Vulnerabilidades en dispositivos de monitorización continua de glucosa

Análisis técnico del sistema Abbott FreeStyle Libre 14-Day

RF Village HackGDL 2025:

Wulfrano Moreno / wulfrano@mexbalia.mx

Acerca de mí

- CTO, empresario, arquitecto empresarial e instructor
- Entusiasta de la ciberseguridad
- 30 años en TI
- 25 años Web/Nube (1,2,3)
- Amplia experiencia en diversos escenarios de integración
- Certificaciones TI
- Creador digital
- OpenEnchilada OG

Agenda

- 1. Introducción al sistema FreeStyle Libre
- 2. Aplicaciones médicas y validación clínica
- 3. Diseño biomédico y características técnicas
- 4. Aspectos químicos del sensor
- 5. Hardware y firmware
- 6. Vulnerabilidades identificadas
- 7. Prueba de concepto
- 8. Demo
- 9. Implicaciones éticas y médicas
- 10. Estrategias de mitigación
- 11. Conclusión

Introducción al FreeStyle Libre

- Propósito: Monitorización continua de glucosa (CGM) para diabetes.
- Tecnologías clave:
 - Sensor subcutáneo con NFC pasivo (13.56 MHz).
 - Mide glucosa en líquido intersticial (sin punción en dedo).
- Beneficios:
 - Menos invasivo
 - Datos en "tiempo real"
 - Integración de sensores y plataformas digitales

Aplicaciones médicas y validación clínica

Uso en diabetes

- Tipo 1 y 2
- Gestacional

Monitorización remota y telemedicina

Alta precisión (

- MARD ~9,4%
- Zona A de error

Aprobaciones

Diseño biomédico y características técnicas

Biocompatibilidad y Portabilidad

- Adhesivo hipoalergénico
- Resistente al agua y al sudor

Mecánica del sensor

- Microfilamento biocompatible (5 mm bajo la piel).
- Reacción enzimática (glucosa oxidasa → peróxido de hidrógeno → señal eléctrica).

Transmisión de datos

- NFC 13.56 MHz ISO/IEC 14443 (almacena datos cada 60 segundos, 8 horas de historial).
- Sin batería:

 alimentado por el
 lector durante el
 escaneo.

Aspectos químicos del sensor

- Cableado enzimático:
 - Uso de glucosa oxidasa (GOx) modificada con polímeros redox (osmio).
 - Transformación de la enzima en un conductor de carga
 - Generación de corriente proporcional a la concentración de glucosa
 - Evolución desde el cableado con ferroceno hasta hidrogeles redox
- Ventajas: No lixiviables, permeables a la glucosa.
- Comparación de mediciones: Retraso de 5-10 minutos vs. glucosa en sangre.

Hardware y Firmware

- Componentes clave:
 - Chip RF430 TAL TI (procesamiento NFC, memoria FRAM).
 - Sensor de temperatura (termistor para calibración).
 - Antena NFC y batería de respaldo.
- Diseño:
 - Ensamblaje compacto y sellado
 - Protección de memoria mediante CRC16 para integridad de memoria y contraseñas
- Limitaciones: Chip Texas Instruments personalizado sin documentación pública.

Vulnerabilidades identificadas

- Riesgos en NFC:
 - Ataques de repetición.
 - Inyección de datos.
 - Manipulación de memoria.
- Ejemplos:
 - Alteración del tiempo de uso del sensor.
 - Anulación de bloqueo geográfico.
 - Falta de autenticación mutua.

Prueba de Concepto (NFC)

- Hardware usado: HunterCat NFC (Electronic Cats)
- Implicaciones en la manipulación de datos y en el estado del sensor
- Pasos:
 - Configuración y conexión hardware
 - Captura y análisis de datos NFC
 - Reproducción de datos para demostrar vulnerabilidades

Demo

Implicaciones éticas y médicas

- Riesgos para pacientes:
 - Sobredosis de insulina por datos falsos.
 - Privacidad: Exposición de historiales médicos.
- Regulatorios: Sensores manipulados infringen certificaciones (FDA/CE).
- Éticos: Mercado negro de sensores pirateados.

Estrategias de mitigación

Mejoras técnicas

- Cifrado NFC (ej. AES) y códigos rodantes.
- Autenticación mutua sensor-lector.
- Actualizaciones periódicas de firmware.

Ciberseguridad en dispositivos biomédicos

Reforzamiento de normativas y estándares

Concientización

- Educación de usuarios sobre riesgos.
- Aplicaciones móviles con anti manipulación.

Conclusión

Fortalezas:

- Innovación en CGM.
- Precisión clínica.
- Portabilidad.

Retos:

- Las vulnerabilidades identificadas plantean riesgos significativos, especialmente en la manipulación de datos.
- Se requieren medidas integrales de seguridad para salvaguardar la salud del paciente.
- · Retraso en mediciones.
- Vulnerabilidades NFC.

• Futuro:

- Equilibrar avances tecnológicos con robustos mecanismos de seguridad.
- Integración de Bluetooth para alertas en tiempo real.
- Sensores más seguros con IA y biosensores avanzados (parches de microagujas).