Fortgeschrittenen Praktikum

∫ FP

Dr. Bruno Gompf, Tel. 0711-685-65146

Mößbauer-Effekt

Als Mößbauereffekt bezeichnet man die rückstoßfreie Absorption oder Emission von γ -Quanten durch Atomkerne (im Kristall). Durch die Rückstoßfreiheit ist die Energieverschmierung der γ -Strahlung sehr klein, d.h. fast auf die natürliche Linienbreite (Quantenmechanik) reduziert, das entspricht einer relativen Energieunschärfe von ca. 10^{-13} .

Kleinste Energiedifferenzen, hervorgerufen durch sehr unterschiedliche Ursachen wie Dopplerverschiebung, Kernpotentialänderungen durch unterschiedliche chemische Umgebung (Isomerieverschiebung), Hyperfeinstrukturaufspaltung oder Quadrupolaufspaltung können bestimmt werden, indem man verschiedene Emitter- und Absorbersubstanzen verwendet. In diesem Versuch wird als Quelle ⁵⁷Co verwendet, das durch K-Einfang in den angeregten Zustand von ⁵⁷Fe übergeht.

Ziel des Versuchs ist es, die für den Mößbauereffekt charakteristischen Messgrößen wie die Hyperfeinstrukturaufspaltung beim natürlichen Eisen, die Isomerieverschiebung bei $K_4(Fe(CN)_6)^*3H_2O$ und den elektrischen Feldgradienten am Kernort bei $FeSO_4^*7H_2O$ zu bestimmen. Hierzu wird die Absorption der 14,4 keV- γ -Strahlung von ^{57}Fe als Folge des Mößbauereffekts untersucht. Die ^{57}Co Kerne des Emitters sind in eine Rhodium-Matrix eingebettet, um eine aufspaltungsfreie Linie als Quelle zu gewährleisten. Außer den Mößbauerspektren wird auch das vollständige γ -Spektrum von ^{57}Co aufgenommen.

I. Erforderliche Kenntnisse

Theoretische Grundlagen der Kern- und Festkörperphysik:

(Ref 1-9):

Grobe Übersicht: γ -Strahlung, β -Zerfälle, schwache Wechselwirkung Im Detail: Zerfallsschema von 57 Co (strahlende Lebensdauer, Linienverbreiterungsmechanismen, innere Konversion), γ -Spektrum von 57 Co, rückstoßfreie γ -Emission, Theorie des Mößbauereffektes, Mößbauerspektrum, Verbreiterungsmechanismen, Phononen, Debye-Waller-Faktor

Wechselwirkung des Kernes mit inneren und äußeren elektischen und magnetischen Feldern: Hyperfeinstrukturaufspaltung, Quadrupolaufspaltung und Isomerieverschiebung NaJ-Szintillationszähler: (Ref 10-12)

Absorptionsmechanismen von Röntgen- und γ -Strahlung in Materie, Szintillationsmechanismus in NaJ

Experimentelle Grundlagen zur kernphysikalischen Meßtechnik:

Aufbau Szintillationszähler Einkanaldiskriminator (EKD) Vielkanalanalysator (VKA) Meßapparatur zur Anwendung des Mößbauereffekts

II. Literatur

(1) H. Wegener	Der Mößbauereffekt und seine Anwendungen in Physik und Chemie, B.I. Hochschultaschenbücher, Mannheim, 1966 [Gu900]
(2) D.P. Dickson (ed.)	Mößbauer Spectroscopy, (engl.) Cambridge Univ. Press , 1986 [Gu951]
(3) D. Barb	Grundlagen und Anwendungen der Mößbauerspektroskopie Akademie-Verlag, Berlin, 1980 [Gu953]
(4) K. Bethge	Kernphysik: Eine Einführung, Springer Verlag, Berlin, 2001 [Gs480:B562]
(5) G. Musiol	Kernphysik und Elemtarteilchenphysik, Dt. Verlag der Wiss., Thun, 1995 [Gs500:M987]
(6) T. Mayer-Kuckuk	Kernphysik, Teubner-Verlag, Stuttgart, 1994 [Gs480:M468]
(7) W.T. Hering	Angewandte Kernphysik, Teubner-Verlag, Stuttgart, 1999 [Gs480:H546]
(8) P. Marmier	Kernphysik I, Verlag der Fachvereine der ETH Zürich, 1990
(9) R.L. Mößbauer	Zeitschrift für Naturforschung 14a, 211, 1959
(10) H. Neuert	Kernphysikalische Meßverfahren zum Nachweis für Teilchen und Quanten, Verlag G. Braun, Karlsruhe, 1966 [Gu890]
(11) C. Grupen	Teilchendetektoren, B.IWissVerl., Mannheim, 1993 [Gu888]
(12) G. F. Knoll	Radiation detection and measurement, Wiley-Verlag, 2000

III. Experimentelle Aufgaben

- 1. Messen Sie das Röntgen- und γ -Spektrum der radioaktiven 57 Co-Mößbauerquelle mit dem VKA (PHA Mode). Optimieren Sie jeweils die Einstellung der Verstärkung für die Aufnahme des kompletten Spektrums und für die Mößbauerlinie.
- Stellen Sie den Filter auf die 14,4 keV-Mößbauerlinie von ⁵⁷Fe ein (MCS [Window] Mode).
- 3. Messen Sie die Hyperfeinstrukturaufspaltung mit dem Absorber aus natürlichem Eisen ($|v_{max}| = 9 \text{ mm/s}$).
- Messen Sie die Quadrupolaufspaltung mit dem FeSO₄*7H₂O-Absorber (|v_{max}| = 5 mm/s).
- 5. Messen Sie die Isomerieverschiebung mit dem $K_4(Fe(CN)_6)^*3H_2O$ -Absorber $(|v_{max}| = 3 \text{ mm/s})$.

IV. Versuchsauswertung

- 1. Erklären Sie das γ-Spektrum der ⁵⁷Co-Quelle.
- Führen Sie mit Hilfe der Literaturwerte für die Aufspaltung der Linien beim natürlichen Eisen eine Geschwindigkeitseichung des Mößbauerspektrometers durch, indem Sie den Abstand der beiden äußeren Linien bestimmen. Verwenden Sie für die folgende Auswertung (3., 4. und 5.) die korrigierte Geschwindigkeitskurve.
- 3. Bestimmen Sie aus der Hyperfeinstrukturaufspaltung beim natürlichen Eisen:
 - a) die Isomerieverschiebung von ⁵⁷Fe.
 - b) das Magnetfeld am Kernort.
 - c) das magnetische Moment des ersten angeregten Zustands von ⁵⁷Fe.
- Bestimmen Sie die Isomerieverschiebung und den elektrischen Feldgradienten am Kernort bei FeSO₄*7H₂O.
- 5. Bestimmen Sie die Isomerieverschiebung von K₄(Fe(CN)₆)*3H₂O.
- 6. Fehlerrechnung (Fehlerfortpflanzung des Fehlers in der Kanalzahl)

V. Benötigte Daten

magnet. Moment des Grundzustandes : $\mu_{g} = 0,0903 \, \mu_{K}$ Quadrupolmoment : $Q = 0,29 \, \mathrm{barn}$

Literaturwerte

1. Isomerieverschiebung zw. natürlichem

Eisen und Fe in Platin: δ (Fe, Pt) = 0.35 mm/s

2. Isomerieverschiebung zw. Fe in Pt

und Fe in $K_4(Fe(CN)_6)*3H_2O$: $\delta (Pt, K_4(Fe(CN)_6)*3H_2O) = -0.39 \text{ mm/s}$

3. Isomerieverschiebung zw. Fe in Pt

und Fe in FeSO₄*7H₂O: δ (Pt, FeSO₄*7H₂O) = 0.92 mm/s

4. Quadrupolaufspaltung beim

FeSO₄*7H₂O: ϵ (FeSO₄*7H₂O) = 3,19 mm/s

[aus Kerler et al., Zeitschrift für Physik 167, (2), 176-193 (1962)]

- Isomerieverschiebung zw. natürlichem
 Eisen und Fe in Rhodium: δ (Fe. Rh) = 0.11 mm/s
- Abstand der beiden äußeren (mittleren, inneren) Linien im Spektrum des natürlichen Fe: Δ = 10.6 mm/s (6.1 mm/s, 1,68 mm/s)

[aus Barb: Mößbauerspektroskopie S.53ff]

VI. Hinweise zur Durchführung

- Informieren Sie sich mit Hilfe der ausliegenden Beschreibung über die Nutzung und Einstellmöglichkeiten des Programms "Wissoft 2003".
- Untersuchen Sie mit einem Messgerät die Strahlenbelastung im Bereich des Messaufbaus und Strahlengangs.
- 3. Stoßen Sie nicht an den Tisch der Mößbauerapparatur.
- 4. Verändern Sie die Messfrequenz der Mößbauerapparatur nicht.
- Verschließen Sie die Durchlassöffnung mit dem Bleieinschub, wenn keine Messung durchgeführt wird.
- Schalten Sie den Motor nur ein (Transducer on/off), wenn er für die Messung benötigt wird.

Stand: 30.05.2018

VII. Versuchsaufbau

