OMA and OMArk for homology exploration and gene annotation quality control

Learning objectives

- Where to easily find orthology information for well-studied species?
 Query the OMA Browser and understanding HOGs
- Where to get quick homology estimate for my newly sequenced species?
 - Run OMAmer for sequence placement into HOGs and interpret results
- How to know if a proteome is of good quality?
 - Run OMArk for proteome quality assessment and interpret results

Session plan

1. Hierarchical Orthologous Groups and the OMA Browser

2. Fast sequence placement with OMAmer

3. Gene repertoire quality assessment with OMArk

Hierarchical Orthologous Groups (HOGs)

HOGs = Sets of genes that descended from a common ancestral gene in a given ancestral species

HOGs are defined with respect to specific clades

HOGs are hierarchical because groups defined with respect to deeper clades subsume multiple groups defined on their descendants

HOGs are gene families; SubHOGs are nested subfamilies

The OMA browser

Hierarchical Orthologous Groups (HOGs)

Hierarchical group HOG:0606964 open at level of **Primates**

- A HOG is a gene family
- A collection of orthologs and paralogs which descended from a common ancestral gene

OPTIONS ▼

Ancestral genomes

The collection of HOGs at a given taxonomic level

Hand-on exercices

https://oma-stage.vital-it.ch/

https://oma-stage.vital-it.ch/oma/academy/

https://tinyurl.com/BGAOMA

Fast sequence placements with OMAmer

What is OMAmer?

Fast sequence placement into existing HOGs from the OMA Browser

More accurate than closest sequence matching for subfamily placement!

OMAmer: tree-driven and alignment-free protein assignment to subfamilies outperforms closest sequence approaches

Victor Rossier (1) 1,2,3, Alex Warwick Vesztrocy (1) 1,2,3, Marc Robinson-Rechavi (1) 3,4,* and Christophe Dessimoz (1) 1,2,3,5,6,*

OMAmer placement - principle

HOG:D0686527

k-mer based placement

k-mers: words of k characters in a sequences

```
Query sequence

MHPYSTQMFS LQITVMEDSQ SDMSIELPLS

MHPYST
HPYSTQ
PYSTQM

...
...
MSIELP
SIELPL
IELPLS
```


How to use OMAmer

Proteome

>Seq1 MXXXXX >Seq2 MXXXX >Seq3 MXXXXX **Query sequences**

FASTA format

From any species

Seq1 HOG:D0578800.1c.1d

Seq2 HOG:D0571029

Seq3 HOG:D0606120.3n

OMAmer database

HDF5 format

Built with HOGs from the OMA Browser

OMAmer output

Tab separated format

All HOG placements

Hand-on exercices

https://oma-stage.vital-it.ch/oma/academy/

https://tinyurl.com/BGAOMA

Quality assessment with OMArk

How to use OMAmer

Coding-gene repertoire: set of coding-genes annotated on a given genome sequence

Available on database as **proteomes**

- Missing genes
 Fragmented genes
 Inclusion of non-coding regions
 - Contamination

Lack of tool to detect all these issues!

Ancestral lineage:

- ➤ Latest ancestor clades in with 5+ representatives in OMA
- > Dynamically selected from taxid or from the placements

Conserved ancestral genes:

- Gene families defined at the ancestral lineage level (ancestral gene repertoire)
- Present in at least 80% species

Completeness

Completeness

Big-headed turtle Platysternon megacephalum

Clade: Archelosauria

10,514 conserved HOGs

Number of genes: 21,371

Results - Graph summary

Hand-on exercices

https://oma-stage.vital-it.ch/oma/academy/

https://tinyurl.com/BGAOMA