## **Isaac Physics Skills**

# Linking concepts in pre-university physics

Lisa Jardine-Wright, Keith Dalby, Robin Hughes, Nicki Humphry-Baker, Anton Machacek, Ingrid Murray and Lee Phillips Isaac Physics Project



## TABLE OF PHYSICAL CONSTANTS

| Quantity & Symbol                     | Magnitude          | Unit                   |                         |
|---------------------------------------|--------------------|------------------------|-------------------------|
| Permittivity of free space            | $\epsilon_0$       | $8.85 \times 10^{-12}$ | ${\sf F}{\sf m}^{-1}$   |
| Electrostatic force constant          | $1/4\pi\epsilon_0$ | $8.99 \times 10^{9}$   | N m $^2$ C $^{-2}$      |
| Speed of light in vacuum              | С                  | $3.00 \times 10^{8}$   | ${\sf m}{\sf s}^{-1}$   |
| Specific heat capacity of water       | $c_{water}$        | 4180                   | $ m Jkg^{-1}K^{-1}$     |
| Charge of proton                      | е                  | $1.60 \times 10^{-19}$ | С                       |
| Gravitational field strength on Earth | 8                  | 9.81                   | N ${ m kg}^{-1}$        |
| Universal gravitational constant      | G                  | $6.67 \times 10^{-11}$ | N m $^2$ kg $^{-2}$     |
| Planck constant                       | h                  | $6.63 \times 10^{-34}$ | Js                      |
| Boltzmann constant                    | $k_{B}$            | $1.38 \times 10^{-23}$ | $ m JK^{-1}$            |
| Mass of electron                      | $m_{e}$            | $9.11 \times 10^{-31}$ | kg                      |
| Mass of neutron                       | $m_{n}$            | $1.67 \times 10^{-27}$ | kg                      |
| Mass of proton                        | $m_{p}$            | $1.67 \times 10^{-27}$ | kg                      |
| Mass of Earth                         | $M_{Earth}$        | $5.97 \times 10^{24}$  | kg                      |
| Mass of Sun                           | $M_{Sun}$          | $2.00 \times 10^{30}$  | kg                      |
| Avogadro constant                     | $N_{A}$            | $6.02 \times 10^{23}$  | $mol^{-1}$              |
| Gas constant                          | R                  | 8.31                   | $\rm J~mol^{-1}~K^{-1}$ |
| Radius of Earth                       | $R_{Earth}$        | $6.37 \times 10^{6}$   | m                       |

#### OTHER INFORMATION YOU MAY FIND USEFUL

| Electron volt     | $1\mathrm{eV}$ | = | $1.60 \times 10^{-19}  \mathrm{J}$ |
|-------------------|----------------|---|------------------------------------|
| Unified mass unit | 1 u            | = | $1.66 	imes 10^{-27} 	ext{ kg}$    |
| Absolute zero     | 0 K            | = | −273 °C                            |
| Year              | $1\mathrm{yr}$ | = | $3.16 	imes 10^7 	ext{ s}$         |
| Light year        | 1 ly           | = | $9.46\times10^{15}~\text{m}$       |
| Parsec            | 1 pc           | = | $3.09 \times 10^{16} \text{ m}$    |

## PREFIXES

| 1 km = 1000 m    | $1  \text{Mm} = 10^6  \text{m}$       | $1 \text{ Gm} = 10^9 \text{ m}$    | $1 \text{ Tm} = 10^{12} \text{ m}$  |
|------------------|---------------------------------------|------------------------------------|-------------------------------------|
| 1  mm = 0.001  m | $1  \mu \text{m} = 10^{-6}  \text{m}$ | $1 \text{ nm} = 10^{-9} \text{ m}$ | $1 \text{ pm} = 10^{-12} \text{ m}$ |

## 21 Electromagnetic induction - moving wire

When a wire moves through a perpendicular magnetic field, cutting through the magnetic flux lines, a voltage appears across it.

Example context: We can calculate the voltage induced in any moving conductor, even if it is not a complete loop.



Quantities: B magnetic flux density (T)

w distance moved by wire (m)

L wire length (m)

A area swept through  $(m^2)$  $F_B$  magnetic force (N)

E electric field  $(NC^{-1})$ 

u speed of wire  $(m s^{-1})$ 

V induced voltage (V) t time taken (s)

q charge of carriers (C)  $F_F$  electric force (N)

\_ .

Equations: A = Lw w = ut  $V = \frac{d(BA)}{dt} = \frac{BA}{t}$   $F_{\rm B} = quB$   $F_{\rm E} = qE$  E = V/L

- 21.1 Use the equations to write down expressions for
  - a) the area A swept through by the wire using u,  $\Delta t$  and L,
  - b) the magnetic flux BA cut by the wire using u,  $\Delta t$  and L,
  - c) the rate of cutting flux d(BA)/dt,
  - d) the voltage  ${\cal V}$  induced in the wire by Faraday's law,
  - e) the magnetic force on a charge q inside the wire,
  - f) the strength of an electric field E along the wire that could produce the same force on the charge,
  - g) the voltage V that would exist between the ends of the wire, if that electric field was uniform.
- 21.2 Find *V* if B = 0.50 T, L = 0.050 m and u = 2.0 m s<sup>-1</sup>.

**Example** – At a certain point in the cycle of a generator, one 12 cm length of wire in the coil moves at  $25 \text{ m s}^{-1}$  perpendicular to its length and to a 0.70 T magnetic field. What voltage would be induced across this wire at that point?

$$V = \frac{BA}{t} = BLu = 0.70 \times 0.12 \times 25 = 2.1 \text{ V}$$

- 21.3 In a magnetic brake system on a roller-coaster, a metal bar of width  $35\,\mathrm{mm}$  on the carriage moves through an electromagnet attached to the rails, where  $B=0.4\,\mathrm{T}$ . If the carriage is moving at  $70\,\mathrm{m\,s^{-1}}$  when it enters the brake, what is the initial voltage induced across the width of the bar?
- 21.4 In an experiment, a student induces a voltage of  $15\,\text{mV}$  by moving a  $0.30\,\text{m}$ -long section of wire through a region of uniform perpendicular magnetic field  $0.35\,\text{T}$ . At what speed were they moving the wire?
- 21.5 When 20 cm of straight wire is moved between the poles of a superconducting magnet at  $25~\rm mm\,s^{-1}$ , a  $35~\rm mV$  voltage is induced. Find the magnetic flux density between the poles.
- 21.6 Fill in the missing entries in the table below for a wire moving through a perpendicular magnetic field.

| w / m | t / s | $u$ / $\mathrm{m}\mathrm{s}^{-1}$ | <i>L</i> / m | <i>B</i> / T | <i>V</i> / <b>V</b>  |
|-------|-------|-----------------------------------|--------------|--------------|----------------------|
|       |       | 6.0                               | 0.50         | 1.2          | (a)                  |
|       |       | 100                               | (b)          | 0.08         | 0.40                 |
| 0.05  | 0.075 | (c)                               | 0.045        | (d)          | $3.0 \times 10^{-3}$ |
| 1.35  | (e)   | 15                                | 1.5          | 5.0          | (f)                  |

- 21.7 In a motor, each long side of a turn in the coil acts like a 2.0 cm wire moving at 7.3 m s $^{-1}$ . The strongest field it experiences during a cycle is 300 mT. If each turn has two long sides in series, what is the minimum number of turns in series needed to get a peak voltage greater than 3 V?
- 21.8 A metal aircraft with a 15.0 m wingspan is flying North at 450 km h $^{-1}$ . What voltage could be induced between the wingtips, if the Earth's magnetic field has strength  $60.0~\mu\text{T}$  and is pointing:
  - a) vertically up from the Earth's surface?
  - b) inclined at  $20.0^\circ$  from the vertical towards the horizontal South-North direction? [Hint: the flux lines will be spaced farther apart.]

## 22 Electromagnetic induction - rotating coil

It is helpful to be able to calculate the voltage, or electromotive force (EMF) induced by a rotating coil in a magnetic field.

Example context: most generators contain a coil of wire rotating uniformly in a uniform magnetic field. Whenever a there is a conductor in a changing magnetic field, an EMF is induced.

Quantities:  $\varepsilon$  EMF (V) N number of turns

 $\phi$  magnetic flux (Wb) B flux density (T)  $A_0$  coil area (m<sup>2</sup>) t time (s)

A component of coil area linking flux  $(m^2)$ 

 $\omega$  angular frequency (rad s<sup>-1</sup>)

Subscript <sub>rms</sub> represents root mean square values

 $\frac{d}{dt}$  means rate of change of a quantity

Equations: 
$$\begin{split} \varepsilon = -N\frac{\mathrm{d}\phi}{\mathrm{d}t} & \phi = BA & A = A_0\cos\omega t \\ \varepsilon_{\mathrm{rms}} = \sqrt{(\varepsilon^2)_{\mathrm{mean}}} & \frac{\mathrm{d}\cos\omega t}{\mathrm{d}t} = -\omega\sin\omega t \end{split}$$

- 22.1 Use the equations to derive expressions for
  - a) the magnetic flux  $\phi$  in terms of B,  $A_0$  and t,
  - b) the EMF  $\varepsilon$  in terms of B,  $A_0$ , N,  $\omega$  and t,
  - c) the maximum EMF  $\varepsilon_{\text{max}}$ ,
  - d) the root mean squared EMF  $\varepsilon_{\rm rms}$  in terms of  $\varepsilon_{\rm max}$ .
- 22.2 Fill in the missing entries in the table below.

| $\varepsilon_{max}  /  V$ | N    | B / mT | $A_0$ / cm <sup>2</sup> | $\omega$ / $\mathrm{rad}\mathrm{s}^{-1}$ |
|---------------------------|------|--------|-------------------------|------------------------------------------|
| (a)                       | 100  | 50.0   | 5.00                    | 31.4                                     |
| 2.50                      | (b)  | 80     | 10.0                    | 157                                      |
| 1.70                      | 50.0 | (c)    | 12.5                    | 62.8                                     |
| 325                       | 25.0 | 100    | (d)                     | 314                                      |
| 325                       | 1000 | 103    | 100                     | (e)                                      |

**Example 1** – A single circular loop of wire has a diameter of 30.0 cm and is rotated at 1500 rpm in a uniform magnetic field of flux density 150 mT. Calculate the maximum EMF induced.

$$\begin{split} \phi &= BA = BA_0\cos\omega t \text{ so } \varepsilon = -NBA_0\frac{\mathrm{d}}{\mathrm{d}t}\cos\omega t = NBA_0\omega\sin\omega t \\ \varepsilon_{\mathrm{max}} &= NBA_0\omega = 1\times0.150\times\frac{\pi\times0.300^2}{4}\times1500\frac{2\pi}{60} = 1.67\,\mathrm{V} \end{split}$$

- 22.3 A 5.00 cm long square coil with 10 turns is slowly rotated in a magnetic field of 80.0 mT at a rate of 20.0 rpm (revolutions per minute). Calculate
  - a) the angular frequency in rad  $s^{-1}$ ,
  - b) the magnitude of the EMF induced 1.00 s after the EMF was zero,
  - c) the magnitude of the maximum EMF induced.
- 22.4 A circular coil of diameter 10.0 cm with 50 turns is rotated in a magnetic field at 100 Hz. Calculate the flux density B that would induce a peak EMF of
  - a) 6.00 V,

b) 3.00 V,

- c) 1.50 V.
- 22.5 A circular coil of radius 12.0 cm with 100 turns is rotated in a magnetic field of 500 mT. Calculate the angular frequency  $\omega$  for a peak EMF of
  - a) 2.00 V,

b) 4.00 V,

c) 8.00 V.

**Example 2** – Calculate the magnetic flux density B necessary to generate  $V_{rms} = 230 \, V$  at  $50.0 \, Hz$  with a square coil of length  $1.00 \, m$  and  $50 \, turns$ .

$$B = \frac{\sqrt{2}\varepsilon_{\rm rms}}{NA_0\omega} = \frac{\sqrt{2}\times230}{50\times1^2\times(2\pi\times50.0)} = 20.7~{\rm mT}$$

- 22.6 A circular coil with 1000 turns has a diameter of  $5.00~\rm cm$  and is rotating at  $50.0~\rm Hz$  in a uniform magnetic field of flux density  $100~\rm mT$ . Calculate
  - a) the magnitude of the EMF  $2.50\ \mathrm{ms}$  after it was zero,
  - b) the magnitude of the EMF  $5.00\,\mathrm{ms}$  after it was zero,
  - c) the time after the EMF was zero when the EMF reaches its maximum magnitude,
  - d) the root mean squared EMF.
- 22.7 Two identical coils rotate at identical rates. *Coil A* is in a uniform magnetic field strength that is double that of *coil B*. Calculate the ratio of the root mean square EMF of *coil A* compared to *coil B*.

#### 20 Simple pendulum

(a)  $x = l\theta$  From the definition of the radian.

(b) 
$$60^{\circ} = 60 \times \frac{2\pi}{360} = 1.047 \text{ rad So, } x = l\theta = 30 \text{ cm} \times 1.047 = 31.4 \text{ cm}$$

- (c) Resultant force perpendicular to string has magnitude = component of weight perpendicular to string =  $mg \sin \theta$
- (d)  $ma = -mg\sin\theta$  so  $a = -g\sin\theta$
- (e)  $a = -g \sin \theta \approx -g\theta$

(f) 
$$\theta = \frac{x}{l}$$
 so  $a \approx -g\theta = -\frac{gx}{l}$ 

(g) 
$$a = -\frac{g}{l}x$$
 so if  $a = -\omega^2 x$  then  $\omega^2 = \frac{g}{l}$ 

## 21 Electromagnetic induction - moving wire

(a) 
$$A = Lw = Lut$$

(b) 
$$BA = BLut$$

(c) 
$$\frac{d(BA)}{dt} = \frac{BA}{t} = BLu$$

(d) 
$$V = \frac{d(BA)}{dt} = BLu$$

(e) Force 
$$F_B = quB$$

(f) Electric field 
$$E = \frac{\text{Force}}{a} = uB$$

(g) 
$$V = EL = (uB)L = BLu$$
 – i.e. the same as part (d)

#### 22 Electromagnetic induction - rotating coil

(a) 
$$\phi = BA = BA_0 \cos \omega t$$

(b) 
$$\varepsilon = -N \frac{d\phi}{dt} = -N \frac{d}{dt} (BA_0 \cos \omega t) = -NBA_0 \frac{d}{dt} \cos \omega t$$
  
=  $NBA_0 \omega \sin \omega t$ 

(c) maximum value  $\sin \omega t$  can take is 1, so  $\varepsilon_{\rm max} = NBA_0\omega$ 

$$\begin{split} \text{(d)} & \qquad \qquad \varepsilon^2 = N^2 B^2 A_0^2 \omega^2 \sin^2 \omega t \\ & \qquad \qquad \left(\varepsilon^2\right)_{\text{mean}} = N^2 B^2 A_0^2 \omega^2 \left(\sin^2 \omega t\right)_{\text{mean}} = N^2 B^2 A_0^2 \omega^2 \times \frac{1}{2} \\ & \sqrt{\left(\varepsilon^2\right)_{\text{mean}}} = \varepsilon_{\text{rms}} = N B A_0 \omega \times \sqrt{0.5} = \frac{1}{\sqrt{2}} N B A_0 \omega \quad \text{hence,} \\ & \qquad \qquad \varepsilon_{\text{rms}} = \frac{1}{\sqrt{2}} \varepsilon_{\text{max}} \end{split}$$

#### 23 Energy and fields - accelerator

(a) 
$$p = mv = m\sqrt{\frac{2K}{m}} = \sqrt{2mK} = \sqrt{2mqV}$$

(b) 
$$v = \sqrt{\frac{2K}{m}} = \sqrt{\frac{2qV}{m}}$$

(c) 
$$v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2}{m}\left(\frac{mu^2}{2}+qV\right)}=\sqrt{u^2+\frac{2qV}{m}}$$

(d) 
$$\Delta K = FL = qEL$$

(e) 
$$E = \frac{F}{q} = \frac{\Delta K}{qL} = \frac{V}{L}$$

(f) 
$$p = mv = m\sqrt{\frac{2K}{m}} = \sqrt{2mK} = \sqrt{2mqV} = \sqrt{2mqEL}$$

(g) 
$$\lambda = \frac{h}{p} = \frac{h}{mv} = \frac{h}{m\sqrt{2K/m}} = \frac{h}{\sqrt{2Km}} = \frac{h}{\sqrt{2mqV}}$$