Area Under Curves and Volume of Revolving a Curve

Problem Statement

Definite Integrals via Numerical Methods

This relates to definite integration via numerical methods.

Consider the algebraic expression given by:

$$(a_1)x^{b_1} + (a_2)x^{b_2} + (a_3)x^{b_3} \dots (a_n)x^{b_n}$$

For the purpose of numerical computation, the area under the curve y = f(x) between the limits a and b can be computed by the Limit Definition of a Definite Integral.

Some background about areas and volume computation.

Using equal Sub-Intervals of length = 0.001, you need to

- 1. Evaluate the area bounded by a given polynomial function of the kind described above, between given limits L and R.
- 2. Evaluate the volume of the solid obtained by revolving this polynomial curve around the X-Axis.

A relative error margin of 0.01 will be tolerated.

Input Format

First line will contain N integers separated by spaces, which are the values of a_1 , a_2 ... a_N .

Second Line will contain N integers separated by spaces, which are the values of b_1 , b_2 ... b_N .

The third Line will contain two space separated integers, *L*, *R*, which are the lower and upper limits of the range in which integration needs to be performed.

Constraints

Output Format

The first Line will contain the area between the curve and the x-axis, bound between the specified limits. The second Line will contain the volume of the solid obtained by rotating the curve around the x-axis, between the specified limits.

Sample Input

```
1 2 3 4 5
6 7 8 9 10
1 4
```

The algebraic expression represented by

$$(1)x^6 + (2)x^7 + (3)x^8 + (4)x^9 + (5)x^{10}$$

We need to find the area of the curve enclosed under this curve, between the limits x=1 and 4. And, we also need to find the volume of the solid formed by revolving this curve around the x-axis between the limits x=1 and 4.

Sample Output

2435300.3 26172951168940.8

Scoring

All test cases are weighted equally. You need to clear all the tests in a test case.