CHAPITRE 3 : Variables aléatoires discrètes

Aurélie Jeanmougin

14 avril 2021

Niveau Terminal Spé Maths, Terminal math complémentaire, 1ere spé Prérequis Probabilités
Références Sésamath Tspé, Tcomp, 1ere spé

1 Loi de probabilité

1.1 loi de probabilité et fonction de répartition

Définition 1.1. Soit Ω l'univers d'une expérience aléatoire. On définit une **loi de probabilité P** sur Ω en associant à chaque événement élémentaire ω_i une probabilité $p_i \in [0, 1]$ tel que :

$$\sum_{i} p_i = 1$$

On peut aussi noter $p_i = P(\omega_i)$.

Exemple 1.1. On joue avec un dé truqué. La probabilité d'apparition de chaque face est donnée ci-dessous :

Issue ω	1	2	3	4	5	6
$oxed{Probabilit\'e\ P(\omega)}$	0,05	0,2	α	0,1	0,25	0,1

1. On veut calculer la probabilité de l'événement A : "Obtenir un nombre pair". D'après la définition on a :

$$P(A) = P(2) + P(4) + P(6) = 0, 2 + 0, 1 + 0, 1 = 0, 4.$$

2. On veut calculer la probabilité d'obtenir 3. On sait que :

$$P(1) + P(2) + P(3) + P(4) + P(5) + P(6) = 1$$

On a alors:

$$P(3) = 1 - (P(1) + P(2) + P(4) + P(5) + P(6)) = 1 - (0,05 + 0,2 + 0,1 + 0,25 + 0,1) = 0,3.$$

Définition 1.2. Une variable aléatoire réelle X sur Ω est une fonction qui à chaque issue de Ω associe un nombre réel. C'est donc l'application $X : \Omega \to \mathbb{R}$. On dit que la variable aléatoire est discrète lorsque $\Omega \subset \mathbb{N}$.

Exemple 1.2. On lance trois fois une pièce non truquée et on compte le nombre de fois où on obtient "face". On définit ainsi une variable aléatoire $X:\Omega\to\mathbb{R}$ avec :

$$\Omega = \{PPP, PPF, PFP, FPP, PFF, FPF, FFP, FFF\}$$

$$et X(PPP) = 0, X(PPF) = 1, X(FPP) = 1, X(PFP) = 1, X(FFP) = 2, X(FPF) = 2, X(FFF) = 3.$$

Définition 1.3. Soit X une variable aléatoire. On appelle fonction de répartition de la variable X, la fonction F définie par :

$$F: \mathbb{R} \to [0,1]$$

 $x \mapsto F(x) = P(X \le x)$

Propriété 1.1. La fonction de répartition est toujours une fonction croissante et bornée par 0 et 1.

Exemple 1.3. Avec l'exemple précédent sur le lancé de pièce trois fois, on a :

- $Pour \ x \in]-\infty, 0[, on \ a : F(x) = 0.$
- Pour $x \in]0,1]$, on $a : F(x) = \frac{1}{8}$.

- Pour $x \in]1, 2]$, on $a : F(x) = \frac{1}{8} + \frac{3}{8} = \frac{1}{2}$. Pour $x \in]2, 3]$, on $a : F(x) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} = \frac{7}{8}$. Pour $x \in]2, 3]$, on $a : F(x) = \frac{1}{8} + \frac{3}{8} + \frac{3}{8} + \frac{1}{8} = 1$.

La représentation graphique est une fonction en escalier.

1.2 **Exercices**

2 Espérance mathématique, variance et écart-type

2.1Espérance mathématique

Définition 2.1. Soient Ω l'univers correspondant à une expérience aléatoire, P une probabilité sur Ω et X une variable aléatoire sur Ω telle que $X(\Omega)$ soit fini. On note $\{x_1,...,x_n\}$ l'ensemble $X(\Omega)$. L'espérance mathématique de la variable X est le nombre noté E(X), définit par :

$$E(X) = \sum_{i=1}^{n} x_i p_i = x_1 p_1 + \dots + x_n p_n$$

où $p_i = P(X = x_i)$.

Exemple 2.1. On reprend l'exemple de la pièce de monnaie. On a :

$$E(X) = \frac{1}{8} \times 0 + \frac{3}{8} \times 1 + \frac{3}{8} \times 2 + \frac{1}{8} \times 3 = \frac{3}{2}$$

Théorème 2.1. Soient X et Y deux variables aléatoires définies sur le même univers Ω de cardinal fini. Soit P une probabilité sur Ω . On a:

$$E(X + Y) = E(X) + E(Y)$$

En particulier si b est un réel :

$$E(X + b) = E(X) + b$$
$$E(bX) = bE(X)$$

Démonstration 2.1. On a :

$$\begin{array}{ll} E(X+Y) &= \sum_{\omega \in \Omega} (X+Y)(\omega) P(\omega) \\ &= \sum_{\omega \in \Omega} X(\omega) P(\omega) + \sum_{\omega \in \Omega} Y(\omega) P(\omega) = E(X) + E(Y) \end{array}$$

En prenant Y constante égale à b, on obtient :

$$E(X + b) = E(X) + E(b) = E(X) + b$$

De plus:

$$E(bX) = \sum_{i=1}^{n} kx_{i}p_{i} = k \times \sum_{i=1}^{n} x_{i}p_{i} = kE(X)$$

2.2 Variance et écart-type

Définition 2.2. Soient Ω l'univers correspondant à une expérience aléatoire, P une probabilité sur Ω et X une variable al "atoire sur Ω telle que $X(\Omega)$ soit fini. On note $\{x_1,...,x_n\}$ l'ensemble $X(\Omega)$.

— La variance de la variable aléatoire X est le nombre noté V(X), défini par :

$$V(X) = E((X - E(X))^{2}) = \sum_{i=1}^{n} p_{i}(x_{i} - E(X))^{2}$$

— L'écart-type de la variable aléatoire X est le nombre, noté $\sigma(X)$ et défini par :

$$\sigma(X) = \sqrt{V(X)}$$

La variance est la moyenne des carrés des écart à la moyenne.

Exemple 2.2. Sur le problème de la pièce de monnaie lancée 3 fois :

$$V(X) = \frac{1}{8}(0 - \frac{3}{2})^2 + \frac{3}{8}(1 - \frac{3}{2})^2 + \frac{3}{8}(2 - \frac{3}{2})^2 + \frac{1}{8}(3 - \frac{3}{2})^2 = \frac{3}{4}$$
$$\sigma(X) = \sqrt{\frac{3}{4}} = \frac{\sqrt{3}}{2}$$

Théorème 2.2. Formule de König-Huygens. La variance de la variable aléatoire X peut se calculer avec la relation suivante :

$$V(X) = E(X^{2}) - (E(X))^{2}$$

La variance est l'écart entre la moyenne des carrés et le carré de la moyenne.

Démonstration 2.2.

$$V(X) = E((X - E(X))^2) = E(X^2 - 2XE(X) + E(X)^2) = E(X^2) - 2E(X)E(X) + E(X)^2E(1)$$

$$D'où\ V(X) = E(X^2) - (E(X))^2$$

Propriété 2.1. Soit X une une variable aléatoire. Soient a et b deux réels. On a :

$$V(aX + b) = a^2V(X)$$
 et $\sigma(aX + b) = |a|\sigma(X)$

Démonstration 2.3.

$$V(aX + b) = E(a^{2}X^{2} + 2abX + b^{2}) - (E(aX + b))^{2}$$

D'après la linéarité de l'espérance :

$$V(aX + b) = a^{2}E(X^{2}) + 2abE(X) + b^{2}) - (aE(X) + b)^{2}$$
$$V(aX + b) = a^{2}E(X^{2}) + 2abE(X) + b^{2}) - a^{2}E(X)^{2} - 2abE(X) - b^{2} = a^{2}V(X)$$

2.3 Exercices

3 Lois discrètes classiques

3.1 Loi uniforme

Définition 3.1. Une variable aléatoire X suit une **loi uniforme** sur $\{1; 2; ...; n\}$ si elle prend pour valeurs les entiers de 1 à n de manière équiprobable, c'est-à-dire si $P(X = k) = \frac{1}{n}$ pour tout entier k entre 1 et n.

Propriété 3.1. Pour X suivant la loi uniforme sur $\{1; 2; ...; n\}$, on a :

$$E(X) = \frac{n+1}{2}$$

$$V(X) = \frac{n^2 - 1}{12}$$

Exemple 3.1. On lance un dé équilibré à huit faces numérotées de 1 à 8 et on considère la variable aléatoire X donnant le résultat obtenu. X suit la loi uniforme sur $\{1; 2; 3; 4; 5; 6; 7; 8\}$. Son espérance est $E(X) = \frac{1+8}{2} = \frac{9}{2}$ et sa variance est $V(X) = \frac{8^2-1}{12} = \frac{21}{4}$

3.2 Loi de Bernoulli

Définition 3.2. Toute expérience aléatoire conduisant à deux issues possibles S (Succès) et \bar{S} (Echec) est appelée une **épreuve de Bernoulli**.

Exemple 3.2. Si on appelle Succès lors d'un lancé d'un dé, l'événement noté : S = "Obtenir 6". Le lancer du dé peut alors être considéré comme une épreuve de Bernoulli avec :

$$\begin{array}{l} - \ S = \{6\} \ et \ p = P(S) = \frac{1}{6}. \\ - \ \bar{S} = \{1, 2, 3, 4, 5\} \ et \ q = 1 - p = \frac{5}{6}. \end{array}$$

Définition 3.3. Soit $p \in]0; 1[$. Soit la variable aléatoire X définie sur $\Omega = \{0, 1\}$. On dit que X suit une **loi de Bernoulli de paramètre p**, noté $\mathbb{B}(p)$, si :

$$P(X=0) = 1 - p$$

$$P(X=1) = p$$

Propriété 3.2. Pour X suivant $\mathbb{B}(p)$ on a :

$$E(X) = p$$

$$V(X) = p(1-p)$$

Exemple 3.3. On lance une pièce truquée de sorte que la probabilité d'obtenir "pile" est 0,1 et on regarde le nombre de "pile" obtenus. X suit la loi de Bernoulli de paramètre 0,1.

Son espérance est donc E(X) = 0, 1 et sa variance est $V(X) = 0, 1 \times 0, 9 = 0, 09$.

Définition 3.4. Si on répète n fois et de façon indépendante une épreuve de Bernoulli, on obtient un schéma de Bernoulli.

3.3 Loi binomiale

Définition 3.5. Soit $n \in \mathbb{N}*$ et $p \in]0;1[$. On considère le schéma de bernoulli pour lequel n est le nombre de répétitions et p la probabilité d'un succès. La loi de la variable aléatoire X donnant le nombre de succès sur les n répétitions est appelée **loi binomiale** de paramètre n et p et se note $\mathbb{B}(n;p)$.

Propriété 3.3. Soit X une variable aléatoire suivant la loi binomiale $\mathbb{B}(n;p)$. Pour tout entier k entre 0 et n, on a :

$$P(X = k) = \binom{n}{k} \times p^k \times (1 - p)^{n - k}$$

Exemple 3.4. On reprend l'exemple précédent et on lance deux fois successivement une pièce de monnaie truquée dont la probabilité de tomber sur "pile" est 0,4. X suit la loi binomiale $\mathbb{B}(2;0,4)$.

La probabilité d'obtenir pile est donc :

$$P(X = 1) = {2 \choose 1} \times 0, 4^1 \times 0, 6^{2-1} = 2 \times 0, 4 \times 0, 6 = 0, 48$$

Propriété 3.4. Pour X suivant la loi binomiale $\mathbb{B}(n;p)$, on a :

$$E(X) = np$$

$$V(X) = np(1-p)$$

3.4 Loi géométrique

Définition 3.6. On considère une épreuve de Bernoulli pour laquelle la probabilité d'un succès est p et on répète cette épreuve de Bernoulli de manière indépendante jusqu'à l'obtention d'un succès.

La variable aléatoire X donnant le nombre d'essais nécessaires pour obtenir ce succès suit une loi géométrique de paramètre p, notée $\mathbb{G}(p)$.