Discrete Maths Notes

August 24, 2023

Contents

1	Logi	Logic					
	1.1	Propos	sitional Logic	2			
		1.1.1	Basics	2			
		1.1.2	Terminology	2			
		1.1.3	Examples	Ş			
		1.1.4	Satisfiability, Tautology, Contradiction	3			
	1.2	Truth	Tables	4			

1 Logic

1.1 Propositional Logic

1.1.1 Basics

A **proposition** is a statement that is either true or false.

Prepositions will be represented mathematically with capital letters A, B, C...

These prepositions are then are connected into more complex compound prepositions using *connectives*. Connectives are statements like "and, implies, if-then" and are represented mathematically with the symbols below.

f It's not always easy to determine if they're true/false.

Connectives							
Symbol	Name	English Term(s)	Reading				
\land	AND	And, But, Also	A and B				
V	OR	-	A or B				
\Rightarrow	IMPLICATION	If A, Then B If A, then B A implies B A, therefore B A only if B B follows from A A is a sufficient condition for B B is a necessary condition for A	A implies B				
\iff	BICONDITIONAL	If & only if A is necessary and sufficient for B	A if and only if B				
٦	NEGATION	Not	Not A				

1 A Bicondtional can also be thought of $(A \Longrightarrow B) \land (B \Longrightarrow A)$ Negation may sometimes be represented as A1 or \overline{A}

1.1.2 Terminology

 $A \wedge B$ - conjuction of conjuncts A and B

 $A \vee B$ - disjunction of disjuncts A and B

 $A \implies \overline{B}$ - A is the hypothesis/antecedant and B is the conclusion/consequence

1.1.3 Examples

1 Compound Proposition

If all humans are mortal_{Prp} A and all Greeks are human_{Prp} B then all Greeks are moral_{Prp} C can be represented as $A \wedge B \implies C$

2 Negation

Chocolate is sweet \rightarrow Chocolate is <u>not</u> sweet

Peter is tall and thin \rightarrow Peter is short or fat

The river is shallow or polluted \rightarrow The river is deep and polluted.

• Short and fat would be incorrect!

Not shallow or not polluted would be incorrect!

3 Implication: $\frac{\text{hypothesis}}{\text{onclusion}}$ and $\frac{\text{conclusion}}{\text{onclusion}}$

If the rain continues then the river will flood

A sufficient condition for a network failure is that the central switch goes down

The avocados are ripe only if they are dark and soft

A good diet is a necessary condition for a healthy cat

1.1.4 Satisfiability, Tautology, Contradiction

A proposition is <u>satisfiable</u> if it is true for <u>at least one</u> combination of boolean values.

A Boolean Satisfiability Problem (SAT) is checking for satisfiability in a propositional logic formula.

• You don't need a whole truth table for this, just look for one!

A Tautology is a proposition that is always true

A contradiction is a proposition that is always false.

 $_{\mathrm{ex}}$ $A \wedge \neg A$

1.2 Truth Tables

Truth Tables are used for determining all the possible outputs of a complex compound propostion.

The Columns Are for the prepositions, intermediate compound prepositions and the whole compound preposition.

The intrmt' prepositions are optional steps to make solving easier, use as needed.

<u>The Rows</u> Are to contian the different sets of possible truth values for each proposition. You will have 2^p rows where p is the number of propositions (then +1 for the header).

A The connectives in a compound propositional logic problem follow an order of precedence (the PEMDAS of logic) in the following order;

$$\neg \ , \wedge \ , \vee \ , \implies \ , \iff$$

TODO: Add all the truth table examples u have :D