

MS8313 三个半 H 桥驱动器集成电路

描述

MS8313 提供三个可独立控制的半 H 桥驱动器。可用于驱动螺线管或者其他负载,主要用于驱动一个三相无刷直流电机。每个输出驱动器通道包含半 H 桥配置的 N 通道功率 MOSFET。MS8313 可将每个驱动器的接地端接至引脚,用于每个输出上进行电流检测。

内置一个通用比较器,可用来做电流限制电路或者其 它功能电路。

MS8313 在半 H 桥的每个通道上提供 2.5A 峰值电流或者 1.75A 均方根输出电流。

该芯片具有过流保护,短路保护,欠压保护以及过温 保护功能。

采用 28 脚散热薄型小尺寸封装, 封装为 eTSSOP28。

主要特点

- 三个半 H 桥驱动器
- 驱动三相无刷直流电机
- 独立半桥控制
- 用于 Low-Side 电流检测引脚
- 功率管低导通电阻
- 24V, 25°C下 2.5A 最大峰值电流
- 内置比较器
- 内置 3.3V 10mA 低压降稳压器(LD0)
- 8V-36V 电源电压范围
- 带散热片的表面贴片封装

产品规格分类

产品	封 装 形 式	打印名称
MS8313	eTSSOP28	MS8313
MS8313N	QFN36	MS8313N

eTSSOP28

QFN36

应用

- HVAC 电机
- 消费类产品
- 办公自动化设备
- 工厂自动化
- 机器人

内部框图

ΤШ	70	4	ᄣ
极	烬	厺	<i>3</i> ∕\

参数	符号	参数范围	单位
供电电压	V _M	-0. 3-40	V
数字端口电压范围	V _{Din}	-0.5-7	V
比较器输入电压范围	V _{Cin}	-0. 5-7	V
管脚电压 (PGND1, PGND2, PGND3)	V _{PGND}	±600	mV
工作温度	T _A	-40~120	°C
存储温度	T _{stg}	-60~150	$^{\circ}$
持续输出电流	I_{con}	1.75	A

开关特性

VM=24V, RL=20 Ω , TA=25 $^{\circ}$ C

编号	参数	描述	最小	最大	单位
1	t1	ENx 变高到 OUTx 变高延迟时间,INx=1	130	330	ns
2	t2	ENx 变低到 OUTx 变低延迟时间,INx=1	275	475	ns
3	t3	ENx 变高到 OUTx 变低延迟时间,INx=0	100	300	ns
4	t4	ENx 变低到 OUTx 变高延迟时间,INx=0	200	400	ns
5	t5	INx 变高到 OUTx 变高延迟时间	300	500	ns
6	t6	INx 变低到 OUTx 变低延迟时间	275	475	ns
7	t7	输出上升时间	30	150	ns
8	t8	输出下降时间	30	150	ns

 $\mathrm{EN}\mathbf{x}$

INx=1,输出为电阻到地

INx=O,输出为电阻到VM

ENx=1, 输出为电阻到地

电气参数

电气参数						
参数	符号	测试条件	最小值	典型值	最大值	单位
电源电压范围	V_{M}	_	6.5		36	V
驱动管地端电压	V_{GNDX}	_	-500		500	mV
内置 LDO 驱动电流	$I_{ m LDO}$	_	0		10	mA
内置 LDO 输出电压	V3P3	Iout=0 to 10mA	3. 1		3. 52	V
工作电流	I_{VM}	VM=24V, fPWM<50KHz		1	5	mA
休眠模式电流	$\mathrm{I}_{\mathrm{VMQ}}$	VM=24V		500	800	uA
欠压保护电压	$V_{\rm UVLO}$	_		6.3	8	V
		逻辑输入				
逻辑输入高电平	V_{IH}	_	2.2		5. 25	V
逻辑输入低电平	V_{IL}	_		0.6	0. 7	V
迟滞窗口	$V_{\rm HYS}$	VDD=2.7∼3.6V	50		600	mV
逻辑输入低电流	${ m I}_{ m IL}$	VIN=0	-5		5	uA
逻辑输入高电流	${ m I}_{ m IH}$	VIN=3.3V			100	uА
下拉电阻	R_{PD}			80		KΩ
	nFAU	LT 和 nCOMPO 输出(开漏输出	4)			
输出低电压	V_{OL}	IO=5mA			500	mV
输出高电流	I_{OH}	V0=3.3V			1	uA
		比较器				
共模电压范围	V _{CM}	-	0		5	V
输入失调电压	V_{IO}	-	-7		7	mV
输入电流	${ m I}_{ m IB}$	_	-300		300	nA
响应时间	tR	_			2	us
		H 桥输出管				
High-side FET 导通电阻	R_{dson}	VM=24V, IO=1A, Tj=25℃		0. 24		Ω
		VM=24V, IO=1A, Tj=85℃		0. 29	0.39	Ω
Low-side FET 导通电阻	R_{dson}	VM=24V, IO=1A, Tj=25°C		0. 24		Ω
V 23 115 1 12 1 12 2		VM=24V, IO=1A, Tj=85°C		0. 29	0. 39	Ω
关闭状态漏电流	I_{0FF}	_	-2		2	uA
死区时间	$t_{\mathtt{DEAD}}$	In the state		100		ns
<u> </u>	_	保护电路				
过流保护	I_{OCP}	_	3	_		A
过流保护检测时间	t _{OCP}	_		6		us
过温保护	T_{TSD}	_	150	160	180	$^{\circ}$

管脚排列图

PWP封装: eTSSOP28

RHH封装: QFN36

管脚描述

管脚号		55 DHD 67 11	1/0	55 D4D 444 V-L	
PWP	RHH	管脚名称	1/0	描述 描述	
1	5	CP1	10	电荷泵外接电容	
2	6	CP2	10	电荷泵外接电容	
3	7	VCP	10	高端栅电压驱动	
4, 11	9, 19	VM	ı	电源电压	
5	10	OUT1	0	OUT1 输出	
6	11	PGND1	-	0UT1 的地端,可接 sense 电阻设置过流保护	
7	12	PGND2	-	0UT2 的地端,可接 sense 电阻设置过流保护	
8	13	OUT2	0	OUT2 输出	
9	15	OUT3	0	OUT3 输出	
10	16	PGND3	ı	0UT3 的地端,可接 sense 电阻设置过流保护	
12	21	COMPP	Ι	内置比较器正端	
13	22	COMPN	Ι	内置比较器负端	
	3, 17,				
14, 20,	20, 23,	GND		☆ 	
28	24, 30,	GND	_	接地脚	
	31, 32				
15	25	V3P30UT	0	内置 3. 3V LDO 输出	
16	26	nRESET	I	复位脚	

管	脚号	for the form	1/0	/c/r nin 1++ 1-12	
PWP	RHH	管脚名称	I/O	管 脚 描 述	
17	27	nSLEEP	I	休眠脚	
18	28	nFAULT	OD	错误警告,开漏输出	
19	29	nCOMPO	OD	比较器输出,开漏输出	
21	4, 8, 18,	NC	_	悬空	
22	33	EN3	I	通道3使能	
23	34	IN3	I	通道3数据	
24	35	EN2	I	通道2使能	
25	36	IN2	I	通道2数据	
26	1	EN1	I	通道1使能	
27	2	IN1	I	通道2数据	

功能描述

输出级

MS8313包括3个半H桥驱动器。并且三个半H桥 Low-side 驱动 FET 的源级都做成了独立端口(PGND1,PGND2,PGND3),通过这些端口接电阻到地,即可实现电流检测的功能。如果应用时接上了检测电阻,务必保证PGNDx端口电压不得超过±500mV。

通道控制时序

INx 端口输入信号之间控制输出 OUTx 的状态,而 ENx 输入信号控制通道 OUTx 关闭或者打开,时序如下:

INx	ENx	OUTx
X	0	Z
0	1	L
1	1	Н

电荷泵

由于输出级采用的为 N 沟道 FET, 所需的栅压驱动比电源电压高才能使得管子完全打开。MS8313内部集成产生高压的电荷泵电路,正常工作时,电荷泵电路需要外接两个电容,如下图所示:

当进入 SLEEP 模式时, 电荷泵关闭。

内置比较器

MS8313内部集成了一个比较器,该比较器可以用来做电流限制或者其他功能。

nRESET 控制功能

当 nRESET 脚为低时,芯片复位。同时当它有效时,可以将所有输出通道关闭,并且输入信号将不会对输出产生影响。芯片内部有上电复位电路,所以应用时不需要外加上电复位信号。

nSLEEP 控制功能

当 nSLEEP 脚为低时,芯片进入低功耗休眠模式,这个状态下输出将被关闭(高阻态),电荷泵 也被关闭,所有的内部逻辑复位(包括错误信号)。该模式下,输出不会受到输入信号的影响直 到 nSLEEP 信号变成高。当由休眠模式进入工作模式时,大约需要 1ms 时间,整个芯片输出驱动达到完全工作状态。需要注意的是,在休眠模式下,内部 3.3VLD0 会继续保持工作状态。

保护电路

MS8313 具有欠压保护,过流保护,以及过温保护功能。

MS8313 的过流保护包括两个过程:快速响应,慢速响应。在很短的时间内,超过快速响应的过流 保护阈值,芯片将会采用模拟模式保护芯片不会流过过高的尖峰电流。如果这个尖峰持续时间超 过芯片内设定的时间(大约6us),芯片将相应通道关闭,并且在nFAULT输出低信号。只有重新 复位或者重新上电才能使通道打开。

当芯片的温度超过设定的阈值,过温保护电路将起作用,此时所有通道都会关闭,并且 nFAULT 输出一个低电平信号。当温度回落至安全温度,芯片将回到正常工作状态。

当芯片的电源电压降低到欠压保护的阈值以下,芯片将关闭所有通道,复位内部逻辑电路,并且 在 nFAULT 输出低电平信号。当电压回到阈值以上时,芯片回到正常工作状态。

典型应用

MS8313 典型的应用为三相无刷电机驱动,该应用下,三个输出分别接到马达的三个输入,如下图 所示:

工作时序如下:

状态	0UT1(相位 U)		OUT2(相位 V)			OUT3(相位 W)			
(八心)	IN1	EN1	OUT1	IN2	EN2	OUT2	IN3	EN3	OUT3
1	X	0	Z	1/PWM	1	H/PWM	0	1	L
2	1/PWM	1	H/PWM	X	0	Z	0	1	L
3	1/PWM	1	H/PWM	0	1	L	X	0	Z
4	X	0	Z	0	1	L	1/PWM	1	H/PWM
5	0	1	L	X	0	Z	1/PWM	1	H/PWM
6	0	1	L	1/PWM	1	H/PWM	X	0	Z

MS8313还可以用来驱动 DC 马达和螺线管。下面举个例子:

马达 1							
功能	IN1	EN1	OUT1	IN2	EN2	OUT2	
关闭或滑行	X	0	Z	X	X	X	
关闭或滑行	X	X	X	X	0	X	
正转	1/PWM	1	Н	0	1	L	
反转	0	1	L	1/PWM	1	Н	
刹车或慢衰减	0	1	L	0	1	L	
刹车或慢衰减	1	1	Н	1	1	Н	

马达 2						
功能	IN3	EN3	OUT3			
打开	1/PWM	1	Н			
关闭或慢衰减	0	1	L			
关闭或滑行	X	0	X			

MS8313 还可以独立驱动 3 个马达或者螺线管,具体应用如下:

马达1或者螺线管						
功能	IN1	EN1	OUT1			
打开	1/PWM	1	Н			
关闭或慢衰减	0	1	L			
关闭或滑行	X	0	X			

马达 2 或者螺线管					
功能	IN2	EN2	OUT2		
打开	1/PWM	1	Н		
关闭或慢衰减	0	1	L		
关闭或滑行	X	0	X		

马达 3 或者螺线管					
功能	IN3	EN3	OUT3		
打开	1/PWM	1	Н		
关闭或慢衰减	0	1	L		
关闭或滑行	X	0	X		

封装外形图

Symbol	Dimensions In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
D	9. 600	9. 800	0. 378	0. 386
D1	3. 710	3. 910	0. 146	0. 154
Е	4. 300	4. 500	0. 169	0. 177
b	0. 190	0. 300	0. 007	0.012
С	0.090	0. 200	0.004	0.008
E1	6. 250	6. 550	0. 246	0. 258
E2	2. 700	2. 900	0. 106	0. 122
A		1. 100		0.043
A2	0.800	1.000	0. 031	0.039
A1	0. 020	0. 150	0. 001	0.006
е	0. 65 (BSC)		0. 026 (BSC)	
L	0. 500	0. 700	0. 02	0.028
Н	0. 25 (TYP)		0. 01 (TYP)	
θ	1°	7°	1°	7°

EXPOSED PAD OFFSET

ccc

eee

bbb

fff

0.1

0.08

0.1

0.1

MOLD FLATNESS

COPLANARITY

LEAD OFFSET

印章和包装规范

TSSOP28

QFN36

一,印章内容介绍

产品型号:MS8313/MS8313N

生产批号: XXXXXX

二,印章规范要求

采用激光打印,整体居中且采用 Arial 字体。

三,包装规范

型号	只/盘	盘/盒	盒/箱	只/箱
MS8313	3000	1	8	24000
MS8313N	2000	1	8	16000

MOS电路操作注意事项:

静电在很多地方都会产生,采取下面的预防措施,可以有效防止MOS电路由于受静电放电的影响而引起的损坏:

- 操作人员要通过防静电腕带接地。
- 设备外壳必须接地。
- 装配过程中使用的工具必须接地。
- 必须采用导体包装或抗静电材料包装或运输。