

Contents

•	Introduction to Liquid Cooling Plate	03
•	Types of Liquid Cooling Plates	04
•	Production Process Comparison	05
•	Comparison of Liquid Cooling Plates	06
•	Design Process	07
•	Manufacturing Process	08
•	Our Thermal Design Capability	09
•	Our Manufacturing Capability	10
•	Quality Control	11
•	Testing Instruments & Equipment	12
•	Product Display	13
•	Industrial Application	14
•	Case Study - Electric Vehicle Controller(IGBT) Cooling Solution	15

What is a Liquid Cooling Plate?

Introduction to Liquid Cooling Plate

A Liquid Cooling Plate is a specialized heat dissipation component commonly used in high-power electronic devices and industrial equipment to manage heat efficiently.

- It typically consists of a metal plate with internal channels through which a cooling liquid, often water, flows.
- 2. The primary function of a Liquid Cooling Plate is to absorb heat from the device it is cooling and transfer it to the circulating cooling liquid.
- This liquid then carries the heat away from the device to a heat exchanger or radiator, where it is dissipated into the surrounding environment.

In summary, Liquid Cooling Plates play a crucial role in maintaining the thermal performance and reliability of electronic devices and industrial machinery by efficiently dissipating heat and ensuring optimal operating conditions.

Categorized by the Process Type of Liquid Cooling Plates

Types of Liquid Cooling Plates

Drilling Type Cooling Plate

After milling grooves or drilling the base plate, cover plates are added for sealing, followed by CNC machining completion.

Embedded Tube Cooling Plate

After CNC milling the base plate, the bent copper pipes are riveted and secured into the grooves, followed by CNC machining of the outer shape.

Laser Welding Cooling Plate

The base plate with flow path and the top cover are separately CNC machined, then sealed by laser welding.

FSW (Friction Stir Welding) Cooling Plate

The base plate with flow path and the top cover are separately CNC machined, then sealed by friction stir welding.

Vacuum Brazing Cooling Plate

The base plate with flow path and the top cover are separately CNC machined, vacuum brazing is used for sealing welding.

Categorized by the Process Type of Liquid Cooling Plates

Production Process Comparison

Categorized by the Process Type of Liquid Cooling Plates

Comparison of Liquid Cooling Plates

Process Type	Advantages	Disadvantages		
Drilling Type Cooling Plate	Low manufacturing cost.Simple production process.	 Hole size and arrangement may limit heat dissipation efficiency Poor sealing performance 		
Embedded Tube Cooling Plate	Low thermal resistance, high heat dissipation efficiency.Suitable for mass production.	 The assembly process is more complicated than other types Uneven heat dissipation 		
Laser Welding Cooling Plate	High precision.Fast processing speed.	 Requires high process requirements and specialized equipment. Only suitable for surface welding. 		
FSW (Friction Stir Welding) Cooling Plate	High-strength sealing welding can be achieved.With good heat withstand capability.	 Manufacturing costs are higher. Requires high process requirements and specialized equipment. 		
Vacuum Brazing Cooling Plate	 Excellent sealing and thermal conductivity. Suitable for high-demand heat dissipation scenarios. 	 The highest manufacturing cost. Requires high process requirements and specialized equipment. 		

Design Process

			TIXE.		_
10	11	115	*11	88:	11
25	3902 3903	形態 粉雕	NAPORONA NAPORONA	X BEET	8/15/02 D:102
MOST	5887	ECFRAN	30,604	36	538
tal	200007	- 47	16(9) BE	int.	ét#
HAH			\$ 100 \$ 100 ± \$1.	29	
1983	4	THE	me	B711	den
EM	Çu	SIC	ome	N.E.S	231
Bitte	0(8)/4	Dris	ina	36 (1)25	2411
(1943)	995355	141214	gina eme	(441) (5	Tit
± wrkter	teq	uır	eme	ent	S,
ST BC	Pa	rar	nete	ers	\$1
2) Hinds	it	+	19	I+	16
thelto	Milita	02914	0261424	3500	meit
£1\$4£1	12.0			2.5	14
History		18			18
4500	n	3	2	N	it
SHI	U	3	2	N	18

Complete Design

Manufacturing Process

Material Selection

• Select suitable materials, typically metals such as aluminum or copper, along with other necessary auxiliary materials.

Processing & Fabrication

- CNC Machining
- Pipeline Processing

Assembly & Welding

- Component Assembly: Assemble the processed components together, including installing pipelines, connectors, etc.
- Welding: Depending on requirements, welding processes are carried out to ensure secure component connections.

Testing & Quality Inspection Conduct testing and quality inspection on the assembled liquid cooling plate to ensure its performance meets requirements.

Surface Treatment • Perform surface treatments such as painting, anodizing, etc., to enhance the corrosion resistance and aesthetics of the liquid cooling plate.

Our Thermal Design Capability

- CFD Simulation and Analysis
- CAD Design
- Prototyping
- Thermal Testing
- In-house Training Courses

Temperature Distribution

Our Manufacturing Capability

Our full production capability are from Cutting, Grooving, Bonding, Skiving, Stamping, Lathing, Brazing, Polishing, Deburring, Assembling, FSW and CNC Machining, all the processes are finished in house with under control in lead time and quality.

CNC Workshop

Friction Stir Welding

Vacuum Brazing

Heat Pipe Workshop

Continuous Nitrogen-Protected Brazing Tunnel Furnace

Assembly Line

Quality Control (Leakage Reliability Testing)

We have independent laboratories and quality inspection rooms capable of conducting vacuum helium tests, water immersion ultrasonic phased array flaw detection, channel cleaning, cleanliness testing, thermal performance testing, X-ray imaging, airtightness/flow/pressure drop testing, and salt spray testing to meet high standards of product requirements.

Testing Instruments & Equipment

Pressure Pulse Testing Platform

Water Immersion
Ultrasonic Flaw
Detection Facility

Hot & Cold Shot Chamber

Burst Testing Platform

Thermal & Humidity Testing Chamber

Vacuum Helium Testing Facility

Cleanliness Testing & Analysis Facility

X-ray Imaging Chamber

Salt Spray Testing Chamber

3D CMM

Product Display

Industrial Application

Introduction to Electric Vehicle Controller

The three major components of new energy vehicles are the motor, motor controller, and battery. Direct current from the battery pack is converted into sine waves through an inverter bridge to drive the motor. The power of the motor controller is designed based on the motor's requirements, with the main power unit being the IGBT. As the core of the motor controller, the thermal management of the IGBT is a crucial aspect in the development of the motor controller.

Processing Technology Introduction

The shell of the motor controller is generally produced using die-casting technology. However, with the increasing power density of motor controllers and the growing demand for cost-effectiveness (the main cost of motor controllers being in the IGBT module), combination processes are becoming more common in the design of motor controller waterways.

For example, a commonly used process in our company is to combine two die-castings together through friction stir welding, or to combine profile waterways with die-cast shells, and so on.

Flow Path Design & Material: ADC12

Related Parameter Settings:

Power: 350.85W

Boundary Conditions:

Coolant: 50% volume ratio ethylene glycol aqueous solution

Coolant Temperature: 65°C Volume Flow Rate: 8L/min

Design Requirements:
 Flow Resistance < 80Kpa
 IGBT Junction Temperature (Rated Condition) < 110°C
 IGBT Junction Temperature (Peak Condition) < 160°C

Top Part
Die-Cast Flow Path

Main Cabinet
Die-Cast Flow Path

Flow Field Distribution Map

Main Flow Path

• The flow resistance of the channel is approximately 65Kpa, which is less than 80Kpa, meeting the requirements.

Temperature Field Distribution Map

Peak Current

- At rated current, the IGBT junction temperature is 103.4°C, and the diode junction temperature is 87.2°C, both lower than 110°C, meeting the requirement.
- At peak current, the IGBT junction temperature is 150.8°C, and the diode junction temperature is 120°C, both lower than 160°C., meeting the requirement.

Conclusion

- 1. Through simulation, it is found that the flow resistance of the channel is approximately 65Kpa, which is lower than the requirement of 80Kpa.
- 2. Under the rated current condition, the IGBT junction temperature is 103.4°C, and the diode junction temperature is 87.2°C, both lower than 110°C, meeting the requirement.
- 3. Under the peak current condition, the IGBT junction temperature is 150.8°C, and the diode junction temperature is 120°C, both lower than 160°C, meeting the requirement.

JARO THERMAL

We Keep the World $\mathbf{Cool}^{\mathbb{T}\!\!\mathsf{M}}$