How Do Computers Count?

Mr. Neat Java

How do you write out 1,324 in base 10?

Base 10 Digits

10000	1000	100	10	1
10^{4}	10^{3}	10^{2}	10^{1}	10^{0}

Counting in Another Base

Base 10	Base 9	
0	0	
1	1	
2	2	
3	3	
4	4	
5	5 .	
6	$6 \frac{\text{nin}}{2}$	e in base ten is equal to one zero in base nine
7	7 /	
8	8 /	(0) (10)
9	104	$(9)_{10} = (10)_9$
10	11	
11	12	
12	13	
•	•	
•	•	

Counting in Another Base

How do you represent $(10)_{10}$ in base 10? How do you represent $(9)_{10}$ in base 9? How do you represent $(8)_{10}$ in base 8? How do you represent $(7)_{10}$ in base 7?

$$(12)_{10}$$
 = 1x10 + 2x1

$$(13)_9 = 1x9 + 3x1 = (12)_{10}$$

$$(10)_2 = 1x_+ 0x_=(2)_{10}$$
What goes here?

Base 10	Base 9	Base 2
0	0	0
1	1	1
2	2	10
3	3	11
4	4	100
5	5	101
6	6	110
7	7	111
8	8	1000
9	10	1001
10	11	1010
$\frac{11}{1000} \frac{-}{100} \frac{-}{10} \frac{-}{1}$	$12 {729} {81} {9} {1}$	$1011 {8} {4} {2} {1}$
12	13	1100
•	•	•
•	•	•

What is $(10001101)_2$ in Base 10?

Make up a problem for your neighbor.....

Who Cares About Base 2?

.....We do!...Why?

What about adding 2 base 2 digits?

```
+\frac{(1001110)_{10}}{(1001110)_{10}}
\frac{(1001110)_{10}}{(2001110)_{10}}
```

```
+\frac{(1001110)_2}{(1001110)_2}
\frac{(1001110)_2}{(10011100)_2}
```

```
Base 10 Base 2
0 0
1 1
2 10
3 11
4 100
```

```
\frac{(11101)_2}{(11010)_2}
```

Make up a problem for your neighbor.....

```
+\frac{(1001110)_2}{(1001110)_2}
-\frac{(1001110)_2}{(2001110)_{10}}
```

2 Ways to Solve the Problem:

$$\begin{array}{c}
+ (1001110)_2 \rightarrow ()_{10} \\
+ (1001110)_2 \rightarrow ()_{10} \\
\hline
(?)_2 \rightarrow ()_{10}
\end{array}$$

Blue First

$$\begin{array}{c}
(1001110)_{2} \\
+(1001110)_{2} \\
\hline
(10011100)_{2} \\
\end{array}$$
We knew this from before

But, how do we do this?

Blue First (cont.)

2 Ways to Solve the Problem:

$$\begin{array}{cccc}
&(1001110)_2 & & ()_{10} \\
&(1001110)_2 & & ()_{10} \\
\hline
&(10011100)_2 & & (156)_{10}
\end{array}$$

Now Red

$$(1001110)_2 \rightarrow ()_{10}$$

2 Ways to Solve the Problem:

$$\begin{array}{ccc} & (1001110)_2 \rightarrow & (78)_{10} \\ & (1001110)_2 \rightarrow & (78)_{10} \\ \hline & (10011100)_2 \rightarrow & (156)_{10} \end{array}$$

Now You Try....

```
\frac{(110111000)_2}{(100011011)_2}
\frac{(100711011)_2}{(100711011)_{10}}
```

Make up a problem for your neighbor.....