ANOVA - STAT110 Otago

Students also viewed

Terms in this set (18)

ANOVA definition	abbr. of analysis of variance methods for comparing means of continuous responses between multiple groups	
F-ratio	signal/noise	
reasons why using "2+2+2=3" is <i>undesirable</i>	It's more work than we need to do. Three tests may not seem too bad, but to compare 10 groups we would have to do 45 different pairwise t-tests.	
	It can lead to lots of false positive results . Every test has the potential to incorrectly reject H0; i.e. falsely identify a difference between a pair of groups. If we do lots of tests then we risk generating lots of false positives.	

	μ_i is the true mean response for the ith group at the population level. e_ij is the error term for the jth response in the ith group.	$(i=1,\ldots,$
ANOVA model	The error terms are assumed to be independent, and to follow a N(0, σ2) with constant variance. The number of different groups is denoted K, and the number of responses in the ith group is denoted ni.	
est. mean for ANOVA	the "." = est. value	i = 1
sample mean for the ith group	$\frac{1}{n_i}\sum_{j=1}^{n_i}$	
[NNTM] formula for residual sum of squares in ANOVA	$SS = \sum_{i=1}^{K} \sum_{j=1}^{n_i} (y_{ij} - \hat{\mu}_i)^{i}$ $= \sum_{i=1}^{K} \sum_{j=1}^{n_i} (y_{ij} - \bar{y}_{i}.)$	
[NNTM] Total sum of squares in ANOVA	$\sum_{i=1}^K \sum_{j=1}^{n_i} (y_{ij})$	
у	is the sample mean overall the da	ta
[NNTM]formula for GSS in ANOVA	GSS = TSS - RSS GSS can be interpreted as a measure of the variation that is explained by differences between groups.	$=\sum_{i=1}^K n_i(\bar{y}_i.$

Setting up the hypotheses to test ANOVA	Pothesis will be the 'no dif $H_0\colon \mu_1=\mu_2=\dots=\mu_K$ uply an expression that the $\Pi\colon \mu_1,\mu_2,\dots,\mu_K \text{ not all ec}$		
Equation for F statistic	GSS/(K – RSS/(n –		
GMS	GSS/(K - 1) is the group mean square		
RMS	RSS/(n - K) is the residual mean square		
what situations would let H_0 fail	Large differences between group means Relatively large value of GSS Large value of F		
ANOVA table	$\begin{array}{c cccc} SS & DF \\ \hline GSS & K-1 & GI \\ \hline RSS & n-K & RI \\ \hline TSS & n-1 \\ \end{array}$		
p-value is () censored	p-value is right censored		
blocking variable	A second treatment variable that when included in ANOVA analysis will have the effect of reducing the SSE term (noise).		