Comp 6321 - Machine Learning Using Neural Nets for game-playing

Federico O'Reilly Regueiro

Concordia University

November 30, 2016

Problem statement

A zero-sum, perfect-knowledge (no chance involved) competitive game is a bounded problem space with a goal and a clear set of rules to navigate the state-space

Nice toy-representation of reality

How can we train a machine to learn a game?

Old question for AI, now solved for GO! **lookup AIMA - games for

background

State space - game dependent

exemplify state-space

Minimax

Tic-tac-toe Checkers Othello Chess GO - $10^{761} possible games!$

How can a machine learn to successfully navigate such a space (ie to win)

Problem statement

- Classification problem
 - Dual class

4 D D A A B D A B D B B

- Classification problem
 - Dual class given a game-state, what are the odds of winning
 - ★ Look ahead n-moves (n-ply) then decide best path given leaf 'value
 - Multi-class

- Classification problem
 - Dual class given a game-state, what are the odds of winning
 - Multi-class given a game-state, what is the best next move
 - ★ Learn a 'policy' for action given a state P(a|s)

- Classification problem
 - Dual class given a game-state, what are the odds of winning
 - \star Look ahead n-moves (n-ply) then decide best path given leaf 'value'
 - Multi-class
 given a game-state, what is the best next move

- Classification problem
 - Dual class given a game-state, what are the odds of winning
 - Multi-class given a game-state, what is the best next move
 - ★ Learn a 'policy' for action given a state P(a|s)

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
- Labor intensive collection and labeling
- Genetic optimizations Evolutionary Wiss
- Slow to converge
 Capable of finding innovative strategies [3]
- Reinforcement learning
- . Like having sparse and time-delayed labellated
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 e.g. Deep Blue
- Supervised learning collect labeled states and train

Genetic optimizations - Evolutionary NNs

Reinforcement learning

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
- Slow to converge
- Reinforcement learning
- TD-learning
 - Like having sparse and time-delayed lab
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs

Reinforcement learning

- Rule-based approach dependent on expert knowledge
 - ▶ e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs

Reinforcement learning

(ロ) (個) (差) (差) (差) (2)

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - ► Capable of finding innovative strategies [3] [1]
- Reinforcement learning
 - TD-learning

 - Like having sparse and time-delayed labels
 - Lredit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - ► Capable of finding innovative strategies [3] [1]
- Reinforcement learning
 - I D-learning

 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - ▶ Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - ► Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [3] [1]
- Reinforcement learning
 - I D-learning

 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - ▶ Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [3] [1]
- Reinforcement learning
 - TD-learning

 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [3] [1]
- Reinforcement learning
 - TD-learning
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - ► Capable of finding innovative strategies [3] [1]
- Reinforcement learning
 - TD-learning
 - Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [3] [1]
- Reinforcement learning
 - TD-learning
 - ★ Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [3] [1]
- Reinforcement learning
 - TD-learning
 - * Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [3] [1]
- Reinforcement learning
 - TD-learning
 - * Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

- Rule-based approach dependent on expert knowledge
 - e.g. Deep Blue
- Supervised learning collect labeled states and train
 - Also depends on human expert knowledge
 - Labor intensive collection and labeling
- Genetic optimizations Evolutionary NNs
 - Does not exploit NNs learning capabilities but won't get stuck on local minima...
 - Slow to converge
 - Capable of finding innovative strategies [3] [1]
- Reinforcement learning
 - TD-learning
 - * Tesauro's TD-Backgammon chance element
 - Like having sparse and time-delayed labels
 - Credit assignment problem
 - explore-exploit dilemma

Alpha-go

- Two policy convolutional networks 1 large, 1 small prune search tree $TD(\lambda)$
- One Fully connected predict win validation
- DeepMind Atari deep reinforcement learning
 - Deep neural nets meet $TD(\lambda)$

- Alpha-go
 - For Two policy convolutional networks 1 large, 1 small prune search tree $TD(\lambda)$
 - One Fully connected predict win validation
- DeepMind Atari deep reinforcement learning
 - Deep neural nets meet $TD(\lambda)$

- Alpha-go
 - For Two policy convolutional networks 1 large, 1 small prune search tree $TD(\lambda)$
 - One Fully connected predict win validation
- DeepMind Atari deep reinforcement learning

Alpha-go

- Two policy convolutional networks 1 large, 1 small prune search tree $TD(\lambda)$
 - One Fully connected predict win validation
- DeepMind Atari deep reinforcement learning
 - \triangleright Deep neural nets meet $TD(\lambda)$

- Alpha-go
 - Two policy convolutional networks 1 large, 1 small prune search tree $TD(\lambda)$
 - One Fully connected predict win validation
- DeepMind Atari deep reinforcement learning
 - ▶ Deep neural nets meet $TD(\lambda)$

Supervised Learning

- Acquiring sets is a cumbersome task requires an overhead outside of ML eg Edax
- Rule-based

Heuristic - Decision tree - in place but focus is on nets

- Supervised Learning
 - Acquiring sets is a cumbersome task requires an overhead outside of ML - eg Edax
- Rule-based

Supervised Learning

Acquiring sets is a cumbersome task requires an overhead outside of ML - eg Edax

Rule-based

Heuristic - Decision tree - in place but focus is on nets

- Supervised Learning
 - Acquiring sets is a cumbersome task requires an overhead outside of ML - eg Edax
- Rule-based
 - Heuristic Decision tree in place but focus is on nets

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[2]
- ▶ They use symmetry and weight sharing 96 h.u. turn into conv ne

ENN

Based on Chelapilla and Fogel[1]

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[2]
- They use symmetry and weight sharing 96 h.u. turn into conv net
- ENN

Based on Chelapilla and Fogel 1

- TD learning
 - Similar to back propagation but recurses temporally

 - Based on Leouski and Utgoff's paper[2]
 - They use symmetry and weight sharing 96 h.u. turn into conv net
- ENN

Based on Chelapilla and Fogel 1

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[2]
- ▶ They use symmetry and weight sharing 96 h.u. turn into conv net
- ENN

Based on Chelapilla and Fogel[1]

- TD learning
 - Similar to back propagation but recurses temporally

 - Based on Leouski and Utgoff's paper[2]
 - ► They use symmetry and weight sharing 96 h.u. turn into conv net
- ENN

TD learning

- Similar to back propagation but recurses temporally
- Based on Leouski and Utgoff's paper[2]
- ▶ They use symmetry and weight sharing 96 h.u. turn into conv net

ENN

Based on Chelapilla and Fogel[1]

- TD learning
 - Similar to back propagation but recurses temporally

 - Based on Leouski and Utgoff's paper[2]
 - ▶ They use symmetry and weight sharing 96 h.u. turn into conv net
- ENN
 - Based on Chelapilla and Fogel[1]

References

- Kumar Chellapilla and David B Fogel. Evolution, neural networks, games, and intelligence.
- Anton V. Leouski and Paul E. Utgoff. What a neural network can learn about othello, 1996.
- David Moriarty and Risto Miikkulainen. Evolving complex othello strategies using marker-based genetic encoding of neural networks.