Follow the Money: Predicting Startup Outcome Using Funding Data and Other Factors

Daniel White & Yiyao (Tato) Lu | Group 20

May 14, 2020

Table of Contents

I. Introduction

II. Data

A. Distribution of Startup Characteristics

B. Startup Funding

III. Regression Analysis

IV. Machine Learning Analysis

V. Cluster Analysis

VI. Conclusion

I. Introduction

It's well-known that it's difficult for startups and small businesses to survive. In 2018, there were 30.2 million small businesses operating in the U.S. (https://www.sba.gov/sites/default/files/Whats-New-With-Small-Business-2018.pdf) It's estimated that only 2 in 5 of those businesses are profitable, while the others breakeven or even lose money. (https://smallbiztrends.com/2019/03/startup-statistics-small-business.html) Experts and investors look to a variety of factors to try and predict the outcome of a startup, ranging from the founder's gender (https://hbr.org/2016/05/4-factors-that-predict-startup-success-and-one-that-doesnt) to the influence of venture capitalists (https://dspace.mit.edu/bitstream/handle/1721.1/113149/1018306746-MIT.pdf?sequence=1&isAllowed=y).

In this project, we look at about 50,000 companies listed on Crunchbase to examine the effect of funding on startup outcome and try to predict the probability that a startup is acquired (or still operating).

II. Data

For our analyses, we use data about startup companies and investments via Crunchbase, published by user Andy_M on Kaggle (https://www.kaggle.com/arindam235/startup-investments-crunchbase (<a href="https://www.kaggle.com/arindam235/startup-investments-crunchbase (<a href="https://www.kaggle.com/arindam235/startup-investments-crunchbase (<a href="https://www.kaggl

```
In [1]: #Import the data and packages
                    import pandas as pd
                    import numpy as np
                    import matplotlib.pyplot as plt
                    import seaborn as sns
                    file name = 'investments VC.csv'
                    df = pd.read csv(file name, encoding = 'latin1')
                    df.isna().sum()
                 permalink
name
4857
homepage_url
category_list
market
funding_total_usd
status
country_code
state_code
city
funding_rounds
founded_at
founded_at
founded_quarter
founded_quarter
first_funding_at
last_funding_at
seed
venture
equity_crowdfunding
undisclosed
convertible_note
debt_financing
angel
grant
product_crowdfunding
round_A
round_B
round_B
round_R
round_S
4856
rounded_ser
15812
founded_ser
4856
debt_financing
4856
debt_financing
4856
post_ipo_debt
secondary_market
product_crowdfunding
round_B
round_B
round_C
4856
Out[1]: permalink 4856
name 4857
                 round_C
round_D
round_E
round_F
round_G
round_H
dtype: :
                                                                             4856
                                                                             4856
                                                                             4856
                                                                             4856
                                                                             4856
                                                                             4856
                                                                               4856
                    dtype: int64
```

Looking at missing data, we see thousands of rows where all values are NA. These are blank rows in the underlying file that were mistakenly read in. To drop these rows, we use the dropna function.

dtype: int64

```
In [2]: | df = df.dropna(how = 'all')
                         df.isna().sum()
                       permalink 0
name 1
homepage_url 3449
category_list 3961
market 3968
Out[2]: permalink

      market
      3968

      funding_total_usd
      0

      status
      1314

      country_code
      5273

      state_code
      19277

      region
      5273

      city
      6116

      funding_rounds
      0

      founded_at
      10884

      founded_month
      10956

      founded_quarter
      10956

      founded_year
      10956

      first_funding_at
      0

      last_funding_at
      0

      seed
      0

      venture
      0

                       equity_crowdfunding 0
undisclosed ^
                                                                                           0 0 0
                        convertible_note
                        debt_financing
                        angel
                                                                                                       0
                        grant
                      private_equity 0
post_ipo_equity 0
post_ipo_debt 0
secondary_market 0
product_crowdfunding 0
                                                                                                        0
                       round B
                        round C
                                                                                                         0
                                                                                                          0
                        round D
                                                                                                           0
                        round E
                                                                                                           0
                        round F
                                                                                                            0
                       round G
                                                                                                             0
                        round_H
```

```
In [3]: #Clean data
#remove white spaces in column names
df.rename(columns={' market ': 'market', ' funding_total_usd ': 'funding_total_usd'}, i
nplace=True)

# want to fill in NaNs on status so we know how many unknowns are present
df['status'].fillna('unknown', inplace = True)

# note: the source data placed commas in the wrong position
# but if we strip out commas and white space, the numbers are still accurate
# e.g. the funding for Waywire is supposed to be $1,750,000, but shows up in the data a
s "17,50,000"
df['funding_total_usd'].replace('[-,]', '', regex = True, inplace = True)
df['funding_total_usd'] = pd.to_numeric(df['funding_total_usd'])

df.head()
```

Out[3]:

y_list	category_lis	homepage_url	name	permalink	
News	Entertainment Politics Social Media News	http://www.waywire.com	#waywire	organization/waywire	0
ames	Games	http://enjoyandtv.com	&TV Communications	/organization/tv-communications	1
ation	Publishing Education	http://www.rockyourpaper.org	'Rock' Your Paper	organization/rock-your-paper	2
sic i	Electronics Guides Coffee Restaurants Music i	http://www.InTouchNetwork.com	(In)Touch Network	/organization/in- touch-network	3
ames	Tourism Entertainment Games	NaN	-R- Ranch and Mine	/organization/r- ranch-and-mine	4

5 rows × 39 columns

The dataset contains 49,438 observations with 39 variables, which include nominal variables (name of the startup, homepage URL, category, etc.), numerical variables (total funding, funding by source such as seed, VC, etc.), and date variables (founding date, first funding date, etc).

```
In [4]: df.shape
Out[4]: (49438, 39)
```

To explore the data, we chart the distribution of startups by status and other variables.

A. Distribution of Startup Characteristics

```
In [5]: plt.style.use('seaborn-dark')
        def horizontal distribution(chart data, title = '', xlab = '', ylab = '', xlim = 5000
            plt.figure(figsize=(12, 8))
            ax = chart data.sort values().plot(kind='barh')
            ax.set title(title)
            ax.set xlabel(xlab)
            ax.set ylabel(ylab)
            ax.set xlim([0, xlim])
            rects = ax.patches
            # For each bar: Place a label
            for rect in rects:
                # Get X and Y placement of label from rect.
                x_value = rect.get_width()
                y_value = rect.get_y() + rect.get_height() / 2
                # Number of points between bar and label. Change to your liking.
                space = 5
                # Vertical alignment for positive values
                ha = 'left'
                # Use X value as label and format number with one decimal place
                label = "{:,}".format(x value)
                # Create annotation
                plt.annotate(
                    label,
                                                 # Use `label` as label
                    (x_value, y_value),
                                                 # Place label at end of the bar
                    xytext=(space, 0),
                                                 # Horizontally shift label by `space`
                    textcoords="offset points", # Interpret `xytext` as offset in points
                    va='center',
                                                 # Vertically center label
                    ha=ha)
                                                 # Horizontally align label differently for
                                                 # positive and negative values.
        horizontal distribution(df['status'].value_counts(), 'Distribution of Startup Statuses
        ', 'Frequency', 'Status', 50000)
```


Most of the startups in the data are still operating. Over 84% are operating, while only about 7% have been acquired.

```
In [6]: mkt_freq = df['market'].value_counts()
horizontal_distribution(mkt_freq.head(10), 'Top 10 Most Popular Startup Markets', 'Freq
uency', 'Market', 5000)
```


Most startups are in the tech industry, ranging from games to biotech. The most popular market is software, with more than 4,600 startups.

```
In [7]: region_freq = df['region'].value_counts()
    horizontal_distribution(region_freq.head(10), 'Top 10 Regions with Most Startups', 'Fre
    quency', 'Region', 8000)
```


The biggest hotspot for startups is the SF Bay Area, with more than twice as many startups as New York City. Many of the most popular regions for startups are in the US, except for London.

B. Startup Funding

Funding is an important factor when considering startup performance. Before a business can operate, it needs capital and resources. With that in mind, we think that funding could be a reasonable predictor for a startup's outcome. To explore this idea, we take a closer look at funding and the sources of funding for startups in the data.

```
In [8]: log_funding = np.log(df['funding_total_usd'].dropna())
    plt.figure(figsize=(12, 8))
    ax = log_funding.plot(kind='hist', bins = 20)
    ax.set_title('Distribution of Funding (USD)')
    ax.set_xlabel('Bin (Log USD)')
    ax.set_ylabel('Frequency')
Out[8]: Text(0, 0.5, 'Frequency')
```


The distribution of total funding looks like a log-normal distribution with a longer left-tail, giving it a slight skew to the left. This means that there are more startups with extremely low funding than those with extremely high funding.

```
In [9]: plt.figure(figsize=(12, 8))

# Iterate through the five airlines
for k in df['status'].unique():
    # Subset to the airline
    subset = df[df['status'] == k]

# Draw the density plot
    sns.distplot(np.log(subset['funding_total_usd'].dropna()), hist = False, kde = Tru
e,
    kde_kws = {'linewidth': 3},
    label = k)

plt.legend(prop={'size': 16}, title = 'Status')
plt.title('Funding for each Startup Status')
plt.xlabel('Log(Total Funding)')
plt.ylabel('Density')
```

Out[9]: Text(0, 0.5, 'Density')

If we compare funding distributions for each startup status, we see that acquired startups tend to have higher total funding.

```
In [10]: top10_funding = df['funding_total_usd'].sort_values(ascending = False).head(10)
    df_filter = df.loc[df['funding_total_usd'].isin(top10_funding),['name', 'market', 'fund
    ing_total_usd', 'status', 'founded_at']]
    df_filter.rename(columns = {'funding_total_usd': 'funding_total_usd_billions'}, inplace
    = True)
    df_filter['funding_total_usd_billions'] = df_filter['funding_total_usd_billions']/10000
    00000
    df_filter.sort_values(by = 'funding_total_usd_billions', ascending = False)
```

Out[10]:

	name	market	funding_total_usd_billions	status	founded_at
45815	Verizon Communications	Mobile	30.079503	operating	1983-10-07
36911	Sberbank	Finance	5.800000	operating	NaN
8664	Clearwire	Internet	5.700000	acquired	2003-10-01
7977	Charter Communications	NaN	5.162513	operating	1993-01-01
15315	First Data Corporation	Trading	3.500000	operating	1971-01-01
9155	COFCO	NaN	3.200000	operating	NaN
38289	sigmacare	Health and Wellness	2.600000	operating	2005-01-01
14705	Facebook	Communities	2.425700	operating	2004-02-04
7328	Carestream	Biotechnology	2.400000	operating	2007-01-01
15569	Flipkart	Online Shopping	2.351140	operating	2007-09-01

The biggest startups in the data are often large, established companies such as Verizon or Facebook. Most of these companies are operating, with the exception of Clearwire which was acquired by Sprint.

```
In [11]: acquired = df.loc[df['status'].isin({'acquired'}),:]
    top10_funding = acquired['funding_total_usd'].sort_values(ascending = False).head(10)
    df_filter = acquired.loc[acquired['funding_total_usd'].isin(top10_funding),['name', 'ma
    rket', 'funding_total_usd', 'status', 'founded_at']]
    df_filter.rename(columns = {'funding_total_usd': 'funding_total_usd_billions'}, inplace
    = True)
    df_filter['funding_total_usd_billions'] = df_filter['funding_total_usd_billions']/10000
    00000
    df_filter.sort_values(by = 'funding_total_usd_billions', ascending = False)
```

Out[11]:

	name	market	funding_total_usd_billions	status	founded_at
8664	Clearwire	Internet	5.700000	acquired	2003-10-01
15360	Fisker Automotive	Automotive	1.451000	acquired	2008-01-01
42470	Terra-Gen Power	Clean Technology	1.200000	acquired	NaN
4910	Better Place	Clean Technology	0.925000	acquired	2007-10-29
33231	PPTV	Photography	0.706500	acquired	2004-01-01
36522	Sabre	Software	0.645496	acquired	1960-01-01
41135	SunEdison	Clean Technology	0.640800	acquired	2003-01-01
16419	G4S	Security	0.541000	acquired	NaN
15330	First Wind	Renewable Energies	0.522000	acquired	NaN
4606	Beats Electronics	Hardware	0.500000	acquired	2006-01-01

Filtering on acquired startups only, we see that total funding is much lower than the overall top 10 in the data. This would suggest that, in terms of funding, the highest highs are greater among operating companies than acquired companies. At the same time, the density plot showed a larger chunk of acquired startups have more funding than operating startups, i.e. the distribution of funding among operating startups is more left-skewed than acquired startups.

The main takeaway is that **we expect funding to increase the probability of acquisition** for the average startup. For a few exceptional cases such as Facebook, we expect the startup to continue operating and to accumulate further funding.

```
In [12]: cols = ['seed'
                , 'venture'
                , 'equity_crowdfunding'
                , 'undisclosed'
                , 'convertible note'
                , 'debt financing'
                , 'angel'
                , 'grant'
                , 'private equity'
                , 'post ipo equity'
                , 'post ipo debt'
                , 'secondary market'
                , 'product crowdfunding']
         funding aggregate = df.groupby(['status'])[cols].agg('sum')
         funding_aggregate[cols] = funding_aggregate[cols].div(funding_aggregate[cols].sum(axis=
         1), axis=0).multiply(100)
         funding_aggregate
         chart_data = pd.DataFrame({'Status': funding_aggregate.index
                                    , 'Seed': funding_aggregate['seed']
                                     , 'Venture': funding_aggregate['venture']
                                     , 'Debt': funding_aggregate['debt_financing']
                                     , 'Private Equity': funding aggregate['private equity']
                                     , 'Post IPO Equity': funding aggregate['post ipo equity']
                                     , 'Post IPO Debt': funding_aggregate['post_ipo_debt']
                                     , 'Other': funding_aggregate[{'equity_crowdfunding'
                                                                   , 'undisclosed'
                                                                   , 'convertible note'
                                                                   , 'angel'
                                                                   , 'grant'
                                                                   , 'secondary market'
                                                                    , 'product crowdfunding'}].sum
         (axis = 1)
                                   })
         chart data
         palette = sns.color_palette("Set2")
         plt.figure(figsize=(12, 8))
         chart data['Venture'].plot.bar(stacked = True, color = palette[0])
         chart data['Private Equity'].plot.bar(stacked = True, bottom = chart data['Venture'], c
         olor = palette[1])
         chart data['Debt'].plot.bar(stacked = True, bottom = chart data['Venture']
                                     + chart data['Private Equity'], color = palette[3])
         chart data['Post IPO Equity'].plot.bar(stacked = True, bottom = chart_data['Venture']
                                      + chart data['Private Equity']
                                      + chart data['Debt']
                                      , color = palette[4])
         chart data['Post IPO Debt'].plot.bar(stacked = True, bottom = chart data['Venture']
                                     + chart data['Private Equity']
                                      + chart data['Debt']
                                      + chart data['Post IPO Equity']
                                      , color = palette[5])
         chart data['Seed'].plot.bar(stacked = True, bottom = chart data['Venture']
                                     + chart data['Private Equity']
                                      + chart data['Debt']
                                      + chart_data['Post IPO Equity']
                                      + chart data['Post IPO Debt']
                                      , color = palette[6])
         chart data['Other'].plot.bar(stacked = True, bottom = chart data['Venture']
                                     + chart data['Private Equity']
                                      + chart data['Debt']
                                      + chart data['Post IPO Equity']
```

Out[12]: <matplotlib.legend.Legend at 0x1fcd4a213c8>

In [13]: chart_data

Out[13]:

	Status	Seed	Venture	Debt	Private Equity	Post IPO Equity	Post IPO Debt	Other
status								
acquired	acquired	0.859360	66.753493	9.178759	12.709003	7.764364	1.490663	1.244359
closed	closed	2.014796	74.214853	8.917659	7.939449	4.319861	0.000000	2.593381
operating	operating	1.756648	55.543811	15.359625	16.439757	3.918840	3.404080	3.577240
unknown	unknown	1.403465	36.436375	10.300145	16.084876	14.964753	16.421018	4.389368

If we take total funding for each type of startup by status, we can see how acquired startups differ from other startups in terms of funding. The chart shows that, compared to operating startups, acquired startups derive more of their funding from venture capital and post-IPO equity. In contrast, operating companies get more funding from debt, private equity, seed capital, and other sources of funding. These sources of funding may explain the differences in distribution among acquired startups and operating startups.

So far, the data suggests that in addition to total funding, **venture capital and post-IPO equity may be positive predictors of whether a startup gets acquired.** To test our hypothesis and quantify the predictive power of funding, we utilize regression and machine learning techniques.

III. Regression Analysis

In order to run a regression predicting startup status, we must first turn our categorical data into numbers. Using the method below we will create a new dataframe called df_regress which will turn our status from closed, operating, acquired, and unknown, into 0, 1, 2, and 3 respectively

```
In [669]: df_regress = df.copy()
          df_regress['status'] = df_regress['status'].astype('category')
          df_regress['status'] = df_regress['status'].cat.reorder_categories(['closed', 'operatin
          g', 'acquired','unknown'], ordered=True)
          df regress['status'] = df regress['status'].cat.codes
          print(df regress['status'])
                   2
          1
                   1
          2
                   1
          3
                   1
          49433
          49434
          49435
                   1
          49436
                   1
          49437
                   1
          Name: status, Length: 49438, dtype: int8
```

An issue we have to deal with for our predictive analyses is the startups listed with an unknown status. Since these actually belong to 1 of the other 3 categories, it will be best to not use them for our regression and machine learning models as they could skew the results.

```
In [670]: df regress = df regress.drop(df regress[df regress['status']==3].index)
          print(df regress['status'])
          0
                   2
                   1
          1
          2
                   1
          3
                   1
                   1
          49433
                 1
          49434
                  1
          49435
                  1
          49436
                  1
          49437
                  1
          Name: status, Length: 48124, dtype: int8
```

Since we are most interested in predicting whether a startup gets acquired, we will create a new column labeled "acquired" in our dataframe that gives us a binary answer of 1 if the startup has been acquired or 0 if the startup has not been acquired.

```
In [671]: df regress['acquired']=df regress['status'] #creating new column
          df regress['acquired']=df regress['acquired'].replace([0,1,2],[0,0,1]) #changing values
          to either 0 or 1 for acquired status
          print(df regress['acquired'])
          0
                   1
          1
                   0
          2
                   Ω
          3
                   0
          4
                   0
          49433
                  0
          49434
                   0
          49435
                   0
          49436
                   0
          49437
                   0
          Name: acquired, Length: 48124, dtype: int64
```

Now we are ready to start running some analyses

```
In [672]: import statsmodels.formula.api as smf
```

Regression including all Funding

```
In [673]: smf.ols('acquired ~ seed + venture + equity_crowdfunding + undisclosed + convertible_no
          te + debt_financing + angel + grant + private_equity + post_ipo_equity + post_ipo_debt
          + secondary_market + product_crowdfunding',data=df_regress).fit().summary()
```

Out[673]: OLS Regression Results

Dep. Variable:	acquired	R-squared:	0.004
Model:	OLS	Adj. R-squared:	0.004
Method:	Least Squares	F-statistic:	15.99
Date:	Thu, 14 May 2020	Prob (F-statistic):	3.96e-37
Time:	18:39:11	Log-Likelihood:	-4478.7
No. Observations:	48124	AIC:	8985.
Df Residuals:	48110	BIC:	9108.
Df Model:	13		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0729	0.001	56.628	0.000	0.070	0.075
seed	-2.461e-09	1.16e-09	-2.126	0.034	-4.73e-09	-1.92e-10
venture	5.813e-10	4.23e-11	13.756	0.000	4.98e-10	6.64e-10
equity_crowdfunding	-6.627e-09	5.98e-09	-1.108	0.268	-1.84e-08	5.1e-09
undisclosed	1.869e-10	4.08e-10	0.459	0.647	-6.12e-10	9.86e-10
convertible_note	-6.374e-10	8.35e-10	-0.764	0.445	-2.27e-09	9.98e-10
debt_financing	-1.116e-12	8.65e-12	-0.129	0.897	-1.81e-11	1.58e-11
angel	2.034e-11	1.82e-09	0.011	0.991	-3.55e-09	3.59e-09
grant	-3.536e-10	2.14e-10	-1.654	0.098	-7.73e-10	6.54e-11
private_equity	6.838e-12	3.79e-11	0.180	0.857	-6.75e-11	8.12e-11
post_ipo_equity	1.088e-10	4.6e-11	2.368	0.018	1.88e-11	1.99e-10
post_ipo_debt	-2.488e-11	3.62e-11	-0.688	0.492	-9.58e-11	4.6e-11
secondary_market	-4.74e-10	3.1e-10	-1.530	0.126	-1.08e-09	1.33e-10
product_crowdfunding	-1.234e-09	2.85e-09	-0.433	0.665	-6.82e-09	4.36e-09

Omnibus: 30086.996 **Durbin-Watson:** 1.979 Prob(Omnibus): 0.000 Jarque-Bera (JB): 210504.901 Skew: 3.154 Prob(JB): 0.00 Kurtosis: 11.073 Cond. No. 1.49e+08

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.49e+08. This might indicate that there are strong multicollinearity or other numerical problems.

All Funding + State

5/14/2020, 8:03 PM 16 of 47

```
In [360]: smf.ols('acquired ~ state_code + seed + venture + equity_crowdfunding + undisclosed + c
onvertible_note + debt_financing + angel + grant + private_equity + post_ipo_equity + p
ost_ipo_debt + secondary_market + product_crowdfunding',data=df_regress).fit().summary
()
```

Out[360]:

OLS Regression Results

Dep. Variable: acquired R-squared: 0.021 Model: OLS Adj. R-squared: 0.018 Method: Least Squares F-statistic: 8.464 Date: Thu, 14 May 2020 Prob (F-statistic): 3.77e-86 Time: 13:09:55 Log-Likelihood: -5744.1 No. Observations: 29550 AIC: 1.164e+04 **Df Residuals:** 29476 BIC: 1.225e+04 Df Model: 73 nonrobust **Covariance Type:**

std err t P>|t| [0.025 0.975] coef 0.0171 0.600 0.549 0.073 Intercept 0.028 -0.039 -0.0154 0.160 state_code[T.AK] 0.090 -0.172 0.863 -0.191 0.0105 0.040 0.259 0.796 -0.069 0.090 state_code[T.AL] state_code[T.AR] -0.0171 -0.473 0.636 -0.088 0.054 state_code[T.AZ] 0.0259 0.033 0.788 0.431 -0.039 0.090 state_code[T.BC] 0.0433 0.033 1.311 0.190 -0.021 0.108 state_code[T.CA] 0.1176 0.029 4.109 0.000 0.062 0.174 state_code[T.CO] 0.0679 0.031 2.226 0.026 0.008 0.128 state_code[T.CT] 0.0418 0.033 1.264 0.206 -0.023 0.107 state_code[T.DC] 0.0308 0.858 0.391 0.101 0.036 -0.040 state_code[T.DE] 0.0113 0.045 0.249 0.804 -0.078 0.100 0.082 0.0230 0.030 0.766 0.443 -0.036 state_code[T.FL] 0.114 state_code[T.GA] 0.0526 0.031 1.687 0.092 -0.009 0.080 state_code[T.HI] -0.0164 0.049 -0.332 0.740 -0.113 state_code[T.IA] 0.0326 0.044 0.739 0.460 -0.054 0.119 0.096 state_code[T.ID] 0.0001 0.049 0.003 0.998 -0.096 0.0651 2.150 0.032 0.124 0.030 0.006 state_code[T.IL] 0.0076 0.075 state_code[T.IN] 0.034 0.221 0.825 -0.060 state_code[T.KS] 0.0032 0.042 0.076 0.939 -0.078 0.085 state_code[T.KY] 0.0086 0.040 0.218 0.828 -0.069 0.086 0.081 state_code[T.LA] -0.0045 0.044 -0.102 0.919 -0.090 state_code[T.MA] 0.1054 0.029 3.606 0.000 0.048 0.163 0.0575 0.665 0.506 0.227 state_code[T.MB] 0.086 -0.112 state_code[T.MD] 0.0687 0.031 2.185 0.029 0.007 0.130 state_code[T.ME] 0.0425 0.051 0.838 0.402 -0.057 0.142 0.0112 0.076 state_code[T.MI] 0.033 0.340 0.734 -0.054 state_code[T.MN] 0.0495 0.033 1.522 0.128 -0.014 0.113 0.0282 0.035 -0.040 0.096 state_code[T.MO] 0.812 0.417 0.0468 0.060 0.780 0.435 -0.071 0.164 state_code[T.MS] 0.171 state_code[T.MT] 0.0503 0.062 0.817 0.414 -0.070 -0.0156 -0.145 0.885 0.196 state_code[T.NB] 0.108 -0.227 0.100 state_code[T.NC] 0.0380 0.032 1.205 0.228 -0.024

All Funding + Country

Out[361]: OLS Regression Results

Dep. Variable:	acquired	R-squared:	0.015
Model:	OLS	Adj. R-squared:	0.012
Method:	Least Squares	F-statistic:	5.134
Date:	Thu, 14 May 2020	Prob (F-statistic):	7.69e-71
Time:	13:10:06	Log-Likelihood:	-4756.4
No. Observations:	43057	AIC:	9769.
Df Residuals:	42929	BIC:	1.088e+04
Df Model:	127		

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	-4.579e-07	0.271	-1.69e-06	1.000	-0.530	0.530
country_code[T.ARE]	0.0594	0.273	0.218	0.828	-0.475	0.594
country_code[T.ARG]	0.0282	0.272	0.104	0.917	-0.504	0.561
country_code[T.ARM]	-0.0063	0.331	-0.019	0.985	-0.656	0.643
country_code[T.AUS]	0.0397	0.271	0.146	0.884	-0.492	0.571
country_code[T.AUT]	0.0479	0.272	0.176	0.860	-0.485	0.581
country_code[T.AZE]	0.0004	0.313	0.001	0.999	-0.612	0.613
country_code[T.BEL]	0.0597	0.272	0.220	0.826	-0.473	0.592
country_code[T.BGD]	-0.0023	0.289	-0.008	0.994	-0.569	0.565
country_code[T.BGR]	0.0441	0.273	0.162	0.871	-0.490	0.578
country_code[T.BHR]	8.193e-05	0.313	0.000	1.000	-0.612	0.613
country_code[T.BHS]	-0.0002	0.331	-0.001	1.000	-0.650	0.649
country_code[T.BLR]	5.309e-05	0.331	0.000	1.000	-0.650	0.650
country_code[T.BMU]	0.2400	0.303	0.793	0.428	-0.353	0.833
country_code[T.BRA]	0.0180	0.271	0.066	0.947	-0.514	0.549
country_code[T.BRN]	-1.226e-06	0.383	-3.2e-06	1.000	-0.750	0.750
country_code[T.BWA]	-0.0003	0.303	-0.001	0.999	-0.593	0.593
country_code[T.CAN]	0.0743	0.271	0.274	0.784	-0.456	0.605
country_code[T.CHE]	0.0465	0.271	0.171	0.864	-0.485	0.578
country_code[T.CHL]	0.0145	0.271	0.053	0.957	-0.517	0.546
country_code[T.CHN]	0.0106	0.271	0.039	0.969	-0.520	0.541
country_code[T.CIV]	0.0002	0.383	0.001	1.000	-0.750	0.750
country_code[T.CMR]	-3.035e-05	0.331	-9.16e-05	1.000	-0.650	0.650
country_code[T.COL]	0.0299	0.275	0.109	0.913	-0.508	0.568
country_code[T.CRI]	0.0003	0.292	0.001	0.999	-0.573	0.573
country_code[T.CYM]	-0.0041	0.283	-0.014	0.988	-0.558	0.550
country_code[T.CYP]	-0.0018	0.282	-0.006	0.995	-0.554	0.550
country_code[T.CZE]	0.0410	0.273	0.150	0.881	-0.495	0.577
country_code[T.DEU]	0.0754	0.271	0.278	0.781	-0.455	0.606
country_code[T.DNK]	0.0610	0.271	0.225	0.822	-0.471	0.593
country_code[T.DOM]	0.0023	0.313	0.007	0.994	-0.610	0.615
country_code[T.DZA]	0.0002	0.278	0.001	0.999	-0.544	0.544

All Funding + Market

```
In [362]: smf.ols('acquired ~ market + seed + venture + equity_crowdfunding + undisclosed + convertible_note + debt_financing + angel + grant + private_equity + post_ipo_equity + post_ipo_debt + secondary_market + product_crowdfunding',data=df_regress).fit().summary()
```

Out[362]: OLS Regression Results

Dep. Variable: acquired R-squared: 0.035 OLS Model: Adj. R-squared: 0.018 Method: Least Squares F-statistic: 2.066 Date: Thu, 14 May 2020 **Prob (F-statistic):** 2.61e-57 Time: 13:10:30 Log-Likelihood: -4168.9

44535 Df Residuals: 43770 BIC: 1.653e+04

AIC:

9868.

764 Df Model: **Covariance Type:** nonrobust

No. Observations:

	coef	std err	t	P> t	[0.025	0.975]
Intercept	0.0399	0.054	0.744	0.457	-0.065	0.145
market[T. 3D Printing]	-0.0402	0.104	-0.386	0.699	-0.244	0.164
market[T. 3D Technology]	-0.0368	0.109	-0.338	0.735	-0.250	0.177
market[T. Accounting]	0.0677	0.083	0.817	0.414	-0.095	0.230
market[T. Ad Targeting]	0.0353	0.092	0.385	0.701	-0.144	0.215
market[T. Advanced Materials]	-0.0399	0.197	-0.202	0.840	-0.426	0.346
market[T. Adventure Travel]	-0.0398	0.122	-0.326	0.744	-0.279	0.199
market[T. Advertising]	0.0819	0.054	1.510	0.131	-0.024	0.188
market[T. Advertising Exchanges]	-0.0611	0.197	-0.310	0.756	-0.447	0.325
market[T. Advertising Networks]	-0.0404	0.144	-0.280	0.779	-0.323	0.242
market[T. Advertising Platforms]	-0.0072	0.074	-0.098	0.922	-0.152	0.137
market[T. Advice]	0.0350	0.092	0.382	0.702	-0.145	0.215
market[T. Aerospace]	0.0048	0.080	0.060	0.952	-0.153	0.162
market[T. Agriculture]	0.0657	0.074	0.884	0.377	-0.080	0.212
market[T. Algorithms]	-0.0391	0.131	-0.298	0.766	-0.297	0.218
market[T. All Markets]	0.0994	0.115	0.867	0.386	-0.125	0.324
market[T. All Students]	-0.0410	0.084	-0.487	0.626	-0.206	0.124
market[T. Alternative Medicine]	-0.0418	0.197	-0.212	0.832	-0.428	0.344
market[T. Alumni]	-0.0399	0.273	-0.146	0.884	-0.576	0.496
market[T. Analytics]	0.0455	0.055	0.832	0.405	-0.062	0.153
market[T. Android]	0.0722	0.061	1.190	0.234	-0.047	0.191
market[T. Angels]	-0.0378	0.197	-0.192	0.848	-0.424	0.348
market[T. Animal Feed]	-0.0389	0.197	-0.197	0.844	-0.425	0.347
market[T. App Discovery]	-0.0406	0.273	-0.148	0.882	-0.576	0.495
market[T. App Marketing]	-0.0047	0.075	-0.062	0.951	-0.152	0.143
market[T. App Stores]	-0.0401	0.109	-0.368	0.713	-0.253	0.173
market[T. Application Performance Monitoring]	-0.0400	0.131	-0.305	0.761	-0.297	0.217
market[T. Application Platforms]	0.0653	0.082	0.801	0.423	-0.095	0.225
market[T. Apps]	0.0171	0.056	0.304	0.761	-0.093	0.127
market[T. Architecture]	-0.0440	0.115	-0.384	0.701	-0.269	0.181
market[T. Archiving]	0.2888	0.164	1.764	0.078	-0.032	0.610
market[T. Art]	-0.0040	0.074	-0.054	0.957	-0.149	0.141

5/14/2020, 8:03 PM 24 of 47

All Funding + State + Year Founded

Out[363]: OLS Regression Results

Dep. Variable:	acquired	R-squared:	0.039
Model:	OLS	Adj. R-squared:	0.036
Method:	Least Squares	F-statistic:	13.38
Date:	Thu, 14 May 2020	Prob (F-statistic):	1.35e-156
Time:	13:10:39	Log-Likelihood:	-4537.6
No. Observations:	24231	AIC:	9225.
Df Residuals:	24156	BIC:	9832.
Df Model:	74		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	10.2953	0.484	21.263	0.000	9.346	11.244
state_code[T.AK]	-0.0322	0.094	-0.342	0.732	-0.217	0.152
state_code[T.AL]	-0.0357	0.048	-0.750	0.453	-0.129	0.058
state_code[T.AR]	-0.0318	0.040	-0.792	0.428	-0.111	0.047
state_code[T.AZ]	0.0072	0.038	0.192	0.848	-0.067	0.081
state_code[T.BC]	0.0262	0.038	0.692	0.489	-0.048	0.100
state_code[T.CA]	0.1070	0.033	3.216	0.001	0.042	0.172
state_code[T.CO]	0.0496	0.035	1.406	0.160	-0.020	0.119
state_code[T.CT]	0.0175	0.038	0.459	0.647	-0.057	0.092
state_code[T.DC]	0.0353	0.041	0.869	0.385	-0.044	0.115
state_code[T.DE]	-0.0025	0.053	-0.048	0.962	-0.106	0.101
state_code[T.FL]	0.0045	0.035	0.129	0.897	-0.064	0.073
state_code[T.GA]	0.0361	0.036	1.007	0.314	-0.034	0.106
state_code[T.HI]	-0.0238	0.056	-0.425	0.671	-0.133	0.086
state_code[T.IA]	0.0135	0.049	0.276	0.783	-0.083	0.110
state_code[T.ID]	-0.0281	0.054	-0.520	0.603	-0.134	0.078
state_code[T.IL]	0.0467	0.035	1.337	0.181	-0.022	0.115
state_code[T.IN]	-0.0103	0.040	-0.260	0.795	-0.088	0.067
state_code[T.KS]	-0.0124	0.047	-0.263	0.792	-0.105	0.080
state_code[T.KY]	-0.0019	0.046	-0.041	0.967	-0.092	0.088
state_code[T.LA]	-0.0300	0.050	-0.601	0.548	-0.128	0.068
state_code[T.MA]	0.0874	0.034	2.575	0.010	0.021	0.154
state_code[T.MB]	0.0210	0.091	0.232	0.817	-0.157	0.199
state_code[T.MD]	0.0438	0.036	1.207	0.227	-0.027	0.115
state_code[T.ME]	-0.0279	0.060	-0.464	0.643	-0.146	0.090
state_code[T.MI]	-0.0192	0.038	-0.501	0.616	-0.094	0.056
state_code[T.MN]	0.0149	0.037	0.398	0.691	-0.058	0.088
state_code[T.MO]	0.0008	0.040	0.020	0.984	-0.077	0.078
state_code[T.MS]	-0.0052	0.068	-0.077	0.939	-0.139	0.129
state_code[T.MT]	0.0474	0.071	0.671	0.502	-0.091	0.186
state_code[T.NB]	-0.0233	0.124	-0.188	0.851	-0.266	0.219
state_code[T.NC]	0.0039	0.036	0.106	0.915	-0.067	0.075

All Funding + Country + Year Founded

```
In [364]: smf.ols('acquired ~ founded_year + country_code + seed + venture + equity_crowdfunding + undisclosed + convertible_note + debt_financing + angel + grant + private_equity + po st_ipo_equity + post_ipo_debt + secondary_market + product_crowdfunding',data=df_regres s).fit().summary()
```

Out[364]: OLS Regression Results

Dep. Variable:	acquired	R-squared:	0.030
Model:	OLS	Adj. R-squared:	0.026
Method:	Least Squares	F-statistic:	8.558
Date:	Thu, 14 May 2020	Prob (F-statistic):	9.52e-145
Time:	13:10:43	Log-Likelihood:	-3889.0
No. Observations:	34627	AIC:	8026.
Df Residuals:	34503	BIC:	9074.
Df Model:	123		
Covariance Type:	nonrobust		

Covariance Type:	nonrobus	SI.				
	coef	std err	t	P> t	[0.025	0.975]
Intercept	9.3232	0.479	19.464	0.000	8.384	10.262
country_code[T.ARE]	0.0358	0.274	0.131	0.896	-0.501	0.572
country_code[T.ARG]	0.0044	0.272	0.016	0.987	-0.529	0.538
country_code[T.ARM]	-0.0298	0.332	-0.090	0.928	-0.681	0.621
country_code[T.AUS]	0.0120	0.272	0.044	0.965	-0.521	0.545
country_code[T.AUT]	0.0357	0.273	0.131	0.896	-0.499	0.571
country_code[T.AZE]	-0.0089	0.313	-0.029	0.977	-0.623	0.605
country_code[T.BEL]	0.0318	0.272	0.117	0.907	-0.502	0.566
country_code[T.BGD]	-0.0214	0.290	-0.074	0.941	-0.590	0.547
country_code[T.BGR]	0.0426	0.274	0.156	0.876	-0.494	0.579
country_code[T.BHR]	-0.0092	0.313	-0.029	0.977	-0.623	0.605
country_code[T.BHS]	-0.0184	0.332	-0.055	0.956	-0.669	0.633
country_code[T.BLR]	-0.0185	0.332	-0.056	0.956	-0.670	0.633
country_code[T.BMU]	0.2627	0.313	0.839	0.402	-0.351	0.877
country_code[T.BRA]	0.0017	0.272	0.006	0.995	-0.531	0.534
country_code[T.BRN]	-0.0046	0.384	-0.012	0.990	-0.756	0.747
country_code[T.BWA]	-0.0219	0.313	-0.070	0.944	-0.636	0.592
country_code[T.CAN]	0.0484	0.271	0.178	0.858	-0.483	0.580
country_code[T.CHE]	0.0147	0.272	0.054	0.957	-0.518	0.548
country_code[T.CHL]	0.0068	0.272	0.025	0.980	-0.526	0.540
country_code[T.CHN]	-0.0257	0.271	-0.095	0.924	-0.558	0.506
country_code[T.CIV]	-4.653e-10	6.38e-08	-0.007	0.994	-1.26e-07	1.25e-07
country_code[T.CMR]	-0.0116	0.332	-0.035	0.972	-0.663	0.639
country_code[T.COL]	0.0141	0.276	0.051	0.959	-0.527	0.555
country_code[T.CRI]	-0.0182	0.303	-0.060	0.952	-0.613	0.576
country_code[T.CYM]	-0.0334	0.290	-0.115	0.908	-0.602	0.535
country_code[T.CYP]	-0.0272	0.283	-0.096	0.924	-0.582	0.528
country_code[T.CZE]	0.0044	0.275	0.016	0.987	-0.534	0.543
country_code[T.DEU]	0.0491	0.271	0.181	0.857	-0.483	0.581
country_code[T.DNK]	0.0259	0.272	0.095	0.924	-0.507	0.559
country_code[T.DOM]	-0.0105	0.313	-0.034	0.973	-0.624	0.603
country_code[T.DZA]	-0.0131	0.288	-0.045	0.964	-0.577	0.551

All Funding + Country + Year Founded + Market

```
In [365]: smf.ols('acquired ~ market + founded_year + country_code + seed + venture + equity_crow dfunding + undisclosed + convertible_note + debt_financing + angel + grant + private_eq uity + post_ipo_equity + post_ipo_debt + secondary_market + product_crowdfunding',data= df_regress).fit().summary()
```

Out[365]: OLS Regression Results

Dep. Variable:	acquired	R-squared:	0.064
Model:	OLS	Adj. R-squared:	0.040
Method:	Least Squares	F-statistic:	2.646
Date:	Thu, 14 May 2020	Prob (F-statistic):	2.11e-119
Time:	13:10:58	Log-Likelihood:	-3311.8
No. Observations:	33152	AIC:	8308.
Df Residuals:	32310	BIC:	1.539e+04
Df Model:	841		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	9.4083	0.521	18.041	0.000	8.386	10.430
market[T. 3D Printing]	0.0165	0.117	0.140	0.889	-0.214	0.247
market[T. 3D Technology]	0.0065	0.130	0.050	0.960	-0.249	0.262
market[T. Accounting]	0.1189	0.097	1.220	0.223	-0.072	0.310
market[T. Ad Targeting]	0.0721	0.103	0.696	0.486	-0.131	0.275
market[T. Advanced Materials]	-0.2332	0.203	-1.147	0.252	-0.632	0.165
market[T. Adventure Travel]	-0.0112	0.139	-0.081	0.936	-0.283	0.261
market[T. Advertising]	0.1103	0.068	1.611	0.107	-0.024	0.245
market[T. Advertising Exchanges]	-0.0234	0.203	-0.115	0.908	-0.422	0.375
market[T. Advertising Networks]	-0.0257	0.203	-0.127	0.899	-0.424	0.373
market[T. Advertising Platforms]	0.0247	0.088	0.283	0.778	-0.147	0.196
market[T. Advice]	0.0434	0.101	0.428	0.668	-0.155	0.242
market[T. Aerospace]	0.0583	0.099	0.587	0.557	-0.136	0.253
market[T. Agriculture]	0.1500	0.094	1.588	0.112	-0.035	0.335
market[T. Algorithms]	-0.0032	0.203	-0.016	0.987	-0.401	0.395
market[T. All Markets]	0.1379	0.130	1.063	0.288	-0.116	0.392
market[T. All Students]	-0.0079	0.100	-0.079	0.937	-0.204	0.188
market[T. Alternative Medicine]	-0.0010	0.279	-0.004	0.997	-0.549	0.546
market[T. Alumni]	-0.0196	0.279	-0.070	0.944	-0.567	0.528
market[T. Analytics]	0.0686	0.069	0.996	0.319	-0.066	0.204
market[T. Android]	0.1118	0.075	1.497	0.134	-0.035	0.258
market[T. Angels]	-0.0145	0.279	-0.052	0.959	-0.562	0.533
market[T. Animal Feed]	-0.0209	0.279	-0.075	0.941	-0.569	0.527
market[T. App Discovery]	-0.0255	0.279	-0.091	0.927	-0.573	0.522
market[T. App Marketing]	0.0178	0.087	0.205	0.837	-0.152	0.188
market[T. App Stores]	-0.0022	0.123	-0.018	0.986	-0.243	0.239
market[T. Application Performance Monitoring]	-0.0179	0.151	-0.118	0.906	-0.315	0.279
market[T. Application Platforms]	0.1259	0.099	1.269	0.204	-0.069	0.320
market[T. Apps]	0.0582	0.071	0.819	0.413	-0.081	0.198
market[T. Architecture]	-0.0371	0.170	-0.218	0.828	-0.371	0.297
market[T. Archiving]	0.3020	0.170	1.772	0.076	-0.032	0.636
market[T. Art]	0.0243	0.089	0.272	0.786	-0.151	0.199

All Funding + State + Year Founded + Market

```
In [366]: smf.ols('acquired ~ market + founded_year + state_code + seed + venture + equity_crowdf
unding + undisclosed + convertible_note + debt_financing + angel + grant + private_equi
ty + post_ipo_equity + post_ipo_debt + secondary_market + product_crowdfunding',data=df
_regress).fit().summary()
```

Out[366]: OLS Regression Results

Dep. Variable: acquired R-squared: 0.082 OLS Model: Adj. R-squared: 0.052 Method: Least Squares F-statistic: 2.708 Date: Thu, 14 May 2020 **Prob (F-statistic):** 6.04e-110 Time: -3940.8 13:11:15 Log-Likelihood: No. Observations: 23239 AIC: 9366. **Df Residuals:** 22497 BIC: 1.534e+04 Df Model: 741 **Covariance Type:** nonrobust

	coef	std err	t	P> t	[0.025	0.975]
Intercept	10.2590	0.545	18.817	0.000	9.190	11.328
market[T. 3D Printing]	-0.0243	0.197	-0.123	0.902	-0.411	0.363
market[T. 3D Technology]	0.0267	0.197	0.135	0.892	-0.360	0.414
market[T. Accounting]	0.1846	0.142	1.302	0.193	-0.093	0.463
market[T. Ad Targeting]	-0.0338	0.157	-0.214	0.830	-0.342	0.275
market[T. Advanced Materials]	-0.2312	0.231	-1.001	0.317	-0.684	0.222
market[T. Adventure Travel]	-0.0130	0.179	-0.073	0.942	-0.363	0.337
market[T. Advertising]	0.1363	0.104	1.311	0.190	-0.067	0.340
market[T. Advertising Exchanges]	-0.0877	0.309	-0.284	0.777	-0.694	0.518
market[T. Advertising Networks]	-0.0311	0.230	-0.135	0.893	-0.483	0.421
market[T. Advertising Platforms]	0.0122	0.125	0.098	0.922	-0.233	0.257
market[T. Advice]	0.0633	0.136	0.467	0.641	-0.202	0.329
market[T. Aerospace]	0.0817	0.138	0.590	0.555	-0.190	0.353
market[T. Agriculture]	0.2395	0.136	1.765	0.078	-0.026	0.506
market[T. Algorithms]	-0.0471	0.309	-0.152	0.879	-0.653	0.559
market[T. All Markets]	0.1463	0.166	0.880	0.379	-0.180	0.472
market[T. All Students]	-0.0132	0.142	-0.093	0.926	-0.291	0.265
market[T. Alternative Medicine]	-2.747e-10	3.55e-08	-0.008	0.994	-6.98e-08	6.93e-08
market[T. Alumni]	-0.0048	0.309	-0.015	0.988	-0.611	0.601
market[T. Analytics]	0.0679	0.104	0.651	0.515	-0.137	0.272
market[T. Android]	0.1599	0.112	1.433	0.152	-0.059	0.379
market[T. Angels]	0.0632	0.310	0.204	0.839	-0.545	0.671
market[T. Animal Feed]	0.0123	0.310	0.040	0.968	-0.595	0.620
market[T. App Discovery]	-0.0506	0.309	-0.164	0.870	-0.656	0.555
market[T. App Marketing]	0.0514	0.128	0.402	0.687	-0.199	0.302
market[T. App Stores]	0.0082	0.179	0.046	0.963	-0.343	0.359
market[T. Application Performance Monitoring]	-0.0148	0.197	-0.075	0.940	-0.402	0.372
market[T. Application Platforms]	-0.0063	0.142	-0.044	0.965	-0.284	0.272
market[T. Apps]	0.0712	0.107	0.664	0.507	-0.139	0.281
market[T. Architecture]	-0.0310	0.197	-0.157	0.875	-0.418	0.356
market[T. Archiving]	0.4231	0.230	1.836	0.066	-0.029	0.875
market[T. Art]	0.0331	0.128	0.259	0.796	-0.217	0.283

All Funding + Year Founded

Out[367]:

OLS Regression Results

Dep. Variable:	acquired	R-squared:	0.022
Model:	OLS	Adj. R-squared:	0.022
Method:	Least Squares	F-statistic:	61.17
Date:	Thu, 14 May 2020	Prob (F-statistic):	1.03e-171
Time:	13:11:26	Log-Likelihood:	-3677.2
No. Observations:	37564	AIC:	7384.
Df Residuals:	37549	BIC:	7512.
Df Model:	14		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
Intercept	9.9600	0.373	26.713	0.000	9.229	10.691
founded_year	-0.0049	0.000	-26.509	0.000	-0.005	-0.005
seed	-1.206e-09	1.5e-09	-0.805	0.421	-4.15e-09	1.73e-09
venture	3.999e-10	4.44e-11	9.000	0.000	3.13e-10	4.87e-10
equity_crowdfunding	-5.379e-09	6.27e-09	-0.858	0.391	-1.77e-08	6.91e-09
undisclosed	3.172e-10	5.96e-10	0.532	0.595	-8.51e-10	1.49e-09
convertible_note	-7.773e-10	8.68e-10	-0.895	0.371	-2.48e-09	9.24e-10
debt_financing	-8.157e-12	8.77e-12	-0.930	0.352	-2.53e-11	9.03e-12
angel	2.023e-09	2.26e-09	0.893	0.372	-2.42e-09	6.46e-09
grant	-1.082e-09	2.92e-10	-3.705	0.000	-1.65e-09	-5.09e-10
private_equity	-5.791e-11	3.97e-11	-1.457	0.145	-1.36e-10	2e-11
post_ipo_equity	9.526e-11	5.06e-11	1.884	0.060	-3.86e-12	1.94e-10
post_ipo_debt	-7.621e-11	6.22e-11	-1.224	0.221	-1.98e-10	4.58e-11
secondary_market	-9.445e-10	5.12e-10	-1.844	0.065	-1.95e-09	5.93e-11
product_crowdfunding	-1.687e-09	2.96e-09	-0.570	0.569	-7.49e-09	4.11e-09

 Omnibus:
 22354.275
 Durbin-Watson:
 1.981

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 142214.733

 Skew:
 2.999
 Prob(JB):
 0.00

 Kurtosis:
 10.408
 Cond. No.
 4.25e+10

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 4.25e+10. This might indicate that there are strong multicollinearity or other numerical problems.

Through running 9 regressions using our funding data and controlling for several different variables such as Year Founded, State, Country, and Market, we did not find any significant relationship between startup funding and acquisition status. The regression with the highest R-squared was the one where we only looked at startups located in North America and controlled by State, Market, and Year Founded. However, the R-squared is still extremely low at .082 showing that **linear regression with this data is not helpful in predicting the acquisition status of a startup.**

IV. Machine Learning Analysis

Next, we will use some machine learning models to try and predict the status of a startup based on funding.

During our earlier exploration, it appeared that the amount of Venture Capital Funding and Post IPO Equity a startup has would be postive predictors of whether they had been acquired or not. Due to this, we will run a couple different machine learning models using 3 different inputs: just Venture funding, Venture Funding and Post IPO Equity, and all of our Funding data. We will then compare across models as well as across inputs for predictive performance.

Note that unlike the Regressions run in the previous section, we will be aiming to predict what category, either closed, operating, or acquired, our startups belong to in this section.

K-Nearest Neighbors

```
In [464]: from sklearn.neighbors import KNeighborsClassifier as knn
In [465]: knn()
Out[465]: KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='minkowski',
                               metric params=None, n jobs=None, n neighbors=5, p=2,
                               weights='uniform')
In [466]: from sklearn.model_selection import train_test_split
In [674]: # Venture Funding Group
          x_train_venture, x_test_venture, y_train_venture, y_test_venture = train_test_split(df_
          regress[['venture']].values, df regress['status'].values)
          #Venture Funding + Post IPO Equity Group
          x_train_ventureIPO, x_test_ventureIPO, y_train_ventureIPO, y_test_ventureIPO = train_te
          st split(df regress[['venture','post ipo equity']].values,df regress['status'].values)
          #All Funding Group
          x_train_all, x_test_all, y_train_all, y_test_all = train test split(df regress[['seed
          ','venture', 'equity crowdfunding','undisclosed','convertible note','debt financing','a
          ngel', 'grant', 'private equity', 'post ipo equity', 'post ipo debt', 'secondary market', 'pr
          oduct crowdfunding']].values,df regress['status'].values)
In [675]: knn venture = knn(n neighbors=10).fit(x train venture,y train venture) #Including Ventu
          re Data only
          print('Accurate', knn venture.score(x test venture, y test venture) *100, 'percent of the
          Accurate 86.70933421993185 percent of the time
In [676]: | print(len(df_regress[df_regress['status']==1])/len(df regress['status'])*100, 'percent
          of companies in our dataset that are currently operating')
          86.91920871083035 percent of companies in our dataset that are currently operating
```

It appears that through using Venture Funding, our KNN model is able to predict the status of a startup accurately about 86%-87% of the time. This is not terribly impressive as the percentage of startups that are currently operating in our dataset is about equal to that.

Therefore, we can probably assume the model is simply guessing that all startups are currently operating, which is unhelpful for our current task.

Now, we will see if the model does any better when we include some more inputs.

Adding in the Post IPO Equity as well as all of our Funding Data doesn't appear to make any difference to KNN's predictive power. Overall, the model seems very weak for our purposes.

Random Forest

Now we will try the Random Forest machine learning model to see if it does better with prediction than K-Nearest Neighbors

Using just Venture Funding or Venture Funding and Post IPO Equity, Random Forest appears to do even worse than K-Nearest Neighbors in predicting the status of a Startup. A blind guess that all startups are currently operating would be a few percentage points more accurate.

```
In [683]: rf_all = rfc(n_estimators=100).fit(x_train_all,y_train_all) #Including all Funding Data
    print('Accurate', rf_all.score(x_test_all,y_test_all)*100, 'percent of the time')
Accurate 84.27395893940654 percent of the time
```

Once we include all of our funding data, Random Forest does even worse at predicting the status of a startup, being accurate a mere 84% of the time.

While K-Nearest Neighbors performed slightly better at predicting the status of a startup than Random Forest, **neither machine learning models provide valuable predictions**. This is evidenced by the fact that a simple blind would yield equal or better results.

V. Cluster Analysis

Since Linear Regression and Machine Learning models based on funding did not provide us with valuable predictive power into the status of startups, we will now try clustering startups based on their funding to see if any insights can be gained this way.

In order to do this we will create a new data set using just the names of our startups, their status, and the funding data we have been using throughout.

Out[478]:

		seed	venture	equity_crowdfunding	undisclosed	convertible_note	debt_financing
name	status						
#waywire	acquired	1750000.0	0.0	0.0	0.0	0.0	0.0
&TV Communications	operating	0.0	4000000.0	0.0	0.0	0.0	0.0
'Rock' Your Paper	operating	40000.0	0.0	0.0	0.0	0.0	0.0
(In)Touch Network	operating	1500000.0	0.0	0.0	0.0	0.0	0.0
-R- Ranch and Mine	operating	0.0	0.0	60000.0	0.0	0.0	0.0
Zzish	operating	320000.0	0.0	0.0	0.0	0.0	0.0
ZZNode Science and Technology	operating	0.0	1587301.0	0.0	0.0	0.0	0.0
Zzzzapp Wireless ltd.	operating	71525.0	0.0	0.0	0.0	25873.0	0.0
[a]list games	operating	9300000.0	0.0	0.0	0.0	0.0	0.0
[x+1]	operating	0.0	28000000.0	0.0	0.0	0.0	17000000.0

49438 rows × 13 columns

```
In [479]: from sklearn.cluster import KMeans

In [486]: df1['cluster'] = KMeans(n_clusters=500).fit_predict(df1) #clustering our startups into groups and creating new column in our dataframe to see cluster number
```

Since we have just shy of 50,000 startups in our dataframe, we have clustered our companies into 500 unique groups so that the average group will contain ~100 startups. We will now search around to see if any insights can be gained.

```
In [524]:
             df1.loc['Facebook']
Out[524]:
                                         equity_crowdfunding undisclosed convertible_note debt_financing
                       seed
                                 venture
                                                                                                            angel grant pr
                status
                         0.0 615200000.0
                                                         0.0
                                                                      0.0
                                                                                      0.0
                                                                                             100000000.0 500000.0
                                                                                                                    0.0
                                                                                                                         1
              operating
In [488]:
             df1.loc[df1['cluster']==23,:]
Out[488]:
                                           venture equity_crowdfunding undisclosed convertible_note debt_financing
                                 seed
                                                                                                                      angel
                 name
                          status
                                  0.0 615200000.0
                                                                                                       100000000.0 500000.0
              Facebook operating
                                                                   0.0
                                                                               0.0
                                                                                                0.0
```

Facebook is in it's own cluster which shouldn't be suprising given its huge size. Let's see what clusters 2 of Facebook's largest acquistions fall into - WhatsApp (\$19 billion acquistion) and Instagram (\\$1 billion acquistion)

```
df1.loc[['Instagram','WhatsApp']]
In [495]:
Out[495]:
                                    seed
                                             venture equity crowdfunding undisclosed convertible note debt financing angel
                 name
                         status
                                500000.0 57000000.0
              Instagram
                       acquired
                                                                     0.0
                                                                                  0.0
                                                                                                  0.0
                                                                                                                 0.0
                                                                                                                       0.0
              WhatsApp acquired 250000.0 58000000.0
                                                                     0.0
                                                                                  0.0
                                                                                                  0.0
                                                                                                                       0.0
                                                                                                                 0.0
```

They are in the same cluster! Let's see what other startups had the most similar funding to them by looking at the rest of cluster 453:

```
In [599]: df1.loc[df1['cluster']==453,:]
Out[599]:
```

		seed	venture	equity_crowdfunding	undisclosed	convertible_note	debt_financing
name	status						
Actelis Networks	operating	0.0	57616859.0	0.0	0.0	0.0	0.0
Action Engine	acquired	0.0	58200000.0	0.0	0.0	0.0	0.0
ADOR	acquired	0.0	56464869.0	0.0	0.0	0.0	0.0
Alnara Pharmaceuticals	acquired	0.0	55000000.0	0.0	0.0	0.0	0.0
AM Pharma	operating	0.0	55616984.0	0.0	0.0	0.0	0.0
XMOS	operating	0.0	57390000.0	0.0	0.0	0.0	0.0
XOS Digital	operating	0.0	57101539.0	0.0	0.0	0.0	3328147.0
XP Investimentos	operating	0.0	58000000.0	0.0	0.0	0.0	0.0
Yelp	operating	0.0	56000000.0	0.0	0.0	0.0	0.0
Zvents	acquired	200000.0	55000000.0	0.0	0.0	0.0	0.0

139 rows × 14 columns

There are 139 startups in this cluster including WhatsApp and Instagram. The most obvious similarity between all of these startups is that they have all recieved between \$50 million and \\$60 million in funding from Venture Capital. At first glance, the other most prominent company included in this cluster is Yelp, which has not been acquired to date.

Let's see what other startups have been acquired in cluster 453:

In [559]: df1.loc[df1['cluster']==453,:].xs('acquired', level=1)

Out[559]:

	seed	d venture equity_crowdfundi		undisclosed convertible_note		debt_financing	angel	
name								
Action Engine	0.0	58200000.0	0.0	0.0	0.0	0.0	0.0	
ADOR	0.0	56464869.0	0.0	0.0	0.0	0.0	0.0	
Alnara Pharmaceuticals	0.0	55000000.0	0.0	0.0	0.0	0.0	0.0	
Approva	0.0	54950000.0	0.0	0.0	0.0	0.0	0.0	
ClickSquared	0.0	56710000.0	0.0	0.0	0.0	0.0	0.0	
DATAllegro	0.0	57100000.0	0.0	0.0	0.0	0.0	0.0	
DiBcom	0.0	57358050.0	0.0	0.0	0.0	0.0	0.0	
Eucalyptus Systems	0.0	55500000.0	0.0	0.0	0.0	0.0	0.0	
f-star Biotech	1950900.0	55320600.0	0.0	0.0	0.0	0.0	0.0	
Gomez, Inc.	7000000.0	57900000.0	0.0	0.0	0.0	0.0	0.0	
Instagram	500000.0	57000000.0	0.0	0.0	0.0	0.0	0.0	
Kleer	0.0	58000000.0	0.0	0.0	0.0	0.0	0.0	
Kosmix	0.0	55237600.0	0.0	0.0	0.0	0.0	0.0	
Link_A_ Media	0.0	56000000.0	0.0	0.0	0.0	0.0	0.0	
Metaweb Technologies	0.0	57000000.0	0.0	0.0	0.0	0.0	0.0	
NetRetail Holding	0.0	56428000.0	0.0	0.0	0.0	0.0	0.0	
Prosensa	0.0	55072800.0	0.0	0.0	0.0	0.0	0.0	20
Siimpel Corporation	0.0	56494609.0	0.0	0.0	0.0	0.0	0.0	
Silicon Storage Technology	0.0	58401855.0	0.0	0.0	0.0	0.0	0.0	
SiliconBlue Technologies	0.0	57005567.0	0.0	0.0	0.0	0.0	0.0	
TxVia	0.0	55350000.0	0.0	0.0	0.0	0.0	0.0	
Verinata Health	0.0	58250000.0	0.0	0.0	0.0	0.0	0.0	
WhatsApp	250000.0	58000000.0	0.0	0.0	0.0	0.0	0.0	
Wilocity	0.0	55000000.0	0.0	0.0	0.0	0.0	0.0	
Zvents	200000.0	55000000.0	0.0	0.0	0.0	0.0	0.0	

The list of these 25 startups is quite diverse, spanning software, biotech, pharmaceuticals, hardware, and e-commerce companies. HP, Facebook, Stubhub, Microsoft, and Qualcomm are some of the most prominent acquirers of these startups.

Let's see how many companies in this cluster have been closed:

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

```
In [602]: df1.loc[df1['cluster']==453,:].xs('closed', level=1)
Out[602]:
                                         venture equity_crowdfunding undisclosed convertible_note debt_financing angel gran
                                seed
                         name
                                                                                                                            0.0
                     CELLFOR
                                      56500000.0
                                                                  0.0
                                                                               0.0
                                                                                               0.0
                                                                                                               0.0
                                                                                                                     0.0
                                 0.0
                   Internet REIT
                                      58000000.0
                                                                  0.0
                                                                               0.0
                                                                                               0.0
                                                                                                               0.0
                                                                                                                     0.0
                                                                                                                            0.0
                         MOLI
                                      55600000.0
                                                                  0.0
                                                                               0.0
                                                                                               0.0
                                                                                                               0.0
                                                                                                                     0.0
                                                                                                                            0.0
              NeuroTherapeutics
                                      55000000.0
                                                                  0.0
                                                                               0.0
                                                                                               0.0
                                                                                                        3200000.0
                                                                                                                     0.0
                                                                                                                            0.0
                       Pharma
                       Sequoia
                                      57000000.0
                                                                               0.0
                                                                                                        3800000.0
                                                                                                                     0.0
                                                                  0.0
                                                                                               0.0
                                                                                                                            0.0
                Pharmaceuticals
```

0.0

0.0

0.0

0.0

Only 7 companies in this cluster have closed. However, this is not particularly interesting because this represents just about 5% of the cluster, which is also the percent of startups in our entire dataset that have closed.

Let's now take a look at 3 of Google's biggest acquistions - Waze, Youtube, and Nest Labs:

55900000.0

0.0 55833663.0

In [652]:	df1.loc	dfl.loc[['Waze','YouTube','Nest Labs']]												
Out[652]:			seed	venture	equity_crowdfunding	undisclosed	convertible_note	debt_financing	angel	grar				
	name	status												
	Nest Labs	acquired	0.0	80000000.0	0.0	0.0	0.0	0.0	0.0	0.				
	Waze	acquired	0.0	67000000.0	0.0	0.0	0.0	0.0	0.0	0.				
	YouTube	acquired	0.0	11500000.0	0.0	0.0	0.0	0.0	0.0	0.				

They are all in different clusters so we will examine them one at a time.

Shocking

Technologies Wisair

In [653]: df1.loc[df1['cluster']==5,:] #Nest's Cluster

Out[653]:

		seed	venture	equity_crowdfunding	undisclosed	convertible_note	debt_financing
name	status						
3-V Biosciences	operating	0.0	78089000.0	0.0	0.0	0.0	0.0
99Bill	operating	0.0	81574271.0	0.0	0.0	0.0	0.0
Adamas Pharmaceuticals	operating	0.0	82000000.0	0.0	0.0	0.0	0.0
agri.capital	closed	0.0	81672000.0	0.0	0.0	0.0	0.0
Alteryx, Inc.	operating	0.0	78000000.0	0.0	0.0	0.0	0.0
					•••		
WikiMart.ru	operating	0.0	82000000.0	0.0	5635000.0	0.0	0.0
Xamarin	operating	0.0	82000000.0	0.0	0.0	0.0	0.0
Xoom Corporation	operating	0.0	78029000.0	0.0	0.0	0.0	0.0
Zbird	operating	0.0	80000000.0	0.0	0.0	0.0	0.0
Zenefits	operating	2100000.0	81500000.0	0.0	0.0	0.0	0.0

71 rows × 14 columns

Out[655]:

	seed	venture	equity_crowdfunding	undisclosed	convertible_note	debt_financing	angel	grant	pr
name									
BPL Global	0.0	78699969.0	0.0	0.0	0.0	2600000.0	0.0	0.0	
Ception Therapeutics	0.0	77700000.0	0.0	0.0	0.0	0.0	0.0	0.0	
Endosense	0.0	80600000.0	0.0	0.0	0.0	0.0	0.0	0.0	
Fulcrum Microsystems	0.0	81017493.0	0.0	0.0	0.0	0.0	0.0	0.0	
Intelliden	0.0	80000000.0	0.0	0.0	0.0	0.0	0.0	0.0	
Kobo	0.0	78812455.0	0.0	0.0	0.0	0.0	0.0	0.0	
Meraki	0.0	80000000.0	0.0	0.0	0.0	0.0	0.0	0.0	
MTM Laboratories	0.0	81574940.0	0.0	0.0	0.0	0.0	0.0	0.0	
Nest Labs	0.0	80000000.0	0.0	0.0	0.0	0.0	0.0	0.0	
OptiMedica	0.0	81235886.0	0.0	0.0	0.0	0.0	0.0	0.0	
Slide	0.0	78000000.0	0.0	0.0	0.0	0.0	0.0	0.0	
Taligen Therapeutics	0.0	78750000.0	0.0	0.0	0.0	0.0	0.0	0.0	
Ubiquisys	0.0	81000000.0	0.0	0.0	0.0	0.0	0.0	0.0	

There are just over 70 companies in Nest Labs' cluster and the unifying link appears to be Venture Capital Funding around \$80 million. The diversity of companies here is similar to those in the previous example. In this cluster, Google also acquired "Slide" while IBM, Intel, Cisco x2, and St. Jude Medical are other notable acquirers

In [657]: df1.loc[df1['cluster']==239,:] #Waze's Cluster

Out[657]:

		seed	venture	equity_crowdfunding	undisclosed	convertible_note	debt_financing	angel
name	status							
1366 Technologies	operating	0.0	63450000.0	0.0	0.0	0.0	0.0	0.0
3Leaf	acquired	0.0	65000000.0	0.0	0.0	0.0	0.0	0.0
51Talk	operating	0.0	65100000.0	0.0	0.0	0.0	0.0	0.0
Achates Power	operating	0.0	66500000.0	0.0	0.0	0.0	0.0	0.0
Addepar	operating	0.0	65839694.0	0.0	0.0	0.0	0.0	0.0
Widevine Technologies	acquired	0.0	66300000.0	0.0	0.0	0.0	0.0	0.0
Xplornet	operating	0.0	65000000.0	0.0	0.0	0.0	0.0	0.0
YPX Cayman Holdings	operating	0.0	66500000.0	0.0	0.0	0.0	0.0	0.0
Zenprise	acquired	0.0	64630000.0	0.0	0.0	0.0	0.0	0.0
Zero Motorcycles	operating	0.0	63659978.0	0.0	0.0	0.0	0.0	0.0

96 rows × 14 columns

In [656]: df1.loc[df1['cluster']==465,:] #Youtube's Cluster

Out[656]:

		seed	venture	equity_crowdfunding	undisclosed	convertible_note	debt_financing	а
name	status							
22nd Century Group	operating	0.0	12528500.0	0.0	0.0	0.0	2506250.0	
5min Media	acquired	0.0	12500000.0	0.0	0.0	0.0	0.0	3000
6Sense	operating	0.0	12000000.0	0.0	0.0	0.0	0.0	
8D World	closed	0.0	12250000.0	0.0	0.0	0.0	0.0	
AAVLife	operating	0.0	12000000.0	0.0	0.0	0.0	0.0	
Ziptronix	operating	0.0	11500000.0	0.0	0.0	0.0	500000.0	
Zuberance	operating	0.0	12000000.0	0.0	0.0	0.0	0.0	
Zumobi	operating	0.0	12000000.0	0.0	0.0	0.0	0.0	
Zurex Pharma	operating	0.0	11146457.0	0.0	0.0	0.0	0.0	
Zynstra	operating	225000.0	12200000.0	0.0	0.0	0.0	0.0	23250

678 rows × 14 columns

Youtube belongs to our largest cluster so far with 678 companies included.

As you can see below, some of the biggest, most well-known startups are in clusters of their own due to their extremely high amounts of funding. This helps explain why Youtube's cluster and others are much larger.

5/14/2020, 8:03 PM 45 of 47

```
In [631]: df1.loc[df1['cluster']==130,:]
Out[631]:
                                           venture equity_crowdfunding undisclosed convertible_note debt_financing
                                                                                                                         angel
                                 seed
                 name
                          status
                                   0.0 762000000.0
                                                                                                                 0.0 500000.0
              Pinterest operating
                                                                    0.0
                                                                                 0.0
                                                                                                  0.0
In [56]: df1.loc[df1['cluster']==1,:]
Out[56]:
                                       funding total usd funding rounds founded year seed venture equity crowdfunding und
                                status
                      name
                     Verizon
                                                                     5.0
                                                                                                                      0.0
                                           3.007950e+10
                                                                                1983.0
                                                                                         0.0
                                                                                                  0.0
                             operating
              Communications
In [634]: df1.loc[df1['cluster']==391,:]
Out[634]:
                                             venture equity_crowdfunding undisclosed convertible_note debt_financing angel q
                                   seed
               name
                        status
              Airbnb operating 620000.0 794200000.0
                                                                      0.0
                                                                                                    0.0
                                                                                                                   0.0
                                                                                                                         0.0
                                                                                   0.0
One big exception to this pattern however, is Google:
In [663]: df1.loc[['Google']]
Out[663]:
                                         venture equity_crowdfunding undisclosed convertible_note debt_financing
                                seed
                                                                                                                      angel gi
                        status
               name
              Google operating
                                 0.0 25000000.0
                                                                  0.0
                                                                               0.0
                                                                                                0.0
                                                                                                               0.0 100000.0
In [665]:
             df1.loc[df1['cluster']==462,:] #Google's Cluster
Out[665]:
                                                    venture equity_crowdfunding undisclosed convertible_note debt_financing
                                           seed
                               status
                      name
                                       750000.0 24904560.0
                                                                                                           0.0
                   33Across
                            operating
                                                                             0.0
                                                                                          0.0
                                                                                                                          0.0
              3V Transaction
                             operating
                                             0.0 25500000.0
                                                                             0.0
                                                                                          0.0
                                                                                                           0.0
                                                                                                                          0.0
                    Services
              6Wunderkinder operating
                                             0.0 23857750.0
                                                                             0.0
                                                                                          0.0
                                                                                                           0.0
                                                                                                                          0.0
                818 Sports &
                                      2000000.0 25000000.0
                             operating
                                                                             0.0
                                                                                          0.0
                                                                                                           0.0
                                                                                                                          0.0
               Entertainment
                       8Trip
                                             0.0 24600000.0
                                                                             0.0
                                                                                          0.0
                                                                                                           0.0
                                                                                                                          0.0
                            operating
                Zeis Excelsa operating
                                             0.0 26148000.0
                                                                             0.0
                                                                                          0.0
                                                                                                           0.0
                                                                                                                          0.0
                     Zettics operating
                                             0.0 25828327.0
                                                                             0.0
                                                                                          0.0
                                                                                                           0.0
                                                                                                                          0.0
                     Zimory operating
                                                 25482000.0
                                                                             0.0
                                                                                          0.0
                                                                                                           0.0
                                                                                                                          0.0
                                                 26000000.0
               Zing Systems
                            acquired
                                             0.0
                                                                             0.0
                                                                                          0.0
                                                                                                           0.0
                                                                                                                          0.0
                                             0.0 25000000.0
                   Zyngenia operating
                                                                             0.0
                                                                                          0.0
                                                                                                           0.0
                                                                                                                          0.0
```

398 rows × 14 columns

Google only raised about \$35 million in funding, which is much lower than almost every other giant tech company. This is most likely explained by how quickly Google became profitable compared to those other companies. Nonetheless, this relatively low amount of outside funding puts Google in league with many other startups, causing this cluster to include 398 companies.

While it is interesting to see in an orderly way what startups have recieved the most similar amounts and types of funding, it seems that it would be a stretch to draw any meaningful insights beyond that in our analysis. Additionally, clustering does not appear to be a helpful tool in predicting the status of a startup based on funding.

VI. Conclusion

When we went into this project, we expected to find a significant relationship between funding activity and a startup's likelihood of being acquired. To our surprise, we could find no such link after utilizing several different tools to test our hypothesis. Other info besides funding, such as who the founder of the startup is, who their team is, how consolidated their market is, and who their competitors are, may be better suited for this type of prediction.

As an aside, one potential downfall of the data we used could be the survivors bias represented by those startups included in our dataset. Only about 5% of the startups included have been closed while, in reality, the percentage is obviously much higher than that. However, we can probably safely assume that most of the closed startups not included in our dataset haven't recieved significant outside funding and thus, are not terribly relevant to our analysis.