Question Number	Scheme	Marks
1.	(a) \rightarrow $F = T \sin 60^{\circ}$ \uparrow $T \cos 60^{\circ} = 0.8g$ both [or $Z + F \cos 60^{\circ} = 0.8g \cos 30^{\circ}$] $F = 0.8g \tan 60^{\circ} \approx 14 \text{ (N)}$ accept 13.6	(M2) M1 A1
	(b) $T = \frac{0.8g}{\sin 30^{\circ}} (=15.68)$ allow in (a)	
	HL $15.68 = \frac{24 \times x}{1.2} \implies x \approx 0.78$ (cm) accept 0.784	
	(c) $E = \frac{24 \times x^2}{2 \times 1.2} \approx 6.1 \text{ (J)}$ accept 6.15	
		(2) Total 8 marks
2.	(a) $\frac{\mathrm{d}v}{\mathrm{d}t} = 2\sin\frac{1}{2}t \Rightarrow v = A - 4\cos\frac{1}{2}t$	M1 A1
	$v = 4, t = 0 \implies 4 = A - 4 \implies A = 8$	M1
	$v = 8 - 4\cos\frac{1}{2}t$	A1
	(b) $\int_{-\infty}^{\infty} \left(8 - 4\cos\frac{1}{2}t\right) dt = 8t - 8\sin\frac{1}{2}t \qquad \text{ft constants}$	(4) M1 A1ft
	$[]_0^{\pi/2} = 4(\pi - \sqrt{2})$ awrt 6.9	M1 A1
		(4)
		Total 8 marks

Question Number	Scheme	Marks
3.	(a) $N2L ma = -\frac{cm}{x^2}$	B1
	$\frac{\mathrm{d}}{\mathrm{d}x} \left(\frac{1}{2} v^2 \right) = -\frac{c}{x^2} \Rightarrow \frac{1}{2} v^2 = A + \frac{c}{m} $ ignore A	M1 A1
	$v^2 = B + \frac{2c}{m}$	
	$x = R, v = U \implies B = U^2 - \frac{2c}{R}$	M1
	Leading to $v^2 = U^2 + 2c\left(\frac{1}{x} - \frac{1}{R}\right) $ \$\displain \text{cso}	A1
	$1\begin{bmatrix} 1 & u^2 \end{bmatrix} 1 \begin{bmatrix} u^2 & 2 & (1 & 1) \end{bmatrix}$	(5)
	(b) $\frac{1}{2} \left[\frac{1}{2} m U^2 \right] = \frac{1}{2} m \left[U^2 + 2c \left(\frac{1}{2R} - \frac{1}{R} \right) \right]$	M1 A1
	Leading to $c = \frac{1}{2}RU^2$	A1 (3)
		Total 8 marks
4.	(a) $5M\overline{x} = 3M \times \frac{h}{2} + 2M\left(h + \frac{3}{8}r\right)$	M1 A2(1,0)
	$5\overline{x} = \frac{3h}{2} + 2h + \frac{3}{4}r = \frac{7h}{2} + \frac{3}{4}r$	
	$\overline{x} = \frac{14h + 3r}{20} $	M1 A1
	(b) N	(5)
	$\alpha \overline{x}$	
	$\tan \alpha = \frac{20r}{14h + 3r} = \frac{4}{3}$	M1 A1
	Leading to $h = \frac{6}{7}r$	M1 A1
		(4)
		Total 9 marks

Question Number	Scheme	Marks
5.	$ \begin{array}{c} A \\ l \\ B \\ \hline O \\ x \\ P \end{array} $	
	(a) HL $T = mg = \frac{\lambda \times \frac{1}{4}l}{l} \Rightarrow \lambda = 4mg$ (b) N2L $mg - T = m\ddot{x}$ $mg - \frac{4mg(\frac{1}{4}l + x)}{l} = m\ddot{x}$ $\frac{d^2x}{dt^2} = -\frac{4g}{l}x *$ cso	M1 A1 (2) M1 M1 A1 M1 A1
	(c) $v^{2} = \omega^{2} \left(a^{2} - x^{2}\right) = \frac{4g}{l} \left(\frac{l^{2}}{4} - \frac{l^{2}}{16}\right)$ Leading to $v = \frac{1}{2} \sqrt{3gl}$	(5) M1 A1 M1 A1 (4)
	or energy, $\frac{1}{2} \frac{4mg \cdot \frac{gl^2}{16}}{l} = \frac{1}{2} mv^2 + mg \cdot \frac{3l}{4}$ for the first M1 A1 in (c) (d) <i>P</i> first moves freely under gravity, then (part) SHM.	B1 B1 (2) Total 13 marks

Question Number	Scheme	Marks
6.	(a) $A \downarrow v \\ C \\ B \qquad u = \sqrt{(3gl)}$	
	Energy $\frac{1}{2}m(u^2 - v^2) = mgl(1 - \cos\theta)$ $\left[v^2 = gl + 2gl\cos\theta\right]$	M1 A1
	N2L $T - mg \cos \theta = \frac{mv^2}{l}$ $= \frac{mg \chi (1 + 2\cos \theta)}{\chi}$	M1 A1
	$T = mg(1+3\cos\theta) *$	M1 A1 (6)
	(b) $T = 0 \implies \cos \theta = -\frac{1}{3}$	B1
	$v^2 = gl - \frac{2}{3}gl \Rightarrow v = \left(\frac{gl}{3}\right)^{1/2}$	M1 A1 (3)
	(c) $\uparrow v_y = \left(\frac{gl}{3}\right)^{1/2} \sin\theta \left[= \left(\frac{gl}{3}\right)^{1/2} \cdot \frac{2\sqrt{2}}{3} \right]$	M1
	v_y $v^2 = u^2 - 2gh \implies 2gh = \frac{gl}{3} \cdot \frac{8}{9} \implies h = \frac{4l}{27}$	M1 A1
	$H = l\left(1 - \cos\theta\right) + \frac{4l}{27} = \frac{40l}{27}$	M1 A1
		Total 14 marks

Question Number	Scheme	Marks	
7.	(a) N2L $\leftarrow T \cos 30^\circ = m \left(2a \cos 30^\circ\right) \left(\frac{kg}{3a}\right)$	M1 A1	
	$T = \frac{2kmg}{3} *$ cso	A1	
	$\uparrow \qquad R = mg - T \sin 30^{\circ}$	M1 A1	(3)
	$=mg\left(1-\frac{k}{3}\right)$	A1	
	(c) $(R \square 0) \Rightarrow k \square 3$ ignore $k > 0$, accept $k < 3$	M1 A1	(3)
	(d) A	((2)
	X T mg		
	$N2L \leftarrow T\cos\theta = m\left(2a\cos\theta\right)\left(\frac{2g}{a}\right)$	M1 A1	
	$(T = 4mg)$ $\uparrow T\sin\theta = mg$	M1	
	Eliminating T	M1	
	$AX = 2a\sin\theta = \frac{1}{2}a$	A1	
	$AO = 2a \sin 30^{\circ} = a \implies AX = \frac{1}{2}AO$, as required * cso	B1, A1	
		(Total 15 marl	(7) ks