HYUNWOO OH

hyunwooh@umd.edu \(\dig (240) \) 825-6201 \(\dig \) https://hyunwooh5.github.io \(\dig \) Woodbridge, VA

RESEARCH INTERESTS

Sign and signal-to-noise problems in Monte Carlo calculations, Machine learning applications in physics, Quantum simulation of field theories

EDUCATION

University of Maryland

College Park, MD

Ph.D. Candidate in Physics (Advisors: Paulo Bedaque, Thomas Cohen)

Sep. 2020 - Present

Yonsei University

Seoul, Korea

B.S. in Physics, B.S. in Mathematics

2013 - 2019

Graduated with Highest Honors, Valedictorian

PAPERS

- [10] Hyunwoo Oh, Training neural control variates using correlated configurations, Phys. Rev. D 112, 074501 (2025), arXiv:2505.07719 [hep-lat]
 - [9] Thomas D. Cohen, Andrew Li, Hyunwoo Oh, and Maneesha Sushama Pradeep, On the utility of the switching theorem for adiabatic state preparation, arXiv:2502.06534 [quant-ph]
 - [8] Thomas D. Cohen and Hyunwoo Oh, Asymptotic errors in adiabatic evolution, Phys. Rev. A 111, 042612 (2025), arXiv:2501.10641 [quant-ph]
 - [7] Thomas D. Cohen, Hyunwoo Oh, and Veronica Wang, Numerical study of computational cost of maintaining adiabaticity for long paths, arXiv:2412.08626 [quant-ph]
 - [6] Thomas D. Cohen and Hyunwoo Oh, Corrections to adiabatic behavior for long paths, Phys. Rev. A 110, 062601 (2024), arXiv:2405.10294 [quant-ph]
 - [5] Paulo F. Bedaque and Hyunwoo Oh, Leveraging neural control variates for enhanced precision in lattice field theory, Phys. Rev. D 109, 094519 (2024), arXiv:2312.08228 [hep-lat]
 - [4] Thomas D. Cohen and Hyunwoo Oh, Efficient vacuum-state preparation for quantum simulation of strongly interacting local quantum field theories, Phys. Rev. A 109, L020402 (2024), arXiv:2310.19229 [hep-lat]
 - [3] Thomas D. Cohen and Hyunwoo Oh, Optimizing the rodeo projection algorithm, Phys. Rev. A 108, 032422 (2023), arXiv:2305.19952 [quant-ph]
 - [2] Andrei Alexandru, Paulo F. Bedaque, Andrea Carosso, and Hyunwoo Oh, *Infinite variance problem in fermion models*, Phys. Rev. D **107**, 094502 (2023), arXiv:2211.06419 [hep-lat]
 - [1] Scott Lawrence, Hyunwoo Oh, and Yukari Yamauchi, Lattice scalar field theory at complex coupling, Phys. Rev. D 106, 114503 (2022), arXiv:2205.12303 [hep-lat]

PROCEEDINGS

- [2] Hyunwoo Oh, Control variates with neural networks, PoS LATTICE2024 051, arXiv:2501.14614 [hep-lat]
- [1] Hyunwoo Oh, Andrei Alexandru, Paulo F. Bedaque, and Andrea Carosso, A solution for infinite variance problem of fermionic observables, PoS LATTICE2023 021, arXiv:2311.16074 [hep-lat]

TALKS

- [7] Neural control variates for variance reduction (Poster), USQCD All-Hands Meeting 2025, College Park, MD, March 2025
- [6] Control variates with neural networks, Lattice 2024 at Liverpool, UK, July 2024

- [5] State preparation of local quantum field theories using projection, HEP-QIS Forum at Fermilab, Batavia, IL, October 2023
- [4] State preparation of local quantum field theories using quantum Zeno effect, Nuclear Theory Seminar at UMD, College Park, MD, October 2023
- [3] A solution for infinite variance problem of fermionic observables, Lattice 2023 at Fermilab, Batavia, IL, August 2023
- [2] Infinite variance problem in lattice fermions, Nuclear Theory Seminar at UMD, College Park, MD, November 2022
- [1] Lattice scalar field theory at complex coupling, Fall 2022 Meeting of the APS Division of Nuclear Physics, New Orleans, LA, October 2022

RESEARCH EXPERIENCE

Nuclear Theory Group

College Park, MD

Research Assistant

Sep. 2020 - Present

- Improved Monte Carlo (MC) calculation stability and efficiency by addressing complex numerical issues, utilizing a diverse set of techniques including machine learning
 - Resolved the infinite variance problem caused by zeros of determinant in MC sampling through the novel approach of adding auxiliary variables and applying a reweighting scheme
 - Tackled the sign problem in physical systems by developing and implementing contour deformation methods with machine learning
 - Developing a control variates method integrated with machine learning to mitigate signal-to-noise problems in studying physical systems
- Developed and analyzed efficient quantum algorithms for preparing ground states
 - Mitigated exponential variance in the Rodeo projection algorithm, resulting in over $2\times$ improvement in projection speed
 - Developed a state preparation method that achieves a quadratic speedup compared to adiabatic state preparation and methods based on the quantum Zeno effect
 - Analyzed the scaling and dynamics of errors in adiabatic state preparation in the context of simulating quantum field theories

WORK EXPERIENCE

Samsung Electronics

Hwaseong, Korea

 $Process\ Integration\ Engineer$

Mar. 2019 - Mar. 2020

- Designed and managed the process integration flow for DRAM manufacturing
- Contributed to a project focused on the development and integration of a next-generation DRAM product

Military Service in Republic of Korea Air Force

Staff Sergeant

Seongnam, Korea Sep. 2016 – Sep. 2018

- Managed and operated military vehicles, strictly adhering to safety protocols and maintenance schedules
- Served as a representative and counselor for mandatory service personnel, addressing administrative needs and providing essential support

MENTORING EXPERIENCE

• Veronica Wang (High School Student, Summer 2024), now attending Stanford University Mentored on a research project on adiabatic state preparation; resulting in a publication

• Andrew Li (High School Student, Summer 2024), now attending the University of Maryland Mentored on a research project on the switching theorem; resulting in a publication

HONORS AND AWARDS

Dean's Fellowship, University of Maryland2020 – 2022Kwanjeong Domestic Scholarship, Kwanjeong Educational Foundation2015 – 2019National Science & Technology Scholarship, Korea Student Aid FoundationFall 2014Truth Scholarship (Merit based), Yonsei UniversitySpring 2014, Fall 2013Dean's List, Yonsei UniversityAll semesters

SKILLS

Programming Python, Mathematica, C++
Software & Tools JAX, Numpy, Scipy, Pandas, scikit-learn, Git, Linux

Last updated: October 10, 2025