I. MODEL

A. Overview

At every iteration, steps:

- 1. The set of allowed sites are calculated for all kind of processes.
- 2. The transition matrices are calculated for all available sites and channels for allowed processes.
- 3. The transition amplitudes are computed that are used with corresponding energetic penalties to find the transition rates.
- 4. A transition is selected stochastically and the quantum state and the sets of D, ϕ , and A is changed accordingly.

Electron hops to the right and left are treated separately.

II. TRANSITION MATRICES

Spin sectors:

For N active sites (A) and m excitations, the basis states are made of sets of basis with $k \in [0, min(m, N)]$ sites in \uparrow state and indexed in lexicographic order. The transition matrix maps are calculated for each of such set and combined to make full matrix.

A. D hops right/left

An electron hops from a D site to an active site. The active site becomes D and vice versa, the index of the initially active site is assigned to the new active site.

Transition matrix elements:

The basis states that have final site \uparrow would allow an electron hopping to its HOMO level and create a D. This hop leaves the initially D site in \uparrow (channel 1) or \downarrow (channel 3). Similarly, the basis states that have final site \downarrow would allow an electron hopping to its LUMO level and create a D. This hop leaves the initially D site in \downarrow (channel 2) or \uparrow (channel 4).

B. ϕ hops right/left

An electron hops from an active site to a ϕ . The active site becomes ϕ and vice versa, the index of the initially active site is assigned to the new active site.

Transition matrix elements:

The basis states that have the active site \uparrow would allow the electron hopping from it and change it to ϕ . This hop makes the initially ϕ site in \uparrow (channel 2) or \downarrow (channel 3). Similarly, The basis states that have the active site \downarrow would allow the electron hopping from it and change it to ϕ . This hop makes the initially ϕ site \downarrow (channel 1) or \uparrow (channel 4).

C. (\mathbf{D}, ϕ) creation:

For two adjacent active sites, we can have four configurations: (\uparrow,\downarrow) , (\downarrow,\uparrow) , (\downarrow,\uparrow) , (\downarrow,\downarrow) with left and right sites in (left,right) order. These will make (D,ϕ) pair with D on the left with the hopping of an electron from right to left via H-H, L-L, L-H, and H-L channels. Similarly, a (D,ϕ) pair with D on the right is created from these configurations with the hopping of an electron from left to right via L-L, H-H, L-H, and H-L channels, respectively.

Transition matrix elements:

The map between basis states of initial and final Hilbert spaces $\mathcal{H}_{N,m}$ and $\mathcal{H}_{N-2,m'}$, where m'=m,m,m-1,m-2 for H-H, L-L, L-H, H-L channels, can be calculated by starting from the final basis states in $\mathcal{H}_{N-2,m'}$ and inserting

the two active sites at their position in desired configuration $((\uparrow,\downarrow),$ etc.) to make the initial basis state. Let's call the combination of \uparrow sites in the latter set and its lexicographic index in this m-th spin sector x, then

$$x = c_k^N - \sum_{p=0}^{k-1} c_{k-p}^{N-set(p)}.$$
 (1)

D. (\mathbf{D}, ϕ) annihilation:

This is just the reverse of (D,ϕ) creation described above where two active sites are created from a pair of D and ϕ . The freshly added active sites are given the indices N+1,N+2 and the map for the transition matrix is computed just like (D,ϕ) creation case. Since the electron hopping does not occur on active sites in this case, a single (D,ϕ) pair can be used to calculate the transition matrix and amplitudes.

E. D/ϕ creation at contacts:

If the site adjacent to a contact is active, it can gain or loose an electron via hopping from/to the contact to become a D or ϕ . The basis states with this site \downarrow can get an electron from the contact (hopping parameter $J_{l,R/L}$; RandL for right and left contacts) and become D or it can loose the electron to the contact (hopping parameter $J_{h,R/L}$) and become ϕ resulting in one less active site $N \to N-1$ and m unchanged. That is, the final state is in $\mathcal{H}_{N-1,m}$. The transition matrix map is obtained simply by starting with the basis in $\mathcal{H}_{N-1,m}$, inserting an \downarrow in correct position to make the state in $\mathcal{H}_{N,m}$, and calculating its lexicographic index. Similarly, the basis states with this active site \uparrow are linked via $J_{h,R/L}$ and $J_{l,R/L}$ to the basis in $\mathcal{H}_{N-1,m}$ for creation of D and ϕ respectively. The transition matrix map is calculated the same way.

F. D/ϕ annihilation at contacts:

These are just the reverse of D/ ϕ creation at the contacts. A D or ϕ site adjacent to a contact becomes active on loosing or gaining an electron to/from it. Starting with D, the basis states in $\mathcal{H}_{N,m}$ are linked via $J_{l,R/L}$ ($J_{h,R/L}$) to the basis in $\mathcal{H}_{N+1,m'}$ with $m' = m \, (m+1)$ with this site being $\downarrow (\uparrow)$. For a ϕ , the same transition map results with $J_{l,R/L} \leftrightarrow J_{h,R/L}$.