Die geschichtliche Entwicklung des Feldes HCI

 \rightarrow http://www.slideshare.net/mrettig/interaction-design-history Grober Verlauf:

- Use the Machine
- Use the Software
- Perform a Task
- Experience
- Connect
- Dynamically Enable

Beispiel: OLB Baunfinanzierung

Ansätze

- 1. Interview mit einem Stakeholder
- 2. Paper-/Wireframe-Prototyping
- 3. Open Card Sorting

Iterative Design Phase

- 1. Cognitive Walkthrough
- 2. Usability-Test

User Requirements

Was macht Projekte erfolgreich?

- User Involvement
- Clear Statement of Requirements

Figure 1: image

Context of use analysis

- Wer wird das System benutzen?
- Wer hat außerdem Interesse daran, dass alles läuft?
- Welche Charakteristiken haben diese Gruppen?
- Wie werden Vorgänge normalerweise ausgeführt?
- Umgebungen:
 - technisch: Hardware, Software
 - physikalisch: Wetter, Beleuchtung, ...
 - sozial: Arbeitsweisen, Organisationsstrukturen, Einstellungen

Umfragen

Fragebögen

- Oft für statistischen Nutzen
- Antwortmöglichkeiten:
 - Ja / Nein-Boxen
 - Mehrere Optionen

- Likert-Skala (Grad der Zustimmung)
- Offene Fragen

• Vorteile:

- Zeit- und Kosteneffizient
- Inhaltlich frei
- Relativ fehlerfrei wenn standardisiert
- Einfach zu verwalten

• Nachteile:

- Ergebnis hängt stark vom Befragten ab
- Vorauswahl dadurch, dass die TN eventuell nicht repräsentativ sind

Interviews

- Strukturiert (weniger Kontextinformationen, einfacher zu interpretieren)
- Semi-strukturiert
- Offen (abhängig vom Können des Interviewers)
- Vorteile:
 - Einfach, effizient und praktisch
 - Hohe Validität
 - Nachfragen möglich
 - Einfach aufzunehmen

• Nachteile:

- Abhängig vom Können des Interviewers
- Interviewer könnte Antworten beeinflussen
- Zeitaufwändig und teuer
- Nicht verlässlich
- Ergebnisse sind schwierig zu verallgemeinern

Zielgruppen

- 6–12 Teilnehmer
- Konzentration auf ein Thema, \rightarrow Gruppendiskussion
- Ideen erzeugen, Produkte vergleichen, ...
- Heterogenität ist nützlich, aber nicht über Hierarchien oder in gengnesätzlichen Ansichten
- Vorbereitung:
 - Zeit einplanen (1-3 Stunden)
 - Fragen vorbereiten (4–10)
 - TN einladen und Ziele erklären
 - Material bereitstellen
- Vorteile:
 - Breit gestreute und qualitative Informationen
 - Zeigt Konfliktpotenzial auf
 - Günstig und einfach
- Nachteile:
 - Teilnehmer sind nicht repräsentativ
 - Rolle des Moderators ist groß
 - Einzelne TN können dominieren
 - Nicht quantitativ
 - Schwer zu verallgemeinern

Ethnographische Studien

- Beobachtung von Menschen im Supermarkt, zu Hause, bei der Arbeit, ...
- Ziel: Verhalten verstehen
- Aufzeichnungen mit Papier und Stift / Audio und Video / Computerlogging / Tagebuch (vom TN geschrieben)
- Tagebuch:
 - Informationen zu Ort, Zeit, was passiert ist
 - Alternativ zum Schreiben: Diktiergerät, Kamera, E-Mail-Adresse, ...

- Hinterher intensives Interview
- Vorteile:
 - * Billig
 - * Über längere Dauert möglich
 - * Gut für Nutzungskontext
- Nachteile:
 - $\ast\,$ Hängt von Motivation ab
 - * Nicht verlässlich

Task Analysis

- Möglichkeiten für neue Produkte finden
- Task-decomposition: abstraktere Aufgaben in Teilaufgaben unterteilen

Studien durchführen

- Informationsblatt und Einverständniserklärung sind wichtig
- Guidelines:
 - 1. Wünsche des Stakeholders erfassen
 - 2. Alle Stakeholder beachten
 - 3. Mehr als einen Repräsentaten jeder Stakeholder-Gruppe
 - 4. Datenerhebungstechniken kombinieren
 - 5. Unterstützung durch Prototypen oder Aufgabenbeschreibungen
 - 6. Pilotstudie durchführen
 - 7. Daten aufnehmen
 - 8. Zeitnah mit der Interpretation beginnen
 - 9. Interpretation vor der Analyse (WTF?!)

Anforderungsspezifikation

Personas

- Fiktionale Repräsentation eines typisches Nutzers
- Hintergrundinformationen aus Literatur, Interviews, Beobachtungen, Statistiken
- Repräsentativ aber nicht durchschnittlich

Szenarien

Erzählerische Beschreibung eines Anwendungsfalls, betrachtet dabei auch den Kontext des Benutzers.

Anwendungsfälle

Aus dem Software Engineering, Interaktion mit der Funktionalität eines Systems.

Vorwissen

State of the Art Analysis

Vergleich von existierenden Systemen.

General Design Principles

Beispiele:

- Shneiderman's "Eight Golden Rules of Dialog Design"
- ISO9241: Accessibility and Usability
- Mayhew's General Principles of User Interface Design
- IBM's Design Principles for tomorrow
- Platform guidelines
- Corporate Design guidelines

UI Structure and Design

Einführung

Zielgruppe

- Demographische Einschätzung (Alter, Geschlecht, Ort, Bildung, Arbeit, Einkommen, Hobbys, Ausstattung, ...)
- Einschätzung nach Erfahrung und Verhalten (Anfänger, Fortgeschritten, Experte, ...)

Ziele

- Ziele der Anwendung (Unterhaltung, Bildung, Büro, Verwaltung, Kommunikation, Information, . . .)
- Ziele der Benutzer (Wissen erlangen, einen Freund erreichen, ein Problem lösen, ein Dokument erstellen, ...)

Inhalt

• ???

Strukturdesign

Struktur

- Hierarchien sind einfach
- Ordnen nach Wichtigkeit, Granularität, Erwartungen, Bedürfnissen
- Lieber in die Breite als in die Tiefe gehen
- Maximale Tiefe: 5-6 Level

Ausrichtung und Navigation

- Benutzerfragen:
 - Wo bin ich? \rightarrow Brotkrumen-Navigation
 - Was kann ich tun? \rightarrow Beware the big button trap (???)
 - Was passiert wenn ich dies tue?
 - Wo komme ich her? / Wie komme ich zurück?
- Visuelles (Farben, Schriften, Bilder und Symbole) sollten einfach leicht zu merken sein
- Ein Menü ist gut für Navigation und Orientierung
- Weißraum: Trennt Informationen, hebt hervor

Figure 2: image

Card Sorting

- Man fragt die Benutzer, wie sie Inhalt strukturieren und benennen würden
- Dabei werden Muster (=Mentale Modelle) gesucht
- Gut geeignet für Menü-Kategorien und Navigation
- Methode:
 - Inhalt vorauswählen, auf ähnliche Granularität (Detaillevel) achten
 - Ungefähr 30 Karten
 - Kurze, schnell zu lesende aber aussagekräftige Begriffe
 - Freie Karten um Begriffe zu ergänzen

• Durchführung:

- Teilnehmer sollten repräsentativ sein
- TN einzeln (15–30 TN) oder in 5 Gruppen à 3 TN
- Material: beschriftete und freie Karten, Stift, Gummibänder, Büroklammern, Klebstoff
- Am Anfang Einführung geben, dann beobachten

• Analyse:

- Muster durch Ordnung auf dem Tisch, am Whiteboard, ...
- Unterschiede deuten auf fehlendes oder falsches Verständnis hin
- Methoden: Multidimensional Scaling, Hierarchical Cluster Analysis

Bildschirmdesign und -layout

${\bf Gestaltge setze}$

- Köhler, Koffka, Werheimer (Berliner Schule), 1912: Gestaltpsychologie
- Basiert auf Wahrnehmung, Bewegung, Gedächtnis, Denken, Lernen und Verhalten
- Insgesamt über 100 Gesetze

2. Nähe: Beieinander liegende Objekte sind zusammengehörig

 $3. \ \ Geschlossenheit: Fenster-Metapher$

- 4. Ähnlichkeit: Ähnliche Formen gehören zusammen
- 5. Gute Fortsetzung: Kontinuierliche Formen gehören zusammen

 $6.\,$ Erfahrung: Neue Informationen werden in bekannte Strukturen eingeordnet

7. Gemeinsame Bewegung:

Farben

- Farben sind nie neutral, können Emotionen hervorrufen und sind oft unterbewusst wahrgenommen
- Einflüsse: Biologisch, Kulturell, Individuell
- Benachbarte Farben beruhigen
- Komplementäre Farben erzeugen Spannung
- Maximal 4–5 Farben benutzen
- Farben konsistent benutzen

Bilder und Symbole

- Illustration, Dekoration, Strukturierung
- Bilder
 - sparen Platz,
 - sind leicht zu erkennen,
 - Sprachunabhängig,
 - einfach zu merken,
 - unterbewusst wahrnehmbar
- Gute Bilder

- zeigen nur das wichtigste,
- kombinieren Bekanntes mit Neuem
- sprechen Emotionen an

Typographie

- strukturiert und hebt hervor
- beinhaltet Schriftart, Schriftschnitt, Größe, Farbe und Dekoration

Keep in Mind

Think from a user's perspective

- When, where and how will they use the system?
- What are their characteristics?
- Are they handicapped?
- What do they expect?
- What are they accustomed to?
- What do they like?

Design for the actual users

Gedächtnis und Aufmerksamkeit

- Geteilte Aufmerksamkeit: Auf alles gleichzeitig achten (z.B. Autofahren)
- Selektive Aufmerksamkeit: Konzentration auf einzelnes
- Methoden:
 - Eyetracking
 - Saliency Maps (Aufmerksamkeitskarten)

Affordance, Constraints, Models und Metaphern

Affordanzen

- Angebotscharakter: "An affordance is a quality of an object, or an environment, which allows an individual to perform an action."
- Beispiel: Türen

Mappings

- Verbindung zwischen Userinterface und echter Welt
- Gut: physikalische Analogie, kulturelle Standards
- Beispiele: räumlich, wahrnehmbare Analogien (Schalter sieht genauso aus, wie das, was er bedient)

Constraints

- Einschränkungen sind das Gegenteil von Affordanzen und können diese Vergrößern
- Ziel: Benutzungsfehler vermeiden, Information, die erinnert werden muss, reduzieren
- Arten:
 - Physikalisch: Schränken physische Operationen ein, z.B. durch eine Form
 - Semantisch: Sich aus dem Kontext und dem Wissen über die Welt ergebene Einschränkungen
 - Logisch: Das, was logisch erscheint
 - Kulturell: Farben oder Schriften-abhängig

Konzeptuelle Modelle

• Modelle sorgen dafür, dass nicht über jede Handlung nachgedacht werden muss, sondern Dinge automatisch erledigt werden können.

Metaphern

- Ein Bekannter Begriff wird als Analogie zu einem unbekannten Sachverhalt verwandt
- Gefahr der Unter-/Überschätzung des Systems durch zu genaue Analogie
- Reduktion auf Kernmerkmale

Usability Guidelines

- Definition: "The extent to which a product can be used by specified users to achieve specified goals with effectiveness, efficiency and satisfaction in a specified context of use." [ISO 9241-11]
- Unterschied: Effektivität (ein Ziel erreichen) und Effizienz (ein Ziel mit minimalem Aufwand erreichen)
- Leaky Pipe Metaphor: Auf dem Weg zum Ziel werden Benutzer verloren ("Drop outs"), weil sie das Interface nicht richtig bedienen
- Vorteile guter Usability:
 - gesteigerte Produktivität
 - Glückliche Benutzer
 - Weniger Kosten (Zeit, Geld, Gesundheit) (?)
- Es gibt Theorien, Prinzipien und Richtlinien (abstrakt nach konkret):

Theorien

• Kognition: GOMS, ACT-R

• Sinne: Sehen, Hören, Fühlen

• Bewegung: Fitts' Law

Fitts' Law

- Modell für die motorische Bewegung
- Besonders für schnelles Zielen
- Beschreibendes und vorhersehendes Modell
- Die Schwierigkeit einer Bewegung ist abhängig von der zurückzulegenden Distanz und der Größe des Ziels
- Kanten und Ecken sind am Besten zu erreichen

Prinzipien

- Shneiderman's 8 Golden Rules of Interface Design
- Niesen's 10 Heuristics for User Interface
- Tognazzini's First (16) Principles of Interface Design

8 Goldene Regeln für Interface Design

- 1. Konsistenz: Reihenfolge von Handlungen, Begriffe, Design
- 2. Universale Usability: Menschen sind unterschiedlich
- 3. Informative Rückmeldung: für jede Handlung muss es Feedback geben
- 4. Abschließen von Dialogen: Nach Beendigung einer Aufgabe muss es abschließendes Feeback geben
- 5. Fehler verhindern: z.B. falsche Eingaben
- 6. Einfaches Rückgängig machen: gibt dem Benutzer Sicherheit
- 7. Benutzerkontrolle: Der Benutzer sollte immer die Kontrolle haben
- 8. Kurzzeitgedächtnis entlasten: es können nur etwa 7 (± 2) "Datenpakete" gemerkt werden

Richtlinien

- Finden sich z.B. oft in Betriebssystemen
- 1. Navigation: Linktext sollte immer aussagekräftig sein, Überschriften eindeutig und beschreibend
- 2. Organisation der Anzeige: Datenformate sollten einheitlich und bekannt sein, Eingabe sollte Anzeige entsprechen, Ausgabe sollte editierbar sein
- 3. Aufmerksamkeit erlangen:
 - 2 Stufen Instensität (Fettdruck)
 - Unterstreichungen oder Pfeile
 - Bis zu 4 Schriftgrößen
 - Bis zu 3 Schriftarten
 - Kein Blinken
 - Bis zu 4 Farben
 - Sanfte Töne = gut / Harte Töne = Fehler

Standards

ISO 9241

Dialogprinzipien nach ISO 9241-110:

- 1. Angemessenheit: Der Dialog sollte den Nutzer unterstützen
- 2. Selbsterklärung: entweder sofort verständlich oder auf Anfrage mit Hilfe versehen
- 3. Kontrollierbarkeit: Der Benutzer kontrolliert, nicht der Computer
- 4. Übereinstimmung mit Erwartungen
- 5. Fehlertoleranz: Fehler sollen mehr oder weniger automatisch behoben werden
- 6. Möglichkeit der Individualisierung
- 7. Lernmöglichkeiten

User Experience vs. Usability

User Experience = Usability + Motivation + Emotionen + Werte

Prototyping

- Warum?
 - Prototypen eignen sich für Nutzerstudien, den Nutzer wissen nicht, was sie wollen, sehr wohl aber was sie nicht wollen.
 - Man kann Fragen beantworten (Funktioniert das Konzept?)
 - Alternativen vergleichen
- Wann?
 - Je frühe, umso besser
- Was?
 - Alles
- Ansätze
 - Wegwerfprototypen ("rapid prototype")

- Evolutionärerprototyp (wird weiterentwickelt)
- Inkrementeller Prototyp (ein Teil des Ganzen, wird später eingefügt)
- Horizontal (viele Features, wenig Funktionalität) \leftrightarrow Vertikal (ein Feature, volle Funktionalität)
- Li-Fi-Prototype (früh, billig, oberflächlich) \leftrightarrow Hi-Fi-Prototype (viele Details)

• Techniken

- Storyboarding
- Paper-Prototype
- Click-Prototype (GUI, z.B. Pidoco)
- Wizard-Of-Oz-Prototype (Mensch ersetzt Funktionalität)

Usability Evaluation 1 — Testing with Users

Usability Evaluation 2 — Analytical and Expert Methods