

Congratulations! You passed!

False

Grade received 90% Latest Submission Grade 90% To pass 80% or higher

Retake the assignment in 23h 27m

Go to next item

ı.	What is the "cache" used for in our implementation of forward propagation and backward propagation?	1/1 point
	We use it to pass variables computed during backward propagation to the corresponding forward propagation step. It contains useful values for forward propagation to compute activations.	
	It is used to keep track of the hyperparameters that we are searching over, to speed up computation.	
	It is used to cache the intermediate values of the cost function during training.	
	\odot We use it to pass Z computed during forward propagation to the corresponding backward propagation step. It contains useful values for backward propagation to compute derivatives.	
	_∠ ⁿ Expand	
	correct Correct, the "cache" records values from the forward propagation units and are used in backward propagation units because it is needed to compute the chain rule derivatives.	
2.	During the backpropagation process, we use gradient descent to change the hyperparameters. True/False?	1/1 point
	○ True	
	False	
	∠ [™] Expand	
	© correct Correct. During backpropagation, we use gradient descent to compute new values of \$\$W^{[[1]}\$\$ and \$\$b^{[1]}\$\$. These are the parameters of the network.	
3.	Which of the following is more likely related to the early layers of a deep neural network?	1/1 point
	∠ ⁷ Expand	
	 Correct Yes. The early layer of a neural network usually computes simple features such as edges and lines. 	
4.	$\label{lower} \textit{Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2,, L. True/False?}$	1/1 point
	○ True	

_		
	78	_
	-	Evnand
	1	Expand

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($\$\$a^{[2]} = g^{[2]}(z^{[2]})\$\$$, $\$\$z^{[2]} = W^{[2]}a^{[1]}+b^{[2]}\$\$$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($\$\$a^{[1]} = g^{[1]}(z^{[1]})\$\$$, $\$\$z^{[1]} = W^{[1]}a^{[1]}+b^{[1]}\$\$$, ...).

5. Assume we store the values for $n^{[l]}$ in an array called layer_dims, as follows: layer_dims = $[n_x n, 4, 3, 2, 1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units, and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

0/1 point

- for i in range(1, len(layer_dims)/2):

 parameter['W' + str(i)] = np.random.randn(layer_dims[i], layer_dims[i-1]) * 0.01

 parameter['b' + str(i)] = np.random.randn(layer_dims[i], 1) * 0.01
- for i in range(len(layer_dims)-1): parameter['W' + str(i+1)] = np.random.randn(layer_dims[i+1], layer_dims[i]) * 0.01 parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01
- for i in range(len(layer_dims)-1): parameter['W' + str(i+1)] = np.random.randn(layer_dims[i], layer_dims[i+1]) * 0.01 parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01
- for i in range(len(layer_dims)):

 parameter['W' + str(i+1)] = np.random.randn(layer_dims[i+1], layer_dims[i]) * 0.01

 parameter['b' + str(i+1)] = np.random.randn(layer_dims[i+1], 1) * 0.01

(X) Incorrect

No. This gives the $\$ the \$\$W^{[l]}\$\$ the wrong shape (\$\$n^{[l]}\$\$, \$\$n^{[l+1]}\$\$).

6. Consider the following neural network.

How many layers does this network have?

- \bigcirc The number of layers L is 5. The number of hidden layers is 4.
- igcup The number of layers ${\it L}$ is 3. The number of hidden layers is 3.
- \bigcirc The number of layers \underline{L} is 4. The number of hidden layers is 4.
- \bigcirc The number of layers L is 4. The number of hidden layers is 3.

✓ Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

	$oxed{U}^{[2]}$ will have shape (3, 4)	
	$b^{[1]}$ will have shape (4, 1)	
	$igwedge W^{[1]}$ will have shape (3, 4)	
	\checkmark Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.	
	$mec{W}^{[2]}$ will have shape (4, 3)	
	\checkmark Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.	
	$oxed{ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
~ N	Expand	
⊘ co	prrect reat, you got all the right answers.	
10. In the g	eneral case if we are training with m examples what is the shape of $A^{[l]}$?	1/1 point
	\bigcirc $(n^{[l+1]}, m)$	
	\bigcirc $(m \ n^{[l+1]})$	
	\bigcirc $(n^{[l]}, m)$	
	$\bigcap (m n^{[l]})$	
× 7 1	Expand	
⊘ co Ye	orrect es. The number of rows in \$\$A^{[1]}\$\$ corresponds to the number of units in the I-th layer.	