RNASeq Data Analysis Pipeline

FastQC

Skewer

STAR

HTSeq

KEGG/GO

What if you don't have a reference?

Submit to SRA

genome and transcriptome annotations: from misconceptions to simple solutions." Brief Bioinform.

Quality Control

- Is my data of sufficient quality?
- The instrument assigns a confidence value to each base. Are the bases high quality overall?
- Does the complexity look normal?

FastQC

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Trimming

- Get rid of the bad data, keep the good data
- Adapter trimming
 - Cut adapter and other Illumina-specific sequences from the read
- Quality trimming
 - Trim off low quality bases
 - Drop a read entirely if is too low quality or too short

Skewer

Jiang, H., R. Lei, S. W. Ding and S. Zhu (2014). "Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads." <u>BMC Bioinformatics</u> **15: 182.**

Newest research: Gentle trimming is better.

Mapping to the Reference

- Mapping RNA to a eukaryotic genome is more complicated than mapping DNA
 - Introns
 - Alternative splicing
- Use a mapping software designed for spliced RNASeq
 - The software will use a file (gff3) to know where the genes are located
 - If this is not available, some mapping software can infer gene structures (cufflinks)

Visualization

- Look at your data
- The number one most under-appreciate step in data analysis

Differential expression

- Find genes responding to the conditions
- Replicates give power to your results
 - Biological replicates capture random biological variation
 - Technical replicates measure the random noise of protocols or equipment
- Choose an algorithm that suits the data
 - RNASeq expression levels are discrete counts

Making data public

- NCBI Short Read Archive (SRA)
 - Stores raw sequence data from "next-generation" sequencing technologies including 454, IonTorrent, Illumina, SOLiD, Helicos and Complete Genomics.
 - SRA also stores alignment information in the form of read placements on a reference sequence.
- Upload to SRA
 - Make a list of all the things you need to know prior to starting the project, and keep it updated.
 - Most journals require an accession number prior to publication
 - Enhances reproducibility and allows for new discovery by comparing data sets.
 - Overview of submission process:

https://www.ncbi.nlm.nih.gov/sra/docs/submit/

Anatomy of SRA data

Transcriptome analysis of hepatotoxicity Transcriptome of Metagenome of chlorophyll-containing Mapping and manipulating E. coli Project title microbiome in Norvegian lake transcriptome using antibiotics induced by botulin in mice flowering plant **BioProject** & **BioSample** Model organism or animal sample Sample type Plant sample Metagenome or environmental sample Microbe sample data Fancypsis Organism Mus musculus domesticus Escherichia coli Lake water metagenome pretticus Sample # 2 2 Sample alias Control Pooled Light Control Fancyllin Botulin Dark **SRA** Exp / Sample # Illum Roche С Experiment alias В1 B2 Light Dark metadata Run / Exp # C2-1 Light Dark С Run aliases B1 B2 C1-2 C2-2 Illum Roche **SRA** sequence files

Software election

- Multiple software options are available along the analysis
 - Trimming
 - Trimmomatic, skewer
 - Mapping
 - STAR, GSNAP, Stampy, TopHat, HISAT2, bowtie2...
 - Differential expression
 - DESeq2 and edgeR are based on the negative binomial distribution
 - Others are NOISeq, baySeq, SAMseq, limma, cuffdiff...
 - De novo assembly
 - Trinity, SOAP, Trans-ABySS...
- Then... what's the "best" choice? There are preferred options
- Some articles compared them using real or simulated data

Mapping

- Accuracy, speed, and computational resources
- Mapping of reads to their true location
 - Which fraction of aligned reads is aligned correctly? precision
 - Which fraction of overall reads were correctly recovered? recall
 - SNPs and INDELs have a big impact

Precision (dotted lines), recall (dashed lines) and F-measure (solid lines –)

https://doi.org/10.1093/bioinformatics/bts635

https://doi.org/10.1371/journal.pone.0052403.g003

Mapping: genome vs transcriptome

- Is it better to map to a genome or transcriptome?
 - Genome: it provides a predefined annotation that helps comparing results
 - Transcriptome: can be good for identifying novel genes and isoforms

Differential Expression Overlap

Differential expression

- High detection of true DE genes (true positive rate) and avoidance of false DEG
- Replicates improve detection of true DEG

https://doi.org/10.1186/1471-2105-14-91

http://rnajournal.cshlp.org/content/22/6/839.full

De novo assembly + annotation

- Assembly: Number of transcripts, transcript length, redundancy, representation of reads
- Annotation: Number of transcripts with ORF, length of encoded ORFs, completeness of essential biological functions in the transcriptome

https://doi.org/10.1186/s13059-016-1094-x

https://doi.org/10.1093/bioinformatics/btw625

Conclusions

- There are decisions to take before starting the analysis
 - What programs to use?
 - Do some tests for optimization?
 - Genome or transcriptome?
 - Algorithm to detect differential expression?
- Results will be affected by these decisions
- Improve robustness by giving support to the software selection made
 - Experimental optimization of parameters
 - References