

CHEMISTRY HIGHER LEVEL PAPER 1

Monday 18 November 2013 (afternoon)

1 hour

INSTRUCTIONS TO CANDIDATES

- Do not open this examination paper until instructed to do so.
- Answer all the questions.
- For each question, choose the answer you consider to be the best and indicate your choice on the answer sheet provided.
- The periodic table is provided for reference on page 2 of this examination paper.
- The maximum mark for this examination paper is [40 marks].

0	2 He 4.00	10 Ne 20.18	18 Ar 39.95	36 Kr 83.80	54 Xe 131.30	86 Rn (222)			
1		9 F 19.00	17 Cl 35.45	35 Br 79.90	53 I 126.90	85 At (210)		71 Lu 174.97	103 Lr (260)
9		8 O 16.00	16 S 32.06	34 Se 78.96	52 Te 127.60	84 Po (210)		70 Yb 173.04	102 No (259)
w		7 N 14.01	15 P 30.97	33 As 74.92	51 Sb 121.75	83 Bi 208.98		69 Tm 168.93	101 Md (258)
4		6 C 12.01	14 Si 28.09	32 Ge 72.59	50 Sn 118.69	82 Pb 207.19		68 Er 167.26	100 Fm (257)
ю		5 B 10.81	13 Al 26.98	31 Ga 69.72	49 In 114.82	81 TI 204.37		67 Ho 164.93	99 Es
				30 Zn 65.37	48 Cd 112.40	80 Hg 200.59		66 Dy 162.50	98 Cf (251)
ble				29 Cu 63.55	47 Ag 107.87	79 Au 196.97		65 Tb 158.92	97 Bk (247)
dic Tal				28 Ni 58.71	46 Pd 106.42	78 Pt 195.09		64 Gd 157.25	96 Cm (247)
The Periodic Table				27 Co 58.93	45 Rh 102.91	77 Ir 192.22		63 Eu 151.96	95 Am (243)
The				26 Fe 55.85	44 Ru 101.07	76 Os 190.21		62 Sm 150.35	94 Pu (242)
	F		ı	25 Mn 54.94	43 Tc 98.91	75 Re 186.21		61 Pm 146.92	93 N p (237)
	number	Element Relative atomic mass		24 Cr 52.00	42 Mo 95.94	74 W 183.85		60 Nd 144.24	92 U 238.03
	Atomic number	Elei Relative at		23 V 50.94	41 Nb 92.91	73 Ta 180.95		59 Pr 140.91	91 Pa 231.04
	<u> </u>			22 Ti 47.90	40 Zr 91.22	72 Hf 178.49		58 Ce 140.12	90 Th 232.04
				21 Sc 44.96	39 Y 88.91	57 † La 138.91	89 ‡ Ac (227)	:-	**
6		4 Be 9.01	12 Mg 24.31	20 Ca 40.08	38 Sr 87.62	56 Ba 137.34	88 Ra (226)		
1	1 H 1.01	3 Li 6.94	11 Na 22.99	19 K 39.10	37 Rb 85.47	55 Cs 132.91	87 Fr (223)		

- 1. What is the total number of oxygen atoms in 0.200 mol of glucose, $C_6H_{12}O_6$?
 - A. 1.20
 - B. 6.00
 - C. 1.20×10^{23}
 - D. 7.22×10^{23}
- 2. What are the coefficients of $H_2SO_4(aq)$ and $H_3PO_4(aq)$ when the following equation is balanced using the smallest possible whole numbers?

$$\underline{\hspace{1cm}} Ca_3(PO_4)_2(s) + \underline{\hspace{1cm}} H_2SO_4(aq) \rightarrow \underline{\hspace{1cm}} CaSO_4(s) + \underline{\hspace{1cm}} H_3PO_4(aq)$$

	Coefficient of H ₂ SO ₄ (aq)	Coefficient of H ₃ PO ₄ (aq)
A.	1	2
B.	2	3
C.	3	1
D.	3	2

- 3. $7.102 \,\mathrm{g}$ of $\mathrm{Na_2SO_4}(M = 142.04 \,\mathrm{g}\,\mathrm{mol}^{-1})$ is dissolved in water to prepare $0.5000 \,\mathrm{dm}^3$ of solution. What is the concentration of $\mathrm{Na_2SO_4}$ in $\mathrm{mol}\,\mathrm{dm}^{-3}$?
 - A. 2.500×10^{-2}
 - B. 1.000×10^{-1}
 - C. 1.000×10
 - D. 1.000×10^2

4. What are the numbers of neutrons and electrons in the iodine ion, ¹²⁵I⁺?

	Neutrons	Electrons
A.	53	53
B.	72	52
C.	72	53
D.	125	52

- 5. What is the abbreviated electron configuration of the telluride ion, Te^{2-} ?
 - A. $[Kr]5s^25d^{10}5p^6$
 - B. $[Kr]5s^24d^{10}5p^2$
 - C. $[Kr]5s^24d^{10}5p^4$
 - D. $[Kr]5s^24d^{10}5p^6$
- **6.** Which series is arranged in order of **increasing** radius?
 - A. $F < Cl^- < Cl$
 - B. Rb < K < Na
 - C. $Al^{3+} < Mg^{2+} < Na^{+}$
 - D. $I^{-} < Br^{-} < Cl^{-}$

- 7. Which oxides form acidic solutions when added to water?
 - A. $P_4O_{10}(s)$ and $SO_3(g)$
 - B. $Na_2O(s)$ and MgO(s)
 - C. $Al_2O_3(s)$ and $SiO_2(s)$
 - D. MgO(s) and $Al_2O_3(s)$
- **8.** Which compound is likely to be colourless?
 - A. $[Zn(H_2O)_6]Cl_2$
 - B. $[NH_4]_2[Fe(H_2O)_6][SO_4]_2$
 - C. $K_3[Co(CN)_6]$
 - D. $[Ni(NH_3)_6][BF_4]_2$
- **9.** What is the formula of calcium nitride?
 - A. Ca₃N₂
 - B. Ca_2N_3
 - C. $Ca(NO_2)_2$
 - D. $Ca(NO_3)_2$

- 10. Which compounds have an ionic lattice structure in the solid state?
 - I. Silicon dioxide
 - II. Sodium fluoride
 - III. Ammonium nitrate
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 11. Which intermolecular forces exist between the following molecules?

	H ₂ Se	CO	H_2
A.	van der Waals' and dipole-dipole	van der Waals' and dipole-dipole	van der Waals' only
B.	van der Waals', dipole-dipole and hydrogen bonding	van der Waals' only	van der Waals' and hydrogen bonding
C.	van der Waals', dipole-dipole and hydrogen bonding	van der Waals' and dipole-dipole	van der Waals' only
D.	van der Waals' and dipole-dipole	van der Waals' and dipole-dipole	van der Waals' and hydrogen bonding

- 12. Which species have dative covalent bonding?
 - I. $[Fe(H_2O)_6]Cl_3$
 - II. NH₄⁺
 - III. H_2O
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- 13. How many sigma (σ) and pi (π) bonds are there in CH₃CH₂CCCH₂COOH?
 - A. 13σ and 5π
 - B. 15σ and 2π
 - C. 15σ and 3π
 - D. 15σ only
- 14. What is the hybridization of atoms X, Y and Z in epinephrine?

	X	Y	Z
A.	sp^2	sp^3	sp^3
B.	sp ²	sp	sp^3
C.	sp ³	sp^2	sp^2
D.	sp³	sp³	sp^3

8813-6101 **Turn over**

15. Which processes are exothermic?

I.
$$CH_3CH_2CH_3(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

II.
$$Cl_2(g) \rightarrow 2Cl(g)$$

III.
$$CH_3CH_2COOH(aq) + NaOH(aq) \rightarrow CH_3CH_2COONa(aq) + H_2O(l)$$

- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **16.** Consider the following two equations.

$$2Ca(s) + O_2(g) \rightarrow 2CaO(s)$$

$$\Delta H^{\ominus} = +x \text{ kJ}$$

$$Ca(s) + 0.5O_2(g) + CO_2(g) \rightarrow CaCO_3(s)$$

$$\Delta H^{\ominus} = +y \text{ kJ}$$

What is ΔH^{Θ} , in kJ, for the following reaction?

$$CaO(s) + CO_2(g) \rightarrow CaCO_3(s)$$

- A. y 0.5x
- B. y-x
- C. 0.5 y
- D. x-y

- 17. Which ionic compound has the most endothermic lattice enthalpy?
 - A. Sodium chloride
 - B. Sodium oxide
 - C. Magnesium chloride
 - D. Magnesium oxide
- 18. Which processes are predicted to have a positive entropy change, ΔS ?
 - I. $I_2(g) \rightarrow I_2(s)$
 - II. $4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$
 - III. $CH_3OH(l) \rightarrow CH_3OH(g)$
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 19. Which combination of ΔH and ΔS signs will always result in a spontaneous reaction at all temperatures?

	ΔH	ΔS
A.	+	+
B.	+	_
C.	_	_
D.	-	+

- -10-
- 20. The diagram below shows the energy changes for a reaction with and without a catalyst. Which symbols represent the activation energy, $E_{\rm a}$, and the enthalpy change, ΔH , for the reaction with a catalyst?

	$E_{\rm a}$ (with a catalyst)	ΔΗ
A.	x	z
B.	у	z
C.	z	x
D.	y-x	Z

21. The following experimental rate data were obtained for a reaction carried out at temperature T.

$$A(g) + B(g) \rightarrow C(g) + D(g)$$

Initial [A(g)] / mol dm ⁻³	Initial [B(g)] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
3.00×10 ⁻¹	2.00×10 ⁻¹	1.89×10 ⁻²
3.00×10 ⁻¹	4.00×10 ⁻¹	1.89×10 ⁻²
6.00×10 ⁻¹	4.00×10^{-1}	7.56×10 ⁻²

What are the orders with respect to A(g) and B(g)?

	Order with respect to A(g)	Order with respect to B(g)
A.	zero	second
B.	first	zero
C.	second	zero
D.	second	first

22. Consider the following proposed two-step reaction mechanism at temperature T.

Step 1:
$$2NO_2(g) \xrightarrow{k_1} NO(g) + NO_3(g)$$
 Slow

Step 2:
$$NO_3(g) + CO(g) \xrightarrow{k_2} NO_2(g) + CO_2(g)$$
 Fast

Which statements are correct?

- I. The overall reaction is $NO_2(g) + CO(g) \rightarrow NO(g) + CO_2(g)$.
- II. Step 1 is the rate-determining step of the reaction.
- III. The rate expression for Step 1 is rate = $k_1[NO_2]^2$.
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III

-12-

$$N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$$
 $\Delta H^{\ominus} = -92.6 \text{ kJ}$

- I. Decreasing the concentration of NH₃(g)
- II. Decreasing the temperature
- III. Increasing the pressure
- A. I and II only
- B. I and III only
- C. II and III only
- D. I, II and III
- **24.** Which compound has the **highest** molar enthalpy of vaporization?
 - A. Ethane
 - B. Ethanoic acid
 - C. Propane
 - D. Propanoic acid
- **25.** What are the conjugate acid—base pairs in the following reaction?

$$HCO_3^-(aq) + H_2O(1) \rightleftharpoons OH^-(aq) + H_2CO_3(aq)$$

	Brønsted–Lowry acid	Brønsted–Lowry base	Conjugate acid	Conjugate base
A.	HCO ₃ ⁻ (aq)	H ₂ O(l)	$H_2CO_3(aq)$	OH ⁻ (aq)
B.	$H_2CO_3(aq)$	OH ⁻ (aq)	HCO ₃ ⁻ (aq)	H ₂ O(l)
C.	$H_2O(l)$	HCO ₃ ⁻ (aq)	$H_2CO_3(aq)$	OH ⁻ (aq)
D.	H ₂ O(l)	HCO ₃ ⁻ (aq)	OH ⁻ (aq)	H ₂ CO ₃ (aq)

26. Which group of three compounds contains only weak acids and bases?

-13 -

A.	Ba(OH) ₂	CH ₃ NH ₂	CH ₃ COOH
B.	CH ₃ CH ₂ CH ₂ COOH	CH ₃ CH ₂ NH ₂	НСООН
C.	NH ₃	HNO ₃	CH ₃ CH ₂ COOH
D.	NH ₃	NaOH	H ₂ CO ₃

27. What is the relationship between pK_a , pK_b and pK_w for a conjugate acid–base pair?

A.
$$pK_a = pK_w + pK_b$$

B.
$$pK_a = pK_w - pK_b$$

C.
$$pK_a \times pK_b = pK_w$$

D.
$$\frac{pK_a}{pK_b} = pK_w$$

28. The table below shows data for the K_a and p K_b values for some acids and bases at 298 K.

Acid	$K_{\rm a}$	Base	р <i>К</i> _ь
HClO	2.9×10 ⁻⁸	NH ₃	4.75
C ₆ H ₅ CH ₂ COOH	4.9×10 ⁻⁵	C ₆ H ₅ NH ₂	9.13

Which two formulas represent the weakest acid and the weakest base in the table?

- A. HCIO and $C_6H_5NH_2$
- B. C₆H₅CH₂COOH and NH₃
- C. C₆H₅CH₂COOH and C₆H₅NH₂
- D. HClO and NH₃

29.	Which pair of	compounds	could	be	used	to	make	a	buffer	solution	(assuming	appropriate
	molar ratios)?											

- A. KCl and HCl
- B. NaCl and HCl
- C. KHSO₄ and H₂SO₄
- D. CH₃COONa and CH₃COOH
- **30.** Which salts form acidic solutions when dissolved in water?
 - I. NH₄C1
 - II. $Cr(NO_3)_3$
 - III. CH₃COONa
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III
- 31. What is the name of MnO_2 ?
 - A. Manganese(II) oxide
 - B. Magnesium(II) oxide
 - C. Manganese(IV) oxide
 - D. Magnesium(IV) oxide

$$2Cr(OH)_3(s) + 6ClO^-(aq) \rightarrow 2CrO_4^{2-}(aq) + 3Cl_2(g) + 2OH^-(aq) + 2H_2O(l)$$

Which statement is correct?

- A. $Cr(OH)_3$ is the oxidizing agent and the oxidation number of chromium changes from +3 to +6.
- B. Cr(OH)₃ is the reducing agent and undergoes reduction.
- C. ClO is the oxidizing agent and the oxidation number of chlorine changes from +1 to 0.
- D. ClO is the reducing agent and the oxidation number of chlorine changes from -1 to 0.
- 33. Consider the following two standard electrode potentials at 298 K.

$$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \Longrightarrow \operatorname{Sn}(s)$$
 $E^{\ominus} = -0.14 \,\mathrm{V}$

$$Fe^{3+}(aq) + e^{-} \rightleftharpoons Fe^{2+}(aq)$$
 $E^{\Theta} = +0.77 \text{ V}$

What is the equation and cell potential for the spontaneous reaction that occurs?

A.
$$2\text{Fe}^{2+}(aq) + \text{Sn}^{2+}(aq) \rightarrow 2\text{Fe}^{3+}(aq) + \text{Sn}(s)$$
 $E^{\Theta} = -0.91\text{V}$

B.
$$2Fe^{3+}(aq) + Sn(s) \rightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$$
 $E^{\Theta} = +0.91V$

C.
$$2Fe^{2+}(aq) + Sn^{2+}(aq) \rightarrow 2Fe^{3+}(aq) + Sn(s)$$
 $E^{\Theta} = +0.91V$

D.
$$2Fe^{3+}(aq) + Sn(s) \rightarrow 2Fe^{2+}(aq) + Sn^{2+}(aq)$$
 $E^{\Theta} = +1.68 \text{ V}$

- **34.** What happens during the electrolysis of concentrated aqueous potassium chloride?
 - I. Reduction takes place at the negative electrode (cathode).
 - II. Hydrogen gas is evolved at the negative electrode (cathode).
 - III. The pH of the electrolyte increases.
 - A. I and II only
 - B. I and III only
 - C. II and III only
 - D. I, II and III

- **35.** What is the name of $(CH_3)_3CCOCH_3$, applying IUPAC rules?
 - A. 2,2-dimethylbutan-3-one
 - B. 3,3-dimethylbutan-2-one
 - C. 2,2-dimethylbutanal
 - D. 3,3-dimethylbutanal
- **36.** Which functional groups are present in C₆H₅CONHC₆H₅?
 - A. Benzene ring (phenyl), amine
 - B. Benzene ring (phenyl), ketone, amine
 - C. Benzene ring (phenyl), amide
 - D. Alkene, amide
- **37.** What is the product of the reaction when CH₃CH₂CH₂CH₂CH₂CN is reduced by hydrogen, using a nickel catalyst under the appropriate conditions?
 - A. CH₃CH₂CH₂CH₂CH₂NH₂
 - B. CH₃CH₂CH₂CH₂CH₂CH₂NH₂
 - C. CH₃CH₂CH₂CH₂CH₂CH₃
 - D. CH₃CH₂CH₂CH₂CH₂CH₂CH₃
- **38.** What is the major organic product formed from the reaction of $(CH_3)_3CBr$ with a concentrated, ethanolic solution of KOH?
 - A. $(CH_3)_3COH$
 - B. $(CH_3)_2CCH_2$
 - C. $(CH_3)_2CO$
 - D. (CH₃)₂CHO

39.	What is the organic product of the reaction between butan-1-ol and ethanoic acid on heating using
	concentrated sulfuric acid?

- A. Butyl methanoate
- B. Butyl ethanoate
- C. Ethyl butanoate
- D. Ethyl propanoate
- **40.** A student measured the mass and volume of a piece of silver and recorded the following values.

Mass of empty weighing bottle	1.0800 g			
Mass of weighing bottle with piece of silver	11.5700 g			
Volume of silver	1.00 cm ³			

Which value, in g cm⁻³, for the density of silver should the student report in her laboratory notebook?

- A. 10.49
- B. 10.4900
- C. 10.5
- D. 10.500