Realizzazione di un applicativo Matlab di supporto alle attività di regioni, ASL e ospedali - Progetto a.a. 2021/22

Lo scopo del progetto è di riprodurre in un contesto semplificato ma realistico le esigenze di sintesi e scambio dei dati fra i diversi attori coinvolti nel sistema sanitario nazionale; prevede inoltre un ipotetico scenario in cui viene effettuato uno studio multicentrico legato alla diagnosi o prevenzione del Diabete Mellito. Gli studenti sono divisi in tre macrogruppi (regioni). Ogni macrogruppo è composto da diversi gruppi di 4 persone. Il primo gruppo rappresenta la regione, che deve sintetizzare i dati riguardanti le prestazioni erogate da tutti gli ospedali e dalle tre ASL del territorio regionale. Dieci (o nove) gruppi per ogni regione rappresentano gli ospedali, come indicato nello schema seguente.

	Compo	onenti	Ruolo	ASL di Riferimento	
491865	488233	491307	495017	REGIONE1	
489710	491043	481592	491201	ASL1 REG1	
489686	493266	493334	492311	ASL2 REG1	
493574	489854	493384	489688	ASL3 REG1	
491116	489885	489694	489708	OSP1 REG1	ASL1 REG1
491038	488837	488281	493278	OSP2 REG1	ASL1 REG1
471720	470760	468282	483214	OSP3 REG1	ASL1 REG1
481354	479399	481545	479479	OSP4 REG1	ASL1 REG1
494443	494211	494338	489886	OSP5 REG1	ASL2 REG1
482054	482195	491280	494235	OSP6 REG1	ASL2 REG1
493593	494023	482803	491318	OSP7 REG1	ASL2 REG1
489739	491393	488853		OSP8 REG1	ASL3 REG1
491256	489760	481413	491926	OSP9 REG1	ASL3 REG1
496165	494080	472229		OSP10 REG 1	ASL3 REG1
488872	489770	490002	493450	REGIONE2	
478995	489773	489151	489709	ASL1 REG2	
491053	506215	481500	493311	ASL2 REG2	
490148	491172	495316	493270	ASL3 REG2	
493277	492713	489689	491993	OSP1 REG2	ASL1 REG2
493434	493453	491042	490520	OSP2 REG2	ASL1 REG2
488774	493302	478058	489978	OSP3 REG2	ASL1 REG2
488269	493272	493303	489244	OSP4 REG2	ASL1 REG2
489216	493738	496097	493368	OSP5 REG2	ASL2 REG2
491438	493613	493464	491468	OSP6 REG2	ASL2 REG2
490062	491860	491920		OSP7 REG2	ASL2 REG2
488765	478052	489701	437855	OSP8 REG2	ASL3 REG2
491785	493264	495134	493337	OSP9 REG2	ASL3 REG2
491078	494070	478998	481616	OSP10 REG 2	ASL3 REG2
488893	491457	489685	488814	REGIONE3	
490400	489248	493307	495657	ASL1 REG3	
483186	488811	477666	492610	ASL2 REG3	
490546	494069	489998	493292	ASL3 REG3	
490116	491753	490491	490205	OSP1 REG3	ASL1 REG3

491075	493321	491039	493528	OSP2 REG3	ASL1 REG3
491127	491756	493429	491476	OSP3 REG3	ASL1 REG3
493500	489988	489868	488226	OSP4 REG3	ASL2 REG3
489910	494924	489726	490281	OSP5 REG3	ASL2 REG3
479818	479290	475949	455045	OSP6 REG3	ASL2 REG3
490184	491803	496428	493670	OSP7 REG3	ASL3 REG3
493265	489703	491941	489781	OSP8 REG3	ASL3 REG3
488547	493280	492923		OSP9 REG3	ASL3 REG3

Le aule da utilizzare sono le seguenti:

• Regione 1: Aula C2

• Regione 2: Aula EF1/Aula 4

• Regione 3: Aula C3

Gli ospedali devono trasmettere i loro dati in formato JSON alle ASL e le ASL devono aggregare i dati degli Ospedali e inviare queste sintesi, insieme a delle statistiche sulle prestazioni erogate dall'ASL, alla Regione in formato XML. Si suppone inoltre che gli ospedali stiano partecipando a uno studio multicentrico che prevede la valutazione della curva di carico orale (di glucosio), descritta da un modello matematico a due esponenziali. La valutazione comprende il calcolo di alcuni indicatori sintetici del controllo glicemico a partire dai parametri del modello già a disposizione degli ospedali. Le ASL devono raccogliere i risultati della valutazione delle curve glicemiche ottenute dagli ospedali facendosi inviare un documento in formato XML e produrre un report JSON da inviare in Regione che riporti gli indicatori ottenuti da ogni ospedale e effettuare le medesime valutazioni per un sottogruppo di pazienti ambulatoriali gestiti direttamente dall'ASL. Le Regioni dovranno sintetizzare tutti i dati relativi alle curve glicemiche a disposizione, investigando se esistono delle differenze in termini di controllo glicemico fra le due ASL. Infine, le ASL e gli Ospedali devono ricevere ICP e ICM dalla regione dalla regione (in formato XML). I diagrammi delle classi e i DTD/Schema per la comunicazione devono essere stabiliti in modo condiviso a livello regionale fra tutti i gruppi di ogni regione.

Ogni gruppo dovrà identificare un capogruppo, responsabile dell'intera implementazione e degli aspetti legati all'interfaccia grafica e dei diagrammi dei casi d'uso UML che descrivono le funzionalità del sistema, un responsabile della produzione di tutti i report JSON e XML compresa la definizione dei diagrammi delle classi e dei DTD/Schema corrispondenti, un responsabile delle statistiche e del recupero dei dati nei file in cui sono conservati i dati, e infine un responsabile dello studio clinico sul glucosio che effettui le valutazioni e le simulazioni.

SPECIFICHE REGIONE

Realizzazione di un applicativo dotato di interfaccia grafica per il controllo di gestione della regione.

La regione dovrà stabilire gli standard di comunicazione in accordo con le ASL e gli ospedali (Diagramma delle classi UML e JSON per l'invio dei dati delle prestazioni da parte degli ospedali e del glucosio da parte dell'ASL; DTD o Schema XML per gli altri invii: dati prestazione ASL alla Regione, dati prestazioni da Regione all'ASL, report ICM e ICP dalla Regione alle ASL e all'ospedale, dati glucosio dall'ospedale all'ASL).

Lo standard dovrà prevedere:

- invio da parte degli ospedali alle ASL di un report JSON contenente le informazioni necessarie al calcolo del DRG, il DRG calcolato dall'ospedale, il rimborso calcolato dall'ospedale e le giornate di degenza.
- Invio da parte delle ASL alla regione di un report XML contenente tutte le informazioni relative ai singoli ospedali (in modo che la regione possa calcolare ICM e ICP) e di una sintesi delle prestazioni specialistiche.
- Invio da parte della regione dei report in XML di cui ai punti 6 e 7.

L'applicativo regionale dovrà essere in grado di (requisiti minimi):

- 1. Gestire gli accessi all'applicativo mediante un sistema di login e password.
- 2. Leggere le informazioni dai file XML
- 3. Calcolare le frequenze dei DRG (evidenziando le frequenze massime e minime) relative a tutti gli ospedali.
- 4. Calcolare ICP e ICM degli ospedali.
- 5. Valutare in modo comparativo le ASL in termini di spesa rispetto al numero delle prestazioni
- 6. Inviare agli Ospedali un report in formato XML contenente i loro ICP e ICM, ed i valori della degenza media e delle proporzioni, nello standard, come calcolati a livello regionale.
- 7. Inviare alle ASL un report in formato XML contenente gli ICP e gli ICM degli ospedali di loro competenza e la loro valutazione in termini di spesa.
- 8. Contenere una sezione che permetta di mostrare gli indicatori medi della cinetica del glucosio dei pazienti di ogni ospedale, di ogni ASL e di calcolare gli indicatori medi per ASL e a livello di tutta la regione, investigando eventuali differenze fra le ASL. Infine, la sezione permetta di inviare alle ASL un report riassuntivo delle analisi sulle glicemie a livello regionale (a propria scelta).
- 8. Le regioni, inoltre, potranno accedere direttamente ai dati dei diversi ospedali per effettuare un controllo sulle informazioni inviate mediante il file JSON, calcolando ad esempio ICM e ICP.

SPECIFICHE ASL

Realizzazione di un applicativo dotato di interfaccia grafica per il controllo di gestione dell'ASL. L'applicativo deve essere in grado di (requisiti minimi):

- 1. Gestire gli accessi all'applicativo mediante un sistema di login e password.
- 2. Leggere il file dati assegnato al gruppo
- 3. Effettuare delle statistiche che descrivano la distribuzione dei pazienti (sesso e classe di età), le frequenze delle "branche ricetta" complessive dell'ASL, per ASL assistito; calcolare gli importi per ASL, per ASL assistito e per branca ricetta. Visualizzare dei grafici con l'andamento mensile della spesa.
- 4. Ricevere dagli ospedali e leggere il report delle prestazioni in formato JSON da loro inviato.
- 5. Scrivere un report in formato XML da inviare alla Regione contenente una sintesi dei dati dei singoli ospedali in modo da permettere alle regioni di calcolare ICM e ICP e una sintesi delle informazioni relative alle prestazioni specialistiche contenente anche i dati di spesa per ASL assistito.
- 6. Contenere una sezione che permetta di visualizzare con un diagramma a barre gli indicatori di ogni paziente di ogni ospedale, la media e la mediana degli indicatori per ogni ospedale, e calcoli gli indicatori dei pazienti ASL che si sono sottoposti al carico glicemico. La sezione deve inoltre permettere di simulare un modello compartimentale equivalente con i parametri medi stimati su tutti i pazienti dell'ASL, e inviare alla regione i risultati del calcolo degli indicatori di ogni ospedale e dell'ASL con un documento JSON.

7. Ricevere dalla regione il report in formato XML contente ICM e ICM per ogni ospedale di ogni ASL e il report riassuntivo sullo studio del glucosio.

SPECIFICHE PER L'OSPEDALE

Realizzazione di un applicativo dotato di interfaccia grafica per il controllo di gestione dell'ospedale. Come requisiti minimi l'applicativo deve essere in grado di (nota: gli importi devono essere calcolati in euro sono disponibili in lire nel file):

- 1. Gestire gli accessi all'applicativo mediante un sistema di login e password.
- 2. Leggere il file dati assegnato al gruppo.
- 3. Effettuare delle statistiche:
- distribuzione dei pazienti (per sesso ed età), frequenza e rimborso per DRG, sia complessivi dell'ospedale sia per reparto; ICP e ICM; frequenza delle diagnosi (principali e secondarie) e degli interventi; distribuzione dei day hospital nelle diverse categorie diagnostiche principali; frequenza delle modalità di ricovero e dimissione.
- 4. Scrivere un report da inviare all'ASL in formato JSON contenente le informazioni necessarie al calcolo del DRG, il DRG calcolato dall'ospedale, il rimborso calcolato dall'ospedale e le giornate di degenza.
- 4. Leggere un file XML inviato dalla regione con gli indici comparativi (ICM e ICP) calcolati a livello regionale.
- 5. Contenere una sezione che permetta di caricare i dati dello studio sul Diabete Mellito, simulare la glicemia per ogni paziente con il modello esponenziale e mostrare i risultati ottenuti, simulare il modello compartimentale equivalente con la media dei parametri stimati su tutti i pazienti e inviare all'ASL gli indicatori relativi a ogni paziente in un opportuno documento XML (si veda la specifica sullo studio clinico).

TUTTI I GRUPPI DOVRANNO RISPETTARE LE SEGUENTI SCADENZE:

02/12/2021 LE REGIONI DEVONO INVIARE AI DOCENTI E AI GRUPPI LE SPECIFICHE XML E JSON

09/12/2021 GLI OSPEDALI DEVONO INVIARE I FILE JSON DELLE PRESTAZIONI ALLE ASL

16/12/2021 LE ASL DEVONO INVIARE I FILE XML ALLA REGIONE

20/12/2021 LE REGIONI DEVONO INVIARE I FILE XML AGLI OSPEDALI E ALLE ASL (VIA E-MAIL)

Dati prestazioni Dati glucosio Regione Regione Sintesi dati ospedali in formato XML Indicatori ospedali e Report in Report formato XML ASL in formato JSON riassuntivo ICP e ICM analisi ASL ASL glicemie in formato a scelta Dati in formato JSON Indicatori in formato XML Report in formato XML Ospedali Ospedali ICP e ICM

Studio clinico - dettagli

Si suppone che la cinetica della variazione del glucosio (differenza fra valore basale pre-test di glucosio e valore nel compartimento plasmatico) sia descrivibile mediante la seguente equazione:

$$BGP(t)=A*(exp(-a*t)-exp(-b*t))$$

Ogni ospedale e ogni ASL ha a disposizione i risultati della stima dei parametri A, a, b e il valore basale pre-test del glucosio per 50 pazienti; questi valori sono stati stimati a partire da misure di glucosio in mg/dl, valutate in un intervallo temporale di cinque ore dal momento del carico orale di glucosio (t in ore).

Dati i valori dei parametri di ogni paziente, è possibile disegnare la curva di concentrazione.

Data la curva è necessario valutare i seguenti indicatori per ogni paziente:

- L'area sotto la curva di concentrazione
- Il valore massimo e l'istante di tempo in cui si raggiunge il massimo
- Il tempo in cui la curva ritorna ad essere inferiore al 5% di scarto positivo dal valore iniziale
- Una sospetta diagnosi di intolleranza al glucosio quando vale una delle seguenti condizioni:
 - O Valore basale superiore a 110 mg/dl
 - o Valore massimo (ottenuto dalla simulazione più valore basale) superiore a 250 mg/dl

Il modello è equivalente al seguente modello compartimentale, assunto $A=(D/V)*(k_{21}/(k_{21}-k_{02}))$, $a=k_{02}$ $b=k_{21}$. Si assuma D=10g.

