Problem Set 1

This problem set is due at 10:00 am on Tuesday, January 31st.

Problem 1-1: Growth Sort the following functions so f appears before g if f = O(g):

$$n^{0.99}$$
, $\log_{1.1} n$, 10^{1249} , $(\log_2 n)^2$, $2^{(\ln \ln n)^2}$, 10^n , $\ln \ln n$, 2^{n^2} , $(\log_{10} n)^n$, $1000n + 10^{10}$.

Provide a one line explanation for each pair of consecutive functions in the sorted list. Solution: 10^{1249} , $\ln \ln n$, $\log_{1.1} n$, $(\log_2 n)^2$, $2^{(\ln \ln n)^2}$, $n^{0.99}$, $1000n+10^{10}$, 10^n , $(\log_{10} n)^n$, 2^{n^2} Explanation:

$$10^{1249} = \ln \ln(e^{e^{10^{1249}}})$$

$$\leq \ln \ln n, \text{ when } n \geq e^{e^{10^{1249}}}$$

$$\begin{split} \ln \ln n & \leq \ln n \text{, when } n \geq 1 \\ & < \frac{\ln n}{\ln 1.1}, \ \ln 1.1 < 1 \\ & = \log_{1.1} n \end{split}$$

$$\begin{split} \log_{1.1} n &= \frac{\log_2 n}{\log_2 1.1} \\ &\leq C \cdot \log_2 n \cdot \log_2 n, \text{ when } C \geq \frac{1}{\log_2 1.1} \text{ and } n \geq 2 \end{split}$$

$$\begin{split} (\log_2 n)^2 &= 2^{\log_2 ((\log_2 n)^2)} \\ &= 2^{2\log_2 (\log_2 n)} \\ &= 2^{2\frac{\ln{(\frac{\ln n}{\ln 2})}}{\ln{2}}} \\ &= 2^{2\frac{\ln \ln n - \ln \ln 2}{\ln 2}} \\ &\leq 2^{\frac{2}{\ln 2} \ln \ln n} \\ &\leq 2^{(\ln \ln n)^2}, \text{ when } \ln \ln n \geq \frac{2}{\ln 2} \text{ or } n \geq e^{e^{\frac{2}{\ln 2}}} \end{split}$$

$$\begin{split} 2^{(\ln \ln n)^2} &= 2^{(\ln t)^2}, \, \text{let t} = \ln n \\ &\leq 2^{\sqrt{t^2}}, \, \forall t > 1 \text{because } \sqrt{t} > \ln(t) \, \text{for all } t > 1 \\ &= 2^t \\ &\leq 2^{\frac{t \cdot 0.99}{\ln 2}}, \frac{0.99}{\ln 2} \approx 1.428 \\ &= 2^{\frac{\ln n \cdot 0.99}{\ln 2}} \, \text{Plug } t \, \text{back in.} \\ &= 2^{\log_2 n \cdot 0.99} \\ &= (2^{\log_2 n})^{0.99} \\ &= n^{0.99} \end{split}$$

$$n^{0.99} \leq n \\ &< 1000n + 10^{10} \\ &\leq 10^{10} \cdot n + 10^{10} \\ &\leq 10^{10} \cdot n + 10^{10} \\ &= 10^{10} (n+1) \\ &< C \cdot 10^n, \, \text{when } C = 10^{10} \, \text{and } n > 1 \end{split}$$

$$10^n = (\log_{10}(10^{10}))^n \\ &\leq (\log_{10} n)^n, \, \text{when } n \geq 10^{10} \\ (\log_{10} n)^n = 2^{\log_2((\log_{10} n)^n)} \\ &= 2^{n \cdot \log_2(\log_{10} n)} \\ &< 2^{n \cdot n} \end{split}$$

Problem 1- 2: A New Order Let G be an undirected graph on N vertices where each vertex has degree at most 2.

(a) Suppose that we perform a BFS of G. Let v_1, \ldots, v_N be the vertices of G in the order they are visited in the search. Prove or disprove: every edge in G is of the form (v_i, v_{i+1}) or (v_i, v_{i+2}) for some i.

Answer: Yes.

Proof:

2

For each connected component G' in G, let V' be the set of all vertices in G' and $v_i \in V'$ be the *i*th vertex visited relative to the first vertex visited in G'.

Lemma 1 Let M_k be the set of vertices marked after visiting v_k . $|M_k| \leq 2$ for all k.

Problem Set 1 3

Proof. Proof by induction on k.

If k=1, then v_1 is the first vertex visited in G' so no vertices in G' can be marked immediately prior to visiting v_1 . Additionally, because BFS visits one connected component at a time, no vertices in $G \setminus G'$ can be marked immediately prior to visiting v_1 . Therefore, no vertices are marked immediately prior to visiting v_1 , only two vertices can be marked, because v_1 has at most 2 neighbors. Therefore, $|M_k| \leq 2$.

If k>1, $|M_{k-1}|$ is the number of vertices immediately prior to visiting v_k , and $v_k\in M_{k-1}$. Let N_k be the neighbors of v_k that are so far unvisited. Because $v_k\neq v_1,\,v_k$ must have one neighbor already visited, and v_k has at most two neighbors, so $|N_k|\leq 1$. In the process of visiting $v_k,\,v_k$ is unmarked and become visited, and all unvisited neighbors of v_k become marked. Thus $M_k=M_{k-1}\setminus [v_k]\cup N_k$. By the inductive hypothesis, $|M_{k-1}|\leq 2$, so $|M_k|\leq 2-1+|N_k|\leq 2-1+1=2$.

Let (v_i, v_j) be any edge in G' such that i < j. After v_i is visited, $v_j \in M_i$. Because $|M_i| \le 2$ and BFS visits vertices in the order they are marked, at most one other vertex can be visted between v_i and v_j , so $j - i \le 2$.

(b) Suppose that we perform a DFS of G. Let v_1, \ldots, v_N be the vertices of G in the order they are visited in the search. Prove or disprove: every edge in G is of the form (v_i, v_{i+1}) or (v_i, v_{i+2}) for some i.

Answer: No. A counterexample is a cycle of size 100. Observe that the vertex visited in the end is adjacent to the vertex that you start with. This gives you the edge (v_1, v_{100}) .