Marcin Mikuła

Interpolacja

Do obliczeń użyłem języka Python na systemie Windows 10.

Funkcja do analizy:

$$f(x) = e^{-\sin(2*x)} + \sin(2*x) - 1$$

na przedziale: [0, 3pi]

Wykres 1. Zadana funkcja

Pisemne wyprowadzenie rozwiązania w osobnym pliku spakowane razem z kodem.

Program wykonywał obliczenia dla liczby równoodległych węzłów:

{5, 8, 10, 15, 20, 25, 30, 35, 50, 75, 100}

Wykresy są rysowane dla 1000 równoodległych punktów, dla których obliczana jest wartość interpolowana. Na każdym z wykresów znajdują się wszystkie testowane funkcje: funkcja sklejana stopnia drugiego z warunkiem brzegowym natural cubic spline: $s''(x_1) = s''(x_n) = 0$, oraz z warunkiem brzegowym $s''(x_1) = y_1''$, $s''(x_n) = y_n''$ (clamped boundary). A także funkcja sklejana stopnia trzeciego warunkiem brzegowym natural cubic spline oraz parabolic runout $s_1''(x) = s_2''(x)$, $s_n''(x) = s_{n-1}''(x)$.

Norma maksimum					Różnica kwadratów			
	spline2	spline2	spline3	spline3	spline2	spline2	spline3	spline3
Liczba węzłów	natural	clamped	natural	parabolic	natural	clamped	natural	parabolic
5	1.321557	1.321557	0.681239	0.729126	343.519973	347.869327	94.578347	100.866368
8	0.799984	0.799984	0.642027	0.635537	99.762403	98.857487	75.349854	75.79211
10	0.714554	0.714554	0.506894	0.507044	85.662998	84.230236	59.223438	58.417719
15	0.557884	0.557884	0.243969	0.331833	45.549319	45.372166	8.767373	11.438183
20	0.489059	0.489059	0.116661	0.124318	44.231122	44.246867	0.923617	0.999765
25	0.134732	0.134732	0.049778	0.032289	1.878994	1.901952	0.111441	0.075133
30	0.032877	0.032877	0.027217	0.016918	0.18024	0.195084	0.027848	0.012847
35	0.01333	0.024592	0.017896	0.010357	0.021323	0.030178	0.009853	0.003042
50	0.003297	0.014053	0.007808	0.003257	0.001669	0.003778	0.001282	0.000157
75	0.000792	0.006858	0.003278	0.000867	0.000111	0.00045	0.000151	0.000007
100	0.000314	0.004038	0.001806	0.000342	0.000018	0.000105	0.000034	0.000001

Tabela 1. Błędy uzyskane dla funkcji sklejanych dla węzłów o rozkładzie równoodległym.

Kolorem błękitnym zaznaczono jak bardzo różnią się błędy dla funkcji sklejających stopnia 2 i 3. Funkcja sklejająca 3 stopnia dużo dokładniej przybliża funkcję interpolowaną. Kolorem żółtym i czerwonym wskazano jak bardzo niedokładne przybliżenie powstaje przy użyciu warunku brzegowego clamped boundary dla funkcji sklejającej drugiego stopnia.

Wykres 1. Interpolacja funkcjami sklejanymi dla węzłów o rozkładzie równoodległym dla 8 węzłów.

Wykres 2. Interpolacja funkcjami sklejanymi dla węzłów o rozkładzie równoodległym dla 15 węzłów.

Wykres 3. Interpolacja funkcjami sklejanymi dla węzłów o rozkładzie równoodległym dla 30 węzłów.

Wykres 4. Interpolacja funkcjami sklejanymi dla węzłów o rozkładzie równoodległym dla 50 węzłów.

Dla 8 węzłów można zauważyć, że przybliżenie funkcji jest bardzo niedokładne. Widać również, że przybliżenie zależy od wykorzystywanego warunku brzegowego. Dla 15 węzłów przybliżenie jest widocznie bardziej dokładne, jednak nadal odbiega od interpolowanej funkcji. Dla 30 węzłów przybliżenie jest zadowalające. Widać również, że dla warunku Clamped Boundary jest ono najmniej dokładne.

Przeprowadzona analiza pozwoliła zauważyć różnicę między dokładnością przybliżenia interpolowanej funkcji przez funkcje interpolacyjną sklejaną 2 stopnia i 3 stopnia. W większości sprawdzonych przypadków funkcja 3 stopnia dawała lepsze przybliżenie. Można również zobaczyć, że dobór warunków brzegowych ma wpływ na kształt krzywej interpolacyjnej oraz na wartość błędów przybliżenia.

Dla funkcji sklejającej 3 stopnia z warunkiem brzegowym parabolic runout wartość błędu przybliżenia stawała się dużo mniejsza dla rosnącej liczby węzłów niż dla funkcji sklejającej 3 stopnia z warunkiem brzegowym natural cubic spline.

Materiał źródłowy o który oparte jest rozwiązanie oraz kod:

https://www2.icp.uni-

stuttgart.de/~icp/mediawiki/images/1/10/SS 2017 PC ws5 solution.pdf?fbcli d=IwAR0Goo62X50ghqPhxnD6ABqkZ-Vf8KLYgMJPCJbtjfRkjEcMj6busD5Lpw8

https://www.rajgunesh.com/resources/downloads/numerical/cubicsplineinterpol.pdf?fbclid=IwAR2Dix3w-glURrbjoLBsm-XbjwPkZtOLdV6uMJode6g5Wh-7RqCsSjdrfzA