Appello di Ingegneria Inform	atica del 4.2.2020: Compito A	(AULA 13 SBAI – CONTI – 2 ORE)
Nome	Cognome	Matricola

Dom	anda 1 [2+3 punti]
1.2 Di	nunciare il teorema di Lagrange; re se la funzione $f(x) = x^2 - 3x + 2 $ soddisfa le ipotesi sull'intervallo [1,3]. Dire inoltre tale funzione verifica la tesi.
Rispo	sta
(i)	
Dom	anda 2 [2+3 punti]
(i) (ii)	Dare la definizione di curve di livello per una funzione $f: \mathbb{R}^2 \to \mathbb{R}$; Determinare tutte le curve di livello delle funzioni $f(x,y) = x^2x$ e $g(x,y) = \frac{1}{x^2 + y^2}$
Risolı	ızione
(i)	
(::)	
(ii)	

Con $D = [0,1]x[0,1]$ sia $f: D \to \mathbb{R}$ la funzione $f(x,y) = \int_x^y e^{-t^2} dt$ allora:
a. fè derivabile in tutti i punti di D;
b. in D esiste $\frac{\partial f}{\partial y}$ ma non $\frac{\partial f}{\partial x}$;
c. in D non esistono né $\frac{\partial f}{\partial y}$ né $\frac{\partial f}{\partial x}$;
d. nessuna delle precedenti.
Risoluzione (giustificare la risposta)
Maoruzione (giustinicare la risposta)
-
Esercizio 2 [3 punti]
$\mathrm{Sia}(a_n)_{n\in\mathbb{N}}$ la successione dei numeri primi 2,3,5,7,11,13,, allora la successione $(b_n)_{n\in\mathbb{N}}$ data da
$(b_n) \coloneqq a_{a_n} \dot{\mathbf{e}}$
a. limitata;
b. 3,5,8,11,16,19;
c. 3,5,7,11,17,31; d. nessuna delle precedenti.
Risoluzione (giustificare la risposta)
Esercizio 3
Esercizio 3 [3 punti] Sia $z = \Sigma_{k=1}^4 (1+i)^{2k}$ allora
a. $z = -1$;
b. $Re(z) = -2iz$
c. $ z = 180$
d. $z \in i\mathbb{R}$
Risoluzione (giustificare la risposta)

[3 punti]

Esercizio 1

Esercizio 4	[4 punti]
Calcolare il seguente limite	
$\lim_{x \to 0+} \frac{ x^3 \cos(x) + (e^x - 1)\arctan(x\log(x+1)) }{x^2 \tan(x^2)}$	
$x \to 0+$ $x^2 \tan(x^2)$	
Risoluzione	
Esercizio 5	[4 punti]
Determinare le soluzioni del seguente problema di Cauchy	
$f(x,y) = \begin{cases} y' = y \frac{\sin(x)}{1 + \cos^2(x)} \\ y(\frac{\pi}{2}) = e \end{cases}$	
Risoluzione	

Esercizio 6	[5 p	unti]

Trovare i punti di massimo o di minimo relativo della funzione

$$f(x,y) = xy(2x + y - 2)$$

e determinare il massimo e il minimo assoluto della f(x,y) nel triangolo di vertici (0,0), (1,0), (0,2).

Risoluzione						