AIFA: CSP

04/03/2024

Koustav Rudra

CUTSET Conditioning

Agree: $(M1, M2) \in \{(WA = G, NT = G, SA = G), (NT = G, Q = B, SA = G)\}, \dots\}$

Iterative Improvement

- Start with a complete assignment with unsatisfied constraints
- Iteratively change solution
 - Reassign variable values
 - No data structure like stack maintained
- Algorithm
 - Variable selection: randomly select any conflicting variable
 - Value selection: min-conflict heuristics
 - Choose a value that violates the fewest constraints
 - (hill climb with h(n)=total number of constraints violated)

Iterative Improvement: 4 Queen Problem

Min Conflict Heuristics

- Can solve N-queen problem for arbitrary n (~10M) with high probability in constant time
- Similar performance on random CSPs except for a narrow range

•
$$R = \frac{|Constraint Set|}{|Variable Set|}$$

Comparison

Problem	Backtracking	BT+MRV	Forward Checking	FC + MRV	Min-Conflicts
N-Queens	>40,000K	13,500K	>40,000K	817K	4K

Summary

- CSP: Special instance of search problem
 - Generic (i.e., Problem Agnostic)
- Basic Algorithm: Backtracking
- Speedup: Ordering, Filtering, Problem Structure
- Iterative min-conflict (more practical)

- 1) You are in charge of scheduling for computer science classes that meet Mondays, Wednesdays and Fridays. There are 5 classes that meet on these days and 3 professors who will be teaching these classes. You are constrained by the fact that each professor can only teach one class at a time.
- The classes are:
- Class 1 Programming: meets from 8:00-9:00am
- Class 2 Artificial Intelligence: meets from 8:30-9:30am
- Class 3 Natural Language Processing: meets from 9:00-10:00am
- Class 4 Information Retrieval: meets from 9:00-10:00am
- Class 5 Machine Learning: meets from 9:30-10:30am
- The professors are:
- Professor A, who is available to teach Classes 3 and 4.
- Professor B, who is available to teach Classes 2, 3, 4, and 5.
- Professor C, who is available to teach Classes 1, 2, 3, 4, 5.

C1	С
C2	В,С
C3	A,B,C
C4	A,B,C
C5	B,C

(b). Draw the constraint graph associated with your CSP [2]

- Class 1 Programming: meets from 8:00-9:00am
- Class 2 Artificial Intelligence: meets from 8:30-9:30am
- Class 3 Natural Language Processing: meets from 9:00-10:00am
- Class 4 Information Retrieval: meets from 9:00-10:00am
- Class 5 Machine Learning: meets from 9:30-10:30am

(c). Search for a solution using basic backtracking. Only check whether any new assignment violates no constraint with previous assignments. As a tie breaker assign a class to a professor based on <u>alphabetical order</u>. Continue up to the first time you try and fail to assign <u>any value</u> for Class 5.

SL No.	Var assigned or dequeued	List all values eliminated from neighbouring variables	Backtrack?
1			
2			
3			
4			
5			
6			
7			