Task 6

for Advanced Methods for Regression and Classification

Teodor Chakarov

13.12.2022

Contents

Regression on Splines	1
B-splines on:	18
Natural Cubic splines on:	21
Smoothing spline	24
Regreesion on the whole data with splines	27
Stepwise variable selection	30
Calculate the RMSE on the test set	31

Regression on Splines

In this exercise we will see the different splines methods and how we can regress this data as non-linear.

```
library(ISLR)
library(splines)

data(Auto ,package="ISLR")

df <- Auto

str(df)</pre>
```

```
## 'data.frame':
                  392 obs. of 9 variables:
                : num 18 15 18 16 17 15 14 14 14 15 ...
  $ mpg
## $ cylinders
               : num 888888888 ...
## $ displacement: num 307 350 318 304 302 429 454 440 455 390 ...
  $ horsepower : num 130 165 150 150 140 198 220 215 225 190 ...
                : num 3504 3693 3436 3433 3449 ...
  $ weight
##
   $ acceleration: num 12 11.5 11 12 10.5 10 9 8.5 10 8.5 ...
                : num 70 70 70 70 70 70 70 70 70 70 ...
## $ year
## $ origin
                : num 1 1 1 1 1 1 1 1 1 1 ...
                : Factor w/ 304 levels "amc ambassador brougham",..: 49 36 231 14 161 141 54 223 241
## $ name
```


This scatter plot is showing non-linearity of those two attributes.

df

##		mn.a	arr] indona	dianleanne	hamaanarram	i mb+	a a a a l a ma + i a m	****	omi min
			•	displacement	-	_		•	origin
##	1	18.0	8	307.0	130	3504	12.0	70	1
##	2	15.0	8	350.0	165	3693	11.5	70	1
##	3	18.0	8	318.0	150	3436	11.0	70	1
##	4	16.0	8	304.0	150	3433	12.0	70	1
##	5	17.0	8	302.0	140	3449	10.5	70	1
##	6	15.0	8	429.0	198	4341	10.0	70	1
##	7	14.0	8	454.0	220	4354	9.0	70	1
##	8	14.0	8	440.0	215	4312	8.5	70	1
##	9	14.0	8	455.0	225	4425	10.0	70	1
##	10	15.0	8	390.0	190	3850	8.5	70	1
##	11	15.0	8	383.0	170	3563	10.0	70	1
##	12	14.0	8	340.0	160	3609	8.0	70	1
##	13	15.0	8	400.0	150	3761	9.5	70	1
##	14	14.0	8	455.0	225	3086	10.0	70	1
##	15	24.0	4	113.0	95	2372	15.0	70	3
##	16	22.0	6	198.0	95	2833	15.5	70	1
##	17	18.0	6	199.0	97	2774	15.5	70	1
##	18	21.0	6	200.0	85	2587	16.0	70	1
##	19	27.0	4	97.0	88	2130	14.5	70	3

## 20	26.0	4	97.0	46	1835	20.5	70	2
## 21	25.0	4	110.0	87	2672	17.5	70	2
## 22	24.0	4	107.0	90	2430	14.5	70	2
## 23	25.0	4	104.0	95	2375	17.5	70	2
## 24	26.0	4	121.0	113	2234	12.5	70	2
## 25	21.0	6	199.0	90	2648	15.0	70	1
## 26	10.0	8	360.0	215	4615	14.0	70	1
## 27	10.0	8	307.0	200	4376	15.0	70	1
## 28	11.0	8	318.0	210	4382	13.5	70	1
## 29	9.0	8	304.0	193	4732	18.5	70	1
## 30	27.0	4	97.0	88	2130	14.5	71	3
## 31	28.0	4	140.0	90	2264	15.5	71	1
## 32	25.0	4	113.0	95	2228	14.0	71	3
## 34	19.0	6	232.0	100	2634	13.0	71	1
## 35	16.0	6	225.0	105	3439	15.5	71	1
## 36	17.0	6	250.0	100	3329	15.5	71	1
## 37	19.0	6	250.0	88	3302	15.5	71	1
## 38	18.0	6	232.0	100	3288	15.5	71	1
## 39	14.0	8	350.0	165	4209	12.0	71	1
## 40	14.0	8	400.0	175	4464	11.5	71	1
## 41	14.0	8	351.0	153	4154	13.5	71	1
## 42	14.0	8	318.0	150	4096	13.0	71	1
## 43	12.0	8	383.0	180	4955	11.5	71	1
## 44	13.0	8	400.0	170	4746	12.0	71	1
## 45	13.0	8	400.0	175	5140	12.0	71	1
## 46	18.0	6	258.0	110	2962	13.5	71	1
## 47	22.0	4	140.0	72	2408	19.0	71	1
## 48	19.0	6	250.0	100	3282	15.0	71	1
## 49	18.0	6	250.0	88	3139	14.5	71	1
## 50	23.0	4	122.0	86	2220	14.0	71	1
## 51	28.0	4	116.0	90	2123	14.0	71	2
## 52	30.0	4	79.0	70	2074	19.5	71	2
## 53	30.0	4	88.0	76	2065	14.5	71	2
## 54	31.0	4	71.0	65	1773	19.0	71	3
## 55	35.0	4	72.0	69	1613	18.0	71	3
## 56	27.0	4	97.0	60	1834	19.0	71	2
## 57	26.0	4	91.0	70	1955	20.5	71	1
## 58	24.0	4	113.0	95	2278	15.5	72	3
## 59	25.0	4	97.5	80	2126	17.0	72	1
## 60	23.0	4	97.0	54	2254	23.5	72	2
## 61	20.0	4	140.0	90	2408	19.5	72	1
## 62	21.0	4	122.0	86	2226	16.5	72	1
## 63	13.0	8	350.0	165	4274	12.0	72	1
## 64	14.0	8	400.0	175	4385	12.0	72	1
## 65	15.0	8	318.0	150	4135	13.5	72	1
## 66	14.0	8	351.0	153	4129	13.0	72	1
## 67	17.0	8	304.0	150	3672	11.5	72	1
## 68	11.0	8	429.0	208	4633	11.0	72	1
## 69 ## 70	13.0	8	350.0	155	4502	13.5	72 72	1
## 70 ## 71	12.0	8	350.0	160	4456	13.5	72 72	1
## 71 ## 72	13.0 19.0	8 3	400.0 70.0	190 97	4422 2330	12.5	72 72	1 3
## 72 ## 73	15.0	8	304.0	150	3892	13.5 12.5	72	1
## 73 ## 74	13.0	8	304.0	130	3092 4098	14.0	72	1
## 14	13.0	0	301.0	130	4030	14.0	12	1

## 75	13.0	8	302.0	140	4294	16.0	72	1
## 76	14.0	8	318.0	150	4077	14.0	72	1
## 77	18.0	4	121.0	112	2933	14.5	72	2
## 78	22.0	4	121.0	76	2511	18.0	72	2
## 79	21.0	4	120.0	87	2979	19.5	72	2
## 80	26.0	4	96.0	69	2189	18.0	72	2
## 81					2395		72	
	22.0	4	122.0	86		16.0		1
## 82	28.0	4	97.0	92	2288	17.0	72	3
## 83	23.0	4	120.0	97	2506	14.5	72	3
## 84	28.0	4	98.0	80	2164	15.0	72	1
## 85	27.0	4	97.0	88	2100	16.5	72	3
## 86	13.0	8	350.0	175	4100	13.0	73	1
## 87	14.0	8	304.0	150	3672	11.5	73	1
## 88	13.0	8	350.0	145	3988	13.0	73	1
## 89	14.0	8	302.0	137	4042	14.5	73	1
## 90	15.0	8	318.0	150	3777	12.5	73	1
## 91	12.0	8	429.0	198	4952	11.5	73	1
## 92	13.0	8	400.0	150	4464	12.0	73	1
## 93	13.0	8	351.0	158	4363	13.0	73	1
## 94	14.0	8	318.0	150	4237	14.5	73	1
## 95	13.0	8	440.0	215	4735	11.0	73	1
## 96	12.0	8	455.0	225	4951	11.0	73	1
## 97	13.0	8	360.0	175	3821	11.0	73	1
## 98	18.0	6	225.0	105	3121	16.5	73	1
## 99			250.0		3278			
	16.0	6		100		18.0	73	1
	18.0	6	232.0	100	2945	16.0	73	1
	18.0	6	250.0	88	3021	16.5	73	1
	23.0	6	198.0	95	2904	16.0	73	1
	26.0	4	97.0	46	1950	21.0	73	2
	11.0	8	400.0	150	4997	14.0	73	1
	12.0	8	400.0	167	4906	12.5	73	1
	13.0	8	360.0	170	4654	13.0	73	1
## 107	12.0	8	350.0	180	4499	12.5	73	1
## 108	18.0	6	232.0	100	2789	15.0	73	1
## 109	20.0	4	97.0	88	2279	19.0	73	3
## 110	21.0	4	140.0	72	2401	19.5	73	1
## 111	22.0	4	108.0	94	2379	16.5	73	3
## 112	18.0	3	70.0	90	2124	13.5	73	3
## 113		4	122.0	85	2310	18.5	73	1
## 114		6	155.0	107	2472	14.0	73	1
	26.0	4	98.0	90	2265	15.5	73	2
	15.0	8	350.0	145	4082	13.0	73	1
	16.0	8	400.0	230	4278	9.5	73	1
	29.0	4	68.0	49	1867	19.5	73	2
	24.0	4	116.0	75	2158	15.5	73	2
	20.0	4		91	2582	14.0	73	2
			114.0					
	19.0	4	121.0	112	2868	15.5	73	2
	15.0	8	318.0	150	3399	11.0	73	1
	24.0	4	121.0	110	2660	14.0	73	2
	20.0	6	156.0	122	2807	13.5	73	3
	11.0	8	350.0	180	3664	11.0	73	1
	20.0	6	198.0	95	3102	16.5	74	1
	19.0	6	232.0	100	2901	16.0	74	1
## 129	15.0	6	250.0	100	3336	17.0	74	1

## 130 31.	.0 4	79.0	67	1950	19.0	74	3
## 131 26	.0 4	122.0	80	2451	16.5	74	1
## 132 32	.0 4	71.0	65	1836	21.0	74	3
## 133 25	.0 4	140.0	75	2542	17.0	74	1
## 134 16	.0 6	250.0	100	3781	17.0	74	1
## 135 16	.0 6	258.0	110	3632	18.0	74	1
## 136 18	.0 6	225.0	105	3613	16.5	74	1
## 137 16	.0 8	302.0	140	4141	14.0	74	1
## 138 13	.0 8	350.0	150	4699	14.5	74	1
## 139 14.	.0 8	318.0	150	4457	13.5	74	1
## 140 14.	.0 8	302.0	140	4638	16.0	74	1
## 141 14.	.0 8	304.0	150	4257	15.5	74	1
## 142 29	.0 4	98.0	83	2219	16.5	74	2
## 143 26	.0 4	79.0	67	1963	15.5	74	2
## 144 26	.0 4	97.0	78	2300	14.5	74	2
## 145 31.	.0 4	76.0	52	1649	16.5	74	3
## 146 32	.0 4	83.0	61	2003	19.0	74	3
## 147 28	.0 4	90.0	75	2125	14.5	74	1
## 148 24	.0 4	90.0	75	2108	15.5	74	2
## 149 26		116.0	75	2246	14.0	74	2
## 150 24		120.0	97	2489	15.0	74	3
## 151 26		108.0	93	2391	15.5	74	3
## 152 31.		79.0	67	2000	16.0	74	2
## 153 19		225.0	95	3264	16.0	75	1
## 154 18.		250.0	105	3459	16.0	75	1
## 155 15.		250.0	72	3432	21.0	75	1
## 156 15.		250.0	72	3158	19.5	75	1
## 157 16.		400.0	170	4668	11.5	75	1
## 158 15.		350.0	145	4440	14.0	75	1
## 159 16		318.0	150	4498	14.5	75	1
## 160 14.		351.0	148	4657	13.5	75 	1
## 161 17		231.0	110	3907	21.0	75 	1
## 162 16		250.0	105	3897	18.5	75 	1
## 163 15.		258.0	110	3730	19.0	75	1
## 164 18.		225.0	95	3785	19.0	75 75	1
## 165 21.		231.0	110	3039	15.0	75 75	1
## 166 20.		262.0	110	3221	13.5	75	1
## 167 13.		302.0	129	3169	12.0	75 75	1
## 168 29		97.0	75	2171	16.0	75	3
## 169 23.		140.0	83	2639	17.0	75	1
## 170 20.		232.0	100	2914	16.0	75	1
## 171 23.		140.0	78	2592	18.5	75	1
## 172 24.		134.0	96 71	2702	13.5	75 75	3
## 173 25		90.0	71 97	2223	16.5	75 75	2 3
## 174 24.		119.0	97 97	2545 2984	17.0	75 75	
## 175 18.		171.0			14.5		1
## 176 29. ## 177 19.		90.0 232.0	70 90	1937 3211	14.0 17.0	75 75	2 1
## 177 19. ## 178 23.		115.0	95	2694	17.0	75 75	2
## 178 23. ## 179 23.		120.0	95 88	2694 2957	17.0	75 75	2
## 179 23. ## 180 22.		121.0	98	2945	14.5	75 75	2
## 180 22. ## 181 25.		121.0	115	2945 2671	13.5	75 75	2
## 182 33.		91.0	53	1795	17.5	75 75	3
## 183 28		107.0	86	2464	15.5	76	2
ππ 100 20	4	101.0	00	Z 1 04	10.0	70	2

## 184 25.0	4	116.0	81	2220	16.9	76	2
## 185 25.0	4	140.0	92	2572	14.9	76	1
## 186 26.0	4	98.0	79	2255	17.7	76	1
## 187 27.0	4	101.0	83	2202	15.3	76	2
## 188 17.5	8	305.0	140	4215	13.0	76	1
## 189 16.0	8	318.0	150	4190	13.0	76	1
## 190 15.5	8	304.0	120	3962	13.9	76	1
## 191 14.5	8	351.0	152	4215	12.8	76	1
## 192 22.0	6	225.0	100	3233	15.4	76	1
## 193 22.0	6	250.0	105	3353	14.5	76	1
## 194 24.0	6	200.0	81	3012	17.6	76	1
## 195 22.5	6	232.0	90	3085	17.6	76	1
## 196 29.0	4	85.0	52	2035	22.2	76	1
## 197 24.5	4	98.0	60	2164	22.1	76	1
## 198 29.0	4	90.0	70	1937	14.2	76	2
## 199 33.0	4	91.0	53	1795	17.4	76	3
## 200 20.0	6	225.0	100	3651	17.7	76	1
## 201 18.0	6	250.0	78	3574	21.0	76	1
## 202 18.5	6	250.0	110	3645	16.2	76	1
## 203 17.5	6	258.0	95	3193	17.8	76	1
## 204 29.5	4	97.0	71	1825	12.2	76	2
## 205 32.0	4	85.0	70	1990	17.0	76	3
## 206 28.0	4	97.0	75	2155	16.4	76	3
## 207 26.5	4	140.0	72	2565	13.6	76	1
## 208 20.0	4	130.0	102	3150	15.7	76	2
## 209 13.0	8	318.0	150	3940	13.2	76	1
## 210 19.0	4	120.0	88	3270	21.9	76	2
## 211 19.0	6	156.0	108	2930	15.5	76	3
## 212 16.5	6	168.0	120	3820	16.7	76	2
## 213 16.5	8	350.0	180	4380	12.1	76	1
## 214 13.0	8	350.0	145	4055	12.0	76	1
## 215 13.0	8	302.0	130	3870	15.0	76	1
## 216 13.0	8	318.0	150	3755	14.0	76	1
## 217 31.5	4	98.0	68	2045	18.5	77	3
## 218 30.0	4	111.0	80	2155	14.8	77	1
## 219 36.0	4	79.0	58	1825	18.6	77	2
## 220 25.5	4	122.0	96	2300	15.5	77	1
## 221 33.5	4	85.0	70	1945	16.8	77	3
## 222 17.5	8	305.0	145	3880	12.5	77 77	1
## 223 17.0	8 8	260.0	110	4060	19.0	77 77	1
## 224 15.5 ## 225 15.0	8	318.0	145	4140	13.7	77 77	1
## 225 15.0 ## 226 17.5	6	302.0	130	4295 3520	14.9	77 77	1
## 220 17.5 ## 227 20.5	6	250.0 231.0	110 105	3425	16.4 16.9	77	1 1
## 228 19.0	6	225.0	100	3630	17.7	77	1
## 229 18.5	6	250.0	98	3525	19.0	77	1
## 230 16.0	8	400.0	180	4220	11.1	77	1
## 230 10.0 ## 231 15.5	8	350.0	170	4165	11.1	77	1
## 232 15.5	8	400.0	190	4325	12.2	77	1
## 232 15.5 ## 233 16.0	8	351.0	149	4335	14.5	77	1
## 234 29.0	4	97.0	78	1940	14.5	77	2
## 23 1 23.0 ## 235 24.5	4	151.0	88	2740	16.0	77	1
## 236 26.0	4	97.0	75	2265	18.2	77	3
## 237 25.5	4	140.0	89	2755	15.8	77	1
	-		50	••	_0.0		-

"" 000 00 5	4	00.0	20	0054	47.0		
## 238 30.5	4	98.0	63	2051	17.0	77	1
## 239 33.5	4	98.0	83	2075	15.9	77	1
## 240 30.0	4	97.0	67	1985	16.4	77	3
## 241 30.5	4	97.0	78	2190	14.1	77	2
## 242 22.0	6	146.0	97	2815	14.5	77	3
## 243 21.5	4	121.0	110	2600	12.8	77	2
## 244 21.5	3	80.0	110	2720	13.5	77	3
## 245 43.1	4	90.0	48	1985	21.5	78	2
## 246 36.1	4	98.0	66	1800	14.4	78	1
## 247 32.8	4	78.0	52	1985	19.4	78	3
## 248 39.4	4	85.0	70	2070	18.6	78	3
## 249 36.1	4	91.0	60	1800	16.4	78	3
## 250 19.9	8	260.0	110	3365	15.5	78	1
## 251 19.4	8	318.0	140	3735	13.2	78	1
## 252 20.2	8	302.0	139	3570	12.8	78	1
## 253 19.2	6	231.0	105	3535	19.2	78	1
## 254 20.5	6	200.0	95	3155	18.2	78	1
## 255 20.2	6	200.0	85	2965	15.8	78	1
## 256 25.1	4	140.0	88	2720	15.4	78	1
## 257 20.5	6	225.0	100	3430	17.2	78	1
## 258 19.4	6	232.0	90	3210	17.2	78	1
## 259 20.6	6	231.0	105	3380	15.8	78	1
## 260 20.8	6	200.0	85	3070	16.7	78	1
## 261 18.6	6	225.0	110	3620	18.7	78	1
## 262 18.1	6	258.0	120	3410	15.1	78	1
## 263 19.2	8	305.0	145	3425	13.2	78	1
## 264 17.7	6	231.0	165	3445	13.4	78	1
## 265 18.1	8	302.0	139	3205	11.2	78	1
## 266 17.5	8	318.0	140	4080	13.7	78	1
## 267 30.0	4	98.0	68	2155	16.5	78	1
## 268 27.5	4	134.0	95	2560	14.2	78	3
## 269 27.2	4	119.0	97	2300	14.7	78	3
## 270 30.9	4	105.0	75	2230	14.5	78	1
## 271 21.1	4	134.0	95	2515	14.8	78	3
## 272 23.2	4	156.0	105	2745	16.7	78	1
## 273 23.8	4	151.0	85	2855	17.6	78	1
## 274 23.9	4	119.0	97	2405	14.9	78	3
## 275 20.3	5	131.0	103	2830	15.9	78	2
## 276 17.0	6	163.0	125	3140	13.6	78	2
## 277 21.6	4	121.0	115	2795	15.7	78	2
## 278 16.2	6	163.0	133	3410	15.8	78	2
## 279 31.5	4	89.0	71	1990	14.9	78	2
## 280 29.5	4	98.0	68	2135	16.6	78	3
## 281 21.5	6	231.0	115	3245	15.4	79	1
## 282 19.8	6	200.0	85	2990	18.2	79	1
## 283 22.3	4	140.0	88	2890	17.3	79	1
## 284 20.2	6	232.0	90	3265	18.2	79	1
## 285 20.6	6	225.0	110	3360	16.6	79	1
## 286 17.0	8	305.0	130	3840	15.4	79	1
## 287 17.6	8	302.0	129	3725	13.4	79	1
## 288 16.5	8	351.0	138	3955	13.4	79	1
## 289 18.2	8	318.0	135	3830	15.2	79 79	1
## 290 16.9	8	350.0	155	4360	14.9	79	1
## 290 10.9 ## 291 15.5	8	351.0	142	4054	14.3	79	1
ππ Δ31 10.0	J	551.0	142	400 4	14.3	19	1

		_						
## 292		8	267.0	125	3605	15.0	79	1
## 293	18.5	8	360.0	150	3940	13.0	79	1
## 294	31.9	4	89.0	71	1925	14.0	79	2
## 295	34.1	4	86.0	65	1975	15.2	79	3
## 296	35.7	4	98.0	80	1915	14.4	79	1
## 297	27.4	4	121.0	80	2670	15.0	79	1
	25.4	5	183.0	77	3530	20.1	79	2
	23.0	8	350.0	125	3900	17.4	79	1
	27.2	4	141.0	71	3190	24.8	79	2
	23.9	8	260.0	90	3420	22.2	79	1
	34.2	4	105.0	70	2200	13.2	79	1
			105.0			14.9		
	34.5	4		70	2150		79 70	1
	31.8	4	85.0	65	2020	19.2	79	3
	37.3	4	91.0	69	2130	14.7	79	2
	28.4	4	151.0	90	2670	16.0	79	1
	28.8	6	173.0	115	2595	11.3	79	1
	26.8	6	173.0	115	2700	12.9	79	1
	33.5	4	151.0	90	2556	13.2	79	1
## 310	41.5	4	98.0	76	2144	14.7	80	2
## 311	38.1	4	89.0	60	1968	18.8	80	3
## 312	32.1	4	98.0	70	2120	15.5	80	1
## 313	37.2	4	86.0	65	2019	16.4	80	3
## 314	28.0	4	151.0	90	2678	16.5	80	1
## 315	26.4	4	140.0	88	2870	18.1	80	1
## 316	24.3	4	151.0	90	3003	20.1	80	1
	19.1	6	225.0	90	3381	18.7	80	1
	34.3	4	97.0	78	2188	15.8	80	2
	29.8	4	134.0	90	2711	15.5	80	3
	31.3	4	120.0	75	2542	17.5	80	3
	37.0	4	119.0	92	2434	15.0	80	3
	32.2	4	108.0	75	2265	15.0	80	3
	46.6	4	86.0	65	2110	17.9	80	3
	27.9	4	156.0	105	2800	14.4	80	1
	40.8	4	85.0	65	2110	19.2	80	3
	44.3	4	90.0	48	2085	21.7	80	2
	43.4	4	90.0	48	2335	23.7	80	2
## 328		5	121.0	67	2950	19.9	80	2
## 329		4	146.0	67	3250	21.8	80	2
## 330		4	91.0	67	1850	13.8	80	3
## 332	33.8	4	97.0	67	2145	18.0	80	3
## 333	29.8	4	89.0	62	1845	15.3	80	2
## 334	32.7	6	168.0	132	2910	11.4	80	3
## 335	23.7	3	70.0	100	2420	12.5	80	3
## 336	35.0	4	122.0	88	2500	15.1	80	2
## 338	32.4	4	107.0	72	2290	17.0	80	3
## 339	27.2	4	135.0	84	2490	15.7	81	1
## 340	26.6	4	151.0	84	2635	16.4	81	1
	25.8	4	156.0	92	2620	14.4	81	1
	23.5	6	173.0	110	2725	12.6	81	1
	30.0	4	135.0	84	2385	12.9	81	1
	39.1	4	79.0	58	1755	16.9	81	3
## 345		4	86.0	64	1875	16.4	81	1
## 346		4	81.0	60	1760	16.1	81	3
## 347	J∠.J	4	97.0	67	2065	17.8	81	3

##	348	37.0	4	85.0	65	1975	19.4	4 81	3
##	349	37.7	4	89.0	62	2050	17.3	3 81	3
##	350	34.1	4	91.0	68	1985	16.0	81	3
##	351	34.7	4	105.0	63	2215	14.9	9 81	1
##	352	34.4	4	98.0	65	2045	16.5	2 81	1
##	353	29.9	4	98.0	65	2380	20.	7 81	1
##	354	33.0	4	105.0	74	2190	14.5	2 81	2
##	356	33.7	4	107.0	75	2210	14.4	4 81	3
##	357	32.4	4	108.0	75	2350	16.8	81	3
##	358	32.9	4	119.0	100	2615	14.8	81	3
##	359	31.6	4	120.0	74	2635	18.3	3 81	3
##	360	28.1	4	141.0	80	3230	20.4	4 81	2
##	361	30.7	6	145.0	76	3160	19.0	81	2
##	362	25.4	6	168.0	116	2900	12.0	81	3
##	363	24.2	6	146.0	120	2930	13.8	81	3
##	364	22.4	6	231.0	110	3415	15.8	81	1
##	365	26.6	8	350.0	105	3725	19.0	81	1
##	366	20.2	6	200.0	88	3060	17.	1 81	1
##	367	17.6	6	225.0	85	3465	16.0	81	1
##	368	28.0	4	112.0	88	2605	19.0	82	1
##	369	27.0	4	112.0	88	2640	18.0	82	1
##	370	34.0	4	112.0	88	2395	18.0	82	1
##	371	31.0	4	112.0	85	2575	16.5	2 82	1
##	372	29.0	4	135.0	84	2525	16.0	82	1
##	373	27.0	4	151.0	90	2735	18.0	82	1
##	374	24.0	4	140.0	92	2865	16.4	4 82	1
##	375	36.0	4	105.0	74	1980	15.3	3 82	2
##	376	37.0	4	91.0	68	2025	18.5	2 82	3
##	377	31.0	4	91.0	68	1970	17.0	82	3
##	378	38.0	4	105.0	63	2125	14.	7 82	1
##	379	36.0	4	98.0	70	2125	17.3	3 82	1
##	380	36.0	4	120.0	88	2160	14.	5 82	3
##	381	36.0	4	107.0	75	2205	14.	5 82	3
##	382	34.0	4	108.0	70	2245	16.9	9 82	3
##	383	38.0	4	91.0	67	1965	15.0	82	3
##	384	32.0	4	91.0	67	1965	15.	7 82	3
##	385	38.0	4	91.0	67	1995	16.5	2 82	3
##	386	25.0	6	181.0	110	2945	16.4	4 82	1
##	387	38.0	6	262.0	85	3015	17.0	82	1
##	388	26.0	4	156.0	92	2585	14.	5 82	1
##	389	22.0	6	232.0	112	2835	14.	7 82	1
##	390	32.0	4	144.0	96	2665	13.9	9 82	3
##	391	36.0	4	135.0	84	2370	13.0	82	1
##	392	27.0	4	151.0	90	2950	17.3	82	1
##	393	27.0	4	140.0	86	2790	15.0	82	1
##	394	44.0	4	97.0	52	2130	24.0	82	2
##	395	32.0	4	135.0	84	2295	11.0	82	1
##	396	28.0	4	120.0	79	2625	18.0	82	1
##	397	31.0	4	119.0	82	2720	19.4	4 82	1
##					name				
##	1		chevrolet	chevell	e malibu				
##	2		bu	ick sky	lark 320				
##	3			-	atellite				
##	4			amc r	ebel sst				

## 5	ford torino
## 6	ford galaxie 500
## 7	chevrolet impala
## 8	plymouth fury iii
## 9	pontiac catalina
## 10	amc ambassador dpl
## 11	dodge challenger se
## 12	plymouth 'cuda 340
## 13	chevrolet monte carlo
## 14	<pre>buick estate wagon (sw)</pre>
## 15	toyota corona mark ii
## 16	plymouth duster
## 17	amc hornet
## 18	ford maverick
## 19	datsun pl510
## 20	volkswagen 1131 deluxe sedan
## 21	peugeot 504
## 22	audi 100 ls
## 23	saab 99e
## 24	bmw 2002
## 25	amc gremlin
## 26	ford f250
## 27	chevy c20
## 28	dodge d200
## 29	hi 1200d
## 30	datsun p1510
## 31	chevrolet vega 2300
## 32	toyota corona
## 34	amc gremlin
## 35	plymouth satellite custom
## 36	chevrolet chevelle malibu
## 37	ford torino 500
## 38	amc matador
## 39	chevrolet impala
## 40	pontiac catalina brougham
## 41	ford galaxie 500
## 42	plymouth fury iii
## 43	dodge monaco (sw)
## 44	ford country squire (sw)
## 45	pontiac safari (sw)
## 46	<pre>amc hornet sportabout (sw)</pre>
## 47	chevrolet vega (sw)
## 48	pontiac firebird
## 49	ford mustang
## 50	mercury capri 2000
## 51	opel 1900
## 52	peugeot 304
## 53	fiat 124b
## 54	toyota corolla 1200
## 55	datsun 1200
## 56	volkswagen model 111
## 57	plymouth cricket
## 58	toyota corona hardtop
## 59	dodge colt hardtop

##	60	volkswagen type 3
##	61	chevrolet vega
##	62	ford pinto runabout
##	63	chevrolet impala
##	64	pontiac catalina
##	65	plymouth fury iii
##	66	ford galaxie 500
##	67	amc ambassador sst
##	68	mercury marquis
##	69 70	buick lesabre custom
##	70	oldsmobile delta 88 royale
##	71	chrysler newport royal
##	72	mazda rx2 coupe
##	73 74	amc matador (sw) chevrolet chevelle concours (sw)
##	7 4 75	
##	76	ford gran torino (sw) plymouth satellite custom (sw)
##	70 77	volvo 145e (sw)
##	78	volkswagen 411 (sw)
##	79	peugeot 504 (sw)
##	80	renault 12 (sw)
##	81	ford pinto (sw)
##	82	datsun 510 (sw)
##	83	toyouta corona mark ii (sw)
##	84	dodge colt (sw)
##	85	toyota corolla 1600 (sw)
##	86	buick century 350
##	87	amc matador
##	88	chevrolet malibu
##	89	ford gran torino
##	90	dodge coronet custom
##	91	mercury marquis brougham
##	92	chevrolet caprice classic
##	93	ford ltd
##	94	plymouth fury gran sedan
##	95	chrysler new yorker brougham
##	96	buick electra 225 custom
##	97	amc ambassador brougham
##	98	plymouth valiant
##	99	chevrolet nova custom
##	100	amc hornet
##	101	ford maverick
##	102	plymouth duster
##	103	volkswagen super beetle
##	104	chevrolet impala
##	105	ford country
##	106 107	plymouth custom suburb oldsmobile vista cruiser
##	107	
##	108	amc gremlin toyota carina
##	110	chevrolet vega
##		_
	111	datsiin 610
	111 112	datsun 610 maxda rx3
## ##	111 112 113	datsun 610 maxda rx3 ford pinto

mercury capri v6	114	##
fiat 124 sport coupe	115	##
chevrolet monte carlo s	116	##
17 pontiac grand prix	117	##
18 fiat 128	118	##
19 opel manta	119	##
20 audi 1001s	120	##
21 volvo 144ea	121	##
22 dodge dart custom	122	##
23 saab 991e	123	##
24 toyota mark ii	124	##
oldsmobile omega	125	##
26 plymouth duster	126	##
28 amc hornet	128	##
29 chevrolet nova	129	##
datsun b210	130	##
ford pinto	131	##
toyota corolla 1200	132	##
	133	##
34 chevrolet chevelle malibu classic	134	##
35 amc matador	135	##
36 plymouth satellite sebring	136	##
ford gran toring	137	##
buick century luxus (sw)	138	##
dodge coronet custom (sw)	139	##
ford gran torino (sw)	140	##
amc matador (sw)	141	##
42 audi fox	142	##
volkswagen dasher	143	##
opel manta	144	##
toyota corona toyota	145	##
46 datsun 710	146	##
47 dodge colt	147	##
48 fiat 128	148	##
19 fiat 124 to	149	##
50 honda civic	150	##
51 subaru	151	##
52 fiat x1.9	152	##
plymouth valiant custom	153	##
54 chevrolet nova	154	##
mercury monarch	155	##
56 ford maverick	156	##
±	157	##
chevrolet bel air	158	##
59 plymouth grand fury	159	##
ford 1td	160	##
51 buick century	161	##
chevroelt chevelle malibu	162	##
amc matador	163	##
54 plymouth fury	164	##
	165	##
· · · · · · · · · · · · · · · · · · ·	166	##
ford mustang ii	167	##
_	168	##
-		

## 169	ford pinto
## 170	amc gremlin
## 171	pontiac astro
## 172	toyota corona
## 173	volkswagen dasher
## 174	datsun 710
## 175	ford pinto
## 176	volkswagen rabbit
## 177	amc pacer
## 178	audi 100ls
## 179	peugeot 504
## 180	volvo 244dl
## 181	saab 991e
## 182	honda civic cvcc
## 183	fiat 131
## 184	opel 1900
## 185	capri ii
## 186	dodge colt
## 187	renault 12tl
## 188	chevrolet chevelle malibu classic
## 189	dodge coronet brougham
## 190	amc matador
## 191	ford gran torino
## 192	plymouth valiant
## 193	chevrolet nova
## 194	ford maverick
## 195	amc hornet
## 196	chevrolet chevette
## 197	chevrolet woody
## 198	vw rabbit
## 199	honda civic
## 200 ## 201	dodge aspen se
## 201 ## 202	ford granada ghia
## 202 ## 203	pontiac ventura sj
## 203 ## 204	amc pacer d/l
## 204	volkswagen rabbit datsun b-210
## 206	toyota corolla
## 200	ford pinto
## 208	volvo 245
## 209	plymouth volare premier v8
## 210	peugeot 504
## 211	toyota mark ii
## 212	mercedes-benz 280s
## 213	cadillac seville
## 214	chevy c10
## 215	ford f108
## 216	dodge d100
## 217	honda accord cvcc
## 218	buick opel isuzu deluxe
## 219	renault 5 gtl
## 220	plymouth arrow gs
## 221	datsun f-10 hatchback
## 222	chevrolet caprice classic
	I

##	223	oldsmobile cutlass supreme
	224	dodge monaco brougham
	225	mercury cougar brougham
	226	chevrolet concours
	227	buick skylark
##	228	plymouth volare custom
##	229	ford granada
	230	pontiac grand prix lj
##	231	chevrolet monte carlo landau
##	232	chrysler cordoba
##	233	ford thunderbird
##	234	volkswagen rabbit custom
##	235	pontiac sunbird coupe
##	236	toyota corolla liftback
##	237	ford mustang ii 2+2
##	238	chevrolet chevette
##	239	dodge colt m/m
##	240	subaru dl
##	241	volkswagen dasher
##	242	datsun 810
##	243	bmw 320i
##	244	mazda rx-4
##	245	volkswagen rabbit custom diesel
##	246	ford fiesta
##	247	mazda glc deluxe
##	248	datsun b210 gx
##	249	honda civic cvcc
##	250	oldsmobile cutlass salon brougham
##	251	dodge diplomat
##	252	mercury monarch ghia
##	253	pontiac phoenix lj
##	254	chevrolet malibu
##	255	ford fairmont (auto)
##	256	ford fairmont (man)
	257	plymouth volare
##	258	amc concord
##	259	buick century special
##	260	mercury zephyr
##	261	dodge aspen
##	262	amc concord d/l
##	263	chevrolet monte carlo landau
##	264	buick regal sport coupe (turbo)
##	265	ford futura
##	266	dodge magnum xe
##	267	chevrolet chevette
##	268	toyota corona
##	269	datsun 510
##	270	dodge omni
	271	toyota celica gt liftback
	272	plymouth sapporo
##	273	oldsmobile starfire sx
##	274	datsun 200-sx
##	275	audi 5000
##	276	volvo 264gl

##	277	saab 99gle
##	278	peugeot 604sl
##	279	volkswagen scirocco
##	280	honda accord lx
##	281	pontiac lemans v6
##	282	mercury zephyr 6
##	283	ford fairmont 4
##	284	amc concord dl 6
##	285	dodge aspen 6
##	286	chevrolet caprice classic
##	287	ford 1td landau
##	288	mercury grand marquis
##	289	dodge st. regis
##	290	buick estate wagon (sw)
##	291	ford country squire (sw)
##	292	chevrolet malibu classic (sw)
##	293	chrysler lebaron town @ country (sw)
##	294	vw rabbit custom
##	295	maxda glc deluxe
##	296	dodge colt hatchback custom
##	297	amc spirit dl
##	298	mercedes benz 300d
##	299	cadillac eldorado
##	300	peugeot 504
##	301	oldsmobile cutlass salon brougham
##	302	plymouth horizon
##	303	plymouth horizon tc3
##	304	datsun 210
##	305	fiat strada custom
##	306	buick skylark limited
##	307	chevrolet citation
##	308	oldsmobile omega brougham
##	309	pontiac phoenix
##	310	vw rabbit
##	311	toyota corolla tercel
##	312	chevrolet chevette
##	313	datsun 310
##	314	chevrolet citation
##	315	ford fairmont
##	316	amc concord
##	317	dodge aspen
##	318	audi 4000
	319	toyota corona liftback
	320	mazda 626
##	321	datsun 510 hatchback
##	322	toyota corolla
##	323	mazda glc
##	324	dodge colt
##	325	datsun 210
##	326	vw rabbit c (diesel)
##	327	vw fabbit c (diesel) vw dasher (diesel)
##	328	audi 5000s (diesel)
##	329	mercedes-benz 240d
	330	
##	330	honda civic 1500 gl

## 332	subaru dl
## 333	vokswagen rabbit
## 334	datsun 280-zx
## 335	mazda rx-7 gs
## 336	triumph tr7 coupe
## 338	honda accord
## 339	plymouth reliant
## 340	buick skylark
## 341	dodge aries wagon (sw)
## 342	chevrolet citation
## 343	plymouth reliant
## 344	toyota starlet
## 345	plymouth champ
## 346	honda civic 1300
## 347	subaru
## 348	datsun 210 mpg
## 349	toyota tercel
## 350	mazda glc 4
## 351	plymouth horizon 4
## 352	ford escort 4w
## 353	ford escort 2h
## 354	volkswagen jetta
## 356	honda prelude
## 357	toyota corolla
## 358	datsun 200sx
## 359	mazda 626
## 360	peugeot 505s turbo diesel
## 361	volvo diesel
## 362	toyota cressida
## 363	datsun 810 maxima
## 364	buick century
## 365	oldsmobile cutlass ls
## 366	ford granada gl
## 367	chrysler lebaron salon
## 368	chevrolet cavalier
## 369	chevrolet cavalier wagon
## 370	chevrolet cavalier 2-door
## 371	pontiac j2000 se hatchback
## 372 ## 373	dodge aries se
## 373	pontiac phoenix ford fairmont futura
## 374	volkswagen rabbit l
## 376	mazda glc custom l
## 377	mazda glc custom i mazda glc custom
## 378	plymouth horizon miser
## 379	mercury lynx l
## 379	nissan stanza xe
## 381	honda accord
## 381 ## 382	toyota corolla
## 383	honda civic
## 384	honda civic (auto)
## 385	datsun 310 gx
## 386	buick century limited
## 387	oldsmobile cutlass ciera (diesel)
"" 001	organia crotana cieta (ateset)

```
## 388
                  chrysler lebaron medallion
## 389
                              ford granada 1
## 390
                            toyota celica gt
## 391
                           dodge charger 2.2
## 392
                            chevrolet camaro
                             ford mustang gl
## 393
## 394
                                   vw pickup
## 395
                               dodge rampage
## 396
                                 ford ranger
## 397
                                   chevy s-10
df <- df[order(df$acceleration),]</pre>
```

Splitting the data based on the origin group:

```
american <- subset(df, origin==1)
european <- subset(df, origin==2)
japan <- subset(df, origin==3)

mpg_eu <- european[ , which(names(european) %in% c("mpg"))]
acc_eu <- european[ , which(names(european) %in% c("acceleration"))]
mpg_us <- american[ , which(names(american) %in% c("mpg"))]
acc_us <- american[ , which(names(american) %in% c("acceleration"))]
mpg_jp <- japan[ , which(names(japan) %in% c("mpg"))]
acc_jp <- japan[ , which(names(japan) %in% c("acceleration"))]</pre>
```

Lets see the linear functions we create with B-splines with degrees of freedom = 4

```
matplot(acc_eu, bs(acc_eu, df = 4), type="l",lty=1)
```


B-splines on:

• European cars:

```
plot(acc_eu, mpg_eu)
lm1 <- lm(mpg_eu ~ bs(acc_eu, df=4))
lines(acc_eu,predict.lm(lm1,list(x=acc_eu)), col="blue")</pre>
```


- United states cars:

```
plot(acc_us, mpg_us)
lm1 <- lm(mpg_us ~ bs(acc_us, df=4))
lines(acc_us,predict.lm(lm1,list(x=acc_us)), col="blue")</pre>
```


- Japanese cars:

```
plot(acc_jp, mpg_jp)
lm1 <- lm(mpg_jp ~ bs(acc_jp, df=4))
lines(acc_jp,predict.lm(lm1,list(x=acc_jp)), col="blue")</pre>
```


As we saw, we created separate linear regression models for each category of cars based on the 3 categories we have. As predicitve values we used acceleration and for dependent value we use the mpg. We can see this time we dont have singe straight line but a curved spline which tries to describe the best ways the given values.

Natural Cubic splines on:

• European cars:

```
plot(acc_eu, mpg_eu)
lm1 <- lm(mpg_eu ~ ns(acc_eu, df=4))
lines(acc_eu,predict.lm(lm1,list(x=acc_eu)), col="blue")</pre>
```


• United states cars:

```
plot(acc_us, mpg_us)
lm1 <- lm(mpg_us ~ ns(acc_us, df=4))
lines(acc_us, predict.lm(lm1, list(x=acc_us)), col="blue")</pre>
```


• Japanese cars:

```
plot(acc_jp, mpg_jp)
lm1 <- lm(mpg_jp ~ ns(acc_jp, df=4))
lines(acc_jp,predict.lm(lm1,list(x=acc_jp)), col="blue")</pre>
```


Smoothing spline

• European cars:

```
plot(mpg_eu ~ acc_eu)
spline_eu <- smooth.spline(acc_eu, mpg_eu, df=4)
lines(spline_eu, col="blue")</pre>
```


• United states cars:

```
plot(mpg_us ~ acc_us)
spline_us <- smooth.spline(acc_us, mpg_us, df=4)
lines(spline_us, col="blue")</pre>
```


• Japanese cars:

```
plot(mpg_jp ~ acc_jp)
spline_us <- smooth.spline(acc_jp, mpg_jp, df=4)
lines(spline_us, col="blue")</pre>
```


We can see the different types of splines. In general they are following the same cures though the data with all using degrees of freedom = 4.

Regression on the whole data with splines

```
df1 <- df[ , -which(names(df) %in% c("name"))]</pre>
str(df1)
## 'data.frame':
                    392 obs. of 8 variables:
                          14 14 15 14 15 16 15 14 15 14 ...
    $ cylinders
                          8 8 8 8 8 8 8 8 8 8 ...
                   : num
    $ displacement: num
                          340 440 390 454 400 400 429 455 383 455 ...
    $ horsepower
                  : num
                          160 215 190 220 150 230 198 225 170 225 ...
    $ weight
                          3609 4312 3850 4354 3761 ...
                   : num
                          8 8.5 8.5 9 9.5 9.5 10 10 10 10 ...
##
    $ acceleration: num
##
    $ year
                          70 70 70 70 70 73 70 70 70 70 ...
                   : num
                         1 1 1 1 1 1 1 1 1 1 . . .
    $ origin
                   : num
set.seed(16)
## 2/3 of the sample size
smp_size <- floor(round(nrow(df1)*2/3))</pre>
```

```
train_ind <- sample(seq_len(nrow(df1)), size = smp_size)</pre>
smp_size
## [1] 261
train <- df1[train_ind, ]</pre>
test <- df1[-train_ind, ]</pre>
# Setting the y to be "Apps"
y_train = train[ , which(names(train) %in% c("mpg"))]
y_test = test[ , which(names(test) %in% c("mpg"))]
# Removing the predictive variable from the training and testing sets.
x_train = train[ , -which(names(train) %in% c("mpg"))]
x_test = test[ , -which(names(test) %in% c("mpg"))]
str(y_train)
## num [1:261] 33.5 25.8 17.5 22 20.6 18 33.5 27 13 31.5 ...
str(y_test)
## num [1:131] 15 14 14 17 13 12 13 11 32.7 14 ...
str(x_train)
## 'data.frame':
                   261 obs. of 7 variables:
## $ cylinders : num 4 4 6 6 6 6 4 4 8 4 ...
## $ displacement: num 98 156 258 225 225 225 85 112 350 98 ...
## $ horsepower : num 83 92 95 100 110 105 70 88 145 68 ...
## $ weight
               : num 2075 2620 3193 3233 3360 ...
## $ acceleration: num 15.9 14.4 17.8 15.4 16.6 16.5 16.8 18.6 13 18.5 ...
## $ year
              : num 77 81 76 76 79 74 77 82 73 77 ...
## $ origin
                 : num 1 1 1 1 1 1 3 1 1 3 ...
str(x_test)
## 'data.frame': 131 obs. of 7 variables:
## $ cylinders : num 8 8 8 8 8 8 8 8 6 8 ...
## $ displacement: num 390 454 455 302 440 455 360 350 168 400 ...
## $ horsepower : num 190 220 225 140 215 225 175 180 132 175 ...
                 : num 3850 4354 3086 3449 4735 ...
## $ weight
## $ acceleration: num 8.5 9 10 10.5 11 11 11 11 11.4 11.5 ...
## $ year
              : num 70 70 70 70 73 73 73 73 80 71 ...
## $ origin
                 : num 1 1 1 1 1 1 1 1 3 1 ...
# Create the linear model with natural cubic splines
model1 \leftarrow lm(train\$mpg \sim ns(horsepower, df = 4) + ns(displacement, df = 4) + ns(weight, df = 4) + ns(ac)
# Summarize the linear model
summary(model1)
```

```
##
## Call:
  lm(formula = train$mpg ~ ns(horsepower, df = 4) + ns(displacement,
       df = 4) + ns(weight, df = 4) + ns(acceleration, df = 4) +
##
##
       year + cylinders + origin, data = train)
##
## Residuals:
##
       Min
                1Q Median
                                3Q
                                       Max
## -7.3208 -1.6088 0.1443 1.4202
                                   8.3130
##
## Coefficients:
##
                              Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                                          5.07438
                                                   -3.984 8.97e-05 ***
                             -20.21801
                                                   -3.287 0.001164 **
## ns(horsepower, df = 4)1
                              -6.38007
                                          1.94102
## ns(horsepower, df = 4)2
                             -10.54480
                                          2.58567
                                                   -4.078 6.17e-05 ***
## ns(horsepower, df = 4)3
                             -15.08432
                                          4.34554
                                                   -3.471 0.000614 ***
## ns(horsepower, df = 4)4
                              -9.08901
                                          3.05745
                                                   -2.973 0.003251 **
## ns(displacement, df = 4)1
                              -3.42039
                                          2.17303
                                                   -1.574 0.116796
## ns(displacement, df = 4)2
                              -6.22686
                                          2.95816
                                                   -2.105 0.036329 *
## ns(displacement, df = 4)3
                              -4.94774
                                          4.19365
                                                   -1.180 0.239237
## ns(displacement, df = 4)4
                              -3.85467
                                          3.65490
                                                   -1.055 0.292639
## ns(weight, df = 4)1
                              -6.06396
                                          2.16338
                                                   -2.803 0.005475 **
## ns(weight, df = 4)2
                              -7.75344
                                          2.52441
                                                   -3.071 0.002375 **
## ns(weight, df = 4)3
                             -10.87782
                                          4.32894
                                                   -2.513 0.012631 *
## ns(weight, df = 4)4
                              -8.78335
                                          2.83696
                                                   -3.096 0.002193 **
## ns(acceleration, df = 4)1
                             -3.17206
                                          2.29715
                                                   -1.381 0.168599
## ns(acceleration, df = 4)2
                              -4.31654
                                                   -2.541 0.011688 *
                                          1.69888
                              -5.21680
                                                   -1.102 0.271532
## ns(acceleration, df = 4)3
                                          4.73366
## ns(acceleration, df = 4)4
                              -0.72205
                                          2.38957
                                                   -0.302 0.762785
## year
                               0.74107
                                                   14.139 < 2e-16 ***
                                          0.05241
## cylinders
                               0.84874
                                          0.49382
                                                    1.719 0.086947
## origin
                               0.19921
                                          0.31289
                                                    0.637 0.524943
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
## Residual standard error: 2.728 on 241 degrees of freedom
## Multiple R-squared: 0.8819, Adjusted R-squared: 0.8725
## F-statistic: 94.67 on 19 and 241 DF, p-value: < 2.2e-16
```

We have two different types of attributes fitted in this model: 1) splines with degrees of freedom = 4, so in the summary all spline attributes exist 4 times. 2) second group of attributes are th categorical ones. We just passed them in the model as we do in other linear models.

We can see as well how significant each one is for the model (acceleration, weight, horsepower and year)

```
y_pred <- predict(model1, x_test)
RMSE <- sqrt(mean((y_test - y_pred)^2))
RMSE</pre>
```

```
## [1] 3.17864
```

For RMSE score we have 2,87. Lets now try the stepwise model.

Stepwise variable selection

ns(horsepower, df = 4)4

```
fit2 <- step(lm(trainpq ~ ns(horsepower, qq + ns(displacement, qq + ns(weight, qq + ns
## Start: AIC=543.04
## trainmpg \sim ns(horsepower, df = 4) + ns(displacement, df = 4) +
      ns(weight, df = 4) + ns(acceleration, df = 4) + year + cylinders +
##
##
##
                             Df Sum of Sq
                                             RSS
##
## - origin
                                     3.02 1796.4 541.47
                               1
## - ns(displacement, df = 4) 4
                                    47.49 1840.9 541.86
## <none>
                                          1793.4 543.04
## - cylinders
                               1
                                    21.98 1815.4 544.22
## - ns(acceleration, df = 4)
                              4
                                    71.42 1864.8 545.23
## - ns(weight, df = 4)
                               4
                                  111.19 1904.6 550.74
## - ns(horsepower, df = 4)
                               4
                                   157.32 1950.7 556.98
## - year
                                  1487.53 3280.9 698.68
##
## Step: AIC=541.47
## train$mpg ~ ns(horsepower, df = 4) + ns(displacement, df = 4) +
      ns(weight, df = 4) + ns(acceleration, df = 4) + year + cylinders
##
##
                             Df Sum of Sq
                                             RSS
                                                    AIC
## <none>
                                           1796.4 541.47
## + origin
                                     3.02 1793.4 543.04
                               1
## - cylinders
                                    25.19 1821.6 543.11
                               1
## - ns(displacement, df = 4)
                              4
                                    70.90 1867.3 543.58
## - ns(acceleration, df = 4)
                              4
                                    71.79 1868.2 543.70
## - ns(weight, df = 4)
                               4
                                 108.69 1905.1 548.81
## - ns(horsepower, df = 4)
                               4 154.50 1950.9 555.01
## - year
                                 1484.62 3281.0 696.69
summary(fit2)
##
## Call:
## lm(formula = train$mpg ~ ns(horsepower, df = 4) + ns(displacement,
       df = 4) + ns(weight, df = 4) + ns(acceleration, df = 4) +
##
       year + cylinders, data = train)
##
## Residuals:
                1Q Median
                                       Max
## -7.3449 -1.6081 0.1861 1.4331 8.4453
## Coefficients:
                             Estimate Std. Error t value Pr(>|t|)
##
                                         5.01452 -3.938 0.000107 ***
## (Intercept)
                            -19.74931
## ns(horsepower, df = 4)1
                             -6.27836
                                         1.93206 -3.250 0.001320 **
## ns(horsepower, df = 4)2
                            -10.47571
                                         2.58021 -4.060 6.63e-05 ***
## ns(horsepower, df = 4)3
                                         4.33866 -3.460 0.000639 ***
                            -15.01083
```

-8.97944

3.04885 -2.945 0.003542 **

```
## ns(displacement, df = 4)1 -4.00800
                                         1.96487 -2.040 0.042454 *
## ns(displacement, df = 4)2 -6.93165
                                         2.73985 -2.530 0.012044 *
## ns(displacement, df = 4)3 -5.87030
                                        3.93052 -1.494 0.136604
## ns(displacement, df = 4)4 -4.49638
                                         3.50886 -1.281 0.201266
## ns(weight, df = 4)1
                             -6.01149
                                        2.15916 -2.784 0.005790 **
## ns(weight, df = 4)2
                                        2.51456 -3.037 0.002654 **
                             -7.63595
## ns(weight, df = 4)3
                            -10.87435
                                         4.32361 -2.515 0.012549 *
## ns(weight, df = 4)4
                             -8.72778
                                         2.83213 -3.082 0.002296 **
## ns(acceleration, df = 4)1 -3.11202
                                         2.29239
                                                 -1.358 0.175873
## ns(acceleration, df = 4)2 -4.31640
                                         1.69679 -2.544 0.011586 *
## ns(acceleration, df = 4)3 -5.16044
                                         4.72701
                                                 -1.092 0.276054
## ns(acceleration, df = 4)4 -0.68882
                                                 -0.289 0.773071
                                         2.38606
## year
                              0.73985
                                         0.05232 14.142 < 2e-16 ***
                              0.89759
## cylinders
                                         0.48722
                                                  1.842 0.066659 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 2.725 on 242 degrees of freedom
## Multiple R-squared: 0.8817, Adjusted R-squared: 0.8729
## F-statistic: 100.2 on 18 and 242 DF, p-value: < 2.2e-16
```

The final model excludes of course cylinders and displacement but keeps the origin attribute.

Calculate the RMSE on the test set

```
ypred <- predict(fit2, x_test)
RMSE2 <- sqrt(mean((y_test - ypred)^2))
RMSE2</pre>
```

```
## [1] 3.209117
```

We have little bit more error bit with 2 attributes less. Lets plot the variables now.

```
plot(test$horsepower, ypred)
```


plot(test\$weight, ypred)

plot(test\$acceleration, ypred)

plot(test\$year, ypred)

plot(test\$origin, ypred)

