Das Pohlig Hellman Verfahren

$$p = (\text{große})$$
 Primzahl || $N = \text{ Klartext} \mid N \in \mathbb{Z}_p^{\times}$ || $e,d = \text{ Schlüssel}$

Wähle $e \in \mathbb{N}$ mit ggT(e, p - 1) = 1

Bestimme d mit:

$$ed \equiv 1 \pmod{p-1} \rightarrow ed - r(p-1) = 1$$

Verschlüsseln:

verschlüsselte Nachricht $\mathcal{C} = N^e$

Entschlüsseln:

$$\mathcal{C}^d = (N^e)^d = N^{ed} = N^{1+r(p-1)} = N^1 \cdot (N^{(p-1)})^r \overset{\text{satz von euler - fermat}}{=} N$$

Wähle p am bessten mit $\frac{p-1}{2}$ auch prim \leftarrow sichere Primzahl

RSA-Verfahren:

$$S =$$
Sender | $R =$ Empfänger | $N =$ Nachricht | $C = N^e =$ Geheimtext

$$e^d = N^{ed} \stackrel{!}{=} N$$

(e, n) öffentlicher Schlüssel

$$N \in \mathbb{Z}_n$$

$$c=N^e$$

$$e^d = N^{ed} \stackrel{!}{=} N$$

kein vorheriger Schlüsselaustausch nötig \rightarrow assymterisches Verfahren/public Key Verfahren

Konstruktion der Schlüssel durch R:

• große Primzahlen $p,q\approx 2^{1024}$

p+-1,q+-1 müssen große Primetiler haben.

Setze $n = p \cdot q$

$$\to |\mathbb{Z}_N^{\times}| = |\{a \in 1, \dots, n\}| ggT(a, n) = 1| = \varphi(n) = \varphi(pq) = (p-1)(q-1)$$

Wähle $e \in \{1, ..., n\}$ und $ggT(e, \varphi(n)) = 1$

Besitmme d mit $ed \equiv 1 mod \varphi(n)$

geheim: $d, p, q, \varphi(n)$

Waum gilt $N^{ed} = N$?