Previously.

- Normal Subgroups

- Products of Groups

- Simple Groups

This Section.

- Factor Groups

- Commutator Subgroups

Goal. Extend this idea of "modular arithmetic" to other groups.

Exercise 1. Consider $G = \mathbb{Z}$ and $H = 4\mathbb{Z}$.

1. First, find all right cosets of H.

2. We define the sum of the cosets as follows:

$$(a+H) + (b+H) = \{m+n \mid m \in a+H \text{ and } n \in b+H\}.$$

Verify that (a+H)+(b+H)=(a+b)+H for all $a,b\in\mathbb{Z}$.

Notice, if $G = \mathbb{Z}$ and $H = 4\mathbb{Z}$, then

- $(a+H)=\overline{a}\in\mathbb{Z}_4,$
- $(a+H)+(b+H)=\overline{a}+\overline{b}=\overline{a+b}=(a+b)+H$

Lemma. The following conditions are equivalent for a subgroup K of G.

- **1.** K is normal in G
- **2.** aK * bK = (a * b)K is a well-defined operation of left cosets.

Theorem 2.9.1. Let $K \subseteq G$ and write $G/K = \{aK \mid a \in G\}$, the set of left cosets of K. Then

- 1. G/K is a group under the operation (aK)(bK) = (ab)K.
- **2.** The mapping $\varphi: G \to G/K$ defined by $\varphi(a) = aK$ is an onto homorphism.
- **3.** If G is abelian, then G/K is abelian.
- **4.** If $G = \langle a \rangle$, then G/K is also cyclic with $G/K = \langle Ka \rangle$.
- **5.** If |G:K| is finite then |G/K| = |G:K|. If |G| is finite, then $|G/K| = \frac{|G|}{|K|}$.

Definition. If K is a normal subgroup of the group G, then the group G/K is called the factor group, or quotient group, of G by K.

We call the homomorphism $\varphi: G \to G/K$ with $\varphi(a) = Ka$ the coset map.

Example. The "trivial" examples:

- (a) $G/G = \{G\}$
- (b) $G/\{e_G\} = \{\{a\} \mid a \in G\} \cong G$

Exercise 2. Consider the group $G = S_3$ and $K = \{\varepsilon, (1\ 2\ 3), (1\ 3\ 2)\}.$

Exercise 3. Consider the group $G = S_4$ and $K = \{\varepsilon, (1\ 2)(3\ 4), (1\ 3)(2\ 4), (1\ 4)(2\ 3)\}.$

Exercise 4. Consider the group $G = \{..., \frac{1}{4}, \frac{1}{2}, 1, 2, 4, 8, 16, ...\}$ under the operation multiplication and $K = \langle 8 \rangle$.

Exercise 5. Consider $G = D_4 = \{e, r, r^2, r^3, f, fr, fr^2, fr^3\}.$

- (a) Show that $Z = Z(G) = \{e, r^2\}.$
- (b) Certify $Z \subseteq D_4$.
- (c) Determine the cosets of Z in D_4 .
- (d) Complete the Cayley table for D_4/Z .
- (e) What is the group D_4/Z ?

Theorem 2.9.2. If G is a group and G/Z(G) is cyclic, then G is abelian.

Exercise 6. In general, how do we know if G/H is abelian? That is, explore what it means for HaHb = HbHa.

Definition. For $a, b \in G$ we define the commutator of a and b to be

$$[a, b] = aba^{-1}b^{-1}.$$

Note. If G is abelian, then for all $a, b \in G$, $[a, b] = e_G$.

Fact. If $H \subseteq G$, then G/H is abelian if and only if H contains every commutator.

Definition. The commutator subgroup of G is the group

$$G' = \{ \text{all finite products of commutators from } G \}$$

= $\langle [a, b] \mid a, b \in G \rangle$.

Note. $[a, b]^{-1} = [b, a]$

Theorem 2.9.3. Let G be a group and let H be a subgroup of G.

- 1. G' is a normal subgroup of G and G/G' is abelian.
- **2.** $G' \subseteq H$ if and only if H is normal in G and G/H is abelian.

Exercise 7. Compute D'_4 .