CE 382 Reinforced Concrete **Fundamentals**

Combined Flexure & Axial Load - Design of RC Columns

Design of Columns

- Maximum axial load:
 - TS 500-2000: $N_d \le 0.6 f_{ck} A_c$ or $N_d \le 0.9 f_{cd} A_c$
 - $N_d \le 0.5 f_{ck} A_c$ or $N_d \le 0.75 f_{cd} A_c$ ▶ TEC2007:

$$\min A_c = \frac{N_d}{0.75 f_{cd}} \ge 75000 \ mm^2$$

- ▶ In the final design → design moment should include second order moments
- $P \delta$ effect is calculated by:
 - Non-linear structural analysis
 - Approximate methods

Design of Columns

- ▶ Consider all possible load combinations.
- ▶ Design for most critical N_d , M'_d combination.
- ▶ Combination with a smaller axial load may be more critical.
- ▶ TS 500-2000 minimum eccentricity:

$$e_{min} = 15mm + 0.03h$$

▶ *h*: dimension in the direction of eccentricity

2

Design Charts

Non-dimensional form

$$\bar{n} = \frac{N}{bhf_{cd}}$$

$$\bar{m} = \frac{M}{bh^2 f_{co}}$$

- variables:
 - Geometry

 - ρ_t : ratio of longitudinal steel
 - · Arrangement of steel
 - Steel grade
- $A_{st} = bh\rho_t$
- $m = \frac{f_{yd}}{f_{cd}}$ $(\rho_t m) \frac{f_{cd}}{f_{yd}} = \rho_t$

- n = 8 story
- Assume $10 kN/m^2$
- From tributary area:
- $N = 8 \times 4 \times 5 \times 10$
- $N = 1600 \, kN$
- ▶ Non-sway frame
- ightharpoonup C25 ($f_{cd} = 17 MPa$), S420 (365 MPa)
- $A_c = \frac{1600000}{0.75 \times 17} = 125490 \ mm^2 > 75000 \ mm^2$
- Use $350 \times 400 \ mm \ \text{column} \ (140000 \ mm^2)$

5

Example 2

- $\frac{1800000}{350 \times 400 \times 17} = 0.76 \qquad \frac{180000000}{350 \times 400^2 \times 17} = 0.19 \qquad \rho_t m = 0.5$

5 m

5 m

- $\frac{1600000}{350 \times 400 \times 17} = 0.67 \qquad \frac{230000000}{350 \times 400^2 \times 17} = 0.24 \qquad \rho_t m = 0.6$
- $\rho_t m = 0.6 \rightarrow \rho_t = \frac{0.6}{21.5} = 0.028$
- $A_{st} = \rho_t bh = 0.028 \times 350 \times 400 = 3920 \ mm^2$
- ▶ Use 8Ø26 (4247 mm²)

Example 2

- C25 & S420
- ▶ 350×400 mm

$N_d(kN)$	$M_d'(kNm)$
1800	180
1600	230
1200	200

 \rightarrow less critical (both N & M is less)

- Solution:
 - estimate $d' = 35 \, mm$, $d'' = h 2d' = 330 \, mm$
 - $d'''/h = 0.9 \qquad \lambda = 1/4 \text{ (assumed)}$
 - $m = \frac{f_{yd}}{f_{cd}} = \frac{365}{17} = 21.5$

Slenderness Effect

- ▶ Second order moments → estimate the amount of displacement
- ▶ In real structures → boundary conditions are complex

Slenderness Effect

 $M'_d = M_o + Ny = Ne + Ny = N(e + y)$

• «y» depends on the slenderness of the column

 $ightharpoonup \ell/h$ column length / cross-sectional dimension in moment direction

More general:

 $ightharpoonup \ell/i$ column length / radius of gyration

▶ Short column $\rightarrow y$ is small \rightarrow second order moment can be neglected

9

Sway frame (unbraced frame)

- ▶ Shear due to lateral forces (earthquake, wind)
- > Symmetrical case; equal end moments; inflection point @ midheight

Slenderness Effect

- Curve I
 - Medium slenderness
 - Total moment including the second order moments remains less than the end moments
 - $M' < N \times e_2$
- Curve 2
 - · Very slender
 - Second order moments are greatly magnified
 - $M' > N \times e_2$

10

Sway frame (unbraced frame)

- $\blacktriangleright \; \theta = 0 \; \to \; \text{infinitely rigid floor}$
- Usual case $\theta > 0$
 - b displacements and second order moments are magnified
- ▶ Flat plate & block-joist floor (shallow beams, same depth as joist)
 - relative displacement between the two column end are very high
 - second order moments > first order moments
- ightharpoonup Magnitude of second order moments depends on heta
- m heta depends on the stiffness of columns relative to that of the floor (usually beams), α

Sway frame (unbraced frame)

- ightharpoonup Beam-column type of structure ightharpoonup floor members: beams
- Flat type od floor system → floor members: slabs (very flexible)
- ▶ Use structural wall to take care of lateral loads.
- ▶ Deflected shape of the column depends on boundary conditions & arrangement of live load.

13

Sidesway prevented

- Live load arrangement for maximum axial load @ column A
- Double curvature
- Second order moments may or may not affect the design moment, depending on the slenderness of the column

Sidesway prevented

- Column A in single curvature
- Live load arrangement to yield maximum moment for the column
- Second order moments definitely increase the design moments.

| | 4

Slenderness

- ▶ If sidesway is not prevented
 - Design moment is magnified by second order moments
 regardless of the slenderness ratio
 - All columns have to be considered in a story
- ▶ If sidesway is prevented
 - Just individual columns should be checked

Flexural Rigidity

17

Effective Length of Column

- ▶ The deflection of an elastic beam-column depends on the ratio of the axial load to the buckling load
- \triangleright l_k : effective length; distance between the point of inflections; depends mainly on boundary conditions

Flexural Rigidity

- ▶ Elastic Modulus, *E*, influenced by creep → change in flexural rigidity
- ▶ Concrete cracks under flexural moments → reduce moment of inertia. I
- I is not constant along the length of column
- ▶ Also cracking can occur due to shrinkage
- ▶ Severe seismic action → reversed cyclic loading → stiffness >

curvature curve, EI

 $M - \mathcal{K}$ curve for a given cross-section

of axial load

Effective Length of Column - sidesway prevented

Effective Length of Column – unbraced frame

Moment Magnification Method

- Find the moment magnifier β (for $\frac{\ell_k}{i} \le 100$)
- Check whether the frame is braced or unbraced

- If $\varphi > 0.05$ sway (unbraced) frame
- ightharpoonup If ℓ_i of each member are identical

$$\varphi = 1.5 \frac{\sum N_{di} \times \Delta_i}{V_{fi} \times \ell_i}$$
 Second order moment

 Δ_i : lateral displacement of i^{th} floor, relative to the floor below N_{di} : axial force on each column & structural wall at i^{th} floor ℓ_i : length of each column & structural wall from center-to-center of joints V_{fi} : sum of horizontal shear forces in i^{th} floor Load Combinations:

 $F_d = 1.0G + 1.0Q + 1.0E$ $F_d = 1.0G + 1.3Q + 1.3W$

ightharpoonup This equation requires structural analysis to find Δ_i , $V_{fi} \ \& \ N_{di}$

Design Methods for calculating Second Order Moments

- If there is no slenderness effect & with constant eccentricity, e_1 \rightarrow failure at point A with N_A
- For very slender column \rightarrow instability \rightarrow path C
- Realistic path OB for RC columns
- @ $N_d \rightarrow M_d = N_d e_1$ & $\Delta M = N_d \gamma$
- $\bullet \quad M'_d = M_d + \Delta M = N_d(e_1 + y)$
- From non-linear analysis
- Add ΔM to M_d (complimentary moment method, CEB)
- Multiply M_d by a magnification factor (moment magnifier method, ACI, TS500)

Moment Magnification Method

Approximate method

- ▶ The frame is braced if
- $H\sqrt{\frac{\sum N_d}{\sum (E_c I_c)_r}} \le 0.6 \text{ for } n \ge 4$
- $H\sqrt{\frac{\sum N_d}{\sum (E_c I_c)_r}} \le 0.2 + 0.1n \text{ for } n < 4$
- ▶ *H*: Height of the building
- $(E_cI_c)_r$: gross uncracked flexural rigidity of rigid vertical members (walls or bays with cross-bracing; columns not included)
- ▶ n:# of stories

21

22

Moment Magnification Method

> Second order moments can be neglected if

- $m{\ell}_k$: effective length, between the point of inflection
- i: radius of gyration
- ▶ M_{d1} & M_{d2} : design end moments, first order moments from analysis; $M_{d2} \ge M_{d1}$
- ▶ Single curvature $\frac{M_{d1}}{M_{d2}}$ → (+)
- ▶ Double curvature $\frac{M_{d1}}{M_{d2}}$ → (¬)

25

Moment Magnification Method

▶ Braced frame:

$$k=0.7+0.05(\alpha_1+\alpha_2)$$
 Use smaller of the two equations

Unbraced frame:

$$αm = 0.5(α1 + α2)
k = $\frac{20 - αm}{20} \sqrt{1 + αm}$ if $αm < 2.0$$$

$$k = 0.9\sqrt{1 + \alpha_m} \quad \text{if } \alpha_m \ge 2.0$$

▶ Column with hinge at one end & unbraced

$$k = 2.0 + 0.3\alpha$$

 \triangleright α : relative stiffness at the joint without hinge

Moment Magnification Method

- ▶ For rectangular sections: $i \approx 0.30h$
- For circular sections: $i \approx 0.25h$
- ▶ *h*: dimension in the direction of bending
- $\ell_k = k\ell_n$
- ℓ_n : clear distance; from the top of the slab to the bottom of the beam above
- Relative stiffness: $\alpha = \frac{\sum (I/\ell)_{column}}{\sum (I/\ell)_{beam}}$
- ▶ Calculate for top & bottom joints of the column
- Bigger one α_2
- ▶ Smaller one α_1

$$\alpha_2 > \alpha_1$$

26

Moment Magnification Method

- In the calculation of $\alpha = \frac{\sum (I/\ell)_{column}}{\sum (I/\ell)_{beam}}$
 - $I_{column} \rightarrow \text{gross concrete section}$
 - $I_{beam} \rightarrow \text{cracked section}$
 - approximately:
 - for flanged sections: $I_{cr} \approx \frac{1}{12} b_w h^3$
 - $\,\,{}^{}_{}_{}$ for rectangular sections: $I_{cr}\approx\frac{1}{24}b_{w}h^{3}$
 - for flat plate: 50% of the gross moment of inertia of column strip

Moment Magnification Method

▶ For braced frames:

$$M'_d = \beta M_{d2}$$

$$\beta = \frac{c_m}{1 - 1.3 \left(\frac{N_d}{N_{cr}}\right)} \ge 1.0$$

 N_{cr} : Euler buckling load

$$C_m = \left(0.6 + 0.4 \frac{M_{d1}}{M_{d2}}\right) \ge 0.4$$

29

Moment Magnification Method

$$N_{cr} = \frac{\pi^2 EI}{\ell_k^2}$$

$$\ell_k = k\ell_n$$

▶ EI: Effective flexural rigidity

$$EI = \frac{0.4E_cI_c}{1+R_m}$$

 E_c : modulus of elasticity of concrete

 I_c : moment of inertia of gross concrete section

or

 E_s : modulus of elasticity of steel

 $EI = \frac{0.2E_cI_c + E_sI_s}{1 + R_m}$

 $I_{\mathcal{S}}$: moment of inertia of longitudinal reinforcement

about the centroid of the gross concrete section

 R_m : coefficient for the effect of creep

Moment Magnification Method

▶ For unbraced frames:

$$M'_d = \beta_s M_{d2}$$

 β_s is calculated for the whole floor

$$\beta_{s} = \frac{1}{1 - 1.3 \left(\frac{\sum N_{d}}{\sum N_{Cr}}\right)} \ge 1.0$$

If
$$\frac{\sum N_d}{\sum N_{cr}} > 0.45 \rightarrow$$
 increase the column dimensions

 \blacktriangleright Also compute β for individual columns taking $\mathcal{C}_m=1.0$

▶ The bigger of β and β_s should be used for unbraced frames.

30

Moment Magnification Method

▶ Braced:

Design sustained axial load
$$R_m = \frac{N_{gd}}{N_d}$$
Total design axial load

Unbraced:

$$R_m = \frac{\sum V_{gd}}{\sum V_d}$$
Sum of the design sustained shear forces in the floor

Sum of the design sustained shear forces in the floor shear forces

Normally, $V_{gd}=0 \rightarrow R_m=0$ unless there is earth pressure

▶ Recommendation: $R_m \ge 0.5$ when $V_{qd} = 0$

Minimum requirements for columns

- Minimum cross-sectional dimension:
 - > 250 mm (TSC & TS500); 300 mm for circular columns
- ▶ Minimum cross-sectional area:
 - $A_c \ge \frac{N_d}{0.5f_{ck}} = \frac{N_d}{0.75f_{cd}} \ge 75000 \ mm^2 \ (TSC)$
 - $A_c \ge \frac{N_d}{0.6f_{ck}} = \frac{N_d}{0.9f_{cd}} \ge 75000 \ mm^2 \ (TS500-2000)$
- Minimum & maximum reinforcement ratio:
 - ▶ $0.01 \le \rho_t \le 0.04$ (TS 500 & TSC)

33

Example 3

- Braced frame
- ▶ Interior column (500×500 mm, ℓ =6 m, single curvature)
- ▶ Beams (flanged, 250×500 mm, ℓ =5 m)
- C20 & S420
- $N_d = 2500 \, kN, \, N_{gd} = 1800 \, kN$
- $M_{d1} = 200 \ kNm, M_{d2} = 250 \ kNm$
- Find the required reinforcement.

Minimum requirements for columns

- Minimum bar diameters:
 - ▶ Longitudinal: 14 mm (TS500 & TSC)
 - Transverse: 8 mm (TS500 & TSC)
- ▶ Length of confined regions at column ends
 - ▶ h, $\ell_n/6$ & 500 mm (TSC)
- ▶ Maximum spacing of lateral reinforcement
 - b/3, 100 mm confined region (TSC)
 - b/2, 200 mm mid region (TSC)
 - ▶ $12\emptyset_{\ell}$, 200 mm (TS500) \emptyset_{ℓ} : diameter of long. bars
- Minimum eccentricity: $e_{min} = 15mm + 0.03h$ (TS500)

34

Example 3

- $i = 0.3h = 0.3 \times 500 = 150 \, mm$
- ▶ Columns:

$$I = \frac{500^4}{12} = 5.21 \times 10^9 \, mm^4$$

 $\ell = 6 m \rightarrow \frac{I}{\ell} = 0.87 \times 10^6 mm^3$

two columns

- ▶ Beams:
 - $I_{cr} = \frac{250 \times 500^3}{12} = 2.6 \times 10^9 \ mm^2$ (cracked section)
 - $\ell = 5 m \rightarrow \frac{I}{\ell} = 0.52 \times 10^6 mm^3$
- $\alpha_1 = \alpha_2 = \frac{\sum (I/\ell)_{column}}{\sum (I/\ell)_{beam}} = \frac{2 \times 0.87 \times 10^6}{2 \times 0.52 \times 10^6} = 1.7$

$$k = 0.7 + 0.05(\alpha_1 + \alpha_2) = 0.87$$

Use smaller of the two equations

$$k = 0.85 + 0.05\alpha_1 = 0.935$$

$$\rightarrow k = 0.87$$

Clear height of the column

$$\ell_n = \ell - 0.5 = 6.0 - 0.5 = 5.5 \, m$$
 (beam depth 500 mm)

$$\ell_k = k\ell_n = 0.87 \times 5.5 = 4.8 m$$

$$\frac{\ell_k}{i} = \frac{4.8}{0.15} = 32$$

• Second order moments should be calculated ($\beta > 1$)

> 37

Example 3

- $M_{d2} = 250 \, kNm > \min M_d$
- $M'_d = \beta M_{d2} = 1.18 \times 250 = 295 \, kNm$
- Use design charts; assume $\lambda = 1/4$, d''/h = 0.8

$$\frac{N_d}{bhf_{cd}} = \frac{2500000}{500 \times 500 \times 13} = 0.77 \qquad \frac{M_d'}{bh^2 f_{cd}} = \frac{295 \times 10^6}{500^3 \times 13} = 0.18$$

$$\rightarrow \rho_t m = 0.45$$
 $m = \frac{f_{yd}}{f_{cd}} = \frac{365}{13} = 28 \rightarrow \rho_t = 0.016$

- $\rho_t = 0.04 > \rho_t = 0.016 > \min \rho_t = 0.011 \checkmark$
- $A_{st} = \rho_t bh = 0.016 \times 500 \times 500 = 4000 \ mm^2$
- ▶ Use 8\(\phi\)26 (4245 mm²)

Example 3

$$R_m = \frac{N_{gd}}{N_d} = \frac{1800}{2500} = 0.72$$

$$E_c = 28000 MPa$$
 (for C20)

$$EI = \frac{0.4E_cI_c}{1+R_m} = \frac{0.4 \times 28000 \times 5.21 \times 10^9}{1+0.72} = 33.9 \times 10^3 \ kNm^2$$

$$C_m = 0.6 + 0.4 \frac{M_{d1}}{M_{d2}} = 0.92$$

$$N_{cr} = \frac{\pi^2 EI}{\ell_h^2} = \frac{\pi^2 \times 33.9 \times 10^3}{4.8^2} = 14507 \ kN$$

$$\beta = \frac{c_m}{1 - 1.3 \frac{N_d}{N_{cr}}} = \frac{0.92}{1 - 1.3 \frac{2500}{14507}} = 1.18 > 1.0$$

$$\min M_{d2} = N_d (15 + 0.03h) = 2500(15 + 0.03 \times 500)$$

$$\rightarrow$$
 min $M_{d2} = 75 kNm$

38

Example 4

Preliminary design of interior columns:

- Tributary area $A_{tr} = \frac{(6+4)}{2} \frac{(4+4)}{2} = 20 \text{ m}^2$
- Assume dead weight + live load = $15 kN/m^2$
- Column load $N_d = 4 \times 20 \times 15 = 1200 \, kN$
- ▶ Structural walls → assume braced frame
- $A_c \ge \frac{N_d}{0.75 f_{cd}} = \frac{1200000}{0.75 \times 20} = 80000 \ mm^2 > 75000 \ mm^2$
- Member dimensions:
 - ► Columns: 300×300 mm
 - ▶ Beams: 250×500 mm
 - ▶ Slabs: I 20 mm
 - ▶ RC walls: 200 mm (thickness)
- Preliminary design not given

41

Example 4

▶ For load combination B:

- ▶ Total axial load at base $\sum N_{di} = 13000 \, kN$
- ▶ Total shear of column and walls at base $V_{fi} = 2287 \ kN$
- First story drift (lateral displacement of the first floor relative to the base) $\Delta_i = 3.9 \, mm$
- check whether the frame is braced or not:
- $\phi = 1.5 \frac{(\sum N_{di})\Delta_i}{V_{fi}\ell_i} = 1.5 \frac{13000 \times 0.0039}{2287 \times 3.4} = 0.0098 < 0.05$ braced
- Columns:
- $I_c = \frac{0.3^4}{12} = 0.000675 \, m^4$
- $\left(\frac{I}{\ell}\right)_c = 0.0002$

Example 4

- ▶ Dead load on all spans
- ▶ 5 different live load arrangements (1.4G+1.6Q)
- ▶ Seismic load (B: 1.0G+1.0Q+1.0E & C: 0.9G+1.0E)

Load Comb.	N _d (kN)	M _{dl} (kNm)	M _{d2} (kNm)	$\begin{array}{c} \text{min.} M_d \\ \text{(kNm)} \end{array}$	M _d (kNm)	N _{gd} (kN)	$R_{\rm m}$	Remarks
ΑI	1240	13.6	27.2	29.8	29.8	960	0.77	Dbl. Crv.
A2	1250	5.5	11.0	30.0	30.0	960	0.77	Dbl. Crv.
A3	1320	12.3	23.3	31.7	31.7	960	0.73	Dbl. Crv.
A4	1330	11.3	21.2	31.9	31.9	960	0.73	Dbl. Crv.
A5	1295	13.6	27.2	31.0	31.0	960	0.74	Dbl. Crv.
B(seis)	900	20.5	24.6	21.6	24.6	-	-	Dbl. Crv.
C(seis)	608	18.6	20.6	14.6	20.6	-	-	Dbl. Crv.

42

Example 4

▶ Beams: (T-Section)

$$I_b = \frac{0.25 \times 0.5^3}{12} = 0.0026 \, m^4$$
 (cracked value)

▶ K106:
$$\left(\frac{I}{\ell}\right)_b = 0.00065$$
 & K105: $\left(\frac{I}{\ell}\right)_b = 0.00043$

▶ Joints at the first floor level:

$$\alpha = \frac{\sum (I/\ell)_c}{\sum (I/\ell)_b} = \frac{2 \times 0.0002}{0.00065 + 0.00043} = 0.37 = \alpha_2$$

- Ightharpoonup Joint at the base: $\alpha = \frac{1 \times 0.0002}{m} = 0 = \alpha_1$
- ▶ Effective length of columns:

$$k = 0.7 + 0.05(0.37 + 0) = 0.72$$

$$k = 0.85 + 0.05(0) = 0.85 < 1.0$$

- $\ell_n = 3.4 0.5 = 2.9 \, m$ (beam depth is 0.5 m)
- $\ell_k = 0.72 \times 2.9 = 2.1 \, m$
- ▶ Slenderness ratio:
 - $i = 0.3h = 0.3 \times 0.3 = 0.09 m$
 - $\frac{\ell_k}{i} = \frac{2.1}{0.09} = 23.3$
- Limiting value:
 - ▶ double curvature $\rightarrow \frac{M_{d1}}{M_{d2}} < 0$
 - $\rightarrow 34 12 \frac{M_{d1}}{M_{d2}} > 34$
 - \rightarrow 23.3 < 34 no slenderness effect $\beta = 1.0$

Example 4

- $N_d = 900 \, kN \, \& \, M'_d = \beta M_{d2} = 1.0 \times 24.6 \, kNm$
- $ightharpoonup \frac{N_d}{bhf_{cd}} = \frac{900000}{300 \times 300 \times 20} = 0.5$ & $\frac{M_d}{bh^2 f_{cd}} = 0.045$
- ► Assume $\lambda = \frac{1}{4}$ & $\frac{d''}{h} = 0.8$
- From chart $\rho_t m < 0.1 \rightarrow$ use minimum $\rho_t = 0.01$
- $A_{st} = 0.01 \times 300 \times 300 = 900 \ mm^2$
- ▶ Use 8\psi 14 (1230 mm²)

Study Example 6.14
Study Example 6.15

47

Example 4

- \rightarrow To illustrate the procedure to be followed lets calculate β
 - $E_c = 32000 \, MPa \quad \text{(for C30)} \rightarrow E_c I_c = 21600 \, kNm^2$
 - $EI = \frac{0.4E_cI_c}{1+R_m} = \frac{0.4 \times 21600}{1+0.77} = 4881 \ kNm^2$ biggest R_m from table
 - $N_{cr} = \frac{\pi^2 EI}{\ell_k^2} = \frac{\pi^2 4881}{2.1^2} = 10910 \ kN$
 - $C_m = 0.6 + 0.4 \frac{M_{d1}}{M_{d2}} = 0.6 + 0.4(-0.83) = 0.27 \ge 0.4$
 - $C_m = 0.4$
 - $\beta = \frac{C_m}{1 1.3 \frac{N_d}{N_{cr}}} = \frac{0.4}{1 1.3 \frac{900}{10910}} = 0.47 \rightarrow \beta = 1.0$