

# Universidade Federal do Ceará Departamento de Engenharia de Teleinformática

Disciplina: Sistemas Microprocessados 2017.2

Professor: Ricardo Jardel Nunes Silveira

## Alunos:

Arthur Tomé Lopes - Matrícula: 400787

Laylson dos Santos Nunes - Matrícula: 392588

Luan Daniel Silva – Matrícula: 374941

Sofia da Costa Barreto – Matrícula: 339013

Projeto final da disciplina

Construção de um Drone controlado por Bluetooth

Fortaleza

## **INTRODUÇÃO**

#### **Justificativa**

Drones são dispositivos aéreos que possuem aplicações diversas, como filmagem, vigilância, exploração de regiões de difícil acesso, fiscalização por meio de órgãos federais como a utilização na fiscalização de trânsito e fiscalização ambiental na cidade de São Paulo. A construção de um drone é uma ótima escolha pelo grande número de aplicações deste equipamento.

#### **Funcionamento**

O modelo escolhido é um drone quadricóptero, que funciona com quatro motores apoiados por ESC's, os ESC's variam a velocidade dos motores por meio de PWM, o controle feito por meio de um MCU, a Bluepill, que coletará dados de um sistema de comunicação e de sensores inerciais, giroscópio e acelerômetro, e a partir desses dados modificará o PWM que controla os motores, podendo assim modificar a altitude e a velocidade com que o drone se movimenta.

#### **Materiais Recomendados**

Materiais recomendados para o desenvolvimento do projeto:

- Microcontrolador STM32 Bluepill.
- Módulo Bluetooth RS232 HC-06.
- Motor Brushless.
- ESC's.
- MPU6050.
- Bateria.
- Modulo Ultrassom CH-SR04.
- Frame de material a ser decidido.

### Objetivos

Aplicar os conhecimentos obtidos em sala para realizar o controle de um drone por meio de sinais e dados coletados e processados por ele, assim controlando os motores com a finalidade de obter a maior estabilidade em vôo.

#### **PROJETO**

O projeto principal será dividido em três partes:

- 1. Calibragem dos ESC's.
- 2. Microcontrolador.
- a) Receber dados do sensor.
- b) Processar dados recebidos.
- c) Converter os dados recebidos como pulso PWM.
- 3. Aplicativo
- a) Parear com o microcontrolador.
- b) Enviar comandos para o microcontrolador.

## Diagrama de Blocos



## **Cronograma Semanal**

|                                  | Outubro |    |    | Novembro |    |    |    | Dezembro |    |    |    |
|----------------------------------|---------|----|----|----------|----|----|----|----------|----|----|----|
| Atividades Previstas             | S2      | S3 | S4 | S1       | S2 | S3 | S4 | S1       | S2 | S3 | S4 |
| Organização da Equipe            |         |    |    |          |    |    |    |          |    |    |    |
| Distribuição de Funções          |         |    |    |          |    |    |    |          |    |    |    |
| Desenvolvimento do Sistema       |         |    |    |          |    |    |    |          |    |    |    |
| Teste de sensores                |         |    |    |          |    |    |    |          |    |    |    |
| Recebimento dos pedidos          |         |    |    |          |    |    |    |          |    |    |    |
| Testes dos componentes pedidos   |         |    |    |          |    |    |    |          |    |    |    |
| Montagem da Mecânica             |         |    |    |          |    |    |    |          |    |    |    |
| Testes com sistema               |         |    |    |          |    |    |    |          |    |    |    |
| Testes da parte mecânica         |         |    |    |          |    |    |    |          |    |    |    |
| Testes do conjunto               |         |    |    |          |    |    |    |          |    |    |    |
| Previsão de Conclusão do projeto |         |    |    |          |    |    |    |          |    |    |    |