

Examination in School of Mathematical Sciences Semester 2, 2013

104831 MATHS 2100 Real Analysis II 104830 MATHS 7100 Real Analysis

NUMBER OF QUESTIONS: 8 TOTAL MARKS: 90

Instructions

- Attempt all questions.
- Begin each answer on a new page.
- Examination materials must not be removed from the examination room.

Materials

- 1 Blue book is provided.
- No calculators, books, notes, or other aids are permitted.

DO NOT COMMENCE WRITING UNTIL INSTRUCTED TO DO SO.

1. (a) (i) Let $f: \mathbb{R} \to \mathbb{R}$ and $(A_k)_{k \in K}$ be a family of subsets of \mathbb{R} . Show that

$$f^{-1}\big(\bigcup_{k\in K} A_k\big) = \bigcup_{k\in K} f^{-1}(A_k).$$

- (ii) Let $K = \mathbb{N}$, the natural numbers, $A_k = [-k, k]$, and $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^4$. Find $\bigcup_{k \in K} f^{-1}(A_k)$.
- (b) Let $f: A \to B$ be a function. Show that if

$$f(C \cap D) = f(C) \cap f(D)$$

for all $C, D \subset A$ then f is 1-1.

[5+3 = 8 marks]

- 2. (a) Let $A \subset \mathbb{R}$. Define what is meant by
 - (i) an upper bound of A
 - (ii) $\sup A$, the *supremum* of A.
 - (b) Let $A \subset \mathbb{R}$ be a set with maximum value b. That is, $b \in A$ and if $x \in A$ then $x \leq b$. Prove that $\sup A = b$.
 - (c) (i) Define what it means for a set to be *countable*.
 - (ii) Show that \mathbb{Z} , the integers, is a countable subset of \mathbb{R} .
 - (iii) Let K be the collection of all sequences of zeros and ones. That is, K is the set of all maps from \mathbb{N} to the two element set $\{0,1\}$. Show that K is not countable.

$$[2+3+8 = 13 \text{ marks}]$$

- 3. (a) Let (a_n) be a sequence in \mathbb{R} . Define what it means for (a_n) to *converge* to a real number a.
 - (b) Show that if $a_n = \frac{n}{n^2 + 1}$ then (a_n) converges to 0.
 - (c) (i) Show that if (a_n) is a convergent sequence then there is a real number M such that $|a_n| \leq M$ for all n in \mathbb{N} .
 - (ii) Show that if (a_n) converges to $a \neq 0$ and (b_n) converges to $b \neq 0$ then $(a_n b_n)$ converges to ab.

[2+3+8 = 13 marks]

Real Analysis II Page 3 of 4

- 4. (a) (i) Let A be a subset of \mathbb{R} . State what it means for A to be open.
 - (ii) Use your definition in (i) to show that $(-\infty, 10)$ is open.
 - (b) Show that if A is a non-empty open set that is bounded above then $\sup A \not\in A$.
 - (c) Prove that if A_i is open for $i \in \{1, 2, ..., n\}$ then $\bigcap_{i=1}^n A_i$ is open.
 - (d) Show that the intersection of infinitely many open sets may not be open.
 - (e) (i) Let A be a subset of \mathbb{R} . State the definition of \overline{A} , the *closure* of A.
 - (ii) Show that if A = [-1, 1) then $\bar{A} = [-1, 1]$. You may assume that if a sequence (a_n) in a closed set C converges to a then $a \in C$, and that [-1, 1] is closed.

$$[3+3+3+2+5 = 16 \text{ marks}]$$

- 5. (a) (i) Let $A \subset \mathbb{R}$, $f: A \to \mathbb{R}$ be a function, and let c be a limit point of A. Define what it means for the limit of f at c to exist and be equal to the real number L.
 - (ii) Use your definition to show that $\lim_{x\to 5} 11x + 2 = 57$.
 - (b) (i) State what it means for a function $f: A \to \mathbb{R}$ to be uniformly continuous on A.
 - (ii) Give an example of a function that is continuous on \mathbb{R} but not uniformly continuous on \mathbb{R} . You do *not* need to demonstrate that your function is not uniformly continuous.

$$[5+3 = 8 \text{ marks}]$$

- 6. (a) Show that if $f: \mathbb{R} \to \mathbb{R}$ given by $f(x) = x^n$ (for $n \in \mathbb{N}$) then f is differentiable on \mathbb{R} , and $f'(x) = nx^{n-1}$.
 - (b) State the Mean Value Theorem.
 - (c) Let I be an open interval and $f: I \to \mathbb{R}$ be a differentiable function with $f'(x) \geq 0$ for all $x \in I$. Show that f is increasing on I.
 - (d) Prove that there is no continuous function $g : \mathbb{R} \to \mathbb{R}$ such that $g(\mathbb{I}) \subset \mathbb{Q}$ and $g(\mathbb{Q}) \subset \mathbb{I}$, where \mathbb{I} denotes the irrational numbers and \mathbb{Q} the rational numbers.

$$[3+2+3+4 = 12 \text{ marks}]$$

- 7. (a) Let $f:[a,b] \to \mathbb{R}$ be a bounded function, and for any partition \mathcal{P} of [a,b] write $L(f,\mathcal{P})$ for the lower sum of f with respect to \mathcal{P} and $U(f,\mathcal{P})$ for the corresponding upper sum. Define what it means for f to be *integrable* on [a,b].
 - (b) Show that if f is integrable on [a, b] then for every $\epsilon > 0$ there is a partition \mathcal{P} of [a, b] such that

$$U(f, \mathcal{P}) - L(f, \mathcal{P}) < \epsilon.$$

- (c) Show that every increasing function $f:[0,1]\to\mathbb{R}$ is integrable on [0,1].
- (d) Is every bounded function on [a, b] integrable on [a, b]? Explain your answer.

$$[2+4+4+2 = 12 \text{ marks}]$$

- 8. (a) State what it means for a sequence (f_n) of functions on $A \subset \mathbb{R}$ to converge to a function $f: A \to \mathbb{R}$
 - (i) pointwise
 - (ii) uniformly.
 - (b) Let $f_n:[0,1]\to\mathbb{R}$ be given by

$$f_n(x) = \frac{nx}{1 + n^2x^2}.$$

- (i) Find f, the pointwise limit of the sequence (f_n) .
- (ii) Does $f_n \to f$ uniformly on [0,1] as $n \to \infty$?

[3+5 = 8 marks]