

4(11) = 15T	- 312/2	N	DVW	ale	ce	nti		red	wit	X		U(0,1)
	x	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	/
	.0 .1 .2	.5000 .5398 .5793 .6179	.5438 .5832	.5478 .5871	.5517 .5910	.5557	.5199 .5596 .5987 .6368	.5239 .5636 .6026 .6406	.5675 .6064	.5714	.5359 .5753 .6141 .6517	P(X <a)< th=""></a)<>
$P(X \leq \underline{1,14}) = 0, 87$.4 .5 .6 .7	.6554 .6915 .7257 .7580	.6591 .6950 .7291 .7611		.7019 .7357	.7054	.6736 .7088 .7422 .7734	.6772 .7123 .7454 .7764	.7157 .7486	.7190	.6879 .7224 .7549 .7852	Tablon
1.17 = 1.10 + 0.04 $P(X > 1.32)$.8 .9 1.0 1.1	.7881 .8159 8413 .8643	.7910 .8186 .8438 .8665	.7939 .8212 .8461 .8686	.8238 .8485	.7995 .8264 .8508 .8729		.8051 .8315 .8554 .8770	.8340 .8557	.8599	.8133 .8389 .8621 .8830	
1-P(X<1,3?)	1.2 1.3 1.4	.8849 .9032 .9192	.8869 .9049 .9207	.8888	.8907 .9082	.8925 .9099 .9251	.8944 .9115 .9265	.896 2 .9131 .9279	.8980		.9015 .9177 .9319	
11-11 (\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1.5 1.6 1.7	.9332 .9452 .9554	.9345 .9463 .9564	.9357 .9474 .9573	.9484 .9582	.9382 .9495 .9591	.9394 .9505 .9599	.9406 .9515 .9608	.9418 .9525 .9616	.9535 .9625	.9441 .9545 .9633	
= 0,0929	1.8	.9641 .9713	.9649 .9719	.9656 .9726		.9671 .9738	.9678 .9744	.9686 .9750	.9693 .9756		.9706 .9767	

401) = 100 Total	- 311/2 e/2	N	DVW	ale	ce	ntie	\supset	red	wit	X	(~ l	U(0,1)
	х	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	100
	.0	.5000	.5040 .5438	.5080 .5478	.5120 .5517	.5160 .5557	.5199 .5596	.5239 .5636	.5279 .5675	.5319 .5714	.5359 .5753	D(V)
	.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	$\mathbb{P}(X \leq a)$
P(X<1,14) = 0,87	0.3	.6179 .6554	.6217 .6591	.6255 .6628	.6293 .6664	.6331 .6700	.6368 .6736	.6406 .6772	.6808	.6844	.6517 .6879	
	.5	.6915 .7257	.6950 .7291	.6985 .7324	.7019 .7357	.7054 .7389	.7088 .7422	.7123 .7454	.7157 .7486	.7190 .7517	.7224 .7549	Tablow
1.17=1.10 +0,04	.7	.7580 .7881	.7611 .7910	.7642 .7939	.7673 .7967	.7704 .7995	.7734		.7794 .8078	.7823 .8106	.7852 .8133	
	.9 1.0	.8159 8413	.8186 .8438	.8212 .8461	.8238 .8485	.8264 .8508	.8289 .8531	.8315 .8554	.8340 .8557	.8365 .8599	.8389 .8621	
P(X71,32)	1.1	.8643	.8665 .8869	.8686	.8708	.8729 .8925	.8749	.8770 .896 2	.8790 .8980	.8997	.8830	
1-P(X < 1,3?)	1.4	.9032	.9207	.9066	.9236	.9099 .9251	.9115	.9131	.9147	.9162 .9306	.9177	
-1-0, 9066	1.5	.9332 .9452	.9345 .9463	.9357		.9382 .9495	.9394	.9406 .9515	.9418 .9525	.9429 .9535	.9441 .9545	
= 0,094	1.7	.9554 .9641	.9564 .9649	.9573 .9656		.9591 .9671	.9599 .9678	.9608 .9686	.9616 .9693		.9633 .9706	
	1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767	

$$X \sim N(0, N)$$

$$P(X \leq a) = P(X \leq -a)$$

$$= 1 - P(X \leq -a)$$

$$= 2 - P(X \leq -a)$$

$$= 1 - P(X \leq a)$$

- 95. A machine produces bolts the length of which (in centimeters) obeys a normal probability law with mean 5 and standard deviation $\sigma = 0.2$. A bolt is called defective if its length falls outside the interval (4.8, 5.2).
 - (a) What is the proportion of defective bolts that this machine produces?
 - (b) What is the probability that among ten bolts none will be defective?

$$D = \{ \times \notin \{4.8, 5.2\} \}$$

$$(a) P (D) = P (X \notin \{4.8, 5.2\})$$

$$= P (X < 4.8) + P (X > 5.2)$$

$$= P (X < 4.8) + P (X > 5.2)$$

$$= P (X < 4.8 - S) + P (X > 5.2 - S)$$

$$= P (X < 4.8 - S) + P (X > 5.2 - S)$$

$$= P (X < 4.8 - S) + P (X > S)$$

$$= P (X < 4.8 - S) + P (X > S)$$

$$= P (X < 4.8 - S) + P (X > S)$$

$$= P (X < 4.8 - S) + P (X > S)$$

$$= P (X < 4.8 - S) + P (X > S)$$

$$= 2 P (X > S)$$

$$\frac{B_1}{D} = \frac{B_2}{D}$$

$$\mathbb{P}(b) = \mathbb{P}(\overline{b})^{10} = [1-\mathbb{P}(D)]^{10}$$

$$=[0,6826]^{10}$$

- 94. The height of men is normally distributed with mean $\mu = 167$ cm and standard deviation $\sigma = 3$ cm.
- (I) What is the percentage of the population of men that have height, (a) greater than 167 cm, (b) greater than 170 cm, (c) between 161 cm and 173 cm?
- (II) In a random sample of four men what is the probability that:
 - (i) all will have height greater than 170 cm;
- (ii) two will have height smaller than the mean (and two bigger than the

mean)?
$$\times \sim N(164,3) \approx N(0,1)$$
 $= N \sim 164 \times N(0,1) = P(2 < 0) = 0.5$
 $= 0.5$
 $= 0.5$
 $= 0.5$
 $= 0.5$
 $= 0.5$
 $= 0.5$
 $= 1 - P(2 < 1) = P(2 > 1)$
 $= 1 - P(2 < 1) = 1.584$

(b) (b) (b) $\begin{pmatrix} \zeta \\ \xi \end{pmatrix} = \begin{pmatrix} \zeta \\ \zeta \\ \zeta \end{pmatrix} = \begin{pmatrix} \zeta \\ \zeta \\ \zeta \end{pmatrix}$ II a) IP (left ent une taille > 176) = IP (b) = 6.34 x 10^4 P(24 > 1,64 et 24 < 1,64) = (2).(0,5)(0,5).(0,5)(0,5) $= 6 \times (0.5)^{4}$

=0,345