重磅!《深度学习 500 问》已更新, GitHub 标星 2.6W (附完整下载)

THU数据派 5天前

文章转载自公众号 🕼 AI有道, 作者 红色石头

THU DataPi, Share and Study

来源: AI有道

本文约1300字,建议阅读7分钟。

本文介绍以深度学习面试问答形式, 收集了 500 个问题和答案的项目。

几个月前,红色石头发文介绍过一份在 GitHub 上非常火爆的项目,名为: DeepLearning-500-questions,中文译名:深度学习 500 问。作者是川大的一名优秀毕业生谈继勇。该项目以深度学习面试问答形式,收集了 500 个问题和答案。内容涉及了常用的概率知识、线性代数、机器学习、深度学习、计算机视觉等热点问题。

该热门项目一直在不断更新,作者本着开源精神,不断有新的贡献者在完善项目。如今,全书已达 50 余万字,分为 18 个章节。

首先,直接放上项目地址:

https://github.com/scutan90/DeepLearning-500-questions

目前该项目已有 2.6w stars 了! 只要是内容都是干货, 超全!

THU数据派公众号 (Datapi) 后台回复"190711" 获取本文完整深度学习500问资源

下面,我们来看一看该项目有哪些硬核干货吧!

该项目更确切地说是一本深度学习面试手册,500问,非常详细。全书共分为18章,近50万字,目录如下:

- 数学基础
- 机器学习基础
- 深度学习基础
- 经典网络
- 卷积神经网络 (CNN)
- 循环神经网络 (RNN)
- 生成对抗网络 (GAN)
- 目标检测
- 图像分割
- 强化学习
- 迁移学习
- 网络搭建及训练
- 优化算法
- 超参数调试
- GPU 和框架选型
- 自然语言处理 (NLP)
- 模型压缩、加速及移动端部署
- 后端架构选型、离线及实时计算

English version	Update Chapter 2_TheBasisOfMachineLearning.md	3 months ago
■ ch01_数学基础	Update 第一章 数学基础 md	2 days ago
■ ch02_机器学习基础	Update 第二章_机器学习基础.md	yesterday
■ ch03_深度学习基础	3.1.1 神经网络组成 内容修订	3 months ago
■ ch04_ 经典网络	add some content	3 days ago
■ ch05_卷积神经网络(CNN)	Update 第五章 卷积神经网络 (CNN) .md	2 months ago
■ ch06_循环神经网络(RNN)	Update 第六章_循环神经网络(RNN).md	3 months ago
■ ch07_生成对抗网络(GAN)	修改整章公式、调整文档格式	3 months ago
➡ ch08_目标检测	fix some tiny error about object detection methods	2 months ago
■ ch09_图像分割	更新	2 months ago
■ ch10_强化学习	Update 第十章 强化学习.md	7 months ago
■ ch11_迁移学习	add some content	3 days ago
■ ch12_网络搭建及训练	更新	2 months ago
■ ch13_优化算法	调整第二章、第三章优化器及学习率	3 months ago
■ ch14_超参数调整	delete incorrect readme.md	3 months ago
■ ch15_GPU和框架选型	增加对RTX显卡的选型	3 months ago
■ ch16_自然语言处理(NLP)	Delete readme.md	3 months ago
■ ch17_模型压缩、加速及移动端部署	add some content	3 days ago
■ ch18_后端架构选型、离线及实时计算	Merge pull request #209 from liangzhicheng120/master	7 months ago
■ ch18_后端架构选型及应用场景	update ch18	2 months ago

主要内容

全书内容非常丰富,持续更新和完善中。下面我们列举一些知识点给读者一睹为快!

1. 各种常见算法 (第 2 章)

日常使用机器学习的任务中,我们经常会遇见各种算法,如下图所示:

2. 支持向量机 (第 2 章)

- **支持向量**:在求解的过程中,会发现只根据部分数据就可以确定分类器,这些数据称为支持向量。
- **支持向量机 (Support Vector Machine, SVM)** : 其含义是通过支持向量运算的分类器。

在一个二维环境中,其中点R,S,G点和其它靠近中间黑线的点可以看作为支持向量,它们可以决定分类器,即黑线的具体参数。

支持向量机是一种二分类模型,它的目的是寻找一个超平面来对样本进行分割,分割的原则是边界最大化,最终转化为一个凸二次规划问题来求解。

3. 常用的神经网络结构 (第 3 章)

下图包含了大部分常用的模型:

4. 多分类 Softmax (第 3 章)

下图包含了 Softmax 层的详细过程和推导:

5. 经典网络结构 (第 4 章)

本章主要介绍几个具有代表性的神经网络模型。

• LeNet-5

LeNet-5 模型是 Yann LeCun 于 1998 年提出来的,它是第一个成功应用于数字识别问题的卷积神经网络。在 MNIST 数据中,它的准确率达到大约 99.2%。典型的 LeNet-5 结构包含卷积层、池化层和全连接层,顺序一般是:卷积层->池化层->卷积层->池化层->全连接层->全连接层->输出层。

同时给出了 LeNet-5 的网络参数配置:

网络层	输入尺寸	核尺寸	输出尺寸	可训练参数量
卷积层 C_1	32 imes 32 imes 1	5 imes 5 imes 1/1, 6	28 imes 28 imes 6	$(5\times 5\times 1+1)\times 6$
下采样层 S_2	28 imes 28 imes 6	2 imes 2/2	14 imes 14 imes 6	(1+1) imes 6 *
卷积层 C_3	$14\times14\times6$	5 imes 5 imes 6/1, 16	$10\times10\times16$	1516*
下采样层 S_4	$10\times10\times16$	2 imes 2/2	$5 \times 5 \times 16$	$(1+1) \times 16$
卷积层 C_5 *	$5 \times 5 \times 16$	$5\times5\times16/1,120$	$1\times1\times120$	(5 imes 5 imes 16 + 1) imes 120
全连接层 F_6	$1\times1\times120$	120 imes 84	$1 \times 1 \times 84$	(120+1) imes 84
輸出层	$1 \times 1 \times 84$	84×10	$1 \times 1 \times 10$	$(84+1) \times 10$

AlexNet

AlexNet 是 2012 年 ImageNet 竞赛冠军获得者 Hinton 和他的学生 Alex Krizhevsky 设计的。AlexNet 可以直接对彩色的大图片进行处理,对于传统的机器学习分类算法而言,它的性能相当的出色。AlexNet 是由 5 个卷积层和 3 个全连接层组成,顺序一般是:卷积层->池化层->卷积层->池化层->全连接层->全连接层->输出层。

AlexNet 的网络参数配置:

网络层	输入尺寸	核尺寸	输出尺寸	可训练参数量
卷积层 C_1 *	$224\times 224\times 3$	$11\times11\times3/4, 48(\times2_{GPU})$	$55 imes 55 imes 48 (imes 2_{GPU})$	$(11 \times 11 \times 3 + 1) \times 48 \times 2$
下采样层 S_{max}^*	$55 imes 55 imes 48 (imes 2_{GPU})$	$3 imes 3/2 (imes 2_{GPU})$	$27 imes 27 imes 48 (imes 2_{GPU})$	0
卷积层 C_2	$27 imes 27 imes 48 (imes 2_{GPU})$	$5\times 5\times 48/1, 128(\times 2_{GPU})$	$27 imes 27 imes 128 (imes 2_{GPU})$	$(5 \times 5 \times 48 + 1) \times 128 \times 2$
下采样层 S_{max}	$27 imes 27 imes 128 (imes 2_{GPU})$	$3 imes 3/2 (imes 2_{GPU})$	$13 imes 13 imes 128 (imes 2_{GPU})$	0
卷积层C ₃ *	$13 imes 13 imes 128 imes 2_{GPU}$	$3\times3\times256/1, 192(\times2_{GPU})$	$13 imes 13 imes 192 (imes 2_{GPU})$	(3 imes3 imes256+1) imes192 imes2
卷积层 C_4	$13 imes 13 imes 192 (imes 2_{GPU})$	$3\times3\times192/1, 192(\times2_{GPU})$	$13 imes 13 imes 192 (imes 2_{GPU})$	(3 imes 3 imes 192 + 1) imes 192 imes 2
卷积层 C_5	$13 imes 13 imes 192 (imes 2_{GPU})$	$3\times3\times192/1, 128(\times2_{GPU})$	$13 imes 13 imes 128 (imes 2_{GPU})$	(3 imes3 imes192+1) imes128 imes2
下采样层 S_{max}	$13 imes 13 imes 128 (imes 2_{GPU})$	$3 imes 3/2 (imes 2_{GPU})$	$6 imes 6 imes 128 (imes 2_{GPU})$	0
全连接层 F_6 *	$6 imes 6 imes 128 imes 2_{GPU}$	$9216 \times 2048 (\times 2_{GPU})$	$1 imes 1 imes 2048 (imes 2_{GPU})$	$(9216+1)\times 2048\times 2$
全连接层 F_7	$1 imes 1 imes 2048 imes 2_{GPU}$	$4096 \times 2048 (\times 2_{GPU})$	$1 imes 1 imes 2048 (imes 2_{GPU})$	$(4096+1)\times 2048\times 2$
全连接层 F_8	$1 \times 1 \times 2048 \times 2_{GPU}$	4096 imes 1000	$1 \times 1 \times 1000$	$(4096 + 1) \times 1000 \times 2$

6. 全连接、局部连接、全卷积与局部卷积 (第 5 章)

全连接、局部连接、全卷积与局部卷积的对比和解释如下:

连接方式	示意图	说明
全连接		层间神经元完全连接,每个输出神经元可以获取到所有输入神经元的信息,有利于信息汇总,常置于网络末层;连接与连接之间独立参数,大量的连接大大增加模型的参数规模。
局部连接	11 12 13 24 15 15	层间神经元只有局部范围内的连接,在这个范围内采用全连接的方式,超过这个范围的神经元则没有连接;连接与连接之间独立参数,相比于全连接减少了感受域外的连接,有效减少参数规模
全卷积	22 23 24 25 25 25 25 25 25 25 25 25 25 25 25 25	层间神经元只有局部范围内的连接,在这个范围内采用全连接的方式,连接所采用的参数在不同感受域之间共享,有利于提取特定模式的特征;相比于局部连接,共用感受域之间的参数可以进一步减少参数量。
局部卷积	11 62 63 M 2 0 0 0 0	层间神经元只有局部范围内的连接,感受域内采用全连接的方式,而感受域之间间隔采用局部连接与全卷积的连接方式;相比与全卷积成倍引入额外参数,但有更强的灵活性和表达能力;相比于局部连接,可以有效控制参数量

评价

整个项目包含的内容非常多,这里就不再赘述。干货很硬,大家不要错过了这份资源。再次附上链接:

https://github.com/scutan90/DeepLearning-500-questions

总的来说,这份资源不是一本深度学习的系统教材,而是一份完整的、详细的深度学习知识点精 炼手册。对于面试、自我测验来说非常有帮助!一句话:硬核干货,值得收藏!

THU数据派公众号 (Datapi) 后台回复"190711" 获取本文完整深度学习500问资源

编辑: 黄继彦

校对: 林亦霖

获取更多有关**清华**的数据科学资讯,

请关注清华-青岛数据科学研究院的官方微信公众号:

数据派THU

(ID: DatapiTHU)

THU 数 据 派

前沿数据产业动态 持续传播数据思维 数据人才聚集平台 打造顶级数据团队

公众号底部菜单有惊喜:

- 活动报名及往期干货请查看"活动&干货"
- 加入志愿者团队请查看"招募"
- 了解或加入联盟请查看"联盟"

欢迎投稿、商务合作!请发送文件至联系邮箱 联系邮箱: datapi@tsingdata.com

欢迎扫码关注