This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

We claim:

A cyclohexenonequinolinoyl derivative of the formula I

10

where:

15

20

25

30

j

 R^1

is hydrogen, nitro, halogen, cyano, C1-C6-alkyl, $C_1-C_6-haloalky/L$, $C_1-C_6-alkoxyiminomethyl$,

Ι

 $C_1-C_6-alkoxy$, $C_1-C_6-haloalkoxy$, $C_1-C_6-alkylthio$, C1-C6-haloalkylthio, C1-C6-alkylsulfinyl,

 $C_1-C_6-haloalkylsulfinyl, C_1-C_6-alkylsulfonyl,$

C1-C6-haloalkylsulfonyl, aminosulfonyl,

 $N-(C_1-C_6-alk/1)$ aminosulfonyl,

 $N, N-di-(C_1-\phi_6-alkyl)$ aminosulfonyl,

 $N-(C_1-C_6-alkylsulfonyl)$ amino,

 $N-(C_1-C_6-ha/loalkylsulfonyl)amino,$

 $N-(C_1-C_6-a|kyl)-N-(C_1-C_6-a|kylsulfonyl)$ amino,

 $N-(C_1-C_6-a_1kyl)-N-(C_1-C_6-haloalkylsulfonyl)amino,$

phenoxy, heterocyclyloxy, phenylthio or

(heterocyclylthio, where the four last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the following

substituents:

nitro, dyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl)

 $C_1-C_4-a1/koxy$ or $C_1-C_4-haloalkoxy$;

35

 R^2 , R^3

are hydrogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl or halogen;

 R^4

is a compound IIa or IIb

40

45

$$(R^6)_1$$
 R^5
 R^6

IIb

where

 R^6

1 cm/ 5

10

15

20

30

40

is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, POR⁸R⁹, OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹, ONR¹¹R¹², N-linked heterocyclyl or O-(N-linked heterocyclyl), where the heterocyclyl radical of the two last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy;

is nitro, halogen, cyano, C₁-C₆-alkyl,
C₁-C₆-haloalkyl, di-(C₁-C₆-alkoxy)methyl,
di-(C₁-C₆-alkylthio)methyl,
(C₁-C₆-alkoxy)(C₁-C₆-alkylthio)methyl, hydroxyl,
C₁-C₆-alkoxy, C₁-C₆-haloalkoxy,
C₁-C₆-alkoxycarbonyloxy, C₁-C₆-alkylthio,
C₁-C₆-haloalkylthio, C₁-C₆-alkylsulfinyl,
C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkylsulfonyl,
C₁-C₆-haloalkylsulfonyl, C₁-C₆-alkylcarbonyl,
C₁-C₆-haloalkylcarbonyl, C₁-C₆-alkoxycarbonyl or
C₁-C₆-haloalkoxycarbonyl;

25 or

two radicals R^6 , which are linked to the same carbon, together form an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-O-(CH_2)_n-$ or $-S-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group: halogen, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl or C_1-C_4 -alkoxycarbonyl;

35 or

two radicals R⁶, which are linked to the same carbon, together form a -(CH₂)_p chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group:

halogen, cyano C₁-C₄-alkyl, C₁-C₄-haloalkyl or C₁-C₄-alkoxycarbonyl;

45 or

93 two radicals R6, which are linked to the same carbon, together form a methylidene group which may be substituted by one or two radicals from the following group: halogen, hydroxyl, formyl, cyano, C₁-C₆-alkyl, C_1 - C_6 -haloa1kyl, C_1 - C_6 -alkoxy, C_1 - C_6 -haloa1koxy, C₁-C₆-alkylthio, C₁-C₆-haloalkylthio, C₁-C₆-alkyl\$ulfinyl, C₁-C₆-haloalkylsulfinyl, C₁-C₆-alkyl\$ulfonyl or C₁-C₆-haloalkylsulfonyl; 10 or two radicals R6, which are linked to the same carbon, together with this carbon form a carbonyl group; 15 or two radicals R6, which are linked to different carbons, together form a $-(CH_2)_n$ chain which may be substituted by one to three radicals from the 20 following group: halogen, ϕ_1 -C₆-alkyl, C₁-C₆-alkoxy, hydroxyl or C₁-C₆-alkoxycarbonyl; is C₁-C₆-alkyl, C₃-C₆-alkenyl, C₃-C₆-haloalkenyl, R^7 25 C₃-C₆-alkynyl, C₃-C₆-haloalkynyl, C₃-C₆-cycloalkyl, C1-C20-alkylcarbonyl, C2-C6-alkenylcarbonyl, C2-C6-alkynylcarbonyl, C3-C6-cycloalkylcarbonyl, $C_1-C_6-alk\phi$ xycarbonyl, $C_3-C_6-alkenyloxycarbonyl,$ $C_3-C_6-alkynyloxycarbonyl$, 30 $(C_1-C_{20}-a!kylthio)$ carbonyl, C₁-C₆-alkylaminocarbonyl, C3-C6-alkenylaminocarbonyl, C3-C6-alkynylaminocarbonyl, $N, N-di-(C_1-C_6-alkyl)$ aminocarbonyl, 35 $N-(C_3-C_6-4)$ lkenyl)- $N-(C_1-C_6-a)$ lkyl) aminocarbonyl, $N-(C_3-C_6-4)kynyl)-N-(C_1-C_6-a)kyl)$ aminocarbonyl, $N-(C_1-C_6-alkoxy) N-(C_1-C_6-4)kyl)$ aminocarbonyl, $N-(C_3-C_6-4)kyl$ $N-(C_1-C_6-a)koxy)$ aminocarbonyl, $N-(C_3-C_6-a)kynyl$)-40 $N-(C_1-C_6-4)$ lkoxy) aminocarbonyl, $di-(C_1-C_6-4)$ aminothiocarbonyl, C1-C6-alkylcarbonyl-C1-C6-alkyl, C₁-C₆-alkoxyimino-C₁-C₆-alkyl, $N-(C_1-C_6-alkylamino)imino-C_1-C_6-alkyl$ or N, N-di- (C_1-C_6-a) kylamino) imino- C_1-C_6-a kyl, where 45 the abovementioned alkyl, cycloalkyl and alkoxy

radicals may be partially or fully halogenated

s Schill

10

20

25

30

and/or may carry one to three of the following groups:

cyano, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, di— $(C_1$ — C_4 —alkyl) amino, C_1 — C_4 —alkylcarbonyl,

 C_1-C_4 -alkoxycar ϕ onyl,

 C_1-C_4 -alkoxy- C_1+C_4 -alkoxycarbonyl,

di- $(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkoxycarbonyl$, hydroxycarbonyl, $C_1-C_4-alkyl$ aminocarbonyl, di- $(C_1-C_4-alkyl)$ aminocarbonyl, aminocarbonyl,

 C_1 — C_4 —alkylcar ϕ onyloxy or C_3 — C_6 —cycloalkyl;

phenyl, heterocyclyl, phenyl-C1-C6-alkyl,

15

phenylcarbonyl-C₁-C₆-alkyl, heterocyclylcarbonyl-C₁-C₆-alkyl, phenylcarbonyl,

heterocyclylcarbonyl, phenoxycarbonyl,

heterocyclyloxycarbonyl, phenoxythiocarbonyl,

heterocyclyloxythiocarbonyl, phenoxy-C₁-C₆-alkylcarbonyl,

heterocyclyl- ϕ_1 - C_6 -alkyl,

heterocyclyloxy-C1-C6-alkylcarbonyl,

phenylaminocarbonyl,

 $N-(C_1-C_6-alk v1)-N-(phenyl)$ aminocarbonyl,

heterocyclylaminocarbonyl,

 $N-(C_1-C_6-alkyl)-N-(heterocyclyl)$ aminocarbonyl,

phenyl-C2-C6-alkenylcarbonyl or

heterocyclyl—C₂—C₆—alkenylcarbonyl, where the phenyl and the heterocyclyl radical of the 20 last-mentioned substituents may be partially or fully halogenated and/or may carry one to three of the following radicals:

nitro, cyano, C_1 — C_4 —alkyl, C_1 — C_4 —halogenalkyl, C_1 — C_4 —alkoxy or C_1 — C_4 —haloalkoxy;

 R^8 , R^9

are C_1 — C_6 —alkyl, C_3 — C_6 —alkenyl, C_3 — C_6 —haloalkenyl, C_3 — C_6 —alkynyl, C_3 — C_6 —haloalkynyl, C_3 — C_6 —cycloalkyl, hydroxyl, C_1 — C_6 —alkoxy, amino, C_1 — C_6 —alkylamino, C_1 — C_6 —haloalkylamino, C_1 — C_6 —alkylamino, or C_1 — C_6 —haloalkylamino, where the

alkyl)amino or di-(C₁-C₆-haloalkyl)amino, where the abovementioned alkyl, cycloalkyl and alkoxy radicals may be partially or fully halogenated and/or may carry one to three of the following

groups:

cyano, C_1 — C_4 —alkoxy, C_1 — C_4 —alkylthio, di— $(C_1$ — C_4 —alkyl) amino, C_1 — C_4 —alkylcarbonyl,

C₁-C₄-alkoxycarbonyl,

 C_1-C_4 -alkoxy- C_1-C_4 -alkoxycarbonyl,

 $di-(C_1-C_4-alkyl)$ amino- $C_1-C_4-alkoxycarbonyl$,

35

40

45

hydroxycarbony, C1-C4-alkylaminocarbonyl, $di-(C_1-C_4-alky)$ aminocarbonyl, aminocarbonyl, C_1 — C_4 —alkylcar ϕ onyloxy or C_3 — C_6 —cycloalkyl; phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl, 5 heterocyclyl-C1-C6-alkyl, phenoxy, heterocyclyloxy, where the phenyl and the heterocyclyl radical of the last-mentioned substituents may be partially or fully halogenated and/or may carry one to three 10 of the following radicals: nitro, cyano, C_1 — C_4 —alkyl, C_1 — C_4 —haloalkyl, C_1 — C_4 —alkoxy or C_1 — C_4 —haloalkoxy; R10 is $C_1-C_6-alky/1$, $C_3-C_6-alkeny1$, $C_3-C_6-haloalkeny1$, $C_3-C_6-alkyny1$, $C_3-C_6-haloalkyny1$, $C_3-C_6-cycloalky1$, 15 hydroxyl, $C_1 \not= C_6 - alkoxy$, $C_3 - C_6 - alkenyloxy$, $C_3-C_6-alkyny \perp oxy$, amino, $C_1-C_6-alkylamino$, $di-(C_1-C_6-a|ky|)$ amino or $C_1-C_6-a|ky|$ carbony lamino, where the abovementioned alkyl, cycloalkyl and 20 alkoxy radicals may be partially or fully halogenated and/or may carry one to three radicals from the following group: cyano, C_1-C_4 -alkoxy, C_1-C_4 -alkylthio, $di-(C_1-C_4-alkyl)$ amino, $C_1-C_4-alkyl$ carbonyl, 25 $C_1-C_4-alkoxycarbonyl,$ $C_1-C_4-alk\phi xy-C_1-C_4-alkoxycarbonyl$, $di-(C_1-C_4+alkyl)$ amino- $C_1-C_4-alkoxycarbonyl$, hydroxycarbonyl, C₁-C₄-alkylaminocarbonyl, $di-(C_1-C_4-alkyl)$ aminocarbonyl, aminocarbonyl, C_1-C_4 -alkylcarbonyloxy or C_3-C_6 -cycloalkyl; 30 phenyl, heterocyclyl, phenyl-C₁-C₆-alkyl or heterocyclyl-C1-C6-alkyl, where the phenyl or heterocyclyl radical of the four last-mentioned 35 substituents may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C_1-C_4-a koxy or $C_1-C_4-haloalkoxy;$ 40 are C_1 - C_6 -alkyl, C_3 - C_6 -alkenyl, C_3 - C_6 -alkynyl or R^{11} , R^{12} C₁-C₆-alkylcarbonyl; 1 is 0 to 6; 45

Khing)

is 1 to 5;

is 2 to $\frac{4}{3}$

- 5 and their agricult rally useful salts.
 - 2. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim /1, where
- is halogen, C₁-C₆-alkyl, C₁-C₆-haloalkyl, C₁-C₆-alkoxy, C₁-C₆-alkylthio, heterocyclyloxy or phenylthio, where the two last-mentioned radicals may be partially or fully halogenated and/or may carry one to three of the substituents mentioned below:
- nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy;
- is halogen, OR⁷, SR⁷, SOR⁸, SO₂R⁸, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹, OPSR⁸R⁹, NR¹⁰R¹¹ or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals:

 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy or C₁-C₄-haloalkoxy.
- 25 3. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claim 1 or 2, where
 - is halogen, OR^7 , $NR^{10}R^{11}$ or N-bonded heterocyclyl which may be partially or fully halogenated and/or may carry one to three of the following radicals: nitro, cyano, C_1-C_4 -alkyl, C_1-C_4 -haloalkyl, C_1-C_4 -alkoxy or C_1-C_4 -haloalkoxy.
 - 4. A cyclohexenonequinolinoyl derivative of the formula I as claimed in claims 1 to 3, where
- is C₁-C₆-alkyl, C₁-C₂₀-alkylcarbonyl,

 C₁-C₆-alkoxycarbonyl, (C₁-C₂₀-alkylthio)carbonyl,

 N,N-di-(C₁-C₆-alkyl)aminocarbonyl, phenyl, phenylcarbonyl

 or phenoxy-C₁-C₆-alkylcarbonyl, where the phenyl radical

 of the three last-mentioned substituents may be partially

 or fully halogenated and/or may carry one to three of the

 following radicals:

 nitro, cyano, C₁-C₄-alkyl, C₁-C₄-haloalkyl, C₁-C₄-alkoxy

 or C₁-C₄-haloalkoxy;

15

25

30

35

40

```
R^{10} is c_1-c_6-alkyl or c_1-c_6-alkoxy;
      is C_1 \setminus C_6-alkyl.
```

A cyclohexenonequinolinoyl derivative of the formula I as **5** 5. claimed in claims 1 to 4, where

is\nitro, halogen, cyano, C_1-C_6 -alkyl, $C_1 = C_6 = haloalkyl$, $di = (C_1 - C_6 = alkoxy) methyl$, $di-(C_1-C_6-alkylthio)$ methyl,

 $(C_1-C_6-alkoxy)(C_1-C_6-alkylthio)-$

methy, hydroxyl, C_1-C_6 -alkoxy, C_1-C_6 -haloalkoxy,

 $C_1-C_6-alkoxycarbonyloxy$, $C_1-C_6-alkylthio$, C1-C6-haloalkylthio, C1-C6-alkylsulfinyl,

C1-C6-haloalkylsulfinyl, C1-C6-alkylsulfonyl,

 $C_1-C_6-ha\close{1}$ oalkylsulfonyl, $C_1-C_6-alkylcarbonyl$,

C₁-C₆-halbalkylcarbonyl, C₁-C₆-alkoxycarbonyl or

C₁-C₆-haloalkoxycarbonyl;

or

two radicals R6, which are linked to the same carbon, together form\an $-O-(CH_2)_m-O-$, $-O-(CH_2)_m-S-$, $-S-(CH_2)_m-S-$, $-C-(CH_2)_n$ or $-S-(CH_2)_n$ chain which may be substituted by one to three radicals from the following group: halogen, cyano, \dot{C}_1 - C_4 -alkyl, C_1 - C_4 -haloalkyl or $C_1-C_4-alkoxycarbonyl;$

or

two radicals R6, which are linked to the same carbon, together form a $-(CH_2)_p$ chain which may be interrupted by oxygen or sulfur and/or may be substituted by one to four radicals from the following group: C_1-C_4 -alkoxycarbonyl;

or

two radicals R6, which are linked to the same carbon, together with this carbon form \a carbonyl group.

A process for preparing compounds of the formula I as claimed 6. in claims 1 to 5 where R^5 = halogen, which comprises reacting 45 a cyclohexanedione derivative of the formula XII,

20

25

30

DOVE BYD4 DEEE

$$(R^6)_1$$

$$0$$

$$0$$

$$R^3$$

$$R^2$$

$$R^2$$

$$R^1$$

where the variables R^1 to R^3 , R^6 and 1 are each as defined in claims 1 to 5, with a halogenating agent.

7. A process for preparing compounds of the formula I as claimed in claims 1 to 5 where R⁵ = OR⁷, OSO₂R⁸, OPR⁸R⁹, OPOR⁸R⁹ or OPSR⁸R⁹, which comprises reacting a cyclohexanedione derivative of the formula III,

$$(R^6)_1$$
 Q
 R^3
 R^2
 R^2
 R^3

where the variables R^1 to R^3 , R^6 and 1 are each as defined in claims 1 to 5, with a compound of the formula $IV\alpha$, $IV\beta$, $IV\gamma$, $IV\delta$ or $IV\epsilon$,

$$L^{1}-R^{7}$$
 $L^{1}-SO_{2}R^{8}$ $L^{1}-PR^{8}R^{9}$ $L^{1}-POR^{8}R^{9}$ $L^{1}-PSR^{8}R^{9}$ (IVa) (IVb) (IVb)

where the variables R^7 to R^9 are each as defined in claims 1 to 5 and L^1 is a nucleophilically replaceable leaving group.

8. A process for preparing compounds of the formula I as claimed in claims 1 to 5 where $R^5 = OR^7$, SR^7 , POR^8R^9 , $NR^{10}R^{11}$, $ONR^{11}R^{12}$, N-linked heterocyclyl or O-(N-linked heterocyclyl), which comprises reacting a compound of the formula I α (\equiv I where R^5 = halogen, OSO_2R^8),

and/or

$$(R^6)_1$$
 R^5
 R^2
 R^2

I where R^5 = halogen or OSO, R^8

10

where the variables R^1 to R^3 , R^6 and 1 are each as defined in claims 1 to 5λ with a compound of the formula $V\alpha$, $V\beta$, $V\gamma$, $V\delta$, $V\varepsilon$, $V\eta$ or $V\vartheta$,

HOR7

HSR'

HPOR8R9 $HNR^{10}R^{11}$ HONR¹¹R¹²

(VB) (Va)

> H(N-linked heterocycly

> > (Vη)

(VY)

(VE) $(V\delta)$

H(ON-linked heterocyclyl)

(VV)

20

where the variables R^{\uparrow} to R^{12} are each as defined in claims 1 to 5, if appropriate $i\hbar$ the presence of a base.

A process for preparing compounds of the formula I as claimed **25** 9. in claims 1, 2 or 5, where $R^5 = SOR^8$, SO_2R^8 , which comprises reacting a compound of the formula $I\beta$ (= I where $R^5 = SR^8$),

30

and/ob

35

I where $R^5 = SR^8$

where the variables R1 to R8 and 1 axe each as defined in claims 1, 2 or 5, with an oxidizing agent.

40

10. A composition, comprising a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of I as claimed in claims 1 to 5 and auxiliaries which are customarily used for 45 formulating crop protection agents.

ogyesydu dees

11. A process for preparing compositions as claimed in claim 10, which comprises mixing a herbicidally effective amount of at least one cyclohexenonequinolinoyl derivative of the formula I or an agriculturally useful salt of I as claimed in claims 1 to 5 and auxiliaries which are customarily used for formulating crop protection agents.

- 12. A method for controlling undesirable vegetation, which comprises allowing a herbicidally effective amount of at least one cyclohexenonequipolinoyl derivative of the formula I or an agriculturally useful salt of I as claimed in claims 1 to 5 to act on plants, the r habitat and/or on seeds.
- 13. The use of cyclohexenonequinolinoyl derivatives of the formula I or their agriculturally useful salts as claimed in 15 claims 1 to 5 as herbicides.

DDF63704 . CE 20

25

30

Ō٦

35

40

45