Développement 32. Le lemme de Morse

Lemme 1. Soit $A_0 \in \mathscr{S}_n(\mathbf{R}) \cap \mathrm{GL}_n(\mathbf{R})$ une matrice symétrique inversible. Alors il existe un voisinage $V \subset \mathscr{S}_n(\mathbf{R})$ de la matrice A_0 et une application $\Phi \colon V \longrightarrow \mathrm{GL}_n(\mathbf{R})$ de classe \mathscr{C}^1 tels que

$$\forall A \in V, \qquad A = {}^{t}\Phi(A)A_0\Phi(A).$$

Preuve Considérons l'application

$$\phi \colon \left| \mathcal{M}_n(\mathbf{R}) \longrightarrow \mathcal{S}_n(\mathbf{R}), \right.$$
$$M \longmapsto {}^{\mathrm{t}} M A_0 M.$$

Elle est polynomiale et donc de classe \mathscr{C}^1 . Calculons sa différentielle en l'identité. Pour une matrice $H \in \mathcal{M}_n(\mathbf{R})$, on a

$$\phi(I_n + H) = (I_n + {}^{t}H)A_0(I_n + H)$$

$$= A_0 + A_0H + {}^{t}HA_0 + {}^{t}HA_0H$$

$$= \phi(I_n) + A_0H + {}^{t}(HA_0) + o(\|H\|^2)$$

ce qui donne

$$d\phi(I_n)(H) = A_0 H + {}^{\mathsf{t}}(HA_0).$$

Le novau de la différentielle $d\phi(I_n)$ est donc

$$\operatorname{Ker}[d\phi(I_n)] = \{ H \in \mathscr{M}_n(\mathbf{R}) \mid A_0 H \in \mathscr{A}_n(\mathbf{R}) \}.$$

De plus, cette différentielle $d\phi(I_n)$ est surjective puisqu'un antécédent d'une matrice $A \in \mathscr{S}_n(\mathbf{R})$ est la matrice $\frac{1}{2}A_0^{-1}A$.

Notons $F \subset \mathcal{M}_n(\mathbf{R})$ le sous-espace vectoriel formé des matrices $M \in \mathcal{M}_n(\mathbf{R})$ telle que $A_0M \in \mathscr{S}_n(\mathbf{R})$. Il contient l'identité. De plus, comme $\mathscr{M}_n(\mathbf{R}) = \mathscr{S}_n(\mathbf{R}) \oplus \mathscr{A}_n(\mathbf{R})$, on peut donc écrire

$$\mathcal{M}_n(\mathbf{R}) = \operatorname{Ker}[d\phi(I_n)] \oplus F.$$

Notons $\psi \colon F \longrightarrow \mathscr{S}_n(\mathbf{R})$ la restriction de l'application ϕ au sous-espace vectoriel F. La différentielle $d\psi(I_n)$ est donc bijective puisque

$$\operatorname{Ker}[d\psi(I_n)] = \operatorname{Ker}[d\phi(I_n)] \cap F = \{0\}.$$

Par le théorème d'inversion locale, il existe un voisinage $U \subset F$ de l'identité, un voisinage $V \subset \mathscr{S}_n(\mathbf{R})$ de la matrice $A_0 = \psi(I_n)$ telle que la restriction $\psi|_U \colon U \longrightarrow V$ soit un \mathscr{C}^1 -difféomorphisme. On note $\Phi \colon V \longrightarrow U$ son inverse. On peut supposer que $U \subset \operatorname{GL}_n(\mathbf{R})$ quitte à prendre l'ouvert $U \cap U'$ où l'ensemble U' est un voisinage ouvert de l'identité dans $\operatorname{GL}_n(\mathbf{R})$ qui existe par continuité du déterminant. Avec tout ceci, on obtient

$$\forall A \in V, \qquad A = {}^{\mathrm{t}}\Phi(A)A_0\Phi(A).$$

Théorème 2. Soient $\Omega \subset \mathbf{R}^n$ un ouvert contenant l'origine et $f \colon \Omega \longrightarrow \mathbf{R}$ une fonction de classe \mathscr{C}^3 . On suppose que

- l'origine est un point critique, c'est-à-dire df(0) = 0;
- la forme quadratique $d^2 f(0)$ n'est pas dégénérée;

- elle est de signature (p, n-p).

Alors il existe un voisinage $U \subset \Omega$ de 0 et un difféomorphisme $\varphi \colon U \longrightarrow \varphi(U) \subset \mathbf{R}$ de classe \mathscr{C}^1 vérifiant

où les réels
$$\varphi_i(x)$$
 sont les coordonnées du vecteurs $\varphi(x)$.

Preuve Pour tout point $x \in \Omega$, la formule de Taylor multidimensionnelle donne

$$f(x) - f(0) = df(0)(x) + \int_0^1 (1 - t) d^2 f(tx)(h, h) dt,$$

c'est-à-dire

$$f(x) - f(0) = {}^{\mathrm{t}}xQ(x)x$$
 avec $Q(x) := \int_0^1 (1-t) d^2 f(tx) dt \in \mathscr{S}_n(\mathbf{R}).$

Par hypothèse, la matrice $Q(0) = \frac{1}{2} d^2 f(0)$ est inversible. D'après le lemme, il existe donc un voisinage $V \subset \mathscr{S}_n(\mathbf{R})$ de la matrice Q(0) et une application $\Phi \colon V \longrightarrow \mathrm{GL}_n(\mathbf{R})$ de classe \mathscr{C}^1 tels que

$$\forall A \in V, \qquad A = {}^{\mathsf{t}}\Phi(A)Q(0)\Phi(A).$$

Comme la fonction f est de classe \mathscr{C}^3 , sa différentielle seconde d^2f est de classe \mathscr{C}^1 . Le théorème de convergence dominée assure alors que la fonction Q est de classe \mathscr{C}^1 . En particulier, elle est continue et sa préimage $U := Q^{-1}(V)$ est un voisinage ouvert de l'origine qui vérifie

$$\forall x \in U, \qquad Q(x) = {}^{\mathrm{t}}\Phi(Q(x))Q(0)\Phi(Q(x)).$$

On peut donc écrire

$$\forall x \in U$$
, $f(x) - f(0) = {}^{\mathsf{t}}\phi(x)Q(0)\phi(x)$ avec $\psi(x) := \Phi(Q(x))x$.

Par ailleurs, la forme quadratique Q(0) est de signature (p, n-p), donc le théorème de Sylvester assure qu'il existe une matrice $A \in GL_n(\mathbf{R})$ telle que

$${}^{\mathrm{t}}AQ(0)A = \mathrm{diag}(I_p, I_{n-p}).$$

Posons $\varphi(x) := A^{-1}\phi(x)$ de telle sorte que

$$f(x) - f(0) = \varphi_1(x)^2 + \dots + \varphi_p(x)^2 - \varphi_{p+1}(x)^2 - \dots - \varphi_n(x)^2.$$

Notons que $\varphi(0) = 0$. Pour conclure, la différentielle de l'application $\varphi \colon U \longrightarrow \mathbf{R}^n$ à l'origine est la forme $x \mapsto A^{-1}\Phi(Q(x))$ qui est inversible puisque $\Phi(Q(x)) \in GL_n(\mathbf{R})$. Le théorème d'inversion locale permet alors de conclure.

François Rouvière. Petit quide de calcul différentiel. Quatrième édition. Cassini, 2015.