Clase nº9

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

8 de Septiembre 2021

Objetivo de la clase

► Introducir el concepto de sumas de Riemann

Sea la recta y=2x. Se quiere aproximar el área que está debajo de la curva por medio de rectángulos.

Consideremos que:

▶ $x \in [0, 1]$.

Algunas preguntas para guiar nuestro pensamiento:

- ¿Cómo dividiremos el intervalo? ¿La división del intervalo será de distancias iguales?
- ¿Qué altura consideraremos para cada rectángulo?
- ¿De acuerdo a lo anterior aproximaremos por "arriba" o por "abajo" el área?

Propuestas...

¿Cantidad de divisiones del intervalo?

¿Ancho de cada subintervalo?

¿Cuál es el área de cada rectángulo?

¿Cuál es el área aproximada bajo la curva? Para pensar...

▶ ¿Qué sucede con la aproximación del área si se consideran más divisiones del intervalo?

Si se divide el intervalo en n partes iguales.

- ¿Qué crees que sucederá con el ancho del rectángulo si n toma valores cada vez más grandes?
- ¿Qué crees que sucederá con las aproximaciones por "arriba" y por "abajo"?

Sea $f(x) = x^2$, $x \in [0,1]$. Realicemos una aproximación, por "arriba" y por "abajo", del área que se encuentra bajo la curva utilizando rectángulos.

intervalo [0,1] en n partes iguales. Calcularemos una aproximación por "arriba" de la curva.

- ¿Cuál es el área de cada rectángulo?
- ¿Cuál es la expresión que representa el área aproximada de la curva?

Propuesta: Vamos a dividir el

Ahora, realizaremos una aproximación, por "abajo", de la curva.

▶ ¿Cuál es el área de cada rectángulo?

¿Cuál es la expresión que representa el área aproximada de la curva? ¿Cómo podemos mejorar nuestra aproximación?

Sea [a,b] un intervalo cerrado y acotado de $\mathbb{R},\ a < b.$ Una **partición** de [a,b] es una familia finita $\mathcal{P} = \{t_0,t_1,...,t_n\}$ de puntos tales que

$$a = t_0 < t_1 < ... < t_{n-1} < t_n = b$$

Ejemplo 40

Sea el intervalo [10, 15]. Veamos algunas particiones de [10, 15]

- 1. $\mathcal{P}_1 = \{10, 11, 13, 15\}$ 2. $\mathcal{P}_2 = \{10, 13, 14, 5, 14, 6, 14, 8, 15\}$
- 2. $\mathcal{P}_2 = \{10, 13, 14, 5, 14, 6, 14, 8, 15\}$
 - 3. $\mathcal{P}_3 = \{10, 10, 5, 11, 5, 13, 8, 15\}$

Observaciones

▶ Para cada partición $\mathcal{P} = \{t_0, t_1, ..., t_n\}$ tenemos que los subintervalos $[t_0, t_1], [t_1, t_2], ..., [t_{n-1}, t_n]$ satisfacen la relación

$$[a,b] = \bigcup_{i=1}^{n} [t_{i-1},t_i]$$

▶ Denotaremos por $\triangle t_i$ a la longitud del subintervalo $[t_{i-1}, t_i]$, es decir,

$$\triangle t_i = t_i - t_{i-1} =$$
longitud del subintervalo i

$$\sum_{i=1}^{n} \triangle t_i = (t_1 - t_0) + (t_2 - t_1) + ... + (t_n - t_{n-1}) = b - a,$$
donde $b - a$ es la longitud del intervalo $[a, b]$.

Se llama **norma de la partición** ${\mathcal P}$ al número

$$||\mathcal{P}|| = \mathsf{máx}\{ riangle t_i : i = 1, ..., n \}$$

Definición

Sean $f:[a,b]\to\mathbb{R}$ una función acotada $\mathcal{P}=\{t_0,t_1,...,t_n\}$ una partición de [a,b]. Para cada $i\in\mathbb{N},\ 1\leq i\leq n$ se definen los números

$$M_i = \sup\{f(x) : x \in [t_{n-1}, t_i]\}$$

 $m_i = \inf\{f(x) : x \in [t_{n-1}, t_i]\}$

Observación

 $m_i \le f(x) \le M_i$, para todo $x \in [t_{i-1}, t_i]$; i = 1, 2, ...n.

Ejemplo 41

Sea $f(x)=3x^2$ y $\mathcal{P}=\{3,\frac{7}{2},5,\frac{13}{2},8,10\}$ una partición del intervalo [3, 10]. Calcular

b) $||\mathcal{P}||$ c) M_i $d) m_i$

a) $\triangle t_i$ para cada subintervalo.

Se llama una **suma de Riemann** de f correspondiente a la partición \mathcal{P} a cualquier número de la forma:

$$s(f, \mathcal{P}) = \sum_{i=1}^{n} f(E_i)(t_i - t_{i-1}), \quad E_i \in [t_{i-1}, t_i].$$

Se llama **suma inferior** de f correspondiente a la partición $\mathcal P$ al número:

$$I(f,\mathcal{P})=\sum_{i=1}^n m_i(t_i-t_{i-1}).$$

Se llama **Superior** de f correspondiente a la partición $\mathcal P$ al número:

$$S(f,\mathcal{P}) = \sum_{i=1}^n M_i(t_i - t_{i-1}).$$

Observaciones

- Si f es acotada en [a, b] entonces es acotada en cada [t_{i-1}, t_i] y luego tiene supremo e ínfimo en dicho intervalo. Si además, f es continua, el Teorema de Weierstrass asegura que f
 - Se puede verificar que:

$$I(f,\mathcal{P}) \leq S(f,\mathcal{P})$$

alcanza su valor máximo y mínimo en cada intervalo $[t_{i-1}, t_i]$.

para toda partición \mathcal{P} de [a, b].

Una partición \mathcal{P} de [a,b] se dice **más fina** o un **refinamiento** de la partición \mathcal{P}' de [a,b] si se cumple que todo punto \mathcal{P}' es punto de \mathcal{P} . En tal caso escribimos $\mathcal{P}' \subset \mathcal{P}$.

Ejemplo 3

Sean $\mathcal{P} = \{1,2,3,4\}$ y $\mathcal{P}' = \{1,\frac{3}{2},2,\frac{5}{2},3,4\}$ dos particiones de [1,4].

Una partición \mathcal{P} de [a,b] se dice **más fina** o un **refinamiento** de la partición \mathcal{P}' de [a,b] si se cumple que todo punto \mathcal{P}' es punto de \mathcal{P} . En tal caso escribimos $\mathcal{P}' \subset \mathcal{P}$.

Ejemplo 3

Sean $\mathcal{P}=\{1,2,3,4\}$ y $\mathcal{P}'=\{1,\frac{3}{2},2,\frac{5}{2},3,4\}$ dos particiones de [1,4]. Tenemos que \mathcal{P}' es más fina que \mathcal{P} .

Cuidado

Sean $\mathcal{P}_1=\{1,2,3,4\}$ y $\mathcal{P}_2=\{1,\frac{3}{2},\frac{5}{2},3,4\}$ dos particiones de [1,4].

Una partición \mathcal{P} de [a,b] se dice **más fina** o un **refinamiento** de la partición \mathcal{P}' de [a,b] si se cumple que todo punto \mathcal{P}' es punto de \mathcal{P} . En tal caso escribimos $\mathcal{P}' \subset \mathcal{P}$.

Ejemplo 3

Sean $\mathcal{P}=\{1,2,3,4\}$ y $\mathcal{P}'=\{1,\frac{3}{2},2,\frac{5}{2},3,4\}$ dos particiones de [1,4]. Tenemos que \mathcal{P}' es más fina que \mathcal{P} .

Cuidado

Sean $\mathcal{P}_1 = \{1, 2, 3, 4\}$ y $\mathcal{P}_2 = \{1, \frac{3}{2}, \frac{5}{2}, 3, 4\}$ dos particiones de [1, 4]. En este caso no podemos decir que \mathcal{P}_1 es un refinamiento de \mathcal{P}_2 y no podemos decir que \mathcal{P}_2 es un refinamiento de \mathcal{P}_1 .

Teorema 18

Sean $\mathcal{P}, \mathcal{P}'$ particiones de [a,b] tales que $\mathcal{P}' \subset \mathcal{P}$ y $f:[a,b] \to \mathbb{R}$

Teorema 19

Si \mathcal{P} y \mathcal{P}' son dos particiones cualesquiera de [a,b] y $f:[a,b] \to \mathbb{R}$

acotada, entonces se cumple que

$$I(f, \mathcal{P}') \leq I(f, \mathcal{P}) \leq S(f, \mathcal{P}) \leq S(f, \mathcal{P}').$$

 $I(f, \mathcal{P}) < S(f, \mathcal{P}').$

El teorema anterior le da sentido a la siguiente definición.

Definición 20

1. La **integral inferior** de f en [a, b] es el número

$$\int_a^b f(x) dx = \sup\{I(f, \mathcal{P}); \mathcal{P} \text{ es partición de } [a, b]\}.$$

2. La **integral superior** de f en [a, b] es el número

$$\overline{\int_a^b} f(x) dx = \inf\{I(f, \mathcal{P}); \mathcal{P} \text{ es partición de } [a, b]\}$$

3. Diremos que f es **integrable** en [a, b] si se cumple que

$$\underline{\int_a^b} f(x) \, dx = \int_a^b f(x) \, dx$$

Ejercicio

calcular

b) ||P|| c) M_i $d) m_i$

Sea $f(x) = 3\sqrt{x}$. Considerando la función f sobre el intervalo

$$[4, 9]$$
, realiza 3 particiones sobre $[4, 9]$ y para cada una de estas

a) $\triangle t_i$ para cada subintervalo

Bibliografía

	Autor	Título	Editorial	Año
1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
		trascendentes tempranas	Learning	
2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
	Juan de	de una variable	Hill	
3	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
		con Aplicaciones	THOMSON	2001
4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.