Course Code: ESC106A

Course Title: Construction Materials and Engineering Mechanics

Lecture No. 16:

Problems on Coplanar Non-Concurrent Force Systems

Delivered By: Nimmy Mariam Abraham

Lecture Intended Learning Outcomes

At the end of this lecture, students will be able to:

- Describe Varignon's Theorem
- Apply the method of resolution and find the resultant of coplanar non concurrent force system
- Solve the unknown forces given the resultant of non concurrent force system
- Calculate the angles of applied forces given the resultant of concurrent force system

Contents

Varignon's theorem, coplanar non concurrent force system, problems on coplanar non concurrent force system

Varignon's Theorem

- This is also known as the principle of moments
- Principle of moments states that "the algebraic sum of the moments of individual forces of a force system about a point is equal to the moment of their resultant about the same point"
- Or The moment of a force about any point is equal to the algebraic sum of the moments of its components about that point.

Varignon's Theorem - Proof

- Let R be the resultant of forces F₁ and F₂ and O' be the moment centre
- Let r_1 and r_2 be the moment arms of forces r_1 and r_2 respectively , from the moment centre r_2
- According to Varignon's principle,
 Moment of R about O' = Algebraic sum of moments of forces F₁ and F₂
 about O'

Varignon's Theorem - Proof

$$R.r = F_1r_1 + F_2r_2$$
....(1)
From Fig

 θ_1 – Angle made by F_1 with OD

 θ_2 – Angle made by F_2 with OD

 θ – Angle made by R with OD

x – Distance between O and O'

From O O'P, $r = xsin\theta$,

From O O'Q, $r_1 = x sin \theta_1$

From O O'S, $r_2 = x \sin \theta_2$

Substituting in (1)

$$R.xsin\theta = Rsin\theta.x$$

$$But, \frac{CD}{R} = sin\theta$$

$$CD = Rsin\theta$$

Varignon's Theorem - Proof

$$R.r = Rsin\theta.x$$

$$R.r = CD.x$$

$$R.r = (CH + HD).x$$
(2)

From BHC, $CH = F_1 sin\theta_1$

HD = BF

From OFB, $BF = F_2 sin\theta_2 = HD$ Substituting in (2)

$$R.r = (F_1 sin\theta_1 + F_2 sin\theta_2).x$$

$$R.r = (F_1 sin\theta_1.x + F_2 sin\theta_2.x)$$

$$R.r = (F_1 sin\theta_1.x + F_2 sin\theta_2.x)$$

 $R.r = (F_1 r_1 + F_2 r_2)$

Problems on Coplanar Non-Concurrent Force Systems

Tips to solve the Problems

- In a coplanar non-concurrent force system, the magnitude, direction and position of resultant can be determined.
- Calculate the algebraic sum of all the forces acting in the x-direction (i.e ΣF_x) and also in the y-direction (i.e ΣF_y)
- Determine the magnitude of the resultant using the formula,

$$R = \sqrt{\Sigma F_X^2 + \sum F_Y^2}$$

- Determine the direction of the resultant using the formula $\theta = \tan^{-1}(\frac{\Sigma Fy}{\Sigma Fx})$
- The position of resultant can be determined by using the Varignon's theorem or using the formulae $d = \left| \frac{\Sigma M}{R} \right|$, x-intercept $= \left| \frac{\Sigma M_A}{\Sigma F_N} \right|$,

y-intercept=
$$\left|\frac{\Sigma M_A}{\Sigma F_x}\right|$$

1.A rigid plate ABCD is subjected to forces as shown in figure. Compute the magnitude, direction and line of action of the resultant of the system with reference to point A

R=193.30kN d=0.732m

2. Find the resultant of the coplanar parallel forces acting on the truss as shown in the figure.

R=-30kN

d=4m

3.For the non-concurrent coplanar system shown in the figure, determine the magnitude, direction and position of the resultant force with reference to A.

4.Determine the resultant of a system of forces as shown in figure, acting on a 40mmx40mm size lamina. Each grid is of size 10mmx10mm. Determine the location also.

R=648.169N d=33mm

Summary

- The forces can be resolved and resultant of coplanar non concurrent force system can be obtained
- Varignon's theorem:
 - The moment of a force about any point is equal to the algebraic sum of the moments of its components about that point.

