ACH0021 – Tratamento e Análise de Dados/Informações (1/2012)

Primeira Prova – Abril/2012

Nome:		Nº USP:		
Turma/Horário:	Curso:	-		

Observação 1: Duração da prova: 90 (noventa) minutos.

Observação 2: O uso de calculadora é opcional, e seu empréstimo durante a prova é proibido.

Formulário (conjunto de n elementos $\{w_i\}$)

Média:
$$\overline{w} = \frac{1}{n} \sum_{k=1}^{n} w_k$$

Variância:
$$\sigma^2 = \frac{1}{n} \sum_{k=1}^{n} (w_k - \overline{w})^2$$

Desvio padrão: σ

1) Um estudante resolveu medir o tempo que ele necessita para chegar à EACH a partir de seu lar, registrando o tempo de percurso por 80 dias. Os dados de sua pesquisa estão organizados na tabela abaixo.

Tempo de	Frequência
percurso (minutos)	absoluta
$10q \vdash 14q$	10
$14q \vdash 16q$	26
$16q \vdash 18q$	20
$18q \vdash 22q$	24
TOTAL	80

a) [2,0 pontos] Estimar a média \bar{t} do tempo de percurso e o desvio padrão $\sigma.$

A fim de decidir se um dado é típico dentre os registrados, adotou-se o seguinte critério: "Um dado será considerado típico se estiver até a uma distância de $m\sigma$ da média \bar{t} , onde $m \in \mathbb{R}$."

b) [1,5 pontos] No octogésimo primeiro dia (que não está contemplado na tabela), o aluno gastou 17,5q minutos para chegar à EACH. Estimar m de sorte que este dia não seja um dado típico quando comparado com

os oitenta já registrados (que estão na tabela acima).

Prova A:
$$q=1$$
 Prova B: $q=2$ Prova C: $q=3$ Prova D: $q=4$

2a) Assumindo uma distribuição uniforme dos dados em cada intervalo da variável e tomando o ponto médio t_i de cada um destes como sendo o respectivo representante, tem-se

Tempo de	t_i	Frequência	Frequência	Amplitude	Densidade
percurso (min)	(min)	absoluta (n_i)	relativa (f_i)	(Δ_i)	(d_i)
$10q \vdash 14q$	12q	10	10/80 = 0.125	4q	1/(32q)
$14q \vdash 16q$	15q	26	26/80 = 0.325	2q	13/(80q)
$16q \vdash 18q$	17q	20	20/80 = 0.250	2q	1/(8q)
$18q \vdash 22q$	20q	24	24/80 = 0.300	4q	3/(40q)
TOTAL	-	80	1,000	-	-

Estimativa da média dos n=80 dados:

$$\bar{t} = \frac{1}{n} \sum_{i} n_i t_i = \frac{1}{80} \left[10 \cdot 12q + 26 \cdot 15q + 20 \cdot 17q + 24 \cdot 20q \right] = \frac{133q}{8} = 16,625q \text{ (min)}.$$

Estimativa da variância

$$\sigma^{2} = \frac{1}{n} \sum_{i} n_{i} (t_{i} - \bar{t})^{2} = \frac{1}{80} \left[10 (12q - 16, 625q)^{2} + 26 (15q - 16, 625q)^{2} + 20 (17q - 16, 625q)^{2} + 24 (20q - 16, 625q)^{2} \right] = \frac{447q^{2}}{64},$$

que implica um desvio padrão de $\sigma = \sqrt{\frac{447}{64}}q$ (min). Em suma, tem-se

```
 \begin{cases} \text{Prova A } (q=1) \colon & \text{Estimativas: } \overline{t} = 16,625 \text{ (minutos) e } \sigma \approx 2,643 \text{ (minutos)} \\ \text{Prova B } (q=2) \colon & \text{Estimativas: } \overline{t} = 33,250 \text{ (minutos) e } \sigma \approx 5,286 \text{ (minutos)} \\ \text{Prova C } (q=3) \colon & \text{Estimativas: } \overline{t} = 49,875 \text{ (minutos) e } \sigma \approx 7,928 \text{ (minutos)} \\ \text{Prova D } (q=4) \colon & \text{Estimativas: } \overline{t} = 66,500 \text{ (minutos) e } \sigma \approx 10,571 \text{ (minutos)} \end{cases}
```

2b) Seguindo o critério de tipicidade, para que o octogésimo primeiro tempo não seja típico, é necessário e suficiente que esse não pertença ao intervalo $(\bar{t}-m\sigma,\bar{t}+m\sigma)$, tomando $m\geq 0$. Como o tempo de 17,5q minutos é superior à média \bar{t} , é suficiente analisar a situação $\bar{t}+m\sigma<17,5q$, que implica

$$(0 \le) \ m < \frac{17, 5q - \bar{t}}{\sigma} = \frac{17, 5q - 16, 625q}{\sqrt{\frac{447}{64}}q} = \frac{7}{\sqrt{447}} \approx 0,331 \,.$$

Logo, se $m \in [0, \frac{7}{\sqrt{447}}) \approx [0; 0, 331)$, o tempo de 17, 5q é excluído do intervalo $(\bar{t} - m\sigma, \bar{t} + m\sigma)$. **Nota:** Reparar que m independe do valor de q, sendo o mesmo para as quatro provas.

2) Para fazer o papel de herói em uma peça de teatro, N atores enviaram seus currículos ao diretor, e o histograma referente à altura deles é exibido abaixo.

a) [2,0 pontos] Para contracenar de forma satisfatória com a atriz principal, o diretor julgou que os atores deveriam ter uma altura entre a cm e b cm. Estimar o número de candidatos situados nessa faixa.

b) [2,0 pontos] Nesta mesma peça, há um papel secundário de "árvore", que seria melhor desempenhado por atores com uma dada altura mínima. A fim de selecionar os candidatos que satisfaçam esta condição, o diretor requisitou separar p dos candidatos mais altos. Estimar a altura mínima m destes atores – isto é, determinar a altura m acima da qual encontram-se exatamente p de todos os candidatos.

Prova A:	N = 330	a = 168	b = 183	p = 12%
Prova B:	N = 270	a = 171	b = 186	p = 14%
Prova C:	N = 180	a = 174	b = 189	p = 16%
Prova D:	N = 120	a = 177	b = 192	p = 18%

2a) Tabela de frequência a partir do histograma:

Altura (cm)	Densidade	Amplitude (cm)	Frequência Relativa	Frequência Absoluta
$155 \vdash 165$	0,015	10	$0,015 \cdot 10 = 0,15 = 15\%$	0,15N
$165 \vdash 180$	0,030	15	$0,030 \cdot 15 = 0,45 = 45\%$	0,45N
$180 \vdash 195$	0,020	15	$0,020 \cdot 15 = 0,30 = 30\%$	0,30N
$195 \vdash 205$	0,010	10	$0,010 \cdot 10 = 0,10 = 10\%$	0,10N
TOTAL	-	-	1,00 = 100%	N

Assumindo uma distribuição uniforme dos dados nas barras do histograma, e notando que $a \in [165, 180)$ (em cm) e $b \in [180, 195)$ (em cm), tem-se

$$d_{165\vdash 180} = d_{a\vdash 180} \Rightarrow 0,030 = \frac{f_{a\vdash 180}}{180 - a} \Rightarrow f_{a\vdash 180} = \frac{3}{100} (180 - a)$$

e

$$d_{180\vdash 195} = d_{180\vdash b} \Rightarrow 0,020 = \frac{f_{180\vdash b}}{b-180} \Rightarrow f_{180\vdash b} = \frac{1}{50} \left(b-180\right) \,.$$

A fração de atores situadas na faixa estabelecida é, pois

$$f_{a \vdash b} = f_{a \vdash 180} + f_{180 \vdash b} = \frac{3}{100} (180 - a) + \frac{1}{50} (b - 180) = \frac{180 - 3a + 2b}{100},$$

ou

$$\begin{cases} \text{Prova A:} & f_{168\vdash 183} = 0,42 = 42\% \quad \Rightarrow \quad 0,42 \cdot 330 = 138,6 \approx 139 \text{ (atores)} \\ \text{Prova B:} & f_{171\vdash 186} = 0,39 = 39\% \quad \Rightarrow \quad 0,39 \cdot 270 = 105,3 \approx 105 \text{ (atores)} \\ \text{Prova C:} & f_{174\vdash 189} = 0,36 = 36\% \quad \Rightarrow \quad 0,36 \cdot 180 = 64,8 \approx 65 \text{ (atores)} \\ \text{Prova D:} & f_{177\vdash 192} = 0,33 = 33\% \quad \Rightarrow \quad 0,33 \cdot 120 = 39,6 \approx 40 \text{ (atores)} \end{cases}$$

2b) Sendo $f_{195\vdash 205} = 10\%$ e $f_{180\vdash 195} = 30\%$, nota-se que o ponto m (altura requisitada) situa-se no intervalo $180 \vdash 195$ (em cm); ademais, é imediato que $f_{m\vdash 195} = f_{m\vdash 205} - f_{195\vdash 205} = p - 0, 10$. Assumindo uma distribuição uniforme dos dados nessa faixa, tem-se

$$d_{180\vdash 195} = d_{m\vdash 195} \Rightarrow 0,020 = \frac{\overbrace{f_{m\vdash 195}}^{p-0,10}}{195 - m} \Rightarrow m = 200 - 50p.$$

Logo.

Prova A (p=12%): Estimativa da altura mínima requisitada: $200-50\cdot 0, 12=194, 0$ (cm) Prova B (p=14%): Estimativa da altura mínima requisitada: $200-50\cdot 0, 14=193, 0$ (cm) Prova D (p=18%): Estimativa da altura mínima requisitada: $200-50\cdot 0, 16=192, 0$ (cm) Estimativa da altura mínima requisitada: $200-50\cdot 0, 16=192, 0$ (cm) Estimativa da altura mínima requisitada: $200-50\cdot 0, 18=191, 0$ (cm)

- 3) O desempenho de um jogador de basquete em cobranças de lances livres foi registrado. De um total de n lançamentos (n > 1), cada acerto foi indicado por 1 ponto e cada erro, por 0 ponto.
- [1,5 pontos] a) Determinar o desvio padrão caso o jogador tenha sido bem sucedido em 1/4 de suas cobranças (suponha, em caso de desconforto, que n seja múltiplo de 4).
- [1,0 ponto] b) Determinar o desvio padrão máximo.

3a) Seja n_1 o número de acertos (e, por conseguinte, o número de erros é $n_0 = n - n_1$). A média de pontos \overline{x} é dada por

$$\overline{x} = \frac{1}{n} \left[n_0 \cdot 0 + n_1 \cdot 1 \right] = \frac{n_1}{n} \,,$$

que implica uma variância σ^2 de

$$\sigma^{2} = \frac{1}{n} \left[n_{0} \left(0 - \overline{x} \right)^{2} + n_{1} \left(1 - \overline{x} \right)^{2} \right] = \frac{1}{n} \left[\left(\overbrace{n - n_{1}}^{n_{0}} \right) \left(0 - \frac{n_{1}}{n} \right)^{2} + n_{1} \left(1 - \frac{n_{1}}{n} \right)^{2} \right]$$

$$= \frac{n_{1}}{n} \left(1 - \frac{n_{1}}{n} \right), \tag{1}$$

donde se chega ao desvio padrão

$$\sigma = \sqrt{\frac{n_1}{n} \left(1 - \frac{n_1}{n} \right)} \,. \tag{2}$$

Caso o jogador acerte 1/4 de suas cobranças $(n_1 = n/4)$, tem-se

$$\sigma = \sqrt{\frac{n/4}{n} \left(1 - \frac{n/4}{n} \right)} = \frac{\sqrt{3}}{4} \,, \tag{3}$$

conforme requisitado.

3b) Da equação (2), é imediato que o valor máximo do desvio padrão coincide com o valor máximo da função f(x) = x(1-x), onde $x := n_1/n$ (quando então f coincide com a variância). Como f é uma parábola côncava, o ponto máximo realiza-se no ponto médio de suas raízes, que é x = 1/2. Como f(1/2) = 1/4, o desvio padrão máximo é 1/2.