The distributive property states that a(b+c)=ab+ac, for all $a,b,c\in\mathbb{R}.$

The equivalence class of a is [a]

The set A is defined to be $\{1, 2, 3\}$

I have a money of 100\$

$$2\left(\frac{1}{X^2 - 1}\right)$$

$$2\left(\frac{1}{X^2 - 1}\right)$$

$$2\left\{\frac{1}{X^2 - 1}\right\}$$

$$\left(\frac{1}{X^2 - 1}\right)$$

$$\left(\frac{1}{1 + \left(\frac{1}{1 + x}\right)}\right)$$

Tables:

x	1	2	3	4	5
f(x)	10	11	12	13	14

x	1	2	3	4	5
f(x)	$\frac{1}{2}$	11	12	13	14

Table 1: These values represent the values of f(x)

Table 2: The relationship between f & f'

f(x)	f'(x)		
x > 0	The function $f(x)$ is increasing		

Table 3: The relationship between f & f'

f(x)	f'(x)
x > 0	The function $f(x)$ is increasing. The function $f(x)$ is increasing

Equation Arrays:

$$5x^{21}$$
 Place Your Text Here (1)

$$5x^{21} - 9 = x + 3 \tag{2}$$

$$5x^2 - x - 12 = 0 (3)$$

(4)

$$5x^{21} - 9 = x + 3 (5)$$

$$5x^2 - x - 12 = 0 (6)$$

$$= 12x - 6 - x^2 \tag{7}$$

$$5x^{21} - 9 = x + 3$$
$$5x^{2} - x - 12 = 0$$
$$= 12x - 6 - x^{2}$$

$$5x^{21} - 9 = x + 3 \tag{8}$$

$$5x^2 - x - 12 = 0 (9)$$

$$= 12x - 6 - x^2 \tag{10}$$