AC: 29/06/2021

<u>Item No: 6.15</u>

UNIVERSITY OF MUMBAI

Bachelor of Engineering

in

Computer Engineering

Second Year with Effect from AY 2020-21

Third Year with Effect from AY 2021-22

Final Year with Effect from AY 2022-23

(REV-2019 'C' Scheme) from Academic Year 2019 – 20

Under

FACULTY OF SCIENCE & TECHNOLOGY

(As per AICTE guidelines with effect from the academic year 2019–2020)

Program Structure for Third Year Computer Engineering UNIVERSITY OF MUMBAI (With Effect from 2021-2022) Semester VI

Course	Course Name		ching Sontact H			Credits Assigne			;d	
Code		Theory	,	Pract. Tut.		Theory	Pract	. Т	otal	
CSC601	System Programming & Compiler Construction	3				3			3	
CSC602	Cryptography & System Security	3				3			3	
CSC603	Mobile Computing	3				3			3	
CSC604	Artificial Intelligence	3				3			3	
CSDLO601x	Department Level Optional Course -2	3				3			3	
CSL601	System Programming & Compiler Construction Lab			2			1		1	
CSL602	Cryptography & System Security Lab			2			1		1	
CSL603	<u> </u>			1		1				
CSL604	Artificial Intelligence Lab			2			1		1	
CSL605	Skill base Lab Course: Cloud Computing			4			2		2	
CSM601	Mini Project Lab: 2B			4\$			2		2	
	Total	15		16		15	08		23	
				E	Cxamir	ation Sche		T	1	
				Theory			Term Work	Pract. &oral	Total	
Course Code	Course Name	Interna	al Asses	sment	End Sem Exa m	Exam. Duration (in Hrs)				
		Test 1	Test 2	Avg						
CSC601	System Programming & Compiler Construction	20	20	20	80	3			100	
CSC602	Cryptography & System Security	20	20	20	80	3			100	
CSC603	Mobile Computing	20	20	20	80	3			100	
CSC604	Artificial Intelligence	20	20	20	80	3			100	
CSDLO601x	Department Level Optional Course -2	20	20	20	80	3			100	
CSL601	System Programming & Compiler Construction Lab						25	25	50	
CSL602	Cryptography & System Security Lab						25		25	
CSL603	Mobile Computing Lab						25	-	25	
CSL604	Artificial Intelligence Lab						25	25	50	
CSL605	Skill base Lab Course: Cloud Computing						50	25	75	
CSM601	Mini Project :2B						25	25	50	
	Total			100	400		175	100	775	

Course Code:	Course Title	Credit
CSC602	Cryptography & System Security	3

Pr	rerequisite: Computer Networks
Co	ourse Objectives:
1	To introduce classical encryption techniques and concepts of modular arithmetic and
	number theory.
2	To explore the working principles and utilities of various cryptographic algorithms
	including secret key cryptography, hashes and message digests, and public key algorithms
3	To explore the design issues and working principles of various authentication protocols, PKI
	standards and various secure communication standards including Kerberos, IPsec, and
	SSL/TLS.
4	To develop the ability to use existing cryptographic utilities to build programs for secure
	communication
Co	ourse Outcomes:
1	Understand system security goals and concepts, classical encryption techniques and acquire
	fundamental knowledge on the concepts of modular arithmetic and number theory
2	Understand, compare and apply different encryption and decryption techniques to solve
	problems related to confidentiality and authentication
3	Apply different message digest and digital signature algorithms to verify integrity and
	achieve authentication and design secure applications
4	Understand network security basics, analyse different attacks on networks and evaluate the
	performance of firewalls and security protocols like SSL, IPSec, and PGP
5	Analyse and apply system security concept to recognize malicious code

Module		Content	Hrs
1		Introduction - Number Theory and Basic Cryptography	8
	1.1	Security Goals, Attacks, Services and Mechanisms, Techniques. Modular Arithmetic: Euclidean Algorithm, Fermat's and Euler's theorem	
	1.2	Classical Encryption techniques, Symmetric cipher model, monoalphabetic and polyalphabetic substitution techniques: Vigenere cipher, playfair cipher, Hill cipher, transposition techniques: keyed and keyless transposition ciphers	
2		Symmetric and Asymmetric key Cryptography and key Management	11
	2.1	Block cipher principles, block cipher modes of operation, DES, Double DES, Triple DES, Advanced Encryption Standard (AES), Stream Ciphers: RC4 algorithm.	
	2.2	Public key cryptography: Principles of public key cryptosystems- The RSA Cryptosystem, The knapsack cryptosystem	
	2.3	Symmetric Key Distribution: KDC, Needham-schroeder protocol. Kerberos: Kerberos Authentication protocol, Symmetric key agreement: Diffie Hellman, Public key Distribution: Digital Certificate: X.509, PKI	
3		Cryptographic Hash Functions	3
	3.1	Cryptographic hash functions, Properties of secure hash function, MD5, SHA-1, MAC, HMAC, CMAC.	
4		Authentication Protocols & Digital Signature Schemes	5
	4.1	User Authentication, Entity Authentication: Password Base, Challenge Response Based	

	4.2	Digital Signature, Attacks on Digital Signature, Digital Signature Scheme: RSA	
5		Network Security and Applications	9
	5.1	Network security basics: TCP/IP vulnerabilities (Layer wise), Network Attacks: Packet Sniffing, ARP spoofing, port scanning, IP spoofing	
	5.2	Denial of Service: DOS attacks, ICMP flood, SYN flood, UDP flood, Distributed Denial of Service	
	5.3	Internet Security Protocols: PGP, SSL, IPSEC. Network security: IDS, Firewalls	
6		System Security	3
	6.1	Buffer Overflow, malicious Programs: Worms and Viruses, SQL injection	

Tex	tbooks:
1	William Stallings, "Cryptography and Network Security, Principles and Practice", 6th
	Edition, Pearson Education, March 2013
2	Behrouz A. Ferouzan, "Cryptography & Network Security", Tata McGraw Hill
3	Behrouz A. Forouzan & Debdeep Mukhopadhyay, "Cryptography and Network
	Security" 3rd Edition, McGraw Hill

Ref	erecebooks:
1	Bruce Schneier, "Applied Cryptography, Protocols Algorithms and Source Code in C",
	Second Edition, Wiley.
2	Atul Kahate, "Cryptography and Network Security", Tata McGraw-Hill Education, 2003.
3	Eric Cole, "Network Security Bible", Second Edition, Wiley, 2011.

Assessment:

Internal Assessment:

Assessment consists of two class tests of 20 marks each. The first class test is to be conducted when approx. 40% syllabus is completed and second class test when additional 40% syllabus is completed. Duration of each test shall be one hour.

End Semester Theory Examination:

- 1 Question paper will comprise of total six questions.
- 2 All question carries equal marks
- Questions will be mixed in nature (for example supposed Q.2 has part (a) from module 3 then part (b) will be from any module other than module 3)
- 4 Only Four question need to be solved.
- 5 In question paper weightage of each module will be proportional to number of respective lecture hours as mention in the syllabus.

Useful Links

- 1 <u>https://github.com/cmin764/cmiN/blob/master/FII/L3/SI/book/W.Stallings%20-</u>%20Cryptography%20and%20Network%20Security%206th%20ed.pdf
- 2 https://docs.google.com/file/d/0B5F6yMKYDUbrYXE4X1ZCUHpLNnc/view

Lab Code	Lab Name	Credit
CSL602	Cryptography & System Security Lab	1

Pr	rerequisite: Computer Network
La	ab Objectives:
1	To apply various encryption techniques
2	To study and implement various security mechanism
3	To explore the network security concept and tools
La	ab Outcomes: At the end of the course, the students will be able to
1	apply the knowledge of symmetric and asymmetric cryptography to implement simple
	ciphers.
2	explore the different network reconnaissance tools to gather information about networks.
3	explore and use tools like sniffers, port scanners and other related tools for analysing
	packets in a Network.
4	set up firewalls and intrusion detection systems using open-source technologies and to
	explore email security.
5	explore various attacks like buffer-overflow and web application attack.

Suggested	l List of Experiments
Sr. No	Title of Experiment
1	Design and Implementation of a product cipher using Substitution and Transposition ciphers.
2	Implementation and analysis of RSA crypto system.
3	Implementation of Diffie Hellman Key exchange algorithm
4	For varying message sizes, test integrity of message using MD-5, SHA-1, and analyse the performance of the two protocols. Use crypt APIs.
5	Study the use of network reconnaissance tools like WHOIS, dig, traceroute, ns lookup to gather information about networks and domain registrars.
6	Study of packet sniffer tools: wireshark,: 1. Download and install wireshark and capture icmp, tcp, and http packets in promiscuous mode. 2. Explore how the packets can be traced based on different filters.
7	Download and install nmap. Use it with different options to scan open ports, perform OS fingerprinting, do a ping scan, tcp port scan, udp port scan, xmas scan etc.
8	Detect ARP spoofing using nmap and/or open-source tool ARPWATCH and wireshark. Use arping tool to generate gratuitous arps and monitor using wireshark
9	Simulate DOS attack using Hping, hping3 and other tools
10	Simulate buffer overflow attack using Ollydbg, Splint, Cpp check etc
11	a. Set up IPSEC under LINUX.b. Set up Snort and study the logs.
12	Setting up personal Firewall using iptables
13	Explore the GPG tool of linux to implement email security
14	SQL injection attack, Cross-Cite Scripting attack simulation
15	Case Study /Seminar: Topic beyond syllabus related to topics covered.

T	erm Work:
1	Term work should consist of 10 experiments.
2	Journal must include at least 2 assignments on content of theory and practical of

	"Cryptography and System Security"
3	The final certification and acceptance of term work ensures that satisfactory performance of
	laboratory work and minimum passing marks in term work.
4	The distribution of marks for term work shall be as follows:
	Lab Performance 15 Marks
	Assignments 05 Marks
	Attendance (Theory & practical) 05 Marks