

Mathematics 1A ITMTA1-B44

Derivatives

With

Amakan Elisha Agoni Amakan.agoni@EDUVOS.com

Lecture 2 Week 5

3 Differentiation Rules

Copyright © Cengage Learning. All rights reserved.

3.4 The Chain Rule

Derivatives of General Exponential Functions

Derivatives of General Exponential Functions

We can use the Chain Rule to differentiate an exponential function with any base b > 0.

Given b^x , to differentiate this:

$$\frac{d}{dx}(b^{x}) = \frac{d}{dx}(e^{\ln b^{x}})$$

$$= \frac{d}{dx}(e^{\ln b^{x}})$$

$$= \left[e^{\ln b^{x}}\right] \cdot \left[\ln e\right] \cdot \left[\frac{d}{dx}(\ln b^{x})\right]$$

$$= \left[e^{\ln b^{x}}\right] \cdot \left[\frac{d}{dx}(x \ln b)\right]$$

$$= b^{x} \ln b$$

Example 10

Find the derivative of each of the functions.

(a)
$$g(x) = 2^x$$

(b)
$$h(x) = 5^{x^2}$$

Solution:

(a) We use Formula 5 with b = 2:

$$g'(x) = \frac{d}{dx}(2^x) = 2^x \ln 2$$

This is consistent with the estimate

$$\frac{d}{dx}(2^x) \approx (0.693)2^x$$

because In $2 \approx 0.693147$.

Example 10 – Solution

(b) The outer function is an exponential function and the inner function is the squaring function, so we use Formula 5 and the Chain Rule to get

$$h'(x) = \frac{d}{dx}(5^{x^2})$$

$$h'(x) = 5^{x^2} \ln 5 \cdot \frac{d}{dx}(x^2)$$

$$h'(x) = 5^{x^2} \ln 5 \cdot 2x$$

$$h'(x) = 2x \cdot 5^{x^2} \ln 5$$

Derivative of Inx

If
$$f(x) = \ln x$$

Then

$$f'(x) = \frac{d}{dx}(\ln x) = \frac{1}{x}, for \ x \ge 0$$

If
$$f(x) = ln|x|$$

Then

$$f'(x) = \frac{d}{dx}(\ln|x|) = \frac{1}{x}, for \ x \neq 0$$

Examples

Find the first derivative of the following functions:

$$1. f(x) = 3\ln(\cos 2^x)$$

2.
$$f(x) = x^2 \ln 3x^4$$

Exercises

Find the first derivative of the following functions:

$$1. f(x) = \sin 3^2$$

2.
$$f(x) = \ln x^2$$

$$3. f(x) = \ln(\cos 4^{-x})$$

4.
$$f(x) = 5x \ln 4x^3$$

$$f'(x) = \frac{2}{x}$$

$$f'(x) = 4^{-x} \ln 4(\tan 4^{-x})$$

$$f'(x) = 5(3 + \ln 4x^{3})$$

Homework

Find the first derivative of the following functions:

1.
$$f(x) = -e^{-2x} \ln(\sin 3^x)$$

 $f'(x) = -e^{-2x} [3^x \ln 3 (\cot 3^x) - 2 \ln (\sin 3^x)]$

$$2. f(x) = \log_e \frac{\sqrt{e^{-2x} \sin 7x^3}}{\ln x}$$

Chapter 4, p265