Auto-PCOS Classification Challenge

Automatic Classification of Poly-cystic Ovary Syndrome in Ultrasound Imaging

Team: Al Avengers

Member Name	Email	LinkedIn
Mukul Kirti Verma	mukulkirtiverma@gmail.com	https://www.linkedin.com/in/mukul-kirti-verma/
Muskan Singhal	muskansinghal.cse@gmail.com	https://www.linkedin.com/in/musk-singhal/
Anup Kumar	kanup3535@gmail.com	https://www.linkedin.com/in/anup-kumar-b72736154/
Shivani Gautam	shivani.cs101@gmail.com	https://www.linkedin.com/in/shivani-gautam-b2789b162/

Organised by:

MISAHUB (Medical Imaging and Signal Analysis Hub) Indira Gandhi Delhi Technical University, Delhi

April 26, 2024

Overview

- Methods
 - Proposed Model
 - Augmentation Method
 - Novelty of the work
 - Additional Details
- Results and Discussion
- Challenges and Future Scope
 - Merits and Demerits of the proposed method
 - Future work
 - Acknowledgment and Suggestions

 Utilized a Modified ResNet architecture with Squeeze-and-Excitation (SE) blocks added to each stage of a standard ResNet model to recalibrate channel-wise features, enhancing the representational capacity of the network.

Figure 1: Proposed Method for PCOS Classification

Methods Augmentation Method

 Image data augmentation includes random horizontal flips, rotations, resizing, and random application of color jitter to improve model robustness and prevent overfitting.

Methods Novelty of the work

- Dynamic detection and highlighting of the Cyst's (ROI) size.
- Integration of SE blocks into a ResNet architecture for enhanced feature recalibration.
- Enrichment of features by combining DNN fully connected layer features and Spatio-Temporal features like, GLCM, SIFT, CLIP, ORB, LBP and transformer's final layer output.
- Ensemble approach combining deep learning(Modified Resnet50)
 with multiple machine learning(LGBM, ExtraTreesClassifier,
 AdaBoost LabelPropagation, LabelSpreading, etc) models to
 leverage the strengths of both methodologies in prediction.

Methods Additional Details

- Additional techniques include CAM (Class Activation Mapping) for visual explanations, occlusion sensitivity for identifying important image regions, and SHAP values for interpretability.
- Learning Curves:

Figure 2: Accuracy Convergence History

Results and Discussion Model's Performance Overview

 The model's performance was evaluated on a validation dataset consisting of 919 samples, which were classified into two categories: Class 0 (Unhealthy) and Class 1 (Healthy).

	Precision	Recall	F1-Score	Support
Class 0 (Unhealthy)	0.88	0.97	0.93	460
Class 1 (Healthy)	0.97	0.87	0.92	459
Accuracy			0.92	919
Macro Avg	0.93	0.92	0.92	919
Weighted Avg	0.93	0.92	0.92	919

Figure 3: Performance Evaluation

Challenges and Future Scope Merits and Demerits of the proposed method

Merits:

- Improved interpretability with visual explanation methods.
- Robust performance through ensemble DNN and ML models.
- Feature enhancement by stacking DNN fully-connected and several spatio-temporal features.

Demerits:

 High computational requirements due to multiple image feature extraction and ensemble DNN and multiple ML models.

Challenges and Future Scope

- Explorating other deep learning architectures such as EfficientNet or VIT(Vision Image Transformers) etc.
- Experimenting with frequency-based feature transformers like FFT transformations.
- Investigating other ensemble techniques (like blending, probability-based, weighted-average) that might further enhance prediction accuracy and robustness.
- Adaptation of the model to multi-class classification, capturing severity of the disease.

Acknowledgments

- Handa, P., Saini, A., Dutta, S., Pathak, H., Choudhary, N., Goel, N., Dhanao, J. K. (2023). PCOSGen-train dataset [Data set]. Zenodo. https://doi.org/10.5281/zenodo.10430727
- He, K., Zhang, X., Ren, S., Sun, J. (2016). Deep Residual Learning for Image Recognition. CVPR.
- Radford, A., et al. (2021). Learning Transferable Visual Models From Natural Language Supervision. arXiv.
- Ojala, T., Pietikäinen, M., Harwood, D. (1996). A Comparative Study of Texture Measures with Classification Based on Feature Distributions. Pattern Recognition.
- Lowe, D. G. (1999). Object recognition from local scale-invariant features. ICCV.
- Rublee, E., Rabaud, V., Konolige, K., Bradski, G. (2011). ORB: An efficient alternative to SIFT or SURF. ICCV.
- Haralick, R.M., Shapiro, L.G. (1993). Computer and Robot Vision. Addison-Wesley.
- Foundations and Algorithms: Zhou, Z.-H. (2012). CRC Press.
- Zhou, D., Bousquet, O., Lal, T. N., Weston, J., Schölkopf, B. (2004). NIPS.

Python Implementation

```
https:
//github.com/musk-singhal/auto-pcos-classification
```

Thank you for your time.

Please feel free to reach out to us:

Member Name	Email	LinkedIn		
Mukul Kirti Verma	mukulkirtiverma@gmail.com	https://www.linkedin.com/in/mukul-kirti-verma/		
Muskan Singhal	muskansinghal.cse@gmail.com	https://www.linkedin.com/in/musk-singhal/		
Anup Kumar	kanup3535@gmail.com	https://www.linkedin.com/in/anup-kumar-b72736154/		
Shivani Gautam	shivani.cs101@gmail.com	https://www.linkedin.com/in/shivani-gautam-b2789b162/		