Clase 9

Manuel Garcia.

September 7, 2023

1 Relaciones de equivalencia y clases de equivalencia

Representación geométrica 1) Circulo S^1 , sean $x\&y\in\mathbb{R}$. Los puntos x&y son equivalentes $x\approx y$ si existe un entero $n\in\mathbb{Z}$ tal que $x=y+2\pi n$. Clase de equivalencia: $[x]=\{x+2\pi n\forall n\in\mathbb{Z}\}$. Notar que $0\approx 2\pi, \ x\in[0,2\pi)$ es un representante de [x].

2) Toro T^2 . Sean $(x_1, y_1) \& (x_2, y_2) \in \mathbb{R}^2$. Los puntos $(x_1, y_1) \& (x_2, y_2)$

2 Espacios vectoriales

Definicion y propiedades

Un espacio lineal o espacio vectorial V sobre un campo K (por ejemplo \mathbb{R}) es un conjunto provisto de dos operaciones: la suma entre elementos de V y la multiplicación por los elementos de K. Los elementos de V se llaman vectores y los elementos de K se llaman escalares. estos elementos satisfacen las propiedades:

- u + v = v + u con $u, v \in V$
- $\bullet (u+v) + w = u + (v+w) \qquad u, v, w \in V$
- Existe el vector 0 tal que 0 + v = v + 0 = v $\forall v \in V$
- $v \in V, \exists (-v) \text{ tal que } v + (-v) = (-v) + v = 0$
- v(u+v) = cu + cv...

Espacios lineales Sea $\{V_i\}$ un conjunto k de vectores en V, si la ecuacion: $x_1v_1 + ...x_kv_k = 0$ tiene una solución no trivial $x_i \neq 0$ para algún i, el conjunto se llama **linealmente dependiente**. Si por el contrario la eq anterior solo tiene la solución trivial $x_i = 0$ para todo i, el conjunto se llama **linealmente** independiente. Un conjunto de vectores linealmente independientes $\{e_i\}$ Se llama base de V si todo $v \in V$ se puede escribir como una combinación lineal única de los vectores de la base $\{e_i\}$:

 $v = v^1 e_1 + ... v^k e_k$. Los numeros $\{v^i\} \in K$ son las **Componentes** de v en la base $\{e_i\}$.

3 Mapeos lineales, imagen, kernel

Dados dos espacios lineales V, W, el mapeo $f: V \to W$ es llamado mapeo lineal si cumple: $a_1 f(v_1) + a_2 f(v_2)$ para todo $a_1, a_2 \in K$ y $v_1, v_2 \in V$ un mapeo lineal es un homeomorfismo entre V&W que preserva las operaciones de suma entre vectores y multiplicación por escalares.

La Imagen im f de f es $f(V) \subset W$.

El **kernel**, es el conjunto ker $f = \{v \in V | f(v) = 1\}.$

Si W = K entonces f es una función lineal.

Si f es un isomorfismo entonces V es isomorfi a W. Se denota $V \approx W$.

Teorema

Si $f: V \to W$ es un mapeo lineal, entonces:

$$dimV = dim(kerf) + dim(imf)$$

4 Espacio vectorial dual

Sea $f: V \to K$ una función lineal en V(n,K). Sea $\{e_i\}$ una base en V. Para un vector arbitrario $v = v^1 e_1 + ... + v^n e_n$ se cumple $f(v) = v^1 f(e_1) + ... + v^n f(e_n)$. Si conocemos el resultado de $f(e_i)$ entonces sabemos el resultado de evaluar la función en cualquier vector.

En $f:V\to K$ el conjunto de todas las funciones lineales (linearmente independientes) definidas en V es un espacio vectorial.

$$(\alpha_1 f_1 + \alpha_2 f_2)(v) = \alpha_1 f_1(v) + \alpha_2 f_2(v)$$
$$f(v^i e_i) = v^i f(e_i)$$

Sabemos que f lineal es un vector de un espacio vectorial y que V^* es el espacio dual. El espacio dual es el conjunto de todas las funciones lineales sobre V y tiene la misma dimension $dim(V^*) = dim(V)$.

Ahora vamos a generar una base de acá. a esta base de V^* la llamaremos $\{e^{*i}\} \to f = f_i e^{*i} = f_1 e^{*1} + ... + f_n e^{*n}$.

Las funviones $\{e^{i*}\}$ se especifican completamente sabiendo el valor $e^{i*}(e_j)$. Las bases cumplen:

$$e^{i*}(e_j) = \delta^i_j$$

Recordemos que aúnque trabajemos con superficies con curvas aún necesitamos esto ya que en el espacio tangente trabajamos en un plano.

Vector dual $f: V \to K$: $f = f_i e^{*i}$ la acción (o evaluación) de f en v se puede interpretar como un **producto interno** entre un vector fila y un vector columna

$$f(v) = f_i e^{i*}(v^j e_j) = f_i v^j e^{i*}(e_j) = f_i v^j \delta^i_j = f_i v^i$$

Producto interno

$$f(v) = f_i v^i$$

Producto escalar notacion: $\left\langle f \middle| v \atop V^* \middle| V^* \right\rangle : V^* \times V \to K$

Pullback

$$f: V \to W, \qquad g: W \to k$$

El primero es un mapa y el segundo una funcion. Entonces tenemos que:

$$gof(g \text{ compuesto } f) = h : V \to K$$

$$g[f(V)] = h$$

$$V \xrightarrow{f} W \xrightarrow{g} K$$

$$V^* \leftarrow W^*$$
$$gof \stackrel{f^*}{\leftarrow} g$$

PRoducto interno y adjunto

Para V(n,K) se puede establecer un isomorfismo usando el mapeo $g:V\to V^*$ de la forma $g:v^j\to g_{ij}v^j$. Se define el **producto interno** de la forma $g(v_1,v_2)\equiv \langle gv_1|v_2\rangle$. En componentes $g(v_1,v_2)\equiv g_{jk}v_1^iv_2^j$.

$$\begin{aligned} dx^2 &= \langle r_u | r_u \rangle \, du^2 + 2 \, \langle r_u | r_v \rangle \, du dv + \langle r_v | r_v \rangle \, du^2 \\ A^2 &= \langle r_u | r_u \rangle \qquad B^2 &= \langle r_u | r_v \rangle \qquad \langle r_u | r_v \rangle = 0 \\ &\frac{[r_u, r_v]}{|[r_u, r_v]|} &= M \\ e_1 &= \frac{r_u}{|r_u|}, e_2 &= \frac{r_v}{|r_v|}, e_3 &= M = [e_1, e_2] \\ \vec{r_u} &= \begin{bmatrix} \langle r_u | e_1 \rangle & 0 & 0 \end{bmatrix}, \qquad \vec{r_v} &= \begin{bmatrix} 0 & B & 0 \end{bmatrix} \rightarrow \begin{bmatrix} i & j & k \\ A & 0 & 0 \\ 0 & B & 0 \end{bmatrix} \end{aligned}$$