Rappels sur les trinômes

Tatiana Labopin-Richard

1 **Définitions**

Définition 1.1 On appelle polynôme du second degré ou trinôme tout expression de la forme

$$P(x) = ax^2 + bx + c$$

 $o\dot{u}$, a, b et c sont des réels et $a \neq 0$.

Définition 1.2 On appelle discriminant de P le nombre

$$\Delta = b^2 - 4ac.$$

2 Etude des racines de P

Propriété 2.1 L'équation $ax^2 + bx + c = 0$ possède :

- aucune solution réelle si $\Delta < 0$.
- une unique solution réelle $x_0 = \frac{-b}{2a}$ si $\Delta = 0$. deux solutions rélles $x_1 = \frac{-b \sqrt{\Delta}}{2a}$ et $x_2 = \frac{-b + \sqrt{\Delta}}{2a}$ si $\Delta > 0$.

Preuve On commence par transformer l'expression du polynôme pour qu'elle soit plus manipulable. On appelle cela la forme canonique.

$$ax^{2} + bx + c = a(x^{2} + \frac{b}{a}x + \frac{c}{a})$$
 (1)

$$= a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2}{4a^2} + \frac{c}{a} \right] \tag{2}$$

$$= a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{b^2 - 4ac}{4a^2} \right] \tag{3}$$

$$= a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{(2a)^2} \right] \tag{4}$$

Ainsi, nous distinguons les cas:

1) Si $\Delta > 0$, on peut utiliser l'identité remarquable $a^2 - b^2 = (a - b)(a + b)$ ce qui donne

$$P(x) = a(x - x_1)(x - x_2)$$

avec x_1 et x_2 définis dans la propriété, qui sont donc les racines de P.

2) Si $\Delta = 0$, nous avons

$$P(x) = a(x - x_0)^2$$

avec x_0 défini dans la propriété, qui est donc la seule racine.

3) Si $\Delta < 0$, alors

$$\left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{(2a)^2} \right] > 0$$

et donc le polynôme ne s'annule pas sur \mathbb{R} .

3 Etude du signe de P

Propriété 3.1 Le polynôme $P(x) = ax^2 + bx + c$ est

- toujours du signe de a si $\Delta < 0$.
- toujours du signe de a mais s'annule en $x_0=\frac{-b}{2a}$ si $\Delta=0$. du signe de a à l'extérieur des racines et du signe opposé de a à l'intérieur des racines si $\Delta > 0$.

Preuve

Reprenons la forme obtenue lors de la preuve de la propriété précédente.

1) Si $\Delta > 0$, nous avons

$$P(x) = a(x - x_1)(x - x_2).$$

Un tableau de signe nous permet alors de conclure :

Valeurs de x	$-\infty$ x	x_1 x_2	$_{2}$ $+\infty$
Signe de $(x-x_1)$	-	+	+
Signe de $(x-x_2)$	-	-	+
Signe de $(x-x_1)(x-x_2)$	+	-	+
Signe de $P(x)$	signe de a	signe opposé de a	signe de a

2) Lorsque $\Delta = 0$,

$$P(x) = a(x - x_0)^2.$$

Un carré étant toujours positif, P est du signe de a et s'annule en x_0 .

3) Lorsque $\Delta < 0,$ nous avons déjà vu que

$$\left[\left(x + \frac{b}{2a} \right)^2 - \frac{\delta}{(2a)^2} \right] > 0.$$

Ainsi, $P(x) = a \left[\left(x + \frac{b}{2a} \right)^2 - \frac{\Delta}{(2a)^2} \right]$ est donc toujours du signe de a.

4 Bilan

