Multiple regression continued

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Overview

Quick review of what we have covered in multiple regression

Log transformations of the response variable y

Multicollinearity

Polynomial regression

Quick review

Multiple regression

In multiple regression we try to predict a quantitative response variable y using several predictor variables x_1, x_2, \dots, x_k

$$\hat{y} = \hat{\beta_0} + \hat{\beta_1} \cdot x_1 + \hat{\beta_2} \cdot x_2 + \dots + \hat{\beta_k} \cdot x_k$$

Goals:

- To make predictions as accurately as possible
- To understand which predictors (x) are related to the response variable (y)

Categorical predictors

Predictors can be categorical as well as quantitative

• When a qualitative predictor has k levels, we need to use k -1 dummy variables to code it

Suppose we want to predict faculty salary y as a function of endowment x_1 , with separate intercepts for faculty rank

$$x_{i1} = \log(\text{endowment})$$

$$x_{i2} = \begin{cases} 1 & \text{if assistant professor} \\ 0 & \text{otherwise} \end{cases} \hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1}$$

$$x_{i3} = \begin{cases} 1 & \text{if associate professor} \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1}$$

$$= \begin{cases} & & \\ \hat{\beta}_0 + \hat{\beta}_1 x_{i1} & \text{if full professor} \end{cases}$$

Categorical predictors

Predictors can be categorical as well as quantitative

 When a qualitative predictor has k levels, we need to use k-1 dummy variables to code it

Suppose we want to predict faculty salary as a function of endowment with separate intercepts for faculty rank

```
> summary(fit_prof_rank_offset)
Call:
lm(formula = salary tot ~ log endowment + rank name, data = IPED 2)
Residuals:
           10 Median
                               Max
-52464 -10844 -2703
Coefficients:
                    Estimate Std. Error t value
(Intercept)
                   -120822.1
                     27569.9
log endowment
rank nameAssociate
rank nameAssistant
                                         -24.31 <0.000000000000000000
                                 1685.5
Signif. codes: 0 (***, 0.001 (**, 0.01 (*, 0.05 (., 0.1 () 1
Residual standard error: 18370 on 707 degrees of freedom
Multiple R-squared: 0.7192, Adjusted R-squared: 0.718
F-statistic: 603.7 on 3 and 707 DF, p-value: < 0.000000000000000022
```


$$\hat{y}_i = \begin{cases} \hat{\beta}_0 + \beta_1 x_{i1} + \hat{\beta}_2 & \text{if assistant professor} \\ \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_3 & \text{if associate professor} \\ \hat{\beta}_0 + \hat{\beta}_1 x_{i1} & \text{if full professor} \end{cases}$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \hat{\beta}_3 x_{i3}$$
$$= -120,822 + 27,570x_{i1} - 40,973x_{i2} - 27,855x_{i3}$$

An *interaction effect* occurs when the response variable y is influenced by the levels of two or more predictors in a non-additive way

We can model this using an equation with an interaction term

$$y = \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_3 (x_1 \cdot x_2) + \epsilon$$

An interaction term between a quantitative and categorical variable corresponds to different slopes depending for the quantitative variable depending on the value of the categorical variable

If Full Professor:

salary
$$\approx \beta_0 + \beta_1 \cdot \text{endowment}$$

If Assistant Professor:

salary
$$\approx (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \cdot \text{endowment}$$

Modification to intercept if Assistant Professor

Modification to slope if Assistant Professor

$$x_{i2} = \begin{cases} 1 & \text{if assistant professor} \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \hat{\beta}_3 x_{i1} \cdot x_{i2}$$

Residuals:

Min 1Q Median 3Q Max 46914 -9554 -2263 6233 99678

Coefficients:

	Estimate	Std. Error t value Pr(> t)
(Intercept)	-231986	9989 -23.224 <2e-16 ***
log endowment	40888	1190 34.357 (20-16 ***
rank nameAssociate	125551	14289 9.786 <2e-16 ***
rank nameAssistant	146880	14429 10.180 <ze-16 ***<="" td=""></ze-16>
log endowment:rank nameAssociate	-18369	1781 -10.800 <2e-16 ***
log endowment:rank nameAssistant	-22482	1717 -13.094 <29-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1

Residual standard error: 16260 on 705 degrees of freedom Multiple R-squared: 0.7806, Adjusted R-squared: 0.7791 F-statistic: 501.7 on 5 and 705 DF, p-value: < 2.2e-16

x_{i1}: Log endowment (continuous)

x_{i2}: Assistant prof (indicator/dummy variable)

Intercept for full professor

Slope for full professor

Modification to intercept for assistant prof

Modification to slope for assistant prof

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \hat{\beta}_3 x_{i1} \cdot x_{i2}$$

If Full Professor:

salary
$$\approx \beta_0 + \beta_1 \cdot \text{endowment}$$

If Assistant Professor:

salary
$$\approx (\beta_0 + \beta_2) + (\beta_1 + \beta_3) \cdot \text{endowment}$$

Modification to intercept if Assistant Professor

Modification to slope if Assistant Professor

$$x_{i2} = \begin{cases} 1 & \text{if assistant professor} \\ 0 & \text{otherwise} \end{cases}$$

$$\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_{i1} + \hat{\beta}_2 x_{i2} + \hat{\beta}_3 x_{i1} \cdot x_{i2}$$

Questions?

As we've seen, we can take a log transformation of an *explanatory x* variable to make a non-linear relationship more linear

Often, it can be useful to take log transformation of a response variable y to make the relationship more linear

• This can also be useful to deal with heteroskedasticity

How can we interpret the regression coefficients when we have taken a log transformation of the response variable y?

$$log(\hat{y}) = \hat{\beta}_0 + \hat{\beta}_1 x_1$$

If we exponentiate both sides we get:

$$\hat{y} = e^{\hat{\beta}_0 + \hat{\beta}_1} = e^{\hat{\beta}_0} \cdot e^{\hat{\beta}_1 x}$$

If we increase x by 1, we multiply the previous predicted value of $\hat{\mathbf{y}}$ by e^{eta_1}

$$\hat{y} = \hat{f}(x+1) = e^{\hat{\beta}_0} \cdot e^{\hat{\beta}_1 x + 1} = e^{\hat{\beta}_0} \cdot e^{\hat{\beta}_1 x} \cdot e^{\hat{\beta}_1} = \hat{f}(x) \cdot e^{\hat{\beta}_1}$$

Side note: Often the natural (base e) log of y is used because for small values of $\hat{\beta}$

$$e^{\hat{\beta}} \approx 1 + \hat{\beta}$$

This is used as a justification for using the natural log, since this allows one to directly see what $e^{\hat{\beta}}$ approximately is from just looking at $\hat{\beta}$

Although it's not very hard to use the exp() on the regression coefficients in R

Let's try it in R...

Multicollinearity

Multicollinearity occurs when two or more variables are closely related to each other

• E.g., if they have a high correlation

Multicollinearity

Multicollinearity can make our estimate of the regression coefficients unstable

• i.e., a large range of coefficient $\beta\text{-hat}$ values give the same SSResidual and $\hat{\sigma}_{\epsilon}$

This increases our estimate of the variance of the coefficients we measure and hence can decrease the power to detect a statistically significant predictor

Multicollinearity

The **variance inflated factor** is a statistic that can be computed to test for multicollinearity for the jth explanatory variable:

$$VIF_j = \frac{1}{1 - R_j^2}$$

where R_j^2 is the coefficient of determination for a model to predict x_j using the other explanatory variables in the model $(x_1, x_2, ..., x_{j-1}, x_{j+1}, ..., x_p)$

• i.e., the R² value for this model:

$$\hat{x}_j = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \dots + \hat{\beta}_{j-1} x_{j-1} + \hat{\beta}_{j+1} x_{j+1} + \dots + \hat{\beta}_p x_p$$

Rule of thumb: suspect multicollinearity for VIF > 5

car::vif(lm_fit)

Are any of the predictors x_i related to y?

We can set this up as a hypothesis test:

$$H_0: \beta_1 = \beta_2 = ... = \beta_p = 0$$

 H_A : At least one $\beta_i \neq 0$

We can run a parametric hypothesis test based on an F statistic to test this hypothesis

Call:

 $lm(formula = R \sim X1B + X2B + X3B + HR + BB + X1Bn + X2Bn + X3Bn + X4Rn + X8Bn, data = team_batting2)$

Residuals:

Min 1Q Median 3Q Max -78.695 -15.457 -0.798 15.480 76.092

Coefficients:

		Estimate	Std. Error	t value	Pr(> t)	
(Inte	ercept)	-574.88241	20.89696	-27.510	<0.00000000000000000	***
X1B		-0.08976	0.43995	-0.204	0.838	
X2B		1.70203	1.36050	1.251	0.211	
X3B		-0.20163	4.71591	-0.043	0.966	
HR		1.19258	1.47183	0.810	0.418	
BB		0.24157	0.65658	0.368	0.713	
X1Bn		3930.66847	2443.75215	1.608	0.108	
X2Bn		-4839.59898	7517.51009	-0.644	0.520	
X3Bn		8493.67060	26119.44048	0.325	0.745	
XHRn		2061.44301	8146.72963	0.253	0.800	
XBBn		588.32226	3628.53349	0.162	0.871	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1

Residual standard error: 23.61 on 1140 degrees of freedom Multiple R-squared: 0.9297. Adjusted R-squared: 0.929

F-statistic: 1507 on 10 and 1140 DF, p-value: < 0.0000000000000022

summary(Im_fit)

None of the coefficients are significant at the α = 0.05 level

Overall H_0 : $\beta_1 = \beta_2 = ... = \beta_k = 0$ is highly significant

This can happen when there is multicolinearity

Polynomial regression

Polynomial regression extends linear regression to non-linear relationships by including nonlinear transformations of predictors

salary =
$$\beta_0$$
 + β_1 · endowment
+ β_2 · (endowment)² +
+ β_3 · (endowment)³ + ϵ

Still a linear equation but non-linear in original predictors

Polynomial regression

Polynomial regression extends linear regression to non-linear relationships by including nonlinear transformations of predictors

We can compare model fits by:

- Assessing if higher order terms are statistically significant
- Looking at the r² values
- Running hypothesis tests comparing nested models
- Etc.

Let's try it in R...