

BACKGROUND

OPTIMAL TRANSPORT

Discrete Optimal Transport

Idea 1 [Monge]:

Idea 2 [Kantorovich]: allow "mass splitting" -

HARD! SOLUTION MIGHT NOT EXIST

DISCRETE OT A.K.A EARTH MOVER'S DISTANCE

$$\{(\mathbf{x}^{(i)}, p_i)\}_{i=1}^n$$

$$\{(\mathbf{y}^{(j)}, q_j)\}_{j=1}^m$$

$\min \sum C(\mathbf{x}^{(i)}, T(\mathbf{x}^{(i)}))$

minimize
$$\sum_{i,j} \Gamma_{ij} C_{ij}$$

$$\Gamma_{ij}$$

= HOW MUCH MASS IS MOVED FROM
$$\mathbf{X}^{(i)}$$
 to $\mathbf{y}^{(j)}$

$\Gamma \in \mathbb{R}^{n \times m}$ **Transport Plan**

subject to
$$\sum_{j} \Gamma_{ij} = p_i \quad orall i$$
 $\sum_{j} \Gamma_{ij} = q_j \quad orall j$

 q_1 q_j q_m

$$egin{array}{c} p_1 \ dots \ p_i \ \end{array}$$

OPTIMAL TRANSPORT

Discrete Optimal Transport

Idea 1 [Monge]:

 $\min_{T} \sum_{i} C(\mathbf{x}^{(i)}, T(\mathbf{x}^{(i)}))$

HARD! SOLUTION MIGHT NOT EXIST

Idea 2 [Kantorovich]: allow "mass splitting" -

minimize

$$\sum_{i,j} \Gamma_{ij} C_{ij}$$

 $\Gamma \in \mathbb{R}^{n \times m}$ Transport Plan

subject to

$$\sum_{i} \Gamma_{ij} = p_i \quad \forall i$$

DISCRETE OT

A.K.A EARTH MOVER'S DISTANCE

$$\sum_{i}^{j} \Gamma_{ij} = q_{j} \quad \forall j$$

OPTIMAL TRANSPORT BETWEEN WORD EMBEDDINGS

