Smart Waste Management System

Minkai Yang Yuhan Guo

Project Motivation

Global Waste Issue:

- Limited landfill space and rising costs
- Increasing waste production
- Environmental and health concerns

Lack of Public Awareness:

- Limited knowledge about waste classification
- People unsure about which bin to use

Objectives:

 Develop an embedded system with deep learning assistance for real-time waste classification (compost, landfill, and recycle)

Waste Management

The average American tosses out at least **4.4 pounds of trash every day**

63,000 garbage trucks dumping a full load into a landfill

...that's 728,000 tons/day if multiplied to the total population of USA

Goals

Implementation:

- Deployed above public waste bins and in facilities
- Assists and educates users on proper waste disposal

Impact:

- Ensures correct sorting for efficient recycling
- Aids in resource management

Overall Goal:

- Reduces environmental pollution
- Addresses waste management challenges
- Contributes to environmental sustainability

Prior/Related Work

Current Methods:

- Manual sorting and categorization
- Relies on visual inspection and basic waste knowledge

Limitations:

- Time-consuming and expensive
- Prone to human error

Recent Developments:

- AMP Robotics utilizes AI and robotics for enhanced accuracy
- Focus on improving recycling rates

Challenges:

- Designed for use in recycling facilities, not household/public settings
- Higher production costs

Related Work

- [1] Foukia, N. (2022). CleverTrash: An ML-based IoT system for waste sorting with continuous learning cycle. The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings. https://doi.org/10.1109/ICECET55527.2022.9872943
- [2] Li, X., & Grammenos, R. (2022). A smart recycling bin using waste image classification at the edge. arXiv.org. https://arxiv.org/abs/2210.00448

Novelty

- Features:
 - Designed for personal or public use
 - Low power consumption and cost-effective
- User-Friendly Functionality:
 - Effortless waste classification for users
- Customized Feedback System:
 - Provides tips for proper waste disposal
 - Example:
 - Suggests emptying the bottle before disposal
 - Suggests disposing of any food leftovers in the compost bin

Technical Methods

- Main Hardware components
 - Raspberry Pi 4
 - o Pi Camera v2
 - o I2C LCD1602 Display Screen
 - Infrared Motion Sensor
- Real-time image/video processing
 - Use OpenCV library to capture and process images with the camera
- Waste Classification Model
 - Pretrained Quantized Mobilenet V3 Large
 - Use Pytorch for Transferring learning of waste items
 - Trained on the mixed kaggle datasets (about 14000 images)

Feedback Mechanism

- Use 16x2 LCD display to show:
 - Main categories: compost, recycle, landfill
 - Score: the probability of the waste belonging to the category
 - Proper suggestions: based on the 12 subcategories

Power Saving

- Only activate the camera and deep learning model (high power consumption) when Infrared Motion Sensor senses human motion (within 3 meters)
- Red LED to indicate initiation
- Otherwise the system is in sleep mode
- After activation, goes back to sleep after 10-15 seconds

Experimental Evaluation

- Transfer Learning Metrics
 - 91.30% validation accuracy after 10 epochs
 - 0.2831 validation loss after 10 epochs

predicted: clothes

predicted: green-glass

predicted: biological

predicted: paper


```
Epoch 6/10
Train Loss: 0.2214, Train Accuracy: 93.26%
Validation Loss: 0.2898, Validation Accuracy: 90.79%
Epoch 7/10
Train Loss: 0.2115, Train Accuracy: 93.71%
Validation Loss: 0.2804, Validation Accuracy: 91.01%
Epoch 8/10
Train Loss: 0.2012, Train Accuracy: 93.80%
Validation Loss: 0.2819, Validation Accuracy: 91.45%
Epoch 9/10
Train Loss: 0.1875, Train Accuracy: 94.37%
Validation Loss: 0.2850, Validation Accuracy: 91.19%
Epoch 10/10
Train Loss: 0.1815, Train Accuracy: 94.50%
Validation Loss: 0.2831, Validation Accuracy: 91.30%
```

Real-time Results

- Accurate classifications for majority of times
- There are some errors, could be caused by
 - Lighting conditions
 - Distance from camera
 - Background noise
 - Camera quality
 - Dataset imbalance
- LCD screen and Infrared motion sensor are working correctly
- User-friendly interface and experience

Power Consumption Estimate

Close to 0% CPU usage during sleep mode and ~70% CPU usage during activation

Demo

Conclusions

- Innovative Solution
 - Targeting both personal and public use, with an emphasis on low power consumption and cost-effectiveness.
- User-Friendly Design
 - Provide practical tips for proper waste disposal
 - Making it accessible to a wide range of users
- Effective Power Management
 - Activates the high-power-consumption components only upon human motion detection and then returns to sleep mode

Future Directions

Enhancing Accuracy

 Further improvements can be made to the waste classification model to address errors

Broader Dataset Training

 Expanding the dataset for training the classification model could improve accuracy and versatility in different environmental settings

Advanced Sensory Capabilities

 Incorporating additional sensors or improving existing ones to enhance the system's responsiveness and accuracy

Contributions

Waste Classification Model: (Minkai)

Real-time Classification: (Minkai)

Power Saving: (Minkai and Yuhan)

Feedback Mechanism: (Yuhan)

Hardware Integration: (Yuhan)

Thank You!