4.1 多变量卡诺图

本节中的几个问题

- > 多变量卡诺图
- > 填写卡诺图

基于卡诺图的逻辑运算

- 反変量为ひ
- ■卡诺图单元格对应的最小项按格雷码摆放
- 任何两个相邻单元格对应的最小项只有一个变量

取值不同

1. 两变量卡诺图

(a)

$$F=f(AB)$$

00 - AB - 0	
01 - Ā B - 1 11 - A B - 2	排邻只支-个
11-AB-2	,
10-AB-3	

0 0 1	
1 2 3	

2. 三变量卡诺图 F

$$F=f(ABC)$$

3. 四变量卡诺图

F=f(ABCD)

两位格员码 CD									
A.		00	01	11	10				
物位 格割码	00	0	1	3	2				
01		4	5	7	6				
	11	12	13	15	14				
	10	8	9	11	10				

4. 五变量卡诺图

F=f(ABCDE)

三位按图码

CDI		•						
AB	000	001	011	010	110	111	101	100
00	0	1	3	2	6	7	5	4
01	8	9	11	10	14	15	13	12
11	24	25	27	26	30	31	29	28
10	16	17	19	18	22	23	21	20

① 已知真值表→卡诺图

真值表 (於智科)

Α	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

新作成
$$\mathbf{F} = \Sigma \mathbf{m} (3, 5, 6, 7)$$
 塩 いれ $\mathbf{F} = \mathbf{F} \mathbf{m} (3, 5, 6, 7)$

特徵統
$$F=\Pi M(\stackrel{00}{0},\stackrel{00}{1},\stackrel{00}{2},\stackrel{100}{4})$$
垣。前月

② 已知标准与或式

③ 已知标准或与式

真值表

A	В	С	F
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1 🗸
1	0	0	0
1	0	1	1√
1	1	0	1 🗸
1	1	1	1 🗸

填写卡诺图

非标准

$$= AB(C+\overline{C})+BC(A+\overline{A})+AC(B+\overline{B})$$

= ABC+ABC+ABC+ABC+ABC 7 6 7 3 7 5

卡诺图

$$= (\overline{A \oplus B}) + (\overline{C+D}) = \overline{A}\overline{B} + AB + \overline{C}\overline{D}$$

$$\overline{AB} = 0000 + 0001 + 0010 + 0011$$

$$AB = 1100 + 1101 + 1110 + 1111$$

$$\overline{CD} = 0000 + 0100 + 1000 + 1100$$

$$\overline{CD} = 0000 + 0100 + 1000 + 1100$$

$$\overline{CD} = 0000 + 0100 + 1000 + 1100$$

$$\overline{CD} = 0000 + 0100 + 1000 + 1100$$

$$\overline{CD} = 0000 + 0100 + 1000 + 11000$$

$$\overline{CD} = 0000 + 0100 + 1000 + 11000$$

$$\overline{CD} = 0000 + 0100 + 1000 + 11000$$

$$\overline{CD} = 0000 + 0100 + 1000 + 11000$$

逻辑图

真值表

填写卡诺图

例
$$F = A \oplus C \cdot \overline{\overline{B}(A\overline{C}\overline{D} + \overline{A}C\overline{D})}$$

$$= \overline{\mathbf{A} \oplus \mathbf{C}} + \overline{\mathbf{B}} (\mathbf{A} \overline{\mathbf{C}} \overline{\mathbf{D}} + \overline{\mathbf{A}} \mathbf{C} \overline{\mathbf{D}})$$

$$= A \odot C + A \overline{B} \overline{C} \overline{D} + \overline{A} \overline{B} C \overline{D}$$

$$= \mathbf{AC} + \overline{\mathbf{A}}\overline{\mathbf{C}} + \mathbf{A}\overline{\mathbf{B}}\overline{\mathbf{C}}\overline{\mathbf{D}} + \overline{\mathbf{A}}\overline{\mathbf{B}}\mathbf{C}\overline{\mathbf{D}}$$

$$|\mathbf{x}| = \underline{1010} + \underline{1011} + \underline{1110} + \underline{1111} + \underline{0000} + \underline{0001} + \underline{0100} + \underline{0101} + \underline{1000} + \underline{0010}$$

铁奶

A Z

法2: 凡是图整色块

增乳1新干粒度0

基于卡诺图的逻辑运算

基于卡诺图的逻辑运算

对应的小方格进行逻辑运算

如何从卡诺图中读取——

- 最简与或式(AND-OR)
- 最简或与式(OR-AND)
- 最简与或非式(AND-OR-NOT)

化简方法 { 代数法 卡诺图法

■ 图形法化简逻辑函数

$$F(A,B,C) = \overline{A}BC + ABC = BC(\overline{A} + A) = BC$$

如何从卡诺图中读取——

- 最简与或式(AND-OR)
- 最简或与式(OR-AND)
- 最简与或非式(AND-OR-NOT)

- a). 将相邻为1的小方格圈在一起(小方格的 个数必须为2^m, m=0,1,2...) 1,2,4,8,16,***.
- b). 圈里面1的个数越多越好 有针来 圈 1 有 1 年 图 1 有 1 年 图 1 有 1 年 图 1 有 1 年 图 1 年
- c). 小方格可以重复使用

Step ②:每个圈代表一个与项

BAGNED.

观察每个圈 左侧 文 变量取值不同——消去 变量取值相同保留 ABC,圈中A取值不同,消去 **10** 01 01 0 11 11 0 0 **10**

Step ③:将所有的与项相加

$$F = \overline{A}\overline{C} + AC + \overline{B}D$$

与最小项(最大项)表达式不同

- 最简表达式不一定是唯一的.
- 但最简表达式的实现代价是相同的(逻辑门的数量相同、 输入变量的个数相同)

如何从卡诺图中读取——

■ 最简与或式(AND-OR)

- 最简或与式(OR-AND)
- 最简与或非式(AND-OR-NOT)

Step ①: **画 遏**-

- a). <mark>将相邻为0的小方格圈在一起(小方格的 个数必须为2^m, m=0,1,2...</mark>)
- b). 圈里面0的个数越多越好
- c). 小方格可以重复使用

相邻——从位置上看: 紧挨着的、行列首尾的、对称的 (本质上: 满足格雷码特点)

AB\CI	00	01	11	10
00	0	1	1	0
01	1	1	1	0
11	1	1	1	0
10	0	1	1	0

AB\CI	00	01	11	10
00	1	0	0	1
01	1	1	1	1
11	1	1	1	1
10	1	0	0	1

Step ②: 每个圈代表一个和项

观察每个圈 左侧 上方 】

C+D

变量取值不同-

变量取值相同保留

	CD			N.		
AI	3	00	01	11	10	
	00	0	1	1	(0)	
B+D <	01	1	1	1	0	
	11	1	1	1	0	
	10	0	1	1	0	

CI	`				
ABCI	00	01	11	10	
00	1	0	0	1	``
01	1	1	1	1	
11	1	1	1	1	
10	1	0	0	1	

Step ③: 将所有的和项相乘

ABCI	00	01	11	10	-
00	0	0	1	0	
01	0	0	1	1	•
11	1	1	0	0	
10	0	1	0	0	

$$F = (A + C) \cdot (\overline{A} + \overline{C}) \cdot (B + D)$$

如何从卡诺图中读取——

- 最简与或式(AND-OR)
- 最简或与式(OR-AND)

■ 最简与或非式(AND-OR-NOT)

Step ①: 读 F的与或式 F的与或中式

方法: αF 的卡诺图中圈0(或者在F'的卡诺图中圈1)

Step ②:对F求反

$$F=(A+B)(B+C)(A+C)$$

$$F = \overline{AB} + \overline{BC} + \overline{AC}$$
 \longrightarrow $F = \overline{AB} + \overline{BC} + \overline{AC}$

$$F = AB + BC + AC$$

- 无关项: 不存在的或无意义的取值组合
- 卡诺图化简时对无关项的处理:
 - ▶ 根据需要无关项可"1"可"0"
 - ▶ 满足圈中"1"(或"0")的<mark>数量最多的前提下,尽量利用无关项</mark>

例:某单位三八节包场看电影,规定电影票只发给本单位的女职工,写出满足上述条件的逻辑表达式

A=1:本单位 B=1:女职工 C=1:有电影票

支:或轼	ABO	C 00	01	11	10
丰温園 尽力・	0	0	X	X	0
多约是冗余项	1	0	×	1	0

A本的都是什么花里胡哨

A	В	C	K
0	0	0	0
0	0	1	X
0	1	0	0
0	1	1	X
1	0	0	0
1	0	1	X
1	1	0	0
1	1	1	1

F=A+BD+BC

	ABCD	F	ABCD	F
0	0 0 0 0	0	* 1 0 0 0	1
1	0 0 0 1	0	91001	1
2	0 0 1 0	0	1 0 1 0	×
4	0 0 1 1	0	1011	×
4	0 1 0 0	0	1 1 0 0	×
5	0 1 0 1	1	1 1 0 1	×
6	0 1 1 0	1	1110	×
7	0 1 1 1	1	1111	×

例: 设计一个能将4位二进制数转换为余3码的电路。

四个样误图

二进制数 WXYZ	余三码 ABCD	二进制数 WXYZ	余三码 A B C D
00000	0 0 1 1	81000	1011
0001	0 1 0 0	91001	1 1 0 0
2 0 0 1 0	0 1 0 1	1 0 1 0	×
3 0 0 1 1	0 1 1 0	1 0 1 1	×
4 0 1 0 0	0111	1 1 0 0	×
5 0 1 0 1	1 0 0 0	1 1 0 1	×
6 0 1 1 0	1 0 0 1	1110	×
7 0 1 1 1	1010	1111	×

A:

$$A=W+XZ+XY$$

B:

$$B=\overline{X}Z+\overline{X}Y+X\overline{Y}\overline{Z}$$

C

$$C = \overline{Y}\overline{Z} + YZ$$

D:

$$D=\overline{Z}$$

更多变量的卡诺图化简

* 展开定理

1. $f(x_1x_2...x_i...x_n)$

一个n变量的逻辑函数可以对变量X_i展开为两个n-1 变量的逻辑函数

$$= x_i \cdot f(x_1 x_2 \dots 1 \dots x_n) + \overline{x_i} \cdot f(x_1 x_2 \dots 0 \dots x_n)$$

.....对x;展开为与或式

2.
$$f(x_1x_2...x_i...x_n)$$

=
$$[\overline{x}_i + f(x_1x_2...0...x_n)] \cdot [x_i + f(x_1x_2....1...x_n)]$$

······对x_i展开为或与式

更多变量的卡诺图化简

$$\mathsf{F} = f\left(\mathsf{x}_1 \mathsf{x}_2 \mathsf{x}_3 \mathsf{x}_4 \mathsf{x}_5\right)$$

X_2X_3 X_4X_5 00 01 11 10				
X_2X_3	00	01	11	10
00	0	1	3	2
01	4	5	7	6
11	12	13	15	14
10	8	9	11	10

X_2X_3	X ₅ 00	01	11	10
00	16	17	19	18
01	20	21	23	22
11	28	29	31	30
10	24	25	27	26

$$x_1 = 0$$

$$x_1 = 1$$

化简: $F(ABCDE) = \Sigma m(0, 1, 4, 5, 6, 11, 12, 14, 16, 20, 22, 28, 30, 31)$

F=ABD+BDE+ABCD+ABCDE+CE <

更多变量的卡诺图化简

F=C'F'+B'CD'F+ACD'F+A'BD'EF'+A'BDE'F'+ABC'DE'