# Metric Thickenings of Euclidean Submanifolds

**GSTGC 2018** 

Joshua Mirth (joint with Henry Adams) Colorado State University



## Introduction

Data has topological structure:

Data has topological structure:

Energy landscape of cyclo-octane:



• Martin, Thompson, Coutsias, Watson '10

### Data has topological structure:

Energy landscape of cyclo-octane:



- Martin, Thompson, Coutsias, Watson '10
- "A reducible algebraic variety, composed of the union of a sphere and a Klein bottle, intersecting in two rings."

### Data has topological structure:

Energy landscape of cyclo-octane:



- Martin, Thompson, Coutsias, Watson '10
- "A reducible algebraic variety, composed of the union of a sphere and a Klein bottle, intersecting in two rings."

Given a data set, can we describe the underlying space?















## **Underlying Questions:**

- Persistent Homology:
  - ▶ What information is contained at different scale parameters?

### Underlying Questions:

- Persistent Homology:
  - ▶ What information is contained at different scale parameters?
- Manifold Reconstruction:
  - ▷ Does any scale parameter give a simplicial complex with the "correct" homology (or homotopy type)?

### Underlying Questions:

- Persistent Homology:
  - ▶ What information is contained at different scale parameters?
- Manifold Reconstruction:
  - ▷ Does any scale parameter give a simplicial complex with the "correct" homology (or homotopy type)?
  - ▷ Does the simplicial complex have predictable structure at "bad" scale parameters?



• Čech complex,  $\check{\mathbf{C}}(X;r)$ , contains an n-simplex for every (n+1)-fold intersection of balls of radius r.



- Čech complex,  $\check{\mathbf{C}}(X;r)$ , contains an *n*-simplex for every (n+1)-fold intersection of balls of radius r.
- Vietoris–Rips complex, VR(X; r), contains an n-simplex for every set of n + 1 points with diameter < r.



- Čech complex,  $\check{\mathbf{C}}(X;r)$ , contains an *n*-simplex for every (n+1)-fold intersection of balls of radius r.
- Vietoris–Rips complex, VR(X; r), contains an n-simplex for every set of n + 1 points with diameter < r.
- Write K(X;r) when the distinction is unimportant.

#### Model Theorems

### Theorem (Hausmann '95)

Let M be a compact Riemannian manifold and r > 0 be sufficiently small (depending on curvature of M). Then  $VR(M;r) \simeq M$ .

#### Model Theorems

### Theorem (Hausmann '95)

Let M be a compact Riemannian manifold and r > 0 be sufficiently small (depending on curvature of M). Then  $VR(M;r) \simeq M$ .

### Theorem (Latschev '01)

Let M be a compact Riemannian manifold and r>0 be sufficiently small. Then there exists a  $\delta>0$  such that for any metric space with  $d_{GH}(Y,M)<\delta$ ,  $VR(Y;r)\simeq M$ .

#### **Model Theorems**

### Theorem (Hausmann '95)

Let M be a compact Riemannian manifold and r > 0 be sufficiently small (depending on curvature of M). Then  $VR(M;r) \simeq M$ .

### Theorem (Latschev '01)

Let M be a compact Riemannian manifold and r > 0 be sufficiently small. Then there exists a  $\delta > 0$  such that for any metric space with  $d_{GH}(Y,M) < \delta$ ,  $VR(Y;r) \simeq M$ .

### Theorem (Niyogi, Smale, Weinberger '05)

Let Y be a sufficiently dense sampling (possibly with noise) of a Euclidean submanifold M, and r > 0 sufficiently small. Then  $\check{\mathrm{C}}(Y;r) \simeq M$ .

# Metric Thickenings

### Metric Thickenings

Let X be a metric space,  $r \ge 0$ , and K(X; r) either a Vietoris–Rips of Čech complex.

#### Definition

The Metric thickening  $K^m(X;r)$  is the set

$$\left\{ \sum_{i=0}^{k} \lambda_i x_i \mid k \in \mathbb{N}, \ \lambda_i \ge 0, \ \sum_{i} \lambda_i = 1, \ [x_0, \dots, x_k] \text{ a simplex in } K(X; r) \right\},$$

equipped with the 1-Wasserstein metric.

## Metric Thickenings

Let X be a metric space,  $r \ge 0$ , and K(X; r) either a Vietoris–Rips of Čech complex.

#### Definition

The Metric thickening  $K^m(X;r)$  is the set

$$\left\{ \sum_{i=0}^{k} \lambda_i x_i \mid k \in \mathbb{N}, \ \lambda_i \ge 0, \ \sum_{i} \lambda_i = 1, \ [x_0, \dots, x_k] \text{ a simplex in } K(X; r) \right\},$$

equipped with the 1-Wasserstein metric.

#### Definition

The 1-Wasserstein metric on  $VR^m(X;r)$  is the distance defined by

$$d_W(x, x') = \inf \left\{ \cot(p) \mid p \text{ is a matching between } x \text{ and } x' \right\}.$$

#### Established Facts

### Theorem (Adamaszek, Adams, Frick '17)

- $VR^m(X;r) \cong VR(X;r)$  if and only if VR(X;r) is locally finite.
- $\operatorname{VR}^m(X;r)$  is an r-thickening of X: The metric of X extends to that of  $\operatorname{VR}^m(X;r)$  and  $d(x.\operatorname{VR}^m(X;r)) < r$  for all  $x \in X$ .
- Hausmann's theorem holds: if X is a Riemannian manifold, then for r sufficiently small  $\operatorname{VR}^m(X;r) \simeq X$ .

## Results

#### Main Theorem

### Theorem (Adams, M. '17)

Let  $X \subseteq \mathbb{R}^n$  and suppose the reach,  $\tau$ , of X is positive. Then for all  $r < \tau$ , the metric Vietoris–Rips thickening  $VR^m(X;r)$  is homotopy equivalent to X.

For all  $r < 2\tau$ , the metric Čech thickening Č<sup>m</sup>(X; r) is homotopy equivalent to X.

The medial axis of  $X \subseteq \mathbb{R}^n$  is the closure,  $\overline{Y}$ , of

$$Y = \{ y \in \mathbb{R}^n \mid \exists x_1 \neq x_2 \in M \text{ with } d(y, x_1) = d(y, x_2) = d(y, X) \}.$$

The medial axis of  $X \subseteq \mathbb{R}^n$  is the closure,  $\overline{Y}$ , of

$$Y = \{ y \in \mathbb{R}^n \mid \exists x_1 \neq x_2 \in M \text{ with } d(y, x_1) = d(y, x_2) = d(y, X) \}.$$

The reach,  $\tau$ , of X is the minimal distance  $\tau = d(X, \overline{Y})$  between X and its medial axis.





The medial axis of  $X \subseteq \mathbb{R}^n$  is the closure,  $\overline{Y}$ , of

$$Y = \{ y \in \mathbb{R}^n \mid \exists x_1 \neq x_2 \in M \text{ with } d(y, x_1) = d(y, x_2) = d(y, X) \}.$$

The reach,  $\tau$ , of X is the minimal distance  $\tau = d(X, \overline{Y})$  between X and its medial axis.





Smooth manifolds (embedded in  $\mathbb{R}^n$ ) have positive reach. Sets with corners have zero reach.

#### Proof.

 $\pi \circ f$  and i are homotopy inverses:



• Use these methods to compute homotopy types of  $VR^m(X;r)$  at larger scale parameters for particular classes of X.

- Use these methods to compute homotopy types of  $VR^m(X;r)$  at larger scale parameters for particular classes of X.
- Understand the structure of  $VR^m(X;r)$  at larger r. (In particular, the higher homotopy groups.)

- Use these methods to compute homotopy types of  $VR^m(X;r)$  at larger scale parameters for particular classes of X.
- Understand the structure of  $VR^m(X;r)$  at larger r. (In particular, the higher homotopy groups.)
- Similar results for (infinite) dense samplings.

- Use these methods to compute homotopy types of  $VR^m(X;r)$  at larger scale parameters for particular classes of X.
- Understand the structure of  $VR^m(X;r)$  at larger r. (In particular, the higher homotopy groups.)
- Similar results for (infinite) dense samplings.
- Show stability with regard to persistence.

#### References

- M. ADAMASZEK, H. ADAMS, AND F. FRICK, Metric reconstruction via optimal transport, arXiv preprint arXiv:1706.04876, (2017).
- [2] H. Adams and J. Mirth, Metric thickenings of Euclidean submanifolds, arXiv:1709.02492 [math], (2017).
- [3] J.-C. HAUSMANN, On the Vietoris-Rips Complexes and a Cohomology Theory for Metric Spaces, in Prospects in Topology, no. 138 in Annals of Mathematics Studies, 1995, pp. 175-187.
- [4] J. LATSCHEV, Vietoris-Rips complexes of metric spaces near a closed Riemannian manifold, Archiv der Mathematik, 77 (2001), pp. 522-528.
- [5] S. Martin, A. Thompson, E. A. Coutsias, and J.-P. Watson, Topology of cyclo-octane energy landscape, The Journal of Chemical Physics, 132 (2010), p. 234115.
- [6] P. NIYOGI, S. SMALE, AND S. WEINBERGER, Finding the Homology of Submanifolds with High Confidence from Random Samples, Discrete & Computational Geometry, 39 (2008), pp. 419–441.

Slides available at http://www.math.colostate.edu/~mirth/talks.html