June 14, 2021

Abstract

We calculate quantum corrections to the mass of the vortex in N=2 supersymmetric abelian Higgs model in 2+1 dimensions. We put the system in a box and apply the zeta function regularization. The boundary conditions inevitably violate a part of the supersymmetries. Remaining supersymmetry is however enough to ensure isospectrality of relevant operators in bosonic and fermionic sectors. A non-zero correction to the mass of the vortex comes from finite renormalization of couplings.

PACS: 11.27.+d; 12.60.Jv

$$\rho_B(\omega) - \rho_F(\omega) \propto \delta(\omega), \qquad (1)$$

$$\Delta E \propto \int d\omega \, \omega (\rho_B(\omega) - \rho_F(\omega)) \,.$$
 (2)

$$\Delta E = \Delta E_B - \Delta E_F, \qquad \Delta E_{B,F} = \frac{1}{2} \sum_{\omega_{B,F}} \omega_{B,F},$$
 (3)

$$\Delta E_{B,F}^{\text{reg}} = \frac{1}{2} \sum_{\omega_{B,F} \neq 0} \omega_{B,F}^{1-2s},$$
 (4)

$$\mathcal{L} = \mathcal{L}_B + \mathcal{L}_F \,, \tag{5}$$

$$\mathcal{L}_{B} = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - |D_{\mu}\phi|^{2} - \frac{1}{2}(\partial_{\mu}w)^{2} - \frac{e^{2}}{2}(|\phi|^{2} - v^{2})^{2} - e^{2}w^{2}|\phi|^{2}, (6)$$

$$\mathcal{L}_F = i\bar{\psi}\gamma^{\mu}D_{\mu}\psi + i\bar{\chi}\gamma^{\mu}\partial_{\mu}\chi - i\sqrt{2}e(\bar{\psi}\chi\phi - \bar{\chi}\psi\phi^*) + ew\bar{\psi}\psi, \qquad (7)$$

$$\delta A_{\mu} = i \left(\bar{\eta} \gamma_{\mu} \chi - \bar{\chi} \gamma_{\mu} \eta \right) ,$$

$$\delta \phi = \sqrt{2} \bar{\eta} \psi , \qquad \delta w = i \left(\bar{\chi} \eta - \bar{\eta} \chi \right) ,$$

$$\delta \chi = \gamma^{\mu} \eta \left(\partial_{\mu} w + \frac{i}{2} \epsilon_{\mu\nu\lambda} F^{\nu\lambda} \right) + i \eta (e|\phi|^{2} - ev^{2}) ,$$

$$\delta \psi = -\sqrt{2} \left(i \gamma^{\mu} \eta D_{\mu} \phi - \eta ew \phi \right) \tag{8}$$

$$\gamma^0 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \qquad \gamma^1 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad \gamma^2 = \begin{pmatrix} 0 & i \\ i & 0 \end{pmatrix}$$
 (9)

$$\gamma^{\mu}\gamma^{\nu} = -g^{\mu\nu} - i\epsilon^{\mu\nu\rho}\gamma_{\rho}. \tag{10}$$

$$\eta = \begin{pmatrix} \eta_+ \\ \eta_- \end{pmatrix},
\tag{11}$$

$$(D_1 + iD_2)\phi = 0, (12)$$

$$F_{12} + e(|\phi|^2 - v^2) = 0. (13)$$

$$\phi = f(r)e^{in\theta}, \qquad eA_j = \epsilon_{jk}\frac{x^k}{r^2}(a(r) - n)$$
 (14)

$$\frac{1}{r}\frac{d}{dr}a(r) = e^2\left(f^2(r) - v^2\right),$$

$$r\frac{d}{dr}\ln f(r) = a(r).$$
(15)

$$f(0) = 0, f(\infty) = v,$$
 (16)

$$a(0) = n, a(\infty) = 0.$$
 (17)

$$E^{\rm cl} = 2\pi n v^2 \,. \tag{18}$$

$$\mathcal{L}_{gf} = -\frac{1}{2} \left[\partial_{\mu} \alpha^{\mu} - ie(\varphi^* \phi - \varphi \phi^*) \right]^2, \tag{19}$$

$$\mathcal{L}_{\text{ghost}} = \sigma^* (\partial_\mu \partial^\mu - 2e^2 \phi \phi^*) \sigma. \tag{20}$$

Abstract

We discuss a new class of brane models (extending both p-brane and Dp-brane cases) where the brane tension appears as an additional dynamical degree of freedom instead of being put in by hand as an ad hoc dimensionfull scale. Consistency of dynamics naturally involves the appearence of additional higher-rank antisymmetric tensor gauge fields on the world-volume which can couple to charged lower-dimensional branes living on the original Dp-brane world-volume. The dynamical tension has the physical meaning of electric-type field strength of the additional higher-rank world-volume gauge fields. It obeys Maxwell (or Yang-Mills) equations of motion (in the string case p=1) or their higher-rank gauge theory analogues (in the Dp-brane case). This in particular triggers a simple classical mechanism of ("color") charge confinement.

$$\omega_F^2 \left(\begin{array}{c} U \\ V \end{array} \right) = \left(\begin{array}{c} D_F D_F^\dagger, & 0 \\ 0, & D_F^\dagger D_F \end{array} \right) \left(\begin{array}{c} U \\ V \end{array} \right) \,, \tag{21}$$

$$U = \begin{pmatrix} \psi_+ \\ \chi_- \end{pmatrix}, \qquad V = \begin{pmatrix} \psi_- \\ \chi_+ \end{pmatrix} \tag{22}$$

$$D_F = \begin{pmatrix} D_+, & -\sqrt{2}e\phi \\ -\sqrt{2}e\phi^*, & \partial_- \end{pmatrix}, \qquad -D_F^{\dagger} = \begin{pmatrix} D_-, & \sqrt{2}e\phi \\ \sqrt{2}e\phi^*, & \partial_+ \end{pmatrix}. \tag{23}$$

$$D_{\pm} := D_1 \pm iD_2, \qquad \partial_{\pm} := \partial_1 \pm i\partial_2. \tag{24}$$

$$\Delta_w = -\partial_j \partial_j + 2e^2 |\phi|^2. \tag{25}$$

$$\omega_B^2 \left(\begin{array}{c} \varphi \\ i\alpha_+\sqrt{2} \end{array} \right) := -\partial_0^2 \left(\begin{array}{c} \varphi \\ i\alpha_+\sqrt{2} \end{array} \right) = D_F^{\dagger} D \left(\begin{array}{c} \varphi \\ i\alpha_+\sqrt{2} \end{array} \right) \,, \tag{26}$$

$$D_F^{\dagger} D_F = - \begin{pmatrix} D_j^2 - e^2 (3|\phi|^2 - v^2), & -\sqrt{2}e(D_-\phi) \\ -\sqrt{2}e(D_+\phi^*), & \partial_j^2 - 2e^2|\phi|^2 \end{pmatrix}, \qquad (27)$$

$$D_F D_F^{\dagger} = - \begin{pmatrix} D_j^2 - e^2 (|\phi|^2 + v^2), & 0 \\ 0, & \partial_j^2 - 2e^2|\phi|^2 \end{pmatrix}. \qquad (28)$$

$$D_F D_F^{\dagger} = - \begin{pmatrix} D_j^2 - e^2(|\phi|^2 + v^2), & 0\\ 0, & \partial_i^2 - 2e^2|\phi|^2 \end{pmatrix}.$$
 (28)

$$u_{\pm} = e^{\pm i\theta} \left(u_r \pm \frac{i}{r} u_\theta \right) \,, \tag{29}$$

$$\mathcal{B}^{[\alpha]}\alpha_{\mu}|_{\partial M} = 0, \qquad \mathcal{B}^{[\sigma]}\sigma|_{\partial M} = 0,$$
 (30)

$$\mathcal{B}^{[\alpha]}\partial_{\mu}\sigma|_{\partial M} = 0. \tag{31}$$

$$\alpha_0|_{\partial M} = 0, \quad \alpha_\theta|_{\partial M} = 0, \quad \left(\partial_r + \frac{1}{r}\right)\alpha_r|_{\partial M} = 0, \quad \sigma|_{\partial M} = 0.$$
 (32)

$$\left(\partial_r + \frac{1}{r}\right)\partial_r \sigma = \left[-\Delta_w \sigma\right] + \left[-\frac{1}{r^2}\partial_\theta^2 + 2\phi\phi^*\right]\sigma, \qquad (33)$$

$$[-\Delta_w \sigma]|_{\partial M} = -\sum_k \omega_k^2 \sigma_k|_{\partial M} = 0.$$
 (34)

$$w|_{\partial M} = 0. (35)$$

$$\alpha_r = \Re\left(e^{-i\theta}\alpha_+\right), \qquad \alpha_\theta = r\Im\left(e^{-i\theta}\alpha_+\right).$$
 (36)

$$\Re\left(e^{-i\theta}\chi_{+}\right)|_{\partial M} = 0, \qquad \left(\partial_{r} + \frac{1}{r}\right) \Im\left(e^{-i\theta}\chi_{+}\right)|_{\partial M} = 0. \tag{37}$$

$$V(\omega) = \omega^{-2} D_F^{\dagger} U(\omega) \,, \tag{38}$$

$$U(\omega) = \omega^{-2} D_F V(\omega) \tag{39}$$

$$U_1(\omega) = \omega^{-2} \left(D_+ V_1(\omega) - \sqrt{2}e\phi V_2(\omega) \right). \tag{40}$$

$$\Re\left(e^{-i\theta}\phi^*U_1\right)|_{\partial M} = \Re\left(e^{-i\theta}\phi^*\psi_+\right)|_{\partial M} = 0. \tag{41}$$

$$U_2(\omega) = \omega^2 \left(\partial_- V_2 - \sqrt{2}e\phi^* V_1 \right). \tag{42}$$

$$\Im (U_2)|_{\partial M} = 0, \qquad \Im (\phi^* V_1)|_{\partial M} = 0.$$

$$(43)$$

$$\Im \left(\phi^* \varphi\right)|_{\partial M} = 0, \qquad \left(\partial_r - 2(\partial_r \ln \phi^*)\right) \Re \left(\phi^* \varphi\right)|_{\partial M} = 0. \tag{44}$$

$$\partial_r \Re(\chi_-)|_{\partial M} = 0, \qquad \left(\partial_r + \frac{1}{r}\right) \Im\left(e^{-i\theta}\phi^*\psi_+\right)|_{\partial M} = 0.$$
 (45)

$$\delta \alpha_+ = 2i\eta_-^* \chi_+ \,. \tag{46}$$

$$\Re(\eta_{-}) = 0 \tag{47}$$

$$\Delta E^{\text{ren}} = \Delta E(V+B)^{\text{ren}} - \Delta E(B)^{\text{ren}} + \Delta E^{\text{f.r.}}, \qquad (48)$$

$$\Delta E_B^{\text{reg}} = \frac{1}{2} \sum_{\omega_B \neq 0} \omega_B^{1-2s} = \frac{1}{2} \sum_{\omega_F \neq 0} \omega_F^{1-2s} = \Delta E_F^{\text{reg}}.$$
 (49)

$$\Delta E(V+B)^{\text{ren}} = 0. (50)$$

$$\tilde{\Delta} = -\partial_i^2 + 2e^2v^2. \tag{51}$$

$$\partial_r \phi = -\frac{i}{r} D_\theta \phi \,. \tag{52}$$

$$(D_{-}\phi) = e^{-i\theta} 2\partial_r \phi \to 0 \tag{53}$$

$$\tilde{\varphi} = e^{i\beta(r)\theta}\varphi, \qquad \tilde{\psi} = e^{i\beta(r)\theta}\psi,$$
(54)

$$\left(\partial_r + \frac{1}{r}\right) \Im\left(e^{-i\theta}(i\alpha_+, \chi_+, \tilde{\psi}_+)\right)|_{\partial M} = 0,$$

$$\Re\left(e^{-i\theta}(i\alpha_+, \chi_+, \tilde{\psi}_+)\right)|_{\partial M} = 0.$$
(55)

$$\partial_{r} \Re \left((\tilde{\varphi}, \tilde{\psi}_{-}, \chi_{-}) \right) |_{\partial M} = 0,$$

$$\Im \left((\tilde{\varphi}, \tilde{\psi}_{-}, \chi_{-}) \right) |_{\partial M} = 0.$$
(56)

$$\Delta E(B)^{\text{ren}} = 0. (57)$$

$$W_m(s) = \frac{1}{2} \sum \omega(m)^{1-2s} = \frac{1}{2} \zeta_m \left(s - \frac{1}{2} \right) , \qquad (58)$$

$$\zeta_m \left(s - \frac{1}{2} \right) = \Gamma \left(s - \frac{1}{2} \right)^{-1} \int d^2 x \int_0^\infty dt \, t^{s - \frac{1}{2} - 1} K(t, x) \,.$$
(59)

$$K(t,x) = \langle x|e^{-t\Delta_m}|x\rangle = (4\pi t)^{-1}e^{-m^2t}$$
. (60)

$$\mathcal{W}_m = -\frac{m^3}{12\pi} \,. \tag{61}$$

$$W^{1-\text{loop}} = -\frac{e^3}{6\pi} \left[\left(3|\phi|^2 - v^2 \right)^{3/2} - \left(2|\phi|^2 \right)^{3/2} \right]. \tag{62}$$

$$W^{\text{tot}} = W^{\text{cl}}(e + \hbar \delta e, v + \hbar \delta v) + \hbar W^{1-loop},$$
(63)

$$W^{cl}(e, v) = \frac{e^2}{2} (|\phi|^2 - v^2)$$
 (64)

$$\delta v = -\frac{e}{4\sqrt{2}\pi} \,. \tag{65}$$

$$\Delta E^{\text{f.r.}} = \hbar (\delta v) \frac{dE^{\text{cl}}}{dv} = -\frac{evn\hbar}{\sqrt{2}}.$$
 (66)

$$\Delta E^{\rm ren} = -\frac{evn\hbar}{\sqrt{2}} \,. \tag{67}$$

$$\delta \chi_{-} = -\eta_{-} \left(\partial_{0} w + i \epsilon_{ojk} \partial^{j} \alpha^{k} - 2i e \Re(\phi^{*} \varphi) \right) . \tag{68}$$

$$\Im(\delta \chi_{-})|_{\partial M} \sim -\partial_{0} w|_{\partial M} = 0, \qquad (69)$$

$$0 = \partial_r \Re(\delta \chi_-)|_{\partial M} \sim \partial_r \left(-\epsilon_{ojk} \partial^j \alpha^k + 2e \Re(\phi^* \varphi) \right)|_{\partial M}. \tag{70}$$

$$X_i = \frac{x_i}{1 - w} \quad \text{and} \quad \tilde{X}_i = \frac{x_i}{1 + w}. \tag{71}$$

$$g = \operatorname{diag}\left(1, \frac{-4}{1+R^2}, \frac{-4}{1+R^2}, \frac{-4}{1+R^2}\right), \text{ where } R^2 = X_1^2 + X_2^2 + X_3^2.$$
 (72)

$$\tilde{X}_i = \frac{1}{R^2} X_i. \tag{73}$$

$$\partial_{\tilde{X}_i} = \left(R^2 \delta_{ij} - 2X_i X_j \right) \partial_{X_j}. \tag{74}$$

$$e_0{}^0 = 1,$$
 $\tilde{e}_0{}^0 = 1,$ and $e_i{}^i = -\frac{1+R^2}{2},$ $\tilde{e}_i{}^i = \frac{1+\tilde{R}^2}{2},$ (75)

$$e_{\alpha}{}^{\mu}e_{\beta}{}^{\nu}g_{\mu\nu} = \eta_{\alpha\beta},\tag{76}$$

$$\hat{\tilde{e}}_i = \frac{1}{R^2} \left(2X_i X_j - \delta_{ij} \right) \hat{e}_j. \tag{77}$$

$$d\hat{\theta}^{\alpha} + \omega^{\alpha}{}_{\beta} \wedge \hat{\theta}^{\beta} = 0, \tag{78}$$

$$\omega^{\alpha\beta} = \frac{2}{1 + R^2} \left(X^{\alpha} dX^{\beta} - X^{\beta} dX^{\alpha} \right), \tag{79}$$

$$\mathcal{L}_{\text{fermion}} = \overline{\psi} \left(i \gamma^{\alpha} e_{\alpha}{}^{\kappa} \left(\partial_{\kappa} + \Omega_{\kappa} \right) \right) \psi. \tag{80}$$

$$\mathcal{L}_{\text{fermion}} = \overline{\psi}(X_i, t) \left(i \gamma^0 \partial_t - i \gamma^i \left(\frac{1 + R^2}{2} \partial_{X_i} - X_i \right) \right) \psi(X_i, t), \quad (81)$$

$$\mathcal{L}_{\text{fermion}} = \overline{\tilde{\psi}}(\tilde{X}_i, t) \left(i \gamma^0 \partial_t + i \gamma^i \left(\frac{1 + \tilde{R}^2}{2} \partial_{\tilde{X}_i} - \tilde{X}_i \right) \right) \tilde{\psi}(\tilde{X}_i, t), \tag{82}$$

$$\tilde{\psi}(\tilde{X}_i) = \rho \,\psi(X_i) \,. \tag{83}$$

$$T(\alpha)_{ij} = \cos \alpha \,\,\delta_{ij} + \sin \alpha \,\,\epsilon_{ijk} \hat{X}_k + \hat{X}_i \hat{X}_j (1 - \cos \alpha) \tag{84}$$

$$\rho = i\gamma_0 \gamma_5 \gamma_j \hat{X}_j. \tag{85}$$

$$\psi = \begin{pmatrix} \psi_1 \\ \psi_2 \end{pmatrix}. \tag{86}$$

$$\tau_k \psi_i = \psi_i \sigma_k^T, \tag{87}$$

$$= -\psi_i \sigma_2 \sigma_k \sigma_2, \tag{88}$$

$$f(\mu) = 2 \arctan\left(k \tan\frac{\mu}{2}\right).$$
 (89)

$$\left(i\gamma^0\partial_t - i\gamma^i \left(\frac{1+R^2}{2}\partial_{X_i} - X_i\right) - gU^{\gamma_5}\right)\psi(X_i, t) = 0,$$
(90)

$$\left(i\gamma^0\partial_t + i\gamma^i \left(\frac{1+\tilde{R}^2}{2}\partial_{\tilde{X}_i} - \tilde{X}_i\right) - gU^{\gamma_5}\right)\tilde{\psi}(\tilde{X}_i, t) = 0,$$
(91)

$$U^{\gamma_5} = \exp\left(if(\mu(R))\gamma_5\tau_i \frac{X_i}{R}\right),\tag{92}$$

 $x = (\sin \mu \sin \theta \cos \phi, \sin \mu \sin \theta \sin \phi, \sin \mu \cos \theta, \cos \mu). \tag{93}$

$$\mu = \begin{cases} \arctan \frac{2R}{R^2 - 1} + \pi & \text{for } R^2 < 1, \\ \frac{\pi}{2} & \text{for } R^2 = 1, \\ \arctan \frac{2R}{R^2 - 1} & \text{for } R^2 > 1, \end{cases}$$

$$\theta = \arctan \frac{\sqrt{X_1^2 + X_2^2}}{X_3},$$

$$\phi = \arctan \frac{X_2}{X_1}.$$
(94)

$$\mu = \begin{cases} \arctan \frac{2\tilde{R}}{1-\tilde{R}^2} & \text{for } \tilde{R}^2 < 1, \\ \frac{\pi}{2} & \text{for } R^2 = 1, \\ \arctan \frac{2\tilde{R}}{1-\tilde{R}^2} + \pi & \text{for } \tilde{R}^2 > 1. \end{cases}$$
(95)

$$e_{\mu} = \begin{pmatrix} \sin \theta \cos \phi \\ \sin \theta \sin \phi \\ \cos \theta \end{pmatrix}, \ e_{\theta} = \begin{pmatrix} \cos \theta \cos \phi \\ \cos \theta \sin \phi \\ -\sin \theta \end{pmatrix} \text{ and } e_{\phi} = \begin{pmatrix} -\sin \phi \\ \cos \phi \\ 0 \end{pmatrix}. \tag{96}$$

$$\gamma^0 = \begin{pmatrix} I_2 & 0 \\ 0 & -I_2 \end{pmatrix}, \ \gamma^i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix}, \ \text{and} \ \gamma_5 = \begin{pmatrix} 0 & I_2 \\ I_2 & 0 \end{pmatrix}.$$
(97)

$$\tilde{\psi}\left(\tilde{X}_{i}\right) = \begin{pmatrix} -i\sigma_{j}\hat{X}_{j} & 0\\ 0 & -i\sigma_{j}\hat{X}_{j} \end{pmatrix}\psi\left(X_{i}\right). \tag{98}$$

$$L_{x} = i \left(\sin \phi \frac{\partial}{\partial \theta} + \cot \theta \cos \phi \frac{\partial}{\partial \phi} \right),$$

$$L_{y} = i \left(-\cos \phi \frac{\partial}{\partial \theta} + \cot \theta \sin \phi \frac{\partial}{\partial \phi} \right),$$

$$L_{z} = -i \frac{\partial}{\partial \phi}.$$
(99)

$$\hat{P} \ \psi(X_i) = \gamma_0 \ \psi(-X_i) \text{ and } \hat{P} \ X_i \ \hat{P}^{-1} = -X_i.$$
 (100)

$$\hat{P} \gamma_0 \hat{P}^{-1} = \gamma_0 \text{ and } \hat{P} \gamma_i \hat{P}^{-1} = -\gamma_i,
\hat{P} \partial_0 \hat{P}^{-1} = \partial_0 \text{ and } \hat{P} \partial_i \hat{P}^{-1} = -\partial_i.$$
(101)

$$\hat{P}\ \tilde{\psi}(\tilde{X}_i) = -\gamma_0\ \tilde{\psi}(\tilde{X}_i). \tag{102}$$

$$\frac{\mathrm{d}}{\mathrm{d}\mu} \begin{pmatrix} \tilde{F} \\ \tilde{G} \end{pmatrix} = \begin{pmatrix} -\frac{1+3\cos\mu}{2\sin\mu} + g\sin f & E + g\cos f \\ -(E - g\cos f) & \frac{3(1-\cos\mu)}{2\sin\mu} - g\sin f \end{pmatrix} \begin{pmatrix} \tilde{F} \\ \tilde{G} \end{pmatrix}. \quad (103)$$

$$+\frac{3gf'\sin f}{2(E+g\cos f)}\frac{(1+u)}{\sqrt{1-u^2}} - \frac{g^2f'\sin^2 f}{E+g\cos f} - gf'\cos f\right)G(u) = 0,$$
 (104)

$$+\frac{3gf'\sin f}{2(E-a\cos f)}\frac{(1-u)}{\sqrt{1-u^2}} - \frac{g^2f'\sin^2 f}{E-a\cos f} + gf'\cos f\right)\tilde{G}(u) = 0.$$
 (105)

$$F(u) = \sqrt{\frac{1+u}{1-u}}\tilde{G}(u). \tag{106}$$

$$F(u) = \frac{1}{E + g\cos f} \left(\left(-\frac{3(1+u)}{2\sqrt{1-u^2}} + g\sin f \right) G(u) - \sqrt{1-u^2} \frac{\mathrm{d}}{\mathrm{d}u} G(u) \right), \tag{107}$$

$$\tilde{F}(u) = \frac{1}{E - g\cos f} \left(\left(\frac{3(1-u)}{2\sqrt{1-u^2}} - g\sin f \right) \tilde{G}(u) - \sqrt{1-u^2} \frac{\mathrm{d}}{\mathrm{d}u} \tilde{G}(u) \right). \tag{108}$$

$$y''(u) + P(u)y'(u) + Q(u)y(u) = 0. (109)$$

$$y(u) = \sum_{n=0}^{\infty} a_n (u - u_0)^n.$$
 (110)

$$P(u) = \frac{p(u)}{u - u_0}, \tag{111}$$

$$Q(u) = \frac{q(u)}{(u-u_0)^2}, (112)$$

$$p(u) = p_0 + p_1(u - u_0) + \dots$$
 and $q(u) = q_0 + q_1(u - u_0) + \dots$, (113)

$$y(u) = (u - u_0)^{\rho} \sum_{n=0}^{\infty} a_n (u - u_0)^n.$$
(114)

$$\rho^2 + (p_0 - 1)\rho + q_0 = 0, (115)$$

$$(u - u_0)^2 z''(u) + \left(2(u - u_0)^2 \frac{y_1'(u)}{y_1(u)} + (u - u_0)p(u)\right) z'(u) = 0.$$
 (116)

$$E(A,\Phi) = SW(A,\Phi) - 8\pi^2 Q, \tag{117}$$

$$F_A^+ = \sigma^+(\Phi \otimes \Phi^\dagger)_0, \tag{118}$$

$$F_A^+ = \sigma^+(\Phi \otimes \Phi^\dagger)_0, \qquad (118)$$

$$\mathcal{D}_A \Phi = 0, \qquad (119)$$

$$F_A^+ + \chi^+ = \sigma^+ (\Phi \otimes \Phi^\dagger)_0, \qquad (120)$$

$$\mathcal{D}_A \Phi = 0, \qquad (121)$$

$$\mathcal{D}_A \Phi = 0, \tag{121}$$

$$SW_{\chi}(A,\Phi) = E_{\chi}(A,\Phi) + 16\pi^2 K_{\chi} + 8\pi^2 Q.$$
 (122)

$$[x^{\alpha}, x^{\beta}]_{\star} := x^{\alpha} \star x^{\beta} - x^{\beta} \star x^{\alpha} = i\theta^{\alpha\beta}. \tag{123}$$

$$F_{\alpha\beta} = \partial_{\alpha} A_{\beta} - \partial_{\beta} A_{\alpha} + [A_{\alpha}, A_{\beta}]_{\star} \tag{124}$$

$$D_{z^a}\phi := \partial_{z^a}\phi + A_{+z^a} \star \phi - \phi \star A_{-z^a}. \tag{125}$$

$$-p_0 - 2\rho_1 = -s - 1. (126)$$

$$g(u) = 1 + \sum_{n=1}^{\infty} g_n (u - u_0)^n.$$
 (127)

$$y(u) = Ay_1(u) + B(g_s y_1(u) \log(u - u_0) + \tilde{y}_2(u)), \qquad (128)$$

$$\tilde{y}_2(u) = (u - u_0)^{\rho_2} \left(-\frac{1}{s} + \sum_{n=1}^{\infty} h_n (u - u_0)^n \right),$$
 (129)

$$y(u) = Ay_1(u) + B\left(y_1(u)\log(u - u_0) + (u - u_0)^{\rho_2} \sum_{n=1}^{\infty} h_n(u - u_0)^n\right).$$
(130)

$$\rho_1^{(\infty)} + \rho_2^{(\infty)} + \sum_{i=1}^n \left(\rho_1^{(i)} + \rho_2^{(i)} \right) = n - 1.$$
 (131)

$$G(u) = \left(\frac{1+u}{1-u}\right)^{\frac{1}{2}} \left(-i\sigma \cdot e_{\mu} \ i\sigma \cdot e_{\mu} \tilde{F}(u)\right),$$

$$= \left(\frac{1+u}{1-u}\right)^{\frac{1}{2}} \tilde{F}(u), \tag{132}$$

$$\tilde{F}(u) = \frac{1}{E - g} \left(-\frac{3(1 - u)}{2\sqrt{1 - u^2}} \, \tilde{G}(u) + \sqrt{1 - u^2} \frac{\mathrm{d}}{\mathrm{d}u} \tilde{G}(u) \right). \tag{133}$$

$$(1-u^2)(E+gu)\frac{d^2G}{du^2} - ((4u+1)(E+gu) + g(1-u^2))\frac{dG}{du} +$$
 (134)

$$D_{z^a}\phi = \partial_{z^a}\phi + \mathcal{A}_{z^a} \star \phi. \tag{135}$$

$$D_{z^a}\phi = \partial_{z^a}\phi - \phi \star \mathcal{B}_{z^a} \tag{136}$$

$$G(u) = \sum_{n=0}^{\infty} a_n (u+1)^n.$$
 (137)

$$a_n = \prod_{i=0}^{n-1} b_i. (138)$$

$$R_{\text{conv.}} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|,$$

$$= \lim_{n \to \infty} \frac{1}{|b_n|},$$

$$= 2. \tag{139}$$

$$G(1) = \sum_{n=0}^{\infty} a_n 2^n. \tag{140}$$

$$y_1'(u) = y_2(u),$$

 $y_2'(u) = h(y_1(u), y_2(u), E).$ (141)

$$y_1'(u) = y_2(u),$$

 $y_2'(u) = h(y_1(u), y_2(u), y_3(u)),$
 $y_3'(u) = 0.$ (142)

$$f^{(n)}(a) = \frac{n!}{2\pi i} \oint_C \frac{f(z)dz}{(z-u)^{n+1}},$$
(143)

$$G(u) = \sum_{k=0}^{\infty} a_k u^k, \tag{144}$$

$$G(u) = \frac{1}{\pi} \Re \left(\int_{0}^{\pi} \frac{G(e^{i\phi})e^{i\phi}d\phi}{e^{i\phi} - u} \right), \tag{145}$$

$$Q = \int_{S^3} \bar{\psi}\psi. \tag{146}$$

$$Q = \int_{0}^{\pi} \tilde{Q}(\mu) \, \mathrm{d}\mu, \tag{147}$$

$$= 4\pi \int_{0}^{\pi} \left((1 - \cos \mu) G^{2} + (1 + \cos \mu) \tilde{G}^{2} \right) \sin^{2} \mu d\mu.$$
 (148)

$$\tilde{G}(1) = -\frac{3}{2(E+g)}. (149)$$

$$\tilde{B}(\mu) = \frac{2}{\pi} f'(\mu) \sin^2 f(\mu).$$
 (150)

$$\tilde{Q}(\mu) = 8\pi a_0^2 \sin^2 \mu. \tag{151}$$

$$\hat{D}_{z^a}\phi = \hat{\partial}_{z^a}\hat{\phi} + \hat{A}_{+z^a}\hat{\phi} - \hat{\phi}\hat{A}_{-z^a}.$$
 (152)

$$\mathcal{T} = \sum_{i=+} (F_{i\mu\nu} * F_{i\mu\nu} + \nabla_{i\mu} \mathcal{J}_{i\mu}.), \qquad (153)$$

$$\nabla_{\pm\mu} \cdot := \partial_{\mu} \cdot + [A_{\pm\mu}, \cdot], \tag{154}$$

$$-(\Delta \alpha)_r = \left(\partial_r^2 + \frac{1}{r}\partial_r + \frac{1}{r^2}\partial_\theta^2 - \frac{1}{r^2}\right)\alpha_r - \frac{2}{r^3}\partial_\theta\alpha_\theta ,$$

$$-(\Delta \alpha)_\theta = \left(\partial_r^2 - \frac{1}{r}\partial_r + \frac{1}{r^2}\partial_\theta^2\right)\alpha_\theta + \frac{2}{r}\partial_\theta\alpha_r . \tag{155}$$

$$-\frac{1}{r}(\Delta \alpha)_{\theta} = -\frac{1}{r}\omega^{2}\alpha_{\theta} - 2e\left(\varphi^{*}\partial_{r}\phi + \varphi\partial_{r}\phi^{*}\right). \tag{156}$$

$$\partial_r \Re(\delta \chi_-)|_{\partial M} \sim \left[-\frac{1}{r} \omega^2 \alpha_\theta + e \Re(\phi^* \partial_r \varphi - \varphi \partial_r \phi^*) \right]|_{\partial M} = 0$$
 (157)

$$G_0(u) = a_0,$$

 $G_n(u) = \sum_{k=0}^{n} a_k (u+1)^k,$

$$\Psi = \Psi_0 + \Phi, \tag{158}$$

$$Q(f) = \oint \frac{dw}{2\pi i} f(w) J_{\mathcal{B}}(w), \quad C(f) = \oint \frac{dw}{2\pi i} f(w) c(w). \tag{159}$$

$$h_a(w) = \log\left(1 + \frac{a}{2}\left(w + \frac{1}{w}\right)^2\right),\tag{160}$$

$$\Phi' = e^{K(h_a)}\Phi,\tag{161}$$

$$K(f) = \oint \frac{dw}{2\pi i} f(w) \left(J_{gh}(w) - \frac{3}{2} w^{-1} \right).$$
 (162)

$$K(h_a) = -\tilde{q}_0 \log(1 - Z(a))^2 - \sum_{n=1}^{\infty} \frac{(-1)^n}{n} (q_{2n} + q_{-2n}) Z(a)^n,$$
 (163)

$$b_0 \Phi = 0. \tag{164}$$

$$L(a) = (1+a)L_0 + \frac{a}{2}(L_2 + L_{-2}) + a(q_2 - q_{-2}) + 4aZ(a),$$
 (165)

$$L(a) = (1+a)L'_0 + \frac{a}{2}(L'_2 + L'_{-2}) + 4aZ(a) - 1 - a.$$
 (166)

$$L(a) = 2(1+a)l_0 + a(l_2 + l_{-2}) + 4aZ(a) - 4(1+a),$$
(167)

$$l_0 = \frac{1}{2}(L'_0 + 3), \quad l_{\pm 2} = \frac{1}{2}L'_{\pm 2},$$
 (168)

$$[l_0, l_{\pm 2}] = \mp l_{\pm 2}, \quad [l_2, l_{-2}] = 2l_0.$$
 (169)

$$U(s,t,u) = \exp(s \, l_{-2}) \, \exp(t \, l_0) \, \exp(u \, l_2), \tag{170}$$

$$au^{2} + 2(1+a)u + a = 0, (171)$$

$$a e^{t} - 2asu - 2(1+a)s = 0.$$
 (172)

$$a e^t \mp 2\sqrt{1 + 2a} s = 0. (173)$$

$$U'(a)L(a)U'(a)^{-1} = \sqrt{1+2a}L_0,$$
(174)

$$f_a(w) = \left(\frac{w^2 + Z(a)}{Z(a) w^2 + 1}\right)^{\frac{1}{2}}.$$
 (175)

$$U'(a)\phi(w)U'(a)^{-1} = \left(\frac{df_a(w)}{dw}\right)^h \phi\left(f_a(w)\right). \tag{176}$$

$$L(a) = \oint \frac{dw}{2\pi i} w e^{h_a(w)} T'(w) + 4Z(a) - 1 - a, \qquad (177)$$