Aeroelastic Tailoring Study of an N+2 Low-boom Supersonic Commercial Transport Aircraft

Prepared For:

AIAA Aviation 2015

AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference June 22-26, Dallas, Texas

Prepared By:

Chan-gi Pak, Ph.D.

Structural Dynamics Group, Aerostructures Branch (Code RS)
NASA Armstrong Flight Research Center

Overview

- ☐ Supersonic Commercial Transport Aircraft Design
- ☐ Game Change Approach in Aircraft Design
- ☐ Multidisciplinary Design Optimization tool
- ☐ Multidisciplinary Analysis of the Baseline Configuration
 - Structural and Aerodynamic Models
 - Modal Analyses
 - Flutter Analyses
 - Trim Analyses
 - Landing and Ground Control Loads
 - Buckling and Strength Analyses
- ☐ First Optimization Run
- Second Optimization Run
- ☐ Third Optimization Run
- Conclusions
- ☐ Future Studies

Structural Dynamics Group

Supersonic Commercial Transport Aircraft Design

- ☐ Major Issues
 - Safety

> Light weight airframe can cause strength, buckling, aeroelastic, and aeroservoelastic problems.

- Sonic boom
 - > Supersonic flight of "commercial transport" aircraft allowed only over the ocean.

Lockheed Martin

- > Perceived Loudness in decibels
 - ✓ NASA's N+2 goal: 85 PLdB
 - ✓ Concorde: 104 PLdB
 - ✓ High Speed Civil Transport (HSCT): 99 PLdB
- Fuel efficiency
 - ➤ Light weight airframe
 - > Reduced drag
- ☐ Developing N+2 Low-boom Supersonic Commercial Transport (LSCT) aircraft
 - Boeing
 - **❖** Lockheed Martin: 79 PLdB
 - Gulf Stream
 - ❖ Aerion with "Airbus"

Boeing

Concorde

Aerion

HSCT

Game Change Approach in Aircraft Design

Problem Statement

Design innovations are needed to further down the weight of an aircraft which current design technologies can take care of.

Long Term Objective

- Use aeroelastic tailoring theory and active flexible motion control technique to satisfy the overall strain, aeroelastic, and aeroservoelastic instability requirements within given flight envelopes
- ☐ Use curvilinear sparib concept as well as composite ply angles for aeroelastic tailoring

Approach

- ☐ Simultaneously update structural as well as control design variables during early design phase
 - ❖ Perform topology optimization with curvilinear sparibs
 - ❖ Use aeroelastic tailoring up to V_L
 - ❖ Use aeroservoelastic tailoring between V_L and 1.15 V_L

Current Study

- ☐ Optimize baseline aircraft model
 - Use Lockheed Martin's configuration
 - Use aeroelastic tailoring up to 1.15 V_L

Multidisciplinary Design Optimization tool

Structural Dynamics Group

Chan-gi Pak-5

Multidisciplinary Analysis of the Baseline Configuration

Structural and Aerodynamic Models

- MSC/NASTRAN structural model
 - Total number of grids: 55,635

- ☐ ZAERO unsteady aerodynamic model
 - ❖ 5,060 surface elements
 - Six Mach numbers: 0.66, 0.89, 1.41, 1.80, 2.00, and 2.30
 - Sixteen reduced frequencies: 0., 0.005, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.65, 0.80, 1.0

Modal Analyses of the Baseline Configuration

- Based on six configurations
 - **❖** Gear up
 - > DTOW(Design Take Off Weight), FFEP(Full Fuel Empty Payload), M2W(Mach 2 Weight), & ZFW(Zero Fuel Weight)
 - ✓ DTOW=FFFP (Full Fuel Full Payload)
 - ✓ ZFW=EFFP (Empty Fuel Full Payload)
 - Gear down
 - > DTOW(or FFFP) and DLW(Design Landing Weight)

Mode		N	atural Fre				
Mode Number		Gea	r-up		Gear-	down	Notes
Number	DTOW	FFEP	M2W	ZFW	DTOW	DLW	
7	2.049	2.055	2.071	2.266	2.048	2.158	Aft fuselage torsion
8	2.235	2.262	2.277	2.554	2.238	2.424	First symmetric fuselage bending
9	2.498	2.509	2.539	2.993	2.503	2.714	First symmetric wing bending
10	2.754	2.769	2.935	3.415	2.752	3.265	First anti-symmetric wing bending
11	3.060	3.069	3.115	3.731	3.057	3.403	Symmetric tail bending
12	3.562	3.608	3.689	4.044	3.574	3.945	Forward fuselage lateral bending
13	4.440	4.449	4.511	4.790	4.429	4.602	First anti-symmetric tail bending
14	4.456	4.537	4.555	5.532	4.437	5.142	Second symmetric wing bending
15	4.818	4.842	5.146	5.832	4.809	5.542	Second anti-symmetric wing bending
16	5.449	5.465	5.550	6.158	5.444	5.994	Symmetric aft inner wing bending

Flexible Mode Shapes (gear up: DTOW)

1st Mode: 2.049 Hz

2nd Mode: 2.235 Hz

3rd Mode: 2.498 Hz

5th Mode: 3.060 Hz

6th Mode: 3.562 Hz

4th Mode: 2.754 Hz Chan-gi Pak-9

Flutter Analyses of the Baseline Configuration

Load

Trim Analyses of the Baseline Configuration

☐ Trim flight conditions

Case ID	Maneuver	Load Factor	Mach Number	Weight	Landing Gear	Altitude	Trim Variables
100	Pull up	2.5g	0.66	DTOW	Up	SL	BF(R=L)
200	Push over	-1g	0.66	DTOW	Up	SL	BF(R=L)
300	Pull up	2.5g	0.48	DTOW	Up	SL	BF(R=L)
400	Pull up	2.5g	2.00	M2W	Up	49,770ft	BF=TEF(R=L)
500	Push over	-1g	2.00	M2W	Up	49,770ft	BF(R=L)
600	Pull up	2.5g	1.41	DTOW	Up	49,770ft	BF=TEF=AIL1=AIL2(R=L)
700	Pull up	2.5g	0.66	ZFW	Up	SL	BF(R=L)
800	Push over	-1g	0.66	ZFW	Up	SL	BF(R=L)
900	Pull up	2.5g	2.00	ZFW	Up	49,770ft	BF=TEF(R=L)
1000	Push over	-1g	2.00	ZFW	Up	49,770ft	BF(R=L)
1100	Steady roll	0g	0.48	DTOW	Up	SL	Load Case 2100+2300
1200	Abrupt roll	0g	0.48	DTOW	Up	SL	Load Case 2200+2300
1300	Steady roll	1.67g	0.48	DTOW	Up	SL	Load Case 2100+2400
1400	Abrupt roll	1.67g	0.48	DTOW	Up	SL	Load Case 2200+2400
1500	Landing	1g	0.3092	DTOW	Down	SL	BF(R=L)
1600	Cruise	1g	1.80	DTOW	Up	55,000ft	BF=TEF(R=L)
1700	Gust Loads	2.7g	0.89	ZFW	Up	20,000ft	BF=TEF(R=L) BF(R=L)
1800	Landing	1g	0.3092	DLW	Down	SL	BF(R=L)
2100	Steady roll	0g	0.48	DTOW	Up	SL	AIL1=AIL2(R=-L) Aileron #2 (L)
2200	Abrupt roll	0g	0.48	DTOW	Up	SL	AIL1=AIL2(R=-L)
2300	Pull up	0g	0.48	DTOW	Up	SL	BF(R=L)
2400	Pull up	1.67g	0.48	DTOW	Up	SL	BF(R=L)

Aileron #2 (R)

Aileron #1 (R)

Trim Analyses of the Baseline Configuration (continue)

☐ Trim results

In general trim angles are larger than NASTRAN results.

Trim Analysis										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Load Case	100	200	300	400	500	600	700	800	900
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Trim Analysis					Symmetric	:			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Nx (G)	-0.007	-0.003	-0.005	0.001	0.002	-0.004	-0.016	-0.006	0.003
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		2.5	-1.0	2.5		-1.0	2.5	2.5	-1.0	2.5
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	` ` ` `	None	None				None		None	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$										None
Body Flap (°) 2.01 -6.07 6.12 -5.25 5.42 -25.68 -8.01 -1.59 -12.9. Trailing-Edge Flap (°)	Qc/2V (rad)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Trailing-Edge Flap (°) -5.25 -25.68 -12.9 Aileron #1 (°) -25.68 -25.68 -25.68 Aileron #2 (°) -25.68 -25.68 -25.68 Mach Number 0.66 0.66 0.48 2.00 2.00 1.41 0.66 0.66 2.00 Altitude (ft) SL SL SL 49770 49770 SL SL 49770 Weight Configuration DTOW DTOW DTOW M2W M2W DTOW ZFW ZFW <td>α (°)</td> <td>7.75</td> <td>-2.50</td> <td>14.37</td> <td>8.32</td> <td>-2.81</td> <td>16.90</td> <td>4.10</td> <td>-1.04</td> <td>5.07</td>	α (°)	7.75	-2.50	14.37	8.32	-2.81	16.90	4.10	-1.04	5.07
Aileron #1 (°) Aileron #2 (°) -25.68 -25.68 Mach Number 0.66 0.66 0.48 2.00 2.00 1.41 0.66 0.66 2.00 Altitude (ft) SL SL SL 49770 49770 49770 SL SL 4977(Weight Configuration DTOW DTOW DTOW M2W M2W DTOW ZFW	Body Flap (°)	2.01	-6.07	6.12	-5.25	5.42	-25.68	-8.01	-1.59	-12.92
Aileron #2 (°) Book Company	Trailing-Edge Flap (°)				-5.25		-25.68			-12.92
Mach Number 0.66 0.66 0.48 2.00 2.00 1.41 0.66 0.66 2.00 Altitude (ft) SL SL SL 49770 49770 49770 SL SL 49770 Weight Configuration DTOW DTOW DTOW M2W M2W DTOW ZFW Z	Aileron #1 (°)						-25.68			
Mach Number 0.66 0.66 0.48 2.00 2.00 1.41 0.66 0.66 2.00 Altitude (ft) SL SL SL SL 49770 49770 49770 SL SL 49770 Weight Configuration DTOW DTOW DTOW M2W M2W DTOW ZFW ZF	Aileron #2 (°)						-25.68			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.66	0.66	0.48	2.00	2.00	1.41	0.66	0.66	2.00
Gear Configuration Up Up <td>Altitude (ft)</td> <td>SL</td> <td>SL</td> <td>SL</td> <td>49770</td> <td>49770</td> <td>49770</td> <td>SL</td> <td>SL</td> <td>49770</td>	Altitude (ft)	SL	SL	SL	49770	49770	49770	SL	SL	49770
Load Case 1000 1100 1200 1300 1400 1500 1600 1700 1800 Trim Analysis Sym. Asymmetric (sym. + Anti-sym.) Symmetric Nx (G) 0.004 -0.002 -0.004 -0.004 -0.002 0.002 -0.002 -0.002 Nz (G) -1.0 0.0 0.0 1.67 1.67 1.0 1.0 2.7 1.0 Pdot (rad/s²/g) None 0.0 0.0014 0.0 0.0014 None None None Qdot (rad/s²/g) 0.0 <t< td=""><td>Weight Configuration</td><td>DTOW</td><td>DTOW</td><td>DTOW</td><td>M2W</td><td>M2W</td><td>DTOW</td><td>ZFW</td><td>ZFW</td><td>ZFW</td></t<>	Weight Configuration	DTOW	DTOW	DTOW	M2W	M2W	DTOW	ZFW	ZFW	ZFW
Trim Analysis Sym. Asymmetric (sym. + Anti-sym.) Symmetric Nx (G) 0.004 -0.002 -0.002 -0.004 -0.002 0.002 -0.022 -0.00 Nz (G) -1.0 0.0 0.0 1.67 1.67 1.0 1.0 2.7 1.0 Pdot (rad/s²/g) None 0.0 0.0014 0.0 0.0014 None None None None Qdot (rad/s²/g) 0.0	Gear Configuration	Up	Up	Up	Up	Up	Up	Up	Up	Up
Nx (G) 0.004 -0.002 -0.002 -0.004 -0.004 -0.002 0.002 -0.022 -0.002 Nz (G) -1.0 0.0 0.0 1.67 1.67 1.0 1.0 2.7 1.0 Pdot (rad/s²/g) None 0.0 0.0014 0.0 0.0014 None None None None Qdot (rad/s²/g) 0.0 <th>Load Case</th> <th>1000</th> <th>1100</th> <th>1200</th> <th>1300</th> <th>1400</th> <th>1500</th> <th>1600</th> <th>1700</th> <th>1800</th>	Load Case	1000	1100	1200	1300	1400	1500	1600	1700	1800
Nx (G) 0.004 -0.002 -0.002 -0.004 -0.004 -0.002 0.002 -0.022 -0.002 Nz (G) -1.0 0.0 0.0 1.67 1.67 1.0 1.0 2.7 1.0 Pdot (rad/s²/g) None 0.0 0.0014 0.0 0.0014 None None None None Qdot (rad/s²/g) 0.0 <td>Trim Analysis</td> <td>Sym.</td> <td>Asym</td> <td>metric (sy</td> <td>m. + Anti-</td> <td>sym.)</td> <td></td> <td>Symr</td> <td>netric</td> <td>-</td>	Trim Analysis	Sym.	Asym	metric (sy	m. + Anti-	sym.)		Symr	netric	-
Pdot (rad/s²/g) None 0.0 0.0014 0.0 0.0014 None None None None Qdot (rad/s²/g) 0.0	Nx (G)						-0.002	0.002	-0.022	-0.00
Qdot (rad/s²/g) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 None O.0 0.0 <td>Nz (G)</td> <td>-1.0</td> <td>0.0</td> <td>0.0</td> <td>1.67</td> <td>1.67</td> <td>1.0</td> <td>1.0</td> <td>2.7</td> <td>1.0</td>	Nz (G)	-1.0	0.0	0.0	1.67	1.67	1.0	1.0	2.7	1.0
Pb/2V (rad) None 0.0410 0.0 0.0410 0.0 None None None None Qc/2V (rad) 0.0 0.	Pdot (rad/s ² /g)	None	0.0	0.0014	0.0	0.0014	None	None	None	None
Qc/2V (rad) 0.0 <t< td=""><td>Qdot (rad/s²/g)</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td><td>0.0</td></t<>	Qdot (rad/s ² /g)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
α (°) -1.44 0.40 0.40 9.74 9.74 13.91 6.02 4.95 9.07 Body Flap (°) 11.89 -2.86 -2.86 3.14 3.14 8.00 -9.87 -13.20 22.52 Trailing-Edge Flap (°) 19.07 48.63 19.07 48.63 -9.87	Pb/2V (rad)	None	0.0410	0.0	0.0410	0.0	None	None	None	None
Body Flap (°) 11.89 -2.86 -2.86 3.14 3.14 8.00 -9.87 -13.20 22.52 Trailing-Edge Flap (°) 19.07 48.63 19.07 48.63 -9.87 -9.	Qc/2V (rad)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Trailing-Edge Flap (°) 19.07 48.63 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07 19.07	α (°)	-1.44	0.40	0.40	9.74	9.74	13.91	6.02	4.95	9.07
Aileron #1 (°) 19.07 48.63 19.07	Body Flap (°)	11.89	-2.86	-2.86	3.14	3.14	8.00	-9.87	-13.20	22.52
Aileron #2 (°) 19.07 48.63 19.07 48.63 0.00 19.07 48.63 19.07 48.63 19.07 48.63 19.07 48.63 19.07 48.63 19.07 48.63 19.07 48.63 19.07 48.63 19.07 48.63 19.07 48.63 19.07 48.63 19.07	Trailing-Edge Flap (°)							-9.87		
Mach Number 2.00 0.48 0.48 0.48 0.48 0.3092 1.80 0.89 0.3092 Altitude (ft) 49770 SL SL SL SL SL 55000 20000 SL Weight Configuration ZFW DTOW D			19.07	48.63	19.07	48.63				
Mach Number 2.00 0.48 0.48 0.48 0.48 0.3092 1.80 0.89 0.3092 Altitude (ft) 49770 SL SL SL SL SL 55000 20000 SL Weight Configuration ZFW DTOW D	Aileron #2 (°)		19.07	48.63	19.07	48.63				
Altitude (ft) 49770 SL SL SL SL SL SL 55000 20000 SL Weight Configuration ZFW DTOW DTOW DTOW DTOW DTOW DTOW DTOW ZFW DLW		2.00					0.3092	1.80	0.89	0.309
Weight Configuration ZFW DTOW DTOW DTOW DTOW DTOW DTOW ZFW DLW										
	. ,									
Gear Configuration Up Up Up Up Down Up Up Down	Gear Configuration	Up	Up	Up	Up	Up	Down	Up	Up	Dowi

Structural Dynamics Group

Nasa	•		Ground Cor	ntrol Loads	of the	Load Cases
Lane	Baseline ding loads	Con	figuration	Ground Contr	ol Loads _	Static Condition
🗖 Grou	und control lo	ads				
□ Eme	ergency landin	ig load:	s (applied to thre	ee engine structu	res)	3-point
	9G forward l	loading	g; 1.5G rearward l	oading; 3G sidew	ay loading; &	braked roll
	6G downwar	d load	ing	Landing L	oads	2-point
Load Cases	Case Number	Load	Right-MLG	Left-MLG	NLG	braked roll
Level + Trim load	3001 (DTOW) & 4001 (DLW)	FX FY FZ	0.25FM_{Lv} 0.0 $\text{FM}_{Lv} = f_{LMG} W_T$	$0.25 \text{FM}_{Lv} \\ 0.0 \\ \text{FM}_{Lv}$	0.25FN_{Lv} 0.0 $\text{FN}_{Lv} = f_{LNG} W_T$	Demonio
Spin up + Trim load	3002 (DTOW) & 4002 (DLW)	FX FY FZ	$(0.8 \times 0.8) \text{FM}_{Lv}$ 0.0	$(0.8 \times 0.8) \text{FM}_{Lv}$ 0.0	$(0.8 \times 0.8) \text{FN}_{Lv}$ 0.0	Dynamic roll braking
Spring back	3003 (DTOW)	FX FY	0.8FM_{Lv} -(0.8 × 0.8) FM _{Lv} 0.0	0.8FM_{Lv} $-(0.8 \times 0.8) \text{FM}_{Lv}$ 0.0	$0.8 \text{FN}_{Lv} - (0.8 \times 0.8) \text{FN}_{Lv} = 0.0$	
+ Trim load	& 4003 (DLW)	FZ	0.8 FM $_{Lv}$	$0.8 \mathrm{FM}_{Lv}$	$0.8 \mathrm{FN}_{Lv}$	Turning Condition
Lateral drift + Trim load	3004 (DTOW) & 4004 (DLW)	FX FY FZ	$(0.4 \times 0.75) \text{FM}_{Lv}$ $(0.25 \times 0.75) \text{FM}_{Lv}$ 0.75FM_{Lv}	$(0.4 \times 0.75) \text{FM}_{Lv}$ $(0.25 \times 0.75) \text{FM}_{Lv}$ 0.75FM_{Lv}	$0.4 \text{FN}_{Lv} \\ 0.25 \text{FN}_{Lv} \\ \text{FN}_{Lv}$	Nose wheel yaw &
Right one gear + Trim	3005 (DTOW) & 4005 (DLW)	FX FY	$\begin{array}{c} 0.25 \text{FM}_{Lv} \\ 0.0 \end{array}$	0.0 0.0	0.0 0.0	steering (1) Nose wheel
load Left one	` ′	FZ FX	FM_{Lv} 0.0	0.0 0.25 FM $_{Lv}$	0.0	yaw & steering (2)
gear + Trim load	3006 (DTOW) & 4006 (DLW)	FY FZ	0.0	0.23 FM $_{Lv}$ 0.0 FM $_{Lv}$	0.0	Nose wheel
Side load RtoL +	3007 (DTOW) & 4007 (DLW)	FX FY	0.0 $(0.8 \times 0.5) \text{FM}_{Lv}$	0.0 $(0.6 \times 0.5) \text{FM}_{Lv}$	0.0	yaw & steering (3)

tatic ndition		
point ked roll	3009 (DTOW) & 4009 (DLW)	
point ked roll	3010 (DTOW) & 4010 (DLW)	
namic roll aking	3011 (DTOW) & 4011 (DLW)	

3012 (DTOW)

& 4012 (DLW)

3013 (DTOW)

& 4013 (DLW)

3014 (DTOW)

& 4014 (DLW)

3015 (DTOW)

& 4015 (DLW)

3016 (DTOW)

& 4016 (DLW)

3017 (DTOW)

& 4017 (DLW)

Reversed

braking

2G Taxi

 $\mu = 0.80$; f=2.00

0.0

0.0

0.0

0.0

 0.5FM_{Ix}

0.0

 $-(0.8 \times 0.5)$ FM₁,

 $0.5 \mathrm{FM}_{Lv}$

Case Number

	F2
7)	F
7) V)	FZ
7)	FΣ
7) V)	F
٧)	FZ
	F2 F2 F2 F3
	F
7) V)	FZ

FX

FY

FZ

FX

FY

FΖ

FX

FY

FΖ

FX

FY

FΖ

FX

FY

FΖ

FX

FY

FZ

Load

FX

FY

FZ

Right-MLG

0.0

0.0

 $0.5d_{CG2NG}W_T$

d_{NG2MG}

 $0.8FM_{St}$

0.0

 FM_{St}

0.8FM_{St}

0.0

 FM_{St}

 $0.8 FM_{St}$

0.0

 FM_{St}

0.0

0.5FM_S

 FM_{St}

0.0

0.0

 FM_{St}

0.8FM_S

0.0

 FM_{St}

0.0

0.0

 FM_{St}

-0.55FM_S

0.0

 FM_{St}

0.0

0.0

 $2FM_{St}$

 FM_{St}

Left-MLG

0.0

0.0

 FM_{St}

 $0.8 FM_{St}$

0.0

 FM_{St}

 $0.8FM_{St}$

0.0

 FM_{St}

 $0.8 FM_{St}$

0.0

 FM_{St}

0.0

0.5FM_{St}

 FM_{St}

0.0

0.0

 FM_{St}

0.0

0.0

 FM_{St}

 $0.8FM_{St}$

0.0

 FM_{St}

-0.55FM $_{St}$

0.0

 FM_{St}

0.0

0.0

 $2FM_{St}$

NLG

0.0

0.0

 $FN_{St} = \frac{d_{CG2MG}W_T}{d_{NG2MG}}$

0.0

0.0

 d_{CG2NG}

0.0

0.0

0.0

0.0 0.0

where, $E = \{Z_{CG} - Z_{NGCP} - (X_{CG} - X_{CG})\}$

 X_{NGCP})S} and $S = (X_{CG} - X_{NGCP}) \frac{Z_{MGCP} - Z_{NGCP}}{X_{MGCP} - X_{NGCP}}$

0.25FNst

 $0.5FN_{St}$

 FN_{St}

0.0

0.8FNc

 FN_{St}

0.0

0.0

 $2d_{CG2MG}FM_{St} + (Z_{CG} - Z_{MGCP})0.8FM$

 d_{CG2NG}

0.0

0.0

 $2d_{CG2MG}FM_{St} + (Z_{CG} - Z_{MGCP})0.8FM_{St}$

d_{CG2NG}

0.0

0.0

0.0

0.0

0.0

 $2FN_{St}$

Chan-gi Pak-13

 $fd_{CG2NG}\mu E$

 $\left[d_{CG2MG} + \frac{1}{d_{NG2MG} + \mu E} \right]$

 $2d_{CG2MG}FM_{St} + 2(Z_{CG} - Z_{MGCP})0.8FM$

Trim load

Side load

LtoR +

Trim load

DTOW

DLW

& 4007 (DLW)

3008 (DTOW)

& 4008 (DLW)

Structural Dynamics Group

FΖ

FX

FY

FZ

0.5FM $_{I}$ $_{I}$

0.0

 $-(0.6 \times 0.5)$ FM_{Lv}

 $0.5 FM_{Lv}$

 $f_{LMG} = 0.36$; $f_{LNG} = 0.0639$; Trim load case ID = 1500

 f_{LMG} =1.20; f_{LNG} =0.1477; Trim load case ID = 1800

Buckling and Strength Analyses

☐ Based on five analysis sets

Analysis Set	Gear Configuration	Weight Condition	Load Cases
1	Up	DTOW	100, 200, 300, 600, 1100, 1200, 1300, 1400, & 1600
2	Up	ZFW	700, 800, 900, 1000, & 1700 Center Line
3	Up	M2W	400 & 500
4	Down	DTOW	3001 ~ 3017 + 3018 ~ 3021 (emergency) + 1500 (for landing)
5	Down	DLW	4001 ~ 4017 + 4018 ~ 4021 (emergency) + 1800 (for landing)

	•			•		. accongo	
Analysis Set	Gear Configuration	Weight Condition	Case Number	Load Case	Minimum Buckling Load Factor	Buckling	
1	Up	DTOW	300	2.5G pull up; M=0.48	0.152	yes B ucl	kling
2	Up	ZFW	1700	2.7G gust loads; M=0.89	0.195	yes	
3	Up	M2W	400	2.5G pull up; M=2.00	0.151	yes	В
4	Down	DTOW	3006	Left one gear landing	1.71	no	В
5	Down	DLW	4006	Left one gear landing	1.52	no	

Passenger Floor

Main Landing Gear Bay

Buckling Load Factor > 1 or Buckling Load Factor < 0 : requirement

Case 300; DTOW

☐ Minimum margins of safety from each analysis set

Analysis Set	Gear Configuration	Weight Condition	Case Number	Load Case	Minimum Margin of Safety	Failur
1	Up	DTOW	1400	1.67G abrupt roll; M=0.48	-0.999	yes
2	Up	ZFW	1700	2.7G gust loads; M=0.89	-0.998	yes
3	Up	M2W	400	2.5G pull up; M=2.00	-0.997	yes
4	Down	DTOW	3013	Nose wheel yaw & steering (1)	-0.781	yes
5	Down	DLW	4003	Spring back landing	-0.657	yes

Margin of safety > 0 : requirement Safety factor = 1.5

$$MS \equiv \frac{Failure Load}{Design Load \times Safety Factor} -$$

Structural Dynamics Group

Center Engine

Wing

First Optimization Run

Design Variables for the First Optimization Run

First Optimization Run

Functions	Performance indices	Notes
Objective	$F(\mathbf{X}) = (\mathrm{PI}_{\mathrm{W}})^2 = W_T^2$	DTOW
Flutter constraint	$g_j(\mathbf{X}) = PI_F = 1 \frac{V_F}{1.15V_L} < 0.$ j = 1, 2,, 6	15% margin
Buckling constraint	$g_j(\mathbf{X}) = \text{PI}_{\text{B}} = (1/2)^2 - \{\text{positive min(BLF)} - 1/2\}^2 < 0.$ j = 7, 8,, 11	Safety factor = 1.5
Strength constraint	$g_j(\mathbf{X}) = PI_s = -\min(MS) < 0.$ j = 12, 13,, 16	Safety factor = 1.5

- Objective: total weight of gear up DTOW case
- Flutter constraints
 - Gear Up DTOW at M=0.66, 0.89, & 1.41
 - Gear up FFEP at M=0.66, 0.89, & 1.41
- Buckling & strength constraints
 - Minimum "buckling load factor" & minimum "margin of safety" from five analysis sets

Analysis Set	Gear Configuration	Weight Condition	Load Cases
1	Up	DTOW	100, 200, 300, 600, 1100, 1200, 1300, 1400, & 1600
2	Up	ZFW	700, 800, 900, 1000, & 1700
3	Up	M2W	400 & 500
4	Down	DTOW	3001 ~ 3017 + 3018 ~ 3021 (emergency) + 1500 (for landing)
5	Down	DLW	4001 ~ 4017 + 4018 ~ 4021 (emergency) + 1800 (for landing)

Chan-gi Pak-17

○: Empty Fuel Empty Payload (EFEP) △: Full Fuel Empty Payload (FFEP)

First Optimization Run (continue)

	Per	formance Index	Design Configuration	Before Optimization	Iteration 1	Iteration 7		
Objective Function		Total Weight	DTOW; GU	332738	425764	364105		
		$g_1(\mathbf{X})$	DTOW; GU; M=0.66	0.067(V)	-0.362	-0.342		
	<u>.</u>	$g_2(\mathbf{X})$	DTOW; GU; M=0.89	0.048(V)	-0.543	-0.096		
	Flutter	$g_3(\mathbf{X})$	DTOW; GU; M=1.41	-0.079	-1.34	-0.297		
	In.	$g_4(\mathbf{X})$	FFEP; GU; M=0.66	0.066(V)	-0.365	-0.337		
		$g_5(\mathbf{X})$	FFEP; GU; M=0.89	0.034(V)	-0.586	-0.094		
		$g_6(\mathbf{X})$	FFEP; GU; M=1.41	-0.095	-1.32	-0.255		
Constraint		$g_7(\mathbf{X})$	DTOW; GU	0.152(V)	-1.05	-1.29		
Functions	Buckling	$g_8(\mathbf{X})$	ZFW; GU	0.186(V)	-2.36	-3.09		
$g_j(\mathbf{X})$	ckl	$g_9(\mathbf{X})$	M2W; GU	0.151(V)	-1.28	-1.91		
$g_j(\mathbf{A})$	Bu	$g_{10}(\mathbf{X})$	DTOW; GD	-0.960	-3.27	-3.88		
		$g_{11}(\mathbf{X})$	DLW; GD	-0.561	-0.308	-1.07		
	_	$g_{12}(\mathbf{X})$	DTOW; GU	0.999(V)	-0.267	-0.161		
	gth	$g_{13}(\mathbf{X})$	ZFW; GU	0.998(V)	-0.780	-0.061		
	Strength	$g_{14}(\mathbf{X})$	M2W; GU	0.997(V)	-0.179	-0.537		
	Str	$g_{15}(\mathbf{X})$	DTOW; GD	0.781(V)	-0.751	-5.63e-6		
		$g_{16}(\mathbf{X})$	DLW; GD	0.657(V)	-0.210	-0.320		
Weight penalty (%			n)	0	28.0	9.43		
Manual Outimination has a day DOT								

Active and near active constraints from strength analyses.

Optimization based on DOT.

Structural Dynamics Group Chan-gi Pak-18

update

Design

feasible

Design

infeasible

First Optimization Run (continue)

First Optimization Run (continue)

1 Strain distribution of the active and near active constraints

(a) Active constraint (from strength 4; load case #3013)

(b) Near active constraint (from strength 2; load case #1700)

(c) Near active constraint (from strength 1; load case #300)

Second Optimization Run

Design Variables for the Second Optimization Run

- ☐ Composite ply angles of the six zones
 - Design variables are ply angles of the 2nd and 4th layers.
 - ➤ Design variable linking $2^{nd} = -4^{th}$
 - Use discrete design variables

Value Ranges	Discrete values
0.0° ≤ Ply angle < 2.5°	0°
2.5° ≤ Ply angle < 7.5°	5°
7.5° ≤ Ply angle < 12.5°	10°
12.5° ≤ Ply angle < 17.5°	15°
17.5° ≤ Ply angle < 22.5°	20°
$22.5^{\circ} \le Ply angle < 27.5^{\circ}$	25°
27.5° ≤ Ply angle < 32.5°	30°
32.5° ≤ Ply angle < 37.5°	35°
37.5° ≤ Ply angle < 42.5°	40°
42.5° ≤ Ply angle < 47.5°	45°
47.5° ≤ Ply angle < 52.5°	50°
52.5° ≤ Ply angle < 57.5°	55°
57.5° ≤ Ply angle < 62.5°	60°
$62.5^{\circ} \le Ply angle < 67.5^{\circ}$	65°
67.5° ≤ Ply angle < 72.5°	70°
$72.5^{\circ} \le Ply angle < 77.5^{\circ}$	75°
77.5° ≤ Ply angle < 82.5°	80°
$82.5^{\circ} \le \text{Ply angle} < 87.5^{\circ}$	85°
$87.5^{\circ} \le \text{Ply angle} \le 90.0^{\circ}$	90°

Second Optimization Run

Functions	Performance indices	Notes
Objective	$F(\mathbf{X}) = -\{0.5g_{12}(\mathbf{X}) + 0.5g_{13}(\mathbf{X}) + g_{15}(\mathbf{X})\}\$	Safety factor = 1.5
Flutter constraint	$g_j(\mathbf{X}) = PI_F = 1 \frac{V_F}{1.15V_L} < 0.$ j = 1, 2,, 6	15% margin
Buckling constraint	$g_j(\mathbf{X}) = \text{PI}_{\text{B}} = (1/2)^2 - \{\text{positive min(BLF)} - 1/2\}^2 < 0.$ j = 7, 8,, 11	Safety factor = 1.5
Strength constraint	$g_j(\mathbf{X}) = PI_s = -\min(MS) < 0.$ j = 12, 13,, 16	Safety factor = 1.5

 \Box Objective: performance index from the 2nd and 4th strength analysis sets

☐ Flutter constraints

Same as the first optimization run

☐ Buckling & strength constraints

❖ Same as the first optimization run except performance indices for the objective function

Analysis Set	Gear Configuration	Weight Condition	Load Cases			
1	Up	DTOW	100, 200, 300, 600, 1100, 1200, 1300, 1400, & 1600			
2	Up	ZFW	700, 800, 900, 1000, & 1700			
3	Up	M2W	400 & 500			
4	Down	DTOW	3001 ~ 3017 + 3018 ~ 3021 (emergency) + 1500 (for landing)			
5	Down	DLW	4001 ~ 4017 + 4018 ~ 4021 (emergency) + 1800 (for landing)			

DV_i: Design Variable i

Second Optimization Run (continue)

		Performance Index	Design Configuration	Starting	BBBC 1	BBBC 2
Objective Function	$-\{0.5g_{12}(\mathbf{X}) + 0.5g_{13}(\mathbf{X}) + g_{15}(\mathbf{X})\}$			0.111	0.337	0.348
		$g_1(\mathbf{X})$	DTOW; GU; M=0.66	-0.342	-0.341	-0.342
	ا ا	$g_2(\mathbf{X})$	DTOW; GU; M=0.89	-0.096	-0.096	-0.096
	tte	$g_3(\mathbf{X})$	DTOW; GU; M=1.41	-0.297	-0.299	-0.297
	Flutter	$g_4(\mathbf{X})$	FFEP; GU; M=0.66	-0.337	-0.336	-0.337
	_	$g_5(\mathbf{X})$	FFEP; GU; M=0.89	-0.094	-0.095	-0.094
		$g_6(\mathbf{X})$	FFEP; GU; M=1.41	-0.255	-0.257	-0.255
Constraint		$g_7(\mathbf{X})$	DTOW; GU	-1.29	-1.50	-1.38
Functions	Buckling	$g_8(\mathbf{X})$	ZFW; GU	-3.09	-3.63	-3.09
$g_j(\mathbf{X})$	ckl	$g_9(\mathbf{X})$	M2W; GU	2W; GU -1.91		-2.23
$g_j(\mathbf{x})$	Bu	$g_{10}(\mathbf{X})$	DTOW; GD	-3.88	-4.22	-4.19
		$g_{11}(\mathbf{X})$	DLW; GD	-1.07	-1.07	-1.07
		$g_{12}(\mathbf{X})$	DTOW; GU	-0.161	-0.214	-0.232
	gth	$g_{13}(\mathbf{X})$	ZFW; GU -0.061		-0.141	-0.145
	Strength	$g_{14}(\mathbf{X})$	M2W; GU	-0.537	-0.204	-0.542
	Str	$g_{15}(\mathbf{X})$	DTOW; GD	-5.63e-6	-0.159	-0.159
		$g_{16}(\mathbf{X})$	DLW; GD	-0.320	-0.435	-0.419
			Starting 45°	BBBC 1	BBBC 2	
1 (2 nd rib at inner-wing)					15°	15°
2 (floor at main landing gear bay)					65°	65°
3 (center wall at main landing gear bay)					65°	55°
4 (aft bulkhead at main landing gear bay)					65°	55°
	5 (aft fuselage skin 1)	45°	30°	40°		
		6 (aft fuselage skin 2)	45°	50°	55°	

Big-Bang Big-Crunch algorithm; number of population=60; number of Big-Bang Big-Crunch=2; discrete design variables

Third Optimization Run

Third Optimization Run

Functions	Performance indices	Notes
Objective	$F(\mathbf{X}) = (\mathrm{PI}_{\mathrm{W}})^2 = W_T^2$	DTOW
Flutter constraint	$g_j(\mathbf{X}) = PI_F = 1 \frac{V_F}{1.15V_L} < 0.$ j = 1, 2,, 6	15% margin
Buckling constraint	$g_j(\mathbf{X}) = \text{PI}_{\text{B}} = (1/2)^2 - \{\text{positive min(BLF)} - 1/2\}^2 < 0.$ j = 7, 8,, 11	Safety factor = 1.5
Strength constraint	$g_j(\mathbf{X}) = PI_s = -\min(MS) < 0.$ j = 12, 13,, 16	Safety factor = 1.5

- ☐ Objective: total weight of gear up DTOW case
- ☐ Flutter constraints
 - ❖ Gear Up DTOW at M=0.66, 0.89, & 1.41
 - Gear up FFEP at M=0.66, 0.89, & 1.41
- ☐ Buckling & strength constraints
 - Minimum "buckling load factor" & minimum "margin of safety" from five analysis sets

Analysis Set	Gear Configuration	Weight Condition	Load Cases
1	Up	DTOW	100, 200, 300, 600, 1100, 1200, 1300, 1400, & 1600
2	Up	ZFW	700, 800, 900, 1000, & 1700
3	Up	M2W	400 & 500
4	Down	DTOW	3001 ~ 3017 + 3018 ~ 3021 (emergency) + 1500 (for landing)
5	Down	DLW	4001 ~ 4017 + 4018 ~ 4021 (emergency) + 1800 (for landing)

Third Optimization Run

	Pe	rformance Index	Design Configuration	Starting	Iteration 1	Iteration 2	Iteration 3	Iteration 4	Iteration 5	Iteration 6	Iteration 7
Objective Function	То	tal Weight	DTOW; GU	364105	363810						
		$g_1(\mathbf{X})$	DTOW; M=0.66	-0.342	-0.341						
		$g_2(\mathbf{X})$	DTOW; M=0.89	-0.096	-0.096						
	tte	$g_3(\mathbf{X})$	DTOW; M=1.41	-0.297	-0.297						
	Flutter	$g_4(\mathbf{X})$	FFEP; M=0.66	-0.337	-0.336						
	_	$g_5(\mathbf{X})$	FFEP; M=0.89	-0.094	-0.094						
		$g_6(\mathbf{X})$	FFEP; M=1.41	-0.255	-0.256						
Constraint		$g_7(\mathbf{X})$	DTOW; GU	-1.38	-1.38						
Functions		$g_8(\mathbf{X})$	ZFW; GU	-3.09	-3.44						
$g_i(\mathbf{X})$	Bucklin	$g_9(\mathbf{X})$	M2W; GU	-2.23	-2.04						
$y_j(\mathbf{A})$	Bu	$g_{10}(\mathbf{X})$	DTOW; GD	-4.19	-3.95						
		$g_{11}(\mathbf{X})$	DLW; GD	-1.07	-1.07						
	_	$g_{12}(\mathbf{X})$	DTOW; GU	-0.232	-0.227						
	gth	$g_{13}(\mathbf{X})$	ZFW; GU	-0.145	-0.141						
	Streng	$g_{14}(\mathbf{X})$	M2W; GU	-0.542	-0.261						
	Str	$g_{15}(\mathbf{X})$	DTOW; GD	-0.159	-6.16e-5						
		$g_{16}(\mathbf{X})$	DLW; GD	-0.419	-0.359						
	Weight penalty (%)		9.43	9.34							

Optimization based on DOT.

Conclusions

- ☐ The Lockheed Martin's pre-matured N+2 LSCT aircraft is optimized in this study through the use of a multidisciplinary design optimization tool developed at the NASA AFRC.
- ☐ The baseline design of the pre-matured N+2 LSCT aircraft was infeasible when ZAERO based aeroelastic analyses were used.
 - This probably means that the aerodynamic loads distribution computed using ZAERO trim analysis are different than the MSC Nastran generated aerodynamic loads.
- ☐ The starting configuration of the optimization run should be an achievable design and weight penalty for this was 93,026 lb.
 - **28.0%** increase from baseline
- During the first optimization run, the weight reduction was 61,659 lb, and therefore weight penalty at the end of the first optimization run is 31,367 lb.
 - Optimization was based on DOT optimizer
 - Active constraint: minimum margin of safety value is associated with the structural component located at the second rib of the inner wing near the main landing gear bay area.
 - ➤ Nose wheel yaw and steering case number 1
 - First near active constraint: minimum margin of safety value at the floor of main landing gear bay
 - ➤ 2.7g gust load case at Mach 0.89 and altitude of 20,000 ft
 - ❖ 9.4% increase from baseline
 - ❖ Second near active constraints: flutter speeds with DTOW and FFEP at Mach 0.89
 - ➤ Mass balancing effect to increase the flutter speeds
- ☐ The second optimization run was prepared to increase tolerance distance for the active and the first near active constraints.
 - Create more room for reducing total weight of the aircraft
 - Use six ply angles as design variables
 - Optimization was based on Big-Bang Big-Crunch algorithm with discrete design variables.
 - Can't change weight property, but can change strength property. Therefore, can create tolerance for future weight optimization run

Questions?

Future Studies

- ☐ Use lifting surface based aerodynamics
 - Use curvilinear sparibs to further reduce the weight of N+2 LSCT
 - Find % weight reduction through curvilinear sparibs technique
 - Add active control design variables
 - \blacktriangleright Use aeroelastic tailoring up to V_L
 - \triangleright Use active control between V_L and $1.15V_L$
 - Find % weight reduction through game changing approach
- Use CFD based aerodynamics
 - Use more accurate air loads for optimizations

Backup: Object-Oriented MDO Tool

Object-Oriented MDO tool

- ☐ Optimization is based on in-house Object-Oriented Optimization tool
 - Equivalent to the following codes
 - Open MDAO, Model Center, Visual Doc, etc.
 - Four optimizer codes are available.
 - Gradient based algorithms (Local optimizers)
 - ✓ DOT
 - ✓ ADS
 - > Global optimizers (Gradient free algorithms)
 - ✓ Genetic Algorithm
 - ✓ Big-Bang Big-Crunch Algorithm
- ☐ Update design pre-processor module
 - Update MSC/NASTRAN input file
- Modal analysis module
 - Perform modal analysis using MSC/NASTRAN sol. 103
 - Save following data
 - > Total weight, CG location, mass moment of inertia
 - > Frequencies & mode shapes and global mass matrix
- ☐ Weight post-processor module
 - ❖ Use MSC/NASTRAN sol 103 results for small weight.
 - ➤ MSC/NASTRAN results has number of digit issue.
 - ❖ Use in-house weight computation code for large weight.

Object-Oriented MDO tool (continue)

- ☐ Flutter analysis and flutter post-processor modules
 - Use ZAERO code for flutter analyses
 - Use an in-house flutter speed tracking program

$$V_F > 1.15 V_L \qquad \qquad 1. - \frac{V_F}{1.15 V_L} < 0. \qquad \qquad PI_F \equiv 1. - \frac{V_F}{1.15 V_L}$$

- ☐ Update ZAERO pre-processor, trim analysis, trim loads pre-processor modules
 - Update ZAERO input data
 - ➤ Based on total weight, CG locations, moment of inertias, and global mass matrix
 - Use ZAERO code for trim analysis
 - Create design loads for various design configurations
 - Post-process the splined loads
 - Create symmetric and anti-symmetric loads

- Compute corresponding design loads using in-house code
 - Landing loads
 - ➤ Ground control loads
 - ➤ Emergency landing loads

Object-Oriented MDO tool (continue)

- ☐ Buckling and strength analyses and strength post-processor modules
 - ❖ Based on MSC/NASTRAN sol. 105
 - Use in-house strength post-processor code
 - ❖ Safety factor of 1.5 is used for all metal and composite materials in this study.

Design Load × Safety Factor < Failure Load
$$1 - \frac{\text{Failure Load}}{\text{Design Load} \times \text{Safety Factor}} < 0$$
 MS $\equiv \frac{\text{Failure Load}}{\text{Design Load} \times \text{Safety Factor}} - 1$. PI_s $\equiv -\text{min}(\text{MS})$

- ☐ Buckling post-processor module
 - Use in-house code
 - ♣ Buckling Load Factor (BLF) 0≤BLF≤1: Buckling predicted BLF<0 or BLF>1: Buckling not predicted

 - Buckling not predicted: $(BLF 1/2)^2 > (1/2)^2 \implies (1/2)^2 \left(BLF \frac{1}{2}\right)^2 < 0.$

$$PI_{B} \equiv (1/2)^{2} - \{positive min(BLF) - 1/2\}^{2}$$