# Self-configuration Chapter 4

#### **Outline**

#### Introduction

Auto connectivity and commissioning Dynamic radio configuration

## **Self-configuration Auto connectivity and commissioning**

Auto-connectivity with minimized manual intervention and secure setup

- Automatic setup of secure connectivity between NE and OAM system
- Site identification

Auto-commissioning for network element with off-the-shelf software and configuration

- Automatic inventory update and SW download
- Automatic CM data base preparation and download

Dynamic radio configuration during on-line

- Omitting detailed radio planning
- Reduced labor intensive planning
- More accurate parameter setting based on measurements from actual network



## Plug and Play One-Touch Base Station Deployment

Factory Assembly

Plug-and-play Installation

Auto connection, configuration and commissioning









Auto-connectivity with minimized manual intervention and secure setup

Auto-commissioning for network element with off-the-shelf software and configuration









SAE-GW / PDN-GW / GGSN

MME / SGSN

#### **Outline**

Introduction

Auto connectivity and commissioning

Dynamic radio configuration

## Auto connectivity and commissioning

Auto-connectivity and —commissioning involves the following steps

- Setup of basic connectivity
- Initial secure connection setup
- Site identification
- Download of configuration and transport parameters
- Secure connections setup with domain manager

## Auto connectivity and commissioning

Involved entities with auto-connectivity and -commissioning

#### eNB

- Process control: control of the auto-connectivity and –commissioning sequence of steps
- DHCP client: retrieval of the initial IP configuration
- Certificate client: retrieval/storage of the NE certificates
- Auto-connection client: establishment of secure connectivity to the auto-connection server

#### Server

- DHCP server: supplies the initial IP configuration and IP addresses of server-side functions
- ACS: Site identification function, Configuration Management Database (CMDB) and CMDB Access Function
- CA Server: authenticates the NE and provides certificates
- Certificate repository: holds the operator trust anchor and the NE certificates
- The Security Gateway (SEG): separates the secure operator domain from the transport network domain to which the NE are physically attached



## **Auto-connectivity and commissioning**

#### Preparation activities by the manufacturer

- Assigning the eNB with a serial number
- Installation of the initial software and configuration data
- Vendor key / certificate generation and installation

#### Preparation activities by the operator

- Transport network preparation: Configuration of transport network equipments, configuration and traffic engineering of virtual LANs and Virtual Private Networks in the aggregation and core transport networks
- DHCP server configuration: initial IP address for eNBs, addresses for ACS, CA server and SEG
- Auto-Connection Server configuration: Access to the Configuration
   Database is needed for retrieving auto-configuration data and updating the network topology
- SEG: installation of the operator root certificate

## **Auto-connectivity and commissioning**

#### Preparation activities by the operator

- Operator preparations per eNB
  - Transport, radio and access network planning and transferring of planning data to DM
  - ACS and CA server preparation
- On-site activities by the installer
  - Hardware installation and the physical connection to the antenna, the transport network and the power feed
  - Switching on the eNB and monitoring of the auto-connectivity setup proceeding from LED indicators successfully

### **Connectivity setup**

- Basic connectivity setup
  - Auto-connection process to setup L2 transport connectivity and sending DHCP request
  - DHCP server replies the eNB with its initial IP configuration, ACS, CA server and SEG addresses
- Certificate enrolment
  - eNB creates a new key pair and communicates with CA server with Certificate management protocol (CMP)
    - eNB gets the public key portion signed by a new operator certificate for this eNB
    - Download further trust anchors (operator's public key)
- Secure connection establishment/authentication
- eNB sends announcement message to ACS with HW id and GPS coordinates
- Site identification can be done with different means
  - Installer manually inserts Site-ID before self-configuration process
  - Installer informs remote commissioner about HW-ID and site ID
  - HW-ID collected on site from a bar code sticker attached to eNB
  - Installer collects GPS coordinates from a separate GPS receiver
  - Site coordinates are measured automatically by GPS receiver

#### Basic connectivity

- After switched on, the eNB performs self-test
- DHCP to get addressess
- DHCP server assigns an IP address from a pool
- Authentication to Operator's CA server with vendor signed eNB certificate & key signing request
- Certificate enrolment
  - Create, sign & download operator's eNB Certificate
  - Download trust anchors that can be used to authenticate other network elements
- Establish secure connections in operator's trust domain with given operator key
  - Setup of secure connection depends on operator's security architecture, for example
    - eNB establishes initial IPsec tunnel to SEG and /or TLS connection to TLS
    - In case both, TLS connection is tunneled within IPsec tunnel
    - SEG/ACS verity operator-signed certificate using operator trust anchors
    - eNB also verifies SEG/ACS TLS supplied certificate with operator trust anschors
- eNB sends announcement message to ACS with HW id and GPS coordinates if available
- ACS matches received information to pre-configured information
  - HW-to-Site mapping: linking HW-ID to site-ID
- ACS communicates with configuration to update topology information
  - Storing HW-ID in the on-line configuration DB related to the site ID
- Site identification
  - Bar core read with reader and site ID given manually to e.g. in an SMS message
  - Installer collects GPS coordinates from a separate GPS receiver and transfer to to eNB via e.g. Ethernet
  - GPS is expensive and needed only at the self-config

## **Connectivity setup**



## **Auto-commissioning**

#### Auto-commissioning consists of

- Automatic inventory update
  - Automatic identification of eNB components and update of CM DB
- Automatic software download
  - Validation of eNB's current software version against requiremed for the particular HW and site
  - Installation of the correct SW version
- Automatic database preparation and download
  - Downloading of the basic configuration by the eNB
    - Configuration has been created as a part of radio and transport network planning
- License management
  - After the eNB is fully installed and configured the corresponding license management procedures are performed
- Setup of call processing interfaces
- Typically pre-requisite for license management and setup of call processing interfaces is to have eNB fully configured

## 3GPP Self-Configuration and Software Management Integration Reference Point (IRP)

- Details of the individual steps for self-configuration are not standardised
- 3GPP has standardised high-level, multi-vendor-capable supervision of the self-configuration
- The objects contain the following functionality:
  - ScManagementCapability: the sequence of the steps; the possibility to select a stop points; setting of different administrative states at the end of process
  - ScManagementProfile: the "policy" of IRP manager offering possible stop points to suspend the self-configuration process

 ScProcess: Notification to IRPManager about the progress of the selfconfiguration process



NIE

### Relay auto-connectivity

- Relay nodes (RNs) are connected to the network through the Uu interface between UE and the serving eNB (Donor-eNB - DeNB)
  - DeNB for RN can be selected
    - Off-line by the operator during network planning
    - Dynamically during the deployment process computed in the OAM
    - During the deployment process by the RN itself
- Initial connectivity to the OAM is made through an intermediate Configurator eNB (CeNB) with RRC establishment followed by the UE Attach procedure (phase 1)
  - CeNB can be any eNB under which coverage RN resides
- Once NE becomes aware of its DeNB connection to CeNB is torn down, and connectivity to actual serving DeNB is established (phase 2)



## Relay node auto-connectivity process

- During the phase 1 the RN has physical (Layer 2) connectivity to the OAM subnet, but does not have IP (Layer 3) connectivity yet
- In order to establish IP connectivity with the OAM system, the RN follows the conventional DHCP protocol procedures
- After the initial connectivity has been setup, the next steps are
  - Establish a secure connection to the OAM nodes
  - Downloading the initial parameters including a list of DeNBs
- After downloading the initial DeNB list the RN detach from CeNB and goes to phase 2
- After the OAM connection is in place, the RN can enter the operational phase

#### **Outline**

Introduction

Auto connectivity and commissioning

Dynamic radio configuration

### Dynamic radio configuration

Radio configuration in legacy systems is based on planning prior the installation

- Building up the network incrementally one can either perform
  - a labour intensive radio planning step every time a new NE is inserted
    - the insertion order of the base stations must proceed exactly as planned
  - periodic radio planning updates anticipating the new eNB insertions within the next time frame
- the planning is not representative for the operational network at a certain point in time
   Dynamic Radio Configuration (DRC) is adaptive to the current network topology context
- The DRC will configure the new base station / cell and its neighbours on the fly
- By using DRC the detailed radio planning can be omitted



### Generation of initial transmission parameters

- Configuration of transmission parameters for newly installed base station
  - Maximum TX power
  - Antenna tilt
  - Antenna azimuth
- Three options to set these parameters
  - Planning prior or during installation of site
  - Using default values, that are optimized by self-optimisation during on-line
  - Determining parameters during self-configuration
- Strategies for determining transmission parameters
  - Calculation of parameters by a centralized algorithm after commissioning of the new base station, but before switching radio on
    - Moving algorithms from offline planning to self-configuration
  - Start algorithm after commissioning and base station switched on
    - Adaptation of transmission power through self-optimization

#### Physical cell ID allocation

- Physical Cell ID (PCI)
  - PCIs are used regionally unique identifier on the physical layer
  - 504 unique PCIs
- PCI influences to the structure if Uplink and Downlink Reference Signals of a cell
  - For the downlink reference signals, 6 sub-carrier groups are used leading to PCI assignment of  $N_{ID}$  mod 6
  - For the *uplink reference signals*, 30 sequence groups are defined leading to PCIs assignment according to  $N_{ID} \mod 30$
- PCIs need to reused so that their assignment is
  - Collision free
  - Confusion free







ID B

ID A

ID C

## Physical cell ID allocation

#### Network evolution

- When network evolves and cells are added by
  - adding cells to a hot spot
  - Hotspots growing and overlapping with each other
  - Overlapping macro and small cell deployment

#### Partitioning of ID space

- Allocating blocks of PCIs for different types of cells – e.g. macro and small cells
  - Closed subscriber group (CSG) in case of femto cells to help to decrease the power consumption of the UEs
- Allocating blocks of PCIs for different vendor eNBs
- Allocating blocks of PCI groups for the cells located at spectrum license border locations







B) Confused PCI Assignment



C) Resolved PCI Confusion

## PCI assignment approaches

#### Graph colouring

- The given cell layout with its neighbours is transferred to a graph
- For a confusion free assignment the graph has to be extended with additional edges between the nodes and all neighbours of their neighbours
- A generic graph colouring algorithm is applied to the graph which results in a collision and confusion free PCI assignment



- This approach is suitable for an initial assignment but not necessarily to assign PCIs to cells that are added during the operational phase
- Centralized and distributed approaches

## PCI assignment approaches

#### Distributed RSRP measurement based approach

- Using UE based RSRP measurements to discover neighbours
- In case the reported PCI is not yet listed for a known neighbour
  - The serving eNB requests the UE to read ECGI
  - Neighbourship is established via an information exchange over the core network
- In case of a confusion the target eNB's NRT already contains another cell with an identical PCI
  - Confusion is resolved by reconfiguring one of the cells
- The serving cell could also be already confused
  - eNB receives a RSRP measurement report containing a PCI which is already part of the NRT
  - The serving cell will prepare for a handover to this cell, which fails
  - Such confusions can be detected by monitoring the handover success respectively the failure rates.

### Automatic neighbour relationship setup

#### Pre-operational neighbour relations

- The initial neighbour relations are based on static assumptions
  - The cell planning tools calculate neighbours based on geographical proximity and direction of antennas
- The operators need to complement the planning phase with drive tests, to verify coverage datasets and identify all handover regions
- Neighbour relations may change due to changed environment

## Automatic neighbour relations (ANR)

- Standardised ANR enables neighbourhood detection for
  - intra-LTE for both intra- and inter frequency
  - inter-RAT from LTE to 2G and 3G
- 2G/3G to LTE ANR is vendor specific
- ANR is based on UE reporting of PCI for detected neighbours
- PCI must be mapped to ECGI before handover. Mapping can be done
  - UE based
  - UE triggered with OAM support
- Finally ECGI is mapped into IP address with help of core network (MME)

(neighbour detected by UE) eNB ID-B (serving) X2 Interface S1 Interface S1 Interface **MME** 

OAM System

TS36.300:E-UTRA and E-UTRAN, Overall Description, Stage 2

eNB ID-A

### Intra LTE – intra-frequency ANR

#### Neighbour cell discovery

- Reporting of detected strongest cells
  - When the UE changes from idle to RRC\_CONNECTED state, it is instructed via Measurement Configuration to report the detected strongest cells
  - The UE decodes the PCI and reports to eNB
  - In case of unknown PCI, eNB orders the UE to read the ECGI from the broadcast channel of the detected cell
- The network operator can configure "blacklisted" cells for ANR at the NM level
  - blacklisted cells are broadcasted in System Information Blocks 4 and 5



## Intra LTE – intra-frequency ANR

#### X2 transport configuration discovery and X2 connection set-up

- Neighbour cell IP address is detected by using Configuration Transfer Procedure
  - The eNB requests the IP address corresponding to ECGI from the MME
- Once IP address is available, eNB updates NRT and establishes X2 with the new neighbour



#### Inter-RAT ANR

Inter-RAT/inter-frequency ANR procedure is similar with intra-frequency ANR

- UE is instructed to perform measurements and report neighbours on other RATs/frequencies during connected mode
- The UE decodes the PCI of a cell that it has detected in the target RAT/frequencies and reports it to its serving eNB. The PCI is defined by
  - UTRAN FDD: the carrier frequency and the Primary Scrambling Code
  - UTRAN TDD: the carrier frequency and the Cell Parameter ID
  - GERAN: the Band Indicator + Base Station Identity Code (BSIC) + BCCH Absolute Radio Frequency Channel Number (ARFCN)
  - CDMA200: the PseudoNoise Offset
- In case of an unknown PCI, the eNB instructs the UE to read and report the neighbours'
  - GERAN: Cell Global Identifier (CGI) and the Routing Area Code (RAC)
  - UTRAN: CGI + Location Area Code (LAC) + RAC
  - CDMA2000: CGI
  - Inter-frequency LTE: ECGI, Tracking Area Code (TAC) and all available PLMN ID(s)
- The eNB updates its inter-RAT/inter-frequency Neighbour Relation Table (NRT)

## **UE-triggered ANR with OAM support**

- OAM system prepares and maintains a list of potential neighbour cells with related IP connectivity information (PCI-ECGI-IP address)
  - PCI / ECGI / IP address data of the current neighbours of the new eNB is created and downloaded to the new eNB
  - The tables of neighbouring eNBs for new eNB are also updated
  - Given PCI uniqueness in the relevant neighbour area, a PCI can be directly mapped to an IP address
- Neighbour cell discovery is similar to the UE-based ANR
  - The UE measures the signal of a new cell and reports the measurement
  - The UE is not instructed to read the ECGI as the neighbour information is already known
- The IP address of a neighbour eNB hosting the newly discovered cell can be derived from the mapping table
  - instead of the MME-based address resolution via the S1 interface
- The X2 connectivity setup is identical to the step in UE-based ANR



#### **3G ANR**

- Based on UE logged mode reporting defined for MDT
- In idle mode, in CELL\_PCH and URA\_PCH states
- Procedure
  - 1. The UE is configured with ANR measurements and parameters
  - The UE stores the ID of the serving cell and the detected cell plus related system information in a trace log
  - 3. When the UE establishes an UL connection, it indicates the trace availability to the current serving cell
  - 4. RNC requests UE to report log
    - The receiving RNC uses RRC signalling to retrieve the ANR report
  - 5. The UE will send log
  - The receiving RNC handles the ANR report and may forward the ANR report to different RNCs



ANR in relay deployment



- Newly detected neighbours are seen through RNs DeNB
- First the X2 TNL is established between DeNB<sub>1</sub> and the eNB<sub>3</sub>
- Next the X2 Setup procedure between eNB<sub>3</sub> and DeNB<sub>1</sub> is executed
- DeNB<sub>1</sub> builds the eNB Configuration
   Update message as it was created by the eNB<sub>3</sub> and sends it to the RN



## **Quiz: Connectivity setup**

