Database and Analytics

Tozammel Hossain Oct 20, 2020

Agenda

- Course Logistics
- Expectations
- Introduction to DBMS
- Module 1 overview

Course Logistics

- 3 credit hours, 8 weeks
- Flipped classroom strategy
- Striking a balance
 - Theory vs Training
- Evaluation
 - Discussion (10%)
 - Exercises (70%)
 - Final project (20%)

Course Logistics

- Canvas
 - Announcements
 - Grades
 - Slides and other docs
- Communication
 - Microsoft teams
 - Emails
 - Rajani (<u>rypbc@mail.missouri.edu</u>)
 - Instructor (hossaink@missouri.edu)

Course Objective

- Structured and unstructured data
- Database schema and ERD models
- Query plans and indexing, write SQL that involves multiple tables, and aggregation
- Nested queries and common table expressions
- Procedures and triggers

Topics to be Covered

- M1: Databases and SQL Introduction
- M2: Database Design
- M3: Advanced SQL-I
- M4: Advanced SQL-II
- M5: Advanced SQL-III
- M6: Data Engineering
- M7: Alternative Data Systems & Final Project Preparation
- Module 8: Final Project DB & Analytics

What Is a DBMS?

- A very large, integrated collection of data
- Models real-world enterprise
 - Entities (e.g., students, courses)
 - Relationships
 - Bernard Ebbers is taking ACC101
 - Martha Stewart is taking Ethics in Stock Trading
- A Database Management System
 (DBMS) is a software package designed to
 store and manage databases

Why Use a DBMS?

- Data independence and efficient access
- Reduced application development time
- Data integrity and security
- Uniform data administration
- Concurrent access, recovery from crashes

Any reason not to use DBMS?

- Simple application
 - A scripting program will do. Less overhead
- Large-Scaled Applications (NoSQL)
 - Cloud, Big Data, e.g. Google Big Table,
 Amazon–Dynamo, Microsoft Azure Cosmos DB
- Specialized application
 - Existing query methods are not adequate
 - e.g. Show me information related to this face, show me protein structures similar to this new one

Why Study Databases?

- Shift from computation to information
 - at the "low end": scramble to all data sources
 - at the "high end": real-time decision supports
- Datasets increasing in diversity and volume
 - Digital libraries, interactive video, genome projects, satellite images, social media, etc
- DBMS encompasses most of CS
 - OS, languages, theory, AI, pattern recognition, machine learning, knowledge discovery, data mining, multimedia, logic, etc.

Data Models

- A data model is a collection of concepts for describing data
 - Relational data model
- A schema is a description of a particular collection of data, using a given data model
 - Students (sid: string, name: string, major: string, age: integer)

DBMS types

- Hierarchical database
 - Tree-like model; inflexible as one parent/many children
- Network Database
 - Network like structure; nodes and edges
- Graph database
 - Improvement over network database
 - A type of NoSQL language
 - Explicit connection
 - Neo4J (Cypher)

DBMS types

- Relational database
 - Most popular; table-oriented
 - Entity as 2D table
 - Implicit relationship
 - Focus of this course
- Object-oriented database
 - Coupling between programming lang + database
 - Both use the same representation

DBMS types

- Document database
 - Main categories of NoSQL database
 - Becoming popular
 - key-value store
 - flexible and scalable on the fly
 - Compare against the relational database

Database vs Data warehouse

- Database provides transactional support
 - OLTP (online transaction processing)
 - Simple queries
- Datawarehouse provides analytical support
 - Builds upon one or more OLTP database
 - Provides a layer optimized for and dedicated to analytics
 - Complex queries

Relational Database

- The relational model of data is the most widely used model today
- Main concept: relation (table), basically a table with rows and columns
- Every relation has a schema (skeleton of a table)
 - describes the columns, or fields
 - E.g., name, data type of each column or field

Relational Database

SID	Name	Major	Age
000-321	John Smith	CS	20
000-890	Jim Beering	ECE	21
001-788	Seth Norton	CS	38
000-021	Mary Harper	MUII	42

Levels of Abstraction

- Many views, single conceptual (logical) schema and physical schema
 - Views describe how users see the data
 - Conceptual schema defines logical structure
 - Physical schema describes the files and indexes used
- Structured Query Language (SQL)

DDL vs DML

- Schemas are defined using DDL (Data Definition Language)
 - Create table …

- Data is modified/queried using DML (Data Manipulation Language)
 - select, update, delete

Example: University Database

Conceptual schema

- Students(sid:string, name: string, login: string, age: integer, gpa: real)
- Courses(cid: string, cname: string, credits: integer)
- Enrolled(sid:string, cid:string, grade:string)
- Physical schema
 - Relations stored as unordered files
 - A B+-tree index on first column of Students

Example: University Database

- External Schema (View)
 - Course_info(cid:string,enrollment:integer)

Cheat Sheet of a Table

Relational model is based upon set theory

Quiz

 Why a relational database is called a "relational model"?

Answer

Summary

- DBMS is used to maintain and query large datasets
- Benefits include recovery from system crashes, concurrent access, quick application development, data integrity and security
- Levels of abstraction give data independence

Summary

- A DBMS typically has a layered architecture
- DBAs hold responsible jobs and are wellpaid
- DBMS and Big Data Analytics is one of the broadest, most exciting areas in CS
- Data Science/Machine Learning is getting more and more attention