

InT 1. Пусть последовательность $lpha o eta o \gamma$ образует цепь Маркова. Докажите, что:

- a) $I(\alpha; \gamma) \leq I(\alpha; \beta)$;
- 6) $I(\alpha:\gamma) \leq I(\beta:\gamma)$.

Определение

Определим общую информацию трёх случайных величин:

$$I(\alpha \colon \beta \colon \gamma) \coloneqq I(\alpha \colon \beta) - I(\alpha \colon \beta \mid \gamma).$$

Соотношения на информационные величины имеют удобную геометрическую интерпретацию. При помощи диаграмм Эйлера можно сопоставить площади каждой из получившихся замкнутых области некоторую информационную величину. В частности, прощать каждого круга соответствует энтропии указанной случайной величины.

InT 2. Постройте три таких случайных выличины α, β, γ , что $I(\alpha: \beta: \gamma) < 0$.

[INT 3.] Пусть энтропия случайно величины a равна n, а взаимная информация пар a и b, а также a и c больше 3n/4. Докажите, что I(b:c) > n/2.

Определение

Коммуникационный протокол для функции $f\colon X\times Y\to Z$ — это корневое двоичное дерево, которое описывает совместное вычисление Алисой и Бобом функции f. В этом дереве каждая внутренняя вершина v помечена меткой a или b, означающей очередь хода Алисы или Боба соответственно. Для каждой вершины, помеченной a, определена функция $g_v\colon X\to \{0,1\}$, которая говорит Алисе, какой бит нужно послать, если вычисление находится в этой вершине. Аналогично, для каждой вершины v с пометкой b определена функция $h_v\colon Y\to \{0,1\}$, которая определяет бит, который Боб должен отослать в этой вершине. Каждая внутренняя вершина имеет двух потомков, ребро к первому потомку помечено 0, а ребро ко второму потомку помечено 1. Каждый лист помечен значением из множества Z.

Каждая пара входов (x,y) определяет путь от корня до листа в описанном двоичном дереве естественным обрзом. Будем говорить, что коммуникационный протокол вычисляет функцию f, если для всех пар $(x,y)\in X\times Y$, этот путь заканчивается в листе с пометкой f(x,y).

Коммуникационной сложностью функции f назовем наименьшую глубину протокола, вычисляющего функцию f, и будем ее обозначать $\mathrm{D}(f)$.

INT 4. Пусть $f \colon X \times Y \to \{0,1\}$. Рассмотрим матрицу M^f , строки которой соответствуют элементам множества X, столбцы элементам множества Y, а в ячейке $M_{x,y}$ написано значение f(x,y). Покажите, что:

- а) $\operatorname{rk}_{\mathbb{R}}(M_{x,y})$ не превосходит числа листьев в коммуникационном протоколе для f (nod- cказка: для вершины протокола опишите множество входов, которое приводит в нее);
- б) $\mathrm{D}(\mathsf{EQ}_n) \geq n$, где $\mathsf{EQ}_n \colon \{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ и $\mathsf{EQ}_n(x,y) = 1 \Leftrightarrow x = y$.

INT 5. Рассмотрим функцию SUM: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}^{n+1}$, возвращающую сумму чисел в двоичной системе счисления. Докажите, что $D(\mathsf{SUM}) = 2n$.

INT 6. Покажите, что $D(\mathsf{Med}) = \mathcal{O}\left(\log^2 n\right)$, где x и y это характеристические функции подмножеств [n], а $\mathsf{Med}(x,y)$ — медиана мультимножества $x \cup y$ (если элемент встречается и в x и в y, то считаем его дважды).

Комментарий: на самом деле $D(\mathsf{Med}) = \Theta(\log n)$.

INT 7. Пусть $\{a_1,a_2,\dots,a_n\}$ — произвольный алфавит и p_1,p_2,\dots,p_n — вероятности букв этого алфавита. Докажите, что для любого инъективного кодирования букв этого алфавита средняя длина кода не меньше $h-2\log(h+1)-2$, где h — энтропия распределения с вероятностями p_1,p_2,\dots,p_n .