Scilab Textbook Companion for Radio Frequency Circuit Design by R. Ludwig And G. Bogdanov¹

Created by
Monisha Dhirmalani
Engineering
Others
Mumbai University
College Teacher
Monali Chaudhari
Cross-Checked by

August 10, 2013

¹Funded by a grant from the National Mission on Education through ICT, http://spoken-tutorial.org/NMEICT-Intro. This Textbook Companion and Scilab codes written in it can be downloaded from the "Textbook Companion Project" section at the website http://scilab.in

Book Description

Title: Radio Frequency Circuit Design

Author: R. Ludwig And G. Bogdanov

Publisher: Pearson Education India, New Delhi

Edition: 2

Year: 2011

ISBN: 978-81-317-6218-9

Scilab numbering policy used in this document and the relation to the above book.

Exa Example (Solved example)

Eqn Equation (Particular equation of the above book)

AP Appendix to Example(Scilab Code that is an Appednix to a particular Example of the above book)

For example, Exa 3.51 means solved example 3.51 of this book. Sec 2.3 means a scilab code whose theory is explained in Section 2.3 of the book.

Contents

Lis	List of Scilab Codes	
1	Introduction	8
2	Transmission line analysis	15
3	The Smith Chart	24
4	Single and Multiport Networks	27
5	An Overview of RF Filter Design	29
6	Active RF Components	34
7	Active RF Component Modelling	49
8	Matching and biasing networks	56
9	RF Transistor Amplifier Design	59
10	Oscillators and Mixers	7 6

List of Scilab Codes

Exa 1.1	Intrinsic wave impedance
Exa 1.2	Comparing Inductances at different frequencies
Exa 1.3	Frequency response of high frequency resistor
Exa 1.4	Frequency response of high frequency capacitor 10
Exa 1.5	frequency response of high frequency inductor 12
Exa 2.1	Magnetic field inside and outside infinitely long current
	carrying wire
Exa 2.3	Transmission line parameters of a parallel copper plate
	transmission line 1
Exa 2.5	Phase velocity and Wavelength of PCB material 1
Exa 2.6	Input Impedance for a short circuited transmission line 19
Exa 2.7	Input impedance of open circuited transmission line . 19
Exa 2.8	Quarter wave parallel plate line transformer 2
Exa 2.9	Power considerations of a transmission line
Exa 2.10	Return Loss of Transmission line section
Exa 3.2	Input Impedance
Exa 3.4	SWR circles
Exa 4.3	Internal resistances and current gain of BJT 2'
Exa 4.7	S parameters and resistive elements of T network 2'
Exa 5.1	Resonance frequency of a Bandpass filter
Exa 5.2	Quality factors of a filter
Exa 6.1	Conductivity of Si and Ge and GaAs
Exa 6.2	Barrier Voltage of a pn Junction
Exa 6.3	Depletion Layer Capacitance of a pn Junction 30
Exa 6.4	Parameters of a Schottky diode
Exa 6.7	Maximum forward current gain of bipolar junction tran-
	sistor

Exa 6.8	Thermal analysis involving a BJT mounted on a heat	
	sink	40
Exa 6.9	Drain saturation current in a MESFET	40
Exa 6.10	Current Voltage characterisites of a MESFET	42
Exa 6.11	Computation of HEMT related electric characteristics	46
Exa 7.1	Small signal pn diode model	49
Exa 7.4	Parameters of BJT	52
Exa 7.5	Cutoff frequency of GaAs MESFET	54
Exa 7.6	Small signal Hybrid pi parameters without Miller Effect	55
Exa 8.11	Efficiency of different types of amplifiers	56
Exa 8.12	Design of passive biasing networks for a BJT in CE config	58
Exa 9.1	Power relations for an RF amplifier	59
Exa 9.7	Computation of source gain circles for a unilateral design	60
Exa 9.8	Design of 18 dB single stage MESFET amplifier	61
Exa 9.13	Amplifier design using the constant operating gain circles	63
Exa 9.14	Design of small signal amplifier for minimum noise figure	
	and specified gain	66
Exa 9.15	Constant VSWR design for given gain and noise figure	69
Exa 10.1	Design of a Colpitt oscillator	76
Exa 10.2	Prediction of resonance frequencies of quartz crystal .	77
Exa 10.3	Adding a positive feedback element to initiate oscillations	78
Exa 10.6	Dielectric resonator oscillator design	81
Exa 10.8	Local oscillator frequency selection	83

List of Figures

1.1	Frequency response of high frequency resistor
1.2	Frequency response of high frequency capacitor
1.3	frequency response of high frequency inductor
2.1	Magnetic field inside and outside infinitely long current carrying wire
2.2	Input Impedance for a short circuited transmission line 18
2.3	Input impedance of open circuited transmission line
2.4	Quarter wave parallel plate line transformer
3.1	SWR circles
5.1	Resonance frequency of a Bandpass filter
5.2	Quality factors of a filter
6.1	Conductivity of Si and Ge and GaAs
6.2	Depletion Layer Capacitance of a pn Junction
6.3	Drain saturation current in a MESFET 41
6.4	Current Voltage characterisites of a MESFET 43
6.5	Computation of HEMT related electric characteristics 47
7.1	Small signal pn diode model
8.1	Efficiency of different types of amplifiers
9.1	Computation of source gain circles for a unilateral design 60
9.2	Design of 18 dB single stage MESFET amplifier 62
9.3	Amplifier design using the constant operating gain circles 64
9.4	Design of small signal amplifier for minimum noise figure and
	specified gain

9.5	Constant VSWR design for given gain and noise figure	74
9.6	Constant VSWR design for given gain and noise figure	75
10.1	Adding a positive feedback element to initiate oscillations	79
10.2	Dielectric resonator oscillator design	84
10.3	Dielectric resonator oscillator design	85

Introduction

Scilab code Exa 1.1 Intrinsic wave impedance

```
1 mu0=4*%pi*10^-7;// defining permeability of free
     space
2 epsilon0=8.85*10^-12; // defining permittivity of
      free space
3 z0=sqrt(mu0/epsilon0);// calculating intrinsic
     impedance
4 epsilonr=4.6; // defining relative permittivity
5 vp=1/sqrt(mu0*epsilon0*epsilonr);// calculating
      phase velocity
6 f1=30*10^6;
7 f2=3*10^9;
8 \quad lambda1=vp/(f1);
9 lambda2=vp/(f2);
10 disp('metre', lambda1, 'Wavelength corresponding to f1
      '); // displaying wavelengths
11 disp('metre',lambda2,"Wavelength corresponding to f2
     "); // displaying wavelengths
```

Scilab code Exa 1.2 Comparing Inductances at different frequencies

```
1 mu0=4*\%pi*10^-7;
2 a=8*2.54*10^-5; //radius of copper wire
3 sigmac=64.5*10^6; //conductivity of copper
4 1=2*10^-2; //length of wire
5 rdc=1/(%pi*a*a*sigmac);
6 f1=100*10^6;
7 f2=2*10^9;
8 f3=5*10^9;
9 skindepth1=1/sqrt(%pi*mu0*f1*sigmac);
10 skindepth2=1/sqrt(%pi*mu0*f2*sigmac);
11 skindepth3=1/sqrt(%pi*mu0*f3*sigmac);
12 Lin1=(a*rdc)/(2*skindepth1*2*%pi*f1); //internal
     inductance
13 Lin2=(a*rdc)/(2*skindepth2*2*%pi*f2); //internal
     inductance
14 Lin3=(a*rdc)/(2*skindepth3*2*%pi*f3); //internal
     inductance
15 temp=\log(2*1/a)/\log(\%e);
16 Lex=mu0*l*(temp-1)/(2*%pi); //external inductance
17 disp("metre", skindepth1, "Skin depth at f1");
18 disp("metre", skindepth2, "Skin depth at f2");
19 disp("metre", skindepth3, "Skin depth at f3");
20 disp("Henry", Lin1, "Internal inductance at f1");
21 disp("Henry", Lin2, "Internal inductance at f2");
22 disp("Henry", Lin3, "Internal inductance at f3");
23 disp("Henry", Lex, "External inductance");
```

Scilab code Exa 1.3 Frequency response of high frequency resistor

```
1 f=10^4:10^5:10^10;
2 w=2*%pi.*f;
3 mu0=4*%pi*10^-7;
4 l=2*2.5*10^-2;
```


Figure 1.1: Frequency response of high frequency resistor

Scilab code Exa 1.4 Frequency response of high frequency capacitor

```
1 f=10^6:10^7:10^10;
2 rs=(4.8*10^-6).*sqrt(f);
```


Figure 1.2: Frequency response of high frequency capacitor

```
3 \text{ re} = (33.9*10^{12}) ./f;
4 c=47*10^-12;
5 w = 2 * \%pi.*f;
6 1=2*1.25*10^-2;
7 a=2.032*10^-4;
8 temp=log(2*1/a)/log(%e);
9 lex=mu0*l*(temp-1)/(2*%pi);
                                        //external
     inductance
10 z=1 ./(1 ./re +w*c*%i)+rs+w.*lex*%i; // impedance of
      frequency dependent capacitor
11 zideal=1 ./(w*c*\%i);
                        //impedance of an ideal
     capacitor
12 plot2d("gll",f,abs(z));
13 plot2d(f,abs(zideal));
14 title ("Frequency response of a high frequency
     capacitor");
15 xlabel('Frequency (f) in Hz');
16 ylabel ('Absolute impedance (|Z|) in ohms');
```

Scilab code Exa 1.5 frequency response of high frequency inductor

Figure 1.3: frequency response of high frequency inductor

```
13 z=1 ./((1 ./(r+w*%i*l))+w*%i*c); //impedance
14 zideal=w*%i.*l; //impedance of an
        ideal inductor
15 plot2d("gll",f,abs(z));
16 plot2d(f,abs(zideal));
17 title("Frequency response of the impedance of an RFC
        ");
18 xlabel('Frequency (f) in Hz');
19 ylabel('Absolute Impedance (|Z|) in ohms');
```

Transmission line analysis

Scilab code Exa 2.1 Magnetic field inside and outside infinitely long current carrying wire

```
1 I=5; //current in infinitely long wire
2 a=0.005; //radius of infinitely long wire
3 r_{max}=10*a;
4 N = 100;
5 r=(0:N)/N*r_max;
6 for k=1:N+1
7 if(r(k) \le a)
8 H(k)=I*r(k)/(2*\%pi*a*a);
9 else
10 H(k)=I/(2*\%pi*r(k));
11 end;
12 \text{ end};
13 plot(r*1000,H);
14 plot([a a]*1000,[0 160],'r:');
15 title ("Magnetic field distribution vs. distance from
       the center");
16 xlabel("Distance from the center of the wire,mm");
17 ylabel("Magnetic field, A/m");
```


Figure 2.1: Magnetic field inside and outside infinitely long current carrying wire

Scilab code Exa 2.3 Transmission line parameters of a parallel copper plate transmission line

```
1 f=1*10^9;
2 w=6*10^-3; //width
3 d=1*10^-3; //seperation
4 \text{ epsilonr} = 2.25;
5 epsilon0=8.85*10^-12;
6 sigma_diel=0.125;
7 sigma_cond=64.5*10^6;
8 mu0=4*\%pi*10^-7;
9 skindepth=1/sqrt(%pi*sigma_cond*mu0*f);
10 r=2/(w*sigma_cond*skindepth);
11 L=2/(w*sigma_cond*2*%pi*f*skindepth);
12 c=epsilon0*epsilonr*w/d;
13 G=sigma_diel*w/d;
14 disp("R,L,G,C parameters of a parallel copper plate
      transmission line ")
15 disp(r, "Resistance in ohm/m");
16 disp(L, "Inductance in Henry/m");
17 disp(c, "Capacitance in Farad/m");
18 disp(G, "Conductance in mS/m");
```

Scilab code Exa 2.5 Phase velocity and Wavelength of PCB material

```
1 epsilonr=4.6;
2 f=2*10^9;
3 z0=50; //line impedance
4 mu0=4*%pi*10^-7;
5 epsilon0=8.85*10^-12;
6 zf=sqrt(mu0/epsilon0); //free space impedance
```


Figure 2.2: Input Impedance for a short circuited transmission line

Scilab code Exa 2.6 Input Impedance for a short circuited transmission line

```
L=209.4*10^-9; //line inductance in H/m
C=119.5*10^-12; //line capacitance in F/m
vp=1/sqrt(L*C); // phase velocity
Z0=sqrt(L/C); // characteristic line impedance
d=0.1; // line length
N=500; // number of sampling points
f=1*10^9+3*10^9*(0:N)/N; // set frequency range
Z=tan(2*%pi*f*d/vp); // short circuit impedance
plot(f/1*10^9,abs(Z0*Z));
title('Input impedance of a short-circuited transmission line');
xlabel("Frequency,GHz");
ylabel("Input impedance,|Z");
```

Scilab code Exa 2.7 Input impedance of open circuited transmission line

```
L=209.4*10^-9; //line inductance in H/m
C=119.5*10^-12; //line capacitance in F/m
vp=1/sqrt(L*C); // phase velocity

Z0=sqrt(L/C); // characteristic line impedance
d=0.1; // line length
N=500; // number of sampling points
f=1e9+4e9*(0:N)/N; // set frequency range
Z=cotg(2*%pi*f*d/vp); // short circuit impedance
plot(f/1e9,abs(Z0*Z));
title('Input impedance of an open-circuited line');
xlabel('Frequency , GHz');
ylabel('Input impedance |Z|, {\Omega}');
```


Figure 2.3: Input impedance of open circuited transmission line

Figure 2.4: Quarter wave parallel plate line transformer

Scilab code Exa 2.8 Quarter wave parallel plate line transformer

```
1 ZL=25; //input impedance
2 Z0=50; //characteristic impedance
3 epsilonr=4;
4 dp=0.001;
5 f0=500e6;
6 mu0=4*%pi*1e-7;
7 epsilon0=8.85e-12;
8 Zline=sqrt(Z0*ZL); //line impedance
9 w=dp/Zline*sqrt(mu0/epsilon0/epsilonr);
```

```
10 L=mu0*dp/w; //inductance
11 C=epsilon0*epsilonr*w/dp; //capacitance
12 vp=1/sqrt(L*C); //phase velocity
13 Z0=sqrt(L/C);
14 d=1/(4*f0*sqrt(L*C));
15 N=100;
16 f=2e9*(0:N)/N;
17 betta=2*%pi*f/vp;
18 Z=Zline*((ZL+%i*Zline*tan(betta*d))./(Zline+%i*ZL*tan(betta*d)));
19 plot(f/1e9,real(Z));
20 title('Input impedance of the quarter-wave transformer');
21 xlabel('Frequency {\itf}, GHz');
22 ylabel('Input impedance | Z_{in}|, {\Omega}');
```

Scilab code Exa 2.9 Power considerations of a transmission line

```
1 Zg=50; //generator impedance
2 Zo=75; //intrinsic impedance
3 Zl=40; //line impedance
4 Vg=5; //generator voltage
5 Ts=(Zg-Zo)/(Zg+Zo); //reflection coefficient at source
6 To=(Zl-Zo)/(Zl+Zo); //reflection coefficient at load
7 temp=1-(To^2);
8 temp1=(1-Ts)^2;
9 temp2=(1-Ts*To)^2;
10 Pin=((Vg)^2*temp1*temp2)/(8*Zo*temp); //input power
11 Pl=Pin; //power delivered to the load
12 disp("Watts",Pl,"The Power delivered to the load is same as that at the input—>");
```

Scilab code Exa 2.10 Return Loss of Transmission line section

```
1 RL=20; //load resistance
2 Zo=50; //intrinsic impedance
3 Rin=50; //input resistance
4 Tin=10^(-RL/20); //reflection coefficient at input
5 Rg1=Rin*(1+Tin)/(1-Tin);
6 Rg2=Rin*(1-Tin)/(1+Tin);
7 disp("Ohms",Rg1,"Source resistance for positive Tin=");
8 disp("Ohms",Rg2,"Source resistance for negative Tin=");
```

The Smith Chart

Scilab code Exa 3.2 Input Impedance

```
1 Zl=30+%i*60; //load impedance
2 Z0=50; // intrinsic impedance
3 d=2*10^-2; //length of wire
4 f=2*10^9;
5 c=3*10^8;
6 T0=((Zl-Z0)/(Zl+Z0)); //load reflection coefficient
7 beta=((2*%pi*f)/(0.5*c));
8 T=-0.32-%i*0.55;
9 Zin=Z0*((1+T)/(1-T)); //input impedance
10 disp("Ohms",Zin,"Input impedance—>");
```

Scilab code Exa 3.4 SWR circles

```
1 Z0=50; //define 50 Ohm characteristic impedance
2 Z=[50 48.5 75+%i*25 10-%i*5]; //define impedances
for this example
```


Figure 3.1: SWR circles

```
3 Gamma=(Z-Z0)./(Z+Z0) //compute corresponding
     reflection coefficients
4 SWR=(1+abs(Gamma))./(1-abs(Gamma)); //find the SWRs
5 a=0:0.01:2*\%pi;
6 for n=1:length(Z)
8 plot(abs(Gamma(n))*cos(a),abs(Gamma(n))*sin(a),'b','
     linewidth',2);
9 plot(real(Gamma(n)), imag(Gamma(n)), 'ro');
10 end;
11
12 for n=1:length(Z)
13
     if n^{-1}
14
     end;
15 end;
```

Single and Multiport Networks

Scilab code Exa 4.3 Internal resistances and current gain of BJT

```
hie=5*10^3; //input impedance
hre=2*10^-4; //voltage feedback ratio
hfe=250; // small signal current gain
hoe=20*10^-6; //output admittance
rbc=hie/hre; // calculating base-collector
    resistance
resistance
resistance
beta=(hre+hfe)/(1-hre); //c calculating urrent gain
rce=hie/(hoe*hie-hre*hfe-hre); //collector-emitter
    resistance
disp("Ohms",rbc,"base collector resistance");
disp("Ohms",rbe,"base emitter resistance");
disp("Ohms",rce,"collector emitter resistance");
disp("Ohms",rce,"collector emitter resistance");
disp(beta,"current gain");
```

Scilab code Exa 4.7 S parameters and resistive elements of T network

```
1 Zin=50; //input impedance
2 Z0=50;
3 // defining scattering parameters
4 S11=0;
5 S22=0;
6 S21=1/sqrt(2);
7 S12=1/sqrt(2);
8 R1=((sqrt(2)-1)/(sqrt(2)+1))*Z0;
9 R2=R1;
10 R3=2*sqrt(2)*Z0;
11 disp(S21,S12,S22,S11,"Scattering parameters");
12 disp("Ohms",R3,"Ohms",R2,"Ohms",R1,"Resistance values R1,R2,R3:");
```

An Overview of RF Filter Design

Scilab code Exa 5.1 Resonance frequency of a Bandpass filter

```
1 stacksize('max');
2 C=2*10^-12;
3 L=5*10^-9;
4 R = 20;
5 \ Z0=50;
6 //f = [10^7:10^8:10^1];
7 // define frequency range
8 f_min=10e6; //lower frequency limit
9 f_max=100e9; // upper frequency limit
               // number of points in the graph
10 N = 100;
11 f=f_min*((f_max/f_min).^((0:N)/N)); // compute
      frequency points on log scale
12 w = 2 * \%pi.*f;
13 A = (w.*w*L*C-1)/(w*C);
14 S21=2*Z0./(2*Z0+R+%i*A);
15 f0=1./(2*%pi*sqrt(L*C));
16 disp("Hertz",f0,"Resonance frequency");
```


Figure 5.1: Resonance frequency of a Bandpass filter

Figure 5.2: Quality factors of a filter

Scilab code Exa 5.2 Quality factors of a filter

```
//define problem parameters

Z0=50; //characteristic line impedance
ZG=50; //source impedance
ZL=50; //load impedance
//series RLC filter parameters
R=10;
```

```
9 L=50e-9;
10 C=0.47e-12;
11
12 VG=5; //generator voltage
13
14 //compute series resonance frequency
15 \text{ w0=1/sqrt(L*C)};
16 f0=w0/(2*\%pi);
17
18 //define a frequency range
19 delta=0.2;
20 w=((1-delta):2*delta/1000:(1+delta))*w0;
21
22 //compute quality factors
23 Q_LD=w0*L/(R+2*ZL) //loaded quality factor
24 Q_F=w0*L/R //filter quality factor
25 \ Q_E=w0*L/(2*ZL) //external quality factor
26
27 // compute Bandwidth
28 \quad BW = fO/Q_LD
29
30 //compute input and load power
31 P_{in}=VG^2/(8*Z0)
32 P_L=P_in*Q_LD^2/Q_E^2
33
34 //compute insertion loss and load factor
35 \text{ epsilon} = \text{w/w0-w0./w};
36 LF=(1+epsilon.^2*Q_LD^2)/(1-Q_LD/Q_F)^2;
37 IL=10*log10(LF);
38
39 disp(Q_LD, "Loaded Quality Factor");
40 disp(Q_F, "Filter Quality Factor");
41 disp(Q_E,"External Quality Factor");
42 disp("Watts", P_in, "Input Power");
43 disp("Watts", P_L, "Power delivered to the load");
44 disp("Hertz",f0,"resonance frequency of the filter")
45 disp("Hertz", BW, "Bandwidth of the filter");
```

```
46 plot(w/2/%pi/1e9,IL);
47 title('Insertion loss versus frequency');
48 xlabel('Frequency, GHz');
49 ylabel('Insertion loss, dB');
```

Active RF Components

Scilab code Exa 6.1 Conductivity of Si and Ge and GaAs

```
1 //define physical constants
2 q=1.60218e-19;
3 k=1.38066e-23;
5 // define material properties
6 Nc_{300} = [1.04e19 \ 2.8e19 \ 4.7e17];
7 \text{ Nv}_300 = [6e18]
                     1.04e19 7e18];
8 \text{ mu_n} =
           [3900
                      1500
                               8500];
                               400];
                      450
9 \text{ mu_p} =
           [1900
                      1.12
10 \text{ Wg}=
           [0.66
                               1.424];
11
12 \quad T0 = 273;
13 T=-50:250; // temperature range in centigrade
14
15 sigma=zeros([3 length(T)]);
16
17 for s=1:3 //loop through all semi conductor
      materials
      Nc = Nc_300(s)*((T+T0)/300).^(3/2);
18
```


Figure 6.1: Conductivity of Si and Ge and GaAs

Scilab code Exa 6.2 Barrier Voltage of a pn Junction

```
// doping concentrations
Na=1*10^18;
Nd=5*10^15;
//intrinsic concentrations
i=1.5*10^10;
T=300;
term=(Na*Nd)/(ni*ni);
k=1.38*10^-23;
q=1.6*10^-19;
Vdiff=(k*T)*log(term)/q;
disp("Volts",Vdiff,"Barrier voltage");
```

Scilab code Exa 6.3 Depletion Layer Capacitance of a pn Junction

```
1 //define problem parameters
2
```


Figure 6.2: Depletion Layer Capacitance of a pn Junction

```
3 ni=1.5e10*1e6; //intrinsic carrier concentration in
      Si [m^{(-3)}]
4 Na=1e15*1e6; //acceptor doping concentration [m^{\hat{}}(-3)]
5 Nd=5e15*1e6; //donor concentration [m^{\hat{}}(-3)]
6 A=1e-4*1e-4; // cross sectional area [m^2]
7 eps_r=11.9; //cross sectional area [m<sup>2</sup>]
9 //define physical constants (SI units)
10 q=1.60218e-19; //electron charge
11 k=1.38066e-23; //Boltzmann's constant
12 eps0=8.85e-12; //permittivity of free space
13
14 \text{ eps=eps\_r*eps0};
15
16 T=300; //temperatuure
17
18 //compute diffusion barrier voltage
19 Vdiff=k*T/q*log(Na*Nd/ni^2)
20
21 //junction capacitance at zero applied voltage
22 C0=A*sqrt(q*eps/(1/Na+1/Nd)/2/Vdiff)
23
24 //extents of the space charge region
25 dn=sqrt(2*eps*Vdiff/q*Na/Nd/(Na+Nd));
26 dp=sqrt(2*eps*Vdiff/q*Nd/Na/(Na+Nd));
27
28 //define range for applied voltage
29 \quad VA = -5:0.1: Vdiff;
30
31 //compute junction capacitance
32 C=C0*(1-VA/Vdiff).^{(-1/2)};
33
34 plot (VA, C/1e-12);
35 title('Junction capacitance of abrupt Si pn-contact'
      );
36 xlabel('Applied junction voltage V_A, Volts');
37 ylabel ('Junction capacitance C, pF');
```

Scilab code Exa 6.4 Parameters of a Schottky diode

```
1 //doping concentrations
2 \text{ Nc} = 2.8 * 10^19;
3 Nd=1*10^16;
4 term=Nc/Nd;
5 k=1.38*10^-23; //Boltzman's constant
6 q=1.6*10^-19; //charge
7 Vc = (k*T)*log(term)/q;
8 Vm=5.1; //workfunction
9 X=4.05; //affinity
10 Vd=(Vm-X)-Vc; //Barrier Voltage
11 Epsilon=11.9*8.854*10^-12;
12 ds=sqrt((2*Epsilon*Vd)/(q*Nd));
13 A=1*10^-4; //cross-sectional area
14 Cj=(A*Epsilon)/(ds); //junction capacitance
15 disp("Volts", Vc, "Conduction Band potential");
16 disp("Volts", Vd, "Built in Barrier Voltage");
17 disp ("metre", ds, "Space Charge Width");
18 disp("Farads", Cj, "Junction Capacitance");
```

Scilab code Exa 6.7 Maximum forward current gain of bipolar junction transistor

```
Ndemitter=1*10^19; // donor concentration in emitter
Nabase=1*10^17; //acceptor concentration in base
de=0.8*10^-6; //spatial extent of the emitter
db=1.2*10^-6; //spatial extent of the base
alpha=2.8125;
beta=(alpha*Ndemitter*de)/(Nabase*db);
disp(beta,"Maximum forward current gain");
```

Scilab code Exa 6.8 Thermal analysis involving a BJT mounted on a heat sink

```
1 Tj=150;
2 Ts=25;
3 Pw=15;
4 Rthjs=(Tj-Ts)/Pw; //Junction-to-solder point
    resistance
5 Rthca=2;
6 Rthhs=10;
7 Ta=60;
8 Rthtot=Rthjs+Rthca+Rthhs; //total thermal resistance
9 Pth=(Tj-Ta)/(Rthtot); //dissipated power
10 disp("Watts",Pth,"Maximum dissipated power");
```

Scilab code Exa 6.9 Drain saturation current in a MESFET

```
1 //define problem parameters
2 Nd=1e16*1e6;
3 d=0.75e-6;
4 W=10e-6;
5 L=2e-6;
6 eps_r=12;
7 Vd=0.8;
8 mu_n=8500e-4;
9 Vgs=0:-0.01:-4;
10
11 //define physical constants
12 q=1.60218e-19;// electron charge
13 eps0=8.85e-12;// permittivity of free space
```


Figure 6.3: Drain saturation current in a MESFET

```
14
15 \text{ eps=eps_r*eps0};
16
17 //pinch-off voltage
18 Vp=q*Nd*d^2/(2*eps)
19
20 //threshold voltage
21 Vt0=Vd-Vp
22
23 //conductivity of the channel
24 \text{ sigma=q*mu_n*Nd}
25
26 //Channel conductance
27 G0=q*sigma*Nd*W*d/L
28
29 //saturation current using the exact formula
30 \text{ Id\_sat=G0*(Vp/3-(Vd-Vgs)+2/(3*sqrt(Vp))*(Vd-Vgs)}
      .^(3/2)).*(1-(Vgs<Vt0));
31 Idss=Id_sat(1)
32
33 //saturation current using the quadratic law
      approximation
34 Id_sat_square=Idss*(1-Vgs/Vt0)^2;
35
36 plot(Vgs,Id_sat,Vgs,Id_sat_square);
37 legend('exact formula', 'quadratic approximation',2)
38 title ('FET saturation current as a function of the
      gate-source voltage;
39 xlabel('Gate-source voltage V_{-}(GS), V');
40 ylabel('Drain saturation current I_{DSat}, A');
```

Scilab code Exa 6.10 Current Voltage characterisities of a MESFET

Figure 6.4: Current Voltage characterisitcs of a MESFET

```
1 //define problem parameters
2 \text{ Nd=1e16*1e6};
3 d=0.75e-6;
4 W = 10 e - 6;
5 L = 2e - 6;
6 \text{ eps}_r=12;
7 \text{ Vd} = 0.8;
8 mu_n=8500*1e-4;
9 lambda=0.03;
10
11 //define physical constants
12 q=1.60218e-19; //electron charge
13 eps0=8.85e-12; //permittivity of free space
14
15 \text{ eps=eps_r*eps0};
16
17 // pinch-off voltage
18 Vp=q*Nd*d^2/(2*eps)
19
20 //threshold voltage
21 Vt0=Vd-Vp
22
23 //conductivity of the channel
24 \text{ sigma=q*mu_n*Nd}
25
26 //channel conductance
27 G0=q*sigma*Nd*W*d/L
28
29 //define the range for gate source voltage
30 \text{ Vgs_min} = -2.5;
31 Vgs_max = -1;
32 \text{ Vgs=Vgs\_max:-0.5:Vgs\_min;}
33
34 //drain source voltage
35 \text{ Vds} = 0:0.01:5;
36
37 //compute drain saturation voltage
38 Vds_sat=Vgs-Vt0;
```

```
39
  //first the drain current is taken into account the
      channel length modulation
  for n=1:length(Vgs)
41
42
      if Vgs(n)>Vt0
43
         Id_sat = G0*(Vp/3-(Vd-Vgs(n))+2/(3*sqrt(Vp))*(Vd
            -Vgs(n))^(3/2);
44
      else
45
         Id_sat=0;
46
      end;
47
      Id_linear = G0*(Vds-2/(3*sqrt(Vp)).*((Vds+Vd-Vgs(n)))
48
         ).^(3/2) - (Vd - Vgs(n))^(3/2))).*(1+lambda*Vds);
      Id_saturation=Id_sat*(1+lambda*Vds);
49
      Id=Id_linear.*(Vds<=Vds_sat(n))+Id_saturation.*(</pre>
50
         Vds>Vds_sat(n));
      plot(Vds,Id);
51
52 set(gca(), "auto_clear", "off");
53 end;
54
  //next the channel length modulation is not taken
55
      into account
56 for n=1:length(Vgs)
      if Vgs(n)>Vt0
57
         Id_sat = G0*(Vp/3-(Vd-Vgs(n))+2/(3*sqrt(Vp))*(Vd
58
            -Vgs(n))^(3/2);
59
      else
60
         Id_sat=0;
61
      end;
62
63
      Id_linear = G0*(Vds-2/(3*sqrt(Vp)).*((Vds+Vd-Vgs(n)))
         ).^{(3/2)}-(Vd-Vgs(n))^{(3/2)};
64
      Id_saturation=Id_sat;
      Id=Id_linear.*(Vds<=Vds_sat(n))+Id_saturation.*(</pre>
65
         Vds>Vds_sat(n));
      plot(Vds, Id);
66
67 end;
68
```

Scilab code Exa 6.11 Computation of HEMT related electric characteristics

```
1 //define problem parameters
2 Nd=1e18*1e6;
3 Vb=0.81;
4 eps_r=12.5;
5 d=50e-9;
6 dWc=3.5e-20;
7 W=10e-6;
8 L=0.5e-6;
9 mu_n=8500*1e-4;
10
11 //define physical constants
12 q=1.60218e-19;//electron charge
13 eps0=8.85e-12;//permittivity of free space
```


Figure 6.5: Computation of HEMT related electric characteristics

```
15 \text{ eps=eps\_r*eps0};
16
17 //pinch-off voltage
18 Vp=q*Nd*d^2/(2*eps)
19
20 //threshold voltage
21 \quad Vth = Vb - dWc/q - Vp
22
23 //drain-source applied voltage range
24 \text{ Vds} = 0:0.01:5;
25
26 //gate-source voltages
27 \text{ Vgs}_r = -1:0.25:0;
28
29
30
31
32 for n=1:length(Vgs_r)
33
      Vgs=Vgs_r(n);
      Id=mu_n*W*eps/(L*d)*((Vds*(Vgs-Vth)-Vds.*Vds/2)
34
          .*(1-(Vds>(Vgs-Vth)))+1/2*(Vgs-Vth)^2*(1-(Vds))
          <=(Vgs-Vth)));
      plot(Vds,Id/1e-3);
35
      set(gca(), "auto_clear", "off");
36
37 end;
38
39
40 title ('Drain current vs. V_{DS} plotted for
      different V_{-}\{GS\}');
41 xlabel('Drain-source voltage V_{-}{DS}, V');
42 ylabel('Drain current I_{-}\{D\}, mA');
```

Chapter 7

Active RF Component Modelling

Scilab code Exa 7.1 Small signal pn diode model

```
1 //define problem parameters
2 TT=500e-12; // transit time
3 T0=300; //temperature
4 Is0=5e-15; // reverse saturation current at 300\mathrm{K}
5 Rs=1.5; // series resistance
6 nn=1.16; //emission coefficient
8 // parameters needed to describe temperature
     behavior of
9 // the band-gap energy in Si
10 alpha=7.02e-4;
11 beta=1108;
12 \text{ Wg0=1.16};
13 pt=3;
14
15 // quiescent current
16 \text{ Iq}=50e-3;
```


Figure 7.1: Small signal pn diode model

```
17
18 // frequency range 10MHz to 1GHz
19 f_min=10e6;
                   // lower limit
20 f_{max}=1e9;
                   //upper limit
                  // number of points in the graph
21 N = 300;
22 f=f_min*((f_max/f_min).^((0:N)/N)); // compute
       frequency points on log scale
23
24 // temperatures for which analysis will be performed
25 \text{ T_points} = [250 \ 300 \ 350 \ 400];
26
27 // define physical constants
28 q=1.60218e-19; // electron charge
29 k=1.38066e-23; // Boltzmann's constant
30
31 for n=1:length(T_points)
       T=T_points(n);
32
       s = sprintf('T = \%. f \ n', T);
33
       Vt=k*T/q;
34
35
36
       Wg=Wg0-alpha*T^2/(beta+T);
37
       s=sprintf('%s
                          Wg(T) = \%f \setminus n', s, Wg);
38
       Is=Is0*(T/T0)^(pt/nn)*exp(-Wg/Vt*(1-T/T0));
39
       s=sprintf('%s
                          \operatorname{Is}\left(\mathrm{T}\right)=\%\mathrm{e}\n',s,Is);
40
41
42
       Vq=nn*Vt*log(1+Iq/Is);
       s=sprintf('%s
                          Vq(T)=\%f \setminus n', s, Vq);
43
44
45
       Rd=nn*Vt/Iq;
       s=sprintf('%s
                          \operatorname{Rd}(T)=\%f\backslash n',s,Rd);
46
47
48
       Cd=Is*TT/nn/Vt*exp(Vq/nn/Vt);
       s=sprintf('%s
                          Cd(T)=\%fpF \setminus n', s, Cd/1e-12)
49
50
       Zc=1./(%i*2*\%pi*f*Cd);
51
52
       Zin=Rs+Rd*Zc./(Rd+Zc);
53
```

```
54
55    plot(f/1e6,abs(Zin));
56    set(gca(),"auto_clear","off");
57 end;
58
59 title('Frequency behavior of small-signal diode model');
60 xlabel('Frequency {\itf}, MHz');
61 ylabel('Impedance |Z|, \Omega');
```

Scilab code Exa 7.4 Parameters of BJT

```
1 // first we define all parameters for the transistor
      and the circuit
2 ZO=50; //characteristic imedance of the system
4 Vcc=3.6; //power supply voltage
5 Vce=2; //collector voltage
6 Ic=10e-3; //collector current
8 T=300; //ambient temperature (300K)
10 //transistor parameters (they are very similar to
     BFG403W)
11 beta=145;
                // current gain
12 Is=5.5e-18; // saturation current
                // forward Early voltage
13 VAN = 30;
14 tau_f=4e-12; // forward transition time
15 rb=125;
                // base resistance
                // collector resistance
16 rc=15;
17 re=1.5; // emitter resistance
18 Lb=1.1e-9;  // base inductance
19 Lc=1.1e-9;  // collector inductance
20 Le=0.5e-9; // emitter inductance
21 Cjc=16e-15; // collector junction capacitance at
```

```
zero applied voltage
22 \text{ mc} = 0.2;
                  // collector junction grading
      coefficient
23 Cje=37e-15; // emitter junction capacitance at zero
       applied voltage
24 me=0.35; // emitter junction grading coefficient
25 phi_be=0.9; // base-emitter diffusion potential
26 phi_bc=0.6; // base-collector diffusion potential
27 Vbe=phi_be; // base-emitter voltage
28
29 // some physical constants
30 k=1.38e-23; // Boltzmann's constant
                  // elementary charge
31 q=1.6e-19;
32 VT=k*T/q;
                  // thermal potential
33
34 disp('DC biasing parameters');
35
36 Ib=Ic/beta;
37 disp("Amperes", Ib, "Base current");
38
39 \text{ Rc} = (\text{Vcc} - \text{Vce}) / \text{Ic};
40 disp("Ohms", Rc, "Collector resistance");
41
42 Rb=(Vcc-Vbe)/Ib;
43 disp("Ohms", Rb, "Base resistance");
44
45
46 \text{ r_pi=VT/Ib};
47 disp("Ohms", r_pi, "Rpi");
48
49 \text{ rO=VAN/Ic};
50 disp("Ohms", r0, "R0");
51
52 gm=beta/r_pi;
53 disp("Mho", gm, "Gm");
54
55 \, \text{Vbc=Vbe-Vce};
56 \text{ Cmu} = \text{Cjc} * (1 - \text{Vbc/phi}_bc)^(-mc);
```

```
57 disp("Farads", Cmu, "base collector capacitance");
58
59 if(Vbe<0.5*phi_be)
      Cpi_junct=Cje*(1-Vbe/phi_be)^(-me);
60
61 else
62
      C_middle=Cje*0.5^(-me);
      k_middle=1-0.5*me;
63
      Cpi_junct=C_middle*(k_middle+me*Vbe/phi_be);
64
65 \text{ end};
66
67 disp("Farads", Cpi_junct, "Junction Capacitance");
68
69 Cpi_diff=Is*tau_f/VT*exp(Vbe/VT);
70 disp("Farads", Cpi_diff, "Differential capacitance");
71
72 Cpi=Cpi_junct+Cpi_diff;
73 disp("Farads", Cpi, "Total Capacitance");
74
75 C_miller = Cmu*(1+gm*r_pi/(r_pi+rb)*Z0*r0/(r0+rc+Z0));
76 disp("Farads", C_miller, "Miller Capacitance");
77
78 C_input=Cpi+C_miller;
79 disp("Farads", C_input, "Total input capacitance");
```

Scilab code Exa 7.5 Cutoff frequency of GaAs MESFET

```
1 l=1*10^-6; //length
2 w=200*10^-6; //width
3 d=0.5*10^-6; //depth
4 E0=8.854*10^-12;
5 Er=13.1;
6 q=1.6*10^-19; //electron charge
7 Nd=1*10^16; //doping concentration
8 mun=8500;
9 Vp=(q*Nd*d^2)/(2*Er*E0);
```

```
10 G0=(q*mun*Nd*w)/1;
11 gm=0.0358;
12 Cap=(E0*Er*w*1)/d;
13 fT=gm/(2*%pi*Cap);
14 disp("Hertz",fT,"Cut off frequency");
```

Scilab code Exa $7.6\,$ Small signal Hybrid pi parameters without Miller Effect

```
1 Icq=6*10^-3;
2 \text{ Ibq=}40*10^-6;
3 Van=30; //Early voltage
4 q=1.6*10^-19;
5 k=1.38*10^-23;
6 T = 300;
7 fT=37*10^9; //Transition frequency
8 gm = (Icq*q)/(k*T);
9 beta0=Icq/Ibq;
10 r0=Van/Icq;
11 rpi=beta0/gm;
12 Cpi=(beta0)/(2*%pi*fT*rpi);
13 disp("Hybrid pi parametrs without Miller effect");
14 disp("Mho",gm,"gm");
15 disp("Ohms", rpi, "Rpi");
16 disp("Farads",Cpi,"Cpi");
17 disp("Ohms", r0, "R0");
18 disp(beta0, "Beta0");
```

Chapter 8

Matching and biasing networks

Scilab code Exa 8.11 Efficiency of different types of amplifiers

Figure 8.1: Efficiency of different types of amplifiers

Scilab code Exa 8.12 Design of passive biasing networks for a BJT in CE config

```
1 Ic=10*10^-3; //Collector current
2 \text{ Vce=3};
3 \text{ Vcc=5};
4 beta=100; //current gain
5 \text{ Vbe=0.8};
6 I1=Ic+Ic/beta;
7 R1=(Vcc-Vce)/I1;
8 R2=(Vce-Vbe)/(Ic/beta);
9 Vx = 1.5;
10 R3=(Vx-Vbe)/(Ic/beta);
11 Ix=10*(Ic/beta);
12 R11=(Vx/Ix);
13 R22=(Vcc-Vx)/(Ix+(Ic/beta));
14 R4=(Vcc-Vce)/Ic;
15 disp("Amperes", I1, "I1", "Ohms", R1, "R1", "Ohms", R2, "R2"
      , "Ohms", R3 , "R3", "Ohms", R11 , "R11", "Ohms", R22 , "R22"
      , "Ohms", R4, "R4");
```

Chapter 9

RF Transistor Amplifier Design

Scilab code Exa 9.1 Power relations for an RF amplifier

```
1 //defining scattering parameters
2 S11=0.102-\%i*0.281;
3 \quad S21=0.305+\%i*3.486;
4 S12=0.196-\%i*0.03471;
5 S22=0.2828-\%i*0.2828;
7 \ Vs = 5;
8 \text{ Zs} = 40;
9 \ Z1 = 73;
10 \ Z0=50;
11
12 Ts = (Zs - Z0) / (Zs + Z0);
13 T1 = (Z1 - Z0) / (Z1 + Z0);
14 Tin=S11+(S21*S12*T1)/(1-S22*T1);
15 Tout=S22+(S12*S21*Ts)/(1-S11*Ts);
16
17 a=S21^2;
18 b=1-Ts^2;
19 c=1-T1^2;
20
21 Gt=(c*a*b)/((1-Tl*Tout)^2*(1-S11*Ts)^2);
```


Figure 9.1: Computation of source gain circles for a unilateral design

```
22 Gtu=(c*a*b)/((1-Tl*S22)^2*(1-S11*Ts)^2);
23 Ga=(a*b)/((1-Tout)^2*(1-S11*Ts)^2);
24 G=(a*c)/((1-Tin)^2*(1-S22*Tl)^2);
25
26 d=abs(Gt);
27
28 Pin=(Z0*(Vs)^2)/((Zs+Z0)^2*(1-Tin*Ts)^2*2);
29 pinR=real(Pin);
30 pinI=imag(Pin);
31 Pinc=sqrt(pinR^2+pinI^2);
32 PA=78.1*10^-3;
33 Pl=PA*d;
34 disp(Pl, "Power delivered to load in watts");
```

Scilab code Exa 9.7 Computation of source gain circles for a unilateral design

```
1 //define s11 parameter of the transistor 2 s11=0.7*exp(%i*(125)/180*%pi);
```

```
3
4 //compute the maximum gain achievable by the input
      matching network
5 Gs_max=1/(1-abs(s11)^2);
6 Gs_max_dB=10*log10(Gs_max)
8 //find the reflection coefficient for the maximum
      gain
9 Gs_{opt} = conj(s11);
10
11 //draw a straight line connecting Gs_opt and the
      origin
12 set(gca(), "auto_clear", "off");
13 plot([0 real(Gs_opt)],[0 imag(Gs_opt)], 'b');
14 plot(real(Gs_opt),imag(Gs_opt),'bo');
15
16 //specify the angle for the constant gain circles
17 a=(0:360)/180*\%pi;
18
19 //plot source gain circles
20 \text{ gs\_db} = [-1 \ 0 \ 1 \ 2 \ 2.6];
21 gs = exp(gs_db/10*log(10))/Gs_max;
22
23 for n=1:length(gs)
      dg = gs(n) * conj(s11) / (1 - abs(s11)^2 * (1 - gs(n)));
24
25
      rg = sqrt(1-gs(n))*(1-abs(s11)^2)/(1-abs(s11)^2*(1-abs(s11)^2)
         gs(n)));
      plot(real(dg)+rg*cos(a),imag(dg)+rg*sin(a),'r','
26
         linewidth',2);
27 \text{ end};
```

Scilab code Exa 9.8 Design of 18 dB single stage MESFET amplifier

Figure 9.2: Design of 18 dB single stage MESFET amplifier

```
1 s11=0.5*exp(%i*(-60)/180*%pi);
2 s12=0.02*exp(%i*(-0)/180*%pi);
3 s21=6.5*exp(%i*(+115)/180*%pi);
4 s22=0.6*exp(%i*(-35)/180*%pi);
6 Gs_max=1/(1-abs(s11)^2);
7 Gl_max = 1/(1-abs(s22)^2);
9 G0 = abs(s21)^2;
10
11 Gmax=Gs_max*G0*Gl_max;
12 Gs_max_dB=10*log10(Gs_max)
13 Gl_max_dB=10*log10(Gl_max)
14 G0_dB=10*log10(G0)
15 Gmax_dB=10*log10(Gmax)
16 Ggoal_dB=18;
17 Gload_dB=Ggoal_dB-G0_dB-Gs_max_dB;
18 Gl_opt=conj(s22);
19
20 set(gca(), "auto_clear", "off");
21 plot([0 real(Gl_opt)],[0 imag(Gl_opt)], 'b');
22 plot(real(Gl_opt),imag(Gl_opt),'bo');
23 a = (0:360)/180 * \%pi;
24 gl=exp([Gload_dB]/10*log(10))/Gl_max;
25 dg=gl*conj(s22)/(1-abs(s22)^2*(1-gl));
26 \text{ rg=sqrt}(1-gl)*(1-abs(s22)^2)/(1-abs(s22)^2*(1-gl));
27 plot(real(dg)+rg*cos(a),imag(dg)+rg*sin(a),'b','
      linewidth',2);
```

Scilab code Exa 9.13 Amplifier design using the constant operating gain circles

```
1 //define the S-parameters of the transistor
```


Figure 9.3: Amplifier design using the constant operating gain circles

```
2 s11=0.3*exp(%i*(+30)/180*%pi);
3 \text{ s12=0.2*exp}(\%i*(-60)/180*\%pi);
4 s21=2.5*exp(%i*(-80)/180*%pi);
5 \text{ s22=0.2*exp}(\%i*(-15)/180*\%pi);
7 K=1.18
9 //find the maximum gain
10 Gmax = abs(s21/s12)*(K-sqrt(K^2-1));
11 Gmax_dB=10*log10(Gmax)
12
13 //specify the target gain
14 G_goal_dB=8; //would like to build an amplifier with
       8dB gain
15 G_goal=10^(G_goal_dB/10); //convert from dB to
      normal units
16
17 //find constant operating power gain circles
18 go=G_goal/abs(s21)^2;
19
20 //find the center of the constant operating power
      gain circle
21 dgo=go*conj(s22-conj(s11))/(1+go*(abs(s22)^2));
22
23
24 //find the radius of the circle
25 \text{ rgo1} = \text{sqrt} (1-2*K*go*abs}(s12*s21)+go^2*abs}(s12*s21)^2)
26 rgo=rgo1/abs(1+go*(abs(s22)^2));
27
28 //plot a circle in the Smith Chart
29 a=(0:360)/180*\%pi;
30
31 set(gca(), "auto_clear", "off");
32 plot(real(dgo)+rgo*cos(a),imag(dgo)+rgo*sin(a),'r','
      linewidth',2);
33
34 //choose the load reflection coefficient
```

```
35  zL=1-%i*0.53
36  GL=(zL-1)/(zL+1);
37
38  plot(real(GL),imag(GL),'bo');
39
40  [Ro,Theta]=polar(atan(imag(Gs),real(Gs)));
41  Gin=s11+s12*s21*GL/(1-s22*GL);
42  Gs=conj(Gin);
43  Gs_abs=abs(Gs)
44  Gs_angle=(Theta/%pi)*180;
45
46  zs=(1+Gs)/(1-Gs);
```

Scilab code Exa 9.14 Design of small signal amplifier for minimum noise figure and specified gain

```
1 global Z0;
2 \quad Z0 = 50;
4 // define the S-parameters of the transistor
5 \text{ s11=0.3*exp}(\%i*(+30)/180*\%pi);
6 s12=0.2*exp(%i*(-60)/180*%pi);
7 s21=2.5*exp(%i*(-80)/180*%pi);
8 s22=0.2*exp(%i*(-15)/180*%pi);
9
10 //pick the noise parameters of the transistor
11 Fmin_dB=1.5
12 Fmin=10^(Fmin_dB/10);
13 Rn=4;
14 Gopt=0.5*\exp(\%i*45/180*\%pi);
15
16 //compute a noise circle
17 Fk_dB=1.6;
```


Figure 9.4: Design of small signal amplifier for minimum noise figure and specified gain

```
18 Fk=10^{(Fk_dB/10)};
19
20
21 Qk=abs(1+Gopt)^2*(Fk-Fmin)/(4*Rn/Z0) // noise circle
      parameter
22 dfk=Gopt/(1+Qk); //circle center location
23 rfk=\operatorname{sqrt}((1-\operatorname{abs}(\operatorname{Gopt})^2)*\operatorname{Qk}+\operatorname{Qk}^2)/(1+\operatorname{Qk}) // circle
      radius
24
25
26 //plot a noise circle
27 a = [0:360]/180*\%pi;
28 set(gca(), "auto_clear", "off");
29 plot(real(dfk)+rfk*cos(a),imag(dfk)+rfk*sin(a),'b','
      linewidth',2);
30
31 // plot optimal reflection coefficient
32 plot(real(Gopt), imag(Gopt), 'bo');
33
34
35 //specify the desired gain
36 G_goal_dB=8;
37 G_goal=10^(G_goal_dB/10);
38
39 //find the constant operating power gain circles
40 go=G_goal/abs(s21)^2; // normalized the gain
41 dgo=go*conj(s22-conj(s11))/(1+go*(abs(s22)^2)); //
      center
42
43 rgo = sqrt(1-2*K*go*abs(s12*s21)+go^2*abs(s12*s21)^2);
44 rgo=rgo/abs(1+go*(abs(s22)^2));
45
46 //map a constant gain circle into the Gs plane
47 rgs=rgo*abs(s12*s21/(abs(1-s22*dgo)^2-rgo^2*abs(s22))
48 dgs = ((1-s22*dgo)*conj(s11-dgo)-rgo^2*s22)/(abs(1-s22))
      *dgo)^2-rgo^2*abs(s22)^2);
49
```

```
50 //plot a constant gain circle in the Smith Chart
51 set(gca(), "auto_clear", "off");
52 plot(real(dgs)+rgs*cos(a),imag(dgs)+rgs*sin(a),'r','
       linewidth',2);
53
54
55
56 //choose a source reflection coefficient Gs
57 \text{ Gs} = \text{dgs} + \%i * rgs;
58 plot(real(Gs), imag(Gs), 'ro');
59 // \text{text} (\text{real} (\text{Gs}) - 0.05, \text{imag} (\text{Gs}) + 0.08, ' \setminus \text{bf} \setminus \text{Gamma\_S'});
60
61 //find the actual noise figure
62 F=Fmin+4*Rn/Z0*abs(Gs-Gopt)^2/(1-abs(Gs)^2)/abs(1+
       Gopt)^2;
63
64 //print out the actual noise figure
65 Actual_F_dB=10*log10(F)
```

Scilab code Exa 9.15 Constant VSWR design for given gain and noise figure

```
1 global Z0;
2 Z0=50;
3
4 //define the S-parameters of the transistor
5 s11=0.3*exp(%i*(+30)/180*%pi);
6 s12=0.2*exp(%i*(-60)/180*%pi);
7 s21=2.5*exp(%i*(-80)/180*%pi);
8 s22=0.2*exp(%i*(-15)/180*%pi);
9
//noise parameters of the transistor
11 Fmin_dB=1.5
12 Fmin=10^(Fmin_dB/10);
13 Rn=4;
```

```
14 Gopt=0.5*\exp(\%i*45/180*\%pi);
15
16
17 //compute a noise circle
18 Fk_dB=1.6; // desired noise performance
19 Fk=10^(Fk_dB/10);
20
21 Qk=abs(1+Gopt)^2*(Fk-Fmin)/(4*Rn/Z0); //noise circle
       parameter
22 dfk=Gopt/(1+Qk); //circle center location
23 rfk=sqrt((1-abs(Gopt)^2)*Qk+Qk^2)/(1+Qk); //circle
      radius
24
25
26 //plot a noise circle
27 a = [0:360]/180*\%pi;
28 set(gca(), "auto_clear", "off");
29 plot(real(dfk)+rfk*cos(a),imag(dfk)+rfk*sin(a),'b','
      linewidth',2);
30
31 //specify the goal gain
32 G_goal_dB=8;
33 G_goal=10^(G_goal_dB/10);
34
35
36 //find constant operating power gain circles
37 go=G_goal/abs(s21)^2; //normalized gain
38 \, dgo = go * con j (s22 - delta * con j (s11)) / (1 + go * (abs (s22)^2))
     ; //center
39
40 rgo = sqrt(1-2*K*go*abs(s12*s21)+go^2*abs(s12*s21)^2);
41 rgo=rgo/abs(1+go*(abs(s22)^2)); //radius
42
43 //map a constant gain circle into the Gs plane
44 rgs=rgo*abs(s12*s21/(abs(1-s22*dgo)^2-rgo^2*abs(s22)
      ^2));
ds = ((1-s22*dgo)*conj(s11-delta*dgo)-rgo^2*s22)/(abs)
      (1-s22*dgo)^2-rgo^2*abs(s22)^2;
```

```
46
47 //plot constant gain circle in the Smith Chart
48 set(gca(), "auto_clear", "off");
49 plot(real(dgs)+rgs*cos(a),imag(dgs)+rgs*sin(a),'r','
      linewidth',2);
50
51
52 //choose a source reflection coefficient Gs
53 Gs=dgs+%i*rgs;
54
55 //find the corresponding GL
56 \text{ GL}=(s11-conj(Gs))/(delta-s22*conj(Gs));
57
58 //find the actual noise figure
59 \text{ F=Fmin}+4*Rn/Z0*abs(Gs-Gopt)^2/(1-abs(Gs)^2)/abs(1+
      Gopt)^2;
60
61 //% print out the actual noise figure
62 Actual_F_dB=10*log10(F)
63
64 //find the input and output reflection coefficients
65 Gin=s11+s12*s21*GL/(1-s22*GL);
66 Gout=s22+s12*s21*Gs/(1-s11*Gs);
67
68
69 // find the VSWRin and VSWRout
70 Gimn = abs((Gin - conj(Gs))/(1-Gin*Gs));
71 Gomn=abs((Gout-conj(GL))/(1-Gout*GL));
73 VSWRin=(1+Gimn)/(1-Gimn); //VSWRin should be unity
      since we used the constant operating gain
      approach
74 VSWRout = (1 + Gomn) / (1 - Gomn);
75
76 //specify the desired VSWRin
77 VSWRin=1.5;
78
79 //find parameters for constant VSWR circle
```

```
80 Gimn = (1 - VSWRin) / (1 + VSWRin)
 81 \operatorname{dvimn} = (1 - \operatorname{Gimn}^2) * \operatorname{conj}(\operatorname{Gin}) / (1 - \operatorname{abs}(\operatorname{Gimn} * \operatorname{Gin})^2); //
       circle center
82 rvimn=(1-abs(Gin)^2)*abs(Gimn)/(1-abs(Gimn*Gin)^2);
       //circle radius
83
 84 //plot VSWRin=1.5 circle in the Smith Chart
 85 plot(real(dvimn)+rvimn*cos(a),imag(dvimn)+rvimn*sin(
       a), 'g', 'linewidth', 2);
86
87
88 //plot a graph of the output VSWR as a function of
       the Gs position on the constant VSWRin circle
 89 Gs=dvimn+rvimn*exp(%i*a);
90 Gout=s22+s12*s21*Gs./(1-s11*Gs);
91
92 //find the reflection coefficients at the input and
       output matching networks
93 Gimn=abs((Gin-conj(Gs))./(1-Gin*Gs));
94 Gomn=abs((Gout-conj(GL))./(1-Gout*GL));
95
96 //and find the corresponding VSWRs
97 VSWRin = (1 + Gimn) . / (1 - Gimn);
98 VSWRout = (1+Gomn)./(1-Gomn);
99
100 figure; //open new figure for the VSWR plot
101 plot(a/%pi*180, VSWRout, 'r', a/%pi*180, VSWRin, 'b', '
       linewidth',2);
102 legend('VSWR_{out}', 'VSWR_{in}');
103 title ('Input and output VSWR as a function of \
       Gamma_S position');
104 xlabel('Angle \alpha, deg.');
105 ylabel ('Input and output VSWRs');
106 mtlb_axis([0 360 1.3 2.3])
107
108
109 //choose a new source reflection coefficient
110 Gs = dvimn + rvimn * exp(%i*85/180*%pi);
```

```
111
112 //find the corresponding output reflection
                                                coefficient
113 Gout=s22+s12*s21*Gs./(1-s11*Gs);
114
115 //compute the transducer gain in this case
116 GT = (1 - abs(GL)^2) * abs(s21)^2.*(1 - abs(Gs).^2)./abs(1 - abs(Gs)).*(1 -
                                               GL*Gout).^2./abs(1-Gs*s11).^2;
117 GT_dB = 10 * log 10 (GT)
118
119 // find the input and output matching network
                                                reflection coefficients
120 Gimn=abs((Gin-conj(Gs))./(1-Gin*Gs));
121 Gomn=abs((Gout-conj(GL))./(1-Gout*GL));
122
123 //and find the corresponding VSWRs
124 VSWRin = (1 + Gimn) . / (1 - Gimn)
125 VSWRout = (1+Gomn)./(1-Gomn)
126
127 //also compute the obtained noise figure
128 F = Fmin + 4 * Rn / Z0 * abs (Gs - Gopt)^2 / (1 - abs (Gs)^2) / abs (1 + abs (Gs)^2) 
                                               Gopt)^2;
129 F_dB = 10 * log 10 (F)
```


Figure 9.5: Constant VSWR design for given gain and noise figure

Figure 9.6: Constant VSWR design for given gain and noise figure

Chapter 10

Oscillators and Mixers

Scilab code Exa 10.1 Design of a Colpitt oscillator

```
1 fo=200*10^6;
2 \text{ Vce=3};
3 \text{ Ic}=3*10^{-3};
5 Cbc=0.1*10^-15;
6 rBE=2*10^3;
7 rCE=10*10^3;
8 Cbe=100*10^-15;
9 L3=50*10^-9;
10 L=50*10^-9;
11 gm = 0.11666;
12
13 disp("DC values of Hparameters are");
14 h11=rBE;
15 \text{ h12=0};
16 \text{ h21=rBE*gm};
17 h22=1/rCE;
18
19 disp("Mho", h22, "h22", h21, "h21", h12, "h12", "Ohms", h11,
      "h11");
20 k=h21/(h11*h22-h21*h12);
```

```
21 A = (1+k)/L;
22 B=A^2;
23 C=16*k*(\%pi)^2*fo^2*(h22/h11);
24 D=8*k*(\%pi)^2*fo^2;
25 C2 = (A + sqrt(B+C))/D;
26 \text{ C1=k*C2};
27
28 disp("H parameters at resonance frequency");
29 w = 2 * \%pi * fo;
30 E=1+\%i*w*(Cbe+Cbc)*rBE;
31
32 \text{ hie=rBE/E};
33 \text{ hre} = (\%i*w*Cbc*rBE)/E;
34 hfe=(rBE*(gm-%i*w*Cbc))/E;
35 hoe=h22+(%i*w*Cbc*(1+gm*rBE+%i*w*Cbe*rBE))/E;
36 disp("Mho", hoe, "hoe", hfe, "hfe", hre, "hre", "Ohms", hie,
      "hie");
```

Scilab code Exa 10.2 Prediction of resonance frequencies of quartz crystal

```
1 stacksize("max");
2 //define crystal parameters
3 Lq=0.1;
4 Rq=25;
5 Cq=0.3*10^-12;
6 C0=1*10^-12;
7
8 //find series resonance frequency
9 ws0=1/sqrt(Lq*Cq);
10 disp(ws0);
11 ws=ws0*(1+Rq^2/2*C0/Lq);
12 fs=ws/2/%pi
13
14 //find parallel resonance frequency
15 wp0=sqrt((Cq+C0)/(Lq*Cq*C0));
```

```
16  wp=wp0*(1-Rq^2/2*CO/Lq);
17  fp=wp/2/%pi
18
19  // define frequency range for this plot
20  f=(0.9:0.00001:1.1)*1e6;
21  w=2*%pi*f;
22
23  // find abmittance of the resonator
24  Y=%i.*w*CO+1./(Rq+%i*(w*Lq-1./(w*Cq)));
25
26  plot(f/1e6, abs(imag(Y)));
27  mtlb_axis([0.9 1.1 1e-10 1e-1]);
28  title('Admittance of the quartz crystal resonator');
29  xlabel('Frequency {\itf}, MHz');
30  ylabel('Susceptance |B|, \Omega');
```

Scilab code Exa 10.3 Adding a positive feedback element to initiate oscillations

```
1 Z0=50;
2 //oscillation frequency
3 f=2*10^9;
4 w=2*%pi*f;
5 //transistor S-parameters at oscillation frequency
6
7 s_tr=[0.94*exp(%i*174/180*%pi),0.013*exp(-%i*98/180*%pi);1.9*exp(-%i*28/180*%pi),1.01*exp(-%i*17/180*%pi)];
8 s11=ss2tf(1,1);
9 s12=ss2tf(1,2);
10 s21=ss2tf(2,1);
11 s22=ss2tf(2,2);
```


Figure 10.1: Adding a positive feedback element to initiate oscillations

```
13 //find the Z-parameters of the transistor
14 z_tr=ss2tf(s_tr,Z0);
15
16 //attempt to add inductor to base in order to
      increase instability
17 L=(0:0.01:2)*1e-9;
18
19 Z_L = \%i * w * L;
20 z_L = [1,1;1,1];
21
22 N = length(L);
23
24 //create variables for the S_parameters of the
      transistor with the inductor
25 \text{ s11=zeros}([1 \text{ N}]);
26 s12=zeros([1 N]);
27 s21=zeros([1 N]);
28 s22=zeros([1 N]);
29
30 //Rollett stability factor
31 K=zeros([1 N]);
32
33 \quad for \quad n=1:N
34
      z_total=z_tr+z_L*Z_L(n);
35
      s_total=ss2tf(z_total,Z0);
36
      s11(n)=s_total(1,1);
37
      s12(n)=s_total(1,2);
      s21(n)=s_total(2,1);
38
      s22(n)=s_total(2,2);
39
      K(n) = (1 - abs(s11(n))^2 - abs(s22(n))^2 + abs(det(
40
         s_{total})^2/2/abs(s12(n)*s21(n));
41 end;
42
43 plot(L/1e-9,K);
44 title ('Stability factor of the transistor in common-
      base mode vs. base inductance');
45 xlabel('Base inductance L, nH');
46 ylabel('Rollett stability factor \itk')
```

Scilab code Exa 10.6 Dielectric resonator oscillator design

```
1 //define the S-paramters of the transistor at
      resonance frequency
2 s11=1.1*exp(%i*(170)/180*%pi);
3 	ext{ s12=0.4*exp}(%i*(-98)/180*%pi);
4 s21=1.5*exp(%i*(-163)/180*%pi);
5 \text{ s22=0.9*exp}(\%i*(-170)/180*\%pi);
6
7 s=[s11,s12;s21,s22];
9 //define oscillation frequency
10 f0=8e9;
11 w0=2*\%pi*f0;
12
13 //define parameters of the dielectric resonator
14 \quad Z0 = 50;
15 \text{ beta=7};
16 R=beta*2*Z0;
17 Qu = 5e3;
18
19 //compute equivalent L and C
20 L=R/(Qu*w0);
21 C=1/(L*w0^2);
22
23 //find output reflection coefficient of the DR
24 Gout_abs=beta/(1+beta);
25 Gout_angle=-atan(imag(s11),real(s11))/\%pi*180;
26
27 //compute electrical length of the transmission line
       for the DR
28 theta0=-1/2*Gout_angle
29 Gout=Gout_abs*exp(%i*Gout_angle*%pi/180);
30
```

```
31 //find the output impedance of the DR
32 \text{ Zout} = \text{ZO} * (1 + \text{Gout}) / (1 - \text{Gout})
33
34
35 // find the equivalent capacitance (it will be
       necessary for the computation of the oscillator
       without DR)
36 \quad CC = -1/(w0*imag(Zout))
37
38 \text{ Rs} = 50;
39
40 //define the frequency for the plot
41 delta_f=0.05e9; //frequency range
42 f=f0-delta_f/2 : delta_f/100 : f0+delta_f/2;
43 \text{ w=} 2*\% \text{pi*f};
44
45 if theta0<0
46
       theta0=360+theta0;
47 end;
48
49 theta=theta0*f/f0/180*\%pi;
50
51 //repeat the same computations as above, but for
       specified frequency range
52 \text{ Gs} = (\text{Rs} - \text{Z0}) / (\text{Rs} + \text{Z0});
53 G1 = Gs * exp(-\%i * 2 * theta);
54 R1 = Z0 * (1+G1)./(1-G1);
55 Zd=1./(1/R+1./(\%i*w*L+\%i*w*C));
56 R1d = R1 + Zd;
57 \text{ G1d} = (R1d - Z0)./(R1d + Z0);
58 G2=G1d.*exp(-\%i*2*theta);
59
60 //compute the output reflection coefficient (we have
        oscillations if | Gout|>1)
61 Gout=s22+s12*s21*G2./(1-s11*G2);
62
63 figure;
64 plot(f/1e9, abs(Gout), 'b', 'linewidth', 2);
```

```
65 title ('Output reflection coefficient of the
      oscillator with DR');
66 xlabel('Frequency f, GHz');
67 ylabel('Output reflection coefficient |\Gamma_{out}|
      <sup>'</sup>);
  mtlb_axis([7.975 8.025 0 14]);
68
69
70
71 //Redefine the frequency range (we have to increase
      it in order to be able to observe any variations
      in the response
72 \text{ delta_f=5e9};
73 f=f0-delta_f/2 : delta_f/100 : f0+delta_f/2;
74 w = 2 * \%pi * f;
75
76 //Compute the output reflection coefficient of the
      oscillator but with DR replaced by a series
      combination of resistance and capacitance
77 ZZ2=real(Zout)+1./(%i*w*CC);
78 GG2 = (ZZ2 - Z0) . / (ZZ2 + Z0);
79 GG=s22+s12*s21*GG2./(1-s11*GG2);
80
81 figure;
82 plot(f/1e9, abs(GG), 'r', 'linewidth', 2);
83 title ('Output reflection coefficient of the
      oscillator without DR');
84 xlabel('Frequency f, GHz');
85 ylabel('Output reflection coefficient |\Gamma_{out}|
      ');
```

Scilab code Exa 10.8 Local oscillator frequency selection

Figure 10.2: Dielectric resonator oscillator design

Figure 10.3: Dielectric resonator oscillator design

```
1 fRF=1.89*10^9; //RF frequency
2 BW=20*10^6; //Bandwidth
3 fIF=200*10^6; //Intermediate Frequency
4 flo=fRF+fIF; //Local oscillator frequency
5 Q=fIF/BW; //Quality factotr
6 disp(Q,"Quality Factor");
```