

Europäisches
Patentamt

European
Patent Office

Office européen
des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

03007139.3

Der Präsident des Europäischen Patentamts;
Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets
p.o.

R C van Dijk

THIS PAGE BLANK (USPTO)

Anmeldung Nr:
Application no.: 03007139.3
Demande no:

Anmeldetag:
Date of filing: 28.03.03
Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

SIEMENS AKTIENGESELLSCHAFT
Wittelsbacherplatz 2
80333 München
ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention:
(Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung.
If no title is shown please refer to the description.
Si aucun titre n'est indiqué se referer à la description.)

Laufschaufelreihe für Strömungsmaschinen

In Anspruch genommene Priorität(en) / Priority(ies) claimed /Priorité(s)
revendiquée(s)
Staat/Tag/Aktenzeichen/State/Date/File no./Pays/Date/Numéro de dépôt:

Internationale Patentklassifikation/International Patent Classification/
Classification internationale des brevets:

F01D/

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of
filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL
PT SE SI SK TR LI

THIS PAGE BLANK (USPTO)

Beschreibung**Laufschaufelreihe für Strömungsmaschinen**

5

Die Erfindung betrifft eine Laufschaufelreihe einer axialen Turbinen oder eines Verdichters.

Im Dampfturbinenbau werden insbesondere im Niederdruckbereich 10 Laufschaufelreihen eingesetzt, die eine große Anströmfläche aufweisen. Die jeweiligen Laufschaufeln solcher Laufschaufelreihen sind in ihrer radialen Richtung vergleichsweise lang. Solche Laufschaufeln können eine Länge von über einem Meter erreichen. Bei den im Betrieb erreichbaren Umdrehungszahlen 15 sind die Fliehkräfte in den Laufschaufeln so stark, dass leichtes Material eingesetzt werden muss. Das Material Titan oder Titanlegierung hat sich in dieser Hinsicht bewährt und wird im Dampfturbinenbau heute häufig eingesetzt. Durch die geringe Dichte von Titan oder Titanlegierung sind die Flieh- 20 kräfte in aus Titan oder Titanlegierung hergestellten Laufschaufeln gering. Nachteilig hierbei ist die geringe Eigen-dämpfung dieser Laufschaufeln. Die aus Titan oder Titanlegierung hergestellten Laufschaufeln einer Laufschaufelreihe führen im Betrieb unerwünschte Schwingungen aus, die durch ge- 25 eignete Maßnahmen gedämpft werden müssen. Eine bewährte Maß-nahme ist hierbei eine Kopplung der Laufschaufeln untereinan-der, indem die Laufschaufelspitzen durch sogenannte Deckbän-der mechanisch miteinander quasi verkeilt werden, so dass die Schwingungen von Laufschaufeln um eine Achse, die sich radial 30 vom Schaufelfuß zur Schaufelspitze sich ausdehnt, vermindert werden.

Eine Möglichkeit zur Verminderung von Laufschaufelschwingun- 35 gen ist z.B. in der US 5,695,323 dargestellt. Hierbei werden keilförmige Vorsprünge der Schaufelspitzen derart geformt, dass jeweils zwei Laufschaufelspitzen so miteinander verhakt werden, dass Schwingungen der Laufschaufeln vermindert wer-

den. Die keilförmigen Vorsprünge dieser Laufschaufel spitzen sind vergleichsweise groß und führen auch hier zu großen Fliehkräften und dadurch zu einer erhöhten Materialbeanspruchung.

5

Ein weiteres Verfahren zur Verhinderung von Schwingungen ist in der DE 101 08 005 A1 dargestellt. Hierbei werden zwei Stützflügel im Mittelbereich einer Laufschaufel angeordnet. Die Stützflügel sind im Querschnitt parallelogrammartig.

10 Jeweils zwei Stützflügel werden derart miteinander in Berührung gebracht, dass einer Drehung in einer Richtung einer Laufschaufel entgegen gewirkt wird. Eine zweite Reihe von Stützflügeln ist ebenfalls parallelogrammartig aufgebaut und die Stützflügel stehen derart miteinander in Berührung, dass 15 eine Drehung in der entgegengesetzten Drehrichtung verhindert wird. Zusätzlich zu diesen beiden Stützflügelanordnungen sind an den jeweiligen Laufschaufel spitzen weitere Stützelemente angebracht, die ein sogenanntes Deckband bilden und eine Schwingung der Laufschaufeln vermindern. Nachteilig sind 20 hierbei die vergleichsweise großen Stützflügel, die zu großen Fliehkräften führen. Des Weiteren sind diese Stützflügel aerodynamisch derart geformt, dass sie einen erhöhten Strömungswiderstand bilden.

25 In der DE 11 59 15 werden Laufschaufeln vorgestellt, die Deckplatten an den Laufschaufel spitzen aufweisen, die parallelogrammartig ausgebildet sind und miteinander so in Berührung stehen, dass eine Schwingungsdämpfung erreicht wird.

30 Eine derartige Anordnung ist auch aus der DE 33 06 143 A1 entnehmbar.

Die DE 100 14 189 A1 bietet ebenfalls eine Lösung zur Vermin-
derung von Schwingungen, wobei hier wiederum Stützelemente
35 eingesetzt werden, die eine relativ große räumliche Ausdeh-
nung aufweisen.

- In der GB 2 105 414 werden Stützelemente vorgestellt, die im Laufschaufelspitzenbereich eingesetzt werden. Hierbei werden rohrähnliche Stützelemente zwischen zwei Laufschaufeln derart angeordnet, dass die Laufschaufelhinterkante einer Laufschaufel mit der Laufschaufelvorderkante einer nächsten Laufschaufel mechanisch verbunden wird. Die Schwingung einer Laufschaufel hat dadurch einen Einfluss auf die Schwingung einer nächsten Laufschaufel.
- 5
- 10 Die in der GB 2 105 414 B aufgezeigte Verspannung der Laufschaufelreihen im Kopfbereich birgt den Nachteil eines aerodynamischen Effektes, der nicht erwünscht ist.
- Bei einigen zum Stand der Technik gehörenden Möglichkeiten
15 zur Schwingungsdämpfung von Laufschaufeln ist nachteilig,
dass durch das Einsetzen der Stützflügel oder ähnlichen Bau-
teilen die Laufschaufeln so miteinander verspannt werden müs-
sen, dass einerseits zwar die Schwingung vermindert wird,
aber andererseits durch das Verspannen eine zusätzliche me-
chanische Belastung erfolgt. Diese mechanische Belastung
20 könnte zu Rissen der Laufschaufel führen. Des weiteren sind
die im Stand der Technik vorgestellten Stützflügel oder ähn-
liche Bauteile von ihrer räumlichen Ausdehnung her so groß,
dass im Betrieb enorme Fliehkräfte entstehen und ein Brechen
25 der Stützflügel möglich ist.

Aufgabe der vorliegenden Erfindung ist es, die Schwingungen
einer Laufschaufel in einer Laufschaufelreihe einer Strö-
30 mungsmaschine zu vermindern.

Die Aufgabe wird gelöst durch eine Laufschaufelreihe einer
Strömungsmaschine, wobei die Laufschaufelreihe einzelne Lauf-
schaufeln aufweist, die jeweils ein Laufschaufelfuß, einen
35 Laufschaufelmittelbereich, eine Laufschaufelspitze und eine
Vorderkante und eine Hinterkante aufweisen, wobei die Lauf-
schaufel an den Laufschaufelspitzen Deckplatten aufweist, und

zwischen wenigstens zwei benachbarten Laufschaufeln im Laufschaufelmittelpunkt ein Stützelement derart angebracht ist, dass das Stützelement die zwei benachbarten Laufschaufeln miteinander koppelt. Unter der Kopplung der benachbarten

- 5 Laufschaufeln über das Stützelement ist jede mögliche Art von Befestigung zu verstehen. Mit anderen Worten: Zwischen zwei benachbarten Laufschaufeln ist im Laufschaufelmittelpunkt ein Stützelement derart angebracht, dass die beiden Laufschaufeln miteinander befestigt werden.

10

Der Vorteil dieses Stützelements liegt in der geringen Masse und der geringen räumlichen Ausdehnung. Die geringe Masse dieses Stützelements führt zu geringen Fliehkräften während des Betriebes. Darüber hinaus ist die Fertigung bzw. Montage 15 dieses Stützelements vergleichsweise einfach. Durch die geringe räumliche Ausdehnung dieses Stützelements erreicht man ein aerodynamisch vorteilhaftes Verhalten während des Betriebes.

20

In einer vorteilhaften Ausgestaltung wird die Vorderkante einer Laufschaufel über das Stützelement mit der Hinterkante einer benachbarten Laufschaufel gekoppelt. Bei einer Schwingung der Laufschaufeln sind die Amplituden an den Vorder- bzw. Hinterkanten am größten. Eine Kopplung der Vorder- mit 25 der Hinterkante führt zu einer besonders wirksamen Verminderung der Schwingungsamplitude.

30

In einer vorteilhaften Ausgestaltung wird das Stützelement als ein Stift ausgebildet. Der Vorteil liegt hierbei in der einfachen Fertigung dieser Anordnung.

In einer weiteren vorteilhaften Ausgestaltung werden die Stützelemente für Laufschaufeln eingesetzt, die aus dem Material Titan oder Titanlegierung gefertigt wurden.

In einer Weiterbildung wird die Laufschaufelreihe in einer Strömungsmaschine, wie z.B. Dampfturbine, Gasturbine oder Verdichter eingesetzt.

- 5 Ein Ausführungsbeispiel der Erfindung wird anhand einer Zeichnung näher erläutert.

Die Figuren der Zeichnung zeigen im einzelnen:

Figur 1 Den Teil-Querschnitt einer zweiflutigen Niederdruckdampfturbine;

Figur 2 zwei über ein Stützelement verbundene Laufschaufeln einer Laufschaufelreihe;

Figur 3 Eine Draufsicht auf ein Deckband der Laufschaufeln;

Figur 4 Eine Draufsicht auf zwei Laufschaufeln mit einem Stützelement.

10

In Figur 1 ist ein Teil-Querschnitt einer Niederdruckdampfturbine 1 dargestellt. Über den Einströmbereich 2 strömt ein Strömungsmedium durch die Strömungskanäle 3, 4. Ein drehbar gelagerter Rotor 5 weist in axialer Richtung voneinander beabstandet verschiedene Laufschaufelreihen auf, von denen der Übersichtlichkeit wegen nur eine Laufschaufelreihe 6 mit einem Bezugszeichen 6 versehen ist. An einem Innengehäuse 7 sind Leitschaufeln 8 angebracht. Über einen Ausströmstutzen 9 gelangt der entspannte Dampf aus der Niederdruckdampfturbine 1. Der Rotor 5 wird dabei in einer Drehbewegung um eine Rotationsachse 10 bewegt.

In Figur 2 sind zwei Laufschaufeln 11, 12 einer Laufschaufelreihe 6 dargestellt. Die Laufschaufeln 11, 12 weisen einen Laufschaufelfuß 13, einen Laufschaufelmittelbereich 14 und eine Laufschaufelspitze 15 auf. Die Laufschaufeln 11, 12 wei-

sen des weiteren eine Vorderkante 16 und eine Hinterkante 17 auf. An den Laufschaufel spitzen 15 sind senkrecht zur radia-
len Ausrichtung 18 der Laufschaufeln 11, 12 senkrechte Deck-
platten 19 angebracht. Die radiale Ausrichtung 18 ist mit dem
5 Pfeil 18 dargestellt. Die Deckplatten 19 sind derart ange-
bracht, dass senkrecht zur radialen Ausrichtung die Lauf-
schaufel spitzen 15 überragt werden. Des weiteren sind die
Deckplatten 19 von der Vorderkante 16 bis zur Hinterkante 17
ausgebildet.

10

Die Deckplatten 19 haben an der Vorderkante 16 und an der
Hinterkante 17, in radialer Richtung 18 gesehen, einen säge-
zahnförmigen Kontaktbereich 20. Der sägezahnförmige Kontakt-
bereich 20 sind dabei derart ausgebildet, dass zwei Deckplat-
15 ten 19 ineinander angebracht und kontaktiert sind. Das bedeu-
tet, dass die Laufschaufeln 11, 12 in ihrer Schwingungsbewe-
gung um einen Drehpunkt 21 eingeschränkt sind. Durch die
Pfeile 22 in Figur 3 wird eine Drehung angedeutet, die aber
durch die sägezahnförmige Geometrie 20 der beiden in Kontakt
20 stehenden Deckplatten 19 verhindert wird.

Die Figur 3 zeigt einen Blick auf die Deckplatten 19, gesehen
entlang der radialen Ausrichtung 18. Die beiden gestrichelten
Linien 23 deuten eine Laufschaufel spitze 15 an.

25

In der Figur 4 sind die zwei Laufschaufeln 11, 12 darge-
stellt. Die Blickrichtung ist hier wie in Figur 3 entlang der
radialen Ausrichtung 18. Der Übersichtlichkeit wegen wurde
auf die Darstellungen der Deckplatten 19 verzichtet. Zu sehen
30 ist ein Schnitt durch die Laufschaufeln 11, 12 im Laufschaufel-
mittelbereich 14. An der Hinterkante 17 der Laufschaufel
11 ist ein Stützelement 24 angebracht. Das Stützelement 24
ist mit der Vorderkante 16 der Laufschaufel 12 verbunden. Das
Stützelement 24 kann an der Vorder- und Hinterkante 16, 17
35 durch Schweißung oder Verschraubung befestigt werden. Weitere
Möglichkeiten zur Befestigung des Stützelementes 24 an die

Hinter- bzw. Vorderkante 16, 17 sind im Dokument GB 2 105 414 dargestellt.

Die Laufschaufelfüße 13 werden auf dem in Figur 4 nicht näher
5 dargestellten Rotor 5 angebracht.

In der Ausführungsform gemäß Figur 4 ist das Stützellement 24 als Stift ausgebildet.

THIS PAGE BLANK (USPTO)

28. März 2003

Patentansprüche

1. Laufschaufelreihe (6) einer Strömungsmaschine, wobei die Laufschaufelreihe (6) wenigstens zwei benachbarte Laufschaufeln (11, 12) aufweist, die jeweils einen Laufschaufelfuß (13), einen Laufschaufelmittlbereich (14), eine Laufschaufelspitze (15) und eine Vorderkante (16) und eine Hinterkante (17) aufweisen, wobei die Laufschaufeln (11, 12) an den Laufschaufelpitzen (15) Deckplatten (19) aufweisen und die Deckplatten (19) derart geformt sind, dass eine Entwindung der Laufschaufeln (11, 12) verhindert wird,

d a d u r c h g e k e n n z e i c h n e t , dass

15 die zwei Laufschaufeln (11, 12) im Laufschaufelmittlbereich (14) durch ein Stützelement (24) miteinander gekoppelt sind.

2. Laufschaufelreihe (6) nach Anspruch 1,

20

d a d u r c h g e k e n n z e i c h n e t , dass die Vorderkante (16) einer Laufschaufel (11, 12) mit der Hinterkante (17) einer benachbarten Laufschaufel (11, 12) durch das Stützelement (24) gekoppelt ist.

25

3. Laufschaufelreihe (6) nach Anspruch 1,

30

d a d u r c h g e k e n n z e i c h n e t , dass das Stützelement (24) als ein Stift ausgebildet ist.

4. Laufschaufelreihe (6) nach einem der Ansprüche 1 bis 2,

35

d a d u r c h g e k e n n z e i c h n e t , dass die jeweiligen Laufschaufeln (11, 12) das Material Titan oder Titanlegierung aufweisen.

5. Strömungsmaschine,
g e k e n n z e i c h n e t d u r c h
eine Laufschaufelreihe (6) nach einem der Ansprüche 1 bis 3.

28. März 2003

10

Zusammenfassung**Laufschaufelreihe für Strömungsmaschinen**

- 5 Die Erfindung betrifft eine Laufschaufelreihe einer Strömungsmaschine, wobei die Laufschaufelreihe einzelne Laufschaufeln aufweist, die jeweils einen Laufschaufelfuß und einen Laufschaufelmittlbereich sowie eine Laufschaufel spitze und eine Vorderkante und eine Hinterkante aufweisen, wobei
10 die Laufschaufeln im Laufschaufelmittlbereich durch Stützelemente derart miteinander mechanisch verbunden sind, dass unerwünschte Schwingungen der Laufschaufeln wirksam vermieden werden.

15

Figur 2

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

2002 15599

EPO - Munich
75

28. März 2003

FIG 1

2002/15599

FIG 3

FIG 4

