

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

under consideration, that is, we shall have the same velocity parallel to the plane, and the same angular velocity as if the sphere were in contact with the plane, because there is no slipping at the instance of contact.

Let v_1 =velocity parallel to the plane. Then $\frac{v_1}{R}$ = new angular velocity = ω_1 .

$$E = \frac{1}{5}MR^2\omega^2.$$

Energy of translation = $\frac{1}{2}Mv_1^2$.

New energy of rotation = $\frac{1}{5}MR^2 \omega_1^2 = \frac{1}{5}Mv_1^2$.

The distance which the sphere will move parallel to the plane while it is attaining its highest altitude will be $=tv_1=2\sqrt{\frac{a}{7a}}R\omega$.

From these data, knowing that the curve will be a parabola, we obtain

$$y^2 = \frac{4R^2 \omega^2}{7g} x,$$

the highest point in the origin. The distance between first and second impact is $4\sqrt{a/7g} R\omega$. As to the subsequent motion, we have the equation of energy

$$\frac{1}{2}Mv_1^2 + \frac{1}{5}Mv_1^2 = \frac{1}{2}Mv_2^2 + \frac{1}{5}Mv_2^2$$
, or $v_2 = v$

and the subsequent parabola will be the same as the first.

PROBLEMS.

37. Proposed by O. W. ANTHONY, M. Sc., Professor of Mathematics and Astronomy, New Windsor College, New Windsor, Maryland.

A thin board of which the elements are given is balanced at the center but inclined at an angle. A sphere of known dimensions is put directly above the point of suspension and liberated. Find the motion of the system. That is, find (a) the time until the sphere leaves the board, (b) the ultimate angular velocity of the board.

38. Proposed by B. F. FINKEL, A. M., Professor of Mathematics and Physics, Drury College, Springfield, Missouri.

A prolate spheriod of revolution is fixed at its focus; a blow is given it at the extremity of the axis minor in a line tangent to the direction perpendicular to the axis major. Find the axis about which the body begins to rotate. [From Loudon's Rigid Dynamics.]