Dylan Thomany

Homework 1

Microprocessor System Design- ELEN 120 Due 9/25/2023 34 points

These problems are to be solved without a calculator or computer. There is a table of powers of 2 in decimal at the end that may be helpful.

Binary number representations:

1) Without using a calculator or computer, properly represent each of the numbers in column 1 as a 16-bit unsigned binary number in column 2 and as a 16-bit unsigned hexadecimal number in column 3. (2 points each)

Decimal	16-bit unsigned binary	16-bit unsigned hexadecimal
(Example) 1	00000000000000000	0x0001
127	d ado adocd11[11]	0x007F
4097	(0010000000001	0x1001
60000	1101010000	OxEA60

			0	
5)344		60000	110000000000000000000000000000000000000	OXEA
2048	-		for 20	r -105
512	numbers in co	lumn 1 as a d	ecimal number in column 2. (2	
7 96	16-bit uns hexadeci		Decimal	
60000	(Example)	0x0001	1	
2		0x0111	273	0000 0001
		0x0fff	4095	256
		0x1023	4131	44 - 12

0000 0001 0001 0001
$$28 24$$

$$256+16+1$$

$$0444 = 2^{12}-1 = 4055$$

00010000 0010 0011

3) Without using a calculator or computer, properly represent each of the numbers in column 1 as a 32-bit signed hexadecimal number in column 2. (2 points each)

100	Decimal	32-bit signed hexadecimal
	(Example) 1	0x00000001
	100	0x0000064
	-100	Ox FFFFFFGC
	-2	Ox FFFFFFE
	8,388,607	Ox 00 7F FFFF
iu x	-2,147,483,648	0x80000000
10		

100=01100100=64 -100=10011100=9(00...0114...111₂₀

2147,483,647 (CO... to CIIII... plas 1 forces carry all the way to the front so 2147483648 unsigned => 21+7413648 signed

4) Without using a calculator or computer, properly represent each of the 32-bit signed hexadecimal numbers in column 1 as a decimal number in column 2. (2 points each)

32-bit signed hexadecimal		Decimal	
(Example)	0xFFFFFFF	-1	
	0xFFFFFFD	-3	
	0×00080000	524,288	
	0×E0000000	-536,870,9124	

- (0010) aaaaaa = 236, 830, 615

3328 ad 63 8 A

(013 24185 A

(013 2418