Internet of Things class 3

ESP32 GPIO, Digital Input / Output

디지털의 이해

* 입력신호변환: 정보화@3.3v

아날로그	디지털	
전기신호	논리값 코드값	
2.3~3.3V	1 (HIGH)	0 이외의 값
0~1V	0 (LOW)	0

0 ~ Vcc * 1/3 : LOW, Vcc * 2/3 ~ Vcc : HIGH

Resistors

저항: 전기의 흐름을 제한하는 정도 (단위: 오옴, Ω) 1st Band Tolerance 2nd Band-Multiplier 50 ±2% Black ±5% ±5% ±5% 10 5. Brown ±10% ±10% ±10% Red Orange 15K Yellow EXAMPLE **EXAMPLE** 5 Green 0 X 1 0 0 X 1 Blue Purple Grev X 10000 X 10000 X 10000

< 100000

X1000000

8 8 ÷100

4 Band Resistors

99

출처: http://www.diyaudioandvideo.com/Electronics/ResistorColorCodes/

5 Band Resistors

8 8 8

999

6 ÷100

±1%

±2% ±5%

±10%

White

Brown

Red

Gold

Silver

Color Codes

6 ÷100

б Band Resistors

888

999

LED (Light-emitting diode)

■ **발광다이오드:** 순방향 전압에 빛을 내는 반도체 소자

** 다이오드: 한쪽 방향으로 전류가 흐르도록 제어하는 반도체

ko.wikipedia.org

LED (Light-emitting diode)

ITEMS	Symbol	Absolute Maximum Rating	Unit
Forward Current	IF	20	mA
Peak Forward Current	\mathbf{I}_{FP}	30	mA
Suggestion Using Current	${f I}_{\sf SU}$	16-18	mA
Reverse Voltage (V _R =5V)	\mathbf{I}_R	10	uA
Power Dissipation	P□	105	mW
Operation Temperature	Topr	-40 ~ 85	$^{\circ}$
Storage Temperature	Тѕтс	-40 ~ 100	${\mathbb C}$
Lead Soldering Temperature	Tsol	Max. 260 $^{\circ}\mathrm{C}$ for 3 Sec. Max. (3mm from the base of	of the expoxy bulb)

옴의 법칙 : V = I * R

- 0) 전지에 은박지를 연결할 때 왜 불이 붙을까?
- 1) 전구의 저항 = 100Ω
 Battery의 전압 = 10V 이면
 전류는 얼마인가? (I = V / R)
- 2) 전구의 한계 전류값 = 500mA 라면 허용할 수 있는 최대 전압은? (V = I * R)

옴의 법칙 : LED (발광 다이이오드)

LED의 특성은 비선형임

- 최대 허용전류가 20mA 이라면
 LED 종류별로 최대 허용 전압은 얼마인가?
- 2) LED 사용상 주의할 점이 무엇인가?

옴의 법칙: 전압의 분배

5mm Round LEDs	Forward Voltage (V)IF=20mA		INStruction Institute of the Com-	Intensity
Emitting Color				=20mA
	TYP	MAX	TYP	MAX
Red	1.8	2.3	4000	5000
Yellow	1.8	2.3	4000	5000
Orange	1.8	2.3	5000	6000
Blue	3.2	3.4	6000	8000
Green	3.2	3.4	18000	20000
White	3.2	3.4	18000	20000
Warm White	3.2	3.4	13000	14000
Pink	3.2	3.4	8000	9000
UV/Purple	3.2	3.4	1000	1500

전원의 분배.. $5V = V_R + V_I$

LED 특성 "순방향 전압".. 빛을 내기 위해 필요한 전압을 의미 (Red:1.8V, White: 3.2V)

1) 적색 LED에 18mA가 흐르게 하려면 저항값을 얼마로 해야 할까?

(R = (Batt 전압 - LED 순방향전압)/I)

- 2) 이 저항을 백색 LED에 사용할때 전류는? (I = V / R)
- 3) 전압이 3.3V 일때의 전류는?

ESP32 GPIO.OUT - LED

GPIO16	전압	LED
HIGH	3.3V	ON
LOW	0V	OFF

* 옴의 법칙: V = I * R

** Port 에서 흘릴 수 있는 전류는?

- 보통 최대 20mA
- 안전하게 5~10mA 정도로 정함

** LED ON을 위해서는 ?

"순방향 전압: 1.8V,

전류: 5~10mA 일 때"

R 값은 ?

= V / I

 $= (3.3 - 1.8) / (0.005 \sim 0.010)$

 $= 150\Omega \sim 300\Omega$

ESP32 GPIO.OUT - LED

** Port 에서 흘릴 수 있는 전류는?

- 보통 최대 20mA
- 안전하게 5~10mA 정도로 정함

** LED ON을 위해서는 ?

"순방향 전압: 1.8V,

전류: 5~10mA 일 때"

R 값은 ?

= V / I

 $= (3.3 - 1.8) / (0.005 \sim 0.010)$

 $= 150\Omega \sim 300\Omega$

Digital Tact Switch

- Tact 스위치: Push Button으로 전류의 흐름을 제어
 - 평소에는 회로가 끊어져 전류가 통하지 않음
 - 버튼을 누르면 회로가 연결되어 전류가 통함

거리가 먼 단자끼리 연결되어 있다 평소: 1-2, 3-4 가 각각 연결되어 있음

버튼을 누르면: 1-2-3-4 가 모두 연결됨

Digital Input Switch 1

Tact Switch 사용법 – Pull Up

pinMode(4, INPUT);
digitalRead(4);

스위치	GPIO4
Press	LOW
Release	?

스위치	GPIO4
Press	!!!
Release	HIGH

스위치	GPIO4
Press	LOW
Release	HIGH

$$R = V / I = 3.3 / 0.0003 = 910 K\Omega$$

^{*} pinMode(4, INPUT_PULLUP);

Digital Input Switch 2

Tact Switch 사용법 – Pull Down

pinMode(4, INPUT); digitalRead(4);

스위치	GPIO4
Press	HIGH
Release	?

스위치	GPIO4
Press	!!!
Release	LOW

스위치	GPIO4
Press	HIGH
Release	LOW

R = Pull-Down 저항 값 ?

$$R = V / I = 3.3 / 0.0003 = 약10 K\Omega$$

^{*} pinMode(4, INPUT_PULLDOWN);

Digital Input Switch 2

Tact Switch 사용법 – Pull Down

pinMode(4, INPUT); digitalRead(4);

스위치	GPIO4
Press	HIGH
Release	LOW

R = Pull-Down 저항 값 ? R = V / I = 5 / 0.0005 = 10 KΩ

ESP32 Digital Inputs and Outputs

- digitalWrite(GPIO, STATE)
 - GPIO = GPIO No. STATE = HIGH or LOW
- digitalRead(GPIO)
- pinMode(GPIO, IO)

IO = INPUT or **OUTPUT**

Example

Read Button

(GPIO:4)

Light LED

(GPIO:16)

ESP32 Digital Inputs and Outputs

** Use GPIO15 to connect switch

ESP32 Digital Inputs and Outputs

<Task03-1>

```
// <Task 03-1>
// set pin numbers
const int buttonPin = 15; // the number of the pushbutton pin
const int ledPin = 16; // the number of the LED pin
// variable for storing the pushbutton status
int buttonState = 0:
void setup() {
  Serial.begin(115200);
                                                    void loop() {
// initialize the pushbutton pin as an input
                                                    // read the state of the pushbutton value
  pinMode(buttonPin, INPUT);
                                                       buttonState = digitalRead(buttonPin);
// initialize the LED pin as an output
                                                       Serial.println(buttonState);
  pinMode(ledPin, OUTPUT);
                                                    // check if the pushbutton is pressed.
                                                    // if it is, the buttonState is HIGH
                                                       if (buttonState == HIGH) {
                                                          // turn LED on
                                                         digitalWrite(ledPin, HIGH);
                                                       } else {
                                                         // turn LED off
                                                         digitalWrite(ledPin, LOW);
```

Serial Input

<Task03-2> 시리얼모니터에서 'h' 와 'l'을 입력하여 LED를 On, Off 하라 각 입력시 마다 250ms Delay 하라

```
COM3
// <Task 03-2>
// set pin numbers
                                                                                       h....l......h.....h
const int ledPin = 16;
                        // the number of the LED pin
// set varialbles
char serState = NULL:
                                            void loop() {
void setup() {
                                            // read the state of Serial port
  Serial.begin(115200);
                                              if (Serial.available() > 0)
// initialize the LED pin as an output
                                                serState = Serial.read();
  pinMode(ledPin, OUTPUT);
                                            // check which keyboard 'h' or 'l' is
                                            pressed.
                                              if (serState == 'h') {
                                                 // turn LED on
                                                 digitalWrite(ledPin, HIGH);
                                              } else if (serState == 'l') {
                                                 // turn LED off
                                                 digitalWrite(ledPin, LOW);
                                              delay(250);
                                                                                       ☑ 자동 스크롤 □ 타인
```

ESP32 Touch Sensors

- ESP32 has 10 capacitive touch GPIOs
 - Can sense variations in electrical charge
 - Human skin, touching the GPIOs with a finger
 - Mechanical buttons

ESP32 Touch Sensors

- touchRead(GPIO)
 - Example: ESP32 > Touch > Touch Read
- Serial Monitor or Serial Plotter

<Task03-3>

```
// <Task 03-3>
// ESP32 Touch Test
// Just test touch pin - TouchO is TO which is on GPIO 4.
void setup()
{
    Serial.begin(115200);
    delay(1000); // give me time to bring up serial monitor
    Serial.println("ESP32 Touch Test");
}
void loop()
{
    Serial.println(touchRead(4)); // get value of Touch O pin = GPIO 4
    delay(1000);
}
```


Touch Sensitive LED

- Finding the threshold
 - Touch the aluminum foil, values changing again.

Touch Sensitive LED

- Finding the threshold
 - Change the code to turn on/off by touch
 - Considering the threshold...

Touch Sensitive LED

<Task03-4>

```
// <Task 03-4>
                                                                                     COM3
// set pin numbers
const int touchPin = 4:
const int ledPin = 16;
                                                                                    27 - LED off
// change with your threshold value
                                               void loop() {
                                                                                    13 - LED on
const int threshold = 20:
                                               // read the touch value:
                                                                                    12 - LED on
// variable for storing the touch pin value
                                                 touchValue = touchRead(touchPin);
                                                                                    12 - LED on
int touch Value:
                                                  Serial.print(touchValue);
                                               // check if the touch Value below the
                                                                                    69 - LED off
void setup() {
                                                          threshold
                                                                                    71 - LED off
  Serial.begin(115200);
                                               // if it is, set ledPin to HIGH
                                                                                    70 - LED off
  delay(1000); // time to bring up serial monitor
                                                 if(touchValue < threshold) {
                                                                                    69 - LED off
  // initialize the LED pin as an output:
                                                 // turn LFD on
                                                                                    70 - LED off
  pinMode (ledPin, OUTPUT);
                                                    digitalWrite(ledPin, HIGH);
                                                    Serial.println(" - LED on");
                                                                                    70 - LED off
                                                                                    70 - LED off
                                                 else {
                                                                                    70 - LED off
                                                 // turn LED off
                                                                                    69 - LED off
                                                 digitalWrite(ledPin, LOW);
                                                                                    68 - LED off
                                                 Serial.println(" - LED off");
                                                 delay(500);
                                                                                     ☑ 자동 스크롤 □ 타임:
```