2025 年春工科数学分析 (下) 测验一

组别	第一页	第二页	总分
得分			

说明: 本卷共 2 页、4 大题, 满分 100 分. 请详细写出解题过程.

- 1. (60 分 =12 分 ×5) 判断下列说法是否正确,并证明你的结论.
- (1) 级数 $\sum_{n=1}^{\infty} \sin(n\pi + \frac{1}{n})$ 条件收敛.

(3) 设 $\sum a_n$ 是收敛的正项级数. 令 $A_n = \sup_{k \ge n} a_k$,则 $\sum A_n$ 也收敛.

(4) 若 $\sum_{n=0}^{\infty} a_n x^n$ 在 $x \in (-R, R)$ 上收敛于 f(x), 且在 x = R 处发散,则 $\int_0^R f(x) dx$ 是一个 瑕积分,并且该瑕积分发散.

(2) 级数 $\sum_{n=1}^{\infty} (x^n - x^{n+2})$ 在 $x \in [0,1]$ 上一致收敛.

(5) 设 $f \in C^1(\mathbb{R}), f(0) = 0, f'(x) > 0$, 若 $\sum f(a_n)$ 收敛. 则 $\sum a_n$ 收敛.

2. (15 分) 利用 $\sum_{n=1}^{\infty} [x^n + (1-x)^n]/n^2$ 在 $x \in [0,1]$ 上的和函数计算 $\sum_{n=1}^{\infty} 1/(2^n n^2)$.

4. (10 分) 设 f 是一个以 2π 为周期的周期函数. 如果 f(x) 在 $x \in \mathbb{R}$ 上可以展开成幂级数 $\sum_{n=0}^{\infty} a_n x^n$, 证明: f 的 Fourier 级数一致收敛于 f, 并且可以逐项求导.

3. (15 分) 设 (a_n) 单调递减且 $0 < a_n < 1$, 证明: $\sum (a_{n-1} - a_n)/(a_n \ln a_n)$ 收敛的充要条件 是 (a_n) 的极限是正数.