

A protocol for rapid detection of the 2019 novel coronavirus SARS-CoV-2 using CRISPR diagnostics: SARS-CoV-2 DETECTR ©

Mammoth Biosciences¹, James P. Broughton², Wayne Deng^{3,4}, Clare L. Fasching², Jasmeet Singh², Charles Y. Chiu^{3,4,5}, Janice S. Chen²

¹[Mammoth Biosciences, Inc., South San Francisco, California, USA], ²Mammoth Biosciences, Inc., South San Francisco, California, USA, ³Department of Laboratory Medicine, University of California, San Francisco, California, USA, ⁴UCSF-Abbott Viral Diagnostics and Discovery Center, San Francisco, California, USA, ⁵Department of Medicine, Division of Infectious Diseases, University of California, San Francisco, California, USA

ABSTRACT

DISCLAIMER: This protocol has not been approved by the FDA and should not be used as a clinical diagnostic

Introduction

Given the global health emergency, rapid transmission, and severe respiratory disease associated with the outbreak of the 2019 novel coronavirus (SARS-CoV-2), Mammoth Biosciences has reconfigured our DETECTR platform to rapidly and accurately detect SARS-CoV-2 using a visual lateral flow strip format within 30 minutes from sample to result. To ensure specificity of detection, we selected a high-fidelity CRISPR detection enzyme and designed sets of gRNAs that can either 1) differentiate SARS-CoV-2 or 2) provide multi-coronavirus strain detection. SARS-CoV-2 DETECTR couples CRISPR detection with isothermal pre-amplification using primers based on protocols validated by the US Centers for Disease Control and Prevention (CDC) and World Health Organization (WHO). Currently in the United States, the CDC SARS-CoV-2 real-time RT-PCR diagnostic panel has a laboratory turnaround time of approximately 4-6 hours, with results that can be delayed for >24 hours after sample collection due to shipping requirements. In addition, these tests are only available in CDC-designated public health laboratories certified to perform high-complexity testing.

Mammoth is working to enable point of care testing (POCT) solutions that can be deployed in areas at greatest risk of transmitting SARS-CoV-2 infection, including airports, emergency departments, and local community hospitals, particularly in low-resource countries. Leveraging an "off-the-shelf" strategy to enable practical solutions within a short time frame, we describe here a protocol that is fast (<30 min), practical (available immediately from international suppliers), and validated using contrived samples.

Specifications		
Targets	■ N-gene (SARS-CoV-2 specific)	
● E-gene (SARS-CoV, bat-SARS-like-CoV, and		
	SARS-CoV-2 coronaviruses)	
	 RNase P (human sample control) 	

Citation: Mammoth Biosciences, James P. Broughton, Wayne Deng, Clare L. Fasching, Jasmeet Singh, Charles Y. Chiu, Janice S. Chen (03/17/2020). A protocol for rapid detection of the 2019 novel coronavirus SARS-CoV-2 using CRISPR diagnostics: SARS-CoV-2 DETECTR. https://dx.doi.org/10.17504/protocols.io.bcmtiu6n

Table 1: SARS-CoV-2 DETECTR assay workflow and specifications.

Figure 1: SARS-CoV-2 DETECTR has a limit of detection (n=7) of 156-625 copies per 20 μ l reaction (or 70-300 copies per μ l input) and generates a clear visible signal on lateral flow strips within 30 minutes sample to result.

Acknowledgements: We thank Vikram Joshi, Nefeli Tsaloglou and Xin Miao for advice and helpful discussions in the preparation of this whitepaper.

Conflicts of Interest: JPB, CLF, JS and JSC are employees of Mammoth Biosciences, CYC is on the Scientific Advisory Board of Mammoth Biosciences, and JSC is a co-founder of Mammoth Biosciences. JPB, CLF, JS, CYC and JSC are co-inventors on CRISPR-related technologies.

EXTERNAL LINK

https://mammoth.bio/2020/02/15/white-paper-a-protocol-for-rapid-detection-of-sars-cov-2-using-crispr-sars-cov-2-detectr/

ATTACHMENTS

SARS-CoV-2.pdf

GUIDELINES

Appendix

While we were preparing this whitepaper, another <u>protocol for SARS-CoV-2 detection using CRISPR diagnostics (SHERLOCK, v.20200214)</u> was published. We compare the assay workflows and specifications between CRISPR diagnostics and established CDC/WHO protocols below. (Note: as of this publication, CRISPR diagnostics workflows have not yet been approved by the FDA)

 $\begin{tabular}{ll} \textbf{Appendix Figure 1:} Comparison of SARS-CoV-2 assay workflows for DETECTR, SHERLOCK, and CDC/WHO \end{tabular}$

	SARS-CoV-2 DETECTR	SARS-CoV-2 SHERLOCK	CDC SARS-CoV2 qRT-PCR
Target	N gene & E gene (N gene gRNA compatible with CDC N2 amplicon, E gene compatible with WHO protocol)	S gene & Orf1ab gene	N-gene (3 amplicons)
Sample control	RNase P	None	RNase P
Limit of Detection	70-300 copies/µl input	10-100 copies/µl input	1 copy/μL input
Assay reaction time	~30 min	~60 min	~45-60 minutes
Assay components	RT-LAMP (62 °C, 290 min), Cas12 (37 °C, 10 min), Lateral flow (RT, 2 min)	RT-RPA (42 °C, 25 min), IVT + Cas13 (37 °C, 30 min), Lateral flow (RT, 2 min)	uDG digestion (25 °C, 2 min), reverse transcription (50 °C, 15 min), denature (95 °C, 2 min), amplification (95 °C, 3 min; 55 °C 30 sec; 45 cycles)
Heavy instrumentation required	No	No	Yes
FDA EUA approval	No	No	Yes

Appendix Tavle 1: Comparison of SARS-CoV-2 specifications for CRISPR diagnostic protocols to the current CDC assay.

MATERIALS TEXT

SARS-CoV-2 DETECTR Reagents

Step 1: Isothermal amplification (62°C, 20 min)

RT-LAMP Master Mix (Supplier: NEB)

Citation: Mammoth Biosciences, James P. Broughton, Wayne Deng, Clare L. Fasching, Jasmeet Singh, Charles Y. Chiu, Janice S. Chen (03/17/2020). A protocol for rapid detection of the 2019 novel coronavirus SARS-CoV-2 using CRISPR diagnostics: SARS-CoV-2 DETECTR. https://dx.doi.org/10.17504/protocols.io.bcmtiu6n

DNA oligos (Supplier: IDT)

Primer sequences:

Name	Sequence (5' → 3')
N-gene F3	AACACAAGCTTTCGGCAG
N-gene B3	GAAATTTGGATCTTTGTCATCC
N-gene FIP	TGCGGCCAATGTTTGTAATCAGCCAAGGAAATTTTGGGGAC
N-gene BIP	CGCATTGGCATGGAAGTCACTTTGATGGCACCTGTGTAG
N-gene LF	TTCCTTGTCTGATTAGTTC
N-gene LB	ACCTTCGGGAACGTGGTT
E-gene F3	CCGACGACGACTACTAGC
E-gene B3	AGAGTAAACGTAAAAAGAAGGTT
E-gene FIP	ACCTGTCTCTCCGAAACGAATTTGTAAGCACAAGCTGATG
E-gene BIP	CTAGCCATCCTTACTGCGCTACTCACGTTAACAATATTGCA
E-gene LF	TCGATTGTGCGTACTGC
E-gene LB	TGAGTACATAAGTTCGTAC
RNaseP POP7 F3*	TTGATGAGCTGGAGCCA
RNaseP POP7 B3*	CACCCTCAATGCAGAGTC
RNaseP POP7 FIP*	GTGTGACCCTGAAGACTCGGTTTTAGCCACTGACTCGGATC
RNaseP POP7 BIP*	CCTCCGTGATATGGCTCTTCGTTTTTTCTTACATGGCTCT
	GGTC
RNaseP POP7 LF*	ATGTGGATGGCTGAGTTGTT
RNaseP POP7 LB*	CATGCTGAGTACTGGACCTC

^{*} RNaseP POP7 primers published in Curtis et al., (2018).

Curtis KA, Morrison D, Rudolph DL, Shankar A, Bloomfield LSP, Switzer WM, Owen SM (2018). A multiplexed RT-LAMP assay for detection of group M HIV-1 in plasma or whole blood.. Journal of virological methods.

https://doi.org/10.1016/j.jviromet.2018.02.012

Step 2: Cas12 detection (37°C, 10 min)

LbCas12a (Supplier: NEB)

EnGen Lba Cas12a (Cpf1) - 70 pmol

by New England Biolabs
Catalog #: M0653S

- <u>crRNA (Supplier: Synthego)</u>
- •
- Reporter (Supplier: IDT)

Name	Sequence (5' → 3')
N gene gRNA (SARS-CoV-2 specific)	UAAUUUCUACUAAGUGUAGAUCCCCCAGCGCUUCAGCGUUC
E gene gRNA (pan-coronavirus)	UAAUUUCUACUAAGUGUAGAUGUGGUAUUCUUGCUAGUUAC
RNase P gRNA (Sample control)	UAAUUUCUACUAAGUGUAGAUGACCUGCGAGCGGGUUCUGA

protocols.io
4
03/17/2020

Citation: Mammoth Biosciences, James P. Broughton, Wayne Deng, Clare L. Fasching, Jasmeet Singh, Charles Y. Chiu, Janice S. Chen (03/17/2020). A protocol for rapid detection of the 2019 novel coronavirus SARS-CoV-2 using CRISPR diagnostics: SARS-CoV-2 DETECTR. https://dx.doi.org/10.17504/protocols.io.bcmtiu6n

Step 3: Lateral flow (RT, 2 min)

Milenia HybriDetect 1 lateral flow strips (Supplier: TwistDx

Sample Equipment

- Pipette tips
- 37 °C heat block
- 62°C heat block
- Microcentrifuge
- Eppendorf tubes
- Pipettes
- Lateral flow strips
- Sample collection device (nasopharyngeal swab)
- Timer

SAFETY WARNINGS

Please see SDS (Safety Data Sheet) for hazards and safety warnings.

Prepare nucleic acid sample and CRISPR reagents

Extract patient RNA following CDC recommendations.

2 Prepare *LbCas12a RNP complexes* for the samples to be tested. **One** complex for N-gene, E-gene, and RNase P gRNAs is needed **for each sample**.

Reagent	Volume	Final Concentration
Nuclease-free water	15.75 µl	
10X NEBuffer 2.1	2 μΙ	1X
1 μM LbCas12a	1 μΙ	50 nM
1 μM gRNA	1.25 µl	62.5 nM
TOTAL VOLUME	20 μΙ	

Incubate LbCas12a with gRNA to generate RNP complexes for $\circlearrowleft 00:30:00$ at 37 °C.

Add reporter substrate to final concentration of [M]500 Nanomolar (nM).

5 Place reactions & On ice until ready to proceed.

Complexes are stable at 4°C for at least 24 hours.

Run DETECTR reaction

§ On ice , prepare three RT-LAMP reactions, one each for N-gene, E-gene, and

RNase P primer sets:

Reagent	Volume	Final Concentration
10X Isothermal Amplification Buffer (NEB)	2.5 μΙ	
100 mM MgSO 4 (NEB)	1.13 μΙ	6.5 mM (4.5 mM added, 2 mM in 1X IsoAmp Buffer)
10 mM dNTPs (NEB)	3.5 µl	1.4 mM
10X Primer Mix	2.5 μΙ	0.2 μM F3 / 0.2 μM B3 / 1.6 μM FIP / 1.6 μM BIP / 0.8 μM LF / 0.8 μM LB
Bst 2.0 polymerase (NEB)	1 μΙ	8 units / rxn
Warmstart RTx (NEB)	0.5 μl	7.5 units / rxn
Nuclease-free water	3.87 µl	
Nucleic acid sample	5 μΙ	
TOTAL VOLUME	25 μΙ	

7

Incubate at $862 ^{\circ}C$ for ©00:20:00.

Note: Use precaution when opening amplification tubes to prevent amplicon contamination.

B /

9

Add 380 µl 1X NEBuffer 2.1.

10

Incubate at § 37 °C for ⑤ 00:10:00 .

11 Insert Milenia HybriDetect 1 (TwistDx) lateral flow strip directly into reaction.

Allow the lateral flow strip to run for \bigcirc **00:02:00** at & **Room temperature** and observe the result.

Test interpretation

13

Note: The *line closest to the sample pad* is the *control line* and the line that appears

Figure 1 | SARS-CoV-2 DETECTR has a limit of detection (n=7) of 156-625 copies per 20 μ l reaction (or 70-300 copies per μ l input) and generates a clear visible signal on lateral flow strips within 30 minutes sample to result.

N-gene	E-gene	RNase P	Interpretation
+	+	+/-	SARS-CoV-2 positive
+	-	+/-	Indeterminate
-	+	+/-	Indeterminate
-	-	+	SARS-CoV-2 negative
-	-	-	QC failure

This is an open access protocol distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited