11.1 Objectifs du chapitre

Sujets vus au grand oral : quelle est la probabilité que deux élèves de votre groupe classe soient nés le même jour ? Le paradoxe du chevalier de Méré : est-il plus avantageux, lorsqu'on joue au dé, de parier sur l'apparition d'un 6 en lançant 4 fois le dé ou de lancer 24 fois deux dés ?

11.2 Principe additif, multiplicatif

Soient m et n deux entiers naturels. E et F ont respectivement n et m éléments. Soit k un entier naturel.

11.2.1 Principe additif et multiplicatif

Si E et F sont $disjoints$ alors le nombre d'éléments de $E \cup F$ est	Propriété 1.11. Principe additif	
	Si E et F sont $disjoints$ alors le nombre d'éléments de $E \cup F$ est	

Exemple 1.11. Soient $E = \{a; b\}$ et $F = \{1; 2; 3\}$. E et F sont disjoints, $n = \underline{\hspace{1cm}}$ et $m = \underline{\hspace{1cm}}$ donc $E \cup F$ est composée de $\underline{\hspace{1cm}}$ éléments. On a $E \cup F =$

Définition 1.11.

Un couple de deux éléments a et b de E est la donnée de ces deux éléments dans un ordre particulier. On le note (a; b). De la même façon, un triplet de trois éléments de E est la donnée de ces trois éléments dans un ordre particulier. On le note (a; b; c).

Définition 2.11. Produit cartésien

Le produit cartésien de E et F noté $E \times F$ est l'ensemble des couples (e; f) tels que :

$$e \in E \text{ et } f \in F$$

11.2.2 Dénombrement des k-uplets

Définition 3.11.

Un k-uplet de E est une liste ordonnée $(e_1; e_2; \ldots; e_k)$ de k éléments de E. On note E^k l'ensemble des k-uplets de E.

Exemple 2.11.

Un code de carte bancaire est un _____ de E =

Propriété 3.11.

Soit E un ensemble de n éléments.

Le nombre de k-uplets de E est ____

Exemple 3.11.

Soit $E = \{a; b\}$. Puisque n = 2, le nombre de 3-uplets est _____

Définition 4.11.

Une partie de E est un ensemble d'éléments de E.

Exemple 4.11.

Soit $E = \{a \; ; \; b \; ; \; c\}.$

Les parties de E sont _____, ____, ____ et

E comporte donc _____ éléments..

Propriété 4.11.

Le nombre de parties de E est 2^n .

Démonstration. Soit $E = (e_1; e_2; \ldots; e_n)$.

On associe à chaque partie P de E un unique n-uplet de l'ensemble [0; 1] de la manière suivante : pour tout entier i entre 1 et n, on note 1 si e_i est dans P et 0, sinon, et réciproquement (code binaire). Par exemple, on associe à $\{e_1, e_3\}$ le n-uplet $\{1, 0, 1, 0, \ldots, 0\}$: $\{e_1, e_3\} \mapsto \{1, 0, 1, 0, \ldots, 0\}$. Ainsi, le nombre de parties de E est égal au nombre de n-uplets de l'ensemble $\{0; 1\}$, c'est-à-dire 2^n .

11.3 Dénombrement des k-uplets d'éléments distincts

Soient k et n deux entiers naturels tels que $1 \le k \le n$ et E un ensemble à n éléments.

11.3.1 Nombre de k-uplets d'éléments distincts

Définition 5.11.

On appelle k-uplet d'éléments distincts de E un k-uplet de E pour lequel tous ses éléments sont distincts.

Exemple 5.11.

Soit $E = \{a \; ; \; b \; ; \; c \; ; \; d\}.$

(a;b;c) est un 3-uplet d'éléments distincts de E.

En revanche _____ n'en est pas un car l'élément b est répété.

Propriété 5.11.

Le nombre de k-uplets d'éléments distincts de E est égal à :

$$n(n-1)(n-2)\dots(n-k+1)$$

Démonstration.

Exemple 6.11.

Lors d'une course de 100 m disputée par 9 athlètes, il y a _____ podiums possibles.

11.3.2 Factorielle d'une entier naturel

Définition 6.11.

Soit n un entier naturel non nul.

On appelle factorielle n, noté n!, le produit de tous les entiers naturels entre 1 et n. Ainsi :

$$n! = 1 \times 2 \times 3 \times 4 \times \dots \times n$$

Exemple 7.11.

$$5! = \underline{\hspace{1cm}} \text{et } (n+1)! = \underline{\hspace{1cm}}$$

Propriété 6.11.

Le nombre de k-uplets d'éléments distincts de E est égal à $\frac{n!}{(n-k)!}$.

11.3.3 Nombre de permutations

Définition 7.11.

Une permutation d'un ensemble E a n éléments est un n-uplet d'éléments distincts de E.

Propriété 7.11.

Le nombre de permutations de E est ______ soit _____

Exemple 8.11.

Le classement des 20 équipes du championnat de football de ligue 1 est une permutation de l'ensemble des 20 équipes.

11.4 Combinaisons

Soit k et n deux entiers naturels tels que $0 \le k \le n$ et E un ensemble à n éléments.

11.4.1 Nombre de combinaisons

Définition 8.11.

Une combinaison de k éléments de E est une partie de E à k éléments.

On note $\binom{n}{k}$ le nombre de combinaisons de k éléments de E.

Exemple 9.11.

Soit $E = \{a; b; c; d\}$ on a donc $n = \underline{\hspace{1cm}}$.

- Les combinaisons formées d'un élément de E sont $\{\ldots\}$, $\{\ldots\}$, $\{\ldots\}$ et $\{\ldots\}$: il y en a \ldots donc $\left(\ldots\right) = 4$.
- Les combinaisons formées de deux éléments de E sont $\{\ldots;\ldots\},\{\ldots;\ldots\},\{\ldots;\ldots\},\{\ldots;\ldots\},\{\ldots;\ldots\},\{\ldots;\ldots\}$, $\{\ldots;\ldots\}$ et $\{\ldots$

Propriété 8.11.

Soit
$$0 \le k \le n$$
. On a $\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{n(n-1)(n-2)\cdots(n-k+1)}{k!}$.

 $D\'{e}monstration. \ \binom{n}{k} \text{ est le nombre de combinaisons de } k \text{ \'e}l\'{e}ments parmi } n \text{ de } E.$

Il y a $n(n-1)(n-2)\dots(n-k+1)$ k – uplets d'éléments distincts deux à deux distincts de E. Pour obtenir un k – uplet d'éléments deux à deux distincts de E, il suffit d'abord de choisir une combinaison de k éléments de E puis de les ordonner.

Ainsi
$$n(n-1)\dots(n-k+1)=\binom{n}{k}\times k!$$
 d'où le résultat.

En particulier:

$$\binom{n}{0} = 1, \quad \binom{n}{1} = n, \quad \binom{n}{2} = \frac{n(n-1)}{2}, \quad \binom{n}{n} = 1$$

Exemple 10.11.

Soit
$$\binom{5}{3} = \frac{}{} = 10$$

Propriété 9.11.

Soit
$$0 \leqslant k \leqslant n$$
. On a $\binom{n}{k} = \binom{n}{n-k}$.

Démonstration. Dénombrer les parties à k éléments revient à dénombrer les parties à n-k éléments qui en sont les complémentaires.

Exemple 11.11.

Soit
$$\binom{5}{3} = \binom{5}{2}$$
.

Application 1.11. Une urne contient quatre boules blanches numérotées de 1 à 4, trois boules vertes numérotées de 1 à 3 et deux boules noires numérotées de 1 à 2. On tire simultanément trois boules de cette urne.

- 1. Combien y a-t-il de tirages possibles?
- 2. Combien y a-t-il de tirages contenant trois boules de la même couleur?
- 3. Combien y a-t-il de tirages au moins une boule noire?
- 4. Combien y a-t-il de tirages contenant un seul numéro impair?

Propriété 10.11.

Soit
$$n$$
 un entier naturel alors $\sum_{k=0}^{n} \binom{n}{k} = 2^n$.

Démonstration. Par définition, pour tout entier k tel que $0 \le k \le n$, $\binom{n}{k}$ est le nombre de combinaisons de E. Autrement dit, $\binom{n}{k}$ est le nombre de parties de E composée de k éléments. Ainsi d'après le principe additif, $\sum_{k=0}^{n} \binom{n}{k}$ est égal au nombre de parties de E (les parties de E à E à E parties de E. Par conséquent, E and E are conséquent, E are conséquent, E and E are conséquent, E are conséquent are consequent.

11.5 Triangle de Pascal

11.5.1 Relation de Pascal

Propriété 11.11. Formule de Pascal

Pour tout entier naturel $n \ge 2$ et tout entier naturel k tel que $1 \le k \le n-1$, on a :

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$$

Démonstration. Soient E un ensemble à n éléments et k un entier naturel tel que $1 \le k \le n-1$.

 $\binom{n}{k}$ est le nombre de parties à k éléments de E. Soit a un élément de E.

- ullet Soit a un élément de E. Parmi toutes les partie à k éléments de E, il y en a de deux sortes :
 - celles qui contiennent l'élément a. Dénombrer ces parties revient à déterminer le nombre de combinaisons de k-1 éléments d'un ensemble à n-1 éléments. Leur nombre est $\binom{n-1}{k-1}$.
 - celles qui ne contiennent pas l'élément a. Dénombrer ces parties revient à déterminer le nombre de combinaisons de k éléments d'un ensemble à n-1 éléments. Leur nombre est $\binom{n-1}{k}$.
- D'après le principe additif on a donc :

11.5.2 Le triangle de Pascal

▶ Note 1.11.

La relation de Pascal permet de calculer de façon algorithmique les coefficients $\binom{n}{k}$.

Néanmoins, on peut aussi calculer les $\binom{n}{k}$ à l'aide du tableau ci-dessous appelé $triangle\ de\ Pascal$:

▶ Note 2.11.

Pour tous réels a et b et pour tout entier naturel $n \ge 1$,

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$$

La formule ainsi obtenue est appelée formule du binôme de Newton et les $\binom{n}{k}$ sont appelés coefficients binomiaux.

ightharpoonup Application 2.11. Démontrer, à l'aide de la formule précédente, que pour tout entier naturel $n \in \mathbb{N}$,

$$(2+\sqrt{5})^n + (2-\sqrt{5})^n \in \mathbb{N}.$$