Name: Michael Peters

Instructions:

- Download a version of this document
- Update the document with the required information
- Save the document
- Upload the document as your submission to this lab.

ASCII:

In class, we learned that the ASCII character set is a simple encoding. A hundred and twenty-seven characters were assigned a unique number. This number is known as its encoding. Correspondingly, when you are provided with an encoded value, you can decode the value to obtain the corresponding ASCII character.

For each row in the following table, complete the missing information by either encoding the ASCII character, decoding the numerical value, or by converting a numerical value into a different base.

ASCII	binary	octal	decimal	hexadecimal
а	01/00001	141	99	61
D	0100010	104	608	44
LF	0000010	012	10	OA
EOT	00000100	004	4	04
~(0010/000	050	40	28
K	0110 1011	1153	107	0x6B
~	0111110	176	126	TE

You can use the following as resources:

- 1. the ASCII table that is provide via the man page on ssh.sandbox.csun.edu: man ascii
- 2. the gdb debugger on ssh.sandbox.csun.edu
 - \$ ssh ssh.sandbox.csun.edu
 - \$ gdb
 - o (gdb) print /t 's'
 - o (gdb) print /c 0x3D
 - o (gdb) quit

UTF-8 Encoding

BINARY-S

The professor provided an algorithm to convert a UTF-8 character, e.g., U+043F to its binary encoding. Use this algorithm to complete the following table.

UTF-8	Name /	binary	octal	decimal	hexadecimal
	Character	1110.0010 1000	3 5 7 204 0 0	14,-844, 317	0xe2819d
U+205D		101110011101	170300073		0x003D
U+003D	Equal Sign	The Hoose	75	61	
U+03F0	(\$1)	1100001110011	147660	53, Mg	0xcfb0
U+10D32	HANIFI ROHINGYA DIGIT TWO	1000 000 1111	3604413222	4,036,015,282	0xf090b4b2

1011 0010

Show your work each step of the way:

			-
1. U+205D, e2819d 2. 0x205D 3. 10 10 0000 101110 4. by 6. 1. to	2.0x 0030 3.0000/0000° 00/11/101	2, 0xcf60 2, 0xcf60 3, 10110000 Bytel:110/100 Bytel:110/100 Bytel:101/0000 [110/110000	2,0xf0aobuzor 3, BINUTY 4,058

Base 10 Complements:

Provide the 10's and 9's complement for each of the following numbers with respect to 100,000.

Decimal	9's complement	10's complement*
54	99945	99946
45	90 454	90955
145	99854	99855
255	प्रवस्य	99745
34	99965	99966
195	99864	99805

Note the 10's complement can be computed by adding 1 to the 9's complement

Binary Complements:

Provide the 2's and 1's complement for each of the following numbers represented with 8 bits. Free free to use gdb to obtain the binary representation of each number

Tee free to use gub to obtain the binary representation of each name.							
Decimal		Binary		1's cor	mplement	2's comple	ement*
	54	001	1 0110	1	1100 1001	1	100 1010
	45	8010	0 004	3.0	10010	1011	1100
	145	0001-010 1001	1100 0	+116	9 1811 1100	110 101	Hot
	255_	000111		10-14.	110000 act	eyes yes	1000 0001
	34	0010	0010	1101	1101	1101 111	00
	195	1/00	1100	0011	1/00	0011	11011

Note the 2's complement can be computed by adding 1 to the 1's complement.

2145

234

1000 100)

29

Scientific Notation

Convert the following real numbers to Scientific Notation

Decimal	Scientific Notation			
	Mantissa	Base	Exponent	
3.14	3.14	x 10	0	
\19 ,1 0	1,010	x 10	1	
0 003765	3.765	x 10	-3	
32000123.34	3,200011334	x 10	7	

Scientific Notation

Convert the following real numbers to Scientific Notation. Feel free to use gdb to convert the exponent to binary (e.g., print /t $4 \rightarrow 100$)

Binary	Scientific Notation		
	Mantissa	Base	Exponent
10101.1011	1.01011011	x 2	100 (4)
11101 م لالم	1.111101	x 2	10 (2)
0.0010101	2.0101	x 2	-H (-3)
10000101,011	1,000061011	x 2	111 (7)

Unary Numbering System:

AETOMANA LISTON HAMAN

Encode the following numbers using the Unary Numbering System. For all answers include the final stop bit.

Decimal	Unary Number
(4),	11110
5	11110
8	11111110
23	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
435	Minimanni in

Mathematical Review:

Add the following base 10 numbers together. Show all your work, and make sure you also provide the appropriate values of the status bits

- 365 + 36
- 3486 + 6666

Binary Addition

Add the following base 10 numbers together using binary addition. Show all your work, and make sure you also provide the appropriate values of the status bits. Your first step is to convert the base 10 numbers to binary. (Hint: be lazy, use gdb's print command.)

Binary Multiplication

Perform the binary multiplication of 15 x 15.

