Session 51: Recursion, Induction and Iteration

- Recursion and induction
- Recursion and iteration

Recursion and Induction

Induction and recursion are different approaches to proving results and solving problems

- They have in common that they both in the first place rely on the ability to achieve the desired result for the smallest possible version of the problem at hand
- Induction extends this ability to problems of any size
- Recursion reduces a problem of any size to the smallest possible ones
 Induction can be used to prove correctness of recursive algorithms

Proving Recursive Algorithms Correct

Prove that the algorithm for computing the powers of real numbers is correct power(a, n) :=

if $n \le 0$ then return 1 else return $a \cdot power(a, n-1)$

algorishm is correct &

Recursion and Iteration

A recursively defined function can be evaluated in two different ways

- **Recursively**: for a value apply directly the recursive definition, till a base case is reached, a recursive algorithm
- **Iteratively**: start with base cases, and apply the recursive definition to compute the function for larger values

Fibonacci Function

fibonacci(n) :=

if $n \le 1$ then return n

else return fibonacci(n-1) + fibonacci(n-2)

Example: computing fibonacci (4)

remember the last 2 plo numbers

Meraline-fibonacci (4):

Iterative Algorithm

```
iterative_fibonacci(n) :=
if n = 0 then return 0
else
```

```
previous := 0
```

for
$$i = 1$$
 to $n - 1$

next := previous + current

previous := current

current := next

return current

i	next	previous	awrent
—	_	0	1
1	1	1	1
2	2	1	2
3	3	2	3 result

Complexity is $\Theta(n)$

Summary

- Proving correctness of recursive algorithms using induction
- Iterative algorithm for Fibonacci numbers