Adaptive Conditional Neural Movement Primitives via Representation Sharing Between Supervised and Reinforcement Learning

M. Tuluhan Akbulut, M. Yunus Seker, Ahmet E. Tekden, Yukie Nagai, Erhan Oztop, Emre Ugur

Conditional Neural Processes

- Conditional Neural Processes, Garnelo et.al. 2018

Motor primitives based on CNP

Problem and solution

Problems:

- Neural network
- Capabilities are limited with data
- Can't do extrapolation

Solution:

- Self-error detection
- Adaptation algorithm after error
- New task constraints are reached by RL

Capabilities of CNMP

What is RL?

$$\pi_{\theta}(\mathbf{u}_t|\mathbf{x}_t) \rightarrow \tau = \{\mathbf{x}_1, \mathbf{u}_1, \mathbf{x}_2, \mathbf{u}_2, \dots, \mathbf{x}_T, \mathbf{u}_T\}$$

$$\max_{\pi_{\theta}} E_{\tau \sim \pi_{\theta}} \left[\sum_{t} \gamma^{t} r(\mathbf{x}_{t}, \mathbf{u}_{t}) \right]$$

Method

Correction

- Only reinforcement learning:

- RL agent trained on all trajectories (mixed data):

 New trajectory should look like expert trajectory(be optimal) to be added CNMP framework.

My approach:

policy gradient:
$$\nabla_{\theta} J(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t}|\mathbf{s}_{i,t}) \right) \left(\sum_{t=1}^{T} r(\mathbf{s}_{i,t}, \mathbf{a}_{i,t}) \right)$$

maximum likelihood: $\nabla_{\theta} J_{\text{ML}}(\theta) \approx \frac{1}{N} \sum_{i=1}^{N} \left(\sum_{t=1}^{T} \nabla_{\theta} \log \pi_{\theta}(\mathbf{a}_{i,t} | \mathbf{s}_{i,t}) \right)$

Literature

How to combine RL and supervised learning:

Most algorithms:

Adding expert demonstrations to replay buffer:

Deep Q-Learning by Demonstrations by Hester et.al. Google Deepmind ,2018

$$J_E(Q) = \max_{a \in A}[Q(s,a) + l(a_E,a)] - Q(s,a_E)$$

$$l(a_E,a)] \text{ = 0 when } \quad a = a_E$$

Latent space visualization

Results with a more complex task:

Latent space visualization

Why do we train together

- The policy agent is stochastic
- The gradient is stochastic
- There is no guarantee to preserve the policy shape:

Is it same with regression:

Produced gradients only for 3 points.

In my setup, we let gradient to backpropagate for all time-steps.

Closing the loop:

Experiments:

- Video

Disadvantages

- Since we are training together, it becomes harder to converge(tradeoff between expert trajectory and RL trajectory)
- Harder to differentiate from CNMP
- Takes more iterations, needs optimization.
- Needs further analysis about convergence and representation map
- Oscillation

Thank You For Your Atten