

Manufacturing Engineering

Professor Lima

Petros Sklavounos

Acetal: Plastic injection material

• "An engineered thermoplastic material that is used to manufacture parts that require increased stiffness, low friction versatility, and greater dimensional stability. Acetal resins have well-balanced properties, including a hard self-lubricated surface and excellent chemical resistance, strength, stiffness and toughness over a broad temperature range."

Retrieved from https://springboardmfg.com/plastic-materials/delrin/

- Wall thickness Recommendation: 0.03in-0.120 in
- Actual wall thickness: 0.118in (0.003m)

Friction Welding Calculations

Drawing Design

10 cm W x 4cm T

Nozzle Attachment Part: Design

Split into two parts

Shell: Uniform Walls with Drafted 90 degree Walls

Fill Time FLOW/ Fill Time Type: Shell Element: 1208 Max: 1.9232 sec Node: 6044 Min: 0.0073 sec Product: (P) Configuration 1.5400 1.1569 0.7737 0.3905

Central Temperature at End of Fill

Shear Stress at End of Fill

Ease of Fill

Max Inlet Pressure Vs. Time

Y-Dir. Clamping Force Vs. Time

X-Dir. Clamping Force Vs. Time

Z-Dir. Clamping Force Vs. Time

Nozzle Part: Simulation & Cross-Section Gif

Nozzle Part: Solidworks Simulation Summary

- This part can be successfully filled with an injection pressure of 11.3 MPa (1639.85 psi).
- The injection pressure required to fill is **less than 66% of the maximum injection pressure limit** specified for this analysis, which means you are well under your specified limit.
- Since the Maximum Temperature at End of Fill has remained within 10 deg C of the starting melt temperature, there is little to no risk of plastics material degradation.
- The flow front melt temperature is within the acceptable range of +/- 10 deg C from your starting melt temperature. This helps promote good mold filling and packing, minimizes injection pressure requirements, helps achieve good weld line integrity and appearance and gives you the best chance to manufacture a part with optimum properties.

Proper Runner and Sprue System

Attempt 1:

Attempt 2:

Inspiration & Research

Fill Time Assembly 2 (Default) << D... 1.3944 0.9305 0.4667

Central Temperature at End of Fill

Shear Stress at End of Fill

Ease of Fill

Max Inlet Pressure Vs. Time

Y-Dir. Clamping Force Vs. Time

Nozzle Part: Simulation

X-Dir. Clamping Force Vs. Time

Z-Dir. Clamping Force Vs. Time

Nozzle Part: Solidworks Simulation Summary

- This part can be successfully filled with an injection pressure of of 34.3 MPa (4980.13 psi).
- The injection pressure required to fill is less than 66% of the maximum injection
 pressure limit specified for this analysis, which means you are well under your
 specified limit.
- Since the Maximum Temperature at End of Fill has remained within 10 deg C of the starting melt temperature, there is little to no risk of plastics material degradation.
- The flow front melt temperature is within the acceptable range of +/- 10 deg C from your starting melt temperature. This helps promote good mold filling and packing, minimizes injection pressure requirements, helps achieve good weld line integrity and appearance and gives you the best chance to manufacture a part with optimum properties.

Nozzle Part With Runner System: Simulation & Cross-Section Gif

Mold Design Assembly for Nozzle Part

Exploded views

Backup Additional Slides: Simpler Plastic Cup

Drawing Design

Revolving Design

Shell: Uniform Walls with Drafted 90 degree walls

Simpler Cup Part: Design

Add Second Split

Groove And Negative Groove For Ultrasonic Welding

Cooling Time P D & M M - D - O M - D - Part Studio 1 - Part 1 (Def... FLOW/ Cooling Time Type: Shell Element: 11692 Node: 5848 Max: 93.7961 sec Min: 7.7147 sec Material: ABS Product: (P) / Configuration 93.7961 76.5799 59.3636 42.1473 24.9310 7.7147

Volumetric Shrinkage at End of Fill

Difficult

Cup Part: Simulation

Max Inlet Pressure Vs. Time

Y-Dir. Clamping Force Vs. Time

X-Dir. Clamping Force Vs. Time

Z-Dir. Clamping Force Vs. Time

Shear Stress at End of Fill

Cup Part: Simulation Gif

Nozzle Part: Solidworks Simulation Summary

- This part can be successfully filled with an injection pressure of 5.9 MPa (862.40 psi).
- The injection pressure required to fill is **less than 66% of the maximum injection pressure limit** specified for this analysis, which means you are well under your specified limit.
- Since the Maximum Temperature at End of Fill has remained within 10 deg C of the starting melt temperature, there is little to no risk of plastics material degradation.
- The flow front melt temperature is within the acceptable range of +/- 10 deg C from your starting melt temperature. This helps promote good mold filling and packing, minimizes injection pressure requirements, helps achieve good weld line integrity and appearance and gives you the best chance to manufacture a part with optimum properties.

