Al & Smart Vision For Housing Management

Presented by Group 2: Thanh Dat Nguyen - Trac Duc Anh Luong Minh Nghia Nguyen - Anh Vu Pham - Tuan Nam Tran

01Overview

Problems, Opportunities, Objectives, and Working Plan

Our Client

NTT e-MOI JSC, a subsidiary of NTT East Japan, drives business development and digital transformation with Managed Service Provider (MSP), IT Outsourcing (ITO), and low-code software development, emphasizing long-term partnerships and aligning with customer goals.

The Problems

Manual Inspection Inefficiencies

Time-consuming and prone to human error. delays and increased operational costs.

Low Scalability & Slow Response

Lack of automated system limits scalability and the ability to respond quickly to changes.

Competitive Disadvantages

High risk of falling behind competitors who adopt advanced technologies.

Short-Term

Reduce inspection time and increase accuracy.

Streamlining operations, improving the reliability.

Immediate cost savings and operational efficiency.

Long-Term

Leading position in property management.

Enhanced satisfaction via data-driven decisions.

More opportunities for service offerings.

Project Objectives

Project Scope

Analysing Housing Images

- Data Acquisition
- Preprocessing
- Object Detection and Segmentation
- Change Detection

Implementing Smart Vision Algorithms

- Machine Learning Models
- Deep Learning Frameworks
- Continuous Learning

User Interface with 2D Map

- Interactive 2D Map
- Property Information
- Search and Filter Options
- Data Export

Out-Of-Scope

2D Mapping Instead of 3D

Performance: Ensures fast load times & smooth interaction.

Simplicity: Provides a clear, user-friendly interface without the complexity of 3D.

Compatibility: Works well on a wide range of devices.

Features: Allows annotation, zooming, and viewing property details easily.

02The Solution

Research, Design, Development and Outcome

Systems Architecture

Systems Architecture

Development Tools

Web App

Machine Learning

outsystems

Systems Workflow

Web App: Wireframe

Web App: Prototype

Web App: Outcome

AI Model: Data Gathering

The WHU building dataset include:

- ~12,000 satellite images
- Image size: 512x512
- Image format: GEO TIF
- Labeled carefully
- 2012 with 12,796 buildings/20.5 km²
- 2016 with 16,077 buildings/20.5 km²

The Inria Aerial Image Labeling dataset include:

- Coverage of 810 km²
- Aerial orthorectified color imagery, spatial resolution of 0.3 m
- Ground truth data for two semantic classes: building and not building

Al Model: Pipeline Design

Al Model: Model Training

Encoder	Decoder	Average Val dataset IOU (higher is better)
ResNet	Unet	0.52
ResNet	FPN	0.61
ResNet	MANet	0.74
EfficientNet	Unet	0.66
EfficientNet	FPN	0.67
EfficientNet	MANet	0.77
Mix Vision Transformer	Unet	0.67
Mix Vision Transformer	FPN	0.73
Mix Vision Transformer	MANet	0.81

Al Model: Image extract pipeline

Al Model: Training Outcome

Al Model: Training Outcome

Al Model: Final Outcome

Use mathematical model to calculate areas based on geometric coordinates

Segmentation => Contours => Polygon in format of (x, y) => Convert to geometric coordinates => Calculate areas

Image processing complete!

Image Upload and Display

Choose an image...

Drag and drop file here
Limit 200MB perfile - JPG, JPEG, PNG, TIFF, TIF

1k_ver2_modified.tif 5.9MB

X

Holoadod Ima

Processed Image

Image processing complete!

03 Product Demo

The most interesting part of this presentation

References

- [1] Aerial Images dataset: https://project.inria.fr/aerialimagelabeling/
- [2] WHU building dataset: http://gpcv.whu.edu.cn/data/building_dataset.html
- [3] OpenCage Geocoder API: https://opencagedata.com/
- [4] Google Maps API: https://mapsplatform.google.com/
- [5] Google Earth Engine API: https://developers.google.com/earth-engine

Thanks!

Do you have any questions? If Yes we will assume it is No.

ICT30001 - Information Technology Project Team members:

Nguyen Thanh Dat - 103804881

Nguyen Minh Nghia - 103806269

Pham Anh Vu - 103806447

Luong Trac Duc Anh - 103488117

Tran Tuan Nam - 103792643