Sodium-driven energy conversion for flagellar rotation of the earliest divergent hyperthermophilic bacterium

Norihiro Takekawa ¹, Masayoshi Nishiyama ², Tsuyoshi Kaneseki ³, Tamotsu Kanai ³, Haruyuki Atomi ³, Seiji Kojima ¹ and Michio Homma ¹*

¹ Division of Biological Science, Graduate School of Science, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan

² The HAKUBI Center for Advanced Research / Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Sakyo-ku, Kyoto 606-8501, Japan

³ Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan

*Corresponding author:

Phone: 81 52 789 2991

Fax: 81 52 789 3054

E-mail address: g44416a@cc.nagoya-u.ac.jp

Table S1. Strains and plasmids used in this study.

Strain or plasmid	Description	Source or reference
Aquifex aeolicus VF5	Wild-type Aquifex aeolicus strain	H. Huber
E. coli strains		
DH5α	Recipient for cloning expriments	(1)
RP437	Wild-type for motility	(2)
RP6894	RP437 Δ motAB	J. S. Parkinson
YS34	$\Delta cheY, fliC::Tn10, \Delta pilA,$	(3)
	$\Delta motAmotB$	
DI I		
Plasmids	. In	(4)
pBAD24	$Amp^{r} P_{BAD}$	(4)
pNT7	pBAD24- motA ^{Aa}	This study
pSU41	$\operatorname{Km}^{r}\operatorname{P}_{lac}$	(5)
pYA6022	pSU41- $motAB^{Ec}$	(6)
pBAD33	$\operatorname{Cm}^{r}\operatorname{P}_{BAD}$	(4)
pTY301	pBAD33- $fliG^{Ec}$	(7)
pSBETa	$\operatorname{Km}^{\mathrm{r}}\operatorname{P}_{T7}\operatorname{argU}$	(8)
pNT8	pSBETa- $motB_I^{Aa}$	This study
pNT9	pSBETa- $motB_2^{Aa}$	This study
pNT10	pSBETa- $motB_{I_{AE}}^{AE}$	This study
pNT11	pSBETa- $motB_2^{AE}$	This study
pNT13	pSBETa- $fliG^{Ec}$	This study
pNT14	pSBETa- $fliG_{\pi}^{Aa}$	This study
pNT15	pSBETa- $fliG^{EA}$	This study
pColdI	$Amp^{r} P_{cspA}$	Takara
	(Cold shock expression vector)	
pNT12	pColdI- motA ^{Aā}	This study

Aa, genes of *A. aeolicus*; Ec, genes of *E. coli*; AE and EA, chimera genes fusing Aa and Ec; Amp^r, ampicillin resistant; Km^r, kanamycin resistant; Cm^r, chloramphenicol resistant; Strep/Spec^r, streptomycin/spectinomycin resistant; P_{BAD}, arabinose promoter; P_{T7}, T7 promoter; P_{cspA}, promoter of CspA, a major cold shock protein of *E. coli*. (1) Proc Natl Acad Sci USA, 87: 4645-4649. (2) J Bacteriol, 151:106-113. (3) Nature, 437: 916-919. (4) J Bacteriol, 177: 4121-4130. (5) Gene, 102:75-78. (6) J Mol Biol, 327:453-463. (7) *J Mol Biol*, 334:567-583. (8) BioTechniques, 19:196-198.

Fig. S1. Chromosomal map of flagellar genes of *A. aeolicus*. The map was drawn based on the previously reported whole genome sequence of *A. aeolicus* VF5 strain (7). The genome of *A. aeolicus* consists of a single 1.55 Mbp chromosome and the flagellar genes are dispersed throughout the chromosome as small clusters. *A. aeolicus* has almost all flagellar genes conserved in Gram-negative bacteria except for some genes coding for FliM important for directional switching of the flagellar motor, the transmembrane sensor proteins such like MCP (methylaccepting chemotaxis protein) or MLP (mcp-like-protein), and Che proteins involved in chemotactic signaling pathway.

Fig. S2. Amino acid sequence alignments of MotA (A) and MotB (B) of *E. coli* and *A. aeolicus*. The MotA protein of *A. aeolicus* (MotA^{Aa}) shares 16.4 % sequence identity and 30.5% sequence similarity with MotA of *E. coli* (MotA^{Ec}). MotB₁ and MotB₂ of *A. aeolicus* (MotB₁^{Aa} and MotB₂^{Aa}) share 27.3 % and 30.1 % sequence identity and 35.6% and 36.3% sequence similarity with MotB of *E. coli* (MotB^{Ec}), respectively. Identical residues are shown with a black background, and similar residues are shown with a gray background. The position of the up-motile mutation found in this study (MotA-A225) is marked with a black arrowhead. Putative TM segments are boxed with squares. *, conserved Asp residue binds coupling ion in MotB.

Fig. S3. MSD plot for *E. coli* cells producing the MotA and chimera MotB proteins. The movement of the *E. coli* cells was analyzed by calculating Mean Square Displacement (MSD) (n = 22 - 30). The non-motile cells laid a plot in proportion as time (black), showing that the cells made Brownian motion without any movement. The wild-type cells laid a plot in proportion as the square of time (blue), showing that the cells made directional motion. The chimeric cells laid a plot in proportion as both of time and the square of time (red and green), showing that the cells had very weak motility.

Fig. S4. Tethered cell assay of *E. coli* cells producing MotA and chimeric MotB proteins. (A) Rotating fractions of *E. coli* ($\Delta motAB$) cells producing various stators. (B) Rotating Speeds of *E. coli* ($\Delta motAB$) cells producing various stators. *; not 0 but less than 0.1 %.

Fig. S4. Takekawa et al.

Fig. S5. Motility assay of *E. coli* cells producing chimeric FliG of *A. aeolicus* in soft-agar plate. (A) The schematics of primary structures of FliG of *E. coli* and *A. aeolicus* and chimera FliG. FliG is composed of three domain (N, M and C domain). We switched the sequence at the boundary of M and C domain for chimera FliG. (B) Wild-type FliG or chimeric FliG were expressed in a *E. coli* D*fliG* strain. Plates were incubated at 30°C for indicated hours in figures. ^{Ec}, protein of *E. coli*; ^{Aa}, protein of *A. aeolicus*; ^{EA}, chimera proteins fused proteins of *E. coli* and *A. aeolicus*.

Fig. S5. Takekawa et al.

Fig. S6. Phylogenic tree of *motA/motB* from various bacteria. The phylogenic trees were drawn using the CLUSTALW program for *motA* genes (A) and for *motB* genes (B). Na⁺-driven stators and the H⁺-driven stators are indicated in blue and green, respectively.

Movie Legends

Movie S1. Swimming motility of *A. aeolicus* cells at 85°C. Scale bar in the move, $30\mu m$

Movie S2. Swimming of *E. coli* cells. *E. coli* cells expressing chimeric stator $(MotA^{Aa}(A225D)/MotB_2^{AE})$ at room temperature $(22^{\circ}C)$ were observed.

Movie S3. Swimming of *E. coli* cells. *E. coli* cells expressing chimeric stator $(MotA^{Aa}(A225D)/MotB_2^{AE})$ at 45°C were observed.

Movie S4. Rotation of tethered *E. coli* cells. *E. coli* cells expressing chimeric stator (MotA^{Aa}(A225D)/MotB₂^{AE}).