Lecture 25 Solutions of Equations in One Variable

Songting Luo

Department of Mathematics lowa State University

MATH 562 Numerical Analysis II

Root-finding Problem

This process involves finding a root, or solution, of an equation of the form f(x)=0, for a given function f. A root of this equation is also called a zero of the function f.

- Bisection Method
- Fixed-Point Iteration
- Newton's Method
- Müller's Method

The Bisection Method

The Bisection (Binary-search) Method

- Suppose f continuous on [a, b], and f(a), f(b) opposite signs
- By the IVT, there exists an x in (a, b) with f(x) = 0.
- Divide the interval [a, b] by computing the midpoint

$$p = (a+b)/2$$

- If f(p) has same sign as f(a), consider new interval $[p,\ b]$
- if f(p) has same sign as f(b), consider new interval $\begin{bmatrix} a, & p \end{bmatrix}$
- ullet Repeat until interval small enough to approximate x well.

The Bisection Method – Implementation

```
MATI AB Code
function p = bisection(f, a, b, tol, MaxIter)
iter = 0:
while 1
  iter = iter + 1:
  if iter > Maxter, break; end
  p = (a + b)/2;
  if p - a < tol, break; end
  if f(a) * f(p) > 0
   a=p;
  else
   b=p;
  end
```

end

Bisection Method -Termination Criteria

Termination Criteria

We select a tolerance $\epsilon > 0$ and generate p_1, \ldots, p_N until one the following conditions is met:

• Many ways to decide when to stop:

$$\begin{aligned} |p_N - p_{N-1}| &< \epsilon \\ \frac{|p_N - p_{N-1}|}{|p_N|} &< \epsilon \\ |f(p_N)| &< \epsilon \end{aligned}$$

• None is perfect, use a combination in real software.

Bisection Method - Convergence

Theorem

Suppose that $f \in C[a, b]$ and $f(a) \cdot f(b) < 0$. The Bisection method generates a sequence $\{p_n\}_{n=1}^{\infty}$ approximating a zero p of f with

$$|p_n - p| \leqslant \frac{b - a}{2^n}$$
, when $n \geqslant 1$.

Convergence Rate

The sequence $\{p_n\}_{n=1}^{\infty}$ converges to p with rate of convergence $O(1/2^n)$:

$$p_n = p + O\left(\frac{1}{2^n}\right).$$

Fixed Points

Fixed Points and Root-Finding

- A number p is a fixed point for a given function g if g(p) = p.
- Given a root-finding problem f(p) = 0, there are many g with fixed points at p:

$$g(x) = x - f(x)$$
$$g(x) = x + 3f(x)$$
...

• If g has fixed point at p, then f(x) = x - g(x) has a zero at p.

Existence and Uniqueness of Fixed Points

Theorem

- If $g \in C[a, b]$ and $g(x) \in [a, b]$ for all $x \in [a, b]$, then g has a fixed point in [a, b].
- If, in addition, g'(x) exits on (a, b) and a positive constant k < 1 exists with

$$|g'(x)| \le k, \ \forall x \in (a, b),$$

then the fixed point in [a, b] is unique.

Fixed-Point Iteration

Fixed-Point Iteration

- For initial p_0 , generate sequence $\{p_n\}_{n=0}^{\infty}$ by $p_n=g(p_{n-1})$.
- If the sequence converges to p, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} g(p_{n-1}) = g(\lim_{n \to \infty} p_{n-1}) = g(p).$$

MATLAB Code

```
function p = fixedpoint(g, p0, tol, MaxIter) iter = 0; while 1 iter = iter + 1; \text{ if } iter > \text{ MaxIter, break; end} p = g(p0); if \ abs(p-p0) < tol, \text{ break; end} p0=p; end
```

Convergence of Fixed-Point Iteration

Theorem (Fixed-Point Theorem)

Let $g \in C[a, b]$ be such that $g(x) \in [a, b]$, for all x in [a, b]. Suppose, in addition, that g' exists on (a, b) and that a constant 0 < k < 1 exists with

$$|g'(x) \leqslant k|$$
, for all $x \in (a, b)$.

Then, for any number p_0 in [a, b], the sequence defined by $p_n = g(p_{n-1})$ converges to the unique fixed point p in [a, b].

Corollary

If g satisfies the hypotheses above, then bounds for the error are given by

$$|p_n - p| \le k^n \max\{p_0 - a, b - p_0\}$$

 $|p_n - p| \le \frac{k^n}{1 - k} |p_1 - p_0|$

Newton's Method

Taylor Polynomial Derivation

Suppose $f \in C^2[a, b]$ and $p_0 \in [a, b]$ approximates solution p of f(x) = 0 with $f'(p_0) \neq 0$. Expand f(x) about p_0 :

$$f(p) = f(p_0) + (p - p_0)f'(p_0) + \frac{(p - p_0)^2}{2}f''(\xi(p))$$

Set f(p) = 0, assume $(p - p_0)^2$ neglibible:

$$p \approx p_1 = p_0 - \frac{f(p_0)}{f'(p_0)}$$

This gives the sequence $\{p_n\}_{n=0}^{\infty}$:

$$p_n = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Newton's Method – Implementation

MATLAB Code

```
function p = newton(f, df, p0, tol, MaxIter) iter = 0; while 1 iter = iter + 1; if iter > MaxIter, break; end p = p0 - f(p0)/df(p0); if abs(p - p0) < tol, break; end p0 = p; end
```

Newton's Method - Convergence

Fixed Point Formulation

Newton's method is fixed point iteration $p_n = g(p_{n-1})$ with

$$g(x) = x - \frac{f(x)}{f'(x)}$$

Theorem

Let $f \in C^2[a, b]$. If $p \in [a, b]$ is such that f(p) = 0 and $f'(p) \neq 0$, then there exists a $\delta > 0$ such that Newton's method generates a sequence $\{p_n\}_{n=1}^{\infty}$ converging to p for any initial approximation $p_0 \in [p - \delta, p + \delta]$.

Variants without Derivatives

The Secant Method

Replace the derivative in Newton's method by

$$f'(p_{n-1}) \approx \frac{f(p_{n-1}) - f(p_{n-2})}{p_{n-1} - p_{n-2}}$$

to get

$$p_n = p_{n-1} - \frac{f(p_{n-1})(p_{n-1} - p_{n-2})}{f(p_{n-1}) - f(p_{n-2})}$$

Method of False Position (Regula Falsi)

Like the Secant method, but with a test to ensure the root is bracketed between iterations.

Secant Method: MATLAB Code

```
function p = secant(f, p0,p1,tol,MaxIter)
iter = 0:
while 1
  iter = iter + 1:
  if iter > MaxIter, break; end
  ptmp = p1;
  p1 = p_1 - f(p1)(p1 - p0)/(f(p1) - f(p0))
  if abs(p1 - ptmp) < tol, break; end
  p0 = ptmp;
end
```

Order of Convergence

Definition

Suppose $\{p_n\}_{n=0}^{\infty}$ is a sequence that converges to p, with $p_n \neq p$ for all n. If positive constants λ and α exist with

$$\lim_{n \to \infty} \frac{|p_{n+1} - p|}{|p_n - p|^{\alpha}} = \lambda,$$

then $\{p_n\}_{n=0}^\infty$ converges to p of order α , with asymptotic error constant λ . An iterative technique $p_n=g(p_{n-1})$ is said to be of order α if the sequence $\{p_n\}_{n=0}^\infty$ converges to the solution p=g(p) of order α .

Special Cases

- If $\alpha = 1$ (and $\lambda < 1$), the sequence is linearly convergent
- If $\alpha = 2$, the sequence is quadratically convergent

《□》《□》《□》《□》 (□》 (□)

Fixed Point Convergence

Theorem

Let $g \in C[a, b]$ be such that $g(x) \in [a, b]$, for all $x \in [a, b]$. Suppose g' is continuous on (a, b) and that 0 < k < 1 exists with $|g'(x)| \le k$ for all $x \in (a, b)$. If $g'(p) \ne 0$, then for any number p_0 in [a, b], the sequence $p_n = g(p_{n-1})$ converges only linearly to the unique fixed point p in [a, b].

Theorem

Let p be solution of x=g(x). Suppose g'(p)=0 and g'' continuous with |g''(x)| < M on open interval I containing p. Then there exists $\delta > 0$ s.t. for $p_0 \in [p-\delta, p+\delta]$, the sequence defined by $p_n = g(p_{n-1})$ converges at least quadratically to p, and

$$|p_{n+1} - p| < \frac{M}{2}|p_n - p|^2.$$

- **イロト 4**回ト 4 直ト 4 直ト - 直 - 釣り()

Newton's Method as Fixed-Point Problem

Derivation

Seek g of the form

$$g(x) = x - \phi(x)f(x).$$

Find differentiable ϕ giving g'(p) = 0 when f(p) = 0:

$$g'(x) = 1 - \phi'(x)f(x) - f'(x)\phi(x)$$

$$g'(p) = 1 - \phi'(p) \cdot 0 - f'(p)\phi(p)$$

and g'(p) = 0 if and only if $\phi(p) = 1/f'(p)$. This gives Newton's method

$$p_n = g(p_{n-1}) = p_{n-1} - \frac{f(p_{n-1})}{f'(p_{n-1})}$$

Multiplicity of Zeros

Definition

A solution p of f(x)=0 is a zero of multiplicity m of f if for $x\neq p$, we can write $f(x)=(x-p)^mq(x)$, where $\lim_{x\to p}q(x)\neq 0$.

Theorem

 $f \in C^1[a, b]$ has a simple zero at p in (a, b) if and only if f(p) = 0, but $f'(p) \neq 0$.

Theorem

The function $f \in C^m[a,\ b]$ has a zero of multiplicity m at point p in $(a,\ b)$ if and only if

$$0 = f(p) = f'(p) = f''(p) = \dots = f^{(m-1)}(p), \text{ but } f^{(m)}(p) \neq 0$$

- 4 ロ ト 4 個 ト 4 種 ト 4 種 ト - 種 - 9 9 9 0

Variants for Multiple Roots

Newton's Method for Multiple Roots

Define $\mu(x) = f(x)/f'(x)$. If p is a zero of f of multiplicity m and $f(x) = (x-p)^m q(x)$, then

$$\mu(x) = (x - p) \frac{q(x)}{mq(x) + (x - p)q'(x)}$$

also has a zero at p. But $q(p) \neq 0$, so

$$\frac{q(p)}{mq(p) + (p-p)q'(p)} = \frac{1}{m} \neq 0,$$

and p is a simple zeros of $\mu.$ Newton's method can be applied to μ to give

$$g(x) = x - \frac{f(x)f'(x)}{[f'(x)]^2 - f(x)f''(x)}$$

◆ロ > ◆個 > ◆達 > ◆達 > ● の < で

Aitken's Δ^2 Method

Accelerating linearly convergent sequences

- Suppose $\{p_n\}_{n=0}^{\infty}$ linearly convergent with limit p
- Assume that

$$\frac{p_{n+1}-p}{p_n-p}\approx \frac{p_{n+2}-p}{p_{n+1}-p}$$

Solving for p gives

$$p \approx \frac{p_{n+2}p_n - p_{n+1}^2}{p_{n+2} - 2p_{n+1} + p_n} = \dots = p_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

• Use this for new more rapidly converging sequence $\{\hat{p}_n\}_{n=0}^{\infty}$:

$$\hat{p}_n - \frac{(p_{n+1} - p_n)^2}{p_{n+2} - 2p_{n+1} + p_n}$$

◆ロト ◆部ト ◆注ト ◆注ト 注 りへで

Delta Notation

Definition

For a given sequence $\{p_n\}_{n=0}^{\infty}$, the forward difference Δp_n is defined by

$$\Delta p_n = p_{n+1} - p_n$$
, for $n \geqslant 0$

Higher powers of the operator Δ are defined recursively by

$$\Delta^k p_n = \Delta(\Delta^{k-1} p_n), \text{ for } k \geqslant 2$$

Aitken's Δ^2 method using delta notation

Since $\Delta^2 p_n = p_{n+2} - 2p_{n+1} + p_n$, we can write

$$\hat{p}_n = p_n - \frac{(\Delta p_n)^2}{\Delta^2 p_n}, \text{ for } n \geqslant 0$$

◆ロ > ◆母 > ◆き > ・き ・ り < ②

Convergence of Aitken's Δ^2 Method

Theorem

Suppose that $\{p_n\}_{n=0}^{\infty}$ converges linearly to p and that

$$\lim_{n \to \infty} \frac{p_{n+1} - p}{p_n - p} < 1$$

Then $\{\hat{p}_n\}_{n=0}^{\infty}$ converges to p faster that $\{p_n\}_{n=0}^{\infty}$ in the sense that

$$\lim_{n \to \infty} \frac{\hat{p}_n - p}{p_n - p} = 0$$

Steffensen's Method

Accelerating fixed-point iteration

Aitken's Δ^2 method for fixed-point iteration gives

$$p_0, p_1 = g(p_0), p_2 = g(p_1), \hat{p}_0 = \{\Delta^2\}(p_0),$$

$$p_3 = g(p_2), \hat{p}_1 = \{\Delta^2\}(p_1), \dots$$

Steffensen's method assumes \hat{p}_0 is better than p_2 :

$$p_0^{(0)}, p_1^{(0)} = g(p_0^{(0)}), p_2^{(0)} = g(p_1^{(0)}), p_0^{(1)} = \{\Delta^2\}(p_0^{(0)}), p_1^{(1)} = g(p_0^{(1)}), \dots$$

Theorem

Suppose x=g(x) has solution p with $g'(p) \neq 1$. If exists $\delta>0$ s.t. $g \in C^3[p-\delta,\ p+\delta]$, then Steffensen's method gives quadratic convergence for $p_0 \in [p-\delta,\ p+\delta]$.

- ◀ㅁ▶ ◀륨▶ ◀툴▶ ★툴▶ · 틸 · 쒸٩ⓒ

Steffensen's Method – Implementation

```
MATI AB Code
function p = steffensen(g,p0,tol,MaxIter)
iter = 0:
while 1
  iter = iter + 1:
  if iter > MaxIter, break: end
  p1 = q(p0);
  p2 = q(p1);
  p = p0 - (p1 - p0)^2/(p2 - 2 * p1 + p0):
  if abs(p-p0) < tol, break; end
  p0 = p;
end
```

Zeros of Polynomials

Polynomial

A polynomial of degree n has the form

$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + x_0$$
 with coefficients a_i and $a_n \neq 0$.

Theorem (Fundamental Theorem of Algebra)

If P(x) polynomial of degree $n \ge 1$, with real or complex coefficients, P(x) = 0 has at least one root.

Corollary

• Exists unique x_1, \ldots, x_k and m_1, \ldots, m_k , with $\sum_{i=1}^k m_i = n$ and

$$P(x) = a_n(x - x_1)^{m_1}(x - x_2)^{m_2} \cdots (x - x_k)^{m_k}.$$

• P(x), Q(x) polynomials of degree at most n. If $P(x_i) = Q(x_i)$ for i = 1, 2, ..., k, with k > n, then P(x) = Q(x).

Horner's Method

Theorem (Horner's Method)

Let
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$$
. If $b_n = a_n$ and

$$b_k = a_k + b_{k+1}a_0$$
, for $k = n - 1, n - 2, \dots, 1, 0$,

then $b_0 = P(x_0)$. Moreover, if

$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \ldots + b_2 x + b_1,$$

then
$$P(x) = (x - x_0)Q(x) + b_0$$
.

Computing Derivatives

Differentiation gives

$$P'(x) = Q(x) + (x - x_0)Q'(x)$$
, and $P'(x_0) = Q(x_0)$

4日 > 4日 > 4目 > 4目 > 目 り9○

Horner's Method – Implementation

MATLAB Code function [y, z] = horner(a,x)n = length(a) - 1;y = a(1);z=a(1);for i=2:ny = x*y+a(j);z = x*z+y;end y = x*y+a(n+1);

Deflation

Deflation

• Compute approximate root \hat{x}_1 using Newton. Then

$$P(x) \approx (x - \hat{x}_1)Q_1(x).$$

- Apply recursively on $Q_1(x)$ until the quadratic factor $Q_{n-2}(x)$ can be solved directly
- Improve accuracy with Newton's method on original P(x).

Müller's Method

Müller's Method

- Similar to the Secant method, but parabola instead of line
- Fit quadric polynomial $P(x) = a(x p_2)^2 + b(x p_2) + c$ that passes through $(p_0, f(p_0)), (p_1, f(p_1)), (p_2, f(p_2))$.
- Solve P(x) = 0 for p_3 , choose root closest to p_2 :

$$p_3 = p_2 - \frac{2c}{b + sgn(b)\sqrt{b^2 - 4ac}}$$

- Repeat until convergence
- Relatively insensitive to initial p_0, p_1, p_2 , but e.g., $f(p_i) = f(p_{i+1}) = f(p_{i+2}) \neq 0$ gives problem.