Problemas de Análisis Matemático

Alfredo Sánchez Alberca

1/6/2022

Table of contents

Prefacio		3
1	Teoría de conjuntos	4
2	Números reales	10
3	Topología de los números reales	11

Prefacio

Colección de problemas de Análisis Matemático aplicado.

1 Teoría de conjuntos

- 1. Dado el conjunto universo de los números de un dado $\Omega = \{1,2,3,4,5,6\}$ y los subconjuntos correspondientes a sacar par en el lanzamiento de un dado $A = \{2,4,6\}$ y sacar menos de 5 en el lanzamiento de un dado $B = \{1,2,3,4\}$, calcular e interpretar los siguientes conjuntos:
 - a. $A \cup B$
 - b. $A \cap B$
 - c. \overline{A} y \overline{B}
 - d. A B y B A
 - e. $A\triangle B$
 - f. $\overline{(A \cup B)}$
 - g. $\overline{(A \cap B)}$
 - h. $\underline{A \cup \overline{B}}$
 - i. $\overline{A} \cap B$

¿Qué conjuntos de números en el lanzamiento de un dado serían disjuntos con A? ¿Y con $A \cup B$?

Solución

- a. $A \cup B = \{1, 2, 3, 4, 6\}$
- b. $A \cap B = \{2, 4\}$
- c. $\overline{A} = \{1, 3, 5\}$ y $\overline{B} = \{5, 6\}$
- d. $A B = \{6\}$ y $B A = \{1, 3\}$
- e. $A \triangle B = \{1, 3, 6\}$
- f. $(A \cup B) = \{5\}$
- g. $\overline{(A \cap B)} = \{1, 3, 5, 6\}$
- h. $A \cup \overline{B} = \{2, 4, 5, 6\}$
- i. $\overline{\overline{A} \cap B} = \{2, 4, 5, 6\}$

Serían disjuntos con A todos los conjuntos que solo tuviesen alguno de los números 1, 3 o 5, por ejemplo el conjunto $\{1,5\}$. El único conjunto disjunto con $A \cup B$, además del vacío es $\{5\}$.

2. Expresar con operaciones entre los conjuntos A, B y C, los conjuntos que se corresponden con las regiones sombreadas en los siguientes diagramas.

- 2. Demostrar gráficamente las leyes de Morgan $\overline{A \cup B} = \overline{A} \cap \overline{B}$ y $\overline{A \cap B} = \overline{A} \cup \overline{B}$.
- 3. Construir por extensión el conjunto potencia del conjunto de los grupos sanguíneos S= $\{0, A, B, AB\}$. ¿Cuál es su cardinal?

Solución

$$\mathcal{P}(S) = \{\emptyset, \{A\}, \{B\}, \{AB\}, \quad \{\emptyset, A\}, \{\emptyset, B\}, \{\emptyset, AB\}, \{A, B\}, \{A, AB\}, \{B, AB\}, \{\emptyset, A, B\}, \{\emptyset, A, AB\}, \{\emptyset, B\}, \{\emptyset$$

4. Construir el producto cartesiano del conjunto d los grupos sanguíneos $S = \{0, A, B, AB\}$ y el conjunto de los factores Rh $R = \{Rh+, Rh-\}$.

Solución

$$S \times R = \{(0, Rh+), (0, Rh-), (A, Rh+)), (A, Rh-), (B, Rh+), (B, Rh-), (AB, Rh+), (AB, Rh-)\}$$

5. Demostrar que la relación $R = \{(x, y) \in \mathbb{Z}^2 : x - y \text{ es par}\}.$

Solución

Propiedad reflexiva: $\forall a \in \mathbb{Z} \ a - a = 0$ es par, de manera que aRa. Propiedad simétrica: $\forall a, b \in \mathbb{Z}$ si aRb entonces a-b es par, es decir, existe $k \in \mathbb{Z}$ tal que a-b=2k. Por tanto, b-a=2(-k) también es par y bRa. Propiedad transitiva: $\forall a,b,c \in \mathbb{Z}$, si aRb y bRc entonces a-b y b-c son pares, de manera que su suma a-b+b-c=a-c también es par, y aRc.

6. ¿Cuáles de las siguientes relaciones son relaciones de equivalencia? ¿Cuáles don de orden?

a.
$$R_1 = \{(x, y) \in \mathbb{R}^2 : x = y\}$$

b.
$$R_2=\{(x,y)\in\mathbb{R}^2:x\leq y\}$$

b.
$$R_1 = \{(x,y) \in \mathbb{R}^2 : x = y\}$$

c. $R_3 = \{(x,y) \in \mathbb{R}^2 : x \le y\}$

d.
$$R_4 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$$

🥊 Solución

- a. R_1 es relación de equivalencia.
- b. R_2 es relación de orden.
- c. R_3 no es relación de equivalencia ni de orden porque no cumple las propiedades reflexiva y transitiva.
- d. R_4 es no es relación de equivalencia ni de orden porque tampoco cumple las

7. Para cada uno de los conjuntos siguientes, calcular si existe el supremo, el ínfimo, el máximo y el mínimo.

a.
$$A = \{1, 2, 3, 4, 5\}$$

b.
$$B = \{x \in \mathbb{N} : x \text{ es par}\}$$

c.
$$C = \{x \in \mathbb{Q} : 0 < x \le 1\}$$

Solución

a. $\sup(A) = 5$, $\inf(A) = 1$, $\max(A) = 5$, $\min(A) = 1$.

b. $\inf(B) = 2$ y $\min(B) = 2$. No existe el supremo ni el máximo porque B no está acotado superiormente.

c. $\sup(C) = 1$, $\inf(C) = 0$ y $\max(C) = 1$. No existe el mínimo.

8. Dar ejemplos de funciones $f: \mathbb{Z} \to \mathbb{Z}$ que cumplan lo siguiente:

a. f es inyectiva pero no sobrevectiva.

b. f es sobreyectiva pero no inyectiva.

c. f no es inyectiva ni sobrevectiva.

d. f es biyectiva y distinta de la función identidad.

Solución

a.
$$f(x) = 2x$$

b.
$$f(x) = x^3 - x$$
.

c.
$$f(x) = x^2$$

d.
$$f(x) = 2x + 1$$

9. Dadas las siguientes funciones de \mathbb{R} en \mathbb{R} , estudiar cuáles son inyectivas y cuáles sobreyectivas:

a.
$$f(x) = x^2$$

b.
$$q(x) = x^3$$

c.
$$h(x) = x^3 - x^2 - 2x$$

d.
$$i(x) = |x|$$

Solución

a.
$$f(x) = x^2$$
 es biyectiva.
b. $g(x) = x^3$ es biyectiva.

b.
$$g(x) = x^3$$
 es biyectiva.

- c. $h(x) = x^3 x^2 2x$ es sobreyectiva pero no inyectiva.
- d. i(x) = |x| no es ni inyectiva ni sobrevectiva.
- 10. Demostrar que la composición de dos funciones inyectivas es también inyectiva.

Solución

Sean f y g dos funciones inyectivas tales que $\mathfrak{I}(f)\subseteq \mathrm{Dom}(g)$. Veamos que $g\circ f$ es inyectiva. Supongamos ahora que existen $a,b\in \mathrm{Dom}(f)$ tales que $g\circ f(a)=g\circ f(b)$, es decir, g(f(a))=g(f(b)). Como g es inyectiva, se tiene que f(a)=f(b), y como f es inyectiva se tiene que $g\circ f$ es inyectiva.

11. Dados dos conjuntos finitos A y B, demostrar que $|A \cup B| = |A| + |B| - |A \cap B|$ y que $|A \times B| = |A||B|$.

Solución

- a. $A \cup B = (A B) \cup (B A) \cup (A \cap B)$ con (A B), $A \cup B$ y B A disjuntos dos a dos, de manera que $|A \cup B| = |A B| + |B A| + |A \cap B|$. Por otro lado, $A = (A - B) \cup (A \cap B)$, y $B = (B - A) \cup (A \cap B)$, de modo que
 - $|A|+|B|-|A\cap B|=|A-B|+|A\cap B|+|B-A|+|A\cap B|-|A\cap B| = |A-B|+|B-A|+|A\cap B|$ que coincide con el resultado anterior.
- b. Supongamos que $A=\{a_1,\dots,a_n\}$ y $B=\{b_1,\dots,b_m\}$, de manera que |A|=n y |B|=m. Para cada elemento $a_i\in A$ se pueden formar m pares $(a_i,b_1),\dots(a_i,b_m)$. Como A tiene n elementos, en total se pueden formar $n\cdot m$ pares, así que $|A\times B|=n\cdot m=|A||B|$.
- 12. Dada una función $f:A\to B$, demostrar que si f es inyectiva, entonces $|A|\le |B|$, y si f es sobreyectiva, entonces $|A|\ge |B|$. ¿Cómo es |A| en comparación con |B| cuando f es biyectiva?

Solución

Sea $f: A \to B$ inyectiva. Entonces para cualesquiera $a_1, a_2 \in A$ con $a_1 \neq a_2$ se tiene que $f(a_1) \neq f(a_2)$, por lo que $|A| \leq |B|$.

Sea $f:A\to B$ sobreyectiva. Entonces para todo $b\in B$ existe $a\in A$ tal que f(a)=b. Además dos elementos de B no pueden tener la misma preimagen porque entonces f no

sería una función, por lo que $|A| \ge |B|$. De lo anterior se deduce que si f es biyectiva, entonces |A| = |B|.

13. Dados dos conjuntos finitos A y B con |A| = n y |B| = m. ¿Cuántas funciones distintas se pueden construir de A a B. ¿Y cuántas funciones inyectivas suponiendo que $n \le m$?

Solución

Se pueden construir m^n funciones distintas, y $\frac{m!}{(m-n)!}$ funciones inyectivas.

14. Tomando el conjunto de los números naturales ℕ como conjunto universo, dar un ejemplo de un subconjunto infinito cuyo complemento también sea infinito.

Solución

 $A = \{x \in \mathbb{N} : x \text{ es par}\}\$ es infinito y $\overline{A} = \{x \in \mathbb{N} : x \text{ es impar}\}\$ también es infinito.

- 15. Demostrar que cada conjunto infinito A contiene un subconjunto propio $B \subsetneq A$ tal que B y A son equipotentes.
- 16. Demostrar que el producto cartesiano de dos conjuntos numerables es numerable.

Solución

Sean A y B dos conjuntos numerables. Entonces existe una aplicación inyectiva $f:A\to\mathbb{N}$ y otra $g:B\to\mathbb{N}$. Si se toma ahora la función $h:A\times B\to\mathbb{N}$ definida como

$$f(a,b) = 2^{f(a)}3^{g(b)} \, \forall a \in A, b \in B,$$

se tiene que f es inyectiva y por tanto $A \times B$ es numerable.

17. Demostrar que el conjunto de los números racionales es numerable.

Solución

Si se considera la aplicación $f:\mathbb{Q}\to\mathbb{Z}\times\mathbb{N}$ que a cada número racional r le hace corresponder el par $(p,q)\in\mathbb{Z}\times\mathbb{N}$ donde $\frac{p}{q}$ es la fracción irreducible de r con denominador positivo, se tiene que f es inyectiva. Como el producto cartesiano de dos conjuntos numerables es numerable, existe otra aplicación inyectiva de $g:\mathbb{Z}\times\mathbb{N}\to\mathbb{N}$, con lo que $g\circ f:\mathbb{Q}\to\mathbb{N}$ es inyectiva y \mathbb{Q} es numerable.

18. Demostrar que el conjunto de todos los polinomios con coeficientes enteros $P=\{a_0+a_1x+a_2x^2+\cdots=\sum_{i=1}^\infty a_ix^i:a_i\in\mathbb{Z}\}$ no es numerable.

19. ¿Cuáles de los siguientes conjuntos son numerables?

$$\begin{array}{l} \text{a. } A = \{3k: k \in \mathbb{Z}\} \\ \text{b. } B = \{x \in \mathbb{Q}: -10 < x < 10\} \\ \text{c. } C = \{x \in \mathbb{R}: 0 \leq x \leq 1\} \\ \text{d. } D = \{(x,y): x \in \mathbb{Z}, y \in \mathbb{Q}\} \\ \text{e. } E = \{1/n: n \in \mathbb{N}\} \end{array}$$

20. ¿Es el conjunto de todas las secuencias infinitas de ADN numerable?

2 Números reales

1. Usando la propiedad arquimediana de los números reales, demostrar que para cualquier número real $a \in \mathbb{R}$ con a > 0 existe un número natural n tal que $n - 1 \le a < n$.

Solución

Como a > 0 se tiene que $\frac{1}{a} > 0$, y por la propiedad arquimediana se cumple que existe $n \in \mathbb{N}$ tal que x < n.

Considérese ahora el conjunto $A = \{m \in \mathbb{N} : x < m\}$. Como x < n se tiene que $x \in A$ y por tanto A no está vacío. Aplicando ahora el principio de buena ordenación de los números naturales, como $A \subset \mathbb{N}$, existe un primer elemento $n_0 \in A$, tal que $n_0 - 1 \notin A$, de manera que $n_0 - 1 \le a$ y con ello se tiene que $n_0 - 1 \le a < n$.

2. Se dice que un conjunto A es denso en \mathbb{R} si cada intervalo (a,b) de \mathbb{R} contiene algún elemento de A. Demostrar que \mathbb{Q} es denso en \mathbb{R} .

Solución

La prueba es la misma que la de la propiedad arquimediana. Basta con tomar $n \in \mathbb{N}$ tal que $\frac{1}{n} < b - a$. Si ahora se toma el primer múltiplo de 1/n tal que $a < \frac{m}{n}$, también se cumplirá que $\frac{m}{n} < b$, ya que de lo contrario $\frac{m-1}{n} < a < b < \frac{m}{n}$ lo que lleva a la contradicción de que $\frac{1}{n} > b - a$.

3. Dado un número real con $a \in \mathbb{R}$, demostrar que existe un número real x tal que x>0 y $x^2=a$.

3 Topología de los números reales

- 1. Dada la sucesión de intervalos encajados $I_n = [0, \frac{1}{n}], n \in \mathbb{N}$, demostrar que $\bigcap_{n=1}^{\infty} = \{0\}$. Demostrar también que si se consideran intervalos abiertos en lugar de cerrados entonces la intersección es vacía.
- 2. Calcular el supremo y el ínfimo de los siguientes conjuntos. ¿Tienen máximo y mínimo?

a.
$$A = \{x \in \mathbb{R} : 2 < x^2 - 2 < 3\}$$

b. $B = \{x \in \mathbb{R} : 1 < 4x^2 - 3 \le 5\}$

- 3. ¿Cuál es el interior del conjunto $A = \{a\}$?
- 4. Sean $a,b,c \in \mathbb{R}$ tales que a < b < c y sea $A = \{a\} \cup (b,c)$. Calcular $\mathrm{Int}(A)$, $\mathrm{Ext}(A)$ y $\mathrm{Fr}(A)$.
- 5. Demostrar que el conjunto de los números racionales no tiene puntos interiores. ¿Y el conjunto de los números irracionales?
- 6. Demostrar que si x es un punto interior de A y $A \subseteq B$, entonces x también es un punto interior de B.
- 7. Demostrar que si x es un punto interior de dos conjuntos A y B, entonces también es un punto interior de su unión y su intersección.
- 8. Demostrar que si $A, B \subseteq \mathbb{R}$, $\operatorname{Int}(A \cap B) = \operatorname{Int}(A) \cap \operatorname{Int}(B)$.

Demostrar también que el anterior resultado no es cierto para la unión, es decir, dados $A, B \subseteq \mathbb{R}$, no se cumple siempre que $\operatorname{Int}(A \cup B) = \operatorname{Int}(A) \cup \operatorname{Int}(B)$.

- 9. Dado un conjunto $A \subset \mathbb{R}$, probar que los conjuntos $\operatorname{Int}(A)$, $\operatorname{Ext}(A)$ y $\operatorname{Fr}(A)$ forman una partición de \mathbb{R} .
- 10. Dar un ejemplo de dos conjuntos no abiertos pero cuya intersección es abierta.
- 11. Probar las siguientes propiedades:
 - a. La unión de una colección de conjuntos abiertos es un conjunto abierto.
 - b. La intersección de una colección finita de conjuntos abiertos es un conjunto abierto.
 - c. La intersección de una colección de conjuntos cerrados es cerrada.
 - d. La unión de una colección finita de conjuntos cerrados es un conjunto cerrado.