MATH 7410 Homework 3 (In-Progress)

James Harbour

November 6, 2022

Problem 1

(a): Let X be a separable Banach space. Show that $Ball(X^*) = \{\phi \in X^* : ||\phi|| \le 1\}$ is wk^* -metrizable.

Proof. Note that it suffices to show that a countable subset of the seminorms defining the LCS topology on X^* in fact define the topology on $Ball(X^*)$.

Choose a norm dense sequence $(x_n)_{n=1}^{\infty}$ in X. We claim that the seminorms $\rho_{x_n} = |ev_{x_n}(\cdot)| : X^* \to [0, +\infty)$ define the restriction of the wk^* -topology to $Ball(X^*)$.

Suppose that $(\phi_{\alpha})_{\alpha \in I}$ is a net in $Ball(X^*)$ and $\phi \in Ball(X^*)$ is such that $\phi_{\alpha}(x_n) \to \phi(x)$ for all $n \in \mathbb{N}$. Now let $x \in X$ and fix $\varepsilon > 0$. Then by density there is some $n \in \mathbb{N}$ such that $||x - x_n|| < \varepsilon/3$. Moreover, by assumption, there is some $\alpha_0 \in I$ such that for all $\alpha \geq \alpha_0$, $|\phi_{\alpha}(x_n) - \phi(x_n)| < \varepsilon/3$. Now, for all $\alpha \geq \alpha_0$,

$$|\phi(x) - \phi_{\alpha}(x)| \le |\phi(x - x_n)| + |\phi(x_n) - \phi_{\alpha}(x)| \le ||x - x_n|| + |\phi_{\alpha}(x_n) - \phi(x_n)| + |\phi_{\alpha}(x_n) - \phi_{\alpha}(x)|$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + ||\phi_{\alpha}|| ||x_n - x|| < \varepsilon$$

so in fact, for nets in $Ball(X^*)$, pointwise convergence on $(x_n)_n^{\infty}$ implies pointwise convergence everywhere, and thus wk^* -convergence of the underlying nets.

(b): If X is a Banach space, show that there is a compact space K such that X is isometrically isomorphic to a closed subspace of C(K).

Proof. Let $\iota: X \hookrightarrow \mathbb{F}^{X^*}$ be the canonical evaluation map, and for brevity write $\hat{x} = \iota(x)$. Note that each \hat{x} is weak-* continuous, so $\iota(X) \subseteq C(X^*, wk^*)$. Let $K = (Ball(X^*), wk^*)$, so K is a compact space by Banach-Alaoglu. Define a map $\phi: X \to C(K)$ by $\phi(x) = \iota(x)|_{Ball(X^*)}$.

Problem 2

Let $Bil(X \times Y, Z)$ be the space of bounded, bilinear maps from $X \times Y \to Z$.

(a): Suppose that B_x, B^y are bounded for each $x \in X, y \in Y$. Prove that there is a constant M > 0 so that

$$||B(x,y)|| \le M||x||||y||$$

(use the Principle of Uniform Boundedness).

Proof. For $x \in X$, $y \in Ball(Y)$, note that $||B_y(x)|| \le ||B_x||$. Then by the principle of uniform boundedness, $C := \sup_{y \in Ball(Y)} ||B_y|| < +\infty$. Now observe that

$$\sup_{x \in Ball(X), y \in Ball(Y)} \|B(x, y)\| = \sup_{x \in Ball(X), y \in Ball(Y)} \|B_y(x)\| \le \sup_{y \in Ball(Y)} \|B_y\| = C,$$

whence the claim follows by scaling.

(b): Show that the map $\Phi: Bil(X \times Y, \mathbb{F}) \to B(X, Y^*)$ given by $[\Phi(B)(x)](y) = B(x, y)$ is a well-defined, isometric isomorphism.

Proof.

well-defined: For fixed $x \in X$, we have that

$$||B_x|| = \sup_{\|y\| \le 1} |B(x,y)| \le ||B|| < +\infty$$

so $B_x \in Y^*$.

<u>isometric</u>: $B \in Bil(X \times Y, \mathbb{F}), x \in X$. On one hand, from

$$\|\Phi(B)\| = \sup_{\|x\| \le 1} \|B(x,\cdot)\|_{Y^*} = \sup_{\|x\| \le 1} \sup_{\|y\| \le 1} |B(x,y)|$$

it is clear that $\|\Phi(B)\| \leq \|B\|$. Suppose that $x \in X$, $y \in Y$, so $|B(x,y)| \leq \|B\| \|x\| \|y\|$. Then

$$|B(x,y)| = |B_x(y)| \le ||B_x|| ||y|| \le ||\Phi(B)|| ||x|| ||y||,$$

whence by minimality $||B|| \le ||\Phi(B)||$. Thus Φ is isometric and $\Phi(B) \in B(X, Y^*)$.

isomorphism: It suffices to show surjectivity. Suppose that $\Gamma \in B(X, Y^*)$. Define a map $B: X \times Y \to \mathbb{F}$ by $\overline{B(x,y) = \Gamma(x)}(y)$. For $x \in X$ and $y \in Y$, we have that

$$|B(x,y)| \le ||\Gamma(x)|| ||y|| \le ||\Gamma|| ||x|| ||y||,$$

whence $B \in Bil(X \times Y, \mathbb{F})$. Moreover, by construction $\Phi(B) = \Gamma$.

(c): By switching names, it follows that the map $\widetilde{\Phi}: Bil(X \times Y, \mathbb{F}) \to B(Y, X^*)$ given by $[\widetilde{\Phi}(B)(y)](x) = B(x,y)$ is a well-defined, isometric isomorphism. So the map $\widetilde{\Phi} \circ \Phi^{-1}$ is an isometric isomorphism $B(X,Y^*) \cong B(Y,X^*)$. What is this isomorphism?

Problem 3

Let X, Y be Banach spaces. And let $(T_n)_{n=1}^{\infty}$ be a sequence in B(X, Y).

Lemma 1. If X is a Banach space, $(x_n)_{n=1}^{\infty}$ a sequence in X such that $\phi(x_n)$ is a bounded sequence for all $\phi \in X^*$, then $(x_n)_{n=1}^{\infty}$ is bounded in norm.

Proof of Lemma. Let $\hat{x} \in X^{**}$ denote the canonical image of $x \in X$ inside X^{**} . For each $\phi \in X^{*}$, $\sup_{n \in \mathbb{N}} |\hat{x}_n(\phi)| = \sup_{n \in \mathbb{N}} |\phi(x_n)| < +\infty$, so by the principle of uniform boundedness, $\sup_{n \in \mathbb{N}} ||x_n|| = \sup_{n \in \mathbb{N}} ||\hat{x}_n|| < +\infty$.

(a): If T_n converges in the WOT to $T \in B(X, Y)$ show that $\sup_n ||T_n|| < +\infty$. (In particular, if T_n converges strongly, then it is norm).

Proof. Fix $x \in X$. Then for all $\phi \in Y^*$, $\phi(T_n x) \to \phi(T x)$ so $\sup_{n \in \mathbb{N}} |\phi(T_n x)| < +\infty$. Now by the above lemma, $\sup_{n \in \mathbb{N}} ||T_n x|| < +\infty$. Hence, by the principle of uniform boundedness, $\sup_{n \in \mathbb{N}} ||T_n x|| < +\infty$ as desired. \square

(b): If $\sup_n ||T_n|| < +\infty$ and there is a norm dense $D \subseteq X$ so that $T_n x$ converges for every $x \in D$, show that $T_n x$ converges for all $x \in X$, that $Tx = \lim_{n \to \infty} T_n x$ is a bounded operator, and that $||Tx - T_n x|| \xrightarrow{n \to \infty} 0$ for every $x \in X$.

Proof. Fix $x \in X$, $\varepsilon > 0$ and choose $z \in D$ such that $||x - z|| < \varepsilon$. Set $C = \sup_n ||T_n||$. Then, we compute that

$$||T_n x - T_m x|| \le ||T_n x - T_n z|| + ||T_n z - T_m x|| < C\varepsilon + ||T_n z - T_m x||$$

$$\le C\varepsilon + ||T_n z - T_m z|| + ||T_m z - T_m x|| < 2C\varepsilon + ||T_n z - T_m z|| \xrightarrow{n, m \to \infty} 0,$$

so by completeness, $T_n x$ converges for all $x \in X$.

Now define $Tx = \lim_{n\to\infty} T_n x$. This map is well-defined and linear, so it suffices to show that it is bounded. But

$$||Tx|| = \lim_{n \to \infty} ||T_n x|| \le \liminf_{n \to \infty} ||T_n|| ||x|| \le C||x||,$$

whence $||T|| \leq C$ so T is a bounded operator. Lastly, suppose that $x \in X$. Then

Problem 4

Let X, Y be Banach spaces. And let $(T_n)_{n=1}^{\infty}$ be a sequence in B(X, Y). Suppose that $\sup_n ||T_n|| < +\infty$ and that $D \subseteq X$, $G \subseteq Y^*$ are norm dense. Assume that $\lim_n \phi(T_n x)$ exists for all $\phi \in G, x \in D$.

(a): Show that $\lim_n \phi(T_n x)$ exists for all $\phi \in Y^*$, $x \in X$.

Proof. Fix $x \in X$, $\phi \in Y^*$, and $\varepsilon > 0$. Choose $y \in D$, $\psi \in G$ such that ||x - y||, $||\phi - \psi|| < \varepsilon$. Set $C = \sup_{n \in \mathbb{N}} ||T_n||$ Then, for $n, m \in \mathbb{N}$, we compute that

$$\|\phi(T_{n}x) - \phi(T_{m}x)\| \leq \|\phi(T_{n}x) - \psi(T_{n}x)\| + \|\psi(T_{n}x) - \phi(T_{m}x)\|$$

$$\leq C\varepsilon \|x\| + \|\psi(T_{n}x) - \psi(T_{n}y)\| + \|\psi(T_{n}y) - \phi(T_{m}x)\|$$

$$\leq C\varepsilon (\|x\| + \|\psi\|) + \|\psi(T_{n}y) - \psi(T_{m}x)\| + \|\psi(T_{m}x) - \phi(T_{m}x)\|$$

$$\leq C\varepsilon (2\|x\| + \|\psi\|) + \|\psi(T_{n}y) - \psi(T_{m}y)\| + \|\psi(T_{m}y) - \psi(T_{m}x)\|$$

$$\leq C\varepsilon (2\|x\| + 2\|\psi\|) + \|\psi(T_{n}y) - \psi(T_{m}y)\| \xrightarrow{n,m\to\infty,\varepsilon\to0} 0.$$

Hence, by completeness of \mathbb{F} , the desired limit exists.

(b): Show that for every $x \in X$, there is a well-defined bounded operator $S: X \to Y^{**}$ given by $S(x)(\phi) = \lim_{n \to \infty} \phi(T_n x)$.

Proof. This limit exists for every $x \in X$ and $\phi \in Y^*$ by part (a), and it is clearly linear in both x and ϕ . Now suppose that $\phi \in Y^{**}$. Then

$$\left|\lim_{n\to\infty}\phi(T_nx)\right| = \lim_{n\to\infty}\left|\phi(T_nx)\right| \le \liminf_{n\to\infty}\left\|\phi\right\| \|T_nx\| \le \liminf_{n\to\infty}\left\|\phi\right\| \|T_n\| \|x\| \le \|\phi\| \|x\| \sup_{n\in\mathbb{N}}\|T_n\|,$$

so $||S(x)|| \le ||x|| \sup_{n \in \mathbb{N}} ||T_n|| < +\infty$, whence $S(x) \in Y^{**}$. Thus S is a well-defined operator from X to Y^{**} . Moreover, the above inequality implies that $||S|| \le \sup_{n \in \mathbb{N}} ||T_n|| < +\infty$, so $S \in B(X, Y^{**})$.

(c): If $T_n x$ converges weakly to an element of Y for every $x \in D$, show that $S(X) \subseteq Y$, and that $T_n \to S$ WOT.

Proof. Since Y is norm-closed inside Y^{**} , S is norm-continuous, and $D \subseteq S^{-1}(Y)$, it follows that $X \subseteq S^{-1}(Y)$ i.e. $S(X) \subseteq Y$. Now, suppose that $x \in X$ and $\phi \in Y^{***}$. Then there is some $y \in Y$ and $\psi \in Y^*$ such that $S(x) = \widehat{y}$ and $\phi|_Y = \psi$.

By construction, $S(x)(\psi) = \lim_{n\to\infty} \psi(T_n x)$, so we compute that

$$\phi(\widehat{T_n x}) = \widehat{\psi}\widehat{T_n x} = \widehat{T_n x}(\psi) = \psi(T_n x) \to S(x)(\psi) = \phi(S(x)) = \phi(\widehat{y}).$$

Hence, $T_n \to S$ WOT.

Problem 5

Let G be a countable, discrete, group and $\lambda: G \to B(l^2(G))$ be given by $(\lambda(g)\xi)(h) = \xi(g^{-1}h)$.

(a): Let $(g_n)_{n=1}^{\infty}$ be a sequence in G so that for every finite $F \subseteq G$ we have $\{n : g_n \in F\}$ is finite. Show that $\lim_{n\to\infty} \lambda(g_n) = 0$ in WOT. (Hint: consider first acting on pairs of vectors which are finitely supported and applying the preceding problem to reduce to this case).

Proof. Suppose first that $\xi, \eta \in l^2(G)$ both have finite support, and let $\text{supp}(\xi) = \{x_1, \dots, x_k\}$, $\text{supp}(\eta) = \{y_1, \dots, y_l\}$, $\alpha_i = \xi(x_i)$, $\beta_j = \eta(y_j)$. Then, using finite supportedness to justify interchanges of summations, we compute that

$$\langle \lambda(g_n)\xi, \eta \rangle = \sum_{x \in G} \xi(g_n^{-1}x)\xi(x) = \sum_{x \in G} \sum_{i,j=1}^{k,l} \alpha_i \bar{\beta}_j \delta_{x_i}(g_n^{-1}x)\delta_{y_j}(x) = \sum_{i,j=1}^{k,l} \sum_{x \in G} \alpha_i \bar{\beta}_j \delta_{x_i}(g_n^{-1}x)\delta_{y_j}(x) = \sum_{i,j=1}^{k,l} \alpha_i \bar{\beta}_j \delta_{g_n}(y_j x_i^{-1}).$$

If $g_n \notin \bigcup_{j=1}^l \bigcup_{i=1}^k \{y_j x_i^{-1}\}$, then the above expression is zero. As this set is finite, the assumption on the given sequence implies that $\langle \lambda(g_n)\xi, \eta \rangle$ is eventually equal to zero past some fixed index, whence it converges to zero.

(b): Suppose G is infinite. If $\mathcal{K} \subseteq l^2(G)$ is closed and $\lambda(g)\mathcal{K} = \mathcal{K}$ for every $g \in G$, and $\mathcal{K} \neq 0$, show that \mathcal{K} is not finite-dimensional. (Hint: construct a sequence satisfies the hypothesis of the preceding problem. If \mathcal{K} is finite-dimensional, then λ applied to the sequence restricted to \mathcal{K} converges to 0 in WOT, and hence in any other LCS topology on $B(\mathcal{K})$. Consider using this for one of the other operator topologies to get a contradiction).

Proof. Suppose, for the sake of contradiction, that \mathcal{K} is finite dimensional. Let $(g_n)_{n=1}^{\infty}$ be a sequence of pairwise distinct elements of G. This sequence satisfies the hypothesis of part (a), whence $\lambda(g_n) \xrightarrow{\text{WOT}} 0$. As \mathcal{K} is $\lambda(G)$ -invariant, we have that $\lambda(g_n)|_{\mathcal{K}} \in B(\mathcal{K})$ whence $\lambda(g_n)|_{\mathcal{K}} \xrightarrow{\text{WOT}} 0$ in $B(\mathcal{K})$.

As K is finite dimensional, B(K) is also a finite dimensional LCS. Thus, every locally convex topology on B(K) is equal, whence $\lambda(g_n)|_{\mathcal{K}} \xrightarrow{SOT} 0$. Let $\xi \in B(K)$ with $\xi \neq 0$. Then

$$\|\xi\| = \|\lambda(g_n)\xi\| = \|\lambda(g_n)|_{\mathcal{K}}\xi\| \xrightarrow{n \to \infty} 0$$

which implies that $\xi = 0$, contradicting the choice of ξ .