EEL 4930 Stats – Lecture 24

CENTRAL LIMIT THEOREM

- Consider a sum of (independent) random variables:
- If X_i , i = 1, 2, ... is a sequence of independent random variables with the same distribution and finite variance, then the distribution function of

$$\lim_{n\to\infty} \frac{1}{n} \sum_{i=1}^{n} X_i$$

converges to a common distribution function

- This is the Central Limit Theorem We won't cover the proof in this class take EEE 5544
- The limiting distribution is that of a Gaussian random variable
- The density of a Gaussian RV X is

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\},$$

which has two parameters: (mean) μ and (variance) $\sigma^2 \ge 0$

DISTRIBUTION FUNCTION

• The CDF of a Gaussian RV is given by

$$F_X(x) = P(X \le x)$$

$$= \int_{-\infty}^x \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{(t-\mu)^2}{2\sigma^2}\right\} dt,$$

which cannot be evaluated in closed form

- Instead, we tabulate distribution functions for a normalized Gaussian variable with $\mu=0$ and $\sigma^2=1$
- This is called the Normal distribution, and its CDF is

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{t^2}{2}\right\} dt$$

• Mathematicians use the "error function" (erf) to define the CDF of the normal distribution:

$$\Phi(x) = \frac{1}{2} \left[1 + \operatorname{erf}\left(\frac{x}{\sqrt{2}}\right) \right],$$

where

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$$

• Engineers more commonly use the complementary distribution function, or *Q*-function, defined by

$$Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{t^{2}}{2}\right\} dt$$

- Note that $Q(x) = 1 \Phi(x)$
- I will be supplying you with a Q-function table and a list of approximations to Q(x)
- The Q-function can also be defined as

$$Q(x) = \frac{1}{\pi} \int_0^{\pi/2} \exp\left\{-\frac{x^2}{\sin^2 \phi}\right\} d\phi.$$

(This is a fairly recent result that is in very few textbooks. This form has a finite range of integration that is often easier to work with.)

• The CDF for a Gaussian RV with mean μ and variance σ^2 is

$$F_X(x) = \Phi\left(\frac{x-\mu}{\sigma}\right)$$

= $1 - Q\left(\frac{x-\mu}{\sigma}\right)$

Note that the denominator above is σ , not σ^2 . Many students use the wrong value when solving problems!

• To find the prob. of some interval using the Q-function, it is easiest to rewrite the prob:

$$\begin{array}{lcl} P(a < X \le b) & = & P(X > a) - P(X > b) \\ & = & Q\left(\frac{a - \mu}{\sigma}\right) - Q\left(\frac{b - \mu}{\sigma}\right) \end{array}$$

• Engineering examples: Noise sample in an electrical device, complex Gaussian models combined amplitude and phase of wireless signal received in multipath environment, sum of accumulated errors

1 More on Computing Gaussian Tail Probs

- Any Gaussian probabilities can be decomposed in terms of Gaussian tail probabilities
- There are 2 cases of the tail probabilities

• Case 1: $P(X \ge a)$, where $a > \mu$

• Case 2: $P(X \le b)$, where $b < \mu$

Grading on a curve

A professor's class requests that he "grade on a curve". The professor sees that the class grades can be modeled using a Gaussian distribution with parameters μ and σ^2 .

Let *X* represent a randomly chosen student's grade.

(a) What is the probability that the student's grade is above μ ?

- (b) The professor decides to use the following grading strategy:
 - If the grades are within σ of the mean(μ), assign a B
 - If the grades are more than σ above the mean, assign an A
 - If the grades are more than σ below the mean, but less than 2σ below the mean, assign C
 - If the grades are more than 2σ below the mean, but less than 3σ below the mean, assign D
 - If the grades are more than 3σ below the mean, assign E

Determing the probability that a randomly chosen student gets each grade

(c) Suppose the threshold to get an A is $k\sigma$ above the mean, what value of k is needed for 40% of the class to get an A?