Answer 1 - 13

Name - Win Yu Maung, ID - 6612054, Sec - 542

No.1

Components of a graph

- Vertices
- Edges
- · Weight (if weighted graph)

No.2

Real-life example of Directed Graph

- Social Networks
- · One way trip locations

No.3

Real-life example of Undirected Graph

• Electric Circuit or Roads between cities

No.4

When a graph is called "connected", it means that nodes are connected in a way but not directly.

No.5

When a graph is called "fully connected", it means that nodes are directly connected to each other.

No.6

Yes, a tree is a connected graph

No.7

A difference between a tree and a graph is that a tree is not interconnected (eg. a node of a tree is only connected to its own parent node and child node) while graph might be interconnected to each other. (eg. a graph may have cycles from connecting nodes)

No.8

Rooted tree is a tree that has a unique node called root(that has no parent node) and tree properties.

No.9

A leaf is a node that has no other edge to connected with another node. In other word, the end node.

No.10

In a tree that has n nodes, there are (n-1) edges because root node does not have own edge to parents.

No.11

There is exactly one simple path between a pair of tree nodes.

No.12

A weighted graph is a graph that has edges having weighted which means edges has values.

No.13

a)

Adjacency matrix

	0	1	2	3
0	0	1	0	0
1	1	0	1	1
2	0	1	0	1
3	0	1	1	0

Adjacency List

0	→ 1
1	→ 0, 2, 3
2	→ 1, 3
3	→ 1, 2

b)

Adjacency matrix

	1	2	3	4
1	0	1	1	0
2	0	0	0	0
3	0	1	0	1
4	0	0	1	0

Adjacency List

1	→ 2,3
2	→
3	→ 2,4
4	→ 3

c)

Adjacency matrix

	v1	v2	v3	v4	v5	v6
v1	0	5	6	0	0	0
v2	5	0	8	3	4	0
v3	6	8	0	0	6	0
v4	0	3	0	0	3	7
v5	0	4	6	3	0	7
v6	0	0	0	7	7	0

Adjacency List

v1	→ v2 5	→ v3 6		
v2	→ v1 5	→ v3 8	→ v4 3	→ v5 4
v3	→ v1 6	→ v2 8	→ v5 6	
v4	→ v2 3	→ v5 3	→ v6 7	
v5	→ v3 6	→ v2 4	→ v4 3	→ v6 7
v6	→ v4 7	→ v5 7		

d)

Adjacency matrix

	Α	В	D	F	N
Α	0	14	0	0	0
В	0	0	23	13	0
D	5	0	0	0	0
F	43	0	0	0	33
N	0	22	0	11	0

Adjacency List

Α	→ B 14	
В	→ F 13	→ D 23
D	→ A 5	
F	→ N 33	→ A 43
N	→ F 11	→ B 22