$$p_{\kappa max} \coloneqq 5 \; MPa$$

$$d_{01} = 0 \, \boldsymbol{m}$$

- диаметры переднего и заднего полюсных отверстий

$$d_{02} = 0.340 \ m$$

$$d \coloneqq 0.513 \; m$$
 - наружный диаметр корпуса

$$k_3 = 1.2$$

$$\sigma_{\it e\partial on} = 2500 \; MPa$$

- предел прочности на разрыв в тангенциальном направлении

$$\alpha = 0.7$$

$$\sigma_e \coloneqq \frac{\sigma_{e\partial on}}{k_s} = 2083.333 \; MPa$$

$$d_{011} = \frac{d_{01}}{d} = 0$$

$$d_{021} \coloneqq \frac{d_{02}}{d} = 0.663$$

 $\sigma_{\rm gK} \coloneqq \sigma_{\rm g} = 2083.333 \; MPa$ - допустимые напряжение при кольцевой намотке

$$\sigma_{\mathsf{BC}} \coloneqq \sigma_{\mathsf{BK}} \cdot \alpha = 1458.333 \; \mathbf{MPa}$$

- при спиаральной намотке

Углы намотки волокон у переднего и заднего днищ:

$$\beta_1 := a\cos\left(\sqrt{1 - d_{011}^2}\right) = 0 \ deg$$

$$\beta_2 := a\cos\left(\sqrt{1 - d_{021}^2}\right) = 41.511 \text{ deg}$$

Толщины обечаек спиральной намотки в месте соединения цилиндрической обечайки с передним и задним днищами:

$$h_{c1} \coloneqq rac{p_{\kappa max} \! \cdot \! d}{2 \! \cdot \! \sigma_{\mathsf{ec}} \! \cdot \! \left(\cos \left(eta_1
ight)
ight)^2} \! = \! 0.879 \; m{mm}$$

$$h_{c2} \coloneqq rac{p_{\kappa max} \cdot d}{2 \cdot \sigma_{artheta c} \cdot \left(\cos \left(eta_2
ight)
ight)^2} = 1.568 \; m{mm}$$

Угол намотки волокон цилиндрической части оболочки:

$$\beta \coloneqq \frac{\beta_1 + \beta_2}{2} = 20.756 \text{ deg}$$

Толщины спиральной и кольцевой намоток в центральной части обечайки:

$$h_c \coloneqq h_{c2} \cdot \frac{\cos\left(\beta_1\right)}{\cos\left(\beta_2\right)} = 2.094 \ \boldsymbol{mm}$$

$$h_{\kappa} := \alpha \cdot h_c \cdot \left(3 \cdot (\cos(\beta))^2 - 1\right) = 2.38 \ mm$$

$$h_{c1} = 1 \ mm$$
 $h_c = 3 \ mm$

$$h_{c2} \coloneqq 2 \ \boldsymbol{mm} \quad h_{\kappa} \coloneqq 3 \ \boldsymbol{mm}$$

Толщина центральной части цилиндрической обечайки

$$\delta_u := h_c + h_{\kappa} = 6 \ \mathbf{mm}$$

Толщины обечаек в центральной части переднего и заднего днища

$$\delta_1 \coloneqq \frac{h_{c1}}{d_{011}} \xrightarrow{explicit, ALL} \frac{1 \ mm}{0} = ? \ mm$$

$$\delta_2 \coloneqq \frac{h_{c2}}{d_{021}} \xrightarrow{explicit, ALL} \xrightarrow{0.66276803118908389} = 3.018 \ \textit{mm}$$

	0.0000001	1			F	
	40				5.	10^{-8}
	85				20	
	130				42.5	5
	180				65	
	245				90	
.J .	300			d_1	122.5	5
d_1 :=		$\cdot mm$		$\overline{2}$	$=\begin{vmatrix} 122.5\\ 150 \end{vmatrix}$	
	d_{02}				170	
	mm				195	
	390				220	
	440				240	
	480				256.4	15
	512.9				[200.	
d' =		11				
	$\ \cdot \ d_1$					
		i				
	$ ^{\alpha} \overline{d}$					
	$\begin{vmatrix} 1 \\ d' \end{vmatrix}$					
$h_{m1} \coloneqq$	$\ \text{for } i \in 0$. 11			$h_{n2} \coloneqq \ \mathbf{f}_0$	or $i \in 011$
71			1 2		72	
	$\ \cdot \ _{h} \leftarrow 1$	$\frac{1}{2}$	$-d_{011}$			$b \leftarrow b \sim 1 - d_{021}$
	$\parallel \parallel^{\prime \iota_{r1}}_{i} $	d' d'	$-d_{011}^{2}$			$\left \left $
	$\left\ \begin{array}{c} \text{for } i \in 0 \dots \\ \left\ \begin{array}{c} h_{r1_i} \leftarrow I \\ h_{r1} \end{array} \right\ \right\ $	V	011			or $i \in 011$ $\begin{vmatrix} h_{r2_i} \leftarrow h_{c2} \cdot \sqrt{\frac{1 - d_{021}^2}{d'_i - d_{021}^2}} \\ r_2 \end{vmatrix}$
	h_{r1}				h	r2
	Н		1		H	
Γ	$1.949 \cdot 10^{-1}$	0	$\lceil 7.162 \cdot 10^4 \rceil$	1		[2.26i]
	0.078		3.581			2.492i
	0.166		2.457			2.863i
	0.253		1.986			3.474i
	0.351		1.688			5.038i
	0.478		1 447		_	7.65
	0.1.0	h_{r1} =	1.308	mm	h_{r2}	$\begin{array}{c c} 3.926 & mm \end{array}$
u = 1	0.585					
a =	0.585					
	0.663		1.228			3.168
	0.663 0.76		1.228 1.147			3.168 2.643
	0.663 0.76 0.858		1.228 1.147 1.08			3.168 2.643 2.315
	0.663 0.76 0.858 0.936		1.228 1.147 1.08 1.034			3.168 2.643 2.315 2.126
	0.663 0.76 0.858		1.228 1.147 1.08			3.168 2.643 2.315
	0.663 0.76 0.858 0.936		1.228 1.147 1.08 1.034			3.168 2.643 2.315 2.126
	0.663 0.76 0.858 0.936		1.228 1.147 1.08 1.034			3.168 2.643 2.315 2.126
	0.663 0.76 0.858 0.936		1.228 1.147 1.08 1.034			3.168 2.643 2.315 2.126
	0.663 0.76 0.858 0.936		1.228 1.147 1.08 1.034			3.168 2.643 2.315 2.126
	0.663 0.76 0.858 0.936		1.228 1.147 1.08 1.034			3.168 2.643 2.315 2.126

Д		$cel_{``A}$				000			exce													
ВВС	$excel_{\mathrm{``B1''}} \coloneqq d'$							exce	$l_{_{^{^{^{*}}\!\mathrm{D}1}}}$	" : =	h_{r_2}	· 1	000)								
		1F.	-07	1	95F	-10	71	162	4,02				0									
									1201				0									
									6684			-	0									
		1	130	0,2	2534	411	1,	98	6493				0									
	245 300 340			0,760234		1,447024 1,30767 1,228342				-												
									3,9258													
													-									
		440																				
								1,033804 1,000097														
ДС																						
Вывод																						
_[_