FERTILISERS

Overview

1 Why is nitrogen important to plants?

2 in what forms can plants absorb nitrogen?

3 Complete to summarise the industrial processes:

Industrial production of fertilisers

* popular sing --- --- TATE ---- Control

Process	Reactants	Products of step 1	Products of step 2	Final products		
Haber		not a	nof applicable			
Ostwald						
Contact						

Haber Process

4 What is the purpose of the Haber Process?

trom _____ and _____

5 Write a balanced equation for the Haber Process's reversible reaction:

6 Name some uses of ammonia.

7 Name two conditions which must be met for a reaction to reach equilibrium.

8 Name two characteristics of equilibrium.

9 In the Haber Process an iron oxide catalyst is usually used. Ruthenium can also be used. What does a catalyst do in a reaction, and how does it do this?

FERTILISERS

- 10 Circle the correct option (True / False) for each of the following:
 - i A catalyst speeds up the Haber Process's forward reaction more than the reverse. [True / False]
 - ii A catalyst will cause more product to be formed. [Fue / False]
 - iii A catalyst will decrease the time it takes to reach equilibrium because it speeds up both forward and reverse reactions. [Rue / False]
 - iv A catalyst speeds both forward and reverse reactions equally. [True / False]
- 11 Link each element from Column A with its corresponding element in Column B. Write the letter from A next to each item in B in the last column.

o	olumn A	Column B	A
	dynamic equilibrium	absorbs heaf	_
b	endothermic	a measure of the average kinetic energy of particles	
e	evolhermic	disturbs equilibrium, tayours increased crowding: more molecules	_
d	Le Chaleller's principle	273 Kand 101,3 kPa	_
	decrease in pressure	disturbs equilibrium, tayours exothermic reaction	
1	increase in pressure	releases heat	_
9	removing heaf	a state in which torward and reverse reactions occur at equal rates	_
h	adding heat	force per area, in gases related to rate of particle collisions	_
ı	temperature	disturbs equilibrium, tayours decreased crowding, fewer molecules	_
1	pressure	disturbs equilibrium, tayours endothermic reaction	
k	STP	when a system which is in equilibrium is disturbed, if will respond in such a way as to counteract the disturbance	_

Le Chateller: influence of prevaunt

Le Chateller: Effect of pressure

12 Complete the explanation by filling the gaps or choosing from the options. Do this before, or after, but not during, watching the animations. Mark during re watching.

Increased pressure

According to _______ principle, when a system which is in equilibrium is disturbed, it will respond in such a way as to ______ the disturbance. An increase in pressure

Decreased pressure

Optimum pressure

In the Haber Process, we want to make as much ______ as possible. We want the dynamic equilibrium to be such that a lot of learning-paduct; is formed. A(n) learning-paduct; is formed. A(n) learning-paduct; is formed. A(n) learning-paduct; is safe and economical to use. We say we need to use an pressure: the pressure for which we get a good yield for a reasonable price while still being safe. Pressures between 200 and 300 atmospheres are typically used in the Haber Process.

Le Chateller: Effect of temperature

13 Complete the explanation by filling the gaps or choosing from the options. Do this before, or after, but not during, watching the animations. Mark during re watching.

Influence of pressure on NH, yield

per qual quadrent to Carlotter

de la case in promote à

Heating

Heating a reaction up increases the ______ energy of the particles, and so causes them to react more <u>islowly/apidly</u> with one another. Additionally, heat can have an effect on disturbing the _____

__ of a reaction.

41

Charles the Military

FERTILISERS

35	the	forward/teverse	reaction	occurs	more	rapidly	than	the	forward/t	evense	reaction.
This	will	<u>jin/dej</u> crease the	amount of	ammon	ia prese	ent, and	(in/de)	creas-	the am	ount of	hydrogen
and	nitrog	gen. After a while	a new dy	namic e	quilibrius	m is read	hed. 7	The rat	tes of for	ward an	d reverse
reac	tions	are again	to	one an	other, a	nd the a	mount	s of n	eactants	and pro	ducts will
rem	ain —		. However,	company	d to bet	ore the h	neat wa	as add	ed, there	will now	r be Jess/
mec	el am	monia present at	equilibrius	n. A ner	w equilit	trium co	nstant,	Kc,	higher th	antowe	than/the
sam	0.05	that of the origina	al equilibriu	m, is rea	ched.						

Cooling
Cooling a system that is in equilibrium has two effects. Firstly, by de/tn creasing the kinetic energy of
all the molecules, it [reduces/increases] the rates of both the forward and reverse reactions. Secondly
it has the effect of disturbing the
until a new equilibrium is reached with [the same/a different] equilibrium constant.
If heat is removed from a system in the Haber Process, the Jexo/endo/thermic (forward/texerse) reaction
is tayoured to bool the system back down/heat the system back up). For a while, the system will no
he in as the [torward/exerse] reaction occurs more rapidly than the [torward
reverse) reaction. This will judgerease the amount of ammonia present, and judgerease the amount
of hydrogen and nitrogen. After a while a new dynamic equilibrium is reached. The rates of forward
and reverse reactions are again to one another, and the amounts of reactant
and products will remain However, compared to before the system was cooled
there will now be [less/more] ammonia present at equilibrium. A new equilibrium constant, Kc, [highe
than fower than the same as I that of the original equilibrium is reached.

Optimum temperature

In the Haber Process, we want to get a high ammonia yield. We want a dynamic equilibrium which makes as much ammonia product as possible. Consequently, we need to use a tairly [highfow] temperature. However, this causes a problem, namely _

Therefore, a compromise is made, and a temperature of approximately 450°C is often used.

Influence of temperature on NII, yield has a promocondoor core and them

Units of pressure and temperature

14 Complete for units of pressure.

	Unit	Pressure at sea level at 0°C		
Name	Symbol	THE SOURCE STORES MAKE STORE		

15 Kelvin is the SI (Standard International) unit for temperature. Complete for conversions.

Temperature in degrees Gelskus (*C)	Temperature in Kelvin (K)
0	
	0
100	
	200
96	

Ostwald Process

16 What is the purpose of the Ostwald Process?

To	produce		 rom_

17 How is the product of the Ostwald Process useful for the fertiliser industry?

A	48							ı
Owesh	a m	rue:	-	uρ	rwa	we.	PRINCE	

18 Why doesn't it matter that the platinum catalyst used is very expensive?

19 Complete.

Step 1	Step 2	Step 3
		-;

Contact Process

20 What is the purpose of the Contact Process?

Contact Process to procues HJBOs

22 Complete.

Step 1	Step 2	Step 3	Step 4
	+		
+	P	>	*
	↓ catalyst		