

Deep Q-Learning Network

"Playing atari with deep reinforcement learning"
"Human-level control through deep reinforcement learning"

2nd Seminar, 2023 AVE Lab Summer Internship Hongtae Kim

2023.08.11

Contents

- 1. Introduction
- 2. DQN
- 3. Experience Replay
- 4. Target Network
- 5. Result
- 6. Overview

Deep Reinforcement Learning (Deep RL)

- Combine Deep Learning + Reinforcement Learning (Deep RL)
- Previously, RL with Tabular methods couldn't solve with large-scale state (practical), so RL with function approximation methods proposed
- TD-gammon was the first to combine DL and RL, but it did not consider convergence (Hand-craft feature, Correlation, Target move)

Deep Reinforcement Learning

Deep Q-Network (DQN)

- Published 2013 in arXiv, 2015 in Nature
- Only RL had limitations
 - 1. Useful features can be handcrafted
 - 2. Low-dimensional state space
- Combined DL (CNN) and RL (Q-learning), proposed a novel 'Deep Q-Network'
- Possible to train using high-dimensional sensory input (like human)
- Applied to an Atari 2600, it outperforms a professional human expert in 29 out of 49 games

Q-Learning

- Q-learning is a model-free, off-policy algorithm
- Goal: Learn an optimal Q-function, $Q^*(s, a)$, so that the agent can obtain the maximum discounted cumulative reward from the environment
- While learning, use behavior policy to select action, and target policy for update Q-value
- Behavior policy : ε -greedy, Target policy : greedy

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s, a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
        Choose A form S using policy derived from Q (\varepsilon-greedy)
        Take action A, observe R, S'
        Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[ R_{t+1} + \gamma \max_{\alpha} Q(S_{t+1}, \alpha) - Q(S_t, A_t) \right]
S \leftarrow S'
until S is terminal
```

Pseudo-code for Q-learning

$$Action = \left\{ \begin{array}{ccc} \max_{a \in A} Q(s_{t+1}, a) \ , & 1 - \varepsilon \\ random \ a \ , & \varepsilon \end{array} \right.$$

$$\varepsilon\text{-greedy}$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{\boldsymbol{a}} Q(S_{t+1}, \boldsymbol{a}) - Q(S_t, A_t) \right]$$
greedy

Backup diagrams for Q-learning

Model & Policy

- Model-based: Model of the environment is known, Planning, Expected update
- Model-free: Model of the environment is unknown, Learning, Sample update
- On-policy: Single policy, No exploration after convergence
- Off-policy: Target policy & Behavior policy, Balance exploration and exploitation

Model-based

Model-free

On-policy & Off-policy

- Online Banner Advertisements
 Exploitation: Show the most successful advert
 Exploration: Show a different advert
- Game Playing

Exploitation: Play the move you believe is best

Exploration: Play an experimental move

Exploitation & Exploration

Function Approximation

- Q-learning is a method of storing Q values for all state-action pair in a table and updating it to find the optimal policy, called tabular method
- Large state spaces is not only memory (High-dimensional data) and computation, but also encountering states we have never seen before
- Generalization
- Function parameterized for a new variable w (weight)
- Function that approximates the true value using this parameter is called a function approximator

$$Q^*(s,a) \approx \hat{Q}(s,a,\mathbf{w})$$

Function Approximator

Function Approximation

Deep Learning

- In DQN, Deep learning is used to approximator
- To determine the relationship between X and y, find the weights
- Where training data and label are given (X : data, y : labels)
- Find $W_1, b_1, W_2, b_2, W_o, b_o$
- Function Approximation

$$y = f(a(a(a(X \cdot W_1 + b_1) \cdot W_2 + b_2) \cdot W_0 + b_0))$$

DQN

- DQN = Deep learning + Q-learning
- Parameterizing Q function
- Forward pass

Preprocessing

- 1. 210×160 pixel images with a 128-colour palette
- 2. Pixel-wise maximum flickering
- 3. Extract Y channel (luminance), rescale 84×84 (ϕ) computation and memory
- 4. Frame skipping Not much change, computation
- 5. Stack 4 frames to produce the input to the Q-function $(84 \times 84 \times 4)$ Sequence

 210×160

Pixel-wise maximum

Luminance, Rescale

Frame skipping

Stack

DQN Model Architecture

- Input : Preprocessing (ϕ)
- 1st hidden layer: 32 filters, 8 × 8 with stride 4, ReLU
- 2^{nd} hidden layer: 64 filters, 4×4 with stride 2, ReLU
- 3^{rd} hidden layer: 64 filters, 3×3 with stride 1, ReLU
- Final hidden layer: FC layer 512 units, ReLU
- Output layer: Number of valid action

Experience Replay

- Deep learning algorithms assume the data samples to be independent
- State sequences in RL are highly correlated
- Strong correlations between the samples
- Randomizing the samples breaks these correlations

Experience Replay

Target Network

- Use a separate network for generating the targets y_j in the Q-learning update
- Every C updates clone the network Q to obtain a target network \hat{Q}
- More stable compared to standard Q-learning
- Oscillations, hard to convergence

No Target Network

Target Network

Main Network

Target Network

DQN Pesudo-code (2015 NATURE)

End for

End for

```
Initialize replay memory \mathcal{D} to capacity N
Initialize action-value function Q with random weights \theta
Initialize target action-value function \hat{Q} with weights \theta^- = \theta
For episode = 1, M do
     Initialize sequence s_1 = \{x_1\} and preprocessed sequenced \phi_1 = \phi(s_1)
                                                                                                        Preprocessing
     For t = 1, T do
           With probability \varepsilon select a random action a_t
                                                                               ε-greedy
           otherwise select a_t = arg \max_{x} Q(\phi(s_t), a; \theta)
           Execute action a_t in emulator and observe reward r_t and image x_{t+1}
           Set s_{t+1} = s_t, a_t, x_{t+1} and preprocess \phi_{t+1} = \phi(s_{t+1})
           Store transition (\phi_t, a_t, r_t, \phi_{t+1}) in \mathcal{D}
                                                                                                    Experience Replay
           Sample random minibatch of transitions (\phi_j, a_j, r_j, \phi_{j+1}) from \mathcal{D}
          Set y_j = \begin{cases} r_j & \text{if episode terminates at step } j+1 \\ r_j + \gamma \max_{a'} \widehat{Q}(\phi_{j+1}, a'; \theta^-) & \text{otherwise} \end{cases}
                                                                                                                           Target Network
          Perform a gradient descent step on (y_j - Q(\phi_j, a_j; \theta))^2 with respect to the network parameters \theta
           Every C steps reset \hat{Q} = Q
```

DQN Diagram

DQN Hyperparameter

			Hyperparameter	Value
Hyperparameter	Value	Description	minibatch size	32
minibatch size	32	Number of training cases over which each stochastic gradient descent (SGD) update is computed.	minioaten size	32
replay memory size	1000000	SGD updates are sampled from this number of most recent frames.		
agent history length	4	The number of most recent frames experienced by the agent that are given as input to the Q network.		
target network update frequency	10000	The frequency (measured in the number of parameter updates) with which the target network is updated (this corresponds to the parameter C from Algorithm 1).	Replay memory size	1,000,000
discount factor	0.99	Discount factor gamma used in the Q-learning update.	replay memory size	1,000,000
action repeat	4	Repeat each action selected by the agent this many times. Using a value of 4 results in the agent seeing only every 4th input frame.		
update frequency	4	The number of actions selected by the agent between successive SGD updates. Using a value of 4 results in the agent selecting 4 actions between each pair of successive updates.	T 1 1 C	10.000
learning rate	0.00025	The learning rate used by RMSProp.	Target network update frequency	10,000
gradient momentum	0.95	Gradient momentum used by RMSProp.		1
squared gradient momentum	0.95	Squared gradient (denominator) momentum used by RMSProp.		
min squared gradient	0.01	Constant added to the squared gradient in the denominator of the RMSProp update.		
initial exploration	1	Initial value of ϵ in $\epsilon\text{-greedy}$ exploration.	Initial exploration	1 1
final exploration	0.1	Final value of ϵ in ϵ -greedy exploration.	iiiliai expioration	1 1
final exploration frame	1000000	The number of frames over which the initial value of ϵ is linearly annealed to its final value.		
replay start size	50000	A uniform random policy is run for this number of frames before learning starts and the resulting experience is used to populate the replay memory.	F' 1 1 4'	0.1
no-op max	30	Maximum number of "do nothing" actions to be performed by the agent at the start of an episode.	Final exploration	0.1
			Replay start size	50,000

List of hyperparameters and their values

Result – Atari 2600

- Same network architecture, learning algorithm and hyperparameter setting
- Each game 30 times for up to 5min
- 100% were professional human game testers, 0% were random play
- Outperformed humans in 29 out of 49

Result – Breakout

Result – Effect of 'Experience Replay' and 'Target Network'

Game	With replay, with target Q	With replay, without target Q	Without replayed with target		
Breakout	316.8	240.7	10.2	3.2	
Enduro	1006.3	831.4	141.9	29.1	
River Raid	7446.6	4102.8	2867.7	1453.0	
Seaquest	2894.4	822.6	1003.0	275.8	
Space Invaders	1088.9	826.3	373.2	302.0	

Result – Effect of Neural Network

Game	DQN	Linear
Breakout	316.8	3.00
Enduro	1006.3	62.0
River Raid	7446.6	2346.9
Seaquest	2894.4	656.9
Space Invaders	1088.9	301.3

Overview

