Estadística I Grado en Matemáticas, UAM, 2018-2019

Hoja 3. Muestreo aleatorio y estadísticos

Nota: para calcular en excel valores de funciones de distribución $F_X(x) = \mathbf{P}(X \le x)$, usa

- =distr.norm.estand(x) cuando X sea una normal estándar,
- =distr.chicuad(x;n;verdadero), cuando X sea una χ^2 con n grados de libertad,
- \blacksquare =distr.t.n(x;n;verdadero), cuando X sea una t de Student con n grados de libertad.

Sobre estadísticos

- 1. Consideremos una muestra aleatoria de tamaño n=50 de una variable X que sigue una distribución $\mathcal{N}(4,1)$ (una normal con media 4 y varianza 1).
 - a) Utiliza la designaldad de Chebyshev para obtener una cota superior para $\mathbf{P}(|\overline{X}-4|>0.3)$.
- b) Calcula numéricamente la probabilidad $\mathbf{P}(|\overline{X} 4| > 0.3)$ utilizando que \overline{X} es una normal. Compara el resultado con el del apartado a). Medita al respecto.
- 2. Definimos la asimetría y la curtosis de una variable Z con media μ y desviación típica σ como

$$\operatorname{asim}(Z) = \frac{\mathbf{E}((Z - \mu)^3)}{\sigma^3} \qquad \text{y} \qquad \operatorname{curt}(Z) = \frac{\mathbf{E}((Z - \mu)^4)}{\sigma^4}.$$

Sea X_1, \ldots, X_n una muestra aleatoria de X. Comprueba que

$$\operatorname{asim}(\overline{X}) = \frac{\operatorname{asim}(X)}{\sqrt{n}} \qquad \text{y que} \qquad \operatorname{curt}(\overline{X}) = \frac{\operatorname{curt}(X)}{n} + 3\,\frac{n-1}{n}.$$

- 3. La variable X toma los valores +1 y -1 con probabilidad 1/2 cada uno de ellos. Consideramos muestras aleatorias de X de tamaño 5. Determina cómo son (qué valores toman, y con qué probabilidades) las variables \overline{X} y S_X^2 .
- 4. La variable X toma los valores 1, 2 y 3 con probabilidad 1/3 cada uno de ellos. Consideramos muestras aleatorias de X de tamaño 3. Determina cómo son (qué valores toman, y con qué probabilidades) las siguientes variables: Z_1 es el valor más grande de la muestra, Z_2 es el valor más pequeño, y Z_3 es el segundo valor más pequeño (es decir, y en este caso de muestras de tamaño 3: tras ordenar la muestra de menor a mayor, se toma el valor que queda en medio).
- **5.** Sea $X \sim \text{EXP}(\lambda)$, con $\lambda > 0$. Consideramos el estadístico $m_n = \min(X_1, \dots, X_n)$. Comprueba que $m_n \sim \text{EXP}(n\lambda)$ y calcula $n\mathbf{E}(m_n)$.
- **6.** Sea $X \sim \text{UNIF}([0, a])$, con a > 0. Consideramos el estadístico $M_n = \max(X_1, \dots, X_n)$.
 - a) Determina las funciones de distribución y densidad de M_n , y calcula $\mathbf{E}(M_n)$ y $\mathbf{V}(M_n)$.
 - b) Calcula, para un $\varepsilon > 0$ dado,

$$\mathbf{P}(a - M_n \ge \varepsilon a).$$

Nota: en los ejercicios que siguen puedes dejar escrita la respuesta en términos de valores de la función de distribución de la normal estándar y/o de las funciones de distribución de una χ^2 o una t de Student con un cierto número de grados de libertad. Si esos valores se puedan calcular explícitamente (con Excel), ¡hazlo!

- 7. Consideramos muestras aleatorias de tamaño 35 de una normal con parámetros $\mu = 1$ y $\sigma^2 = 2$.
- a) ¿Cuál es la probabilidad de que la media muestral y la cuasidesviación típica muestral sean, simultáneamente, inferiores a 1.2?
- b) Suponiendo que la cuasidesviación típica de la muestra es menor que 1.2, ¿cuál es la probabilidad de que la media muestral sea también menor que 1.2?
- 8. Sea (X_1, \ldots, X_{100}) una muestra aleatoria de X normal con parámetros $\mu = 3$ y $\sigma^2 = 4$. Calcula $\mathbf{P}(|\overline{X} 2| > 1/2, S^2 > 4.2)$.
- 9. Sea (X_1, \ldots, X_{20}) una muestra aleatoria de normales estándar. Calcula $\mathbf{P}(\overline{X} > S)$.
- 10. Sea (X_1, \ldots, X_{100}) una muestra aleatoria de una variable $X \sim \mathcal{N}(0, \sigma^2)$.
 - a) Calcula $\mathbf{P}(|\overline{X}| > \sigma, S^2 > 2\sigma^2)$.
- b) Calcula la probabilidad de que, o bien ocurra que $|\overline{X}| > \sigma$, o bien que $S^2 > 2\sigma^2$ (estos "o" no son excluyentes).
- 11. Sea (X_1, \ldots, X_n) una muestra aleatoria de una variable $X \sim \mathcal{N}(\mu, \sigma^2)$. Para t > 0 fijo, calcula la probabilidad de que $n(\overline{X} \mu)^2 + (n 1) S^2$ sea $\geq t$.

Ejercicio adicional

12. Dada una muestra aleatoria X_1, X_2, \ldots, X_n de X, el estadístico de orden $X_{(r:n)}$ se define, para cada entero $1 \le r \le n$, como sigue: se ordena la muestra (X_1, X_2, \ldots, X_n) de menor a mayor,

$$X_{(1:n)} \le X_{(2:n)} \le \cdots \le X_{(n:n)}$$

y se toma el valor que ocupa la posición r-ésima en esta ordenación de menor a mayor. El primer estadístico, $X_{(1:n)}$, es el mínimo de la muestra. El último, $X_{(n:n)}$, es el máximo de la muestra.

a) Consideremos el estadístico $X_{(n-1:n)}$, es decir, el segundo término más grande de entre X_1, X_2, \ldots, X_n . Comprueba que

$$F_{X_{(n-1:n)}}(t) = n (1 - F_X(t)) F_X(t)^{n-1} + F_X(t)^n.$$

b) Suponiendo que la variable aleatoria X tiene función de densidad $f_X(t)$, comprueba que

$$f_{X_{(n-1:n)}}(t) = n(n-1) f_X(t) F_X(t)^{n-2} (1 - F_X(t)).$$

c) Consideremos ahora el caso general del estadístico
 $X_{(r:n)},$ para cierto $1 \leq r \leq n.$ Comprueba que

$$F_{X_{(r:n)}}(t) = \sum_{j=r}^{n} {n \choose j} F_X(t)^j (1 - F_X(t))^{n-j}.$$

¿Qué se obtiene cuándo r = n y cuando r = 1?

d) Suponiendo que la variable aleatoria X tiene función de densidad $f_X(t)$, comprueba que

$$f_{X_{(r:n)}}(t) = n \binom{n-1}{r-1} f_X(t) F_X(t)^{r-1} (1 - F_X(t))^{n-r}.$$