Table 1: Considered reactions involving electrons. Rate constants were calculated using Bolsig+ software [?]. They are functions of E/N.

	Reactions	Rate constants $(cm^3s^{-1} \text{ or } cm^6s^{-1})$	Refs.
R1	$e + N_2 \rightarrow e + N_2(J)$	$f_1(E/N)$	Phelps-0.02eV
R2	$e + N_2 \rightarrow e + N_2(v)$	$f_2(E/N)$	Phelps- $(v_1 - v_8)$
R3	$e + N_2 \rightarrow e + N_2(A_1)$	$f_3(E/N)$	Phelps-6.17eV
R4	$e + N_2 \rightarrow e + N_2(A_2)$	$f_4(E/N)$	Phelps- $7.00 eV$
R5	$e + N_2 \rightarrow e + N_2(B)$	$f_5(E/N)$	Phelps-7.35, 7.36, 7.80, 8.16eV
R6	$e + N_2 \rightarrow e + N_2(a)$	$f_6(E/N)$	Phelps-8.40, 8.55, 8.89eV
R7	$e + N_2 \rightarrow e + N_2(C)$	$f_7(E/N)$	Phelps- $11.03eV$
R8	$e + N_2 \rightarrow e + N_2(E)$	$f_8(E/N)$	Phelps-11.87, 12.25eV
R9	$e + N_2 \rightarrow e + N(^4S) + N(^2D)$	$f_9(E/N)$	Phelps-13eV
R10	$e + O_2 \rightarrow e + O_2(J)$	$f_{10}(E/N)$	Phelps- $0.02eV$
R11	$e + O_2 \rightarrow e + O_2(v)$	$f_{11}(E/N)$	Phelps- $(v_1 - v_4)$
R12	$e + O_2 \rightarrow e + O_2(a)$	$f_{12}(E/N)$	Phelps- $0.977eV$
R13	$e + O_2 \rightarrow e + O_2(b)$	$f_{13}(E/N)$	Phelps- $1.627eV$
R14	$e + O_2 \rightarrow e + O_2(A)$	$f_{14}(E/N)$	Phelps- $4.5 eV$
R15	$e + O_2 \rightarrow e + O(^3P) + O(^3P)$	$f_{15}(E/N)$	Phelps-6eV
R16	$e + O_2 \rightarrow e + O(^3P) + O(^1D)$	$f_{16}(E/N)$	Phelps- $8.4 eV$
R17	$e + O_2 \rightarrow e + O(^3P) + O(^1S)$	$f_{17}(E/N)$	Phelps- $9.97eV$
R18	$e + N_2 \rightarrow 2e + N_2^+$	$f_{18}(E/N)$	Phelps-15.6eV
R19	$e + N_2 \rightarrow 2e + N_2^{\mp}$	$f_{19}(E/N)$	Phelps-18.8eV
R20	$e + O_2 \rightarrow 2e + O_2^{+}$	$f_{20}(E/N)$	Phelps-12.06eV
R21	$e + O_3 \rightarrow 2e + O_3^{+}$	$f_{21}(E/N)$	Morgan-12.43eV
R22	$e + O(^{3}P) \rightarrow 2e + O^{+}$	$f_{22}(E/N)$	IST-Lisbon-13.6eV
R23	$e + N(^4S) \rightarrow 2e + N^+$	$f_{23}(E/N)$	IST-Lisbon-14.54eV
R24	$e + O_2 + O_2 \rightarrow O_2^- + O_2$	$f_{24}(E/N)$	Phelps
R25	$e + O_2 \rightarrow O^- + O(^3P)$	$f_{25}(E/N)$	Phelps

Table 2: Considered reactions involving charged particles. T (K) and T_e (K) are gas and electron temperatures, respectively.

	D	3 -1 6 -1	- D C
	Reactions	Rate constants (cm^3s^{-1} or cm^6s^{-1})	Refs.
R26	$N_2(B) + N_2(B) \to e + N_4^+$	2.00×10^{-10}	[?]
R27	$N_2(a) + N_2(A_1) \to e + N_4^+$	5.00×10^{-11}	[?]
R28	$N_2(a) + N_2(A_2) \to e + N_4^+$	5.00×10^{-11}	[?]
R29	$N_2(a) + N_2(a) \to e + N_4^+$	2.00×10^{-10}	[?]
R30	$N(^{2}D) + O(^{3}P) \rightarrow e + NO^{+}$	1.00×10^{-12}	[?]
R31	$e + O(^{3}P) + O_{2} \rightarrow O_{2}^{-} + O(^{3}P)$	1.00×10^{-31}	[?]
R32	$e + O(^{3}P) + O_{2} \rightarrow O^{-} + O_{2}$	1.00×10^{-31}	[?]
R33	$e + O_3 \to O_2^- + O(^3P)$	1.00×10^{-9}	[?]
R34	$e + O_3 \rightarrow O^- + O_2$	1.00×10^{-11}	[?]
R35	$O_2^- + M \rightarrow e + O_2 + M$	$1.24 \times 10^{-11} \exp(-(\frac{179}{8.8 + E/N})^2)$ $1.16 \times 10^{-12} \exp(-(\frac{48.9}{11 + E/N})^2)$	[?]
R36	$\mathrm{O^-} + \mathrm{N_2} \rightarrow \mathrm{e} + \mathrm{N_2O}$	$1.16 \times 10^{-12} \exp(-(\frac{48.9}{11+E/N})^2)$	[?]
R37	$\mathrm{O^-} + \mathrm{O_2} \rightarrow \mathrm{e} + \mathrm{O_3}$	5.00×10^{-15}	[?]
R38	$O^- + O_2(a) \to e + O_3$	3.00×10^{-10}	[?]
R39	$O^- + O_2(b) \rightarrow e + O_2 + O(^3P)$	6.90×10^{-10}	[?]
R40	$O^- + N_2(A_1) \to e + N_2 + O(^3P)$	2.20×10^{-9}	[?]
R41	$O^- + N_2(B) \rightarrow e + N_2 + O(^3P)$	1.90×10^{-9}	[?]
R42	$O^- + O(^3P) \rightarrow e + O_2$	5.00×10^{-10}	[?]
R43	$O^- + N(^4S) \rightarrow e + NO$	2.60×10^{-10}	[?]
R44	$O_2^- + O_2(a) \rightarrow e + 2O_2$	2.00×10^{-10}	[?]
R45	$O_2^2 + O_2(b) \rightarrow e + 2O_2$	3.60×10^{-10}	[?]
R46	$O_2^2 + N_2(A_1) \rightarrow e + O_2 + N_2$	2.10×10^{-9}	[?]
R47	$O_2^- + N_2(B) \rightarrow e + O_2 + N_2$	2.50×10^{-9}	[?]
R48	$O_2^2 + O(^3P) \rightarrow e + O_3$	1.50×10^{-10}	[?]
R49	$O_2^2 + N(^4S) \rightarrow e + NO_2$	5.00×10^{-10}	[?]
R50	$O_3^2 + O(^3P) \rightarrow e + 2O_2$	3.00×10^{-10}	[?]
R51	$O^- + O_2 \rightarrow O_2^- + O(^3P)$	$6.96 \times 10^{-11} \exp(-(\frac{198}{5.6+E/N})^2)$	[?]
R52	$O^- + O_2 + M \rightarrow O_3^- + M$	$1.10 \times 10^{-30} \exp(-(\frac{E/N}{65})^2)$ 5.30×10^{-10}	[?]
R53	$O^- + O_3 \rightarrow O_3^- + O(^3P)$		[?]
R54	$O_2^- + O_2 + M \to O_4^- + M$	$3.50 \times 10^{-31} (\frac{300}{T})$	[?]
R55	$O_2^- + O_3 \rightarrow O_3^- + O_2$	4.00×10^{-10}	[?]
R56	$O_2^- + O(^3P) \to O^- + O_2$	3.30×10^{-10}	[?]
R57	$O_3^- + O(^3P) \to O_2^- + O_2$ $O_3^+ + O_2 \to O_2^+ + O_2$	3.20×10^{-10}	[?]
R58	$N_2 + O_2 \rightarrow O_2 + N_2$ $N_2^+ + O_2 \rightarrow O_2^+ + N_2 + O(3D)$	$6.00 \times 10^{-11} \left(\frac{300}{T}\right)^{0.5}$	[?]
R59	$N_2^+ + O_3 \rightarrow O_2^+ + N_2 + O(^3P)$	1.00×10^{-10}	[?]
R60	$N_2^+ + N_2 + M \rightarrow N_4^+ + M$	$5.20 \times 10^{-29} \left(\frac{300}{T}\right)^{2.2}$	[?]
R61	$N_2^{+} + N_2(A_1) \rightarrow N_3^{+} + N(^4S)$	3.00×10^{-10}	[?]
R62	$N_2^+ + O(^3P) \rightarrow O^+ + N_2$	$1.00 \times 10^{-11} (\frac{300}{T})^{0.2}$	[?]
R63	$N_2^+ + O(^3P) \to NO^+ + N(^4S)$	$1.30 \times 10^{-10} \left(\frac{300}{T}\right)^{0.5}$	[?]
R64	$N_2^+ + N(^4S) + M \rightarrow N_3^+ + M$	$9.00 \times 10^{-30} \exp(\frac{400}{T})$	[?]
R65	$N_2^+ + N(^4S) \to N^+ + N_2$	$2.40 \times 10^{-15}T$	[?]
R66	$N_4^+ + O_2 \rightarrow O_2^+ + 2N_2$	$2.50 \times 10^{-10} 10^{-14.6 + 0.0036(T - 300)}$	[?]
R67	$N_4^+ + N_2 \rightarrow N_2^+ + 2N_2$		[?]
R68	$N_4^+ + O(^3P) \rightarrow O^+ + 2N_2$	2.50×10^{-10}	[?]
R69	$N_4^+ + N(^4S) \to N^+ + 2N_2$	1.00×10^{-11}	[?]
R70	$O_2^+ + O_2 + M \rightarrow O_4^+ + M$	$2.40 \times 10^{-30} (\frac{300}{T})^{3.2}$	[?]
R71	$O_2^+ + N_2 + N_2 \rightarrow N_2 O_2^+ + N_2$	$9.00 \times 10^{-31} \left(\frac{300}{T}\right)^{2.0}$	[?]
R72	$O_2^+ + N_2 \rightarrow NO^+ + NO$	1.00×10^{-17}	[?]
R73	$O_2^+ + N(^4S) \to NO^+ + O(^3P)$	1.20×10^{-10}	[?]
R74	$O_4^+ + O_2 \rightarrow O_2^+ + 2O_2$	$3.30 \times 10^{-6} \left(\frac{300}{T}\right)^4 \exp\left(\frac{-5030}{T}\right)$	[?]
R75	$O_4^+ + O_2(a) \rightarrow O_2^+ + 2O_2$	1.00×10^{-10}	[?]
R76	$O_4^+ + O_2(b) \rightarrow O_2^+ + 2O_2$	1.00×10^{-10}	[?]
R77	$O_4^+ + N_2 \rightarrow N_2 O_2^+ + O_2$	$4.61 \times 10^{-12} \left(\frac{T}{300}\right)^{2.5} \exp\left(\frac{-2650}{T}\right)$	[?]
R78	$O_4^+ + O(^3P) \to O_2^+ + O_3$	3.00×10^{-10}	[?]
R79	$N_2O_2^+ + O_2 \to O_4^+ + N_2$	1.00×10^{-9}	[?]
R80	$N_2O_2^+ + N_2 \to O_2^+ + 2N_2$	$1.10 \times 10^{-6} \left(\frac{300}{T}\right)^{5.3} \exp\left(\frac{-2357}{T}\right)$	[?]

Table 2: (continued)

	Reactions	Rate constants (cm^3s^{-1} or cm^6s^{-1})	Refs.
R81	$e + e + N_2^+ \rightarrow e + N_2$	$1.00 \times 10^{-19} \left(\frac{300}{T}\right)^{4.5}$	[?]
R82	$e + N_2^+ + M \rightarrow N_2 + M$	$6.00 \times 10^{-27} (\frac{300}{T_e})^{1.5}$	[?]
R83	$e + N_2^+ \to N(^4S) + N(^4S)$	$2.80 \times 10^{-7} (\frac{300}{T_{ee}})^{0.5}$	[?]
R84	$e + N_2^+ \to N(^4S) + N(^2D)$	$2.00 \times 10^{-7} (\frac{300}{500})^{0.5}$	[?]
R85	$e + N_4^+ \to N_2 + N_2(C)$	$2.00 \times 10^{-6} \left(\frac{300}{T_c}\right)^{0.5}$ $1.00 \times 10^{-19} \left(\frac{300}{T_c}\right)^{4.5}$ $6.00 \times 10^{-27} \left(\frac{300}{T_c}\right)^{1.5}$ $2.40 \times 10^{-7} \left(\frac{300}{T_c}\right)^{0.7}$	[?]
R86	$e + e + O_2^+ \rightarrow e + O_2$	$1.00 \times 10^{-19} \left(\frac{300}{T}\right)^{4.5}$	[?]
R87	$e + O_2^+ + M \to O_2 + M$	$6.00 \times 10^{-27} \left(\frac{\frac{360}{T}}{T}\right)^{1.5}$	[?]
R88	$e + O_2^+ \to O(^3P) + O(^3P)$	$2.40 \times 10^{-7} \left(\frac{300}{T}\right)^{0.7}$	[?]
R89	$e + O_2^+ \to O(^3P) + O(^1D)$	$1.95 \times 10^{-7} (\frac{300}{T_e})^{0.7}$	[?]
R90	$e + O_4^+ \rightarrow 2O_2$	$1.40 \times 10^{-6} \left(\frac{300}{T}\right)^{0.5}$	[?]
R91	$e + O_4^+ \to O_2 + 2O(^3P)$	$1.40 \times 10^{-6} \left(\frac{300}{T_c}\right)^{0.5}$ $4.20 \times 10^{-6} \left(\frac{300}{T_c}\right)^{0.48}$	[?]
R92	$e + O_4^+ \rightarrow O_2 + O(^3P) + O(^1D)$	$4.20 \times 10^{-6} \left(\frac{300}{T_{ee}}\right)^{0.48}$	[?]
R93	$e + N_2 O_2^+ \to N_2 + O_2$	$1.30 \times 10^{-6} \left(\frac{300}{T_e}\right)^{0.5}$	[?]
R94	$N_2^+ + O^- + M \to N_2O + M$	$2.00 \times 10^{-25} (\frac{300}{300})^{2.5}$	[?]
R95	$N_2^+ + O^- + M \rightarrow N_2 + O(^3P) + M$	$2.00 \times 10^{-25} (\frac{300}{T})^{2.5}$	[?]
R96	$N_2^+ + O^- \to N_2 + O(^3P)$	$2.00 \times 10^{-7} (\frac{300}{T})^{0.5}$	[?]
R97	$N_2^+ + O^- \to 2N(^4S) + O(^3P)$	1.00×10^{-7}	[?]
R98	$N_2^+ + O_2^- + M \rightarrow N_2 + O_2 + M$	$2.00 \times 10^{-25} \left(\frac{300}{T}\right)^{2.5}$	[?]
R99	$N_2^{+} + O_2^{-} \to N_2 + O_2$	$2.00 \times 10^{-7} (\frac{300}{T})^{0.5}$	[?]
R100	$N_2^+ + O_2^- \to O_2 + 2N(^4S)$	1.00×10^{-7}	[?]
R101	$N_2^+ + O_3^- \to N_2 + O_3$	$2.00 \times 10^{-7} \left(\frac{300}{T}\right)^{0.5}$	[?]
R102	$N_2^+ + O_3^- \to O_3 + 2N(^4S)$	1.00×10^{-7}	[?]
R103	$N_4^+ + O^- \to 2N_2 + O(^3P)$	1.00×10^{-7}	[?]
R104	$N_4^{\hat{+}} + O_2^- \to 2N_2 + O_2$	1.00×10^{-7}	[?]
R105	$N_4^{\hat{+}} + O_3^{\hat{-}} \to 2N_2 + O_3$	1.00×10^{-7}	[?]
R106	$O_2^+ + O^- + M \to O_3 + M$	$2.00 \times 10^{-25} \left(\frac{300}{T}\right)^{2.5}$	[?]
R107	$O_2^{+} + O^{-} + M \rightarrow O_2 + O(^{3}P) + M$	$2.00 \times 10^{-25} \left(\frac{300}{T}\right)^{2.5}$	[?]
R108	$O_2^{+} + O^{-} \to O_2 + O(^{3}P)$	$2.00 \times 10^{-7} (\frac{300}{T})^{0.5}$	[?]
R109	$O_2^+ + O^- \to 3O(^3P)$	1.00×10^{-7}	[?]
R110	$O_2^+ + O_2^- + M \to 2O_2 + M$	$2.00 \times 10^{-25} \left(\frac{300}{T}\right)^{2.5}$	[?]
R111	$O_2^+ + O_2^- + O_2 \rightarrow 2O_2 + 2O(^3P)$	$2.00 \times 10^{-25} (\frac{300}{T})^{2.5}$	[?]
R112	$O_2^+ + O_2^- \rightarrow 2O_2$	$2.00 \times 10^{-7} (\frac{300}{T})^{0.5}$	[?]
R113	$O_2^+ + O_2^- \to O_2 + 2O(^3P)$	1.00×10^{-7}	[?]
R114	$O_2^+ + O_3^- \to O_2 + O_3$	$2.00 \times 10^{-7} (\frac{300}{T})^{0.5}$	[?]
R115	$O_2^+ + O_3^- \to O_3 + 2O(^3P)$	1.00×10^{-7}	[?]
R116	$O_4^+ + O^- \to 2O_2 + O(^3P)$	1.00×10^{-7}	[?]
R117	$O_4^+ + O_2^- + O_2 \to 3O_2 + 2O(^3P)$	$2.00 \times 10^{-25} \left(\frac{300}{T}\right)^{2.5}$	[?]
R118	$O_4^+ + O_2^- \to 3O_2$	1.00×10^{-7}	[?]
R119	$O_4^+ + O_3^- \to 2O_2 + O_3$	1.00×10^{-7}	[?]

Table 3: Considered reactions for neutral species. T (K) is gas temperature.

	Reactions	Rate constants (cm ³ s ⁻¹ or cm ⁶ s ⁻¹)	Refs.
R120	$N_2(A_1) + O_2 \to N_2 + O_2(b)$	7.50×10^{-13}	[?]
R121	$N_2(A_1) + O_2 \to N_2 + 2O(^3P)$	1.70×10^{-12}	[?]
R122	$N_2(A_1) + O_2 \to N_2O + O(^3P)$	7.80×10^{-14}	[?]
R123	$N_2(A_1) + N_2 \rightarrow 2N_2$	3.00×10^{-16}	[?]
R124	$N_2(A_1) + N_2(A_1) \to N_2 + N_2(B)$	7.70×10^{-11}	[?]
R125	$N_2(A_1) + N_2(A_1) \to N_2 + N_2(C)$	1.60×10^{-10}	[?]
R126	$N_2(A_1) + N_2(A_1) \to N_2 + N_2(E)$	1.00×10^{-11}	[?]
R127	$N_2(A_1) + O(^3P) \to N_2 + O(^3P)$	2.00×10^{-11}	[?]
R128	$N_2(A_1) + O(^3P) \to N_2 + O(^1S)$	3.00×10^{-11}	[?]
R129	$N_2(A_1) + O(^3P) \to NO + N(^2D)$	7.00×10^{-12}	[?]
R130	$N_2(A_1) + N(^4S) \to N_2 + N(^2P)$	5.00×10^{-11}	[?]
R131	$N_2(A_2) + N_2 \rightarrow 2N_2$	3.00×10^{-16}	[?]
R132	$N_2(A_2) + N_2 \to N_2 + N_2(A_1)$	1.00×10^{-11}	[?]
R133	$N_2(A_2) + O(^3P) \to N_2 + O(^3P)$	2.00×10^{-11}	[?]
R134	$N_2(A_2) + O(^3P) \to NO + N(^4S)$	7.00×10^{-12}	[?]
R135	$N_2(B) + O_2 \to N_2 + 2O(^3P)$	3.00×10^{-10}	[?]
R136	$N_2(B) + N_2 \to N_2 + N_2(A_1)$	1.00×10^{-11}	[?]
R137	$N_2(B) \to N_2(A_1) + h\nu$	1.10×10^5	[?]
R138	$N_2(a) + O_2 \rightarrow N_2 + O(^3P) + O(^1D)$	2.80×10^{-11}	[?]
R139	$N_2(a) + N_2 \to N_2 + N_2(B)$	2.40×10^{-13}	[?]
R140	$N_2(C) + O_2 \to N_2 + 2O(^3P)$	2.50×10^{-10}	[?]
R141	$N_2(C) + O_2 \rightarrow N_2 + O(^3P) + O(^1S)$	3.00×10^{-10}	[?]
R142	$N_2(C) + N_2 \to N_2 + N_2(B)$	1.00×10^{-11}	[?]
R143	$N_2(C) + N_2 \to N_2 + N_2(a)$	1.00×10^{-11}	[?]
R144	$N_2(C) \to N_2(B) + h\nu$	2.40×10^{7}	[?]
R145	$N_2(E) + N_2 \to N_2 + N_2(C)$	1.00×10^{-11}	[?]
R146	$N(^{4}S) + O_{2} \rightarrow NO + O(^{3}P)$	$9.70 \times 10^{-15} T^{1.01} \exp(\frac{-3120}{T})$	[?]
R147	$N(^4S) + O_3 \rightarrow NO + O_2$	2.00×10^{-16}	[?]
R148	$N(^4S) + O(^3P) + M \rightarrow NO + M$	$1.76 \times 10^{-31} T^{-0.5}$	[?]
R149	$N(^{4}S) + N(^{4}S) + N_{2} \rightarrow N_{2} + N_{2}(A_{1})$	$1.38 \times 10^{-34} \exp(\frac{-500}{T})$	[?]
R150	$N(^{4}S) + N(^{4}S) + N_{2} \rightarrow N_{2} + N_{2}(A_{2})$	$1.38 \times 10^{-34} \exp(\frac{-500}{T})$	[?]
R151	$N(^{4}S) + N(^{4}S) + N_{2} \rightarrow N_{2} + N_{2}(B)$	2.40×10^{-33}	[?]
R152	$N(^{4}S) + N(^{4}S) + M \rightarrow N_{2} + M$	$8.27 \times 10^{-34} \exp(\frac{500}{T})$	[?]
R153	$N(^{4}S) + N(^{2}P) \rightarrow N(^{4}S) + N(^{2}D)$	1.80×10^{-12}	[?]
R154	$N(^{2}D) + O_{2} \rightarrow NO + O(^{3}P)$	$2.52 \times 10^{-12} \exp(\frac{-185}{T_{cm}})$	[?]
R155	$N(^{2}D) + O_{2} \rightarrow NO + O(^{1}D)$	$7.37 \times 10^{-12} \exp(\frac{-185}{T})$	[?]
R156	$N(^{2}D) + N_{2} \rightarrow N_{2} + N(^{4}S)$	1.70×10^{-14}	[?]
R157	$N(^{2}D) + O(^{3}P) \rightarrow N(^{4}S) + O(^{3}P)$	$3.30 \times 10^{-12} \exp(\frac{-260}{T})$	[?]
R158	$N(^{2}P) + O_{2} \rightarrow NO + O(^{3}P)$	2.60×10^{-12}	[?]
R159	$N(^{2}P) + N_{2} \rightarrow N_{2} + N(^{2}D)$	2.00×10^{-18}	[?]

Table 3: (continued)

	Reactions	Rate constants $(cm^3s^{-1} \text{ or } cm^6s^{-1})$	Refs.
R160	$O_2(a) + O_2 \rightarrow 2O_2$	$2.20 \times 10^{-18} \left(\frac{T}{300}\right)^{0.8}$	[?]
R161	$O_2(a) + O_3 \rightarrow 2O_2 + O(^3P)$	$9.70 \times 10^{-13} \exp(\frac{-1564}{T})$	[?]
R162	$O_2(a) + N_2 \to O_2 + N_2$	3.00×10^{-21}	[?]
R163	$O_2(a) + O(^3P) \to O_2 + O(^3P)$	7.00×10^{-16}	[?]
R164	$O_2(a) + O(^1S) \to 3O(^3P)$	3.40×10^{-11}	[?]
R165	$O_2(a) + O(^1S) \to O_2(b) + O(^1D)$	3.60×10^{-11}	[?]
R166	$O_2(a) + O(^1S) \to O_2(A) + O(^3P)$	1.30×10^{-10}	[?]
R167	$O_2(a) + N(^4S) \to NO + O(^3P)$	$2.00 \times 10^{-14} \exp(\frac{-600}{T})$	[?]
R168	$O_2(b) + O_2 \to O_2 + O_2(a)$	$4.30 \times 10^{-22} T^{2.4} \exp(\frac{-241}{T})$	[?]
R169	$O_2(b) + O_3 \rightarrow 2O_2 + O(^3P)$	1.80×10^{-11}	[?]
R170	$O_2(b) + N_2 \to N_2 + O_2(a)$	$4.90 \times 10^{-15} \exp(\frac{-253}{T})$	[?]
R171	$O_2(b) + O(^3P) \to O_2(a) + O(^3P)$	8.00×10^{-14}	[?]
R172	$O_2(b) + O(^3P) \to O_2 + O(^1D)$	$3.39 \times 10^{-11} \left(\frac{300}{T}\right)^{0.1} \exp\left(\frac{-4201}{T}\right)$	[?]
R173	$O_2(A) + O_2 \rightarrow 2O_2(b)$	2.90×10^{-13}	[?]
R174	$O_2(A) + N_2 \to N_2 + O_2(b)$	3.00×10^{-13}	[?]
R175	$O_2(A) + O(^3P) \to O_2(b) + O(^1D)$	9.00×10^{-12}	[?]
R176	$O(^{3}P) + O_{2} + O_{2} \rightarrow O_{3} + O_{2}$	$6.00 \times 10^{-34} \left(\frac{300}{T}\right)^{2.6}$ $5.60 \times 10^{-34} \left(\frac{300}{T}\right)^{2.6}$	[?]
R177	$O(^{3}P) + O_{2} + N_{2} \rightarrow O_{3} + N_{2}$	$5.60 \times 10^{-34} \left(\frac{300}{T}\right)^{2.6}$	[?]
R178	$O(^{3}P) + O_{3} \rightarrow 2O_{2}$	$8.00 \times 10^{-12} \exp(\frac{-2060}{T})$	[?]
R179	$O(^{3}P) + O(^{3}P) + O_{2} \rightarrow 2O_{2}$	$2.45 \times 10^{-31} T^{-0.63}$	[?]
R180	$O(^{3}P) + O(^{3}P) + N_{2} \rightarrow O_{2} + N_{2}$	$2.76 \times 10^{-34} \exp(\frac{720}{T})$	[?]
R181	$O(^{3}P) + O(^{1}D) + N_{2} \rightarrow O_{2} + N_{2}$	9.90×10^{-33}	[?]
R182	$O(^{3}P) + O(^{1}S) \rightarrow O(^{3}P) + O(^{1}D)$	$5.00 \times 10^{-11} \exp(\frac{-301}{T})$	[?]
R183	$O(^{1}D) + O_{2} \rightarrow O_{2} + O(^{3}P)$	$3.12 \times 10^{-11} \exp(\frac{70}{T})$	[?]
R184	$O(^{1}D) + O_{2} \rightarrow O_{2}(b) + O(^{3}P)$	$2.56 \times 10^{-11} \exp(\frac{67}{T})$	[?]
R185	$O(^{1}D) + O_{3} \rightarrow 2O_{2}$	$2.37 \times 10^{-10} \exp(\frac{6}{T})$	[?]
R186	$O(^{1}D) + O_{3} \rightarrow O_{2} + 2O(^{3}P)$	$2.37 \times 10^{-10} \exp(\frac{6}{T})$	[?]
R187	$O(^{1}D) + N_{2} \rightarrow N_{2} + O(^{3}P)$	$2.10 \times 10^{-11} \exp(\frac{115}{T})$	[?]
R188	$O(^{1}S) + O_{2} \rightarrow O_{2} + O(^{1}D)$	$1.33 \times 10^{-12} \exp(\frac{-850}{T_{col}})$	[?]
R189	$O(^{1}S) + O_{2} \rightarrow O_{2}(A) + O(^{3}P)$	$2.97 \times 10^{-12} \exp(\frac{-850}{T})$	[?]
R190	$O(^{1}S) + O_{3} \rightarrow 2O_{2}$	2.90×10^{-10}	[?]
R191	$O(^{1}S) + O_{3} \rightarrow O_{2} + O(^{3}P) + O(^{1}D)$	2.90×10^{-10}	[?]
R192	$O_3 + O_3 \to O_2 + O_3 + O(^3P)$	$7.16 \times 10^{-10} \exp(\frac{-11200}{T})$	[?]

Table 4: Effective electronic states of N_2 and O_2 considered in the simulation.

Electronic states	Excitation energy (eV)	Effective states
$N_2(X, v = 0)$	0	$N_2(X)$
$N_2(A^3\Sigma_u^+, v = 04)$	6.17	$N_2(A_1)$
$N_2(A^3\Sigma_u^+, v = 59)$	7.00	$N_2(A_2)$
$N_2(B^3\Pi_g)$	7.35	$N_2(B)$
$N_2(W^3\Delta_u)$	7.36	$N_2(B)$
$N_2(A^3\Sigma_u^+, v > 10)$	7.80	$N_2(B)$
$N_2(B'^3\Sigma_u^-)$	8.16	$N_2(B)$
$N_2(a'^1\Sigma_u^-)$	8.40	$N_2(a)$
$N_2(a^1\Pi_g)$	8.55	$N_2(a)$
$N_2(w^1\Delta_u)$	8.89	$N_2(a)$
$N_2(C^3\Pi_u)$	11.03	$N_2(C)$
$N_2(E^3\Sigma_g^+)$	11.87	$N_2(E)$
$N_2(a^{\prime\prime 1}\Sigma_g^+)$	12.25	$N_2(E)$
$O_2(a^1\Delta_g)$	0.977	$O_2(a)$
$O_2(b^1\Sigma_g^+)$	1.627	$O_2(b)$
$O_2(c^1\Sigma_u^-)$	4.05	$O_2(A)$
$O_2(A'^3\Delta_u)$	4.26	$O_2(A)$
$O_2(A^3\Sigma_u^+)$	4.34	$O_2(A)$