Some Basic Operations on Languages

- (1) Union : $L = L_1 \cup L_2$
- (2) Concatenation: $L = L_1 \cdot L_2$
- (3) Closure (star or Kleene closure) $L^* = \bigcup_{k=0,\infty} L^k$

Definition of a set RE of regular expressions

(over a finite set $\Sigma := \{\sigma_1, \sigma_2, \dots, \sigma_K\}$)

Recursive Formal Definition

- (A) (Basis) e, \emptyset and σ_1 , σ_2 ,..., σ_K are all elements of RE
- (B) (Recursion)
 - (1) If E and F are in RE then so is E+F
 - (2) If **E** and **F** are in **RE** then so is **E.F**
 - (3) If E is in RE then so is E^*
 - (4) If E is in RE then so is (E)

We call each element of the set **RE** a **regular expression**!

Language interpretation is a mapping $L: RE \rightarrow 2^{\Sigma^*}$ given by :

$$L(e) := \{e\}$$
 where $e := empty string$

$$L(\emptyset) := \emptyset$$
 where $\emptyset := null\ language\ (with\ no\ strings)$

$$L(\alpha) := {\alpha}, L(\beta) := {\beta}, \dots etc.$$

$$L(E+F) := L(E) \cup L(F)$$

$$L(E.F) := L(E). L(F)$$

$$L(E^*) := L(E)^*$$

$$L((E)) := (L(E))$$

Definition: A language L is called a **regular language** if it is the language interpretation of a **regular expression**

Main Theorem

A language is regular if and and only if it is accepted

by some finite state automaton

Proof of the Main Theorem

- (1) Given a DFA $D = (Q, \Sigma, \delta, 1, F)$ with $Q = \{1, 2, ..., n\}$
- (2) Let R_{ij}^{k} denote the language corresponding to all paths of \mathbf{D} that start at state \mathbf{i} ; end at state \mathbf{j} ; and visit intermediate states with numbers $\mathbf{p} \leq \mathbf{k}$
- (3) Note that $L(D) = \bigcup_{(m \in F)} R_{1m}^n$ where 1 is the initial state
- (4) Prove by induction on k that R_{ij}^{k} is a RE for all i,j = 1,...,n and k = 0,...,n. (see the next slide first formula)
- (5) Conclude that **L(D)** is a **RE**

The Inductive Formula for DFA \(\rightarrow\) RE

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1}$$
. $(R_{kk}^{k-1})^{*}$. R_{kj}^{k-1} ; $i,j=1,...,n$; $k=0,...,n$

Example

$$R_{11}^{0} = 0 + e$$
; $R_{22}^{0} = 1 + e$; $R_{21}^{0} = 0$; $R_{12}^{0} = 1$

$$R_{11}^{1} = 0*; R_{22}^{1} = 1+0.0*.1+e; R_{21}^{1} = 0.0*; R_{12}^{1} = 0*.1$$

$$R_{11}^2 = \dots; R_{22}^2 = \dots; R_{21}^2 = \dots; R_{12}^2 = \dots$$

After Simplification: $L=R_{12}^2=(0*.1.1*.0)*.0*.1.1*$

Alternative Proof of the Main Theorem (State Elimination)

After eliminating all non-initial and non-final states; start eliminating all final states except one \mathbf{f} in \mathbf{F} and repeat this for each distinct \mathbf{f} in \mathbf{F} . Then the following picture(s) prevail

$$L_f = (P_f^* \cdot Q_f \cdot R_f^* \cdot S_f)^* \cdot P_f^* \cdot Q_f \cdot R_f^*$$

$$L = \sum_{(f \in F)} L_f$$

Proof of the Main Theorem

given REs over the set $\Sigma = (\alpha, \beta, \gamma, ...,)$

Basis

Some short cuts!

$$(a+b+c)*.d$$

But!

$$(a*+b+c).d$$

Algebraic Laws For REs

Trivial Laws

$$(1)L+M=M+L$$
; $(L+M)+N=L+(M+N)$; $(L.M).N=L.(M.N)$

(2)
$$\phi + L = L$$
; $e.L = L.e = L$; $\phi . L = \phi$

(3)
$$L.(M+N) = L.M + L.N$$
; $(L+M).N = L.N + M.N$; $L+L = L$

Non-trivial Laws

(4)
$$(L+M) * = (L*+M*) * = (L*.M*)*$$

(5)
$$(L.M)^* \subseteq (L^*.M^*)^*$$
 and $(L.M)^* = (L^*.M^*)^*$ iff $e \in L$ and $e \in M$

Proof of (L+M)* = (L*.M*)*

Two steps: (1) $(L+M)^* \subseteq (L^*M^*)^*$; (2) $(L^*M^*)^* \subseteq (L+M)^*$

(1) Let $u \in (L+M)^*$ then $u = u_1.u_2....u_k$ for some integer $k \ge 0$ where for each j, $u_j \in L+M$;

but $L \subseteq L^* \subseteq L^*$. $e \subseteq L^*$. M^* and $M \subseteq M^* \subseteq e$. $M^* \subseteq L^*$. M^* ;

hence $u_i \in L^*$. $M^* + L^*$. $M^* = L^*$. M^* and therefore $(L+M)^* \subseteq (L^*.M^*)^*$

(2) Conversely let $u \in (L^*.M^*)^*$ then by definition $u = u_1.u_2....u_k$ where $u_j \in L^*.M^*$;

hence $u_j = v_j^1 \cdot v_j^2 \cdot ... \cdot v_j^{l(j)} \cdot w_j^1 \cdot w_j^2 \cdot ... \cdot w_j^{p(j)}$ where $v_j^m \in L$ and $w_j^m \in M$;

thus $u = z_1 \cdot z_2 \cdot \ldots \cdot z_q$ where $q = \sum_{j=1,k} l(j) + p(j)$ and each $z_i \in L + M$.

this proves that $(L^*.M^*)^* \subseteq (L+M)^*$

Proof of $(L+M)^* = (L^*+M^*)^*$ given $(2) \rightarrow (L+M)^* = (L^*, M^*)^*$

Since $L \subseteq L^*$ and $M \subseteq M^*$ it follows that $(L+M)^* \subseteq (L^*+M^*)^*$

Conversely let $u \in (L^*+M^*)^*$ then $u = (v_1+w_1)$ (v_k+w_k) where for each j $v_j \in L^*$ and $w_j \in M^*$.

We show that $u \in (L^*, M^*)^*$ by using induction on k.

For k=1 $v_1 \in L^* \subseteq L^*$. $e \subseteq L^*.M^* \subseteq (L^*.M^*)^*$

similarly $w_1 \in M^* \subseteq e$. $M^* \subseteq L^*.M^* \subseteq (L^*.M^*)^*$ hence $v_1 + w_1 \subseteq (L^*.M^*)^*$.

Now assume statement holds for k-1, hence $z := (v_1 + w_1)$ $(v_{k-1} + w_{k-1}) \in (L^*, M^*)^*$

But using the above reasoning for v_1+w_1 it follows that $v_k+w_k \in (L^*, M^*)^*$

and therefore u = z. $(v_k + w_k) \in (L^*, M^*)^*$. $(L^*, M^*)^* = (L^*, M^*)^*$ using the obvious

identity K^* . $K^* = K^*$ for any language K. This proves that $(L^* + M^*)^* \subseteq (L^*, M^*)^*$

but by (2) $(L+M)^* = (L^*. M^*)^*$ hence $(L^*+M^*)^* \subseteq (L+M)^*$ and result follows

CS 302 Fall 2017