Python para Engenharia

André Nepomuceno

Universidade Federal Fluminense

19 de outubro de 2023

Roubando a Cena

Python é usado em diferentes áreas

- Ciência de Dados
- Inteligência Artificial
- Desenvolvimento Web
- Desenvolvimento de jogos
- Medicina e Farmacologia (AstraZeneca)
- Bioinformática
- Neurociência
- Física e Astronomia
- Business

Material do Minicurso

Meu canal no YouTube: Python Para Cientistas

https://www.youtube.com/@python4scientists/videos
Material do minicurso disponível em:

https://github.com/aanepomuceno/ Minicurso-Python-Engenharia

Google Colaboratory

- Entre o site do Google Colab https://colab.research.google.com/notebooks/ intro.ipynb?utm_source=scs-index#recent=true
- Escolha a opção New Notebook
- Renomeie o arquivo de UntitledO para um nome apropriado.

Listas

Em Python, uma **lista** é um conjunto ordenado de objetos que podem ser de vários tipos (inteiro, flutuante, complexo, boleano, string, etc.). Por exemplo, para criar uma lista, fazemos:

$$L = [1, 2.5, "Olá", True]$$

Cada entrada da lista é chamada de **elemento**, cada elemento tem uma **posição** na lista, e cada posição tem um inteiro associada a ela. Assim, o número (elemento) 1 está na posição zero da lista, o número 2.5 na posição um, e assim por diante. O **índice** que indica uma posição na lista sempre começa em zero.

Uma lista é um objeto **mutável**, e portanto podemos acrescentar ou retirar um elemento da lista.

Podemos também criar uma lista vazia: L0 = [].

Listas

Um elemento da lista pode ser acessado pelo seu índice. O operador **in** pode ser usado para verificar se um dado elemento pertence a lista.

Example

```
>>> L = [1, 2.5, 5.69, "x"]
>>> L[0]
>>> L[3]
' x '
>>> L[-1]
' x '
>>> 2 in L
False
>>> 'x' in L
True
```

Listas - objetos mutáveis

Como lista são mutáveis, é possível modificar itens da lista.

Example

```
>>> L = [1,'dois',3.14,0]
>>> L[2] = 2.6
>>> L
[1,'dois',2.6,0]
```

Atenção ao exemplo abaixo

Example

```
>>> q1 = [1,2,3]

>>> q2 = q1

>>> q1[2] = 'x'

>>> q1

[1,2,'x']

>>> q2

[1,2,'x']
```

Listas - Métodos

Existem vários métodos que podem ser usados com listas. Exemplos de alguns métodos:

- append() adiciona um elemento ao final da lista.
- insert() semelhante ao append(), mas podemos escolher a posição onde o novo elemento será alocado. Exemplo: L.insert(1,4.56)
- remove() remove um elemento específico que está na lista. Exemplo: L.remove(4.56)
- pop() remove um elemento da lista, dado sua posição. Exemplo:
 L.pop(1) vai remover o elemento que está no posição "1" da lista, ou seja, o segundo elemento. L.pop() remove o último elemento da lista.
- index()- retorna o índice da primeira ocorrência de um elemento da lista (posição do elemento). Exemplo: L.index(2.5)
- sort() ordena os elementos de uma lista em ordem crescente.
- reverse() inverte a ordem dos elementos da lista.

Listas - Exemplos

Example

```
>>> import math
>>> L = []
>>> for i in range(5):
        L.append (round (math.sqrt (i**2.5), 2))
>>> T.
[0.0, 1.0, 2.38, 3.95, 5.66]
>>> L.insert(1,5.3)
>>> T.
[0.0, 5.3, 1.0, 2.38, 3.95, 5.66]
>>> L.sort()
>>> T.
[0.0, 1.0, 2.38, 3.95, 5.3, 5.66]
```

NumPy Arrays

NumPy é o pacote padrão para programação científica em Python. O módulo NumPy implementa de forma eficiente operações matemáticas. Para usar os métodos do módulo, devemos importá-lo no início do programa:

import numpy as np

Os objetos do NumPy são **arrays**, que é um conjunto ordenado de valores, mas que possuem diferenças crucias em relação a listas:

- O número de elementos de um array é fixo. Não se pode adicionar ou remover itens de um array.
- Os elementos de um array são todos do mesmo tipo.
- Arrays podem ter n dimensões. Por exemplo, arrays com n=2 são matrizes.
- Operações com arrays são mais rápidas do que com listas.

Vamos ver diversas formas de criar um array.

Array a partir de listas

```
>>> a = np.array([1.,2,3.1])
>>> a
array([1., 2., 3.1])
>>> a[0]
1.0
>>> b = np.array([[1.,2.],[3.,4.]]) #2D array
>>> h
array([[1., 2.],
      [3., 4.11)
>>> b[0,0]
1.0
>>> b[1,0]
3.0
```

Array com todas as entradas iguais a zero

```
>>> np.zeros(5)
array([0., 0., 0., 0., 0.])
>>> np.zeros(5,dtype=int)
array([0, 0, 0, 0, 0])
```

Array com todas as entradas iguais a um

Array com todas as entradas iguais a um dado valor

Array como matrix identidade

Criando array com o método arange()

```
>>> np.arange(7)
array([0, 1, 2, 3, 4, 5, 6])
>>> np.arange(1.5,3.0,0.5)
array([1.5, 2. , 2.5])
>>> np.arange(6.5,0,-1)
array([6.5, 5.5, 4.5, 3.5, 2.5, 1.5, 0.5])
```

A sintaxe do método arange() é np.arange(inicio, fim, passo). Se apenas um número for dado, por exemplo, np.arange(N), será criado um array de zero até o valor N-1, com passo de um.

A função np.linspace (x, y, N) gera N números entre x e y, com y incluso.

Criando array com o método linspace()

```
>>> np.linspace(0,10,6)
array([ 0., 2., 4., 6., 8., 10.])
>>> z,dz = np.linspace(0.,2*np.pi,100,retstep=True)
>>> dz
0.06346651825433926
```

A opção retstep = True retorna o tamanho do passo.

Warning

Note a diferença entre arange() e linspace(). Use linspace() sempre que desejar um array de tamanho precisamente N.

Arrays - Atributos

Atributos de um array

```
>>> a = np.array([[1,0,1], [1,2,2]])
>>> a.shape
(2, 3)
>>> a.ndim
2
>>> a.size
6
>>> a.dtype
dtype('int64')
>>> a.nbytes
48
```

Operações com Arrays

O grande poder do NumPy reside na realização de operações em todos os elementos de um array sem a necessidade de *loops* explícitos. Esse tipo de operação é chamada **vetorização**, e é muito mais rápida que *for loops*.

Example

```
>>> a = np.array([1.3, 2.5, 10.1])
>>> b = np.array([9.3, 0.2, 1.2])
>>> a + b
array([10.6, 2.7, 11.3])
>>> a*b
array([12.09, 0.5, 12.12])
>>> a/b
array([0.13978495, 12.5, 8.41666667])
>>> a/b + 1
array([ 1.13978495, 13.5, 9.416666671)
>>> a**2
array([1.69, 6.25, 102.01])
```

Operações com Arrays

Produtos

```
>>> a = np.array( [1.,2.,3.])
>>> b = np.array( [2.,4.,5.])
>>> np.dot(a,b) # produto interno, (mesmo que a @ b)
25.0
>>> np.cross(a,b) #produto vetorial
array([-2., 1., 0.])
```

Operadores de comparação e lógica

```
>>> a = 2*np.linspace(1,6,6)
>>> a
array([ 2.,  4.,  6.,  8., 10., 12.])
>>> t = a > 10
>>> t
array([False, False, False, False, False, True])
```

Operações com Arrays

Exemplo: Vamos implementar o cálculo abaixo:

$$\begin{pmatrix} 1 & 3 \\ 2 & 4 \end{pmatrix} \begin{pmatrix} 4 & -2 \\ -3 & 1 \end{pmatrix} + 2 \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -3 & 5 \\ 0 & 2 \end{pmatrix}$$

Código

Operações com Arrays - Funções

As funções disponíveis no módulo math também existem no NumPy. Teste os exemplos abaixo.

Funcões

```
theta = np.linspace(0.1,np.pi,4)
print("theta = ", theta)
print("sen(theta) = ",np.sin(theta))
print("cos(theta) = ", np.cos(theta))
print("ln(theta) = ",np.log(theta))
print("log(theta) = ",np.log10(theta))
print("exp(theta) = ", np.exp(theta))
print("modulo = ", np.absolute(np.log(theta)))
```

Arrays - Funções de Agregação

Quando trabalhamos com um grande conjunto de dados, é comum calcularmos estatísticas para uma análise inicial. NumPy oferece vários métodos para essa tarefa.

Example

```
#soma, media, max. e min.
>>> data = np.random.random(100)
>>> data.sum()
51.72239489031435
>>> data.mean()
0.5172239489031435
>>> data.max()
0.9946152525979709
>>> data.min()
0.0023509304159052835
```

Arrays - Funções de Agregação

Para arrays em n-dimensões (n > 1), podemos escolher o *eixo* sobre o qual os valores serão agregados.

```
Example
```

```
#2D array
>>> M = np.random.random((3,4))
>>> M
array([[0.37019599, 0.15892146, 0.23032805,
                                             0.37...],
                                             0.06...1,
       [0.17968684, 0.69242006, 0.51502879,
                                             0.94...11
       [0.78280796, 0.63324658,
                                 0.22553994,
>>> M.sum()
5.168637614536063
>>> M.sum(axis=0)
array([1.33269079, 1.4845881 , 0.97089679, 1.380...])
>>> M.max(axis=1)
array([0.37897901,
                   0.69242006, 0.94005747])
```

Arrays - Funções de Agregação

Método	Descrição
np.sum	soma dos elementos
np.cumsum	soma cumulativa dos elementos
np.prod	produto dos elementos
np.mean	valor médio
np.std	desvio padrão
np.var	variância
np.min	valor mínimo
np.max	valor máximo
np.argmin	indice do valor mínimo
np.argmax	indice do valor máximo
np.conj	complex. conjugado de todos elementos
np.trace	soma dos elementos da diagonal

Veja mais detalhes neste LINK.

Arrays - Slicing

Muitas vezes precisamos obter um "subarray" a partir de um array, ou seja, um array com apenas alguns elementos do array original. Para isso, existe uma técnica chamada **slicing**. A sintaxe é:

[inicio:fim:passo]

onde "início" é o índice (posição) da primeira entrada desejada, e "fim" o índice do último elemento, que NÃO entrará no novo array. Esse comando vai gerar um array com entradas a[inicio], a[inicio + passo], a[inicio+2*passo],a[inicio+N*passo], com a posição "inicio+N*passo" < fim.

O array que retorna dessa operação **não** é um cópia, ou seja, não é um novo objeto.

Arrays - Slicing

Example

```
>>> a = np.linspace(1, 6, 6); a
array([1., 2., 3., 4., 5., 6.])
>>> a[:3] #mesmo que a[0:3]
array([1., 2., 3.])
>>> a[1:4:2]
array([2., 4.])
>>> a[1:]
array([2., 3., 4., 5., 6.])
>>> a[3::-2]
array([4., 2.])
>>> a[::-1]
array([6., 5., 4., 3., 2., 1.])
```

Arrays - Exemplo

Exemplo 1: Dados dois arrays de posição x e tempo t de uma partícula, calcule a velocidade média \bar{v} para cada intervalo de tempo, utilizando slicing.

$$x = np.array([0., 1.3, 5., 10.9, 18.9, 28.7, 40.])$$

 $t = np.array([0., 0.49, 1., 1.5, 2.08, 2.55, 3.2])$

Com

$$\bar{v} = \frac{x_i - x_{i-1}}{t_i - t_{i-1}}$$

Importando e Exportando Dados

Abrindo arquivos com NumPy

Para abrir arquivos de dados dos tipos .txt, .dat ou .csv, podemos usar o métodos **np.loadtxt()**. Os dados serão transformados num array. Como default, é assumido que os dados estão separados por espaços ou tabulação.

```
import numpy as np
data_set = np.loadtxt("millikan.txt")
data_x = data_set[:,0]
data_y = data_set[:,1]
```

Se os valores estiverem separados por um caractere, ele dever ser especificado usando a palavra chave delimiter.

```
data_set = np.loadtxt("millikan.csv",delimiter=',')
```

Importando e Exportando Dados

A figura ilustra o exemplo acima.

Álgebra Linear com NumPy - Normas e Rank

Normas são calculadas com o módulo np.linalg.norm. O rank (posto) é obtido pelo método np.linalg.matrix_rank.

1. Norma de um Vetor

$$||a|| = \left(\sum_{i} |z_i|^2\right)^{1/2}$$

2. Norma de Frobenius

$$||A|| = \left(\sum_{i,j} |a_{ij}|^2\right)^{1/2}$$

3. Rank: número de colunas linearmente independentes.

Álgebra Linear com NumPy - Normas e *Rank*

Cálculo de Normas

Cálculo do Rank

Álgebra Linear com NumPy - Determinante e Inversa

Determinante

```
In[x]: np.linalg.det(A)
Out[x]: 0.5
```

Traço

```
In[x]: np.trace(A)
Out[x]: 2
```

Matriz Inversa

Se a matriz não tiver inversa, será retornado o erro

```
LinAlgError: Singular matrix
```

Álgebra Linear com NumPy - Autovalores e Autovetores

Problema de autovalor

Para uma matriz quadrada $m{A}$, um autovetor $m{v}$ é um vetor que satisfaz

$$\mathbf{A}\mathbf{v} = \lambda \mathbf{v}$$

onde λ são chamados *autovalores*. Para um matriz $N \times N$, existem N autovetores e N autovetores.

Para calcular autovetores e autovetores existe o módulo np.linalg.eig, que retorna os autovalores como um array de forma (n,) e os autovetores como **colunas** de um array de forma (n,n). Use np.linalg.eigval para calcular os autovalores apenas.

Autovalores e Autovetores

Exemplo de Aplicação

Exemplo 2 No sistema massa-mola abaixo, vamos assumir que as molas tem os mesmos comprimentos naturais e as mesmas constantes k. O deslocamento de cada mola é medido em relação ao seu próprio sistema de coordenada.

Aplicando a segunda lei de Newton:

$$m_1 \frac{dx_1^2}{dt^2} = -kx_1 + k(x_2 - x_1)$$

$$m_2 \frac{dx_2^2}{dt^2} = -k(x_2 - x_1) - kx_2$$

Exemplo de Aplicação

A solução é dada por

$$x_i = X_i sin(\omega t)$$

Substituindo nas equações anteriores:

$$\left(\frac{2k}{m_1} - \omega^2\right) X_1 - \frac{k}{m_1} X_2 = 0$$
$$-\frac{k}{m_2} X_1 + \left(\frac{2k}{m_2} - \omega^2\right) X_2 = 0$$

Vamos considerar o caso $m_1 = m_2 = 40$ kg, e k = 200 N/m.

Álgebra Linear com NumPy - Sistemas Lineares

NumPy dispões de um método eficiente e estável para resolver sistemas de equações lineares: np.linalg.solve. Exemplo: o sistema abaixo

$$3x - 2y = 8,$$

 $-2x + y - 3z = -20,$
 $4x + 6y + z = 7$

pode ser escrito como uma equação matricial $\boldsymbol{M}\boldsymbol{x} = \boldsymbol{b}$

$$\begin{pmatrix} 3 & -2 & 0 \\ -2 & 1 & -3 \\ 4 & 6 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 8 \\ -20 \\ 7 \end{pmatrix}$$

Álgebra Linear com NumPy - Sistemas Lineares

Solução de Sistemas Lineares

Exemplo de Aplicação

Exemplo 3 No circuito abaixo, determine os valores das correntes l_1 , l_2 , l_3 .

Vamos aplicar a 2° lei de Kirchhoff $(\sum_{k} V_{k} = 0)$ e a lei de Ohm (V = RI) ao circuito:

$$50I_1 - 30I_3 = 80$$
$$40I_2 - 20I_3 = 80$$
$$-30I_1 - 20I_2 + 100I_3 = 0$$

Gráficos - Matplotlib

Python tem uma poderosa biblioteca para produção de gráficos de boa qualidade: **Matplotlib**. Para gráficos simples, podemos usar o módulo **pyplot** que deve ser importado da seguinte forma:

import matplotlib.pyplot as plt

No jupyter, para que o gráfico apareça numa célula do notebook, digite na primeira célula: %matplotlib inline. Para que o gráfico seja mostrado numa janela separada, digite na primeira célula: %matplotlib.

Gráficos - Gráfico de Funções

Se quisermos fazer um gráfico de uma função, as entradas para o pyplot devem ser arrays (ou listas) correspondentes aos valores x e y. Exemplo:

Exemplo 1 - Gráfico simples

```
x = np.linspace(-3*np.pi,3*np.pi,100)
y = np.sin(x) #vetorização
plt.plot(x,y)
```

Para adicionar um segundo plot, basta chamar plt.plot novamente:

```
z = np.cos(x)
plt.plot(x,z) #ou plt.plot(x,y,x,z)
```

Gráficos - Legenda

Para nomear um gráfico, devemos atribuir um string ao argumento label da função plot. Para adicionar a legenda no gráfico, faça: plt.legend()

Exemplo 2 - Legenda

```
x = np.linspace(-3*np.pi,3*np.pi,100)
y = np.sin(x)
z = np.cos(x)
plt.plot(x,y,label='sen(x)')
plt.plot(x,z,label='cos(x)')
plt.legend()
```

Para retirar a legenda da "caixa", use a opção frameon=False. Para selecionar o tamanha da fonte, use fontsize=<inteiro>.

Gráficos - Legenda

Opções de localização da legenda

String	Inteiro
'best'	0
'upper right'	1 1
'upper left'	2
'lower left'	4
'lower right'	4
'right'	5
'center left'	6
'center right'	7
'lower center'	8
'upper center'	9
'upper center'	10

Gráficos - Descrição dos Eixos e Título

Exemplo 3 - Eixos e Título

Gráficos - Marcadores, Cores e Linhas

Existem diversas opções de marcadores, linhas e cores, que devem ser especificados por strings. Por exemplo, se quisermos linha vermelha tracejada, basta incluir 'r- -' na função plot.

Exemplo 3 - Cores e Linhas

```
plt.plot(x,y,'r--',label='sen(x)')
plt.plot(x,y,'r--o',label='sen(x)') #marcador 'o'
```

Também é possível passar os atributos explicitamente com c (color), marker (marcador) ls (estilo da linha) e lw (largura da lilnha)

```
plt.plot(x,y, c='r',marker='o',ls='--',lw=2)
```

Também é possível selecionar o tamanho do marcador (markersize), a cor (markerfacecolor ou mfc), e a cor da borda (markeredgecolor ou mec).

Gráficos - Marcadores, Cores e Linhas

Marcadores

Código	Marcador
•	Ponto
0	Círculo
+	Cruz
X	Cruzado
D	Diamante
V	Triângulo p/ baixo
^	Triângulo p/ cima
S	Quadrado
*	Estrela

Estilos de linha: (-) (-) (:) (-.)

Cores Básicas

Código	Cor
r	Vermelho
a	Verde
b	Azul
С	ciano
m	magenta
У	Amarelo
k	Preto
W	Branco
brown	Marrom
gray	Cinza
purple	Roxo

Gráfico de Barras

Gráficos de barras são feitos com a função plt.bar.

Example

Gráfico Com Barras de Erro

Gráficos com barras de erro podem ser criados com a função plt.errorbar. Pode-se escolher várias opções de formataçã para a barra de erro.

Example

Matplotlib - Histogramas

Histograma é uma representação gráfica de uma distribuição discreta de probabilidade. Para plotar um histograma, basta passar um array para a função plt.hist(). O exemplo abaixo ilustra as várias opções disponíveis.

Example

Para obter a contagem em cada bin, podemos usar o método np.histogram():

Example

contagem, x_bin = np.histogram(data,bins=10)

Matplotlib - Scatter Plots

A função pyplot.scatter() permite criar gráficos de dispersão onde as propriedades de cada ponto (cor, tamanho) podem ser controladas. Além dos valores x e y, podemos passar uma sequência de valores para os argumentos y e y, que controlam o tamanho e a cor da cada ponto. Esse tipo de gráfico é útil para visualizar dados multidimensionais.

Example

```
x = np.random.randn(100)
y = np.random.randn(100)
colors = np.random.rand(100)
sizes = 1000*np.random.rand(100)
plt.scatter(x, y, c=colors, s=sizes, alpha=0.3)
plt.colorbar()
```

Matplotlib - Exemplo de Aplicação

Exemplo 4 Vamos escrever um código em Python para ler o arquivo dados_bola_caindo.dat e fazer um gráfico dos dados e de duas funções:

$$y1=y_0-\frac{g}{2}t^2$$

$$y2 = y_0 - \frac{v_T^2}{g} log \left(cosh \frac{gt}{v_T} \right)$$

onde $v_T = \sqrt{g/D}$, g é a aceleração da gravidade e $D = 0.065 \, m^{-1}$. Considere $y_0 = 2 \, \text{m}$.

SciPy - Raízes de Funções

O pacote scipy.optimize implementa vários métodos para calcular raízes de funções. Os argumentos passados devem ser uma função contínua, f(x), e um intervalo [a,b] dentro do qual a raiz será encontrada, tal que $\mathrm{sgn}[f(a)] = -\,\mathrm{sgn}[f(b)]$. Alguns dos métodos disponíveis:

- Método de Brent (scipy.optimize.brentq)
- Método da bisseção (scipy.optimize.bisect)
- Método de Newton (scipy.optimize.newton)

No caso do método Newton-Raphson, deve-se passar um ponto inicial, x0 (próximo a raiz), e opcionalmente, a primeira derivada da função, fprime. Note que nesse método, temos menos controle sobre a raiz encontrada se a função tem várias raízes.

Métodos numéricos devem ser utilizados com cuidado. Verifique se a raiz x encontrada produz $f(x) \approx 0$.

SciPy - Raízes de Funções

Raízes - Método de Newton

Vamos encontrar a raíz da função abaixo pelo método de Newton

$$f(x) = e^x - 2$$

SciPy - Ajuste de Curvas

O método scipy.optimize.curve_fit permite passarmos de forma transparente os erros da variável y e obter as incertezas nos parâmetros ajustados. O método é chamado da seguinte forma:

curve_fit(f,xdata,ydata,p0, sigma, absolute_sigma).

- f, xdata, ydata são, respectivamente, a função a ser ajustada aos dados (xdata, ydata);
- p0 é um valor inicial para os parâmetros;
- sigma é um array com as incertezas de ydata, de mesmo tamanho de ydata;
- absolute_sigma é uma variável booleana. Se True, os valores absolutos de sigma são usados. Essa deve ser a opção usada para obter os valores absolutos nas incertezas dos parâmetros. Se escolhermos a opção False, os valores de sigma são tratados como valores relativos.

SciPy - Ajuste de Curvas

O método curve_fit retorna o array popt, com o valor dos parâmetros ajustados, e o array 2D pcov, a matriz de covariância dos parâmetros. A incerteza nos parâmetros é dada pela raiz quadrada da diagonal de pcov: np.sqrt (np.diag (pcov)).

Para ilustrar o uso deste método, vamos ajustar uma função linear a um conjunto de pontos de um experimento para determinar a aceleração da gravidade local:

$$T^2 = \frac{4\pi^2}{g}L$$

onde $a=4\pi^2/g$ é o parâmetro a ser ajustado.

SciPy - Integração Numérica

O pacote scipy.integrate contém funções para o cálculo numérico de integrais definidas próprias (limites finitos) e impróprias (limites infinitos). A rotina está implementada em scipy.integrate.quad, que é baseada na biblioteca QUADPACK (FORTRAN 77). Os argumentos básicos são o integrando (func), e os limites de intergração a e b. O resultado será um flutuante com o valor da integral e outro com uma estimativa do erro absoluto.

Example

$$I = \int_1^4 x^{-2} dx$$

```
In[x]: from scipy.integrate import quad
```

In [x]:
$$f = lambda x: 1/x**(2)$$

In
$$[x]$$
: quad $(f, a=1, b=4)$

Out [x]:

(0.7500000000000002, 1.913234548258995e-09)

SciPy - Integração Numérica

Se uma função depende de outros parâmetros além da variável independente, estes devem ser passados como **tuplas** para o argumento args.

Example

$$I = \int_{-\pi/2}^{\pi/2} \operatorname{sen}^n x \cos^m x \, dx$$

Note que os parâmetros n e m devem aparecer como argumentos do integrando **depois** da variável de integração x.

SciPy - Integração Numérica

Para integrar funções com singularidades, devemos passar um lista de pontos onde ocorrem as divergências usando o argumento points.

Example

$$I = \int_{-1}^{1} \frac{dx}{\sqrt{|x|}}$$

```
In[x]: f5 = lambda x: 1/np.sqrt(np.abs(x))
In[x]: quad(f5,-1,1)
Out[x]:
RuntimeWarning: divide by zero encountered in
double_scalars
(inf, inf)
In[x]: quad(f5,-1,1,points=[0,])
Out[x]:
(3.999999999999999813, 5.684341886080802e-14)
```

Equações diferenciais ordinárias (EDOs) podem ser resolvidas numericamente com scipy.integrate.odeint ou scipy.integrate.solve_ivp. Esses métodos resolvem equações da forma:

$$\frac{d\mathbf{y}}{dt} = \mathbf{F}(\mathbf{y}, t)$$

onde \mathbf{y} é um vetor de componentes $y_i(t)$, e \mathbf{F} um vetor de componentes $F(y_i,t)$.

Para resolver EDOs de ordem n > 1, devemos transformá-las em um sistema de EDOs de primeira ordem (exemplos nos próximos slides).

O método scipy.integrate.solve_ivp toma pelo menos três argumentos: uma função que retorna dy/dt, os pontos iniciais e finais da variável t, e um conjunto de condições iniciais y_0 .

Exemplo 1:

$$\frac{dy}{dt} = -ky$$

- Primeiro, definimos dy/dt (note a ordem das variáveis!)
 def dydt(t,y):
 return -k*y
- Os tempos iniciais e finais devem ser passados como tuplas para o argumento t_span: t_span = (t0,tf).
- Os valores iniciais y0 devem ser passados como sequência (lista, array), mesmo que só tenha um valor.
- 4 solução será um objeto soln com os arrays soln.y, soln.t e soln.success (booleano).

EDOs Acopladas

$$\begin{array}{rcl} \frac{dy_1}{dt} & = & f_1(y_1, y_2, ..., y_n; t), \\ \frac{dy_2}{dt} & = & f_2(y_1, y_2, ..., y_n; t), \\ ... & \\ \frac{dy_n}{dt} & = & f_n(y_1, y_2, ..., y_n; t). \end{array}$$

Nesse caso, a função a ser passada para o método solve_ivp() dever retornar uma sequência com as funções $f_i(y_1, y_2, ...y_n; t)$.

EDOs Acopladas - Implementação

```
# Y = [y1, y2, y3, ...]
#(sequencia de variáveis independentes)
def deriv(t, Y):
    y1, y2, y3... = Y
    dy1dt = f1(Y, t)
    dy2dt = f2(Y, t)
    #...
    return dy1dt, dy2dt, ..., dyndt
solve_ivp(deriv, (t0, tf), y0 )
```

Note que agora, y0 será um sequência de n elementos.

Exemplo 2: Sistema de EDOs

$$\frac{dx}{dt} = xy - x,$$

$$\frac{dy}{dt} = y - xy + sen^2 \omega t$$

Exemplo 3: EDO de segunda ordem

Para resolver uma EDO de ordem n > 1, primeiro devemos reduzi-la a um sistema de EDOs de primeira ordem:

$$\frac{d^2x}{dt^2} = -\omega^2 x$$

$$\frac{dx}{dt} = v,$$

$$\frac{dv}{dt} = -\omega^2 x,$$

Métodos disponíveis (argumento method)

- **RK45**(default): Explicit Runge-Kutta method of order 5(4)
- RK23 Explicit Runge-Kutta method of order 3(2)
- DOP853 Explicit Runge-Kutta method of order 8
- Radau Implicit Runge-Kutta method of the Radau IIA family of order
- **BDF** Implicit multi-step variable-order (1 to 5) method based on a backward differentiation formula for the derivative approximation.

Exemplo 4: Pêndulo Não-Linear

Equação do Movimento:

$$\frac{d^2\theta}{dt^2} + \omega^2 \mathrm{sen}\theta = 0$$

onde
$$\omega = \sqrt{g/L}$$
.

Energia total

$$E = \frac{1}{2}mL^2\dot{\theta}^2 + mgI(1-\cos\theta)$$