Sayısal Yöntemler

Doç. Dr. Gökhan Göksu

Hafta 1

Hava Harp Okulu - Milli Savunma Üniversitesi

Sayısal yöntemler nedir?

Sayısal yöntemler, analitik (tam) çözümün zor veya imkânsız olduğu problemlere yaklaşık çözümler üretir.

- Özellikle bilgisayarların gelişimiyle karmaşık problemler hızlı ve etkin biçimde çözülebilir.
- Amaç: kabul edilebilir hata sınırları içinde yeterli doğrulukta sonuçlar elde etmek.

Ne zaman sayısal yöntem?

Aşağıdaki durumlarda tercih edilir:

- Analitik çözüm zor/imkânsız olduğunda,
- Kapalı form çözüm elde edilemediğinde,
- Simülasyon ve modelleme çalışmalarında.

Matematiksel olarak tanımlanmış fakat analitik olarak doğruluğu ve çözümü güç olan pek çok problem, sayıları ve işlemleri **algoritmalara** döken sayısal yöntemlerle çözümlenir.

Hataların türleri

Sayısal hesaplamalarda iki temel hata türü ile karşılaşılır:

- 1. Yuvarlama hatası
- 2. Kesme (truncation) hatası

Yuvarlama hatası

Bilgisayarlar **gerçek sayıları sonlu basamakla** temsil eder. Örnek (π 'nın 6 basamakla yuvarlanması):

$$\pi = 3.1415926535 \quad \Rightarrow \quad \pi \approx 3.14159$$

$$Hata = |3.1415926535 - 3.14159| = 0.0000026535$$

Yuvarlama hatası, çok sayıda işlem içeren algoritmalarda **birikerek** sonucu etkileyebilir.

Kesme (truncation) hatası

Kesme hatası, teorik olarak **sınırsız adım/terim** gerektiren bir işlemin pratikte yalnızca **sonlu sayıda adımla** yapılmasından kaynaklanır.

Örnek (Taylor serisi):

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \cdots$$

Yalnızca ilk üç terimde kesilirse:

$$e^x \approx 1 + x + \frac{x^2}{2!}$$

Gerçek değer ile yaklaşım arasındaki fark, kesme hatasıdır.

Karşılaştırma

Özellik	Yuvarlama Hatası	Kesme Hatası
Kaynak	Bellekte sınırlı basamakla temsil	Yaklaşık algoritmalar
Etkilenme Nedeni	Bit sayısı, veri tipi	Adım sayısı, seri terimi
Azaltma Yolu	Daha fazla basamak	Daha fazla adım veya terin

Mutlak Hata

Ölçülen (veya hesaplanan) değer ile **gerçek** değer arasındaki farkın büyüklüğü:

$$\mathsf{Mutlak\;Hata} = \big| x_{\mathsf{gerçek}} - x_{\mathsf{bulunan}} \big|$$

Bağıl Hata

Mutlak hatanın gerçek değere oranı; genellikle yüzde olarak verilir:

$$\mathsf{Ba\check{g}II}\;\mathsf{Hata} = \frac{\left|x_{\mathsf{ger}\mathsf{çek}} - x_{\mathsf{bulunan}}\right|}{\left|x_{\mathsf{ger}\mathsf{çek}}\right|} = \frac{\mathsf{Mutlak}\;\mathsf{Hata}}{\left|x_{\mathsf{ger}\mathsf{çek}}\right|}$$

Çok büyük ya da çok küçük değerlerde bağıl hata yanıltıcı olabilir!

Hata Yayılımı — Tek Değişken

Bir fonksiyon y = f(x) için küçük değişimler:

$$\Delta y \approx \left| \frac{dy}{dx} \right| \Delta x$$

Türev, girişteki belirsizliğin çıktıya duyarlılığını belirler.

Hata Yayılımı — Çok Değişken

 $y = f(x_1, x_2, \dots, x_n)$ için yaklaşık hata:

$$\Delta y \approx \sum_{i=1}^{n} \left| \frac{\partial y}{\partial x_i} \right| \Delta x_i$$

Burada Δx_i her bir değişkendeki **mutlak hatayı** temsil eder.

Örnek: z = x y

Verilsin:

$$x = 10 \pm 0.1,$$
 $y = 5 \pm 0.05$
 $z = x y = 50$
 $\Delta z \approx |y| \Delta x + |x| \Delta y = 5 \cdot 0.1 + 10 \cdot 0.05 = 0.5 + 0.5 = 1.0$
 $\Rightarrow z = 50 \pm 1$

Ders özeti

- Sayısal yöntemler yaklaşık çözüm üretir.
- Yuvarlama ve kesme hataları farklı kaynaklardan gelir ve farklı yollarla azaltılır.
- Mutlak/bağıl hata ölçütleri sonuçları değerlendirmede kullanılır.
- Hata yayılımı türevlerle modellenir; duyarlılık analizi yapmaya imkân verir.