Algorithms Design and Analysis

Lecture 1

Lecturer: 许可 (Xu Ke)

Beihang University

2017

Reference books (参考书)

- 1.A.V. Aho, J.E. Hopcroft, and J.D. Ullman, *The Design and Analysis of Computer Algorithms*, Addison-Wesley, Reading, MA, 1974.
- 2. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. *Introduction to Algorithms*. The MIT Press, 1991.
- 3.Jon Kleinberg, Eva Tardos. *Algorithm Design*. Pearson/Addison-Wesley, 2006.
- 4.M.H. Alsuwaiyel. 算法设计技巧与分析. 电子工业出版社, 2006.
- 5. 屈婉玲等人. 算法设计与分析. 清华大学出版社, 2015.

作业提交和讲课笔记

作业应在两周之内完成并通过 http://judge.buaa.edu.cn 提交。 讲课笔记也可通过此网站下载。

有问题请发邮件至 algbuaa@gmail.com。

Basics (基本要素)

Goal (目标)

- Find the best algorithm for a given computational (计算) problem
- If infeasible (不可实行的), good ones

Three things you will learn

- Design a good algorithm
- Analyze (分析) it
- Lower bounds (下界): Know if it is the best algorithm

Question:

Write a function to compute 1-2+3-4+5-6+7+....+n, where n is very large.

1.

```
long fn(long n)
{ long temp=0;
 int i,flag=1;
 if(n<=0)
{ printf("error: n must > 0);
  exit(1); }
 for(i=1;i<=n;i++)
{ temp=temp+flag*i;
  flag=(-1)*flag; }
 return temp;
}
```

2.

```
long fn(long n)
{long temp=0;
int j=1, i=1;
 if(n<=0)
{printf("error: n must > 0);
  while(j<=n)
{ temp=temp+i;
  i=-i;
  i>0?i++:i--;
  j++;}
 return temp; }
```

3.

```
long fn(long n)
 if(n<=0)
{
  printf("error: n must > 0);
  exit(1);
 if(0==n%2)
 return (n/2)*(-1);
 else
 return (n-1)/2*(-1)+n;
}
```

1Byte = 8 Bit

1 KB = 1,024 Bytes

1 MB = 1,024 KB = 1,048,576 Bytes

1 GB = 1,024 MB = 1,073,741,824 Bytes

1 TB = 1,024 GB = 1,099,511,627,776 Bytes

1 PB = 1,024 TB = 1,125,899,906,842,624 Bytes

1 EB = 1,024 PB = 1,152,921,504,606,846,976 Bytes

1 ZB = 1,024 EB = 1,180,591,620,717,411,303,424 Bytes

The Importance of Algorithms

- Algorithms are the soul of software.
- Fast computers can be inefficient when algorithms are inefficient.
- Slow computers can be efficient when algorithms are efficient.

图灵奖获得者(算法和计算理论领域)

Richard Hamming (1968) -- 汉明码

James Hardy Wilkinson (1970) -- 数值分析

Donald E. Knuth (1974) – The Art of Computer Programming

Michael Oser Rabin Dana Stewart Scott (1976) -- 自动机

Stephen Arthur Cook (1982) -- NP完全性

Richard Manning Karp (1985) – 算法理论,尤其是NP完全性理论

John E. Hopcroft, Robert Endre. Tarjan (1986) -- 数据结构和算法设计

William (Velvel) Morton Kahan (1989) -- 浮点运算

Juris Hartmanis, Richard Edwin Stearns (1993) -- 计算复杂性

Manuel Blum (1995) -- 计算复杂性,密码系统和程序检查验证

姚期智(Andrew Chi-Chih Yao) (2000) -- 伪随机数生成,密码系统和通讯复杂性

Ronald L. Rivest, Adi Shamir, Leonard M. Adleman(2002) -- 公钥密码技术-RSA

Algorithms

An algorithm is a precise, step-by-step process (过程) for solving a problem in a finite (有限的) number of steps.

- Examples:
 - Adding two numbers
 - Cooking
 - Mathematical Mechanization

吴文俊

— But in reality (现实) not all problems are solved using algorithms.

Cooking and Algorithms

- 西餐:黑椒牛排
 - 主料: 牛排300克
 - ●辅料:洋葱(白皮)25克,胡萝卜25克,西芹30克,青豆20克,菜花30克
 - ●调料: 盐4克, 胡椒粉8克, 黄油50克
- 中餐: 辣焖牛腩
 - ●主料: 牛腩1000克
 - ●辅料: 红辣椒、葱、姜、蒜各适量
 - ●调料:老抽2大匙,南味腐乳汁2大匙,盐、冰糖、料酒适量

Example: Hunt Elephants

- 1. Go to Africa
- 2. Start at the Cape of Good Hope (好望角)
- 3. Traverse the continent in an orderly (有序的) manner.
- 4. During each traverse
 - a. Catch each animal seen
 - b. Compare each animal caught to a known elephant
 - c. Stop when a match is detected.

Remark: Experienced computer programmers modify the above algorithm by placing a known elephant in Cairo to ensure that the algorithm will terminate.

Learning from Nature's Way of Optimization(优化)

- Genetic Algorithms (遗传算法)
- Simulated Annealing Algorithms (模拟退火算法)
- Ant Colony Algorithms (蚁群算法)

_

History

— "Algorithm" was derived (起源) from Mohammed AI-khowarizmi, 9th century Persian (波斯人), mathematician (数学家) credited with (归于) formalizing (形式化) pencil-and paper methods for addition (加法), subtraction (减法), multiplication (乘法) and division (除法).

Algorithm Control Structures

- Direct (直接) sequencing (先后顺序): x=1; y=2;
- Conditional (条件) branching (分支): **if** (*x***=0**) **then...else...**
- Bounded (有限) Iteration (循环): **for** (*i*=1; *i*<*n*; *i*++) ...
- Conditional Iteration: while (i < n) ...
- Subroutines (子程序)
- Recursion (递归)

The Tower of Hanoi (Edouard Lucas, 1883)

Recursion version

```
Hanoi(n, P0, P1, P2)

IF n=1 THEN move (P0, 1<sup>st</sup>, P2)

ELSE

{Hanoi(n-1, P0, P2, P1)

move(P0, n<sup>th</sup>, P2)

Hanoi(n-1, P1, P0, P2)

}

RETURN
```

Complexity: Let T(n) denote the number of moves performed by Hanoi on n disks. Obviously, T(1)=1, T(n)=2T(n-1)+1. Not hard to prove that $T(n)=2^n-1$.

Practice

- Define (定义) the problem or refine (精化) an existing definition
- Design (设计) an algorithm
- Show its correctness (正确性)
- Analyze (分析) its performance (性能)
- Prove (证明) if it is the best
- Repeat (重复) the previous steps, if necessary

Techniques for Designing Algorithms

- Reduction to a known problem (归结到一个已知的问题)
- Divide and conquer (分而治之)
- Greedy approach (贪心策略)
- Dynamic programming (动态规划)
- Better data structures (更好的数据结构)
- Probabilistic solutions (概率解)
- Approximate solutions (近似解)

Complexity of an Algorithm

●The complexity of an algorithm is a device-independent (与设备无关) measure of the efficiency (效率) of the algorithm.

John E. Hopcroft Cornell University

The result is expressed as a function, giving the number of operations (操作) in terms of the size (大小、规模) of the input, e.g. $T(n)=2^n-1$ in the example of the Tower of Hanoi.

- Size: problem dependent (相关的)
- number of bits (multiplication), number of elements (sorting(排序)),
 number of vertices (顶点) and edges (边) (graph problems)
- Number of operations: model dependent
- RAM (Random Access Machine): LOAD, ADD, MULT, STORE;
 Each costs 1 unit of time.
- Turing Machine:
- Special (特殊的) models: Comparison (比较) tree for sorting (排序) and comparison.

Types of Complexity (复杂性的分类)

Let t(x) be the time taken on input $x \in X$

- Worst case (最坏情况): $W(n) = \max\{t(x), |x| = n\}$
 - Provides an upper bound (上界) on running time
 - An absolute (绝对的) guarantee (保证)
- Average case (平均情况): $A(n) = \sum_{|x|=n} t(x) \operatorname{Prob}(x)$
 - Provides the expected (期望的) running time
 - Very useful, but unrealistic (不实际的).

Experimental Evaluation (评估) of Algorithms

- Usually based on benchmarks (基准)
- Widely used in international algorithm competitions
 - SAT Competition
 - CSP Competition

•

A Hard Problem: Maximum Clique (团) Problem

- Given a graph G, a clique is a subset S of vertices (项点) in G such that each pair of vertices in S is connected by an edge.
- Maximum Clique Problem: Finding a clique with the largest number of vertices.

Finding a maximum clique is like finding a needle in a heystack

Copied from Lenka's report

But it might be easy in some cases

Copied from Lenka's report

A Challenging Benchmark

- Feb.22, 2005: A large instance with 4000 nodes was generated which has a hidden maximum independent set of 100 nodes.
 - Jul., 2005: Lengning Liu at the Univ. Kentucky found an IS of 96 nodes.
 - Jul., 2007: Silvia Richter at Griffth Univ. found an IS of 97 nodes. (KI-07)
 - Mar., 2010: Shaowei Cai at Peking Univ. found an IS of 98 nodes. (AAAI-10)
 - Dec., 2014: C.D. Rosin at Amara Health Analytics. found an IS of 99 nodes.

For more details, please visit

http://www.nlsde.buaa.edu.cn/~kexu/benchmarks/graph-benchmarks.htm OR http://iridia.ulb.ac.be/~fmascia/maximum_clique/BHOSLIB-benchmark or Google the keyword: BHOSLIB

Asymptotic (渐近的) Performance (性能)

- In this course, we care most about asymptotic performance.
- How does the algorithm behave as the problem size gets very large?
 - Running time
 - Memory/storage requirements
 - Bandwidth

Example

Suppose that you have a small business and need a program to keep track of 1024 customers. Two programmers A and B both come up with algorithms. A proposes an algorithm that sorts n names using $256n\log n$ comparisons and B presents an algorithm that uses n^2 comparisons.

Your current computer takes 10⁻³ seconds to make one comparison, and so when you benchmark (衡量) the algorithms you might conclude that B's algorithm is better.

Size	A	В
1024	2621	1049

Expansion

As the business expands, A's algorithm becomes more and more competitive than B's.

Size	A	В
1024	2621	1049
2048	5767	4194
4096	12583	16777
8192	27263	67109

We should think about a problem from a developing point of view!

Hardware improvement

If an application requires you to sort as many items as possible in one hour.

Thus if A's algorithm can sort n_A items, and B's n_B items, then

$$3600000 = 256n_{\rm A} \log n_{\rm A} = n^2_{\rm B}$$

yields $n_A = 1352$ and $n_B = 1897$.

But suppose that you replace the computer with one that is four times as fast.

So you can make 14400000 comparisons in the same time. Then

$$14400000 = 256n_{\rm A} \log n_{\rm A} = n^2_{\rm B}$$

yields $n_A = 4620$ and $n_B = 3794$.

A's algorithm gains much more from the faster computer than B's.

Why Efficient (有效率的) Algorithms?

f(n)	1 second	1 day	1 century
n	10^{6}	8.6×10^{10}	3.1×10^{15}
n^2	1000	2.9×10^{5}	5.6×10^7
2^n	20	36	51

Table 1. Assume each operation takes 10⁻⁶ second.

f(n)	1 second	1 day	1 century
n	10^{8}	8.6×10^{12}	3.1×10^{17}
n^2	10^{4}	2.9×10^6	5.6×10^{8}
2^n	27	43	58

Table 2. Assume each operation takes 10⁻⁸ second.

Asymptotic notation (记号) for (positive (正的)) functions:

- f(n) = O(g(n)) if
 - ✓ there exists constants c, n_0 such that $f(n) \le cg(n)$ for all $n \ge n_0$.
- For example, $n^2 + 3n + 7 = O(n^2)$.

$$f(n) = n^2 + 3n + 7$$
 $g(n) = n^2$

There exists c = 2, and $n_0 = 5$ such that $f(n) \le cg(n)$ for all $n \ge n_0$.

Other Asymptotic notations (记号):

- $f(n) = \Omega(g(n))$ if there exists constants c, n_0 such that $f(n) \ge cg(n)$ for all $n \ge n_0$, e.g. $0.5n^2 10 = \Omega(n)$.
- $f(n) = \Theta(g(n))$ if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.
- f(n) = o(g(n)) if $\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$, e.g. $256n \ln n = o(n^2)$.
- Intuitively (直观地), o() is like <; O() is like ≤; Ω() is like ≥; Θ() is like =.
- We will usually just use O() notation.

Exercise: For the following pairs of functions f, g write all equations that apply of the form f=?(g), where $? \in \{o, O, \Omega, \Theta\}$.

(a)
$$f(n)=4n^3-n^2\log n$$
, $g(n)=n^3+4n+5$

(b)
$$f(n)=2^n$$
, $g(n)=2^{n+4}$

(c)
$$f(n)=2^n$$
, $g(n)=2^{2n}$

$$\text{(d)} f(n) = \begin{cases} n, \text{ if } n \text{ is odd } (奇数) \\ n^2, \text{ if } n \text{ is even } (偶数) \end{cases}, \quad g(n) = \begin{cases} n^2, \text{ if } n \text{ is odd} \\ n, \text{ if } n \text{ is even} \end{cases}$$

O-Manipulation (O-运算)

Remember: O is used to evaluate (评估) the asymptotic (渐近) order (量级、阶) of functions (函数). If f(n)=O(g(n)), then it means that the order of f(n) is less than or equal (\leq) to g(n) when n tends to (趋于) infinity (无穷大).

For example,
$$\frac{n^2 + \log n}{n - 1} = O(n).$$

Basic Properties (基本性质) about O-Manipulation

- f(n)=O(f(n)), e.g. (例如) $n^2=O(n^2)$,
- If g(n)=o(f(n)), then O(f(n))+O(g(n))=O(f(n)),
- e.g. (例如) $O(n^2) + O(n) = O(n^2)$,

Proof: $O(n^2) \le c_1 n^2$ for $n \ge n_1$, and $O(n) \le c_2 n$ for $n \ge n_2$. So, we have $O(n^2) + O(n) \le c_1 n^2 + c_2 n \le c_1 n^2 + c_2 n^2 \le (c_1 + c_2) n^2$ for $n \ge \max\{n_1, n_2\}$.

- e.g. $O(n) + O(n\log n) = O(n\log n)$.

- If c is a constant (常数), then c O(f(n)) = O(f(n)),
- e.g., $O(\log_{10} n) = O(\log_2 n) = O(\ln n)$.
- f(n) O(g(n)) = O(f(n) g(n)), e.g. $nO(\log n) = O(n \log n)$.
- O(f(n)) O(g(n)) = O(f(n) g(n)), e.g. $O(n)O(\log n) = O(n\log n)$.

o-Hierarchy (o-等级结构)

- •1-constant (常数)
- log log *n* double logarithmic (对数)
- $\log n$ $\log \arctan (\log_2 n, \ln n, \log_{10} n)$
- n^{θ} $0 < \theta < 1$
- n^k polynomial (integer $k \ge 1$)
- $n^{\log n}$
- 2ⁿ exponential (指数)
- n!- factorial $(\text{sp}) = \sqrt{2\pi n} \left(\frac{n}{e}\right)^n \left(1 + \Theta\left(\frac{1}{n}\right)\right)$
- n^n

Polynomial Time Algorithm (多项式时间算法)

An algorithm runs in **Polynomial Time** (多项式时间) if there exists an integer (整数) k such that its worst-case time complexity (最坏时间复杂性) is $O(n^k)$.

For example,

$$T(n)=a_k n^k + a_{k-1} n^{k-1} + ... + a_1 n + a_0 = O(n^k),$$

 $T(n)=n^3 + n^2 \log n = O(n^3) + O(n^2 \log n) = O(n^3),$
 $T(n)=O(n^{2.5} \log n) = O(n^3).$

Useful Technical (技术的) Tool: Recurrences (递推)

Example 1. T(1)=1 and T(n)=T(n/2)+n Induction (归纳) method

$$T(1)=1$$

 $T(2)=3$

$$T(4)=7$$

$$T(8)=15$$

. . .

$$T(n)=2n-1 \text{ for } n=2^k$$
 ?

Prove the above guess (猜测) by induction (归纳) on k.

Substitution (替换) method

$$T(n)=T(n/2)+n$$

$$T(n/2)=T(n/4)+n/2$$

$$T(n/4)=T(n/8)+n/4$$

. . .

$$T(4)=T(2)+4$$

$$T(2)=T(1)+2$$

So we have
$$T(n)=1+2+4+...+n/4+n/2+n$$
. For $n=2^k$, we have $T(n)=1+2+4+...+2^k=2^{k+1}-1=2n-1$.

Example 2. T(1)=1 and T(n)=T($\lceil \frac{n}{2} \rceil$)+n.

 $\lceil x \rceil$ is equal to the smallest integer greater than or equal to x, e.g. $\lceil 2.5 \rceil = 3$.

First step: Guess that T(n)=O(n), i.e. (即) $T(n) \le cn$ for sufficiently large (充分大) n and some constant c.

Second Step: First make c large enough, e.g. c=4. Then prove $T(n) \le 4n$ by induction (归纳) on n. Easy to see that $T(1)=1 \le 4 \times 1=4$. Assume (假设) that $T(n) \le 4n$ for $n \le k$, where (其中) k is a natural number (自然数).

Third Step: Now we have $T(k+1)=T(\lceil \frac{k+1}{2} \rceil)+k+1$. If k is an odd number (奇数), then

$$T(k+1)=T(\frac{k+1}{2})+k+1\leq 4(\frac{k+1}{2})+k+1=3k+3\leq 4(k+1).$$

If k is an even number (偶数), then

$$T(k+1)=T(\frac{k}{2}+1)+k+1\leq 4(\frac{k}{2}+1)+k+1=3k+5\leq 4(k+1).$$

Combining (综合) the above two cases (情况), we finish the proof.

Example 3. T(1)=1 and T(n)=2T(n/2)+n. Assume (假设) that $n=2^k$, we have

$$T(n)=2T(n/2)+n$$

$$T(n/2)=2T(n/4)+n/2 \Rightarrow 2T(n/2)=2^2T(n/4)+n$$

$$T(n/4)=2T(n/8)+n/4 \Rightarrow 2^2T(n/4)=2^3T(n/8)+n$$

. . .

$$2^{k-2}T(4)=2^{k-1}T(2)+n$$

 $2^{k-1}T(2)=2^kT(1)+n$

So we have $T(n)=2^k+kn=n+n\log_2 n=O(n\log n)$.

In general (**Master Theorem**), T(1)=d and for n>1, T(n)=aT(n/b)+cn

has solution

- \bullet if a < b, T(n) = O(n);
- •if a=b, $T(n)=O(n\log n)$;
- •if a>b, $T(n)=O(n^{\log_b a})$

Two Books

Donald L. Graham, Donald E. Knuth, Oren Patashnik. Concrete (具体) Mathematics - A Foundation for Computer Science.

Donald E. Knuth. The Art of Computer Programming.

Donald E. Knuth (高德纳), Stanford University.

DONALD E. KNUTH COMPUTER SCIENCE DEPARTMENT STANFORD UNIVERSITY STANFORD, CA 94305-9045	1237 DATE 22 /m/2015
DEPOSIT TO THE Xu Ke	0x\$ 1.00
BANK OF SAN SERRIFFE Thirty Point, Caissa Inferiore http://www-cs-faculty.stanford.edu/~knuth/boss.html	Mo/といて HEXADECIMAL DOLLARS A
мемо 162.81	Sand lant

Exercise

Let
$$p(n) = a_k n^k + a_{k-1} n^{k-1} + ... + a_0$$
. Show that $p(n) = O(n^k)$

Homework 1

Let f(n), g(n) be two non-negative functions. Prove that

$$\max\{f(n), g(n)\} = \Theta(f(n) + g(n)).$$

Homework 2: Prove Master Theorem.

Homework 3: Try to find an interesting practical problem and describe how to solve it using algorithms.