

Basic TCP/IP

Certified Mikrotik Training Basic Class

Organized by: Citraweb Nusa Infomedia (Mikrotik Certified Training Partner)

Training Outline

- o OSI Layer
- Packet Header
- Mac Address
- IP Address and subnetting
- o IP Protocol
- o Basic networking, DNS, gateway

OSI Layer dan Protokol

• • OSI Layer dan Protokol

Application	SMTP	HTTP	FTP	Telnet	DNS	DHCP	SNMP	TFTP
Presentation	Enkri	osi, del	kripsi,	mime				
Session	TCP Data Session Maintenance Domain Resolve			olve				
Transport	TCP Transmission Control Protocol		UDP User Datagram Protocol					
Network	IOM			IP			ng Proto OSPF, E	
Link	Mac Address, Switch ARP							
Physical	Ethernet, Wireless, ATM, Frame Relay, PPP							

• • Packet Header

IP ve	rsion (4)	IP Hea	ader Length Typ	e of service		
	ver	IHL ToS		16 bit total length		
	16 bit identification			fragment offset flag/length		
	TTL protocol			16 bit header checksum		
Timo	32 bit source IP Address					
Time	32 bit destination IP Address					
	options (if any)					
	data					

MAC Address

- o MAC = Media Access Control
- Digunakan sebagai identitas yang unik dari setiap interface hardware, yang merupakan identitas untuk berkomunikasi di OSI layer 2.
- Sebagian bit merupakan identitas pabrik pembuat hardware
- o 48 bit hex. Contoh: "00:11:22:DD:EE:FF"
- Jika sebuah router memiliki 3 interface fisik, maka akan memiliki 3 buah mac address
- Untuk virtual interface (VLAN, EoIP) maka ditambahkan mac address virtual.

IP Address

- Adalah sistem pengalamatan setiap host yang terhubung ke jaringan
- o Saat ini IP Address yang banyak digunakan adalah IP versi 4. (32 bits / 4 bytes) 4,294,967,296 hosts

An IPv4 address (dotted-decimal notation)

172 . 16 . 254 . 1

↓ ↓ ↓ ↓

10101100 .00010000 .111111110 .00000001

One byte = Eight bits

Thirty-two bits (4 * 8), or 4 bytes

Pengelompokan IP Address

- Pengelompokan IP Address dilakukan dengan subnet-ing.
- o Subnet 0 32
 - o Melambangkan jumlah IP dalam subnet tersebut dengan rumus 2^(32-x)
 - Subnet 0 berarti semua IP Address
 - o Subnet 32 berarti 1 IP Address

IP Subneting (contoh 1)

o Contoh: 192.168.0.0/24

Netmask : 255.255.255.0

Prefix : /24

IP Network : 192.168.0.0

First HostIP: 192.168.0.1

Last HostIP: 192.168.0.254

Broadcast : 192.168.0.255

HostIP : total IP di dalam Subnet (–) minus 2

IP Subneting (contoh 2)

o Contoh: 192.168.0.0/25

Netmask : 255.255.255.128

Prefix : /25

IP Network : 192.168.0.0

First HostIP: 192.168.0.1

Last HostIP: 192.168.0.126

Broadcast : 192.168.0.127

HostIP : total IP di dalam Subnet (–) minus 2

• • • Tabel Subnet

Subnet Mask	Prefix	No of IP	Usable IP
255.255.255.0	/24	256	254
255.255.255.128	/25	128	126
255.255.255.192	/26	64	62
255.255.255.224	/27	32	30
255.255.255.240	/28	16	14
255.255.255.248	/29	8	6
255.255.255.252	/30	4	2
255.255.254	/31	2	-
255.255.255	/32	1	-

Quiz!

- Berikut ini adalah IP Address yang tidak boleh digunakan oleh host atau server yang berada pada internet network (public internet):
 - a. 192.186.0.1
 - ы. 172.31.76.76
 - c. 110.10.12.10
 - d. 10.100.123.45
- Seiring perjalanan data dari layer 1 ke layer 7 dalam 7 layer OSI, header dari paket data :
 - a. di-susun-ulang
 - b. di-modifikasi
 - c. di-tambah
 - d. di-hilangkan

Public and Private IP Address

o Public IP Address

IP Address yang dapat diakses di jaringan internet. Kita bisa mendapatkan Public IP Address dari:

- o Dipinjami dari ISP
- Alokasi dari APNIC/IDNIC (www.idnic.net)

o Private IP Address

IP Address yang diperuntukkan untuk jaringan lokal (tidak dapat diakses di jaringan internet)

- **o** 10.0.0.0 − 10.255.255.255 (10./8)
- o 172.16.0.0 172.31.255.255 (172.16./12)
- o 192.168.0.0 192.168.255.255 (192.168./16)

• • IP Address Khusus Lainnya

Penggunaan	IP / subnet
Self Identification	0.0.0.0/8
Localhost	127.0.0.1
Loopback	Other 127.0.0.0/8
Multicast	224.0.0.0/4
Local link/DHCP error	169.254.0.0/16
IETF Protocol Assignments	192.0.0.0/24
TEST-NET-1	192.0.2.0/24
TEST-NET-2	198.51.100.0/24
TEST-NET-3	203.0.113.0/24
6to4 Relay Anycast	192.88.99.0/24
Benchmark Test	198.18.0.0/15
Future Used	240.0.0.0/4
Limited Broadcast	255.255.255.255/32

RFC5735 Jan 2010: http://tools.ietf.org/html/rfc5735

• • IP Protocol

- Adalah protokol standart yang digunakan untuk mengkomunikasikan data melalui berbagai jenis perangkat dan layer.
- Pengiriman data dilakukan dengan sistem "per paket" dan/atau "per connection".
- Sistem ini menjamin keutuhan data, dan mencegah terjadinya kekurangan ataupun duplikasi data.
- Ada beragam protokol yang biasa digunakan, yang umum adalah TCP, UDP, dan ICMP.

ICMP (Internet Control Message Protocol)

- Disalurkan berbasis "best effort" sehingga bisa terjadi error (datagram lost)
- Banyak digunakan untuk pengecekan jaringan
- o Prinsip kerja:
 - Host (router ataupun tujuan) akan mendeteksi apabila terjadi permasalahan tranmisi, dan membuat "ICMP message" yang akan dikirimkan ke host asal.
- Aplikasi ICMP yang paling banyak digunakan: Ping dan Traceroute

Type	Name
0	Echo Reply
1	Unassigned
2	Unassigned
3	Destination Unreachable
4	Source Quench
5	Redirect
6	Alternate Host Address
7	Unassigned
8	Echo
9	Router Advertisement
10	Router Solicitation
11	Time Exceeded

UDP (User Datagram Protocol)

- Komputer yang satu bisa mengirimkan pesan/ datagram ke komputer lainnya di jaringan, tanpa terlebih dahulu melakukan "hand-shake" (connectionless communication)
- Biasanya digunakan untuk servis yang mengirimkan data kecil ke banyak host
- Tidak ada flow control ataupun mekanisme lain untuk menjaga keutuhan datagram
- Aplikasi yang paling umum menggunakan UDP adalah DNS dan berbagai game online

TCP (Transmission Control Protocol)

- Merupakan protokol yang paling banyak digunakan di internet.
- o Bekerja dengan pengalamatan port
 - Port 1 1024 : low port (standard service port)
 - o Port 1025...: high port (untuk transmisi lanjutan)
- o Contoh aplikasi: http, email, ftp, dll
- Prinsip Kerja: Connection Oriented, Reliable Transmission, Error Detection, Flow Control, Segment Size Control, Congestion Control

Prinsip Kerja TCP

- Connection Oriented
 - o Koneksi diawali dengan proses "handshake"
 - o Client → SYN → Server
 - o Server → SYN-ACK → Client
 - o Client → ACK → Server
- o Reliable Transmission
 - Mampu melakukan pengurutan paket data, setiap byte data ditandai dengan nomor yang unik
- Error Detection
 - Jika terjadi error, bisa dilakukan pengiriman ulang data

Prinsip Kerja TCP

- o Flow Control
 - Mendeteksi supaya satu host tidak mengirimkan data ke host lainnya terlalu cepat
- Segment Size Control
 - Mendeteksi besaran MSS (maximum segment size) yang bisa dikirimkan supaya tidak terjadi IP fragmentation
- Congestion Control
 - TCP menggunakan beberapa mekanisme untuk mencegah terjadinya congestion pada network