## Házi feladatok megoldása 3. Sűrűsödéspontok és sűrű régiók

Smahajcsik-Szabó Tamás, M9IJYM

## 1. Készíts sűrűségváltozókat a 8 Diener-item segítségével. Korreláltasd egymással őket és válassz ki közülük egy olyat, amelyik az összes többivel minimum 0,80-as szinten korrelál!

A Diener-tételekkel képzett density változók közül a Dense11 nevűt választottam, mely a leiró statisztikája (átlaga 1, szórasa pedig 0.138) nyomán kevésbé szélsőséges eloszlású, mint a hasonlóan szoros, a többi változóval r>0.80 korrelációt mutató Dense10 vagy a Dense9. Fontos, hogy az elemzéshez az R nyelvet használtam, így a változók neve eltér a ROPStattól. A másik eltérés, hogy az itt használt függvény opcionálisan egy előszűrést végez a density valtozókon: kiveszi azokat a sűrűsödésvaltozókat, melyek nem eredményeznek kellően nagy emelkedést a szomszédok átlagos számában.

## 2. A 2.1. alfejezetben leírt módszerrel keress sűrű régiókat a Diener2 és a Diener6 item kétdimenziós terében! Hogyan tudnád jellemezni a két legsűrűbb régiót?

A Diener2 es Diener6 itemek tekintetében az alábbi ábra tájékoztat a sűrű régiókról. Az ábrán különböző sugárértékek mentén került leképezésre a sűrűség.

Leginkább szembetűnő a Diener2 es Diener6 tételek 6-6 binjenek magas sűrűsége a bal felső, legalacsonyabb sugár alapú feltérképezésen. Ezt úgy értelmezem, hogy a társas kapcsolatokat jónak, támogatónak megélők (6) jó eséllyel önmagukat és életüket is kellemesen élik meg, kielégítőnek minősítik. Viszont mint a 6-6 övezetet körülvevő, a nagyobb sugár mentén való leképezésnél szembetűnőbb, ám annal ugyan kevésbé sűrű, a többi övezeti metszésponthoz képest mégis nagyobb sűrűségű területből látszik (így a 6-7, 5-6 es 7-7 cellákból), a minta nagy része mindkét tétel tekintetében az 5-7 övezetekben tömörül.

Diener2 es Diener6 s..r..södéspontjai különböz.. radius érték mentén

|                 |       |       |       | 0.005          |                |                |                |         |       |       |       | 0.035          |                |                |                |   |
|-----------------|-------|-------|-------|----------------|----------------|----------------|----------------|---------|-------|-------|-------|----------------|----------------|----------------|----------------|---|
| 7 -             | 0.019 |       | 0.019 | 0.078          | 0.214          | 1.224          | 1.03           |         | 0.006 |       | 0.053 | 0.261          | 0.813          | 1.389          | 0.772          |   |
| 6               | 0.040 | 0.019 | 0.078 | 0.544          | 1.146          | 2.079          | 0.272          |         | 0.040 | 0.053 | 0.237 | 0.754          | 1.425          | 1.514          | 1.045          |   |
| 5 -<br>4 -      | 0.019 | 0.078 | 0.117 | 0.622          | 0.68           | 0.233          | 0.039          |         | 0.042 | 0.101 | 0.321 | 0.683          | 0.855          | 0.938          | 0.172          |   |
| 3               | 0.039 | 0.097 | 0.155 | 0.272          | 0.117          | 0.039          | 0.019          |         | 0.047 | 0.125 | 0.232 | 0.392          | 0.35           | 0.125          | 0.03           |   |
| 2 -             | 0.019 | 0.033 | 0.117 | 0.019          | 0.055          |                |                |         | 0.042 | 0.107 | 0.131 | 0.042          | 0.003          |                |                |   |
| 1-              | 0.019 | 0.00. |       | 0.0.0          |                |                |                |         | 0.012 | 0.0   |       | 0.0.2          |                |                |                |   |
|                 |       |       |       |                |                |                |                |         |       |       |       |                |                |                |                |   |
|                 | 0.065 |       |       |                |                |                |                |         | 0.125 |       |       |                |                |                |                |   |
| 7-              | 0.008 |       | 0.149 | 0.42           | 1.067          | 1.205          | 0.93           |         | 0.014 |       | 0.193 | 0.698          | 1.247          | 1.116          | 0.863          |   |
| 6 -             |       | 0.071 | 0.314 | 0.706          | 1.377          | 1.397          | 0.985          |         |       | 0.176 | 0.508 | 1.043          | 1.295          | 1.333          | 1.074          |   |
| 5-              | 0.051 | 0.122 | 0.4   | 0.753          | 1.157          | 0.934          | 0.541          |         | 0.069 | 0.224 | 0.501 | 0.753          | 1.091          | 1.15           | 0.781          |   |
| 4 - 3 -         | 0.055 | 0.133 | 0.326 | 0.451          | 0.428          | 0.235          | 0.067          |         | 0.079 | 0.187 | 0.328 | 0.522          | 0.611          | 0.625          | 0.128          |   |
| 2-              | 0.035 | 0.059 | 0.104 | 0.059          | 0.122          |                |                |         | 0.038 | 0.133 | 0.13  | 0.200          | 0.243          |                |                |   |
| 1 -             | 0.027 | 0.000 |       | 0.000          |                |                |                |         | 0.024 | 0.0.0 |       | 01111          |                |                |                |   |
|                 |       |       |       |                |                |                |                |         |       |       |       |                |                |                |                | = |
|                 |       |       |       | 0.155          |                |                |                |         | 0.245 |       |       |                |                |                |                |   |
| 7               | 0.033 |       | 0.417 | 0.97           | 1.169          | 1.072          | 0.887          |         | 0.046 |       | 0.48  | 0.942          | 1.107          | 1.078          | 0.914          |   |
| ဖ 6             | 0.004 | 0.268 | 0.591 | 1.091          | 1.252          | 1.185          | 0.992          |         | 0.405 | 0.285 | 0.57  | 1.032          | 1.186          | 1.137          | 0.937          |   |
| Diener6         | 0.094 | 0.318 | 0.619 | 0.975          | 1.15<br>0.904  | 1.219          | 0.978          |         | 0.105 | 0.321 | 0.611 | 1.073<br>0.886 | 1.222<br>0.886 | 1.158<br>0.824 | 0.942          |   |
| <u>.e</u> 4     | 0.113 | 0.266 | 0.464 | 0.841          | 0.904          | 0.807          | 0.5            |         | 0.116 | 0.323 | 0.352 | 0.886          | 0.866          | 0.624          | 0.616          | - |
| Diener6         | 0.061 | 0.102 | 0.270 | 0.138          | 0.545          |                |                |         | 0.077 | 0.131 | 0.332 | 0.146          | 0.541          |                |                |   |
| 1-              | 0.025 |       |       |                |                |                |                |         | 0.039 |       |       |                |                |                |                |   |
| ı               |       |       |       | 0.075          |                |                |                |         |       |       |       | 2 2 2 5        |                |                |                |   |
|                 |       |       |       | 0.275          |                |                |                |         |       |       |       | 0.305          |                |                |                |   |
| 7 -             | 0.06  |       | 0.648 | 1.092          | 1.097          | 1.062          | 0.906          |         | 0.135 |       | 0.912 | 1.099          | 1.078          | 1.031          | 0.929          |   |
| 6               | 0.400 | 0.432 | 0.841 | 1.059          | 1.167          | 1.122          | 0.986          |         | 0.007 | 0.532 | 0.993 | 1.156          | 1.128          | 1.083          | 1.019          |   |
| 5 -<br>4 -      | 0.186 | 0.414 | 0.627 | 1.059<br>0.883 | 1.205<br>0.906 | 1.147<br>0.984 | 0.77           |         | 0.287 | 0.549 | 0.867 | 1.042<br>0.872 | 1.156          | 1.114          | 1.047<br>0.969 |   |
| 3 -             | 0.155 | 0.331 | 0.354 | 0.437          | 0.487          | 0.904          | 0.77           |         | 0.233 | 0.254 | 0.408 | 0.572          | 0.805          | 1.111          | 0.909          |   |
| 2 -             | 0.08  | 0.138 | 0.001 | 0.226          | 0.107          |                |                |         | 0.1   | 0.152 | 0.100 | 0.313          | 0.000          |                |                |   |
| 1-              | 0.043 |       |       |                |                |                |                |         | 0.055 |       |       |                |                |                |                | = |
| i               |       |       |       | 0.205          |                |                |                |         |       |       |       | 0.485          |                |                |                |   |
| _               | 0.395 |       |       |                |                |                |                |         |       |       |       |                |                |                |                |   |
| 7 -<br>6 -      | 0.217 | 0.520 | 0.904 | 1.058          | 1.045          | 1.016          | 0.96           |         | 0.241 | 0.776 | 1.032 | 1.067          | 1.047          | 1.012          | 0.958          |   |
| 5-              | 0.293 | 0.528 | 0.944 | 1.101<br>1.114 | 1.087          | 1.052          | 0.996<br>1.009 |         | 0.372 | 0.776 | 0.972 | 1.099<br>1.11  | 1.083          | 1.05<br>1.072  | 1.001          |   |
| 4               | 0.289 | 0.526 | 0.821 | 0.996          | 1.105          | 1.065          | 1.009          |         | 0.372 | 0.528 | 0.82  | 0.992          | 1.105          | 1.072          | 1.016          |   |
| 3-              | 0.230 | 0.38  | 0.544 | 0.79           | 0.808          |                |                |         |       | 0.379 | 0.544 |                | 0.829          |                |                |   |
| 2-              | 0.139 | 0.228 |       | 0.338          |                |                |                |         | 0.138 | 0.23  |       | 0.399          |                |                |                |   |
| 1-              | 0.083 |       |       |                |                |                |                |         | 0.085 |       |       |                |                |                |                |   |
|                 | 1     | 2     | 3     | 4              | 5              | 6              | 7              |         | 1     | 2     | 3     | 4              | 5              | 6              | 7              |   |
|                 |       |       |       |                |                |                |                | Diener: | 2     |       |       |                |                |                |                |   |
|                 |       |       |       |                |                |                |                |         |       |       |       |                |                |                |                |   |
|                 |       |       |       |                |                |                |                |         |       |       |       |                |                |                |                |   |
| density         |       |       |       |                |                |                |                |         |       |       |       |                |                |                |                |   |
| 0.5 1.0 1.5 2.0 |       |       |       |                |                |                |                |         |       |       |       |                |                |                |                |   |

A számértékek átlag s..r..ség értékeket jelölnek cellánként

## 3. A 2.2.1. alpontban leírt módszerrel keress DP sűrűsödéspontokat a Diener2 és a Diener6 item kétdimenziós terében, 200 kezdeti sűrűsödéspontot beállítva és nem standardizálva a változókat! Hogyan tudnád jellemezni a kapott sűrűsödéspontokat? Van-e valamilyen közük az előző feladat sűrű régióihoz?

22surusodespontok 00 kezdeti értékkel első körben 15 sűrűsödéspontot kerestem. Az alábbi ábra mutatja a sűrűsödéspontok elhelyezkedését az eredeti adateloszlásra exponálva. Fontos, hogy a tételek értekeinek diszkrét jellege miatt az R ggplot2 csomagjénak geom\_jitter() függvényét használtam a pontdiagrammhoz, mely véletlenszerű értékekkel mesterseges szórást ad diszkrét változók ponteloszlásához a jobb láthatóság végett. Az eredményeket úgy tudom jellemezni, hogy a fentebb azonositott, 6-6 övezetmetszés mentén jelennek meg sűrűsödéspontok. Nagyobb célérték mellett az alsóbb területekben is találtam sűrűsödéspontokat.



Az alábbi táblázatban kiemeltem néhányat a dense point-okból:

| Diener2  | Diener6  | id |
|----------|----------|----|
| 5.329218 | 5.849794 | 1  |
| 4.964413 | 5.640569 | 4  |
| 3.500000 | 4.522727 | 14 |

A megadott Diener2 es Diener6 értékek összevont adatpontok átlagértékei.

4. Mentsd el a kapott DP-ket. A Dpcode változó oszlopában az üres cellákba írj 0-t (Szerkesztés/Keres, cserél/Aktuális oszlopban ...) segítségével, majd hasonlítsd össze a 0, 1, 2 kódú személyeket a MET skálái segítségével! Melyik MET-skálánál a legnagyobb az etanégyzet és mekkora ez az érték? Értelmezd szakmailag is a kapott eredményt. Önmagában a DPCode szerinti csoportositásnak a Diener2 es Diener6 tételek tekintetében nincs szignifikáns csoportképző hatása, azaz az elvártnak megfelelően, a sűrűösádpontok, noha mesterséges aggregátumok, e két változó alapján nem különböznek az eredeti mintától.

Az alábbi táblázat ezen ANOVA eredményét összegzi.

## Df Sum Sq Mean Sq F value Pr(>F)

A MET-tételek esetében a Jóllét es a Reziliancia tételek tekintetében p<0.01 szintű eltérés mutatkozik az eredeti minta javára, mely az alkalmazott imputáció miatt alakulhatott így. A sűrűsödéspontok statikus, alacsony varianciájú MET pontokat kaptak kNN-alapú (iker) imputációval, értékük stabil és alacsonyabb a minta eredeti részénél tapasztalt értékeknél. Ezt összegzi az alábbi output:

```
##
                Df Sum Sq Mean Sq F value Pr(>F)
## Jóllét
                    0.211 0.21114
                                     7.670 0.00582 **
## Savor
                 1
                    0.051 0.05098
                                     1.852 0.17418
## AVhat
                    0.035 0.03518
                                     1.278 0.25878
                 1
## Önreg
                 1
                    0.085 0.08458
                                     3.073 0.08023
## Rezil
                    0.120 0.11960
                                     4.345 0.03763 *
## M_Flow
                    0.056 0.05612
                                     2.039 0.15396
                 1
## Diener2
                 1
                    0.047 0.04651
                                     1.690 0.19424
## Diener6
                   0.030 0.03021
                                     1.098 0.29531
                 1
## Residuals
               506 13.929 0.02753
## ---
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Signif. codes:
```