

Synchrotron techniques for materials characterization

X-ray generation, interaction and detection

Berit Zeller-Plumhoff

Data-Driven Analysis and Design of Materials
Universität Rostock

Open position(s) for student assistants / theses projects

- Design and implementation of online lecture "Synchrotron techniques for materials characterization"
- 2. Modelling of chronic inflammation in skin pathologies
- 3. Modelling of angiogenesis near biodegradable implants
- 4. (Data-driven) Modelling of biofouling and anti-fouling strategies

Learning goals

At the end of the lecture you will

- Be familiar with the main components of a synchrotron and their function
- Understand in which manner X-rays can interact with matter
- Understand the requirements for X-ray detection

Atoms

https://en.wikipedia.org/wiki/Bohr_model

What is a synchrotron

https://www.diamond.ac.uk/Science/Machine/Components.html

Monochromator

- · perfect crystal
- · selection of angle determine the outgoing wave length wavelength

- Bragg's law: mx = 2d sin D

integer lattice refraction multiple specine angle

• relative wavelength band $\xi = \frac{\Delta \lambda}{\lambda}$ (not in finitely sharp response)

· silicon, diamond, germanium

Brilliance

Brilliance

J.-A. Nielsen, Elements of Modern X-ray Physics

Virtual tour through PETRA III

https://vtour.desy.de/desytour/index_de.html

X-ray interaction with matter

- · energy dependent
- · 4 main interactions

 - coherent Scattering
 photoelectric effect
 Compton scattering
 - pair production

Coherent scattering

- Photon interacts with electron doud

 o movement then relaxation

 o re-emission of photons of san
 - trequency
- · scattering mainly forward
- main interaction in X-ray crystallography (X-ray diffraction, Small angle X-ray scattering)
- · cross-section: Och D measure of efficiency of scattering

Compton scattering

scattering incoherent · interaction of photon with shell electron or free electron · scattering of photon => loss of energy => different waveling th · main mode of contract mode (a

Photoelectric absorption

- · photon absorption
- · ejection of inner shell electron

-> relaxation of onter shell electron

- characteristic X-rays

. Fe $\propto \frac{2^3}{E^3}$ => dominant for high - ? makerials and energies up to what we have the state of the sta

· main contrast made for imaging in prCT & nono CT

Mass attenuation coefficient

mass attenuation coefficient

p-linear attenuation coefficient

p-density of material

u-1.66.10-24 g atomic mass unit

A-relativ atomic mass of elements

Interaction of X-rays with matter Cross Section of Ba

X-ray detection

http://sharp-world.com/corporate/info/rd/tj3/pdf/6.pdf

Application-dependency of detector

- · imaging -> determine intensity distribution
- · Scattering —> determine intensity as function of scattering angle
- · spechoscopy determine intensity and energy of X-ray

Principle of X-ray detection

- 1. X-ray light is quantized (photon)
- 2. Transfer energy from photon to detector
- 3. Photon is neither fully absorbed nor not at all
- 4. Transfer of energy into electrical signal and then number

Requirements of scintillation

- · absorption of energy and re-emission

- · requirements:
- . high yield
 - · small hime constant
 - · good linearity
 - · transparent to suntillation light
 - · good mechanical properties
 - · temperature stable
 -- most of X-ray energy lost as heat

Principle and efficiency of scintillation

- · inorganic crystal scintillators ((sI, NaI, La(13)
 - electronic band structure
- · electron from valence band is excited onto conduction band by
- · migrates through material to impurity centre

 de-excitation emission of visible plight

efficiency of scientillation of visite west

$$N = \frac{\text{Evis} \ \text{Spn}}{\text{Ex-ray}}$$
 Evis - energy of visite west
 $N = \frac{\text{Evis} \ \text{Spn}}{\text{Ex-ray}}$ Evis - energy of visite west
 $N = \frac{\text{Evis} \ \text{Spn}}{\text{Ex-ray}}$ $N = \frac{\text{Evis} \ \text{Evis}}{\text{Ex-ray}}$ $N = \frac{\text{Evis}}{\text{Evis}}$ $N = \frac{\text{Evis}}{\text{Evi$

Conversion into electrical signal

, by , to give (servi conducta)

" CCD 3 CMOS chips

Conversion into electrical signal

https://www.ugent.be/we/ugct/en/research/ctscanners

https://www.konicaminolta.com/healthcare/product s/dr/dr30/index.html