Chapitre 8 : Travail et puissance

I Puissance des actions exercées sur un système matériel

A) Puissance

1) Système de points matériels

• Définition :

$$P = \sum_{i \in S} \vec{F}_i \cdot \vec{v}_i$$
 (Dépend du référentiel considéré)
• Puissance intérieure et extérieure :

$$\vec{F}_{i} + P_{j}$$

$$\vec{F}_{ext \to i} + \sum_{j} \vec{F}_{j \to i}$$

$$P = \sum_{i \in S} \vec{F}_{i} \cdot \vec{v}_{i} = \underbrace{\sum_{i \in S} \vec{F}_{ext \to i} \cdot \vec{v}_{i}}_{P_{ext}} + \underbrace{\sum_{i \in S} \sum_{j} \vec{F}_{j \to i} \cdot \vec{v}_{i}}_{P_{int}}$$

2) Système continu

• Répartition à densité volumique de force :

$$\int_{d\vec{F}}^{d\tau} d\tau$$

$$P = \iiint_{\vec{V}} \vec{f}_{v} \cdot \vec{v} d\tau$$

• Répartition de couple :

$$d\vec{M} = \vec{M}_{,,} d\tau$$
.

On peut montrer que $P = \iiint \frac{1}{2} \vec{m}_{v} \cdot (\vec{\nabla} \wedge \vec{v}) d\tau$

B) Travail

1) Définition

$$\delta W = Pdt = \delta W_{\rm ext} + \delta W_{\rm int}$$

Si $\delta W > 0$, on dit que le travail est moteur, si $\delta W < 0$ il est dit résistant. W dépend toujours du référentiel choisi.

2) Cas d'un système de forces

$$P = \sum \vec{F}_i \cdot \vec{v}_i$$

Donc $\delta W = \sum \vec{F}_i \cdot \vec{v}_i dt$
Soit $\delta W = \sum \vec{F}_i \cdot d\vec{r}_i$.

C) Puissance d'un système d'actions appartenant au torseur nul

$$[\vec{0}]: \begin{cases} \vec{F} = \vec{0} \\ \vec{M} = \vec{0} \end{cases}.$$

- P est en général non nul. Exemple :

$$\overset{\overrightarrow{F_1}}{\longleftrightarrow} \overset{\overrightarrow{F_2}}{\overleftarrow{v_1}} \overset{\overrightarrow{F_2}}{\xrightarrow{\overrightarrow{v}_2}}$$

Mais : *P* est indépendant du référentiel.

On se limite dans la démonstration à un système de points matériels :

On considère R absolu, R' relatif.

$$\begin{split} P_{a} &= \sum \vec{F}_{i} \cdot \vec{v}_{i} = \sum \vec{F}_{i} \cdot \vec{v}_{i,r} + \sum \vec{F}_{i} \cdot \vec{v}_{i,e} \\ &= P_{r} + \sum \vec{F}_{i} \cdot (\vec{v}_{a}(O') + \vec{\Omega}_{e} \wedge \overrightarrow{O'P_{i}}) \\ &= P_{r} + \vec{v}_{a}(O') \cdot \underbrace{\sum_{=\vec{F}_{i}} \vec{F}_{i}}_{=\vec{F}_{i}} + \vec{\Omega}_{e} \cdot \underbrace{\sum_{=\vec{M}(O')=0} \overrightarrow{O'P_{i}} \wedge \vec{F}_{i}}_{=\vec{M}(O')=0} \end{split}$$

Donc $P_a = P_r$.

- Cas des actions intérieures à un système :

On a $[\vec{F}_{int}] = [\vec{0}]$ (théorème d'action et de réaction)

On a toujours en général $P_{\text{int}} \neq 0$, mais P_{int} est indépendant de R.

D) Puissance d'un système de forces proportionnelles aux masses

$$\int_{m_{j}\vec{u}}^{m_{j}} \int_{m_{i}\vec{u}}^{m_{i}} \int_{m_{i}\vec{u}}^{m_{i}}$$

$$(\vec{u} = \overrightarrow{\text{cte}})$$

$$(\vec{u} = \text{cte})$$

Le système réel est équivalent à (G, M, \vec{u}) (vu avant), et ces deux systèmes sont aussi équivalents pour P:

$$P = \sum m_i \vec{u} \cdot \vec{v}_i = \underbrace{\left(\sum_{M, \vec{v}_G} m_i \vec{v}_i\right)}_{M, \vec{v}(G)} \cdot \vec{u} = M \vec{u} \cdot \vec{v}(G)$$

II Puissance des actions s'exerçant sur un solide

A) Les actions intérieures

Dans R lié au solide, on a : $P_{int} = 0$ (la vitesse de chaque point est nulle) Ainsi, dans tout référentiel, $P_{int} = 0$ (pour un *solide*)

B) Les actions extérieures

1) Schématisation discrète

$$P = \sum_{\vec{v}} \vec{F}_i \cdot \vec{v}_i .$$
On a $\vec{v}_i = \vec{v}(P_i) = \vec{v}(A) + \overrightarrow{P_i A} \wedge \vec{\Omega}$
Donc $P = \underbrace{\sum_{\vec{F}_i} \vec{F}_i}_{\vec{F}_i} \cdot \vec{v}(A) + \underbrace{\sum_{\vec{A}} \overrightarrow{AP_i} \wedge \vec{F}_i}_{\vec{M}(A)} \cdot \vec{\Omega}$ (pour $A \in S$)
Remarque : $P = [\vec{F}] \cdot [\vec{\Omega}]_{\vec{M}(A)}$

2) Schématisation continue

$$\vec{F} = \iiint \vec{f_v} d\tau , \ \vec{M}(A) = \iiint \left(\vec{m_v} + \overrightarrow{AP} \wedge \vec{f_v} \right) d\tau$$

Et $P = \vec{F} \cdot \vec{v}(A) + \vec{M}(A) \cdot \vec{\Omega}$.

C) Cas particulier

1) S en translation

On a
$$\vec{\Omega} = \vec{0}$$
, donc $P = \vec{F} \cdot \vec{v}$ $(\vec{v} = \vec{v}(A), \forall A \in S)$

2) S en rotation autour d'un axe fixe

$$S \xrightarrow{\vec{u}} \Delta$$

$$P = \vec{\Omega} \cdot \vec{M}(A) = \dot{\theta} \cdot \vec{u} \cdot \vec{M}(A) = \dot{\theta} \cdot M_{\Delta}$$

III Puissance des actions de contact entre deux solides

On suppose le contact ponctuel : pas de résistance au roulement ou au pivotement.

A) Expression de la puissance

$$\{(I_1, \vec{R}_{2\rightarrow 1}), (I_2, \vec{R}_{1\rightarrow 2})\} = [\vec{0}] \text{ (on a } \vec{R}_{2\rightarrow 1} = -\vec{R}_{1\rightarrow 2} = \vec{R} \text{)}$$

$$P = \vec{R} \cdot \vec{v}(I_1) - \vec{R} \cdot \vec{v}(I_2) = \vec{R} \cdot (\vec{v}(I_1) - \vec{v}(I_2)) = \vec{R} \cdot \vec{v}_g$$

Comme
$$\vec{v}_g \in \pi$$
, $\vec{R} = \vec{T} + \vec{N}$: $P = \vec{T} \cdot \vec{v}_g$.

Remarque:

Le résultat est valable dans tout référentiel, mais si $P = P_1 + P_2$, P_1 et P_2 dépendent indépendamment du référentiel.

B) Signe de P.

Si $\vec{v}_g = \vec{0}$; statique, roulement sans glissement, pivotement : P = 0.

Si
$$\vec{v}_{\sigma} \neq \vec{0}$$
, et $\vec{T} = \vec{0}$: $P = 0$

Si $\vec{v}_g \neq \vec{0}$, et $\vec{T} \neq \vec{0}$: Comme \vec{T} et \vec{v}_g sont en sens opposé, on a P < 0.

Dans tous les cas, on a ainsi $P \le 0$: travail résistant uniquement.

(Remarque : on a $P \le 0$, mais on peut avoir $P_1, P_2 \ge 0$)

C) Liaison non dissipative

Définition:

C'est une liaison pour laquelle $P \equiv 0$

Cas du contact ponctuel :

 $P=0 \Leftrightarrow \vec{T} \cdot \vec{v}_g = 0$, donc on a soit un roulement sans glissement $\vec{v}_g = \vec{0}$, soit un glissement sans frottement $\vec{T} = \vec{0}$.

Cas de l'articulation rotoïde :

La seule possibilité de liaison non dissipative est d'avoir glissement sans frottement ; on parle alors d'articulation parfaite.