Mass Cytometry

Natasja de Vries

PhD student IHB & Pathology Leiden University Medical Center

Flow cytometry

CyTOF

2009 CyTOF

2013 CyTOF2

2015 Helios

2017 Hyperion

<u>Mass cytometry</u>: technique for real time single cell multitarget immunoassay based on inductively coupled plasma time-of-flight mass spectrometry.

Bandura DR, Baranov VI, Ornatsky OI, Antonov A, Kinach R, Lou X, Pavlov S, Vorobiev S, Dick JE, Tanner SD.

Anal Chem. 2009 Aug 15;81(16):6813-22. doi: 10.1021/ac901049w.

MID: 40004047

10/2019 on PubMed:

766 papers 'Mass cytometry' or 'CyTOF' 199 papers 'Imaging mass cytometry' or 'Hyperion'

PMID: 19601617

• Immune cells are extremely diverse, many markers are needed

- Immune cells are extremely diverse, many markers are needed
- Heavy metal isotopes as antibody reporter

- Immune cells are extremely diverse, many markers are needed
- Heavy metal isotopes as antibody reporter
- Ability to measure many (>40) antibodies

Flow Cytometry

- Immune cells are extremely diverse, many markers are needed
- Heavy metal isotopes as antibody reporter
- Ability to measure many (>40) antibodies
- Sharp peaks and less crosstalk between channels

Flow Cytometry

CyTOF workflow

Advantages and disadvantages of CyTOF

Advantages:

- Minimal overlap in metal signal
- In theory capable of detecting
 100 parameters per cell
- Large amounts of data from each experiment

Limitations:

- Flow rate of around 500 cells per second
- Current chemical methods limits use to around 40 parameters per cell
- Expensive
- Cells cannot be sorted for further analysis

CyTOF gating strategy

- CD45: leukocyte common antigen
- DNA stains: 191 / 193 Ir
- Live/dead stain: 103 Rh
- Four element calibration beads: 140 Ce, 151 Eu, 165 Ho, 175 Lu

Absolute number of CD45+ cells

Antibody panel (N = 39) for the detection of immune cell markers

Major lineage markers		
CD45	Pan immune	
CD3	T cells	
CD4	CD4 T cells	
$CD8\alpha$	CD8 T cells	
ΤCRγδ	γδ T cells	
CD20	B cells	
CD14	Monocytes	
CD11c	Myeloid cells	
CD7	ILCs	

Fc/complement receptors		
CD16	Low affinity FCγR3α	
CD11b	Complement R3	

Apoptosis	
CD95	FASR/TNFRSF6

Differentiation/activation markers		
CD45RO	CD45 isoform	
CD38	cADP ribose hydrolase	
CD161	KLRB1	
HLA-DR	Ag presentation	
CD335	NKp46	

Cytokine/chemokine receptors		
CD123	IL-3Rα	
CD127	IL-7Rα	
CD25	IL-2Rα	
CD122	IL-2Rβ	
CCR6	Chemokine R6	
CCR7	Chemokine R7	
CXCR3	CXC chemokine R3	
CD115	CSF1R	

Immunomodulatory molecules		
PD-1	Co-inhibitory R	
PD-L1	Co-inhibitory ligand	
CD27	Co-stimulatory R	
CD28	Co-stimulatory R	
CD40	Co-stimulatory R	
ICOS	Co-stimulatory R	
CD86	Co-stimulatory ligand	

Adhesion/homing markers		
CD44	Glycoprotein	
CD54	ICAM-1	
CD56	NCAM	
CD69	Glycoprotein	
CD103	Glycoprotein	
CD163	High-affinity scavenger R	
KLRG-1	Glycoprotein	

CyTOF data analysis

- Large number of cells (8.9 million live CD45+ cells)
- High-dimensionality of the data

Colorectal tumor – Live CD45+ cells

Current single-cell computational tools Clustering-based

No single-cell resolution

[1] Qiu et al., Extracting a Cellular Hierarchy from High-dimensional Cytometry Data with **SPADE**, Nature Biotechnology, 2011

[2] Levine et al., Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells that Correlate with Prognosis (**Phenograph**), Cell 2015

[3] Van Gassen et al., FlowSOM: Using self-organizing maps for visualization and interpretation of cytometry data (FlowSOM), Cytometry A, 2015

Current single-cell computational tools Dimensionality-Reduction-based

[1] Amir et al., **viSNE** enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia, Nature Biotech. 2013.

[2] Shekhar et al., Automatic classification of cellular expression by nonlinear stochastic embedding (**ACCENSE**), PNAS, 2014

[3] Becht et al., Dimensionality reduction for visualizing single-cell data using **UMAP**, Nature Biotech. 2019

Current single-cell computational tools Dimensionality-Reduction-based

Problems with t-SNE analysis: data overcrowding

Hierarchical SNE

Hierarchical SNE

Hierarchical SNE

8.9 million immune cells derived from different samples of colorectal cancer (CRC) patients

Hierarchical exploration of the memory CD8+/ $\gamma\delta$ T cell compartment by HSNE

Hierarchical exploration of the memory CD8+/ $\gamma\delta$ T cell compartment by HSNE

Identification of tumour tissue-specific T cell clusters

Keratin CD8 CD103 CD8/CD103

Colorectal tumour

Hyperion

Imaging CyTOF (Hyperion)

- FFPE and snapfrozen tissue sections
- 1 μM resolution
- 40+ markers
- No autofluorescence

Giesen et al. Nat Methods (2014)

Imaging CyTOF (Hyperion) – Fetal gut before ablation

Imaging CyTOF (Hyperion) – HSNE analysis of the fetal gut

Single-cell RNA-sequencing of CRCs reveals the presence of similar immune cell clusters

Mass cytometry

Single-cell RNA-sequencing

Take home messages

- Mass cytometry allows simultaneous analysis of 40+ markers on singlecells, resulting in highly complex datasets
- Conventional data analysis approaches are not suitable for such datasets
- Mass cytometry has broad range of research applications (e.g. immunology, hematology, oncology, etc.)
- It can be used for the detection of extra- and intracellular proteins, cytokines, signaling molecules
- "Data too big for t-SNE? Try HSNE!" (<u>www.cytosplore.org</u>)
 - Allows analysis of millions of cells, maintaining the non-linearity of the data
 - From global visualization to single-cell data resolution

N.L.de_Vries@lumc.nl

Mass Cytometry – Cytosplore practical

Introduction to Cytosplore practical

• Cytosplore + HSNE: https://vimeo.com/205552113

Cytosplore practical

- Colorectal cancer (CRC) patient S00184
 - Tumor (T)
 - Healthy mucosa (normal; N)
 - Tumor-associated lymph node (LN)
 - Peripheral blood mononuclear cells (PBMC)
- FCS files have been pre-gated on CD45⁺ immune cells
- Downsample to 5,000 cells / sample
- Cluster on immune cell markers
- t-SNE analysis versus 3-level HSNE analysis (without downsampling)
 - Marker expression profiles
 - Clustering based on density
 - Coloring of the samples
 - Heatmap
 - Data export