$$\cos 3x = \frac{2}{\sqrt{m_1(0)}} x^n$$

n /	f(x)	f(n)(0)
0	W 37L	1
	- 31m3x	0
2	-30073X	-32
3	33 sin3x	0
4	34 cw 3x	34
<u> </u>		

$$\frac{2}{2} \frac{f^{(n)}(0)}{n!} x^n = \frac{2}{n=0} \frac{n^{2n}}{(2n)!} x^{2n}$$

For Radius of convergence
$$\frac{2n+2}{2n+2} \frac{2n+2}{2n+2} \frac{(2n)!}{(2n)!}$$
 $\frac{\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n\to\infty} \left| \frac{3}{(2n+2)!} \frac{3}{3^2} \frac{2n}{2^n} \frac{1}{2^n} \right|$
 $= \lim_{n\to\infty} \left| \frac{\chi^2}{(2n+2)(2n+1)} \right|$

$$=\lim_{N\to\infty} \left| \frac{9 n^2}{(2n+2)(2n+1)} \right|$$

Hence R= 00.

#14
$$f(x) = x - x^3$$
, $a = -2$.

Υ)	$f_{(\omega)}(x)$	fn(a) =	tn (-2)
0		7(- x3	6	
1		1-37(2	-11	·
2		-676	 12	
	3	-6	6	
	f	0	0	
*	<u> </u>	and the second s	 1	

Hence
$$f(x) = \frac{x}{y} + \frac{f(x)(-2)}{y!} + \frac{x}{y} + \frac{x}{y}$$

$$= \frac{6(\chi+2)}{6(\chi+2)} + \frac{-11}{1!} (\chi+2) + \frac{12}{2!} (\chi+2)$$

$$= \frac{-6}{3!} (\chi+2)^{3}$$

$$= \frac{6-11(\chi+2)}{6(\chi+2)} + \frac{6(\chi+2)^{2}}{6(\chi+2)} - \frac{3}{2!}$$

$$e^{\chi} = \sum_{n=0}^{\infty} \frac{\chi^n}{n!}$$

Hence
$$2e^{x} = \frac{2(x)^{n}}{n!} = \frac{2(x)^{n}}{n!}$$

$$e + 2e^{-x} = \frac{x}{n!} + \frac{x}{2} = \frac{x^{n}}{n!} + \frac{x}{2} = \frac{x^{n}}{n!} + \frac{x}{2} = \frac{x^{n}}{n!} = \frac{x^{n}}{$$

$$= \frac{\infty}{2} \frac{(1+2(1)^{m})}{n!} \chi^{m}$$

$$= n=0$$

$$\frac{2}{2} \frac{(-1)^n T^{2n}}{6^{2n}(2n)!}$$

$$\frac{2}{2} \frac{(+1)^n T^2 n}{6^{2n}(2n)!} = \frac{2}{2n!} \frac{(-1)^n (T^2)^{2n}}{2n!}$$

$$\cos\left(\frac{11}{6}\right) = \frac{\sqrt{3}}{2}$$

12·10 # 10

a) dist perm (3,7,5) to xy plane = (5)

(B) dit from (3,7,-1) to yz plane = 3

(c) " - 717 plane = 7

(because dist ((3,7,5), (3,90))= 574

@ "- " to the y-anis = J34

(F) 1-11 to the 2-axis = 158.

32

27472727 is equivalent to

x+y+22-272+1-170 which is x+y+(2-1) >1

This region comists of all points (X, y, Z) which are outside the sphere with reading

1 9 center (0,0,+1).

#24. legts of
$$\langle -2, 4, 2 \rangle = \sqrt{4 + 16 + 4} = \sqrt{24}$$

A unit vertex in the dien of $\langle -2, 4, 2 \rangle$

Is $\overline{U} = \frac{1}{\sqrt{24}} \langle -2, 4, 2 \rangle$.

Hence a vertex that how the some dien as
$$\langle -2, 4, 2 \rangle \text{ with length } 6$$

$$= 6\overline{U} = \frac{6}{\sqrt{24}} \langle -2, 4, 2 \rangle$$

$$= \left(-\frac{12}{\sqrt{24}}, \frac{24}{\sqrt{24}}, \frac{12}{\sqrt{24}} \right)$$

#18 $\overline{G} = \langle 4, 0, 2 \rangle$, $\overline{B} = \langle 2, -1, 0 \rangle$

#1011:
$$\overline{G} = 8 + 0 + 0 = 8$$

#18
$$\vec{a} = \langle 4,0,27 \rangle$$
, $\vec{b} = \langle 2,-1,0 \rangle$

#1011=
 $\vec{a} \cdot \vec{b} = 8 + 0 + 0 = 8$
 $||\vec{a}|| = ||\vec{b}|| = ||\vec{a}|| = ||\vec{b}||$

Hence $\cos \theta = \frac{\vec{a} \cdot \vec{b}}{||\vec{a}|| + ||\vec{b}||} = \frac{8}{||\vec{a}|| + ||\vec{b}||} = \frac{8}{||\vec{a}|| + ||\vec{b}||} = \frac{8}{||\vec{a}|| + ||\vec{b}||} = \frac{4}{||\vec{a}|| + ||\vec{b}||}$

#24

(a)
$$\vec{U} = \langle -3, 9, 6 \rangle$$
, $\vec{V} = \langle 4, -12, -8 \rangle$
 $\vec{U} \cdot \vec{V} = -12 - 108 - 48$
 $\neq 0$ I have not outhogonal.

$$\Rightarrow -168 = \sqrt{9+81+36} \sqrt{16+144+64} \cos \theta$$

$$= \sqrt{126} \sqrt{224} \cos \theta$$

$$= (3\sqrt{14})(8.4\sqrt{14}) \cos \theta$$

$$= (12*14) \cos \theta = 8 168 \cos \theta$$

Thence
$$\vec{u} + \vec{J}$$
 are parallel.

[Alternatively (simplex):

$$\vec{U} = -\frac{3}{4}\vec{V}$$

I 4 I au scalar multiples of each other 4 hence D& V au passible!]

(b)
$$\vec{U} = \vec{i} - \vec{j} + 2\vec{R}$$
, $\vec{V} = 2\vec{i} - \vec{j} + \vec{R}$

$$\vec{U} \cdot \vec{V} = 2 + 1 + 2 = 5 \neq 0$$
 So $\vec{U} \neq \vec{V}$ are not outher, and

Also, il paint a scalar multiple of V of hence they are not parallel.

(c) \(\mathbb{U} = \langle a, b, \tag{7} \), \(\mathbb{V} = \langle -b, a, 0 \rangle \)

 $\vec{U} \cdot \vec{V} = \alpha(-b) + b(\alpha) + 0 = 0$ so $\vec{U} \neq \vec{V}$ are orthogonal. (not parallel)

[Note: a=b=c=0, then U > V are parallel.

You don't need to write it on your HW though?