Introduction to FSP

SFWRENG 3BB4:

Software Design III — Concurrent System Design

#### A Foreword on Models

Definition

A model is a simplified representation of the real world.

Purpose

Engineers use models to gain confidence in the adequacy and validity of a proposed design.

Characteristics

- Focus on some aspects of interest (concurrent behaviour).
- Tool for visualizing behaviour.
- Provide support for technical verification of properties of designs.

For us

- Models describe state machines known as Labelled Transition Systems (LTSs).
- LTSs are described textually as finite state processes (FSPs) and displayed and analyzed by the CLTSA analysis tool.

# A Foreword on Models

The Big Picture Does S satisfy  $\Phi$ ?



In short

- Language for describing S FSP
- Language for stating the properties we want S to satisfy FSP + Temporal Logic
- Automatic checking mechanism CLTSA

#### Introduction to FSP

#### Background

- FSP is a member of the larger family of so-called the process calculi.
- Process calculi provide a language for the high-level description of interactions, communications, and synchronizations between a collection of independent processes acting concurrently.
- Process calculi obey algebraic laws that allow process to be manipulated and analyzed, and facilitating formal reasoning about concurrent behaviour.



Robin Milner
(Jan 1934 - Mar 2010)
British computer scientist
1991 Turing Award winner





Tony Hoare
(Jan 1934 - )
British computer scientist
1980 Turing Award winner



# Introduction to FSP

#### Background

- Basic modularization units in FSP are called processes.
- Processes are described in terms of actions.
- Actions are indivisible entities.
- Processes in FSP are interpreted as labelled transition systems (LTSs) and behaviour as sets of traces.



Jeff Kramer
British computer scientist



Jeff Magee
British computer scientist



## Process



# Action

$$\xrightarrow{a}$$

$$P = (...)$$
.

# PAR



Relabeling

```
/{ new/old }
```

## Sequencing



$$P = (a \rightarrow Q), Q = (... \rightarrow ...).$$

a a a a a

D

# Choice



QR

#### Recursion



$$P = (a \rightarrow Q), Q = (... \rightarrow P).$$



## Composition



$$||S| = (P || Q).$$
 $P P P P q q q$ 
 $P P P P q q q$ 
 $P P P P q q q$ 
 $P P P P$ 
 $P P P$ 

| p     | q | Р | P | q | Р |  |
|-------|---|---|---|---|---|--|
| p     | q | q | р | q | р |  |
| P     | q | Р | P | Р | q |  |
| P     | q | q | р | q | P |  |
| q     | Р | Р | P | q | q |  |
| q     | Р | q | p | P | Р |  |
| q     | p | P | P | P | q |  |
| q     | Р | P | P | P | q |  |
| AASAA |   |   |   |   |   |  |
|       |   |   |   |   |   |  |

# Questions?