G2. Good Substrings

time limit per test: 4 seconds memory limit per test: 256 megabytes

input: standard input output: standard output

Smart Beaver recently got interested in a new word game. The point is as follows: count the number of distinct good substrings of some string *s*. To determine if a string is good or not the game uses rules.

Overall there are n rules. Each rule is described by a group of three (p, l, r), where p is a string and l and r ($l \le r$) are integers. We'll say that string t complies with rule (p, l, r), if the number of occurrences of string t in string p lies between l and r, inclusive. For example, string "ab", complies with rules ("ab", t, t) and ("aab", t, t) and ("abab", t, t) and ("abab", t, t) and ("abab", t, t).

A substring s[l...r] $(1 \le l \le r \le |s|)$ of string $s = s_1 s_2 ... s_{|s|}$ (|s| is a length of s) is string $s_l s_{l+1} ... s_r$.

Consider a *number of occurrences* of string t in string p as a number of pairs of integers l, r $(1 \le l \le r \le |p|)$ such that p[l...r] = t.

We'll say that string t is good if it complies with all n rules. Smart Beaver asks you to help him to write a program that can calculate the number of distinct good substrings of string s. Two substrings s[x...y] and s[z...w] are cosidered to be distinct iff $s[x...y] \neq s[z...w]$.

Input

The first line contains string s. The second line contains integer n. Next n lines contain the rules, one per line. Each of these lines contains a string and two integers p_i , l_i , r_i , separated by single spaces ($0 \le l_i \le r_i \le |p_i|$). It is guaranteed that all the given strings are non-empty and only contain lowercase English letters.

The input limits for scoring 30 points are (subproblem G1):

- 0 < n < 10.
- The length of string s and the maximum length of string p is ≤ 200 .

The input limits for scoring 70 points are (subproblems G1+G2):

- 0 < n < 10.
- The length of string s and the maximum length of string p is ≤ 2000 .

The input limits for scoring 100 points are (subproblems G1+G2+G3):

- 0 < n < 10.
- The length of string s and the maximum length of string p is ≤ 50000 .

Output

Print a single integer — the number of good substrings of string s.

Examples

```
input
aaab
2
aa 0 0
aab 1 1
output
3
```

input

```
ltntlnen
3
n 0 0
ttlneenl 1 4
lelllt 1 1

output
2
```

```
input
a
0
output
1
```

Note

There are three good substrings in the first sample test: «aab», «ab» and «b».

In the second test only substrings «e» and «t» are good.