Acta Crystallographica Section E

Structure Reports

Online

ISSN 1600-5368

N-(3-Fluorobenzoyl)-*N'*,*N''*-bis(4-methylphenyl)phosphoric triamide

Mehrdad Pourayoubi, ** Samad Shoghpour, * Giuseppe Bruno *b and Hadi Amiri Rudbari *b

^aDepartment of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran, and ^bDipartimento di Chimica Inorganica, Villaggio S. Agata, Salita Sperone 31, Università di Messina, 98166 Messina, Italy

Correspondence e-mail: mehrdad_pourayoubi@yahoo.com

Received 3 October 2011; accepted 17 October 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.003 \text{ Å}$; R factor = 0.039; wR factor = 0.109; data-to-parameter ratio = 15.1.

In the title compound, $C_{21}H_{21}FN_3O_2P$, the NH and P(=O) groups of the C(=O)NHP(=O) fragment are in a *syn* arrangement with respect to each other, as are the two amide H atoms of the two $CH_3-4-C_6H_4-NH$ moieties. In the crystal, molecules are linked through $N-H\cdots O(=P)$ and $N-H\cdots O(=C)$ hydrogen bonds, forming $R_2^2(8)$ and $R_2^2(12)$ rings, which are arranged in chains parallel to [010].

Related literature

For hydrogen-bond patterns in phosphoric triamides of the formula $RC(O)NHP(O)[NR^1R^2]_2$ and $RC(O)NHP(O)-[NHR^1]_2$, see: Toghraee *et al.* (2011). For different cyclic hydrogen-bond motifs, see: Pourayoubi *et al.* (2011).

Experimental

Crystal data

 $\begin{array}{lll} {\rm C}_{21}{\rm H}_{21}{\rm FN}_3{\rm O}_2{\rm P} & V = 2037.02 \ (16) \ \mathring{\rm A}^3 \\ M_r = 397.38 & Z = 4 \\ {\rm Monoclinic}, P_{21}/n & {\rm Mo} \ K\alpha \ {\rm radiation} \\ a = 10.2132 \ (5) \ \mathring{\rm A} & \mu = 0.17 \ {\rm mm}^{-1} \\ b = 9.8588 \ (4) \ \mathring{\rm A} & T = 296 \ {\rm K} \\ c = 20.2711 \ (9) \ \mathring{\rm A} & 0.25 \times 0.22 \times 0.14 \ {\rm mm} \end{array}$

 β = 93.621 (2)°

Data collection

 $\begin{array}{ll} \mbox{Bruker APEXII CCD} & 20105 \mbox{ measured reflections} \\ \mbox{diffractometer} & 3844 \mbox{ independent reflections} \\ \mbox{Absorption correction: multi-scan} & 3061 \mbox{ reflections with } I > 2\sigma(I) \\ \mbox{} (SADABS; \mbox{ Bruker}, 2007) & R_{\rm int} = 0.030 \\ \mbox{} T_{\rm min} = 0.662, \mbox{} T_{\rm max} = 0.745 \\ \end{array}$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.039 & 255 \text{ parameters} \\ wR(F^2) = 0.109 & \text{H-atom parameters constrained} \\ S = 1.04 & \Delta\rho_{\text{max}} = 0.37 \text{ e Å}^{-3} \\ 3844 \text{ reflections} & \Delta\rho_{\text{min}} = -0.35 \text{ e Å}^{-3} \end{array}$

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} N1-H1\cdots O2^{i} \\ N3-H3\cdots O1^{ii} \end{array} $	0.86	1.97	2.7835 (18)	157
	0.86	2.06	2.8972 (18)	165

Symmetry codes: (i) -x + 1, -y + 1, -z + 2; (ii) -x + 1, -y, -z + 2.

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *OLEX* (Dolomanov *et al.*, 2003); software used to prepare material for publication: *SHELXTL* (Sheldrick, 2008) and *enCIFer* (Allen *et al.*, 2004).

Support of this investigation by Ferdowsi University of Mashhad is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5349).

References

Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Dolomanov, O. V., Blake, A. J., Champness, N. R. & Schröder, M. (2003). J. Appl. Cryst. 36, 1283–1284.

Pourayoubi, M., Tarahhomi, A., Saneei, A., Rheingold, A. L. & Golen, J. A. (2011). Acta Cryst. C67, o265–o272.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Toghraee, M., Pourayoubi, M. & Divjakovic, V. (2011). *Polyhedron*, **30**, 1680–1690.

supplementary m	aterials	

Acta Cryst. (2011). E67, o3034 [doi:10.1107/S1600536811045314]

N-(3-Fluorobenzoyl)-N',N''-bis(4-methylphenyl)phosphoric triamide

M. Pourayoubi, S. Shoghpour, G. Bruno and H. Amiri Rudbari

Comment

The possible hydrogen bond patterns in crystal structure of phosphoric triamides of the general formula $RC(O)NHP(O)[NR^1R^2]_2$ and $RC(O)NHP(O)[NHR^1]_2$ have been analyzed recently (Toghraee et al., 2011) and the hydrogen bonds strengths in these systems were discussed based on cyclic hydrogen bond motifs (Pourayoubi et al., 2011). It was concluded that the $R_2^2(8)$ ring motif is generated by a pair of P(=O)···H-N_{C(O)NHP(O)} hydrogen bonds between two neighboring molecules in the crystal packing of phosphoric triamides of the formula $RC(O)NHP(O)[NR^1R^2]_2$ which contain a syn orientation of P(=O) versus N—H. In the case of phosphoric triamides of the formula RC(O)NHP(O)[NHR¹]₂, crystal structure is usually composed of a chain of $R_2^2(8)$ and $R_2^2(12)$ ring motifs which alternately connected to each other. However, a few other hydrogen bond patterns were also found. The $R_2^2(8)$ motif is formed by two P(=O)···H–N_{C(O)NHP(O)} hydrogen bonds and the R_2^2 (12) motif by two C(=O)···H-N_{amide} hydrogen bonds. In this work, the synthesis and crystal structure of a new phosphoric triamide, P(O)[NHC(O)C₆H₄(3-F)][NH–C₆H₄–4–CH₃]₂, is reported. This investigation was carried out as part of a comprehensive study on the hydrogen bonds pattern in phosphoric triamides with formula $RC(O)NHP(O)[NHR^1]_2$. The phosphorus atom has a distorted tetrahedral environment (Fig. 1). Comparison of the O-P-N angles indicates that the O-P-N1 angle is smaller than ideal tetrahedral (107.02 (7)°) and the O-P-N2 and O-P-N3 angles (113.75 (7)° and 116.29 (7)°, respectively) display larger than ideal values. This probably arises due to steric repulsion involving the P(=O) group. Moreover, there is no $\pi^{\cdots}\pi$ interaction between the two para-methyl phenyl groups. The C(=O) and P(=O) groups of the C(=O)NHP(=O) moiety are in anti positions relative to each other, contrary to the syn orientation of P(=O) and NH groups. The P(=O), C(=O) and P-N bond lengths and P-N-C bond angles are in the range of the expected values. In the crystal structure, molecules are linked through P(=O)···H-N_{C(O)NHP(O)} and C(=O)···H-N_{amide} hydrogen bonds (Table 1), to give a linear chain running along the b axis.

Experimental

Synthesis of 3-F-C₆H₄C(O)NHP(O)Cl₂ A mixture of phosphorus pentachloride (3.773 g, 18.12 mmol) and 3-fluoroben-zamide (2.521 g, 18.12 mmol) were refluxed in CCl₄ for 8 h, and then the resulting solution was cooled to the room temperature. Formic acid (0.834 g, 18.12 mmol) was syringed dropwise into the stirring solution in 20 min and stirred for 6 h to yield the white precipitate that was filtered and dried in vacuum.

Synthesis of the title molecule To a solution of 3-F–C₆H₄C(O)NHP(O)Cl₂ (0.256 g, 1 mmol) in CHCl₃ (20 ml), a mixture of *p*-toluidine (0.214 g, 2 mmol) and triethylamine (0.202 g, 2 mmol) in CHCl₃ (5 ml) was added dropwise at 273 K. After 4 h stirring, the solvent was evaporated in vacuum and then the resulting solid was washed with distilled water. Single crystals of title compound were obtained from a mixture of CH₃OH, CH₃CN and n-C₆H₁₄ after slow evaporation at

room temperature. IR (KBr, cm⁻¹): 3355 (NH), 3313 (NH), 3081 (NH), 2921, 1651 (C=O), 1615, 1588, 1513, 1440, 1386, 1267, 1235, 1210, 961, 870, 861, 817, 751.

Refinement

All H atoms were placed in calculated positions with C—H = 0.93-0.96Å; N—H = 0.86Å and were included in a ridingmodel approximation with $U_{iso}(H) = 1.2U_{eq}(C,N)$ or $1.5U_{eq}(C_{methyl})$.

Figures

Fig. 1. The molecular structure of the title compound. Ellipsoids are given at the 50% probability level.

N-(3-Fluorobenzoyl)-N',N''-bis(4-methylphenyl)phosphoric triamide

Crystal data

 $C_{21}H_{21}FN_3O_2P$ F(000) = 832 $M_r = 397.38$ $D_{\rm x} = 1.296 \; {\rm Mg \; m}^{-3}$

Monoclinic, $P2_1/n$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6910 reflections Hall symbol: -P 2yn

 $\theta = 2.3-25.1^{\circ}$ a = 10.2132 (5) Åb = 9.8588 (4) Å $\mu = 0.17 \text{ mm}^{-1}$ c = 20.2711 (9) ÅT = 296 K $\beta = 93.621 (2)^{\circ}$ Cubic, colorless $0.25 \times 0.22 \times 0.14 \text{ mm}$

 $V = 2037.02 (16) \text{ Å}^3$

Data collection

Z = 4

Bruker APEXII CCD 3844 independent reflections diffractometer

3061 reflections with $I > 2\sigma(I)$ Radiation source: fine-focus sealed tube

 $R_{\rm int} = 0.030$ graphite

 $\theta_{\text{max}} = 25.7^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$ φ and ω scans

Absorption correction: multi-scan $h = -12 \rightarrow 12$ (SADABS; Bruker, 2007) $T_{\min} = 0.662$, $T_{\max} = 0.745$ $k = -12 \rightarrow 11$ $l = -24 \rightarrow 24$ 20105 measured reflections

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.109$	H-atom parameters constrained
S = 1.04	$w = 1/[\sigma^2(F_0^2) + (0.0537P)^2 + 0.6292P]$ where $P = (F_0^2 + 2F_c^2)/3$
3844 reflections	$(\Delta/\sigma)_{\text{max}} = 0.003$
255 parameters	$\Delta \rho_{max} = 0.37 \text{ e Å}^{-3}$
0 restraints	$\Delta \rho_{\min} = -0.35 \text{ e Å}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

x	y	z	$U_{\rm iso}*/U_{\rm eq}$
0.55273 (4)	0.28199 (4)	0.97803 (2)	0.03501 (15)
0.00592 (13)	0.50210 (15)	1.10740 (8)	0.0863 (5)
0.32311 (13)	0.10156 (12)	0.97315 (7)	0.0522 (4)
0.62121 (12)	0.41249 (11)	0.97696 (6)	0.0424 (3)
0.39319 (14)	0.31600 (13)	0.98654 (7)	0.0384 (4)
0.3699	0.3994	0.9901	0.046*
0.56968 (16)	0.18952 (15)	0.91224 (7)	0.0457 (4)
0.5594	0.1032	0.9149	0.055*
0.59807 (15)	0.17934 (14)	1.03822 (7)	0.0407 (4)
0.6244	0.1001	1.0273	0.049*
0.0244 (2)	0.3949 (2)	1.06744 (11)	0.0523 (5)
0.14869 (18)	0.36985 (19)	1.04838 (10)	0.0462 (5)
0.2185	0.4259	1.0621	0.055*
0.16722 (17)	0.25899 (17)	1.00822 (9)	0.0381 (4)
0.29931 (18)	0.21885 (16)	0.98807 (9)	0.0375 (4)
0.60112 (19)	0.24700 (18)	0.85011 (9)	0.0439 (4)
0.7180 (2)	0.3164 (2)	0.84531 (11)	0.0558 (5)
0.7763	0.3256	0.8822	0.067*
	0.55273 (4) 0.00592 (13) 0.32311 (13) 0.62121 (12) 0.39319 (14) 0.3699 0.56968 (16) 0.5594 0.59807 (15) 0.6244 0.0244 (2) 0.14869 (18) 0.2185 0.16722 (17) 0.29931 (18) 0.60112 (19) 0.7180 (2)	0.55273 (4) 0.28199 (4) 0.00592 (13) 0.50210 (15) 0.32311 (13) 0.10156 (12) 0.62121 (12) 0.41249 (11) 0.39319 (14) 0.31600 (13) 0.3699 0.3994 0.56968 (16) 0.18952 (15) 0.5594 0.1032 0.59807 (15) 0.17934 (14) 0.6244 0.1001 0.0244 (2) 0.3949 (2) 0.14869 (18) 0.36985 (19) 0.2185 0.4259 0.16722 (17) 0.25899 (17) 0.29931 (18) 0.21885 (16) 0.60112 (19) 0.24700 (18) 0.7180 (2) 0.3164 (2)	0.55273 (4) 0.28199 (4) 0.97803 (2) 0.00592 (13) 0.50210 (15) 1.10740 (8) 0.32311 (13) 0.10156 (12) 0.97315 (7) 0.62121 (12) 0.41249 (11) 0.97696 (6) 0.39319 (14) 0.31600 (13) 0.98654 (7) 0.3699 0.3994 0.9901 0.56968 (16) 0.18952 (15) 0.91224 (7) 0.5594 0.1032 0.9149 0.59807 (15) 0.17934 (14) 1.03822 (7) 0.6244 0.1001 1.0273 0.0244 (2) 0.3949 (2) 1.06744 (11) 0.14869 (18) 0.36985 (19) 1.04838 (10) 0.2185 0.4259 1.0621 0.16722 (17) 0.25899 (17) 1.00822 (9) 0.29931 (18) 0.21885 (16) 0.98807 (9) 0.60112 (19) 0.24700 (18) 0.84531 (11)

C7	0.7477 (3)	0.3719 (3)	0.78558 (12)	0.0684 (7)
H7	0.8258	0.4196	0.7831	0.082*
C8	0.6657 (3)	0.3589 (2)	0.72965 (11)	0.0726 (7)
C9	0.7009 (4)	0.4217 (3)	0.66478 (14)	0.1173 (13)
H9A	0.7807	0.3818	0.6512	0.176*
H9B	0.7130	0.5176	0.6705	0.176*
Н9С	0.6314	0.4053	0.6316	0.176*
C10	0.06158 (19)	0.1775 (2)	0.98825 (10)	0.0492 (5)
H10	0.0741	0.1025	0.9616	0.059*
C11	-0.0622 (2)	0.2074 (2)	1.00776 (12)	0.0601 (6)
H11	-0.1329	0.1531	0.9936	0.072*
C12	-0.0815 (2)	0.3170(2)	1.04808 (12)	0.0591 (6)
H12	-0.1645	0.3374	1.0617	0.071*
C13	0.59854 (18)	0.20754 (18)	1.10666 (9)	0.0410(4)
C14	0.6514(2)	0.1138 (2)	1.15103 (10)	0.0577 (5)
H14	0.6853	0.0331	1.1357	0.069*
C15	0.6545 (3)	0.1384 (3)	1.21817 (12)	0.0753 (7)
H15	0.6903	0.0735	1.2473	0.090*
C16	0.6059(3)	0.2569 (3)	1.24288 (11)	0.0699 (7)
C17	0.5550(3)	0.3505 (3)	1.19855 (12)	0.0721 (7)
H17	0.5225	0.4317	1.2142	0.087*
C18	0.5505 (2)	0.3279 (2)	1.13088 (11)	0.0609(6)
H18	0.5154	0.3933	1.1019	0.073*
C19	0.6086 (4)	0.2837 (4)	1.31697 (12)	0.1036 (11)
H19A	0.6172	0.3794	1.3250	0.155*
H19B	0.6818	0.2370	1.3386	0.155*
H19C	0.5286	0.2517	1.3340	0.155*
C20	0.5180(2)	0.2333 (2)	0.79481 (11)	0.0633 (6)
H20	0.4392	0.1869	0.7974	0.076*
C21	0.5505 (3)	0.2879 (3)	0.73502 (11)	0.0772 (8)
H21	0.4936	0.2766	0.6978	0.093*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.0371 (3)	0.0248 (2)	0.0440(3)	0.00215 (18)	0.00981 (19)	-0.00342 (18)
F1	0.0618 (9)	0.0742 (9)	0.1262 (13)	0.0042 (7)	0.0322 (8)	-0.0372 (9)
O1	0.0543 (8)	0.0277 (6)	0.0757 (9)	-0.0005 (6)	0.0121 (7)	-0.0088(6)
O2	0.0414 (7)	0.0284 (6)	0.0589 (8)	-0.0007(5)	0.0146 (6)	-0.0053 (6)
N1	0.0370(8)	0.0245 (7)	0.0543 (9)	0.0032 (6)	0.0083 (7)	-0.0023 (6)
N2	0.0605 (10)	0.0281 (7)	0.0503 (9)	-0.0020 (7)	0.0171 (8)	-0.0054 (7)
N3	0.0478 (9)	0.0273 (7)	0.0477 (9)	0.0088 (6)	0.0078 (7)	-0.0044 (6)
C1	0.0467 (11)	0.0432 (11)	0.0681 (13)	0.0050 (9)	0.0131 (10)	-0.0026 (10)
C2	0.0386 (10)	0.0372 (10)	0.0634 (12)	-0.0022 (8)	0.0082 (9)	-0.0043 (9)
C3	0.0394 (10)	0.0312 (8)	0.0441 (10)	-0.0004 (7)	0.0050(8)	0.0047 (7)
C4	0.0427 (10)	0.0277 (8)	0.0424 (9)	-0.0009 (7)	0.0040(8)	-0.0001 (7)
C5	0.0524 (11)	0.0362 (9)	0.0443 (10)	0.0017 (8)	0.0137 (9)	-0.0071 (8)
C6	0.0523 (12)	0.0636 (13)	0.0527 (12)	-0.0067 (10)	0.0117 (10)	-0.0048 (10)

C7	0.0773 (16)	0.0674 (15)	0.0634 (15)	-0.0214 (13)	0.0275 (13)	-0.0077 (12)	
C8	0.113 (2)	0.0568 (13)	0.0499 (13)	-0.0161 (14)	0.0230 (14)	-0.0076 (11)	
C9	0.200 (4)	0.098(2)	0.0569 (16)	-0.045 (3)	0.036(2)	0.0000 (16)	
C10	0.0486 (12)	0.0433 (10)	0.0556 (12)	-0.0079(9)	0.0027 (9)	-0.0022 (9)	
C11	0.0420 (12)	0.0631 (14)	0.0747 (15)	-0.0108 (10)	-0.0004 (10)	0.0009 (12)	
C12	0.0368 (11)	0.0619 (13)	0.0796 (15)	0.0015 (10)	0.0108 (10)	0.0076 (12)	
C13	0.0419 (10)	0.0363 (9)	0.0450 (10)	-0.0035 (8)	0.0052 (8)	-0.0018 (8)	
C14	0.0731 (15)	0.0432 (11)	0.0556 (13)	0.0021 (10)	-0.0059 (11)	0.0006 (9)	
C15	0.110(2)	0.0598 (14)	0.0541 (14)	-0.0110 (14)	-0.0124 (13)	0.0081 (12)	
C16	0.0890 (18)	0.0740 (16)	0.0471 (12)	-0.0304 (14)	0.0079 (12)	-0.0068 (12)	
C17	0.0956 (19)	0.0633 (14)	0.0590 (14)	-0.0005 (14)	0.0174 (13)	-0.0187 (12)	
C18	0.0824 (16)	0.0496 (12)	0.0512 (12)	0.0142 (11)	0.0073 (11)	-0.0072 (10)	
C19	0.148 (3)	0.116(2)	0.0475 (14)	-0.048 (2)	0.0094 (16)	-0.0108 (15)	
C20	0.0697 (15)	0.0617 (14)	0.0588 (13)	-0.0191 (12)	0.0068 (11)	-0.0095 (11)	
C21	0.107(2)	0.0759 (17)	0.0473 (13)	-0.0201 (16)	-0.0021 (13)	-0.0073 (12)	
Geometric para	ameters (Å °)						
•	iniciers (21,)	1 4(52 (12)	C0.	110 4	0.00	00	
P1—O2		1.4652 (12)	C9—		0.96		
P1—N3		1.6297 (15)	C9—		0.9600		
P1—N2		1.6336 (15)	C9—		0.9600		
P1—N1		1.6830 (14)	C10-		1.380 (3)		
F1—C1		1.352 (2)	C10-		0.9300		
O1—C4		1.224 (2)	C11–			1.377 (3) 0.9300	
N1—C4		1.357 (2)	C11—H11				
N1—H1		0.8600	C12–		0.93		
N2—C5		1.436 (2)	C13-			6 (3)	
N2—H2		0.8600	C13-			6 (3)	
N3—C13		1.415 (2)	C14-			1 (3)	
N3—H3		0.8600	C14-		0.93		
C1—C12		1.364 (3)	C15-			6 (4)	
C1—C2		1.373 (3)	C15-		0.93		
C2—C3		1.383 (3)	C16-			7 (4)	
C2—H2A		0.9300	C16–		1.523 (3)		
C3—C10		1.385 (3)	C17–			8 (3)	
C3—C4		1.488 (2)	C17–		0.9300		
C5—C20		1.369 (3)	C18–		0.93		
C5—C6		1.385 (3)		-H19A	0.96		
C6—C7		1.380 (3)		–H19B	0.96		
C6—H6		0.9300		–H19C	0.96		
C7—C8		1.373 (4)	C20-			6 (3)	
C7—H7		0.9300	C20-		0.9300		
C8—C21		1.378 (4)	C21-	–H21	0.93	00	
C8—C9		1.517 (3)					
O2—P1—N3		116.29 (8)	C8—	С9—Н9С	109.	5	
O2—P1—N2		113.75 (7)	Н9А-	— С9 — Н9С	109.	5	
N3—P1—N2		103.00 (8)		— С9 — Н9С	109.	5	
O2—P1—N1		107.02 (7)	C11-	-C10C3	120.	22 (19)	
N3—P1—N1		106.15 (7)	C11-	-C10H10	119.	9	

N2—P1—N1	110.37 (8)		C3—C10—H10		119.9
C4—N1—P1	123.49 (12)		C12—C11—C10		120.4 (2)
C4—N1—H1	118.3		C12—C11—H11		119.8
P1—N1—H1	118.3		C10—C11—H11		119.8
C5—N2—P1	122.47 (12)		C1—C12—C11		118.13 (19)
C5—N2—H2	118.8		C1—C12—H12		120.9
P1—N2—H2	118.8		C11—C12—H12		120.9
C13—N3—P1	126.55 (12)		C14—C13—C18		118.45 (19)
C13—N3—H3	116.7		C14—C13—N3		119.09 (17)
P1—N3—H3	116.7		C18—C13—N3		122.44 (17)
F1—C1—C12	118.31 (18)		C13—C14—C15		120.7 (2)
F1—C1—C2	118.40 (19)		C13—C14—H14		119.7
C12—C1—C2	123.3 (2)		C15—C14—H14		119.7
C1—C2—C3	118.11 (18)		C16—C15—C14		121.4 (2)
C1—C2—H2A	120.9		C16—C15—H15		119.3
C3—C2—H2A	120.9		C14—C15—H15		119.3
C2—C3—C10	119.83 (17)		C17—C16—C15		117.7 (2)
C2—C3—C4	122.14 (16)		C17—C16—C19		120.9 (3)
C10—C3—C4	117.95 (16)		C15—C16—C19		121.4 (3)
O1—C4—N1	120.64 (16)		C16—C17—C18		121.9 (2)
O1—C4—C3	121.13 (16)		C16—C17—H17		119.0
N1—C4—C3	118.22 (14)		C18—C17—H17		119.0
C20—C5—C6	118.93 (19)		C13—C18—C17		119.8 (2)
C20—C5—N2	121.18 (18)		C13—C18—H18		120.1
C6—C5—N2	119.89 (18)		C17—C18—H18		120.1
C7—C6—C5	119.7 (2)		C16—C19—H19A		109.5
C7—C6—H6	120.1		C16—C19—H19B		109.5
C5—C6—H6	120.1		H19A—C19—H19B		109.5
C8—C7—C6	122.1 (2)		C16—C19—H19C		109.5
C8—C7—H7	119.0		H19A—C19—H19C		109.5
C6—C7—H7	119.0		H19B—C19—H19C		109.5
C7—C8—C21	117.5 (2)		C5—C20—C21		120.5 (2)
C7—C8—C9	120.8 (3)		C5—C20—H20		119.8
C21—C8—C9	121.7 (3)		C21—C20—H20		119.8
C8—C9—H9A	109.5		C8—C21—C20		121.3 (2)
C8—C9—H9B	109.5		C8—C21—H21		119.4
H9A—C9—H9B	109.5		C20—C21—H21		119.4
117A—C7—117B	107.5		C20—C21—H21		117.4
Hydrogen-bond geometry (Å, °)					
<i>D</i> —H··· <i>A</i>	D-	—Н	$H\cdots A$	D··· A	<i>D</i> —H··· <i>A</i>
N1—H1···O2 ⁱ	0.8		1.97	2.7835 (18)	157.
N3—H3···O1 ⁱⁱ	0.8		2.06	2.8972 (18)	165.
Symmetry codes: (i) $-x+1$, $-y+1$, $-z+2$;				– (-9)	
Symmony codes. (1) $x+1$, $y+1$, $z+2$,	(11) λ (1) λ (1)				

Fig. 1

