HISTOGRAM MATCHING/SPECIFICATON PROOF

 Method that is used to generate a processed image that has a specified histogram is called histogram matching/specification.

Τ

- Let r and z denote the intensity levels of input and output images respectively.
- Let $p_r(r)$ and $p_z(z)$ denote their corresponding continuous probability density functions.
- We can estimate $p_r(r)$ from given input image while $p_z(z)$ is specified probability density function that we wish the output image to have.

Let s be a random variable with the property: s=T(r)

2

Suppose we define a random variable z with property

 From eq (1) and (2) we can conclude that G(z)=T(r) and therefore z must satisfy the condition

$$z=G^{-1}[T(r)]$$

= $G^{-1}(s)$ -----(3)

- Image whose intensity levels have a specified probability density function can be obtained from the given image by using the following procedure:
- i. Obtain transformation function T(r) using eq 1. ii. Use eq 2 to obtain transformation function G(z). iii. Obtain inverse transformation $z=G^{-1}(s)$.
- iv. Obtain output image by first equalizing the input image.

• Discrete formulation of histogram specification is $s_k=T(r_k)$

where n->total number of pixels n_i ->number of pixels with gray level r_i

$$G(z_k)=s_k$$
----- (6)

 We find the desired z_k by obtaining inverse transformation:-

$$z_k = G^{-1}(s_k)$$

5