2018 第二次 ESE 启蒙创新训练项目

项目注意事项

- (1) 创新训练项目制作中,实验室仅提供测试仪器和制作工具,不提供制作元件与耗材;
- (2) 创新训练项目由个人报名并制作,多人组队不作成绩登记。
- (3) 制作与测试地点:科研楼 A 区 431 电子工程学院创新创业中心开放实验室;
- (4) 项目答疑时间: 2018年12月11日
- (5) 项目测评时间: 2018年12月30日
- (6) 项目报名截止时间: 2018年12月11日23点30分

波形变换器的设计与制作(A题)

一、任务

使用运算放大器设计并制作一个波形变换器,使用实验室电源供电,输入信号由函数发生器提供。

二、要求

- 1. 基本要求
- 1) 制作一个方波变换器,将输入峰峰值为 2Vpp 的正弦波转换成方波输出,输入频率在 1k~10kHz 范围内输出峰值不变
- 2) 设计一个积分器,将方波转化成三角波输出,输出的三角波峰峰值与方波相同,输入频率在 1k~10kHz 范围内输出峰值不变
 - 2. 发挥指标
 - 1) 制作一个加法器, 将方波与三角波同相相加后输出。
 - 2) 制作一个锯齿波转换器,将上一级的输出波形转换成锯齿波输出。

3) 其他

三、说明

- 1. 一般电路中运放均采用正负电源供电, 学有余力的同学可挑战单电源供电情况下的运放电路
 - 2. 各级输出端子均要求通过排针引出,用于测试。
 - 3. 提示: 注意各级电路的输入输出电阻关系!
 - 4. 报名表交至电子科协邮箱 uestc_431@163.com。

四、评分标准

	项目	主要内容	分数
设计报	系统设计	系统组成与连接	3
告	原理分析与理论计算	方波变换器的分析	10
		积分器的分析	
		同向加法器的分析	
		锯齿波变换器的分析	
		 其他部分的分析	
	电路设计	模块的设计以及模块的连接	9
	测试、记录与分析	各个模块的波形	5
		分析与记录	
	设计报告结构及规范性		3
	小计		30
作品制	基本部分 1.1		10
作	基本部分 1.2		10

发挥部分 2. 1	10
发挥部分 2. 2	10
发挥部分 2.3	10
小计	50
总分	100