Basics of (Stochastic) Differential Equation

Il-Chul Moon

Department of Industrial and Systems Engineering

KAIST

icmoon@kaist.ac.kr

Differential Equations

- Equation to specify the relation between functions and their derivatives
 - Function to describe heat transfer, mechanical movements, social dynamics...
 - Derivative to describe the gradual changes of such functions
 - For example) More diseases susceptible people and a few infected people → More infected people
 - Two Functions: Actual population count at susceptible and infected status
 - Two Derivatives: Increment and decrement of the population count at such status
- Our main query on differential equations
 - What would be the value of functions at any given time t?
 - Given the differential equation
 - With an arbitrarily provided function values at time 0
 - The answer is approached in two directions
 - Simulation: by creating an actual instantiation of functions and their derivatives; and by running over-time
 - Calculation: by deriving a closed-form solution to calculate the function value at any time t

Types of Differential Equation

- Ordinary Differential Equation(ODE)
 - $F(t, y, y', ..., y^{(n)}) = 0$
 - y: dependent variable, t: independent variable, y = f(t): unknown function of t
 - For example) SIR model in disease spread
 - Linear differential equation
 - $F(t, y, y', ..., y^{(n)}) = 0$
 - is specified as a linear combination of $y, y', ..., y^{(n)}$
 - Initial Value Problem(IVP)
 - On some interval I containing t, the problem $\frac{dy}{dt} = f(t, y)$ and $y(t_0) = y_0$ is called and Initial Value Problem where y_0 is an arbitrary specified real constant.
 - $y(t_0) = y_0$ is called initial conditions
- Partial Differential Equation(PDE)
 - $F\left(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}, \mathbf{y}, \frac{\partial \mathbf{y}}{\partial \mathbf{x}_{1}}, \dots, \frac{\partial \mathbf{y}}{\partial \mathbf{x}_{n}}\right) = 0$, $y(\mathbf{x})$: unknown function of x
 - First-order partial differential equation because of the limited first-order partial derivative relations
 - Parabolic (time-dependent) Partial Differential Equation: $y = f(t, x), F\left(x, t, y, \frac{\partial y}{\partial x}, \frac{\partial y}{\partial t}, ...\right) = 0$
 - For example) Heat equation model in heat transfer
 - $\frac{\partial u}{\partial t} = \Delta u \ (= \frac{\partial^2 u}{\partial x^2})$
- Stochastic Differential Equation(SDE)
 - $dX_t = \mu(X_t, t)dt + \sigma(X_t, t)dB_t$
 - X_t, B_t : stochastic process
 - B_t : Brownian motion
 - For example) Black-Scholes model in finance, Ornstein-Uhlenbeck process
- And many more.....

Detour) Simulation with System Dynamics

Ordinary Differential Equation

- Ordinary Differential Equation
 - Differential equation with a set of functions on an independent variable and the derivatives of the functions
 - $F(t, y, y', ..., y^{(n)}) = 0$
 - y: dependent variable
 - *t*: independent variable
 - y = f(t): unknown function of t
- System of Differential Equations
 - Coupled differential equations
 - $y: y(t) = [y_1(t), y_2(t), ..., y_m(t)]$

$$\begin{pmatrix}
f_1(t, y, y', ..., y^{(n)}) \\
f_2(t, y, y', ..., y^{(n)}) \\
... \\
f_m(t, y, y', ..., y^{(n)})
\end{pmatrix} = \begin{pmatrix}
0 \\
0 \\
... \\
0
\end{pmatrix}$$

Example : SIR Model

•
$$\frac{dS}{dt} = -\beta IS$$
, $\frac{dI}{dt} = \beta IS - \nu I$, $\frac{dR}{dt} = \nu I$
• $y = [S, I, R]$

- How to calculate y for an arbitrary t?
 - Exact closed-form solution \rightarrow Not known, Asymptotic approximation \rightarrow published in 2020

SIR Model from (Ross, 1916), (Kermack and McKendrick, 1927)...

https://en.wikipedia.org/wiki/Compartmental_models_in_epidemiology

Euler Method

- Let's start from the simplest version: Ordinary Differential Equation
- How to (Approximately) Calculate Differential Equation
 - "Difference" is specified by the equation

- Euler method
 - Taking a small step of $\Delta t = t_{n+1} t_n$
 - Propagate until the target time of t_N

•
$$x(t_{n+1}) = x_n + \Delta t f(t_n, x_n) + O((\Delta t)^2)$$

- $x_{n+1} = x_n + \Delta t f(t_n, x_n)$
- Modified Euler method
 - Taking a single point of differentiation could be too biased.
 - Take two neighboring differentiations and average them

•
$$x_{n+1} = x_n + \frac{\Delta t}{2} [f(t_n, x_n) + f(t_n + \Delta t, x_{n+1}^p)]$$

• $x_{n+1}^p = x_n + \Delta t f(t_n, x_n)$

Runge-Kutta Method

- Modified Euler method
 - $x_{n+1} = x_n + \frac{\Delta t}{2} [f(t_n, x_n) + f(t_n + \Delta t, x_{n+1}^p)], x_{n+1}^p = x_n + \Delta t f(t_n, x_n)$
 - $x_{n+1} = x_n + \frac{\Delta t}{2} [f(t_n, x_n) + f(t_n + \Delta t, x_n + \Delta t f(t_n, x_n))]$
 - Let's say $k_1 = \Delta t f(t_n, x_n)$, $k_2 = \Delta t f(t_n + \alpha \Delta t, x_n + \beta k_1)$
 - Then, $x(t_{n+1}) \approx x_n + \frac{1}{2}k_1 + \frac{1}{2}k_2$ assuming $\alpha = \beta = 1$
 - Further generalizing with coefficient,
 - $x(t_{n+1}) \approx x_n + ak_1 + bk_2$ when say $k_1 = \Delta t f(t_n, x_n)$, $k_2 = \Delta t f(t_n + \alpha \Delta t, x_n + \beta k_1)$
 - This is called Runge-Kutta 2 (RK2) method
- RK2: $x(t_{n+1}) \approx x_n + a\Delta t f(t_n, x_n) + b\Delta t f(t_n + \alpha \Delta t, x_n + \beta k_1)$
 - Taylor series on $f(t_n + \alpha \Delta t, x_n + \beta k_1)$: Taylor series on multivariate function

•
$$f(t_n + \alpha \Delta t, x_n + \beta \Delta t f(t_n, x_n)) = f(t_n, x_n) + \alpha \Delta t \frac{\partial}{\partial t} f(t_n, x_n) + \beta \Delta t f(t_n, x_n) \frac{\partial}{\partial x} f(t_n, x_n) + O((\Delta t)^2)$$

•
$$x(t_{n+1}) \approx x_n + a\Delta t f(t_n, x_n) + b\Delta t f(t_n + \alpha \Delta t, x_n + \beta k_1)$$

$$= x_n + a\Delta t f(t_n, x_n) + b\Delta t \left[f(t_n, x_n) + \alpha \Delta t \frac{\partial}{\partial t} f(t_n, x_n) + \beta \Delta t f(t_n, x_n) \frac{\partial}{\partial x} f(t_n, x_n) + O((\Delta t)^2) \right]$$

$$= x_n + (a + b)\Delta t f(t_n, x_n) + (\Delta t)^2 \left[\alpha b f_t(t_n, x_n) + \beta b f(t_n, x_n) f_x(t_n, x_n) \right] + O((\Delta t)^3)$$

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x), x(t_0) = x_0$$

Total derivation:

$$\mathrm{d}f = \frac{\partial f}{\partial x_1} \, \mathrm{d}x_1 + \dots + \frac{\partial f}{\partial x_n} \, \mathrm{d}x_n$$

Constraints of Runge-Kutta Method

Taylor Expansion from RK2

Differential equation:
$$\frac{dx}{dt} = f(t, x), x(t_0) = x_0$$

•
$$x(t_{n+1}) \approx x_n + a\Delta t f(t_n, x_n) + b\Delta t f(t_n + \alpha \Delta t, x_n + \beta k_1)$$

$$= x_n + (a + b)\Delta t f(t_n, x_n) + (\Delta t)^2 [\alpha b f_t(t_n, x_n) + \beta b f(t_n, x_n) f_x(t_n, x_n)] + O((\Delta t)^3)$$

• Taylor Expansion from $x(t_{n+1})$, directly

•
$$x(t_{n+1}) = x(t_n + \Delta t) = x(t_n) + \frac{\Delta t}{1!} \frac{d}{dt} x(t)|_{t=t_n} + \frac{(\Delta t)^2}{2!} \frac{d^2}{(dt)^2} x(t)|_{t=t_n} + O((\Delta t)^3)$$

$$= x(t_n) + \Delta t f(t_n, x_n) + \frac{1}{2} (\Delta t)^2 \frac{d}{dt} f(t_n, x_n) + O((\Delta t)^3)$$

$$= x(t_n) + \Delta t f(t_n, x_n) + \frac{1}{2} (\Delta t)^2 \left[\frac{\partial}{\partial t} f(t_n, x_n) + f(t_n, x_n) \frac{\partial}{\partial x} f(t_n, x_n) \right] + O((\Delta t)^3)$$

$$\approx x_n + \Delta t f(t_n, x_n) + \frac{1}{2} (\Delta t)^2 [f_t(t_n, x_n) + f(t_n, x_n) f_x(t_n, x_n)]$$
Total derivation:
$$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$$

$$= x(t_n) + \Delta t f(t_n, x_n) + \frac{1}{2} (\Delta t)^2 [f_t(t_n, x_n) + f(t_n, x_n) f_x(t_n, x_n)]$$

- Now, we can see the constraints on RK2
 - Remember that direct taylor expansion has no approximation as RK2 besides of high-order terms

•
$$a + b = 1$$
, $\alpha b = \frac{1}{2}$, $\beta b = \frac{1}{2}$

Modified Euler Method (
$$a = b = \frac{1}{2}$$
, $\alpha = \beta = 1$):

$$x_{n+1} = x_n + \frac{\Delta t}{2} [f(t_n, x_n) + f(t_n + \Delta t, x_n + \Delta t f(t_n, x_n))]$$

Higher-Order Runge-Kutta Method

- RK2 : $x_{n+1} \approx x_n + ak_1 + bk_2$
 - $k_1 = \Delta t f(t_n, x_n), k_2 = \Delta t f(t_n + \alpha \Delta t, x_n + \beta k_1)$
 - a + b = 1, $\alpha b = \frac{1}{2}$, $\beta b = \frac{1}{2}$
- General form RK
 - *h* : small step between partitions
 - Implicit form : $x_{n+1} \approx x_n + h \sum_{i=1}^{s} b_i k_i$
 - $k_i = f(t_n + c_i h, x_n + h \sum_{j=1}^{s} a_{i,j} k_j)$
 - Explicit form : $x_{n+1} \approx x_n + h \sum_{i=1}^{s} b_i k_i$
 - $k_i = f(t_n + c_i h, x_n + h \sum_{i=1}^{i-1} a_{i,i} k_i)$
 - Then, how to represent the constraints?
 - $\sum_{i=1}^{s} b_i = 1$, $\sum_{j=1}^{i-1} a_{i,j} = c_i$, i = 2, ..., s
 - Butcher tableau!
- RK4: $x_{n+1} = x_n + \frac{1}{6}hk_1 + \frac{1}{3}hk_2 + \frac{1}{3}hk_3 + \frac{1}{6}hk_4$
 - $k_1 = f(t_n, x_n), k_2 = f\left(t_n + \frac{h}{2}, x_n + h\frac{k_1}{2}\right)$
 - $k_3 = f(t_n + \frac{h}{2}, x_n + h\frac{k_2}{2}), k_4 = f(t_n + \frac{2h}{2}, x_n + hk_3)$
- This is only a single example. There are many RKs...

s dim.

Geometry of RK4 and Reuse of K

- RK2: $x_{n+1} \approx x_n + \frac{1}{2}k_1 + \frac{1}{2}k_2$
 - $k_1 = f(t_n, x_n), k_2 = f\left(t_n + \frac{h}{2}, x_n + h\frac{k_1}{2}\right)$
- RK4: $x_{n+1} = x_n + \frac{1}{6}hk_1 + \frac{1}{3}hk_2 + \frac{1}{3}hk_3 + \frac{1}{6}hk_4$
 - $k_1 = f(t_n, x_n), k_2 = f\left(t_n + \frac{h}{2}, x_n + h\frac{k_1}{2}\right)$
 - $k_3 = f(t_n + \frac{h}{2}, x_n + h\frac{k_2}{2}), k_4 = f(t_n + \frac{2h}{2}, x_n + hk_3)$
- Eventually, RK is a numerical method of solving an initial value problem. RK searches the optimal weights with respect to the order of accuracy given the number of function evaluations.
 - RK4 can reuse k_1 and k_2 from RK2
 - Common intermediate steps!
- We can increase the order for further accuracy

Copyright © 2022 by Il-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST

In spite of Complexity

Adaptive Runge-Kutta

- RK is a numerical method of an IVP with fixed step-size
- Let's design a framework for adaptive step size
 - Two RK methods with p and p-1 order, which shares common intermediate steps
 - (p-1) order RK: $x_{n+1}^* = x_n + h \sum_{i=1}^s b_i^* k_i$, $k_i = f(t_n + c_i h, x_n + h \sum_{j=1}^{i-1} a_{i,j} k_j)$
 - k_i is shared with p order RK
 - Error between two RKs
 - $e_{n+1} = x_{n+1} x_{n+1}^* = h \sum_{i=1}^{s} (b_i b_i^*) k_i$
 - This is not the actual error, but a simulated error from the lower-order RK to the high-order RK
 - Now, we have more parameter of $b_i^* \rightarrow$ expanding the Butcher tableau
- Adaptive step-size
 - If the error goes beyond a user-defined threshold → reduce step-size
 - If the error becomes less than a user-defined threshold → increase step-size
- There are many variations of this framework
 - Dormand-Prince Method
 - Two RKs of RK4 and RK5
 - You can look up the Butcher tableau from Web (too many numbers...)

STOCHASTIC DIFFERENTIAL EQUATIONS

Lévy Process

- Stochastic Process with the below conditions
 - $X = \{X_t : t \ge 0\}$
 - $X_0 = 0$
 - Independence of increments
 - $0 \le t_1 < t_2 < \dots < t_n < \infty \rightarrow X_{t_2} X_{t_1}, X_{t_3} X_{t_2}, \dots, X_{t_n} X_{t_{n-1}}$ are mutually independent
 - The increments between two random variables with neighbor index values are independent
 - Stationary increments
 - For any $s < t, X_t X_s$ is equal in distribution to X_{t-s}
 - The distribution of the increment only depends upon the length between two indexes
 - Continuity in Probability
 - For any $\varepsilon > 0$ and $t \ge 0$, $\lim_{h \to 0} P(|X_{t+h} X_t| > \varepsilon) = 0$
- Instantiation of Levy Process
 - Wiener process: $X_t X_s \sim N(0, t s)$
 - Poisson process: $X_t X_s \sim Poisson(\lambda(t s))$
 - Gamma process: $X_t X_s \sim Gamma(v(t) v(s), u)$

Poisson Process

APPLIED ARTIFICIAL INTELLIGENCE LAB

- Poisson distribution
 - $Poisson(\lambda)$

•
$$p(k) = \frac{\lambda^k e^{-\lambda}}{k!}$$

- $k \in \mathbb{N}_0$: Natural number with 0
- $\lambda \in (0, \infty)$
- Mean= Variance=λ
- Poisson process: $P(X_t = k) = \frac{(\lambda t)^k e^{-\lambda t}}{k!}$
 - $X_0 = 0$
 - Independence of increments
 - Stationary increments
 - $X_{t-s} \sim Poisson(\lambda(t-s))$
- Some properties
 - Counting process with arrival rate (λ)
 - Memoryless property : P(X > t + x) = P(X > x)P(X > t)
 - Inter-arrival of event follows exponential distribution : $Exp(\lambda)$

 $X_0=0$

Wiener Process a.k.a. Brownian Motion

- Wiener process : (One-dimensional case) $P(X_t = x) = \frac{1}{\sqrt{2\pi t}} \exp\left(-\frac{x^2}{2t}\right)$
 - $X_0 = 0$
 - Independence of increments
 - For every t > 0, $(X_{t+u} X_t) \perp X_s$ if $s \le t, u \ge 0$
 - Stationary increments

•
$$X_{t+u} - X_t \sim \mathbb{N}(0, u)$$

- Some properties
 - $\mathbb{E}[X_t] = 0$
 - $Var[X_t] = t$
 - $cov(X_{t_1}, X_{t_2}) = t_1$

• = $\mathbb{E}[X_{t_1} \cdot (X_{t_2} - X_{t_1})] + \mathbb{E}[X_{t_1} \cdot X_{t_1}] = \mathbb{E}[X_{t_1} \cdot X_{t_1}] = t_1$ (using the independence of increment)

Copyright © 2022 by Il-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST

- $X_{t_2} = X_{t_1} + \sqrt{t_2 t_1} \cdot Z$, $Z \sim N(0,1)$
- Self-similarity by scaling: $V_t = \frac{1}{\sqrt{c}} W_{ct}$, c > 0

Self-Similarity ©wikipedia

Riemann-Stieltjes Integral

• A generalization of the Riemann integral, $\int_a^b f(x)dx$

$$A = \int_{x=a}^{b} f(x) dg(x)$$

- f: a real-valued function: integrand
- g: a real-to-real function: integrator
 - Should be bounded-variation
- Partition: $P = \{a = x_0 < x_1 < \dots < x_n = b\}$

•
$$S(P, f, g) = \sum_{i=0}^{n-1} f(c_i) |g(x_{i+1}) - g(x_i)|, c_i \in [x_i, x_{i+1}]$$

•
$$\int_{x=a}^{b} f(x)dg(x) = \lim_{\sup|x_{i+1}-x_i|\to 0} \sum_{i=0}^{n-1} f(c_i)|g(x_{i+1}) - g(x_i)|$$

- If g is continuously differentiable over $\mathbb R$
 - $\int_a^b f(x)dg(x) = \int_a^b f(x)g'(x)dx$
- Application to probability calculation
 - $\mathbb{E}[f(X)] = \int_{-\infty}^{\infty} f(x)g'(x)dx$
 - g(x): CDF of X
 - This does not work if g is not differentiable, i.e. discrete density
 - $\mathbb{E}[f(X)] = \int_{-\infty}^{\infty} f(x) dg(x)$

- Example) $\int_{-1}^{1} f(x) dH(x)$
 - f is continuous at 0
 - When $H(x) = \begin{cases} 1, x \ge 0 \\ 0, x < 0 \end{cases}$
- Answer)

$$\int_{-1}^{1} f(x)dH(x) = \lim_{\sup |x_{i+1} - x_i| \to 0} \sum_{i=0}^{n-1} f(c_i) |H(x_{i+1}) - H(x_i)|$$

•
$$P = \{-1 = x_0 < x_1 < \dots < x_n = 1\}$$

$$H(x_{i+1}) - H(x_i) = 0 - 0 = 0$$

$$H(x_{i+1}) - H(x_i) = 1 - 1 = 0$$

 $H(x_{i+1}) - H(x_i) = 1 - 0 = 1$

•
$$\int_{-1}^{1} f(x)dH(x) = f(0) \times 1 = f(0)$$

Stochastic Integral: Ito vs Stratonovich

- Diverse integrators
 - Integrator of a deterministic variable: $\int_a^b f(x)dx$
 - Integrator of a deterministic function: $\int_{x=a}^{b} f(x)dg(x)$
 - Integrator of a stochastic process: $\int_{t=0}^{T} X_t dX_t$
- Any distinctive character of stochastic process integrator?
 - Total variation: $V_a^b(f) = \sup_{p \in \mathcal{P}} \sum_{i=0}^{n_p-1} |f(x_{i+1}) f(x_i)|$ $\mathcal{P} = \{P = \{x_0, \dots, x_{n_p}\} | P \text{ is a partition of } [a, b], x_i \le x_{i+1}, 0 \le i \le n_p - 1\}$
 - Deterministic integrator: Bounded total variation
 - Bounded to be zero: Riemann integral
 - Bounded to be a positive constant: Riemann-Stieltjes integral
 - Stochastic integrator: Unbounded total variation
 - A potential of large deviation between $f(x_{i+1})$ and $f(x_i)$

•
$$\int_{t=0}^{T} X_t dX_t = \lim_{n \to \infty} \sum_{k=1}^{n} X_{t_{k'}} (X_{t_k} - X_{t_{k-1}})$$
, $0 = t_0 < t_1 \dots < t_n = T$, $t_{k-1} \le t_{k'} \le t_k$

- Ito's definition: $\sum_{k=1}^{n} X_{t_{k-1}} (X_{t_k} X_{t_{k-1}})$
- Stratonovich's definition: $\sum_{k=1}^{n} \left(\frac{X_{t_{k-1}} + X_{t_k}}{2} \right) \left(X_{t_k} X_{t_{k-1}} \right)$

- e.g.) Wiener process
 - $X_0 = 0$
 - Independence of increments
 - For every t > 0, $(X_{t+u} X_t) \perp X_s$ if $s \le t, u \ge 0$
 - Stationary increments
 - $X_{t+u} X_t \sim N(0, u)$

Detour) Definition, Existence and Rules of Integral

- Definition of integral -> Expanding the integrator from a deterministic variable to a stochastic process
 - Depending on the limit of summation over partitions
- Existence of integral
 - The convergence between the lower sum and the upper sum
- Our perception of integral
 - A list of derivation rules memorized since high school
 - $y = f(x) \rightarrow dy = f'(x)dx$
 - Chain rule
 - Single variable: when $h(x) = f(g(x)), h'(x) = f'(g(x))g'(x), \frac{dh}{dx} = \frac{df}{dg} \cdot \frac{dg}{dx}$
 - Multi-variable: $\frac{d}{dx}f(g_1(x),...,g_k(x)) = \sum_{i=1}^k \left(\frac{d}{dx}g_i(x)\right) \frac{\partial f}{\partial g_i}(g_1(x),...,g_k(x))$
 - Integral by substitution
 - Single variable: $\int_a^b f(\psi(x))\psi'(x)dx = \int_{\psi(a)}^{\psi(b)} f(u)du$
 - ψ : $[a,b] \to I$: differentiable function with continuous derivative, $I \subset R$: interval, $f:I \to R$: a continuous function
 - Multi-variable: $\int_U f(\psi(\mathbf{u})) |\det(D\psi)(\mathbf{u})| d\mathbf{u} = \int_{\psi(U)} f(\mathbf{v}) d\mathbf{v}$
 - with similar constraints like the single variable case

Ito's Integration

• When
$$X_t = B_t$$
, $\int_{t=0}^T X_t dX_t = \lim_{n \to \infty} \sum_{k=1}^n X_{t_{k'}} (X_{t_k} - X_{t_{k-1}}) = \begin{cases} -\frac{1}{2} t + \frac{1}{2} X_t^2, & \text{if } X_{t_{k'}} = X_{t_{k-1}}, & \text{(ito)} \\ \frac{1}{2} t + \frac{1}{2} X_t^2, & \text{if } X_{t_{k'}} = X_{t_k} \\ \frac{1}{2} X_t^2, & \text{if } X_{t_{k'}} = \frac{X_{t_{k-1}} + X_{t_k}}{2}, & \text{(Stratonovich)} \end{cases}$

- $0 = t_0 < t_1 \dots < t_n = T$, $t_{k-1} \le t_{k'} \le t_k$
- Characteristics of Ito's integration
 - Left point → Non-anticipative
 - Independent increments → Martingale, Martingale → Independent increments
 - However, Ito's integration requires different differentiations rules

•
$$\int_{t=0}^{T} X_t dX_t = -\frac{1}{2}t + \frac{1}{2}X_t^2 \neq \frac{1}{2}X_t^2$$

•
$$I(f) = \int_0^T f(t, X_t) dX_t \approx I(S) = \sum_{i=0}^n c_i (X_{t_i} - X_{t_{i-1}})$$

- c_i is measurable at t_{i-1}
- Ito's integral with a simple function
 - Simple function : $f(x) = \sum_{k=1}^{n} a_k 1_{A_k}(x)$, 1_A is an indicator function, A_k is a disjoint measurable set, $a_k \in R$

Copyright © 2022 by Il-Chul Moon, Dept. of Industrial and Systems Engineering, KAIST

Using the mean square convergence to check the existence of the Ito integral

Ito's Lemma

- Our perception of integral: a list of derivation rules
 - Previously, dy = f'(x)dx
- Then, our perception of the Ito integral
 == a list of derivation rules

- Observation of inner product on vectors and stochastic processes
 - $x = (x_1, ..., x_n), y = (y_1, ..., y_n)$
 - $\langle x, y \rangle = \sum_{i=1}^{n} x_i y_i$
 - $||x-y|| = \sqrt{\langle x-y, x-y \rangle} = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$
 - *X,Y*: two stochastic processes
 - $\langle X, Y \rangle = E[XY]$
 - $||x y|| = \sqrt{E[|X Y|^2]}$
- (Ito's Lemma) When $f(t, X_t)$, $df = \frac{\partial f}{\partial t}(t, X_t)dt + \frac{\partial f}{\partial X_t}(t, X_t)dX_t + \frac{1}{2}\frac{\partial^2 f}{\partial X_t^2}(t, X_t) \cdot (dX_t)^2$
 - X_t : 1-dimensional semi-martingale (which goes over this lecture)
 - $dX_t = udt + vdB_t$
 - $f: R_{\geq 0} \times R \to R$: twice continuously differentiable function
 - $(dX_t)^2 = (dX_t) \cdot (dX_t)$ is computed according to the rules
 - $dt \cdot dt = dt \cdot dB_t = dB_t \cdot dt = 0, dB_t \cdot dB_t = dt$
- (Integration by part) $X_t Y_t = X_0 Y_0 + \int_0^T X_{t-} dY_t + \int_0^T Y_{t-} dX_t + [X, Y]_t$
 - $[X,Y]_t$: Quadratic covariance process
- (Ito isometry) $\mathbb{E}\left[\left(\int_0^T H_t dB_t\right)^2\right] = \mathbb{E}\left[\int_0^T H_t^2 dt\right]$
 - H: deterministic sequence or a function, left-continuous, locally bounded
 - B: Wiener process, a.k.a. Brownian motion

Ito Process and Geometric Brownian Motion

Ito Process

KAIST

- Deterministic drift over time + Stochastic diffusion over time
- $dX_t = \mu_t dt + \sigma_t dB_t$
 - $X_t = X_0 + \int_0^t \mu_t dt + \int_0^t \sigma_t dB_t$
 - Assume $X_0 = 0$, B: Wiener process (Brownian motion)
- $\mathbb{E}[X_t] = \int_0^t \mu_t dt$, $Var[X_t] = \int_0^t \sigma_t^2 dt$ by Ito's isometry
- Geometric Brownian Motion
 - Assuming constant volatility σ, constant drift μ
 - $dX_t = \mu X_t dt + \sigma X_t dB_t$
 - Assuming $f(X_t) = \log X_t$
 - By (Ito's Lemma) $df(X_t) = \sum_{i=1}^n f_i(X_t) dX_t^i + \frac{1}{2} \sum_{i,j=1}^n f_{i,j}(X_t) d[X^i, X^j]_t$
 - $df(X_t) = f'(X_t)dX_t + \frac{1}{2}f''(X_t)(dX_t)^2 = \frac{1}{X_t}dX_t \frac{1}{2}\frac{1}{(X_t)^2}(X_t)^2\sigma^2dt = \frac{1}{X_t}(\mu X_t dt + \sigma X_t dB_t) \frac{1}{2}\sigma^2dt$ $= \left(\mu \frac{1}{2}\sigma^2\right)dt + \sigma dB_t$
 - $f(X_t) = \log X_t = \log X_0 + \left(\mu \frac{1}{2}\sigma^2\right)t + \sigma B_t$
 - $X_t = X_0 \exp\left(\left(\mu \frac{1}{2}\sigma^2\right)t + \sigma B_t\right)$: closed-form estimation of geometric Brownian motion at any index of t
 - $X_t \sim N\left(X_0 \exp(\mu t), X_0^2 \exp(\mu t) (\exp(\sigma^2 t) 1)\right)$