Published in *IEEE Control Systems Letters (L-CSS)*, doi: 10.1109/LCSYS.2021.3134101 2022 American Control Conference (ACC) **ThA06.2**

Fast Computation of Tight Funnels for Piecewise Polynomial Systems

Inkyu Jang¹, Hoseong Seo², and H. Jin Kim^{1*}

² Robot System Team, Samsung Research, Seoul 06765, Korea

¹ Department of Aerospace Engineering, Seoul National University, Seoul 08826, Korea

Motivation

Fig. Funnel used in robust motion planning^{1,2}

- In recent robust robotics, funnels (overapproximation of forward reachable sets) are often used as conservative estimates of the bound of possible deviations caused by unknown but bounded disturbances.
- The funnel finding problem is often computationally burdensome and requires hours of calculation.
- In this work, we propose a funnel-finding method for systems with piecewise polynomial dynamics, that is **tighter**, and more **computationally efficient** than existing works.

¹ Anirudha Majumdar, and Russ Tedrake. "Funnel libraries for real-time robust feedback motion planning." *The International Journal of Robotics Research* 36.8 (2017): 947-982.

² Inkyu Jang, et al. "Robust and Recursively Feasible Real-Time Trajectory Planning in Unknown Environments." *2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*. IEEE, 2021.

The Funnel-Finding Problem

Consider the following system dynamics:

$$\dot{x} = f(t; x, u),$$

where $u \in U$ is the unknown but bounded input of the system.

Definition (forward reachable set)

The <u>forward reachable set (FRS)</u> FRS(T) given $x(0) \in X_0$ at t = T is defined as

$$FRS(T) := \left\{ x(T) \mid \dot{x} = f(t; x, u), u(t) \in U \ \forall t \in [0, T] \right\}.$$

FRS(T) is the <u>set of all reachable states</u> to which the input trajectory u(t) can drive the system.

Definition (funnel)

The set trajectory X(t) is a valid *funnel* in time interval [0, T] if

$$X(t) \supseteq FRS(t) \quad \forall t \in [0, T].$$

X(t) is an <u>overapproximation</u> of all possible the state deviations by input u(t).

Hamilton-Jacobi (HJ) Forward Reachability

The optimal control problem

minimize
$$J[T] = l_0\big(x(0)\big) + \int_0^T l\big(x(t), u(t)\big) \, dt$$
 subject to
$$\dot{x} = f(t; x, u)$$

$$l(x, u) = \begin{cases} 0 & (u \in U) \\ \infty & (u \notin U) \end{cases}$$

Hamilton-Jacobi PDE associated with the optimal control problem

$$0 = \frac{\partial V}{\partial t} + \max_{u} \left[-l(x, u) + \frac{\partial V}{\partial t} \cdot f(t; x, u) \right]$$
$$= \frac{\partial V}{\partial t} + \max_{u \in U} \left[\frac{\partial V}{\partial t} \cdot f(t; x, u) \right],$$
$$V(0, x) = l_0(x) \qquad \text{(initial condition)}$$

The value function $V(t,x) = \min_{u} J[t]$

- $V(t,x) \le l_0(x_0)$ if state x is <u>reachable</u> at time t by $u(\cdot) \in U$ from the initial state x_0
- $FRS(t) = \{x \mid V(t, x) \le 0\}$ is the **forward reachable set (FRS)** given $x(0) \in X_0 = \{x \mid l_0(x) \le 0\}$

HJ Partial Differential Inequality for FRS Overapproximation

$$\frac{\partial V}{\partial t} + \max_{u \in U} \left[\frac{\partial V}{\partial t} \cdot f(t; x, u) \right] \le 0, \quad \text{or equivalently,}$$

$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial t} \cdot f(t; x, u) \le 0, \qquad \forall u \in U$$

This ensures that the value function decreases along all possible trajectories x(t), i.e.,

$$\frac{dV(t,x)}{dt} = \frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} \cdot f(t;x,u) \le 0$$
 for any feasible input trajectory $u(t) \in U$.

Remark

If the above partial differential inequality holds,

$$X(t) = \{x \mid V(t,x) \le 0\}$$
 is an overapproximation of the FRS given $X(0) = \{x \mid l_0(x) \le 0\}$.

Optimization Problem Formulation

Assumption

- U is a full-dimensional bounded polytope, i.e., $U = \{u \mid A_u u \leq b_u\}$.
- The dynamics is time invariant and control-affine, i.e., f(t; x, u) = f(x) + g(x)u.

Proposition (a variant of Farkas' Lemma)

 $Ax \leq b$ for all x such that $Cx \leq d$, i.e.,

 $\{x \mid Ax \le b\} \subseteq \{x \mid Cx \le d\},\$

if and only if $\exists \lambda \geq 0$ such that $b - Ax = \lambda^{T}(d - Cx)$.

 $x \in \mathbb{R}^{n}$, $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^{m}$, $C \in \mathbb{R}^{l \times n}$, $d \in \mathbb{R}^{l}$, $\lambda \in \mathbb{R}^{m \times l}$

Note: This is the positive polynomial theorem for the linear (order 1) case.

Optimization Problem Formulation

The size of the subzero level set of V is minimized to obtain a tight funnel.

The tight funnel-finding optimization problem

minimize
$$v(t,x), \lambda(t,x)$$
 size $\{x \mid V(T,x) \leq 0\}$ subject to
$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} \cdot [f(x) + g(x)u] = \lambda(t,x)^{\top} (b_u - A_u u), \quad \forall u(t) \in U, \quad \forall x \in ROI$$

$$\forall t \in [0,T]$$

$$V(0,x) = l_0(x)$$

$$\lambda(t,x) \geq 0$$

Optimization Problem Formulation

The tight funnel-finding optimization problem

minimize
$$V(t,x), \lambda(t,x)$$
 subject to
$$\frac{\partial V}{\partial t} + \frac{\partial V}{\partial x} \cdot f(x) = \lambda(t,x)^{\mathsf{T}} b_u, \quad \forall t \in [0,T], \quad \forall x \in ROI$$

$$\frac{\partial V}{\partial x} \cdot g(x) = -\lambda(t,x)^{\mathsf{T}} A_u, \quad \forall t \in [0,T], \quad \forall x \in ROI$$

$$V(0,x) = l_0(x)$$

$$\lambda(t,x) \ge 0$$

Note : *u* is eliminated here!

Temporal Discretization

The original funnel-finding problem

minimize

$$size(\{x \mid V(T, x) \le 0\})$$

subject to

- HJ partial differential inequality
- Initial condition $V(0,x) = l_0(x)$

The constraints must be satisfied throughout the interval $t \in [0, T]$.

The sequential funnel-finding problem

- 1. Start with $V_0(x) = l_0(x)$.
- 2. For each $k \in \{0, 1, \dots, K 1\}$,
 - Solve the funnel-finding problem for interval $t \in [t_k, t_{k+1}]$ with initial condition $V(t_k, x) = V_k(x)$.
 - Substitute $V_{k+1}(x) = V(t_{k+1}, x)$.
- Global optimality (minimum funnel size) is partially lost.
- However, the funnel-finding problem can now be sequentially solved.

More efficient computation!

Funnel-Certificate-Preserving Function Jumps

Assumption (jumps in V and λ)

For enhanced expressivity, we allow jumps at each time step t_k .

$$\mathbf{At}\ t = t_{k},$$

- V(t,x) jumps from $V_k^-(x)$ to $V_k^+(x)$
- $\lambda(t,x)$ jumps from $\lambda_k^-(x)$ to $\lambda_k^+(x)$

To not break the funnel certificate, the subzero level set of V(t,x) should not shrink after the jumps, i.e.,

$$\{x \mid V_k^-(x) \le 0\} \subseteq \{x \mid V_k^+(x) \le 0\}$$

Or equivalently, $V_k^+(x) \le \rho_k(x) \cdot V_k^-(x)$ for some $\rho_k \ge 0$.

Time Parametrization

Piecewise linear parametrization of V and λ

$$\beta(t,x) = \beta_k^+(x) \cdot \frac{t_{k+1} - t}{t_{k+1} - t_k} + \beta_{k+1}^-(x) \cdot \frac{t - t_k}{t_{k+1} - t_k} \coloneqq \operatorname{interp1}_{[t_k,t_{k+1}]} \left(t; \beta_k^+(x), \beta_{k+1}^-(x) \right)$$

$$\frac{\partial \beta}{\partial t} = \frac{\beta_{k+1}^-(x) - \beta_k^+(x)}{t_{k+1} - t_k}$$

$$\forall t \in (t_k, t_{k+1})$$

$$\forall k \in \{0,1, \dots, K-1\}$$

$$\frac{\partial \beta}{\partial x} = \frac{\partial \beta_k^+}{\partial x} \cdot \frac{t_{k+1} - t}{t_{k+1} - t_k} + \frac{\partial \beta_{k+1}^-}{\partial x} \cdot \frac{t - t_k}{t_{k+1} - t_k} = \operatorname{interp1}_{[t_k, t_{k+1}]} \left(t; \frac{\partial \beta_k^+}{\partial x}, \frac{\partial \beta_{k+1}^-}{\partial x} \right)$$

Proposition

 $\operatorname{interp1}_{[t_k,t_{k+1}]}(t;\alpha(x),\beta(x)) \ge 0 \quad \forall x \in X \text{ if and only if } \alpha(x) \ge 0, \ \beta(x) \ge 0 \quad \forall x \in X.$

Funnel Size Measure

Definition (funnel size)

$$\operatorname{size}(X) \coloneqq \inf_{\substack{x^{\mathsf{T}} Sx \leq 1 \ \forall x \in X \\ S \in \mathbb{S}^{n}_{++}}} \operatorname{trace}(S^{-1})$$

Fig. Illustration of the case when n = 2.

Remark 1

Minimization of size(X) is a SDP¹ w.r.t. S.

minimize trace(R)

subject to
$$\begin{bmatrix} S & I \\ I & R \end{bmatrix} \in \mathbb{S}^{2n}_+$$

¹Semidefinite Programming

Remark 2

If $X = \{x \mid l(x) \le 0\}$, size(X) is the optimal value for

minimize $\operatorname{trace}(S^{-1})$

subject to $x^{T}Sx - 1 \le L(x)l(x)$

$$L(x) \ge 0$$

 $\forall x$

The Funnel-Finding Optimization Problem

minimize
$V_k^+, V_{k+1}^-, \lambda_k^+, \lambda_{k+1}^-$
ρ_k, S_{k+1}, L_{k+1}

 $\operatorname{trace}(S_{k+1}^{-1})$

subject to

$$\frac{V_{k+1}^{-} - V_{k}^{+}}{t_{k+1} - t_{k}} + \frac{\partial V_{k}^{+}}{\partial x} \cdot f + (\lambda_{k}^{+})^{\mathsf{T}} b_{u} = 0 \qquad \qquad \frac{\partial V_{k}^{+}}{\partial x} \cdot g - (\lambda_{k}^{+})^{\mathsf{T}} A_{u} = 0$$

$$\frac{\partial V_k^+}{\partial x} \cdot g - (\lambda_k^+)^\top A_u = 0$$

Feasibility at $t = t_k$

$$\frac{V_{k+1}^{-} - V_{k}^{+}}{t_{k+1} - t_{k}} + \frac{\partial V_{k+1}^{-}}{\partial x} \cdot f + (\lambda_{k+1}^{-})^{\mathsf{T}} b_{u} = 0 \qquad \frac{\partial V_{k+1}^{-}}{\partial x} \cdot g - (\lambda_{k+1}^{-})^{\mathsf{T}} A_{u} = 0$$

$$\frac{\partial V_{k+1}^{-}}{\partial x} \cdot g - (\lambda_{k+1}^{-})^{\mathsf{T}} A_{u} = 0$$

Feasibility at $t = t_{k+1}$

$$\lambda_k^+ \ge 0$$

Dual feasibility at $t = t_k$

$$\lambda_{k+1}^- \ge 0$$

Dual feasibility at $t = t_{k+1}$

$$V_k^+(x) \le \rho_k(x) \cdot V_k^-(x)$$

$$\rho_k \ge 0$$

Jump feasibility (V)

$$x^{\mathsf{T}} S_{k+1} x - 1 \le L_{k+1}(x) \cdot V_{k+1}^{-}(x)$$
 $S_{k+1} \in \mathbb{S}_{++}^{n}$

$$S_{k+1} \in \mathbb{S}^n_+$$

Size measure

Sum-of-Squares (SOS) Programming and Polynomial Positivity

Proposition

A polynomial p(x) is nonnegative everywhere in \mathbb{R}^n if it is a sum of squares of polynomials $p_i(x)$, i.e.,

$$p(x) = p_0(x)^2 + p_1(x)^2 + \dots + p_N(x)^2 \in \Sigma^2[x]$$
 $(x \in \mathbb{R}^n)$

or equivalently,

$$p(x) = \frac{1}{2}m(x)^{\mathsf{T}}Qm(x)$$

where $Q \in \mathbb{S}_+^M$ is a positive semidefinite matrix, and $m(x) = [m_0(x) \cdots m_M(x)]^{\mathsf{T}}$ is the column vector of lower-degree monomials.

Note : The converse does not hold in general.

Sum-of-Squares (SOS) Programming and Polynomial Positivity

Proposition (a variant of Handelman's Positivstellensatz¹)

A polynomial p(x) is nonnegative everywhere in the set $X = \{x \mid c_i^{\mathsf{T}} x \leq d_i, i \in I\}$ if

$$p(x) = \sum_{j:I \to \{0,1\}} s_j(x) \cdot \prod_{i \in I} (d_i - c_i^{\mathsf{T}} x)^{j(i)}$$

where $s_j(x) \in \Sigma^2[x]$ for all j.

Note : The converse holds if X is a bounded polytope.¹

¹ David Handelman. "Representing polynomials by positive linear functions on compact convex polyhedra." *Pacific Journal of Mathematics* 132.1 (1988): 35-62.

Optimizing with Piecewise Polynomial Systems

Assumption (piecewise polynomial system)

The system is assumed to be piecewise polynomial, whose *pieces* are convex polytopes.

$$f(x,u) = \begin{cases} f_0(x) + g_0(x)u & x \in \sigma_0 = \{x \mid A_{x \cdot 0}^\top x \le b_{x \cdot 0}\} \\ \vdots & \vdots \\ f_N(x) + g_N(x)u & x \in \sigma_N = \{x \mid A_{x \cdot N}^\top x \le b_{x \cdot N}\} \end{cases}$$

The pieces should completely cover the region of interest (ROI).

$$ROI \subseteq \bigcap_{i \in \{0, \dots, N\}} \sigma_i$$

The constraints are applied to each piece σ_i .

Remark: A wide range of systems can be accurately approximated in this form.

System 1: Damped pendulum

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -\sin x_1 - x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$u \in [-0.1, 0.1]$$

$$X(0) = \{x \mid ||x||_2 \le 1\}$$

$$ROI = \{x \mid ||x||_{\infty} \le 1.3\}$$

$$t \in [0,5]$$

Approximation of the sine function

1. Global polynomial approximation

$$\sin x \approx 0.9930x - 0.1498x^3$$

2. Piecewise polynomial approximation

$$\sin x \approx \begin{cases}
0.062 + 1.2691x + 0.3679x^2 & (x \in [-1.3, -0.4]) \\
0.9801x & (x \in [-0.4, 0.4]) \\
-0.062 + 1.2691x - 0.3679x^2 & (x \in [0.4, 1.3])
\end{cases}$$

Fig. Error plots of the two polynomial approximations.

Funnel computation result for the damped pendulum system

Fig. a) Funnel computation result

- **b)** The resulting funnel at t = 5
- c) Conservatism comparison of the four funnel-computing methods^{1,2}, where conservatism = $\frac{\text{size}(\text{Funnel})}{\text{size}(\text{FRS})}$.

¹ Anirudha Majumdar, and Russ Tedrake. "Funnel libraries for real-time robust feedback motion planning." *The International Journal of Robotics Research* 36.8 (2017): 947-982.

² Hoseong Seo, Clark Youngdong Son, and H. Jin Kim. "Fast funnel computation using multivariate Bernstein polynomial." *IEEE Robotics and Automation Letters* 6.2 (2021): 1351-1358.

System 2: Linear oscillator under Coulomb friction

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 - \text{sgn}(x_2) \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$$

$$u \in [-0.1, 0.1]$$

$$X(0) = \{x \mid ||x||_2 \le 1\}$$

$$ROI = \{x \mid x||x||_{\infty} \le 1.3\}$$

$$t \in [0,2]$$

Fig. a) Funnel computation result

b) The resulting funnel at t = 2

c) Conservatism comparison with the HJ-PDE solution (exact FRS)

System 3: Unicycle under uncertain speed and steering

$$\dot{x} = \begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -\sin x_3 \\ \cos x_3 \\ \omega \end{bmatrix} + \begin{bmatrix} -\sin x_3 & 0 \\ \cos x_3 & 0 \\ 0 & 1 \end{bmatrix} u$$

$$U = \{ u \in \mathbb{R}^2 \mid ||u||_{\infty} \le 0.05 \}$$

$$X(0) = \{x \mid ||x||_2 \le 0.1\}$$

Fig. a) Funnel computation result for $\omega=1,0.5,0,-0.5,-1$ (from left to right) **b)** Conservatism comparison with four funnel-computing methods

Results (Calculation Efficiency)

Computation time measured in seconds

		HJ PDE (exact FRS)	SOS-based ¹	LP-based ²	Proposed
Damped pendulum		10.754	19.936	2.1084	3.8986
Linear oscillator under Coulomb friction		60.175	-	-	1.7003
Unicycle	$\omega = 0$	505.52	358.76	12.714	8.5910
	$\omega = \pm 0.5$	1008.0	369.86	12.780	9.0492
	$\omega = \pm 1$	1389.1	380.44	12.761	9.2288

¹ Anirudha Majumdar, and Russ Tedrake. "Funnel libraries for real-time robust feedback motion planning." *The International Journal of Robotics Research* 36.8 (2017): 947-982.

² Hoseong Seo, Clark Youngdong Son, and H. Jin Kim. "Fast funnel computation using multivariate Bernstein polynomial." *IEEE Robotics and Automation Letters* 6.2 (2021): 1351-1358.

Conclusion and Future Work

In this work, we have

- proposed a <u>funnel-finding method</u> based on semidefinite programming that can be applied to systems with <u>piecewise polynomial dynamics</u>.
- showed that the proposed method computes <u>tighter funnels</u> in a relatively <u>fast computation time</u>, compared to other funnel-computing methods.

Possible future studies include

- funnel-computing methods that overcomes the *curse of dimensionality*.
- <u>real-time algorithms</u> that can adapt to changing input bounds.

Thank you!

Contact

Inkyu Jang

Lab for Autonomous Robotics Research (LARR)
Department of Aerospace Engineering, Seoul National University, Korea leplusbon@snu.ac.kr

This research was supported by a grant to Theatre-Defense Research Center funded by Defense Acquisition Program Administration, and by Agency for Defense Development (UD200043CD_03).