Rotation

Physics Club

November 13, 2014

Basic Definitions

Radian

Unit of angular measure. By definition, the angle in radians is equal to the length subtended.

One radian is approximately $180^{\circ}/\pi = 57.30^{\circ}$.

Angular Displacement $\Delta\theta$

$$\Delta s = r \Delta \theta$$

Angular Velocity ω

$$v = r\omega$$

Angular Acceleration α

$$a_t = r\alpha$$

$$a_c = \frac{v^2}{r} = r\omega^2$$

Angular Quantities

	Translational	Rotational
Displacement	Δx	$\Delta \theta$
Velocity	V	ω
Acceleration	а	α
Equation $\#1$	$\Delta x = \bar{v}t$	$\Delta heta = ar{\omega} t$
Equation $\#2$	$v = v_0 + at$	$\omega = ar{\omega} t$
Equation #3	$\Delta x = v_0 t + \frac{1}{2} a t^2$	$\Delta\omega = \omega_0 t + \frac{1}{2}\alpha t^2$
Equation #4	$\Delta x = v_0 t - \frac{1}{2} a t^2$	$\Delta\omega = \omega_0 t - \frac{1}{2}\alpha t^2$
Equation #5	$v^2 = v_0^2 + 2a\Delta x$	$\omega^2 = \omega_0^2 + 2\alpha\Delta\theta$

The Right-Hand Rule

Angular quantities are vectors. Angular displacement, angular velocity, and angular acceleration are all vectors.

Use the right-hand rule to find the direction of the angular velocity ω vector.

The angular acceleration α vector is the same direction if the angular velocity ω is increasing with time, opposite if decreasing.

Rotational Kinetic Energy & Moment of Inertia

Rotational Kinetic Energy K

$$K = \sum \left(\frac{1}{2}m_iv_i\right) = \frac{1}{2}\sum \left(m_ir_i^2\omega^2\right) = \frac{1}{2}I\omega^2$$

Moment of Inertia 1

$$I = \sum m_i r_i^2$$

The Parallel-Axis Theorem

$$I = I_{cm} + Mh^2$$

Moments of Inertia

Hoop or thin cylindrical shell $I_{CM} = MR^2$

Solid cylinder or disk

Solid cylinder or disk
$$I_{\rm CM} = \frac{1}{2}MR^2$$

Long, thin rod with rotation axis through center $I_{CM} = \frac{1}{12} ML^2$

Long, thin rod with rotation axis

rod with
rotation axis
through end
$$I = \frac{1}{3} ML^2$$

Solid sphere

$$I_{CM} = \frac{2}{5}MR^2$$

Thin spherical shell

shell
$$I_{\text{CM}} = \frac{2}{3} MR^2$$

Newton's Second Law for Rotation

Torque au

$$\tau = rF_t = rF\sin\phi = F\ell$$

Work W

$$\Delta W = F_t r \Delta \theta$$

Newton's Second Law for Rotation

$$\sum \tau_{\mathsf{ext}} = I\alpha$$

Power

$$P = \frac{\Delta W}{\Delta t} = \frac{\tau \Delta \theta}{\Delta t} = \tau \omega$$

Angular Momentum

Angular Momentum L

$$L = I\omega = r \times p$$

Conservation of Angular Momentum

 L_{sys} is constant if the external torque on the system is 0.

Rolling

When rigid objects roll, there are two types of basic rolling: "with slipping" and "without slipping".

$$v_{\rm cm} = R\omega$$

Everything Else

Gravitation, Static Equilibria, Fluids, Oscillations

Physics Club

December 4, 2014