Worksheet 7 Solution

March 27, 2020

Question 1

1. Assume that $n \leq 1$.

Then, it follows from the assumption that the statement holds for the case $n \leq 1$.

Correct Solution:

Assume that $n \leq 1$.

Then, the assumption satisfies the first part of the OR we want to prove.

Notes:

- the professor specifically states the assumption satisfies the first part of the OR we want to prove.
- 2. Assume $\exists k, d \in \mathbb{N}, n = kd \land d \neq 1 \land d \neq n$.

Let a = d and b = k.

We will divide proof into parts and combine them together.

Part 1 $(n \nmid a)$:

Since $\frac{1}{k} \cdot n = d$, k must be 1 for n to divide d.

Then, because we know $d \neq n$, we can conclude that $n \nmid a$.

Part 2 $(n \nmid b)$:

Since $\frac{1}{d} \cdot n = k$, d must be 1 for n to divide k.

Then, because we know $d \neq 1$, we can conclude $n \nmid b$.

Part 3 $(n \mid ab)$:

Since ab = n and $\forall n \in \mathbb{N}$, $n \mid n$, we can conclude that $n \mid ab$.

Then, it follows from the result of part 1, part 2 and part 3 that the second part of the OR is true.

Correct Solution:

Assume $\exists d \in \mathbb{N}, k \in \mathbb{Z}, n = dk \land d \neq 1 \land d \neq n$, and n \downarrow 1.

Let a = d and b = k.

We will prove this statement by dividing into cases and combining them together.

Case 1 $(n \mid ab)$:

Because we know n=ab and $n\mid n$ by fact 1 , we can conclude $n\mid ab$.

Case 2 $(n \nmid a)$:

Because we know $d \ge 1$ from $d \in \mathbb{N}$ and n > 1 in assumption, we can conclude $k \ge 1$.

Then,

$$n = dk \tag{1}$$

$$n > d$$
 (2)

where '>' sign is due to the assumption $d \neq n$.

Then,

$$d < 1 \lor n \nmid d \tag{3}$$

by contrapositive of fact 2.

Since the first part of OR is not true, we can conclude $n \nmid a$.

Case 3 $(n \nmid b)$:

Because we know $n=dk,\ d\geq 1$ from $d\in\mathbb{N}$ and n>1 in assumption, we can conclude $k\geq 1$.

Then because we know $d \neq n \land d \neq 1$ and n = dk, we can conclude $k \neq n \land k \neq 1$.

Then,

$$n = dk \tag{4}$$

$$n > k \tag{5}$$

where '>' sign is due to the fact $k \neq n \land k \neq 1$.

Then,

$$b < 1 \lor n \nmid y \tag{6}$$

by contrapositive of fact 2.

Since the first part of OR is not true, and we can conclude $n \nmid b$.

Notes:

- Definition of Divisibility: Let $a, d \in \mathbb{Z}$. There exists $k \in \mathbb{Z}$, n = dk
- Contrapositive of Fact 2: $\forall x,y \in \mathbb{N}, \ 1 > x \lor x > y \Rightarrow y < 1 \lor x \nmid y$
- Definition of Prime Number: $Prime(p): p > 1 \land (\forall d \in \mathbb{N}, d \mid p \Rightarrow d = 1 \lor d = p)$, where $p \in \mathbb{N}$
- How can i create bridges or the connecting dots for proof? Should I examine from the start and the end thinking would this lead to conclusion?

Question 2

a. Let $n, m \in \mathbb{N}$. Assume Prime(n) and $n \nmid m$.

Then,

$$gcd(n,m) = 1 (1)$$

because \mathbb{N} is a part of \mathbb{Z} , and $\forall n, p \in \mathbb{Z}$, $Prime(p) \land p \nmid n \Rightarrow gcd(p, n) = 1$ from fact 3.

Then, $\exists r, s \in \mathbb{Z}$,

$$rn + sm = \gcd(n, m) \tag{2}$$

$$=1 \tag{3}$$

because $\forall n, m \in \mathbb{N}, \exists r, s \in \mathbb{Z}, rn + sm = gcd(n, m)$ from fact 6.

Then, it follows from above that the statement $\forall n, m \in \mathbb{N}, Prime(n) \land n \nmid m \Rightarrow \exists r, s \in \mathbb{Z}, rn + sm = 1 \text{ is true.}$

Notes:

- Have I written the last line correctly?
- Can the line line 'Then, it follows from above that the statement $\forall n, m \in \mathbb{N}, \ Prime(n) \land n \nmid m \Rightarrow \exists r, s \in \mathbb{Z}, \ rn + sm = 1$ is true.' be omitted?
- What is a good practice of writing conclusion to a proof?
- b. Let $n, m \in \mathbb{N}$. Assume Prime(n) (i.e. $n > 1 \land (\forall d \in \mathbb{N}, d \mid n \Rightarrow d = 1 \lor d = n)$) and $\exists r, s \in \mathbb{Z}, rn + sm = 1$.

Then,

$$gcd(n,m) \mid (rn + sm) \tag{1}$$

by fact 5.

Then, since (rn + sm) = 1,

$$gcd(n,m) = 1 (2)$$

Because 1 is the highest possible common divisor to both n and m, and we know n > 1 from the definition of prime number, we can conclude $n \nmid m$.

Question 3