σ 중심극한정리 σ 제이 클 때의 \bar{X} 의 분포

chengbinjin@inha.edu

인하대 정보통신학과

한국통계학회 2007년 추계학술대회

Theorem

 X_1,X_2,\cdots,X_n 이 독립이고 $E[X]=\mu,\ Var(X)=\sigma^2(>0)$ 이고 \bar{X} 와 S^2 이 각각 표본평균, 표본분산이라고 하자. 이때 $n\to\infty$ 이면

$$\frac{\textit{X} - \mu}{\textit{S}/\sqrt{n}} \stackrel{\textit{asymp.}}{\sim} \textit{N}(0, 1) \tag{1}$$

이다.

- ① 식 (1)의 $ch.f \phi(t)$ 의 expansion을 구한다.
- $2n \to \infty$ 일 때 이 함수가 수렴함을 보인다.

Theorem

 X_1,X_2,\cdots,X_n 이 독립이고 $E[X]=\mu,\ Var(X)=\sigma^2(>0)$ 이고 \bar{X} 와 S^2 이 각각 표본평균, 표본분산이라고 하자. 이때 $n\to\infty$ 이면

$$\frac{X - \mu}{S/\sqrt{n}} \stackrel{asymp.}{\sim} N(0, 1) \tag{1}$$

이다.

- ① 식 (1)의 $ch.f \phi(t)$ 의 expansion을 구한다.
- $2n \to \infty$ 일 때 이 함수가 수렴함을 보인다.

Theorem

 X_1,X_2,\cdots,X_n 이 독립이고 $E[X]=\mu,\ Var(X)=\sigma^2(>0)$ 이고 \bar{X} 와 S^2 이 각각 표본평균, 표본분산이라고 하자. 이때 $n\to\infty$ 이면

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \stackrel{asymp.}{\sim} N(0, 1) \tag{1}$$

이다.

- ① 식 (1)의 $ch.f \phi(t)$ 의 expansion을 구한다.
- $2n \to \infty$ 일 때 이 함수가 수렴함을 보인다.

Theorem

 X_1,X_2,\cdots,X_n 이 독립이고 $E[X]=\mu,\ Var(X)=\sigma^2(>0)$ 이고 \bar{X} 와 S^2 이 각각 표본평균, 표본분산이라고 하자. 이때 $n\to\infty$ 이면

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \stackrel{\text{asymp.}}{\sim} N(0, 1) \tag{1}$$

이다.

- ① 식 (1)의 $ch.f \phi(t)$ 의 expansion을 구한다.
- 2 $n \to \infty$ 일 때 이 함수가 수렴함을 보인다.

- 통계의 마술
- 5% 의 진정한 의미
- 등등

- 통계의 마술
- 5% 의 진정한 의미
- 등등