Limite d'une suite numérique

Slimane Tachroun

Exercice 2:

Soit (u_n) la suite numérique définie par:

$$u_0 = \frac{5}{4} et \ (\forall n \in \mathbb{N}) \ u_{n+1} = \frac{1}{4} u_n + \frac{3}{2}.$$

- 1) a- Montrer que : $(\forall n \in \mathbb{N}) u_n < 2$.
 - b- Etudier la monotonie de la suite (u_n) .

La suite (u_n) est-elle convergente ? Justifier.

- 2) pour tout $n \in \mathbb{N}$, on pose : $v_n = u_n 2$.
 - a- Montrer que la suite (v_n) est géométrique.
 - b- En déduire que: $(\forall n \in \mathbb{N}) u_n = 2 \frac{3}{4} \left(\frac{1}{4}\right)^n$ Puis préciser la limite de la suite (u_n)
- 3) pour tout $n \in \mathbb{N}^*$, on pose: $S_n = u_0 + u_1 + \dots + u_{n-1}$.
- a- Montrer que: $(\forall n \in \mathbb{N}^*)$ $S_n = 2n 1 + \left(\frac{1}{4}\right)^n$.
- b- En déduire $\lim_{n\to+\infty} S_n$.

Exercice 2: Normale 2016

On considère la suite (u_n) définie par ar $u_0 = 2$ et $(\forall n \in \mathbb{N}) \ u_{n+1} = \frac{u_n + 3}{5 - u_n}.$

- 1) a- Vérifier que: $(\forall n \in \mathbb{N}) u_{n+1} 3 = \frac{4(u_n 3)}{2 + (3 u_n)}$
 - b- Montrer par récurrence que: $(\forall n \in \mathbb{N}) u_n < 3$.
- 2) pour tout $n \in \mathbb{N}$, on pose : $v_n = \frac{u_n 1}{3 u_n}$.
 - a- Montrer que la suite (v_n) est géométrique et de
- raison $\frac{1}{2}$ puis en déduire que: $(\forall n \in \mathbb{N})$; $v_n = \left(\frac{1}{2}\right)^n$.
- b- Montrer que: $(\forall n \in \mathbb{N})$; $u_n = \frac{1+3v_n}{1+v_n}$ puis écrire u_n en fonction de n.
- c- Déterminer $\lim_{n\to+\infty} u_n$.

Exercice 3: Rattrapage 2011

On considère la suite (u_n) définie par $u_0 = 1$ et $(\forall n \in \mathbb{N}) \ u_{n+1} = \frac{6u_n}{1+15u_n}$

- 1) a. Vérifier que $(\forall n \in \mathbb{N})$: $u_{n+1} \frac{1}{3} = \frac{u_n \frac{1}{3}}{15u_n + 1}$.
 - b. Montrer par récurrence que $(\forall n \in \mathbb{N})$: $u_n > \frac{1}{2}$
- 2) On considère la suite numérique (v_n) définie par $(\forall n \in \mathbb{N}): v_n = 1 - \frac{1}{3u_n}$
- a. Montrer que (v_n) est une suite géométrique de raison $\frac{1}{6}$.
- b. Exprimer v_n en fonction de n.
- 3) Montrer que $(\forall n \in \mathbb{N})$: $u_n = \frac{1}{3-2(\frac{1}{2})^n}$ puis déduire

$\lim_{n\to+\infty}u_n$.

Exercice @: Normale 2020

On considère la suite (u_n) définie par:

$$u_0 = \frac{3}{2} et \ (\forall n \in \mathbb{N}) \ u_{n+1} = \frac{2u_n}{2u_n + 5}$$

- 1) Calculer u_1 .
- 2)Montrer que par récurrence : $(\forall n \in \mathbb{N}) u_n > 0$.

- 3)a-Montrer que: $(\forall n \in \mathbb{N}) \ 0 < u_{n+1} \le \frac{2}{5} u_n$. puis en déduire que: $(\forall n \in \mathbb{N}) \ 0 < u_n \leq \frac{3}{2} \left(\frac{2}{5}\right)^n$. b- Calculer $\lim_{n\to+\infty} u_n$.
- 4) On considère la suite numérique (v_n) définie par :

$$(\forall n \in \mathbb{N}): v_n = \frac{4u_n}{2u_n + 3}$$

- a- Montrer que (v_n) est une suite géométrique de raison $\frac{2}{r}$.
- b-Exprimer v_n en fonction de n puis déduire u_n en fonction de n, pour tout $n \in \mathbb{N}$.

Exercice 5:

Soit (u_n) la suite numérique définie par $u_0 = \frac{1}{3}$ et

$$(\forall n \in \mathbb{N}) \ u_{n+1} = \frac{2u_n}{u_n + 1}.$$

- 1) Montrer que $(\forall n \in \mathbb{N}) : 0 < u_n < 1$.
- 2) a. Etudier la monotonie de (u_n) .
 - b. En déduire, pour tout $n \in \mathbb{N}$, que $u_n \ge \frac{1}{2}$ et que la suite (u_n) est convergente.
- 3) a. Montrer que $(\forall n \in \mathbb{N})$; $1 u_{n+1} \le \frac{3}{4}(1 u_n)$.
 - b. En déduire que $(\forall n \in \mathbb{N})$; $1 u_n \le \left(\frac{3}{4}\right)^n \times \frac{2}{3}$.
 - c. Déterminer $\lim_{n\to+\infty} u_n$.
- 4) 4) pour tout $n \in \mathbb{N}$, on pose : $v_n = \frac{u_n 4}{v_n 2}$.
 - a. Montrer que la suite (v_n) est géométrique dont on déterminera la raison et le premier terme.
 - b. Exprimer v_n et u_n en fonction de n.
 - c. Déterminer au nouveau $\lim_{n\to+\infty} u_n$.

Exercice 6:

Soit f la fonction définie sur $[0; +\infty[$ par $f(x) = \frac{x}{\sqrt{1+x^2}}$

- 1). a-Montrer que: $(\forall x \in \mathbb{R}^+): f(x) \le x$.
- b-Montrer que f est strictement croissante sur \mathbb{R}^+ et en déduire que $f(\mathbb{R}^+) = [0; 1[$.
- 2) On considère la suite numérique (u_n) définie par:

$$u_0 = \frac{1}{2}$$
 et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$

- a-Montrer par récurrence que : $(\forall n \in \mathbb{N})$; $2 < u_n < 4$.
- b-Montrer que la suite (u_n) est décroissante.
- c-En déduire que la suite (u_n) est convergente puis déterminer sa limite.

Exercice 7:

Soit f la fonction numérique définie par $f(x) = \frac{x}{\sqrt{x}-1}$.

- 1) Déterminer D_f .
- 2) Montrer que pour tout $x \in D_f$: $f'(x) = \frac{\sqrt{x-2}}{2(\sqrt{x-1})^2}$.
- 3) Dresser le tableau de variations de la fonction f.

4) a- Montrer que pour tout
$$x \in D_f$$
:
$$f(x) - x = \frac{x(4-x)}{(\sqrt{x}-1)(\sqrt{x}+2)}$$

- b- En déduire que : $(\forall x \in [4; +\infty[); f(x) \le x)$.
- 5) On considère la suite numérique (u_n) définie par :
- $u_0 = 9$ et $u_{n+1} = f(u_n)$ pour tout $n \in \mathbb{N}$ a- Montrer que : $(\forall n \in \mathbb{N}) u_n > 4$.
- b- Etudier la monotonie de la suite (u_n) .

c-En déduire que la suite (u_n) est convergente et déterminer sa limite.	