Numerical Stability of FDs u(x,5)2y(x)

 $\partial_{\theta}u = \gamma \partial_{x}^{2}u$ equivalent equivalent equivalent

and M= y Dt/(DX)2

Stubbe (NUILSM<00 forellis) if osus 1/2

$$\Delta t \leq \frac{(\Delta X)^2}{2\chi}$$

Backward Enter

Idea, use backward différence in Ame: 1 (ui+1 - ui) = 402 ui+1

Stability Analysis

Just like last time, we have usin = A its,

but non $A = (I - \mu D_2)^{-1}$

=> For stability, need 12x151 (Lecture 17).

If Prenzanen, Hen

 $(I-uO_2)e_{\alpha}z(1-u\alpha_{\kappa})e_{\kappa}=)$ $(I-uO_2)e_{\kappa}=(1-u\alpha_{\kappa})^2e_{\kappa}$

From Lecture 17, we know dx = - 4sin2 (nk)

$$\Rightarrow \lambda_{K} = \frac{1}{1 + 4 \pi \sin^{2}(\frac{n_{K}}{2})} \leq 1$$

Since 05 du 51 regardless of u= y (5x)2,

the Back. Enter Scheme is unconstitionally stable.

Backward Enter is an implicit thre-stopping schere.

=> Requires solving a linear system, which in general may be stoner than matrix-vector multiplication.

(much)
=> Can take Marger Hue-Steps
whomat numerical instability.

For heat eyn., $(I - \alpha \Omega_z) u_{in} = u_i$ can be solved nearly as fast as a forward Enter Step because $I - \alpha \Omega_z$ has a special sparse structure.

hunsport Equation

We can use the same techniques to analyze FD stability for Transport PDEs, when we are on a periodiz domain.

rethantagga Q7

$$\partial_{x} \left[\begin{array}{c} u(x_{i},t_{i}) \\ u(x_{n},t_{i}) \end{array} \right] \approx \frac{1}{\Delta x} \left[\begin{array}{c} -1 & 1 \\ -1 & 1 \\ 1 & -1 \end{array} \right] \left[\begin{array}{c} u_{i,i} \\ u_{n,i} \end{array} \right]$$

$$u_{xn}$$

First-order forwed diff in space

$$\partial_t u \approx \frac{u|_{t_{j+1}} - u|_{t_j}}{\Delta t}$$

first-order formed diff in the.

$$U_{3+1} = \left(\overline{I} + c \xrightarrow{\Delta +} D_{i}\right) U_{3}$$

Stability

Need eigenvelves of A= I+60, to have

12x1 51

If P, ex= execu, other Aex= (1+60x)ex, 50 we really want eigenvalues of Q.

$$D_{i} = \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} = \text{Circulant metrix "again!}$$

$$= \text{Complete orthogone.} \text{ set}$$
of eigenvectors $V = V^{*}$

$$= \text{and } ||V||||V^{*}|| = 1.$$
eigenvalues
$$\text{known}$$

$$\text{dx} = -1 + e$$

$$\Rightarrow \text{dn} = 1 - 6(1 - e^{2\pi i k/n})$$

Since these eigenvalues are complex, let's plot:

The blue circle on the right always intersects

the real point Z=1 and as long as 0<6<1, the blue circle never beaves the unit drake. So for stubility, we need to have

$$0 < c \frac{\Delta t}{\Delta x} \le 1$$
 $\Delta t \le \frac{\Delta x}{c}$

In particular, notice that we need cro!

=> For right-moving transport (C<O), the scheme is unstable. Would need to use a backward FD approx in space instead

CFL Conclibion

We can get anothe vantage point on instability by considering characteristics.

FD Approx depends on value of numerical solution at points in blue

**A +1

(stable)

(stabl change at all! So numerical solution can be artitrarily bed => unstable

In particular, for right-moving characteristics (C<O), some argument applies => unstable

CFL Condition => Characteristic through (Xu, t;) was pass between Xu and Xu-, at time t; (for formerel diffi approx in space).

0< \(\frac{\Delta t}{\Delta x} \) \(\frac{1}{c} \) 46, AXXX and | AX >C =>

which is precisely our earlier restriction.

Note that when $G = C \frac{\Delta t}{\Delta x} = 1$, the eigents of A = I + GD, live on the unit circle. Since A also has a full set of eigenvectors, it is a unitary metrix: ||Aul| = ||u|| for any vector u. Just like the true PDE solution,

1/u3+1/2 1/A3+1/u3/1= 1/U3/1

The norm is conserved at every three step.

However, when $G = C \frac{\Delta t}{\Delta x} < l$, the eigenvals of A have $|\lambda_{k}| < l$ (except $\lambda_{n} = l$) and so $|\lambda_{i}| + l$ typically decreases as $j \to \infty$.

This phenomenon is called numerical or or artificial diffusion, because it minus the behavior of a diffusion term in the PDE (although there is no such term in our model).