# Simple Emotions Detection in Speech using FastDTW

Tianyao He, Sara Iqbal Bavan

CS 5800: Algorithms, Summer 2024

## **Project Overview**

#### **Description:**

- The goal of this project is to develop a simple voice-based emotion recognition system.
- Using Dynamic Time Warping (DTW) algorithm
- Enhanced with FastDTW and neural networks

#### Importance:

- Assists those who have difficulty in understanding emotions.
- Benefits individuals who struggle to hear or interpret emotional cues.
- Improves human-computer interaction.

## Agenda

- Introduction to the Dataset
- Data Preparation
- Algorithm Implementation
- Neural Network Model
- Experimental Results
- Future Directions
- Q&A Session

## **The Dataset**

#### **RAVDESS Dataset**

- Ryerson Audio-Visual Database of Emotional Speech and Song
- 24 professional actors (12 female, 12 male)
- 8 emotions: neutral, calm, happy, sad, angry, fearful, disgust, surprised

#### **Key Features**

- Audio-only files
- 16-bit, 48kHz .wav format
- Speech recordings (no songs)
- Focused on 4 emotions: neutral, happy, sad, angry



## **Data Preparation**

- 1. Filter relevant audio files
- 2. Extract audio features:
  - o MFCCs
  - Spectral Centroid
  - Zero Crossing Rate
  - o Chroma
  - o RMS Energy



## Let's refresh some concepts

## **Recap: Classical DTW**

- Measures similarity between two temporal sequences
- Allows for non-linear 'warping' of time axis

## **Limitations of Classical DTW**

- Time complexity: O(n²)
- Space complexity: O(n²)
- Impractical for large datasets or real-time applications

## **Transition to FastDTW**

## **Introduction to FastDTW**

- Approximation of DTW
- Linear time and space complexity: O(n)
- Enables scaling to larger datasets

## **Advantages of FastDTW**

- Significantly faster computation
- Reduced memory usage
- Maintains accuracy comparable to classical DTW
- Suitable for real-time mood detection

## **Algorithm Implementation**

Fast DTW algorithm uses a multilevel approach with three key operations:

- 1. **Coarsening** Shrinks time series into smaller time series with fewer data points.
- 2. **Projection** Find minimum path at a lower resolution, using that path as an initial guess for higher resolution minimum path.
- 3. **Refinement:** Refine the alignment using the original data.

## **Experiment: Compared classical DTW vs FastDTW**

## **Objectives**

- 1. Select best algorithm (DTW vs FastDTW)
- 2. Determine initial parameters for model training
- 3. Assess potential for real-time mood detection

## **DTW Classification Results**

#### **Accuracy Comparison**

| Method        | Best Score | Method        | Runtime (50 iterations) |
|---------------|------------|---------------|-------------------------|
| Classical DTW | 25.31%     | Classical DTW | 78m 32.5s               |
| FastDTW       | 21.59%     | FastDTW       | 11m 58.4s               |

- FastDTW is significantly faster (≈6.5x)
- Slight accuracy trade-off (3.72% lower)
- FastDTW enables real-time processing
- Both methods under-perform random guessing (25%)

#### **Speed Comparison**

| Method        | Runtime (50 iterations) |  |
|---------------|-------------------------|--|
| Classical DTW | 78m 32.5s               |  |
| FastDTW       | 11m 58.4s               |  |

## **Neural Network Model**

#### **Input Features**

- MFCCs (Mel-frequency cepstral coefficients)
- Statistical features:
  - Spectral centroid
  - Zero crossing rate
  - Chroma
  - o RMS energy



#### Output

- 4 emotion classes:
  - Neutral
  - Happy
  - Sad
  - Angry



## **Deep Learning Results Comparison**

#### **Accuracy Comparison**

| Method             | Validation Accuracy | Method                | Runtime (50 iterations) |
|--------------------|---------------------|-----------------------|-------------------------|
| Classical DTW + NN | 14.29% (1 epoch)    | Classical DTW +<br>NN | 7m 20.6s (1 epoch)      |
| FastDTW + NN       | 53.11% (50 epochs)  | FastDTW + NN          | 11m 58.4s (50 epochs)   |

- Significant accuracy improvement with FastDTW + NN
- FastDTW enables more epochs in less time
- Outperforms random guessing (25%)
- Complex model captures nuanced patterns

#### **Speed Comparison**

|          | Method             | Runtime (50 iterations) |
|----------|--------------------|-------------------------|
| CI<br>NI | assical DTW +<br>N | 7m 20.6s (1 epoch)      |
| Fa       | stDTW + NN         | 11m 58.4s (50 epochs)   |

#### **Future Directions**

#### **Expand Emotion Range**

- Include more emotions (e.g., fear, disgust, surprise)
- Explore multi-label classification for mixed emotions

#### **Enhance Model Architecture**

- Experiment with different neural network structures
- Incorporate attention mechanisms
- Explore transfer learning from pre-trained audio models

#### **Improve Data Processing**

- Investigate advanced audio preprocessing techniques
- Explore real-time feature extraction for live applications

#### **Real-World Applications**

- Develop user-friendly interfaces for various platforms
- Explore integration with virtual assistants and call centers
- Investigate applications in mental health monitoring

## Reference

• Salvador, S., & Chan, P. (2007). Toward accurate dynamic time warping in linear time and space. *Intelligent Data Analysis*, 11(5), 561-580. <a href="https://doi.org/10.3233/IDA-2007-11508">https://doi.org/10.3233/IDA-2007-11508</a>

## Q & A

Thank you so much for listening!