Параллельная реализация алгоритма симплексметода для задач оптимизации большой размерности

Безбородов В.А., ЕТ-224

Научный руководитель: д.ф.-м.н., профессор Панюков А.В.

Цели

Краткая постановка

- Разработка реализации
- Оценка производительности

Задачи

- Изучение математической модели алгоритма параллельного модифицированного симплекс-метода;
- Разработка реализации, поддерживающей арифметику произвольной точности;
- Модульное тестирование разработанного ПО;
- Проведение вычислительных экспериментов, показывающих производительность на ЗЛП большой размерности.

ЯП для вычислений

- Мультидиспетчеризация
- Динамическая типизация
- Пользовательские типы
- Шаблоны
- Метапрограммирование
- Вызов функций Python, C
- Встроенный параллелизм
- Лицензия МІТ

JuliaOpt

JuMP			Convex.jl			
]					
Cbc.jl	Clp.jl		С	PLEX.jl]	
ECOS.jl	GLP	GLPK.jl		urobi.jl]	
lpopt.jl	KNITE	RO.jl	Mosek.jl]	
NLopt	.jl	SCS	S.jl			
				Coir	OptServices.jl	
Optim.jl				AmplNLWriter.jl		
LsqFit.jl	-			Am	pINLReader.il	

Как это выглядит для пользователя

```
using JuMP, Clp
m = Model(solver=ClpSolver())
@defVar(m, x[1:2] >= 0)
@setObjective(m, Max, sum(x))
@addConstraint(m,
         x[1]+2*x[2] <= 1)
status = solve(m)</pre>
```

```
using Convex, Clp
x = Variable(2)
problem = maximize(sum(x),
  [x >= 0, x[1]+2*x[2] <= 1])
solve!(problem, ClpSolver())</pre>
```

```
using MathProgBase, Clp
sol = linprog([-1.0, -1.0], [1.0 2.0], '<', 1.0, ClpSolver())</pre>
```

Симплекс-метод

CHUZC: Выбрать из \hat{c}_N хорошего кандидата q для ввода в базис.

FTRAN: Сформировать колонку поворота $\hat{a}_q = B^{-1}a_q$, где a_q – колонка q

матрицы A.

CHUZR: Из отношений \hat{b}_i/\hat{a}_{iq} определить номер p строки хорошего канди-

дата для вывода из базиса.

Положить $\alpha = \hat{b}_p/\hat{a}_{pq}$.

Обновить $\hat{b} := \hat{b} - \alpha \hat{a}_q$.

ВТРАМ: Сформировать $\pi_p^T = e_p^T B^{-1}$.

PRICE: Сформировать строку поворота $\hat{a}_p^T = \pi_p^T N$.

Обновить альтернативные издержки $\hat{c}_N^T := \hat{c}_N^T - \hat{c}_q \hat{\alpha}_p^T.$

Если {рост в представлении B^{-1} }, тогда

INVERT: Сформировать новое представление B^{-1} .

иначе

UPDATE: Обновить представление B^{-1} в соответствии с изменением базиса.

конец если

 $c^T x \to \min$

Ax = b

x > 0

Схема распараллеливания

Инструменты

Julia IDE

GitHub

Travis-CI

lpsusu/lplib @ build passing

Build Jobs

Travis-CI

lpsusu/lplib @ build passing

Travis-CI

lpsusu/lplib @ build passing

Trello

Результаты

Ускорение

			К 1 потоку			K Clp		
ЗЛП	Строк	Колонок	Элементов	2	4	8	1	8
				потока	потока	потоков	поток	потоков
25fv47	822	1571	11127	1.12	1.03	0.50	0.47	0.20
80bau3b	2263	9799	29063	0.91	1.02	0.80	0.16	0.17
cre-b	9649	72447	328542	0.82	1.23	1.04	1.12	1.21
cre-d	8927	69980	312626	1.13	1.27	1.66	0.85	1.46
degen3	1504	1818	26230	1.25	1.13	1.09	0.26	0.29
fit2p	3001	13525	60784	0.94	0.90	0.94	0.39	0.40
osa-14	2338	52460	367220	0.92	0.79	1.00	0.12	0.12
osa-30	4351	100024	700160	0.99	0.93	0.84	0.14	0.16
pds-06	9882	28655	82269	1.61	2.13	3.02	0.47	1.37
pds-10	16559	48763	140063	1.27	1.81	1.91	0.48	0.96
qap8	913	1632	8304	1.35	1.18	1.70	0.30	0.51
stocfor3	16676	15695	74004	1.76	2.56	3.38	0.10	0.42
truss	1001	8806	36642	0.96	1.06	1.04	0.41	0.43
Среднее (геометрическое) ускорение			1.13	1.23	1.26	0.32	0.43	

Ускорение по отношению

Ускорение

Результаты

- Изучена математической модели алгоритма параллельного модифицированного симплекс-метода;
- Разработана реализация, поддерживающая арифметику произвольной точности;
- Разработанное ПО протестировано модульными тестами;
- Проведены вычислительные эксперименты, показывающие производительность на ЗЛП большой размерности.

Спасибо за внимание