AD-A179 858 VISID/INVISCID SEPARATED FLOWS(U) MCDONNELL AIRCRAFT CO 1/1 ST LOUIS MO T CEBECT ET AL JUL 86 MDC-J3968 AFMAL-TR-86-3048 F33615-83-C-30826														
ľ	ST LOUIS MO T CEBECI ET AL JUL 86 MDC-J39 AFMAL-TR-86-3048 F33615-83-C-3026 UNCLASSIFIED								F/G 20/4 NL					
											-	-		
İ														
										, , , , ,				

STATE STATES STATES STATES STATES

Mark Mark Control of the Control of

2

DTIC FILE COPY

AFWAL-TR-86-3048

VISCID/INVISCID SEPARATED FLOWS

18. 5.

T. Cebeci K.C. Chang R.W. Clark D.P. Mack

S.M. Schimke

McDonnell Aircraft Company McDonnell Douglas Corporation P.O. Box 516 St. Louis, Missouri 63166

JULY 1986

Final Report for Period September 1983 - March 1986

Approved for Public Release; Distribution Is Unlimited

FLIGHT DYNAMICS LABORATORY AIR FORCE WRIGHT AERONAUTICAL LABS AIR FORCE SYSTEMS COMMAND WRIGHT-PATTERSON AIR FORCE BASE, OHIO 45433-6553

NOTICE

J. 3.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings. specifications, or other data, is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use, or sell any patented invention that may in any way be related thereto.

This report has been reviewed by the Office of Public Affairs (ASD/PA) and is releasable to the National Technical Information Service (NTIS). At MTIS, it will be available to the general public, including foreign nations.

This technical report has been reviewed and is approved for publication.

Albert J. Murn

Project Engineer

Bohdan G. Kuncin

Bohdan G. Kunciw, Maj, USAF Chief, Aerodynamics and Airframe Branch Aeromechanics Division

FOR THE COMMANDER

DONALD A. DREESBACH, Colonel, USAF

Chief, Aeromechanics Division

Flight Dynamics Laboratory

Copies of this report should not be returned unless return is required by security considerations, contractual obligations, or notice on a specific document.

ADA179858

REPORT DOCUMENTATION PAGE							
1. REPORT SECURITY CLASSIFICATION	1b. RESTRICTIVE MARKINGS						
Unclassified 20. SECURITY CLASSIFICATION AUTHORITY	3. DISTRIBUTION/AVAILABILITY OF REPORT						
	Annual for muhling walking						
2b. DECLASSIFICATION/DOWNGRADING SCHEE	Approved for public release; distribution is unlimited.						
4 PERFORMING ORGANIZATION REPORT NUM	5. MONITORING OR	GANIZATION R	EPORT NUMBER(S)				
MDC J3968		AFWAL-TR-86-3048					
6a. NAME OF PERFORMING ORGANIZATION	6b. OFFICE SYMBOL (If applicable)	78. NAME OF MONITORING ORGANIZATION					
McDonnell Aircraft Company	(ii) applicable)	AF Wright Aeronautical Labs (AFWAL/FIMM)					
6c. ADDRESS (City, State and ZIP Code)	<u> </u>	7b. ADDRESS (City,			7.7.27.17		
P.O. Box 516		Wright-Pat	terson Air	Force Base			
St. Louis, Missouri 63166			33-6553				
8. NAME OF FUNDING/SPONSORING ORGANIZATION	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT I	NSTRUMENT ID	ENTIFICATION NU	MBER		
		F33615-83C-	3026				
Bc ADDRESS (City, State and ZIP Code)		10. SOURCE OF FUN	IDING NOS.				
		PROGRAM ELEMENT NO.	PROJECT NO.	TASK NO.	WORK UNIT		
11 TITLE Include Security Classification)		62201F	2404	10	0,1		
Viscid/Inviscid Separated Flo	ows	022011	2404	10	81		
12. PERSONAL AUTHOR(S)							
T. Cebeci K.C. Chang R.W. (<u>lark. D.P. Mack</u> Overed	S.M. SCHIMKE		15. PAGE CO	UNT		
S	P 83 TO MAR 86						
16. SUPPLEMENTARY NOTATION					_		
17 COSATI CODES	18 SUBJECT TERMS (C	ontinue on reverse if ne	cessary and identi	fy by block number)			
FIELD GROUP SUB. GR.	l`Separated Flow	d Interactions Boundary La ye r					
04 02	oundary Layer Theory, Subsonic Flow						
19 ABSTRACT :Continue on reverse if necessary and identify by block number:							
A method has been develo							
fighter aircraft configuration							
	employs a viscid inviscid interaction approach, with a panel method used for the inviscid analysis and a finite difference boundary layer method for the viscous analysis.						
The viscid and inviscid analy							
inverse boundary layer theory	. This approac	h allows effic	rient calcu	lation of fl			
large separation regions, inc	luding both lea	ding and trail	ling edge s	eparations.			
The method was validated on three fighter aircraft geometries and comparisons with							
test data are presented. $_{f}$.							
·							
20 DISTRIBUTION/AVAILABILITY OF ABSTRAC	Ť	21 ABSTRACT SECURITY CLASSIFICATION					
UNCLASSIFIED/UNLIMITED 🔀 SAME AS RPT	C DTIC USERS ()	Unclassified					
22a. NAME OF RESPONSIBLE INDIVIDUAL		22b TELEPHONE NUMBER 22c OFFICE SYMBOL					
Albert J. Murn		513/255-40!					
00 50044470 00 400		·					

gerool de propose et atalies de propose de passage de passage espasse espasse espasse espasses.

FOREWORD

This report was prepared for the United States Air Force by the Douglas Aircraft Company, Long Beach, California, and the McDonnell Aircraft Company, St. Louis, Missouri in partial fulfillment of Contract Number F33615-83-C-3026. This report describes a method for calculating the flowfield about fighter aircraft geometries in the presence of flow separation, and includes comparisons with test data for three fighter configurations.

The contract was under the direction of Mr. Albert J. Murn of the Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, Ohio. His efforts and forbearance are gratefully acknowledged.

Accesio	ii For	1
NTIS DTIC Unarrac Justine	TAB bunc ed	
By with	that i	
,	i iliza antig	lodes
υt.	19 4	or i
A-1		

TABLE OF CONTENTS

					Paye
ı.	INTR	ODUCTION		•	 1
II.	DESC	RIPTION OF THE INTERACTIVE BOUNDARY-LAYER METHODS			 4
	2.1	Inviscid Flow Method			 4
	2.2	Interactive Viscous Flow Method			 8
		2.2.1 Boundary-Layer Equations		•	 8
		2.2.2 Interactive Scheme		•	 11
		2.2.3 Turbulence Model		•	 13
		2.2.4 Transformed Equations		•	 16
		2.2.5 Solution Procedure		•	 19
III.	RESU	LTS AND DISCUSSION			 21
	3.1	Wing Alone Configurations		•	 21
	3.2	Application to Wing/Body Test Cases	•	•	 22
IV.	PROG	RAM DESCRIPTION			 25
	4.1	Input Data Description		•	 27
		4.1.1 Body Geometry		•	 27
		4.1.2 Namelist Block Input			 29
		4.1.3 Boundary-Layer Calculation Data Input		•	 33
	4.2	Output Data Description		•	 35
		4.2.1 Summary		•	 35
		4.2.2 Format		•	 36
	4.3	External Units		•	 39
	4.4	CRAY JCL	•	•	 39
٧.	TEST	CASES			 42
	5.1	Test Case 1 - F-15 with Laminar Bubble Wing		•	 42
	5.2	Test Case 2 Advanced Navy Fighter (ANF)			 43
	5.3	Test Case 3 - Unmodified F 15	•	•	 44
VI.	CONC	LUSIONS AND RECOMMENDATIONS		•	 46
VII B	****	NCBC			ΔR

LIST OF ILLUSTRATIONS

No.		Page
1.	Representation of a three-dimensional lifting configuration	52
2.	Effect of alternate Kutta conditions	52
3.	Effect of wake on the separation region and displacement thickness for the NACA 0012 airfoil, R_C = 6.0 x 10^6	52
4.	Notation for nonorthogonal curvilinear coordinate system on the body surface	53
5.	Comparison of computed and experimental lift curves for the RAB wing	53
6.	Effect of transition location on flow separation, displacement thickness and lift distribution for the RAE wing, α = 17.5°	54
7.	Computed transition location, flow separation, displacement thickness and lift distribution for the RAE wing, α = 18.5°	54
8.	Leading and trailing edge separation location for the RAE wing, α = 17.5°	55
9.	Computed viscous and inviscid lift curve for the NACA 0012 swept wing	55
10.	Comparison of calculated and experimental pressure distribution on the NACA 0012 swept wing, α = 19.35°	56
11.	Effect of transition location on flow separation, displacement thickness and lift distribution for the NACA 0012 swept wing, $\alpha = 21.12^{\circ} \dots \dots \dots \dots$	57
12.	Comparison of 2-D strip theory and quasi-3-D methods for the F-15 with laminar bubble wing	57
13.	Comparison of the calculated and experimental pressure distribution for the P-15 with laminar bubble wing, α = 10.75°	58
14.	Comparison of pressure distribution obtained by the panel method and the transonic flow method for the F-15 with laminar bubble wing	59
15.	Comparison of computed and experimental lift curves for the ANF wing/body configuration without canard	61
16.	Comparison of computed and experimental pressure distribution for the ANF wing/body configuration without canard, α = 7.7°, M = 0.6	62
17.	Effect of canard on the calculated lift curve of the ANF wing/body	6.4

MV.	<u> </u>	aye
18.	Comparison of computed and experimental lift curves for the unmodified F-15	65
19.	Comparison of computed and experimental pressure distribution for the unmodified F-15, α = 8.66°	65
20.	Flow structure of the three-dimensional viscous/inviscid interaction program	67
21.	Examples of correct and incorrect input	68
22.	Plan view of the input points on a body divided into sections	68
23.	Another possible division into sections	69
24.	Arrangement of panels for the sample test case	69
25.	Output from the sample test case	70
26.	Panel arrangement for test case 1	86
27.	Panel arrangement for test case 2	86
28.	Panel arrangement of the wing of test case 2	87
29.	Panel arrangement for test case 3	87
30.	Panel arrangement of the wing for test case 3	88

SECTION I INTRODUCTION

In past years aircraft configuration design was accomplished mainly by wind tunnel testing while flow-calculation methods contributed little because they were limited to simple geometries and restricted in the physical processes that they represented. This virtually exclusive reliance on testing had disadvantages which led to less-than-optimum designs. Each potential configuration had to be fabricated as a wind tunnel model with corresponding expense and time delay and, if the tests suggested design changes, the process should have been repeated, though on occasions this could not be done because of the time and expense involved in an iteration cycle. Moreover, tests provide incomplete information in that, for example, static-measurements may be restricted to a small number of locations. Force and moment data are seldom explained in terms of flow phenomena and the extent of separated regions is usually not determined. Finally, there is the necessary scaling from model to full-scale vehicle which can be uncertain so that, for example, separation observed on a model may be different from that encountered in full scale.

Intensive efforts have been pursued for many years to help to overcome the limitations of calculation methods and to develop them to represent accurately the flows over airplane configurations. Regardless of the specific algorithm employed, the cost and especially the elapsed time required to develop a numerical representation of a given configuration is much less than that required for an experimental test. Once such a basic numerical model has been developed, many variations on the design can be investigated computationally and only the most promising selected for wind-tunnel testing. A flow computation method is required to represent the geometry of the airplane and the essential properties of the fluid and, to achieve the objective, limitations of calculation methods have been removed in recent years by the development of new and powerful calculation tools.

There are three possible approaches which can be used for the calculation of the viscous flow over an aircraft configuration. The first approach makes use of the Reynolds-averaged Navier-Stokes equations and various reduced forms including the so-called parabolized and thin-layer Navier-Stokes equations. Significant advances have been made in this area, for example, by Shang and

Scherr [1] who made the first attempt to numerically simulate the flowfield around a complete aircraft by solving the Navier-Stokes equations. To demonstrate the feasibility of their approach, they chose the hypersonic research aircraft X24C-10D for which a detailed experimental database exists. Using a mesh system around 5 x 10^5 nodes, they performed impressive calculations at an angle of attack of six degrees with a nominal Mach number of 5.95, and indicated areas where future research should concentrate to make this approach more efficient and practical.

The second and third approaches both make use of solutions of inviscid and viscous flow equations coupled by special procedures. The second approach is based on the two-dimensional method developed by Gilmer and Bristow [2] in which an empirical inviscid flow model is used to represent the effects of flow separation [2,3]. A direct boundary-layer calculation is employed up to the point of separation. Downstream of this point, a free surface is introduced to model the separated flow region. The shape and the length of the separation zone are computed by satisfying a constant pressure boundary condition on the surface and very good results have been obtained for airfoils at a wide range of angles of attack including stall.

The third approach, which is referred to as the interactive boundary-layer approach, uses special coupling techniques between inviscid and viscous flows and novel numerical procedures. The particular form developed by Cebeci et al. [4] is very general and allows any inviscid flow method to be coupled with solutions of the boundary-layer equations. For example, in its application to two-dimensional subsonic flows over airfoils, it employs Halsey's inviscid procedure [5] based on the conformal mapping and Fourier analysis techniques and computes the flow over the airfoil and wake. Successive viscous sweeps are performed, after each of which the external inviscid solution is recomputed, until a converged solution is obtained. The boundary-layer method, which is an inverse finite-difference scheme developed by Cebeci [6], uses an algebraic eddy-viscosity formulation due to Cebeci and Smith [7] and is able to compute flows with large regions of separation without numerical problems. In regions of reverse flow, it uses the FLARE approximation [8] in which the streamwise convective term is set equal to zero in the recirculating region. A detailed description of the method and of its application to a range of airfoils at angles of attack up to and including stall is provided in [4]. The results

presented in Section 3.1 show that this procedure has removed a major obstacle in that flows with large regions of separation can now be computed accurately.

A comparison between the interactive procedure [4] and a method based on the thin-Navier-Stokes equation has been reported in [9] for the NACA 0012 airfoil. This study demonstrated that the Navier-Stokes approach and the interactive boundary-layer approach gave comparable results up to the stall angle. However, the interactive boundary-layer approach required much less computing time.

The purpose of the present work is to develop a general method for computing three-dimensional flows on wings with leading—and trailing-edge separation. The second and third approaches, described above, have been critically examined to determine the extent to which they can fulfill this purpose. It was considered that the second approach should be more suited to large regions of trailing-edge separation whereas the third approach should be more appropriate for leading-edge separation bubbles. Extensive tests showed that the second approach failed to converge in those situations for which it was intended and, although it was satisfactory for flows with small trailing-edge separation, considerable effort may still be required to overcome its limitations. The third approach on the other hand, has proved to be able to represent leading—and trailing-edge separation without limitations, as discussed further in Section 3.0.

The remainder of this report has been arranged in five sections. In five tion 2.0, the inviscid method is briefly described prior to more extensive descriptions of interactive boundary-layer methods based on strip theory and quasi-three-dimensional approximations. The viscous-flow equations, transformations and solution procedure have been described previously in [4] for two-dimensional flows and in [10] for quasi-three-dimensional flows. Results obtained with these procedures are presented in Section 3.0 for several configurations and the relative merits of the two interactive approaches are considered. The computer program, which embodies both methods is described in Section 4.0 and sample input data for the three contract test cases are presented in Section 5.0. The report ends with a summary of the more important conclusions in Section 6.0.

SECTION II

DESCRIPTION OF THE INTERACTIVE BOUNDARY-LAYER METHODS

The method described here combines inviscid flow and inverse boundary layer procedures in an interactive manner which permits the calculation of flows with leading and trailing-edge separation. According to this method, the inviscid method of Section 2.1 is used to compute the flow over the given configuration with a zero normal velocity boundary condition. The resulting pressure distribution serves as a boundary condition for the boundary layer method of Section 2.2 which computes all relevant boundary layer parameters, including a surface blowing distribution to simulate the displacement thickness effect. While the inviscid-flow calculations (see Section 2.1) are performed for the entire configuration, viscous flow calculations are presently restricted to the wing and make use of strip-theory and quasi three dimensional approximations discussed in Section 2.2.

The viscous effects computed by the boundary-layer method are then used to determine a distribution of normal velocity on the surface. The inviscid flow method is used for a second time with this blowing velocity distribution as a boundary condition and the procedure is repeated until convergence.

2.1 Inviscid Flow Method

method developed by Hess, is capable of computing flow about completely arbitrary configurations. Because of its robustness and its availability, it has been acquired by several dozen facilities around the country and applied not only to aircraft but also to ships, submarines, automobiles, buildings, and topographical features. The three-dimensional body is represented by a set of plane quadrilateral panels, as shown in Fig. 1*. A three-dimensional body consists of lifting and nonlifting portions. A lifting portion, such as a wing or pylon, is characterized by having a well-defined trailing edge, from which issues a trailing vortex wake and along which the Kutta condition is applied. Nonlifting portions of the body lack such trailing edges. Every panel has a constant value of source strength σ. Panels of lifting portions have, in addition, a quadratically varying doublet strength μ. Values of source

^{*}Figures begin on page

density on the panels are independent parameters available for satisfying the boundary condition. The chordwise dipole variation over the panels of a lifting strip (Fig. 1) is assumed in a form that leads to favorable numerics, so that the dipole strength is reduced to a single adjustable parameter - the circulation on that strip. Thus the set of independent dipole parameters equals the number of locations where the Kutta condition is enforced, i.e., at the trailing-edge segment of each strip.

The nature of the Kutta condition adopted by the many panel methods which are currently available varies greatly. The condition adopted by Hess [11] is the physically meaningful condition of equal upper and lower surface pressures at the trailing edge. All other methods make use of other derived conditions, e.g. a prescribed flow direction a short distance downstream, which do not guarantee a pressure match at the trailing edge. For instance, Margason et al. [12] showed that pressure mismatches of up to half of the freestream dynamic pressure could occur from such alternate forms of the Kutta condition. Figure 2. which is taken from [12] shows this clearly. Since we are interested in the computation of flows for which the behavior of the boundary layer at the trailing edge can have a significant effect on the overall flow solution, it is believed that the approach adopted here is more realistic.

The computational procedure is as follows. On each panel a control point is selected where the normal-velocity boundary condition is applied and where velocity and pressure are eventually calculated. Using the well-known point-source potential, the velocity induced by the source density on a panel at a point in space is

$$\overrightarrow{v}(\text{panel}) = [\iint \text{grad}(1/r)dS]\sigma(\text{panel})$$
 (2.1)

where the constant value of σ has been taken outside the integral whose value therefore depends only on geometry. Suppose N panels are used to define the body, and let σ_j denote the value of source density on the jth panel. The velocity induced by the jth panel at the control point of the ith panel is defined as $\vec{V}_{ij}\sigma_j$, where \vec{V}_{ij} is an integral of the form of Eq. (2.1). The integral may be carried out analytically. Explicit formulas are contained in [11], but they are too lengthy for inclusion here. The corresponding normal velocity at the ith control point is

$$\lambda_{ij}\sigma_{j} = \overrightarrow{n}_{i} \cdot \overrightarrow{V}_{ij}\sigma_{j} \tag{2.2}$$

where \vec{n}_i is the unit normal vector to the ith panel. Applying the normal velocity boundary condition at all control points then yields the following set of linear algebraic equations:

$$\sum_{j=1}^{N} A_{ij} \sigma_{j} = -\vec{n}_{i} \cdot \vec{v}_{o}$$
 (2.3)

This is the numerical approximation of the integral equation that expresses the zero normal-velocity boundary condition. Once the σ_j have been determined, the disturbance velocities at the control points due to the body are given by

$$\vec{\mathbf{v}}_{\mathbf{i}} = \sum_{j=1}^{N} \vec{\mathbf{v}}_{\mathbf{i}j} \sigma_{j} \qquad \mathbf{i} = 1, 2, ..., N$$
 (2.4)

While the addition of lift in two dimensions causes no significant increase in the complexity of the problem, the problem of three dimensional lifting flow is not only considerably more complicated than nonlifting flow but requires assumptions that are somewhat arbitrary [11]. The main features are illustrated in Fig. 1. As mentioned above, wings or other lifting portions of the configuration are characterized by having trailing edges from which issue trailing vortex wakes. So-called bound circulation is hypothesized to lie on or within the wing surface, with strength varying in both the chordwise direction and in the direction parallel to the trailing edge ("spanwise" in aerodynamic jargon). The variation of the bound circulation in the chordwise direction is predetermined, while the spanwise variation is adjusted to satisfy a condition of smooth flow off the entire trailing edge, and the trailing vor ticity has constant strength in the stream direction and an initial strength at the trailing edge equal to the local "spanwise" derivative of bound circula tion strength. The location of the wake once it leaves the trailing edge is initially unknown, which introduces a nonlinearity into the problem. It is customary simply to assume a wake location, because in most problems the calcu lated results are not sensitive to the details of the wake shape. However, the location can be determined by iterating the calculation if necessary.

With regard to computing effort and cost, the two principal tasks associated with this method are calculation of the N 2 velocities \vec{v}_{ij} and the

solution of the set of linear equations. Eq. (2.3). Other portions of the calculation require comparatively negligible computing efforts. In three dimensional applications rather large numbers of panels are employed. Panel numbers over 3000 are common. These are the number of unknowns actually solved for after all symmetries, etc., have been utilized. Accordingly, it is economically important that all possible efficiencies be employed in carrying out the two principal tasks. For the first task this is accomplished by using simple approximate expressions for V_{1j} when computing the influence of distant panels [13]. The second task is speeded-up by the use of block iterative matrix solutions, as developed by Clark [14]. The source method lends itself particularly well to these efficiencies, without which no three-dimensional method is practical.

In updating the external inviscid velocity to account for the boundary layer displacement effects, two approaches can be considered. The first, known as the displacement surface approach, involves modifying the geometry to account for the boundary layer displacement thickness. The second approach is to introduce a blowing velocity on the surface of the original body so that the dividing stream surface of the inviscid flow approximates the displacement thickness computed by the boundary-layer procedure. While both approaches have been applied in our studies, the first approach has been found to be less sultable because it involves the computation of the inviscid flow past a body with a finite opening at the trailing edge. For separated flow, the size of this open trailing edge can become significant and the computation of the inviscid flow past such a body is nonunique unless some additional conditions are imposed along this trailing-edge opening. By adopting the surface blowing approach, the equivalent trailing edge thickness of the dividing stream surface is controlled by the blowing velocity introduced on the wing surface in a physically realistic way without resorting to additional boundary conditions.

The blowing velocity computed by the boundary-layer procedure is applied on the wing surface. However, as pointed out above, the aim is to model the flow past the displacement surface. For flows involving large trailing-edge separation, it has been shown in [4] that it is important to both evaluate the external inviscid pressure distribution and apply the Kutta condition on the displacement surface. In the present method this is achieved by introducing additional off body points corresponding to each control point for which the

5227H

boundary layer distribution has been computed. These off body points are used both to compute the final pressure distribution and to apply the Kutta condition.

2.2 Interactive Viscous-Flow Method

An accurate prediction of the flowfield over a wing requires the calculation of flow on the surface and in the wake. The airfoil studies conducted in [4] indicate that the wake influence is negligible for airfoils at low angles of attack and that it is sufficient to calculate the flow on the airfoil only. In the case of the NACA 0012 airfoil, for example, the wake effect begins to become important for angles of incidence, α , greater than 10°, and is important at angles of incidence approaching stall, which for this airfoil is around 16° as shown in Fig. 3. The inclusion of the wake effect, which is not considered here, reduces the flow separation on the surface and allows the numerical calculations to be performed with less difficulty. In the present study, we investigate the ability of the interactive boundary-layer scheme to calculate flows with massive separation and perform calculations for configurations at high angles of attack, as discussed in Section 3.0.

2.2.1 Boundary-Layer Equations

The full three-dimensional boundary-layer equations and their boundary conditions may be written as the following nonorthogonal curvilinear coordinate system [10]:

Continuity Equation

$$\frac{\partial}{\partial x} \left(uh_2 \sin \theta \right) + \frac{\partial}{\partial z} \left(wh_1 \sin \theta \right) + \frac{\partial}{\partial y} \left(vh_1 h_2 \sin \theta \right) = 0$$
 (2.5a)

x-Momentum Equation

$$\frac{u}{h_{1}} \frac{\partial u}{\partial x} + \frac{w}{h_{2}} \frac{\partial u}{\partial z} + v \frac{\partial u}{\partial y} - \cot \theta \kappa_{1} u^{2} + \csc \theta \kappa_{2} w^{2} + \kappa_{12} uw$$

$$= -\frac{\csc^{2} \theta}{\rho h_{1}} \frac{\partial p}{\partial x} + \frac{\cot \theta \csc \theta}{\rho h_{2}} \frac{\partial p}{\partial z} + \frac{\partial}{\partial y} \left(v \frac{\partial u}{\partial y} - u'v' \right) \qquad (2.5b)$$

z-Momentum Equation

$$\frac{\mathbf{u}}{\mathbf{h}_{1}} \frac{\partial \mathbf{w}}{\partial \mathbf{x}} + \frac{\mathbf{w}}{\mathbf{h}_{2}} \frac{\partial \mathbf{w}}{\partial \mathbf{z}} + \mathbf{v} \frac{\partial \mathbf{w}}{\partial \mathbf{y}} + \csc\theta \ \mathbf{K}_{1} \mathbf{u}^{2} - \cot\theta \ \mathbf{K}_{2} \mathbf{w}^{2} + \mathbf{K}_{21} \mathbf{u} \mathbf{w}$$

$$= \frac{\cot \theta \csc \theta}{\rho h_1} \frac{\partial p}{\partial x} - \frac{\csc^2 \theta}{\rho h_2} \frac{\partial p}{\partial z} + \frac{\partial}{\partial y} \left(v \frac{\partial w}{\partial y} - v'w' \right)$$
 (2.5c)

$$y = 0:$$
 u, v, $w = 0$ (2.6a)

$$y = \delta$$
: $u = u_e(x,z)$, $w = w_e(x,z)$ (2.6b)

Here x,z denote the coordinate system on the surface of the body and y is the actual distance measured normal to the surface. The boundary-layer equations and boundary conditions for this system according to first-order boundary-layer theory are based on the assumption that the pressure is constant across the shear layer and stress gradients in directions parallel to the surface are negligible compared with those normal to the surface. In the above equations h_1 and h_2 denote the metric coefficients and θ denotes the angle between the coordinate lines and, as a result of first-order boundary-layer theory, they are functions of the surface coordinates x and z only. They can be obtained from the relations which define the three-dimensional body in the Cartesian coordinate system $\bar{x}, \bar{y}, \bar{z}$ by

$$\mathbf{F}(\overline{\mathbf{x}},\overline{\mathbf{y}},\overline{\mathbf{z}}) = 0 \tag{2.7}$$

and those that define the curvilinear coordinate system. Thus the metric coefficients and the angle between θ are given by

$$h_1^2 = \left(\frac{\partial \bar{x}}{\partial x}\right)^2 + \left(\frac{\partial \bar{y}}{\partial x}\right)^2 + \left(\frac{\partial \bar{z}}{\partial x}\right)^2 \tag{2.8a}$$

$$h_2^2 = \left(\frac{\partial \bar{x}}{\partial z}\right)^2 + \left(\frac{\partial \bar{y}}{\partial z}\right)^2 + \left(\frac{\partial \bar{z}}{\partial z}\right)^2$$
 (2.8b)

$$\cos\theta = \frac{(\partial \overline{x}/\partial x)(\partial \overline{x}/\partial z) + (\partial \overline{y}/\partial x)(\partial \overline{y}/\partial z) + (\partial \overline{z}/\partial x)(\partial \overline{z}/\partial z)}{h_1 h_2}$$
(2.9)

The parameters K_1 and K_2 are known as the geodesic curvatures of the curves z = constant and x = constant, respectively, see Fig. 4, and are given by

$$K_{1} = \frac{1}{h_{1}h_{2}\sin\theta} \left[\frac{\partial}{\partial x} \left(h_{2}\cos\theta \right) - \frac{\partial h_{1}}{\partial z} \right]$$
 (2.10a)

$$K_2 = \frac{1}{h_1 h_2 \sin \theta} \left[\frac{\partial}{\partial z} \left(h_1 \cos \theta \right) - \frac{\partial h_2}{\partial x} \right]$$
 (2.10b)

The parameters κ_{12} and κ_{21} are defined by

$$K_{12} = \frac{1}{\sin\theta} \left[-K_1 - \frac{1}{h_1} \frac{\partial \theta}{\partial x} + \cos\theta \left(K_2 + \frac{1}{h_2} \frac{\partial \theta}{\partial z} \right) \right] \qquad (2.11a)$$

$$K_{21} = \frac{1}{\sin\theta} \left[-K_2 - \frac{1}{h_2} \frac{\partial \theta}{\partial z} + \cos\theta \left(K_1 + \frac{1}{h_1} \frac{\partial \theta}{\partial x} \right) \right] \qquad (2.11b)$$

The magnitude of the velocity vector \mathbf{u}_t in the boundary layer is given by

$$u_{t} = (u^{2} + w^{2} + 2uw \cos\theta)^{1/2}$$
 (2.12)

In the present study we use two reduced forms of the above boundary-layer equations. The first is referred to as the quasi-three-dimensional boundary-layer equations in which the flow variations with respect to z are neglected so that the equations become

$$\frac{\partial}{\partial x} \left(uh_2 \sin \theta \right) + \frac{\partial}{\partial y} \left(vh_1 h_2 \sin \theta \right) = 0$$
 (2.13a)

$$\frac{u}{h_1} \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} - K_1 u^2 \cot \theta + K_2 w^2 \csc \theta + K_{12} uw = -\frac{\csc^2 \theta}{h_1 \rho} \frac{\partial p}{\partial x} + \frac{\partial}{\partial y} \left(v \frac{\partial u}{\partial y} - \frac{u'v'}{u'v'} \right)$$
(2.13b)

$$\frac{\mathbf{u}}{h_{1}} \frac{\partial \mathbf{w}}{\partial \mathbf{x}} + \mathbf{v} \frac{\partial \mathbf{w}}{\partial \mathbf{y}} + K_{1} \mathbf{u}^{2} \csc\theta - K_{2} \mathbf{w}^{2} \cot\theta + K_{21} \mathbf{u} \mathbf{w} = \frac{\csc\theta \cot\theta}{h_{1}\rho} \frac{\partial \mathbf{p}}{\partial \mathbf{x}} + \frac{\partial}{\partial \mathbf{y}} (\mathbf{v} \frac{\partial \mathbf{w}}{\partial \mathbf{y}} - \frac{\mathbf{u}'\mathbf{w}'}{\mathbf{u}'\mathbf{w}'})$$
(2.13c)

The second is referred to as the strip-theory approximation which essentially solves the well-known two-dimensional boundary-layer equations,

$$\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0 {(2.14)}$$

$$u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} = u_e \frac{du_e}{dx} + \frac{\partial}{\partial y} \left(v \frac{\partial u}{\partial y} - \overline{u'v'} \right) \tag{2.15}$$

In this approach, the streamwise external velocity u is replaced by the total velocity V defined by

$$V = (u_0^2 + w_0^2 + 2u_0 w_0 \cos \theta)^{1/2}$$
 (2.16)

and is assigned to each spanwise strip.

2.2.2 Interactive Scheme

11.22

AND THE SECOND SECONDARY MANAGEMENT SECONDARY SECONDARY

It is well known that the boundary-layer equations are singular at separation when solved for a prescribed external velocity distribution. They are not singular at separation, however, when the external velocity is computed as part of the solution by, for example, prescribing a displacement thickness: this is known as the <u>inverse problem</u> and leads to solution of the boundary-layer equations with separation.

For flows with separation, the presence of the upstream velocity component introduces a numerical instability into the solution of the boundary-layer equations. Over the years, several approaches have been proposed to overcome this problem. One popular approach, known as the FLARE approximation after the originators, Flugge-Lotz and Reynher [8], neglects the longitudinal convection terms $u(\partial u/\partial x)$ and $u(\partial w/\partial x)$ in the momentum equations (2.5). This approximation is satisfactory provided that the size of the separated region remains small. However, as the size of the recirculation region increases, this approximation becomes less accurate and requires the development of additional procedures to account for the neglected convective terms. One successful scheme, which has been applied to two-dimensional flows, is referred to as the DUIT procedure [15, 16] (pownstream, Upstream Iteration) and requires several sweeps through the recirculation region. With this scheme, the FLARE approach is used to compute a solution within the recirculation region, and then in successive sweeps the u(du/dx) term is progressively introduced until it is fully represented. Another successful approach developed by Cebeci [17] makes use of the unsteady boundary-layer equations in which the convective term is introduced into the equations progressively as a function of time. The present method uses only the FLARE approach for both 2-D and quasi-3-D flows, and does not consider the effect of the terms neglected due to this approximation.

In an interactive boundary-layer scheme, a link between a displacement thickness and external flow is provided, and two types of procedures have been developed for this purpose for two-dimensional flows. In the first approach

[18-22], the solutions of the boundary-layer equations are computed initially for a prescribed external velocity to obtain an estimate of the displacement thickness $\delta^*(\mathbf{x})$ distribution, and then in an inverse mode for a specified displacement-thickness distribution $\delta^*(\mathbf{x})$. If this initial calculation encounters separation, $\delta^*(\mathbf{x})$ is extrapolated to the trailing edge. The subsequent boundary-layer calculations are then performed in an inverse mode to compute the blowing velocity needed in the inviscid flow method. In general, this procedure leads to two external velocity distributions, $\mathbf{u}_{\mathbf{e}\mathbf{v}}(\mathbf{x})$ derived from the inverse boundary-layer solution and $\mathbf{u}_{\mathbf{e}\mathbf{i}}(\mathbf{x})$ derived from the updated approximation to the inviscid velocity past the body with viscous effects. A relaxation formula in the form

$$\delta^{a}^{\nu+1}(x) = \delta^{a}^{\nu}(x) \left[1 + \omega \left(\frac{u}{u_{ei}(x)} - 1\right)\right], \quad \nu = 0, 1, 2, ...$$
 (2.17)

where ω denotes a relaxation parameter, is then introduced to define an updated displacement thickness distribution and to obtain new solutions of the boundary-layer equations and the inviscid flow equations so that the interactive procedure between inviscid and viscous flow solutions can be iterated until convergence is achieved.

The second approach [23], which is recommended on the grounds of generality and physical basis, treats the external velocity $u_e(x)$ and the displacement thickness $\delta^*(x)$ as unknown quantities. The boundary-layer equations are solved simultaneously in an inverse mode and with successive sweeps over the body surface. For each sweep, the external boundary condition is written as the sum of the inviscid velocity $u_e^O(x)$ over the body, and a perturbation velocity $\delta u_e(x)$, that is,

$$y = \delta, u_{\alpha}(x) = u_{\alpha}^{O}(x) + \delta u_{\alpha}(x)$$
 (2.18)

The perturbation velocity δu_e is computed from a local approximation based on a thin airfoil theory in terms of the local blowing velocity, $d/d\sigma (u_e^{-\delta a})$, required to simulate the boundary layer thickness. The perturbation velocity is written as

$$\delta u_{e}(x) = \frac{1}{\pi} \int_{x_{a}}^{x_{b}} \frac{d}{d\sigma} \left(u_{e} \delta^{*} \right) \frac{d\sigma}{x - \sigma}$$
 (2.19)

where the interaction region is confined to $[x_a, x_b]$. Introducing a discrete approximation for this integral enables the perturbation velocity to be expressed in terms of the geometric coefficients of the airfoil, as discussed in [4].

This two-dimensional interactive procedure has recently been extended under an AFOSR contract [10] to the quasi-three-dimensional equations referred previously. The relationship between displacement thickness and external velocity needed in the interactive calculations was obtained by generalizing the formulation used for two-dimensional flows. The irrotationality condition, which for an orthogonal system is

$$\frac{\partial}{\partial x} \left[h_2(w_e^O + \delta w_e) \right] = \left[\frac{\partial}{\partial z} h_1(u_e^O + \delta u_e) \right] \tag{2.20}$$

was used to provide a relationship between the two velocity components u_e and w_e and shows that the choice of computing the perturbation velocities due to viscous effects is not arbitrary. The assumption that $\delta u_e(x)$ is a function of x alone requires that

$$\frac{\partial \mathbf{x}}{\partial \mathbf{x}} (\delta \mathbf{w_e}) = 0$$

and that

$$w_{\mathbf{e}} = w_{\mathbf{e}}^{\mathbf{O}} \tag{2.21}$$

In this way the edge boundary conditions for a quasi-three-dimensional boundary-layer flow with interaction are given by Eqs. (2.6) and (2.18).

2.2.3 Turbulence Model

The presence of Reynolds shear stress terms in the boundary-layer equations requires a turbulence model. The algebraic eddy-viscosity $\epsilon_{\rm m}$ formulation of Cebeci and Smith [7] is used here. According to this formulation for two-dimensional wall boundary-layer flows, $\epsilon_{\rm m}$ is defined by two separate formulas, given by

$$\varepsilon_{m} = \begin{cases} \left\{0.4y[1 - \exp(-y/A)]\right\}^{2} \left| \frac{\partial u}{\partial y} \right| \gamma_{tr} & 0 \le y \le y_{c} \\ \alpha \left| \int_{0}^{\infty} (u_{e} - u) dy \right| \gamma_{tr} \gamma & y_{c} \le y \le \delta \end{cases}$$
(2.22a)

where

$$A = 26\nu u_{\tau}^{-1}, \qquad u_{\tau} = (\frac{\tau_{0}}{\rho})_{\text{max}}^{1/2},$$

$$\tau_{1} = \mu \frac{\partial u}{\partial y}, \qquad \gamma = \frac{1}{1 + 5.5(y/\delta)^{6}} \qquad (2.23)$$

The condition used to define y_c is the continuity of the eddy viscosity; from the wall outward Eq. (2.22a) is applied until its value is equal to the one given by Eq. (2.22b).

In Eq. (2.22), $\gamma_{\rm tr}$ is an intermittency factor which accounts for the transitional region that exists between a laminar and turbulent flow. It is given by

$$\gamma_{tr} = 1 - \exp[-G(x - x_{tr}) \int_{x_{tr}}^{x} \frac{dx}{u_e}]$$
 (2.24a)

Here \mathbf{x}_{tr} is the location of the start of transition. The empirical factor G is

$$G = \frac{1}{1200} \frac{u_e^3}{v^2} R_{x_{tr}}^{-1.34}$$
 (2.24b)

where the transition Reynolds number $R_{x_{tr}} = (u_{tr})_{tr}$ and the transition location x_{tr} is either specified or calculated from the empirical formula of Michel [29]

$$R_{\theta_{tr}} = 1.174R_{x_{tr}}^{0.46} \left(1 + \frac{22,400}{R_{x_{tr}}}\right)$$
 (2.24c)

According to the Cebeci Smith model, the parameter α in Eq. (2.22b) is equal to 0.0168 for values of R_{θ} greater than 5000, and is given by the expression in [24] for R_{θ} less than 5000. Studies conducted by Head and his associates [25,26] the recent experimental data of Nakayama [27] and Simpson et al. [28] and the numerical studies of Carter [20] indicate that in flows with strong pressure gradient, the value of α should also be changed when R_{θ} 5000. Head and his associates recommend that α in Eq. (2.22b) be given by

$$\alpha = \alpha \underset{eq}{\mathsf{F}}(\mathsf{r}) \tag{2.25a}$$

where

$$\alpha_{eq} = 0.002094 + 0.02672[1 - exp(-0.1163G)]$$
 (2.25b)

$$G = 4.8285 (\Pi + 1.0717)^{1/2} + 1.8438$$
 (2.25c)

$$\Pi = \frac{\delta^*}{\tau_b} \frac{dp}{dx}$$
 (2.25d)

$$F = \begin{cases} (5 - 4r)/(3 - 2r) & r < 1 \\ \frac{1}{2r - 1} & r \ge 1 \end{cases}$$
 (2.25e)

In Eqs. (2.25e) and (2.25f), r represents the ratio of the local rate of growth of the boundary layer to the rate of growth of the corresponding equilibrium layer.

They also suggested that γ in Eq. (2.23) be replaced by

$$\gamma = \frac{2.0}{1 - \text{erf}[1/2(y/\delta - \beta)]}$$
 (2.25g)

where β is a function of shape factor H.

Simpson et al. [28] suggest that

$$\alpha = 0.0168/F^{2.5}$$
 (2.26a)

Here F denotes the ratio of the product of the turbulent energy by normal stresses to that by shear stress evaluated at the location where shear stress is maximum, that is,

$$F = \left\{ \frac{\overline{(u'^2 - v'^2)} \frac{\partial u}{\partial x}}{-\overline{u'v'} (\frac{\partial u}{\partial y})} \right\}_{(-\overline{u'v'})_{max}}$$
(2.26b)

Before Eq. (2.26a) can be used in Eq. (2.26b), an additional relationship between $(u'^2 - v'^2)$ and (-u'v') at $(-u'v')_{max}$ is needed. Here we assume that the ratio in Eq. (2.26b),

$$\beta = \left\{ \frac{u'^2 - v'^2}{-u'v'} \right\}_{(-u'v')_{max}}$$
 (2.26c)

is a function of $R_T = \tau_w/(-u'v')_{max}$ which, according to the data of Nakayama [27], can be represented by

$$\beta = \frac{6}{1 + 2R_m(2 - R_m)}$$
 (2.26d)

for $R_{T}^{}$ < 1.0. For $R_{T}^{}$ \geq 1.0, we take β to be

$$\beta \approx \frac{2R_T}{1 + R_T} \tag{2.26e}$$

Introducing the above relationships into the definition of F, we have the following expression for α , according to Eq. (2.26a),

$$\alpha = \frac{0.0168}{\left[1 - \beta(\partial u/\partial x)/(\partial u/\partial y)\right]^{2.5}}$$
 (2.27)

where β is given by Eqs. (2.26d) and (2.26e). This expression is used here although further studies are clearly required to evaluate its range of validity. Work of this nature is in progress.

For three-dimensional flows, the above formulation was generalized as discussed in [16] and in the inner region $\varepsilon_{_{\rm m}}$ is defined by

$$(\varepsilon_{\rm m})_{\rm i} = L^2 \left[\left(\frac{\partial u}{\partial y} \right)^2 + \left(\frac{\partial w}{\partial y} \right)^2 + 2 \left(\frac{\partial u}{\partial y} \right) \left(\frac{\partial w}{\partial y} \right) \cos \theta \right]^{1/2}$$
 (2.28)

where

$$L = 0.4y[1 - \exp(-\gamma/A)], \quad A = 26 \frac{v}{u_{\tau}}, \quad u_{\tau} = (\frac{\tau_{tw}}{\rho})^{1/2}$$

$$\tau_{tw} = \mu \left[(\frac{\partial u}{\partial y})_{w}^{2} + (\frac{\partial w}{\partial y})_{w}^{2} + 2(\frac{\partial u}{\partial y})_{w}^{2} (\frac{\partial w}{\partial y})_{w} \cos\theta \right]$$
(2.29)

In the outer region $\epsilon_{\boldsymbol{m}}$ is defined by

$$(\varepsilon_{\rm m})_{\rm o} = \alpha \left| \int_{0}^{\infty} (u_{\rm te} - u_{\rm t}) dy \right|$$
 (2.30)

and α is given by Eq. (2.27).

2.2.4 Transformed Equations

The equations of Section 2.2.1 may be solved in the forms presented or expressed in other forms which are more convenient for accurate solution. For two-dimensional flows, as in [4], we use the Falkner-Skan transformation in the early stages of the flow

$$\eta = \sqrt{u_e/vx} y, \quad \psi = \sqrt{u_e vx} f(x, \eta) \tag{2.31}$$

With primes denoting differentiation with respect to η and $b=1+\epsilon_m/\nu$, Eqs. (2.14) and (2.15) and their boundary conditions can be written in the form:

$$(bf'')' + \frac{m+1}{2}ff'' + m[1 - (f')^2] = x(f' \frac{\partial f'}{\partial x} - f'' \frac{\partial f}{\partial x})$$
 (2.32)

$$\eta = 0$$
, $f = f' = 0$ (2.33a)

$$\eta = \eta_{e'}$$
 f' = 1 (2.33b)

Here ψ is the usual definition of the stream function that satisfies the continuity equation,

$$u = \frac{\partial \psi}{\partial v} , \qquad v = -\frac{\partial \psi}{\partial x}$$
 (2.34)

and m is a dimensionless pressure-gradient parameter,

$$m = \frac{x}{u_e} \frac{du_e}{dx}$$
 (2.35)

This transformation provides the generation of initial conditions at the stagnation point of the airfoil and allows the calculations to be performed economically and accurately around the leading edge, where the governing equations are being solved for the prescribed external velocity distribution. For interactive boundary-layer calculations, where $u_{e}(x)$ is not known, a constant reference velocity u_{e} is used in the transformation

$$Y = \sqrt{u_0/vx} \ Y, \qquad \psi = \sqrt{u_0vx} \ F(x,Y) \tag{2.36}$$

In terms of these new variables, Eqs. (2.14) and (2.15) and their boundary conditions can be written in the form:

$$(bF'')' + \frac{1}{2}FF'' + xe \frac{de}{dx} = x(F' \frac{\partial F'}{\partial x} - F'' \frac{\partial F}{\partial x})$$
 (2.37)

$$Y = 0, F = F' = 0$$
 (2.38a)

$$Y = Y_e$$
, $F' = e$, $e - \dot{c}_{11} (Y_e e - F) = g_1$ (2.38b)

where

$$\dot{c}_{11} = c_{11} \sqrt{vx/u_0} , \qquad e = \frac{u_e}{u_0}$$

Here the parameter g_1 , which results from the discrete approximation to Eq. (2.19) is given by

$$q_{i} = u_{e}^{\kappa} + \sum_{j=1}^{i-1} c_{ij}^{(D_{j} - D_{j}^{\kappa}) - c_{ii}^{\kappa}$$
 (2.39)

where

$$D = \sqrt{vx/u_o} (Y_e e - F_e)$$

For quasi-three-dimensional flows, we define

$$x = x,$$
 $dn = (\frac{u_0}{vs_1})$ dy (2.40)

Here u_0 is a reference velocity and s_1 denotes the length in the longitudinal direction measured from the initial line $x = x^*$. We again introduce the definition of stream function $\psi(x,y)$

$$uh_2 \sin\theta = \frac{\partial \psi}{\partial y}$$
, $vh_1h_2 \sin\theta = -\frac{\partial \psi}{\partial x}$ (2.41))

so that with the definition of eddy viscosity, the quasi-three-dimensional boundary-layer equations given by Eq. (2.13) can be written as [10]

$$(bf'')' + m_1 ff'' + m_3 [(f')^2 - e^2] + m_5 (f'g' - \overline{w}_e e) + m_4 [(g')^2 - (\overline{w}_e)^2]$$

$$= m_9 (f' \frac{\partial f'}{\partial x} - e \frac{\partial e}{\partial x} - f'' \frac{\partial f}{\partial x})$$
(2.42)

$$(bg'')' + m_1 fg'' + m_6 [(g')^2 - w_e^2] + m_7 [(f')^2 - e^2] + m_8 (f'g' - w_e^2)$$

$$= m_{g}(f' \frac{\partial g'}{\partial x} - e \frac{\partial w}{\partial x} - g'' \frac{\partial f}{\partial x})$$
 (2.43)

where, with f' = u/u_0 , g' = w/u_0 , \overline{w}_e = w_e/u_0

$$m_{1} = \frac{\sqrt{s_{1}}}{h_{1}h_{2} \sin \theta} \frac{\partial}{\partial x} (\sqrt{s_{1}} h_{2} \sin \theta), \qquad m_{3} = \kappa_{1}s_{1} \cot \theta$$

$$m_{4} = -\kappa_{2}s_{1} \csc \theta, \qquad m_{5} = -\kappa_{12}s_{1}, \qquad m_{6} = s_{1}\kappa_{2} \cot \theta$$

$$m_{7} = -m_{3}, \qquad m_{8} = -\kappa_{21}s_{1}, \qquad m_{9} = s_{1}/h_{1}$$

$$(2.44)$$

The boundary conditions become

$$\eta = 0$$
, $f = f' = 0$, $g = g' = 0$ (2.45a)

$$\eta = \eta_e$$
, $f' = e(x)$, $g' = w_e(x) = w_e^{-C}$ (2.45b)

$$e(x) = u_e^O + \frac{1}{\pi} \int_{x_a}^{x_b} \frac{d\Delta}{d\sigma} \frac{d\sigma}{x - \sigma}$$

where

$$\Delta = \frac{s_1}{\sqrt{R}} (\eta_e e - f_e), \qquad R = \frac{u_o s_1}{v} \qquad (2.46)$$

2.2.5 Solution Procedure

The numerical solution of the system of equations given in the previous section is obtained with Keller's box method for the standard and interactive methods. This is an efficient, second-order finite-difference method extensively used by Cebeci and his associates for a wide range of flows, as discussed in Bradshaw et al. [16]. The description of the standard method is given in that reference as well as in Cebeci and Bradshaw [29]. The general features of the inverse method which makes use of the Mechul-function formulation are also described for two-dimensional flows in Bradshaw et al. [16] and in [10] for quasi-three-dimensional flows. As in previous two-dimensional studies the FLARE approximation in which the convective term $\partial F'/\partial x$ is set equal to zero in the recirculating region is employed, and no attempt was made to improve the accuracy of the solutions resulting from this approximation.

As in the solution of two-dimensional flows by Keller's method, we write Eq. (2.37) as a first-order system. For this purpose we let

$$F' = u \qquad (2.47a)$$

$$\mathbf{u'} = \mathbf{v} \tag{2.47b}$$

and write Eq. (2.37) as

(bv)' +
$$\frac{1}{2}$$
 Fv + xe $\frac{de}{dx} = x(u \frac{\partial u}{\partial x} - v \frac{\partial F}{\partial x})$ (2.47c)

Since e is a function of x, only, we write

$$e' = 0 \tag{2.47d}$$

The boundary conditions for the system given by Eqs. (2.47) now can be written as

$$Y = 0$$
, $P = 0$, $u = 0$ (2.48a)

$$Y = Y_e$$
, $u = e$, $e - c_{11} (Y_e e - F) = g_1$ (2.48b)

After the finite-difference approximations to Eqs. (2.47) and (2.48) are written, the resulting nonlinear algebraic system is linearized by Newton's method and the linear system is then solved by the block elimination method. For further details, see [29].

SECTION III RESULTS AND DISCUSSIONS

The interactive boundary-layer procedure described in the previous section has been applied to a number of test cases and the results will be presented here.

Section 3.1 presents the results obtained from the application of the two-dimensional strip theory approach to two wing alone configurations to verity the soundness of the interactive boundary layer technique. Section 3.2 will present the results obtained from the two-dimensional and the quasithree dimensional methods for three wing-body fighter configurations.

3.1 Ving Alone Configurations

The first configuration considered is an RAB clean wing with a 28° sweep angle for which experimental data has been obtained by Lovell [30]. Figure 5 shows the computed lift curve up to 18° angle of attack. It can be seen that there is good agreement up to about 12°, beyond which the discrepancy increases. This disagreement at the higher angles of attack is due to the three dimensional nature of the flow, and due to the sensitivity of the flow to the transition location. This sensitivity is illustrated by Fig. 6 which shows the variation of the flow solution to the transition location at an angle of attack of 17.5°. Moving the transition location leads to a significant change in the lift separation location and displacement thickness, particularly near the wing tip. Figure 7 shows the results for $\alpha = 18.5^\circ$ with the computed transition location. As can be seen the separation location at this angle of attack occurs at about the midchord location. The size of the leading and trailing edge separation regions at $\alpha = 17.5^\circ$ can be seen from Fig. 8 in which the local skin friction is plotted.

Near the wing tip it can be seen that there is a small leading edge separation, shown by the region of negative skin friction, and that the trailing edge separation is occurring at about 65% local chord.

Figures 9 11 illustrate the results obtained for a NACA 0012 swept wing for which data was obtained by Yip and Shubert [31] for a range of angles of arrack. Figure 9 shows the viscous and inviscid lift up to 21 18° from which the effects of the increasing flow separation at higher angles of attack can

clearly be seen. Figure 10 shows the computed and experimental pressure distributions for $\alpha = 19.35^{\circ}$ at two sections, 50% and 85% of semispan, both of which agree very well.

The importance of the transition location is illustrated by Figure 11 which shows the computed separation location, trailing-edge displacement thickness and lift distribution for $\alpha = 21.12^{\circ}$. Two curves are shown, the solid line was obtained with a computed transition location at about 3% chord on the upper surface. The dashed line was obtained by specifying a transition location closer to the leading edge attachment line on the lower surface. It can be seen that this small movement in the transition location moves the separation location forward from 60% chord to about 30% chord.

3.2 Application to Wing/Body Test Cases

Three wing/body test cases were identified for which there was experimental data available to evaluate the current procedure. The three cases are, an F-15 with a modified wing designed to investigate the role of a leading-edge laminar separation, an Advanced Navy Fighter configuration, and an unmodified F-15. The geometry and input data associated with these test cases is discussed in detail in Section 5 (Figs. 26-30).

The F-15 laminar bubble configuration has been run at a range of angles of attack using both the 2-D and the quasi 3-D boundary-layer procedures. Figure 12 shows the computed lift compared with the experimental data [32]. It can be seen that at lower angles of attack the 2-D and quasi 3-D approaches agree closely, while at higher angles of attack the quasi 3-D boundary-layer procedure agrees better with the experimental data. At lower angles of attack both approaches over-predict the lift, possibly due to an inadequate modelling of the flow over the body.

Figure 13 shows an example of the computed and experimental pressure distributions for $\alpha = 10.75^{\circ}$ angle of attack at three stations across the span from close to the wing tip to close to the wing root. It can be seen that for this angle of attack there is very little difference between the 2 D and the quasi three dimensional boundary layer methods, and that both give a reasonable approximation to the measured pressures except close to the leading edge.

One further aspect of the present method which has been investigated concerns the use of a panel method for the calculation of compressible flow. A panel method is an incompressible solution procedure and so Mach number effects must be accounted for by means of a compressibility correction. In this case a Goethert correction is applied using the following procedure: the solution to the linearized potential flow equation

$$(1 - M_{\infty}^2) \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} + \frac{\partial^2 \phi}{\partial z^2} = 0$$
 (3.1)

is obtained, where ϕ is the perturbation in the potential due to the body. Provided that this perturbation velocity is small compared with the freestream velocity equation (3.1) provides a good approximation to the flow. This is true for the flow over thin wings. However, around the leading edge, or on any forward facing surface, this basic assumption is violated.

The compressibility correction for the initial velocity calculation is implemented here by first scaling the y and z coordinates by β = $\sqrt{(1-M_{\infty}^2)}$. The incompressible flow is then computed about this equivalent body and the computed velocity components are divided by β^2 in the x-direction and β in the y- and z-directions.

For the subsequent updates to the inviscid velocity to account for the viscous effects the same procedure is adopted. However, this calculation involves two additional features over the initial inviscid calculation. The first is the introduction of the blowing velocity required to simulate the displacement thickness and the second is the introduction of off-body points at which the Kutta condition is to be applied and the final velocity computed. In applying the Mach number correction two additional assumptions are therefore necessary. The first is that the blowing velocity is predominantly in the y,z direction so that the blowing velocity applied on the "equivalent incompressible body" can be scaled by β . The second assumption is that the displacement effect of the boundary layer is also predominantly in the y,z direction. Therefore in defining the off-body point location in the transformed plane the displacement thickness is first scaled by β . Since both the displacement thickness and the blowing velocity are most significant near the trailing edge both of these assumptions are valid.

It should be pointed out that the interactive viscous calculation is performed entirely in the physical plane. The Mach number correction outlined above is used to provide the compressible external velocity distribution.

While the compressibility correction will provide a good approximation at lower angles of attack, it becomes less accurate at higher angles of attack when the flow can become supercritical and shock waves can form through the leading edge region. Figure 14 shows the inviscid computed pressure distribution at the mid-semispan location computed by the present panel method and by the transonic full-potential wing/body code developed by Chen et al. [33] at $\alpha = 6.84^{\circ}$, 10.75° and 12.95° for M = 0.6. At the lower angle of attack the two procedures agree well except close to the leading edge where the transonic code predicts a higher suction peak. However, at $\alpha = 12.95^{\circ}$ the transonic method predicts a shock wave and a larger difference in the pressure distribution through this region is predicted.

The second wing/body test case which has been considered is the Advanced Navy Fighter (ANF) for which experimental data is available [34]. This configuration was tested experimentally both with and without a canard. Figure 15 shows the computed and experimental lift distribution for this configuration without the canard and Figure 16 shows the viscous and inviscid pressure distribution compared with experimental data at $\alpha = 7.7^{\circ}$ across the span. It can be seen that there is good agreement. The only other pressure data for this particular configuration is for $\alpha = 22^{\circ}$ at which angle the data shows the presence of a shock wave near the leading edge suction peak. Due to the limitations of the compressibility correction outlined above this case has not been pursued. The effect of the canard is shown in Figure 17, in which the computed viscous lift distribution is shown with and without the canard. This case was run with the canard at zero deflection angle for which there was no experimental data, and the viscous effects were computed only on the main wing.

The final configuration which has been investigated is an unmodified F-15 wing/body for which experimental data was obtained by Anderson [35]. Figure 18 shows the computed and experimental lift curves from which it can be seen that there is good agreement up to 8.66° angle of attack. Figure 19 shows the computed pressure distribution for 8.66° which is in good agreement with the experimental data.

SECTION IV PROGRAM DESCRIPTION

The method developed here calculates the viscous flow over a lifting body through the use of an interactive boundary-layer technique in which a three-dimensional panel method is coupled with a finite-difference boundary-layer method. Two distinct boundary-layer procedures have been adopted, the first of which uses a two-dimensional strip theory approach while the second is a quasi-three-dimensional boundary-layer method.

The structure of the code is illustrated in Figure 20, which gives a schematic flow chart of the code. There are three major computational modules required, namely the inviscid panel method, the two-dimensional boundary-layer routines and the quasi-three-dimensional boundary-layer routines. The communication between the potential flow code and the boundary-layer routines is handled through the use of external disk storage.

For a given flow condition the inviscid solution is first computed and the pressure distribution over the wing is saved. If the 2-D boundary-layer mode is selected, this data is separated into strips, and an interactive boundarylayer calculation is performed independently for the upper and lower parts of each lifting strip using the method outlined in Section 2.2.5. Each of these boundary-layer calculations require a number of iterative sweeps over each surface in order to match the current external velocity distribution, given by Eqs. (2.18) and (2.19), with that computed by the boundary-layer equations, (2.47) and (2.48). Once these inner iterations have been completed and the corresponding displacement thickness and blowing velocity has been computed these data are transferred back to the inviscid flow code and the external velocity distribution is updated to incorporate the viscous effects. One complete iteration between the viscous and inviscid codes is referred to as a cycle. Several such cycles are usually performed in order to obtain a fully converged solution in which the computed viscous and inviscid solutions match one another. The precise number of cycles performed is governed either by an input parameter which specifies the maximum number of cycles, or else by a convergence check which is based on the maximum change in a displacement thickness parameter form one cycle to the next. Typically up to 5 cycles may be required for a fully converged solution.

5227H 25

AND THE STATE OF THE PROPERTY
.

A similar procedure is employed for the quasi-three-dimensional boundary layer method with interface routines handling the transfer of the data between the viscous and the inviscid codes. In this case the data required is more extensive than that required for the two-dimensional boundary-layer calculation since surface coordinates and curvatures are required for the complete surface. Therefore, the interface program accesses the velocity data produced by the inviscid calculations, and computes a dividing line separating the upper and lower portions of the wing flowfield. For each surface, a boundary-layer grid is now defined and the geometric surface curvatures and the velocity components are interpolated onto the boundary-layer grid. The quasi three-dimensional boundary-layer procedure now iterates over each surface in a similar fashion to the two-dimensional approach in which the perturbed inviscid velocity is matched with that computed by the boundary-layer equations, (2.42) - (2.46). The computed displacement thickness and blowing velocity is then transferred back to the potential flow code for the next viscous/inviscid cycle.

After a converged solution has been obtained for the first specified angle of attack, the process is repeated for the next angle of attack. However, rather than start the calculation using the purely inviscid potential flow solution, the blowing velocity and displacement thickness computed for the previous angle of attack are used for boundary conditions in the first inviscid flow solution. Therefore, when running multiple angles of attack, the angles should be specified in increasing order. In this way the number of cycles required for a converged solution is reduced, particularly at higher angles of attack when boundary-layer separation can lead to fairly large displacement thicknesses. To take further advantage of this fact, the program may be executed in a restart mode in which data stored by a previous run may be input as a starting solution for the next angle of attack to be computed. After each run, the following two datasets may therefore be saved for use in a subsequent run:

Unit #33 This stores the blowing velocity and the displacement thickness data.

and

Unit #47 This unit stores the geometric coefficients of the airfoil appearing in the interaction formula used in the quasi three dimensional boundary layer method.

Unit #51 - This unit stores the geometric coefficients of the airfoil appearing in the interaction formula used in the
two-dimensional boundary-layer method.

The user can therefore run a range of angles of attack either by specifying all of the angles of attack in one single run, or else as a series of separate runs which make use of the restart capability.

4.1 Input Data Description

4.1.1 Body Geometry

The input to this program consists of the coordinates of a number of points that define the surface of a three-dimensional configuration on which the flow is to be computed. For the purpose of organizing these points for computation, each point is assigned a pair of integers, m and n. These integers need not be input, but their use must be understood to insure the correctness of the input and to facilitate the interpretation of the output.

For each point, n identifies the "column" of points to which it belongs, while m identifies its position in the "column," i.e, the "row." The first point of a "column" always has m = 1. To insure that the program will compute outward normal vectors, the following condition must be satisfied by the input points. If an observer is located in the flow and is oriented so that locally he sees points on the surface with m values increasing upward, he must also see n values increasing toward the right. Examples of correct and incorrect input are shown in Figure 21. In this figure the flowfield lies above the paper, while the interior of the body lies below the paper. Occasionally, it happens that despite all care a body is input incorrectly. If the entire body is input incorrectly - not some sections correctly and some incorrectly - the difficulty can be remedied by changing the sign of one coordinate of all the input points. This trick will give an input body of the proper shape at perhaps a peculiar location. Otherwise, the input will have to be done over.

The body surface is divided into sections, which may be actual physical divisions or may be selected for convenience. A section is defined as consisting of a group of at least two n-lines. Within each section the n-lines

are input in order of increasing n. On each n-line the points are input in order of increasing m. All n-lines in a section must have the same number of points, but this may vary from section to section. The first n-line of the first section is n = 1. From then on the n-lines may be thought of as numbered consecutively through all sections, i.e., the numbering is not begun over at the beginning of each section. Panels will be formed that are associated with points on every n-line except those that are last in their respective sections. Points on these latter n-lines are used only to form panels associated with points on the next lowest n-lines.

To illustrate this procedure, consider the plan view of a body shown in Figure 22. This body has been divided into four sections, as shown in the figure. The first section contains four n-lines, n=1, 2, 3, 4; the second, five n-lines, n=5, 6, 7, 8, 9; the third three n-lines, n=10, 11, 12; and the fourth three n-lines; n=13, 14, 15. The number of points on each n-line are:

Section = $1 \ 2 \ 3 \ 4$ M = $4 \ 7 \ 4 \ 2$

Notice that the line n=4 has only four points, the points m=1, 2, 3, 4 and the m-grid of Section 1, which is listed in the figure along the n=1 line. The lines n=4 and n=5 are physically identical. Some of the points on the two lines are physically identical but correspond to different values of m. This is of no consequence. In this scheme sections are completely independent. No elements are computed corresponding to points on lines n=4, 9, 12, 15.

There is no restriction that the m and n lines of different sections have to be roughly parallel. The arrangement shown in Figure 23 is permissible.

As discussed in Section 2.1, the body is divided into lifting and nonlifting sections. The arrangement of the input requires that all lifting sections precede nonlifting sections with a one-point-per-card format of (3F10.5,2I1) with a maximum of 2000 panels and 100 strips defining the configuration. This data is input to the program through Unit #29. Also, since the boundary-layer calculations can be made for only one lifting section, this section must precede any other lifting sections. The two integers that follow each set of coordinates are the status flag and label flag, respectively, that is

STATUS FLAG	LABEL FLAG
2 - new section	<pre>1 - lifting body, or 0 - nonlifting body</pre>
l - new N-line	(these flags are needed only when STATUS FLAG = 2)
0 - same N-line	
3 - end of input for the whole bod	Y

4.1.2 Namelist Block Input

There are two namelist blocks that contain two groups of input data.

Namelist Name A:

This namelist block consists of all the control flags and flow conditions required to control the interactive viscous calculation.

<u>Variables</u>	Remarks
LIFT3D	<pre>Control flag for the execution of the potential-flow program. = 0 Skip the initial potential flow and execution will start with the boundary-layer code. = 1 Use the potential flow program for every cycle. (default is 1)</pre>
IBL3D	Control flag for executing a boundary-layer program. = 0 Use the two-dimensional boundary-layer program. = 1 Use the quasi-three-dimensional boundary-layer program. (default is 0)
KINKNO	Total number of "kink" stations input ("kink" station means a discontinuity in the planform of the first lifting section). (default is 0, maximum is 5)
MS	Station numbers where "kink" occurs in the planform. The order of these "kink" stations should be in the same order as the spanwise stations input to the Neumann program. They are also part of the input spanwise stations. (default is 0)
MLINE(i)	Number of defining chordwise points on each N-line of the i-th lifting section.
NLINE(1)	Number of defining spanwise points on each M-line of the i-th lifting section.
MAXCYC	Maximum number of interaction cycles. (default is 0)

<u>Variables</u>	Remarks
MAXANG	Number of angles of attack to be calculated. (default is 1, maximum is 10)
IPNTGM	Optional (debug) print flag for the interfacing program. = 0 No intermediate print. = 1 With intermediate print. (default is 0)
IPNTNU	Optional (debug) print flag for the potential flow program. = 0 No intermediate print. = 1 With intermediate print. (default is 0)
IPNTB3	Optional (debug) print flag for the quasi-three-dimensional boundary layer program. = 0 No intermediate print. = 1 With intermediate print. (default is 0)
DBMAX	Maximum difference in circulation values generated from potential flow solution for convergence. (default is 0.01)
ALPHAI	Input angles of attack values. Total number input = MAXANG. (default is 0.0)
АМАСН	Input Mach number. (default is 0.0)

Namelist Name B:

Namelist B contains the geometric variables and control flags which pertain to the potential flow calculation.

<u>Variables</u>	Remarks
BOV2	The semi-span value of the lifting body. (default is 1.0)
IAUTOW	<pre>Automatic wake generation flag: = 1 Program generates bisector wake. = 2 Program generates flat wake, i.e. wake panel is parallel to the x-axis. = 0 User input wake panels. (default is 1)</pre>
IPCV	Chordwise vorticity flag. = 0 Constant vorticity used. = 1 Parabolic vorticity used. (default is 0)

Variables

Remarks

NOTE: This flag controls the form of the predetermined chordwise bound-vorticity variation discussed in Section 2.1. For wings with cusped or thin trailing edges, the constant variation may lead to unrealistic variations in the pressure close to the trailing edge. In such cases, the parabolic variation should be used. Otherwise the constant chordwise option should be used.

ITERAT

Matrix Solution flag.

- = 0 (direct solution for 350 panels or less, otherwise use iterative solution).
- = 1 Iterative solution.
- = 2 Direct solution.

(default is 1)

Note: Iterative solution must be used when viscous calculations are made.

IVNSP

PROPERTY IN THE PROPERTY OF TH

Nonuniform Flow/Specified Normal Velocity flag.

- = 0 No nonuniform flow or blowing velocity.
- = 1 Nonuniform Flow Specified. In the case onset flow velocity components at every control point must be input on Unit 33 in 3Fl0.6 card image format. Otherwise velocity components are computed from freestream flow direction.
- = 2 Nonzero normal velocity condition is specified on some section or sections. If this option is used, then Unit 33 must contain the following data:

1st record: "SECTION k"

Subsequent records: required normal velocity (FORMAT 1F10.6) with 1 record for each control point in the k-th section. These cards are repeated for each section for which nonzero boundary condition is satisfied.

NOTE: These options are only available for a purely inviscid calculation.

LIFSEC

Number of lifting sections input.

NOTE: Boundary-layer calculations can be made for the first lifting body only.

LINEAR

Spanwise vorticity flag.

- = 0 Constant vorticity used.
- = 1 Linear vorticity used. If selected, the variables, NLINE1 and NLINEN must be input.

(default is 0)

NOTE: This flag controls the variation of spanwise vorticity across a given lifting strip. The level on each strip is determined by the Kutta condition as discussed in Section 2.1.

<u>Variables</u>	<u>Remarks</u>
NLINE1(i)	Condition for the first N-line of the i-th lifting section. = 1 The first N-line is the wing tip. = 4 The first N-line belongs to an extra strip or is next to a symmetry plane.
NLINEN(1)	Condition for the last W-line of the i-th lifting section. = 1 The last N-line is the wing tip. = 4 The last N-line belongs to an extra strip or next to a symmetry plane.
LIST	Geometry formation flag. = 0 Complete potential flow calculation modes. = 1 Calculation stop after geometry formation (default is 0)
NOFF	Off-body point flag. = 0 No off-body point input. = 1 Off-body point input. (default is 0) NOTE: Off-body points are points in the flow at which the velocity and pressure are to be computed. If this option is used, the off-body coordinates must be supplied on Unit 32 using 3F10.6 card image format.
NSYM1	First plane of symmetry flag. = 0 No symmetry. = 1 One plane of symmetry (about the x-z plane). (default is 1)
NSYM2	Second plane of symmetry flag. = 0 No second plane of symmetry used. = 1 Symmetry about the y-z plane (NSYM1 must also be = 1). (default 1s 0)
ORIGNX ORIGNY ORIGNZ	The x,y,z coordinates of the input moment origin (default is 0, 0, 0).
NSORCE(1)	Number of on-body panels per strip for the i-th lifting section.
NWAKE(1)	Total number of wake panels input for the i-th lifting section. (If IAUTOW \neq 0, NWAKE \equiv 1)
NSTRIP(1)	Total number of strips in the i-th lifting section.
IXFLAG(1)	Extra strip option input for the i-th lifting section. = 0 No extra strip. = 1 First strip is an extra strip. = 2 First and last strips are extra strips. = 3 Last strip is an extra strip.

	An extra strip is a strip of panels on a lifting on which carries a vorticity distribution but on which
	undary conditions are satisfied. Such a strip is use
	instance at an intersection between a wing and a
	age in order to provide a more accurate carry-over of
	ing lift across the fuselage. In this case the extra
	is internal to the fuselage, and it extends from the
_	root to the fuselage centerline. Further details of
the us	se of extra strips is discussed by Hess [36].

Remarks

REFCHD Reference chord value. (This is needed for the calculation of the lift coefficient.)
(default is 1.0)

RFAREA Reference area value. (This is needed for the calculation

of the lift coefficient.)
(default is 1.0)

4.1.3 Boundary-Layer Calculation Data Input

(a) Card number 1 Format (6F10.0)

Variables

Card Column	Variables		Remarks
1-10	RCx10 ⁻⁶	Reynold	s number based on CREF.
11-20	above. C Reynolds e.g. If t	that ar is need REF is o number i he geome	ce length. In the same physical units e used for the input geometry. not be the same value as REFCHD used nly used to calculate the local n terms of the input coordinates. try is specified in inches, and the t is input, then CREF would be 12.
31-40	FRSTAT	= 1.0	Option for using a previous angle of attack solution as an initial estimate for the current angle of attack calculation. Option not used (or the initial run).
41-50	FPRNT	= 1.0 = 0.0	Detailed boundary-layer print. No boundary-layer print.

(b) Card Number 2 Format (6F10.0)

Card Column	<u>Variables</u>	Remarks
1-10	PNBLU	Number of boundary layer stations at which calculations are made on the upper surface of the first lifting body (max = 100).
11-20	FTRIU	Transition input flag = 0 Transition location specified across the span. See Cards 3 and 4. = 1 Transition calculated by the program at pressure peak. = 2 Transition calculated by the program using Michel's criteria.
21-30	FSWPU	Number of iteration sweeps to be made for the upper surface. (FSWPU = 10.0 is recommended)
31-40	FNTRU	Number of transition locations to be specified. (if FTRIU = 0)

(c) Card number 3 (needed only if FTRIU = 0).
Format (6F10.0)

Card Column	Variables	Remarks
1-10	YTRN	Spanwise location, in the input geometry system, where transition will be specified (this location does <u>not</u> have to correspond to the coordinates used to define the geometry).
11-20	YTRN+1	
51-60	YTRN+5	

(Repeat this card if necessary until 1 = FNTRU.)

(d) Card number 4 (needed only if FTRIDE 0). Format (6F10.0)

Card Column	<u>Variables</u>		Kema	rks
1-10	XCTRN	x/c chordwise transition.	location of	specified.

11-20 XCTRN+1
.
.
.
.
51-60 XCTRN+5

(Repeat this card if necessary until i = FWTRU.)

The following cards, numbers 5, 6 and 7, have the same format as cards 2. 3 and 4 and the variables have the same meaning but correspond to the lower surface.

(e) Card number 5
Format (6F10.0)

Variables FNBLL, FTRIL, FSWPL, FNTRL

FSWPL = 5.0 is recommended.

(f) Card number 6
Format (6F10.0)

and the second of the second o

Variable YTRN

(g) Card number 7
Format (6F10.0)

Variable XCTRN

Note that the chordwise location of specified transition must be preceded by a minus sign when it is being input on the airfoil lower surface.

The cards in this section, (a) through (g), are to be repeated for each angle of attack calculated.

4.2 Output Data Description

4.2.1 Summary

Potential Flow

The following data are printed for the potential flow calculation:

Input flags.

- II. Panel formation.
- III. Matrix solution (by iteration method).
- IV. Solution summary. This includes:

lift coefficient, drag coefficient, pitch, roll, yaw and $\mathfrak n$ values for each lifting and nonlifting section, plus the same set of data for the whole configuration.

- V. Final cycle. For every panel, the following data are printed:
 - . panel number
 - . control point coordinates $-x_0, y_0, z_0$
 - . inviscid velocities v_x , v_y , v_z
 - . inviscid total velocity $\mathbf{V}_{\widetilde{\mathbf{T}}}$ and viscous corrected pressure coefficient Cp
 - . displacement thickness DELS
 - . shape factor H
 - . skin friction CF.

4.2.2 Format

A test case consisting of one lifting and four nonlifting sections with a total of 221 panels, Figure 24, was created to present a sample of the program output, and a listing of this geometry (input through Unit #29) is presented in Table 1. Two angles of attack were calculated with the transition locations on the lifting section computed by the program. The namelist block input for this case is:

```
REPORT TEST CASE, TRANS. CALC., 2DSTRIP BL, M=0.8, ALPHAS
   LIFT3D=1, IBL3D=0
 MAXCYC=2, NLINE=5, MLINE=21,
 MAXANG=2, ALPHAI (1) =1.3, ALPHAI (2) =3.4,
 AMACH=0.8, &END
4B BOY2=12.955, IAUTOH=2, NSYM1=1, LIFSEC=1, REFCHD=8.2912,
 LINEAR=0, IXFLAG(1)=3, IPCV=1,
RFAREA=95.904, NSORCE=20, NSTRIP=4, NHAKE=1, &END
           12.0
                                 0.0
70.0
           2.0
                      10.0
           12.0
                      0.0
                                 0.0
70.Q
           2.0
                      10.0
           2.0
```

For conciseness, the output presented here will be the pertinent information for the first angle of attack only and is shown in Figure 25.

Table 1. Input geometry data for the sample test case.

possession and the second second second second

x y x	775 0.0000000 6.985; 948 0.0000000 6.247; 999 0.0000000 6.159; 999 0.0000000 6.150; 999 0.0000000 6.150; 999 0.0000000 6.150; 999 0.0000000 6.150; 990 0.00000000 6.150; 990 0.0000000 6.150; 990 0.0000000 6.150; 990 0.00000000 6.150; 990 0.0000000 6.150; 990 0.00000000 6.150; 990 0.000000000000000000000000000000000	1.1865621 7.872409
z k ×	7	1.457535 0.0000000 7.437680 3.286806 0.0000000 7.253735
z	8. 22 CDC/ 12. 95 CDC/ 6 6 8 9 8 6 12 4 12 9 5 CDC/ 6 6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	.03788 5.899998 5.47808380 .03788 5.8999998 5.47848330

D
ĕ
2
Ξ
.=
Τ.
ب
⊆
ဥ
\sim
$\mathbf{\mathcal{C}}$
_:
_:
_
e].
Ę.
ble 1.
ğ
Ę.

2	100 (808838	1738472	.74337860	. 35332300	0893668	. 99559020	. 95322040	.75611970	69999790	. 93853761	83150010		5.612U8U6UU	8 FR 4 904 1	81212840	57871070	48608860	4083719	69827581	39640620	37175180	33480830	28024290	54328921	.43510440	.44572350	. 55211260	. 48019030	. 520198	5.558588800 F 666654400	871554AD	60616970	.62337111	63921170	.77570720	.73098180	.65738110	.82408051	. 80082230	.89721680	78186610	.71688810	353290	3748230	1017490	5.681399300	1333800
'n	1518841	5362034	.5333587	.4977627	.3129396	. 4958245	. 6680210	. 2355471	. 8313735	. 000000	.3336649	.7531338	15/4840	9561289.	197288	7481203	1804424	5821130	0000000	.0584173	7316899	1529741	5750989	.0000000	.8409662	.4630432	.9678883	.4829558	. 0000000	.8929741	.4043455	4748038	0000000	.6290388	.3282881	. 8802089	.4509697	. 0000000	. 6295404	. 2827339	. 6504359	. 4332541	. 0000000	3129187	.0792589	75934	0.3865908	. בכנים
×	6666	96666	96666	86666	96666	23989	23998	239999	88862	24000	42842	42965	42834	16.426556	8288	83253	82960	83125	83108	88870	87991	87848	88133	87863	87217	85594	85582	85054	84994	95326	340	73056 93353	93348	43809	42143	41694	41665	41734	77305	77305	77305	30.773071	0.77305	96666	5.99998	5.99998	35.999969	6. ccccc
	0.0	35	,	8	0	8	0	0	0	0	0	0	o	0 (.	3 C) C) C) C	o c	o c	. c	o c	, c					0	0	8	0 (.) C		10	0	0	8	0	. 0		0	0	0	0	0	
2	621363	11848111 8288703	8894501	5143	.8773920	. 3914881	. 8485309	. 3022871	.75777	. 21358	. 00148	. 98561	. 89693	8.687146200	. 23442	200/.	73587	225R7	9579	4000	7000	400001	9859843	4734249	9734344	4728639	.9717769	9238348	8393784	. 6406097	24440	.8270788	84 DE 440	2996111	7891655	.9183884	8279037	.8228854	. 2855277	.8348109	3386363	833274	.3279839	. 8229733	. 8900003	16467	423454	
>	6478	00000	54301	.07259	. 60524	.03926	049879	.040748	. 032900	.038059	.000000	. 509124	1.014339		, ,	4 .	4.021			֓֞֞֜֜֞֜֜֜֜֓֓֓֜֜֜֜֜֜֜֜֓֓֓֜֜֜֜֜֜֓֓֡֓֜֜֜֜֜֡֓֓֓֡֡֡֡֡֓֜֡֡֡֡֡֡		11000.	. 516/3 KB2B3	473R9	67881	69102	. ש	0000	. 50352	.97184	. 332149	1.58277	1 62/082 1 62/0883	1.627821	1.616402	0.00000	0.49705	0	1.30854	1.570012	1.847271	.641370	.638677	.629550	.00000	. 428	. 820057	
×	. 8283	6.6466 0 8988	9088	0.90558	0.90385	0.90699	0.69691	0.88711	0.86435	0.69202	3.8968	3.90284	۳. ص	23.901718		, c	,				0.0/410 0.07000	0.07 E.30	0.00343 8 95724	8 95971	8 95723	8.95936	8.96976	8.43298	8.43551	8.43382		6.420 420	123	. 6	8.442	0.761	0.761	0.761	0.781	0.761	0.781	0.78	0.781	0.761	8.00000	8.8	96666.3	
2	422977	000000000000000000000000000000000000000	8768	69666	8	172776200	626779800	287037800	763385800	156061100	521931400	3072	11126				1441	38.0	03885	517	00001/100	8978B	766662		548899	71403	8578	191214600	3642	8239	3442	93905710	9542200	8256	6100	. 290433900	308	118317600	298050	8472	30	57445	01623	244084	8492550	751204	.067986500	
>>		. 04/000040	5897084	000	. 0000000	. 5272308	.7217981	. 158	.4484529 7	4819241 7	.4360714	.1543350 6	.8007850		•	9817892	404888	328 7	. ^	4770479	1558982	•			5253173	10979691	.5787401	. 23721	.76716	.8483087	8114061	. 4954042 G	6114895	1782858	.687045	4	.478550	.4784088 7.	.4915514	. 33359	0000000	. 6015	.187874	.7537479	. 2591143	.271151	. 27064	
×	0.0400000 1		0400000	0400000	. 470000	470000	~	470000		70000	470000	\sim	2000	1.470000 0	3.240000		4000	3 240000 1		•		1000	4000	240000	38986	39998	39996	39998	39998	. 239998	3999	429498	428988	427963	7	.428437	. 432297		5522	. 428421	0948	09.40	9712	57	6	32809	0236	

5227Н 38

4.3 External Units

There are a total of 50 external units required although they are not simultaneously used. A list of the unit numbers and types follows:

1. Direct access data sets:

- Unit #20 400 records, each 200 words long potential flow velocity
- Unit #61 3280 records, each 990 words long used for quasi-3-D boundary-layer program
- Unit #62 41 records, each 990 words long used for quasi-3-D boundary-layer program
- Sequential data sets: This includes units 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 38, 39, 40, 41, 42, 43, 44, 45, 56, 47, 51, 63, 64, 65, 66, 67.
 Unit #29 is the geometry data set for the input body. These datasets are used both for the inviscid velocity calculation and for the communication between the viscous and the inviscid parts of the

3. Datasets required to be saved:

calculation.

- Unit #34 This unit contains the inviscid velocities and control points.
- Unit #33 This unit contains the blowing velocities and the displacement thickness values for viscous/inviscid interactive runs.
- Unit #51 This unit contains some input data to the 2-D boundary-layer program.
- Unit #47 This unit contains the blowing velocities from the 3-D boundary-layer program.

4.4 CRAY JCL

An example of the JCL required for the execution of the program on CRAY using the two-dimensional strip theory boundary-layer procedure, follows.

Example 1 is for an initial calculation with the appropriate data saved for

subsequent runs and example 2 shows how the previously saved data is used to make additional calculations.

Baample 1

```
JOB, JN=xxxxx ,T=900,MFL=2000000.
ACCOUNT, US = XXXXXX , UPW = XXXXX , AC = XXXXXXXX
COPYF, I=$IN, O=INPUT. COPY INPUT FILE
REWIND, DN=INPUT.
COPYF, I=$IN, O=GEOM. COPY INPUT FILE
REWIND, DN=GEOM.
ACCESS, DN=KCMCAIR, PDN=KCMCAIRCRAY, ID=OBJLIB.
STATIC, LEVEL = NEW.
BUILD, I = 0, L = 0, OBL = KCMCAIR, B = 0, NBL = MCARBIN, NODIR.
                                                          CREATE SEQUENTIAL BIN
                             ALLOCATE APPROPRIATE FILES
ASSIGN, DN=INPUT, A=FT05.
ASSIGN, DN=$OUT, A=FT06.
ASSIGN, DN=GEOM, A=FT29
ASSIGN, DN=FILE34, A=FT34.
ASSIGN, DN=FILE33, A=FT33.
ASSIGN, DN=FILE51, A=FT51.
MODE, FI = DISABLE.
SEGLDR, CMD= 'BIN=MCARBIN'.
                               LINK BINARIES
SABD. EXECUTE LOAD MODULE
                                                                                 saved for
SAVE, DN=FILE34, PDN=INVELNEW.
                                   SAVE OUTPUT DATASET FOR THE NEXT CAL.
                                                                                 future
SAVE, DN=FILE33, PDN=BLOW2DNEW.
                                                                                 runs
SAVE, DN=FILE51, PDN=BL2DINPNEW.
EXIT.
/EOF
F15 WITH LAMINAR BUBBLE WING, MULTIPLE ALPHAS, M=0.6
8A LIFT3D=1,IBL3D=0,MAXCYC=2,MLINE=51,NLINE=14,
  MAXANG=2, ALPHAI(1)=6.95, ALPHAI(2)=8.95, AMACH(1)=0.60,
  AMACH(2)=0.6,8END
 &B BOV2=13.008, IAUTOW=2, NSYM1=1, LIFSEC=1, NSTRIP=13,
                                                                                 input
  IXFLAG(1)=3, NSORCE=50, NWAKE=1, RFAREA=96.7, REFCHD=8.325, &END
                                                                                 data set
            8.325
                        0.0
 6 022
                                   0.0
                        10.0
 61.0
            2.0
                                   0.0
 51.0
            2.0
                        5.0
                                   0.0
 6.022
            8.325
                        1.0
                                   0.0
 61.0
            2.0
                        10.0
                                   0.0
 51.0
            2.0
                        5.0
                                   0.0
/EOF
 32.966003 13.008000 5.949856821
 32.924698 13.008000 5.950995400
 32.863266 13.008000 5.952991500
 32.782425 13.008000 5.956209200
 32.683380 13.008000 5.959699600
 32.567581 13.008000 5.961723300
                                                                                 geometry
                                                                                 data set
 43.000000 1.3186102 5.600000400
 43.000000 0.5522600 5.600000400
43.000000 0.1862400 5.600000400
 43.000000 0.0000000 5.600000400
/EOF
```

Example 2

```
JOB, JN=*xxxxx ,T=1200,MFL=2400000
ACCOUNT, US=XXXXXXX , UPM=XXXXXXX , AC=XXXXXXXXX
COPYF, I=$IN, O=INPUT. COPY INPUT FILE
REWIND, DN=INPUT.
COPYF, I = $IN, O = GEOM. COPY INPUT FILE
REWIND, DN=GEOM.
*. ACCESS PERMANENT DATASETS
ACCESS, DN=KCMCAIR, PDN=KCMCAIRCRAY, ID=OBJLIB.
                                                                                       data from
ACCESS, DN=DUMMY34, PDN=INVELNEW.
                                                                                       previous
ACCESS, DN=DUMMY33, PDN=BLOW2DNEW
ACCESS, DN = DUMMY51, PDN = BL 2DINPNEW
                                                                                       run
                         COPY DATASETS
                         COPY FILE34
REWIND, DN = DUMMY34.
COPYR, I = DUMMY34, O=FILE34, NR.
REWIND, DN=FILE34.
                        COPY FILE33
REWIND, DN=DUMMY33.
COPYR, I=DUMMY33, O=FILE33, NR.
REWIND, DN=FILE33.
                        COPY FILE51
REWIND, DN = DUMMY51.
COPYR, I = DUMMY51, O=FILE51, NR.
REWIND, DN=FILE51.
STATIC, LEVEL=NEW.
BUILD, I=0, L=0, OBL=KCMCAIR, B=0, NBL=MCARBIN, NODIR.
                                                            CREATE SEQUENTIAL BIN
ASSIGN, DN=INPUT, A=FT05.
                              ALLOCATE APPROPRIATE FILES
ASSIGN, DN=$OUT, A=FT06.
ASSIGN, DN=GEOM, A=FT29
ASSIGN, DN=FILE34, A=FT34.
ASSIGN, DN=FILE33, A=FT33.
ASSIGN, DN=FILE51, A=FT51.
MODE, FI = DISABLE.
SEGLDR, CMD= "BIN=MCARBIN".
                                LINK BINARIES
         EXECUTE LOAD MODULE
SABD.
                                                                                      saved for
SAVE, DN=FILE34, PDN=INVELNEW.
                                    SAVE OUTPUT DATASET FOR THE NEXT CAL.
                                                                                      future
SAVE, DN=FILE33, PDN=BLOW2DNEW
SAVE, DN=FILE51, PDN=BL2DINPNEW.
                                                                                      runs
EXIT.
/EOF
F15 WITH LAMINAR BUBBLE WING, MULTIPLE ALPHAS, M=0.6
&A LIFT3D=1,IBL3D=0,MAXCYC=2,MLINE=51,NLINE=14,
  MAXANG=2,ALPHAI(1)=7.95,ALPHAI(2)=8.95,AMACH(1)=0.60,
AMACH(2)=0.6,&END
 &B BOV2=13.008, IAUTOW=2, NSYM1=1, LIFSEC=1, NSTRIP=13,
                                                                                       input
  IXFLAG(1)=3, NSORCE=50, NWAKE=1, RFAREA=96.7, REFCHD=8.325, &END
                                                                                      data set
             8.325
                         1.0
                                    0.0
 6.022
 61.0
             2.0
                         10.0
                                    0.0
 51.0
                         5.0
                                    0.0
             2.0
             8.325
                                    0.0
 6.022
 61.0
             2.0
                         10.0
                                    0.0
 51.0
             2.0
                         5.0

∠EOF

 32.966003 13.008000 5.949856821
 32.924698 13.008000 5.950995400 32.863266 13.008000 5.952991500
 32.782425 13.008000 5.956209200
                                                                                      geometry
                                                                                      data set
 43.000000 0.5522600 5.600000400
 43.000000 0.1862400 5.600000400
 43.000000 0.0000000 5.600000400
∕E0F
```

SECTION V TEST CASES

Three test cases were investigated: (1) F-15 with laminar bubble wing, (2) Advanced Navy Fighter (ANF), and (3) unmodified F-15.

5.1 Test Case 1 - F-15 with Laminar Bubble Wing

The coordinates of the geometry for test case 1 are given in model scale (4.7%) in inches. 1084 panels defined this configuration with 600 of them describing the wing, as shown in Figure 26. All of the calculations use the symmetry option of the program so that the given number of panels are for only half the configuration.

Inviscid and viscous calculations for Case 1 were made to compare with test data [32] at a Mach number $\simeq 0.6$, Rc $\simeq 8.5 \times 10^6$ /ft and a range of angle of attack from 6.84° through 15.83° . Viscous solutions were calculated by both the two-dimensional strip theory boundary layer and the quasi-three-dimensional boundary-layer procedures, and the location of transition was calculated by the program using Michel's criterion.

The input required to execute the two-dimensional strip theory boundary-layer procedure for case 1 was:

- 1. A data set, Unit 29, Format (3F10.0, 2I1), containing the x,y,z coordinates of the geometry, and
- 2. A data set, Unit 5, containing the flags, geometry and flow parameters, and boundary-layer parameters.

If more calculations are desired for additional, higher angles of attack, the results of the calculations of a lower angle of attack may be used for the initial guess for these calculations. The data saved on units 33 and 51 from

42

the first calculation is now used as input for the additional calculations and the namelist block input will appear as:

```
F15 WITH LAMINAR BUBBLE WING, MULTIPLE ALPHAS, M=0.6
 &A LIFT3D=1, IBL3D=0, MAXCYC=2, MLINE=51, NLINE=14,
  MAXANG=2, ALPHAI (1) =10.75, ALPHAI (2) =12.95,
 AMACH=0.8, &END &B BOY2=13.008, IAUTOW=2, NSYM1=1, LIFSEC=1, NSTRIP=13,
  NSORCE=50, NWAKE=1, RFAREA=96.7, REFCHD=8.325, &END
                                   0.0
            8.325
                       1.0
 8.022
 61 . O
            2.0
                       10.0
                       5.0
 51 . O
            2.0
 6.022
                                   0.0
            8.325
                       1.0
 61.0
            2.0
                        10.0
 51.0
            2.0
                        5.0
```

To execute the program using the quasi-three-dimensional boundary-layer procedure, the input is identical to that of the two-dimensional strip theory boundary-layer procedure with the exception of the following flags in Namelist A: IBL3D = 1, INTF = 1.

5.2 Test Case 2 - Advanced Navy Fighter (ANF)

Geometry data for the Advanced Navy Fighter consisted of 6% model scale coordinates given in inches. The configuration (Figure 27) was defined by approximately 1200 panels which provided for 360 panels to describe the wing and 192 panels to describe the canard. Since the boundary-layer effects can be calculated on only one lifting section, this configuration was first run without the canard (Figure 27a) and the results were compared with experiment (Figures 15 and 16). Calculations with the canard on (Figure 27b) were then made and the effect was compared with the canard off case (Figure 17).

Because the wing is mounted so low on the fuselage the wing extra strip would protrude through the fuselage if it were defined as a continuation of the wing to the centerline as is usually done. Therefore the extra strip was tilted "up" so that it fell completely inside the fuselage so as not to change the fuselage geometry. See Figure 28.

Calculations for test case 2 were made for M = 0.5988, $R_L = 7.0 \times 10^6 / \mathrm{ft}$, $C_L = 0.45$ and $\alpha = 7.7182^\circ$ to compare pressure data given in Reference 34. Viscous solutions were obtained with the strip theory boundary-layer procedure being used to calculate the viscous effects. As in test case 1, the

transition location was calculated by the program using Michel's criterion. The namelist block input for this case was:

```
ANF. NO CANARD., TRANS. CALC., 2DSTRIP BL, M=0.6
   LIFT3D=0, IBL3D=0
MAXCYC=2, NLINE=8, MLINE=51,
MAXANG=1, ALPHAI(1)=7.7182, AMACH=0.6, &END
&B BOY2=12.955, IAUTOW=2, NSYM1=1, LIFSEC=1, REFCHD=8.2912,
LINEAR=O, IXFLAG(1)=3, IPCY=1,
RFAREA=95.904, NSORCE=50, NSTRIP=7, NWAKE=1, &END
          12.0
                     0.0
                                0.0
7.0
70.O
          2.0
                     10.0
          2.0
                     5.0
51.0
```

A series of calculations at various angles of attack were made to compare the calculated and experimental lift coefficients for the canard-off case. These calculations were repeated for the configuration with the canard to compare the calculated effect of the canard. The namelist block input for the configuration with canard for multiple angles of attack was:

```
ANF. CANARD., TRANS. CALC., 2DSTRIP BL, M=0.6, MULT. ALPHAS
    LIFT3D=1, IBL3D=0
 MAXCYC=2, NLINE=8, MLINE=51,
 MAXANG=6, ALPHAI(1)=1.3, ALPHAI(2)=3.4, ALPHAI(3)=4.7, ALPHAI(4)=6.0, ALPHAI(5)=7.7182, ALPHAI(6)=9.2, AMACH=0.6, &END
4B BOY2=12.955, IAUTOW=2, NSYM1=1, LIFSEC=2, REFCHD=8.2912,
 LINEAR=0, IXFLAG(1) =3, IXFLAG(2) =3, IPCV=1, RFAREA=95.904
 NSORCE (1) =50, NSORCE (2) =48, NSTRIP (1) =7, NSTRIP (2) =5, NWAKE (1) =1,
 NHAKE (2) =1, &END
            12.0
                                    0.0
7.0
                        0.0
70.0
            2.0
                        10.0
51 . D
            2.0
                        5.0
7.0
            12.0
                        0.0
                                    0.0
70.0
            2.0
                        10.0
            2.0
                        5.0
51.0
7.0
            12.0
                        0.0
                                    0.0
70.0
            2.0
                        10.0
51.0
            2.0
                        5.0
7.0
                                    0.0
            12.0
                        0.0
70.0
            2.0
                        10.0
51.0
            2.0
                        5.0
            12.0
                                    0.0
7.0
                        0.0
70.0
            2.0
                        10.0
51 . O
            2.0
                        5.0
                                    0.0
7. D
            12.0
                        0.0
70.0
                        10.0
            2.0
51 . D
            2.0
                        5.0
```

5.3 Test Case 3 - Unmodified F-15

The unmodified F-15 geometry coordinates were full scale in inches. This configuration [35] was defined by 981 panels, 450 of which described the wing (Fig. 29). The wing is mounted high on the fuselage and as in the case of the Advanced Navy fighter configuration, the extra strip had to be tilted, in this case "down", so as not to protrude through the top of the nacelle. Figure 30 shows the arrangement of the panels on the wing used in the calculations of

test case 3. The measured data was obtained with a sting-mounted fuselage/wing configuration which included the vertical tail. The computed results, however, were for a configuration without the vertical tail.

Viscous and inviscid calculations were made for this configuration to compare with experiment [35] at M = 0.6, R_L/ft = 5.78 x 10 for a range of angle of attack, 2.21° $\leq \alpha \leq 8.66$ °. The two-dimensional strip theory boundary-layer procedure was used in the interaction calculation to compute the viscous results. The namelist block input for test case 3 follows:

NEW F15 CONFIGURATION, M=0.8, STRIP2D BL, TRANSITION INPUT &A LIFT3D=1, IBL3D=0, MAXCYC=2, NLINE=11, MLINE=61, MAXANG=2, ALPHAI (1) =4.38, ALPHAI (2) =6.51, AMACH=0.6, KINKNO=1, MS=6, &END 4B BOY2=256.20, IAUTOW=2, NSYM1=1, LIFSEC=1, IXFLAG(1) = 3, IPCY=1, REFCHD=191.23, RFAREA=43776., NSORCE=60, NSTRIP=10, NHAKE=1, &END 4.33 191.23 0.0 0.0 71.0 0.0 10.0 8.0 254.D 220.0 185.0 15D.D 115.0 80.0 0.05 0.05 0.05 0.05 0.05 0.05 81.0 0.0 5.D 6.0 254.D 220.0 185.0 150.0 115.0 80.0 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05 4.33 191.23 1.0 0.0 71.0 0.0 10.0 6.0 80.0 254.D 220.0 150.0 115.0 185.0 D. 05 0.05 0.05 0.05 0.05 0.05 61.0 0.0 5.0 6.0 254.0 220.0 185.0 150.0 115.0 80.0 -0.05 -0.05 -0.05 -0.05 -0.05 -0.05

5227H 45

reference teachers benesteed intracted sources

SECTION VI CONCLUSIONS AND RECOMMENDATIONS

An interactive viscous/inviscid procedure has been developed for the computation of viscous flow over 3-D wing/body configurations. The method developed makes use of a three-dimensional surface-source panel method developed by Hess [11] and an inverse finite-difference boundary-layer procedure of [6].

Two alternative boundary-layer formulations have been considered, the first is a two-dimensional strip theory implementation [4] and the second [10] is a quasi-three-dimensional boundary-layer method. These procedures have been coupled with the external potential flow calculation via an interface routine which handles the necessary interpolation and transfer of data between the viscous and the inviscid parts of the calculation.

The present method is able to compute flows with both leading—and trailing—edge separations. In most of the cases considered here, the calculations were performed by computing transition by an empirical formula, which, at higher angles of attack, resulted in a separated region as much as 35% upstream of the trailing edge. However, at the conditions approaching stall, a small change in transition location led to regions of massive flow separation on the wing, which the present method handled without any numerical difficulties.

The studies conducted here indicate that at lower angles of attack there is very little difference between the results computed by either of the two boundary-layer procedures. However, at higher angles of attack, for which there are significant regions of flow separation, the quasi-three-dimensional boundary-layer procedure has been found to provide a useful improvement in the results when compared with the experimental data.

The inviscid method used here is general and can be applied to complex aircraft configurations. The viscous effects, however, are limited to the wing alone with some approximations. For example, the use of either two-dimensional strip theory or the quasi-three-dimensional boundary-layer approximation is satisfactory at low to medium angles of attack. At higher angles

of attack, the flow becomes "more" three dimensional and the calculations should use the complete equations. Furthermore, the effect of the viscous wakes neglected in the solution procedure also becomes important at higher angles of attack and needs to be included in the solution procedure.

The viscous capabilities of the present computer code can also be extended to the other components of the airplane configurations to include, for example, multiple lifting sections, as well as the fuselage and other nonlifting components.

SECTION VII REFERENCES

- J. S. Shang, and S. J. Scherr, <u>Navier-Stokes Solution of the Flow Field</u>
 Around a Complete Aircraft. AIAA Paper 85 1509, 1985.
- B. R. Gilmer, and D. R. Bristow, "Analysis of Stalled Airter's by Simultaneous Perturbations to Viscous and Inviscid Equations." AIAA 2 20, 1982, pp. 1160-1166.
- 3. G. Maskew, and F. A. Dvorak, "Investigation of Separation Models for the Prediction of C. ." J. Am. Helicopter Soc. 23. 1408, pp. 18.
- 4. T. Cebeci, R. W. Clark, K. C. Chang, N. D. Halsey, and K. Lee. "Airt or with Separation and the Resulting Wakes," J. Fluid Mechanics, 163, 1486. pp. 323-347.
- N. D. Halsey, "Potential Flow Analysis of Multielement Airfuils Osinal Conformal Mapping," AIAA J. 17, 1979, pp. 1281-1288.
- 6. T. Cebeci, <u>Separated Flows and Their Representation by Boundary Layer Equations</u>, <u>Mech. Engg. Dept. Rept. ONR CR215-234-2, California State</u>
 University, Long Beach, 1976.
- 7. T. Cebeci, and A.M.O. Smith, <u>Analysis of Turbulent Boundary Daymon</u>
 Academic Press, N.Y., 1974.
- 8. T. A. Reyhner, and I. Flugge Lotz, "The Interaction of a Grack wave with a Laminar Boundary Layer," Int. J. on Nonlinear Mechanical 173-199.
- 9. U. Mehta, K. C. Chang, and T. Ceberi. "Relative Advantages in Association and Thin Navier Stokes Procedures." In Numerical and Physical Association
- 10. T. Cebeci, K. Kaups, and A. A. Khattab, <u>Studies of Interactive Procedures</u> for Three <u>Dimensional Flows</u>. <u>Pt. 1, Separation and Reattachment Near the Leading Edge of a Thin Wing</u>. Douglas Aircraft Co. Rept. MDC J3835, 1985.
- 11. J. L. Hess, "The Problem of Three Dimensional Lifting Flow and Its Solution by Means of Surface Singularity Distribution," Comp. Meth. in Appl. Mech. and Engg. 4, 1974.
- 12. R. J. Margason, S. O. Kjelgaard, W. L. Sellers, III, C. E. K. Morris, Jr., K. B. Walkley, and E. W. Shields, <u>Subsonic Panel Methods - A</u> <u>Comparison of Several Production Codes</u>, AIAA Paper No. 85-280, 1985.
- J. L. Hess, and A. M. O. Smith, "Calculation of Nonlifting Potential Flow About Arbitrary Three Dimensional Bodies," J. Ship Research, Vol. 8, No. 2, 1964. (An expanded version is given in Douglas Aircraft Company Report No. ES 40622, 1962.)
- 14. R. W. Clark, <u>A New Iterative Matrix Solution Procedure for</u>
 Three-Dimenisonal Panel Methods, AIAA Paper No. 85-0176, 1985.
- 15. P. G. William, "A Reverse Flow Computation in the Theory of Self-Induced Separation," Proc. 4th Int. Conf. Numer. Meth. Fluid Mech., Lecture Notes in Phys. 35, 1975, p. 445.
- 16. P. Bradshaw, T. Cebeci, and J. H. Whitelaw, <u>Engineering Calculation</u>

 Methods for <u>Turbulent Flow</u>, <u>Academic Press</u>, <u>London</u>, 1981.
- T. Cebeci, "Calculation of Unsteady Two-Dimensional Laminar and Turbulent Boundary Layers with Fluctuations in External Velocity," Proc. Royal Soc. London, Series A 355, 1977, pp. 225-238.
- 18. J. C. LeBalleur, "Couplage Visqueux Non Visquex: Methode Numerique et Applications Aux Ecoulements Bidimensionnels Transsonique Set Supersoniques," Le Recherche Aerospatiale, No. 1978 2, 1978, pp. 65-76.
- 19. J. E. Carter, A New Boundary Layer Inviscid Iteration Technique for Separated Flow, AIAA Paper 79 1450, 1979.

- 20. J. E. Carter, <u>Viscous-Inviscid Interaction Technique for Separated Flow</u>, AIAA Paper 81-1241, 1981.
- J. E. Carter, and V. N. Vasta, <u>Analysis of Airfoil Leading-Edge</u>
 <u>Separation Bubbles</u>, <u>NASA Contractor Rept. 165935</u>, Contract NAS1-16585,
 1982.
- 22. J. C. LeBalleur, "Numerical Viscid-Inviscid Interaction in Steady and
 Unsteady Flows," In <u>Numerical and Physical Aspects of Aerodynamic Flows</u>
 11 (Ed. T. Cebeci), Springer-Verlag, N.Y., 1984.
- 23. A. E. P. Veldman, "New Quasi-Simultaneous Method to Calculate Interacting Boundary Layers," AIAA J. 19, 1981, p. 769.
- T. Cebeci, and P. Bradshaw, <u>Momentum Transfer in Boundary Layers</u>, McGraw-Hill/Hemisphere, 1977.
- 25. M. J. Nituch, S. Sjolander, and M. R. Head, "An Improved Version of the Cebeci-Smith Eddy-Viscosity Model," Aero. Quarterly XXIX, 1978.
- 26. M. R. Head, "Eddy Viscosity in Turbulent Boundary Layers," Aero. Quarterly XXVII, 1976.
- 27. A. Nakayama, <u>Measurements in the Boundary Layer and Wake of Two Airfoil</u>
 <u>Models</u>, Douglas Aircraft Co. Rept. MDC J2403, 1982.
- 28. R. L. Simpson, Y. T. Chew, and B. G. Shivaprasad, "The Structure of a Separating Turbulent Boundary Layer. Pt. 1, Mean Flow and Reynolds Stresses," J. Fluid Mech. 113, 1981, p. 23.
- 29. T. Cebeci, and P. Bradshaw, <u>Physical and Computational Aspects of Convective Heat and Momentum Transfer</u>, Springer Verlag, New York, 1984.
- 30. D. A. Lovell, A Wind Tunnel Investigation of the Effects of Flap Span and Deflection Angle, Wing Planform and a Body on the High Lift Performance of a 28° Swept Wing, RAE CP 1372, 1977.

- 31. L. P. Yip, and G. L. Shubert, <u>Pressure Distributions on a 1- by 3-Meter Semispan Wing at Sweep Angles from 0° to 40° in Subsonic Flow</u>, NASA TN D-8307, 1976.
- 32. K. B. Tatum, and J. Pavelka, <u>Wind Tunnel Pressure Distribution Test</u>

 Results of Short Laminar Separation Bubble Wing Design, PSWT Test 409,

 Rept. No. MDC A5983, 1979.
- 33. L. T. Chen, J. C. Vassberg, and C. C. Peavey, <u>A Transonic Wing-Body</u>
 <u>Flowfield Calculation with Improved Grid Topology and Shock Point</u>
 <u>Operators</u>, AIAA Paper 84-2155, 1984.
- 34. J. S. Althuis, <u>Close Coupled Canard-Wing Interactions on Panel Loads</u>
 <u>Series I</u>, McDonnell Douglas Corp. Preliminary Report MDC IR0184, 1985.
- 35. R. M. Anderson, <u>Wind Tunnel Test on the 4.7 Percent Scale F-15 Model in</u> the <u>McDonnell Douglas Polysonic Wind Tunnel, Tests PSWT 281 and 286</u>, Vol. I and II. McDonnell Douglas Corp. Report MDC A0974, 1971.
- 36. J. L. Hess, <u>Calculation of Potential Flow about Arbitrary Three-</u>
 <u>Dimensional Lifting Bodies</u>, McDonnell Douglas Corp. Report No. MDC

 J5679-01, 1972.

Figure 1. Wing/body configuration.

Figure 2. Effect of alternate Kutta conditions.

Figure 3. Effect of wake on the separation region and displacement thickness for the NACA 0012 airfoil, $R_{C} = 6.0 \times 10^{6}\,.$

Service Services

23/10/20 ... 33/2/1/20

PARTIE DEPOSITE RECEIPED BESIDES RECECCES RECEIPED

Figure 4. Notation for nonorthogonal curvilinear coordinate system on the body surface. Note that x and z are not orthogonal to each other but y is to x and z.

Figure 5. Comparison of computed and experimental lift curves for the RAE wing.

Figure 6. Effect of transition location on flow separation, displacement thickness and lift distribution for the RAE wing, $\alpha = 17.5^{\circ}$.

Figure 7. Computed transition location, flow separation, displacement thickness and lift distribution for the RAE wing, $\alpha = 18.5^{\circ}$.

Figure 8. Leading and trailing edge separation location for the RAE wing, α = 17.5°.

Figure 9. Computed viscous and inviscid lift curve for the NACA 0012 swept wing.

Figure 10. Comparison of calculated and experimental pressure distribution on the NACA 0012 swept wing, α = 19.35°.

Figure 11. Effect of transition location on flow separation, displacement thickness and lift distribution for the NACA 0012 swept wing, $\alpha = 21.12^{\circ}$.

Figure 12. Comparison of 2-D strip theory and quasi-3-D methods for the F-15 fighter with laminar bubble wing.

Figure 13. Comparison of the calculated and experimental pressure distribution for the F-15 with laminar bubble wing, α = 10.75°. Insert shows the chordwise variation of displacement thickness as calculated by the 2-D strip theory and the quasi-three-dimensional boundary-layer methods. (a) 38% semispan. (b) 58% semispan.

Figure 13. (Continued) (c) 88% semispan.

Figure 14. Comparison of the mid-semispan pressure distribution obtained by the panel method and the transonic flow method for the F-15 with laminar bubble wing, M = 0.6. (a) α = 6.84°.

Figure 14. (Continued) (b) $\alpha = 10.75^{\circ}$. (c) $\alpha = 12.95^{\circ}$.

Figure 15. Comparison of computed and experimental lift curves for the ANF wing/body configuration.

Comparison of computed and experimental pressure distribution for ANF wing/body configuration, $\alpha=7.7^{\circ}$, M = 0.6. (a) 22.71 semispan. (b) 34.5% semispan. Figure 16.

Fragues of the control of the form of the control o

Effect of canard on the calculated lift curve of the ANF wing/body configuration, M = 0.6.

Figure 18 . Comparison of computed and experimental lift curves for the unmodified F-15.

Figure 19. Comparison of computed and experimental pressure distribution for the unmodified F-15, $\alpha = 8.66^{\circ}$, (a) 36.2% semispan.

Figure 19. (Continued) (b) 58.7% semispan. (c) 86.2% semispan.

Figure 20. Flow structure of three-dimensional viscous/inviscid interaction program.

Figure 21. Examples of correct and incorrect input.

Figure 22. Plan view of the input points on a body divided into sections.

Figure 23. Another possible division into sections.

Figure 24. Arrangement of panels for the sample test case.

APR 15, 1986

SACRET

See describe accesses someone someone accesses seems

Authut from the sample test case Figure 25.

TUESDAY, APR 15, 1986	ALPHA = 1.50 MACH = 0.6000 VISCOUS/INVISCID CYCLE NO.						3 RUN.)		PONENTS	0.0 0.022687	
SCOUS-INVISCID INTERACTIVE	REPORT TEST CASE, TRANS. CALC., 20STRIP BL, M=0.6, ALPHAS Input Data	INPUT FLAGS	ICYCLE = 0 12.95500 BDV2 = 12.95500 CIVAL = 0.0 HGND = 0.0	IDULT H I I I I I I I I I I I I I I I I I I	 MAXCYC # 2 MPR # 0 N(R # 0 NOFF # 0	0	RUN MODE = 0 (0=INITIAL RUN. 1=BLOMING	NSORCE = 20 NMAKE = 1 NSTRIP = 4 IXFLAG = 3	INPUT UNIFORM ONSET FLOMS IN DEGS AND COMPONENTS	(1) DEG 1.299999 COMPONENTS 0.999743	

ROOM ROOM MAN BEAR CO.

CASE TITLE:

PAGE

Figure 25. (Continued) Output from the sample case.

•	000	A E		861
, 198		ROJEC	」 アファロススロファルはロアフィスタストファ ターアフェムアンスタアスタタムはアカスタタ	0.914
PR 15	ACH =	E N	$egin{array}{cccccccccccccccccccccccccccccccccccc$	470
₹	SCID	AXIM		4.083
UESDAY,	INNI	E	$egin{array}{cccccccccccccccccccccccccccccccccccc$	60
TUE	PHA =	. W - 1	000000000000000000000000000000000000	.0018
	VIS	AR		2 0
		ZN		6966
		ָר <u>י</u>		1 -0
		Z>		.0020
		0		0
		Z	Company Comp	07834
E :	ı	<u></u>		0
ROGRA	S A	2.8	○ むログロもとのかどころくりからしてい りのをからするできている こく りログロのかいこう いくしん でいる しょく くくもだん こうしょく しょく しょく はいいい しょく	65365
1VE P	ALP.		ကြို့ တို့ တို့ တို့ တို့ တို့ တို့ တို့ တ	ini
ERACT	=0.6, ANTIT	S	0 000000000000000000000000000000000000	62853
I X I	£3	u ¦		-
CID	PB	-	4 ADMANDERDORD MARKANANNA BOOKE BOOKE AND WIND TO BOOK I	55
NVIS	STRI ED P		 พักษ์อักษ์อักษ์อักษ์อักษ์อักษ์อักษ์อักษ์อ	907
I-SO	2 D UT	, —	00000000000000000000000000000000000000	28
SCO	20	z :		1112
ΩΛI	AND		ครั้งคลั้งแทนสัสสุทย์แข้งคลั้งครั้งครั้งครั้งครั้งครั้งครั้งครั้งคร	5.65
~	RANS	- 1		
	SE. T			7 0 0 0
	T CA ORNE	1		S
	TES L C			05
	PANE	X	- これできょうない これできない これできない これできる はっちゅうきゅうきゅう これできる ないこう ない これできる はっちょう しょうしょう しょう はい しょう はい	026
	REP PUT	<u> </u>	ที่ เกิดเดือนกับสิ่นได้เป็นสิ่นใน เดินได้เป็นสิ่นใน เดินได้เป็นสิ่นใน เดินได้เป็นเป็น เ	53
	7	w×.	-	
~	111	21	. Q. — — — — — — — — — — — — — — — — — —	-
		2:		•
PAGE	PACE.	ž Ž	് പ്രത്യാന് മര്യത്ത് അവ്യായത്ത്ത് വര്ട്ടുന്നു. വിവര്യത്ത്ത് പ്രത്യായത്ത്ത് വര്യത്ത്ത് ് വര്യത്ത്ത്ത് വര്യത്ത്ത്ത് വര്യത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത് വര്യത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത്ത	*

Figure 25, (Continued) Output from the sample case.

98	0000	CTE	88700000000000000000000000000000000000	766 200 200 200 200 200 200 200 200 200 2	374 160 041
5, 19	~ o	ıwaz	14068608608080888408644	6-100-10-10-10-10-10-10-10-10-10-10-10-10	0.17
APR 1	MACH	E S	1 20 20 20 20 20 20 20 20 20 20 20 20 20	6666 6666	6101 2223 1767
, ,	1.30 /ISCID	AA	4444444444444444444 UM46VVVA4WWVVVA4WUG UM660WA4WGWVVVA4WUG UM660WA4WGW		1.72
UESDAY	SZINV	PE	00000000000000000000000000000000000000	08391 08391 108393 109998 109998 109998 109999 109999 10999	01006 00447 00757
_	£0	122			999
		- 7		90000000000000000000000000000000000000	89466 78897 59152
		5 1			999
		¥ Σ≽	00000000000000000000000000000000000000	22 210 210 210 210 210 210 210 2	.1434 .4568 .7052
		0		400004000000000000000000000000000000000	000
		1 1 2	00000000000000000000000000000000000000	00000000000000000000000000000000000000	423 410 390
NAM.	•	_	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00 02 05 42 -0
PROGR	A S		20100000000000000000000000000000000000	66 66 66 66 66 66 66 66 66 66 66 66 66	6.9000 6.8668 6.767 6.616
CTIVE		1 } 1 1			5 00 00 5 00 00
TERA	NA NA	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			192
NI OI	EE,	.			0000
VISC	TRIP D PA	, , , x	10111111111111111111111111111111111111	60000000000000000000000000000000000000	0000
NI-SU	20	1 Z		99990000000000000000000000000000000000	พพพพ
1500	ALC:	Z	70000 10	2000 2000 2000 2000 2000 2000 2000 200	16000 16125 16049 15704
2-D		.	្ កាលមាលកាលមាលមាលមាលមាលមាលមាលមាលមាល ព្យាស្នងជាងជាងមាលមាលមាលមាលមាលមាល	พลงและเกละเกละเกละ ผลงและเกละเกละ ผลงและเกละเกละ	
	POIN		100000000000000000000000000000000000000		6.43 968 045
	CASE	-	80000000000000000000000000000000000000	55000000000000000000000000000000000000	
	TEST L CO				0000
	URT PANE	* * * * * * * * * * * * * * * * * * *			1144
	REP	· -	00000000000000000000000000000000000000	とことにいいて 日本日本日本ののことととことにいるののでは、日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本日本	
	=	<u> ~~</u> ×	**************************************		11 11 11 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3
•	171E	. >			<u>*</u>
AGE	ASE I		. 444444444444444444444444 . 44474444444444	おうらく ちゅうしょくこう くくくく ちゅうしょ なきかり はき なり なり なり こうこう ちゅう ちゅう しょくこう しょう はっぱい はっぱい はっぱい はっぱい はっぱい はっぱい はっぱい はっぱい	EC 2
ā	Эā	ī			2

STATES A SECURIO

Figure 25. (Continued) Output from the sample case.

∞ ⋅ ι ∪ α	16635 16635 16568 16069 15903 15882	10557 1010457 100457 100457 100457 100457 10045	32817 23567 13415 18571 19198	7 80 80 90 90 90 90 90 90 90 90 90 90 90 90 90	44 44 44 44 45 45 45 45 45 45 45 45 45 4	0184° 9461° 9461° 0500° 0500°
# 10 E	00000				ÄAAAAAAAA	
CID CY	1.697409 1.679407 1.658980 1.639813 1.617753	3.779055 3.766819 3.786819 3.686819 3.686629 3.686629 3.668623 3.668623	2.897902 2.890693 2.799046 2.718345 2.699403	66168 61510 55742 51233	2 500998 2 500796 2 493774 2 504981 2 505122 2 50517 2 515579 2 515579	1 918107 1 911368 1 941457 1 925116 1 91741
PHA = COUS/INV ERAGE	0.000901 0.000831 0.002733 0.000666 0.001691	0.009384 0.013172 0.004941 0.0018809 0.001886 0.000676 0.005050	0.016216 0.032902 0.034721 0.04837 0.04837	7 (7 () () () () () () () () (00000000000000000000000000000000000000	
)	0.32368 0.01005 0.34145 0.68047 0.84173	0 92577 0 76287 0 59660 0 37840 0 11624 0 69168 0 68682 0 96873	0 82209 0 56000 0 56000 0 50000 0 50000		10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Z Z X	0.87265 0.94321 0.89093 0.68514 0.48513	25662 560155 60155 77640 98016 98016 94731 245749	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	######################################	1 * 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 Z	36566 33205 29944 25990 255990 22778	27766 23700 20313 17698 16053 13204 09101 06519 05156	45840 30618 07511 18148		0 8 8 8 8 1 1 1 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 5 6 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8
1 -					ανατοιστα	7 T G
A H	6 43560 6 23747 6 05307 6 05307 5 91871 5 76000	8 00000 7 67556 7 67556 7 60736 7 28157 7 28157 6 51729 6 15531 5 84542 5 66702 5 58000	400000 14894 8 64686 3 0444 1 0444	0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C # # # T # T # T # C # C # T # T # T #	
ALP IES	1		\$ \$			
M.O.6.	56079 56044 49591 36010 18800	0 37576 67208 90969 07016 14071 03076 75277 3936 S	51516 79554 75545 16674		1	#
:z		0000000	00 00	- · ·	ngan sa sagar sa mananan Tanggar sa	లావార
			0.000 to 0.0			
N PUT	~~~~~	00000000	••••	• • •		The state of the s
CALC. AND COM	50000	90000 86682 76705 61642 43560 23747 05307 91456	00000 8854 7075 1111			
ດດ Z⊢ H	***	****	60 * 1		•	~ · · · ·
ASE, 18A ER FOIN D E F	01034 000855 000274 000019	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				* 4
Z X X S	00000	000 0000000	000			
PANT TEN	000000000000000000000000000000000000000		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			• • • •
a. a.o a.o		M 10 M 10 10 10 10 10 10 10 10 10 10 10 10 10	.	•		
<u>x</u>			÷.			
11.	ያ ብ ፈጥ መጥ	N m 3 4 p m \$2	ž .	4	•	
A A A A A A A A A A A A A A A A A A A	む テ ロ ー つ や む む テ テ テ テ	ገ መጠብ መመመ ነገር መመመመመመ ነገር	···			

5. 1986	0 0000 0 E	ROJECTED AREA	1.06266	1.90626 1.98242 1.94343 1.94343 1.7256 2.0255 1.92939	1.46461 1.45376 1.42386 1.58797 1.45410 1.46989 1.47041	1.19224 1.19211 1.17364 1.11583 1.20337 1.19216 1.19216	1.58153 1.57577 1.55963 1.55963 1.57997 1.58502 1.58502 1.58522	1.55231 1.54140 1.53166 1.53986
Y. APR 1	1 30 MACH ISCID CYCL	MUM	8758	3.259525 3.256688 3.256688 3.267667 3.267667 3.267663 3.2687	2.478961 2.477226 2.480636 2.480458 2.486450 2.496650 2.49723	2.154803 2.182124 2.193100 2.213748 2.219181 2.232149 2.232149	3.047234 3.055892 3.063270 3.061383 3.061383 3.066735 3.058234	3.119032 3.115714 3.120612 3.141261
TUE S DA	ALPHA ISCOUSZINV	_	0.015115	0 075565 0 015605 0 016989 0 0196505 0 019095 0 012189	0.009758 0.015074 0.058714 0.047514 0.000555 0.011779	0.008975 0.006077 0.017984 0.018867 0.002497 0.005957	0.000305 0.010808 0.032545 0.058193 0.000465 0.007271	0.002507 0.028691 0.035610 0.003403
	* >	7 - ZH	0 93185	0.95090 0.91633 0.81227 0.99772 0.65767 0.06470 -0.01899	0.99466 0.95249 0.90612 0.96296 0.16347 0.00067 -0.01758	0.9941 0.97131 0.9691 0.87275 0.00947 -0.03674 -0.02900	0.99712 0.98385 0.68908 0.10624 0.01974 0.01199	0.99664 0.96867 0.84096 0.88937
		4 ¥ x 2 0	0 56222	0 30844 0 58913 0 58081 0 05105 0 75251 0 99521 0 99411	0.10290 0.50456 0.42102 0.26758 0.98632 0.99527 0.99533	0.10548 0.23741 0.24060 0.48804 0.99391 0.99332	0.07177 0.17642 0.72159 0.72159 0.99719 0.99759	0.07990 0.24538 0.53546 0.86788
1		₹	0 027.01	0 02571 -0 03222 -0 05361 -0 04424 0 04646 0 10646	0.00802 0.00377 -0.04111 0.08338 0.08573 0.08573	-0.00371 -0.01413 -0.03708 -0.01127 -0.10975 0.10943 0.09621	-0.02433 -0.03022 -0.01228 0.09149 0.07227 0.06836	0.01803 0.03841 0.07793 0.08545
VE PRO VA	A, PHA.	9.7	5 769'7 5 68000	88 93905 88 68256 88 36101 8 29043 7 7 11882 6 50596 5 95847	50000000000000000000000000000000000000	8 92897 8 77251 8 677251 8 67739 7 39149 7 30253 7 5777 6 21359	9.00150 8.96551 8.89694 8.68715 8.255443 7.25544 7.2558 6.73567	8.95094 8.90591 8.72838 7.96596
T KA	G G G G D ANT I F I		0 54054	0 0 0 0 1149 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.0 0.60159 1.18787 2.25911 2.25911 2.27064 2.23648 2.19727	0.0 0.54302 1.07260 1.60524 2.03926 2.04075 2.04075 2.03290	0.0 0.50912 1.01634 1.47683 1.72958 1.82137 1.882137 1.84205	0.0 0.49796 0.96514 1.34274 1.58263
:	19 3 3 3 5 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	z 	15 24000	16 42911 16 42899 16 42796 16 42644 16 42848 16 42848 16 42852 16 42848	18.83095 18.83078 18.82971 18.82574 18.82561 18.82581 18.8281 18.8281 18.8281 18.8281	20.89867 20.90596 20.90596 20.90586 20.90700 20.88712 20.88712 20.88435 20.88435	23.89664 23.90285 23.90157 23.90172 23.89256 23.89417 23.88525 23.88583 23.88583	26.97006 26.97418 26.97240 26.95244 26.95524
	ANC OF	N 1 N 1.	5 78511	9 18000 8 85489 8 57140 8 19121 7 95642 7 28240 6 65443	8.93905 8.89542 8.68256 8.29043 7.73081 7.11832 6.50596	8.93931 8.85745 8.70162 8.28493 7.67512 7.06799 6.46214	8.92897 8.88945 8.77251 8.67739 8.39149 7.84653 7.30227 6.75777	9.00150 8.96561 8.89694 8.68715 8.25443
	হী যায় ও জনমুদ ইয়ায় ও জনমুদ	- - - - - - - - - - - - - - - - - - -	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 52552 1 09797 1 57874 2 25721 2 75721 2 75721 2 84851 2 84851 2 81141	0.0 0.61149 1.17827 1.68705 2.29524 2.47851 2.47841 2.49155 2.49155	0.0 0.60159 1.18787 1.75375 2.25911 2.27064 2.23648 2.19727	0.0 0.54302 1.07260 1.60524 2.03926 2.04075 2.04075 2.03290 2.03290	0.0 0.50912 1.01434 1.47683 1.72958
	1 3 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	٩,	11 47000	115 24000 115 24000 115 24000 115 24000 115 24000 115 24000 115 24000 115 24000 115 24000	16.42899 16.42899 16.42899 16.42846 16.42846 16.42848 16.42552 16.42552	18.83095 18.82071 18.82971 18.82561 18.82561 18.83054 18.82838 18.8266	20.89867 20.90590 20.90586 20.90700 20.88712 20.88435 20.88435	23.89664 23.90285 23.90157 23.90172 23.89256
	*		10 3	4	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
		- <u></u> 	#0 7° 72 72 23 74			1152 1532 1532 1532	20000000000000000000000000000000000000	162 163 165

Figure 25. (Continued) Output from the sample case.

PROGRAM	
INTERACTIVE	
Z	
SUBSCIONS	1 7 .
_	

986	0009		55137 55282 55582 55508	38 38 38 38 38 38 38 38 38 38 38 38 38 3	8172 7569 7767 7767 8674 81289	056993 05699 0569 0569 051 051 051 051	2000 2000 2000 2000	0712 3054 1083 2554	1877
5, 1	0 Z	PROJE	- - - - - - - - - - - - - - - - - - -	0000000		นนนนนนนน	9,6,6	M466	6.0
PR.	ACH	i	448 448 448 448	4602 4602 4602 463 667 658	2000 2000 2000 2000 2000 2000 2000 200	8841888 460188 860188	200	86.42	157
₹	E G	} ⊋ 8	165	66665555555555555555555555555555555555	2000 2000 2000 2000 2000 2000 2000 200	2622 2622 2823 2967 30767	2850 2736 2586 2586	444 444 444 444 444 444 444 444 444 44	1550
DAY,	15.	MAX	เพพพพ			พพพพพพพพ	พพพพ	2000	2.1
S	NI/	ST	345 884 017 152	8812 036 036 3899 722	50000000000000000000000000000000000000	72 72 72 72 72 73 73	2000	595 159 16	00
TUE	HA.	AG.	0000	0004 0004 0007 0002 0002	00010	00000000000000000000000000000000000000	1051 1028 1039 1072	1429 1036 1201	295
	ALP	NA R	0000	0000000	0000000	0000000	0000	0000	0.0
		<u>-</u>	131 595 260 117	200 200 200 200 200 200 200 200 200 200	824625	25.000 mm 25.000	562 586 363	ລູລູລູລູ ສຸລຸລູລູລູ	52
	į	1 7	191	.991 732 732 154 1010	9989 7066 1485 1000 1000 1000 1000	985 733 200 200 200 200 200 200 200 200 200 2	9 9 9 9 9 9 9 9	945 993 973 989	816
		ר ג	0000	00000000	00000000	00000000	9999	9999	0-
		⋖	928 881 819 878	796 3991 395 937 887	2222 7969 797 999 997	946 152 918 973 973 541	378 576 804 126	227 287 870 545	492
	ļ	22	928	21.5.5.5.5.6.6.9.9.9.9.9.9.9.9.9.9.9.9.9.9	75.00 70 70 70 70 70 70 70 70 70 70 70 70 7	64.99.99.99.99.99.99.99.99.99.99.99.99.99	.29 .29	.32	.57
	- 1	2	0000		00000000		0000	0000	•
	1	 x	4864 503 492	55555555555555555555555555555555555555	0333 033 11138 040 0640 0680	0040 0040 10040 10040 10040 10040 10040	4156 4156 4189 4803	4986 8748 6611 5052	5260
	- 1	\ Z	0000	0000000	0000000	0000000	0000	0000	0.0
KA I	- 1	_	N200	755555550 105565560	909844787	ទីសីសីសី ៤ ១សី ទី សី	40000	98467	•0 ⊶
ROCE	S		4734 9734 4726 9717	9238 8393 8276 8276 2996 7891	82326 82336 82336 82336 82336 82336	88216 6423 36423 36423 173 173 173 173 173 173 173 173 173 17	3385 315 310 310	264 121 767 880 083	6982 3964
۱ ۵	S		~666	8000000000	866677664	888886	nnnnnn o'eirion	พพพพพ ต่อหัวจั	10.10
71	6, A ITIE		0 H 0 0	ぶんちてききこり	ひはよしてもら	£0000000	es m vo m	1457	20
2	OZ!		738 788 910	718 718 718 718 727 727 727 727 727 727 727 727 727 72	000074480 00004480	2566 0778 0778 0778 0778 0778 0778	535 531 921 921	972 481 604 821	584 317
Z :	#AD	ES	4444 6666		0.40.44444	00044444	22.1.0 0.5.1.3	12.7.0	2.0
0 !	E E		2725	80088008M	000000000	01111181	00404	4 WHIND	0 -1
<u>:</u>		_ <u>_</u>	597 572 593 697	48862859 48868859 48868859	000000000000000000000000000000000000000	066666666666666666666666666666666666666	284 283 283 283 283	266 325 296 312 310	867 799]
2		Z .	9999	44444444	L. C.	ຈໍາມີເກີດເຄີດ ຕໍ່ວັດຈັດຈັດຈັດຈັດ	44444	**************************************	
s :	OMPU	(3)	8789			мимимимимимимимимимимимимимимимимимими			77
-	074	Z	200	509 059 059 059 726 726 7176	238 3938 22708 1015 9961	1839 2790 2269 6553 3461 33864 2798 2297	8937 9559 5322 5612 0000	3854 3150 8050 1208 3106	5649 1213
> :>	Y .	N	7,7,7	007494949	56620 5667 5667 5667 5667 5667 5667 5667 566	0.00000 0.0000000000000000000000000000	99977	2007.00V	8, 6,
-	2 = 1 4 = 2								
	101	- :	3177 2139 4205 4257	2514 2514 263 263 263 263 263 263	1353 1184 1215 1277 1276 1768 1782 1782 1640	706 854 001 727 137 888 955	802 802 555 137	368 313 746 213	812
		2 F	****	0.00 0.96 0.96 0.96 0.96 0.96 0.96 0.96	0.0 0.90 0.97 11.55 11.62 11.62	0.0 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0	2.49 1.86 1.23 0.63	0.555	2.19
	- 6								
	<u>.</u>		\$17 525 585 360	0444666 04446666 04446666	20000000000000000000000000000000000000	100020000000000000000000000000000000000	00000	847 834 836 876	666 253
	7 X X	¥ ·	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200000000000000000000000000000000000000	######################################	27.1. 26.2. 27.1. 27.2. 27.1. 27.1. 27.1.	224	33333	.82
	} #	_	2222	22,22,22,22,23,23,23,23,23,23,23,23,23,2	22 22 22 22 22 22 22 22 22 22 22 22 22	200000000000000000000000000000000000000	111111	92 92 92 92 92 92 92 92 92 92 92 92 92 9	8 2
	ž	=					LIF		
	. .	7	/ o~ o		もとからかるとし	3765540P	₩ 11 12 13 13 13 13 13 13 13 13 13 13 13 13 13	449	-
		•		•	~	60	5,1¥ 1	8	m
		•	4' 47	00000000000000000000000000000000000000	55321098 55321098	9898989 9999899 9999899	2000 2000 2000 2000	86 00 01 01	02
	•	2 7			AAAAAAA	AAAAAAA	W m m m m	W W H	7

Figure 25. (Continued) Output from the sample case.

وادلان (Continued) Output 25. Figure

PAGE 11			7	OUS-INV		-	K			TUESDAY	S	•
CASE TITLE:	REPORT	TEST CASE, TI	RANS.	C., 20STRIP	0 2 11	6. ALPHAS	, , , ,		~ ~	ALPHA 1 50	MACH :	
TYPE SEC NV	- TO	BASED UPON CD	INPUT	VALUES OF AREF F CPITCH	, BOV2, CREF CROLL	CYAM	ETA	SECTOL	SECTOB	ASTRIP	CIRCULTH	
LIFT 1 1 2 3	999	000	000	-0.0155 -0.0700 -0.1443	1 1 1		0 5712 0 5712 0 2759	0 0284 0 0598 0 1303	-0 0028	15 6991 24 1948 85 5155	-0 0175 -0 0175 -0 0522	
SECT. T0T:		6	0.0000	-0.2297	-0.0284							
NLIF 2 1	0.0	0.0	-0.00	00	000.00	-						
SECT. TOT:	-0.0037	0.0018	100	0.0035	0.0019	100						
NLIF 3 1	900	00.00	000		-0.0048 -0.0112 -0.3061							
SECT. TOT:		-0.0005	018		-0.0222							
NLIF 4 23 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0.0027 0.0027 0.0027 0.0064 0.0064 0.0064 0.0013	0.0001 0.0000 0.0000 0.0000 0.0000 -0.0000	0.0034 0.0034 0.0076 0.0131 -0.0007 -0.0007	-0.0050 -0.0060 -0.0060 -0.0125 -0.0039	-0.0023 -0.0178 -0.0178 -0.0251 -0.0024 -0.0133	-0.0039 -0.0115 -0.0127 -0.0227 -0.0016 0.0016						
SECT. TOT:	0.015	0.0	0.025	-	. 058	10						
NLIF 5 22 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			0000000	-0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003	00000 000000 000000 000000 000000 000000	-0.0002 0.0002 0.0000 -0.0000 -0.0001 0.0001						
SECT. TOT:	0.0021	0.000	0.001		0.0038							
CONFIG.TOT:	0.0962	0.0026		**************************************	8500.0	0.0657						

Figure 25. (Continued) Output from the sample case.

PROPER SERVES SERVES

SON DEPOSE STREET STREET STREET STREET STREET STREET

Figure 25. (Continued) Output from the sample case.

15, 1986	= 0.6000 E NO. 2	1 1 1 1 1 1 1 1	CF	0.00215 0.00215 0.00215 0.00254 0.00254 0.00254 0.00255
JAY, APR	1.30 MACH NVISCID CYC	 	OW SOLUTION	11. 12. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
TUESDAY	ALPHA = VISCOUS/IN	 	VISCOUS FLO DELS	0.00135 0.00135 0.0010
		8	CPVISC	0.12468 -0.04725 -0.0
		BODY POINT	SOLUTN>1	0.99632 10.020463 10.020463 10.020463 10.020464 10.02046
ROGRAM	S	AT 0FF -	ENTIAL FL	0.05555 0.0
RACTIVE PR	LPHA	E COMPUTED	SSIBLE POT	00000000000000000000000000000000000000
SCID INTE	RIP BL, M=	FORCES AR	< INCOMPRE:	0.93531 0.93531 1.019311 1.019311 1.019311 1.019311 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313 1.019313
I SCOUS - INVI	, 2DST			A RARINARIA RARIA
3-D VI	S. C	CP, VX,	ROL POINT	10 96359 10 96354 10 96357 10
	TEST CAS	R PRINTE	CONTI	29. 24013 28. 54146 27. 48058 27. 48058 27. 48058 28. 51416 27. 48058 28. 51805 28. 51805 28. 51805 28. 54748 28. 51805 28. 54748 28. 54805 28. 54
	EPORT AMENT	*	1 21	しゅうかんこうちゅうりょうちゃんこうちゅうかい アンドリリ シャン・ロック・ロック・ロック・ロック・ロック・ロック・ロック・ロック・ロック・ロック
	S	S	2:	- N
	E:	MARNI	SEC. TYPE	F11
21	TITE	*	SEC S	
PAGE	CASE	*	NO.	かおわかわかりをなるないならてこのなるようなからこのもおくのいちもとしわかわりかりをなるなるなるなどのでできることでしてしてしてしてしてしてしてしてしてしてしてしてしてしてしている。

Figure 25. (Continued) Output from the sample case.

986	5000	<u>:</u>	- :	11222222222222222222222222222222222222
15, 19	H = 0.6(5	
APR	SO MAC		SOLUTION	44444444444444444444444444444444444444
UESDAY,	INVIS	 	FLOW S	-NNNN
TUES	HA = 005/1		· 6	NINGOOOOUTHONOONS COOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
	VISC	i 	VISCOU	
		! ! !	ပ္က	00000000000000000000000000000000000000
			CPVI	
		POINTS	_ :	252 252 252 252 252 252 252 252 252 252
		BODY P	SOLUTN>	
		06 -	FL 50	
¥ !		OFF	42	00000000000000000000000000000000000000
ROGR	AS	ED AT	TENTI	
IVE P	ALPH	COMPUTE	BLE POT	0.000000000000000000000000000000000000
RACT	0.6,	u	153	
INTE	Ï	ES AR	INCOMPRES VX	\$
CI	RIP B	FORCES	VINC.	
NI.		AND	- - 	\$
COUS		•	2	
	CAL	ر ۸	OINTS	6745586178876588608882881920784921959688717897178971789717897178971789717897
÷ ;	TION	a `	ا ح ہ	######################################
	SOLU	ED	CONTROL	
	ST CA FLOW	RIN) ×	45656200657200657200000000000000000000000
	AL	×	<u>></u> !	40000402200000000000000000000000000000
		*	2	とりらかをごすらなくりらからでもらえられることもはくりらからいらならてもらららましまして、 こともにもにもにして ことしににはいい いいしょうちゅうりょうちょうちょう アントロイン アントロイン アントロイン アントロイン アントロイン・アントロイン・アントロール アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・ア
	FUND	2	i K	»
~	EE.	MAR	SEC	NI N
	111	*	SEC 80.	- N N M
¥G	CASE)	PNL NO.	8165541211098461098464441010984666555555510

Figure 25. (Continued) Output from the sample case.

009	1 1						
9 2					 .		
YCLE	- 5 8				•••••		•
A C	110						
SCIE	SOLUTI						9 0
- N	8	0000000000		0000000	000000		.
. 🔫 :	# :						
COUS	SCOUS DELS	000000000		0000000	0000000		, c
VIS	VISC DE	••••••	000000		000000		•
	> 		 		14400000000000000000000000000000000000	~~ND~0~44 ONO40#440	<u> </u>
i	180	0034	8000000 800000000000000000000000000000	00000000000000000000000000000000000000	30000000000000000000000000000000000000	1000 1000 1000 1000 1000 1000 1000 100	2 4
	• • • • • • • • • • • • • • • • • • •				0000000		• •
INTS	_ :	404000000000 0000000000000000000000000	0202203	284722254	N0407404	2222222	0 0
Pol	Ê	00000000000000000000000000000000000000	40000000000000000000000000000000000000	30000000000000000000000000000000000000	2/02/25/25/25/25/25/25/25/25/25/25/25/25/25	4 4 10 10 10 4 1	, <u>.</u>
90	N A			. <i></i>			•
	FI S	25225225525		000000000	~0000m00		
OFF	At V	00500000000000000000000000000000000000				1000 <u></u> 000	
¥	ENTI			. .			
HAS ED	POTE		10000404	, 400 r 20 6 10 6	るてはあるまちょ	N m - 4 4 5 N 6 N	2 =
, ALP	w -	2657 2657 2657 2657 2657 2657 2657 2657	N (4 4 6 6 6 -	4 1 2 2 2 3 3 3 3 4 4 5 4 5 4 5 5 5 5 5 5 5 5 5 5	0-000-00	. ロ ~ 4 M & V V Ø ~	
.	SIBL	000000000	000000		0000000		٠
M=0	RESS	2006 911 B8 412	Nee-ee-		0-600-6	 	·
Bt,	INCOMPRE:	00000000000000000000000000000000000000	011111111111111111111111111111111111111	33000000000000000000000000000000000000	20032776 20032776	740404040 740404040	7 %
IP FOR	N I					<i></i>	•
ST ST	- !	37-17-067-4675 37-17-067-4675 37-17-17-17-17-17-17-17-17-17-17-17-17-17	ัสหนีจั ม ียน		各て 4 5 8 7 1 4		2 55
, 2D VZ A	^ 2	2000 2000 2000 2000 2000 2000 2000 200	~	1 M 4 M 4 M 60 60 6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		
برا دن		กรอดดา		. .			
S	MTS	นต่อตับจับเก็บ	A D N A N A V A		0000000	เทษณฑ์เล่อัลล	9
ANS.	POI	8429 2926 2926 2927 2927 3036 3036 3036	*************	10000000000000000000000000000000000000	6000000000000000000000000000000000000	. 202011272	;3
C L'IR	102	0000				. 	•
CASE M SO MTED	I I	20074751754		on on day	#0NM\$000	40000000000) <u>v</u>
FLON	i×.	**************************************	MUSUS	1000-1000	446666466	00000000000000000000000000000000000000	, .
AL X	.	222222222	*******		0000000	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
M M M M	21	80~UN4N0~80					
# 1 X) > (N M	-	~	m	· ·	•
SIN	. H	<u> </u>	L.	LL.	u.	<u>. </u>	_
LE: HAR	SEC	NL I	NLI	N I	N I	N I	_
111	SEC NO.	M M	4	•	4	4 4	•
X SE	2 P	2876543220 2876543220	1828282	アクヤククク	152 152 153 153 153 153 153 153 153 153 153 153	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	9

Figure 25. (Continued) Output from the sample case.

PAGE 24	111	PAGE TIT	* *	NO. NO.	بغبعب	~~~	1723 17432 1744 1744 1744 1744 1744 1744 1744 174	N 80 80 80 8			~~~~	~ ~ ~ ~ *	200	000	009		•
٠	ü		MAR	SEC. TYPE	MLIF	NLIF	Z I I		NL I F			NLIF	NL I F		NLIF	NLIF	
	REP	FUNDAME	NG XX	1 i	'n	•			••		- -	-	8	_	m	•	
	RT TEST	NTAL FLO	KKK PRIN	×	25.421 25.418 25.418	25.422 27.705 27.705 27.706	3 27.70192 4 27.69508 5 27.69366 6 27.6936 8 27.70946 1 29.59588	29.59 29.59 29.58 29.58 29.58 29.58	29.591 29.591 29.595 33.312	83.31 83.31 83.31 83.31	33.312	14.0	14.818	17.626 17.627 17.627	19.832	19.852 22.341 22.328	22.327
S-D VI	ASE, TRANS.	SOLUTION	ED CP, VX,	ONTROL POINTS	1.7546	1.7668 0.2503 0.7346	66 1 .6 1 .6 1 .6 1 .6 1 .6 1 .6 1 .6 1	1.4434 1.6019	1.6542 1.6522 1.6281 0.2313	0.6760 1.0607 1.3615	1.5999 1.5999 1.5794	2.1134	0.3059 2.0059	1.4548 0.8731 0.2935	1.9348	0.2894 1.7762 1.3318	0.7965
SCOU	C. 2DST		>	\rac{1}{2}	7.86266 7.36230 6.85720	6.35180 8.90493 8.77844	8	8.73264 8.65273 7.58523	7.07597 6.56790 6.06016 8.86471	8.72855 8.47324 8.11887	7.23419 6.76468	5.96469	5.65057	5.40048 5.61447 5.51007	5.64308	5.37808 5.51893 5.41150	5.42419
ISCID INTE	IP BL. M		FORCES AR	I < I NCOMPRE	000	966	0.000000000000000000000000000000000000	2222	2222	999	5,5,5,5	555	.00	666	295	000	ö
RACTIVE			E COMPUT	SSIBLE POT	666	000	-0.01439 -0.02921 -0.04394 -0.04194 -0.04588	6666		000				,,,	996		-
DGRAM	1		AT 0FF - 1	ENTIAL FL S	999		0.0550 0.			000	0000		000	000	000	000	
		- 1	Y POINT	SOLUTN>1 VT	0.00	0,0,0	0.99000 0.99000 0.990000 0.990000 0.990000 0.90000	م م م م		ن ن ن			30.0	نحنح	2.2.0		-
		,	S	CPVISC			0.02537 0.02537 0.02572 0.02513 -0.00214					000					
TUESDA	A A	VISCOUS		VISCOUS FL DELS			0000000										•
SDAY, AP	1 30 HA	NVISCID C		OM SOLUTION													•
R 15, 198	CH = 6.400	YCLE NO.		CF													

Figure 25. (Continued) Output from the sample case.

٠	00,	!	<u>.</u>													
APR 15, 1986	ALPHA = 1.30 MACH = 0.6000 VISCOUS/INVISCID CYCLE NO.		Î	-	_	_	_	_	_	_	_	_	_	_		
15,			VISCOUS FLOM SOLUTION CF	•	•	•	•	•	-	•	•	•	•		•	
2	¥CH C√C		8 ;													
•	30 0		10	_	_	_	_	_	_	_	_	_	_	_	_	•
AY,	VISC	į	NI	•	-	-	-	-	-	-	•	-	9	•	-	•
TUESDAY,	# T	1	F.													
7	MA OUS		SS.	_	_	_	_	_	_	_	_	_	_	_	_	_
	VISC		ISC PEL	•		-	•	-	-	-	0	0	•			•
	-		1 1	'n	پ	•	Š	_	•		•	_	Ņ	••	~	_
		!	CPVISC	1.02965	184	1258	195	151	878	754	613	551	349	02428	254	747
			\ <u>\</u>	9.	-	-	-	0	-	-	0	-	0	0	0	9
		MIS		•	•		6	~		~	0	•	•	_	~	•
		POI	ŽL.	1.01476	907	870	106	924	554	618	9690	721	824	878	872	345
		à	י בנו	-	6.0	5		.	6.	6.0	6.0	6.0	6.0	6.	6.0	0
		A	. S	7	~	×	~	••	Š	_	~	_	•	•	_	ç
_			72	0.03567	496	417	527	341	669	467	335	194	782	202	860	200
SRAH			47	9.	0.	0.	0.0	0	0.	<u>.</u>	0.	0.	0.	0.0	0.0	-0.02095
P R 00	HAS		OTE)	n	_	0	.	•	m	د	~	~	_	_		
VE	ALP	PUT	ا <u>ل</u> ا	010	307	202	0.00774	028	519	121	918	970	310	349	212	103
CT	6,	5	N N	-0.00103	0	0	0	0.	-0.05193	0.	0.	0.	0.	0.0	0.	0
rer/	, Z	RE	RESS.			_			•				•			
H	_	ES	E .	1.01413	890;	859	887	918	514.	909	684:	719	788	869	868	8631
CID	•	ORC	INC	1.0	<u>.</u>	6.	о. О	6.0	6.	٠ •	ō.	6	6.0	9.	6.	0
3-D VISCOUS-INVISCID INTERACTIVE PROGRAM	TRI	, VZ AND FORCES ARE COMPUTED AT OFF - BODY POINTS	Z VX VY VZ VY VZ VZ VZ VZ VZ VZ		_	•••	_	_	٠.	_			_	_	_	_
S-1)	2D:	Z A1	72	773	8261	602	113	963	240	7759	964	2153	087	155	9339	[600
COC	· .	>		5.57731	N.		2		5.72402	5	2.	2.	ĕ.	S.	5.7	5.7
VIS	CAL	>	. TS		_							_				
2-0	S.S.	×,	Ĭ,	5939	135	13571	3392	23143	96995	263	65382	22110	2301	99475	60794	20518
-,,	UTI	ئ (ئ	ROL	0.5	5	1	? 0	0.5	<u>.</u>	2	9.0	? 0	7.3	٠. و	9. 9.	0.20
	SE,	ED	X													
	2	ZINI	8	25.38698	1252	360	95	939	930	521	535	58678	33	. 32368	593	. 33748
		T	ļ×	35.	9.	7.67	9	9.	9.6	2	5	2	4.	3.32	×.	5.33
	RTA	×	× i	Ni	7	N	~	~	Ň	N	N	~	~	m	m	m
	REPORT TEST CASE, TRANS. CALC., 2DSTRIP BL, M=0.6, ALPHAS FUNDAMENTAL FLOW SOLUTION	*	2	4	7	7	Y)	4	-	7	M.	•	~	~	M	•
	FUNIT	ING	2:	20.	•			ı	1				*			
		ARN	SEC. TYPE IV	NLIF	LIF			1	5 NLIF			1	5 NLIF			
25	TITLE	X		Z:	₹ A				z			:	Z.			
	E 11	KKKKK MARNING KKKKK PRINTED CP, VX, VY	SEC.	₩.		φ.	۰ می		•	•	_	٠	ν.			~
PAGE	CASE	*	₹ S	213	77	717	216	2	2	2	221	22	22.	22	224	22,
_	'															

postarional recessor produces processes provides

Figure 25. (Continued) Output from the sample case.

The color The	_	00												
The color of the	, APR 1	SCID CYCL	CIRCULTN	000										
E 25C NV (C	TUESDA	ALPHA = ISCOUS/INV	ASTRIP	5.099 5.194 5.194										•
E SEC NV C. —— BASED UPON INPUT VALUES OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV2, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV3, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV3, CRE F. —— PASED UPON INPUT VALUE OF AREF. BOV3,		>	ECTCD	000										XXXXXXXXXXXXX
E SEC NV (C.L AASED UPON IMPUT VALUES OF AREF, BOVZ-CRE			SECTCL	F000										菜
E 17LE: INTEGRATE PRESSURES FITLE: INTEGRATE PRESSURES FITLE: INTEGRATE PRESSURES FITLE: INTEGRATE PRESSURES FOR INTE	¥		ETA	FF - B 0.8463 0.5712 0.2759										
E 11 LE : INTEGRATED PRESSURES FITTLE: INTEGRATED PRESSURES F 2 L	A V E	, ALI	CYAH	OMPUTED -0.0013 -0.0040 -0.0109	910.	0.00	666	6	0000000	6	90999999		0.063	XXXXXXXX
E 111 E: REPORT TEST CASE, TRANS. CALC., E 111 LE: INTEGRATED PRESSURES HENRING HENEMER PRINTED CP, VX, VY, VZ T 1 2 0.0039		BL, M=0	", BOV2, CREF CROLL	RCES ARE -0.0022 -0.0070 -0.0178	-0.0271				0000000	6	0000000		0.004	XXX
E 111LE: INTEGRATED PRESSURES, TRANS. E 111LE: INTEGRATED PRESSURES, TRANS. E SEC NV CL CD	OUS-INVISC	., ZDSTRIF	က္ဆင့္ပဲ	VZ AND F -0.0135 -0.0637 -0.1354	0.0010			6		, 0	0000000		0.258	
E 76 E 1111E: REPORT TEST CASE, E 1111E: INTEGRATED PRESSURES E SEC NV CL CD CD E SEC NV CL CD CD T 1 2 0.0029 0.0000 CT. TOT: 0.0729 -0.0010 CT. TOT: 0.0027 0.0010 CT. TOT: 0.0041 -0.0000 CT. TOT: 0.0004 -0.0000 CT. TOT: 0.0004 -0.0000 CT. TOT: 0.0004 -0.0000 CT. TOT: 0.0002 -0.0000 CT. TOT: 0.0000 CT. TOT: 0.00000 CT. TOT: 0.0000 CT. TOT: 0.0000 CT. TOT: 0.0000 C	P i	RANS.	MPUT VAL	P, VX, VY 0.0005 0.0019	0.00	-0.004	0.00.0	0.018	0.003 0.003 0.0012 0.003 0.003 0.003	0.025		0.001	0.046	******
E 26 E 1111E: INTEGRATE E 1111E: INTEGRATE E SEC NV CL I 1 2 0.0230 CT. TOT: 0.0729 CT. TOT: 0.00230			DASED UPON CD	RINTED 0.0002 0.0006 0.0001	0.001	0.001	999	-0.00	0000000	10.		0.000	0.002	XXXX
		REPOR	្ត	2000	6 6		000	8	0000000	6	0000000	.001	0.089	
	9		1	HARM	OT :	0T :		10		10				
		SE 1		-	<u>.</u>	_		٠.	LL.		L.		CONFIG.T	•

Figure 25. (Concluded) Output from the sample case.

Figure 26. Panel arrangement for test case 1.

Figure 27. Panel arrangement for test case 2, (a) without canard, (b) with canard.

Figure 28. Panel arrangement of the wing for test case 2.

Figure 29. Panel arrangement for test case 3.

Figure 30. Panel arrangement of the wing for test case 3.

AND SECURE SOURCE AND SECURE SOURCE S