Advanced Quantum Physics Notes

Xinyu Zhong Wolfson College

November 16, 2022

Contents

1	Revision
2	Perturbation Theory
	.1 Time-Independent Perturbation Theory
	.2 First-order Perturbation Theory
	3.3 Second-order Perturbation Theory
	.4 Degenerate Perturbation Theory
	.5 Variation Method
	2.5.1 Rayleigh-Ritz Method
3	Electromagnetism
	.1 Aharanov-Bohm Effect
	.2 Gauge Invariance
	3.2.1 Couloumb Gauge
	3.2.2 Symmetric Gauge
	.3 Orbital Magnetic moment
	3.4.1 Electron
	3.4.2 Muon
	3.4.3 p, n, nuclei
	5.5 Spin
	3.5.1 Particle magnetic moment: spin-half
	3.5.2 Spin Precession
	3.5.3 Spin-half
	3.5.4 Energy Eigenstates
	3.5.5 Wave-function Evolution
	.6 Stern-Gerlach
	.7 Landau Levels
	3.7.1 Landau Gauge
	onii Zanada Gaage IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
	Real Hydrogen Atom
	.1 Relativistic Corrections
	.2 Fine Structure
	.3 Hyperfine Structure
	Symmetries
	.1 Symmetry Transformation
	.2 The Wigner-Eckart Theorem(selection rule)
5.3	
	· · · · · · · · · · · · · · · · · · ·
	dentical Particles
	.1 Spin and statistics(fermions and bosons)
	2.2 Exchange forces
	.3 The Helium atom
	. 110 110 110 110 110 110 110 110 110 11
	Multi-electron atoms
	7.1 Periodic table
	LS coupling(Hund's rule)
	.2 Lis coupling(Tund's Tule)
	.o jj coupinig
3	${f Zeeman~effect/Stark~effect/Molecules:~H_2^+~and~H_2}$

Revision 1

2 Perturbation Theory

Time-Independent Perturbation Theory 2.1

2.2First-order Perturbation Theory

2.3 Second-order Perturbation Theory

Example: Infinite square well with central bump

Example: Infinite square well in an electric field

Example: Harmonic Oscillator + Linear perturbation

Example: Van der Waals Interaction

2.4 Degenerate Perturbation Theory

Example: Perturbed 2D infinite square well

2.5 Variation Method

Example: Hydrogen atom ground state energy

Rayleigh-Ritz Method

Example: Hydrogen atom with finite proton mass

3 Electromagnetism

Aharanov-Bohm Effect 3.1

3.2 Gauge Invariance

- Couloumb Gauge 3.2.1
- Symmetric Gauge 3.2.2

3.3 Orbital Magnetic moment

In Hamiltonian, the $L \cdot B$ term can be written as: $\hat{H} = -\hat{\mu}_L \cdot B$ Definition Orbital magnetic moment operator:

$$-\hat{\mu}_L = \frac{q}{2m}\hat{L}\gamma_L$$

. . .

Definition Gyromagnetic ratio, γ_L :

$$\gamma_L = \frac{q}{2m}$$

...

For an electron (q=-e), the orbital magnetic moment operator is

3.4 Magnetic Moments

- 3.4.1 Electron
- 3.4.2 Muon
- 3.4.3 p, n, nuclei
- 3.5 Spin
- 3.5.1 Particle magnetic moment: spin-half
- 3.5.2 Spin Precession
- 3.5.3 Spin-half
- 3.5.4 Energy Eigenstates
- 3.5.5 Wave-function Evolution
- 3.6 Stern-Gerlach
- 3.7 Landau Levels
- 3.7.1 Landau Gauge

Example: 2D Electron Gas

- 4 Real Hydrogen Atom
- 4.1 Relativistic Corrections
- 4.2 Fine Structure
- 4.3 Hyperfine Structure
- 5 Symmetries
- 5.1 Symmetry Transformation
- 5.2 The Wigner-Eckart Theorem(selection rule)
- 5.3 Combining magnetic moment
- 6 Identical Particles
- 6.1 Spin and statistics(fermions and bosons)
- 6.2 Exchange forces
- 6.3 The Helium atom
- 7 Multi-electron atoms
- 7.1 Periodic table
- 7.2 LS coupling(Hund's rule)
- 7.3 jj coupling
- 8 Zeeman effect/Stark effect/Molecules: H_2^+ and H_2