Math 215 Winter 2022

Instructor: Serin Hong (Serinh@umich.edu)

Office hours: Mon, Fri 10-11 am in 4088 East Hall

The 1-2 pm in 4823 East Hall

Syllabus on the Canvas page.

12.1. Coordinate systems

Course theme: We study multivariable functions and 3-dimensional coordinate systems using our knowledge on single-variable calculus and 2-dimensional coordinate systems

Def The standard (rectangular) coordinate systems

are defined by perpendicular axes.

2-dim's system 122

3-dim'e system IR3.

Thm (Distance formula) = Pythagorean theorem

- (1) Distance between (x_1,y_1) and (x_2,y_2) on \mathbb{R}^2 is $\int (x_1-x_2)^2+(y_1-y_2)^2$
- (2) Distance between (x_1, y_1, ξ_1) and (x_2, y_2, ξ_2) on IR^3 is $(x_1-x_2)^2+(y_1-y_2)^2+(\xi_1-\xi_2)^2$
- Ex (1) Find an equation of the circle in IR2 of radius r and center (a,b)

- (2) Find an equation of the sphere in IR3 of radius r and center (a,b,c).

Ex Sketch the graph of 2=x+y2 wery important surface

Sol Tips for sketching graphs:

- (1) Look at "cross sections" by setting one of the variables to be constant.
- (2) It's often convenient to put the output variable on the vertical axis.

Output variable in this case is $\frac{2}{5}$ C: $\frac{2}{5}$ is given by a function of x and y)

Set $\frac{x=0}{4^2-plane}$: $\frac{2}{5}=\frac{4^2}{5}$ and a parabola

Set z=0: $0=x^2+y^2 \rightarrow x=y=0 \rightarrow a$ point. Set z=1: $1=x^2+y^2 \rightarrow a$ circle of radius 1. Set z=4: $4=x^2+y^2 \rightarrow a$ circle of radius 2.

* This surface is called a (circular) paraboloid.

Ex (1) Sketch the surface $x^2 + y^2 = 9$.

Sol Set Z=0: x2+y2=9 ~ a circle of radius 3

Set $2=1: x^2+y^2=q \rightarrow a$ circle of radius 3

* This surface is a circular cylinder of radius 3 along the 2-axis.

(2) Describe the region $x^2+y^2 \leq 9$.

Sol For each 2, the cross section is given by

$$| \therefore x^2 + y^2 \le 9 \quad \text{\sim} \quad \sqrt{x^2 + y^2} \le 3$$

=) distance from (0.0) is at most 3

So the region x2+y2 <q in IR3 is

the solid cylinder of radius 3 along the 2-axis (surface + inside)

