Project report on Internship done during 06th August,2025 to 08th October,2025

Name: Aditya Banerjee

University Name: University Of Kalyani

Department Name: Department of Computer

Science and Enfineering

Roll No.:90/BCS/220007

Registration No.:1090122 of 2022-2023

Session:2025-2026

Stream:B.Tech (CSE) 7th Semester

Project: Design of a Novel CI/CD Simulator for

Cloud Computing environment

Guide Name: Dr. Kousik Dasgupta

Associate Professor and H.O.D.

Department of Computer Science and

Engineering

Kalyani Government Engineering College,Kalyani,Nadia

Index

- A) Problem Statement
- B) Introduction
- C) Literature Survey
- D) Proposed Methodology
- E) Results & Analysis
- F) Conclusion
- References
- Appendix-A

Design of a Novel CI/CD Simulator for Cloud Computing environment

A) Problem Statement:

Continuous Integration (CI) and Continuous Deployment (CD) pipelines are critical for modern software development, enabling rapid and reliable delivery of software updates. However, in cloud environments, inefficiencies in build strategies, load balancing, and scheduling can lead to:

- Longer deployment times, delaying product releases
- Underutilization of cloud resources, causing wasted computational power
- **Unbalanced load distribution**, which can overload some servers while leaving others idle
- Inefficient scheduling of tasks, increasing average waiting and turnaround times
- **Higher energy consumption**, due to idle resources or inefficient task execution

These challenges affect **both performance and operational costs** in cloud-native CI/CD pipelines. There is a need for a **simulator** that can evaluate

different strategies to optimize build times, distribute loads efficiently, and schedule tasks effectively.

B) Introduction

Cloud computing has revolutionized software deployment, providing **elastic infrastructure** and **scalable resources**. CI/CD pipelines are widely used to automate software builds, testing, and deployment. A typical CI/CD process involves:

- Build Phase Compiling code, packaging containers, and creating deployable artifacts
- 2. Load Balancing Phase Distributing incoming requests or tasks across multiple servers
- 3. **Scheduling Phase** Allocating CPU resources to jobs or processes in an optimal way

Optimizing these phases improves **deployment speed**, **resource utilization**, and **energy efficiency**.

Importance of the Project

- Provides **quantitative metrics** to compare strategies
- Helps in making informed decisions for cloudbased CI/CD pipelines

- Enables experimentation with large-scale
 workloads (up to 20000 services and 10000 jobs)
- Can be extended to energy-efficient deployments and cloud cost optimization

C) Literature Survey:

Several studies highlight the need for efficient CI/CD in cloud environments:

Author	Ye Focus	Findings
Humble	20 CI/CD	Emphasized automation and

Author	Ye ar	Focus	Findings
& Farley	10	principles	rapid feedback loops
et al.	18	scaling	Load balancing critical to reduce bottlenecks in deployments
Li et al.	20 20	Task scheduling in cloud	SJF and SRTF scheduling minimized average turnaround time
Gupta & Kumar	20 22	Energy- efficient cloud	Parallel builds reduce idle server energy consumption

Gap Identified: Existing studies often focus on **single aspects** like build optimization or scheduling but **lack an integrated simulator** to evaluate all phases together under large-scale workloads.

D) Proposed Methodology:

The simulator evaluates three main phases using Python:

1. Build Phase

Four build strategies are implemented:

Strateg	Formula / Concept	Notes
y Sequen tial Build	<pre>total_time = num_services * avg_time</pre>	Baseline, processes services one after another
Parallel Build	<pre>total_time = avg_time speedup = seq_time / total_time efficiency = speedup / num_services total_time =</pre>	Executes all services concurrently
Cached Build	<pre>changed_services * avg_time + (num_services - changed_services) * (avg_time // 2)</pre>	Reuses previous builds for unchanged services
Slim Image Build	<pre>total_time = int(seq_time * slimming_factor)</pre>	Creates smaller images for faster deployment

Metrics Collected: Total Build Time, Speedup, Efficiency

2. Load Balancing Phase

Four algorithms:

Algorithm Methodology

Round

Requests distributed cyclically among servers

Robin

Least

Requests sent to server with minimum active

Connections connections

Random Requests assigned randomly to any server

Genetic Optimizes request distribution using Algorithm evolutionary selection and mutation

Metrics Collected:

- Average Load
- Max Load
- Min Load
- Load Variance
- Fairness Index
- Load Imbalance

Formulas:

• Average Load: $x^- = \sum xi/n$,

• Variance: $\sigma^2 = n\sum (xi - x^-)^2$,

• Fairness Index: $FI=(\sum xi)^2/(n*(\sum xi)^2)$,

Load Imbalance: LI=max(xi)-min(xi)

3. Scheduling Phase:

Simulates CPU scheduling of cloud jobs:

Algor ithm	Concept	Notes
FCFS	First Come First Serve	Baseline, processes jobs in arrival order
SJF	Shortest Job First	Non-preemptive, minimizes average turnaround time
SRTF	Shortest Remaining Time First	Preemptive SJF, adapts dynamically
HRR N	Highest Response Ratio Next	Balances fairness and efficiency

Metrics Collected: Average Waiting Time, Average Turnaround Time, Average Response Time

Formulas:

• **Turnaround Time:** TATi=CTi-ATi

• Waiting Time: Wti=TATi-BTi

• **Response Time:** Rti=STi-ATi

E) Results & Analysis

1. Technology Stack:

_	Version / Tool	Purpose
Python	3.12.3	Simulation logic and CSV management
Pandas	2.1.0	Data handling for results
Matpl otlib	3.8.0	Graphical visualization
Docke	24.0	Containerized
r	24.0	execution
Git	2.42	Version control

2.Results:

Scheduling Phase(Input data):

Number of inputs
15
40
100
200
2000
4000
6000
8000
10000

Build Phase(Input Data):

Set Number	Number of	Avg build time
	Services	per
		services(minutes)
1	2500	6000
2	5000	8000
3	400	12000
4	50	20000

Load Balancing Phase(Input Data):

Set Number	Number of	Total Incoming	
	Service Instances	Requests	
1	2000	1340	
2	8000	6240	
3	12000	9600	
4	15000	7500	
5	20000	15000	

Scheduling Phase(Output data):

Set	Number	Alg	avg_	avg_tur	avg_r
Num	of	orit	waiti	naroun	espon
ber	Inputs	hm	ng	d	se
1	15	FCF S	8.13	11.20	8.13
1	15	SJF	6.13	9.20	6.13
1	15	SRT F	6.07	9.13	6.00

Set Num ber	Number of Inputs	Alg orit hm	avg_ waiti ng	avg_tur naroun d	avg_r espon se
1	15	HRR N	7.13	10.20	7.13
2	40	FCF S	165. 12	174.07	165.1 2
2	40	SJF	96.7 8	105.72	96.78
2	40	SRT F	96.5 3	105.47	96.28
2	40	HRR N	104. 65	113.60	104.6 5
3	100	FCF S	194. 09	200.11	194.0 9
3	100	SJF	152.	158.44	152.4

Set Num ber	Number of Inputs	Alg orit hm	avg_ waiti ng	avg_tur naroun d	avg_r espon se
			42		2
3	100	SRT F	152. 34	158.36	152.2 7
3	100	HRR N	161. 32	167.34	161.3 2
4	200	FCF S	1277 2.44	12949. 81	12772 .44
4	200	SJF	1209 5.06	12272. 42	12095 .06
4	200	SRT F	1209 5.06	12272. 42	12095 .06
4	200	HRR N	1209 5.80	12273. 16	12095 .80

Set Num ber	Number of Inputs	Alg orit hm	avg_ waiti ng	avg_tur naroun d	avg_r espon se
5	2000	FCF S	9942 .28	9952.7 8	9942. 28
5	2000	SJF	6715 .68	6726.2 4	6715. 68
5	2000	SRT F	6909 .62	6920.3 1	6906. 78
5	2000	HRR N	6738 .98	6749.5 2	6738. 98
6	4000	FCF S	2083 1.93	20842. 57	20831
6	4000	SJF	1410 3.47	14114. 09	14103 .47
6	4000	SRT	1363	13644.	13630

Set Num ber	Number of Inputs	Alg orit hm	avg_ waiti ng	avg_tur naroun d	avg_r espon se
		F	4.35	71	.91
6	4000	HRR N	1381 4.51	13824. 98	13814 .51
7	6000	FCF S	3146 8.68	31479. 25	31468 .68
7	6000	SJF	2104 0.88	21051. 42	21040 .88
7	6000	SRT F	2087 3.00	20883. 46	20872 .98
7	6000	HRR N	2094 0.16	20950. 61	20940
8	8000	FCF S	4111 5.05	41125. 53	41115 .05

Set Num ber	Number of Inputs	Alg orit hm	avg_ waiti ng	avg_tur naroun d	avg_r espon se
8	8000	SJF	2833 4.07	28344. 61	28334 .07
8	8000	SRT F	2867 1.90	28682. 51	28671 .89
8	8000	HRR N	2787 0.12	27880. 56	27870 .12
9	10000	FCF S	5234 6.98	52357. 51	52346 .98
9	10000	SJF	3561 0.50	35621. 03	35610 .50
9	10000	SRT F	3526 0.18	35270. 63	35259 .95
9	10000	HRR	3509	35108.	35097

Set	Number	Alg	avg_	avg_tur	avg_r
Num	of	orit	waiti	naroun	espon
ber	Inputs	hm	ng	d	se
		N	7.79	23	.79

Build Phase(Output Data):

Set Nu mb er	Num ber of Servi ces	Avg build time per service s(minut es)	strat	total _tim e	spe edu p	effic ienc y
1	2500	6000	Sequ ential Build	1500 0000 .0	1.0	1.00
1	2500	6000	Parall el Build	2500	600 0.0 0	1.00
1	2500	6000	Cach ed Build	9500 000. 0	1.5 8	1.58
1	2500	6000	Slim Imag	1050 0000	1.4 3	1.43

Set Nu mb er	Num ber of Servi ces	Avg build time per service s(minut es)	strat	total _tim e	spe edu p	effic ienc y
			e Build	.0		
2	5000	8000	Sequ ential Build	4000 0000 .0	1.0	1.00
2	5000	8000	Parall el Build	5000	800 0.0 0	1.00
2	5000	8000	Cach ed Build	2750 0000 .0	1.4 5	1.45

Set Nu mb er	Num ber of Servi ces	Avg build time per service s(minut es)	strat	total _tim e	spe edu p	effic ienc y
2	5000	8000	Slim Imag e Build	2800 0000 .0	1.4	1.43
3	400	12000	Sequ ential Build	4800 000. 0	1.0	1.00
3	400	12000	Parall el Build	400. 0	120 00. 00	1.00
3	400	12000	Cach	4000	1.2	1.20

Set Nu mb er	Num ber of Servi ces	Avg build time per service s(minut es)	strat	total _tim e	spe edu p	effic ienc y
			ed Build	000.	0	
3	400	12000	Slim Imag e Build	3360 000. 0	1.4	1.43
4	50	20000	Sequ ential Build	1000 000. 0	1.0	1.00
4	50	20000	Parall el	50.0	200 00.	1.00

Set Nu mb er	Num ber of Servi ces	Avg build time per service s(minut es)	strat	total _tim e	spe edu p	effic ienc y
			Build		00	
4	50	20000	Cach ed Build	8750 00.0	1.1	1.14
4	50	20000	Slim Imag e Build	7000 00.0	1.4	1.43

Load Balancing Phase(Output Data):

Set Nu mb er	Nu mb er of Ser vice Inst anc es	Tot al Inc omi ng Req ues ts	algori thm	a v g - I o a d	m a x l o a d	m i n - l o a d	var ian ce	fair nes s_i nd ex	load _imb alan ce
1	200	134	Roun d Robin	0 6 7	1 . 0	0 . 0	0.2	0.6 667	1.0
1	200	134	Least Conn ectio ns	0 6 7	1 . 0	0 . 0	0.2	0.6 667	1.0
1	200	134	Rand	0	6	0	0.6	0.4	6.0

Set Nu mb er	Nu mb er of Ser vice Inst anc es	Tot al Inc omi ng Req ues ts	algori thm	a v g - I o a d	m a x l o a d	m i n - I o a d	var ian ce	fair nes s_i nd ex	load _imb alan ce
	0	0	om	6 7	. 0	. 0	6	017	
1	200	134	Gene tic Algor ithm (Load Balan	0 6 7	5 . 0	0 . 0	0.6	0.4	5.0

Set Nu mb er	Nu mb er of Ser vice Inst anc es	Tot al Inc omi ng Req ues ts	algori	a v g - I o a d	m a x _l o a d	m i n - I o a d	var ian ce	fair nes s_i nd ex	load _imb alan ce
			cing)						
2	800	624 0	Roun d Robin	0 7 8	1 . 0	0 0	0.1	0.7 778	1.0
2	800	624 0	Least Conn ectio ns	0 7 8	1 0	0 . 0	0.1	0.7 778	1.0

Set Nu mb er	Nu mb er of Ser vice Inst anc es	Tot al Inc omi ng Req ues ts	algori thm	a v g – I o a d	m a x _l o a d	m i n - l o a d	var ian ce	fair nes s_i nd ex	load _imb alan ce
2	800	624 0	Rand	0 7 8	6 . 0	0 . 0	0.7	0.4 403	6.0
2	800	624	Gene tic Algor ithm (Load	0 7 8	6 . 0	0 . 0	0.7 5	0.4 471	6.0

Set Nu mb er	Nu mb er of Ser vice Inst anc es	Tot al Inc omi ng Req ues ts	algori	a v g - I o a d	m a x _l o a d	m i n - I o a d	var ian ce	fair nes s_i nd ex	load _imb alan ce
			Balan cing)						
3	120 00	960 0	Roun d Robin	0 8 0	1 . 0	0 . 0	0.1	0.8	1.0
3	120 00	960	Least Conn ectio	0 8	1 0	0 . 0	0.1 6	0.8	1.0

Set Nu mb er	Nu mb er of Ser vice Inst anc es	Tot al Inc omi ng Req ues ts	algori thm	a v g - I o a d	m a x l o a d	m i n - I o a d	var ian ce	fair nes s_i nd ex	load _imb alan ce
			ns	0					
3	120 00	960 0	Rand om	0 8 0	6 . 0	0 . 0	0.8	0.4 441	6.0
3	120 00	960	Gene tic Algor ithm	0 8 0	6 . 0	0 . 0	0.7 6	0.4 573	6.0

Set Nu mb er	Nu mb er of Ser vice Inst anc es	Tot al Inc omi ng Req ues ts	algori thm	a v g - I o a d	m a x _l o a d	m i n - I o a d	var ian ce	fair nes s_i nd ex	load _imb alan ce
			(Load Balan cing)						
4	150 00	750 0	Roun d Robin	0 5 0	1 0	0 0	0.2	0.5	1.0
4	150 00	750 0	Least Conn	0	1	0	0.2 5	0.5 000	1.0

Set Nu mb er	Nu mb er of Ser vice Inst anc es	Tot al Inc omi ng Req ues ts	algori thm	a v g - I o a d	m a x _l o a d	m i n - I o a d	var ian ce	fair nes s_i nd ex	load _imb alan ce
			ectio ns	5	0	0			
4	150 00	750 0	Rand om	0 5 0	6 . 0	0 0	0.5	0.3 319	6.0
4	150 00	750 0	Gene tic Algor	0 5	5 0	0 . 0	0.4 9	0.3 385	5.0

Set Nu mb er	Nu mb er of Ser vice Inst anc es	Tot al Inc omi ng Req ues ts	algori thm	a v g - I o a d	m a x _l o a d	m i n - l o a d	var ian ce	fair nes s_i nd ex	load _imb alan ce
			ithm (Load Balan cing)	0					
5	200	150 00	Roun d Robin	0 7 5	1 . 0	0 . 0	0.1 9	0.7 500	1.0
5	200	150	Least	0	1	0	0.1	0.7	1.0

Set Nu mb er	Nu mb er of Ser vice Inst anc es	Tot al Inc omi ng Req ues ts	algori thm	a v g - I o a d	m a x _l o a d	m i n l o a d	var ian ce	fair nes s_i nd ex	load _imb alan ce
	00	00	Conn ectio ns	7 5	. 0	. 0	9	500	
5	200	150 00	Rand	0 7 5	6 . 0	0 0	0.7 5	0.4 271	6.0
5	200 00	150 00	Gene tic	0	6	0	0.7	0.4 395	6.0

Set Nu mb er	Nu mb er of Ser vice Inst anc es	Tot al Inc omi ng Req ues ts	algori thm	a v g – I o a d	m a x l o a d	m i n -I o a	var ian ce	fair nes s_i nd ex	load _imb alan ce
			Algor ithm (Load Balan cing)	7 5	0	0			

3. Graph Analysis:

Images of Graphs:

Build Phase Graphs:

- **Total Time**: Parallel builds dramatically reduce build time.
- **Speedup**: Highest for parallel builds; cached builds provide moderate speedup.
- **Efficiency**: Slim Image builds maintain consistent efficiency across scales.

Load Balancing Graphs:

- **Average Load**: Round Robin and Least Connections evenly distribute load.
- **Variance & Fairness Index**: Random and Genetic Algorithms show variability but GA can optimize fairness under dynamic workloads.
- **Load Imbalance**: Lower in RR and LC, moderate in GA, high in Random.

Scheduling Graphs:

- Average Waiting & Turnaround: SJF and SRTF outperform FCFS.
- **HRRN**: Balances fairness while keeping response times reasonable.

F) Conclusion

The **CI/CD Speed Simulator** demonstrates the impact of **build strategies**, **load balancing**, **and scheduling algorithms** on cloud deployments.

- **Parallel builds** drastically reduce deployment times.
- Cached builds improve efficiency in incremental builds.
- **Load balancing** using Round Robin or Least Connections ensures fair resource usage.
- **Genetic Algorithm** shows promise for dynamic workloads but is computationally heavier.
- SJF/SRTF minimize turnaround and waiting times, improving CPU efficiency.
- Simulator can scale up to **20000 service instances** and **10000 jobs**, providing reliable insights for realworld CI/CD pipelines.

Future Work:

- Cloud deployment on AWS/GCP/Azure
- Web dashboard visualization

- Energy consumption modeling per VM/core
- Integration with Jenkins/Kubernetes

References:

- Humble, J., & Farley, D. (2010). *Continuous Delivery: Reliable Software Releases through Build, Test, and Deployment Automation*. Addison-Wesley.
- Sharma, R., et al. (2018). Scaling CI/CD pipelines in cloud environments. *International Journal of Cloud Computing*, 7(3), 45–56.
- Li, H., et al. (2020). Task scheduling strategies for cloud computing. *Journal of Systems and Software*, 162, 110518.
- Gupta, A., & Kumar, S. (2022). Energy-efficient cloud computing: A survey. *IEEE Access*, 10, 34567–34585.

Appendix-A:

Project Structure

CI-CD-Speed-Simulator/ — docker/ # Docker strategy logic — Dockerfile.base # Base image (common deps, caching) — Dockerfile.simulator # Simulator container — docker-compose.yml # For multicontainer testing — simulator/ # Core simulator logic ____init___.py build_simulator.py # Simulator algorithms (build time calc)

```
strategy.py
                          # Docker strategy
algorithms
 — parser.py
                         # Log parser (build logs
→ metrics)
utils.py
                        # Helpers (timers,
randomness, stats)
 — tests/
                       # Unit tests
  test_simulator.py
  test_strategy.py
  test_parser.py
 — ci/
                      # CI/CD config files
  github-actions.yml # Example GitHub
Actions CI config
gitlab-ci.yml # Example GitLab CI
config
— logs/
                       # For saving simulated build
logs
```


- docker/: Contains Docker files for containerized execution.
- docker-compose.yml: Used for multi-container testing.
- **simulator**/: Holds the core simulator logic and algorithms.
- tests/: Includes unit tests for various components.
- **ci**/: Stores example CI/CD configuration files for GitHub and GitLab.
- logs/: For saving simulated build logs.

- **results.csv:** The output file for simulation metrics data.
- **graphs/:** Stores the generated plots for analysis.
- **scripts**/: Contains utility scripts, such as a bash script to run the simulation.
- requirements.txt: Lists Python dependencies