Prva domaća zadaća iz kvantnih računala (11. studenog 2016., v.2)

Ime i prezime:

Rok za predaju zadaće: na predavanju 18. studenog.

Uputa: Gledate li u elektronički dokument, otisnite ga. Odgovore *označite* (*zaokružite*) na ovom papiru. Osim toga, u praznom prostoru pored ponuđenih odgovora ili na dodatnim praznim papirima, za svaki zadatak napišite *kratko obrazloženje ili račnski postupak*. Točno riješeni zadaci donose po jedan bod (nema "negativnih bodova").

Notacija: Uzimamo da vektori $|0\rangle=\left(\begin{smallmatrix}1\\0\end{smallmatrix}\right)$ i $|1\rangle=\left(\begin{smallmatrix}0\\1\end{smallmatrix}\right)$ čine ortonormiranu bazu u $\mathcal{H}^{(2)}$. Kad se radi o stanjima polarizacije fotona, koristimo $|0\rangle\to|x\rangle$, $|1\rangle\to|y\rangle$, bazu $\{|x\rangle\,,|y\rangle\}$ obiljažavamo simbolom \bigoplus , a bazu $\{\frac{1}{\sqrt{2}}(|x\rangle\pm|y\rangle)\}$ obilježavamo simbolom \bigotimes .

Zadaci:

1 Koji od navedenih vektora nije "normiran na jedinicu"?

(a)
$$|0\rangle - i |1\rangle$$
 točno

(b)
$$\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

(c)
$$\frac{1}{2} |0\rangle - \frac{\sqrt{3}}{2} i |1\rangle$$

(d)
$$\frac{3}{5}|0\rangle + \frac{4}{5}|1\rangle$$

(e)
$$\frac{5}{13} |0\rangle - \frac{12}{13} i |1\rangle$$

2 Koja dva od pet navedenih vektora čine ortonormiranu bazu u $\mathcal{H}^{(2)}$?

(a)
$$\frac{1}{\sqrt{2}} (|0\rangle - i|1\rangle)$$

(b)
$$\frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

(c)
$$\frac{1}{2} |0\rangle + \frac{\sqrt{3}}{2} |1\rangle$$
 točno

(d)
$$\frac{1}{2} |0\rangle - \frac{\sqrt{3}}{2} |1\rangle$$

(e)
$$\frac{\sqrt{3}}{2} |0\rangle - \frac{1}{2} |1\rangle$$
 točno

3 Qubit se nalazi u stanju $\frac{1}{\sqrt{2}}(|0\rangle-i\,|1\rangle)$. Amplituda vjerojatnosti nalaženja tog qubita u stanju $\frac{3}{5}\mathrm{i}\,|0\rangle+\frac{4}{5}\,|1\rangle$ je

1

(a)
$$\frac{1}{\sqrt{2}} \left(\frac{3}{5} + \frac{4}{5} i \right)$$

(b)
$$\frac{1}{\sqrt{2}} \left(\frac{3}{5} i + \frac{4}{5} \right)$$

(c)
$$\frac{1}{\sqrt{2}} \left(\frac{3}{5} - \frac{4}{5} i \right)$$

(d)
$$\frac{1}{\sqrt{2}} \left(\frac{3}{5} i - \frac{4}{5} \right)$$

(e)
$$-\frac{7}{5\sqrt{2}}$$
i **točno**

- 4 Qubit se nalazi u stanju $\frac{1}{\sqrt{2}}(|0\rangle+|1\rangle)$. Vjerojatnost da taj qubit bude izmjeren u stanju $\frac{1}{\sqrt{2}}(|0\rangle+\mathrm{i}\,|1\rangle)$ iznosi
 - (a) 0
 - (b) 1/4
 - (c) 1/2 točno
 - (d) $1/\sqrt{2}$
 - (e) 1
- 5 Koja dva od pet navedenih vektora predstavljaju (na Blochovoj sferi) isto stanje qubita?
 - (a) $\frac{1}{\sqrt{2}}(i|0\rangle + i|1\rangle)$
 - (b) $\frac{1}{\sqrt{2}}(|0\rangle |1\rangle)$
 - (c) $\frac{1}{\sqrt{2}}(|0\rangle i|1\rangle)$ točno
 - (d) $\frac{1}{\sqrt{2}}(i|0\rangle |1\rangle)$
 - (e) $\frac{1}{\sqrt{2}}(i|0\rangle + |1\rangle)$ točno
- 6 Koja dva od pet navedenih operatora su hermitski operatori?
 - (a) $|0\rangle\langle 0|$ točno
 - (b) $|0\rangle\langle 1|$
 - (c) $i |1\rangle \langle 1|$
 - (d) $|0\rangle\langle 0| |1\rangle\langle 1|$ točno
 - (e) $|0\rangle\langle 0| + i |1\rangle\langle 1|$
- 7 Projekcija stanja qubita $\frac{3}{5}\ket{0}+\frac{4}{5}\ket{1}$ na stanje $\frac{1}{\sqrt{2}}(\ket{0}+\ket{1})$ je:
 - (a) $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
 - (b) $\frac{3}{5\sqrt{2}}|0\rangle + \frac{4}{5\sqrt{2}}|0\rangle$
 - (c) $\frac{4}{5\sqrt{2}}|0\rangle + \frac{3}{5\sqrt{2}}|0\rangle$
 - (d) $\frac{4}{5}|0\rangle + \frac{3}{5}|1\rangle$
 - (e) $\frac{7}{10}(|0\rangle + |1\rangle)$ **točno**

8 Matrični prikaz

$$\begin{pmatrix} 0 & i \\ 0 & 0 \end{pmatrix}$$

odgovara operatoru:

- (a) $|0\rangle\langle 0|$
- (b) $|1\rangle\langle 0|$
- (c) $i |0\rangle \langle 1|$ točno
- (d) $|0\rangle\langle 0| |1\rangle\langle 1|$
- (e) $|0\rangle\langle 0| + i |1\rangle\langle 1|$

9 Očekivana vrijednost operatora prikazanog Paulijevom matricom σ_3 u sustavu koji se nalazi u stanju $\frac{1}{\sqrt{2}}(|0\rangle+\mathrm{i}\,|1\rangle)$ je:

- (a) 1
- (b) $1/\sqrt{2}$
- (c) 0 **točno**
- (d) $-1/\sqrt{2}$
- (e) -1

10 Tablica prikazuje uspostavljanje tajnog ključa protokolom BB84. Označite stupac u kojem možemo uočiti da je komunikacija bila prisluškivana.

Alice:	1	1	0	1	0	1	1	0	1	
	\otimes	\otimes	\otimes	\oplus	\oplus	\otimes	\otimes	\oplus	\oplus	
Alice:	Ø	\oslash	\Diamond	\ominus	Φ	\oslash	\oslash	Φ	\ominus	
Bob:	\oplus	\oplus	\oplus	\oplus	\otimes	\otimes	\oplus	\oplus	\oplus	
	1	0	1	1	1	0	0	0	1	