30/04/2023, 19:37 Untitled

IMPORTING LBRARIES

In [1]: import pandas as pd

In [2]: import numpy as np

IMPORTING DATASET

In [3]: dataset = pd.read_csv("Advertising.csv")

In [4]: dataset.head(15)

Out[4]: Unnamed: 0 TV Radio Newspaper Sales 0 1 230.1 37.8 69.2 22.1 44.5 39.3 45.1 10.4 2 3 17.2 45.9 69.3 9.3 4 151.5 58.5 3 41.3 18.5 5 180.8 58.4 12.9 4 10.8 5 8.7 48.9 75.0 7.2 23.5 6 7 57.5 32.8 11.8 7 8 120.2 19.6 11.6 13.2 8 9 8.6 2.1 1.0 4.8 9 10 199.8 21.2 10.6 2.6 10 11 66.1 5.8 24.2 8.6 11 12 214.7 4.0 17.4 24.0 12 23.8 65.9 9.2 13 35.1

97.5

15 204.1

7.6

32.9

7.2

46.0

9.7

19.0

In [5]: dataset.tail(15)

13

14

30/04/2023, 19:37 Untitled

Out[5]:

	Unnamed: 0	TV	Radio	Newspaper	Sales
185	186	205.0	45.1	19.6	22.6
186	187	139.5	2.1	26.6	10.3
187	188	191.1	28.7	18.2	17.3
188	189	286.0	13.9	3.7	15.9
189	190	18.7	12.1	23.4	6.7
190	191	39.5	41.1	5.8	10.8
191	192	75.5	10.8	6.0	9.9
192	193	17.2	4.1	31.6	5.9
193	194	166.8	42.0	3.6	19.6
194	195	149.7	35.6	6.0	17.3
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

In [6]: dataset.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 200 entries, 0 to 199 Data columns (total 5 columns):

#	Column	Non-Null Count	Dtype
0	Unnamed: 0	200 non-null	int64
1	TV	200 non-null	float64
2	Radio	200 non-null	float64
3	Newspaper	200 non-null	float64
4	Sales	200 non-null	float64

dtypes: float64(4), int64(1)

memory usage: 7.9 KB

In [7]:

dataset

30/04/2023, 19:37 Untitled

•	Unnamed: 0	TV	Radio	Newspaper	Sales
0	1	230.1	37.8	69.2	22.1
1	2	44.5	39.3	45.1	10.4
2	3	17.2	45.9	69.3	9.3
3	4	151.5	41.3	58.5	18.5
4	5	180.8	10.8	58.4	12.9
•••					
195	196	38.2	3.7	13.8	7.6
196	197	94.2	4.9	8.1	9.7
197	198	177.0	9.3	6.4	12.8
198	199	283.6	42.0	66.2	25.5
199	200	232.1	8.6	8.7	13.4

200 rows × 5 columns

```
In [8]:
        dataset.shape
         (200, 5)
Out[8]:
```

```
In [9]:
        dataset = dataset.drop(columns = ["Unnamed: 0"])
```

In [10]: dataset

Out[7]

Out[10]: TV Radio Newspaper Sales

	IV	Kadio	Newspaper	Sales
0	230.1	37.8	69.2	22.1
1	44.5	39.3	45.1	10.4
2	17.2	45.9	69.3	9.3
3	151.5	41.3	58.5	18.5
4	180.8	10.8	58.4	12.9
•••				
195	38.2	3.7	13.8	7.6
196	94.2	4.9	8.1	9.7
197	177.0	9.3	6.4	12.8
198	283.6	42.0	66.2	25.5
199	232.1	8.6	8.7	13.4

200 rows × 4 columns

```
In [11]: x = dataset.iloc[:, 0:-1]
In [12]: x
```

30/04/2023, 19:37 Untitled

TV Radio Newspaper

Out[12]:

```
0 230.1
                       37.8
                                  69.2
                44.5
                      39.3
                                  45.1
                17.2
                      45.9
                                  69.3
            3 151.5
                                  58.5
                      41.3
              180.8
                       10.8
                                  58.4
          195
                38.2
                       3.7
                                  13.8
          196 94.2
                       4.9
                                   8.1
          197 177.0
                       9.3
                                   6.4
          198 283.6
                       42.0
                                  66.2
          199 232.1
                       8.6
                                   8.7
         200 rows × 3 columns
In [13]:
         y = dataset.iloc[:, -1]
In [14]:
                 22.1
Out[14]:
                 10.4
          2
                  9.3
          3
                 18.5
          4
                 12.9
          195
                  7.6
          196
                  9.7
          197
                 12.8
          198
                 25.5
          199
                 13.4
          Name: Sales, Length: 200, dtype: float64
          TRAIN TEST SPLIT
          from sklearn.model selection import train test split
In [15]:
          x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.2,random_state=43)
In [16]:
In [17]: x_train=x_train.astype(int)
          y_train=y_train.astype(int)
          x_test=x_test.astype(int)
          y_test=y_test.astype(int)
In [18]: from sklearn.preprocessing import StandardScaler
```

USING LINEAR REGRESSION

x_train_scaled=Sc.fit_transform(x_train)
x_test_scaled=Sc.fit_transform(x_test)

Sc=StandardScaler()

In [19]:

30/04/2023, 19:37 Untitled

```
from sklearn.linear_model import LinearRegression
In [20]:
         reg = LinearRegression()
In [21]:
In [22]:
         reg.fit(x_train_scaled,y_train)
Out[22]:
         ▼ LinearRegression
         LinearRegression()
         y_pred=reg.predict(x_test_scaled)
In [23]:
         EVALUATING R2 SCORE
         from sklearn.metrics import r2_score
In [24]:
In [25]:
         r2_score(y_test,y_pred)
         0.9222988021105912
Out[25]:
         ANALYSIS OF DATA USING SCATTER PLOT
In [26]:
         import matplotlib.pyplot as mlt
In [27]:
         mlt.scatter(y_test,y_pred,c='g')
         <matplotlib.collections.PathCollection at 0x16c9311f040>
Out[27]:
          22.5
          20.0
          17.5
          15.0
          12.5
          10.0
           7.5
           5.0
                                 10
                  5
                                                15
                                                                20
                                                                               25
```