

SDN/NFV and Orchestration for Optical Transport Networks: Practical use cases

Future Internet Networks (FINE)

Master in Innovation and Research in Informatics (MIRI)

A glance at optical transport networks

- Motivation
 - Need to cope with the ever-growing Internet traffic caused by the emergence of new applications and services
 - From VoIP and VoD to CDN, Cloud services, IaaS, IoT, etc.
 - Stringent QoS and QoE network requirements
 - (Ultra-)high bandwidth, (Ultra-)low latency
 - Other requirements
 - Energy efficiency (reduced power consumption)
 - Flexibility and low operational cost: Connections that can be established in milliseconds
- Optical transmission technology

Wavelength Division Multiplexing (WDM)

Optical transport technologies

- Optical Circuit Switching (OCS)
 - Establish end-to-end optical connections (lightpaths) to carry aggregated data traffic
 - Benefits
 - High bandwidth, guaranteed QoS, scalability
 - Scope
 - Long-lived data flows (bulk data transfer, HDTV, DC storage, ...)
 - Scenarios
 - Operator networks (metro/region/core), inter-DC networks, intra-DC (Elephant flows)

Optical transport technologies

- Optical Packet Switching (OPS)
 - IP packets are aggregated into optical packets and sent through WDM channels
 - Benefits
 - High flexibility, statistical multiplexing, optical flow control, priority assignment
 - Scope
 - Short-lived or bursty data flows (VoIP, HPC / Edge Computing, application communication, ...)
 - Scenarios
 - Operator networks (access/metro), intra-DC (Mice flows)

OPS switch

OPC/OCS-based Transport Scenario

Dynamic optical networks

- Optical Transport Networks require a Control Plane
- [Lightpath / Optical Packet flow] provisioning
- Routing and [Wavelength / Optical Label] Assignment (RWA)
 - Compute the route of the [lightpath / optical packet flow]
 - Assign a [wavelength for the whole route / label for the optical packet]
- **Signaling** → Configuration of the equipment
- - Monitoring
 - Accounting
 - Fault management
 - Optimization

Dynamic optical networks (cont.)

- A Control Plane is introduced
 - Automated and dynamic lightpath set up
 - Topology and data plane state dissemination
 - RWA and Signaling
 - Efficient resource management and configuration
 - Fault management and automated restoration
- Other functionalities are kept at the management plane
 - Monitoring
 - Accounting
 - Performance (Optimization)

A Control Plane for dynamic OCS networks

- Lightpath set up example:
 - Connection Request → NMS-initiated under client request (Soft-Permanent)
 - Connection Request' → Client-initiated (Switched)

SDN and virtualization

- SDN is not only aimed to provide connectivity, but a dynamic network infrastructure capable to offer, establish and manage complex services
- Example of Virtual Network (VN) scenario:

- SDN is a key enabler for network infrastructure virtualization
 - Network Slicing
- Physical resource abstraction is needed to compose the VNs
- Independent control and management for the different VNs has to be provided

The LIGHTNESS project

- LIGHTNESS proposed a novel interconnection network architecture for intra data center network (DCN)
- Innovation in three main directions
 - Deploy optical switching to overcome limitations of current DCN architectures
 - Static management based on overprovisioning, limited bandwidth due to the used transport technology
 - Bandwidth, latency, energy consumption, etc.
 - Design and develop a hybrid OPS/OCS flat data center fabric
 - Nodes: OPS, OCS, Hybrid NIC, optical TOR
 - Design and develop a unified control plane for DCNs
 - Leverage on SDN and OpenFlow solution/specs

LIGHTNESS architecture overview

DCN: Optical data plane

- The optical data plane (DP) was composed of:
 - Hybrid OPS/OCS Optical NICs equipped in the servers
 - Pure optical TORs
 - OPS
 - OCS
- The OpenFlow protocol was extended to provide SDN-based control to the optical devices
 - OCS: OF v1.0.3 extensions addendum in support of OCS
 - OPS: Ad-hoc extensions
- OpenFlow agents were developed for each kind of device

OF extensions in support of the optical DP

OCS extensions:

- Support for optical ports (CPort) → supported wavelengths info, OCS switching capability, ...
- Match is replaced by of_connect structure → in/out ports, wavelength
- Circuit Flow (CFlow) → New actions (CKT_INPUT, CKT_OUTPUT)

OPS extensions:

- Uses CPort
- New match types: Input Wavelength, optical label
- New actions: SET_LABEL, SET_LOAD
 - Uses OUTPUT

SDN & OF in OCS networks

• SDN-enabled optical transport network:

SDN-based control for OPS

Configuration work flow (Top-down):

- 1. The user sets up the OPS flow through the GUI of the SDN Controller
- 2. The Controller computes the route, wavelength an label and sends an OF FLOW_MOD message to the OF-Agents of the TOR and the OPS
- 3. Each OF-Agent configures the hardware flow tables according to the flow requirements
- 4. The SDN Controller shows the flow information in the GUI
- 5. Periodical statistics are requested by the Controller to the OPS node

SDN-based control plane architecture

- Based on the SDN architecture proposed by the ONF
- Specialized, modular and open Northbound APIs
- Extended OpenFlow at the Southbound with dedicated agents
- OpenDaylight controller deeply extended in support of optical technologies
- VDC composition for virtual slices and topologies provisioning and monitoring VNF to guarantee proper QoS

LIGHTNESS final demo

- Scope
 - Programmable transport and switching of data flows over the hybrid optical flat DCN
 - Full integration of SDN control plane and optical data plane
 - Optical switches configuration and monitoring through OpenFlow
 - On demand VDC network provisioning and reconfiguration
 - Creation of multicast VDC network using OPS resources
 - Deployment of monitoring VNF to retrieve and process status statistics
 - Automated OCS/OPS and multicast/unicast switch-over
- Scenario and components
 - End-to-end all-optical network testbed
 - OF-enabled POLATIS OCS switch, OPS switch, FPGA-based hybrid NIC
 - OpenDaylight SDN controller
 - VDC composition application and monitoring VNF

The COSIGN project

- The COSIGN project provided a novel DC architecture using optical technologies for the DCN, a SDN-based control plane and an Orchestration plane for coordinated service provisioning
- Innovation in three main directions
 - Improved optical switching technologies for increased bandwidth, reduced power consumption and high re-configurability
 - High radix optically enabled Ethernet switches, SDM and Fast optical switches
 - Enhanced SDN controller for network programmability and dynamic service configuration
 - DC Orchestrator to provide network and IT virtualization allowing service programmability
 - Joint optical and IT infrastructure orchestration for complex service provisioning → Virtual Data Center (VDC) use case

The orchestration layer

- SDN provides an efficient way to configure connectivity services across OFenabled optical networks, independent of the underlying optical nodes
- However, SDN is not sufficient to achieve an optimization of the network resources
 - Presence of multiple data plane technologies. Which one to choose?
 - Multiple independent SDN-controlled infrastructures. How are resources provisioned across?
 - A global view of the whole infrastructure is needed
 - Provisioning of IT and network resources. How is it coordinated?
 - VDC, Cloud, ...
 - Etc.

Resource orchestration in optical networks

Example of laaS achievable through resource orchestration:

32

VDC provisioning

- The Virtual Data Center (VDC) has emerged as a service to cope with the multi-tenancy requirements faced by the DC operators
- A VDC is a form of Infrastructure as a Service (laaS) where a tenant (i.e. DC client) asks for an infrastructure composed of computing capabilities (e.g. Virtual Machines, VMs), interconnected through a virtual network
- Tenants use the VDC infrastructure as a support to develop their own business models

VDC provisioning

- Virtualization techniques are the foundation of the VDC service
- Upon a VDC request, the provisioning of both VMs and virtual network connecting them must be done
- Such process is complex and entails both the mapping of VMs onto servers in the DC and the virtual links onto physical network resources in the DC network (DCN)
- In the framework of COSIGN, novel DC solutions that jointly and automatically configure both computing and network resources for efficient VDC provisioning were designed and implemented
- The Orchestrator is the key entity in this context

COSIGN architecture overview

COSIGN SDN controller

- The control plane is based on OpenDaylight (ODL) SDN platform in its Lithium release
- ODL was extended to control and configure the optical DCN
 - OCS extensions implemented in the OF protocol and the OF plugin of ODL
 - Extended to support optical data plane infrastructure
 - Inventory, Topology Manager, Optical Provisioning Manager, Path Computation Manager
 - Extended to support pure optical transmission devices virtualization
 - Optical Resource Virtualization Manager
 - Extended Northbound connectivity to the Orchestration layer for VDC provisioning
 - Neutron, Virtual Tenant Network

COSIGN Orchestrator

- Based on OpenStack:
 - Horizon service for the VDC dashboard
 - Nova service for VM configuration
 - Neutron service for IP network configuration
 - Heat service for stack orchestration
- A new Algorithms module was specially designed and integrated in the architecture:
 - It implements several algorithms that compute the optimal mapping of the VDC resources onto physical DC resources: servers for the VMs and optical resources for the virtual network
 - Several RESTful servers and clients were implemented for the communication between the algorithms and OpenStack core services

- COSIGN designed and implemented an OpenStack-based orchestrator plus an SDN-enabled controller allowing for the creation of VDC slices on top of a physical optically interconnected DC infrastructure:
- To showcase the full workflow involving the whole COSIGN architecture, live provisioning of several VDC instances (stacks) where performed in aims to highlight the following:
 - Full dynamic, automated and transparent deployment of VDC instances
 - Enhanced graphical specification of VDC instances
 - Automated stack creation and mapping thanks to the Algorithm module
 - On-demand configuration of optical paths thanks to ODL controller
 - Exploitation of the multi-technology optical data plane
 - Simple and on-demand tear-down of deployed VDC instances

Overall VDC provisioning workflow:

The VDC provisioning process starts at the extended Horizon dashboard:

• At the end of the process, the full stack has been created automatically (network + IT), with VMs being able to exchange information thanks to the configured optical routes:

Example of VDC stack

 At the end of the process, the full stack has been created automatically (network + IT), with VMs being able to exchange information thanks to the configured optical routes:

Ping exchange between VMs at a created VDC instance

 Several concurrent VDC instances were deployed, each one representing requests from different tenants:

Conclusions

- Optical transport technologies are applied to the DCN infrastructure to cope with the requirements of current and forth-coming applications
- SDN has been presented as a valid paradigm to implement the control of such networks
- Two practical use cases have been presented
 - The LIGHTNESS project demonstrated an implementation of the SDN-based control of a hybrid OCS/OPS DCN to provide virtualized DCN infrastructures → Foundations for the Network Slicing
 - The COSIGN project demonstrated a fully orchestrated optical DC infrastructure → The VDC Use Case paved the way for the NFV-MANO and End-to-End Slicing (5G)

NFV MANO over an optical infrastructure

References

- Open Networking Foundation (https://www.opennetworking.org)
- OpenDaylight project (https://www.opendaylight.org)
- OpenStack (https://www.openstack.org)
- EU FP7 LIGHTNESS project (http://www.ict-lightness.eu)
- EU FP7 COSIGN project (http://www.fp7-cosign.eu)
- ETSI NVF Standards (http://www.etsi.org)
- EU H2020 SLICENET project (https://slicenet.eu)

Thank you!

Questions?
Fernando Agraz (<u>agraz@tsc.upc.edu</u>)

Future Internet Networks (FINE)

Master in Innovation and Research in Informatics (MIRI)