سوال اول) در این سوال یک پایه را برای کلید و سه پایه را برای خروجی تنظیم میکنیم حالا که تنظیمات انجام شد خروجی به شکل زیر میشود

سوال دوم)

در این سوال تنظیمات مربوطه را انجام میدیم (از توضیحات اضافی خودداری میکنم)

صرفا اعداد را باید ۱۹۹۹ و ۹۹۹ تنظیم کنیم تا فرکانس یک هرنز و تایمر به شکل درست بشمارد

خروجی نهایی نیز به شکل زیر است

بعد از فشردن کلید استارت شروع میکند و بعد از فشردن استب ال سی دی متوقف میشه و کلمه stopped نمایش داده میشه

سوال سوم)

خب در این سوال هم تنظیمات رو انجام میدیم و به خروجی زیر میرسیم


```
☑ main.c ×
    /* Initialize all configured peripherals */
9
0
    MX_GPIO_Init();
    MX_ADC1_Init();
1
2
    /* USER CODE BEGIN 2 */
3
    LCD16X2_Init(MyLCD);
4
    HAL Delay(1000);
5
    LCD16X2_Clear(MyLCD);
6
    uint32_t adc_val=0;
7
    uint32_t voltage=0;
8
    char buffer[16];
9
0
    /* USER CODE END 2 */
1
2
    /* Infinite loop */
3
    /* USER CODE BEGIN WHILE */
4
    while (1)
5
6
7
        HAL_ADC_Start(&hadc1);
8
        HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
9
        adc_val=HAL_ADC_GetValue(&hadc1);
0
        voltage=(adc_val*3300)/4095;
        LCD16X2_Set_Cursor(MyLCD, 1, 1);
1
        sprintf(buffer, "V: %1u mV", voltage);
2
3
        LCD16X2_Write_String(MyLCD, buffer);
4
        LCD16X2_Set_Cursor(MyLCD, 2, 1);
        LCD16X2_Write_String(MyLCD, "810101369");
5
6
        HAL_Delay(1000);
```

سوال چهارم)

تغییراتی که در کل اعمال شده نیز به شکل زیر است

```
32⊖/* Private define -----
i3 void SystemClock_Config(void);
                                           33 /* USER CODE BEGIN PD */
54 static void MX_GPIO_Init(void);
                                           34 TIM_HandleTypeDef htim2;
                                           35 ADC_HandleTypeDef hadc1;
i5 static void MX_ADC1_Init(void);
                                           36 /* USER CODE END PD */
56 static void MX_TIM2_Init(void);
                                           37
57 /* USER CODE BEGIN PFP */
                                           38⊖/* Private macro -----
i8 void SystemClock_Config(void);
                                           39 /* USER CODE BEGIN PM */
                                           40
i9 void MX_GPIO_Init(void);
                                           41 /* USER CODE END PM */
void MX_ADC1_Init(void);
                                          42
51 void MX_TIM2_Init(void);
                                          43 /* Private variables ----
                                           44 ADC_HandleTypeDef hadc1;
32 /* USER CODE END PFP */
                                           46 TIM_HandleTypeDef htim2;
```

```
/* Initialize all configured peripherals */
                                                                  MX GPIO Init();
                                                                  MX_ADC1_Init();
1/1 * @retval None
                                                                  MX_TIM2_Init();
172
                                                                  /* USER CODE BEGIN 2 */
1739 void MX_ADC1_Init(void)
                                                                  HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_1);
174 {
                                                                  /* USER CODE END 2 */
175
        _HAL_RCC_ADC1_CLK_ENABLE();
                                                                  /* Infinite loop */
176
                                                                  /* USER CODE BEGIN WHILE */
177
      hadc1.Instance = ADC1;
178
      hadc1.Init.ScanConvMode = ADC_SCAN_DISABLE;
                                                                  while (1)
179
      hadc1.Init.ContinuousConvMode = DISABLE;
                                                                      uint32_t adc_val=0;
      hadc1.Init.DiscontinuousConvMode = DISABLE;
180
                                                                      uint32_t duty =0;
      hadc1.Init.ExternalTrigConv = ADC_SOFTWARE_START;
181
                                                                      HAL_ADC_Start(&hadc1);
      hadc1.Init.DataAlign = ADC_DATAALIGN_RIGHT;
                                                                      HAL_ADC_PollForConversion(&hadc1, HAL_MAX_DELAY);
183
      hadc1.Init.NbrOfConversion = 1;
                                                                      adc_val=HAL_ADC_GetValue(&hadc1);
184
      HAL_ADC_Init(&hadc1);
                                                                      duty = 100+(adc_val * 800 )/4095;
185
                                                                   htim2.Instance->CCR1=duty;
186
      ADC_ChannelConfTypeDef sConfig = {0};
                                                                    HAL_Delay(100);
/* USER CODE END WHILE */
187
      sConfig.Channel = ADC CHANNEL 1;
      sConfig.Rank = ADC_REGULAR_RANK_1;
188
                                                                    /* USER CODE BEGIN 3 */
      sConfig.SamplingTime = ADC_SAMPLETIME_239CYCLES_5;
189
190 HAL_ADC_ConfigChannel(&hadc1, &sConfig);
                                                                  /* USER CODE END 3 */
191 }
```

```
6
    * @retval None
7
8 void MX_TIM2_Init(void)
9 {
0
    HAL RCC TIM2 CLK ENABLE();
1
2
    htim2.Instance = TIM2;
3
    htim2.Init.Prescaler = 199;
4
    htim2.Init.CounterMode = TIM_COUNTERMODE_UP;
5
    htim2.Init.Period = 999;
6
    htim2.Init.ClockDivision = TIM CLOCKDIVISION DIV1;
7
    htim2.Init.AutoReloadPreload = TIM_AUTORELOAD_PRELOAD_DISABLE;
8
    HAL_TIM_PWM_Init(&htim2);
9
0
    TIM OC InitTypeDef sConfigOC = {0};
1
    sConfigOC.OCMode = TIM OCMODE PWM1;
2
    sConfigOC.Pulse = 400; // 40 هديوتىسايكل اوليه 40 // 3
3
    sConfigOC.OCPolarity = TIM_OCPOLARITY_HIGH;
4
    sConfigOC.OCFastMode = TIM_OCFAST_DISABLE;
5
                              /** @defgroup TIM_Output_Fast_State TIM Output F
    HAL_TIM_PWM_ConfigChann
6
                               * @{
7
8
                             #define TIM OCFAST DISABLE
                                                                           0x006
Qe /**
```