Manifold Learning of Face Data

Atul Kumar Sinha Karttikeya Mangalam Prakhar Srivastava January 26, 2018

Course Project A Network Tour of Data Science, Fall 2017 École polytechnique fédérale de Lausanne

Introduction

Objective

- Our work explores manifold learning on human face image data.
- In particular, we investigate whether distance metrics in lower dimensional space capture visual similarity better than euclidean distance between original images.

Dataset Used

We use the CelebA Dataset with more than 200K celebrity images covering large pose variations and background clutter.

For computational tractability, we randomly sample ~ 6500 images from the CelebA dataset for our purposes.

Example Images

Figure 1: Some random images from the Dataset

Our Approach

A Bird's eye view

- · Step 1: Project onto a Lower Manifold
 - · IsoMap Projection
- · Step 2: Sample new points on the Learned Manifold
 - · Convex combination between selected Images
- · Step 3: Reconstruction of new images from sampled points
 - · Extremal Randomized Tree Regressor
 - Convex combination in the higher dimensional space

Non linear dimensionality reduction technique

- · Non linear dimensionality reduction technique
- Extends Multidimensional Scaling (MDS) by incorporating the geodesic distances imposed by by a weighted graph

- · Non linear dimensionality reduction technique
- Extends Multidimensional Scaling (MDS) by incorporating the geodesic distances imposed by by a weighted graph
- Classical MDS performs low-dimensional embedding based on the pairwise Euclidean distance between data points.

- · Non linear dimensionality reduction technique
- Extends Multidimensional Scaling (MDS) by incorporating the geodesic distances imposed by by a weighted graph
- Classical MDS performs low-dimensional embedding based on the pairwise Euclidean distance between data points.
- Isomap is distinguished by its use of the geodesic distance induced by a neighborhood graph embedded in the classical scaling.

- · Non linear dimensionality reduction technique
- Extends Multidimensional Scaling (MDS) by incorporating the geodesic distances imposed by by a weighted graph
- Classical MDS performs low-dimensional embedding based on the pairwise Euclidean distance between data points.
- Isomap is distinguished by its use of the geodesic distance induced by a neighborhood graph embedded in the classical scaling.
- Isomap defines the geodesic distance to be the sum of edge weights along the shortest path between two nodes (computed using Dijkstra's algorithm, for example).

- · Non linear dimensionality reduction technique
- Extends Multidimensional Scaling (MDS) by incorporating the geodesic distances imposed by by a weighted graph
- Classical MDS performs low-dimensional embedding based on the pairwise Euclidean distance between data points.
- Isomap is distinguished by its use of the geodesic distance induced by a neighborhood graph embedded in the classical scaling.
- Isomap defines the geodesic distance to be the sum of edge weights along the shortest path between two nodes (computed using Dijkstra's algorithm, for example).
- Following this, we follow the remaining MDS algorithm.

Figure 2: Data with and without graph

Path Selection and Sampling

Path Selection and Sampling

 \cdot Convex Combination between neighbors

Reconstruction: Projecting back to the image domain

- Need representation for these sub-sampled points in the original image space
- · Method to map sub-samples back to the higher dimension
- Multilayer Perceptron, Random Forest, Kernerlized Linear Regressor, Extremely Randomized Tree Regressor

Reconstruction

Method 1 Sample Video

- · Method 1 Sample Video
- Jump Discontinuities

- · Method 1 Sample Video
- Jump Discontinuities
- What's wrong? Embedding or Reconstruction?

- · Method 1 Sample Video
- Jump Discontinuities
- · What's wrong? Embedding or Reconstruction?
- Look for linearity in image norms!

Figure 3: Total Variation norm for sampled images

Reconstruction: Working Around

- · Given the path, we can sub-sample in the higher dimension
- Take convex combination of images in higher-dim to generate new ones

A cool Souvenir: Morphing Video

- · Exhibit A
- · Exhibit B
- · Exhibit C

Questions?