Pour se remettre dans le bain

Pour se remettre dans le bain

- 1. Quelle est la différence entre *statistical learning* et *machine learning* ?
- 2. Donner la définition d'un algorithme d'apprentissage.
- 3. Quels sont les quatre grands types d'apprentissage?
- 4. Que définissent fat data et tall data?
- 5. Comment compare-t-on les performances d'algorithmes d'apprentissage ?
- Quelle notion est souvent cruciale au moment de choisir une bonne fonction de perte? En donner la définition.
- 7. Donner quelques exemples de fonctions de perte.
- 8. Enoncer le théorème de Bayes.
- 9. Quel est le rôle de la distribution a priori ?
- 10. Donner la définition d'un modèle bayésien.
- 11. Quelles sont les quatre distributions importantes en bayésien ?

$$\pi(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta)\pi(\theta)$$

$$\pi(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta)\pi(\theta)$$

▶ Operates conditional upon the observations.

$$\pi(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta)\pi(\theta)$$

- Operates conditional upon the observations.
- Integrates simultaneously prior knowledge and information brought by data.

$$\pi(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta)\pi(\theta)$$

- ▶ Operates conditional upon the observations.
- Integrates simultaneously prior knowledge and information brought by data.
- Coherent and complete inferential scope and unique motor of inference.

$$\pi(\theta|\mathbf{x}) \propto f(\mathbf{x}|\theta)\pi(\theta)$$

- Operates conditional upon the observations.
- Integrates simultaneously prior knowledge and information brought by data.
- Coherent and complete inferential scope and unique motor of inference.
- ▶ Usually known up to a constant! m(x) may be intractable.

There is no such thing as the prior distribution!

There is no such thing as the prior distribution!

Usually encapsulates *prior* knowledge on θ .

There is no such thing as the prior distribution!

Usually encapsulates *prior* knowledge on θ .

Vague priors (such as $\theta \sim \mathcal{N}(0, 100)$).

There is no such thing as the prior distribution!

Usually encapsulates *prior* knowledge on θ .

Vague priors (such as $\theta \sim \mathcal{N}(0, 100)$).

Improper priors: $\int \pi(\theta) d\theta = +\infty$.

There is no such thing as the prior distribution!

Usually encapsulates *prior* knowledge on θ .

Vague priors (such as $\theta \sim \mathcal{N}(0, 100)$).

Improper priors: $\int \pi(\theta) d\theta = +\infty$.

A prior on θ may depend on additional parameters: those are called hyperparameters.

Conjugacy and explicit calculus of posteriors

Conjugate priors are a specific family of distributions with nice analytical properties.

Conjugacy and explicit calculus of posteriors

Conjugate priors are a specific family of distributions with nice analytical properties.

A family \mathcal{F} of probability distributions is *conjugate* for a likelihood $f(x|\theta)$ if for every $\pi \in \mathcal{F}$, the posterior distribution $\pi(\theta|x)$ also belongs to \mathcal{F} .

Conjugacy and explicit calculus of posteriors

Conjugate priors are a specific family of distributions with nice analytical properties.

A family \mathcal{F} of probability distributions is *conjugate* for a likelihood $f(x|\theta)$ if for every $\pi \in \mathcal{F}$, the posterior distribution $\pi(\theta|x)$ also belongs to \mathcal{F} .

Only of interest when $\mathcal F$ is parameterized: switching from the prior to the posterior is reduced to an update of parameters.

▶ Limited/finite information conveyed by data *x*

- ► Limited/finite information conveyed by data *x*
- ▶ Preservation of the structure of the prior $\pi(\theta)$

- ► Limited/finite information conveyed by data *x*
- ▶ Preservation of the structure of the prior $\pi(\theta)$
- Exchangeability

- ► Limited/finite information conveyed by data *x*
- ▶ Preservation of the structure of the prior $\pi(\theta)$
- Exchangeability
- ► Allows for generation of "virtual observations"

- Limited/finite information conveyed by data x
- ▶ Preservation of the structure of the prior $\pi(\theta)$
- Exchangeability
- Allows for generation of "virtual observations"
- Most importantly: tractability and simplicity

Exponential families

The family of distributions

$$f(x|\theta) = C(\theta)h(x)\exp(R(\theta)T(x))$$

is called an exponential family.

Exponential families

The family of distributions

$$f(x|\theta) = C(\theta)h(x)\exp(R(\theta)T(x))$$

is called an exponential family. When

$$f(x|\theta) = h(x) \exp(-\theta x - \psi(\theta))$$

the family is said to be natural.

Exponential families

The family of distributions

$$f(x|\theta) = C(\theta)h(x)\exp(R(\theta)T(x))$$

is called an exponential family. When

$$f(x|\theta) = h(x) \exp(-\theta x - \psi(\theta))$$

the family is said to be natural.

Main interest: allow for conjugate priors

$$\pi(\theta|\mu,\lambda) = K(\mu,\lambda) \exp(\theta\mu - \lambda\psi(\theta)), \quad \lambda > 0.$$

$$f(x|\theta)$$
 $\pi(\theta)$ $\pi(\theta|x)$

$f(x \theta)$	$\pi(heta)$	$\pi(\theta x)$
Normal	Normal	Normal
$\mathcal{N}(heta,\sigma^2)$	$\mathcal{N}(\mu, au^2)$	$\mathcal{N}(\rho(\sigma^2\mu + \tau^2 x), \rho\sigma^2 \tau^2)$ $\rho^{-1} = \sigma^2 + \tau^2$

$f(x \theta)$	$\pi(heta)$	$\pi(\theta x)$
Normal	Normal	Normal
$\mathcal{N}(heta,\sigma^2)$	$\mathcal{N}(\mu, au^2)$	$\mathcal{N}(\rho(\sigma^2\mu + \tau^2x), \rho\sigma^2\tau^2)$
		$\rho^{-1} = \sigma^2 + \tau^2$
Poisson	Gamma	Gamma
$\mathcal{P}(\theta)$	$\mathfrak{G}(\alpha,\beta)$	$\mathfrak{G}(\alpha+x,\beta+1)$

$f(x \theta)$	$\pi(heta)$	$\pi(\theta x)$
Normal	Normal	Normal
$\mathcal{N}(\theta, \sigma^2)$	$\mathcal{N}(\mu, au^2)$	$\mathcal{N}(\rho(\sigma^2\mu + \tau^2x), \rho\sigma^2\tau^2)$
		$\rho^{-1} = \sigma^2 + \tau^2$
Poisson	Gamma	Gamma
$\mathcal{P}(heta)$	$\mathfrak{G}(lpha,eta)$	$\mathfrak{G}(\alpha+x,\beta+1)$
Gamma	Gamma	Gamma
$\Im(u, \theta)$	$\mathfrak{G}(\alpha,\beta)$	$\mathfrak{G}(\alpha+\nu,\beta+x)$

$f(x \theta)$	$\pi(heta)$	$\pi(\theta x)$
Normal	Normal	Normal
$\mathcal{N}(\theta, \sigma^2)$	$\mathcal{N}(\mu, \tau^2)$	$\mathcal{N}(\rho(\sigma^2\mu + \tau^2x), \rho\sigma^2\tau^2)$
		$\rho^{-1} = \sigma^2 + \tau^2$
Poisson	Gamma	Gamma
$\mathcal{P}(heta)$	$\mathfrak{G}(\alpha,\beta)$	$\mathfrak{G}(\alpha+x,\beta+1)$
Gamma	Gamma	Gamma
$\mathfrak{G}(u, heta)$	$\mathfrak{G}(\alpha,\beta)$	$\mathfrak{G}(\alpha+\nu,\beta+x)$
Binomial	Beta	Beta
$\mathcal{B}(n, \theta)$	\mathfrak{B} e (α, β)	$\mathfrak{B}e(\alpha+x,\beta+n-x)$

$f(x \theta)$	$\pi(heta)$	$\pi(\theta x)$
Normal	Normal	Normal
$\mathcal{N}(heta,\sigma^2)$	$\mathcal{N}(\mu, au^2)$	$\mathcal{N}(\rho(\sigma^2\mu + \tau^2x), \rho\sigma^2\tau^2)$
		$\rho^{-1} = \sigma^2 + \tau^2$
Poisson	Gamma	Gamma
$\mathcal{P}(\theta)$	$\mathfrak{G}(\alpha,\beta)$	$\Im(\alpha+x,\beta+1)$
Gamma	Gamma	Gamma
$\Im(u, heta)$	$\mathfrak{G}(\alpha,\beta)$	$\mathfrak{G}(\alpha+\nu,\beta+x)$
Binomial	Beta	Beta
$\mathfrak{B}(n, heta)$	$\mathfrak{B}e(\alpha,\beta)$	$\mathcal{B}e(\alpha+x,\beta+n-x)$
Negative binomial	Beta	Beta
$Neg(m, \theta)$	$\mathfrak{B}e(\alpha,\beta)$	$\mathcal{B}e(\alpha+m,\beta+x)$

$f(x \theta)$	$\pi(heta)$	$\pi(\theta x)$
Normal	Normal	Normal
$\mathcal{N}(\theta, \sigma^2)$	$\mathcal{N}(\mu, au^2)$	$\mathcal{N}(\rho(\sigma^2\mu + \tau^2x), \rho\sigma^2\tau^2)$
		$\rho^{-1} = \sigma^2 + \tau^2$
Poisson	Gamma	Gamma
$\mathcal{P}(\theta)$	$\mathfrak{G}(\alpha,\beta)$	$\mathfrak{G}(\alpha+x,\beta+1)$
Gamma	Gamma	Gamma
$\mathfrak{G}(u, heta)$	$\mathfrak{G}(\alpha,\beta)$	$\mathfrak{G}(\alpha+\nu,\beta+x)$
Binomial	Beta	Beta
$\mathfrak{B}(n, \theta)$	$\mathfrak{B}e(\alpha,\beta)$	$\mathcal{B}e(\alpha+x,\beta+n-x)$
Negative binomial	Beta	Beta
$\operatorname{Neg}(m, \theta)$	$\mathfrak{B}e(\alpha,\beta)$	$\mathcal{B}e(\alpha+m,\beta+x)$
Multinomial	Dirichlet	Dirichlet
$\mathcal{M}_k(\theta_1,\ldots,\theta_k)$	$\mathcal{D}(\alpha_1,\ldots,\alpha_k)$	$\mathcal{D}(\alpha_1+x_1,\ldots,\alpha_k+x_k)$

$f(x \theta)$	$\pi(heta)$	$\pi(\theta x)$
Normal	Normal	Normal
$\mathcal{N}(\theta, \sigma^2)$	$\mathcal{N}(\mu, \tau^2)$	$\mathcal{N}(\rho(\sigma^2\mu + \tau^2x), \rho\sigma^2\tau^2)$
		$\rho^{-1} = \sigma^2 + \tau^2$
Poisson	Gamma	Gamma
$\mathcal{P}(\theta)$	$\mathfrak{G}(\alpha,\beta)$	$\mathfrak{G}(\alpha+x,\beta+1)$
Gamma	Gamma	Gamma
$\mathfrak{G}(u, heta)$	$\mathfrak{G}(\alpha,\beta)$	$\mathfrak{G}(\alpha+\nu,\beta+x)$
Binomial	Beta	Beta
$\mathfrak{B}(n, \theta)$	$\mathfrak{B}e(\alpha,\beta)$	$\mathcal{B}e(\alpha+x,\beta+n-x)$
Negative binomial	Beta	Beta
$\operatorname{Neg}(m, \theta)$	$\mathfrak{B}e(\alpha,\beta)$	$\mathcal{B}e(\alpha+m,\beta+x)$
Multinomial	Dirichlet	Dirichlet
$\mathcal{M}_k(\theta_1,\ldots,\theta_k)$	$\mathcal{D}(\alpha_1,\ldots,\alpha_k)$	$\mathcal{D}(\alpha_1+x_1,\ldots,\alpha_k+x_k)$
Normal	Gamma	Gamma
$\mathcal{N}(\mu, 1/ heta)$	$\mathfrak{G}(\alpha,\beta)$	$\Im(\alpha + 1/2, \beta + (\mu - x)^2/2)$

Based on Fisher information:

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log \mathcal{L}(\theta|x)}{\partial \theta^2}\right].$$

Based on Fisher information:

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log \mathcal{L}(\theta|x)}{\partial \theta^2}\right].$$

Jeffreys prior is defined as

$$\pi^*(\theta) \propto \det(I(\theta))^{1/2}$$
.

Based on Fisher information:

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log \mathcal{L}(\theta|x)}{\partial \theta^2}\right].$$

Jeffreys prior is defined as

$$\pi^*(\theta) \propto \det(I(\theta))^{1/2}$$
.

Based on Fisher information:

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log \mathcal{L}(\theta|x)}{\partial \theta^2}\right].$$

Jeffreys prior is defined as

$$\pi^*(\theta) \propto \det(I(\theta))^{1/2}$$
.

Pros & Cons:

► Relates to information theory

Based on Fisher information:

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log \mathcal{L}(\theta|x)}{\partial \theta^2}\right].$$

Jeffreys prior is defined as

$$\pi^*(\theta) \propto \det(I(\theta))^{1/2}$$
.

- Relates to information theory
- Parameterization invariant

Based on Fisher information:

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log \mathcal{L}(\theta|x)}{\partial \theta^2}\right].$$

Jeffreys prior is defined as

$$\pi^*(\theta) \propto \det(I(\theta))^{1/2}$$
.

- Relates to information theory
- Parameterization invariant
- ► Suffers from dimensionality curse

Based on Fisher information:

$$I(\theta) = -\mathbb{E}\left[\frac{\partial^2 \log \mathcal{L}(\theta|x)}{\partial \theta^2}\right].$$

Jeffreys prior is defined as

$$\pi^*(\theta) \propto \det(I(\theta))^{1/2}$$
.

- Relates to information theory
- Parameterization invariant
- ► Suffers from dimensionality curse
- Depends on data: incoherence with the likelihood principle

Example

If
$$x \sim \mathfrak{B}(n, \theta)$$
, Jeffreys' prior is

$$\pi(\theta) \propto \mathcal{B}e(1/2,1/2).$$

If $n \sim \text{Neg}(x, \theta)$, Jeffreys' prior is

$$\pi(\theta) \propto \theta^{-1} (1-\theta)^{-1/2}$$

Non-informative priors: Laplace priors

With a finite set $\{\theta_1, \dots, \theta_p\}$, uniform prior $\pi(\theta_i) = 1/p$.

Non-informative priors: Laplace priors

With a finite set $\{\theta_1, \dots, \theta_p\}$, uniform prior $\pi(\theta_i) = 1/p$.

Continuous extension: $\pi(\theta) \propto 1$. This is no longer a probability distribution yet if $\int f(x|\theta) \mathrm{d}\theta < +\infty$, the posterior is well-defined as a probability distribution. Modeling is crucial. Weakness: lack of reparameterization invariance.

