ANALYSIS 2 - HAUSAUFGABE 6

Tom Nick 342225 Tom Lehmann 340621 Maximilian Bachl 341455

Aufgabe 1

Es handelt sich hier um die Suche nach Extrema mit Nebenbedinung, weshalb wir zunächst nach Extrema auf dem Rand des Kreises suchen.

Die Nebenbedingung lautet: $g(x,y) = x^2 + y^2 - 1 = 0$.

1. Singulärer Fall:

$$\nabla g(\vec{x}) = \vec{0} = \begin{pmatrix} 2x \\ 2y \end{pmatrix} \Rightarrow (x, y) = (0, 0)$$

Da $g(0,0) = -1 \neq 0$ gibt es hier keinen singulären Fall.

2. $\nabla f(\vec{x}) = \lambda \cdot \nabla g(\vec{x})$

$$\nabla f(\vec{x}) = \begin{pmatrix} 6x - 2y \\ -2x + 2y \end{pmatrix} = \lambda \begin{pmatrix} 2x \\ 2y \end{pmatrix} = \lambda \cdot \nabla g(\vec{x})$$

Also:

$$6x - 2y = \lambda \cdot 2x \Rightarrow x \text{TODO}$$
$$-2x + 2y = \lambda \cdot 2y$$

TODO

Wir prüfen zunächst die notwendige Bedingung für kritische Punkte $\nabla f(\vec{x}_k) = 0$:

$$\nabla f(\vec{x}) = \vec{0} = \begin{pmatrix} 2(x-y) + 4x \\ -2(x-y) \end{pmatrix} = \begin{pmatrix} 6x - 2y \\ -2x + 2y \end{pmatrix}$$

Also:

$$0=6x-2y$$
Evtl. Nummerierung hinzufügen $0=-2x+2y$ $\Rightarrow 0=4x \Rightarrow x=0 \Rightarrow y=0$

Wir erhalten deshalb einen kritischen Punkt: $x_{k1} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$.

Die Hessematrix ist, da es sich bei f um eine zweimal stetig partiell differentierbare Funktion handelt, gemäß dem Satz von Schwarz, invertierbar.

$$f''(\vec{x}) = H_f(\vec{x}) = \begin{pmatrix} 6 & -2 \\ -2 & 2 \end{pmatrix}$$
$$D_1 = \det(6) = 6 > 0$$
$$D_2 = \det\begin{pmatrix} 6 & -2 \\ -2 & 2 \end{pmatrix} = 8 > 0$$

Damit ist $H_f(\vec{x})$ positiv definit, woraus schlusszufolgern ist, dass die Funktion f bei f(0,0)=0 ein lokales Minimum besitzt. Da f(x,y) eine Komposition aus $(x-y)^2>0 \ \ \forall x,y\in\mathbb{R}$ und $2x^2>0 \ \ \forall x\in\mathbb{R}$ ist, ist f(0,0)=0 sogar ein globales Minimum.