Algoritmos y Estructuras de Datos III

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Abril 2017

Trabajo Práctico 1

Alumno	LU	Correo electrónico
Seijo, Jonathan Adrián	592/15	jon.seijo@gmail.com

Índice

1.	Introducción	3
	1.1. Explicación del problema	
	1.2. Ejemplo	3
2.	Backtracking	4
	2.1. Solución	4
	2.2. Pseudocodigo	4
	2.3. Complejidad	5
3.	Programación Dinámica	6

1. Introducción

1.1. Explicación del problema

Dada una secuencia A de números, se quieren pintar cada uno de ellos con rojo, azul o dejarlos sin pintar. Una aclaración importante es que los elementos de A no pueden modificarse, ni tampoco cambiarse su orden inicial. Lo unico que puede hacerse con ellos es colorearlos (o no).

Para que una secuencia de colores se considere **válida** es necesario que se cumplan ciertas condiciones:

- 1. Todos los elementos de color rojo están ordenados por valor de forma estrictamente creciente
- $2. \ \, {\rm Todos\ los\ elementos\ de\ color\ azul\ est\'an\ ordenados\ por\ valor\ de\ forma\ \underline{estrictamente\ decreciente}}$

(Estrictamente significa que no hay numeros consecutivos iguales)

Las secuencias de colores válidas pueden tener diferentes cantidades de elementos sin pintar. El objetivo del problema es encontrar la **mínima cantidad de elementos sin pintar** de todas las secuencias válidas que pueden formarse a partir de A.

1.2. Ejemplo

Supongamos que A = [0, 7, 1, 2, 2, 1, 5, 0]. Veamos algunas de las posibles secuencias de colores válidas:

Consideremos los colores del tercer caso para ver que es una secuencia válida.

- 1. Rojos: [0, 1, 2, 5] (estrictamente crecientes)
- 2. Azules: [7, 2, 1, 0] (estrictamente decrecientes)

Podemos ver que diferentes formas de pintar de rojo y azul nos obligan a dejar algunos elementos sin pintar para que la secuencia sea válida. En el caso de este ejemplo la **mínima** cantidad de elementos sin pintar que puede obtenerse de A es 0, como puede verse en la tercer combinación.

2. Backtracking

2.1. Solución

Llamo A a la secuencia de números que quiero pintar, y n a la cantidad de elementos en A. De todas las secuencias válidas de colores que puedo formar quiero saber cual es la mínima cantidad de elementos que puedo dejar sin pintar.

Una forma natural de pensar la solución es la siguiente: genero todas las formas de pintar posibles, y veo cual es el mínimo sin pintar que puede usarse para las secuencias que son válidas. Esa es la idea central detrás de ambos algoritmos de backtracking. Veamos entonces una posible implementación, la forma *naive*.

El primer elemento puede ser Rojo, Azul o Ninguno. Dado el color del primero, el segundo elemento puede también ser Rojo, Azul o Ninguno. Fijados el primero y el segundo, el tercero puede ser tomar cualquiera de las tres posibilidades, y así siguiendo.

Una vez fijos los colores de los n elementos, reviso si la secuencia de colores que se formó es válida. (Esto es, que los elementos rojos estén ordenados crecientemente y los azules decrecientemente, ambos de forma estricta).

Si la secuencia formada era válida, entonces cuento la cantidad de elementos sin pintar, y devuelvo ese número. La respuesta final es se consigue tomando el mínimo de todos los mínimos.

Como detalle de implementación, en caso de que la secuencia formada no sea válida, devuelvo un valor infinito para que no afecte al valor mínimo solución. Ésta solución existe porque no pintar ningún elemento de ningún color es siempre una solucion válida **finita**

2.2. Pseudocodigo

```
procedure BACKTRACK(secuencia(Colores) colores, int actual)

if actual = n then

if EsValido(colores) then

return CantSinPintar(colores)

else

return \infty

else

colores[actual] \leftarrow Rojo

minimoConRojo \leftarrow backtrack(colores, actual + 1)

colores[actual] \leftarrow Azul

minimoConAzul \leftarrow backtrack(colores, actual + 1)

colores[actual] \leftarrow Ninguno

minimoSinPintar \leftarrow backtrack(colores, actual + 1)

return Min(minimoConRojo, minimoConAzul, minimoSinPintar)
```

Auxiliares:

procedure EsValida(secuencia(Colores) colores)	
$bool \ rojoValido \leftarrow EsCreciente(DameRojos(colores))$	$\triangleright O(n)$
bool $azulValido \leftarrow EsDecreciente(DameAzules(colores))$	$\triangleright O(n)$
$return (rojoValido \land azulValido)$	

$$\begin{array}{c} \textbf{procedure} \ \text{CantSinPintar}(\text{secuencia}(\text{Colores}) \ colores) \\ \text{return} \ \text{Tama\~no}(\text{DameSinPintar}(colores)) \\ \end{array} \Rightarrow O(n)$$

2.3. Complejidad

El algoritmo presentado visita todas las posibles combinaciones de colores. Cada uno de los elementos tiene tres posibilidades, y como hay n elementos, la cantidad de combinaciones posibles es 3^n . Por lo tanto, visitar todas las posibilidades es $O(3^n)$.

Además, para cada combinación, se revisa en O(n) si es una secuencia valida o no. Por lo tanto, la complejidad total del algoritmo es $O(n*3^n)$

Otra forma de verlo es pensando en el arbol de recursión que se va formando al llamar a la función. Cada nivel representa al elemento iésimo de A, y cada nodo representa el color del elemento. De todo nodo se desprenden tres posibilidades hasta llegar al nivel n. Al llegar a una hoja, se decide si la secuencia $hasta\ esa\ hoja$ es válida, en tiempo lineal.

Sabiendo que en un árbol ternario el nivel \mathbf{i} tiene 3^i nodos, y sabiendo que el arbol tiene n niveles, la cantidad de nodos que se visitan es:

$$\sum_{i=0}^{n} 3^{i} = \frac{3^{n+1}}{2} = O(3^{n})$$

El costo de las visitas de nodos no es el total, pues para cada una de las hojas se verifica si la secuencia obtenida es válida o no. Las hojas se encuentran en el útimo nivel n, entonces el árbol de recursión tiene 3^n hojas, donde cada hoja tiene costo O(n). El costo de operar en las hojas entonces es $3^n * O(n) = O(n * 3^n)$

El costo total es la suma entre visitar todos los nodos y operar en las hojas, es decir:

$$O(3^n) + O(n * 3^n) = O(n * 3^n)$$

3. Programación Dinámica