Example 3

July 18, 2021

M.F. Atiyah, I.G. MacDonald Introduction to Commutative Algebra 1. RINGS AND IDEALS

Fact. In a PID, a non-zero prime ideal is maximal.

Let $y \notin (x)$. Consider the ideal (x,y)=(z). There is x=az, y=bz, and cx+dy=z; it follows that acz+bdz=z, and by cancellation, ac+bd=1. Now $cx=z-dy=z-bdz=(1-bd)z\in (x)$, so it must be one of $z\in (x)$ or $1-bd\in (x)$; with the first, it would be $y\in (x)$, which is not true, so we stay with the second: $1-bd\in (x)$. There is x=a(cx+dy)=acx+ady, then $ady\in (x)$, then $ad\in (x)$ or $y\in (x)$, but as the second is not true, $ad\in (x)$, whence $a\in (x)$ or $d\in (x)$. If it were $d\in (x)$, then we would have $bd\in (x)$, but 1+(x)=bd+(x); so d cannot be in (x). We are left only with $a\in (x)$, now a=a'x, whence x=az=aa'z and cancelling, 1=aa'z, then z is a unit, and (x,y)=(1).