HPM5300RDC 软件使用文档

目录

1目的	
1.1 资料下载	
1.2 工程建立	5
13 系统设置	7
1.3.1 UART	7
1.3.2 SPI	8
1.3.3 ABZ	9
1.3.4 RTT	9
1.4 代码调试	.10
1.4.1 编译	
1.4.2 运行	. 11
1.4.3 调试	.11

HPM5300RDC 软件使用文档

版本:

日期	版本号	说明
2025-1-10	V1.0.0	初版

1 目的

HPM5300RDC 软件分为两个部分: rdc 解码,数据通信。数据通信接口支持: UART,SPI,ABZ,RTT。针对不同的数据接口,本文从以下几个部分介绍 rdc 解码工程使用。

- 资料下载
- 工程建立
- 系统设置
- 代码调试

1.1 资料下载

本文的软件工程下载内容有:

系统级别资料《rdc53》

本文依赖的硬件环境、通信接口接线、Jlink 调试口接线、旋变信号接线等硬件资料请查看《HPM5300_RDC 硬方案测试文档》。

本软件依赖开发环境 hpm_apps_v1.7.0,并将其放置 sdk_env_v1.7.0 目录下:

(hpm_apps_v1.7.0 下载地址: https://hpmicro-website.oss-cn-hangzhou.aliyuncs.com/hpm_apps_v1.7.0.zip
hpm_apps_v1.7.0 包含大量的应用 demo 和方案,软硬件资源丰富,如用户感兴趣,请查看例程以及使用文档: https://hpm-apps.readthedocs.io/zh-cn/latest/get_started.html#id2)

将本文的系统级别资料下载后,放置目录 hpm_apps/apps 下:

©2023 HPMicro Semiconductor Co., Ltd.

1.2 工程建立

用户可以自行选择建立 flash 或者 ram 进行在线调试。

1、打开 start_gui.exe:

2、选中"Enable User Application Path", 选择下载的 sdk_env_v1.7.0/hpm_apps/apps/rdc53/software/hardware_rdc, 选择"Build Type": flash_xip/debug,点击"Generate"建立 hardware_rdc 工程, 点击"Open with IDE(SES)"打开工程。如下图所示:

3、点击"build"进行工程编译:

4、选中"Enable User Application Path", 选择下载的 sdk_env_v1.7.0/hpm_apps/apps/rdc53/software/pc_debug, 选择"Build Type": flash_xip/debug 点击"Generate"建立 pc_debug 工程,点击"Open with IDE(SES)"打开工程。如下图所示:

5、进行编译"build":

1.3 系统设置

请用户根据需求选择数据读取方式,准备好硬件设备,并进行软硬件配置。

1.3.1 **UART**

- 1、硬件准备
 - ▶ 电源 17v,150mA
 - ➤ Hpm5300evk 板, HPM5300 旋变板
 - ▶ 杜邦线若干
- 2、仿真器*2
- 3、接线

功能	RDC 板位置	5300evk 板位置
uart.rx	J3[1]	P1[8]/PB08
Uart.tx	J3[6]	P1[10]/PB09

4、软件修改

➤ 在 hardware_rdc 工程 rdc_cfg.h 文件中,关闭其他通信方式,配置#define UART DEBUG CONTROL 1

▶ 在 pc_debug 工程 debug.h 文件中关闭其他通信方式,配置#define UART_DEBUG 1

1.3.2 SPI

- 1、硬件准备
 - ➤ 电源 17v,150mA
 - ➤ Hpm5300evk 板, HPM5300 旋变板
 - ▶ 杜邦线若干
 - ▶ 仿真器*2
- 2、接线

©2023 HPMicro Semiconductor Co., Ltd.

功能	RDC 板位置	5300_evk 板位置
SPI.MOSI	J3[6]	P1[19]/PA29
SPI.CS	J3[3]	P1[24]/PA26
SPI.SCLK	J3[2]	P1[23]/PA27
SPI.MISO	J3[1]	P1[21]/PA28

- 3、软件修改
- ▶ 在 hardware_rdc 工程 rdc_cfg.h 文件中,关闭其他通信方式,配置#define SPI_DEBUG_CONTROL 1
- ▶ 在 pc_debug 工程 debug.h 文件中,关闭其他通信方式,配置#define SPI_DEBUG 1

1.3.3 ABZ

- 1、硬件准备
 - ▶ 电源 17v,150mA
 - ➤ HPM5300 旋变板
 - ▶ 杜邦线若干
 - ▶ 逻辑分析仪*1
 - ▶ 仿真器*1
- 2、硬件接线:将 ABZ 三相信号接入逻辑分析仪

功能	RDC 板位置
QEO_A	J3[3]
QEO_B	J3[2]
QEO_Z	J3[1]

- 3、软件修改
 - ▶ 在 hardware_rdc 工程 rdc_cfg.h 文件中,关闭其他通信方式,配置#define ABZ_OUTPUT 1

1.3.4 RTT

- 1、硬件准备
 - ➤ 电源 17v,150mA
 - ▶ hpm5300 旋变板
 - ➤ Jlink*1
- 2、软件工具
 - ▶ Ozone (下载地址: http://www.segger.com/推荐使用 JlinkV8.12,OzoneV3.38C)
- 3、软件修改
 - ▶ 修改 hardware_rdc 工程的 cmakelist 如下:

注: 修改 cmakelist 之后需要重新生成工程。

- ▶ 在 hardware_rdc 工程 rdc_cfg.h 文件中, 关闭其他通信方式, 配置# #define SEGGER_RTT_DEBUG 1
- ➤ 在 hardware_rdc 工程 rdc_cfg.c 文件中,打开

SEGGER_RTT_printf(0, "%d,%d,%d\r\n",theta_rdc_p,pll_theta_p,pll_vel);

1.4 代码调试

1.4.1 编译

点击 build,编译代码

1.4.2 运行

选择串口、spi 通信时,先运行旋变板程序 hardware_rdc,再运行通信板 HPM5300evk 程序 pc_debug。

1.4.3 调试

- 1、spi, uart 模式调试
 - ▶ 使用 spi, uart 通信时,为了更好的分析处理数据,我们将数据存放在 buffer 中。用户可在 ii=0 处打断点,等数组存满自行取出分析。

▶ 将数组 add watch 并展开,点击"export to editor"按钮,右击文件选择保存。

▶ 打开 excel,选择"从文件/CSV",打开保存的文件。数据处理时需要缩小一百倍

2、RTT

▶ 使用 JlinkT 调试,并选择 Ozone 模式。

下载程序,选择 rtt 存储数据

🔍 Ozone - The J-Link Debugger V3.34 - F:/5_motor_lib/sdk_env_v1.8.0/hpm_apps/apps/rdc53/software/hardware_rdc/hpm5300evk_ram_debug/segger_em

▶ 点击"运行",数据开始存储。


```
🔍 Ozone - The J-Link Debugger V3.34 - F:/5_motor_lib/sdk_env_v1.8.0/hpm_apps/apps/rdc53/software/hardware_rdc/hpm5300evk_ram_debug/segger_embedded_stu
    File w Find Debug Tools Window Help
                                                                                                                                          × /rdc.c × \
                                                                                                                                                                  🔜 J-Link RTT Logger V8.10d
         usb_phy_disable_dp_dm_pulldown(struc
trgm_output_config(struct TRGM_Type*
                                                                                                                                                              Device name. Default: HPM5361XCBX >
Target interface. > JTAG
Interface speed [kHz]. Default: 4000 kHz > 9600
RTT Control Block address. Default: auto-detection > 0x00082408
RTT Channel name or index. Default: channel 1 > 0
Output file. Default: RTT_<ChannelName>_<Time>.log >
           system_init
           sysctl_resource_target_set_mode(stru
        sysctl_resource_target_set_mode(stru
sysctl_resource_target_is_busy(struc
sysctl_resource_target_is_busy(struc
sysctl_resource_target_get_mode(stru
sysctl_resource_anv_is_busy(struct S
sysctl_enable_group_resource
sysctl_opt_lock_anv_is_busy(struct S
sysctl_offs_cpu0_domain_clock
sysctl_config_clock
sysctl_offs_ctock_target_is_busy(struct S
sysctl_lock_stet_preset(struct STSTI
sysctl_lock_stet_preset(struct STSTI
sysctl_lock_group_resource_enable(s
syscall_handler(long_int, long_int,
swi_isr()
                                                                                                                                                                       onnected to:
                                                                                                                                                                       SEGGER J-Link
S/N: 601016758
                                                                                                                                                                       earching for RTT Control Block...<u>O</u>K.
up-channels found:
: Terminal
           swi_isr()
    swi_isr()
strilen
strilen
start
spi_write_data(struct SPI_Type*, uns
spi_read_data
spi_isr
                                                                                                                                                                       elected RTT Channel description:
Index: 0
Console
Compressed instruction support: Yes
Feature detection done. Restarting
BG memory access support: Yia SBA
Connected to target device.
J-Link/J-Trace serial number: 60101
Reset type: Normal (https://wiki.ser
RISC-V: Performing reset via <a href="https://wiki.ser">https://wiki.ser</a>
RISC-V: Performing reset via <a href="https://wiki.ser">https://wiki.ser</a>
FigG-V: Performing reset via <a href="https://wiki.ser">https
                                                                                                                                                                        Name: Terminal
Size: 1024 bytes.
                                                                                                                                                                     utput file: C:\Users\XJ0084\AppData\Roaming\SEGGER\RTTLogger_Channel_Terminal.log
                                                                                                                                                                  Getting RTT data from target. Press any key to quit.
  Target.Setkeg ("PC", 0x0);
Elf.Gethrtypointe(); // returns 0: Transfer rate: 143.85 KB/s Data written: 395.66 KB
```

▶ 使用 EXCEL 打开存储文件进行分析。存储文件位置 C:\Users\XJxxx\AppData\Roaming\SEGGER,处理时需将采样数据缩小一千倍。

