1. The water current at each point (x, y) in a lake is given by $F(x, y) = \langle 1 - y, x \rangle$. You row your boat from the point (1, 0), along the top half of a semi-circle to the point (-1, 0), and then back along a straight line, as shown below:

- a) How much work is done by the current...
 - (i) (4 points)...during the first part of the path (the semicircle)?

Answer. The parameterization of the circle is given by $r(t) = \langle \cos(t), \sin(t) \rangle$ with $0 \le t \le \pi$, and so $r'(t) = \langle -\sin(t), \cos(t) \rangle$, and by substituting for x, y we get that the vector field along this curve is $F(t) = \langle 1 - \sin(t), \cos(t) \rangle$. Therefore, the work is given by

$$\int_{C} \mathbf{F} \cdot \mathbf{T} ds = \int_{0}^{\pi} F \cdot r'(t) dt$$

$$= \int_{0}^{\pi} \langle 1 - \sin(t), \cos(t) \rangle \cdot \langle -\sin(t), \cos(t) \rangle dt$$

$$= \int_{0}^{\pi} (-\sin(t) + \sin^{2}(t)) + (\cos^{2}(t)) dt$$

$$= \int_{0}^{\pi} -\sin(t) + 1 dt$$

$$= \int_{0}^{\pi} -\sin(t) dt + \int_{0}^{1} 1 dt$$

$$= (\cos(t)) \Big|_{0}^{\pi} + (t) \Big|_{0}^{\pi}$$

$$= (-1 - 1) + \pi$$

$$= \pi - 2.$$

(ii) (4 points)...during the second part of the path (the line)?

Answer. The parameterization of the straight line between (-1,0) and (1,0) is given by $(1-t)\langle -1,0\rangle + t\langle 1,0\rangle = \langle t-1+t,0\rangle = \langle 2t-1,0\rangle$, and so $r(t)=\langle 2t-1,0\rangle$ for $0\leq t\leq 1$ and $r'(t)=\langle 2,0\rangle$. Substituting t for x,y gives $F(t)=\langle 1,2t-1\rangle$. Therefore, the work done by the current is given by

$$\int_{C} \mathbf{F} \cdot \mathbf{T} ds = \int_{0}^{1} F \cdot r'(t) dt$$

$$= \int_{0}^{1} \langle 1, 2t - 1 \rangle \cdot \langle 2, 0 \rangle dt$$

$$= \int_{0}^{1} 2 + 0 dt$$

$$= (2t) \Big|_{0}^{1}$$

$$= 2.$$

b) (2 points) Is the vector field F(x, y) conservative? why or why not?

Answer. No. If it was conservative, then the work done over a closed loop would be zero. However, adding up the two integrals above does *not* give zero.

Alternatively, you could use the second derivative test to see that the field is not conservative. \Box

c) (0 points) What was your favorite part of this class?

Answer. ALL OF IT