

Lesson 00 - Introduction to Convolution

Do Now

For each list below calculate the average between adjacent numbers and create a new list with the average calculated. Round the average to the nearest whole number. For example:

$$[11, 66, 43, 15] \rightarrow [(11 + 66) / 2, (66 + 43) / 2, (43 + 15) / 2] \rightarrow [39, 55, 29]$$

- 1. $[78, 15, 50, 16, 72] \rightarrow ??$
- 2. $[33, 52, 22, 80, 71] \rightarrow ??$

Mathematical Operations

- Addition and subtraction
 - two numbers \rightarrow 2+3, 17-4
 - one step
- Multiplication, division, exponentiation, and modulus:
 - two numbers \rightarrow 7*3, 7/3, 7^3, 7%3
 - multiple, repetitive steps -> add 7, three times
- Convolution: a * b
 - two **lists** of numbers \rightarrow [1, 2, 3] * [4, 5, 6]
 - multiple, different steps

- First operand: a list of numbers
 - Input data that will be modified
- Second operand: a list of numbers
 - Modifier applied to the data
 - Dimensions are determined by how many or which elements we want to look at
 - Each element determines an input value's weight toward the final sum
 - Flipped then applied
 - Sometimes called a kernel or filter
- NOTES: for now, only compute for values that fit within the second operand

Why is **convolution** useful?

With convolution, we can:

- extract data (rolling average)
- derive information about an image (feature/object identification)
- modify images (apply filters)

Roll for confidence!

Think of convolution as a sliding window over a list.

- A wise man

[78, 15, 50, 16, 72]
$$x + x$$
 $[\frac{1}{2}, \frac{1}{2}]$ = [47, 33, ?, ?]

Do Now Walkthrough - Question 1

[78, 15, 50, 16, 72]

(convolved with)

$$[\frac{1}{2}, \frac{1}{2}]$$

_

[47, 50, 33, 44]

Do Now: Convolution Operands

- Question 1
 - Input: [78, 15, 50, 16, 72]
 - Kernel: [½, ½]
 - Convolution result: [47, 33, 33, 44]
- Question 2
 - o Input: [33, 52, 22, 80, 71]
 - Kernel: [½, ½]
 - Convolution result: [43, 37, 51, 76]

Roll for confidence!

Convolution Practice

Questions

Work with a partner to solve the following convolutions. Pay special attention to the weights and size of the lists. For now, **only** calculate convolutions where all elements are covered (i.e. *don't* compute partial convolutions). Round to nearest integer.

- 1. $[22, 91, 4, 5, 50] * [\frac{1}{2}, \frac{1}{2}] \rightarrow ??$
- 2. [43, 30, 21, 34, 18] * [$\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$] \rightarrow ??
- 3. $[37, 50, 34, 49, 6] * [1/10, 4/10, 4/10, 1/10] \rightarrow ??$
- 4. $[28, 8, 48, 1, 24] * [7/10, 3/10] \rightarrow ??$

Convolution Practice - Answers

Don't forget to **flip** the second operand!!

1.
$$[22, 91, 4, 5, 50] * [\frac{1}{2}, \frac{1}{2}] \rightarrow [57, 48, 5, 28]$$

2.
$$[43, 30, 21, 34, 18] * [\frac{1}{3}, \frac{1}{3}, \frac{1}{3}] \rightarrow [31, 28, 24]$$

3.
$$[37, 50, 34, 49, 6] * [1/10, 4/10, 4/10, 1/10] \rightarrow [42, 39]$$

4.
$$[28, 8, 48, 1, 24] * [7/10, 3/10] \rightarrow [14, 36, 15, 17]$$

Homework

00_homework on Google Classroom

Solve two 1D convolution problems similar to the ones we did in class. Don't forget to flip the kernel.

Due tomorrow