Netional Bureau of Standards SEP 1 2 1963

Corrections to be noted in Volume 65 of the JOURNAL OF RESEARCH of the National Bureau of Standards—C. Engineering and Instrumentation

- Transmit Bureau of Standards C. Engineering and Instrumentation				
Page	Column	Line	Now reads in part	Should read
6		1		
18	1	25	$\frac{2k^*}{1-c^2}\frac{d\Omega}{d\sigma_1}\Big _{\sigma=k^*}$	$\left \frac{2k^*}{1-c^2} \frac{d\Omega}{d\sigma_1} \right _{\sigma,=k^*}$
105	2	Footnote 6,		
		8 from bottom	capacitor places	capacitor plates
117	2		(7)	
124		6		
190			$E_f \cong \frac{60\pi r^2 I}{[d^2 + (r_1 + r_2)^2]^{3/2}} \dots$	$E_f \cong \frac{60\pi r_1^2 I}{[d^2 + (r_1 + r_2)^2]^{3/2}}$
214	Fig. 4, col. 1.	1		Radii
219	2			$ oldsymbol{b}_3 = oldsymbol{b}_s oldsymbol{k} $
220	2	eq. (12)	$\frac{d \Gamma_u }{ \Gamma_u } \leq \frac{1}{ K } \left(\frac{ \Gamma_s + \Gamma_u }{ \Gamma_u - \frac{ \Gamma_u }{K}} \right). \dots$	$\left \frac{d \Gamma_u }{ \Gamma_u } \le \frac{1}{ K } \left(\frac{ \Gamma_s + \Gamma_u }{ \Gamma_u \Gamma_s - \frac{ \Gamma_u }{ K }} \right)$
222	2	35	minimum $ b_3 \dots \dots$	maximum $ b_3 $.
223	1	18	$\left(\mathrm{L}_{R}\!=\!20\log_{10}rac{1}{K} ight)\!,\;\ldots\ldots$	$\Big(\mathrm{L}_{R}\!=\!20\log_{10}rac{1}{ \Gamma }\Big),$
231	$\begin{cases} \text{Top of} \\ \text{Page} \dots \\ 1 \dots \dots \end{cases}$	Footnote,	Bureau of Research	Bureau of Standards
		last	Cryogenics Engineering	Cryogenic Engineering
235	2	last	The equation number was om	
237	1	5	of figure 6),	of figure 5),
241	2	2 from bot-	G 1	C 1 1
245		tom Footnote to	Scott have been	Scott has been
243		Title	Subsequent to publication of this article, the author became aware of a similar apparatus described in the paper "Detector for Liquid-Solid Chromatography", by G. Claxton, J. Chromatog. 2, No. 2, 136 (Mar. 1959).	
252	2	29	$g(\Theta) \cos \phi, \dots$	$g(\theta) \cos \theta$,
257	1	18		$\left(rac{ ho}{h^2+ ho^2+1} ight)^{2i}$
260	Table 2, Heading	4	the regular	the region