Resumen Unidad 4 - Introducción a la Computación Paralela

- Técnica que permite ejecutar varias instrucciones al mismo tiempo usando dos o más unidades de procesamiento.
- Se basa en dividir grandes problemas en partes más pequeñas que se resuelven simultáneamente.

Analogía: Recoger canicas entre varias personas en lugar de hacerlo solo.

🔽 Ventajas

- Resolución de problemas complejos.
- Resultados más rápidos.
- Mejor relación rendimiento/costo.
- Alta escalabilidad.

X Desventajas

- Mayor consumo de energía.
- Programación más compleja.
- Dificultades de sincronización y comunicación.
- Mayor posibilidad de fallos.

1 Taxonomía de Flynn

Clasificación de arquitecturas paralelas según instrucciones y datos:

- SISD: Una instrucción, un dato (computadoras tradicionales).
- MISD: Varias instrucciones, un dato (raro, usado en control).
- SIMD: Una instrucción, múltiples datos (útil en gráficos).
- MIMD: Varias instrucciones, múltiples datos (usado actualmente en servidores).

Tipos de Paralelismo

- 1. Nivel de bit: Procesamiento simultáneo de varios bits.
- 2. **Nivel de instrucción (ILP)**: Múltiples instrucciones a la vez en un procesador.
- 3. De datos: La misma operación sobre múltiples datos (ej. imágenes).
- 4. **De tareas**: Cada procesador ejecuta tareas distintas.

🧠 Arquitecturas de Memoria Compartida

- UMA (Uniform Memory Access):
 - Memoria central compartida.
 - Acceso uniforme para todos los procesadores.
 - Fácil de programar.
- NUMA (Non-Uniform Memory Access):
 - Cada procesador tiene memoria local.
 - Acceso rápido a su memoria, más lento a la de otros.
 - Mejora rendimiento en sistemas grandes.

- SPMD: Un mismo programa en múltiples datos (ej. CUDA).
- MPP: Muchos procesadores en paralelo para problemas grandes (supercomputadoras).

Computadoras Secuenciales

- Un solo procesador ejecuta instrucciones una por una.
- Basado en el modelo Von Neumann:
 - CPU, RAM, unidad de control, ALU.
 - Ciclo F-D-E: Fetch, Decode, Execute.

送 Organización de Memoria

- Memoria Compartida: Un solo espacio de direcciones (Java, ForkJoin, etc.).
- Memoria Distribuida: Cada nodo tiene su memoria; se comunican por mensajes (sockets, MPI).

Redes de Interconexión en Paralelismo

🔁 Redes Dinámicas (Indirectas)

- Conmutadores intermedios.
- Permiten múltiples rutas.
- Adaptables y escalables.

Medio Compartido

- Todos escuchan las transmisiones (ej. Wi-Fi, Ethernet).
- Simples pero con problemas de rendimiento y seguridad.

🔁 Redes Conmutadas

- Usan interruptores para direccionar mensajes.
- Tipos:
 - En anillo, malla, hipercubo.
- Métodos:
 - Circuitos, paquetes, mensajes.

🔗 Sistemas de Memoria Distribuida

- Cada nodo tiene:
 - Su CPU.
 - Memoria privada.
 - · Comunicación solo por mensajes.
- Alta escalabilidad.
- Alta latencia en comunicación.

🥓 Casos de Estudio y Aplicaciones

- Medicina: Análisis de imágenes, modelado de enfermedades.
- IA / Machine Learning: Entrenamiento y predicción en tiempo real.
- Industria: Simulación y optimización de diseños.
- Simulaciones científicas: Clima, dinámica de fluidos.

6 Beneficios Generales

- Mejor aprovechamiento de recursos.
- Procesamiento más rápido.
- Ahorro de tiempo y costos.
- Resolución de problemas imposibles de tratar secuencialmente.