Report page ExoTIC-ISM

W17 G141 lc 14305.txt - 190

Input parameters:

Number of systematic models: 50 Wavelength mid point = 14354.047030557416 Wavelength half width = 68.10470223561879

Planet parameters:

Rp/R* = 0.12169232Epoch (MJD) = 57957.97108811848Inclination (deg) = 87.34635Eccentricity = 0.0Omega (deg) = 0.0Period (days) = 3.73548535a/R* = 7.0780354

Stellar parameters:

FeH (dex) = -0.25Teff(K) = 6550.0log(g) (cgs) = 4.2

Output parameters:

Limb-darkening coefficients:

C1 = 0.9879766220030892C2 = -1.1179590821132988C3 = 0.9434637628958654C4 = -0.3145179309873611

Top five systematic models by their weight

Check the chi-squared values and the AIC evidence for reasonable fits.

If the chi-squared values far exceed the DOF then it is likely that the input data contains additional noise, double check the spectral extraction.

Model numbers = [47 48 49 45 39]

DOF = [39. 38. 37. 41. 39.]

Chi-squared = [58.61217041 58.5846609 58.17621778 64.05145816 62.30510625]

AIC evidence = [307.97468678 307.48844154 307.1926631 306.25504291 306.12821887]

Weights = [0.32092398284033546 0.1973460997592692 0.14681607296893126

0.057487090400128484 0.05063972591844714]

SDNR = [286.9507181 286.83991861 285.88223274 299.99999181 296.1386904]

Top model Noise Statistics:

White noise = 0.00039737806044868495

Red noise = 8.64397283407071e-05

Beta = 1.2425956459246874

If the red-noise is significant it means the data is poorly fit by any of the systematic models. It is recommended that the input lightcurves are checked for additional noise sources.

Marginalised parameters:

If None, parameter was not fit for.

Rp/R* = 0.1234567456590698 + -0.0005609768131288024

Epoch (MJD) = 57957.97165773452 +/- 0.000488349849895827

Inclination (rad) = None \pm -None

Inclination (deg) = None \pm -None

System density $(Ms+Mp/R^3) = None +/- None$

a/R* = None +/- None

Systematics

Marginalisation results

Top: Evidence-based weight associated with each systematic model when fit with the data. *Middle:* Standard deviation of the residuals after correcting for each systematic model. *Bottom:* Radius ratio

measured from the transit depth when the light curve has been corrected using each systematic model. *If present, grey crosses mark discarded systematic models (poor AIC evidence)*.

Lightcurves

First vs. best model

Top: Input lightcurve with no systematic model correction applied. *Middle:* Lightcurve corrected by highest weight systematic model plotted with the smooth planetary transit model centred on the mid-transit time. *Bottom:* Residuals and uncertainties associated with the middle panel lightcurve. The upper and lower standard deviation bounds are shown in dotted lines relative to zero.