P1:

Solution:

A variate X_k has the distribution

$$P(X_k = 0) = 1 - \left(\frac{2}{3^{2k+2}}\right), \ P(X_k = \pm 3^k) = 3^{-(2k+2)}$$

If $\{X_k\}$ is a sequence of independent r.vs, then show that $\{X_k\}$ obeys WLLN

Here
$$E(X_k) = 3^k \cdot 3^{-(2k+2)} - 3^k \cdot 3^{-(2k+2)} = 0$$
 and
$$V(X_k) = E(X_k^2) = 3^{2k} 3^{-(2k+2)} + 3^{2k} 3^{-(2k+2)}$$
$$= 2 \cdot 3^{2k} 3^{-(2k+1)} = \frac{2}{9}$$

Let
$$S_n = \sum_{k=1}^n X_k$$
 . Then

$$B_n = V(S_n) = \sum_{k=1}^n V(X_k)$$
 (: X_k s are independent)

$$=\sum_{k=1}^{n}\frac{2}{9}=\frac{2n}{9}$$

and hence
$$\frac{B_n}{n^2} = \frac{2n}{9n^2} = \frac{2}{9n} \longrightarrow 0$$
 as $n \longrightarrow 0$

Since $\frac{B_n}{n^2} \to 0$ as $n \to \infty$, $\{X_k\}$ obeys the WLLN.