Полносвязный слой

• Картинка 32х32х3 вытягиваем в вектор 3072

Hubel & Wiesel. 1965r.

Retina Retinal Ganglion Cells

Receptive Fields in the Retina

Модель рецептивного поля

On-Center Off-Surround Receptive Field

Off-Center
On-Surround
Receptive Field

Рецептивные поле в визуальной коре

Other examples of oriented receptive fields

Реконструкция картинки

 RF_1

 RF_2

 RF_3

 RF_4

$$\hat{\mathbf{I}} = \sum_{i} \mathbf{R} \mathbf{F}_{i} r_{i}$$

Как определять границы на изображении

3	0°	1	2	7	4	
→ 1	5	8	9	3	1	
→2 ¹	7	2-1	5	1	3	
0	1	3	1	7	8	
4	2	1	6	2	8	
2	4	5	2	3	9	
6×6						

3	0	1°	2	7	4	"consolution"	
1	5	8°	9 1	3	1		-5 -4
2	<u>Z</u> 1	<u>2</u> °	5-1	1	3		
0	1	3	1	7	8	* 1 0 -1 =	
4	2	1	6	2	8	3×3	
2	4	5	2	3	9	filter	4×4
		6×1	6				

Вертикальные границы примеры

Вертикальные и горизонтальные границы

Vertical

1	10	10	10	0	0	0		
	10	10 10		10 10	10	0	0	0
	10	10	10	0	0	0		
	0	0	0	10	10	10		
	0	0 0 0	0	10	10	10		
	0	0	0	10	10	10		
	6xL							

0 0 0 -1 -1 -1

Horizontal

1	1	1	
0	0	0	
-1	-1	-1	

=

0	0	0	0	
30	10	-10	-30	
30	10	-10	-30	
0	0	0	0	

Каждое применение фильтра к исходной картинке, это операция скалярного умножения и суммирования. Результат **одно** значение

т.е 5х5х3 = 75 – размерное скалярное произведение + смещение

$$w^T x + b$$

Свертка пробегает по входному изображению по всем размерностям высота и ширина

Карта активации

Карта активации

Применим еще фильтр

Свертка пробегает по входному изображению по всем размерностям высота и ширина

Получим новое представление изображения 28x28x6

Применим еще четыре фильтра 5x5x3

Свертка пробегает по входному изображению по всем размерностям высота и ширина

7

7

7

7

7

7

7

Как рассчитать размер выходной карты

H

Размер выходной карты:

$$W = (W-K) / шаг + 1$$

$$H = (H - K) / шаг + 1$$

Картинка 7х7 – ядро 3х3:

Stride
$$1 - (7-3)/1+1=5$$

Stride
$$2 - (7-3)/2 + 1 = 3$$

Stride
$$3 - (7-3)/3 + 1 = 2.3$$

Когда нельзя но очень хочется

0	0	0	0	0	0		
0							
0							
0							
0							

Добавим поля к нашей входной карте, если мы хотим пройти сверткой 3х3

Тогда:

Stride 3 - (9 - 3)/3 + 1 = 3

Мы можем не менять размер

картинки:

Stride
$$1 - (9 - 3)/1 + 1 = 7$$

$$K=5$$
, $P=2 - (11 - 5)/1+1=7$

$$W = (W + 2P - K) / S + 1$$

Сверточная нейросеть

