LES SUITES NUMÉRIQUES E08

EXERCICE N°1 Somme des premiers carrés

Extrait remanié du sésamath 1er spé 143 p 74

Pour tout entier $n \ge 1$, on note u_n la somme des n premiers carrés, c'est à dire $u_n = 1^2 + 2^2 + 3^2 + ... + n^2$.

- 1) Calculer les trois premiers termes de la suite u.
- 2) Déterminer une relation entre u_{n+1} et u_n .
- 3) On pose v la suite définie par : Pour tout entier naturel non nul. $v_n = \frac{n(n+1)(2n+1)}{6}$
- Montrer que $v_1 = u_1$
- Montrer que la suite v suit la même relation de récurrence que la suite u et conclure. 3.b)

EXERCICE N°2 Algorithme de Héron (un premier contact)

On donne a et b deux nombres réels tels que : a > 0 et $b > \sqrt{a}$.

On donne également la fonction $f: x \mapsto \frac{1}{2} \left(x + \frac{a}{x} \right)$.

On considère la suite u définie par $\begin{cases} u_0 = b \\ u_{n+1} = f(u_n) \end{cases}$.

Notre but est de comprendre que le terme u_n tend vers \sqrt{a} .

- 1) Un premier cas: a = 2 et b = 5.
- Calculer les cinq premiers termes de la suite. 1.a)
- À l'aide de la calculatrice, conjecturer, si elle existe, la limite de la suite u et la 1.b) comparer avec \sqrt{a} .
- 2) Un premier cas: a = 5 et b = 10.
- Calculer les cinq premiers termes de la suite.
- À l'aide de la calculatrice, conjecturer, si elle existe, la limite de la suite u et la 2.b) comparer avec \sqrt{a} .

EXERCICE N°3 Suite auxiliaire (sans calculatrice)

On donne la suite u définie par : $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{1}{2} \sqrt{u_n^2 + 12} \end{cases}$

- 1) Calculer u_1 , u_2 et u_3 , on donnera les valeurs exactes.
- 2) On définit la suite v par : $\forall n \in \mathbb{N}$, $v_n = u_n^2 4$
- Montrer que la suite v est géométrique et donner ses éléments caractéristiques. 2.a)
- 2.b) Exprimer v_n en fonction de n.
- On a admet que pour tout entier n, $v_n > -4$. En déduire une expression de u_n en 2.c) fonction de n.
- Conjecturer alors la limite de la suite u. 2.d)

EXERCICE N°4 Suite auxiliaire et tableur

• Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

 $u_0 = 2$ et pour tout entier naturel $u_{n+1} = 2u_n + 2n^2 - n$.

• Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par :

pour tout entier nature n, $v_n = u_n + 2n^2 + 3n$.

- 1) Voici un extrait de feuille de tableur ci-contre : Quelles formules a-t-on écrites dans les cellules C2 et B3 et copiées vers le bas pour afficher les termes des suites u et v?
- 2) Déterminer, en justifiant, une expression de v_n puis de u_n en fonction de n.

,		А	В	С
	1	n	u	V
	2	0	2	7
	3	1	4	14
	4	2	9	28
	5	3	24	56
	6	4	63	112
	7	5	154	224
	8	6	353	448

LES SUITES NUMÉRIQUES E08

EXERCICE N°1 Somme des premiers carrés

Extrait remanié du sésamath 1er spé 143 p 74

Pour tout entier $n \ge 1$, on note u_n la somme des n premiers carrés, c'est à dire $u_n = 1^2 + 2^2 + 3^2 + ... + n^2$.

- 1) Calculer les trois premiers termes de la suite u.
- 2) Déterminer une relation entre u_{n+1} et u_n .
- 3) On pose v la suite définie par : Pour tout entier naturel non nul. $v_n = \frac{n(n+1)(2n+1)}{6}$
- Montrer que $v_1 = u_1$
- Montrer que la suite v suit la même relation de récurrence que la suite u et conclure. 3.b)

EXERCICE N°2 Algorithme de Héron (un premier contact)

On donne a et b deux nombres réels tels que : a > 0 et $b > \sqrt{a}$.

On donne également la fonction $f: x \mapsto \frac{1}{2} \left(x + \frac{a}{x} \right)$.

On considère la suite u définie par $\begin{cases} u_0 = b \\ u_{n+1} = f(u_n) \end{cases}$.

Notre but est de comprendre que le terme u_n tend vers \sqrt{a} .

- 1) Un premier cas: a = 2 et b = 5.
- Calculer les cinq premiers termes de la suite. 1.a)
- À l'aide de la calculatrice, conjecturer, si elle existe, la limite de la suite u et la 1.b) comparer avec \sqrt{a} .
- 2) Un premier cas: a = 5 et b = 10.
- Calculer les cinq premiers termes de la suite.
- À l'aide de la calculatrice, conjecturer, si elle existe, la limite de la suite u et la 2.b) comparer avec \sqrt{a} .

EXERCICE N°3 Suite auxiliaire (sans calculatrice)

On donne la suite u définie par : $\begin{cases} u_0 = 0 \\ u_{n+1} = \frac{1}{2} \sqrt{u_n^2 + 12} \end{cases}$

- 1) Calculer u_1 , u_2 et u_3 , on donnera les valeurs exactes.
- 2) On définit la suite v par : $\forall n \in \mathbb{N}$, $v_n = u_n^2 4$
- Montrer que la suite v est géométrique et donner ses éléments caractéristiques. 2.a)
- 2.b) Exprimer v_n en fonction de n.
- On a admet que pour tout entier n, $v_n > -4$. En déduire une expression de u_n en 2.c) fonction de n.
- Conjecturer alors la limite de la suite u. 2.d)

EXERCICE N°4 Suite auxiliaire et tableur

• Soit la suite $(u_n)_{n\in\mathbb{N}}$ définie par :

 $u_0 = 2$ et pour tout entier naturel $u_{n+1} = 2u_n + 2n^2 - n$.

• Soit la suite $(v_n)_{n\in\mathbb{N}}$ définie par :

pour tout entier nature n, $v_n = u_n + 2n^2 + 3n$.

- 1) Voici un extrait de feuille de tableur ci-contre : Quelles formules a-t-on écrites dans les cellules C2 et B3 et copiées vers le bas pour afficher les termes des suites u et v?
- 2) Déterminer, en justifiant, une expression de v_n puis de u_n en fonction de n.

	А	В	С
1	n	u	v
2	0	2	7
3	1	4	14
4	2	9	28
5	3	24	56
6	4	63	112
7	5	154	224
8	6	353	448