第六章 组合数学初步

一、 多重集 多重集是数学中集合概念的推广。集合中,相同元素只能 出现一次(互异性)。在多重集中,相同的元素可以多次出

1. 定义

相同元素可以重复多次出现的集合称为多重集,通常表示为

$$S = \{n_1 \cdot a_1, n_2 \cdot a_2, ..., n_k \cdot a_k\},\$$

其中, a_1,a_2,\ldots,a_k 表示 k 种不同的元素, $n_i(0< n_i \le +\infty)$ 表示元素 a_i 在S中的出现次数,称为 a_i 的重复度。 当 $n_i = +\infty$ 时,表示S中有足够多的 a_i 以备选取。例如, $\{1,2,3\}$ 是一个集合, $\{1,1,1,2,2,3\}$ 是一个多重集。其中,元素1的重复度是3,2的重复度是2,3的重复度是1。

现。多重集概念的引入, 是为了讨论允许重复的选取问题。

一、多重集

1. 定义

另外,设
$$S=\{n_1\cdot a_1,n_2\cdot a_2,...,n_k\cdot a_k\}(0< n_i\le +\infty)$$
是多重集,那么 S 的子集 $X=\{x_1\cdot a_1,x_2\cdot a_2,...,x_k\cdot a_k\}(0\le x_i\le +\infty)$ 也是多重集。如果元素 a_i 不出现在子集 X ,则 $x_i=0$ 。

一、多重集

2. 多重集的r排列和r组合

多重集 $S=\{n_1\cdot a_1, n_2\cdot a_2, ..., n_k\cdot a_k\}, n=n_1+n_2+...n_k$ 表示 S 中元素总数.

(1) 从S 中有序选取的r个元素称为多重集S 的一个r 排列.

r=n 的排列称为多重集S的全排列;

(2) 从 S 中无序选取的 r 个元素称作多重集 S 的一个r 组合;

一、多重集

2. 多重集的r排列的计算式

定理2: 设 $S=\{n_1\cdot a_1,n_2\cdot a_2,...,n_k\cdot a_k\}$ 为多重集, $n=n_1+n_2+...n_k$ 表示 S 中元素 总数.

- (1) S 的全排列数是 $\frac{n!}{n_1! n_2! \dots n_k!}$
- (2) 若 $r \le n_i$, i=1,2,...,k, 那么S 的 r 排列数是 k^r

定理2: 设 $S=\{n_1\cdot a_1, n_2\cdot a_2, ..., n_k\cdot a_k\}$ 为多重集,

一、多重集

(1) S 的全排列数是 $\frac{n!}{n_1! \ n_2! \ ... \ n_k!}$

2. 多重集的r排列的计算式

(2) 若 $r \le n_i$, i=1,2,...,k, 那么S 的 r 排列数是 k^r

证明定理 2(1): 因为多重集S中有 n 个元素,所以S的全排列中必有 n 个位置,选择其中的 n_1 个位置放置 a_1 ,共有 $C(n,n_1)$ 种方法。 在剩下的 n_-n_1 个位置中选择 n_2 个位置放置 a_2 ,共有 $C(n-n_1,n_2)$ 种方法,…,以此类推,有 $C(n-n_1-n_2-\ldots-n_{k-1},n_k)$ 方法放 a_k 。根据乘法原理,多重集S的全排列数为

$$C(n,n_1)\times C(n-n_1,n_2)\times ...\times C(n-n_1-n_2-...-n_{k-1},n_k) = \frac{n!}{n_1!(n-n_1)!}\times \frac{(n-n_1)!}{n_2!(n-n_1-n_2)!}\times ...\times \frac{(n-n_1-...-n_{k-1})!}{n_k!} = \frac{n!}{n_1!n_2!...n_k!}$$

证明定理 2(2): 多重集S的 r排列中 r个位置,每个位置都有 k 种元素备选,

根据乘法原理,得多重集S的 r排列数为 k^r 。

一、多重集

2. 多重集的r排列的计算式

多重集S全排列数 $\frac{n!}{n_1!n_2!...n_k!}$ 恰好是多项式 $(x_1+x_2+\cdots+x_k)^n$ 中 $x_1^{n_1}x_2^{n_2}\cdots x_k^{n_k}$ 项的系数,所以也称为多项式系数。

一、多重集

2. 多重集的r组合的计算式

定理3: 多重集
$$S=\{n_1\cdot a_1, n_2\cdot a_2, ..., n_k\cdot a_k\}, 0< n_i \le +\infty, 当 r \le n_i, S$$
的r组合数为 $N=C(k+r-1,r)_{\circ}$

证明: S的一个r组合是一个子多重集 $\{x_1\cdot a_1, x_2\cdot a_2, ..., x_k\cdot a_k\}$,其中 $x_1+x_2+...$ $+x_k=r$, x_i 为非负整数,这个方程称为不定方程。它的每一组非负整数解都对应着一个S的 r组合。那下面的问题就是, $x_1+x_2+...+x_k=r$ 有多少个非负整数解呢?

一、多重集

2. 多重集的r组合的计算式

证明:可以把 $x_1+x_2+\ldots+x_k=r$ 的非负整数解和 r个1、k个0的排列之间建立——

对应关系:
$$\underbrace{1,1,\cdots,1}_{x_1 \uparrow 1},0,\underbrace{1,1,\cdots,1}_{x_2 \uparrow 1},0,...,\underbrace{1,1,\cdots,1}_{x_i \uparrow 1},0,...,\underbrace{1,1,\cdots,1}_{x_k \uparrow 1}$$

即用k-1个0将 r个1分成 k 段,每段中1的个数分别是 $x_1,x_2,...,x_k$ 。 不难看出,这 k个0和r个1组成的序列的任何一种排列,都是一组 x_1 , x_2 , ... , x_k 的非负整数解. 所有k-1个0 和r 个1构成了一个多重集X= $\{r\cdot 1, k$ - $1\cdot 0\}$,所以,据定理2,这k-1个0 和 r 个1的全排列数,也就是多重集X的全排列数 $N = \frac{(r+k-1)!}{r!(k-1)!} = C(k+r-1,r)$

二、应用

例5. 排列26个字母,使得a与b之间恰有7个字母,求方法数.

解: 固定a 和b, 中间选7个字母,由于a 和b之间的位置关系有两种可能,从剩余的24个字母中有序的选7个的排列数是P(24,7),所以共有 $2 \times P(24,7)$ 种方法;然后,再把它作为一个整体,与其余26-9=17个字母全排列,共有18!种可能.所以,排列26个字母,使得a 与b 之间恰有7个字母的方法数共 $2 \times P(24,7) \times 18!$ 种.