Geometria e Algebra - MIS-Z

Quarto appello - Ottobre - Soluzioni

16/10/2023

Nome e Cognome:		
Corso di laurea:		
Matricola:		

Informazioni

Questo appello contiene 5 esercizi per un totale di 34 punti (di cui 2 punti sono attribuiti in base alla qualità della redazione). Il punteggio ottenuto x sarà convertito in 30esimi nella maniera seguente:

- se $x \leq 30$, allora x sarà il voto in 30esimi;
- se $30 < x \le 34$, allora il voto sarà 30 e Lode.

Le risposte devono essere opportunamente giustificate per ottenere il punteggio massimo. Le risposte indecifrabili non verranno valutate.

Le risposte devono inoltre essere inserite negli appositi spazi bianchi e si potranno allegare fogli supplementari solo previa autorizzazione della docente.

Il tempo a disposizione è di 3 ore. È vietato l'utilizzo di ogni tipo di calcolatrice.

Esercizio	Punteggio
1	
2	
3	
4	
5	
Redazione	

TOTALE

ESERCIZIO 1 [6 punti]. Vero o Falso?

Per ciascun asserto si stabilisca se è vero o falso, motivando in modo conciso ed esauriente la risposta.

- (a) Il vettore (2,2) è combinazione lineare dei vettori (2,-1) e (-2,2).
 - VERO
 - \Box FALSO

Giustificazione

I vettori (2,-1) e (-2,2) costituiscono una base di \mathbb{R}^2 in quanto sono linearmente indipendenti. Ne segue che ogni vettore di \mathbb{R}^2 è combinazione lineare di (2,-1) e (-2,2), e questo vale in particolare per (2,2).

(b) La matrice

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$$

ha rango massimo.

- \square VERO
- **FALSO**

Giustificazione

Con qualche conto si trova che det(A) = 0, oppure, riducendo a scalini, si ottiene una matrice con una riga nulla. Quindi A non ha rango massimo.

- (c) Esistono due sottospazi vettoriali U_1 e U_2 di \mathbb{R}^3 tali che $U_1 \cap U_2 = \emptyset$.
 - \square VERO
 - FALSO

Giustificazione

Ogni sottospazio vettoriale di \mathbb{R}^3 contiene il vettore nullo (0,0,0). Quindi $(0,0,0) \in U_1 \cap U_2$, per cui $U_1 \cap U_2 \neq \emptyset$.

- (d) Se 0 è un autovalore di un'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$, allora $\ker(f) \neq \{(0,0,0)\}$.
 - VERO
 - \Box FALSO

Giustificazione

Se 0 è un autovalore di un'applicazione lineare $f: \mathbb{R}^3 \to \mathbb{R}^3$, allora in \mathbb{R}^3 esiste $v \neq (0,0,0)$ tale che $f(v) = 0 \cdot v = (0,0,0)$. Quindi $v \in \ker(f)$ e $\ker(f) \neq \{(0,0,0)\}$.

ESERCIZIO 2 [6 punti]. Sistema con parametro.

Al variare di $k \in \mathbb{R}$ si discuta la compatibilità del sistema

$$\left\{ \begin{array}{l} kX+Y+Z=2\\ X+kY+Z=k\\ X+Y+2Z=2 \end{array} \right.$$

e, quando il sistema è compatibile, se ne determinino il "numero" delle soluzioni e l'insieme delle soluzioni. Si riassuma quanto trovato nella tabella seguente:

k	Compatibile?	Numero di soluzioni	Insieme delle soluzioni
$k \in \mathbb{R} \setminus \{0, 1\}$	SI	1	$\left\{ \left(\frac{1}{2(k-1)}, \frac{2k-3}{2(k-1)}, \frac{1}{2} \right) \right\}$
k = 0	SI	∞^1	$\left\{ \left(-t,2-t,t\right),t\in\mathbb{R}\right\}$
k = 1	NO	0	-

Svolgimento

Consideriamo la matrice orlata (A|b) associate al sistema:

$$(A|b) = \begin{pmatrix} k & 1 & 1 & 2 \\ 1 & k & 1 & k \\ 1 & 1 & 2 & 2 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

- 1. $R_1 \leftrightarrow R_3$,
- 2. $R_2 \leftarrow R_2 R_1$, 3. $R_3 \leftarrow R_3 kR_1$, 4. $R_3 \leftarrow R_3 + R_2$,

si ottiene la matrice:

$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & k-1 & -1 & k-2 \\ 0 & 0 & -2k & -k \end{pmatrix}.$$

<u>CASO 1</u>. Notiamo che se $k \neq 0$ e $k \neq 1$, allora la matrice dei coefficienti e la matrice orlata hanno entrambe rango 3. Quindi, per il teorema di Rouché-Capelli, il sistema è compatibile ed ammette l'unica soluzione $\left(\frac{1}{2(k-1)}, \frac{2k-3}{2(k-1)}, \frac{1}{2}\right)$.

CASO 2. Se k=0 allora si ottiene la matrice a scalini

$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & -1 & -1 & -2 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

In questo caso la matrice dei coefficienti e la matrice orlata hanno entrambe rango 2. Quindi, per il teorema di Rouché-Capelli, il sistema è compatibile ed ammette $\infty^{3-2} = \infty^1$ soluzioni. Scegliendo Z come variabile libera, otteniamo che per k=0 l'insieme delle soluzioni è

$$S_0 = \{(-t, 2-t, t) : t \in \mathbb{R}\}.$$

CASO 3. Se k=1 allora si ottiene la matrice

$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & -2 & -1 \end{pmatrix}.$$

 $\begin{pmatrix}1&1&2&2\\0&0&-1&-1\\0&0&-2&-1\end{pmatrix}.$ Effettuando l'ulteriore operazione $R_3\leftarrow R_3-2R_2,$ si ottiene la matrice a scalini

$$\begin{pmatrix} 1 & 1 & 2 & 2 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

Notiamo che l'ultima riga corrisponde all'equazione 0=1, pertanto il sistema è incompatibile.

ESERCIZIO 3 [8 punti]. Una famiglia di endomorfismi di \mathbb{R}^3 .

(a) Sia $f:V\to W$ un'applicazione lineare tra due spazi vettoriali V e W su un campo K. Si definiscano il nucleo e l'immagine di f. Quindi si enunci il teorema del rango.

Definizione e Teorema

Sia $f:V\to W$ un'applicazione lineare. Il nucleo di f è il sottoinsieme di V, denotato $\ker(f),$ definito da

$$\ker(f) := \{ v \in V : f(v) = 0_W \}.$$

L'immagine di f è il sottoinsieme di W, denotato Im(f), definito da

$$Im(f) := \{ f(v) : v \in V \}.$$

Teorema del rango. Siano V e W due spazi vettoriali su un campo K tali che V è di dimensione finita. Se $f:V\to W$ è un'applicazione lineare, allora

$$\dim(\ker(f)) + \operatorname{rg}(f) = \dim(V),$$

dove $\dim(\ker(f))$ denota la dimensione del nucleo di f e $\mathrm{rg}(f)$ la dimensione dell'immagine di f.

(b) Siano V e W due spazi vettoriali di dimensioni rispettivamente m e n e sia $f:V\to W$ un'applicazione lineare. Si mostri che se m>n, allora f non è iniettiva.

Dimostrazione

Innanzitutto ricordiamo che Im(f) è un sottospazio vettoriale di W. Quindi $\dim(\text{Im}(f)) \leq n$. Applicando il teorema del rango abbiamo:

$$\dim(\ker(f)) = \dim(V) - \dim(\operatorname{Im}(f)) = m - \dim(\operatorname{Im}(f)) \ge m - n > 0.$$

Abbiamo quindi ottenuto che dim $(\ker(f)) > 0$. Ciò implica che $\ker(f) \neq \{0_V\}$, ovvero che f non è iniettiva.

(c) Si consideri l'endomorfismo

$$f: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}^3$$
$$(x, y, z) \quad \mapsto \quad (-x + 2y - 2z, 3x + 2z, 3x - y + 3z).$$

(c1) Si determini se f è diagonalizzabile e in caso affermativo si trovi una base diagonalizzante.

Svolgimento

Sia \mathcal{B} la base canonica di \mathbb{R}^3 . La matrice associata a f rispetto a \mathcal{B} è

$$A = \begin{pmatrix} -1 & 2 & -2 \\ 3 & 0 & 2 \\ 3 & -1 & 3 \end{pmatrix}.$$

Per studiare la diagonalizzabilità di f, determiniamo innanzitutto gli autovalori, calcolando le radici del polinomio caratteristico:

$$P_f(T) = \begin{vmatrix} -1 - T & 2 & -2 \\ 3 & -T & 2 \\ 3 & -1 & 3 - T \end{vmatrix} = -T^3 + 2T^2 + T - 2 = -T^2(T - 2) + T - 2 =$$
$$= (1 - T^2)(T - 2) = (1 + T)(1 - T)(T - 2).$$

Pertanto gli autovalori di f sono -1, 1, e 2. Essendo gli autovalori a due a due distinti, possiamo già concludere che f è diagonalizzabile. Non rimane che determinare per ciascun autovalore l'autospazio corrispondente:

•
$$V_{-1}(f) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} 0 & 2 & -2 \\ 3 & 1 & 2 \\ 3 & -1 & 4 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(-1, 1, 1)\}.$$

•
$$V_1(f) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} -2 & 2 & -2 \\ 3 & -1 & 2 \\ 3 & -1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(1, -1, -2)\}.$$

•
$$V_2(f) = \left\{ (x, y, z) \in \mathbb{R}^3 : \begin{pmatrix} -3 & 2 & -2 \\ 3 & -2 & 2 \\ 3 & -1 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} \right\} = Span\{(0, 1, 1)\}.$$

Sia $\mathcal{B}' = \{(-1,1,1), (1,-1,-2), (0,1,1)\}$ l'unione delle basi dei tre autospazi $V_{-1}(f)$, $V_1(f)$ e $V_2(f)$. Allora \mathcal{B}' è una base diagonalizzante per f.

(c2) Sia A la matrice associata a f rispetto alla base canonica \mathcal{B} di \mathbb{R}^3 . Si determini una matrice $P \in \mathcal{M}_3(\mathbb{R})$ tale che $P^{-1}AP$ sia una matrice diagonale e si calcoli P^{-1} . Cosa si ottiene effettuando il prodotto $P^{-1}AP$?

Svolgimento

Sia \mathcal{B} la base canonica di \mathbb{R}^3 e sia $\mathcal{B}' = \{(-1,1,1),(1,-1,-2),(0,1,1)\}$ la base diagonalizzante trovata al punto (c1). Allora una matrice P tale che $P^{-1}AP$ è una matrice diagonale è

$$P = M_{\mathcal{BB}'}(\mathrm{id}_{\mathbb{R}^3}) = \begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & -2 & 1 \end{pmatrix}.$$

Si può calcolare l'inversa di P con uno dei metodi visti in classe (sistema lineare, algoritmo di Gauss-Jordan o la matrice cofattore) e si ottiene

$$P^{-1} = M_{\mathcal{B}'\mathcal{B}}(\mathrm{id}_{\mathbb{R}^3}) = \begin{pmatrix} -1 & 1 & -1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Effettuando il prodotto $P^{-1}AP$ si ottiene:

$$P^{-1}AP = M_{\mathcal{B}'\mathcal{B}}(\mathrm{id}_{\mathbb{R}^3})M_{\mathcal{B}}(f)M_{\mathcal{B}\mathcal{B}'}(\mathrm{id}_{\mathbb{R}^3}) = M_{\mathcal{B}'}(f) = \begin{pmatrix} -1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 2 \end{pmatrix}.$$

ESERCIZIO 4 [6 punti]. Geometria nello spazio.

Si consideri lo spazio \mathbb{E}^3 con il riferimento cartesiano standard.

(a) Si scrivano le equazioni parametriche e un'equazione cartesiana del piano $\pi \subseteq \mathbb{E}^3$ passante per i punti A(1,1,0), B(0,0,1) e C(0,2,0).

Svolgimento

Per scrivere le equazioni parametriche di π abbiamo bisogno di un punto del piano e di due vettori non collineari della giacitura. Scegliamo:

• Punto: B(0,0,1);

• Vettori non collineari della giacitura: $\overrightarrow{AB} = (-1, -1, 1)$ e $\overrightarrow{AC} = (-1, 1, 0)$.

Quindi

$$\pi: \left\{ \begin{array}{l} x = -s - t \\ y = -s + t \\ z = s + 1 \end{array} \right., \qquad s, t \in \mathbb{R}.$$

Per ottenere un'equazione cartesiana di π ricaviamo s e t dalla seconda e dalla terza equazione e le sostituiamo nella prima:

$$\begin{cases} x = -s - t \\ t = s + y \\ s = z - 1 \end{cases} \Rightarrow \begin{cases} x = -s - t \\ t = z - 1 + y \\ s = z - 1 \end{cases} \Rightarrow \begin{cases} x = -z + 1 - z + 1 - y \\ t = z - 1 + y \\ s = z - 1 \end{cases}$$

Un'equazione cartesiana di π è quindi:

$$\pi: X + Y + 2Z - 2 = 0.$$

(b) Nel fascio di piani paralleli a π si determinino i piani a distanza 2 da π .

Svolgimento

Il fascio di piani paralleli a π è dato dall'equazione

$$\pi_d: X + Y + 2Z + d = 0, \quad d \in \mathbb{R}.$$

Determiniamo i valori di d tali che il piano corrispondente π_d del fascio sia a distanza 2 da π :

$$2 = d(\pi, \pi_d) = d(B, \pi_d) = \frac{|2+d|}{\sqrt{1^2 + 1^2 + 2^2}} = \frac{|2+d|}{\sqrt{6}}.$$

Basta allora risolvere l'equazione con modulo

$$|2+d| = 2\sqrt{6} \Leftrightarrow 2+d = 2\sqrt{6} \circ 2+d = -2\sqrt{6} \Leftrightarrow d = 2\sqrt{6}-2 \circ d = -2\sqrt{6}-2.$$

Quindi i piani cercati sono

$$\pi_{2\sqrt{6}-2} = X + Y + 2Z + 2\sqrt{6} - 2$$
 e $\pi_{-2\sqrt{6}-2} = X + Y + 2Z - 2\sqrt{6} - 2$.

(c) Al variare di h in $\mathbb R$ si consideri la retta r_h descritta dalle equazioni cartesiane

$$r_h: \left\{ \begin{array}{l} hX + Y + Z = 2\\ X + hY + Z = h \end{array} \right.$$

e si determini la posizione reciproca di π e r_h . Inoltre, quando π e r_h sono incidenti, se ne determini il punto di intersezione.

Svolgimento

Ricordiamo che una retta e un piano possono essere paralleli (disgiunti o la retta contenuta nel piano) o incidenti. In particolare sono paralleli disgiunti se la loro intersezione è vuota, sono incidenti se la loro intersezione è costituita da un unico punto e la retta è contenuta nel piano se la loro intersezione è costituita da infiniti punti. Studiamo quindi, al variare di h, il numero delle soluzioni del sistema

$$\begin{cases} X+Y+2Z=2\\ hX+Y+Z=2\\ X+hY+Z=h. \end{cases}$$

Notiamo che questo sistema, a meno dell'ordine delle equazioni e del simbolo scelto per il parametro, è esattamente il sistema che abbiamo risolto nell'Esercizio 2. Pertanto non ci resta che interpretare la soluzione trovata da un punto di vista geometrico. Abbiamo

- se $h \neq 0, 1$ il sistema possiede un'unica soluzione. Pertanto per tali valori π e r_h sono incidenti, e la loro intersezione è data dal punto $\left(\frac{1}{2(h-1)}, \frac{2h-3}{2(h-1)}, \frac{1}{2}\right)$.
- se h=0 il sistema possiede ∞^1 soluzioni. Pertanto r_0 è contenuta in π .
- se h=1 il sistema è incompatibile. Pertanto r_1 e π sono paralleli disgiunti.

ESERCIZIO 5 [6 punti]. Sottospazi vettoriali e prodotto scalare.

(a) Sia V uno spazio vettoriale su un campo K. Si definisca quando un sottoinsieme W di V è un sottospazio vettoriale di V.

Definizione

Sia V uno spazio vettoriale su un campo K. Un sottoinsieme $W\subseteq V$ è un sottospazio vettoriale di V se:

- $W \neq \emptyset$;
- $\forall \lambda, \mu \in K, \forall w_1, w_2 \in W \text{ si ha } \lambda w_1 + \mu w_2 \in W.$

(b) Sia \langle , \rangle il prodotto scalare standard su \mathbb{R}^4 . Si mostri che il sottoinsieme

$$U = \{v \in \mathbb{R}^4 : \langle (1, 1, 0, 1), v \rangle = 0\}$$

è un sottospazio vettoriale di \mathbb{R}^4 e se ne determini una base e la dimensione.

Svolgimento

Mostriamo che U soddisfa le proprietà di sottospazio vettoriale definite nel punto (a).

- $U \neq \emptyset$. Infatti $(0,0,0,0) \in U$, in quanto $\langle (1,1,0,1), (0,0,0,0) \rangle = 0$.
- Siano $\lambda, \mu \in \mathbb{R}$ e siano $v_1, v_2 \in U$. Allora $\langle (1, 1, 0, 1), v_1 \rangle = 0 = \langle (1, 1, 0, 1), v_2 \rangle$. Ma quindi, per le proprietà del prodotto scalare, si ha

$$\langle (1,1,0,1), \lambda v_1 + \mu v_2 \rangle = \lambda \langle (1,1,0,1), v_1 \rangle + \mu \langle (1,1,0,1), v_2 \rangle = 0 + 0 = 0.$$

Ne segue che $\lambda v_1 + \mu v_2 \in U$.

Concludiamo che U è un sottospazio vettoriale di \mathbb{R}^4 .

Determiniamo ora una base e la dimensione di U. Abbiamo che

$$\begin{split} U &= \{(a,b,c,d) \in \mathbb{R}^4 : \langle (1,1,0,1), (a,b,c,d) \rangle = 0\} = \\ &= \{(a,b,c,d) \in \mathbb{R}^4 : a+b+d=0\} = \\ &= \{(a,b,c,d) \in \mathbb{R}^4 : a=-b-d\} = \\ &= \{(-b-d,b,c,d) \in \mathbb{R}^4 : b,c,d \in \mathbb{R}\} = \\ &= \{b(-1,1,0,0) + c(0,0,1,0) + d(-1,0,0,1) : b,c,d \in \mathbb{R}\} = \\ &= Span\{(-1,1,0,0), (0,0,1,0), (-1,0,0,1)\}. \end{split}$$

Quindi una base di $U \in \{(-1, 1, 0, 0), (0, 0, 1, 0), (-1, 0, 0, 1)\}$ e U ha dimensione 3.

(c) Sia W il sottospazio vettoriale di \mathbb{R}^4 definito da

$$W = Span\{(-4,7,0,-3), (-2,5,1,-3), (0,1,1,-1), (-1,2,0,-1)\}.$$

Si determini una base e la dimensione di W.

Svolgimento

Per determinare una base e la dimensione di W ci basterà ridurre a gradini la matrice che ha per righe i quattro vettori che generano U:

$$\begin{pmatrix} -4 & 7 & 0 & -3 \\ -2 & 5 & 1 & -3 \\ 0 & 1 & 1 & -1 \\ -1 & 2 & 0 & -1 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

1.
$$R_1 \leftrightarrow R_4$$
,

$$2. R_2 \leftarrow R_2 - 2R_1,$$

3.
$$R_4 \leftarrow R_4 - 4R_1$$
,

4.
$$R_3 \leftarrow R_3 - R_2$$
,

5.
$$R_4 \leftarrow R_4 + R_2$$
,

6.
$$R_3 \leftrightarrow R_4$$
.

si ottiene la matrice a scalini:

$$\begin{pmatrix} -1 & 2 & 0 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}.$$

Quindi la dimensione di W è 3 (numero di righe non nulle) e una base è $\{(-1,2,0,-1),(0,1,0,-1),(0,0,1,0)\}$ (le righe non nulle della matrice ridotta a scalini).

(d) Si mostri che U = W.

Svolgimento

Per mostrare che U=W basterà mostrare che $\dim(U+W)=3$. Infatti U+W è un sottospazio tale che $U\subseteq U+W$ e $W\subseteq U+W$. Essendo $\dim(U)=3$ e $\dim(W)=3$, se $\dim(U+W)=3$ allora U+W=U e U+W=W. Ma allora U=W. Determiniamo quindi la dimensione di

 $U+W=Span\{(-1,1,0,0),(0,0,1,0),(-1,0,0,1),(-1,2,0,-1),(0,1,0,-1),(0,0,1,0)\}$ riducendo a gradini la matrice

$$\begin{pmatrix} -1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -1 & 0 & 0 & 1 \\ -1 & 2 & 0 & -1 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 1 & 0 \end{pmatrix}.$$

Effettuando nell'ordine le operazioni seguenti:

1.
$$R_3 \leftarrow R_3 - R_1$$
,

2.
$$R_4 \leftarrow R_4 - R_1$$
,

3.
$$R_2 \leftrightarrow R_3$$
,

4.
$$R_4 \leftarrow R_4 + R_2$$
,

5.
$$R_5 \leftarrow R_5 + R_2$$
,

6.
$$R_5 \leftarrow R_5 - R_3$$
,

7.
$$R_6 \leftarrow R_6 - R_3$$
,

si ottiene la matrice a scalini:

Quindi $\dim(U+W)=3$, da cui segue che U=W.