







Don't stare into the abyss: understanding your model.

Dr Neil Burns – neil.burns@sruc.ac.uk

#### How the session will work

## Mix of presentation are R coding

#### Flit between PowerPoint and R:

Presentation and code available at my github

https://github.com/NeilMBurns

Section headings in R will be highlighted like:



#### Research Interests

# Population ecology and ecosystem health



**BIOLOGY** Otolith chemoscape analysis in whiting links fishing grounds to nursery areas Neil M. Burns, Charlotte R. Hopkins, David M. Bailey and Peter J. Wright 2020

## Why use someone else's robot?





Linear models (lm)
Generalised Linear Models (glm)
Generalised Additive Models (gam)
Mixed effects versions of (lmm, glmm, gamm)

Statistical modelling using glms



## Building useful robots and making inferences

Build the model from the knowledge of your data then use information theory to select models (and make inferences).

#### A. Model selection

Picking the best of a bad bunch.

#### B. Model validation

• So how rubbish is it?



By using AIC we are selecting the most "cost" effective model. With cost being measured in degrees of freedom.

AIC balance between over and underfitting by estimating out-of-sample deviance without needing to do cross-validation (the gold standard)

#### A - Model selection

Using AIC (log-likelihood ratio tests are also useful for those who like a p-value)

#### Selection recipe

- Start with the most complex model and work "back" towards the most simple
- Use AIC to choose (3 rules)
  - 1. Simple models are best
  - 2. Small AIC is best
  - 3. If these rules contradict (ie the more complex model has smaller AIC) then AIC should be different by more then 2



"I used backwards stepwise model selection to ..."

## Final interpretation – a word about staring into the abyss

```
Coefficients:
                     Estimate Std. Error t value Pr(>|t|)
(Intercept)
                      5.49784
                                 0.60079
                                           9.151 1.17e-14 ***
                      0.10071
                                 0.01005
perc_cov
                                          10.026 < 2e-16 ***
cor_colBrown
                     -1.61468
                                 1.00986
                                          -1.599 0.11320
cor_colGreen
                                 1.38125
                      3.69075
                                           2.672 0.00889 **
perc_cov:cor_colBrown 0.01524
                                 0.02008
                                           0.759 0.44973
perc_cov:cor_colGreen -0.08092
                                 0.02581 -3.135 0.00229 **
```







## Example 1 – Sharks and coral



Abundance of sharks  $(y_1)$  ~ It's a whole number (or maybe not) They are big and there are not loads of them so probably less than 60

Coral percentage cover (x<sub>1</sub>)
0 to 100%

Coral colour (x<sub>2</sub>)
Blue, Brown & green





Coral percentage cover



Coral colour



Coral percentage cover

## Back to R – Worked example

```
Coefficients:
                        Estimate Std. Error z value Pr(>|z|)
(Intercept)
                       3.5978497
                                  0.0331302 \ 108.597 \ < 2e-16
                       0.0196547
                                  0.0004554 	43.159 	< 2e-16
perc_cov
                      -3.2761745 0.1571768 -20.844
cor_colBrown
                                                     < 2e-16
cor_colGreen
                      -0.8946106
                                                     < 2e-16 ***
perc_cov:cor_colBrown 0.0014695
                                  0.0021828
                                              0.673
                                                     0.50081
                      0.0027831 0.0008577
                                              3.245
                                                     0.00118 **
perc_cov:cor_colGreen
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
```



## Counterfactuals – One continuous variable under a set of conditions (factor/treatment)



Manipulated variable under condition A & B





## Example 2 – Shark survival





L= shark length

D = shark density

S = survival



## Method to deal with multiple continuous variable counterfactual



## Summary

- Graph and understand your data (this is critical)
- Most models will be too complex to understand by gazing at coefficient tables
- Use counterfactuals to understand the model (with care)
- Its nice and symmetrical!



#### PGR next session?

You direct focus

- Suggestions
  - Continuation of this session
    - GLMs
    - GLMM?
    - GAM?
  - Multivariate modelling
  - Spatial data analysis
  - Writing with impact

