

## Department of Inter Disciplinary Studies, Faculty of Engineering, University of Jaffna, Sri Lanka MC 3010 - Differential Equations and Numerical Methods

## **Tutorial-2**

- 1. Using the bisection method to find a root of equation; Provide the approximations to four decimal places.
  - (a)  $f(x) = x^3 + x^2 1 = 0$  compute the first four approximations.
  - (b)  $f(x) = x^3 + 2x^2 + x 1 = 0$  compute the first five approximations.
  - (c)  $2x log_{10}x = 7$  which lies between 3 and 4. Find the root to within an absolute error tolerance 0.01.
- 2. Use Newton's method to, find a root of equation; Provide the approximations to four decimal places
  - (a)  $f(x) = x^3 2x 5 = 0$  starting with  $x_0 = 2$ ,
  - (b) Find an interval of length in which the root of  $f(x) = 3x^3 4x^2 4x 7 = 0$  lies. Take the middle point of this interval as the starting approximation.
  - (c) Find the root between 0 and 1 of  $x^3 = 6x 4$
  - (d) Find an approximate solution of the equation  $e^x 3x = 0$  (assume  $x_0 = 0.4$ )
- 3. Apply the fixed-point method to determine the initial approximate root, up to four decimal places, for the equation  $2x^3 2x 5 = 0$  and indicate whether the iterations will converge or not near x = 1.5
- 4. Using Linear Lagrange polynomial find the  $P_1(x)$ . Given f(-1) = 0, f(1) = 1.
- 5. Using Quadratic Lagrange polynomial find the  $P_2(x)$  and find value of  $P_2(x)$  at x = 2. Given f(0) = 15, f(1) = 48, f(5) = 85.
- 6. Using Lagrange formula, find P(10) from the given data. Given f(5) = 12, f(6) = 13, f(9) = 14, f(11) = 16
- 7. The velocity (v) of a rocket is given as a function of time (t) as

| t(s)   | 0 | 0.5 | 1.2 | 1.5 | 1.8 |
|--------|---|-----|-----|-----|-----|
| v(m/s) | 0 | 213 | 223 | 275 | 300 |

Allowed to use the forward divided difference, backward divided difference or central divided difference approximation of the first derivative, find the best estimate for the acceleration  $a = \frac{dv}{dt}$  in  $m/s^2$  of the rocket at t = 1.5 seconds.

8. Let  $f(x) = x + \frac{2}{x}$ . Use quadratic Lagrange interpolation based on the nodes  $x_0 = 1, x_1 = 2, x_2 = 2.5$  to approximate f(1.5)