北京大学信息科学技术学院考试试卷

え	会试科目:	<u></u> 电	磁学	姓名	i:			
考	肯试时间:	201	<u>2</u> 年_	<u>6</u> 月 <u>20</u>	<u>)</u> 日 4	任课教师	市:	
	题 号			=	四	五.	六	总分
	分数							
	阅卷人							

北京大学考场纪律

- 1、考生进入考场后,按照监考老师安排隔位就座,将学生证放在桌面上。 无学生证者不能参加考试;迟到超过15分钟不得入场。在考试开始30分钟后 方可交卷出场。
- 2、除必要的文具和主考教师允许的工具书、参考书、计算器以外,其它 所有物品(包括空白纸张、手机、或有存储、编程、查询功能的电子用品等) 不得带入座位,已经带入考场的必须放在监考人员指定的位置。
- 3、考试使用的试题、答卷、草稿纸由监考人员统一发放,考试结束时收回,一律不准带出考场。若有试题印制问题请向监考教师提出,不得向其他考生询问。提前答完试卷,应举手示意请监考人员收卷后方可离开;交卷后不得在考场内逗留或在附近高声交谈。未交卷擅自离开考场,不得重新进入考场答卷。考试结束时间到,考生立即停止答卷,在座位上等待监考人员收卷清点后,方可离场。
- 4、考生要严格遵守考场规则,在规定时间内独立完成答卷。不准交头接耳,不准偷看、夹带、抄袭或者有意让他人抄袭答题内容,不准接传答案或者试卷等。凡有违纪作弊者,一经发现,当场取消其考试资格,并根据《北京大学本科考试工作与学术规范条例》及相关规定严肃处理。
- 5、考生须确认自己填写的个人信息真实、准确,并承担信息填写错误带来的一切责任与后果。

学校倡议所有考生以北京大学学生的荣誉与诚信答卷,共同维护北京大 学的学术声誉。

以下为试题和答题纸,共 10 页。

一、(30分)填空、判断、简答

1. (10 分)判断题,请在每一小题前面的空格内写上"对"或者"错"

	, , ,	•
解答	题号	题目
错	(1)	某点的电场强度的方向就是点电荷在该点所受的电场
		力的方向。
错	(2)	电势为零处电场强度也为零。
对	(3)	有一个未接地的金属导体形成的闭合空腔。如果只改
		变导体外表面以外的电荷量,则空腔内的电场不会发
		生改变; 如果只改变空腔内表面以内的电荷量, 则空
		腔外的电场会发生改变。
错	(4)	在外磁场中,圆形载流线圈整体受到的总的安培力必
		为零。
对	(5)	电场强度沿一闭合环路的环量可以不等于零。

2. (8 分)选择题,请请从选项中选择正确的答案,将正确选项前的字母 A、B或 C,填在小题前面的空格内。

	/ - /	XE 4 (CIR PIN = III)				
解答	题号	题目和选项				
۸ .	(1)	将一个空心的螺线管(其自身的电阻忽略不计),和一				
A		个电阻串联后连接到理想无内阻的稳压直流电源上,然				
		后将一个原本未磁化的铁棒匀速插入螺线管中。插入				
	程中,铁棒受磁场的作用力的情况是:					
	A. 吸引力, B. 排斥力, C. 不受力;					
٨	(2)	如上(1)所述,与插入铁棒之前相比较,螺线管内的				
A		磁场能变化是:				
		A. 增加, B. 减少, C. 不变;				
Α	(3)	如上(1)所述,电源的输出功率:设插入铁棒之前为				
A		P ₁ ,插入铁棒的过程中平均功率为 P ₂ ,插入铁棒之后为				
		P ₃ ; 请问 P ₁ 和 P ₂ 之间的关系是:				
		A. $P_1 > P_2$, B. $P_1 = P_2$, C. $P_1 < P_2$;				
В	(4)	如上(3)所述,请问 P₁和 P₃之间的关系是:				
L D		A. $P_1 > P_3$, B. $P_1 = P_3$, C. $P_1 < P_3$;				

- 3. (12分)填空题
- (1) 假设有一电流元为 $\hat{i}Idx$ 位于坐标原点处,其中,I 为电流强度,dx 为 x 坐标的微分, \hat{i} 是 x 方向单位矢量(分别以 \hat{i} , \hat{j} , \hat{k} 代表 x,y,z 方向的单位矢量),某点 P_1 (a, 0, 0),其中,a \neq 0,请问电流元在 P_1 点产生的磁感应强度 \bar{B} = ()
- (2) 如上 (1) 所述,如果有某点 P_2 (0, 0, \mathbf{c}),且 \mathbf{c} > 0,请问电流 元在 P_2 点产生的磁感应强度 $\bar{\mathbf{B}}$ = ($-\frac{\mu_0 I dx}{4\pi c^2}$ $\hat{\mathbf{j}}$)
- (3) 理想电感 L 和电阻 R 串联构成闭合回路,初始时刻电路中的电流为 I,假设不考虑电磁辐射,请问经过很长时间后最终电阻 R 上产生的焦耳热的总能量是: ($LI^2/2$)
- (4) 已知一个处于静电平衡的导体,电势为 U,带有电荷量为 Q,其静电能是:(QU/2)

二、(15分) 如图所示,一半径为 R 的圆柱形无穷长直导线内 通有均匀分布的稳恒电流 I, 导线的相对磁导率为 1。导线外 有厚度为 d、相对磁导率为ur的均匀各向同性线性磁介质构成 的无限大平板。导线与平板表面垂直,并从板上一个半径为 R 的圆孔中 穿过。求(1)整个空间中各处的磁感应强度矢量 B 和磁场强度矢量 H; (2) 磁化电流的分布。

- 1、导线内 $B = \frac{\mu_0 Ir}{2\pi R^2}$, $H = \frac{Ir}{2\pi R^2}$;
- 2、真空中 $B = \frac{\mu_0 I}{2\pi r}$, $H = \frac{I}{2\pi r}$;
- 3、磁介质中 $H = \frac{I}{2\pi r}$, $B = \frac{\mu_r \mu_0 I}{2\pi r}$;
- 4、磁介质内部无磁化电流。在磁介质与导体的界面, $j_m = (\mu_r - 1)H = \frac{(\mu_r - 1)I}{2\pi r}$,方向沿轴向向上;在磁介质与真空的界面(分上下 两个面,方向不同), $j_m = (\mu_r - 1)H = \frac{(\mu_r - 1)I}{2\pi r}$,方向:上表面沿径向向外, 下表面沿径向向内。

装订线内

得分

- 三、(15 分)如图所示的一个平行板电容器,两极板间距为 d,极板面积为 S,带电量为 Q,中间充满相对介电常数为 ε_r 的 均匀各向同性线性电介质。忽略边缘效应,
- (1) 求电容器内部空间各点的 **D、P、E** 矢量和电介质表面上的极 化电荷密度;
- (2) 如果缓慢地把一个极板拉开,使两极板间距变为 2d。求电容器内部空间各点的 **D、P、E** 矢量和和电介质表面上的极化电荷密度,并求在此过程中外力做的功。

1、 $D = \frac{Q}{S}$ (方向垂直向下), $E = \frac{Q}{\varepsilon_r \varepsilon_0 S}$ (方向垂直向下), $P = \frac{(\varepsilon_r - 1)Q}{\varepsilon_r S}$ (方向垂直向下),上表面 $\sigma = -\frac{(\varepsilon_r - 1)Q}{\varepsilon_r S}$,下表面 $\sigma = \frac{(\varepsilon_r - 1)Q}{\varepsilon_r S}$;

2、极板之间任意处 $D = \frac{Q}{S}$ (方向垂直向下),介质内 $E = \frac{Q}{\varepsilon_r \varepsilon_0 S}$ (方向垂直向下), $P = \frac{(\varepsilon_r - 1)Q}{\varepsilon_r S}$ (方向垂直向下),介质上表面 $\sigma = -\frac{(\varepsilon_r - 1)Q}{\varepsilon_r S}$, 介质下表面 $\sigma = \frac{(\varepsilon_r - 1)Q}{\varepsilon_r S}$; 真空中 $E = \frac{Q}{\varepsilon_0 S}$ (方向垂直向下),P = 0;

根据能量守恒,电容器前后的能量差为 $D = \frac{Q^2 d}{2\varepsilon_0 S}$

四. (15分) 如图所示,一半径为 R、单位长度上绕有 n 匝载流线圈的无穷长螺线管,其通过的电流随时间作线性变化

$$\frac{dI}{dt} = k > 0$$
。(1) 求解管内、外的涡旋电场。(2)在螺线管某横

截面上放置一长度为 L 的直导线 MN, MN 到圆心 O 的距离为 h, 且 MN 中点与 O 点的连线垂直 MN。求直导线上的感应电动势。(3)求导线两端点 M、N 之间的电势差(即 U_M - U_N);(4)如果 M、N 之间无直导线连接,求 M、N 两点之间的电势差。

- 1、 $B=\mu_0 nI$,管内 $E=\mu_0 nkr/2$,方向沿逆时针方向;管外 $E=\mu_0 nkR^2/2r$,方向沿逆时针方向。
- 2、感应电动势ε= μ_0 nkLh/2,方向从 M 指向 N。
- 3、M、N 之间的电势差为 U_M-U_{N=} -μ₀nkLh/2;
- 4、无静电场, U_M-U_{N=}0

五、(15分)一个极板为圆盘状的电容器,其极板半径为r,极 板间距为 d, 初始带电量为 Q, 并与一个电阻 R 相连接。忽略电 容器的边缘效应,求:(1)t时刻电阻R上的传导电流和电容器 两极板间的位移电流:(2)电容器内部任意一点能流密度矢量的大小和 方向。

1、电容器的电容为 $C = \frac{\varepsilon_0 \pi r^2}{d}$, 电容器两端的电压为 $U = \frac{Q_0}{C} e^{-\frac{t}{RC}}$, 电阻上 的传导电流为 $I = \frac{Q_0}{RC} e^{-\frac{t}{RC}}$; 电容器上的电量为 $Q = Q_0 e^{-\frac{t}{RC}}$, 电场为 $E = \frac{Q_0}{\epsilon_0 S} e^{-\frac{t}{RC}}$, 位移电流密度 $j = \frac{Q_0}{RCS} e^{-\frac{t}{RC}}$, 位移电流为 $I = \frac{Q_0}{RC} e^{-\frac{t}{RC}}$ $2 \cdot H = j\rho/2 = \frac{Q_0}{2RCS} \rho e^{-\frac{t}{RC}}, \quad S = EH = \frac{Q_0}{2RCS} \rho e^{-\frac{t}{RC}} \frac{Q_0}{\varepsilon_0 S} \rho e^{-\frac{t}{RC}} = \frac{Q_0^2}{2\varepsilon_0 RCS^2} \rho e^{-\frac{2t}{RC}}, \quad \overrightarrow{JJ}$ 向沿径向向外。其中的 ρ ,代表沿径向到轴线的距离。

得分 \mid 六(10 分)有一个简谐电压源 $u = U_0 cos(\omega t)$,已知电源自身的

(1) 电路的复阻抗是(a+R)+j(b+X),电源的复电压为 $\tilde{U}=U_0e^{j(\omega t)}$, 复电流

$$\widetilde{I} = \frac{U_0 e^{j(\omega t)}}{(a+R)+j(b+X)} = \frac{U_0 e^{j(\omega t)}[(a+R)-j(b+X)]}{(a+R)^2+(b+X)^2} \,,$$

$$(a+R)-j(b+X) = \sqrt{(a+R)^2 + (b+X)^2} e^{j(-\varphi)}, \quad \sharp + \varphi = arctg \frac{(b+X)}{(a+R)}$$

所以:
$$i = \frac{U_0}{\sqrt{(a+R)^2 + (b+X)^2}} Cons(\omega t - \varphi)$$
, 其中 $\varphi = arctg \frac{(b+X)}{(a+R)}$

(2)
$$\overline{P} = \frac{U_0^2 R}{2[(a+R)^2 + (b+X)^2]}$$
, 为了获得最大功率,显然 b=-X,

则
$$\overline{P} = \frac{U_0^2 R}{2(a+R)^2}$$
; $\frac{\partial \overline{P}}{\partial R} = \frac{U_0^2}{2} \left[\frac{1}{(a+R)^2} - \frac{2R}{(a+R)^3} \right]$, 令其等于零,可以解的

a=R,所以R+jX=a-jb