Douglas-Rachford method and ADMM

Acknowledgement: this slides is based on Prof. Lieven Vandenberghes lecture notes

Outline

- Douglas-Rachford splitting method
- examples
- alternating direction method of multipliers
- image deblurring example
- 5 convergence

Douglas-Rachford splitting algorithm

Consider

$$\min \quad f(x) = g(x) + h(x)$$

g and h are closed convex functions

Douglas-Rachford iteration: starting at any $z^{(0)}$, repeat

$$x^{(k)} = \operatorname{prox}_{th}(z^{(k-1)})$$

$$y^{(k)} = \operatorname{prox}_{tg}(2x^{(k)} - z^{(k-1)})$$

$$z^{(k)} = z^{(k-1)} + y^{(k)} - z^{(k)}$$

- t is a positive constant (simply scales the objective)
- useful when g and h have inexpensive prox-operators
- under weak conditions (existence of a minimizer), $x^{(k)}$ converges

Equivalent form

start iteration at y-update

$$y^+ = \text{prox}_{tg}(2x - z); \quad z^+ = z + y^+ - x; \quad x^+ = \text{prox}_{th}(z^+)$$

switch z- and x-updates

$$y^{+} = \text{prox}_{tg}(2x - z); \quad x^{+} = \text{prox}_{th}(z + y^{+} - x); \quad z^{+} = z + y^{+} - x$$

• make change of variables w = z - x

alternate form of DR iteration: start at $x^{(0)} \in \text{dom } h, w^{(0)} \in t\partial h(x^{(0)})$

$$y^{+} = \operatorname{prox}_{tg}(x - w)$$

$$x^{+} = \operatorname{prox}_{th}(y^{+} + w)$$

$$w^{+} = w + y^{+} - x^{+}$$

4/33

Interpretation as fixed-point iteration

Douglas-Rachford iteration can be written as

$$z^{(k)} = F(z^{(k-1)})$$

where $F(z) = z + \text{prox}_{tg}(2\text{prox}_{th}(z) - z) - \text{prox}_{th}(z)$

fixed points of F and minimizers of g + h

• if z is a fixed point, then $x = prox_{th}(z)$ is a minimizer:

$$\begin{split} z = F(z), \quad x = prox_{th}(z) &\Rightarrow prox_{tg}(2x - z) = x = prox_{th}(z) \\ &\Rightarrow -x + z \in t\partial g(x); z - x \in t\partial h(x) \\ &\Rightarrow 0 \in t\partial g(x) + t\partial h(x) \end{split}$$

• if x is a minimizer and $u \in t\partial g(x) \cap -t\partial h(x)$, then x-u=F(x-u)

5/33

Douglas-Rachford iteration with relaxation

fixed-point iteration with relaxation

$$z^+ = z + \rho(F(z) - z)$$

 $1 < \rho < 2$ is overrelaxation, $0 < \rho < 1$ is underrelaxation

first version of DR method

$$x^{+} = \text{prox}_{th}(z)$$

 $y^{+} = \text{prox}_{tg}(2x^{+} - z)$
 $z^{+} = z + \rho(y^{+} - x^{+})$

alternate version

$$y^{+} = \text{prox}_{tg}(x - w)$$

$$x^{+} = \text{prox}_{th}((1 - \rho)x + \rho y^{+} + w)$$

$$w^{+} = w + \rho y^{+} + (1 - \rho)x - x^{+}$$

Outline

- Douglas-Rachford splitting method
- examples
- alternating direction method of multipliers
- image deblurring example
- 5 convergence

Sparse inverse covariance selection

$$\min \quad \mathbf{tr}(CX) - \log \det X + \rho \sum_{i>j} |X_{ij}|$$

variable is $X \in \mathbf{S}^n$; parameters $C \in \mathbf{S}^n_{++}$ and $\rho > 0$ are given

Douglas-Rachford splitting

$$g(X) = \mathbf{tr}(CX) - \log \det X, h(x) = \rho \sum_{i>j} |X_{ij}|$$

- $X = \text{prox}_{tg}(\hat{X})$ is positive solution of $C X^{-1} + (1/t)(X \hat{X}) = 0$ easily solved via eigenvalue decomposition of $\hat{X} tC$
- $X = \operatorname{prox}_{th}(\hat{X})$ is soft-thresholding

Spingarn's method of partial inverses

equality constrained convex problem

$$\begin{array}{ll}
\min & h(x) \\
\text{s.t.} & x \in V
\end{array}$$

h a closed convex function; V a subspace

Douglas-Rachford splitting: take $g = I_V$ (indicator of V)

$$x^{+} = \text{prox}_{th}(z)$$

 $y^{+} = P_{V}(2x^{+} - z)$
 $z^{+} = z + y^{+} - x^{+}$

Application to composite optimization problem

$$\min f_1(x) + f_2(Ax)$$

 f_1 and f_2 have simple prox-operators

• equivalent to minimizing $h(x_1, x_2)$ over subspace V where

$$h(x_1, x_2) = f_1(x_1) + f_2(x_2), \quad V = \{(x_1, x_2) \mid x_2 = Ax_1\}$$

- prox_{th} is separable: $\operatorname{prox}_{th}(x_1, x_2) = (\operatorname{prox}_{tf_1}(x_1), \operatorname{prox}_{tf_2}(x_2))$
- projection of (x_1, x_2) on V reduces to linear equation:

$$P_{V}(x_{1}, x_{2}) = \begin{pmatrix} I \\ A \end{pmatrix} (I + A^{T}A)^{-1} (x_{1} + A^{T}x_{2})$$
$$= \begin{pmatrix} x_{1} \\ x_{2} \end{pmatrix} + \begin{pmatrix} A^{T} \\ -I \end{pmatrix} (I + A^{T}A)^{-1} (x_{2} - Ax_{1})$$

10/33

Decomposition of separable problems

min
$$\sum_{j=1}^{n} f_j(x_j) + \sum_{i=1}^{m} g_i(A_{i1}x_1 + \dots + A_{in}x_n)$$

- same problem as the lecture on "dual proximal gradient method", but without strong convexity assumption
- we assume the functions f_i and g_i have inexpensive prox-operators

equivalent formulation

min
$$\sum_{j=1}^{n} f_j(x_j) + \sum_{i=1}^{m} g_i(y_{i1} + \dots + y_{in})$$

s.t. $y_{ij} = A_{ij}x_j$, $i = 1, \dots, m$; $j = 1, \dots, n$

- prox-operator of cost involves uncoupled prox-evaluations for f_i, g_i
- projection on constraint set reduces to n independent linear equations 4 D > 4 P > 4 B > 4 B > B 990

Decomposition of separable problems

second equivalent formulation with extra splitting variables x_{ij} :

$$\begin{aligned} & \min & & \sum_{j=1}^{n} f_{j}(x_{j}) + \sum_{i=1}^{m} g_{i}(y_{i1} + \dots + y_{in}) \\ & \text{s.t.} & & x_{ij} = x_{j}, \quad i = 1, \dots, m; \quad j = 1, \dots, n \\ & & y_{ij} = A_{ij}x_{ij}, \quad i = 1, \dots, m; \quad j = 1, \dots, n \end{aligned}$$

make first set of constraints part of domain of f_j:

$$\tilde{f}_j(x_j, x_{1j}, \cdots, x_{mj}) = \begin{cases} f_j(x_j) & x_{ij} = x_j, \quad i = 1, \cdots, m \\ +\infty & \text{otherwise} \end{cases}$$

prox-operator of $\tilde{f_j}$ reduces to prox-operator of f_j

 projection on other constraints involves mn independent linear equations

Outline

- Douglas-Rachford splitting method
- examples
- alternating direction method of multipliers
- image deblurring example
- 5 convergence

Dual application of Douglas-Rachford method

separable convex problem

min
$$f_1(x_1) + f_2(x_2)$$

s.t. $A_1x_1 + A_2x_2 = b$

dual problem

$$\max \quad -b^T z - f_1^* (-A_1^T z) - f_2^* (-A_2^T z)$$

we apply the Douglas-Rachford method (page 3) to minimize

$$\underbrace{b^{T}z + f_{1}^{*}(-A_{1}^{T}z)}_{g(z)} + \underbrace{f_{2}^{*}(-A_{2}^{T}z)}_{h(z)}$$

Douglas Rachford on the dual

$$y^+ = \text{prox}_{tp}(z - w), \quad z^+ = \text{prox}_{th}(y^+ + w), \quad w^+ = w + y^+ - z^+$$

first line: use result in "lect-dualProxGrad.pdf" to compute $y^+ = \text{prox}_{to}(z - w)$

$$\hat{x_1} = \underset{x_1}{\operatorname{argmin}} (f_1(x_1) + z^T (A_1 x_1 - b) + \frac{t}{2} ||A_1 x_1 - b - w/t||_2^2)$$

$$y^+ = z - w + t (A_1 \hat{x_1} - b)$$

second line: similarly, compute $z^+ = \text{prox}_{th}(z + t(A_1\hat{x_1} - b))$

$$\hat{x_2} = \underset{x_1}{\operatorname{argmin}} (f_1(x_2) + z^T A_2 x_2 + \frac{t}{2} ||A_1 \hat{x_1} + A_2 x_2 - b||_2^2)$$

$$z^+ = z + t (A_1 \hat{x_1} + A_2 \hat{x_2} - b)$$

third line reduces to $w^+ = -tA_2\hat{x_2}$

Alternating direction method of multipliers

minimize augmented Lagrangian over x₁

$$x_1^{(k)} = \underset{x_1}{\operatorname{argmin}} \left(f_1(x_1) + (z^{(k-1)})^T A_1 x_1 + \frac{t}{2} \|A_1 x_1 + A_2 x_2^{(k-1)} - b\|_2^2 \right)$$

minimize augmented Lagrangian over x₂

$$x_2^{(k)} = \underset{x_2}{\operatorname{argmin}} \left(f_2(x_2) + (z^{(k-1)})^T A_2 x_2 + \frac{t}{2} \|A_1 x_1^{(k)} + A_2 x_2 - b\|_2^2 \right)$$

dual update

$$z^{(k)} = z^{(k-1)} + t(A_1 x_1^{(k)} + A_2 x_2^{(k)} - b)$$

also known as split Bregman method

Comparison with other multiplier methods

alternating minimization method with $g(y) = I_{\{b\}}(y)$

- same dual update, same update for x₂
- *x*₁-update in alternating minimization method is simpler:

$$x_1^{(k)} = \underset{x_1}{\operatorname{argmin}} \left(f_1(x_1) + (z^{(k-1)})^T A_1 x_1 \right)$$

ADMM does not require strong convexity of f₁

augmented Lagrangian method with $g(y) = I_{\{b\}}(y)$

- dual update is the same
- AL method requires joint minimization of the augmented Lagrangian

$$\min_{x_1, x_2} f_1(x_1) + f_2(x_2) + (z^{(k-1)})^T (A_1 x_1 + A_2 x_2) + \frac{t}{2} ||A_1 x_1 + A_2 x_2 - b||_2^2$$

Application to composite optimization (method 1)

$$\min \quad f_1(x) + f_2(Ax)$$

apply ADMM to

min
$$f_1(x_1) + f_2(x_2)$$

s.t. $Ax_1 = x_2$

augmented Lagrangian is

$$f_1(x_1) + f_2(x_2) + \frac{t}{2} ||Ax_1 - x_2 + z/t||_2^2$$

- x_1 -update requires minimization of $f_1(x_1) + \frac{t}{2} ||Ax_1 x_2 + z/t||_2^2$
- x_2 -update is evaluation of $prox_{t^{-1}f_2}$

Application to composite optimization (method 2)

introduce extra 'splitting' or 'dummy' variable x_3

min
$$f_1(x_3) + f_2(x_2)$$

s.t. $\begin{pmatrix} A \\ I \end{pmatrix} x_1 = \begin{pmatrix} x_2 \\ x_3 \end{pmatrix}$

• alternate minimization of augmented Lagrangian over x_1 and (x_2, x_3)

$$f_1(x_3) + f_2(x_2) + \frac{t}{2} (\|Ax_1 - x_2 + z_1/k\|_2^2 + \|x_1 - x_3 + z_2/k\|_2^2)$$

- x_1 -update: linear equation with coefficient $I + A^T A$
- ullet (x_2,x_3) -update: decoupled evaluations of $\mathrm{prox}_{t^{-1}f_1}$ and $\mathrm{prox}_{t^{-1}f_2}$

Outline

- Douglas-Rachford splitting method
- examples
- alternating direction method of multipliers
- image deblurring example
- 5 convergence

Image blurring model

$$b = Kx_t + w$$

- x_t is unknown image
- b is observed (blurred and noisy) image; w is noise
- $N \times N$ -images are stored in column-major order as vectors of length N^2

blurring matrix K

- represents 2D convolution with space-invariant point spread function
- with periodic boundary conditions, block-circulant with circulant blocks
- can be diagonalized by multiplication with unitary 2D DFT matrix
 W:

$$K = W^H \mathbf{diag}(\lambda)W$$

equations with coefficient $I + K^T K$ can be solved in $O(N^2 \log N)$ time

Total variation deblurring with 1-norm

min
$$||Kx - b||_1 + \gamma ||Dx||_{tv}$$

s.t. $0 \le x \le 1$

second term in objective is total variation penalty

• Dx is discretized first derivative in vertical and horizontal direction

• $\|\cdot\|_{tv}$ is a sum of Euclidean norms: $\|(u,v)\|_{tv} = \sum_{i=1}^n \sqrt{u_i^2 + v_i^2}$

Solution via Douglas-Rachford method

an example of a composite optimization problem

$$\min \quad f_1(x) + f_2(Ax)$$

with
$$f_1$$
 the indicator of $[0,1]^n$ and $A=\left(egin{array}{c}K\\D\end{array}
ight), f_2(u,v)=\|u\|_1+\gamma\|v\|_{tv}$

$$\min \|u\|_1 + \gamma \|v\|_{tv}, \text{ s.t. } u = Kx - b, \ v = Dx, y = x, 0 \le y \le 1$$

primal DR method and ADMM require:

- decoupled prox-evaluations of $\|u\|_1$ and $\|v\|_{tv}$, and projections on C
- solution of linear equations with coefficient matrix

$$I + K^T K + D^T D$$

solvable in $O(N^2 \log N)$ time

Example

- 1024 × 1024 image, periodic boundary conditions
- Gaussian blur
- salt-and-pepper noise (50% pixels randomly changed to 0/1)

original

noisy/blurred

restored

Convergence

cost per iteration is dominated by 2D FFTs

Outline

- Douglas-Rachford splitting method
- examples
- alternating direction method of multipliers
- image deblurring example
- 6 convergence

Nonexpansiveness

if $u = \operatorname{prox}_h(x), v = \operatorname{prox}_h(y)$, then

$$(u-v)^{\top}(x-y) \ge ||u-v||2$$

 $prox_h$ is *firmly nonexpansive*, or *co-coercive* with constant 1

follows from characterization of proximal mapping and monotonicity

$$x - u \in \partial h(u), y - v \in \partial h(v) \implies (x - u - y + v)^{\top} (u - v) \ge 0$$

implies (from Cauchy-Schwarz inequality)

$$\|\operatorname{prox}_h(x) - \operatorname{prox}_h(y)\|_2 \le \|x - y\|_2$$

prox_h is nonexpansive, or Lipschitz continuous with constant 1

Douglas-Rachford iteration mappings

define iteration map F and negative step G

$$\begin{split} F(z) &= z + \mathrm{prox}_{tg}(2\mathrm{prox}_{th}(z) - z) - \mathrm{prox}_{th}(z) \\ G(z) &= z - F(z) \\ &= \mathrm{prox}_{th}(z) - \mathrm{prox}_{tg}(2\mathrm{prox}_{th}(z) - z) \end{split}$$

F is firmly nonexpansive (co-coercive with parameter 1)

$$(F(z) - F(\hat{z}))^T (z - \hat{z}) \ge ||F(z) - F(\hat{z})||_2^2 \quad \forall z, \hat{z}$$

implies that G is firmly nonexpansive:

$$(G(z) - G(\hat{z}))^{T}(z - \hat{z})$$

$$= \|G(z) - G(\hat{z})\|_{2}^{2} + (F(z) - F(\hat{z}))^{T}(z - \hat{z}) - \|F(z) - F(\hat{z})\|_{2}^{2}$$

$$\geq \|G(z) - G(\hat{z})\|_{2}^{2}$$

Proof.

firm nonexpansiveness of F

• define $x = \text{prox}_{th}(z), \hat{x} = \text{prox}_{th}(\hat{z}),$ and

$$y = \operatorname{prox}_{t\varrho}(2x - z), \quad \hat{y} = \operatorname{prox}_{t\varrho}(2\hat{x} - \hat{z})$$

• substitute expressions F(z) = z + y - x and $F(\hat{z}) = \hat{z} + \hat{y} - \hat{x}$:

$$(F(z) - F(\hat{z}))^{T}(z - \hat{z})$$

$$\geq (z + y - x - \hat{z} - \hat{y} + \hat{x})^{T}(z - \hat{z}) - (x - \hat{z})^{T}(z - \hat{z}) + ||x - \hat{x}||_{2}^{2}$$

$$= (y - \hat{y})^{T}(z - \hat{z}) + ||z - x - \hat{z} + \hat{x}||_{2}^{2}$$

$$= (y - \hat{y})^{T}(2x - z - 2\hat{x} + \hat{z}) - ||y - \hat{y}||_{2}^{2} + ||F(z) - F(\hat{z})||_{2}^{2}$$

$$\geq ||F(z) - F(\hat{z})||_{2}^{2}$$

inequalities use firm nonexpansiveness of $prox_{th}$ and $prox_{tg}$

$$(x - \hat{x})^T (z - \hat{z}) \ge ||x - \hat{x}||_2^2, \quad (2x - z - 2\hat{x} + \hat{z})^T (y - \hat{y}) \ge ||y - \hat{y}||_2^2$$

Convergence result

$$z^{(k)} = (1 - \rho_k)z^{(k-1)} + \rho_k F(z^{(k-1)})$$

= $z^{(k-1)} - \rho_k G(z^{(k-1)})$

assumptions

- optimal value $f^* = \inf_x (g(x) + h(x))$ is finite and attained
- $\rho_k \in [\rho_{\min}, \rho_{\max}]$ with $0 < \rho_{\min} < \rho_{\max} < 2$

result

- $z^{(k)}$ converges to a fixed point z^* of F
- $x^{(k)} = \text{prox}_{th}(z^{(k-1)})$ converges to a minimizer $x^* = \text{prox}_{th}(z^*)$ (follows from continuity of prox_{th})

Proof.

exists

Let z^* be any fixed point of F(z) (zero of G(z)). Consider iteration k (with $z = z^{(k-1)}$, $\rho = \rho_k$, $z^+ = z^{(k)}$):

$$||z^{+} - z^{*}||_{2}^{2} - ||z - z^{*}||_{2}^{2} = 2(z^{+} - z)^{T}(z - z^{*}) + ||z^{+} - z||_{2}^{2}$$

$$= -2\rho G(z)^{T}(z - z^{*}) + \rho^{2}||G(z)||_{2}^{2}$$

$$< -\rho(2 - \rho)||G(z)||_{2}^{2}$$

 $< -M \|G(z)\|_2^2$

where $M = \rho_{\min}(2 - \rho_{\max})$ (line 3 is firm nonexpansiveness of G) • (1) implies that

$$M\sum_{k=0}^{\infty} \|G(z^{(k)})\|_2^2 \le \|z^{(0)} - z^*\|_2^2, \quad \|G(z^{(k)})\|_2 \to 0$$

- (1) implies that $||z^{(k)} z^*||_2$ is nonincreasing; $z^{(k)}$ bounded • since $||z^{(k)} - z^*||_2$ is nonincreasing, the limit $\lim_{k\to\infty} ||z^{(k)} - z^*||_2$

(1)

continued.

- since the sequence $z^{(k)}$ is bounded, it has a convergent subsequence
- let $\bar{z_k}$ be a convergent subsequence with limit \bar{z} ; by continuity of G,

$$0 = \lim_{k \to \infty} G(\bar{z_k}) = G(\bar{z})$$

hence, \bar{z} is a zero of G and the limit $\lim_{k\to\infty} \|z^{(k)} - \bar{z}\|^2$ exists

• let $\bar{z_1}$ and $\bar{z_2}$ be two limit points; the limits

$$\lim_{k \to \infty} \|z^{(k)} - \bar{z_1}\|_2, \quad \lim_{k \to \infty} \|z^{(k)} - \bar{z_2}\|_2$$

exist, and subsequences of $z^{(k)}$ converge to $\bar{z_1}$, resp. $\bar{z_2}$; therefore

$$\|\bar{z_2} - \bar{z_1}\|_2 = \lim_{k \to \infty} \|z^{(k)} - \bar{z_1}\|_2 = \lim_{k \to \infty} \|z^{(k)} - \bar{z_2}\|_2 = 0$$

32/33

References

Douglas-Rachford method, ADMM, Spingarn's method

- J. E. Spingarn, Applications of the method of partial inverses to convex programming: decomposition, Mathematical Programming (1985)
- J. Eckstein and D. Bertsekas, On the Douglas-Rachford splitting method and the proximal algorithm for maximal monotone operators, Mathematical Programming (1992)
- P.L. Combettes and J.-C. Pesquet, A Douglas-Rachford splitting approach to nonsmooth convex variational signal recovery, IEEE Journal of Selected Topics in Signal Processing (2007)
- S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, Distributed optimization and statistical learning via the alternating direction method of multipliers (2010)
- N. Parikh, S. Boyd, *Block splitting for distributed optimization* (2013)

image deblurring: the example is taken from

D. O'Connor and L. Vandenberghe, *Primal-dual decomposition by operator splitting and applications to image deblurring* (2014)