Started on	Thursday, 19 June 2025, 2:07 PM		
State	Finished		
Completed on	Thursday, 19 June 2025, 2:26 PM		
Time taken	18 mins 28 secs		
Grade	100.00 out of 100.00		

```
Question 1
Correct
Mark 20.00 out of 20.00
```

Write a python program to implement quick sort using random pivot value.

For example:

Input	Result					
6	[1,	5,	7,	8,	9,	10]
10						
7						
8						
9						
1						
5						

Answer: (penalty regime: 0 %)

```
import random
 2
     def partition(arr, low, high):
    pivot_index = random.randint(low, high)
 3 ₹
 4
 5
          arr[pivot_index], arr[high] = arr[high], arr[pivot_index] # Swap pivot with last element
 6
          pivot = arr[high]
          i = low - 1
 7
          for j in range(low, high):
    if arr[j] < pivot:</pre>
 8 *
 9 ,
10
                   i += 1
11
                    arr[i], arr[j] = arr[j], arr[i]
          arr[i + 1], arr[high] = arr[high], arr[i + 1]
12
          return i + 1
13
14
15 def quickSort(arr, low, high):
16 🔻
          if low < high:</pre>
              pi = partition(arr, low, high)
quickSort(arr, low, pi - 1)
quickSort(arr, pi + 1, high)
17
18
19
20
21
     n = int(input())
22 | arr = [int(input()) for _ in range(n)]
```

	Input	Expected	Got	
~	6 10 7 8 9 1 5	[1, 5, 7, 8, 9, 10]	[1, 5, 7, 8, 9, 10]	~
~	5 30 21 5 6 4	[4, 5, 6, 21, 30]	[4, 5, 6, 21, 30]	~
*	4 6 3 2 5	[2, 3, 5, 6]	[2, 3, 5, 6]	~

Passed all tests! 🗸

Marks for this submission: 20.00/20.00.

Question **2**Correct
Mark 20.00 out of 20.00

Rat In A Maze Problem

You are given a maze in the form of a matrix of size n * n. Each cell is either clear or blocked denoted by 1 and 0 respectively. A rat sits at the top-left cell and there exists a block of cheese at the bottom-right cell. Both these cells are guaranteed to be clear. You need to find if the rat can get the cheese if it can move only in one of the two directions - down and right. It can't move to blocked cells.

Provide the solution for the above problem Consider n=4)

The output (Solution matrix) must be 4*4 matrix with value "1" which indicates the path to destination and "0" for the cell indicating the absence of the path to destination.

Answer: (penalty regime: 0 %)

```
Reset answer
```

```
1 N = 4
   def printSolution( sol ):
3 ₹
4
5 ,
        for i in sol:
 6
            for j in i:
               print(str(j) + " ", end ="")
7
            print("")
8
9,
    def isSafe( maze, x, y ):
10
11
        if x >= 0 and x < N and y >= 0 and y < N and maze[x][y] == 1:
12
            return True
13
14
        return False
15
   def solveMaze( maze ):
16
        # Creating a 4 * 4 2-D list
17
        sol = [ [ 0 for j in range(4) ] for i in range(4) ]
18
19
20
        if solveMazeUtil(maze, 0, 0, sol) == False:
21
            print("Solution doesn't exist");
22
            return False
```


Passed all tests! 🗸

Marks for this submission: 20.00/20.00.

Question **3**Correct
Mark 20.00 out of 20.00

You are given an integer **N**. For a given **N** x **N** chessboard, find a way to place '**N**' queens such that no queen can attack any other queen on the chessboard

A queen can be attacked when it lies in the same row, column, or the same diagonal as any of the other queens. You have to print one such configuration.

Note:

Get the input from the user for N . The value of N must be from 1 to 4

If solution exists Print a binary matrix as output that has 1s for the cells where queens are placed

If there is no solution to the problem print "Solution does not exist"

For example:

Input	Result			
4	0	0	1	0
	1	0	0	0
	0	0	0	1
	0	1	0	0

Answer: (penalty regime: 0 %)

```
Reset answer
```

```
global N
   N = int(input())
 2
3
 4 1
   def printSolution(board):
5 1
       for i in range(N):
           for j in range(N):
6
              print(board[i][j], end = " ")
7
8
           print()
9
10 v
   def isSafe(board, row, col):
11
       for i in range(col):
           if board[row][i] == 1:
12 1
13
               return False
14
       15
16
           if board[i][j] == 1:
17
18
               return False
19
20
       # Check lower diagonal on left side
21
       for i, j in zip(range(row, N, 1),
22 🔻
                      range(col, -1, -1)):
```

	Input	Expected	Got	
~	4	0 0 1 0	0 0 1 0	~
		1 0 0 0	1000	
		0 0 0 1	0 0 0 1	
		0 1 0 0	0 1 0 0	
~	2	Solution does not exist	Solution does not exist	~

Passed all tests! 🗸

Marks for this submission: 20.00/20.00.

Question 4

Correct

Mark 20.00 out of 20.00

SUBSET SUM PROBLEM

We are given a list of n numbers and a number x, the task is to write a python program to find out all possible subsets of the list such that their sum is x.

Examples:

```
Input: arr = [2, 4, 5, 9], x = 15

Output: [2, 4, 9]

15 can be obtained by adding 2, 4 and 9 from the given list.

Input: arr = [10, 20, 25, 50, 70, 90], x = 80

Output: [10, 70]

[10, 20, 50]

80 can be obtained by adding 10 and 70 or by adding 10, 20 and 50 from the given list.
```

THE INPUT

- 1.No of numbers
- 2.Get the numbers
- 3.Sum Value

For example:

Input	Result			
4	[2,	4,	9]	
2				
4				
5				
9				
15				
-	ГА	-1		
5	[4,	5]		
4				
16				
5				
23				
12				
9				

Answer: (penalty regime: 0 %)

Reset answer

```
from itertools import combinations;
2
3 1
    def subsetSum(n, arr, x):
        for i in range (n+1):
5 🔻
            for subset in combinations(arr, i):
                if sum(subset) == x:
6
7
                    print(list(subset))
 8
   n=int(input())
   arr=[]
10
   for i in range(0,n):
11 v
12
        a=int(input())
13
        arr.append(a)
   x = int(input())
14
15
16 | subsetSum(n, arr, x)
```

Input	Expected	Got	
4 2 4 5 9 15	[2, 4, 9]	[2, 4, 9]	~
6 10 20 25 50 70 90 80	[10, 70] [10, 20, 50]	[10, 70] [10, 20, 50]	*
5 4 16 5 23 12 9	[4, 5]	[4, 5]	*

```
Question 5
Incorrect
Mark 20.00 out of 20.00
```

The m-coloring problem states, "We are given an undirected graph and m number of different colors. We have to check if we can assign colors to the vertices of the graphs in such a way that no two adjacent vertices have the same color."

0	1	1	1
1	0	0	1
1	0	0	1
1	1	1	0


```
Node 1 -> color 1

Node 2 -> color 2

Node 3 -> color 2

Node 4-> color 3
```

For example:

```
Result

Solution Exists: Following are the assigned colors
Vertex 1 is given color: 1
Vertex 2 is given color: 2
Vertex 3 is given color: 3
Vertex 4 is given color: 2
```

Answer: (penalty regime: 0 %)

Reset answer

```
1 def isSafe(graph, color):
 2 ,
       for i in range(4):
3 1
           for j in range(i + 1, 4):
4 *
              if (graph[i][j] and color[j] == color[i]):
5
                  return False
 6
       return True
8 v def graphColoring(graph, m, i, color):
9
       fo
10
11
12
13
14
       def display(color):
15
       print("Solution Exists:" " Following are the assigned colors ")
16
17
       for i in range(4):
           print("Vertex", i+1 ," is given color: ",color[i])
18
        _name__ == '__main__':
19 🔻
       graph = [
20
           [ 0, 1, 1, 1 ],
21
22
           [ 1, 0, 1, 0 ],
```

