

19 - How Hard is a Problem?
Bernhard Reus

I

The story so far

- We have seen NP contains problems that seem intractable.
- We don't know whether P = NP i.e. whether the seemingly intractable problems are actually tractable.
- Today we develop at least an "angle" to attack this problem.

We don't know NP \ P

but we can look at the "hard" problems in there!

6

"Hard" Problems in (N)P

THIS TIME

- add complexity to problem reduction (of Lecture 9): "if you can solve B then you can solve A as well". (A is not harder than B) A≤B
- what are the "hardest" problems in (N)P (called complete problems)?
- why they are important?

see Lecture 9, Slides 18ff Reduction

to be able to show that problem A is no harder than problem B, reduce the problem.

Emil Leon Post (1897-1954)

- decide membership in A in terms of B using f
- many-one reduction from A to B $(A \leq B)$ is given by a total computable function f on (problem input) data such that $d \in A$ if and only if $f(d) \in B$.
- Many-one as f maps (many values) to one value and "is in B?" can only be asked once at the end.

there are more general forms of reduction

Very Simple Example

reduce the Travelling Salesman Problem where start = finish city to the Travelling Saleman Problem with different start and finish cities.

$$f([G,K,A]) = [G,K,A,A]$$
encoding of graph
encoding of city start=finish
encoding of mileage limit

- For reduction between problems in a complexity class, the reduction must be "effective" ...
- ... i.e. must be computable (as before) and not carry out of the complexity class at hand.

R. Karp

- So for NP or P the reduction function f should be computable in polynomial time.
- we write A ≤_p B

"polynomial time reduction" or Karp-reduction

10

Complete Problems

Definition (Complete Problem). For any complexity class \mathscr{C} a problem H is called *complete* for the class \mathscr{C} if problem H is itself in \mathscr{C} and is "hardest" in \mathscr{C} in the sense that for all other problems $A \in \mathscr{C}$ we have that $A \leq H$ (for an *appropriate* instantiation of reduction).

Important feature of NP-complete problems: To show that P = NP it suffices to show that any one NP-complete problem H is actually in P.

First, we prove closure of N(P) under poly-time reduction:

Theorem (Downward closure of (N)P). If $A \leq_P B$ and B is in NP then A is also in NP. Similarly, If $A \leq_P B$ and B is in P then A is also in P.

```
Proof. So assume A \leq_P B and B is in NP.

< r > x \text{ computes } f(x). reduction function

p \text{ read } xc \{ x := hd xc; c := hd tl xc; grades a constant of the second sec
```


Downward-closure NP

12

so we have now a program q such that

$$[q](x,c) = [p](f(x),c)$$

and for that it holds that

 $\llbracket q \rrbracket (x,c) = \text{true for a certificate } c$

iff [p](f(x), c) = true for a certificate c

iff $f(x) \in B$

iff $x \in A$

as required.

by reduction

Assume program r runs in polynomial time $p_1(n)$ Assume program p runs in polynomial time $p_2(n)$

$$time_q(d,c) = 2+3+4+$$
 "time for x:= x "+p_2(|f(d)|)
= 9+(1+p_1(|d|))+p_2(|f(d)|)
 \le 10+p_1(|d|)+p_2(p_1(|d|))
 *|d|

 $|f(d)| \leq p_1(|d|)^*|d|$ why?

by inspecting how large a tree can be produced

so q runs in polynomial time

14

Why complete problems?

Theorem If any NP-complete problem is already in P then P = NP (and the biggest open problem in theoretical computer science is solved).

Proof: Let H be the NP-complete problem that is in P. We only have to show that $NP \subseteq P$ as the other direction holds anyway.

We'll give details on the next slide.

END

© 2008-24. Bernhard Reus, University of Sussex

Next time:
Example of NP-complete
problems