1、将下列命题形式化为谓词演算中的命题。

(4) (fx)(f(x)→G(x)) F(x): X提稿, G(x): X相信某些医生

(1)	所有的病人都相信医生;
(2)	有的病人相信所有的医生;
(3)	有的病人不相信某些医生;
(4)	所有的病人都相信某些医生;
(5)	任意一个整数 x, 均有另一个整数 y, 使得
	x+y=0;
(6)	存在这样的实数 x, 它与任何实数 y 的乘积
	均为 y。
(1)	(+x)(F(x)→G(x)) F(x): X是病人,G(x): X相信医生
(2)	[3x)(Fix) 1 Gix) Fix): x是病人, Gix): X相信所配性.
(3)	[3x](Fix)AGIX)) Fix): 次是病人、Gix): X不相信某些压生

(S)(大X)(ZIXI ->(ヨy)(ZIY)ハA(XIY))) ZX)-ス定型の AIXIY): XTY=0

(6) $(\exists x) (Rix) \wedge (\forall y) (Riy) \rightarrow A(x,y))$ Rix): x提致, A(x,y): $\chi \cdot y = y$

2、设 t 是项 $f_1^2(x_1, x_3)$, $p(x_1)$ 是下面的公式。确定 t 对 $p(x_1)$ 中的是否自由?如果是自由的,写出 x_1		
$(1) \ \forall x_1 R_1^2 \ (x_2, \ f_1^2 \ (x_1, x_2)) \rightarrow R_1^1 \ (x_1);$		
(2) $\forall x_1 \forall x_3 (R_1^1(x_3) \rightarrow R_1^1(x_1));$ (3) $\forall x_2 R_1^1(f_1^1(x_2)) \rightarrow \forall x_3 R_1^3(x_1, x_2, x_3);$		
$(4) \ \forall x_2 R_1^3 \ (x_1, \ f_1^1 \ (x_1), x_2) \rightarrow \forall x_3 R_1^1 \ (f_1^2 \ (x_1, x_3)).$		
O) $ \oint \Phi : P(t) = \forall x_1 R_1^2 (x_2, f_1^2(x_1, x_2)) \rightarrow R_1^2(t) $ (2) $ \oint \Phi : P(t) = \forall x_1 \forall x_2 (R_1^2(x_3)) \rightarrow R_1^2(x_1)) $		
(2) AB: ptt) = Yx1Yx1 (R1(X3) → R1(X1))		
(3) 不自由		
(4) 不自由		