The anthill problem

A gentle introduction to Markov chains and how to compute the average time to reach an absorbant state

Duy Nghi Benoît Tran August 04th 2022

The anthill problem

An ant leaves its anthill in order to forage for food. It moves with the speed of 1 cm per second, but it doesn't know where to go, therefore every second it moves randomly 1 cm directly north, south, east or west with equal probability.

If the food is located on east-west lines 2 cm to the north and 2 cm to the south, as well as on north-south lines 2 cm to the east and 2 cm to the west from the anthill, how long will it take the ant to reach the food on average?

Guessing the answer by simulation (1/3)

Question

Can you write a simple function (in Julia, Python, R...) which given a number of iterations (e.g. 1000), returns the average number of seconds the ant needed to reach the food?

Guessing the result by simulation (2/3)

A straightforward simulation in Python

```
import random
def simulation(iter):
   results = [0]*iter
    for i in range(iter):
       count = 0
       x, y = [0, 0]
       while abs(x) < 2 and abs(y) < 2:
           r = random.random()
           count += 1
           if r < 0.25:
             x += 1
            elif r < 0.5
             x -= 1
            elif r < 0.75:
              v += 1
            else.
               v -= 1
        results[i] = count
    return(sum(results)/iter)
simulation (1000)
```

Guessing the result by simulation (3/3)

Running the previous simulation several times we get outputs like this

4.553, 4.446, 4.507, 4.490...

Guessing the result by simulation (3/3)

Running the previous simulation several times we get outputs like this

Conjecture

The ant needs 4.5 seconds to reach the food on average.

Guessing the result by simulation (3/3)

Running the previous simulation several times we get outputs like this

Conjecture

The ant needs 4.5 seconds to reach the food on average.

Goal

We will prove our conjecture using the formalism of Markov chains, which gives an intuitive and elegant way of proving the result.

Markov chain (1/6): Matrix and graph representation

Matrix representation of a Markov chain

A Markov chain is characterized by a couple (\mathcal{X}, P) where

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ is a finite set of states,
- $P = (p_{ij})_{1 \le i,j \le n}$ is the transition matrix defined by p_{ij} the probability of moving from the state x_i to the state x_j in one step.

Markov chain (1/6): Matrix and graph representation

Matrix representation of a Markov chain

A Markov chain is characterized by a couple (\mathcal{X}, P) where

- $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$ is a finite set of states,
- $P = (p_{ij})_{1 \le i,j \le n}$ is the transition matrix defined by p_{ij} the probability of moving from the state x_i to the state x_j in one step.

Graph representation of a Markov chain

A visual representation of a Markov chain is given by a weighted directed graph where

- the set of nodes is the finite set $\mathcal{X} = \{x_1, \dots, x_N\}$,
- there is an edge with value p_{ij} from x_i to x_j if $p_{ij} > 0$.

Markov chain (2/6): Definition as a stochastic process

Markov chain as a stochastic process

A Markov chain (MC) is a sequence of random variables $X_1, X_2, ..., X_n, ...$ with

- · values in $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$, a finite set of states,
- and the Markov property.

Markov chain (2/6): Definition as a stochastic process

Markov chain as a stochastic process

A Markov chain (MC) is a sequence of random variables $X_1, X_2, ..., X_n, ...$ with

- values in $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$, a finite set of states,
- and the Markov property.

Informally, Markov property: future events only depend on the present state of the system. That is, they are independent of past states.

Markov chain (2/6): Definition as a stochastic process

Markov chain as a stochastic process

A Markov chain (MC) is a sequence of random variables $X_1, X_2, ..., X_n, ...$ with

- values in $\mathcal{X} = \{x_1, x_2, \dots, x_N\}$, a finite set of states,
- · and the Markov property.

Informally, Markov property: future events only depend on the present state of the system. That is, they are independent of past states.

Formally, $(X_i)_{i\geq 1}$ has the Markov property if for every $i\geq 1$ and possible states $x_1,\ldots x_i$ we have

$$\mathbb{P}(X_{i+1} = X_{i+1} \mid X_i = X_i, \dots X_1 = X_1) = \mathbb{P}(X_{i+1} = X_{i+1} \mid X_i = X_i).$$

Markov chain (3/6): graph of the anthill problem

Markov chain (3/6): graph of the anthill problem

Markov chain (3/6): graph of the anthill problem

Markov chain (4/6): the anthill problem

For the anthill problem, one can observe that the problem has many symmetries.

What matters is the distance to the anthill, located at (0,0).

Markov chain (5/6): the anthill problem

Question

Can you model the anthill problem as a Markov chain where the set of states \mathcal{X} has at most 4 elements? Also give the associated transition matrix P and its associated graph.

Markov chain (6/6): the (reduced) anthill problem

Set of states: $\mathcal{X} = \{0, 1, 2, F\}$ distances to the anthill and "food state" F.

Transition matrix
$$P = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1/4 & 0 & 1/2 & 1/4 \\ 0 & 1/2 & 0 & 1/2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
.

Graph of the anthill problem

Absorbing Markov chain (1/3)

Absorbing Markov chain

- A state x_i is absorbing if $p_{ii} = 1$.
- A Markov chain is absorbing if from every state, an absorbing state can be reached after a finite number of steps.

Absorbing Markov chain (1/3)

Absorbing Markov chain

- A state x_i is absorbing if $p_{ii} = 1$.
- A Markov chain is absorbing if from every state, an absorbing state can be reached after a finite number of steps.

For an absorbing Markov chain, we first write the non-absorbing states then the absorbing states.

Absorbing Markov chain (1/3)

Absorbing Markov chain

- A state x_i is absorbing if $p_{ii} = 1$.
- A Markov chain is absorbing if from every state, an absorbing state can be reached after a finite number of steps.

For an absorbing Markov chain, we first write the non-absorbing states then the absorbing states.

We have the following decomposition of the transition matrix

$$P = \begin{pmatrix} Q & R \\ 0 & I \end{pmatrix},$$

where Q square matrix involving the non-absorbing states, R matrix involving the states that can reach the absorbing states.

Absorbing Markov chain (2/3): example of the anthill problem

Transition matrix
$$P = \begin{pmatrix} Q & R \\ 0 & I \end{pmatrix}$$
,

where
$$Q = \begin{pmatrix} 0 & 1 & 0 \\ 1/4 & 0 & 1/2 \\ 0 & 1/2 & 0 \end{pmatrix}$$
 and $R = \begin{pmatrix} 0 \\ 1/4 \\ 1/2 \end{pmatrix}$.

Absorbing Markov chain (3/3): some properties

Let x_i and x_j be two non-absorbing states.

• The probability of reaching x_j starting from x_i after n steps is equal to the coefficient (i,j) of Q^n .

Absorbing Markov chain (3/3): some properties

Let x_i and x_j be two non-absorbing states.

- The probability of reaching x_j starting from x_i after n steps is equal to the coefficient (i,j) of Q^n .
- The matrix I Q is invertible and we have

$$I + Q + Q^2 + ... + Q^n + ... = (I - Q)^{-1} =: N.$$

Absorbing Markov chain (3/3): some properties

Let x_i and x_j be two non-absorbing states.

- The probability of reaching x_j starting from x_i after n steps is equal to the coefficient (i,j) of Q^n .
- The matrix I Q is invertible and we have

$$I + Q + Q^2 + ... + Q^n + ... = (I - Q)^{-1} =: N.$$

 N is called the fundamental matrix of the absorbing Markov chain.

The coefficient (i,j) of N is equal to the average number of times the state x_i is attained starting from x_i .

Writing T the average waiting time until the ant reaches food,

$$T = \sum_{j=1}^{3} N_{1j}.$$

Writing T the average waiting time until the ant reaches food,

$$T = \sum_{j=1}^{3} N_{1j}.$$

Proof.

Recall: coefficient (i,j) of N is equal to the average number of times the non-absorbing state x_i is attained starting from x_i .

Writing T the average waiting time until the ant reaches food,

$$T=\sum_{j=1}^3 N_{1j}.$$

Proof.

Recall: coefficient (i,j) of N is equal to the average number of times the non-absorbing state x_i is attained starting from x_i .

Thus, the sum of the first line of *N* is equal to the average number of time the ant remains in a non-absorbing state starting from the first state (the center),

Writing T the average waiting time until the ant reaches food,

$$T=\sum_{j=1}^3 N_{1j}.$$

Proof.

Recall: coefficient (i,j) of N is equal to the average number of times the non-absorbing state x_i is attained starting from x_i .

Thus, the sum of the first line of *N* is equal to the average number of time the ant remains in a non-absorbing state starting from the first state (the center),

which is equal to the average time until the absorbing state is reached.

Computing the solution

Write a short program which computes the sum $\sum_{j=1}^{3} N_{1j}$.

Computing the solution

Write a short program which computes the sum $\sum_{j=1}^{3} N_{1j}$.

A code in Python

Computing the solution

Write a short program which computes the sum $\sum_{j=1}^{3} N_{1j}$.

A code in Python

The ant reaches the food after 4.5 seconds on average.

Have you understood? Example of the Drunkard walk

The Drunkard walk

A drunkard walks along a road. At each intersection, noted 1, 2 and 3, he changes direction with probability 1/2. His house is at the beginning of the road and a bar is at the end of the road.

If he reaches either the bar or his home, he stays there the whole night. He starts at intersection 2.

Have you understood? Example of the Drunkard walk

The Drunkard walk

A drunkard walks along a road. At each intersection, noted 1, 2 and 3, he changes direction with probability 1/2. His house is at the beginning of the road and a bar is at the end of the road.

If he reaches either the bar or his home, he stays there the whole night. He starts at intersection 2.

Question 1

What are the set of states, transition matrix and graph of the Drunkard walk?

Have you understood? Example of the Drunkard walk

The Drunkard walk

A drunkard walks along a road. At each intersection, noted 1, 2 and 3, he changes direction with probability 1/2. His house is at the beginning of the road and a bar is at the end of the road.

If he reaches either the bar or his home, he stays there the whole night. He starts at intersection 2.

Question 1

What are the set of states, transition matrix and graph of the Drunkard walk?

Question 2

What is the average number of steps until the drunkard reaches either his home or the bar?

The Drunkard walk - solution of Question 1

Set of states

 $\mathcal{X} = \{1, 2, 3, H, B\}$, H for Home and B for Bar.

Transition matrix

$$P = \begin{pmatrix} 0 & 1/2 & 0 & | & 1/2 & 0 \\ 1/2 & 0 & 1/2 & | & 0 & 0 \\ 0 & 1/2 & 0 & | & 0 & 1/2 \\ \hline 0 & 0 & 0 & | & 1 & 0 \\ 0 & 0 & 0 & | & 0 & 1 \end{pmatrix} = \begin{pmatrix} Q & | & R \\ \hline 0 & | & I \end{pmatrix}.$$

Graph of the Drunkard walk

The Drunkard walk - solution of Question 2

1) Compute the fundamental 3) Check by simulation matrix

import random

simulation drunkard(1000)

2) Sum the right coefficients

```
def simulation drunkard(iter):
                                           results = [0]*iter
                                           for i in range(iter):
import numpy as np
                                               count = 0
O = np. arrav([[0. 0.5.0]].
              [0.5, 0, 0.5],
                                               x = 2
             [0. 0.5, 0 ]])
                                               while x < 4 and x > 0:
N = np.linalg.inv(np.identitv(3) - 0)
                                                   r = random.random()
                                                   count += 1
T = sum(N[1])
                                                   if r < 0.5
print(T)
                                                       x += 1
                                                   else:
                                                       x -= 1
The output is 4.0.
                                               results[i] = count
                                           return(sum(results)/iter)
```

The drunkard reaches the bar or his house after 4 steps on average.