Forecasting issues

Forcast Padawan 2

November 17, 2016

The goal of this experiment is to design the best model to forcaste the number of issue in the per day in the comming two weeks. We think that sthis could help Open Source organisation to manage there human ressources.

Load the data

```
#install.packages('forecast')
library('forecast')
library(knitr)
#load the data frame
issues.csv <- read.csv("issues/tensorflow_tensorflow.csv")
commits.csv <- read.csv("commits/tensorflow_tensorflow.csv")

issues.csv$date = as.POSIXlt(as.Date(issues.csv$date,format='%m/%d/%Y'))
commits.csv$date = as.POSIXlt(as.Date(commits.csv$date,format='%m/%d/%Y'))</pre>
```

keep the last 12 months

```
to_date <- issues.csv$date[length(issues.csv$date)]
from_date <- to_date
from_date$year <- from_date$year - 1

issues.csv <- subset(issues.csv, date <= to_date & date >= from_date)
commits.csv <- subset(commits.csv, date <= to_date & date >= from_date)
```

```
#Loading issues and commits into a ts object
issues.ts <- ts(issues.csv$number_of_issues, frequency = 7)

commits.ts <- ts(commits.csv$number_of_commits, frequency = 7)
plot(issues.ts, main = 'Issues', bty = 'l', ylab = 'Number of Issues')</pre>
```


plot(commits.ts, main = 'Commits', bty = 'l', ylab = 'Number of Commits')

Naive Forecast

Naive

```
train.issues.naive.pred <- naive(train.issues.ts, h=n.valid)
kable(accuracy(train.issues.naive.pred, valid.issues.ts))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.027439	8.695212	5.564024	-19.15979	49.74022	0.9565488	-0.2721137	NA
Test set	7.380952	10.059348	8.809524	19.98380	47.23247	1.5145044	0.1453375	0.6586884

```
hist(valid.issues.ts - train.issues.naive.pred$mean)
```

Histogram of valid.issues.ts - train.issues.naive.pred\$mean

valid.issues.ts - train.issues.naive.pred\$mean

plot(valid.issues.ts - train.issues.naive.pred\$mean)

plot(train.issues.naive.pred)
lines(valid.issues.ts)

Forecasts from Naive method

Seasonal Naive

train.issues.snaive.pred <- snaive(train.issues.ts, h=n.valid)
kable(accuracy(train.issues.snaive.pred, valid.issues.ts))</pre>

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.2577640	8.519798	5.816770	-22.20475	54.82299	1.000000	0.3057894	NA
Test set	-0.9047619	7.416199	5.857143	-16.37624	35.79967	1.006941	-0.0681004	0.5821032

hist(valid.issues.ts - train.issues.snaive.pred\$mean)

Histogram of valid.issues.ts - train.issues.snaive.pred\$mean

plot(valid.issues.ts - train.issues.snaive.pred\$mean)

plot(train.issues.snaive.pred)
lines(valid.issues.ts)

Forecasts from Seasonal naive method

Smoothing

Holt Winter

train.issues.hw.pred <- hw(train.issues.ts, hw = "ZAA", h = n.valid)
kable(accuracy(train.issues.hw.pred, valid.issues.ts))</pre>

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.0490254	6.728816	4.608885	-17.34177	43.16867	0.7923444	0.0172489	NA
Test set	-0.1403043	4.831118	3.822583	-16.63936	30.55990	0.6571659	-0.0384511	0.2786967

hist(valid.issues.ts - train.issues.hw.pred\$mean)

Histogram of valid.issues.ts - train.issues.hw.pred\$mean

valid. is sues. ts - train. is sues. hw. pred\$mean

plot(valid.issues.ts - train.issues.hw.pred\$mean)

plot(train.issues.hw.pred)
lines(valid.issues.ts)

Forecasts from Holt-Winters' additive method

Double differencing

```
train.issues.d1 <- diff(train.issues.ts, lag = 1)
train.issues.d1.d7 <- diff(train.issues.d1, lag = 7)

ma.trailing <- rollmean(train.issues.d1.d7, k = 7, align = "right")
last.ma <- tail(ma.trailing, 1)
ma.trailing.pred <- ts(c(train.issues.d1.d7[1:6], ma.trailing, rep(last.ma, n.valid)),
start=c(2,2), frequency = 7)

ma.dd.pred.d1 <- diffinv(ma.trailing.pred, lag = 7, xi=train.issues.d1[1:7])
ma.dd.pred <- diffinv(ma.dd.pred.d1, lag = 1, xi=train.issues.ts[1])

kable(accuracy(ma.dd.pred[(n.train+1):(n.train+n.valid)], valid.issues.ts))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	ACF1	Theil's U
Test set	-824.8435	825.9994	824.8435	-5096.455	5096.455	0.8318993	61.9973

```
hist(valid.issues.ts - ma.dd.pred[(n.train+1):(n.train+n.valid)])
```

Histogram of valid.issues.ts - ma.dd.pred[(n.train + 1):(n.train + n.valid)

valid.issues.ts - ma.dd.pred[(n.train + 1):(n.train + n.valid)]

plot(valid.issues.ts - ma.dd.pred[(n.train+1):(n.train+n.valid)])


```
plot(ma.dd.pred,col='red')
lines(issues.ts,col='blue')
```


Regression

5.54492

##

Linear additive regression

```
train.issues.linear.regr.add.m
##
## Call:
## tslm(formula = train.issues.ts ~ trend + season)
##
## Coefficients:
  (Intercept)
                       trend
                                   season2
                                                season3
                                                              season4
##
       7.34596
                                   5.63623
                                                6.86821
                                                              5.99380
##
                     0.02334
##
                     season6
                                   season7
       season5
```

train.issues.linear.regr.add.m <- tslm(train.issues.ts ~ trend + season)</pre>

-2.90602

```
train.issues.linear.regr.add.pred <- forecast(train.issues.linear.regr.add.m , h=n.valid)
kable(accuracy(train.issues.linear.regr.add.pred, valid.issues.ts))</pre>
```

ME RMSE MAE MPE MAPE MASE ACF1 Theil's U

0.62796

Training set	0.000000	7.153206	4.596331	-24.24642	44.30184	0.7901861	0.3743566	NA
Test set	1.988789	5.008067	4.131973	-3.17105	27.61700	0.7103553	-0.0602594	0.3528974

hist(valid.issues.ts - train.issues.linear.regr.add.pred\$mean)

Histogram of valid.issues.ts - train.issues.linear.regr.add.pred\$mean

valid.issues.ts - train.issues.linear.regr.add.pred\$mean

plot(valid.issues.ts - train.issues.linear.regr.add.pred\$mean)

plot(train.issues.linear.regr.add.pred)
lines(valid.issues.ts)

Forecasts from Linear regression model

Forecasting issues

linear multiplicative regression

12/31/2016

```
train.issues.linear.regr.mult.m <- tslm(train.issues.ts ~ trend + season, lambda = 0)
train.issues.linear.regr.mult.m</pre>
```

```
##
## Call:
## tslm(formula = train.issues.ts ~ trend + season, lambda = 0)
## Coefficients:
## (Intercept)
                       trend
                                  season2
                                                season3
                                                              season4
##
      1.925750
                   0.002127
                                 0.400373
                                               0.499783
                                                             0.476474
##
       season5
                    season6
                                  season7
      0.458874
                   0.070092
##
                                -0.246390
```

```
train.issues.linear.regr.mult.pred <- forecast(train.issues.linear.regr.mult.m , h=n.valid)
kable(accuracy(train.issues.linear.regr.mult.pred, valid.issues.ts))</pre>
```

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	1.258735	7.219268	4.349847	-12.087206	37.99997	0.7478114	0.3673273	NA
Test set	1.827121	4.724967	3.890974	-1.386916	25.56117	0.6689235	-0.1101274	0.3853172

```
hist(valid.issues.ts - train.issues.linear.regr.mult.pred$mean)
```

Histogram of valid.issues.ts - train.issues.linear.regr.mult.pred\$mean

valid.issues.ts - train.issues.linear.regr.mult.pred\$mean

plot(valid.issues.ts - train.issues.linear.regr.mult.pred\$mean)

plot(train.issues.linear.regr.mult.pred)
lines(valid.issues.ts)

Forecasts from Linear regression model

external regression

plot(issues.ts, col='blue')
lines(commits.ts, col='green')

issues.14.ts <- window(issues.ts, start = 1, end = 14)
Acf(issues.14.ts, lag.max = 14, main = "")</pre>


```
train.commits.d1 <- diff(train.commits.ts, lag = 1)
train.commits.d1.d7 <- diff(train.commits.d1, lag = 7)

plot(train.issues.d1.d7, col='blue')
lines(lag(train.commits.d1.d7,2), col='green')</pre>
```


external regression using comb.file, stl

```
comb.issues.commits <- read.csv("issues/tensorflow_combined.csv")
yTrainexternal.ts <- ts(comb.issues.commits$number_of_issues[1:n.train], freq = 7, start = 1)
stl.trainexternal <- stl(yTrainexternal.ts, s.window = "periodic")
plot(stl.trainexternal)</pre>
```



```
xTrainIScommit <- data.frame(IsCommit = comb.issues.commits$IS_commit[1:n.train])
stlm.reg.fit <- stlm(yTrainexternal.ts, s.window = "periodic", xreg = xTrainIScommit, method
= "arima")
stlm.reg.fit$model</pre>
```

```
## Series: x
## ARIMA(3,1,1)
## Coefficients:
##
            ar1
                    ar2
                              ar3
                                       ma1
                                            IsCommit
##
         0.1197
                 0.1045
                         -0.1520
                                   -0.8141
                                              3.5996
## s.e.
         0.1252 0.1002
                          0.0916
                                    0.1092
                                              2.9148
                                 log likelihood=-1084.45
## sigma^2 estimated as 44.12:
## AIC=2180.89
                 AICc=2181.16
                                 BIC=2203.65
```

Forecasts from STL + ARIMA(3,1,1)

kable(accuracy(stlm.reg.pred, valid.issues.ts))

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	-0.1269172	6.581360	4.419095	-18.05605	41.05984	0.7597163	0.0917343	NA
Test set	0.0268061	4.625172	3.616953	-15.32520	29.14017	0.6218147	-0.0567364	0.2854848

ACF of raw shows lag-1 correl, but no seasonality

```
train.issues.arima.ext.m <- Arima(train.issues.ts, order=c(1,0,0), seasonal=c(1,0,0), xreg=train.commits.ts ) train.issues.arima.ext.m
```

```
## Series: train.issues.ts
## ARIMA(1,0,0)(1,0,0)[7] with non-zero mean
##
## Coefficients:
##
                                    train.commits.ts
                   sar1
                         intercept
##
                 0.3312
                           15.0726
                                              -0.0202
         0.3873
         0.0533
                 0.0709
                            1.2217
                                               0.0301
##
## sigma^2 estimated as 51.4: log likelihood=-1113.37
## AIC=2236.75
                 AICc=2236.93
                                BIC=2255.73
```

```
ets = ets(train.issues.ts, model = 'ZZZ', restrict = FALSE, allow.multiplicative.trend =
TRUE)
summary(ets)
```

```
## ETS(M,Ad,M)
##
## Call:
## ets(y = train.issues.ts, model = "ZZZ", restrict = FALSE, allow.multiplicative.trend = TR
UE)
##
##
    Smoothing parameters:
##
       alpha = 0.1054
       beta = 1e-04
##
       gamma = 0.034
##
       phi = 0.8466
##
##
##
    Initial states:
       1 = 48.4921
##
       b = -6.9831
##
##
       s=0.6735 0.7979 0.9863 1.1128 1.1453 1.3726
##
              0.9115
##
##
     sigma: 0.398
##
##
        AIC
                AICc
                          BIC
## 3015.650 3016.806 3064.999
##
## Training set error measures:
                                                  MPE
                                                          MAPE
                                                                     MASE
##
                       ME
                               RMSE
                                        MAE
## Training set 0.3665056 6.102004 4.25467 -18.85287 41.05495 0.7314489
## Training set 0.05822546
```

```
ets.pred = forecast(ets, h = n.valid, level = 0)

plot(ets.pred, main = 'Spark (Exponential Smoothing MNM)', bty = 'l', ylab = 'Number of Issue s')
lines(ets.pred$fitted, lwd = 2, col = 'blue')
lines(valid.issues.ts)
```

Spark (Exponential Smoothing MNM)


```
plot(train.issues.ts - ets.pred$fitted, main = 'Exponential Smoothing (MNM) Errors Plot',
    bty = 'l', xlab = 'Week', ylab = 'Errors', xlim = c(0, 54))
lines(valid.issues.ts - ets.pred$mean, lwd = 2, col = 'blue')
```

Exponential Smoothing (MNM) Errors Plot

kable(accuracy(ets.pred, valid.issues.ts))

	ME	RMSE	MAE	MPE	MAPE	MASE	ACF1	Theil's U
Training set	0.3665056	6.102004	4.254670	-18.852866	41.05495	0.7314489	0.0582255	NA
Test set	0.3211297	4.335239	3.377791	-9.755863	24.69860	0.5806987	-0.0597373	0.2696809