北京理工大学《数学分析》

2010-2011 学年第二学期期末试题 (A卷)

班级_	学号											
	(本试	卷共 6	页, 十	一个大	题,证	【卷后〕	面空白:	纸撕下	作草稿	高纸)		
题号	_		三	四	五	六	七	八	九	+	+ -	总分
得分												
I =	$ \vec{a} = 3$ $= x^2 y$	3, b + ye ^z + i,b,c不 曲 线 + ydy -	$= 26$, $yz \ln x$ 共面, $x = t$, $+ zdz$ 化	$\vec{a} \times \vec{b}$, 则 di 但向量 $y = t^3$, .成第一	= 72, iv(grada 畫 ā + 2ā z = 1 _ - 类曲约	u) _(1,1,1) \vec{b} , \vec{b} + \vec{c} 上 从 钱积分,	= , $\lambda \vec{a} + \vec{c}$ A(0,0,1 则有	. 共面) 到 <i>I</i> = _	, 则え B(2,8,1	= i) 的 ⁻	一段,	
二. (9 2	分) 交担		次序并	计算 <i>I</i> :	$=\int_0^1 dy$	$-\sqrt{y}\frac{e^x}{a}$	dx .					

三. (9 分) 求函数 $f(x,y) = x^2y + \frac{1}{2}y^2 - y$ 的极值和极值点。

四. (9 分)设方程 $z^3 - 2xz + y = 5$ 确定函数 z = z(x, y),求 $\frac{\partial^2 z}{\partial x \partial y}$ 。

五. (9 分) 在曲面 z = xy 上求一点,使曲面在此点处的切平面垂直于直线 $\frac{x+1}{1} = \frac{y-2}{3} = \frac{z}{1}, \text{ 并写出切平面方程}.$

六. (8分) 证明方程 $yx^{y-1}dx + x^y \ln xdy = 0$ 是全微分方程,并求出通解。

七. (10 分) 求幂级数 $\sum_{n=1}^{\infty} n(n+1)x^{n-1}$ 的收敛域及和函数。

八. (10 分) 设V 是球面 $x^2 + y^2 + (z-1)^2 = 1$ ($z \ge 1$) 与锥面 $z = \sqrt{x^2 + y^2}$ 所围的立体,其上 每点的密度与此点到原点的距离的平方成反比(比例系数为 1),求V 的质量及质心。

九.(9 分) 将 $f(x) = (x^2 + 1) \arctan x$ 展开成 x 的幂级数,并指出收敛域。

十.(9 分) 利用高斯公式计算 $I = \iint_S (y^2 - x) dy dz + (z^2 - y) dz dx + (x^2 - z) dx dy$,其中 S 是抛物面 $z = 2 - x^2 - y^2$ $(z \ge 1)$ 的上侧。

十一.(8 分) 设 $a_n > 0$,且级数 $\sum_{n=1}^{\infty} a_n$ 收敛, $b_n = 1 - \frac{\lambda \ln(1+a_n)}{a_n}$ (λ 是常数),判断级数 $\sum_{n=1}^{\infty} b_n$ 的收敛性。