

Octo

Taking the boundary condition. if (temp == header | temp2 == header). if (temp == header). Montaking the condition for temp to point to header which is a sounter which is is a squal to NULL. We are istoring header into the NULL pointer sw = header; and now we will take the predicessor next of the second node and store in header.

and also take the original header istored in sw
and now store it in the predecessor next of the second node. sto un header timbe swapping these two pointers. Now swapping (temp > prw, temp2 > prev).
and swapping (temp > next, temp2 > next). Basically, we have broken the to existing links and swapped the nodes creating new links.

1 2 3 4 5 6
Taking value of k as \$3.
New we are breaking links by flist storing address of 2 in the prevole pointer of 6. And prevof 6 into address of 2.
Doing the same with next of 2 and next of 5 and prev of 2 and prev of 5.
He are have pointing the next.
1 5 3 4 2 6 output.
5 - 1 - 1 - 1 5 - 1 - 1 6 1 1 1 1 1 1 1 1
SERVICE AND STREET OF THE SERVICE STREET OF

69

1.

() = ()

Recursive function to sum elements of an array: int sum (inta[], int n). if (n = = 0) // boundary condition.

return 0;

return a(n-1) + Sum(a,n-1);

3. n - size of the array . Taking array $\alpha = \{1, 2, 3, 4, 5\}$. $M=1 \rightarrow \alpha[1-1] + 0 \rightarrow \alpha[0] + 0=1$ sum (a) $m=2 \to a[2-1]+1=3$ sum (1) $n=3 \rightarrow \alpha[3-1] + 3 = \alpha[2] + 3 = 6$ Sum (2) $m = 4 \rightarrow \alpha[4-1) + 6 = \alpha[3] + 6 = 10$ sum(3) n=5- a[5-1]+10= a[4]+10=15 sum (4) now |sum = 15)

03. Array of untegers
12,14,9,18,120,30,40,35,60. Insertion sort will be kest suited because the array is almost sorted and only. 9, 120 and 35 are in the wrong position. Algorithm: for (int i=1; j; i<n; i++) T tmp = data[i];
for (j=i; j>0; & 2; tmp < data[j-1]i-) data[j] - data[j-1];

data[j] = trnp; Also, In average case bubble wort makes approximate-ly twice as many comparisons and same number of moves as insertion wort, as many comparisons as selection sort and n times more than selections ort.

Insertion sort is fast among these two sorting algori-

	Comparison of runline of random numbers.
	Insertion wort > .438 Scholion wort > .818 Bubble wort -> 17.700.
	array = [12, 14, 9, 18, 120, 30, 40, 35, 603.
j=1 j=1	[12 14 9 18 120 30 40 35 60] tmp: 14. 14 isnot less than 12
1-2	no swakking.
j=2	trub=9 9 is less than 14
	trip= 9 9 is less than 14 swapping.
jejes	12 14 18 120 30 40 35 60
	tmb = 9 9 is less than 12. swapping. [12 14 18 120 30 40 35 60.]
	12/12/14/18/120/30/40/35/60.) no swapping.
	19/12/14/18/120/30/40/35/60
	[9]12]14]18]120 30]40]35]60
1=3.	temp = 18. 18 ilos than is not less Than 14.
	no swapping.

[9]12|14|18|30|40|40|120|60] [9]12|14|18|30|35|40|120|120| [9]12|14|18|30|35|40|120|120|

Q4 (i) (4,5,8,1) (1,5,8,4) (1,4,8,5) (1,4,5,8)

-> delection wort is used here because in intermediate configuration, smallest element is exelected and exchanged with the element in 1st position, then the smallest value among the remaining elements is found and put in 2nd position.

Algo:

for (int i=0; j, least; i<n-1; i++)

for (j=i+1, least=i; j<m; j++)

if (datati] <data[least)

least-j;

swap (data [least], data[i]);

4 5 8 1 1 i=0 j=1. least=0. false (5<4) least=1. j++. => j=2
false (8<5) least=1. j++ => j=3.
true (1<5) least=3 j++ > j=4. (j (n) do wut from inner look. then swap (data[3], data[0]). 1 5 18 14. i=1 j=2. least = 1. false (8<5) least = 1 j++; j=3. true (4<5) least = 3 j++, j=4. (j<n) out from inner doop. Then swap (data [3], data [1]) 1141815. i = 2 j=3 [east = 2. true. (5<8). least = 3. . swap (data [3], data 2] 114518

i=3 false condition i<n-1; i<2 · Sorted array [1]475/8.] (°1°) (4,5,8,1) (4,5,18) (4,1,5,8) (1,4,5,8) - Rubble wort is used because in bubble wort, the array is examed from top to bottom up and two adjacent elements are interchanged if they found to be out of order with respect to the each other. first data[n-1] and data[n-2] are compared and swapped if they are out of order, next data[n-2] and data [n-3] are compared and their order is changed if necessary and so on upto data[1] and datalo]. algorithms for(int i =0; ixn-1; 9++) for (unt j = og n-1, j z i, -- j) if [data[j] < data[j-1])
swap (data[j], ·data[j-1])

3 Array: - {4,5,8,13 swap (data[3] data[2] 120 :j=3. (148) true

i = 0 j = 2 (KS) true swap (data[2], data[i) i=0 j=1 (1<4) true swap (data[1], data[9]