EECS 16B DIS 11B Caroyne
Singular Value Decomposition.
Every matrix $A \in \mathbb{R}^{m \times n}$ rank $(A) = r$
Every matrix $A \in \mathbb{R}^{m \times n}$ rank $(A) = r$ $A = U \sum_{m \times n} V$ $M \times n \times n \times n$ $V \text{ and } V \text{ are orthogoned matrices}$
· U and V are orthogoner matrices
· Er is diagoner
$G_{i}^{2} = \lambda_{i} (A^{T}A) = \lambda_{i} (AA^{T}) i = 1, \dots, r$
· Vi : eijenvector of (ATA)
Vi: eigenvector of AAT
(· N(A) Spanned by Vn-r
(-R(A) Spanned by Ur

1. Understanding the SVD

assume rank(A) = m

We can compute the SVD for a wide matrix A with dimension $m \times n$ where n > m using $A^{\top}A$ with the method covered in lecture. However, when doing so, you may realize that $A^{\top}A$ is much larger than AA^{\top} for such wide matrices. This makes it more efficient to find the eigenvalues for AA^{\top} . In this question, we will explore how to compute the SVD using AA^{\top} instead of $A^{\top}A$.

(a) What are the dimensions of AA^{\top} and $A^{\top}A$?

(b) Given that the SVD of A is $A = U\Sigma V^{\top}$, find a symbolic expression for AA^{\top} .

$$A = u \sum v^{T}$$

$$AA^{T} = (u \sum v^{T})(u \sum v^{T})^{T}$$

$$= u \sum v^{T} v^{T}$$

$$AA^{T} = u \sum v^{T} v^{T}$$

ATAATUI = 6i Ui

ATAATUI = 6i ATUI

ATAIATUI) = 6i ATUI

ATAIATUI) = 6i ATUI

With eigenvalue 6i

define
$$V_i = \frac{A^T u_i}{\|A^T u_i\|}$$

$$\vec{l} \neq j$$
, $\vec{V}_i \vec{l} = 0$

(f) Now that we have found $\vec{v_i}$, you may notice that we only have m < n vectors of dimension n. This is not enough for a basis. How would you complete the m vectors to form an orthonormal basis?

(g) (Practice.) Given that $A = U\Sigma V^{\top}$ verify that the vectors you found to extend the \vec{v}_i into a basis are in the nullspace of A.

$$V = \begin{bmatrix} \frac{1}{\sqrt{1}} & -\frac{1}{\sqrt{1}} \\ \frac{1}{\sqrt{1}} & -\frac{1}{\sqrt{1}} \end{bmatrix}$$

hxm hx(n-m)

$$= \begin{bmatrix} 1 & 1 & 1 & 1 \\ \hline V_1 & -- & V_m & V_{m+1} & -- & V_n \end{bmatrix} = \begin{bmatrix} V_5 & P \\ \hline V_5 & P \end{bmatrix}$$

A=UZV

$$\Sigma = \left[\begin{array}{c} S & O \end{array} \right]$$

$$m \times m \times (n-m)$$

AR=UZVTR

$$= U[S o][O]$$

$$[PP]$$

(h) Using the previous parts of this question and what you learned from lecture, write out a procedure on how to find the SVD for any matrix. AA: find eigenvalues (di) of AA
ond order them d. > -- > dr > 0