· Before the selection (Zygotes)

$$aa \rightarrow p^2 = 0.79^2 = 0.6241$$

$$AA \rightarrow Q^2 = 0.21^2 = 0.411$$

" After the selection codults)

	3 100000	aa		Aa		AA
Zygotes	6/0/11	58		42	CYX	X
Adult		58	10	42		0
Absolute	cimeso	1		1		O
Relative	timess	1				0

$$p^2$$
 Was = 0.6241.1 = 0.6241
 $2pq$ WAs = 0.3318.1 = 0.3318 \overline{W} = 0.6241+0.3318 = 0.956
 q^2 WAS = 0.411.0 = 0

Ad
$$\rightarrow 0.3318 = 0.347$$

0.956

Q'= 0+0.347 = 0.174

The frequency of the recessive allele will increase in each generator. Everytime there will be more wild fives.

```
Problem 2
```

$$p(A) = 0.5$$
 $AA = p^2 = 0.25$ $Aa = 0.5$ $q(a) = 0.5$ $Aa = q^2 = 0.25$

101	66	Aa	AA	osoume N =200
zygotes	50	100	50	
adulta	15	100	50	
W	0.3	1		
w Puller	11. (G.3 10.11)	12/10	1	

$$p^{2}W_{AA} = 0.25 \cdot i = 0.25$$
 $2pq W_{A0} = 0.5 \cdot i = 0.5$
 $\overline{W} = 0.825$
 $q^{2}W_{00} = 0.25 \cdot 0.3 = 0.075$

$$AA \rightarrow 0.25 = 0.3$$
 $p' = 0.3 + 0.6 = 0.6$

$$A_0 \rightarrow 0.3 = 0.6$$
 0.825
 $Q' = 0.1 + 0.6 = 0.4$
 0.825

$$P^2$$
WAA = 0.6²·1 = 0.36
 $2pqWAA = 2.0.60,4.1 = 0.48$
 Q^2 Waa = 0.4²·0.3 = 0.048

$$AA \rightarrow 0.405$$
 $A0 \rightarrow 0.54$
 $Q'' = 0.324$
 $A0 \rightarrow 0.054$

WAA = 1-8; 1=1-5; 51=0 WAO =1 WOO =1-82; 0.3=1-82; 52=0.7 Equilibrium $\rightarrow \hat{\rho} = 62 = 0.7 = 1$ 5,152 0+0.7

In eq all alleles will be A, there will be no more a alleles.

· 30% (gen 1)

waa = 0.7 $p^2 waa = 0.5^2 0.7 = 0.175$ $\bar{w} = 0.925$ waa = 1 2pq waa = 2.0.505 1 = 0.5waa = 1 $q^2 waa = 0.5^2 1 = 0.25$

 $Aa \rightarrow 0.135/0.925 = 0.189$ p' = 0.54 $Aa \rightarrow 0.540$ q' = 0.459 $AA \rightarrow 0.270$

p2 WAA = 029 2pq WAO = 0496 q2 WAO = 0.147

 $AA \rightarrow 0.31$ p'' = 0.575 $Aa \rightarrow 0.531$ q'' = 0.4225 $Aa \rightarrow 0.157$

The equilibrium will be reached faster in 10%. nilled. we can see that the trequences of the alleres change more when kulling 10%.

```
Problem 3
```

$$5 \rightarrow 0.12 = 9$$
A $\rightarrow 1 - 0.12 = 0.88 = p$

$$\hat{p} = \frac{92}{51+92} = \frac{0.86}{0.12+0.86} = \frac{0.877}{0.877} \approx 0.88$$

$$\hat{q} = 1 - \hat{p} = 0.122 \approx 0.12$$

$$\bar{\omega} = (0.877^2 \cdot 0.88) + (0.21 \cdot 1) + (0.12^2 \cdot 0.14) = 0.903$$

· 0.8, 1, 0.55 heterozygote advantage

```
DA A - 0.8 = 1- Si; 31 = 0.2
AIA2 - 1
A2 A2 7 0.55 = 1-82; S2 = 0.45
```

Problem 5

TT Tt tt p = freq(t) q = freq(t)

N 142 84 14
$$\rightarrow$$
 p = (2.142)+84/480 = 0.76 q = 0.24

A 128 66 2 \rightarrow p = (2.123)+66/392 = 0.82 q = 0.18

W 0.9 0.79 0.14

W 1 0.87 0.15 (generation 0)

$$\rho^{2} \omega_{TT} = 0.672$$
 $2\rho q \omega_{TE} = 0.257$
 $q^{2} \omega_{tE} = 4.26 \cdot 10^{-3}$
 $\tilde{\omega} = 0.934$

$$\begin{array}{c}
TT \rightarrow 0.719 \\
Tt \rightarrow 0.215 \\
tt \rightarrow 5.2 \cdot 10^{-3}
\end{array}$$
adults of the next generation 1
$$\begin{array}{c}
Tt \rightarrow 0.215 \\
Tt \rightarrow 0.215
\end{array}$$

TT
$$\rightarrow$$
 $\rho^2 = 0.672$

Tt \rightarrow $2pq = 0.295$

tt \rightarrow $q^2 = 0.0324$

newborn of the next generation i

C N LOW CON MAN CONTROL OF THE

Problem 6

· 1: foured dominant A allele > selector against recessive phenoly pe. Both pop some Almess. Pop 1 has higher freq A (fovered allele). We expect freq (A) to be 1. will be achieved paster in pop 1.

- o 2: Foward dominant A allele

 p is the same in both pap. Pap I has a higher Atmess

 (00), 30 A will be pixed paster in pap 2.
- o 3: Foured recessive a allele selector aparel dominant phenotype.

 Pop 2 will reach fost the eq be it has a higher pred of a (which will be fixed)
- we can see that pap 2 has a lawer war, which means that has a higher titness for ao. This will lead to a higher fixahar.

$$p = A_1 = 0.4$$

 $q = A_2 = 0.6 \rightarrow 80\% \text{ die } \Rightarrow 5 = 0.8$

$$A_1 A_1$$
 $A_1 A_2$ $A_2 A_2$ Adduhuc effect $1 - 0.8 = 0.6$ 0.2 $1 - 3/2$

$$A_1 A_2 \rightarrow 0.4^2 = 0.16$$
 $A_1 A_2 \rightarrow 0.6^2 = 0.48$
 $A_2 A_2 \rightarrow 0.6^2 = 0.36$

before select. $Q' = 0.6$

$$A_1A_1 \rightarrow W_{11} = 0.16 \cdot 1 = 0.16 \rightarrow 0.307$$
 $A_1A_2 \rightarrow W_{12} = 0.48 \cdot 0.6 = 0.288 \rightarrow 0.554$
 $A_2A_2 \rightarrow W_{22} = 0.36 \cdot 0.2 = 0.072 \rightarrow 0.138$

$$p' = 0.307 + 0.354 - 0.58$$

	55	SR	RR	directions	4 7	
without		0,17	0.46	Punering		R)
with !	89,0	A .	0.31	balanced		

· Without watorn

$$p = freq (3) = 0.8$$
 $q = freq (R) = 0.2$
 $p^2 w_{23} = 0.64$
 $2pqw_{2k} = 0.246$
 $q^2 w_{RR} = 0.084$
 $\Rightarrow 0.204$

The The will be

· With workonn

9 = 031

w	ithat u	natovu	C 30	- 4	with	wo	utan.
1	0.33	0.46		EF.	0.68	4	G.31
1	1- 5	1-5			1-51	1	1-52
	51=0,23	52: 0.54			51 - 0.32		92 = 0.63
é	2 0 7 0 1	T. Mari			P = 0	66	

Q = 0.34

All out the

AA Aa aa
$$\hat{q} = \frac{M}{5} = \frac{10^5}{0.5} = 0.00447$$

Affected ind. (at eq) \rightarrow $q^2 = 2.10^{-5}$

AA Aa aa 1 0.8 = 1-5; 5 = 0.2
$$\hat{q} = \sqrt{\frac{10^{-5}}{0.2}} = 7.1 \cdot 10^{-3}$$

The tred of the absence has increased be the increase of pitness - less selector pressure against a olletes. Less people due be of the ollete

Problem 10

Second calculation takes into account reduced hetero. I heterozyq. and 1 recessive allele I