Лабораторная работа № 11

<u>Проверка второго закона Ньютона при равномерном движении по</u> окружности.

Цель: Рассчитайте величину ускорения, с которым движется тело по окружности под действием постоянной по модулю силы.

Оборудование: динамометр, оборудованный для измерения силы упругости нити, на которой тело движется по окружности; весы; грузы (болт и гайка); прочная нить; линейка ученическая.

Содержание и метод выполнения работы.

Ускорение \vec{a} тела прямо пропорционально действующей силе \vec{F} обратно пропорционально массе m этого тела:

$$\vec{a} = \frac{\vec{F}}{m} \quad (1)$$

Модуль центростремительного ускорения в этом случае равен: $a = \frac{V^2}{R}$ (2)

Если измерить период T обращения тела, то формула для расчёта ускорения примет вид: $a = \frac{\left(\frac{2\pi R}{T}\right)^2}{R} = \frac{4\pi^2}{T^2}R$ (3)

Если сравнить выражение (1) с кинематической формулой (3), то можно вычислить ускорение тела, движущегося по окружности.

Порядок выполнения работы.

В качестве тела в этой работе используется болт, а для увеличения массы на него можно наворачивать гайку.

- 1. Измерьте массу болта m_1 и массу болта с навёрнутой на него гайкой m_2 с помощью весов.
- 2. Приведите болт во вращательное движение в горизонтальной плоскости над полом, держа динамометр за верхнюю часть (рис 1). Добейтесь того, чтобы показания динамометра были равны $2\ H$.

- 3. Измерьте время t_I , за которое болт совершит n=20 оборотов по окружности. Рассчитайте период T обращения болта по окружности радиуса R_I : $T_I = \frac{t_1}{n}$
- 4. Радиус окружности R это длина нити от конца трубки до центра масс болта. R_1 и R_2 нужно измерять, вытянув нить из трубки для показаний динамометра $2\,H$ и $3,5\,H$ соответственно.

Рассчитайте ускорение болта по второму закону Ньютона (1) и ускорение болта по результатам эксперимента: $a_1=\frac{4\pi^2}{T_1^2}R_1$

- 5. Повторите опыт с тем же болтом, но при такой скорости движения, при которой сила упругости нити равна 3,5 H. Измерьте при этом R_2 .
- 6. Повторите опыт, навернув на болт гайку (масса системы m_2), поддерживая скорость движения такой, чтобы сила упругости нити была равна 3,5H. Рассчитайте для этого опыта значения ускорения по формулам: $a_2 = \frac{F}{m_2}$ и $a_2 = \frac{4\pi^2}{T_2^2} R_2$.
- 7. Обоснуйте, для всех проведенных экспериментов, границы пренебрежения действием силы тяжести на результаты в рамках данной модели.
- 8. Оцените погрешности и постройте доверительный интервал для теоретического и экспериментального ускорения.

No	т ,кг	F, H	a_{T} , $\mathrm{M/c^2}$	t, c	n	T, c	R , м	a_3 , M/c ²

Контрольные вопросы

- Как в настоящей работе измеряется сила, действующая на болт?
- Как определяется ускорение тела, движущегося равномерно по окружности?
- Почему при выполнении экспериментов осуществлялось вращение болта в горизонтальной плоскости, а не в вертикальной?