ACTO2 - SAR

(19/06/2017 - 3 puntos)

(IMPORTANTE: todos los cálculos se mostrarán redondeados a dos decimales)

1) Se pide obtener la postings list a partir de la siguiente secuencia de bits codificada utilizando codificación variable en bytes: (0,5 puntos)

00000010 10000100 10001011 00000001 00010100 10001101

Solución:

Los valores codificados son [(2*128)+4=260, 11, [(1*128*128)+(20*128)+13=18.957]]. Recordando que los valores codificados corresponden a los gaps, la postings list es [260, 271, 19228]

2) Asumiendo que la longitud de la postings list de una colección de documentos sigue una ley de Zipf ~ i⁻², y que las primeras 100 listas más largas tienen una longitud >= 1000, ¿qué longitud tiene la lista más larga? (0,5 puntos)

Solución:

La ley de Zipf: $cfi = K/i^2$

Para i = 100, $cf_i = 1.000$ por lo que $K = i^2 * cf_i = 100^2 * 1.000 = 10^7$.

Para i = 1, $cf_i = K/i^2$, es decir, $cf_i = K$, por lo que $cf_1 = 10^7$, que es la longitud de la lista más larga.

3) Se pide indicar sobre la tabla, los desplazamientos que se realizarían en una búsqueda por Booyer-Moore del patrón "FCFAAB" en la cadena "CFFFCABBBEBFCFAABEBAF". (0,75 puntos)

С	F	F	F	С	Α	В	В	В	Е	В	F	С	F	Α	Α	В	Е	В	Α	F	
F	C	F	Α	Α	В																
	F	С	F	Α	Α	В															
			F	С	F	Α	Α	В													
				F	С	F	Α	Α	В												
										F	С	F	Α	Α	В						
											F	С	F	Α	Α	В					

4) Dadas las siguientes páginas web y los enlaces entre ellas representadas como un grafo, se pide calcular los valores HUB y AUTHORITY de cada página utilizando la aproximación HITS. Realiza cinco iteraciones sin normalización. (1,25 puntos)

Solución:

Matriz de enlaces:

 $[0\ 0\ 1\ 1\ 0]$

 $[1\ 0\ 1\ 0\ 0]$

 $[0\ 0\ 0\ 0\ 1]$

[0 0 1 0 0]

 $[0\ 0\ 0\ 0\ 0]$

HUI	BS	AUTHORITY					
t0	[1 1 1 1 1]	[1 1 1 1 1]					
t1	[22110]	[1 0 3 1 1]					
t2	[44130]	[20521]					
t3	[77150]	[4 0 11 4 1]					
t4	[15 15 1 11 0]	[7 0 19 7 1]					
t5	[26 26 1 19 0]	[15 0 41 15 1]					