

Outline

MEDCOUPLING Projection methods and parallelism

Conclusion

.

Agenda

Interpolation, extrapolation or projection?

Spatial discretization and nature of a field

What MEDCoupling can do for you

Parallelism in MEDCoupling

w w

Interpolation, extrapolation or projection?

Illustration

Code coupling

Introduction: A typical use case: code coupling

- Different numerical codes simulate different physics
 - And hence (might) use different numerical schemes
 - E.g. temperature computed on nodes in code A and on elements in code B
 - And/or different spatial discretization (i.e. different meshing of the same geometrical domain)
 - A cylinder meshed with hexahedrons in code A, and with tetrahedrons in code B
 - Or even worse, use different dimensions
 - A heat flux on a 2D surface for code A and a 3D source term (e.g. fuel rode) for code B
- How do you "transfer" information from one to the other?
 - I need to provide code B with the temperature computed by code A
 - Solution A: ad-hoc solution. For each pair (code A, code B), write a mapper . . . good luck
 - Solution B: use generic projection methods thanks to MEDCoupling

Spatial Discretization & Nature Of A Field

Spatial discretization of a Field

Where are the discrete values defined?

- A field can be supported by:
 - The nodes (or vertices) of the mesh: ON_NODES also called P1
 - The cells (or elements) of the mesh: ON_CELLS also called P0
 - By more complex reference locations:
 - Gauss Points (ON GAUSS PT, ON GAUSS NE),
 - Kriging points (ON NODES KR)
- Obviously the projection methods will differ according to the localization
- Generally P0-P0 projection is the best supported option
 - Source field is defined on cells
 - Desired result: a target field expressed on cells
 - Very common case
- Not all combinations are possible
 - See the reference table at the end of the presentation
 - If you don't find what you need, ask for it!

Field Nature (1/2)

Functionalities

Projection Methods

General principle

To project one field onto a new target mesh, one has to:

1.Prepare (required only once): The weight matrix is internally computed Ratios of the volumes between source cells and target cells From the source mesh and the target mesh only Wij: how much from source cell (i) will contribute to target cell (j) API: prepare(source, target, method)

w M

- 2. The source field must have a valid nature set!
- 3.Transfer (can be done several times): A field on the source mesh can be transferred to the target mesh API: transfer(srcField, tgtField, defaultValue) Default value covers non-overlapping cases Supported configurations What you can do
- Mesh combination (U: unstructured, C: cartesian, E: extruded) U U U C C U C C E E Dimensions 1D 2D curve, full 2D 3D surface. full 3D Spatial discretization P0 P0 P1 P0 P0 P1 P1

Outline

MEDCOUPLING Projection methods and parallelism

Conclusion

7

Conclusion

Try it!

- Any question ?
- Let's go for the exercises!

w WX