Проблемы трансформеров и их решения

Денис Козлов

Трансформер

Нотация

Входная последовательность длины L Выходная последовательность длины \dot{L} Эмбеддинги размера d Входная последовательность $X \in \mathbb{R}^{L \times d}$

Матрицы весов W^k , $W^q \in \mathbb{R}^{d \times d_k}$; $W^v \in \mathbb{R}^{d \times d_v}$ Как правило $d_k = d_v = d$

Attention

Query $Q = XW^q \in R^{L \times d_k}$

Key $K = XW^k \in R^{L \times d_k}$

Value $V = XW^v \in R^{L \times d_v}$

Attention $(Q, K, V) = \operatorname{softmax} \left(\frac{QK^T}{\sqrt{d_k}}\right)V$ $\in \mathbb{R}^{L \times d_V}$

Attention

Query $Q = XW^q \in R^{L \times d_k}$

Key $K = XW^k \in R^{L \times d_k}$

Value $V = XW^v \in R^{L \times d_v}$

Attention $(Q, K, V) = \operatorname{softmax} \left(\frac{QK^T}{\sqrt{d_k}}\right)V$ $\in \mathbb{R}^{L \times d_V}$

Multi-head attention

Количество голов hМатрица весов $W^o \in \mathbb{R}^{d_v \times d}$

MultiHeadAttention(X) = = concat($head_1$; ...; $head_h$) $W^o \in \mathbb{R}^{L \times d}$

 $head_i = Attention(XW_i^q, XW_i^k, XW_i^v)$

Positional encoding

0001 Но у нас же float!

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.\,t), & ext{if } i = 2k \ \cos(\omega_k.\,t), & ext{if } i = 2k+1 \end{cases}$$

$$\omega_k=rac{1}{10000^{2k/d}}$$

Много уровней

Все ли хорошо?

Все ли хорошо?

Attention
$$(Q, K, V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

Query $Q = XW^q \in R^{L \times d_k}$

Key $K = XW^k \in R^{L \times d_k}$

Value $V = XW^v \in R^{L \times d_v}$

Требуется $O(L^2)$ памяти!

Для простоты примем n=L

Тяжелый attention

Decoder-only Transformer (GPT)

Для предсказания смотрим на все предыдущие элементы последовательности

Тяжелый attention

Attend(X) = softmax
$$\left(\frac{(XW^q)(XW^k)^T}{\sqrt{d_k}} * \text{mask}\right) XW^v$$

Attend(
$$\mathbf{X}, S$$
) = $\left(a(\mathbf{x}_i, S_i)\right)_{i \in \{1, ..., L\}}$
 $S = \{S_1, ..., S_n\}$
where $a(\mathbf{x}_i, S_i) = \operatorname{softmax}\left(\frac{(\mathbf{x}_i \mathbf{W}^q)(\mathbf{x}_j \mathbf{W}^k)_{j \in S_i}^\top}{\sqrt{d_k}}\right)(\mathbf{x}_j \mathbf{W}^v)_{j \in S_i}$

Пока что $S_i = \{j | j \leq i\}$

Почти Factorized self-attention

```
S_i \subseteq \{j | j < i\}, и верно: для каждой пары j \le i существует «путь» от i до j К примеру:
```

- $j \in S_i$ напрямую
- $j \in S_{t_1}$, $t_1 \in S_{t_2}$, ..., $t_k \in S_i$ есть маршрут

Почти Factorized self-attention

```
S_i \subseteq \{j | j < i\}, и верно: для каждой пары j \le i существует «путь» от i до j К примеру:
```

- $j \in S_i$ напрямую
- $j \in S_{t_1}$, $t_1 \in S_{t_2}$, ..., $t_k \in S_i$ есть маршрут

 $S_i \subseteq \{j | j < i\}$ делится на p непересекающихся множеств $A_i^1, ..., A_i^p$ и верно, что: для каждой пары $j \le i$ существует «путь» от i до j K примеру:

- $j \in S_i$ напрямую
- $j \in A_{t_1}^1, t_1 \in A_{t_2}^2, ..., t_k \in A_i$ есть маршрут $(j, t_1, t_2, ..., t_k, i)$ не длиннее p+1

Посмотрим p=2

$$A_i^{(1)} = \{t, t+1, \dots, i\}, \text{ where } t = \max(0, i-\ell)$$

 $A_i^{(2)} = \{j : (i-j) \mod \ell = 0\}$

$$\ell \sim \sqrt{n} \qquad \begin{array}{l} A_i^{(1)} = \{j : \lfloor \frac{j}{\ell} \rfloor = \lfloor \frac{i}{\ell} \rfloor \} \\ A_i^{(2)} = \{j : j \mod \ell \in \{\ell - c, \dots, \ell - 1\} \} \end{array}$$

- Attention(X) = Attend(X, $A^{n\%p}$) W^o
- Attention(X) = Attend(X, $\bigcup_{m=1}^{p} A^{m}$) W^{o}

Результаты

