שעור 11 מטריצה המעבר מבסיס לבסיס וטנרספורמציות

משפט 11.1

נניח כע"ל יחיד על ניתן לרשום כצ"ל עדה U מעל אדה V מעל מ"ו מעל מ"ו בסיס אז ניתן ניח בסיס על יחיד על יחיד אז מעל יחיד של יחיד על יחיד אז כל יחיד של יחיד על יחיד אז כל יחיד של יחיד אז כל יחיד של יחיד של יחיד של יחיד של יחיד אז כל יחיד של יחיד

 $u\in \mathrm{span}(\mathrm{v}_1,\dots,\mathrm{v}_n)$, $u\in V$ מכאן נובע שלכל span $(\mathrm{v}_1,\dots,\mathrm{v}_n)=V$ לכן $k_1,\dots,k_n\in\mathbb{F}$ בסיס של ז"א קיימים סקלירם ז"א קיימים סקלירם

$$u = k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n \ .$$

נוכיח שהצ"ל הוא יחיד בדרך השלילה:

נניח שקיים צ"ל אחר:

$$u = t_1 \mathbf{v}_1 + \ldots + t_n \mathbf{v}_n \ .$$

אש קיים $k_i \neq t_i$ כך ש $1 \leq i \leq n$ לכן

$$(k_1 - t_1)\mathbf{v}_1 + \ldots + (k_i - t_i)\mathbf{v}_i + \ldots + (k_n - t_n)\mathbf{v}_n = \bar{0}$$

. סתירה. v_1,\ldots,v_n ווקטורים v_1,\ldots,v_n מ"ל. $k_i-t_i
eq 0$

הגדרה 11.1

אז $u \in V$ אז $\mathbb F$ מעל שדה V מעל מ"ו בסיס אז בסיס אז יו $\mathbf v_1, \dots, \mathbf v_n \in V$

$$u = k_1 \mathbf{v}_1 + \ldots + k_n \mathbf{v}_n \ .$$

לווקטור

$$\begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix} \in \mathbb{F}^n$$

 $B = \{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ לפי בסיס u לפי ווקטור הקואורדינטות קוראים ווקטור הקואורדינטות סימון:

$$[u]_B = \begin{pmatrix} k_1 \\ \vdots \\ k_n \end{pmatrix} .$$

דוגמה 11.1

$$u=egin{pmatrix} 2 \ -1 \ 10 \end{pmatrix}$$
 , \mathbb{R}^3 של $E=\{e_1,e_2,e_3\}$

$$u = 2e_1 + (-1)e_2 + 10e_3$$

$$[u]_E = \begin{pmatrix} 2\\ -1\\ 10 \end{pmatrix}$$

דוגמה 11.2

אז $.p(x)=1+8x-5x^2$, $\mathbb{R}_2[x]$ אז הבסיס הסטנדרטי $E=\{1,x,x^2\}$

$$p(x) = 1 \cdot 1 + 8x - 5x^2 = 1e_1 + 8e_2 - 5e_3$$

$$[p(x)]_E = \begin{pmatrix} 1\\8\\-5 \end{pmatrix}$$

דוגמה 11.3

הראו כי קבוצת הווקטורים

$$B=\left\{b_1=egin{pmatrix}1\\-2\\0\end{pmatrix},b_2=egin{pmatrix}1\\1\\1\end{pmatrix},b_3=egin{pmatrix}3\\0\\1\end{pmatrix}
ight\}$$

$$.u=egin{pmatrix}2\\-1\\10\end{pmatrix} \ \text{value} \ [u]_B \ \text{with}$$
 מצאו את $[u]_B$ עבור ווקטור

פתרון:

B נבדוק אם B בת"ל:

$$\begin{pmatrix} 1 & 1 & 3 \\ -2 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 3 \\ 0 & 3 & 6 \\ 0 & 0 & 3 \end{pmatrix}$$

כל העמודות מובילות, לכן b_3 , b_2 , b_1 בת"ל.

 \mathbb{R}^3 בסיס של של $B=\{b_1,b_2,b_3\}$ לכן, $\dim(\mathbb{R}^3)=3$

B נמצא את הקואורדינטות של ווקטור על הקואורדינטות נמצא את הקואורדינטות אח

$$u = k_1 u_1 + k_2 u_2 + k_3 u_3$$

$$\begin{pmatrix} 1 & 1 & 3 & 2 \\ -2 & 1 & 0 & -1 \\ 0 & 1 & 1 & 10 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 19 \\ 0 & 0 & 1 & -9 \end{pmatrix}$$
$$[u]_B = \begin{pmatrix} 10 \\ 19 \\ -9 \end{pmatrix}$$

דוגמה 11.4

 $[u]_C$ מהו $[u]_B$ נתון מהו $C=\{c_1,\ldots,c_n\}$ ו $B=\{b_1,\ldots,b_n\}$,V מהו מרחב של מרחב

פתרון:

 $\cdot B$ נרשום את כצ"ל של בסיס u

$$u = x_1 b_1 + \ldots + x_n b_n \qquad \Rightarrow \qquad [u]_B = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$

C כל ווקטור א"ך של בסיס ($1 \leq i \leq n$) הוא א

$$b_1 = b_{11}c_1 + b_{21}c_2 + \dots + b_{n1}c_n$$

$$b_2 = b_{12}c_1 + b_{22}c_2 + \dots + b_{n2}c_n$$

$$\vdots$$

$$b_n = b_{1n}c_1 + b_{2n}c_2 + \dots + b_{nn}c_n$$

מכאן מקבלים

$$u = x_1(b_{11}c_1 + b_{21}c_2 + \dots + b_{n1}c_n) + x_2(b_{12}c_1 + b_{22}c_2 + \dots + b_{n2}c_n) + \dots + x_n(b_{1n}c_1 + b_{2n}c_2 + \dots + b_{nn}c_n)$$

$$= (x_1b_{11} + x_2b_{12} + \dots + x_nb_{1n})c_1 + (x_1b_{21} + x_2b_{22} + \dots + x_nb_{2n})c_2 + \dots + (x_1b_{n1} + x_2b_{n2} + \dots + x_nb_{nn})c_n$$

לפיכד

$$[u]_{C} = \begin{pmatrix} x_{1}b_{11} + x_{2}b_{12} + \ldots + x_{n}b_{1n} \\ x_{1}b_{21} + x_{2}b_{22} + \ldots + x_{n}b_{2n} \\ \vdots \\ x_{1}b_{n1} + x_{2}b_{n2} + \ldots + x_{n}b_{nn} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & \ldots & b_{1n} \\ b_{21} & b_{22} & \ldots & b_{2n} \\ \vdots & & \ldots & \\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{pmatrix} \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} b_{11} & b_{12} & \ldots & b_{1n} \\ b_{21} & b_{22} & \ldots & b_{2n} \\ \vdots & & \ldots & \\ b_{n1} & b_{n2} & \ldots & b_{nn} \end{pmatrix} \cdot [u]_{B}$$

למטריצה

$$P_{B\to C} = \begin{pmatrix} b_{11} & b_{12} & \dots & b_{1n} \\ b_{21} & b_{22} & \dots & b_{2n} \\ \vdots & & \dots & \\ b_{n1} & b_{n2} & \dots & b_{nn} \end{pmatrix}$$

: קיבלנו נוסחה איים מטריצה המעבר מבסיס B לבסיס מטריצה המעבר מבסיס

$$[u]_C = P_{B \to C}[u]_B$$

כאשר

$$P_{B\to C} = ([b_1]_C \dots [b_2]_C)$$

דוגמה 11.5

כאשר $C = \{c_1, c_2, c_3\}$, $B = \{b_1, b_2, b_3\}$, \mathbb{R}^3 כאשר נתונים שני בסיסים של

$$b_1 = \begin{pmatrix} 2 \\ -7 \\ 3 \end{pmatrix}, b_2 = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}, b_3 = \begin{pmatrix} -1 \\ -4 \\ -2 \end{pmatrix}$$

$$c_1 = \begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}, c_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, c_3 = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix}.$$

$$[u]_C$$
 נתון $[u]_B = egin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix}$ נתון

פתרון:

נשתמש בנוסחה

$$[u]_C = P_{B \to C} \cdot [u]_B .$$

כדי למצוא את צריך צריך $P_{B o C}$ את המערכת:

$$C \cdot X = b_1$$

$$C \cdot X = b_2$$

$$C \cdot X = b_3$$

. מורכבת מווקטורים c_3, c_2, c_1 העומדים בעמודות מטריצה C

I היחידה היחידה למטירצה ניתן לכן בדירוג יחיד, לכן כיס, למערכת למטירצה בסיס, למערכת לכיס, לכוון יחיד, לכן כיס, למערכת למטירצה בסיס, למערכת היחידה לי"ג בתהליד למצבים:

$$(C|b_1) o \ldots o (I|P_{B o C}$$
 העמודה הראשונה של $(C|b_1) o \ldots o (I|P_{B o C})$ העמודה ה $(C|b_n) o \ldots o (I|P_{B o C})$

מכיוון שבדירוג מבצעים את אותן הפעולות האלמנטריות, אפשר לפתור את כל המעכות בבת אחת!

$$(C|B) \to \dots \to (I|P_{B\to C})$$

$$\begin{pmatrix} 1 & 1 & 3 & 2 & 1 & -1 \\ -2 & 1 & 0 & -7 & 1 & -4 \\ 0 & 1 & 1 & 3 & 2 & -2 \end{pmatrix} \to \begin{pmatrix} 1 & 0 & 0 & 7 & 1 & 1 \\ 0 & 1 & 0 & 7 & 3 & -2 \\ 0 & 0 & 1 & -4 & -1 & 0 \end{pmatrix}$$

$$P_{B\to C} = \begin{pmatrix} 7 & 1 & 1 \\ 7 & 3 & -2 \\ -4 & -1 & 0 \end{pmatrix}$$

$$[u]_C = P_{B\to C} \cdot [u]_B = \begin{pmatrix} 7 & 1 & 1 \\ 7 & 3 & -2 \\ -4 & -1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 4 \\ 1 \end{pmatrix} = \begin{pmatrix} 19 \\ 24 \\ -12 \end{pmatrix}$$

דוגמה 11.6

נתון

$$B = \left\{ b_1 = \begin{pmatrix} -9 \\ 1 \end{pmatrix}, \quad b_2 = \begin{pmatrix} -5 \\ -1 \end{pmatrix} \right\} \qquad C = \left\{ c_1 = \begin{pmatrix} 1 \\ -4 \end{pmatrix}, \quad c_2 = \begin{pmatrix} 3 \\ -5 \end{pmatrix} \right\}$$

 \mathbb{R}^2 שני בסיסים סדורים של

 ${\cal C}$ מצאו מטריצת מעבר מהבסיס מעבר מטריצת

$$(V)_C$$
 כך ש- $(V)_B = egin{pmatrix} 1 \\ 1 \end{pmatrix}$ כך ע- $V \in \mathbb{R}^2$ יהי יהי

B לבסיס לבסיס מטריצת מ

n הגדרה 11.2 המרחב של פולינומים מסדר

המרחב של פולינומים מסדר n יסומן ויוגדר- הקבוצה או $\mathbb{R}_n[x]$ או $\mathbb{R}_n[x]$ או מסדר חלינומים מסדר הפולינומים המרחב של פולינומים מסדר היותר:

$$P_n[x] = \{a_0 + a_1x + \dots + a_nx^n | a_0, a_1, \dots, a_n \in \mathbb{R}\}\$$

דוגמה 11.7

$$1 + 2x \in P_1[x]$$
, $1 + 5x^2 \notin P_1[x]$.

$$1 + 2x \in P_3[x]$$
, $1 + 4x + 3x^2 \in P_3[x]$, $3 + 8x + 7x^3 \in P_3[x]$, $6x + 5x^4 \notin P_3[x]$.

$$1 - 3x^4 + 6x^7 \in P_7[x]$$
, $1 - 3x^4 + 6x^7 + 6x^8 - x^9 \notin P_7[x]$.

משפט 11.2 תלות לינארית של פולינומים

n קבוצת פולינומים מסדר

$$S = \{a_0 + a_1x + \dots + a_nx^n, b_0 + b_1x + \dots + b_nx^n \dots \}$$

בת"ל אם"ם קבוצת הווקטורים של המקדמים בת"ל, כלומר אם הקבוצה

$$\left\{ \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_n \end{pmatrix}, \begin{pmatrix} b_0 \\ b_1 \\ \vdots \\ b_n \end{pmatrix}, \dots \right\}$$

בת"ל.

אם נגדיר המטריצה

$$A = \begin{pmatrix} a_0 & b_0 \\ a_1 & b_1 \\ \vdots & \vdots \\ a_n & b_n \end{pmatrix}$$

אז הפולינומים בת"ל אם"ם

$$\det\left(A^tA\right) \neq 0 \ .$$

משפט 11.3 בסיס הסטנדרטי של פולינומים

הקבוצה

$$E = \{e_1 = 1, e_2 = x, e_3 = x^2, \dots, e_{n+1} = x^n\}$$

 $P_n[x]$ הינה בסיס של המרחב ווקטורי של פולינומים מסדר ונקרא הבסיס הסטנדרטי של

משפט 11.4 הוורונסקיאן

נתון קבוצה

$$F = \{f_1(x), f_2(x), \dots, f_n(x)\}\$$

של $\mathbb R$ של כל הפונקציות מעל V של במרחב של פונקציות במרחב ועל פונקציות של של של פונקציות במרחב

$$W(x) = \begin{vmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & & & & \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{vmatrix}.$$

-אם קיים $x_0\in\mathbb{R}$ כך ש

$$W(x_0) \neq 0$$

.אז F בת"ל

הוכחה: יהיו

$$F = \{f_1(x), f_2(x), \dots, f_n(x)\}\$$

קבוצה בת"ל אם"ם הצ"ל מעל $\mathbb R$ של כל הפונקציות של על צמרחב במרחב פונקציות מעל חלבוצה של פונקציות במרחב

$$c_1 f_1(x) + c_2 f_2(x) + \dots + c_n f_n(x) = 0$$

לכל את הצ"ל את את לכל . $i=1,2,\ldots,n$ לכל לכל הקיים רק אם מתקיים את לכל גוור לכל לכל הא $c_i=0$

$$c_1 f_1^{(i)}(x) + c_2 f_2^{(i)}(x) + \dots + c_n f_n^{(i)}(x) = 0$$

לכל מטריציאלית כמשוואה $x \in \mathbb{R}$

$$\begin{pmatrix} f_1(x) & f_2(x) & \dots & f_n(x) \\ f'_1(x) & f'_2(x) & \dots & f'_n(x) \\ \vdots & & & & \\ f_1^{(n-1)}(x) & f_2^{(n-1)}(x) & \dots & f_n^{(n-1)}(x) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

הדטרמיננטה של המטריצה המקדמים נקראת הוורונסקיאן של הקבוצה $\{f_1(x),f_2(x),\dots,f_n(x)\}$ ומסומן הדטרמיננטה של המטריצה המקדמים נקראת $x_0\in\mathbb{R}$ כך ש $x_0\in\mathbb{R}$ אז המטריצה המקדמים איננה אפס בנקודה $x_0\in\mathbb{R}$ ולכן כל המקדמים $x_0\in\mathbb{R}$ לכן, אם הוורונסקיאן אינו שווה אפס בנקודה $x_0\in\mathbb{R}$ אז הקבוצה $x_0\in\mathbb{R}$ בת"ל.

דוגמה 11.8

 $P_2[x]$ עבור המרחב

מצאו מטריצת מעבר מהבסיס הסדור

$$B = \{b_1 = 1 - 2x + x^2, b_2 = 3 - 5x + 4x^2, b_3 = 2x + 3x^2\}$$

לבסיס הסטנדרטי

$$E = \{e_1 = 1, e_2 = x, e_3 = x^2\}$$

B לפי הבסיס -1+2x ומצאו את הווקטור

פתרון:

 $:P_{B o E}$ נחשב את

$$(E|B) = \begin{pmatrix} 1 & 0 & 0 & 1 & 3 & 0 \\ 0 & 1 & 0 & -2 & -5 & 2 \\ 0 & 0 & 1 & 1 & 4 & 3 \end{pmatrix}$$

וסיימנו.

$$P_{B\to E} = \left(\begin{array}{ccc} 1 & 3 & 0 \\ -2 & -5 & 2 \\ 1 & 4 & 3 \end{array}\right)$$

$$[u]_B = P_{E \to B}[u]_E .$$

$$P_{E \to B} = P_{B \to E}^{-1}$$

$$\begin{pmatrix}
1 & 3 & 0 & 1 & 0 & 0 \\
-2 & -5 & 2 & 0 & 1 & 0 \\
1 & 4 & 3 & 0 & 0 & 1
\end{pmatrix}
\xrightarrow{R_2 \to R_2 + 2R_1}
\begin{pmatrix}
1 & 3 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0 \\
0 & 1 & 3 & -1 & 0 & 1
\end{pmatrix}$$

$$\xrightarrow{R_3 \to R_3 - R_2}
\begin{pmatrix}
1 & 3 & 0 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0 \\
0 & 0 & 1 & -3 & -1 & 1
\end{pmatrix}
\xrightarrow{R_1 \to R_1 - 3R_2}
\begin{pmatrix}
1 & 0 & 0 & -23 & -9 & 6 \\
0 & 1 & 0 & 8 & 3 & -2 \\
0 & 0 & 1 & -3 & -1 & 1
\end{pmatrix}$$

$$.P_{E\rightarrow B}=\left(\begin{array}{ccc}-23&-9&6\\8&3&-2\\-3&-1&1\end{array}\right)$$
לכן
$$[u]_B=P_{E\rightarrow B}[u]_E=\left(\begin{array}{ccc}-23&-9&6\\8&3&-2\\-3&-1&1\end{array}\right)\cdot\left(\begin{array}{c}-1\\2\\0\end{array}\right)=\left(\begin{array}{ccc}5\\-2\\1\end{array}\right)_B$$

בדיקה:

$$5b_1 - 2b_2 + 1b_3 = 5(1 - 2x + x^2) - 2(3 - 5x + 4x^2) + 1(2x + 3x^2)$$
$$= 5 - 6 - 10x + 10x + 2x + 5x^2 - 8x^2 + 3x^2$$
$$= -1 + 2x.$$