Analysis 1

Logik

Materiale Aequivalenz (⇔)

Logische Aequivalenz (\equiv) $A \Leftrightarrow B \equiv (A \Rightarrow B) \land (B \Rightarrow A)$

 $A \Rightarrow B$ - Wenn A, dann B

 $\neg B \Rightarrow \neg A$ - Kontraposition

$$A \Rightarrow B \equiv \neg B \Rightarrow \neg A$$

Zum Beispiel:

Es hat geregnet \Rightarrow die Strasse ist nas

Kontraposition: Die Strasse ist nicht nass \Rightarrow Es hat nicht geregnet

Das ist genauso war aufgrund der Physik.

Wahr: $0 < 0 \Rightarrow 1 + 1 = 2$

Falsch: $0 < 0 \Leftrightarrow 1 + 1 = 2$

Proof methods

Modus ponens (wie man etwas in der Mathematik beweist):

A := Es hat geregnet (Premise)

Wenn es geregnet hat, dann ist die Strasse nass (Regel: $A \Rightarrow B$)

B := Die Strasse ist nass (Konklusion)

Lemma (oder Hilfssatz) - ein Satz, der dazu dient, einen anderen Satz zu beweisen

q.e.d. (\blacksquare) - end of proof

Beweiss formalisieren - Express a proof formally in terms of symbols and Limmas, can be checked by a computer.

Kontraposition

TODO: Review script

Widerspruch beweis

Um A zu beweisen, nehmen wir an, dass A falsch ist.

Widerspruch finden - das beweist die Aussage A

Zum Beispiel:

Beweis des Satzes $\sqrt{2} < \sqrt{3}$

Nehmen wir an, dass $\sqrt{2} \ge \sqrt{3}$

Lemma: $\sqrt{2} \ge \sqrt{3} \Rightarrow 2 \ge 3$

Widerspruch: $2 \ge 3$ ist falsch, deshalb ist $\sqrt{2} \ge \sqrt{3}$ auch falsch.

 $\neg \left(\sqrt{2} \ge \sqrt{3}\right) \equiv \sqrt{2} < \sqrt{3} \blacksquare$

Vollstaendige Induktion

 $n\in N_0, P(n)$ ist eine Aussage P(0) ist wahr Wenn $\forall k\in N_0$ gilt $P(k)\Rightarrow P(k+1)$ Dann ist $\forall n\in N_0, P(n)\equiv \text{wahr}$ Zum Beispiel:

$$\begin{aligned} \text{Satz: } \forall n \in N_0, P(n) &\coloneqq \sum_{i=1}^n i = \frac{n(n+1)}{2} \\ P(0) &= \frac{0(1)}{2} = 0 \\ \text{Sei } P(k) &= \frac{k(k+1)}{2} \\ P(k+1) &= P(k) + k + 1 = \frac{k(k+1)}{2} + k + 1 \\ &= 2k^2 + 3k + 1 = \frac{k^2 + \frac{3}{2}k + \frac{1}{2}}{2} \\ &= \frac{(k+1)(k+2)}{2} = \frac{(k+1)((k+1)+1)}{2} \end{aligned}$$

Vollstaendige Induktion gibt, dass $\forall n \in N_0, P(n)$ wahr ist. \blacksquare

Mengenlehre