Using Gradient Boosting Tree algorithms on Porto-Seguro's safe drive competition

Binh Nguyen

Université Paris-Saclay & UEVE

January 16, 2018

Overview

- Introduction
- Problem settings & Data Analysis
- Feature Engineering
- 4 Implementation
- 6 Results

Introduction

- Hosted on Kaggle, by Porto Seguro a car insurance company.
- Objective: build a model that predicts the probability that a driver will initiate an auto insurance claim in the next year.
- Done on Python & Google Cloud Platform

Problem settings

- Supervised learning
- Binary classification.
- Performance metrics: Normalized Gini Index.

Data Analysis

General info

- train.csv & test.csv
- For train: n = 595212; p = 59. For test: n = 892816

Interesting findings

- Number of n in test is much larger than train.
- Features are encoded under generic names (for example ps_car_01, ps_reg_02) that give no specific indication on the meaning.
- There are 3 types: continuous features, categorical features and binary features.
- Values of -1 indicate that the feature was missing from the observation, or NaN value as normally seen in many datasets.

Correlation matrix of continuous features (float64)

Correlation matrix of continuous features (int32)

Count of number of 0 and 1 in binary features

Variable important ranking using Random Forest Classifier

Feature Engineering

Eliminating unimportant features

Top 35 variables which have highest feature important score are kept.

Dealing with missing values

One could possibly either set NaN to some extreme value (e.g. 10^6) or use the value that represented the property of the particular variable (max(X_i), median(X_i)). In this case, we choose to keep the default value -1 to represent NaN.

Likelihood encoding

The central idea behind likelihood (or target) encoding technique is to estimate likelihood target variable given a particular value of a categorical variable:

$$Pr(y = 1 \mid x = \mathtt{catValue}) = \frac{\sum \mathbb{1}_{y=1\mid x = \mathtt{catValue}}(y)}{n_{\mathtt{observation}}}$$

Algorithm 1 Target encoding categorical variables

```
Input: categoricalArray, labelArray, k, l
 1: data ← join (categoricalArray, labelArray)
 2: targetEncodedArray ← Empty Array
 3: categoricalValue ← unique values of categoricalArray
 4: split data into k parts
 5: for each fold[i] in k folds do
       valueEncoded \leftarrow 0
 6.
       fold[-i] \leftarrow join remaining k-1 folds except i
 7.
       split fold[-i] into / parts
 8.
       for each fold[j] in new / parts do
 9:
           for each value in categoricalValue do
10:
              \mathtt{valueEncoded} \leftarrow \mathtt{valueEncoded} + \frac{\mathit{Pr(label} \mid \mathit{value})}{}
11:
12:
           end for
       end for
13:
       valueEncodedFold[i] \leftarrow join all valueEncoded
14:
15: end for
16: targetEncodedArray ← join k parts of valueEncodedFold[i]
17: return targetEncodedArray
```

Implementation

Model Selection

- Gradient Boosting Tree: XGBoost^a & LightGBM^b
- Extremely fast, can also be used with GPU

```
ahttps://github.com/dmlc/xgboost
```

Ensembling technique

- 5-fold cross-validation
- Using sklearn.model_selection.GridSearchCV to find best learning_rate, max_depth parameters
- Prediction data from these 2 models was fitted by a Logistic Classifier acted as the ensembler to produce final prediction
- Google Cloud cluster with 16 CPU cores and 12GB RAM takes over 2 hours

bhttps://github.com/Microsoft/LightGBM

Algorithm 2 Ensemble classifier (XGBoost + LightGBM + Logistic Regression)

Input: trainData, testData, k

```
1: objective ← Normalized Gini Index
```

- 2: **split** trainData, testData to k folds
- for each fold[i] in k folds do
- run Algorithm 1 4:
- fit XGBoost on fold[-i] using fold[i] to maximize objective 5:
- fit lightGBM on fold[-i] using fold[i] to maximize objective 6:
- predictXGB ← XGBoost(testData) 7:
- predictLGBM ← lightGBM(testData) 8:
- 9: end for

10:
$$predictXGB \leftarrow \frac{predictXGB}{k}$$
11: $predictLGBM \leftarrow \frac{predictLGBM}{k}$

- 12: ensemblePrediction ← logisticRegression(predictXGB, predictLGBM)
- 13: return ensemblePrediction

Results

Model	Public Leaderboard	Final Leaderboard
XGBoost only	0.27477	0.27756
$XGBoost + target \ encode$	0.28204	0.28598
Ensemble $+$ target encode	0.28365	0.28763
Best result	0.28332	0.28849

1800	→ 960	Regis	A	0.28764	26	2mo
1801	▼ 257	AntiLippasaar	<u>[</u>	0.28764	23	2mo
1802	▲ 544	scut_430	PP	0.28763	3	3mo
1803	▼ 2	idc man	*	0.28763	68	3mo
1804	▲ 606	LightR		0.28763	1	3mo
1805	▼ 29	Rafael Ladeira	7	0.28762	9	3mo

✓ Your submission description has been saved.			
68 submissions for idc man		Sort by	Private Score 🔻
All Successful Selected			
Submission and Description	Private Score	Public Score	Use for Final Score
submission-lgb-only-impact-encoding-joinbin-dropcalconly-10fold-17 3 months ago by BTNG 10 fold cv	0.28849	0.28332	
submission-171022-004132.csv 3 months ago by BTNG Upload Submission File submission-171022-004132 stack of 3 including gradient boosting tree with max_depth=5 all other default. No feature elimination.	0.28838	0.28225	
submission-lgb-only-impact-encoding-5fold-notps13square-171025-1 3 months ago by BTNG submission-lgb-only-impact-encoding-5fold-notps13square- 171025-193323.csv not create ps13square, not drop ps 13	0.28820	0.28321	
submission-lgb-only-impact-encoding-joinbin-dropcalconly-171024-1 3 months ago by BTNG submission-lgb-only-impact-encoding-joinbin-dropcalconly- 171024-171759.csv - create new impact join bin 06-09, maxdepth 6 on lgb learning rate 0.01	0.28806	0.28287	
stacking1-171019-201739.csv 3 months ago by BTNG stacking1-171019-201739.	0.28806	0.28214	

16 / 17

The End.