Rによる解析コード (1) CSVファイルの読み取り(Gitを参照) library(psych) library(GPArotation) tbs5 <- read_csv("yomei-compo.csv")

(2) 構成物の種類を実数型に変換 tbs6 <-

tbs5 %>%

コウゾだけを選択

filter(紙素材 %in% "コウゾ") %>% mutate(

各構成物を実数に変換

デンプン粒 = as.numeric(デンプン粒), 鉱物 = as.numeric(鉱物),

- as.numeric(弧物), 細胞組織 = as.numeric(細胞組織),

繊維 = as.numeric(繊維),

構成物間の相関係数を出す 相関行列 <- cor(tbs6)

因子数を決める

凶丁敏で次める fa.parallel(tbs6,SMC=TRUE)

vss(tbs6, n.obs=N, rotate="varimax")

この結果の詳細はGitを参照 平行分析では3因子、MAP法では1因子、 適合度基準(BIC)では2因子が良い。 本稿では3因子で決定。

(3) 因子分析を行う

fa.result1 <- fa(tbs6,nfactors=3,fm="ML") # 因子負荷が0.3以下の値を非表示

print(fa.result1, sort=T, cut=0.3) # 因子負荷の可視化

因于貝何の可視化

因子負荷量の表示

unclass(fa.result1\$loadings) # 描画

biplot(fa.result1\$scores,fa.result1\$loading,cex=1)

因子負荷量

	MR1	MR3	MR2
デンプン粒	0.01654569	0.79113716	-0.009188201
鉱物	0.92299697	0.01169930	0.008554870
細胞組織	0.18572833	-0.14466103	-0.163285306
繊維	-0.20071818	0.18314100	0.295960324
ほか	0.02345439	-0.01816758	

バリマックス解

		MR1	MR2	MR3
	寄与	1.03	0.75	0.60
	寄与率	0.21	0.15	0.12
	累積寄与率	0.21	0.36	0.48
	説明率	0.43	0.31	0.25
	累積説明率	0.43	0.75	1.00

Factor Analysis

因子間相関

	MR1	MR2	MR3
MR1	1.00	0.33	0.08
MR2	0.33	1.00	0.14
MR3	0.08	0.14	1.00

繊維

図8 陽明文庫所蔵史料における料紙構成物の因子分析