Математический Анализ - 2

Серёжа Рахманов | telegram, website Максим Николаев | telegram

Версия от 06.10.2020 11:50

Содержание

1	Лен	Лекция 1 - 01.09.2020 - Ряды		
	1.1	Определение ряда	2	
	1.2	Необходимое условие сходимости	2	
	1.3	Критерий Коши	2	
	1.4	Положительные ряды	3	
	1.5	Признаки сравнения	3	
	1.6	Отсутствие универсального ряда сравнения	4	
2	Лен	Лекция 2 - 08.09.2020 - Положительные ряды		
	2.1	Признак Лобачевского-Коши	5	
	2.2	Теорема Штольца и оценка частичных сумм гармонического ряда	5	
	2.3	Признак Даламбера и радикальный признак Коши	6	
	2.4	Радикальный признак сильнее признака Даламбера	6	
	2.5	Признак Гаусса	6	
	2.6	Сравнение с интегралом	7	
	2.7	Улучшение сходимости ряда	7	
3	Лен	кция 3 - 15.09.2020 - Знакопеременные ряды	8	
	3.1	Абсолютная и условная сходимость	8	
	3.2	Мажорантный признак Вейерштрасса	8	
	3.3	Группировка членов ряда	8	
	3.4	Знакочередующиеся ряды, пр-к Лейбница	9	
	3.5	О неприменимости эквивалентности	9	
	3.6	Признаки Дирихле и Абеля	9	
	3.7	Влияние перестановки членов ряда на его сумму	10	
4	Лен	Лекция 5 - 29.09.2020 - Исследование сходимости функциональных рядов		
	4.1	Свойства равномерно сходящейся последовательности	11	
	4.2	Равномерная сходимость функционального ряда	11	
	4.3	Необходимое условие равномерной сходимости	11	
	4.4	Критерий Коши равномерной сходимости	11	
	4.5	Признаки Вейерштрасса и Даламбера	12	
	4.6	Признак Лейбница	12	
	4.7	Признаки Дирихле и Абеля	12	
	4.8	Свойства равномерно сходящегося ряда	12	
5	Лев	кция 6 - 6.10.2020 - Степенные ряды	14	
		Основные понятия	14	
	5.2	Теорема Абеля, радиус и интервал последовательности	14	
	5.3	Равномерная сходимость степенного ряда	14	
	5.4	Сходимость ряда в граничных точках интервала сходимости	14	
	5.5	Дифференцирование и интегрирование степенного ряда	15	
	5.6	Бесконечное дифференцирование	15	
	5.7	Ряд Тейлора	15	
	•	5.7.1 Ряды Тейлора основных элементарных функций	15	

1 Лекция 1 - 01.09.2020 - Ряды

1.1 Определение ряда

Определение 1. Пусть a_n – последовательность, т.е. $\mathbb{N} \to \mathbb{R}$. Формальная бесконечная сумма: $a_1 + a_2 + a_3 + \cdots = \sum_{n=1}^{\infty} a_n$

называется рядом. $S_N = \sum_{n=1}^N a_n$ – частичная сумма, сумма ряда: $S = \lim_{N \to \infty} S_N$

Возможны 3 случая:

- 1. $\exists S \in \mathbb{R}$
- $2. \ \exists S = \infty$
- 3. ∄*S*

В первом случае говорят, что ряд сходится, иначе – что ряд расходится.

Пример.

1.
$$\sum_{n=1}^{\infty} 0 = 0 + 0 + \dots + 0 = 0$$

2.
$$\sum_{n=1}^{\infty} 1 = 1 + 1 + \dots + 1 = \infty$$

3.
$$\sum_{n=1}^{\infty} (-1)^n = -1 + 1 - \dots$$
 не существует

Определение 2. Если ряд сходится, т.е. $S_N \to S$ при $N \to \infty$, то $S - S_N = r_N$ – остаток ряда

$$r_N = \sum_{n=N+1}^{\infty} a_n, \, r_N o 0$$
 при $N o \infty$

1.2 Необходимое условие сходимости

Замечание. Если ряд сходится, то $a_n \to 0$

Доказательство.
$$a_n = S_n - S_{n-1} \to 0$$
, т.к. $S_n \to S$ и $S_{n-1} \to S$

1.3 Критерий Коши

Определение 3. a_n называется фундаментальной, если $\forall \varepsilon > 0 \ \exists N : \forall n > m > N \implies |S_n - S_m| < \varepsilon$

Теорема 1.1. S_n – $cxodumcs\Leftrightarrow S_n$ – фундаментальная

Доказательство.
$$S_n - S_m = \sum_{k=m+1}^n a_k$$
 Тогда $\sum a_n$ – сходится $\Leftrightarrow \forall \varepsilon > 0 \ \exists N : \forall n > m > N \ |a_{m+1} + a_{m+2} + \dots + a_n| < \varepsilon$

Пример.

1.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$$

Заметим, что
$$S_N = \sum_{n=1}^N \frac{1}{n(n+1)} = \sum_{n=1}^N \left(\frac{1}{n} - \frac{1}{n+1}\right) = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{N} - \frac{1}{N+1}\right) = 1 - \frac{1}{N+1} \rightarrow 1$$

Этот ряд сходится при $N o \infty$: $\sum_{i=1}^{\infty} \frac{1}{n(n+1)} = 1$

2.
$$z \in \mathbb{C}, z = |z| \cdot (\cos \varphi + i \sin \varphi)$$

Рассмотрим ряд
$$\sum_{n=0}^{\infty} z^n = 1 + z + z^2 + \dots$$

$$S_N = 1 + z + z^2 + \dots + z^N = \frac{1 - z^{N+1}}{1 - z}$$

Ряд сходится $\Leftrightarrow |z| < 1$

$$|z| < 1 \Rightarrow z^n \to 0, S_N = \frac{1 - z^{N+1}}{1 - z} \to \frac{1}{1 - z}$$

Положительные ряды

$$\sum_{n=1}^{\infty} a_n, a_n \geqslant 0, \ S_n \uparrow, \text{ t.k. } S_{n+1} \geqslant S_n$$

1.
$$\exists S \in \mathbb{R}$$

2.
$$\exists S = \infty$$

Обозначение 1.
$$\sum_{n=1}^{\infty} a_n < \infty$$
 – ряд сходится, $\sum_{n=1}^{\infty} a_n = \infty$ – ряд расходится.

Признаки сравнения 1.5

1. Сравнение с помощью неравенства.

$$a_n \leqslant b_n$$
 при всех $n \geqslant n_0$

Ряд
$$\sum b_n$$
 сходится \implies ряд $\sum a_n$ сходится

Ряд
$$\sum a_n$$
 расходится \implies ряд $\sum b_n$ расходится

2. Сравнение отношений.

$$rac{a_{n+1}}{a_n}\leqslant rac{b_{n+1}}{b_n}$$
 при всех $n\geqslant n_0$

Ряд
$$\sum b_n$$
 сходится \implies ряд $\sum a_n$ сходится

Ряд
$$\sum a_n$$
 расходится \implies ряд $\sum b_n$ расходится

Доказательство.

$$a_{n_0+1} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+1}$$

$$a_{n_0+2} \leqslant \frac{a_{n_0+1}}{b_{n_0+2}} \cdot b_{n_0+2} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0}$$

$$a_{n_0+2} \leqslant \frac{a_{n_0+1}}{b_{n_0+1}} \cdot b_{n_0+2} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+2}$$

$$a_{n_0+k} \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot b_{n_0+k} \implies \sum_{n=n_0}^N a_n \leqslant \frac{a_{n_0}}{b_{n_0}} \cdot \sum_{n=n_0}^N b_n$$

3. Сравнение с помощью предела.

$$\lim_{n\to\infty}\frac{a_n}{b_n}\in(0;+\infty)\implies \text{сходимость }\sum a_n\iff \text{сходимость }\sum b_n$$

Доказательство.

$$c = \lim_{n \to \infty} \frac{a_n}{b_n} > 0$$

$$\forall \varepsilon \ \exists n_0: \ c - \varepsilon \leqslant \frac{a_n}{b_n} \leqslant c + \varepsilon, \ \forall n \geqslant n_0$$

Возьмём
$$\varepsilon: c-\varepsilon > 0 \implies (c-\varepsilon) \cdot b_n \leqslant a_n \leqslant (c+\varepsilon) \cdot b_n$$

Сходимость следует из правой части неравенства, а расходимость из левой.

Отсутствие универсального ряда сравнения

Предложение. Не существует ряда $\sum c_n, \, c_n > 0$: 1) $\frac{a_n}{c_n} \to 0 \implies$ ряд $\sum a_n$ сходится.

1)
$$\frac{a_n}{c_n} \to 0 \implies \text{ряд } \sum a_n \text{ сходится}$$

2)
$$\frac{b_n}{c_n} \to \infty \implies \text{ряд } \sum b_n \text{ расходится.}$$

Доказательство.

1. Если ряд $\sum c_n$ расходится, то пусть $S_N = \sum_{n=1}^N c_n \to \infty, S_0 = 0$, тогда ряд $\sum_{n=1}^\infty (\underbrace{\sqrt{S_n} - \sqrt{S_{n-1}}}_{q_n})$ расходится так как:

(a)
$$\sum_{n=1}^{N} (\sqrt{S_n} - \sqrt{S_{n-1}}) = \sqrt{S_1} - \sqrt{S_0} + \sqrt{S_2} - \sqrt{S_1} + \dots + \sqrt{S_N} - \sqrt{S_{N-1}} = \sqrt{S_N} - \sqrt{S_0} = \sqrt{S_N} \to \sqrt{S_N}$$

(b)
$$\frac{\sqrt{S_n} - \sqrt{S_{n-1}}}{c_n} = \frac{\sqrt{S_n} - \sqrt{S_{n-1}}}{S_n - S_{n-1}} = \frac{1}{\sqrt{S_n} + \sqrt{S_{n-1}}} \implies \frac{a_n}{c_n} \to 0$$

Ряд расходится, но по предположению сходится, получили противоречие.

2. Если ряд $\sum_{n=1}^{\infty} c_n$ сходится, то рассмотрим r_n - его n-ный остаток, тогда ряд $\sum_{n=1}^{\infty} (\underbrace{\sqrt{r_{n-1}} - \sqrt{r_n}}), r_0 = S = \sum_{n=1}^{\infty} c_n$ сходится, так как:

(a)
$$\sum_{\substack{n=1\\r_N\to 0}}^N (\sqrt{r_{n-1}}-\sqrt{r_n}) = \sqrt{r_0}-\sqrt{r_1}+\sqrt{r_1}-\sqrt{r_2}+\cdots+\sqrt{r_{N-1}}-\sqrt{r_N} = \sqrt{r_0}-\sqrt{r_N} = \sqrt{S}-\sqrt{r_N}\to \sqrt{S}, \text{ t.k.}$$

(b)
$$\frac{\sqrt{r_{n-1}} - \sqrt{r_n}}{c_n} = \frac{\sqrt{r_{n-1}} - \sqrt{r_n}}{r_{n-1} - r_n} = \frac{1}{\sqrt{r_{n-1}} + \sqrt{r_n}} \to \infty$$
, t.k. $\sqrt{r_{n-1}} \to 0$ if $\sqrt{r_n} \to 0$

Ряд сходится, но по предположению расходится, получили противоречие.

4

2 Лекция 2 - 08.09.2020 - Положительные ряды

Признак Лобачевского-Коши

Предложение. Пусть $a_n>0$ и $a_n\downarrow$ Тогда ряды $\sum a_n$ и $\sum 2^n\cdot a_{2^n}$ ведут себя одинаково

Доказательство. $a_1 + (a_2) + (a_3 + a_4) + (a_5 + \cdots + a_8) + \dots$

$$a_1 \geqslant a_2 \geqslant a_2$$

$$2a_2 \geqslant a_3 + a_4 \geqslant 2a_4$$

$$4a_4 \geqslant a_5 + \dots + a_8 \geqslant 4a_8$$

$$a_1 + \sum_{n=0}^{m-1} 2^n a_{2^n} \geqslant \sum_{n=1}^{2^m} a_n \geqslant a_1 + \frac{1}{2} \sum_{n=1}^{m} 2^n a_{2^n}$$

 Πp имер. $\sum_{n=1}^{\infty} \frac{1}{n^p}$ — обобщённый гармонический ряд, p>0 $a_n=\frac{1}{n^p}\downarrow \qquad a_{2^n}=\frac{1}{(2^n)^p}$

$$a_n = \frac{1}{n^p} \downarrow \qquad a_{2^n} = \frac{1}{(2^n)^p}$$

$$\sum_{n=1}^{\infty} 2^n \cdot \frac{1}{(2^n)^p} = \sum_{n=1}^{\infty} \frac{1}{(2^n)^{p-1}} = \sum_{n=1}^{\infty} \left(\frac{1}{2^{p-1}}\right)^n$$

Это сумма геометрической прогрессии со знаменателем $q=rac{1}{2^{p-1}}$

$$q < 1 \iff p > 1$$
 – ряды сходятся, например: $\sum_{n=1}^{\infty} \frac{1}{n^{1,001}}, \sum_{n=1}^{\infty} \frac{1}{n^2}$

$$q\geqslant 1\iff p\leqslant 1$$
 – ряды расходятся, например: $\sum_{n=1}^{\infty}\frac{1}{\sqrt{n}},\;\sum_{n=1}^{\infty}\frac{1}{n}$

Пример.
$$\sum_{n=2}^{\infty} \frac{1}{n \cdot \ln^p n}, p > 0$$

$$\frac{1}{n \cdot \ln^p n} \downarrow , a_{2^n} = \frac{1}{2^n \cdot \ln^p 2^n} = \frac{1}{2^n \cdot n^p \cdot \ln^p 2}$$

$$\frac{1}{n \cdot \ln^p n} \downarrow , a_{2^n} = \frac{1}{2^n \cdot \ln^p 2^n} = \frac{1}{2^n \cdot n^p \cdot \ln^p 2}$$
$$\sum_{n=1}^{\infty} 2^n \cdot a_{2^n} = \sum_{n=1}^{\infty} 2^n \frac{1}{2^n \cdot n^p \cdot \ln^p 2} = \frac{1}{\ln^p 2} \cdot \sum_{n=1}^{\infty} \frac{1}{n^p}$$

Теорема Штольца и оценка частичных сумм гармонического ряда

Гармонический ряд: $\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots$

$$A_n = 1 + \frac{1}{2} + \dots + \frac{1}{n-1} - \ln n$$

$$B_n = 1 + \frac{1}{2} + \dots + \frac{n}{n} - \ln n$$

$$A_n \uparrow, B_n$$

$$B_n > A_n$$

$$B_1 > \dots > B_{n-1} > B_n > A_n > A_{n-1} > \dots > A_1, \forall n \in \mathbb{N}$$

$$B_n - A_n = \frac{1}{n} \to 0$$

 $B_n-A_n=rac{1}{n} o 0$ Значит, $\exists \lim A_n=\lim B_n=\gammapprox 0.5772\dots$ – число Эйлера-Маскерони

$$\sum_{n=1}^{N} \frac{1}{n} = 1 + \frac{1}{2} + \dots + \frac{1}{N} = \ln N + \gamma + o(1)$$

Теорема 2.1. (Штольца.) Если $p_n, q_n \to 0, q_n \downarrow u \; \exists lim \frac{p_{n+1} - p_n}{q_{n+1} - q_n}, \; mo \; lim \; \frac{p_n}{q_n} = lim \; \frac{p_{n+1} - p_n}{q_{n+1} - q_n}$

$$\lim \frac{1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n - \gamma}{\frac{1}{n}} = \lim \frac{\frac{1}{n+1} - \ln(n+1) + \ln n}{\frac{1}{n+1} - \frac{1}{n}} = \lim \frac{\frac{1}{n} \cdot \frac{1}{1 + \frac{1}{n}} - \ln\left(1 + \frac{1}{n}\right)}{\frac{1}{n} \cdot \left(\frac{1}{1 + \frac{1}{n}} - 1\right)} \stackrel{\cong}{=}$$

$$\begin{split} &\frac{1}{1+\frac{1}{n}} = 1 - \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right) \\ &\ln\left(1+\frac{1}{n}\right) = \frac{1}{n} - \frac{1}{2n^2} + o\left(\frac{1}{n^2}\right) \\ &\text{Получаем, что} \stackrel{\heartsuit}{=} \lim \frac{-\frac{1}{2n^2}}{-\frac{1}{n^2}} = \frac{1}{2} \end{split}$$

$$1 + \frac{1}{2} + \dots + \frac{1}{n} = \ln n + \gamma + \underbrace{\frac{1}{2n} + o\left(\frac{1}{n}\right)}_{o(1)}$$

Так как

$$\frac{1 + \frac{1}{2} + \dots + \frac{1}{n} - \ln n - \gamma - \frac{1}{2n}}{\frac{1}{n}} \to 0$$

Признак Даламбера и радикальный признак Коши

Теорема 2.2. Признак Дарамбера. Пусть
$$a_n > 0$$
. $\overline{\lim} \frac{a_{n+1}}{a_n} < 1 \implies pя \partial \sum a_n \ cxo \partial umcs$. $\underline{\lim} \frac{a_{n+1}}{a_n} > 1 \implies ps \partial \sum a_n \ pacxo \partial umcs$.

Теорема 2.3. Радикальный признак Коши. Пусть $a_n \geqslant 0$.

$$\begin{array}{ll} \overline{\lim} \sqrt[n]{a_n} < 1 \implies p \mathfrak{s} \partial \sum a_n \ cxo \partial um c \mathfrak{s}. \\ \underline{\lim} \sqrt[n]{a_n} > 1 \implies p \mathfrak{s} \partial \sum a_n \ pacxo \partial um c \mathfrak{s}. \end{array}$$

$$\Pi p u м e p. \sum_{n=1}^{\infty} \frac{p^n}{n!}, \quad p>0$$

$$a_n = \frac{p^n}{n!}, \quad \frac{a_{n+1}}{a_n} = \frac{p^{n+1}}{(n+1)!} \cdot \frac{n!}{p^n} = \frac{p}{n+1} \to 0 < 1 \implies \text{ряд сходится по признаку Даламбера.}$$

$$\sqrt[n]{a_n} = \sqrt[n]{\frac{p^n}{n!}} = \frac{p}{\sqrt[n]{n!}} \to 0 < 1 \implies \text{ряд сходится по радикальному признаку Коши.} (\sqrt[n]{n!} \to \infty)$$

2.4 Радикальный признак сильнее признака Даламбера

Пусть $a_n > 0$. Тогда:

$$\varliminf \frac{\lim \frac{a_{n+1}}{a_n} \leqslant \varliminf \sqrt[n]{a_n} \leqslant \varlimsup \sqrt[n]{a_n} \leqslant \varlimsup \frac{a_{n+1}}{a_n}}{a_n} \leqslant \varlimsup \sqrt[n]{a_n} \leqslant \varlimsup \frac{a_{n+1}}{a_n}$$
 Если $\varliminf \frac{a_{n+1}}{a_n} > 1 \implies \varliminf \sqrt[n]{a_n} < 1$ Если $\varliminf \frac{a_{n+1}}{a_n} > 1 \implies \varliminf \sqrt[n]{a_n} > 1$ Если $\exists \lim \frac{a_{n+1}}{a_n}$, то $\varlimsup \frac{a_{n+1}}{a_n} = \varliminf \frac{a_{n+1}}{a_n} \Rightarrow \exists \lim \sqrt[n]{a_n} = \lim \frac{a_{n+1}}{a_n}$

2.5 Признак Гаусса

(Сравнение с
$$\sum \frac{1}{n^p}$$
)
Если $\exists \delta > 0, p: \frac{a_{n+1}}{a_n} = 1 - \frac{p}{n} + O\left(\frac{1}{n^{1+\delta}}\right)$ то:
 $p > 1 \implies \text{ряд } \sum a_n \text{ сходится.}$
 $p \leqslant 1 \implies \text{ряд } \sum a_n \text{ расходится.}$

Сравнение с интегралом

Рассмотрим
$$f(x)\downarrow$$
 при $x\geqslant n_0-1$ и ряд $\sum_{n=n_0}^{\infty}a_n$, где $a_n=f(n)$

$$f(n+t) \le a_n \le f(n-1+t), t \in [0;1]$$

$$\int_0^1 dt: \quad \int_n^{n+1} f(x)dx \leqslant a_n \leqslant \int_{n-1}^n f(x)dx$$

$$\sum_{n=n_0}^{\infty} : \int_{n_0}^{N+1} f(x) dx \leqslant \sum_{n=n_0}^{N} a_n \leqslant \int_{n_0-1}^{N} f(x) dx$$

$$\Longrightarrow \sum a_n$$
ведёт себя так же как несобственный интеграл $\int^\infty f(x) dx$

Улучшение сходимости ряда

Пример.
$$S = \sum_{n=1}^{\infty} \frac{1}{n^2 + 2} \approx \sum_{n=1}^{\infty} \frac{1}{n^2}$$

димости будем пользоваться рядами такого типа: $_{\infty}^{\infty}$

Для улучшения сходимости будем пользоваться р
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1, \quad \sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{4}, \quad \dots$$

Такие ряды достаточно легко считаются, в нашем примере воспользуемся первым т.к. $\frac{1}{n(n+1)} \sim \frac{1}{n^2}$

$$\sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} \right) = S - 1 \implies S = 1 + \sum_{n=1}^{\infty} \left(\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} \right)$$

$$\frac{1}{n^2 + 2} - \frac{1}{n(n+1)} = \frac{1}{n^2} \cdot \left(\frac{1}{1 + \frac{2}{n^2}} - \frac{1}{1 + \frac{1}{n}} \right) = \frac{1}{n^2} \cdot \left(1 - \frac{2}{n^2} + o\left(\frac{1}{n^2}\right) - \left(1 - \frac{1}{n} + \frac{1}{n^2} + o\left(\frac{1}{n^2}\right)\right) \right) = \frac{1}{n^3} + o\left(\frac{1}{n^3}\right)$$
 Слагаемые убывают быстрее, чтобы получить число с определённой точностью потребуется значительно меньше

Получили, что
$$\sum_{n=1}^{\infty} \frac{1}{n^2 + 2} \approx 1 + \sum_{n=1}^{\infty} \frac{1}{n^3}$$

Лекция 3 - 15.09.2020 - Знакопеременные ряды 3

Абсолютная и условная сходимость

Определение 4.
$$\sum_{n=1}^{\infty} a_n, a_n \in \mathbb{R}$$

Если $a_n \cdot a_{n+1} < 0$, то ряд называется знакочередующимся.

Пусть
$$\sum a_n$$
 сходится

Onpedenenue 5. Рассмотрим дополнительный ряд $\sum |a_n|$ (*)

Если (*) сходится, то $\sum a_n$ называется сходящимся абсолютно

Если (*) расходится, то $\sum a_n$ называется сходящимся условно

Определение 6. Введём
$$a_n^+ = \begin{cases} a_n, a_n > 0 \\ 0 \end{cases}$$
 $a_n^+ = \begin{cases} |a_n|, a_n < 0 \\ 0 \end{cases}$

Ряды $\sum a_n^+, \sum a_n^-$ называются положительной и отрицательной частью исходного ряда $\sum a_n$

$$\begin{split} S_N^+ &= \sum_{n=1}^N a_n^+, \, S_N^- = \sum_{n=1}^N a_n^- \\ a_n &= a_n^+ - a_n^-, \, |a_n| = a_n^+ + a_n^- \\ \sum_{n=1}^\infty a_n &= S_N^+ - S_N^-, \, \sum_{n=1}^\infty a_n = S_N^+ + S_N^- \end{split}$$

3амечание. Ряд $\sum a_n$ сходится абсолютно \iff оба ряда $\sum a_n^+, \sum a_n^-$ сходятся Ряд $\sum a_n$ сходится условно \implies оба ряда $\sum a_n^+, \sum a_n^-$ расходятся

Мажорантный признак Вейерштрасса

Tеорема 3.1. Eсли $|a_n|\leqslant b_n$ nри $n>n_0$ и положительный ряд $\sum b_n$ cxoдится, то $\sum a_n$ cxoдится, причём абсолютно.

$$\begin{split} & \varPi p u \mathit{mep}. \ \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p}, \ p > 0 \\ & |sin(nx)| \leqslant 1 \implies \left| \frac{sin(nx)}{n^p} \right| \leqslant \frac{1}{n^p} \\ & \sum \frac{1}{n^p} \operatorname{cxoдится} \ (p > 1) \implies \sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p} \operatorname{cxoдится} \ \mathsf{абсолютнo}. \end{split}$$

Группировка членов ряда

Говорят, что ряд $\sum b_k$ получен из $\sum a_n$ группировкой членов, если $\exists n_1 < n_2 < \ldots$: $b_1 = a_1 + a_2 + \cdots + a_{n_1}$ $b_2 = a_{n_1+1} + a_{n_1+2} + \cdots + a_{n_2}$

3амечание. Если $\sum a_n$ сходится, то ряд $\sum b_k$ сходится к той же сумме.

Доказательство.
$$\sum_{k=1}^m b_k = \sum_{n=1}^{n_m} a_n$$

Обратное утверждение неверно: (1-1) + (1-1) + ...

Знакопеременный ряд при помощи группировки сводится к знакочередующемуся:

$$a_1 \leqslant 0, \ldots, a_{n_1} \leqslant 0; b_1 = \sum_{i=1}^{n_1} a_i \leqslant 0$$

$$a_{n_1+1} \geqslant 0, \dots, a_{n_2} \geqslant 0; b_1 = \sum_{i=n_1+1}^{n_2} a_i \leqslant 0$$

При такой группировке сходимость исходного ряда \iff сходимость $\sum b_n$

Пример.
$$\sum_{n=1}^{\infty} \frac{(-1)^{[\ln n]}}{n}$$

$$\sum_{k=0}^{\infty} b_k, \text{ где } b_k = (-1)^k$$

$$|b_k| = \sum_{n=[e^k]+1}^{[e^{k+1}]} \frac{1}{n} \leqslant \frac{1}{[e^k]+1} \cdot ([e^{k+1}] - [e^k]) \approx \frac{e^{k+1} - e^k}{e^k} \to e-1 > 0$$

Знакочередующиеся ряды, пр-к Лейбница

$$\sum_{n=1}^{\infty} a_n$$
, где $a_n = (-1)^n \cdot u_n, \ u_n > 0$

Теорема 3.2. Признак Лейбница. Если $u_n \downarrow 0$, то ряд сходится, причём $|r_n| \leqslant u_{n+1}$

$$\begin{split} & \Pi p u \text{мер. } \sum_{n=1}^{\infty} \frac{(-1)^n}{n^p}, \ p > 0 \\ & \frac{1}{n^p} \downarrow 0 \implies \text{ряд сходится (при } \forall p > 0) \\ & \Pi \text{ри этом } \sum_{n=1}^{\infty} \left| \frac{(-1)^n}{n^p} \right| = \sum_{n=1}^{\infty} \frac{1}{n^p} - \text{сходится при } p > 1 \text{ и расходится при } p \leqslant 1 \\ & \sum_{n=1}^{\infty} \frac{(-1)^n}{n^p} \colon p \in (0;1] - \text{сходится условно, } p \in (1;+\infty) - \text{абсолютно} \end{split}$$

3.5 О неприменимости эквивалентности

$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} - (-1)^n} \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

$$\frac{(-1)^n}{\sqrt{n} - (-1)^n} \approx \frac{(-1)^n}{\sqrt{n}}$$

Гассмотрим 2 ряда.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n} - (-1)^n} \sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

$$\frac{(-1)^n}{\sqrt{n} - (-1)^n} \approx \frac{(-1)^n}{\sqrt{n}}$$
 При этом правый ряд сходится по признаку Лейбница, а левый – расходится:
$$\frac{(-1)^n}{\sqrt{n} - (-1)^n} - \frac{(-1)^n}{\sqrt{n}} = \frac{1}{\sqrt{n}(\sqrt{n} - (-1)^n)} \approx \frac{1}{n}$$

$$\sum_{n=1}^{N} \frac{(-1)^n}{\sqrt{n} - (-1)^n} = \sum_{n=1}^{N} \frac{(-1)^n}{\sqrt{n}} + \sum_{n=1}^{N} \frac{1}{\sqrt{n}(\sqrt{n} - (-1)^n)} \to \infty$$

Признаки Дирихле и Абеля

$$\sum_{n=1}^{\infty} a_n \cdot b_n$$

Теорема 3.3. Признак Дирихле. Если $a_n \downarrow 0$, а частичные суммы $\left| \sum_{i=1}^{N} b_n \right| \leqslant C$ ограничены, то $\sum_{i=1}^{\infty} a_n \cdot b_n$ сходится.

Теорема 3.4. Признак Абеля. Если a_n монотонна и ограничена, а ряд $\sum_{n=1}^{\infty} b_n$ сходится, то $\sum_{n=1}^{\infty} a_n \cdot b_n$ сходится.

$$a_n \to a, \ a_n = a + -\alpha_n, \ \alpha_n \downarrow 0; \ \sum_{n=1}^{\infty} a_n \cdot b_n = a \sum_{n=1}^{\infty} b_n + -\sum_{n=1}^{\infty} \alpha_n \cdot b_n$$

Пример.
$$\sum_{n=1}^{\infty} \frac{\sin(nx)}{n^p}, \, p > 0$$

$$a_n = \frac{1}{n^p} \downarrow 0, \, b_n = \sin nx$$

$$b_1 + b_2 + b_3 + \dots + b_N = \sin x + \sin 2x + \dots + \sin Nx = \frac{\cos \frac{x}{2} - \cos ((N+1/2)x)}{2\sin \frac{x}{2}}; \left| \sum_{n=1}^{N} b_n \right| \leqslant \frac{2}{2\sin \frac{x}{2}} = \frac{1}{\sin \frac{x}{2}}$$

Ряд сходится по признаку Дирихле

Влияние перестановки членов ряда на его сумму

Говорят, что ряд $\sum b_n$ получен из $\sum a_n$ перестановкой членов, если $b_n=a_{f(n)}$ Если ряд $\sum a_n$ сходится абсолютно, то \forall ряд, полученный из него перестановкой членов, сходится абсолютно к той же сумме.

Teopema~3.5.~ (Pumana) $Ecnu~psd~\sum a_n~cxodumcs~ycловно,~mo~dлs~ <math>\forall S\in [-\infty;+\infty]~mo~\exists~nepecmanoska~f~makas,~umo$ $\sum a_{f(n)} = S$

Лекция 5 - 29.09.2020 - Исследование сходимости функциональных ря-4 дов

4.1 Свойства равномерно сходящейся последовательности

1. $-\infty \leqslant a < b \leqslant +\infty$, рассмотрим D = (a; b), D = [a; b]

Пусть
$$f_n \to f, \ x \in D, \ y_n = \lim_{x \to x_0} f_n(x), \ \{y_n\}$$
 – сход., $y_n \to y$

Тогда
$$\lim_{x\to x_0} f(x)=y$$
, т.е. $\lim_{x\to x_0} (\lim_{n\to\infty} f_n(x))=\lim_{n\to\infty} (\lim_{x\to x_0} f_n(x))$

Доказательство.
$$|y - f(x)| \le |y - y_n| + |y_n - f_n(x)| + |f_n(x) - f(x)|$$

Пусть
$$n$$
 такое, что $|y-y_n|<rac{arepsilon}{3}, ||f_n-f||<rac{arepsilon}{3},\, |x-x_0|<\delta, |f(x)-y|<rac{arepsilon}{3}$

Тогда
$$|y-f(x)| \leqslant |y-y_n| + |y_n-f_n(x)| + |f_n(x)-f(x)| < \varepsilon$$

2. $-\infty \leqslant a < b \leqslant +\infty$, рассмотрим D = (a; b), D = [a; b]

Пусть
$$f_n$$
 дифференцируемы на $D, f'_n \stackrel{D}{\rightrightarrows} g, \exists c \in D : \{f_n(c)\}$ сход

Тогда $\exists f: f_n \to f$ (причем, если D огр., то сходимость равномерная)

f – дифференцируема, f' = g.

$$(\lim_{n\to\infty} f_n(x))' = \lim_{n\to\infty} f'_n(x)$$

3. $-\infty < a < b < +\infty$, D = [a; b]

Пусть
$$f_n$$
 непрерывны на D , $f_n \stackrel{D}{\Rightarrow} f$ ($\Longrightarrow f$ непрерывна на D)

Тогда
$$\int_a^x f_n(t)dt \to^D \int_a^x f(t)dt$$

Равномерная сходимость функционального ряда

$$D \subseteq \mathbb{R}, \ a_n : D \to R$$

Функциональный ряд:
$$\sum_{n=1}^{\infty}a_{n}(x)$$

Частичные суммы:
$$S_N(x) = \sum_{i=1}^{N} a_n(x)$$

Множество абсолютной сходимости – множество всех тех значений x, при которых ряд сходится абсолютно.

Необходимое условие равномерной сходимости

Если
$$\sum_{n=1}^{\infty} a_n(x)$$
 равномерно сходится к сумме $S(x)$, то $a_n \stackrel{D}{\rightrightarrows} 0$

Доказательство.
$$S_n(x) = a_1(x) + \dots + a_n(x), \ a_n(x) = S_n(x) - S_{n-1}(x)$$

 $S_n \stackrel{D}{\rightrightarrows} S \implies a_n \stackrel{D}{\rightrightarrows} (S - S) = 0$

$$S_n \stackrel{D}{\rightrightarrows} S \implies a_n \stackrel{D}{\rightrightarrows} (S - S) = 0$$

$$\Pi$$
ример. $\sum_{n=0}^{\infty} \frac{x^n}{n!}, D=\mathbb{R}$ – не является сходящейся равномерно, т.к. $\frac{x^n}{n!}! \to^{\mathbb{R}} 0$

Критерий Коши равномерной сходимости

Теорема 4.1. Функциональный ряд $\sum_{n=1}^{\infty} a_n(x)$ сходится равномерно на $D \iff \forall \varepsilon > 0 \ \exists N(\varepsilon), \ \forall n \geqslant N, \ \forall m$:

$$||a_n + a_{n+1} + \dots + a_{n+m}|| < \varepsilon$$

T.e.
$$|a_n(x) + a_{n+1}(x) + \cdots + a_{n+m}(x)| < \varepsilon \ \forall x \in D$$
.

Отрицание: если $\exists \{x_n\} \subset D, \exists \{m_n\} \in \mathbb{N}, \exists \varepsilon_0$:

$$|a_n(x_n) + a_{n+1}(x_n) + \dots + a_m|(x_n)| > \varepsilon_0$$

То ряд не является сходящимся равномерно.

 $\Pi puмер. \ \sum_{n=1}^{\infty} \frac{x}{x^2+n^2}, D=\mathbb{R}$ – сходится, т.к. $pprox \sum \frac{1}{n^2}$ Докажем, что сходится неравномерно. Возьмём $x_n=n, \, m_n=2n$:

$$\frac{n}{n^2 + n^2} + \frac{n}{n^2 + (n+1)^2} + \dots + \frac{n}{n^2 + (2n)^2} > \frac{n}{5n^2} \cdot n = \frac{1}{5}$$

4.5 Признаки Вейерштрасса и Даламбера

Теорема 4.2. (Признак Вейерштрасса) Если $|a_n(x)| \leq b_n$ при $\forall n \geq n_0, \ \forall x \in D, \ a \ psd \sum b_n$ сходится, то $\sum a_n(x)$ сходится на D абсолютно и равномерно.

Доказательство.
$$|a_n(x) + a_{n+1}(x) + \dots + a_{n+m}(x)| \leq b_n + b_{n+1} + \dots + b_{n+m} < \varepsilon$$

Теорема 4.3. (Признак Даламбера) Если $\exists q < 1 : |a_{n+1}(x)| \leqslant q \cdot |a_n(x)|$ при $\forall n \geqslant n_0, \forall x \in D$, причём $a_{n_0}(x)$ – ограничена на D, то $\sum a_n(x)$ сходится на D абсолютно и равномерно.

$$\begin{split} & \varPi p \textit{имер.} \ \sum_{n=0}^{\infty} \frac{x^n}{n!}, \ D = [-r; r], \ r > 0 \\ & \left| \frac{x^{n+1}}{(n+1)!} \right| \leqslant q \cdot \left| \frac{x^n}{n!} \right| \\ & \left| \frac{x}{n+1} \right| \leqslant q. \ \Pi \text{усть } n_0 : \frac{r}{n_0+1} < 1, \ \text{берём} \ q = \frac{r}{n_0+1}. \ \text{Значит, ряд абсолютно и равномерно сходится.} \end{split}$$

4.6 Признак Лейбница

Знакочередующийся функциональный ряд: $\sum_{n=1}^{\infty} (-1)^n \cdot u_n(x), \ u_n(x) \geqslant 0 \ \text{ на } D.$

Теорема 4.4. (Признак Лейбница) Если $u_n(x)\downarrow_{(n)} u\ u_n \stackrel{D}{\rightrightarrows} 0$, то ряд сходится равномерно.

Пример.
$$\sum \frac{(-1)^n}{(n+x)^p} \downarrow_{(n)}, |u_n(x)| \leqslant \frac{1}{n^p} \to 0 \implies u_n \to^0 0$$

4.7 Признаки Дирихле и Абеля

Рассмотрим ряд
$$\sum_{n=1}^{\infty} a_n(x) \cdot b_n x$$

Теорема 4.5. (Признак Дирихле) Если $a_n(x)\downarrow_{(n)} u\ a_n\stackrel{D}{\rightrightarrows} 0,\ a\ ||b_1+\cdots+b_n||\leqslant C\ \forall n,\ mo\ pяд\ равномерно\ сходится на <math>D.$

Теорема 4.6. (Признак Абеля) Если $a_n(x)$ монотонна по n ($npu \ \forall x \in D$), $u \ ||a_n|| \leqslant C$ при всех n, а ряд $\sum_{n=1}^{\infty} b_n(x)$ сходится равномерно, то ряд $\sum_{n=1}^{\infty} a_n(x) \cdot b_n(x)$ сходится равномерно.

4.8 Свойства равномерно сходящегося ряда

1.
$$-\infty \le a < b \le +\infty$$
, $D = (a; b)$, $D = [a; b]$

Пусть функциональный ряд $\sum_{n=1}^{\infty} c_n(x)$ сходится равномерно на $D, x_0 \in D, \exists \lim_{x \to x_0} c_n(x) = y_n$ и $\exists \sum_{n=1}^{\infty} y_n = y$.

Тогда
$$\lim_{x\to x_0}\sum_{n=1}^\infty c_n(x)=\sum_{n=1}^\infty\lim_{x\to x_0}c_n(x)=\sum_{n=1}^\infty y_n=y$$

2.
$$-\infty \leqslant a < b \leqslant +\infty$$
, $D = (a; b)$, $D = [a; b]$

Пусть $c_n(x)$ дифференцируемы на D и $\sum_{n=1}^{\infty} c'_n(x)$ сходится равномерно на D.

Тогда ряд $\sum_{n=1}^{\infty} c_n(x)$ сходится на D (а если D огр, то сходится равномерно), а его сумма будет дифференцируемой

функцией на
$$D$$
 и $\left(\sum_{n=1}^{\infty}c_n(x)\right)'=\sum_{n=1}^{\infty}c_n'(x)$

3.
$$-\infty < a < b < +\infty$$
, $D = (a; b)$, $D = [a; b]$

$$3. \ -\infty < a < b < +\infty, \ D=(a;b), \ D=[a;b]$$

$$\int_a^x \left(\sum_{n=1}^\infty c_n(t)\right) dt = \sum_{n=1}^\infty \int_a^x c_n(t) dt - \text{сходится равномерно на } D.$$

5 Лекция 6 - 6.10.2020 - Степенные ряды

Основные понятия

$$\sum_{n=0}^{\infty} c_n \cdot (x-x_0)^n$$
 $\{c_n\}$ — числовая последовательность (коэффициенты), $x_0 \in \mathbb{R}, x \in \mathbb{R}$ $S_N(x) = \sum_{n=0}^N c_n \cdot (x-x_0)^n$ — многочлен.

Теорема Абеля, радиус и интервал последовательности

Теорема 5.1. (Абеля)

- 1. Если степенной ряд сходится в точке $x_1 \neq x_0$, то он сходится при всех $x: |x-x_0| < |x_1-x_0|$
- 2. Если степенной ряд расходится в точке $x_2 \neq x_0$, то он расходится при всех $x: |x-x_0| > |x_2-x_0|$

Доказательство. 1.
$$\left|\sum_{n=m}^{N}c_{n}(x-x_{0})^{n}\right| = \left|\sum_{n=m}^{N}c_{n}\cdot(x_{1}-x_{0})^{n}\cdot\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)^{n}\right| \leqslant \sum_{n=m}^{N}\left|c_{n}\cdot(x_{1}-x_{0})^{n}\right| \cdot \left|\left(\frac{x-x_{0}}{x_{1}-x_{0}}\right)^{n}\right| \leqslant \varepsilon(q^{m}+\dots+q^{N}) \leqslant \varepsilon\cdot q^{m}\cdot\frac{1}{1-q}\to 0$$

Пусть:

$$R_{cv} = \sup\{|x - x_0| :$$
ряд сходится $\}$

$$R_{dv} = \inf\{|x-x_0| :$$
ряд расходится $\}$ или $+\infty$, если ряд сходится всюду

$$\exists R = R_{cv} = R dv$$
 – радиус сходимости.

$$\sum_{n=0}^{\infty} c_n \cdot (x - x_0)^n$$

Применим радикальный признак Коши:

$$\sqrt[n]{|a_n(x)|} = \sqrt[n]{|c_n|} \cdot |x - x_0|$$

$$\overline{\lim} \sqrt[n]{|a_n(x)|} = |x - x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|}$$

Если
$$|x-x_0| \cdot \overline{\lim_{n \to \infty} \sqrt[n]{|c_n|}} < 1$$
, то ряд сходится

Если
$$|x-x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|} \geqslant 1$$
, то ряд сходится

Если
$$|x-x_0| \cdot \overline{\lim} \sqrt[n]{|c_n|} < 1$$
, то ряд сходится $R = \frac{1}{\overline{\lim} \sqrt[n]{|c_n|}}$ – формула Коши-Адамара

Pro tip: если
$$\exists \lim \left| \frac{c_{n+1}}{c_n} \right|$$
, то $\lim \sqrt[n]{|c_n|} = \lim \left| \frac{c_{n+1}}{c_n} \right|$

Равномерная сходимость степенного ряда

Если R>0, то степенной ряд сходится равномерно при $|x-x_0|\leqslant r$, где r< R (доказательство через признак Вейерштрасса).

Сходимость ряда в граничных точках интервала сходимости

Пусть $\sum c_n R^n$ сходится. Тогда степенной ряд $\sum c_n (x-x_0)^n$ сходится равномерно на $[x_0;x_0+R]$.

Доказательство.
$$\sum_{n=0}^{\infty} c_n (x-x_0)^n = \sum_{n=0}^{\infty} (c_n \cdot R^n) \cdot \left(\frac{x-x_0}{R}\right)^n$$

$$b_n = c_n \cdot R^n, \ a_n = \left(\frac{x - x_0}{R}\right)^n$$

$$\sum_{n=0}^{\infty} b_n$$
 сходится \implies сходится равномерно.

$$a_n(x)\downarrow_{(n)}$$

Значит, ряд сходится равномерно по признаку Абеля.

Дифференцирование и интегрирование степенного ряда

$$\sum c_n(x-x_0)^n, R > 0 - \text{его радиус сходимости.}$$

1. Дифференцирование

При почленном дифференцировании получаем $\sum_{n=0}^{\infty} c_n \cdot n \cdot (x-x_0)^{n-1}$ Его радиус сходимости равен радиусу исходного ряда \Longrightarrow он сходится равномерно при $|x-x_0| \leqslant r < R$ Значит по теореме о почленном дифференцировании функционального ряда: $\left(\sum_{n=0}^{\infty} c_n \cdot (x-x_0)^n\right)' = \sum_{n=0}^{\infty} c_n \cdot n \cdot (x-x_0)^{n-1} = \sum_{n=0}^{\infty} c_{n+1} (n+1) (x-x_0)^n$

2. Интегрирование

$$\int_{x_0}^{x} \left(\sum_{n=0}^{\infty} c_n (t - x_0)^n \right) dt = \sum_{n=0}^{\infty} \frac{c_n}{n+1} (x - x_0)^{n+1}$$

Бесконечное дифференцирование 5.6

Функция называется бесконечно дифференцируемой в точке a, если $\forall n$ она n раз дифференцируема в точке a. Сумма степенного ряда с R>0 является бесконечно дифференцируемой функцией.

5.7 Ряд Тейлора

Если функция f(x) бесконечно дифференцируема в точке x_0 , то функции f(x) можно сопоставить её ряд Тейлора:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

При этом
$$f(x) = \sum_{n=0}^{N} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + r_N(x)$$

$$r_N(x)=rac{f^{(N+1)}(x_0+ heta)(x-x_0)}{(N+1)!}(x-x_0)^{N+1},\ heta\in(0;1)$$
 – формула Лагранжа $r_N(x)=rac{f^{(N+1)}(x_0+ heta)(x-x_0)}{N!}(1- heta)^N(x-x_0)^{N+1},\ heta\in(0;1)$ – формула Коши

$$r_N(x) = \frac{f^{(N+1)}(x_0+\theta)(x-x_0)}{N!}(1-\theta)^N(x-x_0)^{N+1}, \ \theta \in (0;1)$$
 – формула Коши

Определение 7. Функция называется аналитической в т.х₀, если она представима в окрестности этой точки в виде степенного ряда.

Не всякая бесконечно дифференцируемая функция будет аналитической:

Пример.
$$f(x) = \begin{cases} e^{-\frac{1}{x^2}}, x \neq 0 \\ 0, x = 0 \end{cases}$$
 $f(0) = f'(0) = f''(0) = \cdots = 0$, ряд Тейлора при $x_0 = 0$ равен 0

5.7.1 Ряды Тейлора основных элементарных функций

$$1. e^x - \sum_{n=0}^{\infty} \frac{x^n}{n!}, R = \infty$$

2.
$$(1+x)^p - \sum_{n=0}^{\infty} \frac{(p)_n}{n!} x^n$$
, где $(p)_n = p(p-1) \dots (p-n+1), R=1$

3.
$$\ln(1+x) - \sum_{n=0}^{\infty} \frac{(-1)^{(n+1)}x^n}{n!}$$