HW 12 Solutions

```
library(palmerpenguins)
library(tidyverse)
library(ROCR)

Data<-penguins

##remove penguins with gender missing
Data<-Data[complete.cases(Data[ , 7]),-c(2,8)]

##80-20 split
set.seed(1)
sample<-sample.int(nrow(Data), floor(.80*nrow(Data)), replace = F)
train<-Data[sample, ]
test<-Data[-sample, ]</pre>
```

1

(a)

ROC Curve for Penguins Data Set

Since our ROC curve is closer to the top left than the red diagonal line, our logistic regression performs better than random guessing on the test data.

(b)

```
auc<-performance(rates, measure = "auc")
auc@y.values</pre>
```

```
## [[1]]
## [1] 0.9214286
```

Since the AUC is above 0.5, our logistic regression performs better than random guessing on the test data.

(c)

table(test\$sex, preds>0.5)

```
##
##
             FALSE TRUE
##
     female
                 28
                        7
##
                  4
                       28
     male
```

- The FPR is $\frac{7}{35} = 0.2$. The FNR is $\frac{4}{32} = 0.125$. The error rate is $\frac{7+4}{35+32} = 0.164$.

(d)

For this particular analysis, I do not believe there is a reason to favor reducing FPR over FNR (or vice versa); there isn't a worse consequence of wrongly identifying a female penguin as male versus wrongly identifying a male penguin as female. Thus we would prefer to reduce the overall error rate, which is achieved with a threshold of 0.5. So we do not need to adjust the threshold.