- 1 设 $M = \{x | x \in R, x \neq k, k \in Z\}$, 在 M上建立二元代数运算。如下:对任意的 $x, y \in M$, $x \circ y = kx + ky xy k^2 + k$, 证明: (M, \circ) 构成一个群。
- 证明: (i)运算封闭 对任意的 $x,y \in M$,都有 $x k \neq 0, y k \neq 0$,从而必有 $(x k)(y k) \neq 0$,从而有

故有 $x \circ y \neq k$,从而 $x \circ y \in M$.

(ii) 结合律成立

(iii) 左幺 令 x = k - 1, 则 $x \circ y = (k - 1) \circ y =$

(iv) 左逆 对 $\forall y \in M$, $\diamondsuit x = \frac{k^2 - 1 - ky}{k - y}$, 由于 $x \circ y = \frac{k^2 - 1 - ky}{k - y} \circ y =$

 $= y, \forall y \in M.$ 所以 $x \neq k$, 而 = k - 1.