SNP based literature and data retrieval

Werner Veldsman's MSc project Supervised by Prof. Alan Christoffels

Introduction

- First citation of digital data storage traced to 1945
- Memex portmanteau = memory + index
- Twenty years later the Cambridge Structural Database (CSD) was created
- CSD served as inspiration for the Protein Data Bank (PDB)
- "Bioinformatics" first used in the 1970's
 (aka computational science or genomic data science)

Introduction

 1980: Rate limiting step shifted from sequencing to information management. Still relevant today

 2000: Information overload attributed to lack of standardization and coordination rather than volume (Goble & Stevens, 2008)

Semantic web technology could be a solution

Abstraction is required for black box medicine

Observation

Observation

Open Access Initiatives (OAIs)

Open Access (OA) literature definition:

The literature that should be freely accessible online is that which scholars give to the world without expectation of payment...

- Budapest Open Access Initiative (2002)
- Yesterday PMC-OAI contained 1109273 full articles that can be downloaded in XML or text format

Observation

The value of OAIs

Shah *et al.*, 2003

Hypothesis

- Problem statement: Obtaining post variant call information from unstructured data is a time consuming process
- Research question: Can automated supplementary information retrieval from literature resources using SNP ID's sliced from VCF files benefit science?

 Working hypothesis: SNP specific automated literature retrieval will increase research efficiency and scope

Expected outcome: A valuable user friendly biological portal

Benefits and risks

Benefits:

- Unique application
- Low cost (no lab work)
- Quick access to quality literature relating to SNPs

Risks:

- Finding the right software libraries is time consuming
- Literature resources will become outdated
- Ongoing updates to system can cause anomalies

Pre-implementation survey

Determine the needs and experiences of biological database users

 Temporal, behavioural and spatial parameters in nine observational dimensions (Reeves et al., 2008)

Use a google forms template

Post-implementation survey will triangulate results

Pre-implementation survey question rubric

		Space	Actor	Activity	Object	Act	Event	Time	Goal	Feeling
How often do you use biological databases?	1	X				X		X		
When querying a database do you?	2					X		X		
What type of information do you collect?	3				X				Χ	
Do you often have to traverse multiple databases to										
obtain information on a single biological feature?	4	X		X					X	
Do you know which databases to query for the	_									
information you are looking for?	5	X			X				X	
Do you collect data from databases using APIs?	6					X				
How would you like to to learn more about any given										
database?	7		X				X			X
Have you ever heard of the Pubmed open access										
initiative?	8	X			X					
Have you ever heard of the Lynx biological database?	9	X			X					
Do you use VCF files in your research?	10				X	Χ				

Pubmed OAI corpus:

Retrieved from http://www.ncbi.nlm.nih.gov/pmc/tools/ftp/ in XML format:

	Total Files scanned	Total size (Mb)
A-B	216411	14600
C-H	187489	12500
I-N	312477	17100
O-Z (I)	189782	17100
O-Z (II)	81199	5000
	987358	66300

What to use?

```
#Determining genomic variation ID types for chromosome 22 at the 1000 genomes project
idList = open("idnumbers22.txt", "r")
rsCount = 0
esvCount = 0
otherCount = 0
for line in idList:
    if line.startswith("rs"):
        rsCount += 1
    elif line.startswith("esv"):
        esvCount += 1
    else:
        otherCount +=1
rsRatio = str(float(round((rsCount/(rsCount + esvCount \
          + otherCount)*100), 2))) + "%"
esvRatio = str(float(round((esvCount/(rsCount + esvCount \
          + otherCount)*100), 2))) + "%"
otherRatio = str(float(round((otherCount/(rsCount + esvCount )
          + otherCount)*100), 2))) + "%"
print("rs entries (dbSNP): " + rsRatio)
print("esv entries (DGVa): " + esvRatio)
print("Other entries: " + otherRatio)
rs entries (dbSNP): 99.92%
esv entries (DGVa): 0.08%
Other entries: 0.0%
```

Extracting rs ID containing articles from Pubmed corpus:

```
#Extracting "rs" containing XML files from Pubmed OAI set.
"""import os
import sys
import shutil
directory = "/home/werner/Desktop/Source/articles.O-Z (Part II)/" #example subset
filelisting = os.walk(directory)
totalFiles = 0
rsFiles = 0
for root, dirs, files in filelisting:
    for file in files:
        totalFiles += 1
        breakTest = 0
       fileone = open(root + "/" + file)
        if breakTest == 1:
            break
        for line in fileone:
            line1 = line.split()
            if breakTest == 1:
                break
            for word in line1:
                if (word.startswith('rs')): # search clause
                    shutil.copy(os.path.join(root,file), "/home/werner/Desktop/Destination/" + file)
                    breakTest = 1
                    rsFiles += 1
                if breakTest == 1:
                    break
        fileone.close()
print (totalFiles, rsFiles)"""
```

Reduced Pubmed OAI corpus:

Using rs ID containing files reduces corpus size significantly:

	Total Files scanned	Total size (Mb)	Containing rs	rs size (Mb)
A-B	216411	14600	3391	311
C-H	187489	12500	2894	325
I-N	312477	17100	3084	338
O-Z (I)	189782	17100	5102	526
O-Z (II)	81199	5000	601	100
	987358	66300	15072	1600

Creating a JSON database from scratch:

```
import unl.etree.ElementTree as ET
import os
directory = '/home/werner/Desktop/Destination/'
fibelisting = os.walk(directory)
rslist =[]
for root, dirs, files in filelisting:
    for file in files:
          email = 'mot available' Arese
          said a feet available! Arrest
           year - 'net available' Areset
         doi = 'not available' #reset
tree = ET.parse(root = '/' = file)
           for mode in tree.iter('email'):
               enail = node.text
           for mode in tree.iter('pub-date'):
              for submode in mode.iter('wear'):
                     collection = node.attrib
                    if 'collection' is collection.values():
    year = submode.text
          for mode in tree.iter('article-id'):
               omidat = mode.attrib
               if 'pmid' in pmidat.values():
              peid = node.text
if 'dei' im peidat.values():
                     dei = mode.text
           for node in tree.iter():
                     node = node.text.split()
for renumber in node:
                         if len(renumber) > 2 and len(renumber) < 15: Announce that digits follow
                              if rsnumber.startswith("rs") and rsnumber[2].indigit():
                                     while not rsnumber[-1].isdigit():
                                    remarker = remarker[:-1] Assure that is ends with digits relist append(remarker.strip() + "\t" + enail.strip() + "\t" + ye
for iten in relist:
    if redict.get(item,'empty') == 'empty':
  redict.update({item:|})
if redict.get(item,'empty") != 'empty':
          redict[item] += 1
writetefile = open("/home/verner/besktop/TEXTdb.csv", "a")
for item im redict.keys():
writetofile.write|item = "\t" = str(redict[item]) = "\m"\m"
writetefile.close()
Kennert database to 3500
file = open(*/home/werner/Desktop/Testéb.csv*, *r*)
problematics + []
| ISONstring = "[\"PMCOAI rs articles\": ["
| for line in file:
     lister = line.strip().split("\t")
    rs number = "\"rs number\": " + "\"" + lister[0] + "\""
email address = "\"email address\": " + "\"" + lister[1] + "\""
   what seems a "wast control to "no "ni start[] = "!"

pated is ""yakited blant is "n" = lister[] = "!"

es = "yakited blant is ""yakited blant is "" = lister[] = "!"

es = "yakited blant is "yakited blant is "" = "" = lister[] = "!"

rs pated blant is "yakited blant is "" = "" = lister[] = "!"

rs pated cited in article = ""\"s pated blant is article\" = "," = lister[s] = "!"
     newdictionary = "{" + rs number + " + email address + " + publication date + " + dei + " + pubmid file name + " + 7s number cited in article + "}"
     JSONstring += newdictionary + *, *
file.clese()
    JSONstring = JSONstring[:-2]
JSONstring += '])*
     filel_write()$86string)
```

Parsing with xml.etree.ElementTree:

- rs ID
- Pubmed ID
- Email address
- Digital Object Identifier (DOI)
- Article file name
- Number of rs occurrences

Convert data from XML to JSON

Reduced Pubmed OAI corpus:

Extracting relevant XML tags reduces corpus size significantly:

	Total Files scanned	Total size (Mb)	Containing rs	rs size (Mb)	
A-B	216411	14600	3391	311	
C-H	187489	12500	2894	325	26 MB
I-N	312477	17100	3084	338	26 MB
0-Z (I)	189782	17100	5102	526	Run in memory?
O-Z (II)	81199	5000	601	100	Run in incinory:
	007050	00000	45070	4000	
	987358	66300	15072	1600	

Extracting rs ID's from VCF files using PyVCF 0.6.7:

```
#Extracting ID references from 1000 genomes VCF file for chromosome Y
import vcf
vcf_reader = vcf.Reader(open('ALL.chrY.phase3_integrated_vla.20130502.genotypes.vcf', 'r'))
vcf_writer = open('idnumbers.txt', 'a')
for record in vcf_reader:
    if record.ID != None:
        vcf_writer.write(record.ID + "\n")
vcf_writer.close()
```

Alternative: Galaxy workflow

Extraction is simple, but takes time

Serving the data:

Use node.js JSON-server (with API) by Typicode:

 Dependencies: yargs, update-notifier, underscore-db, pluralize, node-uuid, morgan, method-override, lowdb, lodash, got, express, errorhandler, cors, connect-pause, chalk, body-parser

Client side (HTML, CSS, Bootstrap, JS and jQuery):

- Create a web interface with search and upload functionality
- Interactivity handled by AJAX calls to JSON database
- jQuery statements update DOM dynamically
- Use Bootstrap library to implement a minimalistic design (also have a look at Google's Material Design Language)

Preliminary results

Pre-implementation questionnaire

Do you collect data from databases using APIs?

Yes 6 33.3% No 12 66.7%

Do you often have to traverse multiple databases to obtain information on a single biological feature?

Yes 12 66.7% No 6 33.3%

When querying a database do you?

Prefer to be supplied with information in real time (less informative) 7 38.9%

Not mind waiting for a processing completion email from the database (more informative) 11 61.1%

Preliminary results

Start web server, database server and API server:

```
> node index.js --watch JSONdb.json
```

Serving a website and API

Website takes single and multiple rs queries

API:

```
> http://localhost:3000/PMCOAI_rs_articles?rs_number=rs34014629
```

SNPhunter

What's next?

- Semantic web integration (RDFa, JSON-LD, Ontology stores)
- Create galaxy work flow for VCF input with wrapper or iFrame
- Attend Coursera ML & BD MOOCs starting on 15 September
- Finish literature review (Chapter 2 of thesis) by mid October
- Move SNPhunter to production phase by end October

Progress status

Ahead of original schedule

Task	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Apr
CONCEPTUALIZATION												
Complete proposal												
Pre-implementation Google Questionnaire												
PRE-DEVELOPMENT												
Bootstrap MOOC												
Java MOOC 1												
Java MOOC 2												
Android MOOC												
Joomla dev training												
DATA MODEL CREATION												
BaseX setup												
PMC-OAI quality scripts												
Lynx API integration scripts												
Local API scripts												
Local AFT Scripts												
DEVELOPMENT												
Domain UI												
Domain API												
Android app												
Joomla module										/		
Social network profiles												
POST-DEVELOPMENT												
Production stage Google Questionnaire												
SYSTEM DOCUMENTATION										/		
User manual												
UML (Structure/behaviour) blueprints												
IFML (front-end) blueprints												
ii ME (nont-end) bluepiilits												
REPORTING												
Thesis drafting												

Supervisor's draft recommendations Final draft changes, binding & submission

Acknowledgements

Funding: NRF and MRC

Inspiration: Prof. Alan Christoffels

Online resources: Contributors to Github, Stack Overflow etc.

MOOC providers: UCSD, HKUST, MIT, Microsoft

SANBI's bioinformatics course lecturers and organizers

Questions

