Bmk zur Serie 4:

10b) Zz: Lz = 20n! | n ∈ INg & LEA mit Methode des Kolmogorov Komplexität. ldee in Lösungen: yn = 0 n.n!-1 jeweils eastes Wort in Lxn

? Passt auf mit Sonderfällen n=0, n=1,...?

11b) Z: Ly = { w = {a,b,c3" | w enthalf Teilwort ab gloich off wie Teilwort ba } ldee für Methode Lenna 3.3: Wk = (abc)k 0≤k ≤ |Q|; 2 = (bac)i für w; ≠wj I Wz = (ab) k 0 ≤ k ∈ |Q| mit z = (ba) für w; ≠ w; funktioniest nicht!

Gegenbeispiel: i=1, j=2: $w_{i}z=abba \in L_{4}$; $w_{j}z=ababba \in L_{4}$ ignoriert keine Buchstaben in Z (ohne c wäre La regulär)

Aufg 1) (Worked Example 1)

Sei L= {w ∈ {a, b} * 1 w enthalt das Teilwort ab gleich oft wie das Teilwort ba3. Zz: Jeder EA, der L akzeptiert, hat mindestens 5 Zustände.

Läsung: Annahme per Widerspruch: $\exists A = (Q, \Sigma, \delta_A, q_0, F)$ mit L(A) = L und $|Q| \le 4$.

- · Wir betrachten die 5 Wörter $w_0 = \lambda$, $w_1 = \alpha$, $w_2 = b$, $w_3 = \alpha b$, $w_4 = b\alpha$
- · Da 1Q1=4, müssen weden dem Schubfachprinzip mindestens 2 dieser Wörter im selben Zustand enden. dh. $30 \le i < j \le 4$ wit $\hat{S}_A(q_0, w_i) = \hat{S}_A(q_0, w_3)$.
- · Noch Lemma 3.3 muss nun Vze {a,b}** gelten: w;zeL <=> w;zeL.
- · Folgende Tabelle zeigt jedoch, dass sich für jedes Paar (wi, wi) mit 0 si < j < 4 ein Suffix Ze {a,53 finden lösst, s.d. entweder wizeln wzzkl oder wizkln wzzel gilt.

	λ	a	Ь	ab	ba	L
λ	1	b F	4	↓ \	λ	
a	1	1	S T	∠ λ	λ +	
ь)	1)	λ	ل ک	
ab	1	1	1	1	<u>ተ</u>	
ba)	-	1	_	ı	

- · Dies ist ein Widerspruch zu 1Q1=4.
- · Somut muss oin EA A mit L(A)=L mindestons 5 Zustände haben.

3.5 Nichtdelerminismus

Def: Ein <u>nicht deterministischer endlicher Automat</u> (NEA) ist ein Quintupel $M = (Q, \Sigma, \delta, q_0, F)$, wobei

Q: endliche Zustandsmenge

I: Eingabealphabet

qoe Q: Anfanszustand

FEQ: Menge des akzeptierenden Zustände

 $S: Q \times Z \rightarrow \underline{P(Q)}: Ubergangsfunktion$

Unterschied zu EA

 $L(M) = \{ w \in \mathbb{Z}^* : \hat{\delta}(q_0, w) \cap F \neq \emptyset \}$ ist die <u>von M akzeptierte Sprach</u>e.

Bmk: Intuitiv sind NEAs EAs, mobei beliebig viele (auch keine) Pfeile von den Zuständen ausgehen können. Ein NEA akzeptiert ein Wort we I*, falls es mindestens eine akzeptierende Berechnung gibt.

Aufg 2) Entwerfe einen NEA für folgende Sprachen:

- a) L, = {01, 1013*
- b) L2 = { w \ {a,b,c3* : |w| \ 2 und w beginnt und endet mit demselben Buchstaben 3
- c) L3 = {we {0.13* : w= x 0y 0z mit x,ze {0.13* und ye {0.132 }

Lösung: a)

Satz 3.2: Zu jedem NEA M existient ein EA A s.d. L(M) = L(A)

Bmk: Die Konstruktion von A aus M=(Qm, Zm, Sm, qom, Fm) heisst <u>Potenzmengenkonstruktion</u> und gold wie folgt:

(ii)
$$\Sigma_A = \Sigma_M$$

(v)
$$\delta_{A}: Q_{A} \times \Sigma_{A} \longrightarrow Q_{A}$$
 def. als
$$\delta_{A}(\langle P \rangle, a) = \Big\langle \bigcup_{p \in P} \delta_{n}(p, a) \Big\rangle = \Big\langle \big\{ q \in Q_{n}: \exists_{p} \in P \text{ s.d. } q \in \delta_{m}(p, a) \big\} \Big\rangle$$

Aufg 3) Wandle den in 2 b) konstruierten NEA für L2 mit der Potenzmengenkonstruktion in einen EA um.

Löeung:	NEA:		۵	ь	<i>C</i>
4	a.b.c () a(94)	{9•}	£ 913	{ q2}	£ 93}
	a and	१ १०}	{ 91,943	£ 943	£ 913
	-> Q0 -b - Q2 -b - Q4) {q2q	{ q2 }	{ q2, q4}	1923
	(a) c	ृ १७३	र्व १ ३५	[93]	{q3,q49
		£ 91,94}	£91,919	१ १० रे	?9. 3
		92.94	£ 929	§ 92, 94]	₹92°₹
		[93,94]	2933	[93]	{q3,q4}
	EA:				

