CS-E4895 Gaussian Processes Lecture 12: Sequential Decision Making

Aidan Scannell

Aalto University

Tuesday 4.4.2023

Agenda for today

Black-box optimisation

Motivation for Bayesian Optimization

Gaussian process surrogate

Decision making under uncertainty

Model-based reinforcement learning

Examples: Robotics and control

Examples: Neural network hyperparameter optimisation

Examples: Protein engineering

Black-box Optimisation

Goal We want to maximize (or minimize) a function $f(\cdot)$ over bounded set \mathcal{X} :

$$x^* = \arg\max_{x \in \mathcal{X} \subseteq \mathbb{R}^D} f(x) \tag{1}$$

- \bullet \mathcal{X} is a bounded domain
- \bullet $f(\cdot)$ is explicitly unknown
- Samples of $f(\cdot)$ may be noisy
- $f(\cdot)$ is expensive to evaluate

Random Search (No Exploitation)

Random search

$$f(x^+) \ge f(x^*) - \epsilon \tag{2}$$

- Lipschitz continuos: $||f(x_1) f(x_2)|| \le C||x_1 x_2||$
- \bullet Requires $(\frac{C}{2\epsilon})^d$ samples on d-dimensional unit hypercube

Gaussian Process Surrogate

- ullet Probability measure on f, e.g. place a GP prior over f
 - Principled prior to encode our belief
 - Update prior to posterior using available data

Acquisition function

Formulate a sequential decision-making problem:

$$x_{n+1} = \arg\max_{x \in \mathcal{X}} \alpha(x; \mathcal{D}), \qquad \mathcal{D} = \{x_i, y_i\}_{i=0}^n$$
(3)

- Acquisition function $\alpha: \mathcal{X} \to \mathbb{R}$ assigns score to each potential observation location
- We want to make sequence of N samples, x_1, \ldots, x_N , which minimises regret

$$r = Nf(x^*) - \sum_{n=1}^{N} f(x_n)$$
 (4)

- Replace hard optimisation (expensive+no gradients) with another:
 - ullet α should be cheap to evaluate
 - $oldsymbol{\circ}$ α needs to balance exploration/exploitation
 - Minimise number of objective function evaluations
 - Whilst maximising information gain about global optimum, i.e performs well when objective has multiple local maxima

Bayesian Optimisation

- Input: Initial dataset \mathcal{D}
- Repeat:
 - $\mathsf{GP} \leftarrow \mathsf{FIT}(\mathcal{D})$
 - $x \leftarrow \mathsf{POLICY}(GP)$
 - $y \leftarrow \mathsf{OBSERVE}(x)$
 - $\mathcal{D}' \leftarrow \mathcal{D} \cup (x,y)$
- Until Termination condition is met.
- What is our policy?
- ullet Predictive posterior at n^{th} sample

$$p(f(x) \mid x, \mathcal{D}) = \mathcal{N}(f(x) \mid \mu(x; \mathcal{D}), \sigma^2(x; \mathcal{D}))$$
(5)

with data $\mathcal{D} = \{x_i, y_i\}_{i=0}^n$

Acquisition Function: Posterior Mean (No Exploration)

Need to explore sometimes

• Consider the 6 Hump Camel function

Need to explore sometimes

• We cannot use a local optimizer!

Exploration vs Exploitation

- **Exploitation** use the knowledge we have
 - i.e. pick x where we expect the objective function to be high
- Exploration attempt to gain new knowledge
 - ullet i.e. pick x where the objective function is uncertain

Sources of Uncertainty

Thompson sampling

$$x_{n+1} = \arg \max_{x \in \mathcal{X}} \alpha_{\mathsf{TS}}(x; \mathcal{D}), \qquad \alpha_{\mathsf{TS}}(x; \mathcal{D}) \sim p(f(x) \mid x, \mathcal{D})$$
 (7)

- Sampling functions is not trivial
- Easy solution for 'small' domains
- Not so easy in multiple dimensional and bigger domains

Thompson sampling

$$x_{n+1} = \arg \max_{x \in \mathcal{X}} \alpha_{\mathsf{TS}}(x; \mathcal{D}), \qquad \alpha_{\mathsf{TS}}(x; \mathcal{D}) \sim p(f(x) \mid x, \mathcal{D})$$
 (7)

- Sampling functions is not trivial
- Easy solution for 'small' domains
- Not so easy in multiple dimensional and bigger domains

Upper Confidence Bound

$$x_{n+1} = \arg \max_{x \in \mathcal{X}} \alpha_{\mathsf{UCB}}(x; \mathcal{D}), \qquad \alpha_{\mathsf{UCB}}(x \mid \mathcal{D}) = \mu(x; \mathcal{D}) + \beta_n \sigma(x; \mathcal{D})$$
 (8)

Upper Confidence Bound

$$x_{n+1} = \arg \max_{x \in \mathcal{X}} \alpha_{\mathsf{UCB}}(x; \mathcal{D}), \qquad \alpha_{\mathsf{UCB}}(x \mid \mathcal{D}) = \mu(x; \mathcal{D}) + \beta_n \sigma(x; \mathcal{D})$$
 (8)

Utility

- Lots of heuristics for defining acquisition functions
- ullet Specify utility function $u(x,f(x^+))$ that defines utility of observing each location
- Data at n^{th} iteration $\mathcal{D} = \{x_i, y_i\}_{i=0}^n$
- ullet Define **acquisition function** as expected marginal utility after observing new x

$$\alpha(x; \mathcal{D}) = \mathbb{E}_{p(f(x)|x,\mathcal{D})}[u(x)] \tag{9}$$

under GP posterior

$$p(f(x) \mid x, \mathcal{D}) = \mathcal{N}(f(x) \mid \mu(x; \mathcal{D}), \sigma^2(x; \mathcal{D}))$$
(10)

Different utility functions leads to different acquisition functions

$$u(x) = \begin{cases} 0 & f(x) \le f(x^+) \\ 1 & f(x) > f(x^+) \end{cases} \quad \text{where } f(x^+) = \max_{x_i \in x_{0:n}} f(x_i)$$
 (11)

$$\alpha_{\mathsf{PI}}(x \mid \mathcal{D}) = \mathbb{E}[u(x)] = \Pr\left(f(x) \ge f(x^+)\right) = \Phi\left(\frac{\mu(x; \mathcal{D}) - f(x^+)}{\sigma(x; \mathcal{D})}\right)$$

$$\alpha_{\mathsf{Pl}}(x \mid \mathcal{D}) = \mathbb{E}[u(x)] = \Pr\left(f(x) \ge f(x^+)\right) = \Phi\left(\frac{\mu(x; \mathcal{D}) - f(x^+)}{\sigma(x; \mathcal{D})}\right)$$

$$\alpha_{\mathsf{Pl}}(x \mid \mathcal{D}) = \mathbb{E}[u(x)] = \Pr\left(f(x) \ge f(x^+)\right) = \Phi\left(\frac{\mu(x; \mathcal{D}) - f(x^+)}{\sigma(x; \mathcal{D})}\right)$$

$$\alpha_{\mathsf{Pl}}(x \mid \mathcal{D}) = \mathbb{E}[u(x)] = \Pr\left(f(x) \ge f(x^+)\right) = \Phi\left(\frac{\mu(x; \mathcal{D}) - f(x^+)}{\sigma(x; \mathcal{D})}\right)$$

• Define the utility function as: $u(\mathcal{D}) = \max(0, f(x) - f(x^+))$

$$\alpha_{EI}(x; \mathcal{D}) = \mathbb{E}[u(x)] = \int \max(0, f(x) - f(x^{+})) p(f(x) \mid x, \mathcal{D}) df(x)$$

$$= \int \max(0, f(x) - f(x^{+})) \mathcal{N}(f(x); \mu(x; \mathcal{D}), \sigma^{2}(x; \mathcal{D})) df(x)$$

$$= \int_{f(x^{+})}^{\infty} f(x) \mathcal{N}(f(x); \mu(x; \mathcal{D}), \sigma^{2}(x; \mathcal{D})) df(x)$$

$$- f(x^{+}) \int_{f(x^{+})}^{\infty} \mathcal{N}(f(x); \mu(x; \mathcal{D}), \sigma^{2}(x; \mathcal{D})) df(x)$$

• First term is truncated expected value and second term compliment of CDF multiplied by a constant.

Left with something closed form and easy to compute.

$$\alpha_{EI}(x; \mathcal{D}) = (\mu(x; \mathcal{D}) - f(x^+))\Phi(\frac{\mu(x; \mathcal{D}) - f(x^+)}{\sigma(x; \mathcal{D})}) + \sigma(x; \mathcal{D})\phi(\frac{\mu(x; \mathcal{D}) - f(x^+)}{\sigma(x; \mathcal{D})})$$

- ullet Φ and ϕ are CDF and PDF of a standard normal distribution.
- How does Expected Improvement change with μ and σ ?

$$\alpha_{EI}(x; \mathcal{D}) = (\mu(x; \mathcal{D}) - f(x^+))\Phi(\frac{\mu(x; \mathcal{D}) - f(x^+)}{\sigma(x; \mathcal{D})}) + \sigma(x; \mathcal{D})\phi(\frac{\mu(x; \mathcal{D}) - f(x^+)}{\sigma(x; \mathcal{D})})$$

$$\alpha_{EI}(x;\mathcal{D}) = (\mu(x;\mathcal{D}) - f(x^+))\Phi(\frac{\mu(x;\mathcal{D}) - f(x^+)}{\sigma(x;\mathcal{D})}) + \sigma(x;\mathcal{D})\phi(\frac{\mu(x;\mathcal{D}) - f(x^+)}{\sigma(x;\mathcal{D})})$$

$$\alpha_{EI}(x;\mathcal{D}) = (\mu(x;\mathcal{D}) - f(x^+))\Phi(\frac{\mu(x;\mathcal{D}) - f(x^+)}{\sigma(x;\mathcal{D})}) + \sigma(x;\mathcal{D})\phi(\frac{\mu(x;\mathcal{D}) - f(x^+)}{\sigma(x;\mathcal{D})})$$

Bayesian Optimisation Summary

- El and Pl have simple closed form expressions
- Thompson sampling is more complicated to evaluate
- We covered basic set up but there are many extensions (loop remains the same)
 - e.g. Entropy search, knowledge gradient

Model-based Reinforcement Learning

Dynamics

$$s_{t+1} = f_{\text{env}}(s_t, a_t) + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \sigma^2 \mathbf{I})$$
(12)

with states $s \in \mathcal{S}$, actions $a \in \mathcal{A}$ and transition noise ϵ

• **Goal**: find policy $\pi \in \Pi$ that maximises expected sum of discounted rewards:

$$\arg\max_{\pi \in \Pi} \mathbb{E}_{\substack{a_t \sim \pi(\cdot | s_t) \\ s_{t+1} \sim p(\cdot | s_t, a_t)}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$
(13)

with reward function $r: \mathcal{S} \times \mathcal{A} \to \mathbb{R}$, discount factor $\gamma \in [0, 1]$

- Expectation is over transition noise $\epsilon_{0:\infty}$
- We considered myopic Bayesian optimisation, but RL considers:
 - infinite horizon
 - dynamics constraints

Why Model-based Reinforcement Learning

- Model-based RL is more sample efficient
- Used to lack asymptomatic performance but not anymore

Issues in Model-based Reinforcement Learning

- Model bias
 - Overfitting in supervised learning
 - Model performs well on training data but poorly on test data
 - i.e. model overfits to training data
 - Overfitting in model-based RL known as "model bias"
 - Policy learning exploits model inaccuracies due to lack of training data
 - i.e. policy overfits to inaccurate dynamics model
- Compound error
 - Errors compound when making multi-step predictions
- Objective mismatch
 - Model training is a simple optimization problem disconnected from reward

Gaussian Process Dynamic Model

$$p(s_{t+1} \mid s_t, a_t) = \int \underbrace{p(s_{t+1} \mid f(s_t, a_t), \sigma)}_{\text{Gaussian likelihood}} \underbrace{p(f(s_t, a_t) \mid s_t, a_t)}_{\text{GP prior}} df(s_t, a_t) \tag{14}$$

- Learn a single-step dynamic model, using GP regression
- How to use epistemic uncertainty?

$$p(f(s_t, a_t) \mid s_t, a_t) = \mathcal{N}\left(f(s_t, a_t) \mid \mu_f(s_t, a_t), \Sigma_f^2(s_t, a_t)\right)$$
(15)

Greedy Exploitation

$$\pi_{\mathsf{greedy}} = \arg \max_{\pi \in \Pi} \mathbb{E}_{f \sim p(f|\mathcal{D})} \left[J(f, \pi) \right] \qquad J(f, \pi) = \mathbb{E}_{\epsilon_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$
 (16)

- Expectation over posterior combats model bias
- No exploration guarantees

Posterior (Thompson) Sampling

$$\pi_{\mathsf{PS}} = \arg\max_{\pi \in \Pi} \left[J(\hat{f}, \pi) \right] \quad \hat{f} \sim p(f \mid \mathcal{D}) \qquad J(f, \pi) = \mathbb{E}_{\epsilon_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$
 (17)

Posterior (Thompson) Sampling

$$\pi_{\mathsf{PS}} = \arg\max_{\pi \in \Pi} \left[J(\hat{f}, \pi) \right] \quad \hat{f} \sim p(f \mid \mathcal{D}) \qquad J(f, \pi) = \mathbb{E}_{\epsilon_{0:\infty}} \left[\sum_{t=0}^{\infty} \gamma^t r(s_t, a_t) \right]$$
 (17)

Upper Confidence Bound

$$\pi_{\mathsf{UCB}} = \arg\max_{\pi \in \Pi} \max_{\hat{f} \in \mathcal{M}} \left[J(\hat{f}, \pi) \right] \quad \mathcal{M} = \{ f | |f(s, a) - \mu_f(s, a)| \le \beta \Sigma_f(s, a) \}$$
 (18)

- Optimism in the face of uncertainty
- Inner maximisation hard to compute
- Recent practical implementation for deep model-based RL

Main Takeaways

- Uncertainty quantification is useful for sequential decision making
- There are lots of ways to use uncertainty

Things to check out

- Check out Trieste's Bayesian optimisation notebooks
- PILCO: Probabilistic Inference for Learning cOntrol www.youtube.com/watch?v=XiigTGKZfkst=1sab_channel = PilcoLearner
- Efficient Model-Based Reinforcement Learning through Optimistic Policy Search and Planning, Curi, Sebastian and Berkenkamp, Felix and Krause, Andreas, Advances in Neural Information Processing Systems 33 (NeurIPS 2020)

What next?

This was the last lecture

• Last sef of exercises to be published this week

 Course feedback (Webropol) opening soon (you should receive a personal link via email)