

UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO

Facultad de Ciencias

Plan de estudios de la Licenciatura en Matemáticas

				Biología Mate	emátio	ca I			
0.0.0		mestre 7 u 8	Créditos 10	Área de concentración					
0270			Campo de conocimiento						
				Etapa	VII y VIII				
Modalidad Curso (X) Taller () Lab () Sem ()		Tipo	T(X)	P()) T/P ()				
Carácter		Obligatorio () Optativo (X)		Horas					
		Obliga	torio E ()	Optativo E ()	Semana		Semestre		
					Teórica	as	5	Teóricas	80
					Práctic	as	0	Prácticas	0
					Total		5	Total	80

Seriación				
	Ninguna ()			
Obligatoria ()				
Asignatura antecedente				
Asignatura subsecuente				
Indicativa (X)				
Asignatura antecedente	Análisis Matemático I, Dinamica de Sistemas no Lineales			
Asignatura subsecuente	Biología Matemática II.			

Objetivo general:

Introducir al alumno en la modelación matemática de fenómenos biológicos

Objetivos específicos:

Proporcionar al estudiante los conocimientos básicos de algunas de las principales aplicaciones de la matemática en el campo de la Biología.

Índice temático			
	Tema	Horas	

		semestre	
		Teóricas	Prácticas
1	Dinámica de Poblaciones	30	0
2	Emergencia de patrones	30	0
3	Propagación de impulsos nerviosos	20	0
	Subtotal	80	0
	Total	8	30

	Contenido Temático			
	Tema y subtemas			
1	Dinámica de Poblaciones			
	1.1 Generaciones discretas.			
	1.2 Generaciones traslapadas.			
	1.3 Poblaciones estructuradas.			
	1.4 Dinámica de interacciones.			
	1.5 Dinámica espacial.			
	1.6 Modelos simples de epidemiología.			
2	Emergencia de patrones			
	2.1 Autoorganización.			
	2.2 Explicar vs. describir.			
	2.3 Filotaxia.			
	2.4 Mecanismos morfogénticos.			
	2.5 La bifurcación de Turing.			
	2.6 Otros mecanismos.			
3	Propagación de impulsos nerviosos			
	3.1 La neurona.			
	3.2 Modelos biestables.			
	3.3 Modelos simples de conducción nerviosa.			
	3.4 Medios excitables y el músculo cardiaco.			

Estrategias didácticas		Evaluación del aprend	lizaje
Exposición	(X)	Exámenes parciales	(X)
Trabajo en equipo	()	Examen final	(X)
Lecturas	()	Trabajos y tareas	(X)
Trabajo de investigación	()	Presentación de tema	()
Prácticas (taller o laboratorio)	()	Participación en clase	(X)
Prácticas de campo	()	Asistencia	(X)
Aprendizaje por proyectos	(X)	Rúbricas	()
Aprendizaje basado en problemas	(X)	Portafolios	()
Casos de enseñanza	(X)	Listas de cotejo	()
Otras (especificar)		Otras (especificar)	•

Perfil profesiográfico				
Título o grado Matemático, físico, actuario o licenciado en ciencias de la computación				
Experiencia docente	Con experiencia docente			
Otra característica	Especialista en el área de la asignatura a juicio del comité de asignación			
	de cursos			

Bibliografía básica:

- Esteva, L., Falconi, M. (Eds.), *Biomatemáticas, una Visión desde los Sistemas Dinámicos*, México: Facultad de Ciencias, UNAM, 2002.
- Gutiérrez Sánchez, J.L., Sánchez Garduño, F., Matemáticas para las Ciencias Naturales. No. 11, Aportaciones Matemáticas, México: Sociedad Matemática Mexicana, 1998.
- Keener, J., Sneyd, J., Mathematical Physiology, New York: Springer-Verlag, 1998.
- Kot, M., Elements of Mathematical Ecology, Cambridge: Cambridge University Press, 2001.
- Sánchez Garduño, F., Miramontes, P, Gutiérrez, J.L. (Eds.), Clásicos de Biología Matemática. México: Siglo XXI-UNAM, 2002.

Bibliografía complementaria:

• Murray, J., Mathematical Biology. New York: Springer-Verlag, 2003.