Ejercicios Dugundji Topology y Problemas Varios

Cristo Daniel Alvarado

20 de abril de 2024

Índice general

1.	Espacios Topológicos	2
	1.1. Conceptos Fundamentales	. 2
	1.3. Creación de topologías dados conjuntos	. 7
	1.4. Conceptos Elementales	. 8
	1.5. Creando topologías a partir de operaciones elementales	. 17
	1.6. G_{δ} , F_{σ} y conjuntos de Borel	. 20
	1.7. Relativización	. 21
	1.8. Funciones continuas	. 22
	1.9. Definición por partes de funciones	. 23
	1.10. Funciones continuas en \mathbb{E}^1	. 24
	1.11. Funciones abiertos y cerradas	. 25
	1.12. Homeomorfismos	. 26
•		٥.
2.	Segundo Parical	27
	2.1. Axiomas de Separación	. 27

Capítulo 1

Espacios Topológicos

1.1. Conceptos Fundamentales

Observación 1.1.1

El símbolo $\aleph(X)$, donde X es un conjunto, denota al cardinal del conjunto (realmente denota a otra cosa que viene a ser lo mismo, pero para usos prácticos tomaremos lo anterior como cierto).

Ejercicio 1.1.1

Pruebe lo siguiente:

- 1. Sea X un conjunto infinto. Pruebe que $\mathcal{A}_0 = \{A \subseteq X | X A \text{ es finito}\} \cup \{\emptyset\}$ es una topología sobre X.
- 2. Sea $\aleph(X) \geq \aleph_0$. Pruebe que $\mathcal{A}_1 = \{A \subseteq X | \aleph(X A) < \aleph(X)\} \cup \{\emptyset\}$ es una topología sobre X.

Demostración:

De (1): Es la topología de los complementos finitos (la prueba de esto se hizo en las notas).

De (2): Veamos que se verifican las tres condiciones:

- 1. Por definición de \mathcal{A}_1 se tiene que $\emptyset \in \mathcal{A}_1$ y, como $\aleph(\emptyset) < \aleph_0$, entonces $\aleph(X X) < \aleph(X)$, por ende $X \in \mathcal{A}_1$.
- 2. Sea \mathcal{E} una subfamilia no vacía arbitraria de \mathcal{A}_1 . Considere a $\bigcup \mathcal{E}$. Como la familia es no vacía, existe $E_0 \in \mathcal{E}$, se tiene así que:

$$E_0 \subseteq \bigcup \mathcal{E} \Rightarrow X - \bigcup \mathcal{E} \subseteq X - E_0$$
$$\Rightarrow \aleph \left(X - \bigcup \mathcal{E} \right) \subseteq \aleph(X - E_0)$$

por Cantor-Bernstein. Por lo cual al tenerse que $\bigcup \mathcal{E} \subseteq X$, se sigue que $\bigcup \mathcal{E} \in \mathcal{A}_1$.

3. Sean $A, B \in \mathcal{A}_1$, entonces $\aleph(X - A) < \aleph(X)$ y $\aleph(X - B) < \aleph(X)$. Notemos que

$$X - (A \cap B) = (X - A) \cup (X - B)$$

Entonces $\aleph(X - (A \cap B)) = \aleph((X - A) \cup (X - B)) \le \aleph(X - A) + \aleph(X - B) < \aleph(X) + \aleph(X) = 2\aleph(X) = \aleph(X)$, pues $\aleph(X) \ge \aleph_0$. Por tanto, al ser $A \cap B \subseteq X$, se sigue que $A \cap B \in \mathcal{A}_1$.

Por las tres condiciones anteriores, se sigue que A_1 es una topología sobre X.

Ejercicio 1.1.2

¿Cuántas topologías distintas puede tener un conjunto de tres elemento? ¿Cuál es su orden parcial?

Solución:

Considere $X = \{a, b, c\}$. De todas las topologías que puede tener, deben de estar al menos la topología discreta y la indiscreta, formada por los conjuntos:

$$\tau_D = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{b, c\}, \{c, a\}, \{a, b, c\}\} = \mathcal{P}(\{a, b, c\})$$

$$\tau_I = \{\emptyset, \{a, b, c\}\}$$

Ahora, las otras que se pueden tener son aquellas que solo contienen a uno de los elementos, es decir las siguientes:

$$\tau_{a} = \{\emptyset, \{a\}, \{a, b, c\}\}\$$

$$\tau_{b} = \{\emptyset, \{b\}, \{a, b, c\}\}\$$

$$\tau_{c} = \{\emptyset, \{c\}, \{a, b, c\}\}\$$

y, también aquellas que contengan a un par de elementos, pero de esta forma: $\{a,b\}$, que serían las siguientes:

$$\tau_{a,b} = \{\emptyset, \{a, b\}, \{a, b, c\}\}\$$

$$\tau_{b,c} = \{\emptyset, \{b, c\}, \{a, b, c\}\}\$$

$$\tau_{c,a} = \{\emptyset, \{c, a\}, \{a, b, c\}\}\$$

(en esta se verifica casi de forma inmediata que es una topología sobre X). Ahora, se deben considerar aquellas en las que se tiene más de un elemento no trivial (cuando menciono la palabra trivial, me refiero a que no sea alguno de \emptyset o $X = \{a, b, c\}$). Por ejemplo, consideremos a $\{a, b\}$ un elemento no trivial, y sea τ una topología sobre X que contiene a este elemento. Se tienen seis casos:

1. $a \in \tau$, entonces al ser cerrado bajo uniones e intersecciones se tiene que (al menos) τ debe ser de la forma:

$$\tau = \left\{\emptyset, \left\{a\right\}, \left\{a,b\right\}, \left\{a,b,c\right\}\right\}$$

2. $\{b\} \in \tau$, como con el caso anterior, se tendría que (al menos) τ debe ser de la forma:

$$\tau = \left\{\emptyset, \left\{b\right\}, \left\{a, b\right\}, \left\{a, b, c\right\}\right\}$$

Ahora, si $\{a\} \in \tau$, entonces (al menos) τ debe ser de la forma:

$$\tau = \left\{\emptyset, \left\{a\right\}, \left\{b\right\}, \left\{a, b\right\}, \left\{a, b, c\right\}\right\}$$

3. $\{c\} \in \tau$, se tiene entonces que una topología sobre X (al menos), debe ser:

$$\tau = \{\emptyset, \{c\}, \{a, b\}, \{a, b, c\}\}\$$

4. $\{b,c\} \in \tau$, se tiene entonces que τ debe ser de la forma (al menos):

$$\tau = \left\{\emptyset, \left\{b\right\}, \left\{b,c\right\}, \left\{a,b\right\}, \left\{a,b,c\right\}\right\}$$

Son un vergo, nmms.

Ejercicio 1.1.3

Sean τ_X y τ_Y dos topologías en X y Y, respectivamente. ¿Es

$$\tau = \{ A \times B | A \in \tau_X, B \in \tau_Y \}$$

una topología en $X \times Y$?

Solución:

Veamos si se cumplen las tres condiciones para que τ sea una topología sobre X.

- 1. Es claro que $\emptyset, X \times Y \in \tau$, pues $\emptyset \in \tau_X, \tau_Y$ y, $X \in \tau_X$ y $Y \in \tau_Y$.
- 2. Sea \mathcal{C} una subfamilia no vacía de τ . Entonces, cada elemento de $\mathcal{C} = \{C_{\alpha} | \alpha \in I\}$ es de la forma:

$$C_{\alpha} = A_{\alpha} \times B_{\alpha}$$

donde $A_{\alpha} \in \tau_X$ y $B_{\alpha} \in \tau_Y$, para todo $\alpha \in I$. Luego:

$$\bigcup_{\alpha \in I} C_{\alpha} = \bigcup_{\alpha \in I} A_{\alpha} \times B_{\alpha}$$

Veamos que en general no es cierto que $\bigcup_{\alpha \in I} C_{\alpha} \in \tau$. En efecto, tomemos $X = Y = \mathbb{R}$ (con la topología usual) y como conjuntos de la familia a: $C_1 = (0,1) \times (0,1)$, y $C_2 = (1,2) \times (1,2)$. Se tiene que:

$$C_1 \cup C_2 \notin \tau$$

ya que, en caso contrario se tendría que $C_1 \cup C_2 = A \times B$, con $A, B \subseteq \mathbb{R}$ abiertos con la topología usual.

Entonces, en particular los elementos $(\frac{1}{2}, \frac{1}{2}), (\frac{3}{2}, \frac{3}{2}) \in C_1 \cup C_2$, por lo cual los elementos $(\frac{1}{2}, \frac{3}{2}), (\frac{3}{2}, \frac{1}{2}) \in C_1 \cup C_2 \#_c$, por la forma en que se tomaron C_1 y C_2 . Por lo cual, $C_1 \cup C_2$ no puede expresarse como el producto cartesiano de dos abiertos.

3. Sean $C, D \in \tau$, es decir que $C = A_1 \times B_1$ y $D = A_2 \times B_2$, donde $A_i \in \tau_X$ y $B_i \in \tau_Y$ para $i \in \{1, 2\}$. Entonces:

$$C \cap B = (A_1 \times B_1) \cap (A_2 \times B_2)$$
$$= (A_1 \cap A_2) \times (B_1 \cap B_2)$$

donde $A_1 \cap A_2 \in \tau_X$ y $B_1 \cap B_2 \in \tau_Y$, por ende $C \cap B \in \tau$.

Por el inciso (2), se tiene que τ (al menos en un caso particular) no es una topología sobre $X \times Y$. \square Recordemos la definición de un preorden y orden parcial:

Definición 1.1.1

Una relación binaria R en un conjunto A es llamada un **preorden** si es reflexiva y transitiva, esto es:

- 1. $\forall a \in A, aRa$.
- 2. $(aRb) \lor (bRc) \Rightarrow aRc$.

denotamos (en general) al preorden por \prec .

Definición 1.1.2

Sea (A, \prec) un conjunto preordenado.

- 1. $m \in A$ es llamado **elemento maximal** en A si para todo $a \in A$ tal que $m \prec a \Rightarrow a \prec m$.
- 2. Un elemento $a_0 \in A$ es llamado **cota superior de un subconjunto** $B \subseteq A$ si para todo $b \in B, b \prec a_0$.
- 3. Un subconjunto $B \subseteq A$ es llamado una **cadena** si cualesquiera dos elementos de B están relacionados, es decir que $a, b \in B$ implica que $a \prec b$ o $b \prec a$.

Definición 1.1.3

Sea A un conjunto preordenado. Un **orden parcial** es un preorden en A junto con la propiedad adicional:

$$(a \prec b) \land (b \prec a) \Rightarrow (a = b)$$

esta propiedad es llamada antisimetría. Un conjunto A adjutandole además un orden parcial es llamado un **conjunto parcialmente ordenado**. Un conjunto parcialente ordenado que es también una cadena es llamado un **conjunto totalmente ordenado**.

Ejercicio 1.1.4

Sea X un conjunto parcialmente ordenado. Defina $U \subseteq X$ abierto si y sólo si satisface la condición: $(x \in U) \land (y \prec x) \Rightarrow y \in U$. Pruebe que la familia

$$\mathcal{A} = \{ U \subseteq X | U \text{ es abierto} \}$$

es una topología sobre X.

Demostración:

Se deben verificar que se cumplen las tres condiciones.

- 1. $\emptyset \in \mathcal{A}$, pues por vacuidad se cumple que \emptyset satisface la condición. Ahora, sea $x \in X$ y $y \prec x$, entonces $y \in X$ (pues es dónde se define el preorden). Por tanto, $X \in \mathcal{A}$.
- 2. Sea \mathcal{B} una familia no vacía de subconjuntos de \mathcal{A} . Si $x \in \bigcup \mathcal{B}$, entonces existe $B_0 \in \mathcal{B}$ tal que $x \in B_0$.

Ahora, si $y \in X$ es tal que $y \prec x$, como $x \in B_0$, por ser B_0 abierto se tiene que $y \in B_0 \subseteq \bigcup \mathcal{B}$. Por lo cual $\bigcup \mathcal{B}$ es abierto.

3. Sean $U, V \in \mathcal{A}$, si $U \cap V = \emptyset$ es claro que $U \cap V \in \mathcal{A}$. Suponga que la intersección es no vacía y sean $x \in U \cap V$ y $y \in X$ tal que $y \prec x$. En particular $(x \in U) \land (y \prec x)$ y $(x \in V) \land (y \prec x)$, por ende $y \in U \cap V$, es decir que $U \cap V \in \mathcal{A}$.

Por los incisos anteriores, se tiene que \mathcal{A} es una topología sobre X.

Ejercicio 1.1.5

En \mathbb{Z}^+ defina $U \subseteq \mathbb{Z}^+$ que sea abierto si satisface la condición $n \in U \Rightarrow$ cada divisor de n pertenece a U. Pruebe que esta es una topología en \mathbb{Z}^+ y que no es la topología discreta.

Demostración:

Llamemos τ a la familia de todos los conjuntos abiertos en \mathbb{Z}^+ . Veamos que para τ se cumplen las tres condiciones:

- 1. $\emptyset \in \tau$, esto es cierto por vacuidad. Ahora si $n \in \mathbb{Z}^+$, entonces todos sus divisores están en \mathbb{Z}^+ (divisores positivos), por lo cual $\mathbb{Z}^+ \in \tau$.
- 2. Sea \mathcal{A} una familia no vacía de elementos de τ , y sea $n \in \bigcap \mathcal{A}$, entonces existe A_0 tal que $n \in A_0$, pero A_0 es abierto, por lo cual contiene a todos los divisores de n. Como $A \subseteq \bigcup \mathcal{A}$ entonces $\bigcup \mathcal{A}$ contiene a todos los divisores de n, luego $\bigcup \mathcal{A} \in \tau$.
- 3. Sean $A, B \in \tau$ tales que $A \cap B \neq \emptyset$. Si $n \in A \cap B$ entonces $n \in A$ y $n \in B$, como A y B son abiertos, entonces estos dos conjuntos cumplen que cada divisor de n pertenece a A y B, en particular cada divisor de n pertenece a $A \cap B$. Por tanto, $A \cap B \in \tau$.

Por los tres incisos anteriores, se sigue que τ es una topología sobre \mathbb{Z}^+ .

Ejercicio 1.1.6

Pruebe lo siguiente: τ es la topología discreta en X si y sólo si todo punto de X es un conjunto abierto (hablando de los conjuntos unipuntuales).

Demostración:

Se probará la doble implicación: \Rightarrow): Suponga que τ es la topología discreta, entonces $\tau = \mathcal{P}(X)$, en particular $\{x\} \in \mathcal{P}(X)$, para cada $x \in X$, esto es $\{x\} \in \tau$.

 \Leftarrow): Suponga que todo conjunto unipuntual de X está en τ , y sea $A \in \mathcal{P}(X)$, entonces:

$$A = \bigcup_{a \in A} \{a\}$$

donde $\{a\}$ es abierto y, por ende A es abierto al ser una unión arbitraria de abiertos. Por tanto, $A \in \tau$, Por ende $\mathcal{P}(X) \subseteq \tau$, pero siempre se tiene que $\tau \subseteq \mathcal{P}(X)$, luego $\tau = \mathcal{P}(X) = \tau_D$.

1.3. Creación de topologías dados conjuntos

Mis ejercicios de la sección: $5\ y$ 9.

Ejercicio 1.3.1

1.4. Conceptos Elementales

Mis ejercicios de la sección: 8, 10, 14, 18, 22.

Ejercicio 1.4.4

Sea (X, τ) un espacio topológico. Pruebe que G es abierto en X, si y sólo si $\overline{G \cap \overline{A}} = \overline{G \cap A}$ para todo $A \subseteq X$.

Demostración:

Se probará la doble implicación.

 \Rightarrow): Suponga que G es abierto, Como $A \subseteq \overline{A}$ para todo $A \in X$, se tiene entonces que:

$$G \cap A \subseteq G \cap \overline{A}$$

$$\Rightarrow \overline{G \cap A} \subset \overline{G \cap \overline{A}}$$

por lo cual basta probar la otra contención. Si $x \in \overline{G \cap \overline{A}}$, entonces para toda vecindad U de x se cumple que $U \cap (G \cap \overline{A}) \neq \emptyset$, sea $y \in U \cap (G \cap \overline{A})$ entonces, como el conjunto $U \cap G$ es una vecindad de y, se tiene que $U \cap (G \cap A) \neq \emptyset$, es decir que existe un elemento $z \in U$ tal que $z \in G \cap A$, pero U originalmente era una vecindad de x, luego $x \in \overline{G \cap A}$, lo cual prueba la otra contención.

Ejercicio 1.4.5

Pruebe que si (X, τ) es un espacio topológico, entonces si $A \subseteq X$ tal que $A' = \emptyset$ implica que A es cerrado.

Demostración:

Sea $A \subseteq X$ tal que A' = 0. Como

$$\overline{A} = A \cup A' = A$$

se tiene entonces que A coincide con su cerradura, la cual es cerrada. Por tanto, A es cerrado.

Ejercicio 1.4.6

Sea
$$A = \left\{ \frac{1}{n} + \frac{1}{m} \middle| m, n \in \mathbb{N} \right\} \subseteq \mathbb{E}^1$$
. Pruebe que $A' = \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\} \cup \{0\}$ y que $A'' = \{0\}$.

Demostración:

Ejercicio 1.4.7

Sea $\{A_{\alpha}\}_{\alpha\in I}$ una familia de subconjuntos de X. Suponga que $\bigcup_{\alpha\in I} \overline{A_{\alpha}}$ es cerrado. Pruebe que $\bigcup_{\alpha\in I} \overline{A_{\alpha}} = \overline{\bigcup_{\alpha\in I} A_{\alpha}}$.

Demostración:

Ya se sabe que

$$\bigcup_{\alpha \in I} \overline{A_\alpha} \subseteq \overline{\bigcup_{\alpha \in I} A_\alpha}$$

Hay que ver la otra contención. Observemos que $\bigcup_{\alpha \in I} \overline{A_{\alpha}}$ es un cerrado que contiene a $\bigcup_{\alpha \in I} A_{\alpha}$, luego, por minimalidad de la cerradura, debe suceder que:

$$\overline{\bigcup_{\alpha \in I} A_{\alpha}} \subseteq \bigcup_{\alpha \in I} \overline{A_{\alpha}}$$

pues, la cerradura de un conjunto debe estar contenida en cualquier cerrado que contenga al conjnunto. Luego, por las dos contenciones, se sigue que:

$$\bigcup_{\alpha \in I} \overline{A_{\alpha}} = \overline{\bigcup_{\alpha \in I} A_{\alpha}}$$

Ejercicio 1.4.8

Pruebe que $Fr(A) = \emptyset$ si y sólo si A es abierto y cerrado.

Demostración:

 \Rightarrow): Suponga que Fr $(A) = \emptyset$. Se tiene entonces que:

$$\emptyset = \operatorname{Fr}(A) = \overline{A} \cap \overline{X - A}$$

Afirmamos que $A = \overline{A}$ y que $X - A = \overline{X - A}$. En efecto, ya se sabe que $A \subseteq \overline{A}$.

Suponga que existe $x \in \overline{A}$ tal que $x \notin A$, como $X = A \cup (X - A)$, se sigue que $x \in X - A \subseteq \overline{X - A}$, luego $x \in \overline{A} \cap \overline{X - A} \#_c$ lo cual contradice la igualdad anterior. Por tanto, $\overline{A} \subseteq A$, se decir que $A = \overline{A}$.

De forma análoga se prueba que $X - A = \overline{X - A}$. Entonces, A es un conjunto cerrado, ya que coincide con su cerradura, y abierto ya que su complemento es cerrado. Por ende, A es abierto y cerrado.

 \Leftarrow): Suponga que A es abierto y cerrado, entonces se tiene que $A = \overline{A}$ y $X - A\overline{X} - A$. Por ende:

$$\operatorname{Fr}(A) = \overline{A} \cap \overline{X - A} = A \cap (X - A) = \emptyset$$

como se quería demostrar.

Ejercicio 1.4.9

Pruebe las siguientes fórmulas:

1. $\operatorname{Fr}\left(\operatorname{Fr}\left(\operatorname{Fr}\left(A\right)\right)\right) = \operatorname{Fr}\left(\operatorname{Fr}\left(A\right)\right)$.

2. $\operatorname{Fr}\left(\mathring{A}\right) \subseteq \operatorname{Fr}\left(A\right)$.

3. $\overrightarrow{A-B} \subset \mathring{A} - \mathring{B}$.

Demostración:

De (1): Sea $B \subseteq X$. Entonces,

$$\operatorname{Fr}(B) = \overline{B} \cap \overline{X - B}$$

por tanto,

$$\operatorname{Fr}\left(\operatorname{Fr}\left(B\right)\right) = \overline{\overline{B} \cap \overline{X - B}} \cap \overline{X - \overline{B} \cap \overline{X - B}}$$
$$= (\overline{B} \cap \overline{X - B}) \cap \overline{X - \overline{B} \cap \overline{X - B}}$$
$$= \operatorname{Fr}\left(B\right) \cap \overline{X - \operatorname{Fr}\left(B\right)}$$

por tanto, $\operatorname{Fr}(\operatorname{Fr}(B)) \subseteq \operatorname{Fr}(B)$. En particular, para $A \subseteq X$ se sigue que $\operatorname{Fr}(\operatorname{Fr}(\operatorname{Fr}(A))) \subseteq \operatorname{Fr}(\operatorname{Fr}(A))$ (tomando $B = \operatorname{Fr}(A)$).

Ahora, tenemos que:

$$\operatorname{Fr}\left(\operatorname{Fr}\left(\operatorname{Fr}\left(A\right)\right)\right) = \operatorname{Fr}\left(\operatorname{Fr}\left(A\right)\right) \cap \overline{X - \operatorname{Fr}\left(\operatorname{Fr}\left(A\right)\right)}$$

Probaremos la otra contención. Afirmamos que $\operatorname{Fr}(\operatorname{Fr}(A)) \subseteq \overline{X - \operatorname{Fr}(\operatorname{Fr}(A))}$. En efecto, si $x \in \operatorname{Suponga}$ que $x \in \operatorname{Fr}(\operatorname{Fr}(A))$ es tal que $x \notin \overline{X - \operatorname{Fr}(\operatorname{Fr}(A))}$. Entonces, existe $U \subseteq X$ abierto que contiene a x tal que:

$$U \cap (X - \operatorname{Fr}(\operatorname{Fr}(A))) = \emptyset$$

por tanto, $U \subseteq \operatorname{Fr}(\operatorname{Fr}(A))$. De esta forma, al ser x arbitrario, se sigue que el conjunto $\operatorname{Fr}(\operatorname{Fr}(A)) - \overline{X - \operatorname{Fr}(\operatorname{Fr}(A))} \subseteq \operatorname{Fr}(\operatorname{Fr}(A))$.

De (2): Se tiene que

$$\mathring{A} \subseteq A \subseteq \overline{A}$$

Por tanto,

$$\overline{\mathring{A}}\subset \overline{A}$$

Además,

$$X - A \subseteq X - \mathring{A}$$

$$\Rightarrow \overline{X - A} \subseteq \overline{X - \mathring{A}}$$

pero, $X - \mathring{A}$ es cerrado, luego $X - \mathring{A} = \overline{X - \mathring{A}}$. Por ende:

$$\overline{X-A} \subseteq X - \mathring{A}$$

Para probar el resultado, basta con probar que $\overline{X-A}=X-\mathring{A}$. Si $x\in X-\mathring{A}$ entonces, $x\notin \mathring{A}$ por tanto, para todo abierto $U\subseteq X$ tal que $x\in U$, se tiene que:

$$U \not\subseteq A$$

por tanto, $U \cap (X - A) \neq \emptyset$. Se sigue entonces que $x \in \overline{X - A}$, de donde se sigue que $X - \mathring{A} \subseteq \overline{X - A}$. Por la contención anterior, se tiene que $\overline{X - A} = X - \mathring{A}$. Así:

$$\operatorname{Fr}\left(\mathring{A}\right) = \overline{\mathring{A}} \cap \overline{X - \mathring{A}}$$

$$= \overline{\mathring{A}} \cap (X - \mathring{A})$$

$$= \overline{\mathring{A}} \cap \overline{X - A}$$

$$\subseteq \overline{A} \cap \overline{X - A}$$

$$= \operatorname{Fr}(A)$$

$$\Rightarrow \operatorname{Fr}\left(\mathring{A}\right) \subseteq \operatorname{Fr}(A)$$

De (3):

Ejercicio 1.4.10

Suponga que Fr $(A) \cap$ Fr $(B) = \emptyset$. Pruebe que $\widehat{A \cup B} = \mathring{A} \cup \mathring{B}$ y que Fr $(A \cap B) = [\overline{A} \cap \text{Fr } (B)] \cup [\text{Fr } (A) \cap \overline{B}]$.

Demostración:

Ya se sabe que $\mathring{A} \cup \mathring{B} \subseteq \widetilde{A \cup B}$. Probemos la otra contención.

Suponga que existe $x \in \widehat{A \cup B}$ tal que $x \notin \mathring{A} \cup \mathring{B}$, es decir que $x \in X - (\mathring{A} \cup \mathring{B}) = (X - \mathring{A}) \cap (X - \mathring{B})$.

Por tanto, para todo abierto $U\subseteq X$ tal que $x\in U$ se tiene que $U\nsubseteq A$ y $U\nsubseteq B$. Se tienen tres casos:

1. $x \in A \cap B$: En tal caso, se sigue que $x \in Fr(A) \cap Fr(B)$, ya que los conjuntos:

$$U \cap A, U \cap (X - A), U \cap B, U \cap (X - B) \neq \emptyset$$

son no vacíos, para todo U abierto que contiene a x, pero esto es una contradicción, ya que $\operatorname{Fr}(A) \cap \operatorname{Fr}(B) = \emptyset \#_c$.

2. $x \in A - B$. Como $x \in A \cup B$, existe un abierto $V \subseteq X$ que contiene a x tal que $V \subseteq A \cup B$. Sea $U \subseteq X$ abierto que contiene a x. Se tiene que:

$$U \cap A, U \cap (X - B) \neq \emptyset$$

pues, x está en ambos conjuntos. Ahora, como $U \nsubseteq A$, entonces la intersección $U \cap (X-A) \neq \emptyset$, luego $x \in \operatorname{Fr}(A)$.

Considere al abierto $U_0 = U \cap V$. Este es un abierto que contiene a x tal que $U_0 \subseteq A \cup B$ (pues, $V \subseteq A \cup B$). Pero, como $U_0 \nsubseteq A$, debe tenerse que existe $y \in U_0$ tal que $y \in B$. Luego, la intersección:

$$U_0 \cap B \neq \emptyset \Rightarrow U \cap B \neq \emptyset$$

por ende, $x \in \operatorname{Fr}(B)$, de donde se sigue que $x \in \operatorname{Fr}(A) \cap \operatorname{Fr}(B)$, pero esto es una contradicción, ya que $\operatorname{Fr}(A) \cap \operatorname{Fr}(B) = \emptyset \#_c$.

3. $x \in B - A$. De forma similar al caso anterior, se llega a que $x \in \operatorname{Fr}(A) \cap \operatorname{Fr}(B) \#_c$.

los tres incisos llevan a que $x \in \operatorname{Fr}(A) \cap \operatorname{Fr}(B) \#_c$. Por tanto, $x \in \mathring{A} \cup \mathring{B}$.

Para la segunda parte, observemos que:

$$\operatorname{Fr}(A \cap B) = \overline{A \cap B} \cap \overline{X - A \cap B}$$

$$= \overline{A \cap B} \cap \overline{(X - A) \cup (X - B)}$$

$$= \overline{A \cap B} \cap \overline{(X - A) \cup \overline{X - B}}$$

$$= (\overline{A \cap B} \cap \overline{(X - A)}) \cup (\overline{A \cap B} \cap \overline{X - B})$$

para probar el resultado, basta con probar que $\overline{A \cap B} = \overline{A} \cap \overline{B}$. Para ello, probaremos que si $C \subseteq X$, entonces:

$$X - \overline{C} = X - C$$

En efecto, como $X - \overline{C} \subseteq X - C$ siendo el primer conjunto abierto, se sigue que $X - \overline{C} \subseteq X - C$. Ahora, el conjunto X - X - C es un cerrado que contiene a C. En efecto, es cerrado por ser el complemento de un abierto.

Ahora, si $x \in C$, entonces $x \in X - (X - C)$. Como $X - C \subseteq X - C$, se sigue que $x \in X - X - C$. Por tanto, $C \subseteq X - X - C$. Luego, por minimalidad de la cerradura, se sigue que $\overline{C} \subseteq X - X - C$, es decir que $X - C = X - (X - X - C) \subseteq X - \overline{C}$.

Se tienen las contenciones $X - \overline{C} \subseteq X - \overline{C}$ y $X - \overline{C} \subseteq X - \overline{C}$, por tanto, se sigue que $X - \overline{C} = X - \overline{C}$.

Con esto probado, tomemos $C = A \cap B$, entonces:

$$X - \overline{A \cap B} = X - \overline{A \cap B}$$

$$= (X - \overline{A}) \cup (X - \overline{B})$$

$$= X - \overline{A} \cup X - \overline{B}$$

$$= (X - \overline{A}) \cup (X - \overline{B})$$

$$= X - \overline{A} \cap \overline{B}$$

$$\Rightarrow \overline{A \cap B} = \overline{A} \cap \overline{B}$$

donde, el paso de la segunda a la tercera igualdad se da ya que $\operatorname{Fr}(X-A) \cap \operatorname{Fr}(X-B) = \operatorname{Fr}(A) \cap \operatorname{Fr}(B) = \emptyset$. Luego, se tiene que:

$$\operatorname{Fr}(A \cap B) = (\overline{A \cap B} \cap \overline{(X - A)}) \cup (\overline{A \cap B} \cap \overline{X - B})$$

$$= (\overline{A} \cap \overline{B} \cap \overline{(X - A)}) \cup (\overline{A} \cap \overline{B} \cap \overline{X - B})$$

$$= ([\overline{A} \cap \overline{X - A}] \cap \overline{B}) \cup (\overline{A} \cap [\overline{B} \cap \overline{X - B}])$$

$$= (\operatorname{Fr}(A) \cap \overline{B}) \cup (\overline{A} \cap \operatorname{Fr}(B))$$

$$= [\overline{A} \cap \operatorname{Fr}(B)] \cup [\operatorname{Fr}(A) \cap \overline{B}]$$

lo cual prueba el resultado.

Ejercicio 1.4.11

¿Para qué espacios topológicos (X, τ) el único conjunto denso es X?

Demostración:

Sea (X, τ) un espacio topológico tal que X es es el único conjunto denso en sí mismo. Si $x \in X$, entonces el conjunto $X - \{x\}$ no es denso en X, por lo cual:

$$\overline{X - \{x\}} = X - \{x\}$$

luego, $X - \{x\}$ es cerrado en X, es decir que $\{x\}$ es abierto. Como $x \in X$ fue arbitrario, se sigue que $\{x\}$ es abierto, para todo $x \in X$. Por ende, $\tau = \tau_D$ (en caso que de X no sea vacío).

Por tanto, los únicos espacios en los que ocurre esto, son aquellos en los que la topología es la discreta.

Ejercicio 1.4.12

Sea (X, τ) espacio topológico y $E, G \subseteq X$ abiertos densos en X. Pruebe que $E \cap G$ es denso en X.

Demostración:

Sea $U \subseteq X$ abierto. Para probar el resultado, debemos probar que $U \cap (E \cap G) \neq \emptyset$. Como $U \cap E$ es abierto, entonces $(U \cap E) \cap G = U \cap (E \cap G) \neq \emptyset$.

En este caso, no es necesario que los dos sean abiertos a la vez, basta con que uno de ellos lo sea.

Ejercicio 1.4.13

Sean (X,τ) un espacio topológico y $D\subseteq X$ un conjunto denso en X. Pruebe que $\overline{D\cap G}=\overline{G},$ para todo $G\subseteq X$ abierto.

Demostración:

Sea $G \subseteq X$ abierto. Ya se tiene que:

$$\overline{D\cap G}\subseteq \overline{G}$$

pues, $D \cap G \subseteq G$. Se ahora $x \in \overline{G}$, entonces si $U \subseteq X$ es abierto, se tiene que $U \cap G \neq \emptyset$. Como D es denso en X, entonces $U \cap (D \cap G) = U \cap (G \cap D) = (U \cap G) \cap D \neq \emptyset$, es decir que $x \in \overline{G \cap D}$.

De aquí se sigue la otra contención. Por las dos, se tiene que $\overline{D \cap G} = \overline{G}$.

Ejercicio 1.4.14

Sean (X, τ) un espacio topológico y \mathcal{S} una sub-base para τ , y $D \subseteq X$ tal que $D \cap S \neq \emptyset$ para todo $S \in \mathcal{S}$; Esto implica que D es denso en X?

Demostración:

Como \mathcal{S} es una sub-base de τ , entonces la colección formada por todas las intersecciones finitas de elementos de \mathbb{S} , forman una base de la topología τ . No necesariamente se tiene que D es denso en X, pues si $B \in \mathcal{B}$ es un básico, entonces existen $S_1, ..., S_n \in \mathcal{S}$ tales que:

$$B = \bigcap_{i=1}^{n} S_i$$

Luego, $D \cap S_i$ es no vacío para todo $i \in [1, n]$, pero no necesariamente $D \cap \bigcap_{i=1}^n S_i \neq \emptyset$.

En efecto, considere el espacio $X = \{a, e, i, o, u\}$ y $S = \{\{a, e\}, \{e, i\}\}$. Se tiene que S es subbase de de la topología $\tau = \tau(S) = \{X, \{a, e, i\}, \{a, e\}, \{e, i\}, \{e\}, \emptyset\}$. En el espacio topológico (X, τ) , el conjunto $D = \{a, i\}$ cumple que $D \cap S \neq \emptyset$ para todo $S \in S$, pero D no es denso en X ya que el abierto $\{e\}$ no contiene puntos de D.

Ejercicio 1.4.15

Ejercicio 1.4.16

Ejercicio 1.4.17

Ejercicio 1.4.18

Se define el **exterior de un conjunto** $A \subseteq X$, denotado por $\operatorname{Ext}(A)$, como el conjunto $\operatorname{Ext}(A) = X - A$. Pruebe lo siguiente:

- 1. $\operatorname{Ext}(A \cup B) = \operatorname{Ext}(A) \cap \operatorname{Ext}(B)$.
- 2. $A \cap \text{Ext}(A) = \emptyset$.
- 3. $X = \text{Ext}(\emptyset)$.

4. $\operatorname{Ext}(X - \operatorname{Ext}(A)) = \operatorname{Ext}(A)$.

Demostración:

De (1): Notemos que:

$$\operatorname{Ext}(A \cup B) = X - A \cup B$$

$$= (X - A) \cap (X - B)$$

$$= X - A \cap X - B$$

$$= \operatorname{Ext}(A) \cap \operatorname{Ext}(B)$$

De (2): Sea $A \subseteq X$, se tiene que $X - A \subseteq X - A$, por tanto, $A \cap \text{Ext}(A) \subseteq A \cap (X - A) = \emptyset$. Luego, $A \cap \text{Ext}(A) = \emptyset$.

De (3): Notemos que:

$$\operatorname{Ext}(\emptyset) = \overset{\circ}{X - \emptyset}$$
$$= \overset{\circ}{X}$$
$$= X$$

pues, el conjunto X es abierto.

De (4): Sea $A \subseteq X$. Entonces:

$$\operatorname{Ext}(X - \operatorname{Ext}(A)) = X - \operatorname{Ext}(A)$$

$$= X - (X - \operatorname{Ext}(A))$$

$$= \operatorname{Ext}(A)$$

$$= \operatorname{Ext}(A)$$

pues, $\operatorname{Ext}(A)$ es un conjunto abierto.

Ejercicio 1.4.19

Ejercicio 1.4.20

Ejercicio 1.4.21

Ejercicio 1.4.22

Un conjunto abierto $U \subseteq X$ de un espacio topológico (X, τ) es llamado **abierto regular** si $U = \overset{\circ}{U}$; un conjunto cerrado $C \subseteq X$ es llamado **cerrado regular**, si $C = \overset{\circ}{C}$. Pruebe lo siguiente:

- 1. Si A es cerrado, entonces \mathring{A} es un conjunto abierto regular.
- 2. Si U es abierto, entonces \overline{U} es un conjunto cerrado regular.
- 3. El complemento de un conjunto abierto regular (resp. cerrado) es un conjunto cerrado regular (resp. abierto).

- 4. Si $U, V \subseteq X$ son conjuntos abiertos regulares, entonces $U \subseteq V$ si y sólo si $\overline{U} \subseteq \overline{V}$.
- 5. Si $A, B \subseteq X$ son conjuntos cerrados regulares, entonces $A \subseteq B$ si y sólo si $\mathring{A} \subseteq \mathring{B}$.
- 6. Si $U, V \subseteq X$ son abiertos regulares, entonces $U \cap V$ también es abierto regular.
- 7. Si $A, B \subseteq X$ son cerrados regulares, entonces $A \cup B$ también es cerrado regular.

Demostración:

De (1): Sea $A \subseteq X$ un conjunto cerrado. Hay que probar que \mathring{A} es abierto regular, es decir, que:

$$\mathring{A} = \overset{\circ}{\overset{\circ}{\mathring{A}}}$$

Notemos que

$$\overset{\mathring{A}}{\Rightarrow} \overset{}{\overline{A}} \subseteq A$$

$$\Rightarrow \overset{\circ}{\overline{A}} \subseteq \overline{A} = A$$

$$\Rightarrow \overset{\circ}{\overline{A}} \subset \overset{\circ}{A}$$

para la otra contención analicemos. $\overline{\mathring{A}}$ es un cerrado para el que se cumple que $\mathring{A} \subseteq \overline{\mathring{A}}$, luego sacando interior de ambos lados, se sigue que:

$$\mathring{A} = \mathring{\mathring{A}} \subset \overset{\circ}{\mathring{A}}$$

por tanto, de las dos contenciones se sigue que:

$$\mathring{A} = \overline{\mathring{\mathring{A}}}$$

luego, \mathring{A} es un abierto regular.

De (2): Sea $U \subseteq X$ abierto. Hay que probar que:

$$\overline{U} = \overline{\overset{\circ}{U}}$$

En efecto, veamos que:

$$\frac{\overset{\circ}{U}}{\overline{U}}\subseteq \overline{U}$$

$$\Rightarrow \overline{\overset{\circ}{U}}\subseteq \overline{\overline{U}}=\overline{U}$$

Ahora,

$$U \subseteq \overline{U}$$

$$\Rightarrow U = \mathring{U} \subseteq \overline{\mathring{U}}$$

$$\Rightarrow \overline{U} \subseteq \overline{\mathring{U}}$$

lo cual prueba la otra contención, así $\overline{U} = \overline{\overline{U}}$. Luego, $\overline{U} = \overline{\overline{U}}$ por lo cual, \overline{U} es cerrado regular.

De (3): Basta con probar que el complemento de un conjunto abierto regular es un conjunto cerrado regular. Sea $U \subseteq X$ abierto regular, es decir que:

$$U = \overset{\circ}{\overline{U}}$$

Entonces, su complemento C = X - U cumple que:

$$\mathring{C} \subseteq C \Rightarrow \overline{\mathring{C}} \subseteq C$$

Si $x \in C$, entonces $x \in X - U = X - \mathring{\overline{U}}$, luego $x \notin \mathring{\overline{U}}$, por tanto, para todo abierto $V \subseteq X$ que contiene a x se tiene que $V \nsubseteq \overline{U}$, es decir, que existe un $y \in V$ tal que $y \notin \overline{U}$ esto es $y \in X - \overline{U}$.

Pero, $X - \overline{U} = X - U$ (esto se probó en un ejercicio anterior), es decir que $y \in \mathring{C}$. Por tanto, $V \cap \mathring{C} \neq \emptyset$. Luego, $x \in \mathring{C}$.

Así, se tiene la contención $C \subseteq \overline{\mathring{C}}$. Por esta y otra contención, se sigue que $C = \overline{\mathring{C}}$, es decir que X - U es cerrado regular.

De (4): La ida es inmediata. Suponga que $\overline{U} \subseteq \overline{V}$, tomando interiores se sigue que $U = \mathring{\overline{U}} \subseteq \mathring{\overline{V}} = V$, lo cual pruebra el resultado.

De (5): Es análogo a (4).

De (6): Sean $U, V \subseteq X$ abiertos regulares, es decir que: $U = \overset{\circ}{\overline{U}}$ y $V = \overset{\circ}{\overline{V}}$. Se tiene que:

$$\overrightarrow{\overline{U} \cap V} \subseteq \overrightarrow{\overline{U}} \cap \overrightarrow{\overline{V}}$$

$$= \overset{\circ}{\overline{U}} \cap \overset{\circ}{\overline{V}}$$

$$= U \cap V$$

para ver la otra contención, notemos que

$$\begin{split} U \cap V &\subseteq U \cap V \\ \Rightarrow U \cap V &\subseteq \overline{U \cap V} \end{split}$$

$$\Rightarrow U \cap V = \overbrace{U \cap V}^{\circ} \subseteq \overbrace{U \cap V}^{\circ}$$

de las dos contenciones se sigue que $U \cap V = \overbrace{U \cap V}^{\circ}$.

De (7): Es análogo a (6).

1.5. Creando topologías a partir de operaciones elementales

Ejercicio 1.5.1

Sean X un conjunto, y $A \mapsto u(A)$, $A \mapsto v(A)$ dos operaciones de cerradura, es decir que cumplen que:

- 1. $u(\emptyset) = \emptyset$.
- 2. $A \subseteq u(A)$, para todo $A \subseteq X$.
- 3. $u \circ u(A) = u(A)$, para todo $A \subseteq X$.
- 4. $u(A \cup B) = u(A) \cup u(B)$, para todos $A, B \subseteq X$.

(por un resultado anterior, la familia $\tau_u = \left\{ X - u(A) \middle| A \subseteq X \right\}$ es una topología sobre X. Lo análogo se cumple para v).

Suponga que se cumple que $v \circ u(A)$ es u-cerrado para todo $A \subseteq X$. Pruebe que $A \mapsto v \circ u(A)$ es una operación de cerradura y que $v \circ u(A)$ es de hecho la intersección de todos los conjuntos que contienen a A que son cerrados tanto en v como en u.

Finalmente, muestre que $u \circ v(A) \subseteq v \circ u(A)$.

Demostración:

Probaremos varias cosas:

- 1. $A \mapsto v \circ u(A)$ es una operación de cerradura. En efecto, hay que verificar que se cumplen varias condiciones:
 - I) Se tiene que:

$$v \circ u(\emptyset) = v(u(\emptyset))$$

= $v(\emptyset)$
= \emptyset

- II) Sea $A \subseteq X$. Se tiene que $A \subseteq u(A)$, luego $v(A) \subseteq v \circ u(A)$, como $A \subseteq v(A)$, entonces se sigue que $A \subseteq v \circ u(A)$.
- III) Sea $A \subseteq X$. Como $v \circ u(A)$ es u-cerrado, entonces $u((v \circ u)(A)) = v \circ u(A)$, aplicando v se sigue que $(v \circ u) \circ (v \circ u)(A) = v \circ (v \circ u)(A) = (v \circ v) \circ u(A) = v \circ u(A)$.
- IV) Sean $A, B \subseteq X$, entonce:

$$v \circ u(A \cup B) = v(u(A \cup B))$$

$$= v(u(A) \cup u(B))$$

$$= v(u(A)) \cup v(u(B))$$

$$= v \circ u(A) \cup v \circ u(B)$$

por los incisos i)-iv) se sigue que $A \mapsto v \circ u(A)$ es una operación de cerradura.

2. Sea $A \subseteq X$. El conjunto $v \circ u(A)$ es v-cerrado y, por hipótesis es u-cerrado.

Sea

$$C = \left\{ C \subseteq X \middle| C \text{ es } u\text{-cerrado y } v\text{-cerrado y } A \subseteq C \right\}$$

Tomemos $\widehat{C} = \bigcap \mathcal{C}$. Por la observación anterior, como $A \subseteq v \circ u(A) \in \mathcal{C}$ (por ser operación de cerradura), se tiene que $\widehat{C} \subseteq v \circ u(A)$ ya que $v \circ u(A) \in \mathcal{C}$.

Sea ahora $C \in \mathcal{C}$. Para probar el resultado, hay que ver que $v \circ u(A) \subseteq C$. Como C es ucerrado, y $A \subseteq C$, entocnes $u(A) \subseteq u(C) = C$. Pero, además C es v-cerrado, por lo cual $v \circ u(A) \subseteq v(C) = C$.

Por tanto, $v \circ u(A) = \widehat{C}$.

3. Sea $A\subseteq X$, entonces $A\subseteq u(A)$ y, por ende $v(A)\subseteq v\circ u(A)$. Como $v\circ u(A)$ es u-cerrado, entonces:

$$u \circ v(A) \subseteq u(v \circ u(A)) = v \circ u(A)$$

como se quería demostrar.

Ejercicio 1.5.2

Sean X, Y conjuntos y $\varphi: X \to \mathcal{P}(Y)$ una función. Para $A \subseteq X$, defina:

$$\varphi(A) = \bigcup \{ \varphi(x) | x \in A \}$$

y, para $B \subseteq Y$, sea $\varphi^{-1}(B) = \{\varphi(x) \subseteq B \text{ y } \varphi(x) \neq \emptyset\}$. Pruebe que $u(A) = \varphi \circ \varphi^{-1}(A)$ satisface lo siguiente:

- 1. $u(\emptyset) = \emptyset$.
- 2. $A \subseteq u(A)$, para todo $A \subseteq X$.
- 3. $u \circ u(A) = u(A)$, para todo $A \subseteq X$.
- 4. $(A \subseteq B) \Rightarrow (u(A) \subseteq u(B))$, para todo $A, B \subseteq X$.

Demostración:

Ejercicio 1.5.3

Sea (X, τ) un espacio topológico, y sea $\tau : \mathcal{P}(X) \times \mathcal{P}(X) \to \mathcal{P}(X)$ una función que cumple lo siguiente:

- 1. $\tau(A, B \cup C) \cup \tau(B, C \cup A) = \tau(A \cup B, C) \cup \tau(A, B)$
- $2. \ \tau(\emptyset, X) = \emptyset.$
- 3. $\tau(\overline{A}, \overline{X-A}) \subseteq \overline{A}$.
- 4. $\tau(A, B) \subseteq A \cup B$.

Pruebe que $\tau(A, B) = (A \cap \overline{B}) \cup (\overline{A} \cap B)$.

Demostración:

Veamos que propiedades cumple esta operación. Sean $A, B, C \subseteq X$. Se cumple que:

$$\tau(A, A) \subseteq A \cup A$$
$$= A$$
$$\Rightarrow \tau(A, A) \subseteq A$$

Además,

$$\tau(\emptyset, B \cup C) \cup \tau(B, C) = \tau(\emptyset, B \cup C) \cup \tau(B, C \cup \emptyset)$$
$$= \tau(\emptyset \cup B, C) \cup \tau(\emptyset, B)$$

Tomando B = X se tiene que:

$$\tau(\emptyset, X \cup C) \cup \tau(X, C)$$

1.6. G_{δ} , F_{σ} y conjuntos de Borel

Mis ejercicios de la sección: 4.

1.7. Relativización

Mis ejercicios de la sección: 2, 7 y 12.

1.8. Funciones continuas

Mis ejercicios de la sección: 6 y 10.

1.9. Definición por partes de funciones

Mis ejercicios de la sección: 2.

1.10. Funciones continuas en \mathbb{E}^1

1.11.	Funciones	abiertos	y cerradas

1.12. Homeomorfismos

Capítulo 2

Segundo Parical

2.1. Axiomas de Separación

Ejercicio 2.1.1

Sean (X, τ) y (Y, σ) espacios topológicos siendo (Y, σ) un espacio Hausdorff. Si $f, g: (X, \tau) \to (Y, \sigma)$ son funciones continuas, entonces

- 1. El conjunto $\left\{x \in X \middle| f(x) = g(x)\right\}$ es cerrado en (X, τ) .
- 2. Si $D \subseteq X$ es denso y $f|_{D} = g|_{D}$, entonces f = g en X.
- 3. La gráfica de la función continua $f:(X,\tau)\to (Y,\tau)$, esto es, el conjunto

$$\Gamma(f) = \left\{ (x, f(x)) \in X \times Y \middle| x \in X \right\}$$

es cerrado en $X \times Y$ con la topología producto.

4. Si f es inyectiva y continua, entonces (X, τ) es Hausdorff.

Demostración:

De (1): Sea

$$C = \left\{ x \in X \middle| f(x) = g(x) \right\}$$

para probar que este conjunto es cerrado, se probará que U = X - C es abierto en (X, τ) . En efecto, si $x \in X - C$ se tiene que

$$f(x) \neq q(x)$$

como el espacio (Y, σ) es T_2 , existen dos abiertos $U, V \subseteq Y$ tales que

$$f(x) \in U, \quad g(x) \in V \quad U \cap V = \emptyset$$

se tiene entonces que $x \in W = f^{-1}(U) \cap g^{-1}(V) \neq \emptyset$, donde el conjunto $W \subseteq X$ es abierto por ser intersección de dos abiertos y ser las funciones f, g continuas. Afirmamos que

$$W \subseteq X - C$$

Procederemos por contradicción. Suponga que existe $y \in W$ tal que $y \notin X - C$, es decir $y \in C$. Como $y \in W$ se tiene que

$$f(y) \in U, \quad g(y) \in V$$

además, al tenerse que $y \in C$ se sigue que f(y) = g(y). Por tanto, $U \cap V \neq \emptyset \#_c$. Luego debe suceder que $W \subseteq X - C$. Así, para cada $x \in X - C$ se tiene que existe un abierto tal que $x \in W \subseteq X - C$. Se sigue entonces que el conjunto X - C es abierto, es decir que C es cerrado en (X, τ) .

De (2): Hay que probar que

$$f(x) = g(x), \quad \forall x \in X$$

se tienen dos casos (en caso de que $D \subsetneq X$, si D = X el resultado es inmediato):

- 1. $x \in D$, como $f|_D = g|_D$ se sigue que $f(x) = f|_D(x) = g|_D(x) = g(x)$.
- 2. $x \in X D$. Procederemos por contradicción. Suponga que $f(x) \neq g(x)$. Como (Y, σ) es T_2 existen dos abiertos $V_1, V_2 \subseteq Y$ tales que

$$f(x) \in V_1, \quad g(x) \in V_2, \quad V_1 \cap V_2 = \emptyset$$

se tiene que $x \in U = f^{-1}(V_1) \cap g^{-1}(V_2) \in \tau$, pues las funciones son continuas. Como D es denso en X y $U \subseteq X$ es un abierto no vacío, existe un elemento $y \in D$ tal que $y \in U$, esto es que

$$f(y) \in V_1 \quad g(y) \in V_2$$

donde, al tenerse que f(y) = g(y) se sigue que $V_1 \cap V_2 \neq \emptyset \#_c$. Por tanto, debe suceder que f(x) = g(x).

por los dos incisos anteriores se sigue que f = g en X.

De (3): Sea $A = X \times Y - \Gamma(f)$. Probaremos que A es abierto. En efecto, si $(x, y) \in C$ se tiene que $y \neq f(x)$. Como (Y, σ) es T_2 existen dos abiertos $V_1, V_2 \subseteq Y$ tales que

$$y \in V_1$$
, $f(x) \in V_2$ $V_1 \cap V_2 = \emptyset$

Como f es continua, el conjunto $U = f^{-1}(V_2) \subseteq X$ es abierto. Ahora, el conjunto

$$W = U \times V$$

donde $V = V_1$ es un básico (en particular un abierto) para el cual se tiene que $(x, y) \in W$ y $W \subseteq A$. En efecto, lo primero se tiene de forma inmediata. Suponga que existe $(z, w) \in W$ tal que $(z, w) \notin A$, entonces

$$z \in U$$
, $w \in V$, $y \quad w = f(z)$

es decir,

$$z \in f^{-1}(V_2), \quad f(z) \in V_1$$

por lo cual

$$f(z) \in V_2, f(z) \in V_1 \Rightarrow V_1 \cap V_2 \neq \emptyset \#_c$$

por ende, $W \subseteq A$. Luego como en (1) debe tenerse que A es abierto en $(X \times Y, \tau_p)$, es decir que $\Gamma(f)$ es cerrado en $(X \times Y, \tau_p)$.

De (4): Sean $x, y \in X$ tales que $x \neq y$. Como f es inyectiva se sigue que $f(x) \neq f(y)$, luego por ser (Y, σ) T_2 existen dos abiertos $V_1, V_2 \subseteq Y$ tales que

$$f(x) \in V_1, \quad f(y) \in V_2, \quad V_1 \cap V_2 = \emptyset$$

sean $U_i = f^{-1}(V_i)$ para i = 1, 2. Estos conjuntos son abiertos en (X, τ) ya que f es continua. Además

$$U_1 \cap U_2 = \emptyset$$

ya que en caso contrario se tendría que si $z \in U_1 \cap U_2$ entonces $f(z) \in V_1 \cap V_2 = \emptyset \#_c$. Por ende, $U_1 \cap U_2 = \emptyset$, siendo tales que $x \in U_1$ y $y \in U_2$. Por ser los x, y arbitrarois en X se tiene entonces que (X, τ) es T_2 .

Ejercicio 2.1.2

Sea (Y,τ) un espacio Hausdorff T_3 y $A\subseteq Y$ un conjunto infinito. Entonces, existe una familia

$$\left\{ U_n \subseteq Y \middle| U_n \text{ es abierto para todo } n \in \mathbb{N}^* \right\}$$

de conjuntos cuyas cerraduras son disjuntas a pares y tales que

$$A \cap U_n \neq \emptyset, \quad \forall n \in \mathbb{N}$$

Demostración:

Tomemos $U_0 = \emptyset$. Suponga elegidos $U_1, ..., U_n \subset X$ abiertos con cerraduras disjuntas a pares tales que

$$A \cap U_k = \emptyset, \quad \forall k \in [1, n]$$

siendo el conjunto

$$A_n = A - \bigcup_{k=1}^n \overline{U_k}$$

infinito. Tomemos $a,b \in A_n$ con $a \neq b$. Como el espacio es Hausdorff se tiene que $\{b\} \subseteq X$ es un conjunto cerrado y es tal que $a \notin \{b\}$. Ahora, $A - (\bigcup_{k=1}^n \overline{U_k} \cup \{b\})$ es un abierto que contiene a a. Como el espacio es T_3 existe un abierto $V \subseteq X$ tal que

$$a \in V \subseteq \overline{V} \subseteq A - \left(\bigcup_{k=1}^{n} \overline{U_k} \cup \{b\}\right)$$

y con ello un abierto $W\subseteq X$ tal que

$$b \in W \subseteq \overline{W} \subseteq A - \left(\bigcup_{k=1}^{n} \overline{U_k} \cup \overline{V}\right)$$

definamos

$$U_{n+1} = \begin{cases} V & \text{si} \quad A \cap \overline{V} \text{ es finito} \\ W & \text{e.o.c} \end{cases}$$

es claro que U_{n+1} es abierto. Se tienen dos casos:

- 1. $U_{n+1} = V$:
- 2. $U_{n+1} = W$:

Ejercicio 2.1.3

Sea $\{(X_{\alpha}, \tau_{\alpha})\}_{\alpha \in I}$ una familia de espacios topológicos. Tomando

$$X = \prod_{\alpha \in I} X_{\alpha}$$

se tiene que si el espacio (X, τ_p) es normal, entonces (X_α, τ_α) es normal para todo $\alpha \in I$.

Ejercicio 2.1.4