MS BGD MDI 720 : Statistiques

François Portier et Joseph Salmon

http://josephsalmon.eu Télécom Paristech, Institut Mines-Télécom

Sommaire

Tests d'hypothèses

Définition

Test pour le modèle linéaire

Illustration: forward variable selection

base de données "diabetes"

Courbe ROC

Présentation

Exemples

Sommaire

Tests d'hypothèses Définition

Test pour le modèle linéaire

Illustration: forward variable selection

base de données "diabetes"

Courbe ROC

Présentation

Exemples

Tests d'hypothèses pour le "Pile ou face"

- On veut tester une hypothèse sur le paramètre θ .
- On l'appelle hypothèse nulle \mathcal{H}_0 Exemple : 'la pièce est non biaisée' : $\mathcal{H}_0 = \{p = 0.5\}$. Exemple : 'la pièce est peu biaisée', $\mathcal{H}_0 = \{0.45 \le p \le 0.55\}$
- L'hypothèse alternative \mathcal{H}_1 est (souvent) le contraire de \mathcal{H}_0 . Exemple: $\mathcal{H}_1 = \{p \neq 0.5\}$

Exemple: $\mathcal{H}_1 = \{ p \notin [0.45, 0.55] \}$

 « Faire un test » : déterminer si les données permettent de rejeter l'hypothèse \mathcal{H}_0 . On cherche une région R pour laquelle si $(y_1,\ldots,y_n)\in R$ on rejette l'hypothèse \mathcal{H}_0 . R est la région de **rejet**.

Rejet ou acceptation?

Présomption d'innocence en faveur de \mathcal{H}_0

Même si \mathcal{H}_0 n'est pas rejetée par le test, on ne peut en général pas conclure que \mathcal{H}_0 est vraie!

Rejeter \mathcal{H}_1 est souvent impossible car \mathcal{H}_1 est trop générale. e.g., $\{p \in [0, 0.5[\cup]0.5, 1]\}$ ne peut pas être rejetée!

- \mathcal{H}_0 s'écrit sous la forme $\{\theta \in \Theta_0\}$, avec $\Theta_0 \subset \Theta$
- \mathcal{H}_1 s'écrit sous la forme $\{\theta \in \Theta_1\}$, avec $\Theta_1 \subset \Theta$

Rem: $\{\theta \in \Theta_0\}$ et $\{\theta \in \Theta_1\}$ sont disjoints.

Risques de première et de seconde espèce

	\mathcal{H}_0	\mathcal{H}_1				
Non rejet de \mathcal{H}_0	Juste	Faux (acceptation à tort)				
Rejet de \mathcal{H}_0	Faux (rejet à tort)	Juste				

- Risque de 1^{re} espèce : probabilité de rejeter à tord $\alpha = \sup_{\theta \in \Theta_0} \mathbb{P}_{\theta}((y_1, \dots, y_n) \in R)$
- Risque de 2^{nde} espèce : probabilité d'accepter à tord $\sup_{\theta \in \Theta_1} \mathbb{P}_{\theta} \left((y_1, \dots, y_n) \notin R \right)$

Niveau/Puissance

Niveau du test

 $1 - \alpha = \text{probabilit\'e d'} \cdot \text{accepter } \cdot \text{a raison (si } \mathcal{H}_0 \text{ est valide)}$

Puissance du test

 $1 - \beta = \text{probabilit\'e de rejeter } \mathcal{H}_0 \text{ à raison (si } \mathcal{H}_1 \text{ est valide)}$

En général, lorsqu'on parle de « test à 95% » on parle d'un test de niveau $1-\alpha\geqslant 95\%$.

Statistique de test et région de rejet

Objectif classique : construire un test de niveau $1-\alpha$

- On cherche une fonction des données $T_n(y_1, \ldots, y_n)$ dont on connaît la loi si \mathcal{H}_0 est vraie : T_n est appelée statistique de test.
- On définit une région de rejet ou région critique de niveau α , une région R telle que, sous \mathcal{H}_0 ,

$$\mathbb{P}(T_n(y_1,\ldots,y_n)\in R)\leqslant \alpha$$

Règle de rejet de \mathcal{H}_0 : on rejette si $T_n(y_1,\ldots,y_n)\in R$

Exemple gaussien : nullité de la moyenne

- Modèle : $\Theta = \mathbb{R}$, $\mathbb{P}_{\theta} = \mathcal{N}(\theta, 1)$.
- Hypothèse nulle : \mathcal{H}_0 : $\{\theta = 0\}$
- Sous \mathcal{H}_0 , $T_n(y_1,\ldots,y_n)=\frac{1}{\sqrt{n}}\sum_i y_i \sim \mathcal{N}(0,1)$
- Région critique pour T_n ? Quantiles gaussiens : sous H_0 , $\mathbb{P}(T_n \in [-1.96, 1.96]) = 0.95$

On prend
$$R = [-1.96, 1.96]^C =]-\infty, -1.96[\cup]1.96, +\infty[.$$

Exemple numérique : si $T_n=1.5$, on ne rejette **PAS** \mathcal{H}_0 au niveau 95%

Sommaire

Tests d'hypothèses

Définition

Test pour le modèle linéaire

Illustration : forward variable selection

Présentatio
Exemples

Tester la nullité des coefficients (I)

<u>Rappel</u>: prenons $X \in \mathbb{R}^{n \times p}$, alors $\hat{\sigma}^2 = \|\mathbf{y} - X\hat{\boldsymbol{\theta}}\|_2^2/(n - \operatorname{rg}(X))$ est un estimateur sans biais de la variance. Ainsi

Si
$$\varepsilon \sim \mathcal{N}(0, \sigma^2 \operatorname{Id}_n)$$
, alors
$$T_j = \frac{\hat{\theta}_j - \theta_j^*}{\hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-\operatorname{rg}(X)}$$

où $\mathcal{T}_{n-\operatorname{rg}(X)}$ est une loi dite de Student (de degré $n-\operatorname{rg}(X)$).

Sa densité, ses quantiles, etc... peuvent être calculés numériquement.

Tester la nullité des coefficients (I)

 $H_0: \theta_j^* = 0$ ce qui revient à prendre $\Theta_0 = \{ \boldsymbol{\theta} \in \mathbb{R}^p : \theta_j = 0 \}$. Sous H_0 on connaît donc la distribution de $\hat{\theta}_j$:

t-statiques:
$$T_j := \frac{\hat{\theta}_j}{\hat{\sigma}\sqrt{(X^\top X)_{j,j}^{-1}}} \sim \mathcal{T}_{n-\operatorname{rg}(X)}$$

Ainsi en choisissant comme région de rejet $[-t_{1-\alpha/2},t_{1-\alpha/2}]^c$ (en notant $t_{1-\alpha/2}$ un quantile d'ordre $1-\alpha/2$ de la loi $\mathcal{T}_{n-\operatorname{rg}(X)}$), on peut former le test (de Student) :

$$\mathbb{1}_{\{|T_j|>t_{1-\alpha/2}\}}$$

c'est-à-dire que l'on rejette H_0 au niveau lpha, si $|T_j| > t_{1-lpha/2}$

cf. Tsybakov (2006) pour plus de détails

Lien IC et Test

Rappel (modèle gaussien) :

$$IC_{\alpha} := \left[\hat{\theta}_j - t_{1-\alpha/2}\hat{\sigma}\sqrt{(X^{\top}X)_{j,j}^{-1}}, \hat{\theta}_j + t_{1-\alpha/2}\hat{\sigma}\sqrt{(X^{\top}X)_{j,j}^{-1}}\right]$$

est un IC de niveau α pour θ_i^* . Dire que " $0 \in IC_{\alpha}$ " signifie que

$$|\hat{\theta}_j| \leqslant t_{1-\alpha/2} \hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}} \quad \Leftrightarrow \quad \frac{|\hat{\theta}_j|}{\hat{\sigma} \sqrt{(X^\top X)_{j,j}^{-1}}} \leqslant t_{1-\alpha/2}$$

Cela est donc équivalent à accepter l'hypothèse $\theta_j^*=0$ au niveau α . Le α le plus petit telle que $0\in IC_{\alpha}$ est appelé la p-value.

Rem: On sait que si l'on prend α très proche de zéro un IC_{α} va recouvrir l'espace entier, on peut donc trouver (par continuité) un α qui assure l'égalité dans les équations ci-dessus.

Sommaire

Tests d'hypothèses

Définition

Test pour le modèle linéaire

Illustration : forward variable selection

base de données "diabetes"

Courbe ROC

Présentation

Exemples

Base de données "diabetes"

	age	sex	bmi	bp	Serum measurements				Resp		
patient	x1	x2	×3	x4	x5	×6	x7	x8	x9	×10	у
1	59	2	32.1	101	157	93	38	4	4.9	87	151
2	48	1	21.6	87	183	103	70	3	3.9	69	75
441	36	1	30.0	95	201	125	42	5	5.1	85	220
442	36	1	19.6	71	250	133	97	3	4.6	92	57

n=442 patients diabétiques, p=10 variables "baseline" body mass index, bmi), average blood pressure (bp), etc. ont été mesurées. Objectif : prédire la progression de la maladie un an après les mesures baseline" [EHJT04]

- Chacunes des variables de la base de sklearn a été standardisée préalablement
- On applique une version peu couteuse de la méthode "forward variable selection" (voir par exemple [Zha09])

Base de données "diabetes"

• On définit le vecteur des covariables avec intercept $\tilde{X} = (\mathbf{1}, \mathbf{x}_1, \dots, \mathbf{x}_{10}).$

Etape 0

ullet pour chacune des variables $ilde{X}_k$, $k=1,\ldots,11$, on considère le modèle

$$\mathbf{y} \simeq \beta_k \mathbf{x}_k$$

on test si son coefficient de régression est nulle, i.e.,

$$H_0: \beta_k = 0$$

via la statistique $\hat{\beta}_k/\hat{s}_k$ avec \hat{s}_k l'écart type estimé.

• on compare toutes les p-valeurs, on garde celle ayant la plus petite. On sauvegarde les résidus dans \mathbf{r}_0 .

Base de données "diabetes"

Etape ℓ

On a sélectionné ℓ variable(s) : $\tilde{X}^{(\ell)} \in \mathbb{R}^{\ell}$. Les autres sont noté $\tilde{X}^{(-\ell)} \in \mathbb{R}^{p-\ell}$. On dispose du vecteur des résidus $\mathbf{r}_{\ell-1}$ calculé à l'étape précédente.

- pour chacune des variables \mathbf{x}_k , dans $\tilde{X}^{(-\ell)}$, on considère le modèle

$$\epsilon_{\ell-1} \simeq \beta_k \mathbf{x}_k$$

• on test si son coefficient de régression est nulle, i.e.,

$$H_0: \beta_k = 0$$

via la statistique $\hat{\beta}_k/\hat{s}_k$ avec \hat{s}_k l'écart type estimé.

• on compare toutes les p-valeurs, on garde celle ayant la plus petite. On sauvegarde les résidus dans \mathbf{r}_{ℓ} .

Valeurs de la statistique de test à chaque étape

- ▶ la statistique d'une variable sélectionnée est mise à 0 aux étapes suivantes
- L'intercept est la première variable sélectionnée, ensuite $x_3...$

Valeurs de la statistique de test à chaque étape

variables sélectionnées lors d'un test de niveau .1 :

Sommaire

Tests d'hypothèses

Définition

Test pour le modèle linéaire

Illustration: forward variable selection

base de données "diabetes"

Courbe ROC

Présentation

Exemples

Contexte médical

- Un groupe de patients $i=1,\ldots,n$ est suivi pour un dépistage.
- Pour chaque individu, le test se base sur une variable aléatoire $X_i \in \mathbb{R}$ et un seuil $g \in \mathbb{R}$

$$\begin{cases} \text{Si } X_i > q & \text{le test est positif} \\ \text{Sinon} & \text{le test est négatif} \end{cases}$$

Ensemble des configurations possibles								
Normal H_0	Atteint H_1							
	ux négatif (FN)							
positif faux positif (FP)	vrai positif							

Sensibilité - Spécificité

- $\,\blacktriangleright\,$ On suppose que les individus normaux ont la même fonction de répartition F

Définition

- Sensibilité : $\mathrm{Se}(q) = 1 - G(q)$ (1- risque de 2^{nde} espèce)

• Spécificité : Sp(q) = F(q) (1- risque de 1^{re} espèce)

Courbe ROC

Définition

La courbe ROC est la courbe décrite par $(1 - \operatorname{Sp}(q), \operatorname{Se}(q))$, quand $q \in \mathbb{R}$. C'est donc la fonction $[0,1] \to [0,1]$

$$ROC(t) = 1 - G(F^{-}(1-t))$$

où
$$F^{-}(1-t) = \inf\{x \in \mathbb{R} : F(x) \ge 1-t\}.$$

Sommaire

Tests d'hypothèses

Définition

Test pour le modèle linéaire

Illustration: forward variable selection

base de données ''diabetes''

Courbe ROC

Présentation

Exemples

La courbe ROC dans le cas bi-normal

- ▶ F et G sont des gaussiennes de paramètres μ_0, σ_0 et μ_1, σ_1 , respectivement.
- On spécifie $\mu_0=0$, $\sigma_0=\sigma_1=1$, on fait varier μ_1

Estimation—application

Estimation de la courbe ROC

- Maximum de vraisemblance
- Non-paramétrique
- Bayésien avec variable d'état latente
- ► Estimation de l'aire sous la courbe ROC

Application

- Pour comparer différents tests statistiques
- ► Pour comparer différents algorithmes d'apprentissage supervisé
- ► Pour comparer des méthodes de sélection de support du Lasso

(******: ROC=Receiver Operating Characteristic)

Références I

B. Efron, T. Hastie, I. M. Johnstone, and R. Tibshirani.
 Least angle regression.

Ann. Statist., 32(2):407–499, 2004. With discussion, and a rejoinder by the authors.

A. B. Tsybakov.

Statistique appliquée, 2006.

http://josephsalmon.eu/enseignement/ENSAE/
StatAppli_tsybakov.pdf.

Tong Zhang.
 Adaptive forward-backward greedy algorithm for sparse learning with linear models.

In Advances in Neural Information Processing Systems, pages 1921–1928, 2009.