RÉPUBLIQUE TUNISIENNE

EXAMEN DU BACCALAURÉAT SESSION 2022

Session de contrôle

MINISTÈRE DE L'ÉDUCATION

Épreuve : **Mathématiques**

Section : Mathématiques

Durée : 4h

Coefficient de l'épreuve : 4

Le sujet comporte cinq pages numérotées de 1/5 à 5/5.

La page 5/5 est à rendre avec la copie.

Exercice 1 (5,5 points)

Le plan est orienté. Dans la figure de l'annexe jointe,

- Le triangle OEB est rectangle en B et tel que $(\overrightarrow{OE}, \overrightarrow{OB}) \equiv \frac{\pi}{6} [2\pi]$.
- Le triangle OEF est rectangle en E et tel que $\left(\overrightarrow{FE}, \overrightarrow{FO}\right) \equiv \frac{\pi}{6} [2\pi]$.
- Le point I est le milieu du segment [OF].
- 1) On pose $R = S_{(OE)} \circ S_{(OB)}$.
 - a) Justifier que R est la rotation de centre O et d'angle $\left(-\frac{\pi}{3}\right)$.
 - b) Montrer que R(E) = I.
- 2) Soit h l'homothétie de centre O et de rapport 2. On pose $f = h \circ R$.
 - a) Montrer que f(E) = F.
 - b) Montrer que f est une similitude directe dont on déterminera les éléments caractéristiques.
- 3) La médiatrice du segment $\left[\text{ IE } \right]$ coupe la droite $\left(\text{ BE} \right)$ en un point A .
 - a) Montrer que f(B) = A.
 - b) Vérifier que EA = EO. Montrer alors que le quadrilatère AEIF est un losange.
- 4) Soit g la similitude indirecte telle que g(B) = A et g(E) = F.

On désigne par Ω le centre de g et on pose K = g(F).

- a) Montrer que le rapport de g est égal à 2.
- b) Justifier que $\left(\overrightarrow{FE}, \overrightarrow{FA}\right) \equiv \left(\overrightarrow{EA}, \overrightarrow{EF}\right) \left[2\pi\right]$.
- c) En déduire que $\left(\overrightarrow{FE}, \overrightarrow{FK}\right) \equiv \pi \left[2\pi\right]$ puis que $F \in [EK]$.
- d) Montrer que le point Ω appartient à la droite (EF) privée du segment [EF].
- e) En déduire l'axe de g

- f) Construire le point Ω .
- 5) a) Montrer que $g((\Omega I)) = (\Omega A)$.
 - b) Montrer que les points Ω, B et I sont alignés.

Exercice 2 (3,5 points)

On dispose d'une urne contenant cinq boules portant les numéros -1,0,0,1,2.

Toutes les boules sont indiscernables au toucher.

Une épreuve consiste à tirer simultanément et au hasard deux boules de l'urne.

1) On considère les évènements:

A: «Les deux boules tirées sont de même numéro.»

B: «Avoir au moins une boule numérotée 0.»

- a) Calculer la probabilité de l'évènement A.
- b) Montrer que la probabilité de l'évènement B est égale à $\frac{7}{10}$.
- 2) On désigne par X la variable aléatoire égale au produit des numéros des boules tirées.
 - a) Déterminer la loi de probabilité de X.
 - b) Calculer l'espérance et la variance de X.
- 3) Une expérience consiste à répéter l'épreuve précédente n fois de suite $(n \ge 2)$ en remettant à chaque fois les boules tirées dans l'urne. On désigne par Y la variable aléatoire égale au nombre de fois où l'on obtient au moins une boule numérotée 0.
 - a) Déterminer P(Y = 1).
 - b) Déterminer la plus petite valeur de n pour que le nombre moyen de fois où l'on obtient au moins une boule numérotée 0 soit supérieur ou égal à 5.

Exercice 3 (4 points)

Partie A

Soit p un nombre premier tel que p > 3 et $p \equiv 2 \pmod{3}$.

On considère dans \mathbb{Z} l'équation $(E_p): x^3 \equiv 1 \pmod{p}$.

- 1) Montrer que si $x \equiv 1 \pmod{p}$ alors x est une solution de (E_p) .
- 2) Soit x une solution de (E_p) .
 - a) Montrer que $x^{p-1} \equiv 1 \pmod{p}$.
 - b) En déduire que $x \equiv 1 \pmod{p}$.
- 3) Résoudre dans \mathbb{Z} l'équation (E_p) .

Partie B

Soit dans \mathbb{Z} l'équation $(E_{43}): x^3 \equiv 1 \pmod{43}$.

- 1) Montrer que $x^3 \equiv 1 \pmod{43}$ si et seulement si $x \equiv 1 \pmod{43}$ ou $x^2 + x + 1 \equiv 0 \pmod{43}$.

 (On pourra remarquer que $x^3 1 = (x 1)(x^2 + x + 1)$.
- 2) a) Vérifier que $(2x+1)^2 + 3 = 4(x^2 + x + 1)$ et que $30^2 \equiv -3 \pmod{43}$.
 - b) Montrer que $x^2 + x + 1 \equiv 0 \pmod{43}$ si et seulement si $(2x + 1)^2 \equiv -3 \pmod{43}$.
 - c) En déduire que : $x^2 + x + 1 \equiv 0 \; (\bmod \; 43) \; \Rightarrow \; (2x 29) \equiv 0 \; (\bmod \; 43) \; \text{ ou } \; (2x + 31) \equiv 0 \; (\bmod \; 43).$
- 3) a) Vérifier que 22 est un inverse de 2 modulo 43.
 - b) Résoudre dans $\mathbb Z$ l'équation ($\mathbf E_{43}$).

Exercice 4 (7 points)

Soit f la fonction définie sur \mathbb{R} par $f(x) = \frac{e^x}{1 + e^{2x}}$.

On note (ζ) sa courbe représentative dans un repère orthonormé (O, \vec{i}, \vec{j}) .

Partie A

- 1) Montrer que f est paire.
- 2) Montrer que $\lim_{x \to +\infty} f(x) = 0$. Interpréter.
- 3) a) Montrer que $f'(x) = \frac{(1 e^{2x}) e^x}{(1 + e^{2x})^2}$, pour tout réel x.
 - b) Dresser le tableau de variation de f.
- 4) Tracer (ζ) .

Partie B

Soit F la fonction définie sur $\left]0,+\infty\right[$ par $F(x)=\int_0^{\ln x}\,f(t)\;dt$.

- 1) Montrer que F est dérivable sur $]0,+\infty[$ et calculer F'(x) pour tout x>0.
- 2) a) Montrer que la fonction g définie par $g(x) = \tan x$ est une bijection de $\left]0, \frac{\pi}{2}\right[\sin \left]0, +\infty\right[$.

 On note g^{-1} la fonction réciproque de g.
 - b) Déterminer $g^{-1}(1)$ et $\lim_{x\to +\infty} g^{-1}(x)$.

- c) Montrer que g^{-1} est dérivable sur $\left]0,+\infty\right[$ et que $(g^{-1})'(x)=\frac{1}{1+x^2},$ pour tout x>0.
- 3) Montrer que $F(x) = g^{-1}(x) \frac{\pi}{4}$, pour tout x > 0.
- 4) Soit $\lambda > 0$. On désigne par $A(\lambda)$ l'aire de la partie du plan limitée par la courbe (ζ) , l'axe des abscisses et les droites d'équations respectives $x = -\lambda$ et $x = \lambda$.
 - a) Montrer que $A(\lambda) = 2 F(e^{\lambda})$.
 - b) Déterminer $\lim_{\lambda \to +\infty} A(\lambda)$.

Partie C

Pour tout $n \in \mathbb{N}^*$, on pose $I_n = \int_0^1 t^n \ F(e^t) \ dt$.

- 1) a) Montrer que pour tout réel $t \ge 0$, $0 \le F(e^t) \le \frac{\pi}{4}$.
 - b) En déduire $\lim_{n\to+\infty} I_n$.
- 2)a) A l'aide d'une intégration par parties, montrer que $I_n = \frac{F(e)}{n+1} \frac{1}{n+1} \int_0^1 t^{n+1} f(t) dt$.
 - b) En déduire que $\lim_{n\to +\infty} n I_n = g^{-1}(e) \frac{\pi}{4}$.

	Section:Série:	Signatures des surveillants
	Nom et Prénom :	
	Date et lieu de naissance :	
9/		

Épreuve : Mathématiques - Section : Mathématiques

Session de contrôle (2022)

Annexe à rendre avec la copie

