

Model Free Control

Easwar Subramanian

TCS Innovation Labs, Hyderabad

Email: easwar.subramanian@tcs.com / cs5500.2020@iith.ac.in

September 16, 2022

Overview

- Review
- 2 Monte Carlo Control
- 3 TD Control
- Summary and Closing Remarks

Review

On Model Free Control

- ▶ We use the principle behind policy iteration to do model free control as value iteration requires knowledge of model
 - ★ Policy evaluation: use MC or TD based model free prediction
 - ★ Policy improvement
- ightharpoonup (Greedy) Policy improvement over V is also model based

$$\pi(s) = \arg\max_{a} \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma V^{\pi}(s') \right]$$

ightharpoonup (Greedy) policy improvement over Q is model free

$$\pi(s) = \operatorname*{arg\,max}_{a} Q^{\pi}(s, a)$$

 \blacktriangleright For model-free policy improvement, we use Q^{π} , not V^{π}

Core Idea behind Model Free Control

- ightharpoonup Initialize a policy π
- ► Repeat
 - \star Policy Evaluation : Find Q^{π}
 - \star Policy Improvement : Get an improved policy from evaluation of Q^{π}

Policy Evaluation : Action Value Function

- We now need to evaluate Q^{π} instead of V^{π}
- \triangleright Recall that the state-action value function of a policy π is given by,

$$Q^{\pi}(s, a) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}(G_t | s_t = s, a_t = a)$$

$$= \mathbb{E}_{\pi} \left(\sum_{k=0}^{\infty} \gamma^k r_{t+k+1} | s_t = s, a_t = a \right)$$

$$= \mathbb{E}_{\pi}(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) | s_t = s, a_t = a)$$

• We can use MC or TD methods to evaluate Q^{π} using samples

First Visit Monte Carlo : Action Value Function

- ▶ To evaluate $Q^{\pi}(s, a)$ for some given state s and action a, repeat over several episodes
 - \star The first time t that $s_t = s$ and $\pi(s) = a$ in the episode
 - 1. Increment counter for number of visits to s: $N(s,a) \leftarrow N(s,a) + 1$
 - 2. Increment running sum of total returns with return from current episode: $S(s,a) \leftarrow S(s,a) + G_t$
- ▶ Monte Carlo estimate of value function $Q(s, a) \leftarrow S(s, a)/N(s, a)$

The main drawback of this algorithm is

- ▶ Many state action pairs may never be visited
- \blacktriangleright If policy π is deterministic, things get even worse

Exploring Starts Assumption

Exploring Starts (ES) Assumption

- ▶ First step of each episode start at a state-action pair, and that every such pair has non-zero probability of being selected at start
- ► Guarantees that all state-action pairs will be visited an infinite number of times in the limit of an infinite number of episodes

Not a realistic assumption at all!! But let's assume it for a while

 \blacktriangleright With ES assumption, first or every visit MC algorithm will evaluate Q^{π}

Monte Carlo Control

Policy Iteration with Action Value Function

- Monte Carlo Policy Evaluation, $Q = Q^{\pi}$
- Greedy policy improvement, $\pi' = \arg \max_a Q^{\pi}(s, a)$

Monte Carlo Control with ES

Algorithm Monte Carlo Control with ES

- 1: Start with an initial policy π_1 ;
- 2: **for** $k = 1, 2, \dots, K$ **do**
- 3: Policy Evaluation Step: Evaluate Q^{π_k} using first or every visit MC
- 4: Policy Improvement Step:

$$\pi_{k+1} = \arg\max_{a} Q^{\pi_k}(s, a)$$

5: end for

- \triangleright Convergence of policy evaluation to Q^{π} is assured only under the ES assumption
- ▶ Once ES assumption is made, to understand convergence to Q_* and π_* one can use the same kind of arguments as we had in the policy iteration algorithm in the DP setting

Policy Iteration with Action Value Function

- ▶ Is it good to be always greedy?
- ▶ Should we patiently wait until policy evaluation step converges?

On Greedy Action Selection

- ➤ There are two doors in front of you
- ▶ You open the left door and get reward 0 i.e. V(left) = 0
- ▶ You open the right door and get reward 1 V(right) = 1
- ▶ You open the right door and get reward 3 V(right) = 2
- ➤ You open the right door and get reward 2 V(right) = 3
- ➤ Are we sure that right door is the best door?

13 of 36

$\varepsilon\text{-Greedy Exploration}$

- ➤ Simplest idea for ensuring continual exploration
- \blacktriangleright All m actions are tried with non-zero probability every time
 - \star With probability 1ε , choose the greedy action
 - \star With probability ε , choose an action uniformly at random

$$\pi(a|s) = \frac{\varepsilon}{m} + 1 - \varepsilon$$
, if $a = \underset{a'}{\operatorname{arg\,max}} Q(s, a')$,
= $\frac{\varepsilon}{m}$, otherwise

ε -Greedy Policy Improvement

For any policy ε -greedy policy π , the ε -greedy policy π' w.r.t. Q^{π} is an improvement over π , that is, $V^{\pi'}(s) \geq V^{\pi}(s)$

ε — Greedy Policy Improvement

$$\begin{split} Q^{\pi}(s,\pi'(s)) &= \sum_{a\in\mathcal{A}} \pi'(a|s)Q^{\pi}(s,a) \\ &= \frac{\varepsilon}{m} \sum_{a\in\mathcal{A}} Q^{\pi}(s,a) + (1-\varepsilon) \max_{a} Q^{\pi}(s,a) \\ &= \frac{\varepsilon}{m} \sum_{a\in\mathcal{A}} Q^{\pi}(s,a) + (1-\varepsilon) \frac{1-\varepsilon}{1-\varepsilon} \max_{a} Q^{\pi}(s,a) \\ &= \frac{\varepsilon}{m} \sum_{a\in\mathcal{A}} Q^{\pi}(s,a) + (1-\varepsilon) \sum_{a} \frac{\pi(a|s) - \frac{\varepsilon}{m}}{1-\varepsilon} \max_{a} Q^{\pi}(s,a) \\ &\geq \frac{\varepsilon}{m} \sum_{a\in\mathcal{A}} Q^{\pi}(s,a) + (1-\varepsilon) \sum_{a} \frac{\pi(a|s) - \frac{\varepsilon}{m}}{1-\varepsilon} Q^{\pi}(s,a) \\ &= \sum_{a\in\mathcal{A}} \pi(a|s)Q^{\pi}(s,a) = V^{\pi}(s) \end{split}$$

Therefore, $V^{\pi'}(s) \geq V^{\pi}(s)$ from the policy improvement theorem

(1)

Definition

Greedy in the Limit with Infinite Exploration

- ▶ All state-action pairs are visited infinitely often
- ▶ The policy converges to a purely greedy policy

$$\lim_{k \to \infty} \pi_k(a|s) = \mathbf{1}_{a = \arg\max_{a'} Q_k(s,a)}$$

 \triangleright ε -greedy is GLIE if ε decays to 0 asymptotically, for example,

$$\varepsilon_k = \frac{1}{k}$$

Optimistic GLIE Policy Iteration

Every episode

- ▶ Monte Carlo Policy Evaluation $Q \approx Q^{\pi}$
- ▶ Policy improvement using ϵ greedy with ε decay

GLIE Monte Carlo Control

Algorithm Monte Carlo Control: GLIE

- 1: Initalize Q(s,a) = 0, set $\varepsilon = 1$;
- 2: Create an ε -greedy initial policy π_1 ;
- 3: **for** $k = 1, 2, \dots, K$ **do**
- 4: Sample a trajectory from policy π_k
- 5: for For each state action (s_t, a_t) pair in the trajectory do
- 6: Compute the total discounted return G_t starting from (s_t, a_t)
- 7:

$$N(s_t, a_t) = N(s_t, a_t) + 1$$

8:

$$Q(s_t, a_t) = Q(s_t, a_t) + \frac{1}{N(s_t, a_t)} (G_t - Q(s_t, a_t))$$

- 9: end for
- 10: Set $\epsilon \leftarrow \frac{1}{k}$ and perform the policy improvement step as

$$\pi_{k+1} = \epsilon$$
-greedy (π_k)

11: end for

TD Control

TD Control

- ▶ Natural idea : Use TD instead of MC in policy iteration framework
- \blacktriangleright Apply TD to evaluate Q(s,a) in the evaluation step
- ▶ Use ε -greedy policy improvement in the update step

TD Evaluation of Q Function

▶ State-action value function of a policy π :

$$Q^{\pi}(s,a) \stackrel{\text{def}}{=} \mathbb{E}_{\pi}(G_t|s_t = s, a_t = a)$$

$$= \mathbb{E}_{\pi}(r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1})|s_t = s, a_t = a)$$

▶ Iterative DP policy evaluation:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma \sum_{a'} \left(\pi(s',a') Q_{k}(s',a') \right) \right]$$
$$Q_{k} \to Q^{\pi}$$

▶ TD approximation: Given the transition $(s_t, a_t, r_{t+1}, s_{t+1})$, sample $a' \sim \pi(s_{t+1}, \cdot)$, and update

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t [r_{t+1} + \gamma Q(s_{t+1}, a') - Q(s_t, a_t)]$$

TD Evaluation of Q Function : SARSA

▶ TD approximation: Given the transition $(s_t, a_t, r_{t+1}, s_{t+1})$, sample $a' \sim \pi(s_{t+1}, \cdot)$, and perform the following update

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t [r_{t+1} + \gamma Q(s_{t+1}, a') - Q(s_t, a_t)]$$

- ▶ On-policy version (SARSA): $a_t \sim \pi(s_t, \cdot)$
- ▶ Off-policy version: $a_t \sim \mu(s_t, \cdot)$;
 - ★ Need to multiply the term inside square brackets with suitable importance sampling factor

TD Evaluation : Convergence

- ▶ On Policy and off-policy version covnerges to Q^{π}
 - \star Convergence takes place under similar conditions as TD methods for V^{π}
 - ► State and action spaces are finite
 - ► All state-action pairs are visited infinitely often
 - ▶ Robbins-Monroe condition: $\sum_t \alpha_t = \infty$, $\sum_t \alpha_t^2 < \infty$

Optimistic Policy Iteration

Along every episode, we interleave one step of policy evaluation followed ϵ -greedy policy improvement

SARSA: On-Policy Control

- ▶ Policy is always ε -greedy with ε decay
- ▶ Given a trajectory segment $(s_t, a_t, r_{t+1}, s_{t+1}, a_{t+1})$ generated by the ε -greedy policy, update

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t [r_{t+1} + \gamma Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t)]$$

Algorithm SARSA

- 1: Initialize Q(s, a) arbitrarily, with Q at terminal states set to zero
- 2: **for** Repeat for each episode **do**
- 3: Initialize s, choose action a at s using ε-greedy over Q
 4: for Repeat for each step in the episode do
- 5: Take action a, observe reward r and next state s'
- 6: Choose action a' for state s' using ϵ -greedy over Q

$$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma Q(s',a') - Q(s,a)], s \leftarrow s', a \leftarrow a'$$

- 8: end for
- 9: end for

7:

Learning Optimal State-Action Value Function

▶ Optimal Q function:

$$Q_*(s, a) \stackrel{\text{def}}{=} \max Q^{\pi}(s, a) = Q^{\pi^*}(s, a)$$

Bellman optimality equation:

$$Q_*(s, a) = \mathbb{E}\left[r_{t+1} + \gamma \max_{a'} Q_*(s_{t+1}, a') | s_t = s, a_t = a\right]$$

Iterative DP approximation

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} \mathcal{P}_{ss'}^{a} \left[\mathcal{R}_{ss'}^{a} + \gamma \max_{a'} Q_{k}(s', a') \right]$$

$$Q_{k} \to Q_{*}$$

Q-Learning: Off-Policy Control

- ▶ Policy is always ε -greedy with ε decay
- ▶ Given a trajectory segment $(s_t, a_t, r_{t+1}, s_{t+1})$ generated by the ε -greedy policy, update

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha_t [r_{t+1} + \gamma \max_{a'} Q(s_{t+1}, a') - Q(s_t, a_t)]$$

Algorithm Q-Learning

- 1: Initialize Q(s, a) arbitrarily, with Q at terminal states set to zero
- 2: for Repeat for each episode do
- 3: Initialize s, choose action a at s using ϵ -greedy over Q
- 4: **for** Repeat for each step in the episode **do**
- 5: Take action a, observe reward r and next state s'
- 6: Choose target to update Q(s, a) by being greedy at s' as shown below 7:

$$Q(s, a) \leftarrow Q(s, a) + \alpha [r + \gamma \max_{s} Q(s', a') - Q(s, a)], s \leftarrow s'$$

- 8: end for
- 9: end for

SARSA and Q-Learning : Backup diagram

TCS Research & Innovation

- ▶ Q-learning is an off-policy algorithm
 - \star Target policy is greedy w.r.t to Q(s, a),
 - \bigstar Behaviour policy is ε -greedy w.r.t to Q(s,a)

Backup Diagrams for SARSA and Q-Learning

Summary and Closing Remarks

Summary

- ▶ MC-based evaluation of V^{π} (also possible for Q^{π})
- ▶ GLIE Monte-Carlo control converges to optimal action value function
- ▶ TD-based approximate evaluation of V^{π}, Q^{π}
 - ★ 1-step TD, n-step TD, TD(λ), SARSA
 - \bigstar Convergence guarantees under infinite exploration, and Robbins-Monroe condition
- ▶ TD-based control
 - \star On-policy control with SARSA (also possible: n-step SARSA, SARSA(λ))
 - \star Off-policy control with Q-learning
 - ★ Based on optimistic policy iteration, and GLIE

MC Vs TD Control

- ▶ TD methods have several advantages over MC methods
 - ★ Lower variance
 - ★ Online
 - ★ Partial sequences

Schematic View of MC and TD Algorithms

Figure: MC Algorithm and TD Algorithms

Afterstates

- ▶ Tic-Tac-Toe : States : Board positions and moves are actions
- ▶ A conventional action-value function (Q(s,a)) would map or learn about the two state action pairs on the top row separately
- ▶ An afterstate value function would immediately evaluate both equally
- ► Any learning about the position-move pair on the left would immediately transfer to the pair on the right

Pavlov's Dog and Temporal Difference

Pavlov's Dog

$$V(s) \leftarrow V(s) + \alpha [r + \gamma V(s') - V(s)]$$

Figure Source:

Thondrike's Cat and Exploration

Thondrike's cat

Actions by cat

 ϵ -greedy strategy helps to explore !!

What Next?

All methods discussed under model free methods are in the tabular setting

- ▶ Next: richer ways to represent value functions
- ▶ Needed for very large (or continuous) state spaces
- ▶ What if the action space is large (or continuous)?

Over to Deep RL!!

