4. Employee Management System

Understanding Array Representation

Arrays in Memory:

Contiguous Memory Allocation: Arrays are stored in contiguous memory locations. This means that if the array starts at memory address x, and each element occupies k bytes, the elements of the array are located at addresses x, x + k, x + 2k, and so on.

Advantages:

- **Fast Access**: Arrays provide O(1) time complexity for accessing elements by index. This means you can retrieve any element directly if you know its index.
- Memory Efficiency: Arrays have a fixed size, which allows for efficient memory allocation and deallocation since the memory is allocated in a single block.
- Cache-Friendly: Due to contiguous memory allocation, arrays are more cache-friendly, leading to better performance in terms of access speed.
 Sequential access of array elements benefits from spatial locality.

Analysis: Time Complexity and Limitations of Arrays

Time Complexity:

- Add (at the end): O(1) if there's space. O(n) if resizing is needed (dynamic arrays).
- Search: O(n) for unsorted arrays (linear search), O(log n) for sorted arrays (binary search).
- Traverse: O(n), as each element is accessed once.
- Delete: O(n) in the worst case, as elements may need to be shifted to fill the gap.

Limitations of Arrays:

- Once an array is allocated, its size cannot be changed(**fixed size**). If you need a dynamically sized collection, you might need to use a dynamic array (e.g., ArrayList in Java) or another data structure like a linked list.
- Inserting or deleting elements (other than at the end) requires shifting elements, leading to **O(n)** time complexity. This can be **inefficient** for large datasets.
- If the array is not fully utilized, it leads to **wasted memory**. Conversely, if the array needs to grow, it requires copying elements to a new, larger array, which is timeconsuming.

•	Arrays are not suitable for scenarios where frequent random insertions and deletions are required (Sequential Access). Linked lists or other dynamic data structures might be more appropriate in such cases.
	When to Use Arrays:
•	When the size of the dataset is known and fixed.
•	When fast access to elements by index is required.
•	When memory overhead needs to be minimized.
•	When the operations are mostly traversals or accessing elements by index, and not frequent insertions or deletions.