Posplošena dualna števila in višjeredna avtomatska diferenciacija

Lavš Luka

Osnova algebre

Definicija (Posplošena dualna števila). Naj bo $n \in \mathbb{N}$ število spremenljivk in $m \in \mathbb{N}$ red Taylorjeve razvite funkcije. Definirajmo množico simbolov $\{\varepsilon_1, \ldots, \varepsilon_n\}$ s sledečimi lastnostmi:

$$\varepsilon_i^{m+1} = 0, \quad \varepsilon_i^j \neq 0 \ za \ 1 \leq j \leq m, \quad in \ \varepsilon_i \varepsilon_j = \varepsilon_j \varepsilon_i$$

Naj bo večindeks $\alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}_0^n$, $|\alpha| = \sum_i \alpha_i$, in $\varepsilon^{\alpha} := \varepsilon_1^{\alpha_1} \cdots \varepsilon_n^{\alpha_n}$. Potem je posplošeno dualno število oblike:

$$X := f_0 + \sum_{1 \le |\alpha| \le m} f_\alpha \, \varepsilon^\alpha, \quad f_\alpha \in \mathbb{R}$$

Izrek (Taylorjeva razširitev preko posplošenih dualnih števil). Naj bo $f: \mathbb{R}^n \to \mathbb{R}$ gladka funkcija. Potem velja:

$$f(\boldsymbol{x} + \varepsilon) = f(\boldsymbol{x}) + \sum_{1 \le |\alpha| \le m} \frac{1}{\alpha!} \partial^{\alpha} f(\boldsymbol{x}) \varepsilon^{\alpha}$$

$$kjer\ je\ \partial^{\alpha}:=rac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1}\cdots\partial x_n^{\alpha_n}}.$$

Dokaz (osnutek). Sledi iz večdimenzionalnega Taylorjevega razvoja funkcije f okoli točke \boldsymbol{x} , pri čemer se simboli ε_i obnašajo kot formalni odvodni elementi (analogno simbolični diferenciaciji), a z nilpotentnostjo $\varepsilon_i^{m+1} = 0$, kar povzroči prekinitev vrste.

Trditev (Praktična uporaba). Z ovitjem funkcije f znotraj posplošene dualne algebre lahko simultano izračunamo vse parcialne odvode do reda m v eni sami evalvaciji funkcije.

1

¹Teoretično ozadje: https://darioizzo.github.io/audi/theory_algebra.html