Probabilités pour la prépa

Paul Pichaureau
Professeur en CPGE

Cours et 353 exercices corrigés

MPSI – PCSI – PTSI MP – PC – PSI – PT

Table des matières

'able des matières	3
Univers finis	9
I Dénombrement	11
I.1 Ensembles finis – cardinal	12
I.2 Dénombrements élémentaires	15
I.3 Coefficients binomiaux	20
Exercices de référence	25
Exercices d'entraînement	33
Solutions	37
II Probabilité	43
II.1 L'univers des possibles	43
II.2 Événements	45
II.3 La notion de probabilité	46
II.4 Comment définir une probabilité?	49
II.5 Un exemple fondamental : la probabilité uniforme	51
Exercices de référence	53
Exercices d'entraînement	58
Solutions	61
III Indépendance, probabilité conditionnelle	65
III.1 Deux points de vue	65
III.2 Probabilité conditionnelle	66
III.3 Événements indépendants	67
III.4 Trois formules essentielles	70
Exercices de référence	75
Exercices d'entraînement	80
Solutions	84
IV Variable aléatoire réelle finie	91
IV.1 Définition	91
IV.2 Loi d'une variable aléatoire	92
IV.3 Fonction d'une variable aléatoire	94
IV.4 Espérance	94
IV.5 Variance et écart-type	98
IV.6 Deux inégalités	100
IV 7 Loi uniforme	102

6 Table des matières

IV.8	Loi de Bernoulli	103
IV.9	Loi binomiale	104
	Exercices de référence	107
	Exercices d'entraînement	115
	Solutions	119
V Vec	teurs aléatoires réels finis	127
V.1	Couple de variables aléatoires, lois	127
V.2	Modéliser, c'est réfléchir dans le bon ordre	130
V.3	Couple de variables aléatoires indépendantes	131
V.4	Fonction de deux variables aléatoires	134
V.5	Théorème de transfert	137
V.6	Covariance	139
V.7	Généralisation au cas de <i>n</i> variables aléatoires	143
	Exercices de référence	146
	Exercices d'entraînement	158
	Solutions	163
II Uni	vers infinis dénombrables 1	75
VI Uni	vers dénombrables – Tribus	177
		177
	Tribus et événements	182
	Exercices de référence	
	Exercices d'entraînement	189
	Solutions	190
VII Pro	babilité dans un univers dénombrable	193
VII.1	Une nouvelle définition	193
VII.2	Comment définir une probabilité?	194
VII.3	Deux exemples et quelques remarques	195
VII.4	Propriétés des probabilités dans les espaces dénombrables	197
VII.5	Probabilité conditionnelle – Indépendance	201
	Exercices de référence	203
	Exercices d'entraînement	205
	Solutions	207
VIII Var	iable aléatoire discrète	211
VIII.1	Une nouvelle définition	211
VIII.2	Vecteurs aléatoires	214
	201 0000001400	217
	Loi de Poisson	
	Un exemple de loi conditionnée : loi de Poisson/loi binomiale	
	Indépendance de variables aléatoires discrètes	
VIII.7	Fonctions de deux variables aléatoires discrètes	225

	Exercices de référence	228
	Exercices d'entraînement	235
	Solutions	238
IX Esp	érance	245
IX.1	Le problème de la somme infinie	245
IX.2	Espérance d'une variable aléatoire réelle discrète	247
IX.3	Propriétés de l'espérance	249
IX.4	Théorèmes d'existence	251
IX.5	Variance d'une variable aléatoire réelle discrète infinie	252
IX.6	Covariance	254
IX.7	Fonctions génératrices	257
	Exercices de référence	261
	Exercices d'entraînement	268
	Solutions	272
X Con	vergence et approximations	279
X.1	Introduction	279
X.2	Loi faible des grands nombres	280
X.3	Inégalités de Markov et de Bienaymé-Tchebychev	283
	Exercices de référence	287
	Exercices d'entraînement	289
	Solutions	290
Annexe	s	295
A D'a	utres horizons	295
A.1	Tribus et boréliens	295
A.2	Quelle probabilité?	297
A.3	Une tribu, pour quoi faire?	298
	Le tour de passe-passe	
	Et vogue, plein d'espérance!	299
Ind	ex	301

Première partie

Univers finis

MPSI – PCSI – PTSI

Chapitre I

Dénombrement

J'ai 6 centimes d'euro dans ma poche. Combien de pièces ai-je? De combien de façons puis-je les aligner sur la table? Et si j'ai *n* centimes d'euro avec *n* quelconque?

Au fait, combien y a-t-il d'entiers? Et les nombres complexes? Y en a-t-il autant ou plus que d'entiers?

Avec un papier, un crayon et un peu de patience, il est facile de répondre aux deux premières questions. Mais la troisième et les suivantes exigent une bonne organisation. L'objet de ce chapitre est précisément de s'apprêter à affronter des situations de plus en plus complexes.

Dans l'étude du « nombre d'éléments d'un ensemble » on rencontre deux grosses difficultés. La première est de pouvoir parler d'ensembles complexes à décrire et la seconde de pouvoir parler d'ensembles infinis.

De façon tout à fait remarquable, la méthode intuitive la plus simple va nous donner la clé de ces deux problèmes. Comment compte-t-on le nombre de personnes dans une pièce? Et bien on attribue un et un seul numéro à chaque personne, dans l'ordre: 1, 2, 3, etc., jusqu'au dernier numéro qui donne le nombre de personnes. Peu importe qui reçoit le numéro 1 ou le numéro 25, l'essentiel est que chaque personne ait un unique numéro et que chaque numéro soit associé à une seule personne.

L'idée mathématique qui est derrière ce procédé est d'établir une bijection entre l'ensemble des entiers $\{1, 2, ..., n\}$ et l'ensemble des personnes. L'entier n désigne précisément le nombre cherché. Érigeons ce beau principe en définition.

Déf. I.1 — On dira que deux ensembles non vides E et F ont le même cardinal si et seulement si il existe une bijection entre E et F.

Nous avons supposé les ensembles non vides pour éviter de nous retrouver dans des situations logiques un peu délicates. Le mot « cardinal », emprunté aux grammairiens, désigne ici la quantité, le nombre d'éléments d'un ensemble.

Appliquons ce concept à des ensembles simples, par exemple des ensembles finis. Qu'est-ce qu'un ensemble fini? La première idée qui vient à l'esprit est quelque chose comme $\{a, b, c\}$ ou $\{1, 2, 3\}$. C'est une bonne idée... à une bijection près!

I.1 — Ensembles finis – cardinal

Déf. et thm. I.2 — *Un ensemble* E *non vide est un* **ensemble fini** *si et seulement si il existe un entier non nul n tel que les ensembles* E *et* [1; n] *sont en bijection.*

Dans ce cas, l'entier n est unique. Il s'appelle le **cardinal** de E et se note card E. $Si E = \emptyset$, par convention E est fini et card E = 0.

La démonstration de l'unicité de n est assez technique, c'est pourquoi je ne la donne pas. Cet entier n correspond à l'idée intuitive du nombre d'éléments. On le note aussi #E ou |E|.

Une bijection entre E et [1; n] s'appelle une **énumération** de E : c'est une façon possible de compter les éléments de E. Ainsi un ensemble fini peut être écrit sous une des deux formes

$$E = \{\varphi(1), \varphi(2), \cdots, \varphi(n)\} = \{x_1, x_2, \cdots, x_n\}$$

en utilisant φ , une des bijections entre $\llbracket 1 ; n \rrbracket$ et E, ou bien en utilisant une notation indicielle. Deux ensembles de même cardinal sont en bijection, comme nous pouvons le vérifier rapidement.

Prop. I.3 — Si deux ensembles finis non vides E et F ont le même cardinal alors il existe une bijection entre E et F.

Dém. Si E et F ont le même cardinal, alors il existe une bijection α de [1; n] dans E et une bijection β de [1; n] dans F dans [1; n]. Alors $\beta \circ \alpha^{-1}$ est une application de E dans F qui est bijective, car elle est la composée de deux bijections.

Les ensembles de cardinal n forment une classe d'ensembles invariante par la bijection. Autrement dit, et c'est un point important, n'importe quel ensemble fini de cardinal n peut servir de référence dans notre travail de dénombrement.

Thm. I.4 — **Théorème de dénombrement** Soient E un ensemble fini non vide et F un ensemble quelconque. S'il existe une bijection entre E et F, alors F est de cardinal fini, et card E = card F.

Dém. Notons n le cardinal de l'ensemble E. Il existe une bijection α de $\llbracket 1 ; n \rrbracket$ dans E et une bijection β de E dans F. Alors $\beta \circ \alpha$ est une bijection de $\llbracket 1 ; n \rrbracket$ dans F. Cela assure que l'ensemble F est fini et de cardinal n.

C'est *la* méthode de dénombrement par excellence. Pour déterminer le cardinal d'un ensemble fini E, il suffit de le « décrire » en établissant une bijection avec un ensemble bien connu.

Principe d'addition Dessinons une grille 4×4 . Combien de carrés a-t-on dessiné en tout? Les carrés peuvent avoir plusieurs tailles : leurs côtés peuvent mesurer une unité, deux unités, etc.

Une idée toute simple consiste à compter les carrés de chaque taille et à additionner les résultats entre eux. On trouve respectivement 16 carrés

de côté 1, 9 de côté 2, 4 de côté 3 et 1 carré de côté 4. Ainsi, le nombre total de carrés est exactement de $16 + 9 + 4 + 1 = 30^{1}$.

Ce raisonnement illustre le principe le plus élémentaire du dénombrement. On partitionne l'ensemble à dénombrer en sous-ensembles deux à deux disjoints. Le théorème de base utilisé est que le cardinal de l'union de deux ensembles finis disjoints est égal à la somme des cardinaux.

Thm. I.5 — **Principe d'addition** *Soient* E *et* F *deux ensembles finis disjoints. Alors* $E \cup F$ *est fini et* $card(E \cup F) = card E + card F$.

Dém. Nous allons utiliser le théorème de dénombrement. Notons $n = \operatorname{card} E$ et $p = \operatorname{card} F$. Il s'agit donc d'exhiber une bijection entre $\llbracket 1 ; n + p \rrbracket$ et $E \cup F$. Pour cela, partons d'une bijection α entre $\llbracket 1 ; n \rrbracket$ et E et d'une bijection β entre $\llbracket 1 ; p \rrbracket$ et F.

Définissons l'application γ entre $\llbracket 1 ; n+p \rrbracket$ et $\mathtt{E} \cup \mathtt{F}$ de la façon suivante :

$$\forall k \in [1; n+p]$$
 si $1 \le k \le n$ $\gamma(k) = \alpha(k)$
si $p+1 \le k \le n+p$ $\gamma(k) = \beta(k-p)$

La fonction γ est surjective, puisque

$$\gamma \left\langle \llbracket 1 ; n \rrbracket \right\rangle = \mathbb{E} \qquad \text{et} \qquad \gamma \left\langle \llbracket p+1 ; n+p \rrbracket \right\rangle = \mathbb{F}$$

$$\text{donc} \qquad \mathbb{E} \cup \mathbb{F} = \gamma \left\langle \llbracket 1 ; n \rrbracket \right\rangle \cup \gamma \left\langle \llbracket p+1 ; n+p \rrbracket \right\rangle \subset \gamma \left\langle \llbracket 1 ; n+p \rrbracket \right\rangle$$

De plus, elle est injective. En effet, si deux entiers k et k' vérifient $\gamma(k) = \gamma(k')$, alors ou bien $\gamma(k) \in E$, auquel cas $\alpha^{-1}(\gamma(k)) = \alpha^{-1}(\gamma(k'))$ implique k = k', ou bien $\gamma(k)$ est dans F et on trouve aussi k = k' en appliquant β^{-1} .

L'application γ est donc une bijection de [1, n+p] dans $E \cup F$, et donc $E \cup F$ est fini et de cardinal n+p. \Box

Ce résultat se généralise par récurrence à l'union disjointe de plusieurs ensembles finis.

Cor. I.5.1 — Soient E_1, E_2, \dots, E_p p ensembles finis ($p \ge 2$). Si ces ensembles sont disjoints deux à deux, alors $E_1 \cup E_2 \cup \dots \cup E_p$ est fini et

$$\operatorname{card}(\mathbf{E}_1 \cup \mathbf{E}_2 \cup \dots \cup \mathbf{E}_p) = \sum_{k=1}^p \operatorname{card}(\mathbf{E}_k)$$

En particulier, si A_1, A_2, \ldots, A_p est une partition de E, alors $\operatorname{card} E = \sum_{k=1}^{k=p} \operatorname{card} A_k$.

Le principe d'addition permet de démontrer plusieurs propriétés utiles du cardinal. Démontrons tout d'abord, à partir du principe d'additivité, que les sous-ensembles d'un ensemble sont finis.

Thm. I.6 — Soient E un ensemble fini et A une partie de E.

Alors A est un ensemble fini et card $A \le \text{card } E$.

Si, de plus, card A = card E alors A = E.

^{1.} En guise d'exercice, on pourra traiter le cas général d'une grille $n \times n$.

Formulaire: combinaisons - sommes finies

Exercices de référence

Exercice de référence I.1 — Anagrammes

- 1. Combien y a-t-il d'anagrammes du mot ANGELOT?
- 2. Combien y a-t-il d'anagrammes du mot BAOBAB?

Solution

Les anagrammes d'un mot sont obtenus par permutation des lettres de ce mot.

- 1. Dans le cas du mot *ANGELOT*, on cherche le nombre des permutations des 7 lettres distinctes $\{A, N, G, E, L, O, T\}$. C'est directement une question de cours : il y en a 7! = 5040.
- 2. Dans le cas du mot *BAOBAB*, les choses se compliquent. On dispose des 3 lettres A, B, et O et on cherche des mots écrits avec 6 lettres dont 3 « B » et 2 « A ».

Une première façon de faire consiste à choisir la place des lettres, parmi 7 places possibles.

- D'abord les places des 3 « B », il y a $\binom{6}{3}$ choix possibles;
- puis les places des 2 « A » parmi les 3 restantes : $\binom{3}{2}$ choix;
- puis la dernière place pour le « O ».

Il y a donc
$$\binom{6}{3} \times \binom{3}{2} = \frac{6 \times 5 \times 4 \times 3 \times 2}{3! \, 2!} = \frac{6!}{3! \, 2!} = 60$$
 anagrammes.

Le lecteur consciencieux vérifiera que l'ordre de placement des lettres (d'abord « O », puis « A », etc.) dans ce raisonnement n'a pas d'importance.

On peut aussi utiliser un principe de symétrie. Distinguons momentanément les $3 \, {\rm a.b.} \, {\rm b.s.} \, {\rm b$

Exercice de référence I.2 — Une somme classique

- 1. Démontrer que, pour $(n, p) \in \mathbb{N}^2$, $\sum_{k=p}^{n} {n \choose p} = {n+1 \choose p+1}$.
- 2. Retrouver cette égalité par un dénombrement : compter les sous-ensembles à p+1 éléments de $\llbracket 1 ; n+1 \rrbracket$ d'après leur plus grand élément.
- 3. Retrouver que $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ (considérer le cas p = 1).
- 4. Calculer $\sum_{k=1}^{n} k(k-1)$ et retrouver $\sum_{k=1}^{n} k^2$.