https://bit.ly/321iyWW

KYOTO UNIVERSITY

統計的モデリング基礎① ~概要・導入~

鹿島久嗣 (情報学科 計算機科学コース)

DEPARTMENT OF INTELLIGENCE SCIENCE
AND TECHNOLOGY

今学期の講義について

成績評価: 中間・期末試験またはその代替による

- 基本方針:中間試験と期末試験で成績をつける
- ただし、状況によって、中間試験・期末試験の一部あるいはすべて がレポート課題等に代わる可能性あり

導入

本講義の目的: 統計的モデル化の基礎を身につける

- 我々は、研究や業務で出会う様々な種類のデータから適切な判断を下したい(自動的なシステムあるいは、人間の意思決定をサポート)場面にしばしば遭遇する
 - -例:実験データ、社会調査データ、検査・診断データ、売り上げ データ、行動データ、Webサイトのログ等々
- そのために、観測されたデータに基づいて、不確実な現象の特性を 捉え、将来の観測値の確率分布を推定し、予測や制御に資する 統計的モデル化の基礎を学習する
 - -現在注目を浴びている機械学習(≒人工知能)の基礎でもある

統計的モデルが世の中で使われている例: 顧客の購買行動の予測に基づく推薦

- Webショッピングサイトでの商品推薦の例を考える:
 - -誰に何を薦めると買ってくれるだろうか?下記はタコ焼き機を買った 人に推薦される商品 ™™ へ
 - まいど本語タコやん かなかな (14) ¥ 1,523 メプライム

- 消費者の購買行動を予測し、購入しそうなものを推薦する
 - -過去の購買履歴をもとに、ある商品を買ってくれるかどうか予測
 - これまでに購入した商品のリストから、将来ある商品を購入する 確率を推定する
 - -最も購買可能性が高いものから提示すればよさそう

本講義のトピック: データ解析の基礎的項目

- 1. 回帰モデル:線形回帰モデルと最小二乗法による推定など
- 2. モデル推定: 最尤推定、事後確率最大化等のモデル推定の 枠組み
- 3. モデル選択:情報量基準、交差確認等に基づくモデルの選択
- 4. 質的変数の予測モデル:ロジスティック回帰モデルなど
- 5. 様々なデータに対する確率モデル:時系列、テキスト、...
- 6. ベイズ推定:ベイズ統計の枠組みに基づく統計モデル推定
- 7. 因果推論:相関関係と因果関係の違い、因果関係の推定法

データとはなにか: たとえば表形式データ

■ 項目と値の組で構成される

全学ライセンスあり (医・薬あたりではデファクトらしい…)

(各行が1つの企業、業種や会社規模などで表されている)

JMPサンプルデータ

データをもとにやりたいことの例: 予測や因果関係の抽出

- 前述のデータを利用してやりたいこととして、例えば:
 - 予測:会社の売り上げから利益を予測したい
 - -モデル推定・選択: 予測の式をデータからどのように得るか
 - -因果推論:従業員を減らすと、従業員ひとりあたり利益は伸びるか

などが考えられるだろう

- さらに進んで、以下のようなことも考えられるかもしれない:
 - -ベイズ推定:データが少ないときにどうするか?
 - -様々なデータ:会社説明のテキストがあったらどうするか?

表形式<u>以外</u>のさまざまなデータ: 時系列、テキスト、グラフなど...

- ■時系列
- テキスト
- グラフ

https://en.wikipedia.org/wiki/Time_series#/media/File:Tuberculosis_incidence_US_1953-2009.png

https://en.wikipedia.org/wiki/Text_corpus

統計的モデル化の目的:「部分」から「全体」を知ること

- すべての場合(母集団)を網羅的に観測できることは少ない
- ■「記述統計」と「推測統計」
 - -記述統計:全数調査を前提とする
 - -推測統計:標本調査を前提とする
 - ・部分(標本)から全体(母集団)を知る
 - 過去から未来を予測する
- 母集団と標本は「確率論」でつながる
 - -母集団は対象となる集合の要素すべて、あるいは、何らかの確率 分布に従っていて、標本はそこから確率的に取り出されたと考える

確率モデルとは何か: データとデータの「間」をつなぐもの

- ■全数調査のかわりに、部分(限られたデータ)から全体を知るためには、データとデータの間を補間する必要がある
- そのためにはデータの分布に関する仮定が必要になる
 - -仮定=確率モデル
- ■データから確率モデルを推定する
 - -より具体的には、モデルパラメータを推定する
- モデルの利用法:
 - -モデルを用いて全体の性質を知る
 - -未来のデータについて予測を行う

代表的な確率モデル: 正規分布

- ■量的な確率変数に関する最も基本的な確率分布の一つ
- データは平均値 µ を中心にバラつき度合σで散らばる

正規分布の確率密度関数

$$f(x) = N(x|\mu, \sigma^2)$$
$$= \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

ただし以下を満たす

$$\int_{-\infty}^{\infty} f(x)dx = 1$$

確率モデルとは: データの生成過程

- 母集団は対象となる集合の要素すべて、あるいは、何らかの確率 分布に従っていて、標本はそこから確率的に取り出されたと考える
- ■モデルはデータの生成器として理解できる
 - -ボタンを押すとデータが出てくる機械(のようなもの)
- サイコロのモデル: 出目Xの確率 $P(X = i) = \frac{1}{6}$
- 多くの場合、個々のデータは同じ分布に従い、独立に生成されると 仮定する (= i.i.d: identically & independently distributed)

初等的なデータ分析

基本的なデータの種類:質的データと量的データ

- 統計データには質的データと量的データがある
 - 質的データ:
 男/女、好き/普通/嫌い などの記号を値にとるデータ
 - 量的データ:
 温度や身長など数値を値にとるデータ(連続尺度)

質的データと量的データの分類: さまざまな尺度

- ■質的データ: 記号を値としてとるデータ
 - -名義尺度:値が単なるラベルとして扱われる (例:「男 I「女 I)
 - -順序尺度:順序に意味がある (例:「好き」>「普通」>「嫌い」)
- ■量的データ:数値を値としてとるデータ(連続尺度)
 - -間隔尺度:数の間隔に意味がある(例:温度)
 - -比例尺度:数の比に意味がある(例:身長)
 - 原点に意味があるともいえる

量的データの例: 体重データ

■ 100名分の体重データ(1次元): このままだとわかりにくい

No.	体重								
1	48	21	52	41	52	61	55	81	54
2	48	22	50	42	57	62	54	82	55
3	40	23	55	43	56	63	55	83	52
4	52	24	53	44	50	64	52	84	49
5	60	25	49	45	49	65	50	85	51
6	55	26	56	46	52	66	50	86	55
7	52	27	52	47	51	67	48	87	50
8	55	28	56	48	45	68	52	88	51
9	53	29	50	49	46	69	52	89	45
10	50	30	52	50	50	70	50	90	56
11	53	31	50	51	49	71	55	91	53
12	62	32	55	52	50	72	50	92	50
13	48	33	50	53	53	73	56	93	53
14	55	34	56	54	58	74	54	94	55
15	45	35	66	55	52	75	48	95	55
16	48	36	49	56	48	76	54	96	51
17	50	37	55	57	65	77	50	97	48
18	50	38	58	58	56	78	49	98	52
19	50	39	48	59	50	79	52	99	63
20	48	40	58	60	60	80	52	100	68

量子化: 量的データを理解しやすくするための量子化

- 生データのままではデータを理解するのは困難
- ■量子化:データがとりうる値の範囲を、あらかじめ定めた区間 (階級)に分け、観測される数値の入る階級によって集計を行う
 - -観測される数値が実数 (連続値) の場合には、厳密な値は表現できないので必ず量子化を行う
 - CDに録音されている音響信号も16 [bits]で量子化、各時刻の振幅は0~65535の整数で表現
 - -例:体重の場合
 - 観測する最小単位を1kgとし最小単位より小さい端数を丸める
 - あるいは、5kgずつの区間に分け、それぞれの区間で集計する

量的データの集計: 度数分布表とヒストグラム

■ヒストグラムでデータ分布を視覚化

- 度数分布表:各階級の度数をカウント

-ヒストグラム: 度数分布のグラフ表現

度数分布表(階級幅5kg)

階級	度数
45未満	1
45~49	20
50~54	48
55~59	24
60~64	4
65以上	3

ヒストグラムと階級幅の関係: ヒストグラムでは幅の決め方で見た目が大きく変わる

■ 階級幅1の場合と10の場合でヒストグラムの形が変わる

- スタージェス (Sturges) の方法: $K = \log_2 N + 1$
 - -データが100個: $\log_2 100 + 1 = 7.643856 \rightarrow 8$ 階級ぐらい
 - -データが50個: $\log_2 50 + 1 = 6.643856 \rightarrow 7$ 階級ぐらい
 - -データが25個: $\log_2 25 + 1 = 5.643856 \rightarrow 6$ 階級ぐらい

そのほかの集計:

度数·累積度数·相対度数·累積相対度数

- データ: $x^{(1)}, x^{(2)}, \cdots, x^{(n)}$ を いくつかの階級: $I_1, I_2, I_3, \cdots, I_K$ に 分割する
- 度数: f₁, f₂, f₃, · · · , f_K
 - $-x_i \in I_k$ を満たすiの個数
 - -累積度数: $F_k = \sum_{i=1}^k f_k$
 - -相対度数: $\frac{f_k}{N}$
 - -相対累積度数: $\frac{F_k}{N}$

階級	度数	累積度数	相対度数	累積 相対度数
45未満	1	1	1%	1%
45-49	20	21	20%	21%
50-54	48	69	48%	69%
55-59	24	93	24%	93%
60-64	4	97	4%	97%
65以上	3	100	3%	100%

累積度数と階級幅の関係: 累積度数は階級幅にそれほど左右されない

- 累積度数は階級幅にそれほど左右されない
 - -むしろ階級幅が小さいほうが分布の様子がよくわかるくらい...

複数種類のデータを比較したい場合: ヒストグラムの形を表す指標がほしい

- ヒストグラムから分布の形状はよくわかるが、一覧性には欠ける
- ヒストグラムの特徴を表す少数の指標で代表したい

データの代表値:標本平均・中央値

■ データ $x^{(1)}$, $x^{(2)}$, …, $x^{(n)}$ の特徴を表す数値

-標本平均:
$$\bar{x} = \frac{1}{N}(x^{(1)} + x^{(2)} + \dots + x^{(n)})$$

•
$$\operatorname{argmin}_{x} f(x) = (x^{(1)} - x)^{2} + (x^{(2)} - x)^{2} + \dots + (x^{(n)} - x)^{2}$$

- -中央値 (median) : 大きいほうからだいたい $\frac{n}{2}$ 番目の値
 - 外れ値の影響を受けにくい

データ分布の代表値: 分散・四分位点・箱ひげ図

- 平均だけでは不十分な場合もある
- 分布の形も知りたい
 - -データのばらつき: 分散

- 4 分位点:整列したデータを四等分する位置にある値
 - *Q*₁:25%点、*Q*₂:50%点(中央値)、*Q*₃:75%点、
- 箱ひげ図による可視化

不偏分散: データのばらつきをあらわす

■ 不偏分散 ô²: データのばらつきを表す

$$-\hat{\sigma}^2 = \frac{(x^{(1)} - \bar{x})^2 + (x^{(2)} - \bar{x})^2 + \dots + (x^{(n)} - \bar{x})^2}{n-1} = \frac{1}{n-1} \sum_{i=1}^n (x^{(i)} - \bar{x})^2$$

- 平均と分散でデータを捉える = 背後に正規分布を仮定
- ばらつきを表す類似の指標:
 - -変動係数CV (coefficient of variation) $\frac{\hat{\sigma}^2}{\bar{x}}$
 - 相対標準偏差 (relative standard deviation: RSD) とも呼ばれる
 - 平均値が異なる二つの集団のばらつきを比較するのに用いる
 - 偏差値 $T_i: x^{(i)}$ を平均値50・標準偏差10となるようにスケールした値

練習問題: ストリームデータの平均・分散の計算

- ストリームデータ:時々刻々到着するデータ
 - -時刻tにおいてデータ $x^{(t)}$ が観測される
 - -例:センサーデータ
- これまでに観測されたデータの平均・分散を、各時刻でO(1)で保持したい
 - -定義に従って素朴に計算する $\mathrm{CO}(t)$

まとめ:

統計的モデル化の導入と量的データの初等的分析

- ■観測されたデータを理解し、予測をおこなうためには、データの背後でデータを生み出す確率モデルを考える
- モデルをデータから推定する必要がある
- ■データには量的データ、質的データがある
- ■量的データの初等的分析には、ヒストグラム等を用いて可視化したり、平均・分散などの指標でとらえる
- ■次回以降:2変数の関係の分析(相関・回帰)

