Ускорение семплирования из диффузионных моделей с использованием состязательных сетей

Охотников Никита Владимирович

мфти

2023

Цели исследования

Цель

Исследовать способы моделирования мультимодального распределения при генеративном моделировании с помощью диффузионного процесса

Проблема

Стандартный диффузионный процесс моделирует унимодальное распределение при обратном проходе. Процесс семплирования из стандартной модели требует длительного времени

Предлагается

Модифицировать классическую диффузионную модель для существенного ускорения процесса семплирования

Решение

Использовать неявную генеративную модель – состязательную сеть – на каждом шаге диффузионного процесса Необходимо рассмотреть различные постановки минимизационной задачи для используемой модели

Литература

- Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models, 2020
- ▶ Zhisheng Xiao, Karsten Kreis, and Arash Vahdat. Tackling the generative learning trilemma with denoising diffusion gans, 2021.
- Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models, 2021.
- ► Sebastian Nowozin, Botond Cseke, and Ryota Tomioka. f-gan: Training generative neural samplers using variational divergence minimization, 2016.
- Martin Arjovsky, Soumith Chintala, and L?on Bottou. Wasserstein gan, 2017.

Неявное моделирование обратного диффузионного процесса

Диффузионный процесс

Прямой:

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \mathbf{x}_{t-1}\sqrt{1-\beta_t}, \beta_t \mathbf{I})$$

где $t=\overline{0,\,T},\,\mathbf{x}_0$ — семпл из исходного распределения, \mathbf{x}_t — семпл на шаге $t,\,eta_t\in(0,1)$

Обратный:

Предложение

 Использовать неявную модель для восстановления распределения

Мотивация

 Моделирование мультимодального распределения для существенного уменьшения Т

Основные предположения

- Марковость обратного процесса
- Нормальность и следовательно унимодальность $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$

Диффузионная модель

Описание

В основе модели лежит постепенное добавление случайного нормального шума с коэффициентом $\beta_t \in (0,1)$ в семпл \mathbf{x}_0 из исходного распределения в прямом процессе и постепенное восстановление распределения в обратном.

Прямой процесс

$$q(\mathbf{x}_t|\mathbf{x}_{t-1}) = \mathcal{N}(\mathbf{x}_t; \mathbf{x}_{t-1}\sqrt{1-\beta_t}, \beta_t \mathbf{I})$$

где $t=\overline{0,T}$, \mathbf{x}_t – семпл на шаге t. В таком случае, принимая $\alpha_t=1-\beta_t,\ \overline{\alpha_t}=\prod_{i=1}^t\alpha_i$ можно записать:

$$q(\mathbf{x}_t|\mathbf{x}_0) = \mathcal{N}(\mathbf{x}_t; \sqrt{\overline{\alpha_t}}\mathbf{x}_0, (1-\overline{\alpha_t})\mathbf{I})$$

Таким образом, при достаточно больших T со сколь угодно большой точностью $\mathbf{x}_T \sim \mathcal{N}(\mathbf{0},\mathbf{I})$, а значит обратный процесс начинается с нормального шума.

Обратный процесс

В приближении $T\gg 1$ распределение каждого следующего семпла в обратном процессе обусловлено только на предыдущий, а также нормально.

$$p_{\boldsymbol{\theta}}(\mathbf{x}_{t-1}|\mathbf{x}_t) \underset{T\gg 1}{\approx} \mathcal{N}(\mathbf{x}_{t-1}; \mu_{\boldsymbol{\theta}}(\mathbf{x}_t, t), \Sigma_{\boldsymbol{\theta}}(\mathbf{x}_t, t))$$

Если $\mathbf{X}=(\mathbf{x}_0^1\dots \mathbf{x}_0^n)\sim p_0(\mathbf{x})$, то из метода максимального правдоподобия:

$$\boldsymbol{\theta}^* = \operatorname*{argmax}_{\boldsymbol{\theta}} \rho(\mathbf{X}|\boldsymbol{\theta}) = \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{i=1}^n \log \rho(\mathbf{x}_0^i|\boldsymbol{\theta})$$

После некоторых математических преобразований получаем минимизационную задачу:

$$\sum_{t=1}^{n} \mathbb{E}_{\mathbf{x_1}...\mathbf{x}_T} KL\left(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) \mid\mid p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)\right) \xrightarrow{\theta} \min$$

Постановка задачи

Проблема

При существенном уменьшении числа шагов обратного диффузионного процесса $(\mathcal{T}\gtrsim 1)$ предположения марковости и тем более нормальности $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ очевидно не верны. Кроме того, $p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t)$ мультимодальное.

Задача

Предложить неявную модель для аппроксимации мультимодального распределения в обратном процессе.

Метод

По аналогии с классической диффузионной моделью будем минимизировать некоторую меру близости между распределениями \mathbf{D}_{adv} , но при помощи неявной модели

$$\sum_{t=1}^{n} \mathbb{E}_{\mathbf{x_1}...\mathbf{x}_T} \mathbf{D}_{adv} \left(q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0) \mid\mid p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) \right) \underset{\theta}{\longrightarrow} \min$$

где \mathbf{D}_{adv} , в случае состязательных сетей, есть некоторая f-дивергенция или метрика Вассерштайна.

Введение GAN моделей

Дискриминатор

Зададим дискриминатор как $\mathbf{D}_{\varphi}(\mathbf{x}_{t-1},\mathbf{x}_t,t)$, где φ – обучаемые параметры. Для начала используем схему тренировки стандартного GAN^1 , как ранее было предложено 2 , тогда задача минимизации для дискриминатора:

$$\min_{\boldsymbol{\varphi}} \sum_{t \geqslant 1}^n \mathbb{E}_{q(\mathsf{x}_t)}[\mathbb{E}_{q(\mathsf{x}_{t-1}|\mathsf{x}_t)}[-\log\left(\mathsf{D}_{\boldsymbol{\varphi}}(\mathsf{x}_{t-1},\mathsf{x}_t,t)\right)] + \mathbb{E}_{p_{\boldsymbol{\theta}}(\mathsf{x}_{t-1}|\mathsf{x}_t)}[-\log\left(1-\mathsf{D}_{\boldsymbol{\varphi}}(\mathsf{x}_{t-1},\mathsf{x}_t,t)\right)]]$$

Генератор

Введем генератор $\mathbf{G}_{\theta}(\mathbf{x}_{t-1}^{fake},\mathbf{z},t)$ с параметрами θ , латентной переменной $\mathbf{z}\sim\mathcal{N}(0,\mathbf{I})$, обусловленный на \mathbf{x}_{t-1}^{fake} и порождающий семплы из исходного распределения. В таком случае целевое распределение в обратном диффузионном процессе:

$$p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_t) := \int p_{\theta}(\mathbf{x}_0|\mathbf{x}_t)q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0)d\mathbf{x}_0 = \int p(z)q(\mathbf{x}_{t-1}|\mathbf{x}_t,\mathbf{x}_0 = \mathbf{G}_{\theta}(\mathbf{x}_t,\mathbf{z},t))d\mathbf{z}$$

При известном дискриминаторе тренируем генератор на максимизацию

$$\max_{\boldsymbol{\theta}} \sum_{t \geq 1}^{"} \mathbb{E}_{q(\mathbf{x}_t)} \mathbb{E}_{q(\mathbf{x}_{t-1}|\mathbf{x}_t)} [\log \left(\mathbf{D}_{\boldsymbol{\varphi}}(\mathbf{x}_{t-1}, \mathbf{x}_t, t) \right)]$$

¹https://doi.org/10.48550/arxiv.1406.2661

²https://doi.org/10.48550/arxiv.2112.07804

Альтернативные схемы тренировки

Семейство F-дивергенций

F-дивергенции – семейство функций, определяемых как

$$\mathbf{D}_f(Q||P) = \int_{\mathcal{X}} p(\mathbf{x}) f\left(\frac{q(\mathbf{x})}{p(\mathbf{x})}\right) d\mathbf{x},$$

где f – выпуклая непрерывная слева функция, такая что f(1)=0 называемая порождающей.

Произвольную f-дивергенцию можно оценить снизу, используя сопряженную к f функцию f^{st} :

$$\mathsf{D}_f(Q||P) \geqslant \sup_{T \in \mathcal{T}} \left(\mathbb{E}_{\mathsf{x} \sim Q}[T(\mathsf{x})] - \mathbb{E}_{\mathsf{x} \sim P}[f^*(T(\mathsf{x}))] \right),$$

где \mathcal{T} – произвольный класс функций $\mathcal{T}:\mathcal{X}
ightarrow \mathbb{R}.$

Минимизируемый функционал

Генератор распределения P: $\mathbf{G} = \mathbf{G}_{oldsymbol{ heta}}$,

модель V_ω приближающая функцию T: $T=T_\omega=g_f(V_\omega)$, где g_f – функция активации. В таком случае целевой функционал:

$$F(\theta,\omega) = \mathbb{E}_{\mathsf{x} \sim Q}[g_f(V_\omega(\mathsf{x}))] - \mathbb{E}_{\mathsf{x} \sim P_\theta}[f^*(g_f(V_\omega(\mathsf{x})))].$$

Будем подставлять частные случаи этого функционала в схему тренировки диффузионной модели аналогично стандартному GAN.

Альтернативные схемы тренировки

Рассматриваемые частные случаи

Квадрат растояния Хелингера

$$\mathsf{H}^2(Q||P) - \frac{1}{2} \int_{\mathcal{X}} \left(\sqrt{q(\mathbf{x})} - \sqrt{p(\mathbf{x})} \right)^2 d(\mathbf{x}), \quad f_{H^2}^*(t) = \frac{t}{1-t}, \quad g_{f_{H^2}}(V) = 1 - \exp(V).$$

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\varphi}} \sum_{t=1}^{n} \mathbb{E}_{q(\mathbf{x}_{t})} \left[\mathbb{E}_{q(\mathbf{x}_{t-1}|\mathbf{x}_{t})} [-\exp\left(V_{\boldsymbol{\varphi}}(\mathbf{x}_{t-1},\mathbf{x}_{t},t)\right)] - \mathbb{E}_{p_{\boldsymbol{\theta}}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} [\exp\left(-V_{\boldsymbol{\varphi}}(\mathbf{x}_{t-1},\mathbf{x}_{t},t)\right)] \right]$$

▶ Обратная КL-дивергенция

$$\mathsf{Reverse-KL}(Q||P) = \mathsf{KL}(P||Q) = \int\limits_{\mathcal{X}} p(\mathbf{x}) \log \frac{p(\mathbf{x})}{q(\mathbf{x})} d\mathbf{x}, \quad f_{R-KL}^*(t) = -1 - \log(-t), \quad g_{f_{R-KL}}(V)$$

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\varphi}} \sum_{t \geqslant 1}^n \mathbb{E}_{q(\mathbf{x}_t)} \left[\mathbb{E}_{q(\mathbf{x}_{t-1}|\mathbf{x}_t)} [-\exp\left(V_{\boldsymbol{\varphi}}(\mathbf{x}_{t-1},\mathbf{x}_t,t)\right)] + \mathbb{E}_{p_{\boldsymbol{\theta}}(\mathbf{x}_{t-1}|\mathbf{x}_t)} [1 + V_{\boldsymbol{\varphi}}(\mathbf{x}_{t-1},\mathbf{x}_t,t)] \right].$$

$$\delta(Q||P) = \sup_{x} |Q(x) - P(x)|, \quad f^*_{\delta}(t) = t, \quad g_{f_{\delta}}(V) = \frac{1}{2} \tanh(v).$$

$$\min_{\boldsymbol{\theta}} \max_{\boldsymbol{\varphi}} \sum_{t>1}^{n} \mathbb{E}_{q(\mathbf{x}_{t})} \left[\mathbb{E}_{q(\mathbf{x}_{t-1}|\mathbf{x}_{t})} \left[\tanh \left(V_{\boldsymbol{\varphi}}(\mathbf{x}_{t-1}, \mathbf{x}_{t}, t) \right) \right] - \mathbb{E}_{p_{\boldsymbol{\theta}}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} \left[\tanh \left(V_{\boldsymbol{\varphi}}(\mathbf{x}_{t-1}, \mathbf{x}_{t}, t) \right) \right] \right].$$

Альтернативные схемы тренировки

Wasserstein distance

Отдельно рассматриваем wasserstein distance – другую меру близости распределений, не входящую в семейство f-дивергенций

$$\mathsf{W}(\mathit{Q}||P) = \inf_{\gamma \in \Gamma(\mathit{Q},P)} \mathbb{E}_{(\mathsf{x},\mathsf{y}) \sim \gamma} \|\mathsf{x} - \mathsf{y}\|,$$

Где Γ — множество всех совместных распределений $\gamma(x,y)$ таких, что $\int \gamma(\mathbf{x},\mathbf{y}) d\mathbf{x} = P(\mathbf{y}), \ \int \gamma(\mathbf{x},\mathbf{y}) d\mathbf{y} = Q(\mathbf{x}).$

Пользуясь, двойственностью Канторовича-Рубинштейна получаем:

$$\begin{cases} \max_{\varphi} \left(\mathbb{E}_{\mathbf{x} \sim Q} [f_{\varphi}(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim P_{\theta}} [f_{\varphi}(\mathbf{x})] \right), \\ \|f\|_{L} \leqslant K, \end{cases}$$

где $\|f_{\varphi}\|_L \leqslant K-K$ -липшицевы функции, приближаемые нейросетью с параметрами φ, θ – параметры генератора для распределения P.

Итоговая задача оптимизации:

$$\begin{cases} \min \max_{\boldsymbol{\theta}} \sum_{t \geqslant 1}^{n} \mathbb{E}_{q(\mathbf{x}_{t})} \left[\mathbb{E}_{q(\mathbf{x}_{t-1}|\mathbf{x}_{t})} \left[f_{\boldsymbol{\varphi}}(\mathbf{x}_{t-1}, \mathbf{x}_{t}, t) \right] - \mathbb{E}_{p_{\boldsymbol{\theta}}(\mathbf{x}_{t-1}|\mathbf{x}_{t})} \left[f_{\boldsymbol{\varphi}}(\mathbf{x}_{t-1}, \mathbf{x}_{t}, t) \right] \right], \\ \| f_{\boldsymbol{\varphi}} \|_{L} \leqslant \mathcal{K}. \end{cases}$$

Цели

- Анализ качества семплов в зависимости от количества шагов обратного процесса Т для DDPM
- ightharpoons Достижение сравнимого качества для малых $T\leqslant 10$ с использованием GAN
- Анализ применимости альтернативных состязательных сетей

Метрика качества

Fréchet inception distance или FID-score, в предположение нормальности вычисляется как:

$$\mathsf{FID}(\mathcal{N}(\mu, \Sigma), \mathcal{N}(\mu', \Sigma'))^2 = \|\mu - \mu'\|_2^2 + \mathsf{tr}\left(\Sigma + \Sigma' - 2\left(\Sigma^{\frac{1}{2}} \cdot \Sigma' \cdot \Sigma^{\frac{1}{2}}\right)^{\frac{1}{2}}\right).$$

В данное выражение подставляем выход модели $Inception V3^3$ для реальных и сгенерированных данных.

Данные

Fashion-MNIST 4 – 60000 черно-белых картинок 28×28

Архитектура

Генеративная сеть — собственная реализация U-Net 5 модели.

<u>Дискриминативная – сжимающая п</u>оловина генеративной и выходной линейный слой.

3https://doi.org/10.48550/arXiv.1512.00567

⁴http://arxiv.org/abs/1708.07747

⁵ http://arxiv.org/abs/1505.04597

Диффузионная модель

DDGAN с JS-дивергенцией

DDGAN c H²

DDGAN с обратной KL дивергенцией

DDGAN c total variation

DDGAN c wasserstein distance

(c) T = 10

Сравнение различных схем тренировки

Сравнение различных схем тренировки

Модель	FID
DDPM	28.9
JS DDGAN	34.3
H ² DDGAN	36.3
Reversed-KL DDGAN	76.6
Total variation DDGAN	129.0
Wasserstein DDGAN	114.4

FID-score для максимального T

Итоги эксперимента

- Количество шагов в диффузионной модели успешно снижено на 2 порядка при незначительном падении качества семплов
- Стандартный (JS) DDGAN показывает себя лучше остальных
- ▶ DDGAN с H² достигает сравнимого со стандартным качества
- Обучение всех DDGAN кроме стандартного склонно к разбалансировке и требует тщательного подбора гиперпараметров

Заключение

- Предложены различные способы моделирования мультимодального распределения в обратном диффузионном процессе
- Экспериментально подтверждена возможность использования различных подходов к обучению GAN моделей для использования их в диффузионной сети
- Проведено сравнение различных алгоритмов обучения на синтетических данных.

▶ В дальнейшем планируется исследовать способы выбора схемы тренировки в зависимости от входных данных