НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Мегафакультет: Компьютерных технологий и управления **Направление:** 09.03.04 «Программная инженерия»

Лабораторная работа №2

По дисциплине: «Тестирование программного обеспечения»

Вариант 34159

Выполнила:

студентка группы Р33112

Корнишова Евгения Александровна

Преподаватель:

Харитонова Анастасия Евгеньевна

г. Санкт-Петербург 2021 г.

Текст задания:

Провести интеграционное тестирование программы, осуществляющей вычисление системы функций (в соответствии с вариантом).

Система функций:

$$\left\{egin{array}{ll} \left((\cot(x)-\sin(x))\cdot\cos(x)
ight) & ext{if} \quad x\leq 0 \ \left(\left(rac{\log_5(x)+\log_3(x)}{\log_2(x)^2}
ight)}{\log_3(x)}
ight) + \left(rac{\ln(x)}{\log_{10}(x)+\ln(x)}
ight)
ight) & ext{if} \quad x>0 \end{array}
ight.$$

$$x \le 0$$
: $((\cot(x) - \sin(x)) * \cos(x))$

$$x > 0: \left(\left(\left(\left(\left(\left(\log_5(x) + \log_3(x) \right) / \left(\log_2(x) ^2 \right) \right) / \left(\ln(x) - \log_2(x) \right) \right) / \log_3(x) \right) + \left(\ln(x) / \left(\log_2(x) + \ln(x) \right) \right) \right)$$

Правила выполнения работы:

- 1. Все составляющие систему функции (как тригонометрические, так и логарифмические) должны быть выражены через базовые (тригонометрическая зависит от варианта; логарифмическая натуральный логарифм).
- 2. Структура приложения, тестируемого в рамках лабораторной работы, должна выглядеть следующим образом (пример приведён для базовой тригонометрической функции sin(x)):

3. Обе "базовые" функции (в примере выше - sin(x) и ln(x)) должны быть реализованы при помощи разложения в ряд с задаваемой погрешностью. Использовать тригонометрические/логарифмические преобразования для упрощения функций ЗАПРЕЩЕНО.

- 4. Для КАЖДОГО модуля должны быть реализованы табличные заглушки. При этом необходимо найти область допустимых значений функций, и, при необходимости, определить взаимозависимые точки в модулях.
- 5. Разработанное приложение должно позволять выводить значения, выдаваемое любым модулем системы, в csv файл вида «X, Результаты модуля (X)», позволяющее произвольно менять шаг наращивания X. Разделитель в файле csv можно использовать произвольный.

Порядок выполнения работы:

- 1. Разработать приложение, руководствуясь приведёнными выше правилами.
- 2. С помощью JUNIT4 разработать тестовое покрытие системы функций, проведя анализ эквивалентности и учитывая особенности системы функций. Для анализа особенностей системы функций и составляющих ее частей можно использовать сайт https://www.wolframalpha.com/.
- 3. Собрать приложение, состоящее из заглушек. Провести интеграцию приложения по 1 модулю, с обоснованием стратегии интеграции, проведением интеграционных тестов и контролем тестового покрытия системы функций.

UML-диаграмма классов разработанного приложения:

Описание тестового покрытия с обоснованием его выбора:

Правая функция (x > 0) была разбита на четыре партиции эквивалентности, внутри каждой из которых было выбрано по две точки для тестирования, еще одной точкой для тестирование стала 1, не входящая в ОДЗ функции.

Левая функция (x <= 0) периодическая, причем ведет себя подобным образом относительно центра периода, который также был разбит на четыре партиции эквивалентности (по одной точке для тестирования в каждой). Дополнительные точки для тестирования: $0, -\pi, -2\pi$ (не входят в ОДЗ) и $-\frac{5\pi}{3}$ (точка за пределами первого полупериода, на котором производятся все расчеты тригонометрических функций при помощи приведения к нему всех остальных).

Графики, построенные csv-выгрузкам, полученным в процессе интеграции приложения:

Используемая стратегия интеграции — сверху вниз.

Используется напрямую

Используется в виде mock'а

Тест / задействованные модули	SystemFunction	FirstFunction	SecondFunction	Cot	Cos	Sin	Log10	Log5	Log3	Log2	Ln
SystemFunctionIntegrationTest											
FirstFunctionIntegrationTest											
SecondFunctionIntegrationTest											
CotFunctionIntegrationTest											
CosFunctionIntegrationTest											
SinFunctionUnitTest											
Log10FunctionIntegrationTest											
Log5FunctionIntegrationTest											
Log3FunctionIntegrationTest											
Log2FunctionIntegrationTest											
LnFunctionUnitTest											
FullSystemIntegrationTest											

Вывод: в ходе выполнения лабораторной работы я написала программу, вычисляющую значения заданной системы функций, выбрала для нее тестовое покрытие и провела интеграционное тестирование.