UNIVERSITY OF CALIFORNIA AT BERKELEY

College of Engineering Department of Electrical Engineering and Computer Sciences

EE105 Lab Experiments

Report 10: Differential Amplifiers

Lab Section:		
3.2.2 Measure I_{C1} , I_{C2} , I_{C3} , and $V_{OUT,DC}$. He	ow do they compare with	hand calculations?
	$I_{C1} =$	
	$I_{C2} =$	
	$I_{C3} =$	
V_{OU}	$_{T,DC} =$	

3.2.3 Sketch the waveforms at v_{in+} and v_{out+} .

Name:

 $3.2.4\,$ Measure the peak-to-peak voltages of v_{in+} and v_{out+}

	$v_{in+,p-p} =$	
ı	$v_{out+,p-p} =$	

3 2 5	Qualitatively	v describe how	v_{out+} and v_{out-}	are related. I	s this what	vou'd expect?
ე.⊿.ე	Quantanvery	y describe now	$v_{out} + and v_{out} -$	are related. 1	s uns what	vou u expect:

3.2.6 Measure the peak-to-peak voltage of $v_{out+} - v_{out-}$ and calculate the differential gain of the circuit. Does this match the gain you calculated in the prelab?

$$v_{out,p-p} = A_{DM} =$$

3.2.8 Measure the gain. Does it match your prelab calculations? Does it match your result from 3.2.6?

$$A_{DM} =$$

3.3.2 Sketch the output waveform. Why isn't it sinusoidal?

3	3.4	Calculate	the differentia	l gain of the	amplifier with	the added los
• 5	.5.4	- Сакшате	e the differentia	rgam of the	ambiiner witi	atne added ioa

4	
A_{DM}	=

3.3.5 Sketch v_{out} . What is the measured differential gain of the circuit? How does it compare to your hand calculations? Does it match the gain you observed in step 3.2.6? Should it?

$A_{DM} =$	
------------	--

- 3.4.1 Attach your netlist on a separate sheet.
- 3.4.2 Use SPICE to find I_{C1} , I_{C2} , I_{C3} , and $V_{out,DC}$. Compare these values with your calculations from the prelab and measurements in lab.

	$I_{C1} =$
	$I_{C2} =$
	$I_{C3} =$
$\overline{V_{OUT}}$	$r_{,DC} =$

3.4.3	Attach your plot on a separate sheet.	What is the gain as measured from the	he plot?	Does it match
	your hand calculations? Does it match	your measurements?		

 $A_{DM} =$