Redes Neuronales

Dra. Marcela Riccillo

Tipos de Aprendizaje

Supervisado No Supervisado Por refuerzo

Tipos de Casos

Regresión Clasificación

Neuronas

Las neuronas biológicas constan de un cuerpo, dendritas y un axón

La conexión entre neuronas biológicas se llama sinapsis

Las neuronas artificiales constan de una serie de entradas y una salida. La salida tiene un *peso sináptico* asignado

Arquitectura

Las neuronas se conectan formando una red con diferentes arquitecturas

Ejemplos:

Perceptrón Simple

Tiene una capa de entrada y una de salida, sin capas ocultas. Puede servir para resolver problemas lineales

Perceptrón Múltiple

Puede servir para resolver problemas lineales y no lineales

Perceptrón (Aprendizaje Supervisado)

Matriz de Pesos Sinápticos

	1	2	3	4	5	6
1				Х	Х	
2				Х	X	
3				X	X	
4						X
5						Х
6						

Redes Neuronales

1943 - Warren McCulloch y Walter Harry Pitts - Primeros modelos de neurona

1958 - Rosenblatt desarrolló el perceptrón

En los años 80, la Redes Neuronales volvieron a resurgir con BackPropagation

Entrenamiento

La Matriz de Pesos Sinápticos se inicializa y luego se va actualizando según la salida correcta o errónea de cada ejemplo para entrenar la red.

Eso se llama Backpropagation

Fórmulas de aprendizaje

Peso nuevo = Peso anterior + Diff

Diff se relaciona con:

- + el valor esperado
- + el valor obtenido
- + el valor input
- + un coeficiente de aprendizaje

La idea es minimizar el error

Redes Neuronales

Algunos criterios de parada:

- + aprendizaje de todos los casos
- + cota de error aceptada
- + cantidad de iteraciones

Deep Learning

Práctica (1/4)

Dada una base:

Describir de qué trata la base y cuál es la variable a predecir ¿Cuántas variables y registros tiene la base?

Particionar los datos en un conjunto de entrenamiento y uno de testeo

Práctica (2/4)

Modelar la red neuronal

Analizar la estructura de la red neuronal. Indicar la cantidad de pesos y la cantidad de iteraciones resultantes

Graficar la red neuronal

Testear la red neuronal con el conjunto de testeo Ver ejemplos de resultados con 2 clases a predecir o más

Práctica (3/4)

Armar una matriz de confusión

¿Cuántos registros de cada clase quedaron bien y mal clasificados?

¿Cuál es la exactitud (accuracy) de la solución? ¿Cuál es la sensibilidad y la especificidad?

Práctica (4/4)

Modelar la red neuronal con diferentes cantidades de neuronas en la capa oculta