Regularization & Bayesian Estimation

Mikio Aoi & Gal Mishne

Combining information from different sources Many applications in neuroscience

- Want to make judgments about things we don't see from things we do see.
- Integration across sensory systems (eg. normative models)
- Adding data / features we didn't collect ourselves

Need a principled way to combine disparate pieces of information to a common purpose, vis a vis different levels of confidence in each piece.

Joint probabilities

unobserved parts (model parameters, synaptic weights, gene expression)

observed parts (spikes, flourescence, voltage, etc.)

Conditional probabilities

$$P(Y,X) = P(X|Y)P(Y)$$
$$= P(Y|X)P(X)$$

Conditional probabilities

$$P(X|Y)P(Y) = P(Y|X)P(X)$$

$$P(\text{have}|-)=?$$

What are the chances you have covid if you tested negative?

What are the chances you have covid if you tested negative?

posterior
$$P(\text{have} -) = \frac{90\% \text{ CI:}}{(.02,.54)} \text{ prevalence}$$

$$P(-|\text{have}|P(\text{have}))$$

$$P(-|\text{have}|P(\text{have}))$$

What are the chances you have covid if you tested negative?

varies a lot by geographic location, occupation, etc.

Sampling and testing biases

What are the chances you have covid if you tested negative?

What are the chances you have covid if you tested negative?

posterior
$$P(\text{have}|-) = \frac{90\% \text{ CI:}}{(.02,.54)} \quad 0.01 \text{ for closest studied region (San Francisco)} \\ P(-|\text{have}|-) = \frac{P(-|\text{have}|)P(\text{have})}{P(-|\text{have}|-)}$$

$$P(-) = P(-|\text{have})P(\text{have}) + P(-|\text{don't have})P(\text{don't have})$$

false positive prevalence

true negative =1false positive

1-prevelence

false positives < 0.05

posterior
$$P(\text{have} -) = \frac{90\% \text{ CI:}}{(.02,.54)} \quad 0.01 \text{ for closest studied region (San Francisco)}$$

$$P(\text{have} -) = \frac{P(-|\text{have})P(\text{have})}{P(-|\text{have})}$$

$$P(-) = P(-|\mathrm{have})P(\mathrm{have}) + P(-|\mathrm{don't\ have})P(\mathrm{don't\ have})$$
(.2,.54) 0.01 true negative =1-false positive false positive false positives <0.05

posterior
$$P(\text{have}|-) = \frac{(.02,.54) * 0.01}{(.02,.54) * 0.01 + 0.95 * .99}$$

$$= (.00002, .0057)$$

posterior
$$P(\text{have} -) = \frac{(.02,.54) * 0.01}{.991 \text{ for UCSD students}}$$

$$= (.0002, .0054)$$

What are the chances you have covid if you tested negative?

posterior
$$P(\text{have} -) = \frac{(.02,.54) * (.23)}{(.02,.54) * (.23) + 0.95 * (.77)}$$

$$= (.0062, .1451)$$

NYC is a different story

Tutorial scenario

we get a sample of these

Point estimation

we get a sample of this

Point estimation

Bayesian estimates are biased

Bayesian estimates are biased

MAP estimate lives between ML estimate & prior

Bayesian estimates are biased

Bayesian estimates are biased

Point estimation

Point estimation

Point estimation

$$\begin{array}{ccc} \text{likelihood} & & \text{prior} \\ p(Y|X) & & p(X) \end{array}$$

$$Y_n \sim \mathcal{N}(x, \sigma^2)$$
 $X \sim \mathcal{N}(\theta, \tau^2)$

maximum likelihood $\log(p(Y_1,Y_2,\dots|X))$

$$\hat{X}_{\text{MLE}} = \arg\max_{X} \log(p(Y_1, Y_2, \dots | X))$$

Point estimation

likelihood
$$p(Y|X)$$

$$prior$$
 $p(X)$

$$Y_n \sim \mathcal{N}(x, \sigma^2)$$
 $X \sim \mathcal{N}(\theta, \tau^2)$

$$X \sim \mathcal{N}(\theta, \tau^2)$$

maximum likelihood

$$log(p(Y_1, Y_2, ... | X))$$

$$\hat{X}_{\mathrm{MLE}} = \arg\min_{X} \frac{1}{N} \sum_{n} (X - Y_n)^2 \quad \mathsf{MSE}$$

Regularized point estimation is Bayesian point estimation

$$Y_n \sim \mathcal{N}(x,\sigma^2) \qquad X \sim \mathcal{N}(0,\tau^2)$$

$$\log(p(x|Y_1,Y_2,\dots)) \propto \frac{1}{N} \sum_n (X-Y_n)^2 + \beta X^2$$

$$\log \text{posterior} \qquad \text{MSE} \qquad \text{regularizer}$$

penalty
$$\beta = \frac{\sigma^2}{\tau^2}$$

"ridge", " ℓ_2 "

NMA Tutorials

- Tutorial 1 Regularization
 - Pick up where we left off with logistic regression
 - Regularizer is an expression of prior beliefs (in the Bayesian sense)
- Tutorial 2 4 Combining information from 2 sources and manipulating the probabilities
- Tutorial 2 errata
 - typos in the instructional text formula for mean of a distribution
 - url for videos are not all working. Will post correct url's in Slack.