# **Aerofit Case study**

Aerofit is a leading brand in the field of fitness equipment. Aerofit provides a product range including machines such as treadmills, exercise bikes, gym equipment, and fitness accessories to cater to the needs of all categories of people.

#### **Business Problem:**

The market research team at AeroFit wants to identify the characteristics of the target audience for each type of treadmill offered by the company, to provide a better recommendation of the treadmills to the new customers. The team decides to investigate whether there are differences across the product with respect to customer characteristics.

- Perform descriptive analytics to create a customer profile for each AeroFit treadmill product by developing appropriate tables and charts.
- For each AeroFit treadmill product, construct two-way contingency tables and compute all conditional and marginal probabilities along with their insights/impact on the business.

```
In [51]: import numpy as np
    import pandas as pd
    import matplotlib.pyplot as plt
    import seaborn as sns

In [52]: df = pd.read_csv('aerofit.csv')
    df.head()

Out[52]: Product Age Gender Education MaritalStatus Usage Fitness Income Miles
```

```
0
     KP281
              18
                     Male
                                   14
                                                           3
                                                                        29562
                                                                                 112
                                              Single
1
     KP281
              19
                     Male
                                   15
                                              Single
                                                           2
                                                                   3
                                                                        31836
                                                                                   75
     KP281
              19 Female
                                                                        30699
2
                                   14
                                           Partnered
                                                           4
                                                                   3
                                                                                   66
3
     KP281
              19
                     Male
                                   12
                                              Single
                                                           3
                                                                        32973
                                                                                   85
4
     KP281
              20
                     Male
                                   13
                                           Partnered
                                                           4
                                                                   2
                                                                        35247
                                                                                   47
```

```
In [53]: #finding no. of rows and columns in dataset
print('Number of rows in dataset :',df.shape[0])
print('Number of columns in dataset :',df.shape[1])
```

Number of rows in dataset : 180 Number of columns in dataset : 9

# In [54]: #checking data types of columns in given dataset df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

| # | Column        | Non-Null Count | Dtype  |
|---|---------------|----------------|--------|
|   |               |                |        |
| 0 | Product       | 180 non-null   | object |
| 1 | Age           | 180 non-null   | int64  |
| 2 | Gender        | 180 non-null   | object |
| 3 | Education     | 180 non-null   | int64  |
| 4 | MaritalStatus | 180 non-null   | object |
| 5 | Usage         | 180 non-null   | int64  |
| 6 | Fitness       | 180 non-null   | int64  |
| 7 | Income        | 180 non-null   | int64  |
| 8 | Miles         | 180 non-null   | int64  |
|   |               |                |        |

dtypes: int64(6), object(3)
memory usage: 12.8+ KB

# In [55]: df.describe()

## Out[55]:

11/14/23, 12:47 PM

|       | Age        | Education  | Usage      | Fitness    | Income        | Miles      |
|-------|------------|------------|------------|------------|---------------|------------|
| count | 180.000000 | 180.000000 | 180.000000 | 180.000000 | 180.000000    | 180.000000 |
| mean  | 28.788889  | 15.572222  | 3.455556   | 3.311111   | 53719.577778  | 103.194444 |
| std   | 6.943498   | 1.617055   | 1.084797   | 0.958869   | 16506.684226  | 51.863605  |
| min   | 18.000000  | 12.000000  | 2.000000   | 1.000000   | 29562.000000  | 21.000000  |
| 25%   | 24.000000  | 14.000000  | 3.000000   | 3.000000   | 44058.750000  | 66.000000  |
| 50%   | 26.000000  | 16.000000  | 3.000000   | 3.000000   | 50596.500000  | 94.000000  |
| 75%   | 33.000000  | 16.000000  | 4.000000   | 4.000000   | 58668.000000  | 114.750000 |
| max   | 50.000000  | 21.000000  | 7.000000   | 5.000000   | 104581.000000 | 360.000000 |

In [56]: #Finding Unique Values
 df.nunique()

```
3
         Product
Out[56]:
         Age
                           32
         Gender
                            2
         Education
                            8
                            2
         MaritalStatus
                            6
         Usage
         Fitness
                            5
         Income
                           62
         Miles
                           37
         dtype: int64
         #Finding Missing values in DataFrame
In [57]:
         df.isnull().any()
                           False
         Product
Out[57]:
                           False
         Age
         Gender
                           False
         Education
                           False
         MaritalStatus
                           False
                           False
         Usage
         Fitness
                           False
         Income
                           False
         Miles
                           False
         dtype: bool
         df['Product'].value_counts()
In [58]:
         KP281
                   80
Out[58]:
         KP481
                   60
         KP781
                   40
         Name: Product, dtype: int64
         df['Usage'].value_counts()
In [59]:
               69
Out[59]:
               52
         2
               33
         5
               17
               7
                2
         Name: Usage, dtype: int64
         df.groupby('MaritalStatus')['Product'].count()
In [60]:
         MaritalStatus
Out[60]:
         Partnered
                       107
                        73
         Single
         Name: Product, dtype: int64
         #Detecting Outliers
In [61]:
          fig, axis = plt.subplots(3,2,figsize = (15,9))
          sns.boxplot(data=df,x='Age',ax = axis[0,0],orient = 'h')
          sns.boxplot(data=df,x='Education',ax = axis[0,1],orient = 'h')
          sns.boxplot(data=df,x='Usage',ax = axis[1,0],orient = 'h')
```

```
sns.boxplot(data=df,x='Fitness',ax = axis[1,1],orient = 'h')
sns.boxplot(data=df,x='Income',ax = axis[2,0],orient = 'h')
sns.boxplot(data=df,x='Miles',ax = axis[2,1],orient = 'h')
plt.show()
```



The boxplots above make it evident which Income and Miles have more outliers than others.

```
#checking whether given features have any effect on product purchase
In [62]:
         fig, axis = plt.subplots(2,3,figsize = (18,10))
          sns.boxplot(data=df,x='Product',y='Age',ax = axis[0,0])
          axis[0,0].set_title('Product_VS_Age')
          sns.boxplot(data=df,x='Product',y='Education',ax = axis[0,1])
          axis[0,1].set_title('Product_VS_Education')
          sns.boxplot(data=df,x='Product',y='Usage',ax = axis[0,2])
          axis[0,2].set_title('Product_VS_Usage')
          sns.boxplot(data=df,x='Product',y='Fitness',ax = axis[1,0])
          axis[1,0].set title('Product VS Fitness')
          sns.boxplot(data=df,x='Product',y='Income',ax = axis[1,1])
          axis[1,1].set_title('Product_VS_Income')
          sns.boxplot(data=df,x='Product',y='Miles',ax = axis[1,2])
          axis[1,2].set title('Product VS Miles')
          plt.show()
```

#### Aerofit Case Study



#### Observations:

#### 1. Product Vs Age:

- With very few outliers, the customers purchasing KP281 and KP481 are in the 24-34 age range. Their median age is the same.
- The median age of customers buying KP781 is slightly higher than in other categories, and their maximum number of people lies in the age group 25–30.

#### 1. Product Vs Education:

- Buyers of KP281 and KP481 treadmills are more likely to be between the ages of 14 and 16.
- Constomers who purchased the KP781 treadmill had between 16 and 18 years of education.

# 1. Product Vs Usage:

- The KP781 model is typically purchased by customers that use the tredmill four to five times per week.
- While others whose usage is less than 4 times a week are likely to purchase rest of the models.

#### 2. Product Vs Fitness:

 Customers having KP781 model have high fitness levels (typically between 4 and 5). 11/14/23, 12:47 PM Aerofit Case Study

while rest of the buyer having KP281 and KP481 have average fitness level
 3.

#### 3. Product Vs Income:

- High income individuals buy the KP781 model.
- While low and mid-level income customers have bought rests of the models

#### 4. Product Vs Mile:

- Those who typically log over 120 miles a week of walking or running have bought the KP781 product.
- Conversely, people who run or walk 50–100 miles per week are more likely to purchase KP281 and KP481 items.

```
In [63]: fig, axs = plt.subplots(1,2,figsize = (12,8))
    sns.countplot(data=df,x = 'Product',hue='MaritalStatus',ax=axs[0])
    axs[0].set_title('Product Vs Marital Status')
    sns.countplot(data=df,x = 'Product',hue='Gender',ax=axs[1])
    axs[1].set_title('Product Vs Gender')
    plt.show()
```



#### Observations:

Product Vs Marital Status

11/14/23, 12:47 PM Aerofit Case Study

 Customers who are partenered have a higher likelihood of making purchases.

- The most popular product among consumers is KP281, which is followed by KP481 and KP781.
- Product Vs Gender
  - Given that the product is purchased by an equal number of male and female consumers, KP281 is the most popular item purchased by both genders.
  - KP781 is more popular in male customers.
  - Men tend to be more fitness conscious than women, as seen by the overall higher percentage of male clients.

```
In [64]:
           #Multivariate Analysis
            fig, axs = plt.subplots(1,2,figsize = (14,5))
            sns.scatterplot(data=df ,x='Usage',y='Income',hue='Product',ax=axs[0])
            sns.scatterplot(data=df ,x='Miles',y='Income',hue='Product',ax=axs[1])
            plt.show()
                                                                    Product
             100000
                                                     KP281
                                                             100000
                                                                      KP281
                                                     KP481
                                                                      KP481
                                                     KP781
              90000
                                                             90000
              80000
                                                             80000
                                                             70000
              60000
                                                             60000
              50000
                                                             50000
                                                             40000
              40000
              30000
                                                             30000
                                                                                150
                                                                                     200
                                                                                           250
                                                                                                300
                                                                                                     350
```

#### Obeservations:

• It's clear that those with high earnings use the KP781 treadmill the most, whereas people with low and intermediate incomes prefer the KP281 and KP481 versions.

```
In [65]: #Correlation between different factors
sns.heatmap(df.corr(),annot = True)
Out[65]: <AxesSubplot:>
```



# **Customer Profiling**

```
In [66]: dff = df[['Product','Gender','MaritalStatus']].melt()
  dff.groupby(['variable','value'])[['value']].count()/len(df) *100
```

Out[66]: value

| variable      | value     |           |
|---------------|-----------|-----------|
| Gender        | Female    | 42.22222  |
|               | Male      | 57.777778 |
| MaritalStatus | Partnered | 59.444444 |
|               | Single    | 40.555556 |
| Product       | KP281     | 44.44444  |
|               | KP481     | 33.333333 |
|               | KP781     | 22.22222  |

```
In [67]: #Percentage of male and female
df['Gender'].value_counts(normalize = True)*100
```

```
Out[67]: Male 57.77778 Female 42.222222
```

Name: Gender, dtype: float64

```
In [68]: #Categorization of Products
df['Product'].value_counts(normalize=True)*100
```

Out[68]: KP281 44.444444 KP481 33.333333 KP781 22.222222

Name: Product, dtype: float64

# **Calculation of Marginal & Conditional Probabilities**

| In [69]: | pd.cros | stab(inde | x = df['Ge | ender'],co | lumns = df |
|----------|---------|-----------|------------|------------|------------|
| Out[69]: | Product | KP281     | KP481      | KP781      | All        |
|          | Gender  |           |            |            |            |
|          | Female  | 22.22222  | 16.111111  | 3.888889   | 42.22222   |
|          | Male    | 22.22222  | 17.222222  | 18.333333  | 57.777778  |
|          | All     | 44.44444  | 33.333333  | 22.22222   | 100.000000 |

### Probability:

- P(Male) = 57.78%
- P(Female) = 42.22%
- P(KP281) = 44.44%
- P(KP481) = 33.33%
- P(KP781) = 22.22%
- P(KP281/Male) = 22.22%
- P(KP481/Male) = 17.22%
- P(KP781/Male) = 18.33%
- P(KP281/Female) = 22.22%
- P(KP481/Female) = 16.11%
- P(KP781/Female) = 3.88%

#### Insights & Recommendations:

- Since the majority of our customers are in the 25–35 age range, we should focus on reaching more of them in order to boost sales.
- In order to boost sales of the KP781 product, we ought to focus on individuals with higher incomes and those with more than 16 years of schooling.

11/14/23, 12:47 PM Aerofit Case Study

• We should target married customers to enhance sales because they are more likely to make purchases of all kinds.

• To increase sales, we should target more men as they are more inclined to make purchases.

| In  | Γ | 7 |   |
|-----|---|---|---|
| T11 |   |   | 0 |