Tema 3 - Producto por bloques y factorizaciones triangulares

Ramon Ceballos

24/2/2021

FACTORIZACIONES TRIANGULARES

En este apartado nos proponemos estudiar cuando una matriz pude escribirse como producto de una matriz triangular inferior, a la que llamaremos L, y una matriz triangular superior a la que llamaremos U. Esto de conoce como **factorización LU**.

Antes de empezar, repasemos las operaciones elementales.

1. Operaciones elementales

Matriz Elemental (por filas). Se obtiene a partir de la matriz identidad I_m . Se pueden llevar a cabo las siguientes operaciones elementales:

- F_{ij} : matriz elemental obtenida a partir de la matriz identidad I_m a la que se le han intercambiado las filas i, j
- $F_i(\alpha)$: matriz elemental obtenida a partir de la matriz identidad I_m a la que se le ha multiplicado la fila i por $\alpha \in \mathbb{K}$
- $F_{ij}(\alpha)$: matriz elemental obtenida a partir de la matriz identidad I_m a la cual se le ha sumado a la fila i la fila j multiplicada por α

1.1. Proposición para trasformaciones elementales por filas

Proposición. Sea $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ una matriz. Entonces, cada una de las transformaciones elementales por filas que se pueden realizar sobre A corresponden a multiplicar la matriz A por la izquierda por una matriz elemental de la siguiente manera:

- Intercambiar las filas i, j de A se corresponde a realizar el producto $F_{ij} \cdot A$
- Multiplicar la fila i por $\alpha \in \mathbb{K}$ se corresponde a realizar el producto $F_i(\alpha) \cdot A$
- Sumar a la fila i de la matriz A, la fila j multiplicada por un número $\alpha \in \mathbb{K}$ se corresponde a realizar el producto $F_{ij}(\alpha) \cdot A$

Ejemplo 3

Consideremos la matriz siguiente:

$$A = \begin{pmatrix} 1 & 1 & 0 & -3 \\ 2 & 0 & 1 & -1 \\ 0 & 0 & 3 & 4 \end{pmatrix}$$

Entonces, intercambiar las filas 1 y 3 corresponde a multiplicar:

$$F_{13} \cdot A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & -3 \\ 2 & 0 & 1 & -1 \\ 0 & 0 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 0 & 0 & 3 & 4 \\ 2 & 0 & 1 & -1 \\ 1 & 1 & 0 & -3 \end{pmatrix}$$

Multiplicar la segunda fila de A por -2 se corresponde con:

$$F_2(-2) \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & -3 \\ 2 & 0 & 1 & -1 \\ 0 & 0 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & -3 \\ -4 & 0 & -2 & 2 \\ 0 & 0 & 3 & 4 \end{pmatrix}$$

Sumar a la tercera fila de A, la segunda multiplicada por 5 corresponde a realizar el producto:

$$F_{32}(5) \cdot A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 5 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 0 & -3 \\ 2 & 0 & 1 & -1 \\ 0 & 0 & 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 0 & -3 \\ 2 & 0 & 1 & -1 \\ 10 & 0 & 8 & -1 \end{pmatrix}$$

1.2. Proposición para trasformaciones elementales por columnas

Es fácil comprobar que las **transformaciones elementales por columnas** corresponden igualmente a **multiplicar**, **en este caso por la derecha**, por matrices elementales similares obtenidas a partir de la matriz identidad operando por columnas: C_{ij} , $C_i(\alpha)$, $C_{ij}(\alpha)$

1.3. Inversas de las matrices elementales (por filas)

Proposición. Todas las matrices elementales son invertibles y sus inversas vuelven a ser matrices elementales:

- $\bullet \quad F_{ij}^{-1} = F_{ij}$
- $F_i(\alpha)^{-1} = F_i\left(\frac{1}{\alpha}\right)$
- $F_{ij}(\alpha)^{-1} = F_{ij}(-\alpha)$

Observación. Las matrices $F_i(\alpha)$ son diagonales y las matrices $F_{ij}(\alpha)$ son triangulares inferiores si i > j o triangulares superiores si i < j.

2. Factorizaciones triangulares (LU)

Ahora ya estamos preparados para ver los teoremas relativos a las factorizaciones triangulares, también conocidas como Factorizaciones LU.

2.1 Teorema

Teorema. Sea $A \in \mathcal{M}_{m \times n}(\mathbb{K})$ y U una matriz escalonada por filas equivalente con todos los pivotes 1 (la cual será triangular superior), tenemos que:

- Sin permutación de filas. Si U se puede obtener a partir de A sin necesidad de hacer ninguna permutación entre sus filas (no se cambian las filas), entonces existe una matriz triangular inferior L de forma que A = LU. Además, si A es invertible, entonces esta factorización es única.
- Con permutación de filas. Si para llegar a U se requieren permutaciones de filas y A es invertible, entonces existe una matriz P tal que PA = LU donde P es simplemente un producto de matrices elementales de la forma F_{ij} . Para cada P (ya que puede haber más de una) la factorización es única.

2.2. Algoritmo para la factorización LU de una matriz

Existe un algoritmo para encontrar una factorización LU de una matriz cualquiera A. Y es el siguiente:

- 1. Encontrar matriz escalonada por filas con pivotes 1 equivalente a A, la que será nuestra U.
- 2. Para llegar a dicha matriz, habremos realizado una serie de transformaciones elementales correspondientes a matrices elementales de la forma $F_i(\alpha)$ y $F_{ij}(\alpha)$ con i < j. Así, $U = L_n \cdots L_1 \cdot A$
- 3. Entonces, $A = (L_n \cdots L_1)^{-1}U = L_1^{-1} \cdots L_n^{-1} \cdot U = LU$, donde L es triangular inferior porque todas las L_i^{-1} lo son.