

EXAMENUL DE BACALAUREAT – 2007 Proba scrisă la MATEMATICĂ

PROBA D

Varianta063

 $Profilul: Filiera\ Teoretică: sp.:\ matematică-informatică, Filiera\ Vocațională, profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică, Filiera\ Vocațională,\ profil\ Militar,\ Specializarea:\ specializarea\ matematică-informatică,\ Filiera\ Vocațională,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ matematică-informatică,\ profil\ Militar,\ Specializarea\ profil\ Militar,\ Specializarea\ profil\ Militar,\ profil\ Militar,\ profil\ Militar,\ Specializarea\ profil\ Militar,\ profil\ Mi$

♦ Toate subiectele sunt obligatorii. Se acordă 10 puncte din oficiu. Timpul efectiv de lucru este de 3 ore.

La toate subiectele se cer rezolvări cu soluții complete

SUBIECTUL I (20p)

- (4p) a) Să se calculeze modulul numărului complex $\sqrt{3} + i$.
- (4p) b) Să se calculeze distanța de la punctul D(-1,-2,-3) la punctul E(-4,-5,-6).
- (4p) c) Să se determine produsul scalar al vectorilor $\vec{v} = 3\vec{i} + 4\vec{j}$ şi $\vec{w} = 2\vec{i} + 3\vec{j}$.
- (4p) d) Să se arate că punctele L(1,2,0), M(2,3,0) și N(3,4,0) sunt coliniare.
- (2p) e) Să se calculeze aria triunghiului cu vârfurile în punctele A(-2,3), B(-1,4), și C(2,1).
- (2p) f) Să se determine $a,b \in \mathbb{R}$, astfel încât să avem egalitatea de numere complexe

$$\frac{2+3i}{4-2i} = a+bi .$$

SUBIECTUL II (30p)

1.

- (3p) a) Să se calculeze $\hat{3}^{2007}$ în \mathbb{Z}_5 .
- (3p) b) Să se determine al cincilea termen al unei progresii aritmetice cu primul termen egal cu 1 și cu rația 2.
- (3p) c) Dacă funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x^3 + x + 1$ are inversa $g: \mathbf{R} \to \mathbf{R}$, să se calculeze g(3).
- (3p) d) Să se rezolve în mulțimea numerelor reale ecuația $x^3 + x = 10$.
- (3p) e) Să se determine suma tuturor rădăcinilor polinomului $f = X^4 + X^3 X + 1$.
 - **2.** Se consideră funcția $f: \mathbf{R} \to \mathbf{R}$, $f(x) = x + 2^x$.
- (3p) a) Să se calculeze f'(x), $x \in \mathbb{R}$.
- (3p) b) Să se calculeze $\int_{0}^{1} f(x)dx$.
- (3p) c) Să se arate că funcția f este convexă pe \mathbf{R} .
- (3p) d) Să se calculeze $\lim_{x\to 1} \frac{f(x)-f(1)}{x-1}$.
- (3p) e) Să se calculeze $\int_{0}^{1} \frac{x^2}{x^3 + 10} dx.$

1

SUBIECTUL III (20p)

$$\text{Se consideră matricele } A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 2 & 0 \\ 3 & 0 & 0 \end{pmatrix}, \quad O_3 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ $\$i$}$$

mulţimea $C(A) = \{X \in M_3(C) | X \cdot A = A \cdot X \}$

- (4p) a) Să se calculeze determinantul matricei A.
- (4p) $| \mathbf{b} |$ Să se determine rangul matricei A.

(4p) c) Să se determine
$$a,b,c \in \mathbb{C}$$
, astfel încât $A \cdot \begin{pmatrix} 0 & 0 & a \\ 0 & b & 0 \\ c & 0 & 0 \end{pmatrix} = I_3$

- (2p) d) Să se arate că dacă $U, V \in C(A)$, atunci $U \cdot V \in C(A)$.
- (2p) e) Să se arate că dacă $X \in C(A)$, atunci există $a,b,c \in \mathbb{C}$ astfel încât $X = \begin{bmatrix} a & 0 & c \\ 0 & b & 0 \\ 3c & 0 & a \end{bmatrix}$.
- (2p) f) Să se arate că dacă $Y \in C(A)$ și $Y^2 = O_3$, atunci $Y = O_3$.
- (2p) g) Să se arate că dacă $Z \in C(A)$ și $Z^{2007} = O_3$, atunci $Z = O_3$.

SUBIECTUL IV (20p)

Se consideră funcțiile $f: \mathbf{R} \to \mathbf{R}$, $f(x) = 3 + \{x\}(1 - \{x\})$ și $F: \mathbf{R} \to \mathbf{R}$, $F(x) = \int_0^x f(t)dt$.

Prin $\{x\}$ am notat partea fracționară a numărului real x.

- (4p) a) Să se verifice că f(x+1) = f(x), $\forall x \in \mathbb{R}$.
- (4p) b) Să se arate că funcția f este continuă în punctul x = 1.

(4p) c) Să se verifice că
$$F(x) = 3x + \frac{x^2}{2} - \frac{x^3}{3}, \ \forall x \in [0,1).$$

- (2p) d) Să se arate că $3 \le f(x) \le 4$, $\forall x \in \mathbf{R}$.
- (2p) e) Să se arate că orice primitivă a funcției f este strict crescătoare pe \mathbf{R} .
- (2p) f) Să se calculeze $\lim_{x \to \infty} F(x)$.
- (2p) g) Să se arate că există $a \in \mathbb{R}$, astfel încât funcția $G : \mathbb{R} \to \mathbb{R}$, G(x) = F(x) ax să fie periodică, având o perioadă egală cu 1.