Using ABoxes to store Data

ABoxes (Assertion Boxes)

Knowledge Base (KB)

TBox (terminological box, schema)

 $\begin{array}{c} \mathsf{Man} \equiv \mathsf{Human} \sqcap \mathsf{Male} \\ \mathsf{HappyFather} \equiv \mathsf{Man} \sqcap \exists \mathsf{hasChild} \end{array}$

•••

ABox (assertion box, data)

john: Man (john, mary): hasChild

...

Inference System

Interface

Assertion Box (ABox)

Let \mathcal{L} be a description logic. A \mathcal{L} -ABox is a finite set \mathcal{A} of assertions of the form

where C is an \mathcal{L} -concept, r a role name, and a, b are individual names.

- C(a) says that a is an instance of C;
- r(a,b) says that (a,b) is an instance of r.

ABoxes generalize database instances in which only ground sentences

$$A(a), \quad r(a,b)$$

with ${\bf A}$ a concept name and ${\bf r}$ a role name are allowed. We sometimes call ABoxes that are database instances simple ABoxes.

Semantics for ABoxes (Open World Assumption)

Let \mathcal{A} be an ABox. By $\operatorname{Ind}(\mathcal{A})$ we denote the set of individual names in \mathcal{A} . An interpretation \mathcal{I} is a model of \mathcal{A} , in symbols $\mathcal{I} \models \mathcal{A}$, if

- $\operatorname{Ind}(\mathcal{A}) \subseteq \Delta^{\mathcal{I}}$;
- If $C(a) \in \mathcal{A}$, then $a \in C^{\mathcal{I}}$;
- If $r(a,b) \in \mathcal{A}$, then $(a,b) \in r^{\mathcal{I}}$.

The set of models of \mathcal{A} is denoted by $Mod(\mathcal{A})$.

Let $F(x_1, \ldots, x_n)$ be an FOPL query. Then (a_1, \ldots, a_n) in Ind(A) is a **certain** answer to $F(x_1, \ldots, x_n)$ in A, in symbols

$$\mathcal{A} \models F(a_1,\ldots,a_n),$$

if $\mathcal{I} \models F(a_1,\ldots,a_n)$ for all $\mathcal{I} \in \mathsf{Mod}(\mathcal{A})$.

The set of certain answers to $F(x_1,\ldots,x_n)$ in ${\mathcal A}$ is

$$\mathsf{certanswer}(F(x_1,\ldots,x_n),\mathcal{A}) = \{(a_1,\ldots,a_n) \mid \mathcal{A} \models F(a_1,\ldots,a_n)\}$$

FOPL Query Answering (Open World Semantics)

- ullet 'Yes' is the certain answer to a Boolean query F if $\mathcal{I} \models F$ for all $\mathcal{I} \in \mathsf{Mod}(\mathcal{A})$.
- ullet 'No' is the certain answer to a Boolean query F if $\mathcal{I} \not\models F$ for all $\mathcal{I} \in \mathsf{Mod}(\mathcal{A})$
- If neither 'Yes' nor 'No' is a certain answer, then we say that the certain answer is 'Don't know'.

What is the answer to this query?

Consider the ABox A:

- 1. friend(john, susan)
- 2. friend(john, andrea)
- 3. loves(susan, andrea)
- 4. loves(andrea, bill)
- 5. Female(susan)
- 6. ¬Female(bill)

Does John have a female friend who is in love with a not female person?

The corresponding Boolean FOPL query is

 $F = \exists x. (\mathsf{friend}(\mathsf{john}, x) \land \mathsf{Female}(x) \land \exists y. (\mathsf{loves}(x, y) \land \neg \mathsf{Female}(y)))$

or, in description logic notation:

∃friend.(Female □ ∃loves.¬Female)(john)

Answers: Example

Let

$$A = \{ Male(harry), hasChild(peter, harry) \}$$

The answer to the query "Are all children of Peter male?", in symbols

$$F = \forall x. (\mathsf{hasChild}(\mathsf{peter}, x) \to \mathsf{Male}(x)),$$

given by A is "don't know".

In order to prevent this, we could add

- \(\forall \) has Child. Male (peter)
- or $(\leq 1 \text{ hasChild .T})(\text{peter})$

to the ABox \mathcal{A} .

3-Colorability

A graph G is a pair (W, E) consisting of a set W and a symmetric relation E on W.

G is 3-colorable if there exist subsets blue, red, and green of W such that

- the sets blue, green, and red are mutually disjoint;
- blue \cup red \cup green = W;
- if $(a,b) \in E$, then a and b do not have the same color.

3-colorability of graphs is an NP-complete problem.

3-Colorability as a Query Answering Problem

Assume G=(W,E) is given. Construct the ABox $\mathcal A$ by taking a role name r and concept names Blue, Green, and Red and setting

- $r(a,b) \in \mathcal{A}$ for all $a,b \in W$ with $(a,b) \in E$.
- Blue \sqcup Green \sqcup Red $(a) \in \mathcal{A}$ for all $a \in W$.
- (Blue $\rightarrow \forall r.(\mathsf{Red} \sqcup \mathsf{Green}))(a) \in \mathcal{A}$, for all $a \in W$;
- $(\mathsf{Red} \to \forall r.(\mathsf{Blue} \sqcup \mathsf{Green}))(a) \in \mathcal{A}$, for all $a \in W$;
- (Green $\rightarrow \forall r. (\mathsf{Red} \sqcup \mathsf{Blue}))(a) \in \mathcal{A}$, for all $a \in W$.

Define query F by setting

$$F = \exists x ((\mathsf{Blue}(x) \land \mathsf{Red}(x)) \lor (\mathsf{Blue}(x) \land \mathsf{Green}(x)) \lor (\mathsf{Red}(x) \land \mathsf{Green}(x))$$

Then G is not 3-colorable if, and only if, the certain answer to F in $\mathcal A$ is 'Yes'.

Thus, query answering is coNP-hard (the complement of NP) in data complexity!

Using the \mathcal{ALC} Tableau to Answer Queries

Consider an \mathcal{ALC} ABox \mathcal{A} and a query of the form C(x), where C is an \mathcal{ALC} concept. Assume $a \in Ind(\mathcal{A})$ is given. We want to know whether

$$a \in \operatorname{certanswer}(C(x), \mathcal{A}),$$

in other words, we want to know whether $a \in C^{\mathcal{I}}$ for all interpretations $\mathcal{I} \in \mathbf{Mod}(\mathcal{A})$.

We can reformulate this problem as follows: Let $\mathcal{A}' = \mathcal{A} \cup \{\neg C(a)\}$. Then $a \in \operatorname{certanswer}(C(x), \mathcal{A})$ if there does not exist any model of \mathcal{A}' .

Tableau Algorithm Deciding whether ${\cal A}$ has a Model

Consider \mathcal{ALC} ABox \mathcal{A} . We may assume that each concept D in \mathcal{A} is in negation normal form and obtain the constraint system \mathcal{A}^* as the set of constraints

- a: C for all $C(a) \in \mathcal{A}$;
- ullet (a,b):r for all $r(a,b)\in \mathcal{A}$.

Then \mathcal{A} has a model if, and only if, starting from \mathcal{A}^* there is a sequence of completion rule applications that terminates with a set of constraints containing no clash.

Consider again the ABox \mathcal{A} :

- 1. friend(john, susan)
- 2. friend(john, andrea)
- 3. loves(susan, andrea)
- 4. loves(andrea, bill)
- 5. Female(susan)
- 6. ¬Female(bill)

Does John have a female friend who is in love with a not female person?

Thus, we want to know whether 'Yes' is the certain answer to the query:

∃friend.(Female □ ∃loves.¬Female)(john)

To this end we check whether

 $A \cup \{\neg \exists friend.(Female \sqcap \exists loves. \neg Female)(john)\}$

has a model. If not, then 'Yes' is indeed the certain answer to

∃friend.(Female □ ∃loves.¬Female)(john)

Transformation into negation normal form gives:

∀friend.(¬Female ⊔ ∀loves.Female)(john)

Thus, we apply the tableau to the constraint system

 $\mathcal{A}^* \cup \{\text{john} : \forall \text{friend.}(\neg \text{Female} \sqcup \forall \text{loves.Female})\}$

given by

- 1. (john, susan): friend
- 2. (john, andrea): friend
- 3. (susan, andrea): loves
- 4. (andrea, bill): loves
- 5. susan: Female
- 6. bill: ¬Female
- 7. john: ∀friend.(¬Female ⊔ ∀loves.Female)

Two applications of the rule \rightarrow_\forall give the additional constraints:

susan: (¬Female ⊔ ∀loves.Female)

and

andrea: (¬Female ⊔ ∀loves.Female)

We now apply the rule \rightarrow_{\lor} to the first constraint:

- Adding the constraint susan : \neg Female results in a clash since we have already susan : Female $\in \mathcal{A}^*$.
- Thus we add the constraint susan: ∀loves. Female to the constraint system.

We now apply \rightarrow_{\forall} to

susan: ∀loves.Female, (susan, andrea): loves

and add

andrea: Female

to the constraint system. We apply \rightarrow_{\lor} to

andrea: (¬Female ⊔ ∀loves.Female)

- Adding andrea: ¬Female to the constraint systems results in a clash since andrea: Female is in the constraint system.
- Thus we add the constraint andrea: ∀loves.Female to the constraint system.

Now we apply \rightarrow_{\forall} to

andrea: ∀loves.Female, (andrea, bill): loves

and add

bill: Female

to the constraint system. But this results in a clash since bill: ¬Female is already in the constraint system.

It follows that every sequence of completion rule application results in a clash.