Python Programming

- Presentation By Uplatz
- Contact us: https://training.uplatz.com
- Email: info@uplatz.com
- Phone: +44 7836 212635

Learning outcomes:

Numbers in Python
Number Type Conversion
Mathematical Functions
Trigonometric Functions
Mathematical Constants

Number data types store numeric values. They are immutable data types, means that changing the value of a number data type results in a newly allocated object.

Number objects are created when you assign a value to them.

Python supports different numerical types:

int (signed integers): They are often called just integers or ints, are positive or negative whole numbers with no decimal point.

float (floating point real values): Also called floats, they represent real numbers and are written with a decimal point dividing the integer and fractional parts. Floats may also be in scientific notation, with E or e indicating the power of 10 (2.5e2 = 2.5 * 10**2 = 250).

complex (complex numbers): are of the form a + bJ, where a and b are floats and J (or j) represents the square root of -1 (which is an imaginary number). The real part of the number is a, and the imaginary part is b. Complex numbers are not used much in Python programming.

Number Type Conversion

Python converts numbers internally in an expression containing mixed types to a common type for evaluation. But sometimes, you need to coerce a number explicitly from one type to another to satisfy the requirements of an operator or function parameter.

Type **int(x)** to convert x to a plain integer. Type **float(x)** to convert x to a floating-point number.

Number Type Conversion

Type **complex(x)** to convert x to a complex number with real part x and imaginary part zero.

Type **complex(x, y)** to convert x and y to a complex number with real part x and imaginary part y. x and y are numeric expressions

Mathematical Functions

Python provides different functions that perform mathematical calculations.

abs(x): The absolute value of x: the (positive) distance between x and zero.

ceil(x): The ceiling of x: the smallest integer not less than x

cmp(x, y) : -1 if x < y, 0 if x == y, or 1 if x > y

exp(x): The exponential of x:

log(x): The natural logarithm of x, for x> 0

log10(x): The base-10 logarithm of x for x> 0.

Mathematical Functions

```
max(x1, x2,...): The largest of its arguments: the value closest to positive infinity min(x1, x2,...): The smallest of its arguments: the value closest to negative infinity pow(x, y): The value of x^*y. sqrt(x): The square root of x for x > 0
```


Trigonometric Functions

Python provides different functions that perform trigonometric calculations.

acos(x): Return the arc cosine of x, in radians.

cos(x): Return the cosine of x radians.

degrees(x): Converts angle x from radians to

degrees.

radians(x): Converts angle x from degrees to

radians.

MANY MORE.

Mathematical Constants

The module also defines two mathematical constants:

Constants Description

pi The mathematical constant pi.

The mathematical constant e.

