Кафедра «Высшая математика и физика для технических специальностей»

Лектор – к.х.н., профессор Мусаев Джумат

ТЕСТ по дисциплине «ФИЗИКА» - 300 вопросов

Для студентов группы: СМ-22-1р, 4р,6р – 5 кредит

1. Сила трения скольжения определяется по формуле:

- a) F=mN
- b) F=mg
- $F = k \frac{q^2}{r^2}$
- d) F = -kx
- e) F = ma
 - 2. Вес тела:
- а) Равен силе тяжести, если тело покоится или движется равномерно, прямолинейно.
- b) Равен силе тяжести, при условии ускоренного движения тела вверх.
- с) Равен нулю.
- d) Всегда равен силе тяжести.
- е) Равен силе тяжести, при условии ускоренного движения тела вниз.
 - 3. Когда вес движущегося тела меньше веса этого же покоящегося тела?
- а) Когда тело движется равноускоренно вниз.
- b) Когда тело движется равноускоренно вверх.
- с) Когда тело движется равномерно вниз.
- d) Когда тело движется с ускорением вверх.
- е) Когда тело движется равномерно вверх.

4. Какая величина является мерой инерции при вращении твердого тела вокруг закрепленной оси:

- а) Момент инерции
- b) Момент силы
- с) Импульс тела
- d) Угловое ускорение
- e) Macca

5. Автомобиль двигался первую половину пути со скоростью υ_1 , а вторую половину пути со скоростью υ_2 . Найти среднюю скорость автомобиля на всем пути

a)
$$\frac{2\upsilon_1\upsilon_2}{\upsilon_1+\upsilon_2}$$

b)
$$\frac{\upsilon_1 + \upsilon_2}{2\upsilon_1\upsilon_2}$$

c)
$$\frac{\upsilon_1\upsilon_2}{\upsilon_1+\upsilon_2}$$

d)
$$\frac{\upsilon_1 + \upsilon_2}{\upsilon_1 \upsilon_2}$$

e)
$$\frac{\upsilon_1 + \upsilon_2}{2}$$

6. Момент инерции тела, вращающегося вокруг неподвижной оси, зависит от:

a)	массы тела и ее распределения относительно оси вращения
b) c)	скорости вращения тела вращающего момента
d)	силы, действующей на тело
e)	ускорения тела
,	7. На поверхности Луны астронавты производили опыт, наблюдая падение одновременно брошенных вертикально вниз без начальной скорости стального шарика, перышка, пробки кусочка пластмассы (на Луне нет атмосферы). Какой предмет раньше других упал на поверхности Луны:
a)I	Все предметы упали одновременно
	Кусочек пластмассы
	Перышко
	Пробка
e)	Стальной шарик
	8. В неподвижном лифте на пружине висит гиря массой 1 кг. Пружина растянулась на 2 см.
۵)	Найти, на сколько растянется пружина, если лифт поднимается с ускорением 2 м/c^2 . 2,4 см
a) b)	0,6 cm
c)	1,2 cm
d)	4,8 cm
e)	5,6 см
	9. Груз массой m_1 , подвешенный на пружине, совершает гармонические колебания с периодом T_1 . Чему равен период T_2 колебаний груза массой m_2 =4 m_1 , подвешенного на такой же пружине?
a)	$T_2=2T_1$
b)	$T_2 = 4T_1$
c) d)	$T_2=T_1/2$ $T_2=T_1/4$
e)	$T_2 = T_1/4$ $T_2 = T_1$
C)	10.Центростремительное ускорение автомобиля, движущегося по закругленному участку радиусом 600 м со скоростью 36 км/ч, равно:
a)	$0.17~\mathrm{m/c^2}$
b)	$1,63 \text{ m/c}^2$
c)	0.19 m/c^2
d)	0.28 m/c^2
e)	$2,36 \text{ M/c}^2$
	11.Материальная точка массой 5 г совершает гармонические колебания с частотой 0,5 Гц. Амплитуда колебаний 3 см. Максимальная сила, действующая на точку, равна:
a)	1,48·10 ⁻³ H
	$0.37 \cdot 10^{-3} \mathrm{H}$
	$7,13\cdot10^{-3}\mathrm{H}$
	$3,12\cdot10^{-3}$ H
e)	2,15·10 ⁻³ H
	12.Укажите величину угла между угловой и линейной скоростью какой-либо точки твердого тела, вращающегося вокруг закрепленной оси.
a)	90^{0}
b)	$\stackrel{\sim}{0}$
c)	45^{0}
d)	180^{0}
e)	Угол может быть любым
,	13. Уравнение колебаний источника волн $x = 2 \sin 100\pi t$ м. Модуль скорости распространения колебаний в среде 400 м/с. Чему равна длина волны?

a)	8 м
b)	4 M
c)	2π м
d)	4π M
e)	$\frac{\pi}{2}$ M
6)	$\overline{2}^{M}$
	14.Тело массой 0,8 кг бросили вертикально вверх. Кинетическая энергия тела в момент бросания
	равна 200 Дж. Тело может подняться на высоту:
a)	25 м
b)	50 м
c)	12,5 м
d)	10 м
e)	2,5 м
	15.За промежуток времени 10 с точка прошла половину окружности радиусом 160 см. Вычислить
	за это время среднюю скорость точки:
a)	50 cm/c
b)	15 cm/c
c)	5 cm/c
d)	10 cm/c
e)	25 cm/c
- /	16.К сжатой пружине приставлен шар массой 1 кг. Пружина сжата на 10 см, а коэффициент её
	упругости равен 400 Н/м. Найти скорость шара, с которой он отбрасывается при
	выпрямлении пружины:
(۵	2 m/c
a) b)	2 M/C 200 m/c
c)	4 m/c
d)	40 M/c
e)	20 m/c
• ,	17. Скорость легкового автомобиля в 2 раза больше скорости грузового, а масса грузового
	автомобиля в 2 раза больше массы легкового. Сравните значения импульсов легкового p_{π} и
	грузового р _г автомобилей:
a)	n =n
a) b)	$p_{\pi}\!\!=\!\!p_{\Gamma}$ $p_{\pi}\!\!=\!\!2p_{\Gamma}$
c)	p_{π} = p_{r} $2p_{\pi}$ = p_{r}
d)	$\mathbf{p}_{\mathrm{n}}=4\mathbf{p}_{\mathrm{r}}$
e)	$4\mathbf{p}_{n}\mathbf{=}\mathbf{p}_{\Gamma}$
-,	18. Известна зависимость модуля скорости частицы от времени: $\upsilon = at + bt^2$ (a, b – постоянные
	величины). Чему равна сила, действующая на частицу?
a)	m(a+2bt)
b)	ma
c)	$m(at+bt^2)/2$
d)	2mbt
e)	$m(a+bt^2)$
,	19. Что называется нормальным ускорением?
2)	
a) b)	составляющая вектора ускорения, перпендикулярная вектору скорости
b) c)	нет верного ответа ускорение, совпадающее по направлению с направлением вектора скорости
d)	ускорение, совпадающее по направлению с направлением вектора скорости любой вектор ускорения
e)	посой вектор ускорения составляющая вектора ускорения, направленная по касательной в любой точке траектории
٠,	billion between Jewer states, managemental to the action between the transfer of the representation of the states of the

20. Чему равна выталкивающая сила, действующая на тело, погруженное в жидкость?

- а) весу жидкости в объеме погруженной части тела
- b) весу тела в воздухе
- с) весу, погруженной части тела
- d) весу жидкости в объеме всего тела
- е) нет правильного ответа

21. Чему равно ускорение при равномерном прямолинейном движении тела?

b)
$$a = \frac{\Delta u}{\Delta t}$$

c)
$$a = \frac{2S}{t^2}$$

d)
$$a = \frac{F}{m}$$

e)
$$a = \frac{t^2}{2S}$$

22.Тело массой 5 кг движется по закону $S=5 \cdot 10^{-2} \sin \pi t$ м. Найти силу, действующую на тело через 1/6 сек после начала движения.

- a) 1,23 H
- b) -1,23 H
- c) 1,83 H
- d) -1,83 H
- e) 1,63 H

23.Укажите формулу Штейнера, если т - масса тела, а - расстояние между осями

- a) $J=J_0+ma^2$
- b) J=ma³
- c) $J=J_0-ma^2$
- d) $J=J_0^2+ma$
- e) $J=J_0+ma$

24.Укажите основную формулу вращательного движения, если принять β - уголовое ускорение; J - момент инерции тела

- a) M=Jβ
- b) $M=J+J\beta$
- c) $M = \frac{J}{\beta}$
- d) $M=J+\beta$
- е) нет правильного ответа

25. Чему равна кинетическая энергия вращающегося тела относительно неподвижной оси, если J-момент инерции тела, а ω - его угловая скорость.

a)
$$E = \frac{I\omega^2}{2}$$

b)
$$E = \frac{I\omega^2}{3}$$

c)
$$E = \frac{I}{2\omega^2}$$

d)
$$E = \frac{I\omega}{2}$$

e)
$$E = 0$$

26. Кинематическое уравнение движения материальной точки определяет зависимость:

- а) координат от времени
- b) скорости от времени
- с) ускорения от времени
- d) координат друг от друга
- е) координат от скорости

27. Ускорение, придаваемое телу движущей силой:

- а) прямо пропорционально силе и обратно пропорционально массе
- b) обратно пропорционально силе и прямо пропорционально массе
- с) прямо пропорционально силе и массе
- d) обратно пропорционально силе и массе
- е) прямо пропорционально силе и скорости

28. Путь s, пройденный телом за время t, определяется формулой:

a)
$$\int_{0}^{t} v(t)dt$$

- b) v
- c) $\frac{1}{t} \int_{0}^{t} v(t) dt$
- d) $\int_{0}^{t} a(t)dt$
- e) $\frac{1}{t} \int_{0}^{t} a(t) dt$

29.Определение момента силы

- a) $\left[\vec{r} \ \vec{F}\right]$
- b) $[\vec{r} \ \vec{p}]$
- c) $m\vec{v}$
- d) $\frac{mv^2}{2}$
- e) $\vec{F} d\vec{r}$

30.Определение кинетической энергии

- a) $\frac{mv^2}{2}$
- b) $\vec{F} d\vec{r}$
- c) $m\vec{v}$
- $\vec{[r} \ \vec{p}]$
- e) $\begin{bmatrix} \vec{r} & \vec{F} \end{bmatrix}$

31.Определение элементарной работы

a) $\vec{F} d\vec{r}$

b)
$$\frac{m v^2}{2}$$

c)
$$m\vec{v}$$

d)
$$[\vec{r} \ \vec{p}]$$

e)
$$\left[\vec{r} \ \vec{F}\right]$$

32. Уравнение движения материальной точки

a)
$$\frac{d\vec{P}}{dt} = \vec{F}$$

b)
$$\frac{d\vec{L}}{dt} = \vec{M}$$

c)
$$\vec{F}_{12} = -\vec{F}_{21}$$

d)
$$\vec{F} = 0$$
; $v = const$

e)
$$I = m R^2$$

33.Импульс системы остается постоянным во времени, если:

- а) сумма внешних сил равна нулю
- b) сумма моментов внешних сил равна нулю
- с) сумма моментов внешних сил постоянна
- d) сумма внешних сил постоянна
- е) сумма внутренних сил равна нулю

34.Определение момента инерции материальной точки

a)
$$mR^2$$

b)
$$mD^2$$

c)
$$mr^2$$

d)
$$\int R^2 dm$$

e)
$$\int R^2 dv$$

35.Момент инерции тела

a)
$$\int R^2 dm$$

b)
$$\rho \int R^2 dv$$

c)
$$mr^2$$

d)
$$\frac{mD^2}{4}$$

e)
$$mR^2$$

36.Первая космическая скорость находится по формуле (где r – радиус Земли):

a)
$$\vartheta = \sqrt{gr}$$

b)
$$g = \frac{\gamma m}{R} g$$

c)
$$\theta = 2\sqrt{gr}$$

d)
$$\theta = \sqrt{\frac{gr}{2}}$$

e)
$$\theta = \sqrt{2gr}$$

37.Вторая космическая скорость находится по формуле (где r – радиус Земли):

a)
$$\vartheta = \sqrt{2gr}$$

b)
$$\mathcal{G} = \sqrt{gr}$$

c)
$$\mathcal{G} = \frac{\gamma m}{R} g$$

d)
$$\theta = 2\sqrt{gr}$$

e)
$$\theta = \sqrt{\frac{gr}{2}}$$

38.Закон сохранения момента импульса твердого тела

a)
$$I_1\omega_1 = I_2\omega_2$$

b)
$$I_1 \tau_1^2 = I_2 \tau_1^2$$

c)
$$I_1 m_1^2 = I_2 m_1^2$$

$$d) f_1 \varepsilon_1 = f_2 \varepsilon_2$$

e)
$$m_1 c_1^2 = m_2 c_2^2$$

39. Гидростатическое давление

a)
$$P = \rho g h$$

b)
$$P = \rho g V$$

c)
$$P = mg$$

d)
$$P = \rho v^2 / 2$$

e)
$$P = \rho v^2 / 2 + \rho Vg$$

40.Закон Архимеда

a)
$$F_A = \rho g V$$

b)
$$F_A = \rho g h + \rho g V$$

c)
$$F_A = \rho v^2 / 2 + \rho g h$$

d)
$$F_A = \rho g h$$

e)
$$F_A = \rho v^2 / 2$$

41. Уравнение неразрывности

a)
$$S_1 \nu_1 = S_2 \nu_2$$

$$\mathbf{b}) \qquad S_1 \upsilon_2 = S_2 \cdot \upsilon_1$$

c)
$$S_1 \nu_1^2 = S_2 \cdot \nu_2^2$$

d) $S_1 \nu_2^2 = S_2 \cdot \nu_1^2$

d)
$$S_1 v_2^2 = S_2 \cdot v_1^2$$

e)
$$S_1 v_2^3 = S_2 \cdot v_1^3$$

42. Точка равномерно движется по окружности. При этом:

- угловая скорость является постоянной a)
- b) ускорение равно нулю
- c) угловое ускорение увеличивается
- d) тангенциальная составляющая скорости равна нулю
- нормальная составляющая ускорения равна нулю e)

43. Материальная точка - это

- тело, обладающее массой, размерами которого в данной задаче можно пренебречь a)
- любое тело, обладающее массой, движущееся со скоростью у относительно другого тела b)
- только атомное ядро c)
- d) молекула вещества в жидком, твердом или газообразном состоянии
- протон, нейтрон, электрон или другая частица e)

44. Ускорение материальной точки

a)
$$\vec{a} = \frac{d\vec{v}}{dt}$$

b)
$$\vec{a} = \int \vec{v}(t)dt$$

c)
$$a = \frac{d\vec{r}}{dt}$$

d)
$$a = S \cdot t$$

e)
$$a = \upsilon \cdot t + \upsilon^2 t$$

45. Тангенциальная компонента ускорения

a)
$$a_{\tau} = \frac{dv}{dt}$$

b)
$$a_{\tau} = \frac{v^2}{r}$$

c)
$$a_{\tau} = \frac{v^3}{r}$$

d)
$$a_{\tau} = \int \upsilon \cdot dt$$

e)
$$a_{\tau} = \frac{dS}{dt} \cdot f(r)$$

46. Нормальная компонента ускорения

a)
$$a_n = \frac{v^2}{r}$$

b)
$$a_n = \frac{dv}{dt}$$

c)
$$a_n = v^2 \cdot t$$

d)
$$a_n = v^2 / t$$

e)
$$a_n = v^2 \cdot t^2$$

47.Угловая скорость

a)
$$\vec{\omega} = \frac{d\vec{\varphi}}{dt}$$

b)
$$\omega = \frac{d\vec{r}}{dt}$$

c)
$$\omega = \int f(r)dt$$

d)
$$\omega = f(r) \frac{dr}{dt}$$

e)
$$\omega = a_{\tau} + a_n$$

48.Связь линейной υ и угловой ϖ скоростей

a)
$$v = \omega \cdot r$$

b)
$$v = \omega^2 \cdot r$$

c)
$$v = \frac{\omega}{r}$$

d)
$$v = \omega^2 \cdot r^2$$

e)
$$v = \omega \cdot f(r)$$

49. Связь периода вращения T и угловой скорости ω

a)
$$T = 2\pi/\omega$$

b)
$$T = \pi \cdot \omega$$

c)
$$T = 4\pi / \omega$$

d)
$$T = 2\pi\omega$$

e)
$$T = \omega / 2\pi$$

50.Связь частоты вращения v и угловой скорости ω

a)
$$\omega = 2\pi V$$

b)
$$\omega = \pi V$$

c)
$$\omega = \frac{2\pi}{v}$$

d)
$$\omega = \frac{v}{2\pi}$$

e)
$$\omega = \frac{v}{\pi}$$

51.Первый закон Ньютона - это

52.Второй закон Ньютона - это

a)
$$\vec{F} = m \frac{d\vec{v}}{dt}$$

c)
$$\vec{F} = \frac{\vec{v}}{m}$$

d)
$$\vec{F} = m \cdot \vec{v}$$

e)
$$F = m^2 \cdot f(r)$$

53. Закон сохранения импульса

a)
$$\vec{P} = \sum_{i=1}^{n} m_i \vec{v}_i = const$$

b)
$$E = T + \upsilon = const$$

c)
$$\vec{F} = m \cdot \vec{a} = const$$

d)
$$\vec{P} = \sum v_i = const$$

e)
$$\vec{P} = \frac{mv^2}{2} = const$$

54.Импульс тела

a)
$$\vec{P} = m\vec{v}$$

b)
$$P = \upsilon / m$$

c)
$$P = m/\upsilon$$

d)
$$P = v^2 / m$$

e)
$$\vec{P} = mv^2/2$$

55.Кинетическая энергия вращающегося тела

a)
$$E = \frac{I\omega^2}{2}$$

b)
$$E = \frac{mv^2}{2} + v$$

c)
$$E = \frac{mv^2}{2}$$

d)
$$E = \frac{mv^2}{2} - \frac{I\omega^2}{2}$$

e)
$$E = \frac{mv^2}{2} + \frac{I\omega^2}{2} + U$$

56. Закон сохранения энергии

a)
$$E = T + U = const$$

b)
$$E = T \cdot U = const$$

c)
$$E = \frac{T}{U} = const$$

d)
$$E = f(T) \cdot f(U) = const$$

e)
$$E = T - U = const$$

57.Связь кинетической энергии T и импульса P

a)
$$T = P^2 / 2m$$

b)
$$T = P/m$$

c)
$$T = m^2 / 2P$$

d)
$$T = m/P$$

e)
$$T = P^2 / m$$

58.Потенциальная энергия упруго деформированного тела

a)
$$U = kx^2 / 2$$

b)
$$U = kx^2$$

c)
$$U = kx$$

$$d) U = \frac{k}{x^2}$$

e)
$$U = \frac{x^2}{2k}$$

59.Потенциальная энергия тела массой m, поднятого на высоту h над Землей, равна:

a)
$$U = mgh$$

b)
$$U = m^2 gh$$

c)
$$U = gh/2$$

d)
$$U = mh/g$$

e)
$$U = \frac{m}{h}g$$

60. Момент инерции I материальной точки относительно оси вращения:

a)
$$I = mr^2$$

b)
$$I = mr$$

c)
$$I = mv$$

d)
$$I = m / r$$

e)
$$I = m^2 r^2$$

61. Какая сила определяет движение Земли вокруг Солнца?

- а) Гравитационное взаимодействие с Солнцем
- b) Электромагнитная
- с) Гравитационное взаимодействие с Луной
- d) Гравитационное взаимодействие с планетами
- е) Движение происходит по инерции

62.Определение скорости

a)
$$\frac{d\vec{r}}{dt}$$

b)
$$\frac{ds}{dt}$$

c)
$$\frac{s}{t}$$

$$\frac{\vec{r}_{12}}{t_2 - t_1}$$

e)
$$\vec{a}t$$

63.Уравнение состояния идеального газа при адиабатическом процессе:

a)
$$PV^{\gamma} = const$$

b)
$$PV = const$$

c)
$$\frac{P}{T} = const$$

d)
$$\frac{V}{T} = const$$

e)
$$TV^{n-1} = const$$

64.При политропическом процессе газ, кроме уравнения состояния, подчиняется дополнительному условию:

a)
$$C = const$$

b)
$$dQ = 0$$

c)
$$V = const$$

d)
$$T = const$$

e)
$$P = const$$

65.При адиабатическом процессе газ, кроме уравнения состояния, подчиняется дополнительному условию:

a)
$$dQ = 0$$

b)
$$V = const$$

c)
$$T = const$$

d)
$$P = const$$

e)
$$C = const$$

66.Уравнение состояния идеального газа можно записать в виде (M - молярная масса; n - число молекул в единице объёма)

a)
$$PV = \frac{m}{M}RT$$

b)
$$P = NkT$$

c)
$$PV = nkT$$

d)
$$P = \frac{\rho}{m}RT$$

e)
$$P = \frac{1}{3} n \langle \varepsilon_{nocm} \rangle$$

67. Уравнение состояния идеального газа можно записать в виде (М - молярная масса; n - число молекул в единице объёма)

a)
$$P = nkT$$

b)
$$PV = nRT$$

c)
$$PV = \frac{M}{m}RT$$

d)
$$P = \frac{\rho}{M}kT$$

e)
$$P = \frac{2}{3} nm \langle v^2 \rangle$$

68.Уравнение состояния идеального газа для давлении можно записать в виде (M - молярная масса; n - число молекул в единице объёма)

a)
$$P = \frac{1}{3} \rho \langle v^2 \rangle$$

b)
$$PV = \frac{m}{M}kT$$

c)
$$PV = nkT$$

d)
$$P = NkT$$

e)
$$P = \frac{\rho}{M}kT$$

69. Неравенство Клаузиуса

a)
$$dS \ge 0$$

b)
$$dS \rangle 0$$

c)
$$dS = 0$$

d)
$$dS = \frac{dQ}{dt}$$

e)
$$dS \rangle \frac{dQ}{dt}$$

70.КПД цикла Карно (T_1 , T_2 - соответственно температура нагревателя и холодильника; Q_1 и Q_2 - соответственно полученная и отнятая теплота)

a)
$$\frac{T_1 - T_2}{T_1}$$

b)
$$\frac{Q_1 - Q_2}{Q_2}$$

c)
$$\frac{T_x - T_{_H}}{T_x}$$

$$\frac{Q_2 - Q_1}{Q_1}$$

e)
$$\frac{A}{Q_2}$$

71.Теплоемкость тела

a)
$$\frac{dQ}{dT}$$

b)
$$\frac{1}{m} \cdot \frac{dQ}{dT}$$

c)
$$\frac{1}{v} \cdot \frac{dQ}{dT}$$

d)
$$\frac{1}{m} \cdot \left(\frac{dI}{dT}\right)_p$$

e)
$$\frac{1}{v} \cdot \left(\frac{dU}{dT}\right)_{1}$$

72.Удельная теплоёмкость

a)
$$\frac{1}{m} \cdot \frac{dQ}{dT}$$

b)
$$\frac{1}{v} \cdot \frac{dQ}{dT}$$

c)
$$\frac{dQ}{dT}$$

d)
$$\frac{1}{m} \cdot \left(\frac{dI}{dT}\right)_{II}$$

e)
$$\frac{1}{v} \cdot \left(\frac{dU}{dT}\right)_{v}$$

73. Плоский контур площадью 50 см² пронизывает магнитный поток 2 мВб при индукции поля 0,4Тл. Угол между плоскостью контура и направлением поля равен:

- a) 90⁰
- b) 60°
- c) 45°
- d) 30^{0}
- e) 0^0

74. Какие процессы составляют цикл Карно

- а) 2 изотермических и 2 адиабатических
- b) 2 изобарических и 2 адиабатических
- с) 2 изохорических и 2 адиабатических
- d) 2 изотермических и 2 изобарических
- е) 2 изотермических и 2 изохорических

75.Первое начало термодинамики

- а) Закон сохранения и превращения энергии, записанный для термодинамической системы.
- b) Закон сохранения и превращения энергии
- с) Закон, устанавливающий эквивалент теплоты, работы и энергии.
- d) Закон, определяющий функции состояния и функции процесса.
- е) нет правильного ответа

76. Укажите выражение для первого начала термодинамики

- a) $\delta Q = dU + \delta A$
- b) dU = dQ + dA
- c) dA = dU
- d) dA = dU + dQ
- е) нет правильного ответа

77. Закон Дальтона, определяющий давление смеси газов

a)
$$P = P_1 + P_2 + P_3 + ... + P_n$$

b)
$$PV = \frac{m}{M}RT$$

c)
$$P = nkT$$

d)
$$P = \rho \frac{RT}{V}$$

e)
$$P = \frac{RT}{V}$$

78. Наиболее вероятная скорость молекул газа

a)
$$\sqrt{\frac{2RT}{M}}$$

b)
$$\sqrt{\frac{8RT}{\pi M}}$$

c)
$$\sqrt{\frac{3RT}{M}}$$

d)
$$\sqrt{\frac{5kT}{M}}$$

e)
$$\sqrt{\frac{7kT}{\pi M}}$$

79. Средняя арифметическая скорость молекул газа

a)
$$\sqrt{\frac{8RT}{\pi M}}$$

b)
$$\sqrt{\frac{2RT}{M}}$$

c)
$$\sqrt{\frac{3RT}{M}}$$

d)
$$\sqrt{\frac{5kT}{M}}$$

e)
$$\sqrt{\frac{7kT}{\pi M}}$$

80.Средняя квадратичная скорость молекул газа

a)
$$\sqrt{\frac{3RT}{M}}$$

b)
$$\sqrt{\frac{2RT}{M}}$$

c)
$$\sqrt{\frac{8RT}{\pi M}}$$

d)
$$\sqrt{\frac{5kT}{M}}$$

e)
$$\sqrt{\frac{7kT}{\pi M}}$$

81. Энтропия системы

- а) является функцией состояния системы
- b) определяет фазовую траекторию системы
- с) определяет температуру системы
- d) характеризует фазовое пространство
- е) характеризует импульсное пространство

82.Моли идеальных газов при одинаковых температуре и давлении занимают одинаковые объемы. Это формулировка закона:

- а) Авогадро
- b) Дальтона
- с) Бойля-Мариотта
- d) Максвелла
- е) Гей-Люссака

83.Давление смеси идеальных газов равно сумме парциальных давлений входящих в нее газов. Это формулировка закона: Дальтона Бойля-Мариотта Гей-Люссака Авогадро Максвелла 84.Связь между универсальной газовой постоянной (R) и постоянной Больцмана (k) $R = k \cdot N_A$ $k = R \cdot N_A$ $N_A = R \cdot k \cdot$ $R = N_A / k$ 85.Давлению в 1 атмосферу в СИ соответствует давление $1,013 \cdot 10^5 \Pi a$ 133*Πa* $9,81\Pi a$ 8,31*Πa* $4,19\Pi a$ 86. Число степеней свободы у молекулы одноатомного идеального газа i = 3i = 5i = 6i = 9i = 1187. Число степеней свободы у молекулы двухатомного идеального газа i = 5i = 3i = 6i = 9i = 1188. Число степеней свободы у молекулы трехатомного идеального газа i = 6i = 3i = 5i = 9i = 1189.Средняя кинетическая энергия молекулы одноатомного идеального газа

a) b)

c)

d)

e)

a)

b)

c)

d)

e)

a)

b)

c)

d)

e)

a)

b)

c)d)

e)

a)

b)

c)d)

e)

a)

b)

c) d)

e)

a)

b)

c)

d)

e)

kT

3kT

90.Средняя кинетическая энергия молекулы двухатомного идеального газа

a)
$$\frac{5}{2}kT$$

b)
$$\frac{3}{2}kT$$

c)
$$\frac{7}{2}kT$$

d)
$$kT$$

e)
$$3kT$$

91. Элементарная работа газа (dA) при изменении его объема (dV)

a)
$$PdV$$

c)
$$PdT$$

d)
$$PdV^{\gamma}$$

e)
$$TdV$$

92.Формула Майера

a)
$$C_P = C_V + R$$

b)
$$C_P = C_V - R$$

c)
$$C_P = C + R$$

$$C_P = C_V \cdot R$$

e)
$$C_P = C_V$$

93. Молярная теплоемкость одноатомного идеального газа при постоянном объеме

a)
$$C_V = \frac{3}{2}R$$

b)
$$C_V = \frac{5}{2}R$$

c)
$$C_V = 3R$$

$$C_V = \frac{3}{2}R$$

e)
$$C_V = \frac{3}{2}R$$

94.Процесс, при котором внутренняя энергия газа остается неизменной

- а) изотермический
- b) изохорический
- с) изобарический
- d) адиабатический
- е) политропический

95.Показатель адиабаты

a)
$$\frac{C_p}{C_v}$$

b)
$$\frac{i}{i+2}$$

c)
$$1 + \frac{R}{C_p}$$

$$\frac{C - C_p}{C - C_v}$$

e)
$$\frac{C - C_{v}}{C - C_{p}}$$

96.На каждую степень свободы в среднем приходится одинаковая кинетическая энергия, равная

a)
$$\frac{kT}{2}$$

b)
$$\frac{3}{2}kT$$

c)
$$\frac{7}{2}kT$$

d)
$$kT$$

97. Молярная теплоёмкость идеального газа при постоянном давлении

a)
$$\frac{i+2}{2}R$$

b)
$$\frac{R}{\gamma - 1}$$

c)
$$\frac{Pv}{\gamma - 1}$$

d)
$$\frac{RT}{\gamma - 1}$$

e)
$$\frac{iRT}{2}$$

98.Закон Кулона в векторной форме записывается следующим образом:

a)
$$\vec{F}_{12} = \frac{1}{4\pi\varepsilon\varepsilon_0} \cdot \frac{q_1q_2}{r_{12}^2} \cdot \frac{\vec{r}_{12}}{r_{12}}$$

b)
$$\vec{F}_{12} = \frac{1}{4\pi\varepsilon\varepsilon_0} \cdot \frac{q_1q_2}{r_{12}^2} \vec{r}_{12}$$

c)
$$\vec{F}_{12} = \frac{1}{4\pi\varepsilon\varepsilon_0} \frac{q_1 q_2}{r_{12}} \vec{r}_{12}$$

d)
$$\vec{F}_{12} = \frac{1}{4\pi\varepsilon_0\varepsilon} \frac{q_1}{r_{12}^2} \vec{r}_{12}$$

e)
$$\vec{F}_{12} = \frac{1}{4\bar{n}\varepsilon_0\varepsilon} \frac{q_2}{r_{12}} \vec{r}_{21}$$

99. Эквипотенциальные поверхности

- а) Перпендикулярны к линиям напряженности
- b) Параллельны к линиям напряженности
- с) Направлены по линии напряженности
- d) Направлены против линии напряженности
- е) Всегда являются сферическими

100. Электроемкость уединенного проводника

a)
$$C = \frac{q}{\varphi}$$

b)
$$C = q\varphi$$

c)
$$C = q \cdot \varphi$$

d)
$$C = \frac{\varphi}{q}$$

e)
$$C = \frac{1}{2} q \varphi$$

101. Емкость плоского конденсатора

a)
$$C = \frac{\varepsilon \varepsilon_0 S}{d}$$

b)
$$C = \frac{\varepsilon_0 \varepsilon d}{S}$$

c)
$$C = \frac{\varepsilon dS}{\varepsilon_0}$$

d)
$$C = \rho \frac{l}{S}$$

e)
$$C = \frac{d}{\varepsilon_0 \varepsilon S}$$

102. Первое правило Кирхгофа

a)
$$\sum_{i=1}^{n} I_i = 0$$

b)
$$\sum_{i=1}^{n} I_{i} R_{i} = \sum_{k=1}^{m} \varepsilon_{k}$$

c)
$$\sum_{i=1}^{n} \varepsilon_i = \sum_{i=1}^{n} I_i$$

$$d) \qquad \sum_{i=1}^{n} I_i R_i = 0$$

e)
$$\sum_{i=1}^{n} \varepsilon_{i} = \sum_{k=1}^{n} \varphi_{i}$$

103. Второе правило Кирхгофа

a)
$$\sum_{i=1}^{n} I_{i} R_{i} = \sum_{k=1}^{m} \varepsilon_{k}$$

$$b) \qquad \sum_{i=1}^{n} I_i = 0$$

c)
$$\sum_{i=1}^{n} \varepsilon_i = \sum_{i=1}^{n} I_i$$

$$d) \qquad \sum_{i=1}^{n} I_i R_i = 0$$

e)
$$\sum_{i=1}^{n} \varepsilon_{i} = \sum_{k=1}^{n} \varphi_{i}$$

104. Укажите связь между потенциальной энергией и потенциалом

a)
$$W = q \cdot \varphi$$

b)
$$W = \frac{q}{\varphi}$$

c)
$$W = q$$

d)
$$W = q \cdot \varphi^2$$

e)
$$W = q^2 \cdot \varphi$$

105. Связь между совершенной работой и разностью потенциалов

a)
$$A = q(\varphi_1 - \varphi_2)$$

b)
$$A = q^2 (\varphi_1 - \varphi_2)$$

c)
$$A = q^3(\varphi_1 - \varphi_2)$$

d)
$$A = q(\varphi_1 - \varphi_2)^2$$

e)
$$A = q(\varphi_1 - \varphi_2)^{-2}$$

106. Электрическая емкость сферы

a)
$$C = 4\pi\varepsilon\varepsilon_0 R$$

b)
$$C = \pi \varepsilon \varepsilon_0 R$$

c)
$$C = 2\pi R$$

d)
$$C = 4\pi\varepsilon\varepsilon_0 R^2$$

e)
$$C = 4\pi\varepsilon\varepsilon_0$$

107. Определите общую емкость параллельно соединенных конденсаторов, если емкости отдельных конденсаторов $C_1, C_2, C_3 \dots$

a)
$$C = \sum_{i=1}^{n} C_i$$

$$b) \qquad \frac{1}{C} = \sum_{i=1}^{n} \frac{1}{C_i}$$

$$C = \sum_{i=1}^{n} C^{2}_{i}$$

$$C = \sum_{i=1}^{n} C^{3}_{i}$$

e)
$$\frac{1}{C} = \sum_{i=1}^{n} \frac{1}{C_{i}^{2}}$$

108. Определите общую емкость последовательно соединенных конденсаторов, если емкости отдельных конденсаторов $C_1, C_2, C_3...$

a)
$$\frac{1}{C} = \sum_{i=1}^{n} \frac{1}{C_i}$$

b)
$$C = \sum_{i=1}^{n} C_i$$

$$C = \sum_{i=1}^{n} C^{2}_{i}$$

$$C = \sum_{i=1}^{n} C^{3}_{i}$$

e)
$$\frac{1}{C} = \sum_{i=1}^{n} \frac{1}{C_{i}^{2}}$$

109. Энергия заряженного проводника

a)
$$W = \frac{1}{2} C \varphi^2$$

b)
$$W = C\varphi^2$$

b)
$$W = C\varphi^{2}$$
c)
$$W = \frac{1}{2}C\varphi$$

$$W = \frac{1}{2}C^2\varphi$$

e)
$$W = C \cdot \varphi$$

Закон Ома для участка цепи **110.**

a)
$$I = \frac{U}{R}$$

b)
$$I = U \cdot R^2$$

c)
$$I = U \cdot R$$

d)
$$I = \frac{U^2}{R}$$

e)
$$I = \frac{U^2}{R^2}$$

Два резистора соединены последовательно. Сопротивление первого - $R_{\rm l}$, сопротивление второго - R_2 . Определите полное сопротивление цепи

a)
$$R = R_1 + R_2$$

b)
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

c)
$$\frac{1}{R} = \frac{1}{R_1} - \frac{1}{R_2}$$

$$R = \frac{R_1}{R_1 + R_2}$$

e)
$$R = \frac{R_1}{R_1 - R_2}$$

Два резистора соединены параллельно. Сопротивление первого - R_1 , сопротивление второго - R_2 . Определите полное сопротивление цепи.

a)
$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}$$

$$R = R_1 + R_2$$

c)
$$\frac{1}{R} = \frac{1}{R_1} - \frac{1}{R_2}$$

$$R = \frac{R_1}{R_1 + R_2}$$

e)
$$R = \frac{R_1}{R_1 - R_2}$$

Закон Ома для полной цепи

a)
$$I = \frac{\varepsilon}{(R+r)}$$

b)
$$I = \frac{U \cdot r}{R}$$

 $\vec{D} = \varepsilon_0 \vec{E} + \vec{P}$

Энергия конденсатора

e)

a)

b)

119.

c)	$\frac{qC}{2}$	
d)	$\frac{CU}{2}$ $\frac{U^2}{2C}$	
	U^2	
e)	$\frac{120}{2C}$	Dwannya wawawana
	120.	Энергия конденсатора
a)	$ \frac{CU^{2}}{2} $ $ \frac{q^{2}U}{2} $ $ \frac{qC}{2} $ $ \frac{CU}{2} $ $ \frac{U^{2}}{2C} $	
b)	$\frac{q^2U}{2}$	
c)	$\frac{qC}{2}$	
d)	$\frac{2}{CU}$	
u)	$\frac{1}{2}$	
e)	$\frac{c}{2C}$	
		н Джоуля – Ленца
۵)	0 -	I / I.
a)	Q = Q = Q	
b)	<i>Q</i> =	IK l
c)	Q =	UI t
d)	Q =	
e)	_	U^2Rt
	122.	Определить путь, пройденный телом за первые 0,5с, если модуль скорости
	матер	оиальной точки задаётся уравнением $v(t) = 16t$
a)	2 м/с	
b)	5 м/с	
c)	9 м/с	
d)	6 м/с	
e)	8 м/с 123.	Определить нормальное ускорение в момент времени t = 2c, если движение
		определить нормальное ускорение в момент времени $t=2c$, если движение опальной точки по окружности радиусом 6м задаётся уравнением $\xi(t)=t^2+2t+10$
	матер	mailbion to the no orpymoeth paghyeom om sagaeten ypabhennem 5(t) to 12t 110
a)	6	
b)	9	
c)	8	
d)	11	
e)	10	O × 2
	124.	Определите кинетическую энергию тела массой 3 кг, движущегося со скоростью 4 м/с
a)	24 Дж	
b)	18 Дж	
c)	36 Дж	
d)	15 Дж	
e)	48 Дж	

Определите изменение импульса тела массой 1кг, движущегося прямолинейно, при изменении его скорости от 10 м/с до 20 м/с

125.

a)	10 кг м	\sqrt{c}
b)	30 кг м	1/c
c)	0	
d)	-10 кг и	м/c
e)	5 кг м/с	$\mathfrak C$
,	126.	В баллоне содержится газ при температуре $t_1 = 50$ ⁰ C. До какой температуры t_2 нужно
		ть газ, чтобы его давление увеличилось в три раза? (ответ в градусах C^0).
	_	
a)	696	
b)	473	
c)	623	
d)	496	
- 1	676	
e)		TI 046 IA
	127.	При нагревании идеального газа на ΔT = 846 К при постоянном давлении объем его
	увели	чивается в три раза. Найти начальную температуру газа.
a)	423	
b)	473	
,	623	
c)		
d)	696	
e)	496	TO 11 (16 A) (1)
	128.	Какой объем занимает смесь газов азота ($M_{N_2} = 28$ г/моль) массой $\mathbf{m_1} = 14$ кг и гелия
	$(M_{He} =$	= 4 г/моль) массой m_2 = 6 кг при нормальных условиях.
(ر	44,8	
a)		
b)	33,6	
c)	11,2	
d)	5,6	
e)	2,8	
	129.	Реальный газ – это газ, в котором:
a)	Монак	улы взаимодействуют на расстоянии
a)		* *
b)	•	улы – материальные точки
c)	<i>J</i> 1	енняя энергия газа определяется только энергией теплового движения молекул
d)	•	етры газа связаны уравнением Клапейрона
e)	Молек	улы не взаимодействуют друг с другом
	130. нагре	Определить количество теплоты, сообщенное молекулярному водороду массой 0,5кг, тому на 100 К при постоянном давлении
	•	
a)	$7.3 \cdot 10^5$	
b)	$6.2 \cdot 10^5$	
c)	$5.2 \cdot 10^5$	
d)	$4.2 \cdot 10^5$	
e)	$3.2 \cdot 10^5$	
• ,	131.	Определить КПД двигателя, если температура нагревателя 527°C, а холодильника
	287°C	
a)	30%	
b)	40%	
c)	20%	
d)	15%	
e)	35%	
<i>\(\)</i>	132.	Идеальный газ совершает цикл Карно. Работа изотермического расширения газа 500
		Найти работу изотермического сжатия, если КПД равен 20%.

a)	4.10°	
b)	$2 \cdot 10^5$	
c)	$5 \cdot 10^{5}$	
d)	6.10^{5}	
e)	3.10^{5}	
C)	133.	Как изменится емкость плоского конденсатора $C = \frac{\varepsilon \varepsilon_0 S}{d}$, если расстояние между
	133.	d
	плос	костями увеличить в 2 раза?
a)	Умен	ьшится в два раза
b)		ичится в два раз
c)		ьшится в четыре раза
d)		ичится в четыре раза
e)	Не измен	
σ,	134.	Как изменится сопротивление проволоки $R= ho rac{l}{\varsigma}$, если увеличить ее диаметр в 2
	раза	b
۵)	V	
a)		ьшится в 4 раза
b)		ичится в 4 раза
c)		ьшится в 2 раза
d)		ичится в 2 раза
e)		менится
	135.	Как изменится емкость шара $C=4\pi\varepsilon\varepsilon_0 R$, если увеличить его радиус в 2 раза?
a)	У	величится в 2 раза
b)		меньшится в 2 раза
c)		величится в 4 раза
d)		меньшится в 4 раза
e)		е изменится
,	136.	Как изменится мощность электрического тока $P = I^2 R$, если увеличить силу тока в 2
	раза	?
a)	Увели	ичится в 4 раза
b)	*	
c)	•	
ď)		ьшится в 4 раза
e)		ичится в 8 раз
• ,	137.	Определить силу взаимодействия двух точечных зарядов 2 нКл и 3 нКл, находящихся
		кууме на расстоянии 3 см друг от друга
a)	6·10 ⁻⁵	
b)	3.10^{-5}	
c)	2.10^{-5}	
d)	8.10^{-5}	
e)	4.10^{-5}	
C)	138.	Определить сопротивление проводника, если по нему течет ток силой 3 А, и он
		соединен к источнику питания с ЭДС 12 В и внутренним сопротивлением 1 Ом
رو	3	
a)	3	
b)	2	
c)	4	
d)	6	
e)	8	T DECAID
	139.	Два одинаковых источника тока с ЭДС 2,4 В и внутренними сопротивлениями по 0,4
	Ом і	саждый соединены последовательно. Определить силу тока в цепи

a)	6	
b)	8	
c)	3	
d)	2	
e)	4	
	140. соста	Электровоз, начиная движение с места, развивает силу тяги 380 кН. Сила сопротивления ввляет 250 кН. Составу массой 500 тонн сообщает ускорение:
a)	$0,26 \text{ m/c}^2$	
b)	$2,6 \text{ m/c}^2$	
c)	2m/c^2	
d)	3m/c^2	
e)	$0,2 \text{ m/c}^2$	
	141.	Пуля массой 2 кг, летевшая горизонтально со скоростью 4 м/с, пробивает тонкую
	доск	у. На вылете из доски скорость пули 1 м/с. Работа силы трения, возникающая при
	прох	ождении пули в доске, равна:
a)	15 Дж	
b)	3Дж	
c)	17 Дж	
d)	4 Дж	
e)	16Дж	
	142.	Тело массой 16 кг закреплено на пружине с жесткостью 100 Н/м. Найти частоту
	собст	гвенных колебаний тела.
a)	$2,5 c^{-1}$	
b)	$3,3 c^{-1}$	
c)	$0.4 \mathrm{c}^{-1}$	
d)	$0.9 \mathrm{c}^{-1}$	
e)	$1.9 \mathrm{c}^{-1}$	
	143.	Тело массой 9 кг закреплено на пружине с жесткостью 100 Н/м. Частота собственных
	коле	баний равна:
a)	3,3 c ⁻¹	
	$0.3 c^{-1}$	
	1,9 c ⁻¹	
d)	$0,9 c^{-1}$	
	$1,1 c^{-1}$	
- /	144.	Уравнение колебаний имеет вид $x = 5\cos(16\pi t + 8)$. Период колебаний равен:
a)	T = 1/2	8 c
b)	T = 10	δπ c
c)	$T = 8\tau$	
d)	T=10a	τ c
e)	T=1/1	6 c
	145.	Колесо радиусом 0,1м вращается так, что зависимость угла поворота радиуса колеса от
		лени дается уравнением ϕ =A+Bt+Ct²+Dt³, где B = 2 рад/с, C = 2 рад/с², D = 3 рад/с³. Найти ейную скорость точек, лежащих на ободе колеса, через 2 с после начала движения.
a)	4,6 м/с	
b)	5,8 м/с	
c)	1,2 м/c	
d)		
e)	2,4 m/c	
	146.	По касательной к шкиву маховика в виде диска массой 5 кг приложена сила 2 Н.
	-	еделите кинетическую энергию маховика через 5 с после начала действия силы. Силой ия пренебречь.
		• •

20 Дж

a)

b)	40 Дж	
c)	50 Дж	
d)	10Дж	
e)	30Дж	
	147.	Определите момент инерции материальной точки массой 0,3 кг относительно оси
	отстоя	ящей от точки на 20 см.
a)	0,012 кг м	2
b)	$0,12 \text{kf m}^2$	
c)	1 кг м^2	
d)	3 кг м ²	
e)	12kг m^2	
	148.	Момент инерции шара массой 2 кг, относительно оси проходящей через центр масс
	•	6 кг·м². Момент инерции этого шара относительно точки О, находящейся на
	рассто	оянии 5 м от центра шара, равен:
a)	56 кг•м²	
b)	32 кг•м²	
c)	19 кг•м ²	
d)	34 кг•м ²	
	34 кг•м 16 кг•м²	
e)	16 КГ [*] М	II 2
		Диск, момент инерции которого 10 кг·м², вращается равноускоренно с ускорением 2 Вращающийся момент равен:
	рад/С.	Бращающинся можент равен.
a)	20 Н∙м	
b)	12 Н∙м	
c)	4 Н∙м	
d)	5 Н∙м	
e)	0,2 Н·м	T 10 . 2
	150.	Диск, момент инерции которого $J = 10 \text{ кг}\text{ m}^2$ вращается с угловой скоростью 2 рад/с.
	Опред	елить момент импульса.
	$20\frac{\kappa 2M^2}{2}$	
a)	20——	
	_	
b)	$5\frac{\kappa 2M}{}$	
	С	
	$_{0.2}$ KZM 2	
c)	$5\frac{\kappa 2M^{2}}{c}$ $0.2\frac{\kappa 2M^{2}}{c}$	
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
d)	$12\frac{\kappa \epsilon M}{}$	
	$12\frac{\kappa 2M^{2}}{c}$ $4\frac{\kappa 2M^{2}}{c}$ 151	
,	_л кгм ²	
e)	4———	
	151.	Консервативными называются силы:
2)	n o6	CONTRACTOR OF CONTRACTOR CONTRACT
a) b)		орых не зависит от формы пути
c)		цие на состояние системы орых зависит от формы пути
d)		орых зависит от формы пути е меняются при изменении состояния системы
e)		е меняются при изменении состояния системы цие в замкнутых системах
<i>\(\)</i>	деиствуют 152.	дие в замкнутых системах Длина свободного пробега молекул:
	104.	Annu choodhoro upoocra monenjar
a)	Увеличив	ается с повышением температуры.

Увеличивается с уменьшением температуры.

Ответ зависит от интервала температур.

Ответ зависит от рода газа.

b)

c)

d)

153. Какая физическая величина должна стоять вместо ..., в выражении силы Ампера $d\vec{F} = I | d\vec{l} \dots |$?

а)
$$\vec{B}$$
 -индукция магнитного поля

b)
$$I d\vec{\ell}$$
 - элемент тока

e)
$$\vec{v}$$
 -скорость движения заряда

154. Определение магнитного момента.

a)
$$\vec{p}_m = IS\vec{n}$$

b)
$$\vec{p}_m = q \vartheta \vec{n}$$

c)
$$\vec{p}_m = Il\vec{n}$$

a)
$$\vec{p}_m = IS\vec{n}$$

b) $\vec{p}_m = q\vartheta\vec{n}$
c) $\vec{p}_m = Il\vec{n}$
d) $\vec{p}_m = qS\vec{n}$
e) $\vec{p}_m = BS\vec{n}$

e)
$$\vec{p}_m = BS\vec{n}$$

Найти выражение, соответствующее наибольшей разности хода лучей.

a)
$$\Delta = 2\lambda \kappa pach$$
.

b)
$$\Delta = 2\lambda \phi uon.$$

c)
$$\Delta = 2\lambda 3e\pi$$
.

d)
$$\Delta = 2\lambda cuh$$
.

e)
$$\Delta = 2\lambda \phi$$
 желт.

156. Закон смещения Вина

a)
$$T \cdot \lambda_m = b$$

b)
$$r_{\omega,T} = \frac{\hbar \omega^3}{4\pi^2 c^2} \ell^{-\frac{\hbar \omega}{kT}}$$

c)
$$r_{\omega,T} = \frac{\hbar\omega^3}{4\pi^2c^2} \frac{1}{\ell^{\hbar\omega/(kT)} - 1}$$

d)
$$r_{\omega,T} = \frac{\omega^2}{4\pi^2 c^2} kT$$

e)
$$r_{\omega,T} = \frac{R_{\omega,T}}{A_{\omega,T}}$$

157. Формула Планка

a)
$$r_{\omega,T} = \frac{\hbar \omega^3}{4\pi^2 c^2} \frac{1}{\ell^{\hbar \omega/(kT)} - 1}$$

b)
$$r_{\omega,T} = \frac{\hbar \omega^3}{4\pi^2 c^2} \ell^{-\frac{\hbar \omega}{kT}}$$

c)
$$r_{\omega,T} = \frac{\omega^2}{4\pi^2 c^2} kT$$

$$r_{\omega,T} = \frac{R_{\omega,T}}{A_{\omega,T}}$$

e)
$$T \cdot \lambda_m = b$$

158. Модуль плотности потока электромагнитной энергии

b)	1
U)	$\sqrt{{oldsymbol{arepsilon}}_0 oldsymbol{\mu}_0}$

c)
$$\frac{1}{\sqrt{\varepsilon\mu}}$$

d)
$$\sqrt{\varepsilon\mu}$$

e)
$$\frac{\sqrt{\varepsilon_2 \mu_2}}{\sqrt{\varepsilon_1 \mu_1}}$$

159. Двухвалентный ион движется со скоростью 480 км/с в однородном магнитном поле индукцией 0,1Тл и описывает окружность радиусом 10 см. Масса иона равна:

- b) 3,3•10⁻²⁷ кг
- c) 7,7•10⁻²⁷ кг
- d) 1,7•10⁻²⁷ кг
- e) 4,7•10⁻²⁷ кг

160. Закон Малюса утверждает, что интенсивность света пропущенного через два поляризующих прибора, соответствующие плоскости которых образуют угол ф, пропорциональны:

- a) $\cos^2 \phi$
- b) $\sin \phi$
- c) $\sin^2 \varphi$
- d) $\cos \varphi$
- e) tg φ

161. Закон Брюстера:

a)
$$tg \varphi = n_{21}$$

b)
$$\frac{\sin \varphi}{\sin \beta} = n_{21}$$

c)
$$\frac{\cos \varphi}{\sin \beta} = n_{21}$$

- d) $\cos \varphi = n_{22}$
- e) $\sin \phi_{\pi p} = n_{21}$

162. Закон Бугера.

a)
$$I = I_0 e^{-\alpha x}$$

$$b) \qquad I = I_0 \cos^2 \alpha$$

$$(c) I = I_0(\alpha x)$$

$$d)$$
 $I = const$

$$e) I = I_0 \tan \varphi$$

163. Радиус боровских орбит пропорционален главному квантовому числу в степени:

- a) 2
- b) -1
- c) 0
- d) 1
- e) -2

164. Скорость электрона на боровских орбитах пропорциональна главному

квантовому числу в степени:

165. Условия интерференционного максимума

a)
$$\Delta = \pm m\lambda_0 \text{ (m=0, 1, 2, ...)}$$

b)
$$\Delta = \pm (m + \frac{1}{2})\lambda_0 \ (m=0, 1, 2, ...)$$

c)
$$2b = \pm (m + \frac{1}{2})\lambda_0 \text{ (m=0, 1, 2, ...)}$$

d)
$$2bnCos\theta_2 = \pm m\lambda_0 \ (m=1, 2, 3,...)$$

e)
$$2bnCos\theta_2 = \pm (m + \frac{1}{2})\lambda_0 \ (m=1, 2, 3,...)$$

166. Формула Рэлея – Джинса

a)
$$r_{\omega,T} = \frac{\omega^2}{4\pi^2 c^2} kT$$

b)
$$r_{\omega,T} = \frac{R_{\omega,T}}{A_{\omega,T}}$$

c)
$$T \cdot \lambda_m = b$$

d)
$$r_{\omega,T} = \frac{\hbar \omega^3}{4\pi^2 c^2} \ell^{-\frac{\hbar \omega}{kT}}$$

e)
$$r_{\omega,T} = \frac{\hbar\omega^3}{4\pi^2c^2} \frac{1}{\ell^{\hbar\omega/(kT)} - 1}$$

167. Условия интерференционного минимума

a)
$$\Delta = \pm (m + \frac{1}{2})\lambda_0 \ (m=0, 1, 2, ...)$$

b)
$$2bnCos\theta_2 = \pm m\lambda_0 \text{ (m=1, 2, 3,...)}$$

c)
$$2bnCos\theta_2 = \pm (m + \frac{1}{2})\lambda_0 \ (m=0,1, 2,...)$$

d)
$$\Delta = \pm m\lambda_0 \text{ (m=0, 1, 2, ...)}$$

e)
$$2b = \pm (m + \frac{1}{2})\lambda_0 \text{ (m=0, 1, 2, ...)}$$

168. Импульс фотона

a)
$$\frac{h}{\lambda}$$

b)
$$\frac{h}{c\lambda}$$

c)
$$\frac{hc}{\lambda}$$

e)
$$\frac{hv}{c^2}$$

169. Масса фотона

a)
$$\frac{h}{c\lambda}$$

b)
$$\frac{hv}{c}$$

c)
$$\frac{hc}{\lambda}$$

e)
$$\frac{h}{\lambda}$$

170. Энергия фотона

a)
$$\frac{hc}{\lambda}$$

b)
$$\frac{h}{\lambda}$$

c)
$$\frac{h}{c\lambda}$$

$$d) \qquad \frac{h\nu}{c}$$

e)
$$\frac{hv}{c^2}$$

Уравнение для многофотонного фотоэффекта **171.**

a)
$$Nhv = A + \frac{mv^2_{max}}{2}$$

b)
$$hv = \frac{mv^2_{max}}{2}$$

c)
$$h\nu = A + \frac{m\upsilon^2_{max}}{2}$$

d)
$$A = hv$$

e)
$$A = Nhv$$

172. Работа выхода для многофотонного фотоэффекта

a)
$$A = Nhv$$

a)
$$A = Nhv$$
b)
$$eU = \frac{mv^2_{max}}{2}$$

c)
$$hv = A + \frac{mv^2_{max}}{2}$$

d)
$$A = eU$$

e)
$$Nhv = A + \frac{mv^2_{max}}{2}$$

Красная граница для фотоэффекта 173.

a)
$$A = hv$$

b)
$$A = Nhv$$

c)
$$A = eU$$

d)
$$A = hv - \frac{mv^2_{max}}{2}$$

e)
$$A = \frac{mv^2_{max}}{2}$$

174. Оптическая длина пути.

b)
$$n_2S_2-n_1S_1$$

c)
$$n=c/v$$

d)
$$\frac{l}{d}\lambda$$

e)
$$\frac{2\pi}{\lambda}(n_1S_1 - n_2S_2)$$

175. Аналитическое выражение принципа Гюйгенса – Френеля

a)
$$E = \int_{S} K(\phi) \frac{A}{r} \cos(\omega t - kr + \alpha) dS$$

b)
$$E = \int_{S} K(\varphi) \frac{A}{r^{2}} \cos(\omega t - kr + \alpha) dS$$

c)
$$E = \int_{V} K(\phi) \frac{A}{r} \cos(\omega t - kr + \alpha) dr$$

d)
$$E = \int_{V} K(\varphi) \frac{A}{r^{2}} \cos(\omega t - kr + \alpha) dr$$

e)
$$E = \int_{\Omega} K(\varphi) \frac{A}{r} \cos(\omega t - kr + \alpha) d\varphi$$

176. Формула эффекта Комптона:

a)
$$\Delta \lambda = \frac{h}{mc} (1 - \cos \theta)$$

b)
$$\Delta \lambda = \frac{2h}{mc} (1 - \cos \theta)$$

c)
$$\Delta \lambda = \frac{m}{hc} (1 - \cos \theta)$$

d)
$$\Delta \lambda = \frac{m}{hc} \sin^2 \frac{\theta}{2}$$

e)
$$\Delta \lambda = \frac{h}{mc} \sin^2 \frac{\theta}{2}$$

177. Плотность энергии электрического поля.

a)
$$\frac{\varepsilon_0 \varepsilon E^2}{2}$$

b)
$$\frac{\varepsilon_0 \varepsilon D^2}{2}$$

c)
$$\frac{\varepsilon_0 \varepsilon ED}{2}$$

$$\frac{E^2}{2\varepsilon_0\varepsilon}$$

e)
$$\frac{ED}{2\varepsilon_0\varepsilon}$$

178. Плотность энергии электрического поля.

a)
$$\frac{ED}{2}$$

b)
$$\frac{\varepsilon_0 \varepsilon D^2}{2}$$

c)
$$\frac{\varepsilon_0 \varepsilon ED}{2}$$
d)
$$\frac{E^2}{2\varepsilon_0 \varepsilon}$$

d)
$$\frac{E^2}{2\varepsilon_0 \varepsilon}$$

e)
$$\frac{ED}{2\varepsilon_0\varepsilon}$$

Плотность энергии магнитного поля.

a)
$$\frac{BH}{2}$$

b)
$$\frac{\mu_0 \mu B^2}{2}$$

c)
$$\frac{\mu_0 \mu BH}{2}$$

c)
$$\frac{\mu_0 \mu BH}{2}$$
d)
$$\frac{H^2}{2\mu_0 \mu}$$
e)
$$\frac{BH}{2\mu_0 \mu}$$

e)
$$\frac{BH}{2\mu_0\mu}$$

180. Энергия магнитного поля.

a)
$$\frac{LI^2}{2}$$

b)
$$\frac{LI}{2}$$

c)
$$\frac{\psi I^2}{2}$$

d)
$$\frac{CU^2}{2}$$

e)
$$\frac{qU}{2}$$

181.Закон Био-Савара-Лапласа.

a)
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I[d\vec{l}, \vec{r}]}{r^3}$$

b)
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{I \left[d\vec{l}, \vec{r} \right]}{r^2}$$

c)
$$d\vec{B} = \frac{1}{4\pi\mu_0} \frac{I[d\vec{l}, \vec{r}]}{r^3}$$

d)
$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q[\vec{v}, \vec{e}_r]}{r^3}$$

e)
$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q[\vec{v}, \vec{r}]}{r^2}$$

182.Магнитная индукция поля кругового тока.

a)
$$B = \mu_0 \frac{I}{2r}$$

$$B = \frac{\mu_0}{4\pi} \frac{2I}{r}$$

$$B = \frac{\mu_0}{4\pi} \frac{I}{r}$$

$$B = \mu_0 \frac{2I}{r}$$

e)
$$B = \mu_0 \frac{I}{r}$$

183.Сила Лоренца.

a)
$$\vec{F} = q [\vec{v}\vec{B}]$$

a)
$$\vec{F} = q \begin{bmatrix} \vec{v}\vec{B} \end{bmatrix}$$
 b)
$$\vec{F} = q \begin{bmatrix} \vec{B}\vec{v} \end{bmatrix}$$

c)
$$d\vec{F} = I \left[d\vec{l} , \vec{B} \right]$$

c)
$$d\vec{F} = I \begin{bmatrix} d\vec{l}, \vec{B} \end{bmatrix}$$

d) $d\vec{F} = I \begin{bmatrix} \vec{B}, d\vec{l} \end{bmatrix}$

e)
$$d\vec{F} = \begin{bmatrix} \vec{i} \\ \vec{j} \\ \vec{k} \end{bmatrix}$$

184. Модуль силы, действующей на движущийся заряд в магнитном поле.

a)
$$F = qvBsin\alpha$$

b)
$$F = qvBcos\alpha$$

c)
$$F = IlBsin\alpha$$

d)
$$F = IvBsin\alpha$$

e)
$$F = qlBsin\alpha$$

185.Закон Ампера.

a)
$$d\vec{F} = I \left[d\vec{l}, \vec{B} \right]$$

b)
$$\vec{F} = q \left[\vec{v} \vec{B} \right]$$

b)
$$\vec{F} = q \begin{bmatrix} \vec{v} \vec{B} \end{bmatrix}$$

c) $\vec{F} = q \begin{bmatrix} \vec{B} \vec{v} \end{bmatrix}$

d)
$$d\vec{F} = I[\vec{B}, d\vec{l}]$$

e)
$$d\vec{F} = [\vec{j}, \vec{B}]$$

186.Соотношение между векторами индукции и напряженности магнитного поля.

a)
$$\vec{B} = \mu_0 \mu \vec{H}$$

b)
$$\vec{J} = \chi \vec{H}$$

c)
$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{J}$$

$$\vec{H} = \mu_0 \mu \vec{B}$$

e)
$$\vec{J} = \chi \vec{B}$$

187. Абсолютный показатель преломления среды

a)
$$\sqrt{\varepsilon\mu}$$

c)
$$\frac{2\pi}{\lambda_0}\Delta$$

d)
$$n_2 s_2 - n_1 s_1$$

188. Относительный показатель преломления среды

a)
$$\frac{v_1}{v_2}$$

b)
$$\frac{v_2}{v_1}$$

c)
$$\frac{c}{v_2}$$

d)
$$\frac{v_1}{c}$$

e)
$$\frac{v_2}{c}$$

189. Какие оптические явления лежат в основе голографии:

- а) Интерференция и дифракция
- b) Дифракция света
- с) Рассеяние и поляризация
- d) Интерференция и давление света
- е) Интерференция света

190. К проводнику с током приблизили магнитную стрелку. Как поведет она себя?

- а) Повернется на некоторый угол
- b) Притянется
- с) Останется без изменения
- d) Оттолкнется
- е) Оттолкнется и повернется на некоторый угол

191. Формула эффекта Комптона:

a)
$$\Delta \lambda = \frac{h}{mc} (1 - \cos \theta)$$

b)
$$\Delta \lambda = \frac{h}{mc} \sin^2 \frac{\theta}{2}$$

c)
$$\Delta \lambda = \frac{2h}{mc} (1 - \cos \theta)$$

d)
$$\Delta \lambda = \frac{m}{hc} (1 - \cos \theta)$$

e)
$$\Delta \lambda = \frac{m}{hc} \sin^2 \frac{\theta}{2}$$

192. Формула эффекта Комптона:

a)
$$\Delta \lambda = \frac{2h}{mc} \sin^2 \frac{\theta}{2}$$

b)
$$\Delta \lambda = \frac{mc}{h} (1 - \cos \theta)$$

c)
$$\Delta \lambda = \frac{2h}{mc} (1 - \cos \theta)$$

d)
$$\Delta \lambda = \frac{m}{hc} (1 - \cos \theta)$$

e)
$$\Delta \lambda = \frac{m}{hc} \sin^2 \frac{\theta}{2}$$

193. Комптоновская длина волны:

a)
$$\frac{h}{mc}$$

b)
$$\frac{h}{mc^2}$$

c)
$$\frac{mc^2}{h}$$

d)
$$\frac{mc}{h}$$

e)
$$\frac{2h}{mc}$$

194. Энергия магнитного поля:

a)
$$\frac{BH}{2}V$$
.

b)
$$\frac{\mu_0 \mu BH}{2} V$$

c)
$$\frac{H^2}{2\mu_0\mu}V$$

d)
$$\frac{\mu_0 \mu B^2}{2} V$$

e)
$$\frac{LI}{2}$$

195. Ферромагнетики – это магнетики, у которых магнитная восприимчивость...

- а) Положительна и достигает очень больших значений
- b) Положительна и мала по величине
- с) То положительно, то отрицательна в зависимости от молекулярного строения вещества
- d) Отрицательна и мала по абсолютной величине
- е) Отрицательна и достигает по абсолютной величине больших значений

196. Закон Брюстера:

a)
$$tg \varphi = n_{21}$$

$$\sin \varphi_{\pi p} = n_{21}$$

$$\frac{\sin \varphi}{\sin \beta} = n_{21}$$

$$\frac{\cos \varphi}{\sin \beta} = n_2$$

e)
$$\cos \varphi = n_{22}$$

197. При падении пол углом Брюстера луч, отраженный и луч преломленный составляют

- $\frac{\pi}{2}$ a)
- b)
- c)
- d)
- e)

198. Дисперсия света

- a) $n=f(\lambda_0)$
- $\frac{dn}{d\lambda}$ >0 b)
- $\frac{dn}{d\lambda}$ <0 c)
- d) n=f(v)
- $\nu = f(\lambda_0)$ e)

199. Дисперсия вещества (нормальная)

- $\frac{dn}{d\lambda}$ <0 a)
- b)
- $n=f(\lambda_0)$ $\frac{dn}{d\lambda} > 0$ c)
- d) n=f(v)
- e) $\nu = f(\lambda_0)$

200. Дисперсия вещества (аномальная)

- $\frac{dn}{d\lambda}$ >0 a)
- $\frac{dn}{d\lambda}$ <0 b)
- c) $n=f(\lambda_0)$
- d) n=f(v)
- e) $\nu = f(\lambda_0)$

201. Закон Бугера (поглощение света).

- $I=I_0e^{-\kappa l}$ a)
- b)
- $I=I_0e^{\kappa l}$ $I=I_0e^{\kappa l^2}$ c)
- $I=I_0e^{-\kappa l^2}$ d)
- e)
- 202. Как изменится магнитная индукция прямого тока, если силу тока увеличить в 2 раза?

- а) Увеличится в 2 раза
- b) Уменьшится в 2 раза
- с) Увеличится в 4 раза
- d) Уменьшится в 4 раза
- е) Не изменится

203. Как изменится магнитный момент контура с током, если силу тока в нем увеличить в 2 раза?

- а) Увеличится в 2 раза
- b) Уменьшится в 2 раза
- с) Уменьшится в 4 раза
- d) Увеличится в 4 раза
- е) Не изменится

204. Как изменится сила взаимодействия двух параллельных, бесконечно длинных прямых токов, если силу токов в них увеличить в 2 раза?

- а) Увеличится в 4 раза
- b) Уменьшится в 4 раза
- с) Уменьшится в 2 раза
- d) Увеличится в 2 раза
- е) Не изменится

205. Как изменится магнитная индукция движущегося заряда, если точку наблюдения удалить на расстояние 2 раза большее?

- а) уменьшится в 4 раза
- b) увеличится в 4 раза
- с) уменьшится в 2 раза
- d) увеличится в 2 раза
- е) не изменится

206. Чему равен поток вектора магнитной индукции магнитного поля через замкнутую поверхность?

- a) 0
- b) $\int div \vec{E} dv$

c)
$$\mu_0 \left(\int \vec{j} d\vec{s} + \int \left(\frac{\partial D}{\partial t} \right) \right) d\vec{s}$$

- d) $\frac{1}{\varepsilon_0} \sum q_i$
- e) $\sum q_{iccso}$

207. Как взаимодействуют два параллельных длинных провода с токами, если направления токов одинаковы

- а) взаимно притягиваются
- b) взаимно отталкиваются
- с) не взаимодействуют
- d) притягиваются независимо от направления токов
- е) отталкиваются независимо от направления токов

208. Как взаимодействуют два параллельных длинных провода с токами, если направления токов противоположны:

а) взаимно отталкиваются

- b) не взаимодействуют
- с) притягиваются независимо от направления токов
- d) отталкиваются независимо от направления токов
- е) взаимно притягиваются
- 209. Укажите плотность энергии электромагнитной волны

a)
$$\frac{1}{2} \left(\varepsilon_0 \varepsilon E^2 + \mu_0 \mu H^2 \right)$$

b)
$$\frac{1}{2}\varepsilon_0 \varepsilon E^2$$

c)
$$\frac{1}{2}\mu_0\mu H^2$$

- d) $\varepsilon_0 \varepsilon E^2$
- e) $\mu_0 \mu H^2$
- 210. Как изменится плотность энергии магнитного поля соленоида, если магнитную индукцию увеличить в 2 раза?
- а) Увеличится в 4 раза
- b) Уменьшится в 4 раза
- с) Уменьшится в 2 раза
- d) Увеличится в 2 раза
- е) Не изменится
- 211. Теорема Гаусса для вектора магнитной индукции имеет вид:
- a) $div\vec{B} = 0$
- b) $\oint \vec{B}d\vec{s} = \sum q_i$
- c) $rot\vec{B} = \mu_0\vec{j}$
- d) $rot\vec{B} = \vec{j}$
- e) $\oint \vec{B}d\vec{l} = \mu_0 \sum I_i$
- 212. Э. Д. С. самоиндукции определяется выражением (L=const):
- a) $-L\frac{dI}{dt}$
- b) $-\frac{d\psi}{dt}$
- c) $-\frac{d\Phi}{dt}$
- d) $-I\frac{dL}{dt}$
- e) $-I\frac{dB}{dt}$
- 213. Определить среднее значение Э. Д. С. индукции в контуре, если магнитный поток с Φ_1 =27мВб уменьшится до Φ_2 =0 за время Δt =3мс.
- a) 9
- b) 12
- c) 15
- d) 11

e)	14		
214.	14. Частота колебаний монохроматического света равна 5·10 ¹⁴ с ⁻¹ . Определить длину волны света в веществе (n=2)		
В	олны света в веществе (п-2)		
a)	$3 \cdot 10^{-7}$		
b)	$4 \cdot 10^{-7}$		
c)	$2 \cdot 10^{-7}$		
d)	5.10^{-7}		
e)	6.10^{-7}		
	уч света из воздуха падает на поверхность диэлектрика под углом 56°. Найти угол		
П	реломления луча, если отраженный луч полностью поляризован.		
a)	34°		
b)	46°		
c)	64°		
d)	90°		
e)	26°		
216.	Дифракционная решетка содержит 200 штрихов на миллиметр. На решетку падает		
	ормальный монохроматический свет, длинной волны λ=600нм. Найти максимум		
Н	аибольшего порядка решетки.		
a)	8		
b)	16		
c)	4		
d)	24		
e)	6		
217.	Определить оптическую разность хода Δ (в длинах волн) двух интерферирующих		
волн, если разность фаз ϕ =2. 8π			
۵)	4		
a) b)	4 2		
c)	8		
d)	5		
e)	7		
218.	Определить расстояние I от источников до экрана в опыте Юнга, если длина волны		
	адающего света λ=400нм, расстояние между щелями d=0. 8мм и ширина		
И	нтерференционной полосы b=3мм.		
,			
a) b)	6 4		
c)	3		
d)	$\frac{3}{2}$		
e)	10		
219.	Определить радиус r4 (в мм) четвертой зоны Френеля для плоского волнового фронта		
(λ	=500нм), если расстояние от волнового фронта до наблюдаемой точки b=2м		
`			
a)	2		
b)	3		
c) d)	4 6		
e)	10		
220.	Определить длину волны λ (·10 ⁻⁷) спектра второго порядка накладывающийся на		
	$\lambda = 0.4$ мкм спектра третьего порядка.		

a)	6
b)	3
c)	10
d)	4
e)	2
221.	Определить энергию фотона, если при его падении на вещество задерживающая
p	азность потенциалов U=2B, а красная граница фотоэффекта λ ₀ =207нм.
a)	8
b)	4
c)	2
d)	5
e)	6
222.	Во сколько раз энергия фотона больше максимальной кинетической энергии
ф	отоэлектрона ($\epsilon_{\text{кин.}}$ =2эВ), если красная граница фотоэффекта λ_0 =124нм.
a)	6
b)	4
c)	2
d)	5
e)	3
223.	Определить длину волны λ (в пм) света, рассеянного под углом θ =120 0 к направлению
П	адающего пучка света. Длина волны рентгеновского излучения λ=5,4пм.
a)	9
b)	3
c)	8
d)	5
e)	2
224.	Определить длину волны де Бройля λ (в нм), характеризующую волновые свойства
Э.	пектрона (m_c =9,11·10 ⁻³¹ кг), если его скорость υ =1,2·10 ⁵ м/с.
a)	6
b)	4
c)	9
d)	3
e)	2
225.	Определить максимальное напряжение (в кВ) на обкладках конденсатора
	олебательного контура, если контур имеет емкость C=2нФ, индуктивность L=8мГн и
$\mathbf{I}_{\mathbf{r}}$	max=0. 8A.
,	
a)	6
b)	4
c)	5
d)	2
e)	7
226.	При скорости изменения силы тока $\frac{\Delta l}{\Delta t}=1,2$ А/с в соленоиде, на его концах возникает
~	
Э	. Д. С самоиндукции ε _ї =4,8В. Определить индуктивность L соленоида.
٥)	Λ
a)	4
b)	6
c)	8

d)	10	
e)	2	
227.	Определить длину волны де Бройля, характеризующую волновые свойства протона	
ec	ели его скорость v= 1Mm/c	
	•	
a)	0,4пм	
b)	0,7нм	
c)	91пм	
d)	52пм	
e)	57нм	
228.	Определить длину волны де Бройля, характеризующую волновые свойства	
ЭЈ	лектрона, если его скорость $\upsilon = 8 \cdot 10^6 \text{m/c}$	
	• • •	
a)	91пм	
b)	0,7нм	
c)	0,4пм	
d)	52пм	
e)	57нм	
229.	В результате комптоновского рассеяния на свободном покоящемся электроне длина	
ф	отона увеличивается в 4 раза. Найти кинетическую энергию электрона отдачи, если	
_	нергия рассеянного фотона ε=0,16МэВ	
a)	0,48МэВ	
b)	0,54МэВ	
c)	0,56МэВ	
d)	0,46МэВ	
e)	0,72МэВ	
230.	Что называется массовым числом ядра?	
a)	Количество нуклонов ядра	
b)	Количество протонов в ядре	
c)	Масса ядра	
d)	Количество нейтронов ядра	
e)	Количество электронов в атоме	
231.	Какая частица освобождается при ядерной реакции ${}_{4}^{9}Be + {}_{2}^{4}He \rightarrow {}_{6}^{12}C+?$	
a)	n	
b)	p	
c)	α	
d)	$\gamma_{_}$	
e)	e ⁻	
232.	Определите атомный номер, массовое число и химический символ ядра, если в ядре	
21	Не протоны заменить нейтронами, а нейтроны протонами.	
	3	
a)	3H	
b)	⁴ He	
c)	³ He	
d)	² H	
e)	$\frac{5}{3}Li$	
233.	Какое излучение из перечисленных ниже имеет самую низкую частоту: 1-	
ультрафиолетовые лучи, 2- инфракрасные лучи, 3- видимый свет, 4- радиоволны, 5-		
pe	ентгеновские лучи:	

- a) 4
- b) 3
- c) 5
- d) 1
- e) 2

234. Сколько протонов Z и сколько нейтронов N в ядре изотопа кислорода $^{17}_{8}$ O ?

- a) Z=8, N=9
- b) Z=17, N=8
- c) Z=8, N=7
- d) Z=8, N=15
- e) Z=8, N=8

235. Какие лучи, из перечисленных, имеют самую короткую длину волны:

- а) Рентгеновские лучи
- b) Инфракрасный свет
- с) Видимый свет
- d) Ультрафиолетовые лучи
- е) Радиоволны

236. Обобщенная формула Бальмера

a)
$$\omega = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$
, n=m+1, m+2, ...

b) (при заданном m)
$$\omega = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$
, m=n+1, n+2, ...

c) (при заданном n)
$$ω=R\left(\frac{1}{m^2}-\frac{1}{n^2}\right)$$
, n=m+2, m+3, ...

d) (при заданном m) ω=R
$$\left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$
, n=m-1, m, ...

e) (при заданном m)
$$\omega = R\left(\frac{1}{m^2} - \frac{1}{n^2}\right)$$
, m=n+2, n+3, ...

237. Укажите плотность энергии электромагнитной волны

a)
$$\frac{1}{2} \left(\varepsilon_0 \varepsilon E^2 + \mu_0 \mu H^2 \right)$$

b)
$$\frac{1}{2}\varepsilon_0\varepsilon E^2$$

c)
$$\frac{1}{2}\mu_0\mu H^2$$

- d) $\varepsilon_0 \varepsilon E^2$
- e) $\mu_0 \mu H^2$

238. Теорема Гаусса для вектора магнитной индукции имеет вид:

a)
$$div\vec{B} = 0$$

b)
$$\oint \vec{B} d\vec{s} = \sum q_i$$

c)
$$rot\vec{B} = \mu_0\vec{j}$$

d)
$$rot\vec{B} = \vec{j}$$

e)
$$\oint \vec{B}d\vec{l} = \mu_0 \sum I_i$$

239.	Определить скорость света в жидкости, если длина волны 600нм, а частота 10 ¹⁴ Гц.	
a)	$0.6 \cdot 10^{8} \text{m/c}$	
b)	$1.2 \cdot 10^8 \text{ M/c}$	
c)	$1,4 \cdot 10^8 \text{M/c}$	
d)	$1.8 \cdot 10^{8} \text{ M/c}$	
e)		
240.	Какое из перечисленных явлений нельзя объяснить с точки зрения квантовой теории?	
440.	какое из перечисленных явлении нельзя объяснить с точки зрения квантовой теории:	
a)	Дифракция	
b)	Фотоэффект	
c)	Эффект Комптона	
d)	Тепловое излучение тел	
e)	Коротковолновая граница тормозного рентгеновского излучения	
241.	Плоское зеркало может вращаться вокруг оси О перпендикулярно плоскости, в которой	
	асположены лучи. Луч падает на зеркало под углом а. На какой угол повернется отраженный	
	уч, если зеркало повернули на 10^{0} .	
a)	200	
	20^{0}	
b)	10^{0}	
d)	30^{0}	
	40^{0}	
e)	80^{0}	
242.	Изображение находится на расстоянии b=3f от вогнутого зеркала, на каком расстоянии от	
36	еркала находится предмет?	
a)	3f/2	
b)	-2f	
c)	2f	
d)	3f	
e)	-3/2f	
243.	Предмет находится на расстоянии a=2f от вогнутого зеркала, на каком расстоянии от зеркала	
	аходится изображение?	
a)	2f	
b)	-2f	
c)	3f/2	
d)	3f	
e)	-3/2f	
244.	Уравнение сферической волны имеет вид:	
۵)	$S(x,t) = \frac{A_0}{A_0} \cos(\cot tx) \cos(tx)$	
a)	$S(x,t) = \frac{A_0}{r} \cos(\omega t - kr + \varphi_0)$	
b)	$S(x,t)=A\cos(\omega t+\varphi_0)$	
c)	$S(x,t) = A\cos(\omega t - kx + \phi_0)$	
d)	$S(x,t) = A\cos(\omega t + kx + \phi_0)$	
e)	$S(x,t) = \frac{A_0}{r} \cos(\omega t + \varphi_0)$	
245.	Уравнение плоской волны, распространяющаяся вдоль оси X, имеет вид:	
a)	$S(x,t) = A\cos(\omega t - kx + \varphi_0)$	
b)	$S(x,t) = \frac{A_0}{r} \cos(\omega t - kr + \varphi_0)$	
c)	$S(x,t)=A\cos(\omega t+\phi_0)$	
d)	$S(x,t)=A\cos(\omega t+kx+\varphi_0)$	
e)	$S(x,t) = \frac{A_0}{\cos(\omega t + \varphi_0)}$	
	r	
246. a)	Какую волну – продольную или поперечную описывает уравнение S=Acos(ωt-kx) Как продольную, так и поперечную	

b)	Только продольную		
c)	Только поперечную		
d)	Сферическую		
e)	Только поверхностную		
247.			
Ч	Гему равна амплитуда колебаний?		
a)	10^{-2}		
b)	20		
c)	20t		
d)	Cos20t		
e)	Sin20t		
248.	При выдвигании из катушки постоянного магнита, в ней возникает электрический		
	ок. Это явление называется:		
1'	UK. TO ADJICHUC HASDIDACICA.		
a)	Электромагнитная индукция		
b)	Электростатическая индукция		
c)	Индуктивность		
d)	Самоиндукция		
e)	Магнитная индукция		
249.	Каким должен быть угол падения светового луча, чтобы отраженный луч составлял с		
П	адающим 50^0		
a)	25^{0}		
b)	100^{0}		
c)	50^{0}		
d)	75 ⁰		
e)	40^{0}		
250.	В однородной изотропной среде с ε = 4 и μ = 1 распространяется плоская		
	электромагнитная волна. Определите фазу и скорость		
a)	$1,5 \cdot 10^{8}$		
b)	$2,1 \cdot 10^8$		
c)	$0.75 \cdot 10^8$		
d)	3•10 ⁸		
e)	$0.5 \cdot 10^8$		
251.	Плоскость, в которой происходят колебания вектора $\vec{\mathbf{E}}$, называется:		
a)	Плоскостью поляризации		
b)	Плоскостью дисперсии		
c)	Плоскостью дифракции		
d)	Плоскостью интерференции		
e)	Атомной плоскостью		
252.	Красная граница фотоэффекта для некоторого металла равна 600 нм. Найти		
	минимальную энергию фотона, вызывающего фотоэффект (в эВ)		
a)	2		
a) b)			
b)	2,5 3		
c)			
d)	3,5 1.5		
e)	1,5		
253.	Какова связь между коэффициентом затухания колебательной системы и её		
Л	огарифмическим декрементом?		

a)	$\lambda = \beta T$		
b)	$Q=\pi/\lambda$		
c)	$Q=\pi\lambda$		
d) e)	$\lambda=eta/T$ $Q=\pi/eta T$		
254 .	Определить длину волны λ (·10 ⁻⁷) спектра второго порядка накладывающийся на		
	лину волны λ=0. 4мкм спектра третьего порядка.		
a)	6		
b)	3		
c)	10		
ď)	4		
e)	2		
255. Скорость распространения волн в среде 2•10 ³ м/с, период колебания 10 ⁻³ с. Разность фаз колебаний 2-х точек, удаленных от источника на 12 и 14 м, равна:			
a)	$1,6\pi$		
b)	0.8π		
c)	0.4π		
d)	2π		
e)	1.2π		
256. Скорость распространения волн в среде 2,5•10 ³ м/с, период колебания 10 ⁻³ с. Разность фаз колебаний 2-х точек, удаленных от источника на 12 и 14 м, равна:			
1			
a)	2π		
b)	$1,6\pi$		
c)	0.8π		
d)	0.4π 1.2π		
e) 257.	1,2л Колебательный контур состоит из катушки индуктивности 1 мГн и конденсатора 2		
	257. Колеоательный контур состоит из катушки индуктивности 1 м1 н и конденсатора 2 нФ. Период электромагнитных колебаний в контуре равен:		
`	2.0.10-6		
a)	8,9•10 ⁻⁶ c 6,28•10 ⁻⁶ c		
b) c)	3,14•10-6 c		
	4,4•10° c		
e)	$0.7 \cdot 10^6 \mathrm{c}$		
258.			
заряженной частицей?			
a)	A=0		
b)	$A=q\Delta \phi$		
	$A = -\int \varepsilon_i I dt$		
d)	$dA=Id\Phi$		
e)	$dA=I[d\vec{l}\;,\vec{B}]d\vec{h}$		
259.	Какое излучение из перечисленных имеет самую высокую частоту?		
a)	Рентгеновские лучи		
b)	Радиоволны		
c)	Инфракрасные лучи		
d)	Видимый свет		
e)	Ультрафиолетовые лучи		

260. Волны называются когерентными, если ...:

- а) Они имеют одинаковую частоту и постоянную разность фаз
- b) Они имеют одинаковую скорость и частоту
- с) Они имеют одинаковую частоту
- d) Они продольные
- е) Они поперечны

261. Период полураспада радиоактивного элемента T. Сколько ядер N этого элемента распадется к моменту времени t =T/4, если в начальный момент имелось N_0 ядер:

- a) $N=N_0(1-e^{-\frac{\ln 2}{4}})$
- b) $\frac{1}{8}N_0$
- $N=\frac{1}{4}N_0$
- d) $N=N_0(1-e^{4ln^2})$
- e) $N=N_0e^{-\frac{17(2)}{4}}$

262. Уравнение гармонических колебаний:

- a) $x=x_m\cos(\omega t+\varphi)$
- b) $x=x_m\cos(\varphi t+\omega)$
- c) $x=x_m\cos\varphi$
- d) $x=x_m \cos \varphi t$
- e) $x=x_m \sin \varphi t$

263. Индуктивность контура связана с потокоцеплением соотношением

- a) Ψ =LI
- b) $\Psi = LI^2$
- c) $\Psi = L^2I$
- d) $\Psi = LI^2/2$
- e) $\Psi = L^2I/2$

264. Энергетическая светимость абсолютно черного тела 10^4BT/m^2 . Найти его температуру (постоянная Больцмана $\sigma=5,67 \cdot 10^{-8} \; \text{BT/(m}^2 \cdot \text{K}^4)$)

- a) 650
- b) 700
- c) 180
- d) 1000
- e) 230

265. Потенциал задержания фототока 3,7 В. Найти максимальную скорость фотоэлектрона $(e=1,6\cdot 10^{-19} \mathrm{K}_{\mathrm{J}},\ m_{\mathrm{e}}=9.\ 1\cdot 10^{-31}\ \mathrm{kg})$

- a) $1,14 \cdot 10^6 \text{ m/c}$
- b) $0.84 \cdot 10^6 \text{ m/c}$
- c) $2,64 \cdot 10^6 \text{ m/c}$
- d) $3,54 \cdot 10^6 \text{ m/c}$
- e) $4,24 \cdot 10^6 \text{ m/c}$

266. Полное сопротивление переменного тока

a)
$$\sqrt{R^2 + (\omega L - \frac{1}{\omega c})^2}$$

- b) ωL
- c) $1/\omega C$
- d) R

١	. 1	
	$(\omega L - \frac{1}{\omega c})$	
267.	Закон радиоактивного распада	
a)	$N=N_0 e^{-\lambda t}$	
b)	$A = \left \frac{dN}{dN} \right $	
	$A = \left \frac{dN}{dt} \right $ $T = \frac{\ln 2}{\lambda}$	
c)	••	
d)	$hv=E_n-E_m$	
e)	$\lambda = \frac{h}{mv}$	
268.	Наибольшей проникающей способностью обладают	
a)	γ	
b)	$\stackrel{r}{lpha}$	
c)	β	
d)	α и β	
e)	α, β, γ — одинаково	
269.	Наименьшей проникающей способностью обладают	
,		
a)	α	
b) c)	β	
d)	γ αиβ	
e)	α, β, γ — одинаково	
270.	Энергетическая светимость абсолютно черного тела увеличилась в 2 раза. Во сколько	
	аз увеличилась его температура?	
a)	1,2 раза	
	1,4 pa3a	
	2 pasa	
d) e)	16 раз 8 раз	
271.	При прохождении света через поляризатор и анализатор его интенсивность	
	уменьшилась в 2 раза. Угол между плоскостями анализатора и поляризатора равен	
•		
a)	45^{0}	
b)	30^{0}	
c)	60^{0}	
d)	0^0	
e)		
272.	При прохождении света через поляризатор и анализатор его интенсивность меньшилась в 4 раза. Угол между плоскостями анализатора и поляризатора равен	
y -	меньшилась в 4 раза. У гол между плоскостями анализатора и поляризатора равен	
a)	60^{0}	
b)	45^{0}	
c)	30^{0}	
d)	0°	
e)	90^{0}	
273.	Угол между плоскостями анализатора и поляризатора увеличили с $45^{ m 0}$ до $60^{ m 0}$, во	
Cl	колько раз изменилась интенсивность света	
a)	Уменьшилась в 2 раза	
b)	Увеличилась в 2 раза	
c)	Уменьшилась в 4 раза	

d)	Увеличилась в 4 раза
e)	Уменьшилась в 3 раза
274.β	Г-излучение
- \	П
a)	Поток электронов
b)	Поток ядер гелия
c)	Электромагнитное излучение
d)	Поток позитронов
e)	Поток протонов
275.p	у+-излучение
a)	Поток позитронов
b)	Поток электронов
c)	Поток ядер гелия
ď)	Электромагнитное излучение
e)	Поток протонов
	-излучение
	yv
a)	Поток ядер гелия
b)	Поток электронов
c)	Электромагнитное излучение
d)	Поток позитронов
e)	Поток протонов
277.γ	-излучение
0)	
a)	Электромагнитное излучение
b)	Поток ядер гелия
c)	Поток электронов
d)	Поток позитронов
e)	Поток протонов
	Красная граница фотоэффекта для некоторого металла равна 500 нм. Найти мальную энергию фотона, вызывающего фотоэффект (в эВ)
WILLIAM	imanishiyio shepimo qorona, bbisbibalomero qorosqqeki (b 3b)
a)	2,5
b)	2
c)	3
d)	3,5
e)	1,5
279.	Определить работу выхода (в эВ) электронов из вещества, если при падении на его
пове	рхность света длиной волны λ=207нм задерживающая разность потенциалов равна
U=41	3.
- \	
a)	$\frac{2}{4}$
b)	4
c)	5
d)	8 3
e)	
280. Определить максимальную кинетическую энергию фотоэлектрона (в эВ) при падении	
на поверхность вещества света длиной волны $\lambda=124$ нм, если красная граница фотоэффекта $\lambda_0=249$ нм.	
140 ⁻ 45	2 ARIVA®
a)	5
b)	4
c)	2

d)	8
e)	6
281. C	Определить энергию фотона, если при его падении на вещество задерживающая
разно	сть потенциалов U=2B, а красная граница фотоэффекта λ ₀ =207нм.
1	
-)	0
a)	8
b)	4
c)	2
d)	5
	6
e)	
	Во сколько раз импульс фотона, которому соответствует длина волны λ =332нм, больше
импу	льса фотона р=10 ⁻²⁷ кг·м/с.
a)	2
b)	4
c)	3
d)	6
e)	5
,	Определить длину волны λ (в пм) света, рассеянного под углом θ =120 0 к направлению
падан	ощего пучка света. Длина волны рентгеновского излучения λ=5,4пм.
a)	9
b)	3
c)	8
d)	5
e)	2
284. C	Эпределить длину волны де Бройля λ (в нм), характеризующую волновые свойства
элект	рона (m_c =9,11·10 ⁻³¹ кг), если его скорость v =1,2·10 ⁵ м/с.
3010111	point (int >)11 10 int), com e10 enopoe12 0 1)2 10 inte
۵)	6
a)	6
b)	4
c)	9
d)	3
e)	2
285. Г	Іри скорости изменения силы тока $\dfrac{\Delta I}{\Delta t}$ = 1,2 A/c в соленоиде, на его концах возникает Э
200.1	$\frac{1}{\Delta t}$
Л. С с	амоиндукции ε _ί =4,8В. Определить индуктивность L соленоида.
д. С С	мнопидукции сторы определить индуктивность в солононда.
,	4
a)	4
b)	6
c)	8
d)	10
e)	2
	Определить длину волны де Бройля, характеризующую волновые свойства протона,
если е	его скорость v= 1Mм/с
a)	0,4пм 0,7нм
b)	91пм
′	
c)	52пм
d)	57нм
	Определить длину волны де Бройля, характеризующую волновые свойства электрона,
	его скорость $\upsilon = 8 \cdot 10^6 \text{м/c}$
если (CIO CKOPOCIB $O = 0.10$ M/C
a)	91пм

b)	0,7нм
c)	0,4пм
d)	52пм
e)	57нм
,	В результате комптоновского рассеяния на свободном покоящемся электроне длина
фот	она увеличивается в 4 раза. Найти кинетическую энергию электрона отдачи, если огия рассеянного фотона ε=0,16МэВ
a)	0,48МэВ
b)	0,54МэВ
c)	0,56МэВ
d)	0,46МэВ
e)	0,72МэВ
	В результате комптоновского рассеяния на свободном покоящемся электроне длина
	она увеличивается в 3 раза. Найти кинетическую энергию электрона отдачи, если
	огия рассеянного фотона ε=0,36MэB
a)	0,72МэВ
b)	0,54M ₃ B
c)	0,56MaB
d)	0,46M ₃ B
e)	0,48M ₃ B
ŕ	
	Эффективное напряжение переменного тока 220В. Найти амплитуду колебания ряжения.
a)	310
b)	156
c)	440
d)	220
e)	130
	Определить напряженность магнитного поля в центре тонкого кольца, радиусом
1-10	осм, если по нему течёт ток силой I=1A.
a)	5
b)	2
c)	6
d)	3
e)	8
292.	Свет переходит из воды (n-1,33) в воздух. Как при этом изменяется длина световой
волі	ны?
a)	Увеличится в 1,33
b)	Увеличится в $\sqrt{1,33}$
c)	Уменьшится в 1,33
,	Уменьшится в $\sqrt{1,33}$
d) e)	Не изменится.
	Звуковые колебания с частотой v=0,2·10 ³ Гц распространяется в упругой среде. Длина
	ны λ =40см. Найти скорость распространения волны.
a)	80м
b)	60м
c)	120м
<i>-)</i>	12011

d)	40м
e)	20м

294. Чему равна ЭДС самоиндукции в катушке с индуктивностью 2 Гн, если сила тока в ней за 0,1 с равномерно уменьшилась от 5 А до 3 А:

- a) 40 B
- b) 0,4 B
- c) 10 B
- d) 20 B
- e) 100 B

295. Сила взаимодействия между проводами двухпроводной линии постоянного тока на каждый метр длины равна 10^{-4} H, расстояние между проводами 20 см. Сила тока в проводах равна:

- a) 10 A
- b) 4 A
- c) 2 A
- d) 6,3 A
- e) 20 A

296. Сила взаимодействия, приходящаяся на единицу длины каждого из параллельных проводников, находящихся на расстоянии в между собой, определяется выражением:

- a) $\frac{\mu_0}{4\pi} \frac{2I_1I_2}{b}$
- b) $\frac{\mu_0}{4\pi} \frac{I_1 I_2}{b}$
- c) $\frac{4\pi}{\mu_0} \frac{I_1 I_2}{b}$
- $d) \qquad \frac{4\pi}{\mu_0} \frac{2I_1I_2}{b}$
- e) $\frac{1}{4\pi u_0} \frac{I_1 I_2}{h}$

297. Модуль вращательного момента, действующего на плоский контур с током в однородном магнитном поле, определяется выражением:

- a) $p_m B \sin \alpha$
- b) $p_m B \cos \alpha$
- c) $p_m B$
- d) $p_m H \sin \alpha$
- e) $p_m H \cos \alpha$

298. На проводник длинной 0,5м, помещенный в однородное магнитное поле с индукцией 0,4Тл, действует сила 0,2Н. Определить силу тока в проводнике, если он расположен под углом 30^{0} к линиям магнитной индукции:

- a) 2 A
- b) 6 A
- c) 1 A
- d) 0.2 A
- e) 4 A

299. Начальная скорость заряженной частицы составляет угол α =90 0 с линиями индукции однородного магнитного поля. Частица движется:

- а) По окружности
- b) По эллипсу

- c) d)
- По прямой По параболе По винтовой линии e)

300. По катушке индуктивностью 2Гн проходит ток 4 А, магнитный поток внутри катушки равен:

- a) 8 Вб
- b) 2 Вб
- c) 32 Вб
- d) 16 Вб
- e) 1 Вб