分裂簡約 Lie 代数

箱

2025年8月7日

概要

分裂簡約 Lie 代数の構造論および表現論を解説する.構造論については,分裂簡約 Lie 代数からルート系が定義されることを見たあと,それを用いて分裂可能単純 Lie 代数を分類する.表現論については,最高ウェイト理論を解説する.

目次

1	Cartan 部分代数	2
1.1	Cartan 部分代数	2
1.2	同時広義固有空間に関する準備・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
1.3	Cartan 部分代数の存在	6
1.4	多項式写像に関する準備	8
1.5	Cartan 部分代数の共役性	10
1.6	簡約 Lie 代数の Cartan 部分代数	13
2	$\mathfrak{sl}(2,\mathbb{K})$ の表現	14
2.1	$\mathfrak{sl}(2,\mathbb{K})$ -加群のウェイト	14
2.2	最高ウェイト $\mathfrak{sl}(2,\mathbb{K})$ -加群	15
2.3	有限次元既約 sl(2, K)-加群	17
3	分裂簡約 Lie 代数	19
3.1	分裂簡約 Lie 代数とそのルート系	19
3.2	分裂簡約 Lie 代数における \mathfrak{sl}_2 -三対	21
3.3	被約ルート系の公理を満たすことの証明	23
3.4	存在定理	27
3.5	一意性定理と同型定理	34
3.6	古典型分裂単純 Lie 代数	36
3.7	分裂可能単純 Lie 代数の分類	42
4	分裂簡約 Lie 代数の表現	43
4.1	g-加群のウェイト	43
4.2	最高ウェイト a-加群	45

4.3	Verma 加群	47
4.4	整ベクトルと優整ベクトルに関する補足	49
4.5	条件 (CD) を満たす有限次元 g-加群	50
4.6	最高ウェイト理論	52

記号と用語

- 本稿を通して、特に断らない限り、 区を可換体とし、線型空間などの係数体は 区であるとする.
- 線型空間 V のテンソル代数を $\mathbf{T}(V) = \bigoplus_{n \in \mathbb{N}} \mathbf{T}^n(V)$ と書き、対称代数を $\mathbf{S}(V) = \bigoplus_{n \in \mathbb{N}} \mathbf{S}^n(V)$ と書く.
- Lie 代数に関する記号と用語は、「Lie 代数」 [4] による.
- ルート系に関する記号と用語は、「ルート系」 [5] による.

1 Cartan 部分代数

1.1 Cartan 部分代数

定義 1.1(Cartan 部分代数) 有限次元 Lie 代数 $\mathfrak g$ の Cartan 部分代数(Cartan subalgebra)とは、 $\mathfrak g$ の冪零 部分 Lie 代数 $\mathfrak h$ であって、 $\mathbf N_{\mathfrak g}(\mathfrak h)=\mathfrak h$ を満たすものをいう.

 \mathfrak{g} を有限次元 Lie 代数とし、 \mathfrak{g}' をその部分 Lie 代数とするとき、 $\mathfrak{h}\subseteq\mathfrak{g}'$ が \mathfrak{g} の Cartan 部分代数ならば、明らかに、 \mathfrak{h} は \mathfrak{g}' の Cartan 部分代数でもある.

命題 1.2 有限次元冪零 Lie 代数 g は, g 自身を唯一の Cartan 部分代数にもつ.

証明 明らかに、 \mathfrak{g} は \mathfrak{g} の Cartan 部分代数である.これが唯一の Cartan 部分代数であることを示す. \mathfrak{h} を \mathfrak{g} の真部分 Lie 代数とし、 $\mathfrak{h} \subsetneq \mathfrak{h} + \mathscr{C}^p(\mathfrak{g})$ を満たす最大の $p \in \mathbb{N}$ をとる.すると,

$$[\mathfrak{h},\mathfrak{h}+\mathscr{C}^p(\mathfrak{g})]\subseteq \mathfrak{h}+\mathscr{C}^{p+1}(\mathfrak{g})=\mathfrak{h}$$

となるから、 $\mathfrak{h} \subsetneq \mathfrak{h} + \mathscr{C}^p(\mathfrak{g}) \subseteq \mathbf{N}_{\mathfrak{g}}(\mathfrak{h})$ が成り立つ. よって、 \mathfrak{h} は \mathfrak{g} の Cartan 部分代数ではない.

系 1.3 $\mathfrak g$ を有限次元 Lie 代数とし、 $\mathfrak h$ をその Cartan 部分代数とする.このとき、 $\mathfrak h$ は $\mathfrak g$ の極大冪零部分 Lie 代数(すなわち、冪零部分 Lie 代数の中で包含関係に関して極大なもの)である.

証明 定義より、Cartan 部分代数 $\mathfrak h$ は冪零である。また、 $\mathfrak g$ の冪零部分 Lie 代数 $\mathfrak h'$ が $\mathfrak h$ を含むとすると、 $\mathfrak h$ は $\mathfrak h'$ の Cartan 部分代数でもあるから、命題 $\mathfrak l$ 1.2 より $\mathfrak h'=\mathfrak h$ である。

系 1.4 $\mathfrak g$ を有限次元 Lie 代数とする. $\mathfrak h$ と $\mathfrak h'$ がともに $\mathfrak g$ の Cartan 部分代数であり, $\mathfrak h\subseteq \mathfrak h'$ を満たすならば, $\mathfrak h=\mathfrak h'$ である.

証明 系 1.3 から従う. □

命題 1.5 $(\mathfrak{g}_i)_{i\in I}$ を有限次元 Lie 代数の有限族とし, $\mathfrak{g}=\bigoplus_{i\in I}\mathfrak{g}_i$ と置く.各 $i\in I$ に対して \mathfrak{h}_i を \mathfrak{g}_i の Cartan 部分代数とすると, $\mathfrak{h}=\bigoplus_{i\in I}\mathfrak{h}_i$ は \mathfrak{g} の Cartan 部分代数である.逆に, \mathfrak{g} の Cartan 部分代数は,す

べてこのようにして得られる.

証明 冪零 Lie 代数の直和は冪零である [4, 命題 4.3 (4)]. また、各 $i \in I$ に対して \mathfrak{h}_i を \mathfrak{g}_i の部分線型空間として、 $\mathfrak{h} = \bigoplus_{i \in I} \mathfrak{h}_i$ と置くと、 $\mathbf{N}_{\mathfrak{g}}(\mathfrak{h}) = \bigoplus_{i \in I} \mathbf{N}_{\mathfrak{g}_i}(\mathfrak{h}_i)$ である.よって、各 $i \in I$ に対して \mathfrak{h}_i を \mathfrak{g}_i の Cartan 部分代数とすると、 $\mathfrak{h} = \bigoplus_{i \in I} \mathfrak{h}_i$ は \mathfrak{g} の Cartan 部分代数である.

逆に、 \mathfrak{h} を \mathfrak{g} の Cartan 部分代数とする。各 $i \in I$ に対して \mathfrak{g} から \mathfrak{g}_i への射影による \mathfrak{h} の像を \mathfrak{h}_i と置く と、それらの直和 $\bigoplus_{i \in I} \mathfrak{h}_i$ は冪零だから [4, 命題 4.3 (2), (4)],系 1.3 より $\mathfrak{h} = \bigoplus_{i \in I} \mathfrak{h}_i$ が成り立つ。また、 $\mathbf{N}_{\mathfrak{g}}(\mathfrak{h}) = \bigoplus_{i \in I} \mathbf{N}_{\mathfrak{g}_i}(\mathfrak{h}_i)$ は $\mathfrak{h} = \bigoplus_{i \in I} \mathfrak{h}_i$ に等しいから、任意の $i \in I$ に対して $\mathbf{N}_{\mathfrak{g}_i}(\mathfrak{h}_i)$ は \mathfrak{h}_i に等しい。よって、各 \mathfrak{h}_i は \mathfrak{g}_i の Cartan 部分代数である.

命題 1.6 \mathbb{K} を可換体とし、 \mathbb{K}' をその拡大体とする.

- (1) \mathbb{K} 上の有限次元 Lie 代数 \mathfrak{g} の部分 Lie 代数 \mathfrak{h} について, \mathfrak{h} が \mathfrak{g} の Cartan 部分代数であることと, $\mathfrak{h}_{(\mathbb{K}')}$ が $\mathfrak{g}_{(\mathbb{K}')}$ の Cartan 部分代数であることとは同値である.
- (2) \mathbb{K}' は \mathbb{K} の有限次拡大体であるとする.このとき, \mathbb{K}' 上の有限次元 Lie 代数 \mathfrak{g}' の部分 Lie 代数 \mathfrak{h}' について, \mathfrak{h}' が \mathfrak{g}' の Cartan 部分代数であることと, $\mathfrak{h}'_{[\mathbb{K}]}$ が $\mathfrak{g}'_{[\mathbb{K}]}$ の Cartan 部分代数であることとは同値である.さらに, $\mathfrak{g}'_{[\mathbb{K}]}$ の任意の Cartan 部分代数は, \mathfrak{g}' の Cartan 部分代数 \mathfrak{h}' を用いて $\mathfrak{h}'_{[\mathbb{K}]}$ と書ける.

証明 (1) 冪零性が係数拡大で不変であること [4, 命題 4.2 (1)] から従う.

(2) 前半の主張は, 冪零性が係数の制限で不変であること [4, 命題 4.2 (2)] から従う.

後半の主張を示す. \mathfrak{h} を $\mathfrak{g}'_{[\mathbb{K}]}$ の Cartan 部分代数とする. \mathfrak{h} が冪零であることより $\operatorname{span}_{\mathbb{K}'}\mathfrak{h}$ も冪零だから,系 1.3 より $\mathfrak{h} = \operatorname{span}_{\mathbb{K}'}\mathfrak{h}$ が成り立つ.よって,後半の主張は,前半の主張から従う.

1.2 同時広義固有空間に関する準備

本小節では、S を集合、V を線型空間とし、写像 $\rho\colon S\to \mathrm{End}(V)$ が定まっているとき、 $\lambda\in\mathbb{K}^S$ に対して $V^\lambda(S)=\{v\in V\mid \text{任意の }s\in S\text{ に対してある }n\in\mathbb{N}\text{ が存在して }(\rho(h)-\lambda(h))^nv=0\}$

と書く. S が 1 元集合 $\{s\}$ である場合には, $V^{\lambda}(S)$ を単に $V^{\lambda(s)}(s)$ と書く. 定義から明らかに, $V^{\lambda}(S)$ は V の部分線型空間であり,

$$V^{\lambda}(S) = \bigcap_{s \in S} V^{\lambda(s)}(s)$$

が成り立つ.

 \mathfrak{g} を Lie 代数, S をその部分集合とするとき、特に断らなければ、写像 $\mathrm{ad}|_S\colon S\to\mathrm{End}(\mathfrak{g})$ を考えることにより、記号 $\mathfrak{g}^\lambda(S)$ ($\lambda\in\mathbb{K}^S$) を用いる。すなわち、

$$\mathfrak{g}^{\lambda}(S) = \{x \in \mathfrak{g} \mid \text{ 任意の } s \in S \text{ に対してある } n \in \mathbb{N} \text{ が存在して } (\operatorname{ad}(s) - \lambda(s))^n x = 0\}$$

と書く. この記号は、本節の以下の部分を通して用いる.

命題 1.7 S を集合, V を線型空間とし、 $\rho\colon S\to \mathrm{End}(V)$ を写像とする. このとき、和 $\sum_{\lambda\in\mathbb{K}^S}V^\lambda(S)$ は直和である.

証明 異なる有限個の元 $\lambda_1, \ldots, \lambda_k \in \mathbb{K}^S$ を任意にとり、各 $i \in \{1, \ldots, k\}$ に対して $v_i \in V^{\lambda_i}(S)$ とするとき、 $v_1 + \cdots + v_k = 0$ ならば $v_1 = \cdots = v_k = 0$ であることを示せばよい.この主張を、k に関する帰納法で

示す。k=0,1 のとき,主張は明らかである。 $k\geq 2$ とし,k がより小さい場合には主張が成り立つとする。 $\lambda_1,\ldots,\lambda_k$ は異なるから, $\lambda_1(s)=\cdots=\lambda_k(s)$ が成り立たないような $s\in S$ がとれる.各 v_i は $\rho(s)$ の広義 固有空間 $V^{\lambda_i(s)}(s)$ に属し,線型代数の一般論より,広義固有空間の和 $\sum_{\mu\in\mathbb{K}}V^{\mu}(s)$ は直和である.したがって, $v_1+\cdots+v_k=0$ ならば,任意の $\mu\in\mathbb{K}$ に対して

$$\sum_{i \in \{1,\dots,k\}, \ \lambda_i(s) = \mu} v_i = 0$$

が成り立つ. s のとり方より,任意の $\mu \in \mathbb{K}$ に対して $\{i \in \{1,\ldots,k\} \mid \lambda_i(s) = \mu\}$ は $\{1,\ldots,k\}$ 全体にはならない.よって,上式と帰納法の仮定より, $v_1 = \cdots = v_k = 0$ を得る.これで,帰納法が完成した.

命題 1.8 S を集合, V_1, V_2, W を線型空間とし, $\rho_1: S \to \operatorname{End}(V_1)$, $\rho_2: S \to \operatorname{End}(V_2)$, $\sigma: S \to \operatorname{End}(W)$ を写像とする. $\Phi: V_1 \times V_2 \to W$ は双線型写像であり, 任意の $S \in S$, $v_1 \in V_1$, $v_2 \in V_2$ に対して

$$\Phi(\rho_1(s)v_1, v_2) + \Phi(v_1, \rho_2(s)v_2) = \sigma(s)\Phi(v_1, v_2)$$

を満たすとする. このとき, 任意の $\lambda_1, \lambda_2 \in \mathbb{K}^S$ に対して,

$$\Phi(V_1^{\lambda_1}(S), V_2^{\lambda_2}(S)) \subseteq W^{\lambda_1 + \lambda_2}(S)$$

が成り立つ.

証明 仮定より、任意の $s \in S$, $v_1 \in V_1$, $v_2 \in V_2$ に対して

$$(\sigma(s) - \lambda_1(s) - \lambda_2(s))\Phi(v_1, v_2) = \Phi((\rho_1(s) - \lambda_1(s))v_1, (\rho_2(s) - \lambda_2(s))v_2)$$

だから, $n \in \mathbb{N}$ とすると

$$(\sigma(s) - \lambda_1(s) - \lambda_2(s))^n \Phi(v_1, v_2) = \sum_{k=0}^n \binom{n}{k} \Phi((\rho_1(s) - \lambda_1(s))^{n-k} v_1, (\rho_2(s) - \lambda_2(s))^k v_2)$$

である. よって, $v_1 \in V_1^{\lambda_1}(S)$ かつ $v_2 \in V_2^{\lambda_2}(S)$ ならば, $\Phi(v_1, v_2) \in W^{\lambda_1 + \lambda_2}(S)$ である.

系 1.9 \mathfrak{g} を Lie 代数とし, S をその部分集合とする.このとき, 任意の λ , $\mu \in \mathbb{K}^S$ に対して, $[\mathfrak{g}^{\lambda}(S), \mathfrak{g}^{\mu}(S)] \subseteq \mathfrak{g}^{\lambda+\mu}(S)$ が成り立つ.特に, $\mathfrak{g}^0(S)$ は \mathfrak{g} の部分 Lie 代数である.

証明 命題
$$1.8$$
 から従う. \square

系 1.10 g を Lie 代数, S をその部分集合とし、 $B: \mathfrak{g} \times \mathfrak{g} \to \mathbb{K}$ を不変な双線型形式とする. このとき、任意の $\lambda, \mu \in \mathbb{K}^S$ 、 $\lambda + \mu \neq 0$ に対して、 $B(\mathfrak{g}^{\lambda}(S), \mathfrak{g}^{\mu}(S)) = 0$ が成り立つ.

証明 写像 $\rho_1, \rho_2: S \to \operatorname{End}(\mathfrak{g})$ を $\rho_1(x) = \rho_2(x) = \operatorname{ad}(x)$ によって定め、写像 $\sigma: S \to \operatorname{End}(\mathbb{K})$ を $\sigma(x) = 0$ によって定めると、B の不変性より、これらは命題 1.8 の仮定を満たす.よって、任意の $\lambda, \mu \in \mathbb{K}^S, \lambda + \mu \neq 0$ に対して、 $B(\mathfrak{g}^{\lambda}(S), \mathfrak{g}^{\mu}(S)) \subseteq \mathbb{K}^{\lambda + \mu}(S) = 0$ である.

補題 1.11 V を線型空間, $x, y \in \operatorname{End}(V)$ とし、ある $n \in \mathbb{N}$ が存在して $\operatorname{ad}_{\mathfrak{gl}(V)}(x)^n y = 0$ を満たすとする. このとき、任意の $\lambda \in \mathbb{K}$ に対して、広義固有空間 $V^{\lambda}(x)$ は y-安定である.

証明 双線型写像 Φ : $\operatorname{End}(V) \times V \to V$ を $\Phi(z,v) = z(v)$ によって定めると、任意の $z \in \operatorname{End}(V)$ と $v \in V$ に対して $x(\Phi(z,v)) = \Phi(z,x(v)) + \Phi(\operatorname{ad}(x)z,v)$ が成り立つ。したがって、 Φ に対して命題 1.8 を適用するこ

とで、 $\Phi(\operatorname{End}(V)^0(\operatorname{ad}(x)), V^{\lambda}(x)) \subseteq V^{\lambda}(x)$ を得る. 仮定より $y \in \operatorname{End}(V)^0(\operatorname{ad}(x))$ だから、 $V^{\lambda}(x)$ は y-安定である.

命題 1.12 S を集合, V を有限次元線型空間とし、 $\rho\colon S\to \mathrm{End}(V)$ を写像とする. このとき、次の条件は同値である.

- (a) 直和分解 $V = \bigoplus_{\lambda \in \mathbb{K}^S} V^{\lambda}(S)$ が成立し、任意の $\lambda \in \mathbb{K}^S$ に対して、 $V^{\lambda}(S)$ は $\rho(S)$ -安定である.
- (b) $\rho(S)$ の任意の元は三角化可能であり、かつ任意の $s,\ s'\in S$ に対してある $n\in\mathbb{N}$ が存在して $\mathrm{ad}_{\mathfrak{gl}(V)}(\rho(s))^n\rho(s')=0$ を満たす.

証明 (a) \Longrightarrow (b) 条件 (a) が成り立つとして, $s,s' \in S$ とすると,広義固有空間分解 $V = \bigoplus_{\mu \in \mathbb{K}} V^{\mu}(s)$ が成立し,各 $V^{\mu}(s)$ は $\rho(s')$ -安定である.広義固有空間分解が成立することより, $\rho(s)$ は三角化可能である.また,任意の $\mu \in \mathbb{K}$ に対して, $\rho_{\mu}(s'') = \rho(s'')|_{V^{\mu}(s)}$ ($s'' \in S$) と書くと,任意の $n \in \mathbb{N}$ に対して

$$(\operatorname{ad}_{\mathfrak{gl}(V)}(\rho(s))^{n}\rho(s'))|_{V^{\mu}(s)} = \operatorname{ad}_{\mathfrak{gl}(V)}(\rho_{\mu}(s))^{n}\rho_{\mu}(s')$$

$$= \operatorname{ad}_{\mathfrak{gl}(V)}(\rho_{\mu}(s) - \mu)^{n}\rho_{\mu}(s')$$

$$= \sum_{k=0}^{n} \binom{n}{k} (\rho_{\mu}(s) - \mu)^{n-k}\rho_{\mu}(s') (-(\rho_{\mu}(s) - \mu))^{k}$$

である. $\rho_{\mu}(s) - \mu$ は冪零だから,n が十分大きいとき,上式の最右辺は 0 となる.任意の $\mu \in \mathbb{K}$ に対してこれが成り立ち,V が有限次元であることより $V^{\mu}(s) \neq 0$ となる $\mu \in \mathbb{K}$ は有限個だから,n が十分大きいとき $\mathrm{ad}_{\mathfrak{al}(V)}(\rho(s))^n \rho(s') = 0$ となる.

(b) \Longrightarrow (a) 条件 (b) が成り立つとする.まず, $\lambda \in \mathbb{K}^S$ とすると,任意の $s \in S$ に対して $V^{\lambda(s)}(s)$ は $\rho(S)$ -安定だから(補題 1.11), $V^{\lambda}(S) = \bigcap_{s \in S} V^{\lambda(s)}(s)$ も $\rho(S)$ -安定である.

次に,直和分解 $V=\bigoplus_{\lambda\in\mathbb{K}^S}V^\lambda(S)$ が成立することを示す.和 $\sum_{\lambda\in\mathbb{K}^S}V^\lambda(S)$ が直和であることは,命題 1.7 ですでに示した. $V=\sum_{\lambda\in\mathbb{K}^S}V^\lambda(S)$ であることを,次元 $\dim_{\mathbb{K}}V$ に関する帰納法で示す.次元がより小さい場合には主張が成り立つとする.ある $\lambda\in\mathbb{K}^S$ が存在して $V=V^\lambda(S)$ となるならば,主張は明らかである.そうでないとすると,ある $s\in S$ が存在して,直和分解 $V=\bigoplus_{\mu\in\mathbb{K}}V^\mu(s)$ が非自明な(すなわち,0 でない直和因子が二つ以上存在する)ものとなる(任意の $s\in S$ に対して,仮定より $\rho(s)$ が三角化可能であり,したがって,広義固有空間分解 $V=\bigoplus_{\mu\in\mathbb{K}}V^\mu(s)$ が成立することを用いた).仮定より,各 $V^\mu(s)$ は $\rho(S)$ -安定だから,帰納法の仮定より, $V^\mu(s)=\sum_{\lambda\in\mathbb{K}^S}(V^\lambda(S)\cap V^\mu(s))$ が成り立つ.これで,帰納法が完成した.

系 1.13 \mathfrak{g} を代数閉体 \mathbb{K} 上の有限次元 Lie 代数とし、 \mathfrak{h} をその冪零部分 Lie 代数とする. このとき、直和分解 $\mathfrak{g} = \bigoplus_{\lambda \in \mathbb{K}^{\mathfrak{h}}} \mathfrak{g}^{\lambda}(\mathfrak{h})$ が成立する.

証明 係数体 \mathbb{K} が代数閉であることより、 \mathfrak{g} 上の任意の線型写像は三角化可能である。また、 \mathfrak{h} が冪零であることより $\mathscr{C}^p(\mathfrak{h})=0$ を満たす $p\in\mathbb{N}$ がとれ、この p について、任意の h、 $h'\in\mathfrak{h}$ に対して $\mathrm{ad}_{\mathfrak{gl}(\mathfrak{g})}(\mathrm{ad}_{\mathfrak{g}}(h))^p\,\mathrm{ad}_{\mathfrak{g}}(h')=\mathrm{ad}_{\mathfrak{g}}(\mathrm{ad}_{\mathfrak{h}}(h)^ph')=0$ が成り立つ。よって、主張は、命題 1.12 から従う.

命題 1.14 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数とし、 \mathfrak{h} をその冪零部分 Lie 代数とする. このとき、ある $p \in \mathbb{N}$ が存在して、任意の $\lambda \in \mathbb{K}^{\mathfrak{h}} \setminus \{0\}$ に対して、 $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{g}^{\lambda}(\mathfrak{h}))^p = 0$ が成り立つ.

証明 必要ならば係数拡大を考えることにより,一般性を失わず,係数体 $\mathbb K$ は代数閉であると仮定する.このとき,系 1.13 より,直和分解 $\mathfrak g=\bigoplus_{\lambda\in\mathbb K^{\mathfrak h}}\mathfrak g^\lambda(\mathfrak h)$ が成立する. $\mathfrak g$ は有限次元だから, $\Delta=\{\lambda\in\mathbb K^{\mathfrak h}\mid \mathfrak g^\lambda(\mathfrak h)\neq 0\}$

と置くと、 Δ は有限である。 さらに、 \mathbb{K} は標数 0 だから、 $p \in \mathbb{N}$ を任意の $\lambda \in \Delta \setminus \{0\}$ に対して $(\Delta + p\lambda) \cap \Delta = \emptyset$ を満たすようにとれる。 $\lambda \in \Delta \setminus \{0\}$ とするとき、任意の $\mu \in \Delta$ に対して $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{g}^{\lambda}(\mathfrak{h}))^p \mathfrak{g}^{\mu}(\mathfrak{h}) \subseteq \mathfrak{g}^{\mu+p\lambda}(\mathfrak{h}) = 0$ だから(系 1.9)、 \mathfrak{g} の直和分解と合わせて $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{g}^{\lambda}(\mathfrak{h}))^p = 0$ を得る。よって、この p が主張の条件を満たす.

命題 1.15 g を有限次元 Lie 代数, \mathfrak{h} をその冪零部分 Lie 代数とし, $B:\mathfrak{g}\times\mathfrak{g}\to\mathbb{K}$ を不変な非退化双線型形式とする.このとき,任意の $\lambda\in\mathbb{K}^{\mathfrak{h}}$ に対して, $B|_{\mathfrak{q}^{\lambda}(\mathfrak{h})\times\mathfrak{q}^{-\lambda}(\mathfrak{h})}$ は非退化である.

証明 必要ならば係数拡大を考えることにより,一般性を失わず,係数体 \mathbb{K} は代数閉であると仮定する.このとき,系 1.13 より,直和分解 $\mathfrak{g} = \bigoplus_{\lambda \in \mathbb{K}^{\mathfrak{h}}} \mathfrak{g}^{\lambda}(\mathfrak{h})$ が成立する. $\lambda \in \mathbb{K}^{\mathfrak{h}}$ とし, $x \in \mathfrak{g}^{\lambda}(\mathfrak{h}) \setminus \{0\}$ を任意にとると,B の非退化性より,ある $y \in \mathfrak{g}$ が存在して $B(x,y) \neq 0$ となる.一方で,任意の $\mu \in \mathbb{K}^{\mathfrak{h}} \setminus \{-\lambda\}$ に対して $B(\mathfrak{g}^{\lambda}(\mathfrak{h}),\mathfrak{g}^{\mu}(\mathfrak{h})) = 0$ だから(系 1.10),必要ならば y をその $\mathfrak{g}^{-\lambda}(\mathfrak{h})$ -成分に置き換えることで, $y \in \mathfrak{g}^{-\lambda}(\mathfrak{h})$ としてよい.以上より, $B|_{\mathfrak{g}^{\lambda}(\mathfrak{h}) \times \mathfrak{g}^{-\lambda}(\mathfrak{h})}$ は左非退化である.右非退化性も,同様に確かめられる.よって, $B|_{\mathfrak{g}^{\lambda}(\mathfrak{h}) \times \mathfrak{g}^{-\lambda}(\mathfrak{h})}$ は非退化である.

1.3 Cartan 部分代数の存在

補題 1.16 $\mathfrak g$ を無限可換体 $\mathbb K$ 上の有限次元 Lie 代数とし、 $\mathfrak h$ をその部分 Lie 代数とする. $a\in\mathfrak h$ が次の条件を満たすとする.

- (i) $\mathfrak{g}^0(a)$ は, \mathfrak{g} の部分 Lie 代数の族 $(\mathfrak{g}^0(x))_{x \in \mathfrak{h}}$ の中で極小である.
- (ii) $\mathfrak{h} \subseteq \mathfrak{g}^0(a)$ である.

このとき、 $\mathfrak{g}^0(a) = \mathfrak{g}^0(\mathfrak{h})$ が成り立つ(すなわち、 $\mathfrak{g}^0(a)$ は $(\mathfrak{g}^0(x))_{x \in \mathfrak{h}}$ の中で最小である).

証明 条件 (i), (ii) が満たされるとして, $\mathfrak{m}=\mathfrak{g}^0(a)$ と置く. \mathfrak{m} は \mathfrak{g} の部分 Lie 代数であり(系 1.9),条件 (ii) より \mathfrak{h} を含む.随伴表現が誘導する \mathfrak{m} の \mathfrak{m} と $\mathfrak{g}/\mathfrak{m}$ 上の表現を,それぞれ $\rho_{\mathfrak{m}}$ と $\rho_{\mathfrak{g}/\mathfrak{m}}$ と書く. $x\in\mathfrak{m}$ を任意にとり, $\lambda\in\mathbb{K}$ に対して, $\rho_{\mathfrak{m}}(a+\lambda x)$, $\rho_{\mathfrak{g}/\mathfrak{m}}(a+\lambda x)$ の固有多項式をそれぞれ

$$p(T,\lambda) = T^r + p_1(\lambda)T^{r-1} + \dots + p_r(\lambda),$$

$$q(T,\lambda) = T^{n-r} + q_1(\lambda)T^{n-r-1} + \dots + q_{n-r}(\lambda)$$

(ここで、 $n=\dim\mathfrak{g}$ 、 $r=\dim\mathfrak{m}$ である)と書く、上式と $p(T,\lambda)=\det(T-\rho_{\mathfrak{m}}(a)-\lambda\rho_{\mathfrak{m}}(x))$ および $q(T,\lambda)=\det(T-\rho_{\mathfrak{g}/\mathfrak{m}}(a)-\lambda\rho_{\mathfrak{g}/\mathfrak{m}}(x))$ を比較すれば、各 p_i と q_i がたかだか i 次の \mathbb{K} 係数多項式であることがわかる。また、 $\mathrm{ad}_{\mathfrak{g}}(a+\lambda x)$ の固有多項式は、 $p(T,\lambda)q(T,\lambda)$ である。以下、 $\lambda\in\mathbb{K}$ に対して

$$p(T,\lambda) = T^r \iff \rho_{\mathfrak{m}}(a+\lambda x)$$
 は冪零 $\iff \mathfrak{m} \subseteq \mathfrak{g}^0(a+\lambda x)$ (*)

であることに注意する.

 $\mathfrak{m}=\mathfrak{g}^0(a)$ だから、(*) より $p(T,0)=T^r$ である.一方で、 $\mathrm{ad}_{\mathfrak{g}}(a)$ の固有多項式 p(T,0)q(T,0) の根 0 の重複度は、対応する広義固有空間の次元 $\dim\mathfrak{m}=r$ に等しい.したがって、q(T,0) は 0 を根にもたない.すなわち、 $q_{n-r}(0)\neq 0$ であり、特に、多項式 q_{n-r} は 0 ではない.このことと \mathbb{K} が無限可換体であることより、 $q_{n-r}(\lambda)\neq 0$ を満たす $\lambda\in\mathbb{K}$ が無限個存在する.このような λ に対しては、 $\rho_{\mathfrak{g}/\mathfrak{m}}(a+\lambda x)$ は可逆だから、 $\mathfrak{g}^0(a+\lambda x)\subseteq\mathfrak{m}$ が成り立つ.条件 (i) と合わせて、 $\mathfrak{g}^0(a+\lambda x)=\mathfrak{m}$ を得るから、(*) より $p(T,\lambda)=T^r$ であ

る. $p(T,\lambda) = T^r$ であるということは $p_1(\lambda) = \cdots = p_r(\lambda) = 0$ であるということにほかならず、 p_1, \ldots, p_r は多項式だから、これが無限個の $\lambda \in \mathbb{K}$ に対して成り立つことより、すべての $\lambda \in \mathbb{K}$ に対しても成り立つ. したがって、(*) より、 $\mathfrak{m} \subseteq \mathfrak{g}^0(a+\lambda x)$ である. よって、

$$\mathfrak{g}^0(a)=\mathfrak{m}\subseteq\bigcap_{x\in\mathfrak{m},\ \lambda\in\mathbb{K}}\mathfrak{g}^0(a+\lambda x)=\mathfrak{g}^0(\mathfrak{m})\subseteq\mathfrak{g}^0(\mathfrak{h})$$

だから、 $\mathfrak{g}^0(a) = \mathfrak{g}^0(\mathfrak{h})$ が成り立つ.

定理 1.17 \mathfrak{g} を無限可換体 \mathbb{K} 上の有限次元 Lie 代数とする. \mathfrak{g} の部分 Lie 代数 \mathfrak{h} に対して,次の条件は同値である.

- (a) hはgの Cartan 部分代数である.
- (b) \mathfrak{h} は、 \mathfrak{g} の部分 Lie 代数の族 $(\mathfrak{g}^0(x))_{x\in\mathfrak{g}}$ に属し、かつこの中で極小である.
- (c) $\mathfrak{g}^0(\mathfrak{h}) = \mathfrak{h} \ \mathfrak{r} \ \mathfrak{b} \ \mathfrak{d}$.

証明 (a) \Longrightarrow (b) $\mathfrak h$ が $\mathfrak g$ の Cartan 部分代数であるとする. 任意の $x \in \mathfrak h$ に対して、 $\mathfrak h$ が冪零であることより $\mathrm{ad}_{\mathfrak h}(x)$ は冪零だから、 $\mathfrak h \subseteq \mathfrak g^0(x)$ である. そこで、 $\mathfrak g$ の部分 Lie 代数の族 $(\mathfrak g^0(x))_{x \in \mathfrak h}$ の中で極小なもの $\mathfrak g^0(a)$ ($a \in \mathfrak h$) をとると(次元が最小のものをとればよい)、補題 1.16 より、任意の $x \in \mathfrak h$ に対して $\mathfrak g^0(a) \subseteq \mathfrak g^0(x)$ である.

 $\mathfrak{h}=\mathfrak{g}^0(a)$ であることを示す。 \mathfrak{h} と $\mathfrak{g}^0(a)$ は \mathfrak{g} の部分 Lie 代数であり(系 1.9), $\mathfrak{h}\subseteq\mathfrak{g}^0(a)$ だから,随伴表現は \mathfrak{h} の $\mathfrak{g}^0(a)/\mathfrak{h}$ 上の表現を誘導する。この表現を ρ と書くと,任意の $x\in\mathfrak{h}$ に対して, $\mathfrak{g}^0(a)\subseteq\mathfrak{g}^0(x)$ であることより, $\rho(x)$ は冪零である。したがって, $\mathfrak{h}\subsetneq\mathfrak{g}^0(a)$ であると仮定すると,Engel の定理 $[4,\,\mathbb{R}\,4.9]$ より, $\mathfrak{g}^0(a)/\mathfrak{h}$ の 0 でない元であって $\rho(\mathfrak{h})$ によって零化されるものが存在する。すなわち, $y\in\mathfrak{g}^0(a)\setminus\mathfrak{h}$ であって $[\mathfrak{h},y]\subseteq\mathfrak{h}$ を満たすものが存在する。ところが,これは $\mathbf{N}_{\mathfrak{g}}(\mathfrak{h})=\mathfrak{h}$ であることに反するから,背理法より, $\mathfrak{h}=\mathfrak{g}^0(a)$ である。

 \mathfrak{h} が $(\mathfrak{g}^0(x))_{x\in\mathfrak{g}}$ の中で極小であることを示す. $x\in\mathfrak{g}$ が $\mathfrak{g}^0(x)\subseteq\mathfrak{h}$ を満たすとすると, $x\in\mathfrak{g}^0(x)\subseteq\mathfrak{h}$ だから, $\mathfrak{h}=\mathfrak{g}^0(a)$ が $(\mathfrak{g}^0(y))_{y\in\mathfrak{h}}$ の中で最小であることより, $\mathfrak{g}^0(x)=\mathfrak{h}$ である. よって, \mathfrak{h} は $(\mathfrak{g}^0(x))_{x\in\mathfrak{g}}$ の中で極小である.

(b) \Longrightarrow (c) $\mathfrak{h} = \mathfrak{g}^0(a)$ $(a \in \mathfrak{g})$ が $(\mathfrak{g}^0(x))_{x \in \mathfrak{g}}$ の中で極小であるとする. すると, $a \in \mathfrak{g}^0(a) = \mathfrak{h}$ であり、仮定より特に $\mathfrak{g}^0(a)$ は $(\mathfrak{g}^0(x))_{x \in \mathfrak{h}}$ の中で極小だから、補題 1.16 より、 $\mathfrak{h} = \mathfrak{g}^0(a) = \mathfrak{g}^0(\mathfrak{h})$ が成り立つ.

 $(c) \Longrightarrow (a)$ $\mathfrak{g}^0(\mathfrak{h}) = \mathfrak{h}$ であるとする.このとき, $\mathrm{ad}_{\mathfrak{h}}(\mathfrak{h})$ の任意の元は冪零だから, \mathfrak{h} は冪零である [4, 系 4.10].また, $\mathscr{C}^p(\mathfrak{h}) = 0$ を満たす $p \in \mathbb{N}$ をとると

$$ad(\mathfrak{h})^{p+1}\mathbf{N}_{\mathfrak{a}}(\mathfrak{h}) = ad(\mathfrak{h})^p\mathfrak{h} = \mathscr{C}^p(\mathfrak{h}) = 0$$

となるから、 $\mathbf{N}_{\mathfrak{g}}(\mathfrak{h})\subseteq\mathfrak{g}^0(\mathfrak{h})=\mathfrak{h}$ である. よって、 \mathfrak{h} は \mathfrak{g} の Cartan 部分代数である.

系 1.18(Cartan 部分代数の存在) 無限可換体 🛭 上の有限次元 Lie 代数 g は,Cartan 部分代数をもつ.

証明 定理 1.17 より, \mathfrak{g} の部分 Lie 代数の族 $(\mathfrak{g}^0(x))_{x\in\mathfrak{h}}$ の中で極小なものをとれば(次元が最小のものをとればよい),それが \mathfrak{g} の Cartan 部分代数である.

1.4 多項式写像に関する準備

本小節では,有限次元線型空間 V に対して,V 上の多項式関数全体のなす単位的結合 \mathbb{K} -代数を, $\mathrm{Pol}(V)$ と書く.係数体 \mathbb{K} が無限可換体である場合,これは,双対空間の対称代数 $\mathbf{S}(V^*)$ に自然に同型である.

V と W を無限可換体 \mathbb{K} 上の有限次元線型空間とし, $\phi\colon V\to W$ を多項式写像(すなわち,任意の $g\in W^*$ に対して $g\circ\phi\in\operatorname{Pol}(V)$ であるような写像)とするとき,多項式写像 $\phi\colon V\to W$ による引き戻しが単位的 \mathbb{K} -代数の準同型 $\phi^*\colon\operatorname{Pol}(W)\to\operatorname{Pol}(V)$ を定めることに注意する.

定義 1.19(支配的な多項式写像) V と W を無限可換体 \mathbb{K} 上の有限次元線型空間とする.多項式写像 $\phi\colon V\to W$ が**支配的**(dominant)であるとは, ϕ による引き戻し $\phi^*\colon \mathrm{Pol}(W)\to \mathrm{Pol}(V)$ が単射であること をいう.

V を無限可換体 \mathbb{K} 上の有限次元線型空間とする。V の部分集合であって V 上の多項式関数の族の共通零点集合として書けるものの全体は,閉集合系の公理を満たす.これによって定まる位相を,V の **Zariski 位相** (Zariski topology) という.Zariski 位相を考えていることを明示する意味で,「Zariski 閉集合」,「Zariski 開集合」,「Zariski 開集合」,「Zariski 開生のことから,V の任意の空でない Zariski 開集合が V において Zariski 稠密であることが従う.

本小節の以下の部分では,可換環 A から B への環準同型全体のなす空間を, $\mathrm{Hom}(A,B)$ と書く.また,可換環 A の $S\subseteq A$ による局所化を $S^{-1}A$ と書き, $S=\{s\}$ である場合にはこれを $A[s^{-1}]$ とも書く.

補題 1.20 V を無限可換体 \mathbb{K} 上の有限次元線型空間とする. $v \in V$ に対して, $\operatorname{ev}_v \in \operatorname{Hom}(\operatorname{Pol}(V), \mathbb{K})$ を, $\operatorname{ev}_v(f) = f(v)$ によって定める.このとき,写像 $v \mapsto \operatorname{ev}_v$ は,V から $\operatorname{Hom}(\operatorname{Pol}(V), \mathbb{K})$ への線型同型写像である.

証明 $\operatorname{Pol}(V)$ は双対空間の対称代数 $\mathbf{S}(V^*)$ に自然に同型だから, V^* の基底 (ϕ_1,\dots,ϕ_n) を一つ固定すると, $\operatorname{Pol}(V)$ から \mathbb{K} への環準同型は, ϕ_1,\dots,ϕ_n の行き先を決めるごとに一意に定まる.一方で,V の元も, ϕ_1,\dots,ϕ_n の値を決めるごとに一意に定まる.よって,写像 $v\mapsto\operatorname{ev}_v$ は,V から $\operatorname{Hom}(\operatorname{Pol}(V),\mathbb{K})$ への線型同型写像である.

補題 1.21 A と B を整域とし,A は B に部分環として含まれ,B は単位的 A-代数として有限生成であるとする.このとき,ある $a \in A \setminus \{0\}$ と A 上代数的独立な $x_1, \ldots, x_n \in B$ が存在して, $B[a^{-1}]$ が $A[a^{-1}][x_1,\ldots,x_n]$ 上整となる.

証明 $S = A \setminus \{0\}$ と置き,分数体 $\operatorname{Frac}(A) = S^{-1}A$ と局所化 $S^{-1}B$ を考える.Noether の正規化補題 [1, Chapter 5, Exercise 16] より, $\operatorname{Frac}(A)$ 上代数的独立な $x_1, \ldots, x_n \in S^{-1}B$ が存在して, $S^{-1}B$ が $\operatorname{Frac}(A)[x_1, \ldots, x_n]$ 上整となる.必要ならば分母を払うことで, $x_1, \ldots, x_n \in B$ としてよい.

任意の $y \in B$ に対して、ある $s \in S$ が存在して、sy が $A[x_1, \ldots, x_n]$ 上整となることを示す。y は($S^{-1}B$ の元とみなすと) $\operatorname{Frac}(A)[x_1, \ldots, x_n]$ 上整だから、ある $d \in \mathbb{N}$ と $p_i(x_1, \ldots, x_n) \in \operatorname{Frac}(A)[x_1, \ldots, x_n]$ ($i \in \{0, \ldots, d-1\}$) が存在して、

$$y^{d} + p_{d-1}(x_1, \dots, x_n)y^{d-1} + \dots + p_0(x_1, \dots, x_n) = 0$$

を満たす.上式で分母を払うことで,ある $s \in S$ と $q_i(x_1, \ldots, x_n) \in A[x_1, \ldots, x_n]$ $(i \in \{0, \ldots, d-1\})$ が存

在して,

$$(sy)^d + p_{d-1}(x_1, \dots, x_n)(sy)^{d-1} + \dots + p_0(x_1, \dots, x_n) = 0$$

を満たすことがわかる. よって, sy は $A[x_1,...,x_n]$ 上整である.

B の単位的 A-代数としての有限生成系 y_1, \ldots, y_m をとる。前段の結果より,各 j に対して, $s_j \in S$ を $s_j y_j$ が $A[x_1, \ldots, x_n]$ 上整となるようにとれる。 $a = s_1 \cdots s_m \in S$ と置けば,任意の j に対して ay_j は $A[x_1, \ldots, x_n]$ 上整である。 $B[a^{-1}]$ は単位的 $A[a^{-1}]$ -代数として ay_1, \ldots, ay_m によって生成されるから,このことより, $B[a^{-1}]$ は $A[a^{-1}][x_1, \ldots, x_n]$ 上整である.

補題 1.22 A と B を整域とし、A は B に部分環として含まれ、B は単位的 A-代数として有限生成であるとする。このとき、任意の $b \in B \setminus \{0\}$ に対して、ある $a \in A \setminus \{0\}$ が存在して、任意の代数閉体 \mathbb{K} と、任意の $\tau \in \mathrm{Hom}(A,\mathbb{K})$ であって $\tau(a) \neq 0$ を満たすものに対して、 τ を拡張する $\widetilde{\tau} \in \mathrm{Hom}(B,\mathbb{K})$ であって $\widetilde{\tau}(b) \neq 0$ を満たすものが存在する。

証明 $b \in B \setminus \{0\}$ とすると,局所化 $B[b^{-1}]$ も整域であり,A を部分環として含み,単位的 A-代数として有限生成である.したがって,補題 1.21 より,ある $a \in A \setminus \{0\}$ と A 上代数的独立な $x_1, \ldots, x_n \in B[b^{-1}]$ が存在して, $B[b^{-1}, a^{-1}]$ が $A[x_1, \ldots, x_n][a^{-1}]$ 上整となる. \mathbb{K} を代数閉体とし, $\tau \in \operatorname{Hom}(A, \mathbb{K})$ が $\tau(a) \neq 0$ を満たすとすると, τ は $\tau' \in \operatorname{Hom}(A[a^{-1}], \mathbb{K})$ に一意に拡張される.さらに, x_1, \ldots, x_n は A 上代数的独立であり,したがって $A[a^{-1}]$ 上代数的独立でもあるから, τ' を拡張する $\tau'' \in \operatorname{Hom}(A[a^{-1}][x_1, \ldots, x_n], \mathbb{K})$ が存在する. $B[a^{-1}, b^{-1}]$ は $A[a^{-1}][x_1, \ldots, x_n]$ 上整だから,上昇定理の系 [1,Chapter 5,Exercise 2] より, τ'' を拡張する $\tau''' \in \operatorname{Hom}(B[a^{-1}, b^{-1}], \mathbb{K})$ が存在する. $\widetilde{\tau} = \tau'''|_{B} \in \operatorname{Hom}(B, \mathbb{K})$ が主張の条件を満たす環準同型となる.

命題 1.23 $V \ge W$ を無限可換体 \mathbb{K} 上の有限次元線型空間とする. 多項式写像 $\phi: V \to W$ に対する次の条件について、 $(a) \iff (b) \iff (c)$ が成り立つ. さらに、 \mathbb{K} が代数閉ならば、これらの条件は同値である.

- (a) ϕ は支配的である.
- (b) $\phi(V)$ は W において Zariski 稠密である.
- (c) V の任意の Zariski 稠密開集合の ϕ による像は、W のある Zariski 稠密開集合を含む.

証明 $(a) \iff (b)$ 次のとおり、主張の同値性が成り立つ.

$$\phi$$
 が支配的でない \iff ある $g \in \operatorname{Pol}(W) \setminus \{0\}$ が存在して, $g \circ \phi = 0$ \iff ある $g \in \operatorname{Pol}(W) \setminus \{0\}$ が存在して, $\phi(V) \subseteq g^{-1}(\{0\})$ \iff W の真の Zariski 閉集合であって $\phi(V)$ を含むものが存在する \iff $\phi(V)$ が W において Zariski 稠密でない.

- $(c) \Longrightarrow (b)$ 明らかである.
- $(a)\Longrightarrow (c)$ ($\mathbb K$ が代数閉である場合) ϕ が支配的であるとする。すると, ϕ による引き戻し $\phi^*\colon \operatorname{Pol}(W)\to \operatorname{Pol}(V)$ は単射環準同型だから,これによって $\operatorname{Pol}(W)$ を $\operatorname{Pol}(V)$ の部分環とみなして補題 1.22 を適用することで、次を得る.

任意の $f \in \operatorname{Pol}(V) \setminus \{0\}$ に対して、ある $g \in \operatorname{Pol}(W) \setminus \{0\}$ が存在して、 $\tau \in \operatorname{Hom}(\operatorname{Pol}(W), \mathbb{K})$ であって $\tau(g) \neq 0$ を満たす任意のものに対して、 $\widetilde{\tau} \in \operatorname{Hom}(\operatorname{Pol}(V), \mathbb{K})$ であって $\widetilde{\tau} \circ \phi^* = \tau$ かつ $\widetilde{\tau}(b) \neq 0$ を満たすものが存在する.

補題 1.20 に注意すれば、これは、次のように書き換えられる.

任意の $f \in \operatorname{Pol}(V) \setminus \{0\}$ に対して、ある $g \in \operatorname{Pol}(W) \setminus \{0\}$ が存在して、 $w \in W$ であって $g(w) \neq 0$ を満たす任意のものに対して、 $v \in \phi^{-1}(\{w\})$ であって $f(v) \neq 0$ を満たすものが存在する.

この命題の「 $w\in W$ であって」以下の部分は, $\phi(\{f\neq 0\})\supseteq\{g\neq 0\}$ であることを意味する.よって,V の任意の Zariski 稠密開集合の ϕ による像は,W のある Zariski 稠密開集合を含む.

V と W を無限可換体 $\mathbb K$ 上の有限次元線型空間, $\phi\colon V\to W$ を多項式写像とし, $x_0\in V$ とする. $\phi(x_0+h)$ を $h\in V$ に関して次数ごとに整理して

$$\phi(x_0 + h) = \phi(x_0) + \delta_1(h) + \dots + \delta_n(h)$$
 ($\delta_i : V \to W$ は斉 i 次多項式写像)

と表すときの線型写像 δ_1 : $V \to W$ を, ϕ の点 x_0 における**微分**(derivative)といい, $\phi'(x_0)$ と書く.

命題 1.24 V と W を無限可換体 \mathbb{K} 上の有限次元線型空間とする.多項式写像 ϕ : $V \to W$ のある点 $x_0 \in V$ における微分 $\phi'(x_0)$: $V \to W$ が全射ならば, ϕ は支配的である.

証明 一般性を失わず、 $\phi(0)=0$ であり、 $\phi'(0)$: $V\to W$ が全射であるとする。すなわち、 ϕ は全射線型写像 $\phi'(0)$ と 2 次以上の項のみからなる多項式写像との和であるとする。 $g\in \operatorname{Pol}(W)\setminus\{0\}$ とし、g の斉 i 次部分を g_i と書き、 $n=\min\{i\in\mathbb{N}\mid g_i\neq 0\}$ と置く。すると、 $g\circ\phi$ は斉 n 次多項式関数 $g_n\circ\phi'(0)$ と n+1 次以上の項のみからなる多項式関数との和となり、 $\phi'(0)$ は全射であり $g_n\neq 0$ だから、 $g\circ\phi\neq 0$ を得る。よって、 ϕ による引き戻し $\phi^*\colon \operatorname{Pol}(W)\to \operatorname{Pol}(V)$ は単射だから、 ϕ は支配的である。

1.5 Cartan 部分代数の共役性

V を標数 0 の可換体 $\mathbb K$ 上の線型空間とする.線型写像 $T\colon V\to V$ が**局所冪零**(locally nilpotent)であるとは,任意の $v\in V$ に対して,ある $n\in \mathbb N$ が存在して, $T^n(v)=0$ を満たすことをいう.V が有限次元である場合には,T が冪零であることと局所冪零であることとは同値である.

V 上の局所冪零な線型写像 T に対して,V 上の線型写像 e^T を,

$$e^{T}(v) = \sum_{n=0}^{\infty} \frac{1}{n!} T^{n}(v)$$

(右辺は有限項を除き 0 である)と定める *1 .容易に確かめられるように,T と S が互いに可換な V 上の局所 冪零な線型写像ならば, $e^{T+S}=e^Te^S=e^Ss^T$ が成り立つ.特に, e^T は, e^{-T} を逆にもつ V の自己線型同型 である.また,A が結合的とは限らない代数であり,D がその上の局所冪零な導分ならば, e^D は結合的とは 限らない代数 A の自己同型である.

定義 1.25(初等自己同型) \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数とする. $\mathrm{ad}(x)$ が冪零であるような $x \in \mathfrak{g}$ に対する自己同型 $e^{\mathrm{ad}(x)}$ の全体が生成する $\mathrm{Aut}(\mathfrak{g})$ の部分群を, $\mathrm{Aut}_{\mathrm{e}}(\mathfrak{g})$ と書く. $\mathrm{Aut}_{\mathrm{e}}(\mathfrak{g})$ の元を, \mathfrak{g} の初等自己同型 (elementary automorphism) という.

^{*1} 本小節の範囲では,V が有限次元である(したがって,T が冪零である)場合だけで十分である.一般の場合の定義は,3 節や 4 節で用いられる.

 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数とし、 \mathfrak{h} をその冪零部分 Lie 代数とする. このとき、 $\lambda \in \mathbb{K}^{\mathfrak{h}} \setminus \{0\}$ 、 $x \in \mathfrak{g}^{\lambda}(\mathfrak{h})$ とすると、 $\mathrm{ad}(x)$ は冪零だから(命題 1.14)、 $e^{\mathrm{ad}(x)} \in \mathrm{Aut}_{\mathrm{e}}(\mathfrak{g})$ が定まる. 本小節の以下の部分では、この形の初等自己同型全体が生成する $\mathrm{Aut}_{\mathrm{e}}(\mathfrak{g})$ の部分群を、 $E(\mathfrak{h})$ と書くことにする.

補題 1.26 g を標数 0 の代数閉体 \mathbb{K} 上の有限次元 Lie 代数とし、 \mathfrak{h} をその冪零部分 Lie 代数とする. $\lambda \in \mathbb{K}^{\mathfrak{h}} \setminus \{0\}$ であって $\mathfrak{g}^{\lambda}(\mathfrak{h}) \neq 0$ を満たすもの(\mathfrak{g} が有限次元であることと命題 1.7 より、このような λ は有限個である)を重複なく列挙して、 $\lambda_1, \ldots, \lambda_n$ とする.

- (1) $\mathfrak{h}_{reg} = \{h \in \mathfrak{h} \mid \mathfrak{g}^0(h) = \mathfrak{g}^0(\mathfrak{h})\}$ と置くと、 \mathfrak{h}_{reg} は \mathfrak{h} の Zariski 稠密開集合である.
- (2) 写像 ϕ : $\mathfrak{g}^0(\mathfrak{h}) \times \mathfrak{g}^{\lambda_1}(\mathfrak{h}) \times \cdots \times \mathfrak{g}^{\lambda_n}(\mathfrak{h}) \to \mathfrak{g}$ を

$$\phi(h, x_1, \dots, x_n) = e^{\operatorname{ad}(x_1)} \cdots e^{\operatorname{ad}(x_n)}(h)$$

と定めると、これは支配的な多項式写像である.

証明 (1) $h \in \mathfrak{g}$ とする. 直和分解 $\mathfrak{g} = \mathfrak{g}^0(\mathfrak{h}) \oplus \bigoplus_{i=1}^n \mathfrak{g}^{\lambda_i}(\mathfrak{h})$ が成立するから(系 1.13),

$$\mathfrak{g}^0(h)=\mathfrak{g}^0(\mathfrak{h})\oplus\bigoplus_{i\in\{1,\dots,n\},\ \lambda_i(h)=0}\mathfrak{g}^{\lambda_i}(\mathfrak{h})$$

である. したがって, $\mathfrak{g}^0(h)=\mathfrak{g}^0(\mathfrak{h})$ であるための必要十分条件は, $\lambda_1(h),\ldots,\lambda_n(h)$ がいずれも 0 でないことである. よって, $\mathfrak{h}_{\mathrm{reg}}$ は, \mathfrak{h} 上の多項式関数 $\lambda_1\cdots\lambda_n\neq 0$ の非零点集合だから, \mathfrak{h} の Zariski 稠密開集合である.

(2) $p \in \mathbb{N}$ を任意の $i \in \{1, ..., n\}$ に対して $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{g}^{\lambda_i}(\mathfrak{h}))^p = 0$ を満たすようにとると(命題 1.14),写像 ϕ は

$$\phi(h, x_1, \dots, x_n) = \sum_{k_1 = 0}^{p-1} \frac{1}{k_1! \cdots k_n!} \operatorname{ad}(x_1)^{k_1} \cdots \operatorname{ad}(x_n)^{k_n}(h)$$

と書けるから、これは多項式写像である。次に、 ϕ が支配的であることを示すために、 $h \in \mathfrak{h}$ を固定して、微分 $\phi'(h,0,\ldots,0)$ を求める。 $\phi(h+u,0,\ldots,0)=h+u$ $(u \in \mathfrak{g}^0(\mathfrak{h}))$ より

$$\phi'(h, 0, \dots, 0)(u, 0, \dots, 0) = u$$

であり、 $\phi(h,0,\ldots,v_i,\ldots,0) = h + [v_i,h] + \sum_{k=2}^{p-1} \operatorname{ad}(v_i)^k(h) \ (v_i \in \mathfrak{g}^{\lambda_i}(\mathfrak{h}))$ より

$$\phi'(h, 0, \dots, 0)(0, 0, \dots, v_i, \dots, 0) = [v_i, h]$$

である. したがって、微分 $\phi'(h,0,\ldots,0)$: $\mathfrak{g}^0(\mathfrak{h}) \times \mathfrak{g}^{\lambda_1}(\mathfrak{h}) \times \cdots \times \mathfrak{g}^{\lambda_n}(\mathfrak{h}) \to \mathfrak{g}$ は、

$$\phi'(h, 0, \dots, 0)(u, v_1, \dots, v_n) = u + [v_1, h] + \dots + [v_n, h]$$

で与えられる.ここで, $h \in \mathfrak{h}$ を $\lambda_1(h)$, ..., $\lambda_n(h)$ がいずれも 0 でないようにとっておけば, $\mathrm{ad}(h)$ は各 $\mathfrak{g}^{\lambda_i}(\mathfrak{h})$ 上で線型同型となるから,上式より, $\phi'(h,0,\ldots,0)$ の像は $\mathfrak{g}^0(\mathfrak{h}) + \sum_{i=1}^n \mathfrak{g}^{\lambda_i}(\mathfrak{h}) = \mathfrak{g}$ (系 1.13)となる.よって,命題 1.24 より, ϕ は支配的である.

補題 1.27 g を標数 0 の代数閉体 \mathbb{K} 上の有限次元 Lie 代数とし、 \mathfrak{h}_1 と \mathfrak{h}_2 をその Cartan 部分代数とする. このとき、 $\phi_1 \in E(\mathfrak{h}_1)$ と $\phi_2 \in E(\mathfrak{h}_2)$ であって、 $\phi_1(\mathfrak{h}_1) = \phi_2(\mathfrak{h}_2)$ を満たすものが存在する.

証明 各 $i \in \{1,2\}$ に対して,定理 1.17 より $\mathfrak{g}^0(\mathfrak{h}_i) = \mathfrak{h}_i$ であることに注意して,

$$\mathfrak{h}_{i,\text{reg}} = \{ h \in \mathfrak{h}_i \mid \mathfrak{g}^0(h) = \mathfrak{g}^0(\mathfrak{h}_i) \}$$
$$= \{ h \in \mathfrak{h}_i \mid \mathfrak{g}^0(h) = \mathfrak{h}_i \}$$

と置く. すると、補題 1.26 と命題 1.23 より、 $E(\mathfrak{h}_i)\mathfrak{h}_{i,\text{reg}}$ は \mathfrak{g} のある Zariski 稠密開集合を含む. 特に、 $E(\mathfrak{h}_1)\mathfrak{h}_{1,\text{reg}}\cap E(\mathfrak{h}_2)\mathfrak{h}_{2,\text{reg}}\neq\emptyset$ である. すなわち、各 $i\in\{1,2\}$ に対して $\phi_i\in E(\mathfrak{h}_i)$ と $h_i\in\mathfrak{h}_{i,\text{reg}}$ をとって、 $\phi_1(h_1)=\phi_2(h_2)$ となるようにできる. 各 $i\in\{1,2\}$ に対して

$$\phi_i(\mathfrak{h}_i) = \phi_i(\mathfrak{g}^0(h_i)) = \mathfrak{g}^0(\phi_i(h_i))$$

だから、 $\phi_1(h_1) = \phi_2(h_2)$ より $\phi_1(\mathfrak{h}_1) = \phi_2(\mathfrak{h}_2)$ である.

定理 1.28 (Cartan 部分代数の共役性) g を標数 0 の代数閉体 K 上の有限次元 Lie 代数とする.

- (1) $\operatorname{Aut_e}(\mathfrak{g})$ の部分群 $E(\mathfrak{h})$ は, \mathfrak{g} の Cartan 部分代数 \mathfrak{h} (系 1.18 より存在する)のとり方によらない.これを E と書くと,E は $\operatorname{Aut}(\mathfrak{g})$ の正規部分群である.
- (2) \mathfrak{g} の Cartan 部分代数は、すべて E ((1) の記号) の下で共役である.

証明 (1) \mathfrak{h}_1 と \mathfrak{h}_2 を \mathfrak{g} の Cartan 部分代数とすると、補題 1.27 より、 $\phi_1 \in E(\mathfrak{h}_1)$ と $\phi_2 \in E(\mathfrak{h}_2)$ を $\phi_1(\mathfrak{h}_1) = \phi_2(\mathfrak{h}_2)$ となるようにとれる. 各 $i \in \{1,2\}$ に対して

$$E(\mathfrak{h}_i) = \phi_i E(\mathfrak{h}_i) \phi_i^{-1} = E(\phi_i(\mathfrak{h}_i))$$

だから、 $\phi_1(\mathfrak{h}_1) = \phi_2(\mathfrak{h}_2)$ より $E(\mathfrak{h}_1) = E(\mathfrak{h}_2)$ である.

 \mathfrak{h} を \mathfrak{g} の Cartan 部分代数とし、 $\phi \in \operatorname{Aut}(\mathfrak{g})$ とすると、 $\phi(\mathfrak{h})$ も \mathfrak{g} の Cartan 部分代数だから、

$$\phi E \phi^{-1} = \phi E(\mathfrak{h}) \phi^{-1} = E(\phi(\mathfrak{h})) = E$$

が成り立つ. よって、E は $Aut(\mathfrak{g})$ の正規部分群である.

(2) (1) の証明の前段の状況で、 $\phi_2^{-1}\phi_1 \in E$ は、 \mathfrak{h}_1 を \mathfrak{h}_2 に移す.

系 1.29 標数 0 の可換体 K 上の有限次元 Lie 代数 g の Cartan 部分代数は、すべて等しい次元をもつ.

証明 $\overline{\mathbb{K}}$ を \mathbb{K} の代数閉包とする。 \mathfrak{h} と \mathfrak{h}' を \mathfrak{g} の Cartan 部分代数とすると,それらの係数拡大 $\mathfrak{h}_{(\overline{\mathbb{K}})}$ と $\mathfrak{h}'_{(\overline{\mathbb{K}})}$ は $\mathfrak{g}_{(\overline{\mathbb{K}})}$ の Cartan 部分代数だから(命題 1.6),Cartan 部分代数の共役性(定理 1.28)より, $\dim_{\overline{\mathbb{K}}}\mathfrak{h}_{(\overline{\mathbb{K}})}=\dim_{\overline{\mathbb{K}}}\mathfrak{h}'_{(\overline{\mathbb{K}})}$ である。よって, $\dim_{\mathbb{K}}\mathfrak{h}=\dim_{\mathbb{K}}\mathfrak{h}'$ である。

定義 1.30 (階数) \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の有限次元 Lie 代数とする. \mathfrak{g} の Cartan 部分代数の次元 (系 1.18 と系 1.29 より,これは一意に定まる)を, \mathfrak{g} の階数 (rank) という.

系 1.31 g を標数 0 の可換体 K 上の有限次元 Lie 代数とする.

- (1) \mathfrak{g} の階数は、 $x \in \mathfrak{g}$ に対する部分 Lie 代数 $\mathfrak{g}^0(x)$ の次元の最小値に等しい.
- (2) $x \in \mathfrak{g}$ に対して, $\mathfrak{g}^0(x)$ が \mathfrak{g} の Cartan 部分代数であるための必要十分条件は, $\mathfrak{g}^0(x)$ の次元が \mathfrak{g} の階数 に等しいことである.
- (3) g の任意の Cartan 部分代数は, (2) の方法で得られる.

証明 定理 1.17 で示したように, \mathfrak{g} の部分 Lie 代数 \mathfrak{h} が \mathfrak{g} の Cartan 部分代数であるための必要十分条件は, \mathfrak{h} が \mathfrak{g} の部分 Lie 代数の族 $(\mathfrak{g}^0(x))_{x \in \mathfrak{g}}$ に属し,かつこの中で極小であることである.このことと階数の定義から,主張が従う.

1.6 簡約 Lie 代数の Cartan 部分代数

命題 1.32 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の簡約 Lie 代数とする. \mathfrak{g} の部分 Lie 代数 \mathfrak{h} に対して,次の条件は同値である.

- (a) hはgの Cartan 部分代数である.
- (b) $[\mathfrak{g},\mathfrak{g}]$ の Cartan 部分代数 \mathfrak{h}' が存在して, $\mathfrak{h}=\mathfrak{h}'\oplus\mathbf{Z}(\mathfrak{g})$ と書ける.

証明 簡約 Lie 代数 \mathfrak{g} は,半単純 Lie 代数 $[\mathfrak{g},\mathfrak{g}]$ と可換 Lie 代数 $\mathbf{Z}(\mathfrak{g})$ に(Lie 代数として)直和分解される $[\mathfrak{g},\mathfrak{g}]$ 定理 6.23]. よって,主張は,命題 1.5 から従う.

補題 1.33 標数 0 の可換体 🛭 上の半単純 Lie 代数 g の Cartan 部分代数 h は, 可換である.

証明 \mathfrak{g} の随伴表現の \mathfrak{h} への制限を ρ : $\mathfrak{h} \to \mathfrak{gl}(\mathfrak{g})$ と置くと, ρ のトレース形式は, \mathfrak{g} の Killing 形式 B の制限 $B|_{\mathfrak{h} \times \mathfrak{h}}$ にほかならない.半単純性に関する Cartan の判定法 [4, 定理 6.10] より B は非退化だから, $B|_{\mathfrak{h} \times \mathfrak{h}} = B|_{\mathfrak{g}^0(\mathfrak{h}) \times \mathfrak{g}^0(\mathfrak{h})}$ も非退化である(定理 1.17,命題 1.15). したがって, \mathfrak{h} は簡約である [4, 定理 6.23].一方で, \mathfrak{h} は冪零でもあるから, \mathfrak{h} は可換である.

補題 1.34 g を標数 0 の可換体 \mathbb{K} 上の簡約 Lie 代数とし、 \mathfrak{h} をその冪零部分 Lie 代数とする.このとき,任意の $x \in \mathfrak{g}^0(\mathfrak{h})$ に対して,その \mathfrak{g} における半単純部分 x_s と冪零部分 x_n は,ともに $\mathfrak{g}^0(\mathfrak{h})$ に属する.特に, \mathfrak{h} を \mathfrak{g} の Cartan 部分代数とすると,任意の $x \in \mathfrak{h}$ に対して,その \mathfrak{g} における半単純部分 x_s と冪零部分 x_n は,ともに \mathfrak{h} に属する.

証明 $x, y \in \mathfrak{g}$ として, y の半単純部分を y_s と書くと,

$$x \in \mathfrak{g}^0(y) \iff x \in \mathbf{Z}_{\mathfrak{g}}(y_{\mathbf{s}}) \iff [x, y_{\mathbf{s}}] = 0$$

である.上式において,x をその半単純部分 x_s に置き換えても,同じ同値性が成り立つ. $\operatorname{ad}(x_s)$ は $\operatorname{ad}(x)$ の線型写像としての半単純部分だから,Jordan 分解に関する一般論より, $\operatorname{ad}(x_s)$ は $\operatorname{ad}(x)$ の定数項をもたない多項式として表せる.したがって, $[x,y_s]=0$ ならば $[x_s,y_s]=0$ である.上記の同値性と合わせて, $x\in\mathfrak{g}^0(y)$ ならば $x_s\in\mathfrak{g}^0(y)$ であることを得る.よって,x が $\mathfrak{g}^0(\mathfrak{h})=\bigcap_{y\in\mathfrak{h}}\mathfrak{g}^0(y)$ に属するならば, x_s と $x_n=x-x_s$ も $\mathfrak{g}^0(\mathfrak{h})$ に属する。

 \mathfrak{h} が \mathfrak{g} の Cartan 部分代数ならば, \mathfrak{h} は冪零であり, $\mathfrak{h}=\mathfrak{g}^0(\mathfrak{h})$ が成り立つ(定理 1.17). よって,後半の主張は,前半の主張から従う.

Lie 代数 $\mathfrak g$ の部分線型空間 $\mathfrak h$ が($\mathfrak g$ において)**極大可換**(maximally commutative)であるとは、 $\mathfrak h$ が可換であり、かつ $\mathfrak g$ の可換な部分線型空間であって $\mathfrak h$ を真に含むものが存在しないことをいう.容易に確かめられるように、これが成り立つための必要十分条件は、 $\mathbf Z_{\mathfrak g}(\mathfrak h)=\mathfrak h$ であることである.

定理 1.35 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の簡約 Lie 代数とする. \mathfrak{g} の部分 Lie 代数 \mathfrak{h} に対して,次の条件は同値である.

- (a) hはgの Cartan 部分代数である.
- (b) \mathfrak{h} は \mathfrak{g} において極大可換であり、 $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})$ の任意の元は半単純である.

証明 定理 1.17 ですでに示したように、 \mathfrak{h} が \mathfrak{g} の Cartan 部分代数であるための必要十分条件は、 $\mathfrak{g}^0(\mathfrak{h})=\mathfrak{h}$ であることである。また、 $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})$ の任意の元が半単純ならば、その同時固有値 $\mathfrak{g}^0(\mathfrak{h})$ は、同時固有値 $\mathfrak{g}^0(\mathfrak{h})$ の同時固有空間、すなわち $\mathbf{Z}_{\mathfrak{g}}(\mathfrak{h})$ に等しい。よって、主張を示すためには、 \mathfrak{h} が \mathfrak{g} の Cartan 部分代数であるとして、 $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})$ の任意の元が半単純であることを示せばよい。

命題 1.32 より,一般性を失わず, \mathfrak{g} は半単純であると仮定する. \mathfrak{h} が \mathfrak{g} の Cartan 部分代数であるとして, $x\in\mathfrak{h}$ を任意にとり,その Jordan 分解を $(x_{\mathfrak{s}},x_{\mathfrak{n}})$ と書く.すると, $x_{\mathfrak{n}}\in\mathfrak{h}$ であり(補題 1.34), \mathfrak{h} は可換だから(補題 1.33), $\mathrm{ad}_{\mathfrak{g}}(x_{\mathfrak{n}})$ は $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})$ の任意の元と可換である.さらに, $\mathrm{ad}_{\mathfrak{g}}(x_{\mathfrak{n}})$ は冪零だから, $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})$ の任意の元も冪零である.したがって, \mathfrak{g} の Killing 形式を B と書くと,

$$B(\mathfrak{h}, x_{\mathrm{n}}) = \operatorname{tr}(\operatorname{ad}_{\mathfrak{g}}(\mathfrak{h}) \operatorname{ad}_{\mathfrak{g}}(x_{\mathrm{n}})) = 0$$

である. $B|_{\mathfrak{h}\times\mathfrak{h}}=B|_{\mathfrak{g}^0(\mathfrak{h})\times\mathfrak{g}^0(\mathfrak{h})}$ は非退化だから(定理 1.17, 命題 1.15),上式より, $x_{\mathrm{n}}=0$ を得る. よって, $x=x_{\mathrm{s}}$ であり,x は半単純である. すなわち, $\mathrm{ad}_{\mathfrak{g}}(x)$ は半単純である.

2 $\mathfrak{sl}(2,\mathbb{K})$ の表現

Lie 代数

$$\mathfrak{sl}(2,\mathbb{K}) = \{x \in \mathfrak{gl}(2,\mathbb{K}) \mid \operatorname{tr} x = 0\}$$

を考え,

$$H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

と置くと、(H,X,Y) は $\mathfrak{sl}(2,\mathbb{K})$ の基底である.これを、 $\mathfrak{sl}(2,\mathbb{K})$ の標準基底(standard basis)という.これ らの元 H,X,Y は、関係式

$$[H, X] = 2X,$$
 $[H, Y] = -2Y,$ $[X, Y] = H$

を満たす.

本節では、特に断らなくても、 $\mathfrak{sl}(2,\mathbb{K})$ の標準基底を記号 (H,X,Y) で表す.

2.1 $\mathfrak{sl}(2,\mathbb{K})$ -加群のウェイト

定義 2.1 (ウェイト) V を $\mathfrak{sl}(2,\mathbb{K})$ -加群とする. $H \in \mathfrak{sl}(2,\mathbb{K})$ の V への作用の固有値,固有ベクトル,固有空間を,それぞれ,V のウェイト(weight),ウェイトベクトル(weight vector),ウェイト空間(weight space)という. H の V への作用における固有値 $\lambda \in \mathbb{K}$ の重複度を,V におけるウェイト λ の重複度(multiplicity)という.

定義 2.2(ウェイト加群) $\mathfrak{sl}(2,\mathbb{K})$ -加群 V は、それがウェイト空間の直和に分解される(すなわち、 $H \in \mathfrak{sl}(2,\mathbb{K})$ の V への作用が対角化可能である)とき、**ウェイト加群** (weight module) であるという.

命題 2.3 V を $\mathfrak{sl}(2,\mathbb{K})$ -加群とする. $v \in V$ がウェイト $\lambda \in \mathbb{K}$ のウェイトベクトルならば,Xv はウェイト $\lambda + 2$ のウェイトベクトルであり,Yv はウェイト $\lambda - 2$ のウェイトベクトルである.

証明 $v \in V$ がウェイト $\lambda \in \mathbb{K}$ のウェイトベクトルであるとすると, $Hv = \lambda v$ だから,

$$HXv = XHv + [H, X]v = \lambda Xv + 2Xv = (\lambda + 2)Xv,$$

$$HYv = YHv + [H, Y]v = \lambda Yv - 2Yv = (\lambda - 2)Yv$$

である. すなわち, Xv はウェイト $\lambda+2$ のウェイトベクトルであり, Yv はウェイト $\lambda-2$ のウェイトベクトルである.

命題 2.4 $f: V \to W$ を $\mathfrak{sl}(2, \mathbb{K})$ -加群の間の $\mathfrak{sl}(2, \mathbb{K})$ -準同型とする. $v \in V$ がウェイト $\lambda \in \mathbb{K}$ のウェイトベクトルならば、 $f(v) \in W$ はウェイト λ のウェイトベクトルである.

証明 $v \in V$ がウェイト $\lambda \in \mathbb{K}$ のウェイトベクトルであるとすると, $Hv = \lambda v$ だから,

$$Hf(v) = f(Hv) = \lambda f(v)$$

である. すなわち, f(v) はウェイト λ のウェイトベクトルである.

2.2 最高ウェイト $\mathfrak{sl}(2,\mathbb{K})$ -加群

定義 2.5(極大ベクトル) $\mathfrak{sl}(2,\mathbb{K})$ -加群 V のウェイトベクトル $e \neq 0$ であって Xe = 0 を満たすものを,V の極大ベクトル(maximal vector)という.V の極大ベクトルであって V を $\mathfrak{sl}(2,\mathbb{K})$ -加群として生成するものを,V の極大生成ベクトル(maximal generating vector)という.

定義 2.6(最高ウェイト加群) $\mathfrak{sl}(2,\mathbb{K})$ -加群 V がウェイト $\lambda \in \mathbb{K}$ の極大生成ベクトルをもつとき,V は最高 ウェイト λ の最高ウェイト加群 (highest weight module of highest weight λ) であるという.

命題 2.7 $\mathbb K$ を標数 0 の可換体とする. V をウェイト $\lambda \in \mathbb K$ の極大ベクトル e をもつ $\mathfrak{sl}(2,\mathbb K)$ -加群とし, $n \in \mathbb N$ に対して

$$e_n = \frac{1}{n!} Y^n e$$

と定める.

(1) 任意の $n \in \mathbb{N}$ に対して、

$$He_n = (\lambda - 2n)e_n$$
, $Xe_n = (\lambda - n + 1)e_{n-1}$, $Ye_n = (n+1)e_{n+1}$

が成り立つ. ただし, $e_{-1} = 0$ とみなす.

以下では、さらに、e が V の極大生成ベクトルである(したがって、V は最高ウェイト λ の最高ウェイト加群である)とする.

- (2) 任意の $n \in \mathbb{N}$ に対して $e_n \neq 0$ であるとする. このとき, $(e_n)_{n \in \mathbb{N}}$ は V の基底である.
- (3) ある $n \in \mathbb{N}$ に対して $e_n = 0$ であるとして, $m = \max\{n \in \mathbb{N} \mid e_n \neq 0\}$ と置く.このとき, (e_0, \ldots, e_m) は V の基底であり, $\lambda = m$ である.

証明 (1) H の作用に関する主張は命題 2.3 から従い,Y の作用に関する主張は e_n の定義から明らかである.X の作用に関する主張を, $n\in\mathbb{N}$ に関する帰納法で示す.n=0 のとき, $e_0=e$ は極大ベクトルだから

 $Xe_0 = 0$ である. $n \ge 1$ とし、 $Xe_{n-1} = (\lambda - n + 2)e_{n-2}$ が成り立つとすると、

$$\begin{split} nXe_n &= XYe_{n-1} \\ &= YXe_{n-1} + [X,Y]e_{n-1} \\ &= Y(\lambda - n + 2)e_{n-2} + He_{n-1} \\ &= (n-1)(\lambda - n + 2)e_{n-1} + (\lambda - 2n + 2)e_{n-1} \\ &= n(\lambda - n + 1)e_{n-1} \end{split}$$

となり、 $Xe_n = (\lambda - n + 1)e_{n-1}$ が成り立つ. これで、帰納法が完成した.

- (2) (1) より、 $\operatorname{span}\{e_n\mid n\in\mathbb{N}\}$ は V の部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群である。 $e_0=e$ は V を $\mathfrak{sl}(2,\mathbb{K})$ -加群として生成するから、 $V=\operatorname{span}\{e_n\mid n\in\mathbb{N}\}$ である。また、仮定より e_n はいずれも 0 でなく、(1) よりすべて異なるウェイトのウェイトベクトルだから、 $(e_n)_{n\in\mathbb{N}}$ は線型独立である。よって、 $(e_n)_{n\in\mathbb{N}}$ は V の基底である。
- (3) (e_0, \ldots, e_m) が V の基底であることは,(2) と同様にして示せる.また, $e_m \neq 0$ かつ $e_m = 0$ であり,一方で(1) より $Xe_{m+1} = (\lambda m)e_m$ だから, $\lambda = m$ が成り立つ.

最高ウェイト $\lambda \in \mathbb{K}$ の最高ウェイト $\mathfrak{sl}(2,\mathbb{K})$ -加群は,もし存在すれば,その構造は命題 2.7 によって決まってしまう.分類を完成させるために,与えられた最高ウェイトの最高ウェイト $\mathfrak{sl}(2,\mathbb{K})$ -加群を具体的に構成する.

 $\lambda \in \mathbb{K}$ に対して、線型空間としては $M(\lambda) = \mathbb{K}^{\oplus \mathbb{N}}$ と定め(その標準基底を $(e_n)_{n \in \mathbb{N}}$ と書く)、 $H, X, Y \in \mathfrak{sl}(2,\mathbb{K})$ の $M(\lambda)$ への線型作用を

$$He_n = (\lambda - 2n)e_n, \qquad Xe_n = (\lambda - n + 1)e_{n-1}, \qquad Ye_n = (n+1)e_{n+1}$$

によって定める(ただし、 $e_{-1}=0$ とみなす). これらの作用を標準基底 $(e_n)_{n\in\mathbb{N}}$ に関して行列表示すれば、

$$H = \begin{pmatrix} \lambda & & & \\ & \lambda - 2 & & \\ & & \lambda - 4 & \\ & & & \ddots \end{pmatrix}, \qquad X = \begin{pmatrix} 0 & \lambda & & \\ & 0 & \lambda - 1 & \\ & & 0 & \ddots \\ & & & \ddots \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & & \\ 1 & 0 & & \\ & 2 & 0 & \\ & & \ddots & \ddots \end{pmatrix}$$

となる.容易に確かめられるように,これらの作用によって, $M(\lambda)$ は $\mathfrak{sl}(2,\mathbb{K})$ -加群をなす.明らかに, e_0 は $M(\lambda)$ のウェイト λ の極大生成ベクトルである.

さらに、 $\lambda \in \mathbb{Z}_{\geq 0}$ であるとする. このとき、 $M(\lambda)$ において $Xe_{\lambda+1} = (\lambda - (\lambda+1)+1)e_{\lambda} = 0$ だから、

$$N(\lambda) = \operatorname{span}\{e_{\lambda+1}, e_{\lambda+2}, \ldots\}$$

と定めると、これは $M(\lambda)$ の部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群である. これを用いて

$$L(\lambda) = M(\lambda)/N(\lambda)$$

と定め, $M(\lambda)$ から $N(\lambda)$ への等化準同型による各 e_n の像をそのまま e_n と書く.明らかに, $L(\lambda)$ は (e_0,\ldots,e_λ) を基底にもつ $\lambda+1$ 次元の $\mathfrak{sl}(2,\mathbb{K})$ -加群であり, e_0 は $L(\lambda)$ のウェイト λ の極大生成ベクトルである. $H,X,Y\in\mathfrak{sl}(2,\mathbb{K})$ の $L(\lambda)$ への作用を基底 (e_0,\ldots,e_λ) に関して行列表示すれば,

$$H = \begin{pmatrix} \lambda & & & & & \\ & \lambda - 2 & & & & \\ & & \lambda - 4 & & \\ & & & \ddots & \\ & & & -\lambda \end{pmatrix}, \qquad X = \begin{pmatrix} 0 & \lambda & & & \\ & 0 & \lambda - 1 & & \\ & & 0 & \ddots & \\ & & & \ddots & 1 \\ & & & & 0 \end{pmatrix}, \qquad Y = \begin{pmatrix} 0 & & & & \\ 1 & 0 & & & \\ & 2 & 0 & & \\ & & \ddots & \ddots & \\ & & & \lambda & 0 \end{pmatrix}$$

となる.

定理 2.8(最高ウェイト $\mathfrak{sl}(2,\mathbb{K})$ -加群の分類) \mathbb{K} を標数 0 の可換体とする. $\lambda \in \mathbb{K}$ とする.

- (1) $\lambda \notin \mathbb{Z}_{\geq 0}$ であるとする.このとき,最高ウェイト λ の最高ウェイト $\mathfrak{sl}(2,\mathbb{K})$ -加群は,同型を除いて $M(\lambda)$ のみである. $M(\lambda)$ は無限次元かつ既約なウェイト加群であり,そのウェイトは λ , $\lambda-2$, $\lambda-4$, ... (すべて重複度 1) である.
- (2) $\lambda \in \mathbb{Z}_{\geq 0}$ であるとする.このとき,最高ウェイト λ の最高ウェイト $\mathfrak{sl}(2,\mathbb{K})$ -加群は,同型を除いて $M(\lambda)$ と $L(\lambda)$ のみである. $M(\lambda)$ は無限次元かつ可約なウェイト加群であり,そのウェイトは λ , $\lambda-2$, $\lambda-4$, ...(すべて重複度 1)である. $L(\lambda)$ は $\lambda+1$ 次元かつ既約なウェイト加群であり,そのウェイトは λ , $\lambda-2$, $\lambda-4$, ..., $-\lambda$ (すべて重複度 1)である.

証明 最高ウェイト加群の分類に関する主張は、命題 2.7 から従う. 次元とウェイトに関する主張は、明らかである.

既約性に関する主張を示す。まず、 $\lambda \in \mathbb{Z}_{\geq 0}$ であるとすると、 $M(\lambda)$ は、部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群 $N(\lambda) \neq 0$ 、 $M(\lambda)$ をもつから、可約である。次に、 $\lambda \notin \mathbb{Z}_{\geq 0}$ であるとして、 $M(\lambda)$ の部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群 $N \neq 0$ を任意にとる。 $v \in M \setminus \{0\}$ を一つ固定して $v = \sum_{n=0}^m c_n e_n \ (c_n \in \mathbb{K}, \ c_m \neq 0)$ と表すと、命題 2.7 より

$$X^{m}v = \sum_{n=0}^{m} c_{n}X^{m}e_{n} = c_{m}(\lambda - p + 1)(\lambda - p + 2)\cdots\lambda e_{0}$$

である.これは, $\lambda \notin \mathbb{Z}_{\geq 0}$ より e_0 の 0 でないスカラー倍であり,N に属する. e_0 は $M(\lambda)$ を $\mathfrak{sl}(2,\mathbb{K})$ -加群として生成するから, $N=M(\lambda)$ となる.よって, $M(\lambda)$ は既約である. $\lambda \in \mathbb{Z}_{\geq 0}$ である場合に $L(\lambda)$ が既約であることも,同様にして示せる.

系 2.9 $\mathbb K$ を標数 0 の可換体とする. V をウェイト $\lambda \in \mathbb K$ の極大ベクトル e をもつ $\mathfrak{sl}(2,\mathbb K)$ -加群とし,e が 生成する V の部分 $\mathfrak{sl}(2,\mathbb K)$ を M と置く. M が有限次元ならば, $\lambda = \dim M - 1 \in \mathbb Z_{\geq 0}$ である.

証明 e は M の極大生成ベクトルだから、主張は、最高ウェイト $\mathfrak{sl}(2,\mathbb{K})$ -加群の分類(定理 2.8)から従う.

2.3 有限次元既約 $\mathfrak{sl}(2,\mathbb{K})$ -加群

補題 2.10 A を単位的結合代数とする*2.

- (1) $h, x \in A$ が [h, x] = 2x を満たすならば、任意の $n \in \mathbb{N}$ に対して、 $[h, x^n] = 2nx^n$ が成り立つ.
- (2) $h, x, y \in A$ が [h,x] = 2x かつ [x,y] = h を満たすならば、任意の $n \in \mathbb{N}_{>0}$ に対して、 $[x^n,y] = nx^{n-1}(h+n-1) = n(h-n+1)x^{n-1}$ が成り立つ.

証明 (1) [h,x]=2x だから、 $n\in\mathbb{N}$ に対して、

$$[h, x^n] = \sum_{i=0}^{n-1} x^i [h, x] x^{n-1-i} = 2nx^n$$

^{*2} 本小節の範囲では, $A = \mathbf{U}(\mathfrak{sl}(2,\mathbb{K}))$ であり,下記の h, x, y がそれぞれ H, X, Y である場合だけで十分である.一般の場合の主張は,補題 3.21 の証明で用いられる(この補題は,存在定理(定理 3.22)の証明で用いられる).

である.

(2) [x,y] = h であることと (1) より、 $n \in \mathbb{N}_{>0}$ に対して、

$$\begin{split} [x^n,y] &= \sum_{i=1}^{n-1} x^i [x,y] x^{n-1-i} \\ &= \sum_{i=1}^{n-1} x^i h x^{n-1-i} \\ &= \sum_{i=1}^{n-1} x^i (x^{n-1-i} h + [h,x^{n-1-i}]) \\ &= \sum_{i=1}^{n-1} x^i (x^{n-1-i} h + 2(n-1-i) x^{n-1-i}) \\ &= \sum_{i=1}^{n-1} x^{n-1} (h + 2(n-1-i)) \\ &= n x^{n-1} (h + n - 1) \end{split}$$

である. また, (1) より $[h, x^{n-1}] = 2(n-1)x^{n-1}$ だから,

$$nx^{n-1}(h+n-1) = n(h+n-1)x^{n-1} - [h, x^{n-1}]$$
$$= n(h+n-1)x^{n-1} - 2(n-1)x^{n-1}$$
$$= n(h-n+1)x^{n-1}$$

である.

命題 2.11 \mathbb{K} を標数 0 の可換体とする。0 でない有限次元 $\mathfrak{sl}(2,\mathbb{K})$ -加群 V は、極大ベクトルをもつ。

証明 $X \in \mathfrak{sl}(2,\mathbb{K})$ は \mathbb{K}^2 上の線型写像として冪零だから,その V への作用も冪零である [4, 命題 6.32 (2)]. そこで, $X^n \in \mathbf{U}(\mathfrak{sl}(2,\mathbb{K}))$ の V への作用が 0 になるような最小の $n \in \mathbb{N}$ をとる. $V \neq 0$ だから, $n \geq 1$ である. $X^{n-1}v \neq 0$ を満たす $v \in V$ をとり, $e = X^{n-1}v$ と置く.すると, $e \neq 0$ かつ Xe = 0 である.また,

$$n(H - n + 1)e = n(H - n + 1)X^{n-1}v = [X^n, Y]v = 0$$

(第 2 の等号は補題 2.10 (2) から,第 3 の等号は X^n の V への作用が 0 であることから従う)だから, He=(n-1)e である.よって,e は V の極大ベクトルである.

定理 2.12(有限次元既約 $\mathfrak{sl}(2,\mathbb{K})$ -加群の分類) \mathbb{K} を標数 0 の可換体とする.有限次元既約 $\mathfrak{sl}(2,\mathbb{K})$ -加群は, $\lambda \in \mathbb{N}$ に対する $L(\lambda)$ で同型を除いて尽くされる. $L(\lambda)$ は $\lambda+1$ 次元のウェイト加群であり,そのウェイトは $\lambda, \lambda-2, \lambda-4, \ldots, -\lambda$ (すべて重複度 1) である.

証明 0 でない有限次元 $\mathfrak{sl}(2,\mathbb{K})$ -加群は極大ベクトルをもち(命題 2.11),有限次元既約 $\mathfrak{sl}(2,\mathbb{K})$ -加群の場合,それは自動的に極大生成ベクトルとなる.よって,主張は,最高ウェイト $\mathfrak{sl}(2,\mathbb{K})$ -加群の分類(定理 2.8)から従う.

系 2.13 \mathbb{K} を標数 0 の可換体とする. V を有限次元 $\mathfrak{sl}(2,\mathbb{K})$ -加群とし、それにおけるウェイト $\lambda \in \mathbb{K}$ の重複度を m_{λ} と書く.

- (1) V はウェイト加群であり、そのウェイトはすべて整数である.
- (2) 任意の $\lambda \in \mathbb{K}$ に対して, $m_{\lambda} = m_{-\lambda}$ である.
- (3) $m_0 \ge m_2 \ge m_4 \ge \cdots$ かつ $m_1 \ge m_3 \ge m_5 \ge \cdots$ である.
- (4) V は完全可約である. さらに、 $L(\lambda)$ ($\lambda \in \mathbb{N}$) の V における重複度は、 $m_{\lambda+2}-m_{\lambda}$ である.

証明 Weyl の完全可約性定理 [4, 定理 6.20] より V は完全可約だから,主張は,V が有限次元既約 $\mathfrak{sl}(2, \mathbb{K})$ -加群である場合に示せば十分である.この場合の主張は,いずれも,有限次元既約 $\mathfrak{sl}(2, \mathbb{K})$ -加群の分類(定理 2.12)から容易に確かめられる.

系 2.14 $\mathbb K$ を標数 0 の可換体とする. V を有限次元 $\mathfrak{sl}(2,\mathbb K)$ -加群とし,そのウェイト $\lambda \in \mathbb K$ のウェイト空間 を V_{λ} と書く.

- (1) X の作用が定める V_{λ} から $V_{\lambda+2}$ への線型写像(命題 2.3 より定まる)は, λ が -1 以下の整数のとき 単射であり、-1 以上の整数のとき全射である.
- (2) Y の作用が定める V_{λ} から $V_{\lambda-2}$ への線型写像(命題 2.3 より定まる)は、 λ が 1 以下の整数のとき全射であり、1 以上の整数のとき単射である.

証明 Weyl の完全可約性定理 [4, 定理 6.20] より V は完全可約だから,主張は,V が有限次元既約 $\mathfrak{sl}(2, \mathbb{K})$ -加群である場合に示せば十分である.この場合の主張は,いずれも,有限次元既約 $\mathfrak{sl}(2, \mathbb{K})$ -加群の分類(定理 2.12)から容易に確かめられる.

3 分裂簡約 Lie 代数

3.1 分裂簡約 Lie 代数とそのルート系

定義 3.1 (分裂半単純・簡約 Lie 代数) g を標数 0 の可換体 \mathbb{K} 上の簡約 Lie 代数とする。g の分裂化 Cartan 部分代数 (splitting Cartan subalgebra) とは,g の Cartan 部分代数 \mathfrak{h} であって, $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})$ が同時対角化可能 であるものをいう。このような \mathfrak{h} が存在するとき,g は分裂可能 (splittable) であるといい,組 ($\mathfrak{g},\mathfrak{h}$) を分裂 簡約 Lie 代数 (split reductive Lie algebra) という。さらに,g が半単純・単純である場合には,それぞれ,組 ($\mathfrak{g},\mathfrak{h}$) を分裂半単純 Lie 代数 (split semisimple Lie algebra)・分裂単純 Lie 代数 (split simple Lie algebra) という。

分裂簡約 Lie 代数 $(\mathfrak{g}_1,\mathfrak{h}_1)$ から $(\mathfrak{g}_2,\mathfrak{h}_2)$ への**同型** (isomorphism) とは, 同型 ϕ : $\mathfrak{g}_1 \to \mathfrak{g}_2$ であって $\phi(\mathfrak{h}_1) = \mathfrak{h}_2$ を満たすものをいう.これが存在するとき, $(\mathfrak{g}_1,\mathfrak{h}_1)$ と $(\mathfrak{g}_2,\mathfrak{h}_2)$ は**同型** (isomorphic) であるという.

 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の簡約 Lie 代数とし、 \mathfrak{h} をその Cartan 部分代数とすると、 \mathfrak{h} は可換であり、 $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})$ の任意の元は半単純である(定理 1.35). したがって、 \mathfrak{h} が \mathfrak{g} の分裂化 Cartan 部分代数であるためには、 $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})$ の任意の元が三角化可能であれば十分である.

 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とするとき,写像 $\alpha\in\mathbb{K}^{\mathfrak{h}}$ に対応する $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})$ の同時固有空間を, \mathfrak{g}_{α} と書く.すなわち,

 $\mathfrak{g}_{\alpha} = \{x \in \mathfrak{g} \mid$ 任意の $h \in \mathfrak{h}$ に対して $[h, x] = \alpha(h)x\}$

と書く. 明らかに, $\mathfrak{g}_{\alpha} \neq 0$ となりうるのは $\alpha \in \mathfrak{h}^*$ のときだけである.

定義 3.2(分裂簡約 Lie 代数のルート系) 標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数 $(\mathfrak{g},\mathfrak{h})$ のルート系(root system)を、

$$\Delta(\mathfrak{g},\mathfrak{h}) = \{ \alpha \in \mathfrak{h}^* \setminus \{0\} \mid \mathfrak{g}_{\alpha} \neq 0 \}$$

と定める. $\Delta(\mathfrak{g},\mathfrak{h})$ の各元を, $(\mathfrak{g},\mathfrak{h})$ のルート (root) という.

 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とすると, $\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})$ は同時対角化可能であり,定理 1.35 より $\mathfrak{g}_0=\mathbf{Z}_{\mathfrak{g}}(\mathfrak{h})=\mathfrak{h}$ だから,直和分解

$$\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{lpha\in\Delta(\mathfrak{g},\mathfrak{h})}\mathfrak{g}_lpha$$

が成立する. これを, $(\mathfrak{g},\mathfrak{h})$ のルート空間分解 (root space decomposition) といい, 各 \mathfrak{g}_{α} ($\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$) を, ルート空間 (root space) という. \mathfrak{g} は有限次元だから, ルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ は有限である.

注意 3.3 $(\mathfrak{g}_i)_{i\in I}$ を標数 0 の可換体 \mathbb{K} 上の簡約 Lie 代数の有限族とし, $\mathfrak{g}=\bigoplus_{i\in I}\mathfrak{g}_i$ と置く.このとき, \mathfrak{g} の Cartan 部分代数 \mathfrak{h} は,各 \mathfrak{g}_i の Cartan 部分代数 \mathfrak{h}_i を用いて $\mathfrak{h}=\bigoplus_{i\in I}\mathfrak{h}_i$ と書ける(命題 1.5). $h=\sum_{i\in I}h_i$ ($h_i\in\mathfrak{h}_i$) に対して,

$$\operatorname{ad}_{\mathfrak{g}}(h) = \bigoplus_{i \in I} \operatorname{ad}_{\mathfrak{g}_i}(h_i)$$

だから, $\mathrm{ad}_{\mathfrak{h}}(h)$ が対角化可能であるための必要十分条件は,各 $\mathrm{ad}_{\mathfrak{h}_i}(h_i)$ が対角化可能であることである.したがって, \mathfrak{h} が \mathfrak{g} の分裂化 Cartan 部分代数であるための必要十分条件は,各 \mathfrak{h}_i が \mathfrak{g}_i の分裂化 Cartan 部分代数であることである.さらに,これらの条件の下で, $\alpha \in \mathfrak{h}^*$ に対して,

$$\mathfrak{g}_{\alpha} = \begin{cases} \mathfrak{h} = \bigoplus_{i \in I} \mathfrak{h}_{i} & (\alpha = 0) \\ (\mathfrak{g}_{i})_{\alpha|\mathfrak{h}_{i}} & (\alpha|\mathfrak{h}_{i} \neq 0 \text{ かつ任意の } j \in I \setminus \{i\} \text{ に対して } \alpha|\mathfrak{h}_{j} = 0) \\ 0 & (任意の j \in I \text{ に対して } \alpha|\mathfrak{h}_{j} \neq 0) \end{cases}$$

が成り立つ. 特に, \mathfrak{h}^* から $\bigoplus_{i\in I}\mathfrak{h}_i^*$ への自然な線型同型写像は, $\Delta(\mathfrak{g},\mathfrak{h})$ から $\coprod_{i\in I}\Delta(\mathfrak{g}_i,\mathfrak{h}_i)$ への全単射を与える.

注意 3.4 \mathfrak{g} を標数 0 の可換体 \mathbb{K} 上の簡約 Lie 代数とすると, \mathfrak{g} は半単純 Lie 代数 $\mathfrak{g}'=[\mathfrak{g},\mathfrak{g}]$ と可換 Lie 代数 $\mathbf{Z}(\mathfrak{g})$ の(Lie 代数としての)直和に分解される [4, 定理 6.23]. よって,注意 3.3 の特別な場合として,次のことがいえる.

- gの Cartan 部分代数 h は、g'の Cartan 部分代数 h'を用いて、h = h'⊕ Z(g) と書ける。h が g の分 裂化 Cartan 部分代数であるための必要十分条件は、h' が g' の分裂化 Cartan 部分代数であることで ある。
- 上記の条件の下で、 $\alpha \in \mathfrak{h}^*$ に対して、

$$\mathfrak{g}_{\alpha} = \begin{cases} \mathfrak{h} = \mathfrak{h}' \oplus \mathbf{Z}(\mathfrak{g}) & (\alpha = 0) \\ \mathfrak{g}'_{\alpha|_{\mathfrak{h}'}} & (\alpha \neq 0 \ \text{$\dot{\mathcal{D}}$} \Rightarrow \alpha|_{\mathbf{Z}(\mathfrak{g})} = 0) \\ 0 & (\alpha|_{\mathbf{Z}(\mathfrak{g})} \neq 0) \end{cases}$$

が成り立つ. 特に、ルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ は $V=\{\alpha\in\mathfrak{h}^*\mid\alpha|_{\mathbf{Z}(\mathfrak{g})}=0\}$ に含まれ、V から \mathfrak{h}'^* への線型同型写像 $\alpha\mapsto\alpha|_{\mathfrak{h}'}$ は、 $\Delta(\mathfrak{g},\mathfrak{h})$ から $\Delta(\mathfrak{g}',\mathfrak{h}')$ への全単射を与える.

注意 3.5 \mathbb{K} を標数 0 の可換体とし, \mathbb{K}' をその拡大体とする. $(\mathfrak{g},\mathfrak{h})$ を \mathbb{K} 上の分裂簡約 Lie 代数とすると, $\mathfrak{h}_{(\mathbb{K}')}$ は $\mathfrak{g}_{(\mathbb{K}')}$ の Cartan 部分代数であり(命題 1.6 (1)), $\mathrm{ad}_{\mathfrak{g}_{(\mathbb{K}')}}(\mathfrak{h}_{(\mathbb{K}')})=\{T_{(\mathbb{K}')}\mid T\in\mathrm{ad}_{\mathfrak{g}}(\mathfrak{h})\}$ は同時対角化可能だから, $(\mathfrak{g}_{(\mathbb{K}')},\mathfrak{h}_{(\mathbb{K}')})$ は \mathbb{K}' 上の分裂簡約 Lie 代数である.また, $\alpha'\in(\mathfrak{h}_{(\mathbb{K}')})^*$ に対して,

$$(\mathfrak{g}_{(\mathbb{K}')})_{lpha'} = egin{cases} (\mathfrak{g}_{lpha})_{(\mathbb{K}')} & (lpha' = lpha_{(\mathbb{K}')}, \, lpha \in \mathfrak{h}^*) \\ 0 & (それ以外) \end{cases}$$

が成り立つ. 特に, \mathfrak{h}^* から $(\mathfrak{h}_{(\mathbb{K}')})^*$ への写像 $\alpha \mapsto \alpha_{(\mathbb{K}')}$ は, $\Delta(\mathfrak{g},\mathfrak{h})$ から $\Delta(\mathfrak{g}_{(\mathbb{K}')},\mathfrak{h}_{(\mathbb{K}')})$ への全単射を与える.これにより,ルート系 $\Delta(\mathfrak{g}_{(\mathbb{K}')},\mathfrak{h}_{(\mathbb{K}')})$ は,ルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の \mathbb{K}' への係数拡大と同一視できる.

命題 3.6 (g, h) を標数 0 の可換体 I 上の分裂簡約 Lie 代数とする.

- (1) 任意の $\alpha, \beta \in \mathfrak{h}^*$ に対して、 $[\mathfrak{g}_{\alpha}, \mathfrak{g}_{\beta}] \subseteq \mathfrak{g}_{\alpha+\beta}$ が成り立つ.
- (2) $B: \mathfrak{g} \times \mathfrak{g} \to \mathbb{K}$ を不変な双線型形式とする. このとき、任意の α , $\beta \in \mathfrak{h}^*$ であって $\alpha + \beta \neq 0$ を満たすものに対して、 $B(\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}) = 0$ が成り立つ.
- (3) $B: \mathfrak{g} \times \mathfrak{g} \to \mathbb{K}$ を非退化かつ不変な双線型形式とする. このとき、任意の $\alpha \in \mathfrak{h}^*$ に対して、双線型形式 $B|_{\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha}}: \mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha} \to \mathbb{K}$ は非退化である. 特に、双線型形式 $B|_{\mathfrak{h} \times \mathfrak{h}}: \mathfrak{h} \times \mathfrak{h} \to \mathbb{K}$ は非退化である.

証明 (1) $x \in \mathfrak{g}_{\alpha}, y \in \mathfrak{g}_{\beta}$ とすると、任意の $h \in \mathfrak{h}$ に対して

$$[h, [x, y]] = [[h, x], y] + [x, [h, y]] = \alpha(h)[x, y] + \beta(h)[x, y]$$

だから、 $[x,y] \in \mathfrak{g}_{\alpha+\beta}$ である. よって、 $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] \subseteq \mathfrak{g}_{\alpha+\beta}$ である.

(2) $\alpha+\beta\neq 0$ であるとして, $\alpha(h)+\beta(h)\neq 0$ を満たす $h\in\mathfrak{h}$ をとる. $x\in\mathfrak{g}_{\alpha}$, $y\in\mathfrak{g}_{\beta}$ とすると,B の不変性より

$$0 = B([h, x], y) + B(x, [h, y]) = \alpha(h)B(x, y) + \beta(h)B(x, y)$$

だから、B(x,y) = 0 である. よって、 $B(\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}) = 0$ である.

- (3) $x \in \mathfrak{g}_{\alpha}$ が $B(x,\mathfrak{g}_{-\alpha}) = 0$ を満たすとする。 (2) より、任意の $\beta \in \mathfrak{h}^* \setminus \{-\alpha\}$ に対しても $B(x,\mathfrak{g}_{\beta}) = 0$ だから、 $B(x,\mathfrak{g}) = 0$ である。 B は非退化だから、これより、x = 0 を得る。同様にして、 $y \in \mathfrak{g}_{-\alpha}$ が $B(\mathfrak{g}_{\alpha},y) = 0$ を満たすならば y = 0 であることもわかる。よって、 $B|_{\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha}}$ は非退化である。特に、 $\alpha = 0$ として、 $B|_{\mathfrak{h} \times \mathfrak{h}}$ が非退化であることを得る。
- 系 3.7 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とする. 任意の $\alpha\in\mathfrak{h}^*\setminus\{0\}$ に対して, $\mathrm{ad}(\mathfrak{g}_\alpha)$ のすべての元は冪零である.

証明 $\Delta(\mathfrak{g},\mathfrak{h})\cup\{0\}$ は有限集合だから, $p\in\mathbb{N}$ を $(\Delta(\mathfrak{g},\mathfrak{h})\cup\{0\})+p\alpha$ が $\Delta(\mathfrak{g},\mathfrak{h})\cup\{0\}$ と交わらないようにとれる.このとき,任意の $\beta\in\Delta(\mathfrak{g},\mathfrak{h})\cup\{0\}$ に対して $\mathrm{ad}(\mathfrak{g}_{\alpha})^{p}\mathfrak{g}_{\beta}\subseteq\mathfrak{g}_{\beta+p\alpha}=0$ だから(命題 3.6 (1)), $\mathrm{ad}(\mathfrak{g}_{\alpha})^{p}\mathfrak{g}=0$ である.よって, $\mathrm{ad}(\mathfrak{g}_{\alpha})$ のすべての元は冪零である.

3.2 分裂簡約 Lie 代数における sl₂-三対

定義 3.8 (\mathfrak{sl}_2 -三対) $\mathfrak{sl}(2,\mathbb{K})$ の標準基底を (H,X,Y) と書く. Lie 代数 \mathfrak{g} における \mathfrak{sl}_2 -**三対** (\mathfrak{sl}_2 -triple) とは, \mathfrak{g} の元の組 (h,x,y) であって,H,X,Y をそれぞれ h,x,y に移す $\mathfrak{sl}(2,\mathbb{K})$ から \mathfrak{g} への線型写像が単射準同型であるものをいう.

注意 3.9 Lie 代数 $\mathfrak g$ の元 h, x, y が,少なくとも一つは 0 でなく,関係式 [h, x] = 2x,[h, y] = -2y,[x, y] = h を満たすとする.このとき,容易に確かめられるように,h, x, y はいずれも 0 でない.さらに,h, x, y は $\mathrm{ad}(h)$ の異なる固有空間に属するから,これらは線型独立である.よって,このとき,(h, x, y) は \mathfrak{sl}_2 -三対である.

定理 3.10 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とする. 各 $\alpha\in\Delta(\mathfrak{g},\mathfrak{h})$ に対して、次が成り立つ.

- (1) \mathfrak{g}_{α} , $\mathfrak{g}_{-\alpha}$ および $\mathfrak{h}_{\alpha} = [\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}]$ は 1 次元である.
- (2) $H_{\alpha} \in \mathfrak{h}_{\alpha}$ であって $\alpha(H_{\alpha}) = 2$ を満たすものが一意に存在する.
- (3) H_{α} を (2) のとおりに定める. 任意の $X_{\alpha} \in \mathfrak{g}_{\alpha} \setminus \{0\}$ に対して, $Y_{\alpha} \in \mathfrak{g}_{-\alpha}$ であって $[X_{\alpha}, Y_{\alpha}] = H_{\alpha}$ を満たすものが一意に存在する. さらに, このとき, $(H_{\alpha}, X_{\alpha}, Y_{\alpha})$ は \mathfrak{sl}_2 -三対である.

証明 \mathfrak{g} 上の非退化かつ不変な双線型形式 B を一つ固定する(\mathfrak{g} は簡約だから, \mathfrak{g} の有限次元表現であって,非退化なトレース形式をもつものが存在する [4, 定理 6.23]. このトレース形式を B とすればよい [4, 命題 3.6 (3) より, $B|_{\mathfrak{h}\times\mathfrak{h}}$ や $B|_{\mathfrak{g}_{\alpha}\times\mathfrak{g}_{-\alpha}}$ も非退化である.次の 4 段階に分けて,主張を示す.

(I) \mathfrak{h}_{α} が 1 次元であることを示す。 \mathfrak{h} 上の双線型形式 $B|_{\mathfrak{h} \times \mathfrak{h}}$ は非退化だから, $h_{\alpha} \in \mathfrak{h} \setminus \{0\}$ であって任意の $h \in \mathfrak{h}$ に対して $B(h,h_{\alpha}) = \alpha(h)$ を満たすものが(一意に)存在する。 $x \in \mathfrak{g}_{\alpha}, y \in \mathfrak{g}_{-\alpha}$ とすると, $[x,y] \in \mathfrak{h}$ (命題 3.6 (1))であり,任意の $h \in \mathfrak{h}$ に対して

$$B(h, [x, y]) = B([h, x], y)$$

$$= \alpha(h)B(x, y)$$

$$= B(h, h_{\alpha})B(x, y)$$

$$= B(h, B(x, y)h_{\alpha})$$

だから、 $B|_{\mathfrak{h} \times \mathfrak{h}}$ が非退化であることより

$$[x,y] = B(x,y)h_{\alpha} \tag{*}$$

が成り立つ. 一方で、 $\mathfrak{g}_{\alpha} \neq 0$ であることと $B|_{\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha}}$ が非退化であることより、 $B(\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}) = \mathbb{K}$ である. よって、 $\mathfrak{h}_{\alpha} = B(\mathfrak{g}_{\alpha}, \mathfrak{g}_{-\alpha}) h_{\alpha} = \mathbb{K} h_{\alpha}$ であり、 \mathfrak{h}_{α} は 1 次元である.

(II) $\alpha(H_{\alpha})=2$ を満たす $H_{\alpha}\in\mathfrak{h}_{\alpha}$ が一意に存在することを示す. (I) で示したように \mathfrak{h}_{α} は 1 次元だから、あとは、 $\alpha|_{\mathfrak{h}_{\alpha}}\neq0$ であることをいえばよい. \mathfrak{h}_{α} は 1 次元だから、 \mathfrak{g}_{α} と $\mathfrak{g}_{-\alpha}$ のそれぞれの 1 次元部分線型空間 \mathfrak{g}'_{α} と $\mathfrak{g}'_{-\alpha}$ を、 $[\mathfrak{g}'_{\alpha},\mathfrak{g}'_{-\alpha}]=\mathfrak{h}_{\alpha}$ を満たすようにとれる.ここで、 $\alpha|_{\mathfrak{h}_{\alpha}}=0$ であると仮定すると、 $[\mathfrak{h}_{\alpha},\mathfrak{g}'_{\alpha}]=[\mathfrak{h}_{\alpha},\mathfrak{g}'_{-\alpha}]=0$ となる.したがって、 $\mathfrak{s}=\mathfrak{h}_{\alpha}+\mathfrak{g}'_{\alpha}+\mathfrak{g}'_{-\alpha}$ と置くと、

$$[\mathfrak{s},\mathfrak{s}] = \mathfrak{h}_{\alpha}, \qquad [\mathfrak{s},[\mathfrak{s},\mathfrak{s}]] = [\mathfrak{s},\mathfrak{h}_{\alpha}] = [\mathfrak{h}_{\alpha},\mathfrak{h}_{\alpha}] = 0$$

となるから、 $\mathfrak s$ は $\mathfrak g$ の冪零部分 Lie 代数である。 $\mathfrak s$ の冪零根基は $[\mathfrak s,\mathfrak s]=\mathfrak h_\alpha$ だから [4, 定理 5.15], $\mathrm{ad}_{\mathfrak g}(\mathfrak h_\alpha)$ のすべての元は冪零である [4, 命題 5.10]. 一方で, $\mathrm{ad}_{\mathfrak g}(\mathfrak h_\alpha)\subseteq\mathrm{ad}_{\mathfrak g}(\mathfrak h)$ は同時対角化可能でもあるから, $\mathrm{ad}_{\mathfrak g}(\mathfrak h_\alpha)=0$ となる。随伴表現 $\mathrm{ad}_{\mathfrak g}$ が $\mathfrak h_\alpha=[\mathfrak g_\alpha,\mathfrak g_{-\alpha}]\subseteq[\mathfrak g,\mathfrak g]$ 上で単射であることと合わせれば, $\mathfrak h_\alpha=0$ を得るが,これは (I) に反する。よって,背理法より, $\alpha|_{\mathfrak h_\alpha}\neq0$ である。

(III) 任意の $X_{\alpha} \in \mathfrak{g}_{\alpha} \setminus \{0\}$ に対して, $(H_{\alpha}, X_{\alpha}, Y_{\alpha})$ が \mathfrak{sl}_2 -三対となるような $Y_{\alpha} \in \mathfrak{g}_{-\alpha}$ をとれることを示す. $B|_{\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha}}$ が非退化であることと (*) より $[X_{\alpha}, \mathfrak{g}_{-\alpha}] = \mathfrak{h}_{\alpha}$ だから, $Y_{\alpha} \in \mathfrak{g}_{-\alpha}$ を $[X_{\alpha}, Y_{\alpha}] = H_{\alpha}$ となるようにとれる. $H_{\alpha}, X_{\alpha}, Y_{\alpha}$ はいずれも 0 でなく,ルート空間分解に関して異なる直和因子に属するから,

これらは線型独立である. また, これらは関係式

$$[H_{\alpha}, X_{\alpha}] = \alpha(H_{\alpha})X_{\alpha} = 2X_{\alpha}, \qquad [H_{\alpha}, Y_{\alpha}] = -\alpha(H_{\alpha})Y_{\alpha} = -2Y_{\alpha}, \qquad [X_{\alpha}, Y_{\alpha}] = H_{\alpha}$$

を満たす. よって、 $(H_{\alpha}, X_{\alpha}, Y_{\alpha})$ は \mathfrak{sl}_2 -三対である.

(IV) \mathfrak{g}_{α} と $\mathfrak{g}_{-\alpha}$ が 1 次元であることを示す(このことから,(3) の一意性も従う)。 $\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha}$ には非退化な双線型形式 $B|_{\mathfrak{g}_{\alpha} \times \mathfrak{g}_{-\alpha}}$ が存在するから, \mathfrak{g}_{α} と $\mathfrak{g}_{-\alpha}$ の次元は等しい.以下, $\mathfrak{g}_{-\alpha}$ が 1 次元であることを示す。 $\mathfrak{sl}(2,\mathbb{K})$ の標準基底を (H,X,Y) と書き,(III) でとった \mathfrak{sl}_2 -三対 $(H_{\alpha},X_{\alpha},Y_{\alpha})$ と随伴表現によって, \mathfrak{g} を $\mathfrak{sl}(2,\mathbb{K})$ -加群とみなす. すると,任意の $y \in \mathfrak{g}_{-\alpha}$ に対して,

$$Hy = [H_{\alpha}, y] = -\alpha(H_{\alpha}) = -2y,$$

$$Xy = [X_{\alpha}, y] = B(X_{\alpha}, y)h_{\alpha}$$

となる(第 2 式の第 2 の等号は、(*) による). ここで、 $y \neq 0$ かつ $B(X_{\alpha},y) = 0$ であるとすると、y は 有限次元 $\mathfrak{sl}(2,\mathbb{K})$ -加群 \mathfrak{g} のウェイト -2 の極大ベクトルとなるが、これは系 2.9 に反する.よって、任意の $y \in \mathfrak{g}_{-\alpha} \setminus \{0\}$ に対して $B(X_{\alpha},y) = 0$ だが、そのためには、 $\mathfrak{g}_{-\alpha}$ はたかだか 1 次元でなければならない.一方で、 $-\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ より $\mathfrak{g}_{-\alpha} \neq 0$ だから、 $\mathfrak{g}_{-\alpha}$ は 1 次元である.

3.3 被約ルート系の公理を満たすことの証明

補題 3.11 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とすると,任意の α , $\beta\in\Delta(\mathfrak{g},\mathfrak{h})$ に対して, $\beta(H_{\alpha})\in\mathbb{Z}$ である.ここで, H_{α} は,定理 3.10 によって定まるものとする.

証明 $X_{\alpha} \in \mathfrak{g}_{\alpha}$ と $Y_{\alpha} \in \mathfrak{g}_{-\alpha}$ を $(H_{\alpha}, X_{\alpha}, Y_{\alpha})$ が \mathfrak{sl}_{2} -三対となるようにとり(定理 3.10 (3)),これよ随伴表現によって \mathfrak{g} を $\mathfrak{sl}(2,\mathbb{K})$ -加群とみなす. すると, $H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \in \mathfrak{sl}(2,\mathbb{K})$ は $\mathfrak{g}_{\beta} \neq 0$ に $\beta(H_{\alpha})$ 倍で作用するから,有限次元 $\mathfrak{sl}(2,\mathbb{K})$ -加群 \mathfrak{g} はウェイト $\beta(H_{\alpha})$ をもつ.系 2.13 (1) より,これは整数である.

補題 3.12 g を標数 0 の可換体 \mathbb{K} 上の Lie 代数, \mathfrak{h} を \mathfrak{g} の有限次元部分線型空間とし, $\lambda \in \mathfrak{h}^*$ に対して

$$\mathfrak{g}_{\lambda} = \{x \in \mathfrak{g} \mid \text{任意の } h \in \mathfrak{h} \text{ に対して } [h, x] = \lambda(h)x\}$$

と書く. $\alpha \in \mathfrak{h}^*$, $H_{\alpha} \in \mathfrak{h}$, $X_{\alpha} \in \mathfrak{g}_{\alpha}$, $Y_{\alpha} \in \mathfrak{g}_{-\alpha}$ とし, これらは次の条件を満たすとする*3.

- (i) $\alpha(H_{\alpha}) = 2 \text{ cbs}$.
- (ii) $(H_{\alpha}, X_{\alpha}, Y_{\alpha})$ は \mathfrak{sl}_2 -三対である.
- (iii) \mathfrak{g} 上の線型写像 $\operatorname{ad}(X_{\alpha})$ と $\operatorname{ad}(Y_{\alpha})$ は局所冪零である.

このとき,

$$\theta_{\alpha} = e^{\operatorname{ad}(X_{\alpha})} e^{\operatorname{ad}(-Y_{\alpha})} e^{\operatorname{ad}(X_{\alpha})} \in \operatorname{Aut}(\mathfrak{q})$$

と定めると,次が成り立つ.

- (1) θ_{α} は \mathfrak{h} を安定にし、 $\theta_{\alpha}|_{\mathfrak{h}}$ は、 $s_{H_{\alpha}}(h) = h \alpha(h)H_{\alpha}$ によって定まる \mathfrak{h} 上の線型写像 $s_{H_{\alpha}}$ に等しい.
- (2) $(\theta_{\alpha}|_{\mathfrak{h}})^*$ は、 $s_{\alpha}(\lambda) = \lambda \lambda(H_{\alpha})\alpha$ によって定まる \mathfrak{h}^* 上の線型写像 s_{α} に等しい.

^{*3} 本小節の範囲では, $(\mathfrak{g},\mathfrak{h})$ が標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数であり, $(H_{\alpha},X_{\alpha},Y_{\alpha})$ が定理 3.10 のように定まる \mathfrak{sl}_2 -三対である場合だけで十分である.一般の場合の主張は,存在定理(定理 3.22)の証明で用いられる.

(3) s_{α} を (2) のとおりに定める.このとき,任意の $\lambda \in \mathfrak{h}^*$ に対して, $\theta_{\alpha}(\mathfrak{g}_{\lambda}) = \mathfrak{g}_{s_{\alpha}(\lambda)}$ である.

証明 (1) 条件 (i) より、直和分解 $\mathfrak{h} = \operatorname{Ker} \alpha \oplus \mathbb{K} \alpha$ が成立する. $h \in \operatorname{Ker} \alpha$ に対しては、 $\operatorname{ad}(X_{\alpha})h = \alpha(h)X_{\alpha} = 0$ かつ $\operatorname{ad}(Y_{\alpha})h = -\alpha(h)Y_{\alpha} = 0$ だから、

$$\theta_{\alpha}(h) = h = s_{H_{\alpha}}(h)$$

である. また、容易に確かめられるように、 $\mathfrak{sl}(2,\mathbb{K})$ (その標準基底を(H,X,Y) と書く)において $e^{\mathrm{ad}(X)}e^{\mathrm{ad}(-Y)}e^{\mathrm{ad}(X)}(H)=-H$ が成り立つから、条件 (ii) と (i) より、

$$\theta_{\alpha}(H_{\alpha}) = -H_{\alpha} = s_{H_{\alpha}}(H_{\alpha})$$

である. よって、 θ_{α} はりを安定にし、 $\theta_{\alpha}|_{\mathfrak{h}}=s_{H_{\alpha}}$ が成り立つ.

(2) (1) より、任意の $\lambda \in \mathfrak{h}^*$ と $h \in \mathfrak{h}$ に対して、

$$(\theta_{\alpha}|_{\mathfrak{h}})^{*}(\lambda)(h) = \lambda(\theta_{\alpha}(h))$$

$$= \lambda(h - \alpha(h)H_{\alpha})$$

$$= \lambda(h) - \lambda(H_{\alpha})\alpha(h)$$

$$= s_{\alpha}(\lambda)(h)$$

である. よって、 $(\theta_{\alpha}|_{\mathfrak{h}})^* = s_{\alpha}$ が成り立つ.

(3) $\lambda \in \mathfrak{h}^*$ とする. θ_{α} は \mathfrak{g} の自己同型だから,

$$egin{aligned} & heta_{lpha}(\mathfrak{g}_{\lambda}) = \{x \in \mathfrak{g} \mid \theta_{lpha}^{-1}(x) \in V_{\lambda}\} \ & = \{x \in \mathfrak{g} \mid 任意の \ h \in \mathfrak{h} \ に対して \ [h, \theta_{lpha}^{-1}(x)] = \lambda(h)\theta_{lpha}^{-1}(x)\} \ & = \{x \in \mathfrak{g} \mid 任意の \ h \in \mathfrak{h} \ に対して \ [\theta_{lpha}(h), x] = \lambda(h)x\} \end{aligned}$$

である.ここで,(1) と (2) より, θ_{α} は $\mathfrak h$ を安定にし, $(\theta_{\alpha}|_{\mathfrak h})^{*-1}=s_{\alpha}^{-1}=s_{\alpha}$ を満たす.よって,上式と合わせて,

$$\theta_{\alpha}(\mathfrak{g}_{\lambda}) = \{x \in \mathfrak{g} \mid 任意の \ h \in \mathfrak{h} \$$
に対して $[h,x] = \lambda(\theta_{\alpha}^{-1}(h))x\}$
$$= \{x \in \mathfrak{g} \mid 任意の \ h \in \mathfrak{h} \$$
に対して $[h,x] = s_{\alpha}(\lambda)(h)x\}$
$$= \mathfrak{g}_{s_{\alpha}(\lambda)}$$

を得る.

定理 3.13 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とする.このとき, $\Delta(\mathfrak{g},\mathfrak{h})$ は $V=\{\alpha\in\mathfrak{h}^*\mid\alpha|\mathbf{z}_{(\mathfrak{g})}=0\}$ 上の被約ルート系であり, $\alpha\in\Delta(\mathfrak{g},\mathfrak{h})$ の双対ルート $\alpha^\vee\in V^*$ は

$$\alpha^{\vee}(\lambda) = \lambda(H_{\alpha}) \qquad (\lambda \in V)$$

によって与えられ、ルート鏡映 s_{α} : $V \to V$ は

$$s_{\alpha}(\lambda) = \lambda - \alpha^{\vee}(\lambda)\alpha = \lambda - \lambda(H_{\alpha})\alpha \qquad (\lambda \in V)$$

によって与えられる。特に、 $(\mathfrak{g},\mathfrak{h})$ が分裂半単純 Lie 代数ならば、 $\Delta(\mathfrak{g},\mathfrak{h})$ は \mathfrak{h}^* 上の被約ルート系である。ここで、 H_{α} は、定理 3.10 によって定まるものとする。

証明 注意 3.4 より, $\Delta(\mathfrak{g},\mathfrak{h})\subseteq V$ である.また,各 $\alpha\in\Delta(\mathfrak{g},\mathfrak{h})$ に対して, $\alpha\in V$ かつ $\alpha(H_{\alpha})=2$ だから,主張の式によって定義される線型写像 $s_{\alpha}\colon V\to V$ は鏡映である.

以下、 $\Delta(\mathfrak{g},\mathfrak{h})$ と鏡映 s_{α} ($\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$) が被約ルート系の公理 (RS1)–(RS4) (「ルート系」 [5, 定義 1.5] を 参照のこと)を満たすことを確かめる.

(RS1) $\Delta(\mathfrak{g},\mathfrak{h})$ が有限であることと 0 を含まないことは明らかである. $h \in \mathfrak{h}$ が任意の $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ に対して $\alpha(h) = 0$ を満たすとすると、ルート空間分解 $\mathfrak{g} = \mathfrak{h} \oplus \bigoplus_{\alpha \in \Delta(\mathfrak{g},\mathfrak{h})} \mathfrak{g}_{\alpha}$ より、 $\mathrm{ad}(h) = 0$ である. すなわち、 $h \in \mathbf{Z}(\mathfrak{g})$ である. これは、V 上の線型形式であって任意の $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ において値 0 をとるものが 0 しかないことを意味する. よって、 $\mathrm{span}\,\Delta(\mathfrak{g},\mathfrak{h}) = V$ である.

(RS2) $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ とし、 \mathfrak{sl}_2 -三対 $(H_\alpha,X_\alpha,Y_\alpha)$ を定理 3.10 のようにとる。すると、系 3.7 より $\mathrm{ad}(X_\alpha)$ と $\mathrm{ad}(Y_\alpha)$ は冪零だから、これらは補題 3.12 の仮定を満たす。したがって、任意の $\lambda \in \mathfrak{h}^*$ に対して、 \mathfrak{g}_λ と $\mathfrak{g}_{s_\alpha(\lambda)}$ は \mathfrak{g} の自己同型によって移り合う。よって、 s_α は $\Delta(\mathfrak{g},\mathfrak{h})$ を安定にする。

(RS3) 補題 3.11 で示したように、任意の $\alpha, \beta \in \Delta(\mathfrak{g}, \mathfrak{h})$ に対して、 $\beta(H_{\alpha}) \in \mathbb{Z}$ である.

(RS4) $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ とする. $ad(H_{\alpha})$ は $\mathfrak{g}_{2\alpha}$ には $2\alpha(H_{\alpha})=4$ 倍写像として作用するから、命題 3.6 (1) と合わせて、

$$\begin{split} \mathfrak{g}_{2\alpha} &= [H_{\alpha}, \mathfrak{g}_{2\alpha}] \\ &\subseteq [\mathfrak{g}_{\alpha}, [\mathfrak{g}_{-\alpha}], \mathfrak{g}_{2\alpha}] \\ &\subseteq [\mathfrak{g}_{\alpha}, [\mathfrak{g}_{-\alpha}, \mathfrak{g}_{2\alpha}]] + [\mathfrak{g}_{-\alpha}, [\mathfrak{g}_{\alpha}, \mathfrak{g}_{2\alpha}]] \\ &\subseteq [\mathfrak{g}_{\alpha}, \mathfrak{g}_{\alpha}] + [\mathfrak{g}_{-\alpha}, \mathfrak{g}_{3\alpha}] \end{split}$$

定理 3.13 の状況で、 $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ とするとき、記号の濫用で、 $\lambda \in \mathfrak{h}^*$ に対しても

$$\alpha^{\vee}(\lambda) = \lambda(H_{\alpha}), \quad s_{\alpha}(\lambda) = \lambda - \alpha^{\vee}(\lambda)\alpha = \lambda - \lambda(H_{\alpha})\alpha$$

として、双対ルート α^{\vee} やルート鏡映 s_{α} を \mathfrak{h}^{*} 上に拡張する。すなわち, $Z = \{\alpha \in \mathfrak{h}^{*} \mid \alpha|_{\mathfrak{h}\cap[\mathfrak{g},\mathfrak{g}]} = 0\}$ と置くと直和分解 $\mathfrak{h}^{*} = V \oplus Z$ が成立するが, α^{\vee} は Z 上では値 0 をとるとして拡張し, s_{α} は Z 上では恒等写像であるとして拡張する。このとき, $\alpha^{\vee} \in \mathfrak{h}^{**}$ は自然な線型同型 $\mathfrak{h}^{**} \cong \mathfrak{h}$ を通して H_{α} に対応するから,しばしばこれらを同一視して $\alpha^{\vee} = H_{\alpha}$ などと書く。また,Weyl 群 $\mathbf{W}(\Delta(\mathfrak{g},\mathfrak{h}))$ の V への作用も,Z 上には自明に作用するとして, \mathfrak{h}^{*} への作用に拡張する。

系 3.14 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする.このとき, $(H_{\alpha})_{\alpha\in\Pi}$ は $\mathfrak{h}'=\mathfrak{h}\cap [\mathfrak{g},\mathfrak{g}]$ の基底である.特に, $(\mathfrak{g},\mathfrak{h})$ が分裂半単純 Lie 代数ならば, $(H_{\alpha})_{\alpha\in\Pi}$ は \mathfrak{h} の基底である.ここで, H_{α} は,定理 3.10 によって定まるものとする.

証明 定理 3.13 とルート系の一般論 [5, 命題 1.13 (1), 命題 2.17] より, $\Delta(\mathfrak{g}, \mathfrak{h})^{\vee} = \{H_{\alpha} \mid \alpha \in \Delta(\mathfrak{g}, \mathfrak{h})\}$ は \mathfrak{h}' 上の被約ルート系であり, $\Pi^{\vee} = \{H_{\alpha} \mid \alpha \in \Pi\}$ はその基底である.特に, $(H_{\alpha})_{\alpha \in \Pi}$ は \mathfrak{h}' の基底である. \square

系 3.15 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数 $,\alpha,\beta\in\Delta(\mathfrak{g},\mathfrak{h})$ を線型独立な二つのルートとし、

$$I_{\beta,\alpha} = \{ j \in \mathbb{Z} \mid \beta + j\alpha \in \Delta(\mathfrak{g},\mathfrak{h}) \}$$

と置く.

- (1) $I_{\beta,\alpha}$ は、 $p, q \in \mathbb{N}$ を用いて $I_{\beta,\alpha} = [-q, p] \cap \mathbb{Z}$ と書ける.
- (2) (1) \mathcal{O} $p \geq q$ \mathcal{E} \mathcal{O} \mathcal{V} \mathcal{V} , $p-q=-n(\beta,\alpha)=-\beta(H_{\alpha})$ \mathcal{V} \mathcal{S} \mathcal{S} .
- (3) (1) の p と q について、 $\gamma = \beta q\alpha$ と置くと、 $p + q = -n(\gamma, \alpha) = -\gamma(H_{\alpha})$ であり、これは 0, 1, 2, 3 のいずれかである.

証明 定理 3.13 とルート系の一般論 [5, 命題 1.29] から従う.

命題 3.16 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とする.二つのルート $\alpha,\beta\in\Delta(\mathfrak{g},\mathfrak{h})$ について, $\alpha+\beta\neq0$ ならば, $[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}]=\mathfrak{g}_{\alpha+\beta}$ である.

証明 $\alpha=\beta$ ならば $\mathfrak{g}_{\alpha+\beta}=\mathfrak{g}_{2\alpha}=0$ だから,主張は明らかである。 $\alpha\neq\pm\beta$ である場合を考える. $\Delta(\mathfrak{g},\mathfrak{h})$ は被約ルート系だから(定理 3.13),このとき, α と β は線型独立である $[5, \, \mathbb{R} \, 1.25]$. \mathfrak{sl}_2 -三対 $(H_\alpha, X_\alpha, Y_\alpha)$ を定理 3.10 のようにとり,これと随伴表現によって \mathfrak{g} を $\mathfrak{sl}(2, \mathbb{K})$ -加群とみなす. $I_{\beta,\alpha}=[-q,p]\cap\mathbb{Z}$ を系 3.15 のとおりに定めると,

$$\mathfrak{s} = \bigoplus_{j \in I_{eta,lpha}} \mathfrak{g}_{eta+jlpha}$$

は $\mathfrak g$ の部分 $\mathfrak s\mathfrak l(2,\mathbb K)$ -加群であり(命題 3.6 (1)),各 $\mathfrak g_{\beta+j\alpha}$ は $\mathfrak s$ のウェイト $(\beta+j\alpha)(H_\alpha)=-(p-q)+2j$ (系 3.15 (2))のウェイト空間であり,これらはすべて 1 次元である(定理 3.10 (1)). したがって,有限 次元 $\mathfrak s\mathfrak l(2,\mathbb K)$ -加群 $\mathfrak s$ のウェイトは -(p+q),-(p+q)+2,…,p+q であり,これらの重複度はすべて 1 だから,系 2.13 (4) より, $\mathfrak s$ は最高ウェイト p+q の有限次元既約 $\mathfrak s\mathfrak l(2,\mathbb K)$ -加群 L(p+q) に同型である. $X=\begin{pmatrix}0&1\\0&0\end{pmatrix}\in\mathfrak s\mathfrak l(2,\mathbb K)$ の L(p+q) への作用は,0 でない各ウェイト空間を,そのウェイトに 2 を加えたウェイト空間に全射に移す.よって,

$$[\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] = \operatorname{ad}(X_{\alpha})\mathfrak{g}_{\beta} = X\mathfrak{g}_{\beta} = \mathfrak{g}_{\alpha+\beta}$$

が成り立つ.

系 3.17 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とし, Π に関する 正ルート全体のなす集合を Δ_+ ,負ルート全体のなす集合を Δ_- と書く.

- (1) $\bigoplus_{\alpha \in \Pi} \mathfrak{g}_{\alpha}$ が生成する \mathfrak{g} の部分 Lie 代数は, $\mathfrak{n}_{+} = \bigoplus_{\alpha \in \Delta_{+}} \mathfrak{g}_{\alpha}$ である.
- (2) $\bigoplus_{\alpha \in -\Pi} \mathfrak{g}_{\alpha}$ が生成する \mathfrak{g} の部分 Lie 代数は、 $\mathfrak{n}_{-} = \bigoplus_{\alpha \in \Delta_{-}} \mathfrak{g}_{\alpha}$ である.
- (3) $\bigoplus_{\alpha \in \Pi \cup (-\Pi)} \mathfrak{g}_{\alpha}$ が生成する \mathfrak{g} の部分 Lie 代数は, $[\mathfrak{g},\mathfrak{g}]$ である.特に, $(\mathfrak{g},\mathfrak{h})$ が分裂半単純 Lie 代数ならば, $\bigoplus_{\alpha \in \Pi \cup (-\Pi)} \mathfrak{g}_{\alpha}$ は \mathfrak{g} を Lie 代数として生成する.

証明 (1) \mathfrak{n}_+ は, \mathfrak{g} の部分 Lie 代数であり(命題 3.6 (1)), $\bigoplus_{\alpha\in \Pi}\mathfrak{g}_\alpha$ を含む.次に, $\beta\in\Delta_+$ とすると,ルート系の一般論 [5, 命題 2.13] より,単純ルートの列 $\alpha_1,\ldots,\alpha_k\in\Pi$ を, $\alpha_1+\cdots+\alpha_k=\beta$ であり,かつ任意の $i\in\{1,\ldots,k\}$ に対して $\alpha_1+\cdots+\alpha_i\in\Delta_+$ であるようにとれる.このとき,命題 3.16 を繰り返し適用することで, $\mathfrak{g}_\beta=[[\mathfrak{g}_{\alpha_1},\mathfrak{g}_{\alpha_2}],\ldots,\mathfrak{g}_{\alpha_k}]$ を得る.よって, $\bigoplus_{\alpha\in\Pi}\mathfrak{g}_\alpha$ は \mathfrak{n}_+ を Lie 代数として生成する.

- (2) (1) と同様である.
- (3) $\bigoplus_{\alpha \in \Pi \cup (-\Pi)} \mathfrak{g}_{\alpha}$ が生成する \mathfrak{g} の部分 Lie 代数を, \mathfrak{g}' と置く. $[\mathfrak{g},\mathfrak{g}]$ は, \mathfrak{g} の部分 Lie 代数であり, $\bigoplus_{\alpha \in \Pi \cup (-\Pi)} \mathfrak{g}_{\alpha}$ を含むから(注意 3.4), $\mathfrak{g}' \subseteq [\mathfrak{g},\mathfrak{g}]$ である.次に,(1) と (2) より, $\bigoplus_{\alpha \in \Delta(\mathfrak{g},\mathfrak{h})} \mathfrak{g}_{\alpha} = \mathfrak{n}_+ \oplus \mathfrak{n}_- \subseteq \mathfrak{g}'$ である.また,任意の $\alpha \in \Pi$ に対して $H_{\alpha} \in [\mathfrak{g}_{\alpha},\mathfrak{g}_{-\alpha}] \subseteq \mathfrak{g}'$ であり(H_{α} は,定理 3.10 によって定まるもの

とする), $(H_{\alpha})_{\alpha \in \Pi}$ は $\mathfrak{h} \cap [\mathfrak{g}, \mathfrak{g}]$ の基底だから(系 3.14), $\mathfrak{h} \cap [\mathfrak{g}, \mathfrak{g}] \subseteq \mathfrak{g}'$ である. よって,

$$[\mathfrak{g},\mathfrak{g}]=(\mathfrak{h}\cap[\mathfrak{g},\mathfrak{g}])\oplusigoplus_{lpha\in\Delta(\mathfrak{g},\mathfrak{h})}\mathfrak{g}_lpha\subseteq\mathfrak{g}'$$

(第1の等号は、注意 3.4 から従う) である. 以上より、 $\mathfrak{g}' = [\mathfrak{g},\mathfrak{g}]$ が成り立つ.

3.4 存在定理

本節の以下の部分では、 $\delta_{\alpha\beta}$ を Kronecker のデルタとする.

 Π をルート系の基底とすると、異なる二つの単純ルート α , $\beta \in \Pi$ に対して、Cartan 整数 $n(\beta,\alpha)$ は 0 以下の整数である [5, 命題 2.2]. 本節の以下の部分では、このことに注意する.

補題 3.18 V を標数 0 の可換体 \mathbb{K} 上の有限次元線型空間とする. Δ を V 上のルート系とし, Π をその基底とする. Π が自由に生成する単位的結合 \mathbb{K} -代数 $\mathbf{T}(\mathbb{K}^{\oplus \Pi})$ ($\mathbb{K}^{\oplus \Pi}$ の標準基底を $(e_{\gamma})_{\gamma \in \Pi}$ と書く)を考え, $\mathbf{T}(\mathbb{K}^{\oplus \Pi})$ 上の線型写像 \hat{H}_{α} , \hat{X}_{α} , \hat{Y}_{α} ($\alpha \in \Pi$) を,

$$\widehat{H}_{\alpha}(e_{\gamma_{1}} \otimes \cdots \otimes e_{\gamma_{k}}) = \left(-\sum_{i=1}^{k} n(\gamma_{i}, \alpha)\right) (e_{\gamma_{1}} \otimes \cdots \otimes e_{\gamma_{k}})$$

$$\widehat{X}_{\alpha}(e_{\gamma_{1}} \otimes \cdots \otimes e_{\gamma_{k}}) = \begin{cases} 0 & (k = 0) \\ (\widehat{Y}_{\gamma_{1}}\widehat{X}_{\alpha} - \delta_{\alpha\gamma_{1}}\widehat{H}_{\alpha})(e_{\gamma_{2}} \otimes \cdots \otimes e_{\gamma_{k}}) & (k \geq 1), \end{cases}$$

$$\widehat{Y}_{\alpha}(e_{\gamma_{1}} \otimes \cdots \otimes e_{\gamma_{k}}) = e_{\alpha} \otimes e_{\gamma_{1}} \otimes \cdots \otimes e_{\gamma_{k}}$$

によって定める(まず \hat{H}_{α} と \hat{Y}_{α} を定め,次にそれらを用いて \hat{X}_{α} を次数 k に関して再帰的に定める).このとき,任意の α , $\beta \in \Pi$ に対して,次が成り立つ.

- (1) $[\widehat{H}_{\alpha}, \widehat{H}_{\beta}] = 0.$
- (2) $[\widehat{H}_{\alpha}, \widehat{X}_{\beta}] = n(\beta, \alpha) \widehat{X}_{\beta}.$
- (3) $[\widehat{H}_{\alpha}, \widehat{Y}_{\beta}] = -n(\beta, \alpha)\widehat{Y}_{\beta}.$
- (4) $[\widehat{X}_{\alpha}, \widehat{Y}_{\beta}] = \delta_{\alpha\beta}\widehat{H}_{\alpha}$.

証明 (1),(4) 明らかである.

(3) 任意の $\gamma_1, \ldots, \gamma_k \in \Pi$ に対して,

$$\begin{split} & [\widehat{H}_{\alpha}, \widehat{Y}_{\beta}](e_{\gamma_{1}} \otimes \cdots \otimes e_{\gamma_{k}}) \\ & = \left(-n(\beta, \alpha) - \sum_{i=1}^{k} n(\beta_{i}, \alpha)\right)(e_{\beta} \otimes e_{\gamma_{1}} \otimes \cdots \otimes e_{\gamma_{k}}) - \left(-\sum_{i=1}^{k} n(\beta_{i}, \alpha)\right)(e_{\beta} \otimes e_{\gamma_{1}} \otimes \cdots \otimes e_{\gamma_{k}}) \\ & = -n(\beta, \alpha)(e_{\beta} \otimes e_{\gamma_{1}} \otimes \cdots \otimes e_{\gamma_{k}}) \\ & = -n(\beta, \alpha)Y_{\beta}(e_{\gamma_{1}} \otimes \cdots \otimes e_{\gamma_{k}}) \end{split}$$

である. よって、 $[\hat{H}_{\alpha}, \hat{Y}_{\beta}] = -n(\beta, \alpha)\hat{Y}_{\beta}$ が成り立つ.

(2) 任意の $\gamma \in \Pi$ に対して, (1), (3), (4) より,

$$\begin{split} 0 &= [\widehat{H}_{\alpha}, [\widehat{X}_{\beta}, \widehat{Y}_{\gamma}]] \\ &= [[\widehat{H}_{\alpha}, \widehat{X}_{\beta}], \widehat{Y}_{\gamma}] + [\widehat{X}_{\beta}, [\widehat{H}_{\alpha}, \widehat{Y}_{\gamma}]] \\ &= [[\widehat{H}_{\alpha}, \widehat{X}_{\beta}], \widehat{Y}_{\gamma}] - n(\gamma, \alpha) [\widehat{X}_{\beta}, \widehat{Y}_{\gamma}] \\ &= [[\widehat{H}_{\alpha}, \widehat{X}_{\beta}] - n(\gamma, \alpha) \widehat{X}_{\beta}, \widehat{Y}_{\gamma}] \\ &= [[\widehat{H}_{\alpha}, \widehat{X}_{\beta}] - n(\beta, \alpha) \widehat{X}_{\beta}, \widehat{Y}_{\gamma}] + (n(\beta, \alpha) - n(\gamma, \alpha)) [\widehat{X}_{\beta}, \widehat{Y}_{\gamma}] \\ &= [[\widehat{H}_{\alpha}, \widehat{X}_{\beta}] - n(\beta, \alpha) \widehat{X}_{\beta}, \widehat{Y}_{\gamma}] + (n(\beta, \alpha) - n(\gamma, \alpha)) \delta_{\beta\gamma} \widehat{H}_{\beta} \\ &= [[\widehat{H}_{\alpha}, \widehat{X}_{\beta}] - n(\beta, \alpha) \widehat{X}_{\beta}, \widehat{Y}_{\gamma}] \end{split}$$

である. よって、任意の $\gamma_1, \ldots, \gamma_k \in \Pi$ に対して

$$([\widehat{H}_{\alpha}, \widehat{X}_{\beta}] - n(\beta, \alpha)\widehat{X}_{\beta})(e_{\gamma_{1}} \otimes \cdots \otimes e_{\gamma_{k}}) = ([\widehat{H}_{\alpha}, \widehat{X}_{\beta}] - n(\beta, \alpha)\widehat{X}_{\beta})\widehat{Y}_{\gamma_{1}} \cdots \widehat{Y}_{\gamma_{k}}1$$

$$= \widehat{Y}_{\gamma_{1}} \cdots \widehat{Y}_{\gamma_{k}}([\widehat{H}_{\alpha}, \widehat{X}_{\beta}] - n(\beta, \alpha)\widehat{X}_{\beta})1$$

$$= 0$$

だから、 $[\hat{H}_{\alpha}, \hat{X}_{\beta}] = n(\beta, \alpha) \hat{X}_{\beta}$ が成り立つ.

補題 3.19 V を標数 0 の可換体 \mathbb{K} 上の有限次元線型空間とする. Δ を V 上の被約ルート系とし, Π をその基底とする. $\widehat{\mathfrak{g}}$ を, $\alpha\in\Pi$ に対する生成元

$$\widetilde{H}_{\alpha}, \quad \widetilde{X}_{\alpha}, \quad \widetilde{Y}_{\alpha}$$

と $\alpha, \beta \in \Pi$ に対する関係式

- (R1) $[\widetilde{H}_{\alpha}, \widetilde{H}_{\beta}] = 0$
- (R2) $[\widetilde{H}_{\alpha}, \widetilde{X}_{\beta}] = n(\beta, \alpha)\widetilde{X}_{\beta}$
- (R3) $[\widetilde{H}_{\alpha}, \widetilde{Y}_{\beta}] = -n(\beta, \alpha)\widetilde{Y}_{\beta}$
- (R4) $[\widetilde{X}_{\alpha}, \widetilde{Y}_{\beta}] = \delta_{\alpha\beta}\widetilde{H}_{\alpha}$

によって定まる Lie 代数とする. $\lambda \in V$ に対して

$$\widetilde{\mathfrak{g}}_{\lambda}=\{x\in\widetilde{\mathfrak{g}}\mid$$
 任意の $\alpha\in \varPi$ に対して $[\widetilde{H}_{\alpha},x]=\alpha^{\vee}(\lambda)x\}$

と書き,

$$\widetilde{\mathfrak{h}} = \widetilde{\mathfrak{g}}_0, \qquad \widetilde{\mathfrak{n}}_+ = \bigoplus_{\lambda \in (\operatorname{span}_{\mathbb{Z}_{\geq 0}} \Pi) \backslash \{0\}} \widetilde{\mathfrak{g}}_{\lambda}, \qquad \widetilde{\mathfrak{n}}_- = \bigoplus_{\lambda \in (\operatorname{span}_{\mathbb{Z}_{\leq 0}} \Pi) \backslash \{0\}} \widetilde{\mathfrak{g}}_{\lambda}$$

と定める.

- (1) 任意の $\lambda, \mu \in V$ に対して、 $[\widetilde{\mathfrak{g}}_{\lambda}, \widetilde{\mathfrak{g}}_{\mu}] \subseteq \widetilde{\mathfrak{g}}_{\lambda+\mu}$ である.
- (2) 各 $\alpha \in \Pi$ に対して $\widetilde{H}_{\alpha} \in \widetilde{\mathfrak{g}}_{0}$, $\widetilde{X}_{\alpha} \in \widetilde{\mathfrak{g}}_{\alpha}$, $\widetilde{Y}_{\alpha} \in \widetilde{\mathfrak{g}}_{-\alpha}$ であり,直和分解 $\widetilde{\mathfrak{g}} = \bigoplus_{\lambda \in V} \widetilde{\mathfrak{g}}_{\lambda}$ が成立する.
- (3) $\widetilde{\mathfrak{h}}$, $\widetilde{\mathfrak{n}}_+$, $\widetilde{\mathfrak{n}}_-$ は $\widetilde{\mathfrak{g}}$ の部分 Lie 代数であり,直和分解 $\widetilde{\mathfrak{g}}=\widetilde{\mathfrak{h}}\oplus\widetilde{\mathfrak{n}}_+\oplus\widetilde{\mathfrak{n}}_-$ が成立する. (したがって, $\lambda\in V\setminus((\operatorname{span}_{\mathbb{Z}_{>0}}\Pi)\cup(\operatorname{span}_{\mathbb{Z}_{<0}}\Pi))$ に対しては, $\widetilde{\mathfrak{g}}_\lambda=0$ である.)
- (4) $(\widetilde{H}_{\alpha})_{\alpha\in\Pi}$ は $\widetilde{\mathfrak{h}}$ の基底である.
- (5) $\widetilde{\mathfrak{n}}_+$ は Lie 代数として $(\widetilde{X}_{\alpha})_{\alpha\in\Pi}$ によって生成される.

(6) $\widetilde{\mathfrak{n}}_{-}$ は Lie 代数として $(\widetilde{Y}_{\alpha})_{\alpha\in\Pi}$ によって生成される. *4

証明 (1) $x \in \widetilde{\mathfrak{g}}_{\lambda}, y \in \widetilde{\mathfrak{g}}_{\mu}$ とすると、任意の $\alpha \in \Pi$ に対して

$$[h, [x, y]] = [[h, x], y] + [x, [h, y]] = \alpha^{\vee}(\lambda)[x, y] + \alpha^{\vee}(\mu)[x, y]$$

だから, $[x,y] \in \widetilde{\mathfrak{g}}_{\lambda+\mu}$ である. よって, $[\widetilde{\mathfrak{g}}_{\lambda}, \widetilde{\mathfrak{g}}_{\mu}] \subseteq \widetilde{\mathfrak{g}}_{\lambda+\mu}$ である.

(2) $\widetilde{H}_{\alpha} \in \widetilde{\mathfrak{g}}_{0}$, $\widetilde{X}_{\alpha} \in \widetilde{\mathfrak{g}}_{\alpha}$, $\widetilde{Y}_{\alpha} \in \widetilde{\mathfrak{g}}_{-\alpha}$ は,それぞれ関係式 (R1), (RS2), (RS3) から従う.

 $\widetilde{\mathfrak{g}}$ は線型空間として「 \widetilde{H}_{α} , \widetilde{X}_{α} , \widetilde{Y}_{α} ($\alpha\in\Pi$) からなる有限列において任意の結合順で Lie 括弧積をとったもの」全体で生成されるが,前段の結果と (1) より,このような元はある $\widetilde{\mathfrak{g}}_{\lambda}$ に含まれる.よって, $\widetilde{\mathfrak{g}}=\sum_{\lambda\in V}\widetilde{\mathfrak{g}}_{\lambda}$ が成り立つ.さらに,線型代数の一般論より,この和は直和である.

(3), (4), (5), (6) $((\widetilde{H}_{\alpha})_{\alpha \in \Pi}$ の線型独立性を除く) (1) より, $\widetilde{\mathfrak{h}}$, $\widetilde{\mathfrak{n}}_+$, $\widetilde{\mathfrak{n}}_-$ は $\widetilde{\mathfrak{g}}$ の部分 Lie 代数である. (2) より,これらの和 $\widetilde{\mathfrak{h}}+\widetilde{\mathfrak{n}}_++\widetilde{\mathfrak{n}}_-$ は直和である.

 $(\widetilde{H}_{\alpha})_{\alpha\in \Pi}, (\widetilde{X}_{\alpha})_{\alpha\in \Pi}, (\widetilde{Y}_{\alpha})_{\alpha\in \Pi}$ が生成する $\widetilde{\mathfrak{g}}$ の部分 Lie 代数を,それぞれ $\widetilde{\mathfrak{h}}', \widetilde{\mathfrak{n}}'_+, \widetilde{\mathfrak{n}}'_-$ と置く.これらは,それぞれ $\widetilde{\mathfrak{h}}, \widetilde{\mathfrak{n}}_+, \widetilde{\mathfrak{n}}_-$ に含まれる.主張を示すためには, $\widetilde{\mathfrak{g}}' = \widetilde{\mathfrak{h}}' \oplus \widetilde{\mathfrak{n}}'_+ \oplus \widetilde{\mathfrak{n}}'_-$ が $\widetilde{\mathfrak{g}}$ 全体に一致することをいえばよい. $\widetilde{\mathfrak{g}}'$ は $\widetilde{\mathfrak{g}}$ の生成元 $\widetilde{H}_{\alpha}, \widetilde{X}_{\alpha}, \widetilde{Y}_{\alpha}$ をすべて含むから,そのためには, $\widetilde{\mathfrak{g}}'$ が $\widetilde{\mathfrak{g}}$ の部分 Lie 代数であることをいえばよい.そのためには, $\widetilde{\mathfrak{g}}'$ が $\mathrm{ad}(\widetilde{H}_{\alpha}), \mathrm{ad}(\widetilde{X}_{\alpha}), \mathrm{ad}(\widetilde{Y}_{\alpha})$ によって安定であることをいえば十分である.このことは, $\widetilde{\mathfrak{g}}'$ が線型空間として

$$\widetilde{H}_{\beta}$$
 $(\beta \in \Pi),$ $[\widetilde{X}_{\beta_k}, \dots, [\widetilde{X}_{\beta_2}, \widetilde{X}_{\beta_1}]]$ $(k \ge 1$ は整数, $\beta_1, \dots, \beta_k \in \Pi)$

の全体によって生成されることと、次の主張から従う.

主張 3.20 上記の元に $\operatorname{ad}(\widetilde{H}_{\alpha})$, $\operatorname{ad}(\widetilde{X}_{\alpha})$, $\operatorname{ad}(\widetilde{Y}_{\alpha})$ を施した結果について、次の表に述べたことが成り立つ. ここで、 $c=n(\beta_1,\alpha)+\cdots+n(\beta_k,\alpha)$ と置いた.

$$\widetilde{H}_{\beta} \qquad [\widetilde{X}_{\beta_{k}}, \dots, [\widetilde{X}_{\beta_{2}}, \widetilde{X}_{\beta_{1}}]] \qquad [\widetilde{Y}_{\beta_{k}}, \dots, [\widetilde{Y}_{\beta_{2}}, \widetilde{Y}_{\beta_{1}}]]
\operatorname{ad}(\widetilde{H}_{\alpha}) \qquad 0 \qquad c[\widetilde{X}_{\beta_{k}}, \dots, [\widetilde{X}_{\beta_{2}}, \widetilde{X}_{\beta_{1}}]] \qquad -c[\widetilde{Y}_{\beta_{k}}, \dots, [\widetilde{Y}_{\beta_{2}}, \widetilde{Y}_{\beta_{1}}]]
\operatorname{ad}(\widetilde{X}_{\alpha}) \qquad -n(\alpha, \beta)\widetilde{X}_{\alpha} \qquad [\widetilde{X}_{\alpha}, [\widetilde{X}_{\beta_{k}}, \dots, [\widetilde{X}_{\beta_{2}}, \widetilde{X}_{\beta_{1}}]]] \qquad \begin{cases} \in \widetilde{\mathfrak{h}}' & (k = 1) \\ \in \widetilde{\mathfrak{n}}'_{+} & (k \geq 2) \end{cases}
\operatorname{ad}(\widetilde{Y}_{\alpha}) \qquad n(\alpha, \beta)\widetilde{Y}_{\alpha} \qquad \begin{cases} \in \widetilde{\mathfrak{h}}' & (k = 1) \\ \in \widetilde{\mathfrak{n}}'_{+} & (k \geq 2) \end{cases} \qquad [\widetilde{Y}_{\alpha}, [\widetilde{Y}_{\beta_{k}}, \dots, [\widetilde{Y}_{\beta_{2}}, \widetilde{Y}_{\beta_{1}}]]] \end{cases}$$

主張 3.20 の証明 \widetilde{H}_{β} の列の主張は,関係式 (R1),(R2),(R3) から従う. $[\widetilde{X}_{\beta_k},\dots,[\widetilde{X}_{\beta_2},\widetilde{X}_{\beta_1}]]$ の列の主張と $[\widetilde{Y}_{\beta_k},\dots,[\widetilde{Y}_{\beta_2},\widetilde{Y}_{\beta_1}]]$ の列の主張は同様に示せるから,前者のみを考える. $\operatorname{ad}(\widetilde{X}_{\alpha})$ の行の主張は,明らかである. $\operatorname{ad}(\widetilde{H}_{\alpha})$ の行の主張は,(1)と(2)より $[\widetilde{X}_{\beta_k},\dots,[\widetilde{X}_{\beta_2},\widetilde{X}_{\beta_1}]] \in \widetilde{\mathfrak{g}}_{\beta_1+\dots+\beta_k}$ であることから従う. $\operatorname{ad}(\widetilde{Y}_{\alpha})$ の主張について,k=1 のときは,関係式 (R4) より,

$$\operatorname{ad}(\widetilde{Y}_{\alpha})\widetilde{X}_{\beta_1} = \delta_{\alpha\beta_1}\widetilde{H}_{\alpha} \in \widetilde{\mathfrak{h}}'$$

^{*4} より強く, $\widetilde{\mathfrak{n}}_+$ と $\widetilde{\mathfrak{n}}_-$ がそれぞれ $(\widetilde{X}_{\alpha})_{\alpha\in\Pi}$ と $(\widetilde{Y}_{\alpha})_{\alpha\in\Pi}$ を基本族とする自由 Lie 代数であることまでいえる.証明は,Bourbaki [3, \S VIII.4.2, Proposition 3] を参照のこと.

である. また, $[\widetilde{X}_{\beta_k},\ldots,[\widetilde{X}_{\beta_2},\widetilde{X}_{\beta_1}]] \in \widetilde{\mathfrak{h}}' \oplus \widetilde{\mathfrak{n}}'_+$ であるとすると, 関係式 (R4) より,

$$\operatorname{ad}(\widetilde{Y}_{\alpha})[\widetilde{X}_{\beta_{k+1}}, \dots, [\widetilde{X}_{\beta_{2}}, \widetilde{X}_{\beta_{1}}]]$$

$$= \operatorname{ad}(\widetilde{X}_{\beta_{k+1}}) \operatorname{ad}(\widetilde{Y}_{\alpha})[\widetilde{X}_{\beta_{k}}, \dots, [\widetilde{X}_{\beta_{2}}, \widetilde{X}_{\beta_{1}}]] - \delta_{\alpha\beta_{k+1}} \operatorname{ad}(\widetilde{H}_{\alpha})[\widetilde{X}_{\beta_{k}}, \dots, [\widetilde{X}_{\beta_{2}}, \widetilde{X}_{\beta_{1}}]]$$

$$\in \operatorname{ad}(\widetilde{X}_{\beta_{k+1}})(\widetilde{\mathfrak{h}}' \oplus \widetilde{\mathfrak{n}}'_{+}) + \widetilde{\mathfrak{n}}'_{+}$$

$$= \widetilde{\mathfrak{n}}'_{+}$$

となる. よって、帰納的に、 $k \geq 2$ のとき $\operatorname{ad}(\widetilde{Y}_{\alpha})[\widetilde{X}_{\beta_k},\ldots,[\widetilde{X}_{\beta_2},\widetilde{X}_{\beta_1}]] \in \widetilde{\mathfrak{n}}'_+$ であることを得る. //

 $(\widetilde{H}_{\alpha})_{\alpha\in\Pi}$ の線型独立性 生成元と関係式で定まる Lie 代数の普遍性と補題 3.18 より,Lie 代数 $\widetilde{\mathfrak{g}}$ の $\mathbf{T}(\mathbb{K}^{\oplus\Pi})$ 上の表現であって \widetilde{H}_{α} , \widetilde{X}_{α} , \widetilde{Y}_{α} をそれぞれ \widehat{H}_{α} , \widehat{X}_{α} , \widehat{Y}_{α} に移すものが,一意に存在する.各 $\alpha\in\Pi$ に対して, $\mathbb{K}^{\oplus\Pi}$ (を $\mathbf{T}(\mathbb{K}^{\oplus\Pi})$ の部分線型空間とみなしたもの)は \widehat{H}_{α} -安定であり, $\mathbb{K}^{\oplus\Pi}$ の標準基底に関する $\widehat{H}_{\alpha}|_{\mathbb{K}^{\oplus\Pi}}$ の行列表示は, (β,β) -成分が $n(\beta,\alpha)$ である対角行列である.Cartan 行列 $(n(\beta,\alpha))_{(\beta,\alpha)\in\Pi\times\Pi}$ は正 則だから [5, 命題 4.2], $(\widehat{H}_{\alpha}|_{\mathbb{K}^{\oplus\Pi}})_{\alpha\in\Pi}$ は $\mathrm{End}(\mathbb{K}^{\oplus\Pi})$ において線型独立である.特に, $(\widetilde{H}_{\alpha})_{\alpha\in\Pi}$ は $\widetilde{\mathfrak{g}}$ において線型独立である.

補題 3.21 V を標数 0 の可換体 \mathbb{K} 上の有限次元線型空間とする. Δ を V 上の被約ルート系とし, Π をその基底とする. $\widetilde{\mathfrak{g}},\,\widetilde{\mathfrak{g}}_{\lambda},\,\widetilde{\mathfrak{n}}_{+},\,\widetilde{\mathfrak{n}}_{-}$ を,補題 3.19 のとおりに定義する. 異なる二つの単純ルート $\alpha,\,\beta\in\Pi$ に対して

$$\widetilde{X}_{\alpha\beta} = \operatorname{ad}(\widetilde{X}_{\alpha})^{1-n(\beta,\alpha)}\widetilde{X}_{\beta}, \qquad \widetilde{Y}_{\alpha\beta} = \operatorname{ad}(\widetilde{Y}_{\alpha})^{1-n(\beta,\alpha)}\widetilde{Y}_{\beta}$$

と定め, $\widetilde{X}_{\alpha\beta}$ の全体が生成する $\widetilde{\mathfrak{g}}$ のイデアルを $\widetilde{\mathfrak{a}}_+$ と置き, $\widetilde{Y}_{\alpha\beta}$ の全体が生成する $\widetilde{\mathfrak{g}}$ のイデアルを $\widetilde{\mathfrak{a}}_-$ と置く.このとき,

$$\widetilde{\mathfrak{a}}_{+} = \bigoplus_{\lambda \in (\operatorname{span}_{\mathbb{Z}_{\geq 0}} \Pi) \setminus \{0\}} (\widetilde{\mathfrak{a}}_{+} \cap \widetilde{\mathfrak{g}}_{\lambda}) \subseteq \widetilde{\mathfrak{n}}_{+}, \qquad \widetilde{\mathfrak{a}}_{-} = \bigoplus_{\lambda \in (\operatorname{span}_{\mathbb{Z}_{\leq 0}} \Pi) \setminus \{0\}} (\widetilde{\mathfrak{a}}_{-} \cap \widetilde{\mathfrak{g}}_{\lambda}) \subseteq \widetilde{\mathfrak{n}}_{-}$$

が成り立つ.

証明 どちらも同様だから、 $\tilde{\mathfrak{a}}_+$ に関する主張を示す。 $\tilde{\mathfrak{a}}_+$ は $\tilde{\mathfrak{g}}$ のイデアルであり、特に $\operatorname{ad}(\tilde{\mathfrak{h}})$ -安定だから、線型代数の一般論より、

$$\widetilde{\mathfrak{a}}_+ = \bigoplus_{\lambda \in V} (\widetilde{\mathfrak{a}}_+ \cap \widetilde{\mathfrak{g}}_\lambda)$$

が成り立つ。あとは, $\widetilde{\mathfrak{a}}_+$ が $\widetilde{\mathfrak{n}}_+ = \bigoplus_{\lambda \in (\operatorname{span}_{\mathbb{Z}_{\geq 0}} \Pi) \setminus \{0\}} \widetilde{\mathfrak{g}}_\lambda$ に含まれることを示せばよい。以下, $\widetilde{X}_{\alpha\beta}$ の全体が生成する $\widetilde{\mathfrak{g}}$ の部分線型空間を, $\widetilde{\mathfrak{a}}_+^0$ と置く.

まず、 $[\widetilde{\mathfrak{n}}_-,\widetilde{\mathfrak{a}}_+^0]=0$ を示す。 $\widetilde{\mathfrak{n}}_-$ は Lie 代数として $(\widetilde{Y}_{\alpha})_{\alpha\in\Pi}$ によって生成されるから(補題 3.19 (6)),そのためには,任意の α , β , $\gamma\in\Pi$ ($\alpha\neq\beta$) に対して $[\widetilde{Y}_{\gamma}\widetilde{X}_{\alpha\beta}]=0$ であることをいえばよい。 $\gamma\neq\alpha$ のとき,関係式 (R2) と (R4) より,

$$\begin{split} [\widetilde{Y}_{\gamma}, \widetilde{X}_{\alpha\beta}] &= \operatorname{ad}(\widetilde{Y}_{\gamma}) \operatorname{ad}(\widetilde{X}_{\alpha})^{1-n(\beta,\alpha)} \widetilde{X}_{\beta} \\ &= \operatorname{ad}(\widetilde{X}_{\alpha})^{1-n(\beta,\alpha)} \operatorname{ad}(\widetilde{Y}_{\gamma}) \widetilde{X}_{\beta} \\ &= -\delta_{\beta\gamma} \operatorname{ad}(\widetilde{X}_{\alpha})^{1-n(\beta,\alpha)} \widetilde{H}_{\beta} \\ &= \delta_{\beta\gamma} n(\alpha,\beta) \operatorname{ad}(\widetilde{X}_{\alpha})^{-n(\beta,\alpha)} \widetilde{X}_{\alpha} \\ &= 0 \end{split}$$

である $(n(\beta,\alpha)=0$ ならば $n(\alpha,\beta)=0$ であり, $n(\beta,\alpha)<0$ ならば $\mathrm{ad}(\widetilde{X}_{\alpha})^{-n(\beta,\alpha)}\widetilde{X}_{\alpha}=0$ だから,最後の等式が成り立つ). $\gamma=\alpha$ のとき,関係式 (R2),(R3),(R4) と補題 2.10(2)より,

$$\begin{split} [\widetilde{Y}_{\alpha}, \widetilde{X}_{\alpha\beta}] &= \operatorname{ad}(\widetilde{Y}_{\alpha}) \operatorname{ad}(\widetilde{X}_{\alpha})^{1 - n(\beta, \alpha)} \widetilde{X}_{\beta} \\ &= \operatorname{ad}(\widetilde{X}_{\alpha})^{1 - n(\beta, \alpha)} \operatorname{ad}(\widetilde{Y}_{\alpha}) \widetilde{X}_{\beta} - (1 - n(\beta, \alpha)) \operatorname{ad}(\widetilde{X}_{\alpha})^{- n(\beta, \alpha)} (\operatorname{ad}(\widetilde{H}_{\alpha}) - n(\beta, \alpha)) \widetilde{X}_{\beta} \\ &= 0 \end{split}$$

である. よって、いずれの場合にも、 $[\widetilde{Y}_{\gamma}\widetilde{X}_{\alpha\beta}]=0$ が成り立つ.

次に、 $\tilde{\mathfrak{a}}_+ \subseteq \tilde{\mathfrak{n}}_+$ を示す。 $\tilde{\mathfrak{g}}$ の随伴表現に対応する包絡代数の表現を $\rho: \mathbf{U}(\tilde{\mathfrak{g}}) \to \mathrm{End}(\tilde{\mathfrak{g}})$ と書くと、

$$\widetilde{\mathfrak{a}}_{+} = \rho(\mathbf{U}(\widetilde{\mathfrak{g}}))\widetilde{\mathfrak{a}}_{+}^{0}$$

$$= \rho(\mathbf{U}(\widetilde{\mathfrak{g}}))\rho(\mathbf{U}(\widetilde{\mathfrak{h}}))\rho(\mathbf{U}(\widetilde{\mathfrak{h}}))\widetilde{\mathfrak{a}}_{+}^{0} \qquad (補題 3.19 (3), Poincaré-Birkhoff-Witt の定理 [4, 系 2.5]*5)$$

$$= \rho(\mathbf{U}(\widetilde{\mathfrak{n}}_{+}))\rho(\mathbf{U}(\widetilde{\mathfrak{h}}))\widetilde{\mathfrak{a}}_{+}^{0} \qquad (前段の結果)$$

$$\subseteq \rho(\mathbf{U}(\widetilde{\mathfrak{n}}_{+}))\widetilde{\mathfrak{a}}_{+}^{0} \qquad (補題 3.19 (1), (2) & () [\widetilde{\mathfrak{h}}, \widetilde{X}_{\alpha\beta}] \subseteq \mathbb{K}\widetilde{X}_{\alpha\beta})$$

$$\subseteq \widetilde{\mathfrak{n}}_{+} \qquad (\widetilde{\mathfrak{a}}_{+}^{0} \subseteq \widetilde{\mathfrak{n}}_{+})$$

である. これで、主張が示された.

定理 3.22(存在定理) V を標数 0 の可換体 $\mathbb K$ 上の有限次元線型空間とする. Δ を V 上の被約ルート系とし、 Π をその基底とする. $\mathfrak g$ を, $\alpha\in\Pi$ に対する生成元

$$H_{\alpha}$$
, X_{α} , Y_{α}

と α , $\beta \in \Pi$ に対する関係式

- (R1) $[H_{\alpha}, H_{\beta}] = 0$
- (R2) $[H_{\alpha}, X_{\beta}] = n(\beta, \alpha) X_{\beta}$
- (R3) $[H_{\alpha}, Y_{\beta}] = -n(\beta, \alpha)Y_{\beta}$
- (R4) $[X_{\alpha}, Y_{\beta}] = \delta_{\alpha\beta} H_{\alpha}$
- (R5) $\operatorname{ad}(X_{\alpha})^{1-n(\beta,\alpha)}X_{\beta}=0$ ($\alpha \neq \beta$ の場合)
- (R6) $\operatorname{ad}(Y_{\alpha})^{1-n(\beta,\alpha)}Y_{\beta}=0 \ (\alpha \neq \beta \text{ の場合})$

によって定まる Lie 代数とし、 $\mathfrak{h} = \operatorname{span}\{H_{\alpha} \mid \alpha \in \Pi\}$ と定める.

- (1) (g, h) は分裂半単純 Lie 代数である.
- (2) $(H_{\alpha})_{\alpha \in \Pi}$ は \mathfrak{h} の基底である.
- (3) (2) より,各 $\alpha \in \Pi$ に対して α^{\vee} を H_{α} に移すことで V^{*} から \mathfrak{h} への線型同型写像が定まるが,これが 誘導する線型同型写像 $\Phi \colon V \to \mathfrak{h}^{*}$ は,ルート系 Δ から $\Delta(\mathfrak{g},\mathfrak{h})$ への同型である.

証明 補題 3.19 と補題 3.21 の記号を用いると、 \mathfrak{g} は商 Lie 代数 $\widetilde{\mathfrak{g}}/(\widetilde{\mathfrak{a}}_+ \oplus \widetilde{\mathfrak{a}}_-)$ であり、等化準同型を $\varpi: \widetilde{\mathfrak{g}} \to \mathfrak{g}$

^{*5} Poincaré—Birkhoff—Witt の定理(の定式化の一つ)は、「 $\mathfrak g$ が(任意の可換体上の)Lie 代数であり、 $(x_i)_{i\in I}$ が $\mathfrak g$ の全順序集合 I で添字付けられた基底であるとき、 $n\in\mathbb N$ と $i_1,\ldots,i_n\in I$ が $i_1\le \cdots \le i_n$ を満たす範囲を動くときの $x_{i_1}\cdots x_{i_n}$ の全体 が、包絡代数 $\mathbf U(\mathfrak g)$ の基底をなす」ことを主張している。この主張のうち、「(線型空間として)生成する」ことは、帰納法によって容易に証明できる。ここで必要なのは、「(線型空間として)生成する」ことだけである。

と書くと, $\varpi(\widetilde{H}_{\alpha}) = H_{\alpha}$, $\varpi(\widetilde{X}_{\alpha}) = X_{\alpha}$, $\varpi(\widetilde{Y}_{\alpha}) = Y_{\alpha}$ である.補題 3.19 (2), (3) より,直和分解

$$\widetilde{\mathfrak{g}} = \bigoplus_{\lambda \in V} \widetilde{\mathfrak{g}}_{\lambda} = \bigoplus_{\lambda \in (\operatorname{span}_{\mathbb{Z}_{>0}} \Pi) \cup (\operatorname{span}_{\mathbb{Z}_{<0}} \Pi)} \widetilde{\mathfrak{g}}_{\lambda}$$

が成立する. このことと補題 3.21 より, $\mathfrak{g}_{\lambda}=\varpi(\widetilde{\mathfrak{g}}_{\lambda})=\widetilde{\mathfrak{g}}_{\lambda}/((\widetilde{\mathfrak{a}}_{+}\oplus\widetilde{\mathfrak{a}}_{-})\cap\widetilde{\mathfrak{g}}_{\lambda})$ と置くと, 直和分解

$$\mathfrak{g} = \bigoplus_{\lambda \in V} \mathfrak{g}_{\lambda} = \bigoplus_{\lambda \in (\operatorname{span}_{\mathbb{Z}_{>0}} \Pi) \cup (\operatorname{span}_{\mathbb{Z}_{<0}} \Pi)} \mathfrak{g}_{\lambda} \tag{*}$$

が成立する.

直和分解 (*) における $\lambda=0$ に対応する因子については, $(\tilde{\mathfrak{a}}_+\oplus \tilde{\mathfrak{a}}_-)\cap \tilde{\mathfrak{g}}_0=0$ だから(補題 3.21), ϖ は $\tilde{\mathfrak{h}}=\tilde{\mathfrak{g}}_0$ から \mathfrak{g}_0 への同型を与える. $(\tilde{H}_\alpha)_{\alpha\in\Pi}$ は $\tilde{\mathfrak{h}}$ の基底だから, $(H_\alpha)_{\alpha\in\Pi}$ の基底である.これで (2) が示され,したがって,線型同型写像 $\Phi\colon V\to\mathfrak{h}^*$ を (3) のように定義できる.

 $\lambda \in V$ に対して

$$\mathfrak{g}_{\lambda} \subseteq \{x \in \mathfrak{g} \mid \text{任意の } \alpha \in \Pi \text{ に対して } [H_{\alpha}, x] = \alpha^{\vee}(\lambda)x\}$$

だが、 λ が動くとき、左辺の和は直和分解 (*) を与え、右辺の和は線型代数の一般論より直和だから、上式では等号が成り立つ。 (3) の線型同型写像 Φ : $V \to \mathfrak{h}^*$ を用いれば、

$$\mathfrak{g}_{\lambda} = \{ x \in \mathfrak{g} \mid \text{任意の } \lambda \in \Pi \text{ に対して } [H_{\alpha}, x] = \alpha^{\vee}(\lambda)x \}$$

$$= \{ x \in \mathfrak{g} \mid \text{任意の } h \in \mathfrak{h} \text{ に対して } [h, x] = \Phi(\lambda)(h)x \} \tag{**}$$

とも書ける.

主張 3.23 $\alpha \in \Pi$ とする.

- (1) \mathfrak{g} 上の線型写像 $\operatorname{ad}(X_{\alpha})$ と $\operatorname{ad}(Y_{\alpha})$ は局所冪零である.
- (2) \mathfrak{g} の自己同型 θ_{α} を

$$\theta_{\alpha} = e^{\operatorname{ad}(X_{\alpha})} e^{\operatorname{ad}(-Y_{\alpha})} e^{\operatorname{ad}(X_{\alpha})} \in \operatorname{Aut}(\mathfrak{q})$$

と定めると((1) より可能である),任意の $\lambda \in V$ に対して, $\theta_{\alpha}(\mathfrak{g}_{\lambda}) = \mathfrak{g}_{s_{\alpha}(\lambda)}$ が成り立つ.

主張 3.23 の証明 (1) どちらも同様だから、 $\operatorname{ad}(X_\alpha)$ が局所冪零であることを示す。 $\operatorname{ad}(X_\alpha)$ は $\mathfrak g$ 上の導分 だから、 $\operatorname{ad}(X_\alpha)$ を繰り返し施すと 0 になる元全体は $\mathfrak g$ の部分 Lie 代数をなす。任意の $\beta\in\Pi$ に対して、 H_β 、 X_β,Y_β に $\operatorname{ad}(X_\alpha)$ を繰り返し施すと 0 になることを示せばよい。これは、

$$\begin{aligned} \operatorname{ad}(X_{\alpha})^{2}H_{\beta} &= \operatorname{ad}(X_{\alpha})(-n(\beta,\alpha)X_{\alpha}) = 0, \\ \operatorname{ad}(X_{\alpha})X_{\alpha} &= 0, \\ \operatorname{ad}(X_{\alpha})^{1-n(\beta,\alpha)}X_{\beta} &= 0 \\ \operatorname{ad}(X_{\alpha})^{3}X_{\beta} &= \operatorname{ad}(X_{\alpha})^{2}(\delta_{\alpha\beta}H_{\alpha}) = 0 \end{aligned} \qquad (\beta \neq \alpha),$$

であることから従う.

(2) $\Phi(\alpha)(H_{\alpha}) = \alpha^{\vee}(\alpha) = 2$ であり、 \mathfrak{g}_{λ} は (**) のように書け、 $H_{\alpha} \neq 0$ であることと関係式 (R2), (R3), (R4) より $(H_{\alpha}, X_{\alpha}, Y_{\alpha})$ は \mathfrak{sl}_2 -三対である(注意 3.9).よって, $\Phi(\alpha)$ と H_{α} , X_{α} , Y_{α} は補題 3.12 の仮定を満たし,主張はこの補題の (3) から従う. //

主張 3.24 \mathfrak{g}_{λ} $(\lambda \in V)$ は、 $\lambda = 0$ ならば \mathfrak{h} であり、 $\lambda \in \Delta$ ならば 1 次元であり、それ以外ならば 0 である.特に、 \mathfrak{g} は有限次元であり、直和分解

$$\mathfrak{g}=\mathfrak{h}\oplus\bigoplus_{\alpha\in\varDelta}\mathfrak{g}_\alpha$$

が成立する.

主張 3.24 の証明 $\mathfrak{g}_0=\mathfrak{h}$ はすでに示した. (*) より, $\mathfrak{g}_\lambda\neq 0$ となりうるのは, $\lambda\in(\operatorname{span}_{\mathbb{Z}_{\geq 0}}\Pi)\cup(\operatorname{span}_{\mathbb{Z}_{\leq 0}}\Pi)$ のときだけである. $\lambda\in\mathbb{Z}\Delta$ が一つのルートの整数倍として書けなければ, ある $s\in\mathbf{W}(\Delta)$ が存在して $s(\lambda)\notin(\operatorname{span}_{\mathbb{Z}_{\geq 0}}\Pi)\cup(\operatorname{span}_{\mathbb{Z}_{\leq 0}}\Pi)$ となるから [5, 命題 2.15],主張 3.23 (2) より, $\mathfrak{g}_\lambda=0$ である. 以下,ルート $\alpha\in\Delta$ と正の整数 m に対して,

$$\dim \mathfrak{g}_{m\alpha} = \begin{cases} 1 & (m=1) \\ 0 & (m \ge 2) \end{cases}$$

を示す.被約ルート系 Δ の任意のルートが Weyl 群の作用によって単純ルートに移せる [5, 定理 2.10 (2)] ことと主張 3.23 (2) より,単純ルート $\alpha \in \Pi$ に対してこれを示せば十分である. $\widetilde{\mathfrak{n}}_+ = \bigoplus_{\lambda \in (\operatorname{span}_{\mathbb{Z}_{\geq 0}}\Pi) \setminus \{0\}} \widetilde{\mathfrak{g}}_\lambda$ は Lie 代数として $(\widetilde{X}_\beta)_{\beta \in \Pi}$ によって生成されるから(補題 3.19 (5)), $\mathfrak{n}_+ = \varpi(\widetilde{\mathfrak{n}}_+) = \bigoplus_{\lambda \in (\operatorname{span}_{\mathbb{Z}_{\geq 0}}\Pi) \setminus \{0\}} \mathfrak{g}_\lambda$ は Lie 代数として X_α によって生成される.したがって, \mathfrak{n}_+ は線型空間として

 $X_{\beta_1}, \ldots, X_{\beta_k}$ において任意の結合順で Lie 括弧積をとったもの($k \in \mathbb{N}_{>0}$, $\beta_1, \ldots, \beta_k \in \Pi$) (***) の全体によって生成される.(***)は直和因子 $\mathfrak{g}_{\beta_1+\cdots+\beta_k}$ に属するが(補題 3.21 (1)), $\beta_1+\cdots+\beta_k=m\alpha$ となるのは k=m かつ $\beta_1=\cdots=\beta_k=\alpha$ のときだけである. $m\geq 2$ のとき、(***)は常に 0 だから, $\mathfrak{g}_{m\alpha}=0$ である.m=1 のとき、(***)は X_{α} だから, $\mathfrak{g}_{\alpha}=\mathbb{K}X_{\alpha}$ である.もし $X_{\alpha}=0$ ならば $H_{\alpha}=[X_{\alpha},Y_{\alpha}]=0$ となりすでに示した(2)に矛盾するから, $X_{\alpha}\neq 0$ であり, $\dim\mathfrak{g}_{\alpha}=1$ を得る.これで,主張が示された. //

主張 3.25 の証明 \mathfrak{g} が半単純であること \mathfrak{g} の任意の可解イデアル \mathfrak{r} が $\mathfrak{0}$ であることを示す. \mathfrak{r} は \mathfrak{g} のイデアルであり,特に $\mathrm{ad}(\mathfrak{h})$ -安定だから,主張 \mathfrak{g} 3.24 と線型代数の一般論より,直和分解

主張 3.25 $(\mathfrak{g},\mathfrak{h})$ は分裂半単純 Lie 代数であり、そのルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ は $\Phi(\Delta)$ に等しい.

$$\mathfrak{r}=(\mathfrak{r}\cap\mathfrak{h})\oplus\bigoplus_{lpha\inarDelta}(\mathfrak{r}\cap\mathfrak{g}_lpha)$$

が成立する.

まず、 $\mathfrak{r} \subseteq \mathfrak{h}$ を示す。上式より、そのためには、任意のルート $\alpha \in \Delta$ に対して $\mathfrak{r} \cap \mathfrak{g}_{\alpha} = 0$ を示せばよい。被約ルート系 Δ の任意のルートが Weyl 群の作用によって単純ルートに移せる [5, 定理 2.10 (2)] ことと主張 3.23 (2) より、単純ルート $\alpha \in \Pi$ に対してこれを示せば十分である。この場合、主張 3.24 より、 $\mathfrak{g}_{\alpha} = \mathbb{K} X_{\alpha}$ である。また、関係式 (R2)、(R3)、(R4) と $H_{\alpha} \neq 0$ であることより $(H_{\alpha}, X_{\alpha}, Y_{\alpha})$ は \mathfrak{sl}_2 -三対だから(注意 3.9)、 $\mathfrak{span}\{H_{\alpha}, X_{\alpha}, Y_{\alpha}\}$ は \mathfrak{g} の単純部分 Lie 代数である。よって、

$$\mathfrak{r}\cap\mathfrak{g}_{\alpha}=\mathfrak{r}\cap\mathbb{K}X_{\alpha}\subseteq\mathfrak{r}\cap\operatorname{span}\{H_{\alpha},X_{\alpha},Y_{\alpha}\}=0$$

が成り立つ.

次に、 $\mathfrak{r}=0$ を示す。 $\alpha\in\Pi$ を任意にとる。前段で示したように $\mathfrak{r}\subseteq\mathfrak{h}$ であり、(**) が成り立つから、 $[\mathfrak{r},\mathfrak{g}_{\alpha}]=\varPhi(\alpha)(\mathfrak{r})\mathfrak{g}_{\alpha}$ である。一方で、 \mathfrak{r} は \mathfrak{g} のイデアルだから、 $[\mathfrak{r},\mathfrak{g}_{\alpha}]\subseteq\mathfrak{r}\subseteq\mathfrak{h}$ である。したがって、 $\varPhi(\alpha)(\mathfrak{r})=0$ である。任意の $\alpha\in\Pi$ に対してこれが成り立ち、 $\varPhi(\Pi)$ は \mathfrak{h}^* の基底だから、 $\mathfrak{r}=0$ である。

 \mathfrak{h} が \mathfrak{g} の分裂化 Cartan 部分代数であること (**) のとおり \mathfrak{g} は $\mathrm{ad}(\mathfrak{h})$ の同時固有空間の直和に同時固有値 0 の同時固有空間は \mathfrak{h} である. よって, \mathfrak{h} は \mathfrak{g} の分裂化 Cartan 部分代数である(定理 1.35).

$$\Delta(\mathfrak{g},\mathfrak{h})=\Phi(\Delta)$$
 (**) と主張 3.24 から従う. //

これで、すべての主張が示された.

3.5 一意性定理と同型定理

命題 3.26 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする.各 $\alpha\in\Pi$ に対して, \mathfrak{sl}_2 -三対 $(H_\alpha,X_\alpha,Y_\alpha)$ を定理 3.10 のようにとる.このとき,任意の $\alpha,\beta\in\Pi$ に対して,次が成り立つ.

- (1) $[H_{\alpha}, H_{\beta}] = 0$.
- (2) $[H_{\alpha}, X_{\beta}] = n(\beta, \alpha) X_{\beta}$.
- (3) $[H_{\alpha}, Y_{\beta}] = -n(\beta, \alpha)Y_{\beta}$.
- (4) $[X_{\alpha}, Y_{\beta}] = \delta_{\alpha\beta} H_{\alpha}$.
- (5) $\operatorname{ad}(X_{\alpha})^{1-n(\beta,\alpha)}X_{\beta}=0$ ($\alpha\neq\beta$ の場合).
- (6) $\operatorname{ad}(Y_{\alpha})^{1-n(\beta,\alpha)}Y_{\beta}=0$ ($\alpha \neq \beta$ の場合).

証明 (1), (2), (3) 明らかである.

- (4) $[X_{\alpha},Y_{\alpha}]=H_{\alpha}$ であることは明らかである. $\alpha \neq \beta$ であるとすると, ルート系の基底の定義より $\alpha-\beta \notin \Delta(\mathfrak{g},\mathfrak{h}) \cup \{0\}$ だから, $[X_{\alpha},Y_{\beta}] \in [\mathfrak{g}_{\alpha},\mathfrak{g}_{\beta}] \subseteq \mathfrak{g}_{\alpha-\beta}=0$ である (命題 3.6 (1)).
- (5) $\alpha \neq \beta$ であるとする. $I_{\beta,\alpha} = \{j \in \mathbb{Z} \mid \beta + j\alpha \in \Delta(\mathfrak{g},\mathfrak{h})\}$ と置くと、系 3.15 (1) より、 $p, q \in \mathbb{N}$ を用いて $I_{\beta,\alpha} = [-q,p] \cap \mathbb{Z}$ と書ける. ルート系の基底の定義より $\beta \alpha \notin \Delta(\mathfrak{g},\mathfrak{h})$ だから、q = 0 であり、系 3.15 (2) と合わせて $p = p q = -n(\beta,\alpha)$ を得る. よって、

$$\operatorname{ad}(X_{\alpha})^{1-n(\beta,\alpha)}X_{\beta} \in \operatorname{ad}(\mathfrak{g}_{\alpha})^{1-n(\beta,\alpha)}\mathfrak{g}_{\beta} \subseteq \mathfrak{g}_{\beta+(1-n(\beta,\alpha))\alpha} = 0$$

である(命題3.6(1)).

定理 3.27(一意性定理) $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂半単純 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする.各 $\alpha\in\Pi$ に対して, \mathfrak{sl}_2 -三対 $(H_\alpha,X_\alpha,Y_\alpha)$ を定理 3.10 のようにとる. $(\mathfrak{g}_0,\mathfrak{h}_0)$ を,被約ルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ とその基底 Π から存在定理(定理 3.22)の方法で定まる分裂半単純 Lie 代数とする(ただし,存在定理における H_α , X_α , Y_α を,ここではそれぞれ $H_{0,\alpha}$, $X_{0,\alpha}$, $Y_{0,\alpha}$ と書く).このとき,準同型 ϕ : $\mathfrak{g}_0\to\mathfrak{g}$ であって $H_{0,\alpha}$, $X_{0,\alpha}$, $Y_{0,\alpha}$ をそれぞれ H_α , X_α , Y_α に移すものが一意に存在する.さらに,この ϕ は, $(\mathfrak{g}_0,\mathfrak{h}_0)$ から $(\mathfrak{g},\mathfrak{h})$ への同型である.

証明 生成元と関係式で定まる Lie 代数の普遍性と命題 3.26 より,準同型 ϕ : $\mathfrak{g}_0 \to \mathfrak{g}$ であって $H_{0,\alpha}$, $X_{0,\alpha}$, $Y_{0,\alpha}$ をそれぞれ H_{α} , X_{α} , Y_{α} に移すものが一意に存在する. X_{α} と Y_{α} の全体は \mathfrak{g} を Lie 代数として生成する から(系 3.17 (3)),この ϕ は全射である.さらに,存在定理(定理 3.22 (3))より,ルート系 $\Delta(\mathfrak{g}_0,\mathfrak{h}_0)$ と $\Delta(\mathfrak{g},\mathfrak{h})$ は同型だから,

$$\dim \mathfrak{g}_0 = \dim \mathfrak{h}_0^* + \# \Delta(\mathfrak{g}_0, \mathfrak{h}_0) = \dim \mathfrak{h}^* + \# \Delta(\mathfrak{g}, \mathfrak{h}) = \dim \mathfrak{g}$$

が成り立つ. よって、 ϕ は同型である. さらに、 ϕ は、 $\mathfrak{h}_0 = \operatorname{span}\{H_{0,\alpha} \mid \alpha \in \Pi\}$ を $\mathfrak{h} = \operatorname{span}\{H_{\alpha} \mid \alpha \in \Pi\}$ に移すから、 $(\mathfrak{g}_0,\mathfrak{h}_0)$ から $(\mathfrak{g},\mathfrak{h})$ への同型である.

定理 3.28(同型定理) $(\mathfrak{g}_1,\mathfrak{h}_1)$ と $(\mathfrak{g}_2,\mathfrak{h}_2)$ を標数 0 の可換体 \mathbb{K} 上の分裂半単純 Lie 代数とし, Π_1 と Π_2 を それぞれルート系 $\Delta(\mathfrak{g}_1,\mathfrak{h}_1)$ と $\Delta(\mathfrak{g}_2,\mathfrak{h}_2)$ の基底とする。 $\Phi:\mathfrak{h}_1^*\to\mathfrak{h}_2^*$ をルート系 $\Delta(\mathfrak{g}_1,\mathfrak{h}_1)$ から $\Delta(\mathfrak{g}_2,\mathfrak{h}_2)$ への同型であって Π_1 を Π_2 に移すものとし,各 $\alpha\in\Pi_1$ に対して, $\phi_\alpha:(\mathfrak{g}_1)_\alpha\to(\mathfrak{g}_2)_{\Phi(\alpha)}$ を線型同型とする。このとき, $(\mathfrak{g}_1,\mathfrak{h}_1)$ から $(\mathfrak{g}_2,\mathfrak{h}_2)$ への同型 ϕ であって

$$(\phi|_{\mathfrak{h}_1})^{*-1} = \Phi, \qquad \phi|_{(\mathfrak{g}_1)_{\alpha}} = \phi_{\alpha} \qquad (\alpha \in \Pi_1)$$

を満たすものが一意に存在する.

証明 各 $i \in \{1,2\}$ と $\alpha \in \Pi_i$ に対して, \mathfrak{g}_i における \mathfrak{sl}_2 -三対 $(H_{i,\alpha}, X_{i,\alpha}, Y_{i,\alpha})$ を定理 3.10 のようにとる.必要ならば各 $X_{2,\alpha}$ をスカラー倍だけ調整して, $\phi_{\alpha}(X_{1,\alpha}) = X_{2,\alpha}$ であるとする.

 ϕ を $(\mathfrak{g}_1,\mathfrak{h}_1)$ から $(\mathfrak{g}_2,\mathfrak{h}_2)$ への同型とする. 各 \mathfrak{g}_{α} は 1 次元だから(定理 3.10 (1)), $\phi|_{(\mathfrak{g}_1)_{\alpha}}=\phi_{\alpha}$ であるための必要十分条件は,

$$\phi(X_{1,\alpha}) = X_{2,\Phi(\alpha)} \tag{*}$$

であることである.また,線型同型写像 Φ^{*-1} : $\mathfrak{h}_1^* \to \mathfrak{h}_2^*$ は各 $H_{1,\alpha} = \alpha^\vee$ を $H_{2,\Phi(\alpha)} = \Phi(\alpha)^\vee$ に移すから, $(\phi|_{\mathfrak{h}_1})^{*-1} = \Phi$ であるための必要十分条件は,任意の $\alpha \in \Pi_1$ に対して

$$\phi(H_{1,\alpha}) = H_{2,\Phi(\alpha)} \tag{**}$$

であることである. 次に, ϕ が任意の $\alpha \in \Pi_1$ に対して (*) と (**) を満たすとする.すると,各 $\alpha \in \Pi_1$ に対して, $\phi(Y_{1,\alpha}) = \phi((\mathfrak{g}_1)_{-\alpha}) = (\mathfrak{g}_2)_{-\Phi(\alpha)}$ であり, $(\mathfrak{g}_2)_{-\Phi(\alpha)}$ は 1 次元だから(定理 3.10 (1)),ある $c_\alpha \in \mathbb{K}$ を用いて $\phi(Y_{1,\alpha}) = c_\alpha Y_{2,\Phi(\alpha)}$ と書ける.ところが,

$$\begin{split} H_{2,\varPhi(\alpha)} &= \varPhi(H_{1,\alpha}) \\ &= \varPhi([X_{1,\alpha},Y_{2,\alpha}]) \\ &= [\varPhi(X_{1,\alpha}),\varPhi(Y_{1,\alpha})] \\ &= c_{\alpha}[X_{2,\varPhi(\alpha)},Y_{2,\varPhi(\alpha)}] \\ &= c_{\alpha}H_{2,\varPhi(\alpha)} \end{split}$$

だから, $c_{\alpha} = 1$ であり,

$$\phi(Y_{1,\alpha}) = Y_{2,\Phi(\alpha)} \tag{***}$$

が成り立つ.

前段の議論より、 $(\mathfrak{g}_1,\mathfrak{h}_1)$ から $(\mathfrak{g}_2,\mathfrak{h}_2)$ への同型 ϕ が主張の条件を満たすための必要十分条件は、任意の $\alpha \in \Pi_1$ に対して (*), (**), (***) が成り立つことである.一意性定理(定理 3.27)より、このような ϕ は、一意に存在する.

系 3.29 標数 0 の可換体 $\mathbb K$ 上の分裂可能簡約 Lie 代数 $\mathfrak g$ の分裂化 Cartan 部分代数は,すべて $\mathrm{Aut}(\mathfrak g)$ の下で共役である.

証明 \mathfrak{g} が半単純である場合に示せば十分だから(注意 3.4),以下ではそのように仮定する. $\overline{\mathbb{K}}$ を \mathbb{K} の代数閉包とする. \mathfrak{h} と \mathfrak{h}' を \mathfrak{g} の Cartan 部分代数とすると,それらの係数拡大 $\mathfrak{h}_{(\overline{\mathbb{K}})}$ と $\mathfrak{h}'_{(\overline{\mathbb{K}})}$ は $\mathfrak{g}_{(\overline{\mathbb{K}})}$ の Cartan 部分代数だから(命題 1.6),Cartan 部分代数の共役性(定理 1.28)より, $\mathfrak{g}_{(\overline{\mathbb{K}})}$ の自己同型であって $\mathfrak{h}_{(\overline{\mathbb{K}})}$

を $\mathfrak{h}'_{(\overline{\mathbb{K}})}$ に移すものが存在する.この自己同型が誘導するルート系 $\Delta(\mathfrak{g}_{(\overline{\mathbb{K}})},\mathfrak{h}'_{(\overline{\mathbb{K}})})$ から $\Delta(\mathfrak{g}_{(\overline{\mathbb{K}})},\mathfrak{h}'_{(\overline{\mathbb{K}})})$ への同型 を, Ψ : $(\mathfrak{h}'_{(\overline{\mathbb{K}})})^* \to (\mathfrak{h}'_{(\overline{\mathbb{K}})})^*$ と置く. \mathfrak{h}^* から $(\mathfrak{h}_{(\overline{\mathbb{K}})})^*$ への写像 $\alpha \mapsto \alpha_{(\overline{\mathbb{K}})}$ は $\Delta(\mathfrak{g},\mathfrak{h})$ を $\Delta(\mathfrak{g}_{(\overline{\mathbb{K}})},\mathfrak{h}'_{(\overline{\mathbb{K}})})$ に移し, $\Delta(\mathfrak{g},\mathfrak{h}')$ と $\Delta(\mathfrak{g}_{(\overline{\mathbb{K}})},\mathfrak{h}'_{(\overline{\mathbb{K}})})$ についても同様だから(注意 3.5), Ψ は,ルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ から $\Delta(\mathfrak{g},\mathfrak{h}')$ への同型 Ψ : $\mathfrak{h}^* \to (\mathfrak{h}')^*$ を誘導する.よって,同型定理(定理 3.28)より, \mathfrak{g} の自己同型であって \mathfrak{h} を \mathfrak{h}' に移すものが存在する.

命題 3.30 標数 0 の可換体 \mathbb{K} 上の分裂半単純 Lie 代数 $(\mathfrak{g},\mathfrak{h})$ に対して,次の条件は同値である.

- (a) g は単純である.
- (b) $\Delta(\mathfrak{g},\mathfrak{h})$ は既約である.

証明 明らかに、 $\mathfrak{g}=0$ と $\Delta(\mathfrak{g},\mathfrak{h})=\emptyset$ とは同値である. 以下では、 $\mathfrak{g}\neq0$ である(したがって、 $\Delta(\mathfrak{g},\mathfrak{h})\neq\emptyset$ である)場合を考える.

 $(a)\Longrightarrow (b)$ $\Delta(\mathfrak{g},\mathfrak{h})$ が二つの空でない被約ルート系 Δ_1 と Δ_2 の直和に分解されるとする.存在定理(定理 3.22)より,各 $i\in\{1,2\}$ に対して, Δ_i に同型なルート系をもつ分裂半単純 Lie 代数 $(\mathfrak{g}_i,\mathfrak{h}_i)$ がとれる. $\Delta_i\neq\emptyset$ だから, $\mathfrak{g}_i\neq0$ である.また,これらの直和 $(\mathfrak{g}_1\oplus\mathfrak{g}_2,\mathfrak{h}_1\oplus\mathfrak{h}_2)$ は, $\Delta_1\sqcup\Delta_2=\Delta(\mathfrak{g},\mathfrak{h})$ に同型なルート系をもつ分裂半単純 Lie 代数である(注意 3.3).同型定理(定理 3.28)より,Lie 代数 $\mathfrak{g}_1\oplus\mathfrak{g}_2$ は \mathfrak{g} に同型である.よって, \mathfrak{g} は単純でない.

(b) \Longrightarrow (a) \mathfrak{g} が単純でないとすると、 \mathfrak{g} は \mathfrak{g} でない半単純 Lie 代数 \mathfrak{g}_1 と \mathfrak{g}_2 の(Lie 代数としての)直和に分解できる。 \mathfrak{h} は $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{g}_2$ の Cartan 部分代数だから,各 \mathfrak{g}_i の Cartan 部分代数 \mathfrak{h}_i を用いて, $\mathfrak{h} = \mathfrak{h}_1 \oplus \mathfrak{h}_2$ と書ける。 \mathfrak{h} が \mathfrak{g} の分裂化 Cartan 部分代数であることから,各 \mathfrak{h}_i は \mathfrak{g}_i の分裂化 Cartan 部分代数であり, \mathfrak{h}^* から $\mathfrak{h}_1^* \oplus \mathfrak{h}_2^*$ への自然な同型によって,ルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ は二つの空でないルート系 $\Delta(\mathfrak{g}_1,\mathfrak{h}_1)$ と $\Delta(\mathfrak{g}_2,\mathfrak{h}_2)$ の直和に移される(注意 3.3)。よって, $\Delta(\mathfrak{g},\mathfrak{h})$ は可約である。

 \mathbb{K} を標数 0 の可換体とする.存在定理(定理 3.22),同型定理(定理 3.28),系 3.29 より,分裂可能半単純 Lie 代数の同型類,分裂半単純 Lie 代数の同型類,被約ルート系の同型類は一対一に対応する。さらに,命題 3.30 より,分裂可能単純 Lie 代数の同型類,分裂単純 Lie 代数の同型類,既約な被約ルート系の同型類とは一対一に対応する。分裂可能半単純 Lie 代数 \mathfrak{g} または分裂半単純 Lie 代数 $(\mathfrak{g},\mathfrak{h})$ が \mathbf{A}_l 型 $(l\geq 1)$, \mathbf{B}_l 型 $(l\geq 1)$, \mathbf{C}_l 型 $(l\geq 1)$, \mathbf{D}_l 型 $(l\geq 2)$, \mathbf{E}_6 型, \mathbf{E}_7 型, \mathbf{E}_8 型, \mathbf{F}_4 型, \mathbf{G}_2 型であるとは,そのルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ が対応する型であることをいう。 \mathbf{A}_l 型, \mathbf{B}_l 型, \mathbf{C}_l 型, \mathbf{D}_l 型を総称して**古典型**(classical type)といい, \mathbf{E}_6 型, \mathbf{E}_7 型, \mathbf{E}_8 型, \mathbf{F}_4 型, \mathbf{G}_2 型を総称して**例外型**(exceptional type)という。 \mathbf{D}_2 型を除く各型のルート系は既約だから,それらには単純 Lie 代数が対応する.

3.6 古典型分裂単純 Lie 代数

本小節では、古典型分裂(半)単純 Lie 代数を、具体的に構成する。以下、n 次単位行列を I_n と書き、行列単位を $E_{i,j}$ と書く。また、 \mathbb{K} 上の $m \times n$ 行列全体のなす空間を $\mathrm{Mat}(m,n,\mathbb{K})$ (m=n の場合は、 $\mathrm{Mat}(n,\mathbb{K})$) と書き、 \mathbb{K} 上の n 次対称行列全体のなす空間を $\mathrm{Sym}(n,\mathbb{K})$ と書き、 \mathbb{K} 上の n 次歪対称行列全体のなす空間を $\mathrm{SkewSym}(n,\mathbb{K})$ と書く。

A_l (l>1) 型の分裂単純 Lie 代数

 $\mathfrak{gl}(l+1,\mathbb{K})$ の部分 Lie 代数

$$\mathfrak{g} = \mathfrak{sl}(l+1, \mathbb{K})$$

= $\{X \in \mathfrak{gl}(l+1, \mathbb{K}) \mid \operatorname{tr} X = 0\}$

は半単純 Lie 代数であり [4, 命題 6.37],

$$\mathfrak{h} = \{ \operatorname{diag}(x_1, \dots, x_{l+1}) \mid x_1, \dots, x_{l+1} \in \mathbb{K}, x_1 + \dots + x_{l+1} = 0 \}$$

はその分裂化 Cartan 部分代数である(Cartan 部分代数であることは,定理 1.35 を用いて確かめられる). 対応するルート系は

$$\Delta(\mathfrak{g},\mathfrak{h}) = \{\pm(\epsilon_i - \epsilon_j) \mid 1 \leq i < j \leq l+1\},$$
各 $\epsilon_i \in \mathfrak{h}^*$ は、 $\epsilon_i(\operatorname{diag}(x_1,\ldots,x_{l+1})) = x_i$ で与えられる元

だから, $(\mathfrak{g},\mathfrak{h})$ は A_l 型の分裂単純 Lie 代数である.各ルートの双対ルートは

$$H_{\pm(\epsilon_i-\epsilon_j)} = \pm(E_{i,i}-E_{j,j})$$

であり、ルート空間は

$$\mathfrak{g}_{\epsilon_i - \epsilon_j} = \mathbb{K} E_{i,j},$$
$$\mathfrak{g}_{-\epsilon_i + \epsilon_j} = \mathbb{K} E_{j,i}$$

である.

B_l ($l \geq 1$) 型の分裂単純 Lie 代数

対称双線型形式 $\Phi\colon \mathbb{K}^{2l+1} \times \mathbb{K}^{2l+1} \to \mathbb{K}$ を,標準基底に関して行列表示

$$\widetilde{S}_l = \begin{pmatrix} 0 & I_l & 0 \\ I_l & 0 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

をもつものとして定める. すると,

$$\begin{split} &\mathfrak{g} = \mathfrak{o}(\mathbb{K}^{2l+1}, \varPhi) \\ &= \{X \in \mathfrak{gl}(2l+1, \mathbb{K}) \mid \widetilde{S}_l X + X^{\mathrm{T}} \widetilde{S}_l = 0\} \\ &= \left\{ \begin{pmatrix} A & B & 2v \\ C & -A^{\mathrm{T}} & 2w \\ w^{\mathrm{T}} & v^{\mathrm{T}} & 0 \end{pmatrix} \,\middle|\, A \in \mathfrak{gl}(l, \mathbb{K}), \, B, \, C \in \mathrm{SkewSym}(l, \mathbb{K}), \, v, \, w \in \mathbb{K}^l \right\} \end{split}$$

は半単純 Lie 代数であり [4, 命題 6.38 (1)],

$$\mathfrak{h} = \{ \operatorname{diag}(x_1, \dots, x_l, -x_1, \dots, -x_l, 0) \mid x_1, \dots, x_l \in \mathbb{K} \}$$

はその分裂化 Cartan 部分代数である(Cartan 部分代数であることは,定理 1.35 を用いて確かめられる)。 対応するルート系は

$$\Delta(\mathfrak{g},\mathfrak{h}) = \{\pm(\epsilon_i \pm \epsilon_j) \mid 1 \leq i < j \leq l\} \cup \{\pm\epsilon_i \mid 1 \leq i \leq l\},$$
各 $\epsilon_i \in \mathfrak{h}^*$ は、 $\epsilon_i(\operatorname{diag}(x_1,\ldots,x_l,-x_1,\ldots,-x_l,0)) = x_i$ で与えられる元

だから、 $(\mathfrak{g},\mathfrak{h})$ は B_l 型の分裂単純 Lie 代数である. 各ルートの双対ルートは

$$H_{\pm(\epsilon_{i}-\epsilon_{j})} = \pm((E_{i,i} - E_{l+i,l+i}) - (E_{j,j} - E_{l+j,l+j})),$$

$$H_{\pm(\epsilon_{i}+\epsilon_{j})} = \pm((E_{i,i} - E_{l+i,l+i}) + (E_{j,j} - E_{l+j,l+j})),$$

$$H_{\pm\epsilon_{i}} = \pm(E_{i,i} - E_{l+i,l+i})$$

であり、ルート空間は

$$\begin{split} \mathfrak{g}_{\epsilon_{i}-\epsilon_{j}} &= \mathbb{K}(E_{i,j} - E_{l+j,l+i}) &= \mathbb{K} \begin{pmatrix} E_{i,j} & 0 & 0 \\ 0 & -E_{j,i} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \mathfrak{g}_{-\epsilon_{i}+\epsilon_{j}} &= \mathbb{K}(E_{j,i} - E_{l+i,l+j}) &= \mathbb{K} \begin{pmatrix} E_{j,i} & 0 & 0 \\ 0 & -E_{i,j} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \mathfrak{g}_{\epsilon_{i}+\epsilon_{j}} &= \mathbb{K}(E_{i,l+j} - E_{j,l+i}) &= \mathbb{K} \begin{pmatrix} 0 & E_{i,j} - E_{j,i} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \mathfrak{g}_{-\epsilon_{i}-\epsilon_{j}} &= \mathbb{K}(E_{l+i,j} - E_{l+j,i}) &= \mathbb{K} \begin{pmatrix} 0 & 0 & 0 \\ E_{i,j} - E_{j,i} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \mathfrak{g}_{\epsilon_{i}} &= \mathbb{K}(2E_{i,2l+1} + E_{2l+1,l+i}) = \mathbb{K} \begin{pmatrix} 0 & 0 & 2e_{i} \\ 0 & 0 & 0 \\ 0 & e_{i}^{T} & 0 \end{pmatrix}, \\ \mathfrak{g}_{-\epsilon_{i}} &= \mathbb{K}(2E_{l+i,2l+1} + E_{2l+1,i}) &= \mathbb{K} \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 2e_{i} \\ e_{i}^{T} & 0 & 0 \end{pmatrix} \end{split}$$

である (\mathbb{K}^l の標準基底を (e_1,\ldots,e_l) と書いた).

次に、 B_l 型の分裂単純 Lie 代数を、別の方法で実現する。 $g \in GL(2l+1,\mathbb{K})$ を

$$g = \begin{pmatrix} \frac{1}{2}I_l & \frac{1}{2}I_l & 0\\ \frac{1}{2}I_l & -\frac{1}{2}I_l & 0\\ 0 & 0 & 1 \end{pmatrix}, \qquad g^{-1} = \begin{pmatrix} I_l & I_l & 0\\ I_l & -I_l & 0\\ 0 & 0 & 1 \end{pmatrix}$$

と定め、Lie 代数 $\mathfrak{gl}(2l+1,\mathbb{K})$ の自己同型 $X\mapsto gXg^{-1}$ を $\mathrm{Ad}(g)$ と書く. この自己同型は、

$$Ad(g) \begin{pmatrix} A & B & v \\ C & D & w \\ v' & w' & x \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(A+B+C+D) & \frac{1}{2}(A-B+C-D) & \frac{1}{2}(v+w) \\ \frac{1}{2}(A+B-C-D) & \frac{1}{2}(A-B-C+D) & \frac{1}{2}(v-w) \\ v'+w' & v'-w' & x \end{pmatrix}$$

で与えられる。 $\mathfrak{g}'=\mathrm{Ad}(g)\mathfrak{g}$, $\mathfrak{h}'=\mathrm{Ad}(g)\mathfrak{h}$ と置くと, $(\mathfrak{g}',\mathfrak{h}')$ も B_l 型の分裂単純 Lie 代数である。 \mathfrak{g}' と \mathfrak{h}' や,対応するルート系などを求めよう。 Φ の g による押し出し Φ' : $\mathbb{K}^{2l+1} \times \mathbb{K}^{2l+1} \to \mathbb{K}$ は,標準基底に関して行列表示

$$(g^{-1})^{\mathrm{T}}\widetilde{S}_{l}g^{-1} = 2I_{l,l+1} = \begin{pmatrix} 2I_{l} & 0 & 0\\ 0 & -2I_{l} & 0\\ 0 & 0 & -2 \end{pmatrix}$$

をもつ対称双線型形式だから,

$$\begin{split} \mathfrak{g}' &= \mathfrak{o}(\mathbb{K}^{2l+1}, \varPhi') \\ &= \{X \in \mathfrak{gl}(2l+1, \mathbb{K}) \mid I_{l,l+1}X + X^{\mathrm{T}}I_{l,l+1} = 0\}, \\ &= \left\{ \begin{pmatrix} A & B \\ B^{\mathrm{T}} & D \end{pmatrix} \,\middle|\, A \in \mathfrak{o}(l, \mathbb{K}), \, D \in \mathfrak{o}(l+1, \mathbb{K}), \, B \in \mathrm{Mat}(l, l+1, \mathbb{K}) \right\} \end{split}$$

である. この Lie 代数を, $o(l, l+1, \mathbb{K})$ と書く. また,

$$\mathbf{b}' = \{ \text{Ad}(g) \operatorname{diag}(x_1, \dots, x_l, -x_1, \dots, -x_l, 0) \mid x_1, \dots, x_l \in \mathbb{K} \}$$

$$= \left\{ \begin{pmatrix} 0 & \operatorname{diag}(x_1, \dots, x_l) & 0 \\ \operatorname{diag}(x_1, \dots, x_l) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \middle| x_1, \dots, x_l \in \mathbb{K} \right\}$$

であり、対応するルート系は

$$\Delta(\mathfrak{g}',\mathfrak{h}') = \{\pm(\epsilon_i' \pm \epsilon_j') \mid 1 \le i < j \le l\} \cup \{\pm\epsilon_i' \mid 1 \le i \le l\},$$
 各 $\epsilon_i' \in \mathfrak{h}'^*$ は、 $\epsilon_i' \begin{pmatrix} 0 & \operatorname{diag}(x_1,\ldots,x_l) & 0 \\ \operatorname{diag}(x_1,\ldots,x_l) & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \end{pmatrix} = x_i$ で与えられる元

であり、各ルートの双対ルートは

$$H_{\pm(\epsilon'_i - \epsilon'_j)} = \pm \operatorname{Ad}(g)((E_{i,i} - E_{l+i,l+i}) - (E_{j,j} - E_{l+j,l+j})) = \pm \begin{pmatrix} 0 & E_{i,i} - E_{j,j} & 0 \\ E_{i,i} - E_{j,j} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$H_{\pm(\epsilon'_i + \epsilon'_j)} = \pm \operatorname{Ad}(g)((E_{i,i} - E_{l+i,l+i}) + (E_{j,j} - E_{l+j,l+j})) = \pm \begin{pmatrix} 0 & E_{i,i} + E_{j,j} & 0 \\ E_{i,i} + E_{j,j} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix},$$

$$H_{\pm\epsilon'_i} = \pm \operatorname{Ad}(g)(E_{i,i} - E_{l+i,l+i}) = \pm \begin{pmatrix} 0 & E_{i,i} & 0 \\ E_{i,i} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

であり、ルート空間は

$$\begin{split} \mathfrak{g}'_{\epsilon_i'-\epsilon_j'} &= \mathbb{K} \operatorname{Ad}(g) \begin{pmatrix} E_{i,j} & 0 & 0 \\ 0 & -E_{j,i} & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ &= \mathbb{K} \begin{pmatrix} \frac{1}{2}(E_{i,j}-E_{j,i}) & \frac{1}{2}(E_{i,j}+E_{j,i}) & 0 \\ \frac{1}{2}(E_{i,j}+E_{j,i}) & \frac{1}{2}(E_{i,j}-E_{j,i}) & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \mathfrak{g}'_{-\epsilon_i'+\epsilon_j'} &= \mathbb{K} \operatorname{Ad}(g) \begin{pmatrix} E_{j,i} & 0 & 0 \\ 0 & -E_{i,j} & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ &= \mathbb{K} \begin{pmatrix} \frac{1}{2}(-E_{i,j}+E_{j,i}) & \frac{1}{2}(E_{i,j}+E_{j,i}) & 0 \\ \frac{1}{2}(E_{i,j}+E_{j,i}) & \frac{1}{2}(-E_{i,j}+E_{j,i}) & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \mathfrak{g}'_{\epsilon_i'+\epsilon_j'} &= \mathbb{K} \operatorname{Ad}(g) \begin{pmatrix} 0 & E_{i,j}-E_{j,i} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ &= \mathbb{K} \begin{pmatrix} \frac{1}{2}(E_{i,j}-E_{j,i}) & \frac{1}{2}(-E_{i,j}+E_{j,i}) & 0 \\ \frac{1}{2}(E_{i,j}-E_{j,i}) & \frac{1}{2}(-E_{i,j}+E_{j,i}) & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ \mathfrak{g}'_{-\epsilon_i'-\epsilon_j'} &= \mathbb{K} \operatorname{Ad}(g) \begin{pmatrix} 0 & 0 & 0 \\ E_{i,j}-E_{j,i} & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \\ &= \mathbb{K} \begin{pmatrix} \frac{1}{2}(E_{i,j}-E_{j,i}) & \frac{1}{2}(E_{i,j}-E_{j,i}) & 0 \\ \frac{1}{2}(-E_{i,j}+E_{j,i}) & \frac{1}{2}(-E_{i,j}+E_{j,i}) & 0 \\ 0 & 0 & 0 \end{pmatrix}, \\ &= \mathbb{K} \begin{pmatrix} 0 & 0 & e_i \\ 0 & 0 & e_i \\ e_i^T & -e_i^T & 0 \end{pmatrix}, \\ &= \mathbb{K} \begin{pmatrix} 0 & 0 & e_i \\ 0 & 0 & -e_i \\ e_i^T & -e_i^T & 0 \end{pmatrix}, \\ &= \mathbb{K} \begin{pmatrix} 0 & 0 & e_i \\ 0 & 0 & -e_i \\ e_i^T & e_i^T & 0 \end{pmatrix} \\ &= \mathbb{K} \begin{pmatrix} 0 & 0 & e_i \\ 0 & 0 & -e_i \\ e_i^T & e_i^T & 0 \end{pmatrix}$$

である (\mathbb{K}^l の標準基底を (e_1,\ldots,e_l) と書いた).

C_l (l>1) 型の分裂単純 Lie 代数

 $\mathfrak{gl}(2l,\mathbb{K})$ の部分 Lie 代数

$$\begin{split} &\mathfrak{g} = \mathfrak{sp}(l, \mathbb{K}) \\ &= \{ X \in \mathfrak{gl}(2l, \mathbb{K}) \mid J_l X + X^{\mathrm{T}} J_l = 0 \} \\ &= \left\{ \begin{pmatrix} A & B \\ C & -A^{\mathrm{T}} \end{pmatrix} \mid A \in \mathfrak{gl}(l, \mathbb{K}), \, B, \, C \in \mathrm{Sym}(l, \mathbb{K}) \right\} \end{split}$$

は半単純 Lie 代数であり [4, 命題 6.38 (2)],

$$\mathfrak{h} = \{ \operatorname{diag}(x_1, \dots, x_l, -x_1, \dots, -x_l) \mid x_1, \dots, x_l \in \mathbb{K} \}$$

はその分裂化 Cartan 部分代数である(Cartan 部分代数であることは,定理 1.35 を用いて確かめられる). 対応するルート系は

$$\Delta(\mathfrak{g},\mathfrak{h}) = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \leq i < j \leq l \} \cup \{ \pm 2\epsilon_i \mid 1 \leq i \leq l \},$$
 各 $\epsilon_i \in \mathfrak{h}^*$ は、 $\epsilon_i(\operatorname{diag}(x_1,\ldots,x_l,-x_1,\ldots,-x_l)) = x_i$ で与えられる元

だから, $(\mathfrak{g},\mathfrak{h})$ は C_l 型の分裂単純 Lie 代数である.各ルートの双対ルートは

$$H_{\pm(\epsilon_{i}-\epsilon_{j})} = \pm((E_{i,i} - E_{l+i,l+i}) - (E_{j,j} - E_{l+j,l+j})),$$

$$H_{\pm(\epsilon_{i}+\epsilon_{j})} = \pm((E_{i,i} - E_{l+i,l+i}) + (E_{j,j} - E_{l+j,l+j})),$$

$$H_{\pm2\epsilon_{i}} = \pm(E_{i,i} - E_{l+i,l+i})$$

であり、ルート空間は

$$\begin{split} \mathfrak{g}_{\epsilon_i - \epsilon_j} &= \mathbb{K}(E_{i,j} - E_{l+j,l+i}) = \mathbb{K} \begin{pmatrix} E_{i,j} & 0 \\ 0 & - E_{j,i} \end{pmatrix}, \\ \mathfrak{g}_{-\epsilon_i + \epsilon_j} &= \mathbb{K}(E_{j,i} - E_{l+i,l+j}) = \mathbb{K} \begin{pmatrix} E_{j,i} & 0 \\ 0 & - E_{i,j} \end{pmatrix}, \\ \mathfrak{g}_{\epsilon_i + \epsilon_j} &= \mathbb{K}(E_{i,l+j} + E_{j,l+i}) = \mathbb{K} \begin{pmatrix} 0 & E_{i,j} + E_{j,i} \\ 0 & 0 \end{pmatrix}, \\ \mathfrak{g}_{-\epsilon_i - \epsilon_j} &= \mathbb{K}(E_{l+i,j} + E_{l+j,i}) = \mathbb{K} \begin{pmatrix} 0 & 0 \\ E_{i,j} + E_{j,i} & 0 \end{pmatrix}, \\ \mathfrak{g}_{2\epsilon_i} &= \mathbb{K}E_{i,l+i} &= \mathbb{K} \begin{pmatrix} 0 & E_{i,i} \\ 0 & 0 \end{pmatrix}, \\ \mathfrak{g}_{-2\epsilon_i} &= \mathbb{K}E_{l+i,i} &= \mathbb{K} \begin{pmatrix} 0 & 0 \\ E_{i,i} & 0 \end{pmatrix} \end{split}$$

である.

D_l ($l \geq 2$) 型の分裂 (半) 単純 Lie 代数

対称双線型形式 Φ : $\mathbb{K}^{2l} \times \mathbb{K}^{2l} \to \mathbb{K}$ を、標準基底に関して行列表示

$$S_l = \begin{pmatrix} 0 & I_l \\ I_l & 0 \end{pmatrix}$$

をもつものとして定める. すると,

$$\begin{split} &\mathfrak{g} = \mathfrak{o}(\mathbb{K}^{2l}, \varPhi) \\ &= \{ X \in \mathfrak{gl}(2l, \mathbb{K}) \mid S_{l}X + X^{\mathrm{T}}S_{l} = 0 \} \\ &= \left\{ \begin{pmatrix} A & B \\ C & -A^{\mathrm{T}} \end{pmatrix} \,\middle|\, A \in \mathfrak{gl}(l, \mathbb{K}), \, B, \, C \in \mathrm{SkewSym}(l, \mathbb{K}) \right\} \end{split}$$

は半単純 Lie 代数であり [4, 命題 6.38 (1)],

$$\mathfrak{h} = \{ \operatorname{diag}(x_1, \dots, x_l, -x_1, \dots, -x_l) \mid x_1, \dots, x_l \in \mathbb{K} \}$$

はその分裂化 Cartan 部分代数である(Cartan 部分代数であることは,定理 1.35 を用いて確かめられる). 対応するルート系は

$$\Delta(\mathfrak{g},\mathfrak{h}) = \{ \pm (\epsilon_i \pm \epsilon_j) \mid 1 \leq i < j \leq l \},$$
 各 $\epsilon_i \in \mathfrak{h}^*$ は、 $\epsilon_i (\operatorname{diag}(x_1, \ldots, x_l, -x_1, \ldots, -x_l)) = x_i$ で与えられる元

だから, $(\mathfrak{g},\mathfrak{h})$ は D_l 型の分裂半単純 Lie 代数($l\geq 3$ ならば,分裂単純 Lie 代数)である.各ルートの双対ルートは

$$H_{\pm(\epsilon_i - \epsilon_j)} = \pm ((E_{i,i} - E_{l+i,l+i}) - (E_{j,j} - E_{l+j,l+j})),$$

$$H_{\pm(\epsilon_i + \epsilon_j)} = \pm ((E_{i,i} - E_{l+i,l+i}) + (E_{j,j} - E_{l+j,l+j}))$$

であり、ルート空間は

$$\begin{split} &\mathfrak{g}_{\epsilon_i-\epsilon_j} = \mathbb{K}(E_{i,j}-E_{l+j,l+i}) = \mathbb{K}\begin{pmatrix} E_{i,j} & 0 \\ 0 & -E_{j,i} \end{pmatrix}, \\ &\mathfrak{g}_{-\epsilon_i+\epsilon_j} = \mathbb{K}(E_{j,i}-E_{l+i,l+j}) = \mathbb{K}\begin{pmatrix} E_{j,i} & 0 \\ 0 & -E_{i,j} \end{pmatrix}, \\ &\mathfrak{g}_{\epsilon_i+\epsilon_j} = \mathbb{K}(E_{i,l+j}-E_{j,l+i}) = \mathbb{K}\begin{pmatrix} 0 & E_{i,j}-E_{j,i} \\ 0 & 0 \end{pmatrix}, \\ &\mathfrak{g}_{-\epsilon_i-\epsilon_j} = \mathbb{K}(E_{l+i,j}-E_{l+j,i}) = \mathbb{K}\begin{pmatrix} 0 & 0 \\ E_{i,j}-E_{j,i} & 0 \end{pmatrix} \end{split}$$

である.

次に, D_l 型の分裂単純 Lie 代数を,別の方法で実現する. $g \in GL(2l, \mathbb{K})$ を

$$g = \begin{pmatrix} \frac{1}{2}I_l & \frac{1}{2}I_l \\ \frac{1}{2}I_l & -\frac{1}{2}I_l \end{pmatrix}, \qquad g^{-1} = \begin{pmatrix} I_l & I_l \\ I_l & -I_l \end{pmatrix}$$

と定め、Lie 代数 $\mathfrak{gl}(2l,\mathbb{K})$ の自己同型 $X\mapsto gXg^{-1}$ を $\mathrm{Ad}(g)$ と書く. この自己同型は、

$$\operatorname{Ad}(g)\begin{pmatrix} A & B \\ C & D \end{pmatrix} = \begin{pmatrix} \frac{1}{2}(A+B+C+D) & \frac{1}{2}(A-B+C-D) \\ \frac{1}{2}(A+B-C-D) & \frac{1}{2}(A-B-C+D) \end{pmatrix}$$

で与えられる。 $\mathfrak{g}' = \mathrm{Ad}(g)\mathfrak{g}$, $\mathfrak{h}' = \mathrm{Ad}(g)\mathfrak{h}$ と置くと, $(\mathfrak{g}',\mathfrak{h}')$ も D_l 型の分裂単純 Lie 代数である。 \mathfrak{g}' と \mathfrak{h}' や,対応するルート系などを求めよう。 Φ の g による押し出し Φ' : $\mathbb{K}^{2l} \times \mathbb{K}^{2l} \to \mathbb{K}$ は,標準基底に関して行列表示

$$(g^{-1})^{\mathrm{T}} S_l g^{-1} = 2I_{l,l} = \begin{pmatrix} 2I_l & 0\\ 0 & -2I_l \end{pmatrix}$$

をもつ対称双線型形式だから,

$$\begin{split} \mathbf{g}' &= \mathbf{o}(\mathbb{K}^{2l}, \Phi') \\ &= \{ X \in \mathfrak{gl}(2l, \mathbb{K}) \mid I_{l,l}X + X^{\mathrm{T}}I_{l,l} = 0 \}, \\ &= \left\{ \begin{pmatrix} A & B \\ B & D \end{pmatrix} \mid A, D \in \mathbf{o}(l, \mathbb{K}), B \in \mathrm{Mat}(l, \mathbb{K}) \right\} \end{split}$$

である. この Lie 代数を, $\mathfrak{o}(l,l,\mathbb{K})$ と書く. また,

$$\mathbf{h}' = \left\{ \operatorname{Ad}(g) \operatorname{diag}(x_1, \dots, x_l, -x_1, \dots, -x_l) \mid x_1, \dots, x_l \in \mathbb{K} \right\}$$
$$= \left\{ \begin{pmatrix} 0 & \operatorname{diag}(x_1, \dots, x_l) \\ \operatorname{diag}(x_1, \dots, x_l) & 0 \end{pmatrix} \mid x_1, \dots, x_l \in \mathbb{K} \right\}$$

であり、対応するルート系は

$$\Delta(\mathfrak{g}',\mathfrak{h}') = \{\pm(\epsilon_i'\pm\epsilon_j') \mid 1 \leq i < j \leq l\},$$
 各 $\epsilon_i' \in \mathfrak{h}'^*$ は、 $\epsilon_i' \begin{pmatrix} 0 & \operatorname{diag}(x_1,\ldots,x_l) \\ \operatorname{diag}(x_1,\ldots,x_l) & 0 \end{pmatrix} \end{pmatrix} = x_i$ で与えられる元

であり、各ルートの双対ルートは

$$H_{\pm(\epsilon'_i - \epsilon'_j)} = \pm \operatorname{Ad}(g)((E_{i,i} - E_{l+i,l+i}) - (E_{j,j} - E_{l+j,l+j})) = \pm \begin{pmatrix} 0 & E_{i,i} - E_{j,j} \\ E_{i,i} - E_{j,j} & 0 \end{pmatrix},$$

$$H_{\pm(\epsilon'_i + \epsilon'_j)} = \pm \operatorname{Ad}(g)((E_{i,i} - E_{l+i,l+i}) + (E_{j,j} - E_{l+j,l+j})) = \pm \begin{pmatrix} 0 & E_{i,i} + E_{j,j} \\ E_{i,i} + E_{j,j} & 0 \end{pmatrix}$$

であり、ルート空間は

$$\begin{split} \mathfrak{g}_{\epsilon_{i}'-\epsilon_{j}'}' &= \mathbb{K} \operatorname{Ad}(g) \begin{pmatrix} E_{i,j} & 0 \\ 0 & -E_{j,i} \end{pmatrix} &= \mathbb{K} \begin{pmatrix} \frac{1}{2}(E_{i,j}-E_{j,i}) & \frac{1}{2}(E_{i,j}+E_{j,i}) \\ \frac{1}{2}(E_{i,j}+E_{j,i}) & \frac{1}{2}(E_{i,j}-E_{j,i}) \end{pmatrix}, \\ \mathfrak{g}_{-\epsilon_{i}'+\epsilon_{j}'}' &= \mathbb{K} \operatorname{Ad}(g) \begin{pmatrix} E_{j,i} & 0 \\ 0 & -E_{i,j} \end{pmatrix} &= \mathbb{K} \begin{pmatrix} \frac{1}{2}(-E_{i,j}+E_{j,i}) & \frac{1}{2}(E_{i,j}+E_{j,i}) \\ \frac{1}{2}(E_{i,j}+E_{j,i}) & \frac{1}{2}(-E_{i,j}+E_{j,i}) \end{pmatrix}, \\ \mathfrak{g}_{\epsilon_{i}'+\epsilon_{j}'}' &= \mathbb{K} \operatorname{Ad}(g) \begin{pmatrix} 0 & E_{i,j}-E_{j,i} \\ 0 & 0 \end{pmatrix} &= \mathbb{K} \begin{pmatrix} \frac{1}{2}(E_{i,j}-E_{j,i}) & \frac{1}{2}(-E_{i,j}+E_{j,i}) \\ \frac{1}{2}(E_{i,j}-E_{j,i}) & \frac{1}{2}(-E_{i,j}+E_{j,i}) \end{pmatrix}, \\ \mathfrak{g}_{-\epsilon_{i}'-\epsilon_{j}'}' &= \mathbb{K} \operatorname{Ad}(g) \begin{pmatrix} 0 & 0 \\ E_{i,j}-E_{j,i} & 0 \end{pmatrix} &= \mathbb{K} \begin{pmatrix} \frac{1}{2}(E_{i,j}-E_{j,i}) & \frac{1}{2}(E_{i,j}-E_{j,i}) \\ \frac{1}{2}(-E_{i,j}+E_{j,i}) & \frac{1}{2}(-E_{i,j}+E_{j,i}) \end{pmatrix} \end{split}$$

である.

3.7 分裂可能単純 Lie 代数の分類

 E_6, E_7, E_8, F_4, G_2 型の(同型を除いて一意に存在する)分裂可能単純 Lie 代数を,それぞれ $\mathfrak{e}_6(\mathbb{K}), \mathfrak{e}_7(\mathbb{K}), \mathfrak{e}_8(\mathbb{K}), \mathfrak{f}_4(\mathbb{K}), \mathfrak{g}_2(\mathbb{K})$ と書く.

定理 3.31(分裂可能単純 Lie 代数の分類) 次に挙げる Lie 代数は、いずれも分裂可能単純 Lie 代数である. 任意の分裂可能単純 Lie 代数は、これらのいずれかに同型である.(表 1 も参照のこと.)

- $\mathfrak{sl}(l+1,\mathbb{K}) \ (l\geq 1)$
- $\mathfrak{o}(l, l, \mathbb{K}) \ (l \ge 1)$
- $\mathfrak{sp}(l, \mathbb{K}) \ (l \geq 1)$

表 1 分裂可能単純 Lie 代数の分類

 型	分裂可能単純 Lie 代数	Dynkin 図形
$A_l \ (l \ge 1)$	$\mathfrak{sl}(l+1,\mathbb{K})$	•
$B_l \ (l \ge 1)$	$\mathfrak{o}(l,l+1,\mathbb{K})$	•—•
$C_l \ (l \ge 1)$	$\mathfrak{sp}(l,\mathbb{K})$	•——•
$D_l \ (l \ge 2)$	$\mathfrak{o}(l,l,\mathbb{K})$	
E_{6}	$\mathfrak{e}_6(\mathbb{K})$	
E_{7}	$\mathfrak{e}_7(\mathbb{K})$	• • • • • • • • • • • • • • • • • • • •
	(77)	•
E_8	$\mathfrak{e}_8(\mathbb{K})$	• • • • • • •
F_4	$\mathfrak{f}_4(\mathbb{K})$	• • •
G_2	$\mathfrak{g}_2(\mathbb{K})$	=

- $\mathfrak{o}(l, l+1, \mathbb{K}) \ (l \ge 2)$
- $\mathfrak{e}_6(\mathbb{K})$, $\mathfrak{e}_7(\mathbb{K})$, $\mathfrak{e}_8(\mathbb{K})$, $\mathfrak{f}_4(\mathbb{K})$, $\mathfrak{g}_2(\mathbb{K})$

証明 存在定理(定理 3.22),同型定理(定理 3.28),系 3.29,命題 3.30 より,分裂可能単純 Lie 代数の同型 類と被約な既約ルート系の同型類とは一対一に対応する.よって,主張は,被約な既約ルート系の分類 [5,定 理 4.13,4.3 節 [2] と前小節で述べた古典型分裂可能単純 Lie 代数の構成から従う.

注意 3.32(古典型分裂可能(半)単純 Lie 代数の偶然同型) 低階数でのルート系の同型と同型定理(定理 3.28)から,古典型分裂可能(半)単純 Lie 代数の間の同型が得られる(表 2). これらを,**偶然同型**(accidental isomorphism)という.分類定理(定理 3.31)に挙げた分裂可能単純 Lie 代数の間の同型は,同表(「 $A_1 \times A_1 \cong D_2$ 」の行を除く)に挙げたもので尽くされている.

4 分裂簡約 Lie 代数の表現

4.1 g-加群のウェイト

定義 4.1(ウェイト) $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし,V を \mathfrak{g} -加群とする。 \mathfrak{h} の V への作用の同時固有値(これは, \mathfrak{h} から \mathbb{K} への写像である),同時固有ベクトル,同時固有空間を,それぞれ,V

表 2 古典型分裂可能(半)単純 Lie 代数の偶然同型

型	偶然同型	Dynkin 図形
$A_1 \cong B_1 \cong C_1$	$\mathfrak{sl}(2,\mathbb{K})\cong\mathfrak{o}(1,2,\mathbb{K})\cong\mathfrak{sp}(1,\mathbb{K})$	•
$B_2 \cong C_2$	$\mathfrak{o}(2,3,\mathbb{K}) \cong \mathfrak{sp}(2,\mathbb{K})$	•
$A_1 \oplus A_1 \cong D_2$	$\mathfrak{sl}(2,\mathbb{K})\oplus\mathfrak{sl}(2,\mathbb{K})\cong\mathfrak{o}(2,2,\mathbb{K})$	• •
$A_3 \cong D_3$	$\mathfrak{sl}(4,\mathbb{K})\cong\mathfrak{o}(3,3,\mathbb{K})$	• • •

の($\mathfrak h$ に関する)**ウェイト**(weight),**ウェイトベクトル**(weight vector),**ウェイト空間**(weight space)という. $\mathfrak h$ の作用における同時固有値 $\lambda \in \mathbb K^{\mathfrak h}$ の重複度を,V におけるウェイト λ の重複度(multiplicity)という.

定義 4.1 の状況で、V におけるウェイト $\lambda \in \mathbb{K}^{\mathfrak{h}}$ のウェイト空間を、 V_{λ} と書く. すなわち、

$$V_{\lambda} = \{ v \in V \mid$$
任意の $h \in \mathfrak{h}$ に対して $hv = \lambda(h)v \}$

と書く、明らかに, $V_\lambda \neq 0$ となりうるのは $\lambda \in \mathfrak{h}^*$ のときだけである。同時固有空間に関する一般論より,和 $\sum_{\lambda \in \mathfrak{h}^*} V_\lambda$ は直和である.

注意 4.2 定義 4.1 において、 $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{K})$ (その標準基底を (H,X,Y) と書く)、 $\mathfrak{h} = \mathbb{K}H$ とし、線型同型写像 $\lambda \mapsto \lambda(H)$ によって \mathfrak{h}^* を \mathbb{K} と同一視したものが、定義 2.1 にほかならない.

定義 **4.3** (ウェイト加群) $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とする. \mathfrak{g} -加群 V は,それが(\mathfrak{h} に関する)ウェイト空間の直和に分解される(すなわち, \mathfrak{h} の V への作用が同時対角化可能である)とき,(\mathfrak{h} に関する)**ウェイト加群**(weight module)であるという.

命題 4.4 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とする. V を \mathfrak{g} -加群とすると,任意の $\alpha,\lambda\in\mathfrak{h}^*$ に対して, $\mathfrak{g}_{\alpha}V_{\lambda}\subseteq V_{\lambda+\alpha}$ が成り立つ.

証明 $x \in \mathfrak{g}_{\alpha}, v \in V_{\lambda}$ とすると、任意の $h \in \mathfrak{h}$ に対して

$$hxv = [h, x]v + xhv = \alpha(h)xv + \lambda(h)xv$$

だから、 $xv \in V_{\lambda+\alpha}$ である. よって、 $\mathfrak{g}_{\alpha}V_{\lambda} \subseteq V_{\lambda+\alpha}$ である.

命題 4.5 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とする. $f\colon V\to W$ を \mathfrak{g} -加群の間の \mathfrak{g} -準同型とすると,任意の $\lambda\in\mathfrak{h}^*$ に対して, $f(V_\lambda)\subseteq W_\lambda$ が成り立つ.

証明 $v \in V_{\lambda}$ とすると、任意の $h \in \mathfrak{h}$ に対して

$$hf(v) = f(hv) = \lambda(h)f(v)$$

だから, $f(v) \in W_{\lambda}$ である. よって, $f(V_{\lambda}) \subseteq W_{\lambda}$ である.

4.2 最高ウェイト α-加群

定義 4.6(極大ベクトル) $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底, Π に関する正ルート全体のなす集合を Δ_+ と書き, $\mathfrak{n}_+ = \bigoplus_{\alpha \in \Delta_+} \mathfrak{g}_\alpha$ と置く。 \mathfrak{g} -加群 V の(\mathfrak{h} に関する)ウェイトベクトル $e \neq 0$ であって $\mathfrak{n}_+ e = 0$ を満たすものを,V の(\mathfrak{h} と Π に関する)**極大ベクトル**(maximal vector)という。V の極大ベクトルであって V を \mathfrak{g} -加群として生成するものを,V の(\mathfrak{h} と Π に関する)**極大生成ベクトル**(maximal generating vector)という。

定義 4.7(最高ウェイト加群) $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする。 \mathfrak{g} -加群 V が(\mathfrak{h} と Π に関する)ウェイト $\lambda \in \mathfrak{h}^*$ の極大生成ベクトルをもつとき,V は(\mathfrak{h} と Π に関する)最高ウェイト λ の最高ウェイト加群(highest weight module of highest weight λ)であるという.

注意 4.8 定義 4.6 と定義 4.7 において, $\mathfrak{g}=\mathfrak{sl}(2,\mathbb{K})$ (その標準基底を (H,X,Y) と書く), $\mathfrak{h}=\mathbb{K}H$, $\mathfrak{n}_+=\mathbb{K}X$ とし,線型同型写像 $\lambda\mapsto\lambda(H)$ によって \mathfrak{h}^* を \mathbb{K} と同一視したものが,定義 2.5 と定義 2.6 にほかならない.

命題 4.9 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする. \mathfrak{g} -加群 V のウェイトベクトル $e\neq 0$ が極大ベクトルであるための必要十分条件は,任意の単純ルート $\alpha\in\Pi$ に対して $\mathfrak{g}_{\alpha}v=0$ であることである.

証明 Π に関する正ルート全体のなす集合を Δ_+ と書き, $\mathfrak{n}_+ = \bigoplus_{\alpha \in \Delta_+} \mathfrak{g}_\alpha$ と置くと, $\bigoplus_{\alpha \in \Pi} \mathfrak{g}_\alpha$ は \mathfrak{n}_+ を Lie 代数として生成する(系 3.17 (1)).よって,主張が成り立つ.

命題 4.10 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする. Π に関する正ルート全体のなす集合を Δ_+ と書き, $\mathfrak{n}_- = \bigoplus_{\alpha \in \Delta_+} \mathfrak{g}_{-\alpha}$ と置く.V をウェイト $\lambda \in \mathfrak{h}^*$ の極大生成ベクトル e をもつ最高ウェイト g-加群とする.

- (1) $V = \mathbf{U}(\mathfrak{n}_{-})e$ が成り立つ.
- (2) V の任意のウェイトは $\lambda \operatorname{span}_{\mathbb{Z}_{\geq 0}} \Pi$ に属し、その重複度はすべて有限である。また、ウェイト λ の重複度は 1 である。
- (3) V はウェイト加群である.

証明 (1) e は V を \mathfrak{g} -加群として生成し、Poincaré-Birkhoff-Witt の定理 $[4, \, \mathbb{R} \, 2.5]^{*6}$ より $\mathbf{U}(\mathfrak{g}) = \mathbf{U}(\mathfrak{n}_{-})\mathbf{U}(\mathfrak{b}_{+})$ だから、 $V = \mathbf{U}(\mathfrak{g})e = \mathbf{U}(\mathfrak{n}_{-})\mathbf{U}(\mathfrak{b}_{+})e = \mathbf{U}(\mathfrak{n}_{-})e$ である.

(2), (3) Π に関する正ルートを重複なく列挙して $\alpha_1, \ldots, \alpha_k$ とし,各 $i \in \{1, \ldots, k\}$ に対して $y_i \in \mathfrak{g}_{-\alpha_i} \setminus \{0\}$ を一つずつ固定する.すると,Poincaré-Birkhoff-Witt の定理 $[4, \, \mathbb{R} \, 2.5]^{*7}$ より $y_1^{q_1} \cdots y_k^{q_k}$ $(q_1, \ldots, q_k \in \mathbb{N})$ の全体は $\mathbf{U}(\mathfrak{n}_-)$ を線型空間として生成するから,(1) と合わせて

$$V = \mathbf{U}(\mathfrak{n}_{-})e = \operatorname{span}_{\mathbb{K}}\{y_1^{q_1}\cdots y_k^{q_k}e \mid q_1,\ldots,q_k \in \mathbb{N}\}\$$

を得る. ここで、各 $y_1^{q_1} \cdots y_k^{q_k} e$ は、ウェイト $\lambda - \sum_{i=1}^k q_i \alpha_i$ のウェイトベクトルである(命題 4.4). よって、

^{*6} 脚注 *5 を参照のこと.

^{*7} 脚注 *5 を参照のこと.

V の任意のウェイトは $\lambda - \operatorname{span}_{\mathbb{Z}_{\geq 0}} \Pi$ に属し、V はウェイト加群である。また、任意の $\mu \in \lambda - \operatorname{span}_{\mathbb{Z}_{\geq 0}} \Pi$ に対して、 $\lambda - \sum_{i=1}^k q_i \alpha_i = \mu$ を満たす $(q_1, \dots, q_k) \in \mathbb{N}^k$ はたかだか有限個であり、 $\mu = \lambda$ のときはこのような組は $(0, \dots, 0)$ のみである。よって、V の任意のウェイトの重複度は有限であり、ウェイト λ の重複度は1 である。

系 4.11 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする.最高ウェイト \mathfrak{g} -加群 V の最高ウェイトは一意に定まり,V の極大生成ベクトルはスカラー倍を除いて一意である.

証明 命題 4.10 (2) から従う.

注意 4.12 系 4.11 の状況で、V は、極大生成ベクトル以外の極大ベクトルをもちうる。たとえば、2.2 節で定義した $M(\lambda)$ ($\lambda \in \mathbb{K}$) は最高ウェイト λ の最高ウェイト $\mathfrak{sl}(2,\mathbb{K})$ -加群であり、その極大生成ベクトルはスカラー倍を除いて e_0 のみだが、 $\lambda \in \mathbb{N}$ のとき、 $e_{\lambda+1}$ は $M(\lambda)$ のウェイト $-\lambda - 2$ の極大ベクトルである。

系 4.13 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする.最高ウェイト \mathfrak{g} -加群 V から自身への \mathfrak{g} -準同型は,恒等写像 id_V のスカラー倍のみである.

証明 V がウェイト $\lambda \in \mathfrak{h}^*$ の極大生成ベクトル e をもつとする. $f \colon V \to V$ を \mathfrak{g} -準同型とすると, $f(e) \in f(V_{\lambda}) \subseteq V_{\lambda} = \mathbb{K}e$ だから(命題 4.5,命題 4.10 (2)),ある $c \in \mathbb{K}$ が存在して f(e) = ce となる. e は V を \mathfrak{g} -加群として生成するから,これより, $f = c \operatorname{id}_V$ である.

系 4.14 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする.V を最高ウェイト λ の最高ウェイト \mathfrak{g} -加群とする.

- (1) 各 $z \in \mathbf{Z}(\mathfrak{g})$ は、V に $\lambda(z)$ 倍写像として作用する.
- (2) V は直既約*8 である.
- (3) さらに、V が有限次元であるとする. このとき、V は既約である.

証明 (1) $z \in \mathbf{Z}(\mathfrak{g})$ の V への作用は, \mathfrak{g} -準同型だから,系 4.13 よりスカラー倍である.一方で, $e \in V$ を ウェイト λ の極大生成ベクトルとすると, $ze = \lambda(z)e$ である.よって,z は,V に $\lambda(z)$ 倍写像として作用する.

- (2) 明らかに, $V \neq 0$ である. $V = V' \oplus V''$ を直和分解とすると,対応する射影 $p \colon V \to V'$ は \mathfrak{g} -準同型だから,系 4.13 より $p = \operatorname{cid}_V$ $(c \in \mathbb{K})$ と書ける. $c \neq 0$ ならば V' = p(V) = V であり,c = 0 ならば V' = p(V) = 0 である.よって,V は直既約である.
- (3) Weyl の完全可約性定理 [4, 定理 6.20] より, V の [\mathfrak{g} , \mathfrak{g}]-加群としての既約分解 $V=\bigoplus_{i\in I}V_i$ がとれる. 各 V_i は [\mathfrak{g} , \mathfrak{g}]-安定だが,(1)より $\mathbf{Z}(\mathfrak{g})$ -安定でもあるから, $V=\bigoplus_{i\in I}V_i$ は \mathfrak{g} -加群としての既約分解でもある. (2)より V は直既約だから,I は 1 元集合であり,V は既約である.

系 4.15 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする.V を ウェイト $\lambda \in \mathfrak{h}^*$ の極大生成ベクトル e をもつ最高ウェイト \mathfrak{g} -加群とし,W をその真部分加群とする.このと き, $W \subseteq \bigoplus_{\mu \in \lambda - \operatorname{span}_{\mathbb{Z}_{\geq 0}} \Pi, \ \lambda \neq \mu} V_{\mu}$ であり,V/W はウェイト λ の極大生成ベクトル e+W をもつ最高ウェイト \mathfrak{g} -加群である.

^{*8} g-加群 V が**直既約** (indecomposable) であるとは, $V \neq 0$ であり, かつ V が二つの 0 でない部分加群の直和として書けないことをいう。

証明 直和分解 $V = \bigoplus_{\mu \in \lambda - \operatorname{span}_{\mathbb{Z}_{\geq 0}} \Pi} V_{\mu}$ が成り立ち(命題 4.10 (2), (3)),W は \mathfrak{h} -安定だから,同時固有空間に関する一般論より,

$$W = \bigoplus_{\mu \in \lambda - \operatorname{span}_{\mathbb{Z}_{\geq 0}} \Pi} (V_{\mu} \cap W)$$

が成り立つ. V_{λ} は 1 次元(命題 4.10 (2))だから $V_{\lambda} \cap W$ は 0 または V_{λ} だが,後者の場合 $e \in V_{\lambda} \subseteq W$ となり,e が V を \mathfrak{g} -加群として生成することと W が V の真部分加群であることに反する. よって, $V_{\lambda} \cap W = 0$ であり,上記の直和分解と合わせて $W \subseteq \bigoplus_{\mu \in \lambda - \operatorname{span}_{\mathbb{Z}_{\geq 0}} \Pi, \ \lambda \neq \mu} V_{\mu}$ を得る. また,これより $e + W \neq 0$ だから,e + W は V/W のウェイト λ の極大生成ベクトルである.

4.3 Verma 加群

 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする。 Π に関する正ルート全体のなす集合を Δ_+ と書き, $\mathfrak{n}_+ = \bigoplus_{\alpha \in \Delta_+} \mathfrak{g}_\alpha$, $\mathfrak{b}_+ = \mathfrak{h} \oplus \mathfrak{n}_+$ と置く.このとき, \mathfrak{h} が可換であること(定理 1.35)と命題 3.6 (1) より $[\mathfrak{b}_+,\mathfrak{b}_+] \subseteq \mathfrak{n}_+$ だから,1 次元 \mathfrak{b}_+ -加群 $\mathbb{K}v_\lambda$ を,

$$(h+x)v_{\lambda} = \lambda(h)v_{\lambda}$$
 $(h \in \mathfrak{h}, x \in \mathfrak{n}_{+})$

によって定義できる. このことを踏まえて, 次のように定義する.

定義 4.16 (Verma 加群) $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする. Π に関する正ルート全体のなす集合を Δ_+ と書き, $\mathfrak{n}_+ = \bigoplus_{\alpha \in \Delta_+} \mathfrak{g}_\alpha$, $\mathfrak{b}_+ = \mathfrak{h} \oplus \mathfrak{n}_+$ と置く. $\lambda \in \mathfrak{h}^*$ に対して,上記の 1 次元 \mathfrak{b}_+ -加群 $\mathbb{K}v_\lambda$ を用いて,**Verma 加群** (Verma module) $M(\lambda)$ を

$$M(\lambda) = \mathbf{U}(\mathfrak{g}) \otimes_{\mathbf{U}(\mathfrak{b}_{\perp})} \mathbb{K} v_{\lambda}$$

と定める(ここで、 $\mathbf{U}(\mathfrak{g})$ を自然に右 $\mathbf{U}(\mathfrak{b}_+)$ -加群とみなしている). また、

$$e_{\lambda} = 1 \otimes v_{\lambda} \in M(\lambda)$$

と定める.

命題 **4.17** $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする. $\lambda \in \mathfrak{h}^*$ とする.

- (1) Verma 加群 $M(\lambda)$ は、ウェイト λ の極大生成ベクトル e_{λ} をもつ最高ウェイト \mathfrak{g} -加群である.
- (2) V をウェイト λ の極大ベクトル e をもつ \mathfrak{g} -加群とする.このとき, \mathfrak{g} -準同型 ϕ : $M(\lambda) \to V$ であって e_{λ} を e に移すものが,一意に存在する.

証明 Π に関する正ルート全体のなす集合を Δ_+ と書き、 $\mathfrak{n}_+ = \bigoplus_{\alpha \in \Delta_+} \mathfrak{g}_\alpha$ 、 $\mathfrak{b}_+ = \mathfrak{h} \oplus \mathfrak{n}_+$ と置く.

- (1) 任意の $h \in \mathfrak{h}$ に対して、 $he_{\lambda} = h \otimes v_{\lambda} = 1 \otimes hv_{\lambda} = \lambda(h)e_{\lambda}$ である.任意の $x \in \mathfrak{n}_+$ に対して、 $xe_{\lambda} = x \otimes v_{\lambda} = 1 \otimes xv_{\lambda} = 0$ である.明らかに、 e_{λ} は $M(\lambda)$ を \mathfrak{g} -加群として生成する.以上より、 e_{λ} は $M(\lambda)$ のウェイト λ の極大生成ベクトルである.
- (2) e が V のウェイト λ の極大ベクトルであることを用いて容易に確かめられるように, $(u,v_{\lambda}) \in \mathbf{U}(\mathfrak{g}) \otimes \mathbb{K} v_{\lambda}$ を $ue \in V$ に移す双線形写像は, $\mathbf{U}(\mathfrak{b}_{+})$ -均衡である.よって,テンソル積の普遍性より,線型写像 $\phi \colon M(\lambda) = \mathbf{U}(\mathfrak{g}) \otimes_{\mathbf{U}(\mathfrak{b}_{+})} \mathbb{K} v_{\lambda} \to V$ であって各 $u \otimes v_{\lambda}$ を ue に移すものが,一意に存在する.この ϕ が,条件を満たす一意な \mathfrak{g} -準同型である.

定理 4.18 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする. $\lambda \in \mathfrak{h}^*$ とする.

- (1) Verma 加群 $M(\lambda)$ の真部分加群 N に対して商加群 $M(\lambda)/N$ を与える対応は, $M(\lambda)$ の真部分加群と最高ウェイト λ の最高ウェイト \mathfrak{g} -加群の同型類との間の一対一対応である.
- (2) Verma 加群 $M(\lambda)$ は,最大真部分加群 $N(\lambda)$ をもつ.これに対応する最高ウェイト g-加群 $L(\lambda)=M(\lambda)/N(\lambda)$ は既約であり,その他の真部分加群 N に対応する最高ウェイト g-加群 $M(\lambda)/N$ は無限次元かつ可約である.

証明 (1) 系 4.15 より, $M(\lambda)$ の真部分加群 N に対して, $M(\lambda)/N$ は最高ウェイト λ の最高ウェイト \mathfrak{g} -加群である.

最高ウェイト λ の最高ウェイト \mathfrak{g} -加群が,同型を除いて $M(\lambda)$ の真部分加群による商で尽くされることを示す. V をウェイト λ の極大生成ベクトル e をもつ最高ウェイト \mathfrak{g} -加群とすると,Verma 加群の普遍性(命題 4.17 (1))より, \mathfrak{g} -準同型 $\phi\colon M(\lambda)\to V$ であって e_λ を e に移すものが一意に存在する. e は V を \mathfrak{g} -加群として生成するから,この ϕ は全射であり,したがって, \mathfrak{g} -同型 $M(\lambda)/\operatorname{Ker}\phi\cong V$ を誘導する. $V\neq 0$ だから, $\operatorname{Ker}\phi$ は $M(\lambda)$ の真部分加群である.

N と N' が $M(\lambda)$ の真部分加群であり、 \mathfrak{g} -同型 $\psi\colon M(\lambda)/N \to M(\lambda)/N'$ が存在するとして、N=N' を示す。 $\pi\colon M(\lambda)\to M(\lambda)/N$ と $\pi'\colon M(\lambda)\to M(\lambda)/N'$ を等化準同型とすると、 $\psi(\pi(e))$ と $\pi'(e)$ はともに $M(\lambda)/N'$ の極大生成ベクトルだから(系 4.15)、ある $c\in\mathbb{K}^{\times}$ が存在して $\psi(\pi(e))=c\pi'(e)$ が成り立つ(系 4.11)、Verma 加群の普遍性(命題 4.17(2))と合わせて、 $\psi\circ\pi=c\pi'$ を得る。よって、

$$N' = \operatorname{Ker}(\psi \circ \pi) = \operatorname{Ker} \pi' = N'$$

が成り立つ.

(2) 系 4.15 より, $M(\lambda)$ のすべての真部分加群の和はまたは真部分加群であり,これが $M(\lambda)$ の最大真部分加群 $N(\lambda)$ となる. $M(\lambda)$ の真部分加群 N に対して, $M(\lambda)/N$ が既約であることは,N が $M(\lambda)$ の真部分加群の中で極大であることと同値だが, $M(\lambda)$ は最大真部分加群 $N(\lambda)$ をもつから,この条件を満たすものは $N=N(\lambda)$ のみである.また, $M(\lambda)/N$ が有限次元であるとすると, $M(\lambda)/N$ は既約だから(系 4.14 (3)), $N=N(\lambda)$ となる.これで,すべての主張が示された.

定義 4.19(Verma 加群の既約商) $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする. $\lambda \in \mathfrak{h}^*$ に対して,Verma 加群 $M(\lambda)$ をその最大真部分加群 $N(\lambda)$ で割って得られる最高ウェイト既約 \mathfrak{g} -加群 $L(\lambda) = M(\lambda)/N(\lambda)$ (定理 4.18)を,**Verma 加群の既約商**(irreducible quotient of the Verma module)という. $M(\lambda)$ から $L(\lambda)$ への等化準同型による $e_{\lambda} \in M(\lambda)$ の像を,そのまま $e_{\lambda} \in L(\lambda)$ と書く.

注意 4.20 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とすると, \mathfrak{h} は半単純 Lie 代数 $\mathfrak{g}'=[\mathfrak{g},\mathfrak{g}]$ の分裂化 Cartan 部分代数 \mathfrak{h}' と $\mathbf{Z}(\mathfrak{g})$ の直和として書ける(注意 3.4)。 Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底, Π に関する正ルート全体のなす集合を Δ_+ と書き,

$$\mathfrak{n}_+ = \bigoplus_{\alpha \in \varDelta_+} \mathfrak{g}_\alpha = \bigoplus_{\alpha \in \varDelta_+} \mathfrak{g}'_{\alpha|_{\mathfrak{h}'}}, \qquad \mathfrak{b}_+ = \mathfrak{h} \oplus \mathfrak{n}_+, \qquad \mathfrak{b}'_+ = \mathfrak{h}' \oplus \mathfrak{n}_+$$

と置く. $\lambda \in \mathfrak{h}^*$ として $\lambda' = \lambda|_{\mathfrak{h}'} \in (\mathfrak{h}')^*$ と置き, \mathfrak{g} と \mathfrak{g}' のそれぞれの上の Verma 加群

$$M(\lambda) = \mathbf{U}(\mathfrak{g}) \otimes_{\mathbf{U}(\mathfrak{b}_{+})} \mathbb{K}v_{\lambda}, \qquad M(\lambda') = \mathbf{U}(\mathfrak{g}') \otimes_{\mathbf{U}(\mathfrak{b}'_{+})} \mathbb{K}v_{\lambda'}$$

とその極大生成ベクトル

$$e_{\lambda} = 1 \otimes v_{\lambda} \in M(\lambda), \qquad e_{\lambda'} = 1 \otimes v_{\lambda'} \in M(\lambda')$$

を考える.

 $M(\lambda)$ を \mathfrak{g}' -加群とみなすと, e_{λ} はウェイト λ' の極大生成ベクトルだから, $M(\lambda')$ の普遍性(命題 4.17 (2)) より, \mathfrak{g}' -準同型 ϕ : $M(\lambda') \to M(\lambda)$ であって $e_{\lambda'}$ を e_{λ} に移すものが(一意に)存在する.また,任意の $z \in \mathbf{Z}(\mathfrak{g})$ に対して z の $M(\lambda')$ への作用を $\lambda(z)$ 倍写像と定めることで $M(\lambda')$ は \mathfrak{g} -加群をなし, $e_{\lambda'}$ はウェイト λ の極大生成ベクトルとなるから, $M(\lambda)$ の普遍性(命題 4.17 (2))より, \mathfrak{g} -準同型 ψ : $M(\lambda) \to M(\lambda')$ であって e_{λ} を $e_{\lambda'}$ に移すものが(一意に)存在する.さらに,Verma 加群の普遍性から誘導される準同型の一意性(命題 4.17 (2))を用いて確かめられるように, ϕ と ψ は互いに他の逆である.以上より, $M(\lambda)$ は, $M(\lambda')$ に上記の方法で $\mathbf{Z}(\mathfrak{g})$ の作用を定めて得られる \mathfrak{g} -加群に同型である.

 $\mathbf{Z}(\mathfrak{g})$ の各元は $M(\lambda)$ にスカラー倍によって作用するから,前段の同型を通して, $M(\lambda)$ の部分 \mathfrak{g} -加群と $M(\lambda')$ の部分 \mathfrak{g}' -加群は一対一に対応する.よって,前段の同型によって $M(\lambda)$ と $M(\lambda')$ を同一視するとき, $N(\lambda) = N(\lambda')$ かつ $L(\lambda) = L(\lambda')$ である.

注意 4.21 $\mathfrak{g} = \mathfrak{sl}(2,\mathbb{K})$ (その標準基底を (H,X,Y) と書く), $\mathfrak{h} = \mathbb{K}H$, $\mathfrak{n}_+ = \mathbb{K}X$ とし,線型同型写像 $\lambda \mapsto \lambda(H)$ によって \mathfrak{h}^* を \mathbb{K} と同一視する.最高ウェイト $\mathfrak{sl}(2,\mathbb{K})$ -加群の分類(定理 2.8)と定理 4.18 を比較すれば,2.2 節で定義した $M(\lambda)$ と $L(\lambda)$ が,Verma 加群とその既約商に同型であることが確かめられる.

4.4 整ベクトルと優整ベクトルに関する補足

 Δ を標数 0 の可換体 $\mathbb K$ 有限次元線型空間 V 上の被約ルート系とし, Π をその基底とするとき, $\lambda \in V$ に対して,

 λ が Δ に関する整ベクトル \iff 任意のルート $\alpha \in \Delta$ に対して $\alpha^{\vee}(\lambda) \in \mathbb{Z}$ \iff 任意の単純ルート $\alpha \in \Pi$ に対して $\alpha^{\vee}(\lambda) \in \mathbb{Z}$, λ が (Δ, Π) に関する優整ベクトル \iff 任意の単純ルート $\alpha \in \Pi$ に対して $\alpha^{\vee}(\lambda) \in \mathbb{Z}_{>0}$

と定義するのだった [5, 定義 3.1].

 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする。 $\Delta(\mathfrak{g},\mathfrak{h})$ は $V = \{\alpha \in \mathfrak{h}^* \mid \alpha |_{\mathbf{Z}(\mathfrak{g})} = 0\}$ 上の被約ルート系であり, $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ の双対ルート α^\vee は $\alpha^\vee(\lambda) = \lambda(H_\alpha)$ ($\lambda \in V$) (H_α は定理 3.10 によって定まるものとする)によって与えられる(定理 3.13)。したがって, $\lambda \in V$ に対して,

 $\lambda\,\, \dot{m}\,\, \Delta(\mathfrak{g},\mathfrak{h})\,\, \mathrm{に関する整ベクトル} \iff \,\, \mathrm{任意のルート}\,\, \alpha \in \Delta(\mathfrak{g},\mathfrak{h})\,\, \mathrm{に対して}\,\, \lambda(H_\alpha) \in \mathbb{Z}$ $\iff \,\, \mathrm{任意の単純ルート}\,\, \alpha \in \Pi\,\, \mathrm{に対して}\,\, \lambda(H_\alpha) \in \mathbb{Z},$ $\lambda\,\, \dot{m}\,\, (\Delta(\mathfrak{g},\mathfrak{h}),\Pi)\,\, \mathrm{に関する優整ベクトル} \iff \,\, \mathrm{任意の単純ルート}\,\, \alpha \in \Pi\,\, \mathrm{に対して}\,\, \lambda(H_\alpha) \in \mathbb{Z}_{\geq 0}$

である.

前段の状況で、「整ベクトル」と「優整ベクトル」の定義を拡張して、 $\lambda \in \mathfrak{h}^*$ に対してもこれらの用語を用いることにする。 すなわち、上記の同値性が $\lambda \in \mathfrak{h}^*$ に対しても成り立つとすることで、「 λ が $\Delta(\mathfrak{g},\mathfrak{h})$ に関する整ベクトルである」ことを「 λ が $(\Delta(\mathfrak{g},\mathfrak{h}),\Pi)$ に関する優整ベクトルである」ことを定義する。

 $Z = \{ \alpha \in \mathfrak{h}^* \mid \alpha|_{\mathfrak{h} \cap [\mathfrak{g},\mathfrak{g}]} = 0 \}$ と置き,直和分解 $\mathfrak{h}^* = V \oplus Z$ に関する射影を $\operatorname{pr}_V \colon \mathfrak{h}^* \to V$ と書くと,

 λ が $\Delta(\mathfrak{g},\mathfrak{h})$ に関する整ベクトル \iff $\mathrm{pr}_V(\lambda)$ が $\Delta(\mathfrak{g},\mathfrak{h})$ に関する整ベクトル, λ が (Δ,Π) に関する優整ベクトル \iff $\mathrm{pr}_V(\lambda)$ が $(\Delta(\mathfrak{g},\mathfrak{h}),\Pi)$ に関する優整ベクトル

である.

この拡張された定義に関して、次が成り立つ. この命題は、定理 4.29 の証明で用いられる.

命題 **4.22** $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする。 \mathfrak{h}^* の部分集合 \mathfrak{X} が,次の条件を満たすとする。

- (i) ある $\lambda \in \mathfrak{h}^*$ が存在して、 $\mathfrak{X} \subseteq \lambda \operatorname{span}_{\mathbb{Z}_{>0}} \Pi$ となる.
- (ii) $\mathfrak X$ は $\mathbf W(\Delta(\mathfrak g,\mathfrak h))$ -安定である.

このとき、 \mathfrak{X} は有限である.

証明 $V = \{\alpha \in \mathfrak{h}^* \mid \alpha \mid_{\mathbf{Z}(\mathfrak{g})} = 0\}$ および $Z = \{\alpha \in \mathfrak{h}^* \mid \alpha \mid_{\mathfrak{h} \cap [\mathfrak{g},\mathfrak{g}]} = 0\}$ と置き,直和分解 $\mathfrak{h}^* = V \oplus Z$ に関する射影を $\operatorname{pr}_V \colon \mathfrak{h}^* \to V$ および $\operatorname{pr}_Z \colon \mathfrak{h}^* \to Z$ と書く. $\Pi \subseteq V$ だから,条件 (i) より, $\operatorname{pr}_Z(\mathfrak{X}) \subseteq \{\operatorname{pr}_Z(\lambda)\}$ である.また, $\operatorname{pr}_V(\mathfrak{X})$ は, $\operatorname{pr}_V(\lambda) - \operatorname{span}_{\mathbb{Z}_{\geq 0}} \Pi$ に含まれ $\mathbf{W}(\Delta(\mathfrak{g},\mathfrak{h}))$ -安定だから,ルート系の一般論 $[5,\mathfrak{h}]$ 題 3.5] より,有限である.よって, \mathfrak{X} は有限である.

4.5 条件 (CD) を満たす有限次元 g-加群

定義 4.23(条件 (CD) を満たす \mathfrak{g} -加群) \mathfrak{g} を Lie 代数とする。 \mathfrak{g} -加群 V が条件 (CD) を満たす *9 とは, $\mathbf{Z}(\mathfrak{g})$ の任意の元の V への作用が対角化可能であることをいう。

注意 4.24 Lie 代数 \mathfrak{g} が $\mathbf{Z}(\mathfrak{g})=0$ を満たす(これは、 \mathfrak{g} が半単純ならば成り立つ)ならば、明らかに、任意の \mathfrak{g} -加群は条件 (CD) を満たす.

命題 4.25 g を Lie 代数とし、V を既約 g-加群とする. 任意の $z \in \mathbf{Z}(\mathfrak{g})$ に対して、次の条件は同値である.

- (a) z の V への作用はスカラー倍である.
- (b) z の V への作用は対角化可能である.
- (c) z の V への作用は固有値をもつ.

特に、 账 が代数閉ならば、任意の有限次元既約 g-加群は条件 (CD) を満たす.

証明 $(a) \Longrightarrow (b) \Longrightarrow (c)$ 明らかである.

(c) ⇒ (a) z の V への作用を $\rho(z)$ と書く、 $\rho(z)$ が固有値 $c \in \mathbb{K}$ をもつとすると, $\rho(z) - \operatorname{cid}_V$ は V から自身への単射でない \mathfrak{g} -準同型だから, $\operatorname{Ker}(\rho(z) - \operatorname{cid}_V)$ は V の 0 でない部分加群である。V は既約だから, $\operatorname{Ker}(\rho(z) - \operatorname{cid}_V) = V$ である。すなわち, $\rho(z) = \operatorname{cid}_V$ が成り立つ。

最後の主張 \mathbb{K} が代数閉であるとすると,有限次元線型空間 $V \neq 0$ 上の線型変換は必ず固有値をもつ. よって,主張は,すでに示した同値性から従う.

^{*9 「}条件 (CD) を満たす」は、本稿だけの用語である."center"と "diagonalizable"の頭文字をとって "(CD)" とした.

命題 4.26 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とする. V を有限次元 \mathfrak{g} -加群とする.

- (1) V の任意のウェイトは、 $\Delta(\mathfrak{g},\mathfrak{h})$ に関する整ベクトルである.
- (2) V が条件 (CD) を満たすとする. このとき, V は完全可約なウェイト加群である.
- (3) V が条件 (CD) を満たすとし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする.このとき, $V \neq 0$ ならば V は極大ベクトルをもち,V が既約ならば V は最高ウェイト加群である.

証明 各 $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ に対して、 \mathfrak{sl}_2 -三対 $(H_\alpha,X_\alpha,Y_\alpha)$ を定理 3.10 のようにとる.

- (1) V がウェイト $\lambda \in \mathfrak{h}^*$ のウェイトベクトル $v \neq 0$ をもつとする. $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ とし、 \mathfrak{sl}_2 -三対 $(H_{\alpha}, X_{\alpha}, Y_{\alpha})$ によって V を $\mathfrak{sl}(2, \mathbb{K})$ -加群とみなす. すると、 $Hv = H_{\alpha}v = \lambda(H_{\alpha})v$ だから、 $\mathfrak{sl}(2, \mathbb{K})$ -加群 V はウェイト $\lambda(H_{\alpha})$ をもつ. したがって、系 2.13 (1) より、 $\lambda(H_{\alpha}) \in \mathbb{Z}$ である. これが任意のルート $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ に対して成り立つから、 λ は $\Delta(\mathfrak{g},\mathfrak{h})$ に関する整ベクトルである.
 - (2) V が完全可約であることを示す. $\omega \in \mathbf{Z}(\mathfrak{g})^*$ に対して

$$V_{(\omega)} = \{ v \in V \mid$$
任意の $z \in \mathbf{Z}(\mathfrak{g})$ に対して $zv = \omega(z)v \}$

と置くと,仮定より,直和分解 $V=\bigoplus_{\omega\in \mathbf{Z}(\mathfrak{g})^*}V_{(\omega)}$ が成立する.さらに, \mathfrak{g} の任意の元の作用と $\mathbf{Z}(\mathfrak{g})$ の任意の元の作用が可換であることから確かめられるように,各 $V_{(\omega)}$ は V の部分加群である.Weyl の完全可約性定理 [4, 定理 [4, [4, [4, [4, [4, [4, [4, [4, [4, [4, [4, [4,

V がウェイト加群であることを示す。 $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ とし、 \mathfrak{sl}_2 -三対 $(H_\alpha,X_\alpha,Y_\alpha)$ によって V を $\mathfrak{sl}(2,\mathbb{K})$ -加群とみなす。すると、 $\mathfrak{sl}(2,\mathbb{K})$ -加群 V はウェイト加群だから(系 2.13 (1))、 H_α の V への作用は対角化可能である。また、仮定より、 $\mathbf{Z}(\mathfrak{g})$ の任意の元の V への作用は対角化可能である。ここで、

$$\mathfrak{h} = (\mathfrak{h} \cap [\mathfrak{g}, \mathfrak{g}]) \oplus \mathbf{Z}(\mathfrak{g}) = \operatorname{span}_{\mathbb{K}} \{ H_{\alpha} \mid \alpha \in \Delta(\mathfrak{g}, \mathfrak{h}) \} \oplus \mathbf{Z}(\mathfrak{g})$$

であり(注意 3.4, 系 3.14), $\mathfrak h$ は可換だから(定理 1.35), $\mathfrak h$ の V への作用は同時対角化可能である. すなわち, $\mathfrak g$ -加群 V はウェイト加群である.

(3) $V \neq 0$ であるとする. V は有限次元だからそのウェイトは有限個であり、一方で、(2) より V は少なくとも一つのウェイトをもつ. そこで、 Π に関する正ルート全体のなす集合を Δ_+ と書くと、V のウェイト $\lambda \in \mathfrak{h}^*$ であって $\lambda + \Delta_+$ が V のウェイトを含まないものがとれる. $e \in V_\lambda \setminus \{0\}$ をとると、任意の $\alpha \in \Delta_+$ に対して $\mathfrak{g}_\alpha e \in V_{\lambda+\alpha} = 0$ だから(命題 4.4),e は極大ベクトルである.さらに、V が既約ならば、e は V を \mathfrak{g} -加群として生成するから,e は極大生成ベクトルである.

命題 4.27 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とする. V_1 と V_2 は条件 (CD) を満たす有限次元 \mathfrak{g} -加群であり,任意のウェイト $\lambda\in\mathfrak{h}^*$ の V_1 における重複度と V_2 における重複度が等しいとする.このとき, V_1 と V_2 は \mathfrak{g} -同型である.

証明 V_1 と V_2 はウェイト加群だから(命題 4.26 (2)),仮定より, V_1 と V_2 の次元は等しい.この共通の次元に関する帰納法で,主張を示す. $\dim V_1 = \dim V_2 = 0$ である場合には,主張は明らかである. $\dim V_1 = \dim V_2 \geq 1$ であるとして,次元がより小さい場合には主張が成り立つとする. V_1 と V_2 は有限次元だから,そのウェイトは有限個である.そこで,ルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底 Π を一つ固定し,それに関する正ルート全体のなす集合を Δ_+ と書くと, V_1 と V_2 のウェイト $\lambda \in \mathfrak{h}^*$ であって $\lambda + \Delta_+$ が V_1 と V_2 のウェイトを含まないものがとれる.各 $i \in \{1,2\}$ に対してウェイトベクトル $e_i \in V_i \setminus \{0\}$ をとると, λ のとり方より,

これは極大ベクトルである.そこで, e_i が生成する部分加群を $W_i \subseteq V_i$ と置くと, W_i は最高ウェイト λ の有限次元最高ウェイト加群だから, $L(\lambda)$ に同型である(定理 4.18 (2)). V_i は完全可約だから(命題 4.26 (2)),部分加群 $V_i' \subseteq V_i$ であって W_i の補空間であるものがとれる. V_1' と V_2' はふたたび主張の仮定を満たすから,帰納法の仮定より,これらは \mathfrak{g} -同型である.よって, $V_1 = L(\lambda) \oplus V_1'$ と $V_2 = L(\lambda) \oplus V_2'$ も \mathfrak{g} -同型である.これで,帰納法が完成した.

4.6 最高ウェイト理論

補題 4.28 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とする. V を \mathfrak{g} -加群とし, ρ : $\mathfrak{g} \to \mathfrak{gl}(V)$ を対応する表現とする. $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ とし, \mathfrak{sl}_2 -三対 $(H_\alpha,X_\alpha,Y_\alpha)$ を定理 3.10 のようにとり,V 上の線型写像 $\rho(X_\alpha)$ と $\rho(Y_\alpha)$ は局所冪零であるとする.このとき,

$$\theta^{\rho}_{\alpha} = e^{\rho(X_{\alpha})} e^{\rho(-Y_{\alpha})} e^{\rho(X_{\alpha})} \in GL(V)$$

と定めると、任意の $\lambda \in \mathfrak{h}^*$ に対して、 $\theta^{\rho}_{\alpha}(V_{\alpha}) = V_{s_{\alpha}(\lambda)}$ が成り立つ.

証明 $a, x \in \mathfrak{g}$ とし、 $\mathrm{ad}_{\mathfrak{g}}(a)$ は冪零であり、 $\rho(a)$ は局所冪零であるとする. すると、任意の $v \in V$ に対して

$$\begin{split} \rho(e^{\mathrm{ad}(a)}(x))v &= \sum_{n=0}^{\infty} \frac{1}{n!} \operatorname{ad}(\rho(a))^n \rho(x) v \\ &= \sum_{n=0}^{\infty} \sum_{p+q=n} \frac{1}{p! \, q!} \rho(a)^p \rho(x) (-\rho(a))^q v \\ &= \sum_{p,q=0}^{\infty} \frac{1}{p! \, q!} \rho(a)^p \rho(x) (-\rho(a))^q v \\ &= \sum_{p=0}^{\infty} \frac{1}{p!} \rho(a)^p \rho(x) e^{-\rho(a)} v \\ &= e^{\rho(a)} \rho(x) e^{-\rho(a)} v \end{split}$$

だから(どの総和も有限項を除いて0になることに注意する),

$$\rho(e^{\mathrm{ad}(a)}(x)) = e^{\rho(a)}\rho(x)e^{-\rho(a)}$$

が成り立つ. したがって, $\operatorname{ad}(X_{\alpha})$ と $\operatorname{ad}(Y_{\alpha})$ が冪零であること(系 3.7)に注意して $\theta_{\alpha} = e^{\operatorname{ad}(X_{\alpha})}e^{\operatorname{ad}(-Y_{\alpha})}e^{\operatorname{ad}(X_{\alpha})} \in \operatorname{Aut}(\mathfrak{g})$ と定めると、任意の $x \in \mathfrak{g}$ に対して、

$$\rho(\theta_{\alpha}(x)) = \theta_{\alpha}^{\rho} \rho(x) (\theta_{\alpha}^{\rho})^{-1} \tag{*}$$

が成り立つ.

 $\lambda \in \mathfrak{h}^*$ とする. (*) より,

$$\theta_{\alpha}^{\rho}(V_{\lambda}) = \{v \in V \mid (\theta_{\alpha}^{\rho})^{-1}(v) \in V_{\lambda}\}$$

$$= \{v \in V \mid 任意の h \in \mathfrak{h} に対して \rho(h)(\theta_{\alpha}^{\rho})^{-1}(v) = \lambda(h)(\theta_{\alpha}^{\rho})^{-1}(v)\}$$

$$= \{v \in V \mid 任意の h \in \mathfrak{h} に対して \theta_{\alpha}^{\rho}\rho(h)(\theta_{\alpha}^{\rho})^{-1}(v) = \lambda(h)v\}$$

$$= \{v \in V \mid 任意の h \in \mathfrak{h} に対して \rho(\theta_{\alpha}(h))v = \lambda(h)v\}$$

である.ここで,補題 3.12 (1), (2) より, θ_{α} は \mathfrak{h} を安定にし, $(\theta_{\alpha}|_{\mathfrak{h}})^{*-1}=s_{\alpha}^{-1}=s_{\alpha}$ を満たす.よって,上式と合わせて,

$$heta_{lpha}^{
ho}(V_{\lambda}) = \{v \in V \mid$$
任意の $h \in \mathfrak{h}$ に対して $ho(h)v = \lambda(\theta_{lpha}^{-1}(h))v\}$
$$= \{v \in V \mid$$
任意の $h \in \mathfrak{h}$ に対して $ho(h)v = s_{lpha}(\lambda)(h)v\}$
$$= V_{s_{lpha}(\lambda)}$$

を得る.

定理 4.29 $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする. $\lambda \in \mathfrak{h}^*$ に対して,次の条件は同値である.

- (a) λ は ($\Delta(\mathfrak{g},\mathfrak{h}),\Pi$) に関する優整ベクトルである.
- (b) 任意の $\alpha \in \Pi$ に対して、 $\mathfrak{g}_{-\alpha}$ のすべての元の $L(\lambda)$ への作用は局所冪零である.
- (c) $L(\lambda)$ のウェイト全体のなす集合は、 $\mathbf{W}(\Delta(\mathfrak{g},\mathfrak{h}))$ -安定である.
- (d) $L(\lambda)$ は有限次元である.

さらに、これらの条件の下で、 $L(\lambda)$ におけるウェイトの重複度は、 $\mathbf{W}(\Delta(\mathfrak{g},\mathfrak{h}))$ の作用の各軌道上で一定である.

証明 $A \in \Delta(\mathfrak{g}, \mathfrak{h})$ に対して、 \mathfrak{sl}_2 -三対 $(H_{\alpha}, X_{\alpha}, Y_{\alpha})$ を定理 3.10 のようにとる.

(a) \Longrightarrow (b) λ が ($\Delta(\mathfrak{g},\mathfrak{h}),\Pi$) に関する優整ベクトルであるとする. $\alpha\in\Delta(\mathfrak{g},\mathfrak{h})$ とし、 \mathfrak{sl}_2 -三対 $(H_\alpha,X_\alpha,Y_\alpha)$ によって $L(\lambda)$ を $\mathfrak{sl}(2,\mathbb{K})$ -加群とみなす。 $\mathfrak{sl}(2,\mathbb{K})$ の標準基底を (H,X,Y) と書くとき、Y の $\mathfrak{sl}(2,\mathbb{K})$ -加群 $L(\lambda)$ への作用が局所冪零であることを示したい。Y は \mathbb{K}^2 上の線型写像として冪零だから、その任意の有限次元 $\mathfrak{sl}(2,\mathbb{K})$ -加群への作用も冪零である [4, 命題 6.32 (2)] したがって、 $L(\lambda)$ のすべての有限 次元部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群の和が $L(\lambda)$ 全体となることを示せばよい。

W を $L(\lambda)$ の有限次元部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群とすると,任意の $x \in \operatorname{span}_{\mathbb{K}}\{H_{\alpha},X_{\alpha},Y_{\alpha}\}$ に対して

$$x\mathfrak{g}W\subseteq\mathfrak{g}xW+[x,\mathfrak{g}]W\subseteq\mathfrak{g}W$$

だから、 $\mathfrak{g}W$ も $L(\lambda)$ の有限次元部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群である.したがって, $L(\lambda)$ のすべての有限次元部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群の和は, $L(\lambda)$ の部分 \mathfrak{g} -加群である. $L(\lambda)$ は既約 \mathfrak{g} -加群だから,あとは, $L(\lambda)$ 有限次元部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群であって 0 でないことを示せばよい.

 e_{λ} が生成する $L(\lambda)$ の部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群が有限次元であることを示そう。 $m=\lambda(H_{\alpha})$ と置くと,仮定より, $m\in\mathbb{N}$ である。 e_{λ} は $\mathfrak{sl}(2,\mathbb{K})$ -加群 $L(\lambda)$ のウェイト m の極大ベクトルだから,各 $n\in\mathbb{N}$ に対して

$$e_{\lambda,n} = \frac{1}{n!} Y_{\alpha}^n e_{\lambda}$$

と置くと、 e_{λ} が生成する $L(\lambda)$ の部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群は $\mathrm{span}_{\mathbb{K}}\{e_{\lambda,n}\mid n\in\mathbb{N}\}$ である(命題 2.7 (2), (3)). ここで、 $e_{\lambda,m+1}$ に注目すると、命題 2.7 (1) より

$$X_{\alpha}e_{\lambda,m+1} = (m - (m+1) + 1)e_{\lambda,m} = 0$$

である. また, $\beta \in \Pi \setminus \{\alpha\}$ とすると, $[X_{\beta}, Y_{\alpha}] = 0$ であり(命題 3.26 (4)), e_{λ} は \mathfrak{g} -加群 $L(\lambda)$ の極大ベクトルだから,

$$X_{\beta}e_{\lambda,m+1} = \frac{1}{(m+1)!}X_{\beta}Y_{\alpha}^{m+1}e_{\lambda} = \frac{1}{(m+1)!}Y_{\alpha}^{m+1}X_{\beta}e_{\lambda} = 0$$

である。もし $e_{\lambda,m+1} \neq 0$ ならば、上式より $e_{\lambda,m+1}$ は \mathfrak{g} -加群 $L(\lambda)$ の極大ベクトルであり(命題 4.9), $L(\lambda)$ は 既約 \mathfrak{g} -加群だから,これは自動的に極大生成ベクトルとなる。ところが, $e_{\lambda,m+1}$ のウェイトは $\lambda-(m+1)\alpha$ だから(命題 4.4),これは,最高ウェイトの一意性(系 4.11)に矛盾する。よって,背理法より $e_{\lambda,m+1}=0$ であり, e_{λ} が生成する $L(\lambda)$ の部分 $\mathfrak{sl}(2,\mathbb{K})$ -加群は有限次元である。これで,主張が示された。

- (b) \Longrightarrow (c), <u>最後の主張</u> 条件 (b) が成り立つとすると,各 $\alpha \in \Delta(\mathfrak{g},\mathfrak{h})$ に対して $\theta^{\rho}_{\alpha} \in GL(V)$ を補題 4.28 のとおりに定義でき,これは任意の $\mu \in \mathfrak{h}^*$ に対して $\theta^{\rho}_{\alpha}(V_{\mu}) = V_{s_{\alpha}(\mu)}$ を満たす.よって,任意の $w \in \mathbf{W}(\Delta(\mathfrak{g},\mathfrak{h}))$ と $\lambda \in \mathfrak{h}^*$ に対して, $L(\lambda)$ におけるウェイト λ と $w(\lambda)$ の重複度は等しい.特に, $L(\lambda)$ の ウェイト全体のなす集合は, $\mathbf{W}(\Delta(\mathfrak{g},\mathfrak{h}))$ -安定である.
- (c) \Longrightarrow (d) $L(\lambda)$ のウェイト全体のなす集合を $\mathfrak X$ と置くと, $\mathfrak X\subseteq \lambda-\operatorname{span}_{\mathbb Z_{\geq 0}}\Pi$ である(命題 4.10 (2)). さらに, $\mathfrak X$ が $\mathbf W(\Delta(\mathfrak g,\mathfrak h))$ -安定であるとすると, $\mathfrak X$ は命題 4.22 の仮定を満たすから,有限である. $L(\lambda)$ は ウェイト加群であり,その各ウェイトの重複度は有限だから(命題 4.10 (2),(3)),このとき, $L(\lambda)$ は有限次元である.
- $(d) \Longrightarrow (a) \quad \alpha \in \Pi$ とし、 \mathfrak{sl}_2 -三対 $(H_\alpha, X_\alpha, Y_\alpha)$ によって V を $\mathfrak{sl}(2, \mathbb{K})$ -加群とみなす。すると、 $He_\lambda = H_\alpha e_\lambda = \lambda(H_\alpha)v$ かつ $Xe_\lambda = X_\alpha e_\lambda = 0$ だから、 e_λ は $\mathfrak{sl}(2, \mathbb{K})$ -加群 V のウェイト $\lambda(H_\alpha)$ の極大ベクトルである。したがって、系 2.9 より、 $\lambda(H_\alpha) \in \mathbb{N}$ である。これが任意の単純ルート $\alpha \in \Pi$ に対して成り立つから、 λ は $(\Delta(\mathfrak{g},\mathfrak{h}),\Pi)$ に関する優整ベクトルである。

定理 4.30 (最高ウェイト理論) $(\mathfrak{g},\mathfrak{h})$ を標数 0 の可換体 \mathbb{K} 上の分裂簡約 Lie 代数とし, Π をルート系 $\Delta(\mathfrak{g},\mathfrak{h})$ の基底とする.

- (1) 条件 (CD) を満たす有限次元既約 \mathfrak{g} -加群 V は、最高ウェイト加群であり、その最高ウェイトは、 $(\Delta(\mathfrak{g},\mathfrak{h}),\Pi)$ に関する優整ベクトルである.
- (2) $(\Delta(\mathfrak{g},\mathfrak{h}),\Pi)$ に関する優整ベクトル $\lambda \in \mathfrak{h}^*$ に対して、Verma 加群の既約商 $L(\lambda)$ は、条件 (CD) を満たす有限次元既約 \mathfrak{g} -加群である.
- (3) (1) と (2) の対応は,条件 (CD) を満たす有限次元既約 \mathfrak{g} -加群の同型類と ($\Delta(\mathfrak{g},\mathfrak{h}),\Pi$) に関する優整ベクトルとの間の,互いに他の逆を与える一対一対応である.

証明 主張は,次のことから従う.

- 条件 (CD) を満たす有限次元既約 g-加群は、最高ウェイト加群である(命題 4.26).
- 最高ウェイト $\lambda \in \mathfrak{h}^*$ の最高ウェイト既約 g-加群は,同型を除いて $L(\lambda)$ のみである(定理 4.18).
- $L(\lambda)$ が有限次元であるための必要十分条件は, λ が $(\Delta(\mathfrak{g},\mathfrak{h}),\Pi)$ に関する優整ベクトルであることである(定理 4.29).

注意 4.31 (g, h) を標数 0 の可換体 K 上の分裂簡約 Lie 代数とする.

- (1) 注意 4.24 と命題 4.25 より、 \mathbb{K} が代数閉であるかまたは \mathfrak{g} が半単純ならば、最高ウェイト理論(定理 4.30)において、「条件 (CD) を満たす」はなくても同じである.
- (2) \mathbb{K} が代数閉でなく \mathfrak{g} が半単純でなければ,条件 (CD) を満たさない有限次元既約 \mathfrak{g} -加群が存在しうる. たとえば, $\mathbb{K} = \mathbb{R}$ とし, \mathfrak{g} を 1 次元可換 Lie 代数 \mathbb{R} とすると,写像 $x \mapsto \begin{pmatrix} 0 & x \\ -x & 0 \end{pmatrix}$ は \mathbb{R} の \mathbb{R}^2 上の既約表現だが,条件 (CD) を満たさない.
- (3) $\mathfrak g$ が半単純でなければ、($\mathbb K$ が代数閉であっても、)条件 (CD) を満たさない有限次元 $\mathfrak g$ -加群が存在する。 実際、 $\lambda \in \mathfrak g^* \setminus \{0\}$ であって $\lambda|_{[\mathfrak g,\mathfrak g]} = 0$ を満たすものを一つ固定すると、写像 $x \mapsto \begin{pmatrix} 0 & \lambda(x) \\ 0 & 0 \end{pmatrix}$ は $\mathfrak g$

の \mathbb{K}^2 上の表現だが,条件 (CD) を満たさない.

参考文献

全体を通して、Bourbaki [3] を参考にした. 補題 1.21 と補題 1.22 の証明については、Atiyah—MacDonald [1, Chapter 5, Exercises 20, 21] を参考にした.

- [1] M. F. Atiyah, I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, 1969.
- [2] N. Bourbaki, Algèbre commutative, Chapitres 5 à 7, Springer, 2006.
- [3] N. Bourbaki, Éléments de mathématique, Groupes et algèbres de Lie, Chapitres 7 et 8, Springer, 2006.
- [4] 箱,「Lie 代数」, 2025 年 5 月 24 日版. https://o-ccah.github.io/docs/lie-algebra.html
- [5] 箱,「ルート系」, 2025年8月7日版. https://o-ccah.github.io/docs/root-system.html