Linear Transformations

The two basic vector operations are addition and scaling. From this perspective, the nicest functions are those which "preserve" these operations:

Def: A linear transformation is a function $T: \mathbb{R}^n \to \mathbb{R}^m$ which satisfies:

- (1) $T(\mathbf{x} + \mathbf{y}) = T(\mathbf{x}) + T(\mathbf{y})$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$
- (2) $T(c\mathbf{x}) = cT(\mathbf{x})$ for all $\mathbf{x} \in \mathbb{R}^n$ and $c \in \mathbb{R}$.

Fact: If $T: \mathbb{R}^n \to \mathbb{R}^m$ is a linear transformation, then $T(\mathbf{0}) = \mathbf{0}$.

We've already met examples of linear transformations. Namely: if A is any $m \times n$ matrix, then the function $T: \mathbb{R}^n \to \mathbb{R}^m$ which is matrix-vector multiplication

$$T(\mathbf{x}) = A\mathbf{x}$$

is a linear transformation.

(Wait: I thought matrices were functions? Technically, no. Matrices are literally just arrays of numbers. However, matrices define functions by matrix-vector multiplication, and such functions are always linear transformations.)

Question: Are these all the linear transformations there are? That is, does every linear transformation come from matrix-vector multiplication? Yes:

Prop 13.2: Let $T: \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation. Then the function T is just matrix-vector multiplication: $T(\mathbf{x}) = A\mathbf{x}$ for some matrix A. In fact, the $m \times n$ matrix A is

$$A = \begin{bmatrix} | & | \\ T(\mathbf{e}_1) & \cdots & T(\mathbf{e}_n) \\ | & | \end{bmatrix}.$$

Terminology: For linear transformations $T: \mathbb{R}^n \to \mathbb{R}^m$, we use the word "kernel" to mean "nullspace." We also say "image of T" to mean "range of T." So, for a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^m$:

$$\ker(T) = \{ \mathbf{x} \in \mathbb{R}^n \mid T(\mathbf{x}) = \mathbf{0} \} = T^{-1}(\{\mathbf{0}\})$$
$$\operatorname{im}(T) = \{ T(\mathbf{x}) \mid \mathbf{x} \in \mathbb{R}^n \} = T(\mathbb{R}^n).$$

Ways to Visualize functions $f: \mathbb{R} \to \mathbb{R}$ (e.g.: $f(x) = x^2$)

- (1) Set-Theoretic Picture.
- (2) Graph of f. (Thinking: y = f(x).) The **graph** of $f: \mathbb{R} \to \mathbb{R}$ is the subset of \mathbb{R}^2 given by:

Graph
$$(f) = \{(x, y) \in \mathbb{R}^2 \mid y = f(x)\}.$$

(3) Level sets of f. (Thinking: f(x) = c.) The **level sets** of $f: \mathbb{R} \to \mathbb{R}$ are the subsets of \mathbb{R} of the form

$$\{x \in \mathbb{R} \mid f(x) = c\},\$$

for constants $c \in \mathbb{R}$.

Ways to Visualize functions $f: \mathbb{R}^2 \to \mathbb{R}$ (e.g.: $f(x,y) = x^2 + y^2$)

- (1) Set-Theoretic Picture.
- (2) Graph of f. (Thinking: z = f(x, y).) The **graph** of $f: \mathbb{R}^2 \to \mathbb{R}$ is the subset of \mathbb{R}^3 given by:

Graph
$$(f) = \{(x, y, z) \in \mathbb{R}^3 \mid z = f(x, y)\}.$$

(3) Level sets of f. (Thinking: f(x,y) = c.) The **level sets** of $f: \mathbb{R}^2 \to \mathbb{R}$ are the subsets of \mathbb{R}^2 of the form

$$\{(x,y) \in \mathbb{R}^2 \mid f(x,y) = c\},\$$

for constants $c \in \mathbb{R}$.

Ways to Visualize functions $f: \mathbb{R}^3 \to \mathbb{R}$ (e.g.: $f(x, y, z) = x^2 + y^2 + z^2$)

- (1) Set-Theoretic Picture.
- (2) Graph of f. (Thinking: w = f(x, y, z).)
- (3) Level sets of f. (Thinking: f(x, y, z) = c.) The **level sets** of $f: \mathbb{R}^3 \to \mathbb{R}$ are the subsets of \mathbb{R}^3 of the form

$$\{(x, y, z) \in \mathbb{R}^3 \mid f(x, y, z) = c\},\$$

for constants $c \in \mathbb{R}$.

Curves in \mathbb{R}^2 : Three descriptions

(1) Graph of a function $f: \mathbb{R} \to \mathbb{R}$. (That is: y = f(x)) Such curves must pass the <u>vertical line test</u>.

Example: When we talk about the "curve" $y = x^2$, we actually mean to say: the graph of the function $f(x) = x^2$. That is, we mean the set

$$\{(x,y) \in \mathbb{R}^2 \mid y = x^2\} = \{(x,y) \in \mathbb{R}^2 \mid y = f(x)\}.$$

(2) Level sets of a function $F: \mathbb{R}^2 \to \mathbb{R}$. (That is: F(x,y) = c)

Example: When we talk about the "curve" $x^2 + y^2 = 1$, we actually mean to say: the level set of the function $F(x,y) = x^2 + y^2$ at height 1. That is, we mean the set

$$\{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\} = \{(x,y) \in \mathbb{R}^2 \mid F(x,y) = 1\}.$$

(3) Parametrically:
$$\begin{cases} x = f(t) \\ y = g(t). \end{cases}$$

Surfaces in \mathbb{R}^3 : Three descriptions

(1) Graph of a function $f: \mathbb{R}^2 \to \mathbb{R}$. (That is: z = f(x, y).) Such surfaces must pass the vertical line test.

Example: When we talk about the "surface" $z = x^2 + y^2$, we actually mean to say: the graph of the function $f(x,y) = x^2 + y^2$. That is, we mean the set

$$\{(x,y,z) \in \mathbb{R}^3 \mid z = x^2 + y^2\} = \{(x,y,z) \in \mathbb{R}^3 \mid z = f(x,y)\}.$$

(2) Level sets of a function $F: \mathbb{R}^3 \to \mathbb{R}$. (That is: F(x, y, z) = c.)

Example: When we talk about the "surface" $x^2 + y^2 + z^2 = 1$, we actually mean to say: the level set of the function $F(x, y, z) = x^2 + y^2 + z^2$ at height 1. That is, we mean the set

$$\{(x,y,z) \in \mathbb{R}^3 \mid x^2 + y^2 + z^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \mid F(x,y,z) = 1\}.$$

(3) Parametrically. (We'll discuss this another time, perhaps.)

Two Examples of Linear Transformations

(1) Diagonal Matrices: A diagonal matrix is a matrix of the form

$$D = \begin{bmatrix} d_1 & 0 & \cdots & 0 \\ 0 & d_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & 0 \\ 0 & 0 & \cdots & d_n \end{bmatrix}.$$

The linear transformation defined by D has the following effect: Vectors are...

- \circ Stretched/contracted (possibly reflected) in the x_1 -direction by d_1
- \circ Stretched/contracted (possibly reflected) in the $x_2\text{-direction}$ by d_2 :
- \circ Stretched/contracted (possibly reflected) in the x_n -direction by d_n .
- Stretching in the x_i -direction happens if $|d_i| > 1$.
- Contracting in the x_i -direction happens if $|d_i| < 1$.
- \circ Reflecting happens if d_i is negative.

(2) Rotations in \mathbb{R}^2

We write $\mathbf{Rot}_{\theta} \colon \mathbb{R}^2 \to \mathbb{R}^2$ for the linear transformation which rotates vectors in \mathbb{R}^2 counter-clockwise through the angle θ . Its matrix is:

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}.$$

The Multivariable Derivative: An Example

Example: Let $F: \mathbb{R}^2 \to \mathbb{R}^3$ be the function

$$F(x,y) = (x + 2y, \sin(x), e^y) = (F_1(x,y), F_2(x,y), F_3(x,y)).$$

Its **derivative** is a linear transformation $DF(x,y): \mathbb{R}^2 \to \mathbb{R}^3$. The matrix of the linear transformation DF(x,y) is:

$$DF(x,y) = \begin{bmatrix} \frac{\partial F_1}{\partial x} & \frac{\partial F_1}{\partial y} \\ \frac{\partial F_2}{\partial x} & \frac{\partial F_2}{\partial y} \\ \frac{\partial F_3}{\partial x} & \frac{\partial F_3}{\partial y} \end{bmatrix} = \begin{bmatrix} 1 & 2 \\ \cos(x) & 0 \\ 0 & e^y \end{bmatrix}.$$

Notice that (for example) DF(1,1) is a linear transformation, as is DF(2,3), etc. That is, each DF(x,y) is a linear transformation $\mathbb{R}^2 \to \mathbb{R}^3$.

Linear Approximation

Single Variable Setting

Review: In single-variable calc, we look at functions $f: \mathbb{R} \to \mathbb{R}$. We write y = f(x), and at a point (a, f(a)) write:

$$\Delta y \approx dy$$
.

Here, $\Delta y = f(x) - f(a)$, while $dy = f'(a)\Delta x = f'(a)(x - a)$. So:

$$f(x) - f(a) \approx f'(a)(x - a).$$

Therefore:

$$f(x) \approx f(a) + f'(a)(x - a).$$

The right-hand side f(a) + f'(a)(x - a) can be interpreted as follows:

- \circ It is the best linear approximation to f(x) at x = a.
- \circ It is the **1st Taylor polynomial** to f(x) at x = a.
- The line y = f(a) + f'(a)(x a) is the tangent line at (a, f(a)).

Multivariable Setting

Now consider functions $\mathbf{f} \colon \mathbb{R}^n \to \mathbb{R}^m$. At a point $(\mathbf{a}, \mathbf{f}(\mathbf{a}))$, we have exactly the same thing:

$$f(x) - f(a) \approx Df(a)(x - a).$$

That is:

$$f(x) \approx f(a) + Df(a)(x - a).$$
 (*)

Note: The quantity $D\mathbf{f}(\mathbf{a})$ is a *matrix*, while $(\mathbf{x} - \mathbf{a})$ is a *vector*. That is, $D\mathbf{f}(\mathbf{a})(\mathbf{x} - \mathbf{a})$ is matrix-vector multiplication.

Example: Let $f: \mathbb{R}^2 \to \mathbb{R}$. Let's write $\mathbf{x} = (x_1, x_2)$ and $\mathbf{a} = (a_1, a_2)$. Then (*) reads:

$$f(x_1, x_2) \approx f(a_1, a_2) + \left[\frac{\partial f}{\partial x_1}(a_1, a_2) \quad \frac{\partial f}{\partial x_2}(a_1, a_2) \right] \begin{bmatrix} x_1 - a_1 \\ x_2 - a_2 \end{bmatrix}$$
$$= f(a_1, a_2) + \frac{\partial f}{\partial x_1}(a_1, a_2)(x_1 - a_1) + \frac{\partial f}{\partial x_2}(a_1, a_2)(x_2 - a_2).$$

Tangent Lines/Planes to Graphs

Fact: Suppose a curve in \mathbb{R}^2 is given as a graph y = f(x). The equation of the tangent line at (a, f(a)) is:

$$y = f(a) + f'(a)(x - a).$$

Okay, you knew this from single-variable calculus. How does the multivariable case work? Well:

Fact: Suppose a surface in \mathbb{R}^3 is given as a graph z = f(x, y). The equation of the tangent plane at (a, b, f(a, b)) is:

$$z = f(a,b) + \frac{\partial f}{\partial x}(a,b)(x-a) + \frac{\partial f}{\partial y}(a,b)(y-b).$$

Note the similarity between this and the linear approximation to f at (a, b).

Tangent Lines/Planes to Level Sets

Def: For a function $F: \mathbb{R}^n \to \mathbb{R}$, its **gradient** is the vector in \mathbb{R}^n given by:

$$\nabla F = \left(\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \dots, \frac{\partial F}{\partial x_n}\right).$$

Theorem: Consider a level set $F(x_1, ..., x_n) = c$ of a function $F: \mathbb{R}^n \to \mathbb{R}$. If $(a_1, ..., a_n)$ is a point on the level set, then $\nabla F(a_1, ..., a_n)$ is normal to the level set.

Corollary 1: Suppose a curve in \mathbb{R}^2 is given as a level curve F(x,y) = c. The equation of the tangent line at a point (x_0, y_0) on the level curve is:

$$\frac{\partial F}{\partial x}(x_0, y_0)(x - x_0) + \frac{\partial F}{\partial y}(x_0, y_0)(y - y_0) = 0.$$

Corollary 2: Suppose a surface in \mathbb{R}^3 is given as a level surface F(x, y, z) = c. The equation of the tangent plane at a point (x_0, y_0, z_0) on the level surface is:

$$\frac{\partial F}{\partial x}(x_0, y_0, z_0)(x - x_0) + \frac{\partial F}{\partial y}(x_0, y_0, z_0)(y - y_0) + \frac{\partial F}{\partial z}(x_0, y_0, z_0)(z - z_0) = 0.$$

Q: Do you see why Cor 1 and Cor 2 follow from the Theorem?

Composition and Matrix Multiplication

Recall: Let $f: X \to Y$ and $g: Y \to Z$ be functions. Their **composition** is the function $g \circ f: X \to Z$ defined by

$$(g \circ f) = g(f(x)).$$

Observations:

- (1) For this to make sense, we must have: $\operatorname{co-domain}(f) = \operatorname{domain}(g)$.
- (2) Composition is <u>not</u> generally commutative: that is, $f \circ g$ and $g \circ f$ are usually different.
 - (3) Composition is always associative: $(h \circ g) \circ f = h \circ (g \circ f)$.

Fact: If $T: \mathbb{R}^k \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^m$ are both linear transformations, then $S \circ T$ is also a linear transformation.

Question: How can we describe the matrix of the linear transformation $S \circ T$ in terms of the matrices of S and T?

Fact: Let $T: \mathbb{R}^n \to \mathbb{R}^n$ and $S: \mathbb{R}^n \to \mathbb{R}^m$ be linear transformations with matrices B and A, respectively. Then the matrix of $S \circ T$ is the product AB.

We can multiply an $m \times n$ matrix A by an $n \times k$ matrix B. The result, AB, will be an $m \times k$ matrix:

$$(m \times n)(n \times k) \rightarrow (m \times k).$$

Notice that n appears twice here to "cancel out." That is, we need the number of rows of A to equal the number of columns of B – otherwise, the product AB makes no sense.

Example 1: Let A be a (3×2) -matrix, and let B be a (2×4) -matrix. The product AB is then a (3×4) -matrix.

Example 2: Let A be a (2×3) -matrix, and let B be a (4×2) -matrix. Then AB is not defined. (But the product BA is defined: it is a (4×3) -matrix.)

Two Model Examples

Example 1A (Elliptic Paraboloid): Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = x^2 + y^2.$$

The level sets of f are curves in \mathbb{R}^2 . The level sets are $\{(x,y) \mid x^2 + y^2 = c\}$. The graph of f is a surface in \mathbb{R}^3 . The graph is $\{(x,y,z) \mid z = x^2 + y^2\}$.

Notice that (0,0,0) is a <u>local minimum</u> of f. Note that $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Also, $\frac{\partial^2 f}{\partial x^2}(0,0) > 0$ and $\frac{\partial^2 f}{\partial y^2}(0,0) > 0$.

Example 1B (Elliptic Paraboloid): Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = -x^2 - y^2.$$

The level sets of f are curves in \mathbb{R}^2 . The level sets are $\{(x,y) \mid -x^2-y^2=c\}$. The graph of f is a surface in \mathbb{R}^3 . The graph is $\{(x,y,z) \mid z=-x^2-y^2\}$.

Notice that (0,0,0) is a <u>local maximum</u> of f. Note that $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Also, $\frac{\partial^2 f}{\partial x^2}(0,0) < 0$ and $\frac{\partial^2 f}{\partial y^2}(0,0) < 0$.

Example 2 (Hyperbolic Paraboloid): Consider $f: \mathbb{R}^2 \to \mathbb{R}$ given by

$$f(x,y) = x^2 - y^2.$$

The level sets of f are curves in \mathbb{R}^2 . The level sets are $\{(x,y) \mid x^2 - y^2 = c\}$. The graph of f is a surface in \mathbb{R}^3 . The graph is $\{(x,y,z) \mid z = x^2 - y^2\}$.

Notice that (0,0,0) is a <u>saddle point</u> of the graph of f. Note that $\frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$. Also, $\frac{\partial^2 f}{\partial x^2}(0,0) > 0$ while $\frac{\partial^2 f}{\partial y^2}(0,0) < 0$.

General Remark: In each case, the level sets of f are obtained by slicing the graph of f by planes z = c. Try to visualize this in each case.

Chain Rule

Chain Rule (Matrix Form): Let $\mathbf{f} : \mathbb{R}^n \to \mathbb{R}^m$ and $\mathbf{g} : \mathbb{R}^m \to \mathbb{R}^p$ be any differentiable functions. Then

$$D(\mathbf{g} \circ \mathbf{f})(\mathbf{x}) = D\mathbf{g}(\mathbf{f}(\mathbf{x})) \cdot D\mathbf{f}(\mathbf{x}).$$

Here, the product on the right-hand side is a product of matrices.

In the case where $g: \mathbb{R}^m \to \mathbb{R}$ has codomain \mathbb{R} , there is another way to state the chain rule.

Chain Rule: Let $g = g(x_1, ..., x_m)$ and suppose each $x_1, ..., x_m$ is a function of the variables $t_1, ..., t_n$. Then:

$$\frac{\partial g}{\partial t_1} = \frac{\partial g}{\partial x_1} \frac{\partial x_1}{\partial t_1} + \frac{\partial g}{\partial x_2} \frac{\partial x_2}{\partial t_1} + \dots + \frac{\partial g}{\partial x_m} \frac{\partial x_m}{\partial t_1},$$

$$\vdots$$

$$\frac{\partial g}{\partial t_n} = \frac{\partial g}{\partial x_1} \frac{\partial x_1}{\partial t_n} + \frac{\partial g}{\partial x_2} \frac{\partial x_2}{\partial t_1} + \dots + \frac{\partial g}{\partial x_m} \frac{\partial x_m}{\partial t_n}.$$

There is a way to state this version of the chain rule in general – that is, when $\mathbf{g} \colon \mathbb{R}^n \to \mathbb{R}^p$ has codomain \mathbb{R}^p – but let's keep things simple for now.

Example 1: Let z = g(u, v), where u = h(x, y) and v = k(x, y). Then the chain rule reads:

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial x}$$

and

$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial y}.$$

Example 2: Let z = g(u, v, w), where u = h(t), v = k(t), $w = \ell(t)$. Then the chain rule reads:

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial u} \frac{\partial u}{\partial t} + \frac{\partial z}{\partial v} \frac{\partial v}{\partial t} + \frac{\partial z}{\partial w} \frac{\partial w}{\partial t}.$$

Since u, v, w are functions of just a single variable t, we can also write this formula as:

$$\frac{\partial z}{\partial t} = \frac{\partial z}{\partial u}\frac{du}{dt} + \frac{\partial z}{\partial v}\frac{dv}{dt} + \frac{\partial z}{\partial w}\frac{dw}{dt}.$$

Directional Derivatives

Def: For a function $f: \mathbb{R}^n \to \mathbb{R}$, its **directional derivative** in the direction \mathbf{v} at the point $\mathbf{x} \in \mathbb{R}^n$ is:

$$D_{\mathbf{v}}f(\mathbf{x}) = \nabla f(\mathbf{x}) \cdot \mathbf{v}.$$

Here, \cdot is the dot product of vectors. Therefore,

$$D_{\mathbf{v}}f(\mathbf{x}) = \|\nabla f(\mathbf{x})\| \|\mathbf{v}\| \cos \theta, \quad \text{where } \theta = \measuredangle(\nabla f(\mathbf{x}), \mathbf{v}).$$

Usually, we assume that \mathbf{v} is a unit vector, meaning $\|\mathbf{v}\| = 1$.

Example: Let $f: \mathbb{R}^2 \to \mathbb{R}$. Let $\mathbf{v} = \begin{bmatrix} a \\ b \end{bmatrix}$. Then:

$$D_{\mathbf{v}}f(x,y) = \nabla f(x,y) \cdot \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{bmatrix} \cdot \begin{bmatrix} a \\ b \end{bmatrix} = a \frac{\partial f}{\partial x} + b \frac{\partial f}{\partial y}.$$

In particular, we have two important special cases:

$$D_{\mathbf{e}_1} f(x, y) = \nabla f(x, y) \cdot \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \frac{\partial f}{\partial x}$$
$$D_{\mathbf{e}_2} f(x, y) = \nabla f(x, y) \cdot \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \frac{\partial f}{\partial y}.$$

Point: Partial derivatives are themselves examples of directional derivatives!

Namely, $\frac{\partial f}{\partial x}$ is the directional derivative of f in the \mathbf{e}_1 -direction, while $\frac{\partial f}{\partial y}$ is the directional derivative in the \mathbf{e}_2 -direction.

Question: In which direction \mathbf{v} will the function f grow the most? That is, for which unit vector \mathbf{v} is $D_{\mathbf{v}}f$ maximized?

Theorem 6.3:

- (a) The directional derivative $D_{\mathbf{v}}f(\mathbf{a})$ is maximized when \mathbf{v} points in the same direction as $\nabla f(\mathbf{a})$.
- (b) The directional derivative $D_{\mathbf{v}}f(\mathbf{a})$ is minimized when \mathbf{v} points in the opposite direction as $\nabla f(\mathbf{a})$.

In fact: The maximum and minimum values of $D_{\mathbf{v}}f(\mathbf{a})$ at the point $\mathbf{a} \in \mathbb{R}^n$ are $\|\nabla f(\mathbf{a})\|$ and $-\|\nabla f(\mathbf{a})\|$. (Assuming we only care about unit vectors \mathbf{v} .)

The Gradient: Two Interpretations

Recall: For a function $F: \mathbb{R}^n \to \mathbb{R}$, its **gradient** is the vector in \mathbb{R}^n given by:

$$\nabla F = \left(\frac{\partial F}{\partial x_1}, \frac{\partial F}{\partial x_2}, \dots, \frac{\partial F}{\partial x_n}\right).$$

There are two ways to think about the gradient. They are interrelated.

Gradient: Normal to Level Sets

Theorem: Consider a level set $F(x_1, ..., x_n) = c$ of a function $F: \mathbb{R}^n \to \mathbb{R}$. If $(a_1, ..., a_n)$ is a point on the level set, then $\nabla F(a_1, ..., a_n)$ is normal to the level set.

Example: If we have a level curve F(x,y) = c in \mathbb{R}^2 , the gradient vector $\nabla F(x_0, y_0)$ is a normal vector to the level curve at the point (x_0, y_0) .

Example: If we have a level surface F(x, y, z) = c in \mathbb{R}^3 , the gradient vector $\nabla F(x_0, y_0, z_0)$ is a normal vector to the level surface at the point (x_0, y_0, z_0) .

Normal vectors help us find tangent planes to level sets. (see handout "Tangent Lines/Planes...") But there's another reason we like normal vectors.

Gradient: Direction of Steepest Ascent

Observation: A normal vector to a level set $F(x_1, ..., x_n) = c$ in \mathbb{R}^n is the direction of steepest ascent for the graph $z = F(x_1, ..., x_n)$ in \mathbb{R}^{n+1} .

Example (Elliptic Paraboloid): Let $f: \mathbb{R}^2 \to \mathbb{R}$ be $f(x,y) = 2x^2 + 3y^2$. The level sets of f are the ellipses $2x^2 + 3y^2 = c$ in \mathbb{R}^2 . The graph of f is the elliptic paraboloid $z = 2x^2 + 3y^2$ in \mathbb{R}^3 .

At the point $(1,1) \in \mathbb{R}^2$, the gradient vector $\nabla f(1,1) = \begin{bmatrix} 4 \\ 6 \end{bmatrix}$ is normal to the level curve $2x^2 + 3y^2 = 5$. So, if we were hiking on the surface $z = 2x^2 + 3y^2$ in \mathbb{R}^3 and were at the point (1,1,f(1,1)) = (1,1,5), to ascend the surface the fastest, we would hike in the direction of $\begin{bmatrix} 4 \\ 6 \end{bmatrix}$. \square

Warning: Note that ∇f is normal to the level sets of f. It is <u>not</u> a normal vector to the graph of f.

Inverses: Abstract Theory

Def: A function $f: X \to Y$ is **invertible** if there is a function $f^{-1}: Y \to X$ satisfying:

$$f^{-1}(f(x)) = x$$
, for all $x \in X$, and $f(f^{-1}(y)) = y$, for all $y \in Y$.

In such a case, f^{-1} is called an **inverse function** for f.

In other words, the function f^{-1} "undoes" the function f. For example, an inverse function of $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^3$ is $f^{-1}: \mathbb{R} \to \mathbb{R}$, $f^{-1}(x) = \sqrt[3]{x}$. An inverse of $g: \mathbb{R} \to (0, \infty)$, $g(x) = 2^x$ is $g^{-1}: (0, \infty) \to \mathbb{R}$, $g^{-1}(x) = \log_2(x)$.

Whenever a new concept is defined, a mathematician asks two questions:

(1) **Uniqueness:** Are inverses unique? That is, must a function f have at most one inverse f^{-1} , or is it possible for f to have several different inverses? Answer: Yes.

Prop 16.1: If $f: X \to Y$ is invertible (that is, f has an inverse), then the inverse function f^{-1} is unique (that is, there is only one inverse function).

(2) **Existence:** Do inverses always exist? That is, does every function f have an inverse function f^{-1} ?

Answer: No. Some functions have inverses, but others don't.

New question: Which functions have inverses?

Prop 16.3: A function $f: X \to Y$ is invertible if and only if f is both "one-to-one" and "onto."

Despite their fundamental importance, there's no time to talk about "one-to-one" and "onto," so you don't have to learn these terms. This is sad :-(

Question: If inverse functions "undo" our original functions, can they help us solve equations? Yes! That's the entire point:

Prop 16.2: A function $f: X \to Y$ is invertible if and only if for every $b \in Y$, the equation f(x) = b has exactly one solution $x \in X$.

In this case, the solution to the equation f(x) = b is given by $x = f^{-1}(b)$.

Inverses of Linear Transformations

Question: Which linear transformations $T: \mathbb{R}^n \to \mathbb{R}^m$ are invertible? (Equiv: Which $m \times n$ matrices A are invertible?)

Fact: If $T: \mathbb{R}^n \to \mathbb{R}^m$ is invertible, then m = n.

So: If an $m \times n$ matrix A is invertible, then m = n.

In other words, non-square matrices are never invertible. But square matrices may or may not be invertible. Which ones are invertible? Well:

Theorem: Let A be an $n \times n$ matrix. The following are equivalent:

- (i) A is invertible
- (ii) $N(A) = \{0\}$
- (iii) $C(A) = \mathbb{R}^n$
- (iv) $\operatorname{rref}(A) = I_n$
- (v) $det(A) \neq 0$.

To Repeat: An $n \times n$ matrix A is invertible if and only if for every $\mathbf{b} \in \mathbb{R}^n$, the equation $A\mathbf{x} = \mathbf{b}$ has exactly one solution $\mathbf{x} \in \mathbb{R}^n$.

In this case, the solution to the equation $A\mathbf{x} = \mathbf{b}$ is given by $\mathbf{x} = A^{-1}\mathbf{b}$.

Q: How can we find inverse matrices? This is accomplished via:

Prop 16.7: If A is an invertible matrix, then $\text{rref}[A \mid I_n] = [I_n \mid A^{-1}].$

Useful Formula: Let $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ be a 2×2 matrix. If A is invertible $(\det(A) = ad - bc \neq 0)$, then:

$$A^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.$$

Prop 16.8: Let $f: X \to Y$ and $g: Y \to Z$ be invertible functions. Then:

- (a) f^{-1} is invertible and $(f^{-1})^{-1} = f$.
- (b) $g \circ f$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Corollary: Let A, B be invertible $n \times n$ matrices. Then:

- (a) A^{-1} is invertible and $(A^{-1})^{-1} = A$.
- (b) AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$.

Determinants

There are two reasons that determinants are important:

- (1) Algebra: Determinants tell us whether a matrix is invertible or not.
- (2) Geometry: Determinants are related to area and volume.

Determinants: Algebra

Prop 17.3: An $n \times n$ matrix A is invertible $\iff \det(A) \neq 0$.

Moreover: if A is invertible, then

$$\det(A^{-1}) = \frac{1}{\det(A)}.$$

Properties of Determinants (17.2, 17.4):

- (1) (Multiplicativity) det(AB) = det(A) det(B).
- (2) (Alternation) Exchanging two rows of a matrix reverses the sign of the determinant.
 - (3) (Multilinearity): First:

$$\det\begin{bmatrix} a_1 & a_2 & \cdots & a_n \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} + \det\begin{bmatrix} b_1 & b_2 & \cdots & b_n \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix} = \det\begin{bmatrix} a_1 + b_1 & a_2 + b_2 & \cdots & a_n + b_n \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n1} & c_{n2} & \cdots & c_{nn} \end{bmatrix}$$

and similarly for the other rows; Second:

$$\det \begin{bmatrix} ka_{11} & ka_{12} & \cdots & ka_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} = k \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

and similarly for the other rows. Here, $k \in \mathbb{R}$ is any scalar.

Warning! Multilinearity does <u>not</u> say that det(A + B) = det(A) + det(B). It also does <u>not</u> say det(kA) = k det(A). But: $det(kA) = k^n det(A)$ is true.

Determinants: Geometry

Prop 17.5: Let A be any 2×2 matrix. Then the area of the parallelogram generated by the columns of A is $|\det(A)|$.

Prop 17.6: Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation with matrix A. Let R be a region in \mathbb{R}^2 . Then:

$$Area(T(R)) = |det(A)| \cdot Area(R).$$

Coordinate Systems

Def: Let V be a k-dim subspace of \mathbb{R}^n . Each basis $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ determines a **coordinate system** on V.

That is: Every vector $\mathbf{v} \in V$ can be written uniquely as a linear combination of the basis vectors:

$$\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k.$$

We then call c_1, \ldots, c_k the **coordinates** of **v** with respect to the basis \mathcal{B} . We then write

$$[\mathbf{v}]_{\mathcal{B}} = egin{bmatrix} c_1 \ c_2 \ dots \ c_k \end{bmatrix}.$$

Note that $[\mathbf{v}]_{\mathcal{B}}$ has k components, even though $\mathbf{v} \in \mathbb{R}^n$.

Note: Levandosky (L21: p 145-149) explains all this very clearly, in much more depth than this review sheet provides. The examples are also quite good: make sure you understand all of them.

Def: Let $\mathcal{B} = \{\mathbf{v}_1, \dots, \mathbf{v}_k\}$ be a basis for a k-dim subspace V of \mathbb{R}^n . The **change-of-basis matrix** for the basis \mathcal{B} is:

$$C = \begin{bmatrix} | & | & & | \\ \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_k \\ | & | & & | \end{bmatrix}.$$

Every vector $\mathbf{v} \in V$ in the subspace V can be written

$$\mathbf{v} = c_1 \mathbf{v}_1 + \dots + c_k \mathbf{v}_k.$$

In other words:

$$\mathbf{v} = C[\mathbf{v}]_{\mathcal{B}}.$$

This formula tells us how to go between the standard coordinates for \mathbf{v} and the \mathcal{B} -coordinates of \mathbf{v} .

Special Case: If $V = \mathbb{R}^n$ and \mathcal{B} is a basis of \mathbb{R}^n , then the matrix C will be invertible, and therefore:

$$[\mathbf{v}]_{\mathcal{B}} = C^{-1}\mathbf{v}.$$