1. Consider the context free grammar $G = (V, \Sigma, R, S)$, where

$$V = \{a, b, S, A, B\},\$$

$$\Sigma = \{a, b\},\$$

$$R = \{S \to aB,\$$

$$S \to bA,\$$

$$A \to a,\$$

$$A \to aS,\$$

$$A \to BAA,\$$

$$B \to b,\$$

$$B \to bS,\$$

$$B \to ABB\}.$$

Show that $ababba \in L(G)$.

$$S \Rightarrow aB \Rightarrow abS \Rightarrow abaB \Rightarrow ababS \Rightarrow ababbA \Rightarrow ababba$$

- 2. Construct context-free grammars that generate each of these language
 - a). $\{ww^R : w \in \{a, b\}^*\}$
 - b). $\{w \in \{a, b\}^* : w = w^R\}$

A: a). $\{ww^R: w \in \{a, b\}^*\}$

$$S \to aSa$$
$$S \to bSb$$
$$S \to e$$

- b). $\{w \in \{a, b\}^* : w = w^R\}$
- $S \rightarrow aSa$
- $S \rightarrow bSb$
- $S \rightarrow a$
- $S \rightarrow b$
- $S \rightarrow e$

3.

Let $G = (V, \Sigma, R, S)$, where $V = \{a, b, S\}$, $\Sigma = \{a, b\}$, and $R = \{S \rightarrow aSb, S \rightarrow aSa, S \rightarrow bSa, S \rightarrow bSb, S \rightarrow e\}$. Show that L(G) is regular.

A: We first prove that $L(G) = M = \{w \in \{a, b\}^* : |w| \text{ is even}\}.$ To show L(G) = M, we show $L(G) \subseteq M$ and $M \subseteq L(G)$.

Step 1. We show that $M \subseteq L(G)$.

Proof by induction on the string length:

Base case: Obviously $e \in L(G)$.

Induction hypothesis: Suppose any string of length 2k, $k \ge 0$, is contained in L(G).

Consider $w \in \{a, b\}^*$, |w| = 2k + 2.

Depending on the first and last symbols, there are three possibilities: w = aua, w = bub or aub, where |u| = 2k. According to the induction hypothesis, we have $S \Rightarrow^* u$

- i) If w = aua, then $S \Rightarrow aSa \Rightarrow^* aua = w$
- ii) If w = bub, then $S \Rightarrow bSb \Rightarrow^* bub = w$
- iii) If w = aub, then $S \Rightarrow aSb \Rightarrow aub = w$ Therefore, $w \in L(G)$. Hence, $M \subseteq L(G)$

Step 2. We show that $L(G) \subseteq M$.

Proof by induction on the derivation length (i.e., number of \Rightarrow 's in the derivation):

Base case: If the derivation length is 1, then the only string that can be derived is $S \Rightarrow e$. |e| = 0, which is even.

Induction hypothesis: Suppose any derivation with length at most k generates a string of even length, we consider a derivation with length k+1. Consider the first derivation. It can be $S\Rightarrow aSa$, $S\Rightarrow bSb$, $S\Rightarrow aSb$, $S\Rightarrow bSb$. According to the hypothesis, with at most k derivations we always have $S\Rightarrow u$ for some u of even length. Hence if the first derivation is aSa, bSb, aSb, bSa, then with additional k more derivations we get aua, bub, aub, bua, respectively, whose length is even in all cases. Thus, $L(G)\subseteq M$.

Step 3. We have proved so far that L(G) = M. Since M = ((a + b)(a + b))

- $(b)^*$, L(G) is regular.
- 4. Show that the following languages are context-free by exhibiting contextfree grammars generating each:
 - i) $\{a^n b^m c^{m+n}: n, m \ge 0\}.$
 - ii) $\{a^m b^n c^p d^q : m + n = p + q\}$
 - iii) $\{uawb: u, w \in \{a, b\}^*, |u| = |w|\}$
 - A: i) $\{a^n b^m c^{m+n} : n, m \ge 0\}$.

The language $G = (V, \Sigma, R, S)$ where $V = \{a, b, c, A, B, S\}$, terminals $\Sigma = \{a, b, c\}$, and rules $R = \{S \rightarrow A, A \rightarrow aAc, A \rightarrow B, A \rightarrow e, B \rightarrow bBc, B \rightarrow e\}$.

ii) $\{a^m b^n c^p d^q : m + n = p + q\}.$

The language $G = (V, \Sigma, R, S)$ where $V = \{a, b, c, d, A, B, S\}$, terminals $\Sigma = \{a, b, c, d\}$, and rules $R = \{S \rightarrow ASB, A \rightarrow a, A \rightarrow b, B \rightarrow c, B \rightarrow d, S \rightarrow e\}$.

The old answer is wrong because if A is free to choose to become a or b, then the rule can also generate strings like $b^m a^n d^q c^p$, which is not in the language. Below is the revised solution:

$$\begin{split} \{S \rightarrow S_1 | S_2 \\ S_1 \rightarrow aS_1 d | A_1, & A_1 \rightarrow bA_1 d | B_1, & B_1 \rightarrow bB_1 c | e \\ S_2 \rightarrow aS_2 d | A_2, & A_2 \rightarrow aA_2 c | B_2, & B_2 \rightarrow bB_2 c | e \} \end{split}$$

Here it uses S_1 and S_2 to cover two cases, $m \leq q$ and m > q. If $m \leq q$, we have $S \Rightarrow S_1 \Rightarrow^* a^m S_1 d^m \Rightarrow a^m A_1 d^m \Rightarrow^* a^m b^{q-m} A_1 d^q \Rightarrow$ $a^m b^{q-m} B_1 d^q \Rightarrow^* a^m b^{q-m+p} B_1 c^p d^q$ (note that q-m+p=n)

If m > q, we have $S \Rightarrow S_2 \Rightarrow^* a^q S_2 d^q \Rightarrow a^q A_2 d^q \Rightarrow^* a^m A_2 c^{m-q} d^q \Rightarrow$ $a^m B_2 c^{m-q} d^q \Rightarrow^* a^m b^n B_2 c^{m-q+n} d^q$ (note that m-q+n=p)

iii) $\{uawb: u, w \in \{a, b\}^*, |u| = |w|\}$

The language $G = (V, \Sigma, R, S)$ where $V = \{a, b, T, S\}$, terminals $\Sigma = \{a, b\}$, and rules $R = \{S \to Tb, T \to aTa, T \to bTb, T \to aTb, T \to bTa, T \to a\}$.

- 5. Use Pumping theorem to show the followings are not context-free:
 - a). $\{a^n b^n c^n : n \ge 0\}$
 - b). $\{a^p: p \text{ is prime}\}$
 - c). $\{a^{n^2}: n \ge 0\}$
 - d). $\{a^n b^n a^n b^n : n \ge 0\}$
 - e). $\{ww: w \in \{a, b\}^*\}$

A:

a). Suppose on the contrary that $L = \{a^nb^nc^n : n \ge 0\}$ is CFG, then there exists some sufficiently large number N, for any $n \ge N$, we have $a^nb^nc^n = uvxyz$ such that |vy| > 0, $|vxy| \le N$, and $uv^ixy^iz \in L$ for any $i \ge 0$.

Pick n=N and consider $a^Nb^Nc^N=uvxyz$. $|vxy|\leq N$, so there are 5 different possibilities.

- i). $vxy = a \cdots a$, or $b \cdots b$, or $c \cdots c$, i.e., it only consists one symbol We show the case of $vxy = a \cdots a$, the other two cases are the same. Since |vy| > 0, we know v^2xy^2 contains exactly |vy| more a's than vxy. That is, uv^2xy^2z will contain N + |vy| > N copies of a, i.e., $uv^2xy^2z = a^{N+|vy|}b^Nc^N \notin L$, contradicting that $uv^ixy^iz \in L$ for any $i \geq 0$.
- ii). $vxy = a \cdots ab \cdots b$ or $vxy = b \cdots bc \cdots c$, i.e., vxy contains both a,b or b,c. We show that case of $vxy = a \cdots ab \cdots b$, the other case is the same. Since |vy| > 0, we assume $vy = a^{\alpha}b^{\beta}$ for some $\alpha,\beta \geq 0$ and

 $\alpha+\beta>0$. Now we have $uv^2xy^2z=a^{N+\alpha}b^{N+\beta}c^N\not\in L$, contradicting that $uv^ixy^iz\in L$ for any $i\geq 0$

Note that since $|vxy| \le N$, it is impossible for vxy to contain all a, b, c. Thus we have exhausted all the possibilities.

- b). Proof essentially the same as that in slide for non-regularity
- c) Suppose on the contrary that $L = \{a^{n^2} : n \ge 0\}$ is CFG, then there exists some sufficiently large number N, for any $n \ge N$, we have $a^{n^2} = uvxyz$ such that |vy| > 0, $|vxy| \le N$, and $uv^ixy^iz \in L$ for any $i \ge 0$.

Pick n=N and consider $a^{N^2}=uvxyz$. Let $vxy=a^{\beta}$ for some $1\leq$

 $\beta \leq N$. Then $uv^2xy^2z=a^{N^2+\beta} \in L$. Hence, there exists some integer N_1 such that $N^2+\beta=N_1^2$. Obviously $N_1>N$, i.e., $N_1\geq N+1$. However, $N_1^2\geq (N+1)^2>N^2+N$, implying that $\beta>N$, contradicting that $\beta\leq N$. Hence, L is not CFG.

- d). Suppose on the contrary that $L = \{a^nb^na^nb^n : n \ge 0\}$ is CFG, then there exists some sufficiently large number N, for any $n \ge N$, we have $a^nb^na^nb^n = uvxyz$ such that |vy| > 0, $|vxy| \le N$, and $uv^ixy^iz \in L$ for any $i \ge 0$.
- Pick n=N and consider $a^Nb^Na^Nb^N=uvxyz$. $|vxy|\leq N$. We divide $a^Nb^Na^Nb^N$ into 4 substrings of equal length, and let them be w_1,w_2,w_3,w_4 where $w_1=w_3=a^N$, $w_2=w_4=b^N$. There are 3 different possibilities.
- i). vxy is a substring of w_1 or w_2 or w_3 or w_4 . We show the case that vxy is a substring of w_1 , the other 3 cases are the same. Since |vy| > 0, we know v^2xy^2 contains exactly |vy| more a's than vxy. That is, uv^2xy^2z will contain N + |vy| > N copies of a, i.e., $uv^2xy^2z = a^{N+|vy|}b^Na^Nb^N \notin L$, contradicting that $uv^ixy^iz \in L$ for any $i \geq 0$.
- ii). $vxy = a \cdots ab \cdots b$, and is a substring of w_1w_2 or w_3w_4 . We show the case that vxy is a substring of w_1w_2 , the other case is the same. Since |vy| > 0, we assume $vy = a^{\alpha}b^{\beta}$ for some $\alpha, \beta \geq 0$ and $\alpha +$
- $\beta > 0$. Now we have $uv^2xy^2z = a^{N+\alpha}b^{N+\beta}a^Nb^N \notin L$, contradicting that $uv^ixy^iz \in L$ for any $i \geq 0$.
- iii). $vxy = b \cdots ba \cdots a$, and is a substring of w_2w_3 . Since |vy| > 0, we assume $vy = b^\beta a^\alpha$ for some $\alpha, \beta \ge 0$ and $\alpha + \beta > 0$. Now we have

 $uv^2xy^2z=a^Nb^{N+\beta}a^{N+\alpha}b^N\not\in L$, contradicting that $uv^ixy^iz\in L$ for any $i\geq 0$.

- e) Apply pumping theorem on $a^nb^na^nb^n$, show that the resulted string cannot be expressed as ww
- 6. Determine whether the following statement is correct or wrong, and state your reason.
- a). Language $\{a^{6n}b^{3m}c^{p+10}: n \geq 0, m \geq 0, p \geq 0\}$ is regular. True
- b). A and B are two context-free languages, so is $A \oplus B$, where $A \oplus B = (A B) \cup (B A)$.

False, consider $B \subseteq A = \{a, b\}^*$, then it is essentially the complement of B, which is not necessarily CFG.

Q: what if I replace context-free with regular?

- c). Language $\{a^mb^nc^l : m, n, l \in \mathbb{Z}_{\geq 0}, m+n>3l\}$ is context free. True.
- d). Language $\{a^m(bcd)^n : m, n \ge 0\}$ is not context-free. False. It is the same as $a^*(bcd)^*$.
- e). The concatenation of a context-free language and non-context-free language is non-context-free.

False. a^* concatenate with $\{a^p: p \text{ is prime}\}$ is a^2a^*

Give a context-free grammar for the language

$$L_3 = \{xy \mid x, y \in \{a, b\}^*, |x| = |y| \text{ and } x \text{ and } y^R \text{ differ in one positions } \}.$$

Solution: (a) We can construct the context-free grammar $G=(V,\Sigma,R,S)$ for language L_3 , where

$$V = \{a, b, S, A, B\}; \Sigma = \{a, b\};$$
and

$$R = \{S \rightarrow aSa, S \rightarrow bSb, S \rightarrow aAb, A \rightarrow aAa, A \rightarrow bAb, A \rightarrow e,$$

$$S \rightarrow bBa, B \rightarrow aBa, B \rightarrow bBb, B \rightarrow e\}$$