Fonctions circulaires

Aperçu

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

- 1. Fonctions trigonométriques
- 1.1 Le cercle trigonométrique
- 1.2 Signe et valeurs remarquables
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

- 1. Fonctions trigonométriques
- 1.1 Le cercle trigonométrique
- 1.2 Signe et valeurs remarquables
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

On utilisera souvent les fonctions **trigonométriques**, appelées fonctions **cosinus**, **sinus**, **tangente** et **cotangente**, abrégées par cos, sin, tan et cotan.

R

$$\cos^2 x + \sin^2 x = 1.$$

Pour les fonctions trigonométrique, l'habitude est de noter

$$\sin^2(x) = (\sin x)^2 \qquad \qquad \cos^2(x) = (\cos x)^2$$

$$\cos^2(x) = (\cos x)^2$$

$$\tan^2(x) = (\tan x)^2.$$

On fait de même pour les autres puissances, même pour -1:

$$\sin^{-1}(x) = \frac{1}{\sin x}$$

$$\cos^{-1}(x) = \frac{1}{\cos x}$$

$$\sin^{-1}(x) = \frac{1}{\sin x}$$
 $\cos^{-1}(x) = \frac{1}{\cos x}$ $\tan^{-1}(x) = \frac{1}{\tan x}$

et ceci n'a rien à voir avec une quelconque fonction réciproque (qui n'existe pas pour les fonctions sin, cos, tan).

1. Si $x - \frac{\pi}{2}$ n'est pas multiple de π , alors

$$\tan x = \frac{\sin x}{\cos x}.$$

2. Si x n'est pas multiple de π , alors

$$\cot x = \frac{\cos x}{\sin x}.$$

3. Si x n'est pas un multiple de $\frac{\pi}{2}$, alors

$$\cot x = \frac{1}{\tan x}.$$

C'est pour cela que cotangente est peu utilisé.

4. Si $x - \frac{\pi}{2}$ n'est pas multiple de π , alors

$$1 + \tan^2 x = \frac{1}{\cos^2 x}.$$

D Si

Si on donne deux réels u et v vérifiant $u^2+v^2=1$, alors le point de coordonnées (u,v) se trouve sur le cercle trigonométrique, et il existe un réel x, unique modulo 2π , tel que

$$u = \cos x$$
 et $v = \sin x$.

P Si

Si x et y sont deux réels

$$\begin{cases} \cos x = \cos y \\ \sin x = \sin y \end{cases} \iff \exists k \in \mathbb{Z}, y = x + 2k\pi \iff x \equiv y \pmod{2\pi}.$$

- 1. Fonctions trigonométriques
- 1.1 Le cercle trigonométrique
- 1.2 Signe et valeurs remarquables
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

	Quadrants						
X	Q_1	Q_2	Q_3	Q_4			
sin x	+	+	_	_			
$\cos x$	+	_	_	+			
tan x	+	_	+	_			
cotan x	+	-	+	_			

x	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$
$\sin x$	0	$\frac{1}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1
$\cos x$	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0
tan x	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	
cotan x		$\sqrt{3}$	1	$\frac{1}{\sqrt{3}}$	0

- 2. Formulaire de Trigonométrie
- 2.1 Angles associés
- 2.2 Formules d'addition
- 2.3 Formules de duplication
- 2.4 Formules de Carnot
- 2.5 Formules de l'angle moitié
- 2.6 Formules de Simpson inverses
- 2.7 Formules de Simpson
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

- 2. Formulaire de Trigonométrie
- 2.1 Angles associés
- 2.2 Formules d'addition
- 2.3 Formules de duplication
- 2.4 Formules de Carnot
- 2.5 Formules de l'angle moitié
- 2.6 Formules de Simpson inverses
- 2.7 Formules de Simpsor
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

Ces égalités sont, de préférence, à mémoriser visuellement, sur le cercle trigonométrique ou sur les courbes des fonctions circulaires.

$$\sin(-x) = -\sin x \qquad \cos(-x) = \cos x \qquad \tan(-x) = -\tan x$$

$$\sin\left(\frac{\pi}{2} - x\right) = \cos x \qquad \cos\left(\frac{\pi}{2} - x\right) = \sin x \qquad \tan\left(\frac{\pi}{2} - x\right) = \frac{1}{\tan x}$$

$$\sin\left(\frac{\pi}{2} + x\right) = \cos x \qquad \cos\left(\frac{\pi}{2} + x\right) = -\sin x \qquad \tan\left(\frac{\pi}{2} + x\right) = -\frac{1}{\tan x}$$

$$\sin(\pi - x) = \sin x \qquad \cos(\pi - x) = -\cos x \qquad \tan(\pi - x) = -\tan x$$

$$\sin(\pi + x) = -\sin x \qquad \cos(\pi + x) = -\cos x \qquad \tan(\pi + x) = \tan x$$

- 2. Formulaire de Trigonométrie
- 2.1 Angles associés
- 2.2 Formules d'addition
- 2.3 Formules de duplication
- 2.4 Formules de Carnot
- 2.5 Formules de l'angle moitié
- 2.6 Formules de Simpson inverses
- 2.7 Formules de Simpsor
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

$$\sin(x+y) = \sin x \cos y + \cos x \sin y \qquad \sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y \qquad \cos(x-y) = \cos x \cos y + \sin x \sin y$$
Lorsque $x \not\equiv \frac{\pi}{2} \pmod{\pi}$, $y \not\equiv \frac{\pi}{2} \pmod{\pi}$ et $x + y \not\equiv \frac{\pi}{2} \pmod{\pi}$:
$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \tan y} \qquad \tan(x-y) = \frac{\tan x - \tan y}{1 + \tan x \tan y}$$

2. Formulaire de Trigonométrie

- 2.1 Angles associés
- 2.2 Formules d'addition

2.3 Formules de duplication

- 2.4 Formules de Carnot
- 2.5 Formules de l'angle moitié
- 2.6 Formules de Simpson inverses
- 2.7 Formules de Simpsor
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

$$\sin 2x = 2\sin x \cos x,$$

$$\cos 2x = \cos^2 x - \sin^2 x = 2\cos^2 x - 1 = 1 - 2\sin^2 x.$$
Lorsque $x \not\equiv \frac{\pi}{4} \pmod{\frac{\pi}{2}}$ et $x \not\equiv \frac{\pi}{2} \pmod{\pi}$

$$\tan 2x = \frac{2\tan x}{1 - \tan^2 x}.$$

2. Formulaire de Trigonométrie

- 2.1 Angles associés
- 2.2 Formules d'addition
- 2.3 Formules de duplication
- 2.4 Formules de Carnot
- 2.5 Formules de l'angle moitié
- 2.6 Formules de Simpson inverses
- 2.7 Formules de Simpsor
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométrique
- 5. Fonctions réciproques des fonctions circulaires

$$\sin^2 x = \frac{1 - \cos 2x}{2},$$

$$\cos^2 x = \frac{1 + \cos 2x}{2}.$$

2. Formulaire de Trigonométrie

- 2.1 Angles associés
- 2.2 Formules d'addition
- 2.3 Formules de duplication
- 2.4 Formules de Carnot

2.5 Formules de l'angle moitié

- 2.6 Formules de Simpson inverses
- 2.7 Formules de Simpson
- Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

En posant
$$t = \tan\left(\frac{x}{2}\right)$$
, lorsque $x \not\equiv \pi \pmod{2\pi}$

$$\sin x = \frac{2t}{1+t^2}, \qquad \cos x = \frac{1-t^2}{1+t^2},$$

Si de plus,
$$x \not\equiv \frac{\pi}{2} \pmod{\pi}$$
,

$$\tan x = \frac{2t}{1 - t^2}.$$

2. Formulaire de Trigonométrie

- 2.1 Angles associés
- 2.2 Formules d'addition
- 2.3 Formules de duplication
- 2.4 Formules de Carnot
- 2.5 Formules de l'angle moitié

2.6 Formules de Simpson inverses

- 2.7 Formules de Simpson
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

$$\sin x \sin y = \frac{1}{2} (\cos(x - y) - \cos(x + y)),$$

$$\cos x \cos y = \frac{1}{2} (\cos(x - y) + \cos(x + y)),$$

$$\sin x \cos y = \frac{1}{2} (\sin(x - y) + \sin(x + y)).$$

2. Formulaire de Trigonométrie

- 2.1 Angles associés
- 2.2 Formules d'addition
- 2.3 Formules de duplication
- 2.4 Formules de Carnot
- 2.5 Formules de l'angle moitié
- 2.6 Formules de Simpson inverses
- 2.7 Formules de Simpson
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

$$\sin p + \sin q = 2 \sin \frac{p+q}{2} \cos \frac{p-q}{2},$$
 $\sin p - \sin q = 2 \cos \frac{p+q}{2} \sin \frac{p-q}{2},$ $\cos p + \cos q = 2 \cos \frac{p+q}{2} \cos \frac{p-q}{2},$ $\cos p - \cos q = -2 \sin \frac{p+q}{2} \sin \frac{p-q}{2}.$

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 3.1 La notion de congruence
- 3.2 Résolution d'équations trigonométriques
- 3.3 Principe de superposition des sinusoïdes
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 3.1 La notion de congruence
- 3.2 Résolution d'équations trigonométriques
- 3.3 Principe de superposition des sinusoïdes
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

N

$$x \equiv y \pmod{\phi}$$

signifie qu'il existe $k \in \mathbb{Z}$ tel que $x = y + k\phi$. On dit que «x est congru à y modulo ϕ ». Les réels x et y diffèrent donc d'un multiple entier de ϕ , ce que l'on peut écrire $x - y \in \phi \mathbb{Z}$.

Pour tous nombres réels a et b, on note $a+b\mathbb{Z}$ l'ensemble des nombres réels de la forme a+kb, où $k\in\mathbb{Z}$. Autrement dit

$$a + b\mathbb{Z} = \{ a + kb \mid k \in \mathbb{Z} \}.$$

L'ensemble des multiples entiers de π sera donc noté $\pi \mathbb{Z}$, celui des multiples entiers de 2π est noté $2\pi \mathbb{Z}$.

La fonction tangente est définie sur $\mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$.

Р

Règles de calcul sur les congruences

Soient $x, x', y, y', \phi \in \mathbb{R}$, $\lambda \in \mathbb{R} \setminus \{0\}$ et $n \in \mathbb{Z}$.

- 1. Si $x \equiv y \pmod{\phi}$ et $x' \equiv y' \pmod{\phi}$ alors $x + x' \equiv y + y' \pmod{\phi}$.
- 2. $x \equiv y \pmod{\phi}$ si et seulement si $\lambda x \equiv \lambda y \pmod{\lambda \phi}$.
- 3. Si $x \equiv y \pmod{n\phi}$ alors $x \equiv y \pmod{\phi}$

Déterminer l'unique nombre réel α appartenant à $[0, 2\pi[$ et congru à $-\frac{7}{15}\pi$ modulo $2\pi.$

Résoudre l'équation $5x + \pi/2 \equiv 0 \pmod{\pi}$. Représenter les solutions sur le cercle trigonométrique.

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 3.1 La notion de congruence
- 3.2 Résolution d'équations trigonométriques
- 3.3 Principe de superposition des sinusoïdes
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

T

Si x et y sont deux réels, alors

$$\cos x = \cos y \iff (x \equiv y \pmod{2\pi}) \text{ ou } x \equiv -y \pmod{2\pi})$$

$$\sin x = \sin y \iff (x \equiv y \pmod{2\pi}) \text{ ou } x \equiv \pi - y \pmod{2\pi})$$

Si
$$x$$
 et y appartiennent à $\mathbb{R}\setminus\left(\frac{\pi}{2}+\pi\mathbb{Z}\right)$, on a

$$\tan x = \tan y \iff x \equiv y \pmod{\pi}$$

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 3.1 La notion de congruence
- 3.2 Résolution d'équations trigonométriques
- 3.3 Principe de superposition des sinusoïdes
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires

Р

Superposition des sinusoïdes

Soit $(a, b) \in \mathbb{R}^2$, alors, il existe $\phi \in \mathbb{R}$ tel que

$$\forall x \in \mathbb{R}, a \cos x + b \sin x = \sqrt{a^2 + b^2} \cos(x - \phi).$$

 $Si(a,b) \neq (0,0)$, alors ϕ est unique modulo 2π .

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 4.1 Étude des fonctions cosinus et sinus
- 4.2 Étude de la fonction tangente
- 5. Fonctions réciproques des fonctions circulaires

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 4.1 Étude des fonctions cosinus et sinus
- 4.2 Étude de la fonction tangente
- 5. Fonctions réciproques des fonctions circulaires

$$-1 \le \cos x \le 1$$

$$et -1 \le \sin x \le 1.$$

2. Les fonctions cosinus et sinus sont 2π -périodiques. Pour tout réel x et tout entier k,

$$\cos(x + 2k\pi) = \cos x$$

et

$$\sin(x + 2k\pi) = \sin x.$$

3. La fonction cos est paire et la fonction sin est impaire. Pour tout réel x,

$$\cos(-x) = \cos x$$

et

$$\sin(-x) = -\sin x.$$

Le lemme suivant, relativement clair sur le dessin, ne se démontre pas si facilement géométriquement.

. Admis

Pour tout réel
$$x \in \left]0, \frac{\pi}{2}\right[$$
,

$$0 < \sin x < x < \tan x.$$

Pour tout réel $x \in \mathbb{R}$,

$$\sin(x) \le |x|$$
.

Continuité du sinus et du cosinus en 0

Les fonctions sinus et cosinus sont continues en 0, c'est-à-dire

$$\lim_{x \to 0} \sin x = \sin 0 = 0 \ \ et \ \lim_{x \to 0} \cos x = \cos 0 = 1.$$

Des premier et second lemmes, nous déduisons la limite du rapport $\sin(x)/x$ lorsque x tend vers 0; cette quantité n'est autre que le taux d'accroissement de la fonction sinus en 0. Ce résultat prouve donc la dérivabilité de la fonctions sinus en 0 et précise la valeur du nombre dérivé du sinus en 0: $\sin'(0) = 1$. Le second résultat prouve la dérivabilité du cosinus en 0 et précise la valeur du nombre dérivé du cosinus en 0: $\cos'(0) = 0$.

- 1. Le rapport $\frac{\sin x}{x}$ tend vers 1 lorsque x tend vers 0.
- 2. Le rapport $\frac{\cos x-1}{x}$ tend vers 0 lorsque x tend vers 0.

T Dérivabilité des fonctions cosinus et sinus

Les fonctions \sin et \cos sont définies et dérivables (donc continues) sur $\mathbb R$ et on a

$$\cos' = -\sin \quad et \quad \sin' = \cos$$
.

Démonstration. Soit $x, h \in \mathbb{R}$. Puisque

$$\sin(x+h) = \sin(x)\cos(h) + \cos(x)\sin(h),$$

la fonction sinus est dérivable en x de dérivée $\sin(x) \times 0 + \cos(x) \times 1 = \cos(x)$. On raisonne de la même façon pour la fonction cosinus.

La fonction sinus est impaire et 2π -périodique ; il suffit de l'étudier sur l'intervalle $[0,\pi].^1$ La fonction sinus est dérivable sur $\mathbb R$ et $\sin'=\cos$. Le sinus est donc croissant sur $[0,\pi/2]$ (de 0 à 1) puis décroissant sur $[\pi/2,\pi]$ (de 1 à 0). La courbe représentative du sinus admet des tangentes horizontales aux points d'abscisses $x\equiv\pi/2\pmod{\pi}$. La tangente à l'origine est d'équation y=x (il s'agit de la première bissectrice du repère). On en déduit la courbe représentative de la fonction sinus.

¹On pourrait encore réduire l'intervalle d'étude car pour $x \in [0, \pi]$, $\sin(\pi - x) = \sin(x)$. La courbe de la fonction sinus est donc symétrique par rapport à la droite d'équation $x = \pi/2$.

On peut faire une étude similaire pour le cosinus, mais la relation $\cos(x) = \sin(x + \pi/2)$, valable pour tout $x \in \mathbb{R}$, montre que la courbe de la fonction cosinus s'obtient en translatant celle du sinus du vecteur $\vec{u} = -\frac{\pi}{2}\vec{e_1}$.

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 4.1 Étude des fonctions cosinus et sinus
- 4.2 Étude de la fonction tangente
- 5. Fonctions réciproques des fonctions circulaires

$$\mathbb{R}\setminus\left\{\left|\frac{\pi}{2}+k\pi\right|\mid k\in\mathbb{Z}\right\}=\mathbb{R}\setminus\left(\frac{\pi}{2}+\pi\mathbb{Z}\right).$$

par la relation $\tan = \frac{\sin}{\cos}$.

2. La fonction tan est π -périodique. Pour tout réel x tel que $x \not\equiv \frac{\pi}{2} \pmod{\pi}$ et tout entier k,

$$\tan(x + k\pi) = \tan x.$$

3. La fonction tan est impaire. Pour tout réel x tel que $x \not\equiv \frac{\pi}{2} \pmod{\pi}$,

$$\tan(-x) = -\tan(x).$$

T Dérivabilité de la fonction tangente

La fonction tan est dérivable (donc continue) sur son ensemble de définition et on a

$$\tan' = 1 + \tan^2 = \frac{1}{\cos^2}.$$

Démonstration. Puisque le quotient de deux fonctions dérivables est dérivable sur son ensemble de définition, c'est-à-dire là où le dénominateur ne s'annule pas, la fonction tangente est dérivable et pour $x \in \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right)$,

$$\tan'(x) = \frac{\cos(x)\cos(x) + \sin(x)\sin(x)}{\cos^2(x)} = 1 + \tan^2 x = \frac{1}{\cos^2(x)}.$$

On a les limites suivantes au bornes de l'ensemble de définition

$$\lim_{\substack{x \to \pi/2 \\ >}} \tan(x) = +\infty \qquad \qquad \lim_{\substack{x \to -\pi/2 \\ >}} \tan(x) = -\infty.$$

Les droites d'équations $x=-\frac{\pi}{2}$ et $x=\frac{\pi}{2}$ sont donc asymptotes verticales à la courbe de la fonction tan.

Démonstration. On rappelle que pour tout réel x appartenant à $[0, \pi/2[$, on a $\tan(x) = \sin(x)/\cos(x)$, or,

$$\lim_{\substack{x \to \pi/2 \\ <}} \sin(x) = 1 \text{ et } \lim_{\substack{x \to \pi/2 \\ <}} \cos(x) = 0 +$$

d'où $\lim_{x \to \pi/2} \tan(x) = +\infty$.

Ρ

On a un résultat analogue en $-\pi/2$ car tan est une fonction impaire.

La fonction tangente est définie sur l'ensemble

$$\mathcal{D} = \mathbb{R} \setminus \{ \pi/2 + k\pi \mid k \in \mathbb{Z} \}.$$

La tangente est une fonction impaire et π -périodique : il suffit de l'étudier sur l'intervalle $[0, \pi/2[$ pour tracer sa courbe représentative sur \mathcal{D} . Enfin, pour $x \in [0, \pi/2[$,

$$\tan'(x) = 1 + \tan^2(x) > 0.$$

La fonction tangente est donc strictement croissante sur $[0,\pi/2[$. De plus, $\tan'(0)=1$; la droite d'équation y=x est donc tangente à la courbe représentative de tan. Remarquez que la fonction tangente réalise une bijection de $[0,\pi/2[$ sur $[0,+\infty[$.

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires
- 5.1 La fonction arcsin
- 5.2 La fonction arccos
- 5.3 La fonction arctan

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires
- 5.1 La fonction arcsin
- 5.2 La fonction arccos
- 5.3 La fonction arctan

D

La restriction $\widetilde{\sin}$: $[-\frac{\pi}{2}, \frac{\pi}{2}] \rightarrow [-1, 1]$ de la fonction sinus réalise une bijection de $x \mapsto \sin x$

 $[-\frac{\pi}{2}, \frac{\pi}{2}]$ sur [-1, 1]. La bijection réciproque de la fonction $\widetilde{\sin}$ est appelée l'arcsinus et notée

arcsin:
$$[-1,1] \rightarrow \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

 $x \mapsto \widetilde{\sin}^{-1}(x)$

La fonction arcsin est donc caractérisée par la relation

$$\forall x \in [-1, 1], \forall y \in \mathbb{R}, (y = \arcsin x) \iff \begin{cases} x = \sin y \\ -\frac{\pi}{2} \le y \le \frac{\pi}{2} \end{cases}.$$

La fonction arcsinus *n'est pas* la réciproque de sin, mais celle d'une restriction bien choisie.

Ε

$$\arcsin(0) = 0$$

$$\arcsin(-1) = -\frac{\pi}{2}$$

$$\arcsin\left(-\frac{\sqrt{3}}{2}\right) = -\frac{\pi}{3}$$

$$\arcsin\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$$

$$\arcsin\left(-\frac{1}{\sqrt{2}}\right) = -\frac{\pi}{4}$$

$$\arcsin\left(-\frac{1}{2}\right) = -\frac{\pi}{6}$$

$$\arcsin\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$$

$$\arcsin\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{6}$$

T Calculer.

1. $\arcsin\left(\sin\left(\frac{3\pi}{7}\right)\right)$.

2. $\arcsin\left(\sin\left(-\frac{2\pi}{2}\right)\right)$.

3. $\arcsin\left(\sin\left(\frac{19\pi}{7}\right)\right)$.

Propriétés de l'arcsinus

- 1. $\forall x \in [-1, 1], \sin(\arcsin(x)) = x \text{ et } \cos(\arcsin(x)) = \sqrt{1 x^2}.$
- 2. $\forall x \in \mathbb{R}, -\frac{\pi}{2} \le x \le \frac{\pi}{2} \iff \arcsin(\sin x) = x$.
- Démonstration. 1. Soit $x \in [-1,1]$. D'après la définition de l'arcsinus, $\arcsin(x)$ est une mesure d'angle dont le sinus vaut x. Ainsi $\sin(\arcsin(x)) = x$. On a de plus $\cos^2(\arcsin(x)) + \sin^2(\arcsin(x)) = 1$ d'où $\cos(\arcsin(x)) = \pm \sqrt{1-x^2}$. La fonction cosinus étant positive sur l'intervalle $[-\pi/2, \pi/2]$ auquel appartient $\arcsin(x)$, on a $\cos(\arcsin(x)) = \sqrt{1-x^2}$.
 - 2. Soit $x \in [-\pi/2, \pi/2]$. Par définition de l'arcsinus, $\arcsin(\sin x)$ est l'unique $\alpha \in [-\pi/2, \pi/2]$ tel que $\sin \alpha = \sin x$; puisque $x \in [-\pi/2, \pi/2]$, on a $x = \alpha = \arcsin(\sin x)$.
 - Réciproquement, soit $x \in \mathbb{R}$ tel que $\arcsin(\sin x) = x$. Puisque l'arcsinus est à valeurs dans $[-\pi/2, \pi/2]$, on a bien $x \in [-\pi/2, \pi/2]$.

P Étude de l'arcsinus

- 1. L'application arcsin est impaire et continue sur [-1, 1].
- 2. L'arcsinus est dérivable sur] 1, 1[avec

$$\forall x \in]-1, 1[, \arcsin'(x) = \frac{1}{\sqrt{1-x^2}}.$$

3. L'arcsinus n'est pas dérivable en ± 1 , sa courbe représentative admettant en ces points une tangente verticale.

Démonstration. 1. La fonction sin est dérivable sur $\mathbb R$ de dérivée cos, qui est positive sur l'intervalle $[-\pi/2,\pi/2]$, ne s'annulant sur cet intervalle qu'en $\pm\pi/2$. La fonction sinus réalise donc une bijection strictement croissante de $[-\pi/2,\pi/2]$ sur [-1,1]. De plus, ces deux ensembles étant des intervalles et \sin étant continue sa bijection réciproque arcsin : $[-1,1] \to [-\pi/2,\pi/2]$ est continue. De plus, l'arcsinus est une fonction impaire ; en effet, pour $x \in [-1,1]$,

$$\sin(-\arcsin(x)) = -\sin(\arcsin x) = -x$$
 et $-\arcsin(x) \in [-\pi/2, \pi/2]$

c'est-à-dire $-\arcsin(x) = \arcsin(-x)$.

2. Soit $y \in [-1, 1]$. D'après le théorème de dérivabilité d'une bijection réciproque, la fonction arcsinus est dérivable en y si et seulement si

$$\sin'(\arcsin(y)) = \cos(\arcsin(y)) = \sqrt{1 - y^2} \neq 0,$$

c'est-à-dire, si et seulement si $y \neq \pm 1$. La fonction arcsin est donc dérivable sur]-1,1[, avec sur cet intervalle $\arcsin'(y) = \frac{1}{\sin'(\arcsin(y))} = \frac{1}{\sqrt{1-y^2}}$.

3. D'après le théorème de dérivabilité d'une bijection réciproque, le calcul de sin'(arcsin y) montre que la courbe représentative de la fonction arcsin admet une tangente verticale aux points d'abscisses ±1.

²De manière générale, on peut montrer que la réciproque d'une bijection impaire₂est impaire₃

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires
- 5.1 La fonction arcsin
- 5.2 La fonction arccos
- 5.3 La fonction arctan

D

La restriction $\widetilde{\cos}$: $[0,\pi] \rightarrow [-1,1]$ de la fonction cosinus réalise une bijection de $x \mapsto \cos x$

 $[0,\pi]$ sur [-1,1]. La bijection réciproque de la fonction $\widetilde{\cos}$ est appelée l'arccosinus et notée

arccos:
$$[-1,1] \rightarrow [0,\pi]$$

 $x \mapsto \widetilde{\cos}^{-1}(x)$

La fonction arccos est donc caractérisée par la relation

$$\forall x \in [-1, 1], \forall y \in \mathbb{R}, (y = \arccos x) \iff \begin{cases} x = \cos y \\ 0 \le y \le \pi \end{cases}$$
.

$$\arccos(0) = \frac{\pi}{2}$$

$$\arccos(-1) = \pi$$

$$\arccos\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6}$$

$$\arccos\left(-\frac{1}{\sqrt{2}}\right) = \frac{3\pi}{4}$$

$$\arccos\left(-\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$$

$$\arccos\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$$

$$\arccos\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}$$

$$\arccos\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{3}$$

Calculer

1. $\arccos\left(\cos\left(\frac{3\pi}{7}\right)\right)$.

2. $\arccos\left(\cos\left(-\frac{2\pi}{3}\right)\right)$. 3. $\arccos\left(\cos\left(\frac{19\pi}{7}\right)\right)$.

Р

Propriétés de l'arccosinus

- 1. $\forall x \in [-1, 1], \cos(\arccos(x)) = x$ et $\sin(\arccos(x)) = \sqrt{1 x^2}$.
- 2. $\forall x \in \mathbb{R}, 0 \le x \le \pi \iff \arccos(\cos x) = x$.

Т

Démontrer la proposition précédente.

Étude de l'arccosinus

- 1. L'application arccos est n'est ni paire ni impaire. Elle est continue sur [-1, 1].
- 2. L'arccosinus est dérivable sur] 1,1[avec

$$\forall x \in]-1, 1[, \arccos'(x) = -\frac{1}{\sqrt{1-x^2}}.$$

3. L'arccos n'est pas dérivable en ±1, sa courbe représentative admettant en ces points une tangente verticale.

Démonstration.

Soit $x \in [-1, 1]$. On a $\arccos(-x) = \pi - \arccos(x)$. La courbe représentative de la fonction arccos est donc symétrique par rapport au point de coordonnées $\left(0, \frac{\pi}{2}\right)$.

- 1. Fonctions trigonométriques
- 2. Formulaire de Trigonométrie
- 3. Équations trigonométriques
- 4. Étude des fonctions trigonométriques
- 5. Fonctions réciproques des fonctions circulaires
- 5.1 La fonction arcsin
- 5.2 La fonction arccos
- 5.3 La fonction arctan

D

La restriction $\widetilde{\tan}$: $]-\frac{\pi}{2},\frac{\pi}{2}[\rightarrow \mathbb{R}$ de la fonction tangente réalise une bijection $x \mapsto \tan x$

de] $-\frac{\pi}{2}, \frac{\pi}{2}$ [sur \mathbb{R} . La bijection réciproque de la fonction $\widetilde{\tan}$ est appelée l'arctangente et notée

arctan:
$$\mathbb{R} \rightarrow]-\frac{\pi}{2},\frac{\pi}{2}[$$

$$x \mapsto \widetilde{\tan}^{-1}(x)$$

La fonction arctan est donc caractérisée par la relation

$$\forall x \in \mathbb{R}, \forall y \in \mathbb{R}, (y = \arctan x) \iff \begin{cases} x = \tan y \\ -\frac{\pi}{2} < y < \frac{\pi}{2} \end{cases}$$

$$\arctan(0) = 0$$

$$\arctan(-1) = -\frac{\pi}{4}$$

$$\arctan\left(-\frac{1}{\sqrt{3}}\right) = -\frac{\pi}{6}$$

$$\arctan\left(-\sqrt{3}\right) = -\frac{\pi}{2}$$

$$\arctan(1) = \frac{\pi}{4}$$

$$\arctan\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{6}$$

$$\arctan\left(\sqrt{3}\right) = \frac{\pi}{3}$$

Calculer

1.
$$\arctan\left(\tan\left(\frac{33\pi}{7}\right)\right)$$
.

1.
$$\arctan\left(\tan\left(\frac{33\pi}{7}\right)\right)$$
. 2. $\arctan\left(\tan\left(-\frac{8\pi}{3}\right)\right)$. 3. $\arctan\left(\tan\left(\frac{19\pi}{7}\right)\right)$.

3.
$$\arctan\left(\tan\left(\frac{19\pi}{7}\right)\right)$$

Р

Propriétés de l'arctangente

- 1. $\forall x \in \mathbb{R}$, tan(arctan(x)) = x.
- 2. $\forall x \in \mathbb{R} \setminus \left(\frac{\pi}{2} + \pi \mathbb{Z}\right), -\frac{\pi}{2} < x < \frac{\pi}{2} \iff \arctan(\tan x) = x.$

Р

Étude de l'arctan

- 1. L'application arctan est impaire et continue sur \mathbb{R} .
- 2. L'arctangente est dérivable sur \mathbb{R} avec

$$\forall x \in \mathbb{R}, \arctan'(x) = \frac{1}{1+x^2}.$$

3. $\lim_{-\infty} \arctan = -\frac{\pi}{2}$ et $\lim_{+\infty} \arctan = +\frac{\pi}{2}$.

Démonstration. Les limites en $\pm \infty$ sont admises en début d'année.

Т

Montrer que 2 arctan $\frac{1}{2}$ = arctan $\frac{4}{3}$.