九年级上册期末质量检测一

武钢实验学校 914 班数学兴趣小组命制

2023-12

		本试卷满	分 120 分,考试用时 120 分	钟	_			
— 、	选择题:本大题共10/	小题,每小题3分,共	30 分,在每小题给出的四个	·选项中,只有一项是符合题目要求的 .				
1.	"数学王子" 高斯在 19 岁		的尺规作法,无论对他本人;	还是对数学界都是莫大的贡献,因此,人	.们			
	在他的墓碑上刻上了正	十七边形,作为永久的	纪念. 正十七边形().					
	A. 既是轴对称图形,又	是中心对称图形	B. 是轴对称图形,	但不是中心对称图形				
			D. 是中心对称图形					
2.	一元二次方程 $2x^2 + x -$	4=0的两根之和为().					
	A. $\frac{1}{4}$	B1	C4	D. $-\frac{1}{2}$				
				2 7,不一定正确的是().				
				= 180° D. $\angle FEB = \angle GDC$				
4.	掷两个质地均匀的骰子,则下列事件中,是随机事件的是().							
				两骰子掷得的点数之和等于1				
	C. 两骰子掷得的点数之		D. 两骰子掷得的点					
5.	将抛物线 $y = 2x^2 - 8x +$	10 先向左平移 4 个单位	位长度得到的抛物线的解析式是() .				
	A. $y = 2x^2 - 2x + 16$		B. $y = 2x^2 - 24x +$	84				
	C. $y = 2x^2 + 8x$		D. $y = 2x^2 + 8x + 2$					
6.	已知抛物线 $y = ax^2 - 3a$	ux - 2a + 1 与 y 轴交于	负半轴,且过点(1,y ₁)、(3,	y_2) 和 $(-1, y_3)$,则 y_1 、 y_2 、 y_3 之间的大	:小			
	关系是 ().							
	A. $y_1 < y_2 < y_3$	B. $y_3 < y_2 < y_1$	C. $y_1 < y_3 < y_2$	D. $y_3 < y_1 < y_2$				
7.	用一根长 6dm 的细铁丝	围一个矩形框架,则这	这个矩形的面积最大为($) dm^2$.				
	A. 2	B. 2.25	C. 3	D. 9				
8.	如图, AB 是 $\odot O$ 的一条弦,过 B 作 $\odot O$ 的切线 DB (点 D 在点 B 的左侧),记 AB 的垂直平分线交优弧 \widehat{AB} 于点 C							
	连 AC 、 BC ,若 $\angle DBA = 40^{\circ}$,则 $\angle CBA = ($).							
	$A. 40^{\circ}$	$B.80^{\circ}$	C. 50°	$D.70^{\circ}$				
9.	如图, PM 、 PN 分别切	⊙O 于 A 、 B 两点, C	为 $⊙O$ 上一点,连 AC 、 BC	. 若 $\angle P = 60^{\circ}$ 、 $\angle MAC = 75^{\circ}$ 、 $AC = \sqrt{3} + 10^{\circ}$	- 1			
	则 ⊙ <i>0</i> 的半径长 ()			<u> </u>				
	A. $\sqrt{2}$	B. 1	C. $\sqrt{3}$	D. $\frac{\sqrt{3}+1}{2}$				
		\sqrt{B} C	C	M				
	G			A				
			$\langle o \cdot \rangle$	$P < \left(\begin{array}{c} O \\ O \end{array} \right)$				
	$F \left\langle \begin{array}{c} \\ \\ \end{array} \right\rangle$	/A D	$A \setminus A \setminus A$	C				
	, A	7	$D \longrightarrow B$	$B \stackrel{\smile}{\sim} N$				
		第 3 题)	(第8题)	(第9题)				
10.	已知实数 <i>t</i> 满足当 -5 ≤	x ≤ 1 时,抛物线 v =	$tx^2 - x 与折线 y = 4t x - t$	+3恰有2个公共点.若t是一个非零整	数			
	则符合条件的 t 有 ()个.	and the second second		-			
	A. 0	B. 1	C. 2	D. 3				
_			١٥. ٨					

二、填空题:本大题共6小题,每小题3分,共18分.

11. 已知点 (2, m) 和点 (n, -1) 关于原点中心对称,那么代数式 m + n 的值是_____.

12. 抛物线 $y = -2x^2 - 6x + 9$ 的顶点是______.

- 13. 记点 O 和点 I 分别为 $\triangle ABC$ 的外心和内心,若 $\angle AOB = 70^{\circ}$,则 $\angle AIB =$
- 14. "标记重捕法"是种群密度的常用调查方法之一,在一个鱼塘里随机抓取 24 条鱼标上记号后放回鱼塘,一段时间后重新抓 18 条鱼,发现其中有 4 条有记号,据此可估计该鱼塘内鱼的数量是 条.
- 15. 已知三个实数 a、b、c 之间满足 $\begin{cases} |a| \ge |b| \\ c > 0 \end{cases}$,则有下列说法 4a + 2b + c = 0
 - ① a + b + c > 0;
 - ② 2a + c < 0;
 - ③ 已知 $A(x_1, y_1)$ 、 $B(x_2, y_2)$ 是抛物线 $y = ax^2 + bx + c$ 上两点,且满足 $x_1 < x_2$. 那么若 $x_1 + x_2 > 1$,则有 $y_1 > y_2$;
 - ④ 当 c = 2 时,对任意的 -2 < q < 0,不等式 $aq^2 (b+1)q + c 2 \ge 0$ 恒成立.

其中正确的是_____.

16. 如图,正方形 ABCD 的边长为 4,将线段 AD 绕点 D 顺时针旋转得到线段 PD,使点 P 落在正方形 ABCD 内. 过 P 作 $PO \perp AD$ 于 Q,连 CD 的中点 T 和 ΔPDQ 的内心 I,则当 $\angle ITD$ 最大时,IT 的长度为

- 三、解答题:本大题共8小题,共72分,解答应写出必要的文字说明、证明过程或演算步骤.
- 17. 已知关于 x 的一元二次方程 $ax^2 + bx + c = 0$ 有一个根为 x = 1,且 a、b 满足 $b = \sqrt{a-2} + \sqrt{2-a} 3$,解关于 y 的方程 $\frac{1}{4}y^2 c = 0$.
- 18. 如图,在等边 $\triangle ABC$ 中, $E \in BC$ 上一点,连 AE,将 $\triangle ABE$ 绕点 A 旋转至 $\triangle ACF$ 处,连 EF.
 - (1) 判断 $\triangle AEF$ 的形状并说明理由.
 - (2) 若 BE = 1、CE = 2,求 ΔCEF 的面积.

- 19. 一个不透明的袋子里装有四个球,四个球分别标有 2、3、4、6 四个数字,除标号不同外,四个球在各方面完全一样. 现从袋中随机摸出 2 个球.
 - (1) 若每次摸出球后都放回袋中,直接写出两球的标号之积为奇数的概率是
 - (2) 若每次摸出球后都不放回袋,求两球的标号互质(除1外没有公因数)的概率.

- 20. 如图,边长为 $2\sqrt{3}$ 的等边三角形 ABC 内接于 $\odot O$,D 是 \widehat{AB} 上一点,连 CD、AD、BD,有 $\angle ACD = 45^\circ$.
 - (1) 直接写出 DB^l 的值和 \widehat{AD} 与弦 AD 所围成区域的面积 S.
 - (2) 求 *BD* + *DC* 的值.

- 21. 如图是由小正方形组成的 7×7 网格,每个小正方形的顶点叫做格点. 已知 $\odot O$ 交格点于 $B \times C$,交网格线于点 A,连 $AB \times AC$. 仅用无刻度的直尺在给定网格中完成画图,其中作图过程用虚线,作图结果用实线:
 - (1) 作弦 AD 平分 ∠BAC.
 - (2) 连 BD, 在弦 AD 上作点 E, 使得 ED = BD.
 - (3) 作弦 AF 与 BD 平行.

22. 如图是某兴趣小组设计的游戏装置. 在一个水平滑道上,小球甲在被加速后以 40cm/s 的初速度从滑道 A 点出发,沿滑道向右作匀减速直线运动,其滑行距离 s (cm)、瞬时速度 v_1 (cm/s) 与滑行时间 t_1 (s) 之间的关系如下表所示:

滑行时间 t1 (s)	0	0.5	1	
滑行距离 s (cm)	0	17.5	30	• • •
瞬时速度 v ₁ (cm/s)	40	30	20	

与此同时,在滑道 B 点处有另一个静止的小球乙被一根绳子悬挂着,绳长 OB = 4cm,且小球乙正好与滑道相切. 当小球甲撞到小球乙时,其速度 v_1 将全部传给小球乙,成为乙的初速度 v_2 . 随后,小球乙将绕点 O、以 OB 为半径作圆周运动,其上升高度 h (cm) 和运动时间 t_2 (s) 之间满足 $h = v_2t_2 - 2t_2^2$. 小球乙在上升到最高点 D 后摆回至点 B,随后停止运动.

现已知 $s 与 t_1$ 、 $v_1 与 t_1$ 之间的函数关系是我们学过的函数,若不计两小球的大小,回答下列问题:

- (1) 直接写出 $s = t_1$ 、 $v_1 = t_1$ 之间的函数关系式(不必写出自变量的取值范围).
- (2) 若小球乙共运动了3秒,求AB的长度.
- (3) 若 $\angle DOB = 60^{\circ}$, 求 AB 的长度.

- 23. 如图,菱形 ABCD 的边长为 $2\sqrt{5}$,且 $\angle ABC = 60^{\circ}$,等边 $\triangle AEF$ 绕点 A 在菱形 ABCD 内部旋转,连 BE 和 DF.
 - (1) 如图 1, 当 $B \setminus E \setminus F$ 三点共线时, 求证: $\angle ABE = \angle DAF$.
 - (2) 如图 2, 当 $\angle ABE + \angle ADF = 75^{\circ}$ 时, 若 $DF = 2\sqrt{2}$, 求线段 BE 的长.
 - (3) 如图 3,以 BA、BE 为边,作平行四边形 ABEP,连 P 和 CD 中点 Q,若等边 ΔAEF 的边长为 3,直接写出线段 PQ 长度的最小值.

(第23题)

- 24. 定义:与一条抛物线有且仅有一个交点,且不与这条抛物线的对称轴平行的直线为这条抛物线的**切线**. 在平面直角坐标系 xOy 中,恒过点 F(0,2) 的动圆 $\odot P$ 保持与 x 轴相切. 记点 P 的运动轨迹为 Γ .
 - (1) 已知 Γ 是一条常见的曲线.
 - ① 当点 P 运动到 y 轴上时,点 P 的坐标是 ; 当 $\odot P$ 与 y 轴相切时,点 P 的坐标是
 - ② 根据①的结果,直接写出Γ的解析式是 .
 - (2) 如图 1, 作射线 OP, 求 ∠FOP 的最大值.
 - (3) 如图 2, 作直线 PF 交 Γ 于点 Q, 分别过点 P、Q 作 Γ 的切线, 记这两条切线的交点为 T, 连 TF, 求证: $TF \perp PQ$.

(第24题)