McGill University Department of Mathematics and Statistics T. Hoheisel

MATH 417/487 - Mathematical Programming

Homework Set No. 5 - hints for soulution

5.1 We first transform the given LP in standard form:

$$\min \ c^T x \quad \text{s.t.} \quad Ax = b \quad \Longleftrightarrow \quad \min \ \begin{pmatrix} c \\ -c \end{pmatrix}^T \begin{pmatrix} x^+ \\ x^- \end{pmatrix} \quad \text{s.t.} \quad [A, -A] \begin{pmatrix} x^+ \\ x^- \end{pmatrix} = b, \ \begin{pmatrix} x^+ \\ x^- \end{pmatrix} \ge 0.$$

The dual of this LP in standard form is given by

$$\max b^T y \quad \text{s.t.} \quad \binom{A^T}{-A^T} y \leq \binom{c}{-c},$$

which can be simplified to

$$\max b^T y$$
 s.t. $A^T y = c$.

- **5.2** a) If (P) is unbounded, i.e. $\inf(P) = -\infty$ there exists $\{x_k\}$ with x_k feasible (P) $k \in \mathbb{N}$) and $c^T x_k \to -\infty$. Due to the weak duality theorem (Th. 2.5.1) there hence cannot exist a point $y \in \mathbb{R}^m$ feasible for (D).
 - b) Analogous to a).

We have

	$\inf(P) = -\infty$	$\inf(P) \in \mathbb{R}$	$\inf(P) = +\infty$
$\sup(D) = -\infty$	\checkmark^{α}	$\times^{i)}$	$\checkmark^{\delta)}$
$\sup(D) \in \mathbb{R}$	$\times^{ii)}$	\checkmark^{β}	$\times^{iii)}$
$\sup(D) = +\infty$	$\times^{iv)}$	$\times^{v)}$	$\checkmark^{\gamma)}$

- i) Since $\inf(P) \in \mathbb{R}$, by Theorem 2.5.7, (P) has a solution. By the strong duality theorem also (D) has a solution, in particular a feasible point.
- ii) Follows from a).
- iii) Analogous to i).
- iv) Follows from a) and b), resp.
- v) Follows from b).

 α) Choose $A = (0 1), b = 0, c = (-1, 1)^T$. then

(P)
$$\min -x_1 + x_2$$
 s.t. $x_2 = 0, x_1, x_2 \ge 0$

is unbounded (choose the sequence $\{x^k\} = \{(k,0)\}$). In turn,

(D)
$$\max 0 \cdot y$$
 s.t. $0 \cdot y \le -1, y \le 1$

has no feasible point.

 β) Choose $A = (0,1), b = 1, c = (1,1)^T$. Then

(P)
$$\min x_1 + x_2$$
 s.t. $x_2 = 1, x_1, x_2 \ge 0$

has the solution $\bar{x} = (0,1)^T$ and

(D)
$$\max y$$
 s.t. $y \le 1$

has the solution $\bar{y} = 1$.

 γ) Choose $A = (0,1), b = -1, c = (1,1)^T$.

(P)
$$\min x_1 + x_2 \mid x_2 = -1, \ x_1, x_2 \ge 0$$

is infeasible.

$$(D) \quad \max -y \mid y \le 1$$

is unbounded (choose $\{y^k\} = \{-k\}$).

 δ) Choose $A = (0,1), b = -1, c = (-1,1)^T$.

(P)
$$\min -x_1 + x_2$$
 s.t. $x_2 = -1, x_1, x_2 \ge 0$

is infeasible. This holds also for

(D)
$$\max -y$$
 s.t. $0 \cdot y \le -1, y \le 1$.

5.3 By (3.11) and (3.14) in the notes and the fact that and $x_J \geq 0$ we have $z(t) \geq 0$ for all $t \geq 0$, i.e., by its construction z(t) is feasible for (P) for all $t \geq 0$. By (3.12), for the corresponding ojective values, we observe that

$$c^T z(t) = c^T x + t u_r \quad (t \ge 0).$$

By assumption (3.10) we hence have

$$\inf(P) \le \inf_{t>0} c^T z(t) = -\infty,$$

i.e. (P) is unbounded.

5.4 First we compute y by equation (3.6) in the notes and obtain $y = (0, 0, -2, 0)^T$. Then (3.7) gives $u_2 = -3$, $u_3 = -4$, $u_6 = 2$. For $r \in K$ we may hence choose r = 3 or r = 2.

Choosing r=3 the vector d determined by the linear system (3.13) is given by $d=(0,1,1,1)^T$. The scalars \hat{t} and s determined by (3.18) then read $\hat{t}=2, s=4$. Hence we obtain

$$\hat{J} = \{1, 3, 5, 7\}, \quad \hat{x} = (2, 0, 2, 0, 4, 0, 1)^T, \quad c^T \hat{x} = c^T x - 8 = -12.$$

Choosing r = 2, in turn, gives $d = (0, 1, 3, 0)^T$ and $\hat{t} = 2$ as well as s = 4 or s = 5. This nonuniqueness in the choice of s leads to degeneracy of \hat{x} ! For s = 4 we obtain

$$\hat{J} = \{1, 2, 5, 7\}, \quad \hat{x} = (2, 2, 0, 0, 0, 0, 3)^T, \quad c^T \hat{x} = c^T x - 6 = -10.$$

Choosing s=5 leads to the same basic feasible point \hat{x} , with a different index set $\hat{J}=\{1,4,\underline{2},7\}.$