بسمه تعالی تمرین سری هفتم آمار و احتمال مهندسی

١ _ مسأله 5.14 كتاب

1,3,8,9,10,13,14,16,17 مسائل فصل ششم کتاب شمارههای $Y_- Y_-$ ،

۱۱ _ فرض کنید X=S+N که S و N متغیرهای تصادفی مستقلند. N نویز گوسی با متوسط صفر و واریانس S است. S با احتمال یکسان مقادیر S یا S را اختیار می کند. تخمین بهینه (به مفهوم حداقل مربعات S) برای S وقتی که S S رؤیت شود را بدست آورید.

مسائل اختياري

١٢ ـ مسأله 6.11 كتاب

 ${
m Var}(X/X{=}a)$ و ${
m E}(X/X{=}a)$ و ${
m F}_X(x/X{=}a)$ و ${
m F}_X(x/X{=}a)$

ره تصادفی X دارای توزیع یکنواخت بین 0 و A میباشد (A>0) ولی حد بالایی X دارای توزیع لوگ نرمال است. $f_A(a) = \frac{1}{2\alpha\sqrt{2\pi}} e^{-(\ln a - \mu)^2/2\sigma^2} \ u(a)$

را بدست آورید. $f_X(x)$

اگر Xو Y مستقل و هر دو دارای توزیع نمایی با پارامتر $I=\lambda$ باشند: اگر Xو Y مستقل و هر دو دارای توزیع نمایی با پارامتر $f_X(x/Y=1)$ و $f_X(x/Z=0)$ را حساب کنید. الف _ اگر تعریف کنیم $\frac{Y}{X}=W$ و Y=X و Y=X و Y=Xو Y=X

17 _ الف _ نشان دهید در تخمین Y بر اساس مشاهدهٔ X

 $egin{align*} & \mathrm{mmse} = \mathrm{E}(\sigma_{\mathrm{Y/X}}^2 \) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ext}(x) = \int_{-\infty}^{+\infty} \, \sigma_{\mathrm{Y/x}}^2 & \mathrm{f_X(x)} \, \, \mathrm{dx} \ & \\ & \mathrm{ex$