主成分分析

基本的な考え方

村田 昇

講義概要

・第1日:主成分分析の考え方

• 第2日: 分析の評価と視覚化

主成分分析の例

県毎の生活環境の違いの分析

Figure 1: 県別の生活環境 (教育・労働などに関連する項目)

主成分分析の考え方

主成分分析

- 多数の変量のもつ情報の分析・視覚化
 - 変量を効率的に縮約して少数の特徴量を構成する
 - 特徴量に関与する変量間の関係を明らかにする
- PCA (Principal Component Analysis)
 - 構成する特徴量: **主成分** (princial component)

Figure 2: 県別の生活環境 (教育・労働などに関連する項目)

Figure 3: 県別の生活環境(教育・労働などに関連する項目)

県名	年少人口比	老年人口比	婚姻率	離婚率	高校数/面積	交通事故	犯罪件数	食料費	住居費	貯蓄率
北海道	11.7	26.0	4.86	2.12	1.34	274.2	8.98	22.5	5.9	19.4
青森県	12.1	27.0	4.33	1.78	2.63	386.7	6.12	24.6	5.4	16.2
岩手県	12.4	27.9	4.32	1.52	2.19	261.6	4.83	24.7	7.1	19.1
宮城県	13.0	22.9	5.30	1.70	3.18	447.7	8.85	23.7	5.0	9.5
秋田県	11.1	30.7	3.78	1.41	1.85	266.2	4.12	22.9	7.9	15.2
山形県	12.6	28.3	4.24	1.46	2.24	614.9	5.54	22.2	6.0	5.1
福島県	12.9	26.1	4.73	1.64	2.65	498.9	8.13	22.7	5.7	25.1
茨城県	13.2	23.8	4.92	1.79	3.09	500.6	13.00	21.9	6.8	20.0
栃木県	13.2	23.2	5.13	1.85	2.68	404.3	11.53	20.4	6.9	17.4
群馬県	13.4	24.9	4.64	1.77	3.56	925.2	10.49	23.9	4.4	1.6
埼玉県	13.0	22.0	5.10	1.86	7.81	493.6	13.91	23.0	7.0	21.6
千葉県	12.8	23.2	5.19	1.86	5.24	370.2	13.36	26.2	5.2	8.9
東京都	11.3	21.3	6.75	1.91	31.03	358.5	14.13	25.1	7.7	18.0
神奈川県	13.0	21.5	5.68	1.85	16.09	408.6	9.46	24.5	7.4	15.9
新潟県	12.5	27.2	4.35	1.37	2.35	357.2	8.71	23.5	5.7	13.0
富山県	12.7	27.6	4.50	1.43	2.86	459.6	6.14	22.7	7.2	36.1
石川県	13.4	25.0	4.91	1.52	4.03	443.3	6.93	23.3	4.6	22.3
福井県	13.7	26.0	4.55	1.55	3.72	394.0	7.07	24.1	4.7	29.2
山梨県	12.9	25.6	4.60	1.87	4.62	706.0	8.61	25.1	5.7	16.7
長野県	13.5	27.4	4.67	1.66	3.14	487.9	8.27	21.4	8.2	16.0
岐阜県	13.7	25.2	4.62	1.60	3.68	502.3	12.18	24.0	5.1	25.5
静岡県	13.4	24.9	5.17	1.84	5.23	989.2	9.58	23.8	5.6	10.7
愛知県	14.2	21.4	5.75	1.82	7.39	668.5	16.04	27.2	5.7	27.1
三重県	13.5	25.3	4.89	1.76	3.52	551.9	12.03	22.0	4.9	6.7
滋賀県	14.8	21.6	5.22	1.66	4.47	570.4	9.73	25.8	4.6	18.7
京都府	12.6	24.7	5.02	1.77	8.83	471.3	14.37	26.9	6.7	18.8
大阪府	13.0	23.7	5.43	2.12	19.77	544.4	17.52	25.4	7.8	15.1
兵庫県	13.5	24.3	5.07	1.84	7.67	611.3	13.71	25.7	7.8	6.5
奈良県	12.9	25.5	4.48	1.72	6.22	395.6	9.55	22.5	6.7	11.8
和歌山県	12.5	28.4	4.46	1.72	4.65	547.6	11.01	25.8	4.4	22.9
鳥取県	13.2	27.2	4.72	1.98	3.40	238.7	8.45	23.8	6.3	10.8
島根県	12.7	30.0	4.74	1.63	3.88	244.0	6.27	23.4		22.6
岡山県	13.5	26.2	4.40	1.43	3.88 4.04	775.9	12.30	22.7	7.8 8.4	21.1
広島県	13.5	25.3	5.15	1.78	5.63	521.4	9.08	23.6	7.3	23.2
山口県	12.6	29.2	4.58	1.67	4.95	501.5	7.94	21.3	7.5	16.3
徳島県	12.2	28.0	4.34	1.62	3.81	645.9	8.32	21.3	7.2	15.0
香川県	13.2	27.1	4.84	1.91	4.19	1075.5	9.27	21.2	5.9	23.6
愛媛県	12.8	27.8	4.51	1.79	4.02	502.3	11.35	23.1	9.0	20.6
高知県	11.9	30.1	4.33	1.87	4.05	435.6	10.56	22.6	6.9	20.0
福岡県	13.5	23.3	5.50	2.07	5.94	849.1	14.46	22.4	7.4	11.9
佐賀県	14.4	25.3	4.75	1.74	3.38	1078.3	9.62	21.6	6.6	20.6
長崎県	13.4	27.0	4.50	1.74	4.83	499.4	5.99	22.8	6.7	8.3
熊本県	13.7	26.5	4.96	1.87	3.00	543.3	7.75	21.4	7.5	13.2
大分県	12.9	27.6	4.77	1.85	3.67	511.3	6.88	20.6	6.4	17.1
宮崎県	13.8	26.7	5.03	2.15	2.93	957.3	8.39	22.6	6.7	8.0
鹿児島県	13.6	27.0	4.78	1.84	2.81	565.3	6.24	20.8	7.6	13.7
沖縄県	17.6	17.7	6.28	2.58	5.48	475.3	8.85	24.3	10.4	24.6

分析の枠組み

• x₁,...,x_p: **変数**

• z₁,...,z_d:特徴量(d≤p)

• 変数と特徴量の関係 (線形結合)

$$z_k = a_{1k}x_1 + \dots + a_{pk}x_p \quad (k = 1, \dots, d)$$

- 特徴量は定数倍の任意性があるので以下を仮定

$$\|\boldsymbol{a}_k\|^2 = \sum_{j=1}^p a_{jk}^2 = 1$$

主成分分析の用語

- 特徴量 z_k
 - 第 k 主成分得点 (principal component score)
 - 第 k **主成分**

Figure 4: 県別の生活環境の主成分分析

- 係数ベクトル a_k
 - 第 k 主成分負荷量 (principal component loading)
 - 第 k 主成分方向 (principal component direction)

分析の目的

目的

主成分得点 z_1,\ldots,z_d が変数 x_1,\ldots,x_p の情報を効率よく反映するように主成分負荷量 a_1,\ldots,a_d を観測データから決定する

- 分析の方針 (以下は同値)
 - データの情報を最も保持する変量の **線形結合を構成**
 - データの情報を最も反映する座標軸を探索
- 教師なし学習 の代表的手法の1つ
 - 特徴抽出:情報処理に重要な特性を変数に凝集
 - 次元縮約:入力をできるだけ少ない変数で表現

実習

第1主成分の計算

記号の準備

- 変数: $x_1, ..., x_p$ (p 次元)
- 観測データ:n 個の $(x_1,...,x_p)$ の組

$$\{(x_{i1},\ldots,x_{ip})\}_{i=1}^n$$

• ベクトル表現

- $x_i = (x_{i1}, \dots, x_{ip})^\mathsf{T} : i$ 番目の観測データ (p 次元空間内の 1 点) - $a = (a_1, \dots, a_p)^\mathsf{T} :$ 長さ 1 の p 次元ベクトル

係数ベクトルによる射影

• データ x_i のa方向成分の長さ

$$a^{\mathsf{T}}x_i$$
 (スカラー)

• 方向ベクトル a をもつ直線上への点 x_i の直交射影

$$(a^{\mathsf{T}}x_i)a$$
 $(\lambda \beta - \times \langle \beta \rangle)$

幾何学的描像

Figure 5: 観測データの直交射影 (p = 2, n = 2) の場合)

ベクトル a の選択の指針

• 射影による特徴量の構成

ベクトル a を **うまく** 選んで観測データ x_1, \dots, x_n の情報を最も保持する 1 変量データ z_1, \dots, z_n を構成

$$z_1 = a^{\mathsf{T}} x_1, z_2 = a^{\mathsf{T}} x_2, \dots, z_n = a^{\mathsf{T}} x_n$$

• 特徴量のばらつきの最大化

観測データの ばらつきを最も反映するベクトル a を選択

$$\arg\max_{\boldsymbol{a}} \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}, \quad \bar{\boldsymbol{x}} = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i},$$

ベクトル a の最適化

• 最適化問題

制約条件 $\|a\| = 1$ の下で以下の関数を最大化せよ

$$f(\boldsymbol{a}) = \sum_{i=1}^{n} (\boldsymbol{a}^{\mathsf{T}} \boldsymbol{x}_{i} - \boldsymbol{a}^{\mathsf{T}} \bar{\boldsymbol{x}})^{2}$$

- この最大化問題は必ず解をもつ
 - f(a) は連続関数
 - 集合 $\{a \in \mathbb{R}^p : ||a|| = 1\}$ はコンパクト (有界閉集合)

第1主成分の解

行列による表現

• 中心化したデータ行列

$$X = \begin{pmatrix} \boldsymbol{x}_1^\mathsf{T} - \bar{\boldsymbol{x}}^\mathsf{T} \\ \vdots \\ \boldsymbol{x}_n^\mathsf{T} - \bar{\boldsymbol{x}}^\mathsf{T} \end{pmatrix} = \begin{pmatrix} x_{11} - \bar{x}_1 & \cdots & x_{1p} - \bar{x}_p \\ \vdots & & \vdots \\ x_{n1} - \bar{x}_1 & \cdots & x_{np} - \bar{x}_p \end{pmatrix}$$

• 評価関数 f(a) は行列 X^TX の二次形式

$$f(a) = a^{\mathsf{T}} X^{\mathsf{T}} X a$$

ベクトル a の解

• 最適化問題

maximize
$$f(a) = a^{\mathsf{T}} X^{\mathsf{T}} X a$$
 s.t. $a^{\mathsf{T}} a = 1$

• 制約付き最適化なので未定係数法を用いればよい

$$L(\boldsymbol{a}, \lambda) = f(\boldsymbol{a}) + \lambda(1 - \boldsymbol{a}^{\mathsf{T}}\boldsymbol{a})$$
の鞍点
$$\frac{\partial}{\partial \boldsymbol{a}} L(\boldsymbol{a}, \lambda) = 0$$

を求めればよいので

$$2X^{\mathsf{T}}Xa - 2\lambda a = 0$$
$$X^{\mathsf{T}}Xa = \lambda a \quad \text{(固有値問題)}$$

解の条件

$$f(a)$$
 の極大値を与える a は X^TX の固有ベクトルとなる $X^TXa = \lambda a$

第1主成分

• 固有ベクトル a に対する f(a) は行列 X^TX の固有値

$$f(\mathbf{a}) = \mathbf{a}^{\mathsf{T}} X^{\mathsf{T}} X \mathbf{a} = \mathbf{a}^{\mathsf{T}} \lambda \mathbf{a} = \lambda$$

- 求める a は行列 X^TX の最大固有ベクトル (長さ 1)
- 第1主成分負荷量: 最大(第一) 固有ベクトル a
- 第1主成分得点

$$z_{i1} = a_1 x_{i1} + \dots + a_p x_{ip} = \mathbf{a}^{\mathsf{T}} \mathbf{x}_i, \quad (i = 1, \dots, n)$$

実習

Gram 行列の性質

Gram 行列の固有値

- X^TX は半正定値行列 (固有値は 0 以上の実数)
 - 固有値を重複を許して降順に並べる

$$\lambda_1 \ge \dots \ge \lambda_p \quad (\ge 0)$$

- 固有値 λ_k に対する固有ベクトルを a_k (長さ 1) とする

$$\|a_k\| = 1, \quad (k = 1, \dots, p)$$

Gram 行列のスペクトル分解

• a_1, \ldots, a_p は 互いに直交 するようとることができる

$$j \neq k \quad \Rightarrow \quad \boldsymbol{a}_{j}^{\mathsf{T}} \boldsymbol{a}_{k} = 0$$

• 行列 X^TX (半正定値行列) のスペクトル分解

$$X^{\mathsf{T}}X = \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} + \lambda_2 \boldsymbol{a}_2 \boldsymbol{a}_2^{\mathsf{T}} + \dots + \lambda_p \boldsymbol{a}_p \boldsymbol{a}_p^{\mathsf{T}}$$
$$= \sum_{k=1}^{p} \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}}$$

- 固有値と固有ベクトルによる行列の表現

第2主成分以降の計算

第2主成分の考え方

- 第1主成分
 - 主成分負荷量: ベクトル a₁
 - 主成分得点: $a_1^{\mathsf{T}} x_i (i = 1, ..., n)$
- ・ 第1主成分負荷量に関してデータが有する情報

$$(\boldsymbol{a}_1^{\mathsf{T}}\boldsymbol{x}_i) \boldsymbol{a}_1 \quad (i=1,\ldots,n)$$

・ 第1主成分を取り除いた観測データ (分析対象)

$$\tilde{\boldsymbol{x}}_i = \boldsymbol{x}_i - (\boldsymbol{a}_1^{\mathsf{T}} \boldsymbol{x}_i) \, \boldsymbol{a}_1 \quad (i = 1, \dots, n)$$

第2主成分の最適化

• 最適化問題

制約条件 ||a|| = 1 の下で以下の関数を最大化せよ

第2主成分以降の解

行列による表現

• 中心化したデータ行列

$$\tilde{X} = \begin{pmatrix} \tilde{x}_1^{\mathsf{T}} - \bar{\tilde{x}}^{\mathsf{T}} \\ \vdots \\ \tilde{x}_n^{\mathsf{T}} - \bar{\tilde{x}}^{\mathsf{T}} \end{pmatrix} = X - X a_1 a_1^{\mathsf{T}}$$

• Gram 行列

$$\begin{split} \tilde{X}^{\mathsf{T}} \tilde{X} &= (X - X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}})^{\mathsf{T}} (X - X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}}) \\ &= X^{\mathsf{T}} X - X^{\mathsf{T}} X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} - \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} X^{\mathsf{T}} X + \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} X^{\mathsf{T}} X \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \\ &= X^{\mathsf{T}} X - \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} - \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} + \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \\ &= X^{\mathsf{T}} X - \lambda_1 \boldsymbol{a}_1 \boldsymbol{a}_1^{\mathsf{T}} \\ &= \sum_{k=2}^p \lambda_k \boldsymbol{a}_k \boldsymbol{a}_k^{\mathsf{T}} \end{split}$$

第2主成分

• Gram 行列 $\tilde{X}^{\mathsf{T}}\tilde{X}$ の固有ベクトル a_1 の固有値は 0

$$\tilde{X}^{\mathsf{T}}\tilde{X}a_1 = 0$$

- Gram 行列 $\tilde{X}^{\mathsf{T}}\tilde{X}$ の最大固有値は λ_2
- ・解は第2固有値 λ_2 に対応する固有ベクトル a_2
- 以下同様に第k 主成分負荷量は X^TX の第k 固有値 λ_k に対応する固有ベクトル α_k

実習

次回の予定

• 第1日: 主成分分析の考え方

・第2日:分析の評価と視覚化