Machine Learning Workshop

Mentor: Nicolas Känzig

Email: nkaenzig@gmail.com

Workshop Repository: https://github.com/nkaenzig/ml-workshop

Contenido

Modulo 1

- Introducción ML
- Python crashcourse

Modulo 2

- Análisis de datos
- Preprocesamiento de datos
 - Ejemplo ML

Modulo 3

- Modelos de ML
- Técnicas de evaluación
 - Ejemplos ML

Machine Learning Introducción

Terminologías

- Artificial Intelligence (AI)
 - Machine Learning
 - Algoritmos que aprenden de datos
 - Deep Learning
 - Subconjunto de Machine Learning
 - Redes neuronales artificiales
 - General Al
 - Pensar, razonar, generalizar, curiosidad, ...
 - El futuro

Terminologías

- Artificial Intelligence (AI)
 - Machine Learning
 - Algoritmos que aprenden de datos
 - Deep Learning
 - Subconjunto de Machine Learning
 - Redes neuronales artificiales
 - General Al
 - Pensar, razonar, generalizar, curiosidad, ...
 - El futuro

Aplicaciones de Machine Learning

- Predicciones de ventas, precios, ...
- Clasificación de textos
- Sistemas de recomendaciones
- Medicina
- Detección de fraudes

Aplicaciones de Deep Learning

- Clasificación de imágenes
- Reconocimiento de objetos
- Traducción de idiomas

- Reconocimiento de voz
- AlphaGo

• ...

Rule-Based Systems v.s. Machine Learning

Rule-Based if condition1: # Do something elif condition2: # Do something else else: # Default action Machine Learning Output

Que es Machine Learning?

$$f(x,\theta)$$

$$\theta^* = \operatorname*{argmin}_{\theta} L(x, y, \theta)$$

e.g.
$$L(x, y, \theta) = |f(x, \theta) - y|^2$$

Machine Learning

- Estadística
- Optimización
- Algebra lineal
- Matemática numérica
- Computer Science
- •

Proceso

Supervised v.s. Unsupervised Learning

Supervised Learning

Regression

$$f(x,\theta) = \theta_0 + \theta_1 x$$

Classification

Unsupervised Learning (Clustering)

Datasets

División de los datos en 3 partes:

Train set (70%)

Validation set (20%)

Test set (10%)

Overfitting

Que es el Input / Formato de los datos?

Que es el Input?

Datasets

- Tabulas (Excel, CSV, SQL, ...)
- Texto
- Imágenes (Deep Learning)
- Audio (Deep Learning)

Matriz = Tabula Features & Label = Columnas

$$egin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \ a_{21} & a_{22} & \cdots & a_{2n} \ dots & dots & \ddots & dots \ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

m x n n: # features m: # samples

Features	Label
----------	-------

Position	Experience	Skill	Country	City	Salary (\$)
Developer	0	1	USA	New York	103100
Developer	1	1	USA	New York	104900
Developer	2	1	USA	New York	106800
Developer	3	1	USA	New York	108700
Developer	4	1	USA	New York	110400
Developer	5	1	USA	New York	112300
Developer	6	1	USA	New York	114200
Developer	7	1	USA	New York	116100
Developer	8	1	USA	New York	117800
Developer	9	1	USA	New York	119700
Developer	10	1	USA	New York	121600

Categorical Features

country

0 russia

1 colombia

2 germany

3 korea

4 ecuador

Enumeration

$O_{n_{e,L_{I}}}$	Encoding
Tot	Enco
	Coding

	country
0	1
1	2
2	3
3	4
4	5

	colombia	ecuador	germany	korea	russia
0	0	0	0	0	1
1	1	0	0	0	0
2	0	0	1	0	0
3	0	0	0	1	0
4	0	1	0	0	0

Desventajas

Enumeration

- Distancia euclidiana da falsa información
 - |Russia Colombia| = |1 2| = 1
 - |Colombia Ecuador| = |2 5| = 3

country	country-code
russia	1
colombia	2
germany	3
korea	4
ecuador	5

One-Hot Encoding

- "The curse of dimensionality" ("La maldición de la dimensionalidad")
 - 10'000 categorías → 10'000 columnas nuevas
 - Sparsity: Casi todos los valores de la matriz son 0
 - La distancia euclidiana entre todos los puntos se aproxima a una constante
 - Uso de memoria

Similaridad?

	Α	В
x[0]	3	335448

	Α	В
x[1]	100	335440
x[2]	2	10000

Similaridad?

Y si A son [metros] y B son [milimetros]?

Standardization

Dificultades

- Entender los datos
- Definir la tarea
- Datos en un formato adecuado para entrenar modelos
- Conseguir suficiente datos
- Seleccionar un modelo y encontrar los mejores parámetros
- Computación / Memoria

Python crashcourse

Code Example 1

Code Example 1

```
# A comment.
x = 34 - 23
y = "Hello" # Another comment.
z = 3.45
if z == 3.45 or y == "Hello" and not z > x:
    x += 1
    y = y + World
print(x)
print(y)
             12
```

Hello World

- No datatype declaration
- Variable assignment with =
 - First assignment creates variable
- Comments with #
- Logical operators are words: and, or, not
- Special use of + for string concatenation
- Printing command: print()
- Scope declaration with indentations (no {})

Naming Rules

Case sensitive

```
Name = "Alejandra"
name = "Jorge"
```

- Upper case no es muy común
- Snake case for variables

```
a variable with a long name = 22
```

CamelCase for class names

```
class MyClassName
```

Reserved words

```
and, or, not, assert, break, class, continue, def, del, elif, else, except, exec, finally, for, from, global, if, import, in, is, lambda, pass, print, raise, return, try, while
```

Basic Datatypes

Integers

```
x = 1
y = 5 / 2 # result is 2
```

Floats

```
x = 3.256
y = 5 / 2.0 \# result is 2.5
```

Strings

```
x = "Machine Learning"
y = 'Machine Learning'
```

Boolean

```
x = True
y = False
```

Conditional Branching

```
if condition_a:
    # do something
elif condition_b:
    # do something else
else:
    # default action
```

Loops

```
# For-Loop
for i in range(10):
    print(i)

# While-loop
i=0
while i < 10:
    print(i)
    i += 1</pre>
```

Complex Datatypes

```
    Lists
        x = [2, "ML", 2, 3.75, [1, "a"]]
    Tuples
        x = (2, "ML", 2, 3.75, [1, "a"]) # immutable
    Dictionaries
        x = {"name": "Alejandra", "age": 21}
    Sets
        x = {"Alejandra", "Jorge", "Maria"} # not ordered
```

Lists

```
x = [2, "ML", 3.75]

# Add element to List
x.append(5) # [2, "ML", 3.75, 5]

# List concatenation
y = [2, 1]
z = x + y # [2, "ML", 3.75, 5, 2, 1]
```

Lists

```
x = [2, "ML", 3.75, 5]
# Indexing
x[0] # 2
x[-1] # 2
x[1:] # ["ML", 3.75, 5]
x[:2] # [2, "ML"]
x[1:3] # ["ML", 3.75]
# Check if contains element
if "ML" in x:
    # do something
```

Lists

Tuples

Same as List, but immutable

```
x = (2, "ML", 2, 3.75, [1, "a"])
>>> x[2] = "test"
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: 'tuple' object does not support item assignment
```

Dictionaries

```
x = {"name": "Alejandra", "age": 21}
x["age"] = 5 # overrides current value assigned to key "age"
del x["name"] # deletes the key "name" and its value
keys = x.keys()
values = x.values()
# iterate over keys
for key in x:
    # do something
# iterate over keys & values
for key, value in x.items():
    # do something
```

Sets

```
x = {"A", "B", "C"}
x.add("D") # adds D to set
x.add("D") # won't change set, as D already exists
x.update(["E", "F", "G"]) # adds multiple elements to set
x.remove("A")
x.remove("Z") # raises error
x.dicard("Z") # no error
a = set([1, 2, 3])
b = set([2, 3, 4])
                                                 A \cap B
intersection = a.intersection(b) # or a&b
                                                A \cup B
union = a.union(b) # or a|b
difference = a.difference(b) # or a-b
                                                 A \setminus B
```

Functions

```
def calculate_sum(a,b):
    return a+b

f = lambda x: x*2
f(4) # 8

a = ["bla_4", "bla_2", "bla_8"]
sorted(a, key=lambda x: x[-1])
```

Classes

```
class Person:
    def __init__(self, name, age):
        self.name = name
        self.age = age

p1 = Person("John", 36)

print(p1.name)
print(p1.age)
```

Type Conversion

```
x = 2.54
int(x) # 2
float(2.0) # 2
str(x) # "2"

x_list = [2, 2, 2, 55, 12, 3]
x_set = set(x_list)
y_list = list(x_set)

indices = list(range(20))
```

Files

```
# Read file line-by-line
with open(filepath, 'r') as fp:
  for line in fp:
    print(line)
# Write line to file
with open(filepath, 'w') as fp:
  fp.write("test\n")
# Method B:
fp = open(filepath, 'w')
fp.write("test\n")
fp.close()
```

Exception Handling

```
try:
    x = 1/0
except ZeroDivisionError:
    print("Division by zero exception")
except:
    print("Any other exception")
```

String Methods

```
age = 21
print("Alejandra is {} years old".format(age))

price = 100000.2356412
print("This house costs {:.2f} USD".format(price))

csv = "12;Test;987.11"
csv_splitted = csv.split(';') # ['12', 'Test', '987.11']
csv_joined = splitted.join(';') # csv == csv_joined

str_with_spaces = " test string "
str_striped = str_with_spaces.strip() # "test string"
```

https://docs.python.org/3/library/stdtypes.html?highlight=upper#string-methods

Libraries

• Install/Uninstall modules: pip install pandas pip install pandas==0.21.0 pip uninstall pandas import pandas as pd import numpy as np import tensorflow as tf # load mylibrary.py import sys sys.path.insert(1, '/path/to/application/app/library_fodlder') import mylibrary

Virtual Environments

```
pip install virtualenv
virtualenv myenv
source myenv/bin/activate
pip install pandas
```

- Creates an isolated Python environment
 - Helps to avoid dependency conflicts