Section I

10 marks

Attempt Questions 1-10

Allow about 15 minutes for this section

Use the multiple-choice answer sheet for Questions 1 - 8

1. What is the solution to the equation $3x^2 + 7x - 1 = 0$?

$$A. x = \frac{-7 \pm \sqrt{61}}{6}$$

B.
$$x = \frac{-7 \pm \sqrt{37}}{6}$$

C.
$$x = \frac{7 \pm \sqrt{37}}{6}$$

D.
$$x = \frac{7 \pm \sqrt{61}}{6}$$

-7± \[72-4 \times 3 \times -1 \]
-2 \times 3

2. Which set of points below is a function?

$$A = (-6, 7), (7, 6), (-4, 5) \text{ and } (-6, -4)$$

B.
$$(-6, 7)$$
, $(7, 4)$, $(-6, 5)$ and $(7, -2)$

$$\mathcal{L}$$
. $(-6, 7)$, $(7, 5)$, $(-4, 5)$ and $(7, -6)$

$$(-6,7)$$
, $(7,-6)$, $(-4,5)$ and $(5,-4)$

3.

What is the length of AB, correct to one decimal place?

$$\frac{\chi}{\sin \pi} = \frac{13}{\sin 34}$$

4. A theatrical agent has 50 artists on his books.

The Venn diagram shows the genres in which they perform.

He rings one of his artists at random.

What is the probability that the artist does comedy or documentary or both, but not drama?

A.
$$\frac{3}{10}$$

C.
$$\frac{3}{5}$$

D.
$$\frac{16}{25}$$

Find the exact value of tan $\frac{5\pi}{3}$. 5.

$$\widehat{A}$$
. $-\sqrt{3}$

$$\widehat{A}$$
. $-\sqrt{3}$

C.
$$\frac{1}{\sqrt{3}}$$

D.
$$\sqrt{3}$$

6. What is the derivative of
$$x^{-2} - \frac{1}{x}$$
?

$$\frac{d}{dx} = -2x^{-3} + \frac{1}{2}$$

$$A. \qquad \frac{-2}{x} - \frac{1}{x^2}$$

$$B. \qquad \frac{-2}{x} + \frac{1}{x^2}$$

C.
$$\frac{-2}{x^3} - \frac{1}{x^2}$$

$$\frac{-2}{r^3} + \frac{1}{r^2}$$

7. Which of the following expressions is equal to $4 + 4\cot^2 x$?

A.
$$4\sec^2 x$$

8. Find the derivative of
$$y = \sqrt{(x^3 + 4)^3}$$
.

Find the derivative of
$$y = \sqrt{(x^3 + 4)^3}$$

A.
$$3(x^3+4)^2$$

B.
$$18\sqrt{x^3 + 4}$$

C.
$$\frac{\sqrt{x^3+4}}{18x^2}$$

$$\frac{d}{dx} = \frac{3}{2} (x^{3} + 4)^{2} + 3x^{2}$$

$$= 9x^{2} \sqrt{x^{3} + 4}$$

$$\begin{array}{c}
0 & \frac{9x^2\sqrt{x^3+4}}{2}
\end{array}$$

9. Leo owns five blue and seven red ties. He chooses a tie at random for himself and puts it on. He then chooses another tie at random, from the remaining ties, and gives it to his brother. What is the probability that both of the ties, are the same colour?

A.
$$\frac{1}{2}$$

B.
$$\frac{5}{33}$$

$$\frac{31}{66}$$

D.
$$\frac{31}{72}$$

10. If $\frac{4}{x-3} + \frac{2}{x} = 1$, x > 0, then x is equal to:

$$(A.) \quad \frac{9 \pm \sqrt{57}}{2}$$

- B. $\frac{9 + \sqrt{57}}{2}$
- C. 2
- D. 7

4i+2(x-3) = x(x-3) $4x+2x-6 = x^{2}-3x$ $x^{2}-9x+6 = 0$ $x = 9 = \sqrt{9^{2}-4x^{6}}$ $= 9 = \sqrt{9^{2}-4x^{6}}$

and for both SIns

Section II

70 marks Attempt all questions

Allow about 1 hour and 45 minutes for this section

Answer the questions in the spaces provided. Your responses should include relevant mathematical reasoning and/or calculations. Extra writing space is provided at the back of the examination paper.

Question 11 (2 marks)

List all the points where $y = x^3 - 4x$ crosses the <i>x</i> -axis.	2
$y = \chi(\chi-2)(\chi+2)$	Im factorise
$y = \chi(\chi-2)(\chi+2)$ when $y = 0$	Im all 3 slas
$\alpha = 2, -2, 0$	as x-values
x = 2, -2, 0 $x = 2, -2, 0$ $x = 2, 0 (2, 0) (2,$	-2,0) (oordinates
Question 12 (2 marks)	
Simplify the expression $\frac{a^2-3a}{2ax} \times \frac{4a^2x}{2ax-6x}$, giving your answer as a s	imple
fraction.	<u> </u>
x(a-3) x 4a x m	tactonse
70x 2x(a-3) /m	simplified
fraction. $ \underline{x(\alpha-3)} \times \underline{f(\alpha^2x)} m $,
χ	

Question 13 (3 marks)	
A tangent is drawn to the curve $y = \frac{x^3 - x^2 - 9x}{2}$ at the po	oint where $x = \sqrt{3}$.
Find the angle of inclination of the tangent to the negitive	•
$y' = 3x^2 - x - 4$ $y' = 3x^2 - x - 4$	tan 0 = -53
when 2=53	G=180-60°
$\frac{y' - 3 \times 3 - \sqrt{3} - 9}{2}$	= [20]
= - 53	Im differential?
When $2 = \sqrt{3}$ $y' = 3 \times 3 - \sqrt{3} - 9$ $= -\sqrt{3}$ Question 14 (3 marks)	In asl
The velocity of a particle moving in a straight line is given by	y
$v = 2t^2 - 10t - 48$. Find the acceleration, when the velocit	y is zero.
when $V = 0$ $0 = 2 t^{2} - 10t - 48$	·
$0 = t^2 - 5t - 24$ $0 = (t - 8)(t + 3)$	
t = 8, -3 but $t = 8$	t > 0 so
a = 4t-10	(m differential
	for a
$a = 4 \times 8 - 10$ $= 22$	(m fral
or 22cm [s2	
or any unit	

Question 15 (3 marks)

The shaded segment shown is formed by an arc BC of a circle radius 1.6m, which subtends an angle of $\frac{4\pi}{9}$ radians at its centre A.

Find the area of the shaded segment, correct to 3 significant figures.

A=	1 (1-6)2	411 - Sin	477	з
	2	9	9) (1	n uses correct
=	0.527	(3 s.f.)		formula
				n obtains
			-	overt answer
				in correct s.f.

Question 16 (3 marks)
Solve the equation $\sin \theta = 5\cos \theta$ in the interval $0 \le \theta \le 360^\circ$. Answer correct to the nearest minute.
fant = 5
A=78 41 258 41 Im to tant
In two corrections
angles
Question 17 (3 marks)
Four identical balls are numbered 1, 2, 3 and 4 and put into a box. A ball is randomly drawn from the box, and not returned to the box. A second ball is then randomly drawn from the box.
(a) What is the probability that the first ball drawn is numbered 4 and the second ball drawn is numbered 1?
$\frac{1}{4} \times \frac{1}{3} = \frac{1}{12}$
In correct
(b) What is the probability that the sum of the numbers on the two balls is 5? 1, $4 \text{ ov } 4, 1 \text{ ov } 2, 3 \text{ ov } 3, 2$
in correct simplified
(c) Given that the sum of the numbers on the two balls is 5, what is the probability that the second ball drawn is numbered 1?
first ball had to be a 4 1

Question 18 (5 marks) Uses = instead of $\frac{d}{dx}$ The second of $\frac{d}{dx}$
$\frac{d}{dx} = -12x^{-4} \text{ or } -12$ $\frac{dx}{dx} = x^{-4} \text{ [m correct]}$ $\frac{d}{dx} = x^{-1/2} \times 2x \text{ [m pragren]}$ $\frac{d}{dx} = x^{-1/2} \times 2x \text{ [m pragren]}$
$\frac{d}{dx} = \frac{1}{2} \left(\frac{5+x}{2} \right) \times 2x \qquad (m \text{ progres})$ $= x \left(\frac{5+x^2}{2} \right) = x $
(c) $\frac{3x^2-5}{2x+1}$ $d = 6x(2x+1)-2(3x^2-5)$ $u=3x^2-5$ $v=2x+1$ $dx = (2x+1)^2$ $u'=6x$ $v'=2$
= $12x^{2}+6x-6x^{2}+10$ M uses $(2x+1)^{2}$ quotient rule
Question 19 (4 marks) $(2x+1)^2$ Simplified (a) Find the equation of the axis of symmetry of the parabola $y = 5 + 4x - x^2$ and the
coordinate of its vertex $2 = -b = -4 = 2$ $2a = 2 \neq 1$ $\therefore x = 2 \Rightarrow axis \text{ of Symmetry (m Vertex } $ $\therefore \text{ Vertex: } (29)$
(b) Hence, write down the domain and range of $y = 5 + 4x - x^2$, using interval notation $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Question	20	(2	marks)	
----------	----	----	--------	--

Use the result $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$ to find $f'(x)$ if $f'(x)$	$f(x) = 2x^2$
$f(z) = \lim_{h \to 0} 2(x+h)^2 - 2x^2$	-
$= lim 2x^2 + 4xh + 2$	h-2x2
h→0 h =lm 42+24	Im correct substitution
h->0	and notation
= 4x	answer via Diff by F.P.
Question 21 (3 marks)	
Show that $\sin \alpha \cot \alpha - \cos \alpha \sin^2 \alpha = \cos^3 \alpha$.	3
LHS = Siga cost - COSagina	
LHS= Sind COSL - COSKGin2d	M USPS LHIS =
$= (05 \times (1-500 \times)$	IM SOME ALOGINOM
= $(05 \times (1-\sin^2 x))$ = $(00 \times , (05 \times x))$ = $(05 \times x)$	In correct proof
= Rys	

Question 22 (5 marks)

(a) Find the centre and radius of the circle represented by the equation: $x^2 - 4x + y^2 + 6y + 4 = 0$.

(1-42-4) + (42+69+9) = -4+	9ty Im one
$(x-42.4)+(y^{2}+6y+9)=-4+$ $(x-2)^{2}+(y+3)^{2}=9$	complete square
	m centre
: centre (2,-3)	(m radius

(b) Sketch the circle on the axes below, showing important points. (Note: you do not need to find the y-intercept)

In centre + Shape In endpoints shown or obvious.

3

Question 23 (4 marks)

Triangles PQS and QRS have a common side QS, as shown.

(a) Calculate the length of QS, correct to 3 significant figures

(b) Find the area of Δ *PQR*, correct to the nearest square kilometre.

Fet LPGS=0

Sinf = Sin39

S0 56-7

$$G = 33^{\circ}42^{\circ}$$
 (Nearest min)

 $LPQR = 83^{\circ}1^{\circ}$

So Area = $\frac{1}{2} \times 86 \times 64 \times 5$ in (83°1)

= 2732 km (Nearest km²)

or/ A===x50 x86x sin39 += x64x56.7x sin49°19°1 = 2729 km²

Question 25 (3 marks)
Given that $y = 3x^4(2-x)^5$, find $\frac{dy}{dx}$, writing your answer in simplified form
$u = 3x \qquad V = (2-x)^{5}$ $u' = (2x)^{3} \qquad V' = -5(2-x)^{5}$
$\frac{dy}{dx} = \frac{12x^3(2-x)^3 - 15x^3(2-x)^4}{4(2-x) - 5x^3(2-x)^4}$ m product
$=3x^{3}(2-x)(8-4x-5x) \text{ Im correct} =3x^{3}(2-x)(8-9x) \frac{dy}{dx}$
Question 26 (4 marks)
(a) For the function $f(x) = \frac{1}{x^2 - 4}$ determine whether $f(x)$ is odd, even or neither, justifying your answer algebraically. 2 $f(-\mathcal{H}) = \int_{-\mathcal{H}} \frac{1}{(-\mathcal{H})^2 - 4} dt$ $= \int_{-\mathcal{H}} \frac{1}{(-\mathcal{H})^2 - 4} dt$
(b) Describe what the result from [a] means geometrically reflective Symmetry about y-axis x=0
(c) Write down the coordinates of any points on $f(x)$ that are discontinuities. $\chi = 2$

Question 27 (4 marks)

(a) On the axes below, draw the graphs of y = |x - 3| and y = |3x + 3|.

Im each correct

(b) Hence, or otherwise, find solutions to |x - 3| = |3x + 3|.

x=0 and x=-3 [m each

.....

Question 28 (2 marks)

For what values of m will the equation $y = x^2 - 2mx + 4m$, have exactly one solution?

 $\Delta = 0$ $2m^{2} - 4 \times 4m = 0 \qquad |m \Delta = 0|$ $4m^{2} - 1bm = 0 \qquad |m Solutions|$ m(m-4) = 0

Question 29 (3 marks)

Employees in a company are classified as Junior if aged less than 18, Senior if aged over 60 or Regular for all others. There are 50 employees in the company and 2 are to be chosen to attend a conference.

The probability tree diagram has been started to show how the two employees could be chosen.

Complete the missing probabilities on the probability tree and hence find the probability that the two employees chosen will come from different categories.

 $p(2 \text{ from diff categories}) = 1 - \left(\frac{11}{245} + \frac{561}{1225} + \frac{2}{245}\right)$ $= \frac{599}{1225}$ or 0.489 (30p).

Question 30 (4 marks)

Tyler drives 35km from town A on a true bearing of 140°T to town C. He then drives 42km on a true bearing of 38°T to town of B.

