Formal Language & Automata Theory

Prof. Sankhadeep Chatterjee

If DFA $D = (Q_D, \Sigma, \delta_D, \{q_0\}, F_D)$ is constructed from NFA $N = (Q_N, \Sigma, \delta_N, q_0, F_N)$ using subset construction then L(D) = L(N)

Proof Outline:

• Show the following by induction on |w|

$$\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$$

Basis

```
Consider |w| = 0, then w = \epsilon
Both \hat{\delta}_D(\{q_0\}, \epsilon) and \hat{\delta}_N(q_0, \epsilon) are \{q_0\}
Hence, \hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)
```

Induction

Assume that the $\hat{\delta}_D(\{q_0\}, w) = \hat{\delta}_N(q_0, w)$ holds for |w| = nConsider, |w| = n + 1 and w = xa where a is the final symbol of wHence, |x| = n thus by induction hypothesis $\hat{\delta}_D(\{q_0\}, x) = \hat{\delta}_N(q_0, x)$

Consider that $\hat{\delta}_D(\{q_0\},x)=\hat{\delta}_N(q_0,x)=\{p_1,p_2,...p_k\}$ Further we get;

$$\hat{\delta}_N(q_0, w) = \hat{\delta}_N(q_0, xa) = \delta_N(\hat{\delta}_N(q_0, x), a) = \bigcup_{i=1}^K \delta_N(p_i, a)$$

Now, from subset construction we get; $_{k}$

$$\delta_D(\{p_1, p_2, ... p_k\}, a) = \bigcup_{i=1}^{N} \delta_N(p_i, a)$$

$$\hat{\delta}_D(q_0, w) = \hat{\delta}_D(\lbrace q_0 \rbrace, xa) = \delta_D(\hat{\delta}_D(\lbrace q_0 \rbrace, x), a)$$

$$= \delta_D(\{p_1, p_2, \dots p_k\}, a) = \bigcup_{i=1}^k \delta_N(p_i, a)$$

Both D and N accepts w iff $\hat{\delta}_D(\{q_0\}, w)$ and $\hat{\delta}_N(q_0, w)$ contains a state in F_N .

Hence, L(D) = L(N)

Operations on DFA

Complement of DFA:

If $D = (Q, \Sigma, \delta, q_0, F)$ then complement of D is denoted as follows:

$$\overline{D} = (Q, \Sigma, \delta, q_0, Q - F)$$

Non final states become final states and vice-versa.

Every thing else remains same.

Operations on DFA

Complement of DFA (Example):

Design a DFA that accepts the following language and find its complement:

 $L = \{w | w \text{ contains odd number of } \mathbf{b}\} \text{ over } \Sigma = \{a, b\}$

Original DFA accepting **odd** number of **b**

Complemented DFA accepting **even** number of **b**

NFA with ϵ Transition

- NFA where ϵ -transitions are allowed
- Only difference with NFA: $\delta: Q \times (\Sigma \cup \epsilon) \rightarrow P(Q)$
- Example: ϵ -NFA that accepts decimal numbers

NFA with ϵ Transition

Transition Diagram

Transition Table

ϵ -closure

Find ϵ -close of state q by following all transitions out of q with label ϵ ECLOSE(q):

$$E = \{q\}$$

- 1. For all p in $\delta(q, \epsilon) q$
 - i. $E \leftarrow E \cup ECLOSE(p)$
- 2. Return E

 $ECLOSE(1) = \{1,2,3,6,4\}$

Transition Function of ϵ -NFA

- Consider w = xa where a is the last symbol and x is a rest of w.
- Assume $\hat{\delta}(q, x) = \{p_1, p_2, ... p_k\}$

If

$$\bigcup_{i=1}^{k} \delta(p_i, a) = \{r_1, r_2, \dots r_m\}$$

then

$$\hat{\delta}(q, w) = ECLOSE\{r_1, r_2, \dots r_m\}$$

Eliminating ϵ -Transition

- Consider ϵ -NFA $E=(Q_E, \Sigma, \delta_E, q_0, F_E)$
- Consider DFA $D=(Q_D, \Sigma, \delta_D, q_D, F_D)$
- Conversion:
 - $Q_D = \{S | S \subseteq Q_E \text{ and } \epsilon closed\}$
 - Σ remains same
 - $\delta_D(S, a)$ is computed as follows:
 - Assume $S = \{p_1, p_2, ..., p_k\}$
 - $\bigcup_{i=1}^k \delta_E(p_i, a) = \{r_1, r_2, \dots r_m\}$
 - $\delta_D(S, a) = ECLOSE(\{r_1, r_2, ..., r_m\})$
 - $q_D = ECLOSE(q_0)$
 - $F_D = \{S | S \subseteq Q_D \text{ and } S \cap F_E \neq \emptyset \}$

