Camera Model

Gang Pan
Zhejiang University

The Camera

Image formation

- Let's design a camera
 - Idea 1: put a piece of film in front of an object
 - Do we get a reasonable image?

Pinhole camera

- Add a barrier to block off most of the rays
 - This reduces blurring
 - The opening known as the aperture
 - How does this transform the image?

Camera obscura: the pre-camera

 Known during classical period in China and Greece (e.g. Mozi, China, 470BC to 390BC)

Illustration of Camera Obscura

Freestanding camera obscura at UNC Chapel Hill

Dimensionality Reduction Machine (3D to 2D)

Projection can be tricky...

Projective Geometry

What is lost?

Length

Length is not preserved

Projective Geometry

What is lost?

Length

Angles

Projective Geometry

What is preserved?

Straight lines are still straight (colinearity)

Parallel lines in images

Four geometries

	Euclidean	similarity	affine	projective
Transformations				
rotation	X	X	X	X
translation	X	X	X	X
uniform scaling		X	X	X
nonuniform scaling			X	X
shear			X	X
perspective projection				X
composition of projections				X
Invariants				
length	X			
angle	X	X		
ratio of lengths	X	X		
parallelism	X	X	X	
incidence	X	X	X	X
cross ratio	X	X	X	X

Müller-Lyer Illusion

http://www.michaelbach.de/ot/sze_muelue/index.html

Building a real camera

The largest camera (1900)

In 1900 the Chicago & Alton Railroad Train co., commissioned Lawrence with the manufacture of the largest camera ever made and the largest photo ever shot in order to promote a new train.

Home-made pinhole camera

Why so blurry?

Shrinking the aperture

- Why not make the aperture as small as possible?
 - Less light gets through
 - Diffraction effects

Shrinking the aperture

Zhejiang University

0.15 mm

0.07 mm

Computer Visionr

Adding a lens helps

- A lens focuses light onto the film
 - There is a specific distance at which objects are "in focus"
 - other points project to a "circle of confusion" in the image
 - Changing the shape of the lens changes this distance

Thin lenses

Thin lens equation:

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

- Any object point satisfying this equation is in focus
- How can we change the focus region?

Thin lens applet: http://www.phy.ntnu.edu.tw/java/Lens/lens e.html

Varying Focus

Zhejian

Visionr Ren Ng

Lenses

- A lens focuses parallel rays onto a single focal point
 - focal point at a distance f beyond the plane of the lens
 - f is a function of the shape and index of refraction of the lens
 - Aperture of diameter D restricts the range of rays
 - aperture may be on either side of the lens

Depth of Field

We have known

Thin lens equation:

$$\frac{1}{d_o} + \frac{1}{d_i} = \frac{1}{f}$$

Any object point satisfying this equation is in focus

But ...

It is not always correct in practice.

Aperture controls Depth of Field

- Changing the aperture size affects depth of field
 - A smaller aperture increases the range in which the object is approximately in focus
 - But small aperture reduces amount of light need to increase exposure

Varying the aperture

f/22
Small apeture = large DOF Duter Visionr

Nice Depth of Field effect

Field of View (Zoom)

Field of View (Zoom)

85mm

From London and Upton

Field of View (Zoom)

135mm

Ennm

From London and Upton

FOV depends of Focal Length

Size of field of view governed by size of the camera retina:

$$\varphi = \tan^{-1}(\frac{d}{2f})$$

Field of View / Focal Length

Large FOV
Camera close to car

Small FOV
Camera far from the car

Fun with Focal Length (Jim Sherwood)

http://www.hash.com/users/jsherwood/tutes/focal/Zoomin.mov

Zhejiang Universit Figure 5.1

Figure 5.2

Computer Visionr

Large Focal Length compresses depth

Zhejiang University

From Zisserman & Hartley

Computer Visionr

Lens Flaws

Lens Flaws: Chromatic Aberration

- Dispersion: wavelength-dependent refractive index
 - (enables prism to spread white light beam into rainbow)
- Modifies ray-bending and lens focal length: f(λ)

- color fringes near edges of image
- Corrections: add 'doublet' lens of flint glass, etc.

Chromatic Aberration

Near Lens Center

Near Lens Outer Edge

The eye

- The human eye is a camera
 - Iris colored annulus with radial muscles
 - Pupil the hole (aperture) whose size is controlled by the iris
 - What's the "film"?
- Photoreceptor cells (rods and cones) in the retina

Digital camera

- A digital camera replaces film with a sensor array
 - Each cell in the array is light-sensitive diode that converts photons to electrons
 - Two common types
 - Charge Coupled Device (CCD)
 - CMOS

http://electronics.howstuffworks.com/digital-camera.htm

Digital camera issues

- Some things that affect digital cameras
 - blooming
 - color issues
 - interlace scanning

Blooming

Theuseissen 1995

- Light is converted into an electrical charge.
- CCD limit to charge each pixel.
- If there is too much charge for one pixel, it will overflow to its neighboring pixel.

Handling Color: 3-chip cameras

Handling Color:

Mosaicing and Demosaicing

© 2000 How Stuff Works

Issue in Mosaicing and Demosaicing

Interlace vs. progressive scan

Progressive scan

Zhejiang University

Computer Visionr

Interlace

Zhejiang

r Visionr

Projections

Projection

$$x = K[R \ t]X$$

x: Image coordinates: (u,v,1)

K: Intrinsic matrix (3x3)

R: Rotation (3x3)

t: Translation (3x1)

X: World coordinates: (X,Y,Z,1)

Why does this matter?

Relating multiple views

Object Recognition (CVPR 2006)

Inserting photographed objects into images (SIGGRAPH 2007)

Original Created

Modeling projection

The coordinate system

- We will use the pin-hole model as an approximation
- Put the optical center (Center Of Projection) at the origin
- Put the image plane (Projection Plane) in front of the COP
- The camera looks down the negative z axis
 - we need this if we want right-handed-coordinates

Modeling projection

Projection equations

- Compute intersection with PP of ray from (x,y,z) to COP

Derived using similar triangles (on board)
$$(x,y,z) \to (-d\frac{x}{z}, \ -d\frac{y}{z}, \ -d)$$

We get the projection by throwing out the last coordinate:

$$(x,y,z) o (-d\frac{x}{z}, \ -d\frac{y}{z})$$
 (Fundamental Equations)

Homogeneous coordinates (文次 本 家) Is this a linear transformation? $(x,y,z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$

- no—division by z is nonlinear
- Trick: add one more coordinate:

$$(x,y) \Rightarrow \left[egin{array}{c} x \\ y \\ 1 \end{array} \right]$$

homogeneous image coordinates

$$(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

homogeneous scene coordinates

Converting from homogeneous coordinates

$$\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w) \qquad \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)$$

Basic geometry in homogeneous coordinates

• Line equation: ax + by + c = 0

$$line_i = \begin{vmatrix} a_i \\ b_i \\ c_i \end{vmatrix}$$

 Append 1 to pixel coordinate to get homogeneous coordinate

$$p_i = \begin{bmatrix} u_i \\ v_i \\ 1 \end{bmatrix}$$

Line given by cross product of two points

$$line_{ij} = p_i \times p_j$$

• Intersection of two lines given by cross product of the lines $q_{ii} = line_i \times line_i$

Another problem solved by homogeneous coordinates

Intersection of parallel lines

Cartesian: (Inf, Inf)
Homogeneous: (1, 1, 0)
Homogeneous: (1, 2, 0)

Homogeneous coordinates

point	$\mathbf{p} = (X, Y, W)$
incidence	$\mathbf{p}^T \mathbf{u} = 0$
collinearity	$ \mathbf{p}_1 \mathbf{p}_2 \mathbf{p}_3 = 0$
join of 2	$\mathbf{u} = \mathbf{p}_1 imes \mathbf{p}_2$
points	
ideal points	(X, Y, 0)

 (\mathbf{a})

line	$\mathbf{u} = (a, b, c)$
incidence	$\mathbf{p}^T \mathbf{u} = 0$
concurrence	$\begin{vmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \mathbf{u}_3 \end{vmatrix} = 0$
intersection	$\mathbf{p} = \mathbf{u}_1 \times \mathbf{u}_2$
of 2 lines	
ideal line	(0,0,c)

(b)

Perspective Projection (透视投影)

Projection is a matrix multiply using homogeneous coordinates:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by third coordinate

- This is known as perspective projection
 - The matrix is the projection matrix
 - Can also formulate as a 4x4 or a 3x4 matrix

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ z \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

divide by the fourth coordinate ionr

Perspective Projection

How does scaling the projection matrix change the transformation?

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1/d & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z/d \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

$$\begin{bmatrix} -d & 0 & 0 & 0 \\ 0 & -d & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{vmatrix} x \\ y \\ z \\ 1 \end{vmatrix} = \begin{bmatrix} -dx \\ -dy \\ z \end{bmatrix} \Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})$$

Orthographic projection 正交投影

- Special case of perspective projection
 - Distance d from the COP to the PP is infinite

$$z = -d-k = -d/z = 1+k/z = 1$$

- □ Also called "parallel projection": $(x, y, z) \rightarrow (x, y)$
- What's the projection matrix?

$$\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\ y \\ z \\ 1
\end{bmatrix} =
\begin{bmatrix}
x \\ y \\ 1
\end{bmatrix} \Rightarrow (x, y)$$

Other types of projection

■ Scaled orthographic when $\Delta z \ll z \quad (\Delta z \ll z / 20)$

when
$$\Delta z \ll z \quad (\Delta z \ll z/20)$$

Also called "weak perspective"

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1/d \end{bmatrix} \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} x \\ y \\ 1/d \end{bmatrix} \Rightarrow (dx, dy)$$

Affine projection

Also called "paraperspective"

$$\left[\begin{array}{cccc}a&b&c&d\\e&f&g&h\\0&0&0&1\end{array}\right]\left[\begin{array}{c}x\\y\\z\\1\end{array}\right]$$

From Perspective Projection

$$u^{(C)} = -f \frac{X^{(C)}}{Z^{(C)}} = \frac{U}{S}$$

$$v^{(C)} = -f \frac{Y^{(C)}}{Z^{(C)}} = \frac{V}{S}$$

$$\Rightarrow \begin{bmatrix} U \\ V \\ S \end{bmatrix} = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X^{(C)} \\ Y^{(C)} \\ Z^{(C)} \\ 1 \end{bmatrix}$$

Zhejiang University

$$\begin{bmatrix} u^{(I)} \\ v^{(I)} \\ 1 \end{bmatrix} = \begin{bmatrix} k_u & 0 & 0 \\ 0 & k_v & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u^{(c)} \\ v^{(c)} \\ 1 \end{bmatrix} + \begin{bmatrix} u_0 \\ v_0 \\ 0 \end{bmatrix} = \begin{bmatrix} k_u & 0 & u_0 \\ 0 & k_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u^{(c)} \\ v^{(c)} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} u^{(I)} \\ v^{(I)} \\ 1 \end{bmatrix} = \begin{bmatrix} k_u & 0 & u_0 \\ 0 & k_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} u^{(c)} \\ v^{(c)} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} U^{(new)} \\ V^{(new)} \\ S \end{bmatrix} = \begin{bmatrix} k_u & 0 & u_0 \\ 0 & k_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} U \\ V \\ S \end{bmatrix} -$$
Equation 1
$$u^{(I)} = \frac{U^{(new)}}{S} \qquad u^{(C)} = \frac{U}{S}$$
$$v^{(I)} = \frac{V^{(new)}}{S} \qquad v^{(C)} = \frac{V}{S}$$

Zhejiang University

Equation 2:
$$\begin{bmatrix} U \\ V \\ S \end{bmatrix} = \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X^{(C)} \\ Y^{(C)} \\ Z^{(C)} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} U^{(new)} \\ V^{(new)} \\ S \end{bmatrix} = \begin{bmatrix} k_u & 0 & u_0 \\ 0 & k_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} U \\ V \\ S \end{bmatrix} = \begin{bmatrix} k_u & 0 & u_0 \\ 0 & k_v & v_0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -f & 0 & 0 & 0 \\ 0 & -f & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X^{(C)} \\ Y^{(C)} \\ Z^{(C)} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} U^{(new)} \\ V^{(new)} \\ S \end{bmatrix} = \begin{bmatrix} -fk_u & 0 & u_0 & 0 \\ 0 & -fk_v & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X^{(C)} \\ Y^{(C)} \\ Z^{(C)} \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} U^{(new)} \\ V^{(new)} \\ S \end{bmatrix} = \begin{bmatrix} -f_u & 0 & u_0 & 0 \\ 0 & -f_v & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X^{(C)} \\ Y^{(C)} \\ Z^{(C)} \\ 1 \end{bmatrix} \qquad \text{Equation 3}$$

$$f_u = fk_u$$

$$f_v = fk_v$$

Intrinsic Parameters (Do not depend on camera position):

$$1. f_u = fk_u$$

$$2. f_{v} = fk_{v}$$

- $3.u_0$
- $4.v_{0}$

Intrinsic Parameters

$$\begin{bmatrix} U^{(new)} \\ V^{(new)} \\ S \end{bmatrix} = \begin{bmatrix} -f_u & 0 & u_0 & 0 \\ 0 & -f_v & v_0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} X^{(C)} \\ Y^{(C)} \\ Z^{(C)} \\ 1 \end{bmatrix}$$

$$m^{(I)} = PM^{(C)} = \begin{bmatrix} Q_1^T M^{(C)} \\ Q_2^T \\ Q_3^T \end{bmatrix} M^{(C)} = \begin{bmatrix} Q_1^T M^{(C)} \\ Q_2^T M^{(C)} \\ Q_3^T M^{(C)} \end{bmatrix}$$

Extrinsic Parameters

By Rigid Body Transformation:

$$\begin{bmatrix} X^{(C)} \\ Y^{(C)} \\ Z^{(C)} \end{bmatrix} = \begin{bmatrix} R_{3\times3} & T_{3\times1} \\ 0_{1\times3} & 1 \end{bmatrix} \begin{bmatrix} X^{(W)} \\ Y^{(W)} \\ Z^{(W)} \end{bmatrix} \Rightarrow M^{(C)} = DM^{(W)}$$

Zhejiang University

Camera Model

$$\begin{bmatrix}
U^{(new)} \\
V^{(new)} \\
S
\end{bmatrix} = \begin{bmatrix}
-f_u & 0 & u_0 & 0 \\
0 & -f_v & v_0 & 0 \\
0 & 0 & 1 & 0
\end{bmatrix} \begin{bmatrix}
R_{3\times3} & T_{3\times1} \\
0_{1\times3} & 1
\end{bmatrix} \begin{bmatrix}
X^{(W)} \\
Y^{(W)} \\
Z^{(W)} \\
1
\end{bmatrix}$$

Let
$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$
 and $T = \begin{bmatrix} T_X \\ T_Y \\ T_Z \end{bmatrix}$

Camera Model

$$u^{(I)} - u_0 = -f_u \frac{r_{11}X^{(W)} + r_{12}Y^{(W)} + r_{13}Z^{(W)} + T_X}{r_{31}X^{(W)} + r_{32}Y^{(W)} + r_{33}Z^{(W)} + T_Z}$$

$$v^{(I)} - v_0 = -f_v \frac{r_{21}X^{(W)} + r_{22}Y^{(W)} + r_{23}Z^{(W)} + T_Y}{r_{31}X^{(W)} + r_{32}Y^{(W)} + r_{33}Z^{(W)} + T_Z}$$

$$u^{(I)} = \frac{U^{(new)}}{S}$$
$$v^{(I)} = \frac{V^{(new)}}{S}$$

Suggested Reading

- Chapter 3, Olivier Faugeras, "Three Dimensional Computer Vision", MIT Press, 1993
- Chapter 2, David A. Forsyth and Jean Ponce, "Computer Vision: A Modern Approach"