Capítulo 6 ANÁLISIS DE VELOCIDAD

All figures taken from *Design of Machinery*, 3rd ed. Robert Norton 2003

ANÁLISIS DE VELOCIDA

Definiciones

Velocidad Lineal

$$\vec{V} = \frac{d\vec{R}}{dt} = \dot{\vec{R}}$$

Velocidad Angular

$$\omega = \frac{d\theta}{dt} = \dot{\theta}$$

Eslabon en rotación pura

Velocidad de un punto

$$ec{R}_{PA} = pe^{i\theta}$$
 $ec{V}_{PA} = ec{V}_P = \dot{\vec{R}}_{PA}$
 $= pe^{i\theta} (i\dot{\theta}) = pe^{i\theta} (i\omega)$

Multiplicando por *i* rota un vector de 90°

Velocidad es perpendicular al radio de rotación y tangente a la trayectoria de movimiento

ANÁLISIS DE VELOCIDAD

Vector *r* puede ser escrito como:

$$re^{i\theta} = r\left[\cos\theta + i\sin\theta\right]$$

Multiplicando por *i* se obtiene:

$$ire^{i\theta} = r\left[-\sin\theta + i\cos\theta\right]$$

Multiplicando por i rotata un vector 90°

ANÁLISIS DE VELOCIDAD

Si se mueve el punto A

$$\vec{V}_{P} = \vec{V}_{A} + \vec{V}_{PA}$$
$$= \vec{V}_{A} + pe^{i\theta}(i\omega)$$

Solución Gráfica:

ANÁLISIS GRAFICA DE VELOCIDAD $(\omega_3 \& \omega_4)$

- Dado el eslabonamiento & ω_2 . Encontrar ω_3 y ω_4
- Se conoce V_A y la direccion de V_B y V_{BA} (perpendicular a AB)
- Dibujar el vector triangular. $V=\omega r$.

ANÁLISIS GRAFICA DE VELOCIDAD (V_C)

- Luego de encontrar ω_3 y ω_4 , encontrar V_C
- $V_C = V_A + V_{CA}$
- Recordar que ω_3 estaba en la dirección opuesta como ω_2

Centro Instantáneo

- Un punto común a dos cuerpos en movimiento plano, que tiene la misma velocidad instantánea en cada cuerpo.
- Encontramos el centro instantáneo entre los enlaces 1 y 3 (punto en el enlace 3 sin velocidad)
- Ahora también tenemos un centro instantáneo entre los enlaces 2 y 4

Centros Instantáneos

• Regla de Kennedy: cualesquiera tres enlaces tendrán tres centros instantáneos y estarán en línea recta Los pines son centros instantáneos I14 de eslabones 1,2,3 y 1,3,4 • I₂₄ de eslabones 1,2,4 y 2,3,4 124 234 **Eslabones** IC's **I**₂₄ I_{14} I_{13}

Centros Instantáneos

- I₁₃ tiene velocidad cero ya que el eslabón 1 está conectado a tierra
- ω₃ es lamisma en todo el eslabón 3
- Velocidad relativa al suelo r
- $V_{A2} = a\omega_2 = V_{A3} = p\omega_3$
- De esto, ω_3 debe estar en la dirección opuesta como ω_2 , y de menor magnitud desde p>a

Centros Instantáneos

- I₂₄ tiene la misma velocidad en el eslabón 2 y en el eslabón 4
- $V_{I2} = l_2 w_2 = V_{I4} = l_4 w_4$

• De esto, w_4 esta en lamisma direccion que w_2 y de menor magnitud desde que $l_4 > l_2$

Practica de Problemas de Centros Instantáneos

Análisis de velocidad de mecanismo de 4 barras Dada ω_2 . Encontrar ω_3 y ω_4

12

Análisis de velocidad de mecanismo de 4 barras

• Escriba la ecuación del lazo vectorial

 $ae^{i\theta_2} + be^{i\theta_3} - ce^{i\theta_4} - de^{i\theta_1} = 0$ derivadar

$$ae^{i\theta_2}(i\dot{\theta}_2)+be^{i\theta_3}(i\dot{\theta}_3)-ce^{i\theta_4}(i\dot{\theta}_4)=0$$

$$i\omega_2 a e^{i\theta_2} + i\omega_3 b e^{i\theta_3} - i\omega_4 c e^{i\theta_4} = 0$$

donde

$$\vec{V}_A + \vec{V}_{BA} - \vec{V}_B = 0$$

$$\vec{V}_A = i\omega_2 a e^{i\theta_2}$$

$$\vec{V}_{BA} = i\omega_3 b e^{i\theta_3}$$

$$\vec{V}_B = i\omega_4 c e^{i\theta_4}$$

 \mathbf{R}_1

Análisis de velocidad de mecanismo de 4 barras

$$i\omega_2 a e^{i\theta_2} + i\omega_3 b e^{i\theta_3} - i\omega_4 c e^{i\theta_4} = 0$$

• Conocidas de un lado:

$$\omega_3 b e^{i\theta_3} - \omega_4 c e^{i\theta_4} = -\omega_2 a e^{i\theta_2}$$

Tome conjugado para obten^{∞2}
 la segunda ecuación :

$$\omega_3 b e^{-i\theta_3} - \omega_4 c e^{-i\theta_4} = -\omega_2 a e^{-i\theta_2}$$

• Poner en forma matricial:

$$\begin{bmatrix} be^{i\theta_3} & -ce^{i\theta_4} \\ be^{-i\theta_3} & -ce^{-i\theta_4} \end{bmatrix} \begin{bmatrix} \omega_3 \\ \omega_4 \end{bmatrix} = \begin{bmatrix} -\omega_2 ae^{i\theta_2} \\ -\omega_2 ae^{-i\theta_2} \end{bmatrix}$$

$$\begin{bmatrix} \omega_3 \\ \omega_4 \end{bmatrix} = \begin{bmatrix} be^{i\theta_3} & -ce^{i\theta_4} \\ be^{-i\theta_3} & -ce^{-i\theta_4} \end{bmatrix}^{-1} \begin{bmatrix} -\omega_2 ae^{i\theta_2} \\ -\omega_2 ae^{-i\theta_2} \end{bmatrix}$$

Análisis de velocidad de mecanismo de 4 barras

Una vez que se resuelven para ω_3 y ω_4 , entonces se puede resolver para la velocidad lineal al sustituir la identidad de Euler en las ecuaciones

$$\mathbf{V}_{A} = ja\,\omega_{2}\left(\cos\theta_{2} + j\,\mathrm{sen}\,\theta_{2}\right) = a\,\omega_{2}\left(-\,\mathrm{sen}\,\theta_{2} + j\,\mathrm{cos}\,\theta_{2}\right) \tag{6.19a}$$

$$\mathbf{V}_{BA} = jb\,\omega_3\left(\cos\theta_3 + j\sin\theta_3\right) = b\,\omega_3\left(-\sin\theta_3 + j\cos\theta_3\right) \tag{6.19b}$$

$$\mathbf{V}_B = jc\,\omega_4 \left(\cos\theta_4 + j\sin\theta_4\right) = c\,\omega_4 \left(-\sin\theta_4 + j\cos\theta_4\right) \tag{6.19c}$$

Manivela-Corredera Invertida

Eslabon 3 es el eslabon corredera: longitude efectiva,

b, cambia

Dadan ω_2 . Encontrar ω_3 y θ_3 B $\mathbf{V}_{\mathcal{B}_4}$ b dot \mathbf{R}_3 \mathbf{R}_2 R_4 \mathbf{R}_1

Manivela-Corredera Invertida

 θ_3

- Dada ω_2 . Encontrar ω_3 y \dot{b}
- Esc. la ec. del lazo vectorial:

$$ae^{i\theta_2} - be^{i\theta_3} - ce^{i\theta_4} - de^{i\theta_1} = 0$$

• Después de resolver el análisis de posición, tome la derivada:

$$i\omega_2 a e^{i\theta_2} - \dot{b}e^{i\theta_3} - i\omega_3 b e^{i\theta_3} - i\omega_4 c e^{i\theta_4} = 0$$

• Para obtener otra ecuación:

$$\theta_3 = \theta_4 + \gamma \quad \mathbf{0} \quad \omega_3 = \omega_4$$
así
$$\dot{b}e^{i\theta_3} + i\omega_3 \left(be^{i\theta_3} + ce^{i\theta_4}\right) = i\omega_2 ae^{i\theta_2}$$

Manivela-Corredera Invertida

$$\dot{b}e^{i\theta_3} + i\omega_3 \left(be^{i\theta_3} + ce^{i\theta_4}\right) = i\omega_2 ae^{i\theta_2}$$

• Tome conjugado para obtener la segunda ecuación : v_A

$$\dot{b}e^{-i\theta_3} - i\omega_3 \left(be^{-i\theta_3} + ce^{-i\theta_4}\right) = -i\omega_2 ae^{-i\theta_2} \left(be^{-i\theta_3} + ce^{-i\theta_4}\right)$$

• Colocar en forma matricial:

$$\begin{bmatrix} e^{i\theta_3} & i\left(be^{i\theta_3} + ce^{i\theta_4}\right) \\ e^{-i\theta_3} & -i\left(be^{-i\theta_3} + ce^{-i\theta_4}\right) \end{bmatrix} \begin{bmatrix} \dot{b} \\ \omega_3 \end{bmatrix} = \begin{bmatrix} i\omega_2 ae^{i\theta_2} \\ -i\omega_2 ae^{-i\theta_2} \end{bmatrix}$$

Invertir:

$$\begin{bmatrix} \dot{b} \\ \omega_3 \end{bmatrix} = \begin{bmatrix} e^{i\theta_3} & i\left(be^{i\theta_3} + ce^{i\theta_4}\right) \\ e^{-i\theta_3} & -i\left(be^{-i\theta_3} + ce^{-i\theta_4}\right) \end{bmatrix}^{-1} \begin{bmatrix} i\omega_2 ae^{i\theta_2} \\ -i\omega_2 ae^{-i\theta_2} \end{bmatrix}$$

Velocidad de cualquier punto del mecanismo

• Escribir el vector para R_P

Manivela-Corredera Descentrada

Dada ω_2 . Encontrar ω_3 y d

