Slide 1. Introduction (1 minute)

- Briefly introduce yourself and your project.
- State the motivation behind the project:
 - "The goal is to innovate traditional elevator systems by enabling remote interaction and enhancing safety, convenience, and reliability."

Slide 2. Problem Statement (1 minute)

- Highlight the limitations of traditional elevator systems:
 - o Reliance on embedded buttons, which may cause hygiene concerns.
 - Limited accessibility and interaction for disabled people.
 - o Safety concerns regarding objects obstructing the door.

Slide 3. Objectives (30 seconds)

- Explain what your project aims to achieve:
 - o Remote interaction with the elevator system.
 - o Improved hygine by avoiding physical interaction with the elevator (Buttons)
 - o Enhanced safety features to prevent accidents.
 - Smooth, automated operation for user convenience.

Slide 4. System Architecture

- Present a block diagram of the system (if available) and briefly describe the components:
 - Hardware:
 - Stepper motor: Lifting mechanism.
 - Servo motor: Door operation.
 - Photoresistor sensor: Door safety.
 - LED lights: Floor indication.
 - Software:
 - Arduino for system control.
 - MQTT for real-time communication.
 - Node-Red for the dashboard interface.
 - Highlight the communication flow between components using the MQTT protocol.

Slide 5. Components (Images)

- Present a block diagram of the system (if available) and briefly describe the components:
 - o Hardware:
 - Stepper motor: Lifting mechanism.
 - Servo motor: Door operation.
 - Photoresistor sensor: Door safety.
 - LED lights: Floor indication.
 - Software:
 - Arduino for system control.
 - MQTT for real-time communication.
 - Node-Red for the dashboard interface.
 - Highlight the communication flow between components using the MQTT protocol.

6. Key Features and Innovations

- Explain the unique aspects of your project:
 - **Remote Control**: Users can interact with the elevator via a dashboard rather than physical buttons.
 - Safety Mechanism: Photoresistor sensor ensures the door doesn't close when an object is detected.
 - o **Intuitive Visualization**: Node-Red dashboard provides a user-friendly interface for monitoring and control.
 - o **Energy Efficiency**: Optimized use of motors and LEDs.

7. Advantages and Applications (1 minute)

- Highlight benefits:
 - Hygienic: No physical buttons.
 - Accessible: Remote control enables easy operation for differently-abled individuals.
 - Scalable: Can be applied to various smart building systems.
- Possible use cases:
 - o Smart homes, malls, hospitals, office buildings.

8. Challenges and Future Scope

Discuss challenges faced during development:

- E.g., fine-tuning the motor for smooth operation, integrating real-time communication.
- Outline future improvements:
 - o Adding AI for predictive maintenance.
 - o Integrating a mobile app for easier remote control.
 - o Expanding to include voice control or gesture-based commands.

9. Conclusion

- Recap the project's significance:
 - "This Smart Elevator System is a step toward smarter, safer, and more accessible buildings, aligning with the goals of IoT and automation in modern infrastructure."
- Invite questions or feedback.

Tips for Delivery:

- 1. Use visuals like diagrams, photos, or short videos to demonstrate key features and components.
- 2. Practice timing to ensure the presentation flows well within 10 minutes.
- 3. Speak confidently about the innovation and real-world potential of your project.