MACHINE LEARNING - 1

PGP DSBA PROGRAM
by: ABHISHEK K HIREMATH

S NO	Clustering and Cleaning Ads	Page No.
1.1	Read the data and perform basic analysis such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.	3 - 4
1.2	Treat missing values in CPC, CTR and CPM using the formula given.	5
1.3	Check if there are any outliers. Do you think treating outliers is necessary for K-Means clustering? Based on your judgement decide whether to treat outliers and if yes, which method to employ. (As an analyst your judgement may be different from another analyst).	5
1.4	Perform z-score scaling and discuss how it affects the speed of the algorithm.	6
1.5	Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.	7
1.6	Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.	7
1.7	Print silhouette scores for up to 10 clusters and identify optimum number of clusters.	8
1.8	Profile the ads based on optimum number of clusters using silhouette score and your domain understanding [Hint: Group the data by clusters and take sum or mean to identify trends in Clicks, spend, revenue, CPM, CTR, & CPC based on Device Type. Make bar plots].	8 – 9
1.9	Conclude the project by providing summary of your learnings	9
S NO	PCA	Page No.
2.1	Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates, etc.	10 – 11
2.2	Perform detailed Exploratory analysis by creating certain questions like (i) Which state has highest gender ratio and which has the lowest? (ii) Which district has the highest & lowest gender ratio? (Example Questions). Pick 5 variables out of the given 24 variables below for EDA: NO_HH, TOT_M, TOT_F, M_06, F_06, M_SC, F_SC, M_ST, F_ST, M_LIT, F_LIT, M_ILL, F_ILL, TOT_WORK_M, TOT_WORK_F, MAINWORK_M, MAINWORK_F, MAIN_CL_M, MAIN_CL_F, MAIN_AL_F, MAIN_HH_M, MAIN_HH_F, MAIN_OT_M, MAIN_OT_F	12
2.3	We choose not to treat outliers for this case. Do you think that treating outliers for this case is necessary?	13 – 14
2.4	Scale the Data using z-score method. Does scaling have any impact on outliers? Compare boxplots before and after scaling and comment.	15

2.5	Perform all the required steps for PCA (use sklearn only) Create the covariance Matrix Get eigen values and eigen vector.	15
2.6	Identify the optimum number of PCs (for this project, take at least 90% explained variance). Show Scree plot.	16
2.7	Compare PCs with Actual Columns and identify which is explaining most variance. Write inferences about all the principal components in terms of actual variables.	16
2.8	Write linear equation for first PC.	17

S No	Figures and Tables	Page No.
1	Fig-1: Dataset head	7
2	Fig-2: Dataset tail	7
3	Fig-3: Data info	7
4	Fig-4: Null values of Dataset	8
5	Fig-5: Null values after treating	9
6	Fig-7: Data describe	9
8	Fig-8: Boxplot before Treating outliers	10
9	Fig-9: Boxplot After treating outlier	11
10	Fig-10: After applying Z-score	11
11	Fig-11: Data After scaling with Z-score	12
12	Fig-12: Dendrogram using WARD and Euclidean distance	13
13	Fig-13: Value count	13
14	Fig-14: Data sample	14
15	Fig-15: Elbow plot for k-means algorithm	14
16	Fig-16:	15
17	Fig-17: Cluster k means	15
18	Fig-18: Bar plot Comparisons	16
19	Fig-19: Mean Clicks based on Device Type	17
20	Fig-20: Mean Spend based on Device Type	17
21	Fig-21: Mean revenue based on Device Type	18
22	Fig-22: Mean CPM (Cost per 1000 impressions) based on Device type	18
23	Fig-23: Mean CTR (Click through Rate) based on Device type	19
24	Fig-24: Mean CPC (Cost per Click) based on Device type	19
25	Fig-25: Head of the Dataset	23
26	Fig-26: Tail of the dataset	23
27	Fig-27: Data information	24
28	Fig-28: Data Describe	24
29	Fig-29: Null values	25
30	Fig-30: Chosen Variables	25
31	Fig-31: Calculated gender Ratio	26
32	Fig-32: Gender Ratio	26
33	Fig-33: District wise Gender Ratio	27
34	Fig-34: Boxplot before scaling	28
35	Fig-35: Dataset after applying Z-score	28

36	Fig-36: Boxplot After Scaling	29
37	Fig-37: Heatmap	30
38	Fig-38: Covariance matrix	31
39	Fig-39: Eigen value	31
40	Fig-40: Eigen vector	32
41	Fig-41: Explained variance	32
42	Fig-42: Cumulative Explained variance	33
43	Fig-43: Selected components	33
44	Fig-44: Heatmap	34
45	Fig-45: Comparision	34
1	Table – 1	5-7
2	Table - 2	22-24

Problem 1:

Clustering: Digital Ads Data:

The ads24x7 is a Digital Marketing company which has now got seed funding of \$10 Million. They are expanding their wings in Marketing Analytics. They collected data from their Marketing Intelligence team and now wants you (their newly appointed data analyst) to segment type of ads based on the features provided. Use Clustering procedure to segment ads into homogeneous groups.

The following three features are commonly used in digital marketing:

CPM = (Total Campaign Spend / Number of Impressions) * 1,000. Note that the Total Campaign Spend refers to the 'Spend' Column in the dataset and the Number of Impressions refers to the 'Impressions' Column in the dataset.

CPC = Total Cost (spend) / Number of Clicks. Note that the Total Cost (spend) refers to the 'Spend' Column in the dataset and the Number of Clicks refers to the 'Clicks' Column in the dataset.

CTR = Total Measured Clicks / Total Measured Ad Impressions x 100. Note that the Total Measured Clicks refers to the 'Clicks' Column in the dataset and the Total Measured Ad Impressions refers to the 'Impressions' Column in the dataset.

SI. No	Column Name	Column Description
1	Timestamp	The Timestamp of the particular Advertisement.
2	Inventory Type	The Inventory Type of the particular Advertisement. Format 1 to 7. This is a Categorical Variable.
3	Ad - Length	The Length Dimension of the particular Advertisement.
4	Ad- Width	The Width Dimension of the particular Advertisement.
5	Ad Size	The Overall Size of the particular Advertisement. Length*Width.
6	Ad Type	The type of the particular Advertisement. This is a Categorical Variable.
7	Platform	The platform in which the particular Advertisement is displayed. Web, Video or App. This is a Categorical Variable.

8	Device Type	The type of the device which supports the particular Advertisement. This is a Categorical Variable.
9	Format	The Format in which the Advertisement is displayed. This is a Categorical Variable.
10	Available Impressions	How often the particular Advertisement is shown. An impression is counted each time an Advertisement is shown on a search result page or other site on a Network.
11	Matched Queries	Matched search queries data is pulled from Advertising Platform and consists of the exact searches typed into the search Engine that generated clicks for the particular Advertisement.
12	Impressions	The impression counts of the particular Advertisement out of the total available impressions.
13	Clicks	It is a marketing metric that counts the number of times users have clicked on the particular advertisement to reach an online property.
14	Spend	It is the amount of money spent on specific ad variations within a specific campaign or ad set. This metric helps regulate ad performance.
15	Fee	The percentage of the Advertising Fees payable by Franchise Entities.
16	Revenue	It is the income that has been earned from the particular advertisement.
17	CTR	CTR stands for "Click through rate". CTR is the number of clicks that your ad receives divided by the number of times your ad is shown. Formula used here is CTR = Total Measured Clicks / Total Measured Ad Impressions x 100. Note that the Total Measured Clicks refers to the 'Clicks' Column and the Total Measured Ad Impressions refers to the 'Impressions' Column.
18	СРМ	CPM stands for "cost per 1000 impressions." Formula used here is CPM = (Total Campaign Spend / Number of Impressions) * 1,000. Note that the Total Campaign Spend refers to the 'Spend' Column and the Number of Impressions refers to the 'Impressions' Column.
19	СРС	CPC stands for "Cost-per-click". Cost-per-click (CPC) bidding means that you pay for each click on your ads. The Formula used here is CPC = Total Cost (spend) / Number of Clicks. Note that the Total Cost (spend) refers to the 'Spend' Column and the Number of Clicks refers to the 'Clicks' Column.

Q1.1) Read the data and perform basic analysis such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.

• Read the data and perform basic analysis such as printing a few rows (head and tail), info, data summary, null values duplicate values, etc.

Timestamp	Inventory Type	Ad - Length	Ad-Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	CPM	CPC
0 2020-9-2-17	Format1	300	250	75000	Inter222	Video	Desktop	Display	1806	325	323	1	0.0	0.35	0.0	0.0031	0.0	0.0
1 2020-9-2-10	Format1	300	250	75000	Inter227	App	Mobile	Video	1780	285	285	1	0.0	0.35	0.0	0.0035	0.0	0.0
2 2020-9-1-22	Format1	300	250	75000	Inter222	Video	Desktop	Display	2727	356	355	1	0.0	0.35	0.0	0.0028	0.0	0.0
3 2020-9-3-20	Format1	300	250	75000	Inter228	Video	Mobile	Video	2430	497	495	1	0.0	0.35	0.0	0.0020	0.0	0.0
4 2020-9-4-15	Format1	300	250	75000	Inter217	Web	Desktop	Video	1218	242	242	1	0.0	0.35	0.0	0.0041	0.0	0.0

Fig: -1: Dataset Head

	Timestamp	Inventory Type	Ad - Length	Ad- Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	CPM	CPC
23061	2020-9-13-7	Format5	720	300	216000	Inter220	Web	Mobile	Video	1	1	1	1	0.07	0.35	0.0455	NaN	NaN	NaN
23062	2020-11-2-7	Format5	720	300	216000	Inter224	Web	Desktop	Video	3	2	2	1	0.04	0.35	0.0260	NaN	NaN	NaN
23063	2020-9-14-22	Format5	720	300	216000	Inter218	App	Mobile	Video	2	1	1	1	0.05	0.35	0.0325	NaN	NaN	NaN
23064	2020-11-18-2	Format4	120	600	72000	inter230	Video	Mobile	Video	7	1	1	1	0.07	0.35	0.0455	NaN	NaN	NaN
23065	2020-9-14-0	Format5	720	300	216000	Inter221	Арр	Mobile	Video	2	2	2	1	0.09	0.35	0.0585	NaN	NaN	NaN

Fig: -2: Dataset Tail

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 23066 entries, 0 to 23065
Data columns (total 19 columns):
                                            Non-Null Count Dtype
# Column
                                     23066 non-null object
23066 non-null object
23066 non-null int64
23066 non-null
     Timestamp
InventoryType
Ad - Length
 0
                                            23066 non-null int64
23066 non-null int64
23066 non-null object
23066 non-null object
 3 Ad- Width
 23066 non-null int64
5 Ad Type 23066 non-null object
6 Platform 23066 non-null object
7 Device Type 23066 non-null object
8 Format 23066 non-null object
 4 Ad Size
8 Format 23066 non-null object
9 Available_Impressions 23066 non-null int64
10 Matched_Queries 23066 non-null int64
11 Impressions 23066 non-null int64
12 Clicks 23066 non-null int64
 12 Clicks
                                             23066 non-null int64
                                             23066 non-null float64
23066 non-null float64
 13
       Spend
 14 Fee
15 Revenue
16 CTR
17 CPM
                                             23066 non-null float64
                                             18330 non-null float64
18330 non-null float64
18330 non-null float64
 18 CPC
dtypes: float64(6), int64(7), object(6)
memory usage: 3.3+ MB
```

Fig: -3: Data info

Shape of the dataset:

- The dataset has 23066 rows & 19 columns Checking for Null Values
- Above these are the head and tail of the dataset, and there are 6 float, 7 integer and 6 object columns

Q1.2) Treat missing values in CPC, CTR and CPM using the formula given.

Timestamp	0	Timestamp	0.000000
•	0	InventoryType	0.000000
InventoryType	_	Ad - Length	0.000000
Ad - Length	0	Ad- Width	0.000000
Ad- Width	0		
Ad Size	0	Ad Size	0.000000
Ad Type	0	Ad Type	0.000000
Platform	0	Platform	0.000000
Device Type	0	Device Type	0.000000
Format	0	Format	0.000000
Available_Impressions	0	Available_Impressions	0.000000
Matched_Queries	0	Matched_Queries	0.000000
Impressions	0	Impressions	0.000000
Clicks	0	Clicks	0.000000
Spend	0	Spend	0.000000
Fee	0	Fee	0.000000
Revenue	0	Revenue	0.000000
CTR	4736	CTR	0.205324
CPM	4736	СРМ	0.205324
CPC	4736	CPC	0.205324
dtype: int64		dtype: float64	

Fig: -4: Null values of Dataset

- We can see that there are 3 variables wherein we have Null values
- CTR, CPM, CPC having 4736 Null values each
- Checking for Duplicate values
- There are no duplicate values in the dataset

We created three functions such as 'calculate CPC', 'calculate CTR', and 'calculate CPM' to treat missing values in CPC, CTR, and CPM columns using the following formula.

CPM = (Total Campaign Spend / Number of Impressions) * 1,000.

- Note that the Total Campaign Spend refers to the 'Spend' Column in the dataset and the Number of Impressions refers to the 'Impressions' Column in the dataset.

CPC = Total Cost (spend) / Number of Clicks.

- Note that the Total Cost (spend) refers to the 'Spend' Column in the dataset and the Number of Clicks refers to the 'Clicks' Column in the dataset.

CTR = Total Measured Clicks / Total Measured Ad Impressions x 100.

- Note that the Total Measured Clicks refers to the 'Clicks' Column in the dataset and the Total Measured Ad Impressions refers to the 'Impressions' Column in the dataset.

Timestamp	0	≺cla	ss 'pandas.core.frame.D	ataFrame'>	
•	0	Rang	eIndex: 23066 entries,	0 to 23065	
InventoryType	_	Data	columns (total 19 colu	ımns):	
Ad - Length	0	#	Column	Non-Null Count	Dtype
Ad- Width	0				
Ad Size	0	0	Timestamp	23066 non-null	object
		1	InventoryType	23066 non-null	object
Ad Type	0	2	Ad - Length	23066 non-null	int64
Platform	0	3	Ad- Width	23066 non-null	int64
Device Type	0	4	Ad Size	23066 non-null	int64
		5	Ad Type	23066 non-null	object
Format	0	6	Platform	23066 non-null	object
Available_Impressions	0	7	Device Type	23066 non-null	object
Matched_Queries	0	8	Format	23066 non-null	object
	0	9	Available_Impressions	23066 non-null	int64
Impressions	0	10	Matched_Queries	23066 non-null	int64
Clicks	0	11	Impressions	23066 non-null	int64
Spend	0	12	Clicks	23066 non-null	int64
Fee	0	13	Spend	23066 non-null	float64
		14	Fee	23066 non-null	float64
Revenue	0	15	Revenue	23066 non-null	float64
CTR	0	16	CTR	23066 non-null	float64
CPM	0	17	CPM	23066 non-null	float64
		18	CPC	23066 non-null	float64
CPC	0	dtyp	es: float64(6), int64(7), object(6)	
dtype: int64		memo	ry usage: 3.3+ MB		

Fig: -6: Dataset after treating Null values

Five Point Summary of the Dataset:

	count	mean	std	min	25%	50%	75%	max
Ad - Length	23066.0	3.851631e+02	2.336514e+02	120.0000	120.000000	300.00000	7.200000e+02	728.00
Ad- Width	23066.0	3.378960e+02	2.030929e+02	70.0000	250.000000	300.00000	6.000000e+02	600.00
Ad Size	23066.0	9.667447e+04	6.153833e+04	33600.0000	72000.000000	72000.00000	8.400000e+04	216000.00
Available_Impressions	23066.0	2.432044e+06	4.742888e+06	1.0000	33672.250000	483771.00000	2.527712e+06	27592861.00
Matched_Queries	23066.0	1.295099e+06	2.512970e+06	1.0000	18282.500000	258087.50000	1.180700e+06	14702025.00
Impressions	23066.0	1.241520e+06	2.429400e+06	1.0000	7990.500000	225290.00000	1.112428e+06	14194774.00
Clicks	23066.0	1.067852e+04	1.735341e+04	1.0000	710.000000	4425.00000	1.279375e+04	143049.00
Spend	23066.0	2.706626e+03	4.067927e+03	0.0000	85.180000	1425.12500	3.121400e+03	26931.87
Fee	23066.0	3.351231e-01	3.196322e-02	0.2100	0.330000	0.35000	3.500000e-01	0.35
Revenue	23066.0	1.924252e+03	3.105238e+03	0.0000	55.365375	926.33500	2.091338e+03	21276.18
CTR	18330.0	7.366054e-02	7.515992e-02	0.0001	0.002600	0.08255	1.300000e-01	1.00
СРМ	18330.0	7.672045e+00	6.481391e+00	0.0000	1.710000	7.66000	1.251000e+01	81.56
CPC	18330.0	3.510606e-01	3.433338e-01	0.0000	0.090000	0.16000	5.700000e-01	7.26

Fig: -7: Data describe

- As we can see there are no null values now

Q1.3) Check if there are any outliers. Do you think treating outliers is necessary for K-Means clustering? Based on your judgement decide whether to treat outliers and if yes, which method to employ. (As an analyst your judgement may be different from another analyst).

I have checked with the data and it seems that there are Outliers. Below is the Boxplot figure of Features before Treating Outliers.

Fig: -8: Boxplot before Treating outliers

Yes. Treating Outliers is necessary for K Means Clustering. We are going to treat outliers by IQR method (Inter Quartile Range).

I have created a 'remove outlier' function using IQR formulas. We can't perform Outlier Treatment on Categorical features. Hence, I have created new dataset of Int64 and Float64 datatypes with the name of df_Num. And, applied 'remove outlier' function on it. And removed outliers.

To treat outliers, we defined a function 'treat outlier' where:

- The larger values (>upper whisker) are all equated to the 95th percentile value of the distribution.
- The smaller values (<lower whisker) are all equated to the 5th percentile value of the distribution.
 - Upper Range = Q3 + 1.5*IQR.
 - Lower Range = Q1 -1.5*IQR

Find below Boxplot diagram after treating Outliers.

Fig: -9: Boxplot After treating outliers

Q1.4) Perform z-score scaling and discuss how it affects the speed of the algorithm?

Data before Z-score Scaling is as below

	count	mean	std	min	25%	50%	75 %	max
Ad - Length	23066.0	3.851631e+02	2.336514e+02	120.000000	120.000000	300.000000	7.200000e+02	7.280000e+02
Ad- Width	23066.0	3.378960e+02	2.030929e+02	70.000000	250.000000	300.000000	6.000000e+02	6.000000e+02
Ad Size	23066.0	7.657684e+04	1.538132e+04	54000.000000	72000.000000	72000.000000	8.400000e+04	1.020000e+05
$A vailable_Impressions$	23066.0	1.607253e+06	2.125528e+06	1.000000	33672.250000	483771.000000	2.527712e+06	6.268771e+06
Matched_Queries	23066.0	7.995380e+05	1.026037e+06	1.000000	18282.500000	258087.500000	1.180700e+06	2.924326e+06
Impressions	23066.0	7.536120e+05	9.802568e+05	1.000000	7990.500000	225290.000000	1.112428e+06	2.769086e+06
Clicks	23066.0	8.306828e+03	9.574779e+03	1.000000	710.000000	4425.000000	1.279375e+04	3.091938e+04
Spend	23066.0	2.166060e+03	2.425190e+03	0.000000	85.180000	1425.125000	3.121400e+03	7.675730e+03
Fee	23066.0	3.402883e-01	1.812855e-02	0.300000	0.330000	0.350000	3.500000e-01	3.500000e-01
Revenue	23066.0	1.449389e+03	1.646894e+03	0.000000	55.365375	926.335000	2.091338e+03	5.145297e+03
CTR	23066.0	8.223203e+00	8.253522e+00	0.010874	0.265107	9.391248	1.347057e+01	3.327877e+01
СРМ	23066.0	8.219181e+00	6.881016e+00	0.000000	1.749084	8.371566	1.304202e+01	2.998142e+01
СРС	23066.0	3.300346e-01	3.165682e-01	0.000000	0.089736	0.139347	5.462421e-01	1.231002e+00

Fig: -10 After applying Z-score

Here, I have applied z-score method on the 'df_Num'. And, I got the below output.

	count	mean	std	min	25%	50%	75%	max
Ad - Length	23066.0	1.281478e-16	1.000022	-1.134891	-1.134891	-0.364496	1.433093	1.467332
Ad- Width Toggle output scrolling	23066.0	-1.182903e-16	1.000022	-1.319110	-0.432797	-0.186599	1.290590	1.290590
Ad Size	23066.0	3.055833e-16	1.000022	-1.467840	-0.297564	-0.297564	0.482620	1.652896
Available_Impressions	23066.0	9.857525e-18	1.000022	-0.756182	-0.740341	-0.528577	0.433059	2.193158
Matched_Queries	23066.0	1.971505e-17	1.000022	-0.779265	-0.761447	-0.527722	0.371498	2.070914
Impressions	23066.0	0.000000e+00	1.000022	-0.768806	-0.760655	-0.538975	0.366051	2.056111
Clicks	23066.0	-1.182903e-16	1.000022	-0.867488	-0.793438	-0.405431	0.468629	2.361729
Spend	23066.0	-9.857525e-17	1.000022	-0.893170	-0.858046	-0.305523	0.393932	2.271900
Fee	23066.0	1.143473e-15	1.000022	-2.222416	-0.567532	0.535724	0.535724	0.535724
Revenue	23066.0	3.943010e-17	1.000022	-0.880093	-0.846474	-0.317607	0.389803	2.244218
CTR	23066.0	1.380054e-16	1.000022	-0.995031	-0.964227	0.141524	0.635787	3.035808
СРМ	23066.0	2.464381e-17	1.000022	-1.194498	-0.940303	0.022146	0.700905	3.162718
СРС	23066.0	3.943010e-17	1.000022	-1.042561	-0.759091	-0.602371	0.682987	2.846105

Fig: -11

Scaling of variables is important for clustering to stabilize the weights of the different variables. If there is wide discrepancy in the range of variables (refer to Table 3) cluster formation may be affected by weight differential.

The features contained in a data set may have different units (e.g. feet, kilometers, and hours) that, in turn, may mean that the variables have different scales. All machine learning algorithms are dependent on the scaling of data. If there is wide discrepancy among the input values, the unscaled model may be unstable, meaning that it may suffer from poor performance during learning and sensitivity to input values resulting in higher generalization error. [2]

One of the most common forms of pre-processing consists of a simple linear rescaling of the input variables.

— Page 298, Neural Networks for Pattern Recognition, 1995.

Q1.5) Perform Hierarchical by constructing a Dendrogram using WARD and Euclidean distance.

Using SciPy's cluster hierarchy function, we created the below dendrogram.

Please find below Dendrogram performed for Hierarchical using WARD and Euclidean Distance on the Scaled Data such as "df_scaled".

Fig: -12

In a Dendrogram, each branch is called a clade. The terminal end of each clade is called a leaf. The arrangement of the clades tells us which leaves are most similar to each other. The height of the branching points indicates how similar or different they are from each other: the greater the height, the greater the difference.

[reference - https://wheatoncollege.edu/wp-content/uploads/2012/08/How-to-Read-a-Dendrogram-Web-Ready.pdf]

Keeping the above reference as base, we can see the longest branch (tallest branch) is in blue. If we see that only blue, it will result in only 2 clusters which is not acceptable in business. If the segmentation is at the tallest green branches, separated by the yellow horizontal line, 5 clusters are identified. Alternatively, there may be 3 clusters as well, designated by the orange horizontal line. But we choose 5 Clusters using Dendrogram for this project.

Fig: -13: Value counts

	Timestamp	Inventory Type	Ad - Length	Ad-Width	Ad Size	Ad Type	Platform	Device Type	Format	Available_Impressions	Matched_Queries	Impressions	Clicks	Spend	Fee	Revenue	CTR	CPM	CPC
23061	2020-9-13-7	Format5	720	300	216000	Inter220	Web	Mobile	Video	1	1	1	1	0.07	0.35	0.0455	NaN	NaN	NaN
23062	2020-11-2-7	Format5	720	300	216000	Inter224	Web	Desktop	Video	3	2	2	1	0.04	0.35	0.0260	NaN	NaN	NaN
23063	2020-9-14-22	Format5	720	300	216000	Inter218	Арр	Mobile	Video	2	1	1	1	0.05	0.35	0.0325	NaN	NaN	NaN
23064	2020-11-18-2	Format4	120	600	72000	inter230	Video	Mobile	Video	7	1	1	1	0.07	0.35	0.0455	NaN	NaN	NaN
23065	2020-9-14-0	Format5	720	300	216000	Inter221	Арр	Mobile	Video	2	2	2	1	0.09	0.35	0.0585	NaN	NaN	NaN

Fig: -14

Q1.6) Make Elbow plot (up to n=10) and identify optimum number of clusters for k-means algorithm.

For checking the Optimal number of clusters, we use WSS (Within Sum of Square)

Elbow Plot for n=10 The optimum number of clusters for k-means algorithm are 5 as the drop become significant

Fig: -15: Line plot

As per the check, when we move from K=1 to K=2, We see that there is a significant drop in the value. Also, when we move from k=2 to k-3, k=3 to k=4, k=4 to k=5 there is a significant drop as well. k=5 to k=6, the drop in values reduces significantly. Hence In this case, the WSS is not significantly dropping beyond 5, so 5 is optimal number of clusters

Q1.7) Print silhouette scores for up to 10 clusters and identify optimum number of clusters.

The silhouette score here is 0.5884606993260426.

The silhouette score for rest clusters up to 10.

Hierarchical Clustering as well as K-Means Clustering were performed. We used Elbow plot and Silhouette Score to identify optimum number of clusters in K-Means whereas in Hierarchical Clustering dendrogram was drawn. In Hierarchical method, we got 5 clusters while in K-Means, we got 5 (using elbow plot) and 6 clusters (using silhouette score). We can always try alternative approaches to clustering using other linkage types and distance metrics for an exhaustive study of the data. Please refer to the Monograph for details. We observe that the methods used in this project yielded similar results i.e. with 10 clusters. I have calculated Silhouette Score for scaled data using the silhouette_score () function.

The Silhouette Score is a measure of how similar an object is to its own cluster compared to other clusters, and it ranges from -1 to 1, with higher values indicating better clustering.

For no of clusters=2 257208.55083081475 The Silhouette Score is 0.4262713517981147 For no of clusters=3 166201.76151655504 The Silhouette Score is 0.4503758162120636 For no of clusters=4 114167.44887088305 The Silhouette Score is 0.5206669400279987 For no of clusters=5 75150.1956381825 The Silhouette Score is 0.578686139946828 For no of clusters=6 54527.912364221775 The Silhouette Score is 0.5884606993260426 For no of clusters=7 48910.940998052625 The Silhouette Score is 0.5639923095944765 For no of clusters=8 44431.97496451946 The Silhouette Score is 0.5533348395524547 For no of clusters=9 40022.34712205972 The Silhouette Score is 0.5083345223282044 For no of clusters=10 35988.14230793693 The Silhouette Score is 0.5257398681916272

Fig: -16: Clusters

Cluster_kmeans	0	1	2	3	4	5
Ad - Length	585.518868	4.652640e+02	120.310452	666.278788	4.236465e+02	138.381963
Ad- Width	324.036950	1.995169e+02	599.939634	306.380471	1.457295e+02	576.790451
Ad Size	182466.981132	7.524420e+04	72168.161435	201620.202020	5.327849e+04	75230.769231
Available_Impressions	96564.252752	1.039348e+07	31922.152984	365758.123569	1.808062e+06	811693.090849
Matched_Queries	50610.035770	5.626474e+06	19893.140738	198510.360943	8.646094e+05	571231.505305
Impressions	44466.499607	5.448141e+06	13683.866333	168224.074411	8.264839e+05	481819.978117
Clicks	2892.957547	1.125094e+04	2015.829079	20953.694949	3.256739e+03	65802.228117
Spend	320.582119	8.634991e+03	220.571908	1796.794226	1.508504e+03	7050.280007
Fee	0.350000	2.906507e-01	0.349976	0.349104	3.491436e-01	0.287487
Revenue	208.378412	6.364918e+03	143.446296	1171.041850	9.833242e+02	5064.143266
CTR	0.124121	2.174826e-03	0.146998	0.125305	4.054172e-03	0.137939
СРМ	12.050131	1.560991e+00	13.916212	10.903167	1.792549e+00	15.189614
СРС	0.121555	7.535545e-01	0.105599	0.087395	5.465910e-01	0.110087
clusters	3.040487	5.648016e+00	2.001552	3.000000	4.369042e+00	1.170424
freq	2544.000000	4.057000e+03	5798.000000	2970.000000	6.189000e+03	1508.000000

Fig: -17: Cluster k means

Q1.8) Profile the ads based on optimum number of clusters using silhouette score and your domain understanding [Hint: Group the data by clusters and take sum or mean to identify trends in Clicks, spend, revenue, CPM, CTR, & CPC based on Device Type. Make bar plots].

Fig: -18: Bar plot Comparisons

Observations:

- The clusters 3 contain ads that have higher mean length than other clusters.
- The clusters 2 and 5 have ads whose mean width is considerably more than the other clusters
- Cluster 3 has minimum ad size
- Available impressions is highest for cluster 1
- There is not much difference in Fee, but cluster 1 has very high mean spend and mean revenue compared to the others
- Cluster-2 have the most Click through rate (CTR).

- Cluster-1 have the highest cost per 1000 impressions (CPM)
- For cluster 1 and 4 the CPC (Cost per Click) is highest.

The data is grouped/profiled using the optimum number of clusters using silhouette score, which is five, and the mean has been taken to identify the trend in clicks, spends, revenue, CPM, CTR and CPC based on device type.

Means Clicks based on Device Type:

Fig: -19: Mean Clicks based on Device Type

The above bar chart, fig 19, clearly depicts the mean of cluster 4 at the peak for both the desktop and mobile devices at above 650000 clicks. Followed by Clusters 0 and 3 are at the highest, with means of above 14,798.108 and 14,467.467 clicks, respectively. And cluster 1 and cluster 5 registered with the lowest click.

Mean Spend based on Device type:

Fig: -20: Mean Spend based on Device type

The above figure 20 bar chart represents clustered data of mean spending based on device type. As we can spend mean, cluster 0 is at the top for both devices and followed the cluster 4 at the second spot. Whereases cluster 1 is at the lowest spend for both the Desktop and mobile at approx.206 and 207.

Mean revenue based on Device type:

Fig: -21: Mean revenue based on Device type

The above fig 21 chart shows the clustered data of mean revenue based on device type. It is evident that the cluster 0 mean revenue is the highest with approx. 9243 and 9157 and followed by cluster 4 with approx. 5048. Cluster 2 holds the last position with the lowest mean revenue.

Mean CPM (Cost per 1000 impressions) based on Device type:

Fig: - 22: Mean CPM (Cost per 1000 impressions) based on Device type

The above chart, fig 22, shows clustered data of the mean of Cost per 1000 Impressions (CPM) based on the device type. As we can see, cluster 4 has the highest mean CPM with close to 16, followed by cluster 1 with approx. 15 for both devices. Clusters 0 and 2 are at the lowest, with approx. 2 mean CPM.

Mean CTR (Click through Rate) based on Device type:

Fig: -23: Mean CTR (Click through Rate) based on Device type

The above fig 23 chart shows clustered data of mean of Click Through Rate (CTR) based on the device type. The cluster 1 is at the highest mean CTR for the both mobile and desktop device at 16. Followed by the cluster 3 and cluster 4 at mean CTR of 14 and Cluster 3 at the lowest at cluster 1 and cluster 0.

Mean CPC (Cost per Click) based on Device type:

Fig: -24: Mean CPC (Cost per Click) based on Device type:

The above fig 24 chart shows clustered data of mean Spend per Click (CPC) based on the device type. As we can see, cluster 0 is at the peak for both devices at closer to 0.8 and followed by cluster 2 with a mean of 0.76 CPC. Clusters 1, 3 and 4 follow a similar trend with 0.1.

Q1.9) Clustering: Conclude the project by providing summary of your learnings. Summary of the dataset:

The ad 24x7 marketing company have collected the data from the marketing intelligence to analysis and segmentalize the ads to target the right set of groups. The following details were found during the assessment of the dataset.

- The dataset has 23066 rows and 19 features. Out of 19 features 6 are float type, 7 are integer and six are categorical.
- During the project, we also found 4736 missing values; those values were imputed and treated with the given formula using a user-defined function.
- The dataset also had outliers; those outliers were treated using the IQR method since the K-mean clustering is sensitive to outliers and could negatively influence the dataset.
- The dataset also has been scaled. Since the unscaled data could negatively impact the speed of the algorithm and scaling data can make the variable contribute equally to the analysis to take better business decisions.
- As per Elbow plot/scree-plot, we concluded that the optimal number of clusters should be 5.
- Plotted elbow plot and got optimum value is 5
- Hierarchal clustering has been performed with the data to find the optimum number of clusters, which is 5.

Conclusions after Clustering:

- When Click on Ads gets increases then Revenue is also increases.
- When amount of money spent on specific ad variations within a specific campaign or ad set is increases then Revenue is also increases.
- When impression count of the particular Advertisement increases then Revenue is also increases

Problem 2:

PCA: PCA FH (FT): Primary census abstract for female headed households excluding institutional households (India & States/UTs - District Level), Scheduled tribes - 2011 PCA for Female Headed Household Excluding Institutional Household. The Indian Census has the reputation of being one of the best in the world. The first Census in India was conducted in the year 1872. This was conducted at different points of time in different parts of the country. In 1881 a Census was taken for the entire country simultaneously. Since then, Census has been conducted every ten years, without a break. Thus, the Census of India 2011 was the fifteenth in this unbroken series since 1872, the seventh after independence and the second census of the third millennium and twenty first century. The census has been uninterruptedly continued despite of several adversities like wars, epidemics, natural calamities, political unrest, etc. The Census of India is conducted under the provisions of the Census Act 1948 and the Census Rules, 1990. The Primary Census Abstract which is important publication of 2011 Census gives basic information on Area, Total Number of Households, Total Population, Scheduled Castes, Scheduled Tribes Population, Population in the age group 0-6, Literates, Main Workers and Marginal Workers classified by the four broad industrial categories, namely, (i) Cultivators, (ii) Agricultural Laborers, (iii) Household Industry Workers, and (iv) Other Workers and also non-Workers. The characteristics of the Total Population include Scheduled Castes, Scheduled Tribes, Institutional and Houseless Population and are presented by sex and rural-urban residence. Census 2011 covered 35 States/Union Territories, 640 districts, 5,924 sub-districts, 7,935 Towns and 6,40,867 Villages. The data collected has so many variables thus making it difficult to find useful details without using Data Science Techniques. You are tasked to perform detailed EDA and identify Optimum Principal Components that explains the most variance in data. Use Sklearn only.

	Data Dictionary:
Name	Description
State	State Code
District	District Code
Name	Name
TRU1	Area Name
No_HH	No of Household
тот_м	Total population Male
TOT_F	Total population Female
м_06	Population in the age group 0-6 Male
F_06	Population in the age group 0-6 Female
M_SC	Scheduled Castes population Male
F_SC	Scheduled Castes population Female
M_ST	Scheduled Tribes population Male
F_ST	Scheduled Tribes population Female
M_LIT	Literate population Male

F_LIT	Literate population Female
M_ILL	Illiterate Male
F_ILL	Illiterate Female
TOT_WORK_M	Total Worker Population Male
TOT_WORK_F	Total Worker Population Female
MAINWORK_M	Main Working Population Male
MAINWORK_F	Main Working Population Female
MAIN_CL_M	Main Cultivator Population Male
MAIN_CL_F	Main Cultivator Population Female
MAIN_AL_M	Main Agricultural Laborers Population Male
MAIN_AL_F	Main Agricultural Laborers Population Female
MAIN_HH_M	Main Household Industries Population Male
MAIN_HH_F	Main Household Industries Population Female
MAIN_OT_M	Main Other Workers Population Male
MAIN_OT_F	Main Other Workers Population Female
MARGWORK_M	Marginal Worker Population Male
MARGWORK_F	Marginal Worker Population Female
MARG_CL_M	Marginal Cultivator Population Male
MARG_CL_F	Marginal Cultivator Population Female
MARG_AL_M	Marginal Agriculture Laborers Population Male
MARG_AL_F	Marginal Agriculture Laborers Population Female
MARG_HH_M	Marginal Household Industries Population Male
MARG_HH_F	Marginal Household Industries Population Female
MARG_OT_M	Marginal Other Workers Population Male
MARG_OT_F	Marginal Other Workers Population Female
MARGWORK_3_6_M	Marginal Worker Population 3-6 Male
MARGWORK_3_6_F	Marginal Worker Population 3-6 Female
MARG_CL_3_6_M	Marginal Cultivator Population 3-6 Male
MARG_CL_3_6_F	Marginal Cultivator Population 3-6 Female
MARG_AL_3_6_M	Marginal Agriculture laborer's Population 3-6 Male
MARG_AL_3_6_F	Marginal Agriculture Laboure's Population 3-6 Female
MARG_HH_3_6_M	Marginal Household Industries Population 3-6 Male
MARG_HH_3_6_F	Marginal Household Industries Population 3-6 Female
MARG_OT_3_6_M	Marginal Other Workers Population Person 3-6 Male
MARG_OT_3_6_F	Marginal Other Workers Population Person 3-6 Female
MARGWORK_0_3_M	Marginal Worker Population 0-3 Male
MARGWORK_0_3_F	Marginal Worker Population 0-3 Female
MARG_CL_0_3_M	Marginal Cultivator Population 0-3 Male
MARG_CL_0_3_F	Marginal Cultivator Population 0-3 Female
MARG_AL_0_3_M	Marginal Agriculture Laboure's Population 0-3 Male
· -	<u> </u>

MARG_AL_0_3_F	Marginal Agriculture Laboure's Population 0-3 Female
MARG_HH_0_3_M	Marginal Household Industries Population 0-3 Male
MARG_HH_0_3_F	Marginal Household Industries Population 0-3 Female
MARG_OT_0_3_M	Marginal Other Workers Population 0-3 Male
MARG_OT_0_3_F	Marginal Other Workers Population 0-3 Female
NON_WORK_M	Non-Working Population Male
NON_WORK_F	Non-Working Population Female

Table: -2

Q2.1 PCA: Read the data and perform basic checks like checking head, info, summary, nulls, and duplicates, etc.

The below figure shows the first 5 Rows of the dataset.

State Code		State	Area Name	No_HH	TOT_M	TOT_F	M_06	F_06	M_SC	 MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_
0 1	1	Jammu & Kashmir	Kupwara	7707	23388	29796	5862	6196	3	 1150	749	180	
1 1	2	Jammu & Kashmir	_	6218	19585	23102	4482	3733	7	 525	715	123	
2 1	3	Jammu & Kashmir	Leh(Ladakh)	4452	6546	10964	1082	1018	3	 114	188	44	
3 1	4	Jammu & Kashmir	Kargil	1320	2784	4206	563	677	0	 194	247	61	
4 1	5	Jammu & Kashmir	Punch	11654	20591	29981	5157	4587	20	 874	1928	465	

Fig: -25: Head of the Dataset

The below figure shows the last 5 rows of the dataset:

	State Code	Dist.Code	State	Area Name	No_HH	тот_м	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	F_ST	M_LIT	F_LIT	M_ILL	F_ILL
635	34	636	Puducherry	Mahe	3333	8154	11781	1146	1203	21	30	0	0	6916	10184	1238	1597
636	34	637	Puducherry	Karaikal	10612	12346	21691	1544	1533	2234	4155	0	0	10292	14225	2054	7466
637	35	638	Andaman & Nicobar Island	Nicobars	1275	1549	2630	227	225	0	0	1012	1750	1187	1602	362	1028
638	35	639	Andaman & Nicobar Island	North & Middle Andaman	3762	5200	8012	723	664	0	0	28	50	4206	5273	994	2739
639	35	640	Andaman & Nicobar Island	South Andaman	7975	11977	18049	1470	1358	0	0	161	264	10095	13362	1882	4687

Fig: -26: Tail of the dataset

Data Info:

					_		
<class< td=""><td>ss 'pandas.core.</td><td>frame.DataFrame'</td><td>></td><td>31</td><td>MARG_CL_M</td><td>640 non-null</td><td>int64</td></class<>	ss 'pandas.core.	frame.DataFrame'	>	31	MARG_CL_M	640 non-null	int64
Range	eIndex: 640 entr	ies, 0 to 639		32	MARG_CL_F	640 non-null	int64
Data	columns (total	•		33	MARG_AL_M	640 non-null	int64
#	Column	Non-Null Count	Dtype	34	MARG AL F	640 non-null	int64
				35	MARG_HH_M	640 non-null	int64
0	State Code	640 non-null	int64	36	MARG HH F	640 non-null	int64
1	Dist.Code	640 non-null	int64	37	MARG OT M	640 non-null	int64
2	State	640 non-null	object				
3	Area Name	640 non-null	object	38	MARG_OT_F	640 non-null	int64
4	No_HH	640 non-null	int64	39	MARGWORK_3_6_M	640 non-null	int64
5	TOT_M	640 non-null	int64	40	MARGWORK_3_6_F	640 non-null	int64
6	TOT_F	640 non-null	int64	41	MARG_CL_3_6_M	640 non-null	int64
7	M_06	640 non-null	int64	42	MARG_CL_3_6_F	640 non-null	int64
8	F_06	640 non-null	int64	43	MARG_AL_3_6_M	640 non-null	int64
9	M_SC	640 non-null 640 non-null	int64 int64	44	MARG_AL_3_6_F	640 non-null	int64
10 11	F_SC	640 non-null	int64	45	MARG_HH_3_6_M	640 non-null	int64
12	M_ST F_ST	640 non-null	int64	46	MARG HH 3 6 F	640 non-null	int64
13	M LIT	640 non-null	int64	47	MARG_OT_3_6_M	640 non-null	int64
14	F LIT	640 non-null	int64				
15	M_ILL	640 non-null	int64	48	MARG_OT_3_6_F	640 non-null	int64
16	F_ILL	640 non-null	int64	49	MARGWORK_0_3_M	640 non-null	int64
17	TOT_WORK_M	640 non-null	int64	50	MARGWORK_0_3_F	640 non-null	int64
18	TOT_WORK_F	640 non-null	int64	51	MARG_CL_0_3_M	640 non-null	int64
19	MAINWORK M	640 non-null	int64	52	MARG_CL_0_3_F	640 non-null	int64
20	MAINWORK F	640 non-null	int64	53	MARG_AL_0_3_M	640 non-null	int64
21	MAIN_CL_M	640 non-null	int64	54	MARG_AL_0_3_F	640 non-null	int64
22	MAIN_CL_F	640 non-null	int64	55	MARG_HH_0_3_M	640 non-null	int64
23	MAIN_AL_M	640 non-null	int64	56	MARG_HH_0_3_F	640 non-null	int64
24	MAIN_AL_F	640 non-null	int64	57	MARG_OT_Ø_3_M	640 non-null	int64
25	MAIN_HH_M	640 non-null	int64	58		640 non-null	int64
26	MAIN_HH_F	640 non-null	int64		MARG_OT_0_3_F		
27	MAIN_OT_M	640 non-null	int64	59	NON_WORK_M	640 non-null	int64
28	MAIN_OT_F	640 non-null	int64	60	NON_WORK_F	640 non-null	int64
29	MARGWORK_M	640 non-null	int64	dtyp	es: int64(59), o	bject(2)	
30	MARGWORK F	640 non-null	int64	memo	rv usage: 305.1+	KB	

Fig: -27: Data information

From the above data, we can see 640 rows with 61 columns. Out of 61 features – 59 columns belong to the integer data type, and 2 are object (Categorical data type).

The below fig 20 shows the data that depicts the mean, median, min and max values of the dataset. The dataset looks skewed.

	State Code	Dist.Code	No_HH	TOT_M	TOT_F	M_06	F_06	M_SC	F_SC	M_ST
count	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000	640.000000
mean	17.114062	320.500000	51222.871875	79940.576563	122372.084375	12309.098438	11942.300000	13820.946875	20778.392188	6191.807813
std	9.426486	184.896367	48135.405475	73384.511114	113600.717282	11500.906881	11326.294567	14426.373130	21727.887713	9912.668948
min	1.000000	1.000000	350.000000	391.000000	698.000000	56.000000	56.000000	0.000000	0.000000	0.000000
25%	9.000000	160.750000	19484.000000	30228.000000	46517.750000	4733.750000	4672.250000	3466.250000	5603.250000	293.750000
50%	18.000000	320.500000	35837.000000	58339.000000	87724.500000	9159.000000	8663.000000	9591.500000	13709.000000	2333.500000
75%	24.000000	480.250000	68892.000000	107918.500000	164251.750000	16520.250000	15902.250000	19429.750000	29180.000000	7658.000000
max	35.000000	640.000000	310450.000000	485417.000000	750392.000000	96223.000000	95129.000000	103307.000000	156429.000000	96785.000000

Fig: -28: Data Describe

The below fig 21 proves that there are no duplicates and null values present in the dataset.

```
State Code 0
Dist.Code 0
State 0
Area Name 0
No_HH 0
...
MARG_HH_0_3_F 0
MARG_OT_0_3_M 0
MARG_OT_0_3_F 0
NON_WORK_M 0
NON_WORK_F 0
Length: 61, dtype: int64
```

Fig: -29: Null values

Checking for duplicate values:

- There are no duplicate values in the given dataset Summary of the data

Q2.2 PCA: Perform detailed Exploratory analysis by creating certain questions like (i) Which state has highest gender ratio and which has the lowest? (ii) Which district has the highest & lowest gender ratio? (Example Questions). Pick 5 variables out of the given 24 variables below for EDA: No_HH, TOT_M, TOT_F, M_06, F_06, M_SC, F_SC, M_ST, F_ST, M_LIT, F_LIT, M_ILL, F_ILL, TOT_WORK_M, TOT_WORK_F, MAINWORK_M, MAINWORK_F, MAIN_CL_M, MAIN_CL_F, MAIN_AL_M, MAIN_AL_F, MAIN_HH_M, MAIN_HH_F, MAIN_OT_M, MAIN_OT_F.

(i) Which state has highest gender ratio and which has the lowest?

I have picked 5 Variables such as 'No_HH', 'TOT_M', 'TOT_F', 'M_06', and 'F_06'. And comparing those 5 variables against 'State' and Area Name.

	State	Area Name	No_HH	TOT_M	TOT_F	M_06	F_06
0	Jammu & Kashmir	Kupwara	7707	23388	29796	5862	6196
1	Jammu & Kashmir	Badgam	6218	19585	23102	4482	3733
2	Jammu & Kashmir	Leh(Ladakh)	4452	6546	10964	1082	1018
3	Jammu & Kashmir	Kargil	1320	2784	4206	563	677
4	Jammu & Kashmir	Punch	11654	20591	29981	5157	4587
635	Puducherry	Mahe	3333	8154	11781	1146	1203
636	Puducherry	Karaikal	10612	12346	21691	1544	1533
637	Andaman & Nicobar Island	Nicobars	1275	1549	2630	227	225
638	Andaman & Nicobar Island	North & Middle Andaman	3762	5200	8012	723	664
639	Andaman & Nicobar Island	South Andaman	7975	11977	18049	1470	1358

640 rows × 7 columns

Fig: -30: Chosen Variables

I have created the Gender Ratio Columns by calculating the Male/Female, So the new columns are 'TOT_GR' and 'GR_06'.

	State	Area Name	No_HH	TOT_M	TOT_F	M_06	F_06	TOT_GR	GR_06
0	Jammu & Kashmir	Kupwara	7707	23388	29796	5862	6196	0.784938	0.946094
1	Jammu & Kashmir	Badgam	6218	19585	23102	4482	3733	0.847762	1.200643
2	Jammu & Kashmir	Leh(Ladakh)	4452	6546	10964	1082	1018	0.597045	1.062868
3	Jammu & Kashmir	Kargil	1320	2784	4206	563	677	0.661912	0.831610
4	Jammu & Kashmir	Punch	11654	20591	29981	5157	4587	0.686802	1.124264
635	Puducherry	Mahe	3333	8154	11781	1146	1203	0.692131	0.952618
636	Puducherry	Karaikal	10612	12346	21691	1544	1533	0.569176	1.007175
637	Andaman & Nicobar Island	Nicobars	1275	1549	2630	227	225	0.588973	1.008889
638	Andaman & Nicobar Island	North & Middle Andaman	3762	5200	8012	723	664	0.649026	1.088855
639	Andaman & Nicobar Island	South Andaman	7975	11977	18049	1470	1358	0.663582	1.082474

640 rows × 9 columns

Fig: -31: Calculated gender Ratio

The below bar graph fig 24 represents the gender ratio among the Indian states. We can see that Lakshadweep has the highest gender ratio with over 0.9, and Chhattisgarh and Andra Pradesh have the lowest gender ratio with 0.5.

Fig: -32: Gender Ratio

(ii) Which district has the highest & lowest gender ratio?

	TOT_GR		TOT_GR
Dist.Code		Dist.Code	
587	0.868061	E 47	0.437972
2	0.847762	547	0.437972
144	0.847313	398	0.440769
106	0.846911	625	0.449352
139	0.844003		
299	0.840393	546	0.450076
92	0.838542	391	0.451455
89	0.831138	•••	
160	0.817231		
146	0.815491	139	0.844003
133	0.814978	106	0.846911
76	0.814942	144	0.847313
202	0.814942		
165	0.814889	2	0.847762
142	0.814803	587	0.868061
201	0.813884		
143	0.812564	640 rows ×	1 columns

Fig: -33: District wise Gender Ratio

As we can see the highest and lowest Gender Ratio, the above fig-33 represents the gender ratio among the Indian Districts. We can see that 587- has the highest gender ratio with over 0.9, and 547 have the lowest gender ratio with 0.5.

Q2.3 We choose not to treat outliers for this case. Do you think that treating outliers for this case is necessary?

In the case of census data, outlier treatment may not be necessary for several reasons:

- 1. The data is usually collected from a large and representative sample of the population. This means that the data is likely to be normally distributed, and outliers are less likely to occur
- 2. Census data is often collected using standardized methods and questionnaires, which reduce the likelihood of errors and outliers
- 3. The purpose of census data is often to provide an accurate representation of the population as a whole. Outliers, by definition, are not representative of the population and may not provide any useful information.
- 4. Outliers may also be due to errors or anomalies in the data collection process. In the case of census data, the data collection process is typically rigorous and standardized, making it less likely that errors will occur.
- 5. Principal Component Analysis (PCA) is a highly flexible multivariate data dimension reduction method. In the presence of outliers, classical PCA is highly sensitive to them and may draw false conclusions.

Q2.4 PCA: Scale the Data using z-score method. Does scaling have any impact on outliers? Compare boxplots before and after scaling and comment.

Before scaling and checking the outliers, the Categorical variable has been dropped from the dataset. The below image represents the boxplot of the dataset before scaling.

Fig: -34: Boxplot before scaling

As we have applied the Z-score for the Dataset, below we can see the Dataset fig-35 the values tend to be below zero.

	TOT_M	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	F_ST	M_LIT	F_LIT	 MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M
0	-0.771236	-0.815563	-0.561012	-0.507738	-0.958575	-0.957049	-0.423306	-0.476423	-0.798097	-0.733477	 -0.163229	-0.720610	-0.156494
1	-0.823100	-0.874534	-0.681096	-0.725367	-0.958297	-0.956772	-0.582014	-0.607607	-0.849434	-0.779797	 -0.583103	-0.732811	-0.282327
2	-1.000919	-0.981466	-0.976956	-0.965262	-0.958575	-0.956772	-0.038951	-0.027273	-0.956457	-0.807151	 -0.859212	-0.921931	-0.456727
3	-1.052224	-1.041001	-1.022118	-0.995393	-0.958783	-0.957049	-0.355965	-0.390060	-1.004643	-0.858872	 -0.805468	-0.900758	-0.419198
4	-0.809381	-0.813933	-0.622359	-0.649908	-0.957395	-0.955529	0.149238	0.043330	-0.800568	-0.705296	 -0.348645	-0.297513	0.472670

Fig: -35: Dataset after applying Z-score

Fig: -36: Boxplot After Scaling

Apart from the scaling adjustment, there are absolutely no changes when we compare the box plot before and after scaling.

Q2.5. PCA: Perform all the required steps for PCA (use sklearn only) Create the covariance Matrix Get eigen values and eigen vector.

Checking the Correlation.

Statistical test is done before performing PCA. Though we have seen few correlations in the dataset. The *Bartletts test of Sphericity* is performed to understand correlation significance in the population.

The Null hypothesis an alternative hypothesis will be defined.

H0: All variables in the data are uncorrelated

Ha: At least one pair of variables in the dataset are correlated.

We Decide the significance level Here we select α = 0.05. – we got **'0'**

The p-value is 0, which is less than the significant level. Therefore, the null hypothesis will be rejected. Hence, it proves that at least one pair of variables in the dataset is correlated, and PCA will be performed.

And the next step would KMO test. (Kaiser-Meyer-Olkin)

The KMO test will be conducted to measure the sample adequacy (MSA) of the dataset.

If MSA is less than 0.5, PCA will not be suggested. Alternatively, if it is greater than 0.7, it gives a substantial reduction in dimension and extracts significant components.

KMO is 0.80, Since it is greater 0.7 – the PCA is recommend.

30

Covariance Matrix:

```
array([[1.00156495, 0.98417823, 0.95231299, ..., 0.5891007, 0.84621844, 0.71718181],
[0.98417823, 1.00156495, 0.90939623, ..., 0.572748, 0.82894851, 0.74775097],
[0.95231299, 0.90939623, 1.00156495, ..., 0.56591416, 0.78618919, 0.65216231],
...,
[0.5891007, 0.572748, 0.56591416, ..., 1.00156495, 0.61052325, 0.52191235],
[0.84621844, 0.82894851, 0.78618919, ..., 0.61052325, 1.00156495, 0.88228018],
[0.71718181, 0.74775097, 0.65216231, ..., 0.52191235, 0.88228018, 1.00156495]])
```

	TOT_M	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	F_ST	M_LIT	F_LIT	 MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M	MARG_AL_0_3_F
TOT_M	1.00	0.98	0.95	0.95	0.84	0.83	0.09	0.09	0.99	0.93	 0.70	0.60	0.17	0.12
TOT_F	0.98	1.00	0.91	0.91	0.82	0.83	0.12	0.13	0.99	0.96	 0.66	0.60	0.14	0.10
M_06	0.95	0.91	1.00	1.00	0.78	0.75	0.06	0.04	0.91	0.83	 0.76	0.65	0.27	0.20
F_06	0.95	0.91	1.00	1.00	0.77	0.74	0.07	0.05	0.91	0.83	 0.76	0.65	0.26	0.19
M_SC	0.84	0.82	0.78	0.77	1.00	0.99	-0.05	-0.05	0.82	0.72	 0.67	0.57	0.18	0.13
F_SC	0.83	0.83	0.75	0.74	0.99	1.00	-0.01	-0.01	0.82	0.73	 0.65	0.59	0.16	0.12
M_ST	0.09	0.12	0.06	0.07	-0.05	-0.01	1.00	0.99	0.09	0.10	 0.12	0.20	0.03	0.01
F_ST	0.09	0.13	0.04	0.05	-0.05	-0.01	0.99	1.00	0.09	0.10	 0.12	0.22	0.02	0.00
M_LIT	0.99	0.99	0.91	0.91	0.82	0.82	0.09	0.09	1.00	0.97	 0.65	0.56	0.14	0.10
F_LIT	0.93	0.96	0.83	0.83	0.72	0.73	0.10	0.10	0.97	1.00	 0.55	0.49	0.09	0.06
M_ILL	0.91	0.86	0.95	0.95	0.80	0.76	0.08	0.07	0.84	0.72	 0.75	0.63	0.21	0.14
F_ILL	0.89	0.89	0.86	0.87	0.83	0.85	0.14	0.15	0.84	0.72	 0.71	0.67	0.20	0.14
TOT_WORK_M	0.97	0.97	0.86	0.85	0.83	0.82	0.12	0.12	0.98	0.94	 0.60	0.51	0.07	0.04
TOT_WORK_F	0.81	0.88	0.68	0.69	0.71	0.78	0.27	0.29	0.82	0.79	 0.49	0.55	0.12	0.10
MAINWORK_M	0.93	0.94	0.79	0.79	0.78	0.78	0.11	0.11	0.95	0.93	 0.47	0.39	-0.01	-0.03
MAINWORK_F	0.75	0.82	0.59	0.59	0.65	0.71	0.23	0.25	0.77	0.77	 0.30	0.34	-0.03	-0.03
MAIN CL M	0.53	0.49	0.56	0.56	0.61	0.58	0.10	0.08	0.47	0.33	 0.47	0.39	0.24	0.18

Fig: -38: Covariance matrix

Eigen Values:

The below fig 39 represents the Eigen value of all 12 principal components.

```
array([31.04602689, 7.74229066, 4.15338002, 3.6086627, 2.20641038, 1.93824124, 1.15914355, 0.74854534, 0.6170419, 0.52808406, 0.42978387, 0.35091506])
```

Fig: -39: Eigen value

Maximum variance is explained by PC1 = 31.81.

PC2 explains 7.86

PC3 explains 4.153

PC4 explains 3.66

PC5 explains 2.20 and PC6 explains 1.93.

The below figure shows the Eigen Vector of all the principal components. It derived by using Components

```
array([[ 1.68547147e-01, 1.66605242e-01, 1.64165243e-01,
        1.64562632e-01, 1.52996391e-01, 1.52940303e-01,
        2.74810453e-02, 2.83878596e-02, 1.63102824e-01,
        1.47366621e-01, 1.63910507e-01, 1.66998116e-01,
        1.60838746e-01, 1.46469761e-01, 1.46635940e-01,
        1.23739954e-01, 1.04870439e-01, 7.54411527e-02,
        1.14068301e-01, 7.34727501e-02, 1.33145711e-01,
        8.38711544e-02, 1.23482797e-01, 1.10599756e-01,
        1.67517738e-01, 1.57829907e-01, 8.50399103e-02,
        5.09848671e-02, 1.31481028e-01, 1.16285596e-01,
        1.43745975e-01, 1.29795621e-01, 1.56867596e-01,
        1.48361985e-01, 1.66756931e-01, 1.62454535e-01,
        1.68319155e-01, 1.57919009e-01, 9.58488238e-02,
        5.33359286e-02, 1.31385264e-01, 1.12415081e-01,
        1.42433411e-01, 1.26569034e-01, 1.55867751e-01,
        1.47332261e-01, 1.53177967e-01, 1.42857457e-01,
        5.45496809e-02, 4.34724137e-02, 1.24863483e-01,
        1.18519203e-01, 1.42828454e-01, 1.34541425e-01,
        1.52032961e-01, 1.32101728e-01],
```

Fig: -40: Eigen vector

Q2.6 PCA: Identify the optimum number of PCs (for this project, take at least 90% explained variance). Show Scree plot.

The Explained variance ratio explain the proposition of variance of the principal components.

Let's check out the percentage of variance explained by each PC that is variance explained by an individual principal component divided by total variance explained by all the PC's.

In other words - Percentage of explained variance= Eigen value of each PC/sum of Eigen values of all PCs

```
array([0.5535271 , 0.13803917, 0.07405161, 0.06433972, 0.03933862, 0.03455737, 0.02066665, 0.013346 , 0.01100139, 0.00941534, 0.00766272, 0.00625655])
```

Fig: -41: Explained variance

55% of total variance is explained by PC1. 13.7% of total variance is explained by PC2.

7.2% of total variance is explained by PC3. 6.4% of total variance is explained by PC4.

3.8% of total variance is explained by PC5. 3.4% of total variance is explained by PC6.

Cumulative explained variance ratio:

The cumulative explained variance ratio to find a cut off for selecting the number of Principal components. (PCs)

```
array([0.5535271 , 0.69156626, 0.76561788, 0.8299576 , 0.86929622, 0.90385359, 0.92452024, 0.93786623, 0.94886762, 0.95828296, 0.96594568, 0.97220223])
```

Fig: -42: Cumulative Explained variance ratio

We can see from the above fig.42 that Cumulative explained variance ratio of 6 pcs is more than 90%. Therefore, we can conclude by saying the optimum number of PCs is 6 and the below fig 43 Scree plot supports the same.

Fig: -42: Scree plot

The dots on the Scree plots are the 12 principal components. We can see a formation of the elbow at 6 PCs. It is evident that post 6 PCs, the drop is not that significant. therefore, the optimum number of PCs is 6.

Q2.7 PCA: Compare PCs with Actual Columns and identify which is explaining most variance. Write inferences about all the Principal components in terms of actual variables.

To categorize the pattern, the components are loaded against each feature in a new data frame. we have 12 principal components and one co-efficient each for all 56 variables.

	TOT_M	TOT_F	M_06	F_06	M_SC	F_SC	M_ST	F_ST	M_LIT	F_LIT	 MARG_CL_0_3_M	MARG_CL_0_3_F	MARG_AL_0_3_M
PC1	0.168547	0.166605	0.164165	0.164563	0.152996	0.152940	0.027481	0.028388	0.163103	0.147367	 0.153178	0.142857	0.054550
PC2	-0.094738	-0.108873	-0.027200	-0.025412	-0.049895	-0.055754	0.029232	0.032066	-0.120102	-0.157002	 0.146628	0.179272	0.253535
PC3	0.056601	0.038782	0.057654	0.049985	0.002433	-0.025125	-0.123022	-0.139260	0.082100	0.117085	 0.054719	0.024117	0.268735
PC4	-0.027099	-0.077830	0.006567	0.009531	0.007256	-0.034768	-0.227647	-0.234733	-0.042616	-0.066948	 0.089502	-0.018582	-0.097636
PC5	-0.033485	-0.013307	-0.050635	-0.044227	-0.173308	-0.160092	0.432293	0.437965	-0.009562	0.055421	 0.081417	0.130170	-0.048741

Fig: -43: Selected components

To analysis the variable that has the highest loading among the principal components. The component has to be loaded on a heatmap. For each variable with maximum loading, the heatmap shows a blue rectangle box that is marked across the components. Ref Fig. 44 M_06 M SC 0.40 M_ST M_LIT M ILL 0.02 0.09 0.05 0.06 0.05 0.06 0.07 0.35 0.08 TOT_WORK_M MAINWORK_M 0.08 MAIN CL M 0.06 0.09 0.03 0.30 0.03 0.06 0.14 0.10 MAIN_HH_M -0.05 0.13 0.09 0.09 0.06 0.25 MARGWORK_M -MARG CL M MARG_AL_M -MARG_HH_M -0.20 0.20 0.08 0.02 0.01 0.00 0.09 0.11 0.03 0.17 MARG_OT_M MARGWORK_3_6_M -MARG_CL_3_6_M -MARG_AL_3_6_M MARG_HH_3_6_M -0.28 0.02 0.08 0.11 0.10 0.05 0.02 MARG_OT_3_6_M 0.10 MARGWORK_0_3_M -MARG_CL_0_3_M MARG_AL_0_3_M 0.05 0.29 0.14 0.20 0.02 0.08 0.11 0.10 MARG_HH_0_3_M -MARG_OT_0_3_M NON_WORK_M -PC3 PC5 Fig: -44: Heatmap 0.4 0.6 MANIL CLE MANIL CLE MANIL CLE MANIL CLE MANIL ALE MANIL AND MANIL ALE MANIL AND MANIL ALE MANIL ALE MANIL AND MANIL ALE MANIL ALE MANIL AND MANIL ALE MANIL AND MANIL AND MANIL ALE MANIL AND MANIL Fig: -45: Comparison

34

The above table shows the variables that contributes maximum towards the respective PCs:

Q2.8 PCA: Write linear equation for first PC.

The below fig depicts the linear equation for the first PC (PC1):

The value in the Parentheses is the coefficient and those multiplied by variables.

```
PC1 = 0.355 * x1 + 0.554 * x2 + 0.052 * x3 + 0.051 * x4 + 0.058 * x5 + 0.088 * x6 + 0.005 * x7 + 0.009 * x8 + 0.271 * x9 + 0.352 * x10 + 0.084 * x11 + 0.201 * x12 + 0.174 * x13 + 0.155 * x14 + 0.146 * x15 + 0.117 * x16 + 0.011 * x17 + 0.009 * x18 + 0.019 * x19 + 0.027 * x20 + 0.004 * x21 + 0.007 * x22 + 0.111 * x23 + 0.074 * x24 + 0.028 * x25 + 0.038 * x26 + 0.002 * x27 + 0.002 * x28 + 0.009 * x29 + 0.015 * x30 + 0.001 * x31 + 0.003 * x32 + 0.016 * x33 + 0.017 * x34 + 0.181 * x35 + 0.399 * x36 + 0.023 * x37 + 0.030 * x38 + 0.001 * x39 + 0.002 * x40 + 0.007 * x41 + 0.011 * x42 + 0.001 * x43 + 0.002 * x44 + 0.013 * x45 + 0.014 * x46 + 0.005 * x47 + 0.008 * x48 + 0.000 * x49 + 0.001 * x50 + 0.002 * x51 + 0.003 * x52 + 0.000 * x53 + 0.001 * x54 + 0.003 * x55 + 0.003 * x56
```