Databases and Big Data

Query Optimization

Schedule

Date	Topics	Notes
Week 1	Intro Data Model	No lab
Week 2	SQL	
Week 3	No-SQL MongoDB	Group project launch
Week 4	Functional Dependencies Normal Form	
Week 5	Storage Index	Project checkpoint 1
Week 6	Sort, Join Query optimization	Homework
Week 7	Recess	

Schedule

Date	Topics	Notes
Week 7	Recess	
Week 8	Transactions	In-class quiz
Week 9	Introduction to Big Data Cloud Computing	Project checkpoint 2
Week 10	Hadoop	
Week 11	Spark	
Week 12	Spark Ecosystem	
Week 13	Guest speakers Revision	In-class quiz Project due
Week 14	Revision Exam	

So Far

Today

How hard it is to get <u>it</u> right

Query Optimization

Recall

Product (<u>pid</u>, name, price)
Purchase (<u>pid</u>, cid, store)
Customer (<u>cid</u>, name, city)

Find name of the customer in Seatle who buys anything over \$100, and name of the product he buys

Query Optimization

Week 2

The final piece

Grace Hash Join

Nested Loop Join

Sort Merge Join

Index Scan

Heap File Scan

External Sort

- -

Week 5,6

Query Optimization

That's why DBMS is declarative

Query Optimizer

- Turn a logical plan into physical plan
- Questions:
 - How to execute a physical plan?
 - How to enumerate equivalent plans?
 - Output Description
 Output
 - Output Description
 Output

Given a physical query plan, how does

DBMS execute it?

- Iterator Model
- Materialization Model
- Vector Model

```
select A.id, B.value
from A, B
where A.id = B.id and B.value > 100
```


Iterator Model

- Everything in the plan is an <u>Iterator</u>
- Each operator implement a next() method
- Upstream operator calls next(.) of its children

Iterator Model

- Iterator Model
 - Data flows bottom up
 - Control (call to next(.)) from top down
- Almost all DBMS use this
 - Simple to implement
 - Allows pipelining
 - Great if only subset of results consumed: LIMIT operator

- Iterator Model
 - But high overhead from method calls
- Materialization Model
 - Process all input, and emit all output at once
 - Better than Iterator when immediate results not too much larger than final result

 Materialization Model out={} for t in child.out(): 6 out.add(projection(t)) out={} for t1 in left.out(): TA.id. B.value buildHashTable(t1) for t2 in right.next(): if (t1 = probe(t2))out.add(t1 joins t2) out={} **-O**value>100 for t in child.out(): if condition(t): out.add(t) **3** out={} out={} for t in B: for t in A: out.add(t) out.add(t)

- Vectorized Model
 - Combining Iterator + Materialization
 - Every operator implement next(.)
 - next(.) processes in batch
 - Reduce number of invocations in Iterator model

Vectorized Model

out={}

for t in B:

```
for t in child.out():
                                                           out.add(projection(t))
                                                           if |out| > m: output(out)
          out={}
         for t1 in left.out():
             buildHashTable(t1)
         for t2 in right.next():
                                                                                  TA.id. B.value
             if (t1 = probe(t2))
               out.add(t1 joins t2)
               if |out| > m: output(out)
                                      out={}
                                      for t in child.out():
                                                                                          -Ovalue>100
                                          if condition(t): out.add(t)
                                          if |out| > m: output(out)
                                  out={}
out.add(t)
                                  for t in A:
If |out| > m: output(out)
                                     out.add(t)
                                     if |out| > m: output(out)
```

out={}

Iterator Model:

- + Direction: top down
- + One tuple at a time
- + General purpose

Vectorized:

- + Direction: top down
- + Batch of tuple at a time
- + Read-heavy workloads

Materialization:

- + Direction: bottom up
- + Entire output set at a time
- + Write-heavy workloads

Query Rewriting

Query Rewriting

 $\Pi(\sigma(\text{Product} \bowtie \text{Purchase}) \bowtie \text{Customer})$

 $\Pi(\sigma(\text{Product}) \bowtie \text{Purchase}) \bowtie \sigma(\text{Customer}))$

Query Rewriting

- E, E' are relational expression
 - \circ e.g. $\Pi(\sigma(Product \bowtie Purchase) \bowtie Customer)$
- E, E' are equivalent:
 - \circ Let $\mathcal T$ be all possible database instances

$$\forall I \in \mathcal{I}.E(I) = E'(I)$$

Equivalence Rules

Select and Join operators commute with each other

Equivalence Rules

Join operators are associative

Equivalence Rules

Select operator distributes over Join

Project operator cascades

Example

Example

Any a few more logical plans

For each logical plan, there are many physical plans

- Question: given a physical plan
 - What's the estimated cost of running it
 - Without running it

- Recall
 - Cost of select depends on selectivity

- Cost of Join:
 - Depends on the size of the results

 $(R \bowtie S) \bowtie T$

 $3.(B(R) + B(S)) + 3.(B(R \bowtie S) + B(T))$

 $R \bowtie (S \bowtie T)$

 $3.(B(S) + B(T)) + 3.(B(S \bowtie T) + B(R))$

- Unsolved problems
- Still active area of research
- Two main approaches:
 - Build histogram over attributes
 - Sampling

Query Plan Search

Query Plan Search

- So far, we have:
 - Generated lots of physical plans
 - Estimated their costs
- Now: how to pick the best one
 - With lowest cost

If your queries are like these:

```
select * from R,S
where R.id = S.id
```

But in practice...

```
WITH cross items
                          AND ss sold date sk = dl.d date sk
                          AND dl.d year BETWEEN 1999 AND 1999 + 2
                  WHERE cs item sk = ics.i item sk
                          AND d2.d_year BETWEEN 1999 AND 1999 + 2
                  WHERE ws_item_sk = iws.i_item_sk
                          AND d3.d year BETWEEN 1999 AND 1999 + 2)
   AS (SELECT Avg(quantity * list_price) average_sales
FROM (SELECT ss_quantity quantity,
ss_list_price list_price
                  FROM store sales.
```

- But in practice...
- In fact:
 - \circ Consider: $R_1 \bowtie R_2 \dots \bowtie R_N$
 - # plans ~ Catalan number

The first Catalan numbers for n = 0, 1, 2, 3, ... are

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900, 2674440, 9694845, 35357670, 129644790, 477638700, 1767263190, 6564120420, 24466267020, 91482563640, 343059613650, 1289904147324, 4861946401452, ...

```
WITH cross items
     AS (SELECT i item sk ss item sk
        FROM item,
               (SELECT iss.i brand id brand id,
                       iss.i class id class id,
                       iss.i_category_id category_id
                FROM store sales,
                       date dim d1
                 WHERE ss item sk = iss.i item sk
                       AND ss sold date sk = dl.d date sk
                       AND dl.d year BETWEEN 1999 AND 1999 + 2
                 SELECT ics.i brand id,
                       ics.i class id,
                       ics.i category id
                 FROM catalog sales,
                       item ics.
                       date dim d2
                 WHERE cs item sk = ics.i item sk
                       AND cs sold date sk = d2.d date sk
                       AND d2.d year BETWEEN 1999 AND 1999 + 2
                 INTERSECT
                 SELECT iws.i brand id,
                       iws.i class id,
                       iws.i category id
                 FROM web sales,
                       item iws,
                       date dim d3
                 WHERE ws_item_sk = iws.i_item_sk
                       AND ws_sold_date_sk = d3.d date_sk
                       AND d3.d year BETWEEN 1999 AND 1999 + 2)
        WHERE i brand id = brand id
               AND i class id = class id
               AND i category id = category id),
     avg sales
    AS (SELECT Avg(quantity * list price) average sales
        FROM (SELECT ss_quantity quantity,
                       ss list price list price
                 FROM store sales,
                       date dim
                 WHERE ss sold date sk = d date sk
                       AND d year BETWEEN 1999 AND 1999 + 2
                 SELECT cs_quantity quantity,
                       cs list price list price
                 FROM catalog sales,
                       date dim
                 WHERE cs sold date sk = d date sk
                       AND d year BETWEEN 1999 AND 1999 + 2
                 SELECT ws_quantity quantity,
                       ws list price list price
                 FROM web sales,
                       date dim
```

- Another unsolved problem
- Most common approach: Dynamic Programming
 - Pass 1: find best 1-relation plans
 - Pass 2: find best 2-relation plans by joining results from Pass 1
 - o ...
 - Pass N: find best N-relation plans by joining results from Pass N-1
- Still exponential in search space!

- DBMS often picks bad plans
 - Search is heuristic, space is too big
 - Too sensitive to errors in cost estimation
 - And cost estimation is very hard!
 - Cost models go out of date quickly
 - Hardware, software upgrade

Summary

- Query Optimization far from solved problem
 - ML for help!

Learning to Optimize Join Queries With Deep Reinforcement Learning

Sanjay Krishnan^{1,2}, Zongheng Yang¹, Ken Goldberg¹, Joseph M. Hellerstein¹, Ion Stoica¹ 1 RISELab, UC Berkeley 2 Computer Science, University of Chicago skr@cs.uchicago.edu {zongheng, goldberg, hellerstein, istoica}@berkeley.edu

ABSTRACT

Exhaustive enumeration of all possible join orders is often avoided, and most optimizers leverage heuristics to prune the search space. The design and implementation of heuristics are well-understood when the cost model is roughly linear, and we find that these heuristics can be significantly suboptimal when there are non-linearities in cost. Ideally, instead of a fixed heuristic, we would want a strategy to guide the search space in a more data-driven way—tailoring the search to a specific dataset and query workload. Recognizing the link between classical Dynamic Programming enumeration methods and recent results in Reinforcement Learning (RL), we propose a new method for learning optimized join search strategies. We present our RL-based DO optimizer, which

DOI: 10.1145/nnnnnn.nnnnnnn

1 INTRODUCTION

Join optimization has been studied for more than four decades [44] and continues to be an active area of research [33, 40, 49]. The problem's combinatorial complexity leads to the ubiquitous use of *heuristics*. For example, classical System R-style dynamic programs often restrict their search space to certain shapes (e.g., "left-deep" plans). Query optimizers sometimes apply further heuristics to large join queries using genetic [4] or randomized [40] algorithms. In edge cases, these heuristics can break down (by definition), which results in poor plans [29].

10 Jan 2019

DBI

Summary

