Lecture 2

- You have reviewed merge sort from the video
- This lecture, we will cover:
 - How to prove correctness recursive algorithms
 - How to analyze the run time recursive algorithms

How to prove correctness of recursive algorithm?

Mergesort solves the sorting problem recursively

How do we prove it's correct?

Correctness of Merge sort: proof by induction

- For array size = 1, it is already sorted, Merge_sort correctly outputs sorted array
- Inductive assumption: Assume that merge_sort correctly sorts arrays of size 1, ..., k
- Inductive step: For array A size k+1
 - For any $k \ge 1$, we have $\frac{\lceil k+1 \rceil}{2} \le k$
 - Inductive assumption implies that the two halfs will be sorted correctly by merge sort, since we know that the merge procedure will maintain the correct order, we see that merge_sort correctly sort A of size k+1

Proof by induction

- Theorem: p(n) is true for every positive integer n
- Template for proof:
 - Base case: Prove the most basic case(s)
 - Inductive hypothesis: **Assume** statement is true for some k, or for all numbers $\leq k$
 - Inductive step: **Prove** the statement true for k+1

Example: Making Postage

- Statement: Any postage ≥ 20 cents can be made with 4 and 5 cents stamps.
- Base case: 20 cents can be made with 4 fives
- Inductive hypothesis: assume we can make postage 20,..,k
- **Inductive step**: show that we can make postage k+1

What is missing?

Complete proof

- Base cases:
 - n=20: 4 x5; n=21: 4x4+5; n=22: 3x4+2x5; n=23: 2x4+3x5
- Inductive assumption: assume that any postage amount 20, ..., k can be made with 4, 5 cents stamps
- Inductive step: For k+1, for $k \ge 23$, we have $20 \le k+1-4 \le k$, so we can make k-4 and then use one more 4c postage to make k+1

Induction can be viewed as a form of Recursion

Postage(n)

```
if n = 20 return "four 5c stamps"
```

else if n= 21 return ...

else if n = 22 return ...

else if n= 23 return ...

else return Postage(n-4)

What is run time T(n) for making postage n?

$$T(n) = T(n-4) + c$$

Solving Recurrence Relation with telescoping

$$T(n) = T(n-4) + c$$

$$T(n) = T(n-8) + 2c$$

$$T(n-4) = T(n-8) + c$$

$$T(n-8) = T(n-12) + c$$

.....

$$T(n) = T(n - 4k) + kc$$

How many layers of recursion?

When do we hit the base case? $n - 4k \approx 23$

$$k_{max} \approx \frac{n-23}{4} = O(n)$$
$$T(n) = O(n)$$

Recurrence relation for merge_sort?

T(n): the runtime for an input array of size n

Runtime:

- Break A into two half sized arrays c
- 2. Sort the two half size arrays $-2T\left(\frac{n}{2}\right)$
- 3. Merge the two sorted half arrays cn

Recurrence relation:

$$T(n) = 2T\left(\frac{n}{2}\right) + cn$$

Solving recurrence relation using telescoping

$$T(n) = 2T\left(\frac{n}{2}\right) + cn$$

Solving recurrence relation using recursion tree

$$T(n) = 2T\left(\frac{n}{2}\right) + cn$$

What if we break the array into 3 parts?

- Recurrence relation?
- Recursion tree?

More generally...

 $T(n) = aT(\frac{n}{b}) + cn^d$ for some constants a, b, c, d Recursion tree:

$$T(n) = \left(1 + \left(\frac{a}{b^d}\right)^2 + \dots + \left(\frac{a}{b^d}\right)^k\right) cn^d$$

- If $\frac{a}{n^d} < 1$, $T(n) = O(n^d)$
- If $\frac{a}{n^d} = 1$, $T(n) = O(n^d \log n)$

• If
$$\frac{a}{b^d} > 1$$
, $T(n) = O\left(\left(\frac{a}{b^d}\right)^k cn^d\right) = O(n^{\log_b a})$

$$\left(\frac{a}{bd}\right)^{\log_b n} = n^{\log_b \frac{a}{b^d}} = n^{\log_b a - \log_b b^d} = n^{\log_b a - d}$$

Master Theorem

$$T(n) = aT(\frac{n}{b}) + cn^d$$

Case 1: $a < b^d$, or equiv. $d > \log_b a$, $T(n) = O(n^d)$

Case 2: $a = b^d$, or equiv. $d = \log_b a$, $T(n) = O(n^d \log n)$

Case 3: $a > b^d$, or equiv. $d < \log_b a$, $T(n) = O(n^{\log_b a})$