Федеральное агентство по образованию Государственное образовательное учреждение высшего профессионального образования «Пермский государственный технический университет»

Р.А. Файзрахманов, И.Н. Липатов

РЕШЕНИЕ ЗАДАЧ ПО КУРСУ «ТЕОРЕТИЧЕСКИЕ ОСНОВЫ АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ»

Утверждено Редакционно-издательским советом университета в качестве учебного пособия

Издательство

Пермского государственного технического университета 2008

УДК 681.51 Ф17

Рецензенты:

д-р экон. наук, профессор, заслуженный деятель науки РФ Н.И. Артемов (Государственный научно-исследовательский институт управляющих машин и систем, ГосНИИУМС); д-р физ.-мат. наук, профессор кафедры «Информационные технологии и математические методы в экономике» А.Н. Румянцев (Пермский государственный университет)

Файзрахманов Р.А.

Решение задач по курсу «Теоретические основы автоматизированного управления» / Р.А. Файзрахманов, И.Н. Липатов. Ч.1. «Линейные детерминированные системы»: учеб. пособие / Пермь: Изд-во Перм. гос. техн. ун-т, 2008. – 95 с.

ISBN 978-5-88151-916-2

Изложены вопросы практического применения теории автоматического управления. Приводятся теоретические сведения, решения типовых задач и задачи для самостоятельного решения по основным разделам курса «Теория автоматического управления».

Предназначено для студентов специальности 230102 «Автоматизированные системы обработки информации и управления», направления 230100 «Информатика и вычислительная техника» дневного и заочного обучения.

УДК 681.51

ISBN 978-5-88151-916-2 © ГОУ ВПО «Пермский государственный технический университет», 2008

СОДЕРЖАНИЕ

введение
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 1. Определение дви-
жения динамической системы
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 2. Определение ча-
стотных характеристик динамической системы
HIDALTHURGING DALIGHUR M. 2. O
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 3. Определение весовых
w(t) и переходных $h(t)$ функций динамических систем
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 4. Проверка динами-
ческой системы на устойчивость по критерию Гурвица
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 5. Точность линейных
систем управления (установившаяся или статическая ошиб-
ка системы управления)
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 6. Определение сигна-
ла на выходе системы управления (определение ошибки си-
стемы управления)
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 7. Фазовый портрет
(фазовые траектории) динамической системы
ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 8. Определение пара-
метра динамической системы, обеспечивающего минимум
интегрального показателя качества
ЗАКЛЮЧЕНИЕ
ПРИЛОЖЕНИЕ. Таблица преобразований Лапласа

ВВЕДЕНИЕ

В окружающем нас мире повсюду протекают различные процессы управления. Управление — организация того или иного процесса, которая обеспечивает достижение определенных целей. Наука о процессах управления и их общих закономерностях называется теорией управления.

В связи с повышением требований к эффективности управления всеми отраслями народного хозяйства возникла необходимость научной организации всех процессов управления, в том числе и осуществляемых с участием людей. Это выдвинуло перед теорией управления новые задачи. Если раньше было достаточно уметь исследовать процессы автоматического управления техническими устройствами, то теперь необходимо исследовать и рассчитывать также процессы управления сложными системами, содержащими коллективы людей, с помощью систем управления, в которых главную роль играют люди – соответствующие руководители. Поэтому теория управления перестала быть только теорией автоматического управления. В ней появилось новое научное направление – теория автоматизированных систем управления (АСУ). Теория автоматического управления стала лишь частью общей теории управления.

Теория автоматического управления — это наука об управлении, изучающая задачи анализа и синтеза систем автоматического управления (САУ). Основные задачи теории автоматического управления — это:

- анализ САУ, т.е. анализ устойчивости, структурных свойств, динамических показателей качества, точности;
- синтез САУ, т.е. синтез алгоритмов (аналитических выражений), описывающих блоки системы и их связи и обеспечивающих заданное (может быть, оптимальное) качество управления.

Современная теория управления занимает одно из ведущих мест в технических науках и в то же время относится к одной из отраслей прикладной математики.

В учебном пособии рассматриваются линейные детерминированные системы управления.

Детерминированной называется система, которая отвечает на один и тот же входной сигнал всегда одним и тем же вполне определенным выходным сигналом.

Так как любая система осуществляет преобразование функций — каждой данной функции на входе ставит в соответствие определенную функцию на выходе, — то каждой детерминированной системе соответствует вполне определенный оператор. Этот оператор называется оператором системы. Оператор системы обычно коротко обозначают одной буквой. Тогда соответствие между входной функцией системы x(t) и ее выходной функцией y(t) можно корректно записать в виде

$$y(t) = Ax(t)$$

где A — оператор системы. Буквой A обозначена вся совокупность математических действий, которые нужно произвести, чтобы по данной входной функции x(t) найти соответствующую выходную функцию системы y(t).

Оператор системы является полной, исчерпывающей ее характеристикой. Оператор A называется линейным, если при любых числах n, c_1, \dots, c_n и при любых функциях $x_1(t), \dots, x_n(t)$

$$A\left\{\sum_{i=1}^n c_i x_i(t)\right\} = \sum_{i=1}^n c_i A x_i(t).$$

Динамическая система называется линейной, если ее оператор линеен. С целью более глубокого изучения теории линейных детерминированных систем управления в учебном пособии решаются практические задачи по определению движения динамической системы, нахождению временных характеристик (весовая функция и переходная функция) системы, определению частотных характеристик (АЧХ и ФЧХ) системы, исследованию на устойчивость системы по критерию Гурвица, нахождению статической ошибки системы управления, определению сигнала на выходе системы управления, нахождению ошибки системы управления, построению фазового портрета системы; определению какого-либо параметра системы управления, при котором обеспечивается минимум интегрального показателя качества.

По каждому практическому занятию приводятся теоретические сведения, дается решение типовых задач и предлагаются задачи для самостоятельного решения. В учебном пособии имеется приложение, в котором приведена таблица преобразований Лапласа.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 1. Определение движения динамической системы

Теоретические сведения

Поведение динамической системы описывается дифференциальным уравнением второго порядка

$$\ddot{y}(t) + p\dot{y}(t) + qy(t) = k_0 f(t),$$
 (1.1)

где p,q,k_0 — постоянные коэффициенты $\ddot{y}(t) = \frac{d^2y(t)}{dt}$; $\dot{y}(t) = \frac{dy(t)}{dt}$;

f(t) — некоторая входная функция времени; t — время.

Решение y(t) уравнения (1.1) состоит из двух частей

$$y(t) = y_{c}(t) + y_{B}(t),$$
 (1.2)

где $y_{\rm c}(t)$ — собственное движение динамической системы; $y_{\rm B}(t)$ — вынужденное движение.

Для (1.1) известны начальные условия:

$$y(0) = y_0; \dot{y}(0) = y_0^*.$$
 (1.3)

Определим сначала соотношения для определения собственного движения. В (1.1) полагаем правую часть равной нулю. Тогда (1.1) примет вид

$$\ddot{y}(t) + p\dot{y}(t) + qy(t) = 0.$$
 (1.4)

Дифференциальному уравнению (1.4) соответствует характеристическое уравнение

$$r^2 + pr + q = 0. ag{1.5}$$

Собственное движение $y_{c}(t)$ определяется соотношением

$$y_{c}(t) = C_{1}e^{r_{1}t} + C_{2}e^{r_{2}t},$$
 (1.6)

где r_1, r_2 – вещественные различные корни уравнения (1.5).

Для случая комплексных корней $r_{1,2}$ = $\alpha \pm i \beta$, $y_{\rm c}(t)$ имеет вид

$$y_c(t) = e^{\alpha t} (C_1 \cos \beta t + C_2 \sin \beta t).$$
 (1.7)

Для случая $r_1 = r_2 = r$ имеем

$$y_c(t) = (C_1 + C_2 t)e^{rt}.$$
 (1.8)

Если уравнение (1.4) принимает вид

$$\ddot{\mathbf{y}}(t) + \lambda^2 \mathbf{v}(t) = 0, \tag{1.9}$$

то

$$y_{c}(t) = (C_{1} \cos \lambda t + C_{2} \sin \lambda t).$$
 (1.10)

Пусть уравнение (1.1) имеет вид

$$\ddot{y}(t) + p\dot{y}(t) + qy(t) = ae^{kt},$$
 (1.11)

где a и k – постоянные величины.

Определим вынужденное движение $y_{\scriptscriptstyle B}(t)$. Введем обозначение

$$\phi(r) = r^2 + pr + q. \tag{1.12}$$

Вынужденное движение ищем в виде

$$y_{R}(t) = A_{1}e^{kt},$$
 (1.13)

где A_1 – искомый коэффициент.

Подставим (1.13) в (1.11). В результате получим

$$\varphi(k)A_1=a$$

или

$$A_{\rm l} = \frac{a}{\varphi(k)}.\tag{1.14}$$

Если k не есть корень уравнения (1.5), т.е. $\varphi(k) \neq 0$, то из уравнения (1.14) определяется A_1 .

Из (1.2) имеем

$$y(t) = y_{c}(t) + A_{l}e^{kt},$$
 (1.15)

где $y_{\rm c}(t)$ определяется (1.6) или (1.7) или (1.8) или (1.10). Определим C_1, C_2 для случая, когда $y_{\rm c}(t)$ определяется (1.6). Получим

$$y(0) = y_0 = C_1 + C_2 + A_1, \dot{y}(0) = y_0^* = C_1 r_1 + C_2 r_2 + A_1 k.$$
(1.16)

Из системы уравнений (1.6) определяем C_1 , C_2 . Таким образом, решение y(t) определено. Положим, что k есть простой корень уравнения (1.5), т.е. $\phi(k) = 0$, но $\dot{\phi}(k) \neq 0$. В данном случае будем искать решение уравнения (1.11) в виде

$$y_{\rm R}(t) = A_1 t e^{kt}$$
. (1.17)

Подставим (1.17) в (1.11). Получим

$$\phi(k)A_1t + \dot{\phi}(k)A_1 = a.$$

 $Tak \ kak \ \emptyset (k) = 0, To$

$$A_{1} = \frac{a}{\dot{\phi}(k)}.\tag{1.18}$$

Если k — двукратный корень уравнения (1.5), т.е. $\phi(k) = \dot{\phi}(k) = 0$, то решение уравнения надо искать в виде

$$y_{p}(t) = A_{1}t^{2}e^{kt}. {(1.19)}$$

Если

$$\ddot{y}(t) + p\dot{y}(t) + qy(t) = a\cos lt,$$
 (1.20)

то $y_{\rm R}(t)$ ищется в виде

$$y_{\rm B}(t) = A_{\rm I} \cos lt + B_{\rm I} \sin lt.$$
 (1.21)

Чтобы определить A_1, B_1 , надо подставить (1.21) в (1.20), привести подобные члены и найти A_1, B_1 .

Решение типовых задач

Задача 1.1. Поведение динамической системы описывается уравнением

$$\ddot{y}(t) - 5\dot{y}(t) + 6y(t) = 4e^{4t}; \ y(0) = 0; \ \dot{y}(0) = 0$$
 (1.22)

или

$$\ddot{y}(t) - a\dot{y}(t) + by(t) = ce^{kt}$$

где c = 4; k = 4; a = -5; b = 6. Определить y(t).

Для (1.22) запишем характеристическое уравнение

$$r^2 - 5r + 6 = 0$$
.

$$r_{1,2} = \frac{5 \pm \sqrt{25 - 24}}{2} = \frac{5 \pm 1}{2};$$

 $r_1 = 2; r_2 = 3.$

В рассматриваемом случае

$$\varphi(k) = k^2 + ak + b$$
, $y_{\text{B}}(t) = C_1 e^{kt}$, $C_1 = \frac{c}{\varphi(k)}$

или

$$C_1 = \frac{4}{16 - 5 \cdot 4 + 6} = 2.$$

Определим собственное движение. Имеем

$$y_{c}(t) = A_{1}e^{r_{1}t} + A_{2}e^{r_{2}t}$$

или

$$y_{c}(t) = A_{1}e^{2t} + A_{2}e^{3t}$$
.

Определим y(t). Получим

$$y(t) = y_c(t) + y_B(t)$$

или

$$y(t) = A_1 e^{2t} + A_2 e^{3t} + 2e^{4t}. (1.23)$$

Из (1.23) имеем

$$y(0) = 0 = A_1 + A_2 + 2;$$

$$\dot{y}(0) = 0 = 2A_1 + 3A_2 + 8.$$
(1.24)

Используя правило Крамера, получим

$$\Delta = \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 1; \ \Delta_1 = \begin{vmatrix} -2 & 1 \\ -8 & 3 \end{vmatrix} = 2; \ \Delta_2 = \begin{vmatrix} 1 & -2 \\ 2 & 8 \end{vmatrix} = -4.$$

$$A_1 = \frac{\Delta_1}{\Lambda} = 2; \ A_2 = \frac{\Delta_2}{\Lambda} = -4. \tag{1.25}$$

Соотношение (1.23) с учетом (1.25) примет вид

$$y(t) = 2e^{2t} - 4e^{3t} + 2e^{+4t}$$

Задача 1.2. Поведение динамической системы описывается уравнением

$$\ddot{y}(t) - 5\dot{y}(t) + 6y(t) = 4e^{2t}; \ y(0) = y(0) = 0.$$
 (1.26)

Определить y(t).

В рассматриваемом случае r_1 = 2; r_2 = 3; k = 2. Следовательно

$$y_{\rm B}(t) = C_1 t e^{kt}$$

или

$$y_{\rm B}(t) = C_1 t e^{2t}. (1.27)$$

Из (1.27) имеем

$$\dot{y}_{R}(t) = C_{1}(e^{2t} + 2te^{2t});$$
 (1.28)

$$\ddot{y}_{R}(t) = C_{1}(2e^{2t} + 2e^{2t} + 4te^{2t}). \tag{1.29}$$

Подставим (1.27)-(1.29) в (1.26). Получим

$$C_1(4+4t-5-10t+6t)=4$$
,

откуда

$$C_1 = -4$$
, $y_{\rm R}(t) = -4te^{2t}$.

Определим собственное движение. Имеем

$$y_{c}(t) = A_{1}e^{2t} + A_{2}e^{3t}$$
.

Определим y(t). Получим

$$y(t) = y_{c}(t) + y_{B}(t)$$

ИЛИ

$$y(t) = A_1 e^{2t} + A_2 e^{3t} - 4t e^{2t}. (1.30)$$

Из (1.30) имеем

$$\dot{y}(t) = 2A_1e^{2t} + 3A_2e^{3t} - 4e^{2t} - 8te^{2t}. \tag{1.31}$$

Из (1.30), (1.31) получим

$$y(0) = 0 = A_1 + A_2,$$
 (1.32)

$$\dot{y}(0) = 0 = 2A_1 + 3A_2 - 4.$$
 (1.33)

Из (1.32) имеем

$$A_1 = -A_2. (1.34)$$

Подставим (1.34) в (1.33). Получим

$$A_2 = 4.$$
 (1.35)

Тогда

$$A_1 = -4.$$
 (1.36)

Соотношение (1.30) с учетом (1.35), (1.36) примет вид

$$y(t) = -4e^{2t} + 4e^{3t} - 4te^{2t}. (1.37)$$

Таким образом, поведение динамической системы описывается соотношением (1.37).

Задача 1.3. Поведение динамической системы описывается уравнением

$$\ddot{y}(t) - 5\dot{y}(t) + 6y(t) = 4\sin 2t; \ y(0) = \dot{y}(0) = 0.$$
 (1.38)

Определить y(t).

Решение. Характеристическое уравнение имеет вид

$$r^2 + 5r + 6 = 0$$
.

Имеем $r_1 = 2$; $r_2 = 3$. Запишем собственное движение системы:

$$y_{c}(t) = C_{1}e^{2t} + C_{2}e^{3t}.$$
 (1.39)

Вынужденное движение системы ищем в виде

$$y_{\rm B}(t) = A_1 \cos 2t + B_1 \sin 2t.$$
 (1.40)

Определим A_1 и B_1 . Из (1.40) имеем

$$\dot{y}_{\rm B}(t) = -2A_{\rm l}\sin 2t + 2B_{\rm l}\cos 2t;$$
 (1.41)

$$\ddot{y}_{B}(t) = -4A_{1}\cos 2t - 4B_{1}\sin 2t. \tag{1.42}$$

Подставим (1.40)–(1.42) в (1.38). Получим

$$-4A_1 \cos 2t - 4B_1 \sin 2t + 10A_1 \sin 2t - 10B_1 \cos 2t +$$

+ $6A_1 \cos 2t + 6B_1 \sin 2t = 4 \sin 2t$

или

$$(2A_1 - 10B_1)\cos 2t + (10A_1 + 2B_1)\sin 2t = 4\sin 2t.$$
 (1.43)

Из (1.43) имеем

$$2A_1 - 10B_1 = 0;$$

 $10A_1 + 2B_1 = 4.$

Используя правило Крамера, получим

$$\Delta = \begin{vmatrix} 2 & -10 \\ 10 & 2 \end{vmatrix} = 104; \Delta_1 = \begin{vmatrix} 0 & -10 \\ 4 & 2 \end{vmatrix} = 40; \Delta_2 = \begin{vmatrix} 2 & 0 \\ 10 & 4 \end{vmatrix} = 8.$$
$$A_1 = \frac{\Delta_1}{\Delta} = \frac{40}{104} = \frac{5}{13}; B_1 = \frac{\Delta_2}{\Delta} = \frac{8}{104} = \frac{1}{13}.$$

Таким образом, $y_{\rm B}(t)$ определяется соотношением

$$y_{\rm B}(t) = \frac{5}{13}\cos 2t + \frac{1}{13}\sin 2t.$$

Определим y(t)

$$y(t) = y_c(t) + y_B(t)$$

или

$$y(t) = C_1 e^{2t} + C_2 e^{3t} + \frac{5}{13} \cos 2t + \frac{1}{13} \sin 2t.$$
 (1.44)

Из (1.44) имеем

$$\dot{y}(t) = 2C_1 e^{2t} + 3C_2 e^{3t} + \frac{2}{13} \cos 2t - \frac{10}{13} \sin 2t.$$
 (1.45)

Определим C_1 и C_2 . Из (1.44), (1.45) получим

$$y(0) = 0 = C_1 + C_2 + \frac{5}{13};$$

 $\dot{y}(0) = 0 = 2C_1 + 3C_2 + \frac{2}{13}.$

Используем правило Крамера. Имеем

$$\Delta = \begin{vmatrix} 1 & 1 \\ 2 & 3 \end{vmatrix} = 1; \ \Delta_1 = \begin{vmatrix} -\frac{5}{13} & 1 \\ -\frac{2}{13} & 3 \end{vmatrix} = -1; \ \Delta_2 = \begin{vmatrix} 1 & -\frac{5}{13} \\ 2 & -\frac{2}{13} \end{vmatrix} = \frac{8}{13};$$

$$C_1 = \frac{\Delta_1}{\Delta} = -1; \ C_2 = \frac{\Delta_2}{\Delta} = \frac{8}{13}.$$
(1.46)

Соотношение (1.44) с учетом (1.46) примет вид

$$y(t) = -e^{2t} + \frac{8}{13}e^{3t} + \frac{5}{13}\cos 2t + \frac{1}{13}\sin 2t.$$
 (1.47)

Таким образом, поведение динамической системы описывается соотношением (1.47).

Задачи для самостоятельного решения

Задача 1.4. Поведение динамической системы описывается уравнением

$$0.002\ddot{y}(t) + 0.21\dot{y}(t) + 4y(t) = 2e^{-5t}$$
; $y(0) = \dot{y}(0) = 0$.

Определить y(t).

Задача 1.5. Поведение динамической системы описывается уравнением

$$0.002\ddot{y}(t) + 0.21\dot{y}(t) + 4y(t) = 5\cos 3t$$
; $y(0) = \dot{y}(0) = 0$.

Определить y(t).

Задача 1.6. Поведение динамической системы описывается уравнением

$$\ddot{y}(t) + 150\dot{y}(t) + 3600y(t) = 3\sin 2t$$
; $y(0) = \dot{y}(0) = 0$.

Определить y(t).

Задача 1.7. Поведение динамической системы описывается уравнением

$$\ddot{y}(t) + 4\dot{y}(t) + 13y(t) = 6\sin 2t$$
; $y(0) = \dot{y}(0) = 0$.

Определить y(t).

Задача 1.8. Поведение динамической системы описывается уравнением

$$0.1\ddot{y}(t) + \dot{y}(t) + 20y(t) = kx(t);$$

$$x(t) = 0$$
; $k = 1$; $y(0) = 0$; $\dot{y}(10) = y_1$.

Определить y(t).

Задача 1.9. Поведение динамической системы описывается уравнением

$$T^2\ddot{y}(t) + 2\xi T\dot{y}(t) + y(t) = kx(t);$$

$$x(t) = 0$$
; $\xi = 0.5$; $T = 10$; $k = 1$; $y(0) = y_0$; $\dot{y}(0) = 0$.

Определить y(t).

Задача 1.10. Поведение динамической системы описывается уравнением

$$\ddot{x}(t) + 7\dot{x}(t) + 12x(t) = u(t);$$

Определить собственное движение системы $x_{\rm c}(t)$, если x(0) = 0; $\dot{x}(0)$ = x_{10} .

Задача 1.11. Поведение динамической системы описывается уравнением

$$0.002\ddot{y}(t) + 0.21\dot{y}(t) + 4y(t) = 2e^{-5t}$$
.

Определить собственное движение системы $y_{\rm c}(t)$, если y(0) = y_0 ; $\dot{y}(0)$ = 0.

Задача 1.12. Поведение динамической системы описывается уравнением

$$\ddot{y}(t) + 15\dot{y}(t) + 50y(t) = 5\sin 4t$$
.

Определить собственное движение системы $y_{\rm c}(t)$, если y(0) = y_0 ; $\dot{y}(0)$ = 0.

Задача 1.13. Поведение динамической системы описывается уравнением

$$\ddot{y}(t) + 15\dot{y}(t) + 50y(t) = 5\sin 4t$$
; $y(0) = \dot{y}(0) = 0$.

Определить y(t).

Задача 1.14. Поведение динамической системы описывается уравнением

$$a_0\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = b \cdot e^{-kt}; \ y(0) = \dot{y}(0) = 0,$$

 $a_0 = 1; \ a_1 = 17; \ a_2 = 16; \ b = 10; \ k = 26.$

Определить y(t).

Задача 1.15. Поведение динамической системы описывается уравнением

$$a_0\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = b \cdot e^{-kt}; \ y(0) = \dot{y}(0) = 0,$$

 $a_0 = 4; \ a_1 = 88; \ a_2 = 340; \ b = 12; \ k = 16.$

Определить y(t).

Задача 1.16. Поведение динамической системы описывается уравнением

$$a_0\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = b \cdot e^{-kt}; \ y(0) = \dot{y}(0) = 0,$$

 $a_0 = 3; \ a_1 = 84; \ a_2 = 540; \ b = 14; \ k = 11.$

Определить y(t).

Задача 1.17. Поведение динамической системы описывается уравнением

$$a_0\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = b \cdot e^{-kt}; \ y(0) = \dot{y}(0) = 0,$$

 $a_0 = 2; \ a_1 = 78; \ a_2 = 760; \ b = 15; \ k = 6.$

Определить y(t).

Задача 1.18. Поведение динамической системы описывается уравнением

$$a_0\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = k\cos\beta t; \ y(0) = \dot{y}(0) = 0,$$

 $a_0 = 2; \ a_1 = 78; \ a_2 = 760; \ k = 6; \ \beta = 15.$

Определить y(t).

Задача 1.19. Поведение динамической системы описывается уравнением

$$a_0\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = k\cos\beta t; \ y(0) = \dot{y}(0) = 0,$$

 $a_0 = 1; \ a_1 = 50; \ a_2 = 600; \ k = 36; \ \beta = 12.$

Определить y(t).

Задача 1.20. Поведение динамической системы описывается уравнением

$$a_0\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = k\cos\beta t; \ y(0) = \dot{y}(0) = 0,$$

 $a_0 = 3; \ a_1 = 84; \ a_2 = 540; \ k = 11; \ \beta = 14.$

Определить y(t).

Задача 1.21. Поведение динамической системы описывается уравнением

$$a_0\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = k\cos\beta t; \ y(0) = \dot{y}(0) = 0,$$

 $a_0 = 4; \ a_1 = 88; \ a_2 = 340; \ k = 16; \ \beta = 12.$

Определить v(t).

Задача 1.22. Поведение динамической системы описывается уравнением

$$a_0\ddot{y}(t) + a_1\dot{y}(t) + a_2y(t) = k\cos\beta t$$
; $y(0) = \dot{y}(0) = 0$,
 $a_0 = 1$; $a_1 = 17$; $a_2 = 16$; $k = 26$; $\beta = 10$.

Определить y(t).

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 2. Определение частотных характеристик динамической системы

Теоретические сведения

Обозначим через W(s) передаточную функцию динамической системы. Имеем

$$W(s) = \frac{Y(s)}{X(s)},\tag{2.1}$$

где

$$X(s) = L\{x(t)\}; Y(s) = L\{y(t)\}.$$
 (2.2)

Здесь x(t) — сигнал на входе динамической системы; y(t) — сигнал на выходе динамической системы; X(s) — преобразование Лапласа сигнала x(t); Y(s) — преобразование Лапласа сигнала y(t).

Определим амплитудно-фазо-частотную характеристику (АФЧХ) системы $W(j\emptyset$).

Имеем

$$W(j\omega) = W(s)|_{s=j\omega}. \tag{2.3}$$

АФЧХ W(j 0) можно записать в виде

$$W(j\omega) = P(\omega) + jQ(\omega), \qquad (2.4)$$

где $P(\emptyset)$ — действительная часть $W(j\emptyset); jQ(\emptyset)$ — мнимая часть $W(j\emptyset)$.

Соотношение (2.4) есть запись $W(j_0)$ в алгебраической форме. Запишем $W(j_0)$ в показательной форме. Имеем

$$W(j\omega) = A(\omega)e^{j\phi(\omega)}, \qquad (2.5)$$

где $A(\emptyset)$ – амплитудно-частотная характеристика (АЧХ) динамической системы; $\emptyset(\emptyset)$ – фазо-частотная характеристика (ФЧХ) динамической системы. АФЧХ, АЧХ, ФЧХ называются частотными характеристиками динамической системы.

 $A(\omega)$ и $\phi(\omega)$ определяются соотношением

$$A(\omega) = \sqrt{P^2(\omega) + Q^2(\omega)}; \tag{2.6}$$

$$\varphi(\omega) = \arctan \frac{Q(\omega)}{P(\omega)}.$$
 (2.7)

Если

$$W(j\omega) = W_1(j\omega) \cdot W_2(j\omega) \cdot \dots \cdot W_n(j\omega), \tag{2.8}$$

то

$$A(\omega) = A_1(\omega) \cdot A_2(\omega) \cdot \dots \cdot A_n(\omega); \tag{2.9}$$

$$\varphi(\omega) = \varphi_1(\omega) + \varphi_2(\omega) + \dots + \varphi_n(\omega), \qquad (2.10)$$

где $A_i(\mathfrak{W})$ — АЧХ $W_i(j\mathfrak{W})$; $\varphi_i(\mathfrak{W})$ — ФЧХ $W_i(j\mathfrak{W})$, i = $\overline{1,n}$.

Решение типовых задач

Задача 2.1. Передаточная функция форсирующего звена имеет вид

$$W(s) = k(Ts+1).$$

Определить $W(j\omega)$, $A(\omega)$, $\phi(\omega)$.

Pешение. Определим $W(j \omega)$. Имеем

$$W(j\omega) = W(s)|_{s=j\omega} = k(Tj\omega + 1).$$
 (2.11)

Из (2.11) получим

$$P(\omega) = k$$
; $Q(\omega) = kT\omega$

Определим $A(\mathfrak{0})$. Имеем

$$A(\omega) = \sqrt{P^2(\omega) + Q^2(\omega)} = k\sqrt{(T\omega)^2 + 1}.$$
 (2.12)

Определим Ф (0). Получим

$$\varphi(\omega) = \operatorname{arctg} \frac{Q(\omega)}{P(\omega)} = \operatorname{arctg}(T\omega).$$
 (2.13)

Задача 2.2. Передаточная функция апериодического звена имеет вид

$$W(s) = \frac{k}{Ts+1}.$$

Определить $W(j\omega)$, $A(\omega)$, $\varphi(\omega)$.

Решение. Определим $W(j\omega)$. Имеем

$$W(j\omega) = W(s)|_{s=j\omega} = \frac{k}{T(j\omega) + 1}.$$
 (2.14)

Запишем $W(j\omega)$ в виде

$$W(j\omega) = \frac{k[T(-j\omega) + 1]}{1 + T^2\omega^2} = \frac{k}{T^2\omega^2 + 1} + j\frac{-kT\omega}{T^2\omega^2 + 1};$$

следовательно

$$P(\omega) = \frac{k}{T^2 \omega^2 + 1}; \ Q(\omega) = \frac{-kT\omega}{T^2 \omega^2 + 1}.$$
 (2.15)

Подставим (2.15) в (2.6), (2.7). Получим

$$A(\omega) = k\sqrt{\frac{T^2\omega^2 + 1}{(T^2\omega^2 + 1)^2}}$$

или

$$A(\omega) = k \frac{1}{\sqrt{T^2 \omega^2 + 1}}.$$
 (2.16)

$$\varphi(\omega) = \arctan(-T\omega) = -\arctan(T\omega). \tag{2.17}$$

Задача 2.3. Передаточная функция идеального интегрирующего звена имеет вид

$$W(s) = \frac{k}{s}.$$

Определить $W(j\omega)$, $A(\omega)$, $\phi(\omega)$.

Pешение. Определим $W(j \omega)$. Имеем

$$W(j\omega) = W(s)|_{s=j\omega} = \frac{k}{j\omega}.$$
 (2.18)

Запишем (2.18) в виде

$$W(j\omega) = \frac{k}{\omega} \cdot (-j).$$

Так как

$$-j=e^{-j\frac{\pi}{2}},$$

то

$$W(j\omega) = \frac{k}{\omega} e^{-j\frac{\pi}{2}}.$$
 (2.19)

Из (2.19) с учетом (2.5) получим

$$A(\omega) = \frac{k}{\omega}; \tag{2.20}$$

$$\varphi(\omega) = -\frac{\pi}{2}. \tag{2.21}$$

Задача 2.4. Передаточная функция системы имеет вид

$$W(s) = \frac{k}{s(T_1s+1)(T_2s+1)}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Pешение. Определим W(j \emptyset) . Имеем

$$W(j\omega) = W(s)|_{s=j\omega} = \frac{k}{i\omega [T_1(j\omega) + 1][T_2(j\omega) + 1]}.$$
 (2.22)

Представим W(s) в виде

$$W(s) = W_1(s) \cdot W_2(s) \cdot W_3(s),$$
 (2.23)

где

$$W_1(s) = \frac{k}{s}; \ W_2(s) = \frac{1}{T_1 s + 1}; \ W_3(s) = \frac{1}{T_2 s + 1}.$$
 (2.24)

С учетом (2.9), (2.10) имеем

$$A(\omega) = A_1(\omega) \cdot A_2(\omega) \cdot A_3(\omega); \tag{2.25}$$

$$\varphi(\omega) = \varphi_1(\omega) + \varphi_2(\omega) + \varphi_3(\omega), \qquad (2.26)$$

где

$$A_1(\omega) = \frac{k}{\omega}; \quad A_2(\omega) = \frac{1}{\sqrt{T_1^2 \omega^2 + 1}}; \quad A_3(\omega) = \frac{1}{\sqrt{T_2^2 \omega^2 + 1}}; \quad (2.27)$$

$$\varphi_1(\omega) = -\frac{\pi}{2}; \quad \varphi_2(\omega) = -\arctan G\omega T_1; \quad \varphi_3(\omega) = -\arctan G\omega T_2.$$
 (2.28)

Подставим (2.27), (2.28) в (2.25), (2.26). Получим

$$A(\omega) = \frac{k}{\omega \sqrt{(\omega^2 T_1^2 + 1)(\omega^2 T_2^2 + 1)}};$$

$$\varphi(\omega) = -\frac{\pi}{2} - \arctan T_1 - \arctan T_2.$$

Задачи для самостоятельного решения

Задача 2.5. Передаточная функция динамического звена имеет вид

$$W(s) = \frac{ks}{Ts+1}.$$

Определить $W(j\omega)$, AЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.6. Передаточная функция динамического звена имеет вид

$$W(s) = \frac{k}{T^2 s^2 + 2\xi T s + 1}.$$

Определить $W(j\omega)$, AЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.7. Передаточная функция динамического звена имеет вид

$$W(s) = k \frac{T_1 s + 1}{T_2 s + 1}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\varphi(\omega)$.

Задача 2.8. Передаточная функция динамической системы имеет вид

$$W(s) = k \frac{1}{(4s+1)(8s+1)}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.9. Передаточная функция динамической системы имеет вид

$$W(s) = k \frac{T_2 s + 1}{(T_1 s + 1)(T_3 s + 1)}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\varphi(\omega)$.

Задача 2.10. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{e^{-2s}}{s^2 - 2s + 1}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\varphi(\omega)$.

Задача 2.11. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{45s + 120}{s^3 + 4s^2 + 10s}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.12. Передаточная функция динамической системы имеет вид

$$W(s) = W_1(s) \cdot W_2(s) \cdot W_3(s),$$

где

$$W_1(s) = \frac{k_1}{s}$$
; $W_2(s) = \frac{k_2}{T_2 s + 1}$; $W_3(s) = \frac{k_3}{s}$.

Определить $W(j\omega)$, AЧХ $A(\omega)$ и ФЧХ $\varphi(\omega)$.

Задача 2.13. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{k}{s(Ts+1)}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\varphi(\omega)$.

Задача 2.14. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{e^{-\tau s}}{Ts+1}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.15. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{0.25s + 1}{(0.02s + 1)(0.016s + 1)}e^{-0.025s}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.16. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{bs + 1}{a_0s^2 + a_1s + a_2}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\varphi(\omega)$.

Задача 2.17. Передаточная функция динамического звена имеет вид

$$W(s) = k(T^2s^2 + 2\xi Ts + 1).$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.18. Передаточная функция динамической системы имеет вид

$$W(s) = W_1(s) \cdot W_2(s) \cdot W_3(s),$$

где

$$W_1(s) = \frac{k_1}{T_1 s + 1}; \ W_2(s) = \frac{k_2}{T_2 s + 1}; \ W_3(s) = \frac{k_3}{T_3 s + 1}.$$

Определить $W(i\omega)$. АЧХ $A(\omega)$ и ФЧХ $\varphi(\omega)$.

Задача 2.19. Передаточная функция динамической системы имеет вид

$$W(s) = W_1(s) + W_2(s),$$

где

$$W_1(s) = \frac{k_1}{T_1 s + 1}$$
; $W_2(s) = \frac{k_2}{T_2 s + 1}$.

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.20. Передаточная функция динамической системы имеет вид

$$W(s) = e^{-s} + \frac{1}{s+1}$$
.

Определить $W(j\omega)$, AЧХ $\mathit{A}(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.21. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{e^{-s}}{s(s+1)}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.22. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{e^{-s}(s+1)}{2s+1}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.23. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{se^{-s}}{s+1}.$$

Определить $W(j\omega)$, AЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.24. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{e^{-s}(2s-1)}{s+1}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.25. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{e^{-s}}{s} + \frac{1}{s+1}$$
.

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.26. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{e^{-s}}{s^2 + s + 1}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\varphi(\omega)$.

Задача 2.27. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{2s-1}{s(s+1)}.$$

Определить $W(j\omega)$, АЧХ $A(\omega)$ и ФЧХ $\phi(\omega)$.

Задача 2.28. Динамическая система описывается уравнением

$$2\ddot{y} + 10\dot{y} + 12y = \int_{0}^{t} x(\tau)d\tau + \dot{x} + x,$$

где x(t) — сигнал на входе динамической системы; y(t) — сигнал на выходе динамической системы.

Определить передаточную функцию динамической системы W(s) , AЧХ $A(\mathfrak{a})$ и ФЧХ $\mathfrak{q}(\mathfrak{a})$.

Замечание: См. практическое занятие №4.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 3. Определение весовых w(t) и переходных h(t) функций динамических систем

Теоретические сведения

Весовая функция определяется в виде

$$w(t) = L^{-1}\{W(s)\},\tag{3.1}$$

где $L^{-1}\{\cdots\}$ — обратное преобразование Лапласа от выражения в фигурных скобках; W(s) — передаточная функция динамической системы.

Переходная функция определяется соотношением

$$h(t) = \int_{0}^{t} w(\tau) d\tau.$$
 (3.2)

Если известна переходная функция h(t), то весовая функция w(t) определяется выражением

$$w(t) = \frac{dh(t)}{dt}. (3.3)$$

Решение типовых задач

Задача 3.1. Определить весовую и переходную функцию апериодического звена.

Решение.

$$W(s) = \frac{k}{Ts+1} = \frac{k}{T} \cdot \frac{1}{s+\frac{1}{T}}.$$

Так как

$$L^{-1}\left\{\frac{1}{s+a}\right\} = e^{-at},$$

то

$$w(t) = \frac{k}{T}e^{-\frac{t}{T}}.$$

Определим h(t). Имеем

$$h(t) = \int_{0}^{t} w(\tau) d\tau = \frac{k}{T} \int_{0}^{t} e^{-\frac{\tau}{T}} d\tau = \frac{k}{T} \cdot \frac{1}{-1/T} e^{-\frac{\tau}{T}} \Big|_{0}^{t} = k \left(1 - e^{-\frac{t}{T}} \right).$$

Задача 3.2. Определить весовую и переходную функцию усилительного звена.

Решение.

$$W(s) = 5 = 5 \cdot 1.$$

Так как

$$L^{-1}\{1\}=\delta(t),$$

то

$$w(t) = 5\delta(t)$$
.

Определим h(t). Имеем

$$h(t) = \int_0^t w(\tau)d\tau = 5\int_0^t \delta(\tau)d\tau = 5 \cdot 1(t),$$

так как

$$\int_{0}^{t} \delta(\tau) d\tau = 1(t).$$

Задача 3.3. Определить весовую и переходную функцию реального дифференцирующего звена с передаточной функцией.

$$W(s) = k \frac{s}{Ts+1}. (3.4)$$

Представим W(s) в виде

$$W(s) = k \left(A + \frac{B}{Ts+1} \right), \tag{3.5}$$

где A и B – константы.

Из (3.4), (3.5) имеем

$$\frac{ATs + (A+B)}{Ts+1} = \frac{s}{Ts+1}. (3.6)$$

Из (3.6) получим

$$AT = 1;$$

 $A + B = 0.$ (3.7)

В этом случае левая и правая части (3.6) совпадают.

Из (3.7) определим *А* и *В*. Имеем

$$A = \frac{1}{T};$$

$$B = -\frac{1}{T}.$$
(3.8)

Из (3.5) с учетом (3.8) получим

$$W(s) = k \left(\frac{1}{T} - \frac{1}{T} \cdot \frac{1}{Ts+1} \right)$$

или

$$W(s) = \frac{k}{T} \left(1 - \frac{1}{T} \cdot \frac{1}{s + \frac{1}{T}} \right).$$

Определим w(t) . Имеем

$$w(t) = L^{-1} \left\{ \frac{k}{T} \cdot 1 \right\} - L^{-1} \left\{ \frac{k}{T} \cdot \frac{1}{T} \cdot \frac{1}{s + \frac{1}{T}} \right\}$$

или

$$w(t) = \frac{k}{T} \left[\delta(t) - \frac{1}{T} e^{-\frac{t}{T}} \right]. \tag{3.9}$$

Определим h(t). Получим

$$h(t) = \int_{0}^{t} w(\tau) d\tau = \frac{k}{T} \int_{0}^{t} \left[\delta(\tau) - \frac{1}{T} e^{-\frac{\tau}{T}} \right] d\tau = \frac{k}{T} \cdot \left[1(t) - \frac{1}{T} \cdot \frac{1}{-\frac{1}{T}} e^{-\frac{\tau}{T}} \right]_{0}^{t} = \frac{k}{T} \cdot \left[1 + e^{-\frac{\tau}{T}} \right]_{0}^{t} = \frac{k}{T} \cdot e^{-\frac{\tau}{T}}.$$

Задача 3.4. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{5s+3}{s^3(0.4s+1)}. (3.10)$$

Определить весовую и переходную функции.

Решение. Представим (3.10) в виде

$$W(s) = \frac{5s+3}{s^3(0.4s+1)} = \frac{A}{s^3} + \frac{B}{s^2} + \frac{C}{s} + \frac{D}{0.4s+1}.$$
 (3.11)

Из этого соотношения имеем

$$0.4As + A + 0.4Bs^2 + Bs + 0.4Cs^3 + Cs^2 + Ds^3 = 5s + 3.$$

Приведем подобные члены. Получим

$$0.4C + D = 0;$$

 $0.4B + C = 0;$
 $0.4A + B = 5;$
 $A = 3.$

Решая эту систему уравнений, получим

$$A = 3$$
; $B = 3.8$; $C = -1.52$; $D = 0.608$.

Перепишем (3.11) в виде

$$W(s) = \frac{A}{s^3} + \frac{B}{s^2} + \frac{C}{s} + \frac{\frac{D}{0.4}}{s + \frac{1}{0.4}}.$$

Так как
$$L^{-1}\left\{\frac{1}{s}\right\} = 1(t); L^{-1}\left\{\frac{1}{s^2}\right\} = t; L^{-1}\left\{\frac{1}{s^3}\right\} = \frac{1}{2}t^2,$$

$$w(t) = 1.5t^2 + 3.8t - 1.52 \cdot 1(t) + 1.525e^{-2.5t}$$
.

Определим h(t) . Имеем

$$h(t) = \int_{0}^{t} w(\tau) d\tau = 1.5 \frac{t^{3}}{3} + 3.8 \frac{t^{2}}{2} - 1.52t - \frac{1.525}{2.5} \left(e^{-2.5t} - 1 \right).$$

Задача 3.5. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{T_3 s + 1}{(T_1 s + 1)(T_2 s + 1)}.$$

Определить весовую функцию.

Решение. Представим W(s) в виде

$$W(s) = \frac{A}{T_1 s + 1} + \frac{B}{T_2 s + 1}$$

или

$$\frac{(AT_2 + BT_1)s + (A+B)}{(T_1s+1)(T_2s+1)} = \frac{T_3s+1}{(T_1s+1)(T_2s+1)}.$$

Из полученного соотношения имеем

$$AT_2 + BT_1 = T_3;$$

 $A + B = 1.$ (3.12)

Используя в (3.12) правило Крамера, получим

$$\Delta = \begin{vmatrix} T_2 & T_1 \\ 1 & 1 \end{vmatrix} = T_2 - T_1; \quad \Delta_1 = \begin{vmatrix} T_3 & T_1 \\ 1 & 1 \end{vmatrix} = T_3 - T_1; \quad \Delta_2 = \begin{vmatrix} T_2 & T_3 \\ 1 & 1 \end{vmatrix} = T_2 - T_3.$$

$$A = \frac{\Delta_1}{\Delta} = \frac{T_3 - T_1}{T_2 - T_1}; \quad B = \frac{\Delta_2}{\Delta} = \frac{T_2 - T_3}{T_2 - T_1}.$$

Определим w(t). Имеем

$$w(t) = L^{-1} \left\{ \frac{\frac{A}{T_1}}{s + \frac{1}{T_1}} \right\} + L^{-1} \left\{ \frac{\frac{B}{T_2}}{s + \frac{1}{T_2}} \right\} = \frac{A}{T_1} e^{-\frac{t}{T_1}} + \frac{B}{T_2} e^{-\frac{t}{T_2}}.$$

Задачи для самостоятельного решения

Задача 3.6. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{2s+3}{s^2+11s+30}.$$

Определить w(t) и h(t).

Задача 3.7. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{3s+5}{s^2(0.8s+1)}.$$

Определить w(t) и h(t).

Задача 3.8. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{5s+8}{s^2(0.5s+1)}.$$

Определить w(t) и h(t).

Задача 3.9. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{s+1}{s^2(2s+1)}.$$

Определить w(t) и h(t).

Задача 3.10. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{T_4 s + 1}{(T_1 s + 1)(T_2 s + 1)(T_3 s + 1)}.$$

$$T_1 = 0.01; T_2 = 0.1; T_3 = 0.2; T_4 = 0.05.$$

Определить w(t) и h(t).

Задача 3.11. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{k}{s(T_1s+1)(T_2s+1)}.$$

Определить w(t) и h(t).

Задача 3.12. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{3s+2}{s^3(0,2s+1)}.$$

Определить w(t) и h(t).

Задача 3.13. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{k}{T^2 s^2 + 2\xi T s + 1}; \ 0 \le \xi \le 1.$$

Определить w(t).

Задача 3.14. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{kk_1}{Ts^2 + s + kk_1}$$
; $k = k_1 = 1$; $T = 0,1$.

Определить w(t) и h(t).

Задача 3.15. Передаточная функция динамической системы имеет вид

$$W(s) = k \frac{\omega_0^2}{s^2 + \omega_0^2}.$$

Определить w(t) и h(t).

Задача 3.16. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{k}{T^2 s^2}.$$

Определить w(t) и h(t).

Задача 3.17. Передаточная функция динамической системы имеет вид

$$W(s) = k \frac{s}{s^2 + \omega^2}.$$

Определить w(t) и h(t).

Задача 3.18. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{k}{s(Ts+1)}.$$

Определить w(t) и h(t).

Задача 3.19. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{k_1 k_2}{(T_1 s + 1)(T_2 s + 1)}.$$

Определить w(t) и h(t).

Задача 3.20. Динамическая система описывается дифференциальным уравнением

$$\ddot{y} + 7\dot{y} + 12y = \dot{x} + x.$$

Определить w(t) и h(t).

3амечание: первоначально определить передаточную функцию $W(s) = \frac{Y(s)}{X(s)}$ (см. практическое занятие № 4).

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ №4. Проверка динамической системы на устойчивость по критерию Гурвица

Теоретические сведения

Пусть динамическая система описывается дифференциальным уравнением

$$(a_0 p^n + a_1 p^{n-1} + \dots + a_{n-1} p + a_n) y(t) =$$

$$= (b_0 p^m + b_1 p^{m-1} + \dots + b_{m-1} p + b_m) x(t),$$
(4.1)

где $p = \frac{d}{dt}$ — оператор дифференцирования; x(t) — сигнал на входе системы; y(t) — сигнал на выходе системы.

Из (4.1) получим передаточную функцию

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{b_0 s^m + b_1 s^{m-1} + \dots + b_{m-1} s + b_m}{a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n}.$$
 (4.2)

Характеристическое уравнение динамической системы определяется соотношением

$$a_0 s^n + a_1 s^{n-1} + \dots + a_{n-1} s + a_n = 0,$$
 (4.3)

где n — порядок характеристического уравнения; $a_i, i = \overline{0, n}$ — коэффициенты.

Запишем условия устойчивости по Гурвицу для n от 1 до 5.

$$n = 1; a_0 s + a_1 = 0; a_0 > 0; a_1 > 0.$$
 (4.4)

$$n = 2$$
; $a_0 s^2 + a_1 s + a_2 = 0$; $a_0 > 0$; $a_1 > 0$; $a_2 > 0$. (4.5)

$$n = 3; \ a_0 s^3 + a_1 s^2 + a_2 s + a_3 = 0;$$

$$a_i > 0; \ i = \overline{0,3}; \ a_1 a_2 - a_0 a_3 > 0.$$
(4.6)

$$n = 4; \ a_0 s^4 + a_1 s^3 + a_2 s^2 + a_3 s + a_4 = 0;$$

$$a_i > 0; \ i = \overline{0,4}; \ a_3 (a_1 a_2 - a_0 a_3) - a_4 a_1^2 > 0.$$
(4.7)

$$n = 5; a_0 s^5 + a_1 s^4 + a_2 s^3 + a_3 s^2 + a_4 s + a_5 = 0;$$

$$a_i > 0; i = \overline{0,5}; a_1 a_2 - a_0 a_3 > 0;$$

$$(a_1 a_2 - a_0 a_3)(a_2 a_4 - a_2 a_5) - (a_1 a_4 - a_0 a_5)^2 > 0.$$
(4.8)

Система устойчива по критерию Гурвица, если неравенства выполняются.

Решение типовых задач

Задача 4.1. Передаточная функция разомкнутой системы имеет вид (рис. 4.1)

Рис. 4.1

$$W(s) = \frac{k(1+T_2s)}{s(1+T_1s)(1+T_3s)},$$
(4.9)

где T_1 = 0,2 c; T_3 = 0,02 c — постоянные времени; T_2 — постоянная времени. Определить T_2 , при которой замкнутая система устойчива для любых k>0.

Pешение. Определим передаточную функцию $\Phi(s)$ замкнутой системы. Имеем

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{W(s)}{1 + W(s)}.$$
(4.10)

Подставим (4.9) в (4.10). Получим

$$\Phi(s) = \frac{\frac{k(1+T_2s)}{s(1+T_1s)(1+T_2s)}}{1+\frac{k(1+T_2s)}{s(1+T_1s)(1+T_2s)}}$$

или

$$\Phi(s) = \frac{k(1+T_2s)}{s(1+T_1s)(1+T_2s)+k(1+T_2s)}.$$

Характеристическое уравнение замкнутой системы имеет вид

$$s(1+T_1s)(1+T_2s)+k(1+T_2s)=0$$

или

$$T_1 T_3 s^3 + (T_1 + T_3) s^2 + (kT_2 + 1) s + k = 0.$$
 (4.11)

Введем обозначения

$$a_{0} = T_{1}T_{3};$$

$$a_{1} = T_{1} + T_{3};$$

$$a_{2} = kT_{2} + 1;$$

$$a_{3} = k.$$

$$(4.12)$$

Соотношение (4.11) с учетом (4.12) примет вид

$$a_0 s^3 + a_1 s^2 + a_2 s + a_3 = 0.$$
 (4.13)

Получили характеристическое уравнение 3-го порядка.

Условия устойчивости по критерию Гурвица:

$$a_i > 0$$
; $i = \overline{0.3}$; $a_1 a_2 - a_0 a_3 > 0$. (4.14)

Подставим (4.12) в (4.14). Имеем

$$(T_1 + T_3)(kT_2 + 1) - kT_1T_3 > 0.$$

Отсюда определим T_2 . Получим

$$T_2 > \frac{\frac{T_1 T_3 k}{T_1 + T_3}}{k} - 1. \tag{4.15}$$

Таким образом, для того чтобы замкнутая система была устойчивой, должно выполняться неравенство (4.15).

Задача 4.2. Структурная схема системы управления ЛА приведена на рис. 4.2.

Рис. 4.2

Здесь K_1 = 1; K_2 = 5; T_1 = 0,5 c; T_2 = 2 с. Определить:

- 1) устойчивость системы без корректирующего звена $(W_{\kappa}(s) = T_3 s)$;
- 2) величину постоянной времени T_3 корректирующего звена из условия устойчивости по Гурвицу.

Решение. Определим передаточную функцию разомкнутой системы. Имеем

$$W(s) = \frac{K_1 K_2}{(T_1 s + 1)(T_2^2 s^2 + 1)}.$$

Найдем передаточную функцию $\Phi(s)$ замкнутой системы

$$\Phi(s) = \frac{W(s)}{1 + W(s)} = \frac{K_1 K_2}{(T_1 s + 1)(T_2^2 s^2 + 1) + K_1 K_2}.$$

Характеристическое уравнение имеет вид

$$(T_1s+1)(T_2^2s^2+1)+K_1K_2=0$$

или

$$T_1 T_2^2 s^3 + T_2^2 s^2 + T_1 s + 1 + K_1 K_2 = 0.$$
 (4.16)

Введем обозначения

$$\begin{array}{c}
a_0 = T_1 T_2^2, \\
a_1 = T_2^2, \\
a_2 = T_1, \\
a_3 = 1 + K_1 K_2.
\end{array}$$
(4.17)

Соотношение (4.16) с учетом (4.17) примет вид

$$a_0 s^3 + a_1 s^2 + a_2 s + a_3 = 0.$$

Получим характеристическое уравнение 3-го порядка. Условия устойчивости по критерию Гурвица

$$a_i > 0; i = \overline{0.3}; a_1 a_2 - a_0 a_3 > 0.$$
 (4.18)

Подставим (4.17) в (4.18). Имеем

$$T_1 T_2^2 - T_1 T_2^2 (K_1 K_2 + 1) = -K_1 K_2 T_1 T_2^2 < 0.$$

Таким образом, система неустойчива.

С учетом корректирующего звена передаточная функция разом-кнутой системы примет вид

$$W(s) = \frac{K_1 K_2 (T_3 s + 1)}{(T_1 s + 1)(T_2^2 s^2 + 1)}.$$

Найдем передаточную функцию $\Phi(s)$ замкнутой системы

$$\Phi\left(s\right) = \frac{W(s)}{1+W(s)} = \frac{K_1K_2(T_3s+1)}{(T_1s+1)(T_2^2s^2+1)+K_1K_2(T_3s+1)}.$$

Характеристическое уравнение имеет вид

$$(T_1s+1)(T_2^2s^2+1)+K_1K_2(T_3s+1)=0$$

или

$$T_1 T_2^2 s^3 + T_2^2 s^2 + (T_1 + K_1 K_2 T_3) s + 1 + K_1 K_2 = 0.$$
 (4.19)

Введем обозначения

$$a_{0} = T_{1}T_{2}^{2};$$

$$a_{1} = T_{2}^{2};$$

$$a_{2} = T_{1} + K_{1}K_{2}T_{3};$$

$$a_{3} = 1 + K_{1}K_{2}.$$

$$(4.20)$$

Соотношение (4.19) с учетом (4.20) примет вид

$$a_0 s^3 + a_1 s^2 + a_2 s + a_3 = 0.$$

Получили характеристическое уравнение 3-го порядка. Условия устойчивости по критерию Гурвица

$$a_i > 0; i = \overline{0,3}; a_1 a_2 - a_0 a_3 > 0.$$
 (4.21)

Подставим (4.20) в (4.21). Имеем

$$T_2^2(T_1 + K_1K_2T_3) - T_1T_2^2(1 + K_1K_2) > 0.$$

Отсюда определим T_3 . Получим

$$T_3 > \frac{T_1 T_2^2 K_1 K_2}{T_2^2 K_1 K_2}$$

или

$$T_3 > T_1$$
.

Задачи для самостоятельного решения

Задача 4.3. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k(\tau s + 1)}{(T_1 s + 1)(T_2 s + 1)(T_3 s + 1)},$$

 $_{\Gamma \text{Де}} T_1 = 0.2 \,\mathrm{c}; \ T_2 = 0.25 \,\mathrm{c}; \ T_3 = 0.5 \,\mathrm{c}; \ \tau = 0.1 \,\mathrm{c}$.

При каких значениях k замкнутая система устойчива по критерию Гурвица?

Задача 4.4. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(T_{\rm v}s+1)(T_{\rm m}s+1)},$$

Определить k, при котором замкнутая система устойчива по критерию Гурвица?

Задача 4.5. Передаточная функция системы имеет вид

$$W_1(s) = \frac{k_1}{s(T_1^2 s^2 + 1)},$$

где
$$k_1 = 25 \,\mathrm{c}^{-1}$$
; $T_1 = 0.01 \,\mathrm{c}$.

Для демпфирования системы последовательно в канал управления введено корректирующее звено с передаточной функцией (рис. 4.3)

$$W_2(s) = k_2 \frac{1 - Ts}{1 + Ts},$$

где $k_2 = 1$.

Рис. 4.3

Выбрать постоянную времени корректирующего звена T из условия устойчивости по Гурвицу.

Задача 4.6. Определить устойчивость замкнутой системы, если разомкнутая система описывается передаточной функцией вида

$$W(s) = \frac{1}{(s+1)(s-1)}$$

с использованием критерия Гурвица.

Задача 4.7. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k(T_1 s + 1)}{s^2(T_2 s + 1)}.$$

Определить условие устойчивости замкнутой системы по критерию Гурвица.

Задача 4.8. Структурная схема системы управления приведена на рис. 4.4.

Определить k_5 , при котором система устойчива по критерию Гурвица.

Задача 4.9. Передаточная функция замкнутой системы имеет вид

$$\Phi(s) = \frac{k(\tau s + 1)}{T_1 T_2^2 s^3 + T_2^2 s^2 + (k\tau - T_1) s + (k - 1)}.$$

Определить $^{\tau}$, при котором система устойчива по критерию Гурвица. *Задача 4.10.* Передаточная функция разомкнутой системы имеет вид

$$W(s) = k_1 k_2 \frac{1 - Ts}{s(T_1 s + 1)(Ts + 1)},$$

где k_1 = 25; k_2 = 1; T_1 = 0,01.

Определить T из условия устойчивости по Гурвицу замкнутой системы.

Задача 4.11. Исследовать на устойчивость по Гурвицу систему, уравнение которой имеет вид

$$3y^{(4)}(t) + 4y^{(3)}(t) + 4\ddot{y}(t) + 2\dot{y}(t) = f(t).$$

Задача 4.12. По критерию Гурвица определить, устойчива ли замкнутая система, если передаточная функция ее разомкнутого контура имеет вид

$$W(s) = \frac{k(\tau s + 1)}{(T_1 s - 1)(T_2 s + 1)(T_3 s + 1)},$$

где k_1 = 50; τ = 0,05; T_1 = 0,1; T_2 = 0,02; T_3 = 0,25.

Задача 4.13. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k(\tau s + 1)}{(T_1 s + 1)(T_2 s + 1)(T_3 s - 1)},$$

где T_1 = 0,2; T_2 = 0,25; T_3 = 0,5; τ = 0,1.

При каких значениях k замкнутая система устойчива по критерию Гурвица?

Задача 4.14. Динамическая система описывается уравнением вида

$$a_0 y^{(3)}(t) + a_1 \ddot{y}(t) + a_0 \dot{y}(t) + a_3 y(t) = f(t).$$

Записать условие устойчивости системы по критерию Гурвица.

Задача 4.15. Динамическая система описывается уравнением вида

$$a_0 y^{(4)}(t) + a_1 y^{(3)}(t) + a_2 \ddot{y}(t) + a_3 \dot{y}(t) + a_4 y(t) = f(t).$$

Записать условие устойчивости системы по критерию Гурвица.

Задача 4.16. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{10s+1}{s^2(5s+1)},$$

Проверить, является ли устойчивой замкнутая система по критерию Гурвица.

Задача 4.17. Дан характеристический полином замкнутой системы вида

$$M(s) = s^4 + 2s^3 + s^2 + 10s + 20.$$

Проверить замкнутую систему на устойчивость по критерию Гурвица.

Задача 4.18. Определить устойчивость по Гурвицу для системы управления с характеристическим полиномом вида

$$M(s) = s^4 + 3s^3 + 10s^2 + 2s + 5.$$

Задача 4.19. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{5s + 20}{s^3 + 2s^2 + 3s + 1}.$$

Проверить замкнутую систему на устойчивость по критерию Гурвица.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 5. Точность линейных систем управления (установившаяся или статическая

ошибка системы управления)

Теоретические сведения

Структурная схема системы управления приведена на рис. 5.1.

Рис. 5.1

Здесь x(t) — сигнал на входе системы управления; y(t) — сигнал на выходе системы управления; $\varepsilon(t)$ — ошибка системы управления; W(s) — передаточная функция разомкнутой системы.

Передаточная функция по ошибке определяется соотношением

$$\Phi_{\varepsilon}(s) = \frac{E(s)}{X(s)},\tag{5.1}$$

где

$$\Phi_{\varepsilon}(s) = \frac{1}{1 + W(s)}. ag{5.2}$$

Здесь X(s) — изображение по Лапласу сигнала x(t); E(s) — изображение по Лапласу ошибки $\varepsilon(t)$.

Статическая ошибка системы управления определяется выражением

$$\varepsilon_{\rm cr} = \lim_{t \to \infty} \varepsilon(t) \tag{5.3}$$

или

$$\varepsilon_{\rm cr} = \lim_{s \to 0} sE(s), \tag{5.4}$$

где

$$E(s) = \Phi_{s}(s) \cdot X(s). \tag{5.5}$$

Решение типовых задач

Задача 5.1. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{Ts+1}. (5.6)$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 \cdot 1(t),$$
 (5.7)

где 1(t) – единичная функция, g_0 = const.

Определить статическую ошибку системы управления $\mathfrak{e}_{\operatorname{cr}}$.

Pешение. Определим передаточную функцию $\Phi_{\epsilon}(s)$. Имеем

$$\Phi_{\varepsilon}(s) = \frac{1}{1 + W(s)} = \frac{1}{1 + \frac{k}{Ts + 1}}$$

или

$$\Phi_{\varepsilon}(s) = \frac{Ts+1}{Ts+1+k}.$$
 (5.8)

Определим X(s). Имеем

$$X(s) = L[x(t)] = L[g_0 \cdot 1(t)], \tag{5.9}$$

где $L(\cdot)$ – преобразование Лапласа выражения в скобках.

Так как L[1(t)] = 1/s, то из (5.9) получим

$$X(s) = \frac{g_0}{s}. (5.10)$$

Определим E(s). Используя формулу (5.5), имеем

$$E(s) = \frac{g_0}{s} \cdot \frac{Ts+1}{Ts+1+k}.$$
 (5.11)

Подставим (5.11) в (5.4). Получим

$$\varepsilon_{\rm cr} = \lim_{s \to 0} s \cdot \frac{g_0}{s} \cdot \frac{Ts + 1}{Ts + 1 + k}$$

или

$$\varepsilon_{\rm cr} = \frac{g_0}{k+1}.\tag{5.12}$$

Задачи для самостоятельного решения

Задача 5.2. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{Ts+1}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_1 \cdot t$$
.

Определить статическую ошибку системы управления $\epsilon_{\rm cr}$.

Задача 5.3. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(Ts+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 \cdot 1(t)$$
.

Определить статическую ошибку системы управления ϵ_{cr} .

Задача 5.4. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(Ts+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_1 \cdot t$$
.

Определить статическую ошибку системы управления $\epsilon_{\rm cr}$.

Задача 5.5. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(Ts+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = \frac{g_2 t^2}{2}.$$

Определить статическую ошибку системы управления $\epsilon_{\rm cr}$.

Задача 5.6. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s^2(Ts+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 \cdot 1(t).$$

Определить статическую ошибку системы управления $\epsilon_{\rm cr}$.

Задача 5.7. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s^2(Ts+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_1 \cdot t$$
.

Определить статическую ошибку системы управления $\epsilon_{\rm cr}$.

Задача 5.8. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s^2(Ts+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_2 \cdot t^2.$$

Определить статическую ошибку системы управления ϵ_{cr} .

Задача 5.9. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s^2(Ts+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_3 \cdot t^3$$
.

Определить статическую ошибку системы управления $\epsilon_{\rm cr}$.

Задача 5.10. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s^3(Ts+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_3 \cdot t^3.$$

Определить статическую ошибку системы управления $\epsilon_{\, cr}$.

Задача 5.11. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s^4(Ts+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_4 \cdot t^4$$
.

Определить статическую ошибку системы управления $\epsilon_{\rm cr}$.

Задача 5.12. Передаточная функция разомкнутой системы имеет вид

$$W(s) = 0.05 \cdot \frac{2 \cdot 500(0.15s + 1)}{s(0.25s + 1)(0.1s + 1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 t$$
.

Определить статическую ошибку системы управления ε_{ст}.

Задача 5.13. Рассматривается система управления самолетом в режиме автопилота по одной из координат на разгонной траектории. Зависимость изменения координаты самолета от состояния руля u(t) описывается с помощью инерционного звена (рис. 5.2)

Автопилот работает в режиме интегратора (рис. 5.3)

где $\varepsilon(t)$ — отклонение координаты от заданной величины. Задающее воздействие x(t) = $g\cdot t$. Вычислить статическую ошибку $\varepsilon_{\rm cr}$ замкнутой системы управления.

Задача 5.14. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s^2 + 5\xi s + 2}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = 1(t)$$
.

Определить статическую ошибку системы управления $\epsilon_{\rm cr}$.

Задача 5.15. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{400}{s(0.1s+1)(0.05s+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = 50t$$
.

Определить статическую ошибку системы управления $\epsilon_{\rm cr}$.

Задача 5.16. Рассматривается система управления самолетом в режиме автопилота по одной из координат на разгонной траектории. Зависимость изменения координаты самолета от состояния руля u(t) описывается с помощью звена (рис. 5.4)

$$\underbrace{\frac{u(t)}{Ts^2+s+1}} \underbrace{y(t)}$$

Рис. 5.4

Автопилот работает в режиме интегратора (рис. 5.5)

Рис. 5.5

где $\varepsilon(t)$ — отклонение координаты от заданной величины. Задающее воздействие x(t) = $g\cdot t$. Вычислить статическую ошибку $\varepsilon_{\rm cr}$ замкнутой системы управления.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 6.

Определение сигнала на выходе системы управления (определение ошибки системы управления)

Теоретические сведения

Рассмотрим задачу определения сигнала на выходе системы управления.

Структурная схема системы управления приведена на рис. 6.1.

Рис. 6.1

Здесь x(t) — сигнал на входе системы управления; y(t) — сигнал на выходе системы управления; $\epsilon(t)$ — ошибка системы управления; W(s) — передаточная функция разомкнутой системы.

Передаточная функция системы управления определяется соотношением

$$\Phi(s) = \frac{Y(s)}{X(s)},\tag{6.1}$$

где

$$\Phi(s) = \frac{W(s)}{1 + W(s)}.$$
(6.2)

Здесь X(s) — изображение по Лапласу сигнала x(t); Y(s) — изображение по Лапласу сигнала y(t).

Из (6.1) имеем

$$Y(s) = \Phi(s) \cdot X(s) . \tag{6.3}$$

Определим y(t) . Получим

$$y(t) = L^{-1}[Y(s)],$$
 (6.4)

где $L^{-1}(\cdot)$ — обратное преобразование Лапласа от выражения в скобках.

Передаточная функция по ошибке определяется соотношением

$$\Phi_{\varepsilon}(s) = \frac{E(s)}{X(s)},\tag{6.5}$$

где

$$\Phi_{\varepsilon}(s) = \frac{1}{1 + W(s)}.\tag{6.6}$$

Здесь E(s) – изображение по Лапласу ошибки $\varepsilon(t)$.

Из (6.5) имеем

$$E(s) = \Phi_{\varepsilon}(s) \cdot X(s). \tag{6.7}$$

Определим $\varepsilon(t)$. Получим

$$\varepsilon(t) = L^{-1}[E(s)].$$
 (6.8)

Решение типовых задач

Задача 6.1. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{(T_1 s + 1)(T_2 s + 1)},\tag{6.9}$$

где k = 3; $T_1 = 0.2$; $T_2 = 0.01$.

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = 1(t),$$
 (6.10)

где 1(t) — единичная функция.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Pешение. Определим Φ (s) . Имеем

$$\Phi(s) = \frac{W(s)}{1+W(s)} = \frac{\frac{k}{(T_1s+1)(T_2s+1)}}{1+\frac{k}{(T_1s+1)(T_2s+1)}} = \frac{k}{(T_1s+1)(T_2s+1)+k}$$

или

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{k}{T_1 T_2 s^2 + (T_2 + T_2) s + (k+1)}.$$
 (6.11)

Определим X(s). Имеем

$$X(s) = L[x(t)] = L[1(t)] = \frac{1}{s}.$$
 (6.12)

Из (6.11), (6.12) получим

$$Y(s) = \frac{k}{s[T_1 T_2 s^2 + (T_2 + T_2)s + (k+1)]}.$$
 (6.13)

Из (6.11) запишем характеристическое уравнение. Имеем

$$T_1T_2s^2 + (T_2 + T_2)s + k + 1 = 0$$
 (6.14)

или

$$0.002s^2 + 0.21s + 4 = 0.$$
 (6.15)

Для квадратного уравнения

$$ax^2 + bx + c = 0,$$
 (6.16)

где a = 0,002; b = 0,21; c = 4, имеем

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}. (6.17)$$

Из (6.15), (6.16), (6.17) получим

$$s_{1,2} = \frac{-0.21 \pm \sqrt{(0.21)^2 - 4 \cdot 0.002 \cdot 4}}{2 \cdot 0.002} = \frac{-0.21 \pm 0.11}{0.004}.$$

Следовательно

$$s_1 = -80$$
; $s_2 = -25$.

Уравнение (6.15) запишем в виде

$$0.002s^2 + 0.21s + 4 = 0.002(s - s_1)(s - s_2) = 0.002(s + \alpha)(s + \beta)$$

 $_{\text{гле}} \alpha = 80; \beta = 25.$

Из (6.13) имеем

$$Y(s) = \frac{3}{0,002 \cdot s(s+\alpha)(s+\beta)}.$$
 (6.18)

Из таблицы преобразований Лапласа получим

$$L^{-1}\left[\frac{1}{s(s+\alpha)(s+\beta)}\right] = \frac{1}{\alpha\beta} + \frac{1}{\alpha-\beta}\left(\frac{1}{\alpha}e^{-\alpha t} - \frac{1}{\beta}e^{-\beta t}\right). \tag{6.19}$$

Из (6.18) с учетом (6.19) имеем

$$y(t) = 1500 \left[\frac{1}{80 \cdot 25} + \frac{1}{80 - 25} \left(\frac{1}{80} e^{-80t} - \frac{1}{25} e^{-25t} \right) \right]$$

или

$$y(t) \approx 0.75 + 0.341e^{-80t} - 1.091e^{-25t}$$
. (6.20)

Задача 6.2. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(Ts+1)},\tag{6.21}$$

где k = 24; T = 0,0067. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 \cdot 1(t); g_0 = 10,$$
 (6.22)

где 1(t) — единичная функция.

Определить ошибку $\varepsilon(t)$ системы управления при $y(0) = \dot{y}(0) = 0$.

Peшение. Передаточная функция по ошибке $\Phi_{\ \epsilon}(s)$ определяется соотношением

$$\Phi_{\varepsilon}(s) = \frac{E(s)}{X(s)},\tag{6.23}$$

где

$$\Phi_{\varepsilon}(s) = \frac{1}{1 + W(s)}.\tag{6.24}$$

Из (6.23) имеем

$$E(s) = \Phi_{\varepsilon}(s)X(s). \tag{6.25}$$

Определим $\Phi_{\varepsilon}(s)$. Имеем

$$\Phi_{\varepsilon}(s) = \frac{1}{1 + \frac{k}{s(Ts+1)}} = \frac{s(Ts+1)}{Ts^2 + s + k}$$

или

$$\Phi_{\varepsilon}(s) = \frac{s(s + \frac{1}{T})}{s^2 + \frac{1}{T}s + \frac{k}{T}}.$$
 (6.26)

Определим X(s). Имеем

$$X(s) = L[x(t)] = L[g_0 \cdot 1(t)] = \frac{g_0}{s}.$$
 (6.27)

Из (6.25) с учетом (6.26), (6.27) имеем

$$E(s) = g_0 \frac{s + \frac{1}{T}}{s^2 + \frac{1}{T}s + \frac{k}{T}}.$$
 (6.28)

Из (6.26) запишем характеристическое уравнение. Получим

$$s^2 + \frac{1}{T}s + \frac{k}{T} = 0 ag{6.29}$$

или

$$s^2 + 149,25s + 3582,09 = 0.$$
 (6.30)

Из (6.30) имеем

$$s_{1,2} = \frac{-149,25 \pm \sqrt{(149,25)^2 - 4 \cdot 3582,09}}{2} = \frac{-149,25 \pm 89,15}{2}.$$

Следовательно

$$s_1 = -119,2; s_2 = -30.$$

Уравнение (6.30) запишем в виде

$$s^2 + 149,25s + 3582,09 = (s - s_1)(s - s_2) = (s + \alpha)(s + \beta),$$

 $_{\Gamma \text{Де}} \alpha = 30; \beta = 119,2 \approx 120.$

Введем обозначение

$$\delta = \frac{1}{T} = 149,25. \tag{6.31}$$

Из (6.28) имеем

$$E(s) = g_0 \frac{s + \delta}{(s + \alpha)(s + \beta)}.$$
 (6.32)

Из таблицы преобразований Лапласа получим

$$L^{-1}\left[\frac{s+\delta}{(s+\alpha)(s+\beta)}\right] = \frac{(\delta-\alpha)e^{-\alpha t} - (\delta-\beta)e^{-\beta t}}{\beta-\alpha}.$$
 (6.33)

Из (6.32) с учетом (6.33) имеем

$$\varepsilon(t) = g_0 \frac{119,25 \cdot e^{-30t} - 29,25e^{-120t}}{90}$$

или

$$\varepsilon(t) = g_0(1,325 \cdot e^{-30t} - 0,325e^{-120t}).$$

Задача 6.3. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k(Ts+1)}{s^2},$$

где k = 400; T = 0,01. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 \cdot 1(t)$$
.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Pешение. Определим Φ (s) . Имеем

$$\Phi(s) = \frac{W(s)}{1+W(s)} = \frac{\frac{k(Ts+1)}{s^2}}{1+\frac{k(Ts+1)}{s^2}} = \frac{k(Ts+1)}{s^2+kTs+k}$$

или

$$\Phi(s) = \frac{Y(s)}{X(s)} = kT \frac{s + \frac{1}{T}}{s^2 + kTs + k}.$$
 (6.34)

Определим X(s). Имеем

$$X(s) = L[x(t)] = L[g_0 \cdot 1(t)] = \frac{g_0}{s}.$$
 (6.35)

Из (6.34), (6.35) имеем

$$Y(s) = g_0 k T \frac{s + \frac{1}{T}}{s(s^2 + kTs + k)}.$$
 (6.36)

Из (6.34) запишем характеристическое уравнение. Имеем

$$s^2 + kTs + k = 0 ag{6.37}$$

или

$$s^2 + 4s + 400 = 0. ag{6.38}$$

Из (6.38) имеем

$$s_{1,2} = \frac{-\ 4\pm\ \sqrt{16-\ 4\cdot 400}}{2} = -\ 2\pm\ i20 = -\ \gamma\pm\ i\lambda\ ,$$

где γ = 2; λ = 20; s_1 = $-\gamma$ + $i\lambda$; s_2 = $-\gamma$ - $i\lambda$.

Уравнение (6.38) запишем в виде

$$s^2 + 4s + 400 = (s - s_1)(s - s_2) = [(s + \gamma) - i\lambda][(s + \gamma) + i\lambda]$$

или

$$s^2 + 4s + 400 = (s + \gamma)^2 + \lambda^2$$
.

Ввелем обозначение

$$\delta = \frac{1}{T}$$
.

Из (6.36) имеем

$$Y(s) = g_0 kT \frac{s + \delta}{s[(s + \gamma)^2 + \lambda^2]}.$$
 (6.39)

Из таблицы преобразований Лапласа получим

$$L^{-1}\left[\frac{s+\delta}{s[(s+\gamma)^2+\lambda^2]}\right] = \frac{\delta}{\gamma^2+\lambda^2} + \frac{1}{\lambda\sqrt{\gamma^2+\lambda^2}} \sqrt{(\delta-\gamma)^2+\lambda^2} \cdot e^{-\gamma t} \cdot \sin(\lambda t + \psi), \qquad (6.40)$$

где

$$\Psi = \operatorname{arctg} \frac{\lambda}{\delta - \gamma} - \operatorname{arctg} \frac{\lambda}{\gamma} = \Psi_1 - \Psi_2.$$
 (6.41)

Из (6.39) с учетом (6.40), (6,41) получим

$$y(t) = g_0[1 + 1 \cdot e^{-2t} \cdot \sin(20t - 83^\circ)].$$

Задача 6.4. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(0,2s+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = at$$
.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Pешение. Определим Φ (s) . Имеем

$$\Phi(s) = \frac{W(s)}{1+W(s)} = \frac{\frac{k}{s(0,2s+1)}}{1+\frac{k}{s(0,2s+1)}}$$

или

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{k}{0.2s^2 + s + k}.$$
 (6.42)

Определим X(s). Получим

$$X(s) = L[x(t)] = L[at] = \frac{a}{s^2}.$$
 (6.43)

Из (6.42), (6.43) имеем

$$Y(s) = \frac{ak}{s^2(0.2s^2 + s + k)}. (6.44)$$

Из (6.42) запишем характеристическое уравнение. Получим

$$0.2s^2 + s + k = 0. ag{6.45}$$

Из (6.45) имеем

$$s_{1,2} = \frac{-1 \pm \sqrt{1 - 0.8k}}{0.4} = -\alpha \pm i\beta$$
,

где
$$\alpha = \frac{1}{0.4}$$
; $\beta = \frac{\sqrt{0.8k-1}}{0.4}$; $k > 2$.

Уравнение (6.45) запишем в виде

$$0.2s^2 + s + k = 0.2(s - s_1)(s - s_2)$$
.

Из (6.44) имеем

$$Y(s) = \frac{ak}{0.2} \cdot \frac{1}{s^2(s - s_1)(s - s_2)}$$
 (6.46)

или

$$Y(s) = \frac{ak}{0.2} \cdot \left[\frac{A}{s^2} + \frac{B}{s} + \frac{C}{s - s_1} + \frac{D}{s - s_2} \right]. \tag{6.47}$$

Из (6.46),(6.47) имеем

$$A[s^{2} - (s_{1} + s_{2})s + s_{1}s_{2}] + B[s^{3} - (s_{1} + s_{2})s^{2} + s_{1}s_{2}s] + + C(s^{3} - s_{2}s^{2}) + D(s^{3} - s_{1}s^{2}) = 1.$$
(6.48)

Из (6.48) получим

$$As_{1}s_{2} = 1;$$

$$- A(s_{1} + s_{2}) + Bs_{1}s_{2} = 0;$$

$$A - B(s_{1} + s_{2}) - Cs_{2} - Ds_{1} = 0;$$

$$B + C + D = 0.$$
(6.49)

Для определения A, B, C, D необходимо решить систему уравнений (6.49). Из (6.49) имеем

$$A = \frac{1}{s_1 s_2};$$

$$B = \frac{(s_1 + s_2)A}{s_1 s_2}$$
(6.50)

или

$$B = \frac{s_1 + s_2}{(s_1 s_2)^2}; \tag{6.51}$$

$$C = \frac{A - Bs_2}{s_2 - s_1};\tag{6.52}$$

$$D = -B - \frac{A - Bs_2}{s_2 - s_1}. ag{6.53}$$

Имеем

$$s_1 = -\alpha + i\beta$$
; $s_2 = -\alpha - i\beta$;
 $s_1 + s_2 = -2\alpha$;
 $s_1 s_2 = \alpha^2 + \beta^2$;
 $s_2 - s_1 = -i2\beta$.

Из (6.50), (6.51) получим

$$A = \frac{1}{\alpha^{2} + \beta^{2}};$$

$$B = \frac{-2\alpha}{(\alpha^{2} + \beta^{2})^{2}}.$$
(6.54)

Определим *С* из (6.52). Имеем

$$C = \frac{(A+B\alpha)+i\beta B}{-i2\beta} = \frac{i(A+B\alpha)2\beta-2B\beta^2}{(-i2\beta)(i2\beta)}$$

или

$$C = C_1 + iC_2, (6.55)$$

где

$$C_1 = -\frac{B}{2}; C_2 = (A + B\alpha) \cdot \frac{1}{2\beta}.$$
 (6.56)

Имеем

$$D = -B - C = -B - C_1 - iC_2 = D_1 - iC_2, \tag{6.57}$$

где

$$D_1 = -\frac{B}{2}. (6.58)$$

Из (6.56), (6.58) получим

$$D_1 = C_1$$
.

Тогда

$$D = C_1 - iC_2. (6.59)$$

Из (6.47) получим

$$y(t) = \frac{ak}{0.2} \left[At + B \cdot 1(t) + Ce^{s_1 t} + De^{s_2 t} \right].$$
 (6.60)

Определим функцию f(t) вида

$$f(t) = Ce^{s_1t} + De^{s_2t}$$

или

$$f(t) = (C_1 + iC_2)e^{(-\alpha + i\beta)t} + (C_1 - iC_2)e^{(-\alpha - i\beta)t}.$$
 (6.61)

Из (6.61) получим

$$f(t) = e^{-\alpha t} [(C_1 + iC_2)(\cos\beta t + i\sin\beta t) + (C_1 - iC_2)(\cos\beta t - i\sin\beta t)]$$

или

$$f(t) = e^{-\alpha t} \left[(2C_1 \cos \beta t + i(C_2 - C_2) \cos \beta t) + i(C_1 - C_1) \sin \beta t - 2C_2 \sin \beta t \right].$$

Окончательно имеем

$$f(t) = 2e^{-\alpha t}(C_1 \cos \beta t - C_2 \sin \beta t).$$

Тогда (6.60) примет вид

$$y(t) = \frac{ak}{0.2} \left[At + B \cdot 1(t) + 2e^{-\alpha t} (C_1 \cos \beta t - C_2 \sin \beta t) \right].$$

Задача 6.5. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(Ts+1)},$$

где k = 20; T = 0,1. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = 0$$
.

Определить y(t), если $y(0) = y_0$, $\dot{y}(0) = 0$.

Решение. Определим $\Phi(s)$. Имеем

$$\Phi(s) = \frac{W(s)}{1 + W(s)} = \frac{\frac{k}{s(Ts+1)}}{1 + \frac{k}{s(Ts+1)}}$$

или

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{k}{Ts^2 + s + k}.$$
 (6.62)

Согласно (6.62) дифференциальное уравнение системы управления имеет вид

$$(Ts^2 + s + k)y(t) = kx(t).$$
 (6.63)

Имеем

$$sy(t) = \dot{y}(t) \div sY(s) - y(0);$$

$$s^{2}y(t) = \ddot{y}(t) \div s^{2}Y(s) - sy(0) - \dot{y}(0).$$
(6.64)

Из (6.63) и (6.64), учитывая, что x(t) = 0, получаем

$$Ts^2Y(s) - Tsy(0) - T\dot{y}(0) + sY(s) - y(0) + kY(s) = 0$$

или

$$Y(s) = \frac{(Ts+1)y(0) + T\dot{y}(0)}{Ts^2 + s + k}.$$
 (6.65)

Подставляя значение начальных условий $y(0) = y_0$ и $\dot{y}(0) = 0$ и коэффициентов уравнения T = 0,1 и k = 20, имеем

$$Y(s) = \frac{(0.1s+1)y_0}{0.1s^2 + s + 20} = \frac{(0.1s+1)y_0}{0.1[(s+5)^2 + (13.2)^2]}$$

или

$$Y(s) = \frac{(s+10)y_0}{(s+5)^2 + (13,2)^2}.$$
 (6.66)

Введем обозначения

$$δ = 10; γ = 5; λ = 13,2.$$

С учетом принятых обозначений соотношение (6.66) примет вид

$$Y(s) = \frac{s+\delta}{(s+\gamma)^2 + \lambda^2} y_0. \tag{6.67}$$

Из таблицы преобразований Лапласа получим

$$L^{-1}\left[\frac{s+\delta}{(s+\gamma)^2+\lambda^2}\right] = \frac{1}{\lambda}\sqrt{(\delta-\gamma)^2+\lambda^2}\cdot e^{-\gamma t}\cdot\sin(\lambda t+\psi), \qquad (6.68)$$

гле

$$\Psi = \arctan \frac{\lambda}{\delta - \gamma}.$$
 (6.69)

Из (6.67) с учетом (6.68), (6,69) имеем

$$y(t) = y_0 1,07e^{-5t} \cdot \sin(13,2t - 69^{\circ}15').$$

Задачи для самостоятельного решения

Задача 6.6. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(Ts+1)},$$

где k = 24; T = 0,0067. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = at$$
.

Определить ошибку $\varepsilon(t)$ системы управления при $y(0) = \dot{y}(0) = 0$. **Задача 6.7.** Передаточная функция системы управления имеет вид

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{k_2 \left(s + \frac{1}{T}\right)}{s^2 + \frac{1}{T}s + \frac{k}{T}},$$

где T = 0,0067; k = 24; k_2 = 0,01. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 \cdot 1(t).$$

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Задача 6.8. Передаточная функция системы управления имеет вид

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{k_2 \left(s + \frac{1}{T}\right)}{s^2 + \frac{1}{T}s + \frac{k}{T}},$$

где T = 0,025; k = 100; k₂ = 10. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 \cdot \delta(t),$$

где $\delta(t)$ – дельта-функция.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Задача 6.9. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k_1}{s(T_1s+1)},$$

где k_1 = 100; T = 0,025. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = at$$
.

Определить ошибку $\varepsilon(t)$ системы управления при $y(0) = \dot{y}(0) = 0$. Задача 6.10. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k_2(T_2s+1)}{s^2},$$

где k_2 = 400; T_2 = 0,01. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = at$$
.

Определить ошибку $\varepsilon(t)$ системы управления при $y(0) = \dot{y}(0) = 0$.

Задача 6.11. Передаточная функция системы управления имеет вид

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{k}{Ts^2 + s + k},$$

где k = 20; T = 0,1. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 \cdot 1(t).$$

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Задача 6.12. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{T^2 s^2 + 1}.$$

Сигнал на входе системы управления x(t) определяется соотношением x(t) = at.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Задача 6.13. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{Ts+1},$$

где k = 10; T = 0,2. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = at$$
.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Задача 6.14. Передаточная функция системы управления имеет вид

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{k}{T_1 T_2 s^2 + (T_1 + T_2) s + 1}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = ae^{-bt}$$
.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Задача 6.15. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k(Ts+1)}{s^2},$$

где k = 4000; T = 0,01. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = at$$

Определить ошибку $\varepsilon(t)$ системы управления при $y(0) = \dot{y}(0) = 0$.

Задача 6.16. Передаточная функция системы управления имеет вид

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{k}{Ts+1}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 e^{\beta t}$$
.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Задача 6.17. Передаточная функция системы управления имеет вид

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{k}{s(T_1 s + 1)(T_2 s + 1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = a \cdot 1(t)$$
.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Задача 6.18. Передаточная функция системы управления имеет вид

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{3s+2}{s^3(0,2s+1)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = \delta(t)$$
.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Задача 6.19. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(Ts+1)},$$

где k = 10; T = 0,2. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = 0$$
.

Определить y(t), если $y(0) = y_0$; $\dot{y}(0) = 0$.

Задача 6.20. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{(T_1s+1)(T_2s+1)},$$

где k = 3; T_1 = 0,2; T_2 = 0,01. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = 0$$
.

Определить y(t), если $y(0) = y_0$; $\dot{y}(0) = 0$.

Задача 6.21. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(Ts+1)},$$

где k = 24; T = 0,0067. Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = at$$
.

Определить y(t), если y(0) = 0; $\dot{y}(0) = 0$.

Задача 6.22. Передаточная функция системы управления имеет вид

$$\Phi(s) = \frac{k}{(s+\alpha)(s+\beta)} = \frac{Y(s)}{X(s)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 t$$
.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Задача 6.23. Передаточная функция системы управления имеет вид

$$\Phi(s) = \frac{Y(s)}{X(s)} = \frac{k}{(s+\alpha)(s+\beta)}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = g_0 e^{-dt}.$$

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

Задача 6.24. Передаточная функция динамической системы имеет вид

$$W(s) = \frac{Y(s)}{X(s)} = \frac{ks}{T^2s^2 + 1}.$$

Сигнал на входе динамической системы $x(t) = \delta(t)$, где $\delta(t)$ – дельтафункция.

Определить y(t), если y(0) = 0; $\dot{y}(0) = 0$.

Задача 6.25. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{4}{8s+1}.$$

Сигнал на входе системы управления x(t) определяется соотношением

$$x(t) = 2e^{-4t}$$
.

Определить ошибку $\varepsilon(t)$ системы управления при $y(0) = \dot{y}(0) = 0$.

Задача 6.26. Динамическая система описывается уравнением

$$2\ddot{y} + 10\dot{y} + 12y = \dot{x} + x$$
,

где x(t) = $\delta(t)$, где $\delta(t)$ — дельта-функция.

Определить y(t), если $y(0) = \dot{y}(0) = 0$.

3амечание: первоначально определить передаточную функцию $\Phi(s) = \frac{Y(s)}{X(s)}$ (см. практическое занятие № 4).

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 7. Фазовый портрет (фазовые траектории) динамической системы

Теоретические сведения

Рассмотрим динамическую систему второго порядка:

$$\ddot{y} + a_1 \dot{y} + a_2 y = 0 \tag{7.1}$$

с начальными значениями $y(0) = y_0$; $\dot{y}(0) = 0$.

Введем переменные состояния как фазовые переменные: $x_1 = y$; $x_2 = \dot{y}$. Тогда из (7.1) получим систему уравнений

$$\begin{vmatrix} \dot{x}_1 = x_2; \\ \dot{x}_2 = -a_2 x_1 - a_1 x_2 \end{vmatrix}$$
 (7.2)

с начальными значениями $x_1(0)$ = x_{10} = y_0 ; $x_2(0)$ = x_{20} = \dot{y}_0 .

Систему уравнений (7.2) можно записать в виде

$$\dot{x}(t) = Ax(t), \tag{7.3}$$

где

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}; \tag{7.4}$$

$$A = \begin{bmatrix} 0 & 1 \\ -a_2 & -a_1 \end{bmatrix}. \tag{7.5}$$

Здесь A — матрица, соответствующая системе уравнений (7.2).

Характеристическое уравнение матрицы А имеет вид

$$\Delta(\lambda) = |\lambda I - A| = 0, \tag{7.6}$$

где I — единичная матрица; |B| — определитель матрицы B.

Из (7.6) с учетом (7.5) имеем

$$\begin{vmatrix} \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & 1 \\ -a_2 & -a_1 \end{bmatrix} = \begin{vmatrix} \lambda & -1 \\ a_2 & \lambda + a_1 \end{bmatrix} = \lambda^2 + a_1\lambda + a_2 = 0.$$
 (7.7)

Из (7.7) определим корни характеристического уравнения. Имеем

$$\lambda_{1,2} = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_2}}{2}. (7.8)$$

Фазовый портрет (фазовые траектории) динамической системы зависит от значений λ_1 и λ_2 .

Рассмотрим случай, когда $\lambda_1 = \alpha_1$; $\lambda_2 = \alpha_2$; $\alpha_1 < 0$; $\alpha_2 < 0$; $\alpha_1 \neq \alpha_2$. Фазовый портрет имеет вид, показанный на рис. 7.1.

Рис. 7.1

Особая точка (0,0) – устойчивый узел.

Рассмотрим случай, когда $\lambda_1 = \alpha_1$; $\lambda_2 = \alpha_2$; $\alpha_1 > 0$; $\alpha_2 > 0$; $\alpha_1 \neq \alpha_2$. Фазовый портрет имеет вид, показанный на рис. 7.2.

Особая точка (0,0) – неустойчивый узел.

Рассмотрим случай, когда λ_1 = λ_2 = α ; $\alpha < 0$. Фазовый портрет имеет вид, показанный на рис. 7.3.

Особая точка (0,0) – устойчивый декритический узел.

Рассмотрим случай, когда λ_1 = λ_2 = α ; $\alpha > 0$. Фазовый портрет имеет вид, показанный на рис. 7.4.

Рис. 7.4

Особая точка (0,0) – неустойчивый декритический узел.

Рассмотрим случай, когда $\lambda_1 = \alpha + i\beta$; $\lambda_2 = \alpha - i\beta$; $\alpha > 0$; $\beta > 0$. Фазовый портрет имеет вид, показанный на рис. 7.5.

Рис. 7.5

Особая точка (0,0) – неустойчивый фокус.

Рассмотрим случай, когда $\lambda_1 = -\alpha + i\beta$; $\lambda_2 = -\alpha - i\beta$; $\alpha > 0$; $\beta > 0$. Фазовый портрет имеет вид, показанный на рис. 7.6.

Рис. 7.6

Особая точка (0,0) – устойчивый фокус.

Рассмотрим случай, когда $\lambda_1 = i\beta$; $\lambda_2 = -i\beta$; $\beta > 0$. Фазовый портрет имеет вид, показанный на рис. 7.7.

Рис. 7.7

Особая точка (0,0) – центр.

Рассмотрим случай, когда λ_1 = α_1 ; λ_2 = α_2 ; α_1 > 0; α_2 < 0; $\alpha_1 \neq \alpha_2$. Фазовый портрет имеет вид, показанный на рис. 7.8.

Рис. 7.8

Особая точка (0,0) – седло.

Рассмотрим случай, когда $\lambda_1 = \alpha_1$; $\lambda_2 = \alpha_2$; $\alpha_1 > 0$; $\alpha_2 < 0$; $|\alpha_1| = |\alpha_2| = \alpha$; $\alpha > 0$. Фазовый портрет имеет вид, показанный на рис. 7.9.

Рис. 7.9

Особая точка (0,0) – седло.

Решение типовых задач

 $\it 3ada4a~7.1$. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix}. \tag{7.9}$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

Решение. Из (7.3) имеем

$$\frac{dx(t)}{dt} = Ax(t), (7.10)$$

где

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}. \tag{7.11}$$

Из (7.10) с учетом (7.9), (7.11) получим

$$\frac{dx_1}{dt} = 2x_1 + 1 \cdot x_2; (7.12)$$

$$\frac{dx_2}{dt} = 1 \cdot x_1 - 3x_2. \tag{7.13}$$

Таким образом, система однородных дифференциальных уравнений определяется соотношениями (7.12), (7.13).

Из (7.6) имеем

$$\Delta(\lambda) = |\lambda I - A| = 0$$

или

$$\begin{vmatrix} \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 1 \\ 1 & -3 \end{bmatrix} = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda + 3 \end{vmatrix} = (\lambda - 2)(\lambda + 3) - 1 = 0$$

или

$$\lambda^2 + \lambda - 7 = 0. \tag{7.14}$$

Из (7.14) определим λ_1 и λ_2 . Получим

$$\lambda_{1,2} = \frac{-1 \pm \sqrt{1 + 4 \cdot 7}}{2} = -0.5 \pm 2.69.$$

Откуда

$$\lambda_1 = -3.19; \ \lambda_2 = 2.19.$$
 (7.15)

Из (7.15) следует, что координаты особой точки:

$$x_1 = 0$$
; $x_2 = 0$.

Тип особой точки: седло.

Построим фазовый портрет системы. Из (7.12), (7.13) имеем

$$\frac{dx_2}{dx_1} = \frac{x_1 - 3x_2}{2x_1 + x_2}. (7.16)$$

Соотношение (7.16) получено путем деления выражения (7.13) на выражение (7.12).

Запишем x_2 в виде

$$x_2 = kx_1. (7.17)$$

Из (7.17) имеем

$$dx_2 = kdx_1$$

или

$$k = \frac{dx_2}{dx_1} \,. \tag{7.18}$$

Подставим в (7.18) соотношение (7.16) и учтем выражение (7.17). Получим

$$k = \frac{x_1 - 3kx_1}{2x_1 + kx_1}$$

или

$$k = \frac{1 - 3k}{2 + k}.\tag{7.19}$$

Из (7.19) имеем

$$k^2 + 5k - 1 = 0$$
.

откуда получим

$$k_{1,2} = \frac{-5 \pm \sqrt{25 + 4}}{2} = \frac{-5 + 5,385}{2}.$$

Следовательно

$$k_1 = -5,19$$
; $k_2 = 0,19$.

Из (7.17), (7.12), (7.13) имеем при $x_1 = 1$; $k_2 = 0.19$

$$x_1 = 1$$
; $x_2 = 0.19$;
 $\dot{x}_1 = 2 \cdot 1 + 1 \cdot 0.19 = 2.19$;
 $\dot{x}_2 = 1 \cdot 1 - 3 \cdot 0.19 = 0.43$.

Следовательно, в точке с координатами $x_1 = 1$, $x_2 = 0.19$ получили

$$\dot{x}_1 > 0; \ \dot{x}_2 > 0.$$
 (7.20)

Из (7.17), (7.12), (7.13) имеем при x_1 = 1 и k_2 = -5,19

$$x_1 = 1$$
; $x_2 = -5,19$;
 $\dot{x}_1 = 2 \cdot 1 - 1 \cdot 5,19 = -3,19$;
 $\dot{x}_2 = 1 \cdot 1 - 3 \cdot (-5,19) = 16,6$.

Следовательно, в точке с координатами $x_1 = 1$, $x_2 = -5,19$ получили

$$\dot{x}_1 < 0; \dot{x}_2 > 0.$$
 (7.21)

Фазовый портрет системы имеет вид (рис. 7.10)

Рис. 7.10

 $\it 3ada4a$ 7.2. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 0 & 2 \\ -3 & -1 \end{bmatrix}. \tag{7.22}$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

Решение. Из (7.3) имеем

$$\frac{dx(t)}{dt} = Ax(t),\tag{7.23}$$

где

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}. \tag{7.24}$$

Из (7.23) с учетом (7.22), (7.24) получим

$$\frac{dx_1}{dt} = 2x_2(t); (7.25)$$

$$\frac{dx_2}{dt} = -3x_1(t) - x_2(t). ag{7.26}$$

Из (7.25), (7.26) имеем

$$\frac{1}{2}\ddot{x}_1(t) = -3x_1(t) - \frac{1}{2}\dot{x}_1(t)$$

или

$$\ddot{x}_1(t) + \dot{x}_1(t) + 6x_1(t) = 0. (7.27)$$

Характеристическое уравнение, соответствующее соотношению (7.27), имеет вид

$$\lambda^2 + \lambda + 6 = 0. \tag{7.28}$$

Из (7.28) определим λ_1 и λ_2 . Получим

$$\lambda_{1,2} = \frac{-\ 1\pm\ \sqrt{1-\ 24}}{2} = -\ \frac{1}{2}\pm\ i\,\frac{\sqrt{23}}{2}.$$

Откуда

$$\lambda_1 = -\alpha + i\beta; \ \lambda_2 = -\alpha - i\beta, \tag{7.29}$$

где

$$\alpha = \frac{1}{2}; \ \beta = \frac{\sqrt{23}}{2}.$$

Из (7.29) следует, что координаты особой точки:

$$x_1 = 0$$
; $x_2 = 0$.

Тип особой точки: устойчивый фокус.

Из (7.27), (7.29) имеем

$$x_1(t) = e^{-\alpha t} (A_1 \cos \beta t + A_2 \sin \beta t).$$
 (7.30)

Из (7.25), (7.30) получим

$$x_{2}(t) = \frac{1}{2}\dot{x}_{1}(t) = \frac{1}{2}[-\alpha \cdot e^{-\alpha t}(A_{1}\cos\beta t + A_{2}\sin\beta t) + e^{-\alpha t}(-A_{1}\beta\sin\beta t + A_{2}\beta\cos\beta t)]$$

или

$$x_{2}(t) = \frac{1}{2}e^{-\alpha t}[(-\alpha A_{1} + A_{2}\beta)\cos\beta t) + (-\alpha A_{2} - A_{1}\beta)\sin\beta t].$$
(7.31)

Определить A_1 и A_2 при $x_1(0) = x_{10}$; $x_2(0) = 0$. Из (7.30), (7.31) имеем $x_1(0) = A_1$:

$$x_2(0) = \frac{1}{2} (-\alpha A_1 + A_2 \beta)$$

или

$$A_{1} = x_{10}; A_{2} = \frac{\alpha}{\beta} x_{10}.$$
 (7.32)

Подставим (7.32) в (7.30), (7.31). Получим

$$x_1(t) = x_{10}e^{-\alpha t}(\cos\beta t + \frac{\alpha}{\beta}\sin\beta t);$$

$$x_2(t) = \frac{x_{10}}{2} e^{-\alpha t} \left[-\frac{(\alpha^2 + \beta^2)}{\beta} \sin \beta t \right].$$

Фазовый портрет системы имеет вид (рис. 7.11)

Задача 7.3. Динамическая система описывается дифференциальными уравнениями вида

$$\dot{x}_1 = x_2;$$
 (7.33)

$$\dot{x}_2 = -x_1. \tag{7.34}$$

Необходимо:

- 1. Определить координаты особой точки.
- 2. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

Решение. Из (7.33) имеем

$$\ddot{x}_1 = \dot{x}_2. \tag{7.35}$$

Подставим (7.34) в (7.35). Получим

$$\ddot{x}_1 + x_1 = 0. ag{7.36}$$

Характеристическое уравнение, соответствующее соотношению (7.36), имеет вид

$$\lambda^2 + \omega_0^2 = 0, (7.37)$$

где $\omega_0 = 1$.

Из (7.37) определим λ_1 и λ_2 . Получим

$$\lambda_{12} = \pm i\omega_0$$
.

Откуда

$$\lambda_1 = i\omega_0; \quad \lambda_2 = -i\omega_0. \tag{7.38}$$

Из (7.38) следует, что координаты особой точки:

$$x_1 = 0$$
; $x_2 = 0$.

Тип особой точки: центр.

Из (7.36), (7.38) имеем

$$x_1(t) = C_1 \cos \omega_0 t + C_2 \sin \omega_0 t.$$
 (7.39)

Из (7.33), (7.39) получим

$$\dot{x}_{2}(t) = -C_{1}\omega_{0}\sin\omega_{0}t + C_{2}\omega_{0}\cos\omega_{0}t. \tag{7.40}$$

Определим C_1 и C_2 при $x_1(0)$ = x_{10} ; $x_2(0)$ = 0. Из (7.39), (7.40) имеем

$$x_1(0) = C_1;$$

$$x_2(0) = C_2 \omega_0$$

или

$$C_1 = x_{10}; C_2 = 0.$$
 (7.41)

Подставим (7.41) в (7.39), (7.40). Получим

$$x_{1}(t) = x_{10} \cos \omega_{0} t;$$

$$x_{2}(t) = -x_{10} \omega_{0} \sin \omega_{0} t).$$
(7.42)

Из (7.42) имеем

$$x_1^2 = x_{10}^2 \cos^2 \omega_0 t$$
;

$$\frac{x_2^2}{\omega_0^2} = x_{10}^2 \sin^2 \omega_0 t.$$

Откуда

$$\frac{x_1^2}{1} + \frac{x_2^2}{\omega_0^2} = x_{10}^2.$$

Так как ω_0 = 1, то получим

$$x_1^2 + x_2^2 = x_{10}^2$$
. (7.43)

Соотношение (7.43) есть уравнение окружности с радиусом окружности x_{10} .

Фазовый портрет системы имеет вид (рис. 7.12)

Рис. 7.12

Задача 7.4. Динамическая система описывается дифференциальными уравнениями вида

$$\dot{x}_1 = 4x_1 - 3x_2; \tag{7.44}$$

$$\dot{x}_2 = 2x_1 - 3x_2. \tag{7.45}$$

Необходимо:

- 1. Определить матрицу A.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

Решение. Определим матрицу А. Из (7.44), (7.45) имеем

$$\frac{dx(t)}{dt} = Ax(t),\tag{7.46}$$

где

$$x(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \end{bmatrix}. (7.47)$$

Сопоставляя соотношения (7.46), (7.47) с уравнениями (7.44), (7.45), получим

$$A = \begin{bmatrix} 4 & -3 \\ 2 & -3 \end{bmatrix}. \tag{7.48}$$

Из (7.6) имеем

$$\begin{vmatrix} \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 4 & -3 \\ 2 & -3 \end{bmatrix} = \begin{vmatrix} \lambda - 4 & 3 \\ -2 & \lambda + 3 \end{bmatrix} = (\lambda - 4)(\lambda + 3) + 6$$

или

$$\lambda^2 - \lambda - 6 = 0. \tag{7.49}$$

Из (7.49) определим λ_1 и λ_2 . Получим

$$\lambda_{1,2} = \frac{1 \pm \sqrt{1 + 24}}{2} = \frac{1 \pm 5}{2}.$$

Откуда

$$\lambda_1 = 3; \quad \lambda_2 = -2.$$
 (7.50)

Из (7.50) следует, что координаты особой точки:

$$x_1 = 0$$
; $x_2 = 0$.

Тип особой точки: седло.

Найдем прямые $x_2 = kx_1$, проходящие через начало координат и являющиеся фазовыми траекториями. Для определения коэффициента k исключим время из уравнений (7.44), (7.45). Имеем

$$\frac{dx_2}{dx_1} = \frac{2x_1 - 3x_2}{4x_1 - 3x_2}.$$

Подставим $x_2 = kx_1$ в полученное уравнение. Тогда

$$k = \frac{2 - 3k}{4 - 3k}$$

или

$$3k^2 - 7k + 2 = 0. (7.51)$$

Из (7.51) определим k_1 и k_2 . Имеем

$$k_1 = 2$$
; $k_2 = \frac{1}{3}$.

Таким образом, прямолинейные фазовые траектории являются уравнениями

$$x_1 = 2x_1$$
; $x_2 = \frac{x_1}{3}$.

Для определения направления движения по фазовым траекториям найдем \dot{x}_1 и \dot{x}_2 в точке с координатами x_1 = 1; x_2 = 2. Из (7.44), (7.45) получим

$$\dot{x}_1 = 4 \cdot 1 - 3 \cdot 2 = 4 - 6 = -2;$$

$$\dot{x}_2 = 2 \cdot 1 - 3 \cdot 2 = 2 - 6 = -4.$$

Следовательно, $\dot{x}_1 < 0$; $\dot{x}_2 < 0$ в точке с координатами $x_1 = 1$; $x_2 = 2$. По асимптоте $x_2 = 2x_1$ изображающая точка стремится к началу координат.

Фазовый портрет системы имеет вид (рис. 7.13)

Рис. 7.13

Задачи для самостоятельного решения

Задача 7.5. Динамическая система описывается дифференциальными уравнениями вида

$$\dot{x}_1 = x_2$$
;

$$\dot{x}_2 = x_2 - 2x_1$$
.

Необходимо:

- 1. Определить координаты особой точки.
- 2. Определить тип особой точки.
- 3. Построить фазовый портрет системы.
- 4. Найти $x_1(t)$ и $x_2(t)$, если $x_1(0) = x_{10}$; $x_2(0) = 0$.

Задача 7.6. Динамическая система описывается дифференциальными уравнениями вида

$$\dot{x}_1 = 4x_1 - 3x_2;$$

$$\dot{x}_2 = 2x_1 - 3x_2$$
.

Необходимо:

- 1. Определить координаты особой точки.
- 2. Определить тип особой точки.
- 3. Построить фазовый портрет системы.

 $\it 3ada4a$ 7.7. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} -1 & 2 \\ -1 & 4 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

 $\it 3adaчa$ 7.8. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 0 & 1 \\ 4 & 0 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

 $\it 3ada4a$ 7.9. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} -3 & 1 \\ 1 & -3 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Найти две прямые, проходящие через начало координат и являющиеся фазовыми траекториями.
 - 5. Построить фазовый портрет системы.

 $\it 3ada4a$ 7.10. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} -1 & 8 \\ -2 & 7 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

 $\it 3ada4a$ 7.11. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 0 & 1 \\ -4 & 4 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

 $\it 3ada4a$ 7.12. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 0 & 1 \\ -4 & -4 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

 $\it 3adaчa~7.13.$ Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 0 & 1 \\ -13 & -4 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.
- 5. Определить $x_1(t)$ и $x_2(t)$, если $x_1(0) = x_{10}$; $x_2(0) = 0$.

 $\it 3adaчa~7.14.$ Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 0 & 1 \\ -13 & 4 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.
- 5. Определить $x_1(t)$ и $x_2(t)$, если $x_1(0) = x_{10}$; $x_2(0) = 0$.

 $\it 3ada4a$ 7.15. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 0 & 1 \\ -45 & 6 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.
- 5. Определить $x_1(t)$ и $x_2(t)$, если $x_1(0) = x_{10}$; $x_2(0) = 0$.

 $\it 3adaчa~7.16.$ Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 0 & 1 \\ -45 & -6 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.
- 5. Определить $x_1(t)$ и $x_2(t)$, если $x_1(0) = x_{10}$; $x_2(0) = 0$.

 $\it 3ada4a$ 7.17. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 0 & 1 \\ -\omega^2 & 0 \end{bmatrix}$$
, где $\omega < 1$.

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.
- 5. Определить $x_1(t)$ и $x_2(t)$, если $x_1(0) = x_{10}$; $x_2(0) = 0$.

 $\it 3ada4a$ 7.18. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 0 & 1 \\ 8 & -2 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

 $\it 3adaua$ 7.19. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 1 & -4 \\ -2 & -1 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

 $\it 3ada4a$ 7.20. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} -1 & 8 \\ -2 & 7 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.

 $\it 3ada4a$ 7.21. Линейная динамическая система описывается матрицей $\it A$ вида

$$A = \begin{bmatrix} 1 & -8 \\ 4 & -7 \end{bmatrix}.$$

Необходимо:

- 1. Записать систему однородных дифференциальных уравнений.
- 2. Определить координаты особой точки.
- 3. Определить тип особой точки.
- 4. Построить фазовый портрет системы.
- 5. Определить $x_1(t)$ и $x_2(t)$, если $x_1(0) = x_{10}$; $x_2(0) = 0$.

ПРАКТИЧЕСКОЕ ЗАНЯТИЕ № 8.

Определение параметра динамической системы, обеспечивающего минимум интегрального показателя качества

Теоретические сведения

Интегральный показатель качества может иметь вид

$$J_2 = \int_0^\infty \varepsilon_{\rm cB}^2(t)dt; \ \varepsilon_{\rm cB}(t) = \varepsilon(t) - \varepsilon_{\rm \infty}, \tag{8.1}$$

где $\varepsilon(t)$ — динамическая ошибка системы; ε_* — статическая ошибка динамической системы.

Запишем J_2 в частотной области. Имеем

$$J_2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| E_{\rm cB}(j\omega) \right|^2 d\omega , \qquad (8.2)$$

$$E(s) = L\{\epsilon(t)\}; E_{\infty}(s) = L\{\epsilon_{\infty}\}; E_{cB}(s) = L\{\epsilon_{cB}(t)\}.$$
 (8.3)

 $E_{\rm cB}(j\omega)$ = $E_{\rm cB}(s)\big|_{s=j\omega}$, где $L[\cdot]$ — преобразование Лапласа выражения, стоящего в скобках.

Пусть

$$E_{cB}(s) = \frac{b_0 s^{n-1} + b_1 s^{n-2} + \dots + b_{n-1}}{a_0 s^n + a_1 s^{n-1} + \dots + a_n}.$$
 (8.4)

Обозначим J_2 при n = 1 через J_2^1 , при n = 2 — через J_2^2 , при n = 3 — через J_2^3 . Имеем

$$J_2^1 = \frac{b_0^2}{2a_0a_1}; (8.5)$$

$$J_2^2 = \frac{b_0^2 a_2 + b_1^2 a_0}{2a_0 a_1 a_2}; (8.6)$$

$$J_2^3 = \frac{b_0^2 a_2 a_3 + (b_1^2 - 2b_0 b_2) a_0 a_3 + b_2^2 a_0 a_1}{2a_0 a_3 (a_1 a_2 - a_0 a_3)}.$$
 (8.7)

Интегральный показатель качества также можно записать в виде

$$J_0 = \int_0^\infty \left[\varepsilon_{cB}^2(t) + \tau^2 \cdot \dot{\varepsilon}_{cB}^2(t) \right] dt$$
 (8.8)

или

$$J_0 = J_2 + \tau^2 \cdot J_3, \tag{8.9}$$

где

$$J_{2} = \int_{0}^{\infty} \xi_{cB}^{2}(t)dt; \quad J_{3} = \int_{0}^{\infty} \dot{\xi}_{cB}^{2}(t)dt.$$
 (8.10)

Здесь [₹] – коэффициент.

Запишем J_3 в виде

$$J_{3} = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left| \dot{E}_{cB}(j\omega) \right|^{2} d\omega . \tag{8.11}$$

Определим Е ∞ . Имеем

$$\varepsilon_{\infty} = \lim_{t \to \infty} \varepsilon(t) = \lim_{s \to 0} sE(s) . \tag{8.12}$$

Определим $\dot{E}_{\scriptscriptstyle \mathrm{CR}}(s)$. Получим

$$\dot{E}_{cp}(s) = L\{\dot{\epsilon}_{cp}(t)\} = sE_{cp}(s) - \epsilon_{cp}(0),$$
 (8.13)

где

$$\varepsilon_{cB}(0) = \lim_{s \to \infty} s E_{cB}(s). \tag{8.14}$$

 $\dot{E}_{\rm cB}(s)$ представляется в виде (8.4) и используются формулы (8.5)–(8.7), только вместо J_2^1 , J_2^2 , J_2^3 записываются J_3^1 , J_3^2 , J_3^3 .

Обозначим искомый параметр через ξ . Определяется

$$\frac{dJ_0}{d\zeta} = 0 \tag{8.15}$$

или

$$\frac{dJ_2}{d\zeta} = 0, (8.16)$$

откуда находится ξ .

Решение типовых задач

Задача 8.1. Передаточная функция разомкнутого контура системы имеет вид

$$W(s) = \frac{1}{s^2 + 2\xi s + 1}.$$

Определить значение параметра ξ , обеспечивающее минимум интегрального показателя качества, если x(t) = 1(t) .

Решение. Определим передаточную функцию по ошибке

$$\Phi_{\varepsilon}(s) = \frac{1}{1+W(s)} = \frac{s^2+2\xi s+1}{s^2+2\xi s+2}.$$

Определим X(s). Имеем

$$X(s) = L\{x(t)\} = L\{1(t)\} = \frac{1}{s}.$$
 $X(s) = L\{x(t)\} = L\{1(t)\} = \frac{1}{s}.$
 $X(s) = L\{x(t)\} = L\{1(t)\} = \frac{1}{s}.$

Найдем E(s) (рис. 8.1)

$$E(s) = \Phi_{\varepsilon}(s)X(s) = \frac{s^2 + 2\xi s + 1}{s(s^2 + 2\xi s + 2)}.$$

Определим Е ∞ . Имеем

$$\varepsilon_{\infty} = \lim_{s \to 0} sE(s) = \frac{1}{2}.$$

Найдем $E_{\infty}(s)$:

$$E_{\infty}(s) = L\left\{\frac{1}{2}\right\} = \frac{1}{2s}.$$

Определим $E_{\rm cB}(s)$. Получим

$$E_{cB}(s) = E(s) - E_{\infty}(s) = \left[\frac{s^2 + 2\xi s + 1}{s^2 + 2\xi s + 2} - \frac{1}{2} \right] \cdot \frac{1}{s}$$

или

$$E_{c_{\rm B}}(s) = \frac{s + 2\xi}{2s^2 + 4\xi s + 4}.$$
 (8.17)

Рис. 8.1

Сопоставляя (8.17) и (8.4), получим

$$b_0 = 1$$
; $b_1 = 2\xi$; $a_0 = 2$; $a_1 = 4\xi$; $a_2 = 4$.

Так как n = 2, то используем формулу (8.6). Имеем

$$J_2^2 = \frac{b_0^2 a_2 + b_1^2 a_0}{2a_0 a_1 a_2} = \frac{4 + 4\xi^2 \cdot 2}{4 \cdot 4 \cdot 4 \cdot \xi} = \frac{1 + 2\xi^2}{16\xi}.$$

Определим оптимальное значение параметра ξ . Получим

$$\frac{dJ_2^2}{d\xi} = 0$$

или

$$\frac{2\xi^2 - 1}{16\xi^2} = 0; \ 2\xi^2 - 1 = 0; \ \xi^2 = \frac{1}{2}; \ \xi = \frac{1}{\sqrt{2}}.$$

Задача 8.2. Передаточная функция разомкнутого системы имеет вид

$$W(s) = \frac{k}{s(Ts+1)}.$$

При фиксированном значении постоянной времени T = 0,2 с определить оптимальное значение k, обеспечивающее минимум интегральной оценки вида

$$J_0 = \int_0^\infty \left[\varepsilon_{cB}^2(t) + \tau^2 \cdot \dot{\varepsilon}_{cB}^2(t) \right] dt .$$
 (8.18)

Известно, что x(t) = 1(t), т.е. $X(s) = \frac{1}{s}$.

Решение. Запишем (8.18) в виде

$$J_0 = J_2 + \tau^2 \cdot J_3 \,, \tag{8.19}$$

где

$$J_2 = \int_0^\infty \varepsilon_{\rm CB}^2(t)dt; \ J_3 = \int_0^\infty \dot{\varepsilon}_{\rm CB}^2(t)dt.$$

Определим передаточную функцию по ошибке. Имеем

$$\Phi_{\varepsilon}(s) = \frac{1}{1+W(s)} = \frac{1}{1+\frac{k}{Ts^2+s}} = \frac{Ts^2+s}{Ts^2+s+k}.$$

Определим E(s). Получим

$$E(s) = \Phi_{\varepsilon}(s)X(s) = \frac{Ts+1}{Ts^2+s+k}.$$
 (8.20)

Найдем € ∞ :

$$\varepsilon_{\infty} = \lim_{s \to 0} sE(s) = 0.$$

Тогда

$$E_{\infty}(s) = 0; E_{CB}(s) = E(s).$$
 (8.21)

Сопоставляя (8.4), (8.20), (8.19), получим

$$b_0 = T$$
; $b_1 = 1$; $a_0 = T$; $a_1 = 1$; $a_2 = k$.

Так как n = 2, то используем формулу (8.6). Имеем

$$J_2^2 = \frac{b_0^2 a_2 + b_1^2 a_0}{2a_0 a_1 a_2} = \frac{T^2 k + T}{2Tk}$$

или

$$J_2^2 = \frac{Tk+1}{2k}. (8.22)$$

Определим $\epsilon_{cb}(0)$. Получим

$$\varepsilon_{_{CB}}(0) = \lim_{_{S \to \infty}} SE_{_{CB}}(s) = \lim_{_{S \to \infty}} \frac{Ts^2 + s}{Ts^2 + s + k} = \lim_{_{S \to \infty}} \frac{T + \frac{1}{s}}{T + \frac{1}{s} + \frac{k}{s^2}} = 1.$$

Найдем $\dot{E}_{\scriptscriptstyle \mathrm{CR}}(s)$. Имеем

$$\dot{E}_{_{\text{CB}}}(s) = sE_{_{\text{CB}}}(s) - \varepsilon_{_{\text{CB}}}(0) = \frac{Ts^2 + s}{Ts^2 + s + k} - 1 = \frac{-k}{Ts^2 + s + k}.$$
 (8.23)

Сопоставляя (8.4) и (8.23), получим

$$b_0 = 0$$
; $b_1 = -k$; $a_0 = T$; $a_1 = 1$; $a_2 = k$.

Так как n = 2, то используем формулу (8.6). Имеем

$$J_3^2 = \frac{b_0^2 a_2 + b_1^2 a_0}{2a_0 a_1 a_2} = \frac{k}{2}.$$
 (8.24)

Подставим (8.22), (8.24) в (8.19). Получим

$$J_0 = \frac{Tk+1}{2k} + \tau^2 \cdot \frac{k}{2}.$$

Определим оптимальное значение параметра k. Имеем

$$\frac{dJ_0}{dk} = 0$$

или

$$\frac{dJ_0}{dk} = \frac{1}{2} \frac{kT - (Tk + 1)}{k^2} + \frac{\tau^2}{2} = 0.$$

Отсюда

$$k=\frac{1}{\tau}$$
.

Задачи для самостоятельного решения

Задача 8.3. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{1}{s^2 + 20\xi s + 1}.$$

Сигнал на входе системы управления x(t) = 1(t), где 1(t) – единичная функция. Показатель качества определяется соотношением

$$J_0 = \int_0^\infty \left[\varepsilon_{\rm cB}^2(t) + \tau^2 \cdot \dot{\varepsilon}_{\rm cB}^2(t) \right] dt.$$

Определить $\xi = \xi_{\text{опт}}$, при котором $J_0 = \min$ для $\tau = 0$; $\tau = 5$; $\tau = 20$; $\tau = 50$; $\tau = 100$.

Задача 8.4. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(T_1s+1)(T_2s+1)},$$

где T_1 = 0,01 c; T_2 = 0,03 c.

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_{0}^{\infty} \varepsilon_{\rm cB}^{2}(t) dt.$$

Определить $k = k_{\text{ont}}$, при котором $J_2 = \min$.

Задача 8.5. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{(T_1 s + 1)(T_2 s + 1)},$$

где T_1 = 0,02 c; T_2 = 0,04 c.

Сигнал на входе системы управления $x(t) = x_0 \cdot 1(t)$. Интегральный показатель качества определяется соотношением

$$J_2 = \int_{0}^{\infty} \varepsilon_{\rm CB}^2(t) dt.$$

Определить $k = k_{\text{опт}}$, при котором $J_2 = \min$.

Задача 8.6. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{1}{s^2 + 5\xi s + 2}.$$

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_{0}^{\infty} \varepsilon_{\rm cB}^{2}(t) dt.$$

Определить $\xi = \xi_{\text{опт}}$, при котором $J_2 = \min$.

Задача 8.7. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{1}{s^2 + 7\xi s + 2}.$$

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_{0}^{\infty} \varepsilon_{\rm CB}^{2}(t) dt.$$

Определить $\xi = \xi_{\text{опт}}$, при котором $J_2 = \min$.

Задача 8.8. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{1}{s^2 + 10\xi s + 1}.$$

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_{0}^{\infty} \varepsilon_{\rm cB}^2(t) dt.$$

Определить $\xi = \xi_{\text{опт}}$, при котором $J_2 = \min$.

Задача 8.9. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{1}{s^2 + 20\xi s + 1}.$$

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_0^\infty \varepsilon_{\rm cB}^2(t) dt.$$

Определить $\xi = \xi_{\text{опт}}$, при котором $J_2 = \min$.

Задача 8.10. Рассматривается система оперативного регулирования производства. Объект управления – производственный процесс – может быть рассмотрен как инерционное звено (рис. 8.2)

Рис. 8.2

где y(t) — фактическая величина выпуска продукции, u(t) — требуемая величина выпуска продукции.

Система регулирования вычисляет управление u(t) с учетом недовыпущенной продукции с начала периода управления. Она может быть рассмотрена как инерционное интегрирующее звено (рис. 8.3)

где $\varepsilon(t)$ — отклонение фактического выпуска от запланированного выпуска x(t) (ошибка управления) с начала периода управления; T_1 = 0,01 дн; T_2 = 0,03 дн.

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_0^\infty \varepsilon_{\rm cB}^2(t) dt.$$

Определить $k = k_{\text{опт}}$, при котором $J_2 = \min$.

Замечание: система с обратной связью.

Задача 8.11. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{1}{s^2 + 8\xi s + 5}.$$

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_{0}^{\infty} \varepsilon_{\rm CB}^{2}(t) dt.$$

Определить ξ = $\xi_{\text{ опт}}$, при котором J_2 = min .

Задача 8.12. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{1}{s^2 + 2\xi s + 4}.$$

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_0^\infty \varepsilon_{\rm cB}^2(t) dt.$$

Определить $\xi = \xi_{\text{ont}}$, при котором $J_2 = \min$.

Задача 8.13. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{1}{s^2 + 2\xi s + 4}.$$

Сигнал на входе системы управления x(t) = 1(t). Показатель качества определяется соотношением

$$J_0 = \int_0^\infty \left[\varepsilon_{\rm cB}^2(t) + \tau^2 \cdot \dot{\varepsilon}_{\rm cB}^2(t) \right] dt.$$

Определить $\xi = \xi_{\text{опт}}$, при котором $J_0 = \min$ для $\tau = 0$; $\tau = 0.5$; $\tau = 1$; $\tau = 1.5$; $\tau = 2$.

Задача 8.14. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{s(T_1s+1)(T_2s+1)},$$

где T_1 = 0,1 c; T_2 = 0,3 c.

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_{0}^{\infty} \varepsilon_{\rm cB}^{2}(t) dt.$$

Определить $k = k_{\text{опт}}$, при котором $J_2 = \min$.

Задача 8.15. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{1}{s^2 + 2\xi s + a}.$$

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_{0}^{\infty} \varepsilon_{\rm cB}^{2}(t) dt.$$

Определить $\xi = \xi_{\text{опт}}$, при котором $J_2 = \min$.

Задача 8.16. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{k}{(T_1 s + 1)(T_2 s + 1)},$$

где T_1 = 0,2 c; T_2 = 0,4 c.

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_0^\infty \varepsilon_{\rm cB}^2(t) dt.$$

Определить k = k_{onr} , при котором J_2 = \min .

Задача 8.17. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{1}{s^2 + 4\xi s + a}.$$

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_{0}^{\infty} \varepsilon_{\rm cB}^2(t) dt.$$

Определить ξ = $\xi_{\text{ опт}}$, при котором J_2 = min .

Задача 8.18. Рассматривается процесс управления получением биомассы в биореакторе по одной из входных компонент.

Зависимость изменения величины получаемой на выходе биомассы от входной компоненты описывается дифференциальным уравнением

$$\ddot{y} + 2\xi \dot{y} + ay = \dot{u}$$

где ξ , a — параметры биореактора, u — входная компонента.

Система регулирования подачей входной компоненты описывается уравнением

$$\dot{u} = \varepsilon$$
,

где $^{\epsilon}$ — отклонение выходной величины биомассы y(t) от входного сигнала системы управления x(t) (ошибка системы управления).

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_{0}^{\infty} \varepsilon_{\rm CB}^2(t) dt.$$

Определить $\xi = \xi_{\text{опт}}$, при котором $J_2 = \min$.

Задача 8.19. Передаточная функция разомкнутой системы имеет вид

$$W(s) = \frac{1}{s^2 + 8\xi s + a}.$$

Сигнал на входе системы управления x(t) = 1(t). Интегральный показатель качества определяется соотношением

$$J_2 = \int_0^\infty \varepsilon_{\rm cB}^2(t) dt.$$

Определить ξ = $\xi_{\text{ опт}}$, при котором J_2 = min .

ЗАКЛЮЧЕНИЕ

Изложены вопросы практического применения теории автоматического управления (линейные детерминированные системы). Для каждого практического занятия приводятся теоретические сведения, дается решение типовых задач, предлагаются задачи для самостоятельного решения. С целью более глубокого изучения теории линейных детерминированных систем управления в учебном пособии рассмотрено восемь практических занятий по основным разделам курса «Теория автоматического управления».

Приложение Таблица преобразований Лапласа

Изображение	Оригинал
1	$\delta(t)$
1/s	1(t)
$1/s^2$	t
$2/s^3$	t^2
$\frac{n!}{s^{n+1}}$	t ⁿ
$\frac{1}{s+\alpha}$	$e^{-\alpha t}$
$\frac{1}{(s+\alpha)(s+\beta)}$	$\frac{e^{-\alpha t}-e^{-\beta t}}{\beta-\alpha}$
$\frac{1}{s(s+\alpha)(s+\beta)}$	$\frac{1}{\alpha \beta} + \frac{\beta e^{-\alpha t} - \alpha e^{-\beta t}}{\alpha \beta (\alpha - \beta)}$
$\frac{s+\delta}{(s+\alpha)(s+\beta)}$	$\frac{(\delta - \alpha)e^{-\alpha t} - (\delta - \beta)e^{-\beta t}}{\beta - \alpha}$
$\frac{s+\delta}{s[(s+\gamma)^2+\lambda^2]}$	$\frac{\delta}{\gamma^2 + \lambda^2} + \frac{1}{\lambda \sqrt{\gamma^2 + \lambda^2}} \sqrt{(\delta - \gamma)^2 + \lambda^2} \cdot e^{-\gamma t} \cdot \sin(\lambda t + \psi), _{\Gamma \Box}$
	$e \ \psi = arctg \frac{\lambda}{\delta - \gamma} - arctg \frac{\lambda}{\gamma} = \psi_1 - \psi_2$

$\frac{s+\delta}{(s+\gamma)^2+\lambda^2}$	$\frac{1}{\lambda}\sqrt{(\delta-\gamma)^2+\lambda^2}\cdot e^{-\gamma t}\cdot\sin(\lambdat+\psi);\ \psi=\arctan\frac{\lambda}{\delta-\gamma}$
$\frac{s+\delta}{s(s+\alpha)(s+\beta)}$	$\frac{\delta}{\alpha \beta} + \frac{\delta - \alpha}{\alpha (\alpha - \beta)} e^{-\alpha t} + \frac{\delta - \beta}{\beta (\beta - \alpha)} e^{-\beta t}$
$\frac{1}{(s+\gamma)^2+\lambda^2}$	$\frac{1}{\lambda} \cdot e^{-\gamma t} \cdot \sin \lambda t$
$\frac{1}{s[(s+\gamma)^2+\lambda^2]}$	$\frac{1}{\gamma^2 + \lambda^2} + \frac{1}{\lambda \sqrt{\gamma^2 + \lambda^2}} \cdot e^{-\gamma t} \cdot \sin(\lambda t - \psi);$
	$\psi = \operatorname{arctg}\left(-\frac{\lambda}{\gamma}\right)$

Продолжение табл.

$\frac{s+\alpha}{(s+\alpha)^2+\omega^2}$	$e^{-\alpha t} \cdot \cos \omega t$
$\frac{s}{s^2 + \omega^2}$	cos ω t
$\frac{\omega}{s^2 + \omega^2}$	sin @ t
$\frac{1}{(s+\alpha)^2}$	$te^{-\alpha t}$
$\frac{\alpha}{s(s+\alpha)}$	$1 - e^{-\alpha t}$
$\frac{2}{(s+\alpha)^3}$	t^2e^{-at}
S	$\dot{\delta}(t)$
s^2	$\ddot{\delta}(t)$
$\frac{b_1 s + b_0}{s^2 + \omega^2}$	$A\cos(\omega t + \varphi); A = \sqrt{b_1^2 + \left(\frac{b_0}{\omega}\right)^2};$
	$\varphi = \arctan\left(-\frac{b_0}{b_1\omega}\right)$
$\frac{1}{(s+\alpha)(s+\beta)(s+\gamma)}$	$\frac{e^{-\alpha t}}{(\beta - \alpha)(\gamma - \alpha)} + \frac{e^{-\beta t}}{(\alpha - \beta)(\gamma - \beta)} + \frac{e^{-\gamma t}}{(\alpha - \gamma)(\beta - \gamma)}$

$\frac{1}{s(s^2+\omega^2)}$	$\frac{1}{\omega^2}(1-\cos\omega t)$
$\frac{1}{s^2(s+\alpha)}$	$\frac{e^{-\alpha t} + \alpha t - 1}{\alpha^2}$
$\frac{1}{s^2(s^2+\omega^2)}$	$\frac{1}{\omega^3}(\omega t - \sin \omega t)$

Учебное издание

Файзрахманов Рустам Абубакирович, Липатов Иван Николаевич

РЕШЕНИЕ ЗАДАЧ ПО КУРСУ «ТЕОРЕТИЧЕСКИЕ ОСНОВЫ АВТОМАТИЗИРОВАННОГО УПРАВЛЕНИЯ»

Учебное пособие

Корректор Лыкова Л.В.

Подписано в печать 19.03.2008. Формат 60х90/16. Усл. печ. л. 6,0. Уч.-изд. л. 4,0. Тираж 120. Заказ 40/2008.

Издательство

Пермского государственного технического университета Адрес: 614990, г. Пермь, Комсомольский пр., 29, к. 113. Тел. (342) 219-80-33