

第九课(第25-27课时) 事务型数据和关联分析

- 事务型数据和关联规则
- 频繁项集
- Apriori
- FP-Growth树
- 关联规则的产生
- 关联分析的评价

前情回顾

分析单个变量:各种方法

> 分析多个变量:各种方法

> 回归分析和广义线性模型:确认变量之间的关系

- 解释和预测

> 分类分析:预测类别型因变量,有监督学习

> 聚类分析:无监督学习,发现数据点之间的关系

> 基于重抽样:

- 统计量的显著性检验和区间估计 (permutation test, Bootstrap)
- 增强训练效果和评价的稳定性(CV, Bagging, Boost..)
- > 模型选择:
 - 拟合度,查准率,查全率,ROC

事务型数据和关联分析:任务描述

- 理解、掌握从事务型数据中确认频繁项集
- > 理解Apriori和FP-Growth Tree算法
- > 掌握提取频繁项集
- > 了解对关联分析的评价方法

关联规则的挖掘

- > 根据事务记录中某些项的出现来预测其他项的出现
 - 用于发现隐藏在大型数据集中的有意义的联系

购物篮数据

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

关联规则示例

 $\{ \text{Diaper} \} \rightarrow \{ \text{Beer} \},$ $\{ \text{Milk, Bread} \} \rightarrow \{ \text{Eggs,Coke} \},$ $\{ \text{Beer, Bread} \} \rightarrow \{ \text{Milk} \},$

暗示了某些项的同时出现并非随机

定义:频繁项集

▶ 项集 Itemset

- Example: {Milk, Bread, Diaper}
- k-itemset
 - 包含k 个项的集合
- > 支持度计数 Support count (σ)
 - 项集在数据记录中出现的频数
 - E.g. $\sigma(\{Milk, Bread, Diaper\}) = 2$
- ➤ 支持度 Support
 - 项集在数据中出现的比例
 - E.g. s({Milk, Bread, Diaper}) = 2/5
- > 频繁项集 Frequent Itemset
 - 支持度超过*minsup*的项集
 - ・ 最小支持度阈值

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

定义:关联规则 Association Rule

・ 关联规则Association Rule

- X → Y, X 和 Y 均为项集
- 关联规则的表示形式:X,Y无交集
- Example: {Milk, Diaper} → {Beer}

•	关联规则的度量
---	---------

- Support (s) 支持度
 - 同时包含 X 和Y的项集的比例
- Confidence (c) 置信度
 - 包含X的项集中同时出现Y的比例

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

例:

 $\{Milk, Diaper\} \Rightarrow Beer$

$$s = \frac{\sigma(\text{Milk}, \text{Diaper}, \text{Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$

关联规则挖掘的任务

- > 找到所有的规则,满足支持度和置信度的要求
 - support ≥ minsup threshold
 - confidence ≥ minconf threshold
- > 暴力方法:逐个规则
 - 找出所有的关联规则
 - 逐一计算每个规则的支持度和置信度
 - 去除不满足要求的规则(支持度和置信度分别小于*minsup* 和 *minconf* 阈值)
 - ⇒ 然而是高消费计算资源的!

挖掘关联规则

TID	Items
1	Bread, Milk
2	Bread, Diaper, Beer, Eggs
3	Milk, Diaper, Beer, Coke
4	Bread, Milk, Diaper, Beer
5	Bread, Milk, Diaper, Coke

Example of Rules:

 ${Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)$ ${Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)$ ${Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)$ ${Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)$ ${Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)$ ${Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)$

Observations:

- •以上规则均源于同一个项集 {Milk, Diaper, Beer}
- •以上规则支持度相同,置信度不同
- 所以,要分开处理支持度和置信度问题

挖掘关联规则

- > Two-step approach:
 - 1. 频繁项集产生 Frequent Itemset Generation
 - Generate all itemsets whose support ≥ minsup
 - 2. 规则的产生 Rule Generation
 - Generate high confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset

Frequent itemset generation is still computationally expensive

频繁项集的产生 Frequent Itemset General Pine

频繁项集的产生

- ➢ 暴力方法 Brute-force approach:
 - 数据集中的每个项集都可以是频繁项集
 - 对每个项集,计算其在数据记录中的出现频次

- 对每个可能的项集在每条记录中进行比对
- 复杂度 ~ O(NMw) => 高, M = 2d!!! (d是 "商品"的种类数)

> 给定d个不同的项:

- 项集的个数= 2d
- 则关联规则的个数 为:

$$R = \sum_{k=1}^{d-1} \left[\begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R=602 rules

数据分析和数据挖掘

中国大数据在线教育领导者

by郭鹏程(绿树@小象)

- > 减少备选项集的数量 (M)
 - 暴力法: M=2d
 - 如何减少 M
- ≻ 减少 交易数目 (N)
 - **—** ?
- ▶ 减少 比对次数 (NM)
 - 使用更有效的数据结构来存储项集和交易
 - 不需要一 一进行比对

通过减少候选项集数目 Reducing Number of Candidates

- ➤ Apriori 原则:
 - 频繁项集的子集也频繁
- > Apriori 基于项集支持度support的属性:

$$\forall X, Y : (X \subseteq Y) \Longrightarrow s(X) \ge s(Y)$$

- 项集的支持度总不会大于其子集的支持度
- support的反单调性

图示: Illustrating Apriori Principle 具. 具. 是学院 ChinaHadoop.cn

数据分析和数据挖掘

中国大数据在线教育领导者

by郭鹏程(绿树@小象)

Apriori 原理

Item	Count
Bread	4
Coke	2
Milk	4
Beer	3
Diaper	4
Eggs	1

Items (1-itemsets)

Count
3
2
3
2
3
3

Pairs (2-itemsets)

(舍弃包含Coke或Eggs的项集)

MinSup= 3

Triplets (3-itemsets)

If every subset is considered,
${}^{6}C_{1} + {}^{6}C_{2} + {}^{6}C_{3} = 41$
With support-based pruning,
6 + 6 + 1 = 13

Itemset	Count
{Bread,Milk,Diaper}	3

算法: Apriori Algorithm

Method:

- Let k=1
- 生成1-频繁项集
- 重复直至无频繁项集被发现
 - 从k频繁项集产生 k+1频繁项集
 - 去除包含k-不频繁项集的项集
 - 计算支持度
 - 去除非频繁项集

算法实现

> 示例代码和数据

- 链接: http://pan.baidu.com/s/1o8fDDZO 密码: uzki
- 代码来自《机器学习实战》11/12章

减少比较次数 Reducing Number of Comparisons

- Candidate counting:
 - 扫描数据记录,统计每个项集的支持度
 - 为了减少比对次数,将数据存储与哈希表中

Hash(哈希)树的产生

15 个长度为3的备选项集:

需要:

- •哈希函数
- 最大叶子数目: 当某叶节点备选项集数目超过此数, 分裂该叶节点

哈希树

哈希树

哈希树

子集操作

数据分析和数据挖掘

中国大数据在线教育领导者

by郭鹏程(绿树@小象)

使用哈希树对子集进行操作

使用哈希树对子集进行操作

使用哈希树对子集进行操作

有关计算复杂度

- > 最小支持度的选择
 - 降低minsup:产生更多的频繁项集,增加频繁项集的最大长度
- > 维度 (项的数目)
 - 影响存储、计算和I/O
- > 数据库的大小(记录数目)
 - 运行时间
- > 平均记录的宽度
 - 密集的数据集具有较大的W
 - 影响频繁项集的最大长度,和哈希树遍历的时间

频繁项集的压缩

> 某些频繁项集的支持度如果与其超集相同,则它是冗余的

TID	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10	B1	B2	В3	B 4	B5	B6	B7	B8	B9	B10	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10
1	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
2	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
3	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
4	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
5	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
6	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
7	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
8	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
9	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
10	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0	0
11	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
12	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
13	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
14	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1
15	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1	1

> Number of frequent itemsets
$$= 3 \times \sum_{k=1}^{10} {10 \choose k}$$

> Need a compact representation

FP-growth Algorithm

> Apriori :

- 不断的构造候选集、筛选候选集挖掘出频繁项集
- 多次扫描原始数据,当数据较大时,磁盘I/O次数太多,效率比较低下。

> FP-growth:

- 仅扫描原始数据两遍,通过FP-tree数据结构对原始数据进行压缩
- ▶ 1. FP-tree构建(类似于前缀树)
 - 通过两次数据扫描,将原始数据中的事务压缩到一个FP-tree树

▶ 2. 递归挖掘FP-tree

通过FP-tree找出每个item的条件模式基、条件FP-tree,递归的挖掘条件FP-tree得到所有的频繁项集

FP-tree构建

> 第一遍扫描数据,找出频繁1项集L,按降序排序

TID	Items
1	{A,B}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{A,B,C\}$
6	$\{A,B,C,D\}$
7	{B,C}
8	$\{A,B,C\}$
9	$\{A,B,D\}$
10	$\{B,C,E\}$

1-频繁项集

Item	频次
В	8
Α	7
С	7
D	5
Е	3

FP-Tree的构建

> 第二遍扫描数据:

- 对每条记录,过滤其中不频繁集合(minsup),剩下的频繁项集按L顺序排序
 - 國值假设为3,过滤掉E
- 把条记录的频繁1项集插入到FP-tree中,相同前缀的路径可以共用
- 増加一个header table, 把FP-tree中相同item连接起来,也是降序排序

FP-tree 的构建

TID	Items
1	{B,A}
2	$\{B,C,D\}$
3	$\{A,C,D,E\}$
4	$\{A,D,E\}$
5	$\{B,A,C\}$
6	$\{B,A,C,D\}$
7	{B,C}
8	$\{B,A,C\}$
9	$\{B,A,D\}$
10	$\{B,C,E\}$

FP-Tree 构建

TID	Items
1	{B,A}
2	$\{B,C,D\}$
3	$\{A,C,D\}$
4	{A,D}
5	$\{B,A,C\}$
6	$\{B,A,C,D\}$
7	{B,C}
8	{B,A,C}
9	$\{B,A,D\}$
10	{B,C}

交易数据记 录

Header table

Item	Pointer
В	8
Α	7
С	7
D	5
=	3

指针表示项集之间的关系

FP-growth:频繁项挖掘

从header table的最下面的item开始, 构造每个item的条件模式基(conditional pattern base)

条件模式基 Conditional Pattern	
D	BAC:1,BA:1,BC:1, AC:1,A:1
С	BA:3,B:3,A:2
Α	B:5
В	{}

FP-growth:频繁项挖掘

- ▶ 构造条件FP-tree (conditional FP-tree)
 - 累加每个CPB上的item的频数,过滤低于阈值的item,构建条件 FP-tree
 - 阈值假设为3

FP-growth:频繁项挖掘

> 递归的挖掘每个条件FP-tree

- 累加后缀频繁项集,直到找到FP-tree为空或者FP-tree只有一条路径(只有一条路径情况下,所有路径上item的组合都是频繁项集)

条件模式基 Conditional Pattern		{}
D	BAC:1,BA:1,BC:1, AC:1,A:1	 ♥ B:3
С	BA:3,B:3,A:2	A:4 C:3
Α	B:5	
В	{}	

规则的产生 Rule Generation

- 冷定频繁项集L,需要找到f ⊂ L ,是的f → L f 满足最小置信度的要求
 - 例: 频繁项集{A,B,C,D} 对应的规则

ABC
$$\rightarrow$$
D, ABD \rightarrow C, ACD \rightarrow B, BCD \rightarrow A, A \rightarrow BCD, B \rightarrow ACD, C \rightarrow ABD, D \rightarrow ABC AB \rightarrow CD, AC \rightarrow BD, AD \rightarrow BC, BC \rightarrow AD, BD \rightarrow AC, CD \rightarrow AB,

→ 如果|L| = k, 则2^k – 2条候选规则!!

规则的产生 Rule Generation

> 是否有更高效的方法?

- 通常置信度没有反单调性
 c(ABC →D) , c(AB →D)关系不定
- 但是同一个频繁项集产生的关联规则具有反单调性!
- $e.g., L = {A,B,C,D}:$

$$c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$$

•

$$c = \frac{\sigma(A,B,C,D)}{\sigma(A,B,C)} \qquad c = \frac{\sigma(A,B,C,D)}{\sigma(A,B)}$$

规则产生的Apriori算法 Rule Generation for Apriori Algorithm ChinaHadoop.cn

Lattice of rules

支持度的分布

Many real data sets have skewed support distribution

Support distribution of 零售数据

数据分析和数据挖掘

中国大数据在线教育领导者

by郭鹏程(绿树@小象)

Effect of Support Distribution

- 设置合理的最小支持度阈值
 - 太高:遗漏
 - 太低:计算复杂
- 或许单一支持度阈值并非高效?

多个Minimum Support

> 多个最小支持度?

- MS(i): 不同的物品设置不同的最小支持度
- e.g.: MS(Milk)=5%, MS(Coke)=3%, MS(Broccoli)=0.1%, MS(Salmon)=0.5%
- MS({Milk, Broccoli}) = min (MS(Milk), MS(Broccoli))
 = 0.1%
- 障碍: 支持度不再具有反单调性
 - Suppose: Support(Milk, Coke) = 1.5% and Support(Milk, Coke, Broccoli) = 0.5%
 - {Milk,Coke} is infrequent but {Milk,Coke,Broccoli} is frequent

关联模式的评估 Pattern Evaluation Lina Hadoop.cn

- 大多数规则无趣、冗余
 - 若 {A,B,C} → {D} and {A,B} → {D} 具有相同的支持度和置信度 , 则冗余
- 可用兴趣度来剪枝和排序

兴趣度的客观度量

> 使用规则的列联表计算兴趣度

规则X→Y的列联表

	Υ	Y	
Χ	f ₁₁	f ₁₀	f ₁₊
X	f ₀₁	f ₀₀	f _{o+}
	f ₊₁	f ₊₀	Ξ

 f_{11} : support of X and Y f_{10} : support of X and \overline{Y} f_{01} : support of \overline{X} and Y f_{00} : support of \overline{X} and \overline{Y}

Used to define various measures

support, confidence, lift, Gini,
 J-measure, etc.

置信度的缺陷(支持度的缺陷?)

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence= P(Coffee|Tea) = 0.75but P(Coffee) = 0.9

- ⇒ 置信度高,但是规则并不正确
- \Rightarrow P(Coffee|Tea) = 0.9375

统计独立性(相关性)

> 1000 名学生

- 600 人会游泳(S)
- 700 人会骑车(B)
- 420 人会游泳和骑车(S,B)
- $P(S \land B) = 420/1000 = 0.42$
- $P(S) \times P(B) = 0.6 \times 0.7 = 0.42$
- P(S∧B) = P(S) × P(B) => 独立
- P(S∧B) > P(S) × P(B) => 正相关
- P(S∧B) < P(S) × P(B) => 负相关

基于统计框架的度量

> 考虑到相关性

$$Lift = \frac{P(Y \mid X)}{P(Y)}$$

提升度

$$Interest = \frac{P(X,Y)}{P(X)P(Y)}$$

兴趣

$$PS = P(X,Y) - P(X)P(Y)$$

相关分析

$$\phi - coefficien \ t = \frac{P(X,Y) - P(X)P(Y)}{\sqrt{P(X)[1 - P(X)]P(Y)[1 - P(Y)]}}$$

Example: Lift/Interest

	Coffee	Coffee	
Tea	15	5	20
Tea	75	5	80
	90	10	100

Association Rule: Tea → Coffee

Confidence = P(Coffee|Tea) = 0.75

but P(Coffee) = 0.9

 \Rightarrow Lift = 0.75/0.9= 0.8333 (< 1, therefore is negatively associated)

Lift & Interest的缺陷

	Υ	\overline{Y}	
X	10	0	10
X	0	90	90
	10	90	100

	Υ	Y	
X	90	0	90
X	0	10	10
	90	10	100

$$Lift = \frac{0.1}{(0.1)(0.1)} = 10$$

$$Lift = \frac{0.9}{(0.9)(0.9)} = 1.11$$

Statistical independence:

If
$$P(X,Y)=P(X)P(Y) \Rightarrow Lift = 1$$

	#	Measure	Formula
There are lots of	1	ϕ -coefficient	$\frac{P(A,B)-P(A)P(B)}{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}$
measures proposed	2	Goodman-Kruskal's (λ)	$\frac{\sqrt{P(A)P(B)(1-P(A))(1-P(B))}}{\sum_{j}\max_{k}P(A_{j},B_{k})+\sum_{k}\max_{j}P(A_{j},B_{k})-\max_{j}P(A_{j})-\max_{k}P(B_{k})}}{2-\max_{j}P(A_{j})-\max_{k}P(B_{k})}$
in the literature	3	Odds ratio (α)	$\frac{P(A,B)P(\overline{A},\overline{B})}{P(A,\overline{B})P(\overline{A},B)}$
	4	Yule's Q	$\frac{P(A,B)P(\overline{AB}) - P(A,\overline{B})P(\overline{A},B)}{P(A,B)} = \frac{\alpha - 1}{\alpha - 1}$
	5	Yule's Y	$\sqrt{P(A,B)P(\overline{AB})} - \sqrt{P(A,\overline{B})P(\overline{A},B)} = \sqrt{\alpha-1}$
Some measures are	6	Kappa (κ)	
good for certain	Ů	rappa (n)	$\frac{\overset{\bullet}{P}(A,B) + P(\overline{A},\overline{B}) - \overset{\bullet}{P}(A)P(B) - P(\overline{A})P(\overline{B})}{1 - P(A)P(B) - P(\overline{A})P(\overline{B})}$ $\sum_{i} \sum_{j} P(A_{i},B_{j}) \log \frac{P(A_{i},B_{j})}{P(A_{i})P(\overline{B}_{j})}$
applications, but not	7	Mutual Information (M)	$\overline{\min(-\sum_{i} P(A_i) \log P(A_i), -\sum_{j} P(B_j) \log P(B_j))}$
for others	8	J-Measure (J)	$\max\left(P(A,B)\log(rac{P(B A)}{P(B)})+P(A\overline{B})\log(rac{P(\overline{B} A)}{P(\overline{B})}), ight.$
			$P(A,B)\log(rac{P(A B)}{P(A)}) + P(\overline{A}B)\log(rac{P(\overline{A} B)}{P(A)})$
	9	Gini index (G)	$\max \left(P(A)[P(B A)^2 + P(\overline{B} A)^2] + P(\overline{A})[P(B \overline{A})^2 + P(\overline{B} \overline{A})^2] \right $
What criteria should			$-P(B)^2-P(\overline{B})^2,$
we use to determine			$P(B)[P(A B)^{2} + P(\overline{A} B)^{2}] + P(\overline{B})[P(A \overline{B})^{2} + P(\overline{A} \overline{B})^{2}]$
whether a measure			$-P(A)^2 - P(\overline{A})^2$
is good or bad?	10	Support (s)	P(A,B)
	11	Confidence (c)	$\max(P(B A), P(A B))$
	12	Laplace (L)	$\max\left(\frac{NP(A,B)+1}{NP(A)+2},\frac{NP(A,B)+1}{NP(B)+2}\right)$
What about Apriori-	13	Conviction (V)	$\max\left(rac{P(A)P(\overline{B})}{P(A\overline{B})},rac{P(B)P(\overline{A})}{P(B\overline{A})} ight)$
style support based	14	Interest (I)	$\frac{P(A,B)}{P(A)P(B)}$
pruning? How does	15	cosine (IS)	$\frac{P(A,B)}{\sqrt{P(A)P(B)}}$
it affect these	16	Piatetsky-Shapiro's (PS)	$\dot{P}(A,B) - P(A)P(B)$
measures?	17	Certainty factor (F)	$\max\left(rac{P(B A)-P(B)}{1-P(B)},rac{P(A B)-P(A)}{1-P(A)} ight)$
	18	Added Value (AV)	$\max(P(B A) - P(B), P(A B) - P(A))$
	19	Collective strength (S)	$\frac{P(A,B)+P(\overline{AB})}{P(A)P(B)+P(\overline{A})P(\overline{B})} \times \frac{1-P(A)P(B)-P(\overline{A})P(\overline{B})}{1-P(A,B)-P(\overline{AB})}$
	20	${\rm Jaccard}\ (\zeta)$	$\frac{P(A,B)}{P(A)+P(B)-P(A,B)}$
数据分析和数据挖:	21	Klosgen (K)	$\sqrt{P(A,B)}\max(P(B A)-P(B),P(A B)-P(A))$

好的度量的标准

- Piatetsky-Shapiro: 好的度量方式M的三条标准:
 - -M(A,B) = 0 if A and B are statistically independent
 - M(A,B) increase monotonically with P(A,B) when P(A) and P(B) remain unchanged
 - M(A,B) decreases monotonically with P(A) [or P(B)] when P(A,B) and P(B) [or P(A)] remain unchanged

Property under Variable Permutation 儿象学院

	В	$\overline{\mathbf{B}}$		A	$\overline{\mathbf{A}}$
A	p	q	В	р	r
$\overline{\mathbf{A}}$	r	S	$\overline{\mathbf{B}}$	q	S

Does M(A,B) = M(B,A)?

Symmetric measures:

support, lift, collective strength, cosine, Jaccard, etc

Asymmetric measures:

confidence, conviction, Laplace, J-measure, etc

Property under Row/Column Scaling 山象学院

Grade-Gender Example (Mosteller, 1968):

	Male	Female	
High	2	3	5
Low	1	4	5
	3	7	10

	Male	Female	
High	4	30	34
Low	2	40	42
	6	70	76

2x 10x

Mosteller:

Underlying association should be independent of the relative number of male and female students in the samples

Property under Inversion Operatio 山象学院 ChinaHadoop.cn

Example: φ-Coefficient

φ-coefficient is analogous to correlation coefficient for continuous variables

	Υ	Y	
X	60	10	70
X	10	20	30
	70	30	100

	Υ	Y	
X	20	10	30
X	10	60	70
	30	70	100

$$\phi = \frac{0.6 - 0.7 \times 0.7}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}} \qquad \phi = \frac{0.2 - 0.3 \times 0.3}{\sqrt{0.7 \times 0.3 \times 0.7 \times 0.3}}$$
$$= 0.5238 \qquad = 0.5238$$

\phi Coefficient is the same for both tables

Property under Null Addition

	В	$\overline{\mathbf{B}}$			В	$\overline{\mathbf{B}}$
A	p	q		A	p	q
$\overline{\mathbf{A}}$	r	S	V	$\overline{\mathbf{A}}$	r	s + k

Invariant measures:

support, cosine, Jaccard, etc

Non-invariant measures:

correlation, Gini, mutual information, odds ratio, etc

Different Measures have Different Propedies院

Symbol	Measure	Range	P1	P2	P3	01	02	O3	O3'	04
Φ	Correlation	-1 0 1	Yes	Yes	Yes	Yes	No	Yes	Yes	No
λ	Lambda	0 1	Yes	No	No	Yes	No	No*	Yes	No
α	Odds ratio	0 1 ∞	Yes*	Yes	Yes	Yes	Yes	Yes*	Yes	No
Q	Yule's Q	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
Υ	Yule's Y	-1 0 1	Yes	Yes	Yes	Yes	Yes	Yes	Yes	No
κ	Cohen's	-1 0 1	Yes	Yes	Yes	Yes	No	No	Yes	No
M	Mutual Information	0 1	Yes	Yes	Yes	Yes	No	No*	Yes	No
J	J-Measure	0 1	Yes	No	No	No	No	No	No	No
G	Gini Index	0 1	Yes	No	No	No	No	No*	Yes	No
S	Support	0 1	No	Yes	No	Yes	No	No	No	No
С	Confidence	0 1	No	Yes	No	Yes	No	No	No	Yes
L	Laplace	0 1	No	Yes	No	Yes	No	No	No	No
V	Conviction	0.5 1 ∞	No	Yes	No	Yes**	No	No	Yes	No
1	Interest	0 1 ∞	Yes*	Yes	Yes	Yes	No	No	No	No
IS	IS (cosine)	0 1	No	Yes	Yes	Yes	No	No	No	Yes
PS	Piatetsky-Shapiro's	-0.25 0 0.25	Yes	Yes	Yes	Yes	No	Yes	Yes	No
F	Certainty factor	-1 0 1	Yes	Yes	Yes	No	No	No	Yes	No
AV	Added value	0.5 1 1	Yes	Yes	Yes	No	No	No	No	No
S	Collective strength	0 1 ∞	No	Yes	Yes	Yes	No	Yes*	Yes	No
ζ	Jaccard	0 1	No	Yes	Yes	Yes	No	No	No	Yes
K	Klosgen's	$\left(\sqrt{\frac{2}{\sqrt{3}}-1}\right)\left(2-\sqrt{3}-\frac{1}{\sqrt{3}}\right)\dots 0\dots \frac{2}{3\sqrt{3}}$	Yes	Yes	Yes	No	No	No	No	No

关联分析练习:

购物链数据

- 如需使用MLiA代码,需要对数据进行转换

association.xls

2016/7/9 12:18 2016/7/9 0:03

jieba-master.zip

2016/7/9 10:06

■ 历史日线数据_样本(2013 2014年数据)2.zip

Microsoft Excel 97-... 413 KB Compressed (zippe... 12,109 KB

- 4	A	В	С	D	E
1	CUSTOMER	TIME	PRODUCT		
2	0	0	hering		
3	0	1	corned_b		
4	0	2	olives		
5	0	3	ham		
6	0	4	turkey		
7	0	5	bourbon		
8	0	6	ice_crea		
9	1	0	baguette		
10	1	1	soda		
11	1	2	hering		
12	1	3	cracker		
13	1	4	heineken		
14	1	5	olives		
15	1	6	corned_b		
16	2	0	avocado		
17	2	1	cracker		
18	2	2	artichok		
19	2	3	heineken		
20	2	4	ham		
21	2	5	turkey		
22	2	6	sardines		
23	3	0	olives		
94	ာ	1	LL		

- > 数据:
 - 链接: http://pan.baidu.com/s/1o8fDDZO 密码: uzki
- ➤ 书的信息样例: https://book.douban.com/subject/1048173/
- > 目标:
- > 1.找出跟某一用户相似的若干读者
- > 2.找出跟某一本书有类似读者群的书
- > 3. 为读者划分类型
- > 4. 为书划分类型
- > 5. 为某一读者推荐他没有读过的书
- **6. 使用关联分析进行推荐并且比较**

```
🛮 tips.csv 🗵 📙 douban.dat 🗵 📙 滚动建模测试程序说明.txt 🗵 📙
    45874270::2348372::4
    45874270::3216007::5
    45874270::1261560::5
    45874270::3138847::5
    45874270::1044177::5
    45874270::3142118::5
    45874270::3234345::5
    45874270::3151575::5
    45874270::4219500::5
10
    45874270::1116367::5
11
    45874270::1054889::5
    45874270::1048173::5
13
    45874270::3225658::5
14
    45874270::3343988::5
15
    45874270::3574119::5
    45874270::1322025::5
16
17
    45874270::1865089::5
    2668761 • • 2354909 • • 4
```


> 综合股指数据(1年期)

👪 sh000001.csv
👪 sh000016.csv
👪 sh000300.csv
🔊 sz399001.csv
🔊 sz399005.csv
🔊 sz399006.csv
👪 sz399905.csv

	А	В	С	D	Е	F	G	Н	I	J	К	L	М	
1	index_code	date	open	close	low	high	volume	money	change					
2	sh000001	2014/12/31	3172.6	3234.68	3157.26	3239.36	4.06E+10	4.32E+11	0.021752					
3	sh000001	2014/12/30	3160.8	3165.82	3130.35	3190.3	3.98E+10	4.37E+11	-0.00069					
4	sh000001	2014/12/29	3212.56	3168.02	3126.94	3223.86	5.1E+10	5.56E+11	0.003298					
5	sh000001	2014/12/26	3078.01	3157.6	3064.18	3164.16	4.61E+10	4.89E+11	0.027686					
6	sh000001	2014/12/25	2992.46	3072.54	2969.87	3073.35	3.77E+10	3.79E+11	0.033643					
7	sh000001	2014/12/24	3039.21	2972.53	2934.91	3050.51	3.77E+10	3.79E+11	-0.01981					
8	sh000001	2014/12/23	3085.08	3032.61	3025.67	3136.84	4.38E+10	4.19E+11	-0.03032					
9	sh000001	2014/12/22	3129.27	3127.45	3090.51	3189.87	6.79E+10	6.24E+11	0.006064					
10	sh000001	2014/12/19	3053.08	3108.6	3018.42	3117.53	5.21E+10	5.16E+11	0.016705					
11	sh000001	2014/12/18	3062.8	3057.52	3030.32	3089.79	4.36E+10	4.67E+11	-0.00114					
12	sh000001	2014/12/17	3031.95	3061.02	2993.33	3076.6	5.43E+10	5.80E+11	0.013074					
13	sh000001	2014/12/16	2953.81	3021.52	2943.91	3021.9	4.54E+10	4.93E+11	0.023057					
14	sh000001	2014/12/15	2921.45	2953.42	2890.9	2960.23	4E+10	4.11E+11	0.00519					
15	sh000001	2014/12/12	2929.36	2938.17	2914.96	2962.51	4.09E+10	4.20E+11	0.004248					
16	sh000001	2014/12/11	2912.35	2925.74	2892.61	2965.68	4.83E+10	4.80E+11	-0.00485					
17	sh000001	2014/12/10	2855.94	2940.01	2807.68	2946.71	5.13E+10	5.35E+11	0.029317					
18	sh000001	2014/12/9	2992.49	2856.27	2834.59	3091.32	7.72E+10	7.93E+11	-0.0543					
19	sh000001	2014/12/8	2907.82	3020.26	2879.85	3041.66	5.88E+10	5.93E+11	0.028121					
20	sh000001	2014/12/5	2926.57	2937.65	2813.05	2978.03	6.41E+10	6.39E+11	0.013172					
21	sh000001	2014/12/4	2783.47	2899.46	2772.43	2900.51	5.33E+10	5.09E+11	0.043148					
22	sh000001	2014/12/3	2768.68	2779.53	2733.87	2824.18	5.62E+10	5.30E+11	0.005782					
23	sh000001	2014/12/2	2667.82	2763.55	2665.69	2777.37	4.38E+10	3.97E+11	0.031114					
24	sh000001	2014/12/1	2691.73	2680.16	2668.84	2720.74	4.47E+10	4.01E+11	-0.001					
25	sh000001	2014/11/28	2629.63	2682.84	2622.06	2683.18	4.66E+10	4.02E+11	0.019901					
26	sh000001	2014/11/27	2615.37	2630.49	2599.11	2631.4	3.64E+10	3.39E+11	0.010037					
27	sh000001	2014/11/26	2572.65	2604.35	2570.4	2605.07	3.37E+10	3.17E+11	0.014312					
28	sh000001	2014/11/25	2532	2567.6	2527.08	2568.38	3.14E+10	2.82E+11	0.013707					
29	sh000001	2014/11/24	2505.53	2532.88	2495.52	2546.75	3.63E+10	3.30E+11	0.018533					
30	sh000001	2014/11/21	2452.64	2486.79	2446.65	2488.2	2.12E+10	1.98E+11	0.013916					
	← →	sh000001	+					:	4					Þ

大作业2:股票日数据挖掘(7月23日讲解)业务学院

▶ 个股日线(1年期)

4 0			-	-	-	•				14			5. 1	0			Б	
A	В	С	D	. E	, F	G	H	ı		K	L .	M	N	0	P	Q	K K	SA
1 code	ldate		high		close	change	volume	money	_	market_val			report_typ		_	PS_TTM	PC_TTM	PB PC
2 sh600			15.79	15.11						2.93E+11			#######		6.375742			
3 sh600			15.5	14.83	15.36					2.87E+11			#######		6.241646		3.32985	
4 sh600			15.88	14.71	14.95					2.79E+11					6.075039			
5 sh600			14.84	14.19	14.77		4.67E+08			2.76E+11			#######		6.001893	2.367837		
6 sh600			14.27	13.53	14.25					2.66E+11			#######		5.790589		3.089216	
7 sh600			14.2	13.31	13.46					2.51E+11			#######		5.469569		2.917955	
8 sh600			14.98	14.08	14.11		4.42E+08			2.63E+11				#######	5.733704	2.262032		
9 sh600			15.2	14.14			6.83E+08			2.74E+11				#######	5.965325	2.35341		
10 sh600			14.2	13.63	14.09		4.36E+08			2.63E+11					5.725573	2.258824	3.05453	
11 sh600			14.34	13.71	13.89	-0.01559	5E+08			2.59E+11			#######		5.6443			
12 sh600			14.39	13.33	14.11		8.7E+08			2.63E+11			#######		5.7337	2.262031		
13 sh600			13.3	12.65	13.29					2.48E+11			#######		5.400485	2.130572		
14 sh600			12.82	12.46	12.76					2.38E+11			#######		5.185116		2.766202	
15 sh600			13.38	12.78	12.98					2.42E+11			#######		5.274514			
16 sh600			13.55	12.85	13.05					2.43E+11			#######		5.302959		2.82907	
17 sh600			13.25	12.21	13.16	0.040316				2.45E+11			#######		5.34766			
18 sh600			14.16	12.46	12.65					2.36E+11			#######		5.140419			
19 sh600			14.04	13.2	13.81	0.020695				2.58E+11			#######		5.611792			
20 sh600			14	12.9	13.53					2.52E+11			#######		5.498011	2.169048		
21 sh600		12.58	13.3	12.37	13.27	0.054849	7.2E+08	9.31E+09	1.98E+11	2.48E+11	0.048251	110.1644	#######	#######	5.392359	2.127366	2.876764	1.069
22 sh600	000 2014/12/3	12.84	13.29	12.32	12.58	-0.02253	7.31E+08	9.38E+09	1.88E+11	2.35E+11	0.048956	104.4362	#######	#######	5.111972	2.01675	2.727181	1.014
23 sh600	000 2014/12/2	12.03	13.08	12.03	12.87	0.058388	5.89E+08	7.4E+09	1.92E+11	2.4E+11	0.039495	106.8437	#######	#######	5.229815	2.063241	2.790049	1.01
24 sh600	000 2014/12/1	12.45	12.98	12.12	12.16	-0.01936	6.07E+08	7.59E+09	1.81E+11	2.27E+11	0.040694	100.9494	#######	#######	4.941303	1.949418	2.636131	0.980
25 sh600	000 2014/11/28	11.53	12.48	11.48	12.4	0.080139	8.32E+08	9.95E+09	1.85E+11	2.31E+11	0.055766	102.9419	#######	#######	5.038829	1.987894	2.68816	0.99
26 sh600	000 2014/11/27	11.48	11.72	11.28	11.48	0.014134	4.4E+08	5.06E+09	1.71E+11	2.14E+11	0.029468	95.30429	#######	#######	4.664982	1.840405	2.488717	0.925
27 sh600	000 2014/11/26	11.25	11.43	11.1	11.32	0.021661	4.52E+08	5.09E+09	1.69E+11	2.11E+11	0.030307	93.97604	#######	#######	4.599966	1.814756	2.454032	0.911
28 sh600	000 2014/11/25	10.81	11.09	10.75	11.08	0.020258	2.89E+08	3.16E+09	1.65E+11	2.07E+11	0.019399	91.98358	#######	#######	4.502439	1.77628	2.402002	0.891
29 sh600	000 2014/11/24	10.57	10.99	10.45	10.86	0.006487	4.74E+08	5.09E+09	1.62E+11	2.03E+11	0.031767	90.15718	#######	#######	4.41304	1.74101	2.354308	0.81
30 sh600	000 2014/11/21	10.58	10.82	10.46	10.79	0.020814	2.1E+08	2.23E+09	1.61E+11	2.01E+11	0.014072	89.5761	#######	#######	4.384597	1.729789	2.339134	0.870
31 sh600	000 2014/11/20	10.45	10.66	10.37	10.57	0.009551	1.62E+08	1.71E+09	1.58E+11	1.97E+11	0.010883	87.74968	#######	#######	4.295197	1.694519	2.29144	0.851
32 sh600	000 2014/11/19	10.43	10.54	10.39	10.47	0.001914	1.45E+08	1.52E+09	1.56E+11	1.95E+11	0.009739	86.91951	#######	#######	4.254561	1.678488	2.269762	0.844
22 -1-000		10.75	100	10.40	40.45	0.00704	2	2.000.00	1 5 6 5 . 11	1000.44		00.75040	иппиппип	иппиппип	4040404	4.07000	2.200.420	
←	sh600000	+									1							•

▶ 目标:

- 1. 根据股指进行预测
- 2. 找出权重股,与真实权重股进行对比
- 3. 根据个股数据对个股进行聚类,形成"板块"
- 4. 尝试挖掘板块之间的关系

中文分词

> 结巴中文分词

- https://github.com/fxsjy/jieba
- 支持三种分词模式:
 - 精确模式,试图将句子最精确地切开,适合文本分析;
 - 全模式,把句子中所有的可以成词的词语都扫描出来,速度非常快,但是不能解决歧义;
 - 搜索引擎模式,在精确模式的基础上,对长词再次切分,提高 召回率,适合用于搜索引擎分词

安装说明

代码对 Python 2/3 均兼容

- •全自动安装: easy_install jieba 或者 pip install jieba / pip3 install jieba
- 半自动安装:先下载 http://pypi.python.org/pypi/jieba/ , 解压后运行 python setup.py install
- 手动安装:将 jieba 目录放置于当前目录或者 site-packages 目录
- 通过 import jieba 来引用

中文分词

代码示例

```
# encoding=utf-8
import jieba

seg_list = jieba.cut("我来到北京清华大学", cut_all=True)
print("Full Mode: " + "/ ".join(seg_list)) # 全模式

seg_list = jieba.cut("我来到北京清华大学", cut_all=False)
print("Default Mode: " + "/ ".join(seg_list)) # 精确模式

seg_list = jieba.cut("他来到了网易杭研大厦") # 默认是精确模式
print(", ".join(seg_list))

seg_list = jieba.cut_for_search("小明硕士毕业于中国科学院计算所,后在日本京都大学深造") # 搜索引擎模式
print(", ".join(seg_list))
```

输出:

【全模式】: 我/来到/北京/清华/清华大学/华大/大学

【精确模式】: 我/来到/北京/清华大学

【新词识别】:他,来到,了,网易,杭研,大厦 (此处,"杭研"并没有在词典中,但是也被Viterbi算法识别出来了)

【搜索引擎模式】: 小明,硕士,毕业,于,中国,科学,学院,科学院,中国科学院,计算,计算所,后,在,日本,京都,大学,[

联系我们:

- 新浪微博: ChinaHadoop

- 微信公号: ChinaHadoop

- 网站: http://chinahadoop.cn

- 问答社区: http://wenda.ChinaHadoop.cn

