Machine Learning Foundations

(機器學習基石)

Lecture 8: Noise and Error

Hsuan-Tien Lin (林軒田)

htlin@csie.ntu.edu.tw

Department of Computer Science & Information Engineering

National Taiwan University (國立台灣大學資訊工程系)

Roadmap

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?

Lecture 7: The VC Dimension

learning happens if finite d_{VC} , large N, and low E_{in}

Lecture 8: Noise and Error

- Noise and Probabilistic Target
- Error Measure
- Algorithmic Error Measure
- Weighted Classification
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?

Recap: The Learning Flow

what if there is noise?

Noise

briefly introduced noise before pocket algorithm

age	23 years	
gender	female	
annual salary	NTD 1,000,000	
year in residence	1 year	
year in job 0.5 year		
current debt	200,000	
crodit2 (no(1) voc(+1))		

credit? $\{no(-1), yes(+1)\}$

but more!

- noise in y: good customer, 'mislabeled' as bad?
- noise in y: same customers, different labels?
- noise in x: inaccurate customer information?

does VC bound work under noise?

Probabilistic Marbles

one key of VC bound: marbles!

'deterministic' marbles

- marble $\mathbf{x} \sim P(\mathbf{x})$
- deterministic color $\llbracket f(\mathbf{x}) \neq h(\mathbf{x}) \rrbracket$

'probabilistic' (noisy) marbles

- marble x ~ P(x)
- probabilistic color $[y \neq h(\mathbf{x})]$ with $y \sim P(y|\mathbf{x})$

same nature: can estimate $\mathbb{P}[\text{orange}]$ if $\overset{i.i.d.}{\sim}$

VC holds for
$$\mathbf{x} \overset{i.i.d.}{\sim} P(\mathbf{x}), y \overset{i.i.d.}{\sim} P(y|\mathbf{x})$$

y isn't coming from f(x) but P(y|x) $(x,v)^{i.i.d.} P(x,v)$

$$(\mathbf{x}, y)^{i.i.d.} P(\mathbf{x}, y)$$

Target Distribution $P(y|\mathbf{x})$

characterizes behavior of 'mini-target' on one x

- can be viewed as 'ideal mini-target' + noise, e.g.
 - $P(\circ|\mathbf{x}) = 0.7, P(\times|\mathbf{x}) = 0.3$
 - ideal mini-target $f(\mathbf{x}) = 0$
 - 'flipping' noise level = 0.3 ← noise
- deterministic target f: special case of target distribution
 - $P(y|\mathbf{x}) = 1 \text{ for } y = f(\mathbf{x})$
 - $P(y|\mathbf{x}) = 0$ for $y \neq f(\mathbf{x})$

goal of learning:

predict ideal mini-target (w.r.t. P(y|x)) on often-seen inputs (w.r.t. P(x))

ML: do well on the dataset we often see.

The New Learning Flow

Let's revisit PLA/pocket. Which of the following claim is true?

- 1 In practice, we should try to compute if \mathcal{D} is linear separable before deciding to use PLA.
- 2 If we know that \mathcal{D} is not linear separable, then the target function f must not be a linear function.
- 3 If we know that \mathcal{D} is linear separable, then the target function f must be a linear function.
- 4 None of the above

Let's revisit PLA/pocket. Which of the following claim is true?

- 1 In practice, we should try to compute if \mathcal{D} is linear separable before deciding to use PLA.
- 2 If we know that \mathcal{D} is not linear separable, then the target function f must not be a linear function. $\frac{\text{linear separable } f + \text{noise} \rightarrow}{(\text{possible}) \text{ non linear separable } D}$
- 3 If we know that \mathcal{D} is linear separable, then the target function f must be a linear function.
- 4 None of the above

Reference Answer: (4)

1 After computing if \mathcal{D} is linear separable, we shall know \mathbf{w}^* and then there is no need to use PLA. 2 What about noise? 3 What about 'sampling luck'? :-)

Error Measure Loss function

final hypothesis $g \approx f$

how well? previously, considered out-of-sample measure

$$E_{\mathsf{out}}(g) = \underset{\mathbf{x} \sim P}{\mathcal{E}} \llbracket g(\mathbf{x}) \neq f(\mathbf{x})
bracket$$

- more generally, error measure E(q, f)
- naturally considered
 - out-of-sample: averaged over unknown x
 - pointwise: evaluated on one x
 - classification: [prediction ≠ target]

classification error [...]: often also called '0/1 error'

Pointwise Error Measure

can often express $E(g, f) = \text{averaged } err(g(\mathbf{x}), f(\mathbf{x}))$, like

$$E_{\mathsf{out}}(g) = \underbrace{\mathcal{E}_{\mathbf{x} \sim P} \underbrace{\llbracket g(\mathbf{x}) \neq f(\mathbf{x}) \rrbracket}_{\mathsf{err}(g(\mathbf{x}), f(\mathbf{x}))}}$$

—err: called pointwise error measure

in-sample

$$E_{\mathsf{in}}(g) = \frac{1}{N} \sum_{n=1}^{N} \mathrm{err}(g(\mathbf{x}_n), f(\mathbf{x}_n))$$

out-of-sample

$$E_{\text{out}}(g) = \underset{\mathbf{x} \sim P}{\mathcal{E}} \operatorname{err}(g(\mathbf{x}), f(\mathbf{x}))$$

will mainly consider pointwise err for simplicity

Two Important Pointwise Error Measures

prediction

ground truth

0/1 error

$$\operatorname{err}(\tilde{y}, y) = [\tilde{y} \neq y]$$

- correct or incorrect?
- often for classification

squared error

$$\operatorname{err}(\tilde{y}, y) = (\tilde{y} - y)^2$$

- how far is \tilde{y} from y?
- often for regression

how does err 'guide' learning?

Ideal Mini-Target

interplay between noise and error:

 $P(y|\mathbf{x})$ and err define ideal mini-target $f(\mathbf{x})$

$$P(y = 1|\mathbf{x}) = 0.2, P(y = 2|\mathbf{x}) = 0.7, P(y = 3|\mathbf{x}) = 0.1$$

$$\operatorname{err}(\tilde{y}, y) = [\![\tilde{y} \neq y]\!]$$

$$\tilde{y} = \begin{cases} 1 & \text{avg. err } 0.8 \\ 2 & \text{avg. err } 0.3(*) \\ 3 & \text{avg. err } 0.9_{\text{Please guess carefully}} \\ 1.9 & \text{avg. err } 1.0(\text{really? :-})) \end{cases}$$

We only have "1", "2", and "3" in ground truth.

$$f(\mathbf{x}) = \operatorname*{argmax}_{y \in \mathcal{Y}} P(y|\mathbf{x})$$

$$\operatorname{err}(\tilde{y}, y) = (\tilde{y} - y)^{2}$$

$$\begin{array}{cccc}
0.2 \times (1-1)^{2} + 0.7 \times (2-1)^{2} + 0.1 \times (3-1)^{2} \\
1 & \text{avg. err } 1.1 \\
2 & \text{avg. err } 0.3 \\
3 & \text{avg. err } 1.5 \\
1.9 & \text{avg. err } 0.29(*)
\end{array}$$

$$f(\mathbf{x}) = \sum_{y \in \mathcal{Y}} y \cdot P(y|\mathbf{x})$$

Learning Flow with Error Measure

extended VC theory/'philosophy'
works for most \mathcal{H} and err

Consider the following $P(y|\mathbf{x})$ and $err(\tilde{y}, y) = |\tilde{y} - y|$. Which of the following is the ideal mini-target $f(\mathbf{x})$?

$$P(y = 1|\mathbf{x}) = 0.10, P(y = 2|\mathbf{x}) = 0.35,$$

 $P(y = 3|\mathbf{x}) = 0.15, P(y = 4|\mathbf{x}) = 0.40.$

- **1** 2.5 = average within $\mathcal{Y} = \{1, 2, 3, 4\}$
- 2 2.85 = weighted mean from $P(y|\mathbf{x})$
- 3 = weighted median from $P(y|\mathbf{x})$
- $4 = \operatorname{argmax} P(y|\mathbf{x})$

Consider the following $P(y|\mathbf{x})$ and $err(\tilde{y}, y) = |\tilde{y} - y|$. Which of the following is the ideal mini-target $f(\mathbf{x})$?

$$P(y = 1|\mathbf{x}) = 0.10, P(y = 2|\mathbf{x}) = 0.35,$$

 $P(y = 3|\mathbf{x}) = 0.15, P(y = 4|\mathbf{x}) = 0.40.$

- **1** 2.5 = average within $\mathcal{Y} = \{1, 2, 3, 4\}$ = **1**
- **2** 2.85 = weighted mean from $P(y|\mathbf{x}) = 0.965$
- 3 = weighted median from $P(y|\mathbf{x}) = 0.95$
- **4** $= \operatorname{argmax} P(y|\mathbf{x}) = 1.15$

Reference Answer: (3)

For the 'absolute error', the weighted median provably results in the minimum average err.

Choice of Error Measure

Fingerprint Verification

two types of error: false accept and false reject

False positive

0/1 error penalizes both types equally

Fingerprint Verification for Supermarket

Fingerprint Verification

two types of error: false accept and false reject

WO	type	3 Of Citor. laise	accept and	iaise reject
		$\mid \hspace{0.5cm} g$	1	
		+1	-1	
f	+1	no error	false reject	
1	-1	false accept	no error	

Cost	matrix
0000	HIGHIA

		(9
		+1	-1
f	+1	0	10
	-1	1	0

- supermarket: fingerprint for discount
- false reject: very unhappy customer, lose future business
- false accept: give away a minor discount, intruder left fingerprint :-)

Fingerprint Verification for CIA

Fingerprint Verification

two types of error: false accept and false reject

		$\mid \hspace{1cm} g$	1
		+1	-1
f	+1	no error	false reject
'	-1	false accept	no error

		g	
		+1	-1
f	+1	0	1
,	-1	1000	0

- CIA: fingerprint for entrance
- false accept: very serious consequences!
- false reject: unhappy employee, but so what? :-)

Take-home Message for Now

err is application/user-dependent

Although the market and CIA examples are both binary classifications, they use completely different loss functions

Algorithmic Error Measures err

- true: just err ← The real, unknown loss function
- plausible:
 - 0/1: minimum 'flipping noise'—NP-hard to optimize, remember? :-)
 - squared: minimum Gaussian noise
- friendly: easy to optimize for A
 - closed-form solution
 - convex objective function

The loss function we use

Learning Flow with Algorithmic Error Measure

err: application goal; $\widehat{\text{err}}$: a key part of many \mathcal{A}

Consider err below for CIA. What is $E_{in}(g)$ when using this err?

Consider err below for CIA. What is $E_{in}(g)$ when using this err?

Reference Answer: (2)

When $y_n = -1$, the false positive made on such (\mathbf{x}_n, y_n) is penalized 1000 times more!

Weighted Classification

CIA Cost (Error, Loss, ...) Matrix

out-of-sample

$$E_{\text{out}}(h) = \underbrace{\mathcal{E}}_{(\mathbf{x}, y) \sim P} \left\{ \begin{array}{cc} 1 & \text{if } y = +1 \\ 1000 & \text{if } y = -1 \end{array} \right\} \cdot [y \neq h(\mathbf{x})]$$

in-sample

$$E_{\text{in}}(h) = \frac{1}{N} \sum_{n=1}^{N} \left\{ \begin{array}{cc} 1 & \text{if } y_n = +1 \\ 1000 & \text{if } y_n = -1 \end{array} \right\} \cdot [\![y_n \neq h(\mathbf{x}_n)]\!]$$

weighted classification:

different 'weight' for different (x, y)

Minimizing E_{in} for Weighted Classification

$$E_{\text{in}}^{W}(h) = \frac{1}{N} \sum_{n=1}^{N} \left\{ \begin{array}{cc} 1 & \text{if } y_n = +1 \\ 1000 & \text{if } y_n = -1 \end{array} \right\} \cdot [y_n \neq h(\mathbf{x}_n)]$$

Naïve Thoughts

- PLA: doesn't matter if linear separable. :-)
- pocket: modify pocket-replacement rule
 —if w_{t+1} reaches smaller E_{in} than ŵ, replace ŵ by w_{t+1}

Instead of just looking at the amount of misclassification, now we use weighted classification to evaluate which w is better.

pocket: some guarantee on $E_{in}^{0/1}$; modified pocket: similar guarantee on E_{in}^{w} ?

Does the way we update w guarantee that E^w_{in} gets smaller and smaller?

Systematic Route: Connect E_{in}^{w} and $E_{in}^{0/1}$

original problem

$$(\mathbf{x}_1, +1)$$
 $(\mathbf{x}_2, -1)$

$$\mathcal{D}$$
: $(\mathbf{x}_3, -1)$

$$(\mathbf{x}_{N-1}, +1)$$

$$(x_N, +1)$$

equivalent problem

$$(\mathbf{x}_2,-1), (\mathbf{x}_2,-1), ..., (\mathbf{x}_2,-1)$$

 $(\mathbf{x}_3,-1), (\mathbf{x}_3,-1), ..., (\mathbf{x}_3,-1)$

$$(\mathbf{x}_{N-1}, +1)$$

 $(\mathbf{x}_{N}, +1)$

after copying -1 examples 1000 times, E_{in}^{W} for LHS $\equiv E_{in}^{0/1}$ for RHS!

Weighted Pocket Algorithm

using 'virtual copying', weighted pocket algorithm include:

- weighted PLA:
 randomly check —1 example mistakes with 1000 times more
 probability The probability of -1 being checked changes from being the same as +1 to 1000 times greater than +1
- weighted pocket replacement:
 if w_{t+1} reaches smaller E_{in} than ŵ, replace ŵ by w_{t+1}

systematic route (called 'reduction'): can be applied to many other algorithms!

Consider the CIA cost matrix. If there are 10 examples with $y_n = -1$ (intruder) and 999, 990 examples with $y_n = +1$ (you). What would $E_{in}^w(h)$ be for a constant $h(\mathbf{x})$ that always returns +1?

- 0.001
- **2** 0.01
- 3 0.1
- 4 1

Consider the CIA cost matrix. If there are 10 examples with $y_n = -1$ (intruder) and 999, 990 examples with $y_n = +1$ (you). What would $E_{\text{in}}^{\text{w}}(h)$ be for a constant $h(\mathbf{x})$ that always returns +1?

- 0.001
- 2 0.01
- 3 0.1
- 4

Reference Answer: (2)

While the quiz is a simple evaluation, it is not uncommon that the data is very **unbalanced** for such an application. Properly 'setting' the weights can be used to avoid the lazy constant prediction.

10 × 1,000 + 999,990 × 0 1,000,000

Summary

- 1 When Can Machines Learn?
- 2 Why Can Machines Learn?

Lecture 7: The VC Dimension

Lecture 8: Noise and Error

- Noise and Probabilistic Target
 - can replace $f(\mathbf{x})$ by $P(y|\mathbf{x})$
- Error Measure

affect 'ideal' target

- Algorithmic Error Measure
 user-dependent => plausible or friendly
- Weighted Classification
 easily done by virtual 'example copying'
- next: more algorithms, please? :-)
- 3 How Can Machines Learn?
- 4 How Can Machines Learn Better?