Module 27

- · Applications of Pumping Lemma
 - General proof template
 - What is the same in every proof
 - · What changes in every proof
 - Incorrect pumping lemma proofs
 - Some rules of thumb

Pumping Lemma

Applying it to prove a specific language L is not regular

How we use the Pumping Lemma

- We choose a specific language L - For example, $\{a^{j}b^{j} \mid j > 0\}$
- We show that L does not satisfy the pumping condition
- We conclude that L is not regular

Showing L "does not pump"

- A language L satisfies the pumping condition if:
 - there exists an integer n > 0 such that
 - for all strings x in L of length at least n
 - there exist strings u, v, w such

• For all $k \ge 0$, $uv^k w$ is in L

- x = uvw and
 luvl <= n and
- |v|>= 1 and
- A language L does not satisfy the pumping condition if:
 - for all integers n of sufficient size
 - there exists a string x in L of length at least n such that
 - for all strings u, v, w such that • x = uvw and
 - · luvl <= n and
 - |v| >= 1
 - There exists a k >= 0 such that uvkw is not in L

Example Proof

- A language L does not satisfy the pumping condition if:
 - for all integers n of sufficient size there exists a string x in L of
 - length at least n such that
 - for all strings u, v, w such that
 - x = uvw and • luvl <= n and
 - |v| >= 1
 - There exists a $k \ge 0$ such that $uv^k w$ is not in L
- Proof that $L = \{a^i b^i \mid i > 0\}$ does not satisfy the pumping condition
- Let n be the integer from the pumping lemma
- Choose $x = a^n b^n$
- Consider all strings u, v, w s.t.
 - x = uvw and
 - $|uv| \le n$ and
- |v| >= 1 Argue that uvkw is not in L for *some* k >= 0
 - Argument must apply to all possible u.v.w
 - Continued on next slide

Example Proof Continued *

- Proof that $L = \{a^ib^i \mid i>0\}$ does not satisfy the pumping condition
- Let n be the integer from the pumping lemma
- Choose $x = a^n b^n$
- Consider all strings u, v, w s.t.
 - x = uvw and
 - $|uv| \le n$ and |v|>= 1
- Argue that uvkw is not in L for *some* k >= 0
- Argument must apply to all possible u,v,w
- Continued on right

- $uv^0w = uw$ is not in L
- uv contains only a's
- · why?
- $-uw = a^{n-|v|}b^n$
 - Follows from previous line and $uvw = x = a^nb^n$
- uw contains fewer a's than b's · why?
- Therefore, uw is not in L
- · Therefore L does not satisfy the pumping condition

1

Alternate choice of k *

- Proof that $L = \{a^i b^i \mid i > 0\}$ does not $uv^2 w = uvvw$ is not in L satisfy the pumping condition
- Let n be the integer from the pumping lemma
- Choose $x = a^n b^n$
- Consider all strings u, v, w s.t.
 - x = uvw and
 - |v|>= 1
- Argue that $uv^k w$ is not in L for some k >= 0
 - Argument must apply to all ossible u.v.w
 - Continued on right

- - uv contains only a's
 - · why? $- uvvw = a^{n+|v|}b^n$
 - follows from previous line and uvw = x = aⁿbⁿ
 - uvvw contains more a's than
 - b's
 why?
- Therefore, uvvw is not in L
- · Therefore L does not satisfy the pumping condition

Pumping Lemma

Some bad applications of the pumping lemma

Bad Pumping Lemma Applications

- We now look at some examples of bad applications of the pumping lemma
- We work with the language EOUAL consisting of the set of strings over {a,b} such that the number of a's equals the number of b's
- We focus first on bad choices of string x
- We then consider another flawed technique

First bad choice of x *

- A language L does not satisfy the pumping condition if:
 - Let n be the integer from the pumping lemma
 - there exists a string x in L of length at least n such that
 - for all strings u, v, w such that
 - x = uvw and
 - luvl <= n and |v|>= 1
 - There exists a $k \ge 0$ such that uvkw is not in L
- · Let n be the integer from the pumping lemma
- Choose $x = a^{10}b^{10}$
- What is wrong with this choice of

Second bad choice of x *

- A language L does not satisfy the pumping condition if:
 - Let n be the integer from the pumping lemma
 - there exists a string x in L of length at least n such that
 - for all strings u, v, w such that
 - x = uvw and
 - · luvl <= n and |v| >= 1
 - There exists a k >= 0 such that uv^kw is not in L
- Let n be the integer from the pumping lemma
- Choose $x = a^n b^{2n}$
- What is wrong with this choice of

11

A language L does not satisfy

- the pumping condition if:
 - Let n be the integer from the pumping lemma
 - there exists a string x in L of length at least n such that
 - for all strings u, v, w such that
 - x = uvw and
 - luvl <= n and • |v| >= 1
 - There exists a $k \ge 0$ such that $uv^k w$ is not in L
- Third bad choice of x *
 - Let n be the integer from the pumping lemma
 - Choose $x = (ab)^n$
 - What is wrong with this choice
 - The problem is there is a choice of u, v, w satisfying the three conditions such that for all k >=0, uv^kw is in L
 - · What is an example of such a u,

12

Find the flaw in this proof *

- A language L does not satisfy the pumping condition if:
 - Let n be the integer from the pumping lemma
 - there exists a string x in L of length at least n such that

 - for all strings u, v, w such that
 x = uvw and

 - |v|>= 1
 - There exists a k >= 0 such that uv^kw is not in L
 - $|uv| \le n$ and
- Let n be the integer from the pumping lemma
- Choose $x = a^n b^n$ • Let $u = a^2$, v = a, $w = a^{n-3}b^n$
- $|uv| = 3 \le n$
- |v| = 1
- Choose k = 2
- Argue uv²w is not in EQUAL
 - $-\quad uv^2w=uvvw=a^2aaa^{n\cdot 3}b^n=a^{n+1}b^n$
 - There is one more a than b in uv²w
 - $\quad Thus \ uv^2w \ is \ not \ in \ L$

13

Pumping Lemma

Two rules of thumb

14

Two Rules of Thumb *

- Try to make the first n characters of x identical
 - For EQUAL, choose $x = a^n b^n$ rather than $(ab)^n$
 - Simplifies case analysis as v only contains a's
- Try k=0 or k=2
 - k=0
 - This *reduces* number of occurrences of that first character
 - k=2
 - This increases number of occurrences of that first character

15

Summary

- We use the Pumping Lemma to prove a language is not regular
 - Note, does not work for all nonregular languages, though
- Choosing a good string x is first key step
- Choosing a good integer k is second key
- Must apply argument to all legal u, v, w