第二季第 10 课:单子 "单子不就是自函子范畴上的幺半群而已么,有什么问题吗?"经过前面对函子范畴、幺半群的讨论,现在可以引入单子。就像范畴关注自态射,在函子范畴的研究中也更加关注范畴到自身的自函子,以及如此构成的自函子范畴。自态射的复合结构产生了幺半群,在自函子范畴中,函子的复合问题则产生了单子。

用自函子的复合,以及自函子和恒等函子之间的自然变换,阐述了单子的定义。用交换图的方式表述,可以联想到张量代数。我们讲解了张量代数中的结合律和幺元律是如何用交换图表示的,它们作为自然同构,和 单子中的概念是符合的。

接下来引入例子。熟知的部分函数问题,以及编程中的异常处理,数学上是幂集相关的单子问题。把无定义也就是异常部分视为单点集,原先集合上的函数就转化为了带点集合上的问题,构成了集合自函子范畴上的 Maybe 单子。

另一个例子是从字母表的集合生成有限字符串,这是 Kleene 星运算实现的自由幺半群,它也构成单子。这个单子的意义体现在字符串和字符串之间可以串接。

单子的研究和伴随函子也有密切的关系。伴随函子和单子可以互相确定。我们简要阐述了一对伴随函子的复合所产生的自函子。这个自函子可以产生单子。

单子 范畴 \mathcal{C} 映射到自身的函子称为**自函子** (endofunctor),这样的函子构成了自函子范畴,记为:

$$\mathbf{End}^{\mathcal{C}} = \mathbf{Fct}(\mathcal{C}, \mathcal{C}), \quad \mathbf{End}_{\mathcal{C}} = \mathbf{Fct}(\mathcal{C}^{\mathrm{op}}, \mathcal{C})$$

类似于对象 $X \in \mathcal{C}$ 的自态射集 $\operatorname{End}(X)$ 在自态射的复合下具有幺半群的结构,自函子范畴上的函子态射集 $\operatorname{Nat}(F,F)$ 也可以讨论复合问题. 在共变自函子范畴 $\operatorname{End}^{\mathcal{C}}$ 上的自然变换 $\Phi \in \operatorname{Nat}(F,F)$ 如下:

恒等函子 $1_c \in \text{End}^c$ 是特殊的自函子,当 $F = 1_c$ 或 $G = 1_c$ 退化为恒等函子时,自然变换退化为函子:

例 0.0.1: 幂集

在自函子范畴中,对共变幂集函子 $T=2^{(-)}\in\mathbf{End}^{\mathbf{Set}}$ 的讨论,转化为自然变换 $\eta\in\mathrm{Nat}(1_{\mathbf{Set}},T)$. 令 η_X 把集合的元素映射为单点集, $Tf=f_*$ 则是映射的像给出的推出:

$$\begin{split} \eta_X: X \to 2^X & Tf: 2^X \to 2^Y \\ x \mapsto \eta_X(x) = \{x\} & \{x_1, x_2, \cdots\} \mapsto f(\{x_1, x_2, \cdots\}) \end{split}$$

满足交换图:

举例,集合 $X=\{x_1,x_2\}$ 的幂集有二进制描述 $\{00,01,10,11\}$,共有 $2^{|X|}=2^2=4$ 个元素。幂集函子 的二次复合 $T^2=T\circ T$ 也是自函子,对幂集再做幂集, $T^2X=2^{2^X}$ 有 $2^{2^2}=16$ 个元素。从二次幂集 退回幂集的方式为如下态射,即通过并集合并:

$$\begin{split} \mu_X: T^2X \to TX \\ B = \{A_1, A_2, \cdots\} \mapsto \mu_X B = \cup A_i \end{split}$$

集合上的有限序列在串接二元运算和空串下构成自由幺半群:

例 0.0.2: Kleene 星

Kleene 星的构造视为共变自函子 $T \in \mathbf{End}^{\mathbf{Set}}$,把字母表集合转化为字符串集合.类似上例的讨论, η 把单个字母映射为单字符字符串, μ 为字符串的串接.

以上的讨论体现了自函子范畴 $\mathbf{End}^{\mathbf{Set}}$ 中,自然变换 $\eta \in \mathrm{Nat}(1_{\mathbf{Set}},T)$ 和 $\mu \in \mathrm{Nat}(T^2,T)$ 的意义. 回顾幺 半群的定义,用交换图来描述: 对于集合范畴的对象 $X \in \mathbf{Set}$,态射 $\mu : X \times X \to X$ 和 $\eta : 1 \to X$ 使得下图交换:

$$\begin{array}{cccc} X \times X \times X & \xrightarrow{1_X \times \mu} & X \times X \\ & & \downarrow \mu \\ & & \downarrow X \times X & \xrightarrow{\mu} & X \end{array}$$

之后不限于集合范畴,引入了一般性的结合子、单位子的概念,并将其用于幺半范畴的概念.把上述态射置于函子和自然变换的框架下研究,这种构造方式产生了单子的概念:

定义 0.0.1: 单子

范畴 \mathcal{C} 上的**单子** (monad) (T, η, μ) 包含:

- 一个自函子 $T \in \mathbf{End}^{\mathcal{C}}$
- 一个自然变换 $\eta: 1_c \to T$, 称为**单位 (unit)**
- 一个自然变换 $\mu: T^2 \to T$, 称为**乘法 (multiplication)**

使得下图交换

左图描述的是结合律,右图描述的是幺元. 这幅图非常接近幺半范畴的构造,为了强调自然变换使用了双线箭头. 实际上单子就是自函子范畴上的幺半群.

前面例子中,集合范畴上的共变幂集函子在前述方式下构成单子. Kleene 星的构造类似.

伴随范畴 在下图伴随函子对 $F:\mathcal{C}\rightleftarrows\mathcal{D}:G$ 中固定对象 $X\in\mathcal{C},\ 记\ T=\mathcal{C}(X,G-)$ 及 $h^{FX}=\mathcal{D}(FX,-)$:

函子同构 $\rho: h^{FX} \xrightarrow{\simeq} T$ 使得 T 是 FX 表示的可表函子. T 作用在 FX 上有 $TFX \simeq \mathcal{D}(FX, FX) = \operatorname{End}(FX)$,根据 Yoneda 引理有集合同构 $\operatorname{Nat}(h^{FX}, T) \simeq TFX$:

单位态射 1_{FX} 在自然变换下的像是 $X\to GFX$ 的态射,这样构造了自函子范畴 $\mathbf{End}^{\mathscr{C}}$ 中的自然变换 $\eta\in\mathrm{Nat}(1_{\mathscr{C}},GF)$ 使得下图交换:

用对偶的方式可以说明,在自函子范畴 $\mathbf{End}^{\mathcal{D}}$ 中存在自然变换 $\varepsilon \in \mathrm{Nat}(FG, 1_{\mathcal{D}})$:

定义 0.0.2: 单位与余单位

在伴随函子对 $F:\mathcal{C}\rightleftarrows\mathcal{D}:G$ 中,如上构造的自然变换 $\eta:1_{\mathcal{C}}\Rightarrow GF$ 称为**单位 (unit)**,自然变换 $\varepsilon:FG\Rightarrow1_{\mathcal{D}}$ 称为**余单位 (counit)**.

即对于 $\forall X \in \mathcal{C}, \ \forall Y \in \mathcal{D}, \$ 下图交换:

单位与余单位的作用相当于:

令 $T=GF\in\mathbf{End}^{\mathcal{C}}$,依据上图构造自然变换 $\mu:(T^2=GFGF)\Rightarrow (T=GF)$:

使得下图交换

于是 $(T=GF,\eta,\mu)$ 构成 $\mathbf{End}^{\mathcal{C}}$ 上的单子. 这样实现了在伴随对上构造单位、余单位和单子的标准过程.