Definition

- Art von a-b-Baum
 - Spezialfall von [[Balancierte Bäume]]
 - ähnlich wie [[Binary Search and BTree]]
- Eigenschaften
 - leicht zuhalten bei blattorientierter Speicherung
 - * anstatt knotenorientiert
 - worst case optimal
 - Alle Äste sind gleich lang.
 - (2) Die max. Anzahl der Kinder eines Knotens ist 4.
 - (3) Innere Knoten haben ≥ 2 Kinder.
 - (4) Die Blätter enthalten v.l.n.r. die Werte aufsteigend sortiert.
 - (5) Jeder innere Knoten k mit $\alpha(k)$ Kinder $(2 \le \alpha(k) \le 4)$ speichert $\alpha(k)$ -1 Hilfsinformationen $x_1, ..., x_{\alpha(k)-1}$, wobei
 - x_i = größter Wert im Teilbaum des *i*-ten Kindes von links.

Höhe h=O(log n)

n...Anzahl der Blätter (= Anzahl gespeicherte Keys) h...Höhe des Baumes

- Anzahl der Blätter wird mit jeder weiteren Schicht
 - Zumindest verdoppelt
 - Maximal vervierfacht
- Bei n Blättern bekommen wir

$$2^h \le n \le 4^h = 2^{2h}$$

$$h \le \operatorname{ld} n \le 2h$$

$$\frac{\mathrm{ld}\,n}{2} \le h \le \mathrm{ld}\,n_{\,\bullet}$$

Anzahl der Knoten bei n Blättern:

$$\#Knoten \le n + \frac{n}{2} + \frac{n}{4} + \dots + 1 < 2n = \Theta(n)$$

Operationen

 Suchen: pro Knoten wird der relevante Teilbaum in O(1) Zeit pro Knoten selektiert ⇒ Θ(h) = Θ(log n) Zeit

Einfügen: Suchen, Blatt an Knoten k anhängen

- α(k) ≤ 4: Resultierender Baum ist wieder ein (2-4)-Baum
- $-\alpha(k) = 5$: Resultierender Baum ist kein (2-4)-Baum

SPALTEN von k: Gib k einen Bruder k' rechts von k. Hänge die 2 rechtesten Kinder von k auf k' um $\Rightarrow \alpha(k) = 3$, $\alpha(k') = 2$

SPALTEN muss evtl. für übergeordnete Knoten wiederholt werden (evt. bis zur Wurzel. Diese wird dann Kind einer neuen Wurzel mit $\alpha(w)$ =2)

- Entfernen: Suchen, Blatt von Knoten k entfernen
 - α(k) ≥ 2: Resultierender Baum ist wieder ein (2-4)-Baum
 - $\alpha(k) = 1$: Resultierender Baum ist **kein** (2-4)-Baum Sei k' ein direkter Bruder von k:
 - $-\alpha(k')$ ≥ 3: STEHLEN eines Kindes von $k' \Rightarrow \alpha(k) = 2$, $\alpha(k') ≥ 2$
 - α(k') =2: VERSCHMELZEN von k mit k' \Rightarrow α(k) = 3

Verschmelzen evt. für übergeordnete Knoten wiederholen (Wurzel wird durch einziges Kind ersetzt) ⇒ O(h) = O(log n) Zeit

Zusammenfassung

Der **(2-4)-Baum** ist eine Datenstruktur, die das **Wörterbuchproblem** (Suchen, Einfügen, Entfernen) auf einer Menge von *n* Elementen in **O(log n) Zeit** pro Operation löst, und **O(n) Speicher** belegt.

Dies ist worst-case optimal (auch bzgl. statischer Suche!).

Einfügen und Entfernen erfordert **Umstrukturierungen** (Spalten, Stehlen, Verschmelzen)

Bereits vorgenommene Umstrukturierungen **amortisieren** sich jedoch später.