Indução Forte e Boa Ordenação Matemática Discreta

Prof. MSc. Samy Sá

Universidade Federal do Ceará Campus de Quixadá

9 de abril de 2014

Outline

Introdução

Indução Forte

Princípio da Boa Ordenação

Exercícios

Outline

Introdução

Indução Forte

Princípio da Boa Ordenação

Exercícios

Em algumas situações não é possível utilizar indução matemática, pois as instâncias do problema não dependem diretemanente do caso do seu antecessor.

Em algumas situações não é possível utilizar indução matemática, pois as instâncias do problema não dependem diretemanente do caso do seu antecessor.

 O passo base da Indução Forte é identico ao da Indução Matemática

Em algumas situações não é possível utilizar indução matemática, pois as instâncias do problema não dependem diretemanente do caso do seu antecessor.

- O passo base da Indução Forte é identico ao da Indução Matemática
- A hipótese é bem diferente: Invés de "suponha P(k) para algum k inteiro", temos "suponha P(j) para todo j menor ou igual a algum k inteiro".

Em algumas situações não é possível utilizar indução matemática, pois as instâncias do problema não dependem diretemanente do caso do seu antecessor.

- O passo base da Indução Forte é identico ao da Indução Matemática
- A hipótese é bem diferente: Invés de "suponha P(k) para algum k inteiro", temos "suponha P(j) para todo j menor ou igual a algum k inteiro".
- Em ambos os casos, mostramos que P(k+1) é consequência.

Outline

Introdução

Indução Forte

Princípio da Boa Ordenação

Exercícios

Indução Forte

Provas usando indução forte têm dois passos...

 Primeiro, mostramos que a propriedade P(k) é válida para k = 1.

Indução Forte

Provas usando indução forte têm dois passos...

- Primeiro, mostramos que a propriedade P(k) é válida para k = 1.
- Em seguida, mostramos que $(\forall k)(\forall j)((j \leq k \land P(j)) \rightarrow P(k+1)).$

Indução Forte

Provas usando indução forte têm dois passos...

- Primeiro, mostramos que a propriedade P(k) é válida para k = 1.
- Em seguida, mostramos que $(\forall k)(\forall j)((j \leq k \land P(j)) \rightarrow P(k+1)).$

Constatação:

Se valem P(1) e $(\forall k)(\forall j)((j \le k \land P(j)) \rightarrow P(k+1))$, então a propriedade deve ser válida para todos os inteiros positivos.

Indução Forte e a Escada Infinita

A indução forte nos diz que podemos subir a escada inteira se...

- 1. Alcançamos o primeiro degrau;
- **2.** Se para cada inteiro k, se conseguirmos alcançar os primeiro k degraus, então alcançaremos o degrau k + 1.

Exemplo

Mostre que se n é um inteiro maior que 1, então n pode ser escrito como um produto de números primos.

Exemplo

Mostre que se n é um inteiro maior que 1, então n pode ser escrito como um produto de números primos.

 Observe que n\u00e3o \u00e9 trivial utilizar indu\u00e7\u00e3o matem\u00e1tica, pois o caso k + 1 n\u00e3o depende diretamente do caso k.

Prova

B Seja n = 2, este é um produto envolvendo apenas um número primo. (**OK**)

- **B** Seja n = 2, este é um produto envolvendo apenas um número primo. (**OK**)
- P Seja k um inteiro qualquer maior que 1, suponha que todo inteiro j maior que 1 e menor ou igual que k possa ser escrito como um produto de números primos (hipótese de indução).

- **B** Seja n = 2, este é um produto envolvendo apenas um número primo. (**OK**)
- P Seja k um inteiro qualquer maior que 1, suponha que todo inteiro j maior que 1 e menor ou igual que k possa ser escrito como um produto de números primos (hipótese de indução). Avaliaremos o caso k + 1 (objetivo).

- **B** Seja n = 2, este é um produto envolvendo apenas um número primo. (**OK**)
- P Seja k um inteiro qualquer maior que 1, suponha que todo inteiro j maior que 1 e menor ou igual que k possa ser escrito como um produto de números primos (hipótese de indução). Avaliaremos o caso k + 1 (objetivo). Nesse caso, temos que k + 1 é um número primo ou tem um divisor d tal que 1 < d < k + 1.</p>

- **B** Seja n = 2, este é um produto envolvendo apenas um número primo. (**OK**)
- P Seja k um inteiro qualquer maior que 1, suponha que todo inteiro j maior que 1 e menor ou igual que k possa ser escrito como um produto de números primos (hipótese de indução). Avaliaremos o caso k + 1 (objetivo). Nesse caso, temos que k + 1 é um número primo ou tem um divisor d tal que 1 < d < k + 1. Seja k + 1 = dq, onde q é o resultado da divisão de k + 1 por d, pela hipótese de indução, d e q podem ser escritos como produtos de números primos.</p>

- **B** Seja n = 2, este é um produto envolvendo apenas um número primo. (**OK**)
- P Seja k um inteiro qualquer maior que 1, suponha que todo inteiro j maior que 1 e menor ou igual que k possa ser escrito como um produto de números primos (hipótese de indução). Avaliaremos o caso k + 1 (objetivo). Nesse caso, temos que k + 1 é um número primo ou tem um divisor d tal que 1 < d < k + 1. Seja k + 1 = dq, onde q é o resultado da divisão de k + 1 por d, pela hipótese de indução, d e q podem ser escritos como produtos de números primos. Logo, k + 1 também pode ser escrito como produto de números primos.</p>

Outline

Introdução

Indução Forte

Princípio da Boa Ordenação

Exercícios

Princípio da Boa Ordenação

Definição

(Princípio da Boa Ordenação) Todo conjunto não vazio de inteiros não negativos tem um menor elemento.

Princípio da Boa Ordenação

Definição

(Princípio da Boa Ordenação) Todo conjunto não vazio de inteiros não negativos tem um menor elemento.

Constatação:

O princípio da boa ordenação garante que sempre há um elemento de BASE para as provas por indução matemática/forte.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

Considere S, o conjunto dos inteiros na forma a – dq.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

Considere S, o conjunto dos inteiros na forma a – dq. Esse conjunto é não vazio, pois – dq pode ser tão grande ou pequeno quanto desejarmos (basta escolher q de acordo).

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

Considere S, o conjunto dos inteiros na forma a-dq. Esse conjunto é não vazio, pois -dq pode ser tão grande ou pequeno quanto desejarmos (basta escolher q de acordo). Pela propriedade de boa ordem, S tem um menor elemento $r=a-dq_0$, inteiro não negativo.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

Considere S, o conjunto dos inteiros na forma a-dq. Esse conjunto é não vazio, pois -dq pode ser tão grande ou pequeno quanto desejarmos (basta escolher q de acordo). Pela propriedade de boa ordem, S tem um menor elemento $r=a-dq_0$, inteiro não negativo. Além disso, r< d, pois do contrário existiria um elemento de S menor que r, a dizer, $a-d(q_0+1)=a-dq_0-d=r-d\geq 0$.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

Considere S, o conjunto dos inteiros na forma a-dq. Esse conjunto é não vazio, pois -dq pode ser tão grande ou pequeno quanto desejarmos (basta escolher q de acordo). Pela propriedade de boa ordem, S tem um menor elemento $r=a-dq_0$, inteiro não negativo. Além disso, r< d, pois do contrário existiria um elemento de S menor que r, a dizer, $a-d(q_0+1)=a-dq_0-d=r-d\geq 0$. Consequentemente, existem inteiros q e r com $0\leq r< d$.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

(CONTINUADA) ... Consequentemente, existem inteiros q e r com $0 \le r < d$.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

(CONTINUADA) ... Consequentemente, existem inteiros q e r com $0 \le r < d$. Devemos agora mostrar que r e q são únicos.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

(CONTINUADA) ... Consequentemente, existem inteiros q e r com $0 \le r < d$. Devemos agora mostrar que r e q são únicos. Suponha que não sejam únicos, portanto a = dq + r = dq' + r' com $0 \le r < d$ e $0 \le r' < d$.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

(CONTINUADA) ... Consequentemente, existem inteiros q e r com $0 \le r < d$. Devemos agora mostrar que r e q são únicos. Suponha que não sejam únicos, portanto a = dq + r = dq' + r' com $0 \le r < d$ e $0 \le r' < d$. Então d(q - q') = r' - r.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

(CONTINUADA) ... Consequentemente, existem inteiros q e r com $0 \le r < d$. Devemos agora mostrar que r e q são únicos. Suponha que não sejam únicos, portanto a = dq + r = dq' + r' com $0 \le r < d$ e $0 \le r' < d$. Então d(q - q') = r' - r. Por consequência, d divide r - r'.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

(CONTINUADA) ... Consequentemente, existem inteiros q e r com $0 \le r < d$. Devemos agora mostrar que r e q são únicos. Suponha que não sejam únicos, portanto a = dq + r = dq' + r' com $0 \le r < d$ e $0 \le r' < d$. Então d(q - q') = r' - r. Por consequência, d divide r - r'. Porque -d < r' - r < d, temos que r' - r = 0 e r = r'.

Exemplo

Prove o algoritmo de divisão, ou seja, que se a é inteiro e d é um inteiro positivo, então existem inteiros q, r únicos com $0 \le r < d$ e a = dq + r.

Prova

(CONTINUADA) ... Consequentemente, existem inteiros q e r com $0 \le r < d$. Devemos agora mostrar que r e q são únicos. Suponha que não sejam únicos, portanto a = dq + r = dq' + r' com $0 \le r < d$ e $0 \le r' < d$. Então d(q - q') = r' - r. Por consequência, d divide r - r'. Porque -d < r' - r < d, temos que r' - r = 0 e r = r'. Consequentemente, q = q'.

Outline

Introdução

Indução Forte

Princípio da Boa Ordenação

Exercícios

Exercícios

- 1. Mostre os seguintes teoremas usando indução forte.
 - a) Utilizando apenas moedas de 3 e 5 centavos em qualquer quantidade, é possível dar troco de qualquer valor a partir de 8 centavos.
 - b) Assuma que uma barra de chocolate consiste de n quadrados em um padrão retangular. A barra pode ser quebrada ao longo da linha vertical ou horizontal. Assumindo que apenas uma quebra pode ser feita por vez, determine quantas quebras são necessárias para reduzir a barra a quadrados unitários e prove por indução forte.