• Koja je razlika između MOSFETA i bipolarnog tranzistora?

- danas se češće upotrebljava MOSFET, ali bipolarni tranzistor se i dalje koristi zbog prednosti kao što su <u>veće</u>
 <u>pojačanje</u> u pojačalima, <u>veće strujne sposobnosti</u> I <u>veća brzina rada</u> (npr. radiofrekvencije u bežićnoj
 komunikaciji)
- o ni rade sa strujom kao strujom upravljani strujni izvori (uz pomoć male struje baze moguće je upravljati većim strujama kolektora ili emitera)

Objasniti proces prolaska elektrona od emitera do kolektora (npn tranzistor)

- \circ spoj emiter-baza je propusno polariziran ($U_{EB} < 0$), a spoj kolektor-baza je zaporno polariziran ($U_{CB} > 0$)
- o <u>struja emitera</u> (I_E) sastoji se od <u>struje elektrona</u> (I_{nE}) koji se injektiraju u bazu I <u>struje šupljina</u> (I_{pE}) koje se injektiraju u emiter
- o dio elektrona koji su injektirani u bazu se rekombinira s većinskim nosiocima (šupljinama) u bazi rekombinacijska struja (I_R)
- o dio elektrona dolazi do spoja kolektor-baza (odnos ovisi o širini baze I difuzijskoj duljini elektrona) i tamo nesmetano prelazi u kolektor (zaporna polarizacija stvara u osiromašenom sloju polje koje ubrzava tok elektrona iz baze u kolektor) kolektorska struja (Inc)
- o kroz kolektorski spoj teče i <u>struja zasićenja spoja kolektor-baza</u> (I_{CBO}) struja manjinskih nosilaca
- o pojedine komponente struja određuju se kao difuzijske struje manjinskih nosilaca

Kod normalnog aktivnog područja, što je veće: le ili lc?

o veći je I_F, dio elektrona koji su injektirani u bazu se rekombinira sa šupljinama, pa je zato I_C manji

Kakva treba biti baza tranzistora?

- o dobri tranzistori izvode se s <u>uskim</u> bazama, čija je širina manja od difuzijske duljine elektrona tako se tek <u>mali</u> <u>dio elektrona rekombinira</u> u bazi
- o uobičajena širina baze je do 1um

Što je to faktor injekcije? (γ)

- o omjer struje elektrona koje emiter injektira u bazu i ukupne struje emitera
- o vrijednost je manja od jedinice (za dobar tranzistor teži jedinici)
- o struja I_{nE} je proporcionalna koncentraciji većinskih elektrona u emiteru (veći faktor se postiže dopiranjem)

Što je transportni faktor? (β*)

- o omjer <u>struje manjinskih elektrona</u> u bazi koji su stigli do <u>kolektora</u> i struje manjinskih elektrona koji su došli iz emitera
- o bliži je jedinici što je rekombinacija elektrona u bazi manja (što se postiže užom bazom u odnosu na difuzijsku duljinu manjinskih elektrona u bazi)

Što je statički faktor strujnog pojačanja spoja zajedničke baze? (α)

- \circ $\alpha = \gamma \beta^*$
- o mjer izlazne struje kolektora I_C i ulazne struje emitera I_F (omjer istosmjernih struja- statički faktor)
- o kod npn tranzistora u normalnom aktivnom području faktor α je pozitivan broj manji od 1 (tipično od 0.98-0.995)
- tranzistor <u>u spoju zajedničke baze ne pojačava struju</u> prenosi praktički jednaku struju iz kruga malog u krug velikog otpora
- o ulazni krug ima mali otpor, a izlazni veliki omogućuje dobivanje naponskog pojačanja

Što je statički faktor strujnog pojačanja spoja zajedničkog emitera? (β)

- o omjer <u>izlazne struje kolektora</u> I_C i <u>ulazne struje baze</u> I_B
- o puno je veći od 1 (tipično od 50-200)

• Kakvi su naponi kod pnp tranzistora?

- U_{EB} > 0 (<u>propusno</u> polariziran emiter-baza), U_{CB} < 0 (<u>zaporno</u> polariziran kolektor-baza)
- o razlikuje se od npn tranzistora po predznacima napona i smjerovima struja
- o tip nosilaca koji su ključni za rad tranzistora su <u>šupljine</u> koje emiter injektira u bazu

Kakvo je pojačanje u spoju zajedničke baze, a kakvo u spoju zajedničkog emitera?

- o <u>zajednička baza</u>:
 - ulaz: emiter, I_E, U_{EB}<0 ; izlaz: kolektor, I_C, U_{CB}>0
 - α statički faktor strujnog pojačanja u spoju zajedničke baze (I_c/I_E) je manji od 1

- rjeđe se primjenjuje u spojevima
- zajednički emiter:
 - ulaz: baza, I_B, U_{BE}>0 ; izlaz: kolektor, I_C, U_{CE}>0
 - izlaznom strujom I_C upravlja mala ulazna struja I_B pojačanje je znatno veće!
 - β statički faktor pojačanja u spoju zajedničkog emitera (I_c/I_B) je <u>puno veći od α </u> (tipično od 50-200)
 - najčešće se koristi
- zajednički kolektor:
 - ulaz: baza, I_B, U_{BC}<0 ; izlaz: emiter, I_E, U_{EC}<0
- općenito: struja I_C je β puta veća od I_B , a za α puta veća (tj. manja, α <1) od I_E

Kako su polarizirani spojevi u određenim područjima rada?

- o <u>normalno aktivno</u>: EB propusno, CB zaporno
 - struja kolektora ovisi o struji emitera (odnosno o naponu U_{EB})
 - ako je emiter puno jače dopiran od baze struje emitera je praktički jednaka struji koju emiter injektira u bazu, a ako je baza uska- rekombinacija je zanemariva
 - u tom slučaju je <u>struja kolektora neznatno manja od struje emitera</u>
 - tranzistor posjeduje svojstvo pojačanja i koristi se u pojačalima
 - gledano s kolektorskog priključka ponaša se kao <u>idealni strujni izvor</u> (struja ne ovisi o otporu trošila)
- o <u>inverzno aktivno</u>: EB zaporno, CB propusno
 - slično kao i normalno aktivno, uz <u>zamjenu uloga emitera i kolektora</u>
 - spoj kolektor baza injektira nosioce na drugu stranu spoja, a emiter ih sakuplja
 - I_E i I_B teku u tranzistor, a I_C iz tranzistora
 - <u>inverzni faktori strujnih pojačanja</u> $\alpha_1(I_E /- I_C)$, $\beta_1(I_E / I_B)$
 - kada bi izvedbe područja emitera i kolektora bile jednake, onda ne bi bilo razlike između inverznog i normalnog područja
 - u realnim tranzistorima razlika postoji, područja su optimirana za rad u aktivnom području (posljedica su lošiji parametri tranzistora, β₁ je tipično od 1-10)
- područje zasićenja: EB propusno, CB propusno
 - superpozicija aktivnog i inverznog područja
 - oba pn spoja injektiraju nosioce na drugu stranu, baza je zasićena manjinskim nosiocima
- o područje zapiranja: EB zaporno, CB zaporno
 - teku samo struje zasićenja I_{EBO} i I_{CBO} zanemarivo male

Zašto je beta u prvom mjerenju velik, a u drugom mali?

o prvo mjerenje je normalno aktivno područje, a drugo inverzno aktivno (vidi prošlo pitanje)

• Kada tranzistor radi kao sklopka, a kada kao pojačalo?

- o u području <u>zasićenja</u> i <u>zapiranja</u> nema pojačanja, sklop se ponaša kao <u>sklopka</u> (naponi u zasićenju su mali zbog malog otpora, naponi u zapiranju su veliki zbog velikog otpora)
- o u <u>aktivnom</u> stanju sklop se ponaša kao <u>pojačalo</u>

• Što je prijenosna karakteristika?

o odnos izlazne struje i ulaznog napona

• <u>Što je izlazna karakteristika?</u>

o odnos izlazne struje i izlaznog napona

Što se nalazi na kojoj osi strujno-naponske karakteristike u:

- spoj zajedničke baze:
 - ulazna karakteristika: x-os napon U_{FR}, y-os struja I_F
 - izlazna karakteristika: x-os napon U_{CB}, y-os struja I_C
- spoj zajedničkog emitera:
 - ulazna karakteristika: x-os napon U_{BE}, y-os struja I_B
 - izlazna karakteristika: x-os napon U_{CF}, y-os struja I_C

Prepoznati normalno aktivno područje, inverzno aktivno područje, područje zasićenja i područje zapiranja:

o pogledati u skripti, ima označeno na grafovima u poglavlju 7.7