

Машинное обучение, ШАД

Занятие 4

Доверительные интервалы и статистические критерии

Материал по рассказан по доске

Два вспомогательных распределения

Распределение хи-квадрат

Обозначение: χ_k^2 — хи-квадрат с k степенями свободы

- ▶ Параметр k кол-во степеней свободы;
- Плотность

$$p(x) = \frac{1}{2^{k/2} \Gamma(k/2)} x^{k/2-1} e^{-x/2};$$

- $\chi_k^2 = \Gamma(1/2, k/2);$
- ightharpoonup Если $\xi_1,...,\xi_k$ независимые $\mathcal{N}(0,1)$, то $\xi_1^2+...+\xi_k^2\sim\chi_k^2$;
- ightharpoonup Если $\eta \sim \chi_k^2$, то Е $\eta = k, \mathrm{D}\eta = 2k$;
- $ightharpoonup \chi_{k,p}^2 p$ -квантиль распределения χ_k^2 .
- scipy.stats.chi2(df=k)

Распределение Стьюдента

Обозначение: T_k — распределение Стьюдента с k степенями свободы

- ▶ Параметр k кол-во степеней свободы;
- $ightharpoonup T_1$ распределение Коши
- $T_{\infty} = \mathcal{N}(0,1)$
- Плотность

$$p(x) = \frac{\Gamma(\frac{k+1}{2})}{\sqrt{\pi k} \, \Gamma(k/2)} \left(1 + \frac{x^2}{k}\right)^{-\frac{k+1}{2}};$$

- lacktriangle Если $\xi \sim \mathcal{N}(0,1)$ и $\eta \sim \chi_k^2$ независимы, то $\zeta = rac{\xi}{\sqrt{\eta/k}} \sim T_k$
- ▶ Если $\zeta \sim T_k$, то Е $\zeta = 0$ при k > 1
- ▶ Если $\zeta \sim T_k$, то $\mathsf{D}\zeta = \frac{k}{k-2}$ при k > 2
- $ightharpoonup T_{k,p} p$ -квантиль распределения T_k
- scipy.stats.t(df=k)

Сравнение распределений

Распределение Стьюдента похоже на нормальное, но обладает более тяжелыми хвостами, т.е. плотность медленнее убывает при $x \to \infty$.

Уильям Сили Госсет

Работал на пивоваренном заводе Гиннеса в Дублине.

Чтобы предотвратить раскрытие конфиденциальной информации, Гиннесс запретил своим работникам публикацию любых материалов, независимо от содержавшейся в них информации.

Госсет выбрал себе псевдоним Student.

Стат. свойства линейной регрессии

Модель линейной регрессии (повторение)

Рассматриваем функциональную зависимость вида

$$y = y(x) = \theta_1 x_1 + ... + \theta_d x_d,$$

 $x_1, ..., x_d$ — признаки,

$$\theta = (\theta_1, ..., \theta_d)^T$$
 — вектор параметров.

Предполагается, что данные удовлетворяют соотношению

$$Y_i = y(x_i) + \varepsilon_i = \theta_1 x_{i1} + \dots + \theta_d x_{id} + \varepsilon_i, \quad i = 1, \dots, n,$$

$$x_i = (x_{i1}, ..., x_{id})$$
 — признаковые описания объекта i обычно неслучайные,

$$\varepsilon_i$$
 — случайная ошибка измерений.

Модель линейной регрессии (повторение)

Введем обозначения

$$Y = \begin{pmatrix} Y_1 \\ \dots \\ Y_n \end{pmatrix}, \quad X = \begin{pmatrix} x_{11} & \dots & x_{1d} \\ \dots & & \\ x_{n1} & \dots & x_{nd} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{pmatrix}.$$

Матричная форма записи данных

$$Y = X\theta + \varepsilon$$
.

 $X \in \mathbb{R}^{n imes d}$ — регрессоры или матрица признаков, $Y \in \mathbb{R}^n$ — отклик.

Матричный вид зависимости: $y(x) = x^T \theta$.

Метод наименьших квадратов (повторение)

Задача:
$$\|Y-X\theta\|_2^2
ightarrow \min_{\theta \in \mathbb{R}^d}$$
.

Решение:
$$\widehat{\theta} = (X^T X)^{-1} X^T Y$$
 если $rank X = d$.

Предсказания:
$$\widehat{y}(x) = x^T \widehat{\theta}$$
.

Предположения и следствия:

- 1. $E\varepsilon = 0$ несмещенность:
 - $\triangleright \widehat{\theta}$ несмещенная оценка θ ,
 - $\widehat{y}(x)$ несмещенная оценка y(x).
- 2. $E\varepsilon = 0$ и $D\varepsilon = \sigma^2 I_n$ несмещенность и гомоскедастичность:

$$ightharpoonup \widehat{\sigma}^2 = \frac{1}{n-d} \left\| Y - X \widehat{\theta} \right\|_2^2$$
 — несмещенная оценка σ^2 .

- 3. $\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$ гауссовская линейная модель:
 - ▶ МНК совпадает с ОМП для θ .

Величина	Интервал	
σ	$\left(\sqrt{\ Y-X\widehat{\theta}\ ^2/\chi_{n-d,\frac{1+\alpha}{2}}^2},\right.$	$\sqrt{\ Y - X\widehat{\theta}\ ^2 / \chi_{n-d,\frac{1-\alpha}{2}}^2}$
-		

Дов. интервал для размера шума в отклике

$$\theta_j = \left(\widehat{\theta}_j \pm T_{n-d,\frac{1+\alpha}{2}} \cdot \widehat{\sigma} \sqrt{(X^T X)_{jj}^{-1}}\right)$$

Дов. интервал для коэффициента перед j-м признаком

$$X_0^T \theta = \left(x_0^T \widehat{\theta} \pm T_{n-d, \frac{1+\alpha}{2}} \cdot \widehat{\sigma} \sqrt{x_0^T (X^T X)^{-1} x_0} \right)$$

Дов. интервал для **среднего** отклика на объекте x_0

$$X_0^T \theta + \varepsilon = \left(x_0^T \widehat{\theta} \pm T_{n-d, \frac{1+\alpha}{2}} \cdot \widehat{\sigma} \sqrt{1 + x_0^T (X^T X)^{-1} x_0} \right)$$

Предск. интервал для **наблюдаемого** отклика на объекте x_0

Число lpha — уровень доверия, обычно lpha= 0.95

Значим ли признак x_i ?

Гипотеза о **не**значимости коэффициента θ_i

$$H_0: \theta_j = 0$$
 vs. $H_1: \theta_j \ \{<, \neq, >\} \ 0$

Критерий Стьюдента (t-test)

$$T_j(X,Y) = \frac{\widehat{\theta}_j}{\widehat{\sigma}\sqrt{(X^TX)_{jj}^{-1}}} \overset{\mathsf{Ho}}{\sim} T_{n-d},$$

где $T_j(X,Y)$ — t-статистика критерия.

Для $\mathsf{H}_1\colon \theta_j \neq 0$ критерий имеет вид $\left\{|T_j(X,y)| > T_{n-d,\frac{1-\alpha}{2}}\right\}$, где число α — уровень значимости, обычно $\alpha=0.05$.

Если H_0 не отвергается, то можно считать, что θ_j отклоняется от нуля статистически незначимо.

Пример: АВ-тест

Пользователи делятся случайно на две независимые группы:

- 1. Контрольная группа A использует **старую** ML-модель; $Y_1 = (Y_{11}, ..., Y_{n1}), EY_{i1} = a$ результаты.
- 2. Исследуемая группа B использует **новую** ML-модель; $Y_2 = (Y_{12}, ..., Y_{m2}), EY_{i2} = b$ результаты.

Что может быть результатом?

- Сумма покупки.
- Клик по рекламе.
- Длина сессии.
- Регистрация пользователя на сервисе.
- ▶ и т.д.

Гипотезы:

 H_0 : a = b — отсутствие эффекта, H_1 : $a \neq b$ — эффект присутствует.

Сведем линейной регрессии

Введем обозначения

$$Y = \begin{pmatrix} Y_{11} \\ \dots \\ Y_{n1} \\ Y_{12} \\ \dots \\ Y_{m2} \end{pmatrix}, \quad X = \begin{pmatrix} 1 & 0 \\ \dots & 1 & 0 \\ 1 & 1 \\ \dots & 1 & 1 \end{pmatrix}, \quad \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_{n+m} \end{pmatrix}.$$

Линейная регрессия предполагает зависимость $Y = X\theta + \varepsilon$.

Тогда $Y_{i1}= heta_0+arepsilon_i$ и $Y_{i2}= heta_0+ heta_1+arepsilon_{n+i}$, следовательно

- ▶ θ_0 среднее в группе A,
- ▶ θ_1 эффект от эксперимента.

Вывод: для проверки AB-теста нужно построить интервал для θ_1 и проверить гипотезу $H_0\colon \theta_1=0$ критерием Стьюдента.

Учет признаков: аналог CUPED в AB-тестах

Если есть дополнительные признаки, например, сумма прошлых покупок, возраст пользователя, его пол, можно учесть эти признаки

$$Y = \begin{pmatrix} Y_{11} \\ \dots \\ Y_{n1} \\ Y_{12} \\ \dots \\ Y_{m2} \end{pmatrix}, \quad X = \begin{pmatrix} 1 & 0 & \overrightarrow{x_{11}} \\ \dots & & \\ 1 & 0 & \overrightarrow{x_{n1}} \\ 1 & 1 & \overrightarrow{x_{12}} \\ \dots & & \\ 1 & 1 & \overrightarrow{x_{m2}} \end{pmatrix}, \quad \theta = \begin{pmatrix} \theta_0 \\ \theta_1 \\ \overrightarrow{\theta_2} \end{pmatrix}, \quad \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_{n+m} \end{pmatrix}.$$

Линейная регрессия предполагает зависимость $Y = X\theta + \varepsilon$.

Тогда
$$Y_{i1}=\theta_0+\overrightarrow{x_{i1}}^T\overrightarrow{\theta_2}+arepsilon_i$$
 и $Y_{i2}=\theta_0+\theta_1+\overrightarrow{x_{i1}}^T\overrightarrow{\theta_2}+arepsilon_{n+i}$, след.

- $ightharpoonup heta_0$ среднее в группе A,
- θ_1 эффект от эксперимента при фиксированных остальных факторах.

Вывод: для проверки АВ-теста нужно построить интервал для θ_1 и проверить гипотезу H_0 : $\theta_1=0$ критерием Стьюдента.

Гетероскедастичность и анализ остатков

Остатки

 $\mathrm{D}arepsilon=\sigma^2 I_n$ — гомоскедастичность. Обратное — гетероскедастичность. В качестве оценки ошибки $arepsilon_i$ рассмотрим остатки $e_i=Y_i-\widehat{Y}_i$

Проблема: $De_i \neq \sigma^2$ при гомоскедастичности. Покажем это. Вектор остатков $e = Y - \widehat{Y} = (I_n - H)Y$, где $H = X (X^TX)^{-1} X^T$;

$$De = (I_n - H)DY(I_n - H)^T = \sigma^2(I_n - H)(I_n - H)^T = \sigma^2(I_n - H),$$
где $HH^T = X(X^TX)^{-1}X^TX(X^TX)^{-1}X^T = X(X^TX)^{-1}X^T = H.$

Проверять на однородность дисп. нужно поправленные остатки:

$$\widehat{e_i} = rac{e_i}{\sqrt{\widehat{\mathsf{D}} e_i}} = rac{e_i}{\sqrt{rac{\|Y - X\widehat{ heta}\|^2}{n-d}} (1 - H_{ii})}$$
 — стюдентизированные остатки

Визуальный анализ

Строятся графики зависимости \widehat{e}_i от y, x, i

Визуальный анализ

Что будет если строить графики зависимостей таргета от признаков:

Что делать при гетероскедастичности?

- **Е**СЛИ нужна только оценка θ ничего;
- Если есть предположения о природе гетероскедастичности, взвесить наблюдения:

$$Y_i/\widehat{\sigma}_i = (x_i/\widehat{\sigma}_i)^T \theta + \varepsilon_i,$$

где $\widehat{\sigma}_i$ — предполагаемая дисперсия при i-м измерении;

Преобразование признаков и отклика, напр., Бокса-Кокса:

$$Z_i = \begin{cases} \ln Y_i, & \lambda = 0 \\ (Y_i^{\lambda} - 1)/\lambda, & \lambda \neq 0 \end{cases}$$

Величина λ подбирается по графику зависимости MSE от λ

 Использовать специальные оценки дисперсии, устойчивые к гетероскедастичности.

Устойчивые оценки дисперсии

Пусть $\mathsf{E}\varepsilon=\mathsf{0}$ и $\mathsf{D}\varepsilon=V$.

Тогда
$$\Sigma = \mathsf{D}\widehat{\theta} = \left(X^TX\right)^{-1}X^TVX\left(X^TX\right)^{-1}.$$

1. $V = \sigma^2 I_n$ — гомоскедастичность:

$$\Sigma = \sigma^2 \left(X^T X \right)^{-1}$$
 — дисперсия оценки коэффициентов; $\widehat{\Sigma} = \widehat{\sigma}^2 \left(X^T X \right)^{-1}$ — оценка дисперсии оценки коэффициентов;

2. $V = \operatorname{diag}\left(\sigma_1^2, ..., \sigma_n^2\right)$ — отсутствие автокорреляций:

$$\Sigma = (X^T X)^{-1} X^T \cdot \operatorname{diag} \left(\sigma_1^2, ..., \sigma_n^2\right) \cdot X \left(X^T X\right)^{-1} - \operatorname{д.o.к.};$$

$$\widehat{\Sigma} = (X^T X)^{-1} X^T \cdot \operatorname{diag} \left(\widehat{\sigma}_1^2, ..., \widehat{\sigma}_n^2\right) \cdot X \left(X^T X\right)^{-1} - \operatorname{o.д.o.k.}.$$

 Наличие автокорреляций — более сложный случай, при котором зависимы элементы выборки.
 Ипользуются кластерное представление ковариационной матрицы или модели временных рядов.

Устойчивые оценки дисперсии

Если автокорреляции отсутствуют, используются **оценка Уайта** White's heteroscedasticity-consistent estimator (HCE)

$$\widehat{\boldsymbol{\Sigma}} = \left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}\boldsymbol{X}^T \cdot \mathsf{diag}\left(\widehat{\sigma}_1^2,...,\widehat{\sigma}_n^2\right) \cdot \boldsymbol{X}\left(\boldsymbol{X}^T\boldsymbol{X}\right)^{-1}$$

Варианты определения $\widehat{\sigma}_i^2$

- 1. HC0: \hat{e}_{i}^{2} оценка Уайта
- 2. Модификации МакКиннона-Уайта

HC1:
$$\frac{n}{n-d}\hat{e}_{i}^{2}$$
, HC2: $\frac{\hat{e}_{i}^{2}}{1-H_{ii}}$, HC3: $\frac{\hat{e}_{i}^{2}}{\left(1-H_{ii}\right)^{2}}$

Точнее оценивают при малых выборках.

Как ее применять?

Если автокорреляции отсутствуют, то выполнена асимптотическая нормальность оценки коэффициентов

$$\sqrt{n}\left(\widehat{\theta}-\theta\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,B),$$

НСЕ дает хорошую (состоятельную) оценку на матрицу B:

$$n\widehat{\Sigma} \stackrel{P}{\longrightarrow} B$$

Данный факт позволяет строить асимптотические дов. интервалы для коэффициентов моделей и таргета, а также критерий Вальда для проверки линейных гипотез H_0 : $T\theta= au$.

Обобщенная модель линейной регрессии

Вспомним простую линейную регрессию с норм. шумом

Данные
$$Y = X\theta + \varepsilon \sim \mathcal{N}(X\theta, \sigma^2 I_n)$$

Строим модель вида $y(x) = x^T \theta$.

Что мы предсказываем?

Пусть x_0 новый объект.

Тогда
$$Y_0 = x_0^T \theta + \varepsilon_0 \sim \mathcal{N}(x_0^T \theta, \sigma^2).$$

T.e. в качестве предсказания оцениваем $\mathsf{E} Y_0 - \mathit{ожидаемый}$ отклик.

Итог

 $y \in \mathbb{R}$ — значения наблюдаемого отклика

 $\mathsf{E}_{\mathsf{x}} \mathsf{Y} - \mathsf{ожидаемый}$ отклик

 $Y_i \sim \mathcal{N}(\mathbf{x}_i^T \mathbf{ heta}, \sigma^2)$ — наблюдаемый отклик

Пуассоновское распределение

$$Pois(\lambda): p(x) = \frac{\lambda^x}{x!}e^{-\lambda}, x \in \mathbb{Z}_+$$

Смысл: число событий, произошедших за единицу времени

Условия:

- 1. события происходят с фиксированной интенсивностью λ .
- 2. независимо друг от друга.

Утверждение: время между двумя событиями имеет распр. $Exp(\lambda)$

Примеры:

- 1. число клиентов в час
- 2. число запросов на сервер за минуту

События разной интенсивности

Интенсивность может зависеть от каких-то факторов.

 $X_1,...,X_n$ — факторы интервала времени

 $Y_1,...,Y_n$ — число событий, произошедших за интервал времени

Тем самым имеется $\lambda(x)$ — интенсивность событий для факторов x.

Получаем $Y_i \sim Pois(\lambda(x_i))$

Что предсказывать?

Hет смысла предсказывать сам Y_i ,

т.к. помимо $\lambda(x_i)$ он содержит непрогнозируемый шум.

Тогда оценим Е $Y_i = \lambda(x_i)$ — ожидаемый отклик.

Как параметризовать $\lambda(x)$ для линейной модели?

Определимся с требованиями

Пусть значению $x_0^T \theta = 0$ соответствует интенсивность $\lambda_0 = 1$.

Значению $x_1^T \theta$ сопоставим интенсивность $\lambda_1 = 5$ событий в час.

Хотим чтобы значению $-x_1^T \theta$ соответствовала интенсивность $1/\lambda_1=0.2$ событий в час.

Линеаризация

Соответственно, нужно взять $\lambda_{\theta}(x) = \exp(x^T \theta)$.

Тогда $\ln \lambda_{\theta}(x) = x^T \theta$.

 $g(z) = \ln z$ — **линеаризация** ожидаемого отклика.

Итог

 $y \in \mathbb{Z}_+$ — значения наблюдаемого отклика

$$\lambda_{\theta}(x) = \mathsf{E}_x Y$$
 — ожидаемый отклик

$$Y_i \sim Pois(\lambda_{\theta}(x_i))$$
 — наблюдаемый отклик

Это пуассоновская регрессия.

Случай бинарной классификации

 $X_1, ..., X_n$ — признаки объекта

 $Y_1, ..., Y_n$ — бинарный класс

Тем самым имеется $\rho(x)$ — вероятность класса 1 для объекта x.

Получаем $Y_i \sim Bern(\rho(x_i))$

Что предсказывать?

Оцениваем $\mathsf{E} Y = \rho(x) - \mathsf{o} x$ идаемый отклик.

Как параметризовать $\rho(x)$ для линейной модели?

Определимся с требованиями

Пусть значению $x_0^T \theta = 0$ соответствует вероятность 0.5.

Значению $x_1^T \theta$ сопоставим вероятность $\rho_0 = 0.9$.

Хотим чтобы значению $-x_1^T \theta$ соответствовала вероятность 0.1.

Что такое в 2 раза более/менее вероятно?

Возможно, 0.95 и 0.05, но это не точно.

Сведение к параметру масштаба

Заметим, что $\frac{\rho}{1-\rho}$ — насколько чаще выпадает класс 1 по сравнению с классом 0. Тем самым это параметр масштаба.

Линеаризация

Логит $g(z) = \ln \frac{z}{1-z}$ — линеаризация ожидаемого отклика.

T.е. параметризация $\rho_{\theta}(x)$ должна быть такой, что $\ln \frac{\rho_{\theta}(x)}{1-\rho_{\theta}(x)} = x^T \theta$.

Тогда нужно взять
$$\rho_{\theta}(x) = \frac{1}{1 + \exp(x^T \theta)}$$
.

Бинарный отклик

 $y \in \{0,1\}$ — значения наблюдаемого отклика $ho_{ heta}(x) = \mathsf{P}_x(Y=1)$ — ожидаемый отклик $Y_i \sim Bern(
ho_{ heta}(x_i))$ — наблюдаемый отклик Это логистическая регрессия.

Обобщенная модель линейной регрессии

Гауссовская линейная модель

Generalized Linear Models (GLM)

Ожидаемый отклик:

$$y = \mu_{\theta}(x) = x^{T}\theta.$$

Наблюдаемый отклик:

$$Y_i = x_i^\mathsf{T} \theta + \varepsilon_i, \ \ \varepsilon_i \sim \mathcal{N}(0, \sigma^2).$$
или $Y_i \sim \mathcal{N}(\mu_{\theta}(x_i), \sigma^2)$

Оценка отклика:

$$\widehat{y} = x^T \widehat{\theta}.$$

Ожидаемый отклик:

$$y = \mu_{\theta}(x)$$
, причем $g(\mu_{\theta}(x)) = x^{T}\theta$,
т.е. g — линеаризация ожид. отклика

Наблюдаемый отклик:

$$Y_i \sim \mathsf{P}_{\mu_{\theta}(x_i)}$$
,

где
$$\{\mathsf{P}_{\psi}\mid \psi\in \Psi\}$$
 — семейство распр.

Оценка отклика:

$$\widehat{y} = g^{-1} \left(x^T \widehat{\theta} \right).$$

Свойства GLM

В качестве $\widehat{\theta}$ берется ОМП (ищется численно)

$$L_X(\theta) = \prod_{i=1}^n p_{\mu_{\theta}(x_i)}(Y_i) = \prod_{i=1}^n p_{g^{-1}(x_i^T\theta)}(Y_i) \longrightarrow \max_{\theta}$$

Если $\{\mathsf{P}_{\psi}\mid \psi\in \Psi\}$ лежит в экспоненциальном классе, то $\widehat{ heta}$:

- 1. существует и единственна;
- 2. асимптотически нормальна: $\sqrt{I(\theta)}\left(\widehat{\theta}-\theta\right) \stackrel{d}{\longrightarrow} \mathcal{N}(0,I_d),$ где $I(\theta) = \left(-\mathsf{E} \frac{\partial^2 \log L_X(\theta)}{\partial \theta_j \partial \theta_k}\right)_{ik}$ информационная матрица Фишера.

Частные случаи:

- 1. Линейная (гауссовская): $I(\theta) = \sigma^{-2} X^T X$.
- 2. Логистическая: $I(\theta) = X^T \cdot \operatorname{diag} \left[\sigma \left(x_i^T \theta \right) \left(1 \sigma \left(x_i^T \theta \right) \right) \right] \cdot X$.
- 3. Пуассоновская: $I(\theta) = X^T \cdot \text{diag} \left[\exp \left(x_i^T \theta \right) \right] \cdot X$.

Примечание. Свойства работают если верны предположения модели.

Для параметров (\Longrightarrow критерий для гипотезы H_0 : $\theta_i = 0$)

$$\theta_{j} \in \left(\widehat{\theta}_{j} \pm z_{1-\alpha/2} \sqrt{\left(I^{-1}(\widehat{\theta})\right)_{jj}}\right)$$

Для преобразованного ожидаемого отклика

$$x_0^T \theta \in \left(x_0^T \widehat{\theta} - \delta, x_0^T \widehat{\theta} + \delta\right)$$

Для ожидаемого отклика

$$\mu(\mathbf{x}_0) = \mathbf{g}^{-1}(\mathbf{x}_0^T \boldsymbol{\theta}) \in \left[\mathbf{g}^{-1} \left(\mathbf{x}_0^T \widehat{\boldsymbol{\theta}} - \boldsymbol{\delta} \right), \mathbf{g}^{-1} \left(\mathbf{x}_0^T \widehat{\boldsymbol{\theta}} + \boldsymbol{\delta} \right) \right],$$

Например, в случае лог. регрессии можем не просто говорить, что вероятность болезни 20%, но и оценивать интервал для нее: вероятность болезни от 16% до 27%.

Обозначения:
$$\delta = z_{1-\alpha/2} \sqrt{x_0^T I^{-1}(\widehat{\theta}) x_0}$$
, а $z_{\alpha} - \alpha$ -квантиль $\mathcal{N}(0,1)$.

Примечание. Для линейной регрессии вместо σ^2 нужно взять ее несмещ. оценку.

