Introduction to FPGAs

Historical Introduction

- In the beginning, digital design was done with the '74 series of chips.
- Some people would design their own chips based on Gate Arrays, which were nothing else than an array of NAND gates:

Historical Introduction

- The first programmable chips were PLAs (Programmable Logic Arrays): two level structures of AND and OR gates with user programmable connections.
- Programmable Array Logic devices were an improvement in structure and cost over PLAs. Today such devices are generically called Programmable Logic Devices (PLDs).

Historical introduction

- A complex PLD (CPLD) is nothing else than a collection of multiple PLDs and an interconnection structure.
- Compared to a CPLD, a Field Programmable Gate Array (FPGA) contains a much larger number of smaller individual blocks + large interconnection structure that dominates the entire chip.

Programmable logic

- An integrated circuit that can be programmed/reprogrammed with a digital logic of a curtain level.
- Started at late 70s and constantly growing
- Now available of up to approximately 700K Flip-Flops in a single chip.

What are FPGAs

Field-Programmable Gate Array

Keywords

<u>Field-Programmable</u>-Programmable on Site

Gate Arrays - Array like structure

What are the advantages?

Can be configured to act like any circuit

Rapid Prototyping

Reconfigurable

Can be programmed many times

- Saves Product to Market Time
 - Short Development time
 - Flexible to changes
 - No need for ASIC expensive design and production
 - Fast time to market
 - Of the shelf solutions are available

PCIe-Attached

Image Source: https://itpeernetwork.intel.com/intel-processors-fpga-better-together/

CPU Integrated

In-Storage

https://www.compsource.com/buy/AU50P00GPQG/Xilinx-6217

Manufacturers

- Xilinx
- Altera
- Lattice
- Actel

XILINX FPGAs

45nm	28nm	20nm	16nm
SPARTAN. ∲	VIRTEX. ⁷ KINTEX. ⁷ ARTIX. ⁷ SPARTAN. ⁷	VIRTEX. UltraSCALE VIRTEX.	VIRTEX. UltraSCALE+ ARTIX. UltraSCALE+

https://www.xilinx.com/products/silicon-devices/fpga.html

Xilinx FPGAs

https://www.xilinx.com/products/silicon-devices/soc.html

FPGAs in Lab

Zynq Ultrascale

Artix 7

Zynq/Xilinx Zynq-7000

Zynq

Common FPGA Applications

- High Performance Computing
- Medical Equipment
- Data Servers
- Consumer Electronics
- Computer Networking
- Aerospace and Defense
- Etc.

Special FPGA functions

- Internal SRAM
- Embedded Multipliers and DSP blocks
- Embedded logic analyzer
- Embedded CPUs
- High speed I/O (~10GHz)
- DDR/DDRII/DDRIII SDRAM interfaces

How Is It Different From ASICs

- ASIC (Application-Specific Integrated Circuit)
 - Special chip purpose-built for an application
 - ► E.g., ASIC bitcoin miner, Intel neural network accelerator
 - Function cannot be changed once expensively built
- FPGAs can be field-programmed
 - Function can be changed completely whenever
 - FPGA fabric emulates custom circuits
- Emulated circuits are not as efficient as baremetal
 - ~10x performance (larger circuits, faster clock)
 - ~10x power efficiency

FPGA vs ICs

Single FPGA may replace several ICs

No wire-wrapping

Less power consumption, faster speed

Increased Reliability

FPGA vs ASIC

FPGAs are programmable on site

ASICs have considerable design cost and time

ASICs have to be fabricated, mistakes are costly

FPGA - Field Programmable Gate Array

- Programmable logic blocks (Logic Element "LE") Implement combinational and sequential logic. Based on LUT and DFF.
- Programmable I/O blocks Configurable I/Os for external connections supports various voltages and tristates.
- Programmable interconnect
 Wires to connect inputs, outputs and logic blocks.
 - clocks
 - short distance local connections
 - long distance connections across chip

Basic FPGA architecture

The logic block: a summary view

Example: using a LUT as a full adder.

Configuring LUT

- LUT is a RAM with data width of 1bit.
- The contents are programmed at power up

Required Function

Truth Table

a	b	C	у
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1

Programmed LUT

Logic Blocks

- Logic Functions implemented in Look Up Table LUTs.
- ► Flip-Flops. Registers. Clocked Storage elements.
- Multiplexers (select 1 of N inputs)

Look Up Tables LUTs

- LUT contains Memory Cells to implement small logic functions
- Each cell holds '0' or '1'.
- Programmed with outputs of Truth Table
- Inputs select content of one of the cells as output
- Configured by re-programmable SRAM memory cells

Logic Blocks

 Larger Logic Functions built up by connecting many Logic Blocks together

Logic Blocks

Larger Logic Functions built up by connecting many Logic Blocks together

Determined by SRAM cells

Basic FPGA Architecture

Basic FPGA Architecture – DSP Blocks

- CLBs act as gates Many needed to implement high-level logic
- Arithmetic operation provided as efficient ALU blocks
 - "Digital Signal Processing (DSP) blocks"
 - Each block provides an adder + multiplier

Basic FPGA Architecture – Block RAM

- CLB can act as flip-flops
 - (~1 bit/block) tiny!
- Some on-chip SRAM provided as blocks
 - ~18/36 Kbit/block, MBs per chip
 - Massively parallel access to data → multi-TB/s bandwidth

Block RAM Capacity in different Xilinx FPGAs

https://www.xilinx.com/content/dam/xilinx/support/documentation/selection-guides/7-series-product-selection-guide.pdf