Projet de bachelor

Bruteforce Password Attack on FPGAs

Introduction

Introduction - Elca Security

Introduction - Durée du travail

Projet de semestre :

- En parallèle des cours
- 8 h par semaine

Projet de Bachelor

- Temps plein
- 450 h de travail

Introduction - Solution GPU

Introduction - Solution FPGA

Introduction - FPGA vs CPU vs GPU

Mesures et Comparaisons :

- Consommation
- Hashrate
- Coût

Bcrypt - Algorithme de hash

Bcrypt - Algorithme

Bcrypt - Password Hashing

Bcrypt - Format du hash

Réalisations - Travail de semestre

Implémentation existante

https://github.com/rub-hgi/high-speed_bcrypt

Implémentation existante - Schéma

Implémentation existante - Problèmes

- Documentations
- Versions Incohérences
- Testbenches incomplets
- Petites erreurs

Réalisations - Travail de bachelor

Solutions

Solution Low-cost:

- FPGA Peu coûteux
- Interface UART
- Génération de mots de passe dans FPGA

Solution High-cost:

- FPGA coûteux
- Interface PCIe
- Génération de mots de passe sur PC

Solution Low-cost

Nexys Video:

• FPGA: *Artix 7 - XC7A200T*

o LUT : 134′600

o BRAM : *365*

o Prix : 300.-

• Prix : 550.-

Solution Low cost - Schéma

Solution Low cost - Initialisation des Quadcores

- Le nombre d'essais
- Le HASH et le SALT
- Initialisation du générateur de mots de passe

PAYLOAD FORMAT - BCRYPT QUADCORE INIT

Solution Low cost - Réponse du système

PAYLOAD FORMAT - RETURN

Return Code	Return
000	ОК
001	Packet size greater than expected
010	Packet size smaller than expected
011	Quadcore ID not valid
100	CRC Error

Solution Low cost - Retour du système

PAYLOAD FORMAT - STATUS REPORT

PAYLOAD FORMAT - PASSWORD FOUND

Solution Low cost - Encodage COBS

THE COBS ENCODING PROCESS Add byte to start, ORIGINAL indicating how many bytes away DATA the first "00" is. 81 Replace the "00" with a byte indicating how many bytes the next 81 "00" is away COBS ENCODED D4 81 DATA Replace the "00" with a byte Add end-of-packet indicating how many bytes the byte "00" at end. next "00" is away. In this case

PACKET FORMAT

1 Byte	1 Byte	Variable	1 Byte	1 Byte
COBS HEAD	PAYLOAD LENGTH	PAYLOAD	CRC	COBS END

https://blog.mbedded.ninja/programming/serialization-formats/consistent-overhead-byte-stuffing-cobs/

there is no more "00", so indicate where end is.

Solution Low cost - Schéma FPGA

Solution High-cost

KCU 116:

• FPGA: Kintex UltraScale+ XCKU5P

o LUT : 474,600

o BRAM : 480

o Prix : 2800.-

• Prix : 3900.-

Solution High cost - Schéma

Solution High cost - Schéma FPGA

Solution High cost - Accès Mémoire

Solution High cost - Schéma de Test

Résultats

Résultats - Hashrate

Carte FPGA	Freq (MHz)	Quadcores Max.	Utilisations (%)	Hashrate (cost : 5)
Nexys Video	100	22	BRAM : 78.36, LUT : 75	<u>13'554 H/s</u>
KCU 116	100	36	BRAM : 97.50, LUT : 68	22'180 H/s
	200	36	BRAM : 97.50, LUT : 68	44'369 H/s
	250	36	BRAM : 97.50, LUT : 68	55'450 H/s
	275	< 30	-	< 50'820 H/s

Résultats - Comparaisons

Architecture	Prix	Puissance (W)	Hashrate (cost : 5)	Efficacité Énergétique	
FPGA (Artix 7, 22 Quadcores, 100 MHz)	~300 CHF	4.38	13'554 Hash/s	3'094 Hash/J	11.140 MHash/Wh
FPGA (Kintex Ultrascale+, 36 Quadcores, 250 MHz)	~2800 CHF	11.7	55'450 Hash/s	4'739 Hash/J	17.06 MHash/Wh
CPU (AMD Ryzen 7 4800U, 16 threads)	~100-200 CHF	~25	8'200 Hash/s	328 Hash/J	1.18 MHash/Wh
GPU (NVIDIA GTX 1660 Super)	~300 CHF	125	19'201 Hash/s	154 Hash/J	0.552 MHash/Wh

Conclusion:

- Optimisation de l'implémentation Bcrypt
- Finir implémentation solution PCIe
- Mettre en place un driver linux pour PCIe

Démo