Harnessing Supervised Machine Learning for Cardiovascular Disease Analysis and Prediction

Applied Data Science – Final Presentation

Professor: Dr Amir Hesam Salavati

Presenter: Ali Zahedzadeh

mail: <u>alizahedzadeh7@gmail.com</u>

Introduction

Results

Conclusion

Cardiovascular Disease

Supervised Machine learning
 (Random Forest, Decision Tree, Logistic Regression and etc.)

Introduction

Results

Conclusion

Research Article

Supervised Machine Learning-Based Cardiovascular Disease Analysis and Prediction

M. D. Amzad Hossen , ¹ Tahia Tazin , ¹ Sumiaya Khan , ¹ Evan Alam , ¹ Hossain Ahmed Sojib , ¹ Mohammad Monirujjaman Khan , ¹ and Abdulmajeed Alsufyani , ²

Correspondence should be addressed to Mohammad Monirujjaman Khan; monirujjaman.khan@northsouth.edu

Received 10 November 2021; Revised 23 November 2021; Accepted 26 November 2021; Published 10 December 2021

Academic Editor: Ewa Rak

¹Department of Electrical and Computer Engineering, North South University, Bashundhara, Dhaka 1229, Bangladesh ²Department of Computer Science, College of Computers and Information Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Results

Conclusion

About Dataset

Heart disease dataset

Column	Description	
Age	Age of the patient in completed years	
Sex	Gender of the patient	
Ср	Chest Pain type (1: typical angina, 2: atypical angina, 3: non-anginal pain, 4: asymptomatic)	
Trestbps	Resting blood pressure (in mm Hg)	
Chol	Cholesterol in mg/dl fetched via BMI sensor	
FBS	Fasting blood sugar > 120 mg/dl (1 = true; 0 = false)	
Resting	resting electrocardiographic results	
Thalach	Maximum heart rate achieved	
Exang	Exercise-induced angina (1 = yes, 0 = no)	
Oldpeak	Previous peak	
Са	Number of major vessels (0-4)	
Thal	0 = Normal, 1 = Fixed, 2 = Reversible, 3 = Non-Reversible	
Target	0 = Less chance of heart attack, 1 = More chance of heart attack	

UCI ML Repository
https://archive.ics.uci.edu

Results

Conclusion

About Dataset

No null Values

Balanced Dataset

165 cardiac disease & 138 noncardiac disease

1

0

Results

Conclusion

Methodology

Methodology

- Logistic Regression
- Decision Tree
- Random Forest

Introduction

Results

Conclusion

About Metrics

$$Precision = \frac{TP}{TP + FP}$$

$$Recall = \frac{TP}{TP + FN}$$

$$Accuracy = \frac{TP + TN}{TP + FP + TN + FN}$$

$$F1 - Score = \frac{2 \times Precision \times Recall}{Precision + Recall}$$

Results

Conclusion

Related Works

Prediction system for heart disease using
Naive Bayes and particle swarm optimization
January 2018

- Particle Swarm Optimization (PSO)
- Naïve Bayes Classifier

PSO algorithm

Naïve Bayes Classifier

Introduction

Conclusion

Paper Result

TABLE 2: Classification result of the three different models.

Model	Precision (%)	Recall (%)	F1-score (%)	Accuracy (%)
Random forest	77	87	82	80
Decision tree	71	74	72	72
Logistic regression	92	92	92	92

Introduction

Conclusion

Reproduced Result - Data Analysis

Introduction

Conclusion

Reproduced Result - Models Evaluation

Model	Accuracy
Logistic Regression	90.163934
Naive Bayes	83.606557
Random Forest	88.524590
Extreme Gradient Boost	75.409836
K-Nearest Neighbour	86.885246
Decision Tree	80.327869
Support Vector Machine	85.245902

- The study emphasizes the potential impact of the developed diagnostic system using machine learning in predicting heart disease, with the possibility of early identification of at-risk patients and improved accuracy in diagnosing cardiac abnormalities.
- Logistic Regression is identified as the best model for predicting heart disease due to its consistently higher accuracy, precision, and overall performance compared to other machine learning algorithms (Based on Paper Result)
- Rapid and cost-effective heart disease prediction using accessible dataset and evolving machine learning algorithms, offering the potential to significantly impact public health by identifying at-risk individuals and contributing to a reduction in the rising death rate.
- Other models can be used for this study that have acceptable accuracy (Based on Reproduce Result)

mail: <u>alizahedzadeh7@gmail.com</u>

Refrences

https://www.kaggle.com/datasets/redwankarimsony/heart-disease-data

https://archive.ics.uci.edu

https://www.popai.pro

https://www.geeksforgeeks.org/understanding-logistic-regression

https://towardsdatascience.com/3-techniques-to-avoid-overfitting-of-decision-trees-1e7d3d985a09

https://www.researchgate.net/

https://medium.com/@roiyeho/random-forests-98892261dc49

Thank you for your attention