Practical Bounded Min Registers

Jordan

December 13, 2023

Introduction

In this presentation, we will be discussing wait-free implementations of k-bounded min registers.

- I'll introduce the model, what bounded min registers are, what wait-free means
- We'll discuss existing an existing implementation in the literature
- Then we'll discuss improvements to existing techniques that Faith and I have come up with
- And some open problems

Computational model

We are considering a system in which many processes communicate by performing operations on shared memory. A process can perform the following operations on a word w in memory, which holds some integer value:

- w.read(): Returns the current value of w.
- w.write(v): Updates the value of w to v.
- w.CAS(v, v'): If w's value is v, w's value is updated to v'.
- w.FAA(v): Computes the bitwise-and b of w's value and v, and updates w to hold b.

k-bounded min register

A k-bounded min register r is a shared object that stores an integer value in $\{0,\ldots,k-1\}$, initially holding k-1. It supports the following operations:

- r.minRead():
 - Return the current value of r.
- r.minWrite(v), where $0 \le v < k$
 - If v is less than the value of r, set r's value to v.
 - Otherwise do nothing.

What does it mean for an implementation to be correct?

The correctness condition typically used for shared data structures is linearizability.

- For every operation, there should be a point during the operation in which we could say it 'took effect'
- e.g. If an instance of r.minRead() returns v, then at some point during the instance r was equal to v.
- If an instance of r.minWrite(v) terminates, then at some point during the instance r was less than v or r was updated to v.

Non-blocking progress guarantees

Here are the possible progress guarantees for non-blocking shared data structures:

- Obstruction-free: If a process p performs a sufficient number of steps without another process taking steps, it completes its operation.
- Lock-free: If a process p performs a sufficient number of steps, some process (which may or may not be p) has finished an operation.
- Wait-free: If a process p performs a sufficient number of steps, p completes its operation.

Related work

Aspnes, Attiya and Censor give a recursive wait-free implementation of a k-bounded min register¹.

A 1-bounded min-register z can be trivially implemented without memory, as so:

- z.minRead():
 - Return 0
- z.minWrite(v):
 - Do nothing.

This is clearly wait-free and linearizable.

¹Their paper was actually about max registers, but we're giving an equivalent implementation for min registers.

Aspnes, Attiya, Censor Implementation

Suppose we have access to:

- a wait-free L-bounded min register left,
- a wait-free R-bounded min register right,
- a single bit sw stored in memory, initially sw = 1 (ON).

We can implement an L + R bounded min register r.

Aspnes, Attiya, Censor Implementation

Initially, the min register looks like this:

Figure: Their implementation takes the form of a binary tree. If the *sw* bit is 1, then the value of r is L + right's value. Otherwise the value of r is left's value.

Aspnes, Attiya, Censor Implementation

```
1: minRead()
      if switch = 0 then
 2:
        return left.minRead()
 3:
      else
 4.
 5:
        return right.minRead() + L
 6: minWrite(v)
      if v < l then
 7:
8:
        left.minWrite(v)
         switch \leftarrow 0
9.
      else
10:
        if switch = 1 then
11:
           right.minWrite(v - L)
12:
```

Suppose L = 10, R = 10, and we're implementing a 16-bounded min register.

Figure: The min register initially looks like this.

After performing r.minWrite(12), r looks like this:

After performing r.minWrite(3), r looks like this:

Figure: Essentially sw = 0 indicates that r's value < L, and that left holds the value of r.

Lemma 1.

Suppose left and right are wait-free bounded min registers. Then so is r.

Proof.

The r.minRead() and r.minWrite() functions use only use a single step to either read or write to sw, in addition to using the minRead() and minWrite() functions of left and right.

How can we implement this practically?

How can we implement this on a real machine?

Practical Implementations of a b-bounded min register

Idea 1: A *b*-bounded min register object stores the bit sw, and left, right which are pointers to $\lceil \frac{b}{2} \rceil$ and $\lfloor \frac{b}{2} \rfloor$ -bounded min register objects respectively.

Pros:

- Very simple to implement.
- Might reduce memory contention to store bits in different objects at different places in memory

Cons

- A lot of wasted space. On real machines, objects use at least 24 bytes per node used, so total space used is 24(b-1) bytes.
- Slow to traverse to different bounded min register objects from left/right.

Practical Implementations of a b-bounded min register

Idea 2: We can use a byte array-based tree, where each byte stores a switch register, and is the root of a subtree.

Array-based leveled binary tree

Definition 2.

A binary tree is leveled if every row, except possibly the last is filled.

We can use a b-byte array of atomic registers as a b node leveled binary tree. In a leveled binary tree, the left child of a node at index i, if one exists, is at index 2i + 1. The right child, if it exists, is at index 2i + 2.

Pros:

More space efficient

Cons:

ullet Now need b-1 bytes for a b-bounded register, which is still not great

But wait, there's more!

We are only using 1 bit for every byte in the array... What if instead we could use every bit in the array rather than one per byte? 8 times the capacity!

• Before:

After:

Reads and Writes to individual bits

Reading a particular bit atomically is trivial. Can a byte and then use bitshifting.

But what about writing 0 to particular bit? We can use *fetch&and*! To write 0 to bit i of a particular byte a atomically, we can use a.FAA(111111112 - (1 << (7 - i)))

Optimizing number of steps

Notice that any reads occur before any writes in both minRead and minWrite operations.

- minReads will read switches before going down the tree
- minWrites will read switches before going down the tree and then write to switches on the way back up

We could read and write multiple switches at a time if they're in the same word in memory. So we could implement word size min registers in this way. But is there a better way?

Word sized min registers

When I mentioned that most computers have FAA, Faith came up with a better idea:

Let w be a word of W bits such that the system supports FAA on w.

- We can implement a (W+1)-bounded min register from w.
- Initially, w is all 1s.
- The value of w at any time is the position of the rightmost off bit, or W if all bits are on.
- A minRead will read w and return the position of the rightmost off bit.
- A minWrite(v) will use FAA to turn off the v-th bit, leaving the other bits unchanged.

This is a better implementation; minWrites now don't need to read, and we don't need to do any recursion or iteration to read/write different bits.

Larger min registers that are slightly more efficient

What about for larger min registers? Notice that in the earlier implementation, *sw* acts as a 2-bounded min register. It initially holds the value 1, and processes only read it or write 0 to it.

- What if we instead used our new word-size min register as the switch?
- Then we could use it to 'pick' between (W + 1) subtrees which are each min registers, rather than 2.
- Reduces the step complexity of a k-bounded register from $\log_2(k)$ to $\log_{W+1}(k)$.

Larger min registers that are slightly more efficient

Given we have words of size W and S-bounded min registers,

- We use a (W + 1)-bounded min register sw, as the switch,
- and (W+1) S-bounded min registers, $tree_0 \dots tree_W$,
- to obtain a (W+1)S-bounded min register r.

```
1: minRead()

2: i \leftarrow sw.minRead()

3: return \ tree_i.minRead() + is

4: minWrite(v)

5: d \leftarrow \lfloor \frac{v}{S} \rfloor

6: i \leftarrow sw.minRead()

7: if \ i \geq d \ then

8: tree_d.minWrite(v - d \cdot S)

9: if \ i > d \ then \ sw.minWrite(d)
```


Open question

In both implementations, a wait-free b-bounded min register requires b-1 bits and has $O(\log b)$ step complexity. Is there an implementation that uses fewer bits that has $O(\log b)$ or better step complexity?

Open questions

While technically wait-free, brute force implementations from CAS are slow. Given a word w of W bits, we could implement a 2^W bounded min register as follows:

- A minRead would return the current value of w.
- A minWrite(v) would read the current value c of w, and if c is greater than v, perform w.CAS(c, v), repeatedly trying until the value of r less than v.

The step complexity of minWrites in this implementation would be O(b-v), since a *minWrite* might have to perform a linear number of CAS operations on w before w holds a value that is less than or equal to v.