Let $b \in \mathbb{R}^m$ and $A \in \mathbb{R}^{m \times n}$. Assume you are given the least squares problem

$$\min_{x \in \mathbb{R}^n} \|Ax - b\|_2^2.$$

- 1. Which equation does a solution \hat{x} of the above least squares problem solve? Give formula and name of the equation.
- 2. Assume you are given the following data

Z	-3	-1	0	1	3	
У	-3	-1,5	0	2,5	4	ŀ

Solve the curve fitting problem

$$\min_{c_0,c_1\in\mathbb{R}}\sum_{i=1}^5(c_0+c_1z_i-y_i)^2,$$

i.e., determine the minimizing parameters c_0 and c_1 .

Solution:

- 1. (1+1P): \hat{x} solves the normal equation: $A^T A \hat{x} = A^T y$
- 2. In this case:

$$(2P): \quad A = \begin{pmatrix} 1 & -3 \\ 1 & -1 \\ 1 & 0 \\ 1 & 1 \\ 1 & 3 \end{pmatrix},$$

$$(\mathbf{2P}): \ A^T A = \begin{pmatrix} 5 & 0 \\ 0 & 20 \end{pmatrix} \ ,$$

(2P):
$$A^T y = \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ -3 & -1 & 0 & 1 & 3 \end{pmatrix} \begin{pmatrix} -3 \\ -1,5 \\ 0 \\ 2,5 \\ 4 \end{pmatrix} = \begin{pmatrix} 2 \\ 25 \end{pmatrix}$$

Normal equation:

$$\begin{pmatrix} 5 & 0 \\ 0 & 20 \end{pmatrix} \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} = \begin{pmatrix} 2 \\ 25 \end{pmatrix} \quad \Leftrightarrow \quad c_0 = \frac{2}{5} = 0, 4, \ c_1 = \frac{25}{20} = 1, 25$$

$$\Rightarrow$$
 $(1+1P)$: $\hat{x} = \begin{pmatrix} 0.40 \\ 1.25 \end{pmatrix}$, $c_0 = 0.40$, $c_1 = 1.25$