www.inl.gov

Idaho National Laboratory

Advanced Reliability and Safety Analysis

RAVEN Workshop

Outline

- 1. Dynamic Probabilistic Risk/Safety Analysis
 - Classic vs. Dynamic PRA
- 2. Adaptive Sampling
 - Limit Surface

Reliability and Safety Analysis

- Safety Analysis: determine the likelihood a system will not perform its functions in a specified time period
- Reliability Analysis: determine the ability of a system to perform its functions in a specified time period

 $Re liability = 1 - probability _ failure$

Dynamic Probabilistic Risk/Safety Analysis

- Classic Probabilistic Risk/Safety Analysis
 - Static boolean logic structures
 - Event-Trees / Fault-Trees
 - Accident sequence set by the analyst
 - Timing of events partially considered
- Dynamic Probabilistic Risk/Safety Analysis
 - Direct use of system simulation codes
 - Coupled with stochastic analysis tools (e.g., RAVEN)
 - Accident sequence set by the system control logic
 - Timing of events fully considered

Dynamic Probabilistic Risk/Safety Analysis

Deterministic modeling

Plant modeling External event modeling

Parameters	Distribution
Wave height (m)	Exponential
Wave impact time (h)	Uniform
Diesel recovery time (h)	Weibull
Off-site grid recovery time ^a (h)	Lognormal
Off-site grid recovery time ^b (h)	Lognormal
Batteries failure time (h)	Triangular
Batteries recovery time (h)	Lognormal

Stochastic modeling

Identify uncertain parameters and associate a pdf

Stochastic analysis

Sample the pdfs
Run N times system
simulation code(s)
Evaluate desired FOMs

ROMs: Classifiers

- ROMs as mathematical models designed approximate an input-output relationship
- Classifiers: output variable is boolean
 - i.e., 0 or 1
 - e.g., OK or Failure

Exercise 1: Dynamic PRA Analysis

Excercise1: Model Sampling

- Model
 - Simplified PWR model
- Scenario
 - Station Blackout Analysis
- Steps
 - Sample the model response N times
 - Determine failure probability

Excercise1: Model Sampling

Excercise1: Model Sampling

Distributions Models Samplers Databases DataObjects Step
--

```
<Steps>
  <MultiRun name="MCRun">
    <Input
             class="DataObjects" type="PointSet"
                                                         >inputPlaceHolder</Input>
    <Model
             class="Models"
                                  type="ExternalModel"
                                                         >PythonModule</Model>
    <Sampler class="Samplers"</pre>
                                  type="MonteCarlo"
                                                         >MC</Sampler>
                                                         >outPS</Output>
             class="DataObjects"
                                  type="PointSet"
    <Output
             class="DataObjects" type="HistorySet"
    <Output
                                                         >outHS</Output>
  </MultiRun>
  <PostProcess name="PP">
    <Input
             class="DataObjects"
                                   type="PointSet"
                                                         >outPS</Input>
             class="Models"
    <Model
                                   type="PostProcessor"
                                                         >integral</Model>
                                   type=""
                                                         >integral.xml</Output>
    <Output
            class="Files"
  </PostProcess>
</Steps>
```


Adaptive Sampling

- Computational costs might be impractical
 - Computationally expensive codes
 - Many simulation runs are often required
- Reduced Order Modeling can be a solution
 - Objective: reduce the complexity of the problem
- Search of the limit surface: boundaries in the input space between failure and success

$$p_{failure} = \int_{\Omega} p \, df(\omega) d\omega$$

Reliability Analysis: Limit Surface Search

Reliability Analysis: Limit Surface Workflow

- 1. Define the distributions:
 - Weigh the error estimation
 - Generate a probability-weighted metric for grid construction
 - Determine the probability of being inside one of the regions identified by the limit surface
- Define the surrogate model (acceleration ROM) to be used as the adaptive sampler
- Define the adaptive sampler:
 - Convergence control and grid
 - Import the acceleration ROM
 - Associate the distribution with the variables
- 3. Define the adaptive sampling step

Distributions Models	Samplers	Functions	DataObjects	Steps
----------------------	----------	-----------	-------------	-------

Distributions Models Samplers Fun	ctions DataObjects Steps
---	--------------------------

```
<Functions>
  <External name="goalFunction" file="goalFunction">
    <variable>outcome</variable>
    </External>
</Functions>
```

```
def __residuumSign(self):
    if self.outcome == 0:
        return -1
    else: return 1
```

File: goalFunction.py

Distributions	Models	Samplers	Functions	DataObjects	Steps
				J	

```
<Samplers>
 <LimitSurfaceSearch name="Adaptive">
   <ROM
              class="Models"
                                 type="ROM"
                                                 >ROM</ROM>
   <Function class="Functions" type="External" >goalFunction/Function>
   <TargetEvaluation class="DataObjects" type="PointSet" >outPS
                      </TargetEvaluation>
   <Convergence limit="250" forceIteration="False" weight="value"</pre>
                persistence="10">1.0e-5</Convergence>
   <variable name="tREC">
     <distribution>tREC dist</distribution>
   </variable>
   <variable name="tSBO">
      <distribution>tSBO dist</distribution>
   </variable>
 </LimitSurfaceSearch>
</Samplers>
```


Distributions	Models	Samplers	Functions	DataObjects	Steps
				J	

```
<Steps>
  <MultiRun name="MCRun" pauseAtEnd="True">
             class="DataObjects" type="PointSet"
    <Input
                                                       >inputPlaceHolder</Input>
    <Model
            class="Models"
                                 type="ExternalModel"
                                                       >PythonModule</Model>
    <Sampler class="Samplers" type="MonteCarlo"</pre>
                                                       >MC</Sampler>
    <Output class="DataObjects" type="PointSet"</pre>
                                                       >outPS</Output>
  </MultiRun>
  <MultiRun name="adaptive" pauseAtEnd="True">
    <Input
             class="DataObjects" type="PointSet"
                                                       >inputPlaceHolder</Input>
             class="Models"
                                 type="ExternalModel" >PythonModule</Model>
    <Model
    <Sampler class="Samplers" type="LimitSurfaceSearch">Adaptive</Sampler>
    <SolutionExport class="DataObjects" type="PointSet" >limitSurface
    </SolutionExport>
    <Output class="DataObjects" type="PointSet"</pre>
                                                       >outPS</Output>
  </MultiRun>
</Steps>
```


Exercise 3: Failure Probability Calculation from LS

Exercise 3: Failure Probability Calculation From LS

- Limit surface has a pure deterministic information
- Probabilistic information is contained in the integral within the limit surface weighted by the set of distributions

For a new set of distributions the integral needs to be recalculated but

the limit surface is unchanged

$$p_{failure} = \int_{\Omega} p \, df(\omega) \, d\omega$$

Exercise 3: Failure Probability Calculation From LS

Distributions Models Samplers Databases DataObjects Steps	Distributions	Models	Samplers	Databases	DataObjects	Steps
---	---------------	--------	----------	-----------	-------------	-------

Exercise 3: Failure Probability Calculation From LS

	Distributions	Models	Samplers	Databases	DataObjects	Steps
--	---------------	--------	----------	-----------	-------------	-------

```
<Steps>
  <IOStep name="extract data adapt">
             class="Databases"
    <Input
                                 type="HDF5"
                                                       >out db adaptive</Input>
             class="DataObjects" type="PointSet"
                                                       >outAdapt failure</Output>
    <Output
  </IOStep>
  <PostProcess name="integral">
    <Input
             class="DataObjects"
                                 type="PointSet"
                                                       >outAdapt failure</Input>
    <Model
             class="Models"
                                 type="PostProcessor"
                                                      >LS Integral</Model>
    <Output
             class="DataObjects"
                                 type="PointSet"
                                                       >LSintegral PS</Output>
            class="Files"
                                                       >integral.csv</Output>
    <Output
                                 type=""
  </PostProcess>
</Steps>
```