ECE 231A Discussion 7

TA: Hengjie Yang

Email: hengjie.yang@ucla.edu

05/15/2020

Motivation and distortion measures

Source model \mathcal{X} : \mathcal{X} with distribution p(x) producing i.i.d. sequence X^n .

Distortion measure: $d: \mathcal{X} \times \hat{\mathcal{X}} \to \mathbb{R}^+$. $d(x, \hat{x}), x \in \mathcal{X}, \hat{x} \in \hat{X}$ is the cost of representing symbol x with symbol \hat{x} .

Distortion between two sequences:

$$d(\underline{x}^n, \hat{\underline{x}}^n) = \underbrace{\frac{1}{n} \sum_{i=1}^n d(x_i, \hat{x}_i)}_{i=1}.$$

2

Goal: To find the "minimal representation" of X^n using R bits/per source symbol to guarantee $\mathbb{E}[d(X^n, \hat{X}^n)] \leq D$.

Examples of distortion measures:

xamples of distortion measures:
1. Hamming distortion:
$$d(x,\hat{x}) = \mathbb{I}_{\{x \neq \hat{x}\}}$$
.

2. Squared-error distortion:
$$d(x, \hat{x}) = (x - \hat{x})^2$$
.

Rate distortion theorem

Rate distortion theorem: For an i.i.d. source X with distribution p(x) and bounded distortion function $d(x,\hat{x})$,

$$\underbrace{R(D)} = \underbrace{R^{(I)}(D)} = \min_{\substack{p(\hat{x}|x): \sum_{(x,\hat{x})} p(x)p(\hat{x}|x)d(x,\hat{x}) \leq D}} I(X;\hat{X}).$$

Namely, all rates $R \geq R^{(I)}(D)$ are achievable; Conversely, any $(2^{nR},n)$ code that achieves distortion D must have $R \geq R^{(I)}(D)$.

Duality with channel capacity: P(x) P(x) P(x) X > Y

- 1. In solving for channel capacity, the channel $X \to Y$ is fixed and we are seeking an optimized input distribution;
- 2. In solving for rate-distortion function, the output X is fixed and we are seeking an optimized channel $\hat{X} \to X$.

$$\begin{array}{cccc}
\text{rel } \hat{X} \to X. \\
\text{A pire}
\end{array}$$

Calculation of the rate distortion function R(D)

Bernoulli source: for a Bernoulli(p) source with Hamming distortion,

$$R(D) = \begin{cases} H(p) - H(D), & 0 \le D \le \min\{p, 1 - p\} \\ 0, & D > \min\{p, 1 - p\}. \end{cases}$$

Gaussian source: for a $\mathcal{N}(0,\sigma^2)$ source with squared-error distortion,

$$R(D) = \begin{cases} \frac{1}{2} \log \frac{\sigma^2}{D}, & 0 \le D \le \sigma^2 \\ 0, & D > \sigma^2 \end{cases}$$

$$R = \frac{1}{2} \left(\frac{1}{2} \sum_{P} \frac{\sigma^2}{P} \right) \Rightarrow D = \left(\frac{1}{2} \right)^{P} \sigma^2$$

Remark:

1. Reducing distortion by considering long blocks: From the above result for Gaussian source, $D(R) = \left(\frac{1}{4}\right)^R \sigma^2$.

$$D(R) = 0.25\sigma^2$$
, if $R = 1, n \to \infty$
 $D = 0.36\sigma^2$, if $R = 1, n = 1$

ECE 231A Discussion, Spring 2020

Rate distortion for a parallel Gaussian source

Goal: To represent k independent normal random sources X_1, \ldots, X_k , $X_i \sim \mathcal{N}(0, \sigma_i^2)$ with squared error distortion using R bits per vector.

Rate distortion for a parallel Gaussian source: Let $X_i \sim \mathcal{N}(0, \sigma_i^2)$, $i=1,2,\ldots,k$ be independent Gaussian r.v.'s. Let the distortion measure be $d(x^k, \hat{x}^k) = \sum_{i=1}^k (x_i - \hat{x}_i)^2$. The rate distortion function is

$$R(D) = \sum_{i=1}^{k} \frac{1}{2} \log \frac{\sigma_i^2}{D_i}$$

where

$$D_i = \begin{cases} \lambda, & \text{if } \lambda < \sigma_i^2 \\ \sigma_i^2, & \text{if } \lambda \ge \sigma_i^2 \end{cases}$$

where λ is chosen so that $\sum_{i=1}^{k} D_i = D$ (Reverse water-filling). $\frac{1}{2} \frac{1}{2} \frac$

Derivation of reverse water-filling

$$L(D) = \min_{\substack{X \in X^k \\ |X| | |X|$$

Converse to the rate distortion theorem

Converse: Any $(2^{nR}, n)$ code that achieves distortion D must have R > R(D), where

$$R(D) = \min_{p(\hat{x}|x): \sum_{(x,\hat{x})} p(x)p(\hat{x}|x)d(x,\hat{x}) \le D} I(X;\hat{X}).$$

Lemma: R(D) is a nonincreasing, convex function of D.

Outline of the proof of the converse:
$$\begin{cases} \mathbf{x} : \mathbf{x}^{\mathbf{x}} \to \{1, 2, \dots 2\} \\ nR \ge H(f_n(X^n)) \ge I(X^n; f_n(X^n)) & \mathbf{x} \to f_n(\mathbf{x}^n) \to \mathbf{x}^n \\ -H(\mathbf{x}^n) \ge I(X^n; \hat{\mathbf{x}}^n) & = H(X^n) - H(X^n|\hat{\mathbf{x}}^n) \\ \ge \sum_{i=1}^n \left(H(X_i) - H(X_i|\hat{X}_i) \right) \mathbf{I}(\mathbf{x}; \hat{\mathbf{x}}^n) \\ \ge \sum_{i=1}^n R(\mathbb{E}[d(X_i, \hat{X}_i)]) & \ge n \\ \ge n \left(\sum_{i=1}^n \frac{1}{n} R(\mathbb{E}[d(X_i, \hat{X}_i)]) \right) & \ge n \\ \ge n R(\mathbb{E}[d(X^n; \hat{X}^n)]) & \mathbb{E}[d(\mathbf{x}^n; \hat{\mathbf{x}}^n)] \le 0 \end{cases}$$
ECE 231A Discussion, Spring 2020
$$> nR(D)$$

HW 7, Problem 2: rate distortion for uniform source

Consider a source X uniformly distributed on the set $\{1,2,\ldots,m\}$. Find the rate distortion function for this source with Hamming distortion; that is,

$$d(x,\hat{x}) = \begin{cases} 0, & \text{if } x = \hat{x}, \\ 1, & \text{if } x \neq \hat{x}. \end{cases}$$
Hint: Fano's inequality. $\times \Rightarrow \{ \Rightarrow \hat{x} \}$

$$Arme: D = Pr(x \neq \hat{x}) \}$$

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$I(X; \hat{X}) = H(X) - H(X|\hat{X})$$

$$I(X|\hat{X}) \leq H(X) + H(X|\hat{X})$$

$$I(X|\hat{X}) \leq H(X) + H(X|\hat{X})$$

$$I(X|\hat{X}) \geq H(X) + H(X|\hat{X})$$

$$I(X|\hat{X}) \geq H(X|\hat{X}) + H(X|\hat{X})$$

$$I(X|\hat{X}) = H(X|\hat{X}) + H(X|\hat{$$

choose
$$p(\hat{x}) = \frac{1}{m} \hat{x} = 1.2...m$$

$$\Rightarrow \frac{1}{m} = 1-D \Rightarrow D = 1-\frac{1}{m}$$

$$\Rightarrow D > 1-\frac{1}{m} \quad I(x > x) = 0$$

$$\Rightarrow D < 1-\frac{1}{m} \quad I(x > x) = \frac{1}{m} - H(0) - D \cdot G(mn)$$

$$p(x | \hat{x}) = \begin{cases} 1-D & \text{if } x = x \\ \frac{D}{m-1} & \text{if } x \neq x \end{cases}$$

$$p(\hat{x}) = \frac{1}{m} \quad x = x$$

$$p(\hat{x}) = \frac{$$

HW 7. Problem 4: rate distortion function with infinite distortion

Find the rate distortion function $R(D) = \min I(X; \hat{X})$ for $X \sim \text{Bern}(1/2)$ and distortion

$$d(x,\hat{x}) = \begin{cases} 0, & x = \hat{x}, & p(\hat{x}|x) \\ 1, & x = 1, \hat{x} = 0, \\ \infty, & x = 0, \hat{x} = 1. \end{cases} \quad \underbrace{p(x=0, \hat{x}=1)=0}$$

$$I(x,\hat{x}) = H(x) - \underline{H(x|\hat{x})} \quad \hat{\chi}$$

$$p(x,\hat{x}) = \begin{bmatrix} 1/2 & 0 \\ 0 & x = 0 \end{bmatrix} \Rightarrow \underbrace{p(x|\hat{x}=1) = \begin{bmatrix} 0 \\ 1 \\ 0 & x = 0 \end{bmatrix}}_{p(x|\hat{x}=0) = \begin{bmatrix} 1/2 \\ 1/2 + 10 \end{bmatrix}}$$

$$I(x,\hat{x}) = H(\hat{x}) - \underbrace{p(\hat{x}=0)}_{x=0} \underbrace{H(x|\hat{x}=0)}_{y=1} = \underbrace{p(x=0, \hat{x}=1)=0}_{y=1} = \underbrace{p(x=0, \hat{x}=1)=0}_{y=1}$$

$$I(x,\hat{x}) = H(x) - \underbrace{h(x|\hat{x}=0)}_{y=1} = \underbrace{$$

10)= () H(t)- flx=0) H(x|x=0) if 0=0=12 P(0)= () ECE 231A Discussion, Spring 2020

$$\begin{array}{ll}
\lambda = 0 & |\hat{r}(x \neq \hat{x}) \\
= |\hat{r}(x \neq 0) = \frac{1}{2} & |\hat{r}(0)|^{\frac{1}{2}}
\end{array}$$