

INSERTION - SORT (A) // length [A]=n	cos+	times
1. for j=2 to length [A]	Cı	γ
2. do Key←A[j]	(2	n-I
3 //insert A[j] to somed list A[lij]	0	
4. i = j-1	C4	n-I
5 while i>0 and A [i]> key 6 do A [i+1] — A [i]	$C_5 \longrightarrow$	$\sum t_i$
6 do A[i+1] (A[i]	(,	j=2 to n
7	° € →	S(to-1) -C.
, , , , , , , , , , , , , , , , , , ,	C7)=1 to n , [t=-]
8 A[z+1] ← key	C ₈	1=2 to 1
* The loop head is executed one more t	ing than the land	body

$$T(n) = C_{1} \cdot n + C_{2} \cdot (n-1) + C_{4} \cdot (n-1) + C_{5} \cdot \sum_{j=2}^{n} t_{j} + C_{6} \cdot \sum_{j=2}^{n} (t_{j}-1) + C_{7} \cdot \sum_{j=2}^{n} (t_{j}-1) + C_{8} \cdot (n-1)$$

input size

- minimum value of
$$T(n)$$
 $T(n) = C_1 n + (2(n-1) + (4(n-1) + C_5 \sum_{j=3}^{n} 1 + C_8 (n-1))$

$$= c_{1}n + c_{2}n - c_{2} + c_{4}n - c_{4} + c_{5}(n-1) + c_{8}n - c_{8}$$

$$= (c_{1}+c_{2}+c_{4}+c_{5}+c_{8})n - (c_{2}+c_{4}+c_{5}+c_{8})$$

$$=$$
 an + b

$$A = C_1 + C_2 + C_4 + C_5 + C_8$$

$$b = -(C_2 + C_4 + C_5 + C_8)$$

- maximum value of T(n) $\sum_{j=2}^{n} t_{j} = \sum_{j=2}^{n} j = 2+3+4+5+\dots+n$ $= \frac{n(n+1)}{n} - 1$ worst case; t; = j worst case input: 5 4 3 2 $\begin{cases}
S = 1 + 2 + 3 + 4 + \cdots + N \\
S = N + (N + 1) + (N - 2) + \cdots - + 1
\end{cases}$ $2S = (n+1) + (n+1) + (n+1) + \cdots + (n+1) = n \cdot (n+1) = \sum_{i=1}^{n} \frac{n(n+1)}{2}$ $T(n)=C_1n+C_2(n-1)+(4(n-1)+(5(\frac{n(n+1)}{2}-1)+(6(\frac{n(n+1)}{2})+C_7(\frac{n(n+1)}{2})+C_7(\frac{n(n+1)}{2})+C_8(n+1)$ $= \left(\frac{C_5}{2} + \frac{C_6}{2} + \frac{C_7}{2}\right) N^2 + \left(C_1 + C_2 + C_4 + \frac{C_5}{2} - \frac{C_6}{2} - \frac{C_7}{2} + C_8\right) N - \left(C_2 + C_4 + C_5 + C_8\right)$ $= a'n^2 + b'n + c'$

Average case analysis:
$$t_{j} = \frac{j}{2}$$

$$C_{5} \sum_{j=2}^{n} t_{j} = C_{5} \sum_{j=2}^{n} \frac{j}{2} = \frac{C_{5}}{2} \sum_{j=2}^{n} \frac{j}{2} = \frac{C_{5}}{2} \left(\frac{n(n+1)}{2}\right)$$

$$T(n) = \alpha_i n^2 + b_i n + C_i$$

- Running time analysi's using random-access machine (RAM) model

RAM: - a genenic one-processor

instructions are executed one after another; no concurrent operations

- Each "simple" operation (+, +, -, ==, if, else, = (=)) takes exactly | Step

-Loops and subrothines are not simple operations but depend on the size of input data & the contents of the subsoutine

"Sort" "matrix multiplication"	"leigth of an army"
- Each memory access takes 1 step	
RAM: Ci = 1	
Exercises:	
\mathbb{D} 1. for $i=1$ to n	$n+1$, n $\geq 3n$
2. T←i	n
3. Print T	n
2) 1. for i=1 to 1	Λ. } 2.0
z. for j= 1 to n	n-n $2n+n$
3. print i+j	n²

$$\sum_{i=1+2+3+\cdots+n}^{n}$$

n

$$T(n) = n + n + \frac{n(n+1)}{2} + \frac{n(n+1)}{2} + n$$