Southern University of Science and Technology Advanced Linear Algebra Spring 2023

MA109- Quiz #5

2023/03/26

Stu	dent Number:
1.	Suppose V_1, \dots, V_m are vector spaces such that $V_1 \times \dots \times V_m$ is finite-dimensional. Prove that V_j is finite-dimensional for each $j = 1, 2, \dots, m$.
	设 V_1, \cdots, V_m 均为向量空间使得 $V_1 \times \cdots \times V_m$ 是有限维的. 证明对每个 $j=1,2,\cdots,m$ 来说 V_j 都是有限维的. ### contradiction
	<i>Proof.</i> Suppose V_i is infinite dimensional, then \exists a sequence of vectors $\xi_1, \xi_2, \dots \in V_i$, s.t. $\xi_1, \xi_2, \dots, \xi_n$ is
	linearly independent for any integer n .
	Let $\eta_j = (0, \dots, 0, \xi_j, 0, \dots, 0)$, we have a sequence $\{\eta_j\}_{j=1}^{\infty}$ in $V_1 \times \dots \times V_m$, s.t. $\forall n, \eta_1, \dots, \eta_n$ is linearly independent, then $V_1 \times \dots \times V_m$ is infinite dimensional, which is a contradiction!

- 2. Define $T: \mathbf{R}^3 \to \mathbf{R}^2$ by T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z). Suppose φ_1, φ_2 denotes the dual basis of the standard basis of \mathbf{R}^2 and ψ_1, ψ_2, ψ_3 denotes the dual basis of the standard basis of \mathbf{R}^3 .
 - 1. Describe the linear functionals $T'(\varphi_1)$ and $T'(\varphi_2)$.
 - 2. Write $T'(\varphi_1)$ and $T'(\varphi_2)$ as linear combinations of ψ_1, ψ_2, ψ_3 .

定义 $T: \mathbf{R}^3 \to \mathbf{R}^2$ 为 T(x, y, z) = (4x + 5y + 6z, 7x + 8y + 9z). 设 φ_1, φ_2 是 \mathbf{R}^2 的标准基的对偶基, ψ_1, ψ_2, ψ_3 是 \mathbf{R}^3 的标准基的对偶基.

- 1. 描述线性泛函 $T'(\varphi_1)$ and $T'(\varphi_2)$.
- 2. 将 $T'(\varphi_1)$ 和 $T'(\varphi_2)$ 写成 ψ_1, ψ_2, ψ_3 的线性组合.

Proof. 1. $T'(\varphi_1) = \varphi_1 \circ T : \mathbf{R}^3 \to \mathbf{R}, T'(\varphi_2) = \varphi_2 \circ T : \mathbf{R}^3 \to \mathbf{R}$. For all $(x, y, z) \in \mathbf{R}^3$,

$$\varphi_1 \circ T(x, y, z) = \varphi_1(4x + 5y + 6z, 7x + 8y + 9z) = (4x + 5y + 6z)\varphi_1(e_1) + (7x + 8y + 9z)\varphi_1(e_2) = 4x + 5y + 6z$$

$$\varphi_2 \circ T(x,y,z) = \varphi_2(4x + 5y + 6z, 7x + 8y + 9z) = (4x + 5y + 6z)\varphi_2(e_1) + (7x + 8y + 9z)\varphi_2(e_2) = 7x + 8y + 9z$$

2. $\psi_1(x,y,z) = x$, $\psi_2(x,y,z) = y$, $\psi_3(x,y,z) = z$, then

$$T'(\phi_1) = 4\psi_1 + 5\psi_2 + 6\psi_3, \quad T'(\phi_2) = 7\psi_1 + 8\psi_2 + 9\psi_3$$