San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Grammars

(Part 2)

Lecture 21 Day 25/31

CS 154
Formal Languages and Computability
Spring 2018

Agenda of Day 25

- Summary of Lecture 20
- Quiz 8
- Lecture 21: Teaching ...
 - Grammars (Part 2)

Summary of Lecture 20: We learned ...

Grammars

- We are looking for a more powerful and practical tool to represent all formal languages.
- Roughly speaking, a set of "production rules" is called grammar.
- A sentence is well-formed if ...
 - ... we can derive it from the production rules.
- Associated language to the grammar G is ...
 - the set of all strings generated by it.
 - ... denoted by L(G).

Any Question

NAME	Alan M. Turing		
SUBJECT	CS 154	TEST NO.	8
DATE	04/19/2018	PERIOD	1/2/3

Quiz 8 Use Scantron

(1) Constructing Grammars

Example 11

 Find a grammar that generates the following language over $\Sigma = \{a, b\}$:

$$L = \{w : w \in \Sigma^*\}$$

Solution

Constructing Grammars

Example 12

Find a grammar that generates the following language over
 Σ = {a, b}:

 $L = \{w : w \text{ contains exactly one a}\}$

Solution

Homework

Find a grammar that generates the following languages over
 Σ = {a, b}:

- 1. L = {w : w contains at least one a}
- 2. $L = \{w : w \text{ contains at least 2 a's}\}$
- 3. $L = \{w : w \text{ contains no more than 3 a's}\}$
- 4. $L = \{a^{2n} b^n : n \ge 0\}$
- 5. $L = \{a^{2n} b^m : n, m \ge 0\}$

Definitions

Formal Definition of Grammar

A grammar G is defined by the quadruple:

$$G = (V, T, S, P)$$

- Where:
 - V is a nonempty finite set of variables.
 - T is a nonempty finite set of symbols (aka terminals) called terminal alphabet.
 - $-S \in V$ is a special symbol called start variable.
 - P is a finite set of production rules (or simply rules)
 of the form A → B
 where:
 - A \in (T \cup V)* V (T \cup V)* //Contains at least one variable
 - B ∈ (T ∪ V)*

Formal Definition of Grammar

Formal Definition of Grammar

Example 13

• The following grammar generates the language $L = \{a^nb^n : n \ge 0\}$.

$$S \rightarrow aSb \mid \lambda$$

Write V, T, Starting variable, and P

Solution

$$V = \{S\}$$

$$T = \{a, b\}$$

Start variable: $S \in V$

$$P = \{S \rightarrow aSb, S \rightarrow \lambda\}$$

Equivalency of Grammars

A given language can be generated by many grammars.

Definition

 Two grammars G₁ and G₂ are equivalent iff they generate the same language.

$$G_1 \equiv G_2 \leftrightarrow L(G_1) = L(G_2)$$

• What is the relationship between:

the set of Grammars, and

the set of all formal languages?

- We know that "every grammar represents a language".
- BUT we don't know yet whether we can represent every language, by a grammar or not!
 - Our knowledge is not enough yet.

Types of Grammars

Linear Grammars

Definition

 A grammar G is linear if the right side of every production rule has at most one variable.

$$A \rightarrow x \mid Bx \mid xC$$

Where A, B, C \in V and $x \in T^*$

Example 14

Is the following grammar linear?

$$S \rightarrow A$$

$$A \rightarrow aB \mid \lambda$$

$$B \rightarrow Ab$$

 Yes, because all production rules have at most one variable in the right side.

Right-Linear Grammars

Definition

 A linear grammar is said to be right-linear if all production rules are of the form:

$$A \rightarrow x \mid xB$$

 $A \rightarrow x \mid xB$ Where A, B \in V and $x \in T^*$

Example 15

Is the following grammar right-linear?

$$S \rightarrow abS \mid a$$

Yes, it is right-linear.

Left-Linear Grammars

Definition

 A linear grammar is said to be left-linear if all production rules are of the form:

$$A \rightarrow x \mid Bx$$

 $A \rightarrow x \mid Bx$ Where A, B \in V and $x \in T^*$

Example 16

Is the following grammar left-linear?

```
S \rightarrow Aab
```

$$A \rightarrow Bab \mid B$$

$$B \rightarrow a$$

Yes, it is left-linear.

Regular Grammars

Definition

 A grammar is said to be regular if it is either right-linear or left-linear.

Example 17

• Is the following grammar regular?

$$S \rightarrow A$$

$$A \rightarrow aB \mid \lambda$$

$$B \rightarrow Ab$$

It is NOT regular because it is neither right-linear nor left-linear.

Regular Grammars and Regular Languages

Theorem

If G is a regular grammar, then L(G) is a regular language.

Theorem

• Let L_1 be a regular language on Σ . Then there exists a regular grammar G such that $L_1 = L(G)$.

Regular Languages Representations

- Now, We have three ways for representing Regular Languages:
 - DFA / NFA
 - REGEX
 - Regular Grammar

- We've already known that "every grammar represents a language".
- At this moment we know that:
 Regular grammars represent regular languages.

Every regular language can be represented by a regular grammar.

Definition

 A grammar G is said to be context-free (CFG) if all production rules are of the form:

$$A \rightarrow V$$

 $A \rightarrow V$ Where $A \in V$ and $V \in (V \cup T)^*$

Example 18

Is the following grammar context-free?

$$S \rightarrow a S b \mid \lambda$$

Yes, it is a context free grammar.

Example 19

- Consider $L_1 = \{a^nb^n : n \ge 0\}$ over $\Sigma = \{a, b\}$.
- Let's take a different look at this language.
- For example, consider this language:
- $L_2 = \{(n)^n : n \ge 0\} \text{ over } \Sigma = \{(,,)\}$
- What strings would this language contain?
- What strings do not belongs to this language?

• What is L₂ representing?

Example 20

Is the following grammar context-free?

$$S \rightarrow a S a \mid b S b \mid \lambda$$

What language does it produce?

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790
- 3. The ELLCC Embedded Compiler Collection, available at: http://ellcc.org/