Pseudopotentials

Aiichiro Nakano

Collaboratory for Advanced Computing & Simulations
Department of Computer Science
Department of Physics & Astronomy
Department of Quantitative & Computational Biology
University of Southern California

Email: anakano@usc.edu

How to abstract atoms in solid?

Background: Atomic Orbitals

$$\begin{cases} n=1,2,\cdots \\ l\in [0,n-1] \\ m\in [-l,l] \end{cases} \qquad \begin{array}{l} \psi_{nlm}(r,\theta,\phi)=R_{nl}(r)Y_{lm}(\theta,\phi) & \text{s: } l=0 \\ \text{Radial Spherical p: } l=1 \\ \text{function harmonics d: } l=2 \end{cases}$$

• Hydrogen eigenstates ($\rho = v_{xc} = 0$)

	n	e	m	$R_{n\ell}$	$Y_{\ell m}$
1s	1	0	0	$2\left(\frac{1}{a_0}\right)^{3/2}e^{-r/a_0}$	$\frac{1}{2\sqrt{\pi}}$
2 s	2	0	0	$\left(\frac{1}{2a_0}\right)^{3/2} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0}$	$\frac{1}{2\sqrt{\pi}}$
	2	1	0	$\left(\frac{1}{2a_0}\right)^{3/2} \frac{1}{\sqrt{3}} \frac{r}{a_0} e^{-r/2a_0}$	$\frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta$
2p :	2	1	±1	$\left(\frac{1}{2a_0}\right)^{3/2} \frac{1}{\sqrt{3}} \frac{r}{a_0} e^{-r/2a_0}$	$\pm \frac{1}{2} \sqrt{\frac{3}{2\pi}} \sin \theta e^{\pm i\phi}$

Laguerre polynomial

Hydrogen Eigenstates

Outer shells (i.e., larger n) spread outward

See notes on (1) <u>Laplacian in spherical coordinates</u> & (2) <u>Schrodinger equation for spherically symmetric potentials</u>

Herman-Skillman Solutions for Atoms

• Hartree approximation $(v_{xc} = 0)$ for many-electron interaction

Outer shells (i.e., larger n) still spread outward

For the inclusion of xc potential, see notes on (1) Numerical integration of radial wave function & (2) Kohn-Sham potential

Atomic Orbitals

• s orbital (l = 0)

• p orbital (l = 1): Cartesian representation

$$\psi_{n1m}(r,\theta,\phi) \to \left(\frac{3}{4\pi}\right)^{1/2} R_{n1}(r) \begin{cases} x/r \\ y/r \\ z/r \end{cases} \qquad r = \sqrt{x^2 + y^2 + z^2}$$

sp³ Hybridization: Pauling's Note (1930)

Charge Density at GaAs/Si (111) Interface

- Highest occupied states in Si have the hybrid sp³ character
- Occupied GaAs states are As p-like (lowest unoccupied states are s-like)

Projection of Kohn-Sham wave functions onto atomic orbitals

	Band	Ga 4s	Ga 4p	Ga 4d	As 4s	As 4p	As 4d	Total
	1150	0.0000	0.1157	0.0708	0.0000	0.8033	0.0101	1
	1151	0.0000	0.1158	0.0709	0.0000	0.8033	0.0100	1
ed	1152	0.0000	0.1166	0.0713	0.0000	0.8017	0.0104	1
ed	1153	0.6763	0.0000	0.0000	0.3236	0.0001	0.0000	1

Occupied Unoccupied

Z. Yuan et al., J. Appl. Phys. 114, 074316 ('13); Nano Lett. 13, 4925 ('13)

Wave Functions in MoSe₂ Bilayer

- Highest occupied states (blue) are d_{z2}-like
- Lowest unoccupied states (red) are d_{xy}-like

Electron Hole

Valence Electrons

• Example: Silicon — 1s²2s²2p⁶3s²3p²

WebElements™ periodic table

Group	1	2		3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																			
1	1 H	H III.P.//www.webelements.com															2 He		
2	3 Li	4 Be														7 N	8 O	9 F	10 Ne
3	11 Na	12 Mg														15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca		21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 G2	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr		39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cu	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
6	55 Cs	56 Ba	*	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 \u	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	116 Ds	111 Rg	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
*Lanthanoids		*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 9m	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb			
**Actinoids		**	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No			

Electronic Configuration

The following represents the electronic configuration and its associated term symbol for the ground state neutral gaseous atom. The configuration associated with silicon in its compounds is not necessarily the same.

Ground state electron configuration: [Ne].3s².3p²

• Shell structure: 2.8.4

Abstraction: Pseudopotential

Norm-Conserving Pseudopotential

Construct pseudopotentials such that:

- **1.** Pseudowave functions, $R_l^{PP}(r)$ (l = 0,1,2,...), contain no nodes
- 2. $R_l^{PP}(r)$ coincides with the all-electron wave function $R_l^{AE}(r)$ beyond a cutoff radius r_{cl}
- 3. The charge enclosed within $r_{\rm cl}$ for the AE- & pseudo-wave functions must be equal

$$\int_{0}^{r_{cl}} 4\pi r^{2} dr \left| R_{l}^{PP}(r) \right|^{2} = \int_{0}^{r_{cl}} 4\pi r^{2} dr \left| R_{l}^{AE}(r) \right|^{2}$$

- **4.** AE- & pseudo-eigenenergies must be identical $E_1^{\text{PP}} = E_1^{\text{AE}}$
- 5. Conditions 2 & 4 imply: the logarithmic derivatives of the two wave functions must match at $r_{\rm cl}$

$$\left. \frac{1}{R_{l}^{\text{PP}}(r,E_{l})} \frac{dR_{l}^{\text{PP}}(r,E_{l})}{dr} \right|_{r=r_{\text{c}l}} = \frac{1}{R_{l}^{\text{AE}}(r,E_{l})} \frac{dR_{l}^{\text{AE}}(r,E_{l})}{dr} \right|_{r=r_{\text{c}l}}$$

Troullier & Martins, *Phys. Rev. B* **41**, 1993 ('91)

See notes on (1) Norm-conserving pseudopotential & (2) Logarithmic derivative

Local & Nonlocal Pseudopotentials

Ionic pseudopotential operator

$$\hat{V}_{\text{ion}}^{\text{PP}}(r) = V_{\text{ion,local}}^{\text{PP}}(r) + \sum_{l,m} |lm\rangle \Delta V_l(r)\langle lm|$$

Common to all angular momenta

Angular-momentum dependent

• (Example) Polyethylene slab without & with external electric field

Fully nonlocal pseudopotential ~ projection

$$\hat{V}_{\mathrm{NL}} = \sum_{l,m} |\chi_{lm}\rangle\langle\chi_{lm}|$$
 separable

For all potential in X = 0.06 (V/Å)

Kleinman & Bylander, Phys. Rev. Lett. 48, 1425 ('82)

Projector-Augmented Wave (PAW)

Core-charge correction significantly increases the transferability

$$\tilde{v}_{xc}(\mathbf{r}) = v_{xc}([\rho_{PS}], \mathbf{r}) + [v_{xc}([\rho_{PS} + \rho_{core}], \mathbf{r}) - v_{xc}([\rho_{PS}], \mathbf{r})]$$

Louie, Froyen & Cohen, *Phys. Rev. B* **50**, 1738 ('82)

An "all-electron" electronic structure calculation that separates smooth pseudowave functions & rapidly varying all electron wave functions by using projection function

detail (all electron)-out

smooth-in

$$|\Psi^{AE}\rangle = |\Psi^{PP}\rangle + \sum_{i} (|\phi_{i}^{AE}\rangle - |\phi_{i}^{PP}\rangle) \langle p_{i}|\Psi^{PP}\rangle$$

Atomic partial wave function

Projection

Blochl, Phys. Rev. B 50, 17953 ('94)

For practical construction of pseudopotentials, see T. Sugahara et al., Phys. Rep. Kumamoto Univ. 12, 279 ('06)