姓名:	
学号:	
学院:	
7-100.	
- /=	
年级:	

上海科技大学 2021-2022 学年第 2 学期期末考试卷

开课单位: 数学科学研究所

授课教师:朱佐农,姚成建,孙伟,陈克应

考试科目: 数学分析 II 课程序号: GEMA1010

考生须知:

1. 请严格遵守考场纪律,禁止任何形式的作弊行为。

2. 参加闭卷考试的考生,除携带必要考试用具外,书籍、笔记、掌上电脑和其他电子设备等物品一律按要求放在指定位置。

3. 参加开卷考试的考生,可以携带教师指定的材料独立完成考试,但不 准相互讨论,不准交换材料。

考试成绩录入表:

题号	1	2	3	4	5	6	7	8	9	总分
计分										
复核										

证券人名	5夕。	复核人	饺夕.
评卷人签	[台:	复怺八	

日期: 日期:

分致:	
古和.	1

1. (12 分) 判断题 (对的写 T, 错的写 F)

- () (1) 设函数 f(x,y) 在开区域 D 内存在两个偏导数。如果偏导数 $f'_x(x,y)$, $f'_y(x,y)$ 在 D 内连续,那么 f 在 D 内可微。
- () (2) 设函数 f(x) 是 $(-\infty, +\infty)$ 上的连续函数。如果积分 $\int_0^\infty |f(x)| dx$ 收敛,那么 $\int_0^{+\infty} f(x) dx$ 也收敛。
- () (3) 设 $V \subset \mathbb{R}^3$ 是开区域, $\boldsymbol{v} = P\boldsymbol{i} + Q\boldsymbol{j} + R\boldsymbol{k}$ 是 V 上的光滑向量场。若 \boldsymbol{v} 满足 $\nabla \times \boldsymbol{v} = \boldsymbol{0}$,那么 \boldsymbol{v} 是保守场。
- () (4) 设 F(x,y) 是一个光滑函数。若 F(x,y) = 0 恰表示了一条自相交的曲线,那么在曲线交点处 F(x,y) 的偏导数一定为 0。
- () (5) 连通集一定是道路连通集。
- () (6) 无穷多个开集的交集仍是开的。

页码: _____2

2. (10 分) 判断下列反常积分的收敛性:

$$\int_0^{+\infty} \frac{1}{x^6} \ln\left(1 - \frac{\sin^6 x}{6}\right) dx.$$

页码: ____3

3. (10 分) 已知 A(1,0,a), B(2,3,1), C(-1,2,1), D(6,6,6) 在一个平面上,求 a 的值。

页码: ____4___

4. (10 分) 计算积分

$$\iiint_V |z| dx dy dz, \quad V: x^2 + y^2 + z^2 \le 3.$$

页码: ____⁵___

5. (10 分) 由下列方程组求 $\frac{dy}{dx}$ 和 $\frac{dz}{dx}$.

$$\begin{cases} x^3 + y^3 + z^3 = 3xyz, \\ x + y + z = 1. \end{cases}$$

(答案化简为最简形式)

页码: _____6

6. (10 分) 在区间 $[-\pi,\pi]$ 上将函数

$$f(x) = \sin^3 x$$

展开成 Fourier 级数。

分数:	
古和.	7

7. **(10 分)** 已知 f 是以 2π 为周期的,在 $[-\pi,\pi]$ 上可积且绝对可积函数。假设存在某个正整数 $n \geq 1$,使得 f 的 Fourier 级数第 n 余弦项 $\cos nx$ 的系数 $a_n = 1$ 。求证: $\sup_{-\pi \leq x \leq \pi} |f(x)| \geq \frac{\pi}{4}$ 。

页码: ____8

8. (10 分) 求下列曲面积分

$$\iint_{\Sigma} (x^3 + y^3) dy dz + (6x^3 + 3x^2y) dz dx - 6x^2z dx dy,$$

其中 Σ 是双曲面 $x^2+y^2-z^2=1$ $(0 \le z \le \sqrt{3})$ 外侧。

页码: ____⁹___

9. (18 分) 平面区域 D 是闭的有界 Jordan 可测区域,测度非零。假设 f,g 是 D 上的(Riemann)可积函数,正实数 p、q 满足 $\frac{1}{p} + \frac{1}{q} = 1$ 。 (1) (5 分) 利用 Lagrange 乘数法证明,对于任意非负实数 x,y,有

$$xy \le \frac{1}{p}x^p + \frac{1}{q}y^q.$$

(2)(5分)求证:以下不等式中的积分有意义,且不等式成立

$$\iint_D fg \ dxdy \le \left(\iint_D |f|^p dxdy\right)^{\frac{1}{p}} \left(\iint_D |g|^q dxdy\right)^{\frac{1}{q}}.$$

(3) (5 分) 利用 (2) 中的不等式证明: 极限 $\lim_{p\to +\infty} \left(\iint_{D} |f|^{p} dx dy \right)^{\frac{1}{p}}$ 存在。

(4) (3 分) 请问 $\lim_{p\to+\infty} \left(\iint_D |f|^p dx dy \right)^{\frac{1}{p}}$ 是否等于 $\sup_D |f|$? 证明您的判断。