Computer Organization and Architecture (EET2211)

LAB I: Analyze the Arithmetic and Logical operations using different Addressing Modes of the 8086 Microprocessor.

Siksha 'O' Anusandhan (Deemed to be University),
Bhubaneswar

Branch: S. No. Name		Section:		
		Registration No.	Signature	
50	Dhiraj Kumar Pasa	yat 2241016218	Dhoraj ku Parayat	

Marks:	/	1	0
--------	---	---	---

Remarks:

Teacher's Signature

I. OBJECTIVE:

- 1. Perform Addition, Subtraction, Multiplication, and Division of two 16-bit numbers using immediate addressing mode and store the results using direct addressing mode.
- 2. Perform the following operations on two 8-bit data (data1, data2) given in memory locations and store the result in another memory location using indirect addressing mode.
 - i. Swapping of nibble of data1
 - ii. Y= (data1 and data2) or (data1 xor data2)
- 3. Find the Gray code of an 8-bit binary number.
- 4. Find the 2's complement of an 8-bit number.

II. PRE-LAB

- Explain the addressing modes involved in instructions. For each objective in prelab describe the following points:
- Write the assembly code with a description (ex. Mov ax,3000h ax<-3000h)
- Examine and analyze the input/output of assembly code.

III. LAB

Note: For each objective do the following job and assessment:

- Screenshots of the Assembly language program (ALP)
- Observations (with screenshots)

Fig. 1. Execution result of addition using immediate and direct addressing mode of 8086 emulator.

From this result, I have observed.....

Input:

Sl. No.	Memory Location	Operand (Data)
1		
2		
•••		

Sl. No.	Memory Location	Operand (Data)
1	, .	
2		The state of the s
•••		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1

IV. CONCLUSION

V. POST LAB

- 1. Discuss different general-purpose registers used in 8086 microprocessors.
- 2. Explain the concept of segmented memory. What are its advantages?
- 3. Explain the physical address formation in 8086.
- 4. Write an assembly program to multiply 05H and 04H without using arithmetic instruction.
- 5. Write the function of the following logical instructions.
 a) SHL/SAL b) SHR c) SAR d) ROR e) ROL

II. PRE-LAB

· Explain the addressing modes involved in instructions.

Immediate addressing mode: In this type of addressing, immediate instruction and appears in he form of dala is a part of bite or bites Successive

Eg: MOV AX, 12504

Direct addressing mode: In this addressing mode, a 16-bit memory address or offset is directly specified in instruction of a part of it Eq: MOV AX, [FOOOH]

Indirect addressing mode: - In this addrewing mode, the data is stored in an register or a memory location and is accelled through the register or memory cocation

Eq: MOU AY, [BY] It is Burther classified into Register Indirect and memory Indirect

- · for each objective in prelate describe the boll points:
 - · Write assembly code with description
 - · Examine and analyze The input of assembly code.

Obj1:-

Ax - 3134H Ax , 3234H Mov CX + AX Cx , Ax MOV - MEAX (3234H) + 1111H Ax , 111114 [5000H] + 434TH (AK) ADD [5000 H], AX Mov Ax & CX Ax, cx AX - AX (3234H) - 1111H MOV AY, ILLI [1002 H] < 2123 H (AM) SUB [FOO2 H] , AX -Mov AX & CX Ax, cx MOV Bx 6000211 AXXBX, Quotient - DX Bx , 0002 H -MOV BX LOVER 16 bit - AX MUL [5004H],DX -(00414] = 0000 la MUV Croo 6 14] 4 9808 H C50064], AX MOV

MOU AT, EN - RY ELS

DEV BX - AY! BY, Quettend - DY, Remainder - AX

MOU [TOORH], DX - [TOORH] & 9FORH

MOU [TOORH], AX - [TOORH] & 0

Division: 4 Foy it

Objo:

MOV SI, 2000H - SI & 3000H

MOV AL, [SI] - AL & [SI]

ROR AL, OH - 15H in Rormled Right without carry

MOV [S[1], AL - [B]+1] & 13H

Input: 32H output: 23H

MOV ST, 2000H - SI C-2000H

MOV AL, [SS] - ALC [2000H]

MOV BL, [SS+1] - BLC[2006H]

MOV DL, AL - DLG AL

AND AL, BL - ALC AL and BL

XOR DL, BL - DLG DLOWN BL

OY AL, DL - ALG ALOY DL

MOV [SS+2], AL - [SI+2] C AL

Enfect: 1214 output

```
Obj 3
```

MOV ST, 2000 H - STE 2000H

MOV AL, [SS] - AL = [2000 H]

MOV BL, AL - BLE AL

SHR AL, OI - AL IN BITWISE SWIFTED TO YIGHT

XOR AL, BL - ALCAL XOR BL

MOV [SSCHI], AL - [2001H] & AL

HLT

Input! output B5 EF

Obj 4

MOV SE, 3000 H - SE \leftarrow 3000 H MOV AL, [SE] - AL \leftarrow [2000 H] NOT AL - AL \leftarrow AL compliment ADD AL, OI - AL \leftarrow AL

Input Output
31

III. LAB.

OBJ 1:

From this result, I have observed:

Input:

Sl.no	Operation	Data
1.	ADD	3234H ,1111H
2.	SUB	3234H, 1111H
3.	MUL	3234H, 0002H
4.	DIV	3234H, 0002H

Output:

Sl.no	Memory	Operand (Data)
	Location	
1.	5000H,5001H	ADD (45 43)
2.	5002H,5003H	SUB (23 21)
3.	5004H,5005H	MUL (68 64)
4.	5006H,5007H	MUL (00 00)
5.	5008Н,5009Н	DIV (00 1A)
6.	5009H, 500AH	DIV (19 00)

OBJ 2:

a)

From this result I have observed

Input:

SI.No.	Memory Location	Data
1	3000H	23H

SI.No.	Memory Location	Data
1	3001H	32H

From this result I have observed

Input:

Sl.No.	Memory Location	Data
1	2000H	12H
2.	2001H	46H

Output:

SI.No.	Memory Location	Data
1	2002H	12H

OBJ 3:

From this result I have observed

Input:

SI.No.	Memory Location	Data
1	2000H	10H

SI.No.	Memory Location	Data
1	2001H	18H

OBJ 4:

From this result I have observed

Input:

Sl.No.	Memory Location	Data
1	3000H	07H

SI.No.	Memory Location	Data
1	3001H	F9H

IV. CONCLUSION

In their experiment we were able to analyze different arithmetric and Logical operation using Direct, Indirect and Immediate addressing modes:

V. POST LAB

- 1) Discuss different general-purpose registers used in 8086 microprocessors
- Sol" There are four 16-bit general purpose registers in 8086 microprocessor:
 - i) AX It is used as a 16 bit accumulator, Lower & bits of
 AX as designated as AL and higher & bits as AH
 - ii) Bx 2+ 11 used to provide offset storage bor creating the physical address in some addressing mode reflered as Bale register. Lower & hits designated as BL, higher & hits as BH
 - iii) CX It is used as a default counter in case of String and loop instructions. Lower & bits designated as CL, higher & bits as CH
 - IV) DX It is a general purpose register which may be used as an operand or a destination register. Lower & bits designated as DL, higher & bits as DI+
- 2) Explain the concept of segmented nemory. What we its advantages
 - Soll Segmentation is a memory management technique used in Intel 8086 microprocessor. It logically divides main memory into different segments, each with its own bout address. The boar segment registers are:

- · Code Segment Register (cs): used to address a memory location in the core segment of the memory
- · Data segment Register (DS): Points to the Data segment where the data is stored
 - · Extra segment Register (Es) 1 Also refers to a segment which is another data segment in memory
 - · Stack segment Register (SS) ! Addresses the Stack segment and box storing stack data.

The advantages of segmented memory are:

- · Ebbicient memory organization and management
- · Isolation of Data and Code
- · Processes can share data across segments, bacilitating communication between different parts of a program
- · Supports Memory protection mechanisms, preventing wanth unauthorized access to specific segments.
- 3) Explain the physical address formation in 8086.
- combining segment and offset address for efficient memory access and management. It is given by

P.A. = Segment X 10H + offset address

Write an assembly code program to multiply of it and out without along arithmetre instruction.

SOL AX, OSH - AXEOUTH

SHL AX, O2 - AXE OTH Smitted left two times

MOV [toooh], AX - [toooh] = AX

Locasia

Write the bunction of the bollowing logical instructions.

a) SHL/SAL B) SHR C) SAR d) ROR E) ROL

- a) SHL/SAL: Shift Logical / Arithmetic Left:

 It shift the operand word or byte bit by bit to the left.

 and insert zeros in the telsB.
 - b) SHR: Shift Logical Right. It shifts the operand word by byte bitwise towards right and inserse zeros in the shifted position
 - c) SAR: Shift Arithmetic Right. Et performs right shift on the word or byte and inserts the Most significant with of the operand in the newly inserted position
 - d) ROR: Rotate right without carry. It rotates the word or byte bitwise by a specific number towards right
 - e) ROL !- Rotate Left without carry. Et It rotates the the word or byte bitwise by a specific number towards Left