LAWS OF PROPOSITIONAL LOGIC

I dempotent PVP = P, PNP = P* element in a set that is unchanged in value while multiplied by itself (ex: 1.1=1) *

Associative

(PVq) V r = PV(qVr) (PNq) N r = PN(qNr) * think grouping lassociations *

Commutative PVq=qVP, pAq=qAP * think community = exchange of ideas *

Distributive

$$PV(q\Lambda r) = (PVq) \Lambda(PVr)$$

 $P\Lambda(qVr) = (P\Lambda q) V(P\Lambda r)$

Identity PVF = P, PNT = P

Domination PAFEF, PVTET

Double regation 77 p=p

Complement

* think complementary colors are opposite linverse *

Absorption $PV(p\Lambda q) = p$, $P\Lambda(pVq) = p$ *the meaning of q yets lost within $p \neq 0$

$$D_{\underline{e}} \underline{Morgan's}$$

$$\neg (p \lor q) = \neg p \land \neg q$$

$$\neg (p \land q) = \neg p \lor \neg q$$

- * Not (por q) means that both p and q must each be negated *
- * Not (panda) means that only one (pora) must be negated *

De Morgan's for Quantified Statements ¬ $\forall x F(x) \equiv \exists x \neg F(x)$

$$\neg \forall x F(x) \equiv \exists x \neg F(x)$$

"It's not true that for every x, F(x)" = "There exists an x where F(x) is not true"

 $\neg \exists_{x} P(x) \equiv \forall_{x} \neg P(x)$

"There is not an x where P(x)" = "For all x, P(x) is not true"

Nested Quantifiers

*note: replace & with I and vice versa, then negate predicate