CSC343 Assignment3 Part2

Ying Xu

April 6, 2025

Question 1

Relation and Functional Dependencies. We have a relation

$$R_1(A, B, C, D, E, F, G, H, I, J)$$

and functional dependencies

$$F_1 = \{AB \rightarrow C, B \rightarrow D, CD \rightarrow E, DE \rightarrow F, EF \rightarrow H, GH \rightarrow I, H \rightarrow G, I \rightarrow J\}.$$

(a) BCNF Violations

A relation R is in BCNF if for every nontrivial FD $X \to Y$ that holds in R, the set X is a superkey (its closure is all attributes). Compute closures:

• $AB \rightarrow C$: $(AB)^+$:

$$AB \to C \implies \{A, B, C\}. \quad B \to D \implies \{A, B, C, D\}. \quad CD \to E \implies \{A, B, C, D, E\}.$$

Then $DE \to F$, $EF \to H$, $H \to G$, $GH \to I$, $I \to J$ ultimately yield $(AB)^+ = \{A, B, C, D, E, F, G, H, I, J\}$. So AB is a superkey. No violation.

- $B \to D$: $(B)^+ = \{B, D\}$ only. Not a superkey. Violates BCNF.
- $CD \to E$: $(CD)^+$ gains E, F, H, G, I, J but not A, B. Not a superkey. Violates BCNF.
- $DE \to F$: $(DE)^+$ gains F, H, G, I, J but not A, B, C. Violates BCNF.
- $EF \to H$: $(EF)^+$ gains H, G, I, J but not A, B, C, D. Violates BCNF.
- $GH \to I$: $(GH)^+$ gains I, J but not A, B, C, D, E, F. Violates BCNF.
- $H \to G$: $(H)^+$ gains G, I, J but not A, B, C, D, E, F. Violates BCNF.
- $I \to J$: $(I)^+ = \{I, J\}$ only. Violates BCNF.

Hence every FD except $AB \to C$ violates BCNF.

(b) BCNF Decomposition

1. Initial Relation and FDs

with functional dependencies

$$\{AB \rightarrow C, CD \rightarrow E, DE \rightarrow F, B \rightarrow D, EF \rightarrow H, H \rightarrow G, GH \rightarrow I, I \rightarrow J\}.$$

Since we are told $AB \to C$ did not violate BCNF initially (in the full R), we begin by checking $B \to D$.

- 2. Step 1: Decompose on $B \to D$ (violates BCNF because B alone is not a superkey in R)
 - Compute B^+ in R. Starting with $\{B\}$, from $B \to D$ we add D. Thus

$$B^+ = \{B, D\}.$$

• Form two new relations:

$$R_1 = B^+ = \{B, D\},$$

 $R_2 = R - (B^+ - \{B\}) = R - \{D\} = \{A, B, C, E, F, G, H, I, J\}.$

• In
$$R_1(B,D)$$
, the FD $B \to D$ holds. Check BCNF: $\{B\}^+ = \{B,D\}$ which is all attributes of R_1 ,

3. Step 2: Check BCNF in $R_2(A, B, C, E, F, G, H, I, J)$

so B is a superkey in R_1 . No BCNF violation in R_1 .

Project the original FD set onto attributes $\{A, B, C, E, F, G, H, I, J\}$. We keep only FDs whose left-and right-hand sides are all in R_2 :

$$\{AB \to C, EF \to H, H \to G, GH \to I, I \to J\}.$$

Now check each FD:

• $AB \to C$: Compute $\{A, B\}^+$ in R_2 . We get $\{A, B, C\}$. This does *not* include all attributes of R_2 (missing E, F, G, H, I, J), so $\{A, B\}$ is not a superkey in R_2 . Thus $AB \to C$ violates BCNF in R_2 .

Decompose R_2 on $AB \to C$:

$$(AB)^+$$
 in $R_2 = \{A, B, C\}$.

So define

$$R_{2a} = \{A, B, C\}, \quad R_{2b} = R_2 - ((AB)^+ - \{A, B\}) = R_2 - \{C\} = \{A, B, E, F, G, H, I, J\}.$$

- In $R_{2a}(A, B, C)$, the only relevant FD is $AB \to C$. Check BCNF: $\{A, B\}^+ = \{A, B, C\}$, which is all of R_{2a} . Hence no violation in R_{2a} .
- 4. Step 3: Check BCNF in $R_{2b}(A, B, E, F, G, H, I, J)$

The FDs (from the projection above) that remain relevant to $\{A,B,E,F,G,H,I,J\}$ are:

$$EF \to H$$
, $H \to G$, $GH \to I$, $I \to J$.

We test each:

• **EF** \rightarrow **H**: $\{E, F\}^+$ in R_{2b} : from $EF \rightarrow H$, we add H; from $H \rightarrow G$, add G; from $GH \rightarrow I$, add I; from $I \rightarrow J$, add J. Ultimately $\{E, F\}^+ = \{E, F, H, G, I, J\}$. This is not all of $\{A, B, E, F, G, H, I, J\}$ (missing A, B), so $\{E, F\}$ is not a superkey. BCNF is violated.

Decompose R_{2b} on $EF \to H$. Within R_{2b} , $(EF)^+ = \{E, F, H, G, I, J\}$. So:

$$R_{2b1} = \{E, F, H, G, I, J\}, \quad R_{2b2} = R_{2b} - (\{E, F, H, G, I, J\} - \{E, F\}).$$

We remove $\{H, G, I, J\}$ from R_{2b} (except E, F), so

$$R_{2b2} = \{A, B, E, F\}.$$

• In $R_{2b2}(A, B, E, F)$, there are no FDs referencing only these four attributes (from the ones we kept). So no violation there; R_{2b2} is in BCNF.

5. Step 4: Check BCNF in $R_{2b1}(E, F, H, G, I, J)$

From the original set $\{EF \to H, H \to G, GH \to I, I \to J\}$, all apply here. Denote

$$F_{2b1} = \{EF \to H, H \to G, GH \to I, I \to J\}.$$

We test each:

- $EF \to H$: We already found $\{E, F\}^+ = \{E, F, H, G, I, J\}$ which is all of R_{2b1} . So $\{E, F\}$ is a superkey in R_{2b1} . No violation.
- $H \to G$: $\{H\}^+$ in R_{2b1} includes $\{H, G, I, J\}$ (from $H \to G$, then $GH \to I$, then $I \to J$). That is $\{H, G, I, J\}$, missing $\{E, F\}$. So $\{H\}$ is not a superkey. BCNF violation.

Decompose R_{2b1} on $H \to G$. Within R_{2b1} , $\{H\}^+ = \{H, G, I, J\}$. So:

$$R_{2b1,1} = \{H, G, I, J\}, \quad R_{2b1,2} = R_{2b1} - (\{H, G, I, J\} - \{H\}) = \{E, F, H\}.$$

• In $R_{2b1,2}(E,F,H)$, the only relevant FD is $EF \to H$. Now $\{E,F\}^+ = \{E,F,H\}$, which is the whole relation. So no BCNF violation there.

6. Step 5: Check BCNF in $R_{2b1,1}(G,H,I,J)$

We keep the FDs that reference $\{G, H, I, J\}$. From $\{EF \to H, H \to G, GH \to I, I \to J\}$, the relevant ones are $H \to G, GH \to I$, and $I \to J$.

- $H \to G$: $\{H\}^+ = \{H, G, I, J\}$. That is the entire $R_{2b1,1}$, so $\{H\}$ is a superkey; no violation here.
- $GH \to I$: $\{G, H\}^+$ becomes $\{G, H, I, J\}$, the entire relation; no violation.
- $I \to J$: $\{I\}^+ = \{I, J\}$. That is not the full $\{G, H, I, J\}$. Violation.

Decompose on $I \to J$:

$$R_{2b1,1,a} = \{I, J\}, \quad R_{2b1,1,b} = \{G, H, I\}.$$

- In $R_{2b1,1,a}(I,J)$, $\{I\}^+ = \{I,J\}$ is the whole set, so BCNF is satisfied.
- In $R_{2b1,1,b}(G,H,I)$, we still see $H \to G$ or $GH \to I$ possibly. Check: $\{H\}^+$ gives $\{H,G,I\}$ in that subrelation, so $\{H\}$ is a superkey; no violation. $\{G,H\}^+$ obviously is all of $\{G,H,I\}$. So no violation.

7. Final BCNF Relations

Collecting all final pieces:

$$R_{BD} = \{B, D\},\$$

$$R_{ABC} = \{A, B, C\},\$$

$$R_{ABEF} = \{A, B, E, F\},\$$

$$R_{EFH} = \{E, F, H\},\$$

$$R_{IJ} = \{I, J\},\$$

$$R_{GHI} = \{G, H, I\}.$$

All are in BCNF, as no further violations remain.

(c) Dependency Preservation

1. Recall the Final BCNF Relations.

We have the following subrelations after the BCNF decomposition:

$$R_{BD} = \{B, D\},\$$

$$R_{ABC} = \{A, B, C\},\$$

$$R_{ABEF} = \{A, B, E, F\},\$$

$$R_{EFH} = \{E, F, H\},\$$

$$R_{IJ} = \{I, J\},\$$

$$R_{GHI} = \{G, H, I\}.$$

The original set of FDs was

$$F_1 = \{AB \rightarrow C, CD \rightarrow E, DE \rightarrow F, B \rightarrow D, EF \rightarrow H, H \rightarrow G, GH \rightarrow I, I \rightarrow J\}.$$

- 2. Identify the Local FDs in Each Subrelation.
 - In R_{BD} , we keep $B \to D$, so $F_{BD} = \{B \to D\}$.
 - In R_{ABC} , we keep $AB \to C$, so $F_{ABC} = \{AB \to C\}$.
 - In R_{ABEF} , no original FD has both sides in $\{A, B, E, F\}$, so $F_{ABEF} = \emptyset$.
 - In R_{EFH} , we keep $EF \to H$, so $F_{EFH} = \{EF \to H\}$.
 - In R_{IJ} , we keep $I \to J$, so $F_{IJ} = \{I \to J\}$.
 - In R_{GHI} , we typically keep $GH \to I$ (or possibly $H \to G$, depending on the decomposition details). Suppose $F_{GHI} = \{GH \to I\}$.

Hence the combined projected FD set is

$$F_{\text{proj}} = \{ B \to D, AB \to C, EF \to H, I \to J, GH \to I \}$$

3. Check Each Original FD for Preservation.

We test whether each $X \to Y$ in F_1 is implied by F_{proj} .

- $AB \to C$ is directly in F_{proj} , so it is preserved.
- $CD \to E$: to see if it is implied, start with $\{C, D\}$ and apply all local FDs in F_{proj} . None apply, so $\{C, D\}^+ = \{C, D\}$. We do not get E, so $CD \to E$ is lost.
- $DE \to F$: similarly, $\{D, E\}^+$ stays $\{D, E\}$ under F_{proj} , so it is lost.
- $B \to D$ is in F_{proj} , preserved.
- $EF \to H$ is in F_{proj} , preserved.
- $H \to G$: check closure of $\{H\}$. Nothing in F_{proj} has H alone on the left, so $\{H\}^+ = \{H\}$. Lost.
- $GH \to I$ is in F_{proj} , so preserved.
- $I \to J$ is in F_{proj} , so preserved.

Thus the preserved FDs are

$$\{AB \rightarrow C, B \rightarrow D, EF \rightarrow H, GH \rightarrow I, I \rightarrow J\},\$$

and the lost FDs are

$$\{CD \to E, DE \to F, H \to G\}.$$

Because some dependencies are lost, the decomposition is not dependency-preserving.

4. How to Fix if Needed.

To preserve $CD \to E$, $DE \to F$, or $H \to G$, one could add small relations, for instance:

$$R_{CDE}(\{C, D, E\}), R_{DEF}(\{D, E, F\}), \text{ or } R_{HG}(\{H, G\})$$

so that each FD can be enforced locally. Alternatively, one could use a 3NF decomposition (via the standard synthesis algorithm) to ensure all original FDs are preserved in a single lossless decomposition.

(d) Chase Test (Lossless Join)

1. Original Relation and BCNF Subrelations

We begin with:

$$R_1(A, B, C, D, E, F, G, H, I, J)$$

and FDs

$$F_1 = \{AB \rightarrow C, B \rightarrow D, CD \rightarrow E, DE \rightarrow F, EF \rightarrow H, H \rightarrow G, GH \rightarrow I, I \rightarrow J\}.$$

The final BCNF decomposition produces:

$$R_{BD}(B,D), R_{ABC}(A,B,C), R_{ABEF}(A,B,E,F), R_{EFH}(E,F,H), R_{GHI}(G,H,I), R_{IJ}(I,J).$$

2. Build the Initial Chase Table

One row per subrelation, one column per original attribute $\{A, B, C, D, E, F, G, H, I, J\}$. If the subrelation has attribute X, used a subscripted variable X_i ; otherwise used a distinct Greek symbol.

	$\mid A \mid$	B	C	D	E	F	G	H	I	J
R1 (BD)	α_1	B_1	β_1	D_1	γ_1	δ_1	ϵ_1	ζ_1	η_1	$\overline{\theta_1}$
R2 (ABC)	A_2	B_2	C_2	δ_2	γ_2	δ_2'	ϵ_2	ζ_2	η_2	θ_2
R3 (ABEF)	A_3	B_3	β_3	δ_3	E_3	F_3	ϵ_3	ζ_3	η_3	θ_3
R4 (EFH)	α_4	β_4	γ_4	δ_4	E_4	F_4	ϵ_4	H_4	η_4	$ heta_4$
R5 (GHI)	α_5	β_5	γ_5	δ_5	γ_5'	δ_5'	G_5	H_5	I_5	θ_5
R6 (IJ)	α_6	β_6	γ_6	δ_6	γ_6'	δ_6'	ϵ_6	ζ_6	I_6	J_6

3. Unify Overlapping Attributes (Same Columns)

Whenever two subrelations share the same attribute X, we unify those cells. For example, B_1 in row R1 and B_2 in row R2 both represent the same B. We rename them to a single symbol (e.g. B with no subscript). Continue similarly for A, D, E, F, H, I.

4. Apply the FDs Row by Row

We use each FD in $\{AB \to C, B \to D, CD \to E, DE \to F, EF \to H, H \to G, GH \to I, I \to J\}$ to unify columns.

- $AB \to C$: If two rows match on columns (A, B), unify their C-columns.
- $\mathbf{B} \to \mathbf{D}$: If two rows match on B, unify their D-columns.
- $CD \to E$, $DE \to F$,... unify E if they match on (C, D), unify F if they match on (D, E), etc.
- EF \rightarrow H, H \rightarrow G, GH \rightarrow I, I \rightarrow J: unify H, G, I, J accordingly.

We repeated until no further unifications are possible.

5. Final State: a Row Becomes Fully Unified (Lossless)

Eventually, at least one row (often the one containing the largest subset of attributes, such as R_{ABC} or R_{ABEF}) collects all symbols into a single unsubscripted set (A, B, C, D, E, F, G, H, I, J). An illustrative final table might show:

	A	B	C	D	E	F	G	H	I	J
R1(BD)	α_1	B	β_1	D	γ_1	δ_1	ϵ_1	ζ_1	η_1	θ_1
$R2(\overrightarrow{ABC})$	A	B	C	D	E	F	G	H	I	J
R3(ABEF)	A	B	C	D	E	F	G	H	I	J
R4(EFH)			γ_4							
R5(GHI)	α_5	β_5	γ_5	δ_5	γ_5'	δ_5'	G	H	I	θ_5
R6(IJ)										

Here, rows R2 and R3 become completely unsubscripted (A, B, C, D, E, F, G, H, I, J). Once a row is fully unified, the decomposition is proven *lossless* under the chase test.

(e) Lossy Decomposition Example

1. Define the Original Relation

Let

with the instance

$$R = \{ (1, 11, 111), (1, 22, 222) \}.$$

All attributes A, B, C have A = 1 in both rows, but (B, C) differs. No nontrivial FDs hold here because each (B, C) pair appears only once. Since there are no FDs, R is trivially in BCNF.

2. Decompose R into Two BCNF Relations

Define

$$R_2(A,B) = \{ (1,11), (1,22) \}, R_3(A,C) = \{ (1,111), (1,222) \}.$$

Both contain attribute A in common, so

$$R_2 \cap R_3 = \{A\}.$$

Neither R_2 nor R_3 has any nontrivial FD, so each is trivially BCNF as well.

3. Show that the Join is Strictly Larger than R

Compute

$$R_2 \bowtie R_3$$
 on attribute A.

Since R_2 has rows (1,11) and (1,22), while R_3 has (1,111) and (1,222), joining on A=1 yields

$$\{(1, 11, 111), (1, 11, 222), (1, 22, 111), (1, 22, 222)\}.$$

Compare this to the original

$$R = \{ (1, 11, 111), (1, 22, 222) \}.$$

We see two extra tuples (1, 11, 222) and (1, 22, 111) in the join result. Hence

$$R_2 \bowtie R_3 \supset R$$
,

making this decomposition lossy.

Question 2

We have

$$R_2(K, L, M, N, O, P, Q, R, S)$$

and functional dependencies

$$F_2 = \{KLS \to M, MN \to PQ, NP \to QR, PQ \to R, RS \to O, S \to L\}.$$

(a) Minimal Basis

1. Split FDs to Single-Attribute RHS

Originally, we have FDs:

$$\{KLS \to M, MN \to PQ, NP \to QR, PQ \to R, RS \to O, S \to L\}.$$

Split any multiple-attribute RHS:

$$\begin{split} KLS &\to M, \\ MN &\to P, \quad MN \to Q, \\ NP &\to Q, \quad NP \to R, \\ PQ &\to R, \quad RS \to O, \quad S \to L. \end{split}$$

Call this set S_1 .

2. Minimize Each LHS

- **KLS** \to **M**: We drop L and check if $KS \to M$ still holds. Indeed, from $S \to L$ we recover L, so KS implies KLS, which implies M. Hence we rewrite as $KS \to M$. We then check if we can drop K or S from KS; we cannot. Final: $KS \to M$.
- $MN \to P, MN \to Q$: We cannot drop M or N, so these remain $MN \to P$ and $MN \to Q$.
- $\mathbf{NP} \to \mathbf{Q}, \mathbf{NP} \to \mathbf{R}$: We cannot drop N or P. They remain $NP \to Q$ and $NP \to R$.
- $\mathbf{PQ} \to \mathbf{R}, \mathbf{RS} \to \mathbf{O}, \mathbf{S} \to \mathbf{L}$: Each has either a two-attribute or single-attribute LHS where neither attribute is extraneous. They remain as is.

Thus we get

$$S_2 = \{ KS \to M, MN \to P, MN \to Q, NP \to Q, NP \to R, PQ \to R, RS \to Q, S \to L \}.$$

3. Check for Redundant FDs

- $MN \to Q$ is redundant. Removing $MN \to Q$ still allows us to derive Q from $(MN)^+$ because $MN \to P$ gives P, then $NP \to Q$ yields Q. So we drop $MN \to Q$.
- $\mathbf{NP} \to \mathbf{R}$ is redundant. Removing $NP \to R$, we note from NP we get Q (using $NP \to Q$), then from P, Q we get R via $PQ \to R$. Hence $NP \to R$ can be derived, so it is dropped.
- No other FD is removable by the same test.

The resulting set is

$$S = \{ KS \rightarrow M, MN \rightarrow P, NP \rightarrow Q, PQ \rightarrow R, RS \rightarrow Q, S \rightarrow L \}.$$

(b) Candidate Keys

1. Recall the Minimal Basis

We have FDs:

$$\{KS \to M, MN \to P, NP \to Q, PQ \to R, RS \to O, S \to L\},\$$

2. Check Small Subsets First

Single-attribute subsets, such as $\{S\}, \{M\}, \ldots$, fail to determine all attributes (no one-attribute LHS in our FDs gives everything). Similarly, no two-attribute subset is sufficient. For example: $\{K, S\}^+$ only yields $\{K, S, L, M\}$ but not $\{N, P, Q, R, O\}$. So no pair is a key.

3. Check a Three-Attribute Subset: $\{K, N, S\}$

Compute its closure $\{K, N, S\}^+$:

- From $S \to L$, we add L.
- From $KS \to M$, we add M.
- From $MN \to P$, we add P.
- From $NP \to Q$, we add Q.
- From $PQ \to R$, we add R.
- From $RS \to O$, we add O.

Thus

$$\{K, N, S\}^+ = \{K, L, M, N, O, P, Q, R, S\},\$$

which is all nine attributes, so $\{K, N, S\}$ is a superkey.

4. Check Minimality

Remove any attribute from $\{K, N, S\}$:

- $\{N, S\}$ does not get K nor M.
- $\{K, S\}$ does not get N, nor $\{P, Q, R\}$.
- $\{K, N\}$ does not get S (thus misses L, O)

Hence none of these smaller subsets is a key. $\{K, N, S\}$ is therefore minimal.

5. Conclusion Therefore, the only candidate key is

$$\{K, N, S\}.$$

(c) 3NF Synthesis

1. Start with the Minimal Basis

From part (a), the minimal basis is:

$$M = \{ KS \to M, MN \to P, NP \to Q, PQ \to R, RS \to O, S \to L \}.$$

2. Create One Relation Per FD

For each FD $X \to A$ in M, form a relation containing $X \cup \{A\}$:

$$R_1(K,S,M)$$
 from $KS \to M$,
 $R_2(M,N,P)$ from $MN \to P$,
 $R_3(N,P,Q)$ from $NP \to Q$,
 $R_4(P,Q,R)$ from $PQ \to R$,
 $R_5(R,S,O)$ from $RS \to O$,
 $R_6(S,L)$ from $S \to L$.

Each of these subrelations enforces its corresponding FD trivially.

3. Check for a Key Relation

We know from part (b) that a candidate key for the full set of attributes $\{K, L, M, N, O, P, Q, R, S\}$ is $\{K, N, S\}$. None of the relations R_1 – R_6 contains all three attributes K, N, S together. Hence, by the 3NF synthesis procedure, we must include a relation holding a key for the full relation to ensure losslessness. We add:

$$R_7(K, N, S)$$
.

4. Remove Contained Relations if Any

If some R_a was strictly contained in another R_b , we would remove R_a . In this case, no such containment arises (none of the 7 relations is a strict subset of another). Thus we keep them all.

5. Final 3NF Decomposition

The resulting 3NF schema is:

$$R_1(K, S, M), \quad R_2(M, N, P), \quad R_3(N, P, Q), \quad R_4(P, Q, R),$$

 $R_5(R, S, O), \quad R_6(S, L), \quad R_7(K, N, S).$

(d) Chase Test

1. Initial Chase Table Setup

We have seven subrelations from the 3NF decomposition:

$$R_1(K, S, M), \quad R_2(M, N, P), \quad R_3(N, P, Q), \quad R_4(P, Q, R),$$

 $R_5(R, S, O), \quad R_6(S, L), \quad R_7(K, N, S).$

	K	L	M	N	O	P	Q	R	S
$R_1(K, S, M)$	K	α_1	M	β_1	γ_1	δ_1	ϵ_1	ζ_1	S
$R_2(M,N,P)$	α_2	β_2	M	N	γ_2	P	δ_2	ϵ_2	ζ_2
$R_3(N, P, Q)$	α_3	β_3	γ_3	N	δ_3	P	Q	ϵ_3	ζ_3
$R_4(P,Q,R)$	α_4	β_4	γ_4	δ_4	ϵ_4	P	Q	R	ζ_4
$R_5(R,S,O)$	α_5	β_5	γ_5	δ_5	O	ϵ_5	ζ_5	R	S
$R_6(S, L)$ $R_7(K, N, S)$	α_6	L	β_6	γ_6	δ_6	ϵ_6	ζ_6	η_6	S
$R_7(K, N, S)$	K	α_7	β_7	N	γ_7	δ_7	ϵ_7	ζ_7	S

All placeholders $(\alpha_1, \beta_6, \text{ etc.})$ are distinct for every cell that is not in that subrelation.

2. Applying the FDs to Unify Columns

The FDs are:

$$\{KS \to M, MN \to P, NP \to Q, PQ \to R, RS \to O, S \to L\}.$$

We look for pairs of rows that *match* on the left-hand side columns; then we unify their right-hand side columns.

- (a) $\mathbf{KS} \to \mathbf{M}$. Rows R_1 and R_7 both have K, S unsubscripted in those columns, so we unify their M-columns. In R_1 , the M-column is unsubscripted M. In R_7 , that column was β_7 . So we unify β_7 with M; now row R_7 has M unsubscripted.
- (b) $\mathbf{MN} \to \mathbf{P}$. Rows R_2 and R_7 match on (M,N). Row R_2 has M,N unsubscripted, row R_7 also has M,N unsubscripted after step (1). So unify their P-columns: in R_2 , the P-column is unsubscripted P. In R_7 , that column was δ_7 . We unify δ_7 with P; row R_7 now has P unsubscripted.

- (c) $\mathbf{NP} \to \mathbf{Q}$. Rows R_3 and R_7 match on (N,P). Row R_3 has N,P, row R_7 has N,P. We unify their Q-columns: in R_3 , the Q-column is unsubscripted Q. In R_7 , that column was ϵ_7 . Now ϵ_7 unifies with Q, so row R_7 has Q unsubscripted.
- (d) $\mathbf{PQ} \to \mathbf{R}$. Rows R_4 and R_7 match on (P,Q). We unify their R-columns: in R_4 , it is unsubscripted R. In R_7 , that column was ζ_7 . After unification, row R_7 has R unsubscripted.
- (e) $\mathbf{RS} \to \mathbf{O}$. Rows R_5 and R_7 match on (R,S). So unify their O-columns: row R_5 has O unsubscripted; row R_7 had γ_7 . Unify γ_7 with O; row R_7 has O unsubscripted.
- (f) $\mathbf{S} \to \mathbf{L}$. Rows R_6 and R_7 match on S. We unify their L-columns: row R_6 has L unsubscripted, row R_7 had α_7 . Unify α_7 with L; row R_7 has L unsubscripted.

3. Final State of the Chase Table

	K	L	M	N	O	P	Q	R	S
R_1	K	α_1	M	β_1	γ_1	δ_1	ϵ_1	ζ_1	S
R_2	α_2	β_2	M	N	γ_2	P	δ_2	ϵ_2	ζ_2
R_3	α_3	β_3	γ_3	N	δ_3	P	Q	ϵ_3	ζ_3
R_4	α_4	β_4	γ_4	δ_4	ϵ_4	P	Q	R	ζ_4
R_5	α_5	β_5	γ_5	δ_5	O	ϵ_5	ζ_5	R	S
R_6	α_6	L	β_6	γ_6	δ_6	ϵ_6	ζ_6	η_6	S
R_7	K	L	M M γ_3 γ_4 γ_5 β_6 M	N	O	P	Q	R	S

In Row 7, every column is now the plain attribute without subscripts or placeholder letters. This indicates we have found a row that unifies entirely to actual attributes, implying the decomposition is lossless.

(e) Redundancy in 3NF?

1. Check Each Subrelation for BCNF

Our final subrelations from the 3NF decomposition and their FDs:

$$R_1(K,S,M)$$
 with FD $KS \to M$, $R_2(M,N,P)$ with FD $MN \to P$, $R_3(N,P,Q)$ with FD $NP \to Q$, $R_4(P,Q,R)$ with FD $PQ \to R$, $R_5(R,S,O)$ with FD $RS \to O$, $R_6(S,L)$ with FD $S \to L$, $R_7(K,N,S)$ (no FD).

In each subrelation, the FD's left side is the whole set of attributes. Hence that left side is a *superkey* in each subrelation. BCNF requires that every FD have a key for its LHS, so each R_i is in BCNF. Specifically:

- $R_1(K, S, M)$ with $KS \to M$. Since $\{K, S\}$ is all attributes of R_1 , it's a key. No violation.
- $R_2(M, N, P)$ with $MN \to P$. LHS MN spans all of R_2 , making MN a key. No violation.
- $R_3(N, P, Q)$ with $NP \to Q$. LHS NP is all attributes of R_3 . No violation.
- $R_4(P,Q,R)$ with $PQ \to R$. LHS PQ is the entire R_4 . No violation.
- $R_5(R, S, O)$ with $RS \to O$. LHS RS is all of R_5 . No violation.
- $R_6(S, L)$ with $S \to L$. Here $\{S\}$ is the entire R_6 . No violation.
- $R_7(K, N, S)$ has no FD, so there's nothing to check; it's trivially BCNF.

2. Conclusion: The Final Decomposition is in BCNF

Because each subrelation satisfies BCNF conditions (and thus 3NF as well), there is no partial dependency or forced redundancy in these final relations.