Portfolio

기본사항

Personal Information

학력사항

Education

보유자격증

Improce

사회경험

Experience:

기술사항

Stolle

물금고등학교	2014.03
이공계열 양산	2017,02
경상국립대학교(3.8/4.5)	2017,03
전자공학과 진주	2023,02

컴퓨터 활용능력 1급	2022,04
-------------	---------

IDEC 디지털집적회로설계 2019년 가을학기

Virtuoso Cadence Tool 교육

부산 하만 세미콘 아카데미2023,07반도체 설계 교육 | 6개월2024,01

ARM (Cube IDE)

C언어를 기반으로 UART, SPI 등 기능 활용. 각종 센서 및 모듈을 활용한 프로젝트 수행

C Language

C언어를 활용한 Programing

Verilog (Xilinx Vivado/Vitis)

SPI, APB, AXI통신 기능 활용 및 Peripheral 설계

Cadence OrCad / PCB Editor / Virtuoso

Analog 회로 설계, Schematic, Simulation, Layout

Digital Clock - Verilog를 이용한 Digital Clock 설계 및 검증

수행목표 - Basys3를 이용한 디지털 시계 제작

개발 툴 및 언어: Vivado Verilog HDL

개발 보드: Basys3

목적: Verilog HDL으로 Digital Clock 설계 후 검증

FSM을 이용하여 만든 Blink기능 상태도

	모드 선택(SW0)	선택 1(SW1)	선택 2(SW2)	선택 3(SW3)
0	시계 모드	현재 시간 출력		
1	시간 설정	위치 선택 (Hour, Min)	시간 증가	말람 ON/OFF
2	말람 설정	위치 선택 (Hour, Min)	시간 증가	
3	타이머(스듬위치)	ム印刷/本語 (Start/Stop)	라셋	

입출력	입출력 장치	
clk	On board 1MHz OSC	
reset	리셋 스위치	
SW0~SW3	임력 키 스위치 Key0~Key3	
시 분 초	FND3~FND1	
알람 ON/OFF 상태	LED D1~D3	
알람 신호	LED D5~D7	
모드	LED D8~D9	
시. 분. 초 설정 위치 표시	LED D13~D15	

RTL Analysis Schematic

결과

Verilog를 활용하여 FSM을 설계하고 코드를 작성. 디지털 설계에서 중요한 클럭의 개념을 익힐 수 있었으며, 다양한 모듈을 활용하여 계층구조에 대한 이해를 향상.

Analog 초음파 거리 측정기

수행목표 - 초음파 센서를 이용한 아날로그 회로 이해

사용기술: NE555, OP_Amp, 다이오드 등 다양한 IC 및 소자들을 활용하여 회로 설계

목적: 데이터시트를 보고 각 칩들에 대해 이해한 후 초음파센서의 동작 주파수를 구현하여 실제

동작을 확인

전체 회로도

블록도

송신부 및 수신부 측정 결과

결과

오실로스코프를 통한 출력 및 파형 측정.

데이터 시트 활용을 통한 설계 능력을 향상시킬 수 있었음.

PSpice와 실측 파형을 비교하며, 데이터를 분석하는 능력을 향상

하만 커넥티드 자율 이동체 개발 프로젝트

수행목표 - STM32F411RE를 이용한 자율 이동체 개발

개발 툴 및 언어: STM32CubelDE 및 C Language

개발 보드: STM32F411RE

목적: 초음파 센서를 이용한 지뢰탐지 및 주행로 개척 4륜 구동 자율주행 이동체 개발

- ♦ 사용 Tool
 - STM 32 Cube IDE 프로그램
 - · C/C++

♦ 사용 장비

- STM 32 F411RE 보드 (1EA)
- DC 모터 (4EA)
- L298N 모터 드라이브 (1EA)
- 초음파 센서 (3EA)
- LED (2EA)
- Buzzer (1EA)
- HC 06 블루투스 모듈(1EA)
- DFR0033 자기센서(1EA)

보드 구성도 및 부품 목록

Flow Chart

- (1) 초음파 센서를 이용한 자율 이동체 개발
- (2) 시험 운행을 통한 안전성 개선
- (3) 자기 감지 센서로 자성체 감지 시 부저 경고 & 수 동 모드 전환 & 외부 기기에 경고
- (4) 블루투스로 속도 조절 & 모드 전환 및 수동 조작
- (5) 운행 방향에 따른 LED 점등
- (6) 실제 탱크를 참고한 외관 제작

SoC를 위한 Perilheral 설계

수행목표 - MicroBlaze를 이용한 Block Memory Interface, UART, SPI, w5500 활용 및 이해

개발 툴 및 언어: Xilinx Vivado/Vitis, Verilog HDL

개발 보드: Basys3

목적: Block Memory를 활용하여 SPI Controller에 Data Read/Write 구현

결과

WinDIT v1.8을 이용하여 터미널을 통해 Data의 Read/Write 동작을 확인. w5500을 통한 TCP/IP 통신 확인.