ゼミテンプレ

稲毛惇人

2017年10月24日

1 はじめに

コメントアウトは Command+{, 解除は Command+}.

2 手法

パラメータ

c :状態数

m : 出力記号の数

 $s_t \in \{\omega_1, \omega_2, ..., \omega_c\}$:時点 t での状態

 $x_t \in \{v_1, v_2, ..., v_m\}$:時点 t での観測結果 (出力記号)

 $\mathbf{s} = s_1 s_2 \cdots s_t \cdots s_n$:状態系列

 $\mathbf{x} = x_1 x_2 \cdots x_t \cdots x_n$:観測記号系列

 $a_{ij},\;a(\omega_i,\omega_j)$:状態 ω_i から状態 ω_j への遷移確率

 b_{jk} , $b(\omega_j, v_k)$:状態 ω_j で v_k を出力する確率

 π_i :初期状態 (t=1) が ω_i である確率

 \mathbf{A} : a_{ij} を (i,j) 成分としてもつ $c \times c$ の行列

B : b_{jk} を (j,k) 成分としてもつ $c \times m$ の行列

 $\pi = (\pi_1, \pi_2, ..., \pi_c)$: π_i を成分としてもつ c 次元のベクトル

参考文献

[1] 著者名, "作品名", 出版会社, 20XX.