Coursera - Data Science & R Course

Daniel O.

15/12/2020

Types of Data Science Questions

Descriptive

Goal: To describe or summarize a set of data

- Early analysis when receiving new data
- Generate simple summaries about the samples and their measurements
- Not for generalizing the results of the analysis to a larger population

Exploratory

Goal: To examine the data and find relationships that weren't previously known

- Explore how different variables might be related
- Useful for discovering new connections
- Help to formulate hypotheses and drive the design of future studies and data collection

Inferential

Goal: Use a relatively small sample of data to say something about the population at large

- Provide your estimate of the variable for the population and provide your uncertainty about your estimate
- · Ability to accurately infer information about the larger population depends heavily on sampling scheme

Predictive

Goal: Use current and historical data to make predictions about future data

- Accuracy in predictions is dependent on measuring the right variables
- Many ways to build up prediction models with some being better or worse for specific cases

Causal

Goal: See what happens to one variable when we manipulate another variable

- Gold standard in data analysis
- Often applied to the results on randomized studies that were designed to identify causation
- Usually analyzed in aggregate and observed relationships are usually average effects

Mechanistic

Goal: Understand the exact changes in variables that lead to exact changes in other variables

- Applied to simple situations or those that are nicely modeled by deterministic equations
- Commonly applied to physical or engineering sciences
- Often, the only noise in the data is measurement error

Experimental design

Big Data

Volume More and more data is becoming increasingly available Velocity Data is being generated at an astonishing rate Variety The data we can analyse comes in many forms

Getting started with R

Directories

- getwd()
- setwd()
- dir()
- dir.create()
- file.create()
- file.exists()
- file.infor()
- file.path()
- file.rename()
- file.copy()

Looking at data

```
ls: List the variables in the environment
nrow & ncol: Number of rows/columns in a dataframe (dim for both)
object.size: How much space the object occupies in memory
names: Names of columns (variables)
head & tail: Preview the top/bottom of the dataset
```

summary: Provides different output for each variable, depending on its class. For **numeric** data summary() displays the minimum, 1st quartile, median, mean, 3rd quartile, and maximum. These values help us understand how the data are distributed. For **categorical** variables (called 'factor' variables in R), summary() displays the number of times each value (or 'level') occurs in the data.

str: Shows the structure of the data.

Control Structures - if/else

```
if(condition) {
  <do something>
<do something else>
if(condition) {
  <do something>
\{ else if(condition2) \}
  <do something different>
} else {
  <do something else>
}
Control Structures - for loop
for(i in vect){
  <function>[i]
```

Control Structures - while

```
while(finite condition){
    <do something>
}
```

Control Structures - repeat, next, break, return

repeat is a construct that basically initiates an infinite loop. The only way to exit a repeat loop is to call break

next is basically used in any time of looping construct when you want to skip an iteration.

return signals that a function should exit and and return a given value

Functions

```
Basic format:
f <- function(x, y =
){
x+y
}
```

User-defined binary operators have the following syntax:

```
%[whatever]%
```

where [whatever] represents any valid variable name.

Dates and Time

Dates are represented by the Date class and times are represented by the POSIXct and POSIXlt classes. Internally, dates are stored as the number of days since 1970-01-01 and times are stored as either the number of seconds since 1970-01-01 (for POSIXct) or a list of seconds, minutes, hours, etc. (for POSIXlt).

```
strptime() converts character vectors to POSIX1t.
```

If you want more control over the units when finding the above difference in times, you can use difftime(), which allows you to specify a 'units' parameter.

Loop functions

'The Split-Apply-Combine Strategy for Data Analysis'

lapply: Loop over a list and evaluate a function on each element » lapply(data, fun)

sapply: Same as lapply but try to simplify the result

apply: Apply the function over the margins of an array » apply(data, dimension, fun)

mapply: Multivariate function of lapply e.g. list(rep(1,4), rep(2,3), rep(3,2), rep(4,1)) can be done with mapply(rep, 1:4, 4:1)

tapply: Apply a function over the subsets of a vector » tapply(data, factor, fun)

split: Takes a vector and splits it according to a factor(similarly to tapply but without applying any type of summary statistics)

sprintf originally comes from C and all formatting rules are taken from it as well

e.g. sprintf("%03d", 7) "%03d" is a formatting string, which specifies how 7 will be printed.

d stands for decimal integer (not double!), so it says there will be no floating point or anything like that, just a regular integer.

3 shows how many digits will the printed number have. More precisely, the number will take at least 3 digits: 7 will be ____7 (with spaces instead of underscores), but 1000 will remain 1000, as there is no way to write this number with just 3 digits.

0 before 3 shows that leading spaces should be replaced by zeroes. Try experimenting with sprintf("%+3d", 7), sprintf("%-3d", 7) to see other possible modifiers (they are called flags).

Debbuging tools

Something's wrong

message: Generic notification; function execution continues

warning: Something went wrong but is not fatal; execution of the function is not stopped

error: Fatal problem has occurred; execution is halted; produced by the stop function

condition: A generic concept indicating that something can occur; programmers create their own conditions

Primary Debugging Tools

traceback: Prints out the function call stack after an error occurs and allows to know in which function the error occurred

recover: Allows you to modify the error default behavior so that you can browse the function whenever an error occurs

debug: Flags a function for debug mode which allows you to step through the function one expression/line at a time

browser: Suspends the execution of a function wherever it is called and puts the function in debug mode

trace: Allows to insert debugging mode into a function at specific places without altering the function code

Simulation - Generating Random Numbers

sample: Samples from vector

Each probability distribution in R has an r*** function (random number generation), a d*** function (density), a p*** (cumulative distribution), and q*** (quantile function).

Getting data

download.file()

read.file type()

Manipulating data with dplyr

The first step of working with data in dplyr is to load the data into what the package authors call a 'data frame tibble', using tibble::as_tibble() The main advantage to using a tbl_df over a regular data frame is the printing.

The dplyr philosophy is to have small functions that each do one thing well. Specifically, dplyr supplies five 'verbs' that cover most fundamental data manipulation tasks: select(), filter(), arrange(), mutate(), and summarize().

select

Select (and optionally rename) variables (columns) in a data frame, using a concise mini-language that makes it easy to refer to variables based on their name (e.g. a:f selects all columns from a on the left to f on the right). You can also use predicate functions like is numeric to select variables based on their properties.

filter

The filter() function is used to subset a data frame, retaining all rows that satisfy your conditions. To be retained, the row must produce a value of TRUE for all conditions. Note that when a condition evaluates to NA the row will be dropped, unlike base subsetting with [.

arrange

arrange() orders the rows of a data frame by the values of selected columns.

Unlike other dplyr verbs, arrange() largely ignores grouping; you need to explicitly mention grouping variables (or use .by_group = TRUE) in order to group by them, and functions of variables are evaluated once per data frame, not once per group.

mutate & transmute

mutate() adds new variables and **preserves** existing ones; transmute() adds new variables and **drops** existing ones. New variables overwrite existing variables of the same name. Variables can be removed by setting their value to NULL.

summarize

summarize() creates a new data frame. It will have one (or more) rows for each combination of grouping variables; if there are no grouping variables, the output will have a single row summarizing all in the input. It will contain one column for each grouping variable and one column for each of the summary statistics that you have specified.

Grouping and chaining with dplyr

Group by one or more variables

group_by() takes an existing tbl and converts it into a grouped tbl where operations are performed "by group". ungroup() removes grouping.

Grouping data by variable, allows to summarize data by each value of that variable.

e.g.

plant_sum

```
## # A tibble: 3 x 4
##
     Species
               count unique avg_Petal.Width
##
     <fct>
                <int> <int>
                                       <dbl>
                                       0.246
## 1 setosa
                   50
## 2 versicolor
                   50
                           1
                                       1.33
## 3 virginica
                   50
                           1
                                       2.03
```

Chaining

Chaining makes use of the %>% (pipe) operator. With this operator, you can chain together different commands without having to provide the base data/vector argument for each one.

e.g.

myresult

##	#	A tibble: 3	3 x 4		
##		Species	${\tt count}$	unique	avg_Petal.Width
##		<fct></fct>	<int></int>	<int></int>	<dbl></dbl>
##	1	virginica	50	1	2.03
##	2	${\tt versicolor}$	50	1	1.33
##	3	setosa	50	1	0.246

*** PART 3 OF SWIRL***