Problem Set 8: Complex Numbers

Goal: Become familiar with math operations using complex numbers; see how complex numbers can be used to show the frequency response of an RC circuit.

Note: This PSet will be much easier if you have already watched the lectures on complex numbers.

0

Deliverable: This worksheet and two plots.

Part I: Basic Operations with complex numbers

For the following, take $z_1 = 1 + j$ and $z_2 = -3 + 4j$.

- 1. Convert z_1 and z_2 to polar and exponential notation (find r, θ).
- Plot z₁ and z₂ on the complex plane below.

- 1434-3143
- 3. Compute $z_1 + z_2$. Show $z_1 + z_2$, graphically on a plot in the complex plane from 2.

5;-

 $(x_1)^2 \cdot 3^2 \cdot 4$. Compute $z_1 \cdot z_2$. Show $z_1 \cdot z_2$. graphically on a plot in the complex plan from 2.

-2-30

5. Compute z_1z_2 . Repeat the computation using a different notation. (1+))(-3+4j)

3-7

3+4j-3j+4

Compute ²¹/₂₂ using complex notation. Compute ²²/₂₁ and compare.

7. Compute z_1^4 (a_1, a_2) (a_1, a_2)

Problem set 8

- 17 (2) (2) Page 1
- 71-1 -71 + 1 7 Total Pages:

