МГУ лаба №121 Определение модуля Юнга из деформации изгиба

Сергей Слепышев 109 группа

Ноябрь 2022

0.1 Вступление

Цель работы:

Определение модуля Юнга материала равнопрочной балки и радиуса кривизны изгиба из измерений стрелы прогиба балки в разных ее сечениях.

0.2 Эксперимент и обработка

0.2.1 Упражнение 1. Изучение деформации изгиба и определение модуля Юнга

Сделал замеры размеров балок, записал данные в таблицу (также здесь масса одного из грузов):

nomo	a0	b	L	Sigma L	X или (L - x)	Sigma X	М гр	Sigma M
name	mm	mm	sm	sm	sm	sm	g	g
Углепластик	41,55	12,80		0.1	22,8	0,1	222	5
Алюминий	40,45	12,10						
Медь	40,60	12,20	50,0					
Сталь	40,40	12,10						
Sigma	0.05	0.05						

Далее провел основной эксперимент с навешиванием грузов на балки, записал данные в следующие таблицы (сверху подписал материал балки, с которой производились измерения):

Погрешность σ_u считал по формуле:

$$\sigma_u = \sqrt{S_u^2 + \sigma_{\text{сист}}^2}$$

где

$$S_u = \sqrt{\frac{\sum (u_i - \overline{u})}{N(N-1)}}$$

$$\sigma_{\text{сист}} = 1 * 0.01 \text{mm}$$

Погрешность измерения массы груза M решил сделать больше, чем в методичке, т.к. мне попались какие-то дырявые экземпляры, которые отличались от средней массы на 4-5 грамм.

$$\sigma_M = 5$$
гр

Carbon fiber

Count	u_1(x)	u(x)	u_1(x)	u(x)	mean u(x)	S u(x)	Sigma u
1	0.01 mm	0.01 mm	0.01 mm				
	up	ир	down	down			
0	49	0	53	0	0,0	0,0	1,0
1	61	12	64	11	11,5	0,5	1,1
2	73	24	75	22	23,0	1,0	1,4
3	85	36	87	34	35,0	1,0	1,4
4	96	47	99	46	46,5	0,5	1,1
5	109	60	111	58	59,0	1,0	1,4
6	121	72	122	69	70,5	1,5	1,8
7	132	83	134	81	82,0	1,0	1,4
8	145	96	146	93	94,5	1,5	1,8
9	157	108	157	104	106,0	2,0	2,2
10	169	120	169	116	118,0	2,0	2,2

Aluminium

Count	u_1(x)	u(x)	u_1(x)	u(x)	mean u(x)	S u(x)	Sigma u
1	0.01 mm	0.01 mm	0.01 mm				
	up	up	down	down			
0	99	0	100	0	0,0	0,0	1,0
1	107	8	109	9	8,5	0,5	1,1
2	115	16	117	17	16,5	0,5	1,1
3	123	24	126	26	25,0	1,0	1,4
4	132	33	135	35	34,0	1,0	1,4
5	140	41	143	43	42,0	1,0	1,4
6	148	49	151	51	50,0	1,0	1,4
7	157	58	159	59	58,5	0,5	1,1
8	166	67	167	67	67,0	0,0	1,0
9	174	75	175	75	75,0	0,0	1,0
10	183	84	183	83	83,5	0,5	1,1

Copper

Count	u_1(x)	u(x)	u_1(x)	u(x)	mean u(x)	S u(x)	Sigma u
1	0.01 mm	0.01 mm	0.01 mm				
	up	up	down	down			
0	105	0	106	0	0,0	0,0	1,0
1	110	5	112	6	5,5	0,5	1,1
2	116	11	117	11	11,0	0,0	1,0
3	121	16	123	17	16,5	0,5	1,1
4	126	21	129	23	22,0	1,0	1,4
5	132	27	133	27	27,0	0,0	1,0
6	137	32	140	34	33,0	1,0	1,4
7	143	38	144	38	38,0	0,0	1,0
8	150	45	150	44	44,5	0,5	1,1
9	154	49	155	49	49,0	0,0	1,0
10	160	55	160	54	54,5	0,5	1,1

Steel

Count	u_1(x)	u(x)	u_1(x)	u(x)	mean u(x)	S u(x)	Sigma u
	0.01 mm	0.01 mm	0.01 mm				
1	up	up	down	down			
0	84	0	84	0	0,0	0,0	1,0
1	87	3	88	4	3,5	0,5	1,1
2	91	7	92	8	7,5	0,5	1,1
3	94	10	95	11	10,5	0,5	1,1
4	99	15	99	15	15,0	0,0	1,0
5	102	18	103	19	18,5	0,5	1,1
6	106	22	106	22	22,0	0,0	1,0
7	110	26	110	26	26,0	0,0	1,0
8	113	29	114	30	29,5	0,5	1,1
9	117	33	117	33	33,0	0,0	1,0
10	120	36	120	36	36,0	0,0	1,0

Методом МНК обработал зависимости u(F) и получил такие коэффициенты (сверху величины, снизу погрешности):

Α	A	Α	A
s^2 / kg	s^2 / kg	s^2 / kg	s^2 / kg
Carbon	Aluminium	Copper	Steel
5,3298E-02	3,7587E-02	2,4618E-02	1,6471E-02
5,8E-06	4,9E-06	3,2E-06	2,2E-06

Для оценки адекватности модели я построил график зависимости u(F) (F=mg):

Отсюда получил значения модулей Юнга E и теоретическое значение радиуса кривизны R_{theor} для углепластика:

	Е	E	E	Е	R theor
	N / m^2	N / m^2	N / m^2	N / m^2	m
	Carbon	Aluminium	Copper	Steel	Carbon
mean	3,36E+10	5,79E+10	8,59E+10	1,32E+11	22,4
Sigma	4E+08	7E+08	1E+09	2E+09	0,8

Формулы расчетов привожу ниже:

$$E = \frac{6Lx^2}{Aa_0b^3}$$

$$\sigma_E = E * \sqrt{\left(\frac{\sigma_L}{L}\right)^2 + \left(2 * \frac{\sigma_x}{x}\right)^2 + \left(\frac{\sigma_{a_0}}{a_0}\right)^2 + \left(\frac{\sigma_A}{A}\right)^2 + \left(3 * \frac{\sigma_b}{b}\right)^2}$$

$$R = \frac{Ea_0b^3}{12FL}$$

$$\sigma_R = R * \sqrt{\left(\frac{\sigma_E}{E}\right)^2 + \left(\frac{\sigma_{a_0}}{a_0}\right)^2 + \left(3 * \frac{\sigma_b}{b}\right)^2 + \left(\frac{\sigma_F}{F}\right)^2 + \left(\frac{\sigma_L}{L}\right)^2}$$

Вывод

Значения не очень сошлись с табличными данными((, но все равно довольно близко, если считать табличные данные правильными, то погрешности оценены неверно (скорее всего ошибка в модели).

0.2.2 Упражнение 2. Определение радиуса кривизны в случае легкой балки

Провел измерения навешивая максимальное количество грузов (F=10mg) на балку из углепластика, постепенно изменяя при этом X:

Carbon fiber

X	u	u	mean u	S u(x)	Sigma u
m	0.01 * mm	0.01 * mm	0.01 * mm	0.01 mm	0.01 mm
	up	down			
0,228	116	118	117,0	1,0	1,4
0,208	102	103	102,5	0,5	1,1
0,188	90	89	89,5	0,5	1,1
0,168	77	76	76,5	0,5	1,1
0,148	65	64	64,5	0,5	1,1
0,128	53	53	53,0	0,0	1,0

Погрешности u считал аналогично предыдущему упражнению. Далее обработал зависимость $u(x^2)$ с помощью МНК и рассчитал радиус кривизны R:

A	Sigma A	R exp	Sigma R
1 / m	1 / m	1 / m	1 / m
0,0178	0,0004	28,1	0,6

$$R = \frac{1}{2A}$$

$$\sigma_R = R * \frac{\sigma_A}{A}$$

И вот графичек $u(x^2)$:

Вывод

Экспериментальное значение R сильно отличается от полученного в упр. 1 теоретического(((. Если честно от такого метода измерений я не ждал большой точности (измерения можно было править на 30% только за счет ударов по столу, что уже говорит о несовершенстве установки).