Taylor Poly normals of Transcendental

$$y = f(n) = e^{x}$$
 $f'(x) = f''(x) = f''(x) = e^{x}$

Order:

 $f(x) = f(a) + f'(a)(a-a)$
 $f'(a) = f'(a)$

And

 $f'(a) = f'(a)$

We chosk $a = 0$
 $f'(a) = f'(a)$

We chosk $a = 0$
 $f'(a) = f'(a)$
 $f'(a) = f'(a) + f'(a)(a-a)$

And

 $f'(a) = f'(a) + f'(a)(a-a)$

And

 $f'(a) = f'(a) + f'(a)(a-a)$

Ather $a = 0$, $f(a) = f'(a)$

Ather $a = 0$, $f(a) = f'(a) = f'(a)$

Ather $a = 0$, $f(a) = f'(a) = f'(a) = e^{a} = e^{0} = 1$

Now, $f'(a) = f'(a)$
 $f''(a) = f''(a)$
 $f''(a) = f''(a)$

Ather $f''(a) = f''(a)$
 $f'''(a) = f'''(a)$
 $f''''(a) = f'''(a)$
 $f''''(a)$

Order 3: | p3(x): f(x) + f'(x) (x-x) + f''(x) (x-x) + f''(x) $\beta_3(x) = (x-1) - (x-1)^2 + (x-1)^3$ $1-(x-1)+(x-1)^{2}, |p_{3}''(x)=-1$ and \(\begin{array}{c} = f'(1)=1 |, |p3(1)=-1=f"(1)=-1 2 = f''(1) = 2 | all valid for [a=1 - f(x) = 1 nx p1(2)=21-1 y=f(2)=lax Iren orders are below lax p2(2) = (2-1) - (2-1)2 (2) | P3(2) = (2-1) - (1-1)2 + (2-1)3 f(n) = (n(n): (n-1) - (n-1)2 + (n-1)3 - ...

:) \(\alpha = 1+2 \]. This gives us Write 2 = x-1 transcendental series of In (1+2) is. 1 (1+2) = X- X2 + Z3 - ... on Equivalently, (The suies has lu (1+x) = 2 - 22 + 23 (The asument 1+x

3/. y=f(a) = Sinx f'(a) = Cosx f'(a) = - Sinx and [f"(2) = - Cosx Order 1: [p.(a) = f(a) + f'(a) (n-a) . Chorse Even orders ramph [(0) = 0], [(0) = 1], [(0) = 0] [(0) = -1] Hence, p(n) = x => p'(n) = 1: p(0) = 0 = f(0) and [P:(0)=1=f'(0)=1] at [a=0]. Order 2: | p2(x) = f(a) + f'(a)(x-a) + f''(a)(x-a)2 Af a=0, $|p_2(x)=0+x+0=x|:|p_2(x):p_1(x)|$ Order 3: \$2(n) = f(a) + f'(a) (n-a) + f''(a) (n-a) + f''(a) (n-a) = f''(a) = f''(a) = f''(a) = f''(a) = f''(a) = f''(a) = f''(At (a:0), P3(x)= 0+x+0-1 x3 = 13(2)= 1-33 With $p_3(n) = x - \frac{x^3}{3!}$ $p_3'(x) = 1 - \frac{x^2}{2}$ $p_3''(x) = 6 - x$ and p3"(x)=-1. [p3(0) = f(0)=0]. [p3(0)=1=f'(0)] P3(0) = 0 = f"(0) and [p3(0) = -1 = f"(0) at [a=0] p3(x)= x- x3 Turning points $p_3(x) = x - x^3$ $-\pi - \pi/2$ $0 \qquad N/2$ P3'(n) = 1-32=0 =) 2=±52 (p3"(n) = - (t/2) |2 = +/2 | the maxi => p3(12): 12-3/2: 12.3<1 Maximum of p3(2) is less than 1. P3(12)<1: The maximum of 03(n) is below @ 1.

41. y=f(n)= con [f'(n)=-Sinx [f"(n)=-cosx and fill(x) = Sinx . Choose [a=0]. Order 1: $\left[p_1(x) = f(a) + f'(a)(x-a) \right]$ vanish f(0) = 1, f'(0) = 0, f''(0) = -1, f'''(0) = 0At [a=0], [p(n)=1] [p(0)=1=f(0)=1] Order 2: | /2(2) = f(a) + f'(a) (a-a) + f''(a) (a-a)2. At |A=0|, $|P_2(x)=1-\frac{x^2}{2}| \Rightarrow |P_2'(x)=-x| P_2''(x)=\frac{x^2}{-1}$ $p_2(0) = 1 = f(0) = 1$ and $p_2'(0) = 0 = f'(0) = 0$ Order 3: \$3(n) = f(a) + f'(a) (n-n) + f''(a) (a-n) At |x=0| $|p_3(x)=1+0-\frac{\chi^2}{2}+0=$ $|p_3(x)=1-\frac{\chi^2}{2}|$ Hence | \pa(n) = \pa(n) ... | \pa'''(x) = 0 = \pa'''(0) = f'''(0) $p_2(x) = 1 - \frac{x^2}{2}$ When $p_2(x) = 0$ 2= ±52 . Cos x = 0 >> \(\tau = \frac{1}{N} \tau \) \(\sigma \) \(\tau \ Hence p2(2) matches Cox very closely within - 1/2 < n(1/2 . .. Over a half-cycle there is a good match. (Sinx has a better

3/ (conkmued) -19-=> [R1a+R0=0] and [R,b=0]. 1: b\$0, => [R1=0] => [R0=0] No remainder. i. f(n) is exactly divisible by (2-a)2+62. But (x-a)2+62 = (x-a+ib)(x-a-ib). =) If x = a + ib is a root then x = a - ib is also a work. Complex 100ts occur in conjugation. 4/ 1) If the coefficients me all positive, the equation has No possitive wot. Es. | x5 + 22 + 22 + 1 = 0 | has No positive look. ii) If the coefficients of the even powers of a are all of one sign, and the coefficients of the odd powers are all of the confrany sign, the Equation has No negative wort. Sg. [27 + 25 - 2x4 + 23 - 322 + 72 - 5 = 0] has NO Negative rot iii) If the equation contains only even powers of x and the coefficients are all of the Same sign, the equation has no real wot. Eg. [2x8+ 3x4+x2+7=0] has No real root. iv) If the equation has only odd powers of x, with all coefficients of the same sign, there is No real root except x=0. Es. $x^9+2\pi^5+3\pi^3+\pi=0$] has no real root except x=0.

5/ |f(n)=0 | cannot have more positive words than there are changes of sign in flow, and cannot have more negative roots than there are changes of sign in f (-x). (Descartes' RULE OF SLANS). Eg. f(x) = x9 +5x8 - x3 +7x +2=0 Maximum 2 positive roots. f(-x) = -29 + 5x8 + x3 - 7x +2=0 Maximum 3 negative roots.

:. There are at least 4 to complex 100ts.

6/. If a changes continuously from a = a 15 2=5, then fox) will also change continuosly.

4. If f(x) and f(b) are of contrary signs, then between x=a and x=b there is at least one loot of f(x)=0. (The Bisection Principle)

of Lvory equation of an odd degree must have at least one real root whose sign is opposite to that of its last term.

|f(a) = a |, |f(-a) = -a | and |f(0) = a 0 |.

i) of ao>o, then there to is a root between - d < x < 0.

ii) If ao <0, then there is a noot between 0 < 2 < 400.

(>9) \f(x) \(y=f60 \) 100t ((a)=0 100t 100t 2 9/. Every equation of even degree with a negative last term has at least two real loots, me positive and one negative.

f(ta) = 00 , f(0) = a0 (y=fm) (fm) with ao <0. There are to at least two real noots of f(x)=0, one positive.

101. If f(a) and f(b) have contrary sisns, an odd number of bots exists between a <n <b. (Counting coinciding 100ts)

11/. If f(a) and f(b) have same signs either there are No worts on an even number of loots between a < x < b (with coinciding nools).

betneen x = 6 and x = 6. Assign a = c.

J. Apply an error tolerance, €.

6/ If b-c or c-a ≤ €, then accept c as the wort and stop.

-23 - Bisection Method

Example: Find the largest wort of Duite / 5,= x6 f(x) = x6-x-1=0. at f(x)=0 [E=0.001] 12= x+1 A wort exists when 191= 92 | From the Sroph there are only 2 Such real loots. f(x) has 6 wots in fotal. There are 4 warplex wots. Sues rapre: (f(1) = -1, f(2) = 61

2 rus racou. (+(1) - +) / 11. 3						
a	5	C = 4+5	f(c)	b-c = c-a	Assisn	f(a) xf(c)
1	2,	1.5	8.8906	0.5	Set b=C	f(=)f(e)<0
1	1.5	1.25	1.5647	0.25	Set B=C	f(a)f(c) <0
1	1.25	1.125	(-0.0977)	0.125	Set a=c)	f(a)f(e) > 0
	1.25	1.1875	0.6167	0.0625	Set b=c	f(a) f(c) < 0
	1.1875		0.2 333	0.0312	Set b = c	f(4) f(c)
1.125	1.1563	1.1407	0.0616	0.0156	Seat 5 = C	f(a)fc)
1.125	1-1407	1.1328	(-0.0196)	0.0079	Set a=c)	f(a)f(c) >0
1.1328	1.1407	1.1368	0.0204	0.0039	Set 5= C	f(a)f(c)
1.1328	1.1368	1.1348	0.00080	0.0020	Sex 6=c	f(a) f(c) <0
1-1328	1.1348	1.1338	-0.0095	0.0010	Set b=c	f(a) f(e) <0
100000000000000000000000000000000000000						

b-c=c-a < E=0.001 apple We accept cas the lost <. =) | < = C = 1.1338