Uka Tarsadia University

B.Tech. Semester II

DIGITAL LOGIC AND COMPUTER DESIGN EC3002

EFFECTIVE FROM July-2021

Syllabus version: 1.00

			Teachin	g Scheme	
Subject	Subject Title	Hours		Cre	dits
Code		Theory	Practical	Theory	Practical
EC3002	Digital Logic and Computer Design	3	2	3	1

		Theory		Practical	
Subject	Subject Title	Exami	nation	Examination	Total
Code	le Subject Title		rks	Marks	Marks
		Internal	External	CIE	
EC3002	Digital Logic and Computer Design	40	60	50	150

Objectives of the Course:

- To provide comprehensive knowledge of fundamentals of Binary number systems, Boolean algebra and Digital systems.
- To explain the operation and design of Combinational, Sequential and Arithmetic logic circuits.
- To design hardware systems for real world problems.

Course Outcomes:

Upon completion of the course, the student shall be able to

CO1: Understand digital number systems and codes.

CO2: Design Boolean algebra and Solve Switching function minimization.

CO3: Design and analyze the combinational circuits.

CO4: Design sequential circuits using Flip-Flop and conversion of Flip-Flop.

CO5: Understand the concept of Registers, Counters and Memory unit.

CO6: Study and apply design of Processor Logic Design.

Sr. No.	Topics	Hours				
Unit – I						
1	Introduction to Digital Logic, Number systems and Codes:	6				
	Digital and Analog system, Logic levels and Pulse waveforms,					
	Elements of digital logic, Functions of Digital logic, decimal					
	number system, Binary number system, Representation of signed					
	numbers and binary arithmetic, Octal number system,					
	Hexadecimal number system, Classification of binary codes, 8421					
	BCD Code, Excess Three Code, Gray Code(Reflective Code)					
	Unit – II					
2	Boolean Algebra and Switching Functions:	9				
	Logic gates, The universal gates, The Exclusive- OR gate,					
	Properties of Exclusive-OR, The Exclusive-NOR gate, Boolean					
	algebra, Logic operation, Axioms and Laws of boolean algebra,					
	duality, Reducing boolean expression, Functionally complete sets					
	of operation, Boolean function and their representation,					
	Expansion of a boolean expression in SOP from to the standard					
	SOP form, Expansion of a boolean expression in POS from to the					

	standard POS form, computation of total gate inputs,	
	Determining of output level form the diagram, Converting	
	AND/OR/Invert logic to NAND/NOR logic.	
	Minimization of switching function using K-map two variable K-	
	map, Three variable K-map, Four variable K-map, don't care	
	combination, Tabulation method.	
	Unit – III	
3	Combinational Logic Design:	8
	Introduction, Design procedure, Adders, Subtractors, Binary	
	parallel adder, 4-bit parallel subtractor, Binary adder–subtractor,	
	The look ahead carry adder, BCD adder, Code converters, Parity	
	bit generators/checkers, Comparators, Encoders, Decoders,	
	multiplexers, Demultiplexers, ROM, PLA and PAL.	
4	Unit - IV	
4	Sequential Circuits:	6
	Flip-flops, Classification of sequential circuit, Level mode and pulse mode asynchronous sequential circuit, Latches and flip-flops,	
	asynchronous inputs, Flip flop operating inputs, Flip flop operating	
	characteristics, Clock skew and time race, Master slave flip- flops,	
	flip-flop excitation tables, Conversion of flip –flops.	
	Unit - V	
5	Registers, Counters and Memory Unit:	9
	Introduction, Registers, Shift registers, Design of ripple counters,	-
	Design of synchronous counters, Shift register counters, The finite	
	state model, Memory elements.	
	Unit – VI	
6	Processor Logic Design:	7
	Processor organization, Design of arithmetic circuit, Design of logic	•
	circuit, Design of arithmetic logic unit, Status register, Design of	
	shifter, Processor unit and design of accumulator.	
1		

Sr.	Digital Logic and Computer Design (Practical)	Hours
No.		
1	To study of all logic gates.	2
	To study of de-morgans theorems.	
2	To study of boolean algebra.	2
	To study of "NOR" logic gate as universal gate.	
3	To study of half adder and full adder.	2
	To study of half and full subtractor.	
4	To study of 4 bits binary to gray code converter.	2
	To study of 4 bits bcd to excess-3 code converter.	
5	To study 4 bits even / odd parity checker / generator.	2
	To study of 4 bits full adder by IC 7483.	
6	To study of 8 bit analog to digital converter by ADC0804.	2

To study of 8 bit digital to analog converter by DAC0800.	
To study of 4 bits binary comparator by IC 7485 with verify the truth table.	2
To study of 8 lines to 3 lines encoder by IC 74 148.	
To study of 4 lines to 16 lines decoder using IC74154.	2
To study of BCD To decimal (4 to 10 lines) decoder using IC74145.	
To study of decimal to BCD(10 line to 4 line) encoder.	2
To study of BCD to 7-segment decoder / driver.	
To study of 16 : 1 multiplexer using IC 4067.	2
To study 1: 16 de-multiplexer by IC 4067.	
To study of various flip flops by IC.	2
To study of 4 bits universal shift register by IC.	2
To study 4 bit arithmetic logic unit using IC 74181.	
To study decade counter by IC 74 90.	2
To study 4 bits binary counter by IC 74 93.	
To study 4 bit synchronous up/down counter by IC.	2
To study 4 bits twisted ring (johnson) counter.	2
	To study of 4 bits binary comparator by IC 7485 with verify the truth table. To study of 8 lines to 3 lines encoder by IC 74 148. To study of 4 lines to 16 lines decoder using IC74154. To study of BCD To decimal (4 to 10 lines) decoder using IC74145. To study of decimal to BCD(10 line to 4 line) encoder. To study of BCD to 7-segment decoder / driver. To study of 16: 1 multiplexer using IC 4067. To study 1: 16 de-multiplexer by IC 4067. To study of 4 bits universal shift register by IC. To study 4 bit arithmetic logic unit using IC 74181. To study 4 bits binary counter by IC 74 90. To study 4 bits binary counter by IC 74 93. To study 4 bit synchronous up/down counter by IC.

Text book:

• Anand Kumar, "Switching theory and logic design", PHI Learning Pvt. Ltd

Reference books:

- Mano Morris , "Digital Logic and Computer Design", 4th edition, Pearson Education
- Jacob Millman and Christos Halkias , "Integrated Electronics", Tata McGraw-Hill Publication.
- Floyed Thomas L. and Jain R. P., "Digital Fundamentals" 8th Edition, Pearson Education

Course Objectives and Course outcomes mapping:

- To provide comprehensive knowledge of fundamentals of Binary number systems, Boolean algebra and Digital systems: CO1,CO2
- To explain the operation and design of Combinational, Sequential and Arithmetic logic circuits:C02,C03,C04,C05
- To design hardware systems for real world problems:CO6

Course Units and Course Outcomes mapping:

Unit	Unit Name	Course Outcomes					
No.	Unit Name	CO1	CO2	CO3	CO4	CO5	CO6
1	Introduction to Digital Logic,						
	Number systems and Codes	•					
2	Boolean Algebra and Switching		,				
	Functions		•				
3	Combinational Logic Design			1			
4	Sequential Circuits				✓		
5	Registers, Counters and Memory					1	

	Unit			
6	Processor Logic Design			✓

Programme Outcomes:

PO 1:	Engineering knowledge: An ability to apply knowledge of mathematics,
	science, and engineering.
PO 2:	Problem analysis: An ability to identify, formulates, and solves engineering
	problems.
PO 3:	Design/development of solutions: An ability to design a system, component,
	or process to meet desired needs within realistic constraints.
PO 4:	Conduct investigations of complex problems: An ability to use the techniques,
	skills, and modern engineering tools necessary for solving engineering
	problems.
PO 5:	Modern tool usage: The broad education and understanding of new
	engineering techniques necessary to solve engineering problems.
PO 6:	The engineer and society: Achieve professional success with an
	understanding and appreciation of ethical behavior, social responsibility, and
	diversity, both as individuals and in team environments.
PO 7:	Environment and sustainability: Articulate a comprehensive world view that
	integrates diverse approaches to sustainability.
PO 8:	Ethics: Identify and demonstrate knowledge of ethical values in non-
	classroom activities, such as service learning, internships, and field work.
PO 9:	Individual and team work: An ability to function effectively as an individual,
	and as a member or leader in diverse teams, and in multidisciplinary settings.
PO 10:	Communication: Communicate effectively on complex engineering activities
	with the engineering community and with society at large, such as, being able
	to comprehend and write effective reports and design documentation, make
	effective presentations, and give/receive clear instructions.
PO 11:	Project management and finance: An ability to demonstrate knowledge and
	understanding of the engineering and management principles and apply
	these to one's own work, as a member and leader in a team, to manage
	projects and in multidisciplinary environments.
PO 12:	Life-long learning: A recognition of the need for, and an ability to engage in
	life-long learning.

Programme Outcomes and Course Outcomes mapping:

Programme	me Course Outcomes					
Outcomes	CO1	CO2	CO3	CO4	CO5	C06
P01	1	1	1	1	✓	✓
P02		1	1	✓	✓	✓
P03		✓	✓	✓	✓	✓
PO4		✓	✓	✓	✓	✓
P05						
P06						

P07			
P08			
P09			
PO10			
P011			
PO12			