1

Assignment-1

EE24BTECH11052 - RONGALI CHARAN

SECTION-A JEE ADVANCED

E - Subjective Problems

1) If f(x-y) = f(x).g(y) - f(y).g(x) and g(x-y) = g(x).g(y) - f(x).f(y) for all $x, y \in R$. If right hand derivative at x = 0 exists for f(x). Find Derivative of g(x) at x = 0. (2005 - 4 Marks)

F - Match the Following

1) In this question there are entries in columns I and II. Each entry in Column I is related to exactly one entry in Column II. Write the correct letter from Column II against the entry number in Column (2009 - 4 Marks) In your answer book.

Column I

- a) $\sin(\pi[x])$
- b) $\sin (\pi(x [x]))$

Column II

- a) differentiable everywhere
- b) nowhere differentiable
- c) not differentiable at 1 and -1
- 2) In the following [x] denotes the greatest integer less than or equal to x. Match the functions in Column I with the properties in column II and indicate your answer by darkening the appropriate bubbles in the 4×4 matrix given in ORS. (2007 - 6 Marks)

Column I

- a) x |x|
- b) $\sqrt{|x|}$
- c) x + [x]
- d) |x-1|+|x+1|

Column II

- a) continuous in (-1, 1)
- b) differentiable in (-1, 1)
- c) strictly increasing in (-1, 1)
- d) not differentiable atleast at one point in

3) Let
$$f_1: R \to R$$
 $f_2: [0, \infty) \to R$ $f_3: R \to R$ $f_4: [0, \infty) \to R$ be defined by $f_1(x) = \begin{cases} |x| & \text{if } x < 0 \\ e^x & \text{if } x \ge 0 \end{cases}$

$$; f_2(x) = x^2; g(x) = \begin{cases} \sin x & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}; f_4(x) = \begin{cases} f_2(f_1(x)) & \text{if } x < 0 \\ f_2(f_1(x)) - 1 & \text{if } x \ge 0 \end{cases}$$
 (JEE Adv. 2014)

List-I

- P. f_4 is
- Q. f_3 is
- R. $f_2 o f_1$ is
- S. f_2 is

List-II

- 1. Onto but not one-one
- 2. Neither continuous nor one-one
- 3. Differentiable but not one-one
- 4. Continuous and one-one

PQRS

- (a) 3142
- (c) 3124

- P Q R S
- (b) 1342
- (a) 1324
- 4) Let $f_1: \mathbf{R} \to \mathbf{R}$, $f_2: (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbf{R}$, $f_3: (-1, e^{\frac{\pi}{2}} 2) \to \mathbf{R}$ and $f_4: \mathbf{R} \to \mathbf{R}$ be defined by 1. $f_1(x) = \sin(\sqrt{1 e^{-x^2}})$, 2. $f_2(x) = \begin{cases} \frac{|\sin x|}{\tan^{-1} x} & \text{if } x \neq 0 \\ e^x & \text{if } x = 0 \end{cases}$, where the inverse trigonometric function $tan^{-1}x$ assumes value in $(-\frac{\pi}{2}, \frac{\pi}{2})$, 3. $f_3(x) = [\sin(log_e(x+2))]$, where, for $t \in \mathbf{R}$, [t] denotes the greatest integer less than or equal to t, 4. $f_4(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$.

$$4. f_4(x) = \begin{cases} x^2 \sin \frac{1}{x} & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}.$$

List-I

- P. The function f_1 is
- Q. The function f_2 is
- R. The function f_3 is
- S. The function f_4 is

a)
$$P \rightarrow 2$$
; $Q \rightarrow 3$; $R \rightarrow 1$; $S \rightarrow 4$

a)
$$P \rightarrow 4; Q \rightarrow 2; R \rightarrow 1; S \rightarrow 3$$

List-II

- 1. NOT continuous at x = 0
- 2. continuous at x = 0 and NOT differentiable at x = 0
- 3. differentiable at x = 0 and its derivative is NOT continuous at x = 0
- 4. differentiable at x = 0 and its derivative is continuous at x = 0

(JEE Adv. 2018)

a)
$$P \rightarrow 4$$
; $Q \rightarrow 1$; $R \rightarrow 2$; $S \rightarrow 3$

a)
$$P \rightarrow 2; Q \rightarrow 1; R \rightarrow 4; S \rightarrow 3$$

I - Integer Value Correct Type

- 1) Let $f:[1,\infty)\to[2,\infty)$ be a differentiable function such that f(1) = 2. If $6 \int_1^x f(t) dt = 3xf(x) - x^3$ for all $x \ge 1$. Then the value of f(2) is
- 2) The largest value of non-negative integer a for which $\lim_{x\to 1} \left\{ \frac{-ax + \sin(x-1) + a}{x + \sin(x-1) - 1} \right\}^{\frac{1-x}{1-\sqrt{x}}} = \frac{1}{4}$ (JEE Adv. 2014)
- 3) Let $f: R \to R$ and $g: R \to R$ be respectively given by f(x) = |x| + 1 and $g(x) = x^2 + 1$. Define $h: R \to R$ by

$$h(x) = \begin{cases} \max\{f(x), g(x)\} & \text{if } x \le 0\\ \min\{f(x), g(x)\} & \text{if } x > 0 \end{cases}$$
The number of points at which $h(x)$ is not

differentiable is (JEE Adv. 2014)

- 4) Let m and n be two positive integers greater than 1. If $\lim_{\alpha \to 0} (\frac{e^{\cos(\alpha^n)} e}{\alpha^m}) = -(\frac{e}{2})$ then the value of $\frac{m}{n}$ is (JEE Adv. 2015)
- 5) Let $\alpha, \beta \in \mathbf{R}$ be such that $\lim_{x \to 0} \frac{x^2 \sin(\beta x)}{\alpha x \sin x} = 1$. Then $6(\alpha + \beta)$ equals. (JEE Adv. 2016)

SECTION-B

JEE MAIN/AIEEE

- 1) $\lim_{x\to 0} \frac{\sqrt{1-\cos 2x}}{\sqrt{2}x}$ is [2002]
 - (a) 1
 - (b) -1
 - (c) 0
 - (d) does not exist
- 2) $\lim_{x\to\infty} (\frac{x^2+5x+3}{x^2+x+3})^x$ [2002]
 - (a) e^4
 - (b) e^2
 - (c) e^{3}
 - (d) 1
- 3) Let f(x) = 4 and f'(x) = 4. Then $\lim_{x\to 2} \frac{xf(2)-2f(x)}{x-2}$ is given by [2002]
 - (a) 2
 - (b) -2
 - (c) -4
 - (d) 3
- 4) $\lim_{n\to\infty} \frac{1^p + 2^p + 3^p + \dots + n^p}{n^{p+1}}$ is [2002]

- 5) $\lim_{x\to 0} \frac{\log x^n [x]}{[x]}$, $n \in N$, ([x] denotes greatest integer less than or equal to x) [2002]
 - (a) has value -1
 - (b) has value 0
 - (c) has value 1
 - (d) does not exist