# Components in a graph



There are 2N values to represent nodes in a graph. They are divided into two sets G and B. Each set has exactly N values. Set G is represent by  $\{G_1,G_2,\cdots,G_N\}$  . G can contain any value between 1 to N(inclusive). Set B is represented by  $\{B_1, B_2, \cdots, B_N\}$ . B can contain any value between N+1 to 2N(inclusive). Same value can be chosen any number of times.

Here  $(G_1, B_1), (G_2, B_2), \cdots (G_N, B_N)$  represents the edges of the graph.

Your task is to print the number of vertices in the smallest and the largest connected components of the graph.

**Note** Single nodes should not be considered in the answer.

For more clarity look at the following figure.

For the above graph smallest connected component is 7 and largest connected component is 17.

### **Input Format**

First line contains an integer N.

Each of the next N lines contain two space-separated integers,  $i^{th}$  line contains  $G_i$  and  $B_i$ .

#### **Constraints**

- 1 < N < 15000
- $1 \leq G_i \leq N$
- $N+1 \leq B_i \leq 2N$

# **Output Format**

Print two space separated integers, the number of vertices in the smallest and the largest components.

## Sample Input

16 2 7

38

49 2 6

## Sample Output

2 4

#### **Explanation**

The number of vertices in the smallest connected component in the graph is 2 i.e. either (3,8) or (4,9). The number of vertices in the largest connected component in the graph is 4 i.e. 1-2-6-7.