# **Efficient Det:**Scalable and Efficient Object Detection

Mingxing Tan, Ruoming Pang, Quoc V.Le [Google Research, Brain Team]

arXiv:1911.09070v1

Sungman, Cho.

## Introduction

#### Introduction

• Propose several key optimizations to improve efficiency.

- 1. BiFPN (Bi-directional Feature Pyramid Network)
- 2. Compound scaling method

Achieves state-of-the-art 51.0 mAP on COO dataset with 52M parameters and 326B FLOPS, 4x smaller and 9.3x fewer FLOPS, more accurate (+0.3% mAP)

#### Model FLOPS vs COCO acc.



#### Introduction

#### • Eficient multi-scale feature fusion

- PANet, NAS-FPN, ...
- Most previous works simply sum features up without distinction.

#### Model scaling

Accuracy ← Trade Off → Efficiency

#### Contribution

- We proposed **BiFPN**, a weighted bidirectional feature network for easy and fast multi-scale feature fusion.
- We propose a new compund scaling method, which jointly scales up backbone, feature network, box/class network, and resolution, in a principled way.
- Based on BiFPN and compound scaling, we developed EfficientDet.

#### **Related Work**

#### One-Stage Detectors

- YOLO v1 ~ v3
- SSD
- RetinaNet

#### Model Scaling

- ResNet → ResNeXt → AmoebaNet
- increasing input image size

#### Multi-Scale Feature Representations

- FPN (Feature Pyramid Network)
- PANet : add an extra bottom-up path aggregation network
- STDL: propose a scale-transfer module to exploit cross-scale features
- M2det: poposes a U-shape module to fuse multi-scale features
- G-FRNet: introduces gate units for controlling inforamtion flow
- NAS-FPN: leverages NAS to automatically design network topology

## Methodology

1. BiFPN



$$\vec{P}^{in} = (P_{l_1}^{in}, P_{l_2}^{in}, ...)$$
 $\vec{P}^{out} = f(\vec{P}^{in})$ 

$$P_7^{out} = Conv(P_7^{in})$$
  
 $P_6^{out} = Conv(P_6^{in} + Resize(P_7^{out}))$   
...
$$P_3^{out} = Conv(P_3^{in} + Resize(P_4^{out}))$$

• FPN is inherently limited by the one-way information flow.



• PANet adds an extra bottom-up path aggregation network.



 NAS-FPN employs NAS to search for better cross-scale feature network topology.



 NAS-FPN employs NAS to search for better cross-scale feature network topology.



|                                             | mAP            | #Params<br>ratio | #FLOPS<br>ratio |
|---------------------------------------------|----------------|------------------|-----------------|
| Top-Down FPN [16]                           | 42.29          | 1.0x             | 1.0x            |
| Repeated PANet [19]                         | 44.08          | 1.0x             | 1.0x            |
| NAS-FPN [5]                                 | 43.16          | 0.71x            | 0.72x           |
| Fully-Connected FPN                         | 43.06          | 1.24x            | 1.21x           |
| BiFPN (w/o weighted)<br>BiFPN (w/ weighted) | 43.94<br>44.39 | 0.88x<br>0.88x   | 0.67x<br>0.68x  |

Table 4: **Comparison of different feature networks** – Our weighted BiFPN achieves the best accuracy with fewer parameters and FLOPS.

#### PANet is the best accuracy architecutre.







- Previous feature fusion methods treat all input features equally without distinction.
- However, different input features are at different resoultions, they usually contribute to the output feature unequally.
- Propose to add an additional weight for each input during feature fusion.

$$O = \sum_{i} w_i \cdot I_i$$

$$O = \sum_{i} \frac{e^{w_i}}{\sum_{j} e^{w_j}} \cdot I_i$$

$$O = \sum_{i} \frac{w_i}{\epsilon + \sum_{j} w_j} \cdot I_i$$

> Unbounded fusion 
$$O = \sum_i w_i \cdot I_i$$
,

since scalar weight is unbounded, it could potentially cause training instability. Therefore, we resort to weight normalization to bound the value range of each weight.

$$O = \sum_i rac{e^{w_i}}{\sum_j e^{w_j}} \cdot I_i$$

> Fast normalized fusion 
$$O = \sum_i \frac{w_i}{\epsilon + \sum_i w_j} \cdot I_i$$

> Unbounded fusion 
$$O = \sum_i w_i \cdot I_i$$
,

Softmax-based fusion

$$O = \sum_{i} \frac{e^{w_i}}{\sum_{j} e^{w_j}} \cdot I_i$$

Apply softmax to each weight, representing the importance of each input. However, it leads to significant slowdown on GPU.

> Fast normalized fusion 
$$O = \sum_i \frac{w_i}{\epsilon + \sum_j w_j} \cdot I_i$$

Unbounded fusion

$$O = \sum_{i} w_i \cdot I_i$$

Softmax-based fusion

$$O = \sum_i rac{e^{w_i}}{\sum_j e^{w_j}} \cdot I_i$$

> Fast normalized fusion 
$$O = \sum_i \frac{w_i}{\epsilon + \sum_j w_j} \cdot I_i$$

 $\epsilon = 0.0001$  is a small value to avoid numerical instability. fast fusion approach has similar acc., but runs up to 30% faster on GPU. (vs softmax-based function)



## Methodology

2. Compound Scaling

### **Compound Scaling**

- Previous works mostly scale up a baseline detector by employing bigger backbone networks.
- EfficientNet shows remarkable performance on image classification by **jointly scaling up all dimensions** of network width, depth, and input resolution.
- Unlike EfficientNet, object detectors have much more scaling dimensions than image classification models, so grid search for all dimensions is prohibitive expensive.

#### **Compound Scaling**

|                   | Input       | Backbone   | BiFPN            |             | Box/class   |
|-------------------|-------------|------------|------------------|-------------|-------------|
|                   | size        | Network    | #channels #layer |             | #layers     |
|                   | $R_{input}$ |            | $W_{bifpn}$      | $D_{bifpn}$ | $D_{class}$ |
| $D0 \ (\phi = 0)$ | 512         | B0         | 64               | 2           | 3           |
| D1 ( $\phi = 1$ ) | 640         | <b>B</b> 1 | 88               | 3           | 3           |
| D2 ( $\phi = 2$ ) | 768         | B2         | 112              | 4           | 3           |
| D3 ( $\phi = 3$ ) | 896         | В3         | 160              | 5           | 4           |
| D4 ( $\phi = 4$ ) | 1024        | B4         | 224              | 6           | 4           |
| D5 ( $\phi = 5$ ) | 1280        | B5         | 288              | 7           | 4           |
| D6 ( $\phi = 6$ ) | 1408        | B6         | 384              | 8           | 5           |
| D7                | 1536        | В6         | 384              | 8           | 5           |

BiFPN network 
$$W_{bifpn} = 64 \cdot \left(1.35^{\phi}\right), \qquad D_{bifpn} = 2 + \phi$$

$$D_{bifpn} = 2 + \phi$$

**Box/class prediction network** 

$$D_{box} = D_{class} = 3 + \lfloor \phi/3 \rfloor$$

Input image resolution

$$R_{input} = 512 + \phi \cdot 128$$

Performance on COCO 2017

| Model                              | mAP  | #Params | Ratio | #FLOPS | Ratio | GPU LAT(ms)     | Speedup | CPU LAT(s)      | Speedup |
|------------------------------------|------|---------|-------|--------|-------|-----------------|---------|-----------------|---------|
| EfficientDet-D0                    | 32.4 | 3.9M    | 1x    | 2.5B   | 1x    | 16 ±1.6         | 1x      | 0.32 ±0.002     | 1x      |
| YOLOv3 [26]                        | 33.0 | -       | -     | 71B    | 28x   | 51 <sup>†</sup> | -       | -               | -       |
| EfficientDet-D1                    | 38.3 | 6.6M    | 1x    | 6B     | 1x    | 20 ±1.1         | 1x      | 0.74 ±0.003     | 1x      |
| MaskRCNN [8]                       | 37.9 | 44.4M   | 6.7x  | 149B   | 25x   | 92†             | -       | -               | -       |
| RetinaNet-R50 (640) [17]           | 37.0 | 34.0M   | 6.7x  | 97B    | 16x   | 27 ±1.1         | 1.4x    | $2.8 \pm 0.017$ | 3.8x    |
| RetinaNet-R101 (640) [17]          | 37.9 | 53.0M   | 8x    | 127B   | 21x   | 34 ±0.5         | 1.7x    | $3.6 \pm 0.012$ | 4.9x    |
| EfficientDet-D2                    | 41.1 | 8.1M    | 1x    | 11B    | 1x    | 24 ±0.5         | 1x      | 1.2 ±0.003      | 1x      |
| RetinaNet-R50 (1024) [17]          | 40.1 | 34.0M   | 4.3x  | 248B   | 23x   | 51 ±0.9         | 2.0x    | $7.5 \pm 0.006$ | 6.3x    |
| RetinaNet-R101 (1024) [17]         | 41.1 | 53.0M   | 6.6x  | 326B   | 30x   | $65 \pm 0.4$    | 2.7x    | $9.7 \pm 0.038$ | 8.1x    |
| NAS-FPN R-50 (640) [5]             | 39.9 | 60.3M   | 7.5x  | 141B   | 13x   | 41 ±0.6         | 1.7x    | $4.1 \pm 0.027$ | 3.4x    |
| EfficientDet-D3                    | 44.3 | 12.0M   | 1x    | 25B    | 1x    | 42 ±0.8         | 1x      | 2.5 ±0.002      | 1x      |
| NAS-FPN R-50 (1024) [5]            | 44.2 | 60.3M   | 5.1x  | 360B   | 15x   | 79 ±0.3         | 1.9x    | $11 \pm 0.063$  | 4.4x    |
| NAS-FPN R-50 (1280) [5]            | 44.8 | 60.3M   | 5.1x  | 563B   | 23x   | 119 ±0.9        | 2.8x    | $17 \pm 0.150$  | 6.8x    |
| EfficientDet-D4                    | 46.6 | 20.7M   | 1x    | 55B    | 1x    | 74 ±0.5         | 1x      | 4.8 ±0.003      | 1x      |
| NAS-FPN R50 (1280@384)             | 45.4 | 104 M   | 5.1x  | 1043B  | 19x   | 173 ±0.7        | 2.3x    | $27 \pm 0.056$  | 5.6x    |
| EfficientDet-D5 + AA               | 49.8 | 33.7M   | 1x    | 136B   | 1x    | 141 ±2.1        | 1x      | 11 ±0.002       | 1x      |
| AmoebaNet+ NAS-FPN + AA(1280) [37] | 48.6 | 185M    | 5.5x  | 1317B  | 9.7x  | 259 ±1.2        | 1.8x    | $38 \pm 0.084$  | 3.5x    |
| EfficientDet-D6 + AA               | 50.6 | 51.9M   | 1x    | 227B   | 1x    | 190 ±1.1        | 1x      | 16±0.003        | 1x      |
| AmoebaNet+ NAS-FPN + AA(1536) [37] | 50.7 | 209M    | 4.0x  | 3045B  | 13x   | 608 ±1.4        | 3.2x    | 83 ±0.092       | 5.2x    |
| EfficientDet-D7 + AA               | 51.0 | 51.9M   | 1x    | 326B   | 1x    | <b>262</b> ±2.2 | 1x      | 24 ±0.003       | 1x      |

Model size and inference latency



Disentangling backbone and BiFPN

|                         | mAP  | Parameters  | FLOPS |
|-------------------------|------|-------------|-------|
| ResNet50 + FPN          | 37.0 | 34 <b>M</b> | 97B   |
| EfficientNet-B3 + FPN   | 40.3 | 21M         | 75B   |
| EfficientNet-B3 + BiFPN | 44.4 | 12M         | 24B   |

Comparison of different feature networks

|                                          | mAP            | #Params ratio  | #FLOPS<br>ratio |
|------------------------------------------|----------------|----------------|-----------------|
| Top-Down FPN [16]                        | 42.29          | 1.0x           | 1.0x            |
| Repeated PANet [19]                      | 44.08          | 1.0x           | 1.0x            |
| NAS-FPN [5]                              | 43.16          | 0.71x          | 0.72x           |
| Fully-Connected FPN                      | 43.06          | 1.24x          | 1.21x           |
| BiFPN (w/o weighted) BiFPN (w/ weighted) | 43.94<br>44.39 | 0.88x<br>0.88x | 0.67x<br>0.68x  |
| Diffi (w/ weighted)                      | 44.39          | U.OOX          | U.UOX           |

Softmax vs Fast Normalized Fusion



| Model  | Softmax Fusion mAP | Fast Fusion mAP (delta) | Speedup |
|--------|--------------------|-------------------------|---------|
| Model1 | 33.96              | 33.85 (-0.11)           | 1.28x   |
| Model2 | 43.78              | 43.77 (-0.01)           | 1.26x   |
| Model3 | 48.79              | 48.74 (-0.05)           | 1.31x   |

Comparison of different scaling methods



#### Conclusion

- Propose a weighted bidirectional feature network and a customized compound scaling method, in order to improve accuracy and efficiency.
- EfficientDet 3.2x faster on GPUs and 8.1x faster on CPUs.

## Thank You.