Tree Automata as Algebras: Minimisation and Determinisation

Gerco van Heerdt Tobias Kappé Jurriaan Rot Matteo Sammartino Alexandra Silva

University College London

June 3, 2019

DFAs: nice diagrams

Tree automata: no nice diagrams

Transitions originate from *multiple states* Automaton reads *trees* rather than words

Alphabet Γ with arities ar: $\Gamma \to \mathbb{N}$ Sets I, O

Tree automaton (Q, $\{\delta_{\gamma}\}_{\gamma\in\Gamma}$, i, o)

- lacktriangle transitions $\delta_\gamma\colon Q^{\mathsf{ar}(\gamma)} o Q$
- ▶ initial states $i: I \rightarrow Q$
- ▶ output $o: Q \rightarrow O$

DFAs: every γ has arity 1

Tree automata: no nice diagrams :(

Transitions originate from *multiple states* Automaton reads *trees* rather than words

Alphabet Γ with arities ar: $\Gamma \to \mathbb{N}$ Sets I, O

Tree automaton $(Q, \{\delta_{\gamma}\}_{\gamma \in \Gamma}, i, o)$

- lacktriangle transitions $\delta_\gamma\colon Q^{\operatorname{ar}(\gamma)} o Q$
- ▶ initial states $i: I \rightarrow Q$
- ▶ output $o: Q \rightarrow O$

DFAs: every γ has arity 1

$$I = \{a, b\}$$
 $\Gamma = \{\bullet\}, \operatorname{ar}(\bullet) = 2$ $O = \{0, 1\}$

$$I = \{a, b\}$$
 $\Gamma = \{\bullet\}, \operatorname{ar}(\bullet) = 2$ $O = \{0, 1\}$
 $Q = \{q_a, q_b, q_1, q_\perp\}$
 $i(a) = q_a$
 $i(b) = q_b$
 $\delta_{\bullet}(q_a, q_b) = q_1$
 $\delta_{\bullet}(q_a, q_1) = q_a$
 $\delta_{\bullet}(q_1, q_b) = q_b$
 $\delta_{\bullet}(-) = q_\perp$
 $o(q_a) = o(q_b) = o(q_\perp) = 0$
 $o(q_1) = 1$

$$I = \{a,b\} \qquad \Gamma = \{\bullet\}, \operatorname{ar}(\bullet) = 2 \qquad O = \{0,1\}$$

$$Q = \{q_a, q_b, q_1, q_\perp\}$$

$$i(a) = q_a$$

$$i(b) = q_b$$

$$\delta_{\bullet}(q_a, q_b) = q_1$$

$$\delta_{\bullet}(q_a, q_1) = q_a$$

$$\delta_{\bullet}(q_1, q_b) = q_b$$

$$\delta_{\bullet}(-) = q_\perp \qquad \qquad b$$

$$o(q_a) = o(q_b) = o(q_\perp) = 0$$

$$o(q_1) = 1$$

$$I = \{a,b\} \qquad \Gamma = \{\bullet\}, \operatorname{ar}(\bullet) = 2 \qquad O = \{0,1\}$$

$$Q = \{q_a, q_b, q_1, q_\perp\}$$

$$i(a) = q_a$$

$$i(b) = q_b$$

$$\delta_{\bullet}(q_a, q_b) = q_1$$

$$\delta_{\bullet}(q_a, q_1) = q_a$$

$$\delta_{\bullet}(q_1, q_b) = q_b$$

$$\delta_{\bullet}(-) = q_\perp$$

$$o(q_a) = o(q_b) = o(q_\perp) = 0$$

$$o(q_1) = 1$$

$$I = \{a, b\}$$
 $\Gamma = \{\bullet\}, \operatorname{ar}(\bullet) = 2$ $O = \{0, 1\}$
 $Q = \{q_a, q_b, q_1, q_\perp\}$
 $i(a) = q_a$
 $i(b) = q_b$
 $\delta_{\bullet}(q_a, q_b) = q_1$
 $\delta_{\bullet}(q_1, q_b) = q_b$
 $\delta_{\bullet}(-) = q_\perp$
 $o(q_a) = o(q_b) = o(q_\perp) = 0$
 $o(q_1) = 1$

$$I = \{a, b\} \qquad \Gamma = \{\bullet\}, \operatorname{ar}(\bullet) = 2$$

$$Q = \{q_a, q_b, q_1, q_\perp\}$$

$$i(a) = q_a$$

$$i(b) = q_b$$

$$\delta_{\bullet}(q_a, q_b) = q_1$$

$$\delta_{\bullet}(q_a, q_1) = q_a$$

$$\delta_{\bullet}(q_1, q_b) = q_b$$

$$\delta_{\bullet}(-) = q_\perp$$

$$o(q_a) = o(q_b) = o(q_\perp) = 0$$

$$o(q_1) = 1$$

 $O = \{0, 1\}$

$$I = \{a, b\}$$
 $\Gamma = \{\bullet\}, \operatorname{ar}(\bullet) = 2$ $O = \{0, 1\}$
 $Q = \{q_a, q_b, q_1, q_\perp\}$
 $i(a) = q_a$
 $i(b) = q_b$
 $\delta_{\bullet}(q_a, q_b) = q_1$
 $\delta_{\bullet}(q_1, q_b) = q_b$
 $\delta_{\bullet}(-) = q_\perp$
 $o(q_a) = o(q_b) = o(q_\perp) = 0$
 $o(q_1) = 1$

$$I = \{a, b\}$$
 $\Gamma = \{\bullet\}, \operatorname{ar}(\bullet) = 2$ $O = \{0, 1\}$
 $Q = \{q_a, q_b, q_1, q_\perp\}$
 $i(a) = q_a$
 $i(b) = q_b$
 $\delta_{\bullet}(q_a, q_b) = q_1$
 $\delta_{\bullet}(q_1, q_b) = q_b$
 $\delta_{\bullet}(-) = q_\perp$
 $o(q_a) = o(q_b) = o(q_\perp) = 0$
 $o(q_1) = 1$

$$I = \{a,b\}$$
 $\Gamma = \{\bullet\}, \operatorname{ar}(\bullet) = 2$ $O = \{0,1\}$
 $Q = \{q_a, q_b, q_1, q_\perp\}$
 $i(a) = q_a$
 $i(b) = q_b$ q_a
 $\delta_{\bullet}(q_a, q_b) = q_1$
 $\delta_{\bullet}(q_1, q_b) = q_b$
 $\delta_{\bullet}(-) = q_\perp$
 $o(q_a) = o(q_b) = o(q_\perp) = 0$
 $o(q_1) = 1$

$$I = \{a, b\} \qquad \Gamma = \{\bullet\}, \operatorname{ar}(\bullet) = 2 \qquad O = \{0, 1\}$$

$$Q = \{q_a, q_b, q_1, q_\perp\}$$

$$i(a) = q_a$$

$$i(b) = q_b$$

$$\delta_{\bullet}(q_a, q_b) = q_1$$

$$\delta_{\bullet}(q_a, q_1) = q_a$$

$$\delta_{\bullet}(q_1, q_b) = q_b$$

$$\delta_{\bullet}(-) = q_\perp$$

$$o(q_a) = o(q_b) = o(q_\perp) = 0$$

$$o(q_1) = 1$$

$$I = \{a, b\}$$
 $\Gamma = \{\bullet\}, \operatorname{ar}(\bullet) = 2$ $O = \{0, 1\}$
 $Q = \{q_a, q_b, q_1, q_\perp\}$
 $i(a) = q_a$
 $i(b) = q_b$
 $\delta_{\bullet}(q_a, q_b) = q_1$
 $\delta_{\bullet}(q_a, q_1) = q_a$
 $\delta_{\bullet}(q_1, q_b) = q_b$
 $\delta_{\bullet}(-) = q_\perp$
 $o(q_a) = o(q_b) = o(q_\perp) = 0$
 $o(q_1) = 1$

Tree automata as functor algebras

Tree automata over Γ can be seen as algebras for *signature* endofunctor

$$\Sigma X = \coprod_{\gamma \in \Gamma} X^{\operatorname{ar}(\gamma)}$$

(together with initial states and output)

Free Σ -algebra with generators X written $\Sigma^{\diamond}X$

trees over the signature with additional X constants

 Σ^{\diamond} forms a *monad*

Tree language

Given: tree automaton (Q, δ, i, o) , $\delta \colon \Sigma Q \to Q$

 $I \stackrel{i}{ o} Q$ extends to **reachability map** $\Sigma^{\diamond} I \stackrel{\mathsf{reach}}{ o} Q$

Accepted language is $\mathcal{L}_Q = \Sigma^{\diamond} I \xrightarrow{\mathsf{reach}} Q \xrightarrow{o} O$

In general, a language is a morphism $\Sigma^{\diamond}I o O$

Minimality of DFAs: nice diagram

Reachable: reach surjective

Observable: obs injective

Minimal: reachable + observable

Minimality of tree automata: no nice diagram

Reachable: $\Sigma^{\diamond}I \xrightarrow{\text{reach}} Q$ surjective

Minimal: final among automata that

- ▶ are reachable and
- accept the same language

Minimisation of an automaton: final quotient automaton

Minimisations of reachable automata are minimal

Minimality of tree automata: no nice diagram :(

Reachable: $\Sigma^{\diamond}I \xrightarrow{\text{reach}} Q$ surjective

Minimal: final among automata that

- are reachable and
- accept the same language

Minimisation of an automaton: final quotient automaton

Minimisations of reachable automata are minimal

Minimisation via cobase

Automaton (Q, δ, i, o)

Complete lattice on quotients

$$c \leq c' \iff Q \xrightarrow{c} \bigcup_{c'} f$$

Minimisation: gfp of monotone operator involving cobase

Minimisation via cobase

Automaton (Q, δ, i, o)

Complete lattice on quotients

$$c \leq c' \iff Q \xrightarrow{c} C'$$

Minimisation: gfp of monotone operator involving cobase

DFAs as monad algebras

$$Q \times A \xrightarrow{\delta} Q$$
 extends to $Q \times A^* \xrightarrow{\delta^*} Q$ δ^* monoid action \implies bijective correspondence algebra for monad $(-) \times A^*$

Unit
$$X \to X \times A^* \text{ by empty word}$$
 Multiplication
$$X \times A^* \times A^* \to X \times A^* \text{ by concatenation}$$

Automata based on monad algebras

Given objects I and O and a monad T, we can define automata

where δ is a T-algebra

Reachability map: $TI \xrightarrow{j^{\sharp}} Q$ Language: $TI \xrightarrow{j^{\sharp}} Q \xrightarrow{o} Q$

Language:

Automata based on monad algebras

DFA case:

where δ is a monoid action

Reachability map: $1 \times A^* \xrightarrow{j^{\sharp}} Q$ Language: $1 \times A^* \xrightarrow{j^{\sharp}} Q \xrightarrow{o} 2$

Language:

Nerode equivalence: classic

Used to find minimal automaton

Given language $\mathcal{L}: A^* \to 2$,

$$R = \{(u, v) \in A^* \times A^* \mid \forall w \in A^*. \mathcal{L}(uw) = \mathcal{L}(vw)\}$$

Largest relation making this diagram commute:

Nerode equivalence: classic

Used to find minimal automaton

Given language $\mathcal{L}: A^* \to 2$,

$$R = \{(u, v) \in A^* \times A^* \mid \forall w \in A^*. \mathcal{L}(uw) = \mathcal{L}(vw)\}$$

Largest relation making this diagram commute:

$$\begin{array}{c|c} R \times A^* & \xrightarrow{p_2 \times \mathrm{id}} & 1 \times A^* \times A^* \\ \downarrow^{p_1 \times \mathrm{id}} & & \downarrow^{\mu} \\ \downarrow^{1} \times A^* & \downarrow^{\mu} \\ 1 \times A^* \times A^* & \xrightarrow{\mu} 1 \times A^* & \xrightarrow{\mathcal{L}} 2 \end{array}$$

Nerode equivalence: abstract

 $\exists R, p_1, p_2 \text{ s.t.}$

and if $\exists S, q_1, q_2$ s.t.

Theorem: Nerode equivalence \iff minimal automaton

Nerode equivalence: syntactic congruence

$$I=A$$
, $T=(-)^*$, $\mu_X\colon (X^*)^* o X^*$ flattens

Given $\mathcal{L} \colon A^* \to 2$, R instantiates to the largest relation s.t.

$$\frac{(u_1,v_1),\ldots,(u_n,v_n)\in R}{\mathcal{L}(u_1\cdots u_n)=\mathcal{L}(v_1\cdots v_n)}$$

or equivalently (syntactic congruence)

$$\frac{(u,v) \in R \qquad w, x \in A^*}{\mathcal{L}(wux) = \mathcal{L}(wvx)}$$

Minimal automaton: syntactic monoid

Nerode equivalence in **Set**

Exists for any finitary monad

- ▶ Equivalence under *contexts* T(I+1)
- ▶ Element of 1 is a hole where trees can be plugged in

Plans: learning

Tree automata learning algorithms exist

- ► But not modulo equations
- Pomset automata

Axiomatisation of semantic object

Further paper overview

Nominal tree automata

- Abstraction
- \triangleright Parse trees for λ -terms

Relations between notions of minimality

Minimal, minimisation, simple

Determinisation (lifting Kleisli adjunction)

- ► Nondeterministic (nominal) tree automata
- Multiplicity/weighted tree automata