Ph.D. Qualifying Exam, Real Analysis

Spring 2024, part I

Do all five problems. Write your name on the solutions. Use separate pages for separate problems.

You may write on the both sides of a page. If you use more than one page for a problem, please staple them together with the stapler provided and make sure that you are stapling pages in the correct order.

- Suppose that f is a Schwartz function on \mathbb{R} with $\int_{-\infty}^{\infty} x^k f(x) dx = 0$ for all $k \in \{0\} \cup \mathbb{N}$. Is f the zero function? Prove this or given a counterexample.
- Let $1 . Suppose <math>\{f_n\}_{n=1}^{\infty} \subset L^p([0,1])$ are functions such that for each $n \in \mathbb{N}$, $f_n(x) \ge 0$ for a.e. x. If f_n converges weakly (in L^p) to a function $f \in L^p([0,1])$, prove that $f(x) \ge 0$ for a.e. x.
- 3 For $k \in \mathbb{N}$, define $I_k = [-k, k] \subset \mathbb{R}$. Endow $C^{\infty}(\mathbb{R})$ with the locally convex space topology given by the semi-norms

$$||f||_k = \sum_{j=0}^k \sup_{x \in I_k} |f^{(j)}(x)|, \quad k \in \mathbb{N}.$$

Denote by $(C^{\infty}(\mathbb{R}))^*$ its topological dual. Prove that $\Lambda \in (C^{\infty}(\mathbb{R}))^*$ if and only if there exists a tempered distribution $\lambda \in (\mathcal{S}(\mathbb{R}))^*$ such that $\operatorname{supp}(\lambda) \subset \mathbb{R}$ is a bounded set and

$$\lambda(f) = \Lambda(f), \quad \forall f \in \mathcal{S}(\mathbb{R}).$$

(Recall that for a linear map $\lambda : \mathcal{S}(\mathbb{R}) \to \mathbb{C}$, we say $x \notin \operatorname{supp}(\lambda)$ if \exists open set $U_x, x \in U_x$ such that $\operatorname{supp}(f) \subset U_x \implies \lambda(f) = 0$.)

- 4 Let \mathcal{F} denote the Fourier transform on \mathbb{R}^n .
 - **a.** Prove that there exists C > 0 such that the following holds for all $f \in \mathcal{S}(\mathbb{R}^n)$:

$$\|\mathcal{F}f\|_{L^{p'}} \le C\|f\|_{L^p}, \quad \forall 1 \le p \le 2, \quad \frac{1}{p'} + \frac{1}{p} = 1.$$

b. Prove that there exists C>0 such that the following holds. For any Lebesgue measurable $E\subset\mathbb{R}^n$ with $\mathcal{L}^n(E)<\infty$ and for all $f\in\mathcal{S}(\mathbb{R}^n)$ with $\mathrm{supp}(\mathcal{F}f)\subset E$:

$$||f||_{L^q} \le C(\mathcal{L}^n(E))^{\frac{1}{p} - \frac{1}{q}} ||f||_{L^p} \quad \forall 1 \le p \le q \le \infty, \ 1 \le p \le 2.$$

Let $L^0([0,1])$ be the vector space of Lebesgue measurable functions. Let d be the metric on $L^0([0,1])$ given by

$$d(f,g) = \int_0^1 \frac{|f - g|(x)}{1 + |f - g|(x)} dx.$$

- **a.** Prove that $f_n \to f$ in the metric d if and only if $f_n \to f$ in measure.
- **b.** Let $\mathcal{U} \subset L^0([0,1])$ be a non-empty open convex neighborhood of 0. Prove that $\mathcal{U} = L^0([0,1])$.
- **c.** Suppose $T:(L^0([0,1]),d)\to\mathbb{R}$ is a continuous linear function. Prove that T is the zero map.

Ph.D. Qualifying Exam, Real Analysis Spring 2024, part II

Do all five problems. Write your name on the solutions. Use separate pages for separate problems.

You may write on the both sides of a page. If you use more than one page for a problem, please staple them together with the stapler provided and make sure that you are stapling pages in the correct order.

- 1 Let H be a Hilbert space.
 - **a.** Suppose $\{x_n\}_{n=1}^{\infty} \subset H$, $x \in H$. Prove that $x_n \to x$ in norm if and only if $x_n \to x$ weakly and $||x_n|| \to ||x||$.
 - **b.** Let $\{T\}_{n=1}^{\infty} \in \mathcal{L}(H)$. Prove that $T_n \to T$ in the strong operator topology if and only if $T_n \to T$ in the weak operator topology and $T_n^*T_n \to T^*T$ in the weak operator topology.
- Let $f_n:[0,1]\to [0,1]$ be a sequence of Lebesgue measurable functions such that $\lim_{n\to\infty} f_n(x)=0$ almost everywhere. Let

$$Mf_n(x) = \sup_{x \in I \subset [0,1]} \frac{1}{|I|} \int_I |f(y)| dy,$$

where the maximum is taken over closed intervals, be the Hardy-Littlewood maximal function. Show that $\lim_{n\to\infty} Mf_n = 0$ a.e.

Suppose X_1, X_2, Y are reflexive Banach spaces and $A_j: X_j \to Y$ are bounded linear maps. Suppose also that there is C > 0 such that

$$\|\lambda\|_{Y^*} \le C(\|A_1^*\lambda\|_{X_1^*} + \|A_2^*\lambda\|_{X_2^*}), \quad \forall \lambda \in Y^*,$$

where X_1^* , X_2^* , Y^* denote the dual spaces of X_1 , X_2 , Y, respectively, and A_i^* is the adjoint of A_i . Show that for all $y \in Y$ there exist $x_i \in X_i$ such that $A_1x_1 + A_2x_2 = y$.

- If $U \subset \mathbb{R}^n$ is a bounded open set and $\delta > 0$, prove that there is a countable collection of closed balls $\{\overline{B(x_i,\rho_i)}\}_{j=1}^{\infty}$ such that $\rho_i \in (0,\delta)$ for all i, $\overline{B(x_i,\rho_i)} \cap \overline{B(x_j,\rho_j)} = \emptyset$ whenever $i \neq j$ and $\mathcal{L}^n(U \setminus \bigcup_{i=1}^{\infty} \overline{B(x_i,\rho_i)}) = 0$, where \mathcal{L}^n denotes the Lebesgue measure.
- 5 Let $\mathbb{T} = \mathbb{R}/(2\pi\mathbb{Z})$. Given $t \in \mathbb{R}$ and any Borel measure μ on \mathbb{T} , define its translate μ_t by $\mu_t(A) = \mu(A_t)$, where $A_t = \{x : x + t \in A\}$ for any Borel set A.
 - **a.** Is the map $t \mapsto \mu_t$ necessarily continuous in the topology given by the dual norm, where measures are viewed as the dual of $C(\mathbb{T})$? Prove or disprove.
 - **b.** Is the map $t \mapsto \mu_t$ necessarily continuous in the weak-* topology on measures as the dual of $C(\mathbb{T})$? Prove or disprove.
 - **c.** Is the map $t \mapsto \mu_t(A)$ necessarily continuous when A is Borel? Prove or disprove.
 - **d.** Is the map $t \mapsto \mu_t(A)$ necessarily continuous if we in addition assume that μ is absolutely continuous with respect to the Lebesgue measure? Prove or disprove.