

Apuntes de clases #1 en FC-UNI

CÁLCULO DIFERENCIAL E INTEGRAL AVANZADO

Temas:

- Funciones vectoriales de una variable real
- Funciones reales de varias variables
- Funciones vectoriales de variables vectoriales
- Integrales múltiples
- Integrales de líneas
- Integrales de superficies

Clases impartidas por Helmuth Villavicencio

Apuntes de las clases de Cálculo diferencial e integral avanzado*

Ph.D HELMUTH VILLAVICENCIO FERNÁNDEZ Universidad Nacional de Ingeniería

Rímac, Lima

Edición 2018

^{*}Actualizado a la fecha 14 de mayo del 2018

Índice general

Indice general		1
I	Teoría	3
1	Funciones vectoriales de una variable real	4
	1.1. Operaciones algebraicas	7
	1.2. Límite de funciones vectoriales de variable real	8
	1.3. Interpretación geométrica del límite1.4. Propiedades de los límites	12
	1.4. Propiedades de los límites	13
	1.5. Continuidad	13
	1.6. Propiedades de las funciones continuas	15
	1.7. Curvas	15
	1.8. Diferenciabilidad	16
	1.9. Propiedades de las funciones diferenciables	
	1.10. Curvas regulares	10
	1.11. Reparametrización	20
	1.12. Parametrización por longitud de arco	21
	1.13. Derivadas de orden superior	23
	1.14. Integración de funciones vectoriales	23
	1.14. Integracion de funciones vectoriales	2.
2	Funciones reales de varias variables	25
3	Funciones vectoriales de variables vectoriales	30
3	3.1. Coordenadas polares	
	3.2. Multiplicadores de Lagrange	30
	3.3. Coordenadas cilíndricas	33
	5.5. Coordenadas crimuricas	9.
П	Ejercicios	38
	3.4. Extra	39
	Zauce de la constant	5)
Re	eferencias bibliográficas	4(

Prefacio

"Por tanto, estudiantes estudien matemáticas y no construyan sin fundamentos."

— Leonardo Da Vinci (1452-1519).

Capítulo 1

Funciones vectoriales de una variable real

Recordemos que \mathbb{R}^n es un espacio vectorial de dimensión n donde:

• Todo $a \in \mathbb{R}^n$ puede ser escrito como

$$a = \sum_{i=1}^{n} a_i e_i$$
Componentes de a ,

donde $\{e_1, \ldots, e_n\}$ es la base canónica de \mathbb{R}^n y los a_i son escalares con $1 \le i \le n$, luego:

$$a = (a_1, a_2, \dots, a_n)$$

• También si $a \in \mathbb{R}^n$ se define

$$\|a\|=\sqrt{\sum_{i=1}^n|a_i|^2}$$

que satisface:

 $\star \|a\| = 0 \iff a = 0$, donde

★ Si $\lambda \in \mathbb{R}^n$, entonces

★ La desigualdad triangular:

$$0 \in \mathbb{R}^n, 0 = (0, 0, 0, \dots, 0).$$

$$\|\lambda a\| = |\lambda| \|a\|$$

$$||a+b|| \leqslant ||a|| + ||b||.$$

Definición 1.1: Función vectorial de variable real

Una función vectorial de variable real es una función del tipo:

$$f: A \subset \mathbb{R} \to \mathbb{R}^n$$
.

Observación 1.1: Funciones componentes de una función vectorial de variable real

1) Dado $t \in A$ se conoce que $f(t) \in \mathbb{R}^n$, luego

$$f(t) = (f_1(t), f_2(t), \dots, f_n(t)),$$

es decir, se inducen

$$f_i \colon A \to \mathbb{R} \quad \forall i \in [1, n]$$
.

estas se denominan funciones componentes de f.

2) Como $f: A \subset \mathbb{R} \to \mathbb{R}^n$ se representa por

$$f = (f_1(t), f_2(t), \dots, f_n(t))$$

$$\mathcal{D}_f = D_{f_1} \bigcap D_{f_2} \bigcap D_{f_3} \cdots \bigcap D_{f_n}.$$

Comentario del profesor 1.1: Traza de una función vectorial de variable real

- 1. La traza es la representación geométrica, es decir, el lugar geométrico.
- 2. Si no se puede representar la traza, entonces se representará el rango.
- 3. Más adelante se estudiará la traza en un dominio especial en el cual se llamará curva.

Ejemplo 1.1: Dominio de una función vectorial de variable real

Halle el dominio de $f(t) = (t^3, \ln(2-t), \sqrt[4]{t})$.

Solución. La función f tiene tres funciones componenentes del tipo función real de variable real, así que para determinar su dominio se deberá de determinar el dominio común a las tres, es decir, si

$$egin{align} f_1(t) &= t^3, & \mathcal{D}_{f_2} &= \mathbb{R}. \ f_2(t) &= \ln(2-t), & \mathcal{D}_{f_2} &=]-\infty, 2[. \ f_3(t) &= \sqrt[4]{t}, & \mathcal{D}_{f_3} &= [0, +\infty[. \end{array}$$

Figura 1.1: Área sombreada de la región delimitada por $f(x) = 9 - x^2$ y el eje X.

Observación 1.2

- 1. El conjunto $f(A) = \{(f_1(t), f_2(t), \dots, f_n(t)) \in \mathbb{R}^n : t \in A\}$ se denomina **rango de** f y su representación en \mathbb{R}^n se llama **traza de** f.
- 2. Las funciones vectoriales $f(t) = (\cos t) \hat{i} + (\sin t) \hat{j}$ y $g(t) = (\sin t) \hat{i} + (\cos t) \hat{j}$ con $0 \le t < 2\pi$ tienen la misma traza.

Ejemplo 1.2: Traza de una función vectorial de variable real

Halle la traza de $f(t) = (t+1)e_1 + (t^2+3)e_2$ donde $t \in \mathbb{R}$ y $e_1 = (1,0), e_2 = (0,1)$.

Solución. Sea $f(t) = (t + 1, t^2 + 3)$, entonces las funciones componentes son:

$$f_1(t) = t + 1,$$
 $f_2(t) = t^2 + 3.$

Pero, $f_1(t) - 1 = t$ y reemplazando se tiene $f_2(t) = (f_1(t) - 1)^2 + 3$.

Comentario del profesor 1.2

- 1. Es diferente el gráfico del rango (conjunto imagen), que la gráfica de la función vectorial.
- 2. El rango o conjunto imagen puede ser representado por diferentes funciones vectoriales.
- 3. La figura geométrica puede ser representada por diferentes funciones vectoriales.
- 4. En el ejemplo vemos dos parametrizaciones de la circunferencia.
- 5. La traza es independiente de la orientación.

- 6. La traza es el lugar geométrico que queda.
- 7. La función vectorial es una función, así que su gráfica "vive" en una dimensión más.
- 8. Por ejemplo, sea $f: \mathbb{R} \to \mathbb{R}$ con regla $t \mapsto \operatorname{sen} t$. La gráfica de f es $(t, f(t)) \mathbb{R}^2$. El dibujo de este último conjunto es la gráfica. Va a tener una dimensión más, la dimensión del dominio.
- 9. Como estirarlo, lo graficamos.
- 10. La primera interpretación es que no es una curva cerrada.
- 1. No confundir el gráfico del rango (traza) con la gráfica de f.

Ejemplo 1.3: Gráfica de una función vectorial de variable real

Sea $f(t) = (\cos t, \sin t)$ donde $t \in [0, 2\pi]$.

Solución. La gráfica de f es el conjunto

$$Gráf(f) = \{(t, f(t)) \in \mathbb{R}^3 : t \in [0, 2\pi]\}$$

$$\begin{array}{lll} t = 0 & \longrightarrow (0, f(0)) & = (0, 1, 0) \\ t = \frac{\pi}{2} & \longrightarrow (\pi/2, f(\pi/2)) & = (\pi/2, 0, 1) \\ t = \pi & \longrightarrow (\pi, f(\pi)) & = (\pi/2, 0, 1) \\ t = \frac{3\pi}{2} & \longrightarrow (3\pi/2, f(3\pi/2)) & = (3\pi/2, 0, -1) \\ t = 2\pi & \longrightarrow (2\pi, f(2\pi)) & = (2\pi, 1, 0) \end{array}$$

Ejercicio 1.1: Traza de una función vectorial de variable real

Halle la traza de $f: [0,1] \to \mathbb{R}^2$ dada por la siguiente regla

$$f_1(t)=t$$

$$f_2(t)=egin{cases} t\cos\left(rac{1}{t}
ight) &, t
eq 0 \ 0 &, t=0. \end{cases}$$

1.1. Operaciones algebraicas

Recordemos que si $a, b \in \mathbb{R}^n$ donde $a = (a_1, a_2, \dots, a_n)$ y $b = (b_1, b_2, \dots, b_n)$, entonces

1)
$$\underbrace{a \cdot b}_{\text{Producto escalar}} = \sum_{i=1}^{n} a_i b_i = a_1 b_1 + a_2 b_2 + \dots + a_n b_n.$$

2)
$$\underbrace{a \times b}_{\text{Producto vectorial}} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ & \ddots & \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \begin{vmatrix} \hat{i} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \begin{vmatrix} \hat{j} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \begin{vmatrix} \hat{k} \end{vmatrix}$$
.

Definición 1.2: Suma, producto de una función por un escalar, producto interno y producto vectorial

Dado $A \subset \mathbb{R}$, si $f, g: A \to \mathbb{R}^n$ son funciones vectoriales y $\lambda: A \to \mathbb{R}$ definimos las nuevas funciones vectoriales

$$f + g$$
, λf , $f \cdot g$ definidas en A.

como

$$(f+g)(t) = f(t) + g(t)$$
$$(\lambda f)(t) = \lambda(t)f(t)$$
$$(f \cdot g)(t) = f(t) \cdot g(t)$$

Adicionalmente si n = 3:

$$(f \times g)(t) \coloneqq f(t) \times g(t)$$

Observación 1.3: Función real de variable real

 $f \cdot g \colon A \to \mathbb{R}$.

Ejemplo 1.4

 $\mathrm{Si}\;f(t)=\left(t,0,t^{2}\right)\mathrm{y}\;g(t)=\left(t^{2},0,t\right)\mathrm{con}\;t\in\left[1,2\right].\;\mathrm{Halle}\;\mathrm{la}\;\mathrm{traza}\;\mathrm{de}\;z(t)\;\mathrm{donde}\;z(t)=\frac{\left(f\times g\right)\left(t\right)}{f\cdot g(t)}$

Solución. Calculando $(f \times g)(t) = (0, t^4 - t^2, 0)$ y $(f \cdot g)(t) = 2t^3$. Entonces $z(t) = (0, \frac{t}{2} - \frac{1}{2t}, 0)$. Como z(1) = (0, 0, 0) y $z(2) = (0, \frac{3}{4}, 0)$. Luego la traza es un segmento de recta.

1.2. Límite de funciones vectoriales de variable real

Consideremos $f(t) = (1+t^3)\hat{i} + 2te^{-t}\hat{j} + \left(\frac{\sin t}{t}\right)\hat{k}$ donde $t \neq 0$. Así, las funciones componentes de f son:

$$f_1(t) = 1 + t^3, \qquad f_2(t) = 2te^{-t}, \qquad f_3(t) = rac{ ext{sen } t}{t}.$$

Además, $0 \notin \mathcal{D}_f$, pero 0 es un punto de acumulación de \mathcal{D}_f .

Recordemos que p es un punto de acumulación de un conjunto $D \subseteq \mathbb{R}$ si se satisface que:

 $\forall \delta > 0$ el conjunto $(p - \delta, p + \delta) \setminus \{p\}$ contiene algún elemento de D.

Ejemplo 1.5: Punto de acumulación

1 es punto de acumulación de:

pues, dado $\delta > 0$, el punto $1 + \frac{\delta}{3} \in [1,2]$ también $1 + \frac{\delta}{3} \neq 1$ y además $1 + \frac{\delta}{3} \in (1-\delta,1+\delta) \setminus \{1\}$, luego 1 es punto de acumulación de [1,2].

Análogamente 1 es un punto de acumulación de [1, 2].

Ejemplo 1.6: Punto de acumulación

1 no es un punto de acumulación de C = [3/2, 2].

Solución. En efecto, tomando $0 < \varepsilon < \frac{1}{2}$ se tiene que

$$(1-\varepsilon,1+\varepsilon)\setminus\{1\}$$

no está en C.

Volviendo al ejemplo, $\mathcal{D}_f \setminus \{0\}$.

0 es un punto de acumulación de \mathcal{D}_f y además.

$$\lim_{t\to 0} f_1(t) = 1 + 0^3 = 1, \qquad \lim_{t\to 0} f_2(t) = 0, \qquad \lim_{t\to 0} f_3(t) = 1.$$

Es decir, existen los límites de las funciones componentes de f, lo cual induce a pensar en:

$$\lim_{t \to 0} f(t) = (1, 0, 1).$$

Lo anterior es cierto, según la siguiente definición

Definición 1.3: Límite de una función vectorial de variable real

Sea $f(t) = (f_1(t), f_2(t), \dots, f_n(t))$ una función vectorial y sea a un punto de acumulación de \mathcal{D}_f . Definimos el límite de f cuando t tiende hacia a como:

$$\lim_{t \to a} f(t) = \left(\lim_{t \to a} f_1(t), \lim_{t \to a} f_2(t), \dots, \lim_{t \to a} f_n(t) \right)$$

siempre que los límites de las funciones componentes existan.

Ejemplo 1.7: Límite de una función vectorial

Sea f una función vectorial de variable real definida por

$$f(t) = egin{cases} te_1 + e_2 &, t \geqslant 0 \ te_1 - e_2 &, t < 0 \end{cases}$$

donde $e_1, e_2 \in \mathbb{R}^2$, entonces $f(t) = (f_1(t), f_2(t))$.

Solución. Además $f_1(t)=t$ y $f_2(t)=egin{cases} 1 & ,t\geqslant 0 \\ -1 & ,t<0. \end{cases}$

Como $\nexists \lim_{t\to 0} f_2(t) \implies \nexists \lim_{t\to 0} f(t).$

Lema 1.1. Si $f(t) = (f_1(t), f_2(t), \dots, f_n(t))$ es una función vectorial y a es un punto de acumulación de \mathcal{D}_f y $L \in \mathbb{R}^n$, entonces

$$\lim_{t\to a} f(t) = L \iff \forall \varepsilon > 0, \exists \delta \text{ tal que si } t \in \mathcal{D}_f \text{ y } 0 < |t-a| < \delta \text{ , entonces } \|f(t) - L\| < \varepsilon.$$

Observación 1.4: Evaluación del curso

6 prácticas calificadas en aula (normales).

7ma práctica calificada = $\frac{2 \text{ CC} + \text{ PA}}{3}$.

Habrán ocho evaluaciones $\left\{ CC = \text{control colaborativo.} \right\}$

PA = participación en aula.

8va práctica calificada = proyecto.

Teorema 1.1

Si $f(t)=(f_1(t),\ldots,f_n(t))$ es una función vectorial, $L\in\mathbb{R}^n$ y $a\in\mathbb{R}$ es un punto de acumulación de \mathcal{D}_f , entonces:

$$\lim_{t\to a} f(t) = L \iff \forall \varepsilon > 0, \exists \delta > 0 \text{ tal que si } t \in \mathcal{D}_f \text{ y } 0 < |t-a| < \delta \text{ , entonces } \|f(t) - L\| < \varepsilon.$$

 $\mathit{Prueba}. \ (\implies)$ Supongamos que $\exists \lim_{t \to a} f(t) = L,$ luego

$$\left(\lim_{t\to a} f_1(t), \dots \lim_{t\to a} f_n(t)\right) = (L_1, \dots, L_n).$$

Así, $\forall \ 1 \leqslant i \leqslant n$, $\lim_{t \to a} f_i(t) = L_i$. Dado $\forall \varepsilon > 0$, $\exists \delta_i > 0$ tal si $t \in \mathcal{D}_f$ y $0 < |t - a| < \delta_i$

$$\implies |f_i(t) - L_i| < \frac{\varepsilon}{\sqrt{n}}.$$

Tomando $0 < \delta < \min \{\delta_1, \ldots, \delta_n\}.$

Sea $t \in \mathcal{D}_f = \bigcap_{i=1}^n \mathcal{D}_{f_i}$ tal que $0 < |t-a| < \delta$. Luego $t \in \mathcal{D}_{f_i}, \forall i$.

$$0 < |t-a| < \delta_i, \quad orall i \implies |f_i(t) - L_i| < rac{arepsilon}{\sqrt{n}} \quad orall i$$

$$||f(t) - L|| = \sqrt{\sum_{i=1}^{n} |f_i(t) - L_i|^2}$$
 (*)

usando (*)

$$||f(t) - L|| < \sqrt{\sum_{i=1}^{n} \frac{\varepsilon^2}{n}} = \varepsilon.$$

(\iff) Supongamos que $\forall \varepsilon > 0$, $\exists \delta > 0$ tal que si $t \in \mathcal{D}_f$ y $0 < |t - a| < \delta \implies ||f(t) - L|| < \varepsilon$. Queremos probar que

$$\lim_{t\to a}f(t)=L,$$

para lo cual es suficiente probar

$$\lim_{t\to a} f_i(t) = L_i, \quad \forall i.$$

Notemos que si $b \in \mathbb{R}^n$

$$||b|| = \sqrt{\sum b_i^2} \geqslant |b_i|.$$

Luego, dado $\varepsilon > 0$, $\exists \delta > 0$ tal que $t \in \mathcal{D}_f$, $0 < |t - a| < \delta$

$$\varepsilon > ||f(t) - L|| \geqslant |f_i(t) - L_i|$$

también, como $t \in \mathcal{D}_f = \bigcap_{i=1}^n \mathcal{D}_{f_i}$, entonces $t \in \mathcal{D}_{f_i}$, es decir, obtendremos que $\exists \delta > 0$ tal que si $t \in \mathcal{D}_{f_i}$ y $0 < |t-a| < \delta$

$$\implies |f_i(t) - L_i| < \varepsilon.$$

$$\therefore \lim_{t\to a} f_i(t) = L_i.$$

Ejemplo 1.8

Si $f(t) = (t^2, t+1)$. Calcule $\lim_{t \to 1} f(t)$.

Solución.

$$\lim_{t \to 1} f_1(t) = 1^2 = 1, \qquad \lim_{t \to 1} f_2(t) = 1 + 1 = 2.$$

$$\therefore \lim_{t \to 1} f(t) = (1, 2).$$

Ejemplo 1.9

En el ejemplo anterior demuestre que

$$\lim_{t\to 1} f(t) = (1,2).$$

Solución. Buscar alguna relación entre ||f(t) - L|| y |t - a|.

$$||f(t) - (1,2)|| = ||(t^2 - 1, t - 1)||$$

$$= \sqrt{|t^2 - 1|^2 + |t - 1|^2}$$

$$= |t - 1| \qquad \sqrt{|t + 1|^2 + 1}$$

tenemos que controlar esta expresión

tomando $\delta_1 = 1$.

0 < |t - 1| < 1

$$\implies 1 < (t+1)^2 < 9$$

$$\implies \sqrt{|t+1|^2 + 1} < \sqrt{10}$$

luego

$$||f(t) - L|| < |t - 1|\sqrt{10}$$
 (*)

Dado $\varepsilon > 0$, tomando $\delta < \min{\{1, \frac{\varepsilon}{\sqrt{10}}\}}$. Si $0 < |t-1| < \delta$, luego

$$|t-1| < 1 \implies ||f(t) - L|| < |t-1|\sqrt{10}$$
 $|t-1| < \frac{\varepsilon}{\sqrt{10}} \implies ||f(t) - L|| < \frac{\varepsilon}{\sqrt{10}}\sqrt{10} = \varepsilon.$

 $\|f(t) - L\| < \varepsilon$, así

$$\lim_{t \to 1} f(t) = (1, 2) = L.$$

Ejercicio 1.2

Demuestre que

$$\lim_{t \to 1} \left(t^3, -t - 1 \right) = (1, -2).$$

1.3. Interpretación geométrica del límite

Previamente definamos algunos conceptos de topología en \mathbb{R}^n . Dado $a \in \mathbb{R}^n$ y r > 0 consideramos:

- 1) La bola abierta en \mathbb{R}^n centrada en a y de radio r. $\mathcal{B}\left(a,r\right) = \left\{z \in \mathbb{R}^n : \|z-a\| < r\right\}$
- 2) La bola cerrada en \mathbb{R}^n centrada en a y de radio r. $\mathcal{B}(a,r) = \{z \in \mathbb{R}^n : \|z a\| \le r\}$

Ejemplo 1.10: Bolas en \mathbb{R}^n

- 1) Si n = 1, $\mathcal{B}(0, 1) = (-1, 1)$ y $\mathcal{B}[0, 1] = [-1, 1]$.
- 2) Si n = 2

$$egin{aligned} \mathcal{B}\left((0,0),1
ight) &= \{(x,y) \in \mathbb{R}^2 \colon \|(x,y) - (0,0)\| < 1\} \ &= \{(x,y) \in \mathbb{R}^2 \colon \|(x,y)\| < 1\} \ &= \{(x,y) \in \mathbb{R}^2 \colon x^2 + y^2 < 1\} \end{aligned}$$

3) Si
$$n = 3$$
: $\mathcal{B}((0,0,0),1)$.

Luego decir $||f(t) - L|| < \varepsilon$ significa $f(t) \in \mathcal{B}(L, \varepsilon)$.

Al tomar una bola abierta centrada en L con radio ε es posible hallar un intervalo de radio δ tal que los puntos de este último sean llevados dentro de $\mathcal{B}(L, \varepsilon)$.

1.4. Propiedades de los límites

Teorema 1.2

Suponga que f y g son funciones vectoriales que admiten límite cuando $t \to a$ y sea $c \in \mathbb{R}$. Se verifican:

1)
$$\lim_{t \to a} (f(t) \pm g(t)) = \lim_{t \to a} f(t) \pm \lim_{t \to a} g(t).$$

2)
$$\lim_{t \to a} cf(t) = c \lim_{t \to a} f(t).$$

$$3) \ \lim_{t \to a} \left(f(t) \cdot g(t) \right) = \lim_{t \to a} f(t) \cdot \lim_{t \to a} g(t).$$

4) Si
$$n=$$
 3, entonces $\lim_{t\to a} \left(f(t)\times g(t)\right) = \lim_{t\to a} f(t)\times \lim_{t\to a} g(t)$.

Prueba. 1. Sabemos que $f(t) \cdot g(t) = \sum_{i=1}^{n} f_i(t)g_i(t)$. Como

$$\lim_{t \to a} \sum_{i=1}^n f_i(t) g_i(t) = \sum_{i=1}^n \lim_{t \to a} f_i(t) \cdot \lim_{t \to a} g_i(t).$$

donde existen $\lim_{t\to a} f_i(t)$ y $\lim_{t\to a} g_i(t)$.

Así:

$$\lim_{t \to a} \sum_{i=1}^n f_i(t) g_i(t) = \lim_{t \to a} f(t) \cdot \lim_{t \to a} g(t).$$

$$\lim_{t \to a} f(t) \cdot g(t) = \lim_{t \to a} f(t) \cdot \lim_{t \to a} g(t)$$

Ejercicio 1.3

Sea
$$f(t) = \left(\mathrm{sen}(e^t), \mathrm{cos}(e^t), 0 \right)$$
. Si $\lim_{t \to 0} g(t) = 0$, pruebe que

$$\lim_{t\to 0} f(t) \times g(t) = 0.$$

1.5. Continuidad

Definición 1.4: Continuidad de una función vectorial de variable real

Decimos que una función vectorial $f(t)=(f_1,\ldots,f_n(t))$ es continua en $a\in\mathcal{D}_f$, si cada f_i es continua en a.

Observación 1.5

- 1. Notamos que a está en el dominio de f. $(\exists f(a))$.
- 2. En caso que f es continua en a, se tiene que $\lim_{t\to a} f_i(t) = f_i(a)$, es decir

$$\lim_{t \to a} f(t) = \left(\lim_{t \to a} f_1(t), \dots, \lim_{t \to a} f_n(t) \right)$$

$$= (f_1(a), \dots, f_n(a))$$

$$= f(a)$$

$$\ \, \therefore \lim_{t \to a} f(t) = f(a).$$

Ejemplo 1.11

Si $f(t) = (t + 1, t^3)$, entonces f es continua en todo su dominio.

Observación 1.6

1. Se dice que f es continua si es continua en cada elemento de \mathcal{D}_f .

Ejercicio 1.4

Halle el mayor r > 0 tal que

$$f(t) = \left(\frac{t^2+1}{t^2-1}, an(t)
ight)$$

es continua en (-r, r).

Observación 1.7

1. De modo análogo se puede probar. (Ejercicio)

$$f$$
 es discontinua en $a\iff \forall arepsilon>0\ \exists \delta>0\ ,$ si $t\in \mathcal{D}_f\ \mathrm{y}\ <|t-a|<\delta\ ,$ entonces $\|f(t)-f(a)\|$

Ejemplo 1.12

Halle el dominio y estudio de la continuidad de

$$f(t) = \left(t^5, \left\lceil ext{sen}^2\left(rac{\pi t}{2}
ight)
ight
ceil, t-\left\lceil t
ight
ceil^2
ight) \quad , t \in \left[-1,1
ight].$$

Solución. Analicemos $f_2(t) = \lceil \sec^2\left(\frac{\pi t}{2}\right) \rceil$.

Cuando
$$0 \leq \operatorname{sen}^2\left(\frac{\pi t}{2}\right) \leq 1$$

Primero:
$$0 \leqslant \operatorname{sen}^2\left(\frac{2t}{\pi t}\right) < 1 \implies f_2(t) = 0 \text{ cuando } t \in [-1, 1]^\circ$$
.

Cuando
$$0 \le \sec^2\left(\frac{\pi t}{2}\right) \le 1$$

Primero: $0 \le \sec^2\left(\frac{\pi t}{2}\right) \le 1$

Segundo: $\sec^2\left(\frac{\pi t}{2}\right) < 1 \implies f_2(t) = 0$ cuando $t \in [-1,1]^\circ$.

$$\int_0^{\pi} \left(\frac{\pi t}{2}\right) = 1 \iff t = \pm 1. \text{ Así } f_2(t) = \begin{cases} 0, & t \in [-1,1]^\circ \\ 1, & t = \pm 1. \end{cases}$$

Analiceos
$$f_3(t) = t - ||t||^2$$
. Como $-1 \le t \le 1$

$$-1 \leqslant t \leqslant 0 \implies f_3(t) = t - 1$$
$$0 \leqslant t \leqslant 1 \implies f_3(t) = t$$
$$t = 1 \implies f_3(t) = 0$$

$$f_3(t) = egin{cases} t-1 & , -1 \leqslant t < 0 \ t & , 0 \leqslant t < 1 \ 0 & , t = 1 \end{cases}$$

Segundo: $sen^2\left(\frac{\pi t}{2}\right) = 1 \iff t = \pm 1$. Así:

$$f_2(t) = egin{cases} 0 &, & t \in \left[-1,1
ight]^{\mathtt{o}} \ 1 &, & t = \pm 1, \end{cases}$$

luego f_2 es continua en $[-1,1,]^\circ$. Analicemos $f_3(t)=t-[\![t]\!]^2$. Como $-1\leqslant t\leqslant 1$

$$-1 \leqslant t < 0 \implies f_3(t) = t - 1$$
$$0 \leqslant t < 1 \implies f_3(t) = t$$
$$t = 1 \implies f_3(t) = 0$$

$$f_3(t) = egin{cases} t-1 & , -1 \leqslant t < 0 \ t & , 0 \leqslant t < 1 \ 0 & , t = 1 \end{cases}$$

 f_3 es discontinua en t = 0, 1. f es discontinua en f es

1.6. Propiedades de las funciones continuas

Sean f, g funciones vectoriales continuas en a y $c \in \mathbb{R}$, entonces

- 1) f + g, f g, cf, $f \cdot g$ son funciones continuas en a.
- 2) Si $h: \mathcal{Y} \subseteq \mathbb{R} \to \mathbb{R}$ tal que $h(Y) \subset \mathcal{D}_f$ y h es continua en $b \in \mathcal{Y}: h(b) = a$, entonces $f \circ h: \mathcal{Y} \to \mathbb{R}^n$ es continua en a.

1.7. Curvas

Definición 1.5

Una función vectorial $f: \mathcal{D}_f \to \mathbb{R}^n$ define una curva en \mathbb{R}^n si

1) \mathcal{D}_f es un intervalo.

2) f es continua.

Observación 1.8

1. Si f define una curva, entonces su traza se llama curva.

Ejemplo 1.13

Dibuje la curva de $f(t) = (\cos t, \sin t, t)$.

Solución. Hacemos
$$x(t) = \cos t, y(t) = \sin t \implies x(t)^2 + y(t)^2 = 1$$

$$f(0) = (1, 0, 0), f(\frac{\pi}{2}) = (0, 1, \frac{\pi}{2})$$

Ejercicio 1.5

Halle una función vectorial que represente la curva:

$$C = \begin{cases} x^2 + y^2 = 1\\ y + z = 3 \end{cases}$$

Observación 1.9

- 1. Cuando f define una curva usualmente f(t) se llama parametrización.
- 2. Una curva puede *autointersectarse* infinitas veces.

Ejemplo 1.14

Considere

$$f(t) = egin{cases} (t^2,0) &, t \leqslant 0 \ (t^2,t^2\sin\left(rac{1}{t}
ight)) &, t > 0 \end{cases}$$

Notamos que $\mathcal{D}_f = \mathbb{R}$ y f es continua en \mathcal{D}_f , así f define una curva.

1.8. Diferenciabilidad

Definición 1.6: Diferenciabilidad de una función vectorial de variable real

Sea $f: [a,b]^{\circ} \to \mathbb{R}^n$ una función vectorial, decimos que f es diferenciable en $t_0 \in [a,b]^{\circ}$ si las funciones componentes de f son diferenciables en t_0 . Es decir,

$$\exists \lim_{h \to 0} \frac{f_i(t_0 + h) - f_i(t_0)}{h} \quad \forall i = 1, \dots n$$

donde $f = (f_1, \ldots, f_n)$.

Observación 1.10

Cuando f es diferenciable en t_0 por definición de límite de una función vectorial sabemos que existe

$$\lim_{h\to 0}\frac{f(t_0+h)-f(t_0)}{h}=\left(\lim_{h\to 0}\frac{f_1(t_0+h)-f_1(t_0)}{h},\ldots,\frac{f_n(t_0+h)-f_n(t_0)}{h}\right)$$

luego

$$\underbrace{\lim_{h\to 0}\frac{f(t_0+h)-f(t_0)}{h}}_{f'(t_0)}=\left(f'_1(t_0),\ldots,f'_n(t_0)\right).$$

Decimos que f es diferenciable en el $[a,b]^{\circ}$ si es diferenciable en todo $t \in [a,b]^{\circ}$. En este caso podemos definir la cual llamaremos *función derivada de f*.

Geométricamente, la derivada de f en t_0 es interpretada como el vector dirección de la recta tangente a la traza (o en el mejor de los casos, a la curva) de f en el punto $f(t_0)$, siempre que $f'(t_0) \neq 0$.

$$\mathcal{L} = \{ f(t_0) + t f'(t_0) : t \in \mathcal{D}_f \}$$

 $f'(t_0)$ se interpreta físicamente como el vector velocidad de la partícula cuyo movimiento es dado por la función posición f = f(t) en el instante $t = t_0$. En en este caso $f'(t_0)$ se llama vector velocidad de f en t_0 y su magnitud $||f'(t_0)||$ se conoce como rapidez en t_0 .

Otra notación para la derivada son

$$rac{\mathrm{d}f(t_0)}{\mathrm{d}t} = \mathcal{D}\left(f(t_0)
ight) = \dot{f}(t_0).$$

Ejemplo 1.15

Sea $f : \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(t) = (t, \cos \alpha t, \sin \beta t)$ donde $\alpha, \beta \neq 0$.

Solución. Notamos que f_1, f_2, f_3 son diferenciables en \mathbb{R} , luego f es diferenciable en \mathbb{R} , y además:

$$f'(t) = (1, -\alpha \operatorname{sen} \alpha t, \beta \cos \beta t)$$

Ejemplo 1.16: Diferenciabilidad de una función vectorial de variable real

Analice la diferenciabilidad de $f(t) = (t^3, |t^3|)$.

Solución. Notamos que

$$f(t) = \begin{cases} \left(t^3, t^3\right), & t \geqslant 0\\ \left(t^3, -t^3\right), & t < 0. \end{cases}$$

f es diferenciable en $\mathbb{R}\setminus\{0\}$.

Veamos en t = 0.

$$rac{f(0+h)-f(0)}{h} = egin{cases} (h^2,h^2) & ,h>0 \ (h^2,-h^2) & ,h<0 \end{cases}$$

luego $\exists f'(0) = (0,0).$

Ejercicio 1.6

Grafique la curva asociada a $f(t) = (t^3, t^2)$ y halle f'(0).

1.9. Propiedades de las funciones diferenciables

Sean $f, g: [a, b]^{\circ} \to \mathbb{R}^n$ funciones vectoriales en $t_0 \in [a, b]^{\circ}$ y sea $h: [a, b]^{\circ} \to \mathbb{R}$ diferenciables en t_0 . Se verifican:

 $f \pm g, hf, f \cdot g$ son diferenciables en t_0 y satisfacen

1)
$$(f \pm g)'(t_0) = f'(t_0) \pm g'(t_0)$$
.

2)
$$(hf)'(t_0) = h'(t_0)f(t_0) + h(t_0)f'(t_0)$$
.

3)
$$(f \circ g)(t_0) = f'(t_0) \cdot g(t_0) + f(t_0) \cdot g'(t_0)$$
.

Además, $||f||: [a, b]^{\circ} \to \mathbb{R}$ es diferenciable en t_0 y

$$||f(t_0)||' = \frac{f(t_0) \cdot f'(t_0)}{||f(t_0)||}.$$

Solución. 1. Si $f = (f_1, \ldots, f_n)$ y

$$(ht) (t) = h(t)f(t)$$

$$= h(t) (f_1(t), \dots, f_n(t))$$

$$= \left(\underbrace{h(t)f_1(t)}_{\text{funciones real de variable real}}, \dots, h(t)f_n(t) \right)$$

Sabemos que f_i es diferenciable en t_0 y h es diferenciable en t_0 , entonces hf_i es diferenciable en t_0 . Además

$$(hf_i)'(t_0) = h'(t_0)f_i(t_0) + h(t_0) + f_i(t_0).$$

Por definición:

Como hf_i es diferenciable en t_0 , entonces hf es diferenciable en t_0 . Luego

$$(hf)'(t_0) = ((hf_1)'(t_0), \dots, (hf_n)'(t_0))$$

$$= (h'(t_0)f_1(t_0) + h(t_0)f_1'(t_0), \dots, h'(t_0)f_n(t_0) + h(t_0)f_n'(t_0))$$

$$= (h'(t_0)f_1(t_0), \dots, h'(t_0)f_n(t_0)) + (h(t_0)f_1'(t_0), \dots, h(t_0)f_n'(t_0))$$

Finalmente

$$(hf)'(t_0) = h'(t_0)f(t_0) + h(t_0)f'(t_0).$$

Observación 1.11

Si $f \colon [a,b]^{\circ} \to \mathbb{R}^n$ es diferenciable en $[a,b]^{\circ}$ y $\|f(t)\| = r \quad \forall t \in [a,b]^{\circ}$, entonces

$$f(t) \perp f'(t), \forall t.$$

Prueba. Recordemos que $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$

$$egin{aligned} \|x\| &= \sqrt{\sum |x_i|^2} \ \|x\|^2 &= \sum |x_i|^2 = \sum x_i^2 = \sum x_i x_i = x \cdot x \ \|x\|^2 &= x \cdot x \end{aligned}$$

Como

$$\|f(t)\| = r$$
 , $orall t$ $\|f(t)\|^2 = r^2$, $orall t$ $f(t) \cdot f(t) = r^2$, $orall t$ $(f(t) \cdot f(t)) = 0$ $2f(t) \cdot f'(t) = 0$, $orall t$ $f(t) \cdot f'(t) = 0$, $orall t$

 $\therefore f(t) \perp f'(t)$.

Si n=2

$$r = \|f(t)\| = \|(f_1(t), f_2(t))\|$$

$$r=\sqrt{{f_1(t)}^2+{f_2(t)}^2}$$

Luego $f \in C$.

Si n = 3, $f = (f_1, f_2, f_3)$, f está en la esfera $C : x^2 + y^2 + z^2$.

En general no es sencillo determinar si una función vectorial es *rectificable o no*. Sin embargo, existe un caso donde es posible determinar $\mathcal{L}(f)$:

Teorema 1.3: Función vectorial de variable real rectificable

Sea $f: [a, b] \to \mathbb{R}^n$ de clase \mathcal{C}^1 . Entonces f es rectificable y su longitud de arco $\mathcal{L}(f)$, se puede expresar como

$$\mathcal{L}(f) = \int_a^b \|f'(t)\| \mathrm{dt}.$$

Ejemplo 1.17

La hélice en $[0, 2\pi]$

$$f(t) = (a\cos t, a\sin t, bt)$$

es de clase C^1 , luego

$$\mathcal{L}(f) = \int_0^{2\pi} \|f'(t)\| \mathrm{dt}.$$

$$f'(t) = (-a \operatorname{sen} t, a \cos t, b)$$
.

$$\|f(t)\|=\sqrt{a^2+b^2}.$$

$$\implies \mathcal{L}(f) = \int_0^{2\pi} \sqrt{a^2 + b^2} \mathrm{dt}$$

$$= 2\pi \sqrt{a^2 + b^2}.$$

En este caso, la longitud de arco coincide con el tamaño de la traza, pero esto no siempre es cierto.

Ejemplo 1.18

Sea

$$f \colon \left[\pi/2, 3\pi/2 \right] \longrightarrow \mathbb{R}^2$$

$$t \longmapsto \left(\operatorname{sen}^2 t, 0 \right)$$

Es claro que $\underbrace{f \in C^1}_{f \text{ es de clase } C^1}$ Luego f es rectificable y

$$\mathcal{L}(f) = \int_{\pi/2}^{3\pi/2} \|f'(t)\| \mathrm{dt}$$
 $\|f'(t)\| = |\operatorname{sen}(2t)|$

Así,

$$\mathcal{L}(f) = \int_{\pi/2}^{3\pi/2} |\sin 2t| \mathrm{dt}$$
 $= 2.$

Pero Aquí

$$|\operatorname{traza}(f)| \neq \mathcal{L}(f).$$

1.10. Curvas regulares

Teorema 1.4

Decimos que una función vectorial $f: [a,b] \mathbb{R}^n$ es una *parametrización regular* si se cumplen:

- f es de clase C^1 .
- $f'(t) \neq (0,\ldots,0)$ $\forall t \in [a,b]^{\circ}$.

Observación 1.12

En este caso decimos que f define una *curva regular* o que f es una curva regular.

Ejemplo 1.19

La función vectorial

$$f: [0,1] \longrightarrow \mathbb{R}^2$$

$$t \longmapsto (e^t,0)$$

es una curva regular pues $f'(t) \neq 0$, pero la función

$$g: (0,1) \longrightarrow \mathbb{R}^2$$

$$t \longmapsto \left(\left(t - \frac{1}{2} \right)^3 + 5, 0 \right)$$

no es una curva regular pues $g'\left(\frac{1}{2}\right) = (0,0)$.

Observación 1.13

Una curva regular se dice *cerrada* cuando f(a) = f(b).

Ejemplo 1.20

La función en [0, a] dada por

$$f(t) = \left(ext{sen} \, rac{2\pi t}{a}, ext{cos} \, rac{2\pi t}{a} + ext{sen} \, rac{2\pi t}{a}
ight)$$

es una curva cerrada pues f(0) = f(a) = (0, 1).

1.11. Reparametrización

Dos parametrizaciones regulares pueden definir la misma curva (es decir, pueden tener igual traza). Por ejemplo

$$f \colon [0,1] \to \mathbb{R}^2 \quad \mathbf{y} \quad g \colon [0,2\pi] \to \mathbb{R}^2$$

$$f(t) = (\cos 2\pi t, \sin 2\pi t) \quad , \quad g(t) = (\cos t, \sin t)$$

Entonces,

$$traza(f) = traza(f) = Circunferencia de radio 1 y centro (0, 0).$$

a pesar que $f \neq g$.

En general dos parametrizaciones regulares pueden relacionarse mediante:

Definición 1.7

Sea $f \colon [a,b] \to \mathbb{R}^n$ una parametrización regular. Decimos que $g[c,d] \to \mathbb{R}^n$ es una *reparametrización de* f cuando existe una función real

$$\varphi \colon [a,b] \to [c,d]$$
.

tal que:

Note que f, g tiene igual traza, pero g puede realizar un recorrido opuesto.

Observación 1.14: Cambio admisible de parámetros

- 1. Toda función $\varphi \colon [a,b] \to [c,d]$ regular es llamada *cambio admisible de parámetros*.
- 2. Como φ es sobreyectiva y $\varphi' \neq 0$, entonces φ es monótona (**crece o decrece**) así φ es una biyección, $\exists \varphi^{-1}$ y más aún, φ^{-1} es también regular. Recuerde que:

$$\varphi^{-1'}(s) = \frac{1}{\varphi'(\varphi^{-1}(s))} \neq 0.$$

3. Como $f=g\circ\varphi$, entonces $g=f\circ\varphi^{-1}$ así y g es una parametrización regular.

Ejemplo 1.21

La biyección

$$\varphi \colon [0,1] \to [0,2\pi]$$

$$t \mapsto 2\pi t.$$

es un cambio admisible de parámetros y además

$$f=g\circ\varphi$$
.

Luego, g es una reparametrización de f.

Teorema 1.5

Si f es una reparametrización de g, entonces

f es rectificable $\iff g$ es rectificable.

Más aún, $\mathcal{L}(f) = \mathcal{L}(g)$.

1.12. Parametrización por longitud de arco

Sea $f: [a, b] \to \mathbb{R}^n$ una curva regular, la *longitud de arco* es

$$F(t) = \int_a^t \|f'(u)\| du, \quad a \leqslant t \leqslant b.$$

Observación 1.15

Esta función es un cambio admisible de parámetros.

$$F: [a,b] \rightarrow [0,\mathcal{L}(f)]$$

pues

$$F'(t) = ||f'(t)|| > 0.$$

Definición 1.8

Decimos que una curva regular f es parametrización por longitud de arco si se cumple:

$$F(t) = t - a.$$

Ejemplo 1.22

Considere $f(t) = (\cos t, \sin t)$ en $[0, 2\pi]$. Esta es parametrizada por longitud de arco, pues

$$F(t) = \int_0^1 \|f'(u)\| \mathrm{du}, \quad f'(u) = (-\operatorname{sen} t, \cos t).$$

Luego F(t) = t - 0.

Observación 1.16

1. Físicamente significa que un móvil al ir de f(a) hasta f(b) recorre una distancia igual a t-a.

Recordemos el teorema del valor medio (TVM)

Sea $f: [a, b] \to \mathbb{R}$ continua y diferenciable en $[a, b]^{\circ}$, entonces existe un $c \in [a, b]^{\circ}$ tal que

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$

Es normal preguntarnos si es posible llevar este resultado pero para \mathbb{R}^n .

Veamos: Sea

$$f: [0, 2\pi] \to \mathbb{R}^2$$
$$t \mapsto (\cos t, \sin t)$$

Sabemos que f es continua, f es diferenciable $[a, b]^{\circ}$. Además $f(0) = f(2\pi) = (1, 0)$. Supongamos que el teorema del valor medio sea válido, entonces $\exists c \in [a, b]^{\circ}$ tal que

$$f'(c) = rac{f(2\pi) - f(0)}{2\pi - 0} = (0,0).$$
 $f'(t) = (-\sin t, \cos t) \, \, \mathrm{y} \, \|f'(t)\| = 1.$

Pero

$$f'(t) = (-\sin t, \cos t) \text{ y } ||f'(t)|| = 1$$

Luego,

$$||f'(t)|| = 1$$
 $||(0,0)|| = 1$
 $0 = 1$
 $(\Longrightarrow \Leftarrow$

Luego

Teorema 1.6: Teorema del valor medio para funciones vectoriales

Sea $f: [a, b] \to \mathbb{R}^n$ continua y diferenciable en $[a, b]^\circ$, existen $c_i \in [a, b]^\circ$ tal que

$$\frac{f(b)-f(a)}{b-a}=\big(f'(c_1),\ldots,f'(c_n)\big)$$

donde $f = (f_1, \ldots, f_n)$.

Prueba. Como $f = (f_1, \ldots, f_n)$, entonces $\forall i = 1, \ldots, n$.

$$f_i \colon [a,b] \to \mathbb{R}$$

es continua y diferenciable en $[a, b]^{\circ}$ tal que

$$\frac{f_i(b) - f_i(a)}{b - a} = f(c_i).$$

Luego,

$$\frac{f(b)-f(a)}{b-a}=\left(\frac{f_1(b)-f_1(a)}{b-a},\ldots,\frac{f_n(b)-f_n(a)}{b-a}\right)$$

$$\frac{f(b)-f(a)}{b-a}=\big(f_1'(c_1),\ldots,f_n'(c_n)\big)$$

1.13. Derivadas de orden superior

Sea $f:[a,b]^{o}\to\mathbb{R}^{n}$ una función vectorial , si f es diferenciable, existe $f'(t)\in\mathbb{R}^{n}, \forall t$. Podemos definir

$$f' \colon [a, b]^{\circ} \to \mathbb{R}^n$$

 $t \mapsto f'(t)$

llamado aplicación derivada.

Note que f' es nuevamente una función vectorial.

■ Si f' es continua diremos que f es de clase C^1 en $[a,b]^\circ$. Pero si f' es diferenciable, existe $(f')'(t) \in \mathbb{R}^n$ y podemos definir

$$f'': [a, b]^{\circ} \to \mathbb{R}^n$$

$$t \mapsto (f')'(t)$$

- Si f'' es continua, diremos que f es de clase C^2 en $[a,b]^\circ$. Podemos generalizar
- f es de clase C^k si $f^{(k-1)}$ es diferenciable en $[a,b]^{\circ}$ y $f^{(k)}$ es continua.

Observación 1.17

 $f^{(n)}$: n-ésima derivada de f.

Una función $f: [a,b]^{\circ} \to \mathbb{R}^n$ es de clase C^{∞} (suave) si es de clase C^k , $\forall k \ge 1$.

1.14. Integración de funciones vectoriales

Sea $f: [a,b] \to \mathbb{R}^n$ una función vectorial. Decimos que f es integrable y denotamos $\int_a^b f(t) dt$ so ñas funciones componentes $f_i: [a,b] \to \mathbb{R}$ son integrables. En este caso escribimos

$$\int_a^b f(t)dt = \left(\int_a^b f_1(t)dt, \dots, \int_a^b f_n(t)dt\right)$$

donde $f = (f_1, \ldots, f_n)$.

Observación 1.18

Si $f: [a, b] \to \mathbb{R}^n$ es continua, entonces f_i es continua, luego f_i es integrable en [a, b].

 $f_i[a,b] \to \mathbb{R}^n$ es continua $\implies f$ es integrable.

Propiedades de las integrables

1) Linealidad Si $f, g: [a, b] \to \mathbb{R}^n$ son integrables, entonces $\alpha f + \beta g$ es integrable con $\alpha, \beta \in \mathbb{R}$ y

$$\int_{a}^{b} \left(\alpha f + \beta g\right)(t) \mathrm{dt} = \alpha \int_{a}^{b} f(t) \mathrm{dt} + \beta \int_{a}^{b} g(t) \mathrm{dt}$$

2) Aditividad:

Sea $f: [a, b] \to \mathbb{R}^n$ integrable y $c \in [a, b]$, entonces

$$\int_a^b f(t)dt = \int_a^c f(t)dt + \int_c^b f(t)dt.$$

3) Primer teorema fundamental del cálculo

Sea $f: [a, b] \to \mathbb{R}^n$ continua, definamos la integral indefinida A como:

$$A(x) = \int_{a}^{x} F(t) dt.$$

Entonces, existe A'(x) y A'(x) = f(x) cuando $x \in [a, b]^{\circ}$.

4) Segundo teorema fundamental del cálculo

Sea $f: [a,b] \to \mathbb{R}^n$ de clase C^1 . Entonces $f(x) = f(c) + \int_0^x f'(t) dt$ con $c \in [a,b]$.

5) Producto escalar

Si $f: [a,b] \to \mathbb{R}^n$ integrable y $c = (c_1, \ldots, c_n)$, entonces $c \cdot f: [a,b] \to \mathbb{R}$ es integrable y

$$\int_{a}^{b} \langle c, f \rangle(f) dt = c \left(\int_{a}^{b} f(t) dt \right)$$

Demostración. Dado

Teorema 1.7

Capítulo 2

Funciones reales de varias variables

Observación 2.1

Si f es diferenciable en a, entonces $v = \nabla f(a)$.

Observación 2.2: Relación entre la derivada direccional de f y el gradiente de f

Si f es diferenciable en a, entonces $\exists \frac{\partial f}{\partial w}(a), \forall w \in \mathbb{R}^n \text{ con } \|w\| = 1$. En efecto, dado $w \in \mathbb{R}^n, \|w\| = 1$. Como $f(a+h) = f(a) + \langle v, h \rangle + r(h) \text{ con } a+h \in \mathcal{D}_f$. Si tomamos h = tw, resulta:

$$\begin{split} f(a+tw)-f(a) &= \langle v,tw\rangle + r(tw) & \text{trasponiendo} f(a) \\ \frac{f(a+tw)-f(a)}{t} &= \frac{\langle v,tw\rangle}{t} + \frac{r(tw)}{t} & \text{diviendo entre } t \\ \lim_{t\to 0} \frac{f(a+tw)-f(a)}{t} &= \lim_{t\to 0} \frac{\frac{1}{t} \cdot \langle v,w\rangle}{\frac{1}{t}} + \lim_{t\to 0} \frac{r(tw)}{t\cdot 1} & \text{tomando límites} \\ \lim_{t\to 0} \frac{f(a+tw)-f(a)}{t} &= \lim_{t\to 0} \langle v,w\rangle + \lim_{t\to 0} \frac{r(tw)}{t\|w\|} & , \text{pero} \|w\| = 1 \\ \frac{\partial f}{\partial w} &= \langle v,w\rangle + 0. \end{split}$$

Pues, el número real $\langle v, w \rangle$ es constante y de la condición de diferenciabilidad se tiene que $\lim_{t \to 0} \frac{r(tw)}{\|tw\|} = 0$. $\therefore \exists \frac{\partial f}{\partial w}(a) = \langle v, w \rangle$. Es decir, si f es diferenciable en a y de la observación 2.1, entonces

$$\overline{\frac{\partial f}{\partial w}(a)} = \langle \nabla f(a), w \rangle.$$

Observación 2.3

Si f es diferenciable en a, entonces la dirección donde la derivada direccional toma su **máximo valor** es la del gradiente. En efecto, recordemos que dados dos vectores c, $d \in \mathbb{R}^n$ se satisfacen la *desigualdad de Cauchy*^a-*Schwarz*^b

$$\langle c, d \rangle \leqslant ||c|||d||.$$

Entonces, de la observación 2.2 y la desigualdad anterior, el valor máximo de la derivada direccional es $\|\nabla f(a)\|$, pues si $v \in \mathbb{R}^n$, $\|v\| = 1$.

$$\frac{\partial f}{\partial v}(a) = \langle \nabla f(a), v \rangle \leqslant \|\nabla f(a)\| \|v\| = \|\nabla f(a)\|.$$

Es decir,

$$\forall v \in \mathbb{R}^n \colon \max \left\{ rac{\partial f}{\partial v}
ight\} = \left[rac{\partial f}{\partial v}
ight]_{\max} = \| \nabla f(a) \|.$$

Es más, es posible encontrar la dirección donde se toma este valor:

$$v = rac{
abla f(a)}{\|
abla f(a)\|} \quad \left(\text{siempre que }
abla f(a)
eq 0
ight).$$

$$\begin{split} \frac{\partial f}{\partial \left(\frac{\nabla f(a)}{\|\nabla f(a)\|}\right)} &= \langle \nabla f(a), \frac{\nabla f(a)}{\|\nabla f(a)\|} \rangle \\ &= \frac{1}{\|\nabla f(a)\|} \cdot \underbrace{\langle \nabla f(a), \nabla f(a) \rangle}_{\|\nabla f(a)\|^2} \\ &= \|\nabla f(a)\|. \end{split}$$

Ejemplo 2.1

Considere

$$g(x,y) = egin{cases} \pi x^2 \sin\left(rac{1}{x}
ight) &, x
eq 0 \ 0 &, x = 0. \end{cases}$$

Analice la diferenciabilidad de g(0,0).

Solución.

1. Notamos que g es continua en (0,0), pues

$$\left|g(x,y)-0
ight|=\pi {\left|x
ight|}^2 \left|{
m sen}\left(rac{1}{x}
ight)
ight|\leqslant \pi {\left\|(x,y)
ight\|}^2.$$

2. Estudiemos la continuidad de g_x, g_y en (0,0).

Veamos para g_y :

■ Para valores $x \neq 0$.

Para x = 0:

$$g_y(0,y) = \lim_{t\to 0} \frac{g(0,y) + t(0,1) - g(0,y)}{t} = 0.$$

 $g_y(x, y) = 0$, pues la regla no depende de y.

Así,
$$g_y = 0$$
 en \mathbb{R}^2 .

Veamos para g_x :

■ Para valores $x \neq 0$:

$$g_x(0,y) = \lim_{t \to 0} \frac{g\left((0,y) + t(1,0)\right) - g(0,y)}{t}$$

$$g_x(x,y) = 2\pi x \operatorname{sen}\left(\frac{1}{x}\right) - \pi \cos\left(\frac{1}{x}\right)$$

$$g_x(0,y) = \lim_{t \to 0} \frac{\pi t^2 \operatorname{sen}\left(\frac{1}{t}\right)}{t} = 0$$

Para
$$x=0$$
:
$$\operatorname{Asi} g_x(x,y) = \begin{cases} 2\pi x \operatorname{sen}\left(\frac{1}{x}\right) - \pi \cos\left(\frac{1}{x}\right) &, x \neq 0 \\ 0 &, x = 0. \end{cases}$$

Notamos que g, g_y son continuas, pero g_x no lo es en (0,0). Pues si g_x es continua en (0,0) para $\varepsilon = \frac{1}{2}$ existe $\delta > 0$ tal que si $||(x,y)|| < \delta \implies |g_x(x,y)| < \varepsilon = \frac{1}{2}$.

aingeniero francés de la École polytechnique reconocido por sus estudios de ecuaciones funcionales como $\phi(x \cdot y) = \phi(x) + \phi(y)$.

^bHermann Amandus Schwarz, matemático alemán, estudioso de las superficies minimales.

$$\begin{split} \left| 2\pi x \operatorname{sen} \left(\frac{1}{x} \right) - \pi \cos \left(\frac{1}{x} \right) \right| &< \frac{1}{2} \quad , x \neq 0. \\ \left| \pi \cos \left(\frac{1}{x} \right) \right| - \left| 2\pi x \operatorname{sen} \left(\frac{1}{x} \right) \right| &< \frac{1}{2} \\ \left| \pi \cos \left(\frac{1}{x} \right) \right| &< \frac{1}{2} + 2\pi \left| x \operatorname{sen} \left(\frac{1}{x} \right) \right|. \end{split}$$

Tomando $x_0 = \frac{1}{2n\pi}$ tal que $|x_0| < \delta$.

Debido a esto no podemos usar el teorema por lo que hacemos

3. Analizar por definición:

Como
$$\nabla g(0,0) = (g_X(0,0), g_Y(0,0))$$

= $(0,0)$.

Definimos:

$$g(a+h)-g(a)-\langle \nabla g(a),h\rangle.$$

En nuestro caso $h = (h_1, h_2)$ y a = (0, 0).

$$egin{align} r(h_1,h_2)&=g(h_1,h_2)-g(0,0)-\left\langle
abla g(0,0),(h_1,h_2)
ight
angle \ r(h_1,h_2)&=\pi h_1^2\sin\left(rac{1}{h_1}
ight). \end{split}$$

En particular para n = 2 se tiene el siguiente criterio

Teorema 2.1

Sea A un conjunto abierto, $f: A \subseteq \mathbb{R}^2 \to \mathbb{R}$ y sea $a \in A$ un punto crítico de f. Con f de clase C^2 , entonces:

- 1) $\det \operatorname{Hess}(a) > 0$, $f_{xx}(a) > 0 \implies a$ es un mínimo local.
- 2) $\det \operatorname{Hess}(a) > 0$, $f_{xx}(a) < 0 \implies a$ es un máximo local.
- 3) det $Hess(a) < 0 \implies a$ es un punto silla.
- 4) $\det \operatorname{Hess}(a) = 0 \implies \operatorname{caso} \operatorname{dudoso.}$ (se realiza un estudio directo)

Ejemplo 2.2

Calcule los extremos de

$$f(x,y) = x^4 + y^4 - 2x^2 + 4xy - 2y^2.$$

Solución. Hallemos los puntos críticos:

$$\nabla f(x,y) = (4x^3 - 4x + 4y, 4y^3 + 4x - 4y).$$

$$abla f(x,y) = 0 \implies egin{cases} 4x^3 - 4x + 4y &= 0 \ 4y^3 + 4x - 4y &= 0 \end{cases}$$
 (+)

$$\implies x^3+y^3=0 \implies x=-y.$$
 Así: $x^3-x+(-x)=0 \implies x=0, x=\pm\sqrt{2}.$ Luego: puntos críticos son: $(0,0), (\sqrt{2},-\sqrt{2}), (-\sqrt{2},\sqrt{2}).$

$$f_{xx}=12x^2-4, \quad f_{xy}=f_{xy}=4, \quad f_{yy}=12y^2-4.$$
 $ext{Hess}_{(x,y)}=egin{pmatrix} 12x^2-4 & 4 \ 4 & 12y^2-4 \end{pmatrix}$

- $\bullet \ \det \operatorname{Hess}_{(\sqrt{2},-\sqrt{2})} = 16 \begin{bmatrix} 5 & 1 \\ 1 & 5 \end{bmatrix} > 0, f_{xx} = (\sqrt{2},-\sqrt{2}) = 20 > 0 \implies (\sqrt{2},-\sqrt{2}) \text{ es un mínimo local.}$
- $\bullet \ \det \mathrm{Hess}_{(-\sqrt{2},\sqrt{2})} = 16 \begin{bmatrix} 5 & 1 \\ 1 & 5 \end{bmatrix} > 0, f_{xx} = (-\sqrt{2},\sqrt{2}) = 20 > 0 \implies (-\sqrt{2},\sqrt{2}) \text{ es un mínimo local.}$
- det $\operatorname{Hess}_{(0,0)} = 0 \implies$ debemos analizar f en cercanías de (0,0).

Tomamos valores cercanos en diferentes direcciones y buscamos que f(0,0) no sea máximo ni mínimo, para concluir que es punto silla.

$$\varepsilon \to 0$$
: $f(\varepsilon,0) = \varepsilon^2 \left(\varepsilon^2 - 2 \right) < 0$ y $f(\varepsilon,\varepsilon) = 2\varepsilon^4 > 0$. Así $(0,0)$ es un punto silla.

Ejercicio 2.1

Considere $f(x,y)=x^4-2ax^2-y^2+3y$ y analice los valores extremos según los valores de a.

En general, nos pueden preguntar sobre los valores máximos y mínimos globales de f lo cual es garantizado por f.

Teorema 2.2

Sea $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$ continua y A es compacto, entonces existen máximos y mínimos globales, es decir, $\exists x_1, x_2$:

$$f(x_1) \leqslant f(y) \leqslant f(x_2), \forall y \in A.$$

Ejemplo 2.3

 $\text{Halle el máximo y el mínimo de } f(x,y) = \operatorname{sen} x + \operatorname{sen} y + \operatorname{sen} (x+y) \text{ donde } 0 \leqslant x \leqslant \tfrac{\pi}{2} \wedge 0 \leqslant y \leqslant \tfrac{\pi}{2}.$

Solución. Notemos que \mathcal{D}_f es un conjunto compacto (en particular tiene los bordes)

Caso 2 Caso 3
$$(\pi/2, \pi/2)$$

$$(0, \pi/2)$$
Caso 4 Caso 4 $(0, 0)$
Caso 1 $(\pi/2, 0)$

1) Buscar puntos críticos al interior de \mathcal{D}_f (sin los bordes)

$$f_x = \cos x + \cos (x + y) = 0.$$

$$f_y = \cos y + \cos (x + y) = 0.$$

2) Estudiar la función en la frontera (borde)

Caso I Para $0 \leqslant x \leqslant \pi/2, y = 0$.

 $f(x,0)=2 \operatorname{sen} x$, al ser una función de una variable aplicamos las técnicas ya conocidas en $(0,\pi/2)$.

$$f'(x,0) = 2\cos x = 0 \implies x = \frac{\pi}{2}$$

y agregamos $x=0, x=\frac{\pi}{2}$. Así los valores donde se presentan los extremos son $(0,0), (\pi/2,0)$.

Caso II Para $x=\pi/2, 0\leqslant y\leqslant \pi/2$

 $f(\pi/2,y)=1+\sin y+\cos y$ análogamente los posibles extremos están en: $y=0,y=\pi/2.$

$$f'(\pi/2,y) = \cos y - \sin y = 0 \implies y = \frac{\pi}{4}.$$

Capítulo 3

Funciones vectoriales de variables vectoriales

Definición 3.1: Función de varias variables

Sea $A \subseteq \mathbb{R}^n$, una **función de varias variables** es una función del tipo $F: A \subseteq \mathbb{R}^n \to \mathbb{R}^m$ tal que si $x = (x_1, \dots, x_n)$, $F(x) = (f_1(x), \dots, f_m(x))$ donde $f_i: A \subseteq \mathbb{R}^n \to \mathbb{R}$.

Ejemplo 3.1

Considere $F(x, y, z) = (\operatorname{sen}(x + y), z^2 + y)$ este es una función de \mathbb{R}^3 a \mathbb{R}^2 .

Observación 3.1

- 1) Cuando $m \ge 2$, $n \ge 2$ no es posible representar la gráfica de F.
- 2) Cuando n = m, decimos que F es un campo vectorial en \mathbb{R}^n y es posible tener una idea de su representación con un diagrama de fases.

Ejemplo 3.2

Considere F(x,y)=(-y,x) donde F es la velocidad, entonces en todo parte $(x,y)\in\mathcal{D}_f$.

 $\langle F(x,y),(x,y)\rangle=0$

(0, 1).

Así, por ejemplo si (x, y) = (1, 0), entonces F(x, y) =

Luego,

Ejemplo 3.3

Dado un campo escalar $f: A \subseteq \mathbb{R}^n \to \mathbb{R}$, entonces su gradiente ∇f es un campo vectorial. Por ejemplo, si f(x, y, z) = x + 2y + z, entonces $F(x, y, z) = \nabla f(x, y, z) = (1, 2, 1)$.

3.1. Coordenadas polares

Sea

$$arphi \colon [0, +\infty > imes [0, 2\pi > \longrightarrow \mathbb{R}^2 \ (r, heta) \longmapsto (r\cos heta, r\sin heta)$$
 $x = r\cos heta$ $\qquad \qquad r = \sqrt{x^2 + y^2}$ $\qquad \qquad \Longrightarrow$ $y = r\sin heta \qquad \qquad an heta = rac{y}{x}$

Ejemplo 3.4

Grafique en XY, $\theta = \pi/4$.

Ejemplo 3.5

Graficar en XY

$$4 \operatorname{sen} \theta \leqslant r \leqslant 6 \operatorname{sen} \theta, \theta \in [0, 3\pi/4]$$
.

Así basta tomar $v = \left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$

Ejemplo 3.6

Halle el máximo y el mínimo de f(x, y, z) = 2x + y - z, sujeto a las condiciones

$$g_1(x,y,z) = 2x + z = rac{9}{\sqrt{17}} \qquad g_2(x,y,z) = x^2 + y^2 = 1.$$

Solución. Hallemos x, y, z tales que

De lo cual se obtiene:

$$\begin{array}{c} \nabla f = \lambda \nabla g_1 + \mu \nabla g_2 \\ (2,1,-1) = \lambda \left(2,0,1\right) + \mu \left(2x,2y,0\right) \end{array} \qquad \begin{array}{c} 2 = 2\lambda + 2\mu x \\ 1 = 2\mu x \\ -1 = \lambda \end{array} \right\} (x,y,z) = \left(\frac{4}{\sqrt{17}},\frac{1}{\sqrt{17}},\frac{1}{\sqrt{17}}\right)$$

$$f\left(\frac{4}{\sqrt{17}}, \frac{1}{\sqrt{17}}, \frac{1}{\sqrt{17}}\right) = \frac{8}{\sqrt{17}}$$
$$f\left(-\frac{4}{\sqrt{17}}, -\frac{1}{\sqrt{17}}, \sqrt{17}\right) = -\frac{26}{\sqrt{17}}$$

3.2. Multiplicadores de Lagrange

Sean $f, g: U \subseteq \mathbb{R}^n \to \mathbb{R}$ de clase C^1 . Asumiendo que existe un extremo en $x_0 \in U$ que satisface además $g(x_0) = k$ y $\nabla g(x_0) \neq 0$, entonces

$$\exists \lambda \in \mathbb{R} \colon \nabla f(x_0) = \lambda \nabla g(x_0).$$

Observación 3.2

Si n=2

Ejemplo 3.7

Halle los extremos de $f(x, y) = x^2 + 2y^2$ en $x^2 + y^2$.

Solución.

(1) Identificar f, g.

$$f(x,y) = x^2 + 2y^2$$

$$g(x,y) = x^2 + y^2$$

(2) Resolver $\nabla f(x, y) = \lambda \nabla g(x, y), g(x, y) = 1$

$$(2x,4y) = \lambda (2x,2y)$$

$$2x = 2\lambda x$$
$$4y = 2\lambda y$$
$$x^2 + y^2 = 1$$

Luego $f(0, t, 1) = 2, f(\pm 1, 0) = 1$

Ejemplo 3.8

Sea $f(x, y, z) = \sqrt[3]{xyz}$ con x, y, z > 0 tal que x + y + z = 3, halle el máximo de f.

Solución. Sea g(x, y, z) = x + y + z, resolvemos

$$abla f(x, y, z) = \lambda \nabla g(x, y, z)$$
 $g(x, y, z) = 3$

$$\begin{split} \frac{yz}{3\sqrt[3]{\sqrt{x^2y^2z^2}}} &= \lambda\\ \frac{xz}{3\sqrt[3]{\sqrt{x^2y^2z^2}}} &= \lambda\\ \frac{xy}{3\sqrt[3]{\sqrt{x^2y^2z^2}}} &= \lambda \end{split}$$

luego f(1, 1, 1) = 1 es el máximo, pues f no tiene mínimo dado que $f(x, y, z) > 0 \forall x, y, z > 0$.

Ejemplo 3.9

Sea u=(1,2,3), halle el mayor valor de $\langle u,v\rangle$ donde $v\in\mathbb{R}^3,\|v\|=1$.

Solución. Si v = (x, y, z), piden maximizar

3.3. Coordenadas cilíndricas

Definición 3.2

Considere $\varphi: [0, +\infty > \times [0, 2\pi) \times \mathbb{R} \to \mathbb{R}^3$ tal que $\varphi(r, \theta, z) = (r \cos \theta, r \sin \theta, z)$. Esta es una función vectorial de varias variables y podemos analizar su imagen.

Teorema 3.1: Regla de la cadena para funciones de $\mathbb{R}^n o \mathbb{R}^m$

Sean $f: U \subseteq \mathbb{R}^n \to \mathbb{R}^m, g: V \subseteq \mathbb{R}^m \to \mathbb{R}^p$ differenciables en $x_0 \in U, y_0 = f(x_0) \in V$ $(f(U) \subseteq V)$ respectivamente, entonces $g \circ f: U \subseteq \mathbb{R}^n \to \mathbb{R}^p$ es differenciable en x_0 y

$$(g \circ f)'(x_0) = g'(f(x_0)) \cdot f'(x_0).$$

Observación 3.3

- 1. Notemos que "o" denota la compuesta de dos transformaciones lineales en 3.1.
- 2. Usando la representación de las bases canónicas en 3.1

$$\operatorname{Jac}(g \circ f)_{x_0} = \operatorname{Jac}(g)_{f(x_0)} \cdot \operatorname{Jac}(f)_{x_0}$$

Ejemplo 3.10

$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

 $(x, y) \longmapsto (\operatorname{sen}(\pi x), y + \cos(\pi x), xy)$

y

$$g: \mathbb{R}^3 \longrightarrow \mathbb{R}^4$$

 $(u, v, w) \longmapsto (uv, uw, vw, u + v + w)$

Calcule $Jac(g \circ f)_{(1,0)}$.

$$\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^3 \xrightarrow{g} \mathbb{R}^4$$

Solución.

$$\operatorname{Jac}(g \circ f)_{(1,0)} = \operatorname{Jac}(g)_{f(1,0)} \cdot \operatorname{Jac}(f)_{(1,0)}.$$

Luego:

$$\begin{aligned} \operatorname{Jac}(g \circ f)_{(1,0)} &= \begin{bmatrix} -1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \\ 1 & 1 & 1 \end{bmatrix}_{4 \times 3} \cdot \begin{bmatrix} -\pi & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix}_{3 \times 2}. \\ \operatorname{Jac}(g \circ f)_{(1,0)} &= \begin{bmatrix} \pi & 0 \\ 0 & 0 \\ 0 & -1 \\ -\pi & 2 \end{bmatrix}_{4 \times 2}. \end{aligned}$$

Teorema 3.2

Sea $f: \mathcal{D}_f \subseteq \mathbb{R}^n \to \mathbb{R}^n$ diferenciable en x_0 con derivadas parciales continuas y tal que

$$f(x_0)\colon \mathbb{R}^n \to \mathbb{R}^n$$

es una transformación lineal inversible (biyectiva)^a, entonces es posible invertir localmente f, es decir existe $U \subseteq \mathcal{D}_f$ abierto con f(U) abierto tal que f(U) es inversible y además

$$f^{-1}{}'_{(x)} = \left[f'_{(x_0)}\right]^{-1}$$

Ejemplo 3.11

Sea $f(x, y) = (e^x \cos y, e^x \sin y)$. Calcule $Jac(f^{-1})_{(1,0)}$.

Solución. $\mathbb{R}^2 \xrightarrow{f} \mathbb{R}^2$, notemos que f(0,0) = (1,0).

$$\begin{aligned} \operatorname{Jac}(f)_{(x,y)} &= \begin{bmatrix} e^x \cos y & -e^x \sin y \\ e^x \sin y & e^x \cos y \end{bmatrix}. \\ \operatorname{Jac}(f)_{(0,0)} &= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \end{aligned}$$

atambién es conocida como homomorfismo

Como det $(\operatorname{Jac}(f)_{(0,0)}) = 1 \neq 0$, entonces la transformación lineal f'(0,0) es inversible, luego por el teorema de la función inversa $\exists U \subseteq \mathbb{R}^2$ con $(0,0) \in U$ tal que

$$\begin{split} & \operatorname{Jac}(f^{-1})_{f(x_0)} = \left[\operatorname{Jac}(f)_{(x_0)}\right]^{-1} \\ & \operatorname{Jac}(f^{-1})_{(1,0)} = \left[\operatorname{Jac}(f)_{(x_0)}\right]^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}. \end{split}$$

Observación 3.4

- Notemos que en general el det $(\operatorname{Jac}(f)_{(x,y)}) = e^{2x} > 0$, luego por el teorema de la función inversa (localmente) es posible obtener f^{-1} en los alrededores de todos los puntos, pero esto no hace que f sea inversible globalmente.
- Cuando f es diferenciable en x_0 y su inversa f^{-1} lo es en $f(x_0)$ decimos que f es un **difeomorfismo local en** x_0 , así, el teorema de la función inversa nos dice que:

Si f es de clase C^1 en x_0 , entonces f es un difeomorfismo.

Teorema 3.3: Teorema de la función implícita

Sea $F: \mathbb{R}^{m+n} \to \mathbb{R}^n$ con todas sus derivadas parciales continuas en:

$$\left(\underbrace{x_1,x_2,\ldots,x_m}_{x_0},\underbrace{y_1,y_2,\ldots,y_n}_{y_0}\right)$$

tal que $F(x_0, y_0) = c$ y $F = (F_1, F_2, \dots, F_n)$

$$\frac{\partial F}{\partial y_0} = \frac{\partial (F_1, \dots, F_n)}{\partial (y_0, \dots, y_n)}$$

tenga det $\neq 0$, es decir, $\frac{\partial F}{\partial y_0}$ sea inversible, entonces las variables $y_0 = (y_1, y_2, \dots, y_n)$ se pueden obtener en función de las otras (x_1, x_2, \dots, x_m) en una vecindad de x_0 y además:

$$\frac{\partial \left(y_{1}, y_{2}, \ldots, y_{n}\right)}{\partial \left(x_{1}, x_{2}, \ldots, x_{m}\right)} = \left[\frac{\partial F}{\partial y_{0}} = \frac{\partial \left(F_{1}, \ldots, F_{n}\right)}{\partial \left(y_{0}, \ldots, y_{n}\right)}\right]^{-1} \cdot \frac{\partial \left(F_{1}, \ldots, F_{n}\right)}{\partial \left(x_{1}, x_{2}, \ldots, x_{m}\right)}$$

Observación 3.5

Si $G = (G_1, G_2, \dots, G_k)$, entonces

$$\frac{\partial \left(G_{1},G_{2},\ldots,G_{k}\right)}{\partial \left(z_{1},z_{2},\ldots,z_{p}\right)} = \begin{bmatrix} \frac{\partial G_{1}}{\partial z_{1}} & \frac{\partial G_{1}}{\partial z_{2}} & \cdots & \frac{\partial G_{1}}{\partial z_{p}} \\ \frac{\partial G_{2}}{\partial z_{1}} & \frac{\partial G_{1}}{\partial z_{2}} & \cdots & \frac{\partial G_{1}}{\partial z_{p}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial G_{k}}{\partial z_{1}} & \frac{\partial G_{k}}{\partial z_{2}} & \cdots & \frac{\partial G_{k}}{\partial z_{p}} \end{bmatrix}.$$

Además:

$$\begin{aligned} \operatorname{Jac}(f)_{(x_1,x_2,...,x_m,y_1,y_2,...,y_n)} &= \begin{bmatrix} \nabla F_1 \\ \nabla F_2 \\ \vdots \\ \nabla F_n \end{bmatrix}_{n\times (m+n)} \\ &= \begin{bmatrix} a \end{bmatrix} \end{aligned}$$

Ejemplo 3.12

Considere el sistema

$$xy^{2} + zu + v^{2} = 3$$
$$x^{3}z + 2y - uv = 2$$
$$xu + yv - xyz = 1$$

Pruebe que es posible obtener x, y y z en función de u y v en las cercanías del punto (1, 1, 1, 1, 1).

Solución: Considerando $F: \mathbb{R}^5 \to \mathbb{R}^3$

$$F(x, y, z, u, v) = (xy^2 + zu + v^2 - 3, x^3z + 2y - 4v - 2, xu + yv - xyz - 1)$$

 $F(1, 1, 1, 1, 1) = (0, 0, 0)$

y F tiene derivadas parciales continuas

$$ext{Jac}(F)_{(x,y,z,u,v)} = egin{bmatrix} y^2 & 2yx & u & z & 2v \ 3x^2z & 2 & x^3 & -v & -u \ u - yz & v - xz & -2u & x & y \end{bmatrix} \ ext{Jac}(F)_{(x,y,z,u,v)} = rac{\partial \left(F_1, F_2, F_3
ight)}{\partial \left(x,y,z
ight)} rac{\partial \left(F_1, F_2, F_3
ight)}{\partial \left(u,v
ight)}.$$

Ejemplo 3.13

Sean las ecuaciones:

$$x^{2} - y\cos(uv) + z^{2} = 0$$

 $x^{2} + y^{2} - \sin(uv) + 2z^{2} = 2$
 $xy - \sin u \cos v + z = 0$

- 1) Probar que x, y, z puede escribirse en función de u, v en los alrededores del $x = y = 1, z = v = 0, u = \frac{\pi}{2}$.
- 2) Halle $\frac{\partial x}{\partial u}(\pi/2,0)$.

Solución. Primero consideremos la función:

$$F \colon \mathbb{R}^5 \longrightarrow \mathbb{R}^3$$

$$(x, y, z, u, v) \longmapsto (x^2 - y\cos(uv) + z^2, x^2 + y^2 - \sin(uv) + 2z^2 - 2, xy - \sin u\cos v + z)$$

Notamos que $F(1, 1, 0, \frac{\pi}{2}, 0) = 0$, además F es *suave*.

1) Debemos analizar $\operatorname{Jac}(F)_{\left(1,1,0,\frac{\pi}{2},0\right)}$ y luego extraer una matrix 3×3 :

$$\begin{split} \operatorname{Jac}(F)_{(x,y,z,u,v)} &= \begin{bmatrix} 2x & -\cos(uv) & 2z & yv \sec(uv) & yu \sec(uv) \\ 2x & 2y & 4z & -v \cos(uv) & -u \cos(uv) \\ y & x & 1 & -\cos u \cos v & \sec u \sec v \end{bmatrix} \\ & \frac{\partial \left(F_1, F_2, F_3\right)}{\partial \left(x, y, z\right)} & \frac{\partial \left(F_1, F_2, F_3\right)}{\partial \left(u, v\right)}. \\ & \frac{\partial \left(F_1, F_2, F_3\right)}{\partial \left(x, y, z\right)} \left(1, 1, 0, \frac{\pi}{2}, 0\right) = \begin{bmatrix} 2 & -1 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}. \end{split}$$

Como det $\begin{pmatrix} \begin{bmatrix} 2 & -1 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 1 \end{pmatrix} \end{pmatrix} = 6 \neq 0$. Luego por el *teorema de la función implícita*, existe $U \subset \mathbb{R}^2$ con $\left(\frac{\pi}{2}, 0\right) \in U$ tal que:

$$G \colon U \subseteq \mathbb{R}^2 \longrightarrow \mathbb{R}^3$$

$$(u, v) \longmapsto (x, y, z)$$

con
$$G\left(\frac{\pi}{2},0\right) = (1,1,0).$$

$$\text{Además, } G(u,v) = (G_1(u,v),G_2(u,v),G_3(u,v)) \implies x = G_1(u,v), y = G_2(u,v), z = G_3(u,v).$$

2) Por el teorema de la función implícita

$$\begin{split} \operatorname{Jac}(G)_{(\pi/2,0)} &= \frac{\partial \left(x,y,z\right)}{\partial (u,v)} \left(\pi/2,0\right) \\ \operatorname{Jac}(G)_{(\pi/2,0)} &= -\frac{\partial \left(F_1,F_2,F_3\right)^{-1}}{\partial \left(x,y,z\right)} \left(1,1,0,\frac{\pi}{2},0\right) \cdot \frac{\partial \left(F_1,F_2,F_3\right)}{\partial \left(u,v\right)} \left(1,1,0,\frac{\pi}{2},0\right) \\ \operatorname{Jac}(G)_{(\pi/2,0)} &= -\begin{bmatrix} 2 & -1 & 0 \\ 2 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}^{-1} \begin{bmatrix} 0 & 0 \\ 0 - \pi/2 \\ 0 & 0 \end{bmatrix} \\ &= -\begin{bmatrix} 1/3 & 1/6 & 0 \\ -1/3 & 1/3 & 0 \\ 0 & -1/2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & -\pi/2 \\ 0 & 9 \end{bmatrix} \\ &= \begin{bmatrix} 0 & \pi/2 \\ 0 & \pi/6 \\ 0 & -\pi/4 \end{bmatrix} \end{split}$$

Así,
$$\frac{\partial x}{\partial u}(\pi/2,0)=0.$$

3.4. Extra

- 1. Defina las siguientes nociones para una función $f \colon \mathcal{A} \subseteq \mathbb{R} \to \mathbb{R}$ y $a \in \mathcal{A}$.
 - a) Gráfico de f.
 - b) Continuidad de f en a.
 - c) Máximo local de f en a.
 - d) Primitiva de f.
- 2. Considere la siguiente función:

$$h(t) = egin{cases} t^2 \operatorname{sen}(rac{1}{t}) & , & \operatorname{si} t > 0 \ 0 & , & \operatorname{si} t \leqslant 0. \end{cases}$$

Halle la ecuación vectorial de la recta tangente a la gráfica de h en el punto (0,0).

- 3. Enuncie los siguientes resultados:
 - a) Teorema del valor medio para integrales.
 - b) Segundo teorema fundamental del cálculo.
- 4. Encuentre una ecuación del plano \mathcal{P} que pasa por los puntos (1,3,2),(3,-1,6) y (5,2,0). ¿Este plano es paralelo con \mathcal{Q} : x+y+z=1?

Referencias bibliográficas

- [1] George A Anastassiou y Razvan A Mezei. Numerical analysis using sage. Springer, 2015.
- [2] Charles G Denlinger. Elements of real analysis. Jones & Bartlett Publishers, 2011.
- [3] Izrail Solomonovich Gradshteyn y Iosif Moiseevich Ryzhik. Table of integrals, series, and products. Academic press, 2014.
- [4] Sergeĭ Nikolaevich Krivoshapko y V.N. Ivanov. Encyclopedia of analytical surfaces. Springer, 2015.
- [5] John Stillwell. Mathematics and Its History. 3. a ed. Undergraduate Texts in Mathematics. Springer-Verlag New York, 2010.
- [6] Franco Vivaldi. Mathematical writing. Springer, 2014.

Índice

Función vectorial de variable real, 4

