A simple mathematical model of the Coastguards

Soumadeep Ghosh

Kolkata, India

Abstract

In this paper, I describe a simple mathematical model of the Coast guards. The paper ends with "The End" $\,$

Introduction

The Coastguards in any nation are responsible for defending the coasts of the nation. In this paper, I describe a simple mathematical model of the Coastguards.

The mathematics of the Coastguards

The **area of contention** is from $x=-\frac{W}{2}$ to $x=\frac{W}{2}$ and $y=-\frac{H}{2}$ to $y=\frac{H}{2}$. T **allied cannons** are positioned at (X_i,Y_i) where $1\leq i\leq T$ and every $Y_i\leq 0$ Each cannon has **hit-points** H and can fire missiles that cause **damage** D to any ship. Each cannon is destroyed whenever the total damage to the cannon where equals or is greater than the hit-points of the cannon.

s enemy ships are positioned at (x_j, y_j) where $1 \le j \le s$ and every $y_j \ge 0$ Each ship has hit-points h and can fire missiles that cause damage d to any cannon. Each ship is destroyed whenever the total damage to the ship equals or is greater than the hit-points of the ship.

Therefore, we obtain the missile equations:

$$M = \lceil \frac{h}{D} \rceil$$

$$m = \lceil \frac{H}{d} \rceil$$

where

M is the number of missiles to be fired by cannon(s) to destroy a ship. m is the number of missiles to be fired by ship(s) to destroy a cannon.

We also have the following equations:

The total hit-points equations:

$$P = TH$$

$$p = sh$$

where

P is the total hit-points of all cannons. p is the total hit-points of all ships.

The total missiles equations:

$$N = sM$$

$$n = Tm$$

where

N is the total missiles fired from all cannons. n is the total missiles fired from all ships.

The total damage equations:

$$\Delta = ND$$

$$\delta = nd$$

where

 Δ is the total damage caused by all cannons to all ships. δ is the total damage caused by all ships to all cannons.

Working backwards to solve for the win of the Coastguards

For the Coastguards to win, we must have

$$(\Delta > \delta) \wedge (P > \delta)$$

i.e.,

$$(ND > nd) \wedge (TH > nd)$$

i.e.,

$$(sMD>Tmd)\wedge (TH>Tmd)$$

i.e.,

$$(s\lceil \frac{h}{D} \rceil D > T\lceil \frac{H}{d} \rceil d) \wedge (T(H - \lceil \frac{H}{d} \rceil d) > 0)$$

The End