CD: COMPILER DESIGN SPM: UNIT-1 18/09/2022

18 SEPTEMBER 2022 / IT-3rd year, Vth semester FALL SEMESTER, YEAR (Vth, 3rd)
FALL SESSION (2021-23)
(CD)
MS. SHWETA TIWARI
Published: SEPTEMBER 18, 2022

PREPARED FOR

Engineering Students
All Engineering College

CD: COMPILER DESIGN

TOPIC On: UNIT-1 LEXICAL ANALYZER | Thompson method | RE TO NFA | NFA TO DFA

By SHWETA TIWARI

Under On: INTRODUCTION TO COMPILER

TOPIC On: UNIT-1 LEXICAL ANALYZER | Thompson method | RE TO NFA | NFA TO DFA

Regular expression to NFA using Thompson's rule

- ☐ Regular expression to NFA (Thompson's construction)
- 1. For ∈, construct the NFA

2. For a in Σ , construct the NFA

☐ Regular expression to NFA (Thompson's construction)

3. For regular expression s|t or (s+t)

For Example: (a|b) or (a+b)

☐ Regular expression to NFA (Thompson's construction)

4. For regular expression st

For Example: ab

☐ Regular expression to NFA (Thompson's construction)

5. For regular expression s*

For Example: a*

☐ Regular expression to NFA (Examples)

➤ a*b

➤ b*ab

☐ Regular expression to NFA (Examples)

 \triangleright (c|d) or (c+d)

 \triangleright (c|d)*or (c+d)*

□ Exercise

Convert following regular expression to NFA:

- 1. abba
- 2. bb(a)*
- 3. (a|b)*
- 4. a* | b*
- 5. a(a)*ab
- 6. aa*+ bb*
- 7. (a+b)*abb
- 8. 10(0+1)*1
- 9. (a+b)*a(a+b)
- 10. (0+1)*010(0+1)*
- 11. (010+00)*(10)*
- 12. 100(1)*00(0+1)*

Conversion from NFA to DFA using subset construction method

☐ Subset construction algorithm

Input: An NFA N.

Output: A DFA D accepting the same language.

Method: Algorithm construct a transition table *Dtran* for D. We use the following operation:

OPERATION	DESCRIPTION
$\in -closure(s)$	Set of NFA states reachable from NFA state s on \in - transition alone.
∈ − closure	Set of NFA states reachable from some NFA state s in T on \in - transition alone.
$\delta(T,a)$	Set of NFA states to which there is a transition on input symbol a from some NFA state s in T .

■ Exercise

❖ Convert following regular expression to DFA using subset construction method.

OR

- Construct a NFA for following regular expression using Thompson's notation and then convert it into DFA.
- 1. (010+00)*(10)*
- 2. (a+b)*a(a+b)
- 3. (a|b)*a(a|b)#

DFA Optimization

☐ DFA Optimization Algorithm

- 1. Construct an initial partition Π of the set of states with two groups: the accepting states F and the non-accepting states S F.
- 2. Apply the repartition procedure to Π to construct a new partition Πnew .
- 3. If $\Pi new = \Pi$, let $\Pi final = \Pi$ and continue with step (4). Otherwise, repeat step (2) with $\Pi = \Pi new$.

for each group G of Π do begin

partition G into subgroups such that two states s and t of G are in the same subgroup if and only if for all input symbols a, states s and t have transitions on a to states in the same group of Π .

replace G in Πnew by the set of all subgroups formed.

end

☐ DFA Optimization Algorithm

- 4. Choose one state in each group of the partition Πfinal as the representative for that group. The representatives will be the states of M'. Let s be a representative state, and suppose on input a there is a transition of M from s to t. Let r be the representative of t's group. Then M' has a transition from s to r on a. Let the start state of M' be the representative of the group containing start state s₀ of M, and let the accepting states of M' be the representatives that are in F.
- 5. If M' has a dead state d, then remove d from M'. Also remove any state not reachable from the start state.