

DISEÑO Y CONSTRUCCIÓN DE UN **ELECTROESTIMULADOR Y** ELECTROMIOGRAMA CON COMUNICACIÓN INALÁMBRICA PARA LA DETECCIÓN Y TRATAMIENTO DE ENFERMEDADES **NEUROMUSCULARES**

CONTENIDO

Objetivos

Introducción

Antecedentes

Electromiógrafo

Electroestimulador

Electrodos

Diseño e Implementación

Diagrama de bloques

Pruebas y Resultados

Analisis Economico

Alcances Limitaciones

Conclusiones

Recomendaciones

Referencias

OBJETIVOS

OBJETIVO GENERAL

Diseñar y construir un electroestimulador y electromiograma inalámbrico para la detección y tratamiento de enfermedades neuromusculares.

OBJETIVOS

OBJETIVOS ESPECÍFICOS

Seleccionar los dispositivos y sensores para la medición de señales Electrofisiológicas.

- Diseñar el software y hardware del Electroestimulador.
- Adquirir y procesar las señales transmitidas.

OBJETIVOS

OBJETIVOS ESPECÍFICOS

- Realizar pruebas de funcionamiento.
- ► Validación por expertos.
- Elaboración del documento final.

INTRODUCCIÓN

Avance tecnología biomédica

Enfermedades	Total Nacional	Pichincha	Cotopaxi	Tungurahua
120 Enfermedades inflamatorias del sistema nervioso central	685	171	23	24
121 Enfermedad de Parkinson	261	67	6	19
122 Enfermedad de Alzheimer	132	46	0	15
123 Esclerosis múltiple	81	39	0	3
127 Trastornos de los nervios, de las raíces y de los plexos nerviosos	973	330	25	52
128 Paralasis cerebral y otros síndromes paralíticos	905	155	16	15
129 Otras enfermedades del sistema nervioso	2868	810	54	106
157 Aterosclerosis	112	32	2	2
158 Otras enfermedades vasculares periféricas	100	33	1	0
159 Embolia y trombosis arteriales	223	91	5	5
161 Flebitis, tromboflebitis, embolia y trombosis venosas	1096	298	44	80
200 Artritis reumatoide y otras poliartropatías inflamatorias	1782	458	38	104
201 Artrosis	4607	1848	174	213
202 Deformidades adquiridas de los miembros	1207	328	16	44
203 Otros trastornos de las articulaciones	4360	1665	89	157
204 Trastornos sistémicos del tejido conjuntivo	72 3	222	8	17
207 Trastornos de los tejidos blandos	4244	1299	107	194
208 Trastornos de la densidad y de la estructura óseas	1106	136	11	29
209 Osteomielitis	1065	235	36	61
210 Otras enfermedades del sistema osteomuscular y del tejido conjuntivo	1930	475	180	240
211 Síndrome nefrítico agudo y síndrome nefrítico rápidamente progresivo	71	13	1	1
212 Otras enfermedades glomerulares	1587	382	14	52
Síndrome del Túnel Carpiano	2384	617	61	119
272 Fractura del cuello, del tórax o de la pelvis	1567	476	58	91
273 Fractura del fémur	5873	1179	175	281
274 Fracturas de otros huesos de los miembros	23468	5252	681	1083
275 Fracturas que afectan múltiples regiones del cuerpo	335	146	5	11
276 Luxaciones, esguinces y desgarros de regiones especificadas y de múltiples regiones del				
cuerpo	5315	1112	121	243
277 Traumatismo del ojo y de la órbita	792	201	45	39
278 Traumatismo intracraneal	10376	1841	352	710
279 Traumatismo de otros órganos internos	1202	265	18	32
280 Traumatismo por aplastamiento y amputaciones traumáticas de regiones especificadas y de múltiples regiones del cuerpo	905	131	24	39
281 Otros traumatismos de regiones especificadas, de regiones no especificadas y de múltiples				
regiones del cuerpo	29737	4578	910	1110
TOTAL	112072	24931	3300	5191

ANTECEDENTES

Luigi Galvani

Médico - Científico (1780)

ANTECEDENTES

Duchenne de Boulogne Médico - Investigador (1833)

ELECTROMIÓGRAFO

Electromiografía (EMG)

Es una técnica para la evaluación y registro de la actividad eléctrica producida por los músculos esqueléticos.

ELECTRODOS

Registro y Aplicación

ELECTRODOS

ELECTRODO DE SUPERFICIE

Dispositivo conductor para la estimulación o registro eléctrico del músculo, colocado sobre una superficie de la piel.

(Electromiografía de superficie para la evaluación no invasiva de los músculos)

ELECTRODOS

NORMAS SENIAM

Distancia entre electrodos

De 20mm a 30mm.

Longitudinal:

Entre la terminación de la neurona motora y el tendón distal.

Transversal: Sobre la zona media del músculo, de tal forma que la línea que une los electrodos, sea paralela con el eje longitudinal del músculo.

DISEÑO E IMPLEMENTACIÓN

IMPLEMENTACIÓN DEL EMG

Diagrama de Bloques EMG

Electrodos Superficiales EMG

La impedancia normal de la piel varía desde $0.5~k\Omega$ para piel sudorosa hasta $20~k\Omega$ para piel seca.

Con problemas de la piel hay un incremento en la impedancia en el rango de 500 k Ω .

Tarjeta de adquisición de la señal bioeléctrica.

SHIELD ECG / EMG

	Fabricante:	Olimex Ltd.			
1.	Licencia de Hardware	Creative Commons Atribución (BY)			
	Licencia de Software	Licencia GPL			
	OPEN SOURCE	SI			
1	Producto:	Development Boards			
	Tipo:	Bio-Feedback Shields			
		Olimex's ARDUINO Boards			
	Evaluación de :				
	Voltaje de alimentación	3.3 V, 5 V			
	operativo:				
	Marca:	Olimex Ltd.			
	Descripción/Función:	Módulo de extensión de			
		arduino			
	Para utilizar con:	Olimex's ARDUINO Boards			

Conversión VCCD a VCCA Electrodo 1 Electrodo 2 Electrodo de referencia VCCD 3.3V/5V HR1x3(3.3V:Close;5V:Open) RST 3V3 5V GND 20JHV10W1, NAVARDHALIKOPOT 2000/000000 GND GYX-SD-TC0805SURK(RED) 10µF/6.3V /0805 OnF/X7R/1 BZV55C6V2 HR2x6(1-2:Close)

Etapa de recepción de señal en Shield EKG/EMG

Protección Voltaje Alto

Rechazo HF

Amplificador de instrumentación

La ganancia del amplificador de instrumentación de la Shield EKG/EMG está dada por la siguiente ecuación:

$$G = 5 * \left(1 + \frac{R_8}{R_7}\right)$$

Para una ganancia:

$$G = 10$$

Se asume:

$$R_8 = 10 \ K\Omega \ \text{y} \ R_7 = 10 \ K\Omega$$

$$G = 5 * \left(1 + \frac{10 \, K\Omega}{10 \, K\Omega}\right)$$

$$G = 5 * (1 + 1)$$

$$G = 10$$

Filtros analógicos de la Shield EKG/EMG

High-Pass filter

1 pole

Fc=0.16Hz

OAmp with regulated gain!

G=1+R12/(TR1+R11)

G=5,76...101

High-Pass filter

1 pole

Fc=0.16Hz

3rd order "Besselworth" filter, fc = 60 Hz.

G= (R17/R16)+1= 3.56

Diseño del Software Entorno de desarrollo para Arduino

Android Studio

Pantalla Principal de Android Studio

Diagrama de flujo de la Aplicación
 ★ ★ \$\frac{1}{2}\$
 88%
 02:48 PM
 en Android Menú UNIVERSIDAD DE LAS FUERZAS ARMADAS **ESPE - EXTENSIÓN LATACUNGA** INICIO **SISTEMA** MÉDICO NO MENÚ ELECTROMIÓGRAFO **ELECTROESTIMULADOR** Pantalla Principal **ELECTROMIOGRAFÍA ELECTROMIÓGRAFO** aplicación NO **ELECTROESTIMULADOR ELECTROESTIMULADOR** SALIR

DIAGRAMA DE FLUJO ELECTROMIOGRAFÍA

PRUEBAS Y RESULTADOS OBTENIDOS

Tipos de contracciones Isotónicas

Contracciones Contracciones Contracciones isométricas

Resultados de Adquisición de señales de EMG

EMG con Ruido

INICIAR

Contracciones Isotónicas

a.- Contracciones Concéntricas

b.- Contracciones Excéntricas

Contracción excéntrica

Contracciones Isométricas

UNIVERSIDAD DE LAS FUERZAS ARMADAS ESPE - EXTENSIÓN LATACUNGA

EMG Normal Sin Peso

Contracción Muscular Ligera

Contracción Muscular Máxima

Contracción Isométrica

Contracción Isotónica

ELECTROMIOGRÁMA PATOLÓGICO Potenciales de Fasciculación

Conocidas como mioquimias producidas espontáneamente

Visible en el sujeto similar a un tick nervioso de los parpados

Potenciales de Fibrilación

Duracion: de 1 ms

Amplitud pequeñas: 30 a 50 pV

Duracion: de 1 ms

TUNEL CARPIANO

ELECTROESTIMULACIÓN

La electroestimulación muscular produce una contracción visible del músculo.

Mediante un estímulo eléctrico que se genera directamente sobre el músculo.

Mediante un aparato adecuado y unos electrodos.

IMPLEMENTACIÓN DEL ELECTROESTIMULADOR Diagrama de Bloques

Diseño del módulo de alto voltaje Elevador de Alto Voltaje

Elevador de Alto Voltaje Boost

frecuencia = 7.5 KHz

 δ = ciclo de trabajo oscilador

$$\delta = 0.64\%$$

 $R = Resistencia de carga = 220\Omega$

f = frecuencia oscilador

$$f = 7.5 \, KHz$$

 $L_{min} = Inductancia minima bobina$

$$L_{min} = \frac{\delta \cdot (1 - \delta)^2 \cdot R}{2 \cdot f}$$

$$L_{min} = \frac{0.64 \cdot (1 - 0.64)^2 \cdot 220}{2 \cdot 7500}$$

$$L = 1,21mH \approx 2.2mH$$

Diseño de la etapa de ganancias

Nivel	Voltaje	Resistencia en serie
Nivel 0	5 V	500 Ω
Nivel 1	14 V	470 Ω
Nivel 2	24 V	330 Ω
Nivel 3	30 V	250 Ω
Máximo	68 V	220 Ω

Diseño del modulador AM Generador de pulsos diferenciales

Diseño del módulo de control

Configuración de las funciones del electroestimulador

Función Biceps

Ajuste	Función Bíceps	
Modo	Onda modulada	
	Onda alfa	Onda beta
Ancho de pulso	1 ms	500 us
Frecuencia de pulso	6,25 Hz	70 Hz
Nivel de salida	Adaptable al nivel de intensidad más cómodo	
Tiempo de tratamiento	Configurable por experto	
Distribución de tiempo	120 segundos: Onda alfa 5 segundos: Onda beta 10 segundos: Onda alfa	

Función Flexores

Ajuste	Función Flexores	
Modo	Onda modulada	
	Onda alfa	Onda beta
Ancho de pulso	400 ms	500 us
Frecuencia de pulso	6 Hz	65 Hz
Nivel de salida	Adaptable al nivel de intensidad más cómodo	
Tiempo de tratamiento	Configurable por experto	
Distribución de tiempo	120 segundos: Onda alfa5 segundos: Onda beta10 segundos: Onda alfa	

Función Muslos

Ajuste	Función Muslos	
Modo	Onda modulada	
	Onda alfa	Onda beta
Ancho de pulso	5 us	1 ms
Frecuencia de pulso	4 Hz	75 Hz
Nivel de salida	Adaptable al nivel de intensidad más cómodo	
Tiempo de tratamiento	Configurable por experto	
Distribución de tiempo	120 segundos: Onda alfa 5 segundos: Onda beta 10 segundos: Onda alfa	

Función Peroné

Ajuste	Función Peroné		
Modo	Onda modulada		
	Onda alfa	Onda beta	
Ancho de pulso	2 ms	160 us	
Frecuencia de pulso	6 Hz	75 Hz	
Nivel de salida	Adaptable al nivel de intensidad más cómodo		
Tiempo de tratamiento	Configurable por experto		
Distribución de tiempo	120 segundos: Onda alfa5 segundos: Onda beta10 segundos: Onda alfa		

Bluetooth HC-05 para la Comunicación

Bluetooth Electroestimulador

Bluetooth Electromiógrafo

Diseño del Software

Grupo Muscular

Dosis

Tiempo de Sesión

PRUEBAS Y RESULTADOS OBTENIDOS

Función Biceps

DSO-X 2014A, MY52491936: Tue Aug 04 08:41:07 2015

Onda alfa	Onda beta
1 ms	500 us
6,25 Hz	70 Hz

PRUEBAS Y RESULTADOS OBTENIDOS Función Flexor

DS0-X 2014A, MY52491936: Tue Aug 04 09:05:48 2015

Onda alfa	Onda beta
400 ms	500 us
6 Hz	65 Hz

PRUEBAS Y RESULTADOS OBTENIDOS

Función Muslos

DS0-X 2014A, MY52491936: Tue Aug 04 09:13:46 2015

Onda alfa	Onda beta
5 us	1 ms
4 Hz	75 Hz

PRUEBAS Y RESULTADOS OBTENIDOS Función Peroné

Onda alfa	Onda beta
2 ms	160 us
6 Hz	75 Hz

Pruebas de intensidades del ectroestimulador

Número de fibras que trabajan depende de la energía aplicada a la estimulación

Mayor intensidad aplicada se llega más profundamente al músculo.

Avance progresivo de intensidad de sesión en sesión.

DS0-X 2014A, MY52491936: Tue Aug 04 09:05:48 2015

Menú Ayuda
Pasos Acerca del Osciloscopio Spanish

ANÁLISIS ECONÓMICO

Cantidad	Referencia	Valor unitario	Valor total
1	Potenciómetros precisión	0,65	0,65
2	Capacitor 100nF	0,25	0,50
1	Capacitor 47µF	0,14	0,14
5	Transistores SMD MMBT5551	0,15	0,75
4	Transistores SMD MMBT5401	0,15	0,60
3	Transistores SMD MMBT2222	0,16	0,48
3	Transistores 2N3906	0,12	0,36
4	Diodos rectificadores 1N4148	0,15	0,60
1	Bobina 2.2mH	0,55	0,55
27	Resistencias	0,02	0,54
1	Jack USB	0,60	0,60
1	Placa PCB	5,00	5,00
20	Cables de Protoboard	0,15	3,00
5	Borneras de 3 Pines	0,35	1,75
5	Borneras 2 Pines	0,28	1,40

Continúa

3	Zócalos de 8 Pines	0,12	0,36
4	Zócalos de 14 Pines	0,16	0,64
1	Zócalos de 24 Pines	0,20	0,20
1	Shield EKG/EMG	45,00	45,00
1	Arduino UNO	35,00	35,00
1	Microcontrolador AVR ATMEGA328P	6,00	6,00
2	Módulos Bluetooth HC-05	27,50	55,00
1	Batería	20,00	20,00
1	Caja de Acrílico	30,00	30,00
6	Postes	0,40	2,40
1	Cable apantallado para EMG	50,00	50,00
1	Cable USB Macho / Macho	3,00	3,00
1	Maleta y Bordado diseñado	15,00	15,00
1	Galón Gel para Ultra Sonido	10,00	10,00
20	Electrodos de prueba	1,25	25,00
1	Tablet Samsung Tab4	400,00	400,00
1	Aplicación Android	100,00	100,00
50	Hora de Ingeniería	5,00	250,00
TOTAL \$		1064,52	

\$2295.00

\$ 1064,52

Características	My Sport 500	Prototipo diseñado
Tecnología	Con cables	Con cables
Conexión a internet	No	No
Conexión bluetooth	No	SI
Carga de objetivos	No	No
Histórico de utilización	No	No
Número de canales	4	1
Número de programas	10	4
Ondas moduladas	Si	Si
Pantalla	Monocromática	Color
Compatible Android	No	Si
Suministro de energía	Batería recargable	Batería recargable
Potencia	1 mA 150 Hz	1 mA 150 Hz
Niveles de intensidad	5	3
Electromiografía	No	Si
Cable EMG	No	Si
Cable Electroestimulado	Si	Si
Accesorios	Bolsa de transporte Cargador de batería Electrodos	Bolsa de transportes Cargador de batería Electrodos

Ahorro \$1230.48

Producción en Masa

Reducción Precio 40%

\$425.80

Alcances

Posibilita la visualización de la señal del electromiográma en tiempo real, registrando la actividad eléctrica de los músculos en diversas pruebas.

Es posible detener la señal del electromiográma y guardarla en el dispositivo Android para que pueda ser analizada por un experto.

Permite realizar la electroestimulación de cuatro grupos musculares seleccionándolos desde la aplicación Android.

El electroestimulador dispone de tres niveles de intensidad que pueden ser configurados en tiempo real.

El tiempo de la sesión de electroestimulación puede ser configurado como máximo de 30 min. dando la posibilidad de establecer intervalos de 5 min.

Concentra la información necesaria (configuración y visualización) en una sola interfaz, reduciendo así la complejidad de manejo del equipo.

El dispositivo es de fácil transportación y puede ser llevado a diferentes lugares, ya que cuenta con un sistema de batería recargable integrado.

La aplicación de la Tablet no puede ser instalada en dispositivos móviles con una versión inferior de Android 4.0.3, esto se debe a que no cumple con las características necesarias de compatibilidad.

La comunicación bluetooth tiene un alcance aproximadamente de 10 m, al estar fuera de este rango la transferencia de los datos están propensos a interrupciones y perdidas de los mismos.

LIMITACIONES

El tamaño del cable del EMG es corto por lo cual el paciente no se puede mover cómodamente.

El sistema de baterías recargables permite cierto tiempo de autonomía, es importante que no se trabaje con un nivel bajo de carga.

Proyectos Futuros

A un futuro se puede realizar mejoras en este equipo, como la utilización de nuevas tecnologías como son los electrodos inalámbricos para la implementación del EMG, que ayudaría a la reducción de cables dando una mejor comodidad al paciente.

Se puede aumentar el número de funciones en el electroestimulador para tener un equipo más completo y de mayor eficiencia. Al tener la aplicación en un dispositivo Android con conectividad a Internet se lo puede introducir al mundo de la Telemedicina apoyando al paciente desde la comodidad de su hogar por un experto en cualquier parte del mundo.

- Se cumplió con el objetivo principal del proyecto, el cual consiste en el diseñó y construcción de un electroestimulador y electromiograma inalámbrico para la detección y tratamiento de enfermedades neuromusculares.
- Se estudió e identificó claramente, cada uno de los componentes y elementos que intervienen en el diseño y construcción de un electroestimulador y electromiograma inalámbrico.
- Se desarrolló un dispositivo compacto que integre las funciones de un electromiograma y electroestimulador en una sola aplicación para dispositivos móviles bajo la plataforma Android.

- Se implementó una aplicación móvil sencilla, amigable con el usuario que satisface las necesidades tanto de la adquisición de la señal del EMG como de la configuración de los parámetros del electroestimulador, además permite una fácil conexión entre el dispositivo móvil con el sistema Android, a través del protocolo de comunicación inalámbrica Bluetooth.
- ► El dispositivo desarrollado cumplió con las condiciones y requerimientos para dispositivos médicos donde se utilizó una velocidad de 9600 que garantizó que los datos transmitidos cumplan con las especificaciones de monitoreo en equipos médicos.

- ► El electromiograma implementado permite la medición de la señal eléctrica de los músculos, con una alta velocidad de actualización de los datos.
- Los impulsos eléctricos generados por el electroestimulador permiten desencadenar potenciales de acción en distintos tipos de fibras nerviosas, imponiendo una respuesta mecánica muscular dependiente de los parámetros de estimulación.
- Las gráficas obtenidas difieren en un pequeño porcentaje de los valores medidos con las obtenidas con equipos patrones de medicina, debido principalmente a las tolerancias de los elementos pasivos utilizados.

- La visualización de la señal electromiográfica (EMG) se lo hizo con la ayuda de la librería Androidplot que permite graficar un vector numérico de n posiciones, de una forma sencilla.
- ➤ Con la electroestimulación, la excitación se produce directamente sobre el nervio motor gracias a los impulsos eléctricos perfectamente controlados que garantizan la eficacia, la seguridad y el confort en el uso. De este modo, el músculo es incapaz de notar la diferencia entre una contracción voluntaria ordenada por el cerebro y una contracción inducida eléctricamente: el trabajo que se produce es idéntico.

Recomendaciones

- Para una buena recepción de la señal electromiográfica se recomienda una buena limpieza con alcohol y si es necesario rasurarse la zona donde van colocados los electrodos con la finalidad de reducir al máximo la resistencia eléctrica causada por los restos de grasa y existencia de vellos.
- No recargar nunca el aparato cuando los cables estén conectados al electroestimuador y los electrodos en contacto con el usuario, ya que existe el riesgo de shock eléctrico.
- No desconectar los cables del electroestimulador durante una sesión mientras el aparato siga conectado, previamente debe ser parado.

Recomendaciones

- No utilizar un mismo juego de electrodos más de quince sesiones, ya que la calidad del contacto entre el electrodo y la piel se deteriora de forma progresiva.
- ► El EMG es muy sensible al ruido por ello se debe tomar en cuenta una correcta aplicación y sujeción de los electrodos en el paciente para evitar cualquier ruido externo.
- ► El dispositivo móvil debe contener la versión Android 4.0.3 o superior.
- ➤ Tomar la precaución de retirar del paciente todo tipo de objetos que puedan alterar las mediciones como relojes, decoraciones, etc.

REFERENCIAS

[1]	L. Cifuentes, Electroterapia, Electrodiagnóstico, Electromiografía, Quito: PH Ediciones, 2006.
[2]	D. Montoya, «Educación Física,» [En línea]. Available: http://edfis13.blogspot.com/2015/03/contraccion-muscular-una-muscular-por.html. [Último acceso:
	26 Marzo 2015].
[3]	R. Jules, R. Serge y W. Steven, MANUAL DEL ESPECIALISTA EN REHABILITACIÓN (Cartoné y bicolor), Barcelona: Paidotribo, 2005.
[4]	J. M. Rodriguez Martin, Electroterapia en fisioterapia, vol. II, España: Editoria Médica Panamericana S.A., 2004.
[5]	W. Bracero Tobar, Electroestimulador muscular, Quito, 2003.
[6]	O. Flores, «BATALLA DE MICROCONTROLADORES ¿AVR o PIC?,» 1 SEPTIEMBRE 2009. [En línea]. Available:
	https://microcontroladores2utec.files.wordpress.com/2009/11/180909_articulo_colaboracion_boletin_fica_omar_otoniel_flores.pdf. [Último acceso: 13 Abril
	2015].
[7]	Arduino, «Arduino Uno,» 1 Enero 2015. [En línea]. Available: http://www.arduino.cc/en/Main/ArduinoBoardUno. [Último acceso: 20 Abril 2015].
[8]	OLIMEX, «SHIELD-EKG-EMG bio-feedback shield USER MANUAL,» 12 Junio 2014. [En línea]. Available:
	https://www.olimex.com/Products/Duino/Shields/SHIELD-EKG-EMG/resources/SHIELD-EKG-EMG.pdf. [Último acceso: 5 Marzo 2015].
[9]	JAVA, «JAVA,» 12 Enero 2015. [En línea]. Available: www.java.com. [Último acceso: 9 Abril 2015].
[10]	GOOGLE, «ANDROID,» Digital Globe, 23 Octubre 2014. [En línea]. Available: www.android.com. [Último acceso: 26 Abril 2015].
[11]	J. Prieto, Introducción a los Sistemas de Comunicación Inalambrica, Catalunya: Universidad Oberta de Catalunya, 2012.
[12]	R. Sallent, J. Valenzuela y R. Agustí, Principios de comunicaciones móviles, Barcelona: Ediciones UPC Universidad Politécnica de Catalunya, 2003.
[13]	D. W. Hart, Electrónica de Potencia, Madrid: Prentice Hall, 2001.
[14]	PROMETEC, «EL MÓDULO BLUETOOTH HC-05,» [En línea]. Available: http://www.prometec.net/bt-hc05/. [Último acceso: 15 JUNIO 2015].
[15]	COMPEX, «Compex Your intelligent training parther,» 1 Enero 2015. [En línea]. Available: http://www.compex.info/es_ES/index.html. [Último acceso: 28
	Junio 2015].

DISEÑO Y CONSTRUCCIÓN DE UN ELECTROESTIMULADOR Y ELECTROMIOGRAMA CON COMUNICACIÓN INALÁMBRICA PARA LA DETECCIÓN Y TRATAMIENTO DE ENFERMEDADES NEUROMUSCULARES

AUTORES:

SINCHIGUANO CHILIQUINGA NELSON ROLANDO TUTILLO TAIPE KARINA ETELVINA

DIRECTOR: ING. BUCHELI ANDRADE JOSÉ GIOBERTY CODIRECTOR: ING. GALARZA ZAMBRANO EDDIE EGBERTO

2015

Gracias