SINGULAR INTEGRAL OPERATORS

EXERCISE 1 - 31.10.2023

Exercise 1 (1 point). Let $f \in \mathcal{S}(\mathbb{R})$. Show that $Hf \in L^1(\mathbb{R})$ if and only if $\int_{\mathbb{R}} f(y) dy = 0$. Hint: Modify the proof of Lemma 3.5 from the lecture notes to estimate the asymptotics of $x^2 \cdot Hf(x)$ as $|x| \to \infty$.

Solution. Let feS(R), x & R such that |x| > 100, and 0x & «1.

Aim: We went to prove that

$$\lim_{|x|\to\infty} \left| \begin{array}{c} x^2 + f(x) - \frac{x}{\pi} \int_{\mathbb{R}} f(x-y) \, dy \end{array} \right| \to 0, \ \epsilon \to 0,$$

which shows that
$$\lim_{|x|\to\infty} |x^2Hf(x) - \frac{x}{\pi} \int_{\mathbb{R}} f(x-y) dy| = 0$$
.

Before proving It, we observe that It concludes the exercise: it is enough to argue as in Corollary 3.5 of the lecture notes.

Hence, we turn to the proof of (x). First, we write

$$\frac{f(x-y)}{y} dy = \int_{\mathbb{R}^{2}} x^{2} \frac{f(x-y) - f(x)}{y} dy
+ x^{2} \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy + \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy
+ \int_{\mathbb{R}^{2}} \frac{f(x-y)}{y} dy$$

$$=: I_{1/2} + I_3$$

Hence, we estimate the terms separately.

$$I_{1,6}$$
 First observe that, for $\xi \in B(x,y)$ we have:

$$5 \in B(x,y) \Rightarrow |5| \le |x| + |y| \le \frac{3}{2} |x|,$$

$$|5| \ge |x| - |y| > \frac{|x|}{2}.$$

Thus:

$$I_{1,\epsilon} \leq \int \frac{x^2 |f(x-y)-f(x)|}{|y|} dy \leq |x|^2 sp |f'(z)|$$

 $I_{1,5} \rightarrow 0$ uniformly on $\varepsilon > 0$ for $(x) > \infty$ because $f \in J(\mathbb{R})$.

$$|I_3| \leq \int_{|y|^2 2(x)} |x|^2 \frac{|f(x-y)|}{|y|} dy \leq \int_{|x-y|^2 (x)} |x| |f(x-y)| dy$$

which converges to 0 as (x1 > +60 because f & S(IR)

$$\int_{\mathbb{R}} \left| \int_{\mathbb{R}} \int_{\mathbb{R}} f(x-y) \, dy \right| =$$

$$\leq \left| \int \frac{x^2 f(x-y)}{y} - x f(x-y) dy \right|_{+} \left| x \int \frac{f(x-y) dy}{y} \right|_{+}$$

$$= \frac{|x|}{2} \leq |y| \leq 2|x|$$

$$= \frac{|y| \sqrt{|x|}}{2} \sqrt{|y|} \geq 2|x|$$

=:
$$A(x) + B(x)$$
.

Sow, $B(x) \leq |x|$
 $|f(x-y)| dy \leq |x|$
 $|f(x-y)| dy \leq |x|$

So,
$$B(x) \rightarrow 0$$
 of $(x) \rightarrow +\infty$ because $f \in S(IR)$.

tinelly

$$|A(x)| \leq |x| \int \frac{|x-y|}{|y|} |f(x-y)| dy \leq \int |z| |f(z)| dz,$$

$$|x| \leq |y| |z| |x|$$

$$|x| \leq |z| |z| |x|$$

So $|A(x)| \to 0$ as $|x| \to +\infty$ ogain because $f \in S(R)$. Hence, we gother the estimates we performed so four and

$$\left|\begin{array}{c} \pi \times^{2} Hf(x) - \times \int f(x,y) \, dy \right| \leq \left|\begin{array}{c} I_{1,\varepsilon} + |A(x)| + |B(x)| + |I_{3}|, \\ R & for (x_{1} \rightarrow \infty) & \int \partial x_{1} \, dx \right| = 0$$

which proves & and, hence, solves the exercise.

Recall that in the lecture we defined a tempered distribution $T_0 \in \mathcal{S}'(\mathbb{R})$ by

$$\langle T_0, f \rangle := -Hf(0) = \lim_{\varepsilon \to 0} \frac{1}{\pi} \int_{|y| > \varepsilon} \frac{f(y)}{y} dy.$$

Exercise 2 (2 point). Show that the tempered distribution \widehat{T}_0 is given by a function, and that $\widehat{T}_0(\xi) = -i\operatorname{sgn}(\xi)$.

Hints:

ve obtein:

(i) Let $K_{\varepsilon}(y) = \frac{1}{y} \mathbf{1}_{|y|>\varepsilon}$, so that $\langle T_0, f \rangle = \frac{1}{\pi} \lim_{\varepsilon \to 0} \langle K_{\varepsilon}, f \rangle$ for all $f \in \mathcal{S}(\mathbb{R})$. Consider $Q_{\varepsilon}(y) = \frac{y}{y^2 + \varepsilon^2}$ and show that

$$\lim_{\varepsilon \to 0} (K_{\varepsilon} - Q_{\varepsilon}) = 0 \quad \text{in } \mathcal{S}'(\mathbb{R}),$$

that is, $\lim_{\varepsilon\to 0} \langle K_{\varepsilon} - Q_{\varepsilon}, f \rangle = 0$ for all $f \in \mathcal{S}(\mathbb{R})$.

- (ii) Using the above, justify rigorously that $\widehat{T_0} = \frac{1}{\pi} \lim_{\varepsilon \to 0} \widehat{Q_{\varepsilon}}$, in the sense of distributions.
- (iii) Show that $Q_{\varepsilon}(x) = \mathcal{F}^{-1}(-\pi i \operatorname{sgn}(\xi) e^{-2\pi \varepsilon |\xi|})(x)$. Conclude that \widehat{T}_0 is given by a function, and that $\widehat{T}_0(\xi) = -i \operatorname{sgn}(\xi)$.

Solution.

(i) Let Q_{ϵ} and K_{ϵ} be as in the statement, and let $f \in \mathcal{G}(\mathbb{R})$.

We ente:

$$|\langle \kappa_{\varepsilon} - \omega_{\varepsilon}, f \rangle|^{\frac{1}{2}} \int \left(\frac{y}{y^{2} + \varepsilon^{2}} - \frac{11}{y} |y| > \varepsilon (y) \right) f(y) dy$$

$$= \int_{|y|>\varepsilon} \left(\frac{y}{y^{2}+\varepsilon^{2}} - \frac{1}{y} \right) f(y) dy + \int_{|y| \le \varepsilon} \frac{y}{y^{2}+\varepsilon^{2}} f(y) dy$$

$$\leq \left| \int_{|y|>\varepsilon} \left(\frac{y}{y^{2}+\varepsilon^{2}} - \frac{1}{y} \right) f(y) dy \right| + \left| \int_{|y| \leq \varepsilon} \frac{y}{y^{2}+\varepsilon^{2}} f(y) dy \right| = : \oplus_{\varepsilon} + \bigoplus_{\varepsilon} \mathbf{3}_{\varepsilon}$$

$$= \int \frac{|\mathcal{X}|}{z^2+1} \left\{ f(\varepsilon z) | dz \right\} \Rightarrow \text{ we can apply D.C.T. again and obtain that } 2\varepsilon \to 0 \text{ as } \varepsilon \to 0,$$

$$|z| \leq 1$$

Let
$$f \in J(\mathbb{R})$$
. $(T_0, f) = (T_0, f) = \frac{1}{\pi} \lim_{\epsilon \to 0} (K_{\epsilon}, f) = \frac{1}{\pi} \lim_{\epsilon \to 0} (K_{\epsilon}, f) = \frac{1}{\pi} \lim_{\epsilon \to 0} (K_{\epsilon}, f) = \frac{1}{\pi} \lim_{\epsilon \to 0} (R_{\epsilon}, f) = \frac{1}{\pi} \lim_{\epsilon \to 0} ($

in We proceed with the colculation.

Four inversion
$$= -i\pi \int sgn(\vec{s}) exp(-2\pi \epsilon |\vec{s}|) exp(2\pi x \cdot \vec{s}) d\vec{s}$$

$$= \pi i \int_{-\infty}^{\infty} \exp(2\pi (\xi + ix)\xi) d\xi - \pi i \int_{0}^{\infty} \exp(2\pi (-\xi + ix)\xi) d\xi$$

$$= \pi i \left(\frac{1}{2\pi (\epsilon + i \times)} + \frac{1}{2\pi (-\epsilon + i \times)} \right) = \pi i \frac{2i \times}{2\pi (-x^2 - \epsilon^2)} = \frac{\times}{\times^2 + \epsilon^2}$$

=
$$Q_{\xi}(x)$$
 =) $f^{-1}(-tt)$ is given by a function.
by injectivity of f^{-1} on $S'(aR)$.

We can conclude observing that
$$\lim_{\epsilon \to 0} Q_{\epsilon}(\xi) = -i \operatorname{syn}(\xi)$$
.

Recall that an operator $T: \mathcal{S}(\mathbb{R}) \to L^q(\mathbb{R})$ is said to be of strong type (p,q) if there exists a constant $C \in (0,\infty)$ such that $||Tf||_{L^q} \leq C||f||_{L^p}$.

Exercise 3 (1 point). Let $f = \mathbf{1}_{[0,1]}$. Show that $\text{ for } x \in \mathbb{R} \setminus \{0, 1\}$ $\lim_{\varepsilon \to 0} \int_{|x-y| > \varepsilon} \frac{f(y)}{x-y} \, dy = \log \left| \frac{x}{x-1} \right|.$

Conclude that the Hilbert transform is neither of strong type (∞, ∞) nor of strong type (1,1).

Soldion. For $\xi \in (0,1)$ and $x \neq 0,1$, and define

$$F_{\varepsilon}(x) := \int \frac{\chi_{(0,i)}}{x-y} dy \quad \text{and} \quad F(x) := \log \left| \frac{x}{x-1} \right|$$

$$[x \cdot y] > \varepsilon$$

Now, we split cases depending on the position of x.

Cose 1. Assume that $x \in (0, \infty)$ and that $\xi \in (0, |x|)$. We have

$$F_{\varepsilon}(x) = \int \frac{\chi_{(0,1)}(y)}{x-y} dy = \int \frac{1}{x-y} dy = F(x) \quad \forall \ \varepsilon \in (0,|x|).$$

Cose 2. Assume that $x \in (0,1)$, and that $\varepsilon > 0$ is s.t. $[x - \varepsilon, x + \varepsilon] \subset [0,i]$.

It holds:

$$F_{\varepsilon}(x) = \int \frac{\chi_{[0,\overline{0}]}(y)}{x-y} dy = \int \frac{1}{x-y} dy + \int \frac{1}{x-y} dy$$

=
$$\log \frac{|x|}{\varepsilon} + \log \frac{\varepsilon}{|x-1|} = \log \frac{|x|}{|x-1|} = F(x) \forall s$$
 as above.

Case 3. Andogas to Case 1.

Finally we notice that:

It's evident that $F \notin L^{\infty}(\mathbb{R})$.

• Let's grow that $F \notin L^1(\mathbb{R})$. For $|x| \leq \frac{1}{10}$, we have

$$|f(x)| \ge |\log |x| - |\log |x-1|| \ge |\log |x|| - c \Rightarrow |f \notin L^1(\mathbb{R}).$$

$$\le c \quad (|\log |smoothers| + |\log |x-1|)$$

$$= |\log |x| + |\log |x||.$$

Recall that the essential support of a locally integrable function f is the smallest closed set, denoted by ess supp(f), such that f=0 a.e. on the complement of ess supp(f).

Exercise 4 (1 point). Show that if $f \in L^2(\mathbb{R})$, then for a.e. $x \notin \text{ess supp}(f)$

$$Hf(x) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{f(y)}{x - y} \, dy.$$

Hint: You may use the fact that for $f_n(x) := (f\mathbf{1}_{B(0,n)}) * \varphi_{1/n}(x) \in C_c^{\infty}(\mathbb{R})$ we have $f_n \to f$ in $L^2(\mathbb{R})$. Here φ_{ε} is a smooth mollifier: $\varphi_{\varepsilon}(x) = \varepsilon^{-1}\varphi(x/\varepsilon), \ \varphi \in C_c^{\infty}(\mathbb{R}),$ $\mathbf{1}_{[-0.1,0.1]} \le \varphi \le \mathbf{1}_{[-1,1]}$, and $\|\varphi\|_{L^1} = 1$.

Solution. Let $f \in L^2(IR)$, and f_n be the function defined above. Observe that for EC (IR) =) for f(IR) + n.

Moreover,

=) possibly by possing to a subsequence we have

$$Hf_{n}(x) \rightarrow Hf(x)$$
 for a.e. $x \in \mathbb{R}$

Moreover, & x & css-syp(f) 3 N(x) >0 such that

dist
$$(x, sypp(f_m)) \ge \frac{\text{dist}(x, ess. sypp(f))}{2} =: S \quad \forall \quad m \ge N(x).$$

For such values of n it holds

$$\left| \begin{array}{c} H_{fm}(x) - \frac{1}{\pi} \int \frac{f(y)}{x-y} dy \end{array} \right| = \frac{1}{\pi} \left| \int_{\mathbb{R}} \left(\frac{f_{m}(y)}{x-y} - \frac{f(y)}{x-y} \right) dy \right|$$

$$=\frac{1}{\pi}\left\{\int_{|x-y|\geq \delta}\frac{1}{(x-y)}\left(f_m(y)-f(y)\right)dy\right\}$$

$$\leq \frac{1}{\pi} ||f_{M} - f||_{L^{2}(\mathbb{R})} \rightarrow 0 \quad \text{as} \quad m \rightarrow \infty.$$

 $\begin{array}{lll}
\leq & 1 & C(8) \|f_m - f\|_{L^2(\Omega)} \to 0 & \text{as } m \\
\text{The conding-Shownt} & \text{Hence} & \text{Hence} & \text{Hence} & \text{Hence} \\
& R & R & R
\end{array}$