Regular functions and regular maps.
R = Alg closed field.
Recall from last time:
X cxx affine algebraic set.
f: X -> k regular if it is the restriction
of a polynomial function.
$k[X] = k$ -algebra of regular functions on X $\stackrel{\sim}{=} k[X_1, \dots, X_n]/I(X).$
= Finitely generated nilpotent free K-algebra.
Observe - Any finitely generalted nilpotent free k-algebra is g the form K[X] for some X.
Why? Let A be such an algebra. Let a,,, an EA be a set of generators.
Then we have a map

Let a,,, an EA be a set of generators

Then we have a map $q: k[x_1,...,x_n] \rightarrow A$ $\alpha: \mapsto \alpha:$

This map is subjective because 29i3 generals

A. By the first iso thm $A \cong k[x_1, ..., x_n] (I$

where $I = \text{Ker } \varphi$. Since A is nilpotent free, I is radical. Then take X = V(I). By the Null stellen sutz,

the Null Stellen sutz,

$$k[X] = k[X,-,X_n] / T(X)$$

$$= k[X,-,Y_n] / T$$

$$\stackrel{\sim}{=} A$$

As a result we have the dictionary.

Algebra

- · Finitely generated reduced k-alg. A
- · max ideal of A
- · Given J C A V(J) = § m | m > J }

In partialer

Geometry

- · Alg of regular functions on affine alg set X.
- . Point of X
- · Given T ck[x] V(J) = { x | h(x) = 0 +feJ}

V(J) = \beta if J= (i).

Regular Maps
XCA, YCA offine alg sets. f: X-14 is a regular function if
I firm E K[X] such that
$f(x) = (f_1(x), \dots, f_m(x)) \forall x \in X.$
Equivalently, if there exist $F_{1,-1}, F_{m}$ in $k(x_{1},-1,x_{n})$ such that $f(x) = (F_{1}(x_{1}),-1,F_{m}(x_{1})) \forall x \in X$.
Ex 1: f: X-12 regular map f is a regular function.
Ex2: L: A-1/A" linear transf" is regular.
Ex3: Projections A-A
Ex4: Compositions of regular maps are regular

Ex5: XCA Zaniski closed. The inclusion X-1/A is regular.

Def: A regular f: X->Y is an isomorphism if there exists a regular inverse map J: Y->X.

 $\frac{E \times 6}{Y} = \frac{1}{2} y^{2} - x^{3} = 0$ $C \propto 2$

t: X->Y

the (t,t) is a regular

bijection but not an isomorphism!

fluw dues one see that it's not an

iso? Wait and see...

Let $\varphi: X \to Y$ be any map. Then we get an induced map

φ*: Functions on Y -> Functions on X

f +> fo φ.

Proposition: Q is regular if and only if cp^* sends regular functions on Y he regular functions on X.

Pt: Suppose of is regular

If $f: Y \rightarrow A'$ is a regular function then

of of is regular because composition of regular

maps is regular.

Convenely, suppose $f^*(f)$ is regular for every regular f. Let $f(x) = (f_1(x), \dots, f_m(x))$. We want to show each $f_i(x)$ is regular. But $f_i = f^*(x_i)$ and $f_i \in f_i(x_i)$ is regular.

Thus a regular map $\varphi: Y \to X$ induces a k-alg. hom $\varphi^*: k[Y] \to k[X]$.

Prop: Let $\alpha: K[Y] \rightarrow K[X]$ be a k-alg hom. Then there is a unique regular $\varphi: X\rightarrow Y$ such that $\alpha = \varphi^*$.

H: suppose $Y = V(J) \subset A^m$ and $X = V(I) \subset A^m$ Then k[Y] = k[Y,-y,Y,m]/J k[X] = K[X,y,-y,X,m]/J.

Let $Q_i = \alpha(y_i) \in k[X]$ Consider $Q := (Q_1,-y,Q_m) : X \rightarrow A^m$.

Let us check that Q maps X to Y.

To see this, we must show that $f(Q_i(x),-y,Q_m(x)) = 0 + 2 \in X$ $f \in J$.

But $f(Q_i(x),-y,Q_m(x))$ $= f(\alpha(y_i),-y,\alpha(y_m))$ $= \alpha(y_i,-y,y_m)$ $= \alpha(y_i,-y,y_m)$

So $f: X \rightarrow Y$. Note $\varphi^*(yi) = \chi(yi)$ so $\varphi^* = \chi$ because Yi? generate $\chi[Y]$. Finally, it $\varphi: X \rightarrow Y$ is such that $\varphi^* = \chi$, and $\varphi = (P_1, \dots, \varphi_m)$, then $\varphi^*(yi) = \varphi_i = \chi(Y_i)$, so there is only one possible φ . Conseg: X ---> 1/2 défines an equivalence of catégories Sets with

regular maps

Fin gen reduced

k-eyebrus

with k-elg.

homs Ex: X = A $Y = V(y^2 - x^3) \subset A^2$ $k[X] = k[t] \qquad k[Y] = k[Xri]/23$ $\varphi(t) = (t,t^3)$ 9 : K[Y] -> k[X] $x \mapsto t^2$ $y \mapsto t^3$ It is not an isomorphism? Any element in the image of of has vanishing linear term.

Def :	Affine algebraic variety
	Affine algebraic variety = Affine algebraic set.

We eventually want to define more general algebraic varieties. The first step is

Def: Ouesi-affine vanieties = Zanski open subsets à affine alg. var.

We now define regular functions and regular maps for quasi-affines.

Def: $U \subset X$ open. $f: U \to k$ regular if the following holds — $\forall x \in U$ there exists an open U_x containing $x \in X$. $f_x, G_x \in k[x]$ such that G_x is nowhere U on U_x and U_x .

Example (1): U = 1/2 - 803 C/2.

Then I is regular on U.

(a)
$$X = \{n^2 + y^2 = 1\}$$
 (n^2) $Y = \{(0,1)\}$.

 $f = \frac{1-y}{x}$ or $\frac{x}{1+y}$ is a regular function on U.

Before we proceed, we must show that we get the same notion of regular as before for affines.

Prop: Let XC/A be zar. closed. f: X-1 k is regular in the new sense (welly poly/poly) iff it is regular in the old sense (globally a polynomial).

Pf: Let $z \in X$. There exist U_x , F_x , G_x such that $f = F_x/G_x$ on U_x & $z \in U_x$.

Say $U_x = X - V(I_x)$. Take $H \in I_x$ such that $H_x(x) \neq 0$. Replace U_x by $U_x' = X - V(H_x)$ $\subset U_x$.

For by $A_x = F_xH_x$ and G_x by $B_x = G_xH_x$.

Then $f = \frac{Ax}{Bx}$ on U_2 , ac U_x and A_x , $B_x = 0$ on the comparphenent of U_x . Now EB2/2EX9 have no common Zero, so by the Nullstellensetz they generate the unit ideal of K[X]. Myte l = GB2+---+ CeBxe where Ci & k[x]. Multiply both sides by f f = I Ci Bai f A Note $B_{xi} f = A_{xi} \quad \text{on} \quad X$ so $f = \sum C_i A_{xi} \in K[x]$ Having defined regular functions, we

can define regular maps just as before.

Def: $V \subset A$ $V \subset A$ opens in closed. $\varphi: V \to V$ regular map $\varphi=(\varphi_1, -, \varphi_m)$ where φ_i is reg. fun.

Obs: 1 Pull backs of reg. fun under rey maps are regular

@ Compositions of rg. fun are regular

Example (Important).

X = /2 - 303.

 $Y = V(xy-1) \subset A^2$

9: Y -> X (x,y) -> x. reguler

 $\forall : X \rightarrow Y$ $\lambda \mapsto (\lambda_1 \frac{1}{\lambda})$

regular.

 $\varphi \circ \gamma = id$, $\varphi \circ \varphi = id$. So $\times = \gamma$.

That is the guessi-affine X is achiefly affine !

Ring of reg. fun on $X = \frac{1}{k[x_1y_1](xy_1)} \stackrel{\sim}{=} k[t_1t_1] c k(t)$

by $a \mapsto t, y \mapsto t'$.

Example (Important)

$$X = A - V(f).$$

$$Y = V(yf-1) C A^{n+1}.$$

$$P_{1} Y \rightarrow X \qquad regular$$

$$(2, y) \mapsto X$$

$$Y = X \rightarrow Y \qquad x \rightarrow Y \rightarrow Y \qquad x \rightarrow Y \qquad x \rightarrow Y \rightarrow Y \rightarrow Y \rightarrow Y \rightarrow Y \qquad x \rightarrow Y \rightarrow Y \rightarrow Y \rightarrow$$

A non-affine variety $X = A^2 - \{0\}$ We have a map $k[X] \rightarrow k(x,y)$ $f \mapsto F$ where f = F on some open U The choice of U dues not matter -First any two opens in X intersect =) any open is dense. So if f= FI on U1 $= \frac{F_2}{G_3} \text{ on } U_2$ then GzF-FGz=0 on UnOz =0 on /A by continuity. So F/G, = F2/Gz in K(X,4). Write X= /A V(x) U /A V(4) Now the reg fun on A-V(x) in \$ (x,1) are } = { + } Similarly reg- tun on A-V(4) are

{ fys.

A reg fun on X must lie in the intersection

5± 1 + ER[K197] 1 } frac[K197]

11

12[X17].

So R[X] = R[X1] = K[A].

To conclude that X is not affine see that the ideal $(x_{1}y)$ $\subset k[X]$ is non unit but $V(x_{1}y) = \emptyset$ in X. This does not happen for affine X

13.