Abaixo uma demonstração de como o algoritmo de Dijkstra é capaz de calcular o caminho mínimo de um dado vértice até os demais em um grafo.

Dado o vértice A como base, como chegar no vértice D com menor custo possível:

Vértice	Passo 1	Passo 2	Passo 3	Passo 4
Α	(0, A)			
В	(4, A)	(3, C)	(3, A)	
С	(1, A)	(1, A)		
D		(5, C)	(5, C)	

^{*}Em vermelho menor distância para o vértice possível.

Para o exemplo acima podemos ver o menor caminho sendo de (A, D) sendo:

Passo 1:

 $A \Rightarrow A = 0$

 $A \Rightarrow B = infinito$

 $A \Rightarrow C = infinito$

Passo 2:

 $A \Rightarrow C = 1$

 $A \Rightarrow B = 3$

- Como a distância de (A, C) é menor ele salva C e procura próxima menor distância.

$$A \Rightarrow B = 3$$

- Como a distância de (A, B) é menor ele salva B e procura próxima menor distância.

$$B \Rightarrow D = 10$$
;
 $C \Rightarrow D = 5$;

- Como a distância de (C, D) é menor ele salva D. (Como todos os vértices foram visitado finaliza)

Menor Caminho de (A, D) é:

$$A \Rightarrow C \Rightarrow D \text{ com peso 5}.$$

O algoritmo tem em vista, sempre calcular a menor distância entre o vértice e seus vizinhos, após calculada essa menor distância, o vértice com a menor distância para seu vizinho fica como salva, então deve-se calcular a menor distância deixando sempre os vértices já dados como salvos. Como a distância para o seu vizinho sempre é garantida, o algoritmo consegue encontrar a menor distância em todo o caminho percorrido do dado vértice até o vértice destino.