1. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the average absolute deviation using the following formula:

$$\mathsf{AAD} = \frac{\sum |x - \bar{x}|}{n}$$

Solution

We fill out the table column by column.

X	$X - \bar{X}$	$ x-ar{x} $
45	7.6	7.6
30	-7.4	7.4
36	-1.4	1.4
42	4.6	4.6
34	-3.4	3.4
======	=======	=======
$\sum x = 187$		$\sum x - \bar{x} = 24.4$
$\bar{x} = 37.4$		

We are ready for the formula.

$$s = \frac{\sum |x - \bar{x}|}{n}$$

$$=\frac{24.2}{5}$$

2. Problem

From a very large population, a small sample of measurements was taken.

Please calculate the (Bessel corrected) sample standard deviation using the following formula:

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$

Solution

We fill out the table column by column.

		2
X	$X - \bar{X}$	$(x-\bar{x})^2$
192	-1	1
194	1	1
193	0	0
194	1	1
192	-1	1
======	======	======
$\sum x = 965$ $\bar{x} = 193$		$\sum (x - \bar{x})^2 = 4$

We are ready for the formula.

$$s = \sqrt{\frac{\sum (x - \bar{x})^2}{n - 1}}$$
$$= \sqrt{\frac{4}{5 - 1}}$$
$$= \sqrt{1}$$
$$= \boxed{1}$$