3.2 1)
$$\log_2(x) = 4$$

 $x = 2^4 = 16$
 $S = \{16\}$

2)
$$\log_3(x) = 5$$

 $x = 3^5 = 243$
 $S = \{243\}$

3)
$$\log_4(x) = 3$$

 $x = 4^3 = 64$
 $S = \{64\}$

4)
$$\log_x(256) = 4$$

 $x^4 = 256$
 $x^4 - 256 = 0$
 $(x^2 - 16)(x^2 + 16) = 0$
 $(x - 4)(x + 4)(x^2 + 16) = 0$
 $x = 4$ ou $x = -4$

La solution x=-4 doit être écartée, car la base d'un logarithme doit être positive, même s'il est vrai que $(-4)^4=256$.

$$S = \{4\}$$

5)
$$\log_x(125) = 3$$

 $x^3 = 125$
 $x^3 - 125 = 0$
 $(x - 5)(x^2 + 5x + 25) = 0$
 $x = 5$

On constate que l'équation $x^2+5\,x+25=0$ n'admet aucune solution, étant donné que $\Delta=5^2-4\cdot1\cdot25=-75<0$.

$$S = \{5\}$$

6)
$$\log_x(1000) = 3$$

 $x^3 = 1000$
 $x^3 - 1000 = 0$
 $(x - 10)(x^2 + 10x + 100) = 0$
 $x - 10$

L'équation $x^2+10\,x+100=0$ n'admet pas de solution, attendu que $\Delta=10^2-4\cdot1\cdot100=-300<0.$

$$S = \{10\}$$