Sistem Bus

(INTERKONEKSI antar BAGIAN UTAMA KOMPUTER)

Tim Dosen COA

Fakultas Informatika
Universitas Telkom

Rencana Studi

Rencana Studi				Rincian Nilai <mark>Kuis</mark>												Rincian Nilai Tugas									Rincian Nilai Hasil <mark>Proyek</mark>											Bobot Tiap				
Perte- muan Ke-			0	1	CLO 2					CLO 3				CLO 4				CLO 1			CLO 2 CLO			T	CLO 3						CLO 4						CLO			
	Materi	Kuis (Kognitif) (20 %)										Tugas Partisipatif (35%)								Hasil Proyek (45%)										(%)										
		1	2	3	4 5	5 6	5 7	8	9	10	11	12	13	14	15	16						1 1	2 3 e a			1 b		1 c	2 b	2 c		.		3 4 c b	3 d	4 c	1	2	3	4
1	Sistem komputer	1	-	-		- -	11	-	-	-	-	-	-	-	-	-	2	-		- -		-		-	-	-	-	-	-	-	-		- -	-	-					
2	Input/Output	-	2	-		- -	- -	-	-	ı	-	-	-	-	-	-	-	4		- -		-		-	-	-	-	-	-	-	-	-		- -	-	-	14			
3	Sistem Bus	-	-	1		- -	- -	-	-	-	-	-	-	-	-	-	-	-	4 -	- -		-		-	-	-	-	ı	-	-	-	-		- -	-	-				
4	Organisasi memori	-	-	-	1	- -	- -		-	-	- - - - - - - - 4 - -	-	-	-	-	-	-	-		- -		-																		
5	Cara kerja memori utama (RAM)	-	-	-	1	1 -	- -	-	-	-	-	-	-	-	-		-	-	-	4	1 -	-	- -	-	-	-	-	-	-	-	-	-	- -	- -	-	-				
6	Memori sekunder	-	-	-		- 1	1 -	-	-	-	-	-	-	-	-	-	-	-		- -	- 4	-	- -	-	-	-	-	-	-	-	-	-	- .	- -	-	-		26		
7	Cara kerja <i>cache memory</i> (bag-1)	-	-	-	-	- -	- 2	2 -	-	-	-	-	-	-	-	-	-	-	- -	- -	- -	4		-	-	-	-	-	-	-	-	-		- -	-	-				
8	Cara kerja cache memory (bag-2)	-	-	-		- -	1	1	-	-	-	-	-	-	-	-	-	-		- -	-	-	4 -	-	-	-	-	-	-	-	-	-			-	-				
9	Arsitektur SAP-1	-	-	-		- -	- -	-	1	-	-	-	-	-	-	-	-	-		- -		-		-	1	-	-	-	-	-	-	-	-	- -	-	-				
10	Arsitektur SAP-2	-	-	-		- -	- -	-	-	1	-	-	-	-	-	-	-	-		- -		-	- 2	-	-	2	1	-	-		-	-	- -	- -	-	-			30	
11	Arsitektur SAP-3	-	-	-		- -	ı	-	-	-	2	-	-	-	-	-	-	-		- -		-		3	-	-	-	7	2		-	-		- -	-	-	-		30	
12	Instruksi Extended dan Indirect	-	-	-		- -	- -	-	-	-	-	1	-	-	-	-	-	-		- -	-	-		-	-	-	-	-	-	7	-	-		- -	-	-				
13	Arsitektur MIPS	-	-	-		- [- -	-	-	-	-	-	1	-	-	-	-	-			-	-		-	-	-	-	-	-	-	1	-			-	-				
14	Instruksi MIPS	-	-	-		- -	- -	-	-	-	-	-	-	2	-	-	-	-		- -	-	-		-	-	-	-	-	-	-	-	2	1	- -	-	-				30
15	Assembly MIPS (bag-1)	-	-	-	-	- -	- -	-	-	-	-	-	-	-	1	-	-	-		- -	-	-		-	-	-	-	-	-	-	-	-	- 3	3 2	-	-		_		30
16	Assembly MIPS (bag-2)	-	-	-		- -	- -	-	-	-	-	-	-	-	-	1	-	-		- -		-		-	-	-	-	-	-	-	-	-		- -	9	7				

Part 1: Bagaimana cara 4 komponen utama komputer berinteraksi?

Struktur Komputer – Interkoneksi Sistem

Komponen Utama Komputer (1)

Komponen Utama komputer (2)

MAR

Tempat untuk menampung alamat memori berikutnya yang akan dibaca/ditulis

MBR

- Tempat untuk menampung data yang akan ditulis ke memori atau data yang akan dibaca dari memori
- I/O AR
 - Tempat untuk menampung alamat device yang akan dikontrol
- I/O BR
 - Digunakan untuk menampung data yang dipertukarkan antara device dengan CPU
- IR
 - Menyimpan instruksi yang baru saja diambil (fetched)
- PC
 - Menyimpan alamat instruksi berikutnya

Interkoneksi antar bagian komputer

- Mengapa antar bagian komputer perlu saling terkoneksi?
 - Agar data dapat diproses
 - Agar ...
- Interkoneksi yang mungkin terjadi antar bagian utama komputer:
 - Memori ⇒ CPU: proses baca instruksi atau data
 - Memori ← CPU: proses tulis data
 - CPU ⇒ I/O: proses kirim data ke I/O
 - CPU ← I/O: proses baca data dari I/O device
 - I/O ⇒ Memori: transfer data dari I/O ke memori (DMA)
 - I/O ← Memori: transfer data dari memori ke I/O (DMA)

Model koneksi tiap bagian komputer

Koneksi pada Memori

- Terima dan kirim data
- Terima alamat (lokasi memori)
- Terima signal kontrol:
 - Read
 - Write

Koneksi pada CPU

- Baca instruksi dan data
- Tulis data ke luar (sesudah diproses)
- Kirim alamat ke luar
- Kirim signal kontrol ke unit lain
- Terima interrupt dan lakukan aksi

Koneksi pada *Input/Output* (1)

- Terima signal kontrol dari komputer (read atau write)
- Terima alamat dari komputer
 - ✓ Misal: nomor port untuk identifikasi peripheral
- Terima data internal (dari komputer) dan data eksternal (dari device lain)
- Kirim data internal dan eksternal
- Kirim signal interrupt (control)

Koneksi pada Input/Output (2)

- Dari sisi komputer I/O diperlakukan seperti memori
- Saat I/O berfungsi sebagai Output:
 - Terima data dari komputer
 - Kirim data ke peripheral
- Saat I/O berfungsi sebagai Input:
 - Terima data dari peripheral
 - Kirim data ke komputer

Koneksi?... $\rightarrow \rightarrow \rightarrow$ Bus

Apakah BUS itu?

- Saluran komunikasi yang menghubungkan dua device atau lebih
- Biasanya bersifat $broadcast \rightarrow$ data menyebar ke seluruh deviceyang terhubung ke bus
- Dalam satu waktu hanya satu device yang dapat mengirimkan data, tetapi device yang membaca data boleh lebih dari satu
- Bus sering dikelompokkan:
 - Beberapa channel (jalur) digabung ke dalam satu bus
 - Misal: bus data 32 identik dengan 32 jalur terpisah masing masing satu bit
- Bentuk fisik:
 - Jalur paralel (50 hingga ratusan) pada PCB (printed circuit board)
 - Pita kabel (seperti kabel untuk harddisk)
 - Konektor strip pada mother board
 - misal: ISA, PCI
 - Sekumpulan kabel

Part 2: Apa saja jenis bus yang ada di dalam komputer?

Skema Interkoneksi Bus

System bus: jalur yang menghubungkan komponen utama komputer (CPU, memori, dan I/O)

> Struktur bus

Bus data

Bus alamat

Bus kontrol

Bus Data

- Fungsi: membawa data antar bagian utama komputer
 - Data di sini dapat berupa data atau instruksi
- Jumlah jalur data yang digunakan disebut lebar bus
- Lebar bus data menentukan performansi sistem
 - Makin lebar bus data $\rightarrow \rightarrow$ performansi sistem meningkat
 - Contoh: panjang data = 16 bit
 - Lebar bus data 8 bit $\rightarrow \rightarrow$ harus diambil 2x
 - Lebar bus data 16 bit → → cukup diambil 1x
 - Macam lebar bus data: 8, 16, 32, 64 bit, dll

Bus Alamat

- Mengidentifikasi asal atau tujuan data
 - Misal: CPU dapat membaca data yang ada di memori jika alamat data tersebut telah ditentukan
- Lebar bus menentukan ukuran maksimum memori yang dapat digunakan
 - Misal: Pentium I mempunyai lebar bus alamat 32 bit sehingga memori maksimumnya adalah 2³² = 4 gigabytes
 - Intel Pentium 4 dapat mempunyai memori maksimum = ... ???
- Lebar bus alamat digunakan pula untuk pengalamatan port I/O

Bus Kontrol

- Untuk mengatur pengaksesan dan penggunaan jalur data dan alamat
- Memberikan timing (untuk eksekusi program)
- Memberikan signal kontrol sbb:
 - Memory read (data di memori → bus data)
 - Memory write (data di bus data → memori)
 - I/O read (data di port I/O → bus data)
 - I/O write (data di bus data → port I/O)
 - Transfer ACK (data telah diterima/ditaruh dari/ke bus)
 - Bus request (permintaan untuk menggunakan bus)
 - Bus grant (status bus boleh digunakan)
 - Interrupt request (permintaan interrupt)
 - Interrupt ACK (interrupt telah diterima)
 - Clock signals (mensinkronkan operasi)
 - Reset (inisialisasi semua modul)

Hirarki Bus

Hirarki bus

- Apa kekurangan single bus?
 - Terjadi propagation delay
 - Bila device yang terhubung ke bus semakin banyak, maka saluran/bus yang digunakan menjadi semakin panjang
 - Terjadi bottleneck
 - Bila lalu lintas data melebihi kapasitas bus
- Bagaimana solusinya?
 - Gunakan MULTIPLE bus

Multiple bus: Traditional

Multiple bus: High **Performance**

Part 3: Apa saja jenis-jenis bus berdasarkan elemen-elemennya?

Elemen Bus Design

Tipe Bus (1)

Dedicated

- Jalur data dan jalur alamat terpisah dan penggunaannya tetap/tidak berubah-ubah
- Tipe bus yang banyak digunakan

Multiplexed

- Jalur bus digunakan untuk mengirimkan alamat dan data secara bergantian
- Digunakan control line: address valid atau data valid
- Kelebihan: jumlah jalur lebih sedikit → hemat tempat → hemat biaya
- Kerugian:
 - Penanganan lebih kompleks/rumit
 - Performansi berkurang: alamat dan data harus bergantian (tidak) dapat paralel)

Tipe Bus (2)

Physical dedication

- Termasuk tipe bus multiplexed
- Jalur tertentu diperuntukkan bagi beberapa modul tertentu
- Misal: bus I/O hanya untuk menghubungkan semua modul I/O \rightarrow modul I/O tidak terhubung langsung ke bus sistem
- Kelebihan: throughput meningkat, karena bus contention berkurang
- Kekurangan: ukuran bertambah → biaya

Bus Arbitration (1)

- Bus arbitration ≈ pengaturan bus
- Mengapa penggunaan bus perlu diatur?
 - Karena dalam satu saat:
 - Hanya boleh ada satu modul yang menggunakan bus
 - Dimungkinkan lebih dari satu modul ingin menggunakan bus
 - Misal: CPU dan DMA controller
- Jenis bus arbitration:
 - Centralized (terpusat)
 - Distributed (tersebar)

Bus Arbitration (2)

Centralized Arbitration

- Ditunjuk sebuah modul/hardware yang bertugas mengatur penggunaan bus dan disebut Bus Controller atau Arbiter
- Realisasinya:
 - Dapat berupa modul terpisah, atau
 - Bagian dari CPU
- Distributed Arbitration
 - Tidak ada controller tunggal (terpusat)
 - Setiap modul dapat mengakses bus berdasarkan control logic pada setiap modul

Timing (1)

- Pengaturan event pada bus
- Berhubungan dengan clock

Signal as a function of time

Timing (2)

Cause-and-effect dependencies

Synchronous Timing

- Terjadinya event pada bus didasarkan pada clock
- Satu siklus bus terdiri dari sepasang bit 1-0
- Semua device dapat membaca clock line
- Sinkronisasi biasanya pada ujung awal clock
- Biasanya satu event untuk satu siklus

Synchronous Timing Diagram (Read and Write)

Asynchronous Timing

- Event berikutnya terjadi berdasarkan event sebelumnya (tidak berdasarkan *clock*)
- Synchronous vs Asynchronous:
 - Synchronous:
 - (+) Implementasi mudah
 - (+) Pengujian mudah
 - (-) Kurang fleksibel (*clock rate* tetap → *device* dengan clock rate lebih tinggi tidak meningkatkan performansi sistem)
 - Asynchronous:
 - (+) Lebih fleksibel → device model lama (kecepatan rendah) dapat digunakan bersama-sama dengan device berkecepatan lebih tinggi

Asynchronous Timing - Read Diagram

Asynchronous Timing – Write Diagram

Lebar Bus (bus width)

- Adalah banyaknya jalur yang digunakan
- Lebar bus berpengaruh terhadap:
 - Performansi
 - Makin lebar bus data yang digunakan → makin banyak jumlah bit data yang dapat dilewatkan dalam satu saat
 - Misal: Jika clock CPU sama, maka komputer dengan bus data 32 bit lebih cepat daripada komputer dengan bus data 16 bit
 - Kapasitas
 - Makin lebar bus *alamat* yang digunakan → makin besar memori yang dapat digunakan

Model Transfer Data (1)

 Model transfer data antara jenis bus dedicated berbeda dengan *multiplexed*

Model Transfer Data (2)

Just info

- Model transfer data yang lain:
 - Read-modify-write

Read-after-write

Block data transfer

Data write langsung dilakukan setelah data read selesai dilakukan (alamat sama)

- Share memory dapat terjaga (indivisible)
- Data read langsung dilakukan setelah data write selesai dilakukan (alamat sama)
- Share memory dapat terjaga (indivisible)

Part 4: Bagaimana karakteristik bus PCI?

PCI Bus

- PCI = Peripheral Component Interconnection
- Dirilis oleh Intel tahun 1990 pada Pentium-based
- Kelebihan:
 - Bus dengan bandwidth tinggi
 - Bus dengan processor-independent
 - Meningkatkan performansi sistem
 - Dapat memenuhi kebutuhan I/O secara ekonomis
 - Tetap kompatibel meskipun vendor berbeda
- Terdiri dari 32 atau 64 bit
- Transfer rate dengan 64 bit dan 66 MHz adalah 528 Mbytes/s (66x64/8) atau 4.224 Gbps
- Terdiri dari 49 jalur wajib dan 51 jalur tambahan
- Menggunakan model multiplexed, synchronous timing dan centralized arbitration
- Sinkronisasi terjadi saat perubahan clock dari high ke low (pertengahan siklus)

PCI Bus – Konfigurasi Desktop

PCI Bus – Konfigurasi Server

PCI Bus Lines (wajib)

- Pin System
 - Terdiri dari clock dan reset
- Pin Alamat & Data
 - 32 jalur multiplekser untuk alamat/data
 - Jalur untuk validasi data
 - Jalur untuk mengartikan signal
- Pin Interface Control
 - Mengatur timing transaksi
 - Melakukan koordinasi antara initiator dan target
- Pin Arbitration
 - Not shared
 - Setiap PCI modul mempunyai sambungan langsung ke PCI bus arbiter
- Pin Error reporting
 - Untuk melaporkan kesalahan paritas atau kesalahan lain

PCI Bus Lines (Optional)

Pin Interrupt

- Digunakan untuk mengirimkan interrupt
- Not shared, setiap modul mempunyai saluran interrupt tersendiri

Pin Cache support

 Untuk mendukung memori PCI yang dapat di-cache ke prosesor atau device lain

64-bit Bus Extension

- Jalur tambahan 32 jalur
- Time multiplexed
- Jalur untuk validasi data
- Jalur untuk mengartikan signal
- 2 jalur untuk meng-enable device yang dapat menggunakan transfer 64bit

JTAG/Boundary Scan

Untuk melakukan prosedur testing

PCI Commands

- Untuk mengatur transaksi antara initiator (master) and target
- Menentukan jenis transaksi yang akan dilakukan
 - Misal: I/O read/write
- Memberikan tanda (signal) suatu event telah selesai dilakukan
- Memberikan tanda suatu kondisi (siap menerima data atau data telah ditaruh di bus) kepada modul lain yang membutuhkan

Part 5: Bagaimana cara kerja bus PCI ketika terjadi proses baca data?

PCI *Read* Timing Diagram (1)

PCI *Read* Timing Diagram (2)

Keterangan:

- <u>CPU</u>: (a) Aktifkan FRAME, (a1) taruh alamat yang akan dibaca, (a2) Taruh bus CMD
- Memory: (b) mulai mendeteksi alamat di bus
- CPU: (c1) Telah selesai menaruh alamat di jalur AD (Address Data),
 - (c) mengubah status jalur AD (C = command \rightarrow BE = byte enable),
 - (c2) kirim signal siap baca data (IRDY)
- Memory: (d) Taruh data-1 di bus, (d1) kirim signal data valid di bus (TRDY),
 - (d2) Kirim signal alamat selesai di-decode (DEVSEL)
- CPU: (e) Tentukan status jalur = BE (untuk data berikutnya)
- Memory: (f) Kirim signal data tidak valid >> Persiapan untuk kirim data berikutnya
- Memory: (f1) Taruh data ke-2, (f2) kirim signal data valid di *bus* (TRDY)
- <u>CPU</u>: (g2) Tentukan status jalur = BE untuk data berikutnya,
 - (g) Tidak siap terima data (buffer full)
- Memory: (g1) Pertahankan data ke-3 yang telah ditaruh di bus
- CPU: (h1) kirim signal siap baca data (IRDY),
 - (h) baca data selesai → disable FRAME
- CPU dan memory: (i) (i4) kembalikan jalur yang digunakan ke posisi normal

Part 6: Bagaimana cara pengaturan penggunaan bus PCI secara bergantian?

Contoh PCI Bus Arbitration

(2 modul)

Contoh PCI Bus Arbitration

(2 modul)

Keterangan:

```
<u>Arbiter</u>: (a) men-scan jalur dan mendapati modul A telah aktif (request bus) <u>Modul B</u>: (b) request bus di pertengahan siklus satu <u>Arbiter</u>: (c) mengijinkan modul A menggunakan bus (GNT-A)
```

Modul A: (d1+d2) membaca status jalur IRDY dan TRDY dan ternyata statusnya idle → (d) modul a mengaktifkan FRAME, (d3) mengirim alamat, (tdk digambar) mengirim signal C/BE

Arbiter: (e1) menghentikan servis terhadap modul A,

(e) memberi kesempatan kepada modul B (GNT-B)

Modul A: (f1) beritahu target dengan mengirim signal IRDY,

(f2) kirim signal data valid (TRDY),

(f3) taruh data terakhir di bus,

(f) normalkan FRAME

Modul B: (g) Aktifkan FRAME,

(g2) taruh alamat,

(g1) normalkan REQ-B

• • •

Referensi

[STA19] Stalling, William. 2019. "Computer Organization and Architecture: Designing for Performance". 11th edition. Prentice Hall.