1.4 Функции

1.4.1 Определение функций

Отношение $f \subseteq A \times B$ называется функцией из A в B $(f: A \to B)$, если:

- a) $\forall x \in A \ \exists \ y \in B \mid (x,y) \in f;$
- б) если $(x, y) \in f$ и $(x, z) \in f \Rightarrow y = z$
- $(x,y) \in f$ обозначают y = f(x)
- х аргумент, у значение функции f.
- $Dom(f) \equiv \{x \in A \mid \exists y \in B \mid y = f(x)\}$ область определения,
- $Codom(f) \equiv \{ y \in B \mid \exists \ x \in A \ / \ y = f(x) \}$ область значений.

y = f(x), то y - образ элемента x, x - прообраз элемента y.

Функция $f:A_1 \times A_2 \times ... \times A_n \to B$ называется функцией n аргументов, или n-местной функцией.

1.4.2 Классификация функций

 $f: A \to B$

инъективное (инъекция), если $f(x_1) = f(x_2) \Rightarrow x_1 = x_2$;

сюръективное (сюръекция), или отображением на, если $\forall y \in B \ \exists \ x \in A \ | f(x) = y;$

- биективное (биекция), или взаимно однозначное соответствие, если оно является одновременно инъекцией и сюръекцией;
- перестановка множества A, если A = B и функция $f: A \to A$ является биекцией

- Если $I: A \to A$ определена как $I(a) = a \ a \in A$, то I тождественная функция на множестве A.
- Множество называется счетным, если существует биекция между элементами этого множества и множеством натуральных чисел.
- Если f^{-1} является функцией, то ее называют обращением функции, или обратной функцией.

Теорема 1.3 (об обратной функции):

Если функция $f: A \to B$ - биекция, то f^{-1} также является функцией из B в A, причем биекцией. Обратно, если f^{-1} – функция из B в A, то f является биекцией.

Теорема 1.4:

Если функция $f: A \to B$ является биекцией, то:

- a) \forall b \in B $f(f^{-1}(b))=b$,
- $6) \forall a \in A \quad f^{-1}(f(a))=a.$

Теорема 1.5:

Если функция $f: A \to A$ и I — тождественная функция на A, то $I \circ f = f \circ I = f$. Если для f существует обратная функция, то $f^{-1} \circ f = f \circ f^{-1} = I$.

<u>Теорема 1.6</u>: Пусть функции $g : A \rightarrow B$ и $f : B \rightarrow C$. Тогда:

Если g и f – инъекции, то g°f – инъекция;

Если g и f – сюръекции, то g°f – сюръекция;

Если g и f –биекции, то g°f – биекция;

1.5 Метод математической индукции

- 1. Проверить верность исходного утверждения P(n) для минимально возможного значения $n = n_0$ (базис)
- 2. Предположить верность P(n) при n=k (индукционное предположение)
- 3. Доказать справедливость утверждения P(n) для n=k+1, используя индукционное предположение (вывод).
- 4. Тогда утверждение P(n) верно для всех n ≥ n₀ Пример: доказать 7ⁿ -1 делится на 6

Глава 2. Комбинаторика

2.1 Комбинаторные задачи и основные принципы

Утверждение 2.1 Если множества A ∩ B= Ø и |A| = m, |B| = n, то $|A \cup B| = m + n$, т.е $|A \cup B| = |A| + |B|$.

Теорема 2.1(о произведении множеств):

Для любых множеств A и B $|A \times B| = |A| \cdot |B|$.

Правило суммы (комбинаторный принцип сложения) Если объект $\alpha \in A$ можно выбрать m способами, а объект $\beta \in B$, отличный от α , n способами, причем α и β нельзя выбрать одновременно, то осуществить выбор «либо α , либо β » можно m+n способами.

Правило произведения (комбинаторный принцип умножения) Если объект $\alpha \in A$ можно выбрать m способами, а после каждого такого выбора можно выбрать n способами объект $\beta \in B$, отличный от α , то выбор обоих объектов α и β в указанном порядке можно осуществить $m \cdot n$ способами.

2.2 Комбинаторные конфигурации

2.2.1 Перестановки и подстановки

- Дано множество $M = \{a_1, a_2, ..., a_n\}$. Перестановкой элементов множества M называется любой упорядоченный набор из n различных элементов множества M.
- Перестановки различаются только порядком входящих в них элементов.
- Перестановка элементов множества *М* может быть задана посредством функции подстановки.
- Подстановка биекция σ : М → М ,и задается с помощью матрицы, состоящей из двух строк.

Число перестановок объема n обозначим P_n .

Утверждение 2.3 $P_n = n!$

2.2.2 Понятие выборки

Дано $M = \{a_1, a_2, a_3, ..., a_n\}$, $m \le n$. Набор, состоящий из m элементов множества M, называется выборкой объема m из n элементов.

Выборки классифицируются по:

- 1) По критерию повторяемости элементов:
- с возвращением объема (с повторениями)
- без возвращения объема (без повторений).
- 2)По критерию упорядоченности:
- упорядоченные (размещения)
- неупорядоченные (сочетания).

2.2.3 Размещения и сочетания без повторений

Размещениями из n элементов по m называются упорядоченные выборки без повторений элементов множества, которые отличаются одна от другой либо составом элементов, либо порядком их расположения.

$$A_n^k = \frac{n!}{(n-m)!} = n*(n-1)*(n-2)...(n-m+1)$$

Сочетаниями без повторений из п элементов по

т называются неупорядоченные выборки без повторений элементов множества, которые отличаются одна от другой только составом элементов.

$$C_n^k = \frac{n!}{k!*(n-k)!}$$