CS 203.4860

Secure Multi-Party Computation

Spring 2023

Homework 8: Report

Lecturer: Dr. Adi Akavia

Student(s): Nir Segal, Hallel Weinberg, Michael Rodel

1 Introduction

In this assignment we will describe the details of a dry-run of a homomorphic evaluation. The cleartext computation is as follows:

Given three bits $a, b, c \in \{0, 1\}$, output AND(XOR(a, b), c).

2 Choose Input Bits and Security Parameter

- Input bits: a = 1, b = 0, c = 1.
- Security parameter: $\lambda = 128$.

3 Step 1: Generate Keys

Generate keys $sk \leftarrow \text{Gen}(1^{\lambda})$.

The input: $\lambda = 3$

The details of the computation: Generate sk, an odd number with a length of λ^2 bits.

The resulting outcome of the step: sk = 471.

4 Step 2: Encrypt the Inputs

Encrypt the input $c_a \leftarrow \operatorname{Enc}_{sk}(a), c_b \leftarrow \operatorname{Enc}_{sk}(b), c_c \leftarrow \operatorname{Enc}_{sk}(c).$

The input: a = 1, b = 0, c = 1 and sk = 471

The details of the computation: For each input bit b, generate q_b , a "large" number with a length of λ^5 bits and r_b , a "small" even number with a length of λ bits. compute $c_b = p \cdot q_b + 2 \cdot r_b + b$ where p = sk.

The parameters for each input bit:

- 2. $r_a = 4$

3. $q_b = 12002215933213370183707946188374698613314017595349859285056644318303495188$

4. $r_b = 4$

5. $q_c = 13702469671669046184834548173749448833879217564627451534214593734031651248$

6. $r_c = 6$

The resulting outcome of the step:

 $c_a = 6230156353126828116424295672336001669702240749348678312935597242456060329406$

 $c_b = 5653043704543497356526442654724483046870902287409783723261679473920946233556$

5 Step 3: Homomorphically evaluate the Aforementioned Cleartext Computation

Homomorphically evaluate the aforementioned clear text computation to obtain a result ciphertext c_{res} .

The input: Encrypted values

 $c_a = 6230156353126828116424295672336001669702240749348678312935597242456060329406$

 $c_b = 5653043704543497356526442654724483046870902287409783723261679473920946233556$

 $c_c = 6453863215356120753057072189835990400757111472939529672615073648728907737821$

The details of the computation: Homomorphically evaluate AND(XOR(c_a, c_b), c_c) to obtain a result ciphertext c_{res} .

$$c_{res} = (c_a + c_b) \cdot c_c$$

The resulting outcome of the step: $c_{res} = 15322226627743988914506727892078027732944$ 98607999829926199643530657175691368268079599570080667049414884107029891746194696500 71949675185407104459733704906

6 Step 4: Decrypt

Decrypt to obtain a cleartext result $res = Dec_{sk}(c_{res})$.

The input: $c_{res} = 153222266277439889145067278920780277329449860799982992619964353065717569136826807959957008066704941488410702989174619469650071949675185407104459733704906$ and sk = 471

The details of the computation: Compute $res = LSB(c_{res} \mod sk)$.

The resulting outcome of the step: res = 1.

7 Step 5: Verify the Result

Verify that the result is correct, i.e., check that res = AND(XOR(a, b), c) if yes output res else output Error.

The input: a = 1, b = 0, c = 1 and res = 1

The details of the computation: AND(XOR(a, b), c) = 1 and therefore, res = AND(XOR(a, b), c).

The resulting outcome of the step: res = 1.