

REVUE CW 51

CONCEPTION PRÉLIMINAIRE

M2 SME PGE

- 1. RAPPEL DU PROBLÈME
 - 1.1 PRINCIPALES EXIGENCES
 - 1.2 SOLUTION PROPOSÉE PAR TACHYSSÉMA
- 2. DECOMPOSITION FONCTIONNELLE
- 3. SOFTWARE: CHOIX DES CONCEPTS
 - 3.1 ENVIRONNEMENT DE DÉVELOPPEMENT
 - 3.2 GROUPE IHM
 - 3.3 GROUPE COMFM
 - 3.4 GROUPE GA
 - 3.5 GROUPE BUS
- 4. HARDWARE

MODULE DÉVELOPPEMENT

1. RAPPEL DU PROBLÈME

- 1.1 PRINCIPALES EXIGENCES
- 1.2 SOLUTION PROPOSÉE PAR TACHYSSÉMA
- 2. DECOMPOSITION FONCTIONNELLE
- 3. SOFTWARE: CHOIX DES CONCEPTS
 - 3.1 ENVIRONNEMENT DE DÉVELOPPEMENT
 - 3.2 GROUPE IHM
 - 3.3 GROUPE COMFM
 - 3.4 GROUPE GA
 - 3.5 GROUPE BUS
- 4. HARDWARE

MODULE DÉVELOPPEMENT

1. RAPPEL DU PROBLÈME

- 1. RAPPEL DU PROBLÈME
 - 1.1 PRINCIPALES EXIGENCES
 - 1.2 SOLUTION PROPOSÉE PAR TACHYSSÉMA
- 2. DECOMPOSITION FONCTIONNELLE
- 3. SOFTWARE: CHOIX DES CONCEPTS
 - 3.1 ENVIRONNEMENT DE DÉVELOPPEMENT
 - 3.2 GROUPE IHM
 - 3.3 GROUPE COMFM
 - 3.4 GROUPE GA
 - 3.5 GROUPE BUS
- 4. HARDWARE

MODULE DÉVELOPPEMENT

1.1 PRINCIPALES EXIGENCES

- > Le système devra intégrer une IHM
- > Le système devra génerer un flux vidéo à partir de la configuration effectuée sur l'IHM
- > Le système devra pouvoir analyser un flux vidéo et extraire des informations sur ce flux qu'il recevra sur les entrées du boîtier (port HDMI ou BNC).
- > Le système devra pouvoir communiquer avec les trois bus de communication (SPI-I2C-UART)
- > Le boîtier, sera alimenté en 5V par une alimentation externe

- 1. RAPPEL DU PROBLÈME
 - 1.1 PRINCIPALES EXIGENCES
 - 1.2 SOLUTION PROPOSÉE PAR TACHYSSÉMA
- 2. DECOMPOSITION FONCTIONNELLE
- 3. SOFTWARE: CHOIX DES CONCEPTS
 - 3.1 ENVIRONNEMENT DE DÉVELOPPEMENT
 - 3.2 GROUPE IHM
 - 3.3 GROUPE COMFM
 - 3.4 GROUPE GA
 - 3.5 GROUPE BUS
- 4. HARDWARE

MODULE DÉVELOPPEMENT

1.2 SOLUTION PROPOSÉE PAR TACHYSSÉMA

Utilisation de 2 FPGA pour les vidéos

 Implémentation d'un Uc pour la communication FPGA-IHM

- 1. RAPPEL DU PROBLÈME
 - 1.1 PRINCIPALES EXIGENCES
 - 1.2 SOLUTION PROPOSÉE PAR TACHYSSÉMA
- 2. DECOMPOSITION FONCTIONNELLE
- 3. SOFTWARE: CHOIX DES CONCEPTS
 - 3.1 ENVIRONNEMENT DE DÉVELOPPEMENT
 - 3.2 GROUPE IHM
 - 3.3 GROUPE COMFM
 - 3.4 GROUPE GA
 - 3.5 GROUPE BUS
- 4. HARDWARE

MODULE DÉVELOPPEMENT

2. DECOMPOSITION FONCTIONNELLE

- 1. RAPPEL DU PROBLÈME
 - 1.1 PRINCIPALES EXIGENCES
 - 1.2 SOLUTION PROPOSÉE PAR TACHYSSÉMA
- 2. DECOMPOSITION FONCTIONNELLE
- 3. SOFTWARE: CHOIX DES CONCEPTS
 - 3.1 ENVIRONNEMENT DE DÉVELOPPEMENT
 - 3.2 GROUPE IHM
 - 3.3 GROUPE COMFM
 - 3.4 GROUPE GA
 - 3.5 GROUPE BUS
- 4. HARDWARE

MODULE DÉVELOPPEMENT

3.1 ENVIRONNEMENT DE DÉVELOPPEMENT

> Programmation des 2 FPGA en VHDL sur l'environnement LATTICE:

La VM devrait être disponible pour tout le monde avant Janvier 2021

- > Programmation du Microcontrôleur en Language C
- > Salle H0 disponible ? Info à venir

3.2 GROUPE IHM

> Solution proposée:

Travailler sur TouchGFX/QT Développement de l'interfaçe graphique suivant l'architecture MVC (Model View Control)

> Travail à effectuer:

Concevoir une première ébauche de l'interface graphique

3.3 GROUPE COMFM: COMMUNICATION FPGA-UC

> Solution proposée:

Utiliser un bus SPI ou UART pour communiquer entre le microcontrolleur et les 2 FPGA

> Travail à effectuer:

Définir les protocoles de registres à utiliser

3.4 GROUPE BUS: BUS DE COMMUNICATION

> Solution proposée:

Identification du protocole de la liaison série en analysant les 4 pins

> Travail à effectuer:

Mettre en œuvre cette solution

3.5 GROUPE GA: GÉNÉRATION ET ANALYSE DE FLUX VIDÉOS

> Solution existante:

Les codes de générations de Mire ainsi que les codes des protocoles DVI/SDI sont disponibles sur le GIT PGE dans le répertoire: « 05_CustomerRelationship »

> Travail à effectuer:

Analyser les codes afin de réaliser les blocs fonctionnels des deux FPGA

> Rappels : Le port HDMI utilise le protocole DVI

Le port BNC utilise le protocole SDI

- 1. RAPPEL DU PROBLÈME
 - 1.1 PRINCIPALES EXIGENCES
 - 1.2 SOLUTION PROPOSÉE PAR TACHYSSÉMA
- 2. DECOMPOSITION FONCTIONNELLE
- 3. SOFTWARE: CHOIX DES CONCEPTS
 - 3.1 ENVIRONNEMENT DE DÉVELOPPEMENT
 - 3.2 GROUPE IHM
 - 3.3 GROUPE COMFM
 - 3.4 GROUPE GA
 - 3.5 GROUPE BUS
- 4. HARDWARE
 - 4.1 MODULE DÉVELOPPEMENT
 - 4.1 ÉBAUCHE SYSTÈME

EVAL BOARD HV3

Reçu x2

> Module émission et réception DVI et SDI

FT232H – JTAG INTERFACE

> Outils de développement d'interface Adafruit FT232H Breakout - General Purpose USB to GPIO SPI I2C - USB C & Stemma QT

CONVERTISSEUR HDMI TO SDI & SDI TO HDMI

> Convertisseur AV SpeaKa Professional [SDI - HDMI]

> Ref: 1491416

> Ref: 1491433

CONNECTIQUE

CÂBLE DE RACCORDEMENT HDMI MÂLE - MÂLE

CORDON DE MESURE BNC

CÂBLE DE RACCORDEMENT HDMI / DVI

• Référence article: 678195

Référence article: 101430 • Référence article: 1783609

CARTE DE DÉVELOPPEMENT STMICROELECTRONICS STM32 NUCLEO-144

- 25 interfaces de communication série : USART, IrDA, I²C, SPI, LIN, CAN, USB, I²S, SDIO, HDMI-CEC, S/PDIF-Rx, Ethernet
- quartz 32,768 kHz

MODULES D'AFFICHAGE 7.0" GEN4 LCD

État

Reçu

• 187 mm x 102.1 mm x 8.3 mm

• Résolution : 800 x 480

• Interface : 4-Wire, I2C, SPI

- 1. RAPPEL DU PROBLÈME
 - 1.1 PRINCIPALES EXIGENCES
 - 1.2 SOLUTION PROPOSÉE PAR TACHYSSÉMA
- 2. DECOMPOSITION FONCTIONNELLE
- 3. SOFTWARE: CHOIX DES CONCEPTS
 - 3.1 ENVIRONNEMENT DE DÉVELOPPEMENT
 - 3.2 GROUPE IHM
 - 3.3 GROUPE COMFM
 - 3.4 GROUPE GA
 - 3.5 GROUPE BUS

4. HARDWARE

- 4.1 MODULE DÉVELOPPEMENT
- 4.1 ÉBAUCHE SYSTÈME

ÉBAUCHE DU SYSTÈME

INVENTAIRE

Etat

BNC OK

HDMI OK

Connecteur HV3 OK

Module HV3 NOK

MCU STM32 OK

Module alimentation NOK

Interrupteur NOK

Connecteur DC OK

Écran OK

Contrôleur TBD

ÉBAUCHE DU SYSTÈME

RÉCAPITULATIF

	État	
BNC	OK	10 disponibles
НОМІ	OK	10 disponibles
Connecteur HV3	OK	10 disponibles
Module HV3	NOK	En attente de Tachyssema
MCU STM32	OK	Carte distribuée l'année dernière
Module alimentation	NOK	Commander à faire (ref ok)
Interrupteur	NOK	Commande à faire (ref ok)
Connecteur DC	OK	5 disponibles
Écran	OK	1 disponibles
Contrôleur	TBD	Plusieurs références disponibles (à figer dans les semaines à venir)
595TFP403PZP (Receiver)	OK	5 disponibles
595TFP410PAP (Transmitter)	OK	5 disponibles

ÉBAUCHE DU SYSTÈME

3D VIEW

