CHIMICA GENERALE

Corso A Anno Accademico 2024-2025

Docente: Prof. Francesco Pineider

Email: francesco.pineider@unipi.it

Indirizzo: Dipartimento di Chimica e Chimica Industriale
Via Moruzzi 13

La Chimica

Lo studio della trasformazione

Capitolo 1

Che cos'è la Chimica?

- Lo studio della materia e delle sue proprietà
- Delle trasformazioni subite da essa
- Dell'energia associata a queste trasformazioni

Fisico o chimico?

Trasformazione fisica

Non altera la composizione o l'identità di una sostanza

E.g.: Fusione (passaggio di stato)

Proprietà fisiche

Trasformazione chimica

Causa una variazione della composizione o dell'identità delle sostanze coinvolte

E.g.: Combustione (reazione chimica)

Gli Elementi

Un ELEMENTO è una sostanza che non può essere separata in sostanze più semplici attraverso mezzi chimici

Ad oggi sono stati identificati 114 elementi

 82 elementi sono presenti naturalmente sulla terra (oro Au, alluminio Al, piombo Pb, ossigeno O, carbonio C, etc...)

 32 elementi sono stati creati in laboratorio e sono instabili (Tecnezio Tc, Americio Am, etc...)

(1) Pure Appl. Chem., 81, No. 11, 2131-2156 (2009) Le masse atomiche relative sono espresse con cinque cifre significative. L'elemento non ha alcuni nuclidi stabili e un valore tra parentesi, e.g. [209], indica il numero totale dell'isotopo lungo-vivo dell'elemento. Tuttavia, tre elementi (Th, Pa ed U) hanno una composizione isotopica terrestre caratteristica e così loro massa atomica data.

59 140.91 64 157.25 67 164.93 57 138.91 58 140.12 60 144.24 61 (145) 62 150.36 63 151.96 65 158.93 66 162.50 68 167.26 69 168.93 70 173.05 71 174.97 Pr Nd La Ce IPm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu PRASEODIMIO NEODIMIO PROMETIO DISPROSIO ITTERBIO LANTANIO CERIO SAMARIO **EUROPIO GADOLINIO TERBIO** OLMIO **ERBIO** TULIO LUTEZIO ATTINIDI 90 232.04 91 231.04 92 238.03 93 94 (244) 95 96 97 98 (251) 99 100 (257) 101 (258) 102 (259) (237)(243) (247)(247)(252)103 (262) (227) ND Blk Ac Th Pa U Cm Es Fm Md Mo Lir Am ATTINIO PROTOATTINIO TORIO **URANIO NETTUNIO PLUTONIO AMERICIO** CURIO BERKELIO CALIFORNIO **EINSTEINIO FERMIO** MENDELEVIO NOBELIO LAWRENTIO

Alcuni elementi comuni e i loro simboli

Nome	Simbolo	Nome	Simbolo	Nome	Simbolo
Alluminio	Al	Cromo	Cr	Ossigeno	O
Argento	Ag	Ferro	Fe	Piombo	Pb
Arsenico	As	Fluoro	F	Platino	Pt
Azoto	N	Fosforo	P	Potassio	K
Bario	Ba	Idrogeno	Н	Rame	Cu
Bromo	Br	Iodio	I	Silicio	Si
Calcio	Ca	Magnesio	Mg	Sodio	Na
Carbonio	C	Mercurio	Hg	Stagno	Sn
Cloro	Cl	Nichel	Ni	Zolfo	S
Cobalto	Co	Oro	Au	Zinco	Zn

I Composti

Un COMPOSTO è una sostanza costituita da 2 o più elementi uniti chimicamente in proporzioni definite

	Hydrogen	Water	Ammonia	Methane
Molecular formula	H_2	H_2O	NH_3	$\mathrm{CH_4}$
Structural formula	н—н	н—о—н	H—N—H H	H—C—H
Ball-and-stick model	0-0			
Space-filling model				

(Soluzioni)
<u>Stessa</u> composizione in
tutti i punti della soluzione

Composizione non uniforme

Gli stati della materia

Solido Volume definito Forma definita

Gas

Volume e forma definiti dal contenitore

Liquido

Volume definito Forma definita dal contenitore

acqua allo stato liquido

Proprietà chimiche e fisiche della materia

- PROPRIETÀ FISICHE: proprietà che la sostanza possiede di per sé, senza traformarsi in, o interagire con, un'altra sostanza (E.g.: Colore, densità, conduttività elettrica...)
- PROPRIETÀ CHIMICHE: proprietà che la sostanza presenta quando si trasforma in, o interagisce con, un'altra sostanza
 Per osservare queste proprietà occorre indurre un cambiamento chimico. (E.g.: resistenza alla corrosione, pH, energia di ionizzazione, elettronegatività...)

Proprietà Estensive ed Intensive

 PROPRIETÀ ESTENSIVA: dipende dalla quantità di materia che viene presa in considerazione

 PROPRIETÀ INTENSIVA: non dipende dalla quantità di materia che viene presa in considerazione

Misure e Sistema Internazionale delle misure (SI)

Tabella 1.2 Unità di misura SI fondamentali

Grandezza fondamentale	Nome dell'unità	Simbolo
Lunghezza	metro	m
Massa	chilogrammo	kg
Tempo	secondo	S
Corrente elettrica	ampere	A
Temperatura	kelvin	K
Quantità di una sostanza	mole	mol
Intensità luminosa	candela	cd

Tabella 1.3 Prefissi usati con le unità di misura SI

Prefisso	Simbolo	Significato	Esempio
tera-	T	1 000 000 000 000, o 10 ¹²	1 terametro (Tm) = 1×10^{12} m
giga-	G	1 000 000 000, o 10 ⁹	1 gigametro (Gm) = 1×10^9 m
mega-	M	1 000 000, o 10 ⁶	1 megametro (Mm) = 1×10^6 m
chilo-	k	1000, o 10 ³	1 chilometro (km) = 1×10^3 m
deci-	d	$1/10$, o 10^{-1}	1 decimetro (dm) = 0.1 m
centi-	С	$1/100$, o 10^{-2}	1 centimetro (cm) = 0.01 m
milli-	m	$1/1000$, o 10^{-3}	1 millimetro (mm) = 0.001 m
micro-	μ	$1/1\ 000\ 000,\ o\ 10^{-6}$	1 micrometro (μ m) = 1 × 10 ⁻⁶ m
nano-	n	$1/1\ 000\ 000\ 000,\ o\ 10^{-9}$	1 nanometro (nm) = 1×10^{-9} m
pico-	p	$1/1\ 000\ 000\ 000\ 000,\ o\ 10^{-12}$	1 picometro (pm) = 1×10^{-12} m

La Massa ed il Peso

 MASSA: misura della quantità di materia Unità di misura: chilogrammo (kg)

$$1 \text{ kg} = 1000 \text{ g} = 1 \times 10^3 \text{ g}$$

La massa campione era un cilindro di lega platino-iridio conservato al Bureau International des Poids ed des Mesures

Oggi il chilogrammo è definito in relazione alla massa unitaria di Plank (mP)

 $1 \text{ kg} \approx 4,595 \times 10^7 \text{ mP}$

 PESO: la forza che la gravità (g) esercita su un oggetto Unità di misura: newton (N)

$$PESO = g \times MASSA$$

Sulla Terra: $g_T = 9,822 \text{ m/s}^2$

Sulla Luna: $g_1 \sim 1.7$ m/s²

Il Volume

VOLUME: lunghezza al cubo

Unità di misura: metro cubo (m³)

Generalmente si usano sottomultipli come il centimetro cubo (cm^3) o il decimetro cubo (dm^3), che corrisponde al litro (L)

1 mL

$$1 cm^3 = (1 \times 10^{-2} m)^3 = 1 \times 10^{-6} m^3$$

$$1 dm^3 = (1 \times 10^{-1} m)^3 = 1 \times 10^{-3} m^3$$

$$1 L = 1000 mL = 1000 cm^3 = 1 dm^3$$

$$\mathbf{1} mL = \mathbf{1} cm^{3}$$
Volume: 1 cm³;

La Densità

DENSITÀ: massa divisa per volume (SI: unità derivata)
 Unità di misura: kg/m³
 Più comunemente si utilizza il g/cm³

$$densit\grave{a} = \frac{massa}{volume} \quad d = \frac{m}{V}$$

Esempio:

Un pezzo di platino metallico di densità 21.5 g/cm³ ha un volume di 4.49 cm³. Qual'è la sua massa?

$$m = d \times V = 21.5 \frac{g}{cm^3} \times 4.49 \text{ cm}^3 = 96.5 \text{ g}$$

Densità di alcune sostanze a 25 °C

Sostanza	Densità (g/cm³)
Aria a l atm	0.001
Etanolo	0.79
Acqua	1.00
Mercurio	13.6
Sale da cucina	2.2
Ferro	7.9
Oro	19.3
Osmio†	22.6

[†] L'osmio (Os) è l'elemento conosciuto più denso.

La Temperatura

• TEMPERATURA: grandezza fondamentale SI Unità di misura: kelvin (K)

$$K = {}^{0}C + 273.15$$
$$273 K = 0 {}^{0}C$$
$$373 K = 100 {}^{0}C$$

La Notazione Scientifica

Numero di atomi in 12 g di carbonio:

Massa in grammi di un singolo atomo di carbonio:

La Notazione Scientifica

OPERAZIONI

n > 0

762.568

Spostare il separatore decimale a sinistra

 $762.568 = 7.62568 \times 10^{2}$

 $N \times 10^{n}$

n < 0

0.00000227

Spostare il separatore decimale a destra

 $0.00000227 = 2.27 \times 10^{-6}$

Addizione e Sottrazione

- Scrivere ciascuna quantità con lo stesso esponente n
- Sommare o sottrarre $N_1 e N_2 (N_3, N_4, etc...)$
- L'esponente n non cambia

$$4.31 \times 10^4 + 3.9 \times 10^3 =$$

$$= 4.31 \times 10^4 + 0.39 \times 10^4 =$$

$$= 4.70 \times 10^{4}$$

La Notazione Scientifica

OPERAZIONI

Moltiplicazione

- Moltiplicare N₁ per N₂
- Somma gli esponenti n_1 ed n_2

$$(N_1 \times 10^{n_1}) \times (N_2 \times 10^{n_2}) = (N_1 \times N_2) \times 10^{(n_1+n_2)}$$

$(4.0 \times 10^{-5}) \times (7.0 \times 10^{3}) =$ $= (4.0 \times 7.0) \times 10^{(-5+3)} =$ $= 28 \times 10^{-2} = 2.8 \times 10^{-1}$

Divisione

- Dividere N_1 per N_2
- Sottrarre l'esponente $n_2 da n_1$

$$\frac{N_1 \times 10^{n_1}}{N_2 \times 10^{n_2}} = \frac{N_1}{N_2} \times 10^{n_1 - n_2}$$

$$\frac{8.5 \times 10^{4}}{5.0 \times 10^{9}} = \frac{8.5}{5.0} \times 10^{(4-9)} =$$
$$= 1.7 \times 10^{-5}$$

Le Cifre Significative

- Qualsiasi cifra diversa da zero è significativa
 - 1.234 kg 4 CIFRE SIGNIFICATIVE
- Gli zero compresi tra cifre diverse da zero sono cifre significative
 606 m
 3 CIFRE SIGNIFICATIVE
- Gli zero alla sinistra della prima cifra diversa da zero non sono cifre significative
 0.08 L
 1 CIFRA SIGNIFICATIVA
- Gli zero alla destra dell'ultima cifra diversa da zero sono cifre significative
 0.00420 g
 3 CIFRE SIGNIFICATIVE

Le Cifre Significative

OPERAZIONI

Addizione e Sottrazione

Il risultato non può avere alla destra del separatore decimale più cifre di ciascuno dei numeri di partenza

Moltiplicazione e divisione

Il numero di cifre significative è determinato dal numero di partenza che ha il minor numero di cifre significative

Numeri esatti

I numeri derivanti da definizioni o numeri di oggetti sono considerati avere un numero infinito di cifre significative

ESEMPIO: la media di 3 misure di peso:

6.64 g, 6.68 g, e 6.70 g

$$\frac{6.64 + 6.68 + 6.70}{3} = 6.67333\overline{3} \cong 6.67g \neq 7g$$

Dal momento che 3 è un numero esatto

6.64 g

6.68 g

6.70 g

MEDIA
$$\frac{6.64 + 6.68 + 6.70}{3} = 6.67333\overline{3} \cong 6.67 \neq 7$$

Esempio: Problema 1.44 pag. E5 eserciziario Chang, Overby (III ed.)

Determinare la densità di una barra metallica rettangolare

L1 = 8.53 cm

L2 = 2.4 cm

H = 1.0 cm

Massa = 52.7064 g

density =
$$\frac{m}{V} = \frac{52.7064 \text{ g}}{(8.53 \text{ cm})(2.4 \text{ cm})(1.0 \text{ cm})} = 2.6 \text{ g/cm}^3$$

Determinare la densità di una barra metallica rettangolare

$$L1 = 8.53 cm$$

$$L2 = 2.40$$
 cm

$$H = 1.00$$
 cm

Massa = 52.7064 g

2.5746 g/cm³

Densità = 2.57 g/cm^3

L'Accuratezza e la Precisione

- ACCURATEZZA: quanto una misura è vicina al valore vero
- PRECISIONE: quanto un gruppo di misure sono vicine tra loro

ACCURATA
&
PRECISA
(NESSUN ERRORE)

PRECISA

MA

NON ACCURATA

(ERRORE SISTEMATICO)

NON ACCURATA
&
NON PRECISA
(ERRORE CASUALE)

Ripasso

Concetti fondamentali e parole chiave

- Materia
- Sostanze pure
- Elementi
- Composti
- Miscele omogenee o soluzioni
- Miscele eterogenee
- Massa
- Volume
- Densità
- Peso
- Temperatura

- Proprietà chimiche
- Proprietà fisiche
- Proprietà intensive
- Proprietà estensive
- Notazione scientifica
- Cifre significative
- Accuratezza e precisione

Ripasso

Domande ed esercizi utili

Eserciziario Chang, Overby capitolo 1

Domande	Esercizi
1.1-1.6	1.7-1.12
1.13-1.16	1.17
	1.18
	1.20-1.30
	1.41
	1.44-1.48
	1.75
	1.76
	1.79