CLAIMS

We Claim:

ĺ	1.	A control message structure for controlling communication between nodes		
2	on a peer-to-peer network, said control message structure comprising:			
3		a preamble for bus arbitration;		
4		a destination address indicating a network address of a node to which a		
5	control message is being sent;			
6		a source address indicating a node as being a source of said message:		
7		a payload containing said message; and		
8		a checksum for checking whether the received message is valid.		
1	2.	A control message structure as in claim 1, said control message structure		
2	further comprising:			
3		a payload size indicating a size of said message.		
1	3.	A control message structure as in claim 2, wherein the preamble is a plurality		
2	of byte	es of data.		
1	4.	A control message structure as in claim 3, wherein each byte of the preamble		
2	contai	ns one bit of a binary number pattern.		
1	5.	A control message structure as in claim 4, wherein the preamble is 10 bytes		
,2	repres	enting a 10-bit binary number.		
1	6.	The control message structure of claim 1. wherein each of the destination		
2	address and the source address is one byte wide.			
3	7.	The control message structure of claim 1, wherein the payload size is two		
4	bytes	bytes wide, the value of the payload size indicating the number of bytes in the		
5	message.			

1	8. The control message structure of claim 1, wherein the checksum is a twos		
2	compliment sum of the payload less the preamble and the checksum itself.		
1	9. A method of controlling communication between nodes of a peer-to-peer		
2	network, said method comprising the steps of:		
3	monitoring activity on a control bus to determine when messages are being		
4	sent and to determine when said control bus is quiet:		
5	parsing header information to determine to which node a control message is		
6	directed when said control bus is determined to be carrying control message		
7	information, the node to which said control message is directed being a receiving		
8	node; and		
9	parsing said message from said control message, said control message being		
10	parsed by said receiving node.		
1	10. A method as in claim 9, wherein monitoring activity on the control bus		
2	further comprises monitoring a control bus active signal.		
1	11. A method as in claim 10, wherein the step of parsing header information		
2	comprises		
3	retrieving a preamble, a destination address, a source address and a message size		
4	from said control bus.		
1	12. A method as in claim 11, wherein when the control bus active signal is		
2	asserted, said method further comprises the step of:		
3	monitoring the preamble to determine if other nodes are in contention for		
4	said control bus.		
1	13. A method as in claim 9, wherein in the monitoring step when said control		
2	bus is determined to be quiet, said method further comprises the steps of:		
3	sending a preamble;		

5569-69491 -27-

1		monitoring transmission of said preamble to determine if a collision has		
2	occur	occurred;		
3		sending a balance of said message when a collision is determined not to have		
4	occur	occurred; and		
5		releasing said control bus after said message has been sent and monitoring		
6	said bus.			
1	14.	A method as in claim 13, wherein the step of sending said message		
2	comp	comprises sending a destination address, a source address, a payload size, a payload		
3	and a checksum.			
1	15.	A method as in claim 14, wherein the step of sending a preamble further		
1				
2	comp	rises asserting a control bus status signal.		
1	16.	A method as in claim 15. wherein if in the step of monitoring transmission of		
2	the pr	the preamble it is determined that a collision has occurred, said method further		
3	comp	comprising the steps of:		
4		releasing the control bus status signal; and		
5		monitoring the control bus until said control bus is determined to be quiet.		
1	17.	The method as in claim 16. wherein said control message is sent one byte at a		
2	time.	The memory as in claim, for wherein suit control message to some one cycle and		
-	time.			
]	18.	The method as in claim 17, wherein when said control bus is idle, all control		
2	bus si	bus signals are high.		
1	19.	A method as in claim 18, wherein one address is reserved for broadcast		
2		ages all nodes processing broadcast massages		

- 1 20. A method as in claim 19, wherein a second address is reserved for a
- 2 conference/intercom function, only a conference feature node being able to acquire
- 3 the address reserved for said conference/intercom function.
- 1 21. A method as in claim 20, wherein the preamble is 8 to 10 bytes wide.
- 1 22. A method as in claim 21, wherein each byte of said preamble is one of two
- 2 values.
- 1 23. A method as in claim 22, wherein said payload size and said checksum are
- 2 each two bytes wide.
- 1 24. A method as in claim 23. wherein said message may be between 1 byte and
- 2 64K bytes long.