Theoretische Informatik 1 Teil 4

Bernhard Nessler

Institut für Grundlagen der Informationsverabeitung TU Graz

SS 2008

Übersicht

- Turingmaschinen
 - Mehrband-TM
 - Kostenmaße
 - Komplexität
- Problemklassen
- Äquivalenz von RM und TM
 - Aquivalenz, Sätze
 - Simulation RM durch DTM
 - Simulation DTM durch RM
 - Kosten der Simulationen

Mehrband-TM

- k Köpfe, also pro Schritt k Symbole veränderbar
- 1 Schritt = jeder Kopf bewegt sich
- Köpfe bewegen sich unanbhängig voneinander!
- ullet Übergangsfunktion δ wird aufgeblasen
- k-Band DTM ist also schneller als 1-Band DTM

Äquivalenz k-DTM \mathcal{T}' und 1-DTM \mathcal{T}'

Äquivalenz k-DTM T und 1-DTM T'

```
\mathcal{T}' = (Q', \Sigma, \Gamma', \delta', q'_0, \square, F')
\Gamma' = \Gamma \cup (\Gamma \cup \{*\})^{2k}, \quad * \notin \Gamma
q' \in Q' : q' = \langle q, b_1, \dots, b_k, c, \dots \rangle, \ q \in Q, \ b_i \in \Gamma \cup ?
Start in q'_0: Eingabe umcodieren, dann q' = \langle q_0, ?, \dots, ?, 1, \dots \rangle
1 Schritt der k-DTM wird simuliert durch:
```

- startet in $q' = \langle q, ?, \dots, ?, 1, \dots \rangle$
- 1 Durchlauf von links nach rechts, solange c = 1
- dabei $\langle q,\ldots,?,\ldots,1,\ldots\rangle \to \langle q,\ldots,b_i,\ldots,1,\ldots\rangle$, bis alle k Kopfsymbole in $q'=\langle q,b_1,\ldots,b_k,1,\ldots\rangle$ gespeichert, dann c=2
- $\delta(q, b_1, \ldots, b_k) = (p, \langle c_1, X_1 \rangle, \ldots, \langle c_k, x_k \rangle) = f(q')$
- schrittweises Bandupdate, dann $q' = \langle q, \dots, c = 3, \dots \rangle$
- rewind nach links, dann $q' = \langle p, ?, \dots, ?, 1 \rangle$

Ausgabe umcodieren, wenn $q' = (q, ...), q \in F$

Turmiten, Ameisen

- Chris Langton, 1986
- 4 Zustände = aktuelle Richtung
- Feldfarbe wird immer invertiert
- Bewegungsrichtung rotiert

Turmiten haben dieselbe Berechnungsstärke wie TM.

Kostenmaße bei Eingabe w

Definition (Zeitkosten bei Eingabe w)

Die Funktion $t_{\mathcal{T}}(w): \Sigma^* \mapsto \mathbb{N} \cup \{\infty\}$ gibt die Länge des (endlichen) Berechnungspfades der TM \mathcal{T} bei der Eingabe w an, oder ∞ , wenn dieser Berechnungspfad unendlich ist.

Definition (Platzkosten bei Eingabe w)

Die Funktion $s_{\mathcal{T}}(w): \Sigma^* \mapsto \mathbb{N} \cup \{\infty\}$ gibt die Anzahl der Bandquadrate an, die während der Berechnug der TM \mathcal{T} bei Eingabe von w besucht werden.

Satz (Platzkosten sind beschränkt durch Zeitkosten)

$$\forall \mathcal{T} : \forall w \in \Sigma^* : s_{\mathcal{T}}(w) \leq t_{\mathcal{T}}(w) + 1$$

Komplexität einer DTM

Definition (Zeitkomplexität)

Die Zeitkomplexität einer DTM \mathcal{T} (in Abhängigkeit der Länge der Eingabe) ist definiert als $T_{\mathcal{T}}(n) = \max_{w \in \Sigma^*: |w| \le n} t_{\mathcal{T}}(w)$

Definition (Platzkomplexität)

Die Platzkomplexität einer DTM \mathcal{T} (in Abhängigkeit der Länge der Eingabe) ist definiert als $S_{\mathcal{T}}(n) = \max_{w \in \Sigma^*: |w| \le n} s_{\mathcal{T}}(w)$

Satz (Platzkomplexität ist kleiner als Zeitkomplexität)

$$\forall \mathcal{T} : \forall n \in \mathbb{N} : \mathcal{S}_{\mathcal{T}}(n) \leq \mathcal{T}_{\mathcal{T}}(n) + 1$$

Problemarten

- Konstruktionsprobleme (Optimierungsprobleme)
 Zu einer Eingabe x (der Probleminstanz) soll die optimale
 Lösung, soferne sie existiert, bestimmt werden.
- Funktionsberechnungen
 Eingabe x, berechne f(x). Lösung ist eindeutig.
- Entscheidungsprobleme
 Eingabe x, Ausgabe JA/NEIN bzw 1/0

Größte Bedeutung für Komplexitätstheorie haben Entscheidungsprobleme. Anstelle von Konstruktionsproblemen werden die zugehörigen Entscheidungsprobleme betrachtet.

Beachte: Eingabecodierung ist Teil der Problemdefinition!!

Sprachprobleme (=Entscheidungsprobleme)

geg: Sprache $L \subseteq \Sigma^*$ und ein Wort $w \in \Sigma^*$ **ges:** Ist $w \in L$

characteristische Funktion:

$$f_L: \Sigma^* \mapsto \{0,1\}: f_L(w) = \left\{ \begin{array}{ll} 1 & w \in L \\ 0 & w \notin L \end{array} \right.$$

Sprache einer Entscheidungsfunktion:

$$L = \{w \in \Sigma^* | f_L(w) = 1\}$$

Eine TM \mathcal{T} *entscheidet* L, wenn $f_{\mathcal{T}} = f_L$. \mathcal{T} hält immer nach endlich vielen Schritten. (L heißt rekursiv).

Eine TM \mathcal{T} akzeptiert L, wenn $f_L(w) = 1 \Leftrightarrow f_{\mathcal{T}}(w) = 1$. \mathcal{T} hält zumindest dann, wenn $f_L(w) = 1$. (L heißt rekursiv aufzählbar)

Sprachprobleme vs. Konstruktionsprobleme

Aus mehreren Ergebnissen eines Sprachproblems kann effizient auf die Lösung des zugrundeliegenden Konstruktionsproblems geschlossen werden.

geg: ungerichteter Graph G = (V, E) und $k \ge 1$

ges 1: Enthält G eine Clique der Größe k?

ges 2: Knotenmenge der größten Clique aus G.

 $TM T_1$ löst 1. Problem. Wie kann unter mithilfe von T_1 das 2. Problem effizient gelöst werden?

Lösungsidee: Kanten aus G entsprechend den Entscheidungen von T schrittweise entfernen.

Maximal soviele Aufrufe von \mathcal{T}_1 wie Kanten, also O(poly(n)).

Äquivalenz RM und DTM

Satz

Zu jeder Registermaschine $\mathcal R$ gibt es eine Turingmaschine $\mathcal T$, sodaß für die jeweils berechneten (partiellen) Funktionen gilt:

$$f_{\mathcal{T}}(bin(x_1)\#bin(x_2)\#\ldots\#bin(x_k))=bin(f_{\mathcal{R}}(x_1,\ldots,x_k)).$$

Satz

Zu jeder Turingmaschine \mathcal{T} (mit Ausgabealphabet $\{0,1\}$) gibt es eine Registermaschine \mathcal{R} , sodaß für die jeweils berechneten (partiellen) Funktionen gilt:

$$f_{\mathcal{R}}(w_1, w_2, \dots, w_{|w|}) = bin^{-1}(f_{\mathcal{T}}(w))$$

Simulation RM durch DTM

Simulation RM durch DTM

RM: Programm mit p Befehlen, Speicher r_0, \ldots, r_m

4-Band DTM:
$$\Sigma = \{0, 1, \#\}, \Gamma = \{0, 1, \#, \square\}$$

- Band 1: Eingabe, Band 3: Ausgabe
- Band 4: Nebenrechnungen
- Band2: ###0#r₀##...##bin(m)#bin(r_m)###
- $\bullet \ \ Q = Q_0 \cup Q_1 \cup \ldots \cup Q_p \cup Q_{p+1}$
- Q₀-Zustände übersetzen Eingabe in Registerstruktur
- Q_{p+1} -Zustände übertragen Ergebnis r_0 auf Band 3
- Q_i , $1 \le i \le p$ simuliert Befehl i

Simulation RM durch DTM

274: ADD
$$\star$$
24 \Longrightarrow Q_{274}

- suche ##11000#x# auf Band 2 (9q's)
- kopiere x von Band 2 bis # auf Band 4 (1q)
- suche ##x#y# auf Band 2 (4q's)
- kopiere y von Band 2 bis # auf Band 4 (1q)
- Rewind Band 2 zum Ende des Accumulators (6q's)
- Addiere bitweise Accumulator zu Band 4 (2q)
- Ersetzte Accumulator durch Inhalt von Band 4 (4q's)

Q₂₇₄ umfasst also 27 Einzelzustände

siehe dazu Übungsaufgabe

Simulation DTM durch RM, Variante 1

Zentrale Frage: Wie wird das Band dargestellt? Variante 1: Ein Register pro Bandfeld, startend bei r_{10} :

- Bandfelder nummerieren: $\dots, F_{-2}, F_{-1}, F_0, F_1, F_2, \dots$
- Kopfposition: r_1 , Inhalt: r_{r_1} , Zustand: r_2
- $\bullet \ F_{-k} \to R_{10+2k}, \ F_0 \to r_{10}, \ F_k \to r_{10+2k-1}$
- Rechts: $\Delta = 2$; Links: $\Delta = -2$ IF $r_1 \mod 2 = 1$ THEN $r_1 = r_1 + \Delta$ ELSE $r_1 = r_1 - \Delta$ IF $r_1 = 8$ THEN $r_1 = 11$ ELSEIF $r_1 = 9$ THEN $r_1 = 10$
- Δ , r_2 , r_{r_1} über IF-Tabelle bestimmen
- Nachteil: indirekte Adressierung notwendig

Simulation DTM durch RM, Variante 2

Variante 2: 2 Stacks in je einem Register Stack L in r_3 ist Bandinhalt links vom Kopf Stack R in r_4 ist Bandinhalt rechts vom Kopf Symbol unter dem Kopf in r_2 , aktueller Zustand in r_1 Koniguration: $\beta_m \dots \beta_0 \mathbf{q} \alpha_0 \dots \alpha_n$

•
$$r_3 = \beta_0 + \beta_1 * |\Gamma| + \ldots + \beta_m * |\Gamma|^m$$

 $r_4 = \alpha_1 + \alpha_2 * |\Gamma| + \ldots + \alpha_n * |\Gamma|^{n-1}$
 $r_2 = \alpha_0$ $r_1 = \mathbf{q}$

• moveR:
$$r_3 = r_3 * |\Gamma| + r_2$$
; $r_2 = r_4 \mod |\Gamma|$; $r_4 = r_4 \dim |\Gamma|$

• moveL:
$$r_4 = r_4 * |\Gamma| + r_2$$
; $r_2 = r_3 \mod |\Gamma|$; $r_3 = r_3 \dim |\Gamma|$

Simulation DTM durch RM, Variante 2

$$\begin{split} &\delta(q_1,\alpha_1) = (q_1',\alpha_1',R) \\ &\delta(q_2,\alpha_2) = (q_2',\alpha_2',L) \\ &\delta(q_3,\alpha_3) = (q_3',\alpha_3',L), \qquad F = \{q_{F1},\dots,q_{Fk}\} \\ &\text{Loop:} \\ &\text{If } r_1 = q_1 \ \land \ r_2 = \alpha_1 \ \text{Then } r_1 = q_1'; \ r_2 = \alpha_1'; \text{MoveR}; \\ &\text{ELSE IF } r_1 = q_2 \ \land \ r_2 = \alpha_2 \ \text{Then } r_1 = q_2'; \ r_2 = \alpha_2'; \text{MoveL}; \\ &\text{ELSE IF } r_1 = q_3 \ \land \ r_2 = \alpha_2 \ \text{Then } r_1 = q_3'; \ r_2 = \alpha_3'; \text{MoveL}; \\ &\text{ELSE IF } \dots \\ &\text{ELSE GOTO Rejected} \\ &\text{If } r_1 = q_{F1} \lor \dots \lor r_1 = q_{Fk} \ \text{Then GOTO AccepteD}; \\ &\text{GOTO Loop} \end{split}$$

Kosten der Simulation

Gegeben: RM mit Komplexität $T_{\mathcal{R}}(n)$ Gesucht: $T_{\mathcal{T}}(n)$ der äquivalenten DTM

Satz

$$T_{\mathcal{T}}(n) = \mathcal{O}\left(T_{\mathcal{R}}^2(n)\right)$$

Gegeben: DTM mit Komplexität $T_T(n)$ Gesucht: $T_R(n)$ der simulierenden RM

Satz

$$T_{\mathcal{R}}(n) = \mathcal{O}\left(T_{\mathcal{T}}^2(n)\right)$$