Mouvement de Kepler

SINGARIN-SOLE | BELGUIDOUM

Sommaire

- Présentation du problème
- Démarche adoptée : Euler explicite
- Méthode de Runge-Kutta d'ordre 2
- □ Comparaison avec Euler explicite
- Méthode de Runge-Kutta d'ordre 4
- □ Méthode de Verlet
- Comparaison avec les autres méthodes
- Influence du paramètre T
- Conclusion

Troisième loi de Kepler

Démonstration:

Force gravitationnelle : $F = \frac{GMm}{r^2}$

Force centripète : $F = \frac{mv^2}{r}$

Équilibre entre les forces : $\frac{mv^2}{r} = \frac{GMm}{r^2}$ $\Rightarrow a^3 = \frac{GMT^2}{4\pi^2}$ $\Rightarrow \frac{a^3}{T^2} = \frac{GM}{4\pi^2}$

Lien entre la vitesse orbitale et le demi-grand axe : $v=\frac{2\pi a}{T}$ $\Rightarrow \left(\frac{2\pi a}{T}\right)^2 = \frac{GM}{r}$ $\Rightarrow \left(\frac{2\pi a}{T}\right)^2 = \frac{GM}{a}$ $\Rightarrow a^3 = \frac{GMT^2}{4\pi^2}$ $\Rightarrow \frac{a^3}{T^2} = \frac{GM}{4\pi^2}$

Présentation du problème

On souhaite résoudre ces 2 équations différentielles non linéaires d'ordre 2 qui modélisent la trajectoire d'un astre orbitant autour d'une étoile afin de mettre en évidence la 3ème loi de Kepler :

$$\begin{cases} x''(t) + GM \frac{x(t)}{[x(t)^2 + y(t)^2]^{3/2}} = 0 \\ y''(t) + GM \frac{y(t)}{[x(t)^2 + y(t)^2]^{3/2}} = 0 \end{cases}$$

Méthode Euler explicite

Principe de cette méthode :

$$\begin{cases} \text{Condition initiale}: y(t=0) = y_0 \\ \text{Equation différentielle}: \frac{dy}{dt} = f(t,y) \end{cases}$$

$$\begin{cases} y(t=0) = y_0 \\ y_1 = y_0 + f(t_0, y_0) \times dt \\ y_2 = y_1 + f(t_1, y_1) \times dt \\ \dots \\ y_{n+1} = y_n + f(t_n, y_n) \times dt \end{cases}$$

Cela signifie que l'on évalue la valeur de la fonction y à l'instant n + 1 en calculant la pente de celle-ci (dy/dt) à l'instant n.

Démarche adoptée dans le cas de notre problème

Afin de résoudre notre problème, on effectue le changement de variable :

$$\frac{dx}{dt} = v_x$$
 Donc:
$$\frac{dy}{dt} = v_y$$

$$\frac{dv_x}{dt} = -\frac{Gx}{(x^2 + y^2)^{3/2}}$$

$$\frac{dv_y}{dt} = -\frac{Gy}{(x^2 + y^2)^{3/2}}$$

On peut maintenant appliquer simultanément la méthode d'Euler sur les équations :

$$\begin{vmatrix} x_{n+1} = x_n + v_{x_n} \cdot \Delta t \\ y_{n+1} = y_n + v_{y_n} \cdot \Delta t \end{vmatrix} v_{x_{n+1}} = v_{x_n} - \left(\frac{G \cdot x_n}{(x_n^2 + y_n^2)^{3/2}} \right) \cdot \Delta t$$
$$v_{y_{n+1}} = v_{y_n} - \left(\frac{G \cdot y_n}{(x_n^2 + y_n^2)^{3/2}} \right) \cdot \Delta t$$

Résultats

Dans le cas y[0] = 0

	vitesse
Trajectoire circulaire	$v_y = \sqrt{\frac{gM}{r}}$
Trajectoire elliptique	$v_y < \sqrt{(2GM/r)}$
Trajectoire hyperbolique	$v_y > \sqrt{(2GM/r)}$ $v_y < \sqrt{\frac{gM}{r}}$

Méthode Runge-Kutta d'ordre 2

Principe:

On réalise une moyenne pondérée des pentes de la solution aux points t_n et t_n + h/2ß

Calcul des pentes initiales

• $k1x = v_x$

•
$$k1y = v_y$$

•
$$k1vx = -\frac{GMx}{(x^2+y^2)^{3/2}}$$

•
$$k1vy = -\frac{GMy}{(x^2+y^2)^{3/2}}$$

Estimation au point du milieu

•
$$x_{\text{mid}} = x + \frac{\Delta t}{2}k1x$$

•
$$y_{ ext{mid}} = y + \frac{\Delta t}{2} k \mathbf{1} y$$

•
$$vx_{\mathrm{mid}} = vx + \frac{\Delta t}{2}k1vx$$

•
$$vy_{\mathrm{mid}} = vy + \frac{\Delta t}{2}k1vy$$

Pente du milieu

•
$$k2x = vx_{\text{mid}}$$

•
$$k2y = vy_{\text{mid}}$$

$$ullet vx_{
m mid} = vx + rac{\Delta t}{2}k1vx \quad ullet \ k2vx = -rac{GMx_{
m mid}}{(x_{
m mid}^2+y_{
m mid}^2)^{3/2}}$$

$$ullet k2vy = -rac{GMy_{
m mid}}{(x_{
m mid}^2+y_{
m mid}^2)^{3/2}} \quad ullet \quad vy(t+\Delta t) = vy + \Delta t \cdot k2vy$$

Mise à jour des variables

•
$$x(t + \Delta t) = x + \Delta t \cdot k2x$$

•
$$y(t + \Delta t) = y + \Delta t \cdot k2y$$

•
$$vx(t + \Delta t) = vx + \Delta t \cdot k2vx$$

•
$$vy(t + \Delta t) = vy + \Delta t \cdot k2vy$$

Comparaison avec Euler explicite

dt = 0.01

dt = 0.0001

<u>Euler</u>: Chaque pas dt, une erreur de l'ordre de O(dt^2). Donc erreur globale O(dt).

Runge-kutta: erreur global O(dt^2).

<u>Conclusion</u>: RK2 intrinsèquement plus précis

Méthode de Verlet

La méthode de Verlet est basée sur une approximation de la dérivée seconde d'une fonction à un instant t en utilisant les valeurs de la fonction à t, $t - \Delta t$ et t + ∆t.

Ainsi avac les mêmes notations que précédemment:

$$\begin{vmatrix} x_{n+1} = 2x_n - x_{n-1} + \left(\frac{Gx_n}{(x_n^2 + y_n^2)^{3/2}}\right) \cdot \Delta t^2 \\ y_{n+1} = 2y_n - y_{n-1} + \left(\frac{Gy_n}{(x_n^2 + y_n^2)^{3/2}}\right) \cdot \Delta t^2 \end{vmatrix} v_{x_{n+1}} = \frac{x_{n+1} - x_{n-1}}{2\Delta t}$$

$$v_{y_{n+1}} = \frac{y_{n+1} - y_{n-1}}{2\Delta t}$$

Comparaison avec les autres méthodes

Comparaison avec les autres méthodes

Comparaison avec les autres méthodes

Influence du paramètre T

$$T = 1$$

$$T = 2$$

Conclusion

	Précision	Simplicité	Accumulation d'erreurs	Conservation de l'énergie
Euler	_	+++		
RK2	+	++	+	_
RK4	++	+	++	+
Verlet	++	_	++	+++