(i) At inlet: P2 = 90 kPa, T2 = 250 K, 1=14, R = 287 J/kgK G= T R= 1004.5 J/kgK $S_2 = \frac{P_2}{RT} = \frac{1.254 \text{ kg/m}^3}{1.254 \text{ kg/m}^3}$ $C_{z_2} = C_2 = M_2 \cdot \sqrt{r_R T_2} = 142.62 \text{ m/s} \text{ and, } C_{02} = 0$ $\chi_{h_2} = 0.05 \text{ m}, \quad \chi_{t_2} = 0.1 \text{ m} \implies \dot{m} = \beta_2 \cdot C_{z_2} \pi (\chi_{t_2}^2 - \chi_{h_2}^2)$ m= 4.214 kg/3 At exit: Straight radial vanes Co3 = U3; But with slip. Co3 = E.U3 :. $W = U_3 C_{03} - U_2 C_{02} = E U_3^2$ $N = 14400 \text{ spm} \Rightarrow \Omega = \frac{2\pi N}{60} = \frac{1507.96 \text{ rad/s}}{60}$ U2 = 12 83 where 83 = 0.25 m :. U3 = 377 m/s => W = EU3 = 127.916 KJ/kg Power, P = m W = 539.038 kW Stagnation conditions at inlet: Ttz = Tz · (1+ \frac{Y-1}{2} M_2^2) = 260.125 K Pt2 = 103.416 kPa W = Gp (Tt3-Tt2) => Tt3 = 387.468 K 3 - Pt3 $\frac{P_{t3}}{P_{t2}} = \left(\frac{T_{t3}}{T_{t2}}\right)^{\frac{1}{1}} \qquad \text{where , } e_c = 0.85$

 $\frac{P_{t3}}{P_{t2}} = \frac{3.27}{33817}$ compressor pressure ratio

: $P_{t3} = \frac{383.393}{893}$ kPa

At exit: $C_{03} = 339.3 \text{ m/s}$, $C_{73} = V_{83} = C_{22} = 142.62 \text{ m/s}$ $C_{3} = \sqrt{C_{03}^{2} + C_{83}^{2}} \implies C_{3} = 368.055 \text{ m/s}$

Further, m = 21783.6. Vr393 => Width We need s3.

Q2] Let '3' => inlet to diffuses & 4 => outlet of diffuses. $M_3 = 1.026$ & $\propto_3 = 4an^4 \left(\frac{C_{03}}{C_{73}}\right) = \frac{67.2^6}{}$ For $M_3 = 1.026$ & $\propto_3 = 67.2$ \Rightarrow $\propto^* \approx 70^\circ$, $8_3/8^* \approx 1$ For $x^* = 70^\circ$ & $x^* = 70^\circ$ & x

0.3]

Small increase in m => increase in Cz =>

Decrease in work done by the first stage => Lead to lower trighter out put pressure & higher density

Cz further increases due to combined effects of increase in m, @ decrease in density

Small increase in Cz in first stage \Rightarrow Negative incidence flow separation in later stages due to cascading effect. Very high increase in Cz also leads to negative pressure rise or throttling effect in final stages