

Memory IPs and Applications SRAM, DRAM and Flash

Chun-Zhang Chen, Ph.D.

June 28 - July 2, 2021

Market of Memory Design

Types of Memory (IP) Design

- Memory: ROM, RAM
 - Volatile Memory (VM)
 - Non-Volatile Memory (NVM)
- ROM (OTP/MTP):
 - MTP: PROM, EPROM, EEPROM (E²PROM, E2PROM)
- RAM:
 - SRAM, DRAM (DDR SDRAM)
- Flash (NVRAM): NAND and NOR
 - NAND (USB, SSD), 3D NAND, Xpoint
 - NOR

Digital Standard Cells and Memory Cells

- Combinational (or non-regenerative) logic
 - AND, OR, BUF; NAND, NOR, INV
 - Decoder/Encoder; Mux; XOR/XNOR; Add/Sub/ALU
 - PUN (pull-up network), PDN (pull-down network)
- Sequential (or regenerative) logic
 - Latches/FFs; registers (D/FF), counters, oscillators,
 - State-Machine; Memory
 - Memory: ROM, RAM (SRAM, DRAM)

Memory IP Designs & Applications

SRAM and Its Application	
DRAM and Its Application	
Flash Memory and Its Application	
New Memory and HBM	
Discussion	

CPU Memories: SRAM and Cache

- Level 1 caching
 - L1 cache, primary cache, internal cache, or system cache
 - The L1 cache stores the most critical files that need to be executed and is the first thing the processor looks when performing an instruction.
- Level 2 cache, L2 cache, secondary cache, or external cache
- L3 cache is <u>cache memory</u> located on the <u>die</u> of the <u>CPU</u>.
 (See <u>Intel</u> Core i7-3960X processor <u>die</u>)

SRAM Cell Sizes

SRAM 6T-Cell

1T-SRAM Cell sizes (µm²/bit or mm²/Mbit)

Process node		250 nm	180 nm	130 nm	90 nm	65 nm	45 nm
6T SDAM	bit cell	7.56	4.65	2.43	1.36	0.71	0.34
6T-SRAM	with overhead	11.28	7.18	3.73	2.09	1.09	0.52
1T-SRAM	bit cell	3.51	1.97	1.10	0.61	0.32	0.15
	with overhead	7.0	3.6	1.9	1.1	0.57	0.28
1T-SRAM-Q	bit cell			0.50	0.28	0.15	0.07
	with overhead			1.05	0.55	0.29	0.14

SRAM is faster and more expensive than DRAM; it is typically used for <u>CPU cache</u> while DRAM is used for a computer's <u>main memory</u>.

Layouts of SRAM and DRAM

■ SRAM – 6T

DRAM – 1T1C

Structure and Timing of SRAM

- SRAM (Static Random-Access Memory) Structure
 - Inputs/Outputs
 - SRAM Structure (RAM Cell):
 - add (decoder), bit-line, word-line

SRAM Timing

- For read: t_AA, t_ACS, t_OE, t_OZ, t_OH
 - (Access from add/chip_sel/out_en/out_dis/out_hold)
- For write: t_AS, t_AH, t_CSW, t_WP, t_DS, t_DH
 - (Access_setup_before/acc_hold_after/chip_sel_before/write_pulse/ data_setup_before/data_hold_after)
- Types of SRAM
 - Sync SRAM, Pipeline Burst SRAM

SRAM Timing

SRAM read timing

SRAM write timing

SRAM read timing

Taa: access time from address
Tacs: access time from chip select

Toz: output disable time
Toe: output enable time
Toh: output hold time

C. Diorio, Lecture 24: Memories

SRAM write timing

Tas: address setup time before write Tah: address hold time after write Tcsw: chip select time before write

Twp: write pulse minimum width

Tds: data setup time Tdh: data hold time Address must be stable before WE', else invalid data may glitch other cells

C. Diorio, Lecture 24: Memories 13

10 (SUMMER 2021 UCAS, Beijing) Al-Big Data & SoC Design

12

Memory ID Designs & Applications

SRAM and Its Application	
DRAM and Its Application	
Flash Memory and Its Application	
New Memory and HBM	
Discussion	

DRAM, SDRAM (synchronous) & ADRAM

Difference by the read style Sync. DRAM (SDRAM), Async. DRAM

Difference by the datarate, SDRAM has Single Data Rate (SDR) Double Data Rate (DDR) Quad Data Rate (QDR)

From applications Graphics (GDDR) From power consumption, DDR, LPDDR (mDDR)

When DRAM is integrated with other modules (ex. CPU), it is called embedded DRAM (eDRAM)

DDRx

- 1998 Gen1 SDR (single datarate SDRAM)
- Gen2 DDR (SDRAM DDR)
- 2004 Gen3 DDR2
- 2007 Gen4 DDR3
- 2014 Gen5 DDR4 3.2Gb/s
- 2020 DDR5 6.4Gb/s

DRAM 1T1C Cell

- Word Line, WL
 - Address, Control, Select
- Bit Line, BL
 - Data, Information, SA
- Sense Amplifier, SA

DRAM Layout

World's First DDR5

DDR IP


```
Design IP
 Analog IP
 Interface IP
  Denali Memory Interface IP
    DDR IP
      DDR/LPDDR PHY IP
      DDR/LPDDR Controller IP
      GDDR PHY and Controller IP
      LPDDR5 PHY IP Solution
      HBM PHY and Controller IP
    NAND Flash IP
    SD/SDIO/eMMC IP
    Octal and Quad SPI IP
  Systems/Peripherals IP
Tensilica IP
Verification IP
```

mDDR (LPDDR)

Low Power DDR, LPDDR

Synchronous DRAM, LPDDR SDRAM, used in mobile, mDDR or Mobile DDR

LPDDR/2/3/4/5

₽	LPDDR2₽	LPDDR3₽	LPDDR4₽
内部核心时钟 (MHz)₽	200₽	200₽	200₽
总线时钟 (MHz)₽	400₽	800₽	1600₽
数据速率 (Mbps)₽	800₽	1600₽	3200₽
帯宽 (GB/s)↓	6. 4₽	12.80	25. 6₽
预取(prefetch)₽	4n₽	8n₽	16n₽
电压 VDD2/VDDQ/VDD1。	1. 2V/1. 2V/1. 8V	1. 2V/1. 2V/1. 8V	1. 1V/1. 1V/1. 8V₽
指令/地址总线。	10 bits, DDR	10 bits, DDR	6 bits, SDR
Bank 数。	4/8₽	8₽	8/ch (16)
容量。	64Mb~8Gb₽	4Gb~32Gb₽	8Gb~32Gb₽
接口⇨	HSUL_12₽	HSUL_12(可选 ODT)。	LVSTL₽
I/0 类型。	x16/x32	x16/x32	2ch x16₽
封装。	MCP/PoP₽	MCP/PoP↔	MCP/PoP↔

注: 预取(prefetch)代表缓存大小(buffer size)。例如上表中 LPDDR3, 其。 prefetch 为 8n, 代表每个预取的"数据字数(datawords)"为 8。。

GDDR

Graphics Double Data Rate, Types of DRAM **GDDR**

性能↩	GDDR3₽	GDDR5₽	
电压 VDD, VDDQ₽	1.5V, 1.35V₽	1.5V, 1.35V₽	
时钟(MHz)↓	800/900₽	1750₽	
数据倍率。	2.0	4€	
数据传输率(Gbps)。	1. 6/1. 8₽	6, 7, 8₽	
I/0 宽度。	(4), 8,160	32/16₽	
存储块(Bank)数₽	8₽	16₽	
预取ℴ	8n₽	8n₽	
突发长度↩	4(Burst Chop),80	8₽	
典型颗粒容量(Gb)↓	1~2 ₄	2~8₽	
循环冗余检验(Cyclic			
Redundancy Check, CRC) φ	<mark>₩/А-</mark> 不适用。	Yes_ 适用↩	
封装。	BGA-78/96₽	BGA170₽	

- EDO DRAM, ext'd data out
- BEDO DRAM, burst EDO
- SDRAM, synchronous
- RDRAM, Rambus
- DDR SDRAM, double data rate

Prices of six generations of DRAMs

- DRAM 16kbit → 64Mbit (1978-2001)
 - \$1/1977 ~ \$2.95/2001
- DRAM/ DDR

- DRAM 1Mbit: >\$5000/1977 → \$0.35/2000 → \$0.08/2001 (≈1977)
- DDR4 8Gb: \$4-\$4.5 (May 2019)
- DRAM usage
 - PC DRAM, Server DRAM, Mobile DRAM, Consumer DRAM, DRAM ASP (Ref: DRAMeXchange)

DRAM replacement?

- DFM (Dynamic Flash Memory; SGT)
 - 2T0C (vs 1T1C), Fujio Masuoka, Unisantis Electronics
- IMEC IGZO-TFTs

- VLT
- Z-RAM

Memory ID Designs & Applications

SRAM and Its Application	
DRAM and Its Application	
Flash Memory and Its Application	
New Memory and HBM	
Discussion	

Discovery of The Floating-Gate Memory Effect D. Kahng and S.M. Sze in May 1967

		DISCOVERER (S)/INVENTOR(S)	ORGANIZATION
YEAR	DEVICE	Mahng and Sze	Bell Labs
1967	Floating-Gate Concept		Intel
1971	EPROM-FAMOS	Frohman-Bentchkowsky lizuka et al.	Toshiba
1976	EEPROM-SAMOS	Masuoka et al.	Toshiba
1984	Flash Memory	Masuoka et al.	Toshiba
1987	NAND Flash	Masuoka et al.	Intel
1995	Multilevel Cell		Toshiba
2007	Multi-layer Integration (BiCS		
2014	128Gb 2b/cell	Helm et al.	Micron
2016	2D NAND Flash 768Gb 3b/cell	Tanaka et al.	Micron
	3D NAND Flash	ranana ccan	Intel
2018	1Tb 4b/cell	Lee et al.	Samsung
	3D NAND Flash		

Classification of FGM

- EPROM (Electrically Programmable Read Only Memory)
- EEPROM (Electrically Erasable Programmable Read Only) Memory)
- Flash Memory
 - NOR Flash (with a basic unit of one memory device)
 - NAND Flash (with a basic unit of 16 or more memory devices)

OTP - PROM

- One-Time Programmable (OTP)
- Typical OTP: PROM
 - Wen Tsing Chow in 1956
- New OTP
 - Resistive RAM (RRAM | ReRAM)

MTP – EPROM & EEPROM

- Multi-Time Programmable (MTP) Memory
- Erasable Programmable Read-Only Memory, EPROM
- Electrically Erasable Programmable Read-only memory, EEPROM
 - EEPROM or E²PROM, are Floating-Gate Transistors
 - Floating-Gate tech by Simon M. Sze & Dawon Khang, 1967
 - FRAM (or FeRAM), MRAM are new

Invention of NOR Flash and NAND Flash ® 性神经性大學

NOR and NAND by & 1987

- NAND Flash
 - Toshiba, 1989; ONFI

- NOR Flash
 - Intel, 1988; XIP Tech

Schematic of Flash Memory

2D NAND and 3D NAND

NAND Flash

- SRAM
- DRAM
- Flash Memory
 - NOR
 - NAND, by Dr. Fujio Masuoka
 - App: SSD, consumer, medical, automotive

NOR Flash

- SRAM
- DRAM
- Flash Memory
 - NOR, by Dr. Fujio Masuoka at Toshiba 1985 (<u>US 4,531,203</u>)
 - App: AMOLED, TWS BT earpods, TDDI, Automotive, 5G

NAND

Cross Section of Flash Memory

Comparison of NOR and NAND

NAND Flash Architecture

3D NAND

• 3D NAND Family

3D NAND Process is Complex

Multi-Level Cell (NAND Flash)

- SLC, Single-level cell, 1 bit/cell, 50k-100k times
- MLC, Multi-level cell, ECC needed
- TLC, Triple-level cell, used in SSD
- QLC!
- Comparison

The floating-gate MOSFET (FGMOS)

3D NAND Cell Structure

QLC

3D NAND Controller IC

	型묵	制程	DRAM	支持 Flash	Flash 通道	支持接口	接回协议	ECC
II	88NV1160	28nm	N	2D/3D TLC	4	PCIe3.0 x2	AHCI & NVMe1.3	LDPC
	88NV1120	28nm	N	2D/3D TLC	2	SATA 3.0	AHCI	LDPC
Marvell	88551084	28nm	Υ	3D TLC/QLC	4	PCle3.0 x4	NVMe1.3	LDPC
	88551100	28nm	Y	3D TLC/QLC	8	PCIe3.0 x4	NVMe1.3	LDPC
	SM2263XT	28nm	N	3D TLC/QLC	4	PCle3.0 x4	NVMe1.3	LDPC
慧荣	SM2258XT	40nm	N	3D TLC	4	SATA 3.0	AHCI	LDPC
	SM2262EN	28nm	Y	3D TLC/QLC	8	PCIe3.0 x4	NVMe1.3	LDPC
	PS5008-E8T	40nm	N	2D/3D TLC	4	PCle3.0 x2	NVMe1.2	SmartECC
群联	PS3111-S11	40nm	N	2D/3D TLC	2	SATA 3.0	AHCI	LDPC
	PS5012-E12	28nm		3D TLC/QLC	14.	いの微信	号: chinaflash	nræncke

来源:中国闪存市场网 www. chinaflashmarket.com

Flash Memory Top Players

- 3D NAND Flash 2019 Top Players
 - Samsung Elec., Toshiba/SanDisk, SK Hynix Semi., Micron Tech., Intel Corp
- NOR Flash Market 2018-2023

Cypress, Samsung, Winbond, Micron, Macronix, ISSI, Eon,

Microchip, GigaDevice

Storage Patents	(25%)	owned by
-----------------	-------	----------

- Micron, Samsung Elec., Toshiba, IBM
- and Intel

Toshiba/Kioxia and WD

- BiCS, 2007, "bit cost scalable"
- BiCS, 2017, "bit column stacked" for 3D NAND

64-Layer BiCS FLASH™ 3D Flash Memory

Toshiba Flash Technology Leadership

- ✓ Competitive 15nm floating gate
- ✓ Third generation 64 layer BiCS Flash 3D.

Why BiCS FLASH 3D vs Floating Gate?

- **Higher Capacity**
 - Vertically stacked cell structure enables higher capacit in the same footprint
- Higher Endurance
 - Charge trap cell & memory hole structure increase endurance
- **Higher Performance**
 - Faster programming speed with 1-shot program called "Full Sequence*
 - Triple pages can be programed simultaneously with fewer steps
- **Higher Power Efficiency**
 - Triple pages can be programed with almost the same power consumption of a single page program

Samsung (HK Hynix 3D FG)

TCAT, V-NAND

Intel/Micron XPoint

July 2015, announced; April 2017, Optane

3D NAND Vendors

Global Number of Leading Inventors on 3D NAND Flash

Memory ID Designs & Applications

S	RAM and Its Application	
D	RAM and Its Application	
F	lash Memory and Its Application	
N	lew Memory and HBM	
D	iscussion	

New Memory: NVRAM

- Ferroelectric RAM (FRAM or FeRAM) → E2PROM
 - popular high-κ gate dielectric HfO₂ (Sharp, Panasonic)
 - CBRAM (<u>conductive-bridging RAM</u>)
 - PCM (<u>phase-change memory</u>)
- Magnetic RAM (MRAM) → E2PROM
 - In production by <u>Everspin Technologies</u>, GF, Samsung
- PCM (PCRAM), an emerging technology

HBM via 3D IC and 2.5D IC

- Existing 4 Packaging Standards
 - Wide-IO (Samsung); HBM (AMD, Nvidia, Hynix);
 - HMC (Micron); CoWoS & InFO (TSMC)
- HBM via 3D IC and HBM via 2.5D IC
 - 3D IC (TSV + μBumps); 2.5D IC (Interposer, w/ KGD)
 - Components: DRAMs (DDR, SDRAM), GPU, ...
 - FC and BGA
- HBM via FPGA (ex. Xilinx)

HBM via 3D IC and 2.5D IC

Cross Sectional View

HBM for AI (RAM+GPU/CPU) Available

- HBM for CPU/GPU
- Gen1
- Gen2
 - 1024-bit word? 256 Gbps band
- Gen3? X4
 - 4096-bit word? 1024 Gbps band (>1 Tbps)

HBM at Samsung

- Samsung HBM2 Flarebolt's performance: 2.0Gbps at 1.35V
- HBM2 GDDR5 data transmission speed calculation
 - 8GB HBM2 package's data bandwidth:

• 2.4Gbps per pin x 1024bit bus = 307.2GBps

- 4 HBM2 package in a system:
 - 307.2GBps x 4 = appr. 1.2TBps
 - 8Gb GDDR5 die's data bandwidth:
 - 8Gbps per pin x 32bit bus = 32GBps

Memory ID Designs & Applications

SRAM and Its Application	
DRAM and Its Application	
Flash Memory and Its Application	
New Memory and HBM	
Discussion	

Fmerging Technologies - Persistent Memory

10⁵

Byte

25ns

12μs

Low

Flash-Like

Alpha

 ∞

Byte

40-180ns

40-180ns

High

DDR3

DDR4

Volume

Al-Big Data & SoC Design

							University of Chinese Academy of Sciences
Technology	FRAM	MRAM	ReRAM	РСМ	3D XPoint	NRAM	NVDIMM-N
Density	4K-4Mb	256Mb	TBD	128Mb	128Gb	16Gb	32GB

10⁸

Byte

20ns

65ns

Med

Unique

Limited

 10^{12}

Byte

100ns

500ns

Med

Unique

Samp.

 10^{11}

Byte

100ns

100ns

Low

DDR4

Samp.

Endurance

Read Latency

Write Latency

Writes

Power

Interface

Availability

51 (SUMMER 2021 UCAS, Beijing)

 10^{12}

Byte

70-100ns

70-100ns

Low

DRAM

Limited

 10^{12}

Byte

70ns

70ns

Med-Low

DDR3

DDR4

Prod'n

Applications of Memory Cells

- DRAM Market
 - Old: PC 10% decrease
 - New: Mobile, Server, Auto
 - Future: Al Edge Computing (Video Survelliance)
 - MEC (Mobile Edge Computing)
 - Related: Grid Computing
- NAND Market
 - SSD
 - Mobile

SSD

- Application Areas
 - Notebooks, Desktops, Consumer Electronic
 - Embedded market (vehicle, industry control, commercial)
 - Servers, Storage in D. Ctr, Enterprise
 - Mil, Aero, Med
- Interfaces, indcluding
 - Fibre Channel (128 Gbit/s, in Servers)
 - PCI Express (PCIe Gen3 x 4, 31.5 Gbit/s)
 - SAS (Serial Attached SCSI, 12.0 Gbit/s, Servers)
 - USB (10 Gbit/s), Serial ATA (SATA3.0, 6.0 Gbit/s) etc.

Summary

