So sánh xâu nhanh

String matching

Nội dung

- String Matching Problem
 - Concept
 - brute force algorithm
 - complexity
- Knuth-Morris-Pratt (KMP) Algorithm
 - Pre-processing
 - complexity

Tham khảo bài giảng 15-211 Fundamental Data Structures and Algorithms, CMU

Pattern Matching Algorithms

String Matching

- Text string T[0..N-1]
 T = "abacaabaccabacabaabb"
- Pattern string P[0..M-1]P = "abacab"
- Where is the *first* instance of P in T?
 T[10..15] = P[0..5]
- Typically N >> M

Why String Matching?

- Applications in Computational Biology
 - DNA sequence is a long word (or text) over a 4-letter alphabet
 - GTTTGAGTGGTCAGTCTTTTCGTTTCGACGGAGCCCCCAATTA ATAAACTCATAAGCAGACCTCAGTTCGCTTAGAGCAGCCGAA A.....
 - Find a Specific pattern W
- Finding patterns in documents formed using a large alphabet
 - Word processing
 - Web searching
 - Desktop search (Google, MSN)
- Matching strings of bytes containing
 - Graphical data
 - Machine code
- grep in Unix/Linux
 - grep searches for lines matching a pattern.

Naïve Algorithm (or Brute Force)

Assume |T| = n and |P| = m

Compare until a match is found. If so return the index where match occurs

else return -1

String Matching

```
abacaabaccabacabaabb
abacab
 abacab
  abacab
   abacab
    abacab
     abacab
      abacab
       abacab
        abacab
         abacab
          abacab
```

- The brute force algorithm
- 22+6=28 comparisons.

A bad case

- 60+5 = **65** comparisons are needed
- How many of them could be avoided?

String Matching

- Brute force worst case
 - -O(MN)
 - Expensive for long patterns in repetitive text
- How to improve on this?
- Intuition:
 - Remember what is learned from previous matches

Knuth Morris Pratt (KMP) Algorithm

KMP – The Big Idea

- Retain information from prior attempts.
- Compute in advance how far to jump in P when a match fails.
 - Suppose the match fails at P[j] ≠ T[i+j].
 - Then we know P[0 .. j-1] = T[i .. i+j-1].
- We must next try P[0] ? T[i+1].
 - But we know T[i+1]=P[1]
 - What if we compare: P[1]? P[0]
 - If so, increment **j** by **1**. No need to look at **T**.
 - What if P[1] = P[0] and P[2] = P[1] ?
 - Then increment j by 2. Again, no need to look at T.
- In general, we can determine how far to jump without any knowledge of T!

Ví dụ: mẫu không lặp

```
P = "abcd"

T = "111abcabcd00..."

abcd
```

Ví dụ: mẫu có lặp

```
P = "ababc"

T = "111abababc00..."

ababc

ababc
```

Implementing KMP

- Never decrement i, ever.
 - ComparingT[i] with P[j].
- Compute a table f of how far to jump j forward when a match fails.
 - The next match will compareT[i] with P[f[j-1]]
- Do this by matching P against itself in all positions.

Building the Table for f

- P = 1010011
- Find self-overlaps

Prefix	Overlap	_j	f
1	•	1	0
10		2	0
101	1	3	1
10 10	10	4	2
10100		5	0
10100 1	1	6	1
101001 1	1	7	1

What f means

Prefix	Overlap	j	f
1		1	0
10		2	0
10 1	1	3	1
10 10	10	4	2
10100		5	0
10100 1	1	6	1
101001 1	1	7	1

- If f is zero, there is no selfmatch
 - Set j=0
 - Do not change iThe next match isT[i] ? P[0]

 f non-zero implies there is a self-match

```
E.g., f=2 means P[0..1] = P[j-2..j-1]
```

- Hence must start new comparison at j-2, since we know T[i-2..i-1] = P[0..1]
- In general:
 - Set j = f[j-1]
 - Do not change i.
 - The next match is

```
T = 10101010011
10100
j = 5
1010011
f = 2
```

Favorable conditions

- P = 1234567
- Find self-overlaps

Prefix	Overlap	j	f
1	•	1	0
12	•	2	0
123	•	3	0
1234	-	4	0
12345	-	5	0
123456	-	6	0
1234567	•	7	0

Mixed conditions

- P = 1231234
- Find self-overlaps

Prefix	Overlap	j	f
1		1	0
12	•	2	0
123	•	3	0
123 1	1	4	1
123 12	12	5	2
123 123	123	6	3
1231234		7	0

Poor conditions

- P = 1111110
- Find self-overlaps

Prefix	Overlap	j	f
1	•	1	0
11	1	2	1
111	11	3	2
1111	111	4	3
11111	1111	5	4
111111	11111	6	5
1111110	-	7	0

KMP pre-process Algorithm

```
m = |P|;
Define a table F of size m
F[0] = 0;
i = 1; j = 0;
while(i<m) {</pre>
  compare P[i] and P[j];
  if(P[j]==P[i])
                                  Use
    {F[i] = j+1;}
                                previous
      i++; j++; }
                               values of f
  else if (j>0) j=F[j-1];
  else \{F[i] = 0; i++;\}
```

KMP Algorithm

```
input: Text T and Pattern P
|T| = n
|P| = m
Compute Table F for Pattern P
i=j=0
while(i<n) {</pre>
  if(P[j]==T[i])
    { if (j==m-1) return i-m+1;
       i++; j++; }
  else if (j>0) j=F[j-1];
  else i++;
                             Use F to determine
                              next value for i.
output: first occurrence of P in T
```

Brute Force

KMP

```
0000000000000000000000000000001
000000000000+
 000000000000000
  0000000000000
   0000000000000
    0000000000000
     0000000000000
     0000000000000
       0000000000000
        00000000000000
         000000000000
          000000000000
           000000000000
            000000000000
             000000000000
```

A worse case example:

```
196 + 14 = 210 comparisons
```


28+14 = 42 comparisons

KMP Performance

- Pre-processing needs O(M) operations.
- At each iteration, one of three cases:
 - -T[i] = P[j]
 - i increases
 - T[i] <> P[j] and j>0
 - i-j increases
 - T[I] <> P[j] and j=0
 - i increases and i-j increases
- Hence, maximum of 2N iterations.
- Thus worst case performance is O(N+M).

Exercises

- E1
 - Construct the KMP table for P = 10010001
 - Trace the KMP algorithm with T = 00010010010010111
- E2
 - Construct the KMP table for pattern P = ababaca
 - Trace the KMP algorithm with T = bacbabababababab