1	2	3	4	5	6	7
8	1	2	3	4	5	14
15	6	7	8	9	10	12
22	11	12		13	14	27
28	15	16	17	18	19	34
35	20	21	22	23	24	41
42	43	44	45	46	47	48

57
1,42,5
3,54,6
4,35,4
5,16,2

1	2	3	4	5	6	7	
8	9	10	11	12	13	14	
15	16	1	2	3	4	5	
22	23	6	7	8	9	10	
28	29	11	12		13	14	
35	36	15	16	17	18	19	
42	43	20	21 40	22	23	24	
							80

Análisis de encontrar una posición de una matriz x en una y

1	2	3	4	5	6	7		
8	9	10	11	12	13	14		
15	16	17	18	19	20	12		
22	23	24	24.5	25	26	27		
28	29	30	31	1	2	3		
35	36	37	38	4		5		
42	43	44	45	6	7	8		
								120

Podemos concluir que si hacemos la operación (MatrizB-MatrizA)/2 = C. Donde C es la cantidad que nos debemos desplazar para encontrar la posición de lo que está detrás de la MatrizA en MatrizB.

Análisis sobre rotar matrices

1	2	3
4		5
6	7	8

ı	1,1	
	1,2	
-)	1,3	
ı	2,1	
	2,3	
ī	3,1	
	3,2	
	3,3	

Para saber donde va el espacio en blanco simplimente es: (F+1)/2=P. Donde F son las filas y P es la posición donde queda el espacio.

Luego se construye la matriz y se van asignando valores, teniendo en cuenta que en la posición P va un espacio en blanco.

Análisis de la construcción de la matriz

Tomemos el ejemplo del Desafio 1, donde la clave(K) es:

$$K(4,3,1,-1,1)$$

Sabemos que todas las matrices tienen que ser impares, entonces miramos el número mayor entre las filas y columnas dadas

Con el número mayor debemos ver si es impar, si es así lo dejamos igual, si es par debemos sumarle 1(+1). Éste número será la Matriz inicial(Matriz0).

Diseño de la solución

La matriz con la que vamos a comparar la Matriz0 será la Matriz1, la cual tendrá el mismo tamaño que la Matriz0, para evitar problemas a futuro.

1	2	3	4	5
6	7	8	9	10
11	12		13	14
15	16	17	18	19
20	21	22	23	24

Ahora según el número debemos ver si Matriz0 es mayor a Matriz1 en la posición 4,3.

1	2	3
4		5
6	7	8

Si el número es menor debemos de rotar la Matriz1 hasta encontrar uno mayor, o si rotamos 4 veces(volver a la posición inicial) debemos de aumentar el tamaño de la Matriz1 en 2(+2).

Así sucesivamente hacemos las otras comparaciones.