

Subha Ghosh

Department of Computer Science & Technology and Computer Science & Information Technology University of Engineering & Management, Kolkata

Suppose we have a sequence or chain A1, A2, ..., An of n matrices to be multiplied

That is, we want to compute the product $A1 \cdot A2 \cdots An$

There are many possible ways (parenthesizations) to compute the product

Example: Consider the chain A1, A2, A3, A4 of 4 matrices

Let us compute the product

$$A1 \cdot A2 \cdot A3 \cdot A4$$

There are 5 possible ways:

$$(A1 \cdot (A2 \cdot (A3 \cdot A4)))$$

 $(A1 \cdot ((A2 \cdot A3) \cdot A4))$
 $((A1 \cdot A2) \cdot (A3 \cdot A4))$
 $((A1 \cdot (A2 \cdot A3)) \cdot A4)$
 $(((A1 \cdot A2) \cdot A3) \cdot A4)$

To compute the number of scalar multiplications necessary, we must know:

- Algorithm to multiply two matrices
- Matrix dimensions

Input: Matrices $A_{p\times q}$ and $B_{q\times r}$ (with dimensions $p\times q$ and $q\times r$)

Result: Matrix $C_{p \times r}$ resulting from the product $A \cdot B$

```
MATRIX-MULTIPLY(A_{p\times q}, B_{q\times r})
```

```
1. for i \leftarrow 1 to p
```

2. **for**
$$j \leftarrow 1$$
 to r

$$C[i,j] \leftarrow 0$$

4. **for**
$$k \leftarrow 1$$
 to q

5.
$$C[i,j] \leftarrow C[i,j] + A[i,k] \cdot B[k,j]$$

6. return C

Example: Consider three matrices

$$A_{10\times100}$$
, $B_{100\times5}$, and $C_{5\times50}$

There are 2 ways to parenthesize

$$\begin{array}{l} \text{((AB)C)} = D_{10\times5} \cdot C_{5\times50} \\ \text{AB} \Rightarrow 10\cdot100\cdot5=5,000 \text{ scalar multiplications} \\ \text{DC} \Rightarrow 10\cdot5\cdot50=2,500 \text{ scalar multiplications} \end{array} \right\} \quad \text{Total:7,500}$$

$$(A(BC)) = A_{10\times100} \cdot E_{100\times50}$$

$$BC \Rightarrow 100\cdot5\cdot50=25,000 \text{ scalar multiplications}$$

$$AE \Rightarrow 10\cdot100\cdot50=50,000 \text{ scalar multiplications}$$

$$Total: 75,000$$

Given a chain $A_1, A_2, ..., A_n$ of n matrices, where for i=1, 2, ..., n, matrix A_i has dimension $p_{i-1} \times p_i$

Parenthesize the product $A_1A_2...A_n$ such that the total number of scalar multiplications is minimized

MATRIX-CHAIN-ORDER(p[], n)

```
for i \leftarrow 1 to n
   m[i, i] \leftarrow 0
for l \leftarrow 2 to n
   for i \leftarrow 1 to n-l+1
            j \leftarrow i+l-1
             m[i, j] \leftarrow \infty
             for k \leftarrow i to j-1
                       q \leftarrow m[i, k] + m[k+1, j] + p[i-1] p[k] p[j]
                       if q < m[i, j]
                                 m[i,j] \leftarrow q
                                 s[i, j] \leftarrow k
```

return *m* and *s*

- Our algorithm computes the minimum-cost table *m* and the split table *s*
- The optimal solution can be constructed from the split table s
- Each entry s[i, j] = k shows where to split the product $A_i A_{i+1} ... A_j$ for the minimum cost

Matrix	Dimension
A ₁	30×35
A ₂	35×15
A_3	15×5
A ₄	5×10
A ₅	10×20
A ₆	20×25

Figure 15.3 The m and s tables computed by MATRIX-CHAIN-ORDER for n=6 and the following matrix dimensions:

matrix	dimension
A_1	30×35
A_2	35×15
A_3	15×5
A_4	5×10
A_5	10×20
A_6	20×25

Thank you