進捗報告

水野泰旭

F1 スコア

前回の問題点 検証データ 20%の混同行列 Macro-F1 スコアの 再計算

データ数を指えて学習

ソースコード 訓練データ数の推科

進捗報告

水野泰旭

弘前大学理工学部電子情報工学科 4 年

December 19, 2022

目次

進捗報告

水野泰旭

F1 スコア 前回の問題点 検証データ 20%の混 同行列 Macro-F1 スコアの 再計算

データ数を揃 えて学習 ソースコード 訓練データ数の推邦 学習結果の比較

- f1 スコア
 - 前回の問題点
 - 検証データ 20%の混同行列
 - Macro-F1 スコアの再計算
- ② データ数を揃えて学習
 - ソースコード
 - 訓練データ数の推移
 - 学習結果の比較

前回の問題点

准捗報告

前回の問題点

クラス D の TP と FP が共に ゼロとなり、

$$Precision = \frac{TP}{TP + FP}$$

の値を取る適合率がゼロ除算 となってしまう。現在は訓練 データと検証データは9:1な ので、8:2として学習して みる。

検証データ 20%の混同行列

進捗報告

水野泰旭

前回の問題点 検証データ 20%の混 同行列 Macro-F1 スコアの 再計算 データ数を揃 えて学習 ソースコード 訓練データ数の推移

Macro-F1 スコアの再計算

進捗報告

F1 スコア 前回の問題点 検証データ 20%の混 同行列 Macro-F1 スコアの

再計算データ数を揃えて学習
ソースコード 訓練データ数の推移 学習結果の比較 Table: クラスごとの Macro-F1 の計算

Class	Accuracy	Precision	Recall	Macro-F1
Α	0.97038	0.98195	0.97363	0.97777
В	0.98487	0.88118	0.88118	0.88118
C	0.97038	0.93208	0.95673	0.94424
D	0.99810	1.00000	0.25000	0.40000
Е	1.00000	1.00000	1.00000	1.00000
Average	0.98475	0.95904	0.81231	0.84064

sklearn.f1_score で macro-F1 スコアの計算をすると、0.82730 が出力され、手計算と異なる値となった。

ソースコード

進捗報告

水野泰旭

I **人コア** i回の問題点 i証データ 20%の混 i行列 dacro-F1 スコアの i計算

ノースコード 川緑データ数の推 P習結果の比較 画像の枚数が少ないクラスに対して、画像を適当な回数コピーしてだいたい同じ枚数にする。

Listing 1: augmentation.py

```
#ラベルごとに抽出
 2
     index = list()
     for i in range(5): index.append(train_labels == i)
     each train images = dict()
     each train labels = dict()
 6
     for i in range(5):
 7
         each_train_images[i] = train_img[index[i]]
 8
         each_train_labels[i] = train_labels[index[i]]
 9
10
     max_1 = 0
11
     for (key, val) in each train_labels.items(): max_1 = max(max_1, len(val))
12
     augmentation_train_images = np.empty((0, 150, 150, 1))
13
     augmentation_train_labels = np.empty(0)
14
     for (key, val) in each_train_images.items():
15
         for i in range(max_1 // len(val)):
16
             aug_train_images = np.append(aug_train_images, val, axis=0)
17
             aug_train_labels = np.append(aug_train_labels, each_train_labels[key])
```

訓練データ数の推移

進捗報告

水野泰旭

F1 スコア 前回の問題点 検証データ 20%の混 同行列 Macro-F1 スコアの 再計算

データ数を揃 えて学習

訓練データ数の推移 学習結果の比較 Table: もとの訓練データ

クラス	データ数
A	4824
В	411
C	1844
D	11
Е	16
SUM	7106

Table: 増やした訓練データ

クラス	データ数
Α	4824
В	4521
C	3688
D	4818
Е	4816
SUM	22667

学習結果

進捗報告

水野泰旭

F1 スコア 前回の問題点 検証データ 20%の混 同行列 Macro-F1 スコアの 再計算

データ数を揃 えて学習 ソースコード

リースコート 訓練データ数の推移 学習結果の比較 Table: もとのデータと増やしたデータの学習結果

	Accuracy	Macro-F1
もとのデータによる学習結果	0.9699	0.7598^{1}
水増しデータによる学習結果	0.9519	0.7656

¹クラス D の TP と FP が共にゼロとなりあまり正確ではない

混同行列の比較

准捗報告

学習結果の比較

Figure: もとのデータ

Figure: 水増しデータ