DSS Project Proposal Drone Management in Small Ports

Student Information

Personal Number	Name	Email	Share
030530-4560	Kalidindi Uma Shreeya	umka24@student.bth.se	25%
040317-8619	Jayent Reddy P	japl24@student.bth.se	25%
031213-3481	Varsha Patel Gandla	vaga24@student.bth.se	25%
040203-T132	Ashwin Kumar Santh	assa24@student.bth.se	25%

Problem Description

System's Goal to Achieve

The goal of this project is to develop a Decision Support System (DSS) to assist small EU ports in selecting suitable drones for tasks such as:

- Environmental and pollution monitoring (air, water, quay)
- Fence and infrastructure inspections
- Port surveillance and ship inspections

The DSS will evaluate drone options using a multi-criteria decision-making approach tailored to each port's specific needs.

Decision Criteria

The following criteria will be considered in the decision-making model:

- 1. Flight radius
- 2. Maximum flight height
- 3. Day/Night operation
- 4. Max daily flights
- 5. Wind resistance
- 6. Budget (5K / 10K / 15K EUR)
- 7. Battery life
- 8. Payload capacity
- 9. Camera resolution
- 10. Infrared/Night vision

- 11. Weather resistance
- 12. Real-time data streaming
- 13. Port coverage area
- 14. GPS accuracy
- 15. Maintenance cost
- 16. Environmental durability
- 17. System integration capability
- 18. Vendor support
- 19. Training requirements
- 20. Scalability

General Architecture of DSS

Database Description

The DSS database will contain:

- Drone specifications and capabilities
- · Port operational needs and constraints
- · User input and priority weights

Model Base Description

- A Multi-Criteria Decision-Making (MCDM) approach such as Weighted Sum Model or Analytic Hierarchy Process (AHP)
- Scoring mechanism to evaluate drones based on normalized values and weights

Implementation Plan

Tools

- Python (backend logic and modeling)
- SQLite/PostgreSQL (database)
- Streamlit or Tkinter (UI)
- Excel (optional for prototyping)

Techniques

- · Weighted Scoring Models
- Analytic Hierarchy Process (AHP)
- Data Normalization