Trial HSC Examination 2015 Mathematics Course

Allow about 15 minutes for this section

Select the alternative A, B, C or D that best answers the question. Fill in the response oval completely.

Sample: 2 + 4 = (A) 2 (B) 6 (C) 8 (D) 9 A O B • C O D O

If you think you have made a mistake, put a cross through the incorrect answer and fill in the new answer.

A

B

C

D

D

If you change your mind and have crossed out what you consider to be the correct answer, then indicate the correct answer by writing the word **correct** and drawing an arrow as follows.

correct A 🗶 c **O** D O B 👅 $D \bigcirc$ 1. $B \bigcirc$ C • $A \bigcirc$ 2. $A \bigcirc$ $\mathsf{B} \bigcirc$ C $D \bigcirc$ $C \bigcirc$ 3. $A \bigcirc$ $B \bigcirc$ D $A \bigcirc$ 4. $C \bigcirc$ $D \bigcirc$ В C 5. $A \bigcirc$ $B \bigcirc$ $D \bigcirc$ 6. $A \bigcirc$ В $C \bigcirc$ $D \bigcirc$ $C \bigcirc$ 7. $\mathsf{B} \bigcirc$ $D \bigcirc$ $A \bigcirc$ $C \bigcirc$ 8. $B \bigcirc$ D 9. $A \bigcirc$ В $C \bigcirc$ $D \bigcirc$ 10. $A \bigcirc$ $\mathsf{B} \bigcirc$ C $D \bigcirc$

No Working Answer C $\frac{(2a)^{5}}{(\frac{3a)^{5}}}$ C $\frac{(2a)^{5}}{(\frac{3a)^{5}}}$ $\frac{1}{(\frac{2a)^{5}}}$ $\frac{1}{(\frac{2a)^{5}}}$ $\frac{3^{5}b^{5}}{2^{5}a^{5}}$ $\frac{3^{2}b^{5}}{2^{5}a^{5}}$ $\frac{3^{2}b^{5}}{2^{5}a$	Multiple Choice Worked Solutions			
$ \frac{1}{\left(\frac{2a}{3b}\right)^{5}} $ $ \frac{1}{\left(\frac{2a}{3b}\right)^{5}} $ $ = \frac{3^{5}b^{5}}{2^{5}a^{5}} $ $ = \frac{243b^{5}}{32a^{5}} $ $ = \frac{243b^{5}}{32a^{5}} $ $ = \frac{1}{a} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha\beta} $ $ \alpha + \beta = -\frac{b}{a} = \frac{5}{2} $ $ \alpha \beta = \frac{c}{a} = -\frac{9}{2} $ So $ \frac{\alpha + \beta}{\alpha\beta} = \frac{-\frac{b}{a}}{\frac{c}{a}} $ $ = -\frac{b}{c} $ $ = -\frac$		Working		
$= \frac{3^{5} b^{5}}{2^{5} a^{5}}$ $= \frac{243b^{5}}{32a^{5}}$ $= \frac{2}{32a^{5}}$ 2 $2x^{2} - 5x - 9 = 0 \\ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$ $\alpha + \beta = -\frac{b}{a} = \frac{5}{2}$ $\alpha \beta = \frac{c}{a} = -\frac{9}{2}$ So $\frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{b}{c}}{\frac{b}{a\beta}}$ $= -\frac{b}{c}$ $= -\frac{b}{c}$ $= -\frac{5}{9}$ 3 $\lim_{x \to \infty} \frac{3\sqrt{x}}{x - 2} \text{ dividing by highest power of } x$ $= \lim_{x \to \infty} \frac{3\sqrt{x}}{\frac{x}{2}} = \lim_{x \to \infty} \frac{3}{1 - \frac{2}{x}}$ $= \frac{0}{1 - 0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ 4 $y = 3 \cos 2x$ Amplitude = 3 $Period = \frac{2\pi}{2}$ $= \pi$ 5 $x^{2} + 2x + y^{2} + 4y - 5 = 0$ $x^{2} + 2x + 1 + y^{2} + 4y + 4 = 10$ $(x + 1)^{2} + (y + 2)^{2} = 10$	1	$\left(\frac{2a}{3b}\right)^{-5}$	C	
$= \frac{3^{5} b^{5}}{2^{5} a^{5}}$ $= \frac{243b^{5}}{32a^{5}}$ $= \frac{2}{32a^{5}}$ 2 $2x^{2} - 5x - 9 = 0 \\ \frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$ $\alpha + \beta = -\frac{b}{a} = \frac{5}{2}$ $\alpha \beta = \frac{c}{a} = -\frac{9}{2}$ So $\frac{\alpha + \beta}{\alpha \beta} = \frac{\frac{b}{c}}{\frac{b}{a\beta}}$ $= -\frac{b}{c}$ $= -\frac{b}{c}$ $= -\frac{5}{9}$ 3 $\lim_{x \to \infty} \frac{3\sqrt{x}}{x - 2} \text{ dividing by highest power of } x$ $= \lim_{x \to \infty} \frac{3\sqrt{x}}{\frac{x}{2}} = \lim_{x \to \infty} \frac{3}{1 - \frac{2}{x}}$ $= \frac{0}{1 - 0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ 4 $y = 3 \cos 2x$ Amplitude = 3 $Period = \frac{2\pi}{2}$ $= \pi$ 5 $x^{2} + 2x + y^{2} + 4y - 5 = 0$ $x^{2} + 2x + 1 + y^{2} + 4y + 4 = 10$ $(x + 1)^{2} + (y + 2)^{2} = 10$		$\frac{1}{(2\pi)^5}$		
$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$ $\alpha + \beta = -\frac{b}{a} = \frac{5}{2}$ $\alpha \beta = \frac{c}{a} = -\frac{9}{2}$ So $\frac{\alpha + \beta}{\alpha \beta} = \frac{-\frac{b}{a}}{\frac{c}{a}}$ $= -\frac{b}{c}$ $= -\frac{b}{c}$ $= -\frac{5}{9}$ $3 \qquad \lim_{x \to \infty} \frac{3\sqrt{x}}{x-2} \text{ dividing by highest power of } x$ $= \lim_{x \to \infty} \frac{x}{\frac{x}{x-2}} = \lim_{x \to \infty} \frac{\frac{3}{\sqrt{x}}}{1-\frac{2}{x}}$ $= \lim_{x \to \infty} \frac{3\sqrt{x}}{\frac{x}{x-2}} = \lim_{x \to \infty} \frac{\frac{3}{\sqrt{x}}}{1-\frac{2}{x}}$ $= \frac{0}{1-0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ $4 \qquad y = 3 \cos 2x$ Amplitude = 3 $Period = \frac{2\pi}{2}$ $= \pi$ $5 \qquad x^2 + 2x + y^2 + 4y - 5 = 0$ $x^2 + 2x + 1 + y^2 + 4y + 4 = 10$ $(x + 1)^2 + (y + 2)^2 = 10$		$=\frac{3^{5} b^{5}}{2^{5} a^{5}}$		
$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$ $\alpha + \beta = -\frac{b}{a} = \frac{5}{2}$ $\alpha \beta = \frac{c}{a} = -\frac{9}{2}$ So $\frac{\alpha + \beta}{\alpha \beta} = \frac{-\frac{b}{a}}{\frac{c}{a}}$ $= -\frac{b}{c}$ $= -\frac{b}{c}$ $= -\frac{5}{9}$ $3 \qquad \lim_{x \to \infty} \frac{3\sqrt{x}}{x-2} \text{ dividing by highest power of } x$ $= \lim_{x \to \infty} \frac{x}{\frac{x}{x-2}} = \lim_{x \to \infty} \frac{\frac{3}{\sqrt{x}}}{1-\frac{2}{x}}$ $= \lim_{x \to \infty} \frac{3\sqrt{x}}{\frac{x}{x-2}} = \lim_{x \to \infty} \frac{\frac{3}{\sqrt{x}}}{1-\frac{2}{x}}$ $= \frac{0}{1-0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ $4 \qquad y = 3 \cos 2x$ Amplitude = 3 $Period = \frac{2\pi}{2}$ $= \pi$ $5 \qquad x^2 + 2x + y^2 + 4y - 5 = 0$ $x^2 + 2x + 1 + y^2 + 4y + 4 = 10$ $(x + 1)^2 + (y + 2)^2 = 10$		$=\frac{243b^5}{32a^5}$		
3 $\lim_{x \to \infty} \frac{3\sqrt{x}}{x-2} \text{ dividing by highest power of } x$ $= \lim_{x \to \infty} \frac{3\sqrt{x}}{\frac{x}{x-2}} = \lim_{x \to \infty} \frac{3}{1-\frac{2}{x}}$ $= \frac{0}{1-0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ 4 $y = 3\cos 2x$ Amplitude = 3 $\operatorname{Period} = \frac{2\pi}{2}$ $= \pi$ 5 $x^2 + 2x + y^2 + 4y - 5 = 0$ $x^2 + 2x + 1 + y^2 + 4y + 4 = 10$ $(x+1)^2 + (y+2)^2 = 10$	2	$2x^2 - 5x - 9 = 0$	С	
3 $\lim_{x \to \infty} \frac{3\sqrt{x}}{x-2} \text{ dividing by highest power of } x$ $= \lim_{x \to \infty} \frac{3\sqrt{x}}{\frac{x}{x-2}} = \lim_{x \to \infty} \frac{3}{1-\frac{2}{x}}$ $= \frac{0}{1-0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ 4 $y = 3\cos 2x$ Amplitude = 3 $\operatorname{Period} = \frac{2\pi}{2}$ $= \pi$ 5 $x^2 + 2x + y^2 + 4y - 5 = 0$ $x^2 + 2x + 1 + y^2 + 4y + 4 = 10$ $(x+1)^2 + (y+2)^2 = 10$		$\frac{1}{\alpha} + \frac{1}{\beta} = \frac{\alpha + \beta}{\alpha \beta}$		
3 $\lim_{x \to \infty} \frac{3\sqrt{x}}{x-2} \text{ dividing by highest power of } x$ $= \lim_{x \to \infty} \frac{3\sqrt{x}}{\frac{x}{x-2}} = \lim_{x \to \infty} \frac{3}{1-\frac{2}{x}}$ $= \frac{0}{1-0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ 4 $y = 3\cos 2x$ Amplitude = 3 $\operatorname{Period} = \frac{2\pi}{2}$ $= \pi$ 5 $x^2 + 2x + y^2 + 4y - 5 = 0$ $x^2 + 2x + 1 + y^2 + 4y + 4 = 10$ $(x+1)^2 + (y+2)^2 = 10$		$\alpha + \beta = -\frac{b}{a} = \frac{5}{2}$		
3 $\lim_{x \to \infty} \frac{3\sqrt{x}}{x-2} \text{ dividing by highest power of } x$ $= \lim_{x \to \infty} \frac{3\sqrt{x}}{\frac{x}{x-2}} = \lim_{x \to \infty} \frac{3}{1-\frac{2}{x}}$ $= \frac{0}{1-0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ 4 $y = 3\cos 2x$ Amplitude = 3 $\operatorname{Period} = \frac{2\pi}{2}$ $= \pi$ 5 $x^2 + 2x + y^2 + 4y - 5 = 0$ $x^2 + 2x + 1 + y^2 + 4y + 4 = 10$ $(x+1)^2 + (y+2)^2 = 10$		$\alpha \beta = \frac{c}{-} = -\frac{9}{2}$		
3 $\lim_{x \to \infty} \frac{3\sqrt{x}}{x-2} \text{ dividing by highest power of } x$ $= \lim_{x \to \infty} \frac{3\sqrt{x}}{\frac{x}{x-2}} = \lim_{x \to \infty} \frac{3}{1-\frac{2}{x}}$ $= \frac{0}{1-0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ 4 $y = 3\cos 2x$ Amplitude = 3 $\operatorname{Period} = \frac{2\pi}{2}$ $= \pi$ 5 $x^2 + 2x + y^2 + 4y - 5 = 0$ $x^2 + 2x + 1 + y^2 + 4y + 4 = 10$ $(x+1)^2 + (y+2)^2 = 10$		$\frac{a}{-\frac{b}{2}}$		
3 $\lim_{x \to \infty} \frac{3\sqrt{x}}{x-2} \text{ dividing by highest power of } x$ $= \lim_{x \to \infty} \frac{3\sqrt{x}}{\frac{x}{x-2}} = \lim_{x \to \infty} \frac{3}{1-\frac{2}{x}}$ $= \frac{0}{1-0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ 4 $y = 3\cos 2x$ Amplitude = 3 $\operatorname{Period} = \frac{2\pi}{2}$ $= \pi$ 5 $x^2 + 2x + y^2 + 4y - 5 = 0$ $x^2 + 2x + 1 + y^2 + 4y + 4 = 10$ $(x+1)^2 + (y+2)^2 = 10$		So $\frac{\alpha + \beta}{c} = \frac{a}{c}$		
3 $\lim_{x \to \infty} \frac{3\sqrt{x}}{x-2} \text{ dividing by highest power of } x$ $= \lim_{x \to \infty} \frac{3\sqrt{x}}{\frac{x}{x-2}} = \lim_{x \to \infty} \frac{3}{1-\frac{2}{x}}$ $= \frac{0}{1-0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ 4 $y = 3\cos 2x$ Amplitude = 3 $\operatorname{Period} = \frac{2\pi}{2}$ $= \pi$ 5 $x^2 + 2x + y^2 + 4y - 5 = 0$ $x^2 + 2x + 1 + y^2 + 4y + 4 = 10$ $(x+1)^2 + (y+2)^2 = 10$		$\alpha\beta - a$		
$\lim_{x \to \infty} \frac{3\sqrt{x}}{x-2} = \lim_{x \to \infty} \frac{\frac{3}{\sqrt{x}}}{\frac{3}{\sqrt{x}}} = \lim_{x \to \infty} \frac{\frac{3}{\sqrt{x}}}{1-\frac{2}{x}} = \lim_{x \to \infty} \frac{\frac{3}{\sqrt{x}}}{1-\frac{2}{x}} = \frac{0}{1-0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ 4		$= -\frac{b}{c}$		
$\lim_{x \to \infty} \frac{3\sqrt{x}}{x-2} = \lim_{x \to \infty} \frac{\frac{3}{\sqrt{x}}}{\frac{3}{\sqrt{x}}} = \lim_{x \to \infty} \frac{\frac{3}{\sqrt{x}}}{1-\frac{2}{x}} = \lim_{x \to \infty} \frac{\frac{3}{\sqrt{x}}}{1-\frac{2}{x}} = \frac{0}{1-0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0)$ $= 0$ 4		$= -\frac{5}{9}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	$\lim_{x \to \infty} \frac{3\sqrt{x}}{x-2}$ dividing by highest power of x	D	
$ \begin{aligned} &= \lim_{x \to \infty} \frac{x}{\frac{x}{2} - \frac{2}{x}} = \lim_{x \to \infty} \frac{\sqrt{x}}{1 - \frac{2}{x}} \\ &= \frac{0}{1 - 0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0) \\ &= 0 \end{aligned} $ $ \begin{aligned} &= \lim_{x \to \infty} \frac{x}{\frac{x}{2} - \frac{2}{x}} = \lim_{x \to \infty} \frac{\sqrt{x}}{1 - \frac{2}{x}} \\ &= \frac{0}{1 - 0} \text{ (as } x \to \infty, \frac{1}{x} \to 0 \text{ and } \frac{1}{\sqrt{x}} \to 0) \\ &= 0 \end{aligned} $ $ \begin{aligned} &= \lim_{x \to \infty} \frac{x}{\frac{x}{2} - \frac{2}{x}} = \lim_{x \to \infty} \frac{\sqrt{x}}{1 - \frac{2}{x}} \\ &= 0 \end{aligned} $ $ \end{aligned} $ $ \begin{aligned} &= \lim_{x \to \infty} \frac{x}{\frac{x}{2} - 2x} = \lim_{x \to \infty} \frac{\sqrt{x}}{1 - \frac{2}{x}} \\ &= 0 \end{aligned} $ $ \end{aligned} $		$3\sqrt{r}$ 3		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$=\lim_{x\to 2} \frac{\overline{x}}{x} = \lim_{x\to 2} \frac{\sqrt{x}}{x}$		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		$x \to \infty$ $\frac{x}{x} = \frac{2}{x}$ $x \to \infty$ $1 = \frac{2}{x}$		
4 $y = 3 \cos 2x$		$=\frac{0}{1-0}$ (as $x \to \infty, \frac{1}{x} \to 0$ and $\frac{1}{\sqrt{x}} \to 0$)		
Amplitude = 3 $Period = \frac{2\pi}{2}$ $= \pi$ $x^{2} + 2x + y^{2} + 4y - 5 = 0$ $x^{2} + 2x + 1 + y^{2} + 4y + 4 = 10$ $(x + 1)^{2} + (y + 2)^{2} = 10$	<u></u>	$v = 3\cos 2r$	R	
Period = $\frac{2\pi}{2}$ = π 5 $x^2 + 2x + y^2 + 4y - 5 = 0$ $x^2 + 2x + 1 + y^2 + 4y + 4 = 10$ $(x + 1)^2 + (y + 2)^2 = 10$	-	•		
5 $x^2 + 2x + y^2 + 4y - 5 = 0$ $x^2 + 2x + 1 + y^2 + 4y + 4 = 10$ $(x+1)^2 + (y+2)^2 = 10$		2		
$x^{2} + 2x + 1 + y^{2} + 4y + 4 = 10$ $(x+1)^{2} + (y+2)^{2} = 10$	5		C	
$(x+1)^2 + (y+2)^2 = 10$				
Centre $=(-1,-2)$ and Radius $=\sqrt{10}$		Centre $=(-1,-2)$ and Radius $=\sqrt{10}$		

6	$\cos^2\!\!\left(\frac{\pi}{2}-\theta\right)\cot\theta$	В
	$=\sin^2\theta\cot\theta$	
	$=\sin^2\theta\times\frac{\cos\theta}{\sin\theta}$	
	sin θ	
	$=\sin\theta\cos\theta$	
7	$\int_{2}^{7} \frac{5}{x} dx$	A
	$= \left[5 \ln x\right]_2^7$	
	$= 5 \ln 7 - 5 \ln 2$	
	$= 5 [\ln 7 - \ln 2]$	
8	$= 5 \left[\ln 7 - \ln 2 \right]$ $x^2 = 4y$	D
	$y = \frac{x^2}{4}$	
	$y' = \frac{2x}{4}$	
	$y - \frac{1}{4}$	
	$=\frac{x}{2}$	
	When $x = 2$	
	$y' = 1 :: m_1 = 1$	
	So for normal $m_2 = -1$	
	When $x = 2$, $y = 1$	
	y - 1 = -1 (x - 2)	
	•	
	y-1 = -x + 2	
9	$y + x - 3 = 0$ $\log_5 200 - 3 \log_5 2$	В
	$= \log_5 200 - \log_5 2^3$	
	$=\log_5\left(\frac{200}{8}\right)$	
	$= \log_5 25$	
10	$= 2$ $ 5x+4 \le 6$	C
	$-6 \le 5x + 4 \le 6$	
	$-10 \le 5x \le 2$	
	$-2 \le x \le \frac{2}{5}$	
	$-2 \le x \le \frac{\pi}{5}$	

Que	stion 11	2015	2015	
	Solution	Marks	Allocation of marks	
(a)		2		
	$x^{2} - 2x - 7$ $x = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a}$ $x = \frac{2 \pm \sqrt{42 - 4 \times 1 \times -7}}{2 \times 1}$ $x = \frac{2 \pm \sqrt{4 + 28}}{2}$ $x = \frac{2 \pm \sqrt{32}}{2}$ $x = \frac{2 \pm \sqrt{16} \times \sqrt{2}}{2}$ $x = \frac{2 \pm 4\sqrt{2}}{2}$ $x = 1 \pm 2\sqrt{2}$ (arith)		1 for substitution into formula (or use of squares)	
	$x = \frac{1}{2}$ $x = 1 \pm 2\sqrt{2}$ (arith)			
			1 for simplification of surds.	
(b)	$\int \frac{3x}{x^2 + 1} dx$ $= \frac{3}{2} \int \frac{2x}{x^2 + 1} dx$	1	1 for correct answer.	
	$= \frac{3}{2} \ln (x^{2} + 1) + C$ (calc) $\frac{2}{\sqrt{5}} - \frac{3\sqrt{7}}{\sqrt{5}} = \frac{2\sqrt{7} - 6 - 21 - 9\sqrt{7}}{\sqrt{5}}$			
(c)	$\frac{2}{\sqrt{7}+3} - \frac{3\sqrt{7}}{\sqrt{7}-3} = \frac{2\sqrt{7}-6-21-9\sqrt{7}}{7-9}$ $= \frac{-7\sqrt{7}-27}{-2}$ $= \frac{7\sqrt{7}+27}{2}$	2	1 (rational denominator)	
	2		1 for simplification	
(d)	$\frac{x}{x+4.2} = \frac{5.6}{8.2}$	2	1 for correct ratio	
	8.2x = 5.6(x + 4.2) $8.2x = 5.6x + 23.52$ $2.6x = 23.52$ $x = 9.046$			
	x = 9.0 (nearest mm) (geom)		1 for solving equation	

Que	stion 11	2015	
	Solution	Marks	Allocation of marks
(e)	$x^2 - 5y + 5 - 0$	2	
	$x^2 = 5y - 5$		
	$x^2 = 5(y-1)$		
	\therefore Vertex at(0,1)		1 for vertex
	4a = 5		
	$a = \frac{5}{4}$		
	$\therefore \text{ focal length } = \frac{5}{4}$		
	Focus $\left(0,1+\frac{5}{4}\right)$		
	$\therefore \qquad \text{Focus} = \left(0, \frac{9}{4}\right) \textit{(function)}$		1 for focus
(f)	$S_n = \frac{n}{2} \left[2a + (n-1)d \right]$	2	
	$S_{30} = \frac{30}{2} [2 \times 5 + (29 \times 4)]$		
	= 1890		
	$S_9 = \frac{9}{2} [2 \times 5 + (8 \times 4)]$		1 for correct substitution into formula
	= 189		into romana
	Sum 10th - 30th terms		
	$=S_{30}-S_{9}$		
	= 1890 - 189 = 1701 (series)		1 for answer
	(Series)		$(1 \text{ mark only if } S_{10} \text{ is used})$
(g)	$\int_0^{\ln 6} e^x dx = \begin{bmatrix} e^x \end{bmatrix}_0^{\ln 6}$ $= e^{\ln 6} - e^0$	2	1 for integration
	$= e^{\ln 6} - e^{0}$		
	$\begin{array}{ccc} -e & -e \\ = 6 - 1 \end{array}$		1.6
	= 5 (calc)		1 for answer

Que	estion 11	2015	
	Solution	Marks	Allocation of marks
(h)	y 6 5	2	1 for correct functions
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 for correct shading of intersection.
	$y < \sqrt{4 - (x - 2)^2}$ 0 5		Point of intersection not required for marks.
	(calc)		

Que	Question 12		2015	
	Solution	Marks	Allocation of marks	
(a)	(i) $y = \sin^2(4x)$ $y' = 2\sin 4x \cdot \cos 4x \cdot 4$ $= 8\sin 4x \cos 4x$ (calc)	1	1 for correct use of chain rule	
	(ii) $y = x^3 e^{3x}$ $y' = x^3 (3e^{3x}) + e^{3x}(3x^2)$ $= 3x^2 e^{3x} (x+1)$ (calc)	1	1 for correct use of product rule	
	(iii) $y = \frac{e^{x}}{(x+3)^{2}}$ Quotient Rule $u = e^{x} \qquad v = (x+3)^{2}$ $u' = e^{x} \qquad v' = 2(x+3)$ $y' = \frac{vu' - uv'}{v^{2}}$ $= \frac{(x+3)^{2} \cdot (e^{x}) - (e^{x})(2(x+3))}{(x+3)^{4}} (calc)$	2	Give 2 marks for a solution which shows a correct use of the quotient rule with correct differentials found including use of the chain rule (or expansion). Full simplification by cancelling is not required.	
	Further simplification gives: $= \frac{(x+3) \cdot (e^x) - (e^x)(2)}{(x+3)^3}$ $= \frac{e^x(x+3-2)}{(x+3)^3}$ $= \frac{e^x(x+1)}{(x+3)^3}$ but is not required.		Give 1 mark for as solution which has a minor error in the use of the quotient rule or finding the differentials	
(b)	$\sqrt{3} \cos x = \sin x$ $\sqrt{3} = \frac{\sin x}{\cos x}$ $\tan x = \sqrt{3}$ $x = \frac{\pi}{3}$ tan positive 1st, 3rd quadrant	2	1 for determining equation	
	$\therefore \qquad x = \frac{\pi}{3} , \frac{4\pi}{3} \qquad \qquad (trig)$		1 for all solutions	

Que	estion 12	2015	2015	
	Solution	Marks	Allocation of marks	
(c)	$\int_{0}^{1} \tan x dx$ Using Simpson's Rule $h = \frac{1 - 0}{4} = \frac{1}{4}$	2	1 for substitution into Simpson's rule	
	$\int_{0}^{\infty} \tan x dx \approx \frac{h}{3} \left[[\tan 0 + \tan 1] + 4 \left[\tan \frac{1}{4} + \tan \frac{3}{4} \right] + 2 \left[\tan \frac{1}{2} \right] \right]$ $\approx \frac{1}{12} (7.3977)$ $\approx 0.62 \qquad (calc)$		1 for evaluating correct answer (only 1 mark if radians not used)	
(d)		2		
	$3x + \log_e x + C$			
	(calc)			
(e)	$3x^{2} + x + 1 \equiv A(x - 1)(x + 2) + B(x + 1) + C$	2		
	RHS			
	$=A(x^2 + 2x - x - 2) + Bx + B + C$			
	$=Ax^2 + Ax - 2A + Bx + B + C$			
	$= x^2 A + x(A+B) + (-2A + B + C)$		1 for expansion and	
	Equating coefficients		determining coefficients	
	A = 3			
	$A + B = 1 \odot$			
	-2A + B + C = 1 ②			
	From ①			
	A+B=1			
	3 + B = 1			
	$\therefore \qquad B = -2$			
	From ②			
	-2A + B + C = 1		1 for solving to find the	
	-6 - 2 + C = 1		values of A, B C.	
	C = 9 (function)			

Que	Question 12		2015	
	Solution	Marks	Allocation of marks	
(f)	$y = x \cos x$	1	1 for any reasonable explanation.	
	$0 = x \cos x$			
	$\therefore x = 0 \text{ or } \cos x = 0$			
	$\cos x = 0$			
	$x = 0, \frac{\pi}{2}, \frac{3\pi}{2}$			
	\therefore first after origin is $\frac{\pi}{2}$			
	$\therefore P\left(\frac{\pi}{2}, \ 0\right) $ (calc)			
	(ii)	2		
	$y = x \cos x$			
	$u = x$ $v = \cos x$			
	$u' = 1 \qquad v' = -\sin x$			
	$y' = \cos x - x \sin x$		1 for gradient of tangent	
	when $x = \frac{\pi}{2}$			
	$y' = \cos\frac{\pi}{2} - \frac{\pi}{2}\sin\frac{\pi}{2}$			
	$=-\frac{\pi}{2}$			
	Equation of tangent		1 for equation of ton cont	
	$y - 0 = -\frac{\pi}{2} \left(x - \frac{\pi}{2} \right)$		1 for equation of tangent.	
	$y = \frac{-\pi x}{2} + \frac{\pi^2}{4} $ (calc)			

Que	estion 13		2015	2015	
	Solution		Marks	Allocation of marks	
(a)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2		
	AE/AB = AF/AC (ratios of intercepts) AF/AC = AG/AD (ratios of intercepts) ∴ AE/AB = AG/AD (equating ratios) (geom)			1 for use of ratios of intercepts	
				1 for conclusion	
(b)	A D C Prove AB DE	NOT TO SCALE	2		
	∠ BAD + 74° = 137° (exterior∠ Δ) ∴ ∠ BAD = 63° ∠ EDC + 59° = 137° – 15° (exterior∠ Δ) ∠ EDC = 63° ∠ BAD = ∠ EDC (both = 63°) ∴ AB DE (equal corresponding ∠'s)	(geom)		 1 for showing angles are 63° 1 for stating lines parallel with reason 	

Que	estion 13	2015	
	Solution	Marks	Allocation of marks
(c)	(i) (series) Taking 42 as the first term as it is the first completed rebound.	2	1 for determining the series
	$T_n = ar^{n-1}$ For the rise on the 5th bounce $a = 42$ $r = \frac{3}{4}$ $n = 5$ $T_5 = 42\left(\frac{3}{4}\right)^{5-1}$		1 for finding correct term
	$T_5 = 42\left(\frac{3}{4}\right)^{5-1}$ $T_5 = 42\left(\frac{3}{4}\right)^4$ $\approx 13.29m$ Note if take 56 as first term, need to find the 6 th term		(only 1 mark if found T_5 after using $a = 56$.)
	Note if take 56 as first term, need to find the 6 th term. (ii) (series) $ r < 1$ $r = \frac{3}{4}$ Consider one bounce up and down as a term, so $t_1 = 84$ $\therefore s_{\infty} = \frac{a}{1-r}$ $= \frac{84}{1-\frac{3}{4}}$ $= \frac{84}{1}$ $= 336m$ Total distance travelled will be $336 + 56 = 392m$ Alternately take 42 as first term and double result from $S \infty$	1	1 for correct answer

Que	stion 13	2015	
	Solution	Marks	Allocation of marks
(d)	f'(x) < 0 : negative gradient (decreasing) f''(x) < 0 : concave down	2	Graph needs to have negative gradient (1 mark) and concave down (1 mark).
	$y \rightarrow y = g(x)$		
	6 x (calc)		
(e)	(i) P (5 2) C (5)	1	1 for correct answer
	$A(\pi, 1)$ $B(5\pi, 3)$ $C(\pi, 5)$ Midpoint		
	$M = \left[\frac{5\pi + \pi}{2}, \frac{1+3}{2}\right]$		
	$=(3\pi, 2)$ (function)		
	(ii) $m_{AB} = \frac{3-1}{5\pi - \pi}$ $= \frac{2}{4\pi} = \frac{1}{2\pi}$ For Perpedicular line $m_1 \times m_2 = -1$ $\frac{1}{2\pi} \times m_2 = -1$ $m_2 = -2\pi$ Equation of line $y - 5 = -2\pi (x - \pi)$ $y - 5 = -2\pi x + 2\pi^2$	2	1 for gradient of the perpendicular
	$y - 5 = -2\pi x + 2\pi^{2}$ $y + 2\pi x - 5 - 2\pi^{2} = 0$ (function)		1 for finding the equation of the line
	(iii) $\overline{AB} = \sqrt{(5\pi - \pi)^2 + (3 - 1)^2}$ $= \sqrt{(4\pi)^2 + (2)^2}$	1	1 for correct answer
	$= \sqrt{16\pi^2 + 4} \qquad (function)$		

Que	estion 13	2015	
	Solution	Marks	Allocation of marks
(e)	(iv) $ \frac{\overline{AB}}{BC} = \sqrt{16\pi^2 + 4} $ $ \frac{\overline{BC}}{AC} = \overline{AB} = \sqrt{16\pi^2 + 4} \text{ (given)} $ $ AC = 4 \text{ (vertical line)} $ $ \cos A = \frac{b^2 + c^2 - a^2}{2bc} $ $ \cos A = \frac{16\pi^2 + 4 + 16 - (16\pi^2 + 4)}{2 \times 4 \times (\sqrt{16\pi^2 + 4})} $ $ \cos A = \frac{16}{8\sqrt{16\pi^2 + 4}} $	2	1 for use of cosine rule 1 for answer
	A = 81° (nearest degree) (function) Alternate Solution Can also be done using the inclination of a line		
	$m_{AB} = \frac{1}{2\pi}$ $\tan \theta = m_{AB}$ (where θ is the inclination to the positive x axis $\tan \theta = \frac{1}{2\pi}$ $\theta = \tan^{-1} \left(\frac{1}{2\pi}\right) = 9^{\circ}$		1 for angle with x axis
	Now AC is vertical so inclination = 90° $\angle BAC = 90^{\circ} - 9^{\circ} = 81^{\circ}$		1 for answer

Que	estion 14	2015	2015	
	Solution	Marks	Allocation of marks	
(a)	(i) $V = Ae^{-kt}$ $30000 = Ae^{-5t}(1)$ $18000 = Ae^{-10t}(2)$ $(2) \div (1)$ $\frac{18000}{30000} = \frac{Ae^{-10k}}{Ae^{-5k}}$ $e^{-5k} = \frac{3}{5}$ $-5k = \ln\left(\frac{3}{5}\right)$ $k = -\frac{\ln\left(\frac{3}{5}\right)}{5}$ $k = 0.102165124 \qquad (log)$ (ii) $V = Ae^{-0.102 \times t}$ when $t = 5 V = \$30000$ $30000 = Ae^{-0.102 \times 5}$ $A = \$50000$	1	1 for eliminating A 1 for value of k 1 for value of A	
	(iii) $V = 50000e^{-0.102t}$ $50000e^{-0.102t} < 1000$ $e^{-0.102t} < \frac{1}{50}$ $-0.102t < \ln\left(\frac{1}{50}\right)$ $t > \frac{\ln\left(\frac{1}{50}\right)}{-0.102}$ $t > 38.29$ $\therefore \text{ It will take 39 years to fall below $1000}$	2	1 for correct inequality in <i>t</i> 1 for value of <i>t</i>	

Question 14		2015	
	Solution	Marks	Allocation of marks
(b)	Solution (i) B A B B	Marks 1	1 for diagram
	(ii) $x^{2} + (\sqrt{3}x)^{2} = 380^{2}$ $x^{2} + 3x^{2} = 380^{2}$ $4x^{2} = 380^{2}$ $x^{2} = \frac{380^{2}}{4} = \frac{380}{2}$ $x = 190$	1	1 for answer
	The distance $AK = \sqrt{3} x = \sqrt{3} \times 190 = 190\sqrt{3}$ (iii) $\tan \theta = \frac{x}{\sqrt{3} x}$ $\tan \theta = \frac{1}{\sqrt{3}}$ $\theta = 30^{\circ}$ $\angle PAB = 90 - 30 - 10$ $= 50^{\circ}$ (PB) $^{2} = 200^{2} + 380^{2} - (2 \times 200 \times 380 \times \cos 50^{\circ})$ $= 86696.28$ PB = 294.44 $= 294 \text{ km}$	2	1 for angle θ. 1 for distance
		1	1 for bearing

Que	estion 14	2015	
	Solution	Marks	Allocation of marks
(c)	(i) A is on the x axis so $y = 0$ $\ln(2x - 5) = 0$ $2x - 5 = e^{0} = 1$ $2x = 6$ $x = 3$ A is the point $(3, 0)$ For $B, x = 6$ $\text{so } y = \ln(2 \times 6 - 5)$ $y = \ln 7$ B is the point $(6, \ln 7)$	1	1 for use of logs to show both values
	A = A = A = A $A = A = A$ $A = A$		
	(ii) Given $\ln(2x - 5)$ change subject to x . $2x - 5 = e^{y}$ $2x = e^{y} + 5$ $x = \frac{e^{y} + 5}{2}$ (log)	1	1 for changing the subject.

Que	estion 14	2015	
	Solution	Marks	Allocation of marks
(c)	(iii) Can't integrate $\ln(2x - 5)$ so use the area between the curve and the y axis and subtract from the rectangle shown. Area to $y = \frac{\ln^{7} \frac{e^{y} + 5}{2} dy}{1 + \frac{e^{y} + 5y}{2}} = \frac{\left(e^{\ln 7} + 5(\ln 7)\right)}{1 + \frac{e^{y} + 5}{2}} = \frac{e^{y} + 5 \times 0}{1 + \frac{e^{y} + 5y}{2}} = \frac{e^{y} + 5 \times 0}{1 + \frac{e^{y} + 5}{2}} = \frac{e^{y} + 5 \times 0}{1 + e^{y$	3	1 for correct integral 1 for finding area to y axis
	$= \frac{(7+5(\ln 7)-1)}{2}$ $= \frac{(6+5\ln 7)}{2}$ Area Rectangle = $6 \times \ln 7 = 6 \ln 7$ Shaded area = $6 \ln 7 - \frac{(6+5\ln 7)}{2}$ $= \frac{(12 \ln 7 - (6+5\ln 7))}{2}$ $= \frac{7\ln 7 - 6}{2} \text{ square units}$ (log)		1 for shaded area

Que	estion 15	2015	2015	
	Solution	Marks	Allocation of marks	
(a)	(i) 3x + 3x + 4y = 300 4y = 300 - 6x $y = 75 - \frac{3x}{2}$ (calc)	1	1 for correct expression	
	(ii) $A = 3x \times y$ $A = 3x \left[75 - \frac{3x}{2} \right]$	3		
	$A = 225x - \frac{9x^2}{2}$ Maximum Area find A' $A' = 225 - \frac{18x}{2}$ $= 225 - 9x$ $A' = 0$ $0 = 225 - 9x$ $9x = 225$ $x = 25m$ When $x = 25m$ $y = 37.5m$		1 for A' 1 for x	
	Test maximum point $A'' = -9$ < 0 $\therefore \text{ Maximum Area}$ $\therefore x = 25m \text{ will produce the maximum area } (calc)$		1 for test that it is maximum	
	(iii) $A = 25 \times 37.5$ $= 937.5m^2$ (calc)	1	1 for area	
	(iv) $3 \times 937.5 = 2812.5m^2$ $1Ha = 10000m^2$ $10000 - 2812.5 = 7187.5m^2$ So Greg and his wife will have 7187.5 m^2 left. (calc)	1	1 for answer	

Que	estion 15	2015	
	Solution	Marks	Allocation of marks
(b)	(i) $D = \frac{2\pi}{6} = 3\sqrt{3}$ $3 = \frac{2\pi}{3} = \frac{5\pi}{6}$ $A = \frac{2\pi}{3} = \frac{5\pi}{6}$ In $\triangle ABD$, $\angle ABD = \pi - \angle CBD (ABC \text{ is a straight angle, } \pi)$ $= \pi - \frac{5\pi}{6}$	2	
	$= \frac{\pi}{6}$ Also $\angle ABD = \angle ADB$ (angles opp. equal sides; $AD = AB$) $= \frac{\pi}{6}$ Now $\angle DAB + \angle ABD + \angle ADB = \pi$ (angle sum of $\triangle ABD$ is π) $\therefore \angle DAB + \frac{\pi}{6} + \frac{\pi}{6} = \pi$ $\therefore \angle DAB = \pi - \frac{2\pi}{6}$ $= \frac{2\pi}{3}.$ (trig)		
	(ii) By the sine rule: $ \frac{BD}{\sin \frac{2\pi}{3}} = \frac{3}{\sin \frac{\pi}{6}} $ $ \therefore BD = \frac{3 \times \sin \frac{2\pi}{3}}{\sin \frac{\pi}{6}} $ $ = \frac{3 \times \frac{\sqrt{3}}{2}}{\frac{1}{2}} $ $ = \frac{6 \times \sqrt{3}}{2} $ $ = 3\sqrt{3} \text{ m.} (trig) $	2	

Que	estion 15	2015	
	Solution	Marks	Allocation of marks
(c)	Let V be the volume of the water in the pond at any time. $ \frac{dV}{dt} = -(5+2t) $ (the volume is decreasing) $ = -5-2t $ $ V = \int (-5-2t)dt $ $ = -5t-t^2+c $ At $t = 0$, $V = 50$ (initially there are 50 lt. of water) $ \vdots \qquad c = 50 $ $ \vdots \qquad V = -5t-t^2+50 \qquad (calc) $	2	
(d)	$ \frac{10^{3n} \times 25^{n+2}}{8^n} = 1 \qquad (arith) $ LHS $ = \frac{(10^3)^n \times (5^2)^{n+2}}{(2^3)^n} $ $ = \frac{(1000)^n \times (5^2)^{n+2}}{(2^3)^n} $ $ = \frac{(2^3 \times 5^3)^n \times 5^{2n+4}}{(2^{3n})} $ $ = \frac{(2^{3n} \times 5^{3n}) \times (5^2)^{n+2}}{(2^{3n})} $ $ = 5^{3n} \times 5^{2n+4} $ $ \therefore 5^{5n+4} = 1 $ $ 5^0 = 1 $ $ \therefore 5n + 4 = 1 $ $ n = -\frac{4}{5} $	3	1 for expanding the terms 1 for collecting powers of 2 and of 5

Que	estion 16	2015	
	Solution	Marks	Allocation of marks
(a)	$x^{2} - 4x + 4 + y^{2} = 9 \text{ is a circle}$ $x^{2} - 4x + 4 + y^{2} = 5 + 4$ $(x - 2)^{2} + y^{2} = 9$ $\therefore \text{ Centre (2,0) Radius = 3}$ So $V = \frac{4}{3} \pi r^{3}$ $= \frac{4}{3} \times \pi \times 3^{3}$ $= 36\pi \text{ units}^{3}$ OR $x^{2} - 4x + y^{2} = 5$ $y^{2} = 5 - x^{2} + 4x$ Intercepts $y = 0$ so $x^{2} - 4x - 5 = 0$ $(x + 1)(x - 5) = 0$ Intercepts are $x = -1$ or $x = 5$ $V = \int_{a}^{b} y^{2} dx$ $= \int_{-1}^{5} 5 - x^{2} + 4x dx$ $= \pi \left[5x - \frac{x^{3}}{3} + 2x \right]_{-1}^{5}$ $= \pi \left(25 - \frac{125}{3} + 50 \right) - \left(-5 + \frac{1}{3} + 2 \right) \text{(calc)}$	2	1 for circle and finding end points 1 for volume either method
(b)	(i) $y = x^{3}(3-x) = 3x^{3} - x^{4}$ $y' = 9x^{2} - 4x^{3}$ Stationary points where $y' = 0$ $9x^{2} - 4x^{3} = 0$ $x^{2}(9-4x) = 0$ $x = 0 \text{ or } x = \frac{9}{4}$ $y = 0 \text{ or } y = 8.543$ $y'' = 18x - 12x^{2}$ $x = 0, y'' = 0 \text{ so possible inflexion}$ test $x = -1, y'' = , -30 \ x = 1 \ y'' = 6 \text{ so change of concavity}$ $\mathbf{so (0,0) is horizontal inflexion}$ $x = \frac{9}{4}, y'' = -20\frac{1}{4} \div \text{ concave down}$ $\mathbf{so \left(\frac{9}{4}, 8.543\right) \text{ is a local maximum.}}$ $(calc)$	3	1 for the two <i>x</i> values of stationary pts 1 for second derivative used to determine possible nature. 1 for checking inflexion and naming the two points and their nature.

Question 16		2015	
	Solution	Marks	Allocation of marks
(b)	(ii) Use second derivative to check for other turning points. $y'' = 18x - 12x^{2}$ $y'' = 0 \text{ when } 18x - 12x^{2} = 0$ $6x(3 - 2x) = 0$ $x = 0 \text{ or } x = \frac{3}{2}$ $x = 0 \text{ is horizontal inflexion found in part i})$ $x = \frac{3}{2}, y = 5\frac{1}{16}$ $x = 2, y'' = -12$ $x = 1, y'' = 6$ $\therefore \text{ change of concavity so inflexion at } \left(\frac{3}{2}, 5\frac{1}{16}\right)$ Intercepts on x axis $x^{3}(3 - x) = 0$ $x = 0 \text{ or } x = 3$ Point of Inflection (1.5, 5.062) Local Maximum	3	1 for determining other inflexion
	Point of Horizontal Inflection $\begin{pmatrix} \frac{9}{4}, 8.543 \end{pmatrix}$		1 for general shape of sketch 1 for showing all features
(c)	(i) (series) $P = \$650000 r = 5.4 \div 100 \div 12 = 0.0045$ $A = P(1+r)^{n} - M$ $A_{1} = 650000(1.0045)^{1} - M$ $A_{2} = A_{1}(1.0045)^{1} - M$ $A_{2} = [650000(1.0045)^{1} - M](1.0045) - M$ $A_{2} = 650000(1.0045)^{2} - M(1.0045) - M$ $A_{2} = 650000(1.0045)^{2} - M[1 + 1.0045]$ $A_{3} = (650000(1.0045)^{2} - M[1 + 1.0045])(1.0045) - M$ $A_{3} = 650000(1.0045)^{3} - M[1 + 1.0045 + 1.0045^{2}]$ \vdots	2	1 for setting up initial terms as examples
	. $A_n = 650000(1.0045)^n - M[1 + 1.0045 + + 1.0045^{n-1}]$		1 for following pattern to establish required formula

Question 16	2015	
Solution	Marks	Allocation of marks
(c) (ii) (series) Months = $30 \times 12 = 360$ repayments $A_{360} = 0$ (loan repaid) $A_n = 650000(1.0045)^n - M[1 + 1.0045 + + 1.0045^{n-1}]$ $0 = 650000(1.0045)^n - M[1 + 1.0045 + + 1.0045^{n-1}]$ $M[1 + 1.0045 + + 1.0045^{n-1}] = 650000(1.0045)^n$ $M = \frac{650000(1.0045)^n}{1 + 1.0045 + + 1.0045^{n-1}}$ The denominator is a geometric series with $a = 1, r = 1.0045$ and $n = 360$ $S_n = \frac{a(r^n - 1)}{r}$ $S_{360} = \frac{1((1.0045)^{360} - 1)}{0.0045}$ $S_{360} = \frac{(1.0045)^{360} - 1}{0.0045}$ $\therefore M = \frac{(650000(1.0045)^{360}) \times 0.0045}{(1.0045)^{360} - 1}$ $M = \$2640.05$	2	1 for expression for <i>M</i> 1 for substituting into sum of series and finding <i>M</i> (can use rounded answer
$M = \frac{(1.0045)^{360} - 1}{M = \$3649.95}$ $(iii) (series)$ $A_n = 650000(1.0045)^n - 5000S_n$ $A_n = \$0 \text{ paid off}$ $5000S_n = 650000(1.0045)^n$ $5000 \left[\frac{(1.0045)^n - 1}{0.0045} \right] = 650000(1.0045)^n$ $5000(1.0045)^n - 5000 = 2925(1.0045)^n$ $5000(1.0045)^n - 2925(1.0045)^n = 5000$ $(1.0045)^n [5000 - 2925] = 5000$ $(1.0045)^n = \frac{5000}{2075}$ $\ln(1.0045)^n = \ln\left[\frac{5000}{2075}\right]$ $n \ln(1.0045) = \ln\left[\frac{5000}{2075}\right]$ $n = \frac{\ln\left[\frac{5000}{2075}\right]}{\ln 1.0045}$ $n = 195.88$ $= 196 \text{ months}$	2	for S_n) 1 for using sum to establish equation 1 for solving to find n

Question 16		2015	
Solution	Marks	Allocation of marks	
(c) (iv) (series) Total of loan over 30 years 360 × \$3 649.95 = \$1 313 982 Total of loan by paying \$5000/mont 196 × \$5 000 = \$980 000 Interest Saving" \$1 313 982 - \$980 000 = \$333 98	1	1 for answer	