Санкт-Петербургский Политехнический Университет Петра Великого Институт компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

ОТЧЕТ по расчетному заданию

«Сравнение систем массового обслуживания» Системный анализ и принятие решений

Работу выполнил студент группа 33501/4 Дьячков В.В. Преподаватель

Сабонис С.С.

Санкт-Петербург 17 мая 2018 г.

Содержание

1	Техническое задание
2	Исходные данные
3	Сравнение систем массового обслуживания
3.1	Однофазная система массового обслуживания
3.2	Двухфазная система массового обслуживания
3.3	Сравнение систем
Списо	ок иллюстраций
Спис о 2.1	ок иллюстраций Структуры сравниваемых сетей
	• '
2.1	Структуры сравниваемых сетей
2.1 3.1	Структуры сравниваемых сетей
2.1 3.1 3.2 3.3	Структуры сравниваемых сетей

1. Техническое задание

Вариант 32. Сравнить средние времена пребывания и средние времена ожидания для разных систем в зависимости от интенсивности потока заявок. Построить соответствующие графики. Какая система лучше (при каких интенсивностях первая система лучше, при каких – вторая)?

2. Исходные данные

Рис. 2.1: Структуры сравниваемых сетей

3. Сравнение систем массового обслуживания

3.1. Однофазная система массового обслуживания

На рис. 3.1 приведен граф состояний системы M/M/4.

Рис. 3.1: Граф состояний

Показатели системы M/M/K рассчитываются по формулам:

• Коэффициенты загруженности системы:

$$\rho = \frac{\lambda}{\mu}, \quad \rho_c = \frac{\lambda}{K \cdot \mu}$$

• Вероятность нахождения системы в состоянии i:

$$P_i = \begin{cases} \left(1 + \sum\limits_{j=1}^K \frac{\rho^j}{j!} + \frac{\rho^{K+1}}{K! \cdot (K - \rho)}\right)^{-1} & \text{если } i = 0\\ \frac{\rho^i \cdot P_0}{i!} & \text{если } i \leqslant K \text{ и } i \neq 0\\ \frac{\rho^i \cdot P_0}{K! \cdot K^{i-K}} & \text{если } i > K \end{cases}$$

• Средняя длина очереди:

$$\overline{n_0} = \frac{\rho^{K+1} \cdot P_0}{K \cdot (1 - \rho_c)^2 \cdot K!}$$

• Среднее число занятых каналов:

$$\overline{K_3} = \rho$$

• Среднее число клиентов в системе:

$$\overline{j} = \overline{n_{\rm o}} + \overline{K_{\rm 3}}$$

• Среднее время ожидания:

$$t_{\text{ож}} = \frac{\overline{n_{\text{o}}}}{\lambda} = \frac{\overline{n_{\text{o}}}}{\rho \cdot \mu}$$

• Среднее время обслуживания:

$$t_{\mathrm{c}} = \frac{\overline{j}}{\lambda} = \frac{\overline{j}}{\rho \cdot \mu} = t_{\mathrm{ox}} + \frac{1}{\mu}$$

4

3.2. Двухфазная система массового обслуживания

Система состоит из двух последовательных фаз с бесконечными очередями, следовательно можно рассмотреть по-отдельности первую и вторую фазы, а потом сложить их показатели. Так как эти фазы одинаковы, то достаточно найти показатели для одной фазы и умножить на 2. Характеристики фазы рассчитываются по тем же формулам, что и показатели для однофазной системы массового обслуживания в пункте 3.1. На рис. 3.2 приведен граф состояний двухфазной системы массового обслуживания.

Рис. 3.2: Граф состояний

3.3. Сравнение систем

Для начала рассмотрим зависимость среднего времени пребывания в сети $t_{\rm c}$ от интенсивности обслуживания μ и интенсивности потока заявок λ . На рис. 3.3 изображена данная зависимость для однофазной системы.

Рис. 3.3: Зависимость $t_{\rm c}$ от μ и λ для однофазной системы

Зафиксируем $\mu=5$ и рассмотрим зависимость среднего времени ожидания $t_{\rm ow}$ от интенсивности потока заявок λ . На рис. 3.4 изображена данная зависимость для обеих систем.

Рис. 3.4: Зависимость $t_{\text{ож}}$ от λ

Рассмотрим зависимость среднего времени пребывания в системе $t_{\rm c}$ от интенсивности потока заявок λ при $\mu=5$. На рис. 3.5 изображена данная зависимость для обеих систем.

Рис. 3.5: Зависимость $t_{\rm c}$ от λ

Из графиков можно сделать вывод, что среднее время ожидания и обслуживания в двухфазной системе растет медленнее, чем в однофазной, следовательно по данным параметрам она является предпочтительной.