Detaillierte Resultate

Kurs	Prüfung Lineare Algebra - 8.4.21	
Test	Lin_Alg_Klausur n150	
Vorname		
Nachname		
E-Mail		

Dies sind Ihre Testresultate

Benutzername

Identity

Dauer	1h 45m 13s
Beantwortet	19 von 19 Fragen (100%)
Erreichte Punktzahl	60 von 76 Punkten (79%)
Benötigte Punktzahl	38.0

Lineare Gleichungssysteme, Körper und Matrizen 1.1 1

Zur Sektion springen >

0

Lineare Gleichungssysteme, Körper und Matrizen 1.2 1

Zur Sektion springen >

0

Lineare Gleichungssysteme, Körper und Matrizen 1.3 1

Zur Sektion springen >

•

Lineare Gleichungssysteme, Körper und Matrizen 1.4 1

Zur Sektion springen >

0

Lineare Gleichungssysteme, Körper und Matrizen 1.5 1

Zur Sektion springen >

0

Lineare Gleichungssysteme, Körper und Matrizen 1.6 1

Zur Sektion springen 🕻

②

Vektorräume und lineare Abbildungen 2.1 1

2

Zur Sektion springen >

Vektorräume und lineare Abbildungen 2.2 1

Zur Sektion springen >

Vektorräume und lineare Abbildungen 2.3 1

Zur Sektion springen >

Allgemeine Beweisaufgaben 4.3 1

50% Punkte: 2 von 4

Zur Sektion springen >

0

1 64 - 57 2 56 - 49 3 48 - 41 4 40 - 33 5 32 - 0

& Lineare Gleichungssysteme, Körper und Matrizen 1.1 4 von 4 Punkten (100%)

A	Lineare	Gleichungssy	vsteme Kör	ner und	Matrizen 1.1
w	Lilleale	Cicici iuligas	yatemie, noi	pei unu	IVIALITZEIT I.I

Status Beantwortet

Erreichte Punktzahl 4 / 4 100%

Antwort

Entscheiden Sie für

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix} \in Mat_3(\mathbb{Q})$$

- lacktriangledown a. A ist invertierbar über \mathbb{Q} .
- \square b. Es gibt $b \in \mathbb{Q}^3$ mit $L(A, b) = \emptyset$.
- 🔾 c. A lässt sich mit elementaren Zeilenumformungen auf eine Zeilenstufenform mit genau 2 Pivots bringen.
- d. Das homogene lineare Gleichungssystem mit Koeffizientenmatrix A besitzt mehr als die triviale Lösung.

Lösung

Entscheiden Sie für

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ -1 & -1 & -1 \end{pmatrix} \in Mat_{3}(\mathbb{Q})$$

- $oldsymbol{arnothing}$ a. A ist invertierbar über $\mathbb Q$.
- \Box b. Es gibt $b \in \mathbb{Q}^3$ mit $L(A, b) = \emptyset$.
- 🗅 c. A lässt sich mit elementaren Zeilenumformungen auf eine Zeilenstufenform mit genau 2 Pivots bringen.
- □ d. Das homogene lineare Gleichungssystem mit Koeffizientenmatrix A besitzt mehr als die triviale Lösung.

∢ Zurück zur Übersicht

& Lineare Gleichungssysteme, Körper und Matrizen 1.2 4 von 4 Punkten (100%)

å Lineare Gleichungssysteme, Körper und Matrizen 1.2	2	
Status	Beantwortet	
Erreichte Punktzahl	4 / 4	
Antwort		
Entscheiden Sie:		
a. Die einzige quadratische Matrix in Zeilenstufenform is	st die Einheitsmatrix.	
☑ b. Mit Hilfe von elementaren Zeilenumformungen lässt s	sich jede Matrix mit Einträgen aus einem Körper in reduzierte Zeilenstufenform bringen.	
 c. Besitzt eine Matrix A (über dem Körper K) mehr Spalte nur die triviale Lösung. 	en als Zeilen, so besitzt das homogene lineare Gleichungssystem mit A als Koeffizientenmat	rix
d. Die Summe zweier Lösungen eines inhomogenen Glei	eichungssystems ist stets wieder eine Lösung.	
Lösung	4	
Entscheiden Sie:		
a. Die einzige quadratische Matrix in Zeilenstufenform is	st die Einheitsmatrix.	
☑ b. Mit Hilfe von elementaren Zeilenumformungen lässt s	sich jede Matrix mit Einträgen aus einem Körper in reduzierte Zeilenstufenform bringen.	
 c. Besitzt eine Matrix A (über dem Körper K) mehr Spalte nur die triviale Lösung. 	en als Zeilen, so besitzt das homogene lineare Gleichungssystem mit A als Koeffizientenmat	rix
□ d. Die Summe zweier Lösungen eines inhomogenen Glei	eichungssystems ist stets wieder eine Lösung.	

∢ Zurück zur Übersicht

& Lineare Gleichungssysteme, Körper und Matrizen 1.3 4 von 4 Punkten (100%)

👼 Lineare Gleichungssysteme, Körper und Matrizen 1.3				
Status	Beantwortet			
Erreichte Punktzahl	4/4		100%	
Antwort $ \begin{aligned} &\text{Sei } K \text{ ein K\"orper. Entscheiden Sie, ob f\"ur alle } A \in \operatorname{Mat}_{m,n}(K) \\ & & \\ & \\ & \\ & \end{aligned} \end{aligned} \text{ a. Ist } c \in L(A,b) \text{und } d \in L(A,b) \text{ , so ist } c+d \in L(A,b) \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned} \text{ b. Sind } c,d \in L(A,b) \text{ , so ist } c-d \in L(A,0) \text{ .} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned} \text{ c. Aus } L(A,0) \neq \{0\} \text{ folgt } L(A,b) \neq \emptyset \text{ .} \\ & \\ & \\ & \\ & \\ & \\ & \\ & \end{aligned} \text{ d. F\"ur } m < n \text{ gilt stets } L(A,b) \neq \emptyset \text{ .} $	_			
Lösung Sei K ein Körper. Entscheiden Sie, ob für alle $A \in \operatorname{Mat}_{m,f}(K)$ a. Ist $c \in L(A,b)$ und $d \in L(A,b)$, so ist $c+d \in L(A,b)$ b. Sind $c,d \in L(A,b)$, so ist $c-d \in L(A,0)$. c. Aus $L(A,0) \neq \{0\}$ folgt $L(A,b) \neq \emptyset$. d. Für $m < n$ gilt stets $L(A,b) \neq \emptyset$.		4		

∢ Zurück zur Übersicht

& Lineare Gleichungssysteme, Körper und Matrizen 1.4 4 von 4 Punkten (100%)

🔓 Lineare Gleichungssysteme, Körper und Matrizen 1.4				
Status	Beantwortet			
Erreichte Punktzahl	4 / 4		100%	
Antwort				

Sei K ein Körper. Entscheiden Sie:

- $oldsymbol{\boxtimes}$ a. Für $A,B\in \operatorname{Mat}_m(K)$ mit $AB=I_m$ folgt $A,B\in \operatorname{GL}_m(K)$.
- \mathfrak{C} b. $A \in \operatorname{GL}_m(K) \Leftrightarrow A^2 \in \operatorname{GL}_m(K)$.
- $\ \square$ c. Es gibt $A \in \operatorname{Mat}_m(K)$ mit $\operatorname{rang}(A) = m$ die nicht invertierbar sind.
- $\ \square$ d. $GL_3({\it K})$ ist eine abelsche Gruppe bezüglich der Matrixmultiplikation.

Lösung

Sei K ein Körper. Entscheiden Sie:

- f Z a. Für $A,B\in {
 m Mat}_{\it m}(K)$ mit $AB=I_{\it m}$ folgt $A,B\in {
 m GL}_{\it m}(K)$.
- \mathfrak{C} b. $A \in GL_m(K) \Leftrightarrow A^2 \in GL_m(K)$.
- \square c. Es gibt $A \in \operatorname{Mat}_m(K)$ mit $\operatorname{rang}(A) = m$ die nicht invertierbar sind.
- $\ \square$ d. $GL_3({\it K})$ ist eine abelsche Gruppe bezüglich der Matrixmultiplikation.

∢ Zurück zur Übersicht

& Lineare Gleichungssysteme, Körper und Matrizen 1.5 2 von 4 Punkten (50%)

🚨 Lineare Gleichungssysteme, Körper und Matrizen 1	.5			
Status	Beantwortet			
Erreichte Punktzahl	2/4			50%
Antwort				
Entscheiden Sie:				
a. Es gibt keinen Körper mit genau 31 Elementen.		+		
$\ \square$ b. $\mathbb N$ ist ein Ring (mit der bekannten Addition und Mult	iplikation).	+		
\square c. $\mathbb{Z}/6\mathbb{Z}$ ist ein Körper (mit der bekannten Addition un	d Multiplikation).	+		
d. In einem Körper besitzt jedes Element ein additiv In	verses.	~		
Lösung				
Entscheiden Sie:			7	
a. Es gibt keinen Körper mit genau 31 Elementen.				
$\ \square$ b. $\ \mathbb{N}$ ist ein Ring (mit der bekannten Addition und Muli	ciplikation).			
\square c. $\mathbb{Z}/6\mathbb{Z}$ ist ein Körper (mit der bekannten Addition un	d Multiplikation).			
d. In einem Körper besitzt jedes Element ein additiv In	verses.			

∢ Zurück zur Übersicht

& Lineare Gleichungssysteme, Körper und Matrizen 1.6 4 von 4 Punkten (100%)

🔓 Lineare Gleichungssysteme, Körper und Matrizen 1.6	5		
Status	Beantwortet		
Erreichte Punktzahl	4 / 4		100%
Antwort Entscheiden Sie:			
\square b. Für $z \in \mathbb{C}$ ist $ z $ stets eine nichtnegative rationale Za	ıhl.		
S c. Für $z \in \mathbb{C} \setminus \{0\}$ gilt $z^{-1} = \bar{z}/ z ^2$. ☐ d. Für $z \in \mathbb{C}$ gilt $z + \bar{z} = 2i \text{Im}(z)$.			
Lösung Entscheiden Sie:		4	
\square b. Für $z \in \mathbb{C}$ ist $ z $ stets eine nichtnegative rationale Za	ahl.		

∢ Zurück zur Übersicht

& Vektorräume und lineare Abbildungen 2.1 2 von 4 Punkten (50%)

∢ Zurück zur Übersicht

& Vektorräume und lineare Abbildungen 2.2 4 von 4 Punkten (100%)

& Vektorräume und lineare Abbildungen 2.2

Status Beantwortet

Erreichte Punktzahl 4 / 4 100%

Antwort

Entscheiden Sie, ob die folgenden Teilmengen von $V=\mathbb{Q}[t]$ jeweils \mathbb{Q} -Untervektorräume (bezüglich der bekannten Addition und skalaren Multiplikation) sind:

$$\mathbf{Z}$$
 a. $M_1 = \{ p \in V \mid p' = 0 \}$.

$$\mathbf{Z}$$
 b. $M_2 = \{ p \in V \mid p'(1) = 0 \}$.

$$\mathbf{\mathscr{C}}$$
 c. $M_3 = \{ p \in V \mid p(4) = 0 \}$.

$$\Box \quad \text{d. } M_4 = \{ p \in V \mid p(a) < 0 \quad \text{für alle } a \in \mathbb{Z} \} \ .$$

Lösung

Entscheiden Sie, ob die folgenden Teilmengen von $V=\mathbb{Q}[t]$ jeweils \mathbb{Q} -Untervektorräume (bezüglich der bekannten Addition und skalaren Multiplikation) sind:

$$\mathbf{\mathscr{E}}$$
 b. $M_2 = \{ p \in V \mid p'(1) = 0 \}$.

4

$$\mathbf{\mathscr{C}}$$
 c. $M_3 = \{ p \in V \mid p(4) = 0 \}$.

⊀ Zurück zur Übersicht

& Vektorräume und lineare Abbildungen 2.3 4 von 4 Punkten (100%)

🕏 Vektorräume und lineare Abbildungen 2.3			
Status	Beantwortet		
Erreichte Punktzahl	4/4		100%
Antwort			
Sei V ein K -Vektorraum, $n \in \mathbb{N}$, und $v_1, \ldots, v_n \in V$. Entscho	eiden Sie:		
$m{arphi}$ a. Es ist $\operatorname{Span}_{\mathbb{R}}(\{v_1,\ldots,v_n\})$ ein Untervektorraum von 1	V.		
\square b. Es ist $\operatorname{Span}_{\mathbb{R}}(\{v_1,\ldots,v_n\})$ die Menge aller linear una	bhängigen Teilmengen von ${\it V}$.		
$m{arphi}$ c. Die Menge $\{v_1,\ldots,v_n\}$ ist eine Erzeugendensystem v	von Span $_{\mathbb{R}}(\{v_1,\ldots,v_n\})$.		
\square d. Es ist $\operatorname{Span}_{\mathbb{R}}(\{v_1,\ldots,v_n\})$ isomorph zu K^n .			
Lösung			
Sei V ein K -Vektorraum, $n \in \mathbb{N}$, und $v_1, \ldots, v_n \in V$. Entsche	eiden Sie:		
$m{arphi}$ a. Es ist $\operatorname{Span}_{\mathbb{R}}(\{v_1,\ldots,v_n\})$ ein Untervektorraum von I	V.		
\square b. Es ist $\operatorname{Span}_{\mathbb{R}}(\{v_1,\ldots,v_n\})$ die Menge aller linear una	bhängigen Teilmengen von ${\cal V}$.	4	
$f v$ c. Die Menge $\{v_1,\ldots,v_n\}$ ist eine Erzeugendensystem v	on $\operatorname{Span}_{\mathbb{R}}(\{v_1,\ldots,v_n\})$.		
\square d. Es ist $\operatorname{Span}_{\mathbb{R}}(\{v_1,\ldots,v_n\})$ isomorph zu K^n .			

∢ Zurück zur Übersicht

♦ Vektorräume und lineare Abbildungen 2.4 4 von 4 Punkten (100%)

🕏 Vektorräume und lineare Abbildungen 2.4			
Status	Beantwortet		
Erreichte Punktzahl	4/4		100%
Antwort			
Sei V ein endlich-dimensionaler Vektorraum und $\psi:V o V$	eine lineare Abbildung. Entscheiden Sie	e:	
$lacksquare$ a. Wenn ψ surjektiv ist, ist ψ auch injektiv.			
$f oldsymbol{arphi}$ b. Bild(ψ) ist ein Untervektorraum von V .			
$oldsymbol{\mathscr{C}}$ c. Aus $\dim(\operatorname{Kern}(\psi))>0$ folgt, dass ψ nicht surjektiv is	st.		
\checkmark d. Es gilt stets dim(V) = dim(Kern(w)) + dim(Bild(w))			
\checkmark d. Es gilt stets $\dim(V) = \dim(\operatorname{Kern}(\psi)) + \dim(\operatorname{Bild}(\psi))$			
Lösung			
Sei V ein endlich-dimensionaler Vektorraum und $\psi:V o V$	eine lineare Abbildung. Entscheiden Sie	e:	
$oldsymbol{arphi}$ a. Wenn ψ surjektiv ist, ist ψ auch injektiv.			
$oldsymbol{\mathscr{G}}$ b. Bild(w) ist ein Untervektorraum von V .		1.	
S. Bilα(φ) iscent officer encorraging vol. γ.		ч	
$f C$ c. Aus $\dim(\operatorname{Kern}(\psi)) > 0$ folgt, dass ψ nicht surjektiv is	t.		
$ \mathfrak{C} $ d. Es gilt stets $\dim(V) = \dim(\operatorname{Kern}(\psi)) + \dim(\operatorname{Bild}(\psi))$			

∢ Zurück zur Übersicht

a Vektorräume und lineare Abbildungen 2.5

Status Beantwortet

Erreichte Punktzahl 4 / 4 100%

Antwort

Entscheiden Sie, ob die folgenden Abbildungen $\ensuremath{\mathbb{R}}$ -linear sind:

$$\mathbf{\mathscr{E}} \quad \text{a. } \varphi_1 : \mathbb{R}^2 \to \mathbb{R}^1 \; ; (a,b)^t \mapsto b \; .$$

$$\square$$
 b. $\varphi_2: \mathbb{R}^2 \to \mathbb{R}^2$; $(x, y)^t \mapsto (x^2 - y, y)^t$.

$$\square$$
 c. $\varphi_3: \mathbb{R}[t] \to \mathbb{R}[t]$; $p \mapsto t^2 + t$.

$$\Box \quad \mathsf{d}.\ \varphi_4: \mathbb{R}^1 \to \mathbb{R}^1 \ ; \ a \mapsto 1 \ .$$

Lösung

Entscheiden Sie, ob die folgenden Abbildungen ℝ-linear sind:

$$m{\mathscr{L}}$$
 a. $\varphi_1:\mathbb{R}^2 \to \mathbb{R}^1$; $(a,b)^t \mapsto b$.

 $\square \quad \text{b. } \varphi_2 : \mathbb{R}^2 \to \mathbb{R}^2 \ ; (x, y)^t \mapsto (x^2 - y, y)^t \ .$

$$\square$$
 c. $\varphi_3: \mathbb{R}[t] \to \mathbb{R}[t]$; $p \mapsto t^2 + t$.

$$\square$$
 d. $\varphi_4: \mathbb{R}^1 \to \mathbb{R}^1$; $a \mapsto 1$.

⊀ Zurück zur Übersicht

& Vektorräume und lineare Abbildungen 2.6

Status Beantwortet

Erreichte Punktzahl 4 / 4 100%

Antwort

Sei V ein K-Vektorraum und $U_1, U_2 \subseteq V$ Untervektorräume. Entscheiden Sie:

- $oldsymbol{\boxtimes}$ b. Es gibt $n\in\mathbb{N}$ und eine lineare Abbildung $\varphi:K^n\to V$ mit $\mathrm{Bild}(\varphi)=U_1$.
- \square c. Zwei Vektoren $0 \neq v_1 \in U_1 + U_2$ und $0 \neq v_2 \in U_1$ sind stets linear unabhängig.
- $\ensuremath{\mathbf{G}}$ d. Es ist U_1+U_2 ein Untervektorraum von V .

Lösung

Sei V ein K-Vektorraum und $U_1, U_2 \subseteq V$ Untervektorräume. Entscheiden Sie:

- $oldsymbol{G}$ a. Aus $\dim(U_1)=\dim(V)$ folgt $U_1=V$.
- $\mbox{\bf $\underline{\mathscr G}$} \quad \mbox{b. Es gibt } n \in \mathbb{N} \ \ \mbox{und eine lineare Abbildung } \varphi : K^n \to V \quad \mbox{mit Bild}(\varphi) = U_1 \ \ .$
- \square c. Zwei Vektoren $0 \neq v_1 \in U_1 + U_2$ und $0 \neq v_2 \in U_1$ sind stets linear unabhängig.
- \checkmark d. Es ist $U_1 + U_2$ ein Untervektorraum von V.

∢ Zurück zur Übersicht

& Determinanten und Eigenwerte 3.1 0 von 4 Punkten (0%)

∢ Zurück zur Übersicht

& Determinanten und Eigenwerte 3.2 2 von 4 Punkten (50%)

∢ Zurück zur Übersicht

& Determinanten und Eigenwerte 3.3 4 von 4 Punkten (100%)

A	Determinanten	und	Figenwerte	33
-	Determinanten	unu	LIECHIVACITE	ر.ر

Status Beantwortet

Erreichte Punktzahl 4/4 100%

Antwort

Entscheiden Sie:

- ☐ a. Die Regel von Sarrus gilt für Matrizen der Größe 4.
- \bullet b. Es gilt $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ adj = $\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$.
- \square c. Für $A \in \operatorname{Mat}_m(K)$ mit $\det(A) = 0$ gilt $\operatorname{Rang}(A) = m 1$.
- \Box d. Für eine 3 x 3 Matrix mit Rang 2 hat jede 2 x 2 Untermatrix Determinante $\neq 0$.

Lösung

Entscheiden Sie:

- ☐ a. Die Regel von Sarrus gilt für Matrizen der Größe 4.
- b. Es gilt $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ adj = $\begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix}$.
- \square c. Für $A \in \operatorname{Mat}_m(K)$ mit $\det(A) = 0$ gilt $\operatorname{Rang}(A) = m 1$.
- $\ \square$ d. Für eine 3×3 Matrix mit Rang 2 hat jede 2×2 Untermatrix Determinante $\neq 0$.

∢ Zurück zur Übersicht

A	Determinanten	und	Figenwerte	3 4
حت	Determinanten	unu	Ligeriwerte	J.4

Status Beantwortet

Erreichte Punktzahl 2/4 50%

Antwort

Sei K ein Körper, V ein endlich dimensionaler K -Vektorraum und $\varphi:V\to V$ eine K -lineare Abbildung. Entscheiden Sie:

- lacktriangledown a. Die Menge der Eigenwerte von V ist ein Untervektorraum von V.
- $f oldsymbol{arphi}$ b. $oldsymbol{arphi}$ hat höchstens endlich viele verschiedene Eigenwerte.
- f z c. Falls m arphi nicht injektiv ist, hat m arphi den Eigenwert 0

Lösung

Sei K ein Körper, V ein endlich dimensionaler K -Vektorraum und $\varphi:V\to V$ eine K -lineare Abbildung. Entscheiden Sie:

- $\ \square$ a. Die Menge der Eigenwerte von V ist ein Untervektorraum von V.
- f arphi b. m arphi hat höchstens endlich viele verschiedene Eigenwerte.
- f c c. Falls m arphi nicht injektiv ist, hat m arphi den Eigenwert 0
- $oldsymbol{arphi}$ d. Für $A=\begin{pmatrix} -1 & 2 \\ 1 & 1 \end{pmatrix}$ besitzt $\mu_A:\mathbb{R}^2 \to \mathbb{R}^2$ zwei verschiedene Eigenwerte.

∢ Zurück zur Übersicht

& Allgemeine Beweisaufgaben 4.1 4 von 4 Punkten (100%)

🛔 Allgemeine Beweisaufgaben 4.1				
Status	Beantwortet			
Erreichte Punktzahl	4/4			100%
Antwort				
Sei V ein $\mathbb R$ -Vektorraum, $arphi:V o V$ eine lineare Abbildung u	and $v_1,v_2\in V\setminus\{0\}$. Ents	cheiden Sie:		
\square a. Aus $\varphi(v_1) = v_2$ und $\varphi(v_2) = v_1$ folgt, dass $\{v_1, v_2\}$	inear unabhängig sind.			
$oldsymbol{arphi}$ b. Falls $v_1 eq v_2$ und $arphi(v_1) = arphi(v_2)$, so hat $arphi$ einen nich	itrivialen Kern.			
\Box c. Aus $\varphi(v_1)=v_2$ folgt $\varphi(v_2)=v_1$.				
$ \mathbf{\mathscr{G}} $ d. Aus $\varphi(v_1) = \varphi(v_2)$ folgt $v_2 - v_1 \in \operatorname{Kern}(\varphi)$.				
Lösung			4	
Sei V ein ${\mathbb R}$ -Vektorraum, $\varphi:V o V$ eine lineare Abbildung (and $v_1,v_2\in V\setminus\{0\}$. Ents	cheiden Sie:		
\square a. Aus $\varphi(v_1)=v_2$ und $\varphi(v_2)=v_1$ folgt, dass $\{v_1,v_2\}$	inear unabhängig sind.			
$oldsymbol{arphi}$ b. Falls $v_1 eq v_2$ und $arphi(v_1) = arphi(v_2)$, so hat $arphi$ einen nich	atrivialan Korn			
ϕ 5. Fans $v_1 \neq v_2$ and $\phi(v_1) = \phi(v_2)$, so flat ϕ effectively	ia iviaien Nem.			
\Box c. Aus $\varphi(v_1)=v_2$ folgt $\varphi(v_2)=v_1$.				

∢ Zurück zur Übersicht

Allgemeine Beweisaufgaben 4.2 2 von 4 Punkten (50%)

🗥 Allgemeine Beweisaufgaben 4.2						
Status	Beantwortet					
Erreichte Punktzahl	2/4		50%			
Antwort						
Sei K ein Körper, $A\in \operatorname{Mat}_{\mathit{m}}(K)$ und $n\in \mathbb{N}$ mit $A^n=0$. Ent	scheiden Sie:					
$egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & egin{aligned} & A^2v = 0 \end{aligned} \end{aligned}$	+					
$f arphi$ c. Die Abbildung $\mu_A:K^m o K^m$ ist nicht injektiv.	†	7				
\Box d. Es gilt $A=0$.	+					
Lösung						
Sei K ein Körper, $A \in \operatorname{Mat}_{m}(K)$ und $n \in \mathbb{N}$ mit $A^{n} = 0$. Entscheiden Sie:						
$\Box \text{a. } \operatorname{Rang}(A) = 0.$						
$egin{aligned} \end{aligned}$ b. Die $A^3v=Av$ folgt $A^2v=0$.						
$f C$ c. Die Abbildung $\mu_A:K^m o K^m$ ist nicht injektiv.						
\square d. Es gilt $A=0$.						

∢ Zurück zur Übersicht

Allgemeine Beweisaufgaben 4.3 2 von 4 Punkten (50%)

& Allgemeine Beweisaufgaben 4.3

Status Beantwortet

Erreichte Punktzahl 2 / 4 50%

Antwort

Sei K ein Körper und $A \in \operatorname{Mat}_m(K)$. Entscheiden Sie:

- \square a. Aus Rang(A) < m folgt BA = 0 für ein $0 \neq B \in \operatorname{Mat}_m(K)$.
- **S** b. Es gilt $det(A + A) = 2^m det(A)$.
- \mathbf{S} c. Es gilt $\det(A^{\operatorname{adj}}) = \det(A)^{1-m}$.
- $\Box \quad \text{d. Aus } A^2 = A \text{ folgt } \det(A) = 0.$

Lösung

Sei K ein Körper und $A \in \operatorname{Mat}_{\mathit{m}}(K)$. Entscheiden Sie:

- lacksquare a. Aus Rang(A) < m folgt BA = 0 für ein $0 \neq B \in \operatorname{Mat}_m(K)$.
- $\mathbf{\mathscr{E}}$ b. Es gilt $\det(A+A)=2^m\det(A)$.
- \Box c. Es gilt $\det(A^{\operatorname{adj}}) = \det(A)^{1-m}$.
- \Box d. Aus $A^2 = A$ folgt det(A) = 0.

6 C