Getting started with Competitive Programming Week 8 – Network Flow

Problem: Badges

A badge is created by superimposing two squares. The bottom square should be of blue colour and top square should be of yellow colour. The squares must be rotated in such a way that the projection of the badge displays 8 distinguishable vertices. Please see following image for an example. In the picture, the left-most configuration is permitted while the other two are not.

You are given n squares, each of a given color and side length. Determine the maximum number of badges that you can make. Note that each square can be used for at most one badge.

Input Format:

The first line of input file contains integer n. Each of the next \mathbf{n} lines contain two space separated integers, c_i and d_i . c_i is the colour number (1 for blue and 2 for yellow) and d_i is the length of side of square.

Output Format:

Print the maximum number of badges that can be made.

Constraints:

$$1 \le d_i \le 1000$$

$$1 \le c_i \le 2$$

Sample Input

10

2 13

2 13

26

1 10

28

17

18

28

Sample Output

4