Matrix VII

REA1121

Mathematics for programming

Outline

- Roadmap
- Computation of eigenvalues
- Principal component analysis
- Singular value decomposition
- Exercises

ROADMAP

Roadmap

COMPUTATION OF EIGENVALUES

Computation of eigenvalues

- Determinant
 - $-\det(A \lambda I) = 0$
- Iterative methods for eigenvalues
 - Power method
 - QR algorithm

Power method

- 1. Start with any vector \boldsymbol{u}_0 .
- 2. Multiply by A to find $u_1 = Au_0$.
- 3. Multiply by A to find $\boldsymbol{u}_2 = A\boldsymbol{u}_1 = A^2\boldsymbol{u}_0$.
- 4. If u_0 is a combination of the eigenvectors, then A multiplies with each eigenvector x_i by λ_i . $u_0 = c_1 x_1 + \cdots + c_n x_n$
- 5. After k steps, we have $(\lambda_i)^k$: $\mathbf{u}_k = A^k \mathbf{u}_0 = c_1(\lambda_1)^k \mathbf{x}_1 + \dots + c_n(\lambda_n)^k \mathbf{x}_n$

Power method

- 6. As the power methods continues, the largest eigenvalue begins to dominate.
- 7. The vector u_k point toward that dominant vector.

Find the eigenvector corresponding to the largest eigenvalue of A with the power method.

$$A = \begin{bmatrix} 0.9 & 0.3 \\ 0.1 & 0.7 \end{bmatrix}$$

For reference:

Eigenvalue
$$\lambda_{max} = 1$$

Eigenvector
$$\mathbf{x} = \begin{bmatrix} 0.75 \\ 0.25 \end{bmatrix}$$

Find the eigenvector corresponding to the largest eigenvalue of A with the power method.

Start with
$$u_0=\begin{bmatrix}1\\0\end{bmatrix}$$
 , $u_1=\begin{bmatrix}0.9\\0.1\end{bmatrix}$, $u_2=\begin{bmatrix}0.84\\0.16\end{bmatrix}$

approaching
$$u_{\infty} = \begin{bmatrix} 0.75 \\ 0.25 \end{bmatrix}$$

See the attached Matlab code. Try with different u_0 and test how fast the largest eigenvalue dominates.

QR algorithm

- 1. Let $A_0 = A$, a real matrix
- 2. At the k^{th} step (starting with k=0), we compute the QR decomposition $A_k=Q_kR_k$
 - $-Q_k$ is an orthogonal matrix, i.e., $Q^T=Q^{-1}$
 - $-R_k$ is an upper triangular matrix.
- 3. We then form

$$A_{k+1} = R_k Q_k = Q_k^{-1} Q_k R_k Q_k = Q_k^{-1} A_k Q_k$$

= $Q_k^T A_k Q_k$

so all the A_k are similar and hence they have the same eigenvalues.

QR algorithm

- 4. Under certain conditions, the matrix A_k converge to a triangular matrix.
- 5. The eigenvalues of a triangular matrix are listed on the diagonal.

- A decomposition of a matrix A into a product A = QR
 - -Q is an orthogonal matrix, i.e., $Q^T=Q^{-1}$
 - -R is an upper triangular matrix.
- Computation of the QR decomposition
 - Using Householder reflections

Householder reflection

A Householder reflection is a transformation that takes a vector and reflects it about some plane (or hyperplane).

Householder reflection

$$v = \frac{u}{\|u\|}$$

$$p = x - 2(x \cdot v)v = x - 2v(v^{T}x)$$

$$P = I - 2vv^{T}$$

Let x be an arbitrary real m-dimensional column vector of A such that $||x|| = |\alpha|$ for a scalar α .

$$e_1 = [1,0,\cdots,0]^T$$

$$u = x - \alpha e_1$$

$$v = \frac{u}{\|u\|}$$

$$Q = I - 2vv^T$$

Q is an m-by-m Householder matrix that is used to reflect x in such a way that all coordinates but one disappear.

$$Qx = [\alpha, 0, \cdots, 0]^T$$
This is used to gradually transform an m -by- n matrix A to upper triangular form.

 v
 v

1. Multiply A with the Householder matrix Q_1 we obtain when we choose the first matrix column for x. This results in a matrix Q_1A with zeros in the left column (except for the first row).

$$Q_1 A = \begin{bmatrix} \alpha_1 & * & \cdots & * \\ 0 & & & \\ \vdots & & A' & \\ 0 & & & \end{bmatrix}$$

2. Repeat step 1 on A' obtained from Q_1A by deleting the first row and first column, which results in a Householder matrix Q_2' .

$$Q_{2} = \begin{bmatrix} 1 & 0 \\ 0 & Q'_{2} \end{bmatrix}, Q_{k} = \begin{bmatrix} I_{k-1} & 0 \\ 0 & Q'_{k} \end{bmatrix}$$

$$Q_{2}Q_{1}A = \begin{bmatrix} \alpha_{1} & * \cdots * \\ 0 & \alpha_{2} & * * * \\ \vdots & \vdots & A' \\ 0 & 0 \end{bmatrix}$$

3. After t iterations of this process, t = min(m-1, n)

$$R = Q_t \cdots Q_2 Q_1 A = \begin{bmatrix} \alpha_1 & * & \cdots & * \\ 0 & \alpha_1 & * & * \\ \vdots & 0 & \ddots & * \\ \vdots & \vdots & 0 & \alpha_t \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

is a upper triangular matrix.

4. With
$$Q = Q_1^T Q_2^T \cdots Q_t^T$$
,

$$A = QR = Q_1^T Q_2^T \cdots Q_t^T Q_t \cdots Q_2 Q_1 A$$
 is a *QR decomposition* of *A*.

Calculate the eigenvalues of A with the QR algorithm. (See attached Matlab code.)

$$A = \begin{bmatrix} 12 & -51 & 4 \\ 6 & 167 & -68 \\ -4 & 24 & -41 \end{bmatrix}$$

Demonstration

- Graphical demonstration of x and Ax
- Observe the relationship between x and Ax
- See the attached Matlab code (eigshow.m)
- Make Ax parallel to x

PRINCIPAL COMPONENT ANALYSIS

Principal component analysis

 PCA is a statistical procedure that uses an orthogonal transformation to convert a set of observations of possibly correlated variables into a set of values of linearly uncorrelated variables called *principal components*.

Principal component analysis

- This transformation is defined in such a way
 - the first principal component has the largest possible variance
 - each succeeding component in turn has the highest variance possible under the constraint that it is orthogonal to the preceding components.
- The resulting vectors are an uncorrelated orthogonal basis set.

Principal component analysis

Computation of PCA

Consider the vectors x_1, x_2, x_3 , each of them is a single grouped observation of 2 variables.

$$x_1 = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$$
, $x_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $x_3 = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$

1. Organize the data set so that each row vector of X contains the p=2 variables and each column vector represents n=3 measurements of a single variable.

$$X = \begin{bmatrix} \mathbf{x}_1' \\ \mathbf{x}_2' \\ \mathbf{x}_3' \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$$

2. Calculate the empirical mean for each column vector of X, namely each variable in X

$$E(X) = E\left(\begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}\right) = \begin{bmatrix} 0 & 0 \end{bmatrix}$$

3. Calculate the deviations from the mean

$$B = X - \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} E(X) = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$$
$$= \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$$

4. Find the symmetric square matrix $C = B^T B$

$$C = \frac{1}{n-1} B^T B = \frac{1}{2} \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$$
$$= \frac{1}{2} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix}$$

5. Find the eigenvectors and eigenvalues of the symmetric square matrix *C*

$$CQ = Q\Lambda$$

$$Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1\\ -1 & 1 \end{bmatrix}$$

$$\Lambda = \frac{1}{2} \begin{bmatrix} 3 & 0\\ 0 & 1 \end{bmatrix}$$

6. Find the principal components *P*

$$P = XQ = \frac{1}{\sqrt{2}} \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ -1 & -1 \end{bmatrix}$$

7. Restore the matrix of source data X

$$PQ^{T} = XQQ^{T} = XQQ^{-1} = X$$

$$= \frac{1}{2} \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ -1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 0 & 1 \\ -1 & 0 \end{bmatrix}$$

An application of PCA

Apply PCA to recommendation systems (see the attached paper for details)

- 1. Data formation
- 2. Covariance Matrix Calculation
- 3. Calculation of Eigvenvectors/Eigenvalues
- 4. Formation of a feature vector
- 5. Construction of the new data set
- 6. Return to the old data

SINGULAR VALUE DECOMPOSITION

Diagonalization with eigenvectors

$$Ax = \lambda x$$

$$AS = S\Lambda$$

$$S^{-1}AS = \Lambda$$

$$A = S\Lambda S^{-1}$$

The eigenvectors in S:

- they are usually not orthogonal
- there are not always enough eigenvectors
- *A* is required to be square

$$A\mathbf{v} = \sigma \mathbf{u}$$

- Two sets of singular vectors:
 - $-\mathbf{u}'$ s are eigenvectors of AA^T
 - -v's are eigenvectors of A^TA
- AA^T and A^TA are symmetric matrices, u's and v's can be chosen orthonormal.

$$A\mathbf{v} = \sigma \mathbf{u}$$

- Singular vectors v_1, \dots, v_r are in the row space of A.
- The outputs u_1, \dots, u_r are in the column space of A.
- The singular values $\sigma_1, \dots, \sigma_r$ are all positive numbers.

$$A\mathbf{v} = \sigma \mathbf{u}$$

$$AV = U\Sigma$$

$$A \begin{bmatrix} v_1 & \cdots & v_r \end{bmatrix} = \begin{bmatrix} u_1 & \cdots & u_r \end{bmatrix} \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_r \end{bmatrix}$$

$$A oldsymbol{v} = \sigma oldsymbol{u}$$
 $A oldsymbol{V} = oldsymbol{U} \Sigma$
$$A egin{bmatrix} v_1 & \cdots & v_r & \cdots & v_n \end{bmatrix} = egin{bmatrix} u_1 & \cdots & u_r & \cdots & u_m \end{bmatrix} egin{bmatrix} \sigma_1 & \ddots & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$$

$$A$$
 V U Σ $m \times n$ $n \times n$ $m \times m$ $m \times n$

Singular vector decomposition

$$A \boldsymbol{v} = \sigma \boldsymbol{u}$$
 $AV = U \Sigma$
 $A \quad V \quad U \quad \Sigma$
 $m \times n \quad n \times n \quad m \times m \quad m \times n$

V is a square orthogonal matrix, with $V^{-1} = V^T$

$$A = U\Sigma V^{-1} = U\Sigma V^{T}$$

$$A = \boldsymbol{u}_{1}\sigma_{1}\boldsymbol{v}_{1}^{T} + \dots + \boldsymbol{u}_{r}\sigma_{r}\boldsymbol{v}_{r}^{T}$$

Comparison

Eigendecomposition

$$Ax = \lambda x$$

$$A = S\Lambda$$

$$A = S\Lambda S^{-1}$$

Singular value decomposition

$$A\mathbf{v} = \sigma \mathbf{u}$$

$$AV = U\Sigma$$

$$A = U\Sigma V^{-1} = U\Sigma V^{T}$$

SVD

$$AV = U\Sigma$$

$$A[\boldsymbol{v}_1 \quad \boldsymbol{v}_2] = [\sigma_1 \boldsymbol{u}_1 \quad \sigma_2 \boldsymbol{u}_2] = [\boldsymbol{u}_1 \quad \boldsymbol{u}_2] \begin{bmatrix} \sigma_1 \\ \sigma_2 \end{bmatrix}$$

$$A = U\Sigma V^T$$

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T}) = V\Sigma^{T}U^{T}U\Sigma V^{T}$$
$$= V\Sigma^{T}\Sigma V^{T} = V\begin{bmatrix} \sigma_{1}^{2} & \\ & \sigma_{2}^{2} \end{bmatrix}V^{T}$$

SVD

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T}) = V\Sigma^{T}U^{T}U\Sigma V^{T}$$
$$= V\Sigma^{T}\Sigma V^{T} = V\begin{bmatrix} \sigma_{1}^{2} & \\ & \sigma_{2}^{2} \end{bmatrix}V^{T}$$

For symmetric matrices, we have

$$A = Q\Lambda Q^{-1} = Q\Lambda Q^T$$

with orthonormal eigenvectors in S=Q and $Q^{-1}=Q^T$

SVD

$$A^{T}A = (U\Sigma V^{T})^{T}(U\Sigma V^{T}) = V\Sigma^{T}U^{T}U\Sigma V^{T}$$
$$= V\Sigma^{T}\Sigma V^{T} = V\begin{bmatrix} \sigma_{1}^{2} & \\ & \sigma_{2}^{2} \end{bmatrix}V^{T}$$

- The columns of V are the eigenvectors of A^TA
- The diagonal elements of Σ are the eigenvalues of A^TA

Find the singular value decomposition of the

$$matrix A = \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}.$$

Find the singular value decomposition of the matrix $A = \begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix}$.

Solution Compute A^TA and its eigenvectors. Then make them unit vectors:

$$A^T A = \begin{bmatrix} 5 & 3 \\ 3 & 5 \end{bmatrix}$$
 has unit eigenvectors

$$\boldsymbol{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
 and $\boldsymbol{v}_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$

The eigenvalues of A^TA are 8 and 2. The \boldsymbol{v} 's are perpendicular, because eigenvectors of every symmetric matrix are perpendicular – and A^TA is automatically symmetric.

$$Am{v}_1=iggl[rac{2\sqrt{2}}{0}iggr]$$
 . The unit vector is $m{u}_1=iggl[rac{1}{0}iggr]$, $\sigma_1=2\sqrt{2}$

$$A m{v}_2 = iggl[0 \\ \sqrt{2} iggr]$$
. The unit vector is $m{u}_2 = iggl[0 \\ 1 iggr]$, $\sigma_2 = \sqrt{2}$

$$A = U\Sigma V^T$$

$$\begin{bmatrix} 2 & 2 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2\sqrt{2} & 0 \\ 0 & \sqrt{2} \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ -1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$

Demonstration

- Graphical demonstration of orthogonal vectors \boldsymbol{x} and \boldsymbol{y} and $A\boldsymbol{x}$ and $A\boldsymbol{y}$
- Observe the relationship between Ax and Ay
- See the attached Matlab code (eigshow.m)
- Make Ax perpendicular to Ay

An application of SVD

SVD for image compression (see attached Matlab code)

A grayscale image A can be factorized with SVD:

$$A = U\Sigma V^{T}$$

$$A \qquad U \qquad \Sigma \qquad V$$

$$m \times n \qquad m \times m \qquad m \times n \qquad n \times n$$

Reducing the number of singular vectors compresses the image.

An application of SVD

SVD for image compression (see attached Matlab code and try different r)

A grayscale image A can be factorized with SVD:

$$A = U\Sigma V^T$$

Original: A U Σ V $m \times n$ $m \times m$ $m \times n$ $n \times n$ After A U Σ V reduction: $m \times n$ $m \times r$ $r \times r$ $n \times r$

EXERCISES

Problem 1

Rectangular matrix
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix}$$

- Compute PCA and find the vectors and the corresponding principal components
- Compute SVD of A and find the singular vectors and the singular values.
- Verify your results with the attached Matlab code.

Solution 1

PCA

$$P = XQ = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 0 & 2 \\ -1 & 1 \end{bmatrix}$$
$$Q = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$$

Solution 1

SVD

$$A = U\Sigma V^{T}$$

$$U = \begin{bmatrix} -0.4082 & 0.7071 & 0.5774 \\ -0.8165 & 0 & -0.5774 \\ -0.4082 & -0.7071 & 0.5774 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1.7321 & & \\ & 1 & \\ & & \end{bmatrix}$$

$$V = \begin{bmatrix} -0.7071 & 0.7071 \\ -0.7071 & -0.7071 \end{bmatrix}$$