B01: Hovoríme, že funkcia f ma v bode x_0 derivaciu, ak existuje (aj nevlastná) limita $\lim(x - x_0)(f(x) - f(x_0))/(x - x_0) = \lim(h - x_0)(f(x_0 + h) - f(x_0))/(h)$ ktorú označujeme $f'(x_0)$, resp. $f'(x)|_{x=x_0}$ a nazývame derivacia funkcie f v bode x_0 . Podľa toho, či je limita vlastná alebo nevlastná, hovoríme o vlastnej alebo nevlastnej derivacii funkcie f v bode x_0 . Nech f je funkcia definovaná v nejakom ľavom okolí bodu $x_0 \in D(f)$. Hovoríme, že funkcia f ma v bode x_0 derivaciu zľava, ak existuje limita

$$f'_{-}(x_0) = \lim_{x \to x_0^-} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0^-} \frac{f(x_0 + h) - f(x_0)}{h}$$

ktorú nazývame derivacia funkcie f zľava v bode x_0 . Nech f je funkcia definovaná v nejakom pravom okolí bodu $x_0 \in D(f)$. Hovoríme, že funkcia f ma v bode x_0 derivaciu sprava, ak existuje $\frac{f'_+(x_0) = \lim_{x \to x_0^+} \frac{f(x) - f(x_0)}{x - z_0} = \lim_{x \to x_0^+} \frac{f(x) + h - f(x_0)}{x}$ ktorú nazývame derivacia funkcie f sprava v bode x_0 . Deriváciu zľava a sprava súhrnne nazývame jednostranne derivacie funkcie f v bode x_0 a deriváciu nazývame obojstrannou derivaciou funkcie f v bode x_0 . Uvažujme reálnu funkciu y = f(x). Označme $M \subset D(f)$ množinu všetkých bodov, v ktorých má funkcia f (konečnú) deriváciu. Ak $M \neq \emptyset$, potom môžeme definovať pre všetky $x_0 \in M$ funkciu g vzťahom $g(x_0) = f'(x_0)$. Funkciu g nazývame derivacia funkcie f na množine M a označujeme f', y', resp. y = f'(x), $x \in M$, resp. df/ dx, dy/ dx. Ak má funkcia f na množine M deriváciu f', potom je na množine M spojitá.

B02: Nech majú funkcie f, g derivácie na množine $M \neq \emptyset$ a nech c∈R. Potom existujú derivácie funkcií cf, f±g, fg na množine M a derivácia funkcie f/g na množine $M_1 = \{x \in M \; ; \; g(x) \neq 0\}$. Navyše pre všetky x∈M, resp. x∈M₁ platí: (cf) '(x) = cf'(x); (f+-g)' (x) = f'(x) + -g'(x); (fg)' (x) = f'(x)g(x) + f(x) g'(x); [f/g]' (x) = (f'(x)g(x) - f(x)g'(x)) / (g^2(x)); Nech y = f(x) je spojitá a rýdzomonotónna funkcia na intervale I ⊂ R. Nech x₀ je vnútorný bod intervalu I a nech existuje f'(x₀)≠0. Označme y₀ = f(x₀). Potom inverzná funkcia x = f⁻¹(y) má deriváciu v bode y₀ a platí $|f^{-1}|'(y_0)| = \frac{1}{f'(f^{-1})'(y_0)} = \frac{1}{f'(f^{-1})'(y_0)}$

Nech F(x) = g(f(x)), $x \in M \subset R$ je zložená funkcia s vnútornou zložkou u = f(x), $x \in M$ a vonkajšou zložkou y = g(u), $u \in M_1$, kde $f(M) \subset M_1$. Nech $x_0 \in M$, $u_0 = f(x_0)$. Ak existujú derivácie $f(x_0)$, $g(u_0)$, potom tiež existuje derivácia $F(x_0)$ a platí $F(x_0) = [g(f(x_0))]' = g'(f(x_0)) \cdot f'(x_0) = g'(u_0) \cdot f'(x_0)$.

Nech y = f(x), x \in M je reálna funkcia. Nech x₀ \in M je také, že existuje f'(x₀). Ak f(x₀) > 0, potom platí f'(x₀) = f(x₀) · [ln f(x₀)]. Vzorce [a^x] = a^x ln a; [loga x] = 1/x ln a; [sin x] = cos x; [cos x] = -sin x; [ln x] = 1/x; [arcsin x] = 1/(1-x^2)^1/2; [arccos x] = -1/(1-x^2)^1/2; [arccos x] = -1/(y^2 + 1);

B03: Nech y = f(x), $x \in M$ je reálna funkcia a nech $x_0 \in M$ je vnútorný bod. Hovoríme, že funkcia f ma v bode x_0 diferencial, ak existuje lineárna funkcia $\lambda(h) = ah$, $h \in R$ taká, že platí vzťah. Lineárnu funkciu λ nazývame diferencial funkcie f v bode x_0 a označujeme symbolom $df(x_0)$. Ak má funkcia f diferenciál v bode x_0 , potom ju nazývame diferencovateľna funkcia v bode x_0 . Využitie pri výpočte približnej chyby. Nech f je diferencovateľna funkcia v bode x_0 . Nech $c \in R$ je take, že $c \neq f'(x_0)$. Označme *fi*: $y = f(x_0) + c(x - x_0)$; $g: y = f(x_0) + f'(x_0)(x - x_0)$.

Potom existuje prstencove okolie P(x0) take, že pre všetky $x \in P(x0)$ plati |f(x) - g(x)| < |f(x) - *fi*(x)|

B04(Derivácie vyšších rádov): Nech ma funkcia y = f(x), $x \in M$ derivaciu na neprazdnej množine $M1 \subset M$. Ak ma funkcia y = f'(x), $x \in M1$ derivaciu [f']' na

nejakej neprazdnej množine $M2 \subset M1$, potom ju nazyvame derivácia druhého rádu (druhá derivácia) funkcie f na množine M2 a označujeme f'', resp. f(2). To znamena, že [f']' = f'' = f(2). Ak ma funkcia y = f''(x), $x \in M2$ derivaciu na neprazdnej množine $M3 \subset M2$, potom ju nazyvame derivácia tretieho rádu (tretia derivácia) funkcie f na množine M3 a označujeme [f'']' = f''' = f(3). Takto možeme pokračovať pre $n \in N$, $n \ge 2$. Predpokladajme, že sme tymto sposobom definovali derivaciu funkcie f radu n-1 na neprazdnej množine Mn-1, ktoru označime f(n-1). Ak ma tato funkcia derivaciu na neprazdnej množine $Mn \subset Mn-1$, potom ju nazyvame derivácia n-tého rádu (n-tá derivácia) funkcie f na množine m a označujeme [f(n-1)]' = f(n). Leibnizov vzorec: Nech $n \in N$ a nech maju funkcie f, g na množine m derivacie do radu m vratane. Potom pre m-tu derivaciu [fg](m) na množine m plati

 $|f(p)|^{(n)} = \sum_{k=0}^{n} {n \choose k} f^{(n-1)}g^{(k)} = {n \choose k} f^{(n-1)}g^{(k)} + {n \choose k} f^{(n-1)}g^$

 $f'(x) = \frac{\varphi'(t)}{\varphi'(t)}$ pričom $t = \varphi^{-1}(x)$. Ak je funkcia psi' spojita na J, potom je funkcia f' spojitá na intervale fi(J). **Implicitne**: Nech je funkcia f definovana implicitne rovnicou F(x, y) = 0, kde y = f(x). Uvedieme vzťah pre vypočet derivacie f'(x).

$$y' = \frac{\mathrm{d}y}{\mathrm{d}x} = -\frac{F_x'(x,y)}{F_y'(x,y)} = -\frac{\frac{\mathrm{d}F_x(x,y)}{\mathrm{d}x}}{\frac{\mathrm{d}F_y(x,y)}{\mathrm{d}x}} = -\frac{\mathrm{d}F_x(x,y)/\mathrm{d}x}{\mathrm{d}F_y(x,y)/\mathrm{d}y}.$$

B05(Aplikácie diferenciálneho počtu): Rolleho – Nech pre funkciu f definovanú na uzavretom interval <a ; b> platí: 1. Je spojitá na <a ; b> 2. Má deriváciu (aj nevlastnú) na (a,b), 3. f(a) = f(b). Potom existuje aspoň jeden bod $c \in \langle a ; b \rangle$ taky, že f'(c) = 0. **Lagrangeova**: Nech pre funkciu f definovanu na uzavretom intervale <a ; b> plati: 1. Je spojitá na interval <a ; b>, 2. Má deriváciu aj nevlasntnú na interval (a ; b). Potom existuje aspoň jeden bod $c \in (a ; b)$ taky, že plati $f'(c) = \frac{f(b) - f(a)}{b - a}$. f(b) = f(c) - f(a) **L'Hospital** - Nech pre funkcie f, g definovane v nejakom prstencovom okoli P(a) bodu $a \in \mathbb{R}^*$ plati: 1. pre všetky $x \in \mathbb{P}(a)$ existuju konečne derivacie f'(x), g'(x), pričom g'(x) /=0, 2. $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = 0$, 3. $\lim_{x \to a} \frac{f'(x)}{g'(x)} = h \in \mathbb{R}^*$ Potom existuje limita $\lim_{x \to a} \frac{f'(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g(x)$

B06(Taylorov polynóm): Predpokladajme, že ma funkcia f v bode x0∈R konečne derivacie do radu n∈N vratane. To znamena, že funkcia f ma v bode x0

a nazyva sa **Maclaurinov polynóm** stupňa

diferencialy radov 1, 2, ..., n. Funkciu f chceme v nejakom okoli O(x0) bodu x0 aproximovať polynomom:

```
T_{n(x)} = \sum_{k=0}^{n} \frac{a_k(x-x_0)^k = a_0 + a_1(x-x_0) + \dots + a_n(x-x_0)^n}{(x-x_0)^n} = 0
\lim_{x \to x_0} \frac{R_n(x)}{(x-x_0)^n} = \lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x-x_0)^n} = 0
\lim_{x \to x_0} \frac{f(x) - T_n(x)}{(x-x_0)^n} = 0
Pre x0 = 0 (stred v bode 0) ma Taylorov polynom funkcie f tvar
T_n(x) = \sum_{n=0}^{n} \frac{f^{(k)}(0)}{(k)} x^k = f(0) + \frac{f''(0)}{(1)} x^2 + \dots + \frac{f^{(n)}(0)}{n} x^n, x \in O(0)
```

(najviac) n funkcie f. Maclaurin pre sin x:

```
T_{2k+1}(x) = 0 + \frac{x}{1!} + 0 + \frac{-x^3}{3!} + 0 + \dots + \frac{(-1)^k x^{2k+1}}{(2k+1)!} = \sum_{i=0}^k \frac{(-1)^i x^{2i+1}}{(2i+1)!}, \quad x \in \mathbb{R}
Maclaurinov \ polynom \ pre \ cos \ x:
T_{2k}(x) = 1 + 0 + \frac{-x^2}{2!} + 0 + \frac{x^4}{4!} + 0 + \dots + \frac{(-1)^k x^{2k}}{(2k)!} = \sum_{i=0}^k \frac{(-1)^i x^{2i}}{(2i)!}, \quad x \in \mathbb{R}
Maclaurinov \ polynom \ pre \ e^x:
T_n(x) = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots + \frac{x^n}{n!} = \sum_{k=0}^n \frac{x^k}{k!}, \quad x \in \mathbb{R}
```

B07(Priebeh funkcie): Monotónnosť: rastúca \Leftrightarrow pre každé x na I: f'(x)>0; klesajuca \Leftrightarrow pre každé x na I: f'(x)<0; nerastuca f'(x)<=0; neklesajuce f'(x)>=0; Postacujuca podmienka existencie lok. Extremu $x0\in D(f), f'(x0)=0$ (t.j. stacionarny bod). Nech existuje O(x0) take, ze pre kazde $x\in O(x0)$ plati 1. f'(x)>0 pre x< x0, f'(x)<0 pre x0< x>0 pre x0< x>0

B08(Neurcity integral): - nech I je otvoreny (D(f)) hovorime, ze funkcia F(x), $x \in I$ je primitivnou funkciou k funkcii f(x), $x \in I$ ak pre vsetky $x \in I$ existuje F(x) = f(x). f(x), $x \in I$ je konstantna \Leftrightarrow pre vsetky $x \in I$: f(x) = 0; F(x) je derivacia k f(x) na I $C \in R$ (konstanta) = > G(x) = F(x) + c je primitivna funkcia k f(x) na f. F(x), G(x) su primitivne funkcie k f(x) na intervale I => F(x) - G(x) = konst. na I. Ak I nie je interval veta nemusi platit. Nie kazda funkcia ma primitivnu funkciu Napr. f(x) sgn X (signum albis), $x \in R$ nema primitivnu funkci, ale f(x) = sgn x, $x \in (0, \infty)$ ma primitivnu funkciu. Int f(x) dx = F(x) + c, $x \in I$, $x \in I$, x

B09(Zakladne metody): Metoda rozkladu: $a, b \in R$, $a^2 + b^2 > 0$, I je interval (resp. |a| + |b| > 0) int f(x) dx = F(x) + c1, int $g(x) dx = G(x) + c2 = \infty$ int [af(x) + bg(x)] dx = a int f(x) dx + b int g(x) dx = a F(x) + bG(x) + c; Per partes (po castiach) u'(x), v'(x) su spojite na intervale $I = \infty$ int u'(x). v(x) dx - u(x). v(x) - i int u(x). v'(x) dx, $x \in I$; Metoda substitucie f(x) je spojita na intervale I oznacme I oznacme I int I intervale I oznacme I oznacme I intervale I oznacme I intervale I oznacme I intervale I oznacme I intervale I oznacme I oznacme I intervale I oznacme I intervale I oznacme I intervale I oznacme I intervale I oznacme I oznacme I oznacme I intervale I oznacme I intervale I oznacme I oz

B10(Specialne metody): parcialny (ciastocny zlomok je racionalna lomena funkcia) $1/(x-a)^n$ a \in R, $n\in$ N, $(x+q)/(x^2 + ax + b)^n$, a,b, $q\in$ R, $n\in$ N, $x\in$ R a $^2-4b<0$; int $dx/(x-a)^n=>$ sub: x-a=t=>dx=dt=> int dt/t^n ...; integral typu int $f(x, ((ax+b)/(cx+d))^n/(2)dx=>$ sub: $t=((ax+b)/(cx+d))^n/(2)=>$ $t^n=(ax+b)/(cx+d)=>$ ax + b, a + d su linearne nezavisle, t. j. det(abcd-do stvorca) t=(ax+b)/(ax+d)== t=(ax+d)/(ax+d)== t=(a

B11(Euler): Integral typu $f(x, (ax^2 + bx + c)^1/2)dx$. Pouzivaju sa eulerove substitucie, ktore su avsak velmi pracne. 1. Eulerova sub.: $(ax^2 + bx + c)^1/2 = t + -a^1/2$ x pre a > 0; 2. Eulerova sub.: $(ax^2 + bx + c)^1/2 = xt + -c^1/2$ pre c > 0; 3. Eulerova sub.> $t = (a - (x - alfa)/(x - beta))^1/2$, kde alfa, beta C R su korene $ax^2 + bx + c = 0$; Integral typu int $f(\sin x, \cos x)$ dx. Univerzalna goniometricka substitucia t = tg x/2 = x = 2 arctg $t = x = 2/(1 + t^2)$ dt; $\sin x = 2t/(t^2 + 1)$; $\cos x = (1-t^2)/(t^2 + 1)$

B12: krivočiary lichobežník určený f-ciou f(x) spojitá na int.<a,b>; M={(x,y) partí RxR, x patri<a,b>,0<=y<=f(x)}; P je plocha; <a,b> rozdelíme na n-patrí-N rovnakých integrálov s dĺžkou deltax=(b-a)/n; < x0, x1>< x1, x2>...< xn-1, xn>; a=x0< x1< x2<...xn-1< xn=b; m_i '=nim{f(x), x-patrí-<xi-1,xi>}; sučet(od i=1, po n) m_i *delta $x \le P \le s$ učet(od i=1, po n) m_i *delta $x \le P \le s$ učet(od i=1, po n) m)Mi*deltax; pre n ->nekonecna vyplýva: delat x= (b-a)/n cely zlomok ide k 0; Sd->P<-Sh(integralny sucet dolny,horny);; delením intervalu<a,b> je kazda konecna mnozina D=D $_{<$ a,b $></sub>=<math>\{x0,x1,x2...xn\}=\{xi\}_{i=0}^{n}$, kde ax0<x1<x2...<xn=b, n parti N, x0,x1,x2 su deliace body(jednoznačné určujú delenie) d_i=<x_{i-1},xi>: čiastočné intervaly, delta xi = xi-xi-1 – dlzka intervalu, mju(D)=max{delta xi, i=1,2,...n} – norma delenia; velke pisane $D<a,b>=\{D,D\}$ je delenie $a,b>\}$ mnozina vsetkych deleni intervalu a,b>; delenie D* je zjemnenie delenia D, D,D* parti velke pisane D<a,b> ak plati Dje podmnozina D*;napr. D={a,x1,x2,...xn,b} ma zjemnenie $D^*=\{a,x1,(x1+x2)/2,x2,...,xn-1,b\}$; if je ohranicena D,D* parti velke pisane D<a,b>, Dje podmn.D* na <a,b>, $m=\inf\{f(x),xparti< a,b>\}, M=\sup\{f(x),xparti< a,b>\}$ z m a M vyplyva: $Sd(f,D) <= Dd(f,D^*) <= Sh(f,D^*) <= Sh(f,D)(f,D <= M(b-1))$ a); integral dole a, hore b s vodorovnou ciarou $F(x)dx = \inf\{Sh(f,D), Dparti velke pis. D < a,b > \} - horny; integral dole a s ciarou pod,$ hore b, $f(x)dx = \sup\{Sd(f,D),D \text{ patri velke pis.}D < a,b >\} - dolny; z horneho a dolneho vyplyva: riemannov integral Fcie f na < a,b >;; ak$ plati rovnost integral dole a s ciarou hore b, f(x)dx=integral dola a hore b s ciarou f(x)dx = integral hore b dole a f(x)dx; ak existuje integral hore b dole a f(x)dx....f sa nazyva riemannovsky integrovatelna fcia na <a,b> ozn. f patri R<a,b>;; nech D patri pisane D<a,b>, t_i patri <xi-1,xi>, potom S patri (f,D) = sucet dole i=1 hore n f(ti)*deltaxi – riemannov integralny sucet fcie f na <a,b> pri deleni D a volbe bodov $t=(t_1,t_2,...t_n)$, je zrejme, ze pre lubovolnu volbu bodov t plati integral $D(f,D) \le int_1(f,D) \le int_1(f,D)$, t.j. lim n do nekon. $Int_t(f,D) = int dole a hore b f(x)dx$, pokial existuje;

B13: int dole a hore b f(x) dx geometricky predstavuje plochu krivociareho lichobeznika urceneho fciu f na <a,b>, pod osou x je plocha zaporna; 1. f je spojita na <a,b> vyplyva f patri R<a,b>, 2. f je monotonna na <a,b> vyplyva f patri R<a,b>;; f,g patri R<a,b>, c patri R z toho vyplyva f+-g, c*f, f*f, f*g, f v absolutnej, f/g patria R<a,b> pricom f/g =! 1/0; f patri R<a,b>, g je spojita na f<a,b> z toho vyplyva g(f) patri r<a,b>; f,g patri R<a,b> z toho vyplyva 1. kazde x patriace <a,b>: f(x) >= 0 vyplyva int dola a hore b f(x)dx>=0, 2. kazde x patri<a,b>: f(x) <= g(x) vyplyva int dola a hore b f(x)dx<= int hore b dole a g(x)dx, podtym: 0<=g(x)-f(x) vyplyva 0<= int dole a hore b g(x)-f(x) a plati int hore b dola a g(x)dx int hore c dole a g(x)dx int hore b dole c g(x

B14: f patri R<a,b> fcia:G(x)= int hore + dole a f(t)dt, xpatri <a,b> sa nazyva integral ako fcia hornej hranice, G(b) = int hore b dole a f(t)dt = int hore b dole a f(x)dx, G(b) = int hore a dole a f(t)dt = 0 a plati pre nu veta 76: f patri R<a,b>, G(x) = int hore + dole a f(t)dt, s patri <a,b> : G(x) je primitivna fcia k f(x) na <a,b>, tj. Kazde x patri <a,b>: G'(x) = f(x) [int hore + dole a f(t)dt]' (derivacia) = f(x), dôsledok ak f(x) je primitivna fcia k f(x) na <a,b>, tj. Kazde x patri <a,b>: G'(x) = f(x) [int hore + dole a f(t)dt]' (derivacia) = f(x), dôsledok ak f(x) je primitivna fcia k f(x) na <a,b>, z toho vyplyva existuje take c patriace R: f(x) = G(x)+c = int hore +dole a f(t)dt +c, Newton-Leibniz: f(x) patri R<a,b>; F(x) je primitivna fcia k f(x) na <a,b>, int hore b dole a f(x)dx=F(b) - F(a) = F(a) hore b dole a, dokaz: F(b)-F(a) = F(a)0 +c-F(a)0 +c-F(a)0 +c-F(a)0 +c-F(a)0 +c-F(a)0 +c-F(a)0 +c-F(a)1 +c-F(a)1 +c-F(a)2 +c-F(a)3 +c-F(a)3 +c-F(a)4 +c-F(a)4 +c-F(a)5 +c-F(a)6 +c-F(a)6 +c-F(a)6 +c-F(a)6 +c-F(a)7 +c-F(a)8 +c-F(a)9 +c-F(a)9

B15:numericke integrovanie: f patri R<a,b>, n patri N ... pocet deliacich bodov $D_n=\{a=x0,x1,x2...sn=b\}=\{a+i*(b-a)/n\}^n$ patri $D_{\langle a,b\rangle}$, $\Delta x_i=\Delta x=(b-a)/n$, i=1,2,...n(rovnako dlhe integraly), pre n iduce do nek. vyplýva delta x=(b-a)/n ide k nule, pre i=0,1,2...n ozn. yi=f(xi); obdĺžniková metóda: f aproximujeme obdlzniky na <a,b> pomocou S_t amus=ixatled(it)f n eroh ,1=i elod tecus =(nD,f)tS = :ydob evocnok eval :vobod ablov (.1;((nt)f)+...+(2t)f+(1t)f)n/(a-b) = (it)f n eroh 1=i elod amus x atled =x atled(it)f n eroh 1=i elod evarpit vodob ablov (.2;(1-ny...+1y+0 y)n/(a-b)(yknlv evd) antnelavivke ej xd(x)f a elod b eroh tni avylpyv 1-ny=(2t)f ,0y=(1t)f 'ak existuje f (.2+(.1;(ny...+2y+1 y)n/(a-b) yknlv xd(x)f a elod b eroh tni avylpyv ny=(nt)f,...,2y=(2t)f ,1y=(1t)f :ydob evonok(x) na <a,b>, existuje ε1<0 tak, ze kazde x patri <a,b>: |f'(x)| <=ε1 vyplyva chyba aproximacie R^O_n (x) <= ε1 (b-a)²/n; lichobeznikova: int hore b dole a f(x)dx ≈ (b-a)/n * (y1+2y2+2y3+...2yn-1+ yn)/2, ak existuje f''(x)na <a,b>, existuje ε>0 tak, ze kazde x<a,b>: f''(x)<=ε2, R^L_n (x)= ε2*(b-a)³/12; simpsonova: n je parne, aproximuje sa parabolou(kvadratickou fciou): int dole a hore b f(x)dx ≈ (b-a)/n * (y0+4y1+2y2+4y3+...+2yn-2+4yn-1+yn) a ak existuje f''(x) na <a,b>, existuje ε3>0 kazde x parti<a,b>: |f(4)(x)| <= ε4 z toho vyplyva: R^S_n (x)<=ε4* (b-a)³/180n³;; chyby su pri kazdej metode oznacene R;

B16: int hore b dole a f(x)dx sa anzýva NEVLASTNY INT. vplyvom fcie, ak: $\lim f(x) x$ ide do a+=-+ nekonecno, resp. $\lim f(x) x$ ide do b-=-+nekonecno; vplyvom hranice, ak: a=-+nek., resp. b=-+nek., a, a+,b,b-- singularne body(vplyvom fcie/ hranice); su 4 moznosti: vplyvom hranice $\underline{a=-+$ nek, b patri \underline{R} int dole -+nek. hore b f(x)dx= $\lim \epsilon$ ide do +-nek., int hore b dole epsilon f(x)dx; \underline{a} patri \underline{R} , \underline{b} = +-nek, int dole a hore +-nek. f(x)dx = $\lim \epsilon$ epsilon do +-nek, int hore epsilon dole a f(x)dx; vplyvom fcie: \underline{a} , \underline{b} patria \underline{R} , $\underline{\lim x}$ ide do \underline{b} - f(x) = +-nek., int dole a hore b f(x) dx = +-nek., int dole a hore b f(x) dx = +-nek., int dole a hore b f(x) dx = +-nek., int dole a hore b f(x) dx = +-nek., int hore --0 for int hore --1 for --1 for --1 hore --2 for --2 hore --2 hore --3 hore --4 hore --5 hore --5

B17: ak ma int hore nek. dole – nek. f(x)dx iba dva sing. body +- nek., potom, pokial E lim epsilon ide do nek. int hore epsilon dole – epsilon f(x)dx = VP int hore nek. dole – nek. f(x) dx – cauchyho hlavna hotnoa integralu, ak ma int a b iba jeden sing. Bod, c patri (a,b) [nie c =!a alebo c=!b], potom (pokial E) lim eps. do 0+ [int hore c-ep. dole a f(x)dx + int hore b dole c+a f(x)dx] = VP int hore b dole a f(x) dx cauchyho hl. hod.;; veta 80: ak E int hore nek dole – nek. f(x)dx vyplyva E VP int hore nek. dole – nek. f(x)dx, resp. VP int horeb dole a f(x)dx a a rovnaju sa opacne tvrdenie neplati, VP moze E ale nevlastny int. nemusi E; veta 81: porovnavacie ktiretium: a, b patri R zjednotenie {+-nek} kazde x patri (a,b): 0 <= f(x) <= g(x) vyplyva (pokial E)1.) int hore a dole a g(x)dx patri R vyplyva int hore b dole a g(x)dx patri R; 2.) int hore b dole a g(x)dx = nek. vyplyva int hore b dole a g(x)dx=nek.;; dosledok 1.) limitny tvar: kazde x patri(a,b): g(x) > 0 resp. g(x) < 0) a E nenulova konecna lim x ide ku s f(x)/g(x), f(x) a g(x) = 0, s je sing. bod int. pokial to vsetko plati a E, vyplyva int hore b dole a g(x)dx = nek.;; dosledok 2.) kazde x patri (a,b): h(x) <= f(x) <= g(x) E int hore b dole a f(x)dx=int hore b dole a g(x)dx = I z celeho vyplyva E int hore b dole a f(x)dx=I;

B18:obsah rovinneho utvaru: **A:** kazde x patri<a,b>: fx >=0, P_f =int hore b dole a f(x)dx; **B:** kazde x patri<a,b>: fx <=0, P_f =int hore b dole a f(x)dx; **B:** kazde x patri<a,b>: fx <=0, f(x) b dole a f(x)dx; **C:** Pfg = Pf-Pg = a int b f(x)-g(x))dx, pre kazde x patri<a,b>: f(x) >=0;; **D:** Pfg = Pf+c - Pg+c = aint b f(x)-c-g(x)+c)dx = a int b f(x)-g(x))dx, kazde x patri(a,b): f(x)-g(x) vyplyva f(x) - g(x) >=0 **E:** Pfg a int b f(x)-g(x) dx;; f(x)-g(x) dx;; f(x)-g(x)+c)dx = a int b f(x)-g(x)+c)dx, kazde x patri(a,b): f(x)-g(x) vyplyva f(x)-g(x) >=0 **E:** Pfg a int b f(x)-g(x)+c)dx; f(x)-g(x)+c)dx = a int b f(x)-g(x)+c)dx, kazde x patri(a,b): f(x)-g(x) vyplyva f(x)-g(x) >=0 **E:** Pfg a int b f(x)-g(x)+c)dx; f(x)-g(x)+c)dx = a int b f(x)-g(x)+c)dx; f(x)-g(x)+c)dx = a int b f(x)-g(x)-g(x)+c)dx = a int b f(x)-g(x)-g(x)-g(