

# Multimodal Deep Learning for Animal Classification

Tatiana Eliseeva, Mike Krähenbühl, Andrea Staub

### 1 Goal

Predicting the probability distribution of animal categories based on image data and tabular data using different NN architectures.



# 2 Data

- **Image data:** CIFAR-10 animal images, 32x32 colour images in six classes, with 6'000 images per class.
- **Tabular data:** Randomly generated weight from uniform distribution with reasonable lower and upper bounds for each animal type.



# 3 Applied Model Architectures

| Model Name                   | Architecture Brief Summary*                                                        | Inputs             |
|------------------------------|------------------------------------------------------------------------------------|--------------------|
| Model 1 - CNN                | "Classic" Image CNN                                                                | Images             |
| Model 2 - 1LfcNN-b           | Single-Layer fcNN. Contains weights only, softmax activation function without bias | Weights            |
| Model 3 - 1LfcNN             | Single-Layer fcNN. Contains weights only, softmax activation function with bias    | Weights            |
| Model 4 - Deep-fcNN          | Deep fcNN. Contains weights only, ReLu kern with bias                              | Weights            |
| Model 5 - CNN +<br>1LfcNN    | CNN + Single-Layer fcNN                                                            | Images and weights |
| Model 6 - CNN +<br>Deep-fcNN | CNN + Deep fcNN                                                                    | Images and weights |

\*Always softmax activation at output nodes



# 4 Results

| Model           | Accuracy | Loss  |
|-----------------|----------|-------|
| CNN             | 0.674    | 0.902 |
| 1LfcNN-b        | 0.167    | 1.766 |
| 1LfcNN          | 0.446    | 1.451 |
| Deep-fcNN       | 0.757    | 0.537 |
| CNN + 1LfcNN    | 0.713    | 0.792 |
| CNN + Deep-fcNN | 0.871    | 0.344 |

CNN



Deep-fcNN



CNN + Deep-fcNN



## 5 Conclusion

- Single-Layer NN has too low accuracy
- Deep NN allow to capture the features needed for proper categorisation
- Already one layers of fcNN that allows to process tabular data, can significantly increase the accuracy
- Best results shows combination of CNN and Deep-fcNN