3.2 Funções Reais de Várias Variáveis Reais: Extremos

(baseado em slides de edições anteriores de Cálculo II)

Universidade de Aveiro, 2024/2025

Cálculo II - C

Resumo dos Conteúdos

- 🚺 Definições; Teorema de Weierstrass; Teorema de Fermat
- Extremos locais em pontos críticos: Testes da Hessiana
- 3 Cálculo de Extremos Globais de Funções Contínuas em Compactos
- Extremos Condicionados

Extremos locais e globais

Definições: Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ e $P \in \mathcal{D}$.

- P é um maximizante local de f, se existe uma bola aberta $B_r(P)$ tal que $\forall X \in B_r(P) \cap \mathcal{D}$, $f(X) \leq f(P)$. Nesse caso, f(P) diz-se um máximo local de f.
- 2 P é o maximizante global de f, se $\forall X \in \mathcal{D}$, f(X) < f(P). Nesse caso, f(P) diz-se o máximo global de f.
- § P é um minimizante local de f, se existe uma bola aberta $B_r(P)$ tal que $\forall X \in B_r(P) \cap \mathcal{D}$, $f(X) \geq f(P)$. Nesse caso, f(P) diz-se um mínimo local de f.
- P é um minimizante global de f, se $\forall X \in \mathcal{D}$, $f(X) \geq f(P)$. Nesse caso, f(P) diz-se o mínimo global de f.

Máximos e mínimos (locais ou globais) designam-se, genericamente, por extremos (locais ou globais); os pontos onde são atingidos designam-se, genericamente, por extremantes (locais ou globais, consoante o caso).

Condição suficiente para a existência de extremos globais: Teorema de Weierstrass

Teorema de Weierstrass:

Se $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ é contínua e \mathcal{D} é fechado e limitado (compacto), então f admite máximo e mínimo globais em \mathcal{D} .

Exemplo 1:)

Seja $f: \mathcal{D} \to \mathbb{R}$, com $\mathcal{D} = \{(x,y) \in \mathbb{R}^2 : \frac{x^2 + y^2}{4}\}$, tal que $f(x,y) = \sqrt{4 - x^2 - y^2}$. Uma vez que \mathcal{D} é compacto e f é contínua, pelo corema de Weierstrass, f atinge, em \mathcal{D} , máximo e mínimo globais.

Exemplo 2: A função $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = 4 - x^2 - y^2$ admite no seu domínio máximo global, atingido em (0,0), mas não possuí mínimo global.

Isto contradiz o Teorema de Weierstrass? Porquê?

Condição necessária para a existência de extremo local num ponto interior: Teorema de Fermat

Teorema de Fermat:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ e $P \in \text{int}(\mathcal{D})$. Se f tem derivadas parciais de 1.ª ordem em P e P é um extremante local de f, então $\nabla f(P) = (0, 0, \dots, 0)$.

Definição:

Um ponto $P \in \operatorname{int}(\mathcal{D})$ tal que $\nabla f(P) = (0, 0, \dots, 0)$ diz-se um ponto crítico de f.

Observações:

- Se $P \in \text{int}(\mathcal{D})$ é um extremante de f, então P é ponto crítico de f ou não existe alguma das derivadas parciais de $1^{\underline{a}}$ ordem de f.
- Existem pontos críticos que não são extremantes; esses pontos designam-se por pontos de sela.

Exemplo – Extremante e ponto crítico

 $f: \mathbb{R}^2 \to \mathbb{R}$ tal que $f(x,y) = 1 - x^2 - y^2$.

Esboço Gráfico:

Notar que (0,0) é um maximizante (global) de f e que nesse ponto a função atinge o seu valor máximo: 1.

As derivadas parciais $f'_x(x,y) = -2x$ e $f'_y(x,y) = -2y$, existem para todo o (x,y). De acordo com o Teorema de Fermat, essas derivadas são nulas em (0,0), o que com facilidade se verifica.

Exemplo – Ponto crítico não extremante (ponto de sela)

A função real de domínio \mathbb{R}^2 tal que $f(x,y)=x^2-y^2$ tem um ponto de sela. De facto, $\nabla f(0,0)=(0,0)$, ou seja, (0,0) é um ponto crítico de f, mas não é extremante local de f (justifique usando a definição).

Esboço Gráfico:

Matriz Hessiana

Como verificar se um ponto crítico é um extremante local?

Uma das abordagens pode ser através da matriz Hessiana de f.

Definição:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ uma função de classe C^2 em $int(\mathcal{D})$ e $P \in int(\mathcal{D})$. A matriz Hessiana de f em P é a matriz (simétrica) de ordem n:

$$H_f(P) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2}(P) & \frac{\partial^2 f}{\partial x_1 \partial x_2}(P) & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n}(P) \\ \frac{\partial^2 f}{\partial x_2 \partial x_1}(P) & \frac{\partial^2 f}{\partial x_2^2}(P) & \cdots & \frac{\partial^2 f}{\partial x_2 \partial x_n}(P) \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1}(P) & \frac{\partial^2 f}{\partial x_n \partial x_2}(P) & \cdots & \frac{\partial^2 f}{\partial x_n^2}(P) \end{bmatrix}.$$

O determinante desta matriz é chamado o Hessiano de f em P.

Cadeia de menores principais líderes de uma matriz

Definição:

Seja $A = [a_{ij}]$ uma matriz $n \times n$ e

$$M_1 = |a_{11}|$$

$$M_2 = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$M_k = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1k} \\ a_{21} & a_{22} & \cdots & a_{2k} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kk} \end{vmatrix}$$

$$M_n = |A|$$
.

 M_1, M_2, \ldots, M_n chama-se a cadeia de menores principais líderes de A.

Exemplo: A matriz
$$\begin{bmatrix} -5 & 3 & 0 \\ 3 & -4 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$
 tem os menores principais líderes:

$$M_1 = |-5| = -5$$

$$M_2 = \begin{vmatrix} -5 & 3 \\ 3 & -4 \end{vmatrix} = 11$$

$$M_3 = \begin{vmatrix} -5 & 3 & 0 \\ 3 & -4 & 0 \\ 0 & 0 & -2 \end{vmatrix} = -22$$

Teste da Hessiana (versão dos menores principais líderes)

Teorema:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ uma função de classe C^2 em $\operatorname{int}(\mathcal{D})$ e $P \in \operatorname{int}(\mathcal{D})$ ponto crítico de f. Suponha-se que $\det(H_f(P)) \neq 0$, *i.e.*, $M_n(P) \neq 0$.

- Se a cadeia de menores principais líderes de $H_f(P)$ é positiva, *i.e.*, $M_k(P) > 0$, k = 1, 2, ..., n, então P é um minimizante local de f.
- Se a cadeia de menores principais líderes de $H_f(P)$ é alternada, começando por um menor principal negativo, i.e., $M_k(P) < 0$, se k ímpar, e $M_k(P) > 0$, se k par, k = 1, 2, ..., n, então P é um maximizante local de f.
- Se nenhuma das situações anteriores ocorrer, P é um ponto de sela de f.

Nota: se $det(H_f(P)) = 0$, este teste <u>não serve</u> para concluir da natureza do ponto crítico.

Exemplo de aplicação do Teste da Hessiana

Seja f a função de domínio \mathbb{R}^2 tal que $f(x,y) = -x^3 + 4xy - 2y^2 + 1$.

$$\nabla f(x,y) = (0,0) \Leftrightarrow \begin{cases} -3x^2 + 4y = 0 \\ 4x - 4y = 0 \end{cases} \Leftrightarrow \begin{cases} x = 0 \\ y = 0 \end{cases} \lor \begin{cases} x = \frac{4}{3} \\ y = \frac{4}{3} \end{cases}$$

Assim, P=(0,0) e $Q=\left(\frac{4}{3},\frac{4}{3}\right)$ são os pontos críticos de f. A matriz Hessiana é

$$H_f(x,y) = \begin{bmatrix} -6x & 4 \\ 4 & -4 \end{bmatrix}$$
.

 $H_f(P) = \begin{bmatrix} 0 & 4 \\ 4 & -4 \end{bmatrix}$, logo P é ponto de sela de f, pois $M_2(P) \neq 0$ e

$$M_1(P)=0.$$

$$H_f(Q) = \begin{bmatrix} -8 & 4 \\ 4 & -4 \end{bmatrix}$$
, como $M_1(Q) = -8 < 0$ e $M_2(Q) = 16 > 0$, Q é

maximizante local de f. O máximo local correspondente é $f(\frac{4}{3},\frac{4}{3})=\frac{59}{27}$.

Teste da Hessiana para n = 2

Teorema:

Sejam $f: \mathcal{D} \subseteq \mathbb{R}^2 \to \mathbb{R}$ uma função de classe C^2 em $\operatorname{int}(\mathcal{D})$ e $P \in \operatorname{int}(\mathcal{D})$ ponto crítico de f. Suponha-se que $\det(H_f(P)) \neq 0$.

- **9** Se $\det(H_f(P)) > 0$ e $\frac{\partial^2 f}{\partial x^2}(P) > 0$, então P é um minimizante local.
- **9** Se $\det(H_f(P)) > 0$ e $\frac{\partial^2 f}{\partial x^2}(P) < 0$, então P é um maximizante local.
- Se $\det(H_f(P)) < 0$, então P é ponto de sela.

Nota: Quando $det(H_f(P)) = 0$, qualquer teste baseado em $H_f(P)$ é inconclusivo. De facto, para Hessianas "idênticas", os pontos associados podem ter uma natureza completamente distinta (veja os exemplos do slide seguinte).

Exemplos de aplicação inconclusiva do Teste da Hessiana

Ex. 1: Determinar os extremos locais da função $f(x, y) = x^4 + x^2 + y^3$.

- Pontos críticos de f: (0,0)
- $H_f(x,y) = \begin{bmatrix} 12x^2 + 2 & 0 \\ 0 & 6y \end{bmatrix}$ e $\det(H_f(0,0)) = 0$. O teste da Hessiana é inconclusivo.
- Análise, recorrendo à definição, da função numa vizinhança de (0,0): Em toda a bola aberta centrada em (0,0) existem pontos da forma (0, b), com b negativo e com b positivo. Como $f(0,b) = b^3 < 0$, se b < 0, e $f(0,b) = b^3 > 0$, se b > 0, o ponto (0,0) não é extremante de f, mas sim um ponto de sela.

Ex. 2: A aplicação do Teste da Hessiana na determinação dos extremos locais da função $f(x, y) = x^4 + x^2 + y^4$ é também inconclusiva. Mas, neste caso, (0,0) é um minimizante local. Verifique, fazendo uma análise similar à do exemplo anterior.

Cálculo de Extremos Globais em Compactos

Se $f: \mathcal{D} \subseteq \mathbb{R}^n \to \mathbb{R}$ é contínua e \mathcal{D} fechado e limitado (compacto), o Teorema de Weierstrass garante a existência de extremantes globais em D. A identificação desses extremantes, e respetivos valores extremos, pode ser feita usando o seguinte procedimento:

- **1** Determinar, no interior de \mathcal{D} , os pontos críticos de f.
- 2 Determinar, no interior de \mathcal{D} , os pontos onde não exista uma das derivadas parciais.
- **①** Determinar os candidatos a extremantes da restrição de f à fronteira de \mathcal{D} .
- Onsiderar os pontos obtidos nos passos anteriores e calcular o valor de f em cada um deles. O menor dos valores é o mínimo global de f e o maior é o máximo global de f (em D).

Exemplo de aplicação do procedimento do slide anterior:

$$f(x,y)=x^2+y^2-x-y+1$$
, definida em $\mathcal{D}=\{(x,y)\in\mathbb{R}^2\colon x^2+y^2\leq 1\}$

- Notar que, $\operatorname{int}(\mathcal{D}) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}.$ $P_1 = (\frac{1}{2}, \frac{1}{2})$ é o único ponto crítico de f em $\operatorname{int}(\mathcal{D})$.
- ② Como f tem derivadas parciais em todos os pontos de int (\mathcal{D}) , em relação ao ponto 2. não há pontos a acrescentar.
- Notar que, fr $(\mathcal{D}) = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 = 1\}.$ Tomando $x = \cos \theta$ e $y = \sin \theta$, com $\theta \in [0, 2\pi]$,

$$fr(\mathcal{D}) = \{(\cos \theta, \sin \theta) \in \mathbb{R}^2 \colon \theta \in [0, 2\pi]\}$$

e a restrição de f, $f_{|\mathrm{fr}(\mathcal{D})}$ pode considerar-se como sendo a seguinte função a uma variável

$$g(\theta) = f_{|fr(D)}(\theta) = f(\cos \theta, \sin \theta)$$

= $2 - \cos \theta - \sin \theta$, $\cos \theta \in [0, 2\pi]$.

Conclusão do exemplo do slide anterior

Os candidatos a extremantes de g, são os seus pontos críticos $\theta=\frac{\pi}{4}$ e $\theta=\frac{5\pi}{4}$ e os pontos fronteiros do intervalo $\theta=0$ e $\theta=2\pi$. Assim, devemos considerar os pontos:

$$P_2 = (\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}), P_3 = (-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}) e P_4 = (1, 0)$$

como candidatos a extremantes globais de f.

Como

$$f(P_1) = \frac{1}{2}, f(P_2) = 2 - \sqrt{2}, f(P_3) = 2 + \sqrt{2} e f(P_4) = 1,$$

então o **máximo global** de f em \mathcal{D} é $2+\sqrt{2}$, atingido em $P_3=\left(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}\right)$ e o **minímo global** de f em \mathcal{D} é $\frac{1}{2}$, atingido em $P_1=\left(\frac{1}{2},\frac{1}{2}\right)$.

O que é um extremo condicionado (ou ligado) (ou sujeito a restrição)?

Um extremo condicionado de uma função é um extremo de uma sua restrição a um certo conjunto, definido por uma certa condição (ou conjunto de condições). Trataremos apenas o caso em que essa condição é uma igualdade. Vamos considerar funções a duas variáveis (a generalização para n > 2 é a natural).

Sejam
$$f\colon \mathcal{D}\subseteq \mathbb{R}^2 o \mathbb{R}$$
 , $g\colon \mathcal{D}\subseteq \mathbb{R}^2 o \mathbb{R}$ e

$$\mathcal{C} = \{(x,y) \in \mathcal{D} \colon g(x,y) = 0\}.$$

Os extremos da restrição $f_{|C|}$ são designados de extremos condicionados de f sujeitos (ou restritos) à condição (restrição) g(x, y) = 0.

A condição g(x, y) = 0 é chamada de condição de ligação ou condição de restrição (ou simplesmente, restrição).

Exemplo:
$$f(x,y) = x^2 + y^2 - x - y + 1$$
 e $g(x,y) = x^2 + y^2 - 1$

Problema: Determinar os extremos de f restringida ao conjunto $\mathcal{C} = \{(x,y) \in \mathbb{R}^2 : g(x,y) = 0\}.$

Em esquema:

min/max
$$f(x,y) = x^2 + y^2 - x - y + 1$$

s.a. $x^2 + y^2 = 1$

Nota: s.a. lê-se "sujeito a"

Usando o estudo feito no exemplo do Slide 17, para a fronteira, podemos dizer que a resposta é $2-\sqrt{2}$ e $2+\sqrt{2}$ para o mínimo e máximo pedidos.

Multiplicadores de Lagrange

Teorema:

Sejam \mathcal{D} um aberto de \mathbb{R}^2 , $f: \mathcal{D} \to \mathbb{R}$ e $g: \mathcal{D} \to \mathbb{R}$ funções de classe C^1 em \mathcal{D} e $\mathcal{C} = \{(x,y) \in \mathcal{D}: g(x,y) = 0\}$.

Se $P \in \mathcal{C}$ é um extremante da restrição de f a \mathcal{C} e $\nabla g(P) \neq (0,0)$, então existe $\lambda \in \mathbb{R}$ tal que $\nabla f(P) = \lambda \nabla g(P)$.

Nota: O escalar λ é designado por multiplicador de Lagrange.

Multiplicador de Lagrange:

O teorema anterior (respeitadas as condições em f e g) afirma que pontos de $\mathcal C$ onde os gradientes de f e g sejam colineares são os candidatos a extremantes condicionados.

Método dos Multiplicadores de Lagrange

Problema: Sejam \mathcal{D} um aberto de \mathbb{R}^2 , $f: \mathcal{D} \to \mathbb{R}$ e $g: \mathcal{D} \to \mathbb{R}$ funções de classe C^1 em \mathcal{D} e $\mathcal{C} = \{(x,y) \in \mathcal{D} \colon g(x,y) = 0\}$.

min/max
$$f(x, y)$$

s.a. $g(x, y) = 0$

Método:

• Determinar as soluções (x, y) do sistema^a

$$\begin{cases} \nabla f(x,y) &= \lambda \nabla g(x,y) \\ g(x,y) &= 0 \end{cases}, \text{ admitindo } \nabla g(x,y) \neq (0,0).$$

- **②** Verificar se $\nabla g(x_0, y_0) = (0, 0)$ em algum ponto $(x_0, y_0) \in \mathcal{C}$; esse ponto poderá também ser extremante.
- Studar a natureza dos pontos obtidos.

^aEm geral, isso também envolve calcular λ .

Exemplo:
$$\min_{s.a.} f(x,y) = x^2 + y^2 - x - y + 1$$

Aplicação do método dos multiplicadores de Lagrange:

Seja
$$g(x, y) = x^2 + y^2 - 1$$
. Observe-se que:

$$\frac{\partial f}{\partial x}(x, y) = 2x - 1$$

$$\frac{\partial f}{\partial y}(x, y) = 2y - 1$$

$$\frac{\partial g}{\partial x}(x, y) = 2x$$

$$\frac{\partial g}{\partial y}(x, y) = 2y$$

Logo, f e g são funções de classe C^1 (porque têm derivadas parciais contínuas).

Por outro lado,
$$\nabla g(x,y) \neq (0,0)$$
 se $g(x,y) = 0$.

Logo, basta resolver o sistema:

$$\begin{cases} \nabla f(x,y) &= \lambda \nabla g(x,y) \\ g(x,y) &= 0 \end{cases} \Leftrightarrow \begin{cases} 2x - 1 &= \lambda 2x \\ 2y - 1 &= \lambda 2y \\ x^2 + y^2 &= 1 \end{cases}$$

Resolvendo o sistema, obtém-se:

$$\begin{cases} x & = & \frac{\sqrt{2}}{2} \\ y & = & \frac{\sqrt{2}}{2} \\ \lambda & = & 1 - \frac{\sqrt{2}}{2} \end{cases} \quad \lor \quad \begin{cases} x & = & -\frac{\sqrt{2}}{2} \\ y & = & -\frac{\sqrt{2}}{2} \\ \lambda & = & 1 + \frac{\sqrt{2}}{2} \end{cases}$$

Os candidatos a extremantes são: $P=(\frac{\sqrt{2}}{2},\frac{\sqrt{2}}{2})$ e $Q=(-\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2})$.

Como a restrição define um conjunto limitado e fechado de \mathbb{R}^2 e f é aí contínua, pelo **Teorema de Weierstrass**, P e Q terão que ser os extremantes.

Assim, conclui-se que $f(P)=2-\sqrt{2}$ é o mínimo e $f(Q)=2+\sqrt{2}$ é o máximo (condicionados).