$11a_{306} (K11a_{306})$

Ideals for irreducible components 2 of $X_{\mathtt{par}}$

$$I_1^u = \langle u^9 + u^8 - 4u^7 - 4u^6 + 4u^5 + 4u^4 + u^3 - u + 1 \rangle$$

$$I_2^u = \langle u^{42} + u^{41} + \dots - 2u^4 + 1 \rangle$$

$$I_3^u = \langle u - 1 \rangle$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 52 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^9 + u^8 - 4u^7 - 4u^6 + 4u^5 + 4u^4 + u^3 - u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ u^{8} - 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{8} - 3u^{6} - u^{5} + 2u^{4} + 2u^{3} - u + 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{8} - 3u^{6} + u^{4} + u^{3} + 2u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{8} - 3u^{6} + u^{4} + u^{3} + 2u^{2} - 2u + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{7} - 2u^{5} - u^{4} + u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{7} - 2u^{5} - u^{4} + u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^7 4u^6 + 16u^5 + 12u^4 16u^3 8u^2 + 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^9 - u^7 + 2u^6 + 8u^5 - 5u^4 - 5u^3 - 5u^2 + 9u - 3$
$c_2, c_5, c_6 \\ c_7, c_9, c_{10}$	$u^9 + u^8 - 4u^7 - 4u^6 + 4u^5 + 4u^4 + u^3 - u + 1$
c_3,c_{11}	$u^9 - u^8 + 4u^7 - 2u^6 + 8u^5 - 6u^4 + 9u^3 - 6u^2 + 3u - 1$
c_8	$u^9 - 6u^8 + 18u^7 - 33u^6 + 39u^5 - 23u^4 - 7u^3 + 26u^2 - 20u + 8$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing	
c_1, c_4	$y^9 - 2y^8 + 17y^7 - 30y^6 + 112y^5 - 103y^4 + 131y^3 - 145y^2 + 51y - 9$	
$c_2, c_5, c_6 \\ c_7, c_9, c_{10}$	$y^9 - 9y^8 + 32y^7 - 54y^6 + 38y^5 - 2y^4 + y^3 - 10y^2 + y - 1$	
c_3, c_{11}	$y^9 + 7y^8 + 28y^7 + 66y^6 + 106y^5 + 106y^4 + 53y^3 + 6y^2 - 3y - 1$	
<i>c</i> ₈	$y^9 + 6y^7 + 25y^6 + 23y^5 + 17y^4 + 213y^3 - 28y^2 - 16y - 64$	

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.287064 + 0.695105I	-1.39752 - 6.41727I	2.65899 + 8.21479I
u = -0.287064 - 0.695105I	-1.39752 + 6.41727I	2.65899 - 8.21479I
u = -1.30640	7.01397	12.1820
u = 0.423257 + 0.356395I	0.980950 + 0.551491I	9.15793 - 4.50455I
u = 0.423257 - 0.356395I	0.980950 - 0.551491I	9.15793 + 4.50455I
u = -1.42328 + 0.27641I	9.5593 - 13.5238I	11.6511 + 8.3193I
u = -1.42328 - 0.27641I	9.5593 + 13.5238I	11.6511 - 8.3193I
u = 1.44029 + 0.16872I	12.84680 + 4.88120I	15.4409 - 3.5107I
u = 1.44029 - 0.16872I	12.84680 - 4.88120I	15.4409 + 3.5107I

II.
$$I_2^u = \langle u^{42} + u^{41} + \dots - 2u^4 + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} - 2u \\ -u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{4} + 2u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{6} - 3u^{4} + 2u^{2} + 1 \\ u^{8} - 4u^{6} + 4u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{17} + 8u^{15} - 25u^{13} + 36u^{11} - 19u^{9} - 4u^{7} + 2u^{5} + 4u^{3} - u \\ -u^{19} + 9u^{17} - 32u^{15} + 55u^{13} - 43u^{11} + 9u^{9} + 4u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -u^{10} + 5u^{8} - 8u^{6} + 3u^{4} + u^{2} + 1 \\ u^{10} - 4u^{8} + 5u^{6} - 2u^{4} + u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{28} - 13u^{26} + \dots + u^{2} + 1 \\ -u^{28} + 12u^{26} + \dots + 2u^{6} + 3u^{4} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{41} - u^{40} + \dots + u + 2 \\ u^{41} - 19u^{39} + \dots + u - 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{41} - u^{40} + \dots + u + 2 \\ u^{41} - 19u^{39} + \dots + u - 1 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes

$$= -4u^{40} + 72u^{38} - 588u^{36} + 2864u^{34} - 4u^{33} - 9192u^{32} + 60u^{31} + 20240u^{30} - 404u^{29} - 30780u^{28} + 1600u^{27} + 31580u^{26} - 4096u^{25} - 20524u^{24} + 6988u^{23} + 7548u^{22} - 7832u^{21} - 1876u^{20} + 5336u^{19} + 1340u^{18} - 1704u^{17} - 664u^{16} - 16u^{15} - 192u^{14} - 116u^{13} + 212u^{12} + 256u^{11} - 28u^{10} - 24u^{9} - 44u^{8} - 56u^{7} + 28u^{6} + 8u^{5} + 8u^{4} + 12u^{3} + 4u^{2} - 8u + 6$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	$u^{42} - 3u^{41} + \dots - 2u - 1$
$c_2, c_5, c_6 \\ c_7, c_9, c_{10}$	$u^{42} + u^{41} + \dots - 2u^4 + 1$
c_3, c_{11}	$u^{42} - 9u^{41} + \dots - 920u + 113$
c_8	$(u^{21} + 3u^{20} + \dots + 4u - 1)^2$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	$y^{42} - y^{41} + \dots - 24y + 1$
$c_2, c_5, c_6 \\ c_7, c_9, c_{10}$	$y^{42} - 37y^{41} + \dots - 4y^2 + 1$
c_3,c_{11}	$y^{42} + 11y^{41} + \dots + 84720y + 12769$
c_8	$(y^{21} - 3y^{20} + \dots + 52y - 1)^2$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.08927	1.57667	7.15490
u = -1.082920 + 0.161904I	-0.40568 - 3.16875I	2.95224 + 5.22442I
u = -1.082920 - 0.161904I	-0.40568 + 3.16875I	2.95224 - 5.22442I
u = 1.112720 + 0.206888I	4.64745 + 6.55351I	8.17560 - 6.03047I
u = 1.112720 - 0.206888I	4.64745 - 6.55351I	8.17560 + 6.03047I
u = 0.301718 + 0.707163I	4.04389 + 9.94224I	7.31059 - 8.24169I
u = 0.301718 - 0.707163I	4.04389 - 9.94224I	7.31059 + 8.24169I
u = 0.619519 + 0.389305I	5.30545 - 6.06326I	10.03226 + 2.92445I
u = 0.619519 - 0.389305I	5.30545 + 6.06326I	10.03226 - 2.92445I
u = -0.335269 + 0.641117I	6.08429 - 1.09840I	10.14786 + 3.17531I
u = -0.335269 - 0.641117I	6.08429 + 1.09840I	10.14786 - 3.17531I
u = 0.274697 + 0.655623I	-0.07785 + 2.71696I	5.48517 - 3.12164I
u = 0.274697 - 0.655623I	-0.07785 - 2.71696I	5.48517 + 3.12164I
u = 0.211792 + 0.670835I	-0.40568 + 3.16875I	2.95224 - 5.22442I
u = 0.211792 - 0.670835I	-0.40568 - 3.16875I	2.95224 + 5.22442I
u = -0.594417 + 0.333320I	-0.07785 + 2.71696I	5.48517 - 3.12164I
u = -0.594417 - 0.333320I	-0.07785 - 2.71696I	5.48517 + 3.12164I
u = 0.096884 + 0.668841I	1.62697 - 3.23317I	3.55215 + 1.92093I
u = 0.096884 - 0.668841I	1.62697 + 3.23317I	3.55215 - 1.92093I
u = -0.481440 + 0.468716I	6.75483 - 2.56601I	12.00469 + 3.90900I
u = -0.481440 - 0.468716I	6.75483 + 2.56601I	12.00469 - 3.90900I
u = -0.147288 + 0.653126I	-3.11833	-1.91795 + 0.I
u = -0.147288 - 0.653126I	-3.11833	-1.91795 + 0.I
u = -1.317380 + 0.229558I	6.02305	0
u = -1.317380 - 0.229558I	6.02305	0
u = 0.644973	1.57667	7.15490
u = 1.354040 + 0.243767I	1.62697 + 3.23317I	0
u = 1.354040 - 0.243767I	1.62697 - 3.23317I	0
u = -1.379260 + 0.261235I	4.64745 - 6.55351I	0
u = -1.379260 - 0.261235I	4.64745 + 6.55351I	0

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.41719 + 0.15750I	6.75483 - 2.56601I	0
u = -1.41719 - 0.15750I	6.75483 + 2.56601I	0
u = 1.42429 + 0.12838I	6.08429 - 1.09840I	0
u = 1.42429 - 0.12838I	6.08429 + 1.09840I	0
u = -1.40967 + 0.25849I	5.30545 - 6.06326I	0
u = -1.40967 - 0.25849I	5.30545 + 6.06326I	0
u = 1.41609 + 0.27243I	4.04389 + 9.94224I	0
u = 1.41609 - 0.27243I	4.04389 - 9.94224I	0
u = -1.44204 + 0.12357I	11.72580 + 4.35170I	0
u = -1.44204 - 0.12357I	11.72580 - 4.35170I	0
u = 1.42800 + 0.24722I	11.72580 + 4.35170I	0
u = 1.42800 - 0.24722I	11.72580 - 4.35170I	0

III.
$$I_3^u = \langle u-1 \rangle$$

(i) Arc colorings

$$a_6 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} -1\\0 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_3 = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = 6

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_4	u
c_2, c_3, c_5 c_6, c_7, c_8 c_9, c_{10}, c_{11}	u-1

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_4	y
c_2, c_3, c_5 c_6, c_7, c_8 c_9, c_{10}, c_{11}	y-1

(vi) Complex Volumes and Cusp Shapes

	Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u =	1.00000	1.64493	6.00000

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_4	$u(u^{9} - u^{7} + 2u^{6} + 8u^{5} - 5u^{4} - 5u^{3} - 5u^{2} + 9u - 3)$ $\cdot (u^{42} - 3u^{41} + \dots - 2u - 1)$
$c_2, c_5, c_6 \\ c_7, c_9, c_{10}$	$(u-1)(u^9 + u^8 - 4u^7 - 4u^6 + 4u^5 + 4u^4 + u^3 - u + 1)$ $\cdot (u^{42} + u^{41} + \dots - 2u^4 + 1)$
c_3, c_{11}	$(u-1)(u^9 - u^8 + 4u^7 - 2u^6 + 8u^5 - 6u^4 + 9u^3 - 6u^2 + 3u - 1)$ $\cdot (u^{42} - 9u^{41} + \dots - 920u + 113)$
c_8	$(u-1)(u^9 - 6u^8 + \dots - 20u + 8)$ $\cdot (u^{21} + 3u^{20} + \dots + 4u - 1)^2$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_4	y $\cdot (y^9 - 2y^8 + 17y^7 - 30y^6 + 112y^5 - 103y^4 + 131y^3 - 145y^2 + 51y - 9)$ $\cdot (y^{42} - y^{41} + \dots - 24y + 1)$
$c_2, c_5, c_6 \\ c_7, c_9, c_{10}$	$(y-1)(y^9 - 9y^8 + 32y^7 - 54y^6 + 38y^5 - 2y^4 + y^3 - 10y^2 + y - 1)$ $\cdot (y^{42} - 37y^{41} + \dots - 4y^2 + 1)$
c_3, c_{11}	$(y-1)(y^9 + 7y^8 + \dots - 3y - 1)$ $\cdot (y^{42} + 11y^{41} + \dots + 84720y + 12769)$
c_8	$(y-1)(y^9 + 6y^7 + \dots - 16y - 64)$ $\cdot (y^{21} - 3y^{20} + \dots + 52y - 1)^2$