H3 - Raiz primitiva

No campo da criptografia, os números primos desempenham um papel importante. O esquema "Diffie-Hellman" permite que duas partes em comunicação troquem uma chave secreta. Este método requer um número primo p e uma raiz primitiva r de p, a qual é de conhecimento público. Para um número primo p, r é uma raiz primitiva de p se e somente se seus expoentes $r, r^2, r^3, \ldots, r^{p-1}$ são distintos (mod p).

Escreva um programa que, dado um número primo p e outro inteiro r < p, determine se r é uma raiz primitiva de p.

Entrada

A entrada começará com dois inteiros p ($p < 2^{31}$) e n ($1 \le n \le 100$), separados por um espaço e em uma única linha (p é o número primo e n é a quantidade de candidatas a raizes primitivas). As próximas n linhas contém, cada uma, uma única candidata r a raiz primitiva a ser verificada.

Saída

A saída deve consistir de SIM, se r é uma raiz primitiva, ou NAO, caso contrário.

Exemplos de entradas e saídas

Entrada:	Saída:
5 2	SIM
3	NAO
4	
	•
Entrada:	Saída:
7 2	SIM
3	NAO
4	

Comentários a respeito do primeiro caso de teste: Dado que $3^1, 3^2, 3^3$ e 3^4 (mod 5) são, respectivamente, 3, 4, 2 e 1; a candidata 3 é uma raiz primitiva de 5. Como $4^1, 4^2, 4^3$ e 4^4 (mod 5) são respectivamente 4, 1, 4 e 1; então 4 não é uma raiz primitiva de 5.