

《On the use of Relevance Feedback in IRbased Concept Location》	2009	ICSM
《Preventing Duplicate Bug Reports by Continuously Querying Bug Reports》	2019	ESE
《EKD-BSP: Bug Report Severity Prediction by Extracting Keywords from Description》	2021	DSA

On the use of Relevance Feedback in IR-based Concept Location

2009 ICSM

"... discovering human oriented concepts and assigning them to their implementation instances within a program ... "

Concept location starts with the change request and ends when the developer finds the location in the source code where the first change must be made (e.g., a class or a method)

RF with Rocchio

On the use of Relevance Feedback in IR-based Concept Location

2009 ICSM

Table 1. Concept location results for Eclipse, jEdit and Adempiere

Eclipse							
No.	Defect Report#	Baseline	IRRF with N=1	IRRF with N=3	IRRF with N=5		
1	Bug #13926	54	1 (16 m/15r)	11 (51m/16r)	36 (50m/10r)		
2	Bug #23140	17 ,42,47	99, 1 , 2 (9 m/8r)	4, 1, 2 (7m/3r)	6, 4 , 14 (9 m/2r)		
3	Bug #19691	1K+, 368, 531, 1K+, 108 , 139	1K+, 1K+, 1K+, 1K+, 1K+, 1K+ (2m/2r)	1K+, 1K+, 1K+, 1K+, 1K+, 1K+ (7m/2r)	1K+, 1K+, 1K+, 1K+, 1K+, 1K+ (11m/2r)		
4	Bug #12118	9	1 (5m/5r)	1 (23m/8r)	4 (10m/2r)		
5	Bug #17707	8	1 (2m/2r)	1 (4m/2r)	2 (7m/2r)		
6	Bug #19686	428	448 (5m/5r)	3 (48m/16r)	5 (46 m/9r)		
7	Bug #21062	583 ,56	1K+, 781 (2m/2r)	604, 1 (37 m/13r)	1K+, 1K+ (20m/4r)		
			jEdit				
1	Patch #1649033	40,87,22	70, 60, 50 (8m/7r)	39, 7, 42 (22m/7r)	30, 5, 33 (26m/5r)		
2	Patch # 1469996	296	1 (37 m/36r)	289 (12m/4r)	5 (41 m/9r)		
3	Patch #1593900	7	1 (6m/4r)	1 (5m/2r)	1 (7m/2r)*		
4	Patch # 1601830	47	216 (2m/2r)	242 (9m/3r)	146 (10m/2r)		
5	Patch #1607211	354	98 (5m/5r)	3 (36 m/12r)	3 (28 m/6r)		
6	Patch # 1275607	151	238 (4m/4r)	38 (48m/16r)	35 (50m/10r)		
	,		Adempiere				
1	Patch #1605419	15 ,550	1 , 11 (8m/7r)	3, 109 (17m/5r)	1, 81 (12m/3r)		
2	Patch #1599107	122	613 (6m/3r)	1K+ (8m/2r)	1K+ (12m/2r)		
3	Patch #1599116	7	1 (3m/2r)	1 (5m/2r)	1 (7m/2r)*		
4	Patch #1612136	58	141 (4m/3r)	1 (13 m/5r)	1 (16 m/4r)		
5	Patch #1628050	52	1 (3m/3r)	2 (5m/2r)	2 (7m/2r)		

Green – IRRF retrieves results more efficiently | Yellow – IRRF retrieves a better cumulative ranking of the target methods.

^{*}IRRF performs as efficiently as the baseline

Preventing Duplicate Bug Reports by Continuously Querying Bug Reports

2019 ESE

Title: local locale problems Description: japan locale not localhost resolv localization	Title: local variable local variance p Description: japan locale not variable substit variable locking
Title: local variable in local scopes Description: variable in subs variablize some int variable	Title: local variable in procedure Description: The dupe appears local procudure procedural gene in procedure X

Fig. 1 Continuously Querying UI example whereby a user is typing in a bug report and the query results appear on the sidebar of the bug report input widget. The duplicate report that was queried is highlighted for the reader—the user interface would not this was the rts duplicate know but could use similarity scores to hide, show, or highlight certain results.

ger queries intent on finding similar bug reports, as the user types in the bug report.

EKD-BSP: Bug Report Severity Prediction by Extracting Keywords from

Fig. 2. The framework of our proposed method EKD-BSP