LifeStats

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

Chap. 5 Notes: Expected Value and Simulation

J. Harner A. Billings

Department of Statistics West Virginia University

Stat 211 Fall 2007

Outline

LifeStats

J. Harner, A. Billings

Snap. 5 Notes: Expected Value and Simulation

Chap. 5 Notes: Expected Value and Simulation

Sect. 5.1: The Expected Value (Theoretical Mean)

Of A Random Variable

Sect 5.2: Using Five-Step Simulation To Estimate

Mean Values

Sect 5.3: The Standard Deviation Of A Random

Variable

Expected Values:

J. Harn

Definition:

The **experimental expected value** of a random variable X is the average value of X in a very long sequence of replications of an experiment.

Example:

Toss a fair six-sided die. X = number of dots on upward side. What is expected value of X?

LifeStats

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

Sect. 5.1: The Expected Value (Theoretical Mean) Of A Random Variable

Simulation To Estimate Mean Values Sect 5.3: The Standard

contd. from the previous example

Five-step simulation method:

1. Choose Probability model:

Select 1, 2, 3, 4, 5, 6 at random with equal probability $\frac{1}{6}$.

2. Define one simulation

One toss of the die corresponds to the selection of a random number from Table B 2¹

define event of interest:

Observe the random number selected from Table B.2.

¹ refer to the Page: 693 of the Text Book

4. Repetitions of the simulation: Simulate 10,000 tosses.

5. Find experimental mean of the event of interest:

Compute sample mean \bar{X} for the 10,000 numbers selected from Table B.2.

▶ Then the experimental expected value is 3.5101.

LifeStats

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

Sect. 5.1: The Expected Value (Theoretical Mean) Of A Random Variable

Simulation To Estimate Mean Values

Deviation Of A Randon Variable

LifeStats

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

Sect. 5.1: The Expected Value (Theoretical Mean) Of A Random Variable Sect 5.2: Using Five-Step

Simulation To Estimate Mea Values

Deviation Of A Random Variable

Definition:

For a discrete random variable X with probability distribution p(X), the **theoretical expected value** of X is

$$E(X) = \sum x.p(x)$$

Note:

This is often called the **theoretical mean** of random variable X and is denoted by μ_X

Example:

Toss a fair six-sided die once, X = number of dots on the upward side. What is the the theoretical mean of random variable X?

contd. from the previous example

The probability distribution of X is,

then.

$$E(X) = \mu_X = \sum x.p(x)$$

$$= 1.(\frac{1}{6}) + 2.(\frac{1}{6}) + 3.(\frac{1}{6}) + 4.(\frac{1}{6}) + 5.(\frac{1}{6}) + 6.(\frac{1}{6})$$

$$= 3.5$$

Note:

The experimental expected value of X, $\hat{E}(X) = 3.5101$ is an estimate of the theoretical expected value of X, E(X) = 3.5.

LifeStats

J. Harner, A. Billings

Sect. 5.1: The Expected Value (Theoretical Mean) Of A Random Variable

• Consider a random variable X which represents the outcome of an experiment. In a very long sequence of independent repetitions of the experiment, the average \bar{X} of the observed values of X will be very close to the theoretical mean μ_X .

Other Expected Value Formulae:

Example:

Toss a fair coin 10 times, X = number of heads observed. What is E(X)?

$$E(X) = 10 * \frac{1}{2} = 5$$

Example:

Examples 5.3 - 5.6 of Text².

LifeStats

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

Sect. 5.1: The Expected Value (Theoretical Mean) Of A Random Variable

imulation To Estimate Mean

²refer to the Page: 284-285 of the Text Book

The Formula $\mu_X = n.p$

Suppose an event has probability p of occurring on a single trial and n trails are conducted. Let random variable X count the number of times the event of interest occurs in n trials. Then the expected value of X is

$$E(X) = \mu_X = n.p$$

LifeStats

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

Sect. 5.1: The Expected Value (Theoretical Mean) Of A Random Variable

Simulation To Estimate Mean Values

Law of Large Numbers for Population Surveys:

• Suppose X_1, X_2, \dots, X_n are selected randomly without replacement from a very large population.

IF the sample size n is large, then the sample mean \bar{X} of the observed values will be close to μ , the mean of the population.

LifeStats

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

Sect. 5.1: The Expected Value (Theoretical Mean) Of A Random Variable

Sect 5.2: Using Five-Step Simulation To Estimate Mean Values

Box Models and Expected Values:

 Suppose random variable X is the <u>sum</u> of repeated random draws from a box then,

$$E(X) = \mu_X = \text{box mean} * \text{number of draws}$$

In particular, if we make just one draw, then

$$E(X) = \mu_X = \text{mean}$$

Example: Section. 4.4 of the Text Book³

The formula above works whether we make our draws with replacement or without replacement. LifeStats

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

Sect. 5.1: The Expected Value (Theoretical Mean) Of A Random Variable

Sect 5.2: Using Five-Step Simulation To Estimate Mean Values

³refer to Page: 256 of the Text book

Five-Step simulation to Estimate Mean Values

Example:

Examples From 5.1 lecture notes.

Example:

Example 5.10 of the Text Book⁴.

LifeStats

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

Sect. 5.1: The Expected Value (Theoretical Mean) Of A Random Variable

Sect 5.2: Using Five-Step Simulation To Estimate Mean Values

⁴refer to Page: 294 of the Text Book

Standard Deviation of a Random Variable:

Definition:

Suppose random variable X has probability distribution p(X). Then the **(theoretical) variance** of X is,

$$\sigma_X = \sum (X - \mu_X)^2 . p(X)$$

and the **(theoretical) standard deviation** of X is,

$$\sigma_X = \sqrt{\sum (X - \mu_X)^2 . \rho(X)}$$

LifeStats

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

(Theoretical Mean) Of A Random Variable Sect 5.2: Using Five-Step

imulation To Estimate Mean

Roll a fair six-sided die once, X = number of dots on the upward side.

The probability distribution of X is

We found $E(X) = \mu_X$ is⁵.

$$\mu_X = \sum x.p(x)$$
= $1.(\frac{1}{6}) + 2.(\frac{1}{6}) + 3.(\frac{1}{6}) + 4.(\frac{1}{6}) + 5.(\frac{1}{6}) + 6.(\frac{1}{6})$
= 3.5

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

(Theoretical Mean) Of A
Random Variable
Sect 5.2: Using Five Step

Sect 5.2: Using Five-Step Simulation To Estimate Mean Values

⁵refer to Sect. 5.1

Chap. 5 Notes:
Expected Value a
Simulation
Sect. 5.1: The Expected

Values
Sect 5.3: The Standard
Deviation Of A Random
Variable

$$\sigma_X^2 = \sum (X - \mu_X)^2 \cdot p(X)$$

$$= (1 - 3.5)^2 \cdot (\frac{1}{6}) + (2 - 3.5)^2 \cdot (\frac{1}{6}) + \dots + (6 - 3.5)^2 \cdot (\frac{1}{6})$$

$$= (-2.5)^2 \cdot (\frac{1}{6}) + (-1.5)^2 \cdot (\frac{1}{6}) + \dots + (2.5)^2 \cdot (\frac{1}{6})$$

$$= \frac{35}{12}$$

$$= 2.91666$$

So the standard deviation of X is,

$$\sigma_X = \sqrt{2.916667}$$
= 1.7078

Box Models:

Consider a box with N numbered balls.
 The box mean is,

$$\mu_{\textit{box}} = \frac{\sum \textit{X}}{\textit{N}}$$

and the box variance is.

$$\sigma_{box}^2 = \frac{\sum (X - \mu_{box})^2}{N}$$

and the box standard deviation is,

$$\sigma_{box} = \sqrt{\frac{\sum (X - \mu_{box})^2}{N}}$$

LifeStats

J. Harner, A. Billings

Chap. 5 Notes: Expected Value and Simulation

(Theoretical Mean) Of A Random Variable Sect 5.2: Using Five-Step

Simulation To Estimate Mean Values

$$E(X) = \mu_X = n * \mu_{box}$$

(with or without replacement)

 IF the balls are selected with replacement, then,

$$\sigma_X = \sqrt{n} * \sigma_{box}$$

• **IF** the balls are selected without replacement, then,

$$\sigma_X = \sqrt{n} * \sigma_{box} * \sqrt{\frac{N-n}{N-1}}$$

Example:

Example 5.13 of the Text Book⁶.

J. Harner. A. Billings

Chap. 5 Notes: Expected Value and

(Theoretical Mean) Of A Random Variable Sect 5.2: Using Five-Step

Sect 5.2: Using Five-Step Simulation To Estimate Mean Values

⁶refer to Page: 308 of the Text Book