05 - Buffer Pools & Memory Managements

- 1. Goal of Memory management
 - A. Spatial control: often used pages keep close each other
 - B. Temporal control: minimize the disk I/O
- 2. Buffer Pool Manager
 - A. Frame: slots for pages
 - B. Page table: In memory data structure that contains page copies
 - C. Meta-data
 - i. Dirty flag (flag for pages that are modified)
 - ii. Pin/Reference Counter (keep count of threads using each page)
 - D. Locks VS. Latches
 - i. Lock: protect logical content (for transaction duration)
 - ii. Latch: protect critical section (for operation duration)== Mutex == Spinlock
 - E. Allocation Policies
 - i. Global policies: decisions for all acive TXNs
 - ii. Local policies: decisions for specific TXNs
 - F. Optimization
 - i. Multiple Buffer Pool: improve locality, specifying object issue
 - ii. Pre-fetch: improve locality
 - iii. Scan Sharing: reuse data retrieved during query computation
 - iv. Buffer Pool Bypass: not store pages that won't be used in the future
 - v. Bypass OS page cache: avoid redundant copies of pages and other issue

3. Replacement Policies

- A. LRU: page that has oldest timestamp will be evicted sequential flooding issue
- B. LRU-K: track last K references to each page to estimate next page that is needed
- C. Priority: use priority to estimate page is important
- D. Dirty page replacement
 - i. If victim page is dirty, we need to write back that page into disk
 - ii. Background writing: periodically writes dirty pages to disk

4. What is it?

- A. Bifurcated Environment
 - i. How this actually work?
- B. LRU-K
 - i. How this actually work?