What Is Sparsity in Lasso?

Sparsity means that many of the model's weights (coefficients) become exactly zero.

This leads to a **simpler model** — one that uses **only the most important features** and ignores the rest.

Why Does Lasso Regression Create Sparsity?

It all comes down to how Lasso penalizes the weights.

Lasso Cost Function:

$$J(heta) = ext{MSE} + \lambda \sum_{j=1}^n | heta_j|$$

- MSE = Mean Squared Error (normal loss)
- λ = regularization strength
- $| heta_j|$ = absolute value of the coefficients

\(\) Compare with Ridge:

- Ridge adds $\lambda \sum \theta_i^2$ to the loss a squared penalty.
- Lasso adds $\lambda \sum |\theta_j|$ a linear/absolute penalty.

The shape of these penalties matters a lot.

Geometry Intuition:

- In Ridge, the penalty constraint is circular (or elliptical).
- In Lasso, the constraint is diamond-shaped (like an L1 ball).

When you minimize the loss with constraints:

- In Ridge, the intersection point (minimum) usually falls inside the circle → all coefficients small, but rarely zero.
- In Lasso, the sharp corners of the diamond often touch the loss surface → many coefficients shrink exactly to 0.

That's why Lasso creates sparsity — its constraint "encourages" zero values.

Practical Interpretation:

- Lasso automatically performs feature selection.
- It's very useful when:
 - 1. You have many features (like 100s or 1000s).
 - 2. Only a few of them are truly important.

Summary:

Concept	Ridge	Lasso
Regularization	$\lambda \sum \theta^2$	(\lambda\sum
Coefficients	Shrinks them	Can shrink some to zero
Sparsity	No	Yes
Feature Selection	No	Yes