

Prediction Traffic Accident Severity

Capstone Project by Marius Stolz

Introduction

Background

- Car collisions occur worldwide everyday
- They lead to human fatality, injuries and property damage
- Severity can be predicted using machine-learning
- Input data could be weather, road, light conditions etc.

Problem

- Developing a prediction model to predict accident severity
- Severity outcomes are ,Injuries' and ,Property damage'

Interest

- Street architecture
- Navigation- and warning systems

Data acquisition and cleaning

Data source

- Seattle Police Department, Traffic Records
- .csv file
- ➤ 195000 collisions, described by 38 columns
- Target label/column ,SEVERITYCODE'

Data cleaning

- Missing values
- Redundant information

14 columns remaining

Annual number of collisions: 2004 - 2020

- Distribution of accident severity
 - ▶ I − Property damage
 - ▶ 2 Injury

Majority of collisions in the city centre

Summary

- Most collisions occured:
 - in a block or intersection
 - under no influence of drugs/alcohol
 - without pedestrians or bicycles
 - two persons and two vehicles
 - colliding at angles or rear ended
 - at daylight
 - at clear weather
 - on dry road
 - at late night or noon
 - in the city centre
 - in a mid block

Model Development

Data preparation

- Balanced data by down-sampling target label
- Converted categorical to numerical data using LabelEncoder()
- Normalization with StandardScaler()
- Splitting data set into 70 % training and 30 % test data

Machine-learning models

- Logistic Regression
- Decision Tree
- Random Forest

Results

Algorithmus	Jaccard	Accuracy	F1-Score	Precision	Recall	AUROC
Logistic Regression	0.51	0.66	0.68	0.65	0.71	0.66
Decision Tree	0.51	0.71	0.68	0.76	0.61	0.71
Random Forest	0.51	0.69	0.67	0.73	0.62	0.69

Discussion & Conclusion

- Decision Tree is best model
- 71 % accuracy is not satisfying
- Dependencies and influences on accident severity not found

- Further training of prediction model is needed
- Data collection should be checked due high amount of missing values