- 9. $\mathbf{v}=\langle 3-(-8), -2-1, 4-4\rangle=\langle 11, -3, 0\rangle$, and letting $P_0=(-8,1,4)$, parametric equations are x=-8+11t, y=1-3t, z=4+0t=4, while symmetric equations are $\frac{x+8}{11}=\frac{y-1}{-3}$, z=4. Notice here that the direction number c=0, so rather than writing $\frac{z-4}{0}$ in the symmetric equation we must write the equation z=4 separately.
- 10. $\mathbf{v} = (\mathbf{i} + \mathbf{j}) \times (\mathbf{j} + \mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{vmatrix} = \mathbf{i} \mathbf{j} + \mathbf{k}$ is the direction of the line perpendicular to both $\mathbf{i} + \mathbf{j}$ and $\mathbf{j} + \mathbf{k}$.

With $P_0 = (2, 1, 0)$, parametric equations are x = 2 + t, y = 1 - t, z = t and symmetric equations are $x - 2 = \frac{y - 1}{-1} = z$ or x - 2 = 1 - y = z.

13. Direction vectors of the lines are $\mathbf{v}_1 = \langle -2 - (-4), 0 - (-6), -3 - 1 \rangle = \langle 2, 6, -4 \rangle$ and $\mathbf{v}_2 = \langle 5 - 10, 3 - 18, 14 - 4 \rangle = \langle -5, -15, 10 \rangle$, and since $\mathbf{v}_2 = -\frac{5}{2}\mathbf{v}_1$, the direction vectors and thus the lines are parallel.

Since the direction vectors $\langle 2, -1, 3 \rangle$ and $\langle 4, -2, 5 \rangle$ are not scalar multiples of each other, the lines aren't parallel. For the lines to intersect, we must be able to find one value of t and one value of s that produce the same point from the respective parametric equations. Thus we need to satisfy the following three equations: 3 + 2t = 1 + 4s, 4 - t = 3 - 2s, 1 + 3t = 4 + 5s. Solving the last two equations we get t = 1, s = 0 and checking, we see that these values don't satisfy the first equation. Thus the lines aren't parallel and don't intersect, so they must be skew lines.

- 23. Since the plane is perpendicular to the vector $\langle 1, -2, 5 \rangle$, we can take $\langle 1, -2, 5 \rangle$ as a normal vector to the plane. (0,0,0) is a point on the plane, so setting a=1, b=-2, c=5 and $x_0=0$, $y_0=0$, $z_0=0$ in Equation 7 gives 1(x-0)+(-2)(y-0)+5(z-0)=0 or x-2y+5z=0 as an equation of the plane.
- 33. Here the vectors $\mathbf{a} = \langle 8-3, 2-(-1), 4-2 \rangle = \langle 5, 3, 2 \rangle$ and $\mathbf{b} = \langle -1-3, -2-(-1), -3-2 \rangle = \langle -4, -1, -5 \rangle$ lie in the plane, so a normal vector to the plane is $\mathbf{n} = \mathbf{a} \times \mathbf{b} = \langle -15+2, -8+25, -5+12 \rangle = \langle -13, 17, 7 \rangle$ and an equation of the plane is -13(x-3)+17[y-(-1)]+7(z-2)=0 or -13x+17y+7z=-42.

11. For $x=y^2+4z^2$, the traces in x=k are $y^2+4z^2=k$. When k>0 we have a family of ellipses. When k=0 we have just a point at the origin, and the trace is empty for k<0. The traces in y=k are $x=4z^2+k^2$, a family of parabolas opening in the positive x-direction. Similarly, the traces in z=k are $x=y^2+4k^2$, a family of parabolas opening in the positive x-direction. We recognize the graph as an elliptic paraboloid with axis the x-axis and vertex the origin.

14. $25x^2+4y^2+z^2=100$. The traces in x=k are $4y^2+z^2=100-25k^2$, a family of ellipses for |k|<2. (The traces are a single point for |k|=2 and are empty for |k|>2.) Similarly, the traces in y=k are the ellipses $25x^2+z^2=100-4k^2$, |k|<5, and the traces in z=k are the ellipses $25x^2+4y^2=100-k^2$, |k|<10. The graph is an ellipsoid centered at the origin with intercepts $x=\pm2$, $y=\pm5$, $z=\pm10$.

15. $-x^2+4y^2-z^2=4$. The traces in x=k are the hyperbolas $4y^2-z^2=4+k^2$. The traces in y=k are $x^2+z^2=4k^2-4$, a family of circles for |k|>1, and the traces in z=k are $4y^2-x^2=4+k^2$, a family of hyperbolas. Thus the surface is a hyperboloid of two sheets with axis the y-axis.

18. $4x^2-16y^2+z^2=16$. The traces in x=k are $z^2-16y^2=16-4k^2$, a family of hyperbolas for $|k|\neq 2$ and two intersecting lines when |k|=2. (Note that the hyperbolas are oriented differently for |k|<2 than for |k|>2.) The traces in y=k are $4x^2+z^2=16(1+k^2)$, a family of ellipses, and the traces in z=k are $4x^2-16y^2=16-k^2$, two intersecting lines when |k|=4 and a family of hyperbolas when $|k|\neq 4$ (oriented differently for |k|<4 than for |k|>4). We recognize the graph as a hyperboloid of one sheet with axis the y-axis.

- 21. This is the equation of an ellipsoid: $x^2 + 4y^2 + 9z^2 = x^2 + \frac{y^2}{(1/2)^2} + \frac{z^2}{(1/3)^2} = 1$, with x-intercepts ± 1 , y-intercepts $\pm \frac{1}{2}$ and z-intercepts $\pm \frac{1}{3}$. So the major axis is the x-axis and the only possible graph is VII.
- 22. This is the equation of an ellipsoid: $9x^2 + 4y^2 + z^2 = \frac{x^2}{(1/3)^2} + \frac{y^2}{(1/2)^2} + z^2 = 1$, with x-intercepts $\pm \frac{1}{3}$, y-intercepts $\pm \frac{1}{2}$ and z-intercepts ± 1 . So the major axis is the z-axis and the only possible graph is IV.

23.

This is the equation of a hyperboloid of one sheet, with a=b=c=1. Since the coefficient of y^2 is negative, the axis of the hyperboloid is the y-axis, hence the correct graph is II.

- 24. This is a hyperboloid of two sheets, with a=b=c=1. This surface does not intersect the xz-plane at all, so the axis of the hyperboloid is the y-axis and the graph is III.
- 25. There are no real values of x and z that satisfy this equation for y < 0, so this surface does not extend to the left of the xz-plane. The surface intersects the plane y = k > 0 in an ellipse. Notice that y occurs to the first power whereas x and z occur to the second power. So the surface is an elliptic paraboloid with axis the y-axis. Its graph is VI.
- **26.** This is the equation of a cone with axis the y-axis, so the graph is I.

27.

This surface is a cylinder because the variable y is missing from the equation. The intersection of the surface and the xz-plane is an ellipse. So the graph is VIII.

- 28. This is the equation of a hyperbolic paraboloid. The trace in the xy-plane is the parabola $y=x^2$. So the correct graph is V.
- 33. Completing squares in y and z gives

$$4x^2 + (y-2)^2 + 4(z-3)^2 = 4$$
 or $x^2 + \frac{(y-2)^2}{4} + (z-3)^2 = 1$, an ellipsoid with center $(0,2,3)$.

35. Completing squares in all three variables gives

$$(x-2)^2-(y+1)^2+(z-1)^2=0$$
 or $(y+1)^2=(x-2)^2+(z-1)^2$, a circular cone with center $(2,-1,1)$ and axis the horizontal line $x=2$, $z=1$.

7. The corresponding parametric equations for this curve are $x = \sin t, \ y = t$. We can make a table of values, or we can eliminate the parameter: $t = y \implies x = \sin y$, with $y \in \mathbb{R}$. By comparing different values of t, we find the direction in which t increases as indicated in the graph.

8. The corresponding parametric equations for this curve are $x=t^3,\ y=t^2.$ We can make a table of values, or we can eliminate the parameter:

$$x=t^3 \quad \Rightarrow \quad t=\sqrt[3]{x} \quad \Rightarrow \quad y=t^2=(\sqrt[3]{x})^2=x^{2/3},$$
 with $t\in\mathbb{R} \quad \Rightarrow \quad x\in\mathbb{R}$. By comparing different values of t , we find the direction in which t increases as indicated in the graph.

9. The corresponding parametric equations are $x=t,\ y=2-t,\ z=2t,$ which are parametric equations of a line through the point (0,2,0) and with direction vector $\langle 1,-1,2\rangle$.

10. The corresponding parametric equations are $x=\sin \pi t,\ y=t,\ z=\cos \pi t.$ Note that $x^2+z^2=\sin^2 \pi t+\cos^2 \pi t=1$, so the curve lies on the circular cylinder $x^2+z^2=1$. A point (x,y,z) on the curve lies directly to the left or right of the point (x,0,z) which moves clockwise (when viewed from the left) along the circle $x^2+z^2=1$ in the xz-plane as t increases. Since y=t, the curve is a helix that spirals toward the right around the cylinder.

11. The corresponding parametric equations are x=1, $y=\cos t$, $z=2\sin t$. Eliminating the parameter in y and z gives $y^2+(z/2)^2=\cos^2 t+\sin^2 t=1$ or $y^2+z^2/4=1$. Since x=1, the curve is an ellipse centered at (1,0,0) in the plane x=1.

12. The parametric equations are $x = t^2$, y = t, z = 2, so we have $x = y^2$ with z = 2. Thus the curve is a parabola in the plane z = 2 with vertex (0, 0, 2).

13. The parametric equations are $x=t^2$, $y=t^4$, $z=t^6$. These are positive for $t\neq 0$ and 0 when t=0. So the curve lies entirely in the first octant. The projection of the graph onto the xy-plane is $y=x^2$, y>0, a half parabola. Onto the xz-plane $z=x^3$, z>0, a half cubic, and the yz-plane, $y^3=z^2$.

14. If $x = \cos t$, $y = -\cos t$, $z = \sin t$, then $x^2 + z^2 = 1$ and $y^2 + z^2 = 1$, so the curve is contained in the intersection of circular cylinders along the x- and y-axes. Furthermore, y = -x, so the curve is an ellipse in the plane y = -x, centered at the origin.

27. If $x = t \cos t$, $y = t \sin t$, z = t, then $x^2 + y^2 = t^2 \cos^2 t + t^2 \sin^2 t = t^2 = z^2$, so the curve lies on the cone $z^2 = x^2 + y^2$. Since z = t, the curve is a spiral on this cone.

3. Since $(x+2)^2 = t^2 = y-1 \implies$ $y = (x+2)^2 + 1$, the curve is a parabola.

(b) $\mathbf{r}'(t) = \langle 1, 2t \rangle$, $\mathbf{r}'(-1) = \langle 1, -2 \rangle$

6. Since $y = e^{-t} = \frac{1}{e^t} = \frac{1}{x}$ the curve is part of the hyperbola $y = \frac{1}{x}$. Note that x > 0, y > 0.

(b) $\mathbf{r}'(t) = e^t \mathbf{i} - e^{-t} \mathbf{j}$, $\mathbf{r}'(0) = \mathbf{i} - \mathbf{j}$

- 9. $\mathbf{r}'(t) = \left\langle \frac{d}{dt} \left[t \sin t \right], \frac{d}{dt} \left[t^2 \right], \frac{d}{dt} \left[t \cos 2t \right] \right\rangle = \left\langle t \cos t + \sin t, 2t, t(-\sin 2t) \cdot 2 + \cos 2t \right\rangle$ $= \left\langle t \cos t + \sin t, 2t, \cos 2t 2t \sin 2t \right\rangle$
- **18.** $\mathbf{r}'(t) = \langle 3t^2 + 3, 2t, 3 \rangle \Rightarrow \mathbf{r}'(1) = \langle 6, 2, 3 \rangle$. Thus $\mathbf{T}(1) = \frac{\mathbf{r}'(1)}{|\mathbf{r}'(1)|} = \frac{1}{\sqrt{6^2 + 2^2 + 3^2}} \langle 6, 2, 3 \rangle = \frac{1}{7} \langle 6, 2, 3 \rangle = \langle \frac{6}{7}, \frac{2}{7}, \frac{3}{7} \rangle.$
- **19.** $\mathbf{r}'(t) = -\sin t \, \mathbf{i} + 3 \, \mathbf{j} + 4 \cos 2t \, \mathbf{k} \quad \Rightarrow \quad \mathbf{r}'(0) = 3 \, \mathbf{j} + 4 \, \mathbf{k}$. Thus $\mathbf{T}(0) = \frac{\mathbf{r}'(0)}{|\mathbf{r}'(0)|} = \frac{1}{\sqrt{0^2 + 3^2 + 4^2}} \left(3 \, \mathbf{j} + 4 \, \mathbf{k} \right) = \frac{3}{5} \, \mathbf{j} + \frac{4}{5} \, \mathbf{k}.$
- 23. The vector equation for the curve is $\mathbf{r}(t) = \langle 1+2\sqrt{t}, t^3-t, t^3+t \rangle$, so $\mathbf{r}'(t) = \langle 1/\sqrt{t}, 3t^2-1, 3t^2+1 \rangle$. The point (3,0,2) corresponds to t=1, so the tangent vector there is $\mathbf{r}'(1) = \langle 1,2,4 \rangle$. Thus, the tangent line goes through the point (3,0,2) and is parallel to the vector $\langle 1,2,4 \rangle$. Parametric equations are x=3+t, y=2t, z=2+4t.

