IoT-Enabled Smart Agriculture System

Jin zijian 1236608

Contents

- Requirement Analysis
- Technologies
- System Architecture
- Use Case Diagram
- Class Diagram
- Sequence Diagram
- Activity Diagram
- Database
- Future

01

Requirement Analysis

Functional Requirements

Non-Functional Requirements

Data Collection Real-Time Performance

Real-Time Data Processing Scalability

Irrigation Control Reliability

Fertilization Control Security

Alerts and Notifications User-Friendly

Data Storage and Retrieval Maintainability

Manual Override

02 Technologies

IoT Sensors:

Soil Moisture Sensors: Used to measure the amount of moisture in the soil to determine when irrigation is needed.

Temperature and Humidity Sensors: Monitor environmental factors that influence crop health and irrigation needs.

Light Intensity Sensors: Track sunlight levels for crop growth optimization.

Database and Storage:

A SQL-based database (MySQL managed via phpMyAdmin) is used to store sensor data and system logs, which can later be retrieved and analyzed through SQL queries.

03 System Architecture

Sensor: Responsible for collecting environmental data.

IrrigationController: Controls the irrigation system based on soil moisture.

FertilizationController: Controls the fertilization system based on soil conditions.

DataLogger: Stores sensor data and system logs.

AlertSystem: Sends alerts to farmers when thresholds are exceeded.

UserInterface: Allows farmers to monitor system status and configure settings.

CloudStorage: Stores data for later retrieval and analysis.

04

Use Case Diagram

05 Class Diagram

Design-Level Class Diagram

O6Sequence Diagram

When Soil Moisture Below Threshold

07 Activity Diagram

Data Flow:

Sensor collects data

Data sent to the system

System checks thresholds

If below threshold → Trigger irrigation

Log the activity and send an alert

08 Database

操作 排序规则 表。 行数 ② 类型 大小 多余 alerts □ 浏览 14 结构 🕞 搜索 👫 插入 📟 清空 🥥 删除 0 MyISAM utf8mb4_0900_ai_ci 1.0 KB 1 MyISAM utf8mb4_0900_ai_ci 2.0 KB crop_field 👚 📄 浏览 🛂 结构 🍳 搜索 🛂 插入 🔛 清空 🥥 删除 fertilization_controller 0 MyISAM utf8mb4_0900_ai_ci 1.0 KB 📄 浏览 📝 结构 🍳 搜索 👫 插入 🖷 清空 🧅 删除 irrigation_controller □ 浏览 1 结构 🔹 搜索 🛂 插入 📟 清空 🔘 删除 0 MyISAM utf8mb4_0900_ai_ci 1.0 KB manual_override 0 MyISAM utf8mb4_0900_ai_ci 1.0 KB 據 结构 👒 搜索 👫 插入 🖷 清空 🥥 删除 2 MyISAM utf8mb4_0900_ai_ci 3.0 KB sensor 🗌 浏览 📝 结构 🍳 搜索 👫 插入 🔛 清空 🥥 删除 0 MyISAM utf8mb4_0900_ai_ci 1.0 KB sensor_data 🔳 浏览 📝 结构 🍳 搜索 👫 插入 🖷 清空 🧅 删除 0 MyISAM utf8mb4_0900_ai_ci 1.0 KB system_logs □ 浏览 ≥ 结构 🔹 搜索 🛂 插入 📟 清空 🥥 删除 users ■ 浏览 ▶ 结构 👒 搜索 🛂 插入 🖷 清空 🥥 删除 2 MyISAM utf8mb4_0900_ai_ci 2.1 KB

users:

Stores information about system users, including admins and farmers.
Supports role-based access control.

← → ▼				user_id	username	password	role
	❷ 编辑	₹ 复制	⊜删除	U001	admin1	admin_password_hash	admin
	<i>》</i> 编辑	3€ 复制	⊜删除	U002	farmer_lee	farmer_password_hash	farmer

09 Future Prospects

- 1. Intelligent Algorithm Enhancement
 Integrate machine learning and AI for crop health prediction models and dynamic resource optimization
- 2. Technology Integration Expansion Incorporate drone-based aerial monitoring for coordinated ground-air surveillance
- 3.Industry-Academia-Research Collaboration
 Partner with agricultural research institutions to continuously improve sensor accuracy
 Develop feedback mechanisms to enhance real-time system responsiveness
- 4.Sustainable Development
 Explore green solutions such as solar-powered systems
 Develop carbon footprint monitoring modules for agriculture

Thanks