Supernova 2014J: cálculo de la distancia a M82 y crónica de una imagen única en Colombia.

Diego Edison Umaña Universidad de los Andes Física y Astronomía

Motivación

- Había una supernova visible en Colombia en momento...
- ¿Podré fotografiarla?
- Si obtengo imágenes, ¿qué utilidad práctica tendrán?

La estrella mejor conocida

Estándares

Relacionados con el sol:

- Masa: 1.989 x10³⁰ Kg (332946 Tierras)
- Radio: 6.96 x10⁸ m (696000 km o 109 Tierras)
- Luminosidad: 3.827 x10²⁶ W (Itaipú: 98.2 x10¹² W)
- Densidad: 1470 Kg/m³ (Agua: 999.97 Kg/m³)
- Temperatura superficial: 5778 K (Agua hierve a 373 K)
- Distancia (no relacionado con el sol): Parsecs (pc):= 3.26 a.l.

Magnitudes

- Magnitud aparente (m): observador en tierra.
- Hiparco: magnitudes de 0 a 6. 0 para las más luminosas; 6 para las apenas visibles a ojo desnudo. Actualmente también hay mag negativas.
- Escala logarítmica.
- Magnitud absoluta (M): Se definide como la magnitud aparente a una distancia de 10 pc.

Supernovas

- Entre 8 y 15 (18) masas solares.
- Estrellas que evolucionan muy rápido, y agotan rápidamente su combustible (H, He)...
- Solo las supergigantes llegan a producir hierro.
- Se pierde el equilibrio hidrostático y colapsan, almacenando energía potencial.
- Al liberarse esta energía, se estima una luminosidad de 4.72 x10³⁶ W (1.22 x10³⁶ L_{sol})

Tipos de SN

Supernova taxonomy					
Туре І	Type la			Thermal	
No	Presents a singly <u>ionized</u> <u>silicon</u> (Si II) line at			runaway	
hydrogen	615.0 <u>nm</u> (nanome				
	Type lb/c		Type <u>lb</u>		
	Weakorno	Shows a non-ionized <u>helium</u> (He I) line		<u>collapse</u>	
	silicon	at 587.6 n			
	absorption	Type <u>Ic</u>			
	feature	Weakorn			
Type II	Type II-P/L/N	Type II-	Type II-P		
Shows	Type II spectrum	<u>P/L</u>	Reaches a "plateau" in its		
hydrogen	throughout	No	light curve		
		narrow	Type II-L		
		lines	Displays a "linear"		
			decrease in its light curve		
			(linear in magnitude versus		
			time). ^[44]		
		Type IIn			
	Some narrow lines				
	Type IIb				
	Spectrum changes to become like Type Jb				

Host Galaxies of Distant Supernovae

HST - ACS/WFC

NASA, ESA, and A. Riess (STScI)

STScI-PRC06-52

NGC4526 (16,9Mpc)

SN 1994D

Remanentes

Depende del tipo de supernova y la masa inicial de la estrella.

"Core collapse" (Tipos I b/c, II n/P/b,):

- Estrella de neutrones.
- Agujero negro.

SN Termonuclear (Tipo Ia):

Nada

Estrellas de neutrones, en datos

- Densidad: 5 x10 17 Kg/m 3 (núcleo atómico: 2.3 x10 17 Kg/m 3 o 3 x10 14 ρ_{sol})
- Masa: 1.44 a 3.23 M sol
- Temperatura: 100 T_{sol}
- Tamaño: ???

j12 a 13 km!

Concepto artístico

Agujero negro

- •Densidad:
- 2x10³⁰ Kg/m³
- •Masa: > 4 M_{sol}
- •Tamaño: ???
- •Luminosidad:
- ???
- •Temperatura:
- 333

Estrellas binarias

- Independientes.
- Semiindependientes.
- De contacto.

Supernova la

Estrella 1

- 1. 2 Msol \rightarrow 0.6 Msol
- 2. $0.6 \text{ Msol} \rightarrow 1.44 \text{ Msol}$

Estrella 2

- 1. 1 Msol \rightarrow 2.4 Msol
- 2. $2.4 \text{ Msol} \rightarrow 1.6 \text{ Msol}$

¿Cómo las identificamos?

Importancia

- Su magnitud absoluta es prácticamente igual para todas (aprox. -19,3 mag).
- Distancias astronómicas (1 Gpc).
- Escalera de distancias: variables (menos distancia), TRGB (distancias mayores), SN la (distancias cosmológicas).
- Permiten estimar parámetros cosmológicos.
- Esto último dio un Nobel de Física en 2011.

Share this:

The Nobel Prize in Physics 2011

Photo: U. Montan Saul Perlmutter Prize share: 1/2

Brian P. Schmidt Prize share: 1/4

Photo: U. Montan Adam G. Riess Prize share: 1/4

The Nobel Prize in Physics 2011 was divided, one half awarded to Saul Perlmutter, the other half jointly to Brian P. Schmidt and Adam G. Riess "for the discovery of the accelerating expansion of the Universe through observations of distant supernovae".

Filtros Johnson

Algunos métodos para determinar distancias astronómicas

Escalera de distancias

RR Lyrae

B-W

Globular Cluster

Statistical n

1 kpc

Cepheid

B-W

Módulo de distancia

- $\mu = m_v M_v = 5\log(d) 5 + A_v + X$
- $d = 10^{((\mu+5-A_v)/5)}$
- id en pc!
- A_v es la extinción (en V), un parámetro que da cuenta de la presencia del medio interestelar.
- X es la extinción por masa de aire.

Masa de aire

- Aumenta conforme nos acercamos al horizonte.
- X = sec(z)
- $z = 90^{\circ} h$

Variables Cefeidas

- Son estrellas en transición de gigantes a supergigantes rojas.
- Su inestabilidad causa variaciones de luminosidad.
- Rango de 25 30 Mpc
- Incertidumbres entre 5% y 15%
- La relación entre el periodo de la variación y su luminosidad fue descubierta por Henrietta Leavitt en 1908.

Cálculo con C Var

- Relación sencilla que pemite calcular distancias astronómicas.
- Depende del tipo de Cefeida:
 Tipo I (ricas en metales o jóvenes):
- $\log_{10}(d) = V + (3.34)\log_{10}(P) (2.45)(V-I) + 7.52$ Tipo II (pobres en metales o primigenias) :
- $\log_{10}(d) = V + (3.37) \log_{10}(P) (2.55)(V-I) + 7.48$

TRGB

- •La luminosidad de las RG depende de la metalicidad.
- •La metalicidad depende de la edad (PII).
- •Con lo anterior, dicha luminosidad sirve como indicador de distancia.
- •Aproximadamente en el rango de las cefeidas (50 Mpc)
- •Es un método muy preciso (6%)

Distancias con SN Ia: Δm15

- Mark Phillips encontró una relación entre la velocidad con que se desvanece una SN y su máximo de brillo en 1993.
- $m_P m_{15} = \Delta m_{15}$
- M_{max} (B) = -21.726 + 2.698 Δm_{15}
- $\mu = m_{max} M_{max} = 5log(d) 5 + A_v$
- $d = 10^{((\mu + 5 A_v)/5)}$
- Rango: ¡1Gpc!

Curvas de luz de una SN la

Cosmic Distance Ladder

Coordenadas ecuatoriales

- Ascensión recta (α): ángulo con respecto al punto vernal. Horas, minutos y segundos.
- Declinación (δ): ángulo con respecto al ecuador celeste. Grados, minutos y segundos.

M82 en datos

- $\alpha = 9h 55m 57.2s$
- $\delta = +69^{\circ} 40' 46''$
- Osa Mayor
- Galaxia irregular, activa
- Visible particularmente en rayos X
- 9.3 mag (aparente)
- Velocidad: 203 km/s
- Distancia: 3.5 Mpc
- $A_v = 0.426$ (Shlafly et. al.)
- $A_B = 0.569$ (Shlafly et. al.)

¿Dónde encontrarla?

Curva de luz SN2014J

SN2014J en datos

A partir de la imagen:

- Estrella de referencia: TYC 438 1099 1
- $m_{vref} = 10,63$
- $m_{VSN} = (195/216^*)(10,63) = 9,56$
- X = 2,406 2,398 = 0,008

Curva de luz:

- $m_{vSN} = 10,46$
- $m_{15} m_P = \Delta m_{15} = 0.94$
- $M_{\text{max}}(V) = -21.726 + 2.698 \Delta m_{15} = -19,19$

^{*}Calculadas con Iris mediante slice

Estimación de d (V)

d =
$$10^{(m_v - M_v + 5 - A_v - X)/5}$$

= $3.6(5)$ Mpc
d_A = $3.8(7)$ Mpc (NED IPac)
 $\epsilon = 5\%$

Discrepancias

Con respecto a la curva de luz:

$$\Delta m = (10,46 - 9,08) = 1,38 \text{ mag}$$

Con respecto a la imagen:

$$\Delta m = (9,56 - 9,08) = 0,47 \text{ mag}$$

Imagen con respecto a la curva de luz:

$$\Delta m = (10,46 - 9,56) = 0,9 \text{ mag}$$

Recomendaciones

- El uso de filtros es crucial, desafortunadamente no contábamos con ellos. Se trabajó con luz blanca, para la cual no hay coeficientes calculados.
- Calcular M en el visual, ya que se implementó M en el B para usar Δm₁₅
- El análisis fotométrico es más confiable, la cámara es más sensible que el ojo.
- La masa de aire dificulta mucho la estimación de d, por nuestra posición geográfica.
- El error con respecto a técnicas avanzadas no es muy grande (24%), esto es sumamente positivo.

Telescopio: Meade LX90 8" (203mm)

Propiedad de **Ignacio Londoño**, astrónomo aficionado. Agradecimiento especial.

Cámara: Canon EOS Rebel T3i

Propiedad de Camilo Ramos.

Oculares

Meade Series 4000 Eyepieces:*			
	Magnifying	With #140	
Eyepiece	Power	2x Barlow Lens	
Super Plössl (4-elements)			
SP 6.4mm	313X	626X	
SP 9.7mm	206X	412X	
SP 12.4mm	161X	322X	
SP 15mm	133X	266X	
SP 20mm	100X	200X	
SP 26mm	77X	154X	
SP 32mm	63X	126X	
SP 40mm	50X	100X	
SP 56mm	36X	72X	
Super Wide Angle (6-elements)			
SWA 13.8 mm	145X	290X	
SWA 18mm	111X	222X	
SWA 24.5mm	82X	164X	
SWA 32mm	63X	126X	
SWA 40mm	50X	100X	
Ultra Wide Angle (8-elements)			
UWA 4.7mm	426X	852X	
UWA 6.7mm	299X	598X	
UWA 8.8mm	227X	454X	
UWA 14mm	143X	286X	

Fig. 15: Series 4000 Eyepieces.

Montaje

- 1. Adaptador T.
- 2. Anillo.
- 3. Cámara.

Algunos datos

Cámara	
Fabricante de cámara	Canon
Modelo de cámara	Canon EOS REBEL T3i
Punto F	f/0
Tiempo de exposición	30 s
Velocidad ISO	ISO-1600
Compensación de exposición	0 paso
Distancia focal	50 mm
Apertura máxima	
Modo de medición	Diseño
Distancia al objeto	
Modo de flash	Sin flash, obligatorio
Intensidad de flash	
Longitud focal de 35 mm	

Apagar las luces, ipor favor!

SN2014J en M82 (Original)

SN2014J (Tratada con Iris)

¿Cuál es la supernova?

TYC 438 1099 1

SN2014J

SN2014J. Telescopio 2m.

Preguntas

