Üretim Çizelgeleme

Çizelgeleme fonksiyonunun ÜPK içindeki yeri

Üretim Siparişleri (Çizelgeleme) Terminleme

Terminleme

Dışardan tedarik için

Aşağıdakilere göre teslimat ve onay terminlerinin belirlenmesi

Geriye dönük terminleme

ya da

İleriye dönük terminleme Dahili üretim için

Aşağıdkilere göre üretim temel terminlerinin belirlenmesi

Geriye dönük terminleme

ya da

ileriye dönük terminleme

İş akışı terminlemesi, kapasite yükünü ve terminlenen tarihleri belirlemektedir.

Geriye Doğru Çizelgeleme (Terminleme)

İleriye Doğru Terminleme

İş akışı Terminlemesi

İşlem Akış Süresi

Çizelgelemedeki Tüm Süre Öğeleri

PARTI ÜRETİMİ ÇİZELGELEME

Stoğa üretim yapan birçok üretici, ortak tesislerde farklı ürünler üretirler. Örneğin, bir sabun şirketi, farklı ebatlardaki sabunları tek bir paketleme hattında paketleyebilir. Böyle durumlarda, ürünler partiler halinde üretilirler. Burada yöneticiler tarafından verilmesi gereken karar, her bir partide ne kadar üretilmesi gerektiği ve sırasının seçimidir. Parti sıralamada en yaygın kullanılan teknik, yeterli süreye göre çizelgelemedir.

Ebat	Parti büyüklü ğü	Üretim süresi (Hafta)	Üretim Hızı (Birim/H afta)	Talep (Birim/H afta)	Mevcut Stok
Küçük	1000	1.2	833	150	800
Orta	800	0.8	1000	250	600
Büyük	1500	2	750	150	2000
Jumbo	1800	2	900	100	2500
Battal	600	1	600	100	525

Yeterli Süreye Göre Çizelgeleme

Eldeki Miktar (Stok)
Yeterli Süre = -----Talep Miktarı (birim peryotta)

Ebat	Yeterli Süre
Küçük	800/150=5.33
Orta	600/250=2.4
Büyük	2000/150=13.33
Jumbo	2500/100=25
Battal	525/100=5.25

Yeterli Süreye Göre Çizelgeleme (devam)

800 br lik parti büyüklüğünü üretmek için 0.8 hafta gereklidir. 0.8.haftanın sonunda güncel stoklar hesabı

Ebat	Envanter
Küçük	800-150(0.8)= 680
Orta	600-250(0.8) +800= 1200
Büyük	2000-150(0.8)= 1880
Jumbo	2500-100(0.8)= 2420
Battal	525-100(0.8)= 445

Güncel stok bilgisi kullanılarak yeni yeterli süreler hesabı

En küçük yeterli süreye göre sıra Battal ebattadır

Ebat	Bitiş zamanı
Küçük	680/150= 4.53
Orta	1200/250= 4.8
Büyük	1880/150= 12.53
Jumbo	2420/100= 24.2
Battal	445/100= 4.45

TEK İSTASYON VE AKIŞ TİPİ ATÖLYE ÇİZELGELEME

Tek istasyon üretiminde, otomatik tezgahlarda yapılan üretimde belirli bir ürün ortaya çıkar. Cıvata, somun gibi kitlesel üretim otomatik tezgahlarda söz konusudur. Bu tür tezgahlarda başka hiçbir ürün elde edilemez. Tezgah belirli bir amaç için imal edilmiştir. Üretim başlangıçta planlandığı gibi devam eder

I: Alın Dişlisi II: Konik Dişli

III: İş Mili

Birbirine benzer ürünlerin aynı üretim kademelerinden geçmeleri söz konusu olduğunda, bu ürünlerin teknolojik işlenme sırasına göre tezgahların dizilmesinde akış tipi imalat meydana gelir

Tek iş istasyonu çizelgeleme - Örnek

İş	İşlem süresi (saat)	Teslim tarihi
1	4	15
2	7	16
3	2	8
4	6	21
5	3	9

Bu verilere göre iş sırası 1-2-3-4-5 olduğunda, **en kısa işlem süresi** kuralına göre sıralandığında ve **en erken teslim tarihi** kuralına göre sıralandığında akış süreleri, gecikme ve fark nasıl olur görelim

Sıra: 1-2-3-4-5 olduğunda Sıralama

	İş	Akış süresi ve Gerçekleşen Teslim Tarihi	İstenilen Teslim Tarihi	Teslim Gecikmesi	Teslim Sapması
	1	4	15	0	- 11
	2	4+7= 11	16	0	- 5
	3	11+2= 13	8	5	5
	4	13+6= 19	21	0	- 2
	5	19+3= 22	9	13	13
	Ortalama	13.8		3.6	0

Tek iş istasyonu çizelgeleme - Örnek

Sıra: **3-5-1-4-2** (En kısa işlem süresine göre)

İş	Akış süresi ve Gerçekleşen Teslim Tarihi	İstenilen Teslim Tarihi	Teslim Gecikmesi	Teslim Sapması
3	2	8	0	-6
5	2+3= 5	9	0	-4
1	5+4= 9	15	0	-6
4	9+6= 15	21	0	-6
2	15+7= 22	16	6	6
Ort	10.6		1.2	-3.2

Sıra: 3-5-1-2-4 (En erken teslim tarihine göre)

İş	Akış süresi ve Gerçekleşen	İstenilen Teslim	Teslim Gecikmesi	Teslim Sapması
	Teslim Tarihi	Tarihi		-
3	2	8	0	-6
5	2+3= 5	9	0	-4
1	5+4= 9	15	0	-6
2	9+7= 16	16	0	0
4	16+6= 22	21	1	1
Ort	10.8		0.2	-3

İki makine akış tipi problemi (Johson Kuralı ile Çizelgeleme)

Akış tipi, tüm işlerin aynı rotayı kullandığı atölye tipi üretimdir. İki makineli ve iki operasyonlu basit bir akış tipi üretim düşünelim. Her iş önce 1.makineden, sonra 2.makineden geçmektedir. Her işin her makinedeki işlem süreleri bilinmektedir. Tek makinada sıralamanın aksine, bu sistemde sıralamaya göre işlerin tamamlanma zamanı değişmektedir. Bu yüzden iki makine akış tipi problemi için en küçük tamamlanma zamanını veren sırayı bulmak önem taşır.

Johnson kuralının adımları şöyledir:

- 1. İşlerin makine1 ve makine2'deki işlem sürelerini listeleyiniz.
- 2. Her makinedeki en küçük işlem süreli işi bulunuz.
- 3. Bu işlem süresi makine1'e aitse bu işi en başta sıralayınız, makine2'ye aitse en son sıralayınız.
- 4. Sıradaki en küçük işlem süresine göre tüm işler bitene kadaradım 2 ve adım3'ü tekrarlayınız.

Johnson Kuralı ile Çizelgeleme - Örnek

ABC şirketi, küçük bir işletmedir. Ürettiği ürünler önce kesme, sonra delme operasyonlarından geçmektedir. ABC şirketinin 5 siparişi vardır ve tahmin edilen işlem süreleri gün olarak aşağıdaki tabloda verilmiştir:

İş	Kesme	Delme
1	4	5
2	4	1
3	10	4
4	6	10
5	2 /	3

Sıranın 1-2-3-4-5 şeklinde olduğunu varsayalım

Johnson Kuralı ile Çizelgeleme - ÖRNEK İş Delme Kesme 10 10 6 Kesme Delme 10 20 30 40 Gün

GENEL ATÖLYE TİP ÜRETİM ÇİZELGELEME

İşin Tezgahlar Arasında Geçirdiği Aşamalar

Genel Atölye Tipi İmalat Çizelgelemede Stratejiler

Yöneticiler tarafından atölye tipi üretimde uygulanarak sonuçlarının merak edildiği ve bu nedenle çizelgeleme çalışmalarına konu olan stratejiler 2 grupta toplanabilir.

-İş akış stratejileri:

- * Öncelik kuralları
- * Parti paralel işleme
- Parti bölme

-İş yükleme stratejileri

- * Değişik iş yükü derecelerinde iş yükleme
- Mevcut kapasiteye göre iş yükleme (yüke bağlı iş gönderme)

Parti Paralel İşleme

Parti paralel işlemede bir partinin işlemleri paralel olarak birden fazla aynı işleme teknolojisine ait tezgahlarda yapılır. Yararı iş geçişinde elde edilen kısalmadır. Mahsurlu yönü ise birden fazla tezgaha duyulan ihtiyaç ve birden fazla tezgahta iş hazırlık süresi nedeniyle atıl zamanlardır

Parti Bölme

Parti bölmede partideki iş parçalarının tamamının işlemleri bittikten sonra 2. işlemin yapılacağı tezgaha götürülmesi gözükmez. 1. tezgahtaki işlemler tamamlandıkça parti alt partiler halinde ikinci tezgaha götürülürler. İş geçişinde elde edilen kısalmanın yanında ara transport sayısındaki artış o işle ilgili ek masraf demektir. İş geçişindeki kısalmanın getirdiği ek gelirin ara transportlardaki ek masrafları karşılayıp karşılamadığına bakılır

Genel Atölye Tip Üretim Çizelgeleme Performans Kriterleri

Kriter	Tanım	Hedef
Tamamlanma zamanı	Bir iş setini işlemek için geçen süre (Çizelgeleme süresi)	Minimize etmek
Akış Süresi	Bir işin atölyede harcadığı süre	Ortalama akış süresini minimize etmek
Teslim Gecikmesi	Müşteriye söz verilen teslim zamanı ile işin bitişi arasındaki fark. İş söz verilen zamandan önce tamamlanmışsa bu süre sıfır kabul edilir.	Geç kalan işlerin sayısını ya da maksimum gecikmeyi minimize etmek
Teslim Sapması	Tamamlanma zamanı ile müşteriye söz verilen teslim zamanı arasındaki fark. Bu fark pozitif ya da negatif olabilir.	Ortalama gecikmeyi ya da maksimum gecikmeyi minimize etmek

Ortalama İş Akış Süresi (dak.) $\,T$:

$$\overline{T} = \frac{1}{N} \sum_{i=1}^{N} Ti$$
 (i = İşler indisi)

N: Çizelgeleme süresince işlenerek işlemleri tamamlanmış iş sayısı (adet)

$$T_i \! = \! T_i^{'} \! - \! T_i^{''}$$
 i. İşin iş akış zamanı

$$T_i$$
 i. İşin atölyeye giriş anı

$$ST = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} \left(T_i - \overline{T}\right)^2}$$

RT: İş akış zamanları ranjı (dağılım aralığı)

$$RT = T_{max} - T_{min}$$

$$T_{max} = max \{T_i\}$$

$$T_{min} = min \{T_i\}$$

Ortalama Tezgah Kul. Oranı (-) $\overline{\eta}$:

Çizelgeleme sonunda oluşan tezgah kullanım oranlarının ortalaması:

$$\overline{\eta} = \frac{1}{n} \sum_{i=1}^{n} \overline{\eta_{i}}$$
 (n:Atölyedeki tezgah grubu sayısı)

$$\overline{\eta}_j = \frac{1}{K_j} \sum_{l=1}^{k_j} \eta_l$$
 (K_j: Bir tezgah grubundaki tezgah sayısı)

 $\overline{\eta}_{-j}$:Tezgah grubu ortalama kul. Oranı

η_l = {j.tezgah grubunda, i.tezgah kul. oranı}

 S_n : Tezgah kul. oranları standart sapması

R_n: Tezgah kul. oranları ranjı (-)

Bekleyen ve Toplam Ortalama İş Yükü (dk) \overline{I} :

Çizelgeleme süresince tezgah önlerinde işleme alınmak için bekleyen işlerin işlem süreleri toplamının ortalama değeri:

$$\overline{I} = \frac{1}{A} \sum_{t=1}^{A} I_t$$
 A: Çizelgeleme süresince alınan gözlem sayısı

lt: t. gözlem anında bekleme hatlarında bulunan işlerin işlem süreleri toplamı

Bekleyen iş hacmi = Atıl Sermaye

SI __ Bekleyen iş hacmi için standart sapma (dak.)

RI - Bekleyen iş hacmi için rang (dak.)

Toplam İş Yükü: Bekleyen iş yüküne devam eden operasyonların kalan iş yükünün ilave edilmesiyle hesaplanır.

İş Gecikme Ortalaması (dak) $\overline{\Delta T}$:

$$\overline{\Delta T} = \frac{1}{N} \sum_{i=1}^{N} \Delta T_i$$

 ΔT_i :i. İşin gecikme süresi

 ΔT_i : (i. İşin teslim anı)-(i. İşin işlemlerinin tamamlanma anı)

"+" Erken bitiş

" – " Geç bitiş

 $S\Delta T$: iş gecikme standart sapması (dak.)

R∆T :İş gecikme ranjı (dak.)

Genel Atölye Tip Üretim Çizelgelemede Kullanılan Öncelik Kuralları

	Kural	Tip	Tanım
			_
	1. En erken bırakma tarihi	Statik	İşin atölyeye bırakılma tarihi
	2. En kısa işlem süresi	Statik	İşin operasyonunun işlem süresi
	3. Toplam iş	Statik	Tüm işlem sürelerinin toplamı
	4. En erken teslim tarihi	Statik	İşin teslim süresi
	5. En az∕kalan iş	Statik	İşlenmemiş operasyonların tümünün
	6. En az kalan operasyon	Statik	işlem süresi Henüz işlem görecek operasyonların
	o. Lyr az kalari operasyon	Statik	sayısı
	7/Diğer sıradaki iş	Dinami	İşlem görmek için diğer makineyi
		k	bekleyen operasyonların miktarı
	8. Gevşek (Serbest) Süre	Dinami	Teslime kadar olan süre ile kalan
		k	işlem süresi arasındaki fark
1	9. Gevşek / Kalan	Dinami	Gevşek sürenin kalan operasyonların
V	operasyonlar	k	toplam sürelerine oranı
	10. Kritik oran	Dinami	Teslime kadar olan sürenin işi
		k	tamamlamak için gerekli süreye oranı

Bazı Öncelik Kuralları Değer Hesabı

En az serbest (gevşek) süreli iş : Bekleme hattından serbestlik süresi en az olan işe öncelik tanınmasıdır.

Kritik Oran : Teslime kadar kalan süre ile işi tamamlamak için gerekli süre oranıdır. En küçük olana öncelik verilir. Birden küçük ise iş gecikecek demektir.

Dinamik En Erken Teslim Tarihi: Bekleyen işler arasında teslim tarihine kadar yetecek miktarı gün olarak en az olan işe öncelik verilir.

Öncelik Kurallarının Simülasyonu ve Seçimi

Atölye çizelgeleme için tek bir en iyi kural yoktur. öncelik kurallarının performansı hakkında faydalı sonuçları görmek için uzun periyotlarda ve daha gerçekçi atölye şartlarında simulasyon yapmak gerekir. Fakat literatürdeki simulasyon çalışmaları göstermiştir ki, "En kısa işlem süresi" en iyi kurallar arasındadır. "Gevşek zaman" ve "Gevşek/kalan operasyonlar" kuralları da dinamik kurallar arasında en iyi olanlarıdır.

Teslim tarihleri önemli olduğunda da en iyi kural "Kritik oran" kuralıdır. Bu kurallar sadece bir rehberdir. Makine arızaları, malzeme problemleri gibi durumlarda yeniden çizelgeleme ve hızlandırma yapılmalıdır. Dolayısıyla yönetici ve şeflerin bilgi ve tecrübesi günlük operasyonlarda kritik öneme sahiptir.

Genel Atölye Tip Üretim Çizelgelemede Simülasyon Temelli Yaklaşım

Genel atölye tip üretim çizelgeleme'de simülasyon temelli bir yaklaşımla çizelgeleme yapmamız mümkündür. Bu yaklaşımda imalat kontrol sistemini önceden bazı kabuller yaparak çalıştırmamız söz konusudur.

Bu çizelgelemede imalat kontrol sisteminde kullanılan öncelik kuralı kullanılmalıdır. Çizelgeleme algoritmasının çalışmasına aşağıda bir örnekle açıklanmıştır.

Örnek: Bir atölye tipi üretim sisteminde I, II, III ve IV olmak üzere dört adet iş merkezi bulunmaktadır. Bu iş merkezlerinde işlenmekte olan iş parçalarının işlem sıraları ve ve standart parti miktarlarına göre operasyon işlem süreleri (gün) aşağıdaki tabloda verilmiştir.

Parça	Operasyon Sırası ve Süresi		
Α	I(2)	III(3)	IV(1)
В	11(1)	III(2)	IV(1)
С	I(2)	II(3)	IV(1)
D	11(3)	III(2)	

Genel Atölye Tip Üretim Çizelgeleme - Örnek

Sipariş No	Parça Kod	Sipariş Üretim Baş. Zamanı (Gün)	Sipariş Teslim Zamanı (Gün)
1	Α	5	10
2	В	6	11
3	С	7	15
4	D	9	14
5	Α	11	18
6	В	14	19
7	С	17	27
8	Α	19	26
9	D	21	28
10	В	23	27
11	С	27	33

Atölyelerde şu anda tüm tezgahlar boş durumdadadır. Bugün 5. İşgününde olduğumuzu varsayarak 30. İş gününe kadar olan süre için bir çizelge elde ederek Gant diyagramında gösteriniz. Çizelgenizin performans değerlerini hesaplayınız. Öncelik kuralı olarak ENKISA kuralını kullanınız.

Genel Atölye Tip Üretim Çizelgeleme - Örnek (devam)

Çizelge Üret.		Biten Oper	Bekleyen			Başlayan / Devam Eden Oper. (Tamamlanma Zamanı)			Biten		
Zaman Baş(_OperNo	I	П	Ш	IV	I	П	Ш	IV	Siparş	
5	1A	-	ايدار	-	-	-	1A_1(7)	-	-	-	-
6	2B	-	-		-	-	1A_1(7)	2B_1(7)	-	-	-
7	3C	1A_1,2B_1	30_1	<i>i</i>	1A_2,2B_2	-	3C_1(9)	-	2B_2(9)	-	-
9	4D	3C_1,2B_2	-	2C_2,4D_1		2b_3	-	3C_2(12)	1A_2(12)	2B_3(10)	-
10	-	2B_3	-	4D_1	-	-	-	3C_2(12)	1A_2(12)	-	2B
11	5A	-	£4_1	4D_1	-	-	5A_1(13)	3C_2(12)	1A_2(12)	•	-
12	-	3C_2,1A_2	-		-	14_3,3C_3	5A_1(13)	4D_1(15)	-	1A_3(13)	-
13	-	5A_1,1A_3	-	-	5A_2	3€_3	-	4D_1(15)	5A_2(16)	3C_3(14)	1A
14	6B	3C_3	-	6B_1	-	-	-	4D_1(15)	5A_2(16)	-	3C
15	-	4D_1	-	6B _T	4D_2	-	-	6B_1(16)	5A_2(16)	-	-
16	-	6B_1,5A_2	-	-	40_2,6B_2	- A.	-	•	4D_2(18)	5A_3(17)	-
17	7C	5A_3	70_1	-	6B_2	-	7C_1(19)	•	4D_2(18)	-	5A
18	-	4D_2		-	6B_	-	7C_1(19)	•	6B_2(20)	-	4D
19	8A	7C_1	8.K_1		-	-	8A_1(21)	7C_2(22)	6B_2(20)	-	-
20	-	6B_2	-	-	-	6B_3	8A_1(21)	7C_2(22)	•	6B_3(21)	-
21	9 D	6B_3,8A_1	-	9D_1	84_2	-	-	7C_2(22)	8A_2(24)	-	6B
22	-	7C_2	-	<u>0D1</u>	-	76_3	-	9D_1(25)	8A_2(24)	7C_3(23)	-
23	10B	7C_3	-	10B_1	-	-	-	9D_1(25)	8A_2(24)	-	7C
24	-	8A_2	-	10B_1	-		-	9D_1(25)	-	8A_3(25)	-
25	-	9D_1,8A_3	-	108_1	9D_2	-	-	10B_1(26)	9D_2(27)	-	8A
26	-	10B_1	-	-	10B_2	-	-	-	9D_2(27)	-	-

11C_1(29)

10B_2(29)

11C_2(32)

11C_2(32)

9D

10B

10B_3(30)

11C

27

29

30

9D_2

11C_1, 10B_2

10B_3

Genel Atölye Tip Üretim Çizelgeleme - Örnek (devam)

Genel Atölye Tip Üretim Çizelgeleme - Örnek (devam) Çizelgeleme Performans Değerleri

Sipariş No	Başlama Zamanı	Bitiş Zamanı	Akış Süresi	Bekleme Süresi
1A	5	13	8	1
2B	6	10	4	8
3C	7	14	7	1
4D	9	18	9	4
5A	11	17	6	
6B	14	21	7	3
7C	17	23	6	
8A	19	25	6	
9D	21	27	6	1
10B	23	30	7	3

Ortalama Akış Süresi

$$= 66/10 = 6,6$$

İş Merkezi Kul. Oranları

$$II = (17/30) \times 100 = \%56,67$$

$$III = (19/30)X100 = \%63,3$$

Ortalama Akış Süresi=

$$\sum$$
(Siparişin Teslim Zamanı – Geliş Zamanı)

Sipariş Sayısı

Kaynakça

- [1] Operations Management, Ron Tibben-Lembke, Irwin Pub. Co. 2001.
- [2] Operations Management, Joseph Monks, Mc Graw Hill Pub, Co., 1987.
- [3] Production and Operations Management: Life Cycle Approach, Richard B.Chase, Irwin Pub. Co. 1992.
- [4] Operations management: Strategy and Analysis, Krajewski/Ritzman, Addison Wesley, 1993.
- [5] Tersine R., Production and Operations Management:Prentice Hall Pub. Co. 2002.