ベイズ推定 (Bayesian Inference)

1 ベイズの定理

ベイズの定理は、

$$P(A_i|B) = \frac{P(B|A_i)P(A_i)}{\sum_{k=1}^{n} P(B|A_k)P(A_k)}$$

と書ける。

この公式を確率関数に含まれるパラメータ θ_i の決定に用いる。すなわち、事象 A_i の確率 $P(A_i)$ の代わりに θ_i の確率 $\pi(\theta_i)$ を考える。パラメータが値 θ_i を取るときに事象 x が起こる確率を $f(x|\theta_i)$ で表す。すると、事象 x が起こったことが分かったときのパラメータ θ_i の確率 $P(\theta_1|x)$ は、

$$\text{lt}\pi(\theta_i|x) = \frac{f(x|\theta_i)\pi(\theta_i)}{\sum_{k=1}^n f(x|\theta_k)\pi(\theta_k)}$$

で与えられる。 θ が連続の場合には、

$$\pi(\theta|x) = \frac{f(x|\theta)\pi(\theta)}{\int f(x|\theta)\pi(\theta)d\theta}$$

となる。 $f(x|\theta)$ を尤度関数と呼ぶ。

2 二項分布またはベータ分布におけるpの推定

例として、硬貨投げ (coin flipping) を考えよう。硬貨を放り投げたときに、表(Heads - H)が出る確率 p の取る値を θ とすると、裏 (Tails - T) の出る確率は $1-\theta$ である。すなわち、1 回目に表または裏が出る確率は、各々、

$$f(H_1|\theta) = \theta$$
$$f(T_1|\theta) = 1 - \theta$$

となる。硬貨を投げる前は、 θ は、0 から 1 のどの値も同様に確からしいとする。

$$\pi(\theta) = 1$$

すると、表または裏が出たと分かった時の θ の確率分布は、

$$\pi(\theta|H_1) = \frac{\theta \times 1}{\int_0^1 \theta \times 1 \, d\theta} = 2\theta \tag{1}$$

$$\pi(\theta|T_1) = \frac{(1-\theta) \times 1}{\int_0^1 (1-\theta) \times 1 \, d\theta} = 2(1-\theta) \tag{2}$$

1回目にコインの表 (H) が出た場合には、 $\pi(\theta|H)=2\theta$ を新たな事前確率分布として 2回目のコイン投げを行う。すると、

$$\pi(\theta|H_2H_1) = \frac{\theta \times 2\theta}{\int_0^1 \theta \times 2\theta \, d\theta} = 3\theta^2$$

$$\pi(\theta|T_2H_1) = \frac{(1-\theta) \times 2\theta}{\int_0^1 (1-\theta) \times 2\theta \, d\theta} = 6\theta(1-\theta)$$

1 回目にコインの裏 (T) が出た場合には、 $\pi(\theta|T)=2(1-\theta)$ を新たな事前確率分布として 2 回目のコイン投げを行うと、

$$\pi(\theta|H_2T_1) = \frac{\theta \times 2(1-\theta)}{\int_0^1 \theta \times 2(1-\theta) d\theta} = 6\theta(1-\theta)$$

$$\pi(\theta|T_2T_1) = \frac{(1-\theta) \times 2(1-\theta)}{\int_0^1 (1-\theta) \times 2(1-\theta) d\theta} = 3(1-\theta)^2$$

3度目のコイン投げ

$$\pi(\theta|H_{3}H_{2}H_{1}) = \frac{\theta \times 3\theta^{2}}{\int_{0}^{1}\theta \times 3\theta^{2} d\theta} = 4\theta^{3}$$

$$\pi(\theta|T_{3}H_{2}H_{1}) = \frac{(1-\theta) \times 3\theta^{2}}{\int_{0}^{1}(1-\theta) \times 3\theta^{2} d\theta} = 12\theta^{2}(1-\theta)$$

$$\pi(\theta|H_{3}T_{2}H_{1}) = \frac{\theta \times 6\theta(1-\theta)}{\int_{0}^{1}\theta \times 6\theta(1-\theta) d\theta} = 12\theta^{2}(1-\theta)$$

$$\pi(\theta|T_{3}T_{2}H_{1}) = \frac{(1-\theta) \times 6\theta(1-\theta)}{\int_{0}^{1}(1-\theta) \times 6\theta(1-\theta) d\theta} = 12\theta(1-\theta)^{2}$$

$$\pi(\theta|H_{3}H_{2}T_{1}) = \frac{\theta \times 6\theta(1-\theta)}{\int_{0}^{1}\theta \times 6\theta(1-\theta) d\theta} = 12\theta^{2}(1-\theta)$$

$$\pi(\theta|T_{3}H_{2}T_{1}) = \frac{(1-\theta) \times 6\theta(1-\theta)}{\int_{0}^{1}(1-\theta) \times 6\theta(1-\theta) d\theta} = 12\theta(1-\theta)^{2}$$

$$\pi(\theta|H_{3}T_{2}T_{1}) = \frac{\theta \times 3(1-\theta)^{2}}{\int_{0}^{1}\theta \times 3(1-\theta)^{2} d\theta} = 12\theta(1-\theta)^{3}$$

$$\pi(\theta|T_{3}T_{2}T_{1}) = \frac{(1-\theta) \times 3(1-\theta)^{2}}{\int_{0}^{1}(1-\theta) \times 3(1-\theta)^{2} d\theta} = 4(1-\theta)^{3}$$

一般に、コインを n 回投げた場合、順序は問わずに表が α 回、裏が β 回出たとすると、一回の試行で表が出る確率 p の値の確率分布は、 ベータ分布

$$f(x; m, n) = \frac{\Gamma(m+n)}{\Gamma(m)\Gamma(n)} x^{m-1} (1-x)^{n-1}$$

を用いて、

$$\pi(\theta)$$
 表の出た回数 = α 、裏の出た回数 = β) = $f(\theta; \alpha + 1, \beta + 1)$ = $\frac{(\alpha + \beta + 1)!}{\alpha! \beta!} \theta^{\alpha} (1 - \theta)^{\beta}$

と表されることが分かる。

 θ の平均値

$$E(\theta) = \int_0^1 \theta f(\theta; \alpha + 1, \beta + 1) d\theta$$
$$= \frac{(\alpha + \beta + 1)!}{\alpha! \beta!} \int_0^1 \theta^{\alpha + 1} (1 - \theta)^{\beta} d\theta$$

を計算すれば良い。積分は部分積分法を用いる。

$$\int_0^1 \theta^{\alpha+1} (1-\theta)^\beta d\theta = \frac{1}{\alpha+2} \int_0^1 \left(\frac{d}{d\theta} \theta^{\alpha+2}\right) (1-\theta)^\beta d\theta$$

$$= \frac{1}{\alpha+2} \left\{ \theta^{\alpha+2} (1-\theta)^\beta \Big|_0^1 + \beta \int_0^1 \theta^{\alpha+2} (1-\theta)^{\beta-1} d\theta \right\}$$

$$= \frac{\beta}{\alpha+2} \int_0^1 \theta^{\alpha+2} (1-\theta)^{\beta-1} d\theta$$

$$= \frac{\beta(\beta-1)\cdots 1}{(\alpha+2)(\alpha+3)\cdots(\alpha+\beta+1)} \int_0^1 \theta^{\alpha+\beta+1} d\theta$$

$$= \frac{\beta(\beta-1)\cdots 1}{(\alpha+1)(\alpha+2)\cdots(\alpha+\beta+1)(\alpha+\beta+2)}$$

$$= \frac{(\alpha+1)! \beta!}{(\alpha+\beta+2)!}$$

となるので、

$$E(\theta) = \frac{\alpha + 1}{\alpha + \beta + 2}$$

を得る。

θ の最尤推定

$$\frac{d}{d\theta} \left\{ \frac{(\alpha+\beta+1)!}{\alpha! \, \beta!} \, \theta^{\alpha} (1-\theta)^{\beta} \right\} = 0 \, \, \, \sharp \, \, \mathfrak{h} \, , \quad \theta = \frac{\alpha}{\alpha+\beta}$$

3 正規分布 $N(\mu, \sigma^2)$ における平均 μ の推定

正規母集団 $N(\mu, \sigma^2)$ から n コのデータ $\mathbf{x} = \{x_1, x_2, \cdots, x_n\}$ を取り出した場合、その尤度は、

$$f(\boldsymbol{x}|\theta) = f(x_n|\theta)f(x_{n-1}|\theta) \cdots f(x_1|\theta)$$

$$= \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x_i - \theta)^2}{2\sigma^2}\right\}$$

$$= \frac{1}{\left(\sqrt{2\pi\sigma^2}\right)^n} \exp\left\{-\frac{\sum_{i=1}^{n} (x_i - \theta)^2}{2\sigma^2}\right\}$$

ここで、
$$\bar{x}_n = \frac{\sum_{i=1}^n x_i}{n}$$
 を導入すると、
$$\sum_{i=1}^n (x_i - \theta)^2 = \sum_{i=1}^n \left[(x_i - \bar{x}_n) - (\bar{x}_n - \theta) \right]^2$$
$$= \sum_{i=1}^n \left[(x_i - \bar{x}_n)^2 - 2(\bar{x} - \theta)(x_i - \bar{x}_n) + (\bar{x}_n - \theta)^2 \right]$$
$$= \sum_{i=1}^n (x_i - \bar{x}_n)^2 + n(\bar{x}_n - \theta)^2$$

となるので、

$$f(\boldsymbol{x}|\theta) \propto \exp\left\{-\frac{(\bar{x}_n - \theta)^2}{2\sigma^2/n}\right\}$$

したがって、 θ の事後分布は、

$$\pi(\theta|\mathbf{x}) \propto \exp\left\{-\frac{(\theta-\bar{x}_n)^2}{2\sigma^2/n}\right\} \pi(\theta)$$

となる。

ここで、 θ の事前分布 $\pi(\theta)$ を、平均 θ_0 、分散 σ_0^2 の正規分布

$$\pi(\theta) = \frac{1}{\sqrt{2\pi\sigma_0^2}} \exp\left\{-\frac{(\theta - \theta_0)^2}{2\sigma_0^2}\right\}$$

に選ぶと、

$$\pi(\theta|\boldsymbol{x}) \propto \exp\left\{-\frac{(\theta-\bar{x}_n)^2}{2\sigma^2/n}\right\} \cdot \exp\left\{-\frac{(\theta-\theta_0)^2}{2\sigma_0^2}\right\}$$

ところで、

$$\frac{(\theta - \bar{x}_n)^2}{\sigma^2/n} + \frac{(\theta - \theta_0)^2}{\sigma_0^2} = \frac{n}{\sigma^2} \left(\theta^2 - 2\bar{x}_n \theta + \bar{x}_n^2 \right) + \frac{1}{\sigma_0^2} \left(\theta^2 - 2\theta_0 \theta + \theta_0^2 \right) \\
= \left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2} \right) \theta^2 - 2 \left(\frac{n\bar{x}_n}{\sigma^2} + \frac{\theta_0}{\sigma_0^2} \right) \theta + \left(\frac{n\bar{x}_n^2}{\sigma^2} + \frac{\theta_0^2}{\sigma_0^2} \right) \theta + \left(\frac{n\bar{x}_n^2}{\sigma^2} + \frac{\theta_0^2}{\sigma^2} \right) \theta + \left(\frac{n\bar{x}_n^2}{\sigma^2} + \frac{n\bar{x}_n^2}{\sigma^2} \right) \theta + \left(\frac{n\bar{x}_n^2}{\sigma^2} + \frac{n\bar{x}_n^2}{\sigma^2} + \frac{n\bar{x}_n^2}{\sigma^2} \right) \theta + \left(\frac{n\bar{x}_n^2}{\sigma^2} + \frac{n\bar{x}_n^2}{\sigma^2} \right) \theta + \left($$

なので、

$$\frac{1}{\sigma_n^2} = \frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}$$
$$\frac{\theta_n}{\sigma_n^2} = \frac{n\bar{x}_n}{\sigma^2} + \frac{\theta_0}{\sigma_0^2}$$

とおくと、

$$\frac{(\theta - \bar{x})^2}{\sigma^2/n} + \frac{(\theta - \theta_0)^2}{\sigma_0^2} = \frac{1}{\sigma_n^2} \theta^2 - 2\frac{\theta_n}{\sigma_n^2} \theta + \cdots$$
$$= \frac{(\theta - \theta_n)^2}{\sigma^2} + \cdots$$

となるので、

$$\pi(\theta|\mathbf{x}) \propto \exp\left\{-\frac{(\theta-\theta_n)^2}{2\sigma_n^2}\right\}$$
 (3)

である。

さらに新しいデータ x_{n+1} が得られたとすると、今度は (3) 式を事前分布として θ の事後分布を求めると、

$$\pi(\theta|x_{n+1}) \propto \exp\left\{-\frac{(x_{n+1}-\theta)^2}{2\sigma^2}\right\} \cdot \exp\left\{-\frac{(\theta-\theta_n)^2}{2\sigma_n^2}\right\}$$
$$\propto \exp\left\{-\frac{(\theta-\theta_{n+1})^2}{2\sigma_{n+1}^2}\right\}$$

となるので、

$$\frac{1}{\sigma_{n+1}^2} = \frac{1}{\sigma^2} + \frac{1}{\sigma_n^2}$$
$$\frac{\theta_{n+1}}{\sigma_{n+1}^2} = \frac{x_{n+1}}{\sigma^2} + \frac{\theta_n}{\sigma_n^2}$$

または、

$$\theta_{n+1} = \frac{\sigma_n^2 x_{n+1} + \sigma^2 \theta_n}{\sigma_n^2 + \sigma^2}$$

を得る。

4 カルマンフィルター (Kalman Filter)

4.1 導出-その1

時刻 t における状態を x(t)、観測値を y(t) と置く。ここでは、簡単のために x(t) と y(t) はスカラーとする。また、時刻 1 における観測値 y(1) から時刻 t における観測値 y(t) までを用いた後の状態 x(t) の推定値を $\hat{x}(t)$ と書く。状態 x(t) は推定値 $\hat{x}(t)$ を中心とする分散 $\sigma_a(t)^2$ の正規分布に従うとする。ここで、サフィックス a は、観測値 y(t) が求まった後 (after) であることを表す。

$$P(x(t)|\hat{x}(t)) = \frac{1}{\sqrt{2\pi\sigma_a^2(t)}} \exp\left\{-\frac{\left(x(t) - \hat{x}(t)\right)^2}{2\sigma_a^2(t)}\right\}$$
(4)

すなわち、

y(t) を用いて推定した $x(t): N(\hat{x}(t), \sigma_a(t))$ に従う

状態方程式を

$$x(t) = Gx(t-1) + w(t) \tag{5}$$

とする。簡単のため G は時間に依存しない定数とする。w(t) は、平均 0、分散 $\sigma_w^2(t)$ の正規分布に従うとする。すなわち、

$$w(t): N(0, \sigma_w(t))$$
 に従うシステム雑音 (6)

時刻 t における観測値 y(t) が求まる前においては、x(t) は平均 $G\hat{x}(t-1)$ 、分散 $G\sigma_a^2(t-1)+\sigma_w^2(t)$ の正規分布に従う。簡単のために、

$$\sigma_b^2(t) = G\sigma_a^2(t-1) + \sigma_w^2(t) \tag{7}$$

と書こう。

状態 x(t-1) の値が、観測値 y(t-1) を用いて $\hat{x}(t-1)$ と推定された場合、雑音の平均は 0 だから、状態方程式から x(t) の平均 $\hat{x}^-(t)$ を求めると、

$$\hat{x}^-(t) = G\hat{x}(t-1) \tag{8}$$

となるので、

$$P(x(t)|\hat{x}^{-}(t)) = \frac{1}{\sqrt{2\pi\sigma_b^2(t)}} \exp\left\{-\frac{(x(t) - \hat{x}^{-}(t))^2}{2\sigma_b^2(t)}\right\}$$
(9)

ここで、時刻 t における観測 y(t) はまだ行われていない (before) ので、分散にサフィックス b が付くことに注意しよう。

観測方程式を

$$y(t) = F_t x(t) + v(t) \tag{10}$$

ここで、

$$v(t) : N\left(0, \, \sigma_v^2(t)\right) \tag{11}$$

とする

(10) 式の左辺に $\hat{y}^-(t)$ を代入すると、雑音v(t)は0だから、

$$\hat{y}^{-}(t) = F_t \hat{x}^{-}(t) = F_t G \hat{x}(t-1) \tag{12}$$

を得る。実際の観測量 y(t) から $\hat{y}^-(t)$ を引いた量 e(t) を定義する。

$$e(t) = y(t) - \hat{y}^{-}(t)$$
 (13)

$$= F_t (x(t) - \hat{x}^-(t)) + v(t) \tag{14}$$

これをイノベーションという。これは、平均が $F_t\left(x(t)-G\hat{x}(t-1)\right)$ 、分散が $\sigma_v^2(t)$ の正規分布にしたがう。

ここで、

$$e'(t) = \frac{e(t)}{F_t} + \hat{x}^-(t) \tag{15}$$

とおくと、

$$e'(t) = x(t) + \frac{v(t)}{F_t}$$

となる。これは、平均がx(t)、分散が $\sigma_v^2(t)/F_t^2$ に従う。すなわち、

$$P(e'(t)|x(t)) = \sqrt{\frac{F_t^2}{2\pi\sigma_v^2(t)}} \exp\left\{-\frac{F_t^2}{2\sigma_v^2(t)} (e'(t) - x(t))^2\right\}$$
(16)

となる。

$$P(e'(t)|\hat{x}^{-}(t)) = \int P(e'(t)|x(t))P(x(t)|\hat{x}^{-}(t)) dx(t)$$

$$(17)$$

に (9) 式と (16) 式を代入することにより、e'(t) が与えられたときの、x(t) の事後分布は、

$$P(x(t)|e'(t), \hat{x}^{-}(t)) \propto \exp\left\{-\frac{F_t^2}{2\sigma_v^2(t)} (e'(t) - x(t))^2\right\} \cdot \exp\left\{-\frac{(x(t) - \hat{x}^{-}(t))^2}{2\sigma_b^2(t)}\right\}$$
(18)

そこで、 $P(x(t)|e'(t),\hat{x}^-(t))$ を $P(x(t)|\hat{x}(t))$ と書くことにすると、これは、

$$P(x(t)|\hat{x}(t)) = \frac{1}{\sqrt{2\pi\sigma_a^2(t)}} \exp\left\{-\frac{\left((x(t) - \hat{x}(t))^2\right)^2}{2\sigma_a^2(t)}\right\}$$
(19)

と表される。ここで、

$$\frac{1}{\sigma_a^2(t)} = \frac{F_t^2}{\sigma_v^2(t)} + \frac{1}{\sigma_b^2(t)} \tag{20}$$

$$\frac{\hat{x}(t)}{\sigma_a^2(t)} = \frac{F_t^2 e'(t)}{\sigma_v^2(t)} + \frac{\hat{x}^-(t)}{\sigma_b^2(t)}$$
(21)

である。

すなわち、(20) 式より、

$$\sigma_a^2(t) = \frac{\sigma_b^2(t)\sigma_v^2(t)}{F_t^2\sigma_b^2(t) + \sigma_v^2(t)} \tag{22}$$

また、(7) 式より、

$$\sigma_b^2(t) = G\sigma_a^2(t-1) + \sigma_w^2(t)$$

である。

また、(21) 式に(15) 式を代入し(20), (22) 式を用いると、

$$\hat{x}(t) = \sigma_a^2(t) \left\{ \frac{F_t^2}{\sigma_v^2(t)} \left(\frac{e(t)}{F_t} + \hat{x}^-(t) \right) + \frac{G\hat{x}(t-1)}{\sigma_b^2(t)} \right\}
= \sigma_a^2(t) \left\{ \frac{F_t^2}{\sigma_v^2(t)} + \frac{1}{\sigma_b^2(t)} \right\} \hat{x}^-(t) + \frac{F_t\sigma_a^2(t)}{\sigma_v^2(t)} e(t)
= \hat{x}^-(t) + \frac{F_t\sigma_b^2(t)}{F_t^2\sigma_b^2(t) + \sigma_v^2(t)} e(t)$$

を得る。

さらに、この状態推定値 $\hat{x}(t)$ をイノベーションの(13)式を用いて書き改めると、

$$\hat{x}(t) = \hat{x}^{-}(t) + K(t)(y(t) - \hat{y}^{-}(t))$$
(23)

となる。ここで、

$$K(t) = \frac{F_t \sigma_b^2(t)}{F_t^2 \sigma_b^2(t) + \sigma_v^2(t)}$$
 (24)

をカルマンゲイン (Kalman gain) という。

4.2 導出-その2

時刻 t における状態の推定値 $\hat{x}(t)$ は、(23) 式のように書けると考えるのは自然である。そこで、(23) 式から出発して、(4) 式で定義した

$$\sigma_a^2(t) = E\left[\left(x(t) - \hat{x}(t)\right)^2\right] \tag{25}$$

を最小にするという条件から K(t) を決定しよう。

 $x(t) - \hat{x}(t)$ を (10), (12) 式を用いて書き直すと、

$$x(t) - \hat{x}(t) = x(t) - \left(\hat{x}^{-}(t) + K(t)\left(y(t) - \hat{y}^{-}(t)\right)\right)$$
(26)

$$= (x(t) - \hat{x}^{-}(t)) - K(t)(F_t x(t) + v(t) - F_t G \hat{x}(t-1))$$
(27)

$$= (1 - K(t)F_t)(x(t) - \hat{x}^-(t)) - K(t)v(t)$$
(28)

となるので、

$$\sigma_a^2(t) = E[(x(t) - \hat{x}(t))^2]$$

$$= (1 - K(t)F_t)^2 E[(x(t) - \hat{x}^-(t))^2] + K^2(t)E[v^2(t)]$$
(29)

を得る。(9) 式および(11) より、

$$E\left[\left(x(t) - \hat{x}^{-}(t)\right)^{2}\right] = \sigma_{b}^{2}(t)$$

$$E\left[v^{2}(t)\right] = \sigma_{v}^{2}(t)$$

なので、(29) 式は、

$$\sigma_a^2 = (1 - K(t)F_t)^2 \sigma_b^2 + K^2(t)\sigma_a^2(t) \tag{30}$$

となる。

この式を K(t) で微分すると、

$$\begin{array}{lcl} \frac{d\sigma_a^2}{dK(t)} & = & -2F_t(1-K(t)F_t)\sigma_b^2(t) + 2K(t)\sigma_v^2(t) \\ & = & -2F_t\sigma_b^2(t) + 2K(t)\left(F_t^2\sigma_b^2(t) + \sigma_v^2(t)\right) \end{array}$$

この式を 0 とおくと、

$$K(t) = \frac{F_t \sigma_b^2(t)}{F_t^2 \sigma_b^2(t) + \sigma_v^2(t)}$$

を得る。

4.3 例 1次元ランダムウォーク (1-D Random Walk)

時刻 t における粒子の位置を x_t と書く。最初 (t=0) の粒子の位置を測定した結果を y_0 する。測定は誤差を含むので、実際の位置 x_0 は、推定値 $\hat{x}_0=y_0$ を中心とする正規分布で与えられる。

$$P(x_0|y_0) = P(x_0|\hat{x}_0)$$

$$= \frac{1}{\sqrt{2\pi\sigma_v^2}} \exp\left\{-\frac{(x_0 - \hat{x}_0)^2}{2\sigma_v^2}\right\}$$
(31)

これを、

$$y_0 = x_0 + v, \qquad v \sim N(0, \ \sigma_v^2)$$

と書こう。

単位時間経過後の粒子の位置 x_1 は、 x_0 を中心とする正規分布

$$x_1 = x_0 + w, \qquad w \sim N(0, \ \sigma_w^2)$$

で与えられる。すなわち、

$$P(x_1|x_0) = \frac{1}{\sqrt{2\pi\sigma_w^2}} \exp\left\{-\frac{(x_1 - x_0)^2}{2\sigma_w^2}\right\}$$
 (32)

となるので、実際の位置は、

$$P(x_1|\hat{x}_0) = \int P(x_1|x_0)P(x_0|\hat{x}_0) dx_0$$
(33)

$$= \frac{1}{\sqrt{2\pi\sigma_w^2}} \frac{1}{\sqrt{2\pi\sigma_v^2}} \int \exp\left\{-\frac{(x_1 - x_0)^2}{2\sigma_w^2} - \frac{(x_0 - \hat{x}_0)^2}{2\sigma_v^2}\right\} dx_0 \tag{34}$$

$$= \frac{1}{\sqrt{2\pi(\sigma_w^2 + \sigma_v^2)}} \exp\left\{-\frac{(x_1 - \hat{x}_0)^2}{2(\sigma_w^2 + \sigma_v^2)}\right\}$$
(35)

で与えられる。 ここで、新しい記号

$$\sigma_b^2(1) = \sigma_w^2 + \sigma_v^2 \tag{36}$$

を導入すると、上の(35)式は、

$$P(x_1|\hat{x}_0) = \frac{1}{\sqrt{2\pi\sigma_b^2(1)}} \exp\left\{-\frac{(x_1 - \hat{x}_0)^2}{2\sigma_b^2(1)}\right\}$$
(37)

と書くことができる。

時刻 t=1 のときに、この粒子の位置を観測したところ、 y_1 であることが分かったとしよう。粒子の位置が x_1 であった時に観測値が y_1 である確率は、

$$P(y_1|x_1) = \frac{1}{\sqrt{2\pi\sigma_v^2}} \exp\left\{-\frac{(y_1 - x_1)^2}{2\sigma_v^2}\right\}$$
 (38)

従って、

$$P(y_1|\hat{x}_0) = \int P(y_1|x_1)P(x_1|\hat{x}_0) dx_1$$

を得る。ゆえに、観測値 y_1 が得られたときに x_1 の事後分布は、

$$P(x_1|\hat{x}_0, y_1) \propto P(y_1|x_1)P(x_1|\hat{x}_0)$$
 (39)

$$\propto \exp\left\{-\frac{(y_1 - x_1)^2}{2\sigma_v^2}\right\} \times \exp\left\{-\frac{(x_1 - \hat{x}_0)^2}{2\sigma_b^2(1)}\right\}$$
 (40)

で与えられる。すなわち、

$$P(x_1|\hat{x}_0, y_1) = \frac{1}{\sqrt{2\pi\sigma_a^2(1)}} \exp\left\{-\frac{(x_1 - \hat{x}_1)^2}{2\sigma_a^2(1)}\right\} = P(x_1|\hat{x}_1)$$
(41)

を得る。ここに、

$$\frac{1}{\sigma_a^2(1)} = \frac{1}{\sigma_v^2} + \frac{1}{\sigma_b^2(1)} \tag{42}$$

$$\frac{\hat{x}_1}{\sigma_a^2(1)} = \frac{y_1}{\sigma_v^2} + \frac{\hat{x}_0}{\sigma_b^2(1)} \tag{43}$$

である。

イノベーションを $e_1=y_1-\hat{x}_0$ で定義して、(43) 式の \hat{x}_1 を書き直すと、

$$\hat{x}_1 = \sigma_a^2(1) \left\{ \frac{\hat{x}_0 + e_1}{\sigma_v^2} + \frac{\hat{x}_0}{\sigma_b^2(1)} \right\}$$

より

$$\hat{x}_1 = \hat{x}_0 + \frac{\sigma_b^2(1)}{\sigma_b^2(1) + \sigma_v^2} e_1 \tag{44}$$

を得る。

カルマンゲインは、

$$K = \frac{\sigma_b^2(1)}{\sigma_b^2(1) + \sigma_v^2}$$

となる。

次に、t=2 の場合に進もう。(31) 式の代わりに(41) を用い、(32) 式を

$$P(x_2|x_1) = \frac{1}{\sqrt{2\pi\sigma_w^2}} \exp\left\{-\frac{(x_2 - x_1)^2}{2\sigma_w^2}\right\}$$
 (45)

で置き換えると、

$$P(x_2|\hat{x}_1) = \int P(x_2|x_1)P(x_1|\hat{x}_1) dx_1$$
(46)

$$= \frac{1}{\sqrt{2\pi\sigma_b^2(2)}} \exp\left\{-\frac{(x_2 - \hat{x}_1)^2}{2\sigma_b^2(2)}\right\} \tag{47}$$

(48)

で与えられる。ここで、

$$\sigma_b^2(2) = \sigma_w^2 + \sigma_a^2(1) \tag{49}$$

である。また、

$$P(y_2|\hat{x}_1) = \int P(y_2|x_2)P(x_2|\hat{x}_1) dx_2$$

だから、観測値 y_2 が得られたときに x_2 の事後分布は、

$$P(x_2|\hat{x}_1, y_2) \propto P(y_2|x_2)P(x_2|\hat{x}_1)$$
 (50)

$$\propto \exp\left\{-\frac{(y_2 - x_2)^2}{2\sigma^2}\right\} \times \exp\left\{-\frac{(x_2 - \hat{x}_1)^2}{2\sigma_r^2(2)}\right\}$$
 (51)

(52)

で与えられる。

$$P(x_2|\hat{x}_1, y_2) = \frac{1}{\sqrt{2\pi\sigma_a^2(2)}} \exp\left\{-\frac{(x_2 - \hat{x}_2)^2}{2\sigma_a^2(2)}\right\}$$

$$= P(x_2|\hat{x}_2)$$
(53)

と書くことにすると、

$$\frac{1}{\sigma_a^2(2)} = \frac{1}{\sigma_v^2} + \frac{1}{\sigma_b^2(2)} \tag{55}$$

$$\frac{\hat{x}_2}{\sigma_a^2(2)} = \frac{y_2}{\sigma_v^2} + \frac{\hat{x}_1}{\sigma_b^2(2)} \tag{56}$$

となる。

イノベーション $e_2 = y_2 - \hat{x}_1$ を用いて、(56) 式の \hat{x}_2 を書き直すと、

$$\hat{x}_2 = \hat{x}_1 + \frac{\sigma_b^2(2)}{\sigma_b^2(2) + \sigma_v^2} e_1 \tag{57}$$

を得る。

カルマンゲインは、

$$K = \frac{\sigma_b^2(2)}{\sigma_b^2(2) + \sigma_v^2}$$

となる。

一般に任意のtの場合には、

$$x_t = x_{t-1} + w, \quad w \sim N(0, \sigma_w^2)$$
 (58)

$$y_t = x_t + v, \qquad v \sim N(0, \sigma_v^2) \tag{59}$$

とすると、

$$P(x_{t+1}|x_t) = \frac{1}{\sqrt{2\pi\sigma_w^2}} \exp\left\{-\frac{(x_{t+1} - x_t)^2}{2\sigma_w^2}\right\}$$
 (60)

$$P(y_t|x_t) = \frac{1}{\sqrt{2\pi\sigma_v^2}} \exp\left\{-\frac{(y_t - x_t)^2}{2\sigma_v^2}\right\}$$
(61)

(62)

さらに、

$$P(x_t|\hat{x}_t) = \frac{1}{\sqrt{2\pi\sigma_a^2(t)}} \exp\left\{-\frac{(x_t - \hat{x}_t)^2}{2\sigma_a^2(t)}\right\}$$
(63)

と書くことにすると、単位時間が経過したあとの粒子の位置 x_{t+1} は、

$$P(x_{t+1}|\hat{x}_t) = \int P(x_{t+1}|x_t) P(x_t|\hat{x}_t) dx_t$$

$$= \frac{1}{\sqrt{2\pi\sigma_w^2}} \frac{1}{\sqrt{2\pi\sigma_a^2(t)}} \int \exp\left\{-\frac{(x_{t+1} - x_t)^2}{2\sigma_w^2} - \frac{(x_t - \hat{x}_t)^2}{2\sigma_a^2(t)}\right\} dx_t$$

$$= \frac{1}{\sqrt{2\pi(\sigma_w^2 + \sigma_a^2(t))}} \exp\left\{-\frac{(x_{t+1} - \hat{x}_t)^2}{2(\sigma_w^2 + \sigma_a^2(t))}\right\}$$
(64)

ここで、

$$\sigma_b^2(t+1) = \sigma_w^2 + \sigma_a^2(t) \tag{65}$$

とおくと、(64) 式は、

$$P(x_{t+1}|\hat{x}_t) = \frac{1}{\sqrt{2\pi\sigma_b^2(t+1)}} \exp\left\{-\frac{(x_{t+1} - \hat{x}_t)^2}{2\sigma_b^2(t+1)}\right\}$$
(66)

と書けるので、

$$P(y_{t+1}|\hat{x}_t) = \int P(y_{t+1}|x_{t+1})P(x_{t+1}|\hat{x}_t) dx_{t+1}$$

となる。従って、

$$P(x_{t+1}|\hat{x}_t, y_{t+1}) \propto P(y_{t+1}|x_{t+1})P(x_{t+1}|\hat{x}_t)$$

$$\propto \exp\left\{-\frac{(y_{t+1} - x_{t+1})^2}{2\sigma_v^2}\right\} \times \exp\left\{-\frac{(x_{t+1} - \hat{x}_t)^2}{2\sigma_b^2(t+1)}\right\}$$
(67)

となる。すなわち、

$$P(x_{t+1}|\hat{x}_t, y_{t+1}) = \frac{1}{\sqrt{2\pi\sigma_a^2(t+1)}} \exp\left\{-\frac{(x_{t+1} - \hat{x}_{t+1})^2}{2\sigma_a^2(t+1)}\right\}$$
(68)

$$= P(x_{t+1}|\hat{x}_{t+1}) \tag{69}$$

を得る。ここで、

$$\frac{1}{\sigma_a^2(t+1)} = \frac{1}{\sigma_v^2} + \frac{1}{\sigma_b^2(t+1)} \tag{70}$$

$$\frac{\hat{x}_{t+1}}{\sigma_a^2(t+1)} = \frac{y_{t+1}}{\sigma_v^2} + \frac{\hat{x}_t}{\sigma_b^2(t+1)} \tag{71}$$

である。(70) 式より、

$$\sigma_a^2(t+1) = \frac{\sigma_v^2 \,\sigma_b^2(t+1)}{\sigma_v^2 + \sigma_b^2(t+1)} \tag{72}$$

を得る。

イノベーションを、 $e_{t+1} = y_{t+1} - \hat{x}_t$ とおくと、(71) 式の \hat{x}_{t+1} は、

$$\hat{x}_{t+1} = \hat{x}_t + K(t) \ e_{t+1} \tag{73}$$

となる。ここで、

$$K(t) = \frac{\sigma_b^2(t+1)}{\sigma_b^2(t+1) + \sigma_v^2}$$
 (74)

4.3.1 定常カルマンフィルター

定常状態では、 $\sigma_a^2(t)$ も $\sigma_b^2(t)$ も時間に依らない定数となる。 $\sigma_b^2(t)=p$ とおいて、(65) 式と (72) 式を書き直すと、

$$p = \sigma_w^2 + \sigma_a^2 \tag{75}$$

$$\sigma_a^2 = \frac{\sigma_v^2 p}{p + \sigma_v^2} \tag{76}$$

これらの式から σ_a^2 を消去すると、

$$p^2 - \sigma_w^2 p - \sigma_v^2 \sigma_w^2 = 0 \tag{77}$$

を得る。この解は、p > 0 だから、

$$p = \frac{\sigma_w^2 + \sqrt{(\sigma_w^2)^2 + 4\sigma_v^2 \sigma_w^2}}{2} \tag{78}$$

$\sigma_v^2 = 0$ の場合

この場合は、 $y_t = x_t$ 、すなわち、観測値は誤差を含まない。

$$\sigma_b^2 = \sigma_w^2 \tag{79}$$

$$\sigma_a^2 = 0 ag{80}$$

なので、K=1となり、

$$\hat{x}_{t+1} = \hat{x}_t + y_{t+1} - \hat{x}_t = y_{t+1} \tag{81}$$

すなわち、

$$\hat{x}_{t+1} = y_{t+1} \tag{82}$$

という全く自明の結果を得る。

$\sigma_w^2=1,\;\sigma_v^2=2$ の場合

(77) 式は、

$$p^2 - p - 2 = 0 (83)$$

となり、 $p=\sigma_b^2=2$ を得る。すると、 $K=\frac{1}{2}$ となるので、

$$\hat{x}_{t+1} = \hat{x}_t + \frac{1}{2}(y_{t+1} - \hat{x}_t) \tag{84}$$

すなわち、

$$\hat{x}_{t+1} = \frac{1}{2}(y_{t+1} + \hat{x}_t) \tag{85}$$

$$= \frac{1}{2}y_{t+1} + \left(\frac{1}{2}\right)^2 (y_t + \hat{x}_{t-1}) \tag{86}$$

$$= \frac{1}{2}y_{t+1} + \left(\frac{1}{2}\right)^2 y_t + \left(\frac{1}{2}\right)^3 (y_{t-1} + \hat{x}_{t-2}) \tag{87}$$

$$\cdots$$
 (88)

$$= \frac{1}{2}y_{t+1} + \left(\frac{1}{2}\right)^2 y_t + \dots + \left(\frac{1}{2}\right)^{t+1} (y_1 + \hat{x}_0)$$
 (89)

$$= \sum_{i=1}^{t} \left(\frac{1}{2}\right)^{t+2-i} y_i + \left(\frac{1}{2}\right)^{t+1} \hat{x}_0 \tag{90}$$

または、

$$\hat{x}_t = \sum_{i=1}^t \left(\frac{1}{2}\right)^{t+1-i} y_i + \left(\frac{1}{2}\right)^t \hat{x}_0 \tag{91}$$

を得る。