Math 189R problem set 4

Adam Guo 2020-02-17

- 1. (Murphy 12.5 Deriving the Residual Error for PCA) It may be helpful to reference section 12.2.2 of Murphy.
 - (a) Prove that

$$\left\|oldsymbol{x}_i - \sum_{j=1}^k z_{ij} oldsymbol{v}_j
ight\|^2 = oldsymbol{x}_i^T oldsymbol{x}_i - \sum_{j=1}^k oldsymbol{v}_j^T oldsymbol{x}_i oldsymbol{x}_i^T oldsymbol{v}_j.$$

Hint: first consider the case when k = 2. Use the fact that $v_i^T v_j$ is 1 if i = j and 0 otherwise. Recall that $z_{ij} = \boldsymbol{x}_i^T v_j$.

Solution:

$$\begin{aligned} \left\| \boldsymbol{x}_i - \sum_{j=1}^k z_{ij} \boldsymbol{v}_j \right\|^2 &= (\boldsymbol{x}_i - \sum_{j=1}^k z_{ij} \boldsymbol{v}_j)^T (\boldsymbol{x}_i - \sum_{j=1}^k z_{ij} \boldsymbol{v}_j) \\ &= \boldsymbol{x}_i^T \boldsymbol{x}_i - \boldsymbol{x}_i \sum_{j=1}^k z_{ij} \boldsymbol{v}_j - \left(\sum_{j=1}^k z_{ij} \boldsymbol{v}_j^T \right) \boldsymbol{x}_i + \sum_{j,l=1}^k \boldsymbol{v}_j^T z_{ij}^T z_{il} \boldsymbol{v}_l \\ &= \boldsymbol{x}_i^T \boldsymbol{x}_i - 2 \sum_{j=1}^k z_{ij} \boldsymbol{v}_j^T \boldsymbol{x}_i + \sum_{j=1}^k \boldsymbol{v}_j^T z_{ij}^T z_{ij} \boldsymbol{v}_j \\ &= \boldsymbol{x}_i^T \boldsymbol{x}_i - 2 \sum_{j=1}^k \boldsymbol{v}_j^T \boldsymbol{x}_i \boldsymbol{x}_i^T \boldsymbol{v}_j + \sum_{j=1}^k \boldsymbol{v}_j^T \boldsymbol{x}_i \boldsymbol{x}_i^T \boldsymbol{v}_j \\ &= \boldsymbol{x}_i^T \boldsymbol{x}_i - \sum_{j=1}^k \boldsymbol{v}_j^T \boldsymbol{x}_i \boldsymbol{x}_i^T \boldsymbol{v}_j \end{aligned}$$

(b) Now show that

$$J_k = rac{1}{n}\sum_{i=1}^n \left(oldsymbol{x}_i^Toldsymbol{x}_i - \sum_{j=1}^k oldsymbol{v}_j^Toldsymbol{x}_ioldsymbol{x}_i^Toldsymbol{v}_j
ight) = rac{1}{n}\sum_{i=1}^n oldsymbol{x}_i^Toldsymbol{x}_i - \sum_{j=1}^k \lambda_j.$$

Hint: recall that $\boldsymbol{v}_j^T \boldsymbol{\Sigma} \boldsymbol{v}_j = \lambda_j \boldsymbol{v}_j^T \boldsymbol{v}_j = \lambda_j$.

Solution:

$$egin{aligned} J_k &= rac{1}{n} \sum_{i=1}^n \left(oldsymbol{x}_i^T oldsymbol{x}_i - \sum_{j=1}^k oldsymbol{v}_j^T oldsymbol{x}_i oldsymbol{x}_i^T oldsymbol{v}_j \end{aligned} \ &= rac{1}{n} \sum_{i=1}^n oldsymbol{x}_i^T oldsymbol{x}_i - \sum_{i=1}^k oldsymbol{v}_j^T rac{1}{n} \sum_{j=1}^n oldsymbol{x}_i oldsymbol{x}_i^T oldsymbol{v}_j \end{aligned} \ &= rac{1}{n} \sum_{i=1}^n oldsymbol{x}_i^T oldsymbol{x}_i - \sum_{i=1}^k oldsymbol{v}_j^T oldsymbol{\Sigma} oldsymbol{v}_j \end{aligned} \ \ &= rac{1}{n} \sum_{i=1}^n oldsymbol{x}_i^T oldsymbol{x}_i - \sum_{i=1}^k \lambda_j \end{aligned}$$

(c) If k = d there is no truncation, so $J_d = 0$. Use this to show that the error from only using k < d terms is given by

$$J_k = \sum_{j=k+1}^d \lambda_j.$$

Hint: partition the sum $\sum_{j=1}^{d} \lambda_j$ into $\sum_{j=1}^{k} \lambda_j$ and $\sum_{j=k+1}^{d} \lambda_j$.

Solution:

$$J_k = \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i^T \boldsymbol{x}_i - \sum_{j=1}^k \lambda_j$$
$$= \frac{1}{n} \sum_{i=1}^n \boldsymbol{x}_i^T \boldsymbol{x}_i - \sum_{j=1}^d \lambda_j + \sum_{j=k+1}^d \lambda_j$$

Since $J_d = 0$,

$$0 = \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{i} - \sum_{i=1}^{d} \lambda_{j}$$

Thus,

$$J_k = \sum_{j=k+1}^d \lambda_j$$

2. (ℓ_1 -Regularization) Consider the ℓ_1 norm of a vector $\mathbf{x} \in \mathbb{R}^n$:

$$\|oldsymbol{x}\|_1 = \sum_i |oldsymbol{x}_i|.$$

Draw the norm-ball $B_k = \{x : ||x||_1 \le k\}$ for k = 1. On the same graph, draw the Euclidean norm-ball $A_k = \{x : ||x||_2 \le k\}$ for k = 1 behind the first plot. (Do not need to write any code, draw the graph by hand). Show that the optimization problem

minimize:
$$f(\mathbf{x})$$
 subj. to: $\|\mathbf{x}\|_p \leq k$

is equivalent to

minimize:
$$f(\mathbf{x}) + \lambda ||\mathbf{x}||_p$$

(hint: create the Lagrangian). With this knowledge, and the plots given above, argue why using ℓ_1 regularization (adding a $\lambda ||x||_1$ term to the objective) will give sparser solutions than using ℓ_2 regularization for suitably large λ .

Solution:

The Lagrangian is given by

$$\mathcal{L}(\boldsymbol{x}, k) = f(x) + \lambda(\|\boldsymbol{x}\|_{p} - k) = f(x) + \lambda\|\boldsymbol{x}\|_{p} - \lambda k$$

We want to minimise the Lagrangian to find the optimal solution for x. Since λk does not depend on x, this optimisation problem is equivalent to minimising $f(x) + \lambda ||x||_p$. We see that the Euclidean distance from the origin to the "corners" of the l_1 ball than the distance to the edges. Hence, the optimal solution to the problem is more likely to first intersect with a corner of the l_1 ball than an edge. Compare this to the l_2 ball which is equidistant in Euclidean space to the origin, and therefore equally likely to first intersect the optimal solution at any point. Hence, using the l_1 ball is more likely to yield optimal solutions that lie on the x or y axes, and are therefore more sparse.

3. Extra credit (Lasso) Show that placing an equal zero-mean Laplace prior on each element of the weights θ of a model is equivalent to ℓ_1 regularization in the Maximum-a-Posteriori estimate

$$\text{maximize: } \mathbb{P}(\boldsymbol{\theta}|\mathcal{D}) = \frac{\mathbb{P}(\mathcal{D}|\boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})}.$$

Note the form of the Laplace distribution is

$$Lap(x|\mu, b) = \frac{1}{2b} \exp\left(-\frac{|x - \mu|}{b}\right)$$

where μ is the location parameter and b > 0 controls the variance. Draw (by hand) and compare the density Lap(x|0,1) and the standard normal $\mathcal{N}(x|0,1)$ and suggest why this would lead to sparser solutions than a Gaussian prior on each elements of the weights (which correspond to ℓ_2 regularization).

Solution:

Maximising $\mathbb{P}(\boldsymbol{\theta} \mid \mathcal{D})$ is equivalent to maximising the log likelihood,

$$\ln \mathbb{P}(\boldsymbol{\theta} \mid \mathcal{D}) = \ln rac{\mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta})\mathbb{P}(\boldsymbol{\theta})}{\mathbb{P}(\mathcal{D})} = \ln \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) + \ln \mathbb{P}(\boldsymbol{\theta}) - \mathbb{P}(\mathcal{D})$$

Since $\mathbb{P}(\mathcal{D})$ does not depend on $\boldsymbol{\theta}$, this is equivalent to

$$\begin{split} \text{maximise:} & & \ln \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) + \ln \mathbb{P}(\boldsymbol{\theta}) \\ & = \ln \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) + \ln \left(\exp \left(-\frac{|\boldsymbol{\theta}_i|}{b} \right) \right) \\ & = \ln \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) + \ln \left(\prod_i \exp \left(-\frac{|\boldsymbol{\theta}_i|}{b} \right) \right) \\ & = \ln \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) + \sum_i \left(-\frac{|\boldsymbol{\theta}_i|}{b} \right) \\ & = \ln \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) - \frac{1}{b} \sum_i |\boldsymbol{\theta}_i| \\ & = \ln \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) - \lambda ||\boldsymbol{\theta}||_1, \quad \lambda = \frac{1}{b} \end{split}$$

This is subsequently equivalent to

minimise:
$$-\ln \mathbb{P}(\mathcal{D} \mid \boldsymbol{\theta}) + \lambda \|\boldsymbol{\theta}\|_1$$

which is of the same form as l_1 regularisation.

We see that the Laplace distribution has a sharp peak at x=0 that gives it a higher probability of being exactly 0 than the normal distribution. Hence, the weights are more likely to be exactly 0, and therefore more likely to be sparse.