Journal club:

Correcting methods of Stratification of population in genome-wide association studies

Safia Safa-tahar-henni

Review

February 2, 2018

Safia Safa-tahar-henni Journal Club February 2, 2018 1/16

Overview

- Introduction
 - Context
 - Corrects population stratification in GWAS
 - Genomic Control
 - Structured association
 - Principal components analysis
 - Linear mixed model

Safia Safa-tahar-henni Journal Club February 2, 2018 2 / 16

Context

Genome-wide association studies (GWAS) have become routine for unraveling the genetic variants underlying complex phenotypes in humans and many other species.

Population stratification(PS):

Allele frequency differences between cases and controls due to systematic ancestry differences.

Safia Safa-tahar-henni Journal Club February 2, 2018 3 / 16

Context (2)

The effects of stratification vary in proportion to the number of samples.

Corrects population stratification in GWAS

Problem: Population stratification often produces spurious genetic associations.

Safia Safa-tahar-henni Journal Club February 2, 2018 5 / 16

Genomic Control

Theory:

Adjusting association statistics at each marker by a uniform overall inflation factor (λ).

Used to test the association with a test of χ^2_1

Test statistic $=\chi^2$ Pearson test or Cochran-Armitage trend test (Y^2).

Safia Safa-tahar-henni Journal Club February 2, 2018 6/16

Genomic Control (2)

Theory:

Without stratification:

 \bullet the test statistic follows a distribution of χ^2_1

With stratification:

• the test statistics : $Y^2 \sim \lambda \chi_1^2$.

In GWAS, $\lambda =$

- the median of all the χ^2_{obs} statistics $\div 0,4549$ (the median of the χ^2_1 distribution),
- or average value of all the χ^2_{obs} statistics .

Safia Safa-tahar-henni Journal Club February 2, 2018 7 / 16

Genomic Control (3)

Disadvantage:

Some markers differ in their allele frequencies across ancestral populations more than others.

Uniform adjustment may be:

- insufficient at markers having unusually strong differentiation across ancestral populations
- superfluous at markers devoid of such differentiation,

 \Rightarrow Loss in power.

Structured association

• Theory:

Assign the samples to discrete subpopulation clusters (STRUCTURE program) and then aggregates evidence of association within each cluster.

- Disadvantage:
 - intensive computational cost on large data sets.
 - assignments of individuals to clusters are highly sensitive to the number of clusters (not well defined)

Principal components analysis

- Principal components analysis (PCA)
 - \rightarrow EIGENSTRAT (Price & al.)

- (a) Principal components analysis
- (b) Ancestry adjustment
- (c) Association statistic

Safia Safa-tahar-henni Journal Club February 2, 2018 10 / 16

Principal components analysis (2)

Correcting for stratification using continuous axes of variation has several advantages:

- Provide the most useful description of within-continent genetic variation
- ullet Continuous axes orthogonal o results are insensitive to the number of axes inferred
- Computationally tractable on a genome-wide scale.

Safia Safia-tahar-henni Journal Club February 2, 2018 11/16

Principal components analysis (3)

- Multidimensional scaling (MDS):
 - Li Q & al extension of EIGENSTRAT [Price et al.]:
 - multidimensional scaling (MDS)
 - clustering analysis

Advantage:

- requires a smaller number of markers
- gives a more appropriate correction for the stratification of the population.

Principal components analysis (4)

Robust PCA based on resampling by half means (RPCA-RHM):
 Detect outliers by studying the distribution of observation vector lengths obtained by sampling without replacement from the original data set.

Principal components analysis (5)

Robust PCA based on the projection pursuit (RPCA-PP)

Projecting multivariate data on a lower-dimensional subspace.

C. Croux & al demonstrate that the currently available algorithm performs poor in the presence of many variables.

Safia Safa-tahar-henni Journal Club February 2, 2018 14 / 16

Linear Mixed Model (LMM)

Use pairwise genetic relationships among individuals with abundant genotype data.

A standard MLM for GWAS:

$$Y = Wv + X\beta + Zu + e$$

Hyunju Ryoo & all study suggests an underestimated heritability in GWAS upon using the mixed model methodology with an excessively larger number of variants versus causal variants.

Safia Safa-tahar-henni Journal Club February 2, 2018 15 / 16

Thank you for your attention

Safia Safa-tahar-henni Journal Club February 2, 2018 16 / 16