ID1020: Binary Search Trees

Dr. Per Brand pbrand@kth.se

kap 3.2

Slides adapted from Algoritms 4th Edition, Sedgewick.

BSTs

- Binary Search Trees or BSTs
 - Is binary tree
 - In symmetric order
 - Each node has a key
 - Larger than all keys in its left subtree
 - Smaller than all keys in it right subtree

Node structure in Java

Node has four fields

- Key, value, reference to left subtree, reference to right subtree

A BST is then
 a reference to
 root node

```
private class Node
{
    private Key key;
    private Value val;
    private Node left, right;
    public Node(Key key, Value val)
    {
       this.key = key;
       this.val = val;
    }
}
```

Searching a BST

- Method
 - If equal we have a hit
 - If less go left
 - If greater go right
 - If null we have a miss
- Example
 - Search for H

Inserting into a BST

- Method
 - If equal overwrite value
 - How do we merge new with old?
 - If less go left
 - If greater go right
 - If null insert
- Example
 - Insert G

Java Implementation (1)

```
public class BST<Key extends Comparable<Key>, Value>
                                                            root of BST
    private Node root;
   private class Node
   { /* see previous slide */ }
   public void put(Key key, Value val)
   { /* see next slides */ }
   public Value get(Key key)
   { /* see next slides */ }
   public void delete(Key key)
   { /* see next slides */ }
   public Iterable<Key> iterator()
   { /* see next slides */ }
```

Implementation of get

- Return value associated with key
- Complexity
 - 1+depth(node)

```
public Value get(Key key)
  Node x = root;
  while (x != null)
     int cmp = key.compareTo(x.key);
     if
        (cmp < 0) x = x.left;
     else if (cmp > 0) x = x.right;
     else if (cmp == 0) return x.val;
   return null;
```

Implementation of put

```
public void put(Key key, value val)
{ root = put(root, key, val); }
private Node put(Node x, Key key, Value val)
  if (x == null) return new Node(key, val);
  int cmp = key.compareTo(x.key);
  if(cmp < 0)
     x.left = put(x.left, key, val);
   else if (cmp > 0)
      x.right = put(x.right, key, val);
   else if (cmp == 0)
     x.val = val;
   return x;
```

Often this assignment is a noop When? Why necessary?

Tree shape

- Many different possible shapes for same set of keys
- Shape depends on order of insertion

 Remember complexity of get/put is 1+depth of node

Visualization of random ordered tree

Complexity

- N distinct keys inserted in random order
 - Expected number of compares for get/put ~2 In N
 - Or ~1.39 lg N
 - Proof analagous to qsort
- Observe
 - If perfectly balanced would expect Ig N
 - Worst case is ∼N
 - Expected case close to best case

Complexity Summary

implementation	guarantee		average case		ordered ops?	operations on keys
	search	insert	search hit	insert		
sequential search (unordered list)	N	N	N/2	N	no	equals()
binary search (ordered array)	lg N	N	lg N	N/2	yes	compareTo()
BST	N	N	1.39 lg N	1.39 lg N	next	compareTo()

More operations on BSTs

- Find minimum/maximum
 - Value associated with minimum key
 - Value associated with maximum key
 - How ?

More operations on BSTs (2)

- Find floor/ceiling of k
 - Floor: Largest key ≤ k
 - Ceiling: Smallest key ≥ k
 - How ?

Computing floor

```
public Key floor(Key key)
   Node x = floor(root, key);
   if (x == null) return null;
   return x.key;
private Node floor(Node x, Key key)
   if (x == null) return null;
   int cmp = key.compareTo(x.key);
   if (cmp == 0) return x;
   if (cmp < 0) return floor(x.left, key);</pre>
   Node t = floor(x.right, key);
   if (t != null) return t;
   else
                   return x;
```


Subtree counts

- Add new field to each node, size
 - Number of nodes in subtree rooted at node
- At root implements size()

Rank

- Rank number of keys < given key
- Three cases
 - two of which lead to recursive calls in left or right subtree

```
public int rank(Key key)
{ return rank(key, root); }

private int rank(Key key, Node x)
{
  if (x == null) return 0;
  int cmp = key.compareTo(x.key);
  if (cmp < 0) return rank(key, x.left);
  else if (cmp > 0) return 1 + size(x.left) + rank(key, x.right);
  else if (cmp == 0) return size(x.left);
}
```

Two more operations

- Select
 - Return node with given rank
- Inorder traversal
 - Use a queue during traversal of the tree

Summary

 Summary of symbol table implementations covered so far

implementation	guarantee			average case			ordered	operations
	search	insert	delete	search hit	insert	delete	iteration?	on keys
sequential search (linked list)	N	N	N	N/2	N	N/2	no	equals()
binary search (ordered array)	lg N	N	N	lg N	N/2	N/2	yes	compareTo()
BST	N	N	N	1.39 lg N	1.39 lg N	???	yes	compareTo()

How do we delete from a BST ?

Deleting the minimum

- As deleting is difficult
 - Begin by slightly easier problems
 - Deleting with zero children (leaf) trivial
 - Deleting the minimum node (Analgous to deleting any node with only one child

```
public void deleteMin()
{    root = deleteMin(root);  }

private Node deleteMin(Node x)
{
    if (x.left == null) return x.right;
    x.left = deleteMin(x.left);
    x.count = 1 + size(x.left) + size(x.right);
    return x;
}
```

But what about nodes with 2 children?

Hibbard deletion

- Three cases
 - O children just delete the node
 - 1 child analgous to deleting min
 - 2 children use successor
- Successor of a node is smallest key in right subtree
 - We can replace a node to be deleted with its successor

2 children case illustrated

Hibbard deletion - Implementation

```
public void delete(Key key)
{ root = delete(root, key); }
private Node delete(Node x, Key key) {
   if (x == null) return null;
   int cmp = key.compareTo(x.key);
   if (cmp < 0) x.left = delete(x.left, key);
                                                                    search for key
   else if (cmp > 0) x.right = delete(x.right, key);
   else {
      if (x.right == null) return x.left;
                                                                    no right child
      if (x.left == null) return x.right:
                                                                     no left child
      Node t = x;
                                                                    replace with
      x = min(t.right);
                                                                     successor
      x.right = deleteMin(t.right);
      x.left = t.left;
   }
                                                                   update subtree
   x.count = size(x.left) + size(x.right) + 1;
                                                                      counts
   return x;
```

However

- Hibbard deletion turns out to be unsatisfactory
- Details are beyond the scope of this course
- However note that repetitive Hibbard deletions distorts the tree (making it even less balanced)
- Operations tend to have √N complexity
- Next lecture how to achieved logaritmic guarantee