# Theoretische Informatik

## Zusammenfassung

## SoSe2024

## Inhaltsverzeichnis

| 1  | Allgemein1.1 Alphabete und Wörter                                                    | <b>3</b> 3         |
|----|--------------------------------------------------------------------------------------|--------------------|
| 2  |                                                                                      | 4<br>4<br>4<br>4   |
| 3  | Deterministischer Endlicher Automat (DEA)                                            | 5                  |
| 4  | Nicht-deterministischer Endlicher Automat (NEA)                                      | 6                  |
| 5  | Äquivalenz von DEA und NEA5.0.1Satz von Rabin und Scott5.0.2Potenzmengenkonstruktion | <b>7</b><br>7<br>7 |
| 6  | Regex 6.0.1 Satz von Kleene                                                          | <b>8</b>           |
| 7  | Pumping Lemma                                                                        | 9                  |
| 8  | Satz von Myhill und Nerode                                                           | 10                 |
| 9  | Minimalautomaten 9.1 Table-Filling-Algorithmus                                       | <b>11</b><br>11    |
| 10 | Kontextfreie Sprachen (£2)  10.1 Chomsky Normalform (CNF)                            |                    |

| 11 Kellerautomaten | 13 |
|--------------------|----|
| 12 CYK-Algorithmus | 14 |

### 1 Allgemein

#### 1.1 Alphabete und Wörter

- $\bullet$ Ein Alphabet  $\Sigma$ ist eine endliche Menge unterscheidbarer Symbole
- Element  $\sigma \in \Sigma$ ist ein Zeichen des Alphabets  $\Sigma$
- Jedes Element  $\omega \in \Sigma^*$ ist ein Wort über  $\Sigma$
- $\varepsilon$  = Leeres Wort
- $\Sigma^*$ : Menge aller Wörter über  $\Sigma$
- $\Sigma^+$ : Menge aller Wörter über  $\Sigma$  mit mind. 1 Element
- $|\omega|$ : Länge eines Wortes ( $|\varepsilon|=0$ )

#### 1.2 Grammatiken

Eine Grammatik G ist ein 4-Tupel (V,  $\Sigma$ , P, S):

- V: endliche Menge an Nicht-Terminal-Symbolen
- $\Sigma$ : endliche Menge an Terminal-Symbolen ( $V \cap \Sigma = \emptyset$ )
- P: endliche Menge an Produktionsregeln
- S: Startsymbol ( $S \in V$ )

#### 2 Chomsky-Hierarchie

#### 2.1 Typ 0 ( $\mathcal{L}0$ ) - Phrasenstrukturgrammatiken

• Beliebige Kombination aus T- und NT-Symbolen

#### 2.2 Typ 1 ( $\mathcal{L}1$ ) - Kontextsensitive Grammatiken

- $|l| \leq |r|$
- Länge des Wortes steigt
- $S \to \varepsilon$  erlaubt, wenn S auf **keiner** rechten Seite einer Regel steht!

#### Beispiel:

```
\begin{array}{l} S \rightarrow S' \mid \varepsilon \\ S' \rightarrow aS'Bc \mid abc \\ cB \rightarrow Bc \\ bB \rightarrow bb \end{array}
```

Das Nichtterminal S' braucht man nur, damit die Bedingung der Sonderregel erfüllt ist. Das Nichtterminal B wird mal zur Satzform Bc und mal zu bb, je nachdem ob B im **Kontext** c oder b steht.

#### 2.3 Typ 2 ( $\mathcal{L}2$ ) - Kontextfreie Grammatiken

Beim Ableiten in Typ-1-Grammatiken muss man immer aufpassen, dass das Nichtterminal auch im richtigen Kontext steht. Das Erzeugen von Sätzen ist viel leichter, wenn die Grammatik kontextfrei ist.

Eine Grammatik G ist vom Typ 2, wenn sie vom Typ 1 ist und zusätzlich auf der linken Seite jeder Regel genau **ein** Nichtterminal steht!

- $l \in V$
- $X \to \varepsilon$  immer erlaubt

#### 2.4 Typ 3 ( $\mathcal{L}3$ ) - Reguläre Grammatik

Eine Grammatik G ist vom Typ 3, wenn sie vom Typ 2 ist und zusätzlich folgende Regeln hat:

- $\bullet$   $A \rightarrow b$
- $A \rightarrow bC$
- $A \to \varepsilon$

## 3 Deterministischer Endlicher Automat (DEA)

#### Eine DEA M ist ein 5-Tupel (Q, $\Sigma$ , $\delta$ , $q_0$ , F):

- Q: endliche Zustandsmenge
- $\Sigma$ : endliches Alphabet
- $\delta \colon Q \times \Sigma \to Q$ Übergangsfunktionen
- $q_0$ : Startzustand
- F: Menge der akzeptierten Endzustände

#### Beispiel:



- $Q = \{q_0, q_1, q_2\}$
- $\Sigma = \{0, 1\}$
- $\bullet \ q_0 = q_0$
- $F = q_2$
- δ:

$$\delta(q_0,0) = q_0$$

$$\delta(q_0, 1) = q_1$$

$$\delta(q_1,0) = q_2$$

$$\delta(q_1, 1) = q_1$$

$$\delta(q_2,0) = q_1$$

$$\delta(q_2, 1) = q_1$$

## 4 Nicht-deterministischer Endlicher Automat (NEA)

#### Eine NEA M ist ein 5-Tupel (Q, $\Sigma$ , $\delta$ , $q_0$ , F):

- Q: endliche Zustandsmenge
- $\delta \colon Q \times \Sigma \to Q$ Übergangsfunktionen
- $\bullet \ q_0 :$  Menge der Startzustände
- F: Menge der akzeptierten Endzustände

#### Beispiel:

$$S \rightarrow aS \mid bS \mid cS \mid aA$$
  
 $A \rightarrow bB \mid cC$   
 $B \rightarrow aB \mid bB \mid cB \mid \varepsilon$   
 $c \rightarrow aB$ 



## 5 Äquivalenz von DEA und NEA

#### 5.0.1 Satz von Rabin und Scott

Jede von einem NEA akzeptierte Sprache L ist auch von einem DEA akzeptierbar.

#### 5.0.2 Potenzmengenkonstruktion

!!!TODO!!!

## 6 Regex

!!!TODO!!!

#### 6.0.1 Satz von Kleene

Die Menge der durch reguläre Ausdrücke (Regex) beschreibbaren Sprachen ist genau die Menge der regulären Sprachen.

 $\rightarrow$  Alle endlichen Sprachen sind durch reguläre Ausdrücke beschreibbar

## 7 Pumping Lemma

Das Pumping-Lemma wird verwendet, um zu beweisen, dass eine Sprache sicher nicht regulär ist.

!!!TODO!!!

## 8 Satz von Myhill und Nerode

Eine Sprache L ist genau dann regulär, wenn der Index  ${\cal R}_L$ endlich ist!

## 9 Minimalautomaten

!!!TODO!!!

9.1 Table-Filling-Algorithmus

## 10 Kontextfreie Sprachen ( $\mathcal{L}2$ )

#### 10.1 Chomsky Normalform (CNF)

Regeln müssen folgende Formen haben:

- $\bullet$   $A \to BC$
- $\bullet$   $A \rightarrow a$
- $\bullet \ S \to \varepsilon$

#### 10.2 Greibach Normalform

Eine  $\varepsilon$ -freie, kontextfrei Grammatik mit folgenden Regeln:

- $A \rightarrow aB_1B_2B_3...B_k$
- $k \ge 0$

#### 10.3 Konvertierung

!!!TODO!!!

#### 11 Kellerautomaten

#### Ein Kellerautomat (PDA) M ist ein 6-Tupel (Q, $\Sigma$ , $\Gamma$ , $\delta$ , $q_0$ , #):

- Q: endliche Zustandsmenge
- $\Sigma$ : endliches Bandalphabet
- Γ: endliches Kelleralphabet
- $\delta$ : Übergansfunktionen
- $q_0$ : Startzustand  $(q_0 \in Q)$
- #: Ürsprüngliches Kellersymbol  $(q_0 \in \Gamma)$

#### Akzeptanz:

- Kein akzeptierender Endzustand!
- Akzeptanzkriterien für Wörter  $x \in |Sigma^*|$ :
  - 1. Wort komplett gelesen
  - 2. Keller (Stack leer)

#### Nicht-Determinismus:

- Mehrere simultane Übergänge möglich
- Spontane Übergänge  $(a = \varepsilon)$  möglich

Konfiguration eines PDA gegeben durch 3-Tupel  $(Q, \Sigma^*, \Gamma^*)$ :

- $q \in Q$ : Momentaner Zustand
- $w' \in \Sigma^*$ : Noch zu lesender Anteil der Eingabe
- $\gamma \in \Gamma^*$ : Aktueller Kellerinhalt

#### Übergansfunktion:

- $\delta(q, a, A) \ni (q', B_1B_2...B_k)$
- Wenn Automat in Zustand q ist, das Symbol a liest und A oben auf Stack liegt, wechselt er in Zustand q' und ersetzt das A auf dem Stack durch  $B_1B_2...B_k$

# 12 CYK-Algorithmus