μP 8051/80535 INSTRUCTION SET

Jacek Majewski, 1994

μP Algorithm

µP Memory Maps

Fetch from memoryCode instruction:

Instr. Reg. \leftarrow (PC)_{Code}

2. PC ←PC+ No_of_bytes

3. Operation

4. Go to 1.

<u>Code</u> Memory 64Kbyte Xdata Memory 64Kbyte

Notes on Data addressing modes:

Rn working register R0-R7

direct 128 internal RAM locations, any I/O port, control or status register located in Data memory space (a)Ro/1 indirect Data memory space (internal or external RAM) location addressed by register R0 or R1

data 8-bit constant included in instruction

#data 16 16-bit constant included as bytes 2 and 3 of instruction bit 8-bit address of µP bits located in Data memory space

A accumulator

() contents of Data memory space (internal data RAM of μP);

description () is equivalent to ()_{Data}

() Code contents of Code program memory space (internal/external ROM of μP)

() χ_{data} contents of χ_{data} external Data memory space (external Data RAM of μP)

Caddr ₁₆ destination address for LCALL and LJMP may be anywhere within the 64 Kbyte program memory Code address space

Caddr ₁₁ destination address for ACALL and AJMP will be within the same 2 Kbyte page of program memory as the first byte of the following instruction.

Crel SJMP and all conditional jumps include an 8-bit offset byte. Range is + 127/-128 bytes relative to first byte of the following instruction. Value of Crel is sign-extended to double bytes before e addition to PC.

sign sign extension nosgn no sign extension

 \leftarrow move \leftrightarrow exchange \perp concatenate

C language operators:

+-*/% add, subtrac, multiply, divide, moduilo & $|^{\sim}$ and, or, xor, not (bitwise operators)

Mnemonic Operation Code Cyc les			M
	Mnemonic	Code	Cyc les

Arithmetic operations

ADD A, Rn	$A \leftarrow A + Rn$ flags: CY OV AC	0010 1rrr	1
ADD A, direct	$A \leftarrow A + (direct)$	25 direct	1
ADD A, @R0/1	$\begin{array}{c} \text{flags: CY OV AC} \\ A \leftarrow A + (R0/1) \end{array}$	26 /27	1
	flags : CY OV AC	0.4	1
ADD A, #data	$A \leftarrow A + data$ flags: CY OV AC	24 data	1
ADDC A, Rn	$A \leftarrow A + Rn + CY$ $flags : CY OV AC$	0011 1rrr	1
ADDC A, direct	$A \leftarrow A + (direct) + CY$	35 direct	1
ADDC A, @R0/1	$A \leftarrow A + (R_{0/1}) + CY$	36 /37	1
ADDC A #Jana	flags : CY OV AC	34 data	1
ADDC A, #data	$A \leftarrow A + data + CY$ $flags : CY OV AC$	54 aata	_
SUBB A, Rn	$A \leftarrow\!$	1001 1rrr	1
SUBB A, direct	$A \leftarrow A - (direct) - CY$	95 direct	1
CLIDD A ODO	flags : CY OV AC	96 /97	1
SUBB A, @R0/1	$A \leftarrow A - (R0/1) - CY$ flags: CY OV AC	36 /37	_
SUBB A, #data	$A \leftarrow A - data - CY$ $flags : CY OV AC$	94 data	1
INC A	A ←A + 1	04	1
INC Rn	Rn ←Rn + 1	0000 1rrr	1
INC direct	$(direct) \leftarrow (direct) + 1$	05 direct	1
INC @R0/1	$(R0/1) \leftarrow (R0/1) + 1$	06 /07	1
DEC A	A ←A − 1	14	1
DEC Rn	$Rn \leftarrow Rn - 1$	0001 1rrr	1
DEC direct	$(direct) \leftarrow (direct) - 1$	15 direct	1
DEC @R0/1	$(R0/1) \leftarrow (R0/1) - 1$	16 /17	1
INC DPTR	$DPTR \leftarrow DPTR + 1$	A3	2
MUL AB	$B \perp A \leftarrow A * B$ flags: CY=0 OV	A4	4
DIV AB	$A \leftarrow A / B$ (result)	84	4
	$A \leftarrow A \% B$ (remainder)		
DA A	if $A_{3-0} > 0$ or $AC=1: A_{3-0} \leftarrow A_{3-0} + 6$	D4	1
	if $A_{7-4} > 0$ or CY=1 : $A_{7-4} \leftarrow A_{7-4} + 6$		
	flag: CY		

Logical operation

ANL A, Rn	A ← A & Rn	0101 1rrr	1
ANL A, direct	$A \leftarrow A \& (direct)$	55 direct	1
ANL A, @R0/1	$A \leftarrow A \& (R0/1)$	56 /57	1
ANL A, #data	$A \leftarrow A \& data$	54 data	1

Mnemonic				
ANL direct, A				
ANL direct, #data	$(direct) \leftarrow (direct) \& data$	53 direct data	2	
ORL A, Rn	A ←A Rn	0100 1rrr	1	
ORL A, direct	$A \leftarrow A \mid (direct)$	45 direct	1	
ORL A, @R0/1	$A \leftarrow A \mid (R0/1)$	46 /47	1	
ORL A, #data	$A \leftarrow A \mid data$	44 data	1	
ORL direct, A	$(direct) \leftarrow (direct) \mid A$	42 direct	1	
ORL direct, #data	$(direct) \leftarrow (direct) \mid data$	43 direct data	2	
XRL A, Rn	$A \leftarrow A ^Rn$ (^ XOR)	0110 1rrr	1	
XRL A, direct	$A \leftarrow A \land (direct)$	65 direct	1	
XRL A, @R0/1	$A \leftarrow A \land (R0/1)$	66 /67	1	
XRL A, #data	$A \leftarrow A \wedge data$	64 data	1	
XRL direct, A	$(direct) \leftarrow (direct) \wedge A$	62 direct	1	
XRL direct, #data	$(direct) \leftarrow (direct) \wedge data$	63 direct data	2	
CLR A	$A \leftarrow 0$	E4	1	
CPL A	A ← ~A	F4	1	
RL A		23	1	
RLC A	C - A -<<	33	1	
RR A	A >>	03	1	
RRC A	A >> C >	13	1	
SWAP A	$A_{7-4} \leftrightarrow A_{3-0}$	C4	1	

Data transfers

Data transicis			
MOV A, Rn	A ← Rn	1110 1rrr	1
MOV A, direct	$A \leftarrow (direct)$	E5 direct	1
MOV A, ACC			
MOV A, @R0/1	$A \leftarrow (R0/1)$	E6 /E7	1
MOV A, #data	$A \leftarrow data$	74 data	1
MOV Rn, A	$Rn \leftarrow A$	1111 1rrr	1
MOV Rn, direct	$Rn \leftarrow (direct)$	A8 direct	2
MOV Rn, #data	$Rn \leftarrow data$	0111 1rrr data	1
MOV direct, A	$(direct) \leftarrow A$	F5 direct	1
MOV direct, Rn	$(direct) \leftarrow Rn$	88 direct	2

Mnemonic	Operation	Code			
MOV direct _d , direct _s	$(direct_{d}) \leftarrow (direct_{s})$	85 direct _s	2		
	u, s	direct _d			
MOV direct, @R0/1	$(direct) \leftarrow (R0/1)$	86 direct 87 direct	2		
MOV direct, #data	$(direct) \leftarrow data$	75 direct data	2		
MOV @R0/1, A	(R0/1) ← A	F6 /F7	1		
MOV @R0/1, direct	$(R0/1) \leftarrow (direct)$	A6 direct	2		
MOV @R0/1, #data	$(R0/1) \leftarrow data$	76 data	1		
MOV DPTR, #data ₁₆	$DPTR \leftarrow data_{16}$	90 data ₁₆ (HiLo)	2		
MOVC A, @A+DPTR	$A \leftarrow (A_{\text{nosign}} + DPTR)_{\text{Code}}$	93	2		
MOVC A, @A+PC	$A \leftarrow (A_{\text{nosign}} + PC)_{\text{Code}}$	83	2		
MOVX A, @R0/1	$A \leftarrow (P2 \perp R0/1)_{\text{Xdata}}$	E2 /E3	2		
MOVX A, @DPTR		EO	2		
	$A \leftarrow (DPTR)_{Xdoto}$	F2 /F3	2		
MOVX @R0/1, A	$(P2 \perp R0/1)_{Xdota} \leftarrow A$				
MOVX @DPTR, A	$(DPTR)_{Xdata} \leftarrow A$	F0	2		
PUSH direct	$SP \leftarrow SP+1; (SP) \leftarrow (direct)$	C0 direct	2		
POP direct	$(direct) \leftarrow (SP); SP \leftarrow SP-1$	D0 direct	2		
XCH A, Rn	$A \leftrightarrow Rn$	1100 1rrr	1		
XCH A, direct	$A \leftrightarrow (direct)$	C5 direct	1		
XCH A, @R0/1	$A \leftrightarrow (R0/1)$	C6 /C7	1		
XCHD A, @R0/1	$A_{3-0} \leftrightarrow (R0/1)_{3-0}$	D6 /D7	1		
Program and machine	e control	·			
ACALL Caddr ₁₁ 2S	$SP \leftarrow SP+2; (SP : SP-1) \leftarrow PC$	aaa1 0001	2		
	$PC \leftarrow PC_{15-11} \perp Caddr_{10-0}$	Caddr ₇₋₀			
LCALL Caddr ₁₆ 2	$SP \leftarrow SP+2; (SP : SP-1) \leftarrow PC$	12 Caddr ₁₆ (HiLo)	2		
	$PC \leftarrow Caddr_{15-0}$				
RET	$PC \leftarrow (SP : SP-1); SP \leftarrow SP-2_$	22	2		
RETI	$PC \leftarrow (SP : SP-1); SP \leftarrow SP-2$		2		
AJMP Caddr ₁₁	$PC \leftarrow PC_{15-11} \perp Caddr_{10-0}$	aaa0 0001	2		
		Caddr ₇₋₀			
LJMP Caddr ₁₆	$PC \leftarrow Caddr_{15-0}$	02 Caddr ₁₆ (HiLo)	2		
SJMP Crel	$PC \leftarrow PC + Crel_{sign}$ 80 Crel		2		
JMP @A+DPTR	$PC \leftarrow A_{\text{nosign}} + DPTR$ 73		2		
JZ Crel	if A=0: $PC \leftarrow PC + Crel_{sign}$ 60 $Crel$		2		
JNZ Crel	if $A\neq 0$: $PC \leftarrow PC + Crel_{sign}$	70 Crel	2		
JC Crel	if CY=1: $PC \leftarrow PC + Crel_{sign}$	40 Crel	2		

Mnemonic	Operation	Code	M Cyc les	
JNC crel	if CY=0: $PC \leftarrow PC + Crel_{sign}$	50 Crel	2	
JB bit, Crel	if $bit=1 : PC \leftarrow PC + Crel_{sign}$	20 bit Crel	2	
JNB bit, Crel	if $bit=0$: PC \leftarrow PC + $Crel_{sign}$	30 bit Crel	2	
JBC bit, Crel	if $bit=1$: $bit \leftarrow 0$ $PC \leftarrow PC + Crel_{sign};$	10 bit Crel	2	
CJNE A, direct, Crel	if $A\neq(direct)$: $PC\leftarrow PC + Crel_{sign}$ if $A<(direct)$: $CY\leftarrow 1$ else $CY\leftarrow 0$	B5 direct Crel	2	
CJNE A, #data, crel	if $A \neq data$: $PC \leftarrow PC + Crel_{sign}$ if $A < data$: $CY \leftarrow 1$ else $CY \leftarrow 0$	B4 data Crel	2	
CJNE Rn, #data, Crel	if $Rn \neq data$: $PC \leftarrow PC + Crel_{sign}$ if $Rn < data$: $CY \leftarrow 1$ else $CY \leftarrow 0$	B8 data Crel	2	
CJNE @R0/1, #data, Crel	if $(R0/1) \neq data$: $PC \leftarrow PC + Crel_{sign}$ if $(R0/1) \leq data$: $CY \leftarrow 1$ else $CY \leftarrow 0$	B6 data Crel / B7 data Crel	2	
DJNZ Rn, Crel	$Rn \leftarrow Rn - 1$ if $Rn \neq 0$: $PC \leftarrow PC + Crel_{sign}$	1101 1rrr Crel	2	
DJNZ direct, Crel	$(direct) \leftarrow (direct) - 1$ if $(direct) \neq 0$: PC \leftarrow PC + $Crel_{sign}$	D5 direct Crel	2	
NOP	;	00	1	

Bololean variable manipulation

CLR bit	<i>bit</i> ←0	C2 bit	1
SETB C	CY ← 1	D3	1
SETB bit	<i>bit</i> ← 1	D2 bit	1
CPL C	CY ←~CY	В3	1
CPL bit	bit ← ~ bit	B2 bit	1
ANL C, bit	CY ← CY & bit	82 bit	2
ANL C, /bit	CY ← CY & ~ bit	B0 bit	2
ORL C, bit	$CY \leftarrow CY \mid bit$	72 bit	2
ORL C, /bit	$CY \leftarrow CY \mid \sim bit$	A0 bit	2
MOV C, bit	CY ← bit	A2 bit	1
MOV bit, C	bit ← CY	92 bit	2

Program Status Word register (PSW) DO HEX.

CY	AC	F0	RS1	RS0	OV	F1	Р
			Bank Register Select				
			sei	.ect			
D7H	D6H	D5H	D4H	D3H	D2H	D1H	DOH