Зад.1 Съществуват три рискови фактора A, B и C за заболяване. Вероятността човек да има един от тях, но не и другите два е 0.1 за всеки фактор. Вероятността да има точно два фактора, но не и третия е 0.12 за всеки два фактора. Вероятността човек да има и трите фактора, ако има A и B е 1/3. Каква е вероятността човек да няма нито един фактор, ако няма A?

Зад.2 Нека ξ е външното налягане, а η вътрешното налягане (в атмосфери) в крилата на самолет. Съвместната плътност на ξ и η е:

$$f_{\xi,\eta}(x,y) = c(2x+y), \qquad 0 \le y \le x \le 3.$$

Да се определи:

а) вероятността η да е над 1 атмосфера;

б) средното външно налягане;

B) $P(\eta < 2|\xi > 1)$.

Зад.3 Два инструмента се използват за определяне на височината h на сграда. Грешката допускана и от двата е нормално разпределена с очакване 0 и стандартно отклонение 0.04h за първия и 0.05h за втория. За всеки уред, да се определи вероятността грешката да е по-малка от 0.03h. Ако предположим че двете измервания са независими, каква е вероятността средното им аритметично да се отличава от h с не повече от 0.03h?

3ад.4 Резултатите от наблюдения на сл.в. ξ са дадени в таблицата:

Стойност	Честота
0	5
1	16
2	37
3	26

а) Да се намери м.п.о. \hat{p} , ако $\xi \in Bi(p,3)$.

б) Да се провери дали $\xi \in Bi(\hat{p},3)$. с ниво на значимост $\alpha = 0,04$.