Síntesis de catalizadores de combustión derivados del ferroceno y su incorporación al ligante polimérico de propulsante compuesto

Javier Quagliano¹, Álvaro Vazquez¹, Javier Bocchio¹, Pablo Ross^{*}

¹ División Síntesis Química, *Departamento de Química Aplicada (DQA), Instituto de Investigaciones Científicas y Técnicas para la Defensa (CITEDEF), Av. Juan Bautista de La Salle 4397 B1603ALO Villa Martelli, Buenos Aires, Argentina. Contacto: jquagliano@citedef.gob.ar.

Introducción

Los derivados de ferroceno pueden llegar a conferir un aumento de entre 30 y 70 % en la velocidad de combustión respecto del propulsante no catalizado [1]. Estos catalizadores confieren además mejores propiedades de estabilidad durante el almacenamiento. Dado que son líquidos a temperatura ambiente, el mezclado con los otros componentes de la formulación propulsante se ve facilitado. Se sintetizaron derivados mono y dihidroxilados de acetil y propilferroceno para luego incorporarlos a la cadena del ligante de una formulación base de propulsante compuesto.

incorporarlos a la cadena del ligante de una formulación base de propulsante compuesto.

El objetivo final es el de obtener propulsantes de alta energía con reducida migración a la masa del propulsante, para colicaciones especiales, como por ejemplo dispositivos pirotécnicos.

HO{CH2-CH=CH-CH2};{CH2-CH}OH

Síntesis de catalizadores de combustión derivados del ferroceno

Ре + О О НзР А	CH3 Fe B	Reducción Fe Clemensen C
CH3	H2SO4 (c) CH3 CH3 O, B: Acetilferroceno, C: Etilferroceno	Fe Fe Fe CH3 Coceno y D:

Derivado	Rendimiento (%)
n- butilferroceno	60
t- butilferroceno	50
octilferroceno	70
Catoceno	87

Espectro FTIR de Formulación Base con y sin derivado hidroxilado

Conclusiones

- * Se obtuvieron en escala de laboratorio derivados de ferroceno con rendimientos aceptables, empleando metodología sencilla y reproducible.
- * Se determinó que el derivado hidroxilado de feroceno se une al ligante, de modo de poder así controlar la migración del catalizador durante el envejecimiento del propulsante compuesto..

Referencias

- 1. Manship T., Heister S., O'Neil P. Experimental Investigation of High-Burning–Rate Composite Solid Propellant. J. Propulsion and Power, 28,6, 1389-1397 (2012).
- 2. Swartz P., Immelman M., Lamprecht G., Greyling S., Swarts J. Ferrocene derivatives as high burning rate catalysts in composite propellants. S. Afr. Tydskr. Chem. 50, 4, 208-216 (1997).
- 3. Rosenblum M., Woodward R. The Structure and Chemistry of Ferrocene. III. Evidence Pertaining to the Ring Rotational Barrier, JACS, 5443-5449 (1958).
- 4. Wang, R., Hong, X., & Shan, Z. A novel, convenient access to acylferrocenes: acylation of ferrocene with acyl chlorides in the presence of zinc oxide. Tetrahedron letters, 49(4), 636-639 (2008).

