COMS3261: Computer Science Theory

Spring 2013

Mihalis Yannakakis

Lecture 5, 9/18/13

Regular expressions

E Basis:	xpression	Language Ø
	3	{ε}
	a, ∀a∈Σ	{ a }
Induction: (Operations)	(E)	L(E)
Union	E+F	$L(E) \cup L(F)$
Concatenation	E.F or EF	L(E).L(F)
Kleene *	E*	(L(E))*

Examples

- 0100 : the singleton set {0100}
- 0*: all strings of 0's (including the empty string)
- (0+1)*: all binary strings, including the empty string
- 0*1*: a sequence of 0's (possibly none) followed by a sequence of 1's (possibly none):
 - includes ε, 0, 1, 01, 00 ... but not 10
- (0*1*)* = (0+1)*: all binary strings
- 0+10*: {0, 1, 10, 100, 1000, ...}
- 0(1+0)*: all binary strings that start with 0
- ((0+1) (0+1))*: all binary strings of even length

Regular Expressions ⇔ Finite Automata

- Theorem: Languages of regular expressions = Regular languages:
- 1. From every RE R we can construct an equivalent FA A, i.e. one that accepts the same language: L(A)=L(R)
- 2. From every FA we can construct an equivalent RE

Regular Expression → Finite Automaton

- We will construct an equivalent $\epsilon\text{-NFA}$ with one start state and one different accepting state.
- By induction on the construction of the RE R.
- Basis: $R = \emptyset$, or ε , or a in Σ

$$R = \emptyset \longrightarrow \bigcirc$$

$$R = \varepsilon$$
 $\rightarrow \bigcirc$ ε

$$R = a$$
 $\rightarrow \bigcirc$ a

$RE \rightarrow FA$

- Induction step: R= (E), or E+F, or E.F or E*
- Inductively assume that we have ϵ -NFA with one start state and one accepting state for each subexpression E,F
- R= (E): same NFA as for E

$$R = E + F \qquad \begin{array}{c|c} \varepsilon & E & \varepsilon \\ \hline & \varepsilon & F & \varepsilon \\ \hline \end{array}$$

$$R = E.F$$
 $E \circ F \circ$

$$R = E^* \qquad \xrightarrow{\varepsilon} \qquad \xrightarrow{\varepsilon}$$

Example

• $R = ab^* + c = (a.(b^*)) + c$

Complexity of RE $\rightarrow \epsilon$ -NFA translation

- Complexity of translation and size of the resulting ϵ -NFA is linear in the size of the RE (#characters in the expression)
- Proof: Easy, by induction.
 - -Basis: NFA with 2 states and at most one transition
 - Each operation combines the NFA of the operands and adds a small, fixed # of states (at most 2) and transitions (at most 4).

So, # states of NFA $\leq 2 |RE|$ and # transitions $\leq 4 |RE|$

FA → RE Translation

- · Various methods:
- Kleene's Method (in HMU)
- State elimination method (in HMU and Sipser)
- Algebraic set of equations & elimination of variables

Kleene's method (Dynamic programming)

- Input A can be NFA, even with ε-transitions:
 Labelled directed graph, where every arc has one or more labels in S∪{ε}
- Number the states of A arbitrarily as 1,...,n
- Will compute for each triple of states i,j,k a RE
 R_{ij}^(k) whose language = set of labels of i→j paths all of
 whose intermediate nodes are in {1,...,k}
- For k=n, the RE R_{ij}⁽ⁿ⁾ gives the set of labels of all i→j paths (no restriction on intermediate nodes)
- If the start state is 1 and the set of accepting states is F then the RE R for the FA A is: $R = \sum_{i=1}^{n} R_{1\,j}^{(n)}$

Kleene's algorithm

- Initialization (k=0):
 - [only direct path(edge, no intermediate node]
- i=j: $R_{ii}^{(0)} = \varepsilon + \Sigma$ labels on arc i \rightarrow i (if arc i \rightarrow i present)
- $i\neq j$: $R_{ij}^{(0)} = \sum_{i} \text{ labels on arc } i \rightarrow j$, if arc $i \rightarrow i$ present \emptyset , otherwise (if no arc $i \rightarrow j$)
- Loop (Induction Step): For k=1 to n do

$$R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)}$$

k=0 1 2

1 $\epsilon+1$ 0

2 \varnothing $\epsilon+0+1$

Example ctd.

Properties: $(\varepsilon+1)^* \equiv 1^*$

 $(\epsilon+1)^{1*} \equiv 1^*$; $\epsilon+1+1^* \equiv 1^*$

For any RE R: $R+\emptyset \equiv \emptyset + R \equiv R$; $\emptyset R \equiv R \emptyset \equiv \emptyset$

Example ctd.

$$R = 1*0(0+1)*$$

Complexity of FA → RE Translation

- Let S(k) = maximum size of an expression in stage k
 (= max_{ii} | R_{ii}^(k) |)
- $S(0) \le 2 \mid \Sigma \mid$ $S(k) \le 4S(k-1) + 4$
- \Rightarrow S(k) $\leq 2.4^k \cdot |\Sigma| \Rightarrow$ S(n) = O(4ⁿ |\Sigma|)
- Can be exponential: There are DFA for which the constructed RE (even after simplification) is exponential in the #states n of the DFA

State elimination method

- Maintain a generalized NFA: edges labeled by regular expressions, not only single symbols and ε
- Assume one accepting state p (and one start state q₀):
 if many accepting states, then add new accepting
 state and ε-transitions from old accepting states
- Eliminate all the states, except the start state and accepting state, one by one, updating the edge labels
- At the end compute a Regular Expression that captures all accepting paths from the start state qo to the accepting state p.

Final generalized NFA

• Case 1: Accepting state = start state qo

Regular Expression $E = R^*$

Case 2: Accepting state p ≠ start state q₀

Regular Expression: E = (R+SU*T)*SU*

Example ctd

$$ab^*a + bb+bab^*a$$
 Eliminate q₂
$$q_0 \longrightarrow ab^*+bab^*+b \longrightarrow p$$

Regular expression: (ab*a+bb+bab*a)*(ab*+bab*+b)