R Notebook

Conjunto de datos de diágnostico de cáncer de mama en Wisconsin

1.1 Importación y Carga de Datos

Para comenzar nuestro análisis es necesario realizar la carga de los datos:

```
data <- read.csv("data/data.csv")
data</pre>
```

id <int></int>	diagnosis <chr></chr>	radius_mean <dbl></dbl>	texture_mean <dbl></dbl>	perimeter_mean <dbl></dbl>	area_mean <dbl></dbl>	smoothness_mean <dbl></dbl>
842302	М	17.990	10.38	122.80	1001.0	0.11840
842517	М	20.570	17.77	132.90	1326.0	0.08474
84300903	М	19.690	21.25	130.00	1203.0	0.10960
84348301	М	11.420	20.38	77.58	386.1	0.14250
84358402	М	20.290	14.34	135.10	1297.0	0.10030
843786	М	12.450	15.70	82.57	477.1	0.12780
844359	М	18.250	19.98	119.60	1040.0	0.09463
84458202	М	13.710	20.83	90.20	577.9	0.11890
844981	М	13.000	21.82	87.50	519.8	0.12730
84501001	М	12.460	24.04	83.97	475.9	0.11860
1-10 of 569 rd	ows 1-7 of 33 col	umns		Previous	1 2 3	4 5 6 57 Next

Instalamos los paquetes que serán necesarios durante nuestro proyecto:

- Tidyverse: Para la manipulación de datos y gráficos.
- Caret: Para el preprocesamiento y modelado Lattice es requerido por Caret
- DataExplorer: Para la exploración automatizada de los datos.
- Dplyr: Proporciona una gramática de manipulación de datos.
- Ggplot2: Personalización de gráficas.
- · Psych: Para análisis estadístico
- Corrplot: Visualización de matriz de correlación.

```
#install.packages("tidyverse")
#install.packages("caret")
#install.packages("DataExplorer")
#install.packages("dplyr")
#install.packages("ggplot2")
#install.packages("lattice")
#install.packages("psych")
#install.packages("corrplot")
#install.packages("ggcorrplot")
library(caret)
```

```
## Warning: package 'caret' was built under R version 4.4.2
## Loading required package: ggplot2
```

```
## Warning: package 'ggplot2' was built under R version 4.4.2
```

Loading required package: lattice

```
library(DataExplorer)
## Warning: package 'DataExplorer' was built under R version 4.4.2
library()
library(dplyr)
## Warning: package 'dplyr' was built under R version 4.4.2
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
##
       intersect, setdiff, setequal, union
library(ggplot2)
library(tidyverse)
## — Attaching core tidyverse packages —
                                                                — tidyverse 2.0.0 —
## √ forcats 1.0.0 √ stringr
                                     1.5.1
## ✓ lubridate 1.9.3
                         √ tibble
                                      3.2.1
## √ purrr 1.0.2
                       √ tidyr
                                      1.3.1
## √ readr
               2.1.5
## — Conflicts —
                                                          — tidyverse_conflicts() —
## X dplyr::filter() masks stats::filter()
## X dplyr::lag() masks stats::lag()
## X purrr::lift() masks caret::lift()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become errors
library(lattice)
library(psych)
## Warning: package 'psych' was built under R version 4.4.2
## Attaching package: 'psych'
## The following objects are masked from 'package:ggplot2':
##
      %+%, alpha
library(corrplot)
## Warning: package 'corrplot' was built under R version 4.4.2
## corrplot 0.95 loaded
library(ggcorrplot)
## Warning: package 'ggcorrplot' was built under R version 4.4.2
```

Hagamos una vista inicial de los datos:

```
#primeras filas de nuestro dataset:
head(data)
```

toytura maan	norimator maan	0400 moon	amaathnaaa maan
texture_mean <dbl></dbl>	perimeter_mean <dbl></dbl>	area_mean <dbl></dbl>	smoothness_mean <dbl></dbl>
10.38	122.80	1001.0	0.11840
17.77	132.90	1326.0	0.08474
21.25	130.00	1203.0	0.10960
20.38	77.58	386.1	0.14250
14.34	135.10	1297.0	0.10030
15.70	82.57	477.1	0.12780
	15.70	15.70 82.57	15.70 82.57 477.1

```
# Dimensión de nuestro dataset:
dim(data)
```

```
## [1] 569 33
```

Nuestro dataset cuenta con 33 columnas y 569 filas.

```
# Con str mostramos la estructura de nuestro dataframe, incluyendo los tipos de nuestras variables:
str(data)
```

```
## 'data.frame': 569 obs. of 33 variables:
## $ id
                         : int 842302 842517 84300903 84348301 84358402 843786 844359 84458202 844981 84501001
. . .
                        : chr "M" "M" "M" "M" ...
## $ diagnosis
## $ radius_mean
                        : num 18 20.6 19.7 11.4 20.3 ...
## $ texture_mean
                        : num 10.4 17.8 21.2 20.4 14.3 ...
## $ perimeter_mean
                        : num 122.8 132.9 130 77.6 135.1 ...
## $ area_mean
                         : num 1001 1326 1203 386 1297 ...
## $ smoothness_mean
                        : num 0.1184 0.0847 0.1096 0.1425 0.1003 ...
## $ compactness_mean : num 0.2776 0.0786 0.1599 0.2839 0.1328 ... 
## $ concavity_mean : num 0.3001 0.0869 0.1974 0.2414 0.198 ...
## $ concave.points_mean : num 0.1471 0.0702 0.1279 0.1052 0.1043 ...
## $ symmetry_mean : num 0.242 0.181 0.207 0.26 0.181 ...
## $ fractal_dimension_mean : num  0.0787 0.0567 0.06 0.0974 0.0588 ...
## $ radius_se : num 1.095 0.543 0.746 0.496 0.757 ...
                        : num 0.905 0.734 0.787 1.156 0.781 ...
## $ texture_se
                        : num 8.59 3.4 4.58 3.44 5.44 ...
## $ perimeter_se
                         : num 153.4 74.1 94 27.2 94.4 ...
## $ area_se
                       : num 0.0064 0.00522 0.00615 0.00911 0.01149 ...
## $ smoothness se
## $ compactness_se
## $ concavity_se
                        : num 0.049 0.0131 0.0401 0.0746 0.0246 ...
                        : num 0.0537 0.0186 0.0383 0.0566 0.0569 ...
   ##
##
   $ symmetry_se
                          : num 0.03 0.0139 0.0225 0.0596 0.0176 ...
##
   $ fractal_dimension_se : num   0.00619   0.00353   0.00457   0.00921   0.00511 ...
                   : num 25.4 25 23.6 14.9 22.5 ...
##
   $ radius_worst
   $ texture_worst
                          : num 17.3 23.4 25.5 26.5 16.7 ...
   $ perimeter_worst
                          : num 184.6 158.8 152.5 98.9 152.2 ...
                          : num 2019 1956 1709 568 1575 ...
##
   $ area_worst
   $ smoothness_worst
                          : num 0.162 0.124 0.144 0.21 0.137 ...
##
   $ compactness_worst
                          : num 0.666 0.187 0.424 0.866 0.205 ...
   $ concavity_worst
                          : num 0.712 0.242 0.45 0.687 0.4 ...
##
                          : num 0.265 0.186 0.243 0.258 0.163 ...
   $ concave.points_worst
##
   $ symmetry_worst
                          : num 0.46 0.275 0.361 0.664 0.236 ...
## $ fractal_dimension_worst: num 0.1189 0.089 0.0876 0.173 0.0768 ...
## $ X
                          : logi NA NA NA NA NA NA ...
```

Con Describe podemos ver un primer resumen estadístico básico: describe(data)

 $\mbox{\tt \#\#}$ Warning in FUN(newX[, i], ...): no non-missing arguments to min; returning Inf

 $\mbox{\tt \#\#}$ Warning in $\mbox{\tt FUN(newX[, i], ...):}$ no non-missing arguments to max; returning -Inf

	v <int></int>	n <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	median <dbl></dbl>	trimmed <dbl></dbl>	mad <dbl></dbl>
id	1	569	3.037183e+07	1.250206e+08	9.06024e+05	7.344333e+06	6.556799e+04
diagnosis*	2	569	1.372583e+00	4.839180e-01	1.00000e+00	1.341357e+00	0.000000e+00
radius_mean	3	569	1.412729e+01	3.524049e+00	1.33700e+01	1.381991e+01	2.816940e+00
texture_mean	4	569	1.928965e+01	4.301036e+00	1.88400e+01	1.903779e+01	4.166106e+00
perimeter_mean	5	569	9.196903e+01	2.429898e+01	8.62400e+01	8.974046e+01	1.884385e+01
area_mean	6	569	6.548891e+02	3.519141e+02	5.51100e+02	6.061278e+02	2.272826e+02
smoothness_mean	7	569	9.636028e-02	1.406413e-02	9.58700e-02	9.587740e-02	1.408470e-02
compactness_mean	8	569	1.043410e-01	5.281276e-02	9.26300e-02	9.808295e-02	4.837724e-02
concavity_mean	9	569	8.879932e-02	7.971981e-02	6.15400e-02	7.725070e-02	5.998600e-02
concave.points_mean	10	569	4.891915e-02	3.880284e-02	3.35000e-02	4.400013e-02	2.985956e-02
1-10 of 33 rows 1-8 of 14 columns	S					Previous 1	2 3 4 Next

Tipos de datos en nuestras variables:

sapply(data, class)

##	id	diagnosis	radius_mean
##	"integer"	"character"	"numeric"
##	texture_mean	perimeter_mean	area_mean
##	"numeric"	"numeric"	"numeric"
##	smoothness_mean	compactness_mean	concavity_mean
##	"numeric"	"numeric"	"numeric"
##	<pre>concave.points_mean</pre>	symmetry_mean	<pre>fractal_dimension_mean</pre>
##	"numeric"	"numeric"	"numeric"
##	radius_se	texture_se	perimeter_se
##	"numeric"	"numeric"	"numeric"
##	area_se	smoothness_se	compactness_se
##	"numeric"	"numeric"	"numeric"
##	concavity_se	<pre>concave.points_se</pre>	symmetry_se
##	"numeric"	"numeric"	"numeric"
##	<pre>fractal_dimension_se</pre>	radius_worst	texture_worst
##	"numeric"	"numeric"	"numeric"
##	perimeter_worst	area_worst	smoothness_worst
##	"numeric"	"numeric"	"numeric"
##	compactness_worst	concavity_worst	concave.points_worst
##	"numeric"	"numeric"	"numeric"
##	symmetry_worst	<pre>fractal_dimension_worst</pre>	X
##	"numeric"	"numeric"	"logical"

Veamos si existen valores faltantes en nuestros datos:

anyNA(data)

[1] TRUE

```
#Contamos el numero de valores faltantes por columna:
colSums(is.na(data))
```

diagnosis	radius_mean
0	0
perimeter_mean	area_mean
0	0
ompactness_mean	concavity_mean
0	0
symmetry_mean fractal_	dimension_mean
0	0
texture_se	perimeter_se
0	0
smoothness_se	compactness_se
0	0
ncave.points_se	symmetry_se
0	0
radius_worst	texture_worst
0	0
area_worst sm	oothness_worst
0	0
concavity_worst concav	e.points_worst
0	0
dimension_worst	Х
0	569

plot_missing(data)

contamos con 569 valores faltantes en la última columna "X". Más adelante veremos como tratarlo.

1.2 Análisis exploratorio de los datos

En este paso nuestro objetivo será entender la distribución y relaciones de variables.

Visualización de distribuciones y correlaciones:

```
#Veamos un resumen gráfico general:
plot_intro(data)
```


#Variables Categóricas:

plot_bar(data)

#Variables Numéricas
plot_histogram(data)

Page 2

1.3 Preprocesamiento de los datos.

Eliminación de valores faltantes:

Para comenzar, ya sabemos que existe una columna cuyos valores son todos NA, es decir, faltantes. El primero paso en nuestro preprocesamiento será eliminar esta columna "x":

	diagnosis <chr></chr>	radius_mean <dbl></dbl>	texture_mean <dbl></dbl>	perimeter_mean <dbl></dbl>	area_mean <dbl></dbl>	smoothness_mean <dbl></dbl>
842302	М	17.990	10.38	122.80	1001.0	0.11840
842517	М	20.570	17.77	132.90	1326.0	0.08474
84300903	М	19.690	21.25	130.00	1203.0	0.10960

id <int></int>	· ·	radius_mean <dbl></dbl>	texture_mean <dbl></dbl>	perimeter_mean <dbl></dbl>	area_mean <dbl></dbl>	smoothness_mean <dbl></dbl>
84348301	М	11.420	20.38	77.58	386.1	0.14250
84358402	М	20.290	14.34	135.10	1297.0	0.10030
843786	М	12.450	15.70	82.57	477.1	0.12780
844359	М	18.250	19.98	119.60	1040.0	0.09463
84458202	М	13.710	20.83	90.20	577.9	0.11890
844981	М	13.000	21.82	87.50	519.8	0.12730
84501001	М	12.460	24.04	83.97	475.9	0.11860
1-10 of 569 rd	ows 1-7 of 33 co	olumns		Previous	1 2 3	4 5 6 57 Next

head(data)

		diagnosis <chr></chr>	radius_mean <dbl></dbl>	texture_mean <dbl></dbl>	perimeter_mean <dbl></dbl>	area_mean <dbl></dbl>	smoothness_mean <dbl></dbl>
1	842302	М	17.99	10.38	122.80	1001.0	0.11840
2	842517	М	20.57	17.77	132.90	1326.0	0.08474
3	84300903	М	19.69	21.25	130.00	1203.0	0.10960
4	84348301	М	11.42	20.38	77.58	386.1	0.14250
5	84358402	М	20.29	14.34	135.10	1297.0	0.10030
6	843786	М	12.45	15.70	82.57	477.1	0.12780
6 rc	ows 1-8 of 3	34 columns					

data <- data %>% select(-X)

Veamos si se ha borrado correctamente la columna X y si ahora existe algún otro valor faltante:

colnames(data)

```
## [1] "id"
                                  "diagnosis"
## [3] "radius_mean"
                                  "texture_mean"
## [5] "perimeter_mean"
                                  "area_mean"
## [7] "smoothness_mean"
                                  "compactness_mean"
## [9] "concavity_mean"
                                  "concave.points_mean"
## [11] "symmetry_mean"
                                  "fractal_dimension_mean"
                                  "texture_se"
## [13] "radius_se"
## [15] "perimeter_se"
                                  "area_se"
## [17] "smoothness_se"
                                  "compactness_se"
## [19] "concavity_se"
                                  "concave.points_se"
                                  "fractal_dimension_se"
## [21] "symmetry_se"
                                  "texture_worst"
## [23] "radius_worst"
## [25] "perimeter_worst"
                                  "area_worst"
## [27] "smoothness_worst"
                                  "compactness_worst"
## [29] "concavity_worst"
                                  "concave.points_worst"
## [31] "symmetry_worst"
                                  "fractal_dimension_worst"
```

Veamos si existen valores faltantes en nuestros datos:

anyNA(data)

[1] FALSE

```
#Contamos el numero de valores faltantes por columna:
colSums(is.na(data))
```

```
##
                         id
                                           diagnosis
                                                                   radius_mean
##
                          0
##
              texture_mean
                                      perimeter_mean
                                                                     area_mean
##
                                                                              0
##
           smoothness\_mean
                                    compactness_mean
                                                                concavity_mean
##
                                                    0
##
       concave.points_mean
                                       symmetry_mean
                                                       fractal_dimension_mean
##
                                                    0
##
                  radius_se
                                          texture_se
                                                                  perimeter_se
##
                                                    0
                          0
                                                                              0
##
                    area_se
                                       smoothness_se
                                                                compactness_se
##
                                                    0
                          0
                                                                              0
##
              concavity_se
                                   concave.points_se
                                                                   symmetry_se
##
                                                    0
                                                                              0
##
      fractal_dimension_se
                                        radius worst
                                                                 texture_worst
##
                                                    0
                          0
                                                                              0
##
           perimeter_worst
                                          area_worst
                                                              smoothness_worst
##
                          0
                                                    0
                                                                              0
##
                                     concavity_worst
         compactness_worst
                                                         concave.points_worst
##
                          0
                                                    0
##
            symmetry_worst fractal_dimension_worst
##
```

plot_missing(data)

Además de la columna con valores Faltantes, también tenemos una columna "ID" que no nos aporta ninguna información por lo que también procederemos a eliminarla:

```
data <- data %>% select(-id)
```

colnames(data)

```
## [1] "diagnosis"
                                 "radius_mean"
## [3] "texture_mean"
                                 "perimeter_mean"
                                 "smoothness_mean"
## [5] "area_mean"
## [7] "compactness mean"
                                 "concavity mean"
## [9] "concave.points_mean"
                                 "symmetry_mean"
## [11] "fractal_dimension_mean"
                                 "radius se"
## [13] "texture se"
                                 "perimeter se"
## [15] "area_se"
                                  "smoothness_se"
## [17] "compactness_se"
                                 "concavity_se"
## [19] "concave.points_se"
                                 "symmetry se"
## [21] "fractal_dimension_se"
                                 "radius_worst"
## [23] "texture_worst"
                                 "perimeter_worst"
## [25] "area_worst"
                                 "smoothness_worst"
## [27] "compactness_worst"
                                 "concavity_worst"
## [29] "concave.points_worst"
                                 "symmetry_worst"
## [31] "fractal_dimension_worst"
```

head(data)

diagnosis	radius_mean	texture_mean	perimeter_mean	_	smoothness_mean	compactness_mean
<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1 M	17.99	10.38	122.80	1001.0	0.11840	0.27760
2 M	20.57	17.77	132.90	1326.0	0.08474	0.07864
3 M	19.69	21.25	130.00	1203.0	0.10960	0.15990
4 M	11.42	20.38	77.58	386.1	0.14250	0.28390
5 M	20.29	14.34	135.10	1297.0	0.10030	0.13280
6 M	12.45	15.70	82.57	477.1	0.12780	0.17000
6 rows 1-8 of	32 columns					

Como podemos observar, se ha eliminado la columna "id" y se ha verificado que no existen mas valores faltantes exceptos los ya eliminados en "X".

Después de ellos contamos con un dataset de:

```
dim(data)
## [1] 569 31
```

569 filas y 31 columnas.

357 212

Codificación de variables Categóricas

Anteriormente vimos que nuestro dataset cuenta con una única columna de valores categóricos. "Diagnosis" cuyos valores tienen el siguiente significado: + M (malignant) + B (benign)

El siguiente paso en el preprocesado de datos será pasar esta columna a numérica. Como solo se presentan dos posibles valores (M y B), se aplicará Codificación Binaria: El valor "M" pasará a ser 1 y valor "B" pasará a ser 0.

```
#M -> 1; B -> 0
data$diagnosis <- ifelse(data$diagnosis == "M", 1, 0)</pre>
```

Vamos a verificar que se ha realizado correctamente la conversión:

```
##
## 0 1
```

```
print(data$diagnosis)
```

```
##
 [38] 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1
##
## [75] 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 0 1 0 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 0 1 0 0
## [112] 0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 1 1 0 1 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0
## [149] 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 0 1
## [371] 1 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 1 0 0 0 0 0 0 1 0 0 0 0
## [445] 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
## [556] 0 0 0 0 0 0 0 1 1 1 1 1 1 0
```

Nos cercioramos de que no existe ningún otro valor categórico en el dataset:

```
categorical_columns <- sapply(data, is.factor) | sapply(data, is.character)
names(data)[categorical_columns]</pre>
```

```
## character(0)
```

Efectivamente, todas nuestras columnas ahora son numéricas, lo que nos da paso al siguiente punto en nuestro preprocesamiento de datos.

Estudio de correlación.

Al tener nuestro dataset limpio de NA y solo presentes variables numéricas, el siguiente paso será estudiar las posibles correlaciones de nuestro dataset.

Estudiar la correlación de los datos ayuda a identificar patrones y relaciones entre variables, lo que podría conducir a nuevas hipótesis y descubrimientos. Además, un buen estudio de correlaciones podría ser útil para seleccionar variables relevantes y construir modelos en un futuro.

Los valores que obtendremos tendrán la siguiente interpretación:

- Correlación cercana a 1: Relación positiva fuerte.
- Correlación cercana a -1: Relación negativa fuerte.
- Correlación cercana a 0: No hay relación lineal significativa

```
# Calcular matriz de correlación
correlation_matrix <- cor(data, use = "complete.obs") # Ignora valores faltantes
# Graficar matriz de correlación
corrplot(correlation_matrix, method = "color", type = "upper", tl.cex = 0.8)</pre>
```



```
# Graficar la matriz de correlación con valores en las celdas
ggcorrplot(correlation_matrix,

method = "circle", # Utilizar círculos para representar correlaciones
type = "lower", # Mostrar solo la mitad inferior
lab = TRUE, # Añadir los valores de correlación
lab_size = 2, # Tamaño del texto en las celdas
colors = c("blue", "white", "red"), # Colores para las correlaciones negativas, neutrales y positivas
title = "Matriz de Correlación", # Título del gráfico
tl.cex = 10) # Tamaño de las etiquetas
```

Matriz de Correlación

tratarese un conjunto de datos con 31 variables, la matriz de correlación cuesta interpretarla.

Por ello, como "diagnosis" es nuestra variable objetivo, vamos a observar cómo se correlacionan las demás variables con ella:

```
# Calcular la correlación entre cada variable numérica y 'diagnosis'
cor_with_target <- cor(data, data$diagnosis, use = "complete.obs")

# Crear un data frame para ver las correlaciones junto con los nombres de las variables
correlation_df <- data.frame(Variable = names(data), Correlation = cor_with_target)

# Ordenar el data frame por la columna de Correlation en orden descendente
correlation_df_sorted <- correlation_df[order(-correlation_df$Correlation), ]

# Ver las correlaciones ordenadas junto con los nombres de las variables
print(correlation_df_sorted)</pre>
```

```
Variable Correlation
##
                                               diagnosis 1.000000000
## diagnosis
## concave.points_worst concave.points_worst 0.793566017
## perimeter_worst
                                     perimeter_worst 0.782914137
## concave.points_mean concave.points_mean 0.776613840
## radius_worst
                                   radius_worst 0.776453779
## perimeter_mean
                                        perimeter_mean 0.742635530
## area worst
                                            area_worst 0.733825035
## radius_mean
                                           radius_mean 0.730028511
## area_mean area_mean 0.708983837
## concavity_mean concavity_mean 0.696359707
## concavity_worst concavity_worst 0.659610210
## compactness_mean compactness_mean 0.596533678
## compactness_worst compactness_worst 0.590998238
## radius_se radius_se 0.672333678
## perimeter_se
                                          perimeter_se 0.556140703
## area se
                                                 area se 0.548235940
## texture_worst
                                         texture_worst 0.456902821
## smoothness_worst
                                    smoothness_worst 0.421464861
                                       symmetry_worst 0.416294311
## symmetry_worst
texture_mean 0.415185300
## concave.points_se concave.points_se 0.408042333
## smoothness_mean smoothness_mean 0.358559965
## symmetry_mean symmetry_mean 0.232323333
## texture_mean
                                           texture_mean 0.415185300
## fractal_dimension_worst fractal_dimension_worst 0.323872189
                          compactness_se 0.292999244
## compactness_se
## concavity_se
                                           concavity_se 0.253729766
## fractal_dimension_se fractal_dimension_se 0.077972417
## symmetry_se
                                          symmetry_se -0.006521756
## texture_se
                                             texture_se -0.008303333
## fractal_dimension_mean fractal_dimension_mean -0.012837603
## smoothness_se
                                          smoothness_se -0.067016011
```

En esta tabla podemos ver la correlación de cada variable con "diagnosis" en orden descendente.

Selección de Atributos:

AQUI DEBEMOS ESTUDIAR ELIMINAR VARIABLES DE MUY ALTA CORRELACIÓN YA QUE PODRÍAN SER REDUNDANTES (>0.9) ADEMÁS TAMBIÉN AQUELLAS DE MUY BAJA CORRELACIÓN, PERO TENIENDO EN CUENTA QUE:

CORRELACION <0.3 PUEDEN ELIMINARSE SI TENEMOS MUCHAS 0.3<C<0.5 PUEDEN SER RELEVANTES Y ÚTILES PARA ALGUNOS MODELOS ~0 NORMALMENTE NO AGREGAN VALOR PREDICTIVO

IDFA:

Como no es del todo necesario eliminar variables yo lo que haría es:

-Trabajar con todas -Guardar en otro df data_preprocessed <- data %>% select(-las variables que consideremos) -Hacer lo mismo con ese nuedo df y ver que conjunto funciona mejor.