

Modern Myoelectric Intelligent Hand Prostheses

Tobias Stocker (Advisor: Pascal Weiner)

Seminar: Humanoid Robotics, WS 2017/18

Institute for Anthropomatics and Robotics (IAR), High Performance Humanoid Technologies (H2T)

Outline

Motivation and Challenges

Overview of Hand Prostheses

Comparison of Hand Prostheses

Motivation

- Why myoelectric hand prostheses?
 - Make a normal life possible for amputees
 - Enable users to perform different grasps for activities of daily living (ADLs)
 - Allow the user to control the hand through muscle contraction (with EMG)
 - Electric actuators are rather small, quiet and have good precision and controllability

Motivation

- Desired properties:
 - comfortable (lightweight, small)
 - many different grasps possible
 - High finger forces / fast joint speed
 - easy to use
 - high durability (robust, easy to repair)
 - low-cost
 - intelligent functions (sensor-feedback, grasp adaption)

Desired properties are contradicting ⇒ trade-offs are mandatory

Challenges

- "Even state-of-the art devices lack a combination of high functionality, durability, adequate cosmetic appearance, and affordability"
 - Joseph T. Belter, 2013
- lacktriangle Total weight should be below 500g (human hand: $\sim 400g$)
 - ⇒ lightweight materials, small and low number of actuators
 - ⇒ transmission systems that allow for many different grasps
- Finger tip force in precision grasp should be 65 N (human hand: \sim 95 N) and joint speed should be 230 °/s (human hand: > 2000°/s)
- Finger kinematic designs should be simple and robust
- User should be able to move the hand without concentrating
- User should get sensor feedback from the hand

Outline

Motivation and Challenges

Overview of Hand Prostheses

Comparison of Hand Prostheses

Tact

Year	Mass (g)	Joints	Actuators	Transmission
2015	350	11	6	Tendons

- Matches performance of other myoelectric prosthetic hands,
 while being very cheap (\$ 250)
- Easy to manufacture with 3D-printer and of-the shelf parts
- Open-source

Hand of Bennett et al.

Year	Mass (g)	Joints	Actuators	Transmission
2015	546	12	4	Tendons

- Four motor units in unique configuration:
 - 2 for thumb and 1 for index (fully actuated)
 - 1 for other fingers (underactuated)
- Embedded control system that enables
 self-contained control of hand movement

Hand of Zhang et al.

Year	Mass (g)	Joints	Actuators	Transmission
2015	420	15	5	Linkage

- Fingers are equipped with numerous torque and position sensors
- Integrated motion control system consisting of a motion control subsystem and several sensory subsystems
- New concept for sensory feedback system based on an electrical stimulator

SSSA-MyHand

Year	Mass (g)	Joints	Actuators	Transmission
2016	478	10	3	Four-bar Geneva drive

- Only three actuators
- Abduction/adduction of the thumb and flexion/extension of the index with single actuator via Geneva drive
- Embedded controller and sensory system with force/position sensors and automatic grasp control

AstoHand v.1

Year	Mass (g)	Joints	Actuators	Transmission
2016	261	10	5	Tendon-spring

- Low-cost
- Very lightweight
- Built with 3D-printed material (easy to manufacture and maintain)

X-Hand

Year	Mass (g)	Joints	Actuators	Transmission
2016	-	16	4	Tendons

- Anthropomorphic grasping ability via special motion distribution mechanism structure
- Can replicate almost all natural movement of the human hand while using few actuators

Six-DOF-Hand

Year	Mass (g)	Joints	Actuators	Transmission
2016	584	10	6	Gears/Belts

- Inexpensive
- Open source
- Independent finger movements
- Actuators with encoders for motor position feedback

Bionic Hand

Year	Mass (g)	Joints	Actuators	Transmission
2016	-	19	13	Tendons

- Hybrid actuated with Brushless DC motors and Shape Memory Alloy (SMA)
- Close replication of the human hand (with all structures, joints and tendons)
- 24 degrees of freedom

SoftHand Pro-D

Year	Mass (g)	Joints	Actuators	Transmission
2016	-	19	1	Tendons

- Strongly underactuated softhand
- 19 joints with only one single actuator
- Can move along two different synergistic directions to perform either precision or power grasp
- Decoding of movement intensions using the dynamic frequency content

UOMPro

Year	Mass (g)	Joints	Actuators	Transmission
2017	432	10	6	Four-bar

- Simple serial communication interface to link with high-level control methods
- The implemented low-level controller can handle individual finger position commands or hand grip pattern commands

MORA Hap-2

Year	Mass (g)	Joints	Actuators	Transmission
2017	250	14	4	Four-bar

- Self-adaption ability
- Finger mechanism is capable of generating passively different flexion/extension angles
- Fingers have under-actuation mechanism

Outline

Motivation and Challenges

Overview of Hand Prostheses

Comparison of Hand Prostheses

Physical properties

Outline

- Motivation and Challenges
- Overview of Hand Prostheses

Comparison of Hand Prostheses

- Most research groups focused mainly on one important feature in their hand design
- The main goal was to develop preferably low-cost protheses
- Only a few tried to incorporate intelligent functions

