Robótica móvil (86.48)

CUENCA Matilde GUARINO Paulo

Facultad de Ingeniería Universidad de Buenos Aires

7 de Septiembre 2020

El robot debe visitar 3 lugares en un entorno conocido, comenzando su tarea en algún lugar random del entorno.

Problemas a tener en cuenta

- 1. Localización del robot en el entorno.
- 2. Planeamiento.
- 3. Control.
- 4. Protección contra choques.

2/10

Localización

Se decidió realizar la localización mediante el algoritmo de filtro de partículas.

Algoritmo de filtro de partículas

- 1. Muestrear la próxima generación de partículas.
- 2. Calcular los pesos w de cada partícula.
- 3. Remuestreo : Reemplazar muestras poco probables por otras más probables.

Localización

Como el mapa es conocido, generamos de antemano una matriz con la distancia de cada celda a la celda ocupada más cercana. Esto nos permite facilitar el cálculo de los pesos w.

0			(i,j)		El elemento (i,j)
0	1				distancia a la celda ocupada más cercana

Planeamiento

- El costo es proporcional al ángulo de rotación para lograr un camino más suave y menos susceptible a errores.
- Las celdas que se encuentran a distancia de otras celdas ocupadas menor al radio del robot son evitadas (no se consideran caminos por donde no entra el robot).

Control

Una vez obtenido el camino que queremos recorrer, debemos decidir los comandos de movimiento (v_{cmd}, w_{cmd}) . Para ello, evaluamos la distancia a recorrer en una misma dirección :

- Distancia grande, velocidad más elevada.
- Distancia corta, se disminuye la velocidad.
- Giro inminente, se define $|w_{cmd}| > 0$ y se comienza a girar.

En caso que la estimación se aleje mucho del camino deseado, planeamos nuevamente.

Protección contra choques

Para asegurarnos evitar colisiones, se instaló una protección contra choques. En caso de detectar un obstáculo cercano al robot, se determinan las velocidades de comando igual a cero y se vuelve a planear (distanciamiento social de obstáculos).

Exploración

El robot comienza en un entorno desconocido y debe generar un mapa de ocupación del mismo, explorando el entorno.

Problemas a tener en cuenta

- 1. SLAM
- 2. ¿Hacia dónde voy?
- 3. Control.
- 4. Protección contra choques.

8/10

Exploración slam

Se optó por el algoritmo de FastSLAM para resolver el problema de localización y mapeo.

Algoritmo de FastSLAM

- 1. Muestrear la próxima generación de partículas.
- 2. Actualizar la estimación del mapa de cada partícula.
- 3. Calcular los pesos w de cada partícula
- $4.\ Remuestreo$: Reemplazar muestras poco probables por otras más probables

Exploración

Planeamiento

Para decidir hacia donde queremos explorar, planteamos la matriz de entropía del mapa.

$$H_{xy} = p \cdot log(p) + (1-p) \cdot log(1-p)$$

Buscamos la celda más cercana con máxima entropía, es decir, celda no explorada.

