复旦大学数学科学学院 2013~2014 学年第一学期期末考试试卷 A 卷

课程名称:_	高等数学 B (上)				课程代码: <u>MATH120003_</u>			
开课院系:_	数学科学学院				考试形式:闭卷			
姓 名:	学 号:				专业:			
题 号	1	2	3	4	5	6	总 分	
得 分								

- 1. (本题满分48分,每小题6分)计算下列各题:
- (1) 设 $y = \cos(\ln x)$, 求 y'';

(2) 求极限
$$\lim_{x\to 0} \frac{x-\sin x}{x^3}$$
;

(3) 求函数 $f(x) = \frac{\ln^2 x}{x}$ 的单调区间和极值;

(4) 求曲线 $y = \ln(x + \sqrt{x^2 + 1})$ 的拐点;

(5) 求不定积分 $\int e^x \cos(2e^x) dx$;

(6) 计算反常积分 $\int_0^{+\infty} e^{-x} \sin x dx$;

(7) 问矩阵 $A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ 2 & -2 & 1 \end{pmatrix}$ 是否可逆? 若可逆, 求其逆矩阵;

(8) 已知一平面过点 (0, 2, 1) 和 (1, 0, 2),且与平面 2x + y - 5z = 0 垂直,求该平面的方程。

2. (本题满分 10 分)设 $f(x) = \begin{cases} x^2, & x \in [0,1), \\ 2x, & x \in [1,2]. \end{cases}$ 求 $F(x) = \int_0^x f(t)dt$ 在 [0,2]上的表达式,并讨论 F(x) 在 x = 1点的可导性。

- 3. (本题满分 12 分) 已知右半平面上的曲线 $L: y = x^3 3x$ (x > 0)。
 - (1) 确定常数b, 使得y = 9x + b是曲线L的切线;
 - (2) 求(1) 中得到的L的切线、x轴及L所围图形的面积。

4. (本题满分 10 分) 讨论方程 $x \ln x = a$ 有几个实根。

5. (本题满分 10 分)已知在 $(-\infty, +\infty)$ 上具有二阶连续导数的函数 f(x)满足方程

$$x^2 f''(x) - 3xf'(x) = e^x + e^{-x} - 2$$
,

若 f(x) 在 x = a 处取极值,问 f(a) 是函数 f(x) 的极大值还是极小值?请说明理由。

6. (本题满分 10 分) (1) 求
$$\int_0^\pi \frac{1}{1+\cos^2 x} dx$$
 和 $\int_0^\pi \frac{\sin^2 x}{1+\cos^2 x} dx$;

(2) 证明
$$\lim_{x \to +\infty} \frac{\int_0^x \frac{\sin^2 t}{1 + \cos^2 t} dt}{\int_0^x \frac{1}{1 + \cos^2 t} dt} = 2 - \sqrt{2}$$
.