Problem 1

100 компьютеров (нумерация начинается с 0) объединены друг с другом сетевыми соединениями. Соединения заданы в виде вектора связей. Циклы в сети отсутствуют, посчитайте диаметр данной сети. Воспользуйтесь данным свойством, в этом случае можно написать более эффективный алгоритм.

Решение: В силу условия наша сеть может быть представлена в виде связного графа, который, опять же в силу условия, является деревом. Для решения задачи воспользуемся алгоритмом поиска диаметра дерева. Сложность алгоритма: O(|V| + |E|), где |V| - количество участников в сети, |E| - число соеденений между ними.

Problem 2

75 компьютеров (нумерация начинается с 0) объединены друг с другом сетевыми соединениями. Соединения заданы в виде вектора связей. В сети могут быть циклы, т.е. Ваш алгоритм должен работать для сети любой конфигурации.

Решение: В силу условия наша сеть может быть представлена в виде связного графа. Для каждой вершины запустим волновой алгоритм(bfs), чтобы найти кратчайшие расстояния до остальных. Ответом будет являться максимальной из этих чисел. **Сложность алгоритма:** $O((|V| + |E|)^2)$, где |V| - количество участников в сети, |E| - число соеденений между ними.

Problem 3

Какая сложность наилучшего на текущий момент алгоритма нахождения диаметра произвольной сети относительно количества узлов?

Решение: Представим нашу сеть в виде неориентированного невзвіпанного графа, граф - в виде матрицы смежности A, предварительно добавив петли для каждой из вершин. Воспользуемся свойством матрицы смежности: элемент a_{uv} матрицы A^k - число путей из вершины и в у длины $\leq k$. Очеивдно самый длинный путь возможный путь имеет длину $\geq n$, где n - число вершин. А значит если $\exists k:A^K$ не содержит нулей, то минимальное из таких k очевидно будет диаметром графа. Также заметим, что если A^k не содержит нулей, то A^{k+1} тоже(док-во очевидно и производится от противного). Также заметим, что диаметр не может быть больше чем n.

Алгоритм: последовательно для $\mathbf{m} \in [0, \log n]$ посчитаем степени матрицы A^{2^m} . Найдем число k: A^{2^k} не содержит нулей, а $A^{2^{k-1}}$ содержит. Пусть $B = A^{2^{k-1}}$, диаметр $d = 2^{k-1}$. Теперь последовательно для $i \in [0; k-1]$ считаем: $C = B*A^{2^i}$. Если C содержит нули, то B = C, $d = d+2^i$, иначе ничего не делаем. Ответ содержится в \mathbf{d} .

Сложность: Поскольку $k \leq \log n$, то будет производено $O(\log n)$ унможений матриц размера n x n, каждое из которых выполняется за $n^{2.373}$ (на данный момент именно это число является верхней границей). На втором этапе снова будет произведено $O(\log n)$ умножений, стоимостью $n^{2.373}$ каждое. **Итого:** $O(n^{2.373}*\log n)$

Problem 4

100 компьютеров (нумерация начинается с 0) объединены друг с другом полнодуплексными сетевыми соединениями. Соединения заданы в виде вектора связей. Какая связность у данной сети?

Решение: В силу условия наша сеть может быть представлена в виде мультиграфа. Так как есть кратные ребра, то преобразуем наш мультиграф в взвешанный граф, у которого вес ребра (u, v) -

число исходящих ребер из и в v. Далее запустим алгоритм поиска разреза минимальной стоимости. В данном случае был выбран алгоритм Штор-Вагнера, который был пройден в курсе AuCД ранее. Сложность: $O(|V|^3)$, где |V| - количество участников в сети.

Problem 5

Расчитайте, сколько существует возможных разбиений полносвязного графа из 166 вершин на 2 равные части?

Решение: Ответ может быть получен из несложных комбинаторных рассуждений (выбор вершин для одной из половин и исключением повторов): $\frac{C_{166}^{83}}{2}$.

Problem 6

Задача вычислиния миниальной ширины бисекции является NP-сложной. Поэтому на практике для решения данной задачи используют приближенные алгоритмы. Какая точность у лучшего на текущий момент приближенного алгоритма для поиска минимальной ширины бисекции, который выполняется за полиномиальное время?

Pewerue: Ответ $\sqrt{\log n}$ получается прямым следствием Theorem 1(Main) из статьи Expander Flows, Geometric Embeddings and Graph Partitioning, за авторстовм: Sanjeev Arora, Satish B Rao и др. (стр. 117)