- ullet Row space is span of all rows of A
 - \circ Equivalently, $C(A^T)$
- ullet Left nullspace is set of all vectors v such that $v^TA=0$
 - $\circ \;\;$ Equivalently, $A^Tv=0$, or $N(A^T)$

We could calculate these by computing RREF of \boldsymbol{A}^{T}

 $\bullet\;$ There is a way to calculate this all from a single RREF of A but will omit here

Relationships

- ullet Both C(A) and $N(A^T)$ live in \mathbb{R}^m
 - \circ Their dimensions add up to m and the subspaces are orthogonal to one another
 - \circ That is, all vectors in C(A) are orthogonal to those in $N(A^T)$
- ullet Both $C(A^T)$ and N(A) live in \mathbb{R}^n
 - $\circ \;\;$ Dimensions also add to n and these are orthogonal