Python quantum programming languages

John Scott, Oliver Thomas

Quantum Engineering CDT University of Bristol

September 14, 2018

Overview

Python quantum programming languages

John Scott, Oliver Thoma

- What is it?
- Why do we care about it?
- What we've been doing
- Outlook

Motivation quantum nonlinear optics

Python quantum programmin languages

John Scott, Oliver Thoma

The good	The bad
Spontaneous	Spontaneous
• thing 1	• i
• thing 2	• d
i don't know	A
• thing1	• 0
• thing 2	o n

What do we mean by nonlinear optics?

Python quantum programming languages

John Scott, Oliver Thoma

> Roughly processes that conserve energy but do not conserve photon number.

Gaussian Optics

Python quantum programming languages

John Scott, Oliver Thoma

Using th

$$\hat{U} = \exp\left[-\frac{i}{\hbar} \left(P \int d\omega_1 \int d\omega_2 \ f(\omega_1, \omega_2) \ \hat{a}_s^{\dagger}(\omega_1) \hat{a}_i^{\dagger}(\omega_2) + h.c. \right) \right]$$
Power JSA Signal & Idler

We

Types of

Python quantum programming languages

John Scott, Oliver Thoma

Figure: Two source HOM dip

Schmidt decomposition

John Scott,

- ullet with $\psi_k(\omega_1)$ is the k-th row and ω_1 -th column of $oldsymbol{\mathsf{U}}_{(\omega_1,k)}$,
- ullet with $\phi_k(\omega_2)$ is the ω_2 -th row and k-th column of ${f V}_{(k,\omega_2)}^\dagger$

Summary

Python quantum programming languages

John Scott, Oliver Thomas

k

References

Python quantum programming languages

John Scott, Oliver Thomas