

INDUCTION MACHINE EXPERIMENTS

DT021A/3
Electrical Machines
Instructor: Dr Malabika Basu

JANUARY 6, 2021
TALHA TALLAT
D18124645@mytudublin.ie

Table of Contents

1.1. No Load Test (NLT)	Experiment to complete	2
Torque Speed Characteristics of the squirrel cage induction motor	1.1. No Load Test (NLT)	3
Equivalent Circuit Calculations	Blocked rotor Test (BRT)	4
Equivalent Circuit Calculations	Torque Speed Characteristics of the squirrel cage induction motor	4
A numerical Problem	Equivalent Circuit	7
Table of Figures Figure 1 – Preset parameters of the asynchronous squirrel-cage machine	Equivalent Circuit Calculations	8
Figure 1 – Preset parameters of the asynchronous squirrel-cage machine	A numerical Problem	10
Figure 1 – Preset parameters of the asynchronous squirrel-cage machine		
Figure 2 - Preset Model of the asynchronous squirrel-cage machine with no load	Table of Figures	
	Figure 2 - Preset Model of the asynchronous squirrel-cage machine with no load	3 4
Figure 5 - Graph of the Stator current speed characteristic	Figure 4 - Graph of the Torque speed characteristic	

Experiment to complete

Choosing the 160KW, 400V, 50 Hz, 1487 RPM preset parameters in Simulink asynchronous squirrel-cage machine as shown in figure 1.

Figure 1 – Preset parameters of the asynchronous squirrel-cage machine

Balanced voltages of 400Vrms are applied to the stator terminals at the rated frequency of 50Hz. Current, voltage and power are measured at the motor input. The losses in the no-load test are caused by the core losses, winding losses, windage and friction. The Model of the squirrel is shown in figure 2.

1.1. No Load Test (NLT)

Figure 2 - Preset Model of the asynchronous squirrel-cage machine with no load

Table 1 - No-Load Test

NLT	Tm	V	ı	Pin	Pout	Speed (Wm)	Rotor Speed(rpm)
	0	231.3	93.61	1748	1423	157.1	1500
	100	231.2	96.91	17470	17110	156.9	1499
	200	231.1	105.6	33250	32770	156.8	1498
	300	231.1	118.5	49060	48410	156.7	1496
	400	231.3	134.4	64930	64020	156.6	1495
	500	231.3	152.4	80840	79600	156.4	1494
	600	231.2	172	96800	95150	156.3	1493
	700	231	192.8	112800	110700	156.2	1491
	800	231.2	214.4	128900	126200	156	1490
	900	231.3	236.6	145000	141700	155.9	1489
	1000	231.3	259.3	161200	157100	155.8	1488
	1019	231.3	263.7	164300	160000	155.8	1487

Blocked rotor Test (BRT)

In the blocked rotor mechanical input is set to speed w where test the rotor is blocked to prevent rotation and balanced voltages are applied to the stator terminals where the rated current is achieved. The input voltage was changed to produce a current which was measured in the no-load test. The model of the blocked rotor test is shown below.

Figure 3 - Model of the Squirrel cage machine when performing a blocked rotor test (BRT)

Table 2 - Blocked rotor test (BRT)

BRT	Vrms	V	I	Pin	Pout	Speed (Wm)	Rotor Speed(rpm)
	400	231	2385	361500	0	0	0
	44.29	25.59	263.8	4431	0	0	0

Torque Speed Characteristics of the squirrel cage induction motor

The input mechanical speed was varied from 0 to 157wm (1500rpm) to show the torque and the stator current speed characteristics of the induction machine. The following values were measured to produce a torque-speed characteristics graph.

Table 3 - Characteristics results for Torque & stator current

speed (wm)	Speed (rpm)	Torque	Current
0	0	319.1	2385
10	95.49	339.5	2379
20	191	940.4	2377
30	286.5	981.2	2375
40	382	1062	2369
50	477.5	1156	2356
60	573	1270	2356
70	668.5	1404	2347
80	763.9	1571	2332
90	859.4	1781	2316
100	954.9	2050	2291
110	1050	2408	2256
120	1146	2895	2195
130	1241	3560	2078
140	1337	4331	1823
150	1432	3898	1116
157	1499	64.1	94.75

Figure 4 - Graph of the Torque speed characteristic

The torque-speed graph typically consists of the following characteristics:

- Starting (locked rotor) is the minimum torque that the motor develops at rest for all angular positions of the rotor at the rated voltage and frequency.
- Pull up torque is the accelerating torque, when the motor accelerates, the torque develops slightly decreases. Pull-up torque is the minimum torque developed by the motor in as starting process.
- Breakdown torque is the maximum torque that the motor develops at rated voltage and frequency, without an abrupt drop in speed.
- Full-load torque is the torque required to produce the rated power at the rated speed.

Figure 5 - Graph of the Stator current speed characteristic

The stator current speed characteristic graph is shown above in figure 5 where the starting current is 2385A when the rotor speed is at 0 RPM. The stator current reduces when the speed is increased.

Equivalent Circuit

Equivalent Circuit Calculations

-> Ire = Pnt Vnj
Vnl
$I_{n_{c}} = \frac{142}{231.3}$
231.3
Irc = 6.15 A
. 12
Re = Vnl
RC = 231.3 6.15
RC = 37.6 sz
\rightarrow Ixm = $\sqrt{I_{n}^2-I_{n}^2}$
$I_{xm} = \sqrt{(9475)^2 - (6.15)^2}$
Ixm = .94.5 A
-> Xm = Vn1
Ixm
×m = 231.3
94.5
xm = 2.447
Phy 7 7 2 n
Pbr = Ibr2 x Reg Pbr = Reg
Ibn ²
Rey = 4431 263.8
Rey 2 16.797.R

> Zeq	= Von Ibu	
24	= 44.29	
→	263.8	
Le9	= 0.1679	

A numerical Problem

Problem	
3 Phase 460 V, 60 Hz, 4 Po RS = 0.42 sl, Rr = 0.23 sl Xm = 22 sl.	, Xs=Xr = 0.82.2
a) Synchronous speed	el 1750 npm.
$\frac{N_S = \frac{N_0 \times f}{P} = \frac{N_0 \times 60}{4}$ b) Slips	= 1800 rpm
S= Ns -Nr = 1800-1750	-0.0277
C) Input connect I,	
$\left \frac{1}{Z_{in}} \right = \frac{V_{ph}}{Z_{in}} = \frac{46}{V}$	
	(Rs + X1 + Xr + R2) (0.42 + 0.82) + 0.82j + 0.63 702) + 1.64j 0.02771
Zin = 22j x (8702) + 1.64j) = 22j + (8.702) x (.64j)	7.73378 (30.8
$T_1 = \frac{Vp4}{265.58} = \frac{265.58}{7.734} = \frac{265.58}{20.8}$	34.3 630.88
I1= 34.3A	

(e) Input power factor of the supply
Fi = 3 x Vph x I1 x (0) (3082)
Pi = 3 x 460 x 34.34 x (0) (70.2721) 2
V 3
Pi= 23.5KW
A)
\$) uir bap power
(Pg = 3x Ir2 x RK)
In 2 = Vph
$\frac{Ir^2}{\sqrt{(R_s + R_r)^2} + (x_s + x_r)^2}$
In2 = 460/V3
$In^{2} = \frac{460/\sqrt{3}}{\sqrt{(0.41 + 0.2)(0.0271)^{2} + (0.82 + 0.82)^{2}}}$
$Tr^2 = 30A$
P9 = 3 x 302 x 0.23 = 22.36 KW
9) Rotor copper loss
P Copper = 3 x In2 x Rn
Peopper = 1 x 302 x 0.23 = 620.50W
71.

H)	Developet torque
	Te = Pq -> Ws = 271 Ny
	Ws=271,1800 = 188.5m Te= 22347.35
	Te = 48.556 Nm
Z >	Elliciency
	E = Out = Pout = Pg - Pcopper - Pul xlow Pin Pin
	E = 22347.75 - 670.5 -60 x 100 = 92 %.
ر ز	5lip for maximum torque Smax = Rr = 0.23 VR52 + (xs + xr)2 \ \sqrt{0.422 + (0.82 + 0.82)^2}
	Slipe max 2 0.13586
K.J	Maximum devolped torque $T \max = \frac{1}{2w_s} \times \frac{3 \times Vpn^2}{R_s + \sqrt{12s^2 + (x_s + x_r)^2}}$
	Tmax = 1 / 1× 4 602 / 0.42 + (0.82 + 6.92)?
	Tmax = 265.645 Nm