Estadística III

1. Utilizar el siguiente set de datos para calcular paso por paso.

x1	x2	x3
4	4	28
2	3	24
2	4	30
3	5	32
1	3	18
3	6	41
3	6	44
0	1	5
1	3	18
0	0	1
5	9	62
1	2	17
2	3	24
1	3	19
3	6	42
4	8	56
4	8	56
3	6	44
5	9	64
1	2	17
1	2	17

1.1. ¿Cuál es la media, mediana y desviación estándar?, y la moda y los valores repeticiones de la moda para los datos categóricos

1.1 • Pan	Medi	a .	X = 2	T'N	X	- (3	n	21										
· Para	X1. X1 = (4 t	2 12 + 3	3+14	3+	3 to	 +1 +	0 +	St	1+	2 +	1+	3+	4+	4+	31	5	+1-	+-1)-1
1	T 'A		. 7									, ,		,		i.	,	11	2.
->	21	-/.	. 1		,,55	s/								,		·	,	,	
· Para	Χ,							•	٠	٠				٠	٠	,	٠	•	
	=(4+	3+4+5	5+3+	6+6	6+74	3+0	0+	9+	2+	34	3+	6+	8+5	5+6	5+0	142	; ;).	1
										,	. ,			,	,	. 1	,	,	
	X1 = 9	1	X	2	1,4	.//.							,						2
· Para X	3													,		,	٠	*	
	28+2			18+4	11+	49+5	5 † 1	8 +	110	62	117	+24	4+1	94	42-	56	1.4	14	64
	1171	17).2	1													,	,		
=> X.	= 659	=).	· x.	= 3	1,38	3/1													

DALAN BUR BUR REPORT A POST A POST OF THE PARTY.

Mediana: Valor	central					
^						
Para X1:	111111	2,2(2)	,3,3,3	3,3,44,	4,5,5	
7 /16 -0,0,	wind dod.	1. 1				
	· Me1	211.				
· Para X2.	2,3,3,3,3	3,0,4,5	5,6,6,6	,6,8,8,9	, q · ·	
	Mez = 4	All				

· Para X3 -0 Me3=1,5,17,17,18,18,19,24,24 (28)30,32,41,42,44,44,56,56,62,64 : Me3=28//

Estadística III

Device on Estandar $0 = \sqrt{\frac{1}{N} \cdot \sum_{i=1}^{N} (x_i - \overline{x})^2}$ • Para X1 • Var (x7) • Var (x1) = $[(4-2,333)^2 + (2-2,333)^2 + (2-2,333)^2 + (3-2,333)^2 + (4-2,333)^2 + (5-2,333)$

· Para X2

 $\begin{array}{l} -0 \ \text{Var}(X_{2}) = \left[\left(4 - 4,428 \right)^{2} + \left(3 - 4,428 \right)^{2} + \left(4 - 4,428 \right)^{2} + \left(5 - 4,428 \right)^{2} + \left(3 - 4,428$

=) Var(X2) = 6,53 => O= V6,53 =>: O= 2,555//

1.2.Dibujar un boxplot a mano

1.3.Cuál es la covarianza entre las 2 variables X1, X2

$$Cov(x,y) = \frac{\sum (x_i - \overline{x}) * (y_i - \overline{y})}{N}$$

1.3
$$Cov(X_{1},X_{2}) = \underbrace{S(X_{1}-X_{1})\cdot (X_{2}(1-X_{2}))}_{N}$$

$$P(Cov(X_{1},X_{2})) = [(4-2,333)(4-4,428)+(2-2,333)(3-4,428)+(2-2,333)(4-4,428)+(3-2,333)(6-4,428)+(3-2,333)(6-4,428)+(3-2,333)(6-4,428)+(3-2,333)(6-4,428)+(3-2,333)(3-4,428)+(3-2,333)(3-4,428)+(3-2,333)(2-4,428)+(3-2,333)(2-4,428)+(3-2,333)(2-4,428)+(3-2,333)(3-4,428)+(3-2,333)(6-4,428)+(4-2,333)(8-4,428)+(3-2,333)(6-4,428)+(4-2,333)(8-4,428)+(3-2,333)(6-4,428)+(3-2,333)(6-4,428)+(3-2,333)(6-4,428)+(3-2,333)(6-4,428)+(3-2,333)(6-4,428)+(3-2,333)(6-4,428)+(3-2,333)(2-4,428$$

1.4. Cuál es la correlación entre la variable x1 y x2 (Calcularla a mano). Correlación puede ser escrita también como:

$$Cor(X,Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2} \sqrt{\sum_{i=1}^{n} (y_i - \overline{y})^2}},$$

1.4 Cor
$$(X_{1},X_{2}) = \sum_{i=1}^{n} (X_{i}-\overline{X}_{1})(X_{2i}-\overline{X}_{2})$$

$$\sqrt{\sum_{i=1}^{n} (X_{i}-\overline{X}_{2})^{2}} \sqrt{\sum_{i=1}^{n} (X_{ii}-\overline{X}_{2})^{2}}$$

$$-D Cor(X_{1},X_{2}) = \frac{75}{\sqrt{46} \times 62^{2}} \sqrt{187/3} \Rightarrow : Cor(X_{1},X_{2}) = 0.037/1$$

1.5. Explica la relación entre covarianza y correlación.

La covarianza explica que tipo de comportamiento tienen dos variables en conjunto, es decir, si el resultado es positivo quiere decir que si una aumenta la otra tiende a aumentar; si el resultado es negativo quiere decir que si una aumenta la otra tiende a disminuir. Como se puede observar, su descripción concuerda por mucho con la correlación ya que también analiza como es el comportamiento de una variable respecto a la otra, en otras palabras, si existe una dependencia de una variable hacia la otra.

En lo único que difiere es en la interpretación, ya que la covarianza no esta normalizada, lo que puede dificultar la interpretación de esta y comparación entre las diferentes escalas de las variables, cosa que no pasa en la correlación, ya que esta última si esta normalizada (porque se está dividiendo básicamente por sus respectivas varianzas), es decir que sus datos varían entre -1 y 1, lo que ayuda significativamente a interpretar los valores.

Estadística III

1.6.Calcule el resultado del algoritmo K-means sobre este set de datos a mano como lo hicimos en Excel. Vamos a crear 3 grupos, es decir K=3

(clústeres).

do-Cs =	1 (4-1575)2+(4-4)	2 => 2/125	11/(5-1,875)4(9-4)2 =>5,896
	2 1(2-1,675)2+(3-4)2		12/(1-1,875)2+(2-4)2 => 2,163
	3 ((2-1,6)5)2+(4-1)2	=> 0,125	13 (2-1,635)2+(3-4)2 > 1,003
	1 (3-1875)2+(5-4)2	> 1,505	14 \(111,875)+(3-1) => 1,326
	51(11535)2+(3-4)2	=> 1,328	15 \(3:1/875)2+(6-1)2) => 2,294
	6 1 (3-1875) 7 (6-4)2	=> 2,294	16 ((4-1,875) + (8-4)2 => 4,529
	7 ((3-1,875)2+(6-4)2	=> 2,291	72 (4-1,575)27 (8-1)27 >> 4,529
	8 / (0-1,675)2+(1-4)2	-> 3,537	18 (3-1,575)2+(6-1)2 => 2,294
	9 (1-1675)2+(3-4)2	->1,328	19 (5-105)2+ (9-4)2 > 5,846
	10 ((0-1,595)2+(0-4)2	->4,417	20 1 (1-1,875) 2+(2-4)2 => 2,183
			27 (1-1875 4(2-1) -> 2,183
dis_C1 =	1 1(4-2) 4(4-3,633)	=>2,006	11 \((3-2)^2 + (Q-3,833))2 => 5,974
	2 (2-2)2+ (3-3,638)	=>0,838	12 (1-2)2 (2-3,533)2 => 2,058
	3 /(2-2)2+ (4=3,833)2	=>0,166	43/(5-5)+(3-3,533)2 =>0,633
	4 1 (3-2) 4 (5-3,633)2	=>1,536	14 1(1-2)2+ (3-3,533)2 1 =>1,301
	5 1(1-2)2+(3-3,833)2	=>1,301	15 J (32)2+(6-3,633)2 => 2,386
	6 1(3-2)2+(6-8,83)2	-> 2,386	16 \((4-2)^2 + (8-3,833)^2 \+>4,621
	7 V(3-2)2+ (6-8/33)2	_	1+1(4-2)2+(8+3,527)2 ->4,621
	8 1(0-2)2+(1-363)2		18 1(3-2)24 (6-3,833)2 >2,356
	9 (1-2)2+ (3-3,833)2		19 5(5-2)2+(9+3,533)? => 5,97
	10 (0-2)2+(0-3,633)21		20 1 (1-2)2+(2-3,883)27 = 2056
			21 ((1-2)2+(2-3,833)21=>2,088

Siguiendo la lógica con cada iteración hasta que no haya cambios en las etiquetas tenemos:

Estudiante: David Andrés Valencia García

Profesor: José Daniel Ramírez Soto

Estadística III

1	x1 x2	Inicio	centroide x1	centroide x2	dis_c3_3	dis_c2_2	dis_c1_1	New_labels	centroide x1_it2	centroide x2_it2	dis_c3_3_it2	dis_c2_2_it2	dis_c1_1_it2	New_labels	centroide x1_it3	centroide x2_it3	dis_c3_3_it3	dis_c2_2_it3	dis_c1_1_it3	New_labels
1	4	1	3,14285714	5,428571429	1,66598626	2,125	2,00693243	3	3,7	6,7	2,71661554	2	3,49857114	2	3,333333333	6,44444444	2,533723167	1,414213562	3,816084381	2
2	2	3	3		2,68404203	1,00778222	0,83333333	1			4,07185461	1	1,28062485	2			3,693504475	1	1,600781059	2
3	2	1	3		1,82946407	0,125	0,16666667	2			3,19061123	0	2,05912603	2			2,784436464	0,632455532	2,358495283	2
4	3	5	3		0,45175395	1,50519932	1,53659074	3			1,83847763	1,41421356	3,44093011	2			1,482407118	1,264911064	3,75	2
5	1	3	1,875	4	3,23879544	1,32876823	1,30170828	1	2	4	4,580393	1,41421356	0,8	1	2,6	3,8	4,160365606	1,788854382	1,030776406	1
6	3 (3	2		0,58901509	2,29469497	2,38630351	3			0,98994949	2,23606798	4,29418211	3			0,55555556	2,236067977	4,589389938	3
7	3	3	2		0,58901509	2,29469497	2,38630351	3			0,98994949	2,23606798	4,29418211	3			0,55555556	2,236067977	4,589389938	3
8	0	1	2		5,4304508	3,53774292	3,46810867	1			6,7955868	3,60555128	1,56204994	1			6,38381441	3,820994635	1,25	1
9	1	3	2		3,23879544	1,32876823	1,30170828	1			4,580393	1,41421356	0,8	1			4,160365606	1,788854382	1,030776406	1
10	0)	1 2	3,833333333	6,27271383	4,41764926	4,32370726	1	1	2,2	7,65375725	4,47213595	2,41660919	1	0,75	2	7,255478985	4,604345773	2,136000936	1
11	5)	1		4,02542937	5,89623821	5,97448278	3			2,64196896	5,83095189	7,88923317	3			3,051006715	5,727128425	8,189169677	3
12	1	?	1		4,04313477	2,18303115	2,08832735	1			5,42033209	2,23606798	0,2	1			5,019714221	2,408318916	0,25	1
13	2	3	1		2,68404203	1,00778222	0,83333333	1			4,07185461	1	1,28062485	2			3,693504475	1	1,600781059	2
14	1	3	1		3,23879544	1,32876823	1,30170828	1			4,580393	1,41421356	0,8	1			4,160365606	1,788854382	1,030776406	1
15	3	3	3		0,58901509	2,29469497	2,38630351	3			0,98994949	2,23606798	4,29418211	3			0,55555556	2,236067977	4,589389938	3
16	4 8	3	3		2,71052371	4,52941773	4,62180821	3			1,33416641	4,47213595	6,52993109	3			1,692394024	4,427188724	6,823672032	3
17	4 8	3	3		2,71052371	4,52941773	4,62180821	3			1,33416641	4,47213595	6,52993109	3			1,692394024	4,427188724	6,823672032	3
18	3	3	1		0,58901509	2,29469497	2,38630351	3			0,98994949	2,23606798	4,29418211	3			0,55555556	2,236067977	4,589389938	3
19	5		2		4,02542937	5,89623821	5,97448278	3			2,64196896	5,83095189	7,88923317	3			3,051006715	5,727128425	8,189169677	3
20	1	2	2		4,04313477	2,18303115	2,08832735	1			5,42033209	2,23606798	0,2	1			5,019714221	2,408318916	0,25	1
21	1	?	2		4,04313477	2,18303115	2,08832735	1			5,42033209	2,23606798	0,2	1			5,019714221	2,408318916	0,25	1

2. PCA. Utilizar los datos de la tabla 1, para calcular PCA y reducir la dimensionalidad de 2 dimensiones a 1. Para este ejercicio se debe utilizar las variables X1, y X2 y crear un vector con una sola dimensión.

2.1. Cuál es la matriz de covarianza

2.2. Cuáles son los eigenvalores

2.2. Cuales son los eigenvalores
> 2. Calcular la matrit de covarianto
$\sum_{i=1}^{n} \begin{bmatrix} G_{x_{i}}^{2} & (o_{i}(x_{i},x_{i}) \\ G_{o_{i}}(x_{i},x_{i}) & G_{x_{2}}^{2} \end{bmatrix} = \begin{bmatrix} 1 & 0.9335 \\ 0.9335 & 1 \end{bmatrix}$
Cov(2;Xi) O22 0,4335 4
3. Hallar eigenvollares
$= \det \left(\begin{bmatrix} 1 & 0,9375 \\ 0,9375 & 1 \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right) = \det \left(\frac{1-\lambda}{0,9375} + \frac{\lambda}{2} \right)$
$\Rightarrow (1-\lambda)^2 - 0.4375^2 \Rightarrow 1-2\lambda+\lambda^2 - 0.878$ $\Rightarrow - > 0.122-2\lambda+\lambda^2$
$\lambda = +2 \pm \sqrt{4 - 0.488} = > \lambda = 2 \pm \sqrt{3.512}$
$> \lambda = 2 \pm \frac{1}{1.872}$ $> \lambda = 2 \pm \frac{1}{1.872}$ $> \lambda_{2} = \frac{0.128}{2} = > 0.064$
= = = 1,436 que es el voller mayor
Coundo se hace la conversión se conserva el (1936=>0,96)

2.3. Cuál es la varianza explicada por el eigenvalor.

Porto z.	3		mad by the		de la	84			1	T	
Varianza	explicada	74=	1,936	=>0	,96						
											(
Varianza	explando	1/2=	0,06-	_ =>	0,03	5					•

2.4. Cuál es el valor del eigenvector

Pento 2.4

$$\begin{bmatrix}
1 & 0.9345 \\
0.00345 & 1
\end{bmatrix}
\begin{bmatrix}
\chi_1 \\
\chi_2
\end{bmatrix} = 7 - \begin{bmatrix}
\chi_1 \\
\chi_2
\end{bmatrix}$$

$$\underbrace{0} \chi_1 + 0.0335 \chi_2 = 1.936 \chi_1 \Rightarrow 0.0335 \chi_2 = 0.936 \chi_1 \Rightarrow \chi_2 \times \chi_2$$

$$\underbrace{0} 0.9335 \chi_1 + \chi_2 = 1.936 \chi_2 \Rightarrow 0.0335 \chi_1 = 0.036 \chi_2 \Rightarrow \chi_2 \times \chi_1$$
Infinites solvoures

$$\underbrace{0} \lim_{x \to x_1 \to x_2} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \chi_1 = \chi_1 = \sqrt{0.5} = 0.36 \chi_2$$

$$\underbrace{0} \lim_{x \to x_1 \to x_2} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \chi_1 = \chi_1 = \sqrt{0.5} = 0.36 \chi_2$$

$$\underbrace{0} \lim_{x \to x_1 \to x_2} \int_{-1}^{1} \int_{-1}^{1} \chi_1 = \chi_1 = \sqrt{0.5} = 0.36 \chi_2$$

$$\underbrace{0} \lim_{x \to x_1 \to x_2} \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \chi_1 = \chi_1 = \sqrt{0.5} = 0.36 \chi_2$$

$$\underbrace{0} \lim_{x \to x_1 \to x_2} \int_{-1}^{1} \int_{-1}^{1} \chi_1 = \chi_1 = \sqrt{0.5} = 0.36 \chi_2$$

$$\underbrace{0} \lim_{x \to x_1 \to x_2} \int_{-1}^{1} \int_{-1}^{1} \chi_1 = \chi_1 = \sqrt{0.5} = 0.36 \chi_2$$

$$\underbrace{0} \lim_{x \to x_1 \to x_2} \int_{-1}^{1} \int_{-1}^{1} \chi_1 = \chi_1 = \sqrt{0.5} = 0.36 \chi_2$$

$$\underbrace{0} \lim_{x \to x_1 \to x_2} \int_{-1}^{1} \int_{-1}^{1} \chi_1 = \chi_1 = \sqrt{0.5} = 0.36 \chi_2$$

$$\underbrace{0} \lim_{x \to x_1 \to x_2} \int_{-1}^{1} \int_{-1}^{1} \chi_1 = \chi_1 = \sqrt{0.5} = 0.36 \chi_2$$

$$\underbrace{0} \lim_{x \to x_1 \to x_2} \int_{-1}^{1} \int_{-1}^{1} \chi_1 = \chi_1$$

Estadística III

2.5. Cuál es la matriz proyectada.

Ruto	2.5					_							
	1,118	-0,167	Ī	0	907	7.	[0,672]	•				•	
21-0	5,723	-0,558	-		707		-0,552						
3 -0	3,223	-0,167	. 7	_ ()	<i>,</i> ,	٠٦.	-0,275	•	•			•	•
4 -0	,447	01223					-0,480	. 1					
	,894	-0,558.	٠.										
	7,447	0,615					-1,026	1					
	7,447	0,615.					0,750	1			. 4		
5 -1	,565	-1,341					0,350	1		•			
7 9 -0	1503	-0,558,					-2,051						
10 -1	,894.				•		-11026	3	•				
	,789	-1,733				A 1.5	- 2.,331						
12 -0	,894	1,789					2;529						
		-0,950					-1,303	1					
	1233	- 0558	١.				-0,559.						
14 -0	2894	-0,228	1					'					
. 0	,447	0,615		- 1		77	-1,026	1					
	1118	1,398			•		0,750.	1	•			•	
	1,118	11398					1,778			1			
	FAFIC						. 11378					4.	
		0,615					0,750			· A			
	1, 789	7,789	- 4				2,529						
	0,894	-0,950				100	-1,303				•		
0	, 894	-0,950					-1,303						
· · · L ·	٠						- "	11 -					

3. Utilizando el dataset del proyecto data/CARS.csv crear: Utilizar la librería de plotly.

- 3.1. Distribución de cada variable:
- 3.1.1. Para las variables categóricas un gráfico de barras. Categoría número de observaciones.

Frecuencia categoria marcas

Frecuencia categoria modelo

Frecuencia categoria modelo

Frecuencia categoria tipo

Frecuencia categoria origen

Frecuencia categoria posicion tren traccion

3.1.2. Para las variables numéricas crear histogramas. Listar los modelos de carros que están más lejos de 5 estándares de desviación, y serían considerados outliers. Hacer test de si es una distribución normal o no.

Histogramas:

Análisis de Outliers 5 desviaciones estándar de diferencia:

Outliers Invoice

Estadística III

Outliers Engine Size

Outliers Cylinders

Estudiante: David Andrés Valencia García

Profesor: José Daniel Ramírez Soto Estadística III

Outliers Horse Power

Outliers Miles per Gallon City

Outliers Miles per Gallon Highway

Outliers Weigth

Estudiante: David Andrés Valencia García

Profesor: José Daniel Ramírez Soto Estadística III

Outliers Wheelbase

Outliers Length

3.2. Gráfico de la relación de cada variable con respecto a MPG City:

- 3.2.1. Variables categóricas debes crear un boxplot. Explique cómo interpreta el gráfico
- 3.2.2. Variables numéricas vas a crear un scatter plot. Explique cómo interpreta el gráfico
- 3.3. Matriz de correlación.
- 3.3.1. Cree la matriz de correlación, cuáles son las variables más importantes para explicar la variabilidad de MPG City. Explique por qué el coeficiente es negativo o positivo.
- 3.3.2. Cree las dummy variables para todas las variables categóricas y genere la matriz de correlación nuevamente. ¿Cuál es el valor de variable categórica con mayor correlación?
- 3.3.3. Cree la matriz de correlación nuevamente removiendo todos los modelos de carro que fueron catalogados como un outlier. (Puede utilizar. query('Model in["MDX","TSX 4dr"]'). Existe alguna variación en la correlación.