

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «<u>ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ»</u>
КАФЕДРА «<u>КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)»</u>
НАПРАВЛЕНИЕ ПОДГОТОВКИ «09.03.04 ПРОГРАММНАЯ ИНЖЕНЕРИЯ»

Отчет

по лабораторной работе № 4

Название:	Исследование мультиплексоров
Дисциплина:	Архитектура ЭВМ

Вариант: 17

Студент	<u>ИУ7-45Б</u>		М. А. Семенчук
	(Группа)	(Подпись, дата)	(И. О. Фамилия)
Преподаватель			А. Ю. Попов
		(Полпись, лата)	(И. О. Фамилия)

Оглавление

Цель работы	3
Исследование ИС ADG508 в качестве коммутатора MUX 8-1 цифровых сигналов	
Исследование ИС ADG508 в качестве коммутатора MUX 8-1 аналоговых сигналов	4
Исследование ИС ADG508 как коммутатора MUX 8 – 1 цифровых сигналов в качестве формирователя ФАЛ 4-х переменных	9
Построение схемы мультиплексора MUX 16 $-$ 1 на основе простого мультиплексора MUX 8 $-$ 1 и дешифратора DC 2 $-$ 4	11
Контрольные вопросы	12

Цель работы

Изучение принципов построение, практического применения И экспериментального исследования мультиплексоров.

Исследование ИС ADG508 в качестве коммутатора MUX 8-1 цифровых сигналов

№ варианта	Входы D ₀ ,, D ₇		
17	01100111		

Исследование ИС ADG508 в качестве коммутатора MUX 8-1 аналоговых сигналов

Исследование ИС ADG508 как коммутатора MUX 8 – 1 цифровых сигналов в качестве формирователя ФАЛ 4-х переменных

№ варианта	Логическая функция
17	1, 2, 4, 5, 8, 11, 12, 15

№ набора	X 4	X 3	X 2	X 1	f	Примечание
0	0	0	0	0	0	D - v
1	0	0	0	1	1	$D_0 = x_1$
2	0	0	1	0	1	D ==
3	0	0	1	1	0	$D_1 = \overline{x_1}$
4	0	1	0	0	1	D _ 1
5	0	1	0	1	1	$D_2 = 1$
6	0	1	1	0	0	D - 0
7	0	1	1	1	0	$D_3 = 0$
8	1	0	0	0	1	D ==
9	1	0	0	1	0	$D_4 = \overline{x_1}$
10	1	0	1	0	0	D
11	1	0	1	1	1	$D_5 = x_1$
12	1	1	0	0	1	D ==
13	1	1	0	1	0	$D_6 = \overline{x_1}$
14	1	1	1	0	0	D - "
15	1	1	1	1	1	$D_7 = X_1$

Построение схемы мультиплексора MUX 16-1 на основе простого мультиплексора MUX 8-1 и дешифратора DC 2-4

Контрольные вопросы

1. Что такое мультиплексор?

Мультиплексор — это функциональный узел, имеющий \mathbf{n} адресных входов и $\mathbf{2}^{\mathbf{n}}$ информационных входов и выполняющий коммутацию того информационного сигнала, адрес (т.е. номер) которого установлен на адресных входах.

2. Какую логическую функцию выполняет мультиплексор?

Мультиплексор реализует логическую функцию:

$$Y = EN imes igcup_{j=0}^{2^n-1} D_j imes m_j (A_{n-1}, A_{n-2}, \ldots, A_i, \ldots, A_1, A_0),$$
 где

 A_i – адресные входы и сигналы;

D_i – информационные входы и сигналы;

 m_{j} – конституента единицы (конъюнкция всех переменных A_{i}), номер которого равен числу, образованному двоичным кодом сигналов на адресных входах;

EN – вход и сигнал разрешения (стробирования).

3. Какого назначение и использование входа разрешения?

Вход разрешения ЕN используется для:

- собственно, для разрешения работы мультиплексора;
- стробирования;
- наращивания числа информационных входов.

При EN=1 разрешается работа мультиплексора и выполнения им своей функции, при EN=0 работа мультиплексора запрещена и на его выходных устанавливаются неактивные уровни сигналов.

- 4. Какие функции может выполнять мультиплексор?
 - Мультиплексоры широко применяются для построения:
 - коммутаторов-селекторов;
 - постоянных запоминающих устройств емкостью 2ⁿ бит;
 - комбинационных схем, реализующих функции алгебры логики;
 - преобразователей кодов (например, параллельного кода в последовательный) и других узлов.