Database Technology

Topic 2: Relational Databases

Olaf Hartig

olaf.hartig@liu.se

Relational Data Model

Relational Model Concepts

- Relational database: represent data as a collection of relations
 - Think of a relation as a table of values.

- Each row (tuple) represents a record of related data values
 - Facts that typically correspond to a real-world entity or relationship
- Each column (attribute) holds a corresponding value for each row
 - Columns associated with a data type (domain)
 - Each column header: attribute name

Relational Model Concepts (cont'd)

- Relational database: represent data as a collection of *relations*
 - Think of a relation as a table of values

- Schema describes the relation
 - Relation name, attribute names and domains
 - Integrity constraints
- Instance (also called state) denotes the current contents of the relation
 - Set of tuples

Domains

- Domain is a set of atomic values
 - { 0, 1, 2, ... }
 - { Jo Smith, Dana Jones, Ashley Wong, Y. K. Lee, ... }
- Atomic: Each value indivisible
- Domains specified by data type rather than by enumeration
 - Integer, string, date, real, etc.
 - Can be specified by format
 - e.g., *(ddd)ddd-dddd* for phone numbers (where *d* represents a digit)

Schemas and Attributes

Relation schema

- A relation name R and a list of attributes A1, A2, ..., An
- Denoted by R(A1, A2, ..., An)

Attribute Ai

- Name of a role in the relation schema R
- Associated with a domain dom(Ai)
- Attribute names do not repeat within a relation schema, but domains can repeat
- Degree (or arity) of a relation
 - Number of attributes n in its relation schema

NULL Values

- Each domain may be augmented with a special value called NULL
 - Represent the values of attributes that may be unknown or may not apply to a tuple
 - If an attribute of a tuple is NULL, we cannot make any assumption about the value for that attribute (for that tuple)
- Interpretations for NULL values
 - Nothing is known about the value
 - Value exists but is (currently) not available
 - Value undefined (i.e., attribute does not apply to this tuple)
- For instance, Ashley's telephone number is NULL could mean
 - Ashley doesn't have a phone
 - Ashley has a phone but we don't know the number (perhaps withheld)
 - Ashley has a phone that has no number

Quiz

- A relation schema consists of:
 - A) relation name, attribute names and domains, and tuples; or
 - B) relation name, attribute names and domains, and restrictions; or
 - C) relation name, tuples, and NULL values.

Quiz

- A relation schema consists of:
 - A) relation name, attribute names and domains, and tuples; or
 - B) relation name, attribute names and domains, and restrictions;
 = integrity constraints
 or
 - C) relation name, tuples, and NULL values.

Integrity Constraints

What are Integrity Constraints?

- Constraints are restrictions on the permitted values in a DB state
 - Derived from the rules in the miniworld that the DB represents
- 1. Inherent model-based constraints (also called implicit constraints)
 - Inherent in the data model, enforced by DBMS
 - e.g., duplicate tuples are not allowed in a relation
- 2. Schema-based constraints (also called explicit constraints)
 - Can be expressed in schemas of the data model, enforced by DBMS
 - e.g., films have only one director
 - Our focus here
- 3. Application-based (also semantic constraints or business rules)
 - Not directly expressed in schemas
 - Expressed and enforced by application program
 - e.g., this year's salary increase can be no more than last year's

Key Constraints

- Uniqueness constraints on tuples
- Key of a relation R is a set K of attributes of R that has two properties:
 - **1. Uniqueness**: No two distinct tuples have the same values across all attributes in K (i.e., it is a superkey)
 - **2. Minimality**: No subset of *K* has the uniqueness property
- Superkey: set of attributes that has the uniqueness property (but that is not necessarily minimal)
- Keys declared as part of the schema of a relation
- Uniqueness must hold in all valid states
- Serve as a constraint on updates

Key Constraints (cont'd)

- Candidate key: If there is more than one key in a relation, every key is called a candidate key
- Primary key: a particular candidate key is chosen as the primary
 - Diagrammatically, underline its attribute(s)
 - Tuples cannot have NULL for any primary key attribute
- Other candidate keys are designated as unique
 - Non-NULL values cannot repeat, but values may be NULL

CAR

License_number	Engine_serial_number	Make	Model	Year
Texas ABC-739	A69352	Ford	Mustang	02
Florida TVP-347	B43696	Oldsmobile	Cutlass	05
New York MPO-22	X83554	Oldsmobile	Delta	01
California 432-TFY	C43742	Mercedes	190-D	99
California RSK-629	Y82935	Toyota	Camry	04
Texas RSK-629	U028365	Jaguar	XJS	04

Figure 3.4

The CAR relation, with two candidate keys: License_number and Engine_serial_number.

Other Schema-Based Integrity Constraints

- Entity integrity constraint: No primary key value can be NULL
- Domain constraint: declared by specifying the datatype of attributes
- Referential integrity constraint
 - Specified between two relations
 - Allows tuples in one relation to refer to tuples in another
 - Maintains consistency among tuples in two relations
 - Foreign key rules:
 - Let *PK* be the primary key in a relation *R1* (i.e., set of attributes in its relational schema declared to be primary key)
 - Let FK be a set of attributes for another relation R2
 - The attribute(s) FK have the same domain(s) as the attribute(s) PK
 - Value of FK in a tuple t2 of the current state of R2 either occurs as a value of PK for some tuple t1 in the current state of R1 or it is NULL

Diagramming Referential Constraints

- Show each relational schema
 - Underline primary key attributes in each
- Directed arc from each foreign key to the relation it references

Consider the following two relations

Instruc	tor ▼		
	<u>ID</u>	Name	Office
	4	Jennifer	B308
	35	Paul	B311
	12	Kim	E112

Which of the following statements are correct and which are wrong?

false since er don't have an instructor with id number 2

- (a) We can insert a new *Course* tuple (cid598,2017,2).
- (b) We can modify the two cid444 Course tuples by changing their *Instructor* value to 12.
- (c) We can modify the cid598 Course tuple by changing its not possible cause it violates the uniques since it will give us 2 tuples CourseID value to cid444. with the same value

www.liu.se

