9. Sea
$$A \in \mathbb{R}^{n \times n}$$
 una matriz simétrica tal que

$$\det \begin{pmatrix} a_{11} & \cdots & a_{11} \\ \vdots & \vdots & \vdots \\ a_{d1} & \cdots & a_{11} \end{pmatrix} > 0 \text{ para } 1 \leqslant i \leqslant n$$

Demostrar que A es definida positiva.

$$\text{QVQ: A simétrica y det}(Ak) > 0 \text{ para toda Ak submatriz principal}$$

$$\det A \text{ det}(Ak) > 0 \text{ Yk} \leqslant n \Rightarrow \text{ Ak inversible Yk} \leqslant n$$

$$A \text{ tiene Factorización LU única porque todas sus submatrices}$$

$$\text{principales son inversibles.}$$

$$A = A^T \text{ por hipótesis } (A \text{ simétrica}) \text{ y } A = LU.$$

$$A = A^T \text{ son inversibles.}$$

$$L \text{ u = } (LU)^T = U^T L^T$$

$$L \text{ es tri. inf. y } L^T \text{ tri. sup. ambas con ts en la diagonal}$$

$$\Rightarrow L \text{ y } L^T \text{ son inversibles.}$$

$$LU = U^T L^T \text{ cap } L^{-1} LU (L^T)^{-1} = L^{-1} U L^T (L^T)^{-1}$$

$$\Leftrightarrow U(L^T)^{-1} = L^{-1} U^T \text{ son tri. sup. pero } L^{-1} \text{ y } U^T \text{ son tri. inf.}$$

$$U(L^T)^{-4} = L^{-1} U = D \Rightarrow U = DL^T$$

$$D \text{ es una matriz diagonal pues una tri. sup. solo puede ser iqual a una tri. inf. en la diagonal.$$

Vol	viev	do	a	la	Fac	tor	iza	.ciói	n L	U.									
A	2	LU =	= L'	DLT															
det	(A)	= de	ef (1	-DLT) =	del	(L)	del	(D))·de	ł(L ^T)	= de	e+(1	>)				
						L -	ria	ngul	٥r	con	15	en	la	dia	gono	T.)			
	ス :																		
In	ducc	ión	er	n la	2 2	.ubn	nati	rice	1 2.	orin	cipa	ales	s d	e A					
A	1	A _K	*	=	Lĸ *	0 *		D _k	0 *		LK O	*		Aĸ	= [κD	ok L	-	
	so l				.7			1											
	= hi											0	=>	91	>	0			
Pas	.0 11	uguc	tiv	O															
HI	ز ل	< ين	0	٧i	< k			QV	œ :	dkk	\	0							
Aĸ	=	Lr'det	DK! (Ak	T -K	de	, (L	1 k)·(det(Dr) · 9	zł (Ľ	"1 T _k)	Por	hipo	ítes	is d	let U	4 _K) >	0
										1 d									
	⇒	dkk	, >	0					Por	HI	dii	>0	٧i	. < k					
<i>:.</i>	Por	ind	ucci	ón	bro	bar	201	que	di	i > 0	> \f	/i.≤	n .						

Sea ID tal que (ID) il = Vdii. Poderios tomar raíz porque todos los dii > 0. Entonces D = 1515 Como D diagonal => (15) = 15. A = LDDL = LDDL = LD(LD)Sea L = LTD tri. inf. por ser producto de tri. inf. Luego A = ÎÎT es la factorización de Cholesky de A. : A es sop.