ECE 447: Control Systems

goal: what is a system's state? what is a nonlinear system?

(a) state space — new way of looking at/representing a system using a vector description of grantities of interest and how they interact over time

(b) time: continuous and discrete — we'll consider DE that evolve in continuous time, $\mathring{x} = f(x,u)$ or in discrete time, $\mathring{x}^{+} = \mathring{f}(\mathring{x},u)$

(c) linear systems - any matrices AEIRnxn, BEIRnxn determine linear state-space system f(x,u)=Ax+Bu

(2) nonlinear systems - defined by x= f(x, u)

(a) state space [AMV2 Ch3.2] [NV7 Ch3.3]

ex: RLC circuit: capacitor charge & & current & interact with voltage N over time:

R = CD Lä+Rå+ - 6= N

know: given $v:[o,\infty) \to \mathbb{R}$, initial condition $(g(o), \dot{g}(o))$: $t \mapsto v(t)$ then $g(t) = g_o(t) + g_v(t)$ partial ar response to v

then $g(t) = g_0(t) + g_v(t)$ hamogeneous response too · the vector (g(t), g(t)) = 12 is the circuit state at time t -> if I know . and input N:[t, \in), g(z) determined for z>t hamogeneas response to 1.0 charge *q* initial condition/state harge q, current \dot{q} current \dot{q} 0.5 0.0 -0.5 time t 2º multiple trajectories over time 1° one trajectory over time 1.0 charge *q* charge q, current \dot{q} current q 0.5 0.5 current \dot{q} 0.0 -0.5-1.015 5 10 time t charge q state space = { [8]

-> instead of a single 2nd-order

lec-fa20 Page 2

state space

state space — > instead of a single 2nd-order DE (8,8) (9,8) think about two 1st-order DE (8,8) $\frac{d}{dt}[9] = [8] = [8] = [6]$ $\frac{d}{dt}[9] = [6]$ $\frac{d}{dt}[9] = [6]$ $\frac{d}{dt}[9] = [6]$ State-space (more generally: $\frac{d}{dt}[x] = x = f(x,u)$, u = v representation where: $x \in \mathbb{R}^n$, $u \in \mathbb{R}^p$, $f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$ $f : \mathbb{R}^n \times \mathbb{R}^p \to \mathbb{R}^n$

(b) time: continuous and discrete [AMV2 (h 3.2]

ex: proportional-integral control on a microcontroller/embedded system

o PI $u(t) = k_p e(t) + k_p t_o e(t) dt$ $= k_p e(t) + k_p x(t)$ where $\dot{x}(t) = e(t)$ (DE)

ie $x(t) \in \mathbb{R}^2$ is controller state

and time $t \in \mathbb{R}$ is continuous (ie any real number)

on an embedded system, microprocessor measure error at discrete instants in time $t = \Delta$, 2Δ , 3Δ , $\Delta > 0$ clock cycle duration \rightarrow approximate (DE) as $\frac{1}{\Delta}(\tilde{\chi}(t+\Delta)-\tilde{\chi}(t)) \simeq \tilde{\chi}(t) = e(t)$

ie
$$\tilde{\chi}(t+\Delta) = \tilde{\chi}(t) + \Delta \cdot e(t)$$

 \sim yields a difference equation (DE) $\tilde{x}^{+}=e$ whose "solutions" are defined at times $t = k \cdot \Delta$ * to emphasize that ~ defined only at discrete times, write $\chi[k]$ to denote $\chi(k.\Delta)$

o more generally, with $x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n$ denoting state vector

and $u = \begin{bmatrix} u_1 \\ \vdots \\ u_n \end{bmatrix} \in \mathbb{R}^p$ denoting input vector

then state could change in time according to:

1°. differential equation $\frac{d}{dt}x = \dot{x} = f(x, u)$

2°. difference equation $\tilde{\chi}^+ = \tilde{f}(\tilde{\chi}_1 u)$

· well refer to both (1°.) & (2°.) as (DE)

and distinguish them notationally by writing: "continuous time"

1° x(t) for state of differential equation at time LER

2°. X[k] for state of difference equation at time t=k.A

"discrete time"

o with
$$x = \begin{bmatrix} 6 \\ \bar{6} \end{bmatrix}$$

o with
$$x = \begin{bmatrix} 6 \\ \bar{8} \end{bmatrix}$$
, $\hat{x} = \begin{bmatrix} \dot{9} \\ \bar{8} \end{bmatrix} = \begin{bmatrix} \dot{1} \\ (N - R\dot{g} - \frac{1}{C}\dot{g}) \end{bmatrix} = f(x,u)$, $u = N$

note:
$$f$$
 is linear: $(f(x,u) = Ax + Bu)$
 $\Rightarrow verify$

$$= \begin{bmatrix} 0 & 1 \\ -\frac{1}{LC} & -\frac{R}{L} \end{bmatrix} \begin{bmatrix} 8 \\ 8 \end{bmatrix} + \begin{bmatrix} 0 \\ \frac{1}{L} \end{bmatrix}^{N}$$

$$\mathbb{R}^{2\times 2}$$
 $\mathbb{R}^{2\times 2}$

omore generally, any
$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^{n \times p}$ defins a linear system in state-space form $\dot{x} = A \times + B u$

ex: given
$$\frac{d^n}{dt^n}g + a_1 \frac{dt^{n-1}}{dt^{n-1}}g + \cdots + a_n g = u$$

ochoosing
$$X = \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} = \begin{bmatrix} \frac{d^{n-1}}{dt^{n-2}} & y \\ \frac{d^{n-2}}{dt^{n-2}} & y \\ \vdots & \vdots & \vdots \\ X_{n-1} & \frac{d}{dt} & y \end{bmatrix} \in \mathbb{R}^n$$

$$\begin{aligned} & \begin{bmatrix} x_{n-1} \\ x_n \end{bmatrix} \begin{bmatrix} \frac{\alpha}{\alpha \xi} & 0 \\ y \end{bmatrix} \\ & = \begin{bmatrix} -\alpha_1 x_1 - \alpha_2 x_2 - \cdots - \alpha_n x_n + u \end{bmatrix} = f(x_1 u) \\ & = Ax + Bu = \begin{bmatrix} -\alpha_1 - \alpha_2 x_2 - \cdots - \alpha_n x_n + u \end{bmatrix} = f(x_1 u) \\ & = A \times Bu = \begin{bmatrix} -\alpha_1 - \alpha_2 x_2 - \cdots - \alpha_n x_n + u \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_{n-1} \end{bmatrix} \\ & = A \times Bu = \begin{bmatrix} -\alpha_1 - \alpha_2 x_2 - \cdots - \alpha_n x_n + u \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix} \\ & = A \times Bu = \begin{bmatrix} -\alpha_1 - \alpha_2 x_2 - \cdots - \alpha_n x_n + u \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix} \\ & = A \times Bu = \begin{bmatrix} -\alpha_1 - \alpha_2 x_2 - \cdots - \alpha_n x_n + u \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_n \end{bmatrix} \\ & = B \times Bu \end{bmatrix}$$

(d) nonlinear systems

ex: "rocket flight" (really: pendulum)

- · state x = (6, 3) ongle, velocity
- o input u hongantai un.

 o (DE) ml² = mglsing xg+lucose

$$\dot{x} = \begin{bmatrix} \dot{y} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} \dot$$

ex: quadrotor

A Simple Learning Strategy for High-Speed Quadrocopter Multi-Flips

Sergei Lupashin, Angela Schöllig, Michael Sherback, Raffaello D'Andrea

$$M\ddot{z} = (F_a + F_b + F_c + F_d)\cos\theta - Mg \qquad (1)$$

$$M\ddot{x} = (F_a + F_b + F_c + F_d)\sin\theta \tag{2}$$

$$I_{yy}\ddot{\theta} = L(F_a - F_b), \tag{3}$$

$$\int_{v=3}^{\infty} \left(\frac{\text{hoizontal}}{\text{vestical}} \right)$$

$$Mi = -Mg + F \cos \theta$$

where $F = F_a + F_b + F_c + F_d$ is the net thrust from 4 rotors $T = L (F_a - F_b)$ is the net targue around roll axis

• with
$$g = (\eta, \nu, \theta) \in \mathbb{R}^3$$
 denoting positions $\dot{g} = \frac{d}{dt}g = (\dot{\eta}, \dot{\nu}, \dot{\theta}) \in \mathbb{R}^3$ denoting velocities, the state is $x = (g, \dot{g}) \in \mathbb{R}^6$, input is $u = (F, \tau) \in \mathbb{R}^2$ so denomics are $\dot{v} - d [\theta] - [g] = f(x, u)$

so dynamics are
$$\dot{x} = \frac{d}{dt} \begin{vmatrix} \dot{g} \\ \dot{g} \end{vmatrix} = \begin{vmatrix} \dot{g} \\ \dot{g}(x, u) \end{vmatrix} = f(x, u)$$

where
$$\dot{g}(x,u) = \begin{bmatrix} F/M & sin \theta \\ -g + F/M & cos \theta \end{bmatrix}$$

 $f: \mathbb{R}^6 \times \mathbb{R}^2 \longrightarrow \mathbb{R}^6$ $: (\times, u) \longmapsto f(\times, u)$