

Series de Tiempo Proyecto 2

Nombres Bruno Martinez Barrera Correos bruno.martinez@sansano.usm.cl

Cristóbal Cancino Adriasola cristobal.cancino@sansano.usm.cl

Profesor Ronny Vallejos Fecha 26 de abril de 2022

Ayudante Daniela Diaz

Problema 1

Considere un modelo de la forma

$$Y_t = \beta_0 + \sum_{i=1}^6 \beta_i \cos\left(\frac{2\pi t}{T_i}\right) + \epsilon_t, \tag{1.1}$$

donde el proceso ε_t es un ruido blanco con varianza σ^2 y T_i son los periodos de la serie.

1. Escriba este modelo en la forma $Y = X\beta + e$.

Solución. test

2. Explique cómo obtener estimaciones de $\beta_0, ..., \beta_6$ y σ^2 .

Solución.

3. ¿Qué consideraciones hay que establecer para que el modelo (1.1) incluya una tendencia cuadrática?

Solución.

Sea $\{X_t:t\in T\}$ un proceso estacional normal con función con media μ_X y función de autocovarianzas $C_X(\cdot)$. Definamos la serie no lineal

$$Y_t = \exp(X_t), \quad t \in T. \tag{2.1}$$

1. Exprese la media del proceso Y_{t} en términos de μ_{X} y $C\left(0\right).$

Solución. test

2. Determine la función de autocovarianza de Y_t .

Si $C_{j}\left(h\right)$ son funciones de covarianza de un proceso estacionario débil para todo j=1,...,n. Demuestre que $\sum_{j=1}^{n}b_{j}C_{j}\left(h\right)$ también es un función de covarianza si $b_{j}\geq0,\,\forall\,j$.

```
Describa que hace exactamente la siguiente rutina en R.

x=rnorm(200,0,1)
y=vector(mode="numeric", length=200)
for (i in 2:200){
y[i]=0.5*y[i-1]+x[i]
}

par(mfrow=c(1,2),pty = "s")
plot.ts(y)
acf(y)
```

Considere el proceso $X_t = \delta + X_{t-1} + \epsilon_t$, donde $t = 1, 2, ..., \epsilon_t$ es una secuencia de variables aleatorias iid con media cero y varianza σ^2 .

1. Escriba la ecuación del proceso X_t como sigue

$$X_t = \delta t + \sum_{j=1}^t \epsilon_t. \tag{5.1}$$

Solución. test

2. Calcule $\mu(t) = \mathbb{E}[X_t] \text{ y } V(t) = \mathbb{V}[X_t].$

Solución. test

3. ¿Es el proceso X_t débilmente estacionario?

Sea X_t un proceso intrínsecamente estacionario. El semivariograma de X_t se define como

$$\gamma_X(h) = \frac{1}{2} \mathbb{E}\left[(X_{t+h} - X_t)^2 \right].$$

1. Si X_{t} es un ruido blanco con varianza σ^{2} , calcule $\gamma_{X}\left(h\right)$.

Solución. test

2. Si $X_t = \beta_0 + \beta_1 t + \epsilon_t$, donde ϵ_t es un ruido blanco con varianza σ^2 , calcule $\gamma_X(h)$.

Sea $C_{X}\left(\cdot\right)$ la función de covarianza asociada a un proceso de media nula. Si

$$C_X\left(t\right) = C_X\left(0\right),\,$$

para algún t>0. Demuestre que $C_{X}\left(\cdot \right)$ es periódica.