Midterm Exam

ARTIFICIAL INTELLIGENCE

Class: KSTN 2003 Questions: 3 – Total mark: 10 – Time: 60 minutes Open book

Ouestion 1 (4 marks):

Consider the water jug problem: "You are given two jugs, a 4-litre one and a 3-litre one. Neither has any measuring markers on it. There is a pump that can be used to fill the jugs with water. How can you get exactly 2 litres of water into one of the two jugs".

This problem could be solved using a modified Simple Hill Climbing method as follows:

- A goal state is one where the amount of water in either jug is exactly 2. So one can apply the heuristic function f((x, y)) = |x 2| + |y 2|, where x and y represent the amounts of water in the 4-litre and the 3-litre jugs, respectively. The idea is that the closer to 2 the amount of water in either of the two jugs is, the closer to the goal it would be.
- Keep moving for a few steps when getting in the plateau situation.

Illustrate how the method works via search tree expansion.

Question 2 (4 marks):

Represent the following sentences in predicate logic, using your defined vocabulary:

- Every student who takes AI passes it.
- No student likes a boring course.
- There was a student who took Philosophy but failed it.
- All students like courses instructed by a PhD holder.
- The birthplace of a person is where he/she was born.
- A person whose mother or father is a Vietnamese citizen is also Vietnamese citizen.
- A Vietnamese citizen cannot hold another citizenship.
- No one working for the United Nations can hold a citizenship.

Question 3 (2 marks):

Express the meanings of the following predicate logic formulas in English naturally:

- $\forall x$: student(x) → $\exists y$: course(y) \land ¬likes(x, y).
- $\forall x \forall y$: student(x) \land course(y) \land takes(x, y) \rightarrow interesting(y) \lor easy(y).

where student(x) $\equiv x$ is a student, course(y) $\equiv y$ is a course, likes(x, y) $\equiv x$ likes y, takes(x, y) $\equiv x$ takes y, interesting(y) $\equiv y$ is interesting, easy(y) $\equiv y$ is easy.

----- End -----