How are stocks connected? The evidence from emerging market.

S.M. Aghajanzadeh M. Heidari M. Mohseni

Tehran Institute for Advanced Studies

November, 2021

Table of Contents

- Motivation
- 2 Literature
 - Main Effect
 - Common-ownership measurements
- 3 Empirical Studies
 - Measuring Common-ownership
 - Pair composition
 - Correlation Calculation
 - Controls
 - Methodology
- 5 Results
 - Normalized Rank-Transformed
 - High level of common ownership
 - All pairs
 - Size effect
 - Evidence for correlated trading
 - Institutional Imbalance
 - Turnover
 - Big business group
 - 7 Conclusion

Stock return co-movement is caused by direct or indirect common ownership?

- common ownership:
 - ullet We connect stocks through the common ownership by blockholders (ownership > 1%) for direct common ownership
 - We connect stocks through the ultimate owner for indirect common ownership
- We focus on excess return co-movement for a pair of the stocks
- We use common ownership to forecast cross-sectional variation in the realized correlation of four-factor + industry residuals
- We demonstrate that correlated trading can be a channel of co-movement

Why does it matter?

- Covariance
 - Covariance is a key component of risk in many financial applications.
 (Portfolio selection, Risk management, Hedging and Asset pricing)
 - Covariance is a significant input in risk measurement models (Such as Value-at-Risk)
- Return predictability
 - If it's valid, we can build a profitable buy-sell strategy

Table of Contents

- Motivation
- Literature
 - Main Effect
 - Common-ownership measurements
- 3 Empirical Studies
 - Measuring Common-ownership
 - Pair composition
 - Correlation Calculation
 - Controls
 - Methodology
- 6 Results
 - Normalized Rank-Transformed
 - High level of common ownership
 - All pairs
 - Size effect
 - Evidence for correlated trading
 - Institutional Imbalance
 - Turnover
 - Big business group
 - Conclusion

Comovement effect

Common-ownership

Our work

- We use daily records of block-holder ownership for firms
- We not restricted to mutual funds ownership
- Furthermore, 80% of market belongs to the business groups
 - Would business groups be able to raise the co-movement of stock returns?
 - Cho and Mooney (2015):
 The strong co-movement between group returns and firm returns is explained by correlated fundamentals.
 - Kim et al. (2015):
 The increase in correlation appears to be driven more by non-fundamental factors such as correlated trading, rather than fundamental factors such as related-party transactions
 - Common ownership or business group (indirect common ownership) ?
 - Through which channel?

Common-ownership measurements

Model based measures

- HJL $_I^A(A, B) = \sum_{i \in I^A, B} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$ Harford et al. (2011)
- lacktriangledown Top5 $_j=rac{1}{n-1}\sum_i^5\sum_{j
 eq k}
 u_{ik}$ Antón et al. (2020)
- $\kappa_{ij} = \cos(\nu_i, \nu_j) \cdot \sqrt{\frac{IHHI_j}{IHHI_i}}$ Backus et al. (2020)
- GGL^A(A, B) = $\sum_{i=1}^{I} \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020), Lewellen and Lewellen (2021)
- MHHI_{Delta} = $\sum_{j=1}^{J} \sum_{k\neq j}^{K} \frac{\sum_{i=1}^{N} w_j * w_k * \mu_{i,j} * \mu_{i,k}}{\sum_{i=1}^{N} \mu_{i,j} * \mu_{i,k}}$ Lewellen and Lowry (2021)

Common-ownership measurements

Model based measures

- HJL $_I^A(A,B) = \sum_{i \in I^A,B} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$ Harford et al. (2011)
- lacktriangledown $\operatorname{Top5}_j = rac{1}{n-1} \sum_i^5 \sum_{j
 eq k}
 u_{ik}$ Antón et al. (2020)
- $\kappa_{ij} = \cos(\nu_i, \nu_j) \cdot \sqrt{\frac{IHHI_j}{IHHI_i}}$ Backus et al. (2020)
- $\operatorname{GGL}^A(A,B) = \sum_{i=1}^I \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020) , Lewellen and Lewellen (2021)
- MHHI_{Delta} = $\sum_{j=1}^{J} \sum_{k\neq j}^{K} \frac{\sum_{i=1}^{N} w_j * w_k * \mu_{i,j} * \mu_{i,k}}{\sum_{i=1}^{N} \mu_{i,j} * \mu_{i,k}}$ Lewellen and Lowry (2021)

Ad-hoc measures

- Overlap_{AP}(A, B) = $\sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_{A}}{\bar{\nu}_{A} + \bar{\nu}_{B}} + \alpha_{i,B} \frac{\bar{\nu}_{B}}{\bar{\nu}_{A} + \bar{\nu}_{B}}$ Anton and Polk (2014)
- Overlap $Count}(A, B) = \sum_{i \in I^A, B} 1$ He and Huang (2017), He et al. (2019)
- Overlap_{Min}(A, B) = $\sum_{i \in I^{A,B}} \min\{\alpha_{i,A}, \alpha_{i,B}\}$ Newham et al. (2018)
- Overlap_{HL} $(A, B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996) , Freeman (2019)

Common-ownership measurements

Model based measures

- HJL $_I^A(A, B) = \sum_{i \in I^A, B} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$ Harford et al. (2011)
- lacktriangledown $\operatorname{Top5}_j = rac{1}{n-1} \sum_i^5 \sum_{j
 eq k}
 u_{ik}$ Antón et al. (2020)
- $\kappa_{ij} = \cos(\nu_i, \nu_j) \cdot \sqrt{\frac{IHHI_j}{IHHI_i}}$ Backus et al. (2020)
- $\mathsf{GGL}^A(A,B) = \sum_{i=1}^I \alpha_{i,A} \mathsf{g}(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020), Lewellen and Lewellen (2021)

Ad-hoc measures

- Overlap_{AP}(A, B) = $\sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_{A}}{\bar{\nu}_{A} + \bar{\nu}_{B}} + \alpha_{i,B} \frac{\bar{\nu}_{B}}{\bar{\nu}_{A} + \bar{\nu}_{B}}$ Anton and Polk (2014)
- Overlap $Count}(A, B) = \sum_{i \in I^A, B} 1$ He and Huang (2017), He et al. (2019)
- Overlap_{Min}(A, B) = $\sum_{i \in I^{A,B}} \min\{\alpha_{i,A}, \alpha_{i,B}\}$ Newham et al. (2018)
- Overlap_{HL} $(A, B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996) , Freeman (2019)

Selected measure

We need a pair-level measure, which is bi-directional, so we use the AP measure.

Table of Contents

- Motivation
- 2 Literature
 - Main Effect
 - Common-ownership measurements
- 3 Empirical Studies
 - Measuring Common-ownership
 - Pair composition
 - Correlation Calculation
 - Controls
 - Methodology
- Results
 - Normalized Rank-Transformed
 - High level of common ownership
 - All pairs
 - Size effect
 - Evidence for correlated trading
 - Institutional Imbalance
 - Turnover
 - Big business group
- 7 Conclusion

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t} P_{i,t} + S_{j,t} P_{j,t}}$$

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

SQRT

Quadratic

$$[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}]^{2}$$

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

Anton and Polk (2014)

$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

SQRT

Quadratic

$$\frac{\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}$$

$$\left[\frac{\sum_{f=1}^{F}(\sqrt{S_{i,t}^{f}P_{i,t}}+\sqrt{S_{j,t}^{f}P_{j,t}})}{\sqrt{S_{i,t}P_{i,t}}+\sqrt{S_{j,t}P_{j,t}}}\right]^{2}\left[\frac{\sum_{f=1}^{F}[(S_{i,t}^{f}P_{i,t})^{2}+(S_{j,t}^{f}P_{j,t})^{2}]}{(S_{i,t}P_{i,t})^{2}+(S_{j,t}P_{j,t})^{2}}\right]^{-1}$$

Intuition

If for a pair of stocks with n mutual owners, all owners have even shares of each firm's market cap, then the proposed indexes will be equal to n. Proof

Example of three common owner

Firm Y

Firm X

Example of three common owner

Common owner 1

 $\mathsf{Firm}\;\mathsf{Y}$

Common owner 2

Firm X

Common owner 3

Example of three common owner

Common owner 3

Example of three common owner

Example of three common owner

Ownership	Type I	Type II	Type III	Type IV	Type V	Type VI	Type VII
α_1	1/3	20	10	20	10	5	1
eta_1	1/3	10	10	20	10	5	1
α_2	1/3	10	80	20	10	5	1
eta_2	1/3	20	80	20	10	5	1
α_3	1/3	70	10	20	10	5	1
eta_3	1/3	70	10	20	10	5	1
SQRT	3	2.56	2.33	1.8	0.9	0.45	0.09
SUM	1	1	1	0.6	0.3	0.15	0.03
Quadratic	3	1.85	1.52	8.33	33.33	133.33	3333.33

Comparison

- For better comparison we relax previous assumptions:
 - Two Firms with different market caps.

	$(\alpha_1,\beta_1),(\alpha_2,\beta_2)$								
	(10,40),(10,40)		(15,35),(15,35)		(20,30),(20,30)				
MarketCap _x MarketCap _y	SQRT	SUM	SQRT	SUM	SQRT	SUM			
1	0.90	0.50	0.96	0.50	0.99	0.50			
2	0.80	0.40	0.89	0.43	0.96	0.47			
3	0.75	0.35	0.85	0.40	0.94	0.45			
4	0.71	0.32	0.83	0.38	0.92	0.44			
5	0.69	0.30	0.81	0.37	0.91	0.43			
6	0.67	0.29	0.80	0.36	0.91	0.43			
7	0.65	0.28	0.79	0.35	0.90	0.43			
8	0.64	0.27	0.78	0.34	0.90	0.42			
9	0.63	0.26	0.77	0.34	0.89	0.42			
10	0.62	0.25	0.76	0.34	0.89	0.42			

Comparison

Comparison of two methods for calculating common ownership

Conclusion

We use the SQRT measure because it has an acceptable variation and has fair values at a lower level of aggregate common ownership.

Pair composition

Firms with at least one common owner

- In a business group, how can one pair be defined?
 - What is the business group?

Business Group

Ultimate Owner

Business Group

Business Group

Pair in the Business Group

Pair in the Business Group

Pair Composition and Business Group

Pair not in any of Business Groups

Data Summary

- We use blockholders' data from 2014/03/25 (1393/01/06) to 2020/03/18 (1398/12/28)
 - Includes of 72 Months
 - Consists of 618 firm inculding 562 firm with common owners

Year	1393	1394	1395	1396	1397	1398
No. of Firms	365	376	447	552	587	618
No. of Blockholders	777	803	984	1297	1454	1458
No. of Groups	38	41	43	44	40	43
No. of Firms not in Groups	116	108	147	216	241	243
No. of Firms in Groups	249	268	300	336	346	375
Average Number of Members	7	7	7	8	9	9
Med. of Number of Members	5	5	5	6	6	5
Average Of each Blockholder's ownership	21	22	22	21	22	23
Med. of Owners' Percent	7	8	8	8	8	9
Average Number of Owners	5	5	5	5	5	5
Med. Number of Owners	4	4	4	4	5	4
Average Block. Ownership	76	77	75	75	75	71
Med. Block. Ownership	82	82	81	80	80	77

Pair Composition

- Pairs consist of two firms with at least one common owner
 - 93442 unique pairs which is 25% of possible pairs ($\frac{612*611}{2}$ = 373932)

	mean	min	Median	max
Number of unique paris	24139	13272	23024	45795

year	1393	1394	1395	1396	1397	1398
No. of Pairs	20876	21187	27784	41449	47234	67232
No. of Groups	37	40	42	43	39	43
No. of Pairs not in Groups	11452	11192	15351	26530	29182	43433
Number of Pairs not in the same Group	7962	8731	10971	12916	15366	20745
Number of Pairs in the same Group	923	955	1099	1260	1536	1774
Average Number of Common owner	1	1	1	1	1	1
Med. Number of Common owner	1	1	1	1	1	1
Average Percent of each blockholder	19	19	19	19	19	20
Med. Percent of each blockholder	13	12	12	12	12	14
Average Number of Pairs in one Group	31	30	30	34	39	44
Med. Number of Pairs in one Group	8	10	8	10	9	10
Average Number of Owners	5	5	5	5	4	5
Med. Number of Owners	5	5	5	5	4	5
Average Block. Ownership	73	73	72	70	70	70
Med. Block. Ownership	73	73	73	71	71	71

FCA vs. FCAP Summary

			-4-1	min	25%	50%	75%	
	variable	mean	std	min	25%	50%	75%	max
All	FCA	0.158	0.234	0.002	0.031	0.079	0.191	12.650
	FCAP	0.144	0.166	0.002	0.030	0.077	0.193	1.000
Same Group	FCA	0.474	0.478	0.005	0.096	0.367	0.691	6.174
	FCAP	0.346	0.265	0.004	0.081	0.321	0.561	1.000
Not Same Group	FCA	0.087	0.154	0.003	0.020	0.038	0.087	6.184
	FCAP	0.072	0.102	0.003	0.020	0.037	0.078	0.998
Same Industry	FCA	0.274	0.383	0.003	0.044	0.126	0.351	6.262
	FCAP	0.207	0.215	0.003	0.041	0.120	0.314	0.999
Not Same Industry	FCA	0.150	0.217	0.002	0.030	0.077	0.183	12.650
	FCAP	0.140	0.161	0.002	0.029	0.074	0.187	1.000

Results

- By the proposed measurement, common ownership increases
- Common ownership is greater in pairs that are in the same business group and insutry

FCA vs. FCAP Distributions

Monthly

FCA vs. FCAP Distributions

Monthly

FCA vs. FCAP Distributions

Monthly

Correlation Calculation

4 Factor + Industry

Frist Step:

Estimate each of these models on periods of three month:

• CAPM + Industry (2 Factor):

$$R_{i,t} = \alpha_i + \beta_{mkt,i} R_{M,t} + \beta_{Ind,i} R_{Ind,t} + \boxed{\varepsilon_{i,t}}$$

• 4 Factor :

$$\begin{split} R_{i,t} &= \alpha_i + \beta_{\textit{mkt},i} R_{\textit{M},t} + \\ &+ \beta_{\textit{HML},i} \textit{HML}_t + \beta_{\textit{SMB},i} \textit{SMB}_t + \beta_{\textit{UMD},i} \textit{UMD}_t + \boxed{\varepsilon_{i,t}} \end{split}$$

• 4 Factor + Industry (5 Factor) :

$$\begin{split} R_{i,t} &= \alpha_i + \beta_{\textit{mkt},i} R_{\textit{M},t} + \beta_{\textit{Ind},i} R_{\textit{Ind},t} \\ &+ \beta_{\textit{HML},i} \textit{HML}_t + \beta_{\textit{SMB},i} \textit{SMB}_t + \beta_{\textit{UMD},i} \textit{UMD}_t + \boxed{\varepsilon_{i,t}} \end{split}$$

 Second Step: Calculate monthly correlation of each stock pair's daily abnormal returns (residuals)

Correlation Calculation Results

	mean	std	min	25%	50%	75%	max
CAPM + Industry	0.021	0.200	-1.0	-0.047	0.016	0.084	1.0
4 Factor	0.032	0.202	-1.0	-0.040	0.025	0.096	1.0
4 Factor + Industry	0.016	0.199	-1.0	-0.051	0.010	0.076	1.0
4 Factor $+$ Industry (With Lag)	0.015	0.198	-1.0	-0.051	0.010	0.076	1.0

Conclusion

We use the 4 Factor + Industry model to control for exposure to systematic risk because it almost captures all correlations between two firms in each pair.

Future Correlation via FCA

Controls

- **SameGroup**: Dummy variable for whether the two stocks belong to the same business group.
- SameIndustry: Dummy variable for whether the two stocks belong to the same Industry.
- SameSize : The negative of absolute difference in percentile ranking of size across a pair
- SameBookToMarket :The negative of absolute difference in percentile ranking of the book to market ratio across a pair
- **CrossOwnership**: The maximum percent of cross-ownership between two firms

Industry & Business group

	Yes	No
SameIndustry	4541 (5.7%)	74837 (94.3%)
SameGroup	1834 (6.3%)	27157 (93.7%)
SameGroup & SameIndustry	696 (0.9%)	79378 (99.1%)

Business group

Pairs' characteristic

Summary of Controls

Variables' distribution

	mean	std	min	25%	50%	75%	max
SameIndustry	0.06	0.23	0.00	0.00	0.00	0.00	1.00
SameGroup	0.06	0.24	0.00	0.00	0.00	0.00	1.00
Size1	0.58	0.23	0.01	0.40	0.58	0.77	1.00
Size2	0.30	0.20	0.00	0.13	0.25	0.41	0.99
SameSize	-0.29	0.20	-0.97	-0.41	-0.24	-0.13	-0.00
BookToMarket1	0.54	0.25	0.00	0.36	0.57	0.75	1.00
BookToMarket2	0.55	0.24	0.00	0.36	0.56	0.75	1.00
SameBookToMarket	-0.32	0.20	-0.99	-0.44	-0.27	-0.16	-0.00
CrossOwnership	0.14	2.59	0.00	0.00	0.00	0.00	95.77

Table of Contents

- Motivation
- 2 Literature
 - Main Effect
 - Common-ownership measurements
- 3 Empirical Studies
 - Measuring Common-ownership
 - Pair composition
 - Correlation Calculation
 - Controls
- Methodology
- Results
 - Normalized Rank-Transformed
 - High level of common ownership
 - All pairs
 - Size effect
 - Evidence for correlated trading
 - Institutional Imbalance
 - Turnover
 - Big business group
 - 7 Conclusion

Fama-MacBeth Estimation

- Fama-MacBeth regression analysis is implemented using a two-step procedure.
 - The first step is to run periodic cross-sectional regression for dependent variables using data of each period.
 - The second step is to analyze the time series of each regression coefficient to determine whether the average coefficient differs from zero.

Fama-MacBeth (1973)

- Two Step Regression
 - First Step

$$Y_{i1} = \delta_{0,1} + \delta_{1,1}^{1} X_{i,1}^{1} + \dots + \delta_{k,1}^{k} X_{i,1}^{k} + \varepsilon_{i,1}$$

$$\vdots$$

$$Y_{iT} = \delta_{0,1} + \delta_{1,T}^{1} X_{i,T}^{1} + \dots + \delta_{k,T}^{k} X_{i,T}^{k} + \varepsilon_{i,T}$$

Second Step

$$\begin{bmatrix} \bar{Y}_1 \\ \vdots \\ \bar{Y}_T \end{bmatrix}_{T \times 1} = \begin{bmatrix} 1 & \delta_1^0 & \delta_1^1 & \dots & \delta_1^k \\ \vdots & \vdots & \vdots & \dots & \vdots \\ 1 & \delta_T^0 & \delta_T^1 & \dots & \delta_T^k \end{bmatrix}_{T \times (k+2)} \times \begin{bmatrix} \lambda \\ \lambda_0 \\ \lambda_1 \\ \vdots \\ \lambda_k \end{bmatrix}_{(k+2) \times 1}$$

• Fama-MacBeth technique was developed to account for correlation between observations on different firms in the same period

Calculating standard errors

- In most cases, the standard errors are adjusted following Newey and West (1987).
 - Newey and West (1987) adjustment to the results of the regression produces a new standard error for the estimated mean that is adjusted for autocorrelation and heteroscedasticity.
 - Only input is the number of lags to use when performing the adjustment

$$Lag = 4(T/100)^{\frac{2}{9}}$$

where T is the number of periods in the time series

Table of Contents

- Motivation
- 2 Literature
 - Main Effect
 - Common-ownership measurements
- 3 Empirical Studies
 - Measuring Common-ownership
 - Pair composition
 - Correlation Calculation
 - Controls
- 4 Methodology
- Results
 - Normalized Rank-Transformed
 - High level of common ownership
 - All pairs
 - Size effect
 - Evidence for correlated trading
 - Institutional Imbalance
 - Turnover
 - Big business group
 - 7 Conclusion

Future Correlation via FCA

Normalized Rank-Transformed

Estimation model

Use Fama-MacBeth to estimate this model

$$\begin{split} \rho_{ij,t+1} &= \beta_0 + \beta_1 * \mathsf{FCA}^*_{ij,t} + \beta_2 * \mathsf{SameGroup}_{ij} \\ &+ \beta_3 * \mathsf{FCA}^*_{ij,t} \times \mathsf{SameGroup}_{ij} \\ &+ \sum_{k=1}^n \alpha_k * \mathsf{Control}_{ij,t} + \varepsilon_{ij,t+1} \end{split} \tag{1}$$

- Estimate the model on a monthly frequency
- Adjust standard errors by Newey and West adjustment with 4 lags $(4(70/100)^{\frac{2}{9}}=3.69\sim4)$

Model Estimation

Normalized Rank-Transformed

		Dep	endent Varial	ole: Future N	Nonthly Corr	elation of 4F⊣	-Industry Re	esiduals	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Same Group	0.0166***	0.0153***			0.0147***			0.00624***	0.00549**
	(8.54)	(7.90)			(6.97)			(2.81)	(2.27)
FCA*			0.00150***	0.00112**	0.000736	0.00944***	0.000397	0.000377	-0.0000113
			(2.90)	(2.11)	(1.33)	(7.24)	(0.68)	(0.65)	(-0.02)
(FCA*) × SameGroup								0.00992***	0.0107***
								(6.49)	(6.97)
Observations	1665996	1665996	1665996	1665996	1665996	58337	1607659	1665996	1665996
Sub-sample	All	All	All	All	All	SameGroup	Others	All	All
Group Effect	No	No	No	No	No	No	No	No	Yes
Controls	No	Yes	No	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.000180	0.000637	0.000170	0.000652	0.000804	0.0112	0.000577	0.000898	0.00575

t statistics in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Future Correlation via FCA

Discontinuity

4 Factor + Industry Future Correlation via FCA*

Discontinuity & Business Groups

Forth quarter summary

Fama-MacBeth Estimation

Discontinuity (sub-sample)

	De	pendent Va	riable: Futu	re Monthly (Correlation o	f 4F+Ind. R	les.
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Same Group	0.0229***		0.0220***	0.0206***	0.0195***	-0.0230*	-0.0201
	(9.86)		(8.34)	(7.28)	(7.24)	(-2.21)	(-1.94)
FCA*		0.0122**	0.00516	0.00494	0.00485	0.00270	0.00194
		(3.11)	(1.23)	(1.18)	(1.17)	(0.60)	(0.46)
(FCA*) × SameGroup						0.0287***	0.0269*
						(3.55)	(3.42)
SameIndustry				0.00367	0.00277	0.00232	0.00404
				(1.67)	(1.20)	(0.97)	(1.62)
SameSize					0.00282	0.00233	0.00385
					(0.78)	(0.66)	(1.03)
SameBookToMarket					0.0104***	0.0103***	0.0113**
					(3.55)	(3.54)	(4.04)
CrossOwnership					0.0360	0.0402	0.0487
•					(1.46)	(1.62)	(1.99)
Observations	416514	416514	416514	416514	416514	416514	416514
Group FE	No	No	No	No	No	No	Yes
R^2	0.000923	0.000353	0.00124	0.00151	0.00232	0.00253	0.0150

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

All non-common owner pairs

regression

					Dependent \	/ariable: Futi	ure Monthly	Correlation	of 4F+Indu	stry Residua	ıls			
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)	(14)
SameGroup	0.0153*** (9.38)		0.0150*** (9.26)			0.0134*** (7.81)	0.0124*** (7.10)		0.0151*** (9.03)				0.0104*** (6.09)	0.00926*** (5.34)
FCA*		0.000676*** (3.50)	0.000496* (2.56)	0.00212 (1.79)	0.000427* (2.20)	0.000408* (2.11)	0.000116 (0.67)							
$(FCA^*) \times SameGroup$						0.00247* (2.15)	0.00321** (2.90)							
(FCA > Q3[FCA])								0.00226* (2.63)	0.000744 (0.97)	0.00226* (2.63)	0.0122*** (4.40)	-0.0000291 (-0.03)	-0.0000725 (-0.07)	-0.00110 (-1.32)
$(FCA > \mathit{Q3}[FCA]) \times SameGroup$													0.0141*** (4.65)	0.0161*** (5.54)
Observations	6018646	6018646	6018646	114526	5904120	6018646	6018646	6018646	5851137	6018646	114526	5904120	6018646	6018646
Sub Sample	Total	Total	Total	SameGroups	Others	Total	Total	Total	Total	Total	SameGroups	Others	Total	Total
Group Effect	No	No	No	No	No	No	Yes	No	No	No	No	No	No	Yes
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.000445	0.000392	0.000491	0.00699	0.000338	0.000515	0.00330	0.000372	0.00127	0.000372	0.00721	0.000323	0.000508	0.00330

t statistics in parentheses

 $^{^{*}}$ $\rho <$ 0.05, ** $\rho <$ 0.01, *** $\rho <$ 0.001

Grouped by size

Model Estimation

Grouped by size

		D€	ependent Varia	ble: Future Mo	nthly Correlation	of 4F+Ind. F	Res.	
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
Same Group	0.00624**	0.0102***	-0.00153	0.0117***	0.00661*	0.0366***	0.0268***	0.00750***
	(2.81)	(3.95)	(-0.53)	(3.76)	(2.15)	(10.31)	(6.57)	(3.53)
FCA*	0.000377	0.000698	-0.000175	0.00199***	0.00177**	-0.00151	-0.00177	-0.0000771
	(0.65)	(1.25)	(-0.31)	(3.56)	(3.00)	(-1.58)	(-1.84)	(-0.14)
(FCA*) × SameGroup	0.00992***		0.0134***		0.00599*		0.0123***	0.0105***
	(6.49)		(4.80)		(2.34)		(4.17)	(6.72)
Observations	1665996	346170	346170	693728	693728	626098	626098	1665996
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sub-sample	All Firms	Large Firms	Large Firms	Hybrid Firms	Hybrid Firms	Small Firms	Small Firms	All Firms
Pair Size FE	No	No	No	No	No	No	No	Yes
R^2	0.000898	0.00193	0.00232	0.00135	0.00149	0.00180	0.00198	0.00130

t statistics in parentheses

^{*} $\rho < 0.05$, ** $\rho < 0.01$, *** $\rho < 0.001$

Model Estimation

Grouped by size

		Dependent Variable: Future Monthly Correlation of 4F+Ind. Res.										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
SameGroup	0.0134***	0.00954***	0.00853***	0.0136***	0.0118***	0.0314***	0.0267***	0.0138***				
	(7.81)	(4.63)	(3.71)	(7.35)	(6.46)	(10.19)	(7.93)	(8.27)				
FCA*	0.000408*	-0.0000120	-0.000115	0.000514*	0.000401	-0.00143***	-0.00154***	-0.000390**				
	(2.11)	(-0.05)	(-0.47)	(2.09)	(1.67)	(-3.86)	(-3.97)	(-2.70)				
(FCA*) × SameGroup	0.00247*		0.00178		0.00272		0.00545**	0.00313**				
	(2.15)		(1.30)		(1.59)		(3.38)	(2.80)				
Observations	6018646	1753614	1753614	2992221	2992221	1272811	1272811	6018646				
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes				
Sub-sample	All Firms	Large Firms	Large Firms	Hybrid Firms	Hybrid Firms	Small Firms	Small Firms	All Firms				
Pair Size FE	No	No	No	No	No	No	No	Yes				
R^2	0.000515	0.000796	0.000860	0.000688	0.000735	0.00191	0.00199	0.000829				

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table of Contents

- Motivation
- 2 Literature
 - Main Effect
 - Common-ownership measurements
- 3 Empirical Studies
 - Measuring Common-ownership
 - Pair composition
 - Correlation Calculation
 - Controls
 - Methodology
- 6 Results
 - Normalized Rank-Transformed
 - High level of common ownership
 - All pairs
 - Size effect
 - Evidence for correlated trading
 - Institutional Imbalance
 - Turnover
 - Big business group
 - Conclusion

Ins Imbalance

• Seasholes and Wu (2007)

$$Imbalance_{ins} = \frac{Buy_{ins} - Sell_{ins}}{Buy_{ins} + Sell_{ins}}$$

	InsImbalance_value									
	count	mean	std	min	25%	50%	75%	max		
Grouped										
Ungrouped	20198	0.01	0.630	-1.0	-0.474	0.016	0.479	1.0		
Grouped	12022	-0.04	0.581	-1.0	-0.462	-0.009	0.341	1.0		

$$Imbalance_{ind} = \frac{Buy_{ind} - Sell_{ind}}{Buy_{ind} + Sell_{ind}}$$

	IndImb	alance_va	lue					
	count	mean	std	min	25%	50%	75%	max
Grouped								
Ungrouped	20198	-0.044	0.265	-1.0	-0.081	-0.0	0.041	1.0
Grouped	12022	-0.027	0.211	-1.0	-0.071	0.0	0.052	1.0

Ins Imbalance

	InsImbalance_value								
	count	mean	std	min	25%	50%	75%	max	
Grouped									
Ungrouped	72	0.624	0.054	0.48	0.601	0.631	0.655	0.735	
Grouped	2057	0.503	0.251	0.00	0.337	0.503	0.647	1.414	

	InsImbalance_value									
	count	mean	std	min	25%	50%	75%	max		
Grouped										
Ungrouped	72	0.624	0.054	0.48	0.601	0.631	0.655	0.735		
Grouped	2057	0.503	0.251	0.00	0.337	0.503	0.647	1.414		

Ins Imbalance

			Future	Monthly Cor	r. of 4F+Ind. F	Residuals		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
FCA*	0.000308	0.000384	0.000320	-0.0000742	0.00945***	0.0000347	0.000123	0.0000843
	(0.60)	(0.81)	(0.68)	(-0.15)	(6.07)	(0.07)	(0.17)	(0.11)
Same Group	0.0164***	0.0164***	0.00765***	-0.00156		0.00974***	0.00241	0.00154
·	(8.68)	(8.68)	(3.64)	(-0.57)		(5.36)	(0.79)	(0.48)
Low Imbalance std		0.00119	0.000325	0.000203	0.0241***	0.000469	0.0000788	0.000481
		(1.29)	(0.35)	(0.22)	(6.15)	(0.52)	(80.0)	(0.31)
Low Imbalance std × SameGroup			0.0238***	0.0245***			0.0142**	0.0142**
•			(6.85)	(6.96)			(2.95)	(3.14)
(FCA*) × SameGroup				0.0106***			0.00580**	0.00645**
				(6.16)			(2.77)	(2.94)
Low Imbalance std \times (FCA*)							-0.000584	-0.000483
,							(-0.77)	(-0.57)
Low Imbalance std \times SameGroup \times (FCA*)						0.0209***	0.0126***	0.0120***
. , ,						(9.69)	(4.44)	(3.91)
Observations	1665996	1665996	1665996	1665996	58337	1665996	1665996	1665996
Group Effect	No	No	No	No	No	No	No	Yes
Pair Size FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sub-sample	Total	Total	Total	Total	Same Groups	Total	Total	Total
Controls	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
R^2	0.00120	0.00132	0.00144	0.00154	0.0210	0.00149	0.00166	0.00643

t statistics in parentheses

 $^{^{*}}$ $\rho<0.05,$ ** $\rho<0.01,$ *** $\rho<0.001$

TrunOver

• Koch et al. (2016)

$$\Delta \mathsf{TurnOver} = \mathsf{In}(\frac{\mathsf{TurnOver}_{i,t}}{\mathsf{TurnOver}_{i,t-1}}) = \mathsf{In}(\frac{\mathsf{volume}_{i,t}}{\mathsf{MarketCap}_{i,t}}) - \mathsf{In}(\frac{\mathsf{volume}_{i,t-1}}{\mathsf{MarketCap}_{i,t-1}})$$

-		Dep	endent Varia	ble: ΔTurn(Over _i	
	(1)	(2)	(3)	(4)	(5)	(6)
ΔTurnOver _{Market}	0.431***	0.453***	0.287***	0.321***	0.288***	0.321***
	(14.56)	(14.49)	(8.23)	(14.03)	(6.92)	(14.14)
$\Delta TurnOver_{Group}$			0.245***	0.234***	0.284***	0.273***
			(6.31)	(7.15)	(6.02)	(7.19)
Δ TurnOver _{Industry}	0.155***	0.169***	0.174*	0.118***	0.152	0.0430
	(6.53)	(6.99)	(2.08)	(3.68)	(1.47)	(1.19)
Observations	626813	623759	305563	301329	305563	301329
Weight	-	-	$MC \times CR$	$MC \times CR$	MC	MC
Control	No	Yes	No	Yes	No	Yes
R ²	0.141	0.180	0.242	0.282	0.236	0.277

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Cross-sectional analyze of Group trunover

		Dependent Variable: $eta_{\textit{Group}}$									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
Excess	0.355*** (4.99)	0.505*** (6.94)									
ExcessDummy			0.00604 (0.16)	0.101** (2.77)							
ExcessDiff					0.716*** (5.99)	0.961*** (7.77)					
ExcessHigh							0.344*** (6.61)	0.412*** (8.48)			
Observations	1349	1349	1367	1367	1349	1349	1367	1367			
Time FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Controls	No	Yes	No	Yes	No	Yes	No	Yes			
R^2	0.0251	0.0970	0.000973	0.0600	0.0436	0.123	0.0436	0.109			

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Pairwise correlations in turnover

	Dependent Variable: Future Monthly Correlation of Delta turnover								
	(1)	(2)	(3)	(4)	(5)	(6)	(7)		
Same Group	0.0349***	0.0217***			0.0227***	0.0182***	0.0176**		
	(11.20)	(7.38)			(7.73)	(6.22)	(6.19)		
FCA*			0.000871	-0.000438	-0.00110	-0.00134	-0.00171		
			(0.63)	(-0.37)	(-0.93)	(-1.08)	(-1.51)		
$(FCA^*) \times SameGroup$						0.00619*	0.00631*		
						(2.45)	(2.42)		
Observations	1447955	1341445	1447955	1341445	1341445	1341445	1341445		
Group Effect	No	No	No	No	No	No	Yes		
Pair Size FE	No	Yes	No	Yes	Yes	Yes	Yes		
Controls	No	Yes	No	Yes	Yes	Yes	Yes		
R^2	0.000465	0.00431	0.000461	0.00448	0.00471	0.00481	0.0157		

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Big Business group

	Dep. Var.: Future Monthly Cor. of 4F+Ind. Res.					
	(1)	(2)	(3)	(4)		
Same Group	0.00637*	0.0169*	0.00476	0.0127		
	(2.22)	(2.25)	(1.83)	(1.78)		
FCA*	-0.000339	-0.000551	-0.000108	-0.00121		
	(-0.80)	(-1.14)	(-0.19)	(-1.64)		
(FCA*) × SameGroup	0.0120***	0.0120***	0.0121***	0.0115***		
	(7.57)	(7.74)	(7.14)	(4.07)		
$\rho_t(Turnover)$	0.00515***	0.00609***	0.00373***	0.00638***		
	(8.45)	(5.86)	(3.52)	(6.12)		
ρ_{t}	0.0246***	0.0245***	0.0246***	0.0243***		
	(17.07)	(17.07)	(17.07)	(10.96)		
$SameGroup \times \rho_t(Turnover)$		-0.0104	0.0236***	-0.0129		
		(-0.95)	(5.23)	(-1.19)		
BigGroup		-0.00148				
		(-1.67)				
BigGroup × SameGroup		-0.0132*				
		(-2.08)				
$BigGroup \times \rho_t(Turnover)$		-0.00233				
		(-1.35)				
$BigGroup \times SameGroup \times \rho_t(Turnover)$		0.0336**				
		(3.15)				
Observations	1459585	1459585	957316	502269		
Controls	Yes	Yes	Yes	Yes		
Pari Size FE	Yes	Yes	Yes	Yes		
SubSample	All	All	Big Groups	Others		
R ²	0.00241	0.00284	0.00312	0.00399		

t statistics in parentheses

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Table of Contents

- Motivation
- 2 Literature
 - Main Effect
 - Common-ownership measurements
- 3 Empirical Studies
 - Measuring Common-ownership
 - Pair composition
 - Correlation Calculation
 - Controls
 - Methodology
- 6 Results
 - Normalized Rank-Transformed
 - High level of common ownership
 - All pairs
 - Size effect
 - Evidence for correlated trading
 - Institutional Imbalance
 - Turnover
 - Big business group
 - Conclusion

Conclusion

- We derive a measure that captures the extent of common ownership distribution.
- Direct common ownership can affect firms' co-movement
- Firms in the business groups co-move more than other pairs
- Direct common ownership only matters for firms in the business groups
- Firms in the same business group trade in one way

References I

- Antón, M., Ederer, F., Giné, M., and Schmalz, M. C. (2020). Common ownership, competition, and top management incentives. Ross School of Business Paper, (1328).
- Anton, M. and Polk, C. (2014). Connected stocks. The Journal of Finance, 69(3):1099-1127.
- Azar, J., Schmalz, M. C., and Tecu, I. (2018). Anticompetitive effects of common ownership. The Journal of Finance, 73(4):1513–1565.
- Backus, M., Conlon, C., and Sinkinson, M. (2020). Theory and measurement of common ownership. In AEA Papers and Proceedings, volume 110, pages 557–60.
- Barberis, N. and Shleifer, A. (2003). Style investing. Journal of financial Economics, 68(2):161-199.
- Barberis, N., Shleifer, A., and Wurgler, J. (2005). Comovement. Journal of financial economics, 75(2):283-317.
- Boubaker, S., Mansali, H., and Rjiba, H. (2014). Large controlling shareholders and stock price synchronicity. *Journal of Banking & Finance*, 40:80–96.
- Cho, C. H. and Mooney, T. (2015). Stock return comovement and korean business groups. Review of Development Finance, 5(2):71–81.
- David, J. M. and Simonovska, I. (2016). Correlated beliefs, returns, and stock market volatility. *Journal of International Economics*, 99:S58–S77.
- Freeman, K. (2019). The effects of common ownership on customer-supplier relationships. *Kelley School of Business Research Paper*, (16-84).
- Gilje, E. P., Gormley, T. A., and Levit, D. (2020). Who's paying attention? measuring common ownership and its impact on managerial incentives. *Journal of Financial Economics*, 137(1):152–178.
- Greenwood, R. and Thesmar, D. (2011). Stock price fragility. Journal of Financial Economics, 102(3):471-490.
- Grullon, G., Underwood, S., and Weston, J. P. (2014). Comovement and investment banking networks. Journal of Financial Economics, 113(1):73–89.
- Hameed, A. and Xie, J. (2019). Preference for dividends and return comovement. *Journal of Financial Economics*, 132(1):103–125.

References II

- Hansen, R. G. and Lott Jr, J. R. (1996). Externalities and corporate objectives in a world with diversified shareholder/consumers. Journal of Financial and Quantitative Analysis, pages 43–68.
- Harford, J., Jenter, D., and Li, K. (2011). Institutional cross-holdings and their effect on acquisition decisions. Journal of Financial Economics, 99(1):27–39.
- He, J. and Huang, J. (2017). Product market competition in a world of cross-ownership: Evidence from institutional blockholdings. The Review of Financial Studies, 30(8):2674–2718.
- He, J., Huang, J., and Zhao, S. (2019). Internalizing governance externalities: The role of institutional cross-ownership. *Journal of Financial Economics*, 134(2):400–418.
- Khanna, T. and Thomas, C. (2009). Synchronicity and firm interlocks in an emerging market. *Journal of Financial Economics*, 92(2):182–204.
- Kim, M.-S., Kim, W., and Lee, D. W. (2015). Stock return commonality within business groups: Fundamentals or sentiment? Pacific-Basin Finance Journal, 35:198–224.
- Koch, A., Ruenzi, S., and Starks, L. (2016). Commonality in Liquidity: A Demand-Side Explanation. The Review of Financial Studies. 29(8):1943–1974.
- Lewellen, J. W. and Lewellen, K. (2021). Institutional investors and corporate governance: The incentive to be engaged. *Journal of Finance, Forthcoming.*
- Lewellen, K. and Lowry, M. (2021). Does common ownership really increase firm coordination? Journal of Financial Economics.
- Newham, M., Seldeslachts, J., and Banal-Estanol, A. (2018). Common ownership and market entry: Evidence from pharmaceutical industry.
- Pantzalis, C. and Wang, B. (2017). Shareholder coordination, information diffusion and stock returns. *Financial Review*, 52(4):563–595.
- Seasholes, M. S. and Wu, G. (2007). Predictable behavior, profits, and attention. Journal of Empirical Finance, 14(5):590-610.
- Shiller, R. J. (1989). Comovements in stock prices and comovements in dividends. The Journal of Finance, 44(3):719-729.

Table of Contents

8 Appendix I

- 9 Appendix I
 - Synchronicity and firm interlocks
 - Large controlling shareholder and stock price synchronicity
 - Connected Stocks
 - Measures' Detail

Measuring Common Ownership

- If two stocks in pair have n mutual owner, which total market cap divides them equally, the mentioned indexes equal n.
 - Each holder owns 1/n of each firm.
 - Firm's market cap is α_1 and α_2 :
 - So for each holder of firms we have $S_{i,t}^f P_{i,t} = \alpha_i$
 - SQRT

$$\left[\frac{\sum_{f=1}^{n} \sqrt{\alpha_1/n} + \sum_{f=1}^{n} \sqrt{\alpha_2/n}}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = \left[\frac{\sqrt{n}(\sqrt{\alpha_1} + \sqrt{\alpha_2})}{\sqrt{\alpha_1} + \sqrt{\alpha_2}}\right]^2 = n$$

Quadratic

$$\left[\frac{\sum_{f=1}^{n} (\alpha_1/n)^2 + \sum_{f=1}^{n} (\alpha_2/n)^2}{\alpha_1^2 + \alpha_2^2}\right]^{-1} = \left[\frac{\alpha_1^2 + \alpha_2^2}{n(\alpha_1^2 + \alpha_2^2)}\right]^{-1} = n$$

Table of Contents

8 Appendix

- Appendix II
 - Synchronicity and firm interlocks
 - Large controlling shareholder and stock price synchronicity
 - Connected Stocks
 - Measures' Detail

Main Effect

Common-ownership and comovement effect

[Anton and Polk (2014)]

Stocks sharing many common investors tend to comove more strongly with each other in the future than otherwise similar stocks.

Common-ownership and liquidity demand

[Koch et al. (2016), Pastor and Stambaugh (2003), Acharya and Pedersen (2005)] Commonality in stock liquidity is likely driven by correlated trading among a given stock's investors. Commonality in liquidity is important because it can influence expected returns

• Trading needs and comovement

[Greenwood and Thesmar (2011)]

If the investors of mutual funds have correlated trading needs, the stocks that are held by mutual funds can comove even without any portfolio overlap of the funds themselves

Stock price synchronicity and poor corporate governance

[Boubaker et al. (2014), Khanna and Thomas (2009), Morck et al. (2000)] Stock price synchronicity has been attributed to poor corporate governance and a lack of firm-level transparency. On the other hand, better law protection encourages informed trading, which facilitates the incorporation of firm-specific information into stock prices, leading to lower synchronicity

Synchronicity and firm interlocks

JFE-2009-Khanna

- Three types of network
 - Equity network
 - ② Director network
 - Owner network
- Dependent variables

Using deterended weekly return for calculation

- **1** Pairwise returns synchronicity = $\frac{\sum_{t} (n_{i,j,t}^{naph,t}, n_{i,j,t}^{nown})}{T_{i,j}}$
- 2 Correlation = $\frac{Cov(i,j)}{\sqrt{Var(i).Var(j)}}$
- Tobit estimation of

$$f_{i,j}^d = \alpha I_{i,j} + \beta (1 * N_{i,j}) + \gamma Ind_{i,j} + \varepsilon_{i,j}$$

being in the same director network has a significant effect

Large controlling shareholder and stock price synchronicity JBF-2014-Boubaker

Stock price synchronicity:

$$SYNCH = \log(\frac{R_{i,t}^2}{1 - R_{i,t}^2})$$

where $R_{i,t}^2$ is the R-squared value from

$$RET_{i,w} = \alpha + \beta_1 MKRET_{w-1} + \beta_2 MKRET_w + \beta_3 INDRET_{i,w-1} + \beta_4 INDRET_{i,w} + \varepsilon_{i,w}$$

OLS estimation of

$$\begin{aligned} \textit{SYNCH}_{i,t} &= \beta_0 + \beta_1 \textit{Excess}_{i,t} + \beta_2 \textit{UCF}_{i,t} + \sum_k \beta_k \textit{Control}_{i,t}^k \\ &+ \textit{IndustryDummies} + \textit{YearDummies} + \varepsilon_{i,t} \end{aligned}$$

- Firms with substantial excess control are more likely to experience stock price crashes

Stock price synchronicity increases with excess control

Connected Stocks

JF-2014-Anton Polk

- Common active mutual fund owners
- Measuring Common Ownership

•
$$FCAP_{ij,t} = \frac{\sum_{f=1}^{F} (S_{i,t}^{f} P_{i,t} + S_{j,t}^{f} P_{j,t})}{S_{i,t}P_{i,t} + S_{j,t}P_{j,t}}$$

- ullet Using normalized rank-transformed as $FCAP_{ij,t}^*$
- $\rho_{ij,t}$: within-month realized correlation of each stock pair's daily four-factor returns

0

$$ho_{ij,t+1} = a + b_f \times FCAPF_{ij,t}^* + \sum_{k=1}^{n} CONTROL_{ij,t,k} + \varepsilon_{ij,t+1}$$

Estimate these regressions monthly and report the time-series average as in Fama-MacBeth

Commonownership measurements

Model-based measures

- $\mathsf{HJL}^A_I(A,B) = \sum_{i \in I^{A,B}} \frac{\alpha_{i,B}}{\alpha_{i,A} + \alpha_{i,B}}$ Harford et al. (2011)
 - Bi-directional
 - Pair-level measure of common ownership
 - Its potential impact on managerial incentives
 - Measure not necessarily increases when the relative ownership increases
 - Accounts only for an investor's relative holdings
- $\bullet \ \ \mathsf{MHHI} = \textstyle \sum_{j} \sum_{k} \mathsf{s}_{j} \mathsf{s}_{k} \frac{\sum_{i} \mu_{ij} \nu_{ik}}{\sum_{i} \mu_{ij} \nu_{ij}} \ \ \mathsf{Azar} \ \mathsf{et} \ \mathsf{al.} \ \mathsf{(2018)}$
 - Capture a specific type of externality
 - Measured at the industry level
 - Assumes that investors are fully informed about the externalities
- $\operatorname{\mathsf{GGL}}^A(A,B) = \sum_{i=1}^I \alpha_{i,A} g(\beta_{i,A}) \alpha_{i,B}$ Gilje et al. (2020)
 - Bi-directional
 - Less information
 - Not sensitive to the scope
 - Measure increases when the relative ownership of firm A increases

Commonownership measurements

Ad hoc common ownership measures

- $Overlap_{Count}(A, B) = \sum_{i \in I^{A,B}} 1$ He and Huang (2017),He et al. (2019)
- $Overlap_{Min}(A,B) = \sum_{i \in I^{A,B}} min\{\alpha_{i,A},\alpha_{i,B}\}$ Newham et al. (2018)
- Overlap_{AP}(A,B) = $\sum_{i \in I^{A,B}} \alpha_{i,A} \frac{\bar{\nu}_A}{\bar{\nu}_A + \bar{\nu}_B} + \alpha_{i,B} \frac{\bar{\nu}_B}{\bar{\nu}_A + \bar{\nu}_B}$ Anton and Polk (2014)
- $Overlap_{HL}(A,B) = \sum_{i \in I^{A,B}} \alpha_{i,A} \times \sum_{i \in I^{A,B}} \alpha_{i,B}$ Hansen and Lott Jr (1996) , Freeman (2019)
- Unappealing properties
 - Unclear is whether any of these measures represents an economically meaningful measure of common ownership's impact on managerial incentives.
 - Both Overlap_{Count} and Overlap_{AP} are invariant to the decomposition of ownership between the two firms, which leads to some unappealing properties.

