

N-channel 600 V, 61 mΩ typ., 39 A, MDmesh™ M6 Power MOSFET in a TO-247 package

Product status link

STW48N60M6

Product summary			
Order code	STW48N60M6		
Marking	48N60M6		
Package	TO-247		
Packing	Tube		

Features

Order code	V _{DS}	R _{DS(on)} max.	I _D
STW48N60M6	600 V	69 mΩ	39 A

- Reduced switching losses
- Lower R_{DS(on)} per area vs previous generation
- Low gate input resistance
- 100% avalanche tested
- Zener-protected

Applications

- Switching applications
- LLC converters
- **Boost PFC converters**

Description

The new MDmesh™ M6 technology incorporates the most recent advancements to the well-known and consolidated MDmesh family of SJ MOSFETs. STMicroelectronics builds on the previous generation of MDmesh devices through its new M6 technology, which combines excellent R_{DS(on)} per area improvement with one of the most effective switching behaviors available, as well as a user-friendly experience for maximum end-application efficiency.

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±25	V
1_	Drain current (continuous) at T _C = 25 °C	39	Α
I _D	Drain current (continuous) at T _C = 100 °C	25	Α
I _{DM} ⁽¹⁾	Drain current (pulsed)	140	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	250	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	15	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	100	V/115
T _{stg}	Storage temperature range	-55 to 150	°C
Tj	Operating junction temperature range	-55 to 150	

- 1. Pulse width is limited by safe operating area.
- 2. $I_{SD} \le 39~A$, $di/dt \le 400~A/\mu s$, $V_{DS(peak)} < V_{(BR)DSS}$, $V_{DD} = 400~V$
- 3. $V_{DS} \le 480 \text{ V}$

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case	0.5	°C/W
R _{thj-amb}	Thermal resistance junction-ambient	50	°C/W

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR}	Avalanche current, repetitive or not repetitive (pulse width limited by T _{jmax})	5.5	Α
E _{AS}	Single pulse avalanche energy (starting $T_j = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V)	950	mJ

DS12685 - Rev 2 page 2/13

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	600			V
	I _{DSS} Zero-gate voltage drain current	V _{GS} = 0 V, V _{DS} = 600 V			1	
I _{DSS}		$V_{GS} = 0 \text{ V}, V_{DS} = 600 \text{ V},$ $T_C = 125 {}^{\circ}\text{C}^{(1)}$			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±25 V			±5	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_D = 250 \mu A$	3.25	4	4.75	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 19.5 A		61	69	mΩ

^{1.} Defined by design, not subject to production test.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	2578	-	pF
C _{oss}	Output capacitance	V _{GS} = 0 V, V _{DS} = 100 V, f = 1 MHz	-	202	-	pF
C _{rss}	Reverse transfer capacitance		-	3.1	-	pF
C _{oss eq.} (1)	Equivalent output capacitance	V _{GS} = 0 V, V _{DS} = 0 to 480 V	-	415	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz open drain	-	1.8	-	Ω
Qg	Total gate charge	V _{DD} = 480 V, I _D = 39 A,	-	57	-	nC
Q _{gs}	Gate-source charge	V _{GS} = 0 to 10 V	-	16	-	nC
Q _{gd}	Gate-drain charge	(see Figure 14. Test circuit for gate charge behavior)	-	23	-	nC

^{1.} $C_{\text{oss eq.}}$ is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 6. Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d (on)}	Turn-on delay time	V _{DD} = 300 V, I _D = 19.5 A,	-	28	-	ns
t _r	Rise time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	34	-	ns
t _{d(off)}	Turn-off delay time	(see Figure 13. Test circuit for resistive load switching times and	-	60	-	ns
t _f	Fall time	resistive load switching times and Figure 18. Switching time waveform)	-	9.5	-	ns

DS12685 - Rev 2 page 3/13

Table 7. Source-drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		39	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		140	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 39 A	-		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 39 A, di/dt = 100 A/μs,	-	317		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V (see Figure 15. Test	-	4.4		μC
I _{RRM}	Reverse recovery current	circuit for inductive load switching and diode recovery times)	-	28		Α
t _{rr}	Reverse recovery time	I _{SD} = 39 A, di/dt = 100 A/μs,	-	475		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _j = 150 °C	-	8.67		μC
I _{RRM}	Reverse recovery current	(see Figure 15. Test circuit for inductive load switching and diode recovery times)	-	36.5		A

^{1.} Pulse width is limited by safe operating area.

DS12685 - Rev 2 page 4/13

^{2.} Pulse test: pulse duration = 300 μ s, duty cycle 1.5%.

2.1 Electrical characteristics (curves)

Figure 3. Output characteristics GADG110720180932OCH Ι_D (A) V_{GS} = 9, 10 V 140 120 $V_{GS} = 8 V$ 100 80 $V_{GS} = 7 V$ 60 40 V_{GS} = 6 V20 V_{GS} = 5 V 10 12 14 16 18 V_{DS} (V) 6 8

DS12685 - Rev 2 page 5/13

Figure 7. Capacitance variations C (pF) GADG110720180933CVR 10 4 C_{ISS} 10³ 10² Coss f = 1 MHz10 ¹ C_{RSS} 10 º $\overline{\mathsf{V}}_{\mathsf{DS}}\left(\mathsf{V}\right)$ 10 -1 10 º 10 ¹ 10²

Figure 8. Normalized gate threshold voltage vs temperature V_{GS(th)} (norm.) GADG210320171542VTH 1.1 1.0 0.9 I_D = 250 μA 8.0 0.7 0.6 -75 -25 25 75 125 T_J (°C)

Figure 9. Normalized on-resistance vs temperature $R_{DS(on)}$ (norm.) Q_{DS} $Q_$

DS12685 - Rev 2 page 6/13

3 Test circuits

Figure 13. Test circuit for resistive load switching times

Figure 14. Test circuit for gate charge behavior

Figure 15. Test circuit for inductive load switching and diode recovery times

Figure 16. Unclamped inductive load test circuit

Figure 17. Unclamped inductive waveform

Figure 18. Switching time waveform

DS12685 - Rev 2 page 7/13

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

DS12685 - Rev 2 page 8/13

4.1 TO-247 package information

Figure 19. TO-247 package outline

0075325_9

DS12685 - Rev 2 page 9/13

Table 8. TO-247 package mechanical data

Dim.		mm				
Dim.	Min.	Тур.	Max.			
A	4.85		5.15			
A1	2.20		2.60			
b	1.0		1.40			
b1	2.0		2.40			
b2	3.0		3.40			
С	0.40		0.80			
D	19.85		20.15			
Е	15.45		15.75			
е	5.30	5.45	5.60			
L	14.20		14.80			
L1	3.70		4.30			
L2		18.50				
ØP	3.55		3.65			
ØR	4.50		5.50			
S	5.30	5.50	5.70			

DS12685 - Rev 2 page 10/13

Revision history

Table 9. Document revision history

Date	Version	Changes
25-Jul-2018	1	Initial release.
		Modified Table 1. Absolute maximum ratings, Table 4. On/off states and Table 5. Dynamic.
25-Oct-2018	2	Modified Figure 1. Safe operating area, Figure 5. Gate charge vs gate-source voltage, Figure 6. Static drain-source on-resistance, Figure 9. Normalized on-resistance vs temperature, Figure 10. Normalized V _{(BR)DSS} vs temperature and Figure 12. Source-drain diode forward characteristics. Minor text changes.

DS12685 - Rev 2 page 11/13

Contents

1	Electrical ratings						
2	Electrical characteristics						
	2.1	Electrical characteristics (curves)	5				
3	Test	circuits	7				
4	Pac	kage information	8				
	4.1	TO-247 package information	8				
Rev	/ision	history	11				

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DS12685 - Rev 2 page 13/13