

Anticipez les besoins en consommation de bâtiments

Sommaire

Objectif ville neutre en émissions de carbone en 2050

- Cible : bâtiments non destinés à l'habitation
- Relevés de consommations et émissions coûteux : premier relevé de référence la première année
- A partir des données structurelles des bâtiments

Intérêt de l'Energy Star score

- Indicateur de l'efficacité énergétique relative d'un bâtiment
- Calcul de l'Energy Star score fastidieux
- Evaluer son intérêt pour la prédiction des variables cibles

Données disponibles, relevés de 2016

Données géographiques :

- Adresse, code postal
- Latitude et longitude
- Numéro de parcelle
- Quartier, code de district

Données d'usage des bâtiments :

- Type de bâtiments
- Différents usages du bâtiments et surfaces associées

Données de construction :

- Nombre d'étages
- Nombre de bâtiments
- Surfaces
- Année de construction / rénovation complète

Données consommation / émissions carbone :

- Consommation
 énergétique totale et en
 électricité, gaz, vapeur
- Emissions carbone
- Fiabilité des données
- Energy Star Score

Analyse exploratoire

Nettoyage des données

Lignes: 3376, colonnes: 42

Lignes: 1324, colonnes: 14

Filtre et suppression de variables :

- BuildingType = Non residential
- ComplianceStatus = 'Compliant'
- Données géographiques non pertinentes
- Données utilisation et structure du bâtiment
- Variables avec beaucoup de valeurs manquantes
- Valeurs aberrantes
- Ajout de nouvelles variables :
 - Mix énergétique
 - % surface
 - Age du bâtiment
- Targets:
 - SiteEnergyUse(kBtu)
 - TotalGHGEmissions

Variables sélectionnées

Données géographiques :

Neighborhood

Données d'usage des bâtiments :

- PrimaryPropertyType
- PropertyGFAParking(%)
- PropertyGFABuilding(%)

Données de construction :

- Number of Floors
- Number of Building
- PropertyGFTotal
- BuildingAge

Données consommation / émissions carbone :

- SteamUse(%)
- NaturalGazUse(%)
- ElectricityUse(%)
- SiteEnergyUse(kBtu)
- TotalGHGEmissions
- Energy Star Score

Des distributions désaxées à droite

Corrélation entre les variables

- **Data leakage**: pas de corrélation entre les variables cibles (targets) et les variables de mix énergétique.
- Corrélation entre SiteEnergyUse et TotalGHGEmissions
- Corrélation entre SiteEnergyUse et PropertyGFATotal

Hôpitaux et laboratoires : les plus grands consommateurs d'énergie et émetteurs carbone

SiteEnergyUse

TotalGHGEmissions

Des classes très hétérogènes en taille et une majorité de bureaux dans les bâtiments non résidentiels

Modélisation

Une démarche itérative

Nouvelles variables
Transformation logarithmique

Identifier **l'influence des variables** sur la prédiction du modèle.

Affiner les hyperparamètres du modèle pour trouver la meilleure combinaison, recherche par validation croisée

Feature

Validation croisée : utiliser l'intégralité de notre jeu de d'entraînement pour l'entraînement et pour la validation.

Test : évaluer l'erreur de généralisation **Train :** entraînement, optimisation des hyperparamètres et sélection du modèle.

Standardisation: mise à l'échelle des données et centrage autour de 0 Encodage: données catégorielles -> données numériques

Les modèles testés

Baseline

Dummy Regressor (approche naïve : mean)

LinearRegression

Ridge Lasso **ElasticNet** Méthodes linéaires régularisées

SiteEnergyUse: Sélection du modèle (1)

Scalers testés:

- StandardScaler
- RobustScaler

Encoders testés:

- TargetEncoder
- OneHotEncoder

Encoder	OneHotEncoder()
Scaler	RobustScaler()
Model	GradientBoostingRegressor()
Parameters	{'gradientboostingregressorn_estimators': 100}
CV_R2 score	0.730 (+/- 0.013)
Train_R2 score	0.826
Test_R2 score	0.748
Test_MAE	0.2
Test_RMSE	0.275
Fit Time (s)	0.426
Prediction Time (s)	0.008

Value

SiteEnergyUse : Sélection du modèle (2)

Comparaison des performances des différents modèles pour la meilleure combinaison Encoder : OneHotEncoder(), Scaler : RobustScaler()

SiteEnergyUse: Optimisation du modèle

Méthodes:

- GridSearchCV : systématique
- RandomizedSearchCV : aléatoire

Hyperparamètres:

- n_estimators
- learning_rate
- max_depth
- min_samples_split

Résultat du modèle après optimisation

SiteEnergyUse: Optimisation du modèle

Peu d'améliorations des performances du modèle après optimisation.

L'Energy Star Score améliore les performances du modèle pour la prédiction de SiteEnergyUse

L'Energy Star Score a une contribution importante

SiteEnergyUse

Sans EnergyStar score

Avec EnergyStar score

L'EnergyStar score est une variable influente pour la prédiction finale.

Total GHG Emissions – synthèse des résultats

Conclusion & Perspectives

Conclusion

- La prédiction de Site Energy Use (kBtu) à partir des données structurelles des bâtiments est possible.
- Le meilleur modèle est le **Gradient Boosting Regressor**.
- L'Energy Star Score est une variable qui a une forte contribution sur la prédiction.

- La prédiction de **Total GHG Emissions** à partir des données structurelles des bâtiments est possible.
- Le meilleur modèle est le **Gradient Boosting Regressor**.
- L'Energy Star Score est moins pertinent pour la prédiction de Total GHG Emissions.

Perspectives !!

Merci de votre attention

Back-up slides

Répartition géographiques des bâtiments non résidentiels

Distribution des autres variables

Majorité de bureaux dans les bâtiments non résidentiels

Validation croisée

Méthodes linéaires avec régularisation

Eviter le surapprentissage en restreignant l'amplitude des poids

Obtenir un modèle parcimonieux, sélection de variables et de réduction de dimension supervisée

Combine les régularisations Ridge et Lasso

Support Vector Machine Regression (SVR)

Support Vector Machine

Trouve l'hyperplan qui sépare au mieux les données en classes distinctes, en maximisant la marge entre les points les plus proches de chaque classe

Support Vector Machine Regression

Utilise une marge d'erreur et des vecteurs de support pour ajuster une fonction qui minimise la différence entre les prédictions et les valeurs réelles

Méthodes Ensemblistes

TotalGHGEmissions: Sélection du modèle (1)

Scalers testés:

- StandardScaler
- RobustScaler

Encoders testés:

- TargetEncoder
- OneHotEncoder

	Value
Encoder	OneHotEncoder()
Scaler	StandardScaler()
Model	GradientBoostingRegressor()
Parameters	{'gradientboostingregressorn_estimators': 100}
CV_R2 score	0.781 (+/- 0.021)
Train_R2 score	0.868
Test_R2 score	0.805
Test_MAE	0.206
Test_RMSE	0.28
Fit Time (s)	0.182
Prediction Time (s)	0.004

TotalGHGEmissions: Sélection du modèle (2)

Comparaison des performances des différents modèles pour la meilleure combinaison Encoder : OneHotEncoder(), Scaler : StandardScaler()

TotalGHGEmissions: Optimisation du modèle

Méthodes:

- GridSearchCV : systématique
- RandomizedSearchCV : aléatoire

Hyperparamètres:

- n_estimators
- learning_rate
- max_depth
- min_samples_split

Résultat du modèle après optimisation

TotalGHGEmissions: Optimisation du modèle

Pas d'améliorations des performances du modèle après optimisation.

Analyse d'un élément de la catégorie la plus fréquente 'Small- and Mid-Sized Office'

Analyse d'un élément d'une catégorie peu fréquente 'Senior Care Community'

OSEBuildingID	20377
PrimaryPropertyType	Senior Care Community
Neighborhood	southeast
NumberofBuildings	1.0
NumberofFloors	3
PropertyGFATotal	78374
ENERGYSTARScore	98.0
SiteEnergyUse(kBtu)	3321035.75
TotalGHGEmissions	23.15
BuildingAge	35
PropertyGFAParking(%)	0.0
PropertyGFABuilding(%)	1.0
SteamUse(%)	0.0
ElectricityUse(%)	1.0
NaturalGasUse(%)	0.0
log_NumberofFloors	0.477121
log_PropertyGFATotal	4.894172
log_TotalGHGEmissions	1.364551

Analyse d'un outlier

OSEBuildingID	387
PrimaryPropertyType	Large Office
Neighborhood	downtown
NumberofBuildings	1.0
NumberofFloors	21
PropertyGFATotal	298426
ENERGYSTARScore	79.0
SiteEnergyUse(kBtu)	27076922.0
TotalGHGEmissions	1084.79
BuildingAge	56
PropertyGFAParking(%)	0.0
PropertyGFABuilding(%)	1.0
SteamUse(%)	0.47
ElectricityUse(%)	0.53
NaturalGasUse(%)	0.0
log_NumberofFloors	1.322219
log_PropertyGFATotal	5.474837
log_TotalGHGEmissions	3.035346

OSEBuildingID	640
PrimaryPropertyType	Large Office
Neighborhood	greater duwamish
NumberofBuildings	1.0
NumberofFloors	6
PropertyGFATotal	1380959
ENERGYSTARScore	79.0
SiteEnergyUse(kBtu)	74130576.0
TotalGHGEmissions	810.7
BuildingAge	104
PropertyGFAParking(%)	0.0
PropertyGFABuilding(%)	1.0
SteamUse(%)	0.0
ElectricityUse(%)	0.91
NaturalGasUse(%)	0.09
log NumberofFloors	0.778151
log_PropertyGFATotal	6.140181
log_SiteEnergyUse(kBtu)	7.869997

