5.5-1. Let X_1, X_2, \dots, X_{16} be a random sample from a normal distribution $N(\mu = 77, \sigma = 25)$. Compute

(a)
$$P(77 < X_1 < 79.5)$$
. (b) $P(74.2 < \overline{X} < 78.4)$.

(c) Find
$$P\left(-0.1 < \frac{\bar{X}-77}{25/\sqrt{16}} < 2\right)$$

(d) Find
$$P\left(-0.1 < \frac{\bar{X}-77}{S/\sqrt{16}} < 2\right)$$

(e) Find
$$P\left(\frac{15}{625}S^2 < 10\right)$$

(f) Find
$$P(S^2 < 1000)$$

2) Let X_1, \dots, X_4 be a random sample from

$$f(x) = \frac{1}{30}(2x+1), 0 < x < 5$$

- a) Find the cdf and pdf of $X_{(1)}$
- b) Find $P(X_{(1)} < 1)$ using the cdf and $E(X_{(1)})$ (use integral calculator)
- c) Find $P(X_{(1)} < 1)$ using the pdf and the integral calculator (answer should match (b))
- d) Find the cdf and pdf of $X_{(4)}$
- e) Find $P(X_{(4)} > 4)$ and $E(X_{(4)})$
- f) Find the cdf and pdf of $X_{(2)}$
- g) Find $P(1 \le X_{(2)} \le 3)$ and $E(X_{(2)})$

9.74 Let $Y_1, Y, ..., Y_n$ be a random sample of size n from the following pdf:

$$f(y \mid \theta) = \begin{cases} \left(\frac{2}{\theta^2}\right)(\theta - y), & 0 \le y \le \theta, \\ 0, & \text{elsewhere.} \end{cases}$$

- (a) Find the method of moments estimator (MME) for θ
- **(b)** If $x = \{1.5, 0.2, 3.1, 7, 1.5, 2.25, 6, 8.2\}$, calculate the point estimate for $\hat{\theta}$
- **6.4-1.** Let $X_1, X_2, ..., X_n$ be a random sample from $Normal(\mu, \sigma^2 = 36)$. We are going to show that \overline{X} is the MLE for μ .
- (a) Find the likelihood function $L(\mu \mid x)$ and the log-likelihood function $\ell(\mu)$
- (b) Optimize the log-likelihood function
- (c) Check the second derivative to confirm global max at $\hat{\mu} = \overline{X}$

6.4-10. Let X_1, X_2, \ldots, X_n be a random sample of size n from a geometric distribution for which p is the probability of success.

Use the alternate form of the geometric distribution that counts the number of failures before the first success:

$$f(y_i | p) = (1-p)^{y_i} p, y_i = 0, 1, 2, ...$$

 $E(Y) = \frac{1-p}{p}$

- (a) Use the method of moments to find a point estimate for p.
- **(b)** Find the MLE for p (skip the second derivative check)
- (c) If $y = \{1, 4, 2, 8, 9, 4, 10\}$, calculate the point estimate for the MME and MLE of p

6.4-9. Let $X_1, X_2, ..., X_n$ be a random sample of size n from the exponential distribution whose pdf is $f(x; \theta) = (1/\theta)e^{-x/\theta}$, $0 < x < \infty$, $0 < \theta < \infty$.

(This is the scale parametrization of the exp dist)

- (a) Find the MLE for θ
- **(b)** Show that $\hat{\theta}$ is an unbiased estimator of θ (Can use integral calculator for E(X))
- (c) Find the MLE for $V(X) = \theta^2$
- (d) Calculate the MLE for V(X) if an observed random sample of n = 5 is $x = \{3.5, 8.1, 0.9, 4.4, 0.5\}$

Answers

5.5-1		9.74
a)	0.0398	a)
b)	0.2615	b) 11.156
c)	0.5171	
d)	0.5072	6.4-1
e)	0.1803	
f)	0.9349	6.4-10
		a)
2		b)
a)		c) MME = 0.1555 = MLE
b)	P() = 0.2412, E() = 1.7991	
c)		6.4-9
d)		a)
e)	P() = 0.8025, E() = 4.3947	b)
f)		c)
g)	P() = 0.1781, E() = 3.704	d) 12.1104