CLAIMS

A calixarene compound shown by following formula (1):
 [Formula 1]

5

10

$$Z^{17}O \xrightarrow{(X^8)_{q9}} OZ^{18} \xrightarrow{(X^3)_{q3}} Z^{19}O \xrightarrow{(X^{10})_{q10}} OZ^{20}$$

$$Z^{16}O \xrightarrow{CH} Z^{5}O \xrightarrow{CH} CH \xrightarrow{CH} CH \xrightarrow{CH} CH \xrightarrow{(X^{11})_{q11}} CH \xrightarrow{CH} OZ^{22}$$

$$Z^{14}O \xrightarrow{CH} R^2 \xrightarrow{R^3} R^3 \xrightarrow{CH} OZ^2$$

$$Z^{13}O \xrightarrow{(X^2)_{q2}} CH \xrightarrow{CH} CH \xrightarrow{CH} OZ^2$$

$$Z^{10}O \xrightarrow{(X^5)_{q5}} CH \xrightarrow{CH} OZ^2$$

$$Z^{10}O \xrightarrow{CH} OZ^2$$

wherein R^1 to R^6 individually represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X^1 to X^{12} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted are alkyl group

having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; \mathbf{Z}^1 to \mathbf{Z}^{24} individually represent a hydrogen atom, a group having a polymerizable functional group, a group having an alkali-soluble group, or a substituted alkyl group having an alkyl chain with a 1 to 8 carbon atom content, or two adjacent Zs in combination represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; \mathbf{q}^1 to \mathbf{q}^{12} individually represent an integer of 0 or 1.

2. The calixarene compound according to claim 1 , wherein X^1 to X^{12} in the formula (1) are methyl groups.

10

25

- 3. The calixarene compound according to claim 1, wherein q^1 to q^{12} in the formula (1) are 0.
- 4. The calixarene compound according to any one of claims 1 to 3, wherein R^1 to R^6 are individually an alkylene group 20 having 3, 5, 7, or 8 carbon atoms.
 - 5. The calixarene compound according to any one of claims 1 to 4, wherein all of the \mathbf{Z}^1 to \mathbf{Z}^{24} groups in the formula (1) are hydrogen atoms.

6. The calixarene compound according to any one of claims 1 to 4, wherein at least one of the Z^1 to Z^{24} groups in the formula

- (1) is a group other than hydrogen atom.
- 7. The calixarene compound according to claim 6, wherein at least one of the Z^1 to Z^{24} groups in the formula (1) has a polymerizable functional group.
- 8. The calixarene compound according to claim 7, wherein the polymerizable functional group is a polymerizable unsaturated group and/or a cyclic ether group.

10

5

9. The calixarene compound according to any one of claims 6 to 8, wherein at least one of the Z^1 to Z^{24} groups in the formula (1) has an alkali-soluble group.

15

10. The calixarene derivative according to claim 9, wherein the alkali-soluble group is at least one group selected from the group consisting of a carboxyl group, amino group, sulfonamide group, sulfonic acid group, and phosphoric acid group.

20

11. The calixarene derivative according to any one of claims 6 to 10, wherein at least one of the groups among \mathbf{Z}^1 to \mathbf{Z}^{24} in the formula (1) has both a polymerizable functional group and an alkali-soluble group.

25

12. At least one intermediate of a calixarene compound selected from the group shown by the following formulas (2),

to (8):

10

[Formula 2]

$$(X^{16})_{q16}$$

HO

 $CH-R^7-CH$
 OH
 OH
 OH
 OH
 OH
 OH
 OH
 OH
 OH

wherein R⁷ represents a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X¹³ to X¹⁶ individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q¹³ to q¹⁶ individually represent an integer of 0 or 1,

[Formula 3]

$$(X^{21})_{q21}$$
 $(X^{21})_{q21}$
 $(X^{21})_{q21}$
 $(X^{21})_{q21}$
 $(X^{21})_{q21}$
 $(X^{21})_{q21}$
 $(X^{21})_{q21}$
 $(X^{21})_{q22}$
 $(X^{$

wherein R^8 and R^9 individually represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X^{17} to X^{23} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q^{17} to q^{23} individually represent an integer of 0 or 1,

[Formula 4]

wherein R^{10} to R^{12} individually represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X^{24} to X^{33} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; q^{24} to q^{33} individually represent an integer of 0 or 1,

[Formula 5]

$$(X^{40})_{q40} OH HO OH HO OH HO OH HO OH HO OH HO OH (X^{39})_{q39} OH (X^{39})_{q39} OH (X^{38})_{q38} OH (X^{38})_{q38} OH (X^{37})_{q37} OH OH (X^{36})_{q36} OH (X^{36})_{q36} OH (X^{35})_{q35} OH (X^{35})_{q35} OH (X^{37})_{q37} OH (X^{36})_{q36} OH (X^{36})_{q36} OH (X^{35})_{q35} OH (X^{35})_{q35} OH (X^{37})_{q37} OH (X^{36})_{q36} OH (X^{36}$$

wherein R^{13} to R^{15} individually represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X^{34} to X^{42} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q^{34} to q^{42} individually represent an integer of 0 or 1,

[Formula 6]

wherein R¹⁶ to R¹⁹ represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X⁴³ to X⁵⁴ individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q⁴³ to q⁵⁴ individually represent an integer of 0 or 1,

[Formula 7]

wherein R²⁰ to R²³ represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X⁵⁵ to X⁶⁵ individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q⁵⁵ to q⁶⁵ individually represent an integer of 0 or 1,

[Formula 8]

$$\begin{pmatrix} (x^{74})_{q74} \\ + (7^{3})_{q75} \\ + (7^{3})_{q75} \\ + (7^{3})_{q75} \\ + (7^{3})_{q77} \\ + (7^{3})_{q77} \\ + (7^{3})_{q77} \\ + (8^{3})_{q79} \\ + (8^{3})_{q79} \\ + (8^{3})_{q79} \\ + (8^{3})_{q79} \\ + (10^{3})_{q79} \\ +$$

wherein R^{24} to R^{29} represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; X^{66} to X^{80} individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted aralkyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; and q^{66} to q^{80} individually represent an integer of 0 or 1.

- 13. The intermediate of a calixarene compound according to claim 12, wherein X^{13} to X^{80} in the formulas (2) to (8) are methyl groups.
 - 14. The intermediate of a calixarene compound according to claim 12, wherein q^{13} to q^{80} in the formulas (2) to (8) are 0.

20

5

10

15. The intermediate of a calixarene compound according to any one of claims 12 to 14, wherein R^7 to R^{29} in the formulas (2) to (8) are individually an alkylene group having 3, 5, 7, or 8 carbon atoms.

25

16. A method for manufacturing a calixarene compound comprising condensing at least one compound shown by the

formula (9) and at least one compound shown by the formula (10):

[Formula 9]

$$(3)^{d_{1}}$$

wherein X⁸¹ represents a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted or unsubstituted phenoxy group; and q⁸¹ is an integer of 0 or 1,

[Formula 10]

5

10

20

$$OHC \longrightarrow R^{30} \longrightarrow CHO$$
 (10)

- wherein R³⁰ represents a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms.
 - 17. The method according to claim 16, wherein X^{81} in the formula (9) is a methyl group.

18. The method according to claim 16, wherein q^{81} in the formula (9) is 0.

19. The method according to any one of claims 16 to 18, wherein R^{30} in the formula (10) is an alkylene group having 3, 5, 7, or 8 carbon atoms.

5

20. A composition comprising a calixarene compound of the formula (1) and a solvent which can dissolve the calixarene compound:

[Formula 11]

10

$$Z^{17}O$$
 Z^{18}
 $Z^{19}O$
 Z^{19

wherein R^1 to R^6 individually represent a substituted or unsubstituted alkylene group having 1-8 carbon atoms; X^1 to X^{12}

individually represent a substituted or unsubstituted alkyl group having 1 to 10 carbon atoms, a substituted or unsubstituted alkenyl group having 2 to 10 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 10 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 10 carbon atoms, a substituted or unsubstituted alkoxyl group having 1 to 10 carbon atoms, or a substituted or unsubstituted phenoxy group; Z^1 to Z^{24} individually represent a hydrogen atom, a group having a polymerizable functional group, a group having an alkali-soluble group, or a substituted alkyl group having an alkyl chain with a 1 to 8 carbon atom content, or two adjacent Zs in combination represent a substituted or unsubstituted alkylene group having 1 to 8 carbon atoms; q^1 to q^{12} individually represent an integer of 0 or 1.

- 21. The composition according to claim 20, wherein the calixarene compound has a polymerizable functional group for at least one of the Z^1 to Z^{24} groups in the formula (1) and the composition further comprises a polymerization initiator.
- 22. The composition according to claim 20, wherein the calixarene compound has an alkali-soluble group for at least one of the Z^1 to Z^{24} groups in the formula (1).