INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT27Triple 3-input NOR gate

Product specification
File under Integrated Circuits, IC06

December 1990

Triple 3-input NOR gate

74HC/HCT27

FEATURES

· Output capability: standard

I_{CC} category: SSI

GENERAL DESCRIPTION

The 74HC/HCT27 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT27 provide the 3-input NOR function.

QUICK REFERENCE DATA

GND = 0 V; $T_{amb} = 25 \, ^{\circ}C$; $t_r = t_f = 6 \, \text{ns}$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT		
STWIBUL	PARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay nA, nB, nC to nY	C _L = 15 pF; V _{CC} = 5 V	8	10	ns	
Cı	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per gate	notes 1 and 2	24	30	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_O)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

C_L = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is $V_I = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

Triple 3-input NOR gate

74HC/HCT27

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1, 3, 9	1A to 3A	data inputs
2, 4, 10	1B to 3B	data inputs
13, 5, 11	1C to 3C	data inputs
7	GND	ground (0 V)
12, 6, 8	1Y to 3Y	data outputs
14	V _{CC}	positive supply voltage

Fig.5 Logic diagram (one gate).

FUNCTION TABLE

II	NPUTS	OUTPUT				
nA	nB	nY				
L	L	L	Н			
Х	Х	Н	L			
Х	Н	X	L			
Н	Х	X	L			

Notes

H = HIGH voltage level
 L = LOW voltage level
 X = don't care

Philips Semiconductors Product specification

Triple 3-input NOR gate

74HC/HCT27

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: SSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

CYMPOL	PARAMETER	T _{amb} (°C)							UNIT	TEST CONDITIONS	
		74HC									WAVEFORMS
SYMBOL		+25		-40 to +85		-40 to +125		UNII	V _{CC} (V)	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(,	
t _{PHL} / t _{PLH}	propagation delay nA, nB, nC to nY		28 10 8	90 18 15		115 23 20		135 27 23	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6

Triple 3-input NOR gate

74HC/HCT27

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: SSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT						
nA, nB, nC	1.50						

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS		
SYMBOL		74HCT									WAVEFORMS	
SYMBOL		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS		
		min.	typ.	max.	min.	max.	min.	max.		(,		
t _{PHL} / t _{PLH}	propagation delay nA, nB, nC to nY		12	21		26		32	ns	4.5	Fig.6	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6	

AC WAVEFORMS

Fig.6 Waveforms showing the input (nA, nB, nC) to output (nY) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".