# Design Trade-offs for Decentralized Baseband Processing in Massive MU-MIMO Systems

Kaipeng Li, James McNaney, Oscar Castañeda, Chance Tarver, Charles Jeon, Joseph Cavallaro, Christoph Studer

Asilomar Conference on Signals, Systems, and Computers November 5, 2019





## Massive MU-MIMO systems



#### How do we handle this much data?



#### **Possible Limitations:**

- Chip I/O and interconnection bandwidth
- On-chip memory and storage
- Computing capability of modern computing fabrics

#### Decentralized to resolve bottlenecks



#### Decentralized to resolve bottlenecks



#### Outline

- Overview of decentralized architectures and algorithms
- Architecture trade-offs
- Algorithm trade-offs
- Precision trade-offs
- Practical design flow
- Conclusion

#### Decentralized feedforward architecture

Feedforward local information *only once* instead of multiple rounds to centralized unit



## **Uplink linear MMSE detection**

Centralized linear MMSE (C-LMMSE) detection:

$$\widehat{\boldsymbol{x}} = (\boldsymbol{H}^{H}\boldsymbol{H} + \frac{N_{0}}{E_{x}}\boldsymbol{I})^{-1}\boldsymbol{H}^{H}\boldsymbol{y}$$
$$= (\boldsymbol{G} + \frac{N_{0}}{E_{x}}\boldsymbol{I})^{-1}\boldsymbol{y}^{MRC}$$

Partially decentralization: decentralized matrix preprocessing + centralized detection



 $\sigma^2$ : error variance

## **Uplink linear MMSE detection**



PD-LMMSE obtains the same  $\widehat{x}$  as C-LMMSE

Complexity:  $O(B_cU^2) + O(U^3)$  mults.

Data transfer size: O(U2) samples / cluster

#### **Centralized LMMSE (C-LMMSE):**

$$G = H^{H}H \quad y^{MRC} = H^{H}y$$

$$\widehat{x} = (G + \frac{N_0}{E_x}I)^{-1}y^{MRC}$$



#### **Partially Decentralized:**

$$G_c = H_c^H H_c$$
  $y_c^{\text{MRC}} = H_c^H y_c$ 

$$G = \sum_{c=1}^{C} G_c \qquad y^{\text{MRC}} = \sum_{c=1}^{C} y_c^{\text{MRC}}$$

$$\widehat{\boldsymbol{x}} = (\boldsymbol{G} + \frac{N_0}{E_x} \boldsymbol{I})^{-1} \boldsymbol{y}^{\text{MRC}}$$

## Fully decentralized (FD-) LMMSE detection



#### **Decentralized local detection**

$$\widehat{\boldsymbol{x}}_{\boldsymbol{c}} = (\boldsymbol{G}_{\boldsymbol{c}} + \frac{N_0}{E_{\boldsymbol{x}}}\boldsymbol{I})^{-1}\boldsymbol{y}_{\boldsymbol{c}}^{\mathrm{MRC}}$$

**Fusion** of local  $\widehat{x}_c$  using weights,  $\lambda_c$ :

$$\widehat{\mathbf{x}} = \sum_{c=1}^{C} \lambda_c \widehat{\mathbf{x}}_c$$

Optimal  $\lambda_c$  is a function of  $\sigma_c$ 

Complexity:  $O(B_cU^2) + O(U^3)$  mults.

Data transfer size: **O(U)** samples / cluster

## **Downlink Beamforming**

#### Linear beamforming:

- Power constraint:  $\mathbf{E}[\|\mathbf{x}\|^2] \le \rho^2$ 

Precoding matrix: P

- Linear precoding: x = Ps

#### Zero-Forcing beamforming:

- Precoding Matrix:  $H^H(HH^H)^{-1} = H^HG^{-1}$ 

- Power constraint:  $\hat{x} = \rho \|\hat{x}\|_2$ 

#### Channel reciprocity:

- TDD Transmission:  $H^{dl} = (H^{ul})^H$ 



## Decentralized feedforward ZF beamforming



#### **Partially decentralized** ZF beamforming:

Set 
$$\rho_c^2 = \rho^2/C$$

$$G_c = H_c H_c^H$$

$$G = \sum_{c=1}^C G_c \quad z = G^{-1} s$$

**Broadcast** z to local clusters

$$\widehat{\boldsymbol{x}}_c = \boldsymbol{H}_c^H \boldsymbol{z}, \quad \widehat{\boldsymbol{x}}_c = \rho_c \|\widehat{\boldsymbol{x}}_c\|_2$$

Complexity:  $O(B_cU^2) + O(U^3)$  mults.

Data transfer: O(U<sup>2</sup>) samples / cluster



Fully decentralized ZF beamforming:

Broadcast s and set  $\rho_c^2 = \rho^2/C$   $\hat{x}_c = H_c^H (H_c H_c^H)^{-1} s$  $\hat{x}_c = \rho_c ||\hat{x}_c||_2$ 

Complexity:  $O(B_cU^2) + O(U^3)$  mults.

Data transfer: **O(U)** samples / cluster

#### Decentralized feedforward Wiener Filter (WF) beamforming



#### Partially decentralized WF beamforming

Set 
$$\rho_c^2 = \rho^2/C$$

$$G_C = H_C H_C^H$$

$$G = \sum_{c=1}^{C} G_c \quad z = \frac{1}{\beta} (G + \gamma I_U)^{-1} s$$

Broadcast z to local BS unit

$$\widehat{\boldsymbol{x}}_{c} = \boldsymbol{H}_{c}^{H} \boldsymbol{z}$$

Complexity:  $O(B_cU^2) + O(U^3) + O(\beta)$  mult.

Data transfer: O(U<sup>2</sup>) samples / cluster



Fully decentralized WF beamforming

**Broadcast** s and set  $\rho_c^2 = \rho^2/C$ 

$$\boldsymbol{P}_{c} = \frac{1}{\beta_{c}} \boldsymbol{H}_{c}^{H} (\boldsymbol{H}_{c} \boldsymbol{H}_{c}^{H} + \gamma \boldsymbol{I}_{U})^{-1} \boldsymbol{s}$$

$$\widehat{\boldsymbol{x}}_{c} = \boldsymbol{P}_{c}\boldsymbol{s}$$

Complexity:  $O(B_cU^2) + O(U^3) + O(\beta)$  mult.

Data transfer: O(U) samples / cluster

#### Architecture Trade-offs: PD vs. FD

#### PD-MMSE and FD-MMSE: Data transfer Depends on channel coherency

- BER: Centralized MMSE = PD-MMSE, FD-MMSE sacrifices BER
- Computation (timing) complexity: PD-MMSE = FD-MMSE
- $N_{coh}$ : Period in which we update channel state information

$$m_{PD} = \frac{C \times (U^2 - U + 2N_{coh}U)}{N_{coh}}. \quad m_{FD} = \frac{C \times 3N_{coh}U}{N_{coh}} = 3CU.$$

#### PD vs. FD trade-off on BER and data transfer

C=4, U=16,  $B_c=32$ , B=128, 16QAMSimple i.i.d. Gaussian channel and Quadriga NLOS urban campus channel





(a) BER: PD-MMSE vs. FD-MMSE

(b) Data transfer size vs.  $N_{coh}$ 

#### Decentralized feedforward architecture

Feedforward local information *only once* instead of multiple rounds to centralized unit



## Algorithm Trade-offs: Explicit vs. Implicit method

- Example: PD-MMSE with explicit matrix inversion vs. implicit matrix inversion
- Implicit matrix inversion  $A^{-1} = (G + \frac{N_0}{E_x}I)^{-1}$  for PD-MMSE
  - $A = LL^H$  (Cholesky decomposition, L is lower triangular matrix)
  - Get z by solving  $Lz = y^{MRC}$  using forward substitution
  - Get  $\widehat{x}$  by solving  $L^H \widehat{x} = z$  using backward substitution
- ullet Per-symbol complexity of explicit and implicit methods depend on  $N_{coh}$

$$n_{ex} = (2B_c U^2 + \frac{10}{3}U^3 - \frac{1}{3}U)/N_{coh} + 4B_c U + 4U^2$$
$$n_{im} = (2B_c U^2 + \frac{2}{3}U^3 + \frac{1}{3}U)/N_{coh} + 4B_c U + 4U^2$$

## Complexity of explicit vs. implicit PD-MMSE



## Reusing Uplink (UL) Results for Downlink (DL)

- Channel reciprocity in TDD system:  $H^{UL} = (H^{DL})^H$
- Gram matrix:  $G^{DL} = H^{DL}(H^{DL})^H = (H^{UL})^H H^{UL} = G^{UL}$
- Store and reuse computed uplink results for downlink to reduce complexity
- UL MMSE detection + DL WF beamforming can only reuse  $m{G}^{UL}$
- UL ZF detection + DL ZF beamforming can even reuse  $(G^{UL})^{-1}$

#### UL and DL integration trade-offs on BER and complexity

Example: UL *PD-MMSE* + *DL PD-WF* integration vs. *UL ZF* + *DL ZF* integration C=4, U=16,  $B_c=32$ , B=128, 16QAM, LOS channel



(a) BER: PD-MMSE detection vs. PD-ZF detection (b) BER: PD-WF precoding vs. PD-ZF precoding

#### UL and DL integration trade-offs on BER and complexity

Example: UL *PD-MMSE* + *DL PD-WF* integration vs. *UL ZF* + *DL ZF* integration C=4, U=16,  $B_c=32$ , B=128, 16QAM, LOS channel



By integrating, ZF only requires 65% of the multiplies

## Precision Trade-offs: 32-bit vs. 8bit floating point

Example: PD-MMSE and FD-MMSE

C=4, U=16, B<sub>c</sub>=32, B=128, 16QAM, Quadriga NLOS urban campus channel



8-bit floating point reduces 4x data transfer size compared to 32-bit at only little loss of BER

## **Summary of Tradeoffs**



#### Conclusion

- Decentralized baseband processing resolves complexity and interconnection bandwidth bottlenecks for massive MU-MIMO
- Practical massive MU-MIMO should leverage design trade-offs at different aspects:
  - Architecture trade-offs of PD and FD on BER vs. data transfer size
    - Unless you expect very low coherence time, choose partially decentralized.
  - Algorithms trade-offs of explicit and implicit methods on BER vs. complexity
    - Use implicit matrix inversions whenever possible. Reuse results from uplink to downlink.
  - Precision trade-offs of various data precision options on BER vs. efficiency
    - Use fp16 or even fp8 unless BER is serious concern.