Algoritmos Numéricos 2^a edição

Capítulo 5: Integração numérica

Capítulo 5: Integração numérica

- 5.1 Fórmulas de Newton-Cotes
- 5.2 Quadratura de Gauss-Legendre
- 5.3 Comparação dos métodos de integração simples
- 5.4 Integração numérica iterativa
- 5.5 Integração dupla pelas fórmulas de Newton-Cotes
- 5.6 Integração dupla via fórmulas de Gauss-Legendre
- 5.7 Comparação dos métodos para integração dupla
- 5.8 Exemplos de aplicação: distribuição de probabilidade e integral imprópria
- 5.9 Exercícios

Integração numérica

 \bullet Seja uma função f(x) integrável no intervalo [a,b]

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$
, onde $F'(x) = f(x)$.

- Uso de métodos numéricos para avaliar a integral de f(x):
 - forma analítica de F(x) de difícil obtenção ou
 - conhecidos somente valores discretos de f(x).
- Aproximar a função f(x) por um polinômio interpolador.
- Determinar analiticamente a integral desse polinômio no intervalo [a, b].
- Integração numérica:
 - fórmulas de Newton-Cotes e
 - quadratura de Gauss-Legendre.
- Integrais simples e duplas.

Fórmulas de Newton-Cotes

- Função f(x) aproximada por polinômio interpolador.
- Por exemplo, um polinômio de Gregory-Newton

$$f(x) \approx P_n(x) = y_0 + \sum_{i=1}^n \frac{\Delta^i y_0}{i!} \prod_{j=0}^{i-1} (u_x - j), \text{ onde } u_x = \frac{x - x_0}{h}.$$
 (1)

Regra do trapézio

• Para (1) com n=1

$$\int_{a}^{b} f(x) \, dx \approx \int_{a=x_{0}}^{b=x_{1}} P_{1}(x) \, dx.$$

• Mudança de variável de $x \to u_x$ e simplificando a notação de $u_x \to u$

$$u = \frac{x - x_0}{h} \longrightarrow x = hu + x_0 \rightsquigarrow dx = hdu,$$

$$x = a = x_0 \longrightarrow u = \frac{x_0 - x_0}{h} \rightsquigarrow u = 0 e$$

$$x = b = x_1 \longrightarrow u = \frac{x_1 - x_0}{h} = \frac{h}{h} \leadsto u = 1.$$

Regra do trapézio

• Usando a notação $y_i = f(x_i)$

$$I_1 = \int_{a=x_0}^{b=x_1} P_1(x) dx = \int_0^1 (y_0 + u\Delta y_0)h du.$$

cont.

ullet Integrando, analiticamente, este polinômio de grau 1 em relação a u

$$I_1 = h \left[y_0 u + \frac{u^2}{2} \Delta y_0 \right] \Big|_0^1 = h \left(y_0 + \frac{y_1 - y_0}{2} \right) = \frac{h}{2} (2y_0 + y_1 - y_0),$$

$$I_1 = \frac{h}{2}(y_0 + y_1). \tag{2}$$

Exemplo da regra do trapézio

Exemplo 1 Calcular $\int_{1}^{t} \frac{1}{x} dx$ pela regra do trapézio.

• Polinômio de grau 1 passa pelos pontos com abscissas

$$a = x_0 = 1$$
 e $b = x_1 = 7$,
 $h = 7 - 1 = 6$,
 $I_1 = \frac{6}{2} \left(\frac{1}{1} + \frac{1}{7} \right) \rightsquigarrow I_1 = 3,4286$.

Integração numérica pela regra do trapézio

• Aproximação de f(x) = 1/x por polinômio interpolador $P_1(x)$ de grau 1.

Χ

Regra do 1/3 de Simpson

• Aproximando f(x) por um polinômio interpolador $P_2(x)$ de grau 2

$$\int_{a}^{b} f(x) \, dx \approx \int_{a=x_0}^{b=x_2} P_2(x) \, dx.$$

• Mudança de variável

$$x = a = x_0 \longrightarrow u = \frac{x_0 - x_0}{h} \rightsquigarrow u = 0 \text{ e}$$
$$x = b = x_2 \longrightarrow u = \frac{x_2 - x_0}{h} = \frac{2h}{h} \rightsquigarrow u = 2.$$

• Equação de integração

$$I_2 = \int_{a=x_0}^{b=x_2} P_2(x) \ dx = \int_0^2 \left(y_0 + u \Delta y_0 + \frac{u^2 - u}{2} \Delta^2 y_0 \right) h \ du.$$

Regra do 1/3 de Simpson

cont.

• Integrando, analiticamente, este polinômio de grau 2 em relação a u

$$I_{2} = h \left[y_{0}u + \frac{u^{2}}{2}\Delta y_{0} + \left(\frac{u^{3}}{6} - \frac{u^{2}}{4} \right) \Delta^{2} y_{0} \right]_{0}^{2},$$

$$I_{2} = h \left[2y_{0} + 2(y_{1} - y_{0}) + \frac{1}{3}(y_{2} - 2y_{1} + y_{0}) \right],$$

$$I_2 = \frac{h}{3}(y_0 + 4y_1 + y_2). \tag{3}$$

Exemplo da regra do 1/3 de Simpson

Exemplo 2 Calcular $\int_1^t \frac{1}{x} dx$, usando a regra do 1/3 de Simpson (3).

- Para construir um polinômio de grau 2 são necessários 3 pontos.
- Polinômio de grau 2 passa pelos pontos com abscissas

$$a = x_0 = 1, \ x_1 = 4 \text{ e } b = x_2 = 7,$$

$$h = \frac{7-1}{2} = 3,$$

$$I_2 = \frac{3}{3} \left(\frac{1}{1} + 4\frac{1}{4} + \frac{1}{7} \right) \rightsquigarrow I_2 = 2,1429.$$

Integração numérica pela regra do 1/3 de Simpson

• Aproximação de f(x) = 1/x por polinômio interpolador $P_2(x)$ de grau 2.

|⊭

Regra dos 3/8 de Simpson

• Aproximando f(x) por um polinômio interpolador $P_3(x)$ de grau 3

$$\int_{a}^{b} f(x) \, dx \approx \int_{a=x_0}^{b=x_3} P_3(x) \, dx.$$

• Mudança de variável

$$x = a = x_0 \longrightarrow u = \frac{x_0 - x_0}{h} \rightsquigarrow u = 0 \text{ e}$$
$$x = b = x_3 \longrightarrow u = \frac{x_3 - x_0}{h} = \frac{3h}{h} \rightsquigarrow u = 3.$$

• Equação de integração

$$I_{3} = \int_{a=x_{0}}^{b=x_{3}} P_{3}(x) dx,$$

$$I_{3} = \int_{0}^{3} \left(y_{0} + u \Delta y_{0} + \frac{u^{2} - u}{2} \Delta^{2} y_{0} + \frac{u^{3} - 3u^{2} + 2u}{6} \Delta^{3} y_{0} \right) h du.$$

Regra dos 3/8 de Simpson

cont.

ullet Integrando, analiticamente, este polinômio de grau 3 em relação a u

$$I_3 = h \left[y_0 u + \frac{u^2}{2} \Delta y_0 + \left(\frac{u^3}{6} - \frac{u^2}{4} \right) \Delta^2 y_0 + \left(\frac{u^4}{24} - \frac{u^3}{6} + \frac{u^2}{6} \right) \Delta^3 y_0 \right] \Big|_0^3,$$

$$I_3 = h \left[3y_0 + \frac{9}{2}(y_1 - y_0) + \frac{9}{4}(y_2 - 2y_1 + y_0) + \frac{3}{8}(y_3 - 3y_2 + 3y_1 - y_0) \right],$$

$$I_3 = \frac{3h}{8}(y_0 + 3y_1 + 3y_2 + y_3). \tag{4}$$

Exemplo da regra dos 3/8 de Simpson

Exemplo 3 Calcular $\int_{1}^{7} \frac{1}{x} dx$ pela regra dos 3/8 de Simpson (4).

- São necessários 4 pontos para construir um polinômio de grau 3.
- Abscissas

$$a = x_0 = 1$$
, $x_1 = 3$, $x_2 = 5$ e $b = x_3 = 7$, $h = \frac{7-1}{3} = 2$,

$$I_3 = \frac{3 \times 2}{8} \left(\frac{1}{1} + 3\frac{1}{3} + 3\frac{1}{5} + \frac{1}{7} \right) \rightsquigarrow I_3 = 2,0571.$$

Integração numérica pela regra dos 3/8 de Simpson

• Aproximação de f(x) = 1/x por polinômio interpolador $P_3(x)$ de grau 3.

Comparação das fórmulas de Newton-Cotes

Considerando

$$\int_{1}^{7} \frac{1}{x} dx = \log_{e}(x)|_{1}^{7} = \log_{e}(7) \approx 1,9459.$$

• Resultado da integração melhora à medida que o grau do polinômio interpolador aumenta

\boxed{n}	I_n	$ I_n - \log_e(7) $
1	3,4286	1,4827
2	2,1429	0,1970
3	2,0571	0,1112

Fórmula geral de Newton-Cotes

• Comparando (2), (3) e (4)

$$I_n = \frac{nh}{d_n} \sum_{i=0}^n c_i y_i, \tag{5}$$

• c_i : coeficientes de Cotes.

n	d_n	c_0	c_1	c_2	c_3	c_4	c_5	c_6	c_7	c_8	
1	2	1	1								
2	6	1	4	1							
3	8	1	3	3	1						
4	90	7	32	12	32	7					
5	288	19	75	50	50	75	19				
6	840	41	216	27	272	27	216	41			
7	17280	751	3577	1323	2989	2989	1323	3577	751		
8	28350	989	5888	-928	10496	-4540	10496	-928	5888	989	

- Dificilmente é usado polinômio de grau superior a 3.
- Resultado melhorado pela subdivisão do intervalo de integração e aplicação de uma fórmula de Newton-Cotes em cada subintervalo.

Regra do trapézio composta

• Integração baseada em polinômio interpolador de grau 1

$$I_1 = \frac{h}{2}(y_0 + y_1).$$

• Subdividindo o intervalo [a, b] em m subintervalos iguais e aplicando a equação a cada 2 pontos

$$\int_{a=x_0}^{b=x_m} f(x) dx \approx I_1, \text{ com}$$

$$I_{1} = \frac{h}{2}(y_{0} + y_{1}) + \frac{h}{2}(y_{1} + y_{2}) + \frac{h}{2}(y_{2} + y_{3}) + \dots + \frac{h}{2}(y_{m-1} + y_{m}),$$

$$I_{1} = \frac{h}{2}(y_{0} + 2y_{1} + 2y_{2} + \dots + 2y_{m-1} + y_{m}),$$

$$I_1 = \frac{h}{2} \sum_{i=0}^{m} c_i y_i.$$

• Qualquer valor de número de subintervalos m.

(6)

Representação geométrica da integração numérica pela regra do trapézio composta

• $f(x) = e^x \operatorname{sen}(10x) + 8 \operatorname{com} 6 \operatorname{polinômios} \operatorname{interpoladores} P_1(x) \operatorname{de} \operatorname{grau} 1.$

Exemplo da regra do trapézio composta

Exemplo 4 Calcular $\int_1^3 x^3 \log_e(x) dx$ pela regra do trapézio composta (6) com m=4 subintervalos.

$$h = \frac{b-a}{m} = \frac{3-1}{4} \to h = 0.5.$$

• Dispositivo prático com quatro colunas: i = 0, 1, ..., m, $x_i = a, a + h, a + 2h, ..., b, y_i = f(x_i)$ e c_i sendo os coeficientes de Cotes

i	x_i	y_i	c_i
0	1,0	0,0000	1
1	1,5	1,3684	2
2	2,0	5,5452	2
3	2,5	14,3170	2
4	3,0	29,6625	1

$$I_1 = \frac{0.5}{2}(0.0000 + 2(1.3684 + 5.5452 + 14.3170) + 29.6625) \rightsquigarrow I_1 = 18.0309.$$

Exemplo da regra do trapézio composta

Exemplo 5 Calcular $\int_0^2 \frac{e^{-\cos(x)}}{\sqrt{2x+4}} dx$ pela regra do trapézio composta (6) com m=5 subintervalos.

$$h = \frac{b-a}{m} = \frac{2-0}{5} \to h = 0,4$$

i	x_i	y_i	c_i
0	0,0	0,1839	1
1	0,4	0,1817	2
2	0,8	0,2105	2
3	1,2	0,2751	2
4	1,6	0,3837	2
5	2,0	0,5360	1

$$I_1 = \frac{0.4}{2}(0.1839 + 2(0.1817 + 0.2105 + 0.2751 + 0.3837) + 0.5360) \rightsquigarrow I_1 = 0.5644.$$

Regra do 1/3 de Simpson composta

• Integração baseada em polinômio interpolador de grau 2

$$I_2 = \frac{h}{3}(y_0 + 4y_1 + y_2).$$

• Subdividindo o intervalo [a, b] em m (múltiplo de 2) subintervalos iguais e aplicando a equação a cada 3 pontos

$$\int_{a=x_0}^{b=x_m} f(x) dx \approx I_2, \text{ com}$$

$$I_2 = \frac{h}{3}(y_0 + 4y_1 + y_2) + \frac{h}{3}(y_2 + 4y_3 + y_4) + \dots + \frac{h}{3}(y_{m-2} + 4y_{m-1} + y_m),$$

$$I_2 = \frac{h}{3}(y_0 + 4y_1 + 2y_2 + 4y_3 + 2y_4 + \dots + 2y_{m-2} + 4y_{m-1} + y_m),$$

$$I_2 = \frac{h}{3} \sum_{i=0}^{m} c_i y_i. \tag{7}$$

 \bullet Número de subintervalos m múltiplo de 2, grau do polinômio interpolador.

Representação geométrica da integração numérica pela regra do 1/3 de Simpson composta

• $f(x) = e^x \operatorname{sen}(10x) + 8 \operatorname{com} 3 \operatorname{polinômios} \operatorname{interpoladores} P_2(x) \operatorname{de} \operatorname{grau} 2$.

Exemplo da regra do 1/3 de Simpson composta

Exemplo 6 Verificar que $\pi = 4 \int_0^1 \frac{1}{1+x^2} dx$ usando a regra do 1/3 de Simpson composta (7) com passo de integração h=0,25.

$$m = \frac{b-a}{h} = \frac{1-0}{0.25} \to m = 4$$
 (múltiplo de 2).

i	x_i	y_i	c_i
0	0,00	1,0000	1
1	0,25	0,9412	4
2	0,50	0,8000	2
3	0,75	0,6400	4
4	1,00	0,5000	1

$$I_2 = \frac{0.25}{3}(1,0000 + 4(0.9412 + 0.6400) + 2(0.8000) + 0.5000) \rightsquigarrow I_2 = 0.7854 \text{ e}$$

 $4 \times I_2 = 3.1416 \approx \pi.$

Exemplo da regra do 1/3 de Simpson composta

Exemplo 7 Calcular $\int_0^3 \frac{xe^{2x}}{(1+2x)^2} dx$ usando a regra do 1/3 de Simpson composta (7) com m=6 (múltiplo de 2) subintervalos.

$$h = \frac{b-a}{m} = \frac{3-0}{6} \to h = 0.5.$$

i	x_i	y_i	c_i
0	0,0	0,0000	1
1	0,5	0,3398	4
2	1,0	0,8210	2
3	1,5	1,8830	4
4	2,0	4,3679	2
5	2,5	10,3065	4
6	3,0	24,6997	1

$$I_2 = \frac{0.5}{3}(0.0000 + 4(0.3398 + 1.8830 + 10.3065) + 2(0.8210 + 4.3679) + 24.6997) \sim$$

$$I_2 = 14.1991.$$

Regra dos 3/8 de Simpson composta

• Integração baseada em polinômio interpolador de grau 3

$$I_3 = \frac{3h}{8}(y_0 + 3y_1 + 3y_2 + y_3).$$

• Subdividindo o intervalo [a, b] em m (múltiplo de 3) subintervalos iguais e aplicando a equação a cada 4 pontos

$$\int_{a=x_0}^{b=x_m} f(x) dx \approx I_3 = \frac{3h}{8} (y_0 + 3y_1 + 3y_2 + y_3) + \frac{3h}{8} (y_3 + 3y_4 + 3y_5 + y_6) + \dots + \frac{3h}{8} (y_{m-3} + 3y_{m-2} + 3y_{m-1} + y_m),$$

$$I_3 = \frac{3h}{8}(y_0 + 3y_1 + 3y_2 + 2y_3 + 3y_4 + 3y_5 + 2y_6 + \dots + 2y_{m-3} + 3y_{m-2} + 3y_{m-1} + y_m),$$

$$I_3 = \frac{3h}{8} \sum_{i=0}^{m} c_i y_i. \tag{8}$$

ullet Número de subintervalos m múltiplo de 3, grau do polinômio interpolador.

Representação geométrica da integração numérica pela regra dos 3/8 de Simpson composta

• $f(x) = e^x \operatorname{sen}(10x) + 8 \operatorname{com} 2 \operatorname{polinômios} \operatorname{interpoladores} P_3(x) \operatorname{de} \operatorname{grau} 3.$

Exemplo da regra dos 3/8 de Simpson

Exemplo 8 Calcular $\int_{1}^{4} \log_{e} \left(x^{3} + \sqrt{e^{x} + 1} \right) dx$ pela regra dos 3/8 de Simpson composta (8) com m = 6 (múltiplo de 3) subintervalos.

$$h = \frac{b-a}{m} = \frac{4-1}{6} \to h = 0.5.$$

i	x_i	y_i	c_i
0	1,0	1,0744	1
1	1,5	1,7433	3
2	2,0	2,3884	3
3	2,5	2,9578	2
4	3,0	3,4529	3
5	3,5	3,8860	3
6	4,0	4,2691	1

$$I_3 = \frac{3 \times 0.5}{8} (1,0744 + 3(1,7433 + 2,3884 + 3,4529 + 3,8860) + 2 \times 2,9578 + 4,2691) \sim$$

$$I_3 = 8,5633.$$

Exemplo da regra dos 3/8 de Simpson

Exemplo 9 Calcular $\int_0^{2,\ell} \frac{x + \sin(x)}{1 + \cos(x)} dx$, usando a regra dos 3/8 de Simpson composta (8) com passo de integração h = 0,3.

$$m = \frac{b-a}{h} = \frac{2,7-0}{0.3} \to m = 9$$
 (múltiplo de 3),

i	x_i	y_i	c_i
0	0,0	0,0000	1
1	0,3	0,3046	3
2	0,6	0,6380	3
3	0,9	1,0381	2
4	1,2	1,5650	3
5	1,5	2,3325	3
6	1,8	3,5894	2
7	2,1	5,9844	3
8	2,4	11,7113	3
9	2,7	32,6014	1

$$I_3 = \frac{3 \times 0.3}{8} (0,0000 + 3(0,3046 + 0.6380 + 1.5650 + 2.3325 + 5.9844 + 11.7113) + 2(1,0381 + 3.5894) + 32.6014) \rightsquigarrow I_3 = 12.3147.$$

Erro de integração dos métodos de Newton-Cotes

ullet Erro de truncamento do polinômio de Gregory-Newton de grau n

$$T_n(x) = \prod_{i=0}^n (x - x_i) \frac{f^{n+1}(\theta)}{(n+1)!}, \ x_0 < \theta < x_n.$$

• Regra do trapézio baseada em polinômio de grau n=1

$$T_1(x) = (x - x_0)(x - x_1) \frac{f''(\theta_1)}{2!}, \ x_0 < \theta_1 < x_1.$$

ullet Erro de integração $E_{1,1}$ cometido ao utilizar a regra do trapézio

$$E_{1,1} = \int_{x_0}^{x_1} (x - x_0)(x - x_1) \frac{f''(\theta_1)}{2} dx.$$

• Mudança de variável de x para $u = u_x = \frac{x - x_0}{h}$

$$E_{1,1} = \int_0^1 (hu)(h(u-1)) \frac{f''(\theta_1)}{2} h \ du = \frac{h^3 f''(\theta_1)}{2} \left(\frac{u^3}{3} - \frac{u^2}{2} \right) \bigg|_0^1 = -\frac{h^3 f''(\theta_1)}{12}.$$

cont.

Erro de integração dos métodos de Newton-Cotes

ullet Erro de integração global considerando os m subintervalos

$$E_1 = \sum_{i=1}^m E_{1,i} = -\frac{h^3}{12} (f''(\theta_1) + f''(\theta_2) + \dots + f''(\theta_m)),$$

- θ_i determinado em cada um dos m subintervalos.
- Se f''(x) for contínua no intervalo [a, b], então existe algum valor de $x = \theta \in [a, b]$ para o qual o somatório acima é igual a $mf''(\theta)$.
- Passo de integração: h = (b a)/m.
- Erro global de integração da regra do trapézio

$$E_1 = -\frac{h^3 m f''(\theta)}{12} = -\frac{(b-a)^3 m f''(\theta)}{m^3}, \ a < \theta < b,$$

$$E_1 = -\frac{(b-a)^3}{12m^2} f''(\theta), \ a < \theta < b.$$

(9)

Erro de integração das regras de Simpson

• Regra do 1/3 de Simpson

$$E_2 = -\frac{(b-a)^5}{180m^4} f^{iv}(\theta), \ a < \theta < b.$$
 (10)

• Regra dos 3/8 de Simpson

$$E_3 = -\frac{(b-a)^5}{80m^4} f^{iv}(\theta), \ a < \theta < b.$$
 (11)

- Valor de θ é o ponto no intervalo [a, b], no qual a derivada de f(x) apresenta o maior valor em módulo.
- Equações fornecem a cota máxima do erro de integração.

Exemplo da erro de integração

Exemplo 10 Calcular $\int_{1}^{3} (4x^3 + 3x^2 + x + 1) dx$ utilizando a regra do 1/3 de Simpson (7) com m = 2 subintervalos.

$$h = \frac{b-a}{m} = \frac{3-1}{2} \to h = 1,$$

i	$ x_i $	y_i	$ c_i $
0	1	9	1
1	2	47	4
2	3	139	$\mid 1 \mid$

$$I_2 = \frac{1}{3}(9 + 4 \times 47 + 139) \rightsquigarrow I_2 = 112.$$

Exemplo do erro de integração cont.

• Erro de integração por (10)

$$f(x) = 4x^3 + 3x^2 + x + 1$$
, $f'(x) = 12x^2 + 6x + 1$, $f''(x) = 24x + 6$, $f'''(x) = 24$, $f^{iv}(x) = 0 \longrightarrow E_2 = -\frac{(b-a)^5}{180m^4} f^{iv}(\theta) = -\frac{(3-1)^5}{180 \times 2^4} \times 0 \leadsto E_2 = 0$.

• Resultado exato

$$\int_{1}^{3} \left(4x^{3} + 3x^{2} + x + 1 \right) dx = \left(x^{4} + x^{3} + \frac{x^{2}}{2} + x \right) \Big|_{1}^{3} = 115, 5 - 3, 5 = 112.$$

Exemplo de comparação dos erros de integração

Exemplo 11 Calcular a integral $\int_0^m (e^x + \sin(x) + 2) dx$ usando as três primeiras fórmulas de Newton-Cotes com m = 6 subintervalos.

$$h = \frac{b-a}{m} = \frac{\pi - 0}{6} \to h = \frac{\pi}{6},$$

i	x_i	y_i	$c_i(t)$	$c_i(1S)$	$c_i(2S)$
0	0	3,0000	1	1	1
1	$\pi/6$	4,1881	2	4	3
2	$\pi/3$	5,7157	2	2	3
3	$\pi/2$	7,8105	2	4	2
4	$2\pi/3$	10,9866	2	2	3
5	$5\pi/6$	16,2082	2	4	3
6	$\mid \pi \mid$	25,1407	1	1	$\mid 1 \mid$

Exemplo de comparação dos erros de integração cont.

• Regra do trapézio

$$I_1 = \frac{\pi}{6 \times 2} (3,0000 + 2(4,1881 + 5,7157 + 7,8105 + 10,9866 + 16,2082) + 25,1407),$$

$$I_1 = 30,8816. (|\Leftarrow|)$$

• Regra do 1/3 de Simpson

$$I_2 = \frac{\pi}{6 \times 3} (3,0000 + 4(4,1881 + 7,8105 + 16,2082) + 2(5,7157 + 10,9866) + 25,1407),$$

$$I_2 = 30,4337. \ (|\not\models|)$$

• Regra dos 3/8 de Simpson

$$I_3 = \frac{3\pi}{6 \times 8} (3,0000 + 3(4,1881 + 5,7157 + 10,9866 + 16,2082) + 2 \times 7,8105 + 25,1407),$$

$$I_3 = 30,4455.$$

cont.

Exemplo de comparação dos erros de integração

ullet Determinação de heta

$$f(x) = e^x + \operatorname{sen}(x) + 2$$
, $f'(x) = e^x + \cos(x)$, $f''(x) = e^x - \sin(x) \leadsto \theta = \pi$, $f'''(x) = e^x - \cos(x)$ e $f^{iv}(x) = e^x + \sin(x) \leadsto \theta = \pi$,

- \bullet θ : abscissa do ponto onde a derivada apresenta o maior valor em módulo.
- Erro de integração da regra do trapézio

$$E_1 = -\frac{(b-a)^3}{12m^2} f''(\theta) = -\frac{(\pi-0)^3}{12\times 6^2} (e^{\pi} - \operatorname{sen}(\pi)) \rightsquigarrow E_1 = -1,6609.$$

• Erro de integração da regra do 1/3 de Simpson

$$E_2 = -\frac{(b-a)^5}{180m^4} f^{iv}(\theta) = -\frac{(\pi-0)^5}{180 \times 6^4} (e^{\pi} + \operatorname{sen}(\pi)) \rightsquigarrow E_2 = -0.0304.$$

• Erro de integração da regra dos 3/8 de Simpson

$$E_3 = -\frac{(b-a)^5}{80m^4} f^{iv}(\theta) = -\frac{(\pi-0)^5}{80\times 6^4} (e^{\pi} + \operatorname{sen}(\pi)) \rightsquigarrow E_3 = -0,0683.$$

Exemplo de comparação dos erros de integração

cont.

$$\int_0^{\pi} (e^x + \sin(x) + 2) dx = (e^x - \cos(x) + 2x) \Big|_0^{\pi} \approx 30,4239.$$

• Erro de integração máximo e real

\boxed{n}	I_n	E_n	$30,4239 - I_n$
1	30,8816	-1,6609	-0,4577
2	30,4337	-0,0304	-0,0098
3	30,4455	-0,0683	-0,0216

- Regra do 1/3 de Simpson produziu os menores erro máximo e erro real.
- Sinal negativo de E_n indica que a integração numérica foi por excesso: $I_n > I_{\text{exata}}$.

Exemplo de escolha da regra

Exemplo 12 Calcular $\int_0^{\pi} \left(\frac{x^4}{4} + x^2 + \sin(x)\right) dx$ com $E < 10^{-2}$ usando uma das três primeiras fórmulas de Newton-Cotes.

 \bullet Valor de θ para regra do trapézio

$$f(x) = \frac{x^4}{4} + x^2 + \operatorname{sen}(x), \ f'(x) = x^3 + 2x + \cos(x), \ f''(x) = 3x^2 + 2 - \operatorname{sen}(x) \rightsquigarrow \theta = \pi.$$

ullet Valor de heta para regras de Simpson

$$f'''(x) = 6x - \cos(x) e f^{iv}(x) = 6 + \sin(x) \leadsto \theta = \frac{\pi}{2}.$$

Exemplo de escolha da regra cont.

• Valor de m para regra do trapézio

$$\left| \frac{(b-a)^3}{12m_1^2} f''(\theta) \right| < 10^{-2} \to m_1 > \left(\frac{(\pi-0)^3}{12 \times 10^{-2}} (3\pi^2 + 2 - \operatorname{sen}(\pi)) \right)^{\frac{1}{2}} \approx 90,37 \leadsto m_1 = 91.$$

• Valor de m para regra do 1/3 de Simpson

$$\left| \frac{(b-a)^5}{180m_2^4} f^{iv}(\theta) \right| < 10^{-2} \to m_2 > \left(\frac{(\pi-0)^5}{180 \times 10^{-2}} (6 + \operatorname{sen}(\pi/2)) \right)^{\frac{1}{4}} \approx 5,87 \leadsto m_2 = 6.$$

• Valor de m para regra dos 3/8 de Simpson

$$\left| \frac{(b-a)^5}{80m_3^4} f^{iv}(\theta) \right| < 10^{-2} \to m_3 > \left(\frac{(\pi-0)^5}{80 \times 10^{-2}} (6 + \operatorname{sen}(\pi/2)) \right)^{\frac{1}{4}} \approx 7,19 \rightsquigarrow m_3 = 9.$$

• Fórmula escolhida: regra do 1/3 de Simpson.

cont.

Exemplo de escolha da regra

• Passo de integração: $h = \frac{b-a}{m} = \frac{\pi-0}{6} \to h = \frac{\pi}{6}$,

i	x_i	y_i	$ c_i $
0	0	0,0000	1
1	$\pi/6$	0,7929	4
2	$\pi/3$	2,2633	2
3	$\pi/2$	4,9894	4
4	$2\pi/3$	10,0628	2
5	$5\pi/6$	19,0979	4
6	π	34,2219	1

• Regra do 1/3 de Simpson

$$I_2 = \frac{\pi}{6 \times 3} (0,0000 + 4(0,7929 + 4,9894 + 19,0979) + 2(2,2633 + 10,0628) + 34,2219) \rightsquigarrow I_2 = 27,6451.$$

• Verificação da exatidão

$$\int_0^{\pi} \left(\frac{x^4}{4} + x^2 + \operatorname{sen}(x) \right) dx = \left(\frac{x^5}{20} + \frac{x^3}{3} - \cos(x) \right) \Big|_0^{\pi} \approx 27,6364,$$
$$|27,6364 - 27,6451| = 0,0087 < 10^{-2}.$$

Algoritmo: integração numérica pelo método de Newton-Cotes

```
Algoritmo Newton-Cotes
{ Objetivo: Integrar uma função pelo método de Newton-Cotes }
parâmetros de entrada a, b, n, m
    { limite inferior, limite superior, grau do polinômio, número de subintervalos }
parâmetros de saída Integral, CondErro
     valor da integral e condição de erro, sendo }
      CondErro = 0 se não houve erro de consistência dos parâmetros dados, }
      CondErro = 1 se (n < 1 \text{ ou } n > 8), }
      CondErro = 2 se resto(m, n) \neq 0 e }
     CondErro = 3 se ambas as condições ocorrerem }
    d(1) \leftarrow 2; d(2) \leftarrow 6; d(3) \leftarrow 8; d(4) \leftarrow 90; d(5) \leftarrow 288; d(6) \leftarrow 840
    d(7) \leftarrow 17280; d(8) \leftarrow 28350
   c(1) \leftarrow 1; c(2) \leftarrow 1; c(3) \leftarrow 4; c(4) \leftarrow 1; c(5) \leftarrow 3; c(6) \leftarrow 7; c(7) \leftarrow 32
    c(8) \leftarrow 12; \ c(9) \leftarrow 19; \ c(10) \leftarrow 75; \ c(11) \leftarrow 50; \ c(12) \leftarrow 41; \ c(13) \leftarrow 216
    c(14) \leftarrow 27; c(15) \leftarrow 272; c(16) \leftarrow 751; c(17) \leftarrow 3577; c(18) \leftarrow 1323
    c(19) \leftarrow 2989; \ c(20) \leftarrow 989; \ c(21) \leftarrow 5888; \ c(22) \leftarrow -928; \ c(23) \leftarrow 10496
    c(24) \leftarrow -4540
    CondErro \leftarrow 0; Integral \leftarrow 0
    { consistência dos parâmetros }
    se n < 1 ou n > 8 então CondErro \leftarrow CondErro + 1, fim se
   se resto(m, n) \neq 0 então CondErro \leftarrow CondErro +2, fim se
   se CondErro \neq 0 então abandone, fim se
    { cálculo da integral }
    p \leftarrow \text{trunca}(0.25 * (n * (n + 2) + \text{resto}(n, 2))); h \leftarrow (b - a)/m
   para i \leftarrow 0 até m faça
       x \leftarrow a + i * h
       y \leftarrow f(x) { avaliar a função integrando em x }
       i \leftarrow p + \operatorname{trunca}(0.5 * n - \operatorname{abs}(\operatorname{resto}(i, n) - 0.5 * n))
       k \leftarrow 1 + \operatorname{trunca}((n - \operatorname{resto}(i, n))/n) - \operatorname{trunca}((m - \operatorname{resto}(i, m))/m)
       Integral \leftarrow Integral + y * c(i) * k
       escreva i, x, y, c(i) * k
    fim para
    Integral \leftarrow n * h/d(n) * Integral
fim algoritmo
```

|**⊭**

Complexidade da integração pelo método de Newton-Cotes

Operações	Complexidade
adições	9m + 12
multiplicações	5m + 9
divisões	2m+4

- \bullet Polinômios dados em termos do número de subintervalos m.
- ullet Complexidade independe do grau n do polinômio interpolador utilizado.

Exemplo de uso do algoritmo

Exemplo 13 Calcular $\int_0^{\pi} \sin(x) dx$ pelo algoritmo com polinômios de grau n=2 e n=3, utilizando m=6 subintervalos.

• Para n=2

```
% Os parametros de entrada
a = 0
b = 3.14159
n = 2
m = 6
% fornecem os resultados
Integracao por Newton-Cotes com polinomio de grau 2
                x(i)
                             y(i)
                                        c(i)
       i
              0.00000
                           0.00000
              0.52360
                           0.50000
              1.04720
                           0.86602
                           1.00000
              1.57080
              2.09439
                           0.86603
              2.61799
                           0.50000
              3.14159
                           0.00000
```

©2009 FFCf

2.00086

Integral =

CondErro =

Exemplo de uso do algoritmo cont.

• Para n=3

```
% Os parametros de entrada
a = 0
b = 3.14159
n = 3
m = 6
% fornecem os resultados
Integracao por Newton-Cotes com polinomio de grau 3
                x(i)
                             y(i)
                                        c(i)
              0.00000
                           0.00000
       0
                           0.50000
              0.52360
              1.04720
                           0.86602
              1.57080
                           1.00000
                                          2
              2.09439
                           0.86603
              2.61799
                           0.50000
              3.14159
                           0.00000
                                          1
```

Integral = 2.00201
CondErro = 0

©2009 FFCf

Exemplo de comparação das fórmulas de Newton-Cotes

Exemplo 14 Verificar o erro real cometido no cálculo de $\int_0^5 x \sin(3x) dx$, usando as sete primeiras fórmulas de Newton-Cotes, com m=420

\boxed{n}	$ I_{ ext{ iny exata}} - I_{n} $
1	$1,2690 \times 10^{-4}$
2	$9,4861 \times 10^{-9}$
3	$2,1346,10^{-8}$
4	$3,9775 \times 10^{-12}$
5	$8,5454$ _* 10^{-12}
6	$6,6613 \times 10^{-16}$
7	$2,6645 \times 10^{-15}$

- À medida que o grau n do polinômio interpolador aumenta, o erro diminui.
- Fórmula utilizando grau par é melhor do que a de grau ímpar seguinte.

Quadratura de Gauss-Legendre

- Escolher pontos igualmente espaçados nas fórmulas de Newton-Cotes simplifica os cálculos.
- Sem imposição de espaçamento constante as fórmulas fornecem uma maior exatidão.
- Usando o mesmo número de pontos que Newton-Cotes.

Newton-Cotes X Gauss-Legendre

• Integração de f(x) baseada em polinômio interpolador de grau 1.

Fórmula para dois pontos

• Mudança de variável de x para t, definida no intervalo [-1, 1]

$$x = x(t) = \frac{b-a}{2}t + \frac{a+b}{2}.$$
 (12)

Derivando

$$dx = \frac{b-a}{2}dt,$$

• e definindo

$$F(t) = \frac{b-a}{2}f(x(t)). \tag{13}$$

Integral

$$\int_{a}^{b} f(x) \ dx = \int_{-1}^{1} \frac{2}{b-a} F(t) \frac{b-a}{2} \ dt \rightsquigarrow \int_{a}^{b} f(x) \ dx = \int_{-1}^{1} F(t) \ dt.$$

Fórmula para dois pontos: escolha das abscissas

• Pontos $C[t_1, F(t_1)]$ e $D[t_2, F(t_2)]$.

Fórmula para dois pontos

Integral

$$\int_{-1}^{1} F(t) dt \approx I_2 = A_1 F(t_1) + A_2 F(t_2). \tag{14}$$

• Em vista de (13) e com $x_i = x(t_i)$

$$I_2 = \frac{b-a}{2} (A_1 f(x_1) + A_2 f(x_2)). \tag{15}$$

• Expressão análoga à regra do trapézio

$$\int_{a}^{b} f(x) dx \approx \frac{h}{2}f(a) + \frac{h}{2}f(b).$$

Construção da fórmula de dois pontos

- Encontrar valores de t_1 , t_2 , A_1 e A_2 que tornem a exatidão a maior possível.
- Método construído de modo a ser exato para polinômios de grau até 3.
- Ter-se-á quatro incógnitas $(t_1, t_2, A_1 \in A_2)$ e quatro equações $F(t) = t^k, k = 0, 1, 2, 3.$

• Impondo $I_2 = A_1 F(t_1) + A_2 F(t_2)$ ser igual à integral analítica de F(t):

Construção da fórmula de dois pontos cont.

• para k=0

$$F(t) = 1 \rightarrow \int_{-1}^{1} 1 \, dt = 1 - (-1) = 2 = A_1 1 + A_2 1,$$

 \bullet para k=1

$$F(t) = t \to \int_{-1}^{1} t \, dt = \frac{t^2}{2} \Big|_{-1}^{1} = \frac{1}{2} - \frac{1}{2} = 0 = A_1 t_1 + A_2 t_2,$$

• para k=2

$$F(t) = t^2 \to \int_{-1}^{1} t^2 dt = \frac{t^3}{3} \Big|_{-1}^{1} = \frac{1}{3} - \left(-\frac{1}{3}\right) = \frac{2}{3} = A_1 t_1^2 + A_2 t_2^2 \text{ e}$$

• para k=3

$$F(t) = t^3 \to \int_{-1}^{1} t^3 dt = \frac{t^4}{4} \Big|_{-1}^{1} = \frac{1}{4} - \frac{1}{4} = 0 = A_1 t_1^3 + A_2 t_2^3.$$

Sistema de equações não lineares

• Sistema de equações não lineares de ordem 4

$$A_1 + A_2 = 2,$$

$$A_1t_1 + A_2t_2 = 0,$$

$$A_1t_1^2 + A_2t_2^2 = \frac{2}{3}$$
 e

$$A_1 t_1^3 + A_2 t_2^3 = 0.$$

Solução

$$t_1 = -\frac{1}{\sqrt{3}} \approx -0.5774, \ t_2 = \frac{1}{\sqrt{3}} \approx 0.5774,$$

$$A_1 = 1 e A_2 = 1.$$

Exemplo

Exemplo 15 Calcular $\int_{1}^{5} (2x^3 + 3x^2 + 6x + 1)dx$, usando (15).

• Por (12):
$$x_i = \frac{b-a}{2}t_i + \frac{a+b}{2} = \frac{5-1}{2}t_i + \frac{1+5}{2} \implies x_i = 2t_i + 3.$$

• Dispositivo prático

i	t_i	x_i	$f(x_i)$	A_i
1	$-\frac{1}{\sqrt{3}}$	1,8453	34,8542	1
2	$\frac{1}{\sqrt{3}}$	4,1547	221,1458	1

$$I_2 = \frac{b-a}{2}(A_1f(x_1) + A_2f(x_2)) = \frac{5-1}{2}(1 \times 34,8542 + 1 \times 221,1458) \rightsquigarrow I_2 = 512,0000.$$

• Resultado exato

$$\int_{1}^{5} (2x^{3} + 3x^{2} + 6x + 1)dx = \left(\frac{x^{4}}{2} + x^{3} + 3x^{2} + x\right)\Big|_{1}^{5} = 517, 5 - 5, 5 = 512.$$

Exemplo

Exemplo 16 Calcular $\int_0^{\pi} (e^x + \operatorname{sen}(x) + 2) dx$, usando (15).

• Por (12):
$$x_i = \frac{b-a}{2}t_i + \frac{a+b}{2} = \frac{\pi-0}{2}t_i + \frac{0+\pi}{2} \implies x_i = \frac{\pi}{2}(t_i+1).$$

i	t_i	x_i	$f(x_i)$	A_i
1	$-\frac{1}{\sqrt{3}}$	0,6639	4,5585	1
2	$\frac{1}{\sqrt{3}}$	2,4777	14,5300	1

$$I_2 = \frac{b-a}{2}(A_1f(x_1) + A_2f(x_2)) = \frac{\pi - 0}{2}(1 \times 4,5585 + 1 \times 14,5300) \rightsquigarrow I_2 = 29,9841.$$

- Valor exato aproximadamente 30,4239.
- Erro cometido com 2 pontos: |30,4239 29,9841| = 0,4398.
- Regra do trapézio com 7 pontos: (|30,4239 30,8816| = 0,4577). (exemplo)

Exemplo de áreas entre a função e o polinômio no método de Gauss-Legendre

Exemplo 17 Calcular a soma das áreas S_1 , S_2 e S_3 entre o polinômio de grau 1 construído a partir dos zeros do polinômio de Legendre de grau n=2 e a função $f(x)=x^3-6x^2+11x-5$ obtidas no intervalo [1,4].

Exemplo de cálculo das áreas

• Abscissas x_1 e x_2 a partir dos zeros do polinômio de Legendre de grau 2:

$$t_1 = -\frac{1}{\sqrt{3}} \ e \ t_2 = \frac{1}{\sqrt{3}}.$$

• Por (12)

$$x_1 = \frac{4-1}{2}t_1 + \frac{1+4}{2} = \frac{5-\sqrt{3}}{2} \approx 1,63397,$$

 $x_2 = \frac{4-1}{2}t_2 + \frac{1+4}{2} = \frac{5+\sqrt{3}}{2} \approx 3,36603.$

• Polinômio de grau 1 que passa pelos pontos $(x_1, f(x_1))$ e $(x_2, f(x_2))$

$$p(x) = f(x_1) + \frac{f(x_2) - f(x_1)}{x_2 - x_1}(x - x_1),$$
$$p(x) = 0.5x + 0.5.$$

Exemplo de cálculo das áreas

• Sendo $g(x) = f(x) - p(x) = x^3 - 6x^2 + 10.5x - 5.5$:

$$S_1 = \int_1^{x_1} g(x)dx \approx 0.08702,$$

cont.

$$S_2 = \int_{x_1}^{x_2} g(x)dx \approx -1,29904,$$

$$S_3 = \int_{x_2}^4 g(x)dx \approx 1,21202.$$

- Soma das três áreas é igual a 0.
- Compensação exata das áreas entre o polinômio de grau 1 obtido a partir dos zeros do polinômio de Legendre de grau n=2 e a função polinomial de grau 3.

Fórmula geral

• Determinar os valores dos pesos A_i e das abscissas t_i , i = 1, 2, ..., n

$$\int_{a}^{b} f(x)dx = \int_{-1}^{1} F(t)dt \approx I_{n},$$

$$I_{n} = A_{1}F(t_{1}) + A_{2}F(t_{2}) + \dots + A_{n}F(t_{n}).$$
(16)

- Fórmula exata para polinômios de grau menor ou igual a 2n-1.
- Faz-se

$$F(t) = t^k, \ k = 0, 1, \dots, 2n - 1,$$

• sabendo que

$$\int_{-1}^{1} t^k dt = \begin{cases} 0, & \text{se } k \text{ for impar,} \\ \frac{2}{k+1}, & \text{se } k \text{ for par.} \end{cases}$$

Sistema de equações não lineares

• Impondo que (16) seja exata para a integração de F(t)

$$\sum_{i=1}^{n} A_i F(t_i) = \int_{-1}^{1} F(t) dt.$$

• Sistema de equações não lineares de ordem 2n

$$A_1 + A_2 + A_3 + \dots + A_n = 2,$$

$$A_1t_1 + A_2t_2 + A_3t_3 + \dots + A_nt_n = 0,$$

$$A_1t_1^2 + A_2t_2^2 + A_3t_3^2 + \dots + A_nt_n^2 = \frac{2}{3},$$

$$\dots$$

$$A_1t_1^{2n-1} + A_2t_2^{2n-1} + A_3t_3^{2n-1} + \dots + A_nt_n^{2n-1} = 0,$$

• Solução fornece os n pesos A_i e as n abscissas t_i .

Fórmula geral da quadratura de Gauss-Legendre

• Em vista de (13) e com $x_i = x(t_i)$, (16) é equivalente a

$$I_n = \frac{b-a}{2} \sum_{i=1}^n A_i f(x_i).$$

(17)

Fórmula geral via polinômios de Legendre

• Polinômios de Legendre definidos pela fórmula de recorrência

$$L_n(x) = \frac{(2n-1)xL_{n-1}(x) - (n-1)L_{n-2}(x)}{n},$$
(18)

- com $L_0(x) = 1$ e $L_1(x) = x$.
- Por exemplo,

$$L_2(x) = \frac{3x^2 - 1}{2},$$

$$L_3(x) = \frac{5x^3 - 3x}{2},$$

$$L_4(x) = \frac{35x^4 - 30x^2 + 3}{8} e$$

$$L_5(x) = \frac{63x^5 - 70x^3 + 15x}{8}.$$

Propriedades dos polinômios de Legendre

Propriedades básicas

$$L_n(1) = 1$$
 e $L_n(-1) = (-1)^n$, $n = 0, 1, 2, \dots$ e
$$\int_{-1}^1 L_n(x)Q_k(x) dx = 0, n > k,$$
 (19)

- sendo $Q_k(x)$ um polinômio qualquer de grau k < n.
- Integral chamada de produto escalar das funções $L_n(x)$ e $Q_k(x)$.
- Duas funções são ditas ortogonais se seu produto escalar for nulo.
- Os polinômios $L_n(x)$ e $Q_k(x)$ são ortogonais.

$$\int_{-1}^{1} L_n(x)L_k(x) \, dx \begin{cases} = 0, & \text{se } n \neq k, \\ > 0, & \text{se } n = k. \end{cases}$$

Polinômios de Legendre de grau até 5

• Equações algébricas $L_n(x) = 0$ possuem n raízes reais distintas pertencentes ao intervalo (-1,1) e simétricas em relação à origem.

Fórmula geral via polinômios de Legendre

- Sejam os polinômios $F_k(t) = t^k L_n(t), \ k = 0, 1, 2, \dots, n-1,$
- $L_n(t)$: polinômio de Legendre de grau n.
- Sendo $F_k(t)$ de grau menor ou igual a 2n-1, então (16) é exata

$$\int_{-1}^{1} F_k(t) dt = \sum_{i=1}^{n} A_i F_k(t_i), \ k = 0, 1, 2, \dots, n-1,$$

$$\int_{-1}^{1} t^k L_n(t) dt = \sum_{i=1}^{n} A_i t_i^k L_n(t_i), \ k = 0, 1, 2, \dots, n-1.$$

• Polinômios de Legendre são ortogonais com qualquer polinômio de grau menor

$$\int_{-1}^{1} t^k L_n(t) \ dt = 0, \ n > k.$$

$$\sum_{i=1}^{n} A_i t_i^k L_n(t_i) = 0, \ k = 0, 1, 2, \dots, n-1.$$

• Expressão verdadeira para qualquer valor de A_i se $L_n(t_i) = 0$ para todo i.

Valores de t_i e A_i

- Para maior exatidão na fórmula de quadratura (16) é suficiente que t_i , i = 1, 2, ..., n sejam os zeros do polinômio de Legendre de grau n.
- Conhecidas as abscissas t_i , sistema não linear se reduz a um sistema linear

$$\begin{bmatrix} 1 & 1 & 1 & \cdots & 1 \\ t_1 & t_2 & t_3 & \cdots & t_n \\ t_1^2 & t_2^2 & t_3^2 & \cdots & t_n^2 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ t_1^{n-1} & t_2^{n-1} & t_3^{n-1} & \cdots & t_n^{n-1} \end{bmatrix} \begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ \vdots \\ A_n \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \\ \frac{2}{3} \\ \vdots \\ A_n \end{bmatrix}.$$

• Em vez de resolver este sistema via decomposição LU, pesos A_i obtidos por

$$A_i = \frac{2}{(1 - t_i^2)(L'_n(t_i))^2}, \ i = 1, 2, \dots, n,$$
(20)

• $L'_n(t_i)$: derivada de $L_n(x)$ na abscissa t_i .

Abscissas e pesos para quadratura de Gauss-Legendre

$\lceil n \rceil$	i	t_i	A_i
1	1	0	2
2	2; 1	$\pm 0,57735\ 02691\ 89626$	1
3	2	0	0,88888 88888 88889
	3; 1	$\pm 0,77459 66692 41483$	0,55555 55555 55556
4	3; 2	$\pm 0,33998\ 10435\ 84856$	0,65214 51548 62546
	4; 1	$\pm 0,86113 \ 63115 \ 94053$	0,34785 48451 37454
5	3	0	0,56888 88888 88889
	4; 2	$\pm 0,538469310105683$	0,47862 86704 99366
	5, 1	$\pm 0,906179845938664$	0,23692 68850 56189
6	4; 3	$\pm 0,23861\ 91860\ 83197$	0,46791 39345 72691
	5; 2	$\pm 0,661209386466265$	0,36076 15730 48139
	6; 1	$\pm 0.93246 \ 95142 \ 03152$	0,17132 44923 79170
7	4	0	0,41795 91836 73469
	5; 3	$\pm 0,40584\ 51513\ 77397$	0,38183 00505 05119
	6; 2	$\pm 0,74153\ 11855\ 99394$	0,27970 53914 89277
	7; 1	$\pm 0,949107912342759$	0,12948 49661 68870
8	5; 4	$\pm 0,18343\ 46424\ 95650$	0,36268 37833 78362
	6; 3	$\pm 0,52553 \ 24099 \ 16329$	0,31370 66458 77887
	7; 2	$\pm 0,79666 64774 13627$	0,22238 10344 53374
	8; 1	$\pm 0,96028 98564 97536$	0,10122 85362 90376

Exemplo de ortogonalidade dos polinômios de Legendre

Exemplo 18 Verificar a ortogonalidade dos polinômios $L_2(x)$ e $L_3(x)$ de Legendre.

• Os polinômios serão ortogonais se

$$\int_{-1}^{1} L_2(x) L_3(x) dx = 0.$$

• Assim,

$$\int_{-1}^{1} L_2(x)L_3(x)dx = \int_{-1}^{1} \left(\frac{3x^2 - 1}{2}\right) \left(\frac{5x^3 - 3x}{2}\right) dx,$$

$$\int_{-1}^{1} L_2(x)L_3(x)dx = \int_{-1}^{1} \frac{1}{4} \left(15x^5 - 14x^3 + 3x\right) dx,$$

$$\int_{-1}^{1} L_2(x)L_3(x)dx = \frac{1}{4} \left(\frac{15}{6}x^6 - \frac{7}{2}x^4 + \frac{3}{2}x^2\right) \Big|_{-1}^{1},$$

$$\int_{-1}^{1} L_2(x)L_3(x)dx = 0.$$

Exemplo de cálculo de π

Exemplo 19 Verificar que $\pi = 4 \int_0^1 \frac{1}{1+x^2} dx$ por intermédio de (17) com n=3 e n=4.

- Mudança de variável: $x_i = \frac{b-a}{2}t_i + \frac{a+b}{2} = \frac{1-0}{2}t_i + \frac{0+1}{2} \implies x_i = \frac{1}{2}(t_i+1).$
- \bullet t_i : zeros do polinômio de Legendre de grau n e A_i : n pesos obtidos da tabela.
- Para n=3

i	t_i	x_i	$f(x_i)$	A_i
1	-0,77460	0,11270	0,98746	0,5556
2	0	0,50000	0,80000	0,88889
3	0,77460	0,88730	0,55950	0,55556

• Usando (17) com n=3,

$$I_3 = \frac{b-a}{2} \sum_{i=1}^{3} A_i f(x_i) \to I_3 = 0.78527 \rightsquigarrow 4 \times I_3 = 3.14108 \approx \pi.$$

Exemplo de cálculo de π cont.

- Mudança de variável: $x_i = \frac{b-a}{2}t_i + \frac{a+b}{2} = \frac{1-0}{2}t_i + \frac{0+1}{2} \implies x_i = \frac{1}{2}(t_i+1)$.
- t_i : zeros do polinômio de Legendre de grau n e A_i : n pesos obtidos da tabela.
- Para n=4

i	t_i	x_i	$f(x_i)$	A_i
1	-0.86114	0,06943	0,99520	0,34785
2	-0,33998	0,33001	0,90179	0,65215 .
3	0,33998	0,66999	0,69019	0,65215
4	0,86114	0,93057	0,53592	0,34785

• Utilizando (17) com n = 4,

$$I_4 = \frac{b-a}{2} \sum_{i=1}^4 A_i f(x_i) \to I_4 = 0.78540 \rightsquigarrow 4 \times I_4 = 3.14160 \approx \pi.$$

Exemplo de comparação com regra de 1/3 de Simpson

Exemplo 20 Calcular $\int_0^{\pi} (e^x + \sin(x) + 2) dx$ do Exemplo 11, pela quadratura de Gauss-Legendre com n = 5.

• Mudança de variável

$$x_i = \frac{b-a}{2}t_i + \frac{a+b}{2} = \frac{\pi-0}{2}t_i + \frac{0+\pi}{2} \longrightarrow x_i = \frac{\pi}{2}(t_i+1).$$

i	t_i	x_i	$f(x_i)$	A_i
1	-0,90618	0,14737	3,30562	0,23693
2	-0,53847	0,72497	4,72778	0,47863
3	0	1,57080	7,81050	0,56889
4	0,53847	2,41662	13,87103	0,47863
5	0,90618	2,99422	22,11662	0,23693

Exemplo de comparação com regra de 1/3 de Simpson cont.

• Usando (17) com n = 5,

$$I_5 = \frac{b-a}{2} \sum_{i=1}^5 A_i f(x_i) \to I_5 = 30,42406.$$

- Resultado exato $\approx 30,42388$.
- Erro da quadratura de Gauss-Legendre com n=5

$$|30,42388 - 30,42406| = 0,00018.$$

• Erro da regra do 1/3 de Simpson com m=6

$$|30,42388 - 30,43369| = 0,00981$$
. (exemplo)

Erro de integração da fórmula de Gauss-Legendre

• Erro de integração da fórmula de Gauss-Legendre

$$E_n = \frac{(b-a)^{2n+1}(n!)^4}{((2n)!)^3(2n+1)} f^{2n}(\theta), \ a < \theta < b, \tag{21}$$

- θ : abscissa na qual a derivada $f^{2n}(x)$ apresenta o maior valor em módulo no intervalo [a, b].
- Cota máxima do erro de integração da fórmula de Gauss-Legendre.

Exemplo de erro de integração

Exemplo 21 Calcular
$$\int_0^{\pi} \left(\frac{x^4}{4} + x^2 + \operatorname{sen}(x) \right) dx$$
 usando o método de

Gauss-Legendre com n=2 e o respectivo erro de integração.

• Mudança de variável

$$x_i = \frac{b-a}{2}t_i + \frac{a+b}{2} = \frac{\pi-0}{2}t_i + \frac{0+\pi}{2} \longrightarrow x_i = \frac{\pi}{2}(t_i+1).$$

• Para n=2

i	t_i	x_i	$f(x_i)$	A_i
1	-0,57735	0,66390	1,10552	1.
2	0,57735	2,47770	16,17701	1

$$I_2 = \frac{b-a}{2} \sum_{i=1}^{2} A_i f(x_i) \rightsquigarrow I_2 = 27,14733.$$

Exemplo de erro de integração cont.

Cálculo do erro máximo

$$f(x) = \frac{x^4}{4} + x^2 + \operatorname{sen}(x), \ f'(x) = x^3 + 2x + \cos(x),$$
$$f''(x) = 3x^2 + 2 - \operatorname{sen}(x), f'''(x) = 6x - \cos(x) \text{ e}$$
$$f^{iv}(x) = 6 + \operatorname{sen}(x) \iff \theta = \frac{\pi}{2}.$$

• Por (21),

$$E_n = \frac{(b-a)^{2n+1}(n!)^4}{((2n)!)^3(2n+1)} f^{2n}(\theta) \to E_2 = \frac{(\pi-0)^5(2!)^4}{(4!)^3(5)} \left(6 + \operatorname{sen}\left(\frac{\pi}{2}\right)\right) \rightsquigarrow$$

$$E_2 = 0.49587.$$

- Valor exato da integral: $\approx 27,63641$.
- Erro real: $|27,63641 27,14733| = 0,48908 < E_2$.

Algoritmo para cálculo das abscissas e pesos para as fórmulas de Gauss-Legendre

```
Algoritmo PesAbsGL
{ Objetivo: Calcular pesos e abscissas para a fórmula de Gauss-Legendre }
parâmetros de entrada n { número de pontos }
parâmetros de saída A, T, CondErro
  { Pesos, abscissas e condição de erro, sendo }
    CondErro = 0 se não houve erro (n \ge 1) e CondErro = 1 se n < 1
  se n < 1 então CondErro \leftarrow 1, abandone, fimse
  CondErro \leftarrow 0; pi \leftarrow 3,14159265358979323846; m \leftarrow \text{trunca}(0,5*(n+1))
  para i \leftarrow 1 até m faca
    z \leftarrow \cos(pi * (i - 0.25)/(n + 0.5))
    repita
      p1 \leftarrow 1; p2 \leftarrow 0
      para i \leftarrow 1 até n faça
        p3 \leftarrow p2; p2 \leftarrow p1
        { polinômio de Legendre no ponto z }
                                                                                       ||←
        p1 \leftarrow ((2 * j - 1) * z * p2 - (j - 1) * p3)/j
      fimpara
      { derivada do polinômio de Legendre no ponto z }
      pp \leftarrow n * (z * p1 - p2)/(z^2 - 1); z1 \leftarrow z
      { método de Newton para calcular os zeros do polinômio }
      z \leftarrow z1 - p1/pp
      se abs(z - z\dot{1}) < 10^{-15} então interrompa, fimse
    fimrepita
    T(m+1-i) \leftarrow z  { abscissa }
    A(m+1-i) \leftarrow 2/((1-z^2)*pp^2) \{ \text{ peso } \}
    { somente as raízes não negativas são calculadas devido à simetria }
  fimpara
fimalgoritmo
```

Exemplo de uso do algoritmo

Exemplo 22 Calcular os pesos e as abscissas para a fórmula de Gauss-Legendre com n=5, utilizando o algoritmo.

```
% O parametro de entrada

n = 5

% produz os resultados

A = 0.5688888888889 0.47862867049937 0.23692688505619

T = 0 0.53846931010568 0.90617984593866

CondErro = 0
```

©2009 FFCf

 \parallel

Algoritmo para integração numérica pelo método de Gauss-Legendre

```
Algoritmo Gauss-Legendre
{ Objetivo: Integrar uma função pelo método de Gauss-Legendre }
parâmetros de entrada a, b, n
  { limite inferior, limite superior, número de pontos }
parâmetros de saída Integral, CondErro
    valor da integral e condição de erro, sendo }
    CondErro = 0 se não houve erro (n \ge 1) e CondErro = 1 se n < 1
  Integral \leftarrow 0
  { cálculo dos pesos e abscissas }
  [Avet, Tvet, CondErro] \leftarrow \mathbf{PesAbsGL}(n) (ver algoritmo)
  se CondErro \neq 0 então abandone, fimse
  { cálculo da integral }
  e1 \leftarrow (b-a)/2
  e2 \leftarrow (a+b)/2
  se resto(n, 2) = 0 então c1 \leftarrow 1; c2 \leftarrow 0.5 senão c1 \leftarrow 0; c2 \leftarrow 1, fimse
  para i \leftarrow 1 até n faça
    k \leftarrow \text{trunca}(i - 0.5 * (n + 1) + \text{sinal}(i - 0.5 * (n + c1)) * c2)
    t \leftarrow \operatorname{sinal}(k) * Tvet(\operatorname{abs}(k))
    x \leftarrow e1 * t + e2
    y \leftarrow f(x) { avaliar a função integrando em x }
    c \leftarrow Avet(abs(k))
    Integral \leftarrow Integral + v * c
    escreva i, t, x, y, c
  fimpara
  Integral \leftarrow e1 * Integral
fimalgoritmo
```

©2009 FFCf

Complexidade: integração pela quadratura de Gauss-Legendre

Operações	Complexidade
adições	7n+2
multiplicações	6n + 1
divisões	2

• n: número de pontos.

Exemplo de uso do algoritmo

Exemplo 23 Calcular $\int_0^{\pi} \sin(x) dx$ pelo algoritmo com n = 5 e n = 6.

• Para n=5

```
% Os parametros de entrada
a = 0
b = 3.14159
n = 5
% produzem os resultados
   Integracao numerica pelo metodo de Gauss-Legendre
         t(i)
                                 f(x(i))
                                              A(i)
                      x(i)
      -0.90618
                    0.14737
                                 0.14684
                                            0.23693
      -0.53847
                0.72497
                                 0.66311
                                           0.47863
       0.00000
                                 1.00000
                1.57080
                                            0.56889
   4
       0.53847
                    2.41662
                                 0.66312
                                            0.47863
       0.90618
                    2.99422
                                 0.14684
                                            0.23693
```

Integral = 2.0000001103 CondErro =

Exemplo de uso do algoritmo com $n=6\,$

• Para n=6

```
% Os parametros de entrada
a = 0
b = 3.14159
n = 6
% produzem os resultados
   Integracao numerica pelo metodo de Gauss-Legendre
          t(i)
                       x(i)
                                  f(x(i))
                                               A(i)
   i
       -0.93247
                     0.10608
                                  0.10588
                                             0.17132
       -0.66121
                     0.53217
                                  0.50740
                                             0.36076
       -0.23862
                     1.19597
                                  0.93057
                                             0.46791
       0.23862
                    1.94562
                                  0.93057
                                             0.46791
       0.66121
                     2.60942
                                  0.50741
                                             0.36076
   6
        0.93247
                     3.03551
                                  0.10588
                                             0.17132
```

Integral = 1.999999995
CondErro = 0

©2009 FFCf 83

% Os parametros de entrada

Exemplo de uso do algoritmo com n=10

```
Exemplo 24 Verificar que \pi = \int_0^1 \frac{4}{1+x^2} dx com n = 10 utilizando o algoritmo.
```

```
a = 0
n = 10
% produzem os resultados
   Integracao numerica pelo metodo de Gauss-Legendre
          t(i)
                       x(i)
                                   f(x(i))
                                                A(i)
       -0.97391
                     0.01305
                                   3.99932
                                              0.06667
       -0.86506
                     0.06747
                                   3.98187
                                              0.14945
       -0.67941
                                              0.21909
                     0.16030
                                   3.89980
       -0.43340
                     0.28330
                                   3.70281
                                              0.26927
       -0.14887
                                   3.38666
                                              0.29552
                     0.42556
       0.14887
                     0.57444
                                   3.00757
                                              0.29552
        0.43340
                     0.71670
                                   2.64261
                                              0.26927
        0.67941
   8
                     0.83970
                                   2.34590
                                              0.21909
        0.86506
   9
                     0.93253
                                   2.13948
                                              0.14945
  10
        0.97391
                     0.98695
                                   2.02626
                                              0.06667
```

3.1415926536

©2009 FFCf

Integral =
CondErro =

Comparação dos métodos de integração simples

$$\int_0^{\pi} |\sin(x)| \, dx = -\cos(x)|_0^{\pi} = 2.$$

Comparação entre Newton-Cotes e Gauss-Legendre

Grau do	Número de	Newton-Cotes	Número de	Gauss-Legendre
polinômio	subintervalos		pontos	
1	1	$2,000 \cdot 10^{0}$	2	$6,418 \times 10^{-2}$
2	2	$9,440 \times 10^{-2}$	3	$1,389 \times 10^{-3}$
3	3	$4,052 \times 10^{-2}$	4	$1,577 \cdot 10^{-5}$
4	4	$1,429 \times 10^{-3}$	5	$1,103.10^{-7}$
5	5	$7,969 \times 10^{-4}$	6	$ 5,227,10^{-10} $
6	6	$1,781 \times 10^{-5}$	7	$ 1,791,10^{-12} $
7	7	$1,087 \times 10^{-5}$	8	$ 4,441 \times 10^{-15} $
8	8	$1,647 \times 10^{-7}$	9	$ 4,441 \times 10^{-16} $

- Utilizadas regras simples de Newton-Cotes.
- ullet Número de pontos de Gauss-Legendre igual a m+1, sendo m o número de subintervalos de Newton-Cotes.

Comparação dos métodos de integração simples

$$\int_0^5 x \sin(3x) \, dx = \frac{\sin(3x)}{9} - \frac{x \cos(3x)}{3} \Big|_0^5 \approx 1,3384.$$

Comparação entre a regra do 1/3 de Simpson e Gauss-Legendre

1/3 de Simpson Gauss-Legendre $9,188 \times 10^{0}$ $8,819 \times 10^{0}$ $5,269 \times 10^{0}$ $4,990 \times 10^{-1}$ $3,629 \times 10^{-3}$ $5,221 \times 10^{-1}$ 6 $5,452 \times 10^{-6}$ $1,093 \times 10^{-1}$ $9,417 \times 10^{-10}$ $3,799 \times 10^{-2}$ 10 $5,250 \times 10^{-12}$ $1,688 \times 10^{-2}$ $8,660 \times 10^{-15}$ $8,689 \times 10^{-3}$ 14 $1,110 \times 10^{-15}$ $4,944 \times 10^{-3}$ 16

método – exato

$$\log_{10}(|\text{m\'etodo} - \text{exato}|) \times m$$

Integração de uma função não suave

$$\int_0^5 x \sin(15x) \ dx = \frac{\sin(15x)}{225} - \frac{x \cos(15x)}{15} \Big|_0^5 \approx -0.3090.$$

1/3 de Simpson e Gauss-Legendre.

Integração numérica iterativa

- Fórmulas de integração calculam com grau crescente de exatidão à medida que aumenta o número de pontos.
- Principalmente a quadratura de Gauss-Legendre.
- Integração numérica iterativa:
 - inicialmente, a integral é calculada com n = 8 pontos;
 - depois calculada com n = 13 pontos;
 - se a diferença relativa entre os dois valores for menor ou igual a uma dada tolerância então o processo termina;
 - senão valor de n é incrementado, seguindo uma seqüência de Fibonacci;
 - a integral é calculada novamente;
 - processo repete até que a diferença relativa entre os dois últimos valores da integral seja menor ou igual à tolerância predefinida.

Integração iterativa pelo método de Gauss-Legendre

```
Algoritmo Gauss-Legendre_iterativo
{ Objetivo: Integrar uma função iterativamente pelo método de Gauss-Legendre }
parâmetros de entrada a, b, Toler, IterMax
  { limite inferior, limite superior, tolerância e número máximo de iterações }
parâmetros de saída Integral, Delta, CondErro
   valor da integral, menor diferença relativa obtida e condição de erro, sendo }
    CondErro = 0 se Delta < Toler e CondErro = 1 se Delta > Toler }
  Iter \leftarrow 1; n1 \leftarrow 5; n2 \leftarrow 8
  [Int, CondErro] \leftarrow \mathbf{Gauss-Legendre}(a, b, n2) (ver algoritmo)
  escreva lter, n2, lnt
  { sucessivos cálculos das integrais }
  repita
    lter \leftarrow lter + 1; n \leftarrow n1 + n2
                                                                                             ||←
    [Integral, CondErro] \leftarrow Gauss-Legendre(a, b, n)
    se Integral \neq 0 então
      Delta \leftarrow abs((Integral - Int)/Integral)
    senão
      Delta \leftarrow abs(Integral - Int)
    fimse
    escreva Iter, n, Integral, Delta
    se Delta \leq Toler ou lter = lterMax então interrompa, fimse
    Int \leftarrow Integral; n1 \leftarrow n2; n2 \leftarrow n
  fimrepita
  { teste de convergência }
  se Delta \leq Toler então CondErro \leftarrow 0 senão CondErro \leftarrow 1, fimse
fimalgoritmo
```

©2009 FFCf 91

% Os parametros de entrada

a = 0

Exemplo de uso do algoritmo

```
Exemplo 25 Calcular \int_0^{20} x \sin(15x) dx utilizando o algoritmo, com uma tolerância de 10^{-10} e com, no máximo, 10 iterações (ver figura).
```

```
b = 20
Toler = 1e-10
IterMax = 10
% produzem os resultados
   Integracao iterativa pelo metodo de Gauss-Legendre
     Iter
                                      Dif. relativa
                       Integral
       1
                    32.7305341124
                    24.9187432521
             13
                                        3.135e-01
                   -16.8767733573
             21
                                        2.477e+00
                                        1.341e+00
             34
                    49.5529883366
             55
                   -31.2365609799
                                        2.586e+00
                     0.0247820806
                                        1.261e+03
             89
            144
                     0.0250187998
                                        9.462e-03
            233
                     0.0250187997
                                        1.006e-11
```

Integral = 2.5018799750e-02

Integração dupla pelas fórmulas de Newton-Cotes

• Cálculo de integral dupla definida

$$I = \int_a^b \int_c^d f(x, y) \, dy \, dx. \tag{22}$$

- Função integrando f(x,y) aproximada por polinômio interpolador.
- Integral deste polinômio é obtida analiticamente.
- Fazendo

$$G(x) = \int_{c}^{d} f(x, y) dy$$

$$I = \int_{a}^{b} G(x) dx.$$
(23)

• Cálculo de uma integral dupla consiste na solução de duas integrais simples.

Fórmulas simples

- Para resolver uma integral simples aplica-se qualquer uma das fórmulas de Newton-Cotes.
- Utilizando a regra do 1/3 de Simpson em (23),

$$I = \int_{a}^{b} G(x) dx = \frac{1}{3} h_x (G(x_0) + 4G(x_1) + G(x_2)), \tag{24}$$

$$I = \frac{1}{3}h_x \sum_{i=0}^{2} c_{x_i} G(x_i),$$

• onde $h_x = (b-a)/2$, $c_{x_0} = c_{x_2} = 1$, $c_{x_1} = 4$ e

$$G(x_i) = \int_c^d f(x_i, y) dy, i = 0, 1, 2.$$

Fórmulas simples

cont.

• Para o cálculo de $G(x_i)$ utiliza-se qualquer uma das fórmulas de Newton-Cotes, por exemplo, a regra dos 3/8 de Simpson

$$G(x_i) = \int_c^d f(x_i, y) dy$$

$$= \frac{3}{8} h_y (f(x_i, y_0) + 3f(x_i, y_1) + 3f(x_i, y_2) + f(x_i, y_3)),$$

$$G(x_i) = \frac{3}{8} h_y \sum_{j=0}^3 c_{y_j} f(x_i, y_j),$$
(25)

- onde $h_y = (d-c)/3$, $c_{y_0} = c_{y_3} = 1$, $c_{y_1} = c_{y_2} = 3$ e
- $f(x_i, y_j)$: função integrando no ponto (x_i, y_j) .
- Levando os valores de $G(x_i)$ dados por (25), em (24)

$$I = \frac{1}{3}h_x \frac{3}{8}h_y \sum_{i=0}^{2} \sum_{j=0}^{3} c_{x_i} c_{y_j} f(x_i, y_j).$$
 (26)

Exemplo de integração dupla

Exemplo 26 Calcular $I = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{4}} \operatorname{sen}(x+y) \ dy \ dx$.

- Fazendo $G(x) = \int_0^{\frac{\pi}{4}} \operatorname{sen}(x+y) dy \to I = \int_0^{\frac{\pi}{2}} G(x) dx$.
- Utilizando a regra do 1/3 de Simpson em x,

$$I = \frac{1}{3}h_x(G(x_0) + 4G(x_1) + G(x_2)), \text{ com } h_x = \frac{b-a}{2} = \frac{\pi}{4}.$$

• Cálculo de $G(x_i) = \int_0^{\frac{n}{4}} \operatorname{sen}(x_i + y) \, dy, \ i = 0, 1, 2 e \ x_i = a + i h_x = i \frac{\pi}{4},$ utilizando a regra dos 3/8 de Simpson

$$G(x_i) = \frac{3}{8}h_y(\operatorname{sen}(x_i + y_0) + 3\operatorname{sen}(x_i + y_1) + 3\operatorname{sen}(x_i + y_2) + \operatorname{sen}(x_i + y_3)),$$

• com

$$h_y = \frac{d-c}{3} = \frac{\pi}{12}$$
 e $y_j = c + jh_y = j\frac{\pi}{12}$.

Cálculo de $G(x_i)$

 $Para x_0 = 0 \times \frac{\pi}{4} = 0$

$$G(x_0) = \frac{3\pi}{812} (\operatorname{sen}(0+y_0) + 3\operatorname{sen}(0+y_1) + 3\operatorname{sen}(0+y_2) + \operatorname{sen}(0+y_3)),$$

$$G(x_0) = \frac{\pi}{32} \left(\operatorname{sen}(0) + 3\operatorname{sen}\left(\frac{\pi}{12}\right) + 3\operatorname{sen}\left(\frac{\pi}{6}\right) + \operatorname{sen}\left(\frac{\pi}{4}\right) \right) \rightsquigarrow$$

$$G(x_0) = 0,2929.$$

• Para $x_1 = 1 \times \frac{\pi}{4} = \frac{\pi}{4}$

$$G(x_1) = \frac{3\pi}{812} \left(\operatorname{sen} \left(\frac{\pi}{4} + y_0 \right) + 3\operatorname{sen} \left(\frac{\pi}{4} + y_1 \right) + 3\operatorname{sen} \left(\frac{\pi}{4} + y_2 \right) + \operatorname{sen} \left(\frac{\pi}{4} + y_3 \right) \right),$$

$$G(x_1) = \frac{\pi}{32} \left(\operatorname{sen} \left(\frac{\pi}{4} \right) + 3\operatorname{sen} \left(\frac{\pi}{4} + \frac{\pi}{12} \right) + 3\operatorname{sen} \left(\frac{\pi}{4} + \frac{\pi}{6} \right) + \operatorname{sen} \left(\frac{\pi}{4} + \frac{\pi}{4} \right) \right) \rightsquigarrow$$

$$G(x_1) = 0,7071.$$

Cálculo de $G(x_i)$

cont.

• Para
$$x_2 = 2 \times \frac{\pi}{4} = \frac{\pi}{2}$$

$$G(x_2) = \frac{3\pi}{812} \left(\operatorname{sen} \left(\frac{\pi}{2} + y_0 \right) + 3\operatorname{sen} \left(\frac{\pi}{2} + y_1 \right) + 3\operatorname{sen} \left(\frac{\pi}{2} + y_2 \right) + \operatorname{sen} \left(\frac{\pi}{2} + y_3 \right) \right),$$

$$G(x_2) = \frac{\pi}{32} \left(\operatorname{sen} \left(\frac{\pi}{2} \right) + 3\operatorname{sen} \left(\frac{\pi}{2} + \frac{\pi}{12} \right) + 3\operatorname{sen} \left(\frac{\pi}{2} + \frac{\pi}{6} \right) + \operatorname{sen} \left(\frac{\pi}{2} + \frac{\pi}{4} \right) \right) \rightsquigarrow$$

$$G(x_2) = 0,7071.$$

• Considerando que

$$I = \frac{1}{3}h_x(G(x_0) + 4G(x_1) + G(x_2)),$$

$$I = \frac{1\pi}{34}(0.2929 + 4 \times 0.7071 + 0.7071) \rightsquigarrow$$

$$I = 1.0023.$$

Comparação com valor analítico

$$I = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{4}} \operatorname{sen}(x+y) \, dy \, dx = -\int_0^{\frac{\pi}{2}} \cos(x+y) \Big|_0^{\frac{\pi}{4}} dx,$$

$$I = -\int_0^{\frac{\pi}{2}} \left(\cos\left(x + \frac{\pi}{4}\right) - \cos(x + 0)\right) dx = -\left[\left.\sin\left(x + \frac{\pi}{4}\right) - \sin(x)\right]\right|_0^{\frac{\pi}{2}},$$

$$I = -\left(\operatorname{sen}\left(\frac{\pi}{2} + \frac{\pi}{4}\right) - \operatorname{sen}\left(\frac{\pi}{2}\right)\right) + \left(\operatorname{sen}\left(0 + \frac{\pi}{4}\right) - \operatorname{sen}(0)\right) \rightsquigarrow I = 1.$$

Dispositivo prático para integração dupla por Newton-Cotes

- Regra do 1/3 de Simpson utilizada para integração em x.
- Regra dos 3/8 em y.

		j	0	1	2	3
		y_{j}	c	$c + h_y$	$c + 2h_y$	$c+3h_y$
i	x_i	$c_{x_i} \backslash c_{y_j}$	1	3	3	1
0	a	1	$\boxed{c_{x_0} \times c_{y_0}}$	$c_{x_0} \times c_{y_1}$	$\boxed{c_{x_0} \times c_{y_2}}$	$\boxed{c_{x_0} \times c_{y_3}}$
			$f(x_0, y_0)$	$f(x_0,y_1)$	$f(x_0,y_2)$	$f(x_0,y_3)$
1	$a+h_x$	4	$\boxed{c_{x_1} \times c_{y_0}}$	$\boxed{c_{x_1} \times c_{y_1}}$	$\boxed{c_{x_1} \times c_{y_2}}$	$\boxed{c_{x_1} \times c_{y_3}}$
			$f(x_1, y_0)$	$f(x_1,y_1)$	$f(x_1,y_2)$	$f(x_1,y_3)$
$\frac{1}{2}$	$a+2h_x$	1	$\boxed{c_{x_2} \times c_{y_0}}$	$\boxed{c_{x_2} \times c_{y_1}}$	$\boxed{c_{x_2} \times c_{y_2}}$	$\boxed{c_{x_2} \times c_{y_3}}$
			$f(x_2,y_0)$	$f(x_2,y_1)$	$f(x_2,y_2)$	$f(x_2,y_3)$

$$S = \sum_{i=0}^{2} \sum_{j=0}^{3} c_{x_i} c_{y_j} f(x_i, y_j)$$
, então por (26), tem-se $I = \frac{1}{3} h_x \frac{3}{8} h_y S$,

• S: soma obtida, tomando-se todas as células da tabela, do produto $c_{x_i} \times c_{y_j}$ dos coeficientes de Cotes pelo valor da função $f(x_i, y_j)$.

Exemplo do dispositivo prático

Exemplo 27 Calcular $I = \int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{4}} \sin(x+y) dy dx$ usando o dispositivo prático.

$$h_x = \frac{b-a}{2} = \frac{\pi/2 - 0}{2} \to h_x = \frac{\pi}{4} e \ x_i = a + ih_x = 0 + i\frac{\pi}{4} \to x_i = i\frac{\pi}{4},$$

$$h_y = \frac{d-c}{3} = \frac{\pi/4-0}{3} \to h_y = \frac{\pi}{12} \text{ e } y_j = c+jh_y = 0+j\frac{\pi}{12} \to y_j = j\frac{\pi}{12}.$$

		j	0	1	2	3
		y_{j}	0	$\pi/12$	$\pi/6$	$\pi/4$
i	x_i	$c_{x_i} \backslash c_{y_j}$	1	3	3	1
0	0	1	1	3	3	1
			0,0000	0,2588	0,5000	0,7071
1	$\pi/4$	4	4	12	12	4
			0,7071	0,8660	0,9659	1,0000
2	$\pi/2$	1	1	3	3	1
			1,0000	0,9659	0,8660	0,7071

$$I = \frac{1}{3}h_x \frac{3}{8}h_y S = \frac{1\pi 3\pi}{34812}38,9975 \rightsquigarrow I = 1,0023.$$

Fórmulas compostas

- Melhorar a exatidão da integral: subdividir o intervalo [a, b] em m_x subintervalos iguais.
- m_x : múltiplo do grau n_x do polinômio interpolador utilizado para obter a regra de integração em x.
- Regra do 1/3 de Simpson: m_x deve ser múltiplo de 2 (= n_x).
- Aplicando (24) a cada 3 (= $n_x + 1$) pontos,

$$I = \int_{a}^{b} G(x) dx$$

$$= \frac{1}{3} h_{x}(G(x_{0}) + 4G(x_{1}) + G(x_{2})) + \frac{1}{3} h_{x}(G(x_{2}) + 4G(x_{3}) + G(x_{4})) + \dots + \frac{1}{3} h_{x}(G(x_{m_{x}-2}) + 4G(x_{m_{x}-1}) + G(x_{m_{x}})),$$

$$I = \frac{1}{3} h_{x}(G(x_{0}) + 4G(x_{1}) + 2G(x_{2}) + 4G(x_{3}) + 2G(x_{4}) + \dots + 2G(x_{m_{x}-2}) + 4G(x_{m_{x}-1}) + G(x_{m_{x}})) \sim$$

Fórmulas compostas cont.

$$I = \frac{1}{3}h_x \sum_{i=0}^{m_x} c_{x_i} G(x_i), \tag{27}$$

- onde $c_{x_0} = c_{x_{m_x}} = 1$, $c_{x_i} = 4$ para todo i impar, $c_{x_i} = 2$ para todo i par e $h_x = (b-a)/m_x$.
- Cálculo de $G(x_i)$, $i = 0, 1, \ldots, m_x$: pode ser utilizada qualquer uma das fórmulas de Newton-Cotes.
- Para a regra dos 3/8 de Simpson

$$G(x_i) = \int_c^d f(x_i, y) dy = \frac{3}{8} h_y (f(x_i, y_0) + 3f(x_i, y_1) + 3f(x_i, y_2) + f(x_i, y_3)).$$
(28)

ullet Para uma melhor exatidão: subdivide-se o intervalo [c,d] em m_y subintervalos iguais.

Fórmulas compostas cont.

- m_y : múltiplo do grau n_y do polinômio interpolador usado para construir a regra de integração em y.
- No caso em questão múltiplo de $3 (= n_y)$.
- Aplicando-se (28) a cada 4 (= $n_y + 1$) pontos,

$$G(x_i) = \int_c^d f(x_i, y) dy$$

$$= \frac{3}{8} h_y(f(x_i, y_0) + 3f(x_i, y_1) + 3f(x_i, y_2) + f(x_i, y_3))$$

$$+ \frac{3}{8} h_y(f(x_i, y_3) + 3f(x_i, y_4) + 3f(x_i, y_5) + f(x_i, y_6)) + \dots$$

$$+ \frac{3}{8} h_y(f(x_i, y_{m_y-3}) + 3f(x_i, y_{m_y-2}) + 3f(x_i, y_{m_y-1}) + f(x_i, y_{m_y})),$$

Fórmulas compostas

cont

$$G(x_i) = \frac{3}{8}h_y(f(x_i, y_0) + 3f(x_i, y_1) + 3f(x_i, y_2) + 2f(x_i, y_3) + 3f(x_i, y_4) + 3f(x_i, y_5) + 2f(x_i, y_6) + \dots + 2f(x_i, y_{m_y-3}) + 3f(x_i, y_{m_y-2}) + 3f(x_i, y_{m_y-1}) + f(x_i, y_{m_y})),$$

$$G(x_i) = \frac{3}{8}h_y \sum_{j=0}^{m_y} c_{y_j} f(x_i, y_j), \ i = 0, 1, 2, \dots, m_x,$$

- onde $c_{y_0} = c_{y_{my}} = 1$, e para os j's restantes, $c_{y_j} = 2$ se j for múltiplo de 3 e $c_{y_j} = 3$ se j não for múltiplo de 3 e $h_y = (d c)/m_y$.
- Levando os valores de $G(x_i)$ em (27),

$$I = \frac{1}{3}h_x \sum_{i=0}^{m_x} c_{x_i} \left(\frac{3}{8}h_y \sum_{j=0}^{m_y} c_{y_j} f(x_i, y_j) \right) \rightsquigarrow I = \frac{1}{3}h_x \frac{3}{8}h_y \sum_{i=0}^{m_x} \sum_{j=0}^{m_y} c_{x_i} c_{y_j} f(x_i, y_j).$$

Equação geral da integração dupla por Newton-Cotes

• Generalizando para qualquer grau do polinômio interpolador

$$I = \frac{n_x}{d_{n_x}} h_x \frac{n_y}{d_{n_y}} h_y \sum_{i=0}^{m_x} \sum_{j=0}^{m_y} c_{x_i} c_{y_j} f(x_i, y_j),$$
(29)

• sendo

$$h_x = \frac{b-a}{m_x}$$
 e $h_y = \frac{d-c}{m_y}$.

• Valores de d_{n_x} , d_{n_y} , c_{x_i} e c_{y_i} , para $n=1,2,\ldots,8$, são dados na tabela.

Algoritmo para integração dupla pelas fórmulas de Newton-Cotes

```
Algoritmo Newton-Cotes-Dupla
{ Objetivo: Cálculo de integral dupla pelas fórmulas de Newton-Cotes }
parâmetros de entrada ax, bx, nx, mx, ay, by, ny, my
      limite inferior em x, limite superior em x, \}
      grau do polinômio em x, número de subintervalos em x, \}
      limite inferior em y, limite superior em y, \}
      grau do polinômio em y, número de subintervalos em y }
parâmetros de saída Integral, CondErro
      valor da integral e condição de erro, sendo }
      CondErro = 0 se não houve erro de consistência dos parâmetros dados,
      CondErro = 1 se (n < 1 \text{ ou } n > 8), \}
      CondErro = 2 se resto(m, n) \neq 0 e
      CondErro = 3 se ambas as condições ocorreram.
    d(1) \leftarrow 2; d(2) \leftarrow 6; d(3) \leftarrow 8; d(4) \leftarrow 90; d(5) \leftarrow 288; d(6) \leftarrow 840
    d(7) \leftarrow 17280; d(8) \leftarrow 28350
    c(1) \leftarrow 1; c(2) \leftarrow 1; c(3) \leftarrow 4; c(4) \leftarrow 1; c(5) \leftarrow 3; c(6) \leftarrow 7; c(7) \leftarrow 32
    c(8) \leftarrow 12; \ c(9) \leftarrow 19; \ c(10) \leftarrow 75; \ c(11) \leftarrow 50; \ c(12) \leftarrow 41; \ c(13) \leftarrow 216
    c(14) \leftarrow 27; c(15) \leftarrow 272; c(16) \leftarrow 751; c(17) \leftarrow 3577; c(18) \leftarrow 1323
    c(19) \leftarrow 2989; c(20) \leftarrow 989; c(21) \leftarrow 5888; c(22) \leftarrow -928; c(23) \leftarrow 10496
    c(24) \leftarrow -4540
    { consistência dos parâmetros }
    CondErro \leftarrow 0; Integral \leftarrow 0
    se nx < 1 ou nx > 8 ou ny < 1 ou ny > 8 então CondErro \leftarrow CondErro +1, fim se
    se resto(mx, nx) \neq 0 ou resto(my, ny) \neq 0 então CondErro \leftarrow CondErro +2, fim se
    se CondErro \neq 0 então abandone, fim se
    { cálculo da integral }
    px \leftarrow \text{trunca}(0.25 * (nx * (nx + 2) + \text{resto}(nx, 2)))
    pv \leftarrow \text{trunca}(0.25 * (nv * (nv + 2) + \text{resto}(nv, 2)))
    hx \leftarrow (bx - ax)/mx; hy \leftarrow (by - ay)/my
    para i \leftarrow 0 até mx faça
        x \leftarrow ax + i * hx; jx \leftarrow px + \text{trunca}(0.5 * nx - \text{abs}(\text{resto}(i, nx) - 0.5 * nx))
        kx \leftarrow 1 + \text{trunca}((nx - \text{resto}(i, nx))/nx) - \text{trunca}((mx - \text{resto}(i, mx))/mx)
        para i \leftarrow 0 até my faça
            y \leftarrow ay + j * hy; jy \leftarrow py + trunca(0.5 * ny - abs(resto(j, ny) - 0.5 * ny))
            ky \leftarrow 1 + \operatorname{trunca}((ny - \operatorname{resto}(j, ny))/ny) - \operatorname{trunca}((my - \operatorname{resto}(j, my))/my)
            fxy \leftarrow f(x,y) { avaliar a função integrando em (x,y) }
            Integral \leftarrow Integral + fxv * c(ix) * kx * c(iy) * ky
            se j = 0 então escreva i, x, c(jx) * kx, j, y, c(jy) * ky, fxy
            senão escreva i, y, c(iy) * ky, fxy
            fimse
        fim para
    fim para
    Integral \leftarrow nx * ny * hx * hy/(d(nx) * d(ny)) * Integral
fim algoritmo
```

||←

Exemplo de integração dupla

```
Exemplo 28 Calcular \int_{0}^{5} \int_{0}^{1} \sin(x^{2} + y^{2}) dy dx, utilizando o algoritmo, com n_{x} = 3 (regra dos
3/8), m_x = 3 subintervalos em x, n_y = 2 (regra do 1/3) e m_y = 4 subintervalos em y.
% Os parametros de entrada
ax = 2
bx = 5
nx = 3
mx = 3
ay = 0
bv = 1
ny = 2
mv = 4
% fornecem os resultados
               Integracao dupla por Newton-Cotes
 i
         x(i)
                   c(i)
                                             c(j) f(x(i),y(j))
                                  y(j)
  0
      2.00000e+00
                                                  -7.56802e-01
                                0.00000e+00
                                                  -7.96151e-01
                               2.50000e-01
                               5.00000e-01
                                                  -8.94989e-01
                               7.50000e-01
                                                  -9.88788e-01
                               1.00000e+00
                                                  -9.58924e-01
                                                   4.12118e-01
      3.00000e+00
                               0.00000e+00
                               2.50000e-01
                                                   3.54405e-01
                                                  1.73889e-01
                               5.00000e-01
                               7.50000e-01
                                                  -1.37287e-01
                               1.00000e+00
                                                  -5.44021e-01
      4.00000e+00
                               0.00000e+00
                                                  -2.87903e-01
                               2.50000e-01
                                                  -3.47156e-01
                               5.00000e-01
                                                  -5.15882e-01
                               7.50000e-01
                                                  -7.54267e-01
```

-9.61397e-01

-1.32352e-01

-7.01835e-02

1.16990e-01

4.16652e-01

7.62558e-01

1.00000e+00

0.00000e+00 2.50000e-01

5.00000e-01

7.50000e-01

1.00000e+00

Integral = -0.78758 CondErro = 0 (C)2009 FFCf

5.00000e+00

Integração dupla via fórmulas de Gauss-Legendre

• Similar à integração simples: fórmulas de Gauss-Legendre podem ser utilizadas para o cálculo aproximado da integral dupla definida (22)

$$I = \int_a^b \int_c^d f(x, y) \, dy \, dx.$$

Fazendo

$$G(x) = \int_{c}^{d} f(x, y) \, dy,$$

• tem-se que

$$I = \int_{a}^{b} G(x) \ dx.$$

• Cálculo de integral dupla por Gauss-Legendre consiste na determinação de duas integrais simples.

Fórmula para dois pontos

• Fazendo mudança de variável de x para t, sendo $-1 \le t \le 1$,

$$x = x(t) = \frac{b-a}{2}t + \frac{a+b}{2} \longrightarrow dx = \frac{b-a}{2}dt.$$

Tomando

$$x_i = \frac{b-a}{2}t_i + \frac{a+b}{2}.$$

• Definindo

$$H(t) = \frac{b-a}{2}G(x(t)),$$

• tem-se

$$I = \int_{a}^{b} G(x) \ dx = \int_{-1}^{1} \frac{2}{b-a} H(t) \frac{b-a}{2} \ dt = \int_{-1}^{1} H(t) \ dt.$$

• Resolvendo a integral simples por Gauss-Legendre, com $n_x = 2$ pontos,

$$I = \int_{-1}^{1} H(t) dt = A_1 H(t_1) + A_2 H(t_2), \tag{30}$$

- onde A_i , i=1,2 são os pesos e t_i são as abscissas ou os zeros do polinômio de Legendre de grau $n_x=2$.
- Os valores de A_i e t_i podem ser obtidos na tabela ou gerados pelo algoritmo.
- Particularmente, para $n_x = 2$: $A_1 = A_2 = 1$ e $t_1 = -1/\sqrt{3}$ e $t_2 = 1/\sqrt{3}$.

• Para o cálculo de $G(x_i)=\int_c^d f(x_i,y)\;dy$ é feita uma mudança de variável de y para u tal que $-1\leq u\leq 1$,

$$y = y(u) = \frac{d-c}{2}u + \frac{c+d}{2} \longrightarrow dy = \frac{d-c}{2}du$$

• e, então, toma-se

$$y_j = \frac{d-c}{2}u_j + \frac{c+d}{2}.$$

• Definindo

$$F_i(u) = \frac{d-c}{2} f(x_i, y(u)),$$

• tem-se

$$G(x_i) = \int_c^d f(x_i, y) \ dy = \int_{-1}^1 \frac{2}{d - c} F_i(u) \frac{d - c}{2} \ du = \int_{-1}^1 F_i(u) \ du.$$

• Usando a fórmula para $n_y = 2$ pontos,

$$G(x_i) = \int_{-1}^{1} F_i(u) \ du = B_1 F_i(u_1) + B_2 F_i(u_2), \ i = 1, 2,$$

- onde B_j , j=1,2, são os pesos e $F_i(u_j)=\frac{d-c}{2}f(x_i,y_j)$, para j=1,2.
- Logo,

$$H(t_i) = \frac{b-a}{2}G(x_i) = \frac{b-a}{2}(B_1F_i(u_1) + B_2F_i(u_2)), i = 1, 2.$$

• Levando-se esses valores de $H(t_i)$ em (30),

$$I = A_1 \left(\frac{b-a}{2} (B_1 F_1(u_1) + B_2 F_1(u_2)) \right) + A_2 \left(\frac{b-a}{2} (B_1 F_2(u_1) + B_2 F_2(u_2)) \right).$$

• Substituindo $F_i(u_j), j = 1, 2,$

$$I = A_1 \left(\frac{b-a}{2} \left(B_1 \frac{d-c}{2} f(x_1, y_1) + B_2 \frac{d-c}{2} f(x_1, y_2) \right) \right) + A_2 \left(\frac{b-a}{2} \left(B_1 \frac{d-c}{2} f(x_2, y_1) + B_2 \frac{d-c}{2} f(x_2, y_2) \right) \right).$$

• Rearranjando,

$$I = \frac{(b-a)(d-c)}{2}(A_1B_1f(x_1, y_1) + A_1B_2f(x_1, y_2) + A_2B_1f(x_2, y_1) + A_2B_2f(x_2, y_2)),$$

$$I = \frac{1}{4}(b-a)(d-c)\sum_{i=1}^{2} A_i \sum_{j=1}^{2} B_j f(x_i, y_j).$$
(31)

Dispositivo prático para integração dupla por Gauss-Legendre

$$I = \frac{1}{4}(b-a)(d-c)S$$
, sendo $S = \sum_{i=1}^{2} A_i \sum_{j=1}^{2} B_j f(x_i, y_j)$,

			j	1	2
			u_{j}	$-1/\sqrt{3}$	$1/\sqrt{3}$
			y_{j}	y_1	y_2
i	t_i	x_i	$A_i \backslash B_j$	1	1
1	$-1/\sqrt{3}$	x_1	1	$f(x_1, y_1)$	$f(x_1, y_2)$
2	$1/\sqrt{3}$	x_2	1	$f(x_2, y_1)$	$f(x_2,y_2)$

Exemplo de uso do dispositivo prático

Exemplo 29 Calcular $\int_0^{\frac{\pi}{2}} \int_0^{\frac{\pi}{4}} \operatorname{sen}(x+y) \, dy \, dx$ usando a fórmula de

Gauss-Legendre para $n_x = n_y = 2$ pontos.

$$x_i = \frac{b-a}{2}t_i + \frac{a+b}{2} = \frac{\pi/2 - 0}{2}t_i + \frac{0+\pi/2}{2} \to x_i = \frac{\pi}{4}(t_i + 1),$$

$$y_j = \frac{d-c}{2}u_j + \frac{c+d}{2} = \frac{\pi/4 - 0}{2}u_j + \frac{0+\pi/4}{2} \to y_j = \frac{\pi}{8}(u_j + 1),$$

j	1	2
u_{j}	$-1/\sqrt{3}$	$1/\sqrt{3}$
y_{j}	0,1660	0,6194

i	t_i	x_i	$A_i \backslash B_j$	1	1
1	$-1/\sqrt{3}$	0,3319	1	0,4776	0,8142
2	$1/\sqrt{3}$	1,2388	1	0,9863	0,9590

$$I = \frac{1}{4}(b-a)(d-c)S = \frac{1}{4}(\pi/2 - 0)(\pi/4 - 0) \times 3,2371 \longrightarrow I = 0,9984.$$

Fórmula geral para integração dupla por Gauss-Legendre

• Fórmula (31) para $n_x = n_y = 2$ pontos pode ser modificada para um número qualquer de pontos em x e em y.

$$I = \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy \, dx = \frac{1}{4} (b - a)(d - c) \sum_{i=1}^{n_x} A_i \sum_{j=1}^{n_y} B_j f(x_i, y_j), \quad (32)$$

- onde $x_i = \frac{b-a}{2}t_i + \frac{a+b}{2} e y_j = \frac{d-c}{2}u_j + \frac{c+d}{2}$.
- Pesos: A_i , $i = 1, 2, ..., n_x \in B_j$, $j = 1, 2, ..., n_y$.
- Abscissas: t_i e u_j podem ser obtidos na tabela ou gerados pelo algoritmo.

Dispositivo prático para integração dupla por Gauss-Legendre

$$I = \frac{1}{4}(b-a)(d-c)S$$
, sendo $S = \sum_{i=1}^{n_x} A_i \sum_{j=1}^{n_y} B_j f(x_i, y_j)$,

			j	1	2	• • •	n_y
			$oxed{u_j}$	u_1	u_2		u_{n_y}
			y_j	y_1	y_2		u_{n_y}
i	t_i	x_i	$A_i \backslash B_j$	B_1	B_2		B_{n_y}
1	t_1	x_1	A_1	$f(x_1, y_1)$	$f(x_1, y_2)$		$f(x_1, y_{n_y})$
2	t_2	x_2	A_2	$f(x_2,y_1)$	$f(x_2, y_2)$		$f(x_2, y_{n_y})$
:	•		:	:			:
n_x	t_{n_x}	x_{n_x}	A_{n_x}	$f(x_{n_x}, y_1)$	$f(x_{n_x}, y_2)$		$f(x_{n_x}, y_{n_y})$

Exemplo de uso do dispositivo prático

Exemplo 30 Calcular $\int_1^4 \int_0^2 (y^2 \log_{10}(3x)) dy dx$ usando Gauss-Legendre com

$$n_x = 3 e n_y = 4.$$

$$x_{i} = \frac{b-a}{2}t_{i} + \frac{a+b}{2} = \frac{4-1}{2}t_{i} + \frac{1+4}{2} \Rightarrow x_{i} = 1,5t_{i} + 2,5,$$

$$y_{j} = \frac{d-c}{2}u_{j} + \frac{c+d}{2} = \frac{2-0}{2}u_{j} + \frac{0+2}{2} \Rightarrow y_{j} = u_{j} + 1,$$

			J	1		J	4
			u_{j}	-0,8611	-0,3400	0,3400	0,8611
			y_{j}	0,1389	0,6600	1,3400	1,8611
i	t_i	x_i	$A_i \backslash B_j$	0,3479	0,6521	0,6521	0,3479
1	-0,7746	1,3381	0,5556	0,0116	0,2629	1,0838	2,0907
2	0,0000	2,5000	0,8889	0,0169	0,3812	1,5713	3,0309
3	0,7746	3,6619	0,5556	0,0201	0,4534	1,8689	3,6051

$$I = \frac{1}{4}(b-a)(d-c)S = \frac{1}{4}(4-1)(2-0) \times 4,5107 \longrightarrow I = 6,7660.$$

120

Algoritmo para integração dupla pelas fórmulas de Gauss-Legendre

```
Algoritmo Gauss-Legendre-Dupla
{ Objetivo: Integração dupla de função pelas fórmulas de Gauss-Legendre }
parâmetros de entrada ax, bx, nx, ay, by, ny
    limite inferior em x, limite superior em x, número de pontos em x, \}
     limite inferior em y, limite superior em y, número de pontos em y
parâmetros de saída Integral, CondErro
     valor da integral e condição de erro, sendo }
     CondErro = 0 se não houve erro (nx \ge 1 \text{ e } ny \ge 1) e }
     CondErro = 1 se nx < 1 ou ny < 1
     cálculo dos pesos e abscissas
    [Avet, Tvet, CondErro] \leftarrow PesAbsGL(nx) (ver Figura ??)
   Integral \leftarrow 0; se CondErro \neq 0, abandone, fim se
   se ny = nx então
      para j \leftarrow 1 até trunca(0.5 * (nx + 1)) faça
          Bvet(i) \leftarrow Avet(i); Uvet(i) \leftarrow Tvet(i)
      fim para
   senão
      [Bvet, Uvet, CondErro] \leftarrow \mathbf{PesAbsGL}(ny)
      se CondErro \neq 0, abandone, fim se
   fimse
                                                                                                       l⊯
   { cálculo da integral dupla }
   ex1 \leftarrow (bx - ax)/2; ex2 \leftarrow (ax + bx)/2; ey1 \leftarrow (by - ay)/2; ey2 \leftarrow (ay + by)/2
   se resto(nx, 2) = 0 então cx1 \leftarrow 1; cx2 \leftarrow 0.5, senão cx1 \leftarrow 0; cx2 \leftarrow 1, fim se
   se resto(ny, 2) = 0 então cy1 \leftarrow 1; cy2 \leftarrow 0.5, senão cy1 \leftarrow 0; cy2 \leftarrow 1, fim se
   para i \leftarrow 1 até nx faça
      kx \leftarrow \text{trunca}(i - 0.5 * (nx + 1) + \text{sinal}(i - 0.5 * (nx + cx1)) * cx2)
      tx \leftarrow \text{sinal}(kx) * Tvet(\text{abs}(kx)); Axx \leftarrow Avet(\text{abs}(kx))
      x \leftarrow ex1 * tx + ex2; Soma \leftarrow 0
      para i \leftarrow 1 até ny faça
          ky \leftarrow \text{trunca}(i - 0.5 * (ny + 1) + \text{sinal}(i - 0.5 * (ny + cy1)) * cy2)
          ty \leftarrow \text{sinal}(ky) * Uvet(abs(ky)); Ayy \leftarrow Bvet(abs(ky))
          y \leftarrow ey1 * ty + ey2
          fxy \leftarrow f(x,y) { avaliar a função integrando em (x,y) }
          Soma \leftarrow Soma + Ayy * fxy
          se i = 1 então escreva i, tx, x, Axx, i, ty, y, Ayy, fxy
          senão escreva j, ty, y, Ayy, fxy, fim se
      fim para
      Integral \leftarrow Integral + Axx * Soma
   fim para
   Integral \leftarrow ex1 * ey1 * Integral
fim algoritmo
```

©2009 FFCf

Exemplo de uso do algoritmo

```
Exemplo 31 Calcular \int_{2}^{6} \int_{1}^{3} \sqrt{x^2 + y} \cos(xy) dy dx utilizando o algoritmo, com n_x = 5 e n_y = 4.
% Os parametros de entrada
ax = 2
bx = 6
nx = 5
ay = 1
by = 3
ny = 4
% fornecem os resultados
                   Integracao dupla por Gauss-Legendre
                                                     B(j)
                                                            f(x(i),y(j))
  i t(i)
               x(i)
                        A(i)
                                   u(j)
                                            y(j)
  1 -0.9062 2.188e+00 0.2369
                                1 - 0.8611
                                         1.139e+00 0.3479 -1.93747e+00
                                2 -0.3400 1.660e+00 0.6521 -2.24020e+00
                                3 0.3400 2.340e+00 0.6521 1.05584e+00
                                4 0.8611 2.861e+00 0.3479 2.76450e+00
  2 -0.5385 2.923e+00 0.4786
                                1 -0.8611
                                         1.139e+00 0.3479 -3.05731e+00
                                2 - 0.3400
                                          1.660e+00 0.6521 4.45596e-01
                                          2.340e+00 0.6521 2.80093e+00
                                 0.8611 2.861e+00 0.3479 -1.64659e+00
  3 0.0000 4.000e+00 0.5689
                                1 -0.8611 1.139e+00 0.3479 -6.47030e-01
                                2 - 0.3400
                                         1.660e+00 0.6521 3.93758e+00
                                3 0.3400 2.340e+00 0.6521 -4.27352e+00
                                  0.8611 2.861e+00 0.3479
                                                           1.88500e+00
  4 0.5385 5.077e+00 0.4786
                                1 -0.8611 1.139e+00 0.3479 4.54970e+00
                                2 - 0.3400
                                          1.660e+00 0.6521 -2.84341e+00
                                  0.3400 2.340e+00 0.6521 4.10146e+00
                                4 0.8611 2.861e+00 0.3479 -2.02780e+00
  5 0.9062 5.812e+00 0.2369
                                1 -0.8611 1.139e+00 0.3479 5.57848e+00
                                2 - 0.3400
                                          1.660e+00 0.6521 -5.80491e+00
                                3 0.3400 2.340e+00 0.6521 3.07129e+00
                                4 0.8611 2.861e+00 0.3479 -3.65773e+00
Integral =
             1.5683954289
CondErro =
```

©2009 FFCf

Comparação dos métodos para integração dupla

• Primeiro teste

$$\int_0^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\pi} 2xy \, \text{sen}(xy^2) \, dy \, dx.$$

 \bullet Solução analítica: $I=(4 \operatorname{sen}(\pi^3/8) - \operatorname{sen}(\pi^3/2))/\pi^2 \approx -0.2921.$

Grau do	Número de	Newton-Cotes	Número de	Gauss-Legendre
polinômio	subintervalos		pontos	
1	1	$5,090 \times 10^{-1}$	2	$2,733 \times 10^0$
2	2	$3,154.10^{-1}$	3	$1,123.10^{0}$
3	3	$6,787 \cdot 10^{-1}$	4	$7,703 \cdot 10^{-2}$
4	4	$4,335 \times 10^{-2}$	5	$1,448 \times 10^{-2}$
5	5	$1,644 \times 10^{-1}$	6	$4,001 \cdot 10^{-3}$
6	6	$1,480 \times 10^{-2}$	7	$4,331 \times 10^{-4}$
7	7	$2,935 \times 10^{-2}$	8	$2,440,10^{-5}$
8	8	$2,500 \times 10^{-2}$	9	$5,705 \cdot 10^{-7}$

$$\int_0^{\frac{\pi}{2}} \int_{\frac{\pi}{2}}^{\pi} 2xy \operatorname{sen}(xy^2) \ dy \ dx$$

Comparação dos métodos para integração dupla

• Segundo teste

$$\int_0^{\pi} \int_1^4 3y^2 \cos(x + y^3) \, dy \, dx.$$

• Valor exato: $I = \cos(64) + \cos(\pi + 1) - \cos(1) - \cos(\pi + 64) \approx -0.2969$.

$$\int_0^{\pi} \int_1^4 3y^2 \cos(x + y^3) \, dy \, dx.$$

Algoritmos Numéricos 2^a edição

Capítulo 5: Integração numérica

Fim