Uninformed rearch -

OFS (depth first Search) =

Depth first dearch is an algorithm vsech for travelling or Dearching tree or graph data structures this algorithm starts at root of a graph) (or any arbitary node in the case of a graph) (or any arbitary node in the case of a graph) E explores as for as possible along each branch before back tracking

explicitly or through the oaystern call otack either in a recursive amplementation

8 M

BFS (Breadth first dearch) -
Breadth first search is an algorithm
need for travelling or orarching tree or graph data of truckyes. Unlike depth first dearth, BFS
data o truckyes. Unlike depth form dearen, BFS
enplores the neighbour nodes ut the present depth prior to moning on to nodes at depth level
prior to married son to record the the
8fs is often used to find the whortest path
in an unweighted graph, as it employees all
nodesalt the current depth level before moving dapor
Visited Visited
2 9 Queve That
front Year
visited [
Queue O
front
Visikd 0/1/2
Quive (1)
front
visited 0/1/2/3/ >> visited 0/1/2/3/4
Queve 23 1 Que 34
visited 01/2/3/4 \ visited 01/2/3/4
Queux [] auve [4]

IDPS (iterative dupning first search)

It trative deepening depth first grarch is an algorithm that combines both ops & BPS soncept of employing the Gearches space level by level. IOFS is particularly vafull in scaranios where the occarch space is large & the depth of polution is unknown.

Informed Search

At Search algorithm is a popular & efficient algorithm used for finding the shortest path between nodes in a graph. It is widely used in various application, Such as path finding in games, robotics & AI. At is both complete & optimal meaning it will always find the shortest path if one enists & it does do efficiently by combining aspects of both depth-pirt-sarch (OFS) and Breadth first search (BFS)

in a way that minimizes the total estimated cost from the start node to the goal node. The algorithm providing nodes based on a cost function f(n')

cost function

f(n) = g(n) + n(n)

g(n): The actual cost from the start node to node n.

* n(n): The estimate of the cost from mod n to the goal node. this estimate is typically a function of the Ostraight-line distance or other domain - opertic hourstil's

Hill climbing Algorithma

Hill climbing is a Simple of timization algorithm used in AI to find the best possible Solvetion for a given promblem. It belong to the family of local search algorithm & is often used in optimization problems where the goal is to find the best solution from a set of possible solutions.

In hill climbing, the algorithm starts with an initial solution & then iteratively makes small changes are based on hereistic function that evaluates

to make there anall changes until it reduces a local manimum, meaning that no purther improvement can be made with the current of moves.

than its neighbour state however there exists a state which is better than it. This state is botter here the value of the objective function is higher than its neighbours.

better than its better than it . This states is better because here the value of the objective function is higher value.

pleateau/flat local manimum: It is a flat region of States space where neighboring states have the Dame values

Ridges: It is a region that is highers them its neighbors but it valt have a shape. It is objected kind of local manimum.

diagram where we are wrently present during the dearch.

shoulders - It is a photian that has a uphill

Min Man Sporithm

Min Max algorithm is a recursive or back tracking algorithm which is used in decision making and game theory. It provides an optional move for the player assuming that the openent is also playing optimally.

+ Min Man algorithm user recorrsions to ocarch thorough the game tree.

MinMax algorithm mostly vocal for game playing in A I. Ouch as where, checkers, tic-tal-tol go and various two-players game. This algorithm computes the minmax decision for the current Otate.

Manimed

Manimed

Minimity ls

Manimed

oftp-2 for the manimizes find the manimizes values from the duld nodes & fin it zman (J.,

ALP-3- for finding the Minimizes take the minimizes rates of the child nodes

MAXIMUM values from the child nock A = MAX (B,C) = MAX (4,-3) = 4

