## Lesson 1: Introduction to Functions

## Francisco Blanco-Silva

University of South Carolina



## WHAT DO WE NEED TO KNOW?

- ► A solid background in High-School Algebra:
  - Simplifying Expressions
  - Solving Linear Equations and Inequalities
  - Lines (and their graphs)
  - ► Solving Quadratic Equations
  - Quadratics (and their graphs)
  - Logarithmic and Exponential Equations
  - Functions
    - Evaluation
    - ► Combination Transformation
- ▶ It helps if you have been exposed to:
  - ► Polynomials
  - ► Exponents Powers
  - ► Problem Solving

## WARM-UP

LINES: SLOPES, INTERCEPTS, ...

- ► Two points  $(x_1, y_1)$  and  $(x_2, y_2)$ .
- ► A point  $(x_1, y_1)$  and slope m.
- ► Slope *m* and *y*-intercept *a*.



LINES: SLOPES, INTERCEPTS, ...

- ► Two points  $(x_1, y_1)$  and  $(x_2, y_2)$ .
- ► A point  $(x_1, y_1)$  and slope m.
- ▶ Slope m and y-intercept a.

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$



(slope = 
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2}$$
)

LINES: SLOPES, INTERCEPTS, . . .

- ► Two points  $(x_1, y_1)$  and  $(x_2, y_2)$ .
- ► A point  $(x_1, y_1)$  and slope m.
- ▶ Slope m and y-intercept a.

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$
$$y - y_1 = m(x - x_1)$$



(slope = 
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2}$$
)

LINES: SLOPES, INTERCEPTS, ...

- ► Two points  $(x_1, y_1)$  and  $(x_2, y_2)$ .
- ► A point  $(x_1, y_1)$  and slope m.
- ▶ Slope m and y-intercept a.

$$y - y_1 = \frac{y_2 - y_1}{x_2 - x_1}(x - x_1)$$
  

$$y - y_1 = m(x - x_1)$$
  

$$y = a + mx$$



(slope = 
$$\frac{y_2 - y_1}{x_2 - x_1} = \frac{y_1 - y_2}{x_1 - x_2}$$
)

DEFINITION AND REPRESENTATION

## Definition

A function is a rule that takes certain numbers as inputs and assigns to each a definite output number.

DEFINITION AND REPRESENTATION

#### Definition

A function is a rule that takes certain numbers as inputs and assigns to each a definite output number.

The set of all input numbers is called the domain of the function, and the set of resulting output numbers is called the range of the function.

DEFINITION AND REPRESENTATION

### Definition

A function is a rule that takes certain numbers as inputs and assigns to each a definite output number.

The set of all input numbers is called the domain of the function, and the set of resulting output numbers is called the range of the function.

|        | a.k.a.               |
|--------|----------------------|
| input  | independent variable |
| output | dependent variable   |
| range  | image                |

DEFINITION AND REPRESENTATION

### Definition

A function is a rule that takes certain numbers as inputs and assigns to each a definite output number.

The set of all input numbers is called the domain of the function, and the set of resulting output numbers is called the range of the function.

|        | a.k.a.               |
|--------|----------------------|
| input  | independent variable |
| output | dependent variable   |
| range  | image                |

- ► By tables
- ► By graphs
- ► By formulas
- ▶ With word descriptions

DEFINITION AND REPRESENTATION

#### Definition

A function is a rule that takes certain numbers as inputs and assigns to each a definite output number.

The set of all input numbers is called the domain of the function, and the set of resulting output numbers is called the range of the function.

|        | a.k.a.               |
|--------|----------------------|
| input  | independent variable |
| output | dependent variable   |
| range  | image                |

- ► By tables
- ► By graphs
- ► By formulas
- ► With word descriptions



DEFINITION AND REPRESENTATION

#### Definition

A function is a rule that takes certain numbers as inputs and assigns to each a definite output number.

The set of all input numbers is called the domain of the function, and the set of resulting output numbers is called the range of the function.

|        | a.k.a.               |
|--------|----------------------|
| input  | independent variable |
| output | dependent variable   |
| range  | image                |

- ► By tables
- ► By graphs
- ► By formulas
- ► With word descriptions



DEFINITION AND REPRESENTATION

### Definition

A function is a rule that takes certain numbers as inputs and assigns to each a definite output number.

The set of all input numbers is called the domain of the function, and the set of resulting output numbers is called the range of the function.

|        | a.k.a.               |
|--------|----------------------|
| input  | independent variable |
| output | dependent variable   |
| range  | image                |

- ► By tables
- ► By graphs
- ► By formulas
- ► With word descriptions

$$A = \pi r^2$$

DEFINITION AND REPRESENTATION

#### Definition

A function is a rule that takes certain numbers as inputs and assigns to each a definite output number.

The set of all input numbers is called the domain of the function, and the set of resulting output numbers is called the range of the function.

|        | a.k.a.               |
|--------|----------------------|
| input  | independent variable |
| output | dependent variable   |
| range  | image                |

## Functions can be represented:

- ► By tables
- ► By graphs
- ► By formulas
- ► With word descriptions

The area of a circle is  $\pi$  times the square of its radius.

EXAMPLES

We write y = f(t) to express that y (the dependent variable) is a function of t (the independent variable).

# Example

The value of a car in thousands of dollars, V, is a function of the age of the car, a, in years.

$$V = f(a)$$

▶ What is the independent variable? And the dependent variable?

EXAMPLES

We write y = f(t) to express that y (the dependent variable) is a function of t (the independent variable).

# Example

The value of a car in thousands of dollars, V, is a function of the age of the car, a, in years.

$$V = f(a)$$

► What is the independent variable? And the dependent variable? Independent variable: age of the car, *a*, in years

EXAMPLES

We write y = f(t) to express that y (the dependent variable) is a function of t (the independent variable).

## Example

The value of a car in thousands of dollars, V, is a function of the age of the car, a, in years.

$$V = f(a)$$

What is the independent variable? And the dependent variable? Independent variable: age of the car, a, in years Dependent variable: value of the car, V, in thousands of dollars

EXAMPLES

We write y = f(t) to express that y (the dependent variable) is a function of t (the independent variable).

## Example

The value of a car in thousands of dollars, V, is a function of the age of the car, a, in years.

$$V = f(a)$$

- ► What is the independent variable? And the dependent variable? Independent variable: age of the car, *a*, in years

  Dependent variable: value of the car, *V*, in thousands of dollars
- ▶ What does it mean f(5) = 9?

EXAMPLES

We write y = f(t) to express that y (the dependent variable) is a function of t (the independent variable).

## Example

The value of a car in thousands of dollars, V, is a function of the age of the car, a, in years.

$$V = f(a)$$

- What is the independent variable? And the dependent variable? Independent variable: age of the car, a, in years Dependent variable: value of the car, V, in thousands of dollars
- ► What does it mean f(5) = 9? After five years, the car is worth \$9,000.

EXAMPLES

# Example

The value of a Honda Civic is approximated by V = f(a) = 13.78 - 0.8a:

▶ What is the significance of f(0)?

EXAMPLES

# Example

The value of a Honda Civic is approximated by V = f(a) = 13.78 - 0.8a:

▶ What is the significance of f(0)?

$$f(0) = 13.78 - 0.8 \times 0 = 13.78$$

The value of a brand new Honda Civic is about \$13,780.

EXAMPLES

# Example

The value of a Honda Civic is approximated by V = f(a) = 13.78 - 0.8a:

▶ What is the significance of f(0)?

$$f(0) = 13.78 - 0.8 \times 0 = 13.78$$

The value of a brand new Honda Civic is about \$13,780.

EXAMPLES

## Example

The value of a Honda Civic is approximated by V = f(a) = 13.78 - 0.8a:

▶ What is the significance of f(0)?

$$f(0) = 13.78 - 0.8 \times 0 = 13.78$$

The value of a brand new Honda Civic is about \$13,780.

$$f(a)=0$$

EXAMPLES

## Example

The value of a Honda Civic is approximated by V = f(a) = 13.78 - 0.8a:

▶ What is the significance of f(0)?

$$f(0) = 13.78 - 0.8 \times 0 = 13.78$$

The value of a brand new Honda Civic is about \$13,780.

$$f(a) = 0$$
  
13.78 - 0.8a = 0

EXAMPLES

## Example

The value of a Honda Civic is approximated by V = f(a) = 13.78 - 0.8a:

 $\blacktriangleright$  What is the significance of f(0)?

$$f(0) = 13.78 - 0.8 \times 0 = 13.78$$

The value of a brand new Honda Civic is about \$13,780.

$$f(a) = 0$$

$$13.78 - 0.8a = 0$$

$$13.78 = 0.8a$$

EXAMPLES

## Example

The value of a Honda Civic is approximated by V = f(a) = 13.78 - 0.8a:

▶ What is the significance of f(0)?

$$f(0) = 13.78 - 0.8 \times 0 = 13.78$$

The value of a brand new Honda Civic is about \$13,780.

$$f(a) = 0$$

$$13.78 - 0.8a = 0$$

$$13.78 = 0.8a$$

$$a = \frac{13.78}{0.8} \approx 17.22$$

EXAMPLES

# Example

The value of a Honda Civic is approximated by V = f(a) = 13.78 - 0.8a:

 $\blacktriangleright$  What is the significance of f(0)?

$$f(0) = 13.78 - 0.8 \times 0 = 13.78$$

The value of a brand new Honda Civic is about \$13,780.

▶ For what value of a is f(a) = 0? What is the significance of this a-value?

$$f(a) = 0$$

$$13.78 - 0.8a = 0$$

$$13.78 = 0.8a$$

$$a = \frac{13.78}{0.8} \approx 17.22$$

In about 17 years, this car will be worthless!