C1. Intro to Embedded

Embedded Essentials **BACKBONE**

Let's meet

George Serea

Course Introduction

What you will learn

- Define components of an embedded system
- Design and write code for ARM based microcontrollers
- Work in a team-aware environment
- Make use of bug report tools
- Make use of versioning control

What you should already know

- C programming
- Basic electrical engineering concepts
- Basic computer architecture and digital circuits

- 1. Setup course ground rules
- 1. Software development
- 1. Anatomy of an embedded system
- 1. Setup the work environment

- 1. C language refresher
- 1. Basic hardware concepts A & D
- 1. The microcontroller architecture

Course ground rules

- Course schedule
- How much to wait before starting the course?
- Course structure: breaks, standup, theory, practice, mini-contest
- Homework
- Laptop usage during presentation
- Q&A anytime during class
- Further reading [GroundRules]

Software Development Life Cycle

Design	Develop	Operate
 Customer needs 	 Code development 	 Market releases
 Concept study 	Bug solving	 Maintenance
 Requirements 	 Incremental releases 	Client support
 Product design 	 Integration & testing 	Product phase-out

Software Development

Further reading [Git Branching]

Software Development

01	General purpose	 Web development Computer graphics Other PC & mobile apps Operating systems & tools
02	Business	 Business intelligence Financial apps CRMs and ERPs
03	Science	 Scientific R&D Big data Machine learning and A.I.

Automotive and transportation Medical devices Networking & telecom 04 Embedded systems Mass market: IoT, camera, printer Energy production & distribution Space & Military devices Data collection and science R&D

Anatomy of an Embedded System

Process Output Input Sensors Data xchg Software Firmware Hardwired

Customer needs	Features	Components
Describe what is the task the product needs to perform.	Describes what characteristics the product needs to possess to do the task.	Describes what actual components need to be present in the product to offer the needed capabilities (features).

Greenhouse monitor

I need a device that

- Measures temperature in my greenhouse
- Displays average temperature
- Lets me set a threshold temperature
- Gives alarm if temperature drops below threshold
- Monitors and shows total hours of sunlight

Home automation

I need a device that

- Displays the room temperature
- Lets me set desired temperature
- Starts the heater or AC when temperature goes below or above threshold
- Turns on a light after sunset when I enter the front door

Design an Embedded System

Greenhouse monitor

- Measure temperature
- Display various data
- Allows setting parameters
- Measure light intensity
- Gives an alarm (visual? audio?)

Home automation

- Measure temperature
- Display various data
- Allows setting parameters
- Measure light intensity
- Control AC, heater, light

Components

Design an Embedded System

01 Measure Temperature Temperature Sensor 02 **Display Data** Display (user interface) Buttons (user interface) 03 Change Parameters Light Sensor Measure Light Intensity Relays Control light, heater, AC

Process Output Input Sensors Data xchg Software Firmware Hardwired

Our Embedded System

Anatomy of an Embedded System

Setup the working environment

Please install S32 Design Studio from NXP's website

- Git usage TO DECIDE NAME
- Redmine usage
- Fill in the Input document
- How/if we do homework

C Language refresher

- Some C important concepts
- Memory mapping

C toolchain

C Language refresher

The Microcontroller architecture

Meet the microcontroller datasheet

Conclusion

- Our selected project
- Microcontroller architecture
- Next steps, homework
- Q & A

Thank You!

Name

Position

Email address

Website address

George Serea Software Developer George.serea@rinftech.com https://github.com/GSerea

Bucharest, 4 Gara Herastrau Street, Green Court Skanska

