R for bioinformatics, data visualisation HUST Bioinformatics course series

Wei-Hua Chen (CC BY-NC 4.0)

31 May, 2021

section 1: TOC

前情提要

iterations 与并行计算

- for loop
- apply functions
- dplyr 的本质是遍历
- map functions in purrr package
- 遍历与并行计算

相关包

- purrr
- parallel
- foreach
- iterators

本次提要

- basic plot functions
- basic ggplot2
- special letters
- equations
- advanced ggplot2

section 2: basic plot functions using R

R basic plot functions

过去几节课我们已经使用了 R basic plot 和 ggplot2 的一些绘画功能,比 如讲 factor 时。今次我们进行系统的介绍。

基础做图由 plot 提供。先看示例。这里我们使用系统自带的 swiss 数 据,它包含了47个法语地区的一些社会经济指标。

```
Fertility Agriculture Examination Education Catholic
## Courtelary
                     80.2
                                  17.0
                                                15
                                                           12
## Delemont
                     83.1
                                  45.1
                                                 6
## Franches-Mnt.
                     92.5
                                  39.7
## Moutier
                     85.8
                                  36.5
                                                12
```

26.6

43.5

```
## Porrentruv
                      76.1
                                   35.3
                 Infant.Mortality
##
## Courtelary
                             22.2
## Delemont
                             22.2
## Franches-Mnt
                             20.2
                             20.3
## Moutier
## Neuveville
                             20.6
```

76.9

9.96

84.84

93.40

33.77

5.16

90.57

15

head(swiss);

Neuveville

Porrentruy

17

散点图 (dot plot)

我们看一下教育与生育率的关系:

```
with( swiss, plot( Education, Fertility ) );
```


注意 with 的作用是什么??

plot 的参数初探: 先看示例

Swiss data 1888

plot 参数, an annotated example

Figure 1: an annotated example

plot 支持的画图类型,参数 p = '?' 的取值

```
par( mfrow = c(2,4) ); ### 在一张图上画 2 x 4 个 panel opts <- c( "p", "l", "o", "b", "c", "s", "S", "h" ); for( o in opts ){
    plot(1:5, type = o, main = paste( "type=", o ) ); }
```


pch 是什么?

决定了数据点的形状,注意它的取值范围

```
library(tidyverse);
ggplot( data.frame( p = c(0:25, 32:127) ) ) +
    scale_y_continuous( name = "" ) + scale_x_continuous( name = "" ) +
    scale_shape_identity() +
    geom_point( aes( x = p%/16, y = p%/%16, shape = p ), size = 5, fill = "red" ) +
    geom_text( aes( x = p %% 16, y = p%/%16 + 0.4, label = p ), size = 3 );
```

```
112
                        113
                                     114
                                                  115
                                                               116
                                                                                         118
                                                                                                                                 121
                                                                                                                                                                                                               127
           p
                        q
                                                                             u
                                                                                                       w
                                                                                                                    X
                                                                            101
e
                                                                                                                                                                                                               111
6 -
                                                                                                                                                                                                                0
                                                                                         86
V
                                                                                                      87
W
                                                                                                                   88
X
                                                               68
D
                                                                                                                                                                                                               79
O
           48
                                     <sup>50</sup>
                                                               52
4
                                                                            53
5
                                                                                         54
6
                                                                                                                                                                                                                63
                                                                                                      \overset{7}{\boxtimes}
                                                                                                                                              <sup>10</sup>
                                                                                                                                                                        12
                                                                                                                                                                                                  ∆14
                                                                                                                                                          ^{1}
                                                                                                                                                                                     ₩
0 -
```

log transform aexes

plot 还有一些其它有用的参数,详见:? plot.default

Swiss data 1888

Socioeconomic indicators & Fe

注: 也可以用 log='x' 或 log='y' 只对一个 axis 进行 log 处理

ggplot 版本

```
ggplot( swiss, aes( x = Education, y = Fertility ) ) +
  geom_point( ) + scale_x_log10() + scale_y_log10() +
  xlab( "Education" ) + ylab( "Fertility" ) +
  ggtitle( "Swiss data 1888" );
```

Swiss data 1888

ggplot 更多散点示例

以 mtcars 为例

```
ggplot( mtcars, aes( x = wt, y = mpg, colour = factor( cyl ), shape = factor(cyl) ) ) +
geom_point() + xlab( "Weight (1000 lbs)" ) + ylab( "Miles/(US) gallon" ) +
labs( colour = "Number of cylinders", shape = "Number of cylinders" );
```


Number of cylinders

• 4 • 6 • 8

plot: high-level vs. low-level plots

- high level: plotting functions create a new plot on the graphics device
- low level: plotting functions add more information to an existing plot

```
plot( 1:10, col = "red" ); ## high level
points( sample(1:10, 10), col = "darkgreen", pch = 20 ); ## low level
```


low level plots 列表

points: 点图lines: 线图

abline:直线polygon:多边形

• legend: 图例

• title:标题

• axis:轴 ...

high level plots 列表

- plot:通用画图函数
- pairs
- coplot
- qqnorm
- hist
- dotchart
- image
- o contour ...

注:可以用 add = TRUE 参数(如果可用)将 high level 函数强制转换为 low level

图形相关参数 (系统函数)

par(c("mar", "bg")); ## 显示指定参数的值

par()函数:显示或修改当前**图形设备**的参数。用以下命令查看支持的内容:

```
## $mar
## [1] 5.1 4.1 4.1 2.1
## ## $bg
## [1] "transparent"
## 显示所有参数
par();
```

```
## $xlog
## [1] FALSE
## ## $ylog
## [1] FALSE
## ## $adj
## [1] 0.5
## ## $ann
```

[1] TRUE

调整 par()参数前请备份

par() 用于指定全局参数,因此在改变前尽量备份

```
oldpar <- par(); ## 备份
do some changes here ...
## 恢复
par( oldpar );
```

常用图形参数及调整: margin

图形边距(figure margins)

```
par( mar = c( 5.1, 4.1, 4.1, 2.1 )); ## 设置新 martin
```

分别指定下 -> 左 -> 上 -> 右的边距,即从下面开始,顺时针移动。

单位是: text lines

或:

```
par( mai = c( 5.1, 4.1, 4.1, 2.1 )); ## 设置新 martin
```

单位是: inch

常用图形参数及调整: 多 panel

画 2x3 共 6 个 panel, 从左到右。(2 行 3 列)

```
par( mfrow=c(2,3) );
for( i in 1:6)
    plot( sample( 1:10, 10 ), main = i );
                                                                                                    2
                                                                                                                                                                      3
sample(1:10, 10)
                                                                  sample(1:10, 10)
                                                                                                                                    sample(1:10, 10)
                                                         10
                                                                                                   Index
                                                                                                                                                                     Index
                                Index
                                                                                                    5
sample(1:10, 10)
                                                                  sample(1:10, 10)
                                                                                                                                    sample(1:10, 10)
```

Index

Index

Index

常用图形参数及调整:多 panel, cont.

画 2x3 共 6 个 panel, 从上到下。(2 行 3 列)

```
par( mfcol=c(2,3) );
for( i in 1:6 )
  plot( sample( 1:10, 10 ), main = i );
```


重要概念: 图形设备

图形设备是指图形输出的设备,可以将图形设备理解为保存格式。

默认设备是:

- X11(): *nix
- windows() : windows
- quartz() : OS X

图形显示在显示器上。

图形设备: cont.

常用其它设备有:

- pdf()
- png()
- jpeg()

分别对应输出文件格式。

常用图形设备: pdf()

使用方法如下:

```
pdf(file = "/path/to/dir/<file_name>.pdf", height = 5, width = 5); ## 创建一个新设备/ pdf 文件plot(1:10); ## 作图; dev.off(); ## 关闭设备
```

说明

- ① 默认文件名为 Rplots.pdf ,
- ② dev.off()必须关闭。关闭后,返回到最近使用的图形设备
- ③ height 和 width 参数的单位是 inch
- 如果运行多个 high level 作图命令,则会产生多页 pdf

请尽量使用 pdf 作为文件输出格式

- 生信图片大多是点线图,适合保存为矢量格式(如 pdf, ps 等);
- ② 矢量图可无限放大而不失真(变成像素);
- 可由 Adobe Illustrator 等矢量图软件进行编辑

section 3: ggplot2 基础

为什么要使用 ggplot2 ? 从一个简单示例开始

假设画两条线:

Rain fall chart

如果改变画线的顺序?

Rain fall chart

ggplot2 的方法

ggplot2 基础概念详解

```
ggplot( df, aes( x = month, y = value, colour = cat) ) +
geom_line() + geom_point() +
xlab( "Month" ) + ylab( "Rain fall" ) +
labs( colour = "Year");
```

Figure 2: ggplot2 参数简介

- aes (aesthetics) 美学: 控制全局参数,包括: x,y 轴使用的数据,颜色(colour, fill),形状(shape),大小(size),分组(group)等等;
- ② 图层: geom_<layer_name>; 每张图可有多个图层(此处有两个); 图层可使用全局数据(df)和参数(aes), 也可以使用自己的 aes 和数据; 3-4. 其它参数

ggplot2 优缺点

ggplot2 优点:

- 强大又专业
- ② 复杂又好看
- 3 canvas 大小,坐标会根据数据、图层自动调整,让用户专注于作图本身;

缺点:

太难学!

图层使用自己的数据,示例

```
plot1 +
    geom_point( data = data.frame( x2 = 1:5, y2 = sample(30:100, 5) ), ## 注意: data = 是必须的
    aes( x = x2, y = y2 ), ## 使用自己的 aes ...
    colour = c("darkgreen", "red", "blue", "gold", "purple") , shape = 15, size = 4 )
```


要点

- 如上所见, xy -axes 会随数据自动调整
- ② ggplot2 作图结果可以保存在变量中,并可累加更多图层
- ③ 图层使用自己的数据时,需要用 data = 指定;而全局数据则不用 ggplot (data.frame(...))

aes() 内部和外部的 coulor, size, shape 参数有何区别?

在内部时, colour = < 列名 > 或 colour = factor(< 列名 >), 其 真实结果是取的 factor, 然后按顺序为每个 factor 自动指定一个颜色。默 认颜色顺序为:

Figure 3: default discrete colour palette

color 举例

```
plot1 + geom_point( data = data.frame( x2 = 1:5, y2 = sample(30:100, 5) ), ## 注意: data = 是必须的 aes( x = x2, y = y2, colour = factor( y2 ) ), ## colour 在 aes 内部 shape = 15, size = 4 )
```


共有 7 个颜色;注意与上页图的第 7 行对应一下!

当 colour = < 数字列 > , 则显示 color gradient

注意 discrete color (上页图) 和 continous color (or color gradient) 的默认画板 (color palette) 是不一样的!

更改画板,使用指定的颜色(不作为 factor 使用)

```
df$col <- sample( colours(), 10 ); ## 現有我们有颜色了!
ggplot(df, aes( x = month, y = value, colour = col ) ) +
geom_point( size = 4, shape = 15 ) + facet_grid( ~ cat );
```


** 注 ** 默认情况下, col (颜色) 列是作为 factor 使用。

更改画板,使用指定的颜色(不作为 factor 使用), cont.

解决方案: scale_color_identity

```
ggplot(df, aes(x = month, y = value, colour = col)) + geom_point(size = 4, shape = 15) + facet_grid(~cat) + ## facet_grid 又是什么?? scale_color_identity(); ## magic !!
```


练习: 认识并掌握颜色

- 认识颜色:
 http://www.cookbook-r.com/Graphs/Colors_(ggplot2)/
- ② ggplot2 画板: https:
 //ggplot2.tidyverse.org/reference/scale_brewer.html
- 手动调色: https: //ggplot2.tidyverse.org/reference/scale_manual.html
- ggplot2 color, best practice: https://www.datanovia.com/en/blog/ggplot-colors-best-tricks-you-will-love/

图层简介

- geom_point, geom_line: 点线图, 用于揭示两组数据间的关系;
- geom_smooth:常与 geom_point 联合使用,揭示数据走势
- geom_bar: bar 图
- geom_boxplot:箱线图,用于比较 N 组数据,揭示区别
- geom_path:与 geom_line 相似,但也可以画其它复杂图形
- geom_histogram, "geom_density "': 数据的分布,也可用于多组间的比较
- 其它十余种,请见"ggplot2: elegant graphics for data analysis" 书!!

section 4: ggplot2 作图的四个基本组成部分

ggplot2 的四个基本组成

- 图层 (layers)
 - geom_< 图层名 >
- ② scale: 控制数据至美学属性的 mapping
 - scale_< 属性 mapping 方式 >, e.g. scale_color_identity()

X		X		у		y	
•	2	•	2	•	a	•	a
•	4	•	4	•	b	•	b
•	6	•	6	-	С	•	С
	8	•	8	+	d	•	d
	10	•	10		е	•	е

Figure 4: 数据的 4 种 scale 方法

ggplot2 的 scale

- scale_color_...
- scale_shape_...
- scale_size_...
- scale_fill_...

与坐标系统联动的函数

- scale_x_log()
- scale_y_log()

更多内容可以见《ggplot2: elegant graphics for data analysis》一书的第 6 章。

ggplot2 要素 3: 坐标系统

- 正常
- log-transform

示例:

```
ggplot(mtcars, aes( wt , mpg)) + geom_point() +
   scale_y_log10()
```


ggplot2 要素 3: 坐标系统, cont.

wt

* limx, limy: 限制xy的显示范围

ggplot2要素3: 坐标系统, cont.

其它函数

- * ```coord_flip()``` : x, y轴互换; 竖bar变横bar;
- * ```coord_polar()``` :

ggplot2 要素 3: 坐标系统, cont.

plot1 + coord_polar();

ggplot2 要素 4: faceting ...

```
qplot(displ, hwy, data=mpg, facets = . ~ year) + geom_smooth();
```

`geom_smooth()` using method = 'loess' and formula 'y ~ x'

section 5: ggplot2 进阶 1

散点图的进一步分析

显示两组数据间的相关性:

```
## 作图
ggplot( swiss, aes( x = Education, y = Fertility ) ) +
geom_point( shape = 20 );
```



```
## 分析
with( swiss, cor.test( Education, Fertility )$estimate );
```

```
## cor
## -0.6637889
```

在图中加入公式和统计信息

先展示一下结果

公式详解

Figure 5: equation explained!

注

● 引号两边必须有 * 或 ~ 字符, ~ 表示空格, * 表示什么都没有。~~ 表示内空格。如果公式中需要 ~ 字符怎么办??见下面"公式示例3"。

公式详解, cont.

以下代码实现两个任务:

- 将两个公式上下放置 atop (<equation_1> , <equation_2>);
- ② 将公式中的某些值替换为数值 substitute(<equation>, list(...))

完整代码

```
## 计算 ...
m = lm(Fertility ~ Education, swiss);
c = cor.test( swiss$Fertility, swiss$Education );
## 牛成公式
eq <- substitute( atop( italic(v) == a + b %.% italic(x),
                           italic(r)^2 = r2* "-italic(p)==pvalue).
                     list(a = as.vector( format(coef(m)[1], digits = 2) ),
                          b = as.vector( format(coef(m)[2], digits = 2)),
                          r2 = as.vector(format(summary(m)$r.squared, digits = 2)),
                          pvalue = as.vector(format(c$p.value, digits = 2)))
    );
## 用 as.expression 对公式进行转化 !!!!
eq <- as.character(as.expression(eq));
## 作图, 三个图层; 特别是 geom_text 使用自己的 data 和 aes ...
ggplot(swiss, aes(x = Education, y = Fertility)) +
       geom point(shape = 20) +
       geom smooth( se = T ) + ## smooth line ...
       geom text( data = NULL,
                  aes(x = 30, y = 80, label = eq, hjust = 0, vjust = 1), ## hjust, vjust ???
                  size = 4. parse = TRUE, inherit.aes=FALSE): ## 注意: parse = TRUE !!!
```

equation 还可以用 paste 函数写(更简单)

```
## 计算 ...
m = lm(Fertility ~ Education, swiss):
c = cor.test( swiss$Fertility, swiss$Education );
## 牛成公式
eq <- substitute( atop( paste( italic(y), " = ", a + b \%.% italic(x), sep = ""),
                       paste( italic(r)^2, " = ", r2, ", ", italic(p)==pvalue, sep = "" ) ),
                     list(a = as.vector( format(coef(m)[1], digits = 2) ),
                          b = as.vector( format(coef(m)[2], digits = 2)),
                          r2 = as.vector(format(summary(m)$r.squared, digits = 2)),
                          pvalue = as.vector(format(c$p.value, digits = 2)))
   );
## 用 as.expression 对公式进行转化 !!!!
eq <- as.character(as.expression(eq));
## 作图, 三个图层; 特别是 geom_text 使用自己的 data 和 aes ...
ggplot(swiss, aes(x = Education, y = Fertility)) +
       geom point(shape = 20) +
       geom smooth( se = T ) + ## smooth line ...
       geom text( data = NULL.
                  aes(x = 30, y = 80, label = eq, hjust = 0, vjust = 1), ## hjust, vjust ???
                  size = 4. parse = TRUE, inherit.aes=FALSE): ## 注意: parse = TRUE !!!
```

每次都能学到新东西之: hjust 和 vjust

geom_text(aes(angle, hjust, vjust)) 三参数详解

公式中的写法之代数符号

分类	R 的表达式	显示结果
代数符号	expression(x + y) expression(x - y) expression(x / y) expression(x / y) expression(x / / y) expression(x / / y) expression(x / (z) expression(x / z) expression(sqrt(x)) expression(list(x,yz))	$x + y$ $x - y$ xy x/y $x \div y$ $x \div y$ $x \cdot y$ x_i x^2 \sqrt{x} \sqrt{x} \sqrt{x} x, y, z

分类	R 的表达式	显示结果
变量间的关系符号	expression(x==y) expression(x!=y)	$ \begin{array}{c} x = y \\ x \neq y \end{array} $
	expression(x<=y)	$x \leqslant y$
	expression(x>=y)	$x \geqslant y$
	expression(x %~~% y)	$x \approx y$
	expression(x %=~% y)	$x \cong y$
	expression(x %==% y)	$x \equiv y$
	expression(x %prop% y)	$x \propto y$
	expression(x %~% y)	$x \sim y$
列表符号	expression(list(x[1],, x[n])	x_1, \ldots, x_n
	<pre>expression(list(x[1]++x[n]))</pre>	$x_1 + \ldots + x_n$

分类	R 的表达式		显示结果
数组之间关系的符号	expression(expression(expression(x %subset% y) x %subseteq% y) x %supset% y) x %supseteq% y) x %notsubset% y) x %in% y)	$ \begin{array}{ccc} x \subset y \\ x \subseteq y \\ x \supset y \\ x \supseteq y \\ x \notin y \\ x \in y \end{array} $
注音符号	expression(expression(expression(expression(hat(x)) tilde(x))	x x xy xy xy xy

分类	R 的表达式	显示结果
各种箭头	expression(x %<->% y) expression(x %->% y) expression(x %<-% y) expression(x %up% y) expression(x %down% y) expression(x %<->% y) expression(x %<->% y) expression(x %<-% y) expression(x %<-% y) expression(x %dblup% y) expression(x %dbldown% y)	$\begin{array}{c} x \leftrightarrow y \\ x \rightarrow y \\ x \leftarrow y \\ x \uparrow y \\ x \Leftrightarrow y $ $x \Leftrightarrow y \Leftrightarrow y \\ x $

分类	R 的表达式		显示结果
特殊符号	expression(<pre>infinity) 32 * degree) 60 * minute) 30 * second)</pre>	∞ 32° 60′ 30″
空白	expression($\begin{array}{c} xy \\ x++y \end{array}$
分式	expression(expression(frac(x,y))	$\frac{x}{y}$ $x + \frac{1}{y}$

分类	R 的表达式	显示结果
大型操作符	<pre>expression(sum(x[i], i = 1, n)) expression(prod(plain(P)(X==x),x)</pre>	$\frac{\sum_{1}^{n} x_{i}}{\prod_{x}^{n} P(X = x)}$
	<pre>expression(integral(f(x) * dx, a,b)) expression(union(A[i], i==1,n))</pre>	$\int_{a}^{b} f(x) dx$
分组	expression(intersect(A[i], i==1, n)) expression(lim(f(x), x %->% 0)) expression(min(g(x), x >= 0)) expression(group("(", list(a, b), "]")) expression(bgroup("(", atop(x, y), ")")) expression(group(lceil, x, rceil)) expression(group(lfloor, x, rfloor))	$\bigcap_{\substack{i=1\\ i=1\\ k\neq 0}}^{i-1} A_i$ $\lim_{x\to 0} f(x)$ $\min_{x\geqslant 0} g(x)$ $(a, b]$ $\begin{pmatrix} x\\ y\\ y\\ x \end{pmatrix}$ $\begin{bmatrix} x\\ y\\ x \end{bmatrix}$

希腊字符

代码

希腊字符, cont.

4- (X alpha	₿ beta	√ gamma	გ delta	E epsilon	zela
³- n eta	O theta	1 iota	K kappa	lambda	μ mu
2- V	ξ	O omicron	π	ρ rho	O sigma
1- T tau	ູ່ upsilon ໍ່2	ф phi	X chi	Ψ psi	⊕ omega

х

公式示例

注写公式的方式很多

公式示例 2

另一种代入变量值的方法:

公式示例 3

使用 paste 和 substitute:

```
x mean \leftarrow 1.5;
x sd <- 1.2:
#表达式
ex <- substitute(
   paste(X[i], " ~ N(", mu, "=", m, ", ", sigma^2, "=", s2, ")"),
   list(m = x mean, s2 = x sd^2)
);
# histogram
ggplot(data.frame(x = rnorm(100, x_mean, x_sd)), aes(x)) +
   geom histogram( binwidth=0.5 ) +
    ggtitle(ex); ## 为什么不需要 parse = TURE ????
```


section 6: ggplot2 进阶 2

ggplot2 的核心在于先计算再做图

先看数据 (来自 talk05):

name	class	course	grade
CHEN	1	bioinformatics	90
CHEN	1	chemistry	92
CHEN	2	chinese	35
CHEN	3	german	62
LI	1	bioinformatics	44
LI	2	chinese	68
LI	3	microbiology	95
LI	3	japanese	90
WANG	1	bioinformatics	35
WANG	1	chemistry	76
WANG	1	mathmatics	82
WANG	3	german	100
WANG	3	spanish	78

geom_bar

任务:画出每位学生及格的课程数

```
ggplot( grades2 %>% filter( grade >= 60 ), aes( name ) ) +
  geom_bar();
```


为什么会这样呢?因为 geom_bar(stat = "count")的默认参数是 count,即数一下每个 factor 的出现次数。

geom_bar , cont.

以上命令,实际上等于:

```
## 先微统计
cnt <- grades2 %>% group_by( name ) %>% summarise( cnt = sum( grade >= 60 ) );
ggplot( cnt, aes( x = name, y = cnt ) ) +
    geom_bar( stat = "identity" );
```


default stat behaviors (默认计算方法)

- geom_bar : count
- geom_boxplot : boxplot
- geom_count : sum
- geom_density : density
- geom_histogram : bin
- geom_quantile : quantile ...

stacked bars

应用场景:宏基因组多样本物种丰度图

Figure 6: Microbiome 3, 28 2015

stacked bars, cont.

load data

```
speabu <-read_tsv( file = "data/talk09/mock_species_abundance.txt" );</pre>
##
  -- Column specification -----
## cols(
    id = col character().
##
    genus = col character(),
    abundance = col double()
##
## )
head( speabu );
## # A tibble: 6 x 3
    id
          genus
                             abundance
     <chr> <chr>
                                 <dh1>
                                   5
  1 A
          Enterobacteriaceae
          Lachnospiraceae
                                  7.5
## 3 A
          Bacteroidaceae
                                  7.5
## 4 A
          Lactobacillaceae
                                  10
  5 A
          Clostridiaceae
                                 10
## 6 A
                                 12.5
          Ruminococcaceae
```

stacked bars, cont.

```
ggplot( speabu, aes( x = id, y = abundance, fill = genus ) ) +
  geom_bar( stat = "identity", position = "stack", color = "black", width = 0.8 );
```


指定 Genus 展示顺序

factor 的操纵详见第 4 章。

按丰度排序

按丰度中值大小排序

```
speabu$genus <- reorder( speabu$genus, speabu$abundance, median );
ggplot( speabu, aes( x = id, y = abundance, fill = genus ) ) +
   geom_bar( stat = "identity", position = "stack", color = "white", width = 0.8 );</pre>
```


position = "stack" 又是什么??

position = "dodge" : plot bars next to each other ...

```
ggplot( speabu, aes( x = id, y = abundance, fill = genus ) ) +
  geom_bar( stat = "identity", position = "dodge", color = "white", width = 0.8 );
```


显示数值 ...

```
## 先计算显示位置
speabu <- speabu %>% arrange( id, desc( factor( genus ) ) ) %>%
group_by( id ) %>% mutate( ypos = cumsum( abundance ) - abundance / 2 );
## 画图
ggplot( speabu, aes( x = id, y = abundance, fill = genus ) ) +
geom_bar( stat = "identity", position = "stack", color = "black", width = 0.8 ) +
geom_text( aes( y = ypos, label = paste( abundance, "%", sep = "" ) ), color = "white" );
```


显示数值 ..., cont.

要点

- 使用 ddplyr 的 cumsum() 函数 ...
- 计算位置: 当前累加值 自身值/2, 使数字显示在当前值的中间
- 累加前,要对数据按 factors 进行排序;通过 arrange 函数实现;

在 position = "dodge" 的情况下添加 label

position 的其它取值

除了 "dodge", "stack" 之外, position 还可以:

- position = position_stack(reverse = TRUE)
- position = position_dodge(reverse = TRUE)
- position = position_identity()
- position = position_jitter(): jitter points to avoid overplotting ...
- position = position_nudge(): is generally useful for adjusting the position of items on discrete scales by a small amount

不同的图层有不同默认值

```
ggplot(ToothGrowth, aes(x=factor( dose ), y=len, fill=supp)) +
   geom_boxplot()
```


geom_boxplot(): 默认为 dodge

更多 boxplot 的内容见 link.

change color palette

```
ggplot(ToothGrowth, aes(x=factor( dose ), y=len, fill=supp)) +
  geom_boxplot() + scale_fill_brewer( palette = "Paired" ) + theme_minimal();
```


要点

① 颜色 palette 的用法 ② theme 系统

theme in ggplot2

- theme_gray:系统默认主题
- theme_bw , theme_linedraw, theme_light, theme_dark, theme_minimal , theme_classic, theme_void()

see here for a complete list:

https://ggplot2.tidyverse.org/reference/ggtheme.html

theme() 函数

除了 theme_ 用于调整整体视觉效果外,ggplot2 还提供了 theme() 函数用于细调。

- line, rect, text, title : 整体框架
- axis. < compoment>: 调整坐标轴
- legend.<parameter>:调整图例
- plot.<>:控制 title, subtitle 等细节
- panel.<...>:调整 facet 情况下的 panel (facet 下面会介绍)
- strip.<...>: 调整 facet 的标题细节 …

更多详见:

官方: https://ggplot2.tidyverse.org/reference/theme.html

定制: http://www.sthda.com/english/wiki/

ggplot2-themes-and-background-colors-the-3-elements

扩展 theme extensions:

http://www.ggplot2-exts.org/ggthemes.html

legend 细调

```
ggplot(ToothGrowth, aes(x=factor( dose ), y=len, fill=supp)) +
  geom_boxplot() + scale_fill_brewer( palette = "Paired" ) + theme_minimal() +
  labs( fill = "Supplement" ) + theme( legend.position = "top" );
```


ggsci: palette for scientific journals!!!

```
# Install ggsci from CRAN:
install.packages("ggsci");

# Or try the development version on GitHub:
# install.packages("devtools")
devtools::install_github("nanxstats/ggsci")
```

提供了一系列

```
scale_color_<journal> 和 scale_fill_<journal> 函数
```

详见: https://nanx.me/ggsci/articles/ggsci.html

ggsci 举例

```
library("ggsci")
library("ggplot2")
library("gridExtra")
data("diamonds")
p1 <- ggplot(
  subset(diamonds, carat >= 2.2).
  aes(x = table, y = price, colour = cut)
 geom point(alpha = 0.7) +
  geom smooth(method = "loess", alpha = 0.05, size = 1, span = 1) +
 theme bw()
p2 <- ggplot(
  subset(diamonds, carat > 2.2 & depth > 55 & depth < 70),
  aes(x = depth, fill = cut)
  geom histogram(colour = "black", binwidth = 1, position = "dodge") +
 theme bw()
```

要点

library(gridExtra)

ggsci 结果, Nature Style!!

```
p1_npg <- p1 + scale_color_npg()
p2_npg <- p2 + scale_fill_npg()
grid.arrange(p1_npg, p2_npg, ncol = 2)</pre>
```

`geom_smooth()` using formula 'y ~ x'

faceting ...

Faceting generates small multiples each showing a different subset of the data.

facet_grid(<by_row> ~ <by_col>) 汽缸、车重与燃油效率间的关系

```
ggplot(mtcars, aes(x = wt, y = mpg)) +
 geom point() +
 facet grid( . ~ cvl );
```


faceting, cont.

by col: 请自行尝试 ~

```
ggplot( mtcars, aes( x = wt, y = mpg ) ) +
  geom_point() +
  facet_grid( cyl ~ . );
```

** 注意 **

作图相关概念: panel, strip, axis, tick, tick label, axis label

facet_grid 的适用范围是全局

```
ggplot( mtcars, aes( x = wt, y = mpg ) ) +
  geom_point() + geom_smooth( method = "lm" ) +
  facet_grid( . ~ cyl );
```

$geom_smooth()$ using formula 'y ~ x'

facet_wrap

指定行、列数和方向

```
ggplot( mtcars, aes( x = wt, y = mpg ) ) +
geom_point() + geom_smooth( method = "lm" ) +
facet_wrap( . ~ cyl , ncol = 2, dir = "v");
```

```
## `geom_smooth()` using formula 'y ~ x'
```


ggplot2 小结

layered grammer (图层语法) 的成分

- 图层(geom_xxx)
- scale (scale_xxx)
- faceting (facet_xxx)
- 坐标系统

图象类型

- 点图
- bars
- boxplots

其它重要内容 (部分需要自学)

- colours
- theme
- 其它图像类型
- 图例 (legends) 和坐标轴
- 图形注释和其它定制

写在后面

- ① ggplot2 博大精深,需要一门课去讲
- ② 上手容易,精通难
- ◎ 太多记忆点
- 本节内容只涉及了基础中的基础,更多内容,包括进阶技巧和生信相 关的扩展包,更多的需要同学们自行探索。

请见 "ggplot2: elegant graphics for data analysis" 一书!!

section 7: Exercise and home work

more to read & 练习

```
必读!!! 在一张图上画多个 panel
ggplot2 提供的官方指南从 A 到 Z:
abline
[bar charts] (https://ggplot2.tidyverse.org/reference/geom_bar.html)
...
color brewer
legends 1
legends 1
legends
必读!! R graph gallery: https://www.r-graph-gallery.com
必读!! ggplot2 扩展: https://exts.ggplot2.tidyverse.org/
barchart & theme
plotly 互动图形的领先者: plot.ly
```

下次预告

data summarisation and modeling

