

Mohannad Elhamod

Neural Nets in Language Modeling

Continued...

Fast Forward...

As neural networks arrived at the scene, they were utilized for language modeling.

- N-grams look for exact prefixes, which is limiting...
- However, neural networks can learn more interesting relationships between the words.

Example: All humans are mortal. Socrates is a human. Therefore,

Socrates is mortal.

General Model Architecture

Lena-voita

Can you see any issue with inputting words in an NN?

Tokenization

- Computers only understand numbers.
- We need to convert the text into tokens (e.g., words).
- Each token can then be represented as a number.
- Demo

What is an embedding?

- It is the numeric representation of data.
- Example for images.

Word Embeddings

- We ideally want related words (i.e., similar meanings) to have smaller distances.
- Demo
- Examples:
 - 1. Word2Vec (Google)
 - 2. GloVe (Stanford)
 - 3. Train your own!

Word Embeddings

Since word embeddings carry *meaning*, certain directions in their space carry certain significance:

• Demo (dimensionality)

semantic: $v(king) - v(man) + v(woman) \approx v(queen)$

syntactic: $v(kings) - v(king) + v(queen) \approx v(queens)$

Sampling The Distribution

- Always take top probability?
 - That makes the model deterministic (no creativity).
- Alternative?
 - Top-k or top-p.

Sampling The Distribution

- Some words have way higher probability than others.
- This can be manually tuned through temperature.
- Demo

Measuring The Metric

- What are we looking for?
 - A model that is <u>not surprised</u> by the <u>new</u> text it seen.
- We use perplexity.
 - Takes values between 1 and number of possible tokens.
 - Smaller is better.
 - Perplexity calculations: Demo
 - Next word probability: Demo

Fast Forward...

- There exists many types of Neural Nets for language modeling:
 - CNNs
 - RNNs
 - LSTMs...

 Generally, Neural Nets learn an embedding that represents the entire prefix to predict the next word.

Get new state from RNN

Attention!

- These types of Neural Nets, however, suffered from various issues:
 - E.g., *catastrophic forgetting*, where earlier context in longer sentences tends to be forgotten.
- In 2015, attention in Neural Nets was invented:
 - It allowed models to attend to different parts of the sentence (instead of a single representation).

Published as a conference paper at ICLR 2015

NEURAL MACHINE TRANSLATION BY JOINTLY LEARNING TO ALIGN AND TRANSLATE

Dzmitry Bahdanau

Jacobs University Bremen, Germany

KyungHyun Cho Yoshua Bengio* Université de Montréal

Lena-voita

Attention!

• Once each part has its own embedding, different types of relationships can be learned!

Subject -> verb

Order Matters: Positional Encoding!

 Since token embeddings do not contain information about the location of the word, they should be combined with a positional encoding.

Lena-voita

The Transformer is born!

2 Jun 2017

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer* Google Brain noam@google.com Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez*† University of Toronto aidan@cs.toronto.edu Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin*
illia.polosukhin@gmail.com

Models in the wild

Model Types

<u>Javinkarla</u>

We are not going to get into technical details, but certain models may be more fit for certain tasks:

Model	Examples	Tasks
Encoder	ALBERT, BERT, DistilBERT, ELECTRA, ROBERTa	Sentence classification, named entity recognition, extractive question answering
Decoder	CTRL, GPT, GPT-2, Transformer XL	Text generation
Encoder- decoder	BART, T5, Marian, mBART	Summarization, translation, generative question answering

Why so many?

Where do the differences come from?

- Data.
- Model type and size.
- Hyperparameters (context size, embedding size,...).
- Training process (the cost function, fine-tuning, human feedback, etc.).

The GPT Evolution...

Adventure, etc.)

The GPT Evolution...

780B	Link in the description below. Chowdhery et al. 2022	
tokens	Total dataset size = 780 billion	n tokens
Data source	ce	Proportion of data
Social media conversations (multilingual)		50%
Filtered webpages (multilingual)		27%
Books (English)		13%
GitHub (code)		5%
Wikipedia	(multilingual)	4%
News (Eng	glish)	1%

Al Coffee Beak with Letitia

Different model sizes

117M Parameters

345M Parameters

762M Parameters

1,542M Parameters

Jay Alamma

Exploring Your Options

- OpenAl model reference
- HuggingFace tasks
- HuggingFace models

How much training does it take?

Pre-trained Models: Democratizing Al

- Most of us don't have the expertise, data, or resources to train anything close to these impressive large models.
- Instead:
 - Zero-shot Learning: We can use open-source models out-of-the-box, even though they have never seen our data before.
 - Transfer learning/Fine-Tuning: Can be used as a base for further training (e.g., if the training data is non-public legal documents).

Example: Instruct LLMs

In-Glass Work

HuggingFace

Resources

- Meaning and calculation of perplexity.
- Video: LLMs vs The Brain
- Video: Deciding which pre-trained model to fine-tune

