(19) Organisation Mondiale de la Propriété Intellectuelle

Bureau international

(43) Date de la publication internationale 4 octobre 2001 (04.10.2001)

PCT

(10) Numéro de publication internationale WO 01/72849 A1

- (51) Classification internationale des brevets⁷:
 C08B 37/16, B01J 20/24, C02F 1/28, A61K 31/715
- (21) Numéro de la demande internationale :

PCT/FR01/00923

- (22) Date de dépôt international : 27 mars 2001 (27.03.2001)
- (25) Langue de dépôt :

français

(26) Langue de publication :

français

(30) Données relatives à la priorité :

00/03899

28 mars 2000 (28.03.2000) FR

(71) Déposants (pour tous les États désignés sauf US): COM-MISSARIAT A L'ENERGIE ATOMIQUE [FR/FR]; 31/33, rue de la Fédération, F-75752 Paris 15ème (FR). CENTRE NATIONAL DE LA RECHERCHE SCIEN-TIFIQUE (CNRS) [FR/FR]; 3 rue Michel Ange, F-75794 Paris Cedex 16 (FR).

- (72) Inventeurs; et
- (75) Inventeurs/Déposants (pour US seulement):
 GADELLE, Andrée [FR/FR]: 23, le hameau fleuri,
 F-38330 Montbonnot (FR). FAUVELLE, Florence
 [FR/FR]; 2 rue des Bons Enfants, F-38000 Grenoble (FR).
 DEBOUZY, Jean-Claude [FR/FR]; 60 rue du Château,
 F-38660 La Terrasse (FR).
- (74) Mandataire: SIGNORE, Robert; c/o Brevatome, 3 rue du Docteur Lancereaux, F-75008 Paris (FR).
- (81) État désigné (national) : US.
- (84) États désignés (régional): brevet européen (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR).

Publiée:

- avec rapport de recherche internationale

[Suite sur la page suivante]

(54) Title: PER(3,6-ANHYDRO)CYCLODEXTRIN DERIVATIVES, PREPARATION AND USE THEREOF FOR SEPARATING IONS

(54) Titre: DERIVES DE PER(3,6-ANHYDRO) CYCLODEXTRINES, LEUR PREPARATION ET LEUR UTILISATION POUR SEPARER DES IONS

- (57) Abstract: The invention concerns per(3,6-anhydro)cyclodextrin derivatives, their preparation and their use for separating polluting ions, for example, for human decontamination. Said derivatives correspond to one of the formulae (I) and (II) wherein one R¹ at least represents the -OCH₂COOH group and the other R¹'s, identical or different, correspond to one of the formulae: OH, OR², SH, SR², OCOR², NH₂, NHR², NR²R³, CONH₂, CONHR², CONR²R³, CN, COOR², COOH and R², wherein: R² and R³, identical or different, represent a saturated or unsaturated hydrocarbon, aliphatic or aromatic group, capable of comprising one several heteroatoms selected among O, S and N; and n is equal to 6, 7 or 8.
- (57) Abrégé: L'invention concerne des dérivés de per(3,6-anhydro)cyclodextrines, leur préparation et leur utilisation pour la séparation d'ions polluants, par exemple la décontamination humaine Ces dérivés répondent à l'une des formules (I) et (II) dans lesquelles l'un au moins des R¹ représente le groupe -OCH2COOH et les autres R¹ qui peuvent être identiques ou différents, représentent un groupe répondant à l'une des formules : OH, OR², SH, SR², OCOR², NH2, NHR², NR²R³, CONH2, CONHR², CONR²R³, CN, COOR², COOH et R², dans lesquelles R² et R³ qui peuvent être identiques ou différents, représentent un groupe hydrocarboné, aliphatique ou aromatique, saturé ou insaturé, pouvant comporter un ou plusieurs hétéroatomes choisis parmi O, S et N, et n est égal à 6, 7 ou 8.

VO 01/72849

En ce qui concerne les codes à deux lettres et autres abréviations, se référer aux "Notes explicatives relatives aux codes et abréviations" figurant au début de chaque numéro ordinaire de la Gazette du PCT.

DERIVES DE PER (3,6-ANHYDRO) CYCLODEXTRINES, LEUR PREPARATION ET LEUR UTILISATION POUR SEPARER DES IONS,

DESCRIPTION

Domaine technique

La présente invention a pour objet de 10 nouveaux dérivés de per(3,6-anhydro)cyclodextrines, utilisables en particulier pour fixer et séparer des ions tels que les ions de cobalt, de lanthanides et d'uranyle.

Elle peut être appliquée en particulier dans le domaine de la décontamination de l'environnement en ces ions polluants, ainsi que pour la décontamination humaine.

Etat de la technique antérieure

20

25

30

15

5

Les cyclodextrines ou cyclomaltooligosaccharides sont des composés d'origine naturelle formés par l'enchaînement d'unités glucose liés en α -(1,4).

De nombreux travaux ont montré que ces composés pouvaient former des complexes d'inclusion avec des molécules hydrophobes permettant ainsi leur solubilisation dans des milieux aqueux. De nombreuses applications ont été proposées pour tirer profit de ce phénomène, en particulier dans le domaine pharmaceutique, comme il est décrit par D. Duchêne "Pharmaceutical application of cyclodextrins" dans

15

"Cyclodextrins and their industrial uses". Duchêne Ed., Editions de Santé, Paris, 1987, pages 213-257 [1].

Des spécialités pharmaceutiques ent déjà commercialisées au Japon, en été Italie et plus récemment en France, sous forme de complexes dans les cyclodextrines. En France, le premier principe actif le marché sous la forme d'un sur d'inclusion dans une cyclodextrine est le piroxicam, anti-inflammatoire commercialisé par Pierre Fabre Médicament, sous le nom de BREXIN®. Parmi les très nombreux dérivés modifiés de ces cyclodextrines, ceux pour lesquels la cavité est retournée sur elle-même présentent des propriétés intéressantes même si leur capacité à inclure des molécules organiques est perdue ou très limitée. Des composés de ce type sont les per (3, 6-anhydro) cyclodextrines.

La synthèse de ces peranhydrocyclodextrines a été décrite dès 1991 dans le document [2] : Gadelle A. et Defaye J., Angew. Chem. Int. Ed. Engl., (1991), 30, pages 78-79; et le document [3] : Ashton P.R., 20 Ellwood P., Staton I. and Stoddart J.F., Angew . Chem. Int. ed. Engl., (1991) 30, pages 80-81), et il a été montré que ces dérivés présentent des solubilités intéressantes aussi bien dans l'eau que dans solvants organiques. Quelques études ultérieures 25 (document [4]: Yamamura H. and Fujita K. Chem. Pharm. Bull., (1991) 39, pages 2505-2508 ; document [5] : Yamamura H., Ezuka T., Kawase Y., Rawai M., Butsugan Y. and Fujita K., J. Chem. Soc., Chem. Com., (1993), pages 636-637; et document [6]: Yamamura H. 30 Nagaoka H., Kawai M. and Butsugan Y., Tetrahedron Lett. (1995) 36, pages 1093-1094) ont de plus montré que ces

10

15

20

25

30

dérivés peranhydro pouvaient complexer des ions alcalins avec une sélectivité non négligeable.

Le document FR-A-2 744 124 [7] et le document FR-A-2 764 525 [8] illustrent d'autres dérivés de per(3,6-anhydro)cyclodextrines substituées en position-2, utiles pour la séparation de différents ions, notamment le potassium et le césium dans le cas du document [7] grâce à la présence du substituant acétyle, ou le plomb dans le cas du document [8] grâce à la présence d'un substituant méthyle.

Cependant, les dérivés décrits dans ces documents ne permettent pas d'assurer une séparation satisfaisante par complexation des ions de cobalt, d'uranyle et de lanthanides tels que le dysprosium, qui polluent l'environnement.

De plus, les ions de lanthanides sont toxiques pour les êtres vivants en troublant les échanges ioniques du calcium et du sodium. Ainsi, le lanthane qui est de même taille que le calcium mais non de même valence pertube les échanges comme il est décrit par Evans CH, « Interactions of Lanthanides with Tissues, Cells and Cellular Organelles » dans Biochemistry of the Lanthanides, Evans C. H. Ad., Plenum Press, New York, 1990, pp. 211-283 [9].

Exposé de l'invention

La présente invention a précisément pour objet de nouveaux dérivés de peranhydrocyclodextrines dans lesquels le substituant en position-2 a été choisi pour leur conférer des propriétés de complexation des ions polluants tels que ${\rm Co}^{2+}$, ${\rm UO_2}^{2+}$ et les ions de lanthanides comme ${\rm Dy}^{3+}$ et ${\rm Eu}^{3+}$.

10

15

20

25

Selon l'invention le dérivé de per(3,6-anhydro)cyclodextrine répond à l'une des formules suivantes :

dans lesquelles l'un au moins des R^1 représente le groupe $-OCH_2COOH$ et les autres R^1 qui peuvent être identiques ou différents, représentent un groupe répondant à l'une des formules : OH, OR^2 , SH, SR^2 , $OCOR^2$, NH_2 , NHR^2 , NR^2R^3 , $CONH_2$, $CCNHR^2$, $CONR^2R^3$, CN, $COOR^2$, COOH et R^2 , dans lesquelles R^2 et R^3 qui peuvent être identiques ou différents, représentent un groupe hydrocarboné, aliphatique ou aromatique, saturé ou insaturé, pouvant comporter un ou plusieurs hétéroatomes choisis parmi O, S et N, et n est égal à 6, 7 ou 8.

Dans le dérivé de cyclodextrine de formule (I) ou (II), les groupes hydrocarbonés aliphatiques ou aromatiques, susceptibles d'être utilisés pour R² et R³ peuvent être de divers types. Ils sont constitués par une chaîne carbonée dans laquelle certains atomes de carbone peuvent être remplacés par un ou plusieurs hétéroatomes tels que 0, S et N, et ils peuvent comporter une ou plusieurs insaturations éthyléniques ou acétyléniques. Par ailleurs, le groupe hydrocarboné

15

20

25

peut comporter différents substituants, en particulier des groupes fonctionnels ou des atomes d'halogènes. Les groupes hydrocarbonés aromatiques peuvent être constitués par le groupe phényle et le groupe tosyle, éventuellement substitués, par exemple par des groupes alkyle de 1 à 20 atomes de carbone.

 ${
m R}^2$ et ${
m R}^3$ peuvent en particulier représenter un groupe alkyle linéaire ou ramifié de 1 à 20 atomes de carbone.

Selon un mode de réalisation préféré de l'invention, le dérivé de per(3,6-anhydro)cyclodextrine est un dérivé d'α-cyclodextrine, c'est-à-dire que dans les formules (I) et (II) données ci-dessus, n est égal à 6.

De préférence encore, le dérivé utilisé répond à la formule (I) dans laquelle tous les \mathbb{R}^1 représentent le groupe $-OCH_2COOH$ et n est égal à 6.

Les dérivés de cyclodextrine de l'invention peuvent être préparés par différents procédés.

Lorsque le dérivé de cyclodextrine répond à la formule (I) ou (II) donnée ci-dessus dans laquelle au moins l'un des R¹ représente le groupe -OCH₂COOH, les autres R¹ représentant OH ou un autre groupe et n étant égal à 6, 7 ou 8, ceux-ci peuvent être préparés par un procédé comprenant les étapes suivantes :

- 1) faire réagir une peranhydrocyclodextrine répondant à l'une des formules :

10

15

20

25

dans lesquelles n est égal à 6, 7 ou 8, avec un hydrure de métal alcalin pour convertir le(s) groupe(s) OH en groupe(s) OM avec M représentant un métal alcalin ;

- 2) faire réagir en milieu alcalin -la peranhydrocyclodextrine modifiée obtenue en 1) avec un halogénure de formule XCH_2COOR^4 dans laquelle X représente un atome d'halogène tel que Cl, et R^4 représente H, Si $(CH_3)_3$ ou un métal alcalin, en quantité telle que l'un au moins de(s) groupe(s) OM soit transformé en groupe $-CH_2COOR^4$;
- 3) faire réagir, dans le cas où tous les groupes OM n'ont pas été transformés en groupe $-\text{OCH}_2\text{COOR}^4$, les groupes OM restants avec un ou plusieurs réactifs pour les transformer en les groupes R^1 voulus différents de $-\text{OCH}_2\text{COOH}$; et
- 4) traiter le dérivé de peranhydrocyclodextrine obtenu en 3) avec un alcool, de l'eau ou un milieu légèrement acide pour transformer le(s) groupe(s) -OCH2COOR⁴ en groupe -OCH2COOH.

Pour effectuer l'étape 2), on utilise la quantité nécessaire de $\mathrm{XCH_2COOR}^4$ pour modifier un ou plusieurs des groupe OH de la cyclodextrine.

Dans l'étape 4), lorsque R^4 représente M on transforme les groupes $-OCH_2COOR^4$ en $-OCH_2COOH$ par

10

15

20

25

30

action d'un alcool tel que le méthanol. On peut aussi utiliser de l'eau mais la réaction sera plus violente.

Lorsque R^4 représente $Si(CH_3)_3$, on utilise un milieu légèrement acide pour régénérer la fonction acide.

Lorsque le dérivé de cyclodextrine répond à la formule (I) ou (II) donnée ci-dessus dans laquelle les autres R^1 représentent OR^2 avec R^2 ayant la signification donnée ci-dessus, on procède comme précédemment pour introduire le(s) groupe(s) OCH_2COOM , puis on fait réagir ensuite le dérivé avec un halogénure de formule R^2X dans laquelle R^2 a la signification donnée ci-dessus et X est un atome d'halogène.

Lorsque le dérivé de cyclodextrine répond à la formule (I) ou (II) dans laquelle les autres R^1 représentent $OCOR^2$, on procède comme précédemment pour introduire tout d'abord les groupes CCH_2COOM , puis on fait réagir ensuite le dérivé obtenu avec un halogénure ou anhydride d'acide de formules R^2COX ou $(R^2CO)_2O$ dans lesquelles R^2 a la signification donnée ci-dessus et X représente un atome d'halogène, pour remplacer les hydroxyles restants par $OCOR^2$.

Lorsque l'on veut préparer un dérivé de cyclodextrine dans lequel le(s) autre(s) R¹ représentent un atome d'halogène ou un groupe de formule SH, SR², NH², NR²R³, CONR²R³, CONH², CN, COOR², COOH, ou R², avec R² et R³ ayant les significations données ci-dessus, et n est égal à 6, 7 ou 8, on peut effectuer les étapes suivantes en partant d'une peranhydrocyclodextrine partiellement modifiée, c'est-à-dire dans laquelle l'un au moins des R¹ représente

15

20

 ${\rm OCH_2COOH}$ et les autres ${\rm R}^1$ représentent ${\rm OH}$, et en effectuant les étapes suivantes :

- 1) faire réagir cette peranhydrocyclodextrine avec un hydrure de métal alcalin pour convertir le(s) groupe(s) OH en groupe(s) OM avec M représentant un métal alcalin ;
- 2) faire réagir la peranhydrocyclodextrine modifiée obtenue en 1) avec un chlorure de formule $C1SO_2R^2$ avec R^2 ayant la signification donnée ci-dessus, pour obtenir le dérivé de formule (I) ou (II) dans laquelle l'un au moins des R^1 est un groupe de formule OSO_2R^2 ; et
- 3) faire réagir le dérivé obtenu dans la deuxième étape avec un ou plusieurs réactifs appropriés pour remplacer OSO_2R^2 par le groupe R^1 voulu.

Dans ce procédé on transforme tout d'abord la per(3,6-anhydro)cyclodextrine en alcoolate par action d'hydrure de métal alcalin, puis on convertit cet alcoolate en dérivé comportant un groupe partant de formule OSO_2R^2 , que l'on fait réagir ensuite en une ou plusieurs étapes avec un ou plusieurs réactifs appropriés pour remplacer ce groupe partant par le groupe R^1 voulu.

Ainsi, dans le cas où R¹ doit représenter NH₂, on peut faire réagir N₃M et le composé défini en 2). Le composé ainsi obtenu appelé azide peut subir une hydrogénation catalytique ou être traité en présence d'ammoniac NH₃, afin d'obtenir le produit où R¹ doit représenter NH₂.

Le produit où R^1 doit représenter NHR^2 ou NR^2R^3 est obtenu en faisant réagir le composé défini en 2) sur le composé NH_2R^2 ou NHR^2R^3 .

15

20

25

30

Dans le cas où R^1 doit représenter SH ou SR^2 , on peut faire réagir le composé défini en 2) avec un halogénure X^- , ce qui donne le composé avec $(R^1 = X)$, que l'on fait ensuite réagir avec HS^- ou R^2S^- pour donner un composé où R^1 représentera SH ou SR^2 .

Lorsque R^1 doit représenter un groupe hydrocarboné, on fait réagir avec R^1_2 LiCu (R^1 représente un groupe hydrocarboné) pour donner un composé final où R^1 représente alors un groupe hydrocarboné.

De même, le composé où R¹ représente un halogène peut réagir avec CN⁻ pour donner un composé final où R¹ représentera CN.

De même, le composé où R^1 représente CN peut par hydrolyse ménagée donner un composé où R^1 représentera CONH2. Le composé où R^1 représente CN peut par hydrolyse complète donner un composé où R^1 représentera COOH.

Le composé où \mathbb{R}^1 représente COOH peut par estérification donner un composé où \mathbb{R}^1 représentera COOR^2 .

Le composé où R^1 représente COOH peut réagir sur NHR^2R^3 ou NH_2R^2 en présence de DCC (dicyclohexylcarbodiimide) pour donner un composé où R^1 représentera NR^2R^3 ou NH_2R^2 .

Les dérivés de per(3,6-anhydro)cyclodextrine de l'invention peuvent être utilisés en particulier pour la fixation ou la séparation d'ions.

Aussi, l'invention a également pour objet un procédé de fixation ou de séparation d'ions consistant à mettre en contact un milieu contenant lesdits ions avec un dérivé de per (3,6anhydro)cyclodextrine répondant à l'une des formules suivantes:

15

20

dans lesquelles l'un au moins des R^1 représente le groupe $-OCH_2COOH$ et les autres R^1 qui peuvent être identiques ou différents, représentent un groupe répondant à l'une des formules : OH, OR^2 , SH, SR^2 , $OCOR^2$, NH_2 , NHR^2 , NR^2R^3 , $CONHR^2$, $CONR^2R^3$, $CONH_2$, CN, $COOR^2$, COOH et R^2 , dans lesquelles R^2 et R^3 qui peuvent être identiques ou différents, représentent un groupe hydrocarboné, aliphatique ou aromatique, saturé ou insaturé, pouvant comporter un ou plusieurs hétéroatomes choisis parmi O, S et N, et n est égal à 6, 7 ou 8,

pour fixer lesdits ions sous forme de complexe avec le dérivé de per(3,6-anhydro)cyclodextrine et les séparer dudit milieu.

Les ions susceptibles d'être fixées ou séparés par le procédé de l'invention peuvent être de divers types ; il peut s'agir par exemple d'ions d'actinides, par exemple d'uranyle, de lanthanides ou de métaux polluants tels que le cobalt.

Le procédé de l'invention s'applique en particulier à la séparation et à la fixation du cobalt et des ions de lanthanides sous forme de complexe.

15

20

PCT/FR01/00923

En effet, le cobalt, les lanthanides et ses dérivés polluent l'environnement et sont toxiques aussi bien chez l'animal que chez l'homme. Les principaux effets toxiques affectent le développement neurologique et le fonctionnement du système nerveux. Il est donc nécessaire de séparer et d'éliminer ces ions de l'environnement et de le stocker de manière sûre.

Par ailleurs, des produits qui permettraient d'assurer la décontamination en cobalt et en lanthanides des êtres vivants en empêchant leur action sur le système nerveux et sur d'autres organés, seraient d'un grand intérêt pour résoudre ces problèmes.

Selon l'invention, on a trouvé que les dérivés des per(3,6-anhydro)cyclodextrines répondant aux formules (I) et (II) données ci-dessus, présentaient une spécificité élevée pour le cobalt et les lanthanides, et étaient capables de complexer ceuxci avec des rendements élevés pouvant atteindre 100 %, même en présence d'autres ions tels que les ions sodium.

De cette façon, on peut séparer le cobalt et les lanthanides du milieu environnant sous la forme de complexe.

Aussi, l'invention a également pour objet les complexes d'un métal choisi parmi Dy, Eu, Lu, La et Co et de dérivés de per(3,6-anhydro)cyclodextrines de formule (I) ou (II) décrits ci-dessus.

Pour mettre en oeuvre le procédé de 30 séparation d'ions de l'invention, on peut utiliser le dérivé de per(3,6-anhydro)cyclodextrine de formule (I) ou (II) sous forme de solution aqueuse ou de solution organique.

15

20

25

30

Lorsque le milieu contenant les ions à séparer ou à fixer est une solution aqueuse, on peut dissoudre le dérivé de cyclodextrine dans un solvant organique immiscible avec la solution aqueuse, par exemple dans du chloroforme, pour former le complexe dans la solution organique et le séparer facilement de la solution aqueuse.

On peut aussi utiliser le dérivé de cyclodextrine en solution aqueuse, notamment pour assurer la décontamination des êtres vivants.

En effet, on sait que les dérivés de cyclodextrines de formule (I) ou (II) sont des composés biocompatibles. Ils peuvent donc être administrés à l'homme ou à l'animal pour assurer la fixation du cobalt et des lanthanides sous forme de complexe et éviter ainsi leur interaction avec les organes du corps humain ou animal.

Aussi, l'invention a également pour objet une composition pharmaceutique pour la décontamination lanthanides et en cobalt d'un être vivant, caractérisée en ce qu'elle comprend un dérivé per (3, 6-anhydro) cyclodextrine répondant à l'une formules (I) et (II), décrit ci-dessus.

De préférence, le dérivé de per (3,6-anhydro) cyclodextrine utilisé dans cette composition répond à la formule (I) dans laquelle tous les R¹ représentent le groupe -OCH₂COOH et n est égal à 6.

Cette composition peut être administrée par voie orale ou par injection.

Les solutions aqueuses peuvent comprendre jusqu'à 0,08 mol/l de dérivé de formule (I).

Les quantités administrées dépendront du taux de contamination et du poids du patient.

10

15

20

25

Les dérivés de cyclodextrine de l'invention présentent de nombreux avantages. En particulier lorsqu'ils sont persubstitués, c'est-à-dire lorsque tous les R¹ sont différents du groupe OH, on a des dérivés qui présentent une bonne solubilité dans les solvants organiques tels que le chloroforme, l'acétone. tétrahydrofurane etc. Cette solubilité intéressante pour leur utilisation dans la séparation ionique car elle permet de réaliser la séparation par des procédés d'échanges liquide-liquide qui sont bien connus dans la technique.

Par ailleurs, la possibilité d'introduire un ou plusieurs groupes chimiques particuliers permet de construire sur mesure des agents complexants pour des ions très divers. Cette facilité est de plus amplifiée par le fait que les trois cyclodextrines naturelles qui peuvent être utilisées comme matière de base, ont des diamètre de cavité différents qui peuvent apporter une sélection supplémentaire en rapport avec la taille des ions à séparer.

Les produits de départ de formules (III) ou (IV) utilisés dans l'invention peuvent être préparés par des procédés classiques tels que ceux décrits dans les documents [2] et [3] précités de Gadelle A. et al. et de Ashthon P. R. et al.

D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture des exemples qui suivent, donnés à titre illustratif et non limitatif en référence aux dessins annexés.

10

15

25

30

Brève description des dessins

La figure 1 illustre les spectres de résonance magnétiques nucléaire (RMN) du proton du dérivé de l'exemple 1 seul (CD) en solution à 1 mmol/L, ou en présence de 4 mmol/L de Lu^{3+} , La^{3+} , Dy^{3+} , Eu^{3+} et Co^{2+} .

La figure 2 illustre les spectres de RMN du proton du dérivé de l'exemple 1 en solution à 1 mmol/L, en présence d'éthylène diamine tétracétate et de 4 mmol/L de Dy^{3+} , Eu^{3+} et Co^{2+} .

La figure 3 illustre les spectres de RMN du proton du dérivé de l'exemple 1 seul (CD) et en présence des cations physiologiques Na^+ , K^+ et Ca^{2+} .

Exposé détaillé des modes de réalisation

Exemple 1 : Préparation de l'hexakis (3,6-anhydro-2-0-carboxyméthyl)cyclomaltohexaose.

Ce composé répond à la formule (I) donnée ci-dessus dans laquelle tous les \mathbb{R}^1 représentent OCH2COOH et n'est égal à 6.

On pèse 1 g (1,15 mmol) d'hexakis (3,6anhydro) - cyclomaltohexaose séché sous vide pendant heures à 120°C, et on ajoute 10 diméthylsulfoxyde DMSO anhydre et 10 mL d'une solution de DMSO ayant réagi avec de l'hydrure de sodium (solution 2N d'hydrure de sodium dans le DMSO). La solution est maintenue sous agitation et atmosphère d'argon à température ambiante pendant 3 heures. Une solution gris bleue est obtenue. On ajoute alors du monochloroacétate de sodium (1,6 g, 14 mmol). La solution est laissée à température

15

20

25

ambiante pendant 24 heures, puis le courant d'argon est supprimé. La solution est alors traitée par 10 mL d'alcool méthylique, amenée soigneusement à sec, reprise par de l'acétone et filtrée. La poudre obtenue dissoute dans l'eau est neutralisée par de l'acide chlorhydrique (solution 1N), et dialysée contre l'eau pendant 24 heures (Spectra/Port®CE Sterile DispoDialysers® -membrane d'ester de cellulose-MWCO 500). La réaction est quantitative. Le dialysat est lyophilisé et caractérisé par la résonnance magnétique du proton et du carbone.

La figure 1 illustre le spectre de résonance magnétique nucléaire du proton concernant ce produit (CD).

On l'utilise ensuite tel quel pour les complexations mises en œuvre dans les exemples qui suivent.

Exemple 2 : Préparation de complexes de l'hexakis (3,6-anhydro-2-0-carboxyméthyl) cyclomatéhexaose.

Chaque complexe est préparé en ajoutant à 500 μ L d'une solution aqueuse contenant 1 mmol/L du produit de l'exemple 1, 4 mmol/L du cation testé, et en utilisant les cations suivants : Lu³⁺, La³⁺, Dy³⁺, Eu³⁺ et Co²⁺ .

On caractérise les complexes par résonance magnétique nucléaire du proton. Les spectres obtenus sont représentés sur la figure 1 pour ${\rm Lu}^{3+}$, pour ${\rm La}^{3+}$, pour ${\rm Dy}^{3+}$, pour ${\rm Eu}^{3+}$ et pour ${\rm Co}^{2+}$.

Si l'on compare ces spectres avec le spectre du produit de l'exemple 1 seul (CD), on remarque que le spectre est très nettement modifié par l'ajout des cations testés.

Dans le cas des ions Dy^{3+} , Eu^{3+} et Co^{2+} , on a une interaction très forte entre ces ions et le peracide. En effet, le spectre du dérivé de per(3,6-anhydro)cyclodextrine a totalement disparu, indiquant une immobilisation totale des protons impliqués dans l'interaction.

Dans le cas du lanthane, les protons H6 et H6' situés sur le pont anhydro sont encore observables.

Le cas du lutétium est plus complexe : le spectre de la cyclodextrine devient très compliqué avec l'apparition d'une multitude de résonances non attribuables directement. Il est probable que plusieurs complexes de stoechiométries différentes coexistent en solution.

15

20

25

30

10

Exemple 3

Dans cet exemple, on réalise des expériences de compétition entre le dérivé de l'exemple 1 et l'éthylènediaminetétracétate (EDTA) pour la complexation des ions Dy³⁺, Eu³⁺ et Co²⁺, afin d'avoir une idée de la force des complexes préparés dans l'exemple 2.

Dans ce but, on utilise 50 µL de solution aqueuse contenant 1 mmol/L du dérivé de l'exemple 1 à laquelle on ajoute 4 mmol/L du cation testé et de l'EDTA. On caractérise les produits par RMN du proton.

Les spectres obtenus sont représentés sur la figure 2. Sur cette figure, on remarque que l'addition d'EDTA permet dans tous les cas de retrouver un spectre partiel de cyclodextrine. Cependant malgré l'addition d'un large excès d'EDTA par rapport à la cyclodextrine, le spectre de cyclodextrine retrouvé n'est pas total. Ceci démontre que le dérivé de

cyclodextrine complexe les cations plus fortement que l'EDTA.

Exemple 4

5

10

15

20

Dans cet exemple, on teste les propriétés de complexation du dérivé de l'exemple 1 vis-à-vis des cations physiologiques : calcium, sodium et potassium qui sont en fait tous les cations nécessaires au développement des êtres vivants.

En effet, pour une application en décontamination humaine, il convient de s'assurer que le dérivé ne complexe pas les cations physiologiques.

On suit le même mode opératoire que dans l'exemple 2 et on caractérise les produits par RMN du proton.

La figure 3 illustre les résultats obtenus respectivement avec Na^+ , K^+ et Ca^{2+} .

Sur cette figure, le spectre (CD) correspond au dérivé de l'exemple 1 seul.

On remarque ainsi que les raies du dérivé de l'exemple 1 sont très peu affectées par la présence des cations physiologiques, par comparaison avec les spectres de la figure 1.

LISTE DES DOCUMENTS CITES

- [1]: D. Duchêne "Pharmaceutical application of cyclodextrins" dans "Cyclodextrins and their industrial uses". D. Duchêne Ed., Editions de Santé, Paris, 1987. pages 213-257.
- [2]: Gadelle A. et Defaye J., Angew. Chem. Int. Ed. Engl., 1991, 30, pages 79-79.
- [3]: Ashton P.R., Ellwood P., Staton I and Stoddart J.F., Angew. Chem. Int. ed. Engl., 1991, 30, pages 80-81.
- [4]: Yamamura H. and Fujita K., Chem. Pharm. Bull., 1991, 39, pages 2505-2508.
- [5]: Yamamura H., Esuka T., Kawase Y., Kawai M., Butsugan Y. and Fujita K., J. Chem. Soc., Chem. Commun., 1993, pages 636-637.
- [6]: Yamamura H., Nagaoka H., Kawai M and Butsugan Y., Tetrahedron Lett., 1995, 3b, pages 1093-1094.
- [7] FR-A-2 744 124
- [8] FR-A-2 764 525
- [9] Evans CH, «Interactions of Lanthanides with Tissues. Cells and Cellular Organelles » dans Biochemistry of the Lanthanides. Evans C. H. Ad., Plenum Press, New York, 1990, pages 211-283.

10

15

20

REVENDICATION

 Dérivé de per(3,6-anhydro)cyclodextrine répondant à l'une des formules suivantes :

 $(I) \quad \text{et} \quad (II)$

dans lesquelles l'un au moins des R^1 représente le groupe $-OCH_2COOH$ et les autres R^1 qui peuvent être identiques ou différents, représentent un groupe répondant à l'une des formules : OH, OR^2 , SH, SR^2 , $OCOR^2$, NH_2 , NHR^2 , NR^2R^3 , $CONH_2$, $CONHR^2$, $CONR^2R^3$, CN, $COOR^2$, COOH et R^2 , dans lesquelles R^2 et R^3 qui peuvent être identiques ou différents, représentent un groupe hydrocarboné, aliphatique ou aromatique, saturé ou insaturé, pouvant comporter un ou plusieurs hétéroatomes choisis parmi O, S et N, et n est égal à 6, 7 ou 8.

- 2. Dérivé de per (3,6-anhydro)cyclodextrine selon la revendication 1, dans lequel tous les R¹ représentent le groupe -OCH₂COOH, et n est égal à 6.
- 3. Procédé de préparation d'un dérivé de per(3,6-anhydro)cyclodextrine répondant à l'une des formule (I) et (II) :

15

dans lesquelles l'un au moins des R¹ représente le groupe -OCH2COOH et les autres R1 qui peuvent être identiques ou différents, représentent un groupe répondant à l'une des formules : OH, OR², SH, SR², OCOR², NH₂, NHR², NR²R³, CONH₂, CONHR², CONR²R³, CN. $COOR^2$, COOH et R^2 , dans lesquelles R^2 et R^3 qui peuvent être identiques ou différents, représentent un groupe hydrocarboné, aliphatique ou aromatique, saturé ou insaturé, pouvant comporter un ou plusieurs hétéroatomes choisis parmi O, S et N, et n est égal à 6, 7 ou 8, qui comprend les étapes suivantes :

- 1) faire réagir une peranhydrocyclo-dextrine de formule :

dans lesquelles n est égal à 6, 7 ou 8, avec un hydrure de métal alcalin pour convertir le(s) groupe(s) OH en 20 groupe(s) OM avec M représentant un métal alcalin ;

15

20

- 2) faire réagir en milieu alcalin la peranhydrocyclodextrine modifiée obtenue en 1) avec un halogénure de formule XCH₂COOR⁴ dans laquelle X représente un atome d'halogène et R⁴ représente H, Si (CH₃)₃ ou un métal alcalin, en quantité telle que l'un au moins de(s) groupe(s) OM soit transformé en groupe CH₂COOR⁴;
- -3) faire réagir, dans le cas où tous les groupes OM n'ont pas été transformés en groupe $-OCH_2COOR^4$, les groupes OM restants avec un -ou plusieurs réactifs pour les transformer en les groupes R^1 voulus différents de $-OCH_2COOH$; et
- 4) traiter le dérivé de peranhydrocyclodextrine obtenu en 3) avec un alcool, un milieu légèrement acide ou de l'eau pour transformer le(s) groupe(s) -OCH₂COOR⁴ en groupe -OCH₂COOH.
- 4. Procédé de fixation ou de séparation d'ions consistant à mettre en contact un milieu contenant lesdits ions avec un dérivé de per (3,6-anhydro)cyclodextrine répondant à l'une des formules suivantes :

dans lesquelles l'un au moins des R¹ représente le

25

groupe -OCH₂COOH et les autres R¹ qui peuvent être identiques ou différents, représentent un groupe répondant à l'une des formules : OH, OR², SH, SR², OCOR², NH₂, NHR², NR²R³, CONHR², CONR²R³, CONH₂, CN, COOR², COOH et R², dans lesquelles R² et R³ qui peuvent être identiques ou différents, représentent un groupe hydrocarboné, aliphatique ou aromatique, saturé ou insaturé, pouvant comporter un ou plusieurs hétéroatomes choisis parmi O, S et N, et n est égal à 6, 7 ou 8,

pour fixer lesdits ions sous forme de complexe avec le dérivé de per(3,6-anhydro)cyclodextrine et les séparer dudit milieu.

- 5. Procédé selon la revendication 4, dans lequel lesdits ions sont des ions de cobalt, de lanthanides et/ou d'uranyle.
 - 6. Procédé selon la revendication 4, dans lequel lesdits ions sont des ions de cobalt, de dysprosium et/ou d'europium.
- 7. Procédé selon l'une quelconque des revendications 4 à 6, dans lequel le dérivé de per(3,6-anhydro)cyclodextrine répond à la formule (I) dans laquelle tous les R¹ représentent le groupe -OCH₂COOH et n est égal à 6.
 - 8. Procédé selon l'une quelconque des revendications 4 à 7, dans lequel ledit milieu étant une solution aqueuse, le dérivé de per(3,6-anhydro)cyclodextrine est dissous dans un solvant organique immiscible avec la solution aqueuse.
- 9. Composition pharmaceutique pour la décontamination en lanthanides et en cobalt d'un être vivant, caractérisée en ce qu'elle comprend un dérivé

de per(3,6-anhydro)cyclodextrine répondant à l'une des formules suivantes :

dans lesquelles l'un au moins des R¹ représente le groupe -OCH₂COOH et les autres R¹ qui peuvent être identiques ou différents, représentent un groupe répondant à l'une des formules : OH, OR², SH, SR², OCOR², NH₂, NHR², NR²R³, CONR²R³, CONHR², CONH₂, CN, COOR², COOH et R², dans lesquelles R² et R³ qui peuvent être identiques ou différents, représentent un groupe hydrocarboné, aliphatique ou aromatique, saturé ou insaturé, pouvant comporter un ou plusieurs hétéroatomes choisis parmi O, S et N, et n est égal à 6, 7 ou 8.

10. Composition pharmaceutique selon la revendication 9, dans laquelle le dérivé de per(3,6-anhydro)cyclodextrine répond à la formule (I) dans laquelle tous les \mathbb{R}^1 représentent le groupe -OCH₂COOH et n est égal à 6.

11. Complexe d'un métal choisi parmi Dy, Eu, Lu, La et Co et d'un dérivé de per (3,6-anhydro)cyclodextrine répondant à l'une des formules suivantes :

20

dans lesquelles l'un au moins des R^1 représente le groupe $-OCH_2COOH$ et les autres R^1 qui peuvent être identiques ou différents, représentent un groupe répondant à l'une des formules : OH, OR^2 , SH, SR^2 , $OCOR^2$, NH_2 , NHR^2 , NR^2R^3 , $CONR^2R^3$, $CONHR^2$, $CONH_2$, CN, $COOR^2$, COOH et R^2 , dans lesquelles R^2 et R^3 qui peuvent identiques ou différents représentent un groupe hydrocarboné, aliphatique ou aromatique, saturé ou insaturé, pouvant comporter un ou plusieurs hétéroatomes choisis parmi O, S et N, et n est égal à 6, 7 ou 8.

12. Complexe selon la revendication 11, dans lequel le dérivé de per(3,6-anhydro) cyclodextrine 15 répond à la formule (I) dans laquelle tous les R1 représentent le groupe -OCH₂COOH et n est égal à 6.

FIG. 1

FIG. 2

2/2

INTERNATIONAL SEARCH REPORT

ATIONAL SEARCH REPORT

Int ational Application No PC I / FR 00923

A. CLASSI IPC 7	FICATION OF SUBJECT C08B37/16	B01J20/24	C02F1/28	A61K31/	715					
According to	n International Patent Clar	esification (IPC) or to bot	h national classification	n and IPC						
According to International Patent Classification (IPC) or to both national classification and IPC B. FIELDS SEARCHED										
Minimum do	ocumentation searched (c	lassification system folio	wed by classification s	symbols)						
IPC 7	C08B									
·										
Documenta	lion searched other than r	ninimum documentation	lo the extent that such	documents are incl	uded in the fields s	searched				
Electronic d	ata base consulted during	the international search	n (name of data base a	ind, where practica	l, search terms use	d)				
CHEM A	BS Data									
C. DOCUMENTS CONSIDERED TO BE RELEVANT										
Category *		ith indication, where app	propriate, of the relevan	nt passages		Relevant to claim No.				
Α		A (COMMISAR			•					
		17 December 1 525 A (COMMI								
		18 December 1								
		ne application		,						
A	EP 0 797 7/	 44 A (COMMISA	PTAT À 1'ENE	PATE						
^		5 August 1997								
	& FR 2 744	124 A (COMMI	SARIAT A L'E	NERGIE						
	ATOMIQUE) 1 August 1997 (1997-08-01) cited in the application									
	Cited in ti		- -							
						<u>.</u>				
Funth	er documents are listed in	the continuation of box	с. 🗓	Patent family	members are listed	l in annex.				
Special cat	egories of cited document	Is:	•т•			ernational filing date				
'A' document defining the general state of the art which is not cited to understand the principle or theory underlying the invention or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention										
E earlier document but published on or after the international filing date *X* document of particular relevance; the claimed invention cannot be considered to										
'L' docume	nt which may throw doubt			involve an inventiv	e step when the do	ocument is taken alone				
which is cited to establish the publication date of another citation or other special reason (as specified) 'O' document referring to an oral disclosure, use, exhibition or document is combined with one or more other such document is combined with one or more other.										
other n	neans					ous to a person skilled				
'P' document published prior to the international filing date but later than the priority date claimed '8' document member of the same patent family										
Date of the a	ictual completion of the in	iernational search		Date of mailing of	the international se	arch report				
10	July 2001			19/07/2	001					
Name and m	ailing address of the ISA European Patent Offic	ce. P.B. 5818 Patentlaan	2	Authorized officer						
	NL - 2280 HV Rijswij	jk	-	Mazat	1.0					
	Tel. (+31-70) 340-2040. Tx. 31 651 epo nl. Fax: (+31-70) 340-3016 Mazet, J-F									

l

INTERNATIONAL SEARCH REPORT

Information on patent family members

Int ational Application No
PC I / 1/00923

Patent document cited in search repor	t	Publication date	Patent family member(s)		Publication date
WO 9856829	А	17-12-1998	FR AU EP HU ZA	2764525 A 8218198 A 0991670 A 0002298 A 9805079 A	18-12-1998 30-12-1998 12-04-2000 28-11-2000 12-01-1999
EP 787744	A	06-08-1997	FR AU AU HU JP US	2744124 A 707604 B 1230397 A 9700280 A 9208603 A 5792857 A	01-08-1997 15-07-1999 07-08-1997 29-12-1997 12-08-1997 11-08-1998

RAPPORT DE RECHERCHE INTERNATIONALE

nde Internationale No PUI/FR4 /00923

A. CLASSEMENT DE L'OBJET DE LA DEMAR CIB 7 CO8B37/16 B01J B01J20/24 C02F1/28 A61K31/715 Selon la classification internationale des brevels (CIB) ou a la lois selon la classification nationale et la CIB B. DOMAINES SUR LESQUELS LA RECHERCHE A PORTE Documentation minimale consultee (système de classification suivi des symboles de classement) CIB 7 C08B Documentation consultee autre que la documentation minimate dans la mesure ou ces documents relevent des domaines sur lesquels a porte la recherche Base de données electronique consultée au cours de la réchérche internationale (nom de la base de données, et si réalisable, termes de réchérche utilisés) CHEM ABS Data C. DOCUMENTS CONSIDERES COMME PERTINENTS Categorie Identification des documents cites, avec, le cas echeant, l'indication des passages pertinents no. des revendications visees WO 98 56829 A (COMMISARIAT A L'ENERGIE Α ATOMIQUE) 17 décembre 1998 (1998-12-17) & FR 2 764 525 A (COMMISARIAT A L'ENERGIE ATOMIQUE) 18 décembre 1998 (1998-12-18) cité dans la demande EP 0 787 744 A (COMMISARIAT À L'ENERGIE Α ATOMIQUE) 6 août 1997 (1997-08-06) & FR 2 744 124 A (COMMISARIAT A L'ENERGIE ATOMIQUE) 1 août 1997 (1997-08-01) cité dans la demande Voir la suite du cadre C pour la tin de la liste des documents Les documents de familles de brevets sont indiqués en annexe Categories speciales de documents cites *T* document ulterieur publié apres la date de depôt international ou la date de priorité et n'appartenenant pas à l'état de la technique pertinent, mais cite pour comprendre le principe 'A' document définissant l'état géneral de la technique, non considere comme particulièrement pertinent ou la lheone constiluant la base de l'invention document antérieur, mais publie à la date de depôt international "X" document particulierement pertinent; l'inven tion revendiquée ne peut ou apres cette date être considéree comme nouvelle ou comme impliquant une activité inventive par rapport au document considére isolement document pouvant jeter un doute sur une revendication de pnorite ou cite pour determiner la date de publication d'une document particulierement pertinent; l'inven tion revendiquée autre citation ou pour une raison speciale (telle qu'indiquee) ne peut être considerée comme impliquant une activité inventive document se référant a une divulgation orale, la un usage, a lorsque le document est associe à un ou plusieurs autres une exposition ou tous autres moyens documents de même nature, cette combinaison etant évidente document publié avant la date de depôt international, mais pour une personne du metier posterieurement a la date de priorite revendiquée *&* document qui fait partie de la même famille de brevets Date a laquelle la recherche internationale a ele effectivement achevee Date d'expedition du present rapport de recherche internationale 10 juillet 2001 19/07/2001 Nom el adresse postale de l'administration chargée de la recherche internationale Fonctionnaire autorise Office Europeen des Brevels, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040. Tx. 31 651 epo nl. Mazet, J-F

Fax: (+31-70) 340-3016

RAPPORT DE RECHERCHE INTERNATIONALE

Renseignements relatif. .x members de familles de brevets

PCI/F 00923

Document brevet cit au rapport de recherc	-	Date de publication	Membre(s) de la famille de brevet(s)		Date de publication
WO 9856829	A	17-12-1998	FR AU EP HU ZA	2764525 A 8218198 A 0991670 A 0002298 A 9805079 A	18-12-1998 30-12-1998 12-04-2000 28-11-2000 12-01-1999
EP 787744	Α	06-08-1997	FR AU AU HU JP US	2744124 A 707604 B 1230397 A 9700280 A 9208603 A 5792857 A	01-08-1997 15-07-1999 07-08-1997 29-12-1997 12-08-1997 11-08-1998

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.