Week 3 Project: Mammogram Analysis

Sreeja Challa, Jun Han, Daniel Kim, Angel Li

Table of Contents

- 1. Introduction
- 2. Preprocessing
- 3. Data Augmentation
 - a. Geometric transformations
 - b. CLAHE
 - c. Jitter
- 4. Our Models and Hyperparameters
- 5. Results
 - a. CNN model
 - b. Random forest
 - c. K-means
- 6. Conclusion

Introduction

A mammogram is a X-ray that detects signs of breast cancer from abnormal masses and calcifications. This week's challenge is to classify mammogram into two classes (binary) and five classes (multiclass).

Preprocessing

Original

Resize

Rescale

CLAHE

- Contrast limited adaptive histogram equalization
- Improves visibility/contrast
- Contrast applied locally instead of globally

Geometric Transformations

Augmenting data by rotating and flipping images

Tumors can appear in any orientation

Jitter

- Another augmentation technique
- Adds noise to the entire image
 - Shifts each brightness level by a small random amount
- Improves generalizability

Jitter

Models

Convolutional Neural Network (CNN) for Binary

- Learning rate = 0.001
- Epoch = 10
- Batch size = 64
- Dropout rate = 0.50
- Number of filters = 32

Layer (type)	Output Shape	Param #
conv2d_3 (Conv2D)	(None, 99, 99, 32)	160
max_pooling2d_3 (MaxPooling 2D)	(None, 98, 98, 32)	0
dropout_5 (Dropout)	(None, 98, 98, 32)	0
flatten_3 (Flatten)	(None, 307328)	0
dense_6 (Dense)	(None, 64)	19669056
dropout_6 (Dropout)	(None, 64)	0
dense_7 (Dense)	(None, 2)	130

Total params: 19,669,346
Trainable params: 19,669,346
Non-trainable params: 0

Models

Convolutional Neural Network (CNN) for Multi

- Learning rate = 0.001
- Epoch = 10
- Batch size = 64
- Dropout rate = 0.50
- Number of filters = 64

Layer (type)	Output Shape	Param #
conv2d_2 (Conv2D)	(None, 50, 50, 32)	160
max_pooling2d_2 (MaxPoolin 2D)	g (None, 49, 49, 32)	0
conv2d_3 (Conv2D)	(None, 24, 24, 32)	4128
max_pooling2d_3 (MaxPoolin 2D)	g (None, 23, 23, 32)	0
flatten_1 (Flatten)	(None, 16928)	0
dense_2 (Dense)	(None, 64)	1083456
dropout_1 (Dropout)	(None, 64)	0
dense_3 (Dense)	(None, 5)	325

Total params: 1,088,069 Trainable params: 1,088,069 Non-trainable params: 0

Models

RandomForest

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score

model = RandomForestClassifier(n_estimators=100, criterion='log_loss', min_samples_leaf=10)
model.fit(partial_train_data, tr_binary_labels)
test_binary_pred = model.predict(val_data)

acc = accuracy_score(val_binary_labels, test_binary_pred)
print(acc)
```

K-means algorithm

```
from sklearn.cluster import MiniBatchKMeans
train = np.squeeze(partial_train_data)
train = train.reshape(len(train), -1)
num_clusters = 5
kmeans = MiniBatchKMeans(n_clusters = num_clusters, max_iter=100, verbose=1)
kmeans.fit(train)
```

Results - Binary with CNN

AUC_ROC: 0.8453

Confusion Matrix score: 421

Accuracy: 68.5333

Results - Binary with RandomForest

AUC_ROC: 0.8493

Confusion Matrix score: 1600

Accuracy: 84.9333

Results - Multi-Class with K-means

AUC_ROC: 0.4908

Confusion Matrix score: -2476

Accuracy: 18.5333

Results - Multi-Class with CNN

AUC_ROC: 0.8712

Confusion Matrix score: 98

Accuracy: 60.8

Conclusion

- Machine learning projects should utilize data augmentation to increase their dataset and generalizability
- K-means algorithm is not a suitable supervised learning classifier
- RandomForest is a reliable model