

Module 2 Unit 1 SEMICONDUCTORS - FORMULAS

(As per Revised Curriculum SVU R-2023)

1.	Number of atoms per unit volume	$N = \frac{D \times N_0}{M}$
2.	Intrinsic carrier concentration	$n = p = n_i = \sqrt{N_C N_V} \exp\left(-\frac{E_g}{2kT}\right)$
3.	Extrinsic carrier concentration	<u>N-type</u> :
		$\bullet $ Majority carriers: $n_n \approx N_D$ at RT
		• Minority carriers: $p_n \approx \frac{n_i^2}{N_D}$ at RT
		• $n = N_C exp\left(-\frac{E_C - E_F}{kT}\right)$ at moderate
		temperatures
		P-type:
		• Majority carriers: $p_p \approx N_A$ at RT
		• Minority carriers: $n_p \approx \frac{n_i^2}{N_A}$ at RT
		• $p = N_V \exp\left(-\frac{E_F - E_V}{kT}\right)$ at moderate
		temperatures
4.	Conductivity and resistivity	<u>Conductivity</u> :
		Intrinsic: $\sigma_{i} = qn_{i}(\mu_{n} + \mu_{p})$
	- 4	N-type: $\sigma_{ m n}={ m qn}\mu_{ m n}$
		P-type: $\sigma_p=qp\mu_p$
L_		Resistivity: $\rho = \frac{1}{\sigma}$
5.	Drift velocity and mobility	<u>Drift velocity</u> :
		$v_d = \mu \epsilon$
	160	Mobility:
5		$\mu=rac{q\langle au angle}{m^*}$; $\langle au angle$: average charge carrier lifetime
6.	Drift current density	<u>Electrons</u> :
		$J_n(drift) = qn\mu_n \epsilon = \sigma_n \epsilon$
		Holes:
L		$J_{p}(drift) = qp\mu_{p}\epsilon = \sigma_{p}\epsilon$
7.	Diffusion current density	<u>Electrons</u> :
		$J_{n}(diffusion) = qD_{n} \frac{dn}{dx}$

	<u>Holes</u> :
	$J_{p}(diffusion) = -qD_{p} \frac{dp}{dx}$
8. Einstein's relation	$\frac{D}{\mu} = \frac{kT}{q} = \text{constant at a given temperature}$
 Probability factor for occupation of energy level E (Fermi-Dirac function) 	
	<u>Holes:</u>
	$1 - F(E) = \frac{\exp\left(\frac{E - E_F}{kT}\right)}{1 + \exp\left(\frac{E - E_F}{kT}\right)}$
10. Position of Fermi level in intrinsic semiconductors	$\begin{split} E_F &= E_i = \frac{E_C + E_V}{2} + \frac{3}{4} kT \ln \frac{m_h^*}{m_e^*} \\ &\approx \frac{E_C + E_V}{2} = \frac{E_g}{2} \end{split}$
11. Fermi level shift due to doping	<u>N-type</u> :
	$E_F - E_i = kT \ln \left(\frac{n}{n_i}\right); n \approx N_D \text{ at RT}$
	<u>P-type</u> :
	$\mathrm{E_F} - \mathrm{E_i} = -\mathrm{kTln}\left(rac{\mathrm{p}}{\mathrm{n_i}} ight); \mathrm{p} pprox \mathrm{N_A}$ at RT
	Alternatively, $E_i - E_F = kTln\left(\frac{p}{n_i}\right)$