# **TD 1 – Grandeurs fondamentales**

Electrocinétique 1 L1 - S1 2022-2023

#### **Exercice 1: Potentiel et tension**

a- Déterminer les potentiels et/ou les tensions inconnues dans les configurations suivantes :



b- On dispose de deux batteries fournissant chacune une tension (continue) de 5V. Déterminez les potentiels aux points A et B dans les deux configurations d'utilisation suivantes :



Trouver comment connecter les deux batteries afin d'obtenir une alimentation symétrique +5V/-5V et indiquer où se situe la masse de l'alimentation.

#### Exercice 2: Potentiel et tension dans un circuit

Les mesures effectuées sur le circuit électrique ci-dessous indiquent :  $V_A$  = 9V et  $V_F$  = -4V ;  $U_1$  = 3V,  $U_2$  = 2V,  $U_3$  = 1V et  $U_4$  = 5V



- a. Déterminer les potentiels des points B, C, D et E.
- b. Indiquer le point correspondant à la masse, la référence des potentiels.

## Exercice 3 : Puissance et convention récepteur/générateur.

Pour chaque élément de circuit, calculer la puissance et indiquer s'il consomme ou fournit de l'énergie.



### Exercice 4 : Puissance et énergie

- a) On considère une ampoule de **60W**. Calculer l'énergie consommée par cette ampoule fonctionnant pendant deux heures (exprimée en W.h puis en J).
- b) Une batterie automobile de 12V présente une capacité de 60A.h.
  - 1. Calculer l'énergie maximale emmagasinée par la batterie.
  - 2. Vous oubliez d'éteindre les 2 phares qui consomment chacun une puissance de 55W:
    - Calculer l'intensité du courant traversant la batterie.
    - Calculer la durée correspondant à une décharge complète de la batterie.
- c) On représente sur la figure ci-dessous, l'évolution en fonction du temps du courant traversant une batterie.



Pour les deux intervalles de temps  $T_1$  et  $T_2$ :

- Calculer les puissances  $P_1$  et  $P_2$  de la batterie ainsi que l'énergie échangée.
- Indiquer si la batterie reçoit ou fournit de la puissance (compte tenu de la convention du circuit), en déduire les phases de charge et de décharge de la batterie.

## Exercice 5 : Défibrillation cardiaque

Un défibrillateur automatisé externe a pour vocation de délivrer un choc électrique lorsqu'une personne est victime d'un arrêt cardio-respiratoire. Le choc est administré à travers les deux électrodes thoraciques sous forme d'un courant continu durant la fraction d'une seconde.

A l'aide d'un défibrillateur, un secouriste applique un courant d'intensité 12 A sous une tension de 1200 V à travers le thorax d'une personne pendant 0,01 s.



- a. Quelle quantité de charge électrique se déplace pendant cette opération ?
- b. Combien d'électrons passent à travers les fils connectés au patient ?
- c. Calculer la puissance absorbée par le corps du patient dans cette opération.