ПРОДВИНУТЫЙ УРОВЕНЬ

Знакомство с гиро датчиком и решение проблем с его дрифтом (ОБНОВЛЕННЫЙ)

By Sanjay and Arvind Seshan

На этом занятии

- 1. Узнаем как поколение датчика влияет на калибровку
- 2. Как бороться с дрифтом гиро датчика используя новую информацию.

Пререквизиты: Шины данных, Циклы, Логические операции и принятие решений, Знакомство с гиро датчиком и решение проблем с его дрифтом

Определения

- **Сброс:** Текущее значение гиро датчика сбрасываются в 0. Это делает режим блока гиро датчика «сброс».
- Калибровка: Гиро калибрует то, что он считает положением «покоя». Это устанавливает текущую скорость и угол гиро датчика на «0». Это обычно происходит при подключении.
- Некоторые люди называют калибровку «hard reset». В этом уроке мы будем называть это калибровкой, чтобы уменьшить количество путаницы.

Зачем пересматривать урок с Гиро датчиком?

- Мистер Сэм Ласт из Северной Каролины обратил наше внимание на то, что некоторые гиро работают по-разному.
- На некоторых более новых гиро датчиках обычно используемый калибровочный код для гиро справа (переключение между углом и скоростью) не работает (то есть не заставляет гиро выполнять повторную калибровку).
- Это большая проблема для тех, кто использует один из гиро датчиков, который не калибруется с этим кодом

Методы калибровки из предыдущего занятия

Метод 1:

Метод 2:

Метод 3:

Метод 4:

Тестировка гиро датчиков

- Мы получили данные от 30+ гиро датчиков купленных в разные года по всему миру
- Код метода 4 (из предыдущего занятия) дает простой способ проверить, поддерживает ли ваш датчик перекалибровку или нет.
 - Датчики, которые могут калиброваться, исполнение кода занимает 3 секунды.
 - Датчики, которые не могут калиброваться, исполнение кода занимает < .1 секунды.
 - Мы добавили код с таймером, проведя 3 калибровки мы смотрим на среднее время.
 - Мы подумали, что проблема может быть связана с кодом в нижней части гироскопа (показан красным кружком), поэтому мы также записали это.

Результаты

- Существует зависимость между кодом, напечатанным на самих гиро датчиках, и с тем, правильно ли они калибруются.
- Все гиро датчики с N2 и N3 на конце работают правильно. Все гиро датчики с N4, N5, N6, N7 и N8 на конце не калибруются.
- Мы лично тестировали на N3, N4, N6 и N8. Тесты на других проводились друзьями.
- Заметка: Если вы закончили этот урок и обнаружили новые цифры (такие как N7 и N8), пожалуйста сообщите их нам team@ev3lessons.com.

Пример кода н	іа Гиро	<u>датчике</u>	
<u>Старый тип</u>	<u>Новь</u>	<u>Новый тип</u>	
18N2	09N4	03N6	
20N2	15N4	05N6	
48N2	20N4	06N6	
	21N4	15N6	
01N3	38N4	17N6	
02N3	39N4	20N6	
03N3	50N4	21N6	
04N3		23N6	
05N3	13N5	29N6	
06N3	17N5		
16N3	21N5	06N7	
17N3	22N5	23N7	
19N3	27N5	28N7	
42N3	28N5		
43N3	36N5	10N8	
44N3	45N5		
45N3			
47N3			
49N3			
50N3			
51N3			

© 2017 EV3Lessons.com, Last edit 12/21/2018

Какая версия датчиков у вас?

- Метод 1: Вы можете взглянуть на маленький код напечатанный на гиро датчике и посмотреть на последнюю комбинацию буквыцифры
- Метод 2: Вы можете запустить программу проверки, которую вы выложили на сайте Mindlesson → Продвинутый. Он покажет какой датчик у вам и каким методом его нужно калибровать.
 - https://mindlesson.ru/wpcontent/uploads/2019/06/Gyro Revisited.ev3

"N3"

"N5" Фото сделано Thomas Madeya

Знакомство с гиро датчиком и решение

Слайды: PPTX PDF

Код EV3-G проверки гиро датчика: EV3

Увеличенные картинки примеров кода

- Везде, где в этой презентации упоминается N4, результат был проверен и для N5, N6, N7.
- Везде, где в этой презентации упоминается N3, результат был проверен и для N2.

"N5" и "N6" Фото сделано Thomas Madeya

Что делать если у вас нет N2/N3 Датчика?*

Железное решение

Переподключите ваш датчик, пока робот в состоянии покоя

Этот метод требует доступа к EV3 портам и подвержен сбоям, поскольку вы можете встряхнуть робота при повторном подключении провода.

Программное решение

- Если вы считаете порт, к которому подключен гиро как инфракрасный датчик выходит что то вызывает калибровку.
- Смотрите следующие 4 слайда для получения обновленного кода повторной калибровки (стратегии 5-8), который можно использовать для датчиков «N4» и выше. Может использоваться с «N3» и
 - Может использоваться с «N3» и ниже.
- Заметка: Считка датчика как цвет, ультразвук, касания или температуры.

^{*} По мере обнаружения новых решений этот слайд будет обновляться.

Сначала считывание гиро как ИКдатчика, а затем как гиро приводит к повторной калибровке гиро. Во-вторых, добавьте блок ожидания, чтобы дать сенсору немного времени для полной калибровки. Наш опыт показывает, что 4 секунды достаточно. Обратите внимание, что код Стратегии 1 из предыдущего занятия занял 0,1 секунды

Считать порт с гиро датчиком как инфракрасный. Затем калибровку считываем угол (робот в покое датчика

Примечание для пользователей датчика «N3»: в остальной части вашей программы вы должны использовать только режим гиро «угол». Использование режима «скорость» или «угол и уровень» приведет к повторной калибровке гиро. Пользователи датчика «N4» могут изменять режимы, не вызывая калибровку. Изменения режима «сбрасывают» угол до 0.

Этот метод оставляет датчик в режиме «угол и уровень». Он удобен для пользователей "N3".

Эта версия требует 4 секунды.

Считать порт с гиро датчиком как инфракрасный. Затем считываем угол и уровень (робот в покое) Ожидаем калибровку датчика Примечание для пользователей датчика «N3»: в остальной части вашей программы вы должны использовать только режим «угол и уровень». Использование режима «угол» или «скорость» приведет к повторной калибровке гиро. Кроме того, *** НЕ *** используйте режим сброса гиро - это переводит гироскоп в угловой режим, который вызывает длительную 3секундную повторную калибровку. Пользователи датчика «N4» могут изменять режимы, не вызывая калибровку. Изменения режима «сбрасывают» угол до 0.

Этот метод калибровки оставляет гиро в режиме угол. Это, наверное, самый распространенный способ использования гироскопа. Выполнение этого кода занимает около 4 секунд

Примечание для пользователей датчика «N3»: в остальной части вашей программы вы должны использовать только «угол» режимы гиро. Использование режима «скорость» или «угол и уровень» приведет к повторной калибровке гиро. Пользователи датчика «N4» могут изменять режимы, не вызывая калибровку. Изменения режима «сбрасывают» угол до 0.

Этот метод оставляет датчик в режиме «угол и уровень». Он удобен для пользователей "N3".

Примечание для пользователей датчика «N3»: в остальной части вашей программы вы должны использовать только режим «угол и уровень». Использование режима «угол» или «скорость» приведет к повторной калибровке гиро. Кроме того, *** НЕ *** используйте режим сброса гиро - это переводит гироскоп в угловой режим, который вызывает длительную 3-секундную повторную калибровку. Пользователи датчика «N4» могут изменять режимы, не вызывая калибровку. Изменения режима «сбрасывают» угол до 0.

Обсуждение

- Новые методы калибровки гиро в этом уроке работают для датчиков N2-N3 или N4-N8
- Обратите внимание, что все новые калибровки занимают около 3-4 секунд. Это значительно больше, чем в предыдущих стратегиях 1 и 3 (на уроках «Введение в гироскоп»), в которых гироскоп оставался в режиме считывания углов (0,1 с против 3-4 с)
 - Поэтому, если у вас более старые гироскопы N2 и N3, вы можете использовать старый код, для которого требовалось меньше времени.
- Новые датчики N4-N8 позволяют использовать различные гироскопические режимы внутри программы без повторной калибровки.
- Вывод: произошла аппаратная перестановка между гироскопами N3 и N4. Более старые гироскопы, вероятно, используют ISZ-655 (одноосный гироскопический чип).

В итоге

- Благодаря тому, что сообщество отправило все коды на гироскопических датчиках, оказалось, что на каждом гироскопическом датчике есть код даты.
 45N5 = [Неделя] [Завод / Электроника] [Год] = Неделя 45, N, 2015
- Запустив EV3Dev, Дэвид Лехнер смог определить, что у новых датчиков есть некоторые дополнительные секретные режимы, включаемые новым оборудованием внутри датчика. Новые датчики имеют двухосный гироскоп, который позволяет измерять угол и скорость относительно второй оси (параллельно кабелю)
- Примечание. Эти режимы недоступны через стандартный гироскопический блок EV3-G, даже если у вас есть новые гироскопические датчики. Режимы называются «TILT-ANG» и «TILT-RATE» в самом датчике. Посмотрите https://youtu.be/KjlT0BUJr-w, чтобы узнать, как Дэвид Лехнер обнаружил различные режимы.

Что это значит для калибровки?

- Лехнер считает, что с датчиками N4, N5, N6, N7 и N8, поскольку есть новые (скрытые) режимы, которые измеряют вращение вокруг другой оси, датчик больше не сбрасывается при переключении режимов с угла на скорость.
- Блок ИК-датчика работает в нашем коде решения, потому что он вызывает тайм-аут связи с датчиком и вызывает сброс датчика. Это связано с тем, что микропрограмма LEGO обрабатывает ИК-датчик по-другому (более длительным временем ожидания).

Благодарность

- 🤻 Этот урок написан Sanjay Seshan и Arvind Seshan
- **₹** Больше уроков доступно на сайте mindlesson.ru и ev3lessons.com
- Спасибо мистеру Сэму Ласту за сообщение об этой проблеме нам.
- Спасибо Дэвиду Лехнеру за исследование и обнаружение скрытых режимов нового датчика.
- 🔻 Перевод осуществил: Абай Владимир, abayvladimir@hotmail.com

This work is licensed under a <u>Creative Commons Attribution-</u> NonCommercial-ShareAlike 4.0 International License.