Homework Set 1, 2020

Cursus: BETA-INFOMDM Data Mining (INFOMDM)

Aantal vragen: 5

Homework Set 1, 2020

Cursus: Data Mining (INFOMDM)

This is homework set 1 of Data Mining

Aantal vragen: 5

1 We want to determine the best split in a node containing the following data on numeric attribute x and class label y. The class label can

take on three different values, coded as A, B and C.

Х	2	2	3	4	4	5	6	7	8	9
у	Α	Α	Α	В	В	В	Α	С	С	С

We use the gini-index as impurity measure.

What is the best split on x?

- **a.** Between x=2 and x=3
- **b.** Between x=3 and x=4
- **c.** Between x=4 and x=5
- **d.** Between x=5 and x=6
- e. Between x=6 and x=7
- **f.** Between x=7 and x=8
- g. Between x=8 and x=9
- 2 We want to determine the optimal split in a node that contains the following data:

х	а	а	а	b	b	С	С	d	d
у	0	0	1	0	1	1	1	0	0

Here x is a categorical attribute with possible values {a,b,c,d} and y is a binary class label with values 0 and 1. We use the gini-index as impurity measure.

The best split on x is:

- **a.** $x \in \{a,b\}$
- **b.** $x \in \{a,c\}$
- $x \in \{a,b,c\}$
- **d.** $x \in \{a,b,d\}$
- **e.** $x \in \{a,d\}$
- **f.** $x \in \{b,c,d\}$
- $\textbf{g.} \qquad x \in \{a,c,d\}$

3 The following binary classification tree has been grown on a training set with n=100 examples:

Node	t1	t2	t3 - leaf	t4 - leaf	t5	t6	t7 - leaf	t8 - leaf	t9 - leaf
Class A	50	30	30	0	20	10	10	0	10
Class B	50	10	0	10	40	40	0	40	0

The nodes have been numbered according to depth first preorder traversal. We listed the number of cases a node contains of each class below it.

Perform cost-complexity pruning on this tree, and answer the following questions.

The value of $\alpha_2 = a$. 1.1.1...()

The value of $\alpha_3 =$ **b.** $\frac{2/10}{.....}$ ()

4 Let n denote the number of observations and k the number of classes. Let x be a numeric variable with all values distinct. We use the gini-index as impurity measure. Let S denote the number of splits we have to evaluate in order to determine the best split on x.

Give an expression for S in the most unfavorable case: S = a. () $\frac{(n-1)((k-1)/k)}{(n-1)(k-1)/k}$

Give an expression for S in the most favorable case: S = b.()

- In learning classification trees, determination of the appropriate size of the tree is an important problem. One can control the size of the tree by using a so-called stopping rule to stop growing the tree early. One possibility to implement this idea is to use parameters nmin and minleaf. If a node contains less than nmin cases, then it becomes a leaf node. A split is not allowed if it creates a child node with less then minleaf cases. Assume the tree growing algorithm only makes binary splits.
 - **a.** Consider the following two parameter settings:
 - 1. nmin=12 and minleaf=10
 - 2. nmin=18 and minleaf=10

Would you expect the tree in case (1) to have a lower, higher, or the same error rate on the training sample (resubstitution error) as the tree in case (2)?

lower

- b. higher
- c. the same
- **b.** Answer the same question for the following parameter settings:
 - 1. nmin=20 and minleaf=5
 - 2. nmin=10 and minleaf=5
 - a. lower
 - b.

higher

c. the same

Thank you, goodbye!