

https://hit.activehalton.co.uk/rethink-your-drink/

Visualización con gráficas

Índice

Componentes de la visualización de datos

Tipos de datos

Mapeado

Gráficas

Glifos

Datos multidimensionales

Gráficas apiladas

Introducción

Una gráfica (o gráfico o diagrama) es una representación gráfica de datos

· Los datos se representan mediante símbolos (puntos, líneas, barras, sectores, etc.)

Existen muchos tipos de gráficas, con diferentes características y diseñadas para visualizar distintos tipos de datos

http://www.lasprovincias.es/valenciaciudad/accidentes-disparan-cuestionan-20180110170123-nt.html

https://es.statista.com/grafico/12552/las-series-de-mayor-duracion-de-la-tv/

Igual que hace diez años Malas noticias para el tráfico en Valencia que registró en 2016 incluso más Cifras de 2016 excepto que Nº ACCIDENTES) 8.221
PARQUE MÓVIL) 455 870 MUERTES 11 enos de 10 77 Colisiones 6.723 81,8% 225 2.79 6,2%

Componentes de la visualización de datos

Componentes de la visualización de datos

Capa de datos

- Localizar y obtener los datos
- Importar los datos al formato apropiado
- Vincular los datos que tengan relación
- Análisis de datos y agregación

Capa de mapeo

- Asociar una geometría adecuada a cada canal de datos
- Análisis de datos y algoritmos (p.e., extracción de contornos)

Capa gráfica

- Conversión de los objetos geométricos en imágenes visualizables
- Decoraciones
- Gestión de la interacción

Tipos de datos

	Discretos	Continuos	
Ordenados (comparables)	Ordinales (tallas: S, M, L, XL) Cardinales (cantidades)	Campos (altitud, temperatura, presión)	
No ordenados (no comparables)	Nominales (formas: □ ○ ◊) Categorías (nacionalidad)	Valores cíclicos (direcciones, colores)	

Datos como variables

Variable independiente

- En un experimento, es la variable que controlamos (tipo de señal de entrada, tipo de comida suministrada, duración de la exposición, temperatura...)
- \circ En una ecuación, se suele representar por la variable x
- En bases de datos, se representa por la clave

$$y = f(x)$$

Variable dependiente

- En un experimento, es la variable que medimos, y cuyo valor cambia dependiendo de la variable independiente (por ejemplo, señal de salida, peso de los ratones después de una semana, velocidadde reacción, etc)
- En una ecuación, se suele representar por la variable y
- En bases de datos, representa el valor obtenido por la consulta

Mapeado

Consiste en convertir los datos en elementos geométricos que se puedan visualizar

6

Francia Inglaterra España

Mapeado de valores cuantitativos

En los 80 se estudió cómo se percibe mejor valores numéricos dependiendo de su representación gráfica:

- Posición
- Longitud, dirección, ángulo
- Área
- Volumen
- Color, densidad

CLEVELAND, W. S., AND MCGILL, R. Graphical perception: Theory, experimentation and application to the development of graphical methods. Journal of the American Statistical Association, 79(387) 1984

Mapeado de valores cuantitativos

En los 80 se estudió cómo se percibe mejor valores numéricos dependiendo de su representación gráfica:

- Posición
- Longitud
- Ángulo, Pendiente
- Área
- Volumen
- Densidad, Saturación, Matiz

J. Mackinlay, Automating the Design of Graphical Presentations of Relational Information, ACM Transactions on Graphics 5(2), 1986

Mapeado de valores cuantitativos

Avance del color

Espacio de color HSV:

Valor (o brillo):

Mapeado de valores ordinales

Cuantitativo Ordinal Posición Posición Longitud Densidad Saturación de color Angulo Pendiente Matiz de color Area Textura Volumen Conexión Contenido Densidad Saturación de color Longitud Matiz de color _ Ángulo Pendiente Area Volumen

J. Mackinlay, Automating the Design of Graphical Presentations of Relational Information, ACM Transactions on Graphics 5(2), 1986

Mapeado de valores ordinales

Gráfica de barras

Bar Chart

Uso de tanto la posición (borde superior de la barra) como del tamaño (longitud)

Gráfica de líneas

Line Chart

Uso de la posición, pero no de la longitud

Diagrama de dispersión

Scatter Plot

Diagrama de Gantt

Gant Chart

Tablas

Uso tan sólo de la posición

¿Qué gráfica usar?

Dependiente	Cuantitativa continua	Barras	Líneas
	Cuantitativa discreta	Barras	Barras
	Cuantitativa continua	Gantt	Dispersión
Independiente	Nominal o cuantitativa discreta	Tabla	Gantt
		Nominal o cuantitativa discreta	Cuantitativa continua
		Independiente	

Representa un dato en una gráfica

- Formas en las gráficas que permiten codificar información extra
- Pueden codificar información con su forma, color, tamaño, orientación, etc.

Los conos indican:

- dirección (orientación),
- temperatura (color) y
- velocidad (inclinación)

El color de los tubos codifica la dirección:

Naranja: ascendiente

Azul: descendiente

Añaden dimensiones adicionales a la visualización de los datos

Cuantitativo

Posición
Longitud
Ángulo
Pendiente
Área
Volumen
Densidad
Saturación de color
Matiz de color

Ordinal

Posición
Densidad
Saturación de color
Matiz de color
Textura
Conexión
Contenido
Longitud
Ángulo
Pendiente
Área
Volumen

Nominal

Posición Matiz de color Textura Conexión Contenido Densidad Saturación de color Forma Longitud Ángulo Pendiente Area Volumen

Nominal

Posición

Matiz de color

Textura

Conexión

Contenido

Densidad

Saturación de color

Forma

Longitud

Ángulo

Pendiente

Área

Volumen

Representación del error

https://blogs.sas.com/content/iml/2015/09/16/plot-distrib-exp.html

https://es.wikipedia.org/wiki/Diagrama de caja

Mapas de calor

Muestran los valores de una tabla codificados en

con colores 01:00 02:00 03:00 05:00 12:00 13:00 15:00 16:00 17:00 18:00 19:00 20:00 21:00 22:00 14:00 manual/

Cuantitativo

Posición Longitud Ángulo Pendiente Área Volumen

Densidad Saturación de color Matiz de color

Gráficas dentro de gráficas

Cada glifo puede ser otra gráfica

P.e., una tabla de tablas

Hay que usar distintas escalas para los ejes mayores y menores tanto para los horizontales como los verticales

Gráfica de Tableau con indicadores del Banco Mundial

Caras de Chernoff

Los glifos son bocetos de una cara humana

Mapean los datos a características (forma, posición, orientación y tamaño) de los elementos faciales (cara, cejas, ojos, nariz, boca...)

Se basa en la capacidad que tenemos las personas de analizar y recordar caras

https://de.wikipedia.org/wiki/Chernoff-Gesichter

Opinión de abogados sobre 12 jueces de EEUU, generado en R por el usuario "Avenue" de Wikipedia

Estamos acostumbrados a percibir 3 (o 4) dimensiones

Percibir más dimensiones se hace más difícil

Hay herramientas que nos permiten representar espacios de más de 3 dimensiones

Coordenadas paralelas

Es una técnica que permite visualizar información sobre datos multidimensionales, y visualizar algunos patrones de los datos

Coordenadas paralelas

Las gráficas de coordenadas paralelas muestran claramente puntos colineales

Permiten mostrar el valor de varias variables que varían a lo largo de una misma dimensión

Relativas

Muestran de manera relativa la contribución de cada variable al total

Gráficas de áreas

Gráficas apiladas

Relativas

Las gráficas de tartas (*Pie Chart*) también indican la proporción de las variables dependientes cuantitativas en una dimensión

Mapean porcentajes sobre el total al ángulo de un sector

La perspectiva introduce confusión en la percepción del ángulo

La varianza de los elementos inferiores de cada barra afectan a la percepción de los superiores

Divergentes

Usamos tanto posición como tamaño

Sólo funciona para dos variables

Connotaciones negativas para la variable inferior

Sólo se usa el tamaño

Sirva para muchas variables

Las tendencias de una variable pueden quedar ocultas por la varianza de las barras vecinas

Gráficas de líneas apiladas

Divergentes

Para datos continuos sobre una variable independiente continua

También se puede suavizar las regiones usando curvas en vez de segmentos

Sea g_i la posición de la cima de la i-ésima barra:

$$g_i = g_0 + f_1 + f_2 + \dots + f_i$$

donde g_0 es la posición de la base. Para $g_0=0$, obtenemos la gráfica de áreas apilada vista

https://github.com/leebyron/streamgraph

ThemeRiver

Sea g_i la posición de la cima de la i-ésima barra:

$$g_i = g_0 + f_1 + f_2 + \dots + f_i$$

Este diseño define $g_0 = -1/2 (f_1 + f_2 + \dots + f_n)$

Minimiza la distancia de la gráfica al eje horizontal y las pendientes de los límites superior e

inferior

Streamgraph

Este diseño establece la base en:

$$g_0 = -\frac{1}{n+1} \sum_{i=1}^{n} (n-i+1) f_i$$

Hace más fácil seguir la evolución de cada variable, minimizando los cambios en su posición a lo largo de la gráfica, y su pendiente

Streamgraph

Suponiendo que las variables aparecen (toman valores distintos de cero) y desaparecen (se hace cero), se pueden añadir las nuevas variables:

En un orden arbitrario

Introduciendo las nuevas variables en el exterior

Así, el pico inicial no afecta al resto de variables

Ayuda

¿Qué gráfico elegir?

http://extremepresentation.typepad.com/blog/2006/09/choosing_a_good.html

Bibliografía

Curso de John C. Hart. Data Visualization. Universidad de Illinois en Urbana-Champaign

• Disponible online en Coursera