数学一(模拟一)答案

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

一、选择题: (1) ~ (8) 小题, 每小题 4分, 共 32分.

在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后的括号里.

(1)【解】: 函数 f(x) 在 $x = 0, \pm 1$ 处无定义,因而间断。

$$\lim_{x \to -1} \frac{x(1+x)e^{-\frac{1}{x^2}}}{\ln|x|} = \lim_{x \to -1} \frac{x(1+x)e^{-\frac{1}{x^2}}}{-(1+x)} = e^{-1}, \lim_{x \to 0} f(x) = 0, \lim_{x \to 1} f(x) = \infty,$$
 故 $x = 0, -1$ 均为 $f(x)$ 的可去间断点,答案 C。

(2)【解】: 由题设有
$$xf'(x) = \frac{1}{2}\sqrt{x}$$
, $f'(x) = \frac{1}{2\sqrt{x}}$, $f(x) = \sqrt{x} + C$, $f(9) = 2$, 故 $C = -1$, 即

$$f(x) = \sqrt{x} - 1$$
, 答案A.

(3)【解】: 答案: 应选(B).

由己知
$$f_x'(1,1) = -2$$
, $f_y'(1,1) = 3$, $l_0 = \left\{ \frac{2}{\sqrt{5}} \quad \frac{1}{\sqrt{5}} \right\}$, 所以 $\frac{\partial z}{\partial l}|_{0,0} = \frac{-4}{\sqrt{5}} + \frac{3}{\sqrt{5}} = \frac{-1}{\sqrt{5}}$.

- (4)【解】: 答案: (D).
- (5)【解】:答案 D. 因为 A, B 为正定矩阵,则对应的特征值均为大于 0,但不一定保证 A B 特征值大于 0. 从而 A B 不是正定矩阵。
- (6)【解】: 答案: (D)。

对于(1)因 $r(\alpha_1,\alpha_2,\alpha_3)=3$,则 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,又 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 必线性相关,从而 α_4 可由 $\alpha_1,\alpha_2,\alpha_3$,线性表出;

对于(2)如果 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,又 $\alpha_1,\alpha_2,\alpha_3,\alpha_4$ 必线性相关,则 α_4 能由 $\alpha_1,\alpha_2,\alpha_3$ 线性表出,与已知矛盾;

对于 (3) 因 $\alpha_1, \alpha_2, \alpha_3, \alpha_4$ 是 3 维非零向量,而 α_4 不能由 $\alpha_1, \alpha_2, \alpha_3$ 线性表出,所以

$$r(\alpha_4,\alpha_i)=2$$
 ($i=1,2,3$),从而 $r(\alpha_1,\alpha_2,\alpha_3, \alpha_4) \geq 2$,于是 $2 \leq r(\alpha_1,\alpha_2,\alpha_3, \alpha_4) \leq 3$;

对于 (4) 因初等变换不改变矩阵的秩,由 $(\alpha_1 + \alpha_2, \alpha_2, \alpha_3) = r(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,得

 $r(\alpha_1, \alpha_2, \alpha_3) = r(\alpha_1, \alpha_2, \alpha_3, \alpha_4)$,表明对应的方程组有解,故 α_4 可以由 $\alpha_1, \alpha_2, \alpha_3$,线性表出。因此,命题(a)(b)(c)(d)都是正确的。选(D)

(7)【解】: 答案: (A)

$$1 = A \int_0^{+\infty} x e^{-2x} dx = \frac{A}{2} \int_0^{+\infty} x 2e^{-2x} dx = \frac{A}{4}, \quad A = 4;$$

$$E(X) = 4\int_0^{+\infty} x^2 e^{-2x} dx = 2\int_0^{+\infty} x^2 2e^{-2x} dx = 2(\frac{1}{4} + \frac{1}{4}) = 1$$

$$E(X^{2}) = 4 \int_{0}^{+\infty} x^{3} e^{-2x} dx = -2 \int_{0}^{+\infty} x^{3} de^{-2x} = 3 \int_{0}^{+\infty} x^{2} 2e^{-2x} dx = \frac{3}{2}$$

$$E(X^2 - X) = E(X^2) - E(X) = \frac{3}{2} - 1 = \frac{1}{2}$$
.

(8)【解】: 答案: (C)

由于
$$P\{X < \sigma\} > P\{X \ge \sigma\} = 1 - P\{X < \sigma\}, P\{X < \sigma\} > \frac{1}{2}$$

即
$$\Phi(0) < P\{X < \sigma\} = P\{\frac{X - \mu}{\sigma} < 1 - \frac{\mu}{\sigma}\} = \Phi(1 - \frac{\mu}{\sigma}), 1 - \frac{\mu}{\sigma} > 0$$
,所以 $\frac{\mu}{\sigma} < 1$ 。

二、填空题: 9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。

(10) 【解】:
$$g'(x) = f'(\frac{2x-1}{2x+1})\frac{4}{(2x+1)^2}, g'(0) = 4f'(-1) = 4\ln 2$$

(11)【解】答案:
$$\frac{8}{15}\pi$$

(12)【解】答案: $\frac{4}{3}\pi R^4$ ".

由于 \sum 具有轮换对称性,故 $\iint_{\Sigma} x^2 dS = \iint_{\Sigma} y^2 dS = \iint_{\Sigma} z^2 dS$.

由此可得

$$\iint_{\Sigma} z^2 dS = \frac{1}{3} \iint_{\Sigma} (x^2 + y^2 + z^2) dS = \frac{1}{3} \iint_{\Sigma} R^2 dS = \frac{1}{3} R^2 \iint_{\Sigma} dS = \frac{1}{3} R^2 \cdot 4\pi R^2 = \frac{4}{3} \pi R^4$$

(13)【解】 记 $A = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \alpha_3^T \end{pmatrix}$, A是秩为 3 的 3×4 的矩阵,由于 β_i 与 α_1 , α_2 , α_3 均正交,故 β_i 是齐次方程

组 Ax = 0 的非 0 解,由因 β_i 非 0,故 $1 \le r(\beta_1, \beta_2, \beta_3, \beta_4) \le n - r(A) = 1$,所以 $r(\beta_1, \beta_2, \beta_3, \beta_4) = 1$ 。

(14) 【解】由
$$\bar{X}$$
与 S^2 独立性, $E(\bar{X}S^2)^2 = E(\bar{X}^2)E(S^2)^2$,由于 $E(\bar{X}^2) = D(\bar{X}) + E(\bar{X})^2 = \frac{\sigma^2}{n}$,
又 $E(S^2) = \sigma^2$,且 $\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$, $D(S^2) = \frac{2\sigma^4}{n-1}$
所以 $E(S^2)^2 = D(S^2) + (E(S^2))^2 = (\frac{2}{n-1} + 1)\sigma^4$

三、解答题: 15~23 小题, 共94 分。解答应写出文字说明、证明过程或演算步骤。

(15)【解】: (I)
$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = \frac{1}{2(1+t)^2} > 0$$
, $\frac{\mathrm{d}^2\,y}{\mathrm{d}\,x^2} = -\frac{1}{(1+t)^4} < 0$, 所以 $y = y(x)$ 为单增函数,曲线 $y = y(x)$ 是凸的; (II) $K\Big|_{t=0} = \frac{\left|y''\right|}{(1+{y'}^2)^{\frac{3}{2}}_{t=0}} = \frac{4}{5\sqrt{5}}$

(16)【解】:因为两个积分都与路径无关,所以有

$$\frac{\partial P}{\partial x} = \frac{\partial (3xy^2 + x^3)}{\partial y} = 6xy \quad , \tag{1}$$

$$\frac{\partial P}{\partial y} = \frac{\partial (3xy^2 + x^3)}{\partial x} = 3y^2 + 3x^2.$$
 (2)

(1) 式两边对x积分,得 $P=3x^2y+\varphi(y)$.

上式对 y 求偏导, 得 $\frac{\partial P}{\partial y} = 3x^2 + \varphi'(y).$

比较 (2) 式, 得 $\varphi'(y) = 3y^2$, $\varphi(y) = y^3 + C$,

因此 $P = 3x^2y + y^3 + C$

又因为P(0,1)=1,所以C=0,进而得 $P=P(x,y)=3x^2y+y^3$

(17) 【证明】:因为 f(x) 在 [0,1] 上有连续的导数,由连续函数的最大值及最小值定理知 f'(x) 在区间 [0,1] 可以去到最大值及最小值。记 $M = \max_{x \in [0,1]} \left\{ f'(x) \right\}, m = \min_{x \in [0,1]} \left\{ f'(x) \right\}$,由 Largrange 中值定理知 $x \in (0,1)$ 时有 $1+mx \leq f(x) = f(0) + f'(\xi)x \leq 1+Mx$ ($\xi \in (0,x)$) 对不等式 $1+mx \leq f(x) = f(0) + f'(\xi)x \leq 1+Mx$ 两边同时在区间 [0,1] 上积分可得 $\frac{m}{2} \leq \int_0^1 f(x) \, \mathrm{d} x - 1 \leq \frac{M}{2} \text{ 即 } m \leq 2 \int_0^1 f(x) \, \mathrm{d} x - 2 \leq M \text{ ,由连续函数介值定理知 } \exists \eta \in [0,1]$ 上使得 $f'(\eta) = 2 \int_0^1 f(x) \, \mathrm{d} x - 2$.

(I)
$$\sum_{n=0}^{\infty} \frac{a_0 + nd}{2^n} = \sum_{n=0}^{\infty} \frac{a_0}{2^n} + \sum_{n=0}^{\infty} \frac{nd}{2^n} = 2a_0 + d\sum_{n=0}^{\infty} \frac{n}{2^n}, \quad f(x) = \sum_{n=1}^{\infty} \frac{nx^{n-1}}{2^n}, \quad \text{if } (x) = \sum_{n=0}^{\infty} \frac{nx^{n-1}}{2^n}$$

$$\int f(x)dx = \sum_{n=1}^{\infty} \frac{x^n}{2^n} = \frac{\frac{x}{2}}{1 - \frac{x}{2}} = \frac{x}{2 - x}, f(x) = \frac{2}{(2 - x)^2}, f(1) = 2, \text{ if } \sum_{n=0}^{\infty} \frac{n}{2^n} = 2, \quad \sum_{n=0}^{\infty} \frac{a_0 + nd}{2^n} = 2(a_0 + d)$$

(19) 【解】:由极值的必要条件,得方程组

$$\begin{cases} \frac{\partial f}{\partial x} = 3 - 2ax - 2by = 0, \\ \frac{\partial f}{\partial y} = 4 - 4ay - 2bx = 0, \end{cases}$$

当
$$8a^2 - 4b^2 \neq 0$$
,即 $2a^2 - b^2 \neq 0$ 时, $f(x, y)$ 有唯一驻点 $\left(\frac{3a - 2b}{2a^2 - b^2}, \frac{4a - 3b}{2(2a^2 - b^2)}\right)$.

ie
$$A = \frac{\partial^2 f}{\partial x^2} = -2a$$
, $B = \frac{\partial^2 f}{\partial x \partial y} = -2b$, $C = \frac{\partial^2 f}{\partial y^2} = -4a$.

当 $AC - B^2 = 8a^2 - 4b^2 > 0$ 即 $2a^2 - b^2 > 0$ 时, f(x, y) 有极值. 并且当 A = -2a > 0,

即 a < 0 时, f(x, y) 有极小值; 当 A = -2a < 0 即 a > 0 时, f(x, y) 有极大值.

综上所述, 得,当 $2a^2 - b^2 > 0$ 且 a < 0 时, f(x, y) 有唯一极小值;

当 $2a^2-b^2>0$ 且a>0时,f(x,y)有唯一极大值.

(20)【解】: (I) 由于
$$A \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = 0 \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}, A \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -4 \\ 4 \\ -2 \end{pmatrix} = -2 \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$$
, 知特征值 $\lambda_2 = 0$, $\lambda_3 = -2$, 相

应的特征向量为 $\alpha_2 = \begin{pmatrix} 1 & 2 & 2 \end{pmatrix}^T$ 和 $\alpha_3 = \begin{pmatrix} 2 & -2 & 1 \end{pmatrix}^T$ 。

设特征值 λ_1 =1的特征向量为 $(x_1 \quad x_2 \quad x_3)^T$,则

$$\begin{cases} x_1 + 2x_2 + 2x_3 = 0 \\ 2x_1 - 2x_2 + x_3 = 0 \end{cases}$$
,解得特征向量为 $\alpha_1 = (2 \quad 1 \quad -2)^T$ 。

所有特征值 λ_1 =1, λ_2 =0, λ_3 =-2,的特征向量依次为 k_1 $\begin{pmatrix} 2 & 1 & -2 \end{pmatrix}^T$, k_2 $\begin{pmatrix} 1 & 2 & 2 \end{pmatrix}^T$, k_3 $\begin{pmatrix} 2 & -2 & 1 \end{pmatrix}^T$,,其中 k_1 , k_2 , k_3 全不为 0

(II) 设 $x_1\alpha_1 + x_2\alpha_2 + x_3\alpha_3 = \beta$,解出 $x_1 = -1, x_2 = 1, x_3 = 1$,即 $\beta = -\alpha_1 + \alpha_2 + \alpha_3$,从而 $A^n\beta = A^n(-\alpha_1) + A^n\alpha_2 + A^n\alpha_3 = -\alpha_1 + (-2)^n\alpha_3$ $= (-1 + (-1)^n 2^{n+1}, -2 + (-2)^n 2^{n+1}, -2 + (-2)^n 2^n)^T$

(21)【解】:(I) 由 $B(\alpha_1, \alpha_2) = 0$,有 $(\alpha_1, \alpha_2)^T B^T = 0$,所以 B^T 的列向量是方程组 $(\alpha_1, \alpha_2)^T x = 0$ 的解。解此方程组的基础解系 $\begin{pmatrix} 1 & 2 & 1 & 0 \end{pmatrix}^T$, $\begin{pmatrix} -1 & -1 & 0 & 1 \end{pmatrix}^T$,故矩阵 $B = \begin{pmatrix} 1 & 2 & 1 & 0 \\ -1 & -1 & 0 & 1 \end{pmatrix}$

(II) 由于两个方程组同解,那么 α_1 , α_2 必是齐次方程组Ax=0的基础解系,解此方程组

$$\begin{pmatrix} 1 & a_2 & a_3 & a_4 \\ a_1 & 4 & a_2 & a_3 \\ 2 & 7 & 5 & 3 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -2 & 1 \\ 3 & -2 \\ -1 & 1 \end{pmatrix} = 0 \text{ EV} \begin{cases} 1-2a_2+3a_3-a_4=0 \\ a_2-2a_3+a_4=0 \\ a_1-8+3a_2-a_3=0 \\ 4-2a_2+a_3=0 \end{cases}$$

解出 $a_1 = 1, a_2 = 3, a_3 = 2, a_4 = 1$

(III) 由于 Ax = 0 的通解是 $k_1\alpha_1 + k_2\alpha_2 = (k_1 - 2k_1 + k_2 3k_1 - 2k_2 - k_1 + k_2)^T$, 因为 $x_3 = -x_4$, 即 $3k_1 - 2k_2 = k_1 - k_2$, ,即 $k_2 = 2k_1$,所以 Ax = 0 满足条件 $x_3 = -x_4$ 所有解为 $(k 0 - k k)^T$, k 为任意常数。

(22)【解】:(I) 由题知
$$f_X(x) = \begin{cases} 1, & 0 < x < 1 \\ 0, & 其他 \end{cases}$$
, $f_{Y/X}(y/x) = \begin{cases} \frac{1}{1-x} 1, & x < y < 1 \\ 0, & 其他 \end{cases}$

则
$$(X,Y)$$
 的密度函数: $f(x,y) = f_X(x) f_{Y/X}(y/x) = \begin{cases} \frac{1}{1-x}, & 0 < x < y < 1 \\ 0, & 其他 \end{cases}$

(II) 边缘密度函数
$$f_Y(y) = \int_{-\infty}^{+\infty} f(x, y) dx = \begin{cases} \int_0^y \frac{1}{1-x} dx = -\ln(1-y), & 0 < y < 1 \\ 0, & 其他 \end{cases}$$

(III)
$$P(X+Y<1/Y>\frac{1}{2}) = \frac{P(0< X < \frac{1}{2}, \frac{1}{2} < Y < 1-X)}{P(Y>\frac{1}{2})} = \frac{\int_{0}^{1/2} \frac{1}{1-x} dx \int_{0}^{1-x} dy}{-\int_{1/2}^{1} \ln(1-y) dy}$$
$$= \frac{1/2}{\frac{1}{2}(1+\ln 2)} = \frac{1}{1+\ln 2}.$$

(23)【解】: (I) 由
$$F(x)$$
 连续性, $0 = F(\theta + 0) = \lim_{x \to \theta^+} (1 - \frac{a}{x^2}) = 1 - \frac{a}{\theta^2}$,所以 $a = \theta^2$,则概率密度函

数为:
$$f(x) = \begin{cases} \frac{2\theta^2}{x^3}, & x > \theta \\ 0, & x \le \theta \end{cases}$$
;

(II)
$$\theta$$
的似然函数为 $L = \prod_{i=1}^{n} \frac{2\theta^{2}}{x_{i}^{3}} = \frac{2^{n}\theta^{2n}}{x_{1}x_{2}\cdots x_{n}}$,

$$\begin{split} \frac{d \ln L}{d \theta} &= \frac{d}{d \theta} (n \ln 2 + 2n \ln \theta - 3 \sum_{i=1}^{n} \ln x_{i}) = \frac{2n}{\theta} > 0 \;, \; \text{所以 L 关于 θ 单调增,且 $x_{i} > \theta$ $(i=1,2,\cdots,n)$} \\ &= \text{BW} \text{大似然估计的定义可知 θ 的极大似然估计为 $\hat{\theta}_{L} = \min\{x_{i}\} \text{ 或 $\hat{\theta}_{L} = \min\{X_{i}\}$} \\ &\text{(III)} \; \text{由于 $\hat{\theta}_{L} = \min\{X_{i}\}$, $ 对应的分布函数为} \\ &F_{\hat{\theta}_{L}}(z) = 1 - [1 - F(z)]^{n} = \begin{cases} 1 - (\frac{\theta}{z})^{2n}, & z > \theta \\ 0, & z \leq \theta \end{cases} \\ &0, & z \leq \theta \end{cases} \\ &f_{\hat{\theta}_{L}}(z) = \begin{cases} \frac{2n\theta^{2}}{z^{2n+1}}, & z > \theta \\ 0, & z \leq \theta \end{cases} \\ &E(\hat{\theta}_{L}) = \int_{\theta}^{+\infty} z \frac{2n\theta^{2}}{z^{2n+1}} dz = 2n\theta^{2} \int_{\theta}^{+\infty} \frac{1}{z^{2n}} dz = \frac{2n}{2n-1} \theta \;, \\ &E(\hat{\theta}) = E(\frac{2n-1}{2n} \hat{\theta}_{L}) = \frac{2n-1}{2n} E(\hat{\theta}_{L}) = \theta \;, \; \text{所以 $\hat{\theta}$} = \frac{2n-1}{2n} \hat{\theta}_{L} \text{ \mathbb{Z}} \; \theta \; \text{ bits \mathbb{Z}} \; \theta \;. \end{split}$$

2014 数学模拟试卷

共创(合肥工业大学)考研辅导中心

Tel: 0551-62905018

绝密★启用前

2014 年全国硕士研究生入学统一考试

数 学(一)

(科目代码:304)

(模拟试卷 2)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

数学一(模拟二)答案

考生注意: 本试卷共二十三题, 满分 150 分, 考试时间为 3 小时.

- 、选择题:(1)~(8)小题, 每小题 4 分, 共 32 分.

在每小题给出的四个选项中, 只有一个选项符合要求, 将所选项前的字母填在题后的括号里.

(1)【解】: 令
$$f(x) = \ln x - kx$$
, $f'(x) = \frac{1}{x} - k$, 当 $k = 0$ 时方程显然有根 $x = 1$;

$$k > 0 \text{ ff}'(\frac{1}{k}) = 0, \quad \lim_{x \to 0^+} f(x) = -\infty, \lim_{x \to +\infty} f(x) = -\infty \stackrel{\text{def}}{=}, \quad f(x) \stackrel{\text{def}}{=} (0, \frac{1}{k}] \stackrel{\text{def}}{=} (0, \frac{1}{k}) \stackrel{\text{def}}{=} (0, \frac{1}{k})$$

当 $f(\frac{1}{k}) = -\ln k - 1 < 0$ 即 $k > \frac{1}{e}$ 时原方程无实根,答案A.

- (2) 【解】:答案(A). 由于若 f(x) 是偶函数,而 F(x) = G(x) + C 是 f(x) 的一个原函数,所以 F(x) = G(x) + C 不是奇函数。
- (3)【解】: 由二重积分的几何意义可知: (B).
- (4)【解】答案: $\lambda=1$ 时,特征方程 $(r-1)^2=0$,特征根为r=1为重根,齐通解才是 $Y=c_1e^x+c_2xe^x$;

若 a=1 , 则是重根,对应特解应为 $v^*=(A+Bx)x^2e^{ax}$ 。应该是(B)。

(5)【解】答案: C

$$|A - \lambda E| = \begin{vmatrix} 1 - \lambda & 2 & 3 \\ 2 & 3 - \lambda & 1 \\ 3 & 1 & 2 - \lambda \end{vmatrix} = (6 - \lambda)(\lambda^2 - 3) = 0 , \quad \lambda_1 = 6, \lambda_2 = \sqrt{3}, \lambda_3 = -\sqrt{3}$$

$$|B - \lambda E| = \begin{vmatrix} 2 - \lambda & 1 & 3 \\ 1 & 3 - \lambda & 2 \\ 3 & 2 & 1 - \lambda \end{vmatrix} = (6 - \lambda)(\lambda^2 - 3) = 0, \quad \lambda_1 = 6, \lambda_2 = \sqrt{3}, \lambda_3 = -\sqrt{3}$$

$$|B - \lambda E| = \begin{vmatrix} 2 - \lambda & 1 & 3 \\ 1 & 3 - \lambda & 2 \\ 3 & 2 & 1 - \lambda \end{vmatrix} = (6 - \lambda)(\lambda^2 - 3) = 0, \quad \lambda_1 = 6, \lambda_2 = \sqrt{3}, \lambda_3 = -\sqrt{3}$$

(6) 【解】:
$$B = \begin{pmatrix} 1 & -1 & 1 \\ 2a & 1-a & 2a \\ a & -a & a^2-2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1+a & 0 \\ 0 & 0 & (a-2)(a+1) \end{pmatrix}$$
, $a = 2$ 时, $r(B) = 2$, $a = 2$ 日, a

知, $r(A) + r(B) \le 3$, $r(A) \le 1$, 又 $A \ne 0$ 0, $r(A) \ge 1$, 所以 r(A) = 1。答案: (C)

(7)【解】: 答案: (D).

$$P(\max(X,Y) \ge 0) = 1 - P\{X < 0, Y < 0\} = 1 - P\{Y < 0\}P\{X < 0 \mid Y < 0\}$$

$$= 1 - (1 - P\{Y \ge 0\})P\{X < 0 \mid Y < 0\} = 1 - \frac{2}{5} \frac{1}{5} = \frac{23}{25}.$$

(8)【解】答案: (B)

由独立性知
$$E(X^2Y) = E(X^2)E(Y) = 1$$
; 概率 $P\{X + Y > E(X^2Y)\} = P\{X + Y > 1\}$
= $P\{X + Y > 1, X = 0\} + P\{X + Y > 1, X = 1\} = \frac{2}{3}P\{Y > 1\} + \frac{1}{3}P\{Y > 0\} = \frac{1}{3}(2e^{-\frac{1}{3}} + 1)$.

二、填空题: 9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。

(9)【解】由题设知
$$a=2$$
, 左式 = $-e^2 \lim_{x\to 0} \frac{e^{\sqrt{4-x^2}-2}-1}{x^2} = -e^2 \lim_{x\to 0} \frac{\sqrt{4-x^2}-2}{x^2} = \frac{e^2}{4}$,所以 $b=\frac{e^2}{4}$.

(10) 【解】由于
$$\frac{dy}{dx} = \frac{1}{\frac{dx}{dy}}$$
,即 $f'(x)g'(y) = 1$, 两边求导数, 可得 $f''(x)g'(y) + f'(x)g''(y)y' = 0$,

$$f''(x)g'(y)+[f'(x)]^2g''(y)=0$$
又 $f(a)=2$,代入可得 $f''(a)g'(2)+[f'(a)]^2g''(2)=0$,又 $f'(x)g'(y)=1$, $f'(a)g'(2)=1$, $3\times(-1)+g''(2)=0$,所以 $g''(2)=3$ 。

(11)【解】 画出二重积分区域D,D,是D的第一象限部分,由对称性,得

$$\int_{-1}^{1} dy \int_{\sqrt{2-y^2}}^{1+\sqrt{1-y^2}} (\sqrt{x^2+y^2} + \sin^3 y) dx = \iint_{D} (\sqrt{x^2+y^2} + \sin^3 y) dx dy = 2 \iint_{D_1} (\sqrt{x^2+y^2}) dx dy$$

$$= 2 \int_{0}^{\frac{\pi}{4}} d\theta \int_{\sqrt{2}}^{2\cos\theta} r^2 dr = \frac{2}{3} \int_{0}^{\frac{\pi}{4}} (8\cos^3\theta - 2\sqrt{2}) d\theta = \frac{20\sqrt{2}}{9} - \frac{\sqrt{2}\pi}{3}$$

(12)【解】答案: $-\sqrt{5} \pi$

抛物面 $z=x^2+y^2$ 在点 (0,1,1) 处的法向量 $\vec{n}=\{2x,2y,-1\}|_{(0,1,1)}=\{0,2,-1\}$,对应切平面方程为 2y-z-1=0 .因为 Σ 关于 yOz 面对称, x^3yz^2 关于x 为奇函数,有 $\iint_{\Sigma} x^3yz^2dS=0$.又 Σ 在 xOy 平面的投影区域为 $D:x^2+(y-1)^2\leq 1$,所以

$$\iint_{\Sigma} (x^3 y z^2 + z) dS = \iint_{\Sigma} z dS = \iint_{D} (2y - 1) \sqrt{2^2 + (-1)^2} dx dy = -\sqrt{5}\pi.$$

(13)【解】:显然 $\xi_1=\begin{pmatrix}k\\-k\\1\end{pmatrix}$, $\xi_2=\begin{pmatrix}k\\2\\1\end{pmatrix}$ 为 A 对应不同特征值 $\lambda_1=0$, $\lambda_2=2$ 的特征向量,因为 A 为实

对称阵,所以
$$\xi_1^T \xi_2 = k^2 - 2k + 1 = 0$$
,解得 $k = 1$,于是 $\xi_1 = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$, $\xi_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix}$.

又因为|E+A|=0,所以 $\lambda_3=-1$ 为 A 的特征值,令 $\lambda_3=-1$ 对应的特征向量为 $\xi_3=\begin{pmatrix}x_1\\x_2\\x_3\end{pmatrix}$,

(14) 【解】:
$$E(Y) = kE\sum_{i=1}^{n-1} (X_{i+1} - \mu - (X_i - \mu))^2$$

$$= kE\left[\sum_{i=1}^{n-1} (X_{i+1} - \mu)^2 - 2(X_{i+1} - \mu)(X_i - \mu) + (X_i - \mu)^2\right]$$

$$= k\left[\sum_{i=1}^{n-1} E(X_{i+1} - \mu)^2 - 2E(X_{i+1} - \mu)(X_i - \mu) + E(X_i - \mu)^2\right]$$

$$= k\left[\sum_{i=1}^{n-1} E(X_{i+1} - \mu)^2 + E(X_i - \mu)^2\right] = 2k(n-1)\sigma^2,$$

由
$$E(Y) = \sigma^2$$
, 所以 $k = \frac{1}{2(n-1)}$.

三、解答题: 15~23 小题, 共94分。解答应写出文字说明、证明过程或演算步骤。

(15) 【解】: 由题设有
$$\lim_{x\to 0} \ln[1+\sin\frac{f(x)}{x}] = 0$$
, $\lim_{x\to 0} \sin\frac{f(x)}{x} = \sin\lim_{x\to 0} \frac{f(x)}{x} = 0$,因此

$$f'(0) = \lim_{x \to 0} \frac{f(x)}{x} = 0 , \ \text{又由于} \ 2 = \lim_{x \to 0} \frac{\ln[1 + \sin\frac{f(x)}{x}]}{\sqrt{1 + 2x} - 1} = \lim_{x \to 0} \frac{f(x)}{x^2} = \lim_{x \to 0} \frac{f'(x)}{2x}, \ \mathbb{P}\lim_{x \to 0} \frac{f'(x)}{x} = 4 , \ \mathbb{E}$$

$$f'(x) \in x = 0 \text{ 处连续}, \ \mathbb{P}\inf_{x \to 0} f''(0) = \lim_{x \to 0} \frac{f'(x) - f'(0)}{x} = 4 .$$

(16) **[**
$$\mathbf{H}$$
]: (I) $\diamondsuit D_1 = D \cap \{(x, y) \mid xy \ge t\}, D_2 = D \cap \{(x, y) \mid xy \le t\}, D_3 = D \cap \{(x, y) \mid xy \le t\}$

$$\mathbb{P} f(t) = \iint_{D} |xy - t| \, dxdy = \iint_{D_1} (xy - t) \, dxdy - \iint_{D_2} (xy - t) \, dxdy$$

$$= 2 \iint_{D_1} (xy - t) \, dxdy - \iint_{D} (xy - t) \, dxdy = 2 \int_{t}^{1} \, dx \int_{\frac{t}{x}}^{1} (xy - t) \, dy - \iint_{D} xy \, dxdy + t \iint_{D} dxdy$$

$$= \frac{1}{4} - t + t^2 \left(\frac{3}{2} - \ln t\right) \, .$$

(II)
$$f'(t) = -1 + 2t(1 - \ln t), f''(t) = -2\ln t \ge 0, t \in (0,1)$$
.

$$f(0+0) = \frac{1}{4}$$
, $f(1) = \frac{3}{4}$, $f'(0+0) = -1$, $f'(1) = 1$ 。因为 $f''(t) = -2\ln t \ge 0$, $t \in (0,1)$,所以 $f'(t)$ 单调增加。又因为 $f'(0+0) = -1$, $f'(1) = 1$,所以存在唯一的 $t_0 \in (0,1)$,使得 $f'(t_0) = 0$ 。 当 $t \in (0,t_0)$ 时, $f'(t) < 0$;当 $t \in (t_0,1)$ 时, $f'(t) > 0$,所以 $t_0 \in (0,1)$ 为 $f(t)$ 在 $[0,1]$ 上唯一的最小点。

(17) 【证明】: (I) 令
$$F(x) = \int_0^x f(t) dt + \int_0^{-x} f(t) dt$$
,由 Lagrange 中值定理知 $\exists \theta \in (0,1)$ 使得 $F(x) - F(0) = F'(\theta x)x$,即有 $\int_0^x f(t) dt + \int_0^{-x} f(t) dt = x[f(\theta x) - f(-\theta x)]$;

(II) 由(I)可得
$$\frac{f(\theta x) - f(-\theta x)}{2\theta x} \times 2\theta = \frac{\int_0^x f(t) dt + \int_0^{-x} f(t) dt}{x^2}$$
, 对上述等式两边同时取极

限
$$x \to 0^+$$
 可得: $2f'(0) \lim_{x \to 0^+} \theta = \lim_{x \to 0^+} \frac{\int_0^x f(t) dt + \int_0^{-x} f(t) dt}{x^2} = \lim_{x \to 0^+} \frac{f(x) - f(-x)}{2x} = f'(0)$, $f'(0) \neq 0$, 所以 $\lim_{x \to 0^+} \theta = \frac{1}{2}$.

(18)【解】: (I) 由于微分方程
$$F'_n(x) - F_n(x) = \frac{(-1)^n}{n} e^{-x} x^n$$
, 由线性微分方程公式知:

$$F_n(x) = e^{\int dx} \left[\int \frac{(-1)^n}{n} e^x x^n e^{-\int dx} dx + C \right] = e^x \left[\frac{(-1)^n}{n(n+1)} x^{n+1} + C \right]$$

代入
$$F_n(0) = 0$$
, $C = 0$; 所以有 $F_n(x) = \frac{(-1)^n}{n(n+1)} x^{n+1} e^x$

(II)
$$\sum_{n=1}^{\infty} F_n(x) = e^x \sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)} x^{n+1}$$
, 以下求 $\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)} x^{n+1}$ 的和函数,令

$$S(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)} x^{n+1} , \quad S'(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n} x^n ; \quad S''(x) = \sum_{n=1}^{\infty} (-1)^n x^{n-1} = -\sum_{n=1}^{\infty} (-x)^{n-1} = -\frac{1}{1+x}, |x| < 1$$

$$S'(x) = -\ln(1+x) , \quad S(x) = -\int_0^x \ln(1+x) dx = -x \ln(1+x) + \int_0^x \frac{x}{1+x} dx = x - (1+x) \ln(1+x) ,$$

所以有
$$\sum_{n=1}^{\infty} F_n(x) = e^x \sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)} x^{n+1} = [x - (1+x)\ln(1+x)]e^x; |x| < 1;$$

(III) 由于
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n(n+1)} x^{n+1} = x - (1+x) \ln(1+x)$$
, $\Leftrightarrow x = \frac{1}{2}$, \mathbb{M} $\frac{1}{4} \sum_{n=1}^{\infty} \frac{(-1)^n}{2^{n-1} n(n+1)} = \frac{1}{2} - \frac{3}{2} \ln \frac{3}{2}$,

所以
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{2^{n-1}n(n+1)} = 2 - 6\ln\frac{3}{2}$$
.

(19)【解】: 点 (x, y, z) 到 xOy 面的距离为 |z|,故求 C 上距离 xOy 面的最远点和最近点的坐标,等价于求函数 $H = z^2$ 在条件 $x^2 + y^2 - 2z^2 = 0$ 与 x + y + 3z = 5 下的最大值点和最小值点.

令
$$L(x, y, z, \lambda, \mu) = z^2 + \lambda(x^2 + y^2 - 2z^2) + \mu(x + y + 3z - 5)$$

$$\begin{cases}
L'_x = 2\lambda x + \mu = 0 & (1) \\
L'_y = 2\lambda y + \mu = 0 & (2) \\
L'_z = 2z - 4\lambda z + 3\mu = 0 & (3) \\
x^2 + y^2 - 2z^2 = 0 & (4) \\
x + y + 3z = 5 & (5)
\end{cases}$$

由(1)(2)得
$$x = y$$
,代入(4)(5)有
$$\begin{cases} x^2 - z^2 = 0 \\ 2x + 3z = 5 \end{cases}$$

解得 $M_0(-5,-5,5)$, $M_1(1,1,1)$ 。

$$(20) \blacksquare A = \begin{pmatrix} 1 & 1 & -3 & 1 \\ 1 & -1 & -1 & 3 \\ 4 & -2 & a & 10 \\ 2 & b & -9 & a+b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -3 & 1 \\ 0 & -2 & 2 & 2 \\ 0 & -6 & a+12 & 6 \\ 0 & b-2 & -3 & a+b-2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -3 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & a+6 & 0 \\ 0 & 0 & b-5 & a+2b-4 \end{pmatrix}$$

1)当 $a \neq -6$, $a + 2b - 4 \neq 0$ 时,因为 $r(A) \neq r(\overline{A})$, 所以 β 不可由 α_1 , α_2 , α_3 线性表示;

2) 当 $a \neq -6$, a + 2b - 4 = 0 时

$$\overline{A} \to \begin{pmatrix} 1 & 1 & -3 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & b-5 & a+2b-4 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \beta 可由 \alpha_1, \alpha_2, \alpha_3 唯一线性表示,表达式为$$

$$\beta = 2\alpha_1 - \alpha_2 + 0\alpha_3;$$

当a = -6时,

$$\overline{A} = \begin{pmatrix} 1 & 1 & -3 & 1 \\ 1 & -1 & -1 & 3 \\ 4 & -2 & a & 10 \\ 2 & b & -9 & a+b \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & -3 & 1 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & b-5 & 2b-10 \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

当
$$a = -6, b \neq 5$$
时,由 \overline{A} \rightarrow $\begin{pmatrix} 1 & 0 & 0 & 6 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, β 可由 α_1 , α_2 , α_3 唯一线性表示,表达式为

$$\beta = 6\alpha_1 + 1\alpha_2 + 2\alpha_3;$$

当
$$a = -6, b = 5$$
 时,由 $\overline{A} \rightarrow \begin{pmatrix} 1 & 0 & -2 & 2 \\ 0 & 1 & -1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$, β 可由 α_1 , α_2 , α_3 线性表示,表达式为

$$\beta = (2k+2)\alpha_1 + (k-1)\alpha_2 + k\alpha_3$$
;其中 k 为任意常数.

(21)【解】(I)
$$A$$
 的特征值为 1,-1, 2. $|A| = -2$,

$$|A^* - 2A^{-1}| = ||A|A^{-1} - 2A^{-1}| = |-4A^{-1}| = (-4)^3 |A^{-1}| = 32$$

(II) 由题意
$$p^TAp = \Lambda = \begin{pmatrix} 1 & & \\ & -1 & \\ & & 2 \end{pmatrix}, \quad A = P\Lambda P^T \Rightarrow A^n = P\Lambda^n P^T = P \begin{pmatrix} 1^n & & \\ & (-1)^n & \\ & & 2^n \end{pmatrix} P^T$$

$$A^{3} - 2A^{2} - A + 4E = P \begin{bmatrix} 1^{3} & & & \\ & (-1)^{3} & & \\ & & 2^{3} \end{bmatrix} - 2 \begin{bmatrix} 1^{2} & & & \\ & & (-1)^{2} & & \\ & & & 2^{2} \end{bmatrix} - \begin{bmatrix} 1 & & & \\ & -1 & & \\ & & 2 \end{bmatrix} + 4 \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & & 1 \end{bmatrix} \end{bmatrix} P^{T}$$

$$= P(2E)P^T = 2E .$$

(22) 【解】 (1)
$$1 = A \int_0^{+\infty} e^{-x} dx \int_x^{+\infty} e^{-y} dy = A \int_0^{+\infty} e^{-2x} dx = \frac{A}{2}$$
; $A = 2$

(II)
$$f_X(x) = 2e^{-x} \int_x^{+\infty} e^{-y} dy = 2e^{-2x}, x > 0, f_X(x) = \begin{cases} 2e^{-2x}, x > 0 \\ 0, x \le 0 \end{cases}$$

$$f_{Y}(y) = \begin{cases} 2e^{-y}(1 - e^{-y}), y > 0\\ 0, y \le 0 \end{cases}$$

所以
$$f_{X/Y}(x \mid y) = \frac{f(x, y)}{f_Y(y)} = \begin{cases} \frac{e^{-x}}{1 - e^{1 - y}}, & 0 < x < y(y > 0) \\ 0, & 其他 \end{cases}$$

(III) 利用公式:
$$f_{z}(z) = \int_{-\infty}^{+\infty} f(x, z - 2x) dx$$
 对应的 $f(x, z - 2x) = 2e^{-z}e^{x}$, $\begin{cases} x > 0 \\ z > 3x \end{cases}$,

所以
$$z > 0$$
, $f_z(z) = 2e^{-z} \int_0^{\frac{z}{3}} e^z dz = 2e^{-z} (e^{\frac{z}{3}} - 1)$, 则 $Z = 2X + Y$ 的概率密度函数为: $f_z(z) \begin{cases} 2e^{-z} (e^{\frac{z}{3}} - 1), & z > 0 \\ 0, & z \le 0 \end{cases}$

(23) 【解】 (I) 由于
$$1 = \frac{A}{\theta^4} \int_0^\theta x(\theta^2 - x^2) dx = \frac{A}{4}$$
, 则 $A = 4$;
$$\mu = E(X) = \frac{4}{\theta^4} \int_0^\theta x^2 (\theta^2 - x^2) dx = \frac{8}{15} \theta$$
, $\diamondsuit \mu = \overline{X}$,

所以参数 θ 的矩估计为 $\hat{\theta}_0 = \frac{15}{8}\overline{X}$;

(II)
$$\sigma^2 = D(X) = E(X^2) - (EX)^2 = \frac{4}{\theta^4} \int_0^\theta x^3 (\theta^2 - x^2) dx - (\frac{8\theta}{15})^2 = \frac{\theta^2}{3} - \frac{64}{225} \theta^2 = \frac{11}{225} \theta^2$$

曲此知
$$D(\hat{\theta}_0) = \frac{225}{64}D(\overline{X}) = \frac{225}{64}\frac{\sigma^2}{n} = \frac{11}{64n}\theta^2$$
;

(III)
$$E(\hat{\theta}_0^2) = E(\frac{15}{8}\overline{X})^2 = \frac{15^2}{8^2}E(\overline{X}^2) = \frac{15^2}{8^2}\{D(\overline{X}) + (E\overline{X})^2\}$$

$$=\frac{15^2}{8^2}\left\{\frac{\sigma^2}{n}+\mu^2\right\}=\frac{15^2}{8^2}\left(\frac{11}{15^2n}\theta^2+\frac{8^2}{15^2}\theta^2\right)=\left(\frac{11}{64n}+1\right)\theta^2, 所以 \hat{\theta}_0^2 不是 \theta^2 的无偏估计。$$

绝密★启用前

2013 年全国硕士研究生入学统一考试

数 学(一)

(科目代码:304)

(模拟试卷3)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

数学一(模拟三)答案

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

一、选择题: $(1) \sim (8)$ 小题,每小题 4 分,共 32 分. 在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后的括号里.

(1)【解】: 由题设有
$$\lim_{x\to 0} f(x) = \lim_{x\to 0} \frac{g(x)x^2}{|x|x^2} = 1, g(0) = 0$$
,

$$g_{-}'(0) = \lim_{x \to 0^{-}} \frac{g(x) - g(0)}{x} = -1, g_{+}'(0) = \lim_{x \to 0^{+}} \frac{g(x) - g(0)}{x} = 1, \quad g'(0)$$
 不存在。

答案是 A.

(2) 【解】:级数
$$\sum_{n=1}^{\infty} (-1)^n \frac{\sin a}{n^3}$$
 绝对收敛, $\sum_{n=1}^{\infty} (-1)^n \ln(1 + \frac{1}{\sqrt{n}})$ 条件收敛,该级数条件收敛.答案 A.

(3) 【解】:
$$F(x) = x \int_0^x f(u) du - 2 \int_0^x u f(u) du$$
, $F'(x) = \int_0^x [f(u) - f(x)] du$, $f(x)$ 为奇函数,则 $F'(x)$ 为偶函数,且可以证明 $x \neq 0$ 时, $F'(x) < 0$,因此 $F(x)$ 是单调减少的奇函数,答案 B.

(4) 【解】:由对称性可得
$$\iint_{D} \frac{e^{x}}{e^{x}+e^{y}} d\sigma = \iint_{D} \frac{e^{y}}{e^{x}+e^{y}} d\sigma = \frac{1}{2} \iint_{D} \frac{e^{x}+e^{y}}{e^{x}+e^{y}} d\sigma = 1.$$
答案为 A.

(5) 【解】:
$$\mathbf{B} = \mathbf{A} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 3 & 4 \\ 1 & 9 & 16 \end{pmatrix}, |\mathbf{B}| = |\mathbf{A}| \begin{vmatrix} 1 & 1 & 1 \\ 1 & 3 & 4 \\ 1 & 9 & 16 \end{vmatrix} = 6$$
, 答案为(D).

(6) 【解】答案: B

由 $A^3\alpha=3A\alpha-2A^2\alpha$,得 $(A-E)(A^2\alpha+3A\alpha)=0$, $A(A^2\alpha+3A\alpha)=A^2\alpha+3A\alpha$,即 $A^2\alpha+3A\alpha$ 是矩阵 A 属于特征值 1 的特征向量.

(7) 【解】 成功的概率为 p , 3 次中至少有一次成功的概率为 $1-(1-p)^3 = \frac{37}{64}$, 所以

$$(1-p)^3 = \frac{27}{64} = (\frac{3}{4})^3$$
, $\mathbb{P} p = \frac{1}{4}$, 答案为 D.

(8)【解】: 答案D.

二、填空题:(9)~(14)小题,每小题 4分,共 24分.把答案填在题中的横线上.

(9)【解】:应填 e^3 .

由题设有
$$f'(0) = \lim_{x\to 0} \frac{f(x) - f(0)}{x} = \lim_{x\to 0} \frac{f(x)}{x} = 3$$
,所以

$$\lim_{x \to \infty} n\{1 + \ln[1 + f(\frac{1}{n})]\} = \lim_{x \to \infty} nf(\frac{1}{n}) = 3,$$

原式=
$$\lim_{n\to\infty} \lim_{n\to\infty} \left\{ 1 + \ln[1 + f(\frac{1}{n})] \right\}^{\frac{1}{\ln[1 + f(\frac{1}{n})]}} \right\}^{n \ln[1 + f(\frac{1}{n})]} = e^3$$

(10)【解】: 应填 $y = (x-2)e^x + x + 2$.

由题设有 a=-2,b=1 , 方程特解应该为 $y^*=x+2$, 该方程通解为 $y=(C_1+C_2x)e^x+x+2$, 由 y(0)=0,y'(0)=0 可得所求解为 $y=(x-2)e^x+x+2$

(11). 【解】: 应填
$$-\frac{\pi a^2 \ln 2}{2}$$
.

原式
$$\stackrel{u=x-a}{==} \int_{-a}^{a} \sqrt{a^2 - u^2} \left[\ln(u + \sqrt{1 + u^2}) - \ln 2 \right] du = -\ln 2 \int_{-a}^{a} \sqrt{a^2 - u^2} du = -\frac{\pi a^2 \ln 2}{2}$$

(12)【答案】: dx-2dy

$$f'_x(x,y) = \frac{1-y}{1+y}, \ f'_y(x,y) = \frac{-2x}{(1+y)^2}, \ \text{th} \ f'_x(1,0) = 1, \ f'_y(1,0) = -2, \ \text{fill}$$

$$df(x,y)|_{(1,0)} = f_x'(1,0) dx + f_y'(1,0) dy = dx - 2 dy.$$

(13)【解】: 应填-8.

因为 A 的特征值为 3, -3, 0, 所以 A-E 特征值为 2, -4, -1,从而 A-E 可逆,由 E+B=AB 得 (A-E)B=E,

即 B 与 A-E 互为逆阵,则 B 的特征值为 $\frac{1}{2}$, $-\frac{1}{4}$,-1, B^{-1} 的特征值为 2,-4,-1, 从而 $B^{-1}+2E$ 的特征值为 4,-2, 于是 $\left|B^{-1}+2E\right|=-8$, 故应填 -8

(14) 【解】: 应填1-2e⁻¹.

由泊松分布的可加性知,X+Y服从参数为 $\lambda_1+\lambda_2$ 的泊松分布,于是 $E(X+Y)=\lambda_1+\lambda_2$,

$$D(X+Y) = \lambda_1 + \lambda_2$$
. $\pm E(X+Y)^2 - 2E(X+Y) = 0$ $\#$

$$\lambda_1 + \lambda_2 + (\lambda_1 + \lambda_2)^2 - 2(\lambda_1 + \lambda_2) = 0$$
,解得 $\lambda_1 + \lambda_2 = 1$ 或 0 (舍去)

故
$$P(X+Y \ge 2) = 1 - P(X+Y=0) - P(X+Y=1) = 1 - 2e^{-1}$$
.

三、解答题: (15)~(23)小题, 共 94 分.解答应写出必要的文字说明、证明过程或演算步骤.

(15) 【解】:
$$x > 0$$
, $\int_{-\infty}^{x} f(t) dt = \int_{-\infty}^{0} e^{t} dt + \int_{0}^{x} t^{2} dt = 1 + \frac{1}{3}x^{3}$,

$$\lim_{x \to 0^{+}} \left(\int_{-\infty}^{x} f(t) \, \mathrm{d} t \right)^{\frac{1}{\tan x - \sin x}} = \lim_{x \to 0^{+}} \left[\left(1 + \frac{x^{3}}{3} \right)^{\frac{3}{x^{3}}} \right]^{\frac{x^{3}}{3(\tan x - \sin x)}} = e^{\lim_{x \to 0^{+}} \frac{x^{3} \cos x}{3 \sin x (1 - \cos x)}} = e^{\frac{2}{3}}$$

(16)【解】:(I)曲面 S 在点 P(x,y,z) 处切平面的方程为 $\frac{x}{a^2}X + \frac{y}{b^2}Y + \frac{z}{c^2}Z = 1$,(X,Y,Z) 为切平面上动点.于是切平面与四个坐标面围成的体积为 $V = \frac{1}{6} \frac{a^2b^2c^2}{xvz}$.令 $F(x,y,z) = xyz + \lambda(\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} - 1)$,

求解方程组
$$\begin{cases} F_x' = yz + \frac{2\lambda x}{a^2} = 0, \\ F_x' = xz + \frac{2\lambda y}{b^2} = 0, \text{解得} \frac{x^2}{a^2} = \frac{y^2}{b^2} = \frac{z^2}{c^2} = \frac{1}{3}, \quad \text{即当} \ x = a, y = b, z = c \ \text{时函数} \ xyz \ \text{取得最大} \\ F_x' = xy + \frac{2\lambda z}{c^2} = 0, \end{cases}$$

值,相应的体积V取得最小值,且有最小值为 $V = \frac{abc}{6}$

(II) \overrightarrow{OP} 方向的单位向量为 $\frac{1}{\sqrt{a^2+b^2+c^2}}\{a,b,c\}$,函数 $u=ax^2+by^2+cz^2$ 在点 (1,1,1) 处的梯度为 $\operatorname{grad} u=\{2a,2b,2c\}$,它与 \overrightarrow{OP} 方向相同,因此函数 $u=ax^2+by^2+cz^2$ 在点 (1,1,1) 处沿向量 \overrightarrow{OP} 方向的方向导数就是函数在该点处的方向导数最大值,且这个最大值为 $\frac{\partial u}{\partial l}=\operatorname{grad} u \bullet \overrightarrow{OP}^0=2\sqrt{a^2+b^2+c^2}$.

(17) 【解】: 引入极坐标 (r,θ) 满足 $x=r\cos\theta$, $y=r\sin\theta$, 在极坐标 (r,θ) 中积分区域 D 可表示为 $D=\{(r,\theta)|0\leq\theta\leq\frac{\pi}{2},2\cos\theta\leq r\leq2\}$, 于是

$$\iint_{D} x(y+1)d\sigma = \int_{0}^{\frac{\pi}{2}} d\theta \int_{2\cos\theta}^{2} r\cos\theta (r\sin\theta + 1)rdr$$

$$= \int_{0}^{\frac{\pi}{2}} \cos\theta \sin\theta d\theta \int_{2\cos\theta}^{2} r^{3}dr + \int_{0}^{\frac{\pi}{2}} \cos\theta d\theta \int_{2\cos\theta}^{2} r^{2}dr$$

$$= \int_{0}^{\frac{\pi}{2}} \frac{2^{4}}{4} \cos\theta \sin\theta [1 - \cos^{4}\theta] d\theta + \int_{0}^{\frac{\pi}{2}} \frac{2^{3}}{3} \cos\theta [1 - \cos^{3}\theta] d\theta = I + J,$$

$$J = \int_0^{\frac{\pi}{2}} \frac{2^3}{3} \cos \theta [1 - \cos^3 \theta] d\theta = \frac{8}{3} \left(\int_0^{\frac{\pi}{2}} \cos \theta d\theta - \int_0^{\frac{\pi}{2}} \cos^4 \theta d\theta \right) = \frac{8}{3} \left(1 - \frac{3 \cdot 1 \cdot \pi}{4 \cdot 2 \cdot 2} \right) = \frac{8}{3} - \frac{\pi}{2}$$

$$\text{id} \iint x(y+1) d\sigma = I + J = \frac{4}{3} + \frac{8}{3} - \frac{\pi}{2} = 4 - \frac{\pi}{2}$$

(18) 【证明】: (I) 由连续函数的零点定理知
$$\exists \xi \in (0, \frac{1}{2}), \exists \eta \in (\frac{1}{2}, 1)$$
 使得 $f(\xi) = f(\eta) = 0$;

(II) 令 $F(x) = f(x)e^{\frac{x^2}{2}}$,则有 $F(\xi) = F(\eta) = 0$,由 Rolle 定理知 $\exists \zeta \in (\xi, \eta) \subset (0,1)$ 使得 $F'(\zeta) = f'(\zeta)e^{\frac{\zeta^2}{2}} + f(\zeta)\zeta e^{\frac{\zeta^2}{2}} = 0$,即有 $f'(\zeta) + \zeta f(\zeta) = 0$.

(19) 【解】
$$F(x) = \frac{1}{x} \left(\int e^x \, dx + C \right) = \frac{e^x + C}{x}, \lim_{x \to 0} y(x) = 1, C = -1,$$

$$f(x) = \left(\frac{e^x - 1}{x} \right)' = \left(\sum_{n=0}^{\infty} \frac{x^n}{(n+1)!} \right)' = \sum_{n=0}^{\infty} \frac{(n+1)x^n}{(n+2)!}, \sum_{n=1}^{\infty} \frac{n}{(n+1)!} = f(1) = \frac{xe^x - e^x + 1}{x^2} \Big|_{x=1} = 1.$$
(20) 【解】令 $X = (\xi_1, \xi_2, \xi_3), B = (\beta_1, \beta_2, \beta_3),$ 矩阵方程化为 $A(\xi_1, \xi_2, \xi_3) = (\beta_1, \beta_2, \beta_3),$ 即
$$\begin{cases} A\xi_1 = \beta_1 \\ A\xi_2 = \beta_2 \\ A\xi_3 = \beta_3 \end{cases}$$

$$(\mathbf{A} \vdots \mathbf{B}) = \begin{pmatrix} 1 & 1 & 2 & a & 4 & 0 \\ -1 & 1 & 0 & -1 & 0 & c \\ 1 & 0 & 1 & 1 & b & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 2 & a & 4 & 0 \\ 0 & 2 & 2 & a-1 & 4 & c \\ 0 & -1 & -1 & 1-a & b-4 & 1 \end{pmatrix}$$

$$\rightarrow \left(\begin{array}{cccccc} 1 & 1 & 2 & a & 4 & 0 \\ & & & \frac{a-1}{2} & \frac{c}{2} \\ 0 & 1 & 1 & \frac{2}{2} & 2 & \frac{c}{2} \\ & & & \frac{1-a}{2} & b-2 & \frac{2+c}{2} \end{array}\right),$$

因此当a = 1, b = 2, c = -2时,矩阵方程有解。

此时
$$(A:B) = \begin{pmatrix} 1 & 1 & 2 & 1 & 4 & 0 \\ 0 & 1 & 1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 1 & 1 & 2 & 1 \\ 0 & 1 & 1 & 0 & 2 & -1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

方程组
$$A\xi_1 = \beta_1$$
 的通解为 $k \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \begin{pmatrix} 1-k \\ -k \\ k \end{pmatrix}$ (k 为任意常数);

方程组
$$\mathbf{A}\boldsymbol{\xi}_2 = \boldsymbol{\beta}_2$$
的通解为 $\mathbf{I}\begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix} = \begin{pmatrix} 2-l \\ 2-l \\ l \end{pmatrix}$ (l 为任意常数);

方程组
$$\mathbf{A}\boldsymbol{\xi}_3 = \boldsymbol{\beta}_3$$
的通解为 $t \begin{pmatrix} -1 \\ -1 \\ 1 \end{pmatrix} + \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} = \begin{pmatrix} 1-t \\ -1-t \\ t \end{pmatrix}$ (t 为任意常数);

于是矩阵的全部解是
$$X = \begin{pmatrix} 1-k & 2-l & 1-t \\ -k & 2-l & -1-t \\ k & l & t \end{pmatrix}$$
 (其中 k,l,t 为任意常数).

(21) 【解】:(I) 据已知条件,有
$$\begin{pmatrix} 0 & a_{12} & a_{13} \\ a_{12} & 0 & a_{23} \\ a_{13} & a_{23} & 0 \end{pmatrix}$$
 $\begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \\ -2 \end{pmatrix}$,即 $\begin{cases} 2a_{12} - a_{13} = 2, \\ a_{12} - a_{23} = 4, \\ a_{13} + 2a_{23} = -2, \end{cases}$

(II) 由
$$|\lambda \mathbf{E} - \mathbf{A}|$$
 = $\begin{vmatrix} \lambda & -2 & -2 \\ -2 & \lambda & 2 \\ -2 & 2 & \lambda \end{vmatrix}$ = $(\lambda - 2)^2 (\lambda + 4)$, 得矩阵 \mathbf{A} 的特征值为 2, 2, -4. 由 $(2\mathbf{E} - \mathbf{A})\mathbf{x} = 0$, $\begin{pmatrix} 2 & -2 & -2 \\ -2 & 2 & 2 \\ -2 & 2 & 2 \end{pmatrix}$ $\rightarrow \begin{pmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 得 $\lambda = 2$ 的特征向量为

由
$$(2E - A)x = 0$$
, $\begin{pmatrix} 2 & -2 & -2 \\ -2 & 2 & 2 \\ -2 & 2 & 2 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$, 得 $\lambda = 2$ 的特征向量为

征向量 $\boldsymbol{\alpha}_3 = (-1,1,1)^T$,将 $\boldsymbol{\alpha}_1,\boldsymbol{\alpha}_2,\boldsymbol{\alpha}_3$ 单位化,可得令 $\boldsymbol{\beta}_1 = \frac{1}{\sqrt{2}}\boldsymbol{\alpha}_1,\boldsymbol{\beta}_2 = \frac{1}{\sqrt{6}}\boldsymbol{\alpha}_2,\boldsymbol{\beta}_3 = \frac{1}{\sqrt{3}}\boldsymbol{\alpha}_3$ 则所求正

交变换矩阵为
$$\mathbf{Q} = (\boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \boldsymbol{\beta}_3) = \begin{pmatrix} 0 & \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix}$$
, 令

$$\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 & \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \end{pmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}, \quad 风有 \mathbf{x}^T \mathbf{A} \mathbf{x} = \mathbf{y}^T \mathbf{A} \mathbf{y} = 2\mathbf{y}_1^2 + 2\mathbf{y}_2^2 - 4\mathbf{y}_3^2.$$

(III) 因为 A + kE 的特征值为 k + 2, k + 2, k - 4, 所以当 k > 4 时, 矩阵 A + kE 正定.

(22) 【解】: (I) 由题可知
$$(X,Y)$$
 的密度函数为 $f(x,y) = \begin{cases} 1, & 0 < x < 1; & 0 < y < 1 \\ 0, & 其他 \end{cases}$

概率
$$P\{\frac{1}{2} \le X + Y \le \frac{3}{2}\} = 1 - 2\int_0^{1/2} dx \int_0^{\frac{1}{2} - x} dy = \frac{3}{4};$$

(II)
$$Z = |X - Y|$$
 的对应函数为 $z = |x - y|$ 的取值范围是 $0 < z < 1$,当 $z < 0$ 时 $F_Z(z) = 0$,当 $z > 1$ 时 $F_Z(z) = 1$,当 $0 \le z < 1$ 时 $F_Z(z) = P\{|X - Y| \le z\} = \iint_{|x - y| \le z} \mathrm{d}x\,\mathrm{d}y = 1 - (1 - z)^2$,因此 $Z = |X - Y|$ 的

密度函数为
$$f_Z(z) = F_Z'(z) = \begin{cases} 2(1-z), & 0 < z < 1 \\ 0, & 其他 \end{cases}$$

(III)
$$E(Z) = E(|X - Y|) = \iint_{D} |x - y| dx dy = \iint_{D_1} (x - y) dx dy - \iint_{D_2} (x - y) dx dy$$

= $2\int_{0}^{1} dx \int_{0}^{x} (x - y) dy = \frac{1}{3}$,

$$E(Z^{2}) = E(|X - Y|^{2}) = \iint_{D} (x - y)^{2} dx dy = \int_{0}^{1} dx \int_{0}^{1} (x - y)^{2} dy = -\int_{0}^{1} dx \int_{0}^{1} (x - y)^{2} d(x - y)$$
$$= \frac{1}{3} \int_{0}^{1} [x^{3} - (x - 1)^{3}] dx = \frac{1}{6}, \quad D(Z) = D(|X - Y|) = \frac{1}{6} - (\frac{1}{3})^{2} = \frac{1}{18}.$$

所以 θ 的矩估计为 $\hat{\theta}_J = \frac{4}{3}\bar{X}$;

$$L = \prod_{i=1}^n \frac{3x_i^2}{\theta^3} = \frac{3^n (x_1 x_2 \cdots x_n)^2}{\theta^{3n}} \;, \;\; 0 < x_i < \theta \;, \quad \frac{d \ln L}{d \theta} = \frac{d}{d \theta} (n \ln 3 + 2 \sum_{i=1}^n \ln x_i - 3n \ln \theta) = -\frac{3n}{\theta} < 0 \;, \;\; \boxtimes L \; \text{ if } L \; \text{ if$$

此
$$L$$
 天于参数 θ 單调速減,又 $0 < x_i < \theta$,由定义知 θ 的极大似然估计为 $\theta_L = \max(H)$ X 的分布函数为 $F(x) = \begin{cases} 0, & x < 0 \\ \frac{x^3}{\theta^3}, 0 \le x < \theta, & \text{因而 } \hat{\theta}_L = \max\{X_i\} \text{ 的分布函数为 } 1, & x > \theta \end{cases}$

$$F_{\hat{\theta}_L}(z) = [F(z)]^n = \begin{cases} 0, & z < 0 \\ \frac{x^{3n}}{\theta^{3n}}, 0 \le z < \theta, \text{ 由此可得} \hat{\theta}_L \text{的密度函数为} \\ 1, & z > \theta \end{cases}$$

$$f_{\hat{\theta}_L}(z) = F_{\hat{\theta}_L}(z) = \begin{cases} \frac{3nx^{3n-1}}{\theta^{3n}}, 0 \le z < \theta, \\ 0, 其他; \end{cases}$$

(III) 首先由于
$$E(\hat{\theta}_J) = E(\frac{4}{3}\overline{X}) = \frac{4}{3}E(\overline{X}) = \frac{4}{3}\mu = \theta$$
, $\hat{\theta}_J$ 是 θ 的无偏估计性。

又由于
$$E(\hat{\theta}_L) = \int_0^{\theta} z \frac{3nz^{3n-1}}{\theta^{3n}} dz = \frac{3n}{3n+1} \theta$$
; $\hat{\theta}_L$ 不是 θ 的无偏估计.

绝密★启用前

2014 年全国硕士研究生入学统一考试

数 学(一)

(科目代码:304)

(模拟试卷 4)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

2014年全国硕士研究生入学统一考试

数学一(模拟四)

考生注意:本试卷共二十三题,满分 150 分,考试时间为 3 小时. 答案必须写在答题纸上, 否则成绩无效

一、选择题: (1)~(8)小题,每小题 4分,共 32分.

在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后的括号里.

(1)【解】:
$$f[f(x)] = \begin{cases} x+2, x \ge 0, \\ \frac{1}{1-x}, +2, x < 0 \end{cases}$$
, 故 $x = 0$ 是 $f[f(x)]$ 的跳跃间断点。答案 C.

(2)【解】
$$\frac{1}{1+e^t} - \frac{1}{2}$$
为奇函数,因而 $\int_{-x}^x (\frac{1}{1+e^t} - \frac{1}{2}) dt = 0$, $e^{\cos \pi t} \sin \pi (t - [t])$ 是周期为1的周期函

数,因而
$$F(x) = \int_0^1 e^{\cos^2 \pi t} \sin \pi t \, dt = \frac{1}{\pi} \int_0^{-1} e^{u^2} \, du > 0$$
,答案为 B.

(3)

【答案】: D

(4)【解】答案: (B).

因为D关于x轴和y轴都对称,而 $(x+y)^3=x^3+3x^2y+3xy^2+y^3$ 中 x^3 和 $3xy^2$ 是关于x的奇函数, $3x^2y$ 和 y^3 是关于y的奇函数,它们在D上的二重积分全为零,所以 $I_1=0$.

在D上,有 $\cos x^2 \sin y^2 > 0$,所以 $I_2 > 0$;又有 $e^{-(x^2+y^2)} - 1 < 0$,所以 $I_3 < 0$.综上有 $I_2 > I_1 > I_3$,选(B).

(5)【解】 由 $A\alpha_1=\alpha_1$, $A\alpha_2=\alpha_2$, $A\alpha_3=0$,且 α_1,α_2 线性无关知, α_1,α_2 是特征值 1 的线性无关特征向量; α_3 是特征值 0 的线性无关特征向量,且 $\alpha_1,\alpha_2,\alpha_3$ 线性无关。因此 $\left(-\alpha_1,5\alpha_2,\alpha_3\right)$, $\left(\alpha_2,\alpha_1,\alpha_3\right)$, $\left(\alpha_1+\alpha_2,\alpha_2,\alpha_3\right)$ 是分别属于特征值 1,1,0 的线性无关特征向量,而 $\alpha_2+\alpha_3$ 不是特征向量。故选 D

(6)【解】:
$$P_1 = E_{23}$$
,因为 $E_{ij}^{-1} = E_{ij}$,所以 $E_{ij}^2 = E$, $P_1^{100} = E.P_2 = E_{13}(4)$,因为 $E_{ij}^{-1}(k) = E_{ij}(-k)$,所以
$$P_2^{-1} = \begin{pmatrix} 1 & 0 & -4 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
,于是 $A^{-1}P_1^{100}AP_2^{-1} = P_2^{-1}$,选(B)。

(7) 【解】由于
$$\frac{1}{2}$$
 = $P\{XY < 0\}$ = $P\{X < 0, Y > 0\}$ + $P\{X > 0, Y < 0\}$ = $2p(1-p)$, $p(1-p) = \frac{1}{4}$, 所以 $p = \frac{1}{2}$ 。 答案: (C)

(8)【解】分析:本题关键是考察概率密度函数的两个基本条件。

显然
$$\frac{1}{2}f(x)F(x) \ge 0$$
; 又有 $\int_{-\infty}^{+\infty} 2f(x)F(x)dx = 2\int_{-\infty}^{+\infty} F(x)F'(x)dx = 2\frac{1}{2}F^2(x)|_{-\infty}^{+\infty} = 1$ 。 答案: (C)。

二、填空题: 9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。

$$(9) \text{ [M]: } \lim_{x \to +\infty} x^p \left(e^{\frac{1}{x}} - e^{\frac{1}{x+1}} \right) \stackrel{x=\frac{1}{t}}{=} \lim_{t \to 0^+} \frac{e^t - e^{\frac{t}{1+t}}}{t^p} = e^{\frac{t}{1+t}} \lim_{t \to 0^+} \frac{e^{t-\frac{t}{1+t}} - 1}{t^p} = \lim_{t \to 0^+} \frac{t - \frac{t}{1+t}}{t^p} = \lim_{t \to 0^+} \frac{t^2}{(1+t)t^p}$$

$$p = 2.$$

(10)【解】: 对等式两边同时取对数,再求微分可得

 $\ln \cos x \, dy - y \tan x \, dx = \ln \sin y \, dx + x \cot y \, dy$, 由此可得 $dy = \frac{\ln \sin y + y \tan x}{\ln \cos x - x \cot y} \, dx$.

(11)【解】 y_1, y_2 线性无关,该方程通解为 $y = C_1 e^x + C_2 x$,由初始条件得 $C_1 = C_2 = 1$,故 $y = e^x + x$

(12) 【解】答案:
$$\frac{36}{1-4\pi}$$

记
$$\oint_L f(x,y) ds = A$$
 ,则 $f(x,y) = (x-1)^2 + (y+2)^2 + A$. 两边在曲线 L 上积分,有 $A = \oint_L f(x,y) ds = \oint_L [(x-1)^2 + (y+2)^2 + A] ds = \oint_L (x^2 + y^2 - 2x + 4y + A + 5) ds$

在 $L \perp x^2 + y^2 = 4$,且由对称性知 $\oint_L x \, ds = \oint_L y \, ds = 0$,解得 $A = \frac{36}{1 - 4\pi}$.

(13)【答案】:
$$\begin{pmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$

(14)【解】:由二维正态分布知:E(X) = E(U - bV) = 2(1 - b),E(Y) = E(V) = 2; $E(XY) = E((U - bV)V) = E(UV) - bE(V^2) = Cov(U, V) + E(U)E(V) - b[D(V) + (E(V))^2]$ $= (\frac{1}{2} \times 2 \times 1 + 4) - b(1 + 4) = 5(1 - b)$;

由独立一定不相关: E(XY) = E(X)E(Y), 所以b=1。

三、解答题: 15~23 小题, 共94分。解答应写出文字说明、证明过程或演算步骤。

(15) 【解】:
$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = \frac{\frac{\mathrm{d}\,y}{\mathrm{d}\,t}}{\frac{\mathrm{d}\,t}{\mathrm{d}\,t}} = \frac{\frac{e^t}{\cos\,y^2\sqrt{1+t^2}}}{\frac{1}{\sqrt{1+t^2}}} = \frac{e^t}{\cos\,y^2} \,, \quad \frac{\mathrm{d}^2\,y}{\mathrm{d}\,x^2} = \frac{\frac{\mathrm{d}\,\left(\frac{e^t}{\cos\,y^2}\right)}{\mathrm{d}\,t}}{\frac{1}{\sqrt{1+t^2}}} = \frac{e^t\sqrt{1+t^2}}{\cos\,y^2} + \frac{2\,ye^{2t}\sin\,y^2}{(\cos\,y^2)^3} \,.$$

(16)【解】: $I = \frac{1}{4} \iint_{\Sigma} y \, dz \, dx + (z-2) \, dx \, dy$. 补 Σ_1 : $z = 0 (x^2 + y^2 \le 4)$, 并取上侧.

$$I = \frac{1}{4} \left[\iint_{\Sigma + \Sigma_1} y \, \mathrm{d}z \, \mathrm{d}x + (z - 2) \, \mathrm{d}x \, \mathrm{d}y - \iint_{\Sigma_1} y \, \mathrm{d}z \, \mathrm{d}x + (z - 2) \, \mathrm{d}x \, \mathrm{d}y \right].$$

设 Σ 与 Σ_1 围成空间立体为 Ω ,由高斯公式

$$\iint_{\Sigma+\Sigma_{1}} y \, dz \, dx + (z-2) \, dx \, dy = -\iiint_{\Omega} 2 \, dx \, dy \, dz = -2 \cdot \frac{1}{2} \cdot \frac{4}{3} \pi \cdot 2 \cdot 2 \cdot 1 = -\frac{16}{3} \pi ,$$

$$\iint_{\Sigma_{1}} y \, dz \, dx + (z-2) \, dx \, dy = -2 \iint_{x^{2}+y^{2} \le 4} dx \, dy = -2\pi \cdot 2^{2} = -8\pi ,$$

$$\iiint_{\Sigma_{1}} y \, dz \, dx + (z-2) \, dx \, dy = -2 \iint_{x^{2}+y^{2} \le 4} dx \, dy = -2\pi \cdot 2^{2} = -8\pi ,$$

$$\iiint_{\Sigma_{1}} y \, dz \, dx + (z-2) \, dx \, dy = -2 \iint_{x^{2}+y^{2} \le 4} dx \, dy = -2\pi \cdot 2^{2} = -8\pi ,$$

(17) 【证法一】: 原不等式等价于
$$(x^2-1)\ln x - (x-1)^2 \ge 0$$
, 令 $f(x) = (x^2-1)\ln x - (x-1)^2$,则 $f(1) = 0$, $f'(x) = 2x\ln x + 2 - x - \frac{1}{x}$, $f'(1) = 0$, $f''(x) = 2\ln x + 1 + \frac{1}{x^2}$, $f''(1) = 2$,

 $[1,+\infty)$ 上单调递增,因此当x > 1时, $f(x) = (x^2 - 1) \ln x - (x - 1)^2 \ge f(1) = 0$;

当0 < x < 1时 f'''(x) < 0,f''(x) > f''(1) = 2,f'(x) < f'(1) = 0,即函数 f(x) 在区间 (0,1] 上单调递减,

因此当0 < x < 1时, $f(x) = (x^2 - 1) \ln x - (x - 1)^2 \ge f(1) = 0$.

【证法二】: 当 x = 1 时显然有 $(x^2 - 1) \ln x \ge (x - 1)^2$;

当
$$x > 1$$
 时,不等式等价于 $\ln x - \frac{x-1}{x+1} \ge 0$, 令 $f(x) = \ln x - \frac{x-1}{x+1}$,则有

$$f(1) = 0, f'(x) = \frac{1}{x} - \frac{2}{(x+1)^2} = \frac{1+x^2}{x(x+1)^2} > 0$$
,即函数 $f(x)$ 在区间 $[1,+\infty)$ 上单调递增,因此当 $x > 1$

时,有
$$f(x) = \ln x - \frac{x-1}{x+1} \ge f(1) = 0$$
;

当 0 < x < 1时,不等式等价于 $\ln x - \frac{x-1}{x+1} \le 0$,由前面的讨论可知函数 $f(x) = \ln x - \frac{x-1}{x+1}$ 在区间 (0,1] 上

单调递减,因此当0 < x < 1时,有 $f(x) = \ln x - \frac{x-1}{x+1} \le f(1) = 0$.

(18) 【解】 (I) 由
$$y = nx^2 + \frac{1}{n}$$
 和 $y = (n+1)x^2 + \frac{1}{n+1}$ 得 $a_n = \frac{1}{\sqrt{n(n+1)}}$,又两条抛物线所围成的

图形关于 y 轴对称,故 $S_n = 2\int_0^{a_n} [nx^2 + \frac{1}{n} - (n+1)x^2 - \frac{1}{n+1}] dx$

$$=2\int_0^{a_n} \left[\frac{1}{n(n+1)} - x^2\right] dx = \frac{4}{3n(n+1)\sqrt{n(n+1)}}$$

(II) 由 (1) 的结果,
$$\frac{S_n}{a_n} = \frac{4}{3n(n+1)} = \frac{4}{3}(\frac{1}{n} - \frac{1}{n+1})$$
, 从而

$$\sum_{n=1}^{\infty} \frac{S_n}{a_n} = \lim_{m \to \infty} \sum_{n=20}^{m} \frac{S_n}{n} = \lim_{m \to \infty} \sum_{n=20}^{m} \frac{4}{n} \frac{(1-1)}{2m} = \lim_{m \to \infty} \frac{4}{n} \lim_{n \to \infty} \frac{1}{n} = \lim_{m \to \infty} \frac{1}{n} =$$

(19) 【解】: (I) 由定积分的几何意义知
$$\int_0^{2x} \sqrt{2xt-t^2} \, dt = \frac{\pi}{2} x^2$$
, 当 $x \in (0,1)$ 时

$$\int_0^1 |x-t| \, \mathrm{d}t = \int_0^x (x-t) \, \mathrm{d}t + \int_x^1 (t-x) \, \mathrm{d}t = x^2 - x + \frac{1}{2}, \quad \text{if } x \ge 1 \text{ in } f$$

$$\int_0^1 |x-t| \, \mathrm{d}t = x - \frac{1}{2}, \quad \text{Mini} \ f(x) = \begin{cases} \frac{\pi + 2}{2} x^2 - x + \frac{1}{2}, x \in [0,1], \\ \frac{\pi}{2} x^2 + x - \frac{1}{2}, \quad x > 1, \end{cases}$$

$$f'(x) = \begin{cases} (2+\pi)x - 1, & x \in (0,1], \\ \pi x + 1, & x > 1, \end{cases} \text{ in } f'(x) \text{ in } \text{ and } f(x) \text{ in } f(x) \text$$

- 增,因而 $f(\frac{1}{2+\pi}) = \frac{1+\pi}{2(2+\pi)}$ 是函数的极小值,同时也是最小值;
- (II) 因为 $\lim f(x) = +\infty$,因而 f(x) 在 $[0, +\infty)$ 内没有最大值
- (20)【解】:(1)由题设知 $\xi_1 = (-2,1,0)^T$ $\xi_2 = (2,0,1)^T$ 是 Ax = 0 的基础解系,即特征值 $\lambda = 0$ 对应线性无关 特征向量。 又 $\eta = (1 \quad 2 \quad -2)^T$ 是 Ax = b 的特解

$$A \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = b = \begin{pmatrix} 9 \\ 18 \\ -18 \end{pmatrix} = 9 \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix}$$
, 知 $\xi_3 = (1 \ 2 \ -2)^T = \eta$ 是 A 对应于 $\lambda = 9$ 特征向量。

取可逆阵
$$P = (\xi_1 \ \xi_2 \ \xi_3)$$
 则 $P^{-1}AP = \Lambda = \begin{pmatrix} 0 \\ 0 \\ 9 \end{pmatrix}$, $A = P\Lambda P^{-1} = \dots = \begin{pmatrix} 1 & 2 & -2 \\ 2 & 4 & -4 \\ -2 & -4 & 4 \end{pmatrix}$

(2)
$$A^{100} = (P\Lambda P^{-1})^{100} = P\Lambda^{100}P^{-1} = 9^{99}A$$

(21) 【解】(I)
$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -2 & 0 \\ -8 & \lambda - 2 & 0 \\ 0 & -a & \lambda - 6 \end{vmatrix} = (\lambda - 6)^2 (\lambda + 2), \quad \lambda_1 = \lambda_2 = 6 \quad \lambda_3 = -2$$

由已知 A 可对角化, 故 $\lambda = 6$ 必有 2 个线性无关的特征向量

曲
$$R(6E-A) = R\begin{pmatrix} 4 & -2 & 0 \\ -8 & 4 & 0 \\ 0 & -a & 0 \end{pmatrix} = 1$$
, 得 $a = 0$

曲
$$R(6E-A) = R \begin{pmatrix} 4 & -2 & 0 \\ -8 & 4 & 0 \\ 0 & -a & 0 \end{pmatrix} = 1$$
, 得 $a = 0$.
(II) 由 (1) 得 $x^T A x = 2x_1^2 + 2x_2^2 + 6x_3^2 + 10x_1x_2$, 二次型矩阵 $A_1 = \begin{pmatrix} 2 & 5 & 0 \\ 5 & 2 & 0 \\ 0 & 0 & 6 \end{pmatrix}$

由
$$|\lambda E - A_1| = \cdots = (\lambda - 6)(\lambda - 7)(\lambda + 3)$$
, 知二次型: $x^T A x = x^T A_1 x$ 特征值 6,7,-3

対
$$\lambda = 6$$
 由 $(6E - A_1)x = 0$ 得 $\alpha_1 = (0.0.1)^T$

对
$$\lambda = 7$$
 由 $(7E - A_1)x = 0$ 得 $\alpha_2 = (1.1.0)^T$

対
$$\lambda = -3$$
 由 $(-3E - A_1)x = 0$ 得 $\alpha_3 = (1.-1.0)^T$
经单位化 $\beta_1 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ $\beta_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$ $\beta_3 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$, $\Rightarrow P = (\beta_1 \ \beta_2 \ \beta_3) = \begin{pmatrix} 0 & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ 1 & 0 & 0 \end{pmatrix}$

(22)【解】(I)由于
$$\int_{-\infty}^{+\infty} f(x)dx = 1$$
,所以 $1 = \int_{0}^{1} x dx + \int_{1}^{2} (a-x)dx = \frac{1}{2} + a - \frac{3}{2} = a - 1$, $a = 2$

(II)
$$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0, & x < 0 \\ \int_{0}^{x} t dt, & 0 \le x < 1 \\ \int_{0}^{1} t dt + \int_{0}^{x} (2 - t) dt, & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases} = \begin{cases} 0, & x < 0 \\ \frac{x^{2}}{2}, & 0 \le x < 1 \\ \frac{1}{2} (1 + 4x - x^{2}), & 1 \le x < 2 \\ 1, & x \ge 2 \end{cases}$$

(III) 对应Y = F(X) 的函数为分布函数 y = F(x) , 单调非降的连续函数,且 $0 \le y \le 1$, 因此 $y < 0, G(y) = 0; y \ge 0, G(y) = 1;$

$$0 \le y < 1$$
, $G(y) = P\{F(X) \le y\} = P\{X \le F^{-1}(y)\} = F(F^{-1}(y)) = y$;

所以有
$$Y = F(X)$$
 的分布函数 $G(y) = \begin{cases} 0, & y \le 0 \\ y, & 0 \le y < 1 \\ 1, & y > 0 \end{cases}$ 4) $P\{2Y^2 \le E(Y)\} = P\{2Y^2 \le \frac{1}{2}\} = P\{\big|Y\big| \le \frac{1}{2}\} = \frac{1}{2}$

4)
$$P{2Y^2 \le E(Y)} = P{2Y^2 \le \frac{1}{2}} = P{|Y| \le \frac{1}{2}} = \frac{1}{2}$$

(23)【解】 (I) 由于
$$\mu = \frac{a+b}{2} = \theta_0 + \frac{\theta}{2}$$
, 令 $\mu = \overline{X}$, 所以 $\theta_0 + \frac{\theta}{2} = \overline{X}$,则 θ 的矩估计为 $\hat{\theta} = 2(\overline{X} - \theta_0)$;

(II) 似然函数为
$$L = \prod_{i=1}^n \frac{1}{\theta} = \frac{1}{\theta^n}$$
 , $\theta_0 < x_i < \theta_0 + \theta$; 又因为 $\ln L = -n \ln \theta$, $\frac{d}{d\theta} \ln L = -\frac{n}{\theta} < 0$,

所以满足 $\theta_0 < x_i < \theta_0 + \theta$ 时,有 L 关于 θ 单调减;即 $\theta_0 + \theta = \max\{x_i\}$,所以 θ 的极大似然估计 $\hat{\theta}_L = \max\{x_i\} - \theta_0;$

(III)
$$E(\hat{\theta}_L) = E(\max\{X_i\}) - \theta_0$$
,

其中:
$$X$$
 的分布函数 $F(x) = \left\{ egin{array}{ll} 0, & x < heta_0 \\ \dfrac{x - heta_0}{ heta}, heta_0 \leq x < heta_0 + heta, \\ 1, & x \geq heta_0 + heta. \end{array} \right.$

$$\hat{\theta}_L U = \max\{X_i\} \text{ 的分布函数为 } F_U(z) = (F(z))^n = \left\{ \begin{array}{l} 0, \quad z < \theta_0 \\ \\ \frac{(z-\theta_0)^n}{\theta^n}, \theta_0 \leq z < \theta_0 + \theta \\ 1, \quad z \geq \theta_0 + \theta \end{array} \right.$$

对应概率密度为
$$f_U(z) = \left\{ egin{array}{ll} \dfrac{n(z-\theta_0)^{n-1}}{\theta^n}, \theta_0 \leq z < \theta_0 + \theta \\ 0, \qquad \\ \downarrow t \end{array} \right.$$
,由此可知:

$$E(\max\{X_i\}) = \int_{\theta_0}^{\theta_0+\theta} z \frac{n(z-\theta_0)^{n-1}}{\theta^n} dz = \frac{n}{\theta^n} \int_{\theta_0}^{\theta_0+\theta} z (z-\theta_0)^{n-1} dz \;, \quad \text{for the } z-\theta_0 = t, \, dz = dt \;,$$

所以
$$E(\max\{X_i\}) == \frac{n}{\theta^n} \int_0^\theta (\theta_0 + t) t^{n-1} dt = \theta_0 + \frac{n}{n+1} \theta$$
,则 $E(\hat{\theta}_L) = E(\max\{X_i\}) - \theta_0 = \frac{n}{n+1} \theta$,即

$$\hat{\theta}_L = \max\{x_i\} - \theta_0$$
 不是 θ 的无偏估计。

绝密★启用前

2014年全国硕士研究生入学统一考试

数 学(一)

(科目代码:304)

(模拟试卷5)

考生注意事项

- 1. 答题前,考生须在答题纸指定位置上填写考生姓名、报考单位和考生编号。
- 2. 答案必须书写在答题纸指定的位置上,写在其他地方无效。
- 3. 填(书)写必须使用蓝(黑)色字迹钢笔、圆珠笔或签字笔。
- 4. 考试结束,将答题纸和试题一并装入试题袋中交回。

数学一(模拟五)答案

考生注意:本试卷共二十三题,满分150分,考试时间为3小时.

一、选择题: (1) ~ (8) 小题,每小题 4 分,共 32 分.

在每小题给出的四个选项中,只有一个选项符合要求,将所选项前的字母填在题后的括号里.

(1) 【解】:
$$f(x) = nx^{n-1} \sin x + x^n \cos x \sim (n+1)x^n$$
,

$$\lim_{x \to 0} \frac{f(x)}{g(x)} = \lim_{x \to 0} \frac{n(n+1)x^{n-1}}{2x(\sqrt{1+x^4}-1)} = \lim_{x \to 0} \frac{n(n+1)x^{n-1}}{x^5}, \quad \text{in } n = 6, \quad \text{Ex D.}$$

(2)【解】: f'(a)f'(b) < 0,不妨设 f'(a) > 0,f'(b) < 0,那么函数 f(x) 必在在 (a,b) 内取得最大值,即 $\exists x_0 \in (a,b)$ 使得 $f(x_0) = \max_{x \in [a,b]} \{f(x)\}$,此时必有 $f'(x_0) = 0$.

(3). 【解】答案: A.
$$\frac{\partial f(x,y)}{\partial x} < 0 \Rightarrow f(x,y)$$
 关于 x 单调减少, $\frac{\partial f(x,y)}{\partial y} > 0 \Rightarrow f(x,y)$ 关于 y 单调增加,

 $\stackrel{\text{def}}{=} x_1 > x_2$, $y_1 < y_2$ $\stackrel{\text{def}}{=}$, $f(x_1, y_1) < f(x_2, y_1) < f(x_2, y_2)$.

(4)【解】答案: (C).

由对称性知 $\oint_{\Gamma} xy ds = \oint_{\Gamma} xz ds = \oint_{\Gamma} yz ds$, $\oint_{\Gamma} x^2 ds = \oint_{\Gamma} y^2 ds = \oint_{\Gamma} z^2 ds$. 又由 $\oint_{\Gamma} (x+y+z)^2 ds = \oint_{\Gamma} 0 ds = 0$, 知 $\oint_{\Gamma} (-2xy) ds = \oint_{\Gamma} z^2 ds$,所以

$$\oint_{\Gamma} (x-y)^2 ds = \oint_{\Gamma} (x^2 - 2xy + y^2) ds = \oint_{\Gamma} (x^2 + y^2 + z^2) ds = \int_{\Gamma} ds = \Gamma \text{ in } K = 2\pi.$$

(5)【解】答案(D)

由于 A 满足 $A^3-6A^2+11A-6E=0$, A 的特征值 λ 满足 $\lambda^3-6\lambda^2+11\lambda-6=0$, 则 λ 为 1 或 2 或 3,所以 E-A 、 2E-A 、 3E-A 可能不可逆,选(D)

(6)【答案】:(B)

(7)【解】【答案】: (D)

EXY > EXEY , III EXY - EXEY > 0 , III III

$$D(X - Y) = DX + DY - 2(E(XY) - E(X)E(Y)) < DX + DY$$

(8)【解】: 应选(C).

因为A和B互不相容,于是P(X=1,Y=1)=P(AB)=0,

$$P(X = 1, Y = 0) = P(A\overline{B}) = P(A)$$
,

$$P(X = 0, Y = 1) = P(\overline{AB}) = P(B)$$
,

$$P(X = 0, Y = 0) = P(\overline{AB}) = 1 - P(A) - P(B)$$

因此 Cov(X,Y) = E(XY) - E(X)E(Y) = -P(A)P(B),

$$D(X) = P(A)(1 - P(A)) , \quad D(Y) = P(B)(1 - P(B)) , \quad \rho = \frac{Cov(X, Y)}{\sqrt{D(X)} \cdot \sqrt{D(Y)}} < 0 .$$

二、填空题: 9~14 小题,每小题 4 分,共 24 分。把答案填在题中横线上。

(9) 【解】: 令 $f(x) = \frac{\ln x}{x}$,则 $f'(x) = \frac{1 - \ln x}{x} < 0$ (x > e),那么函数 $f(x) = \frac{\ln x}{x}$ 在[3,+∞)上单调递减,且 f(x) > 0,由此可得

$$n^{\frac{1}{n}} \ge \left(\cos\frac{\ln 3}{3} + \sin\frac{\ln 4}{4} + \dots + \cos\frac{\ln(n+2)}{n+2}\right)^{\frac{1}{n}} \ge \left(n\cos\frac{\ln 3}{3}\right)^{\frac{1}{n}},$$

而
$$\lim_{n\to\infty} n^{\frac{1}{n}} = \lim_{n\to\infty} \left(n\cos\frac{\ln 3}{3} \right)^{\frac{1}{n}} = 1$$
,由夹逼原理知原式=1.

(10)【解】: 有题设可知 $\lim_{x\to 0} [f(x) + \cos x] = 0$, $f(0) = \lim_{x\to 0} f(x) = -1$,

左式=
$$\lim_{x\to 0} \left[\frac{f(x)-f(0)}{x} + \frac{\cos x-1}{x} \right] = f'(0)=1$$
,所以 $f'(0)=1$,所以所求切线方程为 $y=x+1$.

(11)【解】答案: 4

原式 =
$$\int_0^{2\pi} \left[\int_0^y \frac{|\sin y|}{y} dx \right] dy = \int_0^{2\pi} \frac{|\sin y|}{y} \cdot y dx = \int_0^{2\pi} |\sin y| dy = 4.$$

(12)【解】答案: πa

$$I = \oint_L \frac{x^2 + y^2 \sin x}{a^2} ds = \frac{1}{a^2} \oint_L (x^2 + y^2 \sin x) ds.$$

因为L关于y轴对称,而 $y^2 \sin x$ 是关于x轴的奇函数,所以

$$\oint_{C} y^2 \sin x \, ds = 0 \; ,$$

$$I = \frac{1}{a^2} \oint_L x^2 ds = \frac{1}{a^2} \int_0^{2\pi} a^2 \sin^2 \theta \cdot a \, d\theta = 4a \int_0^{\frac{\pi}{2}} \sin^2 \theta \, d\theta = 4a \cdot \frac{1}{2} \cdot \frac{\pi}{2} = \pi a \; .$$

或由轮换对称性

$$I = \frac{1}{a^2} \oint_L x^2 ds = \frac{1}{2a^2} \oint_L (x^2 + y^2) ds = \frac{1}{2a^2} \oint_L a^2 ds = \frac{1}{2a^2} \times a^2 \times 2\pi a = \pi a.$$

(13)【答案】: -10

(14) 【解】: 由于
$$n\overline{X} = X_1 + X_2 + \dots + X_n \sim B(n, p)$$
,
所以 $P\{n\overline{X} > 2\} = 1 - P\{n\overline{X} \le 1\} = 1 - (1 - p)^n - np(1 - p)^{n-1}$ 。

三、解答题: 15~23 小题, 共94分。解答应写出文字说明、证明过程或演算步骤。

(15)【解】: (I) 由定积分的几何意义知
$$\int_0^{2x} \sqrt{2xt-t^2} \, dt = \frac{\pi}{2} x^2$$
, 当 $x \in (0,1)$ 时

$$\int_0^1 |x-t| \, \mathrm{d}t = \int_0^x (x-t) \, \mathrm{d}t + \int_x^1 (t-x) \, \mathrm{d}t = x^2 - x + \frac{1}{2}, \quad \text{if } x \ge 1 \text{ in } 7$$

$$\int_0^1 |x-t| \, \mathrm{d} t = x - \frac{1}{2}, \quad \text{Min } f(x) = \begin{cases} \frac{\pi+2}{2} x^2 - x + \frac{1}{2}, & x \in [0,1], \\ \frac{\pi}{2} x^2 + x - \frac{1}{2}, & x > 1, \end{cases}$$

$$f'(x) = \begin{cases} (2+\pi)x - 1, & x \in (0,1], \\ \pi x + 1, & x > 1, \end{cases} \text{ in } f'(x) \text{ 的表达式可知 } f(x) \text{ 在}(0,\frac{1}{2+\pi}] \text{ 上单减,在}[\frac{1}{2+\pi},+\infty) \text{ 上单}(x) \text{ in } f'(x) \text{ in } f'(x$$

增,因而 $f(\frac{1}{2+\pi}) = \frac{1+\pi}{2(2+\pi)}$ 是函数的极小值,同时也是最小值;

(II) 因为
$$\lim_{x\to +\infty} f(x) = +\infty$$
,因而 $f(x)$ 在[0,+∞) 内没有最大值

(16). 【解】如图所示,将积分区域D分为 D_1 和 D_2 ,所以 $I = \iint_{D_1} x \sin x \sin y \, d\sigma + \iint_{D_2} y \sin x \sin y \, d\sigma$

在利用积分得轮换对称性知

$$I = 2 \iint_{D_1} x \sin x \sin y \, d\sigma$$

$$= 2 \int_0^{\pi} \left[\int_0^x x \sin x \sin y \, dy \right] dx$$

$$= 2 \int_0^{\pi} \left[x \sin x \cdot (1 - \cos x) \right] dx$$

$$= 2 \int_0^{\pi} x \, d\left(-\cos x - \frac{1}{2} \sin^2 x \right)$$

$$= 2x \left(-\cos x - \frac{1}{2} \sin^2 x \right) \Big|_0^{\pi} + 2 \int_0^{\pi} \left(\cos x + \frac{1}{2} \sin^2 x \right) dx = 2\pi + \frac{\pi}{2} = \frac{5}{2}\pi.$$

(17) 【证明】: (I)令 $F(x) = \int_a^x f(t) dt$,对函数F(x)在区间[a,b]上应用 Rolle 定理知 $\exists c \in (a,b)$ 使得F'(c) = f(c) = 0,令 $G(x) = e^{-x} f(x)$,则G(a) = G(c) = G(b) = 0,对函数G(x)分别在区间[a,c] 与[c,b]上应用 Rolle 定理知 $\exists \xi \in (a,c), \eta \in (c,b)$ 使得 $G'(\xi) = G'(\eta) = 0$,即有 $f'(\xi) - f(\xi) = f'(\eta) - f(\eta) = 0$;

(II) 令 $H(x) = e^x [f'(x) - f(x)]$, 则有 $H(\xi) = H(\eta) = 0$, 由 Rolle 定理知 $\exists \zeta \in (\xi, \eta)$ 使得 $H'(\zeta) = e^{\zeta} [f''(\zeta) - f'(\zeta)] + e^{\zeta} [f'(\zeta) - f(\zeta)] = e^{\zeta} [f''(\zeta) - f(\zeta)] = 0$, 即有 $f''(\zeta) = f(\zeta)$.

(19)【解】: 先求 z(x, y) 的驻点, 分别在方程的两边同时对 x 求偏导及同时对 y 求偏导,

$$6x^2 - 6y + \frac{1}{e}(\ln z + 1)z_x' = 0,$$

$$-6x + 6y + \frac{1}{e}(\ln z + 1)z_y' = 0.$$
令 $z_x' = 0, z_y' = 0$,得 $\begin{cases} y = x^2, \\ y = x, \end{cases}$ 解得 $\begin{cases} x = 0, \\ y = 0, \\ y = 1, \end{cases}$ 故 $z(x, y)$ 的驻点为 $(0, 0)$,(1,1).代入原方程,得 $z(0, 0) = 1$, $z(1, 1) = e$. 再求二阶偏导,
$$12x + \frac{1}{e}\frac{1}{z}(z_x')^2 + \frac{1}{e}(\ln z + 1)z_{xx}'' = 0,$$

$$6 + \frac{1}{e}\frac{1}{z}(z_y')^2 + \frac{1}{e}(\ln z + 1)z_{yy}'' = 0,$$

$$-6 + \frac{1}{e} \frac{1}{z} z_x' z_y' + \frac{1}{e} (\ln z + 1) z_{xy}'' = 0 .$$

将 (0,0) 代入上式,得 $A_1=z''_{xx}(0,0)=0$, $B_1=z''_{xy}(0,0)=6e$, $C_1=z''_{yy}(0,0)=-6e$.

由 $A_1C_1 - B_1^2 = -36e^2 < 0$ 知函数在点 (0,0) 处不取极值. 将 (1,1) 代入上式得

$$A_2 = z_{xx}''(1,1) = -6e$$
, $B_2 = z_{xy}''(1,1) = 3e$, $C_2 = z_{yy}''(1,1) = -3e$.

由于 $A_2C_2-B_2^2=9e^2>0$,且 $A_2<0$,可知z(1,1)=e为z(x,y)的极大值.

2014 数学模拟试卷

共创(合肥工业大学)考研辅导中心

Tel: 0551-62905018

(20)【解】: (I) 由题设 β_1 β_2 β_3 均为Bx = 0的解 $B \neq 0$

知 β_1 β_2 β_3 线性相关 (否则由 Bx = 0 基础解系所含向量个数 $\geqslant 3$ $\Rightarrow B = 0$ 矛盾!) 于是

$$0 = \begin{vmatrix} \beta_1 & \beta_2 & \beta_3 \end{vmatrix} = \begin{vmatrix} 0 & a & b \\ 1 & 2 & 1 \\ -1 & 1 & 0 \end{vmatrix} = 3b - a \qquad \text{ix } a = 3b \quad \because AX = \beta_3 \stackrel{\text{T}}{=} \text{ if } \text{ if } A = A \implies \text{$$

$$(A \quad \beta_3) \underbrace{\overleftarrow{17}}_{0 \quad -6 \quad -12} \begin{bmatrix} 1 & 3 & 9 & 6 \\ 0 & -6 & -12 & 1 - 2b \\ 0 & 0 & 0 & \frac{5-b}{3} \end{bmatrix} \quad \boxplus r(A) = r(A \quad \beta_3) \Rightarrow \frac{5-b}{3} = 0 \quad b = 5$$

故 Bx = 0 至少有两个线性无关解 $\beta_1, \beta_2 : B \neq 0$ $r(B) \ge 1$ 因而基础解系由 $3 - r(B) \le 2$ 个线性无关 解向量组成 于是 β_1 β_2 可作为Bx = 0基础解系。故通解为 $k_1\beta_1 + k_2\beta_2 = k_1(0 \ 1 \ -1)^T + k_2(15 \ 2 \ 1)^T$ 。

(21) 【解】: (1)
$$f = x^{T} A x$$
 其中 $A = \begin{pmatrix} 1 & b & b & b \\ b & 1 & b & b \\ b & b & 1 & b \\ b & b & b & 1 \end{pmatrix}$

 $|\lambda E-A| = (\lambda - (1+3b))[\lambda - (1-b)]^3$, $\lambda_1 = 1+3b$ $\lambda_2 = \lambda_3 = \lambda_4 = 1-b$

解方程 (λ_1 E – A)x = 0 得特征向量 ξ_1 = (1,1,1,1)^T

解方程 $(\lambda_2 \mathbf{E} - \mathbf{A})x = 0$ 得特征向量 $\alpha_1 = (-1,1,0,0)^T$, $\alpha_2 = (-1,0,1,0)^T$, $\alpha_3 = (-1,0,0,1)^T$

正交化
$$\xi_2 = \alpha_1$$
 $\xi_3 = (-1, -1, 2, 0)^{\mathrm{T}}$ $\xi_4 = (-1, -1, -1, 3)^{\mathrm{T}}$

$$\eta_1 = \frac{1}{2} (1,1,1,1)^T$$
 $\eta_2 = \frac{1}{\sqrt{2}} (-1,1,0,0)^T$
 $\eta_3 = \frac{1}{\sqrt{6}} (-1,-1,2,0)^T$
 $\eta_1 = \frac{1}{\sqrt{12}} (-1,-1,2,0)^T$

标准形 $(1+3b)y_1^2 + (1-b)y_2^2 + (1-b)y_3^2 + (1-b)y_4^2$

(22)【解】 (I) X = Y 的取值分别是: i, j 分别取 -1,0,1,

1)
$$i < j, P\{X = i, Y = j\} = P\{\max\{U, V\} = i, \min\{U, V\} = j\} = 0$$

2)
$$i > j, P\{X = i, Y = j\} = P\{\max\{U, V\} = i, \min\{U, V\} = j\}$$
2

$$= P\{U = i, V = j\} + P\{U = j, V = i\} = \frac{2}{9} ;$$

3) $i = j, P\{X = i, Y = j\} = P\{\max\{U, V\} = i, \min\{U, V\} = i\}$

$$= P\{X = i, Y = i\} = \frac{1}{9}$$

所以(X,Y)的联合分布律为

(II)
$$P\{|XY|=1\}$$

Y	-1	0	1
-1	1/9	0	0
0	2/9	1/9	0
1	2/9	2/9	1/9

$$= P(X = -1, Y = 1) + P(X = 1, Y = -1) + P(X = -1, Y = -1) + P(X = 1, Y = 1) = \frac{4}{9}$$

(III) X 与 Y 的边缘分布律分别为

所以
$$E(X) = \frac{4}{9}$$
 , $E(Y) = -\frac{4}{9}$

方差为
$$D(X) = D(Y) = \frac{20}{81}$$
,且

$$E(XY) = \frac{2}{9}$$

X	-1	0	1	
p	1/9	3/9	5/9	

Y	-1	0	1
P	5/9	3/9	1/9

$$Cov\{X,Y\} = E(XY) - E(X)E(Y) = \frac{34}{81}$$
,则相关系数为
$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{D(X)D(Y)}} = \frac{34/81}{20/81} = \frac{17}{10}$$
。

(23)【解】:(I)似然函数
$$L = \prod_{i=1}^n \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x_i-\mu)^2}{2\sigma^2}} = \frac{1}{(2\pi)^{n/2}\sigma^n} e^{-\frac{1}{2\sigma^2}\sum_{i=1}^n (x_i-\mu)^2}$$
,取对数可知:
$$\ln L = -\frac{n}{2}\ln 2\pi - \frac{n}{2}\ln \sigma^2 - \frac{1}{2\sigma^2}\sum_{i=1}^n (x_i-\mu)^2,$$

$$\frac{d\ln L}{d\mu} = -\frac{1}{\sigma^2}\sum_{i=1}^n (x_i-\mu) = \frac{1}{\sigma^2}(\sum_{i=1}^n x_i-n\mu) = 0 \,, \quad \hat{\mu} = \frac{1}{n}\sum_{i=1}^n x_i = \overline{X} \,;$$
 对应极大似然值为 $\hat{\mu} = \overline{x} = 10.84 \,;$

(II) 产品的平均寿命 μ 的 95%的置信区间: $(\bar{X} \pm t_{\alpha/2}(n-1)\frac{S}{\sqrt{n}})$ 经计算:

样本均值 \bar{x} = 10.84,样本标准差 s = 0.856,带入可得: $10.84 \pm 2.776 \times \frac{0.856}{\sqrt{5}}$ = 10.84 ± 1.063,则 μ 的 95%的置信区间(9.777,11.903)

(III) 方差未知 σ^2 , 单侧检验问题

 $H_0: \mu \leq 10.0, \ H_1: \mu > 10.0 \qquad \text{利用 t 检验得单侧上侧分位点:} \ t_\alpha(4) = 2.132, \ \text{可知} \ H_0 \text{ 的拒}$ 绝域为: $I_c = \{t \ | \ t \ | \geq 2.132 \}$,计算知: $t = \frac{\overline{x} - 10.0}{s \ / \sqrt{n}} = 2.194 \in I_c$,拒绝 H_0 ,认为这批产品平均寿命不低于 10 千小时。