# Vehicle Trajectory Forecasting: A classification approach

Comparison between LSTM and Transformers

#### Contents

- Introduction.
- Background RNNs, LSTMs, Transformers.
- Data.
- Method.
- Results.
- Final thoughts.

## Introduction

## Introduction

- Learning from a sequence.
- Memory.
- Attention is all you need (2018).

# Background

### Recurrent Neural Networks

- Memorizing sequence.
- Vanishing gradient.
- Long Short-Term Memory
- Complexity.

## RNN unfolded



## LSTM CELL



## Transformer Networks

- Attention
- Allows parallelization.

# Transformer architecture



Figure 1: The Transformer - model architecture.

## Data description

- Vehicle movement in urban environments.
- Classification problem.
- 900 unique bins.
- Randomly rotating the trajectories.









- Red : Training data
- Blue : Testing data

- Turns and roundabouts
- Split up into many sections.

## Method: Input Output

- Modeled similarly to a translation task
- Machine Translation:
  - At each time step:
    - Assigns a probability for each word in the vocabulary
    - Predict the word with highest probability



## Method: Input Output

- Our method:
  - At each time step:
    - Assigns a probability for each bin in the possible bin space
    - Predict the bin position with highest probability



#### Method: Transformer

- Implemented using PyTorch
- 256 dimensionality, 6 layers & 8 attention heads
- Cross-entropy loss
- Stochastic Gradient Descent with a decaying learning rate
- 20% dropout and early stopping

#### Method: LSTM

- Implemented in Tensorflow using the Keras API
- Encoder and decoder both consist of 256 LSTM units
- Stochastic Gradient Descent with Momentum optimizer
- Categorical cross entropy loss
- To avoid overfitting dropout of 20% was used on the LSTM layers along with early stopping



#### Method: Evaluation Metrics

- Average Displacement Error (ADE):
  - The average of the error in meters between the ground truth and the predicted trajectory at every time step.
- Final Displacement Error (FDE):
  - The error in meters between the ground truth and the predicted trajectory at the last time step.
- Accuracy:
  - o average of how many predictions are equal to ground truth
- Percentage of Perfect Predictions:
  - o ratio of trajectories predicted with zero error

## Results

Datasets (inputs, outputs)
30, 70
11, 22 (every 3rd coordinate)
30, 70
100, 100

| # of Bins | Model       | Train loss | Validation loss | ADE (meters) | FDE (meters) | Bin Accuracy | % Perfect |
|-----------|-------------|------------|-----------------|--------------|--------------|--------------|-----------|
| 10,000    | Transformer | 1.06       | 1.008           | 0.1267       | 0.32         | 0.683        | 0.138     |
| 900       | Transformer | 0.16       | 0.135           | 0.0146       | 0.024        | 0.994        | 0.953     |
| 900       | Transformer | 0.12       | 0.094           | 0.0228       | 0.075        | 0.987        | 0.882     |
| 900       | Transformer | 0.17       | 0.482           | 0.1336       | 0.536        | 0.916        | 0.439     |
|           |             |            |                 |              |              |              |           |
| 10,000    | LSTM        | 1.754      | 2.205           | 1.2794       | 1.93         | 0.024        | ~0        |
| 900       | LSTM        | 0.912      | 1.318           | 0.6456       | 0.925        | 0.386        | 0.023     |
| 900       | LSTM        | 0.806      | 1.177           | 0.5909       | 0.993        | 0.444        | 0.031     |
| 900       | LSTM        | 1.125      | 2.077           | 1.8461       | 2.558        | 0.331        | 0.075     |



## Final Thoughts

- Transformer vs LSTM
  - More complex LSTM models / architectures
  - Regression vs classification
- Loss of information due to bins

# Questions?