

Department of CSE Autonomous Institute, Affiliated to VTU

PROPOSED COURSE PLAN

Academic Year	September- December 2020	Sem	5th	Section(s)	A, B, C
Faculty Name:	Namratha M				
Course Title:	Advanced Data Structures				
Course Code:	20CS5PEADS				
L-T-P:	2-0-1	Total Credits:	03		

A	Cours	Course Outcomes														
	At the end of the course the student will be able to															
	CO1 Ability to analyze the usage of appropriate data structure for a given application. CO2 Ability to design an efficient algorithm for performing operations on various advances arructures.															
									dvanced	l data						
	CO)3						e of ha								
	Ability to conduct practical experiments to solve problems using an appropriate data structure.															
В	СО-Р	O-PSC) map	ping												
		PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
	CO1		1													
	CO2			3												3
	CO3	2														
	CO4				3											
C	Indica Propo															
	Proposed Assessment Plan (for 50 marks of CIE)															
			T	ool				Remarks					Ma	rks		
			Inte	ernals					Best 2	out o	f 3			2	0	
	Qu	Quiz-1, Quiz-2 (5 Marks Each) Lab Component										-				
						2 lab test (15 marks each) + Continuous evaluation (10 marks)				25						
	Self-Study Component									-	-					
			A	AT					C	NE				0		
	Tota				otal	al				50						

Department of CSE

Autonomous Institute, Affiliated to VTU

Unit #	Lecture#	Topics Covered	Rem
	1	Disjoint Sets Basic Data Structure, Smart Union algorithms	
	2	Path Compression, Time complexity for Union-by-Rank and Time complexity for Path compression, Applications.	
UNIT 1	3	Advanced Lists	
	4	Generic Linked List, Memory efficient doubly linked list XOR Linked List, Skip List	+
	5	Self Organizing List, Unrolled Linked List.	
	6	Trees	
		AVL Trees-Construction, Insertion, Rotation, Deletion operations	
	7	Splay Trees, 2-3 Trees-Construction	
UNIT 2	8	2-3 Trees Insertion and Deletion operations	
	9	B-Trees- Construction, Insertion and Deletion operations	
	10	Red-Black Trees- Construction, Insertion and Deletion operations.	
	11	Applications of Red-Black Trees	
	12	Trees and Advanced Lists	
		Trie, Suffix Array Tree	
UNIT 3	13	Segment Tree	
	14	Splay Goat Tree	
	15	K-Dimensional Tree	
	16	Binary Indexed Tree or Fenwick Tree	
	17	Hashing Collision Resolution Techniques: Hash Tables without Linked Lists	
UNIT 4	18	Quadratic probing, Double hashing	
	19	Rehashing	
	20	Extendible Hashing. Applications of Hashing.	
	21	Heaps	
IINITE	22	Binomial trees and Binomial heaps Operations on binomial heaps	
UNIT-5	23	Operations on binomial heaps continued	
	24	Structure of Fibonacci Heaps	

Department of CSE

Autonomous Institute, Affiliated to VTU

		25	Mergeable heap operations	
		26	Decreasing a key and deleting a node.	
۱.	•			

Prescrib	Prescribed Text Book									
Sl. No.	Book Title	Authors	Edition	Publisher	Year					
1	Introduction to Algorithms	T. H Cormen, C. E. Leiserson and R. L. Rivest	2 nd Edition	Prentice Hall India	2001					
2	Data Structures and algorithm analysis in C++	Marks Allen Wesis	3 rd Edition	Pearson Education	2014					

Referen	ce Text Book				
Sl. No.	Book Title	Authors	Edition	Publisher	Year
1.	Fundamentals of Computer Algorithms	Ellis Horowitz, Satraj Sahni and Rajasekharam	2nd Edition	University Press Pvt. Ltd,	2009

E-Bo	ook					
Sl. No.	Book Title	Authors	Edition	Publisher	Year	URL
1.	Data structures and Algorithm Analysis in C++	Allen Weiss	Fourth edition	Pearson education	2014	http://iips.icci.edu.iq/images/exam/ DataStructuresAndAlgorithmAnalysis InCpp 2014.pdf
2.	Introduction to Algorithms	T. H Cormen, C. E. Leiserson and R. L. Rivest	2 nd Edition	Prentice Hall India	2001	https://edutechlearners.com/download/ Introduction to algorithms- 3rd%20Edition.pdf

MO	OC Course			
Sl. No.	Course name	Course Offered By	Year	URL
1.	Advanced Data Structures in Java	Coursera	2019	https://www.coursera.org/learn/advanced-data-structures
2.	Data Structures and Algorithms	NPTEL	2009	https://nptel.ac.in/courses/106/102/106102064/
3.	Programming and Data Structures	NPTEL	2009	https://nptel.ac.in/courses/106105085/

E Proposed Tutorial Plan (if applicable)

F Proposed Laboratory Plan (if applicable)

Note: The faculty handling the course (of all sections) should discuss and prepare four open-ended question (applications based on the topics covered in the theory class for each unit). The continuous evaluation for the lab is done as follows:

Department of CSE

Autonomous Institute, Affiliated to VTU

□ 10 marks for each lab program and 10 marks for	open-ended questions.
--	-----------------------

 \Box Final continuous evaluation marks will be calculated for 10 marks: (10 marks lab programs + 10 marks open-ended)/2

Lab Test-1: 15 marks for test-1 + 10 marks: Average of first 5 lab programs + 2 application implementation of the open ended question set

Lab Test-2: 15 marks for test-2 + 10 marks:

Average of last 5 programs + 2 application implementation of the open ended question set.

Sl.No	Program	Unit				
1	Write a program to implement the following list:	UNIT 1				
	An ordinary Doubly Linked List requires space for two address fields to store the addresses of previous and next nodes. A memory efficient version of Doubly Linked List can be created using only one space for address field with every node. This memory efficient Doubly Linked List is called XOR Linked List or Memory Efficient as the list uses bitwise XOR operation to save space for one address. In the XOR linked list, instead of storing actual memory addresses, every node stores the XOR of addresses of previous and next nodes.					
2	Write a program to perform insertion, deletion and searching operations on a skip list.	UNIT 1				
3	Given a boolean 2D matrix, find the number of islands.	UNIT 1				
	A group of connected 1s forms an island. For example, the below matrix contains 5 islands					
	{1, 1, 0, 0, 0},					
	{0, 1, 0, 0, 1},					
	{1, 0, 0, 1, 1},					
	{0, 0, 0, 0, 0},					
	{1, 0, 1, 0, 1}					
	A cell in the 2D matrix can be connected to 8 neighbours.					
	Use disjoint sets to implement the above scenario.					
4	Write a program to perform insertion and deletion operations on AVL trees.	UNIT 2				
5	Write a program to perform insertion and deletion operations on 2-3 trees.	UNIT 2				
6	Write a program to implement insertion operation on a red black tree. During insertion, appropriately show how recolouring or rotation operation is used.	UNIT 2				
7	Write a program to implement insertion operation on a B-tree.	UNIT 2				
8	Write a program to to implement functions of Dictionary using Hashing.	UNIT 3				
9	Write a program to implement the following functions on a Binomial heap:	UNIT 5				
	1. insert(H, k): Inserts a key 'k' to Binomial Heap 'H'. This operation					

Department of CSE

Autonomous Institute, Affiliated to VTU

and the new Binomial heap. 2. getMin(H): A simple way to getMin() is to traverse the list of root of Binomial Trees and return the minimum key. 3. extractMin(H): This operation also uses union(). We first call getMin() to find the minimum key Binomial Tree, then we remove the node and create a new Binomial Heap by connecting all subtrees of the removed minimum node. Finally we call union() on H and the newly created Binomial Heap. 10 Write a program to implement the following functions on a Binomial heap: 1. delete(H): Like Binary Heap, delete operation first reduces the key to minus infinite, then calls extractMin(). 2. decreaseKey(H): decreaseKey() is also similar to Binary Heap. We compare the decreases key with it parent and if parent's key is more, we sway keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. G Proposed Self-Study Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File)									
Binomial Trees and return the minimum key. 3. extractMin(H): This operation also uses union(). We first call getMin() to find the minimum key Binomial Tree, then we remove the node and create a new Binomial Heap by connecting all subtrees of the removed minimum node. Finally we call union() on H and the newly created Binomial Heap. 10 Write a program to implement the following functions on a Binomial heap: 1. delete(H): Like Binary Heap, delete operation first reduces the key to minus infinite, then calls extractMin(). 2. decreaseKey(H): decreaseKey() is also similar to Binary Heap. We compare the decreases key with it parent and if parent's key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. G. Proposed Self-Study Plan (if applicable) H. Proposed Alternate Assessment Tool Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. 1 List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) J. Proposed Action Plan to address the suggestions/Comments This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 Proposed innovations in TLP/Best Practices (delivery/assessment)									
3. extractMin(H): This operation also uses union(). We first call getMin() to find the minimum key Binomial Tree, then we remove the node and create a new Binomial Heap by connecting all subtrees of the removed minimum node. Finally we call union() on H and the newly created Binomial Heap. 10 Write a program to implement the following functions on a Binomial heap: 1. delete(H): Like Binary Heap, delete operation first reduces the key to minus infinite, then calls extractMin(). 2. decreaseKey(M): decreaseKey() is also similar to Binary Heap. We compare the decreases key with it parent and if parent's key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. G. Proposed Self-Study Plan (if applicable) ———————————————————————————————————									
to find the minimum key Binomial Tree, then we remove the node and create a new Binomial Heap by connecting all subtrees of the removed minimum node. Finally we call union() on H and the newly created Binomial Heap. 10 Write a program to implement the following functions on a Binomial heap: 1. delete(H): Like Binary Heap, delete operation first reduces the key to minus infinite, then calls extractMin(). 2. decreaseKey(H): decreaseKey() is also similar to Binary Heap. We compare the decreases key with it parent and if parent's key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. G Proposed Self-Study Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks COA 1 (Jan-May 2019) CO1 CO2 CO3 CO3 CO4 Proposed innovations in TLP/Best Practices (delivery/assessment)	.()								
create a new Binomial Heap by connecting all subtrees of the removed minimum node. Finally we call union() on H and the newly created Binomial Heap. 10 Write a program to implement the following functions on a Binomial heap: 1. delete(H): Like Binary Heap, delete operation first reduces the key to minus infinite, then calls extractMin(). 2. decreaseKey(H): decreaseKey(i) is also similar to Binary Heap. We compare the decreases key with it parent and if parent's key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. G Proposed Self-Study Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File)									
minimum node. Finally we call union() on H and the newly created Binomial Heap. 10 Write a program to implement the following functions on a Binomial heap: 1. delete(H): Like Binary Heap, delete operation first reduces the key to minus infinite, then calls extractMin(). 2. decreaseKey(H): decreaseKey() is also similar to Binary Heap. We compare the decreases key with it parent and if parent's key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. G Proposed Self-Study Plan (if applicable) Plan: H Proposed Alternate Assessment Tool Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File)									
Binomial Heap. 10 Write a program to implement the following functions on a Binomial heap: UNIT 1. delete(H): Like Binary Heap, delete operation first reduces the key to minus infinite, then calls extractMin(). 2. decreaseKey(H): decreaseKey() is also similar to Binary Heap. We compare the decreases key with it parent and if parent's key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node.									
Write a program to implement the following functions on a Binomial heap: 1. delete(H): Like Binary Heap, delete operation first reduces the key to minus infinite, then calls extractMin(). 2. decreaseKey(H): decreaseKey() is also similar to Binary Heap. We compare the decreases key with it parent and if parent's key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. G Proposed Self-Study Plan (if applicable)									
minus infinite, then calls extractMin(). 2. decreaseKey(H): decreaseKey() is also similar to Binary Heap. We compare the decreases key with it parent and if parent's key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. G Proposed Self-Study Plan (if applicable) H Proposed Alternate Assessment Tool Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) J Proposed Action Plan to address the suggestions/Comments K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYml Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 Proposed innovations in TLP/Best Practices (delivery/assessment)	UNIT 5								
minus infinite, then calls extractMin(). 2. decreaseKey(H): decreaseKey() is also similar to Binary Heap. We compare the decreases key with it parent and if parent's key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. G Proposed Self-Study Plan (if applicable) H Proposed Alternate Assessment Tool Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) J Proposed Action Plan to address the suggestions/Comments K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYml Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 Proposed innovations in TLP/Best Practices (delivery/assessment)									
2. decreaseKey(H): decreaseKey() is also similar to Binary Heap. We compare the decreases key with it parent and if parent's key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. G Proposed Self-Study Plan (if applicable) ———————————————————————————————————									
compare the decreases key with it parent and if parent's key is more, we swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. G Proposed Self-Study Plan (if applicable) H Proposed Alternate Assessment Tool Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) J Proposed Action Plan to address the suggestions/Comments K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYml Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)									
swap keys and recur for parent. We stop when we either reach a node whose parent has smaller key or we hit the root node. Proposed Self-Study Plan (if applicable)									
whose parent has smaller key or we hit the root node. G Proposed Self-Study Plan (if applicable) H Proposed Alternate Assessment Tool Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) J Proposed Action Plan to address the suggestions/Comments K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 Proposed innovations in TLP/Best Practices (delivery/assessment)									
G Proposed Self-Study Plan (if applicable) H Proposed Alternate Assessment Tool Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) J Proposed Action Plan to address the suggestions/Comments K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)									
H Proposed Alternate Assessment Tool Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) ——— J Proposed Action Plan to address the suggestions/Comments ——— K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)									
H Proposed Alternate Assessment Tool Plan (if applicable) Plan: Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) ——— J Proposed Action Plan to address the suggestions/Comments ——— K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)									
Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File)									
Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File)									
Platform: HackerRank 4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File)									
4 questions (coding related) will be designed on HackerRank (1-EASY LEVEL, 2-MEDIUM LEVEL, 1-DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File)	Plan:								
DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File)	Platform: HackerRank								
DIFFICULT LEVEL) will be framed and students are supposed to code within 2 hours of time. Average of questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File)	LEVEL. 1-								
questions will be considered for awarding the marks. Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) ———————————————————————————————————									
Students are supposed to come to the CSE lab and do the coding in front of batch-in-charges only. I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) J Proposed Action Plan to address the suggestions/Comments K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)									
I List the suggestions/Comments for improvement of the course (or similar course) delivered during the previous Academic year (as mentioned in the Course File) J Proposed Action Plan to address the suggestions/Comments K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)	questions oc constacted for unutuing the marks.								
previous Academic year (as mentioned in the Course File) J Proposed Action Plan to address the suggestions/Comments K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)	nly.								
previous Academic year (as mentioned in the Course File) J Proposed Action Plan to address the suggestions/Comments K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)									
J Proposed Action Plan to address the suggestions/Comments CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)	ed during the								
J Proposed Action Plan to address the suggestions/Comments CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)									
K CO Attainment during the previous Academic Year This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)									
This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)									
This course has been introduced as an Elective course CO# Attainment: CAYm1 Remarks (Jan-May 2019) CO1 CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)									
CO# Attainment: CAYm1 Remarks									
(Jan-May 2019) CO1	This course has been introduced as an Elective course								
(Jan-May 2019) CO1									
CO1 CO2 CO3 CO4 Proposed innovations in TLP/Best Practices (delivery/assessment)									
CO2 CO3 CO4 L Proposed innovations in TLP/Best Practices (delivery/assessment)									
CO3 CO4 Proposed innovations in TLP/Best Practices (delivery/assessment)									
L Proposed innovations in TLP/Best Practices (delivery/assessment)									
L Proposed innovations in TLP/Best Practices (delivery/assessment)									
Placement related questions to be discussed in class									
Coding assignments to be given to students.									
X A 4	_								
M Any other									

Signature(s) of the Faculty(s)

Signature of the HOD

Date:

Department of CSE

Autonomous Institute, Affiliated to VTU

- i) The Course plan is an attempt to ensure **continuous improvement** in the TLP of the course.
- ii) The proposed Course Plan is submitted to **DAC** before the commencement of the semester. iii) At the end of the semester, the faculty shall submit the **actual implemented plan**.
- iv) Calendar of Events included.

CALENDAR OF EVENTSFOR THE ACADEMICYEAR 2020-21

BACHELOR OF ENGINEERING PROGRAMMES - HIGHER SEMESTERS

SEM	S.No	EVENT	DATES		
	1	Course Registration	14.09.2020		
	2	Commencement of Classes	15.09.2020		
*	3	DROPPINGOF COURSES	On or before14.10.2020		
ER	4	CIE:Quiz#1/AAT#1	On or before 20.10.2020		
EST	5	CIE:TEST#1	21.10.2020to 23.10.2020		
EM	6	CIE:Quiz#2/AAT#2	On or before 27.11.2020		
ODDSEMESTER	7	CIE:TEST#2	30.11.2020, 01.12.2020 & 02.12.2020		
O	8	WITHDRAWALOF COURSES	On or before 15.12.2020		
	9	CIE:TEST#3	21.12.2020to 23.12.2020		
	10	LASTWORKINGDAY	31.12.2020		
	11	SEE: Semester End Examination**	04.01.2021 to 18.01.2021		
	12	Vacation for Students	19.01.2021 to 31.01.2021		
	13	Course Registration	01.02.2021		
	14	Commencement of Classes	02.02.2021		
	15	DROPPINGOF COURSES	On orbefore15.02.2021		
	16	CIE:Quiz#1/AAT#1	On or before 05.03.2021		
ER	17	CIE:Test#1	08.03.2021to 10.03.2021		
ESTI	18	CIE:Quiz#2/AAT#2	On orbefore12.04.2021		
EMI	19	CIE:Test#2	15.04.2021to 17.04.2021		
ISNS	20	WITHDRAWALOF COURSES	On or before 10.05.2021		
EVENSEMESTER	21	CIE:Test#3	20.05.2021 to 22.05.2021		
	22	LASTWORKINGDAY	26.05.2021		
	23	SEE: Semester End Examination**	1.06.2021to 15.06.2021		
	24	Vacation for Students	16.06.2021to31.07.2021		

Supplementary Semester

June-July 2021

Department of CSE Autonomous Institute, Affiliated to VTU

* The Odd Semester will be conducted in online / offline blended mode

** Semester End Examination dates may change due to unavoidable circumstances.