# Time development of hadronic showers in a Highly Granular Analog Calorimeter.

Eldwan Brianne DESY Hamburg, 3<sup>rd</sup> July 2018









#### Table of Contents.

- The SM and the Higgs boson
- Motivation for a lepton collider and the ILC
- Particle Flow Calorimetry
- Hadron showers
- The CALICE AHCAL
- Timing study in muon, electrons and pions beams
- Application of timing in the ILD detector



### The Standard Model of Particle Physics.

The best description of our Universe so far





### The Higgs Boson.

#### The cornerstone of the SM

#### Discovered at the LHC in 2012

- First evidence of the Higgs mechanism predicted by Higgs-Englert-Brout
- Compatible with the SM predictions
- Potential to reveal new physics beyond the Standard Model
- Deviation of couplings to the SM in the percent level

#### **Properties of the Higgs**

- Important free parameter of the SM
- Higgs boson mass: 125.09 ± 0.21(stat.) ± 0.11(syst.) GeV (CMS+ATLAS combined)
- Projected uncertainty on couplings between 5-20% (300 fb<sup>-1</sup>)
- More precise measurement is needed







#### Precision Measurements.

Beyond the LHC - The case for a lepton collider

#### Higgs boson mass:

- Recoil technique  $m^2_{recoil}=(\sqrt{s}-(E_{l^+}+E_{l^-}))^2-|\mathbf{p}_{l^+}+\mathbf{p}_{l^-}|^2$
- Model-independent measurement (no assumption on the Higgs decay)
- Precision of 32 MeV on the Higgs mass with 250 fb-1 at 250 GeV

#### Couplings to the Higgs

- Precision below few percents for most couplings
- Highest decay BR(H  $\rightarrow$  b $\overline{b}$ ) (~ 58%)
- Relies on jet energy measurement → minimize the uncertainty









#### The International Linear Collider.

#### A future lepton collider

#### Reaching the best precision

- Linear lepton collider at  $\sqrt{s}$  = 250 GeV
- Upgradable to 500 GeV 1 TeV
- High luminosity: 2 x 10<sup>34</sup> cm<sup>-2</sup>.s<sup>-2</sup>
- Low background/High statistics
- Well defined initial state

#### Machine operating in a 5 Hz scheme:

- Bunch-Trains spaced by 200 ms
- Bunches separated by 554 ns





### The International Large Detector.

- General purpose detector
- Excellent tracking:
  - $\sigma_{1/p_T} = 2 \times 10^{-5} GeV^{-1}$ Momentum resolution
  - Momentum resolution  $\sigma_{r\phi} = 5\,\mu m \oplus \frac{10}{p\,sin^{3/2}\theta}\,\mu m$
  - 3.5 T magnetic field
- Highly granular calorimeters (millions of channels)
  - ECAL Energy Resolution ~ 10%/√E
  - HCAL Energy Resolution < 60%/√E
- Optimized for Particle Flow
  - Low material budget in front of the calorimeter ( $< 0.5 X_0$ )
  - Calorimeters inside the solenoid magnet



### Particle Flow Calorimetry.

#### More than traditional calorimetry

- Jet energy carried by 60% charged hadrons, 30% photons and 10% neutral hadrons
- Traditional approach:
  - Sum up all deposited energy in the calorimeter
  - 30% measured in the ECAL
  - 70% measured in the HCAL → poor energy resolution (~ 60%/√E)
- Particle Flow approach:
  - Each individual particle is measured
  - Best measurement used → charged (tracker)
  - Only 10% measured in the HCAL → reduction of the HCAL poor energy measurement
  - Around 3-4% jet energy resolution in the range of 45 to 250 GeV achieved (~ 30%/√E at 100 GeV)







### The CALICE Analog Hadron Calorimeter Concept.

A highly granular calorimeter





### The CALICE Analog Hadron Calorimeter Concept.

A highly granular calorimeter







#### Hadronic showers.

Focus on the time development





#### Hadronic showers.

Focus on the time development



#### The CERN 2015 Testbeam.

The detector and testbeam setup









#### Time measurement in the SPIROC2b.

How to measure time in practical































### Cross-checking the time calibration.

Using electrons



### Time development of pion showers.

Testbeam results



### Possible applications of time measurement.

A whole new area to look



## The influence of timing cuts on hadron showers in the ILD detector.



### Conclusion.



## Backup Slides.

### Direct observation of the Higgs coupling to the top quark.

One of the latest LHC discovery

