ชื่อ	รหัส	. ภาควิชา	เลขที่นั่งสอบ
			L

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบปลายภาคเรียนที่ 1 ปีการศึกษา 2550

วิชา MEE 234 Thermal Engineering สอบวันอังคารที่ 9 ตุลาคม พ.ศ.2550 ภาควิชา CVE 2, ENV 2, ENV 2(Bil.), CVE 2(inter.) เวลา 13.00 – 16.00 น.

คำเตือน	1.	ข้อสอบแบ่งออกเป็น 3 PART มีทั้งหมคมี 4 ข้อ, 14 หน้า (รวมใบปะหน้าค้วย
		(รวม 100 คะแนน)
	_	9.29.21.4.0

- 2. อนุญาตให้ใช้เครื่องคำนวณตามที่มหาวิทยาลัยฯ กำหนดได้
- 3. ไม่อนุญาตให้นำตำราเข้าห้องสอบ
- 4. ให้เขียนชื่อ......(ทุกแผ่น)

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระคาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

นายสุรชัย	บวรเศรษ ฐ นันท์
นายวันชัย	อัศวภูษิตกุล
นายเถิศศักดิ์	เหมยากร

Name	e Department	•••••
	(Mr.Surachai Bavorn	serthanan.)
	PART I	
1.1	Draw the schematic and T-s diagram of Rankine cycle	(3 points)
1.2	Draw the P-h and T-s diagram of the vapor compression refrigo	eration, and
	Express the processes that make the cycle.	(3 points)
1.3	What are the assumptions of air standard cycle in thermodynai	
	analysis of internal combustion engine?	(3 points)

Name	e Student No	Department
		(Mr.Surachai Bavornserthanan.)
1.4	What are the limitations of the C.O.P. inc	reasing for vapor compression
	refrigeration cycle?	(3 points)
1.5	What is the different of wet bulb tempera	ture and dew point temperature?
		(3 points)
1 6 V	What is the different between humidity ratio	and relative humidity?
1.0 4	vilat is the different between numbery ratio	(3 points)
		(o points)

. .

Name	Student No	Department
		(Mr.Surachai Bavornserthanan.)

1.7

Given:

- Barometric Pressure 101.325 kPa
- State (1) 35°C and 60 % RH
- Air flow rate @ (4) 1 m³/sec

Determire:

- Moist air at state (3)
- Heat that is absorbed at A/C
- Heat load (Q) that enter the room
- Plot state change of air on Psychrometric chart

Name: Student No. Department......

Name...... Student No. Department.....

(Mr.Wanchai Asvaooositkul)

PART II

1.1 Draw an air-standard cycle on the P-v and T-s diagrams in the space provided. (10 marks)

Otto cycle

T

Diesel cycle

Brayton cycle (Gas-turbine engine)

Name	Student No	Department
		(Mr.Wanchai Asvaooositkul)

2.2 An air-standard Otto cycle has a compression ratio of 8. The minimum and maximum temperatures in the cycle are 300 and 1340 K. Determine (a) the amount of heat transferred to the air during the heat-addition process, (b) the net work output and (c) the thermal efficiency. (10 marks)

Assumed Air is an ideal gas with constant specific heats. [$c_p = 1.005 \text{ kJ/kg·K}$, $c_v = 0.718 \text{ kJ/kg·K}$, R = 0.287 kJ/kg·K, and k = 1.4]

Answer:

$$q_{in} =kJ/kg$$
 $Q_{out} =kJ/kg$
 $W_{in} =kJ/kg$
 $W_{out} =kJ/kg$
 $W_{netout} =kJ/kg$
 $n_{th} =\%$

Name	Student No	. Department
		(Mr.Wanchai Asvaooositkul)

3. Consider a 210-MW steam power plant that operates on a simple ideal Rankine cycle. Steam enters the turbine at 10 MPa and 500°C and is cooled in the condenser at a pressure of 10 kPa. Show the cycle on a *T-s* diagram with respect to saturation lines, and determine (a) the quality of the steam at the turbine exit, (b) the thermal efficiency of the cycle, and (c) the mass flow rate of the steam. (20 marks)

Answer:

$$\eta_{th} = \dots\%$$

892 | Thermodynamics

32 (i illouyilalli	103									
TABLE A-5												
Saturated water—Pressure table												
			fic volume, m³/kg	Internal energy, kJ/kg			<i>Enthalpy,</i> kJ/kg			Entropy. kJ/kg · K		
Press., P kPa	Sat. temp., T _{sat} °C	Sat. liquid, v _f	Sat. vapor, v _g	Sat. liquid, <i>u_f</i>	Evap., u _{fg}	Sat. vapor, u _g	Sat. liquid, h,	Evap., h _{fg}	Sat. vapor, h _g	Sat. liquid, s _f	Evap., s _{fg}	Sat. vapor, s _g
1.0 1.5 2.0 2.5 3.0	6.97 13.02 17.50 21.08 24.08	0.001000 0.001001 0.001001 0.001002 0.001003	129.19 87.964 66.990 54.242 45.654	29.302 54.686 73.431 88.422 100.98	2355.2 2338.1 2325.5 2315.4 2306.9	2384.5 2392.8 2398.9 2403.8 2407.9	29.303 54.688 73.433 88.424 100.98	2484.4 2470.1 2459.5 2451.0 2443.9	2513.7 2524.7 2532.9 2539.4 2544.8	0.1956 0.2606	8.6314 8.4621 8.3302	8.8270 8.7227 8.6421
4.0 5.0 7.5 10 15	28.96 32.87 40.29 45.81 53.97	0.001004 0.001005 0.001008 0.001010 0.001014	34.791 28.185 19.233 14.670 10.020	121.39 137.75 168.74 191.79 225.93	2293.1 2282.1 2261.1 2245.4 2222.1	2414.5 2419.8 2429.8 2437.2 2448.0	121.39 137.75 168.75 191.81 225.94	2432.3 2423.0 2405.3 2392.1 2372.3		0.5763	8.0510 7.9176 7.6738 7.4996 7.2522	8.3938 8.2501 8.1488
20 25 30 40 50	60.06 64.96 69.09 75.86 81.32	0.001017 0.001020 0.001022 0.001026 0.001030	7.6481 6.2034 5.2287 3.9933 3.2403	251.40 271.93 289.24 317.58 340.49	2204.6 2190.4 2178.5 2158.8 2142.7	2456.0 2462.4 2467.7 2476.3 2483.2	251.42 271.96 289.27 317.62 340.54	2357.5 2345.5 2335.3 2318.4 2304.7	2617.5	0.8320 0.8932 0.9441 1.0261 1.0912		7.8302
75 100 101.325 125 150	91.76 99.61 99.97 105.97 111.35	0.001037 0.001043 0.001043 0.001048 0.001053	2.2172 1.6941 1.6734 1.3750 1.1594	384.36 417.40 418.95 444.23 466.97	2111.8 2088.2 2087.0 2068.8 2052.3	2496.1 2505.6 2506.0 2513.0 2519.2	384.44 417.51 419.06 444.36 467.13	2278.0 2257.5 2256.5 2240.6 2226.0	2662.4 2675.0 2675.6 2684.9 2693.1	1.2132 1.3028 1.3069 1.3741 1.4337	6.2426 6.0562 6.0476 5.9100 5.7894	7.3589 7.3549
175 200 225 250 275	116.04 120.21 123.97 127.41 130.58	0.001057 0.001061 0.001064 0.001067 0.001070	1.0037 0.88578 0.79329 0.71873 0.65732	486.82 504.50 520.47 535.08 548.57	2037.7 2024.6 2012.7 2001.8 1991.6	2524.5 2529.1 2533.2 2536.8 2540.1	487.01 504.71 520.71 535.35 548.86	2213.1 2201.6 2191.0 2181.2 2172.0	2700.2 2706.3 2711.7 2716.5 2720.9	1.4850 1.5302 1.5706 1.6072 1.6408	5.6865 5.5968 5.5171 5.4453 5.3800	7.1270 7.087 7.052
300 325 350 375 400	133.52 136.27 138.86 141.30 143.61	0.001073 0.001076 0.001079 0.001081 0.001084	0.60582 0.56199 0.52422 0.49133 0.46242	583.89 594.32	1982.1 1973.1 1964.6 1956.6 1948.9	2543.2 2545.9 2548.5 2550.9 2553.1	561.43 573.19 584.26 594.73 604.66	2163.5 2155.4 2147.7 2140.4 2133.4	2724.9 2728.6 2732.0 2735.1 2738.1	1.6717 1.7005 1.7274 1.7526 1.7765	5.3200 5.2645 5.2128 5.1645 5.1191	6.9656 6.940 6.917
450 500 550 600 650	147.90 151.83 155.46 158.83 161.98	0.001088 0.001093 0.001097 0.001101 0.001104	0.41392 0.37483 0.34261 0.31560 0.29260	639.54 655.16 669.72	1934.5 1921.2 1908.8 1897.1 1886.1	2557.1 2560.7 2563.9 2566.8 2569.4	623.14 640.09 655.77 670.38 684.08	2120.3 2108.0 2096.6 2085.8 2075.5	2743.4 2748.1 2752.4 2756.2 2759.6	1.8205 1.8604 1.8970 1.9308 1.9623	5.0356 4.9603 4.8916 4.8285 4.7699	6.820 6.788 6.759
700 750	164.95 167.75	0.001108 0.001111	0.27278 0.25552		1875.6 1865.6	2571.8 2574.0	697.00 709.24	2065.8 2056.4	2762.8 2765.7	1.9918 2.0195	4.7153 4.6642	

896 | Thermodynamics

TABLE	A-6											
Superh	eated wat	er (<i>Conti</i>	nued)									
T	V	U	h	S	V 3.0	U	h	S	V	u	h	s
°C	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K	m ³ /kg	kJ/kg	kJ/kg	kJ/kg · K
	Р	= 4.() MF	Pa (250.35	°C)	Р	= 4.5 MP	a (257.44°	C)	P -	5.0 MPa	(263.94	C)
Sat.	0.04978		2800.8	6.0696	0.04406	2599.7	2798.0	6.0198	0.03945	2597.0		5.9737
275	0.05461		2887.3	6.2312	0.04733	2651.4	2864.4	6.1429	0.04144	2632.3		6.0571
300 350	0.05887 0.06647		2961.7 3093.3	6.3639 6.5843	0.05138 0.05842	2713.0 2818.6	2944.2 3081.5	6.2854 6.5153	0.04535 0.05197	2699.0 2809.5		6.2111 6.4516
400	0.00047		3214.5	6.7714	0.05642	2914.2	3205.7	6.7071	0.05784	2907.5		6.6483
450	0.08004		3331.2	6.9386	0.07076	3005.8	3324.2	6.8770	0.06332	3000.6		6.8210
500	0.08644	3100.3	3446.0	7.0922	0.07652	3096.0	3440.4	7.0323	0.06858	3091.8		6.9781
600	0.09886		3674.9	7.3706	0.08766	3276.4	3670.9	7.3127	0.07870	3273.3		7.2605
700	0.11098		3906.3	7.6214	0.09850	3460.0	3903.3	7.5647	0.08852	3457.7		7.5136
800	0.12292		4142.3	7.8523	0.10916	3648.8	4140.0	7.7962	0.09816	3646.9		7.7458
900 1000	0.13476		4383.9	8.0675	0.11972 0.13020	3843.3	4382.1	8.0118	0.10769	3841.8		7.9619
1100	0.14653 0.15824		4631.2 4884.4	8.2698 8.4612	0.13020	4043.9 4250.4	4629.8 4883.2	8.2144 8.4060	0.11715 0.12655	4042.6 4249.3	4628.3	8.3566
1200	0.16992		5143.2	8.6430	0.15103	4462.6	5142.2	8.5880	0.12533		5141.3	
1300	0.18157		5407.2	8.8164	0.16140	4680.1	5406.5	8.7616	0.14527	4679.3		8.7124
	Р	= 6.0 MF	Pa (275.59	l°C)	Ρ	7.0 M P	a (285.83	C)	P =	8.0 MPa	(295.01	C)
Sat.	0.03245	2589.9	2784.6	5.8902	0.027378	2581.0	2772.6	5.8148	0.023525		2758.7	5.7450
300	0.03619	2668.4	2885.6	6.0703	0.029492	2633.5	2839.9	5.9337	0.024279	2592.3	2786.5	5.7937
350	0.04225		3043.9	6.3357	0.035262		3016.9	6.2305	0.029975			6.1321
400	0.04742		3178.3	6.5432	0.039958		3159.2	6.4502	0.034344			6.3658
450	0.05217		3302.9	6.7219	0.044187		3288.3	6.6353	0.038194			6.5579
500	0.05667 0.06102		3423.1 3541.3	6.8826 7.0308	0.048157 0.051966		3411.4 3531.6	6.8000 6.9507	0.041767 0.045172			6.7266 6.8800
550 600	0.06527		3658.8	7.1693	0.051966		3650.6	7.0910	0.043172			7.0221
700	0.00327		3894.3	7.4247	0.062850		3888.3	7.3487	0.054829			7.2822
800	0.08165		4133.1	7.6582	0.069856		4128.5	7.5836	0.061011			
900	0.08964		4376.6	7.8751	0.076750		4373.0	7.8014	0.067082			
1000	0.09756	4040.1	4625.4	8.0786	0.083571	4037.5	4622.5	8.0055	0.073079	4035.0	4619.6	7.9419
1100	0.10543		4879.7	8.2709	0.090341		4877.4	8.1982	0.079025			8.1350
1200	0.11326		5139.4	8.4534	0.097075		5137.4	8.3810	0.084934			8.3181
1300	0.12107	4677.7	5404.1	8.6273	0.103781	4676.1	5402.6	8.5551	0.090817	4674.5	5401.0	8.4925
			Pa (303,35				Pa (311.00		making the second second second	12.5 MP		
Sat.	0.020489		2742.9	5.6791	0.018028		2725.5	5.6159	0.013496	2505.6	2674.3	5.4638
325	0.023284		2857.1	5.8738	0.019877 0.022440		2810.3	5.7596	0.016120	2624.0	2026.6	E 7120
350 400	0.025816		2957.3 3118.8	6.0380 6.2876	0.022440		2924.0 3097.5	5.9460 6.2141	0.016138			5.7130 6.0433
450	0.023360		3258.0	6.4872	0.020430		3242.4	6.4219	0.023019			6.2749
500		3056.3		6.6603	0.032811		3375.1	6.5995	0.025630			6.4651
550		3153.0		6.8164	0.035655		3502.0	6.7585	0.028033			6.6317
600			3634.1		0.038378			6.9045	0.030306			
650	0.04575	5 3343.4	3755.2	7.0954	0.041018	3338.0	3748.1	7.0408	0.032491	3324.1	3730.2	6.9227
700		3438.8		7.2229	0.043597		3870.0	7.1693	0.034612			
800		2 3632.0		7.4606	0.048629		4114.5	7.4085	0.038724			
900		2 3829.6		7.6802	0.053547		4362.0	7.6290	0.042720			
1000 1100		9 4032.4 4 4240.7		7.8855 8.0791	0.058391		4613.8 4870.3	7.8349 8.0289	0.046641			
1200		2 4454.2		8.2625	0.063183		5131.7	8.2126	0.054342			
1300		3 4672.9		8.4371	0.072667		5398.0	8.3874	0.058147			
					L							

	Student No	_	<u>jarn.Lertsak Hemyakorn)</u>
	PART II	<u>u</u>	
Problem 4.	(20 marks)		
	gerator uses refrigerant-134a as the compression refrigeration cycle as t Condensing pressure	_	g. 1.4 MPa.(abs)
a.	Evaporating temperature State of refrigerant at the of State of refrigerant at the of	-	-
Given	At the inlet of compressor At the outlet of compressor At the inlet of expansion v At the inlet of evaporator	or is state valve is st	(2) tate (3)
Determ			
	Show that the state and protection the P-h chart R-134a.	ocesses of	f the refrigeration cycle on
Pressu		n	- MDa (aha
Tomn	Evaporating;	P_{E}	=MPa.(abs
rempe	erature :	•	=°C
	At the condenser;	t _c	
	At inlet of the compressor		0
	At outlet of the compresso		0
	At inlet of the compressor		0
	At outlet of the compresso	or. t_4	=°C
Enthal	ру:		
	At inlet of the compressor	, h ₁	= kJ/kg
	Density at the inlet of con	npressor;	$\rho_1 = \dots kg/m^3$
	At outlet of the compresso	r; h ₂	= kJ/kg
	At outlet of the condenser	, h ₃	= kJ/kg
	At inlet of the evaporator,	. h ₄	= kJ/kg
	Refrigerating effect		= kJ/kg
	Condensing load		= kJ/kg
	Compressor work		= kJ/kg
	COP. of the refrigeration		= kJ/kg
If the	refrigeration capacity 100 kW cal Mass flow rate of refriger		

Chart A-11 R134a nh diagram (Source: Rased on Thermodynamic December of the 124-1111 2

Key concepts and formulas

1. Gas Law
$$p v = R T$$

2. Clausius inequality
$$\oint \left(\frac{dQ}{T}\right) \le 0$$

3. Entropy
$$dS = \left(\frac{dQ}{T}\right)_{int re}$$

4. T ds relation
$$T ds = du + p dv$$
$$T ds = dh - v dp$$

5. Isentropic process
$$p v^k = const, k = \frac{c_p}{c_v}$$

6. Enthalpy
$$h = u + p v$$

$$du = c_v dT, \qquad dh = c_p dT$$

7. Work -for control mass,
$$w = \int p \, dv$$

- for control volume, $w = -\int v \, dp$

8. Steady flow energy equation
$$q - w = \Delta h + \Delta ke + \Delta pe$$

9. Compression ratio
$$r = \frac{V_{max}}{V_{min}} = \frac{V_{BDC}}{V_{TDC}}$$

10. MEP
$$MEP = \frac{w_{\text{net}}}{v_{\text{max}} - v_{\text{min}}}$$

11. Adiabatic mixing
$$\frac{m_{a1}}{m_{a2}} = \frac{\omega_2 - \omega_3}{\omega_3 - \omega_1} = \frac{h_2 - h_3}{h_3 - h_1}$$
 subscript 1, 2 = inlet, 3 = mixed