Geometry of quaders on top of surface elements of polytopes

Andreas Orthey

Figure 1: A polytope O_i in \mathbb{R}^3 (light gray) and a set of quaders B_i^p on top of one surface element S_i^p (dark gray)

Definition 1. Let an object O_i be a convex bounded polytope

$$O_i = \{ x \in \mathbb{R}^3 | a_j^{(i)T} x \le b_j^{(i)}, ||a_j^{(i)}||_2 = 1, j \in [1, M_i] \}$$
 (1)

with M_i the number of halfspaces.

Let us take one surface element S_i^p of O_i , given by

Definition 2 (Surface Element). Given an object O_i , we call

$$S_i^p = \{ x \in \mathbb{R}^3 | a_p^{(i)T} x = b_p^{(i)}, a_j^{(i)T} x \le b_j^{(i)},$$

$$j = 1, \dots, p - 1, p + 1, \dots, M_i \}$$
(2)

the p-th surface element of object O_i , and $a_p^{(i)}$ is the surface normal with distance $b_p^{(i)}$ to the origin.

A quader on top of S_i^p can now be defined as

Definition 3. The quader $B_i^p(\Delta_L, \Delta_U)$ of height $\delta = \Delta_U - \Delta_L$ located with distance Δ_L above S_i^p is defined as the set of points in

$$B_{i}^{p}(\Delta_{L}, \Delta_{U}) = \{x \in \mathbb{R}^{3} | -a_{p}^{(i)T}x \leq -b_{p}^{(i)} - \Delta_{L},$$

$$a_{p}^{(i)T}x \leq b_{p}^{(i)} + \Delta_{U},$$

$$\hat{a}_{j}^{(i)T}x \leq \hat{b}_{j}^{(i)},$$

$$j=1, \dots, p-1, p+1, \dots, M_{i} \}$$

$$(3)$$

with $\hat{a}_{j}^{(i)}, \hat{b}_{j}^{(i)}$ belonging to the projected hyperplane j, with

$$\hat{a}_{j}^{(i)} = a_{j}^{(i)} - (a_{j}^{(i)T} a_{p}^{(i)}) a_{p}^{(i)}$$

$$\hat{b}_{j}^{(i)} = \hat{a}_{j}^{(i)T} x_{j,0}^{(i)}$$
(4)

whereby $x_{j,0}^{(i)}$ is one point on the intersection between hyperplane H_j and surface element S_i^p

$$x_{j,0}^{(i)} \in \{x \in \mathbb{R}^3 | a_j^{(i)T} x = b_j^{(i)},$$

$$a_k^{(i)T} y \le b_k^{(i)},$$

$$k=1, \dots, j-1, j+1, \dots, p-1, p+1, \dots, M_i\},$$

$$a_p^{(i)T} y = b_p^{(i)},$$

$$\|x - y\|^2 = 0\}$$

$$(5)$$

Note that x_0 does not exist, if there is no common border between S_i^p and H_j , in which case $\hat{a}_j^{(i)}, \hat{b}_j^{(i)}$ do not exist, i.e. they are not halfspace intersections of the box.