Aula 27 Superfícies Usinadas

A natureza da superfície metálica

A natureza das superfícies metálicas é uma conseqüência direta processo de fabricação

Em geral, a estrutura de uma superfície metálica é constituída das seguintes camadas:

- Camada de sujeira ==> aprox. 3 nm;
- Camada de adsorção ==> aprox. 0,3 nm;
- Camada oxidada ==> 1 a 10 nm;
- Camada deformada ==>> 5 um.

A natureza da superfície metálica

Desvios de forma de superfícies técnicas - DIN 4760

DESVIOS DE FORMA (REPRESENTADO NUMA SEÇÃO DE PERFIL)	EXEMPLO PARA OS TIPOS DE DESVIOS	EXEMPLO PARA A CAUSA DA ORIGEM DO DESVIO
1 ^o ORDEM: DESVIO DE FORMA	NÃO PLANO OVALADO	DEFEITO EM GUIAS DE MÁQUINAS-FERRAMENTAS, DEFORMAÇÕES POR FLEXÃO DA MÁQUINA OU DA PEÇA, FIXAÇÃO ERRADA DA PEÇA, DEFORMAÇÕES DEVIDO A TEMPERATURA, DESGASTE
2 [*] ORDEM: ONDULAÇÃO	ONDAS	FIXAÇÃO EXCÊNTRICA OU DEFEITO DE FORMA DE UMA FRESA, VIBRAÇÕES DA MÁQUINA- FERRAMENTA, DA FERRAMENTA OU DA PEÇA
*ORDEM: DESVIO DE FORMA	RANHURAS	FORMA DO GUME DA FERRAMENTA, AVANÇO OU PROFUNDIDADE DE CORTE
4 [^] ORDEM: DESVIO DE FORMA	ESTRIAS ESCAMAS RESSALTOS	PROCESSO DE FORMAÇÃO DE CAVACO (CAVACO ARRANCADO, CAVACO DE CISALHAMENTO, GUME POSTIÇO DE CORTE), DEFORMAÇÃO DO MATERIAL POR JATO DE AREIA, FORMA RESSALTOS POR TRATAMENTO GALVÂNICO
5 ^a ORDEM: DESVIO DE FORMA NÃO MAIS REPRESENTÁVEL GRAFICAMENTE EM FORMA SIMPLES	ESTRUTURA	PROCESSO DE CRISTALIZAÇÃO, MODIFICAÇÃO DA SUPERFÍCIE POR AÇÃO QUÍMICA (EX: DECAPAGEM), PROCESSO DE CORROSÃO
6 [^] ORDEM: DESVIO DE FORMA NÃO MAIS REPRESENTÁVEL GRAFICAMENTE EM FORMA SIMPLES	ESTRUTURA RETICULADA DO MATERIAL	PROCESSOS FÍSICOS E QUÍMICOS DA ESTRUTURA DO MATERIAL, TENSÕES E DESLIZAMENTOS NA REDE CRISTALINA.

O perfil de uma superfície pode ser definido como a linha produzida pela apalpação de uma agulha sobre a mesma.

Rugosidade R_t: é definida como sendo a distância entre o perfil de base e o perfil de referência, ou seja a maior distância medida normalmente ao perfil geométrico ideal.

Profundidade de Alisamento Rp: é definida como o afastamento médio de perfil real, sendo igual ao afastamento do perfil médio do perfil de referência.

$$R_t = (1/I)^{f} y_i dx$$

Rugosidade média R_a : é definida como sendo a média aritmética dos valores absolutos dos afastamentos h_i do perfil médio, sendo definida pela equação a seguir:

Rugosidades Singulares Z_i (com i=1,5): é definida como sendo a distância entre duas linhas paralelas a linha média (perfil médio), as quais tocam os pontos máximos e mínimos dentro do trecho selecionado de medição singular (i), que tangenciam o perfil de rugosidade no ponto mais elevado e mais baixo.

Rugosidades Singulares Z_i (com i=1,5)

Onde:

 L_t = comprimento total de apalpação.

I_F = comprimento singular de medição

I_n = comprimento posterior (não avaliado)

I_V = comprimento prévio (não avaliado)

I_m = comprimento útil medido

Rugosidade R_{Z_i} , ou média da rugosidade R_{Z_i} , é definida como sendo a média aritmética das rugosidades singulares em cinco trechos de medição sucessivos.

$$R_Z = (1/5) \Sigma (Z_i)|_{i=1.5}$$

CURVA DE SUSTENTAÇÃO OU CURVA DE ABOTT

Curva de Sustentação ou Curva de Abott, ou ainda curva de suporte do perfil é definida como a relação ar/metal.

A curva de sustentação é definida como

CURVA DE SUSTENTAÇÃO OU CURVA DE ABOTT

A curva de sustentação de uma superfície permite identificar o quanto de material, ou qual o desgaste necessário para que uma superfície desenvolva certa capacidade de suportar carregamento na região de contato.

Princípio de Medição Mecânica - 1934 - Gustav Schultz desenvolve um perfilômetro

Princípio de Medição Mecânica - generalidades

Os apalpadores mecânicos apresentam grande versatilidade, e são capazes de proporcionar muitas informações sobre a qualidade em uma ampla faixa de superfícies.

Microscopia de varredura:

- A microscopia de varredura é uma outra versão dos instrumentos com apalpadores
- Apresentam resolução teórica de um átomo, as interferência proveniente de vibrações e efeitos do meio não permitem que esta seja alcançada
- Grande limitação nos sistemas de varredura eletrônica está na área possível de ser analisada, na ordem de alguns micrométros

Microscopia de varredura:

Princípio de Medição Óptica: O princípio de funcionamento esta baseado no ajuste contínuo do foco sobre a superfície, e a comparação das variações das distâncias focais sucessivas com

a referência

Princípio de Medição Óptica: Vantagens

- técnica de medição sem contato,
- permite a obtenção de parâmetros de rugosidade,
- permite a obtenção de parâmetros de forma,
- permite o uso de filtros (FFT),
- levantamento da curva de sustentação,
- operação em 2-D ou 3-D,
- obtenção de dados estatísticos.

Princípio de Medição Elétrica: A medição elétrica da qualidade de uma superfície pode seguir diversos princípios tais como a variação da resistência ôhmica, variação capacitiva, indutiva ou na diferença de potencial entre as superfícies.

Princípio de Medição Pneumática: A medição pneumática de superfícies pode ser baseada em dois princípios, um dependente do fluxo de ar, e outro na queda de pressão na câmara de entrada

