Проверка гипотез однородности при перепараметризации обобщенного гамма распределения с приложением в фармакологии

Гольдвирт Серафима Константиновна, гр. 522

Санкт-Петербургский государственный университет Математико-механический факультет Кафедра статистического моделирования

Научный руководитель: к.ф.-м.н., доцент, Алексеева Н.П. Рецензент: к.ф.-м.н.,ассистент, Коробейников А.И.

Санкт-Петербург 2012г.

Постановка задачи

• Модель: обобщенное гамма распределения (ОГР) с плотностью

$$f(x|a,k,\nu) = \frac{\nu k^a}{\Gamma(a)} e^{-kx^{\nu}} x^{\nu a - 1} \qquad x > 0.$$
 (1)

- ullet Частными случаями ОГР являются гамма распределение (u=1), и распределения Вейбулла (a=1).
- Для оценки параметров используется логарифмическое обобщенное гамма распределение (ЛОГР) с плотностью

$$f_1(x|a,k,\nu) = \frac{\nu k^a}{\Gamma(a)} e^{\nu a x - k e^{\nu x}} \qquad x > 0,$$
 (2)

которое имеет случайная величина $\eta = \ln \xi$, где $\xi \sim f(\cdot | a, k, \nu)$.

 На основе модели ОГР выяснить влияние химических препаратов простагландина и тиреолиберина на высоту секреторного эпителия у лактирующих мышей.

Оценки по методу максимального правдоподобия для ЛОГР

ОМП:

ullet $x_1,\,x_2,\ldots,x_n\sim f_1(\cdot\,|\,a,k,
u).$ Оценка параметра $ilde{
u}$ является решением уравнения:

$$\log\left(\frac{1}{\nu C}\right) - \psi\left(\frac{M_2}{\nu C}\right) + \nu M_1 = 0,\tag{3}$$

где
$$\psi(y)=(\ln\Gamma(y))'=rac{\Gamma(y)'}{\Gamma(y)},$$
 $M_1=rac{1}{n}\sum_1^n x_i, \qquad M_2=rac{1}{n}\sum_1^n e^{
u\,x_i},$ $M_3=rac{1}{n}\sum_1^n x_i\,e^{
u\,x_i},\,C_-=M_3-M_1\,M_2.$

ullet Оценки $ilde{k},\, ilde{a}$ выражаются через $ilde{
u}$:

$$\tilde{k} = \frac{1}{\tilde{\nu} C}, \qquad \tilde{a} = \frac{M_2}{\tilde{\nu} C}.$$
 (4)

ullet Дисперсии оценок $ilde{k}, \ ilde{a}, \ ilde{
u}$ максимального правдоподобия для ЛОГР имеют вид:

$$D_a = \frac{a^2 \varphi(a) + a - 1}{n (a^2 \varphi^2(a) - \varphi(a) - 1)},$$
(5)

$$D_{k} = \frac{k^{2} \left(a \varphi^{2}(a) + \varphi(a) + a \varphi(a) Z^{2} + 2 \varphi(a) Z - Z^{2} \right)}{n \left(a^{2} \varphi^{2}(a) - \varphi(a) - 1 \right)}, \quad (6)$$

$$D_{\nu} = \frac{\nu^2 (a \varphi(a) - 1)}{n (a^2 \varphi^2(a) - \varphi(a) - 1)},\tag{7}$$

где

$$Z = \psi(a) - \ln k,$$

$$\varphi(y) = (\ln \Gamma(y))'' = \frac{\Gamma(y)''}{\Gamma(y)} - \psi(y).$$

Тестирование метода на модельной выборке

 \bullet При моделировании случайной выборки (ЛОГР) объема n=200 с параметрами $a=2,\,k=0.5,\,\nu=0.8$

$$\tilde{a} = 2.5565 \pm 2.7420,$$

 $\tilde{k} = 0.8120 \pm 0.9607,$
 $\tilde{\nu} = 0.9525 \pm 0.5670.$

Рис. : Проверка согласия с ЛОГР модельной выборки, по критерию χ^2 (p=0.62)

Оценки максимального правдоподобия ЛОГР на основе перепараметризации

• Плотность ЛОГР через параметры [J.F. Lawless, 1980]

$$\mu = \frac{1}{\nu} \left(\log(a) - \log(k) \right),$$

$$\sigma = \frac{1}{\nu \sqrt{a}}$$

приводится к виду:

$$f_2(w; a, \mu, \sigma) = \frac{a^{a-\frac{1}{2}}}{\Gamma(a)\sigma} \exp\left(\sqrt{a} w(\mu, \sigma) - a e^{\frac{w(\mu, \sigma)}{\sqrt{a}}}\right),$$
 (8)

где $w(\mu, \sigma) = \frac{x - \mu}{\sigma}$.

• Обозначим через $e_1=\frac{1}{n}\sum_1^n e^{\frac{x}{\sigma\sqrt{a}}},\ c_1=\frac{1}{n}\sum_1^n x_i\,e^{\frac{x_i}{\sigma\sqrt{a}}}-\frac{e_1}{n}\sum_1^n x_i.$ Оценка параметра μ :

$$\tilde{\mu} = \tilde{\sigma} \sqrt{\tilde{a}} \ln e_1, \tag{9}$$

 $ilde{a},\, ilde{\sigma}$ являются решением системы:

$$\begin{cases}
\overline{w} = \sqrt{a} \left(\psi(a) - \log a \right), \\
c_1 = e_1 \frac{\sigma}{\sqrt{(a)}}.
\end{cases}$$
(10)

ullet Дисперсиями оценок параметров $heta=(a,\,\sigma,\,\mu)$ являются величины:

$$D_{\theta_i} = \frac{(I^{-1})_{ii}}{n},\tag{11}$$

где I - информационная матрица, с элементами

$$\begin{split} I_{11} &= -\frac{3}{4a^2} - \frac{\log a}{2a^2} + \frac{\psi(a)}{2a^2} - \frac{1}{a} + \frac{\log^2 a}{4a} + \frac{\psi^2(a)}{4a} + \frac{\varphi(a)}{4a} + \varphi(a) - \frac{1}{2a} \log(a) \psi(a), \\ I_{12} &= \frac{1}{2\sigma} \left(\frac{2}{a} \psi(a) + \varphi(a) + \psi^2(a) - \frac{2}{a} \log(a) + \log^2(a) - \frac{1}{a} - 2a \log(a) \psi(a) \right), \\ I_{13} &= \frac{1}{2\sqrt{a}\sigma} \left(\frac{1}{a} + \psi(a) - \log a \right), \\ I_{22} &= \frac{1}{\sigma^2} \left(a \log^2 a - 2 \log a + a \psi^2(a) + 2\psi(a) + a \varphi(a) - 2 a \log(a) \psi(a) + 1 \right), \\ I_{23} &= \frac{1}{\sigma^2 \sqrt{a}} \left(1 + a \psi(a) - a \log a \right), \\ I_{33} &= \frac{1}{\sigma^2}. \end{split}$$

Тестирование метода с перепараметризацией на модельной выборке

Выборка объема n=200, подчиняется ЛОГР с параметрами $a=2,\,\mu=1.7329,\,\sigma=0.8839,$ для перепараметризованной плотности. Оценки параметров:

$$\tilde{a} = 2.5276 \pm 2.6962,$$

 $\tilde{\mu} = 1.0935 \pm 0.1479,$
 $\tilde{\sigma} = 0.5955 \pm 0.0759.$

Рис. : Проверка согласия с ЛОГР модельной выборки, по критерию χ^2 (p=0.61)

Сранение методов по эффективности оценок параметра формы

Рис. : Изменение $D_a^{f_1}$ и $D_a^{f_2}$ в зависимости от объема выборки (a=4).

Сравнение методов по эффективности на модельных выборках

ullet Параметры $f_2(\cdot;a,\,\mu,\,\sigma)$ и $f_1(\cdot;a,\,k,\,
u)$ связаны следующим образом:

$$k_0 = k(a, \mu, \sigma) = e^{\ln a - \frac{\mu}{\sigma\sqrt{a}}}, \qquad \nu_0 = \nu(a, \sigma) = \frac{1}{\sigma\sqrt{a}}.$$
 (12)

ullet Т-тест. Сравнение средних оценок по двум методам $(p ext{-val}=0).$

Рис. : Оценки a и a_0 , k и k_0 , ν и ν_0 на 500 модельных выборках объемом 1000 с параметрами $a=2,\ k=0.5,\ \nu=0.8.$

Критерий однородности для параметров

• Предложение. Пусть $x_1, \dots x_n$ и $y_1, \dots y_m$ две независимые выборки, $\tilde{\theta}_n^x$ и $\tilde{\theta}_m^y$ - оценки максимума правдоподобия одного из параметров логарифмического обобщенного гамма распределения $f_1(\cdot; a, k, \nu)$ или $f_2(\cdot; a, \mu, \sigma)$, $\frac{\sigma_x^2}{n}$ и $\frac{\sigma_y^2}{m}$ соответственно дисперсии оценок. Тогда при справедливости гипотезы

$$H_0: \quad \theta^x = \theta^y$$

статистика

$$Z = \frac{\theta_n^x - \theta_m^y}{\sqrt{\frac{\sigma_x^2}{x} + \frac{\sigma_y^2}{m}}} \tag{13}$$

имеет асимптотически стандартное нормальное распределение.

Описание эксперимента

- Исследование влияния химических веществ тиреолиберина и простагландина на лактацию у 38 белых мышей.
- Экспериментальные данные:
 - ♦ Привесы;
 - ◆ Высота секреторного эпителия молочной железы на основе морфологического анализа гистологических препаратов.

Рис.: Альвеола молочной железы,

Описание эксперимента

• Тиреолиберин — один из представителей класса рилизинг-гормонов гипоталамуса, приводящий к гиперпролактинемии (избыточной секреции пролактина). Опытные группы:

 T_1 - контрольная (5);

 T_2 - физиологические раствор (4);

$$T_3$$
 - $10^{-6} \frac{\text{ммоль}}{\text{мл}}$ (10); T_4 - $10^{-10} \frac{\text{ммоль}}{\text{мл}}$ (4).

 Простагландин—окисленные производные полиненасыщенных жирных кислот. Функции простагландинов сводятся к изменению тонуса гладких мышц. Группы:

 P_0 - контрольная группа (6);

 P_1 - лактопоэз (10-11-й день) (5);

 P_2 - лактогенез (3-4-й день) (4).

 В эксперементе с простагландином выборки объемом по 200 наблюдений, с тиреолиберином — 50.

Описательная статистика

 Метод множественных сравнений, статистики Тамхейна, Даннетта и Геймс-Хоуэлла (при условии разных дисперсий).

Рис. : Значимые изменения логарифма высоты эпителия и привесов в зависимости от фактора группы: P_0 , P_1 , P_2 (p – val < 0.001).

Оценка параметров по ММП

• Примеры оценки параметров

Рис. : Проверка согласия с распределением $f_1(\cdot\,;a,k,\nu)$ для мышей (p>0.25).

Влияние простагландина на параметры

• Группа контроля выделяется по параметрам формы и масштаба

	Ла	ктопоэз			Лактоге	нез		Контроль
	1	0,46	0,62	0,60	0,86	0,64	0,55	0,17
	0,46	1	0,48	0,78	0,46	0,47	0,48	0,42
Лактопоэз	0,62	0,48	1	0,60	0,75	0,99	0,88	0,12
	0,60	0,78	0,60	1	0,60	0,60	0,61	0,58
	0,86	0,46	0,7	0,6	1	0,77	0,65	0,15
	0,64	0,47	1,0	0,6	0,77	1	0,87	0,13
Лактогенез	0,55	0,48	0,9	0,6	0,65	0,87	1	0,13
Контроль	0,17	0,42	0,1	0,6	0,15	0,13	0,13	1

Рис. : Пример значимостей отличия параметра формы у мышей из групп $P_0, P_1, P_2.$

Влияние простагландина на параметры

• Сравнение групп простагландина по параметрам при использовании множественных сравнений на основе объединенной дисперсии.

	Контроль	Лактопоэз	Лактогенез	Значимость	Объемы групп	
	a_0	a_1	a_2	р	n	m
1	1,04	2,9328		0,11	212	597
2		2,9328	3,2717	0,77	597	788
3	1,04		3,2717	0,06	212	788

Рис.: Проверка равенства параметров формы по группам.

	Контроль	Лактопоэз	Лактогенез	Значимость	Объемы групп	
	k_0	k_1	k_2	р	n	m
1	0,0032	0,0637		0,09	212	597
2		0,0637	0,0861	0,54	597	788
3	0,0032		0,0861	0,02	212	788

Рис.: Проверка равенства параметров масштаба по группам.

• Морфологическая интерпретация: простагландин стимулирует увеличение высоты эпителия за счет образования внутриклеточных фагосом, а не из-за увеличения секреторной активности.

Влияние тиреолиберина на параметры

ullet Критерий Краскела-Уоллиса для μ,σ среди групп из эксперимента с териолиберином.

Рис. : Влияние фактора препарата на оценки параметров $\mu,\,\sigma$ по критерию K-W $(p=0.0014,\,p=0.043$ соответственно).

- Коэффициенты корреляции Спирмена между $\tilde{\mu}$, $\tilde{\sigma}$ и привесами соответственно $R=0.44,\, p=0.021$ и $R=0.43,\, p=0.024.$
- Морфологическая интерпретация: большую секреторную активность характеризует не только μ , но и σ .

Рис. : Двумерная диаграмма между параметром $k(\mu,\sigma)$ и привесами.

ullet Группы T_3,T_4 отличаются от T_1,T_2 значимо (p=0.018, критерий M-У) по параметру $k(\mu,\sigma)$, медианы равны соответственно 0.18 и 1.38.

•

Заключение

- Построены ОМП для ЛОГР и его перепараметризации.
- Вычислены дисперсии оценок. Показана инвариантность дисперсии оценок при перепараметризации.
- Программы ОМП с проверкой гипотез согласия протестированы на модельных выборках.
- Построены критерии однородности для параметров ЛОГР.
- На примере реальных данных исследовано влияние химических препаратов на параметры ЛОГР высоты секреторного эпителия у лактирующих мышей.