NOIP模拟赛 (请选手务必仔细阅读本页内容)

一、题目概况

中文题目名称	涂色	树	灯泡	手刃
子目录名	coloring	tree	bulb	beehive
可执行文件	coloring	tree	bulb	beehive
输入文件名	coloring.in	tree.in	bulb.in	beehive.in
输出文件名	coloring.out	tree.out	bulb.out	beehive.out
每个测试点的时限	1000ms	1000ms	2000ms	1000ms
内存上线	256MiB	512MiB	512MiB	256MiB
附加样例文件	有	有	有	有
结果比较方式	全文比较	全文比较	全文比较	全文比较
题目类型	传统	传统	传统	传统

二、提交源程序程序	洛	FI	/3			
对于 C++ 语言	coloring.cpp	tree.cpp	bulb.cpp	beehive.cpp	ants.cpp	

三、优化开关

对于C++语言	-O2 -std=c++17
---------	----------------

注意事项:

- 1.文件名(程序名和输入输出文件名)必须使用英文小写;
- 2.C/C++中函数main()的返回类型必须是int,程序正常结束时返回值必须是0;
- 3.保证各个题目的时间限制至少为标程运行时间的两倍;
- 4.题目难度不一定升序排序;

A.涂色

【题目描述】

小 A 想给一个栅栏上色。栅栏由 n 个一米长的小段组成,他可以使用 26 种不同的颜料,并且这些颜料的颜色从浅到深由字母 A 到 z 编号。小 A 希望自己的栅栏上只有这 26 种颜色,并且他会用一个长为 n 的字符串 S 来表示自己希望给每个小段涂上的颜色。

初始时,整个栅栏都没有被上色。每次小 A 可以一笔给任意长的**连续**子段涂上同一种颜色,但是她不能在较深的颜色上涂上较浅的颜色(但是她可以用较深的颜色覆盖较浅的颜色)。

由于时间紧迫,小 A 决定放弃给栅栏的某个连续区间上色。现在,她正在考虑 q 个候选的区间,每个区间由 a,b 表示,表示不需要上色的区间的左右两个端点。

小 A 想知道,对于每个候选的区间,将所有区间外的栅栏小段都涂上小 A 希望的颜色,并且区间内的位置都不上色,至少需要涂多少笔?

【输入格式】

第一行两个整数 n,q 。

下一行包含一行一个长为n的字符串,表示每个栅栏小段所希望的颜色。

接下来 q 行,每行两个整数 a,b 。

【输出格式】

输出 q 行,每行一个整数表示答案。

【样例】

样例 1 输入

```
1 | 8 2
2 | ABBAABCB
3 | 3 6
4 | 1 4
```

样例 1 输出

```
1 | 4
2 | 3
```

解释

在这个样例中,除去目标颜色 BAAB 所对应的区间,涂上颜色需要四笔,而除去 ABBA 仅需三笔。

数据范围与提示:

对于前 40% 的测试点保证 $n,q \leq 100$ 。

对于前 70% 的测试点保证 $n,q \leq 5000$ 。

对于所有测试点,保证 $1 \le n, q \le 10^5, 1 \le a \le b \le n$,且 S 中只包含 A 到 Z 的字母。

B.树

【题目描述】

有一个点,接下来会进行 q 次操作,每次操作都是如下两种操作之一:

1. 新建一个权值为 w 的点,其父亲为 fa。

2. 查询
$$\sum\limits_{u=1}^{n}\sum\limits_{v=1}^{u}w_{lca(u,v)}$$
 , $\ lca(u,v)$ 表示 u 和 v 的最近公共祖先。

所有的点(包括初始的点)从1开始顺次编号,根为1号点。

【输入格式】

第一行两个整数, q 和 1 号点的权值。

接下来q行包含1个或3个整数,具体如下:

1. 1 w fa 表示新建的点的权值和父亲。

2. ② 表示查询
$$\sum_{u=1}^{n} \sum_{v=1}^{u} w_{lca(u,v)}$$
.

【输出格式】

对于每个2操作,输出一行一个整数,表示答案。

【样例】

样例 1 输入

8 2 1 5 1 1 4 2 1 7 2 2 1 2 1 2 1 6 4	

样例 1 输出

解释

无

数据范围与提示:

子任务编号	q	子任务分值
1	$1 \leq q \leq 200$	10
2	$1 \leq q \leq 2000$	20
3	$1 \leq q \leq 10^5$	70

对于所有数据 $-10^8 \le w_i \le 10^8$ 。

C.灯泡

小熊得到了许多灯泡。

这些灯泡共有 n 个,小熊把它们排成了一行,并依次编号为 $1, 2, \dots, n$ 。

这些灯泡有许多不同的颜色,小熊把颜色依次编号为 $1, 2, \dots, k$,则第 i 个灯泡 的颜色为 c_i 。

初始时,所有灯泡都是灭的。小熊每次操作会把某一种颜色的灯泡全部翻转状态,即从亮变灭或从灭变 亮。

每次操作完后,小熊想要知道有多少**极长的亮灯区间**。形式化地,我们称一个 区间 [l,r] 是极长的亮灯区间,当且仅当编号为 $l,l+1,l+2,\cdots,r$ 的灯都是亮着的, 而编号为 l-1 以及 r+1 的灯要么不存在,要么是灭着的。 但是小熊并不会,请你帮帮他。

【输入格式】

第一行三个正整数 n,q,k 表示灯泡个数,操作次数,以及颜色的范围。

第二行 n 个空格隔开的正整数 c_1, c_2, \dots, c_n ,表示每个灯泡的颜色。

接下来q行,每行一个整数x,表示翻转的颜色编号。

【输出格式】

输出 q 行,每行一个整数表示这次操作之后的答案。

【样例】

样例 1 输入

```
      1 | 3 5 2

      2 | 1 2 1

      3 | 1

      4 | 2

      5 | 1

      6 | 2

      7 | 2
```

样例 1 输出

```
    1
    2

    2
    1

    3
    1

    4
    0

    5
    1
```

数据范围与提示:

对于所有测试数据, $1 \le n, q \le 2 \times 10^5$, $1 \le k \le n$, $1 \le c_i, x \le k$.

- •对于前 20% 的数据: $n, q \leq 500$;
- •对于前 35% 的数据: $n, q \leq 5000$;
- ・对于前 50% 的数据: $k \leq 500$;
- •对于前 80% 的数据: $n, q \leq 5 \times 10^4$;
- ·对于前 100% 的数据:无特殊限制。

D.手刃

【题目描述】

在艾尔有一处巨大的晶体矿脉,可以视作一个有n个点和m条边的无向连通图。众所周知,晶体矿需要被切开才能采集,你想要将这片晶体矿分割为尽量多的部分。而星灵采用的切割方式比较特殊:每次选择原图中的一个连通块切割,只有每一次切割的连通块都包含某一部分,这一部分才会被最终保留。

形式化地来说,你每次可以选定一个连通子图(包含若干条边和与之相邻的所有点),你希望知道这些子图的交集有尽可能多的连通块。

【输入格式】

第一行两个整数 n, m , 表示点数和边数。

接下来 m 行,每行两个整数 u, v ,表示一条无向边。

【输出格式】

一行一个整数,表示最多有多少个连通块。

【样例】

样例 1 输入

```
1 | 3 2
2 | 1 2
3 | 2 3
```

样例 1 输出

1 1

样例 2 输入

```
      1
      6
      6

      2
      1
      2

      3
      2
      3

      4
      3
      4

      5
      4
      1

      6
      4
      5

      7
      4
      6
```

样例 2 输出

1 4

数据范围与提示:

给出的图连通,且保证没有重边和自环。对于所有数据, $2 \leq n \leq 10^5, n-1 \leq m \leq 2 \times 10^5, 1 \leq u,v \leq n$ 。

子任务编号	分值	特殊限制
1	1	m = n - 1
2	7	m=n
3	17	$m \le 10$
4	17	$m \le n + 10$
5	27	$m \le 100$
6	31	无

