TEA010 Matemática Aplicada II Curso de Engenharia Ambiental Departamento de Engenharia Ambiental, UFPR P04B, 24 nov 2023

P04B, 24 nov 2023 Prof. Nelson Luís Dias

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO A.

 ${f 1}$ [25] Mostre que a integral que surge em problemas de Sturm-Liouville,

$$\int_a^b f^*(x)g(x)w(x)\,\mathrm{d}x$$

onde f e g são funções complexas quadrado-integráveis de uma variável real, e w(x) > 0 é uma função real, definem um produto interno legítimo.

SOLUÇÃO DA QUESTÃO:

(i)

$$\langle f, g \rangle = \int_a^b f^*(x)g(x)w(x) dx$$
$$= \left[\int_a^b f(x)g^*(x)w(x) dx \right]^*$$
$$= \left[\int_a^b g^*(x)f(x)w(x) dx \right]^* = \langle g, f \rangle^*$$

(ii)

$$\langle f, g + h \rangle = \int_a^b f^*(x) [g(x) + h(x)] w(x) dx$$

$$= \int_a^b f^*(x) g(x) w(x) dx + \int_a^b f^*(x) h(x) w(x) dx$$

$$= \langle f, g \rangle + \langle f, h \rangle.$$

(iii)

$$\langle f, \alpha g \rangle = \int_{a}^{b} f^{*}(x) \alpha g(x) w(x) dx$$
$$= \alpha \left[\int_{a}^{b} f^{*}(x) g(x) w(x) dx \right]$$
$$= \alpha \langle f, g \rangle.$$

(iv)

$$\langle f, f \rangle = \int_a^b f^*(x) f(x) w(x) dx$$
$$= \int_a^b |f(x)|^2 w(x) dx > 0,$$

desde que f(x) seja nula no máximo em um conjunto enumerável de pontos dentro de [a, b], ou seja, desde que " $f(x) \not\equiv 0$ " em [a, b].

(v)

$$f(x) \equiv 0 \Rightarrow \int_a^b f^*(x)f(x)w(x) dx = 0$$

A rigor, esta última deve ser lida: se f(x) for nula exceto em um conjunto enumerável de pontos dentro de [a,b], então a integral é nula.

2 [25] Se $f(x) = (x - 1/2)^2$, $0 \le x \le 1$, então pode-se mostrar que

$$\int_0^1 e^{-2\pi i nx} f(x) dx = \frac{1}{2\pi^2 n^2}, \ n \neq 0.$$

Calcule

$$\sum_{n=1}^{\infty} \frac{1}{n^4}.$$

Sugestão: use a igualdade de Parseval para séries de Fourier complexas,

$$\frac{1}{L} \int_{a}^{b} |f(x)|^{2} dx = \sum_{n=-\infty}^{+\infty} |c_{n}|^{2}.$$

SOLUÇÃO DA QUESTÃO:

Inicialmente, note que a integral não vale para n = 0; mas

$$c_0 = \int_0^1 (x - 1/2)^2 dx = \frac{1}{12}.$$

Em seguida, note também que a integral é na verdade o coeficiente de Fourier complexo de f(x) para $n \neq 0$:

$$c_n = \frac{1}{L} \int_a^b e^{-\frac{2\pi i n x}{L}} f(x) dx;$$

$$a = 0,$$

$$b = 1,$$

$$L = b - a = 1,$$

$$c_n = \int_0^1 e^{-2\pi i n x} f(x) dx = \frac{1}{2\pi^2 n^2}.$$

Agora, a identidade de Parseval para os coeficientes da série de Fourier complexa é

$$\frac{1}{L} \int_{a}^{b} |f(x)|^{2} dx = \sum_{n=-\infty}^{+\infty} |c_{n}|^{2};$$

$$\int_{0}^{1} |f(x)|^{2} dx = \sum_{n=-\infty}^{+\infty} |c_{n}|^{2};$$

$$\int_{0}^{1} [(x-1/2)^{2}]^{2} dx = \sum_{n=-\infty}^{+\infty} |c_{n}|^{2};$$

$$\frac{1}{80} = \sum_{n=-\infty}^{-1} |c_{n}|^{2} + c_{0}^{2} + \sum_{n=1}^{+\infty} |c_{n}|^{2}$$

$$\frac{1}{80} = \left[\frac{1}{12}\right]^{2} + 2 \sum_{n=1}^{+\infty} |c_{n}|^{2}$$

$$\frac{1}{80} - \frac{1}{144} = 2 \sum_{n=1}^{+\infty} \left[\frac{1}{2\pi^{2}n^{2}}\right]^{2}$$

$$\frac{1}{180} = \frac{2}{4\pi^{4}} \sum_{n=1}^{+\infty} \frac{1}{n^{4}}$$

$$\frac{1}{180} = \frac{1}{2\pi^{4}} \sum_{n=1}^{+\infty} \frac{1}{n^{4}}$$

$$\frac{\pi^{4}}{90} = \sum_{n=1}^{+\infty} \frac{1}{n^{4}} \blacksquare$$

3 [25] Sabendo que

$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{\sin(x)}{x} e^{-ikx} dx = \frac{1}{2} [H(k+1) - H(k-1)],$$
$$\frac{1}{2\pi} \int_{-\infty}^{+\infty} e^{-|x|} e^{-ikx} dx = \frac{1}{\pi (k^2 + 1)},$$

onde H(x) é a função de Heaviside, calcule

$$\frac{1}{2\pi} \int_{x=-\infty}^{+\infty} {\rm e}^{-{\rm i} kx} \int_{\xi=-\infty}^{+\infty} \frac{{\rm sen}(x-\xi)}{x-\xi} {\rm e}^{-|\xi|} \, {\rm d}\xi \, {\rm d}x.$$

SOLUÇÃO DA QUESTÃO:

Trata-se da transformada de Fourier da convolução de $f(x) = \frac{\text{sen}(x)}{x} \text{ com } g(x) = \text{e}^{-x}$; mas pelo teorema da convolução,

$$\begin{split} \mathcal{F}\left[f*g\right](x) &= 2\pi \widehat{f}(k)\widehat{g}(k) \\ &= \frac{H(k+1) - H(k-1)}{k^2 + 1} \blacksquare \end{split}$$

$$\frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2} = 0, \qquad 0 \le x \le a, \ 0 \le y \le b;$$

$$\frac{\partial \phi(0, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$

$$\frac{\partial \phi(a, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$

$$\phi(x, 0) = 0, \qquad 0 \le x \le a,$$

$$\phi(x, b) = \phi_0, \qquad 0 \le x \le a.$$

SOLUÇÃO DA QUESTÃO:

Faça $\phi(x, y) = X(x)Y(y)$; então,

$$\begin{split} Y \frac{\mathrm{d}^2 X}{\mathrm{d}x^2} + X \frac{\mathrm{d}^2 Y}{\mathrm{d}y^2} &= 0, \\ \frac{1}{X} \frac{\mathrm{d}^2 X}{\mathrm{d}x^2} + \frac{1}{Y} \frac{\mathrm{d}^2 Y}{\mathrm{d}y^2} &= 0, \\ \frac{1}{X} \frac{\mathrm{d}^2 X}{\mathrm{d}x^2} &= -\frac{1}{Y} \frac{\mathrm{d}^2 Y}{\mathrm{d}y^2} &= \lambda. \end{split}$$

Claramente as condições de contorno homogênas que já estão "prontas" são

$$\frac{\partial \phi(0, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$
$$\frac{\partial \phi(a, y)}{\partial x} = 0, \qquad 0 \le y \le b,$$

e correspondem a x = 0 e x = a. Mas

$$\begin{split} \frac{\partial \phi(0,y)}{\partial x} &= \frac{\mathrm{d}X(0)}{\mathrm{d}x} Y(y), \\ \frac{\partial \phi(a,y)}{\partial x} &= \frac{\mathrm{d}X(a)}{\mathrm{d}x} Y(y); \end{split}$$

portanto, devemos resolver o problema de Sturm-Liouville

$$\frac{dX}{dx} - \lambda X = 0, \qquad \frac{dX(0)}{dx} = 0, \quad \frac{dX(a)}{dx} = 0.$$

Se $\lambda = +k^2 > 0$ com k > 0 (sem perda de generalidade),

$$\frac{dX}{dx} - k^2 X = 0,$$

$$r^2 - k^2 = 0,$$

$$r = \pm k,$$

$$X(x) = A \cosh(kx) + B \sinh(kx),$$

$$\frac{dX}{dx} = A \sinh(kx) + B \cosh(kx),$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow B \cosh(0) = 0 \Rightarrow B = 0;$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow A \sinh(ka) = 0 \Rightarrow A = 0,$$

e $\lambda > 0$ não pode ser autovalor.

Se $\lambda = 0$,

$$\frac{d^2X}{dx^2} = 0,$$

$$X(x) = Ax + B,$$

$$\frac{dX}{dx} = A,$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow A = 0;$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow A = 0,$$

e B pode ser qualquer. Consequentemente, $\lambda = 0$ \acute{e} um autovalor da autofunção $X_0(x) = B$, e sem perda de generalidade podemos usar o caso $X_0(x) = 1$.

Se $\lambda = -k^2 < 0$ com k > 0 (sem perda de generalidade),

$$\frac{dX}{dx} + k^2 X = 0,$$

$$r^2 + k^2 = 0,$$

$$r = \pm ki,$$

$$X(x) = A\cos(kx) + B\sin(kx),$$

$$\frac{dX}{dx} = k[-A\sin(kx) + B\cos(kx)],$$

$$\frac{dX(0)}{dx} = 0 \Rightarrow kB = 0 \Rightarrow B = 0,$$

$$\frac{dX(a)}{dx} = 0 \Rightarrow -kA\sin(ka) = 0 \Rightarrow \sin(ka) = 0,$$

$$ka = n\pi,$$

$$k_n = \frac{n\pi}{a},$$

$$X_n(x) = \cos\left(\frac{n\pi x}{a}\right),$$

com A = 1 (sem perda de generalidade).

Procuremos as soluções $Y_n(y)$ associadas. Para n > 0,

$$-\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} = \lambda_{n}Y,$$

$$-\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} = -\frac{n^{2}\pi^{2}}{a^{2}}Y,$$

$$\frac{\mathrm{d}^{2}Y_{n}}{\mathrm{d}y^{2}} - \frac{n^{2}\pi^{2}}{a^{2}}Y = 0,$$

$$Y_{n}(y) = A_{n}\cosh\left(\frac{n\pi y}{a}\right) + B_{n}\sinh\left(\frac{n\pi - y}{a}\right), \ n \ge 1.$$

Para n = 0, $\lambda = 0$ e

$$\frac{\mathrm{d}^2 Y_0}{\mathrm{d}y^2} = 0,$$

$$Y_0(y) = A_0 + B_0 y.$$

A solução geral é da forma

$$\phi(x,y) = A_0 + B_0 y + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) \left[A_n \cosh\left(\frac{n\pi y}{a}\right) + B_n \sinh\left(\frac{n\pi y}{a}\right)\right].$$

com

$$\phi(x,0) = 0, \qquad 0 \le x \le a,$$

$$\phi(x,b) = \phi_0, \qquad 0 \le x \le a.$$

Então,

$$\phi(x,0) = 0 = A_0 + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) [A_n] \iff A_n = 0, \forall n;$$

$$\phi(x,b) = \phi_0 = B_0 b + \sum_{n=1}^{\infty} \cos\left(\frac{n\pi x}{a}\right) \left[B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right)\right];$$

$$\phi_0 \cos\left(\frac{m\pi x}{a}\right) = B_0 b \cos\left(\frac{m\pi x}{a}\right) + \sum_{n=1}^{\infty} B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right) \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right);$$

$$\int_0^a \phi_0 \cos\left(\frac{m\pi x}{a}\right) dx = B_0 b \int_0^a \cos\left(\frac{m\pi x}{a}\right) dx + \sum_{n=1}^{\infty} B_n \operatorname{senh}\left(\frac{n\pi b}{a}\right) \int_0^a \cos\left(\frac{n\pi x}{a}\right) \cos\left(\frac{m\pi x}{a}\right) dx.$$

Analisemos os valores de m separadamente. Para m > 0,

$$\int_0^a \phi_0 \cos\left(\frac{m\pi x}{a}\right) dx = B_0 b \int_0^a \cos\left(\frac{m\pi x}{a}\right) dx + B_m \sinh\left(\frac{m\pi b}{a}\right) \frac{a}{2};$$

$$\int_0^a \phi_0 \cos\left(\frac{m\pi x}{a}\right) dx = 0 \qquad \text{e} \qquad \sinh\left(\frac{m\pi b}{a}\right) \neq 0,$$

donde $B_m = 0$. Por outro lado, se m = 0,

$$\int_0^a \phi_0 \, dx = B_0 b \int_0^a \, dx,$$
$$\phi_0 a = B_0 b a,$$
$$B_0 = \frac{\phi_0}{b}.$$

A solução final portanto será

$$\phi(x,y) = \phi_0 \frac{y}{h} \blacksquare$$