VLSI DESIGN - ASSIGNMENT-3

Vedala Sai Ashok - EE18BTECH11044

December 2020

1 Impact of Sizing on Perfomance

1.1 Value of β for $V_M = \frac{V_{DD}}{2}$

• Calculating the appropriate β by trial and error method by simulating the circuit for various values of β s.

```
1 * C:\Users\SAI ASHOK\a3_test_3.cir
.include "C:\Users\SAI ASHOK\TSMC180.lib"

3 .model pch_tt pmos
.model nch_tt nmos

5 V1 Vin 0 PULSE(1.8 0 0 0 0 1u 2u 0)
M2 Vout Vin 0 0 nch_tt W=0.18u L=0.18u

7 M1 Vout Vin Vdd Vdd pch_tt W=1.2u L=0.18u
V2 Vdd 0 dc 1.8V
.control
dc v1 0.01 1.8 0.01

11 run
meas dc vm find vout when vin=vout cross=1

13 plot vout vs vin
.endc
.end

15 .end
```

• I have chosen the value of β to be 6.67 to continue with further simulations in this question.

1.2 No External Load

• Simulating the variation of propagation delay with scaling for no external load.

```
* C:\Users\SAI ASHOK\a3_1b.cir
.include "C:\Users\SAI ASHOK\TSMC180.lib"

3.model pch_tt pmos
```

```
.model nch_tt nmos
5 V1 Vin 0 PULSE(1.8 0 0 0 0 1n 2n 0)
  M2 Vout Vin 0 0 nch_tt W=0.18u L=0.18u
7 M1 Vout Vin Vdd Vdd pch tt W=1.2u L=0.18u
  V2 Vdd 0 dc 1.8V
9 .control
   let lh = vector(20)
11 let hl = vector(20)
   let delay = vector(20)
13 let s = vector(20)
   let loop = 0
15 while loop < 20
     let loop = loop + 1
17
     alter @M1 W=1.2u*loop
     alter @M2 W=0.18u*loop
     tran 1p 5n uic
     run
21
     *plot vout
     meas tran OP max Vout
     meas tran IP max Vin
     let vc = 0.5*IP
25
     let vd = 0.5*1.8
     meas TRAN Tlh TRIG V(Vin) VAL=vc CROSS=1 TARG V(Vout) VAL=vd
        CROSS=2
     CROSS=3
     print loop
     let lh [loop -1] = Tlh
     let hl[loop-1] = Thl
     \begin{array}{ll} {\tt let} & {\tt delay} \, [\, {\tt loop} \, {-1}] \, = \, \left(\, {\tt Tlh} {+} {\tt Thl} \, \right) / 2 \end{array}
31
     let s[loop-1] = loop
33 end
   plot delay vs s
35 wrdata fig2.dat delay vs s
   .\,\mathbf{endc}
   . end
```

• The graph obtained from simulations suggests that propagation delay is almost constant(variations of the order picoseconds) with scaling.

Scaling Factor	Propagation Delay
1	1.13980915e-11
2	1.40667000e-11
3	1.51252790e-11
4	1.57304455e-11
5	1.61057270e-11
6	1.63668215e-11
7	1.65432560e-11
8	1.66849085e-11
9	1.68030630e-11
10	1.69013220e-11
11	1.69855645e-11
12	1.70659515e-11
13	1.71312880e-11
14	1.71900750e-11
15	1.72455125e-11
16	1.72960025e-11
17	1.73413895e-11
18	1.73947970e-11
19	1.74360210e-11
20	1.74799015e-11

1.3 External Load of 20pF

• Simulating the variation of propagation delay with scaling for an external load of 20pF.

```
* C:\Users\SAI ASHOK\a3 1a.cir
   . include "C:\Users\SAI ASHOK\TSMC180. lib"
3 .model pch_tt pmos
   5 V1 Vin 0 PULSE(1.8 0 0 0 0 1u 2u 0)
  M2 Vout Vin 0 0 nch tt W=0.18u L=0.18u
7 M1 Vout Vin Vdd Vdd pch_tt W=1.2u L=0.18u
   V2 Vdd 0 dc 1.8V
9 C Vout 0 20p
   .control
11 let 1h = vector(20)
   let hl = vector(20)
13 let delay = vector (20)
   let s = vector(20)
15 \mid \mathbf{let} \mid \mathbf{loop} = 0
   \frac{\text{while}}{\text{loop}} < 20
17
     let loop = loop + 1
     alter @M1 W=1.2u*loop
```

```
alter @M2 W=0.18u*loop
       tran 1n 5u uic
21
       run
       *plot vout
23
       meas tran OP max Vout
       meas tran IP max Vin
       let vc = 0.5*IP
       \begin{array}{lll} \textbf{let} & \textbf{vd} \ = \ \textbf{0.5} * \textbf{OP} \end{array}
       27
       meas TRAN Thl TRIG V(Vin) VAL=vc CROSS=2 TARG V(Vout) VAL=vd
           CROSS=2
       print loop
       \begin{array}{ll} \textbf{let} & \textbf{lh} \left[ \textbf{loop} - 1 \right] = \textbf{Tlh} \end{array}
       let \ hl[loop-1] = Thl
31
       \begin{array}{ll} \textbf{let} & \textbf{delay} \left[ \, \textbf{loop} \, -1 \right] \, = \, \left( \, \textbf{Tlh+Thl} \, \right) / 2 \end{array}
33
       let s[loop-1] = loop
    end
35 plot delay vs s
    wrdata fig1.dat delay vs s
    .\,\mathrm{endc}
    .end
```

• The graph obtained from simulations suggests that propagation delay decreases with scaling(variations of the order nanoseconds).

Scaling Factor	Propagation Delay
1	8.46420350e-08
2	5.10769100e-08
3	3.64366550e-08
4	2.83513600e-08
5	2.32364750e-08
6	1.96766550e-08
7	1.70734100e-08
8	1.50893990e-08
9	1.35262940e-08
10	1.22633740e-08
11	1.12196165e-08
12	1.03492665e-08
13	9.60793300e-09
14	8.96657450e-09
15	8.41090650e-09
16	7.91747000e-09
17	7.49028200e-09
18	7.10262400e-09
19	6.75987900e-09
20	6.44903150e-09

1.4 Variation of t_{plh} with W_p

• As we increase W_p the pull up network becomes stronger and t_{lh} decreases. Variation of W_p will have no effect on t_{hl} .

```
* C:\Users\SAI ASHOK\a3 wp.cir
  .include "C:\Users\SAI ASHOK\TSMC180.lib"
  V1 Vin 0 PULSE(1.8 0 0 0 0 1m 2m 0)
6 M2 Vout Vin 0 0 nch tt W=0.18u L=0.18u
  M1 Vout Vin Vdd Vdd pch_tt W=0.18u L=0.18u
8 C Vout 0 10n
  V2 Vdd 0 dc 1.8V
10 .control
  let lh = vector(20)
12 let hl = vector(20)
  let delay = vector(20)
14 let wp = vector (20)
  let loop = 0
16 while loop < 20
    let loop = loop+1
   alter @M1 W=0.18u*loop
```

```
tran 1u 5m
20
          run
          *plot vout
22
          meas tran OP max Vout
          meas tran IP max Vin
          \begin{array}{lll} \textbf{let} & \textbf{vc} \ = \ \textbf{0.5}*\textbf{IP} \end{array}
24
          let vd = 0.5*OP
          meas TRAN Tlh TRIG V(Vin) VAL=vc CROSS=1 TARG V(Vout) VAL=vd
26
                CROSS=1
          meas TRAN Thl TRIG V(Vin) VAL=vc CROSS=2 TARG V(Vout) VAL=vd
                CROSS=2
          \begin{array}{ll} \textbf{let} & \textbf{lh} \left[ \textbf{loop} - 1 \right] = \textbf{Tlh} \end{array}
28
          \begin{array}{ll} \mathbf{let} & \mathbf{hl} \, [\, \mathbf{loop} \, {-} \mathbf{1}] \, = \, \mathbf{Thl} \end{array}
30
          \begin{array}{ll} \textbf{let} & \textbf{delay} \left[ \, \textbf{loop} \, -1 \right] \, = \, \left( \, \textbf{Tlh+Thl} \, \right) / 2 \end{array}
          \begin{array}{lll} \textbf{let} & \textbf{wp} [\, \textbf{loop} - \! 1] \, = \, \textbf{loop} * 0.18 \, \textbf{u} \end{array}
32
      end
34 plot lh vs wp
      wrdata fig4.dat lh vs wp
      .\,\mathbf{endc}
      .end
```

• The graph obtained from simulations suggests that t_{plh} decreases with increase in W_p supporting the theory discussed in class.

W_p	t_{plh}
1.80e-07	1.130081e-04
3.60e-07	8.702253e-05
5.40e-07	6.407451e-05
7.20e-07	5.046961e-05
9.00e-07	4.157633e-05
1.08e-06	3.533057e-05
1.26e-06	3.070895e-05
1.44e-06	2.715692e-05
1.62e-06	2.434122e-05
1.80e-06	2.205642e-05
1.98e-06	2.016575e-05
2.16e-06	1.857430e-05
2.34e-06	1.722012e-05
2.52e-06	1.605093e-05
2.70e-06	1.503236e-05
2.88e-06	1.413729e-05
3.06e-06	1.334381e-05
3.24e-06	1.263423e-05
3.42e-06	1.200261e-05
3.60e-06	1.142871e-05

1.5 Variation of t_{phl} with W_n

• As we increase W_n the pull down network becomes stronger and t_{hl} decreases. Variation of W_n will have no effect on t_{lh} .

```
* C:\Users\SAI ASHOK\a3 wn.cir
   . include "C:\Users\SAI ASHOK\TSMC180. lib"
   . \frac{model}{pch\_tt} \ pmos
   5 V1 Vin 0 PULSE(1.8 0 0 0 0 1m 2m 0)
  M2 Vout Vin 0 0 nch tt W=0.18u L=0.18u
 7 M1 Vout Vin Vdd Vdd pch_tt W=0.18u L=0.18u
   C Vout 0 10n
 9 V2 Vdd 0 dc 1.8V
   .control
11 let lh = vector(20)
   let hl = vector(20)
13 let delay = vector (20)
   let wn = vector(20)
15 \mid \mathbf{let} \mid \mathbf{loop} = 0
   \frac{\text{while}}{\text{loop}} < 20
     let loop = loop+1
17
     alter @M2 W=0.18u*loop
```

```
tran 1u 5m
          run
          *plot vout
21
          meas tran OP max Vout
23
          meas tran IP max Vin
          \begin{array}{lll} \textbf{let} & \textbf{vc} \ = \ \textbf{0.5}*\textbf{IP} \end{array}
          let vd = 0.5*OP
          meas TRAN Tlh TRIG V(Vin) VAL=vc CROSS=1 TARG V(Vout) VAL=vd
                CROSS=1
          meas TRAN Thl TRIG V(Vin) VAL=vc CROSS=2 TARG V(Vout) VAL=vd
27
                CROSS=2
          \begin{array}{ll} \mathbf{let} & \mathbf{lh} \, [\, \mathbf{loop} \, {-} \mathbf{1}] \, = \, \mathbf{Tlh} \end{array}
          \begin{array}{ll} \textbf{let} & \textbf{hl} \, [\, \textbf{loop} \, -1] \, = \, \textbf{Thl} \end{array}
          \begin{array}{ll} {\bf let} & {\bf delay} \, [\, {\bf loop} \, {\bf -1}] \, = \, \left(\, {\bf Tlh} {\bf + Thl} \, \right)/2 \end{array}
          \begin{array}{lll} \textbf{let} & \text{wn} [\, \textbf{loop} - \! 1] \, = \, \textbf{loop} * 0.18 \, \textbf{u} \end{array}
31
33 end
      plot hl vs wn
      wrdata fig5.dat hl vs wn
      .\,\mathrm{endc}
      .\,\mathrm{end}
```

• The graph obtained from simulations suggests that t_{phl} decreases with increase in W_n supporting the theory discussed in class.

W_n	$t_{phl}\}$
1.80e-07	5.269339e-05
3.60e-07	3.442960e-05
5.40e-07	2.517161e-05
7.20e-07	1.982556e-05
9.00e-07	1.636824e-05
1.08e-06	1.391895e-05
1.26e-06	1.210850e-05
1.44e-06	1.071959e-05
1.62e-06	9.621842e-06
1.80e-06	8.731455e-06
1.98e-06	7.994882e-06
2.16e-06	7.377894e-06
2.34e-06	6.851755e-06
2.52e-06	6.395959e-06
2.70e-06	6.001310e-06
2.88e-06	5.651744e-06
3.06e-06	5.341441e-06
3.24e-06	5.065535e-06
3.42e-06	4.820585e-06
3.60e-06	4.596671e-06

2 Ring Oscillator

2.1 Time Response over ten periods

- Ring Oscillators are used to calculate propagation delay of inverters in real life.
- The values of parameters have been chosen in such a way that the results
 of this simulation can be compared with the propagation delay of inverter
 simulated in the first question.
- The following netlist has been used to simulate the circuit of a ring oscillator.

```
1 * C:\Users\SAI ASHOK\a3_q2.cir
.include "C:\Users\SAI ASHOK\TSMC180.lib"
3 .model pch_tt pmos
.model nch_tt nmos
5 M1 s1 s7 0 0 nch_tt W=0.18u L=0.18u
M2 s2 s1 0 0 nch_tt W=0.18u L=0.18u
7 M3 s3 s2 0 0 nch_tt W=0.18u L=0.18u
M4 s4 s3 0 0 nch_tt W=0.18u L=0.18u
```

```
9 M5 s5 s4 0 0 nch_tt W=0.18u L=0.18u
  M6 \ s6 \ s5 \ 0 \ 0 \ nch \ tt \ W=0.18u \ L=0.18u
11 M7 s7 s6 0 0 nch_tt W=0.18u L=0.18u
  M8 s1 s7 Vdd Vdd pch_tt W=1.2u L=0.18u
13 M9 s2 s1 Vdd Vdd pch_tt W=1.2u L=0.18u
  M10 \ s3 \ s2 \ Vdd \ Vdd \ pch_tt \ W=1.2u \ L=0.18u
15 M11 s4 s3 Vdd Vdd pch tt W=1.2u L=0.18u
  M12 s5 s4 Vdd Vdd pch_tt W=1.2u L=0.18u
17 M13 s6 s5 Vdd Vdd pch_tt W=1.2u L=0.18u
  M14 s7 s6 Vdd Vdd pch_tt W=1.2u L=0.18u
19 V1 Vdd 0 1.8
   .control
21 tran 1p 5n uic
23 meas TRAN T1 TRIG V(s7) VAL=1 CROSS=3 TARG V(s7) VAL=1 CROSS=5
   let f = 1/T1
25 let t_p = T1/14
   print t_p
   plot s7
   wrdata fig3.dat s7
   . endc
   .end
```

• The time response of the ring oscillator for 10 periods is given below.

• The frequency of the output as observed from simulation is 2.0134GHz.

2.2 Propagation Delay from Ring Oscillator

 Propgation delay can be calculated from the frequency of output obtained from ring oscillator using the formula

$$t_p = \frac{1}{2Nf}. (1)$$

- The value of propagation delay obtained from the simulation of ring oscillator is 3.5476×10^{-11} .
- The value of propagation delay observed in the simulations of first question for S=1 is equal to 1.1398 x 10^{-11} which is slightly lower than the value obtained from Ring Oscillator(because of overhead capacitances in Ring Oscillator).

2

c) of requery of oxcillations when all the investors are fixed up by I.

(No i has been

Considered in Ring

Oscillator)

= 2Ntp (before sizing)

* After sizing

$$t_{p} = 0.69 \text{ Rew}_{13}^{\circ} \times C_{9,3}^{\circ} \times 8 \left(1 + \frac{C_{9,3+1} \times 8}{C_{9,3} \times 8} \right) \left(\frac{1}{1 + C_{9,3+1} \times 8} \right)$$

tp = tp (an)

Is of the whole King Oxillators)

As to does not change, I does not change.

o power consumption when all inverters are sized up bys.

does not change.

d) modification to ring oscillater circuit.

- · when control eignal is I, Ring oscillator will be in OFF mode
- o when control signal is of Ring oscillator will be in on mode.

driving a load of 20pF with two staged buffer. to of minimum sized inverters is tops input (aparthone = 10fF.

a) determine sizing of the two additional buffer stages

Sizing of Privettere must be in 61.P

* GIZING of the inverters asie

1, 12.6, 158.76.

* delay with the rizing

b) No of stages to achieve minimum delay. What is to in this case.

+ for 7=1 , topt would be 3.6.

- = 6 (7092) (4.6)
- = 1.932 NS
- c) Advantages & Diradvantages of methos mentioned whove.

* Jon a fixed, favout at each stage should be in GP to get nun delay.

* Jon a fixed F, we can determine Wept to obtain nunimum delay

Jon a fixed F.

* there is a trade of between delay of the area occupied by
the investers, while rizing up & increasing No. of investers.

d) closed from expression for the power consumption in the usuat

In this circuit we can ignore static power consumption, direct current lealage as N is small.

$$P_{dyn} = \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})} \left(\frac{1}{T}\right) + \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})} = \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})} \left(\frac{1}{T}\right) \left[f(x^{2} \vee x^{2}) + \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})}\right]$$

$$= \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})} \left(\frac{1}{T}\right) \left[f(x^{2} \vee x^{2}) + \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})}\right]$$

$$= \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})} \left(\frac{1}{T}\right) \left[f(x^{2} \vee x^{2}) + \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})}\right]$$

$$= \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})} \left(\frac{1}{T}\right) \left[f(x^{2} \vee x^{2}) + \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})}\right]$$

$$= \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})} \left[\frac{1}{T}\right] \left[f(x^{2} \vee x^{2}) + \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})}\right]$$

$$= \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})} \left[\frac{1}{T}\right] \left[f(x^{2} \vee x^{2}) + \frac{f(x^{2} \vee x^{2})}{f(x^{2} \vee x^{2})}\right]$$

=
$$10 \times 10^{10} (3.4)(3.5) (\frac{1}{7}) [t + t + t]$$

$$= 13\pi.796 \times 10^{12} \left(\frac{1}{7}\right) W$$

4) complex anos Logic gate implementing

 $\pm (A_i B_i c_i D) = \overline{A \cdot (B \cdot (C + D) + C \cdot D)}$

* Assumption Rp = aRn

5) parbmeters of given technology:

V_{Tm} = 0.2V |V_{Tp}| = 0.3V R_m = 3KL+ um R_p = 3KL+ um V_{DD} = 1V

W_p = w_n = | um

Drow VTC.

88:

* "whally VDO=IV; Vin=OV Prior is ON & Nuor is OFF. As the circuit is not complete vont = 1V

* When Vin reaches 0.24, Nuos turns on & the creat will be equivalent to a simple voltage divider circuit & vont = 1 × 2 = 0.11

* when Vin because greater than 0.74, Prior turns off, Vont=OV

