Министерство науки и высшего образования

Балтийский государственный технический университет «ВОЕНМЕХ» им. Д.Ф. Устинова

Кафедра динамики и управления полётом летательных аппаратов

Дисциплина: Гидрогазоаэродинамика

ЛАБОРАТОРНАЯ РАБОТА №1 «ОПРЕДЕЛЕНИЕ АЭРОДИНАМИЧЕСКИХ ХАРАКТЕРИСТИК ОСЕСИММЕТРИЧНОГО ТЕЛА»

Выполнил студент Топольницкий А.А.

Группа А183

Преподаватели Горохова П.Д.

Подпись преподавателя Дата

Санкт-Петербург 2020 г.

Зашита

Цель работы: определить аэродинамические коэффициенты c_x , c_y и c_{mz} осесимметричного оперенного тела вращения в функции от угла атаки α , найти положение центра давления относительно центра тяжести в зависимости от угла атаки α . Силовое воздействие потока на модель тела вращения определить с помощью замера сил на аэродинамических весах.

Основные расчётные зависимости: Модель тела вращения подвешивается в рабочей части аэродинамической трубы с помощью проволочных растяжек, закрепленных на модели в точках A и B (рис. 1.1). Заданный угол атаки α придается телу вращения путем изменения высоты точки B. На рисунке этот угол измеряется между осями O_{x_1} и O_x , где точка O — центр тяжести тела вращения, ось O_x связанной системы координат xOy направлена по его оси, а ось O_{x_1} скоростной системы координат x_1Oy_1 , — по невозмущенной скорости натекающего потока.

Так как проволочные растяжки закреплены на рычажной системе аэродинамических весов, то при продувке модели можно измерить в точке A силу сопротивления $X_{\rm изм} = X_{\rm 1изм}$ и составляющую подъемной силы $Y_{\rm 1изм}$, а в точке B — другую составляющую подъемной силы $Y_{\rm 2изм}$.

Рисунок 1.Схема подвески модели

Все три силы: $X_{\text{изм}}$, $Y_{\text{1изм}}$ и $Y_{\text{2изм}}$ – лежат в одной плоскости, проходящей через ось тела вращения. Замер аэродинамических сил в двух точках A и B

позволяет найти помимо коэффициентов C_x и C_y еще и значение коэффициента C_{mz} , а так же положение центра давления \mathcal{C} .

При проведении эксперимента при различных углах атаки α определяются массы грузов m_x , m_{y1} , m_{y2} , которые уравновешивают через системы рычагов аэродинамические силы $X_{u_{3M}}$, $Y_{1u_{3M}}$, $Y_{2u_{3M}}$. Для каждого угла атаки находится разность давлений p_0-p в трубке Пито-Прандтля, где p_0-p_0 давление торможения, а p_0-p_0 статическое давление. Эта разность связана со значением $\Delta h_{\Pi u \tau o}$ в жидком манометре соотношением: $p_0-p_0=p_0$ (разница высот в сообщающихся трубках).

Исходные данные и результаты измерений: дана модель с полусферической головной частью и малым хвостовым оперением.

Рисунок 2. Схема обдуваемой модели

Таблица 1. Результаты измерения составляющих полной аэродинамической силы

α	0	3	6	9	12
$X_{\text{изм}}$ (гр)	142	165	200	230	386
Ү 1изм (гр)	0	31	64	91	85
Y _{2изм} (гр)	0	48	176	331	539
Δhn (мм)	150	150	150	150	150

Kx = 2.47

Ky=2.5
$$X=(2.47*\ X_{{\scriptscriptstyle \mathsf{H3M}}}-200)*g*0.001$$
 Y=Y1+Y2, Y1=2.5* Y_{1{\scriptscriptstyle \mathsf{H3M}}}*g*0.001, Y2=2.5* Y_{2{\scriptscriptstyle \mathsf{H3M}}}*g*0.001 p=10^5 Па, T = 300 K, d=0.116

Обработка результатов эксперимента

Найдём скорость и скоростной напор. Для потока с относительной малой дозвуковой скоростью справедливо уравнение Бернулли для несжимаемого газа: $\frac{v^2}{2} + \frac{p}{\rho} = const \ \text{или} \ \frac{v^2}{2} + \frac{p}{\rho} = \frac{p_0}{\rho}, \text{где } p0 - \text{давление торможения}.$ Поэтому $\frac{\rho v^2}{2} = p_0 - p$. Как утверждалось выше, $p_0 - p = g \rho_{\text{ж}} \Delta h_{\text{Пито}}, \text{ где } \rho_{\text{ж}} = 1000 \ \text{кг/м}^3 - \text{плотность воды в жидкостном манометре, } \Delta h \ [\text{м}] = 0.001 \ \Delta h \ [\text{мм}] - \text{разность уровней воды в коленах сообщающихся сосудов. Отсюда } \frac{\rho v^2}{2} = 9.81 \Delta h.$ Для нахождения скорости v набегающего потока используется это уравнение и уравнение термодинамического состояния для воздуха: $p = \rho RT$, где $R = 287.1 - \text{газовая постоянная для воздуха, p} - \text{статическое давление, T} - \text{температура. При наших начальных условиях p} = 10^5 \ \Pi a$, $T = 300 \ \text{K} \ \rho = 1.161 \ \text{и}$ $v = 4.111 \sqrt{\Delta h} \ [\text{мм}]$.

Для начала получим таблицу данных в нужных нам единицах измерения:

```
clear all
clc
alpha=[0;3;6;9;12];
Xi=[142;165;200;230;386];
Yi1=[0;31;64;91;85];
Yi2=[0;48;176;331;539];
dH=[150;150;150;150;150];
g=9.81;
d=0.116;
Kx=2.47;
Ky=2.5;
```

%Вычисления состовляющих силы R, скорости и скоростного напора%

$$X = (Kx * Xi - 200) * q * 0.001$$

$$Y1 = (Ky*Yi1)*g*0.001$$

$$Y2 = (Ky*Yi2)*q*0.001$$

$$Y=Y1+Y2$$

T=table(alpha, X, Y1, Y2, Y)

Hsr=mean(dH)

$$v=4.111*Hsr.^{(1/2)}$$

Таблица 2. Результаты расчётов составляющих полной аэродинамической силы

alpha	x	Y1	Y2	Y
0	1.4788	0	0	0
3	2.0361	0.76028	1.1772	1.9375
6	2.8841	1.5696	4.3164	5.886
9	3.6111	2.2318	8.1178	10.35
12	7.3911	2.0846	13.219	15.304

$$v = 50.3493, q = 1.4715e+03$$

Найдём коэффициенты Cx, Cy, Cy2, площадь Sm, а также угол атаки в радианах :

$$C_x = \frac{X}{q*Sm} C_{y1} = \frac{Y1}{q*Sm}; C_{y2} = \frac{Y2}{q*Sm} S_m = \frac{\pi d^2}{4}$$

$$Sm=(pi*d^2)/4$$

$$Cx=X/(q*Sm)$$

$$Cy2=Y2/(q*Sm)$$

T2=table(alpha,attack_angle,Cx,Cy,Cy2)

$$Sm = 0.0106$$

Таблица 3. Расчёт коэффициентов составлющих сил полной аэродинамической силы

alpha	attack_angle	Cx	Cy	Cy2	
0	0	0.095089	0	0	
3	0.05236	0.13093	0.12459	0.075698	
6	0.10472	0.18546	0.37849	0.27756	
9	0.15708	0.2322	0.66551	0.522	
12	0.20944	0.47527	0.98407	0.85002	

Найдём коэффициенты аппроксимации с помощью Curve Fitting Tool:

$$c_x = c_{x0} + a_1 \alpha^2$$
; $c_y = a_2 \alpha + a_3 \alpha^3$; $c_{y2} = a_4 \alpha + a_5 \alpha^3$,

%коэффициенты аппроксимации Сх,Су,Су1%

Cx0 = 0.09083

Рисунок 3.Зависимость коэффициента Сх от угла атаки

Рисунок 4.Зависимость коэффициента Су от угла атаки

Рисунок 5.Зависимость коэффициента Су2 от угла атаки

Нахождение положения центра давления С (найдём величину АС):

 $AC = AB \frac{Y_2 cos\alpha}{Y cos\alpha + X sin\alpha}$ или если поделить на скоростной напор и площадь $AC = AB \frac{C_{y2} cos\alpha}{c_y cos\alpha + c_x sin\alpha}$. При этом, если α равен 0, то неопределённость типа 0/0 не позволяет воспользоваться этой формулой, однако можно раскрыть её по

правилу Лопиталя и прийти к зависимости $AC_0 = \lim_{\alpha \to 0} AC = AB \frac{\left(\frac{dcy_2}{d\alpha}\right)_0}{\left(\frac{dcy}{d\alpha}\right)_0 + c_{\chi 0}}$, где

нижний индекс 0 означает, что функция рассматривается при α =0. Тогда используется формула: $AC_0 = AB \frac{a_4}{a_2 + c_{x0}}$

%Нахождение положения центра давления%

AC=AB*Cy2.*cos(attack_angle)./(Cy.*cos(attack_angle)+Cx.*sin(attack_angle))

AC(1) = AB*(a4/(a2+Cx0))

T3=table(attack angle,AC)

Таблица 4.Положение центра давления от угла атаки

attack angle

Опр	еделение	центра	тяжести			
модели:	модель	можно	считать	0	0.12643	
сплошной и однородной, состоящей из			0.05236	0.11518	трёх	
			0.10472	0.13948		
составных	นลด	тей:	носовой,	0.15708	0.14866	
COCTABILBIA	. 140	ich.		0.20944	0.15667	
центральн	ой и	кормовой	(весом			
оперения и	можно пре	небречь).	Тогда:			

— для полусферы
$$V=rac{2}{3}\pi R^2 H$$
, $H=R$, $Z_{\rm ц.т.}=rac{3}{8}R$

— для цилиндра
$$V=\pi R^2 H_1$$
, $Z_{\text{ц.т.}}=\frac{H_1}{2}$

— для усечённого конуса
$$V=\frac{\pi H_2}{3}(R^2+rR+r^2)$$
, $Z_{\text{ц.т.}}=\frac{H_2}{4}(3-\frac{rR+2R^2}{R^2+rR+r^2})$

— Положение центра тяжести модели x_0 определяется по формуле: $x_0 = \frac{V_1x_1+V_2x_2+V_3x_3}{V_1+V_2+V_3}$, где x_0,x_1,x_2,x_3 — координаты соответственно центров тяжести модели и её составных частей относительно точки A, а V1,V2,V3 — объёмы составных частей модели.

%определение центра тяжести модели%

$$Z1=(3/8)*R;$$

```
Z2=H1/2;
V3 = (pi*H2/3)*(R^2+r*R+r^2);
Z3 = (H2/4) * (3 - ((r*R+2*R^2)/(R^2+r*R+r^2)));
V1 = 4.0864e-04, Z1 =0.0218, V2=0.0023, Z2=0.1080, V3=9.4498e-04,
Z3=0.0525.
%вычисление объёмов и
                                     Таблица 5.Положение центра тяжести в
                                     зависимости от угла атаки
положения центра тяжести%
                                      alpha
                                             attack angle
                                                             Xd
V1=2/3*pi*R^3;
xx1=R*3/8;
                                        0
                                                    0
                                                        0.00069966
                                        3
                                              0.05236
X1 = -x \times 1 - 0.008;
                                                          0.011956
                                              0.10472
                                                          -0.012351
V2=pi*R^2*H1;
                                              0.15708
                                                          -0.021525
                                       12
                                              0.20944
                                                          -0.029541
xx2=H1/2;
X2=xx2-0.008;
r=0.0435;
V3=pi*H2/3*(R^2+R*r+r^2);
xx3=H2/4*(3-(R*r+2*R^2)/(R^2+R*r+r^2))
X3 = xx3 + 0.216 - 0.008;
X0 = (V1 * X1 + V2 * X2 + V3 * X3) / (V1 + V2 + V3)
Xd=x0-AC
T4=table(alpha, attack angle, Xd)
%Момент тангажа%
Mz=(Cy.*cos(attack angle)+Cx.*sin(attack angle)).*Xd.*q
*Sm
Mz0=(Cy.*cos(attack angle)+Cx.*sin(attack angle)).*Xd.*
q*Sm
```

Найдём коэффициенты аппроксимации с помощью Curve Fitting

Tool:

 $Cmz = a_6 * \alpha + a_7 * \alpha^3$, a $Cmz(прибл) = a_6 * \alpha$.

%Коэффициент момента%

 $V2=pi*(R^2)*H1;$

l=R+H1+H2
Cmz=(Cy.*cos(attack angle)+Cx.*sin(attack a)

Cmz=(Cy.*cos(attack_angle)+Cx.*sin(attack_angle)).*Xd/l
T5=table(alpha,attack_angle,Cx,Cy,Cy2,Xd,AC,Mz,Cmz)

Таблица 6.Итоговая таблица с результатами лабораторной работы

alpha	attack_angle	Cx	СУ	Су2	Xd	AC	Mz	Cmz
0	0	0.095089	0	0	0.00069966	0.12643	0	0
3	0.05236	0.13093	0.12459	0.075698	0.011956	0.11518	0.024407	0.0040242
6	0.10472	0.18546	0.37849	0.27756	-0.012351	0.13948	-0.076026	-0.012535
9	0.15708	0.2322	0.66551	0.522	-0.021525	0.14866	-0.23219	-0.038284
12	0.20944	0.47527	0.98407	0.85002	-0.029541	0.15667	-0.4876	-0.080396

Рисунок 6.График зависимости коэффициента момента тангажа от угла атаки

Рисунок 7.Приближённый график зависимости коэффициента момента тангажа от угла атаки

Вывод: во время обработки результатов лабораторной работы были определены коэффициенты Сх, Су, Сти осесимметричного оперенного тела вращения в функции от угла атаки α . Было найдено положение центра давление относительно центра тяжести в зависимости от угла атаки. Если $\alpha \le 3$ ° (≈ 0.06), то тело не является устойчивым. Однако при больших углах атаки тело становится статически устойчивым.