Intruders and Intrusion Detection

Intruders

- Significant issue for networked systems is hostile or unwanted access by users or software
 - >user trespass
 - unauthorized logon, privilege abuse
 - > software trespass
 - virus, worm, or trojan horse
- Either via network or local
- can identify 3 classes of intruders:
 - Masquerader-An individual who is not authorized to use the computer (outsider)
 - Misfeasor- A legitimate user who accesses unauthorized data, programs, or resources (insider)
 - **clandestine user**-An individual who seizes supervisory control of the system and uses this control to evade auditing and access controls or to suppress audit collection (either)

Intruders

- Intruder attacks range from the benign (simply exploring net to see what is there); to the serious (who attempt to read privileged data, perform unauthorized modifications, or disrupt system)
- clearly a growing publicized problem
 - from "Wily Hacker" in 1986/87
 - to clearly escalating CERT stats
- Problem at Bell Labs
 - Copy pwd file
 - RPC
 - Connect to nonexistent machines

Intruders

- may seem benign, but still cost resources, slow performance
- may use compromised system to launch other attacks
- Two levels of hackers
 - Sophisticated users
 - Foot soldiers
- awareness of intruders has led to the development of CERTs
- Collect info about system vulnerabilities and disseminate to system managers
- Intruders modify login software

Intrusion Techniques

- aim to gain access and/or increase privileges on a system
- basic attack methodology
 - target acquisition and information gathering
 - initial access
 - privilege escalation
 - covering tracks
- key goal often is to acquire passwords
- then exercise access rights of owner
- Pwd files can be protected by
 - One-way encryption
 - Access control

Password Guessing

- one of the most common attacks
- attacker knows a login (from email/web page etc)
- then attempts to guess password for it
 - defaults, short passwords, common word searches
 - user info (variations on names, birthday, phone, common words/interests, room number, licence plate no)
 - exhaustively searching all possible passwords
 - Trojan horse
- check by login or against stolen password file
- success depends on password chosen by user
- surveys show many users choose poorly

Password Capture

- another attack involves password capture
 - watching over shoulder as password is entered
 - using a trojan horse program to collect
 - monitoring an insecure network login
 - eg. telnet, FTP, web, email
 - extracting recorded info after successful login (web history/cache, last number dialed etc)
- using valid login/password can impersonate user
- users need to be educated to use suitable precautions/countermeasures
- Counter measures prevention and detection

Intrusion Detection

- inevitably will have security failures
- so need also to detect intrusions so can
 - block if detected quickly
 - act as deterrent
 - collect info to improve security
- assume intruder will behave differently to a legitimate user
 - but will have imperfect distinction between

Intrusion Detection

Figure 18.1 Profiles of Behavior of Intruders and Authorized Users

Approaches to Intrusion Detection

- Masquerader Vs legitimate user Easy
- Misfeasor difficult
- Clandstine user beyond the scope of automated techniques
- statistical anomaly detection
- rule-based detection

Statistical Anomaly Detection

- I. Statistical anomaly detection: collect data relating to the behavior of legitimate users, then use statistical tests to determine with a high level of confidence whether new behavior is legitimate user behavior or not.
 - **a.Threshold detection:** define thresholds, independent of user, for the frequency of occurrence of events.
 - **b. Profile based:** develop profile of activity of each user and use to detect changes in the behavior
- Define normal or expected behavior
- Effective against Masqueraders

Rule-based Detection

- Rule-based detection: attempt to define a set of rules used to decide if given behavior is an intruder
 - a. Anomaly detection: rules detect deviation from previous usage patterns
 - b. Penetration identification: expert system approach that searches for suspicious behavior
- Attempt to define proper behavior
- Effective for misfeasors

Audit Records

- fundamental tool for intrusion detection
- native audit records
 - part of all common multi-user O/S
 - already present for use
 - may not have info wanted in desired form
- detection-specific audit records
 - created specifically to collect wanted info
 - at cost of additional overhead on system
 - advantage is it can be vendor independent and portable, disadvantage is extra overhead involved

Sample Audit Record

- Subject : Initiators of action
- Action : Operation performed by the subject
- Object : Receptors of action
- Exception condition
- Resource usage : quantitative elements
- Time –stamp: When the action took place

Statistical Anomaly Detection

- threshold detection
 - count occurrences of specific event over time
 - if exceed reasonable value assume intrusion
 - alone is a crude & ineffective detector
- profile based
 - characterize past behavior of users
 - detect significant deviations from this
 - profile usually multi-parameter

Audit Record Analysis

- foundation of statistical approaches
- analyze records to get metrics over time
 - Counter Non negative integer that may be incremented
 - Gauge- incremented or decremented
 - interval timer length of time between two related events
 - resource use quantity of resources consumed during a specified period
- use various tests on these to determine if current behavio is acceptable
 - mean & standard deviation, multivariate, markov process time series, operational

Audit Record Analysis

- mean & standard deviation of a parameter over some historical period
- Multivariate Based on correlations between two variables
- markov process Used to establish transition probabilities among various states
- time series looking for sequences of events that happen too rapidly or too slowly
- Operational judgment of what is considered abnormal
- key advantage is no prior knowledge of security flaws is not required. Thus it should be readily portable among a variety of systems

Rule-Based Intrusion Detection

- observe events on system & apply rules to decide if activity is suspicious or not
- rule-based anomaly detection
 - analyze historical audit records to identify usage patterns & auto-generate rules for them
 - then observe current behavior & match against rules to see if conforms
 - like statistical anomaly detection does not require prior knowledge of security flaws
 - Based on past behaviour and assume that future will be like the past

Rule-Based Intrusion Detection

- rule-based penetration identification
 - uses expert systems technology
 - with rules identifying known penetration, weakness patterns, or suspicious behavior
 - compare audit records or states against rules
 - rules usually machine & O/S specific
 - rules are generated by experts who interview & codify knowledge of security admins
 - quality depends on how well this is done

Rule-Based Intrusion Detection

- I. Users should not read files in other users' personal directories.
- 2. Users must not write other users' files.
- 3. Users who log in after hours often access the same files they used earlier.
- 4. Users do not generally open disk devices directly but rely on higher-level operating system utilities.
- **5.** Users should not be logged in more than once to the same system.
- 6. Users do not make copies of system programs

Base-Rate Fallacy

- practically an intrusion detection system needs to detect a substantial percentage of intrusions with few false alarms
 - if too few intrusions detected -> false security
 - if too many false alarms -> ignore / waste time
- this is very hard to do
- existing systems seem not to have a good record

Distributed Intrusion Detection

- traditional focus is on single systems
- but typically have networked systems
- more effective defense has these working together to detect intrusions
- issues
 - dealing with varying audit record formats
 - integrity & confidentiality of networked data
 - centralized or decentralized architecture

Distributed Intrusion Detection - Architecture

Distributed Intrusion Detection - Architecture

The components are:

- Host agent module: audit collection module operating as a background process on a monitored system
- LAN monitor agent module: like a host agent module except it analyzes LAN traffic
- Central manager module: Receives reports from LAN monitor and host agents and processes and correlates these reports to detect intrusion

Distributed Intrusion Detection – Agent Implementation

- agent captures each native O/S audit record, & applies a filter that retains only records of security interest
- reformatted into a standardized format (HAR).
 - template-driven logic module analyzes the records for suspicious activity When suspicious activity is detected, an alert is sent to the central manager

Honeypots

- decoy systems to lure attackers
 - away from accessing critical systems
 - to collect information of their activities
 - to encourage attacker to stay on system so administrator can respond
- are filled with fabricated information
- Instrumented with sensitive monitors and even loggers that detect these accesses and to collect detailed information on attackers activities
- Have seen evolution from single host honeypot to honeynets of multiple dispersed system
- single or multiple networked systems

Intrusion Detection Exchange Format

- standards are needed to support interoperability
- IETF Intrusion Detection WG standards
- define data formats and exchange procedures for sharing information of interest
- The outputs of this working group include the following
 - A requirements document
 - A common intrusion language specification
 - A framework document

Summary

- have considered:
 - problem of intrusion
 - intrusion detection (statistical & rule-based)