Example: Shortest Path for Messaging

The mobile social network among students in MGT 40750 is provided in the following diagram, where ● represents Female and ■ represents Male.

Question: Find the shortest path from Node $\underline{42}$ to Node $\underline{9}$ through this mobile social network.

Shortest Path for Messaging

Set up the Shorted Path for Messaging model in Excel:

 $(Start = \underline{42} \quad End = \underline{9})$

1	A	В	С	D	E	F	G	Н	I I	J	K	L
1		ath for Mes										
2					-sumi	f(A \$ 5	:A\$195,F6,D\$5:D\$19	5) - 61	mif(R\$5.R\$10	5 F6 l	D\$5·D\$195)	
3	Network S				-sulli			3) - 30	πιπ(υψυ.υψι)	3,10,		
4		To		Flow		Flow balas	nce constraint				Objective to minimize	
5	1					Node	Net outflow (Outflow - Inflow)	_	Required net outflow	_	Total distance	1
6	1						1 2	-		-		(D5.D105)
7 8	1 2						2	-		-	=sui	n(D5:D195)
9	2						4					
10	2						5					
11	2						6					
12	2						7					
13	2						8					
14	2						9		-1			
15	4						0					
16						1		-		-		
17 18	4					1	2					
19	5					1						
20	5						5					
21	5					1						
22	5	39				1						
23	5					1						
24	6					1						
25	6					2						
26	6					2						
27 28	6					2						
20 29	6					2						
30	6					2						
31	6					2						
32	7	14				2	7					
33	7					2						
34	7					2						
35	10					3						
36	11					3		-		-		
37 38	12					3		-		_		
39	12					3						
40	13					3						
41	14					3						
42	14					3						
43	14					3						
44	14					3		1		1		
45	15					4		1		1		
46 47	15 15					4		1	1			
47	15					4			1			
49	15					4						
50	15					4						
51	15	34				4	6					
52		39				4						
53	15					4						
54	16	7				4	9					
191	_	27										
192												
193												
194		41										
195	49	46										

Specify Solver:

Set Objective: <u>L5</u>

To: ○ Max X Min ○ Value of: _____

By Changing Variable Cells: <u>D5:D195</u>

Subject to the Constraints:

G5:G54 = I6:I54 D5:D195 = Integer

X Make Unconstrained Variables Non-Negative Select a Solving Method: Simplex LP

Solver Results:

7 **→** 16

14 **→** 7

16 **→** 9

25 **→** 14

42 **→** 25

Thus, the shortest path is $42 \rightarrow 25 \rightarrow 14 \rightarrow 7 \rightarrow 16 \rightarrow 9$.

The optimal total distance = $\underline{5}$.