

Technology Architecture

CS 752 Software Architecture and Design Practices
Prof. Chandrashekar R

Ref: Software Architecture Patterns by Mark Richards

Outline

- Purpose
- Components and Elements of Technology Architecture
- Software Architecture Styles
- Deep Dive Layered Architecture

Technology Architecture

 The purpose of Technology Architecture is to specify a structure comprised of hardware and software for implementing an IT Solution

Relation with other architectures

- With Zachman Architecture Framework
 - Addresses the "How" column from the "Designer"/"Logical" row downwards

Relation with other architectures

- With Functional Architecture
 - The "WHAT" of Functional Architecture drives the specifics of "HOW" of Technical Architecture

Relation with other architectures

With Deployment Architecture

- The "HOW" of Technical Architecture drives the specifics of "WHERE" and "WHO" of Deployment

Architecture

Technology Architecture Matrix

- Elements
 - Hardware
 - Software
- Components
 - Compute
 - Storage
 - Network

Technology Architecture Matrix

Components

Compute

How does the processing take place?

Storage

How is information persistence managed?

Network

How is the communication with users established

How does this compare with Von Neuman Architecture

Elements

Example Elements and Components

		Elements				
		Hardware	Software			
Components	Compute	Web serverDatabase server	Operating SystemsWeb ServerApplication ServerDBMS			
	Storage	SANNASSATA	Storage O/SBackup Software			
	Network	RoutersSwitchesCabling media	Network O/SFirewallProxy serversLoad Balancer			

SOFTWARE ARCHITECTURE

Software Architecture

- Software Architecture is concerned with all necessary computing needs of a given IT solution
- It includes the software needed to provide compute, storage and networking capabilities

	Elements	
		Software
uts	Compute	
Components	Storage	
	Network	

Software Architecture Styles

- A style specifies a consistent mechanism for designing software
- A given IT solution may choose a mixture of styles to suit the specific needs of the solution
- A given Application in an IT solution generally is based on only one style

Principle of Cohesion

Low

Degree to which different components of **WITHIN** a layer are focused on a single objective

Cohesion Characteristics

- Advantages of High Cohesion
 - Improves consistency
 - Increase reuse
 - Plug-and-play
 - Engineering eases (development and testing)
 - Localization of expertise

Binding forces of cohesion

Logical	Credit card payment + NEFT payment
Temporal	Init of DB + Init of Web server + Init O/S
Procedural	Loan verification + Loan evaluation + Loan underwriting
I/O oriented	PO printing + PO saving + PO mailing
Sequential	Search → Select → Add → Checkout
Functional	Self-contained (search to payment)

Separation of Concerns

- Governs relationships <u>ACROSS</u> layers
- Minimize overlap of responsibilities across layers
- Responsibilities are well-defined
- Advantages
 - Avoid duplication
 - Better maintainability
 - Reduces coupling / dependencies across layers

Architecture Styles to be Covered

Layered

Event-Driven

Microkernel

Microservices

DEPLOYMENT ARCHITECTURE

Deployment

What?

Deployment is the process implementing an IT solution comprised of all necessary hardware and software

Where?

On-Premise

Cloud

Who?

Sys Admin, Hardware Specialists, Network Admins, etc.

When?

Once a "ready-touse" product is available

How?

Manual

Automated

Why

Easy of use

Better agility

Cost efficiency

Ready-to-use vs Finished?

WHAT - Components of Deployment

Compute

- Comprised of servers needed to carry out "computations"
- Software gets deployed on "Compute" nodes

Storage

- Comprised of servers needed to store information
- Storage hardware like HDD, Flash, Tapes get deployed
- Software for managing the hardware gets deployed

Network

- Comprised of networking hardware components like routers, switches, connectivity media
- Software for managing the network gets deployed

	Elements	
		Hardware
ents	Compute	
Components	Storage	
	Network	

WHERE - Location of deployment

On-Premise ("On-Prem")

- Dedicated "Data center"
- **Owned** by the Enterprise
- Includes all physical infrastructure (space, cooling, power, cabling, hardware, monitoring tools)
- Managed by **locally** by the enterprise personnel
- Typically separate hardware stack dedicated to specific applications

Cloud

- Shared "Data Center"
- Owned by service provider and used by multiple enterprises
- Includes all physical infrastructure (space, cooling, power, cabling, hardware, monitoring tools)
- Managed centrally by service provider personnel
- Shared hardware stack across multiple applications

Examples: Zoom and see! ©

GOING FORWARD

Looking ahead

Microkernel

Microservices

