Aritmética da Computação

Ficha 1

TeSP AM - Arquitetura de Dispositivos Móveis André Pereira & Marco Couto

Nome:	N°:	
	· · · · · · · · · · · · · · · · · · ·	

PARTE I - Conversão de Bases

- 1. Efetue as seguintes conversões:
 - **a.** Converter 11011.011, e 101.1, para decimal (base 10).
 - **b.** Converter 10011010_2 e 100_2 para base 5.
 - **c.** Converter 1231.2₄ e 312.12₄ para binário.
 - **d.** Converter C1F0₁₆ para binário (base 2) e decimal (base 10).
 - e. Converter 264₁₀ para hexadecimal
- 2. Converta os números 518₁₀ e -319₁₀ para uma representação binária, usando 10 bits, em cada uma das seguintes representações:
 - a. Sinal e Amplitude
 - b. Complemento para 1
 - c. Complemento para 2
 - d. Excesso 2ⁿ⁻¹
- **3.** Converta para decimal os valores em binário (usando 10 bits) 10 1001 1011, e 11 0000 1110, considerando as seguintes representações:
 - a. Inteiro sem sinal
 - b. Sinal e Amplitude
 - c. Complemento para 1
 - d. Complemento para 2
 - e. Excesso 2ⁿ⁻¹

PARTE II - Vírgula Flutuante

Considere 2 novos formatos de vírgula flutuante, representados com 10-bits, baseados na norma IEEE:

- FORMATO1:
 - o bit mais significativo contém o sinal
 - o os 5 bits seguintes formam o expoente (excesso 2ⁿ⁻¹-1)
 - o os 4 bits seguintes formam a mantissa
- FORMATO2:
 - o bit mais significativo contém o sinal
 - o os 4 bits seguintes formam o expoente (excesso 2ⁿ⁻¹-1)
 - o s 5 bits seguintes formam a mantissa

Para todos os restantes casos, as regras são as mesmas que as da norma IEEE (valor normalizado, desnormalizado, representação do 0, infinito, e NaN).

1. Considere a figura apresentada abaixo. Determine os limites (a, b, c e d) de cada representação em binário e decimal.

a.		10) (FORMATO1)
		10) (FORMATO2)
b.	;	10) (FORMATO1)
		10) (FORMATO2)
c.		10) (FORMATO1)
		10) (FORMATO2)
d.		10) (FORMATO1)
		10) (FORMATO2)

- **2.** Calcule os valores correspondentes aos seguintes padrões de bits para o FORMATO1 **e** FORMATO2:
 - **a.** 1001111010₂
 - **b.** 0110010011₂
 - **c.** 0111101100₂
 - **d.** 1000000101₂
- 3. Converta os seguintes números que se encontram em FORMATO1 para FORMATO2. Um valor terá uma dada interpretação em decimal, considerando o FORMATO1, que terá de ser novamente representada em binário, mas com o FORMATO2. Tenha em atenção os casos de *overflow* e *underflow* que deverão ser representados por infinito e zero, respectivamente.
 - **a.** 1100101100₂
 - **b.** 0000000001₂
 - **c.** 0011011110₂
 - **d.** 11111101101₂