TP3: Elements of Detection Theory

BY MARTINO FERRARI

1 Elements of Detection Theory

Exercise 1

Given $X \sim \mathcal{N}(0,1)$ and $Y \sim \mathcal{N}(0,2)$:

Figure 1. X and Y pdf

compute $P[-1 < Y \le 1]$, P[Y > 3.5], $P[-1 < X \le 1]$ and P[X > 3.5]:

$$\begin{array}{ll} P[-1 < Y \leqslant 1] = \Phi\left(\frac{1}{2}\right) - \Phi\left(-\frac{1}{2}\right) = 0.393 & P[Y > 3.5] = 1 - \Phi\left(\frac{3.5}{2}\right) = 0.0401 \\ P[-1 < X \leqslant 1] = \Phi(1) - \Phi(-1) = 0.683 & P[X > 3.5] = 1 - \Phi(3.5) = 0.000233 \end{array}$$

Table 1. Numerical results of exercise 2

Figure 2. graphical results of exercise 1

Exercise 2

Given $X \sim \mathcal{N}(30, 10)$ that denote the peak temperature of Geneva in June, what is P[X > 40], $P[X \le 15]$ and $P[20 < X \le 40]$:

The numerical results are:

$$\begin{split} P[X > 40] &= 1 - \Phi\left(\frac{40 - 30}{10}\right) = 0.159 \\ P[20 < X \leqslant 40] &= \Phi\left(\frac{40 - 30}{10}\right) - \Phi\left(\frac{20 - 30}{10}\right) = 0.683 \end{split}$$

Table 2. Numerical results of exercise 2

Figure 3. graphical results of exercise 2

Exercise 3

Let X be a Gaussian random variable, for which E[X] = 0 and $P[|X| \le 10] = 0.1$. What is σ_X ? $P[|X| \le 10]$ is equivalent to $P[-10 < X \le 10]$. To find σ_X we have to find:

$$\sigma_X : \left[\Phi\left(\frac{10}{\sigma_X}\right) - \Phi\left(\frac{-10}{\sigma_X}\right) \right] = 0.1$$

This results in $\sigma_X = 79.58$

Exercise 4

Next to the Q-function, the communications field uses the complementary error function (ERFC) for the tail probabilities of Gaussian random variables. It is defined as:

$$\operatorname{ercf}(n) = \frac{2}{\sqrt{\pi}} \int_{n}^{\infty} e^{-x^{2}} dx$$

Prove that:

$$Q(n) = \frac{1}{2} \operatorname{ercf}\left(\frac{n}{\sqrt{2}}\right)$$

$$Q(n) = \frac{1}{\sqrt{2\pi}} \int_{n}^{\infty} e^{-\frac{x^2}{2}} dx$$

$$\frac{1}{2}\operatorname{ercf}\left(\frac{n}{\sqrt{2}}\right) = \frac{1}{\sqrt{\pi}} \cdot \int_{\frac{n}{\sqrt{2}}}^{\infty} e^{-x^2} dx$$

$$x \to \frac{n}{\sqrt{2}}$$

$$n = \sqrt{2}x \to x = \frac{n}{\sqrt{2}}$$
$$\frac{1}{\sqrt{\pi}} \cdot \frac{1}{\sqrt{2}} \cdot \int_{n}^{\infty} e^{-\left(\frac{u}{\sqrt{2}}\right)^{2}} du \qquad \frac{1}{\sqrt{2\pi}} \cdot \int_{n}^{\infty} e^{-\left(\frac{u}{\sqrt{2}}\right)^{2}} du$$

2 Bayesian and Neyman-Pearson Test

Exercise 1

Let there be two hypothesizes, H_0 and H_1 :

$$\begin{cases} H_0: X = Z \\ H_1: X = \mu_1 + Z \end{cases}$$

where $Z \sim \mathcal{N}(0,1)$ and $\mu_1 = 1$.

The separation threshold τ for the MAP hypothesis is: $\tau = 0.5$ such that it minimize the $p_{\text{err}} = p_m + p_f$. In this specific case the two hypothesis have both same probability and distribution (only shifted of $\mu_1 - \mu_0$. Then $\tau = \frac{(\mu_1 + \mu_0)}{2} = 0.5$:

Figure 4. H_0 and H_1

To compute the p_m is enough to compute is simply equal to $p_m = Q(\tau)$, while the $p_f = \Phi(\tau - \mu_0)$ as $\sigma_X = 1$. However as explained before, in this particular case $p_m = p_f$, so:

$$p_f = p_m = 0.309$$

and

$$p_d = (1 - p_m) \to 0.691$$

Exercise 2

Let there be two hypothesizes, H_0 and H_1 :

$$\begin{cases} H_0: X = Z \\ H_1: X = \mu_1 + Z \end{cases}$$

where $Z \sim \mathcal{N}(0, 1)$ and $\mu_1 = \{0, 1, 2\}$.

Figure 5. graphical results of exercise 3

As before to compute the distributions are equal and equiprobables and so $\tau = \frac{(\mu_1 + \mu_0)}{2}$ and $p_m = p_f$:

μ_1	au	p_f	p_m	p_d
0	0	0.500	0.500	0.500
1	0.5	0.309	0.309	0.691
2	1	0.159	0.159	0.841

Table 3. Numerical results of exercise 3

Exercise 4

Given a binary communication system transmits a signal $X \sim \mathcal{B}(0.5)$. The receiver receives:

$$Y = VX + W \quad \wedge \quad W \bot V \bot X \quad \wedge \quad W \,, V \sim \frac{\mathcal{E}(1,1)}{\ln(1)}$$

In particular W and V has the following representation:

$$p_W(x), p_V(x) = \begin{cases} e^{-x} & x \geqslant 1\\ 0 & x < 1 \end{cases}$$

However this is not a pdf because by definition the integral from $-\infty$ to $+\infty$ of the pdf has to be 1, and:

$$\int_{-\infty}^{+\infty} p_W(x) dx = \int_{1}^{\infty} e^{-x} dx = (-e^{-\infty} + e^{-1}) = e^{-1} \neq 1$$

So this function has can be normalize as follow:

$$p_W(x), p_V(x) = \begin{cases} e^{(1-x)} & x \ge 1\\ 0 & < 1 \end{cases}$$

This can be represented with two equiprobables hypothesis (as $X \sim B(p), p = 0.5$):

$$\left\{ \begin{array}{l} H_0: W \\ H_1: W + V \end{array} \right.$$

Where the sum of W + V is equivalent to the convolution of the two pdf but due the fact that the two signal have identical exponential low:

$$p_{[W+V]}(x) = \begin{cases} (x-2) \cdot e^{-(x-2)} & x \ge 2\\ 0 & x < 2 \end{cases}$$

the cdf functions of H_0 and H_1 are:

$$\Phi_{H_0}(t) = \int_1^t e^{1-x} dx = 1 - e^{1-t} \qquad t \geqslant 1$$

$$\Phi_{H_1}(t) = \int_2^t (x-2)e^{2-x} dx = 1 - (t-1)e^{2-t}$$

Figure 6. graphical results of exercise 2

The threshold τ is such that minimizes the $p_{\text{err}}(x) = P(H_0) \cdot p_m(x) + P(H_1) \cdot p_f(x)$. However the two hypotheses are equiprobables $(P(H_0) = p, P(H_1) = 1 - p, p = 0.5)$ and so we can simplify in:

$$\tau = \operatorname*{arg\,min}_{x} \left(p_m(x) + p_f(x) \right) = \operatorname*{arg\,min}_{x} \left(\left(1 - \Phi_{H_0}(x) \right) + \Phi_{H_1}(x) \right)$$

in the range from 2 to infinite this can be expressed as

$$\begin{split} \tau &= \underset{x \in [2, \infty[}{\text{arg min}} ((1 - (1 - e^{1 - x})) + (1 - (x - 1)e^{2 - x})) \\ &\qquad \underset{x \in [2, \infty[}{\text{arg min}} (-e^{1 - x} + 1 - (x - 1)e^{2 - x}) \end{split}$$

It is now possible to find the minimum deriving:

$$p_{\rm err}' = e^{1-x} + (e^{2-x} - x \, e^{2-x}) + e^{2-x} = e^{1-x} + e^{2-x}(2-x)$$

$$p_{\rm err}' = 0 \to \tau = x = e^{-1}(2e+1)$$

resulting in $\tau = 2.37$ with a total $p_{\rm err} = 0.154$, $p_m = 0.249$ and $p_f = 0.054$.

To verify the hypothesis and the choice of τ , I chose to simulate 10^5 realization of Y and first display the histogram of the two hypothesis (last plot of figure 6) and then to compute the $p_{\rm err}$ of the classified events, $p_{\rm err} = \frac{{\rm error}}{N_{\rm events}} = 0.154$.

3 Code

The code is written in *Python 3*, using the mathematical libraries *numpy* and *scipy*. Attached there is both the *Jupyter notebook* (http://jupyter.org/) and the converted *python* source.