Compiler Techniques

Lecture 10: Dataflow Analysis (Backward)

Tianwei Zhang

Outline

- Overview of Optimization
- Dataflow Analysis
- Liveness Analysis
- Very Busy Expression Analysis

Outline

- Overview of Optimization
- Dataflow Analysis
- Liveness Analysis
- Very Busy Expression Analysis

Overview of Optimization

Two kinds of optimizations:

- Platform-independent optimizations
- Platform-specific optimizations

In this course:

- We will only consider some simple platform-independent optimizations
- Such optimizations are usually implemented on intermediate representations like Jimple

Static Analysis

- Optimizations need to be behavior-preserving
 - The optimized program should run faster/take less space
 - It should behave exactly the same as the original program
- **Static analysis**: an optimizer has to reason statically (*i.e.*, without running the program) about *all* possible behaviors of a program
- From some basic results of computability theory: it is impossible to statically predict precisely the possible behaviors of a program
- An optimizer has to be **conservative**: only apply an optimization if we can be absolutely certain that it is behavior-preserving

Examples of Optimizations

Examples of optimizations performed by modern compilers:

- Common subexpression elimination (lecture 11): if an expression has already been evaluated, reuse its previously computed value
- Register allocation (lecture 12): allocate registers to accelerate the memory access time.
- Loop invariant code motion (lecture 13): move computation out of a loop body to avoid re-computation
- Loop fusion (lecture 13): combine two loops into one
- Reduction in strength (lecture 13): replace slow operations with faster ones to accelerate computation
- Function inlining (lecture 13): replace a call to a function by its function body to avoid overhead
- Devirtualisation (lecture 13): turn a virtual method call into a static one
- Dead code detection: remove code that cannot be executed
- Bounds check elimination: in Java, if an array index can be shown to be in range, we do not need to check it at run-time
- **...**

Intra-Procedural vs. Inter-Procedural

Intra-procedural optimizaton

- Only concern the code within a single method or function
- A control flow graph is used to represent potential execution paths within a method/function

Inter-procedural/whole-program optimizaton

- Try to optimize several methods or functions at once;
- A procedure call graph is used to represent potential execution paths between the methods/functions of a program
- Optimizations have the potential to deliver greater performance improvements, but they are more difficult to apply, and it is harder to reason about their safety

Outline of the Following Lectures

Intra-Procedural Analysis

- Lecture 10: Data-flow analysis (backward)
 - Liveness analysis & very busy expression analysis
- Lecture 11: Data-flow analysis (forward)
 - Available expression analysis & reaching definitions analysis
- Lecture 12: Register allocation
- Lecture 13: control flow analysis
 - ▶ Dominance analysis & loop optimization & static single assignment

Inter-Procedural Analysis

Lecture 13: analysis and optimization based on call graphs

Outline

- Overview of Optimization
- Dataflow Analysis
- Liveness Analysis
- Very Busy Expression Analysis

Control Flow Graphs (CFG)

- A representation of all instructions in a method and the possible flow of execution through these instructions
 - Used by many optimizations to reason about the possible behaviors of a method
- Nodes of the CFG: the instructions of the method
 - ENTRY and EXIT nodes: representing the beginning and end of the method execution
- An edge from node n_1 to n_2 : if n_2 could be executed immediately after n_1
 - In Jimple, most instructions only have a single successor, except for conditional jumps, which have two (we ignore exceptions)

Control Flow Graph Example

```
Jimple code
                                                            CFG
                          declarations statements
                                                 ENTRY
 int r, t, x, y, z;
                           are not represented in
                                the CFG
 x:= @parameter0;
 y:= @parameter1;
 z = 1:
                                                   = X
 r = x;
11: if z==y goto 13;
                                                if z==y
 t = z*2;
 if t>y goto 12;
                                                t = z*2
 r = r*r;
 z = z*2;
                    goto is not
                                                if t>y
 goto 11;
                     explicitly
                   represented in
12:
                                       r = r*r
                                                        r = r*x
                     the CFG
 r = r*x;
 z = z+1;
                                       z = z*2
                                                        z = z+1
 goto 11;
13: return r;
                                                return r
                                                                   EXIT
```

Data Flow Analysis

- Gather information about the values computed (and assigned to variables) at different points in the program
- Data flow analysis on the CFG
 - Considering all possible paths from the ENTRY node to a certain node, or from that node to the EXIT node
- Four possible applications:
 - Liveness analysis (backward-may)
 - Very busy expression analysis (backward-must)
 - Available expression analysis (forward-must)
 - Reaching definitions analysis (forward-may)

Outline

- Overview of Optimization
- Dataflow Analysis
- Liveness Analysis
- Very Busy Expression Analysis

Liveness

- Liveness analysis can be used for register allocation (Lecture 12)
- A local variable is live at a program point if its value may be read before it is reassigned; otherwise, it is dead
- Live range of a variable: the set of statements within which the variable is live

```
x = 0
                      // x
  y = 1
                     // x, y
10:z = 2
                     // x, y, z
  a = x
                     // a, x, y, z
11:if z == y goto 13 // a, x, y, z
  b = z * 2
                // a, b, x, y, z
  if b > y goto 12 // a, x, y, z
  a = a * a
                     // a, x, y, z
  z = z * 2
                      // a, x, y, z
  goto 11
12:a = y * x
                     // a, x, y, z
  z = z + 1
                      // a, x, v, z
  goto 11
```

13:

Liveness analysis based on CFG

- A variable x is live after a CFG node n if:
 - ▶ There exists a path p from n to EXIT.
 - There exists a node r on p that reads x
 - r is not preceded on p by any node that writes x

Liveness analysis

- A variable can be live before or after a node n.
- Flow sets:
 - $\mid in_{l}(n)$: the set of variables that are live before n
 - $out_{l}(n)$: the set of variables that are live after n
- Goal of liveness analysis: compute in_L(n) and out_L(n) for every CFG node n

Transfer Functions

- If we already know $out_{\lfloor}(n)$, it is easy to compute $in_{\lfloor}(n)$:
 - A variable x is live before n if
 - (1) either n reads x,
 - (2) or x is live after n and n does not write x
- More denotations:
 - \triangleright use(n): the set of (local) variables read by a node n
 - ightharpoonup def(n): the set of variables written by a node n
- ▶ Transfer function for $in_L(n)$:

$$in_L(n) = out_L(n) \setminus def(n) \cup use(n)$$

This is called backward flow analysis since we compute in(n) from out(n). We also have forward flow analysis discussed in the next Lecture, which computes out(n) from in(n).

Transfer Functions

- ▶ How do we get $out_{L}(n)$? There are two cases:
 - Node n is the Exit node. Then no variable is live at the end of a method:

$$out_L(Exit) = \emptyset$$

- Node n has at least one successor node.
 - \triangleright succ(n): the set of successor nodes of n.
 - A variable x is live after n if it is live before any successor of n

$$\operatorname{out}_{L}(n) = \bigcup \left\{ \operatorname{in}_{L}(m) \mid m \in \operatorname{succ}(n) \right\}$$

This is called May analysis, as union is used to combine results from successor nodes. We also have Must analysis where intersection is used

Transfer Functions Example

Transfer Functions Example

Solving Transfer Functions

The system of equations for the transfer functions cannot be solved directly: the definitions are circular!

```
\begin{array}{l} \textbf{in_L(4)} &= \mathsf{out_L(4)} \cup \{\,y,z\,\} \\ &= \mathsf{in_L(11)} \cup \mathsf{in_L(5)} \cup \{\,y,z\,\} \\ &= \mathsf{in_L(11)} \cup \mathsf{out_L(5)} \setminus \{\,t\,\} \cup \{\,y,z\,\} \\ &= \mathsf{in_L(11)} \cup \mathsf{in_L(6)} \setminus \{\,t\,\} \cup \{\,y,z\,\} \\ &= \mathsf{in_L(11)} \cup (\mathsf{out_L(6)} \cup \{\,t,y\,\}) \setminus \{\,t\,\} \cup \{\,y,z\,\} \\ &= \mathsf{in_L(11)} \cup (\mathsf{in_L(7)} \cup \mathsf{in_L(9)} \cup \{\,t,y\,\}) \setminus \{\,t\,\} \cup \{\,y,z\,\} \\ &= \mathsf{in_L(11)} \cup (\mathsf{out_L(7)} \cup \mathsf{in_L(9)} \cup \{\,r,t,y\,\}) \setminus \{\,t\,\} \cup \{\,y,z\,\} \\ &= \mathsf{in_L(11)} \cup (\mathsf{in_L(8)} \cup \mathsf{in_L(9)} \cup \{\,r,t,y,z\,\}) \setminus \{\,t\,\} \cup \{\,y,z\,\} \\ &= \mathsf{in_L(11)} \cup (\mathsf{in_L(4)} \cup \mathsf{in_L(9)} \cup \{\,r,t,y,z\,\}) \setminus \{\,t\,\} \cup \{\,y,z\,\} \\ &= \mathsf{in_L(11)} \cup (\mathsf{in_L(4)} \cup \mathsf{in_L(9)} \cup \{\,r,t,y,z\,\}) \setminus \{\,t\,\} \cup \{\,y,z\,\} \\ &= \ldots \end{array}
```

Method 1: Iterative Solution

- However, the equation system can be solved by iteration:
 - Initialization: set $in_L(n) = out_L(n) = \emptyset$ for all nodes n
 - 2. For each iteration: recompute $out_L(n)$ for every node n based on the values we have computed in the previous iteration and then recompute $in_L(n)$ from $out_L(n)$
 - 3. Finished: when all values do not change any further
- ▶ This method can be used for other data flow analyses as well

Simplifying Transfer Equations

To make it easier to solve the equations, we substitute away the $out_L(n)$ equations, so we only have to solve for $in_L(n)$

```
\begin{array}{l} in_L(1) = out_L(1) \\ in_L(2) = out_L(2) \setminus \{z\} \\ in_L(3) = out_L(3) \setminus \{r\} \cup \{x\} \\ in_L(4) = out_L(4) \cup \{y,z\} \\ in_L(5) = out_L(5) \setminus \{t\} \cup \{z\} \\ in_L(6) = out_L(6) \cup \{t,y\} \\ in_L(7) = out_L(7) \cup \{r\} \\ in_L(8) = out_L(8) \cup \{z\} \\ in_L(9) = out_L(9) \cup \{r,x\} \\ in_L(10) = out_L(10) \cup \{z\} \\ in_L(11) = out_L(11) \cup \{r\} \\ in_L(12) = out_L(12) \end{array}
```

```
out_{L}(1) = in_{L}(2)

out_{L}(2) = in_{L}(3)

out_{L}(3) = in_{L}(4)

out_{L}(4) = in_{L}(11) \cup in_{L}(5)

out_{L}(5) = in_{L}(6)

out_{L}(6) = in_{L}(7) \cup in_{L}(9)

out_{L}(7) = in_{L}(8)

out_{L}(8) = in_{L}(4)

out_{L}(9) = in_{L}(10)

out_{L}(10) = in_{L}(4)

out_{L}(11) = in_{L}(12)

out_{L}(12) = \emptyset
```


$in_L(1) = in_L(2)$
$in_L(2) = in_L(3) \setminus \{z\}$
$in_L(3) = in_L(4) \setminus \{r\} \cup \{x\}$
$in_L(4) = in_L(11) \cup in_L(5) \cup \{y, z\}$
$in_L(5) = in_L(6) \setminus \{t\} \cup \{z\}$
$in_L(6) = in_L(7) \cup in_L(9) \cup \{t,y\}$
$in_L(7) = in_L(8) \cup \{r\}$
$in_L(8) = in_L(4) \cup \{z\}$
$in_L(9) = in_L(10) \cup \{r, x\}$
$in_L(10) = in_L(4) \cup \{z\}$
$in_L(II) = in_L(I2) \cup \{r\}$
$in_{\cdot}(12) = \emptyset$

	0	1	2	3	4	5	6
in _L (I)	Ø						
in _L (2)	Ø						
in _L (3)	Ø						
in _L (4)	Ø						
in _L (5)	Ø						
in _L (6)	Ø						
in _L (7)	Ø						
in _L (8)	Ø						
in _L (9)	Ø						
in _L (10)	Ø						
in _L (11)	Ø						
in _L (12)	Ø						

$in_L(1) = in_L(2)$
$in_L(2) = in_L(3) \setminus \{z\}$
$in_L(3) = in_L(4) \setminus \{r\} \cup \{x\}$
$in_L(4) = in_L(11) \cup in_L(5) \cup \{y, z\}$
$in_L(5) = in_L(6) \setminus \{t\} \cup \{z\}$
$in_L(6) = in_L(7) \cup in_L(9) \cup \{t,y\}$
$in_L(7) = in_L(8) \cup \{r\}$
$in_L(8) = in_L(4) \cup \{z\}$
$in_L(9) = in_L(10) \cup \{r, x\}$
$in_L(10)=in_L(4)\cup\{z\}$
$in_L(II) = in_L(I2) \cup \{r\}$
$in_1(12) = \emptyset$

				2	4	_	
	0		2	3	4	5	6
in _L (I)	Ø	Ø					
in _L (2)	Ø	Ø					
in _L (3)	Ø	X					
in _L (4)	Ø	y,z					
in _L (5)	Ø	Z					
in _L (6)	Ø	t,y					
in _L (7)	Ø	r					
in _L (8)	Ø	Z					
in _L (9)	Ø	r,x					
in _L (10)	Ø	Z					
in _L (11)	Ø	r					
in _L (12)	Ø	Ø					

$in_L(1) = in_L(2)$
$in_L(2) = in_L(3) \setminus \{z\}$
$in_L(3) = in_L(4) \setminus \{r\} \cup \{x\}$
$in_L(4) = in_L(11) \cup in_L(5) \cup \{y, z\}$
$in_L(5) = in_L(6) \setminus \{t\} \cup \{z\}$
$in_L(6) = in_L(7) \cup in_L(9) \cup \{t,y\}$
$in_L(7) = in_L(8) \cup \{r\}$
$in_L(8) = in_L(4) \cup \{z\}$
$in_L(9) = in_L(10) \cup \{r, x\}$
$in_L(10)=in_L(4)\cup\{z\}$
$in_L(II) = in_L(I2) \cup \{r\}$
$in_L(12) = \emptyset$

	0	1	2	3	4	5	6
in _L (I)	Ø	Ø	Ø				
in _L (2)	Ø	Ø	X				
in _L (3)	Ø	X	x,y,z				
in _L (4)	Ø	y,z	r,y,z				
in _L (5)	Ø	Z	y,z				
in _L (6)	Ø	t,y	r,t,x,y				
in _L (7)	Ø	r	r,z				
in _L (8)	Ø	Z	y,z				
in _L (9)	Ø	r,x	r,x,z				
in _L (10)	Ø	Z	y,z				
in _L (11)	Ø	r	r				
in _L (12)	Ø	Ø	Ø				

$in_L(1) = in_L(2)$
$in_L(2) = in_L(3) \setminus \{z\}$
$in_L(3) = in_L(4) \setminus \{r\} \cup \{x\}$
$in_L(4) = in_L(11) \cup in_L(5) \cup \{y, z\}$
$in_L(5) = in_L(6) \setminus \{t\} \cup \{z\}$
$in_L(6) = in_L(7) \cup in_L(9) \cup \{t,y\}$
$in_L(7) = in_L(8) \cup \{r\}$
$in_L(8) = in_L(4) \cup \{z\}$
$in_L(9) = in_L(10) \cup \{r, x\}$
$in_L(10) = in_L(4) \cup \{z\}$
$in_L(II) = in_L(I2) \cup \{r\}$
$in_L(12) = \emptyset$

	0	1	2	3	4	5	6
				<u> </u>	_	<u> </u>	0
in _L (I)	Ø	Ø	Ø	X			
in _L (2)	Ø	Ø	×	x,y			
in _L (3)	Ø	X	x,y,z	x,y,z			
in _L (4)	Ø	y,z	r,y,z	r,y,z			
in _L (5)	Ø	Z	y,z	r,x,y,z			
in _L (6)	Ø	t,y	r,t,x,y	r,t,x,y,z			
in _L (7)	Ø	r	r,z	r,y,z			
in _L (8)	Ø	Z	y,z	r,y,z			
in _L (9)	Ø	r,x	r,x,z	r,x,y,z			
in _L (10)	Ø	Z	y,z	r,y,z			
in _L (11)	Ø	r	r	r			
in _L (12)	Ø	Ø	Ø	Ø			

$in_L(1) = in_L(2)$
$in_L(2) = in_L(3) \setminus \{z\}$
$in_L(3) = in_L(4) \setminus \{r\} \cup \{x\}$
$in_L(4) = in_L(11) \cup in_L(5) \cup \{y, z\}$
$in_L(5) = in_L(6) \setminus \{t\} \cup \{z\}$
$in_L(6) = in_L(7) \cup in_L(9) \cup \{t,y\}$
$in_L(7) = in_L(8) \cup \{r\}$
$in_L(8) = in_L(4) \cup \{z\}$
$in_L(9) = in_L(10) \cup \{r, x\}$
$in_L(10) = in_L(4) \cup \{z\}$
$in_L(II) = in_L(I2) \cup \{r\}$
$in_L(12) = \emptyset$

	0	1	2	3	4	5	6
in _L (I)	Ø	Ø	Ø	X	х,у		
in _L (2)	Ø	Ø	X	х,у	х,у		
in _L (3)	Ø	X	x,y,z	x,y,z	x,y,z		
in _L (4)	Ø	y,z	r,y,z	r,y,z	r,x,y,z		
in _L (5)	Ø	Z	y,z	r,x,y,z	r,x,y,z		
in _L (6)	Ø	t,y	r,t,x,y	r,t,x,y,z	r,t,x,y,z		
in _L (7)	Ø	r	r,z	r,y,z	r,y,z		
in _L (8)	Ø	Z	y,z	r,y,z	r,y,z		
in _L (9)	Ø	r,x	r,x,z	r,x,y,z	r,x,y,z		
in _L (10)	Ø	Z	y,z	r,y,z	r,y,z		
in _L (11)	Ø	r	r	r	r		
in _L (12)	Ø	Ø	Ø	Ø	Ø		

$in_L(1) = in_L(2)$
$in_L(2) = in_L(3) \setminus \{z\}$
$in_L(3) = in_L(4) \setminus \{r\} \cup \{x\}$
$in_L(4) = in_L(11) \cup in_L(5) \cup \{y, z\}$
$in_L(5) = in_L(6) \setminus \{t\} \cup \{z\}$
$in_L(6) = in_L(7) \cup in_L(9) \cup \{t,y\}$
$in_L(7) = in_L(8) \cup \{r\}$
$in_L(8) = in_L(4) \cup \{z\}$
$in_L(9) = in_L(10) \cup \{r, x\}$
$in_L(10) = in_L(4) \cup \{z\}$
$in_L(II) = in_L(I2) \cup \{r\}$
$in_L(12) = \emptyset$

	0	1	2	3	4	5	6
in _L (1)	Ø	Ø	Ø	X	х,у	х,у	
in _L (2)	Ø	Ø	X	х,у	х,у	х,у	
in _L (3)	Ø	X	x,y,z	x,y,z	x,y,z	x,y,z	
in _L (4)	Ø	y,z	r,y,z	r,y,z	r,x,y,z	r,x,y,z	
in _L (5)	Ø	Z	y,z	r,x,y,z	r,x,y,z	r,x,y,z	
in _L (6)	Ø	t,y	r,t,x,y	r,t,x,y,z	r,t,x,y,z	r,t,x,y,z	
in _L (7)	Ø	r	r,z	r,y,z	r,y,z	r,y,z	
in _L (8)	Ø	Z	y,z	r,y,z	r,y,z	r,x,y,z	
in _L (9)	Ø	r,x	r,x,z	r,x,y,z	r,x,y,z	r,x,y,z	
in _L (10)	Ø	Z	y,z	r,y,z	r,y,z	r,x,y,z	
in _L (11)	Ø	r	r	r	r	r	
in _L (12)	Ø	Ø	Ø	Ø	Ø	Ø	

No further changes after iteration 6

$in_L(1) = in_L(2)$
$in_L(2) = in_L(3) \setminus \{z\}$
$in_L(3) = in_L(4) \setminus \{r\} \cup \{x\}$
$in_L(4) = in_L(11) \cup in_L(5) \cup \{y, z\}$
$in_L(5) = in_L(6) \setminus \{t\} \cup \{z\}$
$in_L(6) = in_L(7) \cup in_L(9) \cup \{t,y\}$
$in_L(7) = in_L(8) \cup \{r\}$
$in_L(8) = in_L(4) \cup \{z\}$
$in_L(9) = in_L(10) \cup \{r, x\}$
$in_L(10) = in_L(4) \cup \{z\}$
$in_L(II) = in_L(I2) \cup \{r\}$
$in_{I}(12) = \emptyset$

	0	1	2	3	4	5	6
in _L (I)	Ø	Ø	Ø	X	х,у	х,у	х,у
in _L (2)	Ø	Ø	X	х,у	х,у	х,у	x,y
in _L (3)	Ø	X	x,y,z	x,y,z	x,y,z	x,y,z	x,y,z
in _L (4)	Ø	y,z	r,y,z	r,y,z	r,x,y,z	r,x,y,z	r,x,y,z
in _L (5)	Ø	Z	y,z	r,x,y,z	r,x,y,z	r,x,y,z	r,x,y,z
in _L (6)	Ø	t,y	r,t,x,y	r,t,x,y,z	r,t,x,y,z	r,t,x,y,z	r,t,x,y,z
in _L (7)	Ø	r	r,z	r,y,z	r,y,z	r,y,z	r,x,y,z
in _L (8)	Ø	Z	y,z	r,y,z	r,y,z	r,x,y,z	r,x,y,z
in _L (9)	Ø	r,x	r,x,z	r,x,y,z	r,x,y,z	r,x,y,z	r,x,y,z
in _L (10)	Ø	Z	y,z	r,y,z	r,y,z	r,x,y,z	r,x,y,z
in _L (11)	Ø	r	r	r	r	r	r
in _L (12)	Ø	Ø	Ø	Ø	Ø	Ø	Ø

Termination of Iterative Solution

- Iterative solution always terminates
 - Each step of the iteration can only grow a set or leave unchanged
 - Finite number of elements in each set, so finite number of times can change
 - Each iteration either has a change or stops
 - Must terminate
- Finite descending chain property

Method 2: Worklist Algorithm (Backward)

- We can avoid unnecessary recomputation by keeping a worklist of nodes for which $out_{l}(n)$ has changed:

Worklist Algorithm Example (Backward)

- Liveness analysis using the worklist algorithm.
 - We initialize the worklist to contain all nodes in the CFG to ensure that each node is evaluated at least once
 - These nodes can be in an arbitrary order. For backward flow analysis, we sort these nodes as a reversed order in the worklist, to reduce number of iterations. For forward flow analysis, it is recommended to sort the nodes in the normal order.
 - For all nodes, $out_{L}(n)$ and $in_{L}(n)$ are initialized to \emptyset

Example

Worklist	in _L (m) &	out _L (n)
12,, 1	$in_L(12) = \emptyset$	$out_L(II) =$
11,, 1	$in_L(II) = \{r\}$	$out_L(4) = \{$
10,, 1	$in_{L}(10) = \{z\}$	$out_{L}(9) = \{$
9,, I	$in_{L}(9) = \{r, x, z\}$	$out_L(6) = \{$
8,, I	$in_L(8) = \{z\}$	$out_L(7) = \{$
7,, I	$in_L(7) = \{r, z\}$	$out_L(6) = \{$
6,, I	$in_{L}(6) = \{r, t, x, y, z\}$	$out_L(5) = \{$
5,, I	$in_{L}(5) = \{r, x, y, z\}$	$out_{L}(4) = \{$
4,, I	$in_{L}(4) = \{r, x, y, z\}$	$out_L(3) = \{$
		$out_L(8) = {$
		$out_L(10) =$
3,, 1, 8, 10	$in_L(3) = \{x, y, z\}$	$out_L(2) = \{$
2, 1, 8, 10	$in_L(2) = \{x, y\}$	$out_{L}(1) = \{$
1, 8, 10	$in_L(I) = \{x, y\}$	
8, 10	$in_L(8) = \{r, x, y, z\}$	$out_L(7) = \{ ($
10, 7	$in_{L}(10) = \{r, x, y, z\}$	$out_L(9) = \{ ($
7, 9	$in_L(7) = \{r, x, y, z\}$	$out_L(6) = {$
9, 6	$in_L(9) = \{r, x, y, z\}$	$out_L(6) = {$
6	$in_L(6) = \{r, t, x, y, z\}$	$out_L(5) = {$

out_L(n)
out_L(11) =
$$\emptyset$$

out_L(4) = {r}
out_L(9) = {z}
out_L(6) = {r, x, z}
out_L(7) = {z}
out_L(6) = {r, x, y, z}
out_L(5) = {r, t, x, y, z}
out_L(3) = {r, x, y, z}
out_L(3) = {r, x, y, z}
out_L(8) = {r, x, y, z}
out_L(10) = {r, x, y, z}
out_L(2) = {x, y, z}
out_L(1) = {x, y}
out_L(7) = {r, x, y, z}
out_L(9) = {r, x, y, z}
out_L(6) = {r, x, y, z}
out_L(6) = {r, x, y, z}
out_L(5) = {r, t, x, y, z}

Outline

- Overview of Optimization
- Dataflow Analysis
- Liveness Analysis
- Very Busy Expression Analysis

Very Busy Expression

▶ An expression e is very busy at a point p if

Along every path starting from p there is an expression e before redefinitions of any variables in it.

Code hoisting:

- If an expression e is very busy at program point p, we can hoist the computation of e to point p and store the result in a variable.
- Subsequent computation of e can simply be replaced by the variable.
- Potential benefit:
 - The size of the resulting program is smaller
 - The running time of the program is smaller because we avoid redoing work.

Very Busy Expressions Example

Very Busy Expressions Analysis

- Determine which expressions are very busy at each program point
- ▶ An expression can be very busy before or after a node n.
- Flow sets:
 - \triangleright in_{VR}(n): the set of expressions that are very busy before n
 - \rightarrow out_{VB}(n): the set of expressions that are very busy after n;
- ▶ Goal of very busy expression analysis: compute $in_{VB}(n)$ and $out_{VB}(n)$ for every CFG node n

Transfer Functions

- If we already know $out_{VB}(n)$, it is easy to compute $in_{VB}(n)$:
 - An expression e is very busy before n if
 - (I) either *n* computes e,
 - (2) or e is very busy after n and n does not write to any variable in e
- More denotations:
 - vars(e): the set of (local) variables in an expression e
 - comp(n): the set of expressions computed by n
 - ightharpoonup def(n): the set of variables node n writes to
- ▶ Transfer function for $in_{L}(n)$:

```
in_{VB}(n) = out_{VB}(n) \setminus \{e \mid vars(e) \cap def(n) \neq \emptyset \} \cup comp(n)
```

▶ This is also backward flow analysis.

Transfer Functions

- ▶ How do we get $out_{VB}(n)$? There are two cases:
 - Node n is the Exit node. Then no expression is very busy at the end of a method:

$$out_{VB}(Exit) = \emptyset$$

- Node *n* has at least one successor node.
 - \triangleright succ(n): the set of successor nodes of n.
 - An expression e is very busy after n if it is very busy before all the successors of n

$$out_{VB}(n) = \bigcap \{ in_{VB}(m) \mid m \in succ(n) \}$$

This is must analysis, as intersection is used to combine results from successor nodes.

Solving Transfer Functions

The transfer functions can be solved in the same way as liveness analysis, using iterative or worklist algorithms.

Initialization:

- $out_{VB}(EXIT) = in_{VB}(EXIT) = \emptyset$
- out_{VB} $(n) = in_{VB}(n) = U$ for all nodes n except EXIT, since we use intersection to compute out_{VB}(n), where U is the set of all expressions in the method