Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра систем управления и информатики

Отчет по лабораторной работе №1 «НАЗВАНИЕ РАБОТЫ» по дисциплине «Название дисциплины»

Выполнили: студенты гр. Р4135

Фамилия И.О.,

Фамилия И.О.

Преподаватель: Фамилия И.О.,

должность каф. СУиИ

Санкт-Петербург

Содержание

(Эбоз	начения	и сокр	раще	пин	3
]	Введ	ение				5
]	L O	писание	манип	улят	opa	6
6	2 M	атемати	ческая	и мод	ель манипулятора	8
	2.	1 Кинем	атика м	ианип	улятора	8
		2.1.1	Пряма	я зада	ача кинематики	11
		2.1.2			дача кинематики	13
و و	3 C	интез си	стем у	прав	ления	15
ŗ	Закл	ючение				16
(Спис	сок испол	льзова	нных	к источников	17
1	Приз	ложение	Δ Ten	минс	ология относительных измерений	18
	три	Южение	птер	WIFIII	жительных измерении	10
İ.						
Ì						
	L					
τ.τ	π		Π-	π.	КСУИ.101.4135.001 ПЗ	
	. Лист раб.	№ докум. Антонов, Артемо	Подп.	Дата	Разработка системы Лит. Лист Л	истов
Про		Котельников Ю.1	_		VIDAB DALING AND 2	19
H. 1	контр.				управления для манипулятора Kuka Youbot Кафедра СУи	
Уты					Пояснительная записка гр. Р4135	=

Взам. инв. №

Инв. № подл.

Обозначения и сокращения

Используемые далее по тексту общие обозначения:

- СК система координат;
- КП кинематическая пара;
- ДХ Денавита-Хартенберга (Denavit-Hartenberg), например, соглашение;
- ИСО инерциальная система отсчета;
 - $q_i i$ -ая $(i = \overline{1, n})$ обобщенная координата манипулятора (угол, регистрируемый энкодером робота в i-ом сочленении);
 - n количество звеньев робота, n = 5;
 - ${}^{i}R_{j}$ матрица поворота, характеризующая поворот СК $Ox_{j}y_{j}z_{j}$ относительно СК $Ox_{i}y_{i}z_{i}$;
 - $^{i}A_{j}$ матрица однородных преобразований, описывающая смещение и поворот СК $Ox_{i}y_{j}z_{j}$ относительно СК $Ox_{i}y_{i}z_{i}$
 - $r^i_{j,\,k}$ вектор из начала $Ox_jy_jz_j$ в начало $Ox_ky_kz_k$, выраженный относительно $Ox_iy_i{z_i}^*;$
 - g_i ускорение свободного падения, выраженное относительно $Ox_iy_iz_i$;
 - V_j^i линейная скорость начала $Ox_jy_jz_j$ относительно используемой в решении ИСО, выраженная относительно $Ox_iy_iz_i$;
 - a_j^i линейное ускорение начала $Ox_jy_jz_j$ относительно ИСО, выраженное относительно $Ox_iy_iz_i$;
 - ω_j^i угловая скорость вращения $Ox_jy_jz_j$ относительно ИСО, выраженная относительно $Ox_iy_iz_i$;
 - $\omega_{j,\,k}^i$ угловая скорость вращения $Ox_ky_kz_k$ относительно $Ox_jy_jz_j$, выраженная относительно $Ox_iy_iz_i$;
- * За пояснениями применяемой здесь и далее терминологии обратитесь к Приложению А.

Изм. Лист № докум. Подп. Дата

Взам. инв. №

Инв. № подл.

 $KCУИ.101.4135.001\ \Pi 3$

KCVN.101.4135.001 FI3

- $\dot{\omega}^i_j$ угловое ускорение $Ox_jy_jz_j$ относительно ИСО, выраженное относительно $Ox_iy_iz_i;$
- z_j^i орт $[0\ 0\ 1]^T$ системы координат $Ox_jy_jz_j$, выраженный относительно $Ox_iy_iz_i$;
- f_j^i сила, действующая на j-ое звено (тело) механизма со стороны (j-1)го звена (тела), выраженная относительно $Ox_iy_iz_i$;
- au_j^i момент силы, действующий на j-ое звено (тело) механизма со стороны (j-1)-го звена (тела), выраженный относительно $Ox_iy_iz_i$;
- au_i обобщенный момент, ответственный за изменение обобщенной координаты q_i ;
- m_i масса i-го звена;
- \mathcal{I}^i_j тензор инерции j-го звена, выраженный относительно жестко связанной с его центром масс системой координат, сонаправленной с $Ox_iy_iz_i$;
- a_i, d_i обозначения для длин, входящих в число параметров Денавита-Хартенберга, $i = \overline{1,n};$
- α_i, θ_i обозначения для углов, входящих в число параметров Денавита-Хартенберга, $i = \overline{1,n};$

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и да

Изм. Лист № докум. Подп. Дата

КСУИ.101.4135.001 ПЗ

Копировал

Введение

В данном документе будет рассказано о процессе разработки системы управления для манипулятора робота Kuka Youbot [1], дающей ему возможность для совершения двух действий: занятия позиции, при которой его схват будет принимать заданные положение и ориентацию, а также перемещения схвата по заданной траектории*. В целом содержание пояснительной записки можно описать примерно так:

- в разделе 1 будут приведены технические сведения о роботе, необходимые для решения поставленных задач;
- раздел 2 расскажет о процессе составления математической модели манипулятора, а именно о решении применительно к нему прямой и обратной задач кинематики и о составлении дифференциальных уравнений, описывающих протекающие в роботе электрические и механические процессы;
- в разделе 3 речь пойдет о синтезе соответствующих систем управления, о проверке их работоспособности с помощью моделирования, о результатах аппробации на реальном роботе и проч.

Изм. Лист № докум. Подп. Дата

Подп. и дата

Взам. инв. №

Подп.

Инв. № подл.

 $KCУИ.101.4135.001\ \Pi 3$

^{*} Здесь и далее, когда речь будет идти о траектории движении схвата, под последней будет подразумеваться не просто кривая, описываемая при этом схватом в пространстве, но таковая, явно параметризованная временем.

1 Описание манипулятора

Рассматриваемый в данной работе манипулятор робота Kuka Youbot представляет собой пятизвенный манипулятор, снабженный двухпальцевым схватом. Описание его массогабаритных параметров дается таблицей 1.1 и рисунком 1.1. Неуказанные там параметры робота, требуемые для дальнейших расчетов, неизвестны и поэтому подлежат измерению или идентификации, речь о которых пойдет ниже по тексту.

Таблица 1.1 – Общая информация о манипуляторе робота Kuka Youbot.

Параметр	Значение
Количество сочленений	5
Macca	5.3 кг
Допустимая нагрузка	0.5 кг
Точность повторного воспроизведения позиции	1 MM
Максимальная скорость в сочленении	$90^{\circ} {\rm c}^{-1}$
Интерфейс	EtherCAT
Напряжение питание	24 B

Инв. № подл. Подп. и дата Взам. инв. № Инв. № дубл. Подп. и д

Изм. Лист № докум. Подп. Дата

 $KCУИ.101.4135.001\ \Pi 3$

Рисунок 1.1 – Некоторые параметры манипулятора Kuka Youbot: а — размеры рабочей области (вид сбоку); б — размеры рабочей области (вид сверху); в длины звеньев и предельные значения для углов вращения по каждому из сочленений [2].

Подп. Лист № докум. Дата

Подп. и дата

Инв. № подл.

б)

 $KCУИ.101.4135.001\ \Pi 3$

в)

Лист

A1: +/-169°

0 mm

Математическая модель манипулятора

2.1 Кинематика манипулятора

Представим рассматриваемый манипулятор в виде последовательной кинематической цепи, каждое звено которой входит в состав одной или двух кинематических пар (КП). Все КП вращательные, V-класса – цилиндрические шарниры. Принципиальная схема изображена на рисунке 2.1 а.

Рисунок 2.1 – Схемы

Звенья будем рассматривать как абсолютно твердые тела, определяющие связь между двумя соседними шарнирами. Для описания шарнирных соединений между смежными звеньями воспользуемся методом Денавита и Хартенберга (ДХ-представление), который может быть представлен, как последователь-

Изм.	Лист	№ докум.	Подп.	Дата

Подп.

инв.

Взам.

и дата

Подп.

подл.

 $KCУИ.101.4135.001\ \Pi 3$

ность из двух описанных ниже шагов*.

Первым шагом, следует сформировать системы координат для каждой КП, руководствуясь следующими правилами:

- а) ось z_{i-1} направлена вдоль оси i-ой $K\Pi$;
- б) ось x_i параллельна общему перпендикуляру: $x_i = z_i \times z_{i-1}$. Если оси z_i и z_{i-1} пересекаются, то x_i выбирается, как нормаль к образованной ими плоскости;
- в) ось y_i дополняет оси z_i и x_i до правой декартовой системы координат.

Вторым шагом, нужно определить параметры ДХ:

- а) a_i расстояние от z_{i-1} до z_i вдоль x_i ;
- б) α_i угол от z_{i-1} до z_i вокруг x_i ;
- в) d_i расстояние от x_{i-1} до x_i вдоль z_{i-1} ;
- г) θ_i угол от x_{i-1} до x_i вокруг z_{i-1} .

Таким образом, ДХ-представление твердых звеньев зависит от четырех геометрических параметров, соответствующих каждому звену. Эти четыре параметра полностью описывают любое вращательное или поступательное движение.

Для вращательных КП параметры d_i , a_i и α_i не изменяются и являются их геометрическими размерами. В то время, как θ_i переменная величина, изменяющаяся при вращении i-го звена относительно (i-1)-го.

Для каждого звена этот алгоритм формирует ортонормированную систему координат. Системы координат нумеруются в порядке возрастания от основания к схвату манипулятора. Для обследуемого манипулятора, выбранные системы координат изображены на рисунке 2.1 б.

Параметры ДХ указаны в таблице 2.1

Изм. Лист № докум. Подп. Дата

Подп. и дата

Взам. инв. №

Подп. и дата

Инв. № подл.

КСУИ.101.4135.001 ПЗ

 $^{^*}$ Представление Денавита-Хартенберга состоит в формировании однородной матрицы преобразования, имеющей размерность 4×4 и описывающей положение системы координат каждого звена относительно системы координат предыдущего звена.

Таблица 2.1 – Параметры Денавита-Хартенберга

Звено	a_i	α_i	d_i	θ_i
1	0	0	d_1	0
2	a_2	$\pi/2$	d_2	θ_1
3	a_3	0	0	$\theta_2 + \pi/2$
4	a_4	0	0	θ_3
5	0	$\pi/2$	0	θ_4
6	0	0	d_6	θ_5

Взаимное расположение соседних звеньев описывается однородной матрицей преобразования (2.2) размерностью 4×4 , которая формируется в соответствии с формулой (2.1).

$$^{i}A_{i+1} = R_{z_i,\theta_i} \cdot T_{z_i,d_i} \cdot T_{x_i,a_i} \cdot R_{x_i,\alpha_i}$$

$$\tag{2.1}$$

где R_{z_i,θ_i} — матрица поворота вокруг оси z_i на угол θ_i , T_{z_i,d_i} — матрица трансформации вдоль оси z_i на расстояние d_i , T_{x_i,a_i} —матрица трансформации вдоль оси x_i на расстояние a_i , R_{x_i,α_i} — матрица поворота вокруг оси x_i на угол α_i .

$${}^{i}A_{i+1} = \begin{bmatrix} R_{3\times3} & p_{3\times1} \\ 0_{1\times3} & 1 \end{bmatrix}$$
 (2.2)

где $R_{3\times 3}$ — матрица поворота CK_i в $\mathrm{CK}_{i+1},\,p_{3\times 1}$ — вектор соединяющий CK_i и $\mathrm{CK}_{i+1}.$

Для описания движения манипулятора, в робототехнике решаются две основные задачи кинематики: прямая и обратная.

Решением прямой задачи, находят положение схвата манипулятора в декартовой системе координат, при заданных обобщенных координатах.

Решение обратной задачи позволяет найти обобщенные координаты при заданном положении и ориентации схвата.

	Изм.	Лист	№ докум.	Подп.	Дата

Взам. инв. №

Подп. и дата

КСУИ.101.4135.001 ПЗ

2.1.1 Прямая задача кинематики

Представим прямую задачу кинематики (ПЗК) манипулятора выражением:

$${}^{0}A_{6} = \prod_{i=1}^{6} {}^{i-1}A_{i}(q_{i}) = {}^{0}A_{1} \cdot {}^{1}A_{2} \cdot {}^{2}A_{3} \cdot {}^{3}A_{4} \cdot {}^{4}A_{5} \cdot {}^{5}A_{6}$$
 (2.3)

где 0A_6 — матрица 4×4 , первые 3 столбца которой представляют ориентацию, последний — положение схвата; ${}^{i-1}A_i$ — однородная матрица преобразования из (i-1) в i-ую СК в общем виде:

$$^{i-1}A_{i} = \begin{bmatrix} \cos(\theta_{i}) & -\sin(\theta_{i})\cos(\alpha_{i}) & \sin(\alpha_{i})\sin(\theta_{i}) & a_{i}\cos(\theta_{i}) \\ \sin(\theta_{i}) & \cos(\alpha_{i})\cos(\theta_{i}) & -\sin(\alpha_{i})\cos(\theta_{i}) & a_{i}\sin(\theta_{i}) \\ 0 & \sin(\alpha_{i}) & \cos(\alpha_{i}) & d_{i} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
(2.4)

Теперь, учитывая ДХ-параметры из таблицы 2.1 находим матрцы преобразования СК, рисунок 2.1 б.

$${}^{0}A_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{1}A_{2} = \begin{bmatrix} c_{\theta_{1}} & 0 & s_{\theta_{1}} & a_{2}c_{\theta_{1}} \\ s_{\theta_{1}} & 0 & -c_{\theta_{1}} & a_{2}s_{\theta_{1}} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{2}A_{3} = \begin{bmatrix} c_{\theta_{2}} & -s_{\theta_{2}} & 0 & a_{3}c_{\theta_{2}} \\ s_{\theta_{2}} & c_{\theta_{2}} & 0 & a_{3}s_{\theta_{2}} \\ 0 & 0 & 1 & d_{2} \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$${}^{3}A_{4} = \begin{bmatrix} c_{\theta_{3}} & -s_{\theta_{3}} & 0 & a_{4}c_{\theta_{3}} \\ s_{\theta_{3}} & c_{\theta_{3}} & 0 & a_{4}s_{\theta_{3}} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{4}A_{5} = \begin{bmatrix} c_{\theta_{4}} & 0 & s_{\theta_{4}} & 0 \\ s_{\theta_{4}} & 0 & -c_{\theta_{4}} & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}; {}^{5}A_{6} = \begin{bmatrix} c_{\theta_{5}} & -s_{\theta_{5}} & 0 & 0 \\ s_{\theta_{5}} & c_{\theta_{5}} & 0 & 0 \\ 0 & 0 & 1 & d_{6} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Таким образом, для любого вектора q, позьзуясь выражением (2.3) и ДХ-параметрами маниплятора, можно определить однозначное положение и ориентацию схвата манипулятора в пространстве.

Для проверки, зададим вектор обобщенных координат:

$$q = \begin{bmatrix} \theta_1 & \theta_2 & \theta_3 & \theta_4 & \theta_5 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 90 & 0 \end{bmatrix}$$
 (2.5)

Изм.	Лист	№ докум.	Подп.	Дата

Взам. 1

KCVN.101.4135.001 II3

Рисунок 2.2 — Конфигурация манипулятора для заданного вектора q

В результате решения ПЗК должны получить:

$$p = \begin{bmatrix} 0.033 \\ 0 \\ 0.655 \end{bmatrix}, o = \begin{bmatrix} 0 \\ 0 \\ 180 \end{bmatrix},$$

где p — положение схвата, o — ориентация схвата (крен, рыскание, тангаж). Вычислим матрицу 0A_6 :

$${}^{0}A_{6} = \begin{bmatrix} -1 & 0 & 0 & 0.033\\ 0 & -1 & 0 & 0\\ 0 & 0 & 1 & 0.655\\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2.6)

Из приведенного примера следует, что ДХ-параметры и матрицы трансформации найдены верно.

Изм.	Лист	№ докум.	Подп.	Дата

Взам. инв. №

Подп. и дата

КСУИ.101.4135.001 ПЗ

2.1.2 Обратная задача кинематики

Обратную задачу кинематики представим, как функцию $g=f^{-1}$, представляющую переход из рабочего в конфигурационное пространство:

$$\mathbf{q} = g(\mathbf{p}, \mathbf{o}) = f^{-1}(\mathbf{p}, \mathbf{o}) \tag{2.7}$$

где вектор ${\bf p}$ — заданное положение в рабочем пространстве, вектор ${\bf o}$ — заданная ориентация системы координат схвата.

Для удобства будем пользоваться однородными матрицами преобразования. Матрица, задающая положение и ориентацию схвата в системе координат базы, имеет вид:

$${}^{0}T_{6} = \begin{bmatrix} r_{11} & r_{12} & r_{13} & p^{x} \\ r_{21} & r_{22} & r_{23} & p^{y} \\ r_{31} & r_{32} & r_{33} & p^{z} \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
 (2.8)

Приравняв матрицу 0T_6 и правую часть выражения (2.3) и домножив с обеих сторон на $({}^0A_1\cdot {}^1A_2)^{-1}$, получим выражение:

$$({}^{0}A_{1} \cdot {}^{1}A_{2})^{-1} \cdot {}^{0}T_{6} = {}^{2}A_{3} \cdot {}^{3}A_{4} \cdot {}^{4}A_{5} \cdot {}^{5}A_{6}$$

$$(2.9)$$

где левая часть:

$${}^{2}T_{6} = \begin{bmatrix} r_{11}c_{1} + r_{21}s_{1} & r_{12}c_{1} + r_{22}s_{1} & r_{13}c_{1} + r_{23}s_{1} & -a_{2} + p^{x}c_{1} + p^{y}s_{1} \\ r_{31} & r_{32} & r_{33} & -d_{1} - d_{2} + p^{z} \\ r_{11}s_{1} - r_{21}c_{1} & r_{12}s_{1} - r_{22}c_{1} & r_{13}s_{1} - r_{23}c_{1} & p^{x}s_{1} - p^{y}c_{1} \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

правая часть:

Инв. № дубл.

$${}^{2}A_{6} = \begin{bmatrix} c_{5}c_{234} & -s_{5}c_{234} & s_{234} & a_{3}c_{2} + a_{4}c_{23} + d_{6}s_{234} \\ s_{234}c_{5} & -s_{5}s_{234} & -c_{234} & a_{3}s_{2} + a_{4}s_{23} - d_{6}c_{234} \\ s_{5} & c_{5} & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}.$$

Теперь, приравнивая элементы с одинаковыми индексами получим уравнения, из которых найдем обобщенные координаты.

Изм.	Лист	№ докум.	Подп.	Дата

КСУИ.101.4135.001 ПЗ

Из равенства элементов (3,4):

$$p^x s_1 - p^y c_1 = 0 (2.10)$$

Найдем θ_1 :

$$\theta_1 = Atan2(p^y, p^x) \tag{2.11}$$

Из равенств элементов (3,1) и (3,2):

$$s_5 = r_{11}s_1 - r_{21}c_1,$$

$$c_5 = r_{12}s_1 - r_{22}c_1$$

Вычислим θ_5 :

$$\theta_5 = Atan2(r_{11}s_1 - r_{21}c_1, r_{12}s_1 - r_{22}c_1) \tag{2.12}$$

Из равенств элементов (2,3) и (1,3):

$$c_{234} = -r_{33},$$

$$s_{234} = r_{13}c_1 + r_{23}s_1$$

Вычислим θ_{234} :

$$\theta_{234} = Atan2(r_{13}c_1 + r_{23}s_1, -r_{33}) \tag{2.13}$$

Далее применим геометрический подход.

Выпишем, пользуясь теоремой косинусов, выражения для θ_3 :

$$\cos \theta_3 = \frac{(^2p_4^x)^2 + (^2p_4^y)^2 + (^2p_4^z)^2 - a_3^2 - a_3^2}{2a_3a_4}$$
 (2.14)

$$\theta_3^{1,2} = \mp Atan2(\sqrt{1 - \cos^2 \theta_3}, \cos \theta_3)$$
 (2.15)

Из рисунка 2.3 видно, что, при $\theta_3 < 0, \, \theta_2 = \phi + \beta$:

$$\theta_2^1 = Atan2(\sqrt{(2p_4^x)^2 + (2p_4^y)^2}, p_4^z) + Atan2(a_4 \sin \theta_3^1, a_3 + a_4 \cos \theta_3^1)$$
 (2.16)

При $\theta_3 > 0$, $\theta_2 = \phi - \beta$:

$$\theta_2^2 = Atan2(\sqrt{(2p_4^x)^2 + (2p_4^y)^2}, p_4^z) - Atan2(a_4\sin\theta_3^2, a_3 + a_4\cos\theta_3^2)$$
 (2.17)

И, наконец:

Инв. № дубл.

Взам. инв. №

Подп. и дата

$$\theta_4^{1,2} = \theta_{234} - \theta_2^{1,2} - \theta_3^{1,2} \tag{2.18}$$

Изм.	Лист	№ докум.	Подп.	Дата

КСУИ.101.4135.001 ПЗ

KCVN.101.4135.001 FI3

Рисунок 2.3 – Плоская часть манипулятора

3 Синтез систем управления

Подп. и дата							
Инв. № дубл.							
Взам. инв. №							
Подп. и дата							
M нв. N $^{\underline{o}}$ подл.	Изм.	Лист	№ докум.	Подп.	Дата	КСУИ.101.4135.001 ПЗ Копировал	Лист 15 Формат А4

	KCVM.101.4135.001 ПЗ		
	Заключение		
	Текст заключения		
Подп. и дата			
Инв. № дубл.			
Взам. инв. №			
Подп. и дата			
Инв. № подл.	<u>-</u> 		Лис
Инв.	Изм. Лист № локум. Полп. Лата	КСУИ.101.4135.001 ПЗ	16

KCVN.101.4135.001 II3

Список использованных источников

- $1\ \mathrm{KUKA}\ \mathrm{YOUBOT.}-\ \mathrm{URL:}\ \mathrm{http://www.technomatix.ru/kuka-youbot}$ (дата обращения: 08.03.2017).
- 2 YouBot Detailed Specifications. — URL: http://www.youbotstore.com/wiki/index.php/YouBot_Detailed_Specifications (дата обращения: 04.04.2017).

инв. $\mathcal{N}^{\underline{o}}$ Взам. 1 Подп. и дата Инв. № подл. Лист $KCУИ.101.4135.001\ \Pi 3$ 17 Изм. Лист № докум. Подп. Дата Φ ормат A4

Приложение A (рекомендуемое)

Терминология относительных измерений

Относительно координат некоторых векторов, являющихся в большинстве своем некоторыми кинематическими величинами, в тексте документа можно встретить указания на то, что они получены (или отсчитаны) «... относительно такой-то системы координат...» и при этом «... выражены относительно такой-то системы координат...». Это приложение разъясняет смысл данных фраз нижеследующим простым примером.

Рассмотрим рисунок А.1. На нем изображены стоящий неподвижно куст, тележка, катящаяся со скоростью $v=1\,\mathrm{m/c}$, облако, движущееся со скоростью $u=3\,\mathrm{m/c}$, и жестко связанные с ними правосторонние системы координат $Ox_0y_0z_0,\,Ox_1y_1z_1$ и $Ox_2y_2z_2$. Опишем скорость движения облака вектором V. В зависимости от своего физического смысла он будет иметь разные координаты. Наглядно это демонстрирует таблица А.1.

Рисунок А.1 – Воображаемая ситуация из пояснительного примера.

Подп.

Инв. № дубл.

инв.

Взам. 1

Подп.

Инв. № подл.

KCVN.101.4135.001 FI3

Таблица А.1 — Координаты вектора V в зависимости от его физического смысла.

Смысл вектора V	Значение V^T
Скорость $Ox_2y_2z_2$ относительно $Ox_0y_0z_0$, выраженная относительно $Ox_0y_0z_0$	$\begin{bmatrix} 3 & 0 & 0 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_0y_0z_0$, выраженная относительно $Ox_1y_1z_1$	[0 3 0]
Скорость $Ox_2y_2z_2$ относительно $Ox_0y_0z_0$, выраженная относительно $Ox_2y_2z_2$	$\begin{bmatrix} 0 & 0 & -3 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_1y_1z_1$, выраженная относительно $Ox_0y_0z_0$	$\begin{bmatrix} 2 & 0 & 0 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_1y_1z_1$, выраженная относительно $Ox_1y_1z_1$	$\begin{bmatrix} 0 & 2 & 0 \end{bmatrix}$
Скорость $Ox_2y_2z_2$ относительно $Ox_1y_1z_1$, выраженная относительно $Ox_2y_2z_2$	$\begin{bmatrix} 0 & 0 & -2 \end{bmatrix}$

Изм. Лист № докум. Подп. Дата

Взам. инв. №

Подп. и дата

 \overline{M} нв. $\mathcal{N}^{\underline{o}}$ подл.

 $KСУИ.101.4135.001\ \Pi 3$