计算机组成课程设计概述 (2018秋季学期)

计算机组成课程设计教学团队

北京航空航天大学计算机学院

课程教学目标

- 用工程方法开发符合工业标准且具有一定工程规模的流水 线CPU
 - 能够编写一定规模的汇编语言程序
 - 能够开发具有数十条指令的全速转发流水线CPU
 - 能够开发支持流水线的中断系统

预备阶段: Week 1-5

- 目标: 学习相关基础知识、编程语言及设计工具
 - 数制
 - 数字电路
 - 门电路、组合电路、时序电路
 - 语言
 - Verilog-HDL 语法、数字系统硬件设计与验证
 - 汇编语言 MIPS指令集、汇编程序解析及设计
 - -工具
 - Logisim 数字电路模拟器,具有直观友善的电路建模和仿真功能
 - ISE 硬件描述语言模拟器,搭建功能型计算机,并仿真验证
 - MARS MIPS模拟器,辅助MIPS汇编程序编写、调试,设计验证的黄金模型
- 学习方式:在SPOC平台完成相关教学内容的自学与评测
 - SPOC: Small Private Online Course

预备阶段: 教程部分的建议学习顺序

- 基础知识(数制等)
- Logisim
- Verilog与ISE
- MIPS指令集及汇编语言

Project阶段: Week 6-17

序号	项目名称	课下测试(PW)	课上测试(PT)	启动周	工作周数	检查 周
预 备	基础知识,Logisim,汇编, Verilog-HDL	SPOC平台完成自学 校历第一周(启动周)周五18时课程内容发布,第六周周]四10时截止教程部分评测提交	1	5	6
P0	部件及状态机设计 (Logisim)	搭建CRC校验码计算电路,ALU, GRF,正则表达式匹配	Logisim完成部件及FSM设计	6	1	7
P1	部件及状态机设计 (Verilog-HDL)	实现splitter, ALU,EXT,格雷码计数器,合法表达式识别	Verilog-HDL完成部件及FSM设计	7	1	8
P2	汇编语言	矩阵乘法、排序、回文串判断	选择题+编程题	8	1	9
Р3	Logisim开发单周期CPU	完成支持7条指令的单周期CPU设计	新增指令	9	1	10
P4	Verilog开发单周期CPU	完成支持7条指令的单周期CPU设计	新增指令	10	1	11
P5	Verilog开发流水线CPU(1)	完成支持10指令流水线CPU设计	流水线工程化方法	11	1	12
Р6	Verilog开发流水线CPU(2)	完成支持50指令流水线CPU设计	流水线工程化方法	12	1	13
P7	Verilog开发MIPS微系统(1)	完成微型MIPS系统设计 开发简单I/O,验证中断	现场测试	13	2	15
P8	Verilog开发MIPS微系统(2)	完成微型MIPS系统设计 集成串口控制器,板级运行	现场测试	15	2	17

Project阶段: 教学运行过程

- 课下: 学习, 并独立完成实验
 - 学习SPOC平台提供的学习材料
 - 基于SPOC平台完成知识点评测(选择题、填空、判断题等)
 - 提交Project至SPOC平台进行自动评测
- 课上: 通过测试评价完成质量
 - 基于SPOC平台完成知识点测评(选择题、填空、判断题等)
 - 以课下project为基础,限定时间内实现课上的新增设计要求
 - 从SPOC平台下载个人课下提交的project
 - 完善project以支持课上设计要求
 - 提交project至SPOC平台进行自动评测
 - 一对一方式,回答教学团队的问题

SPOC平台: 注册与选课

- 注册: http://cscore.net.cn/register
 - 务必使用学号作为用户名
- · 选课: 在SPOC平台计算机组成课设选课
 - http://cscore.net.cn/courses/course-v1:BUAA+B3I062410+2018_T1/about
 - 选课截止时间:9月16日17:00
- 注册&选课中出现问题:请在论坛提问
 - http://cscore.net.cn/courses/coursev1:BUAA+B3I062410+2018 T1/discussion/forum/
- 浏览器: Chrome、Firefox、IE、Safari
 - 请使用最新版本

与课程内容进行交互

➡ P3 - Logisim 单周期

(one-hot),如101的三位二进制

来自课程团队的课程动态及通知 木使用

查询学习进度及效果 课程信息 与同学、课程团队讨论交流 > Hello! Computer Organization! 多路选择器 数字电路与 Logisim 在组合电路中,多路选择器(Multiplexer,简称MUX)是非常重要 Worked Example: 示例题解, 常重要的角色。下图是一个典型的Logisim中的多路选择器,左侧是多 欢迎来到Logisim的世界! (黑色) **的选择信号**,对输入的信号进行选择后输出。另外一个端口 复现工作并提交; 时,整个部件正常工作。 Logisim 门电路 教程 Project Work: 提交课下作业; Logisim 组合电路 Project Test: 提交课上测试; 教程 Logisim 时序电路 教程 Ø. MUX最为重要的功能就是多个信号中选1,在我们未买 Lecture Text: 知识点讲解 走向应用与挑战 中的数据通路能够处理复杂的指令集。 0 Selecti Quiz:知识点测试(选择/填空/判断等) **⇒**Verilog-HDL与ISE Select Location Select Bits ■汇编语言与MARS Data Bits Lecture Video: 知识点视频讲解 ■ P0 - Logisim和Verilog简单部件 在具体使用中,当选中MUX时,需要关注左下角的Selection: Multiplexer界面,其中可以对数据位宽,选 ₹P1 - Logisim 和 Verilog 状态机 对应一组学习序列,建议按照从左至右的顺序进行学习 ▼ P2 - 汇编语言 译码器 右侧是多个输出,底部是黑色的选 课程各个单元, 按照课程进度发布

SPOC平台: 追踪学习全过程

- 学生学习教学素材 (Lecture Video, Lecture Text)的情况
- "Progress"栏目将记录知识点评测情况(Quiz, Worked Example)
- 论坛活跃情况
 - 教学经验表明:多参与讨论,将有助于完成实验
 - 鼓励利用网络资源搜索或以讨论的方式解决问题
 - 将未能解决的问题在论坛发布, 以寻求帮助
 - 将解决方案在论坛分享,并积极帮助他人解决问题
- 自动评测
 - 记录在SPOC平台上的历次提交版本及评测结果

课程成绩评定方法

- 单次Project得分构成
 - SPOC学习情况
 - 课下Project完成情况
 - 课上新增设计需求完成及问答情况
- 实验最终成绩
 - 最终成绩由教程及历次Project成绩及SPOC论坛活跃度综合评定
 - 依据SPOC论坛活跃度(有效提问/回复)适度加分
- 特别说明: P5是课程及格线的必要条件
 - 完成P5仅是及格的必要条件之一, 但不是充分条件

学术诚实

- 查重机制:自动化查重+人工确认
 - 若发现异常,将人工复查并进行答辩
- 查重范围:涵盖本届及往届
- 惩罚措施: 抄袭行为确认后, 课程最终成绩清零
 - 鼓励大家交流、讨论、但禁止拷贝代码
- 重要事情说3遍: 抄袭零容忍! 抄袭零容忍! 抄袭零容忍!
 - 不要挑战学院惩处学术不端的决心
 - 2016秋季学期: 15人被取消课程成绩
 - 抄袭不仅导致课程成绩清零,还影响奖学金评定、保研等

教学团队

• 教师团队

高小鹏

万寒

张亮

李辉勇

杨建磊

傅翠娇

• 教辅团队 ——Student Teaching Assistant advisoR

张明远

潘叙辰

刘子渊

王磊

伍俊洁

秦冉

钟梓皓

付卓群

王柏润

周雨飞

林家桢

于乾勉

杨帅

S.T.A.R教辅团队

- S.T.A.R: Student Teaching Assistant advisoR
- 教辅团队职责
 - 参与实验体系、实验环境建设
 - 亲历整个实验过程,产生的改进想法非常宝贵且具建设性
 - 线上线下答疑、分享学习经验
 - 知识要用来分享,才能承先启后
 - 成功不只付出与拥有,有承担才是最高的成就!
 - 检查实验进度、完善评价体系
 - 希望每一位同学都能凭借自己的努力,获得一份公正的评判

2019计组课设S.T.A.R教辅团队招募

- 如果你优秀且具有强烈的责任感与使命感,请加入我们!
- 我们期待你们新鲜的想法与做法,为课程添加新的活力!
- 学院将向S.T.A.R团队成员颁发荣誉证书!
- 祝S.T.A.R.每位成员因有能力帮助他人,始终快乐!

特别提示

- 1、在学校教务系统完成课设选课,否则会导致没有成绩
- 2、预备阶段学习效果在很大程度上决定能否通过课程
 - 这5周的学习成效是重要的分水岭
 - 不要因为这5周没有监督就懈怠
 - 务必在Week1-6的预备阶段管理好自己, 抓紧自学