STARMAC 2 Quadrotor Helicopters

Gabriel M. Hoffmann, Steven W. Waslander, and Claire J. Tomlin

Aeronautics and Astronautics Stanford University

Mobile Sensor Network Control

Control Objectives:

- Automatic information gathering
- Safe interaction

Constraints:

- Power budget
- Communication bandwidth

STARMAC System

- Self Sufficient UAVs
 - Onboard computation
 - Onboard sensing
- Real Time Execution
 - Estimation
 - Control

Quadrotor Helicopter Control

Angular accelerations and vertical acceleration are controlled by varying the propeller speeds.

STARMAC 2 Electronics System

STARMAC 2 Quadrotor Helicopter

Attitude Control – Dynamic Response

Key Developments

- Rigid Frame
- Rotor Spacing
- o Tip Vortex Impingement
- Command Tracking PID
- Digital Input Filter
- o 16 bit Resolution

Altitude Control

Controller Dynamics
$$h_{ref} \stackrel{e}{\longleftarrow} k_{dd}s^2 + k_{d}s + k_{p} + k_{i}\frac{1}{s} + \frac{mg}{\cos\theta\cos\phi} \stackrel{u}{\longleftarrow} \frac{mg}{(\tau s + 1)s^2} \stackrel{h}{\longleftarrow}$$

$$u = \sum_{i=1}^4 T_i$$

Key Developments

- Rotor Spacing
- Tip Vortex Impingement
- Tilt Compensation
- Specific Thrust Control
- Sensor Selection

Flight Tests

Information-Seeking Problem Framework

- Controller goal is to minimize the uncertainty of $p(\theta)$
- There may be *no reason* to move towards the target

Modeling Uncertainty to Increase Knowledge

Target State: θ | Vehicle States: \mathbf{x}_t

Observations: $\mathbf{z}_{t+1} \mid$ Control Inputs: \mathbf{u}_t

Target State Model: $p(\theta)$ | Motion Model: $\mathbf{x}_{t+1} = f(\mathbf{x}_t, \mathbf{u}_t)$

Sensor model: $p(\mathbf{z}_{t+1}|\theta;\mathbf{x}_{t+1})$

Use Bayes' Rule to update the target state model,

$$p(\theta|\mathbf{z}_{t+1}; \mathbf{x}_{t+1}) = \frac{p(\theta)p(\mathbf{z}_{t+1}|\theta; \mathbf{x}_{t+1})}{p(\mathbf{z}_{t+1}; \mathbf{x}_{t+1})}$$

Minimize the expected future uncertainty,

$$H(\theta|\mathbf{z}_{t+1}) = H(\theta) - I(\theta; \mathbf{z}_{t+1})$$

Maximizing Information

Bayes' Rule using Particle Filters

$$p(\theta|\mathbf{z}_{t+1}; \mathbf{x}_{t+1}) = \frac{p(\theta)p(\mathbf{z}_{t+1}|\theta; \mathbf{x}_{t+1})}{p(\mathbf{z}_{t+1}; \mathbf{x}_{t+1})}$$

- Uses available prior knowledge
- Allows multimodal posterior
- Permits nonlinear
 & non-Gaussian
 models

Mutual Information from Particle Filters

$$I(\mathbf{z}_{t+1}; \boldsymbol{\theta}_{t}^{(i)}) = H(\mathbf{z}_{t+1}) - H(\mathbf{z}_{t+1}|\boldsymbol{\theta}_{t}^{(i)})$$
observation information uncertainty observation uncertainty observation uncertainty
$$H(\mathbf{z}_{t+1}) \approx -\int_{Z} \left\{ \left(\sum_{k=1}^{N} \left(\mathbf{w}_{t,k}^{(i)} \prod_{j=1}^{n_{v}} p_{t+1|t}(\mathbf{z}^{(j)}|\boldsymbol{\theta}^{(i)} = \tilde{\boldsymbol{\theta}}_{t,k}^{(i)}; \mathbf{u}_{t}, \mathbf{x}_{t}) \right) \right\} \right\} d\mathbf{z}$$

$$\cdot \log \left(\sum_{k=1}^{N} \left(\mathbf{w}_{t,k}^{(i)} \prod_{j=1}^{n_{v}} p_{t+1|t}(\mathbf{z}^{(j)}|\boldsymbol{\theta}^{(i)} = \tilde{\boldsymbol{\theta}}_{t,k}^{(i)}; \mathbf{u}_{t}, \mathbf{x}_{t}) \right) \right) d\mathbf{z}$$

$$H(\mathbf{z}_{t+1}|\boldsymbol{\theta}_{t}^{(i)}) \approx -\int_{Z} \sum_{k=1}^{N} \left\{ \mathbf{w}_{t,k}^{(i)} \prod_{j=1}^{n_{v}} p_{t+1|t}(\mathbf{z}^{(j)}|\boldsymbol{\theta}^{(i)} = \tilde{\boldsymbol{\theta}}_{t,k}^{(i)}; \mathbf{u}_{t}, \mathbf{x}_{t}) \right.$$

$$\cdot \log \prod_{j=1}^{n_{v}} p_{t+1|t}(\mathbf{z}^{(j)}|\boldsymbol{\theta}^{(i)} = \tilde{\boldsymbol{\theta}}_{t,k}^{(i)}; \mathbf{u}_{t}, \mathbf{x}_{t}) d\mathbf{z}$$

Hoffmann, Waslander, Tomlin, GNC, 2006

Distributed Optimization Program

minimize
$$-I^{(i)}(\mathbf{x}_{t}^{(i)}, \mathbf{u}_{t}^{(i)}, \theta_{t}^{(i)} | \mathbf{x}_{t}^{(-i)}, \mathbf{u}_{t}^{(-i)})$$
 $\mathbf{u}_{t}^{(i)} \in U^{(i)}$
 $+\frac{1}{\beta}P(\mathbf{x}_{t}^{(i)}, \mathbf{u}_{t}^{(i)} | \mathbf{x}_{t}^{(-i)}, \mathbf{u}_{t}^{(-i)})$

subject to
$$\mathbf{x}_{t+1}^{(i)} = f_t^{(i)}(\mathbf{x}_t^{(i)}, \mathbf{u}_t^{(i)})$$

 $\mathbf{z}_{t+1}^{(i)} = h_t^{(i)}(\mathbf{x}_{t+1}^{(i)}, \theta_t^{(i)}, \eta_t^{(i)})$

Range-Only Example

Measure the distance to the target

Bearings-Only Example

Measure the direction to the target

Medium Noise

High Noise

Beacon Field Example

Measure the field line orientation

Research Directions

- Flight Tests of Autonomous Search
- Time Horizon, Moving Targets
- Generalize to Other Applications
 - Unexploded ordinance detection
 - Submarine detection
 - Beacon tracking scenarios
 - RFID tracking
 - Survey of disaster areas
 - Biological studies, animal monitoring
 - etc...
- Distributed Concurrent Execution
 Framework

http://hoffmann.stanford.edu/ http://hybrid.stanford.edu/starmac