Upper Triangular Matrices

Definition: Upper Triangular Matrix

To say that a matrix A is upper triangular means:

$$i > j \implies a_{ij} = 0$$

In particular, a diagonal matrix is upper triangular.

The set of all $n \times n$ upper triangular matrices is denoted by UT(n).

Properties: Upper Triangular

Let $A, B \in UT(n)$:

- 1). $cA \in UT(n)$
- 2). $A + B \in UT(n)$
- 3). $AB \in UT(n)$
- 4). $adj(A) \in UT(n)$
- 5). A invertible $\implies A^{-1} \in UT(n)$

Theorem

Let $T \in UT(n)$ such that T has distinct diagonal entries and AT = TA:

$$A \in UT(n)$$

Proof

Proof by induction on n.

Base case: n = 1

 1×1 matrices are by definition UT, so nothing to prove.

Assume true for n-1

Let $A=\begin{bmatrix}A_{11}&A_{12}\\A_{21}&A_{22}\end{bmatrix}$, where $A_{11}\in M_{n-1}$ and let $T=\begin{bmatrix}T_{11}&T_{12}\\0&T_{22}\end{bmatrix}$, where $T_{11}\in UT(n-1)$ and T_{11} and T_{22} have distinct diagonal entries.

$$AT = TA$$

$$\begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix} \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix} = \begin{bmatrix} T_{11} & T_{12} \\ 0 & T_{22} \end{bmatrix} \begin{bmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{bmatrix}$$

$$\begin{bmatrix} * & * \\ A_{21}T_{11} & * \end{bmatrix} = \begin{bmatrix} * & * \\ A_{21}T_{22} & * \end{bmatrix}$$

$$A_{21}T_{11} = T_{22}A_{21}$$