МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №1

по дисциплине «Качество и метрология программного обеспечения» ТЕМА: «Расчет метрических характеристик качества разработки программ по метрикам Холстеда»

Студент гр. 6304	Тимофеев А.А.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Для заданного варианта программы обработки данных, представленной на языке Паскаль, разработать вычислительный алгоритм и также варианты программ его реализации на языках программирования Си и Ассемблер. Добиться, чтобы программы на Паскале и Си были работоспособны и давали корректные результаты (это потребуется в дальнейшем при проведении с ними измерительных экспериментов).

Для каждой из разработанных программ (включая исходную программу на Паскале) определить следующие метрические характеристики (по Холстеду):

- 1. Измеримые характеристики программ:
 - число простых (отдельных) операторов, в данной реализации;
 - число простых (отдельных) операндов, в данной реализации;
 - общее число всех операторов в данной реализации;
 - общее число всех операндов в данной реализации;
 - число вхождений ј-го оператора в тексте программы;
 - число вхождений ј-го операнда в тексте программы;
 - словарь программы;
 - длину программы.
- 2. Расчетные характеристики программы:
 - длину программы;
 - реальный и потенциальный объемы программы;
 - уровень программы;
 - интеллектуальное содержание программы;
 - работу программиста;
 - время программирования;
 - уровень используемого языка программирования;
 - ожидаемое число ошибок в программе.

Для характеристик длина программы, уровень программы, время программирования следует рассчитать как саму характеристику, так и ее оценку.

Вариант 15

Приближенная линеаризация опытных данных (вар.2).

Ход работы

1. Определение метрических характеристик для программы на Pascal.

Код программы представлен в приложении А.

Ручной расчёт измеримых характеристик представлен в таблице 1.

Таблица 1 – Ручной расчёт измеримых характеристик (Pascal)

$N_{\overline{0}}$	Оператор	Количество	№	Операнд	Количество
1	=	1	1	n	14
2	;	40	2	X	6
3	:	10	3	у	5
4	:=	27	4	i	13
5	()	12	5	a	6
6	[]	8	6	ь	6
7	for to do	3	7	calc	2
8	+	8	8	y_calc	2
9	*	13	9	sum_x	8
10	/	10	10	sum_y	9
11	randomize	1	11	sum_xy	7
12	random	2	12	sum_x2	7
13	linfit2	2	13	sum_y2	6
14	program	1	14	xi	6
15	procedure	1	15	yi	6
16	begin end	4	16	sxy	4
Всего	0	143	17	syy	3
		l	18	correl_coef	2
			19	see	3
			20	sigma_b	3
			21	sigma_a	2

22	SXX	6
23	linear	1
24	100	1
25	0.0	5
26	1	7
27	2	1
Всего)	141

Программный расчёт измеримых характеристик представлен в таблицу 2. Файл с результатами программных расчётов представлен в приложении Б. Таблица 2 – Программный расчёт измеримых характеристик (Pascal)

№	Оператор	Количество	No	Операнд	Количество
1	0	14	1	0.0	5
2	*	13	2	1	7
3	+	8	3	100	1
4	-	7	4	2	1
5	/	10	5	a	6
6	;	62	6	ь	6
7	=	25	7	calc	2
8	[]	6	8	correl_coef	2
9	const	1	9	i	10
10	for	3	10	linear	1
11	integer	3	11	n	14
12	linfit2	2	12	see	3
13	procedure	1	13	sigma_a	2
14	program	1	14	sigma_b	3
15	random	2	15	sum_x	8
16	randomize	1	16	sum_x2	7
17	real	5	17	sum_xy	7
18	sqrt	4	18	sum_y	9
Всего)	170	19	sum_y2	6
		1	20	sxx	6
			21	sxy	4

22	syy	3
23	X	6
24	xi	6
25	У	5
26	y_calc	2
27	yi	6
Всег	0	138

Определение расчетных характеристик представлено в таблице 3.

Таблица 3 – Расчёт расчетных характеристик (Pascal)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов n ₁	16	18
Число простых операндов n ₂	27	27
Общее число всех операторов N ₁	143	170
Общее число всех операндов N ₂	141	138
Словарь п	43	45
Длина Nопыт	284	308
Теоретическая длина N _{теор}	192.382	203.441
Объём V	1541.059	1691.491
Потенциальный объём V*	24	24
Уровень программы L	0.0156	0.0142
Оценка уровня программы L~	0.024	0.021
Интеллектуальное содержание I	36.887	36.772
Работа программирования Е	98952.643	119214.207
Оценка времени	9895.264	11921.421
программирования Т^		
Время программирования Т	6438.13	7781.066
Уровень языка λ	0.374	0.341
Ожидаемое число ошибок в	2	2
программе В		

2. Определение метрических характеристик для программы на Си. Код программы представлен в приложении В. Ручной расчёт измеримых характеристик представлен в таблице 4.

Таблица 4 – Ручной расчёт измеримых характеристик (Си)

№	Оператор	Количество	№	Операнд	Количество
1	;	38	1	100	3
2	=	27	2	sum_x	6
3	0	23	3	sum_y	7
4	[]	9	4	sum_xy	5
5	for	3	5	sum_x2	5
6	<	6	6	sum_y2	4
7	+	1	7	i	15
8	++	3	8	xi	5
9	+=	5	9	yi	5
10	-	7	10	sxx	5
11	/	10	11	sxy	3
12	%	2	12	syy	2
13	*	24	13	correl_coef	1
14	&	2	14	see	2
15	return	1	15	sigma_b	2
16	linfit2	2	16	sigma_a	1
17	srand	1	17	x	6
18	time	1	18	у	5
19	rand	1	19	0.0	10
20	{}	8	20	0	4
Всего)	174	21	a	6
			22	b	6
			23	N	7
			24	n	8
			25	y_calc	4
			26	NULL	1
			27	2	1
			Всег	0	129

Программный расчёт измеримых характеристик представлен в таблице 5. Файл с результатами программных расчётов представлен в приложении Г.

Таблица 5 – Программный расчёт измеримых характеристик (Си)

No॒	Оператор	Количество	№	Операнд	Количество
1	%	2	1	0	4
2	0	17	2	0.0	10
3	*	13	3	100	2
4	+	1	4	2	1
5	++	3	5	NULL	1
6	+=	5	6	N	6
7	,	10	7	a	6
8	-	7	8	b	6
9	/	10	9	correl_coef	1
10	;	44	10	i	15
11	<	3	11	n	8
12	=	27	12	see	2
13	[]	6	13	sigma_a	1
14	_&	2	14	sigma_b	2
15	* _	6	15	sum_x	6
16	_[]	3	16	sum_x2	5
17	*	5	17	sum_xy	5
18	float	24	18	sum_y	7
19	for	3	19	sum_y2	4
20	int	5	20	SXX	5
21	linfit2	2	21	sxy	3
22	main	1	22	syy	2
23	rand	2	23	X	6
24	return	1	24	xi	5
25	sqrt	4	25	у	5
26	srand	1	26	y_calc	4
27	time	1	27	yi	5
28	void	1	Bce	ГО	127
Всего)	209			

Определение расчетных характеристик представлено в таблице 6.

Таблица 6 – Расчёт расчетных характеристик (Си)

Характеристика	Ручной расчёт	Программный расчёт
Число простых операторов n ₁	20	28
Число простых операндов n ₂	27	27
Общее число всех операторов N ₁	174	209
Общее число всех операндов N ₂	129	127
Словарь п	47	55
Длина N _{опыт}	303	336
Теоретическая длина N _{теор}	214.821	262.988
Объём V	1683.04	1942.54
Потенциальный объём V*	24.0	24.0
Уровень программы L	0.014	0.012
Оценка уровня программы L [~]	0.021	0.015
Интеллектуальное содержание I	35.226	29.499
Работа программирования Е	118026.044	157227.061
Оценка времени	11802.604	15722.706
программирования Т^		
Время программирования Т	8041.2	18057.1
Уровень языка λ	0.342	0.297
Ожидаемое число ошибок в	2	2
программе В		

3. Определение метрических характеристик для программы на Ассемблере.

Код программы представлен в приложении Д.

Ручной расчёт измеримых характеристик представлен в таблице 7.

Таблица 7 – Ручной расчёт измеримых характеристик (Ассемблер)

N	<u>[o</u>	Оператор	Количество	№	Операнд	Количество
1		pushq	2	1	%rbp	10

2	movq	31	2	16	10
3	movl	30	3	-16	4
4	xorps	2	4	%rsp	4
5	movss	53	5	%rdi	7
6	cmpl	3	6	%rsi	12
7	jge	3	7	-16(%rbp)	2
8	movslq	6	8	%rdx	11
9	addss	6	9	-8(%rbp)	5
10	mulss	12	10	-24(%rbp)	2
11	addl	3	11	%rcx	22
12	cvtsi2ssl	8	12	-32(%rbp)	4
13	divss	8	13	%r8	2
14	subss	6	14	-40(%rbp)	4
15	cvtss2sd	7	15	-44(%rbp)	8
16	sqrtsd	4	16	%r9d	2
17	divsd	2	17	%xmm0	90
18	cvtsd2ss	4	18	-48(%rbp)	7
19	jmp	3	19	-52(%rbp)	8
20	popq	2	20	-56(%rbp)	6
21	retq	2	21	-60(%rbp)	6
22	subq	1	22	-64(%rbp)	5
23	xorl	3	23	\$0	4
24	leaq	8	24	-68(%rbp)	6
25	callq	9	25	\$100	5
26	idivl	2	26	%rax	12
27	cmpq	1	27	-72(%rbp)	5
28	jne	1	28	-76(%rbp)	5
29	addq	1	29	%eax	34
30	ud2	1	30	%xmm1	48
31	cltd	2	31	%xmm2	8
Bce	го	226	32	-80(%rbp)	5
		•	33	-84(%rbp)	3
			34	-88(%rbp)	2
			35	-92(%rbp)	1

36	\$2	1
37	-96(%rbp)	2
38	-100(%rbp)	2
39	-104(%rbp)	1
40	-108(%rbp)	6
41	\$1264	2
42	\$400	1
43	-1220(%rbp)	1
44	-416(%rbp)	2
45	-1240(%rbp)	2
46	-1248(%rbp)	3
47	-1252(%rbp)	3
48	-1216(%rbp)	2
49	-1224(%rbp)	2
50	-1228(%rbp)	2
51	-1232(%rbp)	6
52	-816(%rbp,%rsi,4)	1
53	-416(%rbp,%rsi,4)	1
54	(%rax,%rcx,4)	4
Bce	го	413
-		

Определение расчетных характеристик представлено в таблице 8. Таблица 8 – Расчёт расчетных характеристик (Ассемблер)

Характеристика	Ручной расчёт
Число простых операторов n ₁	31
Число простых операндов n ₂	54
Общее число всех операторов N ₁	226
Общее число всех операндов N ₂	413
Словарь п	85
Длина N _{опыт}	639
Теоретическая длина N _{теор}	464.344
Объём V	4095.6

Потенциальный объём V*	24
Уровень программы L	0.006
Оценка уровня программы L~	0.0084
Интеллектуальное содержание I	34.4
Работа программирования Е	698914.14
Оценка времени программирования Т^	69891.14
Время программирования Т	48551.9
Уровень языка λ	0.141
Ожидаемое число ошибок в программе В	5

4. Сравнение результатов определения метрических характеристик.

Таблица 9 – Сводная таблица расчетов на трех языках

Характеристика	Ручной	Програм-	Ручной	Програм-	Ручной
	расчёт	мный	расчёт Си	мный расчёт	расчёт
	Pascal	расчёт		Си	Ассемблер
		Pascal			
Число простых	16	18	20	28	31
операторов n ₁					
Число простых	27	27	27	27	54
операндов n ₂					
Общее число всех	143	170	174	209	226
операторов N ₁					
Общее число всех	141	138	129	127	413
операндов N ₂					
Словарь п	43	45	47	55	85
Длина N _{опыт}	284	308	303	336	639
Теоретическая длина	192.382	203.441	214.821	262.988	464.344
N_{Teop}					
Объём V	1541.059	1691.491	1683.04	1942.54	4095.6
Потенциальный	24	24	24.0	24.0	24
объём V*					
Уровень программы	0.0156	0.0142	0.014	0.012	0.006

Оценка уровня	0.024	0.021	0.021	0.015	0.0084
программы L~					
Интеллектуальное	36.887	36.772	35.226	29.499	34.4
содержание I					
Работа	98952.643	119214.207	118026.044	157227.061	698914.14
программирования Е					
Оценка времени	9895.264	11921.421	11802.604	15722.706	69891.14
программирования					
T^					
Время	6438.13	7781.066	8041.2	18057.1	48551.9
программирования Т					
Уровень языка λ	0.374	0.341	0.342	0.297	0.141
Ожидаемое число	2	2	2	2	5
ошибок в программе					
В					

При анализе таблицы становится очевидно, что наименьшим уровнем программы обладает программа на Ассемблере, а наивысшим – программа на Паскале. Наоборот наибольшие показатели ожидаемого количества ошибок, времени и работы программирования также соответствуют программе на Ассемблере, а наименьшие – программе на Паскале.

Выводы

В ходе выполнения данной лабораторной работы были получены практические навыки по определению метрик Холстеда для программ, разработанных на Паскале, Си и Ассемблере. Был произведен сравнительный анализ полученных результатов.

ПРИЛОЖЕНИЕ А

Код программы на Pascal.

```
program linear;
const
 n = 100;
var
 x, y: array[1..n] of real;
 i: integer;
 a, b : real;
 calc: array[1..n] of real;
procedure linfit2(
 x,y:
              array of real;
 var y_calc: array of real;
 var a,b:
             real;
              integer);
 n:
var i
      : integer;
sum_x,sum_y,sum_xy,sum_x2,
sum_y2,xi,yi,sxy,syy,
correl_coef, see, sigma_b, sigma_a,
       : real;
SXX
begin
 sum_x := 0.0;
 sum y := 0.0;
 sum_xy := 0.0;
 sum_x2 := 0.0;
 sum_y2 := 0.0;
 for i := 1 to n do
   begin
      xi := x[i];
      yi := y[i];
      sum_x := sum_x+xi;
      sum_y := sum_y+yi;
      sum_xy := sum_xy+xi*yi;
      sum_x2 := sum_x2+xi*xi;
      sum_y2 := sum_y2+yi*yi;
    end;
```

```
sxx := sum_x2-sum_x*sum_x/n;
 sxy := sum_xy-sum_x*sum_y/n;
 syy := sum_y2-sum_y*sum_y/n;
 b := sxy/sxx;
 a := ((sum_x2*sum_y-sum_x*sum_xy)/n)/sxx;
 correl_coef := sxy/sqrt(sxx*syy);
 see := sqrt((sum_y2-a*sum_y-b*sum_xy)/(n-2));
 sigma_b := see/sqrt(sxx);
 sigma_a := sigma_b*sqrt(sum_x2/n);
 for i := 1 to n do
   y_{calc[i]} := a+b*x[i]
end;
begin
 randomize;
 for i := 1 to n do
   begin
      x[i] := random(i) + 1;
      y[i] := random(i) + 1;
   end;
 linfit2(x, y, calc, a, b, n);
end.
```

приложение б

Результаты расчетов для программы на Паскале

гезультаты	расчего	в для прогр
Statistics for module out_pas	s.lxm	
The number of different opera	: 19	
The number of different opera	ands	: 27
The total number of operators	5	: 170
The total number of operands		: 138
Dictionary	(D)	: 46
Length	(N)	: 308
Length estimation	(^N)	: 209.093
Volume	(V)	: 1701.26
Potential volume	(*V)	: 11.6096
Limit volume	(**V)	: 15.6844
Programming level	(L)	: 0.00682415
Programming level estimation	(^L)	: 0.020595
Intellect	(I)	: 35.0373
Time of programming	(T)	: 13850
Time estimation	(^T)	: 3115.48
Programming language level	(lambda)	: 0.079226
Work on programming	(E)	: 249299
Error	(B)	: 1.32036
Error estimation	(^B)	: 0.567086
Table:		
Operators:		
1 14 ()		
2 13 *		
3 8 +		
4 7 -		
5 10 /		
6 62 ;		
7 25 =		
8 6 []		
9 2 ary		
10 1 const		

| 11 | 3 | for | 12 | 3 | integer

```
| 13 | 2 | linfit2
```

Operands:

- | 1 | 5 | 0.0
- | 2 | 7 | 1
- 3 | 1 | 100
- | 4 | 1 | 2
- | 5 | 6 | a
- | 6 | 6 | b
- | 7 | 2 | calc
- | 8 | 2 | correl_coef
- | 9 | 10 | i
- | 10 | 1 | linear
- | 11 | 14 | n
- | 12 | 3 | see
- | 13 | 2 | sigma_a
- | 14 | 3 | sigma_b
- | 15 | 8 | sum_x
- | 16 | 7 | sum_x2
- | 17 | 7 | sum_xy
- | 18 | 9 | sum_y
- | 19 | 6 | sum_y2
- | 20 | 6 | sxx
- | 21 | 4 | sxy
- | 22 | 3 | syy
- | 23 | 6 | x
- | 24 | 6 | xi
- | 25 | 5 | y
- | 26 | 2 | y_calc
- | 27 | 6 | yi

Summary:

The number of different operators : 19

The number of different operands : 27

The total number of operators : 170
The total number of operands : 138

Dictionary	(D)	:	46
Length	(N)	:	308
Length estimation	(^N)	:	209.093
Volume	(V)	:	1701.26
Potential volume	(*V)	:	11.6096
Limit volume	(,	**V)	:	15.6844
Programming level	(L)	:	0.00682415
Programming level estimation	(^L)	:	0.020595
Intellect	(I)	:	35.0373
Time of programming	(T)	:	13850
Time estimation	(^T)	:	3115.48
Programming language level	(lambda)	:	0.079226
Work on programming	(E)	:	249299
Error	(B)	:	1.32036
Error estimation	(^B)	:	0.567086

ПРИЛОЖЕНИЕ В

Код программы на Си

```
#include <math.h>
#include <time.h>
#include <stdlib.h>
#define N 100
void linfit2(float *x, float *y, float *y_calc, float *a, float *b, int n) {
 float sum x = 0.0;
  float sum y = 0.0;
 float sum xy = 0.0;
  float sum x2 = 0.0;
  float sum_y2 = 0.0;
  for (int i = 0; i < N; i++) {
   float xi = x[i];
   float yi = y[i];
   sum_x += xi;
   sum_y += yi;
   sum_xy += (xi * yi);
   sum_x2 += (xi * xi);
   sum_y2 += (yi * yi);
 float sxx = sum_x2 - sum_x * sum_x / n;
  float sxy = sum_xy - sum_x * sum_y / n;
  float syy = sum_y2 - sum_y * sum_y / n;
  (*b) = sxy / sxx;
  (*a) = ((sum_x2 * sum_y - sum_x * sum_xy) / n) / sxx;
  float correl_coef = sxy / sqrt(sxx * syy);
  float see = sqrt( (sum_y2 - *a * sum_y - *b * sum_xy) / (n - 2) );
  float sigma_b = see / sqrt(sxx);
  float sigma_a = sigma_b * sqrt(sum_x2 / n);
  for (int i = 0; i < n; i++) {
   y_{calc[i]} = *a + *b * x[i];
}
int main() {
  float x[N] = \{0.0\};
 float y[N] = \{0.0\};
 float y_{calc[N]} = \{0.0\};
 float a = 0.0;
 float b = 0.0;
  srand(time(NULL));
  for (int i = 0; i < N; i++) {
   x[i] = rand() % 100;
   y[i] = rand() % 100;
  linfit2(x, y, y_calc, &a, &b, N);
 return 0;
}
```

ПРИЛОЖЕНИЕ Г

Результаты расчетов для программы на Си

```
Statistics for module out c.lxm
 _____
The number of different operators : 28
The number of different operands : 27
The total number of operators : 209
The total number of operands : 127
Dictionary ( D) : 55

Length ( N) : 336

Length estimation ( ^N) : 262.988

Volume ( V) : 1942.54

Potential volume ( *V) : 11.6096

Limit volume ( **V) : 15.6844

Programming level ( L) : 0.00597654

Programming level estimation ( ^L) : 0.0151856

Intellect ( I) : 29.4986

Time of programming ( T) : 18057.1

Time estimation ( ^T) : 5562.39

Programming language level (lambda) : 0.0693854

Work on programming ( E) : 325027

Error ( B) : 1.57577

Error estimation ( ^B) : 0.647512
 Dictionary
                                                                          ( D) : 55
                                                                             ( ^B) : 0.647512
 Error estimation
 Table:
 _____
```

```
Operators:
 1 | 2 | %
 2 | 17 | ()
| 3 | 13 | *
| 4 | 1 | +
  5 | 3 | ++
  6 | 5 | +=
  7 | 10 | ,
  8 | 7 | -
  9 | 10 | /
  10 | 44 | ;
  11 | 3 | <
  12 | 27 | =
  13 | 6 | []
  14 | 2 | _&
  15 | 6 | *
  16 | 3 | _[]
  17 | 5 |
  18 |
       24 | float
  19 | 3 | for
  20 | 5 | int
  21 | 2 | linfit2
22 | 1 | main
  23 | 2 | rand
  24 | 1 | return
  25 | 4 | sqrt
  26 | 1 | srand
  27 | 1 | time
  28 | 1 | void
Operands:
```

```
4
            0
1
2
       10
            0.0
3
       2
            100
4
      1
            2
5
      6
            Ν
6
            NULL
      1
7
      6
            а
8
      6
            b
9
            correl_coef
       1
10
      15
            i
11
       8
            n
       2
12
            see
13
      1
            sigma_a
14
       2
            sigma_b
15
       6
            sum_x
       5
16
            sum_x2
      5
7
            sum_xy
17
18
            sum_y
      4
19
            sum_y2
20
       5
            sxx
       3
21
            sxy
       2
22
            syy
23
       6
            Χ
24
      5
            хi
25
       5
            У
26
       4
            y_calc
27
      5
          | yi
```

Summary:

Summary.						
=======================================						
The number of different operators			28			
The number of different operands			27			
The total number of operators			209			
The total number of operands			127			
Dictionary	(D)	:	55			
Length	(N)		336			
Length estimation	(^N)	:	262.988			
Volume	(V)	:	1942.54			
Potential volume (*V)			11.6096			
Limit volume (**V)			15.6844			
Programming level	(L)	:	0.00597654			
Programming level estimation	(^L)	:	0.0151856			
Intellect	(I)	:	29.4986			
Time of programming	(T)	:	18057.1			
Time estimation	(^T)	:	5562.39			
Programming language level	(lambda)	:	0.0693854			
Work on programming	(E)	:	325027			
Error	(B)	:	1.57577			
Error estimation	(^B)	:	0.647512			

приложение д

Код программы на Ассемблер

```
__TEXT,__text,regular,pure_instructions
      .section
      .build_version macos, 10, 14
                                     sdk_version 10, 14
      .globl linfit2
                                    ## -- Begin function linfit2
      .p2align
                  4, 0x90
_linfit2:
                                        ## @linfit2
      .cfi_startproc
## %bb.0:
      pushq %rbp
      .cfi def cfa offset 16
      .cfi offset %rbp, -16
      movq %rsp, %rbp
      .cfi_def_cfa_register %rbp
      movq %rdi, -8(%rbp)
      movq
            %rsi, -16(%rbp)
      movq %rdx, -24(%rbp)
      movq %rcx, -32(%rbp)
      movq %r8, -40(%rbp)
      movl %r9d, -44(%rbp)
      xorps %xmm0, %xmm0
      movss %xmm0, -48(%rbp)
      movss %xmm0, -52(%rbp)
      movss %xmm0, -56(%rbp)
      movss %xmm0, -60(%rbp)
      movss %xmm0, -64(%rbp)
      movl $0, -68(%rbp)
LBB0 1:
                                        ## =>This Inner Loop Header: Depth=1
      cmpl $100, -68(%rbp)
      jge
            LBB0 4
## %bb.2:
                                        ##
                                             in Loop: Header=BB0 1 Depth=1
      movq -8(%rbp), %rax
      movslq -68(%rbp), %rcx
      movss (%rax,%rcx,4), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      movss %xmm0, -72(%rbp)
      movq -16(%rbp), %rax
      movslq -68(%rbp), %rcx
      movss (%rax,%rcx,4), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      movss %xmm0, -76(%rbp)
                                     ## xmm0 = mem[0],zero,zero,zero
      movss -72(%rbp), %xmm0
      addss -48(%rbp), %xmm0
      movss %xmm0, -48(%rbp)
      movss -76(%rbp), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      addss -52(%rbp), %xmm0
      movss %xmm0, -52(%rbp)
      movss -72(%rbp), %xmm0
                                     ## xmm0 = mem[0],zero,zero,zero
      mulss -76(%rbp), %xmm0
      addss -56(%rbp), %xmm0
      movss %xmm0, -56(%rbp)
      movss -72(%rbp), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      mulss -72(%rbp), %xmm0
      addss -60(%rbp), %xmm0
      movss %xmm0, -60(%rbp)
      movss -76(%rbp), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      mulss -76(%rbp), %xmm0
      addss -64(%rbp), %xmm0
      movss %xmm0, -64(%rbp)
## %bb.3:
                                             in Loop: Header=BB0 1 Depth=1
           -68(%rbp), %eax
      movl
      addl $1, %eax
```

```
movl %eax, -68(%rbp)
      jmp
            LBB0 1
LBB0 4:
      movss -60(%rbp), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      movss -48(%rbp), %xmm1
                                    ## xmm1 = mem[0],zero,zero,zero
      mulss -48(%rbp), %xmm1
      movl -44(%rbp), %eax
      cvtsi2ssl %eax, %xmm2
      divss %xmm2, %xmm1
      subss %xmm1, %xmm0
      movss %xmm0, -80(%rbp)
      movss -56(%rbp), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      movss -48(%rbp), %xmm1
                                    ## xmm1 = mem[0],zero,zero,zero
      mulss -52(%rbp), %xmm1
      movl -44(%rbp), %eax
      cvtsi2ssl
                 %eax, %xmm2
      divss %xmm2, %xmm1
      subss %xmm1, %xmm0
      movss %xmm0, -84(%rbp)
      movss -64(\%rbp), \%xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      movss -52(%rbp), %xmm1
                                    ## xmm1 = mem[0],zero,zero,zero
      mulss -52(%rbp), %xmm1
      movl -44(%rbp), %eax
      cvtsi2ssl
                  %eax, %xmm2
      divss %xmm2, %xmm1
      subss %xmm1, %xmm0
      movss %xmm0, -88(%rbp)
      movss -84(%rbp), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      divss -80(%rbp), %xmm0
      movq -40(%rbp), %rcx
      movss %xmm0, (%rcx)
      movss -60(%rbp), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      mulss -52(\%rbp), \%xmm0
      movss -48(%rbp), %xmm1
                                    ## xmm1 = mem[0],zero,zero,zero
      mulss -56(%rbp), %xmm1
      subss %xmm1, %xmm0
      movl -44(%rbp), %eax
      cvtsi2ssl
                 %eax, %xmm1
      divss %xmm1, %xmm0
      divss -80(%rbp), %xmm0
      movq -32(%rbp), %rcx
      movss %xmm0, (%rcx)
      movss -84(%rbp), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      cvtss2sd
                   %xmm0, %xmm0
      movss -80(%rbp), %xmm1
                                    ## xmm1 = mem[0],zero,zero,zero
      mulss -88(%rbp), %xmm1
                   %xmm1, %xmm1
      cvtss2sd
      sqrtsd%xmm1, %xmm1
      divsd %xmm1, %xmm0
      cvtsd2ss
                  %xmm0, %xmm0
      movss %xmm0, -92(%rbp)
                                    ## xmm0 = mem[0],zero,zero,zero
      movss -64(\%rbp), \%xmm0
      movq -32(%rbp), %rcx
      movss (%rcx), %xmm1
                                    ## xmm1 = mem[0],zero,zero,zero
      mulss -52(%rbp), %xmm1
      subss %xmm1, %xmm0
      movq -40(%rbp), %rcx
      movss (%rcx), %xmm1
                                    ## xmm1 = mem[0],zero,zero,zero
      mulss -56(%rbp), %xmm1
      subss %xmm1, %xmm0
      movl -44(%rbp), %eax
      subl $2, %eax
```

```
divss %xmm1, %xmm0
                   %xmm0, %xmm0
      cvtss2sd
      sqrtsd%xmm0, %xmm0
                %xmm0, %xmm0
      cvtsd2ss
      movss %xmm0, -96(%rbp)
      movss -96(%rbp), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
      cvtss2sd %xmm0, %xmm0
      movss -80(%rbp), %xmm1
                                    ## xmm1 = mem[0],zero,zero,zero
      cvtss2sd
                %xmm1, %xmm1
      sqrtsd%xmm1, %xmm1
      divsd %xmm1, %xmm0
      cvtsd2ss %xmm0, %xmm0
      movss %xmm0, -100(%rbp)
      movss -100(%rbp), %xmm0
                                    ## xmm0 = mem[0],zero,zero,zero
                   %xmm0, %xmm0
      cvtss2sd
      movss -60(%rbp), %xmm1
                                    ## xmm1 = mem[0],zero,zero,zero
      movl -44(%rbp), %eax
      cvtsi2ssl
                  %eax, %xmm2
      divss %xmm2, %xmm1
                   %xmm1, %xmm1
      cvtss2sd
      sqrtsd%xmm1, %xmm1
      mulsd %xmm1, %xmm0
      cvtsd2ss
                %xmm0, %xmm0
      movss %xmm0, -104(%rbp)
      movl $0, -108(%rbp)
LBB0 5:
                                       ## =>This Inner Loop Header: Depth=1
      movl
           -108(%rbp), %eax
      cmpl -44(%rbp), %eax
      jge
            LBB0 8
## %bb.6:
                                       ##
                                            in Loop: Header=BB0 5 Depth=1
      movq -32(%rbp), %rax
                                    ## xmm0 = mem[0],zero,zero,zero
      movss (%rax), %xmm0
      movq
            -40(%rbp), %rax
      movss (%rax), %xmm1
                                    ## xmm1 = mem[0],zero,zero,zero
      movq -8(%rbp), %rax
      movslq -108(%rbp), %rcx
      mulss (%rax,%rcx,4), %xmm1
      addss %xmm1, %xmm0
      movq -24(%rbp), %rax
      movslq -108(%rbp), %rcx
      movss %xmm0, (%rax,%rcx,4)
## %bb.7:
                                       ##
                                            in Loop: Header=BB0 5 Depth=1
            -108(%rbp), %eax
      movl
      addl
            $1, %eax
           %eax, -108(%rbp)
      movl
      jmp
            LBB0_5
LBB0_8:
      popq
            %rbp
      retq
      .cfi endproc
                                       ## -- End function
      .globl_main
                                    ## -- Begin function main
      .p2align
                   4, 0x90
_main:
                                       ## @main
      .cfi startproc
## %bb.0:
      pushq %rbp
      .cfi_def_cfa_offset 16
      .cfi_offset %rbp, -16
      movq %rsp, %rbp
      .cfi def cfa register %rbp
```

cvtsi2ssl

%eax, %xmm1

```
subq $1264, %rsp
                                   ## imm = 0x4F0
      xorl %eax, %eax
      movl %eax, %edi
      xorl %eax, %eax
      movl $400, %ecx
                                   ## imm = 0x190
      movl %ecx, %edx
             ___stack_chk_guard@GOTPCREL(%rip), %rsi
      movq
      movq
            (%rsi), %rsi
      movq %rsi, -8(%rbp)
      movl $0, -1220(%rbp)
      leaq -416(%rbp), %rsi
      movq %rdi, -1240(%rbp)
                                   ## 8-byte Spill
      movq %rsi, %rdi
      movl %eax, %esi
      movq %rdx, -1248(%rbp)
                                   ## 8-byte Spill
      movl %eax, -1252(%rbp)
                                   ## 4-byte Spill
      callq _memset
      leaq -816(%rbp), %rdx
      movq %rdx, %rdi
      movl -1252(%rbp), %esi
                                   ## 4-byte Reload
      movq -1248(%rbp), %rdx
                                   ## 8-byte Reload
      callq _memset
      leaq -1216(%rbp), %rdx
      movq %rdx, %rdi
                              ## 4-byte Reload
      movl -1252(%rbp), %esi
      movq -1248(%rbp), %rdx
                                   ## 8-byte Reload
      callq _memset
      xorps %xmm0, %xmm0
      movss %xmm0, -1224(%rbp)
      movss %xmm0, -1228(%rbp)
      movq -1240(%rbp), %rdi
                                   ## 8-byte Reload
      callq _time
      movl %eax, %ecx
      movl %ecx, %edi
      callq _srand
      movl $0, -1232(%rbp)
LBB1_1:
                                      ## =>This Inner Loop Header: Depth=1
      cmpl $100, -1232(%rbp)
      jge LBB1_4
## %bb.2:
                                      ##
                                           in Loop: Header=BB1_1 Depth=1
      callq _rand
      cltd
      movl $100, %ecx
      idivl %ecx
      cvtsi2ssl
                  %edx, %xmm0
      movslq -1232(%rbp), %rsi
      movss %xmm0, -416(%rbp,%rsi,4)
      callq _rand
      cltd
      movl $100, %ecx
      idivl %ecx
                  %edx, %xmm0
      cvtsi2ssl
      movslq -1232(%rbp), %rsi
      movss %xmm0, -816(%rbp,%rsi,4)
## %bb.3:
                                      ##
                                           in Loop: Header=BB1_1 Depth=1
      movl
           -1232(%rbp), %eax
      addl
            $1, %eax
      movl %eax, -1232(%rbp)
      jmp
            LBB1_1
LBB1 4:
      leaq -1216(%rbp), %rdx
      leaq -816(%rbp), %rsi
```

```
leaq -416(%rbp), %rdi
      leaq -1224(%rbp), %rcx
      leaq -1228(%rbp), %r8
      movl $100, %r9d
      callq _linfit2
      movq
             ___stack_chk_guard@GOTPCREL(%rip), %rcx
      movq (%rcx), %rcx
movq -8(%rbp), %rdx
      cmpq %rdx, %rcx
      jne
            LBB1_6
## %bb.5:
      xorl %eax, %eax
      addq $1264, %rsp ## imm = 0x4F0
      popq %rbp
      retq
LBB1_6:
      callq ___stack_chk_fail
      ud2
      .cfi_endproc
                                      ## -- End function
```

.subsections_via_symbols