Due: Thurs. Dec 1, 2022.

NLA = the text-book Numerical Linear Algebra, by Trefethen and Bau

- 1. NLA 24.1 For each of the following statements, prove that ...
- **2**. Let

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 0 & \epsilon & \epsilon \\ \epsilon & 0 & \epsilon \\ \epsilon & \epsilon & 0 \end{bmatrix},$$

with ϵ a small positive perturbation, with $\epsilon \leq 10^{-3}$.

- (a) Estimate the locations of the eigenvalues of A + B by using Gershgorin's theorem.
- (b) Improve the estimate for $\lambda_1 \approx 1$ by judicious choice of diagonal similarity transformation of the form

$$D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & d & 0 \\ 0 & 0 & d \end{bmatrix},$$

for some d > 0.

- **3**. (NLA 26.3) One of the best known results of eigenvalue perturbation theory is the Bauer-Fike theorem. Suppose $A \in \mathbb{C}^{m \times m}$ is diagonalizable with $A = V\Lambda V^{-1}$, and let $\delta A \in \mathbb{C}^{m \times m}$ be arbitrary. The every eigenvalue of $A + \delta A$ lies in at least one of the m circular disks in the complex plane of radius $\kappa(V) \|\delta A\|_2$ centred at the eigenvalues of A, where κ is the 2-norm condition number.
- (a) Prove the Bauer-Fike thereom by using the equivalence of conditions (i) and (iv) in Exercise 26.1.
- (b) Suppose that A is normal. Show that for each eigenvalue λ_j of $A + \delta A$, there is an eigenvalue λ_j of A such that

$$|\tilde{\lambda}_j - \lambda_j| \le \|\delta A\|_2. \tag{1}$$

4. Write a Matlab code [W,H] = hessenberg(A) to transform an $m \times m$ matrix A to upper Hessenberg form, H, by similarity transformations using Householder reflectors,

$$A = QHQ^*$$
.

Here Q is represented implicitly in terms of the Householder vectors v_k stored in W. Also write a Matlab function [Q] = formQh(W) that takes W and generates the matrix Q.

Test your routine on the $m \times m$ matrix $A = [a_{ij}]$ with entries

$$a_{ij} = 9,$$
 for $i = j,$
 $a_{ij} = \frac{1}{(i+j)}$ for $i \neq j$

and m = 5. Check that your routines are correct by confirming that H is upper Hessenberg, Q is unitary and $A = QHQ^*$.

Output
$$A, H, W, Q, \|Q^*Q - I\|_2$$
, and $\|A - QHQ^*\|_2$.