NCEA Level 3 Calculus (Differentiation)

3. Derivatives of Common Functions (Homework)

Reading

Theorem. Suppose f and g are functions which are differentiable at some point x, and suppose that λ is a real constant. Then:

1.
$$(\lambda)'(x) = 0$$
,

2.
$$(f+g)'(x) = f'(x) + g'(x)$$
, and

3.
$$(\lambda f)'(x) = \lambda f'(x)$$
.

Proof. We prove these using the properties of the limits.

1.

$$(\lambda)'(x) = \lim_{h \to 0} \frac{\lambda - \lambda}{h} = 0.$$

2.

$$(f+g)'(x) = \lim_{h \to 0} \frac{(f+g)(x+h) - (f+g)(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x) + g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} + \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= f'(x) + g'(x).$$

3.

$$(\lambda f)'(x) = \lim_{h \to 0} \frac{(\lambda f)(x+h) - (\lambda f)(x)}{h}$$

$$= \lim_{h \to 0} \frac{\lambda (f(x+h) - f(x))}{h}$$

$$= \lambda \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lambda f'(x).$$

Questions

- 1. Differentiate with respect to x:
 - (a) $x^2 + \ln x$
 - (b) tx^t
 - (c) $\sin x \cos x$
 - (d) $\sqrt[5]{x^4}$
- 2. Explain why you cannot use the power rule to find the derivative of x^x .
- 3. Find the *n*th derivative of $\frac{1}{x^n}$.
- 4. (More difficult!) Suppose a population grows exponentially with time, such that after t years the population $P = P_0 + 10^t$.
 - (a) Given that the derivative of e^{cx} is ce^{cx} when c is constant, find the rate of change of the population at t = 100.
 - (b) Explain why this population model is unrealistic.