Correction: Exercices chapitre 11

Exercice 1:

- Les angles 1 et 3 sont opposés par le sommet
- Les angles 1 et 5 sont correspondants
- Les angles 5 et 3 sont alternes-internes
- Les angles 6 et 4 sont alternes-internes
- Les angles 7 et 2 sont rien de particulier
- Les angles 6 et 2 sont correspondants

Exercice 2:

- 1. Alternes-internes avec l'angle n°3
 - L'angle 9 avec la sécante (d₁)
 - L'angle 5 avec la sécante (d₄)
- 2. correspondants avec l'angle n° 10
 - L'angle 14 avec la sécante (d₃)
 - L'angle 2 avec la sécante (d₁)
- 3. alternes-internes avec l'angle n° 13
 - L'angle 11 avec la sécante (d₃)
 - L'angle 7 avec la sécante (d₂)
- 4. correspondants avec l'angle n° 7
 - L'angle 15 avec la sécante (d₂)
 - L'angle 3 avec la sécante (d₄)

1.

2. O est le milieu de [CD]

C et D sont symétriques par symétrie centrale de centre O.

Le symétrique de la droite (AB) par rapport à O est une droite parallèle à (AB) passant par D. C'est donc la droite (EF).

O est donc le centre de symétrie de cette figure.

3. Les angles \widehat{EDC} et \widehat{BCD} sont symétriques par rapport à O

Or la symétrie centrale conserve les mesures d'angles.

Donc les angles \widehat{EDC} et \widehat{BCD} sont de même mesure.

Exercice 3 : Plusieurs justifications sont possibles. Je vous en propose une.

1. Combien mesure l'angle \widehat{vMy} ?

Les angles \widehat{xMu} et \widehat{vMy} sont opposés par le sommet. Ils sont donc de même mesure.

$$\widehat{xMu} = \widehat{vMy} = 125^{\circ}$$

2. L'angle $z\widehat{N}u$ mesure aussi 125°

Justification:

Les droites (xy) et (zt) sont parallèles, coupées par la droite (vu)

Les angles $z\widehat{N}u$ et \widehat{xMu} sont des angles correspondants

Or si deux droites parallèles sont coupées par une sécante alors les angles correspondants qu'ils forment sont de même mesure

Donc
$$z\widehat{N}u = \widehat{xMu} = 125^{\circ}$$

Les angles $z\widehat{N}u$ et $v\widehat{N}t$ sont opposés par le sommet. Ils sont donc de même mesure. $z\widehat{N}u=v\widehat{N}t=125^\circ$

Exercice 4:

• Calcul de l'angle \widehat{zBm}

Les droites (xy) et (zt) sont parallèles et coupées par la droite (lm)

Les angles \widehat{zBm} et \widehat{xAm} sont correspondants

Or si deux droites parallèles sont coupées par une sécante alors les angles correspondants qu'ils forment sont de même mesure

Donc
$$\widehat{zBm} = \widehat{xAm} = 38^{\circ}$$

Les droites (xy) et (uv) sont parallèles et coupées par la droite (lm)

Les angles \widehat{vCl} et \widehat{xAm} sont alternes-internes

Or si deux droites parallèles sont coupées par une sécante alors les angles alternes-internes qu'ils forment sont de même mesure

Donc
$$\widehat{vCl} = \widehat{xAm} = 38^{\circ}$$

Exercice 6:

On commence par tracer une droite parallèle à (zz') et à (yy') passant B. On l'appelle (xx')

Alors
$$\widehat{ABC} = \widehat{ABx'} + \widehat{CBx'}$$

• calcul l'angle $\widehat{ABx'}$

Les droites (yy') et (xx') sont parallèles coupées par la droites (AB)

Les angles \widehat{yAB} et $\widehat{ABx'}$ sont alternes-internes

Or si deux droites parallèles sont coupées par une sécante alors les angles alternes-internes qu'ils forment sont de même mesure.

Donc
$$\widehat{ABx'} = \widehat{yAB} = 38^{\circ}$$

• Calcul de l'angle $\widehat{CBx'}$

Pour cela on a besoin de l'angle \widehat{zCB}

$$\widehat{zCB} = 180^{\circ} - \widehat{zCB} = 180^{\circ} - 114^{\circ}$$

 $\widehat{zCB} = 66^{\circ}$

Les droites (zz') et (xx') sont parallèles coupées par la droite (BC)

Les angles \widehat{zCB} et $\widehat{CBx'}$ sont des angles alternes-internes.

38°

114°

Or si deux droites parallèles sont coupées par une sécante alors les angles alternes-internes qu'ils forment sont de même mesure.

Donc
$$\widehat{CBx'} = \widehat{zCB} = 66^{\circ}$$

Il nous reste plus qu'à faire la somme

$$\widehat{ABC} = \widehat{ABx'} + \widehat{CBx'}$$

$$\widehat{ABC} = 38^{\circ} + 66^{\circ}$$

$$\widehat{ABC} = 104^{\circ}$$