$12a_{1288} \ (K12a_{1288})$

Ideals for irreducible components 2 of $X_{\mathtt{par}}$

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

$$\begin{split} I_1^u &= \langle u^{11} + u^{10} - 6u^9 - 5u^8 + 11u^7 + 5u^6 - 7u^5 + 5u^4 + 3u^3 - 4u^2 + 4b - 2u, \\ &- 3u^{11} - 8u^{10} + 9u^9 + 33u^8 - 4u^7 - 30u^6 + 20u^5 - 42u^3 + u^2 + 4a + 10u - 2, \\ &u^{12} + 3u^{11} - 3u^{10} - 14u^9 + u^8 + 18u^7 - 8u^6 - 6u^5 + 24u^4 - 3u^3 - 13u^2 + 6u - 2 \rangle \\ I_2^u &= \langle 1999u^{15} + 3106u^{14} + \dots + 2878b - 22827, -1627u^{15} - 1680u^{14} + \dots + 15829a + 36947, \\ &u^{16} + 3u^{15} + \dots - 2u - 11 \rangle \\ I_3^u &= \langle u^7a - u^7 - 4u^5a - u^4a + 4u^5 + 4u^3a - u^4 + u^2a - 4u^3 + 2au + u^2 + 2b + a + 1, \\ &- u^7a + u^6a + 2u^7 + 3u^5a - 3u^6 - 3u^4a - 7u^5 - 2u^3a + 10u^4 + 2u^2a + 7u^3 + a^2 - au - 7u^2 + a - 5, \\ &u^8 - u^7 - 4u^6 + 3u^5 + 5u^4 - u^3 - u^2 - 3u - 1 \rangle \\ I_4^u &= \langle -u^{11}a - u^{11} + \dots + a + 1, \\ &u^{11} - 5u^9 + u^7a - 2u^8 + 9u^7 - 2u^5a + 8u^6 - u^4a - 4u^5 - 10u^4 + u^2a - 6u^3 + a^2 + 2au + 2u^2 + a + 6u + 2, \\ &u^{12} - u^{11} - 4u^{10} + 2u^9 + 7u^8 + u^7 - 5u^6 - 5u^5 - u^4 + 3u^3 + 2u^2 + 1 \rangle \\ I_5^u &= \langle 2b - a - 1, \ a^2 - 3, \ u - 1 \rangle \\ I_6^u &= \langle 2b - u + 1, \ 3a - u, \ u^2 - 3 \rangle \\ I_7^u &= \langle b + 1, \ a, \ u - 1 \rangle \\ I_8^u &= \langle 4b^2 - 4b + 5, \ 2ba - 2b - 3a + 4u + 7, \ 2bu + 2b - 2a + u + 3, \ a^2 - 2a + 1, \ au + a - u - 1, \ u^2 + 2u + 1 \rangle \\ I_9^u &= \langle a - 1, \ u + 1 \rangle \\ I_1^v &= \langle a, \ b - 1, \ v + 1 \rangle \end{aligned}$$

- * 9 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 78 representations.
- * 1 irreducible components of $\dim_{\mathbb{C}} = 1$

 $^{^2}$ All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{11} + u^{10} + \dots + 4b - 2u, -3u^{11} - 8u^{10} + \dots + 4a - 2, u^{12} + 3u^{11} + \dots + 6u - 2 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{3}{4}u^{11} + 2u^{10} + \dots - \frac{5}{2}u + \frac{1}{2}u \\ -\frac{1}{4}u^{11} - \frac{1}{4}u^{10} + \dots + u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{4}u^{11} + u^{10} + \dots - \frac{7}{2}u + \frac{1}{2}u \\ -\frac{1}{4}u^{10} - \frac{3}{4}u^{9} + \dots + \frac{3}{2}u - \frac{1}{2}u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -\frac{1}{4}u^{11} - u^{10} + \dots + \frac{3}{2}u - \frac{1}{2}u \\ -\frac{1}{4}u^{11} - \frac{1}{4}u^{10} + \dots + u^{2} + \frac{1}{2}u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -\frac{1}{2}u^{10} - \frac{3}{2}u^{9} + \dots - \frac{15}{2}u^{2} - 1 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -\frac{1}{4}u^{11} + \frac{7}{4}u^{9} + \dots - \frac{3}{2}u + \frac{3}{2}u \\ -u^{11} - \frac{7}{4}u^{10} + \dots - \frac{5}{2}u + \frac{1}{2}u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -\frac{1}{2}u^{10} - \frac{3}{2}u^{9} + \dots + u - 1 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} \frac{1}{2}u^{11} + \frac{3}{2}u^{10} + \dots + u + 1 \\ -u^{2} \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes
$$= \frac{1}{2}u^{11} + u^{10} - \frac{3}{2}u^9 - \frac{1}{2}u^8 + 3u^7 - 13u^6 - 8u^5 + 22u^4 - 11u^3 - \frac{19}{2}u^2 + 32u - 7$$

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$u^{12} - 3u^{11} + \dots - 6u - 2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$u^{12} + 3u^{11} + \dots + 6u - 2$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	$y^{12} - 15y^{11} + \dots + 16y + 4$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.369891 + 0.895594I		
a = -0.40167 + 1.49298I	11.33630 - 5.25212I	7.30257 + 4.65184I
b = -0.02653 - 1.85453I		
u = 0.369891 - 0.895594I		
a = -0.40167 - 1.49298I	11.33630 + 5.25212I	7.30257 - 4.65184I
b = -0.02653 + 1.85453I		
u = 1.22438		
a = -1.51331	8.64658	-5.83920
b = -1.43561		
u = 0.740748		
a = 2.25319	10.7798	10.0010
b = 0.277533		
u = -1.48568 + 0.19251I		
a = -0.168040 - 0.624592I	-11.33630 + 5.25212I	-7.30257 - 4.65184I
b = -0.695418 + 0.595170I		
u = -1.48568 - 0.19251I		
a = -0.168040 + 0.624592I	-11.33630 - 5.25212I	-7.30257 + 4.65184I
b = -0.695418 - 0.595170I		
u = -1.46094 + 0.44342I		
a = 0.831296 + 0.555829I	15.2352I	0 7.62682I
b = 1.16548 - 2.08317I		
u = -1.46094 - 0.44342I		
a = 0.831296 - 0.555829I	-15.2352I	0. + 7.62682I
b = 1.16548 + 2.08317I		
u = 0.186071 + 0.332496I		
a = -0.523030 - 0.852314I	-0.761015I	0. + 9.12858I
b = 0.072588 + 0.300683I		
u = 0.186071 - 0.332496I		
a = -0.523030 + 0.852314I	0.761015I	0 9.12858I
b = 0.072588 - 0.300683I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.66904		
a = 0.443816	-10.7798	-10.0010
b = 0.958809		
u = -1.85286		
a = -0.660804	-8.64658	5.83920
b = -0.832979		

$$\begin{aligned} \text{II. } I_2^u &= \langle 1999u^{15} + 3106u^{14} + \dots + 2878b - 22827, \ -1627u^{15} - 1680u^{14} + \\ & \dots + 15829a + 36947, \ u^{16} + 3u^{15} + \dots - 2u - 11 \rangle \end{aligned}$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0.102786u^{15} + 0.106134u^{14} + \cdots - 0.0633647u - 2.33413 \\ -0.694580u^{15} - 1.07922u^{14} + \cdots - 5.24913u + 7.93155 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0812433u^{15} + 0.190220u^{14} + \cdots + 0.503696u + 0.181502 \\ -1.01355u^{15} - 1.80195u^{14} + \cdots + 3.62717u + 5.92113 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.0504138u^{15} - 0.0794744u^{14} + \cdots + 1.94864u + 1.81092 \\ 0.312370u^{15} + 0.280751u^{14} + \cdots + 1.27762u - 4.97672 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.503254u^{15} + 0.504896u^{14} + \cdots + 3.85571u - 3.97524 \\ -0.594163u^{15} - 0.777623u^{14} + \cdots + 0.603753u + 4.15705 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.434645u^{15} + 0.605534u^{14} + \cdots + 2.21884u - 1.80814 \\ 0.0309243u^{15} - 0.298124u^{14} + \cdots + 0.944058u - 3.69180 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.0909091u^{15} - 0.272727u^{14} + \cdots - 2.18182u + 0.181818 \\ -0.594163u^{15} - 0.777623u^{14} + \cdots - 6.03753u + 4.15705 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0.377914u^{15} + 0.539579u^{14} + \cdots + 1.33679u - 5.79335 \\ 1.00486u^{15} + 1.85198u^{14} + \cdots + 2.96873u - 7.53579 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{3610}{1439}u^{15} - \frac{5684}{1439}u^{14} + \dots - \frac{43398}{1439}u + \frac{24298}{1439}u^{14} + \dots$$

Crossings	u-Polynomials at each crossing	
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$u^{16} - 3u^{15} + \dots + 2u - 11$	
c_3, c_4, c_5 c_9, c_{10}, c_{11}	$(u^8 - u^7 - 4u^6 + 3u^5 + 5u^4 - u^3 - u^2 - 3u - 1)^2$	

Crossings	Riley Polynomials at each crossing		
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$y^{16} - 13y^{15} + \dots - 532y + 121$		
c_3, c_4, c_5 c_9, c_{10}, c_{11}	$(y^8 - 9y^7 + 32y^6 - 53y^5 + 31y^4 + 15y^3 - 15y^2 - 7y + 1)^2$		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.694226 + 0.667719I		
a = 1.12920 - 1.08608I	10.1546	6.33746 + 0.I
b = 0.276681 + 1.311520I		
u = 0.694226 - 0.667719I		
a = 1.12920 + 1.08608I	10.1546	6.33746 + 0.I
b = 0.276681 - 1.311520I		
u = 0.262333 + 1.058630I		
a = 0.019128 - 1.343770I	5.44991 - 9.88301I	3.28252 + 6.06963I
b = 0.19190 + 2.13545I		
u = 0.262333 - 1.058630I		
a = 0.019128 + 1.343770I	5.44991 + 9.88301I	3.28252 - 6.06963I
b = 0.19190 - 2.13545I		
u = 1.15427		
a = -0.296909	-2.57083	2.16010
b = -0.236501		
u = 0.524313 + 0.657146I		
a = 0.513557 + 0.640043I	-4.77492 - 2.26376I	-6.05872 + 4.53378I
b = -0.598451 - 0.154997I		
u = 0.524313 - 0.657146I		
a = 0.513557 - 0.640043I	-4.77492 + 2.26376I	-6.05872 - 4.53378I
b = -0.598451 + 0.154997I		
u = -1.345930 + 0.090134I		
a = 0.078599 + 0.505339I	-4.77492 + 2.26376I	-6.05872 - 4.53378I
b = 0.329421 - 1.036490I		
u = -1.345930 - 0.090134I		
a = 0.078599 - 0.505339I	-4.77492 - 2.26376I	-6.05872 + 4.53378I
b = 0.329421 + 1.036490I		
u = 1.125920 + 0.800303I		
a = -0.889080 + 0.447838I	2.93531 + 3.55755I	2.52739 - 2.62489I
b = -0.77247 - 1.44681I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.125920 - 0.800303I		
a = -0.889080 - 0.447838I	2.93531 - 3.55755I	2.52739 + 2.62489I
b = -0.77247 + 1.44681I		
u = -0.604309		
a = 0.567118	-2.57083	2.16010
b = 1.07322		
u = -1.47759 + 0.37462I		
a = -0.854231 - 0.441448I	5.44991 + 9.88301I	3.28252 - 6.06963I
b = -0.72115 + 1.92612I		
u = -1.47759 - 0.37462I		
a = -0.854231 + 0.441448I	5.44991 - 9.88301I	3.28252 + 6.06963I
b = -0.72115 - 1.92612I		
u = -1.55826 + 0.27885I		
a = 0.822270 + 0.280177I	2.93531 + 3.55755I	2.52739 - 2.62489I
b = 0.375716 - 1.326680I		
u = -1.55826 - 0.27885I		
a = 0.822270 - 0.280177I	2.93531 - 3.55755I	2.52739 + 2.62489I
b = 0.375716 + 1.326680I		

III. $I_3^u = \langle u^7a - u^7 + \dots + a + 1, \ -u^7a + 2u^7 + \dots + a - 5, \ u^8 - u^7 - 4u^6 + 3u^5 + 5u^4 - u^3 - u^2 - 3u - 1 \rangle$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -\frac{1}{2}u^{7}a + \frac{1}{2}u^{7} + \dots - \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{7} - 4u^{5} - u^{3}a + 4u^{3} + au + a + u \\ -\frac{1}{2}u^{7}a + \frac{1}{2}u^{7} + \dots - \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u^{6}a - u^{7} + \dots - a + 2 \\ -\frac{1}{2}u^{7}a + \frac{1}{2}u^{7} + \dots - \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u^{6} - u^{5} - 3u^{4} + 2u^{3} + 2u^{2} + 1 \\ u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u^{7}a - u^{7} + \dots - a + 2 \\ -\frac{1}{2}u^{7}a + \frac{1}{2}u^{7} + \dots - \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{6} - u^{5} - 3u^{4} + 2u^{3} + 2u^{2} + u + 1 \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{7} + u^{6} + 3u^{5} - 2u^{4} - 2u^{3} - u^{2} - u + 1 \\ -u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-2u^6 2u^5 + 10u^4 + 8u^3 12u^2 10u 4$

Crossings	u-Polynomials at each crossing	
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$(u^8 + u^7 - 4u^6 - 3u^5 + 5u^4 + u^3 - u^2 + 3u - 1)^2$	
c_3, c_4, c_5 c_9, c_{10}, c_{11}	$u^{16} + 3u^{15} + \dots - 2u - 11$	

Crossings	Riley Polynomials at each crossing	
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$(y^8 - 9y^7 + 32y^6 - 53y^5 + 31y^4 + 15y^3 - 15y^2 - 7y + 1)^2$	
c_3, c_4, c_5 c_9, c_{10}, c_{11}	$y^{16} - 13y^{15} + \dots - 532y + 121$	

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.151337 + 0.673064I		
a = 0.762637 - 0.950471I	4.77492 + 2.26376I	6.05872 - 4.53378I
b = 0.076801 + 0.408443I		
u = -0.151337 + 0.673064I		
a = 0.30052 + 1.93213I	4.77492 + 2.26376I	6.05872 - 4.53378I
b = -0.06507 - 1.92874I		
u = -0.151337 - 0.673064I		
a = 0.762637 + 0.950471I	4.77492 - 2.26376I	6.05872 + 4.53378I
b = 0.076801 - 0.408443I		
u = -0.151337 - 0.673064I		
a = 0.30052 - 1.93213I	4.77492 - 2.26376I	6.05872 + 4.53378I
b = -0.06507 + 1.92874I		
u = -1.359440 + 0.207304I		
a = -0.897134 + 0.451895I	-2.93531 + 3.55755I	-2.52739 - 2.62489I
b = -0.592239 - 0.125436I		
u = -1.359440 + 0.207304I		
a = 1.089640 + 0.371279I	-2.93531 + 3.55755I	-2.52739 - 2.62489I
b = 1.80045 - 1.27064I		
u = -1.359440 - 0.207304I		
a = -0.897134 - 0.451895I	-2.93531 - 3.55755I	-2.52739 + 2.62489I
b = -0.592239 + 0.125436I		
u = -1.359440 - 0.207304I		
a = 1.089640 - 0.371279I	-2.93531 - 3.55755I	-2.52739 + 2.62489I
b = 1.80045 + 1.27064I		
u = 1.42757 + 0.33227I		
a = -0.923905 + 0.477454I	-5.44991 - 9.88301I	-3.28252 + 6.06963I
b = -1.51269 - 1.88228I		
u = 1.42757 + 0.33227I		
a = 0.010591 - 0.744025I	-5.44991 - 9.88301I	-3.28252 + 6.06963I
b = 0.534351 + 0.711339I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.42757 - 0.33227I		
a = -0.923905 - 0.477454I	-5.44991 + 9.88301I	-3.28252 - 6.06963I
b = -1.51269 + 1.88228I		
u = 1.42757 - 0.33227I		
a = 0.010591 + 0.744025I	-5.44991 + 9.88301I	-3.28252 - 6.06963I
b = 0.534351 - 0.711339I		
u = 1.50912		
a = 0.460021 + 0.442457I	-10.1546	-6.33750
b = 0.770987 - 0.303857I		
u = 1.50912		
a = 0.460021 - 0.442457I	-10.1546	-6.33750
b = 0.770987 + 0.303857I		
u = -0.342714		
a = 1.76330	2.57083	-2.16010
b = -0.866117		
u = -0.342714		
a = -3.36804	2.57083	-2.16010
b = -0.159086		

$$IV. \\ I_4^u = \langle -u^{11}a - u^{11} + \dots + a + 1, \ u^{11} - 5u^9 + \dots + a + 2, \ u^{12} - u^{11} + \dots + 2u^2 + 1 \rangle$$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{11}a + u^{11} + \dots - a - 1 \\ u^{11}a - 4u^{9}a + \dots + u^{2} - a \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u^{11} - u^{10} + \dots + 2u - 1 \\ u^{11}a - u^{11} + \dots - a - u \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{11} - u^{10} + \dots + 2u - 1 \\ u^{11}a - u^{11} + \dots - a - u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{10} + 3u^{8} + 2u^{7} - 2u^{6} - 4u^{5} - 3u^{4} + 3u^{2} + 3u + 1 \\ u^{11} - 4u^{9} - u^{8} + 5u^{7} + 3u^{6} - u^{5} - 2u^{4} - u^{3} - u - 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{11}a + u^{11} + \dots + 2u - 1 \\ u^{10}a - u^{11} + \dots + 5u^{3} - u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{11} - u^{10} - 4u^{9} + 2u^{8} + 7u^{7} + u^{6} - 5u^{5} - 5u^{4} - u^{3} + 3u^{2} + 2u \\ u^{11} - 4u^{9} - u^{8} + 5u^{7} + 3u^{6} - u^{5} - 2u^{4} - u^{3} - u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} u^{11} - 4u^{9} - 2u^{8} + 6u^{7} + 6u^{6} - 2u^{5} - 6u^{4} - 3u^{3} + 2u^{2} + 2u \\ u^{11} - 3u^{9} - 2u^{8} + 2u^{7} + 4u^{6} + 3u^{5} - 3u^{3} - 2u^{2} - u - 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^8 + 12u^6 + 4u^5 8u^4 8u^3 4u^2 + 2u^4 + 3u^4 8u^4 -$

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$(u^{12} + u^{11} - 4u^{10} - 2u^9 + 7u^8 - u^7 - 5u^6 + 5u^5 - u^4 - 3u^3 + 2u^2 + 1)^2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	$ (u^{12} - u^{11} - 4u^{10} + 2u^9 + 7u^8 + u^7 - 5u^6 - 5u^5 - u^4 + 3u^3 + 2u^2 + 1)^2 $

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	$(y^{12} - 9y^{11} + \dots + 4y + 1)^2$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.895235 + 0.524661I		
a = 1.053870 + 0.403232I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
b = 1.02100 - 1.56444I		
u = -0.895235 + 0.524661I		
a = -0.364606 + 0.330843I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
b = 0.939757 - 0.425557I		
u = -0.895235 - 0.524661I		
a = 1.053870 - 0.403232I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
b = 1.02100 + 1.56444I		
u = -0.895235 - 0.524661I		
a = -0.364606 - 0.330843I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
b = 0.939757 + 0.425557I		
u = -0.282166 + 0.828798I		
a = -0.792263 + 0.610180I	5.69302I	0 5.51057I
b = 0.383261 - 0.056485I		
u = -0.282166 + 0.828798I		
a = -0.20722 - 1.56570I	5.69302I	0 5.51057I
b = -0.47925 + 2.17825I		
u = -0.282166 - 0.828798I		
a = -0.792263 - 0.610180I	-5.69302I	0. + 5.51057I
b = 0.383261 + 0.056485I		
u = -0.282166 - 0.828798I		
a = -0.20722 + 1.56570I	-5.69302I	0. + 5.51057I
b = -0.47925 - 2.17825I		
u = -1.155020 + 0.191936I		
a = 0.827710 - 0.316699I	1.89061 + 0.92430I	3.71672 - 0.79423I
b = -0.087686 + 0.786615I		
u = -1.155020 + 0.191936I		
a = -1.095480 - 0.303138I	1.89061 + 0.92430I	3.71672 - 0.79423I
b = -1.53926 + 1.57073I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.155020 - 0.191936I		
a = 0.827710 + 0.316699I	1.89061 - 0.92430I	3.71672 + 0.79423I
b = -0.087686 - 0.786615I		
u = -1.155020 - 0.191936I		
a = -1.095480 + 0.303138I	1.89061 - 0.92430I	3.71672 + 0.79423I
b = -1.53926 - 1.57073I		
u = 1.323480 + 0.139870I		
a = -0.847918 + 0.234635I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
b = -0.01623 - 1.47826I		
u = 1.323480 + 0.139870I		
a = 0.075702 - 0.376331I	-1.89061 - 0.92430I	-3.71672 + 0.79423I
b = -0.831407 + 1.047810I		
u = 1.323480 - 0.139870I		
a = -0.847918 - 0.234635I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
b = -0.01623 + 1.47826I		
u = 1.323480 - 0.139870I		
a = 0.075702 + 0.376331I	-1.89061 + 0.92430I	-3.71672 - 0.79423I
b = -0.831407 - 1.047810I		
u = 1.356120 + 0.270046I		
a = 0.923718 - 0.383073I	-5.69302I	0. + 5.51057I
b = 0.95599 + 1.99574I		
u = 1.356120 + 0.270046I		
a = -0.083074 + 0.627698I	-5.69302I	0. + 5.51057I
b = -0.127208 - 1.130510I		
u = 1.356120 - 0.270046I		
a = 0.923718 + 0.383073I	5.69302I	0 5.51057I
b = 0.95599 - 1.99574I		
u = 1.356120 - 0.270046I		
a = -0.083074 - 0.627698I	5.69302I	05.51057I
b = -0.127208 + 1.130510I		

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.152828 + 0.487477I		
a = -1.50418 + 1.36489I	1.89061 - 0.92430I	3.71672 + 0.79423I
b = -0.820813 - 0.942146I		
u = 0.152828 + 0.487477I		
a = 0.51374 - 2.55389I	1.89061 - 0.92430I	3.71672 + 0.79423I
b = 1.10185 + 1.67160I		
u = 0.152828 - 0.487477I		
a = -1.50418 - 1.36489I	1.89061 + 0.92430I	3.71672 - 0.79423I
b = -0.820813 + 0.942146I		
u = 0.152828 - 0.487477I		
a = 0.51374 + 2.55389I	1.89061 + 0.92430I	3.71672 - 0.79423I
b = 1.10185 - 1.67160I		

V.
$$I_5^u = \langle 2b - a - 1, a^2 - 3, u - 1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ \frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a \\ -\frac{1}{2}a + \frac{1}{2} \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -3 \\ -\frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -2a \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 3 \\ \frac{1}{2}a - \frac{1}{2} \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -2a - 1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2a \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_8	$(u-1)^2$
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	u^2-3
c_6, c_{12}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$(y-1)^2$
c_3, c_4, c_5 c_9, c_{10}, c_{11}	$(y-3)^2$

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 1.73205	9.86960	0
b = 1.36603		
u = 1.00000		
a = -1.73205	9.86960	0
b = -0.366025		

VI.
$$I_6^u = \langle 2b - u + 1, \ 3a - u, \ u^2 - 3 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -u \\ -2u \end{pmatrix}$$

$$a_3 = \begin{pmatrix} -2 \\ -3 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} \frac{1}{3}u\\ \frac{1}{2}u - \frac{1}{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} \frac{1}{3}u - 2\\ \frac{1}{2}u - \frac{7}{2} \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -\frac{1}{3}u\\ \frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -\frac{1}{3}u \\ -\frac{1}{2}u + \frac{1}{2} \end{pmatrix}$$

$$a_8 = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -2\\ -3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	u^2-3
c_3, c_9	$(u-1)^2$
c_4, c_5, c_{10} c_{11}	$(u+1)^2$

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	$(y-3)^2$
c_3, c_4, c_5 c_9, c_{10}, c_{11}	$(y-1)^2$

Solutions to I_6^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.73205		
a = 0.577350	-9.86960	0
b = 0.366025		
u = -1.73205		
a = -0.577350	-9.86960	0
b = -1.36603		

VII.
$$I_7^u = \langle b+1,\ a,\ u-1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = -12

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_8	u-1
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	u
c_6, c_{12}	u+1

Crossings	Riley Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	y-1
c_3, c_4, c_5 c_9, c_{10}, c_{11}	y

Solutions to I_7^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.00000		
a = 0	-3.28987	-12.0000
b = -1.00000		

VIII. $I_8^u = \langle 4b^2 - 4b + 5, \ 2ba + 4u + \dots - 3a + 7, \ 2bu + u + \dots - 2a + 3, \ a^2 - 2a + 1, \ au + a - u - 1, \ u^2 + 2u + 1 \rangle$

$$a_{1} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 1 \\ -2u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u \\ -2u - 2 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 2u + 2 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} a \\ b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} a - 2u - 2 \\ b + a - u - 3 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 2a - u - 2 \\ b + \frac{1}{2}a - \frac{1}{2}u - 2 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -2a + 2u + 4 \\ u + 2 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u + 2 \\ b + \frac{3}{2}a - \frac{1}{2}u - 2 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -2a + 3u + 6 \\ u + 2 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 2a - 4u - 6 \\ -2u - 3 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_7, c_8, c_9	$(u+1)^4$
$c_4, c_5, c_6 \\ c_{10}, c_{11}, c_{12}$	$(u-1)^4$

Crossings		Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	$(y-1)^4$	

Solutions to I_8^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.00000		
a = 1.00000	0	0
b = 0.500000 + 1.000000I		
u = -1.00000		
a = 1.00000	0	0
b = 0.500000 + 1.000000I		
u = -1.00000		
a = 1.00000	0	0
b = 0.500000 - 1.000000I		
u = -1.00000		
a = 1.00000	0	0
b = 0.500000 - 1.000000I		

IX.
$$I_9^u = \langle a-1, u+1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ b \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ b-1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1 \\ b-1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 1 \\ b \end{pmatrix}$$

$$a_n = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 0
- (iv) u-Polynomials at the component : It cannot be defined for a positive dimension component.
- (v) Riley Polynomials at the component : It cannot be defined for a positive dimension component.

Solution to I_9^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
$u = \cdots$		
$a = \cdots$	0	0
$b = \cdots$		

X.
$$I_1^v = \langle a, \ b-1, \ v+1 \rangle$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1 \\ -1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ -1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 12

Crossings	u-Polynomials at each crossing
$c_1, c_2, c_6 \\ c_7, c_8, c_{12}$	u
c_3, c_9	u-1
c_4, c_5, c_{10} c_{11}	u+1

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_6 c_7, c_8, c_{12}	y
$c_3, c_4, c_5 \\ c_9, c_{10}, c_{11}$	y-1

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = -1.00000		
a = 0	3.28987	12.0000
b = 1.00000		

XI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7 c_8	$u(u-1)^{3}(u+1)^{4}(u^{2}-3)$ $\cdot (u^{8}+u^{7}-4u^{6}-3u^{5}+5u^{4}+u^{3}-u^{2}+3u-1)^{2}$ $\cdot (u^{12}-3u^{11}+\cdots-6u-2)$ $\cdot (u^{12}+u^{11}-4u^{10}-2u^{9}+7u^{8}-u^{7}-5u^{6}+5u^{5}-u^{4}-3u^{3}+2u^{2}+1)^{2}$ $\cdot (u^{16}-3u^{15}+\cdots+2u-11)$
c_3, c_9	$u(u-1)^{3}(u+1)^{4}(u^{2}-3)$ $\cdot (u^{8}-u^{7}-4u^{6}+3u^{5}+5u^{4}-u^{3}-u^{2}-3u-1)^{2}$ $\cdot (u^{12}-u^{11}-4u^{10}+2u^{9}+7u^{8}+u^{7}-5u^{6}-5u^{5}-u^{4}+3u^{3}+2u^{2}+1)^{2}$ $\cdot (u^{12}+3u^{11}+\cdots+6u-2)(u^{16}+3u^{15}+\cdots-2u-11)$
c_4, c_5, c_{10} c_{11}	$u(u-1)^{4}(u+1)^{3}(u^{2}-3)$ $\cdot (u^{8}-u^{7}-4u^{6}+3u^{5}+5u^{4}-u^{3}-u^{2}-3u-1)^{2}$ $\cdot (u^{12}-u^{11}-4u^{10}+2u^{9}+7u^{8}+u^{7}-5u^{6}-5u^{5}-u^{4}+3u^{3}+2u^{2}+1)^{2}$ $\cdot (u^{12}+3u^{11}+\cdots+6u-2)(u^{16}+3u^{15}+\cdots-2u-11)$
c_6, c_{12}	$u(u-1)^{4}(u+1)^{3}(u^{2}-3)$ $\cdot (u^{8}+u^{7}-4u^{6}-3u^{5}+5u^{4}+u^{3}-u^{2}+3u-1)^{2}$ $\cdot (u^{12}-3u^{11}+\cdots-6u-2)$ $\cdot (u^{12}+u^{11}-4u^{10}-2u^{9}+7u^{8}-u^{7}-5u^{6}+5u^{5}-u^{4}-3u^{3}+2u^{2}+1)^{2}$
	$(u^{12} + u^{11} - 4u^{10} - 2u^{3} + 7u^{6} - u^{7} - 5u^{6} + 5u^{3} - u^{4} - 3u^{3} + 2u^{2} + 1$ $(u^{16} - 3u^{15} + \dots + 2u - 11)$

XII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_4, c_5, c_6 c_7, c_8, c_9 c_{10}, c_{11}, c_{12}	$y(y-3)^{2}(y-1)^{7}$ $\cdot (y^{8} - 9y^{7} + 32y^{6} - 53y^{5} + 31y^{4} + 15y^{3} - 15y^{2} - 7y + 1)^{2}$ $\cdot (y^{12} - 15y^{11} + \dots + 16y + 4)(y^{12} - 9y^{11} + \dots + 4y + 1)^{2}$ $\cdot (y^{16} - 13y^{15} + \dots - 532y + 121)$