Author: montserrat.filella@unige.ch

Last update: 03/12/2024

Source: modified from compilation COST Action 1802

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Copper(I)

Equilibrium reactions	lgK at infinite dilution and $T = 298 K$
	Brown and Ekberg, 2016
$Cu^+ + H_2O \rightleftharpoons CuOH + H^+$	-7.8 ± 0.4
$Cu^+ + 2 H_2O \rightleftharpoons Cu(OH)_2^- + 2 H^+$	-18.6 ± 0.6

P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 650–702.

Distribution diagrams

These diagrams have been computed at two Cu(I) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above. Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

Author: montserrat.filella@unige.ch

Last update: 03/12/2024

Source: modified from compilation COST Action 1802

Equilibrium constants for hydrolysis and associated equilibria in critical compilations

Copper(II)

Equilibrium reactions	$\lg K$ at infinite dilution and $T = 298 \text{ K}$				
	Baes and Mesmer, 1976	NIST46	Plyasunova et al., 1997	Powell et al., 2007	Brown and Ekberg, 2016
$Cu^{2+} + H_2O \rightleftharpoons CuOH^+ + H^+$	<-8	-7.7	-7.97 ± 0.09	-7.95 ± 0.16	-7.64 ± 0.17
$Cu^{2+} + 2 H_2O \rightleftharpoons Cu(OH)_2 + 2 H^+$	(<-17.3)	-17.3	-16.23 ± 0.15	-16.2 ± 0.2	-16.24 ± 0.03
$Cu^{2+} + 3 H_2O \rightleftharpoons Cu(OH)_3^- + 3 H^+$	(<-27.8)	-27.8	-26.63 ± 0.40	-26.60 ± 0.09	-26.65 ± 0.13
$Cu^{2+} + 4 H_2O \rightleftharpoons Cu(OH)_4^{2-} + 4 H^+$	-39.6	-39.6	-39.73 ± 0.17	-39.74 ± 0.18	-39.70 ± 0.19
$2 \text{ Cu}^{2+} + \text{H}_2\text{O} \rightleftharpoons \text{Cu}_2(\text{OH})^{3+} + \text{H}^+$			-6.71 ± 0.30	-6.40 ± 0.12	-6.41 ± 0.17
$2 \text{ Cu}^{2+} + 2 \text{ H}_2\text{O} \rightleftharpoons \text{Cu}_2(\text{OH})_2^{2+} + 2 \text{ H}^+$	-10.36	-10.3	-10.55 ± 0.17	-10.43 ± 0.07	-10.55 ± 0.02

$3 \text{ Cu}^{2+} + 4 \text{ H}_2\text{O} \rightleftharpoons \text{Cu}_3(\text{OH})_4^{2+} + 4 \text{ H}^+$		-20.95 ± 0.30	-21.1 ± 0.2	-21.2 ± 0.4
$CuO(s) + 2 H^+ \rightleftharpoons Cu^{2+} + H_2O$	7.62	7.64 ± 0.06	7.64 ± 0.06	7.63 ± 0.05
$Cu(OH)_2(s) + 2 H^+ \rightleftharpoons Cu^{2+} + 2 H_2O$			8.67 ± 0.05	8.68 ± 0.10

- C.F. Baes and R.E. Mesmer, The Hydrolysis of Cations. Wiley, New York, 1976, p. 274.
- P.L. Brown and C. Ekberg, Hydrolysis of Metal Ions. Wiley, 2016, pp. 650–702.

NIST46, NIST Critically Selected Stability Constants of Metal Complexes: Version 8.0. Available at: www.nist.gov/srd/nist46

K.J. Powell, P.L. Brown, R.H. Byrne, T. Gajda, G. Hefter, S. Sjöberg and H. Wanner, Chemical speciation of environmentally significant metals with inorganic ligands. Part 2: The Cu2+ + OH-, Cl-, CO32-, SO42-, and PO43- systems. Pure Appl. Chem. 79, 895-950 (2007).

N.V. Plyasunova, M. Wang, Y. Zhang and M. Muhammed, Critical evaluation of thermodynamics of complex formation of metal ions in aqueous solutions II. Hydrolysis and hydroxo-complexes of Cu2+ at 298.15 K. Hydrometalurgy 45, 37–51 (1997).

Distribution diagrams

These diagrams have been computed at two Cu(II) concentrations (1 mM = $1x10^{-3}$ mol L⁻¹ and 1 μ M = $1x10^{-6}$ mol L⁻¹) with the 'best' equilibrium constants above (in green). Calculations assume T = 298 K for the limiting case of zero ionic strength (*i.e.*, even neglecting plotted ions).

