DT584C: Data Mining

Laboratory Task3

Introduction to Classification Techniques

OBJECTIVES: In this lab, you shall

1. Learn how to apply various data classification techniques

2. Evaluate the performance of your implementation

Note: You may implement your own classification code from scratch or build on available tools.

Task1:

The following table consists of training data from an employee database. The data have been generalized. For example, "31 . . . 35" for age represents the age range of 31 to 35. For a given row entry, count represents the number of data tuples having the values for department, status, age, and salary given in that row.

Department	status	age	salary	count
sales	senior	3135	46K50K	30
sales	junior	2630	26K30K	40
sales	junior	3135	31K35K	40
systems	junior	2125	46K50K	20
systems	senior	3135	66K70K	5
systems	junior	2630	46K50K	3
systems	senior	4145	66K70K	3
marketing	senior	3640	46K50K	10
marketing	junior	3135	41K45K	4
secretary	senior	4650	36K40K	4
secretary	junior	2630	26K30K	6

Let status be the class-label attribute.

- (a) Implement a Decision Tree classification solution
- (b) Repeat the same problem using Naïve Bayesian classifier
- (c) Evaluate the performance of the two algorithms

Repeat the above problem using ANN:

- (d) Design a multilayer feed-forward neural network for the given data. Label the nodes in the input and output layers.
- (e) Using the multilayer feed-forward neural network obtained in (a), show the weight values after one iteration of the backpropagation algorithm, given the training instance "(sales, senior, 31..35, 46K..50K)". Indicate your initial weight values and biases and the learning rate used.

Task2:

The MNIST database of handwritten digits, available at http://yann.lecun.com/exdb/mnist/, has a training set of 60,000 examples, of which it includes a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image.

Read the information provided on this site about the content of the dataset.

- Implement the K-nearest neighbor (and/or any other) classification algorithm to recognize handwritten digits.
- Repeat the classification using neural network implementation
- Repeat the classification using SVM
- Discuss the following:
 - Validation method used
 - Selection of training samples
 - Accuracy of your results.