Ayrık Matematik

Cizgeler

H. Turgut Uyar Ayşegül Gençata Yayımlı Emre Harmancı

2001-2011

Lisans

©2001-2011 T. Uvar. A. Yavımlı, E. Harmancı

- to Share to copy, distribute and transmit the work
 - to Remix to adapt the work
- Under the following conditions:
- Attribution You must attribute the work in the manner specified by the author or licensor (but not in any way that suggests that they endorse you or your use of the work).
- Noncommercial You may not use this work for commercial purposes.
- Share Alike If you alter, transform, or build upon this work, you may distribute the resulting work only

Legal code (the full license):

http://creativecommons.org/licenses/bv-nc-sa/3.0/

Konular

Cizgeler

Giris

İzomorfizm Bağlılık

Düzlemsel Cizgeler

Ağaclar

Giris

Köklü Ağaçlar

Cizgelerde Arama Düzenli Ağaçlar

Ağırlıklı Cizgeler

En Kısa Yol

En Hafif Kapsayan Ağaç

Cizgeler

Tanım

cizge: G = (V, E)

- V: düğüm kümesi
- ► E ⊆ V × V: ayrıt kümesi
- e = (v₁, v₂) ∈ E ise:
 - v₁ ve v₂ düğümleri e ayrıtının uçdüğümleri
 - ▶ e ayrıtı v₁ ve v₂ düğümlerine çakışık
 - v₁ ve v₂ düğümleri bitişik
- hiçbir ayrıtın çakışmadığı düğüm: yalıtılmış düğüm

Yönlü Çizgeler

Tanım

yönlü çizge: ayrıtlar yönlü

- ▶ yönlü ayrıt: yay
- başlangıç ve bitiş düğümleri

6 / 160

Yönlü Çizge Örneği Örnek

Çoklu Çizgeler

Tanım

koşut bağlı ayrıtlar:

aynı iki düğüm arasındaki ayrıtlar

tek-cevre:

iki ucu aynı düğüm olan ayrıt

valın cizge:

koşut bağlı ayrıtlar ya da tek-çevre içermeyen çizge

çoklu çizge:

7/160

yalın olmayan çizge

Örnek Örnek koşut bağlı ayrıtlar: (a, b) tek-çevre: (e, e)

Gösterilim

- çakışıklık matrisi:
 - satırlara düğümler, sütunlara ayrıtlar
 - ayrıt düğüme çakışıksa 1, değilse 0
- bitisiklik matrisi:
 - satırlara ve sütunlara düğümler
 - hücrelere düğümler arasındaki ayrıt sayısı

10 / 160

Çakışıklık Matrisi Örneği

Örnek

	e_1	e_2	e_3	e_4	e_5	e_6	e_7	e_8
v ₁	1	1	1	0	1	0	0	0
V_2	1	0	0	1	0	0	0	0
V3	0	0	1	1	0	0	1	1
V_4	0	0	0	0	1	1	0	1
V_5	0	e ₂ 1 0 0 0 1	0	0	0	1	1	0

Bitişiklik Matrisi Örneği

	v_1	V_2	V3	V_4	V ₅
v_1	0	1	1	1	1
V_2	1	0	1	0	0
V3	1	1	0	1	1
V_4	1	0	1	0	1
V ₅	0 1 1 1	0	1	1	0

12 / 160

Kerte

Tanım

kerte: düğüme çakışan ayrıtların sayısı

Teorem

v; düğümünün kertesi d; ise:

$$|E| = \frac{\sum_i d_i}{2}$$

14 / 160

Kerte Örneği

13/160

$$J_a = 6$$

 $J_b = 3$
 $J_c = 2$
 $J_d = 2$

 $d_e = 5$ $d_f = 2$ coplam = 20

E| = 10

Yönlü Cizgelerde Kerte

- kerte ikiye ayrılıyor
 - ▶ giris kertesi: d.,i cıkıs kertesi: d.º
- ▶ giriş kertesi 0 olan düğüm: kaynak
- ▶ çıkış kertesi 0 olan düğüm: kuyu

Kerte

Teorem

Yönsüz bir çizgede kertesi tek olan düğümlerin sayısı çifttir.

Tanit.

- ▶ t_i: kertesi i olan düğümlerin sayısı
- $2|E| = \sum_{i} d_{i} = 1t_{1} + 2t_{2} + 3t_{3} + 4t_{4} + 5t_{5} + \dots$ $2|E| 2t_{2} 4t_{4} \dots = t_{1} + t_{3} + \dots + 2t_{3} + 4t_{5} + \dots$
- $2|E|-2t_2-4t_4-\cdots-2t_3-4t_5-\cdots=t_1+t_3+t_5+\ldots$
- > sol yan çift olduğuna göre sağ yan da çifttir

Düzenli Çizgeler

Tanım

düzenli cizge:

bütün düğümlerin kertelerinin avnı olduğu cizge

▶ n-düzenli: bütün düğümlerin kerteleri n

Düzenli Çizge Örnekleri

Örnek

Tam Bağlı Çizgeler

Tanım

tam bağlı çizge:

 $\forall v_1, v_2 \in V (v_1, v_2) \in E$

► K_n: n düğümlü tam bağlı çizge

Tam Bağlı Çizge Örnekleri

Örnek (K₄)

Örnek (K₅)

İki Parçalı Çizgeler

Tanım

iki parçalı çizge:

 $V = V_1 \cup V_2 \wedge V_1 \cap V_2 = \emptyset$ $\forall (v_1, v_2) \in E \ v_1 \in V_1 \land v_2 \in V_2$

- tam bağlı iki parçalı çizge: $\forall v_1 \in V_1 \forall v_2 \in V_2 (v_1, v_2) \in E$
 - $K_{m,n}$: $|V_1| = m$, $|V_2| = n$

İki Parçalı Çizge Örnekleri

Örnek ($K_{2,3}$)

Örnek (K_{3,3})

23/160

21/160

Altçizge

Tanım

altçizge:

G' = (V', E') çizgesi G = (V, E) çizgesinin altçizgesi ise

- $\blacktriangleright \ V' \subseteq V$
- E' ⊂ E
- $\blacktriangleright \ \forall (v_1,v_2) \in E' \ v_1 \in V' \land v_2 \in V'$

İzomorfizm

Tanım

izomorfik çizgeler:

G = (V, E) ile $G^* = (V^*, E^*)$ çizgeleri izomorfik ise $\exists f : V \to V^* (u, v) \in E \Rightarrow (f(u), f(v)) \in E^*$

- ▶ f birebir ve örten
- aynı şekilde çizilebilir

25 / 160

İzomorfizm Örneği

Örnek

 $F = \{(a,d),(b,e),(c,b),(d,c),(e,a)\}$

İzomorfizm Örneği

Örnek (Petersen çizgesi)

$$f = \{(a,q), (b,v), (c,u), (d,y), (e,r), (f,w), (g,x), (h,t), (i,z), (j,s)\}$$

27 / 160

Homeomorfizm

Tanım

homeomorfik cizge:

izomorfik bir çizgedeki bir ayrıtı bölen düğümler ekleyerek elde edilen çizge

Homeomorfizm Örneği
Örnek

a b c a b c

d d f e

Dolași

Tanım

dolası:

dolaşı: bir başlangıç düğümünden (v_0) bir varış düğümüne (v_n)

 $v_0, e_1, v_1, e_2, v_2, e_3, v_3, \dots, e_{n-1}, v_{n-1}, e_n, v_n$

 $e_i = (v_{i-1}, v_i)$ olacak şekilde düğüm-ayrıt dizisi

- ► ayrıtları yazmaya gerek yok
- ▶ uzunluk: ayrıt sayısı
- $v_0 \neq v_n$ ise acık, $v_0 = v_n$ ise kapalı

32 / 160

.....

Gezi

Tanım

gezi: ayrıtların yinelenmediği dolaşı

- ► kapalı gezi: devre
- ▶ kapsayan gezi: çizgedeki bütün ayrıtlardan geçilen gezi

Yol Örneği

Yol

Tanım

yol: düğümlerin yinelenmediği dolaşı

- kapalı yol: cevre
- ▶ kapsayan yol: çizgedeki bütün düğümlere uğranan yol

(c, b), (b, a), (a, d), (d, e), (e, f) c, b, a, d, e, f

36 / 160

Bağlılık

Tanım

bağlı cizge:

seçilebilecek her düğüm çifti arasında bir yol var

▶ bağlı olmayan bir çizge bağlı bileşenlere ayrılabilir

Bağlı Bileşen Örneği

Örnek

- çizge bağlı değil: a ile c arasında yol yok
- bağlı bileşenler:
- a.d.e b. c

38 / 160

Uzaklık

Tanım

uzaklık: iki düğüm arasındaki en kısa yolun uzunluğu

Tanım

çap: çizgedeki en büyük uzaklık

Uzaklık Örneği

Örnek

- ▶ a ile e düğümlerinin uzaklığı: 2
- ► cap: 3

39/160

37 / 160

Kesitleme Noktası

Tanım

G - v:

G çizgesinden v düğümü ve ona çakışık bütün ayrıtların çıkarılmasıyla elde edilen çizge

Tanım

kesitleme noktasi:

G bağlı ama G - v bağlı değilse v bir kesitleme noktasıdır

41/160

Yönlü Dolaşılar

- yönsüz cizgelere benzer şekilde
- yaylar yönsüz varsayarak tanımlanırsa: yarı-dolaşı, yarı-gezi, yarı-yol

Zayıf Bağlı Çizge

zayıf bağlı: her düğüm çifti arasında bir yarı-yol var

Tanım

44 / 160

Königsberg Köprüleri • bütün köprülerden bir kere geçilerek başlangıç noktasına dönülecek

Geçit Veren Çizge

Tanım

47 / 160

gecit veren cizge:

üzerinde kapsayan bir gezi düzenlenebilen çizge

- kertesi tek olan bir düğüm varsa gezinin ya başlangıç ya da varış düğümü olmalı
- başlangıç ve varış dışındaki bütün düğümlerin kerteleri çift olmalı

48 / 160

Geçit Veren Çizge Örneği

Örnek

- a, b ve c düğümlerinin kerteleri çift
- d ve e düğümlerinin kerteleri tek
- d düğümünden başlayıp e düğümünde biten (ya da tersi) bir kapsayan gezi oluşturulabilir: d, b, a, c, e, d, c, b, e

Königsberg Köprüleri

bütün düğümlerin kerteleri tek: geçit vermez

50 / 160

Euler Çizgeleri

Tanım

Euler çizgesi:

üzerinde kapalı bir kapsayan gezi düzenlenebilen çizge

▶ Euler çizgesi ⇔ bütün düğümlerin kerteleri çift

Euler Çizgesi Örnekleri

Örnek (Euler çizgesi)

Örnek (Euler çizgesi değil)

51/160

49/160

Hamilton Çizgeleri

Tanım

Hamilton çizgesi:

üzerinde kapalı bir kapsayan yol düzenlenebilen çizge

Hamilton Çizgesi Örnekleri

Örnek (Hamilton çizgesi)

Örnek (Hamilton çizgesi değil)

54 / 16

Bağlantı Matrisi

- çizgenin bitişiklik matrisi A ise A^k matrisinin (i, j) elemanı i. düğüm ile j. düğüm arasındaki k uzunluklu dolasıların savısını gösterir
- ightharpoonup n düğümlü yönsüz bir çizgede iki düğüm arasındaki uzaklık en fazla n-1 olabilir
- bağlantı matrisi: $C = A^1 + A^2 + A^3 + \cdots + A^{n-1}$
 - bütün elemanlar sıfırdan farklı ise çizge bağlıdır

Warshall Algoritması

- düğümler arasındaki dolaşıların sayısı yerine dolası olup olmadığını belirlemek daha kolav
- sırayla her düğüm için:
 - o düğüme gelinebilen düğümlerden
 - (matriste o sütunda 1 olan satırlardan)
 - o düğümden gidilebilen düğümlere (matriste o satırda 1 olan sütunlara)

.

Warshall Algoritması Örneği

Örnek

61/160

Düzlemsel Çizgeler

Tanım

düzlemsel çizge:

ayrıtları kesişmeden bir düzleme çizilebilen çizge

▶ harita: çizgenin düzlemsel bir çizimi

62 / 160

Düzlemsel Çizge Örneği

Bölgeler

- ▶ bir harita düzlemi *bölgelere* ayırır
- bölge kertesi:
 - bölgenin sınırı oluşturan dolaşının uzunluğu

Teorem

r; bölgesinin kertesi dr; ise:

$$|E| = \frac{\sum_i d_{r_i}}{2}$$

Bölge Örneği

Örnek

$$d_{r_1} = 3 \text{ (abda)}$$

 $d_{r_2} = 3 \text{ (bcdb)}$

$$d_{r_2} = 3 \text{ (bcdb)}$$

 $d_{r_3} = 5 \text{ (cdefec)}$

$$d_{r_4} = 4 \text{ (abcea)}$$

 $d_{r_5} = 3 \text{ (adea)}$

$$\sum_{r} d_{r} = 18$$

$$|E| = 9$$

Euler Formülü

Teorem (Euler Formülü)

Bağlı, düzlemsel çizgelerde |V| - |E| + |R| = 2.

66 / 160

Euler Formülü Örneği

Örnek

$$|V| = 6$$
, $|E| = 9$, $|R| = 5$

Euler Formülünün Tanıtı

Tanıt

65/160

67 / 160

yöntem: |E| üzerinden tümevarım

$$|V| = 1$$
, $|E| = 0$, $|R| = 1$

▶ k düğümlü, bağlı ve düzlemsel bir çizge için doğru varsayalım

Euler Formülünün Tanıtı

Tiimevarım Adımı.

 veni bir düğümü var olanlardan birine bağla:

► |V| 1 artar, |E| 1 artar, |R| avnı kalır

 var olan iki düğüm arasına bir avrıt ekle:

► |V| aynı kalır, |E| 1 artar, |R| 1 artar

69/160

Düzlemsel Cizge Teoremleri

Teorem

yalın, düzlemsel bir çizgede: $|V| > 3 \Rightarrow |E| < 3|V| - 6$

Tanit.

- ▶ bölge kertelerinin toplamı: 2|E|
- ▶ bir bölgenin kertesi en az 3
- $\Rightarrow 2|E| > 3|R| \Rightarrow |R| < \frac{2}{2}|E|$
- |V| |E| + |R| = 2 $\Rightarrow |V| - |E| + \frac{2}{3}|E| \ge 2 \Rightarrow |V| - \frac{1}{3}|E| \ge 2$ \Rightarrow 3|V| - |E| \geq 6 \Rightarrow |E| \leq 3|V| - 6

Düzlemsel Cizge Teoremleri

Teorem

Bağlı, yalın, düzlemsel bir çizgede $|V| > 3 \Rightarrow \exists v \in V \ d_v < 5$

Tanıt.

- $\lor \forall v \in V \ d_v > 6 \text{ olsun}$
 - $\Rightarrow 2|E| > 6|V|$
 - $\Rightarrow |E| > 3|V|$
 - $\Rightarrow |E| > 3|V| 6$: celişki

Düzlemsel Olmavan Cizgeler

Teorem

Tanıt

- ▶ |V| = 5
- $|V| 6 = 3 \cdot 5 6 = 9$
- ▶ |E| < 9 olmalı
- ▶ ama |E| = 10: celişki

Ks cizgesi düzlemsel değildir.

Düzlemsel Olmayan Çizgeler

Teorem

Tanıt.

- ▶ |V| = 6, |E| = 9
- ▶ düzlemsel ise |R| = 5 olmalı
- ▶ bir bölgenin kertesi en az 4 ⇒ $\sum_{r \in R} d_r \ge 20$
- $ightharpoonup |E| \ge 10$ olmalı
- ▶ ama |E| = 9: celişki

 $K_{3,3}$ çizgesi düzlemsel değildir.

Kuratowski Teoremi

Teorem

çizgenin K_5 ya da $K_{3,3}$ çizgelerine homeomorfik bir altçizgesi var \Leftrightarrow çizge düzlemsel değil

4/160

Platon Cisimleri

Tanım

düzgün cokvüzlü:

yüzleri birbirinin eşi düzgün çokgenlerden oluşan üç boyutlu cisim

- bir düzgün çokyüzlünün iki boyutlu düzleme izdüşümü düzlemsel bir çizgedir
 - her köşe bir düğüm
 - her kenar bir ayrıt

Platon Cisimleri

Örnek (küp: düzgün 6-yüzlü)

76 / 160

Platon Cisimleri

- v: düğüm (köşe) sayısı
- ▶ e: ayrıt (kenar) sayısı
- ► r: bölge (yüzey) sayısı
- 7. boige (yazey) sayisi
- ▶ n: bir köşede birleşen yüzey sayısı = düğüm kertesi
- ▶ m: bir yüzeyi çevreleyen ayrıt sayısı = bölge kertesi
- ▶ m, n > 3
- ≥ 2e = m · r
- $ightharpoonup 2e = n \cdot v$

Platon Cisimleri

► Fuler formülünden:

$$0 < 2 = v - e + r = \frac{2e}{n} - e + \frac{2e}{m} = e\left(\frac{2m - mn + 2n}{mn}\right)$$

▶ e, m, n > 0 olduğuna göre:

$$2m-mn+2n>0 \Rightarrow mn-2m-2n<0$$

 $\Rightarrow mn - 2m - 2n + 4 < 4 \Rightarrow (m-2)(n-2) < 4$

bu eşitsizliği sağlayan değerler:

- 1. m = 3, n = 32. m = 4, n = 3
- 3. m = 3, n = 4
- 4. m = 5, n = 3
- 5. m = 3, n = 5

78 / 160

7/160

Tetrahedron - Düzgün 4 Yüzlü m = 3, n = 3

Çizge Boyama

Tanım

düzgün boyama:

G=(V,E) çizgesinde her $(a,b)\in E$ için a ve b düğümlerinin renkleri farklı olacak şekilde bütün düğümlere renk atama

▶ en az sayıda renk kullanarak

Çizge Boyama Örneği

Örnek

- ▶ kimyasal maddeler üreten bir firma
- ▶ bazı maddeler birlikte tutulamıyor
- ▶ birbiriyle tutulamayan maddeler farklı alanlara depolanmalı
- en az sayıda depo alanı kullanılacak şekilde maddeler depolanacak

Çizge Boyama Örneği

Örnek

- ▶ her madde bir düğüm
- ▶ birlikte tutulamayan maddeler bitişik

00 1300

160

Çizge Boyama Örneği

Örnek

Çizge Boyama Örneği

Örnek

88 / 160

Çizge Boyama Örneği Örnek

Kromatik Sayı

Tanım

kromatik savı:

G çizgesini düzgün boyamak için gerekli en az renk sayısı: $\chi(G)$

- χ(G)'yi hesaplamak çok zor bir problem
- ▶ n > 1 için $\chi(K_n) = n$

Örnek (Herschel çizgesi)

92 / 160

kromatik sayı: 2

Kromatik Sayı Örneği

.

Çizge Boyama Örneği

Örnek (Sudoku)

5	3			7				
6	П		1	9	5			П
	9	8					6	
8			Г	6	Г	П		3
4			8		3			1
7				2				6
П	6		Г	Г	Г	2	8	
			4	1	9			5
				8			7	တ

- ▶ her hücre bir düğüm
- aynı satırdaki hücreler bitişik
- aynı sütundaki hücreler bitişik
 aynı 3 x 3 bloktaki hücreler
- ► her rakam bir renk

bitişik

 problem: kısmen boyalı bir çizgeyi tamamen boyamak Bölge Boyama

 bir haritayı bitişik bölgelere farklı renkler atayacak şekilde boyama

Teorem (4 Renk Teoremi)

Düzlemsel bir haritadaki bölgeleri boyamak için 4 renk yeterlidir.

94/160

Kaynaklar

Okunacak: Grimaldi

- ► Chapter 11: An Introduction to Graph Theory
- ► Chapter 7: Relations: The Second Time Around
 - 7.2. Computer Recognition: Zero-One Matrices and Directed Graphs

Ağaç

Tanım

ağaç: T = (V, E) çevre içermeyen bağlı çizge

bağlı bileşenleri ağaçlar olan çizge: orman

95 / 160

Ağaç Örnekleri

Örnek

Ağaç Teoremleri

Teorem

Bir ağaçta herhangi iki ayrık düğüm arasında bir ve yalnız bir yol vardır.

- ▶ bağlı olduğu için bir yol var
- birden fazla yol olsaydı çevre olurdu:

98 / 160

100 / 160

Ağaç Teoremleri

Teorem

T = (V, E) ağacında: |V| = |E| + 1

▶ tanıt yöntemi: ayrıt sayısı üzerinden tümevarım

Ağaç Teoremleri

Tanıt: Taban adımı

- $|E| = 0 \Rightarrow |V| = 1$
- $|E| = 1 \Rightarrow |V| = 2$
- $|E| = 2 \Rightarrow |V| = 3$
- ► |E| ≤ k için doğru olduğu varsayılsın

Ağac Teoremleri

Tanıt: Tümeyarım adımı.

|E| = k + 1

$$\begin{aligned} & (y,z) \text{ gikarilsin:} \\ & T_1 = (V_1, E_1), \ T_2 = (V_2, E_2) \\ & |V| &= |V_1| + |V_2| \\ &= |E_1| + 1 + |E_2| + 1 \end{aligned}$$

 $= (|E_1| + |E_2| + 1) + 1$ = |E| + 1

Ağac Teoremleri

Teorem

Bir ağaçta kertesi 1 olan en az iki düğüm vardır.

Tanit.

- \triangleright $2|E| = \sum_{v \in V} d_v$
- ▶ kertesi 1 olan tek bir düğüm olduğunu varsayalım:
 - $\Rightarrow 2|E| > 2(|V| 1) + 1$
- $\Rightarrow 2|E| > 2|V| 1$
 - $\Rightarrow |E| \ge |V| \frac{1}{2} > |V| 1$ çelişki

102 / 160

Ağaç Teoremleri

Teorem

Aşağıdaki bildirimler eşdeğerlidir:

- 1. T bir ağaçtır (bağlıdır ve çevre içermez).
- 2. T'de her düğüm çifti arasında bir ve yalnız bir yol vardır.
- 3. T bağlıdır ama herhangi bir ayrıt çıkarılırsa artık bağlı olmaz.
- 4. T cevre icermez ama herhangi iki düğüm arasına bir avrıt eklenirse bir ve yalnız bir çevre oluşur.

Ağac Teoremleri

Teorem

Aşağıdaki bildirimler eşdeğerlidir:

- 1. T bir ağaçtır (T bağlıdır ve çevre içermez.)
- 2. T bağlıdır ve |E| = |V| 1.
- 3. T çevre içermez ve |E| = |V| 1.

Köklü Ağaç

- b düğümler arasında hiyerarşi var
- ▶ ayrıtlarda doğal yön ⇒ giriş ve çıkış kerteleri
 - ► giriş kertesi 0 olan düğüm: kök
 - çıkış kertesi 0 olan düğümler: yaprak
 - yaprak olmayan düğümler: içdüğüm

105 / 160

107 / 160

Düğüm Düzeyleri

Tanım

düzev: köke olan uzaklık

- ▶ anne: kökle arasındaki yolda en yakın düğüm
- çocuk: bir sonraki düzeydeki komşu düğümler
- kardeş: aynı annenin çocuğu olan düğümler

106 / 160

108 / 160

Köklü Ağaç Örneği Örnek (kitap düzeni) Kitap ▶ R1 Kitap ► B1.1 ► B1.2 В2 B₁ ► B2 ▶ B3 ► B3 1 B1.1 B1.2 B3.1 B3.2 B3.3 ► B3.2 ▶ B3 2 1 B3.2.2 B3.2.1 ► B322 ► B3.3

Sıralı Köklü Ağaç

- kardeş düğümler soldan sağa doğru sıralı
- evrensel adresleme sistemi
 - ▶ köke () adresini ver
 - 1. düzeydeki düğümlere soldan sağa doğru sırayla 1, 2, 3, . . . adreslerini ver
 - v düğümünün adresi a ise, v düğümünün çocuklarına soldan sağa doğru sırayla a.1, a.2, a.3, ... adreslerini ver

Sözlük Sırası

► h ve c iki adres olsun

Tanım

b < c olması için:

1.
$$b = a_1.a_2....a_m$$

$$c = a_1.a_2....a_m.a_{m+1}...a_n$$

2.
$$b = a_1.a_2....a_m.x_1...y$$

 $c = a_1.a_2....a_m.x_2...z$

 $x_1 < x_2$

0/160

Örnek

Sözlük Sırası Örneği

1.1 1.2 1.3 1.4 2.1 2.2 3.1 3.2 1.2.1 1.2.3 2.2.1

1.2.3.1 1.2.3.2

- ► 0 1 1.1 1.2 - 1.2.1 - 1.2.2 - 1.2.3 - 1.2.3.1 - 1.2.3.2 - 1.3 - 1.4 - 2 - 2.1 - 2.2 - 2.2.1
 - $\begin{array}{c} -2.1 2.2 2.2.1 \\ -3 3.1 3.2 \end{array} \qquad \forall v \in V \ d_v$

İkili Ağaçlar

Tanım

ikili ağaç:

 $\forall v \in V \ d_v^o \in \{0, 1, 2\}$

Tanım

tam ikili ağaç: $\forall v \in V \ d_v^o \in \{0, 2\}$

111/160

109/160

İşlem Ağacı

- ▶ ikili işlem tam ikili ağaçla temsil edilebilir
 - kökte işleç, çocuklarda işlenenler
- ▶ her işlem ikili ağaçla temsil edilebilir
- içdüğümlerde işleçler, yapraklara değişkenler ve değerler
 - tam ikili ağaç olmayabilir

İşlem Ağacı Örnekleri

Örnek
$$(t + (u * v)/(w + x - y \uparrow z))$$

117/160

İşlem Ağacında Geçişler

- 1. içek geçişi: sol altağacı tara, köke uğra, sağ altağacı tara
- 2. önek geçişi: köke uğra, sol altağacı tara, sağ altağacı tara
- 3. sonek geçişi: sol altağacı tara, sağ altağacı tara, köke uğra ters Polonyalı gösterilimi

Önek Geçişi Örneği

Örnek

Örnek

 $t + u * v / w + x - y \uparrow z$

Sonek Geçişi Örneği Örnek

 $t \, u \, v \, * \, w \, x \, y \, z \, \uparrow \, - \, + \, / \, +$

121/160

123 / 160

İşlem Ağacının Değerlendirilmesi

- ▶ işlem ağacında öncelikler:
 - içek geçişi parantez gerektirir
 önek ve sonek parantez gerektirmez
 - oner ve soner paramez gerercimez

22/100

Sonek Değerlendirme Örneği

Örnek (
$$t\ u\ v\ *\ w\ x\ y\ z\ \uparrow\ -\ +\ /\ +$$
)
4 2 3 * 1 9 2 3 $\uparrow\ -\ +\ /\ +$

4 2 3 * 4 6 1 9 2 3 $\uparrow\ -\ +\ /\ +$
4 6 1 9 8 $-\ -\ +\ /\ +$
4 6 1 1 + 4 6 2 $/\ +\ /\ +$
7

Çizgelerde Arama

- G = (V, E) çizgesinin düğümlerinin
 v₁ düğümünden başlanarak aranması
 - derinlemesine
 - enlemesine

Derinlemesine Arama

1.
$$v \leftarrow v_1, T = \emptyset, D = \{v_1\}$$

2.
$$2 \le i \le |V|$$
 içinde $(v, v_i) \in E$ ve $v_i \notin D$ olacak şekilde

► varsa:
$$T = T \cup \{(v, v_i)\}, D = D \cup \{v_i\}, v \leftarrow v_i, 2$$
. adıma git 3. $v = v_1$ ise sonuc T

4.
$$v \neq v_1$$
 ise $v \leftarrow parent(v)$, 2. adıma git

1.
$$T = \emptyset$$
, $D = \{v_1\}$, $Q = (v_1)$

$$2 \le i \le |V|$$
 için $(v, v_i) \in E$ ayrıtlarına bak:

$$v_i \notin D$$
 ise: $Q = Q + v_i$, $T = T \cup \{(v, v_i)\}$, $D = D \cup \{v_i\}$

3. adıma git

126 / 160

Düzenli Ağac

Tanım

m'li ağaç:

bütün icdüğümlerin cıkıs kertesi m

Teorem

bir m'li ağaçta

Düzenli Ağaç Teoremleri

$$n = m \cdot i + 1$$

$$I = n - i = m \cdot i + 1 - i = (m - 1) \cdot i + 1$$

$$i = \frac{l-1}{m-1}$$

Düzenli Ağaç Örnekleri

Örnek

27 oyuncunun katıldığı bir tenis turnuvasında kaç maç oynanır?

- ▶ her oyuncu bir yaprak: I = 27
- ▶ her maç bir içdüğüm: m = 2
- ▶ maç sayısı: $i = \frac{l-1}{m-1} = \frac{27-1}{2-1} = 26$

9/160

Düzenli Ağaç Örnekleri

Örnek

25 adet elektrikli aygıtı 4'lü uzatmalarla tek bir prize bağlamak için kac uzatma gerekir?

- ▶ her aygıt bir yaprak: I = 25
- ▶ her uzatma bir içdüğüm: m=4
- ▶ uzatma sayısı: $i = \frac{l-1}{m-1} = \frac{25-1}{4-1} = 8$

130 / 160

132 / 160

Karar Ağaçları

Örnek (sahte madeni para problemi)

- ▶ 8 madeni paranın biri sahte (daha ağır)
- ▶ bir teraziyle sahtenin hangisi olduğunu bulunacak

Karar Ağaçları

Örnek (3 tartmada bulma)

Örnek (2 tartmada bulma) Örnek (2 tartmada bulma) (1,2,3)-(6,7,8) (4)-(5) (6)-(8) (7)-(8)

Okunacak: Grimaldi

- ► Chapter 12: Trees
 - ▶ 12.1. Definitions and Examples
 - ▶ 12.2. Rooted Trees

134 / 160

En Kısa Yol

 Dijkstra algoritması bir düğümden bütün diğer düğümlere en kısa yolları bulur

Dijkstra Algoritması Örneği

Örnek (başlangıç)

133 / 160

135 / 160

▶ başlangıç: c

Dijkstra Algoritması Örneği

Örnek (c düğümünden - taban uzaklık=0)

- c → f: 6, 6 < ∞</p>
- c → h: 11.11 < ∞</p>

a	$(\infty, -)$	
ь	$(\infty, -)$	
С	(0, -)	
f	(6, cf)	
ď	$(\infty -)$	

▶ en yakın düğüm: f

7/160

Dijkstra Algoritması Örneği

Örnek (f düğümünden - taban uzaklık=6)

- ▶ $f \to a: 6 + 11, 17 < \infty$
- ▶ $f \rightarrow g: 6+9, 15 < \infty$
- f → h: 6 + 4, 10 < 11</p>

► en yakın düğüm: h

138 / 160

Dijkstra Algoritması Örneği

Örnek (h düğümünden - taban uzaklık=10)

- ▶ $h \rightarrow a: 10 + 11, 21 \neq 17$
- ▶ $h \rightarrow g: 10 + 4, 14 < 15$

▶ en yakın düğüm: g

Dijkstra Algoritması Örneği

Örnek (g düğümünden - taban uzaklık=14)

а	(17, cfa)	ı
b	$(\infty, -)$	\Box
С	(0, -)	
f	(6, cf)	
g	(14, cfhg)	
h	(10, cfh)	

▶ en yakın düğüm: a

Dijkstra Algoritması Örneği

Örnek (a düğümünden - taban uzaklık=17)

a → b: 17 + 5,22 < ∞
</p>

a	(17, cta)	V
b	(22, cfab)	
С	(0, -)	
f	(6, cf)	
g	(14, cfhg)	
h	(10, cfh)	

▶ son düğüm: b

.....

Kapsayan Ağaç

Tanım

kapsayan ağaç:

çizgenin bütün düğümlerini içeren, ağaç özellikleri taşıyan bir altçizgesi

Tanım

en hafif kapsayan ağaç:

ayrıt ağırlıklarının toplamının en az olduğu kapsayan ağaç

142 / 160

Kruskal Algoritması

Kruskal algoritması

- i ← 1, e₁ ∈ E, wt(e₁) minimum
- 2. $1 \le i \le n-2$ icin:

şu ana kadar seçilen ayrıtlar e_1, e_2, \dots, e_i ise kalan ayrıtlardan öyle bir e_{i+1} seç ki:

- wt(e_{i+1}) minimum olsun
- ▶ e₁, e₂, . . . , e_i, e_{i+1} altçizgesi çevre içermesin
- 3. $i \leftarrow i + 1$
 - i = n − 1 ⇒ e₁, e₂, ..., e_{n−1} ayrıtlarından oluşan
 G altcizgesi bir en hafif kapsayan ağactır
 - ▶ $i < n-1 \Rightarrow 2$. adıma git

Kruskal Algoritması Örneği

Örnek (başlangıç)

- i ← 1
- en düşük ağırlık: 1 (e, g)
- $\blacktriangleright \ T = \{(e,g)\}$

Kruskal Algoritması Örneği

▶ en düşük ağırlık: 2
 (d, e), (d, f), (f, g)
 ▶ T = {(e, g), (d, f)}

i ← 2

145 / 160

Kruskal Algoritması Örneği

▶ en düşük ağırlık: 2 (d,e),(f,g)▶ $T = \{(e,g),(d,f),(d,e)\}$ ▶ $i \leftarrow 3$

146 / 16

Kruskal Algoritması Örneği

▶ en düşük ağırlık: 2 (f,g) çevre oluşturuyor

▶ en düşük ağırlık: 3 (c, e), (c, g), (d, g) (d, g) çevre oluşturuyor

► $T = \{(e,g), (d,f), (d,e), (c,e)\}$ ► $i \leftarrow 4$

Kruskal Algoritması Örneği

· T = {

$$I = \{ (e,g), (d,f), (d,e), (c,e), (b,e) \}$$

$$i \leftarrow 5$$

Kruskal Algoritması Örneği

Kruskal Algoritması Örneği

149/160

Prim Algoritması

Prim algoritması

- 1. $i \leftarrow 1, v_1 \in V, P = \{v_1\}, N = V \{v_1\}, T = \emptyset$
- 2. $1 \le i \le n-1$ icin: $P = \{v_1, v_2, \dots, v_i\}, T = \{e_1, e_2, \dots, e_{i-1}\}, N = V - P$ öyle bir $v_{i+1} \in N$ düğümü seç ki, bir $x \in P$ düğümü için $e = (x, v_{i+1}) \notin T$, wt(e) minimum olsun $P \leftarrow P + \{v_{i+1}\}, N \leftarrow N - \{v_{i+1}\}, T \leftarrow T + \{e\}$
- 3. $i \leftarrow i + 1$
 - $i = n \Rightarrow e_1, e_2, \dots, e_{n-1}$ avritlarından olusan G altcizgesi bir en hafif kapsayan ağactır
 - i < n ⇒ 2. adıma git

Prim Algoritması Örneği

Örnek (başlangıç)

- ▶ $i \leftarrow 1$
- N = {b, c, d, e, f, g}

152 / 160

Prim Algoritması Örneği

- T = {(a, b)} P = {a, b}
- ► $P = \{a, b\}$ ► $N = \{c, d, e, f, g\}$
- i ← 2

53/160

155 / 160

Prim Algoritması Örneği

- T = {(a, b), (b, e)}P = {a, b, e}
- N = {c, d, f, g}
 i ← 3

154 / 160

Prim Algoritması Örneği

Prim Algoritması Örneği

- ► $T = \{(a, b), (b, e), (e, g), (d, e)\}$ ► $P = \{a, b, e, g, d\}$
- $N = \{c, f\}$
- i ← 5

Prim Algoritması Örneği

- $T = \{ (a, b), (b, e), (e, g), (d, e), (f, g) \}$
 - ▶ $P = \{a, b, e, g, d, f\}$ ▶ $N = \{c\}$
 - *i* ← 6

157/160

159 / 160

Prim Algoritması Örneği

► $T = \{$ (a, b), (b, e), (e, g),
(d, e), (f, g), (c, g)
}

► $P = \{a, b, e, g, d, f, c\}$ ► $N = \emptyset$

i ← 7

158 / 160

Prim Algoritması Örneği

► toplam ağırlık: 17

Kaynaklar

Okunacak: Grimaldi

- ► Chapter 13: Optimization and Matching
 - ▶ 13.1. Dijkstra's Shortest Path Algorithm
 - ► 13.2. Minimal Spanning Trees: The Algorithms of Kruskal and Prim