UNIVERSIDADE FEDERAL DE SANTA CATARINA - UFSC CENTRO TECNOLÓGICO - CTC DEPARTAMENTO DE ENGENHARIA ELÉTRICA E ELETRÔNICA CURSO DE ENGENHARIA ELÉTRICA E ELETRÔNICA EEL 7074 -ELETRÔNICA DE POTÊNCIA

PATRIK LOFF PERES 20103830 PEDRO AFONSO V. ROLIM 19100422

Aula 6 - Retificador Trifásico com Ponto Médio a Diodos

FLORIANÓPOLIS 2023

1. Introdução

Neste relatório serão apresentados os resultados teóricos, práticos e simulados da experiência de um retificador trifásico com ponto médio a diodos com cargas R e RL. Será feita explanação da parte experimental e análise dos resultados obtidos.

2. Retificador Trifásico com Ponto Médio a Diodos

A figura 1 mostra o circuito retificador trifásico com ponto médio a diodos. O funcionamento do retificador pode ser dividido em 3 etapas de funcionamento, na primeira etapa o diodo D1 conduz a partir da metade do valor de pico da fonte, durante a condução no D1 todos os demais diodos se encontram bloqueando a passagem de corrente, essa etapa ocorre entre $\frac{\pi}{6}$ e $\frac{5\pi}{6}$. A segunda etapa ocorre quando o diodo D2 começa a conduzir ao invés do D1, o qual passa a bloquear a passagem de corrente assim como o D3 durante as duas primeiras etapas. Para a terceira etapa o diodo D3 está conduzindo e os demais bloqueando a corrente. Todos conduzem pelo mesmo período de tempo.

Figura 1. Retificador trifásico com ponto médio a diodo

Para os cálculos teóricos será considerado:

$$\begin{split} V_{sef} &= 110V \\ V_{sef} &= \sqrt{2}V_{sef} \\ V_{Lef} &= V_{sef} \\ V_{Lp} &= V_{sp} \\ P_{L} &= V_{Lef} I_{Lef} \end{split}$$

3. Carga R

Para a carga R pura foi utilizado um resistor de 40.8Ω , segundo o circuito da figura 2, e os resultados estão na formas de onda e na tabela 1.

Figura 2. Retificador trifásico com ponto médio a diodo carga resistiva.

Medidas práticas:

Figura 3. Tensão e corrente medidas na carga.

Figura 4. Tensão e corrente medidas na fonte.

Simulação PSIM:

Figura 5. Tensão e corrente medidas na carga.

Figura 6. Tensão e corrente medidas na fonte.

Podemos notar no gráfico da figura 3 e 4 que a corrente está em fase com a tensão, em decorrência de termos apenas uma carga resistiva. Podemos notar na figura 3 que a tensão nunca chega a ser nula, sempre uma das fontes tem a tensão superior a ~80V e conduz corrente pela carga, fazendo uma retificação completa.

Para as previsões teóricas foi considerado que:

$$\begin{split} V_{Sef} &= 110V \\ V_{Sp} &= \sqrt{2} * V_{Sef} \\ V_{Lmed} &= 1,17 * V_{Sef} \\ I_{Lmed} &= \frac{1,17 * V_{sef}}{R} = \frac{V_{Lmed}}{R} \\ V_{Lef} &= 1,19 * V_{Sef} \\ I_{Lef} &= \frac{1,19 * V_{Sef}}{R} \\ I_{Def} &= 0,59 * I_{Lmed} \\ P &= R * I_{Lef}^2 \\ S &= 3 * V_{Sef} * I_{Def} \end{split}$$

Tabela de dados carga resistiva:

	Teórico	Simulação	Experimental
V _{sef}	110V	110,18V	111V
V_{sp}	155,53V	155,56V	152V
V_{Lef}	130,9V	130,7V	129V
$V_{_{Lp}}$	155,53V	155,56V	150V
V_{Lmed}	128,7V	128,63V	126V
I _{Lef}	3,21A	3,2A	3,2A
I _{Lmed}	3,15A	3,15A	3,15A
I _{Def}	1,86A	1,85A	1,84A
S	613,8VA	610,5VA	612,72VA
P_L	420,41W	411,17W	408W
FP	0,685	0,673	0,666

4. Carga RL

Para a carga RL foi utilizado o mesmo resistor de 40.8Ω , mas acoplado um indutor de 100mH e posteriormente um indutor de 500mH, segundo o circuito da figura 7, e os resultados estão na formas de onda abaixo e também na tabela

Figura 7. Retificador trifásico com ponto médio a diodo carga RL (L=100mH)

Simulação PSIM:

Figura 8. Tensão e corrente medidas na carga (L=100mH).

Figura 9. Tensão e corrente medidas na fonte (L=100mH).

Medidas práticas:

Figura 10. Tensão e corrente medidas na carga RL (L=100mH).

Figura 11. Tensão e corrente medidas na fonte (L=100mH).

Para as previsões teóricas foi considerado que:

$$\begin{split} I_{Lef} &= \sqrt{I_{Lmed}^{2} + I_{3ef}^{2}} \\ I_{3ef} &= \frac{0.3 * V_{Sef}}{\sqrt{2} * \sqrt{R^{2} + 9 * w^{2} * L^{2}}} \\ I_{Def} &= \frac{I_{Lmed}}{\sqrt{3}} \\ P &= R * I_{Lef}^{2} \\ S &= 3 * V_{Sef} * I_{Def} \end{split}$$

Tabela de dados carga RL (L=100mH):

	Teórico	Simulação	Experimental
V_{sef}	110V	114,53V	112V
V_{sp}	155,53V	155,56V	152V
V_{Lef}	130,9V	130,88V	130V
V Lmed	128,7V	128,81V	127V
I _{Lef}	3,16A	3,17A	3,17A
I Lmed	3,15A	3,16A	3,16A
I _{Def}	1,81A	1,9A	1,81A
S	597,3VA	652,82VA	608,16VA
P_L	407,41W	408,77W	402W
FP	0,682	0,626	0,661

Agora vamos trocar o indutor de 100mH por um de 500 mH e refazer o experimentos e calcular e medir os novos valores. O circuito montado se encontra na figura 12.

Figura 12. Retificador trifásico com ponto médio a diodo carga RL (L=500mH)

Simulação PSIM:

Figura 13. Tensão e corrente medidas na carga (L=500mH).

Figura 14. Tensão e corrente medidas na fonte (L=500mH).

Medidas práticas:

Figura 15. Tensão e corrente medidas na carga (L=500mH).

Figura 16. Tensão e corrente medidas na fonte (L=500mH).

Para as previsões teóricas foi considerado que:

Fara as previsoes teoricas
$$I_{Lef} = \sqrt{I_{Lmed}^2 + I_{3ef}^2}$$

$$I_{3ef} = \frac{0.3 * V_{Sef}}{\sqrt{2} * \sqrt{R^2 + 9*w^2 * L^2}}$$

$$I_{Def} = \frac{I_{Lmed}}{\sqrt{3}}$$

$$P = R * I_{Lef}^2$$

$$S = 3 * V_{Sef} * I_{Def}$$

Tabela de dados carga RL (L=500mH):

	Teórico	Simulação	Experimental
V_{sef}	110V	109,96V	112V
V_{sp}	155,53V	155,56V	152V
V_{Lef}	130,9V	130,67V	130V
V Lmed	125,7V	128,52V	127V
I _{Lef}	3,15A	3,14A	3,09A
I_{Lmed}	3,15A	3,14A	3,09A
I _{Def}	1,81A	1,78A	1,77A
S	597,3VA	587,19VA	594,72VA
P_L	404,84W	403,38W	390W
FP	0,678	0,687	0,656

5. Conclusão

Neste relatório foi analisado o comportamento da tensão e corrente em um retificador trifásico com ponto médio a diodos entre três cargas distintas, uma carga puramente resistiva, uma carga RL e outra carga RL com um valor superior de indutância. Com isso foi possível analisar os efeitos de um acoplamento de um indutor no circuito, e os efeitos de aumentar a indutância.

Fomos capazes de verificar que ao utilizar uma fonte trifásica obtivemos uma retificação maior que os retificadores trabalhados nos laboratórios anteriores. Devido a defasagem entre as fases, a tensão e consequentemente a corrente nunca se aproximava de zero sobre a carga.

Ao adicionarmos um indutor notamos uma maior capacidade do sistema de manter uma tensão de saída estável, estabilidade representada pelo módulo do nosso ripple de corrente na carga. Quando aumentamos o valor do indutor do nosso circuito o sinal se torna cada vez mais estável, diminuindo a variação se tornando mais parecido com o sinal ideal que esperamos obter na saída.