

Adaptive Synapses and Integrate-and-Fire Neurons for a Multi-Chip Selective Attention System

Elisabetta Chicca, Giacomo Indiveri and Rodney J. Douglas

Introduction

We present measurements from an analog VLSI (Very Large Scale Integrated) chip containing circuits implementing adaptive synapses and leaky Integrate-and-Fire (I&F) neurons.

We focus on the behaviour of the synaptic circuit and the effect of the synaptic current on the postsynaptic depolarization.

Adaptive Synapses

Cortical synapses between pyramidal neurons exhibit two types of short-term adaptation mechanisms: facilitation and depression [1]. The mechanism we are interested in is *synaptic depression*, by which the synaptic strength is decreased in response to successive presynaptic action potentials. For constant input firing rate, the steadystate EPSP (excitatory postsynaptic potential) amplitude decreases as a function of the rate [2].

The Synaptic circuit

FIG. 1: Synaptic circuit. The input of the ciruit is the spike signal of the presynaptic neurons. The output current is the sum of facilitating and depressing currents.

Institute of Neuroinformatics, UNIZH/ETH, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

The Synaptic Strength is Decreased in Response to Successive Presynaptic Action Potentials

FIG. 2: Effects of pharmacological manipulation on response of layer 2/3 synapses fo rat primary visual cortex to 20 Hz trains (adapted from 11)

FIG. 3: Response of VLSI synapse to 20 Hz trains with different parameter values.

For Constant Input Firing Rate, the Steady-State EPSP Amplitude Decreases as a Function of the Rate

FIG. 5: The normalized steady-state amplitude of EPSP of silicon neurons at rates from 5 to 100 Hz for different values of bias parameters.

FIG. 6: Postsynaptic membrane potential in response to 20 Hz trains for different values of the parameter controlling the strength of the facilitating part of the synaptic circuit.

Future Work

Synaptic depression leads to a loss of sensitivity to sustained rates and an increase in the sensitivity to abrupt changes in rate (dynamic gain control). This property can be used by a selective attention system to normalize the input coming from different sensory modalities and/or feature detection modules.

A new chip currently in fabrication will be used to build a multi-chip selective attention system. The inter and intra-chip connection will be managed using a custom PCI-AER (Peripheral Component Interconnect-Address Event Representation) board.

FIG. 7: Chip architecture and custom PCI board configuration.

References

[1] Varela, J. A., Sen, K., Gibson, J., Fost, J., Abbott, L. F., and Nelson, S. B. (1997). A Quantitative Description of Short-Term Plasticity at Excitatory Synapses in Layer 2/3 of Rat Primary Visual Cortex. *The Journal of Neuroscience*, 17(20): 7926-7940.

[2] Abbott, L. F., Varela, J. A., Sen, K., and Nelson, S. B. (1997). Synaptic Depression and Cortical Gain Control. *Science*, (275): 220-224.