Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

40

- 1.-6. (canceled)
- 7. (withdrawn) An optionally substituted 3-[(tetrahydroindole-2-yl)methylene]-2-indolinone or 3-[(cyclopentano-b-pyrrol-2-yl)methylene)]-2-indolinone compound.

8. (withdrawn) The indolinone compound of claim 7 of formula XIX or

XX,

40.5

XIX

XX

$$R_{3}$$

$$R_{4}$$

$$R_{4}$$

$$R_{4}$$

$$R_{4}$$

$$R_{5}$$

$$R_{7}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

$$R_{10}$$

or a pharmaceutically acceptable salt, isomer, metabolite, ester, amide, or prodrug thereof where (a) R_1 is selected from the group consisting of,

80 4

K

- (i) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) ketone of formula -CO-R₁₂, where R₁₂ is selected from the group consisting of hydrogen, alkyl, and [[or]] a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{13})_n$ -COOH or ester of formula $-(R_{14})_m$ -COO- R_{15} , where R_{13} , R_{14} , and R_{15} are independently selected from the group consisting of alkyl and [[or]] a five or six membered heterocyclic ring and n and m are independently 0 or 1;
- (v) a sulfone of formula -(SO₂)-R₁₆, where R₁₆ is selected from the group consisting of alkyl and [[or]] a five or six membered heterocyclic ring, where the ring is optionally substituted with an alkyl moiety;
- (vi) $-(R_{17})_n$ -(indole-1-yl) or
- - $(R_{18})_m$ -CHOH- $(R_{19})_p$ -(indole-l-yl), where the indole moiety is optionally substituted with an aldehyde and R_{17} , R_{18} , and R_{19} are alkyl and n, m, and p are independently 0 or 1;
- (vii) taken together with a 2' substituent of the indole ring forms a tricyclic moiety, where each ring in the tricyclic moiety is a five or six membered heterocyclic ring;
- (b) R₂, R₃, R₃', R₄, R₄', R₅, R₅', R₆ and R₆' are selected from the group consisting of,
- (i) hydrogen;
- (ii) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;

- (iii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iv) ketone of formula -CO- R_{20} , where R_{20} is selected from the group consisting of hydrogen, alkyl, and [[or]] a five or six membered heterocyclic ring;
- (v) a carboxylic acid of formula $-(R_{21})_n$ -COOH or ester of formula $-(R_{22})_m$ -COO- R_{23} , where R_{21} , R_{22} , and R_{23} are independently selected from the group consisting of alkyl <u>and</u> [[or]] a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vi) halogen;
- (vii) an alcohol of formula $-(R_{24})_m$ -OH or an ether of formula $-(R_{24})_n$ -O- R_{25} , where R_{24} and R_{25} are independently selected from the group consisting of alkyl and a five <u>and</u> [[or]] six membered heterocyclic ring and m and n are independently 0 or 1;
- (viii) -NR₂₆R₂₇, where R₂₆ and R₂₇ are independently selected from the group consisting of hydrogen, oxygen, alkyl, and [[or]] a five or six membered heterocyclic ring;
- (ix) -NHCOR₂₈, where R₂₈ is selected from the group consisting of hydroxyl, alkyl, and [[or]] a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (x) -SO₂NR₂₉R₃₀, where R₂₉ and R₃₀ are selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (xi) any two of R₃, R₃', R₄, R₄', R₅, R₅', R₆, or R₆' taken together form a bicyclic or tricyclic heterocyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring;
- (c) R₇, R₈, R₉, and R₁₀ are independently selected from the group consisting of,
- (i) hydrogen;

 \cdot

- (ii) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (iii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iv) ketone of formula -CO- R_{31} , where R_{31} is selected from the group consisting of hydrogen, alkyl, and [[or]] a five or six membered heterocyclic ring;
- (v) a carboxylic acid of formula $-(R_{32})_n$ -COOH or ester of formula $-(R_{33})_m$ -COO- R_{34} , where R_{32} , R_{33} , and R_{34} are independently selected from the group consisting of alkyl and [[or]] a five or six membered heterocyclic ring and n and m are independently 0 or 1;
- (vi) halogen;
- (vii) an alcohol of formula $-(R_{35})_m$ -OH or an ether of formula $-(R_{35})_n$ -O- R_{36} , where R_{35} and R_{36} are independently chosen from the group consisting of alkyl and [[or]] a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (viii) -NR₃₇R₃₈, where R₃₇ and R₃₈ are independently selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;
- (ix) -NHCOR₃₉, where R₃₉ is selected from the group consisting of hydroxyl, alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (x) -SO₂NR₄₀R₄₁, where R₄₀ and R₄₁ are selected from the group consisting of hydrogen, oxygen, alkyl, and a five or six membered heterocyclic ring;

÷ :

- (xi) any two of R₇, R₈, R₉, or R₁₀ taken together form a bicyclic or tricyclic heterocyclic moiety fused to the six membered ring of the indole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring; and
- (d) R_{11} is hydrogen or alkyl.
- 9. (currently amended) An indolinone compound having a substituent at the 5 position of the oxindole ring, where the substituent at the 5 position of the oxindole ring is selected from the group consisting of
- (a) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (b) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (c) a ketone of formula -CO- R_{10} , where R_{10} is selected from the group consisting of hydrogen, alkyl, and [[or]] a five or six membered heterocyclic ring;
- (d) a carboxylic acid of formula $-(R_{11})_n$ -COOH or ester of formula $-(R_{12})_m$ -COO- R_{13} , where R_{11} , R_{12} , and R_{13} are independently selected from the group consisting of alkyl <u>and</u> [[or]] a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (e) halogen;
- (f) an alcohol of formula $-(R_{14})_m$ -OH or an ether of formula $-(R_{14})_n$ -O- R_{15} , where R_{14} and R_{15} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (g) -NR₁₆R₁₇, where R₁₆ and R₁₇ are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;

Y.

. .

- (h) -NHCOR₁₈, where R₁₈ is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (i) -SO₂NR₁₉R₂₀, where R₁₉ and R₂₀ are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring; and
- (j) any two of R_4 , R_5 , R_6 , or R_7 taken together form a bicyclic or tricyclic heterocyclic moiety fused to the six membered ring of the oxindole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring.
- 10. (currently amended) The compound of claim 9 of the following formula,

$$R_{4}$$
 R_{2}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}
 R_{1}

where (a) R₅ is selected from the group consisting of,

(i) alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;

- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) a ketone of formula -CO- R_{10} , where R_{10} is selected from the group consisting of hydrogen, alkyl, and [[or]] a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{11})_n$ -COOH or ester of formula $-(R_{12})_m$ -COO- R_{13} , where R_{11} , R_{12} , and R_{13} are independently selected from the group consisting of alkyl and [[or]] a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (v) halogen;

1.47

- (vi) an alcohol of formula $-(R_{14})_m$ -OH or an ether of formula $-(R_{14})_n$ -O- R_{15} , where R_{14} and R_{15} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vii) -NR₁₆R₁₇, where R₁₆ and R₁₇ are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (viii) -NHCOR₁₈, where R₁₈ is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (ix) -SO₂NR₁₉R₂₀, where R₁₉ and R₂₀ are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring; and
- (x) any two of R₄, R₅, R₆, or R₇ taken together form a bicyclic or tricyclic heterocyclic moiety fused to the six membered ring of the oxindole, where each ring in the multicyclic moiety is a five or six membered heterocyclic ring;
- (b) R₁ is selected from the group consisting of a five, six, eight, nine, and ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more substituents selected from the group consisting of

4

٠.٧

- (i) hydrogen and alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) a ketone of formula -CO- R_{21} , where R_{21} is selected from the group consisting of hydrogen, alkyl, and [[or]] a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{22})_n$ -COOH or ester of formula $-(R_{23})_m$ -COO- R_{24} , where R_{22} , R_{23} , and R_{24} are independently selected from the group consisting of alkyl and [[or]] a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (v) halogen;
- (vi) an alcohol of formula $-(R_{25})_m$ -OH or an ether of formula $-(R_{25})_n$ -O- R_{26} , where R_{25} and R_{26} are independently selected from the group consisting of alkyl and a five <u>and</u> [[or]] six membered heterocyclic ring and m and n are independently 0 or 1;
- (vii) -NR₂₇R₂₈, where R₂₇ and R₂₈ are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (viii) -NHCOR₂₉, where R₂₉ is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (ix) -SO₂NR₃₀R₃₁, where R₃₀ and R₃₁ are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (c) R₄, R₆, and R₇ are independently selected from the group consisting of,

- (i) hydrogen and alkyl that is optionally substituted with a monocyclic or bicyclic five, six, eight, nine, or ten membered heterocyclic ring, where the ring is optionally substituted with one or more halogen, or trihalomethyl substituents;
- (ii) five, six, eight, nine, or ten membered monocyclic or bicyclic heterocyclic ring, where the ring is optionally substituted with one or more halogen or trihalomethyl substituents;
- (iii) a ketone of formula -CO-R₃₂, where R₃₂ is selected from the group consisting of hydrogen, alkyl, and [[or]] a five or six membered heterocyclic ring;
- (iv) a carboxylic acid of formula $-(R_{33})_n$ -COOH or ester of formula $-(R_{34})_m$ -COO- R_{35} , where R_{33} R_{34} and R_{35} are independently selected from the group consisting of alkyl <u>and</u> [[or]] a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (v) halogen;
- (vi) an alcohol of formula $-(R_{36})_m$ -OH or an ether of formula $-(R_{36})_n$ -O- R_{37} , where R_{36} and R_{37} are independently selected from the group consisting of alkyl and a five or six membered heterocyclic ring and m and n are independently 0 or 1;
- (vii) -NR₃₈R₃₉, where R₃₈ and R₃₉ are independently selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring;
- (viii) -NHCOR₄₀, where R₄₀ is selected from the group consisting of alkyl, and a five or six membered heterocyclic ring, where the ring is optionally substituted with alkyl, halogen, carboxylate, or ester;
- (ix) -SO₂NR₄₁R₄₂, where R₄₁ and R₄₂ are selected from the group consisting of hydrogen, alkyl, and a five or six membered heterocyclic ring; and
- (d) R_2 is hydrogen or alkyl.

11. (currently amended) A compound having formula XXI, wherein:

$$(OR_1)_m$$
 R_2
 R_3
 R_4
 R_4
 R_5
 R_7
 R_8

XXI

- (a) A is a five or six membered ring comprised of atoms selected from the group consisting of oxygen, carbon, sulfur and nitrogen;
- (b) m is zero, 1, or 2;
- (c) R_1 is hydrogen, C_1 - C_6 alkyl or C_2 - C_6 alkanoyl;
- (d) one of R₂ and R₃ independently is hydrogen and the other is a substituent selected from:
- (1) a C_1 - C_6 alkyl group substituted by 1, 2 or 3 hydroxy groups;
- (2) SO_3R_4 in which R_4 is hydrogen or C_1 - C_6 alkyl unsubstituted or substituted by 1, 2 or 3 hydroxy groups;

125

- (3) SO_2NHR_5 in which R_5 is as R_4 defined above or a- $(CH_2)_n$ - $N(C_1$ - C_6 alkyl)₂ group in which n is 2 or 3;
- (4) COOR₆ in which R₆ is C₁-C₆ alkyl unsubstituted or substituted by phenyl or by 1, 2 or 3 hydroxy groups or phenyl;
- (5) CONHR₇, in which R_7 is hydrogen, phenyl or C_1 - C_6 alkyl substituted by 1, 2 or 3 hydroxy groups or by phenyl;
- (6) NHSO₂R₈ in which R₈ is C₁-C₆ alkyl or phenyl unsubstituted or substituted by halogen or by C₁-C₄ alkyl;
- (7) $N(R_9)_2$, NHR₉ or OR₉ wherein R₉ is C₂-C₆ alkyl substituted by 1, 2 or 3 hydroxy groups;
- (8) NHCOR₁₀, OOCR₁₀ or CH₂OOCR₁₀ in which R₁₀ is C₁-C₆ alkyl substituted by 1, 2 or 3 hydroxy groups; and
- (9) NHCONH₂; NH-C(NH₂)=NH; C(NH₂)=NH; CH₂NHC(NH₂)=NH; CH₂NH₂; OPO(OH)₂; CH₂OPO(OH)₂; PO(OH)₂; or a

wherein X is selected from the group consisting of CH_2 , SO_2 , CO, and [[or]] NHCO(CH_2)_p in which p is 1, 2, or 3 and Z is CH_2 , O or N-R₁₁ in which R₁₁ is hydrogen or is as R₉ defined above.

- 12. (withdrawn) A method of making an indolinone compound of any one of claims 9-11 5-11 comprising the steps of reaching an appropriate aldehyde and oxindole and separating the indolinone from the aldehyde and oxindole reactants.
- 13. (currently amended) A pharmaceutical composition comprising (i) a pharmaceutically acceptable carrier or excipient and (ii) a compound according to any one of claims 9-11 5-11.
- 14. (withdrawn) A method for treating a disease related to unregulated tyrosine kinase signal transduction, the method comprising the step of administering to a subject in need thereof a therapeutically effective amount of a compound according to anyone of claims 9-11 5-11.
- 15. (withdrawn) A method for regulating tyrosine kinase signal transduction comprising administering to a subject a therapeutically effective amount of a compound according to any one of claims 9-11 5-11.
- 16. (withdrawn) A method of preventing or treating an abnormal condition in an organism, where the abnormal condition is associated with an aberration in a signal transduction pathway characterized by an interaction between a protein kinase and a natural binding partner, where the method comprises the following steps:
- (a) administering a compound of any one-of claims 9-11 5-11 to an organism; and
- (b) promoting or disrupting the abnormal interaction.
- 17. (withdrawn) A method of preventing or treating an abnormal condition in an organism, where the abnormal condition is associated with an aberration in a signal transduction pathway characterized by an interaction between a protein kinase and a natural binding partner, where the method comprises the following steps:

- (a) administering a compound of any one of claims 9-11 5-11 to an organism; and
- (b) promoting or disrupting the abnormal interaction.