ECEN 4517/5517

Power Electronics and Photovoltaic Power Systems Laboratory

Lecture 9

Compensator Design and Modified Sine Wave Inverter

Announcements

- This week's lab: Finish Experiment 4
 - Exp 4 Lab Report due by 11:59 pm (MT) on Friday April 7, 2017
- Following this: Experiment 5
 - Experiment 5 has a pre-lab (due 11:59 pm on Friday March 24, 2017)
 - Have 2 weeks to work on Experiment 5 (after Spring Break)
 - Exp 5 Lab Report due by 11:59 pm (MT) on Friday April 21, 2017
- Quiz 2 on Monday April 24, 2017
 - In-class 40-minute quiz administered during lecture time
 - Closed book/notes, calculator allowed
 - Will cover Experiment 4 and 5 material
- Expo (Final Demo) on Thursday May 4, 2017

Experiments

- Exp 1 PV panel and battery characteristics and direct energy transfer
- Exp 2 TI MSP430 microcontroller introduction
- Exp 3-1, 3-2 Buck dc-dc converter for PV MPPT and battery charge control
- Exp 4 Step-up 12V-200V dc-dc converter
- Exp 5 Single-phase dc-ac converter (inverter)
- Expo Complete system demonstration

Experiments 4 and 5

- **Exp 4**: Cascaded boost step-up dc-dc converter (using analog PWM and feedback controller to regulate HVDC)
- **Exp 5**: H-bridge dc-ac inverter

Experiment 4 - Cascaded Boost Converters

- Controller IC: Demonstrate operating PWM controller IC (UC 3525)
- **Power Stage**: Demonstrate operating cascaded boost power converters
- Closed-Loop Analog Control: Demonstrate analog feedback system that regulates the dc output voltage; and measure and document loop gain and compensator design
- Additional Analysis [ECEN 5517 Only]: Develop and verify system loss budget; and analytical model of control-to-output transfer function

Compensator Design Example

Transfer Functions for Basic CCM Converters

Open-loop control-to-output transfer function:

$$G_{vd}(s) = G_{d0} \frac{\left(1 - \frac{s}{\omega_z}\right)}{\left(1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2\right)}$$

Open-loop line-to-output transfer function:

$$G_{vg}(s) = G_{g0} \frac{1}{1 + \frac{s}{Q\omega_0} + \left(\frac{s}{\omega_0}\right)^2}$$

Converter	G_{g0}	G_{d0}	ω_0	Q	ωz
buck	D	$\frac{V}{D}$	$\frac{1}{IC}$	$R\sqrt{\frac{C}{L}}$	∞
boost	$\frac{1}{D'}$	$\frac{V}{D'}$	$\frac{D'}{LC}$	$D'R\sqrt{\frac{C}{L}}$	$\frac{D^{\prime 2}R}{L}$
buck-boost	$-\frac{D}{D'}$	$\frac{V}{D D'^2}$	$\frac{D'}{LC}$	$D'R\sqrt{\frac{C}{L}}$	$\frac{D^{\prime2}R}{DL}$

Uncompensated Loop Gain

ECEN 4517/5517

Improved Compensator (PID)

- add inverted zero to PD compensator, without changing dc gain or corner frequencies
- choose f_L to be $f_c/10$, so that phase margin is unchanged

Loop Gain and 1/(1+T) with PID Compensator

Compensator Implementation

Divider and OpAmp Subtractor

Become of negative feedback in OpAmp

$$V_{o} = \frac{Z_{2}}{Z_{1}} \left(V_{ref} - HV \right) = V_{e}$$

$$G_{c}(s)$$

$$V_{o} = \frac{Z_{2}}{Z_{1}} \left(V_{A} - V_{B} \right)$$

Implementing Z_1 and Z_2

Implementing Z_1 and Z_2 (Cont.)

Z₂/Z₁ Bode Plot

OpAmp Based Compensator

Design Equations

$$\underline{G_{c0}} = \frac{R_2}{R_1}$$

$$f_L = \frac{1}{2\pi R_2 C_2} \quad \checkmark$$

$$f_z = \frac{1}{2\pi R_1 C_1}$$

$$f_p = \frac{1}{2\pi R_3 C_1}$$

$$R_2 = 100 \text{ k}\Omega$$

$$R_2 = 100 k\Omega$$

Possible Simplification for Fixed Reference Voltage

Incorporating the Divider and Loading Effect

Final Design

Performance with Real OpAmp

Experiment 5 – Off-Grid Inverter

• **Required**: Demonstrate modified sine-wave inverter

• Extra Credit: Demonstrate PWM inverter

Off-Grid H-Bridge Inverter

- Need MOSFETs and half-bridge gate drivers
- Filtering of ac output not explicitly shown
- Grid-tied: control *i*_{ac}(t)
- Off-grid: control v_{ac}(t)

"Modified Sine Wave" Inverter

v_{ac}(t) has a rectangular waveform

Inverter transistors switch at 60 Hz, T = 16.66 msec

RMS value of $v_{ac}(t)$ is:

$$V_{ac,RMS} = \sqrt{\frac{1}{T}} \int_0^T v_{ac}^2(t) dt = \sqrt{D} V_{HVDC}$$

- Choose V_{HVDC} larger than desired V_{ac,RMS}
- Can regulate value of V_{ac,RMS} by variation of D
- Waveform is highly nonsinusoidal, with significant harmonics

Inverter Control

- Use MSP430 to control the MOSFET gate drivers
 - Can use Timer A (or logic outputs) to generate drive signals

• Your goal: adjust V_{ref} and inverter duty cycle to obtain $V_{ac} = 120 \text{ V rms}$

Gate Drive Timing

- For modified sine wave inverter: switch once per ac half cycle
- Adjust duty cycle to control rms voltage
- Require deadtime > (switching/delay times of MOSFETs plus gate drivers);
 otherwise, simultaneous conduction of Q₁ and Q₂ causes "shoot-through"
 current that can damage MOSFETs

Half-Bridge Gate Drivers

Half-bridge gate driver examples: IR21094 and FAN 73832 (your parts kit has IR21094)

Half-Bridge Gate Driver Functionality

Contains two MOSFET drivers:

- Low side driver
- High side driver

High side driver includes

- Level-shifting circuitry
- Provisions for bootstrap power supply

Undervoltage lockout circuitry holds MOSFETs off when driver power supply is below threshhold

Figure 3. Functional Block Diagram of FAN73832

Half-Bridge Gate Driver - IR21094

Half-Bridge Gate Driver Circuit Example

Half-Bridge Gate Driver Circuit Example

Figure 2. Application Circuit for Full-Bridge DC Motor Driver

- High side circuitry includes external diode and capacitor for bootstrap power supply
- To charge bootstrap capacitor, low side MOSFET must conduct