальность темы исследования

Электронно-лучевая литография является одним из наиболее распространенных литографических методов формирования субмикронных структур, обеспечивающим высокое разрешение и контраст. Однако, этот метод обладает некоторыми недостатками, главным из которых, пожалуй, является низкая производительность, что вносит некоторые ограничения на применение этого метода в крупномасштабном производстве. Существуют методы решения этой проблемы, связанные с применением химически усиленных резистов, либо использованием многолучевых электронных систем. В настоящее время эти подходы находятся в стадии разработки и также имеют некоторые недостатки. Сухое электроннолучевое травление резиста (СЭЛТР) – новый одностадийный литографический метод формирования рельефа в слое позитивного резиста, основанный на цепной реакции деполимеризации полимерного резиста и самопроявлении изображения непосредственно в процессе электронно-лучевого экспонирования резиста, проводимого при температурах выше его температуры стеклования. Отличительными особенностями метода являются исключительно высокая чувствительность резиста, высокое разрешение по вертикали и возможность формирование рельефа без этапа проявления, а также скругленные стенки профиля линии. Высокая чувствительность резиста обеспечивает производительность метода в сотни раз превышающую производительность обычной электронно-лучевой литографии. Благодаря этим особенностям метод можно использовать для формирования дифракционных оптических элементов, различных трехмерных микрои наноструктур или масок [Sidorov2018a] Также возможной областью его применения является формирование каналов для использования в микро- и нанофлюидике, поскольку отсутствие острых углов в сечении канала положительно скажется на его гидравлическом диаметре. Однако, латеральное разрешение метода ограничено, и 3 в настоящее время при использовании электронно-лучевых систем с диаметром электронного луча около 10-15 нм удается получать линии шириной около FFFFF 200 нм. Область применения метода могла бы быть существенно расширена, если бы удалось повысить его латеральное разрешение. Для этого необходимо изучить

Степень разработанности темы исследования

Цели и задачи

Целью данной работы является определение и исследование основных процессов, протекающих при сухом электронно-лучевом травлении резиста, а также создание физической модели метода СЭЛТР, позволяющей определить результирующий профиль линии при различных условиях экспонирования. В большинстве экспериментов, которые были проведены для исследования метода СЭЛТР, в качестве резиста и материала подложки использовались ПММА и Si, соответственно. Учитывая также тот факт, что свойства ПММА достаточно хорошо изучены, при создании модели процесса СЭЛТР в рамках данной работы в качестве резиста рассматривался именно этот материал. Для достижения поставленной цели необходимо было решить следующие задачи:

- 1. На основе существующих моделей взаимодействия электронного излучения с веществом реализовать детальный алгоритм моделирования рассеяния электронного пучка в системе ПММА/Si;
- 2. Определить механизмы, приводящие к разрыву молекул ПММА при экспонировании в условиях повышенной температуры;
- 3. Разработать программу для моделирования электронно-стимулированной деструкции молекул ПММА при температурах метода СЭЛТР;
- 4. Разработать модель слоя ПММА для моделирования разрывов молекул ПММА и дальнейшего распространения активного центра деполимеризации в молекуле;
- 5. Определить температурную зависимость длины кинетической цепи при деполимеризации ПММА в условиях метода СЭЛТР;
- 6. Разработать модель диффузии в слое ПММА мономеров, образовавшихся в процессе деполимеризации;
- 7. Реализовать алгоритм моделирования растекания линии, вызванного пониженной вязкостью ПММА при температурах процесса СЭЛТР;

- 8. Разработать программу моделирования метода СЭЛТР с учетом совместное протекание процессов рассеяния электронного пучка, деполимеризации, диффузии мономеров и растекания профиля линии;
- 9. На основе разработанного алгоритма моделирования определить пути оптимизации разрешения метода СЭЛТР.

Положения, выносимые на защиту

- 1. При комнатной температуре электронно-стимулированная деструкция ПММА протекает за счет взаимодействия налетающего электрона с валентными электронами ММА, образующими связи между атомами углерода в главной цепи ПММА. Увеличение радиационно-химического выхода разрывов с ростом температуры может быть описано за счет увеличения вероятности разрыва главной цепи ПММА при разрыве связей между атомами водорода и атомами углерода, образующими главную цепи. При температурах в диапазоне от 30 °C до 160 °C данная вероятность увеличивается практически линейно от 0 до 1.
- 2. Область оптимальных температур для метода СЭЛТР составляет 120-160 °C. Кинетическая длина цепи при деполимеризации ПММА в этой области изменяется от 500 до 3200 с ростом температуры, при этом имеет место передача активного центра деполимеризации с мономера на полимер;
- 3. При использовании в методе СЭЛТР слоев ПММА толщиной до 1 мкм процессы диффузии мономера в слое ПММА не замедляют процесс формирования рельефа;
- 4. При экспонировании вдоль серии линий при длительном суммарном времени нагрева форма профиля линии приближается к синусоидальной. Увеличение разрешения метода СЭЛТР может быть достигнуто за счет уменьшения суммарного времени нагрева, до значений, сопоставимых с временем затухания гармоник в фурье-образе профиля линии с высокими частотами (n > 10).

Научная новизна

- 1. Впервые предложена количественная модель, описывающая электронно-стимулированную деструкция молекул ПММА на молекулярном уровне с учетом температурного эффекта;
- 2. Впервые исследовано совместное протекание процессов рассеяния электронного пучка в полимерном резисте, деполимеризация резиста, диффузия продуктов распада молекул резиста и растекание профиля;
- 3. Впервые проведено моделирование профиля линии, получаемой методом сухого электронно-лучевого травления резиста.

Теоретическая и практическая значимость работы

Теоретическая значимость работы состоит в том, что впервые была создана модель формирования рельефа в резисте за счет совместного воздействия основных процессов, характерных для метода СЭЛТР – электронно-стимулированной деструкции резиста при повышенных температурах, термической деполимеризации резиста, диффузии мономеров слое резиста и растекания профиля линии за счет пониженной вязкости. Практическая значимость работы заключается в том, что был разработан алгоритм, позволяющий промоделировать форму профиля линии, получаемой методом СЭЛТР при различных условиях экспонирования и определить оптимальные условия для каждой конкретной задачи.

Методология и методы исследования

Основным методом исследования основных процессов СЭЛТР являлось математическое моделирование; Для моделирования рассеяния электронного пучка использовался Монте-Карло алгоритм с дискретными потерями энергии. Моделирование слоя ПММА производилось на основе модели идеальной цепи; Моделирование диффузии мономера в слое ПММА проводилось на основе Монте-Карло алгоритма, длины свободного пробега мономеров определялись из функции Грина задачи диффузии частицы в свободном пространстве; Для моделирования растекания профиля линии применялось фурье-преобразование профиля с дальнейшим определением времени затухания различных гармоник из двумерного уравнения Навье-Стокса и уравнения непрерывности в условиях отсутствия скольжения с учетом давления Лапласа и расклинивающего давления.

Степень достоверности и апробация результатов

Поскольку на конечный профиль линии, получаемой методом СЭЛТР, влияет сразу несколько процессов, точность их описания проверялась на каждом этапе. Так, при моделировании рассеяния электронного пучка в системе ПМ-MA/Si сечения упругих и неупругих процессов вычислялись с использованием наиболее современных моделей взаимодействия излучения с веществом (моттовские дифференциальные сечения упругого рассеяния и сечения, полученные с использованием диэлектрической функции Мермина и модели обобщенных осцилляторов для неупругого рассеяния). Механизмы разрыва молекул ПММА при комнатной и повышенной температуре определялись на основе моделирования радиационно-химического выхода разрывов, вычисляемого экспериментально из распределения молекулярной массы. Полученные значения для длины кинетической цепи при деполимеризации ПММА при различных температурах согласуются с опубликованными значениями, рассчитанными на основе констант деполимеризации и терминации в кинетических моделях термической деструкции ПММА. Диффузия мономеров в слое ПММА моделировалась с коэффициентами диффузии, соответствующим различным температурам и массовой доле мономера в слое ПММА. Полученная в результате оценка сверху для времени диффузии привела к значению, пренебрежимо малому по сравнению с характерным временем протекания других процессов. Подход, использующийся для моделирования растекания профиля линии в процессе СЭЛТР, эффективно применяется в смежной области – моделировании растекания структур, полученных методом наноимпринтной литографии, и его точность отмечена в ряде работ. Все вышеперечисленное вкупе с соответствием между экспериментальными и промоделированными профилями обеспечивает достоверность полученных результатов.

Основные результаты работы докладывались на следующих конференциях:

- 60-я всероссийская научная конференция МФТИ, Долгопрудный (2016);
- International conference on information technology and nanotechnology (ITNT), Самара (2017, 2018, 2020, 2022);
- III International Conference on modern problems in physics of surfaces and nanostructures (ICMPSN17), Ярославль (2017);
- Micro- and Nanoengineering (MNE), Копенгаген (2018), Родос (2019);

– International School and Conference "Saint-Petersburg OPEN" on Optoelectronics, Photonics, Engineering and Nanostructures, Санкт-Петербург (2019, 2020).

Диссертация состоит из трёх глав, основные результаты которых изложены в трёх статьях [A1—A3]. Все статьи опубликованы в рецензируемых международных журналах (Physical Review B, ACS Photonics, Journal of Physics: Condensed Matter), включённых в библиографические базы Scopus и Web of Science.

Личный вклад автора

Общая постановка задачи осуществлялась научным руководителем автора Рогожиным А. Е. Для верификации результатов моделирования были использованы структуры, полученные методом СЭЛТР М. А. Бруком, А. Е. Рогожиным и Е. Н. Жихаревым. Все результаты, изложенные настоящей диссертации, получены автором лично.

Публикации автора по теме диссертации

- A1. Auger recombination in Dirac materials: A tangle of many-body effects / G. Alymov, V. Vyurkov, V. Ryzhii, A. Satou, D. Svintsov // Phys. Rev. B. 2018. Vol. 97, no. 20. P. 205411.
- A2. Fundamental Limits to Far-Infrared Lasing in Auger-Suppressed HgCdTe Quantum Wells / G. Alymov, V. Rumyantsev, S. Morozov, V. Gavrilenko, V. Aleshkin, D. Svintsov // ACS Photonics. 2020. Vol. 7, no. 1. P. 98–104.
- A3. Feasibility of surface plasmon lasing in HgTe quantum wells with population inversion / K. Kapralov, G. Alymov, D. Svintsov, A. Dubinov // Journal of Physics: Condensed Matter. 2019. Oct. Vol. 32, no. 6. P. 065301.