Maturitní témata 2020/21

Otázka č. 1 – Hardware a aplikační software

Číselné soustavy:

- -způsob reprezentace čísel
- podle způsobu určení hodnoty čísla z dané reprezentace rozlišujeme dva hlavní druhy číselných soustav:

1) poziční číselné soustavy:

- charakterizovány tzv. základem neboli bází (anglicky radix, značí se r) = kladné celé číslo definující maximální počet číslic, které jsou v dané soustavě k dispozici
- poziční soustavy (kromě jedničkové) se nazývají také polyadické (= vlastnost, že číslo v nich zapsané lze vyjádřit součtem mocnin základu dané soustavy vynásobených příslušnými platnými číslicemi)
- mezi nejčastěji používané poziční číselné soustavy patří:
 - jedničková unární, r=1
 - tuto soustavu běžně používáme při počítání na prstech nebo při psaní čárek označujících počet piv, může být řazena mezi speciální poziční soustavy nebo i zcela mimo dělení na poziční/nepoziční soustavy
 - dvojková (BIN) binární, r=2
 - přímá implementace v digitálních elektronických obvodech (použitím logických členů), čili interně ji používají všechny moderní počítače
 - číselná soustava, která používá pouze dva symboly 0 a 1
 - poziční číselná soustava mocnin čísla 2
 - osmičková (OCT) oktální, oktalová, r=8
 - desítková (DEC) decimální, dekadická, r=10
 - nejpoužívanější v běžném životě
 - dvanáctková r=12
 - dnes málo používaná, ale dodnes z ní zbyly názvy prvních dvou řádů tucet a veletucet
 - šestnáctková hexadecimální, r=16
 - používá se v oblasti informatiky, pro číslice 10 až 15 se používají písmena A až F

2)nepoziční číselné soustavy:

- způsob reprezentace čísel, ve kterém není hodnota číslice dána jejím umístěním v dané sekvenci číslic, tyto způsoby zápisu čísel se dnes již téměř nepoužívají a jsou považovány za zastaralé
- nevýhody: často neobsahovaly symbol pro nulu a záporná čísla, dlouhý zápis čísel, která výrazně převyšují hodnotu největšího symbolu soustavy
- příklady nepozičních číselných soustav:
 - římské číslice (I, II, III, IV, V) způsob zápisu čísel pomocí písmen abecedy, dnes tento způsob zápisu je výjimečný
 - egyptské číslice
 - řecké číslice zápisu čísel pomocí písmen alfabety

Binární aritmetické operace:

Sčítání binárních čísel:

binární čísla je možné sčítat stejným způsobem, jakým sčítáme čísla desítková. K přenosu jedničky do vyššího řádu dojde tehdy, je-li výsledkem součtu dvou čísel pod sebou hodnota větší nebo rovna 10₂.

Binárně	Dekadicky		
1 1 0	6		
+ 1 0 1	+ 5		
1011	1 1		

Odčítání binárních čísel:

budeme postupovat obdobným způsobem. V příkladu nejprve odečteme 1-1=0 v pravém sloupci tak, jak jsme zvyklí, a v následujícím sloupci 1-0=1. Ve třetím sloupci zprava pak počítáme rozdíl 0-1 (odečítáme větší číslo od menšího). U desítkových čísel si v takovém případě vypomáháme přidáním jedničky ve vyšším řádu menšence (číslo, od kterého odčítáme). Tu vykompenzujeme tím, že ji odečteme v následujícím sloupci vlevo (dojde tedy k přenosu -1).

Binárně	Dekadicky
1010	1 1
- 1 0 1	- 5
110	6

Násobení binárních čísel:

Způsob násobení binárních čísel se nijak neliší od způsobu, jakým násobíme čísla desítková. Při samotném násobení vlastně ani nijak nepocítíme, že se jedná o binární čísla. Rozdíl nastane až při sčítání mezivýsledků, kdy budeme postupovat způsobem popsaným výše.

Binárně	Dekadicky			
1011	1 1			
* 1 0 1	* 5			
1011	5 5			
0000				
1011				
1 1 0 1 1 1				

Dělení binárních čísel:

Vystačíme si v podstatě jen s odčítáním. Příklad je uveden v tabulce. Popíšeme si zde algoritmus, který přímo vychází z postupu dělení desítkových čísel. Za základ dělení si vezmeme takovou část dělence, která je větší nebo rovna děliteli, ale menší než jeho dvojnásobek, v našem případě tedy číslo 1102 (viz první řádek s komentáři v tabulce). Nyní provedeme podíl 110:101 (zvolené číslo vydělíme dělitelem tak jak jsme tomu zvyklí u dělení desítkových čísel). Výsledkem by byla nula v případě, že by bylo 110101, je 111:101=1. Zapíšeme výsledek a provedeme rozdíl 111–1·101=10 (čtvrtý řádek). K číslu 10 přidáme poslední číslici dělence a vzniklé číslo vydělíme dělitelem: 101:101=1 (dělíme-li dvě stejně velká čísla, výsledkem je jednička). Po odečtení 101–101 nám vyjde nulový zbytek.

Pokud by byl zbytek nenulový, mohli bychom pokračovat v dělení standardním způsobem – k výsledku bychom připsali desetinnou čárku a ke zbytku připsali další cifru dělence (jsou to již jenom nuly, kterých si můžeme vpravo za desetinnou čárkou přidat kolik chceme – např. 110111,00000...)

Převody mezi soustavami (10, 2, 16):

↑ 111 - 101 = 10,

Převod: substituční metodou, slouží k převodu mezi číselnými soustavami, metoda spočívá v rozepsání převáděného čísla na polynom a následně jeho vyčíšíření v cílové soustavě (10011,011)₂ → (???)₁₀

$$(1 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 + 0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 1 \cdot 2^{-3})$$

= $(16 + 2 + 1 + 0.25 + 0.125)_{10} = (19, 375)_{10}$

Převod z desítkové do dvojkové soustavy

Nechť máme na papíře číslo 70. Toto číslo budeme nyní chtít převést do dvojkové, binární soustavy. Princip je poměrně jednoduchý, číslo, které chceme převést, dělíme neustále dvojkou, až dojdeme k nule, přičemž si zapisujeme zbytky po celočíselném dělení. Pokud chceme převést číslo do jiné soustavy, například do šestnáctkové, budeme dělit šestnáctkou. Pokud do šestkové, dělíme šestkou. Takže v praxi to bude vypadat takto:

$$\begin{array}{ll} 70:2=35 & \longrightarrow 0 & (zbytek \; po \; d\acute{s}len\acute{i}) \\ 35:2=17 & \longrightarrow 1 \\ 17:2=8 & \longrightarrow 1 \\ 8:2=4 & \longrightarrow 0 \\ 4:2=2 & \longrightarrow 0 \\ 2:2=1 & \longrightarrow 0 \\ 1:2=0 & \longrightarrow 1 \end{array}$$

Výsledné číslo ve dvojkové soustavě udávají zbytky po dělení. Nebereme ale zbytke zvrchu, ale od spodu. Takže číslo 70 v binární soustavě je 1000110.

Převod z dvojkové do desítkové soustavy

Opačně bychom převodli takto. Mějme číslo 1100010 a převeďme ho do desítkové soustavy. Tento směr je jednodušší, stačí vypočítat tento součet:

$$1100010_{10} = 1 \cdot 2^6 + 1 \cdot 2^5 + 0 \cdot 2^4 + 0 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0$$

Každý sčítanec má tvar $\mathbf{x} \cdot 2^{\hat{\mathbf{i}}}$, kde \mathbf{x} je číslice z původního binárního čísla a $\hat{\mathbf{i}}$ se zprava postupně zvětšuje vždy o jedna. Takže porotože převádíme číslo 1100010, vypadá tento součet takto:

$$1100010_{10} = \boxed{1} \cdot 2^6 + \boxed{1} \cdot 2^5 + \boxed{0} \cdot 2^4 + \boxed{0} \cdot 2^3 + \boxed{0} \cdot 2^2 + \boxed{1} \cdot 2^1 + \boxed{0} \cdot 2^0$$

Číslo 1100010 má sedm číslic, takže mocniny u čísla dva budou postupně 6, 5,

..., 1, 0. Po umocnění a vynásobení získáme výraz:

$$1100010_{10} = 64 + 32 + 2 = 98.$$

Převod do jiných soustav

Předchozí postup na převod z desítkové do binární soustavy je natolik univerzální, že lze použít i na jiné soustavy. Pokud chceme převést číslo 185 do šestnáctkové soustavy, jen dělíme 16:

$$185:16=11 \longrightarrow 9 \quad \text{(zbytek po dělení)} \\ 11:16=0 \longrightarrow 11$$

Číslo 185 by v 16 soustavě mělo tvar (11, 9). Místo "číslic" nad 9 se obvykle používají písmena, takže 10 = A, 11 = B, 12 = C, ... Můžeme tak napsat, že číslo 185 má v 16 soustavě tvar B9.

Podobně můžeme převést číslo B9 z 16 soustavy do desítkové.

$$B9_{10} = 11 \cdot 16^1 + 9 \cdot 16^0 = 11 \cdot 16 + 9 = 185$$

Doplňkový kód:

- je-li číslo záporné provede se na klasickou reprezentaci čísla bitová negace a číslo zvětšíme o 1
- jediná interpretace nuly

Aditivní kód:

- nazýváme ho také kód s posunutou nulou
- používá se pro interpretaci s zápornými čísly v paměti počítače, protože nejsou nutné obvody pro testování čísla lze s číslem normálně pracovat na rozdíl od předešlých způsobů

Určete obraz čísel
$$-32_{10}$$
 a 60_{10} 127 - 32 = 95
v aditivním kódu (k=127). 127 +60 = 187

 obraz záporných čísel dostaneme provedením bitové negace binárního čísla a za první číslici dosadíme 0

Zobrazení čísla bez a se znaménkem (8bit):

- sčítání a odečítání se provádí pro čísla se znaménkem stejně jako pro čísla bez znaménka, odlišná je pouze interpretace přetečení

Přímý kód - první možný způsob je vyčlenění prvního bitu jako znaménkového bitu, pokud např. binární číslo 00000001 vyjadřuje jedničku, pak 10000001 označuje -1

tento způsob ale komplikuje algoritmy pro praktické počítání, pro sčítání a odčítání jsou potřeba odlišné algoritmy a nejprve je vždy třeba testovat znaménkový bit a podle výsledku provést sčítání nebo odčítání, další nevýhodou je že existují dvě reprezentace čísla nula → kladná nula a záporná nula, proto byl později pro záznam záporných čísel zaveden doplňkový kód

4

Přetečení:

- overflow, carry
- je jev, který nastane, pokud výsledek aritmetické operace nelze vyjádřit v daném číselném formátu
- o přetečení se hovoří zpravidla v souvislosti s mikroprocesory a dvojkovou soustavou
- při vykonání aritmetické operace, při které dojde k přenosu na nejvýznamnějším bitu registru, se přenos nemůže provést do vyššího bitu, proto se místo toho nastaví příslušný příznak přenosu (jeden z bitů registru příznaků v procesoru, je možné sčítat nebo odčítat příliš velká čísla)
- např. sčítání dvou osmibitových kladných celých čísel, kde součet přesáhne 255

Který z následujících součtů/rozdílů čísel způsobí přetečení (overflow)? Předpokládáme, že z čísel v desítkové soustavě se nejprve vytvoří binární obrazy v doplňkovém kódu na osmibitové řádové	Který z následujících součtů obrazů čísel v doplňkovém kódu na osmibitové řádové mřížc způsobí přetečení (overflow)?			
mřížce.	0xFF-0x01	0x7F+0x01	0x80-0x01	0x80+0x02
	0	1	1.181	6
120+10 115+12 -127-1 -120-30			nstawy	Volkevé se
W A LA L				
160				
íterý z následujících součtů celých čísel				
pez znaménka způsobí na osmibitové řádové				
nřížce přetečení (carry):				
140.45 240.46 220.40 240.50				
240+15 240+16 220+10 210+50				