Programming

Programming the PIC16F877A microcontroller was done in the C programming language. This section will highlight the main programming methods used in order to make this system functional. (Note: The full code can be found in the Appendix.)

Setting up ports		
ADCON1 =0b10001110;	//setup analogue input for heartbeat detection	
TRISA = 0b00000011;	//setup porta as input	
TRISB = 0b00000000;	//portb is set as output	
TRISC = 0b00000000;	//portc and d is set as output	

Table 12: Port set up code

Setting up the LCD display		
LCD_Config(&PORTB,4,5,6,3,2,1,0);	//sets up the LCD port	
Lcd_Init(&PORTB);	// Initialize LCD connected to PORTB	
Lcd_Cmd(LCD_CLEAR);	// Clears the display	
Lcd_Cmd(LCD_CURSOR_OFF);	// Turns the LCD cursor off	
Lcd_Cmd(LCD_SECOND_ROW);		
Lcd_Cmd(LCD_CLEAR);	//Clears the display	
<pre>lcd_out(1,1,"Heart Rate Monitor");</pre>	//Displays the introduction to the LCD	
delay_ms(2000);	//wait 2 seconds	
Lcd_Cmd(LCD_CLEAR);	//Clears the display again	

Table 13: LCD set up code

```
input1 = adc\_read(0)/4;
                                //reads the input value as analogue and convert to digital
       if(input1>=128)
                                //if the input value > 128 == 2.5Volts, identify as a high peak
       {
           led=1;
                                //turn LED on to indicate pulse
                                //beep the buzzer to indicate pulse
           buzzer=1;
           pulse=pulse+1;
                                //add 1 to the pulse count
           while(1)
                                //wait for the low peak from the signal
            if(sec_flag)
                                //wait for the 1 second flag
            sec_flag=0;
            count=count+1;
                                //keep counting seconds
                                //if the counter reaches 15 seconds, then timeout
            if(count>15)
            break;
       input1=adc\_read(0)/4;
            if(input1 <= 45)
                                //convert the input value (ADC)
                                //if the input value is < 45 == 0.88 volts, identify as low peak
            led=0;
            buzzer=0;
                                //turn off the LED
                                //turn off the buzzer
            break;
                                //end from the loop
   if(count > = 15)
                                //if the count > 15 sec, execute the following
   pulse=pulse*4;
                                //multiply pulse (15 sec) by 4 to get beats per minute
   lcd_out(2,1,"BPM:");
   inttostr(pulse,txt);
                                //display pulse to the LCD
temp = adc read(0x01)*2/4;
                                //read temperature value by converting ADC
lcd_out(1,1,"Temp:");
                                //display temperature value on the LCD
```

Table 14: Heart rate and temperature sensing code

Bluetooth communication	
Usart_init(9600);	//initialize serial Bluetooth communication with a baud rate of 9600 bps //USART: Universal Synchronous Asynchronous Receiver

usart_write(pulse);	//sends the pulse rate data to Bluetooth
Usart_write(temp);	//send temperature data to Bluetooth

Table 15: Bluetooth code