Lista de ejercicios 1 - Fundamentos de Probabilidad

24 de abril de 2019

Justo Andrés Manrique Urbina - 20091107

Pregunta 5.a. 1.

Demuestre que $A_1 \in \sigma(C), A_2 \in \sigma(C), ...$

Demostración:

Supongamos $A_i \in C, i = 1, 2, ...$

Recordemos que, por definición 1.2. del texto de la clase, $C \subset \sigma(C)$

Por lo tanto, $A_i \in C \subset \sigma(C), i = 1, 2, ...$

Finalmente, $A_i \in \sigma(C), i = 1, 2, ...$

Pregunta 5.b. 2.

Demuestre que $\bigcup_{j=1}^{\infty} A_j \in \sigma(C)$. **Demostración:**

Supongamos que $A_i \in \sigma(C), i = 1, 2, ...,$

Por definición de σ -álgebra (definición 1.1 del texto de la clase), toda σ -álgebra es cerrada respecto a reuniones infinitas enumerables.

Dada la suposición y la definición de σ -álgebra, se concluye que $\bigcup_{i=1}^{\infty} A_i \in$ $\sigma(C)$.

3. Pregunta 16.a.

Demuestre que $f^{-1}(\sigma(C))$ es una σ -álgebra en Ω_1 .

Demostración:

Supongamos que $\sigma(C)$ es una σ -álgebra en Ω_2 . Entonces, se cumplen las siguientes propiedades:

 $\Omega_2 \in \sigma(C)$

- $\forall A \in \sigma(C) : A^c \in \sigma(C)$
- $\forall A_1, A_2, \dots \in \sigma(C) : \bigcup_{j=1}^{\infty} A_j \in \sigma(C)$

Para demostrar que $f^{-1}(\sigma(C))$ es una σ -álgebra en Ω_1 , verificaremos si dicha imagen inversa cumple los 3 axiomas de la definición de σ -álgebra en Ω_1 .

Recordemos que, por definición, $f^{-1}(A) = \{\omega \in \Omega_1 : f(\omega) \in A\}$ y $f^{-1}(\mathcal{C}) = \{f^{-1}(A) : A \in \mathcal{C}\}$. En base a esto, se realizará la demostración:

3.1. 1er axioma

■ Recordemos que $\Omega_1 = f^{-1}(\Omega_2)$ y que $\Omega_2 \in \sigma(C)$. Por lo tanto, por definición, $\Omega_1 \in f^{-1}(\sigma(C))$. Se cumple el primer axioma.

3.2. 2do axioma

- Sea $A \in C$, entonces, por definición de σ -álgebra, $A \in \sigma(C)$ y $A^c \in \sigma(C)$.
- Por definición, $f^{-1}(C)=\{f^{-1}(A):A\in C\subset \sigma(C)\}$. Entonces, $f^{-1}(A)\in f^{-1}(C)\subset f^{-1}(\sigma(C))$.
- Para que $f^{-1}(\sigma(C))$ sea considerada una σ -álgebra, entonces $(f^{-1}(C))^c$ debe estar contenido en $f^{-1}(\sigma(C))$. Esto se cumple por propiedad. $f^{-1}(A^c) = (f^{-1}(A))^c \in f^{-1}(\sigma(C))$. Se cumple el segundo axioma.

3.3. 3er axioma

Respecto al tercer axioma, recordemos que $\bigcup_{j=1}^{\infty} A_j \in \sigma(C)$, entonces $f^{-1}(A_j) \in f^{-1}(A), j = 1, 2, ...$, por lo tanto $\bigcup_{j=1}^{\infty} f^{-1}(A_j) = f^{-1}(\bigcup_{j=1}^{\infty} A_j) \in f^{-1}(\sigma(C))$. Se cumple el tercer axioma.

Dado que se cumplen los tres axiomas en Ω_1 se concluye que $f^{-1}(\sigma(C))$ es una σ -álgebra en Ω_1 .

4. Pregunta 16.b.

Demuestre que $f^{-1}(C) \subset f^{-1}(\sigma(C))$.

Demostración:

Esto se demostró en la pregunta 16.a., segundo axioma.

- Sea $A \in C$, entonces, por definición de σ -álgebra, $A \in \sigma(C)$ y $A^c \in \sigma(C)$.
- Por definición, $f^{-1}(C)=\{f^{-1}(A):A\in C\subset \sigma(C)\}$. Entonces, $f^{-1}(A)\in f^{-1}(C)\subset f^{-1}(\sigma(C))$.

5. Pregunta 16.c.

Demuestre que $\sigma(f^{-1}(C)) \subset f^{-1}(\sigma(C))$.

Demostración:

Supongamos existe $f^{-1}(C)$ en Ω_1 . Por definición de σ -álgebra generada, $f^{-1}(C) \subset \sigma(f^{-1}(C))$.

Por lo demostrado en las preguntas anteriores, $f^{-1}(\sigma(C))$ es una σ -álgebra en Ω_1 y $f^{-1}(C) \subset f^{-1}(\sigma(C))$.

Dado que, por definición, $\sigma(f^{-1}(C))$ es la σ -álgebra generada es la más pequeña que contiene a $f^{-1}(C)$, entonces concluimos que $\sigma(f^{-1}(C)) \subset f^{-1}(\sigma(C))$.