(51)

Int. Cl.:

A 01 n, 9/02

BUNDESREPUBLIK DEUTSCHLAND

<u>62</u>)

Deutsche Kl.:

45 1, 9/02

2218 097 Offenlegungsschrift 1 P 22 18 097.8 Aktenzeichen: 2 14. April 1972 Anmeldetag: 2 43 Offenlegungstag: 2. November 1972 Ausstellungspriorität: 30) Unionspriorität 9. Dezember 1971 32 Datum: 16. April 1971 33 Land: V. St. v. Amerika 134868 208041 3 Aktenzeichen: Herbizides Mittel und seine Verwendung **(54)** Bezeichnung: 61) Zusatz zu: **@** Ausscheidung aus: Stauffer Chemical Co., New York, N.Y. (V. St. A.) 1 Anmelder: Vertreter gem. § 16 PatG: Beil, W., Dipl.-Chem. Dr. jur.; Hoeppener, A.; Wolff, H. J., Dipl.-Chem. Dr. jur.; Beil, H. Chr., Dr. jur.; Rechtsanwälte, 6230 Frankfurt Pallos, Ferenc Marcus, Walnut Creek; Als Erfinder benannt: 1 Brokke, Mervin Edward, Moraga; Arnekley, Duane Randall, Sunnyvale; Calif. (V. St. A.)

RECHTSANWALTE DR. JUR. DIPL.-CHEM. WALTER BEIS' ALFRED HOEPPENER DR. JUR. DIFL.-CHEM. H.-J. WOLFF DR. JUR. HANS CHR. BEIL

13. April 1972

623 FRANKFURT AM MAIN-HOCHST ADELONSTRASSE 58

Unsere Nr. 17 782

Stauffer Chemical Company New York, N.Y., V.St.A.

Herbizides Mittel und seine Verwendung

Die Erfindung betrifft ein herbizides Mittel, bestehend aus einem herbiziden Wirkstoff und einem Gegenmittel, sowie ein Verfahren zur Verwendung dieses herbiziden Mittels. Das Gegenmittel entspricht der Formel

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamyl- alkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkin-oxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkyfoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxy-halogenalkyloxyalkyl-, Hydroxyalkyl-, Thienyl-, Alkyl-dithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen

209845/1180

geändert gemäß Eingabe eingegangen am <u>AR-5.72</u> / 26, 6, 72

durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyloder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-, Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R4 und R2 gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptoalkyl-, Alkylaminoalkyl-, Alkyoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylcarbamyloxyalkyl-, Cycloalkylcarbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen-, Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-, Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-, 4,5-Polyalkylen-thienyl-, α-Halogenalkylacetamidophenylalkyl-, a-Halogenalkylacetamidonitrophenylalkyl-, a-Halogenalkylacetamidohalogenphenylalkyl-,

oder Cyanoalkenylreste bedeuten können oder auch R₁ und R₂ zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkylpiperidinyl-, Alkylpiperidinyl-, Morpholyl-, Alkylmorpholyl-, Azo-bicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylminoalkenylrest bilden können, wobei R₂ kein Wasserstoff- atom oder Halogenphenylrest ist, wenn R₄ ein Wasserstoff- atom darstellt.

Aus der Vielzahl der handelsüblichen Herbizide haben die Thiolcarbamate als solche oder im Gemisch mit anderen Herbi ziden, wie den Triazinen, eine relativ hohe, industrielle Erfolgsquote erreicht. Bei unterschiedlicher Konzentration, die je nach der Resistenz der Unkrautarten schwankt, wirken diese Herbizide auf eine große Zahl derselben sofort toxisch. Einige Beispiele dieser Verbindungen werden in den USA-Patentschriften Nr. 2 913 327, 3 037 853, 3 175 897, 3 185 720, 3 198 786 und 3 582 314 beschrieben. Die Praxis erwies jedoch, daß die Verwendung dieser Thiolearbamate als Herbizide in Getreidefeldern (crops) bisweilen starke Schädigungen der Getreidepflanzen zur Folge hat. Erfolgt die Verwendung im Boden in den empfohlenen Mengen mit dem Ziel, eine Vielzahl von breitblättrigen Unkrautarten und Gräsern zu bekämpfen, so kommt es zu schweren Mißbildungen und Verkümmerungen der Getreidepflanzen. Dieses anomale Wachstum führt zu Ertragsschmälerungen. Bei früheren Versuchen, dieses Problem zu überwinden, wurde der Getreidesamen vor dem Pflanzen mit bestimmten Gegenmitteln behandelt; vgl. USA-Patentschrift 3 131 509 Diese Gegenmittel waren nicht besonders wirksam.

Es wurde nun gefunden, daß die Pflanzen dadurch vor Schädinungen durch die Thiolearbamate als selche oder im Gemisch mit anderen Verbindungen geschützt und/oder gegen die Wirkstoffe der vorstehend genannten Patentschriften erheblich widerstandsfähiger gemacht werden können, daß man dem Boden eine Verbindung der Formel

in der R, R_1 und R_2 die vorstehend genannten Bedeutungen besitzen, zuführt.

Die Orfindungsgemäßen Verbindungen können durch Vermischen eines geeigneten Säurechlorids mit einem entsprechenden Amin syrthetisiert werden. Gegebenenfalls kann ein Lösungsmittel wie Benzel eingesetzt werden. Die Reaktion wird vorzugsweise bei verminderten Temperaturen durchgeführt. Nach Abschluß der Reaktion wird das Endprodukt auf Raumtemperatur gebracht und kann leicht ebgetrennt werden.

Die nachstehenden Beispiele dienen der Erläuterung der Erfindung.

$$\begin{array}{c|c} & \text{CH}_2\text{-CH=CH}_2 \\ & \text{CH}_2\text{-CH=CH}_2 \\ & \text{CH}_2\text{-CH=CH}_2 \end{array}$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetylchlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 5 $^{\circ}$ C abgekühlt wurde. Dann wurden 4,9 g (0,05 Mol) Diallylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 4,0 g; $n_{\rm D}^{30}$ = 1,4990.

Beispiel 2

$$\begin{array}{c} \begin{array}{c} 0 \\ 1 \\ -C-N \end{array} \\ \begin{array}{c} C_3^{H_7-n} \\ C_3^{H_7-n} \end{array}$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetylchlorid und 100 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 $^{\circ}$ C abgekühlt wurde. Dann wurden 5,1 g (0,05 Mol) Di-n-propylamin tropfenweise zugesetzt, wobei die Temperatur auf unter etwa 10 $^{\circ}$ C gehalten wurde. Das Gemisch wurde dann über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 3,6 g; $n_{\rm D}^{30}$ = 1,4778.

Beispiel 3

$$CHCl_2-C-N$$

$$CH(CH_3)-C = CH$$

Es wurde eine Lösung aus 3,7 g (0,025 Mol) Dichloracetyl-

chlorid und 80 ml Methylendichlorid hergestellt, die dann in einem Eisbad auf etwa 10 °C abgekühlt wurde. Dann wurden 4,2 g (0,05 Mol) N-Methyl-N-1-methyl-3-propinylamin in 20 ml Methylendichlorid tropfenweise zugesetzt, wobei die Temperatur bei etwa 10 °C gehalten wurde. Das Gemisch wurde dann etwa 4 Stunden lang bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen, über Magnesiumsulfat getrocknet, filtriert und abgestreift. Die Ausbeute betrug 2,9 g; $n_{\rm D}^{30}$ = 1,4980.

Beispiel 4

Es wurde eine Lösung aus 100 ml Aceton und 5,05 g (0,1 Mol) Furfurylamin hergestellt und dann unter Zusatz von 7 ml Triäthylamin bei 15 °C gerührt. Diese Lösung wurde dann mit 5,7 g Monochloracetylchlorid versetzt und weitere 15 Minuten gerührt, während 500 ml Wasser zugesetzt wurden. Die Reaktionsmasse wurde filtriert, mit verdünnter Salzsäure in zusätzlichem Wasser gewaschen und dann auf ein konstantes Gewicht getrocknet.

Beispiel 5

Es wurde eine Lösung aus 5,7 g (0,05 Mol) Aminomethylthiazol in 100 ml Benzol und 7 ml Triäthylamin hergestellt. Diese Lösung wurde bei 10 - 15 °C gerührt und dann mit 5,2 ml (0,05 Mol) Dichloracetylchlorid tropfenweise versetzt. Das Reaktionsgemisch wurde 10 Minuten lang bei Raumtemperatur gerührt. Dann wurden 100 ml Wasser zugesetzt, und die Lösung wurde anschließend mit Benzol gewaschen, über Magnesiumsulfat getrocknet und dann zur Entfernung des Lösungsmittels filtriert.

Es wurde eine Lösung aus 200 ml Aceton, 17,5 g (0,05 Mol) 2-Amino-6-brombenzothiazol und 7 ml Triäthylamin hergestellt. Die Lösung wurde unter Kühlen bei 15 °C gerührt. Dann wurden langsam 5,2 ml (0,05 Mol) Dichloracetylchlorid zugesetzt. Diese Lösung wurde 10 Minuten lang bei Raumtemperatur gerührt. Der Feststoff wurde abfiltriert, mit Äther und dann mit kaltem Wasser gewaschen und anschließend nochmals filtriert und bei 40 - 50 °C getrocknet.

Beispiel 7

$$n-C_9H_{19}-C-N$$
 $C(CH_3)_2-C$
 CH

e,4 g 3-Methyl-3-butinylamin wurden in 50 ml Methylenchlorid gelöst; diese Lösung wurde mit 4,5 g Triäthylamin und anschließend unter Rühren und Kühlen in einem Wasserbad tropfenweise mit 7,6 g Decanoylchlorid versetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 7,1 g des Produktes erhalten wurden.

Beispiel 8

Es wurde eine Lösung aus 5,9 g Diallylamin in 15 ml Methylenchlorid und 6,5 g Triäthylamin hergestellt. Dann wurden unter

Rühren und Kühlen in einem Wasserbad 6,3 g Cyclopropancarbonylchlorid tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,2 g des Produktes erhalten wurden.

Beispiel 3

$$\begin{array}{c|c}
& \text{CH}_2 - \text{CH} = \text{CH}_2 \\
& \text{CH}_2 - \text{CH} = \text{CH}_2
\end{array}$$

Es wurde eine Lösung aus 4,5 g Diallylamin in 15 ml Methylenchlorid und 5,0 g Triäthylamin hergestellt. Dann wurden 7,1 g o-Fluorbenzoylchlorid unter Rühren und Kühlen in einem Wasserbad tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, getrocknet und das Lösungsmittel abgestreift, wobei 8,5 g des Produktes erhalten wurden.

Beispiel 10

$$CHCl_{2} - CH_{2} - CH_{2} - CH_{2} - O - C - NH - CH_{3}$$

$$CH_{2} - CH_{2} - O - C - NH - CH_{3}$$

Zur Herstellung von N,N-Bis(2-hydroxyäthyl)-dichloracetamid wurden 26,3 g Diäthanolamin in Gegenwart von 25,5 g Triäthylamin in 100 ml Aceton mit 37 g Dichloracetylchlorid umgc-setzt. Dunn wurden 6,5 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid in 50 ml Aceton gelöst und anschließend mit 4 g Methylisocyanat in Gegenwart von Dibutylzinndilaurat und Triäthylamin als Katalysatoren umgesetzt. Das Reaktionspredukt wurde unter Vakuum abgestreift, wobei 8,4 g des Produktes erhalten wurden.

$$CH_2 = CH - CH_2$$
 O
 O
 $CH_2 - CH = CH_2$
 $CH_2 = CH - CH_2$
 $CH_2 - CH = CH_2$
 $CH_2 - CH = CH_2$

7,8 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 5,6 g Malonylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 12

$$CH_2 = CH - CH_2$$
 $N - C - CH_2 - CH_2 - C - N$
 $CH_2 - CH = CH_2$
 $CH_2 - CH = CH_2$
 $CH_2 - CH = CH_2$

7,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,7 g des Produktes erhalten wurden.

Beispiel 13

6,7 g N-Mothyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 6,2 g Bernsteinsäurechlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei. 7,0 g des Produktes erhalten wurden.

Beispiel 14

1,9 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, wobei 8,5 g Triäthylamin tropfenweise zugesetzt wurden. Dann wurden 8,1 g o-Phthaloylchlorid unter Kühlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 10,9 g des Produktes erhalten wurden.

Paispiel 15

3,3 g N-Methyl-1-methyl-3-propinylamin wurden in 50 ml Methylenchlorid gelöst, wobei 4,5 g Triäthylamin tropfen-weise zugesetzt wurden. Dann wurden 9,2 g Diphenylacetyl-chlorid unter Kühlen und Rühren tropfenweise zugesetzt. Hach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,9 g des Produktes erhalten wurden.

$$\begin{array}{c|c}
 & O \\
 & C - N
\end{array}$$

$$\begin{array}{c}
 & CH_2 - CH = CH_2 \\
 & CH_2 - CH = CH_2
\end{array}$$

$$\begin{array}{c}
 & CH_2 - CH = CH_2
\end{array}$$

4.9 f Diallylamin wurden in 50 ml Aceton gelöst, wobei 7,4 g Fhthalsäureanhydrid portionsweise unter Rühren zugesetzt wurden. Das Lösungsmittel wurde unter Vakuum abgestreift, wobei 13,0 g des Produktes erhalten wurden.

Budepick 17

3,2 g N(1,1-Dimethyl-3-propinyl)0-phthalamidsäure wurden in 50 ml Methanol gelöst und mit 9,6 g Natriummethylat in Form einer 25 %igen Lösung in Methanol unter Rühren und Kühlen portionsweise versetzt. Das Lösungsmittel wurde unter Vakuum absestraift oder entfernt, wobei 9,0 g des Produktes erhalter wurden. Das Zwischenprodukt N(1,1-Dimethyl-3-propinyl)0-phthalamat wurde aus 29,6 g Phthalsäureanhydrid und 16,6 g 3-Amino-3-methylbutin in 150 ml Aceton hergestellt. Das Zwischenprodukt wurde mit Petroläther in Form eines weißen Foststoffes ausgefällt und ohne weitere Reinigung verwandt.

Beispiel 18

$$CIICl2-C-N C2H5$$

Din 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Trepftrichter versehen. Dann wurden 7,7 g Diäthylamin (0,105

Mol), 4,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt und in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylchlorid portions-weise zugesetzt. Das Gemisch wurde eine weitere Stunde gerührt und in ein Eisbad getaucht. Es wurde dann einer Phasentrennung unterworfen, und die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum konzentriert, wobei 16,8 g des Produktes erhalten wurden.

Baispiel 19

$$CH_3-C=C-CH_2-O-C-N$$

$$CH_2-CH=CH_2$$

$$CH_2-CH=CH_2$$

50 ml Methylendichlorid wurden mit 4,0 g (0,025 Mol) N,N-Diallylearbamoylchlorid versetzt. Dann wurden 1,8 g (0,025 Mol) 2-Butin-1-ol zusammen mit 2,6 g Triäthylamin in 10 ml Methylenchlorid tropfenweise zugesetzt. Das Reaktionsprodukt wurde über Nacht bei Raumtemperatur gerührt, zweimal mit Wasser gewaschen und über Magnesiumsulfat getrocknet, wobei 4,0 g des Produktes erhalten wurden.

Beispiel 20

$$N = C-S-CH_2-C-N$$

$$CH_2-CH=CH_2$$

$$CH_2-CH=CH_2$$

9,7 g (0,1 Mol) Kaliumthiocyanat wurden in 100 ml Aceton gelöst. Dann wurden 8,7 g (0,05 Mol) N,N-Diallylchloracetamid. zusammen mit 10 ml Dimethylformamid bei Raumtemperatur zugesetzt. Das Reaktionsprodukt wurde über Nacht gerührt. Das Reaktionsprodukt wurde teilweise abgestreift. Dann wurde Was-

ser zusammen mit zwei Portionen von 100 ml Äther zugesetzt. Der Äther wurde abgetrennt, getrocknet und abgestreift, wobei 7,2 g des Produktes erhalten wurden.

Beispiel 21

Es wurde eine Lösung von 50 ml Benzol, die 7,4 g (0,05 Mol) Dichloracetylchlorid enthielt, hergestellt. Diese Lösung wurde bei einer Temperatur von 5 - 10 °C mit 3,0 g (0,05 Mol) Cyclopropylamin und 5,2 g Triäthylamin in 2ml Benzol versetzt. Es bildete sich ein Niederschlag, und das Gemisch wurde zwei Stunden bei Raumtemperatur und eine Stunde bei 50 - 55 °C gerührt. Das Produkt wurde wie in den vorstehenden Beispielen aufgearbeitet, wobei 5,7 g des Produktes erhalten wurden.

Beispiel 22

4,7 g (0,032 Mol) Piperonylamin und 1,2 g Natriumhydroxid in 30 ml Methylenchlorid und 12 ml Wasser wurden bei -5° bis 0 °C mit 4,4 g (0,03 Mol) Dichloracetylchlorid in 15 ml Methylenchlorid versetzt. Man rührte das Gemisch weitere 10 Minuten bei etwa 0 °C und ließ es sich dann unter Rühren auf Raumtemperatur erwärmen. Die Schichten wurden abgetrennt, und die organische Schicht wurde mit verdünnter Salzsäure, einer 10 %igen Natriumcarbonatlösung und mit Wasser gewaschen und getrocknet, wobei 5,9 g des Produktes erhalten wurden.

Eine Lösung von 75 ml Benzol, die 5,7 g m-Chlorcinnamyl-chlorid enthielt, wurde hergestellt. Diese Lösung wurde bei einer Temperatur von 5 - 10 °C mit 3,2 g Diallylamin und 3,3 g Triäthylamin in 2 ml Benzol versetzt. Es bildete sich ein Niederschlag, und das Gemisch wurde zwei Stunden bei Raumtemperatur und eine Stunde bei 55 °C gerührt. Das Produkt wurde gewaschen und aufgearbeitet, wobei 5,8 g des Produktes erhalten wurden.

Beispiel 24

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 11,9 g 2,4-Dimethylpiperidin, 4,0 g Natronlauge und 100 ml Methylenchlorii in den Kolben gefüllt, und das Gemisch wurde in einem Trockencis-Aceton-Bad gekühlt. Dann wurden 14,7 g (0,10 Mol) Dichloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde eine Stunde lang gerührt und in das Eisbad getaucht. Dann wurde es einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von je 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und in einem Retationsverdampfer unter einem mit einer Wasserstrahlpumpe erzeugten Vakuum konzentriert wurde. Dabei wurden 10,3 g des Produktes erhalten.

Brispicl 25

Tropftrichter versehen. Dann wurden 14,6 g (0,105 MoI)

mis-trans-Decahydrochinolin und 4,0 g Natronlauge zusammen

mit 100 ml Methylenchlorid zugesetzt. Dann wurden 14,7 g.

Dichloracetylchlorid portionsweise zugesetzt. Das Reaktions
cemisch wurde aufgearbeitet, wobei es etwa eine Stunde lang

gerührt, in ein Eisbad getaucht und dann einer Phasentrennung

untervorfen wurde; dann wurde die untere organische Phase

mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei

Fortionen von je 100 ml 5 %igem Natriumcarbonat gewaschen,

über Magnesiumsulfat getrocknet und konzentriert, wobei 22,3 g

des Produktes erhalten wurden.

Seispiel 29

Tin 500 ml-4-Halskolben wurde mit Rührer, Thermometer und 'Iropftrichter versehen. Dann wurden 13,6 g (0,104 Mol) 3,3'-Iminobis-propylamin zusammen mit 12,0 g Natronlauge und 150 ml Methylenchlorid zugesetzt. Anschließend wurde das Gemisch in einem Trockeneis-Aceton-Bad gekühlt, und 44,4 g (0,300 Mol) Dichloracetylchlorid wurden portions-weise zugesetzt. Dabei bildete sich ein öliges Produkt, das in Methylenchlorid nicht löslich war; dieses Produkt zurde abgetrennt, mit zwei Portionen von 100 ml verdünnter Selzsäure gewaschen und über Nacht stehen gelassen. Am nächsten Morgen wurde das Produkt mit zwei Portionen von je 100 12 5 bigem Natriumcarbonat gewaschen, und das Produkt wurde

in 100 ml Athanol aufgenommen, über Magnesiumsulfat getrocknet und konzentriert, wobei 21,0 g des Produktes erhalten wurden.

Boispiel 27

Trepftrichter versehen. Dann wurden 7,5 g (0,0525 Mol)
Tetrabydrefurfuryl-n-propylamin, 2,0 g Natronlauge und 100 ml
Mathylenchlorid zugesetzt. Anschließend wurden 7,4 g (0,05
Mol) Dichloracetylehlorid portionsweise zugesetzt. Das Gemisch wurde eine weitere Stunde in einem Eisbad gerührt und
dann einer Fhasentrennung unterworfen; danach wurde die
untere organische Phase mit zwei Portionen von 100 ml vercünnter Salzsäure und zwei Portionen von 100 ml ciner 5 %igen
Mathiumearbonatlösung gewaschen, über Magnesiumsulfat getricknet und konzentriert, wobei 12,7 g des Produktes erhalten wurden.

Beispiel 28

Das Beispiel 27 wurde vollständig wiederholt, mit der Ausnahme, daß 8,9 g Piperidin als Amin verwandt wurden.

beispiel 29

Das Beispiel 28 wurde is w sentlichen vollständig wied mittlt; mit der Ausnahms, da3 9,1 g Morpholin als Amin verwandt was tun.

209845/1180

BAD ORIGINAL

3,2 g Benzaldehyd und 7,7 g Dichloracetamid wurden mit 100 ml Benzol und etwa 0,05 g Paratoluolsulfonsäure vereint. Das Gemisch wurde solange unter Rückfluß erhitzt, bis kein Wasser mehr überging. Beim Abkühlen kristallisierte das Produkt aus Benzol, wobei 7,0 g des Produktes erhalten wurden.

Beispiel 31

$$\begin{array}{c|c}
CH_2 & CH_3 \\
CH_2 & C-NH-C-C = CH_3 \\
CH_3 & CH_3
\end{array}$$

2,5 · 3-Amino-3-methylbutin wurden in 50 ml Aceton gelöst, und dann wurden 3,5 g Triäthylamin zugesetzt. Anschließend wurden 6,0 g Adamantan-1-carbonylchlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und der feste Stoff wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 6,5 g des Produktes erhilten wurden.

Beispiel 32

$$N = C - C - NH - C$$

$$CH_{3} 0$$

5,1 g 2-Cyanoisopropylamin wurden in 50 ml Aceton gelöst,

und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 5,3 g Benzol-1,3,5-tricarbonsäurechlorid unter Rühren und Kühlen tropfenweise zugesetzt. Das Gemisch wurde in Wasser gegossen, und das feste Produkt wurde durch Filtrieren aufgefangen und unter Vakuum getrocknet, wobei 7,6 g des Produktes erhalten wurden.

Beispiel 33

6,0 g Diallylamin wurden in 50 ml Methylenchlorid gelöst, und dann wurden 6,5 g Triäthylamin zugesetzt. Anschließend wurden 6,6 g 3,6-Endomethylen-1,2,3,6-tetrahydrophthaloylchlorid unter Rühren und Kühlen tropfenweise zugesetzt.

Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrocknet und unter Vakuum abgestreift, wobei 9,3 g des Produktes erhalten wurden.

und dann wurden 4,5 g Triäthylamin zugesetzt. Anschließend wurden 7,2 r trans-2-Phenylcyclopropanearbonylchlorid unter Künlen und Rühren tropfenweise zugesetzt. Nach Abschluß der Reaktion wurde das Gemisch mit Wasser gewaschen, über Magnesiumsulfat getrecknet und unter Vakuum abgestreift, wobei 9,2 ; des Froduktes erhalten wurden.

Es wurde eine Lösung aus 4,0 g (0,03 Mol) 2-Methylindolin, 7,0 ml Triäthylamin und 100 ml Methylenchlorid hergestellt. Dann wurden 2,9 ml Dichloracetylchlorid im Verlauf von et einer Minute zugesetzt, wobei die Temperatur durch Kühlung mit Trockeneis unter 0 °C gehalten wurde. Nachdem sich die Lösung auf Raumtemperatur erwärmt hatte, wurde sie eine Stunde lang stehen gelassen; anschließend wurde sie mit Wasser und dann mit verdünnter Salzsäure gewaschen, über Magnesiumsulfat getrocknet und eingedampft, wobei ein Feststoff erhalten wurde, der mit n-Pentan gewaschen wurde. Dabei wurden 5,0 g des Produktes erhalten.

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 8,9 g Cyclooctyl-n-propylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt, und das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen. Die untere organische Phase wurde mit zwei Portionen von 100 ml verdünnter Salzsäure und zwei Portionen von 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert, wobei 9,5 g des Produktes erhalten wurden.

Ein 500 ccm-4-Halskolben wurde mit Rührer, Thermometer und Tropftrichter versehen. Dann wurden 7,8 g (0,0525 Mol) p-Methylbenzyläthylamin, 2,0 g Natronlauge und 100 ml Methylenchlorid in den Kolben gefüllt. Das Gemisch wurde in einem Trockeneis-Aceton-Bad gekühlt. Dann wurden 5,6 g (0,05 Mol) Chloracetylchlorid portionsweise zugesetzt. Das Gemisch wurde etwa eine weitere Stunde gerührt, in das Eisbad getaucht und dann einer Phasentrennung unterworfen, wobei die untere organische Phase mit zwei Portionen von 100 ml verdünnter Salzsäure und anschließend mit zwei Portionen von 100 ml einer 5 %igen Natriumcarbonatlösung gewaschen, über Magnesiumsulfat getrocknet und konzentriert wurde. Dabei wurden 9,5 g des Produktes erhalten.

4,7 g Aminopyridin wurden zusammen mit 100 ml Aceton in ein Reaktionsgefäß gefüllt und bei 10 - 15 °C gerührt.

Dann wurden 7,0 ml Triäthylamin tropfenweise zugesetzt.

Danach wurde das Reaktionsgemisch im Verlauf von fünf Aceton
Minuten mit 5,25 ml Dichloracetylchlorid in 10 ml/versetzt und bei Raumtemperatur gerührt. Die Feststoffe wurden abfiltriert und mit Aceton gewaschen, wobei 10,0 g des Produktes erhalten wurden.

Beispiel 39

Eine Lösung von 8,1 g (0,05 Mol) 4-Aminophthalimid in 100 ml Dimethylfuran wurde im Verlauf von 5 Minuten bei 0 - 10 °C unter Rühren mit 5,0 g Dichloracetylchlorid versetzt. Dann wurden 7,0 ml Triäthylamin zugesetzt. Die Reaktionsmasse wurde eine halbe Stunde lang bei Raumtemperatur gerührt, und dann wurde ein Liter Wasser zugesetzt. Anschließend wurde sie mit Wasser filtriert und getrocknet, wobei 12,0 g des Produktes erhalten wurden.

$$\begin{array}{c} \text{CHC1}_2\text{-C-N} & \begin{array}{c} \text{CH}_2\text{-CH}_2\text{-O-C-NH-C}_3\text{H}_7\text{-i} \\ \text{CH}_2\text{-CH}_2\text{-O-C-NH-C}_3\text{H}_7\text{-i} \\ \end{array}$$

Zur Herstellung der Verbindung dieses Beispiels wurden 5,4 g N,N-Bis(2-hydroxyäthyl)-dichloracetamid mit 4,3 g Isopropylisocyanat in 50 ml Aceton in Gegenwart von Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren umgesetzt. Dabei wurden 8,2 g des Produktes erhalten.

Beispiel 41

Zur Herstellung der Verbindung dieses Beispiels wurden 3,6 g N,N-Bis(2-hydroxyäthyl)-chloracetamid in Gegenwart von 50 ml Aceton und Dibutylzinndilaurat und Triäthylendiamin als Katalysatoren mit 5,0 g Cyclohexylisocyanat umgesetzt. Die Reaktionsmasse wurde auf Rückflußtemperatur erhitzt und unter Vakuum abgestreift. Dabei wurden 6,9 g des Produktes erhalten.

In dies Tra Gar.

15 g Aceton und 12,2 g Äthanolamin wurden in 150 ml Benzol vereint und solange unter Rückfluß erhitzt, bis kein weiteres Wasser mehr überging. Bei der Untersuchung der so entstandenen Lösung ergab sich, daß sie 2,2-Dimethyl-1,3-oxazolidin enthielt. Ein Viertel der Benzollösung (0,05 Mol) wurde mit 7,4 g Dichloracetylchlorid und 5,5 g Triäthylamin umgesetzt, mit Wasser gewaschen, getrocknet und unter Vakuum abgestreift, wobei ein leicht dunkelgelber Feststoff erhalten wurde. Ein Teil dieses Feststoffes wurde aus Äther umkristallisiert, wobei ein weißes Produkt erhalten wurde.

Analog hierzu wurden weitere Verbindungen unter Verwendung der entsprechenden Ausgangsmaterialien wie vorstehend aufgeführt hergestellt. In nachstehender Tabelle werden Beispiele erfindungsgemäßer Verbindungen zusammengestellt. Die den Verbindungen zugeordneten Nummern werden im folgenden beibehalten.

		Tabelle I:	
	æ	$R = C - N - R_1$	
Verbindung Nr.	떠	_B	R.
τ.	-cu(ch ₃)Br	-CH2-CH=CH2	-CH2-CH-CH2
N	-c(cH ₃) ₂ Br	-CH2-CH=CH2	-CH2-CH=CH2
8	-cc12-cH3	-CH2-CH=CH2	-CH2-CH=CH2
4	-cc1=cc1 ₂	-ch-ch-ch ₂	-CH2-CH=CH2
ľV.	-CF2-C2F5	-cH ₂ -cH=cH ₂	-CH2-CH=CH2
9	-GEC12	-CH2-CH=CH2	-CH2-CH=CH2
7	-ch ₂ cl	-CH-CH-CH2	-CH2-CH=CH2
00	-CHC1 ₂	-CH2-C=1N	-ch2-c=n
Ф	-cec1 ₂	-ch2-ch=ch2	щ
10	-cec12	-c ₃ H ₇	-c ₂ H ₇
נו	-chc12	$-c(cH_3)_2-c-c$; #
12	-cH2c1	$-c(cH_3)_2-c$: c	ш
13	-cc ₁₃	-0H2-CH=CH2	щ

н -сн(сн₂)-с — сн $-cH_2 - cH_a cH_2$ $-c(cH_3)_2 - c == cH$ $-c(cH_3)_2 - c == cH$ $-c(cH_3)_2 - c == cH$ Tabelle I (Fortsetzung: -CH2-CH=CH2 -cec12 -CEC12 E - CC1 2 - CE2 C1 - CEC1 2 - CEC1 2 - CEC1 2 -CH2C1 Verbindung Nr. 22

	Tabelle I	Tabelle I (Fortsetzung:	
Verbindung Nr.	æ	R ₁	ж 22
	0 + C= C= C ₂ H ₅ 0	-ch ₃	-сн(сн3)-с≡сн
. 30	-G-C-C ₂ H ₅	-CH-CH-CH2	-CH ₂ -CH=CH ₂
31	-CH ₂ -CH(CH ₃)-CH ₂ -t-C ₄ H ₉	щ	$-c(cH_3)_2-c\equiv cH$
32	-c(cH ₃) ₂ -c ₃ H ₇	-CH2-CH=CH2	-ch-ch-ch
33.	-CH2-t-C4H9	-сн ₃	-cH(CH ₃)-c= CH
.34	-GH2-t-C4H9	.	$-c(cH_3)_{2}-c=N$
. 35	-сн(сн ₃)-с ₃ н ₇	-CH2-CH=CH2	-CH2+CH=CH2
36	сн(сн ₃)-с ₃ н ₇	-ch ₂	- он(снэ) но-
37	-сн(сн ₃)-с ₃ н ₇	Ħ	-c(cH ₃) ₂ -c:=cH
8	1-C ₂ H ₇	-CH ₃	-сн(сн ₃)с - : сн

 $-CH_{2}CH = GH_{2}$ $-CH_{2}CH = GH_{2}$ $-C(CH_{3})_{2} - C = CH$ $-CH_{2} - CH = CH_{2}$ $-C(CH_{3})_{2} - C = CH$ $-CH(CH_{3})_{2} - C = CH$ $-C(CH_{3})_{2} - C = CH$ -CH₂-CH=CH₂ -CH₂-CH-GH₂ -CH₃ CH2-CH=CH2
CH2-CH=CH2
-CH2-CH=CH2
-CH2-CH=CH2
-CH3-CH3 -ch2-ch=ch2 Tabelle I (Fortsetzung: -c₁₃H₂₇
-c₁₁H₂₃
-c₁₁H₂₃
-c₉H₁₉
-c₉H₁₉
-c₆H₁₃
-c₆H₁₃
-c₆H₁₃ -с₅н₇ Ferbindung Nr.

nng:
30tzı
Port
_ ⊢
11e
Tabe
•

erbindung Nr.	nei	er e	R2
52	-CH ₂	¨ , ,	-c(cH ₃) ₂ -c≡ cH
53	-c(cH ₃)=CH ₂	щ	$-c(cH_3)_2-c=cH$
. 54	-CH-CH-CH ₂	-CH2-CH=CH2	-CH2-CH=CH2
55	-сн-сн-сн ₃	#	$-c(cH_3)_2-c=cH$
26	-CH-C(CH ₃) ₂	-0H ₃	-сн(сн ₃)-с == сн
. 57	-GB-C(CH ₃) ₂	pa	-c(cH ₃) ₂ -c - CH
. 28	-CH-CH-CH-CH-	CH2=CH2-	-ch-ch-ch ₂
59	-CH-CH-CH-CH-CH-	pa .	$c(cH_3)_2^{c} \equiv cH$
09	CH CH2	-ch2-ch=ch2	-CH2-CH=CH2
61	CH CH2	-сн ₃	-сн(сн ₃)-с = св

209845/1180

	R ₂	-сн2-сн=сн2	-сн(сн ₃)-с . сн	-с(он ³)2-с тон	-CH2-CH=CH2	-сн(сн ²)-с -сн	-c(cH ₃) ₂ -c cH	-CH2-CH=CH2
Tabelle I (Fortsetzung:	R	-CH2-CH=CH2	-cH ₂	ш	сн2-сн2-	-CH3	ш	-CH2-CH≈CH2
Tabelle I	pd					-ch=ch2	-CH=CH2	-CH ₂ - S
	Verbindung Nr.	89		70	71	72	73	74

	2 2	-0H2-CH=CH2	-CE(CH ₃)-C == CH	-c(cH ₃) ₂ -c CH	-0(0H ₃) ₂ -0 - N	-CH2-CH-CH2	-0H(CH ₃)C-CH	-CH2CH-CH2	-св (сн ³)-с = сн	-CH2-CH=CH2	-св (св ³)-с ··· св
Tabelle I (Fortsetzung:	E.	-CH2-CH=CH2	-0H ₃	ш	щ	牌	-CH ₃	-ch2ch=ch2	-CH2-	-CH2-CH=CH2	-c _H ²
	æ	-cbr ₃	-cBr ₃	-cBr ₃	-cbr ₃	-CBr ₃	-001-001	$-(cH_2)_4-cH_2-Br$	$-(cH_2)_4-cH_2-Br$	្	
	Verbindung Nr.				84	85	98	28	· &	6 \	06

	R ₂	-сн(сн ₃)-ссн	-CH2CH=CH2	-сн(сн ₃)-с - сн	-с(сн ₃) ₂ -с сн	-CH2-CH=CH2	-с(сн ₃) ₂ -с сн	-сн(сн ₃)-с == сн
Tabelle I (Fortsetzung:		-cn ₃	-ch ₂ ch=ch ₂	-сн ₃	щ	-сн ₂ -снясн ₂	·¤	-CH ₃
Tabelle I	ρ α			10 / 27		√ \.o-cH ₃		O O CH ₂
	Verbindung Nr.	91	92	. 93	94	95	. 96	76

209845/1180

James 19

BAD ORIGINAL

Werbindung Mr.
$$\frac{H}{-1}$$
 $\frac{H_2}{CH_2}$ $\frac{H_2}{-CH_2-CH_2CH_2}$ $\frac{H_2}{-CH_2-CH_2-CH_2}$ $\frac{H_2}{-CH_2-CH_2-CH_2}$ $\frac{H_2}{-CH_2-CH_2}$ $\frac{104}{-CH_2}$ $\frac{CH_2}{-CH_2}$ $\frac{CH_2}{-CH_2-CH_2}$ $\frac{CH_2}{-CH_2-CH_2}$ $\frac{CH_2}{-CH_2-CH_2}$ $\frac{CH_2}{-CH_2-CH_2}$ $\frac{CH_2}{-CH_2-CH_2}$ $\frac{CH_2}{-CH_2-CH_2}$ $\frac{CH_2}{-CH_2-CH_2}$ $\frac{CH_2}{-CH_2}$ \frac

	R2	-с(сн ³) ² -с сн	-сн(сн3)-с сн	-cH ₂ -cH=cH ₂	-сн(сн ²)-с - сн	-ch ₂ -ch=ch ₂	-с(сн ₃) ₂ -с сн	-CH ₂ -CH=CH ₂
Tabelle I (Fortsetzung):	H L	¤	-c _H ₃	-CH2-CH=CH2	. сн ₃	-CH2-CH=CH2	щ	-CH2-CH=CH2
Tabel	æ	C1 - C1	010	A Br	Property of the second		<u> </u>	, s
	Verbindung Nr.	109	110	111	112	í13	114	115

Tabelle I (Fortsetzung):

R ₂	-c(ch ₃) ₂ -c ;= ch	-с ₂ н ₄ он о	-cH2-CH2-0-C-CHC12	-сн ₂ -сн-0-s0 ₂ -сн ₃	-сн(сн ³)-с — сн	-он (сн ₃)-о — он	$-cH(cH_3)-c = cH$	-c(cH ₃) ₂ -с == сн
L	щ	-с ₂ н ₄ он о	-ch2-ch2-0-c-chc12	-ch2-ch2-0-s02-cH3	-сн ₃	- CH ₃	-cH ₂	Ħ
æ		-CHC12	-CHCl ₂	-CBC1 ₂	\ [-chbr-ch ₃	-CHBr-CH ₃
Verbindung Nr.	116	. 711	118	119	120	121	122	123

Tabelle I (Fortsetzung):

		(0	
ferbindung Nr.	æ	B ₁	^R 2 0
134	-cec1 ₂	"-CH2-CH2-0-C-C2H5	-сн ₂ -сн ₂ -о-с ₂ в ₅
135	-chcl ₂	-сн ₂ -сн ₂ -о-с-s-с ₂ н ₅	сн ₂ -сн ₂ -о-с-s-с ₂ н ₅
136	-CH ₂	-ch2-ch=ch2	-ch2-ch=ch2
137	-CH ₂	-CH ₃	-св(сн ₃)-с сн
138	-CH2	щ	-с(сн ₃) ₂ -с ≡он
139	-CH2-CH2	-cH2-CH=CH2	-CH2-CH=CH2
140	-CH2-CH2-	-CE ₃	-сн(сн3)-с ≡ сн

₹.	4.			
`;	•			
-2	4			

	R2	-CH2-CH=CH2	-сн(сн₂)-с =сн	-CH2-CH=CH2	-св (сн₂)-с ≝ он	-с(сн ²) ² -с: сн	-сн2-сн=сн2	-CH(CH₂)-C CH
Tabelle I (Fortsetzung):	n 1	-ch2-ch-ch2	-сн ₃	-CH2-CH=CH2	-св ₃	ш	-CH2-CH=CH2	· HO- 1
Tabelle I	ces			-CH ₂ -C-N(CH ₂ -CH=CH ₂) ₂	O CH ₂ -CH ₂ -C-N-CH-C === CH CH ₃	O	$-c-N(cH_2-cH=cH_2)_2$	$-c-N(cH_{3})-cH(cH_{3})-c=cH$
	ndung Nr.	el el			4	10		

· 影子,因为《海南彝群群》

Tabelle I (Fortsetzung):

. R2	с(сн ₃) ₂ -с. · сн	-сн ₂ -сн=сн ₂	-сн(сн ³)-с сн	-ch-ch-ch2	-сн(сн ³)-с = сн	-cH2-CH=CH2
H.	Ħ	-ch2-ch=ch2	сн ₃	-CH2-CH=CH2	€ HO	-ch2-ch=ch2
ez	$c = c - NH - C(cH_3)_2 - C = CH$	о -сн ₂ -сн ₂ -с-м(сн ₂ -сн-сн ₂) ₂	ене - сн ₂ -с-м(сн ₃)-сн(сн ₃)-с . сн	-(cH ₂) ₃ -c-N(cH ₂ -cH=CH ₂) ₂	$-(cH_2)_3-c-N(cH_3)-cH(cH_3)-c = cH$	-(CH ₂) ₄ -C-N(CH ₂ -CH=CH ₂) ₂
erbindung Nr.	148	149	150	151	152	153

	Tabelle I (Fortsetzung):	
Verbindung Nr.	в О	R ₂
154	$-(cH_2)_4-c-N(cH_3)-cH(cH_3)-c=cH$	-сн(сн ₃)-с == св
155	$-c(cH_3)_2-c-N(cH_3)-cH(cH_3)-c=cH$	$-cH(cH_3)-c = cH$
156	$c_{1}^{0} = c_{1}^{0} + c_{2}^{0} + c_{1}^{0} + c_{1}^{0} + c_{1}^{0} + c_{2}^{0} + c_{2}^{0} + c_{1}^{0} + c_{2}^{0} + c_{2$	-с(сн ₃) ₂ -с сн
157	о -сн ₂ -о-сн ₂ -с-и(сн ₂ -сн=сн ₂) ₂ -сн ₂ -сн « сн ₂	-сн ² -сн=сн ²
158	$-c_{H_2}-c_{-G_1}-c_{-M}(c_{H_3})-c_{H}(c_{H_3})-c \Longrightarrow c_{H}$	-сн(сн₂)-с≔ сн
159	CH2-CH-CH2	-CH2-CH=CH2

	R2	-сн(сн ³)-с т :сн	-с(сн ₃)2-с ≔ сн	-сн(сн ₃)-с = сн	-0H2CH=CE2
Tabelle I (Fortsetzung):	e L	-CB ₂	æ	€H2-	- Сн ₂ сн= сн ₂
Tabelle	щ	c c $h(cH_2)-cH(cH_3)-c = cH$	0-с мн-с(сн ₃) ₂ -с≔ сн	် ျှ	$N(CH_2)-CH(CH_3)-C = CH$ $($
	Verbindung Nr.	. 0 - 12	161 0.	162	163

209845/1130

	π 2	-ch2-chach2	-c(cH ₃) ₂ -c=ch	-сн2-сн=сн2	но .o- ² (² но)о-	-CH2-CH=OH2	-сн(сн ₃)-с = сн
ortsetzung):	F.	-CH2-CH=CH2	щ	-CH2-CH=CH2	Ħ	-CH2-CH=CH2	^с но-
Tabelle I (Fortsetzung)	o ≃	-c(cH ₅) ₂ -c-N(cH ₂ -cH=CH ₂) ₂	-c(ch ₃) ₂ -c-nh-c(ch ₃) ₂ -c ch	No.		$\langle \rangle$	-()- NO ₂
	Verbindung Nr.	164	165	166	167	168	169

209845/118n

	г	-с(сн ³) ² с сн	-6(сн ₃) ₂ с сн	-с(сн ₃) ₂ с - ов	-62 ^H 5	-0H2-CH=CH2
Tabelle I (Fortsetzung):	. R	ш	III	н	-c ₂ H ₅	$i-c_3H_7$
<u>18b</u>	æ	HO-0=0	O=C-ONB	0=c-o_NH3+c(cH3)-c==cH	-CHC1 ₂	-CHC1 ₂
	Verbindung Nr.	176	177	178	179	180

(Fortsetzung):	
Tabelle I	

rbindung Mr.	ρα	R.	. B.2
181	-CHCL ₂	-c ₅ H ₇	-ch2-ch-ch2
182	-chc12	n-C4H9	-cH ₂ -CH=CH ₂
183	-cHC1 ₂	-ch2-ch=ch2	-cH2-ccl=cH2
184	-chc1 ₂	-c ₃ H ₇	-ch2-ccl-ch2
185	-chc1 ₂	i-c4H9	$-cH_2-cH=cH_2$
786	-chc1 ₂	-cH2-c(cH3)=CH2	-CH2-CH=CH2
187	-chc1 ₂	n-C4H9	sec-C4H9
188	-CHC12	n-C4H9	1-c4H9
189	-chc1 ₂	п-С4Н9	i-c ₃ H ₇
190	-CHC12	i-c4H9	1-C3H7
161	-CHC12 .	1-c4H9	n-C3H7
192	-CHC12 .	8ec-C4H9	n-C3H7

	Tabelle I	le I (Fortsetzung);	
Verbindung Nr.	r#	Ж	. K2
193	-сно1 ₂	n-C ₄ H ₉	n-C ₂ H ₇
194	-CHC1 ₂	-c ₂ H ₅	i-C4H9
:	-		0'. X
195	-cec1 ₂	ш	_
196	-CHC1 ₂	- oH 3	-NH ₂
197	ć1	-CH ₂ -CH=CH ₂	-CH2-CH=CH2
198	-cHC1 ₂) <u>w</u> 7o=	$=c/\overline{W}(cH_3)_2/2$
199	-сн ₂ с1) <u>N</u> Zo=	=c/N(cH ₃) ₂ /2
200	$_{\xi}^{-0-cH_2-c} = c^{-cH_3}$	-CH2-CH=CH2	-CH2-CH=CH2

_
etzung:)
(Fortse
н
Tabelle

R2	-CH ₂ -CH=CH ₂ -CH ₂ -CH=CH ₂	-cH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂	-CH ₂ -CH=CH ₂	-N(CH ₃)-C-CHCl ₂	" -N(c-cec1 ₂) ₂	-cH2cH=CH2
ل ا	-ch ₂ -ch=ch ₂ -ch ₂ -ch=ch ₂	-cH ₂ -cH=cH ₂	-cH ₂ -CH=CH ₂	-cH ₂ -cH=cH ₂		-ch ₃	-CH2-CH=CH2
H	-0-c ₂ H ₄ cl -D-CH ₂ -CHCl ₂	-0-	-CH2-S-C==N	$-cH_2-N(cH_2-cH=cH_2)_2$	-cHcl ₂	-CHC1 ₂	-cH ₂ -C-CH ₃
Verbindung Nr.	201	203	204	205	206	207	508

	я2	-CH ₂ CH=CH ₂ -CH ₂ CH=CH ₂	"-CH2-CH2-0-C-CHC12	-CH2-CH-C == N		\$ 5°	CH ₃
Tabelle I (Fortsetzung):	er er	-сн ₂ -сн ₂ -сн ₂ -сн ₂	-c ₂ H ₅	-CH2-CH2-C=N	Ħ	Ħ	#
	æ	$-cH_2-c = N$ $-cH_2-0-c = N$	-cHC1 ₂	-CHC1 ₂	-снс1 ₂	-CEC1 ₂	-0HC1 ₂
	ferbindung Nr.	209	. 211	212	213	214	215

	R ₂	1-0 ₂ H ₇	-сн ₂ -сн(сн ₃) ₂	сн ₂ -сн сн ₂	1-04 ^H 9	t-C4H9	t-C4H9	-сн(сн ₃)-сн ₂ -сн(сн ₃)-сн ₃
Tabelle I (Fortsetzung:)	r er	, ш	pd	p:	;¤	m	ш	#
	æ	-chc1 ₂	-cH2c1	-CHC1 ₂	-CHC12	-ch ₂ cl	-CHC12	-cH2c1
	Verbindung Nr.	216	217	218	219	220	221	222

9-7488249

BAD ORIGINAL

	. R2	-CH ₂ -CH=CH ₂	-сн ₂ -сн=сн ₂	-CH2-CH=CH2	-ch ₂ -ch=ch ₂	-CH=CH-CH2-CH3	-ch=ch=ch2-ch3	с, сн ₂ -сн ₃	-ch-ch-ch ₂ -ch ₃
Tabelle I (Fortsetzung):		-сн ₂ -сн=сн ₂	-CH ₂ -CH=CH ₂	-ch2-ch=ch2	\$	-t-c4H9	-c(cH ₃) ₂ -c -cH	-c ₂ H ₅	n-С ₄ ^Н 9 .
터	pa	-CH=CH—(- CH ₃	-CH-CH-CH-/-	-CH=CH -	-CHC12	-chc1 ₂	-CHC1 ₂	-cHC1 ₂	-CHC1 ₂
	Verbindung Nr.	229	230	231	232	233	234	235	236

209845/1180

	R2	n-0 ₅ H ₇	n-C ₃ H ₇	-CH2-CH=CH2	-CH2-CH-CH2	-N-C(CH ₃) ₂	-CH2-CH=CH2	-ch2-ch=ch2	-C2H5
Tabelle I (Fortsetzung):	R	\Diamond	-c(cH ₃)=cH-cH ₂ -cH ₃	-GH2-CH=CH2	-CH2-CH=CH2	-c _H ₂	-ch2-cH=CH2	-CH ₂ -CH=CH ₂	sec-C4H9
Tabel	æ	-GEC1 ₂	-cHC12	-CH ₂ -SO ₂ -N(CH ₂ -CH=CH ₂)	-CH(S-C ₂ H ₅) ₂	-CHC1 ₂	CHC1_2	-CH(0-(-) C1)2	-chc1 ₂
	erbindung Nr	237	238	239	240	241	242	243	244

Tabelle I (Fortsetzung):	. R	t-C ₄ H ₉ -C ₂ H ₅	sec-C ₅ H ₁₁ -C ₂ H ₅	i-c ₂ H ₇	-CH ₃	-c ₂ H ₅ -	n-c ₃ H ₇ -cH ₂ -// OH ₃	CH ₂ :sec-C ₅ H ₁₁	n-C ₇ H ₇
3년	я	-chc1 ₂	-cHC1 ₂	-cec1 ₂	-CHC12	-CHC12	-cec1 ₂	-chc1 ₂	-chc1 ₂
	Verbindung Nr.	245	246	247	248	249	250	251	252

erbindung Nr. 253	Tabelle -GEC12	Tabelle 1 (Forts-tzung): R -n-C ₂ H ₇	R2 n-C ₅ H11
254	-GEC1 ₂	i-c4H9	sec-C4H9
255	CHC12	-cn ² :	1-C ₂ H ₇
256	-cHC1 ₂	-cH ₂	-сн(сн ₃)-сн(сн ₃)-сн ₃
257	-cec1 ₂	-с ₂ ^н 5	CH ₂
258	-CHC1 ₂	-C ₂ H ₅	S
259	-CHC1 ₂	-c ₂ H ₅	S CH3
2.60	-chc1 ₂	-cB ₂	sec-C ₄ H ₉

209845/1180

Tabelle I (Fortsetzung):	R ₁	-c ₂ H ₅ n-c ₆ H ₁₃	n-C ₂ H ₇ t-C ₄ H ₉	n-с ₃ н ₇ -сн(сн ₃)-он(сн ₃)-сн ₃	n-c ₃ H ₇	$^{n-c_5H_7}$ $^{-cH_2}$ $\stackrel{^{-cH_3}}{\longrightarrow}$	$n-c_3H_7$ $-cH_2$ cH_3 cH_3	n-c ₃ H ₇ -cH ₂ - CH ₂ - CL ₃ - CL	-c ₂ H ₅
Tabelle I	ж	-cec1 ₂ -c	-CHC1 ₂ n-(-CHCl ₂	-cec ₁₂ n-(-CHC1 ₂ n-(-CEC1 ₂ n-(-cHC1 ₂ n-	-chc1 ₂
	Verbindung Nr.	261	262	263	264	265	566	267	. 568

	ж 2			•		
Tabelle I (Fortsetzung):		CH ₂	$CH_{\frac{1}{2}} CH_{\frac{1}{2}}$	C2H5	$\bigcap_{OH_3} c_2^{H_5}$	CH(CH ₃) ₂
Tabelle I	E.					
	p#	-cec1 ₂	-cec1 ₂	-CHC12	-CH012	-CEC12
	Verbindung Nr.	569	270	271	272	273

209845/1180

: (Sun 2 1	R ₂ 0	-ch2-ch2-N(c2h5)-c-chcl2	-c ₃ H ₆ -NH-C-CHCl ₂	"-сн ₂ -с-о-с ₂ н ₅	(S)	S	$-c_{\rm H_2}$	n-G ₂ H ₇
Tabelle I (Fortsetzung):	R	-C2H5	-c ₃ H ₆ -NH-c-CHCl ₂		-CH2-CH-CH2	-°2 ^H 5	n=C ₂ H ₅	-CH2-
	et	-cHC1 ₂	-CHC12	-cHC1 ₂	-cec1 ₂	-ceci ₂	-chc1 ₂	-chc1 ₂
	Verbindung Nr.	289	290	291	292	293	294	295

stzung):	R ₂	го-п .		n-c _{6H13}	-c2H4-0-CH3	-c ₂ H ₄ -0-c ₂ H ₅	-0H2-	-CH2-	-CH2
Tabelle I (Fortsetzung):	E E	-0H2-10-	n-C ₂ H ₇	$n-c_3H_7$	-c ₂ H ₄ -0-cH ₃	-c ₂ H ₄ -0-c ₂ H ₅	-C2H5	n-C ₂ H ₇	1-C3H7
	es	-CHC1 ₂	-CHC1 ₂	-CHC12	-CHC12	-сн¢1 ₂	-cec1 ₂	-cHC1 ₂	-cHC1 ₂
	Verbindung Nr.	296	297	298	299	300	301	302	303

BAD ORIGINAL

Tabelle I (Fortsetzung):	R ₂ R ₂	-02H5	n-C ₃ H ₇	1-C ₃ H ₇	2 n-C ₄ H ₉	sec-C ₄ H ₉	ст-с4н9 -сн2-сн2-он	-сн ₂ -сн ₂ -сн ₂ -сн ₂ -с -с. м	2
	x	-CHC12	-CHC12	-chc1 ₂	-chc1 ₂	-снс1 ₂	-0HC1 ₂	-cHC1 ₂	-chc1 ₂
	Verbindung Nr.	310	311	. 312	513.	514	315	316	317

	Tabel	Tabelle I (Fortsetzung):	
Ferbindung Nr.	æ	R ₁	R2
318	-CHC12	n-C ₆ H ₁₃	n-c ₆ H ₁₃
519	-chc1 ₂	-CH ₅ CH ₅	-сн2-сн2-он
320	-chc1 ₂	C E	
321	-CH01 ₂	-CH2-CH2-SH	-0H2
322	- CHC1 ₂	ш	-c(c2H2)2-c=N
323	-ch ₂ cl	Ħ	$-c(c_2H_5)_2-c = N$
324	-chc1 ₂	щ	
325	-CHC1 ₂	щ	

etzung);	R ₂	GH ₃	-CH2-C(CH3)=CH2	-CH2-C(CH3)=CH2	-CH ₂ -CH ₂ -O-CH ₃	$-CH_2-CH_2-\left\langle \begin{array}{c} \cdot \\ \cdot \end{array} \right\rangle$	-0H2-0-CH	-сн2-с — сн
Tabelle I (Fortsetzung):	R	#		· m	Ħ	щ	-CH ₂	-CH ₃
	· #	-cec1 ₂	-cHC12	-cH ₂ cl	-chc1 ₂	-снст	-cH2c1	-chc1 ₂
	erbindung Nr.	331	332	333	334	335	356	337

	 R2	$\langle s \rangle_{2}$	-CH2-CH2-N(C2H5)2	-cH2-CH(OCH3)2	O -CH ₂ -CH ₂ -NHC-CHC1 ₂	-сн ₂ -сн ₂ -	-CH(NH-C-CHC1 ₂)	сн(мн-с-снс1 ₂)——
Tabelle I (Fortsetzung:)	R	Ħ	щ	ш	щ	-CH ₂ -CH=CH ₂	н	н.
	#	-снст	-CHC1 ₂	-cHC1 ₂	-CiCl ₂ .	-CH=CH	-CHC1 ₂	-CHC1 ₂
·	Verbindung Nr.	338	339	340	341	342	543	344

209845/1180

209845/1180

:(Sunz	Z H	-с(сн ₃) ₂ -с== сн	-с(сн ₃) ₂ -с = сн	-c(cH ₃)=cH-c==N	-сн ₂ -сн ₂	NH-C-CHC1 ₂	
Tabelle I (Fortsetzung)	R	LE I,	щ	Ħ	-CH ₂ -CH=CH ₂	H	
	Verbindung Nr. R	362	лене - сн ₂ -сн ₂ -сн ₃	364 -CHC12	365 -OH S	366 -0HC1 ₂	367 -CHC1 ₂

	R ₂	-cH ₂ -cH(CH ₃) ₂	-сн ₂ -сн(сн ₃) _{.2}	-c(cH ₃) ₃	-c(cH ₃) ₃	-0(0H ₃) ₂ -0 ≡ CH	-сн(сн ₃)-с = сн	-c(cH ₃) ₂ -c == N
Tabelle I (Fortsetzung):	L O	"-c-cH ₃	- СНО	щ	ш	ш	он3	щ
	# #	CHC12	CHC12	S S	-CH=CH	\$		
	Verbindung Nr.	368	969	370	371	372	573	374

	Tabelle I	I (Fortsetzung):	
Verbindung Nr.	표	R	. E
375	-CH ₂ 's	ш	-c(cH ₃) ₂ -c N
. 916	-0H2-C(CH3)3	ш	$-c(cH_3)_2-c = N$
377	-сн(с ₂ н ₅) — ()	m .	$-c(cH_3)_2-c\equiv cH$
378	-0H-0H-(-) 0H3	m	-с(сн ₃) ₂ -с = сн
379	-CH=CH (-CH=CH)	m	-c(cH ₃) ₂ -c ≕cH
380	-CH=CH	н	$-c(cH_3)_2-c=N$

209845/1180

	·
: (Sunzaesa.jor)	R ₁
Taragar	

R ₂	-сн(сн ²)-с <u></u> сн	$-c(cH_3)_2-c=cH$	$-c(cH_3)_2-c = N$ c_2H_5	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-cH ₂ -cH ₂	
R ₁	-cH ₃	ш.	ш	Ħ	-6H2-CH=CH2	,
ges	-CH=CH	-CH=CH-0-(-) C1	-c(cH ₃)-cH-(123	0 "	-chc1 ₂
Verbindung Nr.	381	382	383	384	385	386

Tabelle I (Fortsetzung):

Verbindung Nr.

Sunz
tset
(Fortș
Н
e11e
Tab

Tabelle I (Fortsetzung): -GEC12 -CHC12 -CHC12
Tabell. Cl2)2-OH Cl2)(CCl3)-OH

	Я2	n-c ₆ H ₁₃		-0H2	-CH ₂	-CH ₂	-CH ₂ -C1	-0H2-//
Tabelle I (Fortsetzung):	H.	n-c ₆ H ₁₃	-c ₂ H ₅	n-C ₃ H ₇	1-C3H7	-сн ₂	-CH ₂	-C2H5
· .	*	-CH2C1	-сн ₂ с1	-сн2с1	-cH2c1	-cH2c1	-cH ₂ c1	-cH201
	bindung Nr.	405	406	407	408	409	410	411

	•	÷					н3)-сн3
	R2	∇				i-c ₃ H ₇	-сн(сн ₃)-сн(сн ₃)-сн ₃
:(Bun				C2 ^H 5			·
I (Fortsetzung)	R ₁	n-C ₂ H ₇				€ EO-	€ HO-
Tabelle I		· .					
	p#	-си5сл	-cH ₂ Cl	-0H2C1	-0H2 C1	-он ⁵ сл	-cH2c1
	ung Mr.			e e e e e e e e e e e e e e e e e e e			
	Verbindung Hr.	412	413	414	415	416	417

ng):	H ₂	CH2	i-C4H9	$^{ m sec-c_5H_{II}}$	t-c4H9	sec-C4H9	sec-C4H9	1-0 ₃ H7	1-C ₂ H ₇	1-C4H9	-cH2-CE2-0-CH3
Tabelle I (Fortsetzung):	R ₁	-c ₂ H ₅	n-63H7	$n-c_3H_7$	n-c ₃ H ₇	1-c4H9	-c2H5	1-C4H9	n-c4 ^H 9	n-C ₄ H ₉	-CH2-CH2-0-CH3
	ж	-cH2cl	-cH2cl	-cH2cl	-cH2cl	-cH ₂ Cl	-ch2cl	-ch2cl	-ch2cl	-cH ₂ c1	-cH ₂ cl
	Verbindung Nr.	418	419	420	421	422	423	424	425	426	427

	. R2	$-cH_2$	-CH2 CH3	-CH ₂	-CH ₂ —CH ₃	-CH ₂
Tabelle I (Fortsetzung):	R	-C2H5	-C2H5	n-0 ₅ H ₇	-c ₂ H ₅	-cH ₃
	æ	cH ₂ C1	сн ₂ сл	снгон	cH ₂ c1	cH ₂ C1
	Verbindung Nr.	434	435 ·	436	437	438

	R2	-0H ₂	-CH ₂ -// CB	-0H ₂ -(1)	-0H2 - OH	-CH ₂	n-C4H9
Tabelle I (Fortsetzung):	RJ	- CH ₂	-62 ^H 5	n-С ₂ H ₇	-c ₂ E ₅	-6 ₂ H ₅	-ch ₃
	т.	-CHC1 ₂	-CHC1 ₂	-снс12	-снс1 ₂	-снс12	-chc1 ₂
-	Verbindung Nr.	439	440	441	. 442	443	444

ng):	ĥ ₂	n-c4H9	sec-C4H9	sec-C4H9	$^{\mathrm{n-c}_{5}\mathrm{H}_{7}}$	n-C,H7	t-C4H9	sec-C4H9	sec-C4H9	n-C ₅ H ₁₁	n-C ₅ H ₁₁	sec-C ₅ H ₁₁
Tabelle I (Fortsetzung):	R	-cH ₃	-CH ₃	-cH ₃	CH ₅	-cH ₃	-n-C4H9	1-63H7	1-C3H7	1-C3H7	1-C3H7	i-c ₃ H ₇
	ps	-cH2c1	-chc1 ₂	-ch ₂ c1	-chc12	-cH2cl	-chc1 ₂	-chc1 ₂	-cH ₂ Cl	-cHCl ₂	-cH2cl	-cacl ₂
	Verbindung Nr.	445	446	447	448	449	450	. 451	452	2, 453	454	. 455

457

Verbindung Nr.

etzung):
I (Forts
Tabelle

R2	C ₂ H ₅	0 c(cH ₃)=CH-C-O-C ₂ H ₅ o	"-NH-C-CHC1 ₂	61	-C-CHC1 ₂	$-(cH_2)_{5}-0-cH(cH_3)_{2}$
R.	-cH ₂ -0-CH ₃	ш		-сво	$-c_{\rm H_2}$ -ch $(c_{\rm H_3})_2$	щ
æ	-CHC1 ₂	-chc1 ₂	-CHC12	-cHG1 ₂	-chc1 ₂	-chc1 ₂
Verbindung Nr.		462	463	464	465	466

BAD ORIGINAL

	R ₂ 01	-0H2-\\01	-с(с ₂ н ₅)(он ₃) ₂	-CH(CH ₂)	-c(c ₂ H ₅)(cH ₃) ₂	-c2H4-0-CH3	-сн ₂ -сн(осн ₃) ₂	$-c(c_{\rm H_{\rm 3}})_2-c_{\rm sign}$
:(8)			٠		٠.			
Tabelle I (Fortsetzung)	ద	щ	Ħ,	Ħ	ш	щ	III	"
			: 				···	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	щ	-CHC12	-CEC12	-CHC12	-CH2C1	-cH ₂ C1	-cH2CI	CH CH
	Verbindung Nr.	467	468	469	470	471	472	473

Jerbindung Nr. 474 475 477 477 479 479 480	R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	•	Tabelle I (Fortsetzung): $ \begin{array}{cccccccccccccccccccccccccccccccccc$
481	-сн ₂ сл -сн	-CH ₂ -CH ₂ -CH ₂ -CH=CH ₂	-ch ₂ -ch ₂ -o-c-nh-ch ₂ -ch=ch ₂

	· ·	Tabelle I (Fortsetzung:)	
rbindung Nr.	æ	R	.H2
482	-CH2C1	-CH ₂ -CH-0-C-NH (S)	-ch ₂ -ch ₂ -0-c-NH — (s)
. 483	-cH2c1	$-cH_2-cH_2-0-c-NH$ — (), C1	-CH ₂ -CH ₂ -0-C-NH — C1
484	-cec1 ₂	ш.	-сн ₂ -сн ₂ -он
485	-cH2cl	-сн2-сн2-он	-ch2-cH2-OH
486	-cHC1 ₂	щ	-сн ₂ -сн(он)(сн ₃)
487	-CHC12	н	-(cH ₂) ₃ -0H
. 488	-cHC1 ₂	-сн ₂ -сн(он)(сн ₃)	-сн ₂ -сн(он)(сн ₃)
489	-CHC12		K.

	R2	-c ₂ H ₅	-so ₂	-ch2-ch(ch3)2	-c ₂ H ₅	-so ₂ c1		-c ₃ H ₇	
Tabelle I (Fortsetzung):	R	-c ₂ H ₅		tzi	-0 ₂ H ₅	H CH3	CH3	-03H7	,
Ē I	æ	-ch ₂ oh	-cH ₃	-cH2-sc1	-cH2-SO2-O-CH3	-c ₃ H ₆ Br	-CHC12	-001 ₃	-cc1 ₅
	Verbindung Nr.	490	491	492	493	494	495	496	497

	R2		-cH ₂	-c ₂ H ₄ Br	-C2H4Br	-C2H4Br	-n-C ₄ H ₉	-1-C ₂ H ₇
Tabelle I (Fortsetzung):	E ₁ CH ₂	CH ₂	-c _H 3	щ	щ	Щ	-02H5	-1-C ₃ H ₇
	-0013	-cH ₂ Cl	-001 ₃	-cH2C1	-cc1 ₃	-cHC12	-CHC12	-CHC12
	Terbindung Nr. 498	499	500	501	502	503	504	505

Tabelle I (Fortsetzung):	lung Nr. R	-CHC1 ₂	-62H ₅ 62H ₅	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 4	.о -сисл ₂ н — () (С2 ^H 5	-сс13	-CH2c1	$_{3}$ -chcl, $_{4}$ -c $_{5}$
	Verbindung Nr.	906	507) 0 0 0 0		510	נונ	512	513

Die erfindungsgemäßen Mittel wurden wie folgt getestet.

Versuch 1: Verwendung im Boden

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Herbizid und Herbizid-Gegenmittel wurden getrennt oder zusammen in den Boden eingearbeitet, während dieser in einem 19-Liter-Zementmischer gemischt wurde. Für die getrennte Verwendung von Herbizid und Gegenmittel wurden von jeder Verbindung folgende Vorratslösungen hergestellt: Vorratslösungen des Herbizids wurden durch Verdünnen von etwa 1g eines Wirkstoffkonzentrats mit 100 ml Wasser erhalten. Für das Gegenmittel wurden 700 mg technisches Material mit 100 ml Aceton verdünnt. 1 ml dieser Vorratslösungen entsprach 7 mg Wirkstoff oder 0,112 g/m², wenn der damit behandelte Boden in die 20,32 x 30,48 x 7,62 cm großen Kästen gefüllt wurde. Nach Behandlung des Bodens mit dem Herbizid und dem Gegenmittel in dem gewünschten Verhältnis wurde die Erde von Zementmischer in die 20,32 x 30,48 x 7,62 cm großen Kästen gebracht, um die Einsaat durchzuführen. Zuvor wurde von jedem Kasten etwa ein halber Liter Boden (1 Pinte) zum späteren Abdecken der Samenkörner weggenommen. Die Erde in den Kästen wurde eingeebnet, und es wurden in jedem Kasten 12,7 mm tiefe Rillen angelegt. Die Samenkörner wurden jeweils in ausreichender Menge für guten Stand ausgesät. Anschließend bedeckte man die Samenkörner mit dem etwa halben Liter Boden, der kurz vor dem Einsäen entnommen wurde.

100

Die Kästen wurden dann auf Bänke bei 21 - 32°C ins Gewächshaus gestellt. Bis zur Auswertung wurden sie so besprengt, daß gutes Pflanzenwachstum sichergestellt war. Die Ertragstoleranz wurde nach 3 bis 6 Wochen ermittelt. Die Ergebnisse sind in der Tabelle II zusammengestellt.

		Gegenmittel	ttel		Schädig	Schädigung der Pflanzen	Lanzen	
rbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
EPTC .	0,672		0,007	Mais	0		. •	
EPTC	0,672	9	0,014	Mais			· O	
EPTC	0,672	9	0,056	Mais	0	0	0	
EPTC	0,672	. 9	0,112	Mais	0	0	0	
EPTC	0,672	9	0,224	Mais	0		•	
BPTC	0,672	9	0,560	Mais	0	0	. o .	•
	Ļ	• • •	0,560	Mais	0	0	0	
SPTC	0,672	01.	0,014	Mais	20 M	·:		-
EPTC	0,672	בד	.0,014	Mais	•			
3PTC	0,672	12	0,014	Mais	TO M	، د		
SPTC	0,672	13	0,014	Mais	W 09	·		
SPIC	0,672	15	0,014	Mais				
SPTC	0,672	91 .	0,014,	Mais	TO M			
PTC	0,672	18	0,014	Mais	0			
SPTC	0,672	σ	950.0	Mais		20 M		
PTC	0,672	60	0,224	Mais		0		
SPIIC.	0,672	7	0,224	Mais		45 国		

Tabelle II:

Tabelle II (Fortsetzung):

		Gegenmittel	ttel .		Schädi	Schädigung der Pflanzen in % nach	flanzen
Herbizid	Anwendungs-verhältnis	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen
EPTC	956,0	2	0,448	Mais	0		•
EPTC	0,672	1	ı	Mais	94 M	M 76	M 86
S-Äthyldijso- butyl-thio- carbamat	-os - 0,896	7	0,224	Mais	。 知 5 1		
S-Athyldiiso- butyl-thio- carbamet	969,0	7	. 0,448	Mais	O		
S-Athyldiiso- butyl-thio- carbamat	-os - 0,896	•	ı	Mais	75 M		
S-2,3,3-fri- chlorallyl- diisopropyl- thioloarba- mat	1- - - - - 0,112	9	. 0,448	Weizen	20 V		
S-2,3,3-Tri- chlorallyl- difacpropyl- thiologrea- met	0,112			Weizen	м 06	·	

		•									•		
													•
	der Pflanzen nach	6 Wochen		. ·					•	•			•
	gung der F in % nach	4 Woohen	•	0	-		.	95 M		. 0			O.
,	Schädigung in % 1	3 wochen											
(Fortsetzung):		Getreide- art		Mais				Mais		Mais			Mais
	- 1			•		•		••		•			
Tabelle II	ttel	Anwendungs- verhältnis g/m ²		0,014		0.224	•	· · · · · · · · · · · · · · · · · · ·		0,014			0,224
	Gegenmittel	Verbin- dung Nr.		9	•	ve				9	· .		. 9
		Anwendungs- verhältnis g/m ²	0,672 +	-0,112	0,672 +	0.112	. 0,672 +	0,112	0,672 +	0,112	0,672 +		0,112
		Herbizid	H DELG +	2-Chlor-4-athyl- amino-6-isopropyl- amino-s-triazin	EPTC +	2-Chlor-4-athyl- amino-6-isopro- pylamino-s-tria- zin	EPTC	2-Ghlor-4-athyl- amino-6-isopro- pyl-amino-s-tri- azin	+ DIAG	2-Chlor-4,6-bis- (ëthylamino)-s- triazin	EPIC +	2-Chlor-4,6-bis- (äthylamino)-s-	triazin

					- 1 03 -					
	anzen	6 Wochen								
	Schädigung der Pflanzen in % nach	4 Wochen	;	کر ای	0		80 M			o
	Schädigu	3 Fochen	-							
(Fortsetzung):		Getreide- art	1	. STPM	Mais		Mais			Mais
Tabelle II	tel	Anvendungs- verhältnis g/m ²		ı	0,014		•			0,014
	Gegenmittel	Verbin- dung Nr.		i	9		i e			9
		Anwendungs- verhältnis g/m ²	.0,672 +	0,672 +	 :hy1- 0,112	0,672 +	 hyl- 0,112	0,672 +		0,112
		Herbizid	EPTC + 2-Chlor-4,6-bis- (äthylamino)-s- triazin	EPIC +	2(4-Chlor-6-äthyl-amino-s-triazin-2-yl-amino)-2-methyl-propionitril 0,	+ DILE	2(4-Chlor-6-äthyl- amino-s-triazin- 2-yl-amino)-2-methyl- propionitril	EPTC	2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s-	triazin

	٠		Tabelle II	(Fortsetzung):	•	
	ච	Gegenmittel			Schädigung der Pflanzen in % nach	•
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m^2	Getreide- art	3 Wochen 4 Wochen 6 Wochen	
EPTC +	0,672 +					
2-Chlor-4-cyclo- propylamino-6-	* .					•
lsopropylamino-s- triazin	0,112	1 .	i .	Mais	ом, ч	_
EPTC + 2,4-D	0,672 + 0,112	•	0,014	Mais	0	
EPTC + 2,4-D	9,672	9	0,224	Meis	10 V	_
EPIC + 2,4-D	0,672 + 0,112	•	1	Mais	≥0 №	
S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-äthyl-	0,672 +					
amino-6-isopropyl- amino-s-triazin	0,112	9	0,014	Mais	3 M	
S-Propyldipropyl- thiologrammat + 2-chlor-/-stbwl-	0,672 +	. : * · · ·		·		
amino-6-isopropyl- amino-s-triszin	0,112	9	0,224	Mais	0	

6 Wochen Schädigung der Pflanzen in % nach 4 Wochen ¥ 0.2 四 06 A 0 0 3 3 Wochen Tabelle II (Fortsetzung): Getreide-Mais Mais Mais Mais Mais Anwendungsverhältnis 0,014 0,014 0,014 8/m² Gegenmittel Verbingunp 9 9 9 Anwendungsverhältnis 0,672 + 0,336 + 0,672 0,672 0,336 0,112 0,112 0,224 0,112 0,112 8/m² amino-6-isopropylamino-6-isopropylamino-6-isopropylamino-6-isopropyl S-Propyldipropyl-S-Propyldipropyl-S-Propyldipropyl-S-Propyldipropyl-S-Propylitipropyl-2-Chlor-4,6-bis-2-Chlor-4-äthyl-2-Chlor-4-äthyl-2-Chlor-4-sthyl-2-Chlor-4-ëthylthiologrbamat + amino-s-triazin amino-s-triezin amino-s-triazin amino-s-triazin thiolearbamat + thiologrbamat + thiologrbsmat + sthylamino)-sthiolcarbanat Herbizid . triazin . . .

|--|

_	107	_
---	-----	---

				- 1	07 -				
	Schädigung der Pflanzen in % nach	3 Wochen 4 Wochen 6 Wochen		0		м 26		0	м , ч оэ
(Fortsetzung:		Getreide- art		Mais		Mais	Mais	Mais	Meis
Tabelle II (F	rel	Anwendungs-verhältnis g/m ²		0,014			0,014	0,224	
2.1	Gegenmittel	Verbin- dung Nr.	٠	9	•	1	9	9	ı
		Anwendungs- verhältnis g/m ²	0,672 +	0,112	0,672	0,112	0,672 + 0,112	.0,672 + 0,112	0,672 + 0,112
		Anw Herbizid ver	S-Propyldipropyl- thiolcarbamat + 2-chlor-4-cyclo-	propylamino-o-iso- propylamino-s- triazin	S-Propyldipropyl- thiolcarbamat +	propylamino-6-iso- propylamino-s- triazin	S-Propyldipropyl- thiolcarbamat + 2,4-D	S-Propyldipropyl- thiolcarbamat + 2,4-D	S-Propyldipropyl- thiolcarbamat + 2,4-D

6 Wochen Schädigung der Pflanzen % nach 3. Wochen 4 Wochen Tabelle II (Fortsetzung): Getreide-Mais Wais Mais Mais Mais Mais art Anwendungsverhältnis 0,014 0,224 0,014 0,224 Gegenmittel Verbindung Anwendungsverhältnis 968.0 968,0 0,672 0,112 96360 0,112 0,672 0,672 :0,112 S-Athyldiisobutylamino-6-isopropyl-S-Athyldiisobutylamino-6-isopropylamino-6-isopropyl S-Propyldipropyl-S-Propyldipropyl-thiolcarbamat S-Propyldipropyl-thiologrhemat S-Xthyldiisobutyl 2-Chlor-4-Sthyl-2-Chlor-4-sthyi-2-Chlor-4-äthylthiolcarbamat. + amino-s-triazin amino-s-triazin thiolcarbamat + amino-s-triezin thiolcarbamat + thiologrbamat Herbizid

Fortsetzung
) 빆
[abelle

		Gegenmittel	enmittel		Schädig	Schädigung der Pflanzen	lanzen	
Herbizid	Anwendungs- verbältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
S-Äthyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis-	+ 968*0							
(ëthylamino)-s- triazin	0,112	9	0,014	Wais		0		•
S-Athyldilsobutyl- thlolosrbamat + 2-Chlor-4,6-bis-	+ 968.0							- 1 0 9
(äthylamino)-s- triazin	0,112	9	0,224	Mais		0		-
S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis-	+ 968.0							
(äthylamino)-s- triazin	0,112	ı	•	Mais		0		
S-Athyldilsobutyl- thiologramst + 2(4-chlor-6-Ethyl-	+ 968.0		· ·					
amino-s-triazin- 2-yl-amino)-2-methyl- propionitril	yl- 0,112	9	. 0,014	Mais		0	. :	

••
$\overline{}$
ю
r L
73
13
Ç.
a)
ന
t-
ы
ò
车
$\overline{}$

		터	Tabelle II (Fo	(Fortsetzung):				
		Gegenmittel	ttel		Schëdigung in %	ng der Pflanzen % nach	anzen	
Herbizid	Anwendungs- verhältnis g/m^2	Verbin- dung Nr.	Anwendungs- verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Wochen	
S-Athyldiisobutyl- thiolcarbamat + 2(4-Chlor-6-äthyl-	+ 968*0			•			•. •	
2-yl-amino)-2- methylpropionitril	0,112	ı	. · • •	Mais		20 M		-
S-Athyldisobutyl- thiologramst + 2-Chlor-4-cyclo-	+ 968.0					•	M	. 310 –
propylamino-6-180- propylamino-8- triazin	0,112	· •	0,014	Mais	·	0	•	
S-Athyldisobutyl- thiclorosmst + 2-Chior-4-cyclo-	+ 968.0			•	• • • • • • • • • • • • • • • • • • •			
propylamino-s- propylamino-s- triazin	0,112	1	•	Mais		10 M		•
thiolcarbamat + 2,4-D	0,896 +	9	0,014	Mais		•		•

				-	111	- -				
	der Pflanzen ıach	6 Wochen								
	ung der Pf % nach	4 Wochen	. 0	0	0	0	20 V	10 V	30 V	70
	Schädigung der in % nach	3 Wochen							٠	
(Fortsetzung):		Getreide- art	Mais	Mais	Mais	Mais	Mais	Meis	Mais	Neizen
Tabelle II (For	tel	Anwendungs-verhältnis g/m^2	0,224	1	0,014	0,224	•	0,014		0,560
Ta	Gegenmittel	Verbin- dung Nr.	9	ı	9	9		v	ı	9
		Anwendungs- verhältnis g/m	0,896 + 0,112	0,896 + 0,112	968.0	968,0	968,0	968.0	968.0	.0,536
		Herbizid	S-Äthyldiisobutyl- thiolcarbamat + 2,4-D	S-Äthyldiisobutyl- thiolcarbamat + 2,4-D	S-Athyldiisobutyl- thiolcarbamat	S-Äthyldiisobutyl- thiolcarbamat	S-Äthyldiisobutyl- thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat

		Ta	Tabelle II (Fc	(Fortsetzung):		·		
		Gegenmittel	te]		Schädig in	Schädigung der Pf in % nach	Pflanzen	•
Berbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs- verhältnis g/m	Getreide- art	3 Wochen	4 Wochen	6 wochen	
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbámat	0,336	ı		Terzen	·	95		
S-2,3,3-Trichlor- allyl-diisopropyl- thiolearbamat	0,336	v	0,560	Mohrenhirse				.•
S-2,3,7-Trichlor- allyl-diisopropyl- thiolcarbamat	0,336	÷ I		Sorghum vulgare Mohrenhirse	are)	0 . 0		· 112 -
2-Ghlor-2',6'-di- äthyl-N-(methoxy- methyl)-acetanilid	0,336	v o	0,560	Wohrenhirse	•.			
2-Chlor-2',6'-di- äthyl-N-(methoxy- methyl)-acetanilid	0,336	1		Mohrenhirse	·	70		
S-Athylhexahydro- lH-azepin-l-carbo- thioat	0,336	9	0,560	Reis		0		
S-Athylhexahydro- lH-azepin-1-carbo- thioat	0,336			Reis		50		

		·	Tabelle II (Fortsetzung):	ortsetzung)	_			
		Gegenmittel	tel		Schädig	Schädigung der Pflanzen in % nach	lanzen	
Herbizid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Anwendungs-verhältnis g/m ²	Getreide- art	3 Wochen	4 Wochen	6 Woohen	
2-Chlor-W-iso- propylacetanilid	0,336	9	0,560	Weizen		80		
2-Chlor-N-1so- propylacetanilid	. 9220		ı	Weizen		40		
N,N-Diallyl-2- chloracetamid	0,448	9	0,560	Mohrenhirse	W	20		-
N,N-Dially1-2- chloracetamid	0,448	•	ŧ	Mohrenhirse	O) W	70		11) -
S-4-chlorbenzyl- diäthylthiol- cerbamat	0,672	ı		Reis	·	50		
S-4-chlorbenzyl- diäthylthiol- carbamat	0,672	9	095.0	Reis		30		
S-4-chlorbenzyl- diëthylthiol- carbamet	1,344		1	Reis		96	·	

6 Wochen Schädigung der Pflanzen in % nach 4 Wochen 50 M 80 M 8 40 0 Wochen Getreide-Mais Mais Reis Mais Mais art Anwendungsverhältnis .095.0 0,560 0,011 8/m² Gegenmittel Verbindung Nr. 9 Anwendungsverhältnis 8/m² 1,344 1,344 1,344 0,672 0,672 S-Athyloyclohexyl-äthylthiocarbamat S-Athylcyclohexyl**äthylthiocarbamat** S-4-Chlorbenzyl-S-4-Chlorbenzyl-S-4-Chlorbenzyldiëthylthioldigthylthioldiäthylthiolcarbamat carbamat Herbizid carbamat

EPTC = S-Athyl-N,N-dipropylthiocarbamat;

V = Verkümmerung

M = Migbildung;

2,4-D = 2,4-Dichlorphenoxyessigsäure.

116

Versuch 2: Behandlung des Getreidesaatguts

Kleine Kästen wurden mit lehmigem Felton-Sandboden gefüllt. Zu diesem Zeitpunkt wurde das Herbizid in den Boden eingebracht. Die Erde eines jeden Kastens wurde in einen 19-Liter-Zementmischer gefüllt und darin gemischt, während das Herbizid in Form einer Vorratslösung, die durch Verdünnen von etwa 1 g eines Wirkstoffkonzentrats mit 100 ml Wasser hergestellt worden war, eingearbeitet wurde. Dabei wurde jeweils 1 ml Vorratslösung in einer Vollpipette pro gewünschte 0,112 g Herbizid pro m² in die Erde eingebracht. 1 ml Vorratslösung enthielt 7 mg Herbizid, was bei der Anwendung auf den Boden in den 20,32 x 30,48 x 7,62 cm großen Kästen 0,112 g/m² entsprach. Nach Einarbeitung des Herbizids wurde der Boden in die Kästen zurückgebracht.

Kästen mit durch das Herbizid vorbehandelter Erde und mit unbehandelter Erde standen nun bereit für die Einsaat.

Zuvor wurde jedem Kasten etwa ein halber Liter Boden Petnommen und zur späteren Verwendung zum Abdecken der Samenkörner neben den Kasten gelegt. Dann ebnete man die Erde ein und legte 12,7 mm tiefe Rillen an. Abwechselnd wurden die Rillen mit behandeltem und mit unbehandeltem Getreidesaatgut eingesät. Bei jedem Versuch wurden 6 oder mehr Samenkörner in jede Reihe gelegt. Im Kasten betrug der Reihenabstand etwa 3,8 cm. Zur Behandlung des Saatguts mit dem Gegenmittel bzw. Saatschutzmittel füllte man 50 mg dafür vorgesehenen Verbindung und 10 g Saat in einen geeigneten Behälter und schüttelte, bis die Körner gleichmäßig damit bedeckt waren. Die Verbindungen (Saatschutz-

mittel) zur Saatgutbehandlung wurden als flüssige Aufschlämmungen und als Pulver- oder Staubgut aufgebracht. Manchmal wurde Aceton verwandt, um pulverisierte oder feste Verbindungen zu lösen, so daß sie wirksamer auf das Saatmaterial aufgebracht werden konnten.

Nach der Einsaat wurden die Kästen mit der kurz zuvor entnommenen und auf die Seite gelegten Erde bedeckt. Sie wurden auf Bänke ins Gewächshaus bei 21 - 32°C gestellt und so besprengt, wie es gutes Pflanzenwachstum erforderte. Die prozentualen Auswertungen der Schädigung erfolgten zwei bis vier Wochen nach den Behandlungen.

Bei jedem Versuch wurde einmal das Herbizid allein, einmal das Herbizid in Verbindung mit dem Saatschutzmittel und schließlich das Saatschutzmittel allein angewandt, um die Phytotoxizität feststellen zu können. Die Ergebnisse dieser Versuche sind in Tabelle III zusammengestellt.

H
н
H
ol
ᅦ
ᅰ
O
,el
Ø)
터

								•										
	+2 .						1	148										
	tes Saatgu achbarten	4 Wochen						0										
	Unbehandeltes Saatgut in der benachbarten Reihe	2 Wochen						0			30 №	5 M	N OT	5 M	15 W	50 №	5 4	5 4
n %	Bebandeltes Saat- gut	4 Wochen	60 V, M	40 V, M	60 V, M	70 V, M	30 V, M	0	30 V	0								
Schädigung in %	Behandel gut	2 Wochen	20 🗷	10 V	0	10 V	0	0			10 V	10 V	10 V	100 K	100 K	10 V	100 K	10 V
Sch	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
tel	Behand- lungsver- hältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,05	0,5	6,0	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.		г	8	8	4	7	9	7	œ	σ	01	#	12	13	14	15	16
	Anwendungs- verhältnis g/m^2		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbizid		EPTC	EPTC	EPTC	EPTC .	EPTC	EPTC	EPEC	EPTC	EPTC	EPTC	EPTC	五PTC	BPTC	EPTC	EPIC	EPTC

Tabelle III (Fortsetzung):

Getrei- Getrei- Geart Mais O Mais Mais O Mais O Mais O Mais Mais O Mais O Mais Mais O Mais Mais O Mais Ma	Gegenmitt	Gegenmittel Vor	tel Behen	1 7	021	Schädigung in %	g in %	100000	
Mais 2 Wochen 4 nochen 2 wochen 4 nochen 2 wochen 4 nochen 4 wochen 4 nochen 2 wochen 4 nochen 4 wochen 4 nochen 2 wochen 4 nochen 5 w Mais 0 0 50 M 60 M 70 M 60 M 70 M 60 M 70 M </th <th>Anwendungs- Ver- behand- verhältnis bindung lungsver- κ/π^2 Nr. hältnis</th> <th>gun</th> <th>benand- lungsvel hältnis</th> <th>£</th> <th>Getrei- deart</th> <th>renand 8</th> <th>ut ut</th> <th>Unbehandeltes in der benach Reihe</th> <th>ites Saatgut nachbarten</th>	Anwendungs- Ver- behand- verhältnis bindung lungsver- κ/π^2 Nr. hältnis	gun	benand- lungsvel hältnis	£	Getrei- deart	renand 8	ut ut	Unbehandeltes in der benach Reihe	ites Saatgut nachbarten
20 V	% Сеж./Сеж	% Сем./С	% Gew./G	0 W		- 1	4		1
0 5 W 50 W 65 W 65 W 65 W 65 W 65 W 65 W	0,672 17 0,5	17 0,5	0,5		Mais		• .		
0 50 M 10 V 10 V 30 M 60 M 70 M 85 M 80 20 M 40 M 85 M 80 10 V 10 V 75 M 85 M 0 30 M 60 M 60 70 M 75 M 80	0,672 18 0,5		0,5		Mais	0		5 V	٠
10 V 10 V 30 W 65 0 0 10 M 55 60 M 70 M 85 M 80 20 M 40 M 85 M 80 10 V 10 V 75 M 80 0 30 M 60 M 60 70 K 60 M 85 M 80 70 K 75 M 80 70 M 75 M 60 70 M 75 M 60 60 M 75 M 75 M 60 60 M 75 M 75 M	0,672 19 0,5	19 . 0,5	0,5		Mais	0		50 M	
0 10 M 55 M 60 M 65 M 80 80 M 80 80 M 80 M 80 M 80 M 80 M	0,672 20 0,5		0,5		Mais	-	10 V		
60 M 70 M 85 M 80 20 M 40 M 85 M 80 10 V 10 V 75 M 80 0 30 M 60 M 60 70 M 75 M 80 60 M 75 M 75 M 70 M 75 M 60 M 75 M 60 M 75 M	. 0,672 21 0,5	21 0,5	0,5		Mais	0			• •
20 M 40 M 85 M 80 10 V 10 V 75 M 80 0 30 M 85 M 80 70 K 60 M 85 M 80 30 V, M 75 M 70 M 60 M 70 M 70 M 75 M	0,672 22 0,5		0,5		Mais				
10 V 10 V 75 M 80 0 30 M 60 M 60 0 10 M 83 M 80 30 V, M 75 M 75 M 60 M 70 M 70 M 75 M 70 M 75 M 70 M 75 M 70 M 75 M	0,672 23 0,5	2	0,5		Mais		•	85 M	
0 10 M 83 M 60 70 K 60 M 60 M 30 V, M 75 M 60 M 70 M 70 M 70 M 60 M 70 M	0,672 24 0,5	·,	6,0	•	Meis	io v	TO W		
0 10 M 83 M 80 70 K 60 M 75 M 60 M 70 M 70 M 80 M 60 M 75 M	0,672 25 0,5		0,5		Mais	O	30 M		
70 K 60 M 75 60 M 70 70 70 70 M 90 70 70 M 90 80 80 80 80 80 80 80 80 80 80 80 80 80	0,672 26 0,5		0,5	•	Mais				
30 V, M 75 60 M 70 70 M 80 60 M 75	0,672 27 0,5		0,5		Mais	₩ 07			
60 M 70 RO M 70 RO M 80 RO M 90 RO M	0,672 28 0,5		6,60	•	Mais	٧,			
で で で で で で で で で で で で で で で で で で で	0,672 29 0,5		0,5		Mais				
70 M 80 60 M 75	0,672 30 0,5		0,5		Mais		• .	•	
60 M 75	0,672 31 0,5	•	0,5	٠.	Mais			80 M	
	0,672 32 0,5	•	5,0		Mais				

- 119 -

Behandeltes Saat- Unbehandeltes Saatgut in der benachbarten 4 Wochen ₩ 80 65 ∺ 2 Wochen Reihe ⊠ 80 ⊠ **第08** 報 80 8 85 ⊭ 20 kg 85 ₩ 85 ₩ 20 🗷 80 以 75 M 2 Wochen 4 Wochen Schädigung in % 50 kg 50 k gut 10 V.M NO U 50 V, 50 14 ¤ 9 ¤ 90 20 ⋈ ₩ 09 ¤ 09 Getrei-Mais Mais Mais Mais Mais Mais Mais Mais Mais Mais deart Mais Mais Mais Mais Mais Mais % Сем./Сем. lungsverhältnis Behand-0,0 0,5 0,5 0,5 0,0 0,5 0,5 0,5 0,5 0,5 0,5 0 در 0,5 0,5 Gegenmittel bindung Anwendungs- Ververhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herb1-EPTC BPTC BPTC EPTC EPTO **EPTC** EPTC BPTC BPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC zid

209845/1180

Tabelle III (Fortsetzung:

GI	G 1	Gegenmittel	el		Schädigung in %	in %		
Anwendungs- Ver- verhältnis bindung	Ver- bindung		Behand- lungsver-	Getrei-	Behandel tes gut	Saat-	Unbehandeltes Saat- gut in der benachbar ten Reibe	es Sast- benschber-
.	.		% Gew./Gew.		2 Wochen	4 Wochen	2 Wochen	4 Wochen
0,672 49	49		0,5	Mais	M 09		₩ 0 <i>L</i>	
0,672 50	50		0,5	Mais	¥ 09		¥ 06	
0,672 51	. 51		0,5	Mais	≱ 09		70 M	•
0,672 52	52		0,5	Weis	M. V 09		80 M	•
0,672 53	23		0,5	Mais	50 M		70 平	•
0,672 54	54		0,5	Kais	₩ 09		70 区	٠
0,672 55	55		0,5	Mais	M 09		80 M	
0,672 56	26		0,5	Mais	№ 09		80 M.	
0,672 57	57		0,5	Mais	₩ 09		₩ 59	
0,672 58	58		0,5	Mais	50 №		75 M	
0,672 59	59		0,5	Wais	м⁴л 09		₩ 08	-
0,672 60	09		0,5	Mais	M. V 09	,	75 M	
0,672 61	61	٠.	0,5	Mais	₩ 09		85 M	
0,672 62	62		0,5	Mais	40 V,M	M 09	80 M	M 07
0,672. 63	63		0,5	Mais	30 V,M	M 09	70 K	70 M
0,672 64	64	٠	0,5	Mais	20 4,1	50 M	65 M	70 M

191 -

	O	Gegenmittel	el.		Schädigung in %	g in %		
Herbi- zid	Anwendungs-verbältnis κ/m^2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	tes Saat-	Unbehandeltes gut in der ber barten Reibe	deltes Sast- der benach- Reihe
BPTC	0,672	65	0,5	Mais	2 Wochen	4 Wochen	1821	4 Wochen
EPTC	0,672	99	0,5	Mais	20 № М		70 kg	
EPTC	0,672	L9	0,5	Mais	40 V.M		80 M	•
EPTC	0,672	68	0,5	Mais	M 09		M 08	
EPTC	0,672	69	0,5	Mais	20 V,M	50 M	70 M	M 02
EPTC	0,672	20	5°0.	Mais	40 V.M	50 V,M	80 M	80 M
EPTC	0,672	7.1	0,5	Mais	40 V,M		90 M	
BPTC	0,672	72	0,5	Mais	M 09		M 69	
EPTC	0,672	73	0,5	Mais	M 09		80 M	
EPTC	0,672	74	0,5	Mais	M 09		80 M	
EPTC	0,672	75	0,5	Mais	м. Ф 09		₩ 08	
EPTC	0,672	92	0,5	Mais	50 V,M		75 M	
EPTC	0,672	77	0,5	Mais	M 09		75 M	-
EPTC	0,672	18	0,5	Mais	ж⁴ № 09		75 M	
০ ৯বর	0,672	79	0,5	Mais	50 V.M		75 M	
EPTC	0,672	80	0,5	Mais	M 09	₩ 09	€5 M	20
EPIC	0,672	18	0,5	Mais	TO T	20 建	50 M	50 M
EPTC	0,672	82	0,5	Mais	30 V	30 S	50 M	50 区

Tabelle III (Fortsetzung):

									·				•				٠. ٠
	deltes Saat- der benach- Reihe	4 Woohen	25 M	20 斑	45 M		•	-		80 M			75 M		·.		
	Unbehandeltes gut in der ber barten Reihe	2 Woohen	20. M	15 M	35 M	75 M	75 M	70 M	₩ 08	80 M	80 M	80 M	75 M	90 K	M 06	80 M	75 M
ng in %	tes Sast-	4 Wochen	20 S	10 V	TO W					30 7 加	٠.		20 V	· · · ·	· .	÷.	
Schädigung in %	Behandel tes gut	2 Wochen	20 V	10 V	30 V	50 V,M	30 V,M	№ Д 05	M 09	20 V, M	M, V 04	50 V,M	Δ 09	M. V 0€	100 K	M, V 0€	M, v 0€
	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Male	Mais	Mais	Mals	Mais	Mais
	Behandlungs- verhältnis % Gew./Gew.		0,5	0,5	0,5	0,5	0,5	0,5	5.0	5.0	0,5	5,0	0,5	0,5	0,5	0.0	0,5
genmittel	Verbin- dung Nr.		83	84	8 2	98	87	88	. 68	8	16	92	93	46	95	96	. 16
8	Anwendungs-verbältnis		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid		BPTC	BPTC	BPTC	EPTC	BPTC	EPTC	EPTC	EPTC	EPTC	BPTC	BPTC	EPTO	EPTC	EPTC	EPTC

- 123 -

-		Gegenmittel	ttel	ı	Schädigung in %	ng in %		
Herbi-	Anwendungs- verhältnis «/m²	Verbin- dung Nr.	Verbin- Behandlungs- dung verhältnis Nr. % Gew./Gew.	Getrei- deart	Behandel gut	Behandeltes Sagt- gut	Unbehandeltes gut in der be barten Reihe	ideltes Saat- der benach- Reihe
	1/0				2 Wochen	4 Wochen	2 Wochen	4 Wochen
EPTC	0,672	98	0,5	Mais	м, ∨ 09		75 班	
EPTC	0,672	66	0,5	Mais	30 V	M, V 0€	85 M	м 08
EPTC	0,672	100	0,5	Mais	40 V,M		每 69	
EPTC	0,672	101	0,5	Mais	50 V,™		75 M	
SPTC	0,672	102	0,5	Mais	30 0,™	50 M	85 M	. № 08
EPTC	0,672	103	0,5	Mais	50 M		₩ 08	
EPTC	0,672	104	0,5	Mais	40 V,M		85 M	
EPTC	0,672	105	0,5	Mais	50 V,M		85 M	
EPTC	0,672	106	0,5	Mais	40 V,M		80 M	
EPTC	0,672	107	0,5	Mais	30 V	20 V,M	85 M	80 減
BPTC	0,672	108	0,5	Mais	40 V,M		₩ 06	
EPTC	0,672	109	0,5	Mais	30 V,M		M 06	
EPTC	0,672	110	0,5	Mais	40 V,M		85 M	
EPTC	0,672	111	0,5	Mais	40 V,M		75 M	
EPTC	0,672	112	0,5	Mais	60 V,K	30 M	85 M	₩ 08
BPTC	0,672	113	6.0	Mais	30 V,™		M · 08	
EPTC.	0,672	114	0,5	Mais	30 V,M		80 M	

125 - 124

Thunga was a sea a	Gegenmittel		Schädigung in %	ng in %		
0,672 115 0,5 0,672 116 0,5 0,672 118 0,5 0,672 119 0,5 0,672 120 0,5 0,672 122 0,5 0,672 124 0,5 0,672 125 0,5 0,672 126 0,5 0,672 126 0,5 0,672 126 0,5		Getrei- deart	Behandel gut	Behandeltes Saat- gut	Unbehandeltes gut in der be barten Reihe	deltes Saat- der benach- Reihe
0,672 115 0,5 0,672 116 0,5 0,672 118 0,5 0,672 120 0,5 0,672 121 0,5 0,672 122 0,5 0,672 122 0,5 0,672 124 0,5 0,672 126 0,5 0,672 126 0,5			2 Wochen	4 Wochen	2 Wochen	4 Wochen
0,672 116 0,5 0,672 118 0,5 0,672 119 0,5 0,672 120 0,5 0,672 122 0,5 0,672 123 0,5 0,672 124 0,5 0,672 126 0,5 0,672 126 0,5	. 5,0	Mais	40 V,M		M 06	•
0,672 117 0,5 0,672 118 0,5 0,672 120 0,5 0,672 121 0,5 0,672 122 0,5 0,672 124 0,5 0,672 125 0,5 0,672 126 0,5 0,672 126 0,5	0,5	Mais	30 V	30 ₹	75 M	₩ 08
0,672 118 0,5 0,672 120 0,5 0,672 121 0,5 0,672 122 0,5 0,672 124 0,5 0,672 126 0,5 0,672 126 0,5 0,672 126 0,5	0,5	Meis	20 V,M		. M 02	
0,672 119 0,5 0,672 120 0,5 0,672 122 0,5 0,672 123 0,5 0,672 124 0,5 0,672 126 0,5 0,672 126 0,5 0,672 126 0,5	0,5	Mais	M, V 05		™ 0 <i>T</i>	
0,672 120 0,5 0,672 121 0,5 0,672 122 0,5 0,672 124 0,5 0,672 125 0,5 0,672 126 0,5 0,672 128 0,5 0,672 128 0,5	0,5	Mais	30 V,M		70 M	
0,672 121 0,5 0,672 122 0,5 0,672 124 0,5 0,672 125 0,5 0,672 126 0,5 0,672 126 0,5 0,672 129 0,5	0,5	Mais	30 ₹		75 函	٠
0,672 122 0,5 0,672 123 0,5 0,672 124 0,5 0,672 125 0,5 0,672 126 0,5 0,672 128 0,5	0,5	Mais	M. V 04	•	75 M	
0,672 123 0,5 0,672 124 0,5 0,672 125 0,5 0,672 126 0,5 0,672 128 0,5	0.5	Mais	™, V 05		.35 M	}
0,672 124 0,5 0,672 125 0,5 0,672 126 0,5 0,672 127 0,5 0,672 128 0,5	0,5	Mais	20 V	20 V	10 M	20 M
0,672 125 0,5 0,672 126 0,5 0,672 128 0,5 0,672 129 0,5	0,5	Mais	30 V,™	• .	75 M	
0,672 126 0,5 0,672 127 0,5 0,672 128 0,5	0,5	Mais	40 V,M		80 M	
0,672 127 0,5 0,672 128 0,5 0,672 129 0,5	0,5	Mais	40 V.M		₩ 08	
0,672 128 0,5 0,672 129 0,5	5,0	Mais	№ 09		河 08	
0.672 129 0.5	0,5	Mais	50 ™		55 M	
	5.0	Mais	30 V,B	30 V,B	50 M	¥ 09

Tabelle III (Fortsetzung):

		Gegenmitte	tel		Schädigung in %	' in %		
Herbi- zid	Anwendungs- verhältnis «/m²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	Saat-	Unbehandeltes gut in der bed barten Reihe	ideltes Saat- der benach- Reihe
					2 Wochen	4 Wochen	2 Wochen	4 Wochen
BPTC	0,672	130	0,5	Kais	30 V	30. V	40 M	M 09
EPTC	0,672	131	0,5	Mais	10 V	0	25 M	55 本
EPTC	0,672	132	0,5	Mais	0	0	45 M	55 F
BPTC	0,672	133	0.5	Mede	40 M		€5 12	
BPTC	0,672	134	0,5	Meis	30 V,M		M 02	
EPTC	0,672	135	0,5	Mais	M. V 04		70 M	
EPTC	0,672	. 136	0,5	Mais	50 V,M		₩ 08	
EPTC	0,672	157	0,5	Mais	30 V,M		. 85 M	
EPTC	0,672	138	0,5	Mais	30 V,M	-	75 M	
BPTC	0,672	139	0,5	Mais	50 V,M		₩ 08	
EPTC	0,672	140	0,5	Mais	50 V,M	•	75 M	
BPTC	0,672	141	0,5	Meis	20 V,M	30 V,M	₩ 08	₩ 08
BPTC	0,672	142	0,5	Mais	20 V,M	50 Fe	75 M	70 №
田子正の	0,672	143	0,5	Mais	N. V OI	50 k	85 M	80 N
EPTC	0,672	144	0,5	Mais	50 V,M		85 M	
EPTC	0,672	145	. 5.0	Mais	20 V,M		80 M	
EPTC	0,672	146	0,5	Mais	20 V,M	Σ0 Λ•μ	65 M	70 M

Tabelle III (Fortsetzung):

Auwendumge- garbillatis Varbillatis dung varbillatis Geart deart gut and gar benach- gut gut and garben gut and garben gut and garben gut gered gut garben gut and garben gut and garben gut gered o,672 147 0,5 Mais 60 M Mais 60 M 75 M 80 M EPTG 0,672 147 0,5 Mais 0,672 150 0,5 Mais 0,672 151 0,5 Mais 0,672 152 0,5 Mais 0,672 153 0,5 Mais 0,672 155 0,5 Mais 0,672 155 0,5 Mais 0,5 Mais 0,672 155 0,5 Mais 0,672 155 0,5 Mais 0,672 155 0,5 Mais 0,672 155 0,5 Mais 0,5 Mais 0,672 156 0,5 Mais 0,672 156 0,5 Mais 0,672 156 0,5 Mais 0,672 156 0,5 Mais 0,672 159 0,5 Mais 0,674 150			Gegermittel	tel		Sohëdigung in %	1n %			
147 0,5 Mais 10 V 0 75 M 86 148 0,5 Mais 60 M 75 M 86 149 0,5 Mais 60 M 75 M 86 150 0,5 Mais 50 V,M 75 M 151 0,5 Mais 50 W 70 M 152 0,5 Mais 50 W 80 M 154 0,5 Mais 50 W 75 M 155 0,5 Mais 50 W 85 M 80 156 0,5 Mais 50 V,M 40 M 85 M 80 157 0,5 Mais 50 V,M 70 M 70 M 159 0,5 Mais 50 V,M 70 M 75 M 160 0,5 Mais 50 V,M 70 M 70 M 161 0,5 Mais 50 V,M 70 M 70 M 162 0,5 Mais 50 V,M 70 M 70 M 163 0,5 Mais 50 V,M 70 M 70 M <		Anwendungs- verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandelte gut		Unbehandel gut in der barten Rei	tes Saat- benach- he	•
147 0,5 Mais 10 V 0 75 M 80 148 0,5 Mais 60 M 75 M 80 150 0,5 Mais 50 V,M 70 M 151 0,5 Mais 50 M 70 M 152 0,5 Mais 50 M 80 M 153 0,5 Mais 50 M 85 M 154 0,5 Mais 20 V,M 75 M 156 0,5 Mais 50 V,M 75 M 157 0,5 Mais 50 V,M 70 M 159 0,5 Mais 50 V,M 75 M 160 0,5 Mais 50 V,M 75 M 161 0,5 Mais 50 V,M 70 M 161 0,5 Mais 50 V,M 70 M 162 0,5 Mais 50 V,M 70 M 163 0,5 Mais 50 V,M 70 M <		8/m				Woohen			4 Wochen	
148 0,5 Mais 60 M 75 M 149 0,5 Mais 60 M 75 M 150 0,5 Mais 50 W 70 M 151 0,5 Mais 50 M 70 M 152 0,5 Mais 50 M 70 M 154 0,5 Mais 50 W 85 M 155 0,5 Mais 20 V,M 40 M 85 M 156 0,5 Mais 50 V,M 77 M 159 0,5 Mais 50 V,M 77 M 160 0,5 Mais 50 V,M 77 M 161 0,5 Mais 50 V,M 77 M 162 0,5 Mais 50 V,M 77 M 163 0,5 Mais 50 V,M 77 M 163 0,5 Mais 50 V,M 76 M 164 0,5 Mais 50 V,M 76 M 165 0,5 Mais 60 V,M 76 M 166 0,5 Mais 60 V,M 76 M 167 0,5 Mais 60 V,M 76 M 168 0,5 Mais 60 V,M 76 M	•	0,672	147	0,5	Mais		0	77		•
150 0,5 Mais 40 V,M 75 M 151 0,5 Mais 50 V,M 70 M 152 0,5 Mais 50 M 70 M 153 0,5 Mais 50 M 80 M 154 0,5 Mais 20 V,M 40 M 85 M 155 0,5 Mais 20 V,M 40 M 85 M 156 0,5 Mais 50 V,M 77 M 158 0,5 Mais 50 V,M 77 M 160 0,5 Mais 50 V,M 77 M 161 0,5 Mais 50 V,M 77 M 162 0,5 Mais 50 V,M 77 M 163 0,5 Mais 50 V,M 77 M 164 0,5 Mais 50 V,M 77 M 165 0,5 Mais 60 V,M 70 M		0,672	148	0,5	Mais					
150 0,5 Mais 50 V,M 70 M 151 0,5 Mais 50 W 70 M 152 0,5 Mais 50 M 80 M 153 0,5 Mais 50 W 85 M 154 0,5 Mais 20 V,M 40 M 85 M 155 0,5 Mais 60 M 85 M 80 M 156 0,5 Mais 50 V,M 70 M 159 0,5 Mais 50 V,M 77 M 160 0,5 Mais 50 V,M 77 M 161 0,5 Mais 50 V,M 77 M 162 0,5 Mais 50 V,M 70 M 163 0,5 Mais 50 V,M 70 M 163 0,5 Mais 60 V,M 70 M 163 0,5 Mais 60 V,M 70 M 163 0,5 Mais 60 V,M 70 M		0,672	149	0,5	Mais	40 V,M		75 M		
151 0,5 Mais 50 M 70 M 152 0,5 Mais 40 M 80 M 153 0,5 Mais 50 M 85 M 154 0,5 Mais 20 V,M 75 M 155 0,5 Mais 20 V,M 40 M 85 M 156 0,5 Mais 50 V,M 70 M 159 0,5 Mais 20 V,M 75 M 160 0,5 Mais 50 V,M 75 M 161 0,5 Mais 50 V,M 75 M 162 0,5 Mais 50 V,M 75 M 163 0,5 Mais 50 V,M 75 M 163 0,5 Mais 50 V,M 75 M 163 0,5 Mais 60 V,M 70 M 163 0,5 Mais 60 V,M 70 M		0,672	150	0,5	Male	>		70 ₩		- 1
152 0,5 Mais 40 M 80 M 153 0,5 Mais 50 M 85 M 154 0,5 Mais 20 V,M 75 M 155 0,5 Mais 60 M 85 M 85 M 157 0,5 Mais 50 V,M 70 M 85 M 159 0,5 Mais 20 V,M 70 M 160 0,5 Mais 50 V,M 75 M 161 0,5 Mais 50 V,M 75 M 162 0,5 Mais 50 V,M 75 M 163 0,5 Mais 50 V,M 70 M 163 0,5 Mais 60 V,M 60 M	•	0,672	151	0,5	Mais		•	70 M	٠	.20
155 0,5 Mais 50 M 85 M 154 0,5 Mais 20 V,M 75 M 155 0,5 Mais 60 M 85 M 157 0,5 Mais 50 V,M 70 M 159 0,5 Mais 50 V,M 75 M 160 0,5 Mais 50 V,M 75 M 161 0,5 Mais 50 V,M 75 M 162 0,5 Mais 50 V,M 75 M 163 0,5 Mais 50 V,M 75 M 163 0,5 Mais 50 V,M 65 M 163 0,5 Mais 60 V,M 60 W	•	0,672	152	0,5	Mais		.·	₩ 08		_
154 0.5 Mais 20 V,M 40 M 85 M 80 156 0.5 Mais 60 M 85 M 80 M 157 0.5 Mais 50 V,M 70 M 80 M 159 0.5 Mais 50 V,M 75 M 161 0.5 Mais 50 V,M 75 M 162 0.5 Mais 50 V,M 75 M 161 0.5 Mais 50 V,M 70 M 162 0.5 Mais 50 V,M 65 M 163 0.5 Mais 60 V,M 60 M 60 M		0,672	153	. 5.0	Male	-		85 M		
155 0,5 Mais 20 V,M 40 M 85 M 80 M 85 M 85 M 85 M 85 M 85 M 8		0,672	154	0,5	Mais			75 M		
156 0,5 Meis 60 M 157 0,5 Meis 50 V,M 158 0,5 Meis 20 V,M 160 0,5 Meis 50 V,M 161 0,5 Meis 50 V,M 162 0,5 Meis 50 V,M 163 0,5 Meis 50 V,M	•	0,672	155	0,5	Mais			85 M		
157 0,5 Mais 50 V,M 158 0,5 Mais 20 V,M 159 0,5 Mais 50 V,M 161 0,5 Mais 50 V,M 162 0,5 Mais 50 V,M 163 0,5 Mais 60 V,M	•	0,672	156	6,0	Mais			85 M		
158 0,5 Mais 20 V,M 159 0,5 Mais 50 V,M 160 0,5 Mais 50 V,M 161 0,5 Mais 50 V,M 162 0,5 Mais 60 V,M		0,672	157	0,5	Mais		•	80 M		
159 0,5 Mais 30 V,M 160 0,5 Mais 50 V,M 161 0,5 Mais 50 V,M 162 0,5 Mais 60 V,M	٠.	0,672	158	0,5	Mais			70 M		
160 0,5 Mais 50 V,M 161 0,5 Mais 50 V,M 162 0,5 Mais 30 V,M		0,672	159	0,5	Mais	№ 4 О€		75 区	•	
161 0,5 Mais 50 V,M 162 0,5 Mais 50 V,M		0,672	160	0,5	Mais			75 M		
162 0,5 Mais 30 V,M. 163 0,5 Mais 60 V,M	٠.	0,672	191	0,5	Mais			70 M	-	
163 0,5 Mais 60 V,M		0,672	162	0,5	Mais	•			÷ . ·	
	;	0,672	163	0,5	Mais			м 09		

Saatgut in der be-nachbarten Reihe 4 Wochen 80 M × Ħ Unbehandeltes 9 8 2 Wochen 75 M 75 M 80 M 80 ⋈ 80 ™ 80 M **海 08** Behandeltes Saat-4 Wochen Schädigung in % ≅ 9 30 V 50 kg gut 2 Wochen 50 V,M 40 V,M 40 V,M 30 V,M M. V 09 30 V,M M, V 09 30 V,M M, V 08 30 V,M 30 A ¥ 09 ₩ 09 图 90 40 M Getreideart Mais Behandlungs-% Сеж./Сеж. verhältnis ٥, ر 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel Verbin-164 165 **99**L 168 167 169 171 172 173 174 175 176 **T1** gunp Anwendungsverhältnis 0,672 0,672 0,672 0,672 0,672 g/m^2 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC EPTC EPTC EPIC EPTC EPTC EPTC zid EPTC EPTC EPTC EPTC EPTC

Fortsetzung);
C
III
110
Tabe

		Gegenmittel	tel		Schädigung in	ung in %			
Herbi-	Anwendungs- verhältnis	Verbin- dung	Behandlungs- verbältnis % dew /hew	Getreide-	Behandeltes gut	tes Saat-	Unbehan gut in barten	ideltes Saat- der benach- Reihe	
zid	E/B		,		2 Wochen	4 Wochen	2 Wochen	4 Wochen	
EPTC	0,672	179	5,0	Mais	0	0	0	S S	
EPTC	0,672	180	0,5	Mais	0	0	0		
EPTC	0,672	181	0,5	Mais	0		0		
EPTC	0,672	182	. 0,5	Mais	0	0	0	0.	
EPTC	0,672	183	0,5	Mais	0	0	, ,	0	
EPIC	0,672	184	. 540	Mais	0	0	5 M	15 M	
EPTC	0,672	1.85	. S.0	Mais		0	3 M	30 M	
EPTC	0,672	186	. 5.0	Mais	0	0	o	O :	
EPIC	0,672	187	٠ د.	Mais	0	0	5 E	45 M	
EPTC	0,672	188	6,0	Mais	0	0	13 四	45 M	
EPTC	0,672	189	0,5	Mais			5 ki	35 區	
EPTC	0,672	190	0,5	Mais		0	.0	15 M	
EPTC	0,672	161	0,5	Mais		· 0	. 3 M	50 M	
EPTC	0,672	192	6,0	Mais	0	0	S N	· ₩ 04	
EPIC	0,672	193	0,5	Mais	0		NO K	35 M	. •
EPTC	0,672	194	0,5	Mais		0	0	25 M	
							•		

130

Behandeltes Saat- Unbehandeltes Saatgut in der benach-4 Wochen 型 80 图 40 M barten Reihe ဂ္ဂ 52 2 Wochen 55 ¥ 20 Schädigung in % 4 Wochen 20 V,M 30 **⊠** Tabelle III (Fortsetzung) 2 0 gut 2 Wochen M. 7 0€ 40 V,M 20 V , M 30 V,M 河 △ 0℃ 30 V,M M, V 09 100 K 100 K ₩ 60 ₩ 90 30 対 2 2 2 20 ₹ Getreideart Mais Mats Mais Mais Mais Behandlungs % сем./сем. verhältnis 0,5 0,5 0,5 0,5 0,5 2,0 0,5 0,5 0,5 0,5 Gegenmittel Verbindung 195 196 198 200 199 197 201 202 203 204 205 206 207 Anwendungs-verbältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC **BPTC** EPTC EPIC EPTC EPTC EPTC BPTC **BPTO** EPTC EPTC EPTC EPTC EPTC zid

- 130 -

Verbin- Behandlungs dung verhältnis Nr. & Gew. /Gew.
0,5
0,5
•
•
•
0
0
o
0
5,0
0,5
O
Ó
ō
.

171 -

Behandeltes Saat- Unbehandeltes Saatgut in der benach-barten Reihe 2 Wochen 4 Wochen 80 № 80 M 45 M 9 55] ¥ 06 95 M ¥ 88 30 M 80 M 2 Wochen 4 Wochen Schädigung in % 10 V 10 V 10 T 20 ₹ 10 M 0 0 0 gut 40 V,M 40 V,M 40 V,M 40 V,M 30 V,M 30 V,M 20 ₩ 20 V 10 V 0 0 Getreideart Mais Behandlungs-% Gew./Gew. verhältnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel Anwendungs- Verbinganp 228 229 230 232 236 238 227 233 234 235 237 239 240 241 verhältnis g/m^2 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC BPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC zid EPTC EPIC EPTC EPTC EPTC

Tabelle III (Fortsetzung):

		Gegenmittel	tel	1	Schädigung in %	· **		
Herbi-	Anwendungs- verhältnis. , 2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Sa gut	Saat- Unbehandeltes gut in der be barten Reihe	deltes Saat- der benach- Reihe	•
zid	8/日	ľ			2 Wochen 4 Wochen	nen 2 Wochen	4 Woohen	
EPTC	0,672	242	0,5	Mais	30 V,M	50 M		
EPTC	0,672	243	0,5	Mais	10 V,M 30	м 75 м	70 M	
EPIC	0,672	244	0,5	Mais	0	20 M		
EPTC	0,672	245	5,0	Mais	10 Φ	28 M		
EPTC	0,672	246	0,5	Mais	0	M 8		
EPTC	0,672	247	0,5	Mais	. Δ ΟΤ	24 K		
EPTC	0,672	248	5.0	Mais	20 Φ	M 07		
EPTC	0,672	249	0,5	Mais	10 V	70 M		
EPTC	0,672	250	0,5	Mais	0	65 M		
EPTC	0,672	251	0,5	Mais	ο.	20 M		
EPTC	0,672	252	0,5	Mais	0	15 M		
EPTC	0,672	253	5 4.0	Mais	0	. 14 8		
EPIC	0,672	254	0,5	Mais	5 M	50 K		
SPTC	0,672	255	0,5	Маів	0	り屋		
EPTC	0,672	256	0,5	Mais	0	15 M		
EPIC	0,672	257	0,5	Mais	0	₩ 0 <i>L</i>	· .	
EPTC	0,672	258	0,5	Mais	O	NO T	· .	
					-			

· 1377 -

		Gegenmittel	ttel		Schädigung in %	5 in %		
ierbi-	Anvendungs- verhältnis	Verbin- dung	Behandlungs- verhältnis	Getreide-	Behandeltes Sad gut	Saat- Unbehar gut in barten		deltes Saat- der benach- Reihe
	8/m ²	100		1.78	2 Wochen 4 Woohen		Wochen	4 Wochen
EPTC .	0,672	259	0,5	Mais		35	Ħ	
PTC -	0,672	560	0,5	Kais	0	15	M	
SPŢC	0,672	261	0,5	Mais	0	5	Ħ	٠.
SPIC	0,672	262	. 0,5	Mais	0	55	Ħ	
SPIC	0,672	263	0,5	Mais	10 M	9	Ħ	
SPTC	0,672	264	0,5	Mais	0	15	Ħ	
EP-TC	0,672	265	0,5	Mais		70	Ħ	
SPTC	0,672	566	0,5	Mais	0	50	Zi C	
EPTC .	0,672	267	0,5	Mais	0	45	×	
EPIC	0,672	268	0,5	Mais	0	~	Ħ	
SPTC	0,672	269	6,0	Mais	0	35	×	
ತ್ತುಗಾರ	0,672	270	0,5	Mais	0	33	Ħ	
EPTC	0,672	271	0,5	Mais	0	20	Ħ	
SPIC	0,672	272	0,5	Mais	0	40	Ħ	
BPTC	0,672	273	0,5	Mais	0	45	M C	
EPTC	0,672	274	0,5	Mais	0	35	X	

Tabelle III (Fortsetzung):

		Gegenmitte]	ttel		Schädigung in %	
Herbi-	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat-gut	Unbehandeltes Saatgut in der benachbarten Reihe 2 Woohen 4 Wochen
EPTC	0,672	275	6,0	Mais	0	₩ 04
EPTC	0,672	276	0,5	Mais		40 M
BPTC	0,672	277	0,5	Mais	10 V	35 M
EPTC	0,672	278	0,5	Meis	0	40 M
EPTC	0,672	279	0,5	Mais .	0	33 M
DIA	0,672	280	6,0	Mais	0	50 M
BPTC	0,672	281	0,5	Mais	0	
EPTC	0,672	282	0,5	Mais	10 B	38 M
EPTC	0,672	283	0,5	Mais	0	80 M
EPTC	0,672	284	0,5	Meis		35 M
EPTC	0,672	285	0,5	Mais		75 M
EPTC	0,672	. 582	0,5	Mais	10 V	N of
EPTC	0,672	287	0,5	Mais	10 V	75 M
EPTC	0,672	288	0,5	Mais	10 V	35 班
EPTC	0,672	289	0,5	Mais		35 M
EPTC	0,672	290	0,5	Mais	0	50 M
EPTC	0,672	291	0,5	Mais	o	50 k

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	R
Herbi- zid	Anwendungs- verhältnis g/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
					2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	292	0,5	Mais	0	30 M
EPTC	0,672	293	6,0	Mais	0	55 M
EPTC	0,672	294	0,5	Mais	0	₩ 09
EPTC	0,672	295	0,5	Mais	0	25 M
EPTC	0,672	296	0,5	Mais	0	15 班
EPTC	0,672	297	0,5	Mais	0	10 M
EPTC	0,672	298	0,5	Mais	0	5 M
EPTC	0,672	299	0,5	Mais	0	20 M
BPTC	0,672	300	0,5	Mais	0	0
BPTC	0,672	301	6,0	Mais	0	25 M
EPTC	0,672	302	. 5.0	Mais		25 M
EPTC	0,672	303	0,5	Mais	0	15 M
EPTC	0,672	304	0,5	Mais	0	40 M
EPTC	0,672	305	0,5	Mais	0	35 M
EPTC	0,672	306	0,5	Mais	0	15 M
EPTC	0,672	307	0,5	Mais		15 M

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	8
Herbi-	Arvendungs- verhältnis ø/m ²	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Sast-gut	Unbehandeltes Saatgut in der benachbarten Reihe
	=/0				2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	308	. 5.0	Mais	0,	M 00
EPTC	0,672	309	0,5	Wais	0	25 №
EPTC	0,672	310	0,5	Mais	0	45 M
EPTC	0,672	311	0,5°	Mais		30 M
EPTC	0,672	312	0,5	Mais		70 M
EPTC	0,672	313	0,5	Mais	0	₹ 59 ×
EPTC	0,672	314	0,5	Mais	M. v o€	, M 09
EPTC .	0,672	315	0,5	Kais	50 M	₩ O.Z
EPTC	0,672	316	0,5	Mais		
EPTC	0,672	317	.0,5	Kais	0	来 0.2 .
EPTC	0,672	318	0,5	Mais	д• 1 0€	平 09
EPTC	0,672	319	. 5.0	Mais	№ 10 0€	м 09
EPTC	0,672	320	0,5	Mais	0	0
EPTC	0,672	321	0,5	Mais		₩ 59
EPTC	0,672	322	0,5	Mais	10 V	10 M
EPTC	0,672	323	0,5	Mais	10 V	40 M

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	
Herbi- zid	Anwendungs-verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der benachbarten Reihe
	# /S				2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	324	0,5	Mais	M 09	75 M
EPTC	0,672	325	0,5	Mais	ж 09	. M 08
EPTC	0,672	326	0,5	Mais	20 т	70 M
EPTC	0,672	327	0,5	Mais	30 V,₩	75 M
EPTC	0,672	328	0,5	Mais	л. 4 09	75 M
EPTC	0,672	. 329	0,5	Kais	0	M 09
EPTC	0,672	330	0,5	Kais	30 V,M	65 M
EPTC	0,672	331	0,5	Mais	10 V	70 M
EPTC	0,672	332	0,5	Mais	0	. M. C.
EPTC	0,672	333	0,5	Mais	0	15 M
EPTC	0,672	334	0,5	Mais	0	23 M
EPTC	0,672	335	0,5	Mais	20 V,B	35 M
EPTC	0,672	336	6,0	Mais	95 V	30 M
EPTC	0,672	337	0,5	Kais	0	H
EPIC	0,672	338	. 5.0	Mais	0	M 09
EPTC	0,672	339	0,5	Mais	30 M	T5 M

138 -

		Gegennittel	tel		Sohädigung in %	
[erbi-	4 Þ.	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Sast- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
	g/m				2 Woohen 4 Woohen	2 Woohen 4 Woohen
PTC	0,672	340	540	Mats	_	25 M
IPIC	0,672	341	0,5	Mais	0	30 M
ישנו	0,672	342	. 5.0	Mais	M 09	M. 08
TPTO	0,672	343	0,5	Mais	Ò	45 M
PTC	0,672	344	0,5	Mets	io v	75 M
SPIC.	0,672	345	0,5	Mais	0	75 M
PTC	0,672	346	0,5	Mais	10 Φ	65 M
PEC	0,672	347	0,5	Mais	M, V 0€	80 M
TPIC	0,672	. 348	0,5	Mais	0	65 м
3PTC	0,672	349	0,5	Mais	ж. о9	75 M
SPIC	0,672	350	0,5	Mais	₩ 09	₩ 08
BPTC	0,672	351	0,5	Mais	M. V 09	75 M
Prc	0,672	352	0,5	Mais	M. V 09	₩ 08
EPTC	0,672	353	0,5	Mais	M. v 09	75 M
EPTC	0,672	354	0,5	Mais	50 V,M	M 08
BPTC	0,672	355	5,0	Mais	т. о9	₩ 0.2

Tabelle III (Fortsetzung):

	Unbehandeltes Saatgut in der be- nachbarten Reihe 2 Wochen 4 Wochen	70 M			75 M	70 M		75 M	. W 08	55 M	65 M	65 M	75 M	30 M	25 M	80 M 08	
Schädigung in %	l tel	V, B	, M	Λ	M, V	м. л	м. О	Δ	ν, ν	Δ	м, ч					M OY E	V 50 M
100	A N	50		30		50	50	30	30	10	50	0	0	0		70	40
ı	Getrei- deart	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais							
tel	Behandlungs- verhältnis % Gew./Gew.	0,5	0,5	0,5	0,5	. 500	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5
Gegenmittel	Verbin- dung Nr.	356	357	358.	359	360	361	362	363	364 ··	365	366	267	368	369	370	371
	Anwendungs-verhältnis g/m^2	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid	EPTC	EPTC	SPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	SPTC	BPTC	EPTC	EPTC	EPTC	APTC	EPTC

1	4	1

					•			: •					•	•		1.2	•
deltes Saat- der benach-	4 Woohen	. ₩ 08	• .		图 08			• • • • • • • • • • • • • • • • • • • •		图 08	80 尾		80 M	图0 区			
Unbehandeltes gut in der be		₩ 08	™_27	85 M	± 06	₩ 06	™ 07		85 M	· № 06	85 M	80 M	对 06	™ 07	85 M	15 ™	₩ 08
s in % es Saat-	4 Wochen	40 V,M			30 ™	:	• •	· .		20 ₩	40 M		30 V	10. V		图 05	
Schädigung in % Behandeltes Saa gut	2 Wochen	30 Ф	30 V,™, B	м 09	50 V,B	50 №	40 V,M	₩ 08	50 ₩	10 V	30 V	50 M	50 V,B	20 V	M 09	TO V	№ 09
Getreit		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
ttel Behandlungs- verhältnis % Gew./Gew		0,5	0°0	0,5	0,5	0,5	0,5	2°0 .	0,5	6,0	0,5	0,5	0,5	5,0	0,5	0,5	0,5
Gegenmittel Verbin-Beb dung ver		. 372	573.	374	375	,915	377	378	379	380.	381	382	383	384	385	386	387
Anwendungs- verhältnis	8/四	. 0,672	0,672	0,672	0,672	.0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	. 0,672
Herbi-		EPTC	EPTC	EPTC	EPTC	EPTC	BPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPIC	EPTC	BPTC	EPTC

- 141 -

142

		Gegenmittel	tel		Schädigung in %	% ii %	
Herbi-	Anwendungs- verhältnis _{e/m} 2	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei-	Behandeltes gut	es Saat-	Unbehandeltes Saat- gut in der benach- barten Reihe
	E/0			deart	2 Wochen 4 Wochen	4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	388	0,5	Mais	100 K		55 M
EPTC	0,672	389	0,5	Mais	10 V	0	75 M
EPTC	0,672	390	0,5	Mais	15 V,M		80 M
EPTC	0,672	391	0,5	Mais	10 V	0	80 M
EPTC	0,672	392	0,5	Mais	м, т оэ		75 M
EPTC	0,672	393	0,5	Mais	M 09		80 M
EPTC	0,672	394	0,5	Mais	50 V,M		M 08
EPTC	0,672	395	0,5	Mais	10 V	10 M	65 M
EPTC	0,672	396	0,5	Mais	10 V	0	75 M
EPTC	0,672	397	0,5	Mais	10 V	20 M	. M 09
EPTC	0,672	398	0,5	Mais	м 09		图
EPTC	0,672	399	0,5	Mais	₩ 09		80 M
EPTC	0,672	400	0,5	Mais	м 09		75. M
EPTC	0,672	401	0,5	Mais	M 09		80 M
EPTC	0,672	402	0,5	Mais	40 V,M		75 M
SPIC	0,672	403	0.5	Mais	M.V 06		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

								:	•			•							
	Unbehandeltes Saetgut in der be- nachbarten Reihe	2 Wochen 4 Wochen	80 №	M 08	80 M	80 M	80 M	80 M	80 M	₩ 08	80 M	80 M	80 M	80 M	80 M	⊠ 08	80 M	80 14	80 M
Schädigung in %	eltes Sast-	en 4 Wochen	•			· ·	·		:.		•								
Schädi	Behandeltes gut	2 Wochen	70 M	70 M	70 M	10 区	₩ 02	70 M	₩ 0Ł	M 09	70 M	₩ 0L	₩ o2	M 07	70 ™	₩ 09	™ 07	70 M	70 M
	Getrei- deart		Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
9.1	Behandlungs- verhältnis % Gew./Gew.		0,5	6,0	0,5	0,5	. 0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	5.0	0,5	0,5
Gegenmittel	Verbin- dung Nr.		404	405	406	407	408	409	410	411	412	413	414	415	416	417	418	419	420
	Anwendungs-verhältnis g/π^2		0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
	Herbi- zid		EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	BPTC	EPTC	BPTC	EPTC .	EPTC	EPTC	EPTC	EPTC	EPTC	RPTC

Fortsetzung):	Schädigung in %	Behandeltes Saat- Unbehandeltes Saat- gut gut in der benach- barten Reihe t 2 Wochen 4 Wochen 2 Wochen	. M 08 . M 07	M 08 M 07	80 M	30 M 80 M	M 08 M 07 1	. 60 V ₂ M 75 M	. 70 M 75 M	M 75 M 75 M	м ов м, ч ог	70 V,M 75 M	м ов . м, ч ог	м ов м, ч оγ	M 08 M 07	M 08 M, V 07	70 M 75 M	м 25 м 25 м
Tabelle		Getrei-	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais
티	Gegenmittel	1- Behandlungs verhältnis % Gew./Gew.	.0,5	0,5	. 540	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	0,5	6,0.	0,5	0,5	0,5
	Gegen	Verbin- dung Nr. 9	421	422	.423	424	425	426	427	428	429	430	431	432	433	454	435	436
		Anwendungs- verhältnis g/m ²	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672
		Herbi- zid	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	· EPTC	EPTC

- - - - 145

		Gegenmittel	tel		Schädigung in %	
Herbi- zid	Anwendungs- verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei-	Behandeltes Saat- gut	Unbehandeltes Saat- gut in der benach- barten Reihe
	11/20			n Teen	2 Wochen 4 Wochen	2 Wochen 4 Wochen
EPTC	0,672	437	0,5	Mais	M, v O5	75 M
EPTC	0,672	438	6,0	Mais	м'л 02	м 08
EPTIC	0,672	439	0,5	Mais	20 V	75 M
BPTC	0,672	440	0,5	Mais	A OT	65 章
EPTC	0,672	441	0,5	Mais	30 V	M 5L
BPTC	0,672	442	0,5	Mais	TO T	70 M
BPTC	0,672	443	0,5	Mais	TO V	. 108
EPTC	0,672	444	0,5	Mais	TO A	第 59
EPTC	0,672	445	0,5	Mais		75 M
EPTC	0,672	446	0,5	Mais	20 V	65 M
EPTC	0,672	447	0,5	Mais	M 09	80 M
EPTC	0,672	448	0,0	Mais	№ 10 06	70 M
EPTC	0,672	449	<u>ار</u> و	Mais	70 M	80 M
EPTC	0,672	450	. 6,0	Mais	№ 1 09	80 M
EPTC	0,672	451	0,5	Mais	20 ₹	To M

- 149 -

146

	91	Gegenmittel	tel		Schädigung in %	
Herbi-	Anwendungs- verhältnis g/m ²	Verbin- dung	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut 2 Wochen 4 Wochen	Unbehandeltes Saatgut in der benachbarten Reihe 2 Wochen 4 Wochen
EPTC	0,672	452	6,0	Mais	M, V OY	80 M
EPTC	0,672	453	0,5	Mais	20 V	₩ 09
DPTC	0,672	454	0,5	Mais	TO M	75 M
EPTC	0,672	455	0,5	Mais	20 V	65 M
EPTC	0,672	456	0,5	Mais	м, и оэ	15 M
EPTC	0,672	457	0,5	Mais	M'A OL	80 M
EPTC	0,672	458	. 0,5	Mais	50 V,M	70 M
EPTC	0,672	459	0,5	Mais	40 V,M	80 M
EPTC	0,672	460	0,5	Mais	м. ч 09	80 M
EPTC	0,672	461	0,5	Mais	10 V	80 M
EPTC	0,672	462	0,5	Mais	м° л о€	75 M
EPTC	0,672	463	0,5	Mais	70 M	80 M
EPTC	0,672	464	0,5	Mais	70 M	80 M
EPTC	0,672	465	0,5	Mais	№ 10 05	80 M
EPTC	0.673	466	0.5	Majs	, M-Δ OC	70 M

147

	Unbehandeltes Saat- gut in der benach- barten Reihe 2 Wochen 4 Wochen							٠									•
	Unbehand gut in d barten R 2 Wochen	75 M	₩ 08	80 ₩	75 M	65 №	25 M	₩ 08	80 №	70 M	75 M	.80 M	80 M	80 M	80 M	80 ™	
Schädigung in %	Behandeltes Saat- gut 2 Wochen 4 Wochen	0	м. Ф О О 9	10 V	M 09	M. v OS	20 V,M	70 M	. M 07	20 V,M	10 V	30 V,M	20 V,M	м. Ф. ОЭ	To V,M	70 M	
	Getrei- deart	Mais	Mais	Mais	Maís	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	Mais	
tel	Behandlungs- verhältnis % Gew./Gew.	0,5	0,5	0,5	0,5	0,5	6,0	. 5.0	5.0.	0,5	0,5	6,0	.5.0	0,5	0,5	· 0,5	
Gegenmittel	Verbin- dung Nr.	467	468	469	470	471	472	473	474	475	476	477	478	479	480	481	
	Anwendungs- verhältnis g/m	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	0,672	
	Herbi- zíd	EPTC	EPTC	BPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPTC	EPIC	EPTC	EPTC.	EPTC	EPTC	BPTC	

- - - 148

Unbehandeltes Saatgut in der benachbarten Reihe 2 Wochen 4 Wochen 75 M N 02 四 02 85 K 98 M 80 V,M 55 M **80** 75 运 80 M 40 M 95 斑 ₩ 86 Behandeltes Saat-2 Wochen 4 Wochen 50 V,M 50 V,™ M. V 09 75 V,M Schädigung in 30 V 0 gut 30 V, M M, V OS M, V O7 40 V,M 30 V,M M 09 ™ 07 10 V 10 V 50 E 10 V 10 V 20 20 Getreideart Mais Anwendungs- Verbin- Behandlungs-% сем./сем. verhältnis 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 0,5 Gegenmittel dung 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 verhältnis 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 0,672 Herbi-EPTC EPTC EPTC EPTC EPTC EPTC EPTC EPTC **EPTC** EPTC EPTC EPIC EPTC EPTC EPTC zid

Р¥Х - Вет -

		Gegenmittel	ttel		Sohädigung in %	ng in %			
Herbi-		Verbin- dung	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes gut	Saat-	Unbehandeltes gut in der be barten Reihe	Unbehandeltes Saat- gut in der benach- barten Reihe	
	8/m_				2 Wochen	4 Wochen	2 Wochen	4 Wochen	
EPTC	0,672	499	0,5	Mais	M 09		™ 86		
EPTC	0,672	500	0,5	Mais	10 V	20 V	78 M	M 16	
EPTC	. 0,672	501	. 0,5	Mais	10 V	20 V	50 M	70	
EPTC	0,672	502	0,5	Mais	100 K	100 K	55 M	11 09	
EPTC	0,672	503	0,5	Mais	100 K	N OOL	30 M	40 M	
EPTC	0,672	504	0,5	Mais		0	う 日	30 M	
EPTC	0,672	505	0,5	Mais	30 V	30 V	0	0	•
EPTC	0,672	909	0,5	Mais	TO V	25 M	58 M		
EPTC	0,672	507	0,5	Mais	20 V,M		€5 M		
EPTC	0,672	508	0,5	Mais	70 V		78 M		
EPTC	0,672	605	. 5.0 -	Mais	40 V,M		№.68		
EPTC	0,672	510	0,5	Mais	0	0	84 政	94	
EPTC	0,672	511	0,5	Mais	100 K	100 K	45 M	20 M	
EPTC	0,672	512	0,5	Mais	100 K	100 K	0	0	
EPTC	0,672	513	0,5	Mais	100 K	100 K	·.	o _.	

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	
Herbizid	Anwendungs- verhältnis	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat- gut	Unbehandeltes Saatgut in der be- nachbarten Reihe
	E / 90				2 Wochen 4 Wochen	2 Wochen 4 Wochen 2 Wochen 4 Wochen
EPTC	0,672	ı		Mais	M 06	
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	0,112	9	0,25	Weizen	5 V	·
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	0,112	9	0,5	Weizen	20 V	
S-2,3,3-Trichlor- allyl-diisopropyl- thiolcarbamat	0,112	, 1	1	Weizen	M 06	
EPTC +	0,672 +					
2-Chlor-4-äthyl- amino-6-isopropyl- amino-s-triazin	. 0,112	. 9	0,1	Mais	0	. 0
EPTC +	0,672 +					
2-Chlor-4-äthyl- emino-6-isopropyl- amino-s-triazin	0,112	9	10,0	Mais	0	

Tabelle III (Fortsetzung):

		Gegenmittel	tel ·		Schädigung in %	in %		
Herbizid	Anwendungs- verhältnis	Verbin- dung	Behandlungs- verhältnis	Getrei-	Behandeltes gut	Saat	Unbehandeltes Saatgut in de nachbarten Re	ltes n der be- n Reibe
	8/m ²	Nr.	% Gew./Gew.	deart	2 wochen 4	Woohen	2 Wochen	
EPIC +	0,672 +					· .		
2-Chlor-4,6-bis (Äthylamino)-s- triazin	0,112	. 9	1,0	Mais	. 0	0	. 0	. 0
EPTC +	0,672 +	-			•			
2-Chlor-4,6-bis äthylamino)-s- triazin	0,112	9	.0,01	Mais		0		
EPEC +	0,672 +			•	•			
2(4-Chlor-6- äthylamino-s- triazin-2-yl- 'amino)-2-methyl- propionitril	0,112	9	1,0	Wais	0			0
BPTC +	0,672 +		•			•	•	-
2(4-chlor-6- äthylamino-s-		٠.	· · · · · · · · · · · · · · · · · · ·					· · ·
triazin-2-yi- amino)-2-methyl- propionitril	0,112	9	0,01	Mais	0			· · .

Tabelle III (Fortsetzung):

		Gegenmittel	tel		Schädigung in %	n %		
Herbizid	Anwendungs-verhältnis g/m^2	Verbin- dung Nr.	Behandlungs verhältnis % Gew./Gew.	- Getrei- deart	Behandeltes gut	Saat	Unbehandeltes gut in der ben barten Reihe	ideltes Saat- der benach- Reihe
					2 Wochen 4 Wochen	ochen	2 Wochen 4 Wochen	Wochen
EPTC +	0,672 +						•	
2-Chlor-4-cyclo- propylamino-6-iso- propylamino-s-							· ·	
TI SEL TO	0,112	9	1,0	Mais	0	0	0	0
1 1 1 1 1 C	+ >/040							
<pre>c-cnior-4-cyclo- propylamino-6-iso- propylamino-s-</pre>	ı							
triazin	0,112	9	0,01	Mais	0	0		
EPTC + 2,4-D	0,672 + 0,112	9	0.1	ر در م	c			Ć
EPTC +	0,672 +	-) [ວ	5
2,4-D	0,112	9	0,01	Mais	0	0		٠
S-Propyldipro- pylthiol-carbanat + 0,67	+ 0,9672 +							
amino-6-isopropyl-								
amino-s-triazin	0,112	9	1,0	Mais	0	_	0	0
S-Propyldipropyl- thiolcarbamat	0,672	1	ı	Mais	M 06	,		

Tabelle III (Fortsetzung);

				- 1	- -	153				•
	eltes in der ten Reihe	4 Wochen	:	0		. 0		o [.]		0
	Unbehandeltes Saatgut in de benachbarten R	2 Wochen	. •	o [.]	••	0		0		
Sobëdigung in %	Saa t	en 4 Wochen		0		0	•	0		0
Schäd1	Behandeltes gut	2 Wochen 4		ò		· o		0		0
	Getrei- deart	-	· ·	Mais		Mais		Mais	· .	Mais
1	Behandlungs verbältnis % Gew./Gew.		•	0,01		1,0		10,0		1,0
Gegenmittel	Verbin- dung Nr.			9		9		, '9		9
8	Anwendungs- verhältnis g/m ²		0,672 +	0,112	0,672 +	0,112	0,672	0,112	0,672 +	hyl- 0,112
	Herbizid Ar ve		S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-äthyl-	amino-6-isopropyl- amino-s-triazin	S-Propyldipropyl- thiolographmet + 2-chlor-4.6-bis	(äthylamino)-s- triazin	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4,6-bis	(äthylamino)-s- triazin	S-Propyldipropyl- thiologrbsmat + 2(4-Chlor-6-äthyl-	emino-s- ultazin- 2-yl-amino)-2-methyl- propionitril
							•			

Tabelle III (Fortsetzung):

				- 1	- -			
	Unbehandeltes Saatgut in der be- nachbarten Reihe 2 Wochen 4 Wochen				0			0
Sohädigung in %	Behandeltes Saat- Ungut Signates Sut Signates Sut Sut Sut Sut Suchen 4 Wochen 2		0		0		0	0
Schä	Beh 2 W		0		0		0	0
021	Getrei- deart		Mais		Mais		Mais	Mais
	Behandlungs- verhältnis % Gew./Gew.		0,01	·	1,0		. 10,0	. 100
Gegenmittel	Verbin- dung Nr.		9		9		9	vo
ଞା	Anwendungs- verhältnis g/m^2	0,672 +	0,112	0,572 +	0,112	0,672 +	0,112	0,672 +
	Herbizid v	opyldipropyl- lcarbamat + Chlor-6-Äthyl D-s-triazin- -amino)-2- ylpropioni-	tril	S-Propyldipropyl- thiolographmat + 2-Chlor-4-cyclo-	propyramino-6- isopropylamino- s-triazin	S-Propyldipropyl- thiolcarbamat + 2-Chlor-4-cyclo- propylamino-6-iso-	triazin	S-Propyldipropyl- thiolcarbamat + 2,4-D

Tabelle III (Fortsetzung):

	***			155			
	Unbehandeltes Saatgut in der be- nachbarten neihe 2 Jochen 4 "ochen		0	•		0	
Schädigung in %	eltes Saat-	0	0	0		0	•
Schädig	Behande gut	0	. 0	0		0	0
	Getrei- deart	Mais	Mais	Mais		Mais	Mais
Le	Behandlungs. verhältnis % Gew./Gew.	0,01	1,0	0,01	, .	1,0	0,01
Gegenmittel	Verbin- dung	9	. •	. 9	٠	9	. · · · · · · · · · · · · · · · · · · ·
Ge	Anwendungs-verhältnis	0,672 + 0,112	0,672	0,672	+ 968,0	0,112	•
	Herbizid v	S-Propyldipro- pylthiol- carbamat + 2,4 D	S-Propyldipro- pylthiol- carbamat +	S-Propyldipro- pylthiol- carbamat	S-Athyldiiso- butylthiol- carbamat + 2-Chlor-4- äthylamino-6-	lsopropylamino- s-triazin S-Äthyldiiso- butylthiol- carbamat +	2-Chlor-4- äthylamino-6- isopropylamino- s-triazin

abelle III (Fortsetzung):

			156		
	Unbehandeltes Saatgut in der be- nachbarten Reihe	0	·		
Schädigung in %	Behandeltes Saat- gut 2 Wochen 4 Wochen	4	0	0	•
Schäd	Behandel gut	0	0	0	0
	Getrei- deart	Mais	Mais	i i i i	Wais
91	Verbin- Behandlungs- dung verhältnis Nr. % Gew./Gew.	1,0	0,01	٠. ٥٠, ١	0,01
Gegenmittel	Verbin- dung Nr.	. 9	9	9	vo
	Anwendungs-verhältnis g/m^2	0,896 +	0,896+	0,896 +	0;896+ -yl- ro- 0,112
	An Herbizid ve	S-Athyldiisobu- tylthiol- carbamat + 2-Chlor-4,6-bis (äthylamino)-s- triazin	S-Athyldiisobutyl- thiolcarbamat + 2-Chlor-4,6-bis (Athylamino)-s- triazin	S-Äthyldiisobutyl- thiolcarbamat + 0,896 2(4-Chlor-6-äthyl- amino-s-triazin- 2-yl-amino)-2- methyl-propionitril 0,1	S-Äthyldiisobutyl- thiolcarbamat + 0 2(4-Chlor-6-äthyl- amino-s-triazin-2-yl- amino)-2-methyl-pro- pionitril

Wochen

Saatgut in der Unbehandel tes benachbarten 2 Wochen 4 Wochen 2 Wochen Reihe 0 Behandeltes Saat-0 Schädigung in % 0 Tabelle III (Fortsetzung): 0 0 0 0 0 Getrei-Mais. Mais Mais Mais deart Mais Behandlunga-% сем./сем. verhältnis 0,01 0,01 1,0 1,0 1,0 Gegenmittel Verbindung Nr. Anwendungs-0,896 + 0,112 + 968,0 + 968'0 verhältnis 0,896 96860 0,112 0,112 8/m² propylamino-s-tri-S-Athyldiisobutylpropylamino-6-iso-S-Äthyldiisobutyl-S-Xthyldiisobutylropylamino-6-iso-S-Athyldiisobutyl-S-Äthyldiisobutylthiol-carbamat + 2-Chlor-4-cyclo-2-Chlor-4-cyclothiolcarbamat + thiolcarbamat + thiolcarbamat + ropylamino-sthiolcarbamat 2,4-D 2,4-D Herbizid triazin

Tabelle III (Fortsetzung):

	ΘI	Gegenmittel	T,		Schädigung in %	n %		
Herbizid	Anwendungs- Verbin- verhältnis dung .g/m ² Nr.	Verbin- dung Nr.	Behandlungs- verhältnis % Gew./Gew.	Getrei- deart	Behandeltes Saat-gut	Saat-	Unbehandeltes Saatgut in de benachbarten	Unbehandeltes Saatgut in der benachbarten
7 7 4 th 3					2 Wochen 4 Wochen	ochen	Reihe 2 Woche	Reihe 2 Wochen 4 Wochen
5-A thyldiss- butylthiol- carbamat	ω	9	0,01	Meis	0	0	0	C
S-2,3,3-Tri- chlorallyl-di-		•)	,
isopropyl-thiol-carbamat	ω	9	1,0	Mais	0	0	.0	
S-2,3,3-Trichlor-allyldiisopropyl-		•						
turorcarpamat	2 0	9	0,01	Mais	0	0	0	0
S-Athyldiiso- butylthiol - carbamat	α	ı		7				
S-2.3.5-mrichlor-		1	ı	E C C C C C C C C C C C C C C C C C C C	됨 O			
allyl-diisopro- pyl-thiolcarbamat	8 1 +1	ŧ	ı	Mais				
EPTC = S-1	EPTC = S-Athyl-N,N-dipropylthiocarbamat	propyl thi	ocarbamat;					

Terkümmerung;
Mißbildung;
Keimhemmung;
Blattverbrennung (leaf burn).

Die erfindungsgemäß eingesetzten Gegenmittel können in jeder geeigneten Form angewandt werden. So können sie beispielsweise zu emulgierbaren Flüssigkeiten, emulgierbaren Konzentraten, zu einer Flüssigkeit, zu einem benetzbaren Pulver, zu Staubmitteln, zu einem Granulat oder zu einer anderen zweckmäßigen Form verarbeitet werden. Vorzugsweise die Gegenmittel den Thiolcarbamaten beigemischt und vor oder nach dem Einsäen der Saat in den Boden eingearbeitet. Doch kann natürlich auch zuerst das Thiolcarbamat-Herbizid und danach das Gegenmittel in den Boden eingearbeitet werden. Des weiteren kann das Saatgut mit dem Gegenmittel behandelt und im Boden eingesät werden, der entweder bereits mit Herbizid versehen oder nicht damit behandelt wurde und anschließend einer Herbizid-Behandlung unterzogen wird. Durch die Art und Weise, wie das Gegenmittel zugesetzt wird, wird die herbizide Wirksamkeit der Carbamat-Verbindungen nicht beeinträchtigt.

Die Menge des Gegenmittels kann zwischen etwa 0,0001 und etwa 30 Gegenmittels kann zwischen etwa 0,0001 und etwa 30 Gegenmittelt Thiolcarbamat-Herbizid schwanken, wird jedoch gewöhnlich exakt danach ermittelt, welches Verhältnis sich im Hinblick auf die wirksamste Quantität als wirtschaftlich erweist.

In den Ansprüchen der vorliegenden Anmeldung soll der Ausdruck "wirksame herbizide Verbindung" die wirksamen Thiol-carbamate als solche oder die Thiolcarbamate umfassen, die mit anderen wirksamen Verbindungen, wie z.B. den s-Triazinen und der 2,4-Dichlorphenoxyessigsäure oder den wirksamen Acetaniliden und dergl. vermischt sind. Außerdem ist die wirksame herbizide Verbindung von der als Gegenmittel eingesetzten Verbindung verschieden.

Die Klassen der vorliegend beschriebenen und erläuterten herbiziden Mittel sind als wirksame, solche Wirkung aufweisende Herbizide charakterisiert. Der Grad dieser herbiziden Wirkung ist bei den spezifischen Verbindungen und Kombinationen spezifischer Verbindungen innerhalb der Klassen unterschiedlich. Der Wirkungsgrad ist auch bei den einzelnen Pflanzensorten, für die eine spezifische herbizide Verbindung oder Kombination verwandt werden kann, bis zu einem gewissen Grade unterschiedlich. Eine spezifische herbizide Verbindung oder Kombination zur Bekämpfung unerwünschter Pflanzensorten läßt sich also leicht auswählen. Erfindungsgemäß läßt sich die Schädigung einer gewünschten Nutzpflanze (crop species) in Gegenwart einer spezifischen herbiziden Verbindung oder Kombination verhindern. Durch die spezifischen, in den Beispielen verwandten Nutzpflanzen sollen die Nutzpflanzen, die mit diesem Verfahren geschützt werden können, nicht beschränkt werden.

Die im erfindungsgemäßen Verfahren verwädten herbiziden Verbindungen sind wirksame Herbizide allgemeiner Art. D.h. die Mittel dieser Klasse weisen gegenüber einem großen Bereich von Phanzensorten eine herbizide Wirksamkeit auf, ohne daß ein Unterschied zwischen erwünschten oder unerwünschten Pflanzensorten gemacht wird. Zur Bekämpfung des Pflanzenwuchses wird eine herbizid wirksame Menge der hier beschriebenen herbiziden Verbindungen auf die Fläche oder dort, wo eine Bekämpfung von Pflanzen erwünscht ist, aufgebracht.

Unter "Herbizid" versteht man vorliegend eine Verbindung,

mit der Pflanzenwachstum bekämpft oder modifiziert wird. Zu solchen Formen der Bekämpfung oder Modifizierung gehören alle Abweichungen von der natürlichen Entwicklung, z.B. Vernichtung, Entwicklungsverzögerung, Entblätterung, Austrocknung, Regulierung, Verkümmerung, Bestockung (tillering), Stimulierung, Zwergwuchs und dergl. Unter "Pflanzen" versteht man keimende Samen, auflaufende Sämlinge und vorhandenen Pflanzenwuchs einschließlich der Wurzeln und der über dem Boden befindlichen Teile.

Die in den Tabellen genannten Herbizide wurden in solchen Mengen verwandt, mit denen der unerwünschte Pflanzen-wuchs wirksam bekämpft wird. Die Mengen liegen innerhalb des vom Hersteller empfohlenen Bereichs. Die Unkrautbekämpfung ist aus diesem Grunde innerhalb der gewünschten Menge in jedem Fall kommerziell annehmbar.

In der vorstehenden Beschreibung der als Gegenmittel eingesetzten Verbindungen gilt folgendes für die verschiedenen Substituentengruppen: Zu den Alkylresten gehören, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigt-kettigen Reste mit 1 bis 20 Kohlenstoffatomen, zu den Alkenylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine olefinische Doppelbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12, Kohlenstoffatomen, und zu den Alkinylresten, falls nichts anderes vorgesehen ist, alle gerad- oder verzweigtkettigen, mindestens eine acetylenische Dreifachbindung aufweisenden Reste mit 2 bis 20, vorzugsweise 2 bis 12 Kohlenstoffatomen.

Patentansprüche:

1. Herbizides Mittel, gekennzeichnet durch einen Gehalt an einem herbiziden Wirkstoff und einem Gegenmittel der Formel

in der R einen Halogenalkyl-, Halogenalkenyl-, Alkyl-, Alkenyl-, Cycloalkyl- oder einen Cycloalkylalkylrest, ein Halogenatom oder ein Wasserstoffatom, einen Carboalkoxy-, N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-Nalkinylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamylalkoxyalkyl-, Alkinoxy-, Halogenalkoxy-, Thiocyanatoalkyl-, Alkenylaminoalkyl-, Alkylcarboalkyl-, Cyanoalkyl-, Cyanatoalkyl-, Alkenylaminosulfonoalkyl-, Alkylthioalkyl-, Halogenalkylcarbonyloxyalkyl-, Alkoxycarboalkyl-, Halogenalkenylcarbonyloxyalkyl-, Hydroxyhalogenalkyloxyalkyl-, Hydroxyalkylcarboalkoxyalkyl-, Hydroxyalkyl-, Alkoxysulfonoalkyl-, Furyl-, Thienyl-, Alkyldithiolenyl-, Thienalkyl- oder einen Phenylrest oder einen durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy-, Carbamyl- oder Nitroreste, Carbonsäurereste und deren Salze oder Halogenalkylcarbamylreste substituierten Phenylrest, einen Phenylalkyl-, Phenylhalogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl-, Halogenphenoxyalkyl-,

> eingegangen am 18.5.72 16., 14. 209845/1180

Bicycloalkyl-, Alkenylcarbamylpyridinyl-, Alkinylcarbamylpyridinyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet, R, und R, gleich oder verschieden sein und jeweils Alkenyl- oder Halogenalkenylreste, Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkinyl-, Cyanoalkyl-, Hydroxyalkyl-, Hydroxyhalogenalkyl-, Halogenalkylcarboxyalkyl-, Alkylcarboxyalkyl-, Alkoxycarboxyalkyl-, Thioalkylcarboxyalkyl-, Alkoxycarboalkyl-, Alkylcarbamyloxyalkyl-, Amino-, Formyl-, Halogenalkyl-N-alkylamido-, Halogenalkylamido-, Halogenalkylamidoalkyl-, Halogenalkyl-N-alkylamidoalkyl-, Halogenalkylamidoalkenyl-, Alkylimino-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl-, Alkylsulfonyloxyalkyl-, Mercaptealkyl-, Alkylaminoalkyl-, Alkoxycarboalkenyl-, Halogenalkylcarbonyl-, Alkylcarbonyl-, Alkenylcarbamyloxyalkyl-, Cycloalkylcarbamyloxyalkyl-, Alkoxycarbonyl-, Halogenalkoxycarbonyl-, Halogenphenylcarbamyloxyalkyl-, Cycloalkenyl- oder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Phthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido- oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylsulfonyloder Phenylalkylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxyalkylamidoalkylreste substituierte Phenylalkylreste, Alkylthiodiazolyl-, Piperidylalkyl-, Thiazolyl-, Alkylthiazolyl-, Benzothiazolyl-, Halogenbenzothiazolyl-, Alkylthiazolyl-, Benzothiasolyl-, Halogenbensothiasolyl-, Furylalkyl-, Pyridyl-, Alkylpyridyl-, Alkyloxazolyl-, Tetrahydrofurylalkyl-, 3-Cyano-4,5-polyalkylen-thienyl-, a-Halogenalkylacetamidophenylalkyl-, a-Halogenalkylacetamidonitrophenylalkyl-, α-Halogenalkylacetamidohalogenphenylalkyl-, oder Cyano-

alkenylreste bedeuten können oder auch R₁ und R₂ zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azobicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl- oder Alkylaminoalkenylrest bilden können, wobei R₂ kein Wasserstoffatom oder Halogenphenylrest ist, wenn R₁ ein Wasserstoffatom darstellt.

- 2. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R ein Wasserstoffatom, ein Halogenatom, einen Alkyl-, Halogenalkyl-, Cycloalkyl-, Cycloalkylalkyl-, Alkenyl-, Halogenalkenyl-, Halogenalkoxy-, Alkinoxy-, Hydroxyalkyl-, Alkylthioalkyl- oder einen Hydroxyhalogenalkoxyalkylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Halogenalkyl-, Alkenyl-, Halogenalkenyl-, Alkinyl-, Hydroxy-alkyl-, Hydroxyhalogenalkyl-, Cycloalkyl-, Alkylcycloalkyl-, Alkoxyalkyl- oder Cycloalkenylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 3. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkylrest bedeutet und R₁ und R₂ zusammen mit dem Stickstoffatom einen Piperidinyl-, Alkylpiperidinyl-, Alkyltetrahydropyridyl-, Morpholyl-, Alkylmorpholyl-, Azabicyclononyl-, Benzoalkylpyrrolidinyl-, Oxazolidyl-, Alkyloxazolidyl-, Perhydrochinolyl oder einen Alkylaminoalkenylrest bilden können.

- 4. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Phenylrest oder einen durch Halogenatome, Alkyl-, Halogenalkyl-, Alkoxy- oder Nitroreste, Carbonsäuren und deren Salze oder Carbamyl- oder Halogenalkyl-carbamylreste substituierten Phenylrest, einen Phenylalkenylrest oder einen durch Halogenalkyl- oder einen Phenylalkenylrest oder einen durch Halogenatome, Alkyl- oder Alkoxyreste substituierten Phenylalkenylrest, einen Halogenphenoxy-, Phenylalkoxy-, Phenylalkylcarboxyalkyl-, Phenylcycloalkyl-, Halogenphenylalkenoxy-, Halogenthiophenylalkyl- oder einen Halogenphenoxyalkylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₃ ein Wasserstoffatom darstellt.
- 5. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen N-Alkenylcarbamylalkyl-, N-Alkenylcarbamyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkyl-N-alkinylcarbamylalkyl-, N-Alkenylcarbamylalkoxyalkyl-, N-Alkyl-N-alkinylcarbamyl-alkoxyalkyl-, Dialkenylcarbamylbicycloalkenyl- oder einen Alkinylcarbamylbicycloalkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Wasserstoffatome, Alkyl-, Alkenyl- oder Alkinylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 6. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin
 R einen Halogenalkylrest oder ein Wasserstoffatom bedeutet
 und R₁ und R₂ gleich oder verschieden sein und jeweils

Alkyl- oder Alkenylreste, Wasserstoffatome, Alkoxyalkyloder Phenylreste oder durch Alkylreste, Halogenatome, Halogenalkyl-, Alkoxy-, Halogenalkylamido-, Pthalamido-, Hydroxy-, Alkylcarbamyloxy-, Alkenylcarbamyloxy-, Alkylamido-, Halogenalkylamido oder Alkylcarboalkenylreste substituierte Phenylreste, Phenylalkamylreste oder durch Halogenatome, Alkyl-, Dioxyalkylen- oder Halogenphenoxy-alkylamidoalkylreste substituierte Phenylalkylreste bedeuten können, wobei R2 kein Wasserstoffatom ist, wenn R1 ein Wasserstoffatom darstellt.

- 7. Herbizides Mittel nach Anspruch 1, dadurch gekennzeichnet, daß es ein Gegenmittel der Formel enthält, worin R einen Halogenalkyl-, Alkyl-, Cyanoalkyl-, Thiocyanatoalkyl-, Cyanatoalkyl-, Cycloalkyl-, Bicycloalkyl-, Halogenphenyl-, Phenylalkenyl- oder einen Halogenphenyl-alkenylrest bedeutet und R₁ und R₂ gleich oder verschieden sein und jeweils Cyanoalkylreste, Wasserstoffatome, Alkenyl- oder Alkylreste bedeuten können, wobei R₂ kein Wasserstoffatom ist, wenn R₁ ein Wasserstoffatom darstellt.
- 8. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß es als herbiziden Wirkstoff S-Äthyl-N,N-dipropylthiolcarbamat, S-Äthyldiisobutylthiol-carbamat, S-Propyldipropylthiolcarbamat, S-2,3,3-Trichlor-allyl-diisopropylthiolcarbamat, S-Äthylcyclohexyläthylthio-carbamat, 2-Chlor-2',6'-diäthyl-N-(methoxymethyl)-acet-anilid, S-Äthylhexahydro-1H-azepin-1-carbothioat, 2-Chlor-N-isopropylacetanilid, N,N-Diallyl-2-chloracetamid, S-4-Chlorbenzyldiäthylthiolcarbamat, 2-Chlor-4-äthylamino-6-isopropylamino-s-triazin, 2-Chlor-4,6-bis-(äthylamino)-s-triazin, 2(4-Chlor-6-äthylamino-s-triazin-2-yl-amino)-2-methylpropionitril, 2-Chlor-4-cyclopropylamino-6-isopropyl-

amino-s-triazin, 2,4-Dichlorphenoxyessigsäure oder deren Gemische enthält.

- 9. Herbizides Mittel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß das Gegenmittel in einer Menge im Bereich von etwa 0,0001 bis etwa 30 Gew.-Teile pro Gew.-Teil des herbiziden Wirkstoffs vorliegt.
- 10. Verfahren zur Bekämpfung von Unkrautarten, dadurch gekennzeichnet, daß man dem Boden, in dem sich die Unkrautarten befinden, eine herbizid wirksame Menge des herbiziden Mittels nach einem der Ansprüche 1 bis 9 zusetzt.

Filr: Stauffer Chemical Company
New York, N.Y., V.St.A.

(Dr.H.J.Wolff)
Rechtsanwalt

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
□ other.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.