CS 1555

www.cs.pitt.edu/~nlf4/cs1555/

The Relational Model

Data models

- How we represent the data stored in the database
 - And relationships between data items

The relational data model

- Proposed by E.F. "Ted" Codd in 1970
 - "A Relational Model of Data for Large Shared Data Banks."
 - Built on the concept of the mathematical relation
 - Codd won a Turing award for this work in 1981
- First systems came about in 1977-1978
 - System-R
 - Ingres
- First commercial systems in the 1980's
 - o IBM
 - Oracle

Review: Relations

- First, we'll specifically discuss *binary* relations:
 - Definition: Let A and B be two sets. A binary relation from A to B is a subset of A × B.
 - In other words, a binary relation R is a set of ordered pairs (a_i , b_i) where $a_i \in A$ and $b_i \in B$.
 - In general, entities in a relation are called tuples

Binary relation example

Let's say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

- P = {Alice, Bob, Charlie}
- C = {CS 441, Math 336, Art 212, Business 444}
- By definition $R \subseteq P \times C$, and we specifically know:
 - (Alice, CS 441) ∈ R
 - (Bob, CS 441) \in R
 - (Alice, Math 336) \subseteq R
 - (Charlie, Art 212) ∈ R
 - (Charlie, Business 444) ∈ R
- R = {(Alice, CS 441), (Bob, CS 441), (Alice, Math 336),
 (Charlie, Art 212), (Charlie, Business 444)}

Binary relation example

Let's say that Alice and Bob are taking CS 441. Alice is also taking Math 336. Furthermore, Charlie is taking Art 212 and Business 444. Define a relation R that represents the relationship between people and classes.

How do binary relations compare to functions?

- Recall the definition of a function:
 - Let A and B be nonempty sets. A function, f, is an assignment of exactly one element of set B to each element of set A.
- What does this mean for binary relations?
 - All functions are also relations.
 - Not all relations are functions

We can use set operations on relations

Let R be the relation that pairs students with courses that they have taken. Let S be the relation that pairs students with courses that they need to graduate. What do the relations R \cup S, R \cap S, and S – R represent?

- R \cup S = All pairs (a,b) where
 - student a has taken course b OR
 - student a needs to take course b to graduate
- $R \cap S = All pairs (a,b) where$
 - Student a has taken course b AND
 - Student a needs course b to graduate
- S R = All pairs (a,b) where
 - Student a needs to take course b to graduate BUT
 - Student a has not yet taken course b

Relating more than two sets

- Binary sets are rather limited
 - To solve our data management woes, we will need to express much more complex relations!
- Let D_1 , D_2 , ..., D_n be sets. An *n-ary relation* on these sets is a subset of $D_1 \times D_2 \times ... \times D_n$. The sets D_1 , D_2 , ..., D_n are called the *domains* of the relation, and n is its *degree* (or *arity*).
 - Made up of n-tuples
- Let R be the relation on $Z \times Z \times Z+$ consisting of triples (a, b, m) where $a \equiv b \pmod{m}$
 - What is R's degree?
 - O What are R's domains?
 - Is $(8, 2, 3) \in \mathbb{R}$?
 - Is $(-1,9,5) \in \mathbb{R}$?
 - Is $(11,0,6) \in \mathbb{R}$?

Using relations to build databases

- A relational schema defines the name of a relation, the names of the attributes of that relation, and domains of those attributes
- $R = \{A_1:D_1, A_2:D_2, ... A_n:D_n\}$
 - or simply $R = \{A_1, A_2, ..., A_n\}$ with domains specified elsewhere
- Domains specify both the data type and format of attributes
 - Data types must be atomic
 - No attribute is composite
 - Formats specify representations of data values

Specifying tuples

- Two approaches:
 - Set of attributes:

■
$$t = \{A_1: v_1, A_2: v_2, ..., A_n: v_n\}, v_i \in D_i, 1 \le i \le n$$

List of attributes

■
$$t = \{v_1, v_2, ..., v_n\}, v_i \in D_i, 1 \le i \le n$$

- Clearly:
 - Order is important for the list of attributes approach
 - Not important for the set of attributes approach

Further properties of relations

- The number of tuples in a relation is its *cardinality*
- No duplicate tuples in a relation
 - It is a **set** of tuples
- The order of tuples within a relation is not important
- A value may appear multiple times within a column

n-ary relation example

Students			
Name	ID	Major	GPA
Alice	334322	CS	3.45
Bob	546346	Math	3.23
Charlie	045628	CS	2.75
Denise	964389	Art	4.0

Enrollment			
Stud_ID	Course		
334322	CS 441		
334322	Math 336		
546346	Math 422		
964389	Art 707		

A note on notation

- For simplicity, we've referred to relations with single capital letters
 - R, S, R U S, etc.
- But, we've also referred to schema names as single capital letters...
 - \circ R = {A₁:D₁, A₂:D₂, ... A_n:D_n}
- A bit ambiguous...
- So! Notation to use going forward (and used in the book…)
 - R: a relational schema
 - \blacksquare |R| = arity of R
 - r(R): a relation of schema R
 - |r(R)| = cardinality of r(R)

E.g.

- Say different schools use S as the schema for their students relation
 - |S| is the arity of S
- p(S) could be Pitt's student relation
 - |p(S)| is the number of Pitt students
- d(S) could be Duquesne's students relation
 - |d(S)| would be the number of Duquesne students