Traitement du signal (12 h)

Systèmes linéaires stochastiques

- Modèles AR, MA, ARMA
- Prédiction linéaire
- Estimation spectrale «moderne»

Antennerie, Holographie acoustique

1

Bibliographie

- Modern Spectral Estimation (S. M. Kay), Englewood Cliffs, NJ:Prentice Hall, 1988.
- Discrete-Time Signal Processing (A. V. Oppenheim and R. W. Schafer) Englewood Cliffs, NJ:Prentice Hall, 1989.
- Digital Signal Processing: Principles,
 Algorithms and Applications (J. G. Proakis and D. G. Manolakis), Upper Saddle River, NJ:Prentice Hall, 1996.
- Signaux et systèmes linéaires (Y. Thomas), Masson, 1994.

Applications des modèles paramétriques

- Identification de fonctions de transfert
- Extraction de caractéristiques
- Traitements adaptatifs
- Analyse spectrale

Extraction de caractéristiques pour le Diagnostic

- Forme (pattern) : décrit l'état du système
 - « Réalisation » x_i d'un vecteur forme de d paramètres, caractères (features)
 - Point de l'espace ℜ^d

Vecteur forme

paramètre 1 : pic

paramètre 2 : énergie

paramètre 3 : zone du plan

temps-fréquence

paramètre d : puissance ligne spectrale

Application:

diagnostic vibratoire

Objectif : Détecter la présence de défauts éventuels sur des composants d'une machine tournante.

<u>Technique utilisée</u> : Suivi de l'analyse spectrale de signaux vibratoires enregistrés par un accéléromètre.

Exemple : Arbre de presse d'emboutissage dans l'industrie automobile

-

L'embrayage n'étant pas excité, seuls le volant d'inertie, la courroie de transmission et le moteur sont en fonctionnement.

Toutes les pièces sont en mouvement. La presse se comporte alors comme une machine tournante et les efforts dynamiques sont périodiques.

6

Analyse spectrale (1)

Récapitulatif des éléments à surveiller en position p1 - mode non débrayé

Position	Défauts	Fréq	uence (ł	Hz)	Vitesse caractéristique	Nombre	Gamme de
composants					arbre de sortie <i>tr/min</i>	áchantillons	fréquence (Hz)
Arbre moteur	Balourd		45.07		80	1024	50
Volant d'inertie	Balourd		7.125		80	1024	50
Courroie	Transmission		5.2		80	1024	50
Roulement 6220	Défaut bague intérieure		42.04		80	1024	50
Roulement 6220	Défaut bague extérieure		29.13		80	1024	50
Roulement 6220	Défaut élément roulant	\	37.93		80	1024	50

Analyse spectrale (2)

Récapitulatif des éléments à surveiller en position p1 - mode non débrayé

	Position	Défauts	Fréq	uence i	(Hz)	Vitesse caractéristique	Nombre	Gamme de
	composants					arbre de sortie <i>tr/min</i>	áchantillons	fréquence (Hz)
Ŗ,	Arbre moteur	Balourd		45.07	\	80	1024	50
	Volant d'inertie	Balourd		7.125	\	80	1024	50
	Courroie	Transmission		5.2		80	1024	50
	Roulement 6220	Défaut bague intérieure		42.04		80	1024	50
	Roulement 6220	Défaut bague extérieure		29.13		80	1024	50
	Roulement 6220	Défaut élément roulant	\	37.93	/	80	1024	50

Analyse spectrale (3)

Récapitulatif des éléments à surveiller en position p1 - mode non débrayé

	Position	Défauts	Fréd	uence	(Hz)	Vitesse caractéristique	Nombre	Gamme de
	composants					arbre de sortie <i>tr/min</i>	áchantillons	fréquence (Hz)
	Arbre moteur	Balourd		45.07		80	1024	50
	Volant d'inertie	Balourd		7.125		80	1024	50
	Courroie	Transmission		5.2		80	1024	50
ji	Roulement 6220	Défaut bague intérieure		42.04		80	1024	50
	Roulement 6220	Défaut bague extérieure	\	29.13	/	80	1024	50
	Roulement 6220	Défaut élément roulant		37.93	/	80	1024	50

Systèmes linéaires stochastiques

- 1 Transmission d'un signal aléatoire dans un système linéaire
- 2 Processus générateurs d'un signal aléatoire : filtres formeurs du 1^{er} ordre

Transmission d'un signal aléatoire dans un système linéaire

11

- Valeur moyenne de la sortie ?
- Intercorrélation entre la sortie et l'entrée ?
- Autocorrélation de la sortie ?
- Densité spectrale de puissance de la sortie ?

Paramètres statistiques

$$E[\mathbf{Y}_n] = \overline{\mathbf{X}} * h_n$$

Moyenne

$$R_{YX_{\tau}} = R_{X_{\tau}} * h_{\tau}$$

Intercorrélation

$$R_{Y_{\tau}} = h_{\tau} * h_{-\tau} * R_{X_{\tau}}$$

Autocorrélation

$$S_{Y}(f) = |H(f)|^{2} S_{X}(f)$$

DSP

13

Filtres formeurs du 1er ordre

$$Y_{t+1} = a Y_t + X_t$$

$$E[X_t] = 0$$

$$E[Y_0] = \overline{y}_0$$

$$E[X_t^2] = V$$

$$E\left[\left(Y_0 - \overline{y}_0\right)^2\right] = P_0$$

$$E[X_t | X_{t-\tau}] = 0 \quad \forall \tau \neq 0$$

$$E\left[X_{t} Y_{t-\tau}\right] = 0 \quad \forall \tau \ge 0$$

Filtre formeur du 1er ordre

Analyse

Bruit blanc centré de variance V 1er ordre

 $\mathbf{Y}_{\mathbf{t}}$

Caractéristiques statistiques de Y_t?

- Moyenne ?
- Variance ?
- Autocorrélation ?

Filtre formeur du 1er ordre

 $t+\tau-1$

Caractéristiques statistiques de la sortie du processus du 1er ordre

Variance

$$P_{t+1} = a^2 P_t + V$$

$$E[Y_t] = a^t \overline{y}_0 = \overline{y}_t$$

$$\lim_{t\to\infty} P_t = \frac{V}{1-a^2}$$

$$P_t = a^{2t} P_0 + (1 + a^2 + a^4 + \dots + a^{2t-2})V$$

Autocorrélation

$$R_{Y_{\tau}} = a^{|\tau|} \frac{V}{1 - a^2}$$

Synthèse

$$R_{Y_{\tau}} = P a^{|\tau|}$$

y_t

$$H(z) = \frac{z}{1 - az^{-1}}$$

Modélisation paramétrique

- 1 Modèle AR
- 2 Prédiction linéaire
- 3 Modèles MA, ARMA
- 4 Estimation spectrale
- **5 Exemples**

Processus générateurs : MA, AR, ARMA

Bruit blanc centré x

 $\mathbf{H}(\mathbf{z})$ $\mathbf{y_n}$

- Signal AR, filtre IIR
 - $H(z) = \frac{1}{1 + \sum_{i=1}^{N} a_i z^{-i}}$

Signal ARMA

• Signal MA, filtre FIR

$$H(z) = \sum_{i=0}^{N} b_i z^{-i}$$

$$H(z) = \frac{\sum_{i=0}^{N} b_i z^{-i}}{1 + \sum_{i=1}^{N} a_i z^{-i}}$$

Modélisation autorégressive

 $\mathbf{X}_{\mathbf{t}}$

Bruit blanc centré de variance V

$$H(z) = \frac{1}{1 + \sum_{i=1}^{N} a_i \ z^{-i}}$$

- Réponse impulsionnelle h_i du filtre ?
- Puissance de Y_t?
- Autocorrélation de Y_t ?

Processus générateur AR

Réponse impulsionnelle du filtre :

$$h_{\tau} = \frac{1}{V} R_{YX_{\tau}} = \frac{1}{V} \left(R_{Y_{\tau}} + \sum_{i=1}^{N} a_{i} R_{Y_{\tau+i}} \right)$$

Puissance :

$$R_{Y_0} = V - \sum_{i=1}^{N} a_i R_{Y_i}$$

Autocorrélation :

$$\tau > 0$$

$$R_{Y_{\tau}} = -\sum_{i=1}^{N} a_i R_{Y_{\tau-i}}$$

$\lceil R_{{\scriptscriptstyle \mathrm{Y}}_0} ceil$	R_{Y_1}	R_{Y_2}	•	$R_{{}_{\mathrm{Y}_{\scriptscriptstyle N}}}$	$\lceil 1 \rceil$		\overline{V}
R_{Y_1}	$R_{{ m Y}_0}$	R_{Y_1}	•	$R_{{\scriptscriptstyle \mathrm{Y}}_{\scriptscriptstyle N-1}}$	a_1		0
$ R_{{ m Y}_2} $	•			$R_{{ m Y}_{\scriptscriptstyle N-2}}$	a_2	=	0
			$R_{{ m Y}_0}$				
$\lfloor R_{{\scriptscriptstyle{\mathrm{Y}}}_{\scriptscriptstyle{N}}}$	$R_{{\scriptscriptstyle \mathrm{Y}}_{\scriptscriptstyle N-1}}$		•	$egin{array}{c} R_{{ m Y}_N} \ R_{{ m Y}_{N-1}} \ R_{{ m Y}_{N-2}} \ \cdot \ R_{{ m Y}_0} \ \end{bmatrix}$	$\lfloor a_N \rfloor$		$\begin{bmatrix} 0 \end{bmatrix}$

$$R \underline{a} = \underline{V}$$

Algorithme de Levinson-Durbin

1.
$$N = 0$$

$$a_{0}(0) = 1, V_{0} = R_{Y_{0}}$$

$$\Gamma_{N+1} = -V_{N}^{-1} \sum_{n=0}^{N} R_{Y_{N+1-n}} a_{N}(n)$$
4. $V_{N+1} = \left(1 - \left|\Gamma_{N+1}\right|^{2}\right) V_{N}$

$$a_{N+1} = \left(1 - \left|\Gamma_{N+1}\right|^{2}\right) V_{N}$$

$$a_{N+1}(n) = \begin{cases} 1 & \text{si } n = 0 \\ a_{N}(n) + \Gamma_{N+1} a_{N}^{*}(N+1-n) & \text{si } 1 \leq n \leq N \\ \Gamma_{N+1} & \text{si } n = N+1 \end{cases}$$

$$A_{N+1}(n) = \begin{cases} 1 & \text{si } n = 0 \\ 0 & \text{si } n = N+1 \end{cases}$$

Synthèse d'un signal AR

Estimation de la séquence d'autocorrélation { R_{Y_τ} }

• Calcul des a $_N$ (i) et V_N par l'algorithme de Levinson $(\tau = 0,...N)$

Prédiction linéaire

Analogie

Filtre MA prédicteur d'erreur ou filtre de blanchiment

Filtre AR

28

$$\begin{bmatrix} R_{Y_0} & R_{Y_1} & R_{Y_2} & \cdot & R_{Y_N} \\ R_{Y_1} & R_{Y_0} & R_{Y_1} & \cdot & R_{Y_{N-1}} \\ R_{Y_2} & \cdot & \cdot & \cdot & R_{Y_{N-2}} \\ \cdot & & & R_{Y_0} & \cdot \\ R_{Y_N} & R_{Y_{N-1}} & \cdot & \cdot & R_{Y_0} \end{bmatrix} \begin{bmatrix} 1 \\ a_1 \\ a_2 \\ \cdot \\ a_N \end{bmatrix} = \begin{bmatrix} V \\ 0 \\ 0 \\ \cdot \\ a_N \end{bmatrix}$$

Equations de Yule Walker

$$R \underline{a} = \underline{V}$$

Erreurs de prédiction linéaire

Erreur directe

$$e_{D,N}(n) = y(n) - \hat{y}(n) = y(n) + \sum_{i=1}^{N} a_N(i)y(n-i)$$

Erreur rétrograde

$$e_{R,N}(n) = y(n-N) - \hat{y}(n-N) = y(n-N) + \sum_{i=0}^{N-1} b_N(i)y(n-i)$$

Algorithme de Levinson-Durbin

Critère des moindres carrés

$$J_m^D(n) = E\left[\left|e_{D,m}(n)\right|^2\right]$$
 ou $J_m^R(n) = E\left[\left|e_{R,m}(n)\right|^2\right]$

m = 1,2,...N ordre du modèle

Récursivité sur l'ordre du modèle

$$a_{m}(n) = a_{m-1}(n) + \Gamma_{m} a_{m-1}^{*}(m-n)$$

$$a_{m}(m) = \Gamma_{m}$$

$$\Gamma_{m} = -\frac{R_{Y_{m}} + \underline{R}_{m-1}^{rt} \underline{a}_{m-1}}{R_{Y_{0}} + \underline{R}_{m-1}^{rt} \underline{a}_{m-1}^{r*}} \qquad \underline{a}_{m-1} = \begin{bmatrix} a_{m-1}(1) \\ a_{m-1}(2) \\ \vdots \\ a_{m-1}(m-1) \end{bmatrix} \underline{R}_{m-1}^{r} = \begin{bmatrix} R_{Y_{m-1}} \\ R_{Y_{m-2}} \\ \vdots \\ R_{Y_{1}} \end{bmatrix}$$

Coefficient de réflexion

Algorithme de Levinson-Durbin

Coefficient de réflexion

$$\Gamma_{m} = -\frac{R_{Y_{m}} + \underline{R}_{m-1}^{rt} \underline{a}_{m-1}}{E[|e_{D,m}(n)|^{2}]} = -\frac{R_{Y_{m}} + \underline{R}_{m-1}^{rt} \underline{a}_{m-1}}{E[|e_{D,m-1}(n)|^{2}](1 - |\Gamma_{m}|^{2})}$$

Algorithme de Burg

Principe

 Minimisation simultanée des erreurs directe et rétrograde avec la contrainte de respect pour les coefficients du modèle AR de la récursivité de Levinson-Durbin

Objectif

- Obtention des coefficients de réflexion
- Spécificités
 - Haute résolution fréquentielle
 - Modèle stable
 - Efficacité de l'algorithme

m = 1, 2, ...N

Algorithme de Burg

$$J_{m}^{D,R}(n) = E\left[\left|e_{D,m}(n)\right|^{2} + \left|e_{R,m}(n)\right|^{2}\right] = \sum_{n=m}^{Npts-1} \left[\left|e_{D,m}(n)\right|^{2} + \left|e_{R,m}(n)\right|^{2}\right]$$

$$m = 1,2,...N \text{ ordre du modèle}$$

Contrainte

$$a_m(n) = a_{m-1}(n) + \Gamma_m a_{m-1}^*(m-n)$$

$$a_m(m) = \Gamma_m$$

Equations récursives sur l'ordre

$$\begin{aligned} e_{D,m}(n) &= e_{D,m-1}(n) + \Gamma_m e_{R,m-1}(n-1) \\ e_{R,m}(n) &= \Gamma_m^* e_{D,m-1}(n) + e_{R,m-1}(n-1) \end{aligned} \qquad \begin{aligned} e_{D,0}(n) &= e_{R,0}(n) = y(n) \\ \text{initialisation} \end{aligned}$$

Algorithme de Burg

Modélisation moyenne mobile

Bruit blanc centré de variance V

$$H(z) = \sum_{i=0}^{N} b_i z^{-i}$$

$$\mathbf{Y_t}$$

- Réponse impulsionnelle h_i du filtre ?
- Puissance de Y_t?
- Autocorrélation de Y_t ?

Processus générateur MA

Réponse impulsionnelle du filtre :

$$h_i = b_i$$

Puissance:

$$R_{Y_0} = V \sum_{i=0}^{N} h_i^2$$

Autocorrélation :

$$\tau \leq N$$

$$R_{Y_{\tau}} = V \sum_{i=\tau}^{N} h_{i} h_{i-\tau}$$

Synthèse d'un signal MA

Processus aléatoire

 Estimation de la séquence d'autocorrélation { R_Y }

$$\mathbf{H}(z) = \sum_{i=0}^{N} b_i z^{-i}$$

• Calcul des b_i par programmation non linéaire $(\tau = 0, ... N)$

Modélisation autorégressive et moyenne mobile

Bruit blanc centré de variance V $H(z) = \frac{\sum_{i=0}^{N} b_i z^{-i}}{1 + \sum_{i=1}^{N} a_i z^{-i}}$

Yt

$$Y_{t} = \sum_{i=0}^{N} b_{i} X_{t-i} - \sum_{i=1}^{N} a_{i} Y_{t-i}$$

Autocorrélation de Y_t?

Processus générateur ARMA

Autocorrélation:

$$R_{Y_{\tau}} = -\sum_{i=1}^{N} a_i R_{Y_{\tau-i}} + \sum_{i=0}^{N} b_i E[X_{t-i} Y_{t-\tau}]$$

$$\tau > N$$

$$R_{Y_{\tau}} = -\sum_{i=1}^{N} a_{i} R_{Y_{\tau-i}}$$

$$\tau = N$$

$$R_{Y_N} = -\sum_{i=1}^{N} a_i R_{Y_{N-i}} + b_0 b_N V$$

Modélisation ARMA

$$\begin{bmatrix} R_{Y_{N}} & R_{Y_{N-1}} & R_{Y_{N-2}} & \cdot & R_{Y_{0}} \\ R_{Y_{N+1}} & R_{Y_{N}} & R_{Y_{N-1}} & \cdot & R_{Y_{1}} \\ R_{Y_{N+2}} & \cdot & \cdot & \cdot & R_{Y_{2}} \\ \cdot & \cdot & \cdot & R_{Y_{N}} & \cdot \\ R_{Y_{2N}} & R_{Y_{2N-1}} & \cdot & \cdot & R_{Y_{N}} \end{bmatrix} \begin{bmatrix} 1 \\ a_{1} \\ a_{2} \\ \cdot \\ a_{N} \end{bmatrix} = \begin{bmatrix} b_{0}b_{N}V \\ 0 \\ 0 \\ \cdot \\ a_{N} \end{bmatrix}$$

Equations de Yule Walker

Synthèse d'un signal ARMA

Processus aléatoire

Estimation de la séquence d'autocorrélation { R_Y_ }

2 Calcul des a N (i) par l'algorithme de Levinson $(\tau = 0,...N,...2N)$

Synthèse d'un signal ARMA

Détermination des { U_t }

$$U_{t} = Y_{t} + \sum_{i=1}^{N} a_{i} Y_{t-i}$$

- 4 Estimation de la séquence d'autocorrélation { R_{U_T} }
- 5 Calcul des b_i par programmation non linéaire

$$R_{U_{\tau}} = V \sum_{i=0}^{N-\tau} b_i b_{i+\tau}$$

$$b_0 = 1, \tau \le N$$

Estimation de la DSP à partir du modèle AR du signal

- Estimation de la séquence d'autocorrélation {R_v(k)}.
- Calcul des a_N(i) et V_N par l'algorithme de Levinson.
- Détermination de la Densité Spectrale de Puissance :

$$S_{Y}(f) = \frac{V_{N}}{\left|1 + \sum_{n=1}^{N} a_{N}(n) e^{-j2\pi f nT_{e}}\right|^{2}}$$

Estimateur de DSP

Choix de l'ordre du modèle

$$FPE(N) = \frac{M + (N+1)}{M - (N+1)} \hat{\sigma}_N^2$$

Final Prediction Error (Akaike)

$$AIC(N) = \frac{2N}{M} + \ln \hat{\sigma}_N^2$$

Akaike Information Criterion

$$MDL(N) = \frac{N \ln M}{M} + \ln \hat{\sigma}_N^2$$

Minimum Description Length (Rissanen)

$$CAT(N) = \frac{1}{M} \sum_{i=1}^{N} \left(\frac{M-i}{M\hat{\sigma}_i^2} \right) - \frac{M-N}{M\hat{\sigma}_N^2}$$

Criterion
Autoregressive
Transfer
(Parzen)

Application au contrôle non destructif d'une pièce en acier

Modélisation d'un bruit de structure

49

Choix de l'ordre du modèle

Analyse en valeurs propres pour l'estimation spectrale

Cas d'une sinusoïde

$$x(n) = -a_1 x(n-1) - a_2 x(n-2)$$

$$a_1 = -2\cos 2\pi f_k \quad x(-1) = 0$$

$$a_2 = 1 \quad x(-2) = -\sin 2\pi f_k$$

Cas de p sinusoïdes

$$x(n) = -\sum_{m=1}^{2p} a_m x(n-m)$$
Résolution de
$$A(z) = 1 + \sum_{m=1}^{2p} a_m z^{-m} = 0$$

Analyse en valeurs propres

$$y(n) = x(n) + w(n)$$

$$\sum_{m=0}^{2p} a_m y(n-m) = -\sum_{m=0}^{2p} a_m w(n-m)$$

$$a_0 = 1$$

$$\Gamma_{y} \underline{a} = \sigma_{w}^{2} \underline{a}$$

<u>a</u>: Vecteur propre de la matrice de variance-covariance

$$\underline{a} = \begin{bmatrix} 1 \\ a_1 \\ \vdots \\ a_{2p} \end{bmatrix}$$

Méthode de Pisarenko

 Objectif : déterminer des composantes sinusoïdales dans un signal bruité

Propriété du signal bruité :

$$R_{Y}(0) = \sigma_{w}^{2} + \sum_{i=1}^{p} P_{i}$$

$$R_Y(k) = \sum_{i=1}^p P_i \cos(2\pi f_i k) \qquad k \neq 0$$

 P_i : Puissance de la ième sinusoïde

Méthode de Pisarenko: algorithme

- Estimation de la matrice de variancecovariance $\hat{\Gamma}_{v}$ des données
- Calcul des valeurs propres de $\hat{\Gamma}_{Y}$
 - La plus petite $\Rightarrow \sigma_w^2$
 - Le vecteur propre associé $\Rightarrow \underline{a}$
- Calcul des racines de $A(z) = 1 + \sum_{m=1}^{r} a_m z^{-m} = 0$ ⇒ fréquences f_i
- Résolution du système d'équations :

Méthode de Pisarenko : algorithme (suite)

Obtention des amplitudes de chaque sinusoïde

Décomposition en valeurs propres

Contexte : p sinusoïdes dans un bruit blanc

• Modèle de signal : $x(n) = \sum_{i=1}^{p} A_i e^{j(2\pi f_i n + \phi_i)}$

Propriété: $R_X(m) = \sum_{i=1}^p P_i e^{j2\pi f_i m}$

En présence de bruit y(n) = x(n) + w(n) $R_Y(m) = R_X(m) + \sigma_W^2 \delta(m)$ $m = 0, \pm 1, ..., \pm (M-1)$

Matrice de variance-covariance décomposée en sous-espaces

$$\Gamma_{Y} = \Gamma_{X} + \sigma_{w}^{2} I$$

M>p

Autocorrélation du signal (M,M) Rang p

Autocorrélation du bruit (M,M) Rang M

$$\Gamma_X = \sum_{i=1}^p P_i \, \underline{s}_i \, \underline{s}_i^H$$

$$\underline{s}_{i} = [1 e^{j2\pi f_{i}} e^{j4\pi f_{i}} e^{j2\pi(M-1)f_{i}}]^{t}$$

- Décomposition en valeurs propres de Γ_ν
 - λ_i Valeurs propres en ordre décroissant
 - v_i Vecteurs propres i=1, M

Matrice de variance-covariance décomposée en sous-espaces

■ En absence de bruit : $\lambda_i \neq 0$ i = 1, p

$$\lambda_i \neq 0 \quad i = 1, p$$

$$\lambda_{p+1} = \lambda_{p+2} = \dots = \lambda_M = 0$$

$$\Gamma_X = \sum_{i=1}^p \lambda_i \, \underline{v}_i \, \underline{v}_i^H$$

En présence de bruit

$$\Gamma_{Y} = \sum_{i=1}^{p} (\lambda_{i} + \sigma_{w}^{2}) \underline{v}_{i} \underline{v}_{i}^{H} + \sum_{i=p+1}^{M} \sigma_{w}^{2} \underline{v}_{i} \underline{v}_{i}^{H}$$

Sous-espace signal

Sous-espace bruit

Méthode MUSIC Multiple Signal Classification

$$P(f) = \sum_{i=p+1}^{M} w_i \left| \underline{S}^H(f) \underline{v}_i \right|^2 \qquad \text{Vecteurs propres de l'espace bruit}$$

$$\underline{S}(f) = \begin{bmatrix} 1 \ e^{j2\pi f} \ e^{j4\pi f} \ \dots e^{j2\pi (M-1)f} \end{bmatrix}^t$$

$$si \quad f = f_i \quad \underline{S}(f) = \underline{s}_i \quad \underline{s}_i \ et \ \underline{v}_i \ orthogonaux$$

$$P(f_i) = 0 \quad i = 1, 2 \dots p$$

$$\frac{1}{P(f)} = \frac{1}{\sum_{i=0}^{M} w_i \left| \underline{S}^H(f) \underline{v}_i \right|^2}$$

• Modèle de signal : x(n) = s(n) + b(n)

$$s(n) = \sum_{k=1}^{p} a_k e^{j2\pi f_k n} \text{ ou } s(n) = \sum_{k=1}^{p} A_k \cos(2\pi f_k n + \Phi_k)$$

$$\bullet \text{ Equations :}$$

$$0 \le f_k \le 1$$

$$s(n) + b_1 s(n-1) + b_2 s(n-2) + ... + b_P s(n-P) = 0$$

OU

$$s(n) + b_1 s(n-1) + b_2 s(n-2) + ... + b_{2P} s(n-2P) = 0$$

A partir des b₁, b₂, ... b_{2P}, en résolvant le polynôme

$$z^{2P} + b_1 z^{2P-1} + b_2 z^{2P-2} + \dots + b_{2P} = 0$$

on obtient les solutions

$$z = \rho_k e^{\pm 2j\pi f_k}$$

et donc les fréquences fk

$$x(n) + b_1 x(n-1) + \dots + b_p x(n-2P) = \varepsilon(n) = x(n) * h$$

 $h = \begin{bmatrix} 1 & b_1 & b_2 & \dots & b_{2P} \end{bmatrix}$

- On cherche b_1 , b_2 , ... b_{2P} qui minimise le bruit $\sum_n \mathcal{E}^2(n)$
- En faisant varier n de 2P à 2P+M-1

$$x(n)+b_1x(n-1)+\cdots+b_Px(n-2P)=\varepsilon(n)$$

$$\mathbf{D}\mathbf{b} = \mathbf{E}$$

M équations, 2P inconnus, 2P+M points sur le signal

• **Principe** : minimiser $\mathbf{E}^t\mathbf{E}$ sous la contrainte que la première composante de \mathbf{b} soit égale à 1 (2P+1,1)

Algorithme

• Construire \mathbf{D} puis $\mathbf{R} = \mathbf{D}^t \mathbf{D}$ puis \mathbf{R}^{-1}

Déterminer b

$$\mathbf{b} = \frac{1}{\mathbf{u}^t \mathbf{R}^{-t} \mathbf{u}} \mathbf{R}^{-1} \mathbf{u}$$

 $\mathbf{u} = \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

Déduire les racines du polynôme et les fréquences f_k