Теорема (Хаусдорф, около 1914 г.). Для того, чтобы множество $K \subset X$ было компактно в X, необходимо и достаточно чтобы для любого $\varepsilon > 0$ в множестве K существовала конечная ε - сеть.

Доказательство. - Необходимость. (Доказывается от противного).

Пусть K - компактное в X множество. Предположим, что для заданного $\varepsilon > 0$ не существует конечной ε - сети. Возьмем любой элемент $x_1 \in K$. Согласно предположению он не образует конечной ε - сети и существует элемент $x_2 \in K$ такой что $\rho(x_1, x_2) > \varepsilon$. Два элемента x_1 и x_2 не образуют ε - сети, и существует третий элемент $x_3 \in K$ такой что значения $\rho(x_3, x_1), \ \rho(x_3, x_2), \ \rho(x_2, x_1) > \varepsilon$.

Продолжая этот процесс, получим последовательность элементов $x_1, x_2, x_3, \dots x_n \dots \in K$ таких что $\rho(x_i, x_j) > \varepsilon$ при $i \neq j$. Из этой последовательности нельзя составить ни одной фундаментальной подпоследовательности, что противоречит компактности множества K. - Достаточность.

Пусть $\{x_n\}_{n=1}^{\infty}$ любая последовательность элементов множества K. Образуем последовательность чисел $\varepsilon_k > 0$, монотонно стремящуюся к 0.

Для значения ε_1 в множестве K существует конечная ε_1 - сеть, т.е. все множество K может быть покрыто конечным числом шаров радиуса ε_1 . Так как последовательность $\{x_n\}$ содержит бесконечное число элементов, то среди упомянутых шаров найдется хотя бы один шар $V_{\varepsilon_1}(z_1)$, в котором содержится бесконечное число элементов последовательности $\{x_n\}$. Обозначим x_{n_1} первый из таких элементов: $x_{n_1} \in V_{\varepsilon_1}(z_1)$.

Далее, шар $V_{\varepsilon_1}(z_1)$ может быть покрыт конечным числом шаров радиуса $\varepsilon_2 < \varepsilon_1$. Тогда в одном из таких шаров $V_{\varepsilon_2}(z_2)$ содержится бесконечное число элементов последовательности $\{x_n\}$, и первый после x_{n_1} такой элемент обозначим x_{n_2} :

$$x_{n_1} \in V_{\varepsilon_1}(z_1) \cap V_{\varepsilon_2}(z_2),$$

Продолжая этот процесс, получим последовательность элементов $\{x_{n_k}\}\subset \{x_n\}$ таких что $x_{n_k}\in V_{\varepsilon_k}(z_k)$,

$$x_{n_k} \in \bigcap_{i=1}^k V_{\varepsilon_i}(z_i),$$

где n_k возрастающая последователность чисел. При m>k оба элемента x_{n_k} и x_{n_m} принадлежат шару $V_{\varepsilon_k}(z_k)$. По неравенству треугольника

$$\rho(x_{n_k}, x_{n_m}) \leqslant \rho(x_{n_k}, z_k) + \rho(z_k, x_{n_m}) \leqslant \varepsilon_k + \varepsilon_k = 2\varepsilon_k.$$

Следовательно подпоследовательность $\{x_{n_k}\}$ последовательности $\{x_n\}$ является фундаментальной.

Следствие. Если в множестве $K \subset X$ существует компактная в $X \varepsilon$ - сеть H_{ε} , то множество K компактно в X.

Дейсвительно, так как H_{ε} является ε - сетью для множества K, то для любого элемента $x \in K$ существует элемент $x_{\varepsilon} \in H_{\varepsilon}$ такой что $\rho(x, x_{\varepsilon}) < \varepsilon$. Из условия компактности множества H_{ε} в пространстве X следует, что в H_{ε} существует конечная ε - сеть элементов $\bar{x}_1, \bar{x}_2, \ldots \bar{x}_n$, и для элемента x_{ε} существует элемент $\bar{x}_k \in H_{\varepsilon}$ такой что $\rho(x_{\varepsilon}, \bar{x}_k) < \varepsilon$. Тогда $\rho(x, \bar{x}_k) \leqslant \rho(x, x_{\varepsilon}) + \rho(x_{\varepsilon}, \bar{x}_k) \leqslant \varepsilon + \varepsilon = 2\varepsilon$.

Следовательно элементы $\bar{x}_1, \bar{x}_2, \dots \bar{x}_n$, множества H_{ε} образуют в множестве K конечную 2ε - сеть. По теореме Хаусдорфа множество K компактно в X.