Continuous Random Variables, Joint PDF, Conditioning

Joint PDF

- What is the probability that two continuous random variables X and Y take values inside region S?
 - Calculate the volume under $f_{X,Y}(x,y)$ surface on region S.

$$\mathbf{P}((X,Y) \in S) = \int \int_{S} f_{X,Y}(x,y) \, dx \, dy$$

Joint PDF

Interpretation:

$$P(x \le X \le x + \delta, y \le Y \le y + \delta) \approx f_{X,Y}(x,y) \cdot \delta^2$$

• In other words, $f_{X,Y}(x,y)$ is approximately, the probability that X and Y take values inside the small region $[x,x+\delta]\times[y,y+\delta]$ over area of the region.

$$f_{X,Y}(x,y) \approx \frac{\mathsf{Probability}\Big((X,Y) \in [x,x+\delta] \times [y,y+\delta]\Big)}{\mathsf{Area of}\ [x,x+\delta] \times [y,y+\delta] = \delta^2}$$

Joint Expectation

$$\mathbf{E}[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) f_{X,Y}(x,y) \, dx \, dy$$

Similar to:

$$E[g(X,Y)] = \sum_{x} \sum_{y} g(x,y) p_{X,Y}(x,y)$$

for discrete random variables. Replace PMF with PDF and summations with Double Integral.

Example:

$$E[X^{2} + Y^{2}] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} (x^{2} + y^{2}) \ f_{X,Y}(x,y) \ d_{x} \ d_{y}$$

$$f_{X,Y}(x,y) = \begin{cases} 1 \ \text{for} \ (x,y) \in [0,1] \times [0,1] \\ 0 \ \text{otherwise}. \end{cases}$$

$$E[X^{2} + Y^{2}] = \int_{0}^{1} \int_{0}^{1} (x^{2} + y^{2}) \ d_{x} \ d_{y} = \frac{2}{3}$$

From the joint PDF to the marginal PDF

The marginal PDF of Y is

$$f_{Y}(y) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) dx$$

The marginal PDF of X is

$$f_X(x) = \int_{-\infty}^{\infty} f_{X,Y}(x,y) \, dy$$

• Example: $f_{X,Y}(x,y) = \begin{cases} 1 & \text{for } (x,y) \in [0,1] \times [0,1] \\ 0 & \text{otherwise.} \end{cases}$

$$f_Y(y) = \begin{cases} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ d_x = \int_0^1 \ d_x = 1 \ \text{for} \ y \in [0,1] \\ 0 \ \text{otherwise}. \end{cases}$$

$$f_X(x) = \begin{cases} \int_{-\infty}^{\infty} f_{X,Y}(x,y) \ d_y = \int_0^1 \ d_y = 1 \ \text{for } x \in [0,1] \\ 0 \ \text{otherwise.} \end{cases}$$

Independence

ullet X and Y are called independent if

$$f_{X,Y}(x,y) = f_X(x)f_Y(y),$$
 for all x,y

Example – Buffon's needle

- There are several Parallel lines at distance d from each other.
- ullet We have a needle of length I (I < d)
- Find Probability(needle intersects one of the lines)

- Let X be distance of needle midpoint to nearest line. Then $X \in [0, \frac{d}{2}]$.
- Also, let Θ be the angle between the needle and the nearest line, and $\Theta \in [0, \frac{\pi}{2}].$
- Model: X and θ , both are uniform. Also, they are independent.
- Therefore, $f_{X,\Theta}(x,\theta) = f_X(x)f_{\Theta}(\theta)$

Example – Buffon's needle

• What is $f_X(x)$? because X is uniform, then:

$$f_X(x) = \begin{cases} c & \text{for } x \in [0, \frac{d}{2}] \\ 0 & \text{otherwise.} \end{cases}$$

$$1 = \int_{0}^{\infty} f_X(x) \ d_X = \int_{0}^{\frac{d}{2}} c \ d_X = c \frac{d}{2} \Rightarrow c = \frac{2}{d}$$

Therefore,
$$f_X(x) = \begin{cases} \frac{2}{d} & \text{for } x \in [0, \frac{d}{2}] \\ 0 & \text{otherwise.} \end{cases}$$

Similarly,
$$\Theta$$
 is uniform, then:

formally,
$$\Theta$$
 is uniform, then:
$$f_{\Theta}(\theta) = \begin{cases} c' & \text{for } \theta \in [0, \frac{\pi}{2}] \\ 0 & \text{otherwise.} \end{cases}$$

$$1 = \int_{-\infty}^{\infty} f_{\Theta}(\theta) \ d_{\theta} = \int_{0}^{\frac{\pi}{2}} c' \ d_{\theta} = c' \frac{\pi}{2} \Rightarrow c' = \frac{2}{\pi}$$

$$f_X(x) = \begin{cases} a & \text{otherwise.} \\ 0 & \text{otherwise.} \end{cases}$$

Similarly, Θ is uniform, then:
$$f_{\Theta}(\theta) = \begin{cases} c' & \text{for } \theta \in [0, \frac{\pi}{2}] \\ 0 & \text{otherwise.} \end{cases}$$

$$[0, \frac{a}{2}]$$

 $f_{\Theta}(\theta) = \begin{cases} \frac{2}{\pi} & \text{for } x \in [0, \frac{\pi}{2}] \\ 0 & \text{otherwise.} \end{cases}$

Example – Buffon's needle

- Therefore, f_{X,Θ}(x,θ) = f_X(x)f_Θ(θ) = ⁴/_{πd}.
 Requirement for intersection with at least one of the lines is: X ≤ ½ sinΘ
- Requirement for intersection with at least one of the lines is: $X \leq \frac{1}{2} sin\Theta$ • So, we should calculate $P(X \leq \frac{1}{2} sin\Theta)$.

 $P\left(X \le \frac{\ell}{2}\sin\Theta\right) = \int \int_{x \le \frac{\ell}{2}\sin\theta} f_X(x) f_{\Theta}(\theta) dx d\theta$

$$= \frac{4}{\pi d} \int_0^{\pi/2} \int_0^{(\ell/2)\sin\theta} dx \, d\theta$$
$$= \frac{4}{\pi d} \int_0^{\pi/2} \frac{\ell}{2} \sin\theta \, d\theta = \frac{2\ell}{\pi d}$$

Conditioning

Recall

$$P(x \le X \le x + \delta) \approx f_X(x) \cdot \delta$$

• By analogy, would like:

$$\mathbf{P}(x \le X \le x + \delta \mid Y \approx y) \approx f_{X|Y}(x \mid y) \cdot \delta$$

This leads us to the definition:

$$f_{X|Y}(x \mid y) = \frac{f_{X,Y}(x,y)}{f_{Y}(y)}$$
 if $f_{Y}(y) > 0$

- For given y, conditional PDF is a (normalized) "section" of the joint PDF
- If independent, $f_{X,Y} = f_X f_Y$, we obtain

$$f_{X|Y}(x|y) = f_X(x)$$

Conditioning

Joint, Marginal and Conditional Densities

Image by MIT OpenCourseWare, adapted from *Probability*, by J. Pittman, 1999.

Stick-breaking example

• Break a stick of length I twice. First break at X, uniform in [0, I]. Then break again at Y, uniform in [0, X].

$$f_{X}(x)$$
 $f_{Y|X}(y|x)$
 $f_{X|X}(y|x)$
 $f_{X|X}(y|x)$

•
$$f_X(x) = \frac{1}{I}$$

• $f_{Y|X}(y|x) = \frac{1}{x}$

$$\Rightarrow f_{X,Y}(x,y) = f_X(x)f_{Y|X}(y|x) = \frac{1}{I_X}$$
 for $0 \le y \le x \le I$

Stick-breaking example

• What is $f_Y(y)$ and E[Y]?

$$f_Y(y) = \int f_{X,Y}(x,y) \, dx$$

$$= \int_{y}^{\ell} \frac{1}{\ell x} dx$$

$$= \frac{1}{\ell} \log \frac{\ell}{y}, \qquad 0 \le y \le \ell$$

$$\mathbf{E}[Y] = \int_0^\ell y f_Y(y) \, dy = \int_0^\ell y \frac{1}{\ell} \log \frac{\ell}{\ell} \, dy = \frac{\ell}{4}$$

 Interpretation: in expectation, the second time you break the stick, it will be broken at the quarter of the original stick.

Stick-breaking example

• What is E[Y|X=x]?

E[Y|X = x] = ∫ y f_{Y|X}(y|x) d_y = ∫₀^x y ½ d_y = ½ ∫₀^x y d_y = ½ (x²/2 - 0) = x/2.
 Interpretation: in expectation, the second time you break the stick, it will be broken at the middle point of the current stick, between 0 to x.