Algorithm 1: The Metropolis-Hastings algorithm

Data: $Y \sim p(\vec{\theta}), \ \vec{\theta} = (\lambda_{1:n}, \beta)$

Result: generates $\vec{\theta}_k^{(1)}, ..., \vec{\theta}_k^{(s)} \sim \text{iid } p(\vec{\theta}|y)$

Initialization: $\alpha = 1.802, \gamma = 0.01, \delta = 1; \lambda_{1:n}^{(0)} = d_{1:n}/t_{1:n}; \tilde{\beta} = \beta^{(0)} = 2.459;$

for the number of chains $k \leftarrow 1$ **to** K **do**

for a chain $s \leftarrow 1$ to S do

1. Select two separate symmetric proposal distributions for $\lambda_{1:n}$ and β ;

$$\begin{split} \lambda_{1:n} \sim Gamma(\alpha + d_{1:n}, \tilde{\beta} + t_{1:n}) \\ \beta \sim Gamma(\gamma + n\alpha, \delta + \sum \lambda) \end{split}$$

$$\pi(\lambda,\beta) = \prod_{i=1}^{10} \left\{ \frac{\lambda_i^{\alpha+d_i-1} (\beta+t_i)^{\alpha+d_i}}{\Gamma(\alpha+d_i)} \exp\left[-(\beta+t_i)\lambda_i\right] \right\} \cdot \frac{(\sum \lambda+\delta)^{\gamma+10\alpha} \beta^{\gamma+10\alpha-1}}{\Gamma(\gamma+10\alpha)} \exp\left\{-(\sum \lambda+\delta)\beta\right\}$$

$$\begin{split} \frac{\pi(\lambda^{\star},\beta^{\star})}{\pi(\lambda,\beta)} &= \prod_{i=1}^{10} \left\{ (\frac{\lambda_{i}^{\star}}{\lambda_{i}})^{\alpha+d_{i}-1} (\frac{\beta^{\star}+t_{i}}{\beta+t_{i}})^{\alpha+d_{i}} \exp\left[-(\beta^{\star}+t_{i})\lambda_{i}^{\star} + (\beta+t_{i})\lambda_{i}\right] \right\} (\frac{\sum \lambda+\delta}{\sum \lambda^{\star}+\delta})^{\gamma+10\alpha} \\ &\cdot (\frac{\beta^{\star}}{\beta})^{\gamma+10\alpha-1} \cdot \exp\left\{-(\sum \lambda+\delta)\beta^{\star} + (\sum \lambda+\delta)\beta\right\} \end{split}$$

Let

$$q(\theta^\star|\theta^{(s)}) = g(\theta^\star) = \prod_{i=1}^{10} \left\{ \frac{\lambda_i^{\alpha+d_i-1} (\tilde{\beta} + t_i)^{\alpha+d_i}}{\Gamma(\alpha+d_i)} \exp\left[-(\tilde{\beta} + t_i)\lambda_i\right] \right\} \cdot \frac{(\sum \lambda + \delta)^{\gamma+10\alpha} \beta^{\gamma+10\alpha-1}}{\Gamma(\gamma+10\alpha)} \exp\left\{-(\sum \lambda + \delta)\beta\right\}$$

OR $g(\theta^*) = d\text{Normal}(\theta|\mu, \sigma^2) \text{ OR } g(\theta^*) = 1$;

$$r = \frac{\pi(\lambda^\star, \beta^\star)g(\lambda, \beta)}{\pi(\lambda, \beta)g(\lambda^\star, \beta^\star)} = \prod_{i=1}^{10} \left\{ (\frac{\beta^\star + t_i}{\beta + t_i})^{\alpha + d_i} \right\} \cdot \exp\left\{ (\beta - \tilde{\beta})\lambda + (\tilde{\beta} - \beta^\star)\lambda^\star \right\}$$

- 2. update $\lambda_{1:n}$;
- a) sample $\lambda_{1:n}^{\star} \sim Gamma(\alpha + d_{1:n}, \beta^{(s)} + t_{1:n});$
- b) compute $r(\lambda_{1:n}, \lambda_{1:n}^{\star}, \tilde{\beta}, \beta)$;
- c) set if the ratio r > 1 then

$$\left| \begin{array}{c} \lambda_{1:n}^{(s+1)} \longleftarrow \lambda_{1:n}^{\star} \text{ with probability } \min(1,r) \end{array} \right|$$

else

$$\ \ \ \ \ \ \ \ \lambda_{1:n}^{(s+1)} \longleftarrow \lambda_{1:n}^{(s)}$$
 with probability $\max(0,1-r)$

- 3. update β ;
- a) sample $\beta^* \sim Gamma(\gamma + n\alpha, \delta + \sum \lambda^*);$
- b) compute $r = (\lambda_{1:n}, \lambda_{1:n}^{\star}, \beta, \beta^{\star});$
- c) set **if** the ratio r > 1 **then**
- $\mid \ \beta^{(s+1)} \longleftarrow \beta^{\star} \text{ with probability } \min(1,r)$

else

$$\beta^{(s+1)} \leftarrow \beta^{(s)}$$
 with probability $\max(0, 1-r)$

generates a set of $\theta^{(s+1)}$ given $\theta^{(s)}$;

Distribution	Candidate	transition probabilit	Sampler			
		Initial values		Rate	Shape	Rate
Note	$\lambda_{1:n}$	$\ \ \Big \ \lambda_0 = (\tilde{\lambda}, 100\tilde{\lambda}, \tilde{\lambda}/100, \lambda_0)$	/	/	$d + \alpha$	$\beta^{\star} + t$
11000	β	$\beta_0 = (\tilde{\beta}, 100\tilde{\beta}, \tilde{\beta}/100, \beta_0)$	/	/	$\gamma + n\alpha$	$\delta + \sum \lambda^{\star}$
Gamma	$\lambda_{1:n}$	$\lambda_0 = (\tilde{\lambda}, 8\tilde{\lambda}, \tilde{\lambda}/8, \lambda_0)$	$d + \alpha$	$\beta_0 + t$	$d + \alpha$	$\beta^{\star} + t$
Gamma	β	$\beta_0 = (\tilde{\beta}, 2\tilde{\beta}, \tilde{\beta}/8, \tilde{\beta}/4)$	$\gamma + n\alpha$	$\delta + \sum \lambda$	$\gamma + n\alpha$	$\delta + \sum \lambda^{\star}$
			Rate		Rate	
Expo	$\lambda_{1:n}$	$ \big \qquad (\tilde{\lambda}, 10\tilde{\lambda}, \tilde{\lambda}/10, \lambda_0) $	λ_0		$ \left (d+\alpha)/(\beta^{\star}+t) \right $	
Ехро	β	$\big \qquad (\tilde{\beta}, 10\tilde{\beta}, \tilde{\beta}/10, \beta_0)$	eta_0		$(\gamma + n\alpha)/(\delta + \sum \lambda^{\star})$	
			mean sd		mean	sd
Normal	$\lambda_{1:n}$	$\left (\tilde{\lambda}, 10\tilde{\lambda}, \tilde{\lambda}/10, \lambda_0) \right.$	λ_0	1	$\frac{d+\alpha}{\beta^{\star}+t}$	1
T (OTTIO	β	$(\tilde{\beta}, 10\tilde{\beta}, \tilde{\beta}/10, \beta_0)$	β_0	1	$\frac{\gamma + n\alpha}{\delta + \sum \lambda^{\star}}$	1
			Range		Range	
Uniform	$\lambda_{1:n}$	$ \qquad (\tilde{\lambda}, 10\tilde{\lambda}, \tilde{\lambda}/10, \lambda_0) $	$(0,2\lambda_0)$		$(0,2\frac{d+\alpha}{\beta^*+t})$	
	β	$(\tilde{\beta}, 10\tilde{\beta}, \tilde{\beta}/10, \beta_0)$	(0,	$2\beta_0$)	(0, 2)	$2\frac{\gamma+nlpha}{\delta+\sum\lambda^{\star}}$

Table 1: The list of function setting

The initial setting

```
pump <- matrix(c(5, 94.320,1, 15.720,5, 62.880,14, 125.760,3, 5.240,
                  19, 31.440,1, 1.048,1, 1.048,4, 2.096,22, 10.480),2,10)
pump <-t(pump)</pre>
colnames(pump) <- c("Failures", "Times")</pre>
d <- pump[,1]</pre>
t <- pump[,2]
n <- length(d)
alpha<-1.802; gamma <- 0.01; delta<- 1 #def hyperparameters
beta <- beta0 <- gamma/delta #initialize lambda and beta
lambda <- lambda0 <- d/t; lambda.star <- rep(NA,n)</pre>
beta_true <- 2.459
lambda_true<- c(0.065757300, 0.136413079, 0.098165113, 0.121128692, 0.57794838, 0.60457447, 0.70749039
S <- 10000; # set.seed(121)
K <- 100
skeep < -seq(1,S,by=10); skeep 2 < -seq(1,S,by=20)
burnin \leftarrow 1:(S/2)
THETA_0 <- THETA_g <- THETA_n<-THETA_u <- THETA_e <- THETA_1<- matrix(NA,K,12)
par.names <- c("Beta", "Lambda1", "Lambda2", "Lambda3", "Lambda4", "Lambda5", "Lambda6", "Lambda7", "Lambda8",</pre>
colnames(THETA 0) <-colnames(THETA g) <-colnames(THETA e) <-colnames(THETA n) <-colnames(THETA u) <-colnames
```

The kernel setting

```
lambda_0 <- matrix(c(lambda_true,lambda_true*100,lambda_true/100,lambda0),10,4)
beta_0 <- c(beta_true,beta_true*100,beta_true/100,beta0)</pre>
```

```
lambda_g <- matrix(c(lambda_true,lambda_true*8,lambda_true/8,lambda0),10,4)
beta_g <- c(beta_true,beta_true*2,beta_true/8,beta_true/4)
lambda_e <- matrix(c(lambda_true,lambda_true*2,lambda_true*3/4,lambda0),10,4)  # matrix(c(lambda0/2,lambda_e <- c(beta_true,beta_true*2,beta_true*3/4,beta0)  # c(beta0,beta0,beta0,beta0)
lambda_n <- matrix(c(lambda_true,lambda_true*2,lambda_true/2,lambda0),10,4)
beta_n <- c(beta_true,beta_true*2,beta_true/2,beta0)
lambda_u <- matrix(c(lambda_true,lambda_true/2,lambda_true/8,lambda0),10,4)
beta_u <- c(beta_true,beta_true/2,beta_true/8,beta0)</pre>
```

Define Pi function

```
pi <- function(a,b){
d.lambda<- dgamma(a,(d+alpha),(b+t))
d.beta <-dgamma(b,(gamma+n*alpha),(delta+sum(a)))
return(prod(d.lambda)*d.beta)
}</pre>
```

Conduct Gibbs Algorithm

```
Gibbs_G <- function(lambda_g,beta_g,S){ #Gibbs Sampler
Theta<-matrix(NA,S,11) ; set.seed(121)
lambda <- lambda0; beta <- beta0
Theta.gibbs <- matrix(NA,ncol=(n+1),nrow=S) #Gibbs Sampelr variables
for(s in 1:S){
lambda<- rgamma(n,shape=(d+alpha),rate=(beta+t)) # sample lambda
beta <- rgamma(1,shape=(gamma+n*alpha),rate=(delta+sum(lambda))) # sample beta
Theta.gibbs[s,] <- c(beta,lambda) # store draws
}
return(Theta.gibbs)
}
Theta.gibbs<- Gibbs_G(lambda_g[,4],beta_g[4],10000)</pre>
```

Use g(.) in the notes

• One Chain

```
ratio<- function(lambda,lambda.star,beta,beta.star){
for(i in 1:n){
    lik <- ((beta.star+t[i])/(beta+t[i]))^(alpha+d[i])
    expo <- exp((beta-beta_0)*lambda+(beta_0-beta.star)*lambda.star)
    return(prod(lik)*expo)
}}
MH_0 <- function(lambda_0,beta_0,S){
Theta<-matrix(NA,S,12) ; acr <- acs<-0 ; set.seed(121)
    lambda <- lambda_0; beta <-beta_0
    for(s in 1:S) {
    lambda.star <- rgamma(n,(d+alpha),(beta+t)) # sample lambda
    r_lambda<-ratio(lambda,lambda.star,beta,beta)</pre>
```

```
if((runif(1))<r_lambda) { lambda<-lambda.star; acs<-acs+1
beta.star <- rgamma(1,(gamma+n*alpha),(delta+sum(lambda))) # sample beta
r_beta<-ratio(lambda,lambda,beta,beta.star)
if((runif(1))<r_beta) { beta<-beta.star ; acs<-acs+1}}
if(s%50==0) {acr <- acs/100; acs<-0}
Theta[s,]<-c(beta,lambda,acr)
}
return(Theta)
}</pre>
```

```
# ONE STEP version
ratio<- function(lambda,lambda.star,beta,beta.star){</pre>
for(i in 1:n){
lik <- ((beta.star+t[i])/(beta+t[i]))^(alpha+d[i])</pre>
expo <- exp((beta-beta_0)*lambda+(beta_0-beta.star)*lambda.star)</pre>
return(prod(lik)*expo)
}}
MH_0 <- function(lambda_0,beta_0,S){</pre>
Theta<-matrix(NA,S,12); acr <- acs<-0; \# set.seed(121)
lambda <- lambda_0; beta <-beta_0</pre>
for(s in 1:S)
{
lambda.star <- rgamma(n,(d+alpha),(beta+t)) # sample lambda</pre>
beta.star <- rgamma(1,(gamma+n*alpha),(delta+sum(lambda.star))) # sample beta
  r<-ratio(lambda,lambda.star,beta,beta.star)
  if((runif(1))<r) { beta<-beta.star; lambda<-lambda.star;acs<-acs+1 }</pre>
  if(s\%50==0) \{acr <- acs/50; acs<-0\}
  Theta[s,]<-c(beta,lambda,acr)</pre>
}
return(Theta)
```


	mean	2.5%	50%	97.5%
Beta	2.468	1.335	2.401	4.117
Lambda1	0.0702	0.0273	0.0668	0.1296
${f Lambda2}$	0.1543	0.0298	0.137	0.3804
${f Lambda3}$	0.1047	0.0413	0.0994	0.1966
${f Lambda4}$	0.1226	0.0705	0.1201	0.1904
${f Lambda5}$	0.6185	0.1916	0.5756	1.31
Lambda6	0.612	0.3755	0.601	0.9085
Lambda7	0.8238	0.1467	0.7012	2.138
${f Lambda8}$	0.8229	0.1516	0.7146	2.076
${f Lambda9}$	1.305	0.4396	1.214	2.725
Lambda10	1.837	1.151	1.807	2.689
Acceptance Rate	0.9871	0.96	0.99	1

```
S <- 1000; K <- 100
skeep<-seq(1,S,by=10); skeep2<-seq(1,S,by=20); burnin <- 1:(S/2)
ptm <- proc.time()
for(k in 1:K) { # Run K Number of chains by Hint function g(.)
THETA_0[k,] <- MH_0(lambda_0[,4],beta_0[4],S)[S,]
}
ptm_0 <- proc.time() - ptm</pre>
```


Page 8

The kenel of Gamma version

```
MH_G <- function(lambda_g,beta_g,S){ # Gamma version</pre>
Theta<-matrix(NA,S,12); acr <- acs<-0; set.seed(121)
lambda <- lambda_g; beta <-beta_g</pre>
g <- function(a,b){</pre>
d.lambda<- dgamma(a,(d+alpha),(beta_g+t))</pre>
d.beta <-dgamma(b,(gamma+n*alpha),(delta+sum(a)))</pre>
return(prod(d.lambda)*d.beta)
}
for(s in 1:S) {
lambda.star <- rgamma(n,(d+alpha),(beta+t)) # sample lambda</pre>
r_lambda <- pi(lambda.star,beta)/pi(lambda,beta)*g(lambda,beta)/g(lambda.star,beta)
  beta.star <- rgamma(1,(gamma+n*alpha),(delta+sum(lambda))) # sample beta
r_beta<- pi(lambda,beta.star)/pi(lambda,beta)*g(lambda,beta)/g(lambda,beta.star)
  if((runif(1)) < g(lambda, beta.star) * min(r_beta,1)) { beta < -beta.star ; acs < -acs + 1}}</pre>
    if(s\%50==0) {acr <- acs/100; acs<-0}
 Theta[s,]<-c(beta,lambda,acr)</pre>
return(Theta)
```


	mean	2.5%	50%	97.5%
Beta	3.129	1.426	2.832	5.755
${f Lambda1}$	0.0673	0.0307	0.0633	0.1213
${f Lambda2}$	0.1279	0.035	0.1105	0.3302
${f Lambda3}$	0.0997	0.0462	0.0974	0.178
${f Lambda4}$	0.1218	0.0743	0.1206	0.1778
${f Lambda5}$	0.5469	0.1958	0.4812	1.159
Lambda6	0.601	0.4069	0.5991	0.8472
Lambda7	0.6569	0.1268	0.5251	1.876
Lambda8	0.6484	0.1329	0.5152	1.789
Lambda9	1.111	0.4908	0.9713	2.388
Lambda10	1.727	1.23	1.685	2.576
Acceptance Rate	0.5803	0	0.7	0.87

```
ptm <- proc.time()
for(k in 1:K) { # Run K Number of chains by drawing from Gamma
THETA_g[k,] <- MH_G(lambda_g[,4],beta_g[4],S)[S,]
}
ptm_g <- proc.time() - ptm</pre>
```


Page 13

The kenel of Uniform version

```
MH_U <- function(lambda_u,beta_u,S){ # Uniform version</pre>
Theta<-matrix(NA,S,12); acr <- acs<-0; set.seed(121)
lambda <- lambda_u; beta <-beta_u</pre>
g <- function(a,b){</pre>
d.lambda<- dunif(a,0,2*(d+alpha)/(beta_u+t)) #(d+alpha)/(beta0+t),beta0
d.beta <-dunif(b, 0, 2*(gamma+n*alpha)/(delta+sum(a))) #(gamma+n*alpha)/(delta+sum(lambda)),beta0
return(prod(d.lambda)*d.beta)
}
for(s in 1:S) {
lambda.star <- runif(n,0,2*(d+alpha)/(beta+t)) # sample lambda</pre>
r_lambda <- pi(lambda.star,beta)/pi(lambda,beta)*g(lambda,beta)/g(lambda.star,beta)
  if((runif(1)) < g(lambda.star,beta) *min(r_lambda,1)) { lambda < -lambda.star; acs < -acs + 1 }</pre>
beta.star <- runif(1,0,2*(gamma+n*alpha)/(delta+sum(lambda))) # sample beta
r_beta<- pi(lambda,beta.star)/pi(lambda,beta)*g(lambda,beta)/g(lambda,beta.star)
  if((runif(1))<g(lambda,beta.star)*min(r_beta,1)) { beta<-beta.star ; acs<-acs+1}</pre>
  acr \leftarrow acs/S/2
  Theta[s,]<-c(beta,lambda,acr)</pre>
}
return(Theta)
}
```


Page 15

Page 16

	mean	2.5%	50%	97.5%
Beta	2.093	1.313	2.074	3.309
Lambda1	0.053	0.053	0.053	0.053
${f Lambda2}$	0.0636	0.0636	0.0636	0.0636
${f Lambda3}$	0.0795	0.0795	0.0795	0.0795
${f Lambda4}$	0.1113	0.1113	0.1113	0.1113
${f Lambda5}$	0.5725	0.5725	0.5725	0.5725
${f Lambda6}$	0.6043	0.6043	0.6043	0.6043
${f Lambda7}$	0.9542	0.9542	0.9542	0.9542
Lambda8	0.9542	0.9542	0.9542	0.9542
${f Lambda9}$	1.908	1.908	1.908	1.908
${f Lambda10}$	2.099	2.099	2.099	2.099
Acceptance Rate	0.006	0.0043	0.006	0.0076

```
ptm <- proc.time()
for(k in 1:K) { # Run K Number of chains by drawing from Uniform
THETA_u[k,] <- MH_U(lambda_u[,4],beta_u[4],S)[S,]
}
ptm_u <- proc.time() - ptm</pre>
```


Page 18

The kenel of Exponential version

```
MH_E <- function(lambda_e,beta_e,S){ # Expo version</pre>
Theta<-matrix(NA,S,12); acr <- acs<-0; set.seed(121)
lambda <- lambda_e; beta <-beta_e</pre>
g <- function(a,b){</pre>
d.lambda<- dexp(a,rate=(b+t)/(d+alpha)) # 1/lambda_true
d.beta <-dexp(b,rate=(delta+sum(lambda_e))/(gamma+n*alpha))</pre>
                                                            1/b
return(prod(d.lambda)*d.beta)
}
for(s in 1:S) {
lambda.star <- rexp(n,(beta+t)/(d+alpha)) # sample lambda & lambda.star<=1
beta.star <- rexp(1,(delta+sum(lambda))/(gamma+n*alpha)) # sample beta
r<- pi(lambda.star,beta.star)/pi(lambda,beta)*g(lambda,beta)/g(lambda.star,beta.star)
 if(s\%50==0) \{acr <- acs/100; acs<-0\}
 Theta[s,]<-c(beta,lambda,acr)</pre>
}
return(Theta)
}
```


	mean	2.5%	50%	97.5%
Beta	3.438	2.596	3.783	5.391
${f Lambda1}$	0.0636	0.0327	0.0698	0.0911
${f Lambda2}$	0.1288	0.0572	0.1332	0.2491
${f Lambda3}$	0.0539	0.0313	0.0402	0.0799
${f Lambda4}$	0.1207	0.0546	0.1155	0.1474
${f Lambda5}$	0.6293	0.549	0.5783	0.9322
Lambda6	0.4138	0.3223	0.397	0.5928
Lambda7	0.3325	0.2703	0.2976	0.609
Lambda8	0.3775	0.1321	0.5558	0.6171
Lambda9	0.9792	0.261	1.061	1.09
Lambda10	1.677	1.207	1.74	1.911
Acceptance Rate	0.0004	0	0	0.01

```
ptm <- proc.time()
for(k in 1:K) { # Run K Number of chains by drawing from Uniform
THETA_e[k,] <- MH_E(lambda_e[,4],beta_e[4],S)[S,]
}
ptm_e <- proc.time() - ptm</pre>
```


Page 23

The Normal version of g(.)

The version of g(.) = 1

```
#q b <- function(x) \{dbeta(x, beta0, 5)\}
MH_1 <- function(S){</pre>
Theta<-matrix(NA,S,12); acr <- acs<-0; \# set.seed(121)
# g <- function(lambda, beta) {1}
for(s in 1:S) {
lambda.star <- rgamma(n,shape=(d+alpha),rate=(beta+t)) # sample lambda
r_lambda <- pi(lambda.star,beta)/pi(lambda,beta) # *g(lambda,beta)/g(lambda.star,beta)
  if((runif(1))<r_lambda) { lambda<-lambda.star; acs<-acs+1 }</pre>
beta.star <- rgamma(1,shape=(gamma+n*alpha),rate=(delta+sum(lambda))) # sample beta
r_beta<- pi(lambda,beta.star)/pi(lambda,beta) # *g(lambda,beta)/g(lambda,beta.star)
  if((runif(1))<r_beta) { beta<-beta.star ; acs<-acs+1}</pre>
  acr <- acs/S/2
  Theta[s,]<-c(beta,lambda,acr)</pre>
}
return(Theta)
}
```


2.5%50%97.5%mean 2.835 Beta 1.768 2.771 4.357Lambda1 0.06540.03280.06340.1044Lambda2 0.12170.03580.11250.2571Lambda3 0.09650.04970.09480.1545Lambda4 0.11920.08240.1180.1602Lambda5 0.99360.53910.24190.5168Lambda6 0.59090.4210.5820.7915

	mean	2.5%	50%	97.5%
Lambda7	0.6172	0.1665	0.5539	1.431
Lambda8	0.6061	0.1757	0.5565	1.389
Lambda9	1.09	0.4597	1.034	1.929
Lambda10	1.749	1.261	1.744	2.29

```
ptm <- proc.time()
for(k in 1:K) { # Run K Number of chains by drawing from Uniform
THETA_1[k,] <- MH_1(S)[S,]
}
ptm_1 <- proc.time() - ptm</pre>
```


Comparison histogram

Comparison table

```
library(HDInterval)

g0 <- c(mean(THETA_0[,1]),quantile(THETA_0[,1],c(0.025,0.5,0.975)),hdi(THETA_0[,1], credMass=0.95),mean

gg <- c(mean(THETA_g[,1]),quantile(THETA_g[,1],c(0.025,0.5,0.975)),hdi(THETA_g[,1], credMass=0.95),mean

ge <- c(mean(THETA_e[,1]),quantile(THETA_e[,1],c(0.025,0.5,0.975)),hdi(THETA_e[,1], credMass=0.95),mean

# gn <- c(mean(THETA_n[,1]),quantile(THETA_n[,1],c(0.025,0.5,0.975)),hdi(THETA_n[,1], credMass=0.95),mean

gu <- c(mean(THETA_u[,1]),quantile(THETA_u[,1],c(0.025,0.5,0.975)),hdi(THETA_u[,1], credMass=0.95),mean

g1 <- c(mean(THETA_1[,1]),quantile(THETA_1[,1],c(0.025,0.5,0.975)),hdi(THETA_1[,1], credMass=0.95),mean

pumps.par <- rbind(g0,gg,ge,gu,g1) # gn,

colnames(pumps.par) <- c('mean','2.5%','median','97.5%','95% HPD U', '95% HPD L','Acceptance Rate','runckableExtra::kable(round(pumps.par,4))
```

	mean	2.5%	median	97.5%	95% HPD U	$95\%~\mathrm{HPD~L}$	Acceptance Rate	running time
g0	2.453	1.326	2.375	4.121	1.168	3.872	0.9872	58.59
gg	3.061	1.403	2.770	5.493	1.437	5.493	0.5999	142.94
ge	3.031	1.647	2.596	5.391	1.798	5.441	0.0009	78.46
gu	2.062	1.257	2.007	3.309	1.180	2.788	0.0041	136.54
$\overline{g1}$	2.829	1.735	2.770	4.341	1.556	4.104	0.2494	85.31