

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

533278

(19) World Intellectual Property Organization

International Bureau

(43) International Publication Date 24 March 2005 (24.03.2005)

PCT

(10) International Publication Number WO 2005/026705 A1

(51) International Patent Classification7: 21/39

G01N 21/35,

(21) International Application Number:

PCT/EP2004/008584

(22) International Filing Date: 30 July 2004 (30.07.2004)

(25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/502,282

12 September 2003 (12.09.2003)

- (71) Applicant (for all designated States except US): IR MI-CROSYSTEMS S.A. [CH/CH]; PSE - Bât. C, CH-1015 Lausanne (CH).

- (74) Agent: ICB; Ingénieurs Conseils en Brevets SA, Rue des Sors 7, CH-2074 Marin (CH).
- (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO. CR. CU. CZ. DE. DK. DM. DZ. EC. EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM),

a first embodiment and its detection signal is time derivated by an electronic derivator (64) and then provided to two lock-in amplifiers (84, 86) in order to generate a F-detection and a 2F-detection, F being the frequency of a wavelength modulation of the source, and thus to provide two corresponding measuring signals the division of which gives a precise value of the gas concentration. In a second embodiment, the source is a pyroelectric sensor which directly provides a detection signal proportional to the time derivate of the light beam incident on this sensor. In this last case, the electronic derivator is thus eliminated.

