Announcements

HOMEWORK I

MAX	MEAN	MEDIAN	ST DEV
50	44.2	48	11.5

- Homework 2 due tonight
- Homework 3 out tomorrow
- NO CHEATING

15-150 Fall 2013

Lecture 5
Tuesday, 10 September

Today

- Asymptotic runtime
- Recurrence relations
- Exact and approximate solutions
- Improving efficiency

program → recurrence → work

asymptotic

- Runtime, for large inputs
- Assume basic ops take constant time
- Give big-O classification

The graph below compares the running times of various algorithms.

- Linear -- O(n)
- Quadratic -- $O(n^2)$
- Cubic -- $O(n^3)$
- Logarithmic -- O(log n)
- Exponential -- O(2ⁿ)
- Square root -- O(sqrt n)

asymptotic

Additive constants don't matter

$$n^5 + 1000000$$
 is $O(n^5)$

- Multiplicative constants don't matter
 1000000n⁵ is O(n⁵)
- Be as accurate as you can $O(n^2) \subset O(n^3) \subset O(n^4)$
- Learn common terminology

logarithmic, linear, polynomial, exponential

recurrences

- A recursive function definition suggests a recurrence relation for work, or runtime
 - W(n) = work on inputs of size n
 - Estimates the number of basic operations

base cases inductive cases

finding solutions

- Try to find a closed form solution for W(n) using induction
- Find solution to a simplified recurrence with the same asymptotic properties
- Appeal to table of standard recurrences

exp

fun exp (n:int):int =
 if n=0 then | else 2

exp (n-1);

exp
$$4 \Rightarrow (1)$$
 M $4 \Rightarrow (4)$ 2 * (M 3)

$$= (4)$$
 2 * (2 * (M 2))

$$= (4)$$
 2 * (2 * (2 * (M 1)))

$$= (4)$$
 2 * (2 * (2 * (2 * (M 0))))

$$= (4)$$
 2 * (2 * (2 * (2 * 1)))

$$= (4)$$
 16

where M is (fn n =) if n = 0 then I else 2 * exp(n-I))

exp

• It's not hard to prove that for all $n \ge 0$,

exp n =>
$$(5n+3)$$
 k,
where k is the numeral for 2^n

But do we need to be so accurate?

And does 5n+3 tell us about actual *runtime* in milliseconds?

No! But it does tell us runtime is *linear*.

big-O

- It's useful to classify runtimes asymptotically
- This abstracts away from additive and multiplicative constants (may be machine-dependent)
- And ignores runtime on small inputs (may be special-cased in the code)

For f, g: int -> int we say that f is O(g) if there is a constant c and an integer N such that for all $n \ge N$, $|f(n)| \le c * |g(n)|$.

exp

```
fun exp (n:int):int =
  if n=0 then | else 2 * exp (n-l);
```

• Let $W_{exp}(n)$ be the runtime for exp(n)

$$W_{exp}(0) = c_0$$

 $W_{exp}(n) = W_{exp}(n-1) + c_1$ for n>0for some constants c_0 and c_1

$$c_0$$
 cost of n=0
 c_1 cost of n=0, n-1, mult by 2

solution

Can prove by induction on n that

$$W_{exp}(n) = c_0 + n c_1$$
 for $n \ge 0$

the work of exp(n) is *linear in* n

classification

 $\bullet \ \ \, W_{exp}(n) = c_0 + n \ c_1 \qquad \qquad O\text{-class for } W_{exp}(n) \\ \bullet \ \ \, W_{exp}(n) \text{ is } O(n) \qquad \qquad \text{independent of } \\ c_0, c_1 \qquad \qquad c_0, c_1 \\ \\ \text{For all } n \geq 0, \\ W_{exp}(n) \leq c \ n \\$

summary

- We've shown that for n≥0,
 exp n computes the value of 2ⁿ in O(n) time
- This fact is independent of machine details (provided basic operations are constant time)
- Can we do better?

faster exp?

The definition of exp relies on the fact that

$$2^{n} = 2 (2^{n-1})$$

Everybody knows that

$$2^n = (2^{n \operatorname{div} 2})^2$$
 if n is even

fastexp

```
fun square(x:int):int = x * x
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
                  else 2 * fastexp(n-1)
   fastexp 4 = square(fastexp 2)
             = square(square (fastexp I))
             = square(square (2 * fastexp 0))
             = square(square (2 * I))
             = square 4 = 16
```

is it faster?

```
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

• Let $W_{fastexp}(n)$ be the runtime for fastexp(n)

$$W_{\text{fastexp}}(0) = k_0$$

$$W_{fastexp}(n) = W_{fastexp}(n \text{ div } 2) + k_1 \text{ for } n>0, \text{ even}$$

$$W_{fastexp}(n) = W_{fastexp}(n-1) + k_2$$
 for n>0, odd

for some constants k₀, k₁, k₂

is it faster?

```
fun fastexp (n:int):int =
  if n=0 then | else
  if n mod 2 = 0 then square(fastexp (n div 2))
       else 2 * fastexp(n-1)
```

• Let $W_{fastexp}(n)$ be the runtime for fastexp(n)

$$W_{fastexp}(0) = c_0$$

$$W_{fastexp}(I) = c_I$$

$$W_{fastexp}(n) = W_{fastexp}(n \text{ div } 2) + c_2$$

$$W_{fastexp}(n) = W_{fastexp}(n \text{ div } 2) + c_3$$

for
$$n>1$$
, odd

for some constants c_0 , c_1 , c_2 , c_3

solution?

- Not so obvious how to solve for $W_{fastexp}(n)$
- A closed form would involve c₀, c₁, c₂, c₃
- But we only care about asymptotic behavior
- So we can work with a simpler recurrence that has the same asymptotic properties

simplification: choose each constant to be I

simplification

• Let $T_{fastexp}(n)$ be given by

$$T_{fastexp}(0) = I$$

$$T_{fastexp}(I) = I$$

$$T_{fastexp}(n) = T_{fastexp}(n \text{ div } 2) + I \text{ for } n > I$$

solution

• For n>1, $T_{fastexp}(n)$ is defined like log(n)

- We know that $log(n) = log_2(n)$ for all n>0
- Can show that there is a constant c such that

$$T_{fastexp}(n) \le c \log_2(n)$$

for all large enough n

classification

- $T_{fastexp}(n)$ is $O(log_2 n)$
- $W_{fastexp}(n)$ depends on c_0 , c_1 , c_2 , c_3
- But we can find constants such that

$$c_{low} T_{fastexp}(n) \le W_{fastexp}(n) \le c_{high} T_{fastexp}(n)$$

and this implies that $W_{fastexp}(n)$ is also $O(log_2(n))$

it's faster

- Work of exp(n) is O(n)
- Work of fastexp(n) is O(log n)
- So fastexp is faster than exp, asymptotically

even faster?

The definition of fastexp relies on

$$2^{n} = (2^{n \text{ div } 2})^{2}$$
 if n is even
 $2^{n} = 2(2^{n-1})$ if n is odd

A moment's thought tells us that

$$2^n = 2 (2^{(n \text{ div } 2)})^2$$
 if n is odd

pow

```
fun pow (n:int):int =
  case n of
    0 = > 1
    | => 2
   => let
           val k = pow(n div 2)
         in
           if n mod 2 = 0 then k*k else 2*k*k
         end
```

work of pow(n)

$$\begin{aligned} W_{pow}(0) &= c_0 \\ W_{pow}(1) &= c_1 \\ W_{pow}(n) &= c_2 + W_{pow}(n \text{ div } 2) \text{ for } n > 1 \end{aligned}$$

Same recurrence as $W_{fastexp}$

Same asymptotic behavior

pow(n) is O(log n)

comparison

- fastexp(n) and pow(n) have O(log n) work.
- For all $n \ge 0$, fastexp(n) = pow(n).
- For all n<0, fastexp(n) fails to terminate,
- For all n<0, pow(n) fails to terminate.
- So fastexp and pow are extensionally equivalent and have the same work classification.

badpow

```
fun badpow (n:int):int =
  case n of
    0 = > 1
   | => 2
   _ => let
           val k2 = badpow(n div 2)*badpow(n div 2)
         in
           if n mod 2 = 0 then k2 else 2*k2
         end
```

work of badpow(n)

Same asymptotic class as

$$T_{badpow}(0) = I$$
 $T_{badpow}(1) = I$
 $T_{badpow}(n) = I + 2 T_{badpow}(n \text{ div } 2)$
for n>1

examples

$$T_{\text{badpow}}(2^0) = I$$

$$T_{badpow}(2^{1}) = 1 + 2*T_{badpow}(2^{0})$$

= 1 + 2*1 = 3

$$T_{badpow}(2^2) = 1 + 2*T_{badpow}(2^1)$$

= 1 + 2*3 = 7

$$T_{badpow}(2^m) = 2^{m+1} - 1$$

analysis

 $T_{badpow}(2^m)$ is $O(2^m)$

- W_{badpow}(2^m) is O(2^m)
- This implies that W_{badpow}(n) is O(n)

$$W_{pow}(n)$$
 is $O(log n)$
 $O(log n) \subset O(n)$

pow is asymptotically faster than badpow

fib

```
fun fib 0 = I

| fib I = I

| fib n = fib(n-1) + fib(n-2)

W_{fib} 0 = I

W_{fib} I = I

W_{fib} n = I + W_{fib}(n-1) + W_{fib}(n-2)

for n > I
```

analysis

- For all n, $fib(n) \leq W_{fib}(n)$
- fib(n) is $O(\phi^n)$, where $\phi \approx 1.618$
- So runtime of fib(n) is at least exponential

Surely we can do better! (to be continued)