

CE232 DIGITAL SYSTEM

Topic 5. Simplification of Logical Equations using Tabular Method

Prepared by Nabila Husna Shabrina

Contact: nabila.husna@umn.ac.id

Subtopic

5.1 Tabular Method

5.2 Quine- McCluskey Method

5.1 Tabular Method

- The tabular method (also known as the Quine-McCluskey method) is particularly useful when minimizing functions having a large number of variables, for example for 6 variables functions
- The method reduces a function in standard sum of products (SSOP) form to a set of prime implicants from which as many variables are eliminated as possible
- The tabular method makes repeated use of the law $A+\bar{A}=1$

- The Quine-McCluskey method is an exact algorithm which finds a minimumcost sum-of-products implementation of a Boolean function
- 2 basic concept in Quine-McCluskey Method:
 - Prime Implicants

Implicants: groups of '1'

Prime implicants: largest possible groups of '1'

Essential Prime Implicants

Prime implicants having at least 1 minterms cannot be combine in any other way

Step

- 1. Arrange the given minterms/maxterms in an ascending order and make groups based on the number of '1'
- 2. Compare in successive groups to find "matched pair"
- 3. Repeat step 2 with newly formed tems till we get all prime implicants
- 4. Formulate prime implicants table and find essential prime implicants

Example 1.

$$F(A, B, C, D) = \sum m(0,1,3,7,8,9,11,15)$$

Binary representation

$$7 - 0111$$

Step 1: Arrange the given minterms in an ascending order and make groups based on the number of '1'

Table Result

Group	Minterm	ABCD
0	m0	0000
1	m1	0001
	m8	1000
2	m3	0011
	m9	1001
3	m7	0111
	m11	1011
4	m15	1111

Step 2: Compare in successive groups to find "matched pair"

- Matched pair: pair of minterms with only differ with 1 bit position
- If there is a change in only onebit position, take the pair of those two min terms. Place symbol '-' in the differed bit position and keep the remaining bits as it is

Group	Minterm	ABCD	
0	m0	0000	r in 1 bi
1	m1	0001	IIIIID
	m8	1000	
2	m3	0011	
	m9	1001	
3	m7	0111	
	m11	1011	
4	m15	1111	

compare n and n+1 groups, For example, compare group of 0 with group of 1

Step 2 : Compare in successive groups to find "matched pair"

Table Result

Group	Matched pair	ABCD
0	m0 - m1	000-
	m0 – m8	-000
1	m1 - m3	00-1
	m1 – m9	-001
	m8 – m9	100-
2	m3 – m7	0-11
	m3 - m11	-011
	m9 – m11	10-1
3	m7 - m15	-111
	m11 - m15	1-11

Step 3: Repeat step 2 with newly formed terms till we get all prime implicants

- m0-m1-m8-m3 not matched pair because there is 2 bit changing
- m0-m1-m8-m9 is matched pair

Group	Matched pair	ABCD
0	m0 – m1	0 0 0 -
	m0 – m8	-000
1	m1 - m3	00-1 Differ in 1 bit
	m1 - m9	-001
	m8 – m9	100-
2	m3 – m7	0 - 1 1
	m3 - m11	-011
	m9 - m11	10-1
3	m7 - m15	-111
	m11 - m15	1-11

Step 3: Repeat step 2 with newly formed terms till we get all prime implicants

- 0 0 -
$$\rightarrow \bar{B}\bar{C}$$

- 0 - 1 $\rightarrow \bar{B}D$ PRIME IMPLICANTS
- - 1 1 $\rightarrow CD$

Table Result

Group	Matched pair	ABCD
0	m0 - m1 - m8 - m9	-00-
	m0 - m8 - m1 - m9	-00-
1	m1- m3 - m9 - m11	-0-1
	m1 - m9 - m3 - m11	-0-1
2	m3 - m7 - m 11 - m15	0-11
	m3 - m11 - m7 - m15	-011

Step 4: Formulate prime implicants table and find essential prime implicants

$$\rightarrow \bar{B}\bar{C} + CD$$

P.I.	Minterms Involved	0	1	3	7	8	9	11	15	
$\bar{B}\bar{C}$	0, 1, 8, 9	X	X		(X) X			
$\bar{B}D$	1,3,9, 11		X	X			X	X		
CD	3, 7, 11, 15			х (X)		X	X)

Example 2. (POS form)

$$F(A, B, C, D) = \prod M(0,1,3,7,8,9,11,15)$$

Binary representation

$$7 - 0111$$

Step 1: Arrange the given maxterms in an ascending order and make groups based on the number of '1'

Group	Maxterms	ABCD
0	MO	0000
1	M1	0001
	M8	1000
2	M3	0011
	M9	1001
3	M7	0111
	M11	1011
4	M15	1111

Step 2 : Compare in successive groups to find "matched pair"

Group	Matched pair	ABCD
0	M0 - M1	0 0 0 -
	M0 - M8	-000
1	M1 - M3	00-1
	M1 - M9	-001
	M8 – M9	100-
2	M3 - M7	0 - 1 1
	M3 - M11	-011
	M9 - M11	10-1
3	M7 - M15	-111
	M11 - M15	1-11

Step 3: Repeat step 2 with newly formed terms till we get all prime implicants

Group	Matched pair	ABCD
0	M0 - M1 - M8 - M9	-00-
	M0 - M8 - M1 - M9	-00-
1	M1- M3 - M9 - M11	-0-1
	M1 - M9 - M3 - M11	-0-1
2	M3 - M7 - M 11 - M15	0-11
	M3 - M11 - M7 - M15	-011

$$-00 - \rightarrow B + C$$

$$-0 - 1 \rightarrow B + \overline{D}$$
PRIME IMPLICANTS
$$-11 \rightarrow \overline{C} + \overline{D}$$

Step 4 : Formulate prime implicants table and find essential prime implicants $\rightarrow (B+C)(\bar{C}+\bar{D})$

P.I.	Maxterms Involved	0	1	3	7	8	9	11	15	
B + C	0, 1, 8, 9	X	X		(X	X			
$B + \overline{D}$	1,3,9, 11		X	X			X	X		
$\bar{C} + \bar{D}$	3, 7, 11, 15			х (X)		Х	X)

Example 3.

Simplify $F(A,B,C,D) = \sum m(0,1,2,3,4,6,7,11,12,15)$

Binary representation

$$1 - 0001$$
 $7 - 0111$

Step 1: Arrange the given minterms in an ascending order and make groups based on the number of '1'

Group	Minterm	ABCD
0	m0	0000
1	m1	0001
	m2	1000
	m4	0100
2	m3	0011
	m6	0110
	m12	1100
3	m7	0111
	m11	1011
4	m15	1111

Step 2 : Compare in successive groups to find "matched pair

Group	Matched pair	ABCD
0	m0 – m1	000-
	m1 - m2	00-0
	m0 – m4	0 - 0 0
1	m1 - m3	00-1
	m2 - m3	001-
	m2 – m6	0 - 10
	m4 – m6	01-0
	m4 - m12	-100
2	m3 – m7	0 - 1 1
	m3 - m11	-011
	m6 – m7	011-
3	m7 – m15	-111
	m11 – m15	1 - 1 1

Step 3: Repeat step 2 with newly formed terms till we get all prime implicants

$$0 0 -- \rightarrow A\overline{B}$$
 $0 -- 0 \rightarrow A\overline{D}$
 $0 - 1 - \rightarrow A\overline{C}$
PRIME IMPLICANTS
 $- 1 1 \rightarrow CD$
And $- 1 0 0 \rightarrow B\overline{C}\overline{D}$

Group	Matched pair	ABCD					
0	m0 - m1 - m2 - m3	0 0					
	m0 - m2 - m4 - m6	0 0					
	m0- m2 - m1 - m3	0 0 (redundant)					
	m0 - m4 - m2 - m6	0 0 (redundant)					
1	m2 - m3 - m 6 - m7	0 - 1 -					
	m2 - m6 - m3 - m7	0 – 1 – (redundant)					
2	m3 - m7 - m 11 - m15	11					
	m3 - m11 - m7 - m15	11 (redundant)					

Step 4: Find essential prime implicants

$$B\overline{C}\overline{D} + \overline{A}\overline{B} + \overline{A}\overline{D} + CD$$

P.I.	Minterms Involve	ed	0	1	2	3	4	6	7	11	12	15
$B\overline{C}\overline{D}$	4, 12						X				12	
$ar{A}ar{B}$	0, 1, 2, 3		X	X	Х	X						
$ar{A}\overline{D}$	0, 2, 4, 6		X		X		X	X				
ĀC	2, 3, 6, 7				X	X		X	X			
CD	3, 7, 11, 15					X			X	X) (X

References

M. Morris Mano, Digital Design, 5th ed, Prentice Hall, 2012, Chapter 4

Next Topic: Signed Number Format