

FCC CFR47 PART 15 SUBPART C CERTIFICATION TEST REPORT

FOR

RFID READER

MODEL NUMBER: FREE30R

REPORT NUMBER: 1001408287

FCC ID: U5Z-FREE30R

ISSUE DATE: 2011-09-06

Prepared for

JCM TECHNOLOGIES S A
BISBE MORGADES, 46 BAIXOS
VIC
08500, SPAIN

Prepared by

UNDERWRITERS LABORATORIES INC. 1285 WALT WHITMAN RD. MELVILLE, NY 11747, U.S.A.

TEL: (631) 271-6200 FAX: (877) 854-3577

REPORT NO: 1001408287 FCC ID: U5Z-FREE30R

Revision History

Rev.	Issue Date	Revisions	Revised By
	2011- 09-06	Initial Issue	B. DeLisi
	2011- 09-08	Updated Model number to Free30R.	B. DeLisi

TABLE OF CONTENTS

1.	AT	TESTATION OF TEST RESULTS	4
2.	TES	ST METHODOLOGY	5
3.	FAC	CILITIES AND ACCREDITATION	5
4.	CA	LIBRATION AND UNCERTAINTY	5
	4.1.	MEASURING INSTRUMENT CALIBRATION	5
	4.2.	SAMPLE CALCULATION	5
	4.3.	MEASUREMENT UNCERTAINTY	5
5.	EQ	UIPMENT UNDER TEST	6
	5.1.	DESCRIPTION OF EUT	6
	5.2.	DESCRIPTION OF AVAILABLE ANTENNAS	6
	5.3.	SOFTWARE AND FIRMWARE	6
	5.4.	WORST-CASE CONFIGURATION AND MODE	6
	5.5.	MODIFICATIONS	6
	5.6.	DESCRIPTION OF TEST SETUP	7
6.	TES	ST AND MEASUREMENT EQUIPMENT	9
7.	RA	DIATED EMISSION TEST RESULTS	11
	7.1.	LIMITS AND PROCEDURE	11
	7.2.	TX SPURIOUS EMISSIONS 0.15 TO 30 MHz	12
	7.3.	TX SPURIOUS EMISSION 30 TO 1000 MHz	16
8.	AC	MAINS LINE CONDUCTED EMISSIONS	18
^	ee:	THE PHOTOS	25

REPORT NO: 1001408287 FCC ID: U5Z-FREE30R

1. ATTESTATION OF TEST RESULTS

COMPANY NAME: JCM TECHNOLOGIES S A

BISBE MORGADES, 46 BAIXOS

VIC 08500, SPAIN

EUT DESCRIPTION: RFID Reader

MODEL: FREE30R

SERIAL NUMBER: Non-serialized production unit

DATE TESTED: 2011-08-22 to 2011-08-26

APPLICABLE STANDARDS

STANDARD

TEST RESULTS

DATE: 2011-09-06

FCC PART 15 SUBPART C

Pass

Underwriters Laboratories Inc. tested the above equipment in accordance with the requirements set forth in the above standards, using test results reported in the test report documents referenced below and/or documentation furnished by the applicant. All indications of Pass/Fail in this report are opinions expressed by Underwriters Laboratories Inc. based on interpretations of these calculations. The results show that the equipment is capable of demonstrating compliance with the requirements as documented in this report.

Note: The results documented in this report apply only to the tested sample, under the conditions and modes of operation, as described by the referenced documents. This document may not be altered or revised in any way unless done so by Underwriters Laboratories Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by Underwriters Laboratories Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For UL By:

Tested By:

Joseph Danisi

Sr. Project Engineer

UL

Bob DeLisi

Sr. Staff Engineer

UL

REPORT NO: 1001408287 FCC ID: U5Z-FREE30R

2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with ANSI C63.4-2009, FCC CFR 47 Part 2, FCC CFR 47 Part 15.

DATE: 2011-09-06

3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 1285 Walt Whitman Rd. Melville, NY 11747, USA.

UL Melville is accredited by NVLAP, Laboratory Code 100255-0. The full scope of accreditation can be viewed at http://ts.nist.gov/standards/scopes/1002550.htm.

4. CALIBRATION AND UNCERTAINTY

4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

4.2. SAMPLE CALCULATION

Where relevant, the following sample calculation is provided:

Field Strength (dBuV/m) = Measured Voltage (dBuV) + Antenna Factor (dB/m) + Cable Loss (dB) – Preamp Gain (dB) 36.5 dBuV + 18.7 dB/m + 0.6 dB – 26.9 dB = 28.9 dBuV/m

4.3. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty levels have been estimated for tests performed on the apparatus:

PARAMETER	UNCERTAINTY
Conducted Disturbance, 0.15 to 30 MHz	± 3.3 dB
Radiated Disturbance, 30 to 1000 MHz	± 4.00 dB

Uncertainty figures are valid to a confidence level of 95%.

5. EQUIPMENT UNDER TEST

5.1. DESCRIPTION OF EUT

The EUT is a low power RFID intended for security systems.

5.2. DESCRIPTION OF AVAILABLE ANTENNAS

DATE: 2011-09-06

The radio utilizes an integral loop antenna.

5.3. SOFTWARE AND FIRMWARE

None

5.4. WORST-CASE CONFIGURATION AND MODE

The EUT only has one mode of operation and the EUT only has one configuration

5.5. MODIFICATIONS

No modifications were made during testing.

REPORT NO: 1001408287 FCC ID: U5Z-FREE30R

5.6. DESCRIPTION OF TEST SETUP

SUPPORT EQUIPMENT

None

I/O CABLES

	I/O CABLE LIST									
Cable No.	Port	# of Identica Ports	Connector Type	Cable Type	Cable Length	Remarks				
1	DC Power	1	AC/DC Adpater	Unshielded	1.8m	None				

DATE: 2011-09-06

TEST SETUP

The EUT was placed on a non-metallic support and mounted in a normal orientation.

SETUP DIAGRAM FOR TESTS

6. TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the tests documented in this report:

DATE: 2011-09-06

Radiated Emissions - 10-Meter Chamber

Test Equipment Used – Radiated Emissions								
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date			
60Hz-30MHz								
	Rohde &							
EMI Receiver	Schwarz	ESIB40	34968	2011-03-01				
Active Loop Antenna	EMCO	6507	ME5A-288	2010-10-19	2011-10-19			
Switch Driver	HP	11713A	ME7A-627	N/A	N/A			
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A			
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A			
RF Switch Box	UL	1	44398	N/A	N/A			
Measurement Software	UL	Version 9.3	44740	N/A	N/A			
Temp/Humidity/Pressure								
Meter	Cole Parmer	99760-00	4268	2010-12-07	2012-12-07			
Multimeter	Fluke	87V	64386	2011-02-02	2012-02-29			
Description	Manufacturer	Model	Identifier	Cal Date	Cal Due Date			
30-1000MHz								
	Rohde &							
EMI Receiver	Schwarz	ESIB40	34968	2011-03-01	2012-03-01			
Bicon Antenna	Schaffner	VBA6106A	54	2011-04-05	2012-04-05			
Log-P Antenna	Schaffner	UPA6109	44067	2011-04-29	2012-04-29			
Switch Driver	HP	11713A	ME7A-627	N/A	N/A			
System Controller	Sunol Sciences	SC99V	44396	N/A	N/A			
Camera Controller	Panasonic	WV-CU254	44395	N/A	N/A			
RF Switch Box	UL	1	44398	N/A	N/A			
Measurement Software	UL	Version 9.5	44740	N/A	N/A			
Temp/Humidity/Pressure								
Meter	Cole Parmer	99760-00	4268	2010-12-07	2012-12-07			
Multimeter	Fluke	87V	64386	2011-02-02	2012-02-29			

REPORT NO: 1001408287 DATE: 2011-09-06 FCC ID: U5Z-FREE30R

Conducted Emissions / Occupied Bandwidth - Ground Plane 1

Test Equipment Used – Conducted Emissions									
Description	Manufacturer Model Identifier		Cal Date	Cal Due Date					
Conducted Emissions / Occupied B	andwidth – GP 1								
EMI Receiver	Rohde & Schwarz	ESIB26	ME5B-081	2011-01-27	2012-01-31				
LICAL	Color	9252-50-R-24-	META COC	0044 00 04	2042 02 20				
LISN	Solar	BNC		2011-02-04	2012-02-28				
Switch Driver	HP	11713A		N/A	N/A				
RF Switch Box	UL	4	_	N/A	N/A				
Measurement Software	UL	Version 9.5	44736	N/A	N/A				
Active Loop Antenna	EMCO	6507	ME5A-288	2010-10-19	2011-10-19				
Temp/Humidity/Pressure Meter	Cole Parmer	99760-00	43734	2010-03-08	2012-03-08				
Multimeter	Fluke	87V	64386	2011-02-02	2012-02-29				

7. RADIATED EMISSION TEST RESULTS

7.1. LIMITS AND PROCEDURE

LIMITS

FCC §15.209 (a)

Frequency (MHz)	Field Strength (microvolts/meter)	Measurement Distance (m)						
0.009-0.490	2400/F(kHz)	300						
0.490-1.705	24000/F(kHz)	30						
1.705–30.0	30	30						
30–88	100	3						
88 to 216	150	3						
216 to 960 200 3								
Above 960 MHz 500 3								
Note: The lower limit sha	all apply at the transition freq	uency.						

DATE: 2011-09-06

TEST PROCEDURE

ANSI C63.4

The EUT is an intentional radiator that incorporates a digital device, the highest fundamental frequency generated or used in the device is 108 MHz, while the highest frequency generated or used in the device is 4 MHz; therefore testing was conducted to 1000 MHz.

RESULTS

No non-compliance noted:

7.2. TX SPURIOUS EMISSIONS 0.15 TO 30 MHz

File: RDE Pt15 SubC 9k-30MHz Free30R 125kHz XMT 120U 60Hz Horizontal Palarity.DAT

	ZINEEOO								
JCM Techno	ologies								
Transmitte	r								
Model: Fre	e30R 1	L25kHz							
Job: 100140	08287								
Tested By:	GB								
Horizontal .	1115MH	Z							
Test	Meter		ME5A- 288 6507 EFId 19Oct11	3MLoc 9kHz- 30MHz 03Feb12	300M to 3M Offset	dB[uVolts	FCC Part 15 Subpart C		Azimuth
Frequency	Reading	Detector	[dB]	[dB]	[dB]	/meter]	15.209	Margin	[Degs]
0.12	83.27	Av	17.5	0.1	-80	20.87	26	-5.13	217
0.13075	67.45	Av	17.4	0.1	-80	4.95	25.3	-20.35	40
0.12388 69.52 Av		17.5	0.1	-80	7.12	25.7	-18.58	40	
0.1254 68.53 Av		17.5	0.1	-80	6.13	25.6	-19.47	40	
0.12598	70.49	Av	17.5	0.1	-80	8.09	25.6	-17.51	40
PK - Peak de	etector								
QP - Quasi-Peak detector									
LnAv - Linear Average detector									
LgAv - Log A	verage de	tector							
Av - Averag	ge detector	•							
CAV - CISPI	R Average o	detector							
RMS - RMS	detection								
CRMS - CISF	R RMS det	ection							

7.3. TX SPURIOUS EMISSION 30 TO 1000 MHz

Job: 1001408287 Tested by: DC Horizontal 30 - 2 Fest Meterequency 63.5235 111.8519 117.978 123.7638 Vertical 30 - 200 42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075	eter eading 22.67 23.76 24 22 00MHz 18.75 22.94 24.37 24.91 16.32 00MHz	Detector PK	54 Horz 05Apr12	(dB) 0.8 1.1 1.1 1.2 0.7 0.7 0.7 0.8	dB[uVolts/ meter] 29.37 36.96 37.9 36.6 31.65 33.84 31.97 31.71	15.209 40 43.5 43.5 43.5 40 40 40	Margin -10.63 -6.54 -5.6 -6.9 -8.35 -6.16 -8.03 -8.29	113 358 205 300 149 300 89	[cm] 300 300 300 100 100 100	Polarity Horz Horz Horz Vert Vert Vert Vert
Tested by: DC Horizontal 30 - 2 Test Met Frequency Rea 63.5235 111.8519 117.978 123.7638 Vertical 30 - 200 42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075 Vertical 200 - 10	eter eading 22.67 23.76 24 22 00MHz 18.75 22.94 24.37 24.91 18.62 200MHz 16.32	Detector PK PK PK PK PK PK PK PK PK	54 Horz 05Apr12 [dB] 5.9 12.1 12.8 13.4 12.2 10.2 6.9 6	1000MHz 02Feb12 [dB] 0.8 1.1 1.1 1.2 0.7 0.7 0.7	dB[uVolts/ meter] 29.37 36.96 37.9 36.6 31.65 33.84 31.97 31.71	15 Subpart C 15.209 40 43.5 43.5 43.5 40 40 40	Margin -10.63 -6.54 -5.6 -6.9 -8.35 -6.16 -8.03 -8.29	[Degs] 295 113 358 205 300 149 300 89	[cm] 300 300 300 100 100 100	Horz Horz Horz Vert Vert Vert
Frequency 63.5235 111.8519 117.978 123.7638 Vertical 30 - 200 42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075 Vertical 200 - 10	eter eading 22.67 23.76 24 22 00MHz 18.75 22.94 24.37 24.91 18.62 200MHz 16.32	Detector PK	54 Horz 05Apr12 [dB] 5.9 12.1 12.8 13.4 12.2 10.2 6.9 6	1000MHz 02Feb12 [dB] 0.8 1.1 1.1 1.2 0.7 0.7 0.7	dB[uVolts/ meter] 29.37 36.96 37.9 36.6 31.65 33.84 31.97 31.71	15 Subpart C 15.209 40 43.5 43.5 43.5 40 40 40	Margin -10.63 -6.54 -5.6 -6.9 -8.35 -6.16 -8.03 -8.29	[Degs] 295 113 358 205 300 149 300 89	[cm] 300 300 300 100 100 100	Horz Horz Horz Vert Vert Vert
Horizontal 30 - 2 Test Met Frequency 63.5235 111.8519 117.978 123.7638 Vertical 30 - 200 42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075 Vertical 200 - 10	eter eading 22.67 23.76 24 22 00MHz 18.75 22.94 24.37 24.91 18.62 200MHz 16.32	Detector PK	54 Horz 05Apr12 [dB] 5.9 12.1 12.8 13.4 12.2 10.2 6.9 6	1000MHz 02Feb12 [dB] 0.8 1.1 1.1 1.2 0.7 0.7 0.7	dB[uVolts/ meter] 29.37 36.96 37.9 36.6 31.65 33.84 31.97 31.71	15 Subpart C 15.209 40 43.5 43.5 43.5 40 40 40	Margin -10.63 -6.54 -5.6 -6.9 -8.35 -6.16 -8.03 -8.29	[Degs] 295 113 358 205 300 149 300 89	[cm] 300 300 300 100 100 100	Horz Horz Horz Vert Vert Vert
Horizontal 30 - 2 Test Met Frequency 63.5235 111.8519 117.978 123.7638 Vertical 30 - 200 42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075 Vertical 200 - 10	eter eading 22.67 23.76 24 22 00MHz 18.75 22.94 24.37 24.91 18.62 200MHz 16.32	Detector PK	54 Horz 05Apr12 [dB] 5.9 12.1 12.8 13.4 12.2 10.2 6.9 6	1000MHz 02Feb12 [dB] 0.8 1.1 1.1 1.2 0.7 0.7 0.7	dB[uVolts/ meter] 29.37 36.96 37.9 36.6 31.65 33.84 31.97 31.71	15 Subpart C 15.209 40 43.5 43.5 43.5 40 40 40	Margin -10.63 -6.54 -5.6 -6.9 -8.35 -6.16 -8.03 -8.29	[Degs] 295 113 358 205 300 149 300 89	[cm] 300 300 300 100 100 100	Horz Horz Horz Vert Vert Vert
Test Met Frequency 63.5235 111.8519 117.978 123.7638 Vertical 30 - 200 42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075 Vertical 200 - 10	eter eading 22.67 23.76 24 22 00MHz 18.75 22.94 24.37 24.91 18.62 200MHz 16.32	Detector PK	54 Horz 05Apr12 [dB] 5.9 12.1 12.8 13.4 12.2 10.2 6.9 6	1000MHz 02Feb12 [dB] 0.8 1.1 1.1 1.2 0.7 0.7 0.7	dB[uVolts/ meter] 29.37 36.96 37.9 36.6 31.65 33.84 31.97 31.71	15 Subpart C 15.209 40 43.5 43.5 43.5 40 40 40	Margin -10.63 -6.54 -5.6 -6.9 -8.35 -6.16 -8.03 -8.29	[Degs] 295 113 358 205 300 149 300 89	[cm] 300 300 300 100 100 100	Horz Horz Horz Vert Vert Vert
Frequency 63.5235 111.8519 117.978 123.7638 Vertical 30 - 200 42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075 Vertical 200 - 10	22.67 23.76 24 22 00MHz 18.75 22.94 24.37 24.91 18.62 200MHz 16.32	PK PK PK PK PK PK PK PK PK	54 Horz 05Apr12 [dB] 5.9 12.1 12.8 13.4 12.2 10.2 6.9 6	1000MHz 02Feb12 [dB] 0.8 1.1 1.1 1.2 0.7 0.7 0.7	dB[uVolts/ meter] 29.37 36.96 37.9 36.6 31.65 33.84 31.97 31.71	15 Subpart C 15.209 40 43.5 43.5 43.5 40 40 40	Margin -10.63 -6.54 -5.6 -6.9 -8.35 -6.16 -8.03 -8.29	[Degs] 295 113 358 205 300 149 300 89	[cm] 300 300 300 100 100 100	Horz Horz Horz Vert Vert Vert
111.8519 117.978 123.7638 Vertical 30 - 200 42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075	23.76 24 22 00MHz 18.75 22.94 24.37 24.91 18.62 200MHz 16.32	PK PK PK PK PK PK PK PK	12.1 12.8 13.4 12.2 10.2 6.9 6 13.4	1.1 1.1 1.2 0.7 0.7 0.7 0.8	36.96 37.9 36.6 31.65 33.84 31.97 31.71	43.5 43.5 43.5 40 40 40	-6.54 -5.6 -6.9 -8.35 -6.16 -8.03 -8.29	113 358 205 300 149 300 89	300 300 300 100 100 100	Horz Horz Vert Vert Vert Vert
117.978 123.7638 Vertical 30 - 200 42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075	24 22 00MHz 18.75 22.94 24.37 24.91 18.62 200MHz	PK PK PK PK PK PK PK	12.8 13.4 12.2 10.2 6.9 6 13.4	1.1 1.2 0.7 0.7 0.7 0.8	37.9 36.6 31.65 33.84 31.97 31.71	43.5 43.5 40 40 40 40	-5.6 -6.9 -8.35 -6.16 -8.03 -8.29	358 205 300 149 300 89	300 300 100 100 100	Horz Horz Vert Vert Vert
123.7638 Vertical 30 - 200 42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075 Vertical 200 - 10	22 00MHz 18.75 22.94 24.37 24.91 18.62 200MHz	PK PK PK PK PK	13.4 12.2 10.2 6.9 6 13.4	0.7 0.7 0.7 0.7	31.65 33.84 31.97 31.71	43.5 40 40 40 40	-6.9 -8.35 -6.16 -8.03 -8.29	300 149 300 89	100 100 100 100	Vert Vert Vert Vert
Vertical 30 - 200 42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075	18.75 22.94 24.37 24.91 18.62 200MHz 16.32	PK PK PK PK PK	12.2 10.2 6.9 6 13.4	0.7 0.7 0.7 0.8	31.65 33.84 31.97 31.71	40 40 40 40	-8.35 -6.16 -8.03 -8.29	300 149 300 89	100 100 100 100	Vert Vert Vert
42.0821 48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075	18.75 22.94 24.37 24.91 18.62 200MHz 16.32	PK PK PK PK	10.2 6.9 6 13.4	0.7 0.7 0.8	33.84 31.97 31.71	40 40 40	-6.16 -8.03 -8.29	149 300 89	100 100 100	Vert Vert Vert
48.2082 59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075	22.94 24.37 24.91 18.62 200MHz 16.32	PK PK PK PK	10.2 6.9 6 13.4	0.7 0.7 0.8	33.84 31.97 31.71	40 40 40	-6.16 -8.03 -8.29	149 300 89	100 100 100	Vert Vert Vert
59.4394 63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075	24.37 24.91 18.62 200MHz 16.32	PK PK PK	6.9 6 13.4	0.7 0.8	31.97 31.71	40 40	-8.03 -8.29	300 89	100 100	Vert Vert
63.6937 116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075	24.91 18.62 200MHz 16.32	PK PK	6 13.4	0.8	31.71	40	-8.29	89	100	Vert
116.6166 Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075 Vertical 200 - 10	18.62 200MHz 16.32 00MHz	PK z	13.4							
Horizontal 30 - 2 116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075	200MHz 16.32 00MHz	Z		1.1	33.12	43.5	-10.38	118	100	Vert
116.6325 Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075 Vertical 200 - 10	16.32 00MHz		12.6							
Vertical 30 - 200 46.6269 Horizontal 200 - 946.3075 Vertical 200 - 10	00MHz	QP	12.6	1		-	_			
46.6269 Horizontal 200 - 946.3075 Vertical 200 - 10				1.1	30.02	43.5	-13.48	16	263	Horz
Horizontal 200 - 946.3075 Vertical 200 - 10										
946.3075 Vertical 200 - 10	12.53	QP	10.5	0.7	23.73	40	-16.27	230	100	Vert
Vertical 200 - 10	- 1000M	1Hz								
	9.15		23.8	3.6	36.55	46	-9.45	336	144	Horz
875.3636	.000MHz									
	8.94	QP	23.3	3.4	35.64	46	-10.36	319	356	Vert
PK - Peak detect	ctor									
QP - Quasi-Peak	ak detec	tor								
LnAv - Linear Av	verage	detector								
LgAv - Log Avera	rage det	tector								
Av - Average de	detector									
CAV - CISPR Ave	verage d	letector								
RMS - RMS dete										

8. AC MAINS LINE CONDUCTED EMISSIONS

LIMITS

§15.207 (a)

Frequency of emission	Conducte	d Limit (dBµV)				
(MHz)	Quasi-peak	Average				
0.15 to 0.50	66 to 56*	56 to 46*				
0.50 to 5	56	46				
5 to 30	60	50				
* Decreases with the logarithm of the frequency.						

DATE: 2011-09-06

TEST PROCEDURE

ANSI C63.4

RESULTS

No non-compliance noted:

CONDUCTED EMISSIONS

JCM Techno								
Transmitte								
Model: Fre		L25kHz						
Job: 100140								
Tested By:	GB							
Line - L1 .15	- 1N/Hz							
Test	Meter		5A636 with Tl and Sw Line 1		FCC Part 15 Subpart C		FCC Part 15 Subpart C	
Frequency		Detector	[dB]	[dB(uVolts)]		Margin	Avg	Margin
0.15765	41.02		11.5	52.52	65.6	-13.08	55.6	-3.08
0.19557	37.47		11.2	48.67	63.8	-15.13	53.8	-5.13
0.2442 0.36679	43.66 33.52		10.9 10.6	54.56 44.12	58.6	-7.44 -14.48	52 48.6	2.56 -4.48
0.40471	34.98		10.6		57.8	-14.48	47.8	-2.22
0.41729	34.11		10.6		57.5	-12.22	47.8	-2.79
0.41729	32.85		10.5	43.35	57.5	-12.79	47.3	-3.65
0.60901	33.54		10.5	44.04	56	-11.96	46	-1.96
0.00901	33.34	FK	10.3	44.04	30	-11.50	40	-1.90
Line - L1 1 -	30MHz							
1.32487	32.93	PK	10.4	43.33	56	-12.67	46	-2.67
1.89338	33.51		10.4		56	-12.09	46	-2.09
2.75195	31.7		10.4		56	-13.9	46	-3.9
3.25085	32.86		10.4		56	-12.74	46	-2.74
3.5061	31.55		10.4		56	-14.05	46	-4.05
3.66273	32.29		10.4		56	-13.31	46	-3.31
4.02821	32.58		10.4	42.98	56	-13.02	46	-3.02
4.71274	33.57		10.4		56	-12.03	46	-2.03
4.06881	31.84		10.4		56	-13.76	46	-3.76
4.96219	31.48	PK	10.4		56	-14.12	46	-4.12
5.75115	33.54		10.4		60	-16.06	50	-6.06
8.57051	34.07	PK	10.5	44.57	60	-15.43	50	-5.43
9.44649	34.49	PK	10.5	44.99	60	-15.01	50	-5.01
9.69594	33.82	PK	10.5	44.32	60	-15.68	50	-5.68
9.95699	33.69	PK	10.5	44.19	60	-15.81	50	-5.81
10.20644	34.25	PK	10.5	44.75	60	-15.25	50	-5.25
10.60092	34.07	PK	10.5	44.57	60	-15.43	50	-5.43
10.85617	34.1	PK	10.6	44.7	60	-15.3	50	-5.3
11.04181	33.89	PK	10.6	44.49	60	-15.51	50	-5.51
11.27966	34.19	PK	10.6	44.79	60	-15.21	50	-5.21
12.67193	33.83	PK	10.6	44.43	60	-15.57	50	-5.57
13.18824	34.49	PK	10.6	45.09	60	-14.91	50	-4.91
13.32166	34.64	PK	10.6	45.24	60	-14.76	50	-4.76
13.74515	36.67		10.6		60	-12.73	50	-2.73
13.61752	34.01		10.6		60	-15.39	50	-5.39
13.95979	37.23		10.6		60	-12.17	50	-2.17
14.19764	36.28		10.6		60	-13.12	50	-3.12
14.45289	36.4		10.6		60	-13	50	-3
14.58052	36.33		10.6		60	-13.07	50	-3.07
14.70234	35.84		10.6	46.44	60	-13.56	50	-3.56
14.82997	37.52		10.7	48.22	60	-11.78	50	-1.78
14.95179	34.59		10.7		60	-14.71	50	-4.71
15.03301	36.55		10.7		60	-12.75	50	-2.75
15.15483	36.88		10.7		60	-12.42	50	
15.54931	34.54	PK	10.7	45.24	60	-14.76	50	-4.76
PK - Peak de	etector							
QP - Quasi-I	Peak dete	ctor						
LnAv - Linea								
LgAv - Log A	verage de	tector						
Av - Averag	e detecto	r						
CAV - CISPE	RAverage	detector						
RMS - RMS o	detection							
CDA4C CICD	R RMS det	ection						

CRMS - CISPR RMS detection

Test

1.12177

9.56207

10.7

19.6037

14.157

14.7372

15.0905

16.1066

15.213

PK - Peak detector QP - Quasi-Peak detector LnAv - Linear Average detector LgAv - Log Average detector Av - Average detector CAV - CISPR Average detector

RMS - RMS detection CRMS - CISPR RMS detection

21.54 PK

19.74 PK

22.94 PK

15.49 PK

10.7

10.7

10.7

32.24

30.44

33.64

26.19

60

60

60

-27.76

-29.56

-26.36

50

50

50

-17.76

-19.56

-16.36

-23.81

QP - Quasi-Peak detector LnAv - Linear Average detector LgAv - Log Average detector Av - Average detector CAV - CISPR Average detector

RMS - RMS detection CRMS - CISPR RMS detection

LINE 2 RESULTS

9. SETUP PHOTOS

RADIATED EMISSION BELOW 30 MHz

RADIATED EMISSION ABOVE 30 MHz

AC MAINS LINE CONDUCTED EMISSION

END OF REPORT