Partial Answers to the Chapter End Problems

M. Asghar Bhatti

Fundamental Finite Element Analysis and Applications with Computations Using *Mathematica* and Matlab

John Wiley & Sons, Inc. 2005

CHAPTER ONE

Finite Element Method The Big Picture

$$\begin{pmatrix} 3.63562 & -2.1 & 1.29281 \\ -2.1 & 2.8 & -0.7 \\ 1.29281 & -0.7 & 2.23562 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_2 \end{pmatrix} = \begin{pmatrix} 70.7107 \\ 0 \\ 70.7107 \\ \end{pmatrix}$$

$$10^{7} \begin{pmatrix} 1.19505 & 0.357143 & -0.81044 & 0.302198 & -0.384615 & -0.659341 \\ 0.357143 & 0.659341 & 0.412088 & 0.43956 & -0.769231 & -1.0989 \\ -0.81044 & 0.412088 & 1.96429 & -1.07143 & -1.15385 & 0.659341 \\ 0.302198 & 0.43956 & -1.07143 & 2.85714 & 0.769231 & -3.2967 \\ -0.384615 & -0.769231 & -1.15385 & 0.769231 & 1.53846 & 0 \\ -0.659341 & -1.0989 & 0.659341 & -3.2967 & 0 & 4.3956 \end{pmatrix} \begin{pmatrix} u_1 \\ v_1 \\ u_2 \\ v_2 \\ u_3 \\ v_3 \end{pmatrix} = \begin{pmatrix} -30.0 \\ 45.0 \\ 0.0 \\ -30.0 \\ 45.0 \end{pmatrix}$$

2 Chapter 1.

1.3

$$\begin{pmatrix} 1.53743 & -0.18 & 0.104965 \\ -0.18 & 0.666 & -0.486 \\ 0.104965 & -0.486 & 1.84343 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_3 \end{pmatrix} = \begin{pmatrix} 46.7966 \\ 0 \\ 46.7966 \\ 0 \end{pmatrix}$$

1.4

$$\begin{pmatrix} 0.04 & -0.04 & 0 \\ -0.04 & 0.53 & 0.23 \\ 0 & 0.23 & 0.49 \end{pmatrix} \begin{pmatrix} T_1 \\ T_3 \\ T_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 50.4 \\ 50.4 \end{pmatrix}$$

1.5

$$\left(\begin{array}{ccc} 0.04 & 0.02 & -0.06 \\ 0.02 & 0.02 & -0.04 \\ -0.06 & -0.04 & 0.1 \end{array} \right) \left(\begin{array}{c} T_1 \\ T_4 \\ T_2 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \\ 0 \end{array} \right)$$

1.6

$$\left(\begin{array}{cccc} 200.625 & -0.4 & 99.775 \\ -0.4 & 0.4 & 0 \\ 99.775 & 0 & 200.225 \end{array}\right)$$

 $\{4500,\ 2000,\ 6500\}$

 $\mathbf{R}^{\mathrm{T}} = (0, 0, 0, 0, 0, 14142.1 - 24142.1)$

1.9

$$\mathbf{K} = \begin{pmatrix} 0.08 & -0.06 & -0.04 & 0.02 \\ -0.06 & 0.1 & 0 & -0.04 \\ -0.04 & 0 & 0.53 & 0.23 \\ 0.02 & -0.04 & 0.23 & 0.51 \end{pmatrix}$$

$$\mathbf{R}^{T} = (\ 0 \ \ 0 \ \ 50.4 \ \ 50.4 \)$$

Chapter 1.

1.11

	u	v
1	0	0
2	0	0
3	0	0
4	0.0506837	-0.0736988

1.12

Nodal solution

	x-coord	y-coord	u	V
1	0.	0.	-0.1	0.2
2	400.	0.	0	0
3	0.	600.	0	0
4	400.	500.	0.0809795	-0.0423694

1.13

$$\begin{pmatrix} 182342 & 1479 & 239 \\ 1479 & 277735 & -1056 \\ 239 & -1056 & 33134 \end{pmatrix}, \begin{pmatrix} d_3 \\ d_5 \\ d_2 \end{pmatrix} = \begin{pmatrix} -2064 \\ 4224 \\ -5643 \end{pmatrix}$$

 $\{-0.0112155,\ 0.014623,\ -0.169762\}$

1.14

$$\begin{pmatrix} 12560. & -1920. & -5000. & 0 & -2560. \\ -1920. & 8106.67 & 0 & 0 & 1920. \\ -5000. & 0 & 10000. & 0 & 0 \\ 0 & 0 & 0 & 6666.67 & 0 \\ -2560. & 1920. & 0 & 0 & 10120. \end{pmatrix} \begin{pmatrix} u_2 \\ v_2 \\ u_3 \\ v_3 \\ u_6 \end{pmatrix} = \begin{pmatrix} -19200. \\ -5600. \\ 0 \\ 46666.7 \\ 0 \end{pmatrix}$$

 $\{u_2=-2.21254,\ v_2=-1.13317,\ u_3=-1.10627,\ v_3=7.,\ u_6=-0.344704\}$

$$\begin{array}{cccc} & T(x,y) & \partial T/\partial x & \partial T/\partial y \\ 1 & -2.94118\,x + 2.94118\,y + 99.4118 & -2.94118 & 2.94118 \\ 2 & -2.94118\,x + 2.94118\,y + 99.4118 & -2.94118 & 2.94118 \end{array}$$

Axial stress, $\sigma = \text{E}\epsilon = -11.9905$ Axial force $= \sigma \text{A} = -5995.25$ Axial stress, $\sigma = \text{E}\epsilon = -35.4786$ Axial force $= \sigma \text{A} = -17739.3$ Axial stress, $\sigma = \text{E}\epsilon = -38.6919$ Axial force $= \sigma \text{A} = -19345.9$

1.17

Nodal solution

	x-coord	y-coord	u	v
1	0.	0.	0	0
2	1.5	0.	0	$-5.64054\!\times\!10^{-6}$
3	0.	1.5	0	0
4	1.5	1.	1.04785×10^{-6}	-5.64054×10^{-6}

Element solution

	Stress	Axial force
1	0.	0.
2	-25038.6	-20.0308
3	35136.4	28.1091
4	0.	0.

1.18

$$\frac{10 \, x}{3} + 5 \, y + 10$$

1.19

 $\{-2.01064,\ -3.01064,\ 3.01064,\ 4.70213,\ -1.7234\}$

$$\left\{-\frac{4}{5}, \frac{3}{5}, -\frac{2}{5}, \frac{1}{5}\right\}$$

6 Chapter 1.

1.21

$$\left\{ -\frac{29}{40}, -\frac{9}{20}, -\frac{7}{40}, -\frac{3}{40}, -\frac{1}{20}, -\frac{1}{40} \right\} \\
\left\{ \frac{7}{40}, \frac{27}{20}, \frac{21}{40}, \frac{9}{40}, \frac{3}{20}, \frac{3}{40} \right\} \\
\left\{ \frac{1}{8}, \frac{5}{4}, \frac{3}{8}, -\frac{1}{8}, -\frac{3}{4}, -\frac{11}{8} \right\}$$

1.22

$$\left\{ \frac{6113}{4837}, -\frac{1224}{4837}, -\frac{1991}{4837}, \frac{4518}{4837}, \frac{14863}{4837}, \frac{62757}{9674}, -\frac{6693}{9674}, -\frac{3761}{691}, \frac{8139}{9674}, -\frac{923}{1382} \right. \\ \left\{ \frac{12709}{4837}, \frac{1304}{4837}, \frac{30416}{4837}, \frac{7706}{4837}, -\frac{7836}{4837}, -\frac{30439}{9674}, \frac{38239}{9674}, \frac{3090}{691}, -\frac{2601}{9674}, \frac{5039}{1382} \right\} \\ \left\{ -\frac{7037}{4837}, \frac{776}{4837}, -\frac{2405}{4837}, \frac{15061}{4837}, \frac{1895}{4837}, -\frac{38649}{9674}, \frac{37059}{9674}, \frac{194}{691}, -\frac{8195}{9674}, \frac{2473}{1382} \right\}$$

1.23

$$\{-2.01064,\ -3.01064,\ 3.01064,\ 4.70213,\ -1.7234\}$$

1.24

$$\left\{-\frac{4}{5},\,\frac{3}{5},\,-\frac{2}{5},\,\frac{1}{5}\right\}$$

1.25

$$\Bigl\{-\frac{29}{40},\,-\frac{9}{20},\,-\frac{7}{40},\,-\frac{3}{40},\,-\frac{1}{20},\,-\frac{1}{40}\Bigr\}$$

1.26

$$\{1.2638, -0.253049, -0.411619, 0.93405, 3.07277, 6.48718, -0.691854, -5.44284, 0.841327, -0.667873\}$$

$$\{-2.01064,\ -3.01064,\ 3.01064,\ 4.70213,\ -1.7234\}$$

$$\left\{-\frac{4}{5}, \frac{3}{5}, -\frac{2}{5}, \frac{1}{5}\right\}$$

1.29

$$\Big\{-\frac{29}{40},\,-\frac{9}{20},\,-\frac{7}{40},\,-\frac{3}{40},\,-\frac{1}{20},\,-\frac{1}{40}\Big\}$$

1.30

$$\{1.2638,\, -0.253049,\, -0.411619,\, 0.93405,\, 3.07277,\, 6.48718,\, -0.691854,\, -5.44284,\, 0.841327,\, -0.667873\}$$

1.31

$$\{-0.725,\, -0.45,\, -0.175,\, -0.075,\, -0.05,\, -0.025\}$$

1.32

$$\{1.26032, -0.253115, -0.410117, \, 0.935126, \, 3.07278, \, 6.48661, \, -0.691353, \, -5.44312, \, 0.841222, \, -0.668436\}, \, -0.410117, \, -$$

1.33

$$\{d_1=1.53802,\ d_2=-0.538023,\ d_3=1.61407,\ d_4=2.91635,\ d_5=-1.44867,\ \lambda_1=-2.15209\}$$

1.34

$$\begin{aligned} \{d_1 &= -0.42562,\ d_2 = 0.85124,\ d_3 = 0.338843,\\ d_4 &= 0.165289,\ d_5 = 0.157025,\ d_6 = 0.14876,\ \lambda_1 = 0.35124,\ \lambda_2 = 0.210744 \} \end{aligned}$$

1.35

Penalty parameter, $\mu = 900000$.

$$\{d_1=1.53802,\ d_2=-0.538024,\ d_3=1.61407,\ d_4=2.91635,\ d_5=-1.44867\}$$

1.36

Penalty parameter, $\mu = 300000$.

$$\{d_1=-0.425619,\ d_2=0.85124,\ d_3=0.338843,\ d_4=0.165289,\ d_5=0.157025,\ d_6=0.14876\}$$

8 Chapter 1.

10 Chapter 1.

12 Chapter 1.

14 Chapter 1.

CHAPTER TWO

Mathematical Foundation of the Finite Element Method

2.1
$$u(x) = \frac{(2 \operatorname{EA} g + L q (L - x)) x}{2 \operatorname{EA} L}$$

2.2
$$T(x) = \frac{(k+h(L-x)) T_0 + h x T_{\infty}}{k+hL}$$

2.3
$$T(r) = 20 r^2 - 200 r + 580$$

2 Chapter 2.

2.4

$$u(x) = \frac{3x}{2} + 2$$

2.5

$$u(x) = -\frac{240(x-1)x}{\pi(10+\pi^2)}$$

2.6

$$u(x) = \frac{2}{7} (4 x - 1)$$

2.7

$$u(x) = -1.65881 + 3.3853 \, x$$

2.8

$$u(x) = \frac{1}{30} \left(17 \, x^2 + 24 \, x - 4 \right)$$

2.9

$$u(x) = -\frac{5}{18} (x - 1) x$$

2.10

$$u(x) = \frac{1}{128} \left(30 \, x^2 + 71 \, x - 59 \right)$$

2.11

$$u(x) = \frac{3x}{2} - 2$$

$$u(x) = \frac{\left(2 \mathop{\mathrm{EA}} g + L \, q \, (L-x)\right) x}{2 \mathop{\mathrm{EA}} L}$$

$$u(x) = \frac{3 c L^2 (L - x) x}{20 \text{ EA}}$$

2.14

$$u(x) = \frac{x(\pi (61200 - 263\,x) + 64000\,(3\,x + 4))}{1378000000\,\pi}$$

2.15

$$\begin{split} &-w''(x_0)\,u^{(3)}(x_0)+w''(x_\ell)\,u^{(3)}(x_\ell)+w'(x_0)\,u^{(4)}(x_0)-w'(x_\ell)\,u^{(4)}(x_\ell)-\\ &w(x_0)\left(u^{(3)}(x_0)+u^{(5)}(x_0)\right)+w(x_\ell)\left(u^{(3)}(x_\ell)+u^{(5)}(x_\ell)\right)+\int_{x_0}^{x_\ell}(w\,x-u^{(3)}\left(w'+w^{(3)}\right))\,\mathrm{d}x=0 \end{split}$$

2.16

$$EJ_{w}\left(w'(0)\phi''(0) - w'(L)\phi''(L) - w(0)\phi^{(3)}(0) + w(L)\phi^{(3)}(L)\right) + \int_{0}^{L} ((EJ_{w}w'' - wGJ_{0})\phi'' - tw) dx = 0$$

2.17

$$p(x) = \frac{7 \left(1015625 \, x^3 - 19125000 \, x^2 + 88000000 \, x + 1055502\right)}{502620}$$

2.18

$$u(x) = \frac{(2 \operatorname{EA} g + L q (L - x)) x}{2 \operatorname{EA} L}$$

2.19

$$u[x] \rightarrow 0.000154286 x - 0.000257143 x^2$$

2.20

$$u = \frac{12 \, x^2}{86125 \, \pi} - \frac{263 \, x^2}{1378000000} + \frac{16 \, x}{86125 \, \pi} + \frac{153 \, x}{3445000}$$

$$V(z) = -0.199251z^4 + 0.67403z^3 - 1.37394z^2 + 1.14916z + 3.75$$

4 Chapter 2.

2.22

$$t(z) = -0.0000379346z^4 + 0.00175396z^3 - 0.0233431z^2 - 0.0228071z + 2.81$$

2.23

$$f(x) = -0.3 x^3 + 0.575 x^2 + 0.1$$

2.24

$$f(x) = 0.368 x^3 - 1.08 x^2 + 1$$

2.25

$$A(\textbf{x}) = 10 \left(-\frac{2 \, x^6}{512578125} \, + \, \frac{17 \, x^5}{15187500} \, - \, \frac{223 \, x^4}{1822500} \, + \, \frac{253 \, x^3}{40500} \, - \, \frac{5897 \, x^2}{40500} \, + \, \frac{286 \, x}{225} \, + \, 8 \right)$$

2.26

2.27

Range
$$\epsilon$$
 σ F
$$1 \quad 0 \le x \le 300 \quad \frac{1}{6000} \quad \frac{100}{3} \quad \frac{20000}{3}$$

$$2 \quad 300 \le x \le 900 \quad -\frac{1}{12000} \quad -\frac{50}{3} \quad -\frac{10000}{3}$$

Range
 Solution

 1

$$0 \le x \le 120$$
 $\frac{99 \, x}{1093750}$

 2
 $120 \le x \le 240$
 $\frac{171 \, x}{2187500} + \frac{162}{109375}$

 3
 $240 \le x \le 360$
 $\frac{9 \, x}{218750} + \frac{162}{15625}$

 4
 $360 \le x \le 480$
 $\frac{4212}{109375} - \frac{81 \, x}{2187500}$

 5
 $480 \le x \le 600$
 $\frac{324}{3125} - \frac{27 \, x}{156250}$

Range Solution
$$1 0 \le x \le \frac{100}{3} \frac{16x}{3125\pi} + \frac{61x}{1500000}$$

$$2 \frac{100}{3} \le x \le \frac{200}{3} \frac{16x}{1625\pi} + \frac{23x}{780000} - \frac{256}{1625\pi} + \frac{109}{292500}$$

$$3 \frac{200}{3} \le x \le 100 \frac{16x}{625\pi} + \frac{x}{60000} - \frac{5888}{4875\pi} + \frac{359}{292500}$$

$$\frac{AE}{L} \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} = \begin{pmatrix} \frac{1}{6} L(2 q_1 + q_2) \\ \frac{1}{6} L(q_1 + 2 q_2) \end{pmatrix} + \begin{pmatrix} P_1 \\ P_2 \end{pmatrix}$$

2.31

$$\begin{pmatrix} \frac{(A_{l}+A_{r}) E}{2 \ell} & -\frac{(A_{l}+A_{r}) E}{2 \ell} \\ -\frac{(A_{l}+A_{r}) E}{2 \ell} & \frac{(A_{l}+A_{r}) E}{2 \ell} \end{pmatrix} \begin{pmatrix} u_{1} \\ u_{2} \end{pmatrix} = \begin{pmatrix} \frac{1}{6} \left(2 q_{l}+q_{r}\right) \ell \\ \frac{1}{6} \left(q_{l}+2 q_{r}\right) \ell \end{pmatrix} + \begin{pmatrix} F_{l} \\ F_{r} \end{pmatrix}$$

2.32

Three element solution

$$\begin{pmatrix} 0 & 0 \\ 30. & 0.0302521 \\ 60. & 0.0547419 \\ 90. & 0.084994 \end{pmatrix}$$

6 Chapter 2.

CHAPTER THREE

One Dimensional Boundary Value Problem

3.1

$$k(x) = \frac{1}{2} x^2$$
; $p(x) = -x$, $q(x) = -4$

NBC at x = 1:

$$\alpha = 0$$
; $\beta = -1$

EBC at
$$x = 3$$
: $u(3) = 1$

3.2

 $\{0 \le x \le 0.0095, 1140.49 - 47.6108 x\}$

2 Chapter 3.

$$\{0.0095 \le x \le 0.2095, \ 1181.91 - 4408.41 \ x\}$$

$$\{0.2095 \le x \le 0.21575, \ 268.326 - 47.6108 \ x\}$$

3.3

Four linear elements

	Range	Temp.	Heat loss
1	$0 \le x \le 0.00625$	95 63.0279 x	0.0342645
2	$0.00625 \le x \le 0.0125$	94.8901 - 45.446 x	0.0340981
3	$0.0125 \le x \le 0.01875$	94.6712 - 27.9358 x	0.0339855
4	$0.01875 \le x \le 0.025$	94.3437 - 10.4697 x	0.0339266

Total heat loss $\rightarrow 0.136275$

Two quadratic elements

	Range	Temp.	Heat loss
1	$0 \le x \le 0.0125$	$1406.41x^2 - 71.8102x + 95.$	0.0683536
2	$0.0125 \le x \le 0.025$	$1397.14 x^2 - 71.5933 x + 94.9987$	0.0679033

Total heat loss $\rightarrow 0.136257$

3.4

Three linear element solution

	Range	Temp.	Heat loss
1	$0 \le x \le \frac{1}{60}$	17488.7 x + 500	-254.26
2	$\frac{1}{60} \le X \le \frac{1}{30}$	4679.71 x + 713.484	-69.5234
3	$\frac{1}{30} \le X \le \frac{1}{20}$	1076.66 x + 833.586	-21.5537

Total heat loss $\rightarrow -345.338$

One quadratic element

	Range	Temp.	Heat loss
1	$0 \le x \le \frac{1}{20}$	$-245752.x^2+19686.3x+500$	-337.908

Total heat loss $\rightarrow -337.908$

Two linear element solution

	Range	Solution	
1	$0 \le x \le \frac{3}{10}$	$\frac{x}{10500}$	
2	$\frac{3}{10} \le X \le \frac{3}{5}$	$\frac{1}{17500} - \frac{x}{10500}$	

Two quadratic element solution

	Range	Solution
1	$0 \le x \le \frac{3}{10}$	$-\frac{x^2}{13200} - \frac{x}{13200}$
2	$\frac{3}{10} \le X \le \frac{3}{5}$	$\frac{13x^2}{92400} - \frac{13x}{462000} - \frac{13}{385000}$

3.6

	Range	ϵ	σ	F
1	$0 \le x \le 0.3$	0.0000101024	707168.	1060.75
2	$0.3 \le x \le 0.6$	-0.000450934	$-3.15654\!\times\!10^{7}$	-18939.2
3	$0.6 \le x \le 0.9$	0.000286541	2.00579×10^7	21060.8
4	$0.9 \le x \le 1.2$	0.000154291	1.08004×10^7	21060.8

3.7

1 element solution

	Range	Solution
1	$0 \le x \le \frac{4}{5}$	0.000022956x

2 element solution

Range Solution
$$1 \qquad 0 \le x \le \frac{2}{5} \qquad 0.0000315645 \, x$$

$$2 \qquad \frac{2}{5} \le x \le \frac{4}{5} \qquad 0.0000143475 \, x + 6.88679 \times 10^{-6}$$

3 element solution

4 Chapter 3.

Range Solution
$$1 \qquad 0 \le x \le \frac{4}{15} \qquad 0.0000331586 \, x$$

$$2 \qquad \frac{4}{15} \le x \le \frac{8}{15} \qquad 0.0000255066 \, x + 2.04053 \times 10^{-6}$$

$$3 \qquad \frac{8}{15} \le x \le \frac{4}{5} \qquad 0.0000102027 \, x + 0.0000102027$$

3.8

Range Solution
1
$$0 \le x \le 4$$
. $277.778 x + 14.7$
2 $4. \le x \le 8$. $2236.92 - 277.778 x$

3.9

Range
 Solution

 1

$$1 \le x \le 2$$
 $\frac{36 x}{55} - \frac{287}{55}$

 2
 $2 \le x \le 3$
 $\frac{51 x}{55} - \frac{317}{55}$

 3
 $3 \le x \le 4$
 $\frac{219 x}{55} - \frac{821}{55}$

3.10

2 element solution

Range Solution
$$1 1 \le x \le 2 2.37147 - 1.37147 x$$

$$2 2 \le x \le 3 2.1976 - 1.28454 x$$

 $\{Which[1 \leq x \leq 2,\ 2.37147 - 1.37147\ x,\ 2 \leq x \leq 3,\ 2.1976 - 1.28454\ x]\}$

Solution convergence

$$\begin{split} & \text{Which}[1 \leq x \leq 3,\ 2.32941-1.32941\,x] \\ & \text{Which}[1 \leq x \leq 2,\ 2.37147-1.37147\,x,\ 2 \leq x \leq 3,\ 2.1976-1.28454\,x] \\ & \text{Which}\Big[1 \leq x \leq \frac{5}{3},\ 2.40859-1.40859\,x,\ \frac{5}{3} \leq x \leq \frac{7}{3},\ 2.21073-1.28987\,x,\ \frac{7}{3} \leq x \leq 3,\ 2.19739-1.28416\,x\Big] \\ & \text{Which}\Big[1 \leq x \leq \frac{3}{2},\ 2.42941-1.42941\,x,\ \frac{3}{2} \leq x \leq 2,\ 2.26582-1.32035\,x,\ 2 \leq x \leq \frac{5}{2},\ 2.1703-1.27259\,x,\ \frac{5}{2} \leq x \leq 3,\ 2 \\ & \text{Which}\Big[1 \leq x \leq \frac{7}{5},\ 2.44164-1.44164\,x,\ \frac{7}{5} \leq x \leq \frac{9}{5},\ 2.3109-1.34825\,x,\ \frac{9}{5} \leq x \leq \frac{11}{5},\ 2.20016-1.28673\,x,\ \frac{11}{5} \leq x \leq \frac{11}{5},\ \frac{11}{5} \leq x \leq \frac{11}{$$

Solution using Mathematica function NDSolve

```
soln = NDSolve[\{x^2y''[x] + 2xy'[x] - xy[x] + 4 == 0, \ y[1] == 1, \ y'[3] == 2 + 2y[3]\}, \ y, \ \{x, 1, 3\}]; \ um = y[x] \ /. \ soln[[1]]
```

InterpolatingFunction[(1. 3.), <>][x]

Comparison of different solutions

LegendPosition->{1,0}];

```
colors = Join[{{RGBColor[1, 0, 0]}},
  Table[{RGBColor[Random[], Random[]}, {Length[ua]}]];
Plot[Evaluate[Join[{um},ua]],{x,1,3},
  AxesLabel->{" x", "u"},
PlotStyle->colors,
PlotLegend->{"um","e1", "e2", "e3", "e4", "e5"},
```


3.11

10 element solution

Solution summary

6 Chapter 3.

	Range	Solution
1	$0 \le x \le \frac{1}{10}$	3.10287 x
2	$\frac{1}{10} \le X \le \frac{1}{5}$	2.79914 x + 0.030373
3	$\frac{1}{5} \le X \le \frac{3}{10}$	2.22141 x + 0.145919
4	$\frac{3}{10} \le X \le \frac{2}{5}$	1.42623 x + 0.384472
5	$\frac{2}{5} \leq X \leq \frac{1}{2}$	0.491446 x + 0.758386
6	$\frac{1}{2} \le X \le \frac{3}{5}$	1.24983 - 0.491446 x
7	$\frac{3}{5} \le X \le \frac{7}{10}$	1.8107 - 1.42623 x
8	$\frac{7}{10} \le X \le \frac{4}{5}$	2.36733 - 2.22141 x
9	$\frac{4}{5} \le X \le \frac{9}{10}$	2.82951 - 2.79914 x
10	$\frac{9}{10} \le x \le 1$	3.10287 - 3.10287 x

3.12

2 element solution

	Range	Solution
1	$0.785398 \le \theta \le 1.1781$	$2.08239 - 1.37814 \theta$
2	$1.1781 \leq \theta \leq 1.5708$	$1.83522 - 1.16833 \theta$

CHAPTER FOUR

Trusses, Beams, and Frames

4.1					
		x-coord	y-coord	u	\mathbf{v}
	1	0	72	0	-0.00791478
	2	0	0	0	0
	3	108	0	0.0361918	0
4.2					
		x-coord	y-coord	u	\mathbf{v}
	1	0	72	0	0.0488567
	2	0	0	0	0
	3	108	0	0.109927	0.5

2 Chapter 4.

4.3								
		x-coord	y-coord	u	\mathbf{v}			
	1	0	0	0	-0.2	09497		
	2	-4000.	3000.	0	0			
	3	0	3000.	0	0			
	4	4000.	3000.	0	0			
4.4								
		x-coord	y-coord	u		v		
	1	0	0	0		0		
	2	96	0	0.023	8171	0.0312798		
	3	0	72	0		0		
	4	96	72	0		0		
4.5								
		x-coord	y-coord	u		\mathbf{v}		
	1	0	0	0.25		0		
	2	96	0	0.199	743	0.0729465		
	3	0	72	0		0		
	4	96	72	0		0		
4.6								
		x-coord	y-coord	u		\mathbf{v}		
	1	0	0	0		0		
	2	8000.	0	0		0		
	3	0	6000.	0.738	808	0.0661619		
	4	8000.	6000.	0.856	343	-0.0766952		
4.7								
		x-coord	y-coord	z-co	ord	u	\mathbf{v}	W
	1	0.	0.	10000	0.	2.08356	0	-0.222246
	2	0.	8000.	0.		0	0	0
	3	6928.2	-4000.	0.		0	0	0
	4	-6928.2	-4000.	0.		0	0	0

4.8								
		x-coord	y-coord	z-coord	u		v	W
	1	0.	4000.	0.	-0.396	6825	-0.14881	-6.5448
	2	-3000.	2000.	5000.	2.7433	5	5.00783	-1.70566
	3	-3000.	0.	0.	0		0	0
	4	3000.	0.	0.	0		0	0
	5	0.	0.	5000.	0		0	0
4.9								
		x-coord	y-coord	u	\mathbf{v}			
	1	0.	0.	0	0			
	2	10.	0.	-0.015161	0			
4.40								
4.10		1	1					
		x-coord	y-coord	u	V	0000000	0	
	1	0.	72.	0		0096032	6	
	2	0.	0.	0	0			
	3	108.	0.	-0.0216073	0			
4.11								
4.11		x-coord	y-coord	u	v			
	1	0	0	0	0			
	2	96	0	0.11641	-0.0208	8035		
	3	0	72	0	0			
	4	96	72	0	0			
4.12								
		x-coord	y-coord	z-coord	u	\mathbf{v}	W	
	1	0.	4000.	0.	0	0	-8.74	
	2	-3000.	2000.	5000.	0	0	0	
	3	-3000.	0.	0.	0	0	0	
	4	3000.	0.	0.	0	0	0	
	5	0.	0.	5000.	0	0	0	

Spring forces

Chapter 4.

$$\left\{\frac{5\,P}{11}, -\frac{6\,P}{11}, -\frac{6\,P}{11}\right\}$$

4.14

Spring forces

$$\left\{\frac{2gk}{7},\,\frac{2gk}{7},\,\frac{2gk}{7}\right\}$$

4.15

v(L/4) = -0.143229 in; M(L/4) = 520.833 k-in

4.16

4.17

Vertical displacement at the hinge = $-\frac{9}{22}$

4.18

Rotation of the right end = 0.00589169

4.19

Rotation of the right end = 0.00160714

4.20

Rotation of the right end = 0.00010582

4.21

The axial force in the spring = 27.7316

Vertical deflection at load location = -0.0499836

4.23

$$v(L/4) = -0.143229 in;$$

$$M(L/4) = 520.833 \text{ k-in}$$

4.24

Rotation of the right end = 0.00583333

4.25

Rotation of the right end = 0.00261905

4.26

$$v(2L/3) = -\frac{1}{48}$$
 in;

$$v(2L/3) = -\frac{1}{48} \ in; \qquad \qquad M(2L/3) = \frac{5}{8} \ k{-}in$$

4.27

Rotation of the left end = 0.00675154

4.28

Rotation of the right end = -0.000843705

4.29

Vertical deflection at point load location = -54.5919 mm

4.30

Vertical deflection at mid-span = -0.0226372

4.31

Vertical deflection at mid-span = -0.000127098

6 Chapter 4.

4.32

Vertical deflection at point load location = -0.00152975

4.33

Rotation at right pin support = 0.002385

4.34

Vertical deflection at point where load P is applied = 0.000140669

4.35

Vertical deflection at free end = -5.27429

4.36

Vertical deflection at free end = -0.575948

4.37

Horizontal displacements at the top of the dam ≈ -0.0007

4.39

Vertical deflection at tip of the cantilever = -5.79544

4.40

Vertical deflection under load P = -16.0819

CHAPTER FIVE

Two Dimensional Elements

5.1

$$k_x = k_y = -1; P = 0; Q = -2x - 2y + 4$$

Essential: On side 3: $u = x^2$; On side 4: $u = y^2$

Natural: On side 1: $\alpha = 0$ and $\beta = -2 + 2x + x^3$

Natural: On side 2: $\alpha = 0$ and $\beta = 1 - 3y$

Weak form:

$$\int_{x=0}^{1} (2-2\,x-x^3)\,N_i\,\mathrm{d}x + \int_{y=0}^{1} -(1-3\,y)\,N_i\,\mathrm{d}y + \int_{A} \left(\frac{\partial u}{\partial x} \,\,\frac{\partial N_i}{\partial x} \,+\,\frac{\partial u}{\partial y} \,\,\frac{\partial N_i}{\partial y} \,+\,(-2\,x-2\,y+4)\,N_i \right) \mathrm{d}A = 0$$

2 Chapter 5.

5.2

Three parameter solution

$$\psi(\mathbf{x}) = \frac{2199 \, y \, x^2}{5438} - \frac{2199 \, x^2}{10876} + \frac{1704 \, y^2 \, x}{2719} - \frac{13983 \, y \, x}{27190} + \frac{5463 \, x}{54380} - \frac{1704 \, y^2}{2719} + \frac{1494 \, y}{13595} + \frac{1383}{13595}$$

5.3

$$\mathbf{r}_{\mathbf{q}} = \left(\begin{array}{l} \frac{1}{9} \ a \ b \ (4 \ Q_{1} + 2 \ Q_{2} + Q_{3} + 2 \ Q_{4}) \\ \\ \frac{1}{9} \ a \ b \ (2 \ Q_{1} + 4 \ Q_{2} + 2 \ Q_{3} + Q_{4}) \\ \\ \frac{1}{9} \ a \ b \ (Q_{1} + 2 \ (Q_{2} + 2 \ Q_{3} + Q_{4})) \\ \\ \frac{1}{9} \ a \ b \ (2 \ Q_{1} + Q_{2} + 2 \ Q_{3} + 4 \ Q_{4}) \end{array} \right)$$

5.4

	x-coord	y-coord	u
1	0	0	$\frac{91}{43}$
2	2	0	1
3	2	1	1
4	0	1	83

5.5

Solution at element centroids

	x-coord	y-coord	ψ	$\partial \psi / \partial \mathbf{x}$	$\partial \psi / \partial y$
1	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{23}{32}$	$-\frac{5}{8}$	$\frac{1}{8}$
2	$\frac{3}{4}$	$\frac{1}{4}$	$\frac{13}{32}$	$-\frac{5}{8}$	$-\frac{5}{8}$

	x-coord	y-coord	T
1	0	0	300
2	2	0	300
3	2	1	345
4	0	1	75

Stresses at element centroid (x = y = 0.25)

$$au_{yz} \, (\text{N/cm}^2) \qquad au_{xz} \, (\text{N/cm}^2) \\ 700. \qquad -700.$$

5.8

Stresses at element centroids

	$ au_{ m yz}({ m MPa})$	τ_{xz} (MPa)
1	2.23214	-2.23214
2	1.11607	-2.23214
3	2.23214	-1.11607

5.9

Cutoff frequencies

```
\{3.87298,\ 3.4641,\ 3.4641,\ 1.73205,\ 0.\}
```

5.10

Cutoff frequencies

$$\{2.73861,\ 1.73205,\ 1.28512,\ 1.28512,\ 0.\}$$

4 Chapter 5.

5.12

Integral = 11979

5.13

Integral = 62.9638

5.14

Integral = 215500

5.15

 $\{\psi_5=295.891,\,\psi_8=290.897,\,\psi_{11}=286.626\}$

5.16

 $\{\phi_1 = -98.3232, \ \phi_2 = -98.7015, \ \phi_3 = -58.6855, \ \phi_4 = -54.2459, \ \phi_5 = -22.0387, \ \phi_6 = -13.0548\}$

5.17

 $\{\phi_4=0.000178326,\,\phi_6=0.000109739\}$

The maximum shear stress is 3.65 Pa.

 $\{\phi_2=0.000142857,\ \phi_4=0.000247619,\ \phi_5=0.000180952\}$

6 Chapter 5.

5.19

Cutoff frequencies

 $\{3.87298,\ 3.4641,\ 3.36855,\ 1.72577,\ 0.\}$

5.20

Cutoff frequencies

 $\{2.68328,\ 1.71139,\ 1.3993,\ 1.29308,\ 0.\}$

CHAPTER SIX

Mapped Elements

6.1
$$\iint_{A_{xy}} (x - y) \, dA_{xy} = -\frac{23}{20}$$

6.2
$$\iint_{A_{xy}} (xy) \, dA_{xy} = \frac{151}{12}$$

6.3
$$\iint_{A_{xy}} (x^2 y) dA_{xy} = \frac{911}{30} = 30.3667$$

2 Chapter 6.

6.4

Using 1×1 integration: I = 18.

Using 2×2 integration: I = 12.5833

6.5

Using 1×1 integration: I = 22.75

Using 2×2 integration: I = 30.4167

 $\det J = -2.27817 t s^2 + 0.207107 s^2 + 0.414214 t s - 1.41421 s - 6.02817 t + 11.5992$

$$\mathbf{detJ} = \frac{3\,t^2\,s^2}{64} - \frac{7\,t\,s^2}{64} + \frac{3\,s^2}{32} + \frac{7\,t^2\,s}{64} - \frac{t\,s}{2} + \frac{35\,s}{64} + \frac{t^2}{32} - \frac{23\,t}{64} + \frac{49}{64}$$

6.8

$$\begin{split} \partial \textbf{\textit{N}}^T/\partial x &= \{0.0534091,\ 0.112652,\ -0.0471737,\ -0.0866226,\ -0.0322651\}\\ \partial \textbf{\textit{N}}^T/\partial y &= \{-0.0582398,\ 0.113808,\ 0.0512185,\ -0.017848,\ -0.0889388\} \end{split}$$

6.9

$$\det J = \frac{3s}{4} + \frac{t}{4} + 3$$

$$I = 28.2667$$

From the exact value we can see that the 2×2 Gauss quadrature gives a reasonable approximation to the integral.

$$\det \mathbf{J} = \frac{s}{2} + \frac{3t}{4} + \frac{7}{4}$$

At node 3, s = t = 1;
$$\partial N_3/\partial y = -\frac{1}{3}$$

Using
$$1 \times 1$$
 Gauss quadrature: $\iint_A 64 N_2 N_3 dA = 28$

Using 2 point Gauss quadrature: $\int_{c} 4 N_{3c} dc = 8$

6.11

T at element center = -1

 $\partial T/\partial x$ at node 5 = 1.21286

Finite Element Computations Over Mapped Elements

6.12

$$\boldsymbol{k}_k = \begin{pmatrix} 0.755569 & 0.0477476 & -0.56552 & -0.237797 \\ 0.0477476 & 0.524955 & -0.465856 & -0.106847 \\ -0.56552 & -0.465856 & 1.05965 & -0.0282722 \\ -0.237797 & -0.106847 & -0.0282722 & 0.372916 \end{pmatrix}$$

$$\{T_2=32.1398,\ T_3=30.0087\}$$

$$\{T_1=20.8893,\ T_2=21.5601,\ T_3=21.5124,\ T_4=140.972,\ T_8=155.004\}$$

CHAPTER SEVEN

Analysis of Elastic Solids

7.1

Principal stresses = $\{121.698, 15.445, -77.143\}$ $\tau_{max} = 99.4205$

Effective stress = 172.337 Factor of safety = 1.45065

7.2

 $Principal \ stresses = \{74.6835, \ -10.1031, \ -124.58\} \\ \tau_{max} = 99.632$

Effective stress = 173.205 Factor of safety = 1.1547

7.3

Stresses = $\{-p, -p, -p, 0, 0, 0\}$

2 Chapter 7.

7.4

 $Component\ stresses = \{78.2807,\ 0.,\ 0.,\ 41.4982,\ 0.,\ 0.\}$

Factor of safety = σ_f/σ_e = 2.82289 $\sigma_e = 106.274 \text{ MPa}$

7.5

Solution at element centers

	Coord	Disp	Stresses	Principal stresses	Effective Stress
1	$\frac{10}{\frac{20}{3}}$	-0.013 -0.0557143	-100. -30. 0 -150. 0	89.0292 0 -219.029	274.591

7.6

$$\left\{ \mathbf{u}_{3}=\mathbf{0},\;\mathbf{v}_{3}=\frac{11}{400}\right\}$$

7.7

Nodal solution

1 2 3	x 0 50 50	y 0 10 20	u 0 0.140936 0.133596	v 0 0.00489362 0.0269149		
4	0	20	0.155550	0.0203143		
	Coord		Disp	Stresses -13.1751 -164.953	Principal stresses	Effective Stress
1	$\frac{\frac{50}{3}}{10}$		0.0469787 0.00163121	0 2.63502 0 0	-13.1294 -164.998	158.841
2	$\frac{100}{\frac{3}{3}}$		0.0915106 0.0106028	26.3502 1.05401 0 -5.27005 0	27.4043 4.44089×10^{-16} 0.	27.4043

70. 7		1 1	
1	α	CO	lution
1.7	uua	1.50	шил

	X	y	u	\mathbf{v}
1	35.	0.	0.000412196	0
2	50 .	0.	0.000352237	0
3	0.	50 .	0	0.000352237
4	0.	35.	0	0.000412196

Solution at selected points on elements

	Coord	Disp	Stresses	Principal stresses	Effective Stress
1	21.25 21.25	0.000191108 0.000191108	0.960784 0.960784 0.576471 -0.999276 0	1.96006 0.576471 -0.0384919	1.77295

7.9

Nodal solution

	X	y	u	\mathbf{v}
1	0.	48.	0	0.0361081
2	33.9411	33.9411	0.0257251	0.0257251
3	48.	0.	0.0361081	0
4	54.	0.	0.0337736	0
5	60.	0.	0.0322063	0
6	42.4264	42.4264	0.0229371	0.0229371
7	0.	60.	0	0.0322063
8	0.	54.	0	0.0337736

Solution at selected points on elements

	Coord	Disp	Stresses	Principal stresses	Effective Stress
1	38.1838 38.1838	0.0241393 0.0241393	8.56336 8.56336 5.13802 -11.0078 0	19.5712 5.13802 -2.44445	19.3713

4 Chapter 7.

7.10 Stress Analysis of a Bolted Bracket

Model with no holes

6 Chapter 7.

7.11 Stresses in a concrete dam

8 Chapter 7.

10 Chapter 7.

7.15 Stresses in an Aluminum machine part

7.16 Stresses in Spoked Flywheels

12 Chapter 7.

CHAPTER EIGHT

Transient Problems

$$\begin{pmatrix} 6777 & 2259 \\ 2259 & 4518 \end{pmatrix} \begin{pmatrix} \dot{T}_2 \\ \dot{T}_3 \end{pmatrix} + \begin{pmatrix} 15.035 & 7.5 \\ 7.5 & 15.0175 \end{pmatrix} \begin{pmatrix} T_2 \\ T_3 \end{pmatrix} = \begin{pmatrix} 597.5 \\ 580. \end{pmatrix}$$

$$\begin{pmatrix} 1.3075 & -1.046 & -0.2615 & 0 & 0 & 0 \\ -1.046 & 1.3075 & 0 & -0.2615 & 0 & 0 \\ -0.2615 & 0 & 2.3535 & -1.569 & -0.523 & 0 \\ 0 & -0.2615 & -1.569 & 2.3535 & 0 & -0.523 \\ 0 & 0 & -0.523 & 0 & 1.246 & -0.423 \\ 0 & 0 & 0 & -0.523 & -0.423 & 1.246 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_3 \\ T_4 \\ T_5 \\ T_6 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 5 \\ -\frac{3}{2} \\ -\frac{3}{2} \end{pmatrix}$$

8.3

The final global system of equations after adjusting for essential boundary conditions is as follows

$$\begin{pmatrix} 26685.8 & 13342.9 & 0 \\ 13342.9 & 71876.5 & 7816.09 \\ 0 & 7816.09 & 15632.2 \end{pmatrix} \begin{pmatrix} \dot{T}_1 \\ \dot{T}_2 \\ \dot{T}_3 \end{pmatrix} + \begin{pmatrix} 2.55681 & 0.581682 & 0 \\ 0.581682 & 5.05772 & 0.774077 \\ 0 & 0.774077 & 2.56443 \end{pmatrix} \begin{pmatrix} T_1 \\ T_2 \\ T_3 \end{pmatrix} = \begin{pmatrix} 82.2986 \\ 198.719 \\ 132.3 \end{pmatrix}$$

Natural frequencies and mode shapes

	ω (rad/sec)	f (Hz)	T (sec)	Mode shape
1	4196.21	667.848	0.00149735	0.676257 0.757172
2	12309.9	1959.19	0.000510416	-0.827969 1.30859

8.5

Natural frequencies and mode shapes

```
\{2527.97, 3319.11\}
\begin{pmatrix} -0.52637 & 0.850256 \\ 0.88527 & 0.465078 \end{pmatrix}
```

8.6

Natural frequencies and mode shapes

```
{97.3496, 125.354}

\begin{pmatrix} 0.755295 & 0.655385 \\ -0.655385 & 0.755295 \end{pmatrix}
```

8.7

Natural frequencies and mode shapes

 $\{136.503,\,408.009,\,433.192,\,533.73\}$

```
    (0.703631
    0.0700205
    0.703631
    -0.0700205

    (0.10039)
    0.699944
    -0.10039
    0.699944

    (0.0634883)
    -0.704251
    0.0634883
    0.704251

    (0.701213)
    -0.0911096
    -0.701213
    -0.0911096
```

8.8

Natural frequencies and mode shapes

```
\{5.50805 \times 10^{-6}, 167.146, 223.775, 358.339, 532.145, 1225.18\}
```

Transient Problems

8.9

Natural frequencies and mode shapes

{78.5105, 711.616, 1395.17, 3261.03}

$$\begin{pmatrix} -0.334142 & -0.881305 & -1.3366 \times 10^{-15} & 0.334142 \\ 0.57735 & -1.36539 \times 10^{-16} & -0.57735 & 0.57735 \\ -0.706047 & 0.0547294 & -1.59796 \times 10^{-16} & 0.706047 \\ 0.57735 & 3.6484 \times 10^{-17} & 0.57735 & 0.57735 \end{pmatrix}$$

8.10

Natural frequencies and mode shapes

 $\{805.267, 882.587, 1195.83\}$

$$\begin{pmatrix} -0.873687 & -0.332045 & -0.355552 \\ -0.421046 & 0.647647 & 0.635038 \\ -0.0956541 & -0.286418 & 0.953318 \end{pmatrix}$$

8.11

Global matrices after incorporating essential boundary conditions

$$\mathbf{m} = \begin{pmatrix} 0.0167143 & 0 & -0.104464 \\ 0 & 9.64286 & -3.61607 \\ -0.104464 & -3.61607 & 4.82143 \end{pmatrix}$$
$$\mathbf{k} = \begin{pmatrix} 213.333 & 0 & 8000. \\ 0 & 1.6 \times 10^6 & 400000. \\ 8000. & 400000. & 800000. \end{pmatrix}$$
$$\mathbf{r}^{\mathrm{T}} = (-60. \ 1500. \ 0)$$

Time history of nodal solution

Time	DOF	Disp	Vel	Acc
	1	0	0	0
	2	0	0	0
0	3	0	0	0.
U	4	0	0	0.
	5	0	0	0
	6	0	0	0.
	1	0	0	0
	2	0	0	0
0.001	3	-0.000127972	-0.255943	-511.887
0.001	4	6.52715×10^{-6}	0.0130543	26.1086
	5	0	0	0
	6	1.95908×10^{-6}	0.00391816	7.83632
	1	0	0	0
	2	0	0	0
0.002	3	-0.000777531	-1.04318	-1062.58
0.002	4	0.0000371082	0.0481078	43.9984
	5	0	0	0
	6	9.48963×10^{-6}	0.011143	6.61327
	1	0	0	0
	2	0	0	0
0.003	3	-0.00249963	-2.40103	-1653.13
	4	0.000108476	0.0946276	49.0412
	5	0	0	7.20446
	6	0.0000204648	0.0108074	-7.28446
	1	0	0	0
	2	0 00507142	0	0
0.004	3 4	-0.00587142	-4.34255 0.14014	-2229.91
	5	0.00022586 0	0.14014	41.9841 0
	6	0.0000220795	-0.00757793	-29.4861
		0.0000220793		
	1 2	0	0	0
	3	-0.011446	-6.80669	-2698.37
0.005	4	0.000383511	0.175162	28.0586
	5	0	0.173102	0
	6	-5.21514×10^{-6}	-0.0470114	-49.3807
	1	0	0	0
	2	0	0	0
	3	-0.0196676	-9.63648	-2961.21
0.006	4	0.000569168	0.196153	13.9237
	5	0.000207100	0	0
	6	-0.0000783954	-0.0993492	-55.295
	1	0	0	0
	2	0	0	0
0.007	3	-0.0307849	-12.598	-2961.81
0.007	4	0.000769818	0.205148	4.06751
	5	0	0	0
	6	-0.000201679	-0.147219	-40.4444

0.008	1	0	0	0
	2	0	0	0
	3	-0.044801	-15.4343	-2710.73
	4	0.000975622	0.206459	-1.44542
	5	0	0	0
	6	-0.000360654	-0.17073	-6.57864
0.009	1	0	0	0
	2	0	0	0
	3	-0.0614833	-17.9303	-2281.44
	4	0.00118004	0.202381	-6.71073
	5	0	0	0
	6	-0.000523885	-0.15573	36.5787
0.01	1	0	0	0
	2	0	0	0
	3	-0.0804283	-19.9598	-1777.42
	4	0.00137641	0.190344	-17.3638
	5	0	0	0
	6	-0.000651513	-0.099526	75.8301

Figure 8.18. Two element model for the plane frame

Global matrices after incorporating essential boundary conditions

$$\mathbf{m} = \begin{pmatrix} 1.90286 & -0.102857 & -36.0018 & 0.797143 & 0.102857 & 21.2738 \\ -0.102857 & 1.90286 & 36.0018 & 0.102857 & 0.797143 & -21.2738 \\ -36.0018 & 36.0018 & 1666.29 & -21.2738 & 21.2738 & -1249.71 \\ 0.797143 & 0.102857 & -21.2738 & 3.70286 & -0.102857 & 36.0018 \\ 0.102857 & 0.797143 & 21.2738 & -0.102857 & 3.90857 & 14.9124 \\ 21.2738 & -21.2738 & -1249.71 & 36.0018 & 14.9124 & 3332.57 \end{pmatrix}$$

$$\mathbf{k} = \begin{pmatrix} 8.3642 \times 10^6 & 8.30247 \times 10^6 & -3.92837 \times 10^6 & -8.3642 \times 10^6 & -8.30247 \times 10^6 & -3.92837 \times 10^6 \\ 8.30247 \times 10^6 & 8.3642 \times 10^6 & 3.92837 \times 10^6 & -8.30247 \times 10^6 & -8.3642 \times 10^6 & 3.92837 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 6.66667 \times 10^8 & 3.92837 \times 10^6 & -3.92837 \times 10^6 & 3.92837 \times 10^6 \\ -8.3642 \times 10^6 & -8.30247 \times 10^6 & 3.92837 \times 10^6 & 2.50309 \times 10^7 & 8.30247 \times 10^6 & 3.92837 \times 10^6 \\ -8.30247 \times 10^6 & -8.3642 \times 10^6 & -3.92837 \times 10^6 & 8.30247 \times 10^6 & 3.92837 \times 10^6 \\ -8.30247 \times 10^6 & -8.3642 \times 10^6 & -3.92837 \times 10^6 & 8.30247 \times 10^6 & 8.42593 \times 10^6 & 1.62718 \times 10^6 \\ -8.392837 \times 10^6 & 3.92837 \times 10^6 & 3.33333 \times 10^8 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 3.33333 \times 10^8 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 3.33333 \times 10^8 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 3.33333 \times 10^8 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 3.33333 \times 10^8 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 3.33333 \times 10^8 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 3.33333 \times 10^8 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 3.33333 \times 10^8 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 3.33333 \times 10^8 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 3.33333 \times 10^8 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 3.33333 \times 10^8 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 & 3.92837 \times 10^6 & 3.92837 \times 10^6 & 1.62718 \times 10^6 \\ -3.92837 \times 10^6 &$$

 $\mathbf{r}^{\mathrm{T}} = (12727.9 - 12727.9 - 540000. 12727.9 - 12727.9 540000.)$

Time history of nodal solution

Time	DOF	Disp	Vel	Acc	
	1	0	0	5174.34	
	2 3	0	$0 \\ 0$	-4420. 18.3648	
	4	0	0	1446.04	
0	5	0	0	-2954.7	
	6	0	0	105.277	
	7 8	0	$0 \\ 0$	0	
	9	0	0	0	
	1	0.00183535	3.67069	2167.05	
	2	-0.00216981	-4.33962	-4259.23	
	3	-9.63473×10^{-6}	-0.0192695	-56.9037	
0.004	4	0.000414303	0.828607	211.178	
0.001	5 6	-0.00102521 0.0000411559	-2.05042 0.0823118	-1146.14 59.3462	
	7	0.0000411339	0.0823118	0	
	8	0	0	0	
	9	0	0	0	
	1	0.00645218	5.56298	1617.53	
	2	-0.00863759	-8.59594	-4253.42	
	3 4	-0.0000545939 0.000864672	-0.0706489 0.0721304	-45.8551 -1724.13	
0.002	5	-0.00344596	-2.79108	-335.182	
	6	0.000145407	0.12619	28.4099	
	7	0	0	0	
	8 9	0	0	0	
	1	0.0135154	8.56341	4383.34	
	2	-0.0195489	-13.2267	-5008.12	
	3	-0.000103311	-0.0267848	133.583	
0.000	4	0.000429732	-0.942011	-304.152	
0.003	5 6	-0.00660953 0.000279593	-3.53606 0.142183	-1154.78 3.57705	
	7	0	0.142103	0	
	8	0	0	0	
	9	0	0	0	
	1	0.0243155	13.0368	4563.48	
	2 3	-0.0351789 -0.0000509029	-18.0332 0.1316	-4604.93 183.187	
	4	-0.000119237	-0.155925	1876.33	
0.004	5	-0.010706	-4.65689	-1086.9	
	6	0.000408729	0.116087	-55.7699	
	7 8	0	0	0	
	9	0	0	0	
	1	0.0389857	16.3035	1969.91	
	2	-0.0546126	-20.8342	-997.029	
	3	0.000132756	0.235717	25.0461	
0.005	4 5	0.00014845 -0.0156927	0.691299 -5.31648	-181.878 -232.274	
0.003	6	0.000486692	0.0398399	-232.274 -96.7241	
	7	0	0	0	
	8	0	0	0	
	9	0	0	0	

8 Transient Problems

0.006	1 2 3 4 5 6 7 8	0.0555934 -0.0758254 0.000357364 0.000486564 -0.0208822 0.000482633 0 0	16.912 -21.5914 0.213498 -0.0150723 -5.06259 -0.0479584 0 0	-752.874 -517.324 -69.4838 -1230.86 740.058 -78.8725 0 0
0.007	1 2 3 4 5 6 7 8	0.0724475 -0.0979574 0.000574048 0.000169029 -0.0258101 0.000416664 0	16.7961 -22.6726 0.21987 -0.619996 -4.79309 -0.0839785 0 0	520.962 -1645.06 82.2277 21.0157 -201.057 6.83225 0 0
0.008	1 2 3 4 5 6 7 8	0.0897333 -0.121091 0.000848287 -0.000245159 -0.0310133 0.000353337 0	17.7755 -23.5948 0.328607 -0.208381 -5.61342 -0.0426759 0 0	1437.92 -199.428 135.246 802.215 -1439.62 75.773 0 0
0.009	1 2 3 4 5 6 7 8	0.106907 -0.143957 0.00117402 -0.000147595 -0.0369513 0.000340708 0 0	16.5714 -22.1371 0.322869 0.40351 -6.26264 0.0174181 0	-3846.17 3114.79 -146.722 421.567 141.181 44.4149 0 0
0.01	1 2 3 4 5 6 7 8	0.121003 -0.163878 0.00138287 0.0000894329 -0.0430209 0.000378079 0	11.6217 -17.7038 0.0948185 0.0705448 -5.87648 0.0573229 0	-6053.31 5751.93 -309.379 -1087.5 631.145 35.3947 0 0

CHAPTER NINE

P—Formulation

9.1

$$p = \left\{ \frac{1}{2} \sqrt{\frac{3}{2}} (s^2 - 1), \frac{1}{2} \sqrt{\frac{5}{2}} s (s^2 - 1), \frac{1}{8} \sqrt{\frac{7}{2}} (5 s^4 - 6 s^2 + 1) \right\};$$

Table[Integrate[dp[[i]] dp[[j]], {s, -1, 1}], {i, 1, 3}, {j, 1, 3}]

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

9.2

Range Solution
$$0 \le x \le \frac{4}{5}$$
 0.000022956 x

Solution with one p-mode

Range Solution
$$1 0 \le x \le \frac{4}{5} 0.0000401729 x - 0.0000215212 x^2$$

Solution with two p-modes

Range Solution
$$0 \le x \le \frac{4}{5} \qquad -0.0000179344 \, x^3 + 0. \, x^2 + 0.000034434 \, x$$

2 P-Formulation

9.3

	(-2.84764)	-2.86328	-0.0224879	-0.00684593	3.49721	0.00957872	0.0179
	-2.86328	-2.85025	-0.00684593	-0.0198714	3.49881	-0.00797645	0.0163
	-0.0224879	-0.00684593	0.0224879	0.00684593	0.0179632	-0.00957872	-0.0179
E1	-0.00684593	-0.0198714	0.00684593	0.0198714	0.016361	0.00797645	-0.0163
Element equations:	3.49721	3.49881	0.0179632	0.016361	-4.28417	-0.00098119	-0.0210
	0.00957872	-0.00797645	-0.00957872	0.00797645	-0.00098119	0.0107503	0.0009
	0.0179632	0.016361	-0.0179632	-0.016361	-0.0210192	0.00098119	0.0210
	-0.00957872	0.00797645	0.00957872	-0.00797645	0.00098119	-0.0107503	-0.0009

9.4

Nodal solution summary

dof	x	y	Value
ϕ_1	0	0	-1.30795
ϕ_2	1	0	0
ϕ_3	0	1	-3.99197
ϕ_4	1	1	1
ϕ_5	0	2	0
ϕ_6	1	2	1

Element solution summary

	$\boldsymbol{\mathcal{X}}$	y	ϕ	$\partial \phi / \partial x$	$\partial \phi / \partial y$
1	0.5	0.5	-1.97741	2.83314	-0.790941
2	0.5	1.5	-1.98683	4.43836	2.53129

9.5

Nodal solution summary

dof	x	y	Value
u_1	0	0	0
\mathbf{u}_2	0	$\frac{1}{2}$	0
u_3	0	1	0
u_4	1	0	0
u_5	1	$\frac{1}{2}$	0
u_6	1	1	0

Element solution summary

	X	У	u	$\partial \mathbf{u}/\partial x$	∂u/∂y
1	0.5	0.25	0.0539941	0.	0.423281
2	0.5	0.75	0.54205	0.	1.52894

APPENDIX B

Variational Form for Boundary Value Problems

B.1

Compute variation of the following functionals

(a)
$$F[u, x] = \frac{u^2}{x^3} + e^x$$

(b)
$$F[u', u, x] = \int_0^1 (x^2 u'^2 + u^3 + x) dx$$

(c)
$$F[u, x] = u^2 u'^2 + x^3$$

(d)
$$F[u'', u', u, x] = \int_{-1}^{1} (\frac{u''}{u} + u' x) dx$$

(a)
$$F[u, x] = \frac{u^2}{x^3} + e^x$$
 $\delta F = \frac{2 u \delta u}{x^3}$

(b)
$$F[u', u, x] = \int_0^1 (x^2 u'^2 + u^3 + x) dx$$
 $\delta F = \int_0^1 (x^2 2 u' \delta u' + 3 u^2 \delta u) dx$

(c)
$$F[u, x] = u^2 u'^2 + x^3$$
 $\delta F = 2 u \delta u u'^2 + u^2 2 u' \delta u'$

(d)
$$F[u'', u', u, x] = \int_{-1}^{1} (\frac{u''}{u} + u' x) dx = \int_{-1}^{1} (u'' u^{-1} + u' x) dx$$

$$\delta F = \int_{-1}^{1} (\delta u'' u^{-1} - u'' u^{-2} \delta u + \delta u' x) dx$$

B.2

Determine an equivalent variational form for the following boundary value problem.

$$\frac{d^2 u}{dx^2} + x^2 = 0; \quad 0 < x < 1$$

with the boundary conditions

$$u(0) = 1$$

$$u'(1) + 2u(1) = 1$$

The equivalent functional can be derived using the steps outlined in section as follows.

$$\int_0^1 \left(\frac{d^2 u}{dx^2} + x^2 \right) \delta u \, dx = 0$$

Integrating the first term by parts

$$\left[\frac{\mathrm{d}u}{\mathrm{d}x}\,\delta u\right]_0^1 + \int_0^1 \left(-\frac{\mathrm{d}u}{\mathrm{d}x}\,\frac{d(\delta u)}{\mathrm{d}x} + x^2\,\delta u\right)\,\mathrm{d}x = 0$$

$$u'(1) \delta u(1) - u'(0) \delta u(0) + \int_0^1 (-\frac{du}{dx} \delta(\frac{du}{dx}) + x^2 \delta u) dx = 0$$

Taking into consideration the natural boundary condition and requiring trial solutions to satisfy essential boundary condition

$$[1 - 2u(1)] \delta u(1) + \int_0^1 (-\frac{du}{dx} \delta(\frac{du}{dx}) + x^2 \delta u) dx = 0$$

$$\delta[u(1) - u(1)^2] + \delta\left[\int_0^1 \left\{-\frac{1}{2} \left(\frac{du}{dx}\right)^2 + x^2 u\right\} dx\right] = 0$$

Thus the appropriate functional is as follows.

$$I(u) = u(1) - u(1)^{2} + \int_{0}^{1} \left\{ -\frac{1}{2} \left(\frac{du}{dx} \right)^{2} + x^{2} u \right\} dx$$

B.3

Consider the following boundary value problem

$$u'' \sin(x) + u' \cos(x) + u \sin(x) = 0; \quad \pi/4 < x < \pi/2$$

$$u(\pi/4) = 1$$
 and $u'(\pi/2) = 2$

Derive an equivalent variational functional for the problem. Note that the differential equation can be written as follows.

$$\frac{d}{dx}[u'\sin(x)] + u\sin(x) = 0$$

The equivalent variational functional is as follows.

$$\int_{\pi/4}^{\pi/2} (\frac{d}{dx} [u' \sin(x)] + u \sin(x)) \, \delta u \, dx = 0$$

Integration by parts

$$(\delta u \, u' \sin(x))_{x=\pi/2} - (\delta u \, u' \sin(x))_{x=\pi/4} + \int_{\pi/4}^{\pi/2} (-\delta u' \, u' \sin(x) + \delta u \, u \sin(x)) \, dx = 0$$

Incorporating $u'(\pi/2) = 2$ and requiring trial solutions to be such that $\delta u(\pi/4) = 0$, we have

$$2 \, \delta \mathbf{u}(\pi/2) + \delta \Big[\int_{\pi/4}^{\pi/2} \left(-1/2 \, u'^2 \, \sin(x) + 1/2 \, u^2 \, \sin(x) \right) \, dx \Big] = 0$$

$$\delta \left[2 u(\pi/2) + \int_{\pi/4}^{\pi/2} (-1/2 u'^2 \sin(x) + 1/2 u^2 \sin(x)) dx \right] = 0$$

Thus the functional is as follows.

$$2u(\pi/2) + \int_{\pi/4}^{\pi/2} (-1/2u'^2 + 1/2u^2) \sin(x) dx$$

B.4

Consider finite element solution of the following boundary value problem

$$-u'' + x = 0; \pi/4 < x < \pi/2$$

$$u(\pi/4) = 1$$
 and $u'(\pi/2) + 2 = 0$

Verify that the following is an appropriate functional for the problem.

$$I(u) = 2 u(\pi/2) + \int_{\pi/4}^{\pi/2} (\frac{1}{2} u'^2 + x u) dx$$

Taking variation of the functional

$$\delta I(u) = 2 \delta u(\pi/2) + \int_{\pi/4}^{\pi/2} (u' \delta u' + x \delta u) dx$$

Integrating the first term inside the integral by parts

$$\delta I(u) = 2 \, \delta u(\pi/2) + (u' \, \delta u)_{\pi/2} - (u' \, \delta u)_{\pi/4} + \int_{\pi/4}^{\pi/2} (-u'' \, \delta u + x \delta \, u) \, dx$$

Using the natural boundary condition

$$\delta I(u) = 2 \, \delta u(\pi/2) - 2 \, \delta u(\pi/2) - u'(\pi/4) \, \delta u(\pi/4) + \int_{\pi/4}^{\pi/2} (-u'' + x) \, \delta \, u \, dx$$

or
$$\delta I(u) = -u'(\pi/4) \, \delta u(\pi/4) + \int_{\pi/4}^{\pi/2} (-u'' + x) \, \delta u \, dx$$

For admissible trial solutions $\delta u(\pi/4)$ must be 0, therefore

$$\delta I(u) = \int_{\pi/4}^{\pi/2} (-u'' + x) \, \delta \, u \, dx.$$

Since δ u is arbitrary, for $\delta I(u)$ to be 0, we must have -u'' + x = 0 which is the governing differential equation. Thus the functional is appropriate for the given boundary value problem.

B.5

A functional is given as follows.

$$I(u) = \int_0^{\ell} \left(\frac{1}{2} EA u'^2 - u \sin(\frac{\pi x}{\ell}) \right) dx - \frac{1}{2} k u(\ell)^2 - \frac{1}{\pi} u(0)$$

Determine the corresponding boundary value problem.

The first variation of the variational functional is as follows.

$$\delta \mathbf{I} = \int_0^\ell (\mathbf{E} \mathbf{A} \, u' \, \delta \mathbf{u}' - \delta \mathbf{u} \sin(\frac{\pi x}{\ell})) \, dx - k \, u(\ell) \, \delta \mathbf{u}(\ell) - \frac{1}{\pi} \, \delta \mathbf{u}(0)$$

Integrate the first term by parts

$$\delta \mathbf{I} = (\mathbf{E} \mathbf{A} \, u' \, \Box u)_{x=\ell} - (\mathbf{E} \mathbf{A} \, u' \, \Box u)_{x=0} + \int_0^\ell \left(-\frac{d}{dx} \, (\mathbf{E} \mathbf{A} \, u') \, \Box u - \sin(\frac{\pi x}{\ell}) \, \Box u \, \right) \, dx - k \, u(\ell) \, \delta \mathbf{u}(\ell) - \frac{1}{\pi} \, \delta \mathbf{u}(0)$$

Combining the boundary terms

$$\delta \mathbf{I} = -\int_0^\ell \left(\frac{d}{dx} \left(\mathbf{E} \mathbf{A} \, u' \right) + \, \sin(\frac{\pi x}{\ell}) \right) \, \Box u \, dx + \left(\mathbf{E} \mathbf{A} \, u'(\ell) - k \, u(\ell) \right) \, \delta \mathbf{u}(\ell) + \left(-\mathbf{E} \mathbf{A} \, u'(0) - \frac{1}{\pi} \right) \, \delta \mathbf{u}(0)$$

For δI to be zero the following conditions must be met

$$\frac{d}{dx}$$
 (EA u') + $\sin(\frac{\pi x}{\ell}) = 0$ 0 < $x < \ell$

Either EA
$$u'(\ell) - k u(\ell) = 0$$
 or $\delta u(\ell) = 0$

Either
$$-EA u'(0) - \frac{1}{\pi} = 0$$
 or $\delta u(0) = 0$

Thus the equivalent BVP

$$\frac{d}{dx} (EA u') + \sin(\frac{\pi x}{\ell}) = 0 \quad 0 < x < \ell$$

$$EA u'(\ell) - k u(\ell) = 0$$
 or $u(\ell) = Specified value$

$$-\text{EA } u'(0) - \frac{1}{\pi} = 0$$
 or $u(0) = \text{Specified value}$

B.6

The potential energy for the problem of the torsion of a thin-walled section with warping restraint can be written as follows.

$$\Pi = \int_0^L (\frac{E J_w}{2} \phi''^2 + \frac{G J_0}{2} \phi'^2 - t(x) \phi) dx$$

where E is the modulus of elasticity, G is shear modulus, J_w is the warping constant, J_0 is the torsional constant, t is thickness of the section, and ϕ is the angle through which a cross-section rotates. Determine the governing differential equation and appropriate boundary conditions.

The first variation of the variational functional is as follows.

$$\delta\Pi = \int_0^L \left(\frac{E J_w}{2} \ 2 \ \phi'' \ \delta \phi'' + \frac{G J_0}{2} \ 2 \ \phi' \ \delta \phi' - t \ \delta \phi \right) dx = \int_0^L \left(E \ J_w \ \phi'' \ \frac{d^2 (\delta \phi)}{d \phi^2} + G \ J_0 \ \phi' \ \frac{d (\delta \phi)}{d \phi} - t \ \delta \phi \right) dx$$

Integrate the first term by parts twice

$$\begin{split} \int_0^L & \left(E \, J_w \, \phi'' \, \, \frac{d^2(\delta\phi)}{\mathrm{d}\phi^2} \right) d \, x = \left[E \, J_w \, \phi'' \, \, \frac{d(\delta\phi)}{\mathrm{d}\phi} \, \right]_0^L - \int_0^\ell \left(\frac{d(E \, J_w \, \phi'')}{\mathrm{d}\phi} \, \, \frac{d(\delta\phi)}{\mathrm{d}\phi} \, \right) d \, x \\ & = \left[E \, J_w \, \phi'' \, \, \frac{d(\delta\phi)}{\mathrm{d}\phi} \, \right]_0^L - \left[\frac{d(E \, J_w \, \phi'')}{\mathrm{d}\phi} \, \, \delta\phi \, \right]_0^L + \int_0^\ell \left(\frac{d^2(E \, J_w \, \phi'')}{\mathrm{d}\phi^2} \, \, \delta\phi \, \right) d \, x \end{split}$$

Integrate the second term by parts

$$\int_0^L \left(G J_0 \phi' \frac{d(\delta \phi)}{d \phi}\right) dx = [G J_0 \phi' \delta \phi]_0^L - \int_0^\ell \left(\frac{d(G J_0 \phi')}{d \phi} \delta \phi\right) dx$$

Combining the terms

$$\delta\Pi = \left[E\,J_w\,\phi''\,\,\frac{d(\delta\phi)}{\mathrm{d}\phi}\right]_0^L + \left[\left(-\,\frac{d(E\,J_w\,\phi'')}{\mathrm{d}\phi}\,+\,G\,J_0\,\phi'\right)\delta\phi\right]_0^L + \int_0^\ell \left(\frac{d^2(E\,J_w\,\phi'')}{\mathrm{d}\phi^2}\,-\,\frac{d(G\,J_0\,\phi')}{\mathrm{d}\phi}\,\,-\,t\right)\delta\phi\,\,dx$$

For $\delta\Pi$ to be zero the following conditions must be met

$$\frac{d^2(E J_w \phi'')}{d\phi^2} - \frac{d(G J_0 \phi')}{d\phi} - t = 0; \quad 0 < x < L$$

At
$$x=0$$
 and L : either $EJ_w\phi''=0$ or $\frac{d(\delta\phi)}{\mathrm{d}\phi}=\delta\phi'=0$

At
$$x=0$$
 and L : Either $-\frac{d(E\,J_w\,\phi'')}{\mathrm{d}\phi}+G\,J_0\,\phi'=0$ or $\delta\phi=0$

Thus the equivalent BVP

$$\frac{d^2(E J_w \phi'')}{d\phi^2} - \frac{d(G J_0 \phi')}{d\phi} - t = 0; \quad 0 < x < L$$

At
$$x = 0$$
 and L : either $E J_w \phi'' = 0$ or $\phi' =$ specified

At
$$x=0$$
 and L : Either $-\frac{d(E\,J_w\,\phi'')}{d\phi}+G\,J_0\,\phi'=0$ or $\phi=$ specified