# Lacuna Dev Ingresso

## 1. Introdução

Lacuna Software acaba de iniciar um ramo fictício: Lacuna Genetics

Para melhorar nossa pesquisa e poder de computação, decidimos distribuir algumas operações de computação.

Seu trabalho é seguir a documentação abaixo e criar um programa C# .NET que se comunique com nossas APIs e nos ajude a concluir as operações de DNA.

Depois de se inscrever no teste, você tem 7 dias para concluí-lo.

Depois de concluído, envie-nos seu projeto final em arquivo ZIP e seu Currículo (Currículo) para admissions@lacunasoftware.com.

Se você tiver alguma dúvida durante o teste, entre em contato conosco pelo mesmo endereço de e-mail.

Nota: Isto não é uma corrida! Certifique-se de mostrar suas habilidades de codificação, conhecimento sobre modularização, serialização de dados e reutilização de código. Divirta-se!

### 2. Inscreva-se

Você precisará lidar com informações ultrassecretas, então o primeiro passo é criar um usuário no sistema e solicitar um AccessToken para comunicação com as APIs autenticadas.

Base address: https://gene.lacuna.cc/

#### 2.1. Criar usuário

```
'[POST] /api/users/create'
Request body
{
    // Allowed a-z, A-Z and 0-9 chars only
    // Min size 4 chars and max size 32 chars
    username: string,

    // Your email address so we are able to contact you
    email: string,

    // Min size 8 chars
    password: string //
}

Response
{
    code: string, // ['Success', 'Error']
    message?: string
}
```

#### 2.2 Solicitar token de acesso

```
'[POST] /api/users/login'
Request body
{
   username: string,
   password: string
}

Response
{
   accessToken?: string,
   code: string,// ['Success', 'Error']
   message?: string
}
```

Se tudo estiver OK, você receberá um Successcódigo de resposta e uma AccessTokenstring. O token de acesso deve ser usado no Authorizationparâmetro Header como um esquema de token de portador OAuth.

O token de acesso é válido por 2 minutos, se expirado as APIs autenticadas retornarão um Unauthorizedcódigo de resposta com a mensagem: "Bad token: token is expired", será necessário solicitar um novo.

## 3. Revisão rápida da biografia

O DNA é uma estrutura composta por uma hélice de fita dupla. As duas fitas são conectadas por pontes de hidrogênio e cada extremidade da ligação possui uma nucleobase. As possíveis nucleobases do DNA são A denina, C itosina, G uanina e T umina, de forma que A sempre pareia com T e C sempre pareia com G



#### 3.1. fitas de DNA

Para este experimento fictício , consideramos a fita principal como a fita molde, *ou seja* , a fita que é usada para transcrever o RNA. Também para este experimento, os segmentos da fita principal apresentados sempre começarão com a sequência de nucleobases: CAT , então é uma tarefa simples diferenciar a fita molde da fita complementar ou computar uma da outra apenas invertendo os pares de nucleobases.



## 4. Codificação de DNA

Você deve esperar segmentos de fita de DNA codificados em formatos binários e de string:

#### 4.1. Formato binário

É o formato curto usado para melhor transmissão de dados e desempenho de armazenamento. Neste formato, as nucleobases são codificadas em matrizes de 2 bits:

```
A: 0b00 C: 0b01
T: 0b11 G: 0b10
```

#### 4.2. Formato de string

Usado para uma melhor compreensão humana. Neste formato, as nucleobases são codificadas como seu char: "catcgtcaggactcagtccatcttaactactaaactc..."

### 4.3. Exemplo de codificação

Exemplo de codificação de string para formato binário:

```
String: "CATCGTCAGGAC"
Bits: 0b010011011011010010100001
Byte[]: [0x4D, 0xB4, 0xA1] // notice the bits to byte conversion is Big-Endian
Base64: "TbSh"
```

## 5. Operações

#### 5.1. Solicitar um trabalho

```
Base address: https://gene.lacuna.cc/
```

```
'[GET] /api/dna/jobs'
Header
 Authorization = 'Bearer <AccessToken>' // <AccessToken> aquired on 2.2
Response
  job?: {
   // Job id
   id: string,
    // Operation types ['DecodeStrand', 'EncodeStrand', 'CheckGene']
    type: string,
    // Strand in String format. Non-null when operation type 'EncodeStrand'
    strand?: string,
    // Strand in the Binary format Base64 encoded. Non-null when operation
types 'DecodeStrand' and 'CheckGene'
    strandEncoded?: string,
    // A gene segment in the Binary format Base64 encoded. Non-null when
operation type 'CheckGene'
   geneEncoded?: string
 code: string, // ['Success', 'Error', 'Unauthorized']
 message?: string
```

Se tudo estiver OK, você receberá um objeto de trabalho com o trabalho id, a operação typee os parâmetros de operação que você poderá resolver da seguinte maneira.

#### 5.2. Operação de decodificação de fita

Se você receber uma 'DecodeStrand'operação, o trabalho é pegar o strandEncodedparâmetro, que é uma string Base64 da vertente no formato Binário, e decodificá-lo para o formato String de acordo com a sessão 4.

Para esta operação deverá enviar a resposta para:

```
'[POST] /api/dna/jobs/{id}/decode'
URL Parameters
  id // The Job id

Header
  Authorization = 'Bearer <AccessToken>' // <AccessToken> aquired on 2.2

Request body
```

```
// Decoded strand in String format
strand: string,
}

Response
{
   code: string, // ['Success', 'Error', 'Fail', 'Unauthorized']
   message?: string
}
```

#### 5.3. Codificar operação de fita

Se você receber uma 'EncodeStrand'operação, o trabalho é pegar o strandparâmetro, que é a vertente no formato String, e codificá-lo para o formato Binário de acordo com a sessão 4.

Para esta operação deverá enviar a resposta para:

```
'[POST] /api/dna/jobs/{id}/encode'
URL Parameters
  id // The Job id

Header
  Authorization = 'Bearer <AccessToken>' // <AccessToken> aquired on 2.2

Request body
{
    // Encoded strand in Binary format Base64
    strandEncoded: string,
}

Response
{
    code: string, // ['Success', 'Error', 'Fail', 'Unauthorized']
    message?: string
}
```

#### 5.4. Verifique a operação do gene

Se você receber uma 'CheckGene'operação, o trabalho é dizer se um determinado gene está ou não ativado na cadeia de DNA recuperada. Ambos os genes e fitas de DNA são recuperados em formatos binários.

Para este experimento, um gene é considerado ativado se mais de 50% de seu conteúdo estiver presente na fita molde do DNA. Ex:

Gene:

#### TACCGCTTCATAAACCGCTAGACTGCATGATCGGGT

Cadeia modelo de DNA:

CATCTCAGTCCTACTAAACTCGCGAAGCTCATACTAGCTACTAAACCGCTAGACTGCATGATCGCATAGCTACGCTACGCT

No exemplo acima, mais de 50% do gene (~63% do gene) está presente na fita molde, portanto, neste caso, o gene é considerado ativado .

OBSERVAÇÃO: Observe que a comparação do gene deve ser aplicada sobre a fita molde do DNA. Portanto, você precisa verificar de acordo com a sessão 3.1 se a fita recuperada é o modelo ou a complementar e computar uma à outra, se necessário, antes de procurar a presença de segmentos gênicos.

Para esta operação deverá enviar a resposta para:

```
'[POST] /api/dna/jobs/{id}/gene'
URL Parameters
  id // The Job id

Header
  Authorization = 'Bearer <AccessToken>' // <AccessToken> aquired on 2.2

Request body
{
    // Whether or not the gene is activated in the template strand
    isActivated: boolean,
}

Response
{
    code: string, // ['Success', 'Error', 'Fail', 'Unauthorized']
    message?: string
}
```

## 6. Comentários finais

Não há conhecimento que não seja poder

Tenha um teste divertido!!