赋能正确率介于 0.75 至 0.85 的题目

 $_{1,7,0.814}$ 抛掷一枚均匀的骰子 (刻有 1、2、3、4、5、6) 三次, 得到的数字依次记作 a、b、c, 则 a+bi(i 为虚数单位) 是方程 $x^2-2x+c=0$ 的根的概率是_____.

 $_{1,8,0.814}$ 设常数 $a>0,\ (x+rac{a}{\sqrt{x}})^9$ 展开式中 x^6 的系数为 $4,\$ 则 $\lim_{n o\infty}(a+a^2+\cdots+a^n)=$ _____. $_{2,2,0.814}$ 已知抛物线 C 的顶点在平面直角坐标系原点,焦点在 x 轴上,若 C 经过点 $M(1,3),\$ 则其焦点到准线

 $^{2,2,0.814}$ 已知抛物线 C 的顶点在平面直角坐标系原点,焦点在 x 轴上,若 C 经过点 M(1,3),则其焦点到准线的距离为______.

3,6,0.791 甲、乙两人从 5 门不同的选修课中各选修 2 门, 则甲、乙所选的课程中恰有 1 门相同的选法有______ 种.

7,6,0.818 里约奥运会游泳小组赛采用抽签方法决定运动员比赛的泳道, 在由 2 名中国运动员和 6 名外国运动员组成的小组中, 2 名中国运动员恰好抽在相邻泳道的概率为______.

 $_{8,6,0.795}$ 已知 $f(x)=\sin\frac{\pi}{3}x,$ $A=\{1,2,3,4,5,6,7,8\},$ 现从集合 A 中任取两个不同元素 s、t, 则使得 $f(s)\cdot f(t)=0$ 发生的概率是______.

8,9,0.773 将边长为 10 的正三角形 ABC, 按 "斜二测" 画法在水平放置的平面上画出为 $\triangle A'B'C'$, 则 $\triangle A'B'C'$ 中最短边的边长为 (精确到 0.01).

 $\begin{vmatrix} 3 & -5 & 1 \\ 2 & 3 & -6 \end{vmatrix}$ 中元素 -5 的代数余子式的值为_____.

12,5,0.841 用半径 1 米的半圆形薄铁皮制作圆锥型无盖容器, 其容积为_____ 立方米.

 $_{16,10,0.837}$ 设焦点为 F_1 、 F_2 的椭圆 $\frac{x^2}{a^2}+\frac{y^2}{3}=1$ (a>0) 上的一点 P 也在抛物线 $y^2=\frac{9}{4}x$ 上,抛物线焦点为 F_3 ,若 $|PF_3|=\frac{25}{16}$,则 $\triangle PF_1F_2$ 的面积为______.

 $a_n = 2n-1 \ (n \in \mathbb{N}^*)$,数列 $\{b_n\}$ 的通项公式是 $b_n = 3n \ (n \in \mathbb{N}^*)$,令集合 $A = \{a_1, a_2, \cdots, a_n, \cdots\}$, $B = \{b_1, b_2, \cdots, b_n, \cdots\}$, $n \in \mathbb{N}^*$.将集合 $A \cup B$ 中的所有元素按从小到大的顺序排列,构成的数列记为 $\{c_n\}$.则数列 $\{c_n\}$ 的前 28 项的和 $S_{28} =$ _______.

 $f(x) = \begin{cases} (5-a)x+1, & x<1, \\ (a>0, a \neq 1)$ 是实数集 R 上的增函数, 则实数 a 的取值 $a^x, x \geq 1$

范围为_____.

 $_{21,1,0.818}$ 集合 $P=\{x|0\leq x<3,x\in {f Z}\},\ M=\{x|x^2\leq 9\},\ 则\ P\cap M=_____.$

 $^{22,5,0.810}$ 不等式 $\frac{1}{|x-1|} \ge 1$ 的解集为______. $^{22,10,0.810}$ 设 a_1,a_2,a_3,a_4 是 1,2,3,4 的一个排列,若至少有一个 i (i=1,2,3,4) 使得 $a_i=i$ 成立,则满足此条 件的不同排列的个数为_____

 $_{23,9,0.795}$ 在 $\triangle ABC$ 中, $\angle A=90^{\circ}$, $\triangle ABC$ 的面积为 1. 若 $\overrightarrow{BM}=\overrightarrow{MC}$, $\overrightarrow{BN}=4\overrightarrow{NC}$, 则 $\overrightarrow{AM}\cdot\overrightarrow{AN}$ 的最小值

26,7,0.837 数列 $\{a_n\}$ 的前 n 项和为 S_n , 若点 (n,S_n) $(n\in {\bf N}^*)$ 在函数 $y=\log_2(x+1)$ 的反函数的图像上, 则

 $x^2_{26,9,0.814}$ 抛物线 $y^2=-8x$ 的焦点与双曲线 $x^2_{a^2}-y^2=1$ 的左焦点重合,则这条双曲线的两条渐近线的夹角

27,10,0.814 已知数列 $\{a_n\}$ 的前 n 项和为 S_n , 且 $a_1=1,\,2S_n=a_na_{n+1}(n\in\mathbf{N}^*)$, 若 $b_n=(-1)^n\frac{2n+1}{a_na_{n+1}}$, 则数列

 $f(x) = \begin{cases} \log_2 x, & 0 < x < 2, \\ (\frac{2}{3})^x + \frac{5}{9}, & x \geq 2. \end{cases}$ 若函数 g(x) = f(x) - k 有两个不同的零点, 则实数 k 的取

 $_{^{29,10,0.837}}$ 若三棱锥 S-ABC 的所有的顶点都在球 O 的球面上, $SA\perp$ 平面 $ABC,\,SA=AB=2,\,AC=4,\,AC=4,\,AB=1$ $\angle BAC = \frac{\pi}{3}$, 则球 O 的表面积为______.

30,8,0.837 在约束条件 $|x+1|+|y-2| \le 3$ 下,目标函数 z=x+2y 的最大值为____

32,10,0.767 三条侧棱两两垂直的正三棱锥,其俯视图如图所示,主视图的边界是底边长为 2 的等腰三角形,则主 视图的面积等于_

 $_{^{33,10,0.810}}$ 若将函数 $f(x)=|\sin(\omega x-\frac{\pi}{8})|~(\omega>0)$ 的图像向左平移 $\frac{\pi}{12}$ 个单位后,所得图像对应的函数为偶函 数,则ω的最小值是

 $_{34,8,0.791}$ 已知正四棱锥 P-ABCD 的棱长都相等, 侧棱 PB、PD 的中点分别为 M、N, 则截面 AMN 与底 面 ABCD 所成的二面角的余弦值是_

 $_{34,10,0.837}$ 若适合不等式 $|x^2 - 4x + k| + |x - 3| \le 5$ 的 x 的最大值为 3, 则实数 k 的值为______.

35,10,0.791 已知定义在 R 上的函数 f(x) 满足: ① f(x)+f(2-x)=0; ② f(x)-f(-2-x)=0; ③ 在 [-1,1]

上的表达式为
$$f(x) = \begin{cases} \sqrt{1-x^2}, & x \in [-1,0], \\ 1-x, & x \in (0,1] \end{cases}$$
,则函数 $f(x)$ 与函数 $g(x) = \begin{cases} 2^x, & x \leq 0, \\ \log_{\frac{1}{2}} x, & x > 0 \end{cases}$ 的图像在区间

[-3,3] 上的交点的个数为_____.

36,5,0.786 若圆锥的侧面积是底面积的 2 倍, 则其母线与轴所成角的大小是

 $_{37,5,0.791}$ 若圆柱的侧面展开图是边长为 $_{4cm}$ 的正方形,则圆柱的体积为_____cm 3 (结果精确到 $_{0.1cm}^3$).

 $a_{1,8,0.837}$ 无穷等比数列 $\{a_n\}$ 的通项公式 $a_n=(\sin x)^n$, 前 n 项的和为 S_n , 若 $\lim_{n\to\infty}S_n=1,\ x\in(0,\pi)$, 则 x=

 $_{41,9,0.767}$ 给出下列函数: ① $y=x+\frac{1}{x}$; ② $y=x^2+x$; ③ $y=2^{|x|}$; ④ $y=x^{\frac{2}{3}}$; ⑤ $y=\tan x$; ⑥ $y=\sin(\arccos x)$; ① $y=\lg(x+\sqrt{x^2+4})-\lg 2$. 从这 7 个函数中任取两个函数,则其中一个是奇函数另一个是偶函数的概率是______.

42,10,0.837 已知直线 $l_1: mx-y=0,\ l_2: x+my-m-2=0.$ 当 m 在实数范围内变化时, l_1 与 l_2 的交点 P 恒在一个定圆上, 则定圆方程是______.

 $_{43,6,0.837}$ 从集合 $\{-1,1,2,3\}$ 随机取一个为 m,从集合 $\{-2,-1,1,2\}$ 随机取一个为 n,则方程 $\frac{x^2}{m}+\frac{y^2}{n}=1$ 表示双曲线的概率为_______.

43,10,0.791 椭圆的长轴长等于 m, 短轴长等于 n, 则此椭圆的内接矩形的面积的最大值为______.

$$f(x) = \begin{vmatrix} 2\sin x & -\cos 2x \\ 1 & \cos x \end{vmatrix}$$
, 则函数 $f(x)$ 的单调递增区间是______.

 $_{46,5,0.767}$ 如图的三个直角三角形是一个体积为 $20 \mathrm{cm}^3$ 的几何体的三视图, 则 h =______

48,9,0.814 已知抛物线型拱桥的顶点距水面 2 米时, 量得水面宽为 8 米. 当水面下降 1 米后, 水面的宽为______ 米.

 $_{49,9,0.814}$ 设函数 $f(x) = \log_m x (m > 0$ 且 $m \neq 1)$,若 m 是等比数列 $\{a_n\} (n \in \mathbf{N}^*)$ 的公比,且 $f(a_2a_4a_6\cdots a_{2018}) = 7$,则 $f(a_1^2) + f(a_2^2) + f(a_3^2) + \cdots + f(a_{2018}^2)$ 的值为______.

50,9,0.791 已知 f(x) 是定义在 [-2,2] 上的奇函数,当 $x \in (0,2]$ 时, $f(x) = 2^x - 1$,函数 $g(x) = x^2 - 2x + m$. 如果对于任意的 $x_1 \in [-2,2]$,总存在 $x_2 \in [-2,2]$,使得 $f(x_1) \leq g(x_2)$,则实数 m 的取值范围是______.

 $_{51,9,0.791}$ 若 $\sin(x-y)\cos x - \cos(x-y)\sin x = \frac{3}{5}$,则 $\tan 2y$ 的值为______

54,7,0.837 设定义在 R 上的奇函数 y = f(x), 当 x > 0 时, $f(x) = 2^x - 4$, 则不等式 $f(x) \le 0$ 的解集是