TuMag Hands on reduction

IAA TEAM

TuMag's pipeline GitHub

All tools required for the reduction are included in TuMag's pipeline github page:

- 1. Scripts
- 2. Documentation.
- 3. Guides.
- 4. Links to relevant pages.

TuMag Observing Modes

TuMag observing modes summary.

TuMag Observations are organized through observing modes, wich determine:

- 1. The observed spectral line.
- 2. The modulation scheme:
 - a. Vectorial (Full Stokes)
 - b. Longitudinal (I and V)
 - c. No modulation.

3.	Numb	oer of	wavel	lengths
----	------	--------	-------	---------

Observing Mode	Filter	N° wavelengths	Modulation scheme
0р	517	12	Vectorial
0s	517	12	No modulation
1	517	10	Vectorial
2.02	525.02	8	Vectorial
2.06	525.06	8	Vectorial
3.02	525.02	5	Longitudinal
3.06	525.06	5	Longitudinal
4	517	3	Vectorial
5.02	525.02	3	Vectorial
5.06	525.06	3	Vectorial

(Info included in "working with fits files" guide from github)

TuMag fits files main properties:

- 1. One observing mode per fits file.
- 2. Some reduction steps missing (determined by the Reduction level of the file)

Main reduction steps:

- 1. Dark current + Flat-field correction (level 0.5)
- 2. Alignment of modulations and cameras (level 0.8)
- 3. Demodulation + Cross-talk correction. (level 1.0)
- If wavefront reconstruction (PD) applied \rightarrow + 0.1:
- 4. Dark current + Flat-field correction + PD (level 0.6)
- 5. Alignment of modulations and cameras + PD (level 0.9)
- 6. Demodulation + Cross-talk correction. + PD (level 1.1)

https://github.com/PabloSGN/TuMags_Reduction_Pipeline

Fits files description.

https://github.com/PabloSGN/TuMags_Reduction_Pipeline

(Info included in "working with fits files" guide from github)

TuMag fits files main properties:

- 1. One observing mode per fits file.
- 2. Some reduction steps missing (determined by the Reduction level (RL) of the file)

Reduction level summary:

Reduction Level	Flats + Darks	Wavefront reconstruction	Alignment and filtering	Stokes Parameters
0.5	V	X	×	×
0.6	V	V	×	×
0.8	V	×	V	×
0.9	V	V	V	×
1.0	V	×	V	V
1.1	V	V	V	✓

Fits files description.

https://github.com/PabloSGN/TuMags_Reduction_Pipeline

(Info included in "working with fits files" guide from github)

Fits dimensions:

- 1. Level $< 1.0 \rightarrow$ Dims: (Ncams, Nlambda, Nmods, Nx, Ny)
- 2. Level \Rightarrow 1.0 \rightarrow Dims: (Nlambda, Nmods, Nx, Ny)

Filename convention:

$SUNRISE_ID_lineOM_Nlambda_stratingtime_LV_ReductionLevel_pipeline.$ fits

- 1. Sunrise $ID \rightarrow As$ defined in Obs summary table.
- 2. line \rightarrow Fe / Mg
- 3. $OM \rightarrow TuMag$ observing mode.
- 4. Nlambda \rightarrow Number of wavelengths.
- 5. Nmods \rightarrow Number of modulations.
- 6. starting time \rightarrow Time for the first image of the observing mode.
- 7. ReductionLevel \rightarrow Level of reduction.
- 8. pipeline \rightarrow Pipeline version

Hands on data reduction

Preparation

(Info included in "working with fits files" guide from github)

Pipeline download and installation

Before start working on the data, the pipeline should be downloaded and the required libraries installed.

Preparation

Pipeline download and installation

Before start working on the data, the pipeline should be downloaded and the required libraries installed.

2 approaches for the download:

1. Download directly from github.

2. Clone the repository.

Go to the main GitHub page and download a ZIP containing all files and extract.

Preparation

Pipeline download and installation

Before start working on the data, the pipeline should be downloaded and the required libraries installed.

- 2 approaches for the download:
 - 1. Download directly from github.
 - 2. Clone the repository.

In any machine with git installed, open a terminal on the directory you want the pipeline to be stored and type:

git clone https://github.com/PabloSGN/TuMags_Reduction_Pipeline

(Info included in "working with fits files" guide from github)

Preparation

Pipeline download and installation

Before start working on the data, the pipeline should be downloaded and the required libraries installed.

We recommend to create a virtual environment to not break your python installation!

To create and activate your python environment, type the following commands in the terminal:

python3 -m venv \$virtenv\$
source \$myenv\$/bin/activate

To install the libraries, simply run: pip install -r requirements.txt

https://github.com/PabloSGN/TuMags_Reduction_Pipeline

TuMag's reduction process

(Info included in "working with fits files" guide from github)

We will provide an example of loading the data and applying the required steps for computing the corrected Stokes parameters.

This process can be followed with the "Working with fits files" guide in the GitHub page in the Documents/folder.

The whole process involves:

- 1. Alignment (RL < 0.8)
- 2. Demodulation (RL \leq 1.0)
- 3. Stokes correction (RL \leq 1.0)

https://github.com/PabloSGN/TuMags_Reduction_Pipeline

(Info included in "working with fits files" guide from github)

The first step consists on importing the required libraries and loading the data.

IMPORTS

We are going to need.

- 1. Astropy.io
- 2. sys
- 3. alignment.align obsmode
- 4. demodulation.demodulate
- 5. xtalk_jaeggli.fit_muller_matrix

```
# IMPORTS

# External libraries
import sys
from astropy.io import fits

# TuMag pipeline functions
sys.path.append(pipeline_path)
from alignment import align_obsmode
from demodulation import demodulate
from xtalk_jaeggli import fit_mueller_matrix
```

TuMag's Pipeline. External libraries

Imports and loading the data

(Info included in "working with fits files" guide from github)

The first step consists on importing the required libraries and loading the data.

Loading data.

Read the fits file, get the data and headers.

From the header we extract the relevant information:

- a. Number of modulations
- b. Number of wavelengths
- c. Spectral line (used in demodulation step)
- d. Observation Mode

```
# LOAD the data
obs_data = fits.getdata(fits_file)
obs_info = fits.getheader(fits_file)

nmods = obs_info["NMODS"]
nlambda = obs_info["NLAMBDA"]
line = obs_info["FW2"]
obsmode = obs_info["OBS_MODE"]
```

The dimensions of the data are: (Ncams, Nmods, Nwavelengths, Nx, Ny)

Ncams : 2 Nx, Ny : 1644

Alignment and filtering

(Info included in "working with fits files" guide from github)

RL < 0.8

Data with levels lower than 0.7 must be aligned in first place.

For this purpose we use the "align_obsmode" function from the alignment.py module.

This function filters the data and aligns all modulations and both cameras.

```
Code:
aligned = align_obsmode(obs_data)
```

- 1. Alignment (RL < 0.8)
- 2. Demodulation (RL < 1.0)
- 3. Stokes correction (RL < 1.0)

Demodulation

(Info included in "working with fits files" guide from github)

0.7 < RL < 1.0

After alignment data can be demodulated to compute the Stokes parameters.

For this purpose we use the "demodulate" function from the demodulation.py module.

This function computes the Stokes parameters and combines both cameras (dual-beam).

```
Code:
```

stokes = demodulate(aligned, filt = line)

- 1. Alignment (RL < 0.7)
- 2. Demodulation (RL \leq 1.0)
- 3. Stokes correction (RL ≤ 1.0)

Cross-Talk correction

(Info included in "working with fits files" guide from github)

0.7 < RL < 1.0

After demodulation data must undergo a cross-talk correction.

For this purpose we use the "fit_mueller_matrix" function from the xtalk_jaeggli.py module.

This function performs a cross-talk correction.

- 1. Alignment (RL < 0.7)
- 2. Demodulation (RL \leq 1.0)
- 3. Stokes correction (RL < 1.0)

```
Code:
xtalk corr, = fit mueller matrix (stokes)
```

Summary RL < 0.7

Whole code for RL < 0.7

```
obs_data = fits.getdata(fits_file)
obs_info = fits.getheader(fits_file)
line = obs_info["FW2"]
aligned = align_obsmode(obs_data)
stokes = demodulate(aligned, filt = line)
xtalk_corr, _ = fit_mueller_matrix(stokes)
```