Feuille 1 : Injectivité, Surjectivité, Bijectivité – Parité des fonctions

Exercice 1

Soit
$$f : \mathbb{R} \setminus \{2\} \to \mathbb{R}, x \mapsto \frac{4x-1}{x-2}$$

f est-elle injective ? Surjective ? Bijective ?

Exercice 2

Soient $a, b, c \in \mathbb{R}$

- 1. Montrer que $ab \le \frac{a^2 + b^2}{2}$
- 2. Montrer que $ab + ac^2 + bc \le a^2 + b^2 + c^2$
- 3. Montrer que $3ab + 3ac + 3bc \le (a + b + c)^2$

Exercice 3

Trouver tous les $x \in \mathbb{R}$ tels que $\sqrt{2-x} = x$

Exercice 4

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction paire. On suppose que la restriction de f à \mathbb{R}_- est croissante. Que dire alors de la restriction à \mathbb{R}_+ ?

Exercice 5

- 1. *f* est paire. Peut-elle être bijective ?
- 2. Étudier la parité des fonctions suivantes :

a)
$$f_1(x) = e^x + e^{-x}$$

b)
$$f_2(x) = \frac{2}{x} + 4x^3$$

a)
$$f_1(x) = e^x + e^{-x}$$
 b) $f_2(x) = \frac{2}{x} + 4x^3$ c) $f_3(x) = (x+1)(x-1)$

Exercice 6

Soit f une fonction définie par $f(x) = \frac{1}{1+x}$

- 1. Donner l'ensemble de définition de f.
 - 2. Montrer que f est dérivable sur son ensemble de définition et calculer sa dérivée.
 - 3. On note maintenant g:]-1; $+\infty[\to \mathbb{R}_+, x \mapsto f(x)$. Montrer que g est bijective.
 - 4. Montrer que la fonction $h: \mathbb{R}_+ \to]-1$; $+\infty[$, $x\mapsto \frac{1-x}{x}$ est la fonction réciproque de g (on pourra s'intéresser à $f \circ h$ et $h \circ f$)

Exercice 7

d'antécédant

Donner le domaine et calculer la dérivée des fonctions suivantes :

$$f_1(x) = \tan x$$
 $f_2(x) = \ln(8x^2)$ $f_3(x) = \frac{1}{x^2 - 8}$ $f_4(x) = \arctan(x)$

Méthode: Preuves d'injectivité, surjectivité

Soit
$$f: E \to F$$

Pour montrer que f est <u>injective</u>, on commence toujours par : Soit $(x,y) \in E$, $f(x) = f(y) \Leftrightarrow \cdots$ Pour montrer que f n'est pas injective, on trouve un couple $(x,y) \in E, x \neq y, f(x) = f(y)$ Pour montrer que f est surjective, on pose f(x) = y et on trouve (au brouillon) une expression de yen fonction de x. Ensuite au propre, on écrit : Soient $x \in E, y \in F, f(x) = y$, alors on a $y = \cdots \in F$ Pour montrer que f n'est <u>pas surjective</u>, il suffit de trouver une image dans F qui n'a pas