ProSampler: Improving Contrastive Learning by Better Mini-batch Sampling

Tinglin Huang

tinglin.huang@yale.edu

Outline

Negative Sampling for In-batch Contrastive Learning

ProSampler: A Global Hard Negative Sampler

Experiments on Three Modalities

Outline

Negative Sampling for In-batch Contrastive Learning

ProSampler: A Global Hard Negative Sampler

Experiments on Three Modalities

Self-Supervised Learning (1)

- Usually we train a model $f(\cdot)$ by minimizing the loss function
 - Dataset $\mathcal{D} = \{x_1, ..., x_N\}$ with labels $\{y_i\}$, where x_i is a instance

$$\theta^* = \min_{\theta} \sum_{i} l(y_i, f_{\theta}(x_i))$$

- Loss function depends on the task, e.g., cross entropy loss for classification task
- How to train a model without supervised signals?

Self-Supervised Learning (2)

- How to train a model without supervised signals?
 - Design a proxy task!
 - Use the supervision signals from the data itself (self-supervised learning)
 - It can be inspired by some domain insights
 - For example, the representation of a cat should resemble other cats rather than a dogs

In-batch Contrastive Learning (1)

- Contrastive learning
 - One of the most successful self-supervised learning framework
 - Key idea: bringing semantically similar instances closer while pushing dissimilar instances

In-batch Contrastive Learning (2)

- Contrastive learning
 - Sample a mini-batch of instances $\{x_i\}_B$
 - B is the batchsize
 - Augment the instance x_i to generate positive pair (x_i, x_i^+)
 - E.g., image masking (CV), and word deletion (NLP)
 - For each positive pair, sample B^- other instances to generate negative pairs
 - We can have B^- negative pairs for each instance $\{(x_i, x_j)\}_{j \neq i}^{B^-}$ in the mini-batch
 - Decrease the distance between positive pairs, and increase the distance between negative pairs

In-batch Contrastive Learning (3)

Apply InfoNCE loss to optimize:

$$\min - \sum_{i=1}^{B} \log \frac{e^{f(x_i)^T f(x_i^+)}}{\sum_{j} e^{f(x_i)^T f(x_j)}}$$

$$= \min - \sum_{i=1}^{B} \left(f(x_i)^T f(x_i^+) - \log \sum_{j} e^{f(x_i)^T f(x_j)} \right)$$

$$\max_{i=1}^{B} \max_{j=1}^{B} \left(f(x_i)^T f(x_i^+) - \log \sum_{j=1}^{B} e^{f(x_i)^T f(x_j)} \right)$$

- InfoNCE loss can be adapt to various data modalities
 - Data instance could be image, text or graph
- How to sample negatives?

In-batch Contrastive Learning (4)

- In-batch contrastive learning
 - We can directly treat the other instances within a mini-batch as negatives [1]!
 - We can have B-1 negative pairs for each instance $\{(x_i,x_j)\}_{j\neq i}^B$ in the mini-batch
 - It can simplify the training pipeline and is efficient
 - Increase the batchsize = increase the number of negatives

Negative Sampling (1)

- For in-batch contrastive learning, mini-batch sampling is equivalent to negative sampling
 - Every instances serve as negative to the other instances within the mini-batch
 - It is known as in-batch negative sharing strategy
- Negative sampling is really critical
 - MoCo[1] achieves promising results by storing the negatives in a memory bank and updating them using a momentum encoder.
 - SimCLR[2] shows that simply increasing the batch size to 8192 outperforms pervious carefully designed methods
- What negatives contribute the most?

Negative Sampling (2)

- Hard negative pair contributes the most!
 - The hard-to-distinguish negative
 - Well-supported by many related studies on negative sampling, e.g., recommendation system[1] and dense retrieval[2]
 - Hard negative pairs provide meaningful gradient to the model
- Hard negative made great success in many real-world applications
 - 8% improvement of Facebook search recall[3]
 - 15% relative gains of Microsoft retrieval engine[2]
- How to sample hard negatives?

^[1] Ying, Rex, et al. "Graph convolutional neural networks for web-scale recommender systems." KDD. 2018.

^[2] Xiong, Lee, et al. "Approximate nearest neighbor negative contrastive learning for dense text retrieval." ICLR. 2020.

^[3] Jui-Ting, Huang, et al. "Embedding-based retrieval in facebook search." KDD. 2020.

Negative Sampling (3)

- How to sample hard negatives?
 - Previous methods [1,2] apply **triplet loss** and **globally** pick the negative similar to the query one across the dataset
 - Triplet loss: sample one negative for each query instance

$$\min -\sum_{i=1}^{B} \log \frac{e^{f(x_i)^T f(x_i^+)}}{e^{f(x_i)^T f(x_i^+)} + e^{f(x_i)^T f(x^-)}}$$
 Only one negative pair

- It is easy to recall the hard negative for the corresponding query
- But it is **inapplicable** to in-batch contrastive learning, since it cannot guarantee the similarity between every instance pair within a mini-batch

Negative Sampling (4)

Global hard negative sampling in triplet loss and InfoNCE loss

Negative Sampling (5)

- How to sample hard negatives for in-batch contrastive learning?
 - Previous methods [1,2] perform negative sampling within the sampled minibatch locally
 - Assign higher weights for hard negatives among the mini-batch

$$\min - \sum_{i=1}^{B} \log \frac{e^{f(x_i)^T f(x_i^+)}}{e^{f(x_i)^T f(x_i^+)} + \sum_{j \neq i} (\boxed{\lambda_{ij}} e^{f(x_i)^T f(x_j)} + \boxed{\lambda_{ij}}}$$
Assigned weight

Assigned weight the positive pair

 But the batch size is far smaller than that dataset size, and sampling within the mini-batch cannot effectively explore the hard negatives from the whole dataset

Problem Setup

- How to sample hard negatives for in-batch contrastive learning?
 - Previous methods in relative field show that globally sample hard negative can achieve promising results
 - Inapplicable to the in-batch contrastive learning framework
 - But existing methods for in-batch contrastive learning perform hard negative sampling locally within the mini-batch
 - Cannot effectively explore the hard negatives across the dataset, leading to a sub-optimal performance
- Target: design a global hard negative sampler for in-batch contrastive learning
 - Modality-independent
 - Can sample a mini-batch of instances where any instance pair are hard to distinguish across the dataset

Outline

Negative Sampling for In-batch Contrastive Learning

• ProSampler: A Global Hard Negative Sampler

Experiments on Three Modalities

Two Extreme Strategies (1)

- Let's consider two **extreme** sampling strategies for in-batch contrastive learning
 - Represent extreme scenarios in terms of the hardness of a mini-batch they construct
- Uniform Sampler
 - Randomly sample a batch of instances from the dataset
- kNN Sampler
 - Pick an instance at random and retrieve a set of nearest neighbors to construct a batch
 - A naïve solution to globally sample a mini-batch with many hard negative examples

Two Extreme Strategies (2)

- But these methods suffer from the following limitations
 - Uniform Sampler neglects the effect of hard negatives
 - kNN Sampler will sample a lot of false negatives as the training epochs increase
 - False negative (FN): the negatives of the same class as query

Two Extreme Strategies (3)

- Uniform Sampler cannot leverage hard negatives to guide the optimization of the model
- kNN Sampler explicitly samples hard negatives but suffers from the false negative issue
- A better global hard negative sampler for in-batch contrastive learning should trade-off these two extreme sampling styles
 - Balance the exploitation of hard negatives and the FN issue

ProSampler

- ProSampler : Proximity Graph-based Sampler
 - Capture similarity relationships among instances by proximity graph
 - Perform negative sampling as a walking in the proximity graph
 - Collect the visited instances as sampling results
 - Smoothly interpolate between kNN Sampler and Uniform Sampler by modulating two parameters
- Why do we use proximity graph?
 - It can capture the similarity relationships among instances
 - It can be theoretically guaranteed that close instances will form a local community in the proximity graph
 - Sampling on the proximity graph can easily collect similar examples

Proximity Graph Construction (1)

Definition

- Proximity graph: $G = (\mathcal{V}, \mathcal{E})$
 - ${\mathcal V}$ is the node set and ${\mathcal E}$ is a collection of node pairs
- \mathcal{N}_i is the neighbor set of v_i in the G
- N observation $\mathcal{V} = \{v_i | i = 1, ..., N\}$ which is the node set in G
- Representations $\{\mathbf{e}_i | i=1,...,N\}$ generated by current encoder $f(\cdot)$

Proximity graph construction

- Randomly pick $M(M \ll N)$ neighbor candidates to form a candidate set $C_i = \{v_m\}$ for each instance v_i
- Select the *K* nearest ones from the candidate set to form the neighbor set

$$\mathcal{N}_i = \text{TopK}_{v_m \in \mathcal{C}_i}(\mathbf{e}_i \cdot \mathbf{e}_m)$$

Proximity Graph Construction (2)

- Candidate set size M controls the similarity between center node and its neighbors
 - When M = N, proximity graph degenerates to kNN graph
 - When M=1, each node will randomly connect with the other node
- Theoretical proof

Proposition 1. Given an observation v_i with the corresponding representation e_i , assume that there are at least S observations whose inner product similarity with v_i is larger than s, i.e.,

$$\left| \left\{ v_j \in \mathcal{V} \mid \mathbf{e}_i \cdot \mathbf{e}_j > s \right\} \right| \ge S. \tag{4}$$

Then in the proximity graph G, the similarity between v_i and its neighbors is larger than s with proximate probability at least:

Higher *M* indicates a greater probability _ that two adjacent nodes are similar

$$\mathbb{P}\left\{\mathbf{e}_{i} \cdot \mathbf{e}_{k} > s, \forall v_{k} \in \mathcal{N}_{i}\right\} \gtrsim \left(1 - p^{M}\right)^{K}, \tag{5}$$

where $p = \frac{N-S}{N}$, and K is the number of neighbors.

Proximity Graph Sampling (1)

- Perform mini-batch sampling as graph sampling
- Two straightforward graph sampling methods
 - Breadth-first Sampling(BFS) collects all of the current node's immediate neighbors, then moves to its neighbors and repeats the procedure
 - Depth-first Sampling(DFS) randomly explores the node branch as far as possible
- We apply Random Walk with Restart (RWR) which exhibits a mixture of both
 - It can flexibly explore the negatives in proximity graph
 - Beginning at a node, the sampler iteratively teleports back to the start point with probability α or travels to a neighbor of the current position

Proximity Graph Sampling (2)

- ullet Restart probability lpha can modulate the probability of sampling within a neighborhood
- Theoretical proof:

Proposition 2. For all $0 < \alpha \le 1$ and $S \subset V$, the probability that a Lazy Random Walk with Restart starting from a node $u \in S$ escapes S satisfies $\sum_{v \in (V - S)} \mathbf{p}_u(v) \le \frac{1 - \alpha}{2\alpha} \Phi(S)$, where \mathbf{p}_u is the stationary distribution, and $\Phi(S)$ is the graph conductance of S.

- The probability of RWR escaping from a local cluster can be bound by lpha
- Higher α indicates that the walker will approximate BFS behavior and sample within a small locality
- Lower α encourages the walker to visit the nodes which are further away from the center node.

ProSampler

- The number of candidates M and the restart probability α are the key to flexibly control the hardness of a sampled batch
 - When $M=N,\alpha=1$, ProSampler behaves similarly to a kNN Sampler
 - Proximity graph is equivalent to kNN graph, and graph sampler will only collect the immediate neighbors around a center node
 - When $M=1, \alpha=0$, ProSampler performs as a Uniform Sampler
 - RWR degenerates into the DFS and chooses the neighbors that are linked at random

 (M, α) can find a balance between these two extreme samplers

Performance of different samplers on image classification task

ProSampler Pipeline

InfoNCE

loss

```
Algorithm 1: In-batch Contrastive Framework with ProSampler
Input: Dataset \mathcal{D} = \{x_i | i = 1, \dots, N\}, Encoder f(\cdot), Batchsize B, Graph update step t,
        Modality-specific augmentation functions \mathcal{T}.
for iter \leftarrow 0, 1, \cdots do
                                                                Update proximity graph
                                                                after t steps
         // ProSampler
         if iter\%t == 0 then
             // Proximity Graph Construction
             Build the proximity graph G by Algorithm 2.
                                                                                                        RWR
         end
         // Proximity Graph Sampling
         Randomly select a start node and get the mini-batch \{x_i\}_B by Algorithm 3.
         Obtain positive pairs \{(x_i, x_i^+)\}_B by augmentation functions f_{auq}(\cdot) \sim \mathcal{T}.
         Generate representations \{(\mathbf{e}_i, \mathbf{e}_i^+)\}_B by Encoder f(\cdot).
         Compute the loss by Eq. 1, where \{(\mathbf{e}_i, \mathbf{e}_j)\}_{B(B-1)}^{i \neq j} are treated as negative pairs.
         Update the parameters of f(\cdot).
end
```

Outline

Negative Sampling for In-batch Contrastive Learning

ProSampler: A Global Hard Negative Sampler

Experiments on Three Modalities

Experiments

- We evaluate the ProSampler on four representative in-batch contrastive learning framework on three data modalities
 - Image Modality: MoCo v3, SimCLR
 - Text Modality: SimCSE
 - Graph Modality: GraphCL
- We also equip two variants of InfoNCE objective with ProSampler to investigate its generality
 - DCL and HCL: locally negative sampling framework
- Training pipeline: self-supervised learning -> linear probing
 - linear probing: fix the pretrained representation and evaluate the performance on downstream task with a linear classifier

Image Modality

Dataset: ImageNet

Backbone: ResNet-50

Baseline: SwAV and BYOL

SOTA self-supervised learning framework without negative sampling

Method	100 ep	400 ep
SwAV*	66.5	70.1
BYOL	66.5	73.2
SimCLR	64.0	68.1
w/ ProSampler	64.7 († 0.7)	68.6 († 0.5)
MoCo v3	68.9	73.3
w/ ProSampler	69.5 († 0.6)	73.7 († 0.4)

^{*} without multi-crop augmentations.

Text Modality

Dataset:7 semantic textual similarity tasks

Backbone: BERT

Table 2: Overall performance comparison with different negative sampling methods on STS tasks.

Method	STS12	STS13	STS14	STS15	STS16	STS-B	SICK-R	Avg.
$SimCSE ext{-}BERT_{base}$	68.62	80.89	73.74	80.88	77.66	77.79	69.64	75.60
w/ ProSampler	72.37	82.08	75.24	83.10	78.43	77.54	68.05	76.69
$\overline{ ext{DCL-BERT}_{base}}$	65.22	77.89	68.94	79.88	76.72	73.89	69.54	73.15
w/ ProSampler	69.55	82.66	73.37	80.40	75.37	75.43	66.76	74.79
HCL-BERT _{base}	62.57	79.12	69.70	78.00	75.11	73.38	69.74	72.52
w/ ProSampler	66.87	81.38	72.96	80.11	77.99	75.95	70.89	75.16

Graph Modality

- Dataset: graph classification benchmark datasets
 - IMDB-B, IMDB-M, COLLAB, REDDIT-B
- Backbone: GIN

Table 3: Accuracy on graph classification task under LIBSVM (Chang and Lin, 2011) classifier.

Method	IMDB-B	IMDB-M	COLLAB	REDDIT-B
GraphCL	70.90±0.53	48.48±0.38	70.62±0.23	90.54±0.25
w/ ProSampler	71.90±0.46	48.93±0.28	71.48±0.28	90.88±0.16
DCL	71.07±0.36	48.93 ± 0.32	71.06 ± 0.51	90.66±0.29
w/ ProSampler	71.32±0.17	48.96±0.25	70.44 ± 0.35	90.73±0.34
HCL	71.24±0.36	48.54±0.51	71.03 ± 0.45	90.40±0.42
w/ ProSampler	71.20 ± 0.38	48.76±0.39	71.70 ± 0.35	91.25±0.25

Empirical Criterion of (M, α)

Table 4: Impact of neighbor candidates M.

Table 5: Impact of restart probability α .

linearly decay α from 0.2 to 0.05 as the training epoch increases

$\overline{}$	500	1000	2000	4000	6000	α	0.1	0.3	0.5	0.7	0.2~0.05
CIFAR10	92.54	92.49	91.83	91.72	91.43	CIFAR1	0 92.41	92.26	92.12	92.06	92.54
CIFAR100	67.92	68.68	67.05	66.19	65.55	CIFAR10	00 68.31	67.98	68.20	68.00	68.68
STL10	84.16	84.38	82.80	81.91	80.92	STL10	83.01	80.69	83.93	82.56	84.38
ImageNet-100	59.6	60.8	60.1	59.1	58.4	ImageNet-	100 60.8	59.6	58.1	57.7	60.8
Wikipedia	71.36	76.69	76.09	75.76	75.11	Wikiped	ia 71.74	72.13	72.41	76.69	_
COLLAB	70.47	71.48	70.93	70.46	70.24	COLLA	В 70.36	70.63	70.63	70.31	71.48

- The suggested M would be 500 for the small-scale dataset, and 1000 for the larger dataset
- The suggested α should be relatively high, e.g., 0.7, for the pre-trained language model-based method. Besides, dynamic decay α , e.g., 0.2 to 0.05, is the best strategy for the other algorithms.