

AUTOMAÇÃO INDUSTRIAL LISTA II

1)

Projete o amplificador mostrado na Figura 1 com ganho -10 e uma resistência de entrada de $100K\Omega$. Encontre os valores de R_1 e R_2

Figura 1: Projeto de Amplificadores

2)

Determine as correntes mostradas no circuito Figura 2

Figura 2: Ganho de corrente com carga

3) Determine a expressão da tensão de saída do amplificador mostrado na Figura 3. Se $R_1=R_a,\,R_2=R_a/2,\,R_b=R_c/3$ e $R_c=3\times R_3=2\times R_4$, qual é a expressão algébrica realizada pelo AmpOp?

Figura 3: Realizando uma expressão algébrica

- 4) Projete um circuito com 3 entradas para fornecer uma saída $v_0 = -(v_1 + 2 \times v_2 + 3 \times v_3)$ utilizando $10K\Omega$ como o menor valor de resistor.
- 5)
 Projete um circuito para combinar 3 entradas para formar a expressão analítica $v_0 = v_1 + 2 \times v_2 3 \times v_3$. Utilize apenas amplificadores inversores, com $10K\Omega$ como o menor valor de resistência. (Dica: existem várias possibilidades. Procure minimizar o número de resistores utilizados).
- 6) Projete um amplificador com ganho 200V/V e resistência de entrada $100K\Omega$. Utilize 2 AmpOps e resistores não maiores do que $1M\Omega$. Divida o ganho o máximo possível entre os dois estágios.
- 7) Projete um amplificador não inversor com ganho de 1,5V/V utilizando apenas três resistores de $1K\Omega$. Esboce as duas soluções possíveis.
- 8) Projete um amplificador inversor com ganho de -2V/V utilizando apenas três resistores de $100K\Omega$. Esboce as possíveis soluções. Determine a resistência de entrada em cada caso.
- 9) Para o circuito da Figura 4, se $v_1=1V$ e $v_2=2V$, determine o valor da tensão de saída, v_0 .

Figura 4: Resolvendo para a tensão de saída

10)

Para o circuito da Figura $\,5$, se $v_1=2V$ e $v_2=1,\!5V,$ determine o valor da tensão de saída, $v_0.$

Figura 5.: Resolvendo um circuito elétrico com AmpOps