Nome:

Responda todas as questões considerando o computador hipotético Ramses. Nas questões 1 a 6 mostre obrigatoriamente o que cada instrução executa e qual o valor da posição 35 de memória após executar o trecho de programa. Considere o mapa de memória mostrado abaixo e que todos os algoritmos iniciam na posição zero de memória.

Posição	Valor
30	34
31	33
32	30
33	8
34	4
35	40

```
1 (1 ponto)
```

LDR A 30 A=34

LDR A 31 A=33

LDR B 32 B=30

LDR B 33 B=8

STR A 35 Resposta: MEM[35]=33

2 (1 ponto)

LDR A 30 A=34

LDR B 31 B=33

ADD A 30 A = A + MEM[30] = 34 + 34 = 68

LDR B 31 B=33

LDR A 33 A=8

LDR B 34 B=4

STR A 35 Resposta: MEM[35]=8

3 (1 ponto)

LDR A 30 A=34

ADD A #31 A=34+31=65

STR A 35 Resposta: MEM[35]=65

4 (1 ponto)

LDR A 30 A=34

ADD A 31, i A=34+8=42

STR A 35 Resposta: MEM[35]=42

5 (1 ponto)

LDR A 30 A=34

ADD A 32 A=34+30=64

STR A 32 MEM[32]=64

LDR B 30 B=34

ADD B 32 B=34+64=98

STR B 35 Resposta: MEM[35]=98

```
6(1 ponto)

0 LDR B 30 B=34

2 LDR A 33 A=8

4 SUB A 34 A=8-4=4

6 JN 10 não salta

8 ADD B 31 B=34+33=67

10 LDR A 34 A=4

12 SUB A 33 A=4-8=-4

14 JN 18 salta para 18

16 ADD B 32 não executa

18 STR B 35 MEM[35]=67
```

7 (1,5 ponto) Mostre como ficará a memória do Ramses após tradução para código de máquina (binário, decimal ou hexadecimal) do programa abaixo:

LDR X 20,i NOT B JZ 30 OR A #40 SHR X HLT

Posição	Valor	
0	00101001	LDR X 20,i
1	00010100	
2	011001xx	NOT B
3	1010xx00	JZ 30
4	00011110	
5	01000010	OR A #40
6	00101000	
7	111010xx	SHR X
8	1111xxxx	HLT

xx pode ser qualquer valor (0 ou 1).

8 (1,5 ponto) A memória abaixo representa um programa em linguagem de máquina do Ramses.

Faça a tradução para o assembly correspondente.

Posiç	Valor	
ão		
0	10000000	JMP 20
1	00010100	
2	11011000	NEG X
3	01010110	AND B #22
4	00010110	
5	01100000	NOT A
6	01111001	SUB X 23,i
7	00010111	
8	11110011	HLT

9) Supondo que as posições de memória 41 e 42 contenham as variáveis V1 e V2, respectivamente, implemente em Assembly do Ramses o algoritmo abaixo. Não utilize os nomes das variáveis, mas sim, as posições de memória:

Uma resposta possível:

```
0 LDR A 41
2 SUB A #30
4 JN 14
6 JZ 14
8 LDR B #22
10 STR B 42
12 JMP 16
14 LDR B #11
16 STR B 42
18 HLT
```