MAT1513 - Laboratório de Matemática - Diurno Professor David Pires Dias - 2013 TI4 - Trabalho Individual IV

INDUÇÃO FINITA

O método da indução finita é um procedimento matemático para provar propriedades que são verdadeiras para uma seqüência de objetos. É um método bastante utilizado em teoria dos números, geometria, análise combinatória, etc.. Mas trata-se de um tipo de demonstração que pode aparecer em qualquer domínio da Matemática.

Exemplo 1 Os seguintes resultados podem ser provados por indução.

- i) Dado $n \in \mathbb{N}$ vale $2^n < n!$, se $n \ge 4$.
- ii) O número de diagonais de um polígono de n lados é $\frac{n(n-3)}{2}$.
- iii) Todo número natural maior ou igual a dois admite decomposição em fatores primos, única a menos da ordem dos fatores.

Observemos que os três resultados acima falam de propriedade associadas a números naturais e que são afirmadas valer a partir de algum natural inicial (4 no primeiro, 3 no segundo e 2 no terceiro exemplo). Generalizando, o método se aplica para a prova de afirmações que contém no seu enunciado a descrição de alguma propriedade P(n) que é afirmada valer para todo natural $n \ge n_0$, onde n_0 é dado explicitamente ou fica evidente pelo contexto do enunciado.

Princípio da Indução Finita - 1^a Forma

Seja P(n) um enunciado que descreve uma propriedade sobre um número **natural** n maior ou igual a um número natural n_0 fixado.

Definição 2 (PIF 1ª forma) Se pudermos provar que valem as duas condições:

C1: $P(n_0)$ é verdadeira (ou seja, vale a propriedade para n_0);

C2: É verdadeira a implicação $P(n) \to P(n+1)$ para todo $n \ge n_0$.

Então podemos afirmar que a propriedade P(n) é verdadeira para todo $n \ge n_0$.

No uso prático, para provar um teorema por indução finita devemos assim mostrar que as duas condições do princípio acima estão satisfeitas. Isso nos garante a validade da propriedade para a infinidade de casos aos quais o teorema faça referência.

No caso da segunda condição, como uma implicação só é falsa se sua premissa for verdadeira e a conclusão falsa, basta excluir essa possibilidade para termos a validade da implicação desejada. Assim o que normalmente se faz é tomar um k genérico qualquer maior ou igual a n_0 e admitindo que P(k) seja verdadeiro, mostrar que necessariamente P(k+1) também deve ser verdadeiro. Feita também a prova de que vale a propriedade para o primeiro natural n_0 , o princípio da indução nos garante a validade da propriedade em todos os casos afirmados.

Exemplo 3 Como $2^4 = 16$ e 4! = 4.3.2.1 = 24, então vale que $2^4 < 4!$ e portanto (C1), a primeira condição do PIF, está satisfeita.

Admitindo que $2^k = k!(*)$ para um k genérico maior do que 4, como

•
$$2^{k+1} = 2 \cdot 2^k$$
 • $(k+1)! = (k+1)k!$ • $(k+1) > 2$, se $k > 4$

a partir da desigualdade (*) obtemos que

$$2^{k+1} = 2.2^k < 2.k! < (k+1).k! = (k+1)!$$

Fica assim estabelecida a validade de (C2), a segunda condição do PIF.

Portanto o princípio da indução finita garante que vale $2^n < n!$, para todo $n \ge 4$.

Princípio da Indução Finita - 2ª Forma

Seja P(n) um enunciado que descreve uma propriedade sobre um número natural n maior ou igual a um número natural n_0 fixado.

Definição 4 (PIF 2ª forma) Se pudermos provar que valem as duas condições:

CC1: $P(n_0)$ é verdadeira (ou seja, vale a propriedade para n_0);

CC2: Para todo $n \geq n_0$, é verdadeira a implicação

$$P(n_0) \wedge P(n_0+1) \wedge ... \wedge P(n-1) \wedge P(n) \rightarrow P(n+1).$$

Então podemos afirmar que a propriedade P(n) é verdadeira para todo $n \ge n_0$.

Na prática, para provar uma propriedade utilizando a segunda forma de indução, devemos provar que a propriedade P vale para n_0 e a seguir, dado um n qualquer maior do que n_0 admitindo que a propriedade P vale para todos os números entre n_0 e n (inclusive), devemos provar que P também vale para n + 1. Ou ainda, devemos comprovar a seguinte implicação:

$$P(k)$$
 verdadeira para $n_0 \le k \le n \to P(n)$ verdadeira.

Essa segunda forma pode ser necessária algumas vezes, como por exemplo no Teorema Fundamental da Aritmética enunciado no item (iii) do primeiro exemplo e cuja existência da decomposição provaremos a seguir (só provaremos a existência neste texto, a unicidade a menos de ordem dos fatores não será feita aqui).

Exemplo 5 O primeiro número é o 2, que é primo. Como 2 = 2, podemos dizer que 2 admite uma "fatoração"/ única em primos. E portanto (CC1) está satisfeita.

Admitamos que todos os números entre 2 e n, incluindo 2 e n, admitem uma fatoração em números primos, única a menos da ordem dos fatores. Consideremos o número n+1. Existem duas possibilidades:

a) n+1 é primo, e nesse caso a sua "fatoração" é evidentemente única contendo como único "fator" o próprio primo n+1, como no caso do número 2.

b) n+1 é composto, por exemplo, n+1=p.q, onde p e q são números naturais menores do que n e maiores ou iguais a 2. Assim, por suposição (logo acima), também chamada de hipótese de indução, tanto p como q admitem deco mposição em fatores primos. Multiplicando todos os fatores de p pelos fatores de q evidentemente obtemos o número n+1.

Como as fatorações de p e q são únicas a menos da ordem dos fatores, deve-se ainda provar que, se houvesse outros primos que fatorassem n+1, distintos da fatoração já encontrada, obteríamos também fatorações distintas para p e q, o que não é possível por hipótese. (Essa parte é mais técnica e não faremos aqui, fica como desafio para quem se interessar. Vocês verão a prova completa na disciplina Álgebra I.)

Exercícios

1. Demonstre a validade das seguintes afirmações para n no conjunto dos naturais:

a)
$$(1+r)^n \ge 1 + nr$$
, para $r > -1$.

d)
$$1 + r + r^2 + \dots + r^n = \frac{1 - r^{n+1}}{1 - r}$$
, para $r \neq 1$

b)
$$1+2+...+n=\frac{n(n+1)}{2}$$

e)
$$n < 2^n$$

c)
$$1^2 + 2^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{c}$$

f)
$$(1+2+...+n)^2 = 1^3 + 2^3 + ... + n^3$$

g) $1.1! + 2.2! + ... + n.n! = (n+1)! - 1$

- 2. Prove o item (ii) do primeiro exemplo utilizando indução finita.
- 3. Numa ilha existem uma quantidade muito grande de pássaros que são infinitamente inteligentes e cada um sabe da inteligência dos outros. Esses pássaros são muito vaidosos e tem 1 pena colorida no seu rabo que não conseguem enxergar. Se eles descobrem que eles perderam essa pena eles suicidam-se. Eles se encontram só uma vez ao dia. Um dia ao encontrar-se eles são informados que pelo menos um deles perdeu essa pena. Passados n dias pelo menos um pássaro se suicida. Pergunta-se:
 - a) Quantos pássaros suicidam-se nesse dia?
- b) Quantos pássaros perderam sua pena?

(Sugestão: Comece com n = 1, 2, 3 depois conjecture algo e prove por indução).

- 4. Numa certa criação de coelhos o número de coelhos a_n após n meses obedece a seguinte regra: $a_n = 3a_{n-1} 2a_{n-2}$, sabe-se também que $a_1 = 3$ e $a_2 = 7$. Mostre que $a_n = 2^{n+1} 1$ para todo $n \ge 1$.
- 5. Numa certa população de gatos o número de gatos em um ano é igual à soma do número de gatos nos dois anos prévios. Se no primeiro ano havia um gato e no segundo dois, mostre que o número de gatos no n-ésimo ano é dado pela fórmula

$$\frac{1}{\sqrt{5}} \left[\left(\frac{1}{2} + \frac{1}{2} \sqrt{5} \right)^{n+1} - \left(\frac{1}{2} - \frac{1}{2} \sqrt{5} \right)^{n+1} \right].$$

6. O que está errado na seguinte demostração:

Proposição 6 Todo conjunto finito não vazio tem 1 elemento.

Dem: Obviamente vale P(1), ou seja, temos a veracidade de C1 ou CC1.

Assuma que a proposição é válida para P(n) e seja $A = \{x_1, ..., x_n, x_{n+1}\}$, então $x_1 = x_2 = ... = x_n$ e $x_2 = x_3 = ... = x_n = x_{n+1}$, logo $x_1 = x_2 = ... = x_{n+1}$ e temos a validade de P(n+1).

7. O que está errado no seguinte argumento:

Proposição 7 Se $a \neq 0$ então $a^{n-1} = 1$ para todo n natural.

Dem: $P(1): a^{1-1} = 1$ vale sempre.

Assumindo $a^{k-1}=1$, temos $a^k=a^k\frac{a^{k-2}}{a^{k-2}}=\frac{a^{k-1}aa^{k-2}}{a^{k-2}}=\frac{a^{k-1}a^{k-1}}{a^{k-2}}=\frac{1\cdot 1}{1}=1$.

- 8. Seja $a_0=1$ e, para n>0, seja $a_n=2a_{n-1}+1$. Os primeiros termos da sequência a_0,a_1,a_2,a_3,\ldots são $1,3,7,15,\ldots$ Quais são os próximos três termos? Prove que $a_n=2^{n+1}-1$.
- 9. Seja $b_0=1$ e, para n>0, seja $b_n=3b_{n-1}-1$. Quais são os cinco primeiros termos da sequência b_0,b_1,b_2,\ldots ? Prove que $b_n=\frac{3^n+1}{2}$.

Instruções para os exercícios a serem entregues:

- quatro itens do primeiro exercícios;
- os exercícios 2, 3, 4 e 5;
- um dentre os exercícos 6 e 7;
- um dentre os exercícos 8 e 9.