

Menu for today

- 1. What is Machine learning?
- 2. When to use Machine Learning?
- 3. Machine learning algorithms.
- 4. Classification: exercise #1
 - a. Using Scikit-learn
- 5. Regression: exercise #2
 - a. Using Pytorch

What is Machine learning?

Machine learning is the study of computer algorithms that improve automatically through experience and by the use of data.

- Wikipedia

- Computer algorithms.
- Improve automatically.
- Use data.

Different kinds of data

अग्निमीळे पुरोहितं यज्ञस्यं देवमृत्विजम् । होतारं रत्नुधातमम् ॥

1-D Data

2-D Data

3-D Data

Different kinds of data

æ	
4	Cimetidine
	HN S N N N N N N N N N N N N N N N N N N

Molecular graph	

4-D data

Graph data

- nitrogen atom without explicit hydrogens
- nitrogen atom with one explicit hydrogens
- sulfur atom
- carbon atom
- single bond
- double bond
- = triple bond
- --- aromatic bond

ra	dec	u	g	r	i	z	run	rerun	
318.951692	9.315146	19.51665	18.50036	17.95667	17.53139	17.32035	7777	301	
217.940001	14.608378	19.13548	18.55482	17.95603	17.68272	17.63717	5322	301	
129.948221	25.213328	19.54955	18.19434	17.83220	17.51329	17.47054	4335	301	
160.357788	3.567886	17.72343	16.65830	16.23667	16.07098	16.02797	2126	301	
226.001700	38.619699	16.60500	15.66234	15.39406	15.29443	15.29302	3699	301	

Tabular data

Show of hands exercise, next!

Typical ML problems #1

Clustering problem

Typical ML problems #2

Galaxies (0) Jets (1)

Classification problem

Galaxy or Jet (0 or 1)?

Which is the correct age of the HBO Sherlock Typical ML problems #3 in the pic given below? 50 45 40 Regression problem 35 30

Typical ML problems

Supervised learning

How to minimize error?

Randomly keep changing your model parameters till you strike gold ⇒ Monte Carlo methods

Iteratively select the best solution depending on the previous solution ⇒ Simplex/Gradient based methods

Gradient-based methods

Select the model parameters (let's say W) for which error is minimum For the best model, we have:

$$\frac{\partial Error}{\partial W} = 0$$

If it is not, then change W!

$$-\frac{\partial Error}{\partial W}$$

What is the procedure to Frame the correct science question. ML? Preprocessing Train-test split Data **Vetting** Removing non-physical Scale data to values, Nans, etc. appropriate dynamic range; Standardize Define error metrics

Train

Select algorithm

Tune, check,

deploy

Task for the day

Estimate spectroscopic redshift from photometric colors ⇒

We will use a simple Linear Regression and a Deep neural network.

Why should it work?

From https://www.kaggle.com/c/photometric-redshift-estimation-2019

Metrics

$$\frac{1}{N} \sum (z_{pred} - z_{known})^2 \qquad \text{Mean square error}$$

$$\frac{1}{N} \sum_{i=0}^{N} \frac{|z_{known,i} - z_{pred,i}|}{max(\epsilon, |z_{known,i}|)} \qquad \text{Mean absolute % error}$$

$$1 - \frac{\sum (z_{pred} - z_{known})^2}{\sum (z_{known} - \mu(z_{known}))^2} \qquad \text{Coefficient of determination}$$

Linear regression

Neural network: Training

Step 1: Initialize w and b for all layers with some non-zero values.

Step 2: Calculate output from NN for input set:

$$z_{pred} = f(..f(\Sigma_k f(\Sigma_j w_{jk} x_j + b_k) + b_k)...$$

Step 3: z_{pred} will not match z_{known} . So get the error between these two values. Step 4: Now you update weights and biases using this error:

$$w \to w - \alpha \frac{\partial loss}{\partial w}$$

Step 5: Repeat till convergence!

Let us move on to Jupyter →

References for further reading

- 1. Andrew Ng's course on Machine learning in coursera: https://www.coursera.org/learn/machine-learning
- 2. Fast AI deep learning course: https://www.fast.ai/
- 3. Analytics vidhya and Towards Data Science are good blogs too:

 https://www.analyticsvidhya.com/blog/2015/06/machine-learning-basics/,

 https://towardsdatascience.com/machine-learning-basics-part-1-a36
 d38c7916.
- 4. Advanced: Bishop's book on Pattern recognition and Machine learning; Ian Goodfellow's book on Machine learning.