Appl. No.

: 10/078,284

Filed

: February 15, 2002

AMENDMENTS TO THE CLAIMS

1. (Currently amended) A method for forming at least one opening in an insulating layer on a substrate while depositing a barrier layer on side walls of the opening without essentially depositing the barrier layer on a bottom of the opening, the method comprising the steps of:

subjecting the substrate to a plasma, the plasma being generated in a gaseous mixture comprising at least three components, the components comprising a first component for depositing the metal barrier layer on at least the side walls of the opening, a second component for forming an opening in the insulating layer, and a third component for removing the barrier layer being formed on the bottom of the opening, wherein the first component is selected from the group consisting of 1-methyl silane, 2-methyl silane, 3-methyl silane, 4-methyl-silane, a mixture of SiH₄ and N₂, a mixture of WF₆ and N₂, and combinations thereof, wherein the second component is selected from the group consisting of N₂O₂, C₂F₂H₂O₂, N₂/O₂ mixtures, N₂/H₂ mixtures, O₂, O₃, NH₃, CO, CO₂, CH₄, and combinations thereof, and wherein the third component comprises a chemical compound that forms a halogen ion or a halogen radical in the plasma;

etching the insulating layer with the plasma; and depositing the barrier layer on the side walls of the opening with the plasma.

- 2. (Currently amended) A method as recited in claim 1, wherein the first component is selected from the group consisting of 1 methyl silane, 2 methyl silane, 3-methyl silane, and 4-methyl-silane, a mixture of SiH4 and N₂, a mixture of WF₆ and N₂, and combinations thereof.
- 3. (Currently amended) A method as recited in claim 1 wherein the second component is selected from the group consisting of N_*O_y , $C_*F_yH_*O_u$, N_2/O_2 mixtures, N_2/H_2 mixtures, and $O_{27}O_{37}NH_3$, CO, $CO_{27}CH_4$, and combinations thereof.
- 4. (Currently amended) A method as recited in claim 1, wherein the third component comprises a chemical compound that forms a halogen ion or a radical in the plasma is selected from the group consisting of CF₄, CHF₃, CH₂F₂, CHF₃, and mixtures thereof.
 - 5. (Currently amended) A method as recited in claim -4— 1, wherein the third component is selected from the group consisting of NF₃, SF₆, F_2 , CIF₃, and mixtures thereof.

Appl. No. : 10/078,284

· Filed : February 15, 2002

6. (Currently amended) A method as recited in claim 1, wherein the gaseous mixture further comprises an inert gas selected from the group consisting of Ar, He, N_2 , and mixtures thereof.

- 7. (Original) A method as recited in claim 1, wherein the plasma is a continuous plasma.
- 8. (Original) A method as recited in claim 1, wherein the plasma is a pulsed plasma.
- 9. (Original) A method as recited in claim 1, wherein the barrier layer is a metal diffusion barrier layer.
- 10. (Currently amended) A method as recited in claim 9, wherein the barrier layer comprises <u>hydrogenated</u> silicon carbide.
- 11. (Original) A method as recited in claim 1, wherein the insulating layer comprises a porous material.
- 12. (Original) A method as recited in claim 1, wherein the insulating layer is an organic containing insulating layer.
- 13. (Original) A method as recited in claim 1, wherein the insulating layer is an inorganic containing insulating layer.
- 14. (Original) A method as recited in claim 1, wherein the opening is a via hole, the via hole extending through the insulating layer to an underlying conductive layer or to an underlying barrier layer.
- 15. (Original) A method as recited in claim 1, further comprising the steps of: covering the insulating layer with a bilayer, the bilayer comprising a resist hard mask layer formed on the insulating layer and a resist layer formed on the hard mask layer; and patterning the bilayer.

16-36. (Cancelled)