

Ronald A. Mendonça

2025

Contents

	0.1	Introdução
1	Cor	nceitos Fundamentais: Dados e Aprendizado
	1.1	Dados
	1.2	Importância da Compreensão dos Tipos de Dados
	1.3	Tipos de Aprendizado
		1.3.1 Aprendizado Supervisionado (Supervised Learning)
		1.3.2 Aprendizado não Supervisionado (Unsupervised Learning)
		1.3.3 Aprendizado por Reforço (Reinforcement Learning)
2	Est	atística Essencial para Machine Learning
2.1 Estatística Descritiva		
		2.1.1 Exemplo: Calculando a Média e o Desvio Padrão de Temperaturas
		Diárias

0.1 Introdução

Machine Learning (ML), ou aprendizado de máquina, é uma área da inteligência artificial que permite que sistemas computacionais identifiquem padrões e façam previsões a partir de dados, sem a necessidade de programação explícita para cada tarefa. Diferente de softwares tradicionais, onde regras são definidas manualmente, em ML os algoritmos aprendem diretamente com exemplos, ajustando-se para melhorar seu desempenho ao longo do tempo. Essa capacidade transformou campos como medicina, finanças e tecnologia, tornando-se uma das competências mais valiosas do século XXI.

A relevância do Machine Learning está em sua aplicabilidade prática. Empresas utilizam ML para prever vendas, detectar fraudes e personalizar recomendações, enquanto cientistas o aplicam para analisar dados complexos, como sequências genéticas ou padrões climáticos. Para o iniciante, entender os fundamentos de ML abre portas para uma carreira em ciência de dados ou simplesmente para compreender melhor o mundo movido a dados em que vivemos.

Este eBook é voltado para iniciantes que desejam dar os primeiros passos em Machine Learning, sem experiência prévia na área. Para facilidade de entendimento, é recomendável um conhecimento básico de matemática (como médias e equações lineares) e familiaridade mínima com programação, preferencialmente em Python, embora os conceitos sejam explicados de forma acessível. Nosso objetivo é desmistificar o ML, oferecendo uma base teórica para quem quer iniciar a construir modelos simples e entender seus resultados.

Ao longo das próximas páginas, você será introduzido aos conceitos essenciais de Machine Learning, desde a manipulação de dados até a criação de modelos de regressão, classificação e clustering. Cada capítulo combina teoria com exemplos práticos, incluindo trechos de código em Python para ilustrar a aplicação dos métodos discutidos. Ao final, você terá conteúdo suficiente para construir um modelo de machine learning simples e entender os princípios que o sustentam.

Chapter 1

Conceitos Fundamentais: Dados e Aprendizado

1.1 Dados

Em um determinado dia no seu trabalho, você se depara com o desafio de extrair respostas de um conjunto de infromações que, a príncipio, não parecem fazer muito sentido para você. Estruturados ou não, podem ser números, textos, imagens ou qualquer outro tipo de informação. Isso é o que chamamos de dados. Os dados são a base de qualquer modelo de Machine Learning. São coletados, organizados e analisados para extrair informações valiosas.

- Dados Qualitativos (ou Categóricos): Representam características ou atributos que não podem ser quantificados numericamente.
 - Nominais: Não possuem ordem natural. Ex: cores (vermelho, azul, verde), tipos de frutas.
 - Ordinais: Possuem uma ordem ou hierarquia. Ex: níveis de satisfação (ruim, regular, bom, ótimo), ranking de qualidade (A, B, C).
- Dados Quantitativos (ou Numéricos): Representam valores numéricos e podem ser medidos.
 - Discretos: Assumem valores inteiros e finitos. Ex: número de filhos, número de carros em um estacionamento.
 - Contínuos: Podem assumir qualquer valor dentro de um intervalo. Ex: altura, peso, temperatura.

1.2 Importância da Compreensão dos Tipos de Dados

Entender os tipos de dados é essencial para escolher os algoritmos adequados e preparar os dados corretamente. Dados quantitativos podem ser usados diretamente em modelos numéricos, enquanto qualitativos e textuais requerem pré-processamento. Essa distinção será explorada em detalhes nos capítulos seguintes, onde veremos como transformar e utilizar esses dados em tarefas práticas de Machine Learning.

1.3 Tipos de Aprendizado

Os tipos de aprendizado de máquina podem ser classificados em três categorias principais: Supervisionado, Não Supervisionado e Aprendizado por Reforço.

1.3.1 Aprendizado Supervisionado (Supervised Learning)

O aprendizado supervisionado ocorre quando o modelo é treinado em um conjunto de dados rotulado, ou seja, onde a saída correta é conhecida. O objetivo do modelo é aprender um mapeamento entre as entradas e as saídas corretas.

- Previsão de preços de imóveis
- Diagnóstico médico
- Classificação de e-mails como spam ou não spam

1.3.2 Aprendizado não Supervisionado (Unsupervised Learning)

No tipo de aprendizado não supervisionado, os dados não são rotulados e o modelo deve identificar padrões e estruturas nos dados de forma autônoma.

- Segmentação de clientes
- Compressão de dados
- Detecção de anomalias

1.3.3 Aprendizado por Reforço (Reinforcement Learning)

O aprendizado por reforço se baseia em um agente que aprende interagindo com um ambiente e recebendo recompensas ou penalidades com base em suas ações.

- Jogos e Inteligência Artificial (xAI, OpenAI, DeepSeek)
- Controle de robôs

Aprendizado	Descrição	Tipo de Dados
Supervisionado	Dados rotulados	Qualitativos e Quanti- tativos
Não Supervisionado	Usa dados não rotulados para en- contrar padrões	Quantitativos
Por Reforço	Aprendizado por tentativa e erro, com recompensas	Qualitativos e Quanti- tativos

Table 1.1: Comparação entre os tipos de aprendizado de máquina e os tipos de dados utilizados.

Chapter 2

Estatística Essencial para Machine Learning

2.1 Estatística Descritiva

A estatística descritiva é uma parte fundamental da análise de dados, pois fornece uma visão geral das características principais de um conjunto de dados. Ela envolve o resumo e a descrição dos dados por meio de medidas numéricas, gráficos e tabelas. As principais medidas incluem:

- Média: A média aritmética é a soma de todos os valores dividida pelo número total de valores.
- Mediana: O valor que separa os dados em duas metades, onde 50% dos dados estão abaixo e 50% estão acima.
- Moda: O valor que aparece com mais frequência em um conjunto de dados.
- Variância: Uma medida da dispersão dos dados em relação à média. A variância é calculada como a média dos quadrados das diferenças entre cada valor e a média.
- Desvio Padrão: Uma medida da dispersão dos dados em relação à média. Quanto maior o desvio padrão, mais espalhados estão os dados.
- Correlação: Uma medida que indica a força e a direção da relação entre duas variáveis. A correlação varia de -1 a 1, onde -1 indica uma correlação negativa perfeita, 0 indica nenhuma correlação e 1 indica uma correlação positiva perfeita.

2.1.1 Exemplo: Calculando a Média e o Desvio Padrão de Temperaturas Diárias

Suponha que registramos as temperaturas máximas diárias (°C) de uma semana em uma cidade. Os dados coletados são: 20, 22, 19, 23, 21, 20, 24. Vamos calcular a média e o desvio padrão passo a passo.

Cálculo da Média

A média (\bar{x}) é obtida somando todos os valores e dividindo pelo número de observações (n). Matematicamente:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n} \tag{2.1}$$

Para os dados fornecidos:

- Soma dos valores: 20 + 22 + 19 + 23 + 21 + 20 + 24 = 149,
- Número de observações: n = 7,
- Média: $\bar{x} = \frac{149}{7} \approx 21.29$.

Portanto, a temperatura média diária é aproximadamente 21,29°C.

Cálculo do Desvio Padrão

O desvio padrão (σ) mede a variabilidade dos dados em relação à média. Para uma população, é dado por:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n}} \tag{2.2}$$

Passo a passo:

- 1. Calcule as diferenças entre cada valor e a média $(x_i \bar{x})$:
 - \bullet 20 21.29 = -1.29,
 - 22 21.29 = 0.71,
 - \bullet 19 21.29 = -2.29,
 - \bullet 23 21.29 = 1.71,
 - 21 21.29 = -0.29,
 - \bullet 20 21.29 = -1.29,
 - 24 21.29 = 2.71.
- 2. Eleve cada diferença ao quadrado:
 - $(-1.29)^2 = 1.6641$,
 - $0.71^2 = 0.5041$,
 - $(-2.29)^2 = 5.2441$,
 - $1.71^2 = 2.9241$,
 - \bullet $(-0.29)^2 = 0.0841,$
 - $(-1.29)^2 = 1.6641$,
 - \bullet 2.71² = 7.3441.
- 3. Some os quadrados: 1.6641 + 0.5041 + 5.2441 + 2.9241 + 0.0841 + 1.6641 + 7.3441 = 19.4288,
- 4. Divida pelo número de observações: $\frac{19.4288}{7} \approx 2.7755$,
- 5. Tire a raiz quadrada: $\sigma = \sqrt{2.7755} \approx 1.66$.

Assim, o desvio padrão das temperaturas é aproximadamente 1,66°C.

Interpretação

A média de 21,29°C indica a temperatura típica da semana, enquanto o desvio padrão de 1,66°C mostra que as temperaturas variam, em média, 1,66°C para mais ou menos em relação à média. Esses valores ajudam a entender a consistência do clima e podem ser usados em modelos de Machine Learning para previsões futuras.

Cálculo com Python

Os mesmos cálculos podem ser realizados de forma eficiente usando Python com a biblioteca NumPy. O código a seguir mostra como:

```
# Importando a biblioteca NumPy
import numpy as np

# Dados das temperaturas diárias
temperaturas = [20, 22, 19, 23, 21, 20, 24]

# Calcula a média
media = np.mean(temperaturas)
print(f"Média_das_temperaturas:__{media:.2f}^C")

# Calcula o desvio padrão
desvio_padrao = np.std(temperaturas)
print(f"Desvio_padrão_das_temperaturas:__{desvio_padrao:.2f}^C")
```

Executando o código, obtemos uma média de 21,29°C e um desvio padrão de 1,67°C, valores consistentes com o cálculo manual (pequenas diferenças ocorrem devido a arredondamentos).

Visualização com Curva Normal

A distribuição das temperaturas pode ser visualizada em uma curva normal, que mostra como os dados se distribuem em torno da média. A Figura 2.1 apresenta o histograma das temperaturas e a curva normal correspondente, gerada com Python e as bibliotecas Matplotlib e SciPy.

Interpretação

A média de 21,29°C e o desvio padrão de 1,67°C indicam que as temperaturas variam moderadamente em torno de um valor central. A curva normal na Figura 2.1 ilustra essa distribuição, sendo útil em Machine Learning para entender a variabilidade dos dados antes de aplicar modelos preditivos.

Figure 2.1: Distribuição das temperaturas diárias com curva normal (média = 21,29°C, desvio padrão = 1,67°C).