Package 'Risk'

October 12, 2022

Type Package
Title Computes 26 Financial Risk Measures for Any Continuous Distribution
Version 1.0
Date 2017-06-05
Author Saralees Nadarajah, Stephen Chan
Maintainer Saralees Nadarajah <mbbsssn2@manchester.ac.uk></mbbsssn2@manchester.ac.uk>
Depends R (>= $3.0.1$)
Description Computes 26 financial risk measures for any continuous distribution. The 26 financial risk measures include value at risk, expected shortfall due to Artzner et al. (1999) <doi:10.1007 s10957-011-9968-2="">, tail conditional median due to Kou et al. (2013) <doi:10.1287 moor.1120.0577="">, expectiles due to Newey and Powell (1987) <doi:10.2307 1911031="">, beyond value at risk due to Longin (2001) <doi:10.3905 jod.2001.319161="">, expected proportional shortfall due to Belzunce et al. (2012) <doi:10.1016 j.insmatheco.2012.05.003="">, elementary risk measure due to Ahmadi-Javid (2012) <doi:10.1007 s10957-011-9968-2="">, omega due to Shadwick and Keating (2002), sortino ratio due to Rollinger and Hoffman (2013), kappa due to Kaplan and Knowles (2004), Wang (1998)'s <doi:10.1080 10920277.1998.10595708=""> risk measures, Stone (1973)'s <doi:10.2307 2978638=""> risk measures, Luce (1980)'s <doi:10.1007 bf00126387=""> risk measures, Bronshtein and Kurelenkova (2009)'s risk measures.</doi:10.1007></doi:10.2307></doi:10.1080></doi:10.1007></doi:10.1016></doi:10.3905></doi:10.2307></doi:10.1287></doi:10.1007>
License GPL (>= 2)
NeedsCompilation no
Repository CRAN
Date/Publication 2017-06-08 15:19:54 UTC
R topics documented:
Risk-package 2 BKg1 2 BKg2 5

2 Risk-package

		Computes 26 Financial Risk Measures for Any Continuous Distribution	!-
Index			30
			20
	-		28
			27
			27
	\mathcal{C}		26
			24 25
	\mathcal{C}		23 24
	_		22 23
	U		21
	C		20
			19
	•		18
	C		17
			16
	luceg1		15
	kappag		14
	expvar		13
	expp		12
	•		11
	1 0		10
	epsg		9
	. •		8
	C		7
	BKg3		6

Description

Computes 26 financial risk measures, including value at risk, expected shortfall due to Artzner et al. (1999) <DOI:10.1007/s10957-011-9968-2>, tail conditional median due to Kou et al. (2013) <DOI:10.1287/moor.1120.0577>, expectiles due to Newey and Powell (1987) <DOI:10.2307/1911031>, beyond value at risk due to Longin (2001) <DOI:10.3905/jod.2001.319161>, expected proportional shortfall due to Belzunce et al. (2012) <DOI:10.1016/j.insmatheco.2012.05.003>, elementary risk measure due to Ahmadi-Javid (2012) <DOI:10.1007/s10957-011-9968-2>, omega due to Shadwick and Keating (2002), sortino ratio due to Rollinger and Hoffman (2013), kappa due to Kaplan and Knowles (2004), Wang (1998)'s <DOI:10.1080/10920277.1998.10595708> risk measures, Stone (1973)'s <DOI:10.2307/2978638> risk measures, Luce (1980)'s <DOI:10.1007/BF00135033> risk measures, Sarin (1987)'s <DOI:10.1007/BF00126387> risk measures, Bronshtein and Kurelenkova (2009)'s risk measures.

Risk-package 3

Details

Package: Risk
Type: Package
Version: 1.0

Date: 2017-06-05 License: GPL(>=2)

financial risk measures

Author(s)

Saralees Nadarajah, Stephen Chan

Maintainer: Saralees Nadarajah <Saralees.Nadarajah@manchester.ac.uk>

References

A. Ahmadi-Javid, Entropic value-at-risk: A new coherent risk measure, Journal of Optimization Theory and Applications, 155, 2012, 1105-1123 <DOI:10.1007/s10957-011-9968-2>

P. Artzner, F. Delbaen, J. M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance, 9, 1999, 203-228 < DOI:10.1007/s10957-011-9968-2>

F. Belzunce, J. F. Pinar, J. M. Ruiz and M. A. Sordo, Comparison of risks based on the expected proportional shortfall, Insurance: Mathematics and Economics, 51, 2012, 292-302 < DOI:10.1016/j.insmatheco.2012.05.003 >

- E. Bronshtein and J. Kurelenkova, Complex risk measures in portfolio optimization, Ufa State Aviation Technical University, Russia, 2009
- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- P. D. Kaplan and J. A. Knowles, Kappa: A generalized downside risk-adjusted performance measure, Miscellaneous Publication, Morningstar Associates and York Hedge Fund Strategies, 2004
- S. Kou, X. Peng and C. C. Heyde, External risk measures and Basel accords, Mathematics of Operations Research, 38, 2013, 393-417 < DOI:10.1287/moor.1120.0577>
- F. M. Longin, Beyond the VaR, Journal of Derivatives, 8, 2001, 36-48 < DOI:10.3905/jod.2001.319161>
- R. D. Luce, Several possible measures of risk, Theory and Decision, 12, 1980, 217-228 < DOI:10.1007/BF00135033 >
- W. K. Newey and J. L. Powell, Asymmetric least squares estimation and testing, Econometrica, 55, 1987, 819-847 <DOI:10.2307/1911031>
- T. Rollinger and S. Hoffman, Sortino ratio: A better measure of risk, Risk Management, 2013, 40-42
- R. K. Sarin, Some extensions of Luce's measures of risk, Theory and Decision, 22, 1987, 125-141 <DOI:10.1007/BF00126387>
- W. F. Shadwick and C. Keating, A universal performance measure, Journal of Performance Measurement, 2002
- B. K. Stone, A general class of three-parameter risk measures, The Journal of Finance, 28, 1973, 675-685 < DOI:10.2307/2978638>
- S. Wang, An actuarial index of the right-tail risk, North American Actuarial Journal, 2, 1988, 88-101 < DOI:10.1080/10920277.1998.10595708>

4 BKg1

RKØI

Bronshtein And Kurelenkova (2009)'s First Risk Measure

Description

Computes the first risk measure due to Bronshtein and Kurelenkova (2009)

Usage

```
BKg1(spec, alpha, a, b, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
alpha	a real valued parameter taking values in $(0, 1)$, see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
• • •	other parameters

Value

An object of the same length as alpha, giving Bronshtein and Kurelenkova (2009)'s first risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- E. Bronshtein and J. Kurelenkova, Complex risk measures in portfolio optimization, Ufa State Aviation Technical University, Russia, 2009

```
BKg1("norm", 0.9, -Inf, Inf)
```

BKg2 5

BKg2	Bronshtein And Kurelenkova (2009)'s Second Risk Measure	

Description

Computes the second risk measure due to Bronshtein and Kurelenkova (2009)

Usage

```
BKg2(spec, alpha, a, b, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
alpha	a real valued parameter taking values in $(0, 1)$, see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

An object of the same length as alpha, giving Bronshtein and Kurelenkova (2009)'s second risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- E. Bronshtein and J. Kurelenkova, Complex risk measures in portfolio optimization, Ufa State Aviation Technical University, Russia, 2009

```
BKg2("norm", 0.9, -Inf, Inf)
```

6 BKg3

ıre

Description

Computes the third risk measure due to Bronshtein and Kurelenkova (2009)

Usage

```
BKg3(spec, alpha, a, b, beta, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
alpha	a real valued parameter taking values in $(0, 1)$, see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
beta	a non-negative real valued parameter, see Chan and Nadarajah for details
	other parameters

Value

An object of the same length as alpha, giving Bronshtein and Kurelenkova (2009)'s third risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- E. Bronshtein and J. Kurelenkova, Complex risk measures in portfolio optimization, Ufa State Aviation Technical University, Russia, 2009

```
BKg3("norm", 0.9, -Inf, Inf, 1)
```

BKg4 7

BKg4	Bronshtein And Kurelenkova (2009)'s Fourth Risk Measure
DN84	Bronsniem Ana Kuretenkova (2009) s Fourth Kisk Measure

Description

Computes the fourth risk measure due to Bronshtein and Kurelenkova (2009)

Usage

```
BKg4(spec, alpha, a, b, beta, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
alpha	a real valued parameter taking values in $(0, 1)$, see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
beta	a non-negative real valued parameter, see Chan and Nadarajah for details
	other parameters

Value

An object of the same length as alpha, giving Bronshtein and Kurelenkova (2009)'s fourth risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- E. Bronshtein and J. Kurelenkova, Complex risk measures in portfolio optimization, Ufa State Aviation Technical University, Russia, 2009

```
BKg4("norm", 0.9, -Inf, Inf, 1)
```

8 bvar

bvar	Beyond Value At Risk Due To Longin (2001)

Description

Computes beyond value at risk for a given ditribution

Usage

```
bvar(spec, alpha, a, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
alpha	the probabilities associated with beyon values at risk
a	the lower end point of the distribution specified by spec
	other parameters

Value

An object of the same length as alpha, giving beyond values ar risk computed.

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- F. M. Longin, Beyond the VaR, Journal of Derivatives, 8, 2001, 36-48 < DOI:10.3905/jod.2001.319161 >

```
bvar("norm", 0.9, a=-Inf)
```

epsg 9

epsg

Expected Proportional Shortfall Due To Belzunce et al. (2012)

Description

Computes expected proportional shortfall for a given ditribution

Usage

```
epsg(spec, alpha, ...)
```

Arguments

spec a character string specifying the distribution (for example, "norm" corresponds

to the standard normal)

alpha the probabilities associated with expected proportional shortfalls

... other parameters

Value

An object of the same length as alpha, giving expected proportional shortfalls computed.

Author(s)

Stephen Chan, Saralees Nadarajah

References

S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted

F. Belzunce, J. F. Pinar, J. M. Ruiz and M. A. Sordo, Comparison of risks based on the expected proportional shortfall, Insurance: Mathematics and Economics, 51, 2012, 292-302 < DOI:10.1016/j.insmatheco.2012.05.003 >

```
epsg("norm", 0.9)
```

10 esg

esg

Expected Shortfall Due To Artzner et al. (1999)

Description

Computes expected shortfall for a given ditribution

Usage

```
esg(spec, alpha, ...)
```

Arguments

spec a character string specifying the distribution (for example, "norm" corresponds

to the standard normal)

alpha the probabilities associated with expected shortfall

... other parameters

Value

An object of the same length as alpha, giving expected shortfall computed.

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- P. Artzner, F. Delbaen, J. M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance,
- 9, 1999, 203-228 <DOI:10.1111/1467-9965.00068>

```
esg("norm", 0.9)
```

expect 11

expect	Expectation

Description

Computes expectation for a given ditribution

Usage

```
expect(spec, a, b, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
a	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

A scalar, giving the expected value of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted

```
expect("norm", -Inf, Inf)
```

12 expp

expp	Expectiles Due To Newey And Powell (1987)	

Description

Computes expectiles for a given ditribution

Usage

```
expp(spec, alpha, a, b, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
alpha	the probabilities associated with expectiles
a	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

An object of the same length as alpha, giving expectiles computed.

Author(s)

Stephen Chan, Saralees Nadarajah

References

S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted

W. K. Newey and J. L. Powell, Asymmetric least squares estimation and testing. Econometrica, 55, 1987, 819-847 <DOI:10.2307/1911031>

```
expp("norm", 0.9, a=-Inf, b=Inf)
```

expvar 13

Description

Computes the elementary risk measure for a given ditribution

Usage

```
expvar(spec, alpha, a, b, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
alpha	a positive valued parameter, see Chan and Nadarajah for details
a	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

An object of the same length as alpha, giving the elementary risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted

A. Ahmadi-Javid, Entropic value-at-risk: A new coherent risk measure. Journal of Optimization Theory and Applications, 155, 2012, 1105-1123 < DOI:10.1007/s10957-011-9968-2>

```
expvar("norm", 0.9, -Inf, Inf)
```

14 kappag

kappag	Kappa Risk Measure Due To Kaplan And Knowles (2004)

Description

Computes the Kappa risk measure for a given ditribution

Usage

```
kappag(spec, alpha, n, a, b, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
alpha	a real valued parameter, see Chan and Nadarajah for details
n	a positive integer valued parameter, see Chan and Nadarajah for details
a	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

An object of the same length as alpha, giving the Kappa risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- P. D. Kaplan and J. A. Knowles, Kappa: A generalized downside risk-adjusted performance measure, Miscellaneous Publication, Morningstar Associates and York Hedge Fund Strategies, 2004

```
kappag("norm", 2, 5, -Inf, Inf)
```

luceg1 15

luceg1	Luce (1980)'s First Risk Measure	
--------	----------------------------------	--

Description

Computes the first risk measure due to Luce (1980)

Usage

```
luceg1(spec, a, b, aa, bb, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
aa	a positive valued parameter, see Chan and Nadarajah for details
bb	a non-negative valued parameter, see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

A scalar, giving Luce (1980)'s first risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- R. D. Luce, Several possible measures of risk, Theory and Decision, 12, 1980, 217-228 < DOI:10.1007/BF00135033 >

```
luceg1("unif", 0, 1, 1, 0)
```

luceg2

luceg2 <i>Luce (1980)'s</i>	Second Risk Measure
-----------------------------	---------------------

Description

Computes the second risk measure due to Luce (1980)

Usage

```
luceg2(spec, a, b, aa, bb, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
aa	a positive valued parameter, see Chan and Nadarajah for details
bb	a positive valued parameter, see Chan and Nadarajah for details
a	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

A scalar, giving Luce (1980)'s second risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- R. D. Luce, Several possible measures of risk, Theory and Decision, 12, 1980, 217-228 < DOI:10.1007/BF00135033 >

```
luceg2("unif", 0, 1, 1, 0)
```

luceg3

luceg3 Luce (1980)'s Third Risk Measure

Description

Computes the third risk measure due to Luce (1980)

Usage

```
luceg3(spec, a, b, aa, bb, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
aa	a positive valued parameter, see Chan and Nadarajah for details
bb	a non-negative valued parameter, see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

A scalar, giving Luce (1980)'s third risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- R. D. Luce, Several possible measures of risk, Theory and Decision, 12, 1980, 217-228 < DOI:10.1007/BF00135033 >

```
luceg3("unif", 0, 1, 1, 0)
```

luceg4

luceg4 Luce (1980)'s Fourth Risk Measure	
--	--

Description

Computes the fourth risk measure due to Luce (1980)

Usage

```
luceg4(spec, a, b, aa, bb, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
aa	a positive valued parameter, see Chan and Nadarajah for details
bb	a positive valued parameter, see Chan and Nadarajah for details
a	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

A scalar, giving Luce (1980)'s fourth risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- R. D. Luce, Several possible measures of risk, Theory and Decision, 12, 1980, 217-228 < DOI:10.1007/BF00135033 >

```
luceg4("norm",-Inf, Inf, 1, 0)
```

omegag 19

omegag Omega Risk Measure Due To Shadwick And Keating (200	2)
--	----

Description

Computes the omega risk measure for a given ditribution

Usage

```
omegag(spec, alpha, a, b, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
alpha	a real valued parameter, see Chan and Nadarajah for details
a	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

An object of the same length as alpha, giving the omega risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted

W. F. Shadwick and C. Keating, A universal performance measure, Journal of Performance Measurement, 2002

```
omegag("norm", 2, -Inf, Inf)
```

20 saring1

ng	1
	ng

Sarin (1987)'s First Risk Measure

Description

Computes the first risk measure due to Sarin (1987)

Usage

```
saring1(spec, a, b, k, c, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
k	a non-zero real valued parameter, see Chan and Nadarajah for details
С	a non-zero real valued parameter, see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

A scalar, giving Sarin (1987)'s first risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- R. K. Sarin, Some extensions of Luce's measures of risk, Theory and Decision, 22, 1987, 125-141 <DOI:10.1007/BF00126387>

```
saring1("norm", -Inf, Inf, 1, 0)
```

saring2 21

saring2	Sarin (1987)'s Second Risk Measure	
---------	------------------------------------	--

Description

Computes the second risk measure due to Sarin (1987)

Usage

```
saring2(spec, a, b, aa, bb1, bb2, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
aa	a positive real valued parameter, see Chan and Nadarajah for details
bb1	a positive real valued parameter, see Chan and Nadarajah for details
bb2	a positive real valued parameter, see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

A scalar, giving Sarin (1987)'s second risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- R. K. Sarin, Some extensions of Luce's measures of risk, Theory and Decision, 22, 1987, 125-141 <DOI:10.1007/BF00126387>

```
saring2("norm",-Inf, Inf, 1, 1, 1)
```

22 saring3

saring3	Sarin (1987)'s Third Risk Measure	

Description

Computes the third risk measure due to Sarin (1987)

Usage

```
saring3(spec, a, b, aa, bb1, bb2, ...)
```

Arguments

S	pec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal) $$
а	a	a positive real valued parameter, see Chan and Nadarajah for details
b	b1	a positive real valued parameter, see Chan and Nadarajah for details
b	b2	a positive real valued parameter, see Chan and Nadarajah for details
а		the lower end point of the distribution specified by spec
b		the upper end point of the distribution specified by spec
		other parameters

Value

A scalar, giving Sarin (1987)'s third risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- R. K. Sarin, Some extensions of Luce's measures of risk, Theory and Decision, 22, 1987, 125-141 <DOI:10.1007/BF00126387>

```
saring3("norm",-Inf, Inf, 1, 1, 1)
```

sortinog 23

sortinog	Sortino Ratio Due To Rollinger And Hoffman (2013)

Description

Computes the Sortino ratio for a given ditribution

Usage

```
sortinog(spec, alpha, a, b, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
alpha	a real valued parameter, see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

An object of the same length as alpha, giving the Sortino ratio of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- T. Rollinger and S. Hoffman, Sortino ratio: A better measure of risk, Risk Management, 40-42, 2013

```
sortinog("norm", 2, -Inf, Inf)
```

24 stoneg1

_	+ ~	'n	_	~	1
- 5	to	"	C,	×	ı

Stone (1973)'s First Risk Measure

Description

Computes the first risk measure due to Stone (1973)

Usage

```
stoneg1(spec, x0, k, a, b, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
x0	a real valued parameter, see Chan and Nadarajah for details
k	a positive valued parameter, see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

A scalar, giving Stone (1973)'s first risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- B. K. Stone, A general class of three-parameter risk measuresm, The Journal of Finance, 28, 1973, 675-685 < DOI:10.2307/2978638>

```
stoneg1("norm", 8, 3, -Inf, Inf)
```

stoneg2 25

stoneg2 Sto	one (1973)'s Second Risk Measure
-------------	----------------------------------

Description

Computes the second risk measure due to Stone (1973)

Usage

```
stoneg2(spec, x0, k, a, b, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds to the standard normal)
x0	a real valued parameter, see Chan and Nadarajah for details
k	a positive valued parameter, see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

A scalar, giving Stone (1973)'s second risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- B. K. Stone, A general class of three-parameter risk measuresm, The Journal of Finance, 28, 1973, 675-685 < DOI:10.2307/2978638>

```
stoneg2("norm", 8, 3, -Inf, Inf)
```

26 tcm

tcm

Tail Conditional Mean Due To Kou et al. (2013)

Description

Computes tail conditional median for a given ditribution

Usage

```
tcm(spec, alpha, ...)
```

Arguments

spec a character string specifying the distribution (for example, "norm" corresponds

to the standard normal)

alpha the probabilities associated with tail conditional median

... other parameters

Value

An object of the same length as alpha, giving tail conditional medians computed.

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- S. Kou, X. Peng and C. C. Heyde, External risk measures and Basel accords, Mathematics of Operations Research, 38, 2013, 393-417 < DOI:10.1287/moor.1120.0577>

```
tcm("norm", 0.9)
```

varg 27

varg

Value At Risk

Description

Computes value at risk for a given ditribution

Usage

```
varg(spec, alpha, ...)
```

Arguments

spec a character string specifying the distribution (for example, "norm" corresponds

to the standard normal)

alpha the probabilities associated with values at risk

... other parameters

Value

An object of the same length as alpha, giving values at risk computed.

Author(s)

Stephen Chan, Saralees Nadarajah

References

S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted

Examples

```
varg("norm", 0.9)
```

wangg1

Wang (1998)'s First Risk Measure

Description

Computes the first risk measure due to Wang (1998)

Usage

```
wangg1(spec, alpha, a, b, ...)
```

28 wangg2

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds
	to the standard normal)
alpha	a real valued parameter taking values in (0, 1), see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

Value

An object of the same length as alpha, giving Wang (1998)'s first risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- S. Wang, An actuarial index of the right-tail risk, North American Actuarial Journal, 2, 1998, 88-101 <DOI:10.1080/10920277.1998.10595708>

Examples

```
\texttt{wangg1("lnorm", 0.9, 0, Inf)}
```

wangg2

Wang (1998)'s Second Risk Measure

Description

Computes the second risk measure due to Wang (1998)

Usage

```
wangg2(spec, alpha, a, b, ...)
```

Arguments

spec	a character string specifying the distribution (for example, "norm" corresponds
	to the standard normal)
alpha	a real valued parameter taking values in (0, 1), see Chan and Nadarajah for details
а	the lower end point of the distribution specified by spec
b	the upper end point of the distribution specified by spec
	other parameters

wangg2

Value

An object of the same length as alpha, giving Wang (1998)'s second risk measure of the distribution specified by spec

Author(s)

Stephen Chan, Saralees Nadarajah

References

- S. Chan and S. Nadarajah, Risk: An R package for risk measures, submitted
- S. Wang, An actuarial index of the right-tail risk, North American Actuarial Journal, 2, 1998, 88-101 <DOI:10.1080/10920277.1998.10595708>

```
wangg2("lnorm", 0.9, 0, Inf)
```

Index

* Beyond value ar risk	saring2, 21
bvar, 8	* Sarin (1987)'s third risk measure
* Bronshtein and Kurelenkova (2009)'s first	saring3,22
risk measure	* Sortino ratio
BKg1, 4	sortinog, 23
* Bronshtein and Kurelenkova (2009)'s	* Stone (1973)'s first risk measure
fourth risk measure	stoneg1, 24
BKg4, 7	* Stone (1973)'s second risk measure
* Bronshtein and Kurelenkova (2009)'s	stoneg2, 25
second risk measure	* Tail conditional median
BKg2, 5	tcm, 26
* Bronshtein and Kurelenkova (2009)'s	* Value at risk
third risk measure	varg, 27
BKg3, 6	* Wang (1998)'s first risk measure
* Elementary risk measure	wangg1, 27
expvar, 13	* Wang (1998)'s second risk measure
* Expectation	wangg2, 28
expect, 11	* package
* Expected proportional shortfall	Risk-package, 2
epsg, 9	
* Expected shortfall	BKg1, 4
esg, 10	BKg2, 5
* Expectiles	BKg3, 6
expp, 12	BKg4, 7
* Kappa risk measure	bvar, 8
kappag, 14	0
* Luce (1980)'s first risk measure	epsg, 9
luceg1, 15	esg, 10
* Luce (1980)'s fourth risk measure	expect, 11
luceg4, 18	expp, 12
* Luce (1980)'s second risk measure	expvar, 13
luceg2, 16	kappag, 14
* Luce (1980)'s third risk measure	Kappag, 14
luceg3, 17	luceg1, 15
* Omega risk measure	luceg2, 16
omegag, 19	luceg3, 17
* Sarin (1987)'s first risk measure	luceg3, 17
saring1, 20	1400gT, 10
* Sarin (1987)'s second risk measure	omegag, 19
· / / / / / / / / / / / / / / / / / / /	

INDEX 31

```
Risk (Risk-package), 2
Risk-package, 2
saring1, 20
saring2, 21
saring3, 22
sortinog, 23
stoneg1, 24
stoneg2, 25
tcm, 26
varg, 27
wangg1, 27
wangg2, 28
```