```
#/*Perform Data preprocessing on Titanic dataset
#1.Data Collection.
   Please download the dataset from
  https://www.kaggle.com/datasets/yasserh/titanic-dataset
#2.Data Preprocessing
   o Import the Libraries.
    o Importing the dataset.
    o Checking for Null Values.
#
#
    o Data Visualization.
    o Outlier Detection
    o Splitting Dependent and Independent variables
   o Perform Encoding
    o Feature Scaling.
   o Splitting Data into Train and Test
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
df = pd.read_csv('Titanic-Dataset.csv')
null_values = df.isnull().sum()
print(null_values)
    PassengerId
    Survived
                     0
    Pclass
                     0
    Name
                     0
    Sex
                     0
                   177
    Age
    SibSp
                     0
    Parch
                     0
    Ticket
                     0
    Fare
                    0
    Cabin
                   687
    Embarked
    dtype: int64
# Check for null values in the "Age" column
age_null_values = df['Age'].isnull().sum()
print("Number of null values in the 'Age' column:", age_null_values)
    Number of null values in the 'Age' column: 177
#countplot of passengers by survival status
import seaborn as sns
sns.countplot(data=df, x='Survived')
plt.title('Count of Passengers by Survival Status')
plt.xlabel('Survived')
plt.ylabel('Count')
plt.show()
```

plt.show()

Count of Passengers by Survival Status

sns.countplot(data=df, x='Pclass', hue='Survived')
plt.title('Count of Passengers by Ticket Class and Survival Status')
plt.xlabel('Ticket Class')
plt.ylabel('Count')
plt.legend(title='Survived', labels=['No', 'Yes'])

#Histogram of Passenger Ages

```
sns.histplot(data=df, x='Age', bins=20, kde=True)
plt.title('Distribution of Passenger Ages')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
```


#Boxplot of Fare by Ticket Class

sns.boxplot(data=df, x='Pclass', y='Fare')

```
plt.title('Fare Distribution by Ticket Class')
plt.xlabel('Ticket Class')
plt.ylabel('Fare')
plt.show()
```


#Countplot of Passengers by Gender and Survival Status

```
sns.countplot(data=df, x='Sex', hue='Survived')
plt.title('Count of Passengers by Gender and Survival Status')
plt.xlabel('Gender')
plt.ylabel('Count')
plt.legend(title='Survived', labels=['No', 'Yes'])
plt.show()
```



```
#Correlation Heatmap

corr_matrix = df.corr()
sns.heatmap(corr_matrix, annot=True, cmap='coolwarm', linewidths=0.5)
plt.title('Correlation Heatmap')
plt.show()
```

<ipython-input-10-ac3d71098086>:3: FutureWarning: The default value of numeric_only in DataFrame.corr i
 corr_matrix = df.corr()


```
# Box plot for Age
sns.boxplot(data=df, y='Age')
plt.title('Box Plot of Age')
plt.show()
```

Box plot for Fare
sns.boxplot(data=df, y='Fare')
plt.title('Box Plot of Fare')
plt.show()

```
# Calculate the IQR for Age
Q1 = df['Age'].quantile(0.25)
Q3 = df['Age'].quantile(0.75)
IQR = Q3 - Q1

# Define the lower and upper bounds for Age
lower_bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Find outliers in Age
age_outliers = df[(df['Age'] < lower_bound) | (df['Age'] > upper_bound)]
age_outliers
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embark
33	34	0	2	Wheadon, Mr. Edward H	male	66.0	0	0	C.A. 24579	10.5000	NaN	
54	55	0	1	Ostby, Mr. Engelhart Cornelius	male	65.0	0	1	113509	61.9792	B30	
96	97	0	1	Goldschmidt, Mr. George B	male	71.0	0	0	PC 17754	34.6542	A5	
116	117	0	3	Connors, Mr. Patrick	male	70.5	0	0	370369	7.7500	NaN	
280	281	0	3	Duane, Mr. Frank	male	65.0	0	0	336439	7.7500	NaN	
456	457	0	1	Millet, Mr. Francis Davis	male	65.0	0	0	13509	26.5500	E38	

```
# Calculate the Z-score for Age
z_scores_age = np.abs(stats.zscore(df['Age']))
# Define a threshold for Z-score to identify outliers (e.g., Z-score > 3)
age_outliers = df[z_scores_age > 3]
age_outliers

PassengerId Survived Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Embarked

# Dependent Variable (Target)
y = df['Survived']
# Independent Variables (Features)
x = df.drop('Survived', axis=1)
```

```
X = df.drop(['Survived', 'PassengerId', 'Name', 'Ticket'], axis=1)
```

У

0	0
1	1
2	1
3	1
4	0
886	0
887	1
888	0
889	1
890	0

Name: Survived, Length: 891, dtype: int64

Х

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

Χ

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

```
# Perform one-hot encoding for 'Sex' column
df_encoded = pd.get_dummies(df, columns=['Sex'], drop_first=True)
```

df_encoded

	PassengerId	Survived	Pclass	Name	Age	SibSp	Parch	Ticket	Fare	Cabin	Sex_male	En
0	1	0	3	Braund, Mr. Owen Harris	22.0	1	0	A/5 21171	7.2500	NaN	1	
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	38.0	1	0	PC 17599	71.2833	C85	0	
2	3	1	3	Heikkinen, Miss. Laina	26.0	0	0	STON/O2. 3101282	7.9250	NaN	0	
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	35.0	1	0	113803	53.1000	C123	0	
				Allon Mr								

[#] Perform one-hot encoding for 'Embarked' column
df_encoded = pd.get_dummies(df_encoded, columns=['Embarked'], drop_first=True)

```
#Min-Max Scaling (Normalization)
from \ sklearn.preprocessing \ import \ MinMaxScaler
scaler = MinMaxScaler()
columns_to_scale = ['Age', 'Fare']
df[columns_to_scale] = scaler.fit_transform(df[columns_to_scale])
df[columns_to_scale]
               Age
                       Fare
      0 0.271174 0.014151
      1 0.472229 0.139136
      2 0.321438 0.015469
          0.434531 0.103644
          0.434531 0.015713
     886 0.334004 0.025374
     887 0.233476 0.058556
     888
              NaN 0.045771
     889 0.321438 0.058556
     890 0.396833 0.015127
    891 rows × 2 columns
#Standardization (Z-score Scaling)
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df[columns_to_scale] = scaler.fit_transform(df[columns_to_scale])
from sklearn.model_selection import train_test_split
X = df_encoded.drop('Survived', axis=1) # Independent variables (features)
y = df_encoded['Survived'] # Dependent variable (target)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
Χ
```

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
	•••										

```
0 0

1 1

2 1

3 1

4 0

...

886 0

887 1

888 0

889 1

890 0

Name: Survived, Length: 891, dtype: int64
```

X_{train} , X_{test} , y_{train} , y_{test}

(PassengerId	Pclass	Name Age SibSp) c
331	332	1	Partner, Mr. Austen 45.5	3
733	734	2	Berriman, Mr. William John 23.0	3
382	383	3	Tikkanen, Mr. Juho 32.0	3
704	705	3	Hansen, Mr. Henrik Juul 26.0	1
813	814	3	Andersson, Miss. Ebba Iris Alfrida 6.0	1
			•••	
106	107	3	Salkjelsvik, Miss. Anna Kristine 21.0	3
270	271	1	Cairns, Mr. Alexander NaN G	3
860	861	3	Hansen, Mr. Claus Peter 41.0	2
435	436	1	Carter, Miss. Lucile Polk 14.0	1
102	103	1	White, Mr. Richard Frasar 21.0	3
	Parch	Ti	cket Fare Cabin Sex_male Embarked_Q '	\
331	0	11	3043 28.5000 C124 1 0	

```
733
                        28425
                               13.0000
                                             NaN
382
         0
            STON/O 2. 3101293
                                7.9250
                                             NaN
                                                         1
                                                                    0
704
                       350025
                                 7.8542
                                             NaN
                                                                    0
         0
                                                         1
813
         2
                       347082
                               31.2750
                                             NaN
                                                         0
                                                                    0
106
                       343120
                                7.6500
                                             NaN
                                                                    0
270
         0
                       113798
                               31.0000
                                             NaN
                                                                    0
                                                        1
                               14.1083
860
         0
                       350026
                                             NaN
                                                         1
                                                                    0
435
                       113760 120.0000 B96 B98
                       35281
                               77.2875
                                                                    0
102
                                             D26
                                                        1
     Embarked_S
331
              1
733
              1
382
704
813
             1
106
270
             1
860
             1
435
              1
102
             1
[712 rows x 12 columns],
     PassengerId Pclass
709
             710
                         Moubarek, Master. Halim Gonios ("William George")
                      3
                                     Kvillner, Mr. Johan Henrik Johannesson
439
             440
                      2
840
             841
                      3
                                               Alhomaki, Mr. Ilmari Rudolf
720
             721
                                          Harper, Miss. Annie Jessie "Nina"
                                               Nicola-Yarred, Miss. Jamila
             40
39
                      3
433
             434
                      3
                                                 Kallio, Mr. Nikolai Erland
773
             774
                                                           Elias, Mr. Dibo
                      3 Asplund, Mrs. Carl Oscar (Selma Augusta Emilia...
25
             26
84
              85
                      2
                                                        Ilett, Miss. Bertha
                                            Sandstrom, Miss. Marguerite Rut
10
             11
                      3
      Age
           SibSp
                  Parch
                                    Ticket
                                               Fare Cabin Sex_male \
709
     NaN
              1
                     1
                                      2661 15.2458
                                                                 1
                               C.A. 18723 10.5000
439
     31.0
              0
                     0
                                                      NaN
                                                                 1
              0
                          SOTON/02 3101287
                                            7.9250
840
     20.0
                      0
                                                      NaN
                                                                  1
                                    2/18727 33 0000
720
     6 0
                                                      MaN
                                                                  а
```

×