Topics in Combinatorics

Exam I (out of 10 marks)
(Date: 12 Oct 2020. Timing: 12:00 to 13:05 hours)

Notation. Let G be a simple, undirected, finite graph. We use V(G) to denote its vertex set and E(G) to denote its edge set. For each vertex $v \in V(G)$, let $N(v) = \{u \in V(G) : \{u,v\} \in E(G)\}$ denote the open neighborhood of v. Let $N[v] = \{v\} \cup N(v)$ denote the closed neighborhood of v. The degree of v, denoted by deg(v), is the number of vertices in the open neighborhood of v. That is, deg(v) = |N(v)|. The maximum degree of a graph G is $\max\{deg(v) : v \in V(G)\}$.

Definition. Let G be a simple, undirected, finite graph. Let σ be a linear order (or total order or simple order) of the vertices of G. For any $u, v \in V(G)$ with $\{u, v\} \notin E(G)$, we say the ordered pair (u, v) is **separated** in σ if v succeeds every vertex in the set N[u] in the linear order σ .

Example: Let *G* be a graph with $V(G) = \{v_1, v_2, v_3, v_4, v_5, v_6\},\$

 $E(G) = \{\{v_1, v_2\}, \{v_2, v_3\}, \{v_3, v_4\}, \{v_4, v_5\}, \{v_5, v_6\}, \{v_6, v_1\}, \{v_4, v_5\}\}$. Let $\sigma : v_2, v_3, v_1, v_6, v_4, v_5$. Note that σ separates the ordered pair (v_1, v_4) as v_4 succeeds every vertex in $N[v_1] = \{v_1, v_2, v_6\}$ in σ . However, σ does not separate the ordered pair (v_3, v_6) as v_6 precedes v_4 which is a neighbor of v_3 .

Problem

Let G be a simple, undirected, finite graph on n vertices. Let Δ denote the maximum degree of G. Show that there is a collection $\mathcal{F} = \{\sigma_1, \sigma_2, \ldots\}$ of $O(\Delta \log n)$ linear orders of the vertices of G such that for every distinct $u, v \in V(G)$ with $\{u, v\} \notin E(G)$, there exists some $\sigma_i \in \mathcal{F}$ such that the ordered pair (u, v) is separated in σ_i .