Implementação do 8 puzzle utilizando Heurísticas A*

Guilherme Augusto Defalque¹

¹Faculdade de Computação— Universidade Federal de Mato Grosso do Sul (UFMS) Caixa Postal 549 – 79070-900 – Campo Grande – MS – Brazil

guilhermedefalque@gmail.com

Abstract. This scientific article describes the main features of the implementation of the game 8 puzzle using A^* heuristics. This work is motived to be develop with the intention of learning search algorithms studied in discipline of Artificial Intelligence.

Resumo. Este artigo científico descreve as principais características da implementação do jogo 8 puzzle utilizando heurísticas A*. Este trabalho está motivado a ser desenvolvido com intuito de aprendizado em algoritmos de busca estudado na disciplina de Inteligência Artificial.

1. Introdução

O desenvolvimento tecnológico nas mais diversas áreas, nos dias atuais, deve-se a sistemas e mecanismos automatizados que suprem as necessidades humanas, utilizando componentes que proporcionam eficácia nos resultados de maneira célere através de recursos computacionais bem aprimorados.

A utilização de algoritmos eficientes é um dos principais fatores ligados a evolução computacional. Por exemplo, a utilização de céleres em uma consulta de um banco de dados é o fator principal que determina a velocidade geral da resposta.

O foco desse trabalho é mostrar a eficiência de métodos ligados a buscas, utilizando heurísticas que fazem com que essas buscas sejam voltadas para encontrar a solução ótima, reduzindo assim o tempo de resposta.

2. 8 puzzle

O objetivo do jogo é mover as peças a partir de um estado inicial até encontrar seu estado final, quando o Puzzle está ordenado de forma crescente dizemos que ele chegou ao seu estado final. As regras do jogo são bastante simples, a peça vazia é a única que pode movimentar-se, dependendo da situação pode haver de dois a quatro movimentos possíveis (cima, baixo, direita e esquerda). Estes movimentos geram novos estados até encontrar o estado final. O Puzzle possui um espaço de estados no valor de 9.

3. Heurísticas utilizadas

Utilizou-se para a implementação do trabalho duas Heurísticas h(n):

H1(n) = número de quadrados em locais errados;

H2(n) = distância de Manhattan total: número de espaços que devem ser movimentados para chegar ao tabuleiro objetivo. Pode ser calculada da seguinte forma:

$$D = |x - x'| + |y - y'|$$

Onde x e y são as coordenadas da posição atual de um determinado número no tabuleiro e x'e y', as posições que a peça no tabuleiro deveria estar. Deve se lembrar que deve-se calcular a soma de todo D correspondente aos 8 valores do puzzle.

4. O algoritmo A*

É um algoritmo de busca em grafos que utiliza uma função de avaliação para cada nó e garante uma solução ótima:

$$F(n) = G(n) + H(n).$$

Nesse trabalho considera-se o peso de cada G(n) como 1, tendo em vista que a distância de um nó para outro nó filho ou pai, é de uma unidade. Já H(n) é baseado nas Heurísticas H1 e H2 utilizadas.

5. A ideia

Utilizou-se a ideia baseada em buscar sempre o nó de menor caminho até o nó de destino, sendo que a distância H1(n) e H2(n) serviam como base para esse cálculo. Buscava-se, a partir de um nó inicial, percorrer a árvore pelo filho de possuía a menor heurística H(n). A cada nó visitado, marcava-se o mesmo como percorrido, a fim de não percorre-lo novamente. A cada filho não visitado, marcava-se o mesmo como não percorrido, a fim de gerar a possibilidade de, caso se necessita-se, percorre-lo novamente. No nó corrente, encontrava-se o filho de menor distância e comprava-se com a do nó da lista de não visitados que possuía o menor valor. Caso a distância do filho do nó corrente fosse menor, ele seria o próximo nó corrente. Caso contrário, o nó da lista de não visitados com a menor distância seria retirado da mesma e se tornado o nó corrente. Assim o algoritmo trabalharia até encontrar o nó final correspondente ao objetivo do jogo.

6. Problemas encontrados e possíveis soluções

Apesar da ideia, algum problema na implementação gerou uma impossibilidade de comparar os algoritmos, sendo que para alguns casos, um erro ocorre, sendo o mesmo causado por algum tipo de inconsistência na função que faz a comparação dos filhos do nó corrente com os demais nós não visitados. Apesar do entendimento do problema, não foi possível resolvê-lo em tempo hábil. As demais funções estão executando de maneira correta.

Contudo, para alguns casos de testes, ambos os programas funcionam e conseguem retornar em um tempo ótimo as soluções.

7. Conclusão

Baseando-se na teoria e nos estudos envolvendo heurísticas interligadas ao algoritmo A*, absorveu-se de maneira satisfatória e compreensível a ideia do algoritmo, apesar dos problemas encontrados na implementação do código.

Referencias

Baranauskas, José Augusto. "Estratégias de busca (2014)". http://ead.facom.ufms.br/pluginfile.php/8889/mod_resource/content/1/IA-Estrategias-Busca.pdf

Tavares, Wladimir. (2014) "Busca Heurística e Local", http://http://lia.ufc.br/~wladimir/ia/aula4.pdfLieberknecht, Eduardo. (2013) "

Gárcia, Alberto Avedo. (2014) "8 puzzle". http://www.lcc.uma.es/~blas/apuntes/PDAv/T2011-2012/G1AlbertoAcevedoGarcia8Puzzle.pdf

Dantas, Marciel. (2014) "Jogo dos 8 com heurística h2", https://www.youtube.com/watch?v=Vd256vcm05k

Barrios, Luiz Fernando. "Comparación de Heurísticas para la solución del Problema 8-puzzle mediante el Algoritmo A* em Common Lisp", http://www.luisespino.com/pub/comparacion_heuristicas_8puzzle_astar_common_lisp-luis_espino.pdf