REYNOLDS
ALUMINUM ALLOYS
AND MILL PRODUCTS
DATA BOOK REYNOLDS

ne 15-290 16032

REYNOLDS ALUMINUM ALLOYS and MILL PRODUCTS

REYNOLDS METALS COMPANY
INCORPORATED
LOUISVILLE 1, KENTUCKY

foreword: This book describes aluminum alloys and aluminum mill products made by Reynolds Metals Company. Since there are many different alloys from which to choose, the user needs rather definite information about them in order to make an intelligent selection. This book represents an endeavor to furnish such information.

In many cases, the range of sizes shown can be exceeded, since the rapid developments in the aluminum industry are being accompanied by continually putting new mills and additional plant facilities into production. So we suggest the prospective user contact his Reynolds field representative (page 248) whenever his requirements fall outside the standards listed here.

From the Table of Contents, page 7, it will be seen that the information in this book is arranged according to mill products — sheet and plate; extruded shapes; roll formed shapes; tubing and pipe; wire, rod and bar; forging stock; press forgings; ingot metal for sand casting, permanent mold casting, and die casting. It covers range of sizes, chemical compositions, yield and ultimate strengths, hardnesses, tolerances and the like.

Since this is the first printing of this data book, there may be errors of omission and commission. Readers are invited to send in corrections and suggestions for making this booklet more useful. Address Editorial Department, Reynolds Metals Company, 2500 South Third St., Louisville 1, Ky.

free enterprise in ALUMINUM

The war transformed aluminum from a metal of scarcity and limited utility to a metal of abundance and extreme usefulness. The part the Reynolds Metals Company, the nation's largest foil producer, played in this transformation is one of the sagas of modern business.

In 1939 the company president, Mr. R. S. Reynolds, foresaw our involvement in a light metals war and advocated large increases in the nation's aluminum capacity. In 1940 this company, entirely on its own, undertook the building of large new aluminum production facilities.

Today the Reynolds Metals Company is sweeping forward as the nation's great new source of aluminum in all its forms. Here is a company that has proven, during these critical war years, what an alert, vigorous and forward-looking organization can do. Let us demonstrate what Reynolds initiative and all-out tradition-free effort can do for you through our service offices distributed throughout Industrial America, listed on page 248.

4 REYNOLDS

color key

The color flag appearing at the upper right of this page is used throughout this book as a ready reference guide to aid in quickly locating the various sections. The key to the colors used will be found below, with the section name and page number:

history 13	wire, rod and bar 159
characteristics21	forging stock 181
sheet and plate 69	ingot metal199
extruded shapes . 103	press forgings 203
roll formed shapes 115	reference tables 213
tubing and pipe 127	list of tables232
itemized cross i	ndex 235

A

U

M

U

M

Pat room at Reynolds Longview, Wash., plant. Operator is stirring alumina into the bath where it is reduced to molten aluminum

contents

	page
chapter 1 — HISTORY	13
chapter 2 - CHARACTERISTICS	21
alloys	23
tempers of wrought alloys	25
tempers of casting alloys	27
fabrication	27
atomic structure	. 27
crystal structure	28
density	28
electrical conductivity	29
thermal conductivity	29
thermal expansion	29
other thermal properties	30
reflectivity	30
non-magnetic and non-sparking	30
resistance to corrosion	30
	30
mechanical properties	31
	31
properties of high purity aluminum	
— symbol	32
— atomic number	32
— electron arrangement	32
— valence	32
— atomic weight	32
— atomic volume	32
- isotopes	32
— lattice edge	32
— thermal data	32
— coefficient of thermal expansion	33
- specific heat and heat content	33
— density vs temperature	34
- electrical properties	35
— mechanical properties	35
— other properties	35
nominal chemical compositions	
— wrought alloys	36
— sand-casting alloys	38
— permanent-mold casting alloys	38
— die-casting alloys	40
definitions	200
_ trace	40
- stress strain strain	40
— yield strength	40
— ultimate or tensile strength	42
— elongation	42
— modulus of elasticity	42
— poisson's ratio	43
- shearing strength	43
— endurance limit	43
— brinell hardness	43

A

U

M

N

U

M

	page
typical mechanical properties	
— wrought alloys	44, 47
- sand-casting alloys	. 48
— permanent-mold casting alloys	. 50
— die-casting alloys	. 50
densities and expansions	
- wrought alloys	. 52
— sand-casting alloys	52, 54
— permanent-mold casting alloys	. 54
- die-casting alloys	. 54
thermal and electrical conductivity	. 56
- wrought alloys	. 56
- sand-casting alloys	. 58
— permanent-mold casting alloys	. 58
— die-casting alloys	. 60
annealing cycles	. 60
heat-treating cycles	. 62
list of applications in chemical and associated industries	. 65
chapter 3 - SHEET AND PLATE	. 69
definitions	. 71
alloys, tempers, sizes	. 71
identification	71
packing	. 71
ordering data	. /1
commercial sizes	/
— flat sheet	. /72
— coiled sheet	. 73
standard sizes	
— flat sheet and plate	. 74
specified chemical composition	. 76
specified mechanical properties	
— non-heat treatable (common) alloys	. 78
— heat treatable (strong) alloys	. 80
radii for 90° cold bends	. 84
commercial tolerances	
- strong alloys, flat and coiled	86, 88
- common alloys, flat and coiled	. 90
— maximum for lateral bow, camber	. 91
weights .	
— conversion data	. 91
- sheet aluminum	. 92
— weight of circles	98, 100
chapter 4 - EXTRUDED SHAPES	. 103
manufacturing methods	. 105
alloys and tempers	. 105
sections and sizes	. 105
lengths	. 100
	107
packing	. 107
specified chemical compositions	. 108
specified mechanical properties	. 100
— non-heat treatable (common) alloys	. 110
	11, 112
commercial tolerances	
	STATE OF THE PARTY

chapter 5 - ROLL FORMED SHAPES	. 115
manufacturing methods	. 116
sections and sizes	. 116
alloys and tempers	. 116
lengths	. 116
finishes	. 117
identification	. 117
packing	. 117
ordering data	
	. 110
specified mechanical properties	
- non-heat treatable (common) alloys	. 120
— heat treatable (strong) alloys	. 122
commercial tolerances	
— section thickness	. 124
— developed width of section	. 124
— angles	. 125
- radius	. 125
chapter 6 - TUBING AND PIPE	. 127
manufacturing methods	. 129
alloys and tempers	. 129
sizes and sections	. 130
lengths	. 130
finishes	. 131
identification	. 131
ordering data	. 131
commercial sizes, round tubing	32, 134
specified chemical composition	. 136
specified mechanical properties	
— non-heat treatable (common) alloys	. 138
- heat treatable (strong) alloys	
commercial tolerances	
— diameters	. 140
— wall thickness	. 140
- straightness, round tubing and pipe	. 142
— for tubing other than round	. 142
- oval, elliptical, streamline tubing	. 143
pressure calculations	. 144
— tensile strengths	. 145
— tensile strengths	46, 148
weights	
— conversion data	. 151
— round tubing	52, 154
— aluminum pipe	. 156
chapter 7 - WIRE, ROD AND BAR	. 159
definitions	
manufacturing methods	
alloys and tempers	
sizes and sections	. 162
lengths	. 162
identification	. 163

A L U M I N U M 9

	page
packing	163
ordering data	163
annuacial sizes	164
specified chemical compositions	
specified chemical compositions	166
specified mechanical properties	
- non-heat treatable (common) alloys	168
— heat treatable (strong) alloys	169, 170
	,
commercial tolerances	
- round wire and rod	172
	172
— square, hex, octagonal wire and bar	
section and a section of the section	173
— rectangular wire and bar	174
weights	
— conversion data	176
- round wire	177
-round rod	177, 178
— hexagonal bar	178
	179
chapter 8 - FORGING STOCK	181
definitions	183
manufacturing methods	183
classes	183
alloys	183
lengths	184
packing	184
ordering data	185
sections and sizes	185
sections and sizes	185
sections and sizes	185 185 186
sections and sizes	185 185 186 187
sections and sizes	185 185 186 187
sections and sizes	185 185 186 187
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances	185 185 186 187 188
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod	185 185 186 187
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar	185 185 186 187 188
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — sayare forging bar	185 185 186 187 188
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — sayare forging bar	185 185 186 187 188 190 190 191
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes	185 185 186 187 188
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — sayare forging bar	185 185 186 187 188 190 190 191
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights	185 185 186 187 188 190 190 191 192
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data	185 185 186 187 188 190 191 192 193
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod	185 185 186 187 188 190 191 192 193 194
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data	185 185 186 187 188 190 191 192 193
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar	185 185 186 187 188 190 191 192 193 194 197
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9 — I N G O T M E T A L	. 185 . 185 . 186 . 187 . 188 . 190 . 190 . 191 . 192 . 193 . 194 . 197 . 199
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9—INGOT METAL definitions	185 185 186 187 188 190 191 192 193 194 197 199 200
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9—I N G O T M E T A L definitions manufacturing methods	. 185 . 185 . 186 . 187 . 188 . 190 . 190 . 191 . 192 . 193 . 194 . 197 . 199
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9—I N G O T M E T A L definitions manufacturing methods chemical analysis	185 185 186 187 188 190 191 192 193 194 197 199 200
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9—I N G O T M E T A L definitions manufacturing methods chemical analysis types	185 185 186 187 188 190 191 192 193 194 197 199 200 200
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9 — I N G O T M E T A L definitions manufacturing methods chemical analysis types	. 185 . 186 . 186 . 187 . 188 . 190 . 190 . 191 . 192 . 193 . 194 . 197 . 199 . 200 . 200 . 200 . 200
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9—I N G O T M E T A L definitions manufacturing methods chemical analysis types sizes	. 185 . 185 . 186 . 187 . 188 . 190 . 190 . 191 . 192 . 193 . 194 . 197 . 199 . 200 . 200 . 200 . 200 . 200
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9 — I N G O T M E T A L definitions manufacturing methods chemical analysis types sizes nominal chemical composition typical mechanical properties	. 185 . 185 . 186 . 187 . 188 . 190 . 190 . 191 . 192 . 193 . 194 . 197 . 199 . 200 . 200 . 200 . 200 . 200 . 200
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9 — I N G O T M E T A L definitions manufacturing methods chemical analysis types sizes nominal chemical composition typical mechanical properties	. 185 . 186 . 186 . 187 . 188 . 190 . 190 . 191 . 192 . 193 . 194 . 197 . 199 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9 — I N G O T M E T A L definitions manufacturing methods chemical analysis types sizes nominal chemical composition typical mechanical properties	. 185 . 186 . 186 . 187 . 188 . 190 . 190 . 191 . 192 . 193 . 194 . 197 . 199 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 201
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9—I N G O T M E T A L definitions manufacturing methods chemical analysis types sizes nominal chemical composition typical mechanical properties densities and expansions thermal and electrical conductivity	. 185 . 186 . 187 . 188 . 190 . 190 . 191 . 192 . 193 . 194 . 197 . 199 . 200 . 200 . 200 . 200 . 200 . 200 . 201 . 201
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9—I N G O T M E T A L definitions manufacturing methods chemical analysis types sizes nominal chemical composition typical mechanical properties densities and expansions thermal and electrical conductivity identification	. 185 . 186 . 186 . 187 . 188 . 190 . 190 . 191 . 192 . 193 . 194 . 197 . 199 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 200 . 201
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9—I N G O T M E T A L definitions manufacturing methods chemical analysis types sizes nominal chemical composition typical mechanical properties densities and expansions thermal and electrical conductivity identification packing	. 185 . 186 . 187 . 188 . 190 . 190 . 191 . 192 . 193 . 194 . 197 . 199 . 200 . 200 . 200 . 200 . 200 . 200 . 201 . 201
sections and sizes identification commercial sizes mechanical properties after forging and heat treatment specified chemical composition commercial tolerances — round forging rod — rectangular forging bar — square forging bar — forging shapes weights — conversion data — round rod — rectangular bar chapter 9—I N G O T M E T A L definitions manufacturing methods chemical analysis types sizes nominal chemical composition typical mechanical properties densities and expansions thermal and electrical conductivity identification	. 185 . 186 . 187 . 188 . 190 . 190 . 191 . 192 . 193 . 194 . 197 . 199 . 200 . 200 . 200 . 200 . 200 . 200 . 201 . 201 . 201

contents

															1	page
chapter 10 - PRESS FOR	GI	N	G S	,												203
alloys and tempers																205
sizes												:			•	205
identification																205
packing															i	205
ordering data														i		205
specified chemical composition														į,		206
specified mechanical properties .																208
		·	•			·	•			Ċ.			Ů	Ť		
commercial tolerances																
- fillets and corners																209
- thickness																210
- straightness									١.							210
— mismatching																211
	_															
chapter 11 - REFERENCE									٠	٠	٠	٠	٠	٠	٠	213
comparison of gauges	٠.															214
decimal equivalents																217
related specifications																
																000
— wrought alloys																
- sand-casting alloys		•	•	•	٠	٠	٠	•	٠	•	٠	٠	٠	٠	•	222
- permanent-mold casting alloy															•	224
— die-casting alloys															٠	226
— ingot													٠	٠	•	228
shrinkage allowances' sand casting									٠		٠			٠	٠	229
relative weights of various metals		•	•	٠	٠	٠	٠	٠	٠	٠	•	٠	٠	٠	٠	229
principal characteristics																
— wrought aluminum alloy sh																230
— aluminum forging alloys																231
- didminion lorging dilays			•	•	•	•	•	•	•	•	•	•	•	•	•	201
chapter 12 - LIST OF T	A	BL	E S													232
7																
chapter 13 - I T E M I Z E D	IN	D	EX			**		*								235

Molten aluminum alloy metal being tapped from a remelting furnace at a Reynolds extrusion plant. Here pure aluminum pig has been melted and alloying elements added to strengthen the metal

1 · history

Precipitation tank at Reynolds Listerhill plant, seen at night

14 REYNOLDS

The use of metals dates far back to the recesses of history. Many centuries before the year 1 A.D., man used heavy metal in making weapons, cooking pots, implements for working the soil, and other various tools to help him live in his crude environment. Since that time many metals and combinations of metals have taken their places to aid in the advancement of civilization.

hans christian oersted

Slightly more than a hundred years ago, a Danish scientist, Hans Christian Oersted, isolated a new metal — aluminum. Prior to this time, aluminum was known to exist only in strong chemical combination with other elements. By heating a mixture of aluminum chloride and potassium amalgam, Oersted was able to obtain a small amount of pure aluminum. However, this experiment, which first produced aluminum in 1825, failed to produce aluminum when repeated two years later by Friedrich Wohler. Wohler then performed a similar experiment in which metallic potassium was used in place of the amalgam and obtained a sufficient amount of aluminum to permit investigation of its qualities and characteristics. Thus, he was the first to discover the lightness of aluminum — the quality for which it first received acceptance in a wide variety of applications.

henri sainte-claire deville

Although these early experiments did serve to provide some information about aluminum, none of them was practicable as an economical method for quality production. Much work was yet to be done before the metal could be produced for the many commercial uses in which we know it today — much work which might have been delayed had not Napoleon III seen in aluminum a metal from which to make lighter, more easily transported equipment for his armies. He wanted great quantities of aluminum — enough to equip France's standing army — manufactured by a cheap method to avoid greatly increasing the national debt. Henri Sainte-Claire Deville was commissioned by Napoleon to find the key to cheap aluminum — to make a common metal out of a precious metal.

In 1852, aluminum had long been quoted at \$542 a pound, but Deville was working constantly to reduce this prohibitive price and in the following four years the price dropped to \$34 a pound. In the next three years that price was halved, but it was still too expensive

Cast house at Reynolds Listerhill plant, America's first independentowned straight-line-production oreto-sheet aluminum plant

for Napoleon's purpose. Aluminum bars produced by Deville were exhibited at the Paris Exposition in 1855 and one year later commercial production was started at Glaciere, a suburb of Paris. In 1859, at \$17 a pound, the total world's production of aluminum was but two tons!

Aluminum was still a precious metal and the small commercial production was justified only by its novelty. It was toyed with by the wealthy as ornaments and jewelry and even aluminum forks and spoons fed the royalty in preference to gold and silver.

Deville had improved upon the Wohler process, substituting sodium for potassium. By this newer method it was possible to obtain the metal in lumps about the size of marbles — no longer was it necessary to experiment with tiny aluminum particles of pinhead size. Deville's process marked a step further in aluminum production, introducing a method with commercial possibilities; however, it was still a far cry from the pig and ingot production of today.

charles martin hall

Even though the greatest minds of science had been and still were working on the problem, the secret of cheap aluminum was still uncovered when, on December 6, 1863, Charles Martin Hall was born to the wife of a minister in the small town of Thompson, Ohio, in the United States. By the time he was ready for high school, Hall's family moved to Oberlin, Ohio, where he later entered Oberlin College. Charles Hall was an ambitious student in science, spending much of his time experimenting in the home laboratories he had managed to set up. One day his science professor, Frank Fanning Jewett, ended his lecture session saying, "Whoever devises a process for the commercial production of aluminum will not only make a fortune for himself, but also will be a notable benefactor to the world!"

These words stuck in Hall's memory and seemed to present a challenge to him. He read everything that he could find pertaining to previous experiments with aluminum, diligently studying the methods and discoveries of Oersted, Wohler, and Deville. He graduated from college in 1885 and shortly afterwards began a full-time, persistent and ultimately successful search for a solution to the problem.

Failure after failure seemed only to increase his determination. When purely chemical methods failed to bring the solution any nearer, Hall turned to electrolysis. At first, these experiments were no more fruitful

Bright new pure pig aluminum as it comes from one of Reynolds Metals reduction plants

than the others. His particular problem was to find a suitable solvent for aluminum oxide, or alumina as it is called. At length, he discovered that cryolite, a sodium-aluminum-fluoride mineral, in the molten condition would dissolve alumina in large proportions. He proceeded to melt some cryolite in a clay crucible and dissolved alumina in it.

Then he passed an electric current through the solution for about two hours, but, when the molten mass was poured out, there was no aluminum. It occurred to him that perhaps impurities, principally silica from the clay crucible, had interfered with the process. Accordingly, he repeated the experiment; this time using a carbon crucible. Upon pouring out the material, he found small globules of aluminum. This was it! As crude and undeveloped as the process was at the time, it was destined to revolutionize the aluminum industry. During the five years that followed Hall's discovery on February 23, 1886, the price of aluminum dropped from between six and eight dollars a pound to sixty-five cents a pound.

paul louis toussaint heroult

100 m

ma Si

mm. 610

******* 31

m 6

About the same time that Hall made his discovery, a young Frenchman named Paul Louis Toussaint Heroult also discovered the electrolytic method to cheap aluminum. Heroult was also born in 1863, on April 10, and in many instances his life paralleled that of Hall. Heroult had his laboratory in a small tannery in Gentilly and it was there that he made his discovery in aluminium as it is called in most foreign countries. Heroult received patent priorities in France, and priority was given to Hall in America. Of the countries foreign to both, some recognized Heroult and others gave Hall patent protection.

The discoveries of a process whereby commercial aluminum could be produced economically did not result in an overnight expansion of the industry. On the contrary, despite the obvious value of the process, there were many obstacles that prevented its immediate application for quantity production. Like most inventors, Hall himself had not the capital with which to realize the value of his process in operations. Moreover, while he knew how to attack and overcome the scientific problems which he met in the development of his process, the cautious, skeptical attitude of capitalists and businessmen whom he sought to adopt his method was an almost insurmountable problem to him. Nevertheless, such a truly revolutionary discovery was not to be suppressed by reluctant capital, and eventually this electro-

lytic method for economical production of aluminum was put into general use. The aluminum industry as we know it today was founded not by accident and with no reasonable amount of facility, but through the steady perseverance of Charles Martin Hall and Paul Louis Heroult who laid the cornerstone for an industry which has put aluminum among the five leading metals today, reduced the price to approximately 14 cents per pound, and inaugurated the light metal age.

2 · characteristics

Stacking highly finished Reynolds aluminum sheet as it comes from the stenciling machine

alloys: Like other metals, aluminum has only limited usefulness when in the pure state. It possesses many desirable characteristics - light weight, pleasing appearance, malleability, formability, excellent resistance to corrosive attack by industrial and marine atmospheres as well as by many chemicals and food products, high electrical and thermal conductivity, non-magnetic and non-sparking, superb reflectivity for light of all wave lengths and radiant heat, colorless and nontoxic compounds — but it lacks strength and hardness. This unusual combination of properties makes the pure metal useful in the form of foil, pigment, coatings, and electrical conductors; equipment and containers for chemicals, food products, beverages, and pharmaceutical:; and other articles where strength and hardness are of secondary importance. But if it were not possible to strengthen and harden the metal, it could not be used as a structural material. Fortunately, there are three methods for improving these properties -(1) addition of other metals to form alloys; (2) heat treatment of some types of alloys; (3) strain hardening by cold work.

The addition of alloying elements to aluminum not only increases the strength and hardness, but also changes other properties of the metal which for many applications are equally important to consider. The alterations to the inherent properties varies, depending on the nature and amount of alloying elements added. Thus, each alloy has been developed for a certain type of application with the various properties balanced to best fulfill the requirements of that application.

Some alloys were developed for cast products, others for wrought products. The casting alloys are used in producing sand castings, permanent mold castings, die castings, and centrifugal castings. The wrought alloys are used in producing sheet, plate, wire, rod, bar, shapes, tubing, pipe, forgings, and forging stock by rolling, extrusion, or forging.

Certain aluminum alloys with a wide range of properties are available in practically all forms in which metals are manufactured. However, all alloys are not made in all forms. Some alloys present manufacturing difficulties that make the cost prohibitive if manufactured in certain products. Other alloys have been developed primarily to overcome such manufacturing problems, and are fabricated only in the forms for which they were designed.

Special grabs and handling devices facilitate production and storage operations in Reynolds plants

24 REYNOLDS

Of the elements used in the production of commercial aluminum alloys, silicon, iron, copper, manganese, magnesium, chromium, nickel, and zinc are the most common. They may be used singly or in combination. Some of the high strength alloys are quite complex, containing as many as six intentionally added elements in addition to those present in controlled amounts as impurities.

Aluminum alloys are known commercially by a series of numbers or numbers and letters arbitrarily assigned by the producer. Alloy designations indicate definite chemical compositions, but, unlike designations for certain other materials, have no relation to each other.

tempers of wrought alloys: All wrought products are produced from cast ingots, the size and shape of which depend on the product and method of manufacture. The cast structure of the ingot is broken down by hot working: rolling, extrusion, or forging may be employed.

Some products are reduced to final dimensions without cooling, other than that which normally occurs during the fabricating process. Other products receive a final cold finishing operation, such as cold rolling or drawing through a die.

Cold working strain hardens the material, the increase in strength and hardness depending on the amount of reduction which it receives. By heating to the annealing temperature, the effects of cold working can be removed and the metal made soft and ductile.

Strain hardening is the only means of increasing the strength of some of the wrought aluminum alloys—the non-heat treatable or common alloys. In some products—sheet, wire, and round tubing—the various tempers are produced by cold working definite amounts after annealing. In other products—those not cold finished, or those cold finished only for dimensional accuracy or finish—these alloys are normally supplied in the "as fabricated" temper. This temper varies, depending on the size of the section and the amount of strain hardening, but is reasonably uniform for different lots of the same material because of standardization of the manufacturing process.

Other wrought aluminum alloys are strengthened by heat treatment or by a combination of heat treatment and strain hardening. These are known as strong or heat treatable alloys. The complete heat treatment process consists of two parts: first, a high temperature solution heat treatment followed by a drastic quench in a cooling medium; and second, a precipitation or aging treatment at room or slightly elevated temperatures.

Temper designations, as follows, are suffixed to the alloy designation to indicate these mechanical and thermal treatments.

1 • TEMPER DESIGNATIONS FOR WROUGHT ALLOYS							
	Temper	Produced By:					
	O soft	annealing					
Non-Heat Treatable Alloys	¼H one-quarter hard ½H one-half hard ¾H three-quarter hard H full hard	definite amount of strain hardening by cold finishing					
	F as fabricated	indefinite amount of strain hardening					
Heat Treatable Alloys	O soft	annealing					
	W	solution heat treatment					
	T	aging W temper material					
	RT	strain hardening T temper material					
	T 5	aging extruded material					

Some heat treatable wrought alloys are not produced in the W temper because after solution heat treatment they rapidly age at room temperature to the T temper. Alloys which are produced in the W temper may be converted to the T temper by a slightly elevated temperature aging or precipitation treatment.

tempers of casting alloys: Aluminum casting alloys, like the wrought alloys, are of two types: heat treatable and non-heat treatable alloys. Non-heat treatable casting alloys depend solely on the effect of the added alloying elements for improvement of properties. The properties of heat treatable casting alloys are further improved by solution and aging treatments similar to those used for the heat treatable wrought alloys. Temper designations — the letter T followed by one or more numbers — are suffixed to the alloy designation to indicate the various thermal treatments given to the casting alloys.

fabrication: All the common forms of fabrication used for metals are applied to aluminum alloys. Aluminum is cut to shape by blanking and routing. It is pierced and perforated; formed by embossing and coining, stamping and forging, drawing and spinning as well as by stretch forming, roll forming and brake forming.

The joining of aluminum is done by a number of different methods including the use of rivets, screws, clips and other mechanical fasteners. It is brazed, soldered and joined by adhesives. It is welded by oxyacetylene or oxyhydrogen torch; by metallic or carbon arc; and by the spot, seam or flash-butt resistance methods.

Both wrought and cast aluminum alloys are readily machined — at higher speeds than are possible with most other metals.

All the usual finishes — paint, enamel, lacquer, and plating — are applied to aluminum. Mechanical finishes such as sand blasted, hammered, scratch brushed and polished finishes are also used for decorative effects. Moreover, chemical and electrochemical finishes are used to increase resistance to wear and corrosion.

In most cases the same equipment that is used in fabricating other materials can be used for fabricating aluminum. However, there are certain differences in the characteristics of aluminum which must be taken into consideration if the best results are to be obtained.

atomic structure: The element aluminum, chemical symbol Al, has

the atomic number 13. According to present concepts, this means that an aluminum atom is composed of 13 electrons, each having a negative electrical charge of one, arranged in three orbits around a highly concentrated nucleus having a positive charge of 13. The three electrons in the outer orbit give the aluminum atom a valence or chemical combining power of 3.

ALUMINUM ATOM	
Nucleus Electrical Charge = + 13	
Atomic Number 13 Valence 3	

crystal structure: When metals pass from the molten to the solid state, they assume crystalline structures. The atoms and molecules arrange themselves in definite, symmetrically ordered positions with respect to each other. Aluminum crystallizes with the face centered cubic arrangment of atoms, which is common to most of the ductile metals. The unit edge of the lattice cube for high purity aluminum has been determined as $4.04 \times 10^{-8} \, \mathrm{cm}$.

CRYSTAL STRUCTURE

Face Centered Cubic

density: Lightness is the outstanding and best known characteristic of aluminum. The metal has an atomic weight of 26.97 and a specific

gravity of 2.70, approximately one-third that of other commonly used metals. As with most metals, the density of aluminum decreases with increasing temperature.

Addition of other metals in the amounts commonly used in aluminum alloys does not appreciably change the density. The approximate weight of a cubic inch of aluminum and its alloys is one-tenth pound; equivalent to 170 pounds for a cubic foot.

Weight is an important factor to consider for all applications involving motion of mass. A saving in weight results in more pay load or greater economy of operation; less vibration and better performance of reciprocating and moving parts; less fatigue in the use of manually operated equipment; lower shipping, handling, and erection costs.

Although materials are purchased on a weight basis, they are usually used on a volume basis. When comparing the cost of aluminum with other materials, the price per pound should be divided by the ratio of specific gravities; approximately three for most common metals. In addition to the price per unit volume, the ease of fabricating and finishing the metal as well as its scrap value should be considered.

electrical conductivity: Aluminum has high electrical conductivity and consequently low resistivity, the reciprocal of conductivity. High purity aluminum has a volume conductivity of 64.6 percent of the International Annealed Copper Standard, but because of its low specific gravity the mass conductivity is 212.9 percent, greater than that for any other metal.

Addition of other metals lowers the electrical conductivity of aluminum: the amount of reduction depending on the amount and nature of the added elements. Thermal treatments have considerable effect on the conductivity of aluminum alloys, since elements in solid solution reduce the conductivity to a greater extent than undissolved constituents.

thermal conductivity: The high thermal conductivity of pure aluminum is reduced by the addition of alloying elements in the same manner as electrical conductivity.

thermal expansion: The coefficient of thermal expansion of aluminum is about twice that of ferrous metals and slightly greater than that of copper and its alloys. Most alloying elements when added to

aluminum have little effect on the coefficient, but relatively high percentages of silicon will reduce the value appreciably.

other thermal properties: Values for some thermal properties—such as boiling point, heat content, specific heat, heat of combustion, latent heat of fusion, and latent heat of vaporization—have been determined only for the pure metal. They may be applied to aluminum alloys, however, for calculations requiring only approximate values.

reflectivity: Aluminum has greater reflectivity for light and radiant heat than any other metal. The reflectivity increases with increase in wave length, reaching practically perfect reflectivity at very long wave lengths.

non-magnetic and non-sparking: Aluminum and its alloys are non-magnetic and non-sparking.

resistance to corrosion: The corrosion resistance of a material cannot be expressed quantitatively because it is only a relative term. No material is resistant to all conditions to which it might conceivably be exposed. It can only be compared with other materials under similar conditions.

Aluminum and aluminum alloys, however, are considered highly corrosion resistant and are widely used because of this desirable characteristic. Unlike other metals, aluminum has the ability to instantaneously form a thin, adherent film of hard oxide on freshly exposed surfaces, thus preventing further oxidation.

The addition of some alloying elements to aluminum reduces the corrosion resistance slightly. Magnesium, manganese, and chromium, however, have no adverse effect: silicon has but little. In general, the non-heat treatable alloys are more resistant to corrosion than the heat treatable alloys.

resistance to chemical attack: The protective hard oxide film on aluminum resists attack by a variety of chemicals. Many chemicals, including strong acids, have little or no effect on aluminum. Mild alkalies, especially if inhibited, are not injurious, but strong alkalies will dissolve the film and attack the aluminum. Sulfur compounds, harmful to most metals, do not affect aluminum.

Many chemicals, foods, beverages, and pharmaceuticals are produced, stored, or shipped in aluminum equipment: not only because of aluminum's resistance to chemical attack, but also because aluminum compounds are colorless and non-toxic. Staining, discoloration, and contamination are prevented.

modulus of elasticity: The modulus of elasticity of a material is the ratio of stress to corresponding strain in the elastic range. In tension and compression the average modulus for aluminum alloys is about 10,300,000 pounds per square inch, varying from 10,000,000 to 10,600,000 pounds per square inch for the various alloys.

Aluminum has a modulus which is approximately one-third that of steel — an asset when energy is to be absorbed. However, in order to maintain the same deflection characteristics when loaded as a beam, aluminum sections must be designed deeper than corresponding steel sections. Even so, at least a pound of weight can usually be saved for each pound of aluminum used, with an increase in strength obtained by proper selection of the alloy.

The modulus of rigidity, which is the modulus of elasticity in shear, is about 3,850,000 pounds per square inch for aluminum alloys, corresponding to a value of 0.33 for Poisson's Ratio.

mechanical properties: Typical mechanical properties of aluminum alloys shown in this booklet may be used in comparing the alloys with each other, or with other materials. It should be realized, however, that the values for different products may vary from these typical values: size, shape, method of manufacture, and type of test specimen all affect mechanical properties.

The guaranteed mechanical properties for an alloy, therefore, also will vary with size and product. Some of the variations are inherent in the material, but most are due to differences in size and type of test specimen required by standard testing practices.

high purity aluminum

SYMBOL	. Al
ATOMIC NUMBER	.13
ELECTRON ARRANGEMENT IN ATOM(2) (8	3) 3
VALENCE	3
ATOMIC WEIGHT26	.97
ATOMIC VOLUME — cu cm/gram atom	0.0
ISOTOPESno	one
CRYSTAL STRUCTUREface-centered cu	
LATTICE EDGE — cm	
4.04 × 1	0-0
THERMAL	
· °C	°F
MELTING POINT	216
BOILING POINT 1800 33	272
THERMAL CONDUCTIVITY AT 0-100°C (32-212°F)	
	.52
	509
HEAT OF COMBUSTION cal/gram mol	200
Btu/lb mol	
LATENT HEAT OF FUSION	
cal/gram	93
Btu/lb	167
LATENT HEAT OF VAPORIZATION — estimated	
	500
,	

2 . COEFFICIENT OF THERMAL EXPANSION

TEMPERATU	RE RANGE	COEFFICIENT OF THERMAL EXPANSION					
°c	°F	per °C	per °F				
20 - 100	68 - 212	.0000238	.0000132				
20 - 200	68 - 392	.0000247	.0000137				
20 - 300	68 - 572	.0000257	.0000143				
20 - 400	68 - 752	.0000267	.0000148				
20 - 500	68 - 932	.0000277	.0000154				
20 - 600	68 - 1112	.0000287	.0000159				
100 - 200 *	212 - 392	.0000255	.0000142				
200 - 300	392 - 572	,0000275	.0000153				
300 - 400	572 - 752	.0000295	.0000164				
400 - 500	752 - 932	.0000315	.0000175				
500 - 600	932 - 1112	.0000335	.0000186				
300 – 600	572 – 1112	.0000315	.0000175				

3 · SPECIFIC HEAT AND HEAT CONTENT

TEMPEI	RATURE	HEAT C	ONTENT	SPECIF	IC HEAT
°c	°F	cal/kg	Btu/lb	mean 0° to T°	at T°
0	32				0.2220
100	212	22.59	40.66	0.2259	0.2297
200	392	45.94	82.69	0.2297	0.2374
300	572	70.07	126.12	0.2336	0.2451
400	752	94.97	170.95	0.2374	0.2529
500	932	120.64	217.15	0.2413	0.2606
600	1,112	147.90	264.76	0.2452	0.2683
657	1,214	162.50	292.50	0.2473	0.2727
			1		
657	1,214	256.46	461.63	0.3904	0.2502
700	1,292	267.27	481.09	0.3818	0.2523
800	1,472	292.74	526.93	0.3659	0.2517
900	1,652	318.70	573.66	0.3541	0.2619
1,000	1,832	345.14	621.26	0.3451	0.2667

A L'U M I N U M 33

high purity aluminum

4 •	DENSI	TY VS	. TEM	PERAT	URE
TEMP	TEMPERATURE			DENSITY	
°c	° F	CONDITION	g/cu cm	lb/cu in.	lb/cu ft
20	68		2.70	.0975	169
100	212		2.69	.0972	168
200	392	Solid	2.67	.0965	167
400	752		2.62	.0947	164
658	1216		2.55	.0921	159
658	1216		2.38	.0860	149
700	1292		2.37	.0856	148
800	1472	1:	2.34	.0845	146
900	1652	Liquid	2.32	.0838	145
1000	1832		2.29	.0827	143
1100	2012		2.26	.0816	141

CONTRACTION IN VOLUME FROM LIQUID AT MELTING	
POINT TO SOLID AT MELTING POINT - Percent	6.7
CONTRACTION IN VOLUME FROM LIQUID AT MELTING	4-
POINT TO SOLID AT 20°C (68°F) — Percent	11.9
CONTRACTION IN VOLUME FROM SOLID AT MELTING	
POINT TO SOLID AT 20°C (68°F) — Percent	5.6

ELECTRICAL

ELECTRICAL RESISTIVITY AT 0°C (32°F)	
microhms/cu cm	2.44
ohms/mil-ft	14.7
ELECTRICAL RESISTIVITY AT 20°C (68°F)	
microhms/cu cm	2.67
ohms/mil-ft	16.0
TEMPERATURE COEFFICIENT OF ELECTRICAL RESISTIVITY AT	.0042
20°C (68°F)	.0042
VOLUME ELECTRICAL CONDUCTIVITY AT 20°C (68° F) -	
Percent of Annealed Copper	64.6
MASS ELECTRICAL CONDUCTIVITY AT 20°C (68° F) —	
Percent of Annealed Copper	212.9
	0.0054
ELECTROCHEMICAL EQUIVALENT — grams/amp-hr	0.3354
ELECTRODE POTENTIAL AT 25°C (77°F) — volts	-1.69
MECHANICAL	
MODULUS OF ELASTICITY	7 0 40
kg/mm ²	
ID/sq in	A 10
MODULUS OF RIGIDITY	
kg/mm ²	
lb/sq in	
POISSON'S RATIO	0.33
OTHER PROPERTIES	
REFLECTIVITY FOR WHITE LIGHT — Percent	75_85
REFLECTIVITY FOR HEAT — Percent	
MAGNETIC SUSCEPTIBILITY — cgs units	× 10-0

nominal chemical compositions

, AL	LOY	SILICON	COPPER	MANGANESE	MAGNESIUM
		5	W	R O U	G H Ţ
25					
35				1.2	
145		0.8	4.4	0.8	0.4
175			4.0	0.5	0.5
A17S			2.5		0.3
185			4.0		0.5
245			4.5	0.6	1.5
Pureclad	Core	٠	4.5	0.6	1.5
24\$	Cladding				
25S		0.8	4.5	0.8	
325		12.5	0.9		1.0
A 51S		1.0			0.6
52 S					2.5
56S				0.1	5.2
R301	Core	1.0	4.5	0.8	0.4
	Cladding	0.7		0.5	1.0
R303			1.3		2.5
R317		••••	4.0	0.5	0.5
R353		0.7			1.3
R361		0.6	0.25		1.0

36 REYNOLDS

	CHROMIUM	NICKEL	ZINC	LEAD	BISMUTH	ALUMINUM AND NORMAL IMPURITIES
)	ALL	0 Y	S			
						Remainder
						Remainder
						Remainder
						Remainder
Ц						Remainder
		2.0				Remainder
						Remainder
1						Remainder
Ц						Remainder
4						Remainder
		0.9				Remainder
	0.25					Remainder
	0.25					Remainder
4	0.1					Remainder
						Remainder
						Remainder
	0.25	0.1	6.5			Remainder
				0.50	0.50	Remainder
	0.25					Remainder
	0.25					Remainder

A L U M I N U M 37

nominal chemical compositions

ALLOY	SILICON	IRON	COPPER	MANGANESE
6	A •	SAND	- C A S	TING
43	5.0			
45	10.0			
108	3.0		4.0	
112		1.2	7.0	
122		1.2	10.0	
142			4.0	
195			4.0	
212	1.2	1.0	8.0	
214	• • • •		• • • •	• • • •
B214	1.8	••••		
220				
A334	4.0		3.0	
355	5.0		1.3	
356	7.0			
645	• • • •	1.2	2.5	
6 B	PER	MAN	E N T - 1	MOLD
43	5.0			
A108	5.5		4.5	
B113	1.7	1.2	7.0	:
C113	3.5	1.2	7.0	
122		1.2	10.0	
A132	12.0		0.8	
138	4.0	1.0	10.0	
142			4.0	
B195	2.5		4.5	
A214				
B214				
355	5.0		1.3	
356	7.0			

MAGNE	sium	NICKEL	ZINC	ALUMINUM AND NORMAL IMPURITIES
ALL	0 Y S			
				Remainder
				Remainder
				Remainder
			1.7	Remainder
0.3	2			Remainder
1.	5	2.0		Remainder
				Remainder
				Remainder
3.8	3			Remainder
3.8	3			Remainder
10.0)			Remainder
0.3	3			Remainder
0.0	5			Remainder
0.0	3			Remainder •
			11.0	Remainder
CAS	TINO	ALL	O Y S	
				Remainder
			****	Remainder
· · · · · · · · · · · · · · · · · · ·		••••	••••	Remainder
			20	
0.1		••••	2.0	Remainder
1.0	_	2.5		Remainder
0.:	_		••••	Remainder
1.		2.0	••••	Remainder
		2.0		Remainder
			1.0	Remainder
3.0			1.8	Remainder
3.8		••••		Remainder
0.0			••••	Remainder
0.3		••••		Remainder

ALUMINUM 39

nominal chemical composition

6 (•	DIE-C	ASTIN	G A L	LOYS
ALLOY	COPPER	SILICON	MAGNESIUM	ALUMINUM PLUS NORMAL IMPURITIES
13		12.0		Remainder
43		5.0		Remainder
85	4.0	5.0		Remainder
218			8.0	Remainder
360		9.5	0.5	Remainder
380	3.5	8.5		Remainder

definitions

stress: The intensity (measured per unit area) of the internal distributed forces or components of force which resist a change in the form of a body. Stress is measured in force per unit area (pounds per square inch, kilograms per square millimeter, etc.). It is customary to calculate stress on the basis of the original dimensions of the cross-section of the body. There are three kinds of stress: tensile, compressive, and shearing. Flexure involves the combination of tensile stress and compressive stress. Torsion involves shearing stress.

strain: The change per unit of length in a linear dimension of a body, which change accompanies a stress. Strain is measured in inches per inch of length (or millimeters per millimeter, etc.). Under tensile stress or compressive stress, strain is measured along the dimension under consideration. Shearing strain is measured at right angles to the dimension under consideration. In torsion tests, which involve shearing stress, it is customary to measure the angle of twist, which may be translated into terms of strain.

yield strength: The stress in tension or compression at which a material exhibits a specified limiting permanent set. The specified

Hot rolling aluminum in Reynolds Plant No. 1 at Louisville

L U M I N U M 41

limiting set used for aluminum alloys is 0.002 inch per inch, or 0.2 percent. For aluminum alloys, the yield strength in tension is approximately equal to the yield strength in compression. It is usually impracticable and probably impossible to determine the stress at which inelastic action in a member begins. Plastic yielding in nearly all members (including the specimen in a carefully controlled laboratory test) starts as local actions and becomes measurable only after many local internal adjustments and accommodations have occurred, and after a considerable portion of the member is affected by the yielding.

ultimate strength or tensile strength: The maximum tensile stress which a material is capable of developing. In practice, it is considered to be the maximum stress developed by a specimen representing the material in a tension test carried to rupture, under definite prescribed conditions. Tensile strength is calculated from the maximum load carried during a tension test and the original cross-sectional area of the specimen.

elongation: The increase in distance between two gauge marks, placed on a tension test specimen before testing, as a result of stressing the specimen to fracture. The original distance between the gauge marks (gauge length) is 2 inches for the standard sheet specimen and 2 inches for the standard ½-inch diameter round specimen; when it is necessary to use a subsize round specimen the gauge length should always be equal to four times the diameter of the specimen. Since elongation over a fixed gauge length, such as 2 inches, varies with the form and size of test specimen, values obtained on standard sheet specimens of a given material vary with the thickness of the sheet from which they are cut; thin sheet, therefore, shows lower elongation values than thicker sheet.

modulus of elasticity: The ratio of stress to corresponding strain throughout the range of their proportionality. As there are three kinds of stress, so are there three moduli of elasticity for any material: the modulus in tension, the modulus in compression, and the modulus in shear. The modulus of elasticity is expressed in pounds per square inch (or kilograms per square millimeter, etc.).

The value of the modulus of elasticity in tension is nearly the same, for most metals, as the value of the modulus of elasticity in compression. For aluminum alloys, the modulus of elasticity varies somewhat with the alloy and is about 2 percent higher in compression than in tension: the average value is approximately 10,300,000 pounds per square inch.

The value of the modulus of elasticity in shear, also called modulus of rigidity, is smaller than the modulus of elasticity in tension. Aluminum alloys have a modulus of rigidity of approximately 3,850,000 pounds per square inch.

modulus of rigidity: Same as modulus of elasticity in shear.

poisson's ratio: The ratio of the strain in a direction normal to the direction of stressing to the strain in the direction of the stress, provided the stress is unidirectional and within the range of proportionality of stress to strain. Poisson's ratio (μ) , modulus of elasticity (E), and modulus of rigidity (G) are interrelated as follows:

$$\mu = \frac{E}{2G} - 1$$

shearing strength: The maximum shearing stress which a material is capable of developing. In practice, it is considered to be the maximum average stress computed by dividing the ultimate load in the plane of shear by the area of the specimen subject to shear. Shearing strength is usually determined by inserting a cylindrical specimen through round holes in three hardened steel blocks, the center one of which is pulled (or pushed) between the other two so as to shear the specimen on two planes. The maximum load divided by the combined cross-sectional area of these two planes is the shearing strength.

endurance limit: The limiting stress below which a material will withstand without fracture on indefinitely large number of cycles of stress. In the case of aluminum alloys, endurance limits are based on 500,000,000 cycles of completely reversed stress, using the rotating beam type of machine and specimen.

brinell hardness: The hardness determined as the load applied to a ball divided by the spherical area of the impression made by impressing the ball into the surface of the material. In testing aluminum alloys a load of 500 kilograms is used on a ball 10 millimeters in diameter; when there is some reason for using a ball having a different diameter, the load (in kilograms) should be numerically equal to 5 times the square of the ball diameter (in millimeters). The following combinations of load and ball meet these requirements.

1000-kg. load on 14.3-mm. (9/16-in.) ball 500-kg. load on 10-mm. (0.3937-in.) ball 125-kg. load on 5-mm. (0.19690-in.) ball 12.6-kg. load on 1.59-mm. (1/16-in.) ball

typical mechanical properties

		TENSION					
ALLOY AND		ength psi		n in 2 Inches rcent			
TEMPER	Ultimate	Yield	1/16 inch thick specimen	1/2 inch diameter specimen			
	7	• W	R O U	GHT			
25-0	13,000	5,000	35	45	1		
2S-¼H	15,000	13,000	12	25	Ŧ		
2S-1/2H	17,000	14,000	9	20	+		
2S-¾H	20,000	17,000	6	17	+		
2S-H	24,000	21,000	5	15	+		
3S-O	16,000	6,000	30	40	t		
3S-¼H	18,000	15,000	10	20	+		
3S-1/2H	21,000	18,000	8	16	+		
3S-¾H	25,000	21,000	5	14	\vdash		
3S-H	29,000	25,000	4	10			
14S-O	27,000	14,000		18	1		
14S-W	56,000	40,000		25			
14S-T	70,000	60,000		13			
17S-O	26,000	10,000		22			
17S-T	62,000	40,000		22			
A17S-T	43,000	24,000		27			
18S-T	63,000	47,000		17			
24S-O	27,000	11,000	19	22			
24S-T	68,000	46,000	19	22	-		
24S-RT	73,000	57,000	13				
Pureclad 24S-T	64,000	43,000	18				
Pureclad 24S-RT	67,000	53,000	11				
25S-T	57,000	35,000		18			
32S-T	56,000	46,000		8			

	COMPRESSION	SHEAR	FATIGUE	HARDNESS
	Yield Strength psi	Shearing Strength psi	Endurance Limit psi	Brinell Number 500kg load 10mm ball
	ALLO	Y S		
	5,000	9,500	5,000	23
	13,000	10,000	6,000	28
	14,000	11,000	7,000	32
	17,000	12,000	8,500	38
	21,000	13,000	8,500	44
	6,000	11,000	7,000	28
	15,000	12,000	8,000	35
	18,000	14,000	9,000	40
	21,000	15,000	9,500	47
	25,000	16,000	10,000	55
	14,000	18,000	11,000	45
	40,000	34,000	18,000	100
	60,000	42,000	18,000	135
	10,000	18,000	11,000	45
1	40,000	38,000	18,000	105
1	24,000	28,000	13,500	70
	47,000		14,500	115
	11,000	18,000	12,000	42
	45,000	41,000	18,000	120
	55,000	42,000	••••	130
	43,000	40,000	••••	
	53,000	41,000	• • • • •	
	35,000	35,000	15,000	110
	46,000	38,000	14,000	125

A L U M I N U M 45

typical mechanical properties

	TENSION					
ALLOY AND	Stren ps		Elongation perc			
TEMPER	Ultimate	Yield	1/16 inch thick specimen	1/2 inch diameter specimen		
	8	• W	R O U	G H T		
A51S-T	47,000	40,000		20		
52S-O	29,000	14,000	25	30		
52S-1/4H	34,000	26,000	12	18		
52S-1/2H	37,000	29,000	10	14		
52S-¾H	39,000	34,000	8	10		
52S-H	41,000	36,000	7	8		
56S-O	42,000	20,000		35		
56S-¼H	47,000	33,000		11		
56S-1/2H	51,000	37,000		10		
56S-¾H	55,000	43,000		9		
56S-H	58,000	48,000		7		
R301-O	25,000	10,000		22		
R301-W	62,000	41,000		19		
R301-T	68,000	60,000		10		
R303-O	30,000	15,000	18	24		
R303-T	77,000	71,000	9	14		
R317-O	26,000	10,000		22		
R317-T	62,000	40,000		22		
R353-O	16,000	7,000		35		
R353-W	33,000	20,000		30		
R353-T	39,000	33,000		20		
R361-O	18,000	8,000	22			
R361-W	35,000	21,000	22			
R361-T	45,000	39,000	12			

COMPRESSION	SHEAR	FATIGUE	HARDNESS
Yield Strength psi	Shearing Strength psi	Endurance Limit psi	Brinell Number 500 kg load 10mm ball
ALLO	Y S		
40,000	32,000	10,500	100
14,000	18,000	17,000	45
26,000	20,000	17,500	62
29,000	21,000	18,000	67
34,000	23,000	18,500	74
36,000	24,000	19,000	85
20,000			
33,000			
37,000			
43,000			
48,000			
10,000			
41,000			
62,000	43,000	12,500	
15,000			
71,000	47,500	22,500	
10,000			
40,000			
7,000	*11,000	8,000	26
20,000	20,000	13,000	65
33,000	24,000	13,000	80
8,000	12,500	9,000	30
21,000	24,000	13,500	65
39,000	30,000	13,500	95

ALUMINUM 47

typical mechanical properties

-	TENSION					
ALLOY AND	Strer ps	•	Elongation in 2 Inches percent			
TEMPER	Ultimate	Yield	1/16 inch thick specimen	1/2 inch diameter specimen		
9 •	SAN	D - C	A S T	I N G		
43	19,000	9,000	• • • •	6.0		
45	21,000	10,000		4.5		
108	21,000	14,000		2.5		
112	24,000	14,000		1.5		
122	26,000	21,000		0.5		
122-T2	27,000	20,000		0.5		
142	28,000	24,000		1.0		
142-T61	37,000	32,000		*		
172	23,000	15,000		1.0		
195-T4	32,000	16,000		8.5		
195-T6	36,000	24,000		5.0		
212	23,000	14,000		2.0		
214	25,000	12,000		9.0		
B214	20,000	13,000		2.0		
220-T4	46,000	25,000		14.0		
A334	25,000	18,000		2.0		
355-T6	35,000	25,000		2.5		
355-T7	38,000	35,000		1.0		
355-T51	28,000	23,000		1.5		
A355-T51	28,000	24,000		1.5		
355-T71	35,000	29,000		1.5		
356-T6	33,000	24,000		4.0		
356- T 41	25,000	20,000		2.0		
406	19,000	9,000		12.0		
645	29,000	17,000		4.0		

* Less than 0.5%.

COMPRESSION	SHEAR	FATIGUE	HARDNESS
Yield Strength psi	Shearing Strength psi	Endurance Limit psi	Brinell Number 500kg load 10mm ball
ALLO	Y S		
10,000	14,000	6,500	40
11,000	16,000	6,000	45
14,000	20,000	8,000	55
17,000	20,000	9,000	70
	25,000	9,500	85
20,000	21,000	9,500	80
	24,000	8,000	80
47,000	32,000	8,000	105
17,000	20,000		65
16,000	24,000	6,000	60
25,000	30,000	6,500	75
14,000	20,000	8,000	65
12,000	20,000	5,500	50
15,000	17,000		50
26,000	33,000	7,000	75
22,000	24,000	8,500	65
29,000	30,000	8,500	80
35,000	26,500		85
24,000	22,000	7,000	65
24,000	22,000	8,500	65
		10,000	75
22,000	27,000	8,000	70
22,000	18,000	7,500	60
9,000	14,000	5,500	35
20,000	22,000	7,500	70
	-		

typical mechanical properties

	TENSION					
ALLOY AND		ngth si	Elongation in 2 Inches percent			
TEMPER	Ultimate	Yield	1/16 inch thick specimen	1/2 inch diameter specimen		
1 0 A	•	ERMA	NENT-	MOLD		
43	24,000	8,000		9.0		
A 108	28,000	16,000		2.0		
B113	28,000	19,000		2.0		
C113	30,000	28,000		1.0		
122	31,000	26,000		1.0		
A132-T551	36,000	28,000		0.5		
142	34,000	24,000		1.0		
142-T61	47,000	42,000		0.5		
142-T571	40,000	34,000		1.0		
B195-T4	40,000	22,000		10.0		
B195-T6	45,000	33,000		5.0		
A214	27,000	16,000		7.0		
355-T6	43,000	27,000		4.0		
355-T51	30,000	24,000		2.0		
356-T6	40,000	27,000		5.0		

	1	0 B •	DIE
37,000	18,000		1.8
35,000	16,000		3.5
30,000	14,000		7.0
40,000	22,000		3.5
42,000	23,000		7.0
42,000	23,000		1.8
40,000	20,000		4.5
45,000	25,000		2.0
42,000	23,000		4.0
	35,000 30,000 40,000 42,000 42,000 40,000 45,000	35,000 16,000 30,000 14,000 40,000 22,000 42,000 23,000 42,000 23,000 40,000 20,000 45,000 25,000	37,000 18,000 35,000 16,000 30,000 14,000 40,000 22,000 42,000 23,000 40,000 20,000 45,000 25,000 42,000 33,000

	COMPRESSION	SHEAR	FATIGUE	HARDNESS
	Yield Strength psi	Shearing Strength psi	Endurance Limit psi	Brinell Number 500kg load 10mm ball
	CASTIN	G ALLO	Y S	
	9,000	18,000		45
	16,000	25,000		70
	19,000	23,000		70
	24,000	22,000		80
	26,000	25,000		95
	30,000	24,000		105
	24,000	26,000		105
	46,000	31,000	9,500	110
	34,000	26,000	10,500	105
	22,000	30,000	9,500	75
	33,000	32,000	10,000	90
	17,000	22,000		60
1	26,000	30,000	9,000	90
	24,000	24,000		75
	24,000			90

CASTING ALLOYS					
		15,000			
		17,000			
		18,000			
	(

A L U M I N U M 51

densities and expansions

Total Tot	ALLOY	SPECIFIC		DENSITY		
25 2,71 .098 169 2,71 35 2,73 .099 171 2,73 145 2,80 .101 175 2,80 175 2,79 .101 175 2,80 175 2,79 .101 175 2,79 A175 2,74 .099 171 2,74 185 2,80 .101 .175 2,80 245 2,77 .100 173 2,77 255 2,79 .101 175 2,80 325 2,69 .097 168 2,69 A515 2,69 .097 168 2,69 525 2,67 .096 166 2,67 565 2,64 .095 164 2,64 R301 2,80 .101 175 2,80 R303 2,82 .102 176 2,81 R353 2,69 .097 168 2,69		GRAVITY	lb/cv in.	lb/cu ft	g/cv cm	
35 2.73 .099 171 2.73 145 2.80 .101 175 2.80 175 2.79 .101 175 2.79 A175 2.74 .099 171 2.74 185 2.80 .101 .175 2.80 245 2.77 .100 173 2.77 255 2.79 .101 175 2.79 325 2.69 .097 168 2.69 A515 2.69 .097 168 2.69 525 2.67 .096 166 2.67 565 2.64 .095 164 2.64 R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B • S A N D - C A S T I N G 43 2.66 .096 166 2.66 108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T6 2.77 .100 173 2.77		1 1 A	• W	R O U	G H T	
14S 2.80 .101 175 2.80 17S 2.79 .101 175 2.79 A17S 2.74 .099 171 2.74 18S 2.80 .101 .175 2.80 24S 2.77 .100 173 2.77 25S 2.79 .101 175 2.79 32S 2.69 .097 168 2.69 A51S 2.69 .097 168 2.69 52S 2.67 .096 166 2.67 56S 2.64 .095 164 2.64 R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B SAND-CASTINA 1.00 1.00 2.66	25	2.71	.098	169	2.71	
17S 2.79 .101 175 2.79 A17S 2.74 .099 171 2.74 18S 2.80 .101 .175 2.80 24S 2.77 .100 173 2.77 25S 2.79 .101 175 2.79 32S 2.69 .097 168 2.69 A51S 2.69 .097 168 2.69 52S 2.67 .096 166 2.67 56S 2.64 .095 164 2.64 R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B SAND D-CASTINA INAG INAG 43 2.66 .096 166 2.66 <th>3S</th> <th>2.73</th> <th>.099</th> <th>171</th> <th>2.73</th> <th></th>	3S	2.73	.099	171	2.73	
A17S 2.74 .099 171 2.74 18S 2.80 .101 .175 2.80 24S 2.77 .100 173 2.77 25S 2.79 .101 175 2.79 32S 2.69 .097 168 2.69 A51S 2.69 .097 168 2.69 52S 2.67 .096 166 2.67 56S 2.64 .095 164 2.64 R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B SAND - CASTINA 1 NG 43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 45 2.65 .096 166 2.66 45 2.65 .103	145	2.80	.101	175	2.80	
18S 2.80 .101 .175 2.80 24S 2.77 .100 173 2.77 25S 2.79 .101 175 2.79 32S 2.69 .097 168 2.69 A51S 2.69 .097 168 2.69 52S 2.67 .096 166 2.67 56S 2.64 .095 164 2.64 R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B SAND - CASTINA NASTINA CASTINA NASTINA 43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 45 2.65 .099 171 2.74 </th <th>17S</th> <th>2.79</th> <th>.101</th> <th>175</th> <th>2.79</th> <th></th>	17S	2.79	.101	175	2.79	
24S 2.77 .100 173 2.77 25S 2.79 .101 175 2.79 32S 2.69 .097 168 2.69 A51S 2.69 .097 168 2.69 52S 2.67 .096 166 2.67 56S 2.64 .095 164 2.64 R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B SAND - CASTINA NG 43 2.66 .096 166 2.66 43 2.65 .096 166 2.66 45 2.65 .096 166 2.66 45 2.65 .099 171 2.74 112 2	A 17S	2.74	.099	171	2.74	
25S 2.79 .101 175 2.79 32S 2.69 .097 168 2.69 A51S 2.69 .097 168 2.69 52S 2.67 .096 166 2.67 56S 2.64 .095 164 2.64 R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B SAND - CASTINA TNG 43 2.66 .096 166 2.66 43 2.65 .096 166 2.66 45 2.65 .096 166 2.66 45 2.65 .099 171 2.74 112 2.85 .103 178 2.85 122	18\$	2.80	.101	175	2.80	
32S 2.69 .097 168 2.69 A51S 2.69 .097 168 2.69 52S 2.67 .096 166 2.67 56S 2.64 .095 164 2.64 R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B SAND-CASTINA SAND-CASTINA G 43 2.66 .096 166 2.66 43 2.65 .096 166 2.66 45 2.65 .096 166 2.66 45 2.65 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142-T2 2.73 .099 171 2.74 142-T51 2.	245	2.77	.100	173	2.77	
A51S 2.69 .097 168 2.69 52S 2.67 .096 166 2.67 56S 2.64 .095 164 2.64 R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B SAND - CASTING TNG 43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 45 2.65 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 142-T571 2.73 <t< th=""><th>25S</th><th>2.79</th><th>.101</th><th>175</th><th>2.79</th><th></th></t<>	25S	2.79	.101	175	2.79	
52S 2.67 .096 166 2.67 56S 2.64 .095 164 2.64 R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 B SAND-CASTINA D-CASTINA TNG 43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T51 2.73 .099 171 2.74	32S	2.69	.097	168	2.69	
56S 2.64 .095 164 2.64 R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 B SAND - CASTINA CASTINA CASTINA CASTINA 43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T51 2.73 .099 171 2.74 142-T571 2.73 .099 171 <	A51S	2.69	.097	168	2.69	
R301 2.80 .101 175 2.80 R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B SAND-CASTINA CASTINA NG 43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T51 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T6 2.77 .100 173 2.77	52 S	2.67	.096	166	2.67	
R303 2.82 .102 176 2.82 R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B SAND-CASTINA CASTINA NG 43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T51 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77 <	56 S	2.64	.095	164	2.64	
R317 2.81 .102 176 2.81 R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B S A N D - C A S T I N G 43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	R301	2.80	.101	175	2.80	
R353 2.69 .097 168 2.69 R361 2.70 .098 169 2.70 1 1 B S A N D - C A S T I N G 43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	R303	2.82	.102	176	2.82	
R361 2.70 .098 169 2.70 1 1 B S A N D - C A S T I N G 43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	R317	2.81	.102	176	2.81	
1 1 B S A N D - C A S T I N G 43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	R353	2.69	.097	168	2.69	
43 2.66 .096 166 2.66 45 2.65 .096 166 2.66 108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	R361	2.70	.098	169	2.70	
45 2.65 .096 166 2.66 108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	11B •	SAN	D - C	A S T	I N G	
108 2.75 .099 171 2.74 112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	43	2.66	.096	166	2.66	
112 2.85 .103 178 2.85 122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	45	2.65	.096	166	2.66	
122 2.85 .106 183 2.93 142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	108	2.75	.099	171	2.74	
142 2.73 .099 171 2.74 142-T2 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	112	2.85	.103	178	2.85	
142-T2 2.73 .099 171 2.74 142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	122	2.85	.106	183	2.93	
142-T61 2.73 .099 171 2.74 142-T571 2.73 .099 171 2.74 195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	142	2.73	.099	171	2.74	
142-T571 2.73 .099 171 2.74 195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	142-T2	2.73	.099	171	2.74	
195-T4 2.77 .100 173 2.77 195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	142-T61	2.73	.099	171	2.74	
195-T6 2.77 .100 173 2.77 195-T62 2.77 .100 173 2.77	142-T571	2.73	.099	171	2.74	
195-T62 2.77 .100 173 2.77	195-T4	2.77	.100	173	2.77	
2.77	195-T6	2.77	.100	173	2.77	
212 2.83 102 174 2.82	195-T62	2.77	.100	173	2.77	
170 2.02	212	2.83	.102	176	2.82	
214 2.63 .095 164 2.63	214	2.63	.095	164	2.63	
B214 2.63 .095 164 2.63	B214	2.63	.095	164	2.63	
220-T4 2.56 .092 159 2.55	220-T4	2.56	.092	159	2.55	

AVERAGE COEFFICIENT OF THERMAL EXPANSION							
PER	DEGREE CENTIG	RADE	PER	DEGREE FAHRE	NHEIT		
20-100°C	20-200°C	20-300°C	68-212°F	68-392°F	68-572°F		
ALL	0 Y S						
.0000239	.0000248	.0000259	.0000133	.0000138	.0000144		
.0000239	.0000248	.0000259	.0000133	.0000138	.0000144		
.0000220	.0000234	.0000248	.0000122	.0000130	.0000138		
.0000220	.0000234	.0000248	.0000122	.0000130	.0000138		
.0000220	.0000234	.0000248	.0000122	.0000130	.0000138		
.0000220	.0000234	.0000248	.0000122	.0000130	.0000138		
.0000220	.0000234	.0000248	.0000122	.0000130	.0000138		
.0000220	.0000234	.0000248	.0000122	.0000130	.0000138		
.0000194	.0000205	.0000214	.0000108	.0000114	.0000119		
.0000234	.0000245	.0000254	.0000130	.0000136	.0000141		
.0000234	.0000245	.0000254	.0000130	.0000136	.0000141		
.0000239	.0000248	.0000259	.0000133	.0000138	.0000144		
.0000220	.0000234	.0000248	.0000122	.0000130	.0000138		
.0000232	.0000243	.0000259	.0000129	.0000135	.0000144		
.0000220	.0000234	.0000248	-0000122	.0000130	.0000138		
.0000234	.0000245	.0000254	.0000130	.0000136	.0000141		
.0000234	.0000245	.0000254	.0000130	.0000136	.0000141		
ALL	0 Y S						
.0000220	.0000229	.0000239	.0000122	.0000127	.0000133		
.0000207	.0000214	.0000225	.0000115	.0000119	.0000125		
.0000220	.0000229	.0000239	.0000122	.0000127	.0000133		
.0000220	.0000229	.0000239	.0000122	.0000127	.0000133		
.0000220	.0000229	.0000234	.0000122	.0000127	.0000130		
.0000225	.0000234	.0000245	.0000125	.0000130	.0000136		
.0000225	.0000234	.0000245	.0000125	.0000130	.0000136		
.0000225	.0000234	.0000245	.0000125	.0000130	.0000136		
.0000225	.0000234	.0000245	.0000125	.0000130	.0000136		
.0000229	.0000239	.0000248	.0000127	.0000133	.0000138		
.0000229	.0000239	.0000248	.0000127	.0000133	.0000138		
.0000229	.0000239	.0000248	.0000127	.0000133	.0000138		
.0000220	.0000229	.0000239	.0000122	.0000127	.0000133		
.0000239	.0000248	.0000259	.0000133	.0000138	.0000144		
.0000234	.0000245	.0000252	.0000130	.0000136	.0000140		
.0000245	.0000254	.0000265	.0000136	.0000141	.0000147		

densities and expansions

ALLOY	SPECIFIC		DENSITY		
ALLOT	GRAVITY	lb/cu in.	lb/cu ft	g/cu cm	
1	2 A •		- C A S		
A334	2.73	.099	171		
355-T6	2.68	.097	168	2.74	
355-T51	2.68	.097	168	2.68	
356-T6	2.63	.095	164	2.68	
356-T51	2.63	.095	164	2.63	
645	2.94	.106	183	2.63	
1 2 B	. P . D	MAN	T 100 00		
43	2.68	.097		MOLD	
A108	2.77	.100	168	2.68	
B113	2.86	.100	173	2.77	
C113	2.86	.103	178	2.85	
122	2.89	.103	178	2.85	
A 132-T551	2.68	.097	180	2.87	
142	2.77	.100		2.68	
142-T61	2.77	.100	173	2.77	
142-T571	2.77	.100	173	2.77	
B195-T4	2.78	.100	173	2.77	
B195-T6	2.78	.101	175 175	2.79	
A214	2.67	.096		2.79	
355-T6	2.68	.097	166	2.66	
355-T51	2.68	.097	168	2.68	
356-T6	2.63	.095	168	2.68	
			164	2.63	٠,
13	2//		2 C •	DIE	
43	2.66	.096			
81	2.85	.103			
83	2.75	.099			
85	2.78	.101			
93	2.87	.104			-
218	2.53	.091			
A254 315	2.66	.096			- 1
505	2.80	.097		,	
	2.00	.101			

A L L O Y S	AVERAGE COEFFICIENT OF THERMAL EXPANSION								
A L L O Y S		PER DEGREE FAHRENHEIT			PER DEGREE CENTIGRADE				
## A L L O Y S 0000220	72°F	68-572	68-392°F	68-212°F	20-300°C	20-200°C	20-100°C		
.0000220						YS	ALLO		
.0000220	0122	00001	0000127	.0000122	.0000239	.0000229	.0000220		
0.0000220			-		.0000239	.0000229	.0000220		
.0000214 .0000229 .0000234 .0000112 .0000127 .00001 .0000127 .00001 .0000127 .00001 .0000127 .00001 .0000127 .00001 .00001234 .0000124 .0000125 .0000130 .0000136 .00001 .0000136 .00001 .0000125 .0000136 .00001 .0000125 .0000136 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .0000125 .00001 .00001 .0000125 .00001 .000		_			.0000239	.0000229	.0000220		
.0000214 .0000229 .0000234 .0000119 .0000127 .00000000000000000000000000000000000	-	_			.0000234	.0000229	.0000214		
0000234 .0000245 0000252 .0000130 .0000136 .0000 C A S T I N G A L L O Y S .0000220 .0000229 .0000239 .0000122 .0000127 .0000 .0000214 .0000225 .000028 .0000119 .0000127 .0000 .0000220 .0000229 .0000239 .0000122 .0000127 .0000 .0000220 .0000229 .0000234 .0000122 .0000127 .0000 .0000189 .0000200 .0000299 .0000125 .0000130 .00001 .0000225 .0000234 .0000125 .0000130 .00001 .0000225 .0000234 .0000125 .0000130 .00001 .0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000220 .0000229 .0000234 .0000125 .0000130 .00001 .0000220 .0000229 .0000234 .0000122 .0000127 .00001 .0000120 .0000229 .0000239 .0000122 <						.0000229	.0000214		
CASTING ALLOYS .0000220 .0000229 .0000239 .0000122 .0000127 .0000 .0000214 .0000225 .0000238 .0000119 .0000125 .0000 .0000220 .0000229 .0000239 .0000122 .0000127 .0000 .0000220 .0000229 .0000239 .0000122 .0000127 .0000 .0000220 .0000229 .0000234 .0000122 .0000127 .0000 .0000225 .0000234 .0000245 .0000125 .0000111 .00001 .0000225 .0000234 .0000245 .0000125 .0000130 .00001 .0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000220 .0000229 .0000239 .0000122 .0000127 .00001 .0000220 .0000229 .0000239 .0000122 .0000127 .00001 .0000329 .0000248 .0000259 .0000133 .0000138 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000214 .0000229 .0000329 .0000122 .0000127 .00001					0000252	.0000245	.0000234		
0000220 .0000229 .0000239 .0000122 .0000127 .0000 .0000214 .0000225 .0000228 .0000119 .0000125 .0000 .0000220 .0000229 .0000239 .0000122 .0000127 .0000 .0000220 .0000229 .0000234 .0000122 .0000127 .0000 .0000189 .0000200 .0000245 .0000125 .0000130 .00001 .0000225 .0000234 .0000125 .0000130 .00001 .0000225 .0000234 .0000125 .0000130 .00001 .0000225 .0000234 .0000125 .0000130 .00001 .0000220 .0000234 .0000125 .0000130 .00001 .0000220 .0000229 .0000234 .0000125 .0000130 .00001 .0000220 .0000229 .0000239 .0000122 .0000127 .00001 .0000329 .0000248 .0000259 .0000133 .0000127 .00001 .0000214 .0000229 .000	0140	.00001	.0000130		A 1 1 0	ING	CAST		
.0000214	0000000 0000000								
.0000220 .0000229 .0000239 .0000122 .0000127 .0000 .0000220 .0000229 .0000239 .0000122 .0000127 .0000 .0000220 .0000229 .0000234 .0000122 .0000127 .0000 .0000189 .0000200 .0000209 .0000105 .0000111 .0000 .0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000220 .0000234 .0000234 .0000125 .0000130 .00001 .0000220 .0000229 .0000239 .0000122 .0000127 .00001 .0000329 .0000248 .0000259 .0000133 .0000127 .00001 .0000220 .0000229 .0000329 .0000133 .0000127 .00001 .0000214 .0000229 .0000329 .0000122 .0000127 .00001 .000012 .000012 .0000127 .00001 .0000127 <t< th=""><th></th><th>.00001</th><th></th><th></th><th></th><th></th><th>The Control of the London</th><th></th></t<>		.00001					The Control of the London		
.0000220 .0000229 .0000239 .0000122 .0000127 .0000 .0000220 .0000229 .0000234 .0000122 .0000127 .0000 .0000189 .0000200 .0000209 .0000105 .0000111 .0000 .0000225 .0000234 .0000245 .0000125 .0000130 .00001 .0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000220 .0000229 .0000234 .0000125 .0000130 .00001 .0000220 .0000229 .0000239 .0000122 .0000127 .00001 .0000329 .0000248 .0000259 .0000133 .000013 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000124 .0000229 .0000329 .0000122 .0000127 .00001 .0000125		.00001						\dashv	
.0000220)133	.00001:						-	
.0000189 .0000200 .0000209 .0000105 .0000111 .00001 .0000225 .0000234 .0000245 .0000125 .0000130 .00001 .0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000220 .0000229 .0000239 .0000122 .0000127 .00001 .0000329 .0000245 .0000122 .0000127 .00001 .0000220 .0000229 .0000329 .0000133 .0000138 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000214 .0000229 .0000329 .0000122 .0000127 .00001 .0000127 .00001)133	.00001:	.0000127					\rightarrow	
)130	.000013						\dashv	
.0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000220 .0000229 .0000239 .0000122 .0000127 .00001 .0000329 .0000245 .0000122 .0000127 .00001 .0000220 .0000248 .0000259 .0000133 .0000138 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000214 .0000229 .0000234 .0000119 .0000127 .00001 .0000127 .00001	116	.000011						-	
.0000225 .0000234 .0000234 .0000125 .0000130 .00001 .0000220 .0000229 .0000239 .0000122 .0000127 .00001 .0000220 .0000229 .0000245 .0000122 .0000127 .00001 .0000329 .0000248 .0000259 .0000133 .0000138 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000214 .0000229 .0000329 .0000122 .0000127 .00001 .0000214 .0000229 .0000234 .0000119 .0000127 .000010000111	136	.000013	.0000130					\neg	
.0000220 .0000229 .0000239 .0000122 .0000127 .00001 .0000220 .0000229 .0000245 .0000122 .0000127 .00001 .0000329 .0000248 .0000259 .0000133 .0000138 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000214 .0000229 .0000234 .0000119 .0000127 .00001 CASTING ALLOYS .0000127 .00001 .0000127 .00001	130	.000013						-	
.0000220 .0000229 .0000245 .0000122 .0000127 .00001 .0000329 .0000248 .0000259 .0000133 .0000138 .00001 .0000220 .0000229 .0000329 .0000122 .0000127 .00001 .0000214 .0000229 .0000234 .0000119 .0000127 .00001 CASTING ALLOYS .0000121 .00001 .000010	130	.000013	.0000130					\rightarrow	
	133	.000013	.0000127					\dashv	
	136	.000013	.0000127					-	
	144	.000014	.0000138					\rightarrow	
	133	.000013	.0000127					\dashv	
CASTING ALLOYS	133	.000013	.0000127	.0000122				\rightarrow	
	130	.000013	.0000127	.0000119	.0000234			4	
	CASTING ALLOYS								
	119	.000011		.0000111				\rightarrow	
	133	.000013					_	\rightarrow	
	-	.000013						\dashv	
		.000013					_	+	
						_		\neg	
		.000012							
								4	
	_						_	+	
000012400001	134	.000013		.0000124	• • • •		••••	_	

A L U M I N U M 55

thermal, electrical conductivity

ALLOY AND	THERMAL CONDUCTIVITY AT 100°C (212°F)			
TEMPER	cal/cm/cm²/°C/sec	Btu/in./ft²/°F/hr		
1 3	• W R	OUGHT		
2 5 -O	.54	1550		
2S-H	.52	1500		
3S-O	.45	1300		
3S-1/4H	.39	1150		
3S-1/2H	.38	1100		
3S-H	.37	1050		
14S-O	.45	1300		
14S-T	.37	1050		
175-0	.41	1200		
17S-T	.28	800		
A17S-T	.37	1050		
18S-O	.45	1300		
18S-T	.37	1050		
24S-O	.45	1300		
24S-T	.28	800		
25S-T	.37	1050		
32S-O	.37	1050		
32S-T	.32	950		
A51S-O	.50	1450		
A51S-W	.41	1200		
A51S-T	.41	1200		
52S-O	.37	1050		
52S-H		1050		
56S-O	.28	800		
56S-H	.26	750		
R301-O	.45	1300		
R301-W	.37	1050		
R301-T	.37	1050		
R303-T	.28	800		
R317-O	.41	1200		
R317-T	.28	800		
R353-O	.41	1200		
R353-W	.37	1050		
R353-T	.37	1050		
R361-O	.41	1200		
R361-W	.37	1050		
R361-T	.37	1050		

ELECTRICAL CONDUCTIVITY AT 20°C (68°F) percent of annealed copper				ELECTRICAL RESISTIV	ITY AT 20°C (68°F)		
equal volume		equal volume equal weight		microhm/cu cm	ohm/mil-ft		
A	LL	0	Y S				
	59		195	2.9	18		
-	57		185	3.0	18		
	50		160	3.4	21		
	42		135	4.1	25		
_	41		135	4.2	25		
	40		130	4.3	26		
_	50		160	3.4	21		
	40		130	4.3	26		
	45		145	3.8	23		
	30		95	5.7	35		
	40		130	4.3	26		
	50		160	3.4	21		
	40		130	4.3	26		
	50		50		160	3.4	21
30			95	5.7	35		
	40		130	4.3	26		
	40		130	4.3	26		
	35		35		115	4.9	30
	55		185	3.1	19		
	45		150	3.8	23		
	45		150	3.8	23		
	40		135	4.3	26		
	40		135	4.3	26		
	29		100	5.9	36		
	27		90	6.4	38		
	50		160	3.4	21		
	40		130	4.3	26		
	40		130	4.3	26		
	30		95	5.7	35		
	45		145	3.8	23		
	30		95	5.7	35		
	45		150	3.8	23		
	40		130	3.4	26		
	40		130	3.4	26		
	45		150	3.8	23		
	40		130	3.4	26		
	40		130	3.4	26		

A L U M I N U M 57

thermal, electrical conductivity

ALLOY AND	THERMAL CONDUCTIVITY AT 100°C (212°F)			
TEMPER	cal/cm/cm²/°C/sec	Btu/in./ft²/°F/hr		
1 4 A	• SAND	- CASTING		
43	.34	1000		
45	.29	850		
108	.29	850		
112	.28	800		
122	.32	950		
122-T2	.38	1100		
122-T61	.31	900		
142	.33	950		
142-T2	.40	1150		
142-T61	.35	1000		
195-T4	.33	950		
195-T62	.34	1000		
212	.28	800		
214	.32	950		
B214	.35	1000		
220-T4	.20	600		
A334	.29	850		
335-T6	.33	950		
355-T51	.40	1150		
A355-T51	.31	900		
356-T4	.36	1050		
356-T6	.36	1050		
356-T51	.39	1150		
645	.31	900		
14B •	PERMANE	NT-MOLD		
43	.38	1100		
A108	.34	1000		
B113 C113	.28	800		
122	.26	750		
A132-T551	.32 .28	950		
142	.32	800		
142-T571	.32	950 950		
B195-T4	.33	950		
B195-T6	.45	1300		
355-T6	.36	1050		
356-T6				

ELECTRICAL CONDUCTIVE percent of annotation	ITY AT 20°C (68°F) ealed copper	ELECTRICAL RESISTIVITY AT 20°C (68°F)		
equal volume	equal weight	microhm/cu cm	ohm/mil-ft	
ALLOYS				
37	125	4.7	28	
31	105	5.6	33	
31	100	5.6	33	
30	95	5.8	35	
34	105	5.1	31	
41	130	4.2	25	
33	105	5.2	31	
36	120	4.8	29	
44	145	3.9	24	
37	120	4.7	28	
35	115	4.9	30	
37	120	4.7	28	
30	95	5,8	35	
35	120	4.9	30	
38	130	4.5	27	
21	75	8.2	49	
31	100	5.6	33	
36	120	4.8	29	
43	145	4.0	24	
32	105	5.4	32	
39	130	4.4	27	
39	130	4.4		
43	145	4.0	27	
33	100	5.2	24 31	
		3.2	31	
CASTING	ALLOY	S		
41	135	4.2	25	
37	120	4.7	28	
29	90	6.0	36	
27	85	6.4	38	
34	105	5.1	31	
29	95	6.0	36	
34	110	5.1	31	
35	110	5.1	31	
50	160	4.9	30	
39	130	3.5 4.4	21 27	
41	140	4.4	27	
- Annual Control of the Control of t		7.2	23	

P

自

Þ

A L U M I N U M 59

thermal, electrical conductivity

	1 4 C	• D I E		
ALLOY	THERMAL CONDUCTIVITY AT 100°C (212°F)			
TEMPER	cal/cm/cm²/°C/sec	Btu/in./ft²/°F/hr	7	
13	.33	958		
43	.38	1105		
81	.27	784	1	
83	.28	814	1	
85	.27	784		
93	.25	726		
218	.24	697	1	
A254	.18	523		
315	.42	1218	T	
505	.31	900		

thermal treatments

1.5	• A	N N E A I	L N C
		N N E A L	
ALLOY	SOAKING TEMPERATURE °F	SOAKING TIME Hours	COOLING RATE * *
25		Not Heat Treated	
35		Not Heat Treated	
145	775 ± 25	2	В
17\$	775 ± 25	2	В
245	775 ± 25	2	В
Pureclad 24S	775 ± 25	2	В
52\$		Not Heat Treated	
R301	775 ± 25	2	В
R303	685 ± 15	2	C
R317	775 ± 25	2	В
R353	775 ± 25	2	В
R361	77.5 ± 2.5	2	В

^{*} Maximum drawability can not be obtained without mechanical working and subsequent re-annealing **Annealing cooling rates:

B — Furnace cool 50°F hr to 500°F.

A — Air cool.

C — Air cool to 450°F; soak 4 hrs. at 450° F.

CAST	A S T I N G A L L O Y S		
		ALLO	r s
	IVITY AT 20°C (68°F) nealed copper	ELECTRICAL RESISTIV	ITY AT 20°C (68°F)
equal volume	equal weight	microhm/cu cm	ohm/mil-ft
36		4.79	28.8
41		4.21	25.3
28		6.16	37.0
30		7.76	34.6
28		6.16	37.0
26		6.64	39.9
25		6.90	41.5
18		6.58	57.6
45		3.84	23.1
33		5.00	0.1

CYCLES		
	TO REMOVE COLD WORK	
SOAKING TEMPERATURE °F	SOAKING TIME Hours	COOLING RATE * *
650 ± 15	V ₂ -2	A or B
750 ± 15	1/2-2	A or B
650 ± 10	1/2-2	Α
650 ± 10	2	Α
650 ± 10	2	A
650 ± 10	2	Α
650 ± 10	2	A or B
650 ± 10	2	A
685 ± 15	2	C
650 ± 10	2	A
650 ± 10	2	A or B
650 ± 10	2	A or B

A L U M I N U M 61

thermal treatments

16 •	HEA	TRE	TING
	SOLUTION HEAT TREATMENT		
ALLOY	SOAKING TEMPERATURE °F	QUENCH	TEMPER DESIGNATION ϕ
25		Not Heat Treated	
3\$		Not Heat Treated	
145	930-945	Cold Water * *	W
17S	930-950	CoÎd Water	None
18 S	950-970	Water or Oil	W
245	910-930	Cold Water	None
Pureclad 24S	910-930	Cold Water	None
25\$	955975	Water or Oil	W
32\$	950–970	Water or Oil	W
A 51S	960-980	Water or Oil	W
52S		Not Heat Treated	
R301	930-950	Cold Water	W
R303 *	810-840	Cold Water * *	None
R317	930-1950	Cold Water	None
R353	960-980	Cold Water	W
R361	960-980	Cold Water	W

When in the stable condition.
 Precipitation treatment should not be started until at least 24 hours after completion of solution heat treatment.
 *Hot water for extra heavy forgings.

PDS	CIPITATION TREATMENT (AGING)	
AGING TEMPERATURE °F	AGING TIME Hours	TEMPER DESIGNATION
	Not Heat Treated	
	Not Heat Treated	
$ \begin{cases} 360 \pm 5 \\ 350 \pm 5 \\ 340 \pm 5 \\ 320 \pm 5 \end{cases} $	5 8 10 18	Ţ
Room	96-120	T
340 ± 5	10	T
Room	96-120	T
Room	96-120	T
340 ± 5 290 ± 5	12 18	T
340 ± 5	12	Т
350 ± 5 320 ± 5	8 18	T
	Not Heat Treated	
350 ± 5 320 ± 5	8 18	T
315 ± 5 275 ± 5	8 25	T315 T275
Room	96-120	Т
320 ± 5 350 ± 5	18 8	T
320 ± 5 350 ± 5	18	T

Cutting sheets from a coil in a Reynolds foil plant

chemical applications

In the chemical and associated industries, many uses are found for aluminum. A few of the materials handled or processed with some information on the application are included in the following list:

Acetanilide: Acetylating tanks.

Acetic acid: Condensers, vacuum cleaners, vacuum receivers, storage tanks, tank cars, shipping drums, piping, fittings, stills.

Acetic Anhydride: Storage tanks, shipping containers.

Alcohol: Storage tanks, culture of fermentation tanks are used in the manufacture of the higher alcohols.

Aluminum Sulfate (alum): Cooling trays.

Ammonia and Ammonium Hydroxide: Pipe and fittings.

Ammonium Bicarbonate: Subliming apparatus.

Ammonium Nitrate: Neutralizing tanks, crystallizers.

Beer: Yeast tubs, yeast culture tanks, settling tubs, fermenters, carbonating tanks, skimmers, storage and government tanks, filters, pipe fittings, insulation, barrels, brew kettles, coolers, etc.

Benzaldehyde: Shipping containers.

Benzoic Acid: Subliming apparatus.

Benzene: Distilling equipment.

Butyric Acid: Shipping containers.

Carbolic Acid: Shipping containers (for the solid).

Carbon Dioxide: Mixing and filling equipment.

Citric Acid: Fermenting tanks, solution tanks, piping.

Coal: Aluminum hopper cars for high-sulfur coals.

Dairy Products: A wide variety of aluminum equipment used for handling and processing.

Distilled Water: Storage tanks and piping systems.

Dyes and Pigments: Aluminum equipment is used in the preparation of certain dyes to avoid discoloration. (Aluminum compounds are colorless.)

Dynamite: Dryers, mixers, packing machine parts. (Aluminum is non-sparking.)

Edible Fats and Oils: Equipment for processing, purifying, deodorizing and transportation.

Essential Oils: Shipping containers.

chemical applications

Ethyl Alcohol: See alcohol.

Ethylene Glycol: Processing apparatus.

Fatty Acids: Solidifying trays, storage tanks, condensers. Aluminum equipment may be used in all operations subsequent to distillation.

Formaldehyde: Distillation equipment, drums, storage vessels.

Food Products: Aluminum is widely used for processing food products, such as gelatin, fruit juices, dairy products, beverages, preserves, jellies, edible oils and fats, soups, cereals, sugar, etc.

Fuels and Oils: Shipping and storage containers, truck tanks, tank cars, aircraft tanks, pipe lines.

Gasoline: See fuels.

Gelatin: See foods.

Gluconic Acid: Fermenting tanks, solution tanks, piping.

Glyceryl Phosphate: Containers.

Guncotton: Produced in equipment having aluminum fume ducts, ventilating ducts, washing tanks and centrifugal extractors.

Hydrocyanic Acid: Shipping containers.

Hydrogen Peroxide: Shipping containers, storage equipment.

Hydrogen Sulfide: Ventilating hoods and ducts.

Lacquers: Shipping containers.

Lactic Acid: Fermenting equipment.

Methyl Saliculate: Shipping containers.

Milk: See dairy products.

Naval Stores: Stills, condensers, filters, storage tanks, tubing, turpentine cups, kettles, shipping containers.

Nitric Acid (80% or above): Shipping containers, tanks, pipe lines.

Nitro-glycerin: Storage and shipping containers.

Nitrous Gases: Covers for nitrating tanks, fume hoods, ventilating ducts.

Oils: See Edible Fats and Oils or Fuels and Oils.

Oleic Acid: See Fatty Acids.

Oxalic Acid: Aluminum processing equipment has been reported.

Paper: Piping for pure water and for sulfur dioxide, Fourdrinier rolls.

Paraldehyde: Shipping containers.

Petroleum (Industry): Roofing, paint, foil, condensers, heat exchanges, storage tanks, truck tanks, etc.

Phenol: See carbolic acid.

1.000

-Eme

.....

Eme*

E into

L me

15 mm

N. BER

2.000

T

E me

E 100

E mi

E me

Em

Em

Potassium Chlorate: Drying trays.

Propylene Glycol: Processing apparatus.

Prussic Acid: See Hydrocyanic Acid.

Rayon (Industry): Storage tanks for processing chemicals, separator blades, reels, reel frames, thread guides, tension rods, spin buckets, skein arms, spools, piping, ventilating and heating ducts, etc.

Refrigerants: Aluminum equipment is used for handling ammonia, sulfur dioxide, F-12 (Freon) and inhibited brines.

Rosin: See Naval Stores.

Rubber (Industry): Molds, innertube mandrels, conduit, pans for coagulating latex, vulcanizing pans, latex cups, shipping containers for latex; pans, trays and tanks used in manufacture of hard rubber.

Sewage: Numerous applications.

Silk: Soaking machines for removing gums and resins, bleaching equipment.

Soaps: Collapsible tubes.

Sodium Chloride: Aluminum equipment is used for handling inhibited brine in refrigerating systems.

Stearic Acid: See Fatty Acids.

Sulfur: Hopper cars, piping.

Sulfur Dioxide: Ventilating equipment for handling fumes.

Sugar: Refining equipment.

Textiles: See Rayon, Silk, Wool, Dyes and Pigments.

Tooth Pastes and Powders: Cans and collapsible tubes.

Trinitrotoluene (T.N.T.): Melting equipment.

Turpentine: See Naval Stores.

Ultramarine (Paint Pigment): Trays for drying.

Varnish: Kettles.

Water: Piping systems, tanks, etc.

Wine: Piping.

Wool: Bleaching equipment.

.

3 · sheet and plate

70 REYNOLDS

definitions: Aluminum sheet and plate are defined as follows:

SHEET is a solid section having a thickness .006 to .249 inch inclusive; having two parallel surfaces brought to final dimension by rolling; having two longitudinal edges brought to final width by a slitting or shearing; and having two transverse edges brought to final length by shearing; furnished in flat lengths or in coils.

Flat Sheet is furnished in flat lengths and is usually sheared to width. It can be slit to width, however, if closer width tolerances are desired.

Coiled Sheet is furnished in coils and is always slit to width.

1

1

1

3

3

PLATE is a solid section having a thickness .250 inch or greater; having two parallel surfaces brought to final dimension by rolling; and having two longitudinal and two transverse edges brought to final width and length by shearing or sawing; furnished in flat lengths.

alloys, tempers, and sizes: The range of commercial sizes of sheet produced by Reynolds and standard sizes of sheet and plate are as shown on pages 72-75.

identification: If requested, flat sheet and plate will be identified by marking the alloy, temper, thickness, and other information in rows of constantly recurring symbols from one edge to the opposite edge with a suitable marking fluid.

packing: Flat sheet and plate of standard sizes are packed in cases usually weighing not less than 500 pounds net or, when requested, on skids. The weight of the skids, generally between 5000 and 20,000 pounds, depends on the capacity of the purchaser's handling equipment.

Sheets are oiled or interleaved with paper, depending on the size, alloy, temper, and destination.

ordering data: All orders for aluminum sheet and plate should include the following:

Quantity (in pounds, feet, or number of pieces)
Alloy and Temper
Thickness (in decimal fractions of an inch)
Length and Width (width only for coiled sheet)

Orders for coiled sheet should indicate the preferred inside and outside diameters and the minimum and maximum weight of coils.

commercial sizes*

1 7	· F	L A	T S	HEET					
THICKNESS Inches	STANDARD WIDTH Inches		IMUM G LIMITS LENGTH Inches	AVAILABLE- TEMPERS					
25 and 35									
.0060007 .0075009 .0095011 .0120014 .0150016 .0170018 .0190029 .0300128 .1290162 .1630249	18 24 24 24 36 36 36 48 48	24 30 36 42 48 48 48 54 54	144 144 144 144 144 240 240 240 240	0, ½H,¾H,H 0, ½H,¾H,H 0, ½H,¾H,H 0, ½H,¾H,H 0, ½H,¾H,H 0, ¼H,½H,¾H,H 0, ¼H,½H,¾H,H 0, ¼H,½H,¾H,H 0, ¼H,½H,¾H,H 0, ¼H,½H,¾H					
		52S							
.0100011 .0120014 .0150016 .0170018 .0190029 .0300037 .0380128 .1290162 .1630249	16 24 24 24 36 48 48 48	24 30 36 36 42 48 54 54	144 144 144 144 220 220 220 220 220	0,					
	245 aı	nd Pure	clad 24						
.0100014 .0150018 .0190024 .0250029 .0300037 .0380249	24 36 36 48 48 48	28 36 42 48 48 54	144 144 144 144 220 220	0, T 0, T 0, T 0, T 0, T					
	R301,	R353, a	nd R361						
.0100014 .0150018 .0190029 .0300037 .0380249	24 36 36 48 48	28 36 42 48 54	144 144 144 144 220	0, W, T 0, W, T 0, W, T 0, W, T 0, W, T					
Refer to pages 7 Maximum diame sheet. Maximum length 52S sheet in 341 * Subject to change	eter of circle that can b I and H ten	es is same pe stretcher- apers canno	as maximur	m width of sheared					

18 • (DILED	SHEET
18 • (DILED	SHEET
THICKNESS	MAXIMUM	AVAILABLE
Inches	WIDTH	TEMPERS
inches	Inches	
2S and	1 3S — Mill Finis	h *
.0060007	18	0, 3/4H, H
.0075009 .0095011	24 24	0, 34H, H 0, ½H, 34H, H
.0120016 .0170018	36 36	0 ½H ¾H H
.0190053	48	0, ¼H, ½H, ¾H, H 0, ¼H, ½H, ¾H, H
.0540085	48 48	0, ¼H, ½H, H
	one Side Bright A	
.0060007	ne side bright r	
.0075009	24	0, 34H, H
.0095011	24 36	0, ½H, ¾H, H 0, ½H, ¾H, H
.0170018	36	0 1/4 H. 1/2 H. 3/4 H. H
.0190053 .0540085	48 48	0, ¼H, ½H, ¾H, H 0, ¼H, ½H, H
	ndard One Side	-1 -1101/21 2101
.0060008	18	О, Н
.0085011	24	10. H
.0120021	36 48	о́, о́, Н
52\$	- Mill Finish *	
.007	12	0, ³ / ₄ H, H
.0075009	16 16	0, 34H, H 0, ½H, 34H, H
.0120016	24	0 1/2 H 3/4 H
.0170023 .0240053	36 48	0, ¼H, ½H, ¾H, H 0, ¼H, ½H, ¾H, H
.0540085	48	0, ¼H, ½H, H
.0860102	48	0, ¼H, H
	Side Bright Mill	
.007	12 16	0, H
.0120016	24	10, H
.0170023 .0240085	36 48	0, H 0, H
Maximum diameter of cir	cles is 24 inches.	V
* MILL FINISH is an uncont Unless otherwise specified,	rolled finish varying between sheet will be furnished	veen bright and dull.
† ONE SIDE BRIGHT MILL F	NISH sheet has a polishe	ed appearance with a
† ONE SIDE BRIGHT MILL F high degree of surface lu may vary from sheet to s distinctly brighter than the	sheet, or within a sheet,	but one side will be
STANDARD ONE SIDE BR	IGHT FINISH is much bri	ghter than One Side
STANDARD ONE SIDE BR Bright Mill Finish, one sid and depth of brightness the	e of the sheet having a at is uniform from sheet	high degree of luster to sheet and within a
sheet_		

43

00000

A L U M I N U M 73

standard sizes*

1 9	•	F L	A T	S H	EET
Thickness Inch	25-0	2S-1/2H	35-0	3S-1/2H	525-0
.012	24 x 72	24 x 72			
.016	24 x 72	24 x 72	24 x 72	24 x 72	
.020	24 x 72	24 x 72	24 x 72	24 x 72	36 x 96
.025	24 x 72	24 x 72 36 x 96	24 x 72	24 x 72	36 x 96
.032	24 x 72 36 x 96	24 x 72 36 x 96 48 x 144	24 x 72 36 x 96	36 x 96 48 x 144	48 x 144
.040	24 x 72 36 x 96	24 x 72 36 x 96 48 x 144	24 x 72 36 x 96	36 x 96 48 x 144	48 x 144
.051	24 x 72 36 x 96	24 x 72 36 x 96 48 x 144	24 x 72 36 x 96	36 x 96 48 x 144	48 x 144
.064	24 x 72 36 x 96	24 x 72 36 x 96 48 x 144	24 x 72 36 x 96	36 x 96 48 x 144	48 x 144
.072					
.081	24 x 72 36 x 96	24 x 72 36 x 96 48 x 144	24 x 72 36 x 96	36 x 96 48 x 144	48 x 144
.091	24 x 72 36 x 96	24 x 72 36 x 96 48 x 144	24 x 72 36 x 96	36 x 96 48 x 144	48 x 144
.102	24 x 96 36 x 72	24 x 72 36 x 96 48 x 144	24 x 72 36 x 96	36 x 96 48 x 144	48 x 144
.125	24 x 72 36 x 96	24 x 72 36 x 96 48 x 144	24 x 72 36 x 96	36 x 96 48 x 144	48 x 144
.156					48 x 144
.188	•••••	24 x 72 36 x 96 48 x 144	• • • • • •	36 x 96 48 x 144	48 x 144
.250				36 x 96 φ 48 x 144 φ	

 $[\]phi$ Indicates F (As-Rolled) Temper. *Subject to change without notice.

ANI	D P	L A	T E		
52S-1/4H	52S-1/2H	R353 and R361 O. W, and T Tempers	24S O and T Tempers	Pureclad 24S O and T Tempers	R301 O, W, and T Tempers
36 x 96	36 x 96		36 x 144	36 x 144	36 x 144
36 x 96	36 x 96	36 x 144	36 x 144	48 x 144	48 x 144
36 x 96 48 x 144	48 x 144	48 x 144	48 x 144	48 x 144	48 x 144
36 x 96 48 x 144	48 x 144	48 x 144	48 x 144	48 x 144	48 x 144
36 x 96 48 x 144	48 x 144	48 x 144	48 x 144	48 x 144	48 x 144
36 x 96 48 x 144	48 x 144	48 x 144	48 x 144	48 x 144	48 x 144
		48 x 144	48 x 144	48 x 144	48 x 144
36 x 96 48 x 144	48 x 144	48 x 144	48 x 144	48 x 144	48 x 144
36 x 96 48 x 144	48 x 144	48 x 144	48 x 144	48 x 144	48 x 144
36 x 96 48 x 144	48 x 144	48 x 144	48 x 144	48 x 144	48 x 144
36 x 96 48 x 144	48 x 144	48 x 144	48 x 144	48 x 144	48 x 144
36 x 96 48 x 144	48 x 144	48 x 144	48 x 144	48 x 144	48 x 144
36 x 96 48 x 144	48 x 144	48 x 144	48 x 144	48 x 144	48 x 144
	48 x 144	48 x 144	48 x 144	48 x 144	48 x 144

A L U M I N U M 75

composition

2	20 • SPECIFIED CHEMICAL								
AI	ιογ	SILI	CON	IRON	со	PPER	MAN	GANESE	
ALLOT		Min	Max	Max	Min	Max	Min	Max	
2	25			1.0 *		.20	1.	.10	
3:	S		.60	.70		.20	1.0	1.5	
17	5		.80	1.0	3.5	4.5	.40	1.0	B
24	S		.50	.50	3.8	4.9	.30	.90	
Pure-	Core		.50	.50	3.8	4.9	.30	.90	
245	Cladding			*.70		.10		.05	
525				*.45		.10		.10	
R301	Core	.50	1.2	1.0	3.9	5.0	.40	1.2	W
	Cladding			*.70		.10		.05	
R353		45%-6 of Magr	55% nesium	.35		.10		.10	1
R361		.40	.80	.70	.15	.40		.15	

^{*} Silicon plus iron.

	(0 1	M P O	SIT	10	N				
ì	MAGN	ESIUM	CHROM	NIUM	ZINC	TITAN- IUM	EACH	RS TOTAL	
	Min	Max	Min	Max	Max	Max	Max	Max	ALUMINUM
					.10		.05	.15	99.0 min.
					.10		.05	.15	Remainder
	.20	.80		.25	.10		.05	.15	Remainder
	1.2	1.8		.25	.10		.05	.15	Remainder
	1.2	1.8		.25	.10		.05	.15	Remainder
					.10				99.3 min.
	2.2	2.8	.15	.35	.10		.05	.15	Remainder
	.20	.80		.25	.25		.05	.15	Remainder
			-:		.10				99.3
	1.1	1.4	.15	.35	.25		.05	.15	Remainder
	.80	1.2		.35	.10	.15	.05	.15	Remainder

specified mechanical properties

21 • NON-H	EAT TREATABLE
ALLOY AND TEMPER	TENSILE STRENGTH Lb/Sq In. Minimum
	2\$
25-0	15,500 *
2S-1/4H	14,000
2S-1/2H	16,000
2S-¾H	19,000
2S-H	22,000
3	S
35-0	19,000 *
3S-¼H	17,000
3 S -½H	19,500
3S-¾H	24,000
3S-H	27,000
5	2S
525-0	31,000*
52S-1/4H	31,000
52S-1/2H	34,000
52S-¾H	37,000
52S-H	39,000

^{*} Non-heat treatable alloy plate is produced in only the F (as-fabricated or hot-rolled) temper, for which mechanical properties are not specified. Mechanical test specimens are taken parallel to direction of rolling from flat and coiled non-heat treatable alloy sheet in the 1/4H and 1/2H tempers.

	(C O	M M C) N)	ALL	0 Y S						
			ELONGATI	ON IN 2 INCH	ES—Percent	Minimum					
	.006"-	.008"-	.013"-	.020"-	.032 <i>"</i> - .050 <i>"</i>	.051 <i>"</i> - .113 <i>"</i>	.114"-	.162"-			
3	25										
	15	15	15	20	25	30	30	30			
			3	4	6	8	9	9			
		1	2	3	4	5	6	6			
,	1	1	1	2	3	4	4				
	1	1	1	2	3	4	4				
3											
3				3:	S						
,	16	18	20	20	23	25	25	25			
•			3	4	5	6	7	8			
3		1	2	3	4	5	6	7			
	1	1	1	2	3	4	4				
	_1	1	1	2	3	4	4				
3											
9				52	!S						
		15	15	18	20	20	20	20			
			4	5	5	7	9	9			
		3	3	4	4	6	7	7			
		3	3	3	4	4	4				
3		3	3	3	4	4	4				
-											

specified mechanical properties

ALLOY THICKNESS AND Inches		Lb/S	STRENGTH Lb/Sq In. Minimum		
	-	ULTIMATE	YIELD	Percent Minimum	
		17 S			
175-0	.010032 .033064 .065128 .129249 .250500	*35,000 *35,000 *35,000 *35,000 *35,000		12 12 12 12 12	
17 S-T	.010020 .021040 .041128 .129249 .250500	58,000 58,000 58,000 58,000 58,000 58,000	*34,000 *34,000 *34,000 *34,000 *34,000	15 †17 18 15 12	
	.501-1.000 1.001-1.500 1.501-2.000 2.001-3.000	58,000 55,000 55,000	*34,000 *34,000 *34,000	9 8 6	
17 S * :	1.001-1.500 1.501-2.000	58,000 55,000 55,000 et and sheet hea	±34,000 ±34,000	8 6	
17 S * :	1.001-1.500 1.501-2.000 2.001-3.000 Maximum 33,000 for coiled shee	58,000 55,000 55,000 et and sheet hea ation for sheet le	±34,000 ±34,000	8 6	

ALLOY	THICKNESS Inches	STRENGTH Lb/Sq In. Minimum		ELONGA- TION IN 2 INCHES			
TEMPER		ULTIMATE	YIELD	Percent Minimun			
24\$							
24S-T Coiled	.010020 .021040 .041051 .052064	62,000 62,000 62,000 62,000	40,000 40,000 40,000 40,000	12 15 15			
24S-RT	.020031 .032036 .037064 .065128 .129188 .189249	69,000 69,000 69,000 69,000 69,000 69,000	52,000 52,000 52,000 52,000 52,000 52,000 52,000	10 11 12 12 12 12			
	PURI	ECLAD 24S					
Pureclad 245-O	.010032 .033063 .064500	*33,000 *33,000 *34,000	••••	8 10 12			
Pureclad 245-T Flat	.010020 .021040 .041063 .064128 .129249 .250500	*59,000 *59,000 *59,000 €62,000 €62,000 €62,000	+39,000 +39,000 +39,000 +40,000 +40,000	10 12 13 13 11			
Comp.	.010020 .021040 .041063	56,000 56,000 56,000 60,000	37,000 37,000 37,000 38,000	11 14 15 13			
Pureclad 24S-T Coiled	.064	00,000					

A L U M I N U M 81

specified mechanical properties

2 3	• H E	AT T	REAT	ABLE						
ALLOY AND TEMPER	AND		STRENGTH Lb/Sq In. Minimum							
		ULTIMATE	YIELD	Percent Minimum						
PURECLAD 24S										
Pureclad 24S-RT	.020031 .032040 .041063 .064128 .129188 .189249 .250500	62,000 62,000 62,000 66,000 66,000 66,000	48,000 48,000 48,000 50,000 50,000 50,000	8 9 10 10 10 9						
		R301								
R301-O	Up to .124 .125249 .250500	*30,000 *30,000 *30,000	• • • •	16 16 16						
★R301-W	Up to .039 .040124 .125249 .250500	56,000 57,000 57,000 57,000	37,000 37,000 37,000 37,000	14 15 15						
★R301-T	Up to .039 .030050 .051124 .125249 .250500	63,000 64,000 64,000 64,000	56,000 57,000 57,000 57,000 57,000	7 8 8 8 8						
R301 * Mc	zximum									

*R301 sheet and plate heat treated by the purchaser shall con-	TEMPER	Lb/S	NGTH q In. mum	ELONGA- TION IN 2 INCHES
form to mechanical properties shown at		YIELD	ULTIMATE	Minimum
right,	W	55,000	34,000	15
	T	62,000	54,000	8

ALLOY AND TEMPER	THICKNESS Inches	lb/	ENGTH Sq In.	ELONGA- TION IN 2 INCHES			
		ULTIMATE	YIELD	Minimum			
		R353					
R353-O	.010032 .033064 .065128 .129258 .259500	*19,000 *19,000 *19,000 *19,000 *19,000		20 22 22 25 25			
R353-W	.010032 .033050 .051258 .259500	28,000 28,000 28,000 28,000	16,000 16,000 16,000 16,000	12 15 20 18			
R353-T	.010031 .032036 .037064 .065258 .259500	35,000 35,000 35,000 35,000 35,000	28,000 28,000 28,000 28,000 28,000	8 10 10 10			
R353 *	Maximum.						
		R361					
R361-O	.010020 .021128 .129249 .250500	*22,000 *22,000 *22,000 *22,000	••••	14 16 18 18			
R361-W	.010020 .021249 .250500	30,000 30,000 30,000	16,000 16,000 16,000	14 16 18			
R361-T	.010020 .021036 .037064 .065128 .129249 .250500	42,000 42,000 42,000 42,000 42,000 42,000	35,000 35,000 35,000 35,000 35,000 35,000	8 10 10 10 10			

bend radii

2 4	AP	P R O	XIN	ATE	RA	DII					
ALLOY		APPRO	XIMATE THIC	KNESS (T)—	Inches						
TEMPER	.016	.032	.064	.125	.188	.250					
2\$											
25-O 25-¼H 25-½H 25-¾H 25-H	0 0 0 0 0-1T	0 0 0 0 1/2 T-1 1/2 T	0 0 0 0-1T 1T-2T	0 0 0 ½T-1½T 1½T-3T	0 0-1T 0-1T 1T-2T 2T-4T	0 0-1T 0-1T 1½T-3T 2T-4T					
3\$											
35-O 35-¼H 35-½H 35-¾H 35-H	0 0 0 0-1T ½T-1½T	0 0 0 0-1T 1T-2T	0 0 0 1/2T-1/2T 1/2T-3T	0 0 0-1T 1T-2T 2T-4T	0 0-1T 0-1T 1½T-3T 3T-5T	0 0-1T ½T-1½T 2T-4T 4T-6T					
			17 S								
17S-O 17S-T *	0 1T-2T	0 1½T-3T	0 2T-4T	0 3T-5T	0-1T 4T-6T	0-1T 4T-6T					
			245			20					
24S-O † 24S-T † * 24S-RT †	0 1½T-3T 2T-4T	0 2T-4T 3T-5T	0 3T-5T 3T-5T	0 4T-6T 4T-6T	0-1T 4T-6T 5T-7T	0-1T 5T-7T 6T-10T					

- * immediately after quenching, these alloys can be formed over appreciably smaller radii.
- † Pureclad 24S can be bent over slightly smaller radii than the corresponding tempers of the unclad material.

The above bend radii data are intended only as a guide in the selection of the minimum radius for a given material, or the hardest alloy and temper for a given radius. The minimum permissible radius varies with the nature of the forming operation, the type of forming equipment, and the design and condition of tools, and can only be determined accurately by actual trial under contemplated conditions of fabrication.

	FOR	9 0	° (0 L D	ВЕ	N D S	5				
	ALLOY		APPRO	XIMATE THI	KNESS (T)—	-Inches					
	TEMPER	.016	.032	.064	.125	.188	.250				
	52 S										
	52S-O 52S-¼H 52S-½H 52S-¾H 52S-H	0 0 0 0-1T ½T-1½T	0 0 0 ½T-1½T 1T-2T	0 0 0-1T 1T-2T 1½T-3T	0 0-1T ½T-1½T 1½T-3T 2T-4T	0 0-1T 1T-2T 2T-4T 3T-5T	0 ½T-1½T 1½T-3T 2T-4T 4T-6T				
				R301							
	R301-O R301-W R301-T	0 1T-2T 2T-4T	0 1½T-3T 3T-5T	0 2T-4T 3T-5T	0 3T-5T 4T-6T	0-1T 4T-6T 5T-7T	0-1T 4T-6T 6T-8T				
3				R353							
	R353-O R353-W R353-T	0 0-1 T ½ T-1 ½ T	0 ½T-1½T 1T-2T	0 1T-2T 1½T-3T	0 1½T-3T 2T-4T	0 2T-4T 3T-5T	0 2T-4T 4T-6T				
				R361							
	R361-O R361-W R361-T	0 0-1T 0-1T	0 0-1T ½T-1½T	0 ½T-1½T 1T-2T	0 1T-2T 1½T-3T	0-1T 1½T-3T 2T-4T	0-1T 2T-4T 2T-4T				

The above bend radii data are intended only as a guide in the selection of the minimum radius for a given material, or the hardest alloy and temper for a given radius. The minimum permissible radius varies with the nature of the forming operation, the type of forming equipment, and the design and condition of tools, and can only be determined accurately by actual trial under contemplated conditions of fabrication.

commercial tolerances

2 5	• s 1	R O	N G	A	LLO	YS	
WIDTH	Over		18	36	48	54	
Inches	Thru	18	36	48	54	60	
THICKN		тн	IICKNE	ss to	LERAN	ICES —	
0.007-0.	010	.001	.0015				
0.011-0.	.017	.0015	.0015			• • • •	
0.018-0.	.028	.0015	.002	.0025			
0.029-0.	.036	.002	.002	.0025			
0.037-0.	.045	.002	.0025	.003	.004	.005	
0.046-0.	.068	.0025	.003	.004	.005	.006	
0.069-0.	.076	.003	.003	.004	.005	.006	
0.077-0.	.096	.0035	.0035	.004	.005	.006	
0.097-0.	108	.004	.004	.005	.005	.007	
0.109-0.	140	.0045	.0045	.005	.005	.007	
0.141-0.	172	.006	.006	.008	.008	.009	
0.173-0.	203	.007	.007	.010	.010	.011	
0.204-0.	249	.009	.009	.011	.011	.013	
0.250-0.	320	.013	.013	.013	.013	.015	
0.321-0.	438	.019	.019	.019	.019	.020	
0.439-0.	625	.025	.025	.025	.025	.025	
0.626-0.	875	.030	.030	.030	.030	.030	
0.876-1.	.125	.035	.035	.035	.035	.035	
1.126-1.	.375	.040	.040	.040	.040	.040	
1.376-1.	625	.045	.045	.045	.045	.045	
1.626-1.	.875	.052	.052	.052	.052	.052	
1.876-2.	250	.060	.060	.060	.060	.060	
2.251-2.	750	.075	.075	.075	.075	.075	
2.751-3.	000	.090	.090	.090	.090	.090	

Tolerances apply only to commercial sizes.

	— F	LAT	A	N D	(0	IL	E D
	60	66	72	78	84	90	96
	66	72	78	84	90	96	120
A						-	
	Inche	s Plus	or Mi	nus			
					1		
-	••••						
							5
	.006	.007	.008	.009		L	
	.008	.010	.010	.011	.012		
	.008	.010	.010	.011	.012		
	.010	.012	.013	.014	.016	.018	.020
	.010	.012	.013	014	.016	.018	0.20
Der S	.012	.014	.015	.016	.017	.019	.023
4	.014	.016	.017	.017	.017	.022	.026
	.016	.018	.018	.018	.018	.024	.028
	.018	.020	.020	.020	.020	.025	.030
	.020	.023	.023	.025	.025	.026	.033
\dashv	.025	.025	.030	.030	.030	.035	.035
4	.030	.030	.037	.037	.037	.045	.045
	.035	.035	.045	.045	.045	.055	.055
	.040	.040	.052	.052	.052	.065	.065
	.045	.045	.060	.060	.060	.075	.075
	.052	.052	.070	.070	.070	.088	.088
	.060	.060	.080	.080	.080	.100	.100
	.075	.075	.100	.100	.100		
	.090	.090	.120	.120		1	

tolerances

2 6	• (0	M M E R	CIAL						
		WIDTH							
THICKNESS Inches	SLI	TTING TOLERANCE—Inch	nes						
incnes	Widths Thru 3"	Widths Over 3" Thru 24"	Widths Over 24"						
.006102	± % 4	± 1/32	± 3/64						
.103249									
.250500									
.501-1.000									
		LENGI	H						
THICKNESS	SH	HEAR TOLERANCE—Inche	es .						
Inches	Lengths Thru 18"	Lengths Over 18" Thru 48"	Lengths Over 48" Thru 120"						
.006249	± 1⁄16	± ³ / ₃₂	± 1/8						

+ 1/2

+ 1/2

TOLERANCES

WIDTH

FLAT SHEAR TOLERANCE—Inches

Widths Thru 4"	Widths Over 4" Thru 18"	Widths Over 18" Thru 36"	Widths Over 36" Thru 54"	Widths Over 54" Thru 72"	Widths Over 72" Thru 102"		
± 1/32	± 1⁄16	± ³ ⁄ ₃₂	± 1/8	± ⁵ / ₃₂	± ³ ⁄16		
•••	± ³ / ₃₂	± 1/8	± ³ /16	±3/16	± 1/4		
••••	+ 3/8	+ 3/8	+ 3/8	+ 3/8	+ 3/8		
	+ 1/2	+ 1/2	+ 1/2	+ 1/2	+ 1/2		

LENGTH

SHEAR TOLERANCE—Inches

Lengths Over 120" Thru 144"	Lengths Over 144" Thru 180"	Lengths Over 180" Thru 240"	Lengths Over 240" Thru 540"
± ⁵ ⁄ ₃₂	± ⁵ ⁄ ₃₂	± 1/4	± 1/4
+ 3/8	+7/16	+ 7/16	+ 1/2
+ 1/2	+%16	+%16	+ 5/8

commercial tolerances

27	· CON	MON	ALLO	YS, I	LAT	AND	COIL	ED		
WIDTH	Over		18	36	54	72	90	102		
Inches	Thru	18	36	54	72	90	102	132		
THICKN			THICKNESS TOLERANCES—Inches Plus or Minus							
0.006-0	0.007	.001	.001				1			
0.008-0	0.010	.001	.0015							
0.011-0	.017	.0015	.0015	.002			1	1		
0.018-0	.028	.0015	.002	.0025		1	1	T		
0.029-0	.036	.002	.002	.0025	.0035	-	T	-		
0.037-0	.045	.002	.0025	.003	.004			1		
0.046-0	.068	.0025	.003	.004	.005	.007	1	T		
0.069-0	.076	.0025	.003	.004	.006	.008		T		
0.077-0	.096	.003	.003	.004	.006	.008	1	T		
0.097-0	.108	.0035	.004	.005	.007	.009	.010	T		
0.109-0	.140	.0045	.0045	.005	.007	.009	.010			
0.141-0	.172	.006	.006	.008	.009	.011	.012			
0.173-0	.203	.007	.007	.009	.011	.013	.015			
0.204-0	.249	.009	.009	.011	.013	.015	.017			
0.250-0	.320	.013	.013	.013	.015	.017	.020			
0.321-0	.438	.019	.019	.019	.019	.023	.026	.026		
0.439-0	.625	.025	.025	.025	.025	.030	.035	.035		
0.626-0	.875	.030	.030	.030	.030	.037	.045	.045		
0.876-1	125	.035	.035	.035	.035	.045	.055	.055		
1.126-1.	375	.040	.040	.040	.040	.052	.065	.065		
1.376-1.	625	.045	.045	.045	.045	.060	.075	.075		
1.626-1.	875	.052	.052	.052	.052	.070	.088	.088		
1.876-2.	250	.060	.060	.060	.060	.080	.100	.100		
2.251-2.	750	.075	.075	.075	.075	.100	.125	.125		
2.751-3.	000	.090	.090	.090	.090	.120	.150			

Tolerances apply only to commercial sizes.

28 • MAXIN	28 • MAXIMUM FOR LATERAL BOW, CAMBER									
WIDTH	FLAT	FLAT SHEET								
Inches	Lengths Thru 12'	Lengths Over 12'	COILED SHEET							
Thru 4	1½″ in 10′	1½″ in 10′	1½″ in 10′							
Over 4	⅓s″in 10′	1½″ in 10′	1½ ″ in 10′							

Lateral bow is measured as the distance from the point of maximum bow to a straight line along the concave edge of the sheet.

weights:

F MA

The weight tables in this booklet are based on the density of 2S, which is 0.0979 pounds per cubic inch. If more accurate determination of weight for other aluminum alloys is desired, the applicable conversion factor should be used. Conversion factors for other metals and alloys are also shown for ready reference.

$$\begin{cases} 3S = 1.01 \\ 17S = 1.03 \\ 24S = 1.02 \\ 52S = .98 \\ R353 = .993 \\ R361 = .996 \\ brass = 3.1 \\ copper = 3.3 \\ nickel = 3.26 \\ steel = 2.89 \\ zinc = 2.6 \end{cases} \times \text{weight of 2S}$$

ALUMINUM 91

weights

DIA- METER									
						THI	CKI	NES	S
Inches	.010	.012	.016	.020	.025	.032	.040	.051	.064
2	.00308	.00369	.00493	.00616	.00770	.00985	.0123	.0157	.0197
21/4	.00390	.00468	.00623	.00779	.00974	.0124	.0156	.0199	.0249
21/2	.00481	.00577	.00770	.00962	.0120	.0154	.0192	.0245	.0308
23/4	.00582	.00698	.00931	.0116	.0146	.0186	.0233	.0297	.0373
3	.00693	.00831	.0111	.0139	.0173	.0222	.0277	.0353	.0443
31/4	.00813	.00976	.0130	.0163	.0203	.0260	.0325	.0415	.0520
31/2	.00943	.0113	.0151	.0189	.0236	.0302	.0377	.0481	.0603
33/4	.0108	.0130	.0173	.0216	.0270	.0346	.0433	.0552	.0693
4	.0123	.0148	.0197	.0246	.0308	.0394	.0493	.0628	.0788
41/4	.0139	.0167	.0222	.0278	.0348	.0445	.0556	.0709	.0889
41/2	.0156	.0187	.0249	.0312	.0390	.0499	.0623	.0795	.0997
43/4	.0174	.0208	.0278	.0347	.0434	.0556	.0695	.0886	.111
5	.0192	.0231	.0308	.0385	.0481	.0616	.0770	.0981	.123
51/4	.0212	.0255	.0339	.0424	.0530	.0679	.0849	.108	.136
51/2	.0233	.0279	.0373	.0466	.0582	.0745	.0931	.119	.149
5 3/4	.0254	.0305	.0407	.0'509	.0636	.0814	.102	.130	.163
6	.0277	.0333	.0443	.0554	.0693	.0887	.111	.141	.177
61/4	.0301	.0361	.0481	.0601	.0752	.0962	.120	.153	.192
	.0325	.0390	.0520	.0650	.0813	.104	.130	.166	.208
-	.0351	.0421	.0561	.0701	.0877	.112	.140	.179	.224
	.0377	.0453	.0603	.0754	.0943	.121	.151	.192	.241
71/4	.0405	.0485	.0647	.0809	.101	.129	.162	.206	.259
The same of	.4033	.0520	.0693	.0866	.108	.139	.173	.221	.277
	.0462	.0555	.0740	.0925	.116	.148	.185	.236	.296
STREET, SQUARE, SQUARE,	.0493	.0591	.0788	.0985	.123	.158	.197	.251	.315
1	.0556	.0629	.0838	.105	.131	.168	.210	.267	.335
DESCRIPTION OF REAL PROPERTY.	.0589	.0667	.0890	.111	.139	.178	.222	.284	.356
	.0623	.0748	.0943	.118	.147	.189	.236	.301	.377
	.0659	.0790	.105	.132	.165	.199	.249	.318	.399
	.0695	.0834	.111	.132	.174	.222	.263	.336	.421
	.0732	.0878	.117	.146	.183	.234	.278	.373	.445
OR HAND IN	.0770	.0924	.123	.154	.192	.246	.308	.373	.493
101/4	.0809	.0970	.129	.162	.202	.259	.323	.412	.518

		роц	n d	s I	e r	рi	e c e	9		
		- In a	hes							
	.072	.081	.091	.102	.125	.156	.188	.250	.312	.375
1	.0222	.0249	.0280	.0314	.0385	.0480	.0579	.0770	.0961	.115
1	.0281	.0316	.0355	.0397	.0487	.0608	.0733	.0974	.122	.146
1	.0346	.0390	.0438	.0491	.0601	.0750	.0904	.120	.150	.180
1	.0419	.0471	.0530	.0594	.0728	.0908	.109	.146	.182	.218
T	.0499	.0561	.0630	.0707	.0866	.108	.130	.173	.216	.260
1	.0585	.0659	.0740	.0829	.102	.127	.153	.203	.254	.305
1	.0679	.0764	.0858	.0962	.118	.147	.177	.236	.294	.354
I	.0779	.0877	.0985	.110	.135	.169	.203	.271	.338	.406
1	.0887	.0997	.112	.126	.154	.192	.232	.308	.384	.462
1	.100	.113	.127	.142	.174	.217	.261	.348	.434	.521
1	.112	.126	.142	.159	.195	.243	.293	.390	.486	.585
4	.125	.141	.158	.177	.217	.271	.327	.434	.542	.651
1	.139	.156	.175	.196	.241	.300	.362	.481	.600	.722
4	.153	.172	.193	.216	.265	.331	.399	.530	.662	.796
4	.168	.189	.212	.237	.291	.363	.438	.582	.726	.873
4	.183	.206	.232	.260	.318	.397	.478	.636	.794	.954
4	.200 -	.224	.252	.283	.346	.432	.521	.693	.865	1.04
4	.216	.244	.274	.307	.376	.469	.565	.752	.938	1.13
+	.234	.263	.296	.332	.406	.507	.611	.813	1.01	1.22
4	.252	.284	.319	.358	.438	.547	.659	.877	1.09	1.32
+	.272	.305	.343	.385	.471	.588	.709	.943	1.18	1.41
+	.291	.328	.368	.413	.506	.631	.761	1.01	1.26	1.52
+	.312	.351	.394	.442	.541	.675	.814	1.08	1.35	1.62
+	.333	.374	.421	.472	.578	.721	.869	1.16	1.44	1.73
Ŧ	.377	.399	.448	.502	.616	.768	.926	1.23	1.54	1.85
1	.400	.450	.506	.567	.655	.817	.985	1.31	1.63	1.96
Ť	.424	.477	.536	.601	.737	.868	1.05	1.39	1.74	2.09
1	.449	.505	.567	.636	.779	.973	1.17	1.56	1.95	2.21
Ì	.474	.533	.599	.672	.823	1.03	1.24	1.65	2.05	2.47
1	.500	.563	.632	.709	.868	1.08	1.31	1.74	2.17	2.60
	.527	.593	.666	.746	.915	1.14	1.38	1.83	2.28	2.74
	.554	.623	.700	.785	.962	1.20	1.45	1.92	2.40	2.89
1	.582	.655	.736	.825	1.01	1,26	1.52	2.02	2.52	3.03

weights

	3 1	• 1	WEI	G H	T S	O F	CI	R C	L E S	
DIA- METER						ТН	ІСК	NES	S	
Inches	.010	.012	.016	.020	.025	.032	.040	.051	.064	
101/2	.0849	.102	.136	.170	.212	.272	.339	.433	.543	
103/4	.0889	.107	.142	.178	.222	.285	.356	.454	.569	
11	.0931	.112	.149	.186	.233	.298	.373	.475	.596	
111/4	.0974	.117	.156	.195	.244	.312	.390	.497	.623	
111/2	.102	.122	.163	.204	.254	.326	.407	.519	.651	
113/4	.106	.128	.170	.213	.266	.340	.425	.542	.680	
12	,111	.133	.177	.222	.277	.355	.443	.565	.709	
121/4	.116	.139	.185	.231	.289	.370	.462	.589	.739	
121/2	.120	.144	.192	.241	.301	.385	.481	.613	.770	
123/4	.125	.150	.200	.250	.313	.400	.501	.638	.801	
13	.130	.156	.208	.260	.325	.416	.520	.663	.832	
131/4	.135	.162	.216	.270	.338	.432	.541	.689	.865	
131/2	.140	.168	.224	.281	.351	.449	.561	.715	.898	
13 3/4	.146	.175	.233	.291	.364	.466	.582	.742	.931	
14	.151	.181	.241	.302	.377	.483	.603	.769	.966	
141/4	.156	.188	.250	.313	.391	.500	.625	.797	1.00	
141/2	.162	.194	.259	.324	.405	.518	.647	.825	1.04	
143/4	.167	.201	.268	.335	.419	.536	.670	.354	1.07	
15	.173	.208	.277	.346	.433	.554	.693	.883	1,11	_
15 1/4	.179	.215	.286	.358	.447	.573	.716	.913	1.15	
151/2	.185	.222	.296	.370	.462	.592	.740	.943	1.18	
15 3/4	.191	.229	.305	.382	.477	.611	.764	.974	1.22	
16	,197	.236	.315	.394	.493	.631	.788	1.00	1.26	4
161/4	.203	.244	.325	.406	.508	.650	.813	1.04	1.30	
163/4	.216	.259	.335	.419	.524	.671	.838	1.07	1.34	-
17	.222	.267	.356	.432	.556	.691	.864	1.10	1.38	-
171/4	.229	.275	.366	.458	.573	.712	.890	1.13	1.42	-
171/2	.236	.283	.377	.471	589	.754	.943	1.17	1.51	ľ
17 3/4	.243	.291	388	485	.606	.776	.970	1.24	1.55	
18	.249	.299	.399	.499	.623	.798	.998	1.27	1.60	
181/4	,256	.308	.410	.513	.641	.820	1.03	1.31	1.64	1
181/2	.263	.316	.421	.527	.659	.843	1.05	1.34	1.69	
18 3/4	.271	.325	.433	.541	.676	.866	1.08	1.38	1.73	-

	— pounds per piece (cont'd)									
	_	Inc	h e s							
	.072	.081	.091	.102	.125	.156	.188	.250	.312	.375
Ť	.611	.687	.772	.866	1.06	1.32	1.60	2.12	2.65	3.18
	.640	.720	.809	.907	1.11	1.39	1.67	2.22	2.78	3.34
	.671	.754	.848	.950	1.16	1.45	1.75	2.33	2.91	3.49
	.701	.789	.886	.994	1.22	1.52	1.83	2.44	3.04	3.65
	.733	.825	.926	1.04	1.27	1.59	1.91	2.54	3.18	3.82
	.765	.861	.967	1.08	1.33	1.66	2.00	2.66	3.32	3.98
	.798	.898	1.01	1.13	1.39	1.73	2.08	2.77	3.46	4.16
	.832	.936	1.05	1.18	1.44	1.80	2.17	2.89	3.60	4.33
	.8.66	.974	1.09	1.23	1.50	1.88	2,26	3.01	3.75	4.51
	.901	1.01	1.14	1.28	1.56	1.95	2.35	3.13	3.90	4.69
	.937	1.05	1.18	1.33	1.62	2.03	2.45	3.25	4.06	4.88
†	.973	1.09	1.23	1.38	1.69	2.11	2.54	3.38	4.22	5.07
	1.01	1.14	1.28	1.43	1.75	2.19	2.64	3.51	4.38	5.26
	1.05	1.18	1.32	1.48	1.82	2.27	2.74	3.64	4.54	5.46
1	1.09	1.22	1.37	1.54	1.89	2.35	2.84	3.77	4.71	5.66
	1.13	1.27	1.42	1.59	1.95	2.44	2.94	3.91	4.88	5.86
Ţ	1.17	1.31	1.47	1.65	2.02	2.52	3.04	4.05	5.05	6.07
Ī	1.21	1.36	1.52	1.71	2.09	2.61	3.15	4.19	5.22	6.28
J	1.25	1.40	1.58	1.77	2.16	2.70	3.26	4.33	5.40	6.49
	1.29	1.45	1.63	1.83	2.24	2.79	3.37	4.47	5.58	6.71
	1.33	1.50	1.68	1.89	2.31	2.88	3.48	4.62	5.77	6.93
	1.37	1.55	1.74	1.95	2.39	2.98	3.59	4.77	5.96	7.16
	1.42	1.60	1.79	2.01	2.46	3.07	3.70	4.93	6.15	7.39
	1.46	1.65	1.85	2.07	2.54	3.17	3.82	5.08	6.34	7.62
	1.51	1.70	1.91	2.14	2.62	3.27	3.94	5.24	6.54	7.86
	1.55	1.75	1.97	2.20	2.70	3.37	4.06	5.40	6.74	8.10
	1.60	1.80	2.02	2.27	2.78	3.47	4.18	5.56	6.94	8.34
	1.65	1.86	2.08	2.34	2.86	3.57	4.31	5.73	7.15	8.59
	1.70	1.91	2.15	2.40	2.95	3.68	4.43	6.06	7.35	9.09
	1.75	1.96	2.21	2.47	3.12	3.89	4.69	6.23	7.78	9.35
	1.80	2.02	2.27	2.54	3.12	4.00	4.82	6.41	8.00	9.61
	1.90	2.13	2.40	2.69	3.29	4.11	4.95	6.59	8.22	9.88
	1.95	2.19	2.46	2.76	3,38	4.22	5.09	6.76	8.44	10.1
	1.75	2	2,13	2.17	0.00					

A L U M I N U M 97

weights

	3 2	•	WEI	G H	T S	0 F	CI	R C	L E S		
DIA- METER						TH	THICKNESS				
Inches	.010	.012	.016	.020	.025	.032	.040	.051	.064		
19	.278	.333	.445	.556	.695	.889	1.11	1.42	1.78		
191/4	.285	.342	.456	.570	.713	.913	1.14	1.45	1.83		
191/2	.293	.351	.468	.585	.732	.937	1.17	1.49	1.87		
193/4	.300	.360	.480	.600	.751	.961	1.20	1.53	1.92		
20	.308	.369	.493	.616	.770	.985	1.23	1.57	1.97		
201/4	.316	.379	.505	.631	.789	1.01	1.26	1.61	2.02		
201/2	.323	.388	.518	.647	.809	1.04	1.29	1.65	2.07		
203/4	.331	.398	.530	.663	.828	1.06	1.33	1.69	2.12		
21	.339	.407	.543	.679	.849	1.09	1.36	1.73	2.17		
211/4	.348	.417	.556	.695	.869	1.11	1.39	1.77	2.17		
211/2	.356	.427	.569	.712	.889	1.14	1.42	1.81	2.22		
213/4	.364	.437	.583	.728	.910	1.17	1.46	1.86	2.33		
22	.373	.447	.596	.745	.931	1.19	1.49	1.90	2.38		
221/4	.381	.457	.610	.762	.953	1.22	1.52	1.94	2.44		
221/2	.390	.468 -	.623	.779	.974	1.25	1.56	1.99	2.49		
223/4	.398	.478	.637	.797	.996	1.27	1.59	2.03	2.55		
23	.407	.489	.651	.814	1.02	1.30	1.63	2.08	2.61		
231/4	.416	.499	.666	.832	1.04	1.33	1.66	2.12	2.66		
231/2	.425	.510	.680	.850	1.06	1.36	1.70	2.17	2.72		
233/4	.434	.521	.695	.868	1.09	1.39	1.74	2.21	2.78		
24	.443	.532	.709	.887	1.1.1	1.42	1.77	2.26	2.84		
241/4	.453	.543	.724	.905	1.13	1.45	1.81	2.31	2.90		
241/2	.462	.554	.739	.924	1.16	1.48	1.85	2.36	2.96		
243/4	.471	.566	.754	.943	1,18	1.51	1.89	2.40	3.02		
25	.481	.577	.770	.962	1.20	1.54	1.92	2.45	3.08		
251/4	.491	.589	.785	.981	1.23	1.57	1.96	2.50	3.14		
25½ 25¾	.500	.601	.801	1.00	1.25	1.60	2.00	2.55	3.20		
26	.520	.624	.817	1.02	1.28	1.63	2.04	2.60	3.27		
261/4	.530	.636	.849	1.04	1.30	1.66	2.08	2.65	3.33		
261/2	.541	.649	.865	1.08	1.35	1.70	2.12	2.70	3.39		
263/4	.551	.661	.881	1.10	1.38	1.76	2.16	2.76	3.46		
27	.561	.673	.898	1.12	1.40	1.80	2.24	2.86	3.52		
271/4	.572	.686	.914	1.14	1.43	1.83	2.29				
# 14	.5/ 2	.000	.914	1.14	1.43	1.83	2.29	2.91	3.66		

	_	ро	u n c	s	p e r	p	i e c	e (cont'd)	
		- In c	hes							
	.072	.081	.091	.102	.125	.156	.188	.250	.312	.375
	2.00	2.25	2.53	2.83	3.47	4.33	5.22	6.95	8.67	10.4
	2.05	2.31	2.60	2.91	3.57	4.45	5.36	7.13	8.90	10.7
	2.11	2.37	2.66	2.99	3.66	4.57	5.50	7.32	9.13	11.0
	2.16	2.43	2.73	3.06	3.75	4.68	5.64	7.51	9.37	11.3
	2.22	2.49	2.80	3.14	3.85	4.80	5.79	7.70	9.61	11.5
	2.27	2.56	2.87	3.22	3.95	4.92	5.93	7.89	9.85	11.8
	2.33	2.62	2.94	3.30	4.04	5.05	6.08	8.09	10.1	12.1
ì	2.39	2.68	3.02	3.38	4.14	5.17	6.23	8.28	10.3	12.4
To see	2.44	2.75	3.09	3.46	4.24	5.29	6.38	8.49	10.6	12.7
	2.50	2.82	3.16	3.55	4.34	5.42	6.53	8.69	10.8	13.0
	2.56	2.88	3.24	3.63	4.45	5.55	6.69	8.89	11.1	13.3
	2.62	2.95	3.31	3.71	4.55	5.68	6.85	9.10	11.4	13.7
	2.68	3.02	3.39	3.80	4.66	5.81	7.00	9.31	11.6	14.0
	2.74	3.09	3.47	3.89	4.76	5.94	7.16	9.53	11.9	14.3
	2.81	3.16	3.55	3.97	4.87	6.08	7.33	9.74	12.2	14.6
	2.87	3.23	3.63	4.06	4.98	6.21	7.49	9.96	12.4	14.9
	2.93	3.30	3.71	4.15	5.09	6.35	7.65	10.2	12.7	15.3
	3.00	3.37	3.79	4.24	5.20	6.49	7.82	10.4	13.0	15.6
	3.06	3.44	3.87	4.34	5.31	6.63	7.99	10.6	13.3	16.0
	3.13	3.52	3.95	4.43	5.43	6.77	8.16	10,9	13.5	16.3
	3.19	3.59	4.03	4.52	5.54	6.92	8.33	11.1	13.8	16.6
	3.26	3.67	4.12	4.62	5.66	7.06	8.51	11.3	14.1	17.0
	3.33	3.74	4.20	4.71	5.78	7.21	8.69	11.6	14.4	17.3
	3.39	3.82	4.29	4.81	5.89	7.36	8.86	11.8	14.7	17.7
	3.46	3.90	4.38	4.91	6.01	7.50	9.04	12.0	15.0	18.0
	3.60	4.05	4.47	5.01	6.13	7.66	9.23	12.3	15.3	18.4
	3.67	4.13	4.64	5.21	6.38	7.81 7.96	9.41	12.5	15.6	18.8
	3.75	4.13	4.73	5.31	6.50	8.12	9.78	13.0	16.2	19.1
	3.82	4.30	4.83	5.41	6.63	8.27	9.97	13.3	16.5	19.9
	3.89	4.38	4.92	5.51	6.76	8.43	10.2	13.5	16.9	20.3
	3.97	4.46	5.01	5.62	6.88	8.59	10.4	13.8	17.2	20.6
	4.04	4.54	5.11	5.72	7.01	8.75	10.5	14.0	17.5	21.0
	4.12	4.63	5.20	5.83	7.14	8.92	10.7	14.3	17.8	21.4
			-					-		

ALUMINUM 99

weights

		3 3	•	WEI	G H	T S	0 F	CI	R C	LES
	DIA- METER						ТН	ІСК	NES	S
. 1	Inches	.010	.012	.016	.020	.025	.032	.040	.051	.064
1	271/2	.582	.698	.931	1.16	1.46	1.86	2.33	2.97	3.73
1	273/4	.593	.711	.948	1.19	1.48	1.90	2.37	3.02	3.79
1	28	.603	.724	.965	1.21	1.51	1.93	2.41	3.08	3.86
	281/4	.614	.737	.983	1.23 •	1.54	1.97	2.46	3.13	3.93
	281/2	.625	.750	1.00	1.25	1.56	2.00	2.50	3.19	4.00
ı	283/4	.636	.763	1.02	1.27	1.59	2.04	2.54	3.24	4.07
	29	.647	.777	1.04	1.29	1.62	2.07	2.59	3.30	4.14
	291/4	.659	.790	1.05	1.32	1.65	2.11	2.63	3.36	4.21
	291/2	.670	.804	1.07	1.34	1.67	2.14	2.68	3.42	4.29
4	293/4	.681	.817	1.09	1.36	1.70	2.18	2.72	3.47	4.36
	30	.693	.831	1.11	1.39	1.73	2.22	2.77	3.53	4.43
1	301/4	.704	.845	1.13	1.41	1.76	2.25	2.82	3.59	4.51
	301/2	.716	.859	1.15	1.43	1.79	2.29	2.86	3.65	4.58
	30 3/4	.728	.873	1.16	1.46	1.82	2.33	2.91	3.71	4.66
	31	.740	.888	1.18	1.48	1.85	2.37	2,96	3.77	4.73
ı	311/4	.752	.902	1.20	1.50	1.88	2.41	3.01	3.83	4.81
H	311/2	.764	.916	1.22	1.53	1.91	2.44	3.05	3.89	4.89
1	313/4	.776	.931	1.24	1.55	1.94	2.48	3.10	3.96	4.97
J	32	.788	.945	1.26	1.58	1.97	2.52	3.15	4.02	5.04
Ų	32 1/4	.801	.961	1.28	1.60	2.00	2.56	3.20	4.08	5.12
ı	321/2	.813	.976	1.30	1.63	2.03	2.60	3.25	4.15	5.20
IJ	323/4	.826	.991	1.32	1.65	2.06	2.64	3.30	4.21	5.28
ı	33	.838	1.01	1.34	1.68	2.10	2.68	3.35	4.27	5.36
Į	331/4	.851	.1.02	1.36	1.70	2.13	2.72	3.40	4.34	5.45
1	331/2	.864	1.04	1.38	1.73	2.16	2.76	3.46	4.41	5.53
ı	333/4	.877	1.05	1.40	1.75	2.19	2.81	3.51	4.47	5.61
Į	34	.890	1.07	1.42	1.78	2.22	2.85	3.56	4.54	5.69
ı	341/4	.903	1.08	1.44	1.81	2.26	2.89	3.61	4.60	5.78
ı	341/2	.916	1.10	1.47	1.83	2.29	2.93	3.66	4.67	5.86
	343/4	.929	1.12	1.49	1.86	2.32	2.97	3.72	4.74	5.95
-	35	.943	1.13	1.51	1.89	2.36	3.02	3.77	4.81	6.03
	351/4	.956	1,15	1.53	1.91	2.39	3.06	3.83	4.88	6.12
-	35 1/2	.970	1.16	1.55	1.94	2.43	3.10	3.88	4.95	6.21
	35 3/4	.984	1.18	1.57	1.97	2.46	3.15	3.93	5.02	6.30
1	36	.998	1.20	1.60	1.99	2.49	3.19	3.99	5.09	6.38

	— р	o u	n d s	р	piece (concluded)					
V		-Ind	hes							
	.072	.081	.091	.102	.125	.156	.188	.250	.312	375
P	4.19	4.71	5.30	5.94	7.28	9.08	10.9	14.6	18.2	21.8
	4.27	4.80	5.39	6.05	7.41	9.25	11.1	14.8	18.5	22.2
	4.34	4.89	5.49	6.16	7.54	9.41	11.3	15.1	18.8	22.6
	4.42	4.98	5.59	6.27	7.68	9.58	11.5	15.4	19,2	23.0
	4.50	5.06	5.69	6.38	7.81	9.75	11.8	15.6	19.5	23.4
	4.58	5.15	5.79	6.49	7.95	9.92	12.0	15.9	19.8	23.9
	4.66	5.24	5.89	6.60	8.09	10.1	12.2	16.2	20.2	24.3
	4.74	5.33	5.99	6.72	8.23	10.3	12.4	16.5	20.5	24.7
	4.82	5.43	6.10	6.83	8.37	10.4	12.6	16.7	20.9	25.1
	4.90	5,52	6.20	6.95	8.52	10.6	12.8	17.0	21.3	25.5
	4.99	5.61	6.30	7.07	8.66	10.8	13.0	17.3	21.6	26.0
	5.07	5.70	6.41	7.18	8.80	11.0	13.2	17.6	22.0	26.4
	5.16	5.80	6.52	7.30	8.95	11.2	13.5	17.9	22.3	26.9
	5.24	5.90	6.62	7.42	9.10	11.4	13.7	18.2	22.7	27.3
1	5.33	5.99	6.73	7.54	9.25	11.5	13.9	18.5	23.1	27.7
	5.41	6.09	6.84	7.67	9.40	11.7	14.1	18.8	23.5	28.2
	5.50	6.19	6.95	7.79	9.55	11.9	14.4	19.1	23.8	28.6
	5.59	6.28	7.06	7.91	9.70	12.1	14.6	19.4	24.2	29.1
	5.67	6.38	7.17	8.04	9.85	12.3	14.8	19.7	24.6	29.5
	5.76	6.48	7.28	8.17	10.0	12.5	15.1	20.0	25.0	30.0
	5.85	6.59	7.40	8.29	10.2	12.7	15.3	20.3	25.4	30.5
	5.94	6.69	7.51	8.42	10.3	12.9	15.5	20.6	25.8	31.0
	6.03	6.79	7.63	8.55	10.5	13.1	15.8	21.0	25.2	31.4
	6.13	6.89	7.74	8.58	10.6	13.3	16.0	21.3	26.5	31.9
	6.22	7.00	7.86	8.81	10.8	13.5	16.2	21.6	26.9	32.4
	6.31	7.10	7.98	8.94	11.0	13.7	16.5	21.9	27.4	32.9
	6.41	7.21	8.10	9.08	11.1	13.9	16.7	22.2	27.8	33.4
	6.50	7.31	8.22	9.21	11.3	14.1	17.0	22.6	28.2	33.9
	6.60	7.42	8.34	9.34	11.5	14.3	17.2	22.9	28.6	34.4
	6.69	7.53	8.46	9.48	11.6	14.5	17.5	23.2	29.0	34.9
	6.79	7.64	8.58	9.62	11.8	14.7	17.7	23.6	29.4	35.4
	6.89	7.75	8.70	9.76	12.0	14.9	18.0	23.9	29.8	35.9
	6.98	7.86	8.83	9.89	12.1	15.1	18.2	24.3	30.3	36.4
	7.08	7.97	8.95	10.0	12.3	15.3	18.5	24.6	30.7	36.9
	7.18	8.08	9.08	10.2	12.5	15.6	18.8	24.9	31.1	37.4
								**		

A L U M I N U M 101

4 · extruded shapes

Runout table serving huge hydraulic extrusion press

104 R E S manufacturing methods: Aluminum extruded shapes are produced by subjecting heated cast billets to sufficient hydraulic pressure to force the metal through a die of the desired cross-section. Forces of several million pounds are often used in extruding aluminum.

The heated billet is placed in the cylinder and pressure is applied to it by the hydraulic ram. Since the ram has considerable clearance in the cylinder in order to reduce friction, a disk (dummy block) having little clearance is placed between the ram and the billet to form a seal, thus preventing by-passing of metal around the ram.

The aluminum is forced through the die orifice by pressure applied through the hydraulic ram. The section emerging from the die has the dimensions and shape of the orifice. Speeds, pressures, and temperatures involved in extruding various alloys are closely controlled to insure uniform quality.

When the extrusion is completed, the die is removed from the end of the cylinder and a shear severs the extruded shape from the butt of the billet, which is discarded. The shape then is usually annealed or heat treated. It is in most cases straightened by stretching or roll straightening, but is usually not cold finished.

alloys and tempers: Extruded shapes are produced commercially by Reynolds in the following alloys and tempers:

NON-HEAT TRE	ATABLE ALLOYS	HEAT	TREATA	BLE ALLOYS
alloys	tempers		alloys	tempers
25 35 525	0		175 }	0
35	O *F		245	T
525)				
			145	0
*F (as fabricate			R353	1
varies between half-hard.	soft and		R361)	W
				0
			R303	T275
			-)	T315

sections and sizes: The prime advantage of the use of extrusions lies in the flexibility of the process. Inasmuch as the dies for this process are not expensive, relatively small quantities of material can be extruded economically. Aluminum, due to its good workability and other

favorable properties, can be economically extruded to more intricate shapes, and larger sizes, than is practicable with many other metals. Therefore, designers are not limited to the use of conventional standard shapes shown in handbooks, but are warranted in originating shapes which will better fulfill the requirements of their particular application. American Standard shapes have found favor for many structural applications, but since these were designed primarily for steel, a modified section is sometimes preferable for aluminum, due to the fact that aluminum and steel have different deflection characteristics. Extruded shapes are produced in very simple, as well as extremely complex sections, and are used for a wide variety of applications. Many shapes are used to replace sections formerly built up, thereby saving time and labor and reducing costs.

Reynolds produces extruded shapes having cross-sectional areas as great as 12½ square inches and maximum dimensions across the section of 10 inches. Present manufacturing facilities usually limit the maximum length of extruded shapes to 50 feet and the maximum weight per piece to 350 pounds. If extruded shapes not conforming to these size ranges are desired, please contact our nearest Sales Office for information regarding the possibility of special exceptions to these limits.

lengths: Aluminum extruded shapes are usually ordered to one of the following length classifications:

EXACT LENGTHS: All pieces cut to specified length with a plus tolerance of 1/8 inch for lengths up to 10 feet; 1/4 inch for lengths 10-30 feet; and 1/2 inch for lengths over 30 feet.

MULTIPLE LENGTHS: Pieces cut, at mill convenience, to any multiple of length specified with length tolerances same as for Exact Lengths. Note: Sufficient length for subsequent saw cuts should be included in the multiple specified.

RANDOM LENGTHS: Lengths will vary as follows:

20 1000 10

E fine

E amp

1100

E to

MAXIMUM THICKNESS	ACCEPTABLE LENGTH
Inches	Feet
Up thru .374	8 — 12
.375 — 1.999	8 — 16
2.000 — 3.499	6 — 18
3.500 and up	3 – 18

identification: Standard marking of extruded shapes consists of stamping the alloy, temper and Reynolds trademark at approximate 6 inch intervals along the shape length with a non-corroding ink. Additional marking according to customer's specifications may be requested.

packing: Unless otherwise specified, aluminum extruded shapes of compact section are spirally wrapped with several thicknesses of suitable wrapping material, with boots on the ends. Fragile shapes and long lengths are packed in wooden or corrugated cardboard boxes. Package weights vary with the size and contour of the shape, but usually are limited to 250 pounds maximum.

Special packing for export shipment or according to customer specifications will require special consideration.

ordering data: All orders for aluminum extruded shapes should include the following:

Quantity

Alloy and temper

Section (our die number or a print showing complete dimensions)

Length Classification

A L U M I N U M 107

compositions

3 4	•	S	PEC	I F I	E D	C	H E	MIC	A L
ALLOY	ZIL	CON	IRON	со	PPER	MANG	ANESE	MAG	NESIUM
-11	Min	Max	Max	Min	Max	Min	Max	Min	Max
25			1.0*		.20		.10		
35		.60	.70		.20	1.0	1.5		
145	.50	1.2	1.0	3.9	5.0	.40	1.2	.20	.80
17\$.80	1.0	3.5	4.5	.40	1.0	.20	.80
24\$.50	.50	3.8	4.9	.30	.90	1.2	1.8
52\$.45*		.10		.10	2.2	2.8
R303		.50	.50	.80	1.8		.10	2.1	3.0
R353	45-65 Magno		.35		.10		.10	1.1	1.4
R361	.40	.80	.70	.15	.40		.15	.80	1.2

^{*} Iron plus Silicon.

108 REYNOLDS

[†] Maximum of .25 Zinc and .15 Titanium permitted in Forging Stock.

COMPOSITIONS									
CHRO	MIUM	ZINC	TITAN-	OTH EACH	ERS TOTAL	200			
Min	Max	Max	Max	Max	Max	ALUMINUM			
		.10		.05	.15	99.0 min			
	••••	.10		.05	.15	Remainder			
	.10	.25	#	.05	.15	Remainder			
	.25	+ .10	+	.05	.15	Remainder			
4.4	.25	.10		.05	.15	Remainder			
.15	.35	.10		.05	.15	Remainder			
.10	.35	7.1		.05	.15	Remainder			
.15	.35	.25	†	.05	.15	Remainder			
	.35	.10	.15	05	.15	Remainder -			

A L U M I N U M 109

specified mechanical properties

35 • NON-HEAT	TREATABLE (COM	MON) ALLOYS					
ALLOY AND TEMPER	ULTIMATE STRENGTH Lb/Sq In. Minimum	ELONGATION IN 2 INCHES Percent Minimum					
	25						
25-O	15,500	25					
2S-F	(No	te 1)					
	3 S						
35-0	19,000	25					
3S-F	(Note 1)						
	52\$						
52S-O	32,000	25					
52S-F (Note 1)							
Note 1: Except in the annealed (O temper) condition, the temper of non-heat treatable alloy shapes cannot be closely controlled, and will vary between soft and half-hard.							

ALLOY AND TEMPER	36 •	HEAT TREATA	BLE (STR	ONG) A	LLOYS					
145-O .125 and up*	AND	THICKNESS								
145-O 125 and up*	TEMPEK .	Inches	Tensile	Yield						
145-W .125 and up* 50,000 32,000 12 .125—.499 60,000 50,000 7 .500—.749 +65,000 €55,000 7 .750 and up* +68,000 €58,000 7 * Up thru an area of 15 square inches. * Maximum.	145									
145-W .125 and up* 50,000 32,000 12 .125—.499 .500—.749 .750 and up* +65,000 .555,000 .7 .750 and up* +68,000 .558,000 .7 * Up thru an area of 15 square inches. * Maximum. +60,000 for shapes heat treated by purchaser. 175-O All sizes *35,000 12 175-T All sizes *35,000 12 175-S * Maximum. 245 245-O All sizes *35,000 12 .250—.749 .750—1.499 .750—1.499 1.500 and up € *65,000 10 * Maximum. * 57,000 for shapes heat treated by purchaser. • Up thru an area of 10 square inches. * R303 R303-O All sizes *35,000 12 .250—.749 .750,000 .750,000 10 * Maximum. * 57,000 for shapes heat treated by purchaser. • Up thru an area of 10 square inches. R303 R303-O All sizes *35,000 12 .8303-T275 .040—.600 .75,00012 R303-T315 .040—.600 .601 and up .75,00012	145-0	.125 and up*	★35,000		12					
14S-T .500—.749 .750 and up* * Up thru an area of 15 square inches. * Maximum. † 60,000 for shapes heat treated by purchaser. ↑ 50,000 for shapes heat treated by purchaser. 17S 17S-O All sizes *35,000 12 17S-T All sizes *35,000 12 17-S * Maximum. 24S 24S-O All sizes *35,000 12 .050—.249 .250—.749 .460,000 †42,000 12 .250—.749 .465,000 †44,000 12 .750—1.499 1.500 and up	14S-W	.125 and up*	50,000	32,000	12					
145-T .500—.749 .750 and up* *Up thru an area of 15 square inches. *Maximum. † 60,000 for shapes heat treated by purchaser. ↑ 50,000 for shapes heat treated by purchaser. ↑ 50,000 for shapes heat treated by purchaser. 175 175-O All sizes *35,000 12 175-T All sizes .50,000 35,000 12 17-S *Maximum. 245 245-O All sizes *35,000 12 .050—.249 .250—.749 .460,000 †42,000 12 .250—.749 .465,000 †44,000 10 1.500 and up ① *70,000 †52,000 10 *Maximum. *57,000 for shapes heat treated by purchaser. †38,000 for shapes heat treated by purchaser. ① Up thru an area of 10 square inches. R303 R303-O All sizes *35,000 12 R303-T275 .601 and up .600 .601 and up .75,000 70,000 8 R303-T315 .040—.600 .601 and up .75,000 .70,000 8 R303-T315		.125499	60,000		7					
* Up thru an area of 15 square inches. * Maximum. † 60,000 for shapes heat treated by purchaser. (* 50,000 for shapes heat treated by purchaser. 175 175-O All sizes *35,000 12 175-T All sizes *35,000 12 17-S * Maximum. 24S 24S-O All sizes *35,000 12 .050249	14S-T	.500749			7					
14-S * Maximum.		.750 and up*	+68,000	€58,000	7					
17S-O All sizes	14-S * M	Naximum. 0,000 for shapes heat tree	ated by purcha	ser. ser.						
17S-T All sizes .50,000 35,000 12 17-S * Maximum. 24S 24S-O All sizes *35,000 12 .050249		17	S							
24S 24S-O All sizes	175-0	All sizes	*35,000		. 12					
24S 24S-O All sizes	17S-T	All sizes	50,000	35,000	12					
24S-O All sizes .050249 .250749 .750 - 1.499 1.500 and up € *65,000	17-S * M	aximum.								
245-T 245-T .050249 .250749 .250749 .750-1.499 1.500 and up € *70,000 †42,000 12 .750-1.499 1.500 and up € *70,000 †46,000 10 * Maximum. * 57,000 for shapes heat treated by purchaser. † 38,000 for shapes heat treated by purchaser. © Up thru an area of 10 square inches. R303 R303-O All sizes *35,000 12 R303-T275 .040600		24	IS		PA S					
245-T .250749 .750 - 1.499 1.500 and up €	245-0	All sizes	*35,000		12					
245-T .750-1.499 1.500 and up €		.050249	57,000	+42,000	12					
# Maximum. * Maximum. * 57,000 for shapes heat treated by purchaser. † 38,000 for shapes heat treated by purchaser. © Up thru an area of 10 square inches. R303 R303-O All sizes *35,000 12	245.T			+44,000	12					
* Maximum. * 57,000 for shapes heat treated by purchaser. † 38,000 for shapes heat treated by purchaser. © Up thru an area of 10 square inches. R303 R303-O										
# 57,000 for shapes heat treated by purchaser. # 38,000 for shapes heat treated by purchaser. # Up thru an area of 10 square inches. R303 R303-O		1.300 and up ()	★ 70,000	+52,000	10					
R303-O All sizes *35,000 12 R303-T275 .040 — .600 75,000 70,000 7 .601 and up 80,000 75,000 8 R303-T315 .040 — .600 70,000 65,000 7 .601 and up 75,000 70,000 8	* 57,000 for shapes heat treated by purchaser. † 38,000 for shapes heat treated by purchaser.									
R303-T275	R303									
R303-T275	R303-O	All sizes	*35,000		12					
R303-T315 .601 and up 80,000 75,000 8 .040 — .600 .601 and up 75,000 70,000 8	P202 T075	.040 — .600								
.601 and up 75,000 70,000 8	K303-12/5	.601 and up	80,000		8					
.601 and up 75,000 70,000 8	R303-T315			65,000	7					
R303 * Maximum	1,30331313	.601 and up	75,000	70,000	8					
,vaniiviii,	R303 * Max	imum.								

H

事

specified mechanical properties

ALLOY AND TEMPER	LEAST THICKNESS Inches	STRE STRE Lb/Sq In.	ELONGATION IN 2 INCHES							
		Ultimate	Yield	Percent Minimum						
R317										
R317-O	All Sizes	*35,000	• • • • • •	12						
R317-T	All Sizes	50,000	35,000	12						
R317 *Maxim	um.									
	R:	353								
R353-O	All sizes	*19,000		18						
R353-F	All sizes	17,000	10,000	10						
R353-W	All sizes	25,000	14,000	16						
R353-T	All sizes	32,000	25,000	10						
R353-T5	All sizes	22,000	16,000	10						
R353 * Maxi	mum.	-								
R361										
R361-O	All sizes	*22,000		20						
R361-W	All sizes	26,000	16,000	16						
R361-T	All sizes	38,000	35,000	10						
R361 * Maxi	mum.									

38 . COMMERCIA	LTOLERANCES
----------------	-------------

DIMENSION	TOLERANCE Inches Plus or Minus			
Inches	Non-Heat Treated Shapes	Heat Treated Shapes		
up to .125	.007	.010		
.126500	.010	.015		
.501- 1.000	.015	.020		
1.001- 2.000	.017	.025		
2.001- 3.000	.020	.030		
3.001- 4.000	.025	.035		
4.001- 5.000	.030	.040		
5.001- 6.000	.035	.045		
6.001- 7.000	.040	.050		
7.001- 8.000	.045	.055		
8.001- 9.000	.050	.060		
9.001-10.000	.055	.065		
10.001-11.000	.060	.070		
11.001-12.000	.065	.080		

angles: Angular tolerance is 2° plus or minus where thickness of thinnest leg is up thru .187 inch; $11/2^{\circ}$ for .188 inch and up.

radii: Radius tolerance is plus 1/64 inch for sharp corners and fillets; plus or minus 1/64 inch for any specified radius up thru .187 inch; plus or minus 10 percent for .188 inch radii and larger.

contour: Allowable deviation from specified contour is plus or minus .006 inch for curved surfaces with chords up thru 1.499 inches; .012 for 1.500-2.999; .020 for 3.000-4.999; .030 for 5.000 and up.

surface roughness: Maximum allowable depth of die marks, handling marks, polishing marks, etc. is: .0015 inch for section thicknesses up thru .063 inch; .002 for .064-.125; .0025 for .126-.188; .003 for .189-.250; .004 for .251 and up.

5 · roll formed

manufacturing methods: Roll formed shapes are produced by passing coiled or flat sheet through a series of roller dies which progressively form it into a shape of the desired contour.

sections and sizes: Shapes produced by roll forming are limited to those having a uniform section thickness. Reynolds has facilities for roll forming thicknesses of .006 inch thru .125 inch to produce sections having a depth as great as 4 inches. The maximum section width is limited to those that can be formed from sheet not exceeding 38 inches in width. The minimum radius that can be formed depends on the alloy, temper, section thickness and contour of the shape.

Forming rolls are available for producing many standard angles, channels, and other sections. Additional rolls are made when required. Please consult Reynolds nearest Field Service Office regarding availability of tools to produce shapes to fulfill your requirements.

alloys and tempers: Reynolds produces roll formed shapes in the following alloys and tempers:

NON-HEAT TRE	ATABLE ALL	OYS	HEAT TREATABL	E ALLOYS
alloys	tempers		alloys	tempers
25 35 525	O ¼ H ½ H ¾ H H		17S) 24S) Pureclad 24S)	O T
			R301 R353 R361	O W T

lengths: Aluminum roll formed shapes are usually ordered to one of the following length classifications:

EXACT LENGTHS: All shapes are cut to the exact length specified, with a length tolerance of plus or minus 1/8 inch unless otherwise specified.

Lengths of R301, R353, and R361, in the T temper, are limited to 40 feet maximum. Other alloys and other tempers of these alloys can be produced in any length desired.

STANDARD 12-FOOT LENGTHS: A minimum of 80 percent by weight of the shapes are cut to lengths of 12 feet plus or minus ½ inch, and the remainder is furnished in Random lengths from 18 inches to 12 feet unless otherwise specified.

finishes: Unless otherwise specified, Reynolds Aluminum Roll Formed Shapes are supplied with a mill finish.

MILL FINISH: The surface appearance varies between bright and dull, depending on the alloy, temper, and other factors.

BUFFED FINISH: If requested, roll formed shapes can be buffed. The surface appearance of this finish is bright and uniform.

identification: Standard marking of roll formed shapes consists of stamping the alloy, temper, and part number on each shape with a non-corroding ink.

packing: Roll formed shapes that are carried in stock are packed in bundles containing ten stock length pieces (usually 12 feet), spirally wrapped with several thicknesses of suitable wrapping material. Bright finish decorative moulding is protected with a transparent coating that can be peeled off after installation. Industrial shapes are packed in the most suitable manner for shipment.

ordering data: All orders for aluminum roll formed shapes should include the following:

Quantity (in feet, pounds, or number of pieces)

Section (Reynolds die number or a print showing complete dimensions)

Length

Alloy and Temper

SIL	ICON Max	IRON	co	PPED		100	
Min	Max		COPPER		MANGANESE		
	Mux	Max	Min	Max	Min	Max	1
		1.0*		.20		.10	
	.60	.70		.20	1.0	1.5	-
	.80	1.0	3.5	4.5	.40	1.0	1
	.50	.50	3.8	4.9	.30	.90	
	.50	.50	3.8	4.9	.30	.90	- 1
		.70*		.10		.05	(
		.45*		.10		.10	•
.50	1.2	1.0	3.9	5.0	.40	1.2	•
.35	1.0	.60		.10	•••	.75	
45%- Magr	65% of nesium	.35		.10		.10	
.40	.80	.70	.15	.40		.15	•
	 	6080505050505050	60 .70 80 1.0 50 .50 50 .50 70* 70* 45* 50 1.2 1.0 45% 50 .50 35 1.0 .60 35 1.0 .60	60 .70 80 1.0 3.5 50 .50 3.8 50 .50 3.8 70* 45* 3.5 1.0 .60 45%-65% of Magnesium .35	60 .7020 80 1.0 3.5 4.5 50 .50 3.8 4.9 50 .50 3.8 4.9 70*10 45*10 45%-65% of Magnesium .3510	60 .7020 1.0 80 1.0 3.5 4.5 .40 50 .50 3.8 4.9 .30 50 .50 3.8 4.9 .30 70*10 45*10 45%-65% of Magnesium .3510	

^{*} Silicon plus iron.

	(0	M P	0 \$	III	0 N	5			
	MAGNI		CHRO		ZINC	TITAN-	отн		
	Min	Max	Min	Max	Max	Nax Max	EACH Max	Max	ALUMINUM
1							-		
					.10		.05	.15	99.0 min
					.10		.05	.15	Remainder
	.20	.80		.25	.10		.05	.15	Remainder
	1.2	1.8		.25	.10		.05	.15	Remainder
	1.2	1.8		.25	.10		.05	.15	Remainder
					.10				99.3 min
	2.2	2.8	.15	.35	.10		.05	.15	Remainder
	.20	.80		.25	.25		.05	.15	Remainder
	.80	1.5		.35	.10	.10	.05	.15	Remainder
	1.1	1.4	.15	.35	.25		.05	.15	Remainder
	.80	1.2		.35	.10	.15	.05	.15	Remainder
中中中中		A	L	U	м	1			u m 11

specified mechanical properties

40 • NON-HEAT	TREATABLE
ALLOY AND TEMPER	ULTIMATE STRENGTH Lb/Sq In. Minimum
2\$	
25-0	15,000 *
2S-1/4H	14,000
2S-1/2H	16,000
2S-¾H	19,000
2S-H	22,000
35	
35-0	19,000 *
3S-¼H	17,000
3S-½H	19,500
3S-¾H	24,000
3S-H	27,000
52 S	
52S-O	31,000 *
52S-¼H	31,000
52S-1⁄2 H	34,000
/ 52S-¾H	37,000
/ 52S-H	39,000

* Maximum.

120 REYNOLDS

	(0)	M M O	N)	ALL	0 Y S			
1			SE	CTION THICK	NESS—Inches			
	.006"- .007"	.008"- .012"	.013"- .019"	.020"- .031"	.032"- .050"	.051"- .113"	.114"- .161"	.162"- .249"
			ELONGATIO	N IN 2 INCHE	S-Percent	Minimum		
				25				
	15	15	1,5	20	25	30	30	30
1			3	4	6	8	9	9
		1	2	3	4	5	6	6
	1	1	1	2	3	4	4	
•	1	1	1	2	3	4	4	
				3\$				
	16	18	20	20	23	25	25	25
			3	4	5	6	7	8
		1	, 2	3	4	5	6	7
	1	1	1	2	3	4	4	• • • • •
	1	1	1	2	3	4	4	
				525	5			
		15	15	18	20	20	20	20
			4	5	5	7	9	9
		3	3	4	4	6	7	7
		3	3	3	4	4	4	•••••
		3	3	3	4	4	4	

1

48

þ

中

A L U M I N U M 121

specified mechanical properties

41 • HEAT TREATABLE (STRONG) ALLOYS										
ALLOY AND	SECTION THICKNESS	Lb/S	NGTH iq In. mum	ELONGA- TION IN 2 INCHES						
TEMPER	Inches	Ultimate	Yield	Percent Minimum						
17S										
17S-O	.010— .249	*35,000		12						
17 5-T	.010— .020 .021— .040 .041— .128 .129— .249	58,000 58,000 58,000 58,000	34,000 34,000 34,000 34,000	15 *17 18 15						
1/3	laximum. 8% minimum elongation f	or developed v	vidths less tha	n_30" wide.						
	24	ıs								
24S-O	.012— .249	*35,000		12						
24S-T	.012— .020 .021— .051 .052— .128 .129— .249	64,000 64,000 64,000 64,000	42,000 42,000 42,000 42,000	10 13 15 14						
245 * M	aximum.	'		A Marine and						
	PURECL	AD 24S								
Pureclad 24S-O	.012— .032 .033— .063 .064— .249	*33,000° *33,000 *34,000		8 10 12						
Pureclad 24S-T	.012— .020 .021— .040 .041— .063 .064— .128 .129— .249	59,000 59,000 59,000 62,000 62,000	39,000 39,000 39,000 40,000 40,000	10 12 13 13						
245 * M	aximum.									

122 REYNOLDS

42 •	HEAT TREATAB	LE (STRO	NG) ALI	OYS					
ALLOY AND	SECTION THICKNESS	STREM Lb/So Mini	ELONGA- TION IN 2 INCHES						
TEMPER	Inches	Ultimate	Yield	Percent Minimum					
	R301								
R301-O	Up to .249	*30,000		16					
R301-W	Up to .039 .040— .249	56,000 57,000	37,000 37.000	14 15					
R301-T	Up to .039 .040— .249	63,000 64,000	56,000 57,000	7 8					
R301 * A	(aximum.								
	Ra	153							
R353-O	.013— .032 .033— .128 .129— .249	*19,000 *19,000 *19,000		20 22 25					
R353-W	.013— .032 .033— .050 .051— .249	28,000 28,000 28,000	16,000 16,000 16,000	12 15 20					
R353-T	.013— .031 .032— .249	35,000 35,000	28,000 28,000	8 10					
R353 * A	Aaximum.								
	Ra	61							
R361-O	.010— .020 .021— .128 .129— .249	*22,000 *22,000 *22,000		14 16 18					
R361-W	.010— .020 .021— .249	30,000 30,000	16,000 16,000	14 16					
R361-T	.010— .020 .021— .249	42,000 42,000	35,000 35,000	8 10					
R361 * Maximum.									

3

3

3

3

3

3

3

3

3

3

3 3

commercial tolerance

SECTION THICKNESS Inches	THICKNESS TOLERANCE* Inches Plus or Minus			
.006017	.0015			
.018036	.002			
.037045	.0025			
.046076	.003			
.077096	.0035			
.097108	.004			
.109140	.0045			
.141172	.006			
.173203	.007			
.204249	.009			

ELOPED	WIDTH OF	SECTION			
1	TOLERANCE+ Inches Plus or Minus				
Thru	SECTION THICKNESS .006"—,102"	SECTION THICKNESS .103"—.249"			
4	.03	.06			
18	.06	.09			
36	.09	.12			
	Thru 4	Tole Inches Place Tole Inches Place Section THICKNESS .006"—.102" 4			

^{*}Tolerance also applies to one edge flange or leg. All other width and depth tolerances are plus or minus .03 inch.

4 5	• A	N	G	ι	E	\$
SECTION THICKNESS Inches						TOLERANCE Degrees Plus or Minus
.006188						1
.189249						2

4 6 • R	ADIUS
RADIUS Inches	TOLERANCE Inches Plus or Minus
0.00-0.30	.01
0.31-1.00	.03
1.01-3.00	.06
3.01-6.00	.12

straightness: Sections will not vary in straightness in any part more than .12 inch in 12 feet except when such out-of-straightness (not to exceed .5 inch in 12 feet) can be corrected by hand pressure.

twist: Twist in any part of a section will not exceed the ratio of 2° to 12 feet of length except when such twist can be corrected by hand pressure.

6 · tubing and pipe

Working aluminum pipe at one of Reynolds Louisville plants

128 REYNOLDS

manufacturing methods: Reynolds Seamless Aluminum Tubing is produced by extruding cast ingots into tube blooms of a predetermined size, and cold drawing the blooms to tubes of closely controlled quality and dimensions.

A heated billet, placed in the cylinder of the extrusion press, is forced through the die orifice by pressure applied by the hydraulic ram. The outside diameter of the tube bloom is determined by the die orifice.

The mandrel, which extends through the billet and into the die orifice, controls the inside diameter. Since the ram has considerable clearance in the cylinder in order to reduce friction, a disk (dummy block) having very little clearance is placed between the ram and the billet to form a seal and prevent by-passing of metal around the ram. Speeds, pressures, and temperatures involved in extruding various alloys are closely controlled to insure uniform quality.

Cold drawing is employed to further control the dimensions and quality of tubing. The tube bloom is drawn through a series of dies conforming to the desired outside dimensions, while simultaneously the inside dimensions are governed by a mandrel or bulb. This operation imparts hardness and strength and is the means used to produce the cold worked tempers of non-heat treatable alloy tubing. Definite cold work tempers ($\frac{1}{4}$ H, $\frac{1}{2}$ H, etc.) can, however, only be furnished in round tubing, as the amount of cold work can not be accurately controlled in other sections. The effects of cold work can be removed by annealing to soften the material and, in the case of the heat treatable alloys, tubes can be further strengthened by heat treatment.

Round tube blooms can be cold drawn to produce a variety of sections by use of appropriate dies and bulbs.

alloys and tempers: Seamless aluminum tubing is produced commercially by Reynolds in the following alloys and tempers:

NON-H	EAT TREA	TABLE GROUP	HEAT TREATABLE GROUP
25 35 525	O ¼H ½H ¾H ¼H H	round tubing only other tubing	17S { O T R353 O W T T O W T T O W
	,	3	

A L U M I N U M **129**

sizes and sections: ROUND TUBING AND PIPE: The most common forms of seamless aluminum tubing are round tubing and pipe. Reynolds has facilities for producing the range of commercial sizes shown on pages 132 to 135.

On pages 151 to 157, in connection with weight data, are sizes which are considered standard by many users of round aluminum tubing and pipe. If tubing outside the size range shown above is desired, please contact Reynolds' nearest Field Service Office for information regarding our ability to fulfill your requirements.

TUBING OTHER THAN ROUND: Seamless aluminum tubing is also produced in sections other than round, such as square, rectangular, hexagonal, octagonal, oval, elliptical, and many others. Reynolds has facilities for fabricating sections designed by users to meet their own special requirements. Reynolds tubing mill will gladly furnish information as to manufacturing limits and die costs, if any, for tubing other than round.

lengths: Aluminum tubing is usually ordered to one of the following length classifications:

EXACT LENGTHS: All tubes cut to the exact length as specified, with length tolerances as shown on page 142.

EXACT LENGTHS PLUS MILL ENDS (also referred to as STANDARD LENGTHS): A minimum of 85 percent by weight of tubes cut to the exact length specified and the remainder in Random lengths from 5 feet to the exact length specified. Note: This classification does not apply to specified lengths less than 5 feet.

RANDOM LENGTHS: Tubes will vary in length from 5 feet up to a length of 21 feet.

MULTIPLE LENGTHS: Tubes cut, at mill convenience, to any multiple of length specified, with length tolerances as shown on page 142. Multiples less than 6 inches will be cut Random. Note: Sufficient length for subsequent saw cuts should be included in the multiple specified.

COILS: Please contact our nearest Field Service Office for information regarding coiled tubing.

Reynolds has manufacturing facilities for producing tubing in straight lengths up to a maximum of 45 feet in the ¼H, ½H, ¾H and H tempers and in the heat treated (not artificially aged) condition. Straight

lengths of annealed, as well as artificially aged tubing, are limited to 40 feet.

finishes: Reynolds Seamless Aluminum Tubing is available in the following finishes:

MILL FINISH: The surface appearance varies between bright and dull, depending on the alloy, temper, and other factors. Tubing is usually supplied with a mill finish.

CAUSTIC DIP: This finish produces tubing of a uniform color and can be applied to tubing of any cross section in lengths not exceeding 12 feet.

identification: Standard marking consists of stamping the alloy, temper, and REYNOLDS at approximate 6 inch intervals along the tube length with a non-corroding ink. Additional marking or special marking according to customer's specifications may be requested.

Tubing too small for lettering will be tagged with the above information, or when requested, tubing may be identified by a 2 inch wide color stripe at each end and within 2 feet of the center of each length of tubing.

packing: Aluminum tubing is usually packed in wooden boxes in such manner as to prevent damage during normal handling. The weight of the package varies with the size of the tubing, but usually is limited to 250 pounds maximum. Different methods of protection are used in packing, depending upon the wall-diameter ratio and the temper of the tubing.

Requests for smaller packages, individual wrapping, interleaving, or extra protection for export shipment will be given careful consideration.

ordering data: All orders for aluminum tubing should include the following:

Quantity

100

Ħ

Size (outside dimensions and wall thickness in decimals of an inch — nominal size for pipe)

Section (round, square, rectangular, etc.)

Alloy and Temper

Length Classification

WALL THICKNESS MINIMUM OUTSIDE DIAMETER Inches Stubs: Gauge Inches 23, 35, R353, R361 175, 525		4 7	• R	0 U N D				
Sauge Saug								
		Inches	R353,					
		.500	23/4					
	••••	.484						
		.480	21/2					
	••••	.468	21/2					
	••••	.453						
	••••	.450	1 1/2					
		.437						
		.421						
		.406	11/2					
		.400						
		.390						
359 136 214 350 136 176 344 136 176 328 136 176 320 1 156 312 1 156 330 76 136 297 76 136 297 77 78 136 297 77 78 136 281 76 114 281 76 114 266 76 114 250 34 116 250 34 116 250 34 116 250 34 116 238 56 1 234 56 1 234 56 1 234 56 76 234 56 76 234 56 76 218 56 76 218 56 76 34		.375						
		.359						
		.350						
		.344						
		.328						
		.320						
1 .300		.312						
	1	.300	7/6					
2 .284		.297						
	2	.284						
		.281						
3 .259 3/4 11/6		.266						
	3	.259						
4 .238								
234	4	.238						
5 .220 5/6 7/6								
218	5							
6 .203 %6 3/4187 %6 3/4								
187 %6 3/4	6							
			1/2	5/8				

*Subject to change without notice.

132 R E Y N O L D S

	TUBIN	G							
	MAXIMUM OUTSIDE DIAMETER Inches								
	25-0, 25-1/4H, 25-1/2H, 35-0, 35-1/4H, 35-1/2H, R353-0, R361-0	25-3/4H, 35-3/4H	25-H, 35-H	175-0, 175-T, R353-W, R353-T, R361-W, R361-T	525-0				
	6	5	33/4	6					
4	6	51/4	4	6					
	6	51/4	4	6					
Ц	6	51/2	4	6					
4	6	51/2	41/4	6					
4	6	51/2	41/4	6	31/2				
\perp	6	51/2	41/4	6	31/2				
	6	51/2	41/4	6	31/2				
4	6	6	41/2	6	31/2				
4	6	6	41/2	6	31/2				
4	6	6	41/2	6	31/2				
4	6	6	4 3/4	6	31/2				
4	6	6	51/4	6	31/2				
4	6	6	51/4	6	31/2				
4	6	6	51/4	6	31/2				
4	6	6	51/2	6	31/2				
4	6	6	51/2	6	31/2				
4	6	6	51/2	6	31/2				
4	6	6	6	6	31/2				
4	6	6	6	6	31/2				
4	6	6	6	6	31/2				
4	6	6	6	6	31/2				
4	6	6	6	6	31/2				
4	6	6	6	6	31/2				
Ŧ	6	6	6	6	31/2				
1	6	6	6	6	31/2				
1	6	6	6	6	31/2				
1	6	6	6	6	31/2				
1	6	6	6	6	31/2				
1	6	6	6	6	31/2				
1	6	6	6	6	31/2				
	6	6	6	6	31/2				

A U 133 M N 1 U M

commercial sizes*

		• R	OUND
WALL	s		TSIDE DIAMETER ches
Stubs' Gauge	Inches	25, 35, R353, R361	175, 525
	.171	1/2	5/8
8	.165	7/16	1/2
	.156	7/16	1/2
9	.148	3/8	7/16
	.140	3/8	7/16
10	.134	5/16	3/8
	.125	5/16	3/8
11	.120	1/4	5/16
12	.109	1/4	1/4
13	.095	1/4	1/4
	.093	1/4	1/4
14	.083	3/16	3/16
	.078	3/16	3/16
15	.072	3/16	3/16
16	.065	3/16	3/16
	.062	3/16	3/16
17	.058	3/16	3/16
18	.049	V ₈	1/6
	.046	1/8	1/8
19	.042	1/8	V8
20	.035	1/8	1/8
21	.032	1/8	1/8
- 22	.028	1/8	1/8
23	.025	1/8	V₀
24	.022	1/8	1/8
25	.020	1/8	1/8
26	.018	1/8	1/8
27	.016	1/8	1/8
28	.014	1/8	1/8
29	.013	1/8	1/8
30	.012	1/8	1/8
31	.010	1/8	1/8

*Subject to change without notice.

134 REYNOLDS

	TUBIN	G (contin	ued)	
		MAXIMUM	OUTSIDE DIAMI	ETER	
	25-0, 25-1/4H, 25-1/2H, 35-0, 35-1/4H, 35-1/2H, R353-0, R361-0	25-3/4H, 25-H, 35-3/4H 35-H		175-0, 175-T, R353-W, R353-T, R361-W, R361-T	525-0
4	6	6	6	6	31/2
4	6	6	6	6	31/2
4	6	6	6	6	31/2
-+	6	6	6	6	31/2
+	6	6	6	6	31/2
1	6	6	6	6	31/2
+	6	6	6	6	31/2
4	6	6	6	6	31/2
+	6	6	6	6	31/2
+	6	6	6	6	31/2
4	6	6	6	6	31/2
+	6	6	6	6	31/2
4	6	6	6	6	31/2
+	6	6	6	6	31/8
+	6	6	6	6	31/2
1	6	6	6	6	31/2
Ļ	6	6	6	6	31/2
Ł	6	6	6	5	31/2
╀	6	6	6	33/4	31/2
╀	6	6	6	33/4	31/2
+	5	5	5	31/4	31/4
-	4	4	4	23/4	23/4
╀	4	4	4	23/4	23/4
1	31/2	31/2	31/2	21/2	21/2
1	3	3	3	2	2
1	23/4	23/4	23/4	1 3/8	13/8
-	21/2	21/2	21/2	%16	%16
-	11/4	11/4	11/4	7/16	7/16
-	1	1	1	3/8	3/8
-	1	1	1	5/16	5/16
	5/8	5/8	5/8	1/4	1/4
	%16	%16	%16	3/16	3/16

A L U M I N U M 135

composition

4 9 •	S P	ECI	FIE	D	CHE	MIC	AL	
	SILIC	ON	IRON	COPF	PER	MANGANESE		
ALLOY	Min	Max	Max	Min	Max	Min	Max -	
25			1.0*		.20		.10	Charles of the Constitution
35		.60	.70		.20	1.0	1.5	A STATE OF THE PARTY OF THE PAR
175		.80	1.0	3.5	4.5	.40	1.0	
245		.50	.50	3.8	4.9	.30	.90	
52S			.45*		.10		.10	
R353	45 % of Mag	-65 % gnesium	.35		.10		.10	
R361	.40	.80	.70	.15	.40		.15	

^{*} Iron plus Silicon.

COMPOSITION									
MAGN	ESIUM	CHRO	NIUM	ZINC	TITAN-	ОТН			
		-			TOM	Each	Total	ALUMINUM	
Min	Max	Min	Max	Max	Max	Max	Max		
				.10		.05	.15	99.0 Min	
				.10		.05	.15	Remainder	
.20	.80		.25	.10		.05	.15	Remainder	
1.2	1.8		.25	.10		.05	.15	Remainder	
2.2	2.8	.15	.35	.10		.05	.15	Remainder	
1.1	1.4	.15	.35	.10		.05	.15	Remainder	
.80	1.2		.35	.10	.15	.05	.15	Remainder	

A L U M I N U M 137

specified mechanical properties

50 • NON-HEAT TREATABLE (COMMON) ALLOYS							
ALLOY AND TEMPER	OUTSIDE DIAMETER Inches	WALL THICKNESS Inches	TENSILE STRENGTH Lb/Sq In. Minimum				
2\$							
25-0	All sizes	All sizes	15,500 ★				
2S-1/4 H	All sizes	All sizes	14,000				
2S-1/2H	All sizes	All sizes	16,000				
2S-¾H	All sizes	All sizes	19,000				
2S-H	All sizes	All sizes	22,000				
	35						
3S-O	All sizes	All sizes	19,000 *				
3S-1/4 H	All sizes	All sizes	17,000				
3 S- ½H	All sizes	All sizes	19,500				
3S-¾H	All sizes	All sizes	24,000				
3S-H	All sizes	All sizes	27,000				
	52	S					
52S-O	All sizes	All sizes	35,000 ★				
52S-¼H	All sizes	All sizes	31,000				
52S-1/2H	All sizes	All sizes	34,000				
52S- ³ / ₄ H	All sizes	All sizes	37,000				
52S-H	All sizes	All sizes	39,000				

^{*} Maximum

51 •	HEAT T	REATAE	BLE (ST	RON	G) A	LLO	YS			
ALLOY OUTSIDE			STRENGTH Lb/Sq In.		ELONGATION IN 2 INCHES Percent Minimum					
AND TEMPER	DIAMETER	FD/ 20	q In.	.018" to	.025"	.050"	.260" to			
	Inches	Ultimate	Yield	.024" wall	.049" wall	.259" wall	.500" wall			
	175									
175-0	All sizes	35,000¥								
17S-T	.250-2.000 2.001-8.000	55,000 55,000	40,000 ±		12 10	14	16 14			
† 32,00	00 for tubing hea	t treated by t	the purchaser							
		24	S							
245-0	All sizes	35,000¥								
24S-T	.125-2.000 2.001-8.000	64,000 64,000	42,000 ± 42,000 ±	10	12 10	14	16 12			
‡ 40,00	00 for tubing heat	treated by t	he purchaser.							
		R:	353							
R353-O	All sizes	19,000*								
R353-W	.250-2.000 2.001-8.000	28,000 28,000	14,000 14,000		16 14	18 16	20 18			
R353-T	.250-2.000 2.001-8.000	35,000 35,000	28,000 28,000		12	14	16 12			
		R	361							
R361-O	All sizes	22,000¥								
R 361-W	.250-2.000 2.001-8.000	30,000 30,000	16,000 16,000		16 14	18 16	20 18			
R361-T	.250-8.000	42,000	35,000		8	10	10			

commercial tolerances

5	2	•	D	- 1	A	M	E	T	E	R	
ROL	IND TUBIN	NG AND I	HEAT TREA	TABLE	ALLOY	PIPE					ľ
			TOLERAN	CE'—Ir	ches	Plus or I	Minus				1
NOMINAL DIAMETER			TREATABI N) ALLOYS				TRON				1
(O.D. or I.D.) Inches		AN ² NETER		IDUAL NETER REMENT		MEAN	•	D	DIVID IAMET ASURE	TER	
.250500	.00	03	.00	03	Т	.003	3		.006		T
.501- 1.000	.00	04	.00	04		.004	1		.008		
1.001- 2.000	.00	05	.00	0.5		.005	5		.010		
2.001- 3.000	.00	06	.00	06		.006	,		.012		
3.001- 5.000	.00	8	.00	8		.008			.016		
5.001- 6.000	.01	10	.01	10		.010)		.020		
6.001- 8.000	.01	15	.01	5		.015			.030		
8.001-10.000	.02	20	.02	20		.020			.040		
10.001-12.000	.02	25	.02	25		.025			.050		

5 3 •	WALL	THICK	NESS				
	TOLER	TOLERANCE-Inches Plus or Minus					
NOMINAL WALL THICKNESS (T)	NON-HEAT TREATABLE (COMMON) ALLOYS	HEAT TREATABLE (STRONG) ALLOYS					
Inches	INDIVIDUAL WALL THICKNESS MEASUREMENT	MEAN* WALL THICKNESS	INDIVIDUAL WALL THICKNESS MEASUREMENT				
.010035	.002	.002	10% of T				
.036049	.003	.003	10% of T				
.050120	.004	.004	10% of T				
.121203	.005	.005	10% of T				
.204300	.008	.008	10% of T				
.301375	.012	.012	10% of T				
.376500	.032	.032	10% of T				

140 REYNOLDS

TOLERANCES

NON-HEAT TREATABLE ALLOY PIPE						
	E SIZE	TOLERANCE ³				
In	ches	OUTSIDE	INSIDE			
ABOVE	THRU	DIAMETER Inches Plus	DIAMETER Inches Minus			
	1/2	.005	.003			
1/2	2	.008	.005			
2	4	.010	.007			
4	6	.012	.008			
6	8	.014	.009			
8	10	.016	.012			

NOTE 1: The diameter tolerances in Table 52 do not apply to thinwall tubes (wall thickness less than 2.5% of O.D. or less than .020 inch), tubes in the soft (0) temper, and tubing produced in coils, all of which shall be commercially round.

NOTE 2: Mean diameter in Table 52 is the average of two diameter measurements taken at right angles to each other at any point along the length.

NOTE 3: In Table 52, if O.D. and wall or I.D. and wall are the controlling dimensions, the order should be entered as commercial round tubing and not as a pipe size, as the wall thickness of STANDARD and EXTRA-HEAVY PIPE is not guaranteed for tolerance.

NOTE 4: Mean wall thickness in Table 53 is the average of any two wall thickness measurements taken at 180 degrees from each other.

A L U M I N U M 141

54 • LEN	GTH, I	ROUND	TUBIN	G AND	PIPE	
	TOLERANCE ⁵ —Inches Plus					
NOMINAL OUTSIDE DIAMETER Inches	LENGTHS UP THRU 2 Ft	LENGTHS OVER 2 Ft THRU 20 Ft	LENGTHS OVER 20 Ft THRU 30 Ft	LENGTHS OVER 30 Ft	COILED TUBING	
Up to .250 .251- 2.000 2.001- 3.000 3.001-10.000 10.001-12.000	1/8 1/16 1/8 3/16 1/4	1/4 1/8 3/16 1/4 5/16	3/8 3/16 1/4 5/16 3/8	1/2 3/8 5/16 3/8	3% 2% 	

NOTE: A tolerance of $\frac{1}{64}$ inch per inch of O.D., or fraction thereof, will apply on the squareness of all saw cuts.

55 • STRAIGHTNES	SS, ROUND TUBING, PIPE			
NOMINAL OUTSIDE DIAMETER Inches	TOLERANCE			
.375 and up	one part in 1200 parts or .1 inch in 10 feet.			

NOTE: The above straightness tolerance does not apply to tubing in the soft (0) temper or in diameters less than % inch, which shall be commercially straight and substantially free from kinks and short bends.

for tubing other than round

diameter: Diameter tolerances for round tubing apply to corresponding dimensions of tubing other than round with the following exceptions:

SQUARE AND RECTANGULAR TUBING: Tolerances for distance across flats, when measured at corners, shall be the same as for a round tube having a diameter equal to the specified dimensions. For square tubing, the tolerance for distance across flats, when measured at a distance from the corner, shall be double the tolerance for a round

tube having a diameter equal to the distance across flats of the square tube. For rectangular tubing, the tolerance for distance across flats, when measured at a distance from the corner, shall be double the tolerance for a round tube having a diameter equal to the dimension of the rectangular tube at right angles to the one being measured.

wall thickness: The wall thickness tolerance for tubing other than round shall be plus or minus 10 percent of the specified wall thickness.

length: Same as for round tubing.

m-0

straightness: Same as for round tubing.

twist: The twist tolerance for tubing other than round shall be ½ degree per foot of length. (Twist is the angular difference in position of the cross section at any two points along the length of the tube.)

angularity: The angularity tolerance on any angle formed by two adjacent straight sides of any tube having a wall thickness at least $2\frac{1}{2}$ percent of the diameter of the equivalent round tube shall be plus or minus three degrees. The angles on tubes having a wall thickness less than $2\frac{1}{2}$ percent of the diameter of the equivalent round shall be reasonably true.

radius: The radius tolerance shall be plus or minus 10 percent of the specified radius, with a minimum tolerance of plus or minus 1/24 inch. When square corners are specified a maximum radius of 1/24 inch shall be permitted.

56 • OVAL	, ELLIPTIC	CAL, STRE	AMLINE T	UBING	
OUTSIDE DIAMETER OF EQUIVALENT	MAJO! TOLER		MINOR AXIS TOLERANCE		
ROUND	Inches Plus	Inches Minus	Inches Plus	Inches Minus	
Up to 2.500	.040	.025	.025	.015	
2.501-4.250	.050	.035	.035	.025	
4.251-6.000	.070	.050	.055	.040	
6.001 and up	Consult Mill				

pressure data

The internal pressure which seamless tubing and pipe may be expected to withstand may be estimated by use of the following formulas:

$$P_b = S \frac{D^2 - d^2}{D^2 + d^2}$$
 $P_S = \frac{P_b}{F}$

in which P_b = Internal bursting pressure in lb/sq in.

P_s = Safe internal pressure in lb/sq in.

S = Tensile strength in lb/sq in.

D = Outside diameter of tube in inches

d = Inside diameter of tube in inches

F = Factor of safety (such as 4 or 6)

In the following tables are values for $\frac{D^2-d^2}{D^2+d^2}$ and tensile strength at room temperature. To eliminate decimals, a factor of 1000 has been used in calculating the values.

EXAMPLE: Suppose it is desired to find the safe internal pressure for 1%" O.D. x .058" wall thickness 17S-T tubing, using a factor of safety (F) of 4.

The values obtained from the tables are:

$$S = 55$$
 and $\frac{D^2 - d^2}{D^2 + d^2} = 88$

Therefore,
$$P_b=55\times 88=4840$$
 lb/sq in. and $P_S=4840\div 4=1210$ lb/sq in.

57	• 1	ENSILE	STREI	NGTH,	100	O Lb/	Sq In		
TEMPER	MPER COMMON ALLOYS		YS	TEMPER	STRONG ALLOYS				
	25	35	525		175	245	R353	R361	
0	12	15	28						
¼Н	14	17	31	0	26	26	15	18	
½ H	16	19.5	34	W			28	30	
34H	19	24	37	Т	55	64	35	42	
Н	22	27	39						

58 •	ALUMIN	UM PIPE	$- \frac{D^2 - d^2}{D^2 + d^2} \Big(\Big[$	n Thousar	idths)
PIPE SIZE Inches	STANDARD	EXTRA HEAVY	PIPE SIZE Inches	STANDARD	EXTRA HEAVY
1/8	388	560	2	138	200
1/4	375	523	21/2	151	210
3/8	304	436	3	131	186
1/2	292	406	31/2	119	171
3/4	238	334	4	111	161
1	222	308	41/2	104	152
11/4	183	256	5	97	144
11/2	164	232			

pressure data

5	9 •	R O	UN	D T	U B	INC	; ,	R A 1	10	
THICK					0	UTSID	E DIA	AMETE	R	
Stubs' Gauge	Inches	1/8	3/16	1/4	5/16	3/8	7/16	1/2	5/8	T
	.450				1		T	1		
	.400				1			1	1	
	.375				1			1	+	Ŧ
	.350				1					
	.320				1	T				
1	.300					1	1	1	1	
2	.284	1		1			1	T		
3	.259		1			1				
4	.238			1	1	1		1	924	
5	.220			1				1	839	
6	.203					1	1	1	781	н
7	.180							855	695	t
8	.165						886	793	636	
9	.148					915	811	715	566	
10	.134				960	849	739	646	508	+
11	.120			997	898	771	661	574	450	
12	.109			968	832	702	598	517	404	
13	.095			891	734	608	515	445	347	
14	.083		974	797	640	526	444	383	299	
15	.072		898	695	550	450	379	327	256	
16	.065		828	625	491	402	339	292	_	
17	.058		746	554	433	354	299	258	229	4
18	.049	911	629	460	359	294	248	215	169	H
19	.042	806	533	388	303	248	210	182	143	Ł
20	.035	676	436	317	248	204	173	150	118	
21	.032	615	395	287	225	185	157	136	107	
22	.028	533	341	248	195	160	136	118	94	H
23	.025	471	301	219	173	142	121	105	83	-
24	.022	409	261	191	151	124	106	92	73	
25	.020	368	235	173	136	112	96	83	66	
26	.018	327	210	154	122	101	86	75	59	
27	.016	287	185	136	108	89	76	66		
28	.014	248	160	118	94	77	66	58	53	
29	.013	229	148	109	87	72	61	53	46	
30	.012	210	136	101	80	66	56	49	42	
31	.010	173	112	83	66	55	47	41	39	

0	F D ²	— d 2	TO	D ² +0	7,	ln T	hou	s a n	dths	
-1	nches				Ė		-		4 1 11 3	
	T			-						
3/4	7/8	1	1 1/8	1 1/4	1 3/8	1 1/2	1 5/8	1 3/4	1 7/8	2
	1			3.		724	668	618	574	536
						642	590	545	505	471
					658	600	550	508	471	438
••	1				612	557	511	471	436	406
• •		771	687	615	556	505	463	426	395	368
• •	820	725	652	574	518	471	431	397	368	342
	781	685	606	541	488	443	405	374	346	322
825	715	623	549	489	440	400	366	337	313	291
764	656	569	501	446	401	364	333	307	285	265
708	604	523	459	409	368	334	306	282	261	243
652	554	478	420	374	336	306	280	258	239	223
574	485	419	368	327	295	268	245	226	210	196
523	441	380	334	297	268	243	223	206	191	178
464	391	337	296	264	238	216	198	183	170	159
415	350	302	266	237	213	194	178	165	153	143
368	310	268	235	210	190	172	158	146	136	127
331	279	241	212	189	171	156	143	132	123	115
284	240	208	183	163	148	135	124	114	106	99
245	207	180	158	142	128	117	107	99	92	86
210	178	154	136	122	110	101	93	86	80	75
188	159	138	122	109	99	90	83	77	72	67
166	141	123	108	97	88	80	74	68	64	60
139	118	103	91	81	74	67	62	58	54	50
118	101	88	77	69	63	58	53	4.9	46	43
98	83	72	64	58	52	48	44	41	38	36
89	76	66	59	53	48	44	40	37	35	33
77	66	58	51	46	41	38	35	33	30	28
69	58	51	45	41	37	34	31	29	27	25
60	52	45	40	36	33	30	27	25	24	22
55	47	41	36	32	30	27	25	23	22	20
49	42	37	32	29	27	24	22	21	19	18
44	37	33	29	26					14	18
38	33	28								
35	30	26					-:-			
	1									
							-:-+			
										••

pressure data

W	ALL				BIN	200		TIO	
THIC	KNESS				0 U	TSIDE	DIAME	TER	
Stubs' Gauge	Inches	2 1/4	21/2	2 3/4	3	31/4	31/2	3 3/4	
	.500			424	385	352	324	301	i
	.480		450	405	368	336	310	287	
• •	.450	471	419	377	342	313	289	268	
• •	.400	413	368	331	301	275	254	235	
••	.375	385	342	308	280	257	237	220	
• •	.350	359	317	286	260	238	220	204	
• •	.320	323	287	259	235	216	199	185	
1	.300	301	268	241	220	201	186	173	
2	.284	283	252	227	207	190	175	163	
3	.259	256	228	206	187	172	159	148	
4	.238	233	208	188	171	157	145	135	
5	.220	214	191	173	157	144	134	124	
6	.203	196	175	158	144	133	123	114	
7	.180	173	154	139	127	117	108	101	
8	.165	157	141	127	116	107	99	92	
9	.148	140	125	113	104	95	88	82	
10	.134	126	113	102	93	86	79	74	
11	.120	112	101	91	83	77	71	66	
12	.109	102	91	82	75	69	64	60	
13	.095	96	79	71	65	60	56	52	
14	.083	77	69	62	57	52	49	45	
15	.072	66	59	54	49	45	42	39	
16	.065	59	53	48	44	41	38	35	
17	.058	53	47	43	39	36	34	31	
18	.049	44	40	36	33	31	28	26	
19	.042	38	34	31	28	26	24	23	
20	.035	32	28	26	24	22	20	19	
21	.032	29	26	24	22	20	19	17	
22	.028	25	23	21	19	17	16	1.5	
23	.025	23	20	18	17	16	14		
24	.022	20	18	16	15				
25	.020	18	16	15					
26	.018	16	15						

S

	0 F	$D^2 - d^2$	T	0 D ²	$+d^2$,	l n	Thou	sand	ths
	-1	nches							
	4	4 1/4	41/2	4 3/4	5	51/4	51/2	5 3/4	6
1	280	262	246	232	220	208	198	189	180
	268	251	235	222	210	199	190	181	173
	250	234	220	207	196	186	177	169	161
	220	206	193	182	173	164	156	149	142
	205	192	180	170	161	153	146	139	133
	190	178	167	158	150	142	135	129	123
	173	162	152	144	136	.129	123	117	112
	161	151	142	134	127	121	115	110	105
	152	142	134	127	120	114	109	104	99
	138	129	122	115	109	104	99	94	90
	126	118	111	105	100	95	90	86	82
	116	109	103	97	92	87	83	79	76
	107	100	94	89	84	80	77	73	70
	94	88	83	79	75	71	68	65	62
	86	81	76	72	68	65	62	59	57
	77	72	68	64	61	58	55	53	51
	69	65	61	58	55	52	50	48	46
	62	58	55	52	49	47	45	43	41
	56	53	50	47	45	42	40	39	37
	49	46	43	41	39	37	35	34	32
	42	40	38	36	34	32	31	29	28
	37	34	33	31	29	28	27	25	24
	33	31	29	28	26	25	24	23	22
	29	28	26	25	23	22	21	20	20
	25	23	22	21	20	19	18	17	16
	21	20	19	18	17	16	15	15	14
	18	17	16	15	14				
	16								
	14								
		-	-			-			-

Pouring pure molten aluminum into pig molds at Reynolds Listerhill plant

150 REYNOLDS

The weight tables that follow are based on the density of 2S, which is .0979 pounds per cubic inch. If more accurate determination of weight for other aluminum alloys is desired, the applicable conversion factor should be used. Conversion factors for other metals and alloys are also shown for ready reference.

$$\begin{cases} 3S = 1.01 \\ 17S = 1.03 \\ 24S = 1.02 \\ 52S = 0.98 \\ R301 = 1.00 \\ R353 = 0.993 \\ R361 = 0.996 \end{cases}$$
 Weight of
$$\begin{cases} Brass = 3.1 \\ Copper = 3.3 \\ Nickel = 3.26 \\ Steel = 2.89 \\ Zinc = 2.6 \end{cases}$$

Weights shown for round tubing can be used to calculate the weight of square, hexagonal and octagonal tubing of uniform wall thickness by use of the appropriate conversion factor.

weight of
$$\begin{cases} \text{square tube} = 1.27 \\ \text{hexagonal tube} = 1.10 \\ \text{octagonal tube} = 1.06 \end{cases} \times \begin{cases} \text{weight of round tube of same} \\ \text{wall thickness having diameter} \\ \text{equal to distance across flats of tube under consideration.} \end{cases}$$

ALUMINUM 151

6 1	•	R	0 1	JN	D	ΤU	ВІ	N G	; –	
WAL					0	UTSID	E DIA	METE	R	
Stubs' Gauge	Inches	1/8	3/16	1/4	5/16	3/8	7/16	1/2	5/8	
	.450			1						+
	.400									
	.375									
	.350									
	.320									
1	.300									
2	.284									
3	.259									
4	.238							· .	.340	
5	.220								.329	Ē
6	.203								.316	F
7	.180							.213	.296	
8	.165						.166	.204	.280	
9	.148					.124	.158	.192	.261	
10	.134				.0883	.119	.150	.181	.243	
11	.120			.0576	.0853	.113	.141	.168	.224	
12	.109			.0567	.0819	.107	.132	.157	.208	
13	.095			.0543	.0763	.0982	.120	.142	.186	
14	.083		.0320	.0512	.0703	.0894	.109	.128	.166	
15	.072		.0307	.0473	.0639	.0805	.0971	.114	.147	
16	.065		.0294	.0444	.0594	.0744	.0894	.104	.134	
17	.058		.0277	.0411	.0536	.0679	.0812	.0946	.121	
18	.049	.0137	.0250	.0364	.0477	.0590	.0703	.0816	.104	
19	.042	.0129	.0226	.0322	.0419	.0516	.0613	.0710	.0904	
20	.035	.0116	.0197	.0278	.0358	.0439	.0520	.0601	.0762	
21	.032	.0110	.0184	.0257	.0331	.0405	.0479	.0553	.0700	
22	.028	.0100	.0165	.0229	.0294	.0359	.0423	.0488	.0619	
23	.025	.0092	.0150	.0208	.0265	.0323	.0381	.0438	.0554	
24	.022	.0084	.0134	.0185	.0236	.0287	.0337	.0388	.0490	
25	.020	.0078	.0124	.0170	.0216	.0262	.0308	.0354	.0447	
26	.018	.0071	.0113	.0154	.0196	.0237	.0279	.0320	.0403	
27	.016	.0064	.0101	.0138	.0175	.0212	.0249	.0286	.0360	
28	.014	.0057	.0090	.0122	.0154	.0187	.0219	.0251	.0316	
29	.013	.0054	.0084	.0114	.0144	.0174	.0204	.0234	.0293	-16
30	.012	.0050	.0078	.0105	.0133	.0161	.0189	.0216	.0271	
31	.010	.0042	.0066	.0089	.0112	.0135	.0158	.0181		7
										-16

	Pounds Per Linear Foot										
	_	Inches								-	
	3/4	7/8	1	1 1/8	1 1/4	1 3/8	1 1/2	1 5/8	1 3/4	1 7/8	2
						1	1.74	1.95	2.16	2.37	2.57
							1.62	1.81	1.99	2.18	2.36
	• •					1.38	1.56	1.73	1.90	2.08	2.25
	• •		1			1.32	1.49	1.65	1.81	1.97	2.13
	• •		.803	.951	1.10	1.25	1.39	1.54	1.69	1.84	1.98
	••	.637	.776	.913	1.05	1.19	1.33	1.47	1.61	1.74	1.88
	• •	.619	.750	.882	1.01	1.14	1.27	1.41	1.54	1.67	1.80
	469	.589	.708	.828	.947	1.07	1.19	1.31	1.43	1.54	1.66
	450	.560	.669	.779	.889	.999	1.11	1.22	1.33	1.44	1.55
1	430	.532	.633	.735	.836	.938	1.04	1.14	1.24	1.34	1.45
	410	.503	.597	.691	.784	.878	.972	1.07	1.16	1.25	1.35
	379	.462	.545	.628	.711	.794	.787	.960	1.04	1.13	1.21
	356	.432	.508	.585	,661	.737	.813	.889	.965	1.04	1.12
	329	:397	.465	.534	.602	.670	.739	.807	.875	.943	1.01
+	305	.366	.428	.490	.552	.614	.676	.737	.799	.861	.923
	279	.334	.390	.445	.500	.556	.611	.667	.722	.777	.833
1	258	.308	.358	.409	.459	.509	.560	.610	.660	.710	.761
1.	230	.273	.317	.361	.405	.449	.493	.536	.580	.624	.668
	204	.243	.281	.319	.357	.396	.434	.472	.511	.549	.587
	180	.213	.247	.280	.313	.346	.379	.413	.446	.479	.512
\perp	164	.194	.224	.254	.284	.314	.344	.374	.404	.434	.464
1	148	.175	.202	.228	.255	.282	.309	.335	.362	.389	.416
1	217	.149	.172	.195	.217	.240	.262	.285	.308	.330	.353
	110	.129	.149	.168	.187	.207	.226	.245	.265	.284	.304
	0924	.109	.125	.141	.157	.173	.189	.205	.222	.238	.254
).	0848	.100	.114	.129	.144	.159	.173	.188	.203	.218	.232
	0746	.0875	.100	.113	.126	.139	.152	.165	.178	.191	.204
-	0669	.0784	.0900	.101	.113	.125	.136	.148	.159	.171	.182
	0591	.0693	.0794	.0896	.0997	.110	.120	.130	.140	.150	.161
.0)539	.0631	.0723	.0816	.0908	.100	.109	.118	.128	.137	.146
)486	.0569	.0652	.0735	.0818	.0901	.0985	.107	.115	.123	.132
	433	.0507	.0581	.0655	.0729						
	380	.0445	.0509								
.0	354	.0414	.0474								
+											
							-				

	6 2		R O	UN	D T	U B	IN	G —	i
WA THICK					0 U 1	ISIDE D	DIAMET	E R	
Stubs' Gauge	Inches	21/4	21/2	2 3/4	3	31/4	31/2	3 3/4	ĺ
	.500			4.15	4.61	5.07	5.54	6.00	
	.480		3.58	4.02	4.46	4.91	5.35	5.79	1
	.450	2.99	3.40	3.82	4.24	4.65	5.07	5.48	
	.400	2.73	3.10	3.47	3.84	4.21	4.58	4.95	ı
	.375	2.60	2.94	3.29	3.63	3.98	4.33	4.67	i
	.350	2.45	2.78	3.10	3.42	3.75	4.07	4.39	1
• •	.320	2.28	2.57	2.87	3.17	3.46	3.76	4.05	ı
1	.300	2.16	2.44	2.71	2.99	3.27	3.54	3.82	1
2	.284	2.06	2.32	2.58	2.85	3.11	3.37	3.63	i
3	.259	1.90	2.14	2.38	2.62	2.86	3.10	3.34	i
4	.238	1.77	1.99	2.21	2.43	2.65	2.87	3.08	Ì
5	.220	1.65	1.85	2.05	2.26	2.46	2.66	2.87	i
6	.203	1.53	1.72	1.91	2.10	2.28	2.47	2.66	Ī
7	.180	1.38	1.54	1.71	1.87	2.04	2.21	2.37	Ĭ
8	.165	1.27	1.42	1.57	1.73	1.88	2.03	2.18	
9	.148	1.15	1.28	1.42	1.56	1.69	1.83	1.97	Ĭ
10	.134	1.05	1.17	1.29	1.42	1.54	1.66	1.79	i
11	.120	.943	1.05	1.16	1.28	1.39	1.50	1.61	i
12	.109	.861	.962	1.06	1.16	1.26	1.36	1.46	1
13	.095	.756	.643	.930	1.02	1.11	1.19	1.29	i
14	.083	.664	.740	.817	.894	.970	1.05	1.12	
15	.072	.579	.645	.712	.778	.845	.911	.977	
16	.065	.524	.584	.644	.704	.764	.824	.884	I
17	.058	.469	.523	.576	.630	.683	.737	.790	
18	.049	.398	.443	.488	.534	.579	.624	.669	
19	.042	.342	.381	.420	.459	.497	.536	.575	
20	.035	.286	.318	.351	.383	.415	.448	.480	
21	.032	.262	.291	.321	.351	.380	.410	.439	
22	.028	.230	.255	.281	.307	.333	.359	.385	
23	.025	.205	.228	.251	.274	.298	.321		
24	.022	.181	.201	.222	.242				
25	.020	.165	.183	.202					
26	.018	.148	.165						1

Pounds		Per	Lin	ear	Foo	t			
	— I n c	hes					-		
	4	4 1/4	41/2	4 3/4	5	51/4	51/2	5 3/4	6
	6.46	6.92	7.38	7.84	8.30	8.77	9.23	9.69	10.1
	6.24	6.68	7.12	7.56	8.01	8.45	8.89	9.34	9.78
	5.90	6.31	6.73	7.14	7.56	7.97	8.39	8.80	9.22
	5.31	5.68	6.05	6.42	6.79	7.16	7.53	7,90	8.27
	5.01	5.36	5.71	6.06	6.40	6.75	7.09	7,44	7.79
	4.71	5.04	5.36	5.68	6.01	6.33	6.65	6.98	7.30
	4.35	4.64	4.94	5.23	5.53	5.82	6.12	6.41	6.71
	4.10	4.37	4.65	4.93	5.20	5.48	5.76	6.03	6.31
	3.90	4.16	4.42	4.68	4.94	5.21	5.47	5.73	5.99
	3.58	3.82	4.05	4.29	4.53	4.77	5.01	5.25	5.49
	3.30	3.52	3.74	3.96	4.18	4.40	4.62	4.84	5.06
	3.07	3.27	3.48	3.68	3.88	4.08	4.29	4.49	4.69
	2.84	3.03	3.22	3.41	3.59	3.78	3.97	4.16	4.34
	2.54	2.70	2.87	3.04	3.20	3.37	3.53	3.70	3.87
	2.34	2.49	2.64	2.79	2.94	3.10	3.25	3.40	3.55
	2.10	2.24	2.38	2.51	2.65	2.79	2.92	3.06	3.20
	1.91	2.04	2.16	2.28	2.41	2.53	2.65	2.78	2.90
	1.71	1.83	1.94	2.05	2.16	2.27	2.38	2.49	2.60
	1.57	1.67	1.77	1.87	1.97	2.07	2.17	2.27	2.37
4	1.37	1.46	1.54	1.63	1.72	1.81	1.90	1.98	2.07
4	1.20	1.28	1.35	1.43	1.51	1.58	1.66	1.74	1.81
	1.04	1.11	1.18	1.24	1.31	1.38	1.44	1,51	1.58
1	.944	1.00	1.06	1.12	1.18	1.24	1.30	1.36	1.42
	.844	.897	.951	1.00	1.06	1.11	1.16	1.22	1.27
4	.715	.760	.805	.850	.895	.941	.986	1.03	1.08
	.614	.652	.691	.730	.769	.807	.846	.885	.924
	.512	.544	.577	.609	.642				
-1	.469								
	.410								
1									
1									
									_

6 3	• A	LUMI	N U M P	IPE-
PIPE SIZE Inches	OUTSIDE DIAMETER Inches	INSIDE DIAMETER Inches	STANDARD PIPE SIZES WALL THICKNESS Inches	WEIGHT Lb/Ft
1/8	.405	.269	.068	.0846
1/4	.540	.364	.088	.147
3/8	.675	.493	.091	.196
1/2	.840	.622	.109	.294
3/4	1.050	.824	.113	.391
1	1.315	1.049	.133	.580
11/4	1.660	1.380	.140	.785
11/2	1.900	1.610	.145	.939
2	2.375	2.067	.154	1.26
21/2	2.875	2.469	.203	2.00
3	3.500	3.068	.216	-2.62
31/2	4.000	3.548	.226	3.15
4	4.500	4.026	.237	3.73
41/2	5.000	4.506	.247	4.33
5	5.563	5.047	.258	5.05

156 R E Y N O L D S

	Pounds Per	Linear Foo	t
	INSIDE DIAMETER Inches	EXTRA HEAVY PIPE SIZES WALL THICKNESS Inches	WEIGHT Lb /Ft
5	.215	.095	.109
	.302	.119	.185
	.423	.126	.255
	.546	.147	.376
	.742	.154	.509
	.957	.179	.750
3	1.278	.191	1.04
3	1.500	2.00	1.25
3	1.939	.218	1.74
3	2.323	.276	2.65
9	2.900	.300	3.54
	3.364	.318	4.32
	3.826	.337	5.18
3	4.290	.355	6.09
3	4.813	.375	7.18

7 · wire, rod and bar

Drawing aluminum alloy wire at Reynolds Metals Plant 7, Louisville

160 REYNOLDS

definitions: Aluminum wire, rod, and bar are defined as follows: WIRE is a solid section — such as a round, square, hexagon, octagon, or rectangle — of less than % inch greatest dimension.

ROD is a solid round section % inch or greater in diameter.

BAR is a solid section other than round — such as a square, hexagon, octagon, or rectangle — having greatest dimension % inch or over.

manufacturing methods: Reynolds produces wire, rod, and bar by rolling and extrusion. Rolling is usually employed, but some sizes may be extruded.

WIRE is produced by drawing rod through a series of progressively smaller dies to obtain the desired dimensions.

ROD AND BAR, NON-COLD FINISHED, are produced by hot working to final dimensions.

ROD AND BAR, COLD FINISHED, are produced by hot working to a size slightly larger than specified and reducing to final dimensions by cold working. Cold finished products have a better finish and closer dimensional tolerances than non-cold finished products.

alloys and tempers: Wire, rod, and bar are produced by Reynolds in the following alloys and tempers:

sizes and sections: The range of commercial sizes and the standard size increments for wire, rod, and bar produced by Reynolds in the above alloys and tempers are as shown on page 164.

Reynolds Screw Machine Stock is produced in 17S-T rod and hexagonal bar in standard 12 foot lengths in the following sizes.

lengths: Aluminum wire, rod, and bar is usually ordered to one of the following length classifications:

RANDOM LENGTHS: In sizes up to 2 inches diameter or greatest distance across flats, lengths will vary from 8 to 16 feet; in sizes 3½ inches and over, lengths will vary from 3 to 18 feet.

Random lengths of 12 feet maximum can be supplied if shorter lengths are necessary. Mill lengths are considered preferable, however.

MILL LENGTHS: A minimum of 85 percent by weight will be furnished in one length within the range of 8 to 16 feet — the remainder in shorter Random lengths.

(Mill lengths have proven highly successful for use in automatic screw machines.)

STANDARD 12 FOOT LENGTHS: A minimum of 80 percent by weight will be furnished in 12 foot lengths, plus or minus $\frac{1}{2}$ inch—the remainder in lengths 8 to 12 feet.

EXACT LENGTHS: All pieces will be cut to the ordered length, with a plus tolerance of ½ inch on sizes up to 3½ inches diameter or greatest distance across flats, and lengths up to 10 feet, and with a plus tolerance of ¼ inch on all other sizes and lengths.

MULTIPLE LENGTHS: All material will be cut, at mill convenience, to any multiple of the length specified, with length tolerances the same as shown for Exact lengths. Note: Sufficient length for subsequent saw cuts should be included in the multiple specified.

COILS: Consult mill.

identification: Unless other identification is specified, the alloy and temper is stenciled with metal stamps on the end of each Reynolds bar and rod having a diameter or distance across flats of 1 inch or more. Straight lengths of wire and the smaller sizes of bar and rod will either be painted on the end with an identifying color, or the bundles will be tagged with the alloy and temper.

Each coil of wire will bear a tag showing the size, alloy, temper, and lot.

packing: Wire, rod, and bar in sizes up to about 3 inches will usually be shipped in bundles of approximately 250 pounds. Annealed material in sizes 1 inch and under, and all other material up to and including ½ inch, will be packed in wood or high-strength corrugated boxes. Annealed material in sizes over 1 inch, and other material in sizes over ½ inch to approximately 3 inches, will be spirally wrapped with several thicknesses of suitable wrapping material, with boots on the ends. However, carload lots and through-truck shipments of strong alloys which are not boxed will be spot-wrapped in the case of sizes up to about 3 inches, and larger sizes will be loaded in bulk.

ordering data: All orders for wire, bars, and rods should include the following:

Quantity

Size (diameter or distance across flats in decimal or common fractions)

Alloy and Temper

Section (indicate whether rounds, squares, hexagons, etc., are desired)

Length Classification (for wire, indicate whether coiled or straightened lengths are desired)

Orders for special wire, bars, and rods should reference a drawing showing the exact dimensions desired, or should include a detailed description.

64 • (OMME	RCIAL
FORM	PRODUCT	FINISH
	WIRE	Drawn
		Cold Finished
Round	ROD	
		Non-Cold Finished
Hexagonal	BAR	Cold Finished
Rectangular Square Edge	BAR	Non-Cold Finished

164 R E Y N

^{*}Subject to change without notice.

* * Maximum size of 24S-T rod is 5½ inches diameter.

†Standard sizes are shown in weight tables.

SIZES								
L Dalle	DIAMETER OF DISTANCE ACROSS FL Inches	ATS						
From	Thru	Standard Increments						
.125	.374	% 4						
.375	1.500	V32						
1.501	2.500	У16						
2.501	3.000	<i>Y</i> 16						
3.001	3.500	V∕a						
3.501	**8.000	1/4						
.750	1.625	· У16						
15/32 × 3/4	5⁄8 × 2 1∕2	† 3a						

compositions

6 5	•	S P	E C	I F I	E D	C	H E N	110	A L	
ALLOY	SILI	CON	IRON	COPI	PER	MANG	ANESE	MAGN	ESIUM	1
	Min	Max	Max	Min	Max	Min	Max	Min	Max	
25			1.0 *		.20		.10			
35		.60	.70		.20	1.0	1.5			
175 -		.80	1.0	3.5	4.5	.40	1.0	.20	.80	
245		.50	.50	3.8	4.9	.30	.90	1.2	1.8	
52\$.45 *		.10		.10	2.2	2.8	
R317		1.0	1.0	3.5	4.5	.40	1,0	.20	.80	The second second
R353	.456 Magn	5 % of esium	.35		.10		.10	1.1	1.4	
R361	.40	.80	.70	.15	.40		.15	.80	1.2	

*Iron plus Silicon.

	COMPOSITIONS										
	CHRO	MIUM	LEA	AD	BISM	итн	ZINC	TITAN- IUM	OTH	TOTAL	ALUMINUM
1	Min	Max	Min	Max	Min	Max	Max	Max	Max	Max	ALOMINOM
							.10		.05	.15	99.0 Min.
							.10		.05	.15	Remainder
		.25				-	.10		.05	.15	Remainder
		.25					.10		.05	.15	Remainder
	.15	.35					.10		.05	.15	Remainder
		.25	.30	.70	.30	.70	.10		.05	.15	Remainder
	.15	.35		Total Paris			.25		.05	.15	Remainder
		.35					.10	.15	.05	.15	Remainder

Me

specified mechanical properties

66 • N	ON-HEAT TREATA	BLE (COMMON	ALLOYS
FORM TEMPER		TENSILE STRENGTH Lb/Sq In. Minimum	ELONGATION IN 2 INCHES Percent Minimum
	25		
Wire	2S-O 2S-¼H 2S-½H 2S-¾H 2S-H	15,500 * 14,000 16,000 19,000 22,000	
Bar and Rod	2S-O 2S-F	15,500 *	25
	35		
Wire	3S-O 3S-¼H 3S-½H 3S-¾H 3S-H	19,000 * 17,000 19,500 27,000 27,000	
Bar and Rod	3S-O 3S-F	19,000 *	25
	52 S		
Wire	52S-O 52S-¼H 52S-½H 52S-¾H 52S-H	32,000 * 31,000 34,000 37,000 39,000	
Bar and Rod	52S-O 52S-F	32,000 *	25

^{*}Maximum.

[†]Except in the annealed (O) condition, the temper of common alloy bars and rods cannot be closely controlled, and will vary according to size. An approximate indication as to these (As Fabricated) tempers for various sizes and sections is shown in the table below.

SECTION	DIAMETER OR LEAST DISTANCE	APPROVIMATE TEMPER				
	ACROSS FLATS Inch	ROLLED	EXTRUDED	COLD FINISHED		
Rounds Squares, Hexagons	Up to 3/4 3/4 to 11/2 11/2 to 3 3 to 8	1/2H 1/4H to 1/2H 1/4H 1/8H to 1/4H	1/8H to 1/4H 1/8H to 1/4H 1/8H to 1/4H	1/2H to 3/4H 1/2H to 3/4H 1/4H to 1/2H 1/8H to 1/4H		
Rectangles	Up to 1/8 1/8 to 1/2 1/2 to 11/2 11/2 to 3	1/4 H to 1/2 H 1/4 H to 1/2 H 1/4 H 1/8 H to 1/4 H	1/8 H to 1/4 H 1/8 H to 1/4 H 1/8 H to 1/4 H 1/8 H to 1/4 H	1/2H to 3/4H 1/2H 1/4H 1/8H to 1/4H		

67	• HEAT	TREATABL	E (STRON	IG) ALL	OYS					
FORM	TEMPER	SIZE	Lb/Se	STRENGTH Lb/Sq In. Minimum						
-			ULTIMATE	YIELD	Percent Minimum					
	17S									
w	175-0	Up thru .124 .125 and up	35,000 * 35,000 *		16					
Wire	17S-T	Up thru .124 .125 and up	55,000 55,000	32,000	14					
Bar	175-0	All sizes	35,000 *		16					
Rod	17S-T	All sizes	55,000	32,000	12					
		245								
	245-0	Up thru .124 .125 and up	35,000 * 35,000 *		16					
Wire	24S-T	Up thru .124 .125 and up	62,000 62,000	40,000	12					
Bar	245-0	All sizes	35,000 *		16					
Rod	24S-T	All sizes	62,000	40,000	12					
		R317	,							
	R317-O	Up thru .124 .125 and up	35,000 * 35,000 *		16					
Wire	R317-T	Up thru .124 .125 and up	55,000 55,000	32,000	14					
Bar	R317-O	All sizes	35,000 *		16					
Rod	R317-T	All sizes	55,000	32,000	12					
* Max	imum.									

specified mechanical properties

68 • HEAT TREATABLE (STRONG) ALLOYS								
FORM	TEMPER	SIZE	Lb/Sq	STRENGTH Lb/Sq In. Minimum				
			ULTIMATE	YIELD	Percent Minimum			
R353								
	R353-O	Up thru .124 .125 and up	19,000 * 19,000 *	••••	20			
Wire	R353-W	Up thru .124 .125 and up	25,000 25,000	14,000	18			
Wife	R353-T	Up thru .124 .125 and up	32,000 32,000	25,000	14			
	R353-T61	Up thru .124 .125 and up	30,000 30,000	20,000	14			
	R353-O	All sizes	19,000 *		20			
Bar	R353-W	All sizes	25,000	14,000	18			
Rod	R353-T	All sizes	32,000	25,000	14			
	R353-T61	All sizes	30,000	20,000	14			
		R361						
	R361-O	Up thru .124 .125 and up	22,000 * 22,000 *	• • • •	18			
Wire	R361-W	Up thru .124 .125 and up	30,000 30,000	14,000	18			
	R361-T	Up thru .124 .125 and up	42,000 42,000	35,000	10			
Bar	R361-O	All sizes	22,000 *		18			
and Rod	R361-W	All sizes	30,000	14,000	18			
	R361-T	All sizes	42,000	35,000	10			

^{*} Maximum.

Roll straightening hexagon aluminum bar stock at Reynolds Plant 8, Louisville

commercial tolerances

69 •	ROUND	WIRE	AND	ROD	
DIAMETER	DRAWN COLD WIRE FINISHED ROD		NON-COLD FINISHED ROD		
Inches	TOLERANCE	TOLERANCE	TOLE	RANCE	
	Plus or Minus	Plus or Minus	Inches Plus	Inches Minus	
Up to .035	.0005	/			
.036064	.001				
.065374	.0015				
		- 1	1 3 3 1	1	
.375500		.0015			
.501-1.000		.002			
1.001-1.500		.0025		• • • • • •	
1.501-2.500		.004			
- 1		- 11			
2.501-3.499			.006	.006	
3.500-5.000			1/32	1/64	
5.001-8.000			<i>Y</i> 16	1/32	

70 • SCRE	W MACHIN	ESTOCK
DIAMETER OR DISTANCE	TOLERANCE-Inch	nes Plus or Minus
ACROSS FLATS Inches	ROUND ROD	HEXAGONAL BAR
.750-1.000	.002	.0025
1.001-1.500	.0025	.003
1.501-2.000	.006	.0035
2.001-3.375	.008	••••

71 • SQUARE	, HEXAGONAL,	OCTAGONAL	WIRE, BAR
DISTANCE ACROSS FLATS Inches	DRAWN WIRE TOLERANCE Inches Plus or Minus	COLD FINISHED BAR TOLERANCE Inches Plus or Minus	NON-COLD FINISHED BAR TOLERANCE Inches Plus or Minus
1 23	1	TTE	
Up to .064	.0015		
.065374	.002		
			To the
.375500		.002	i Y
.501-1.000		.0025	
1.001-1.500		.003	
1.501-1.625	· · · · · ·	.0035	
1.626-2.000			.016
2.001-3.000			.020
3.001-4.000	=		.030

commercial tolerances

7 2			T A N	GUL	A R
Annual van Alex		WN WIRE AND COL			
Areas up thro	u 3 sq in.		Areas greate	r than 3 sq in.	
WIDTH OR THICKNESS Inches	TOLERANCE Inches Plus or Minus	THICKNESS Inches	THICKNESS TOLERANCE Inches Plus or Minus	WIDTH Inches	WIDTH TOLERANCE Inches Plus or Minus
Up to .064	.0015	Up to .250	.0025	2.000-4.000	· 1/32
.065500	.002	.251500	.0035		
.501-1.000	.0025	.501750	.005		
1.001-1.500	.003	.751-1.500	.008		
1.501-3.000	.005				

^{*} Rectangles are classified as wire in widths up thru .374 inch.

174 REYNOLDS

	NON-COLD	FINISHED BAR	
THICKNESS Inches	THICKNESS TOLERANCE Inches Plus or Minus	WIDTH Inches	WIDTH TOLERANCI Inches Plus or Minus
Up to .500	.006	Up to 1.500	½ 4
.501750	.008	1.501-4.000	V ₃₂
.751-1.000	.012	4.001-6.000	3/64
1.001–2.000	.016	6.001–10.000	<i>У</i> 16
2.001-3.000	.020		

The weight tables in this booklet are based on the density of 25, which is .0979 pounds per cubic inch. If more accurate determination of weight for other aluminum alloys is desired, the applicable conversion factor should be used. Conversion factors for other metals and alloys are also shown for ready reference.

$$\begin{cases} 3S = 1.01 \\ 17S = 1.03 \\ 24S = 1.02 \\ 52S = 0.98 \\ R317 = 1.03 \\ R353 = 0.993 \end{cases} \times \text{weight of } 2S$$

$$\begin{cases} Brass = 3.1 \\ Copper = 3.3 \\ Nickel = 3.26 \\ Steel = 2.89 \\ Zinc = 2.6 \end{cases}$$

DIAMETER Inch	SECTION AREA Sq In.	WEIGHT Lb /Ft	DIAMETEI	R SECTION AREA Sq In.	WEIGHT Lb /Ft
73 •	ROUND	WIRE	ROU	ND ROD	(Cont.)
	-	-	1000		
1/8	.012272	.0144	5/8	.30680	.360
%4	.015532	.0182	21/32	.33824	.397
5/32	.019175	.0225	11/16	.37122	.436
11/64	.023202	.0273	23/32	.40574	.477
3/16	.027612	.0324	3/4	.44179	.519
13/64	.032405	.0381	25/32	.47937	.563
7/32	.037583	.0442	13/16	.51849	.609
15/64	.043143	.0507	27/32	.55914	.657
1/4	.049088	0.577	7/8	.60132	.706
17/64	.049088	.0577	2%32	.64504	.758
%32		.0651	15/16	.69029	.811
1%4	.062126	.0730	31/32	.73708	.866
'/64	.069221	.0813			
			1	.78540	.923
5∕16	.076699	.0901	1 1/32	.83526	.981
21/64	.084561	.0993	1 1/16	.88665	1.04
11/32	.092806	.109	1 3/32	.93957	1.10
23/64	.10143	.119			
			1 1/8	.99402	1.17
74 •	DOUND	0.00	1 3/32	1.0500	1.23
/4	ROUND	KUD	1 3/16	1.1075	1.30
			1 7/32	1.1666	1.37
3/8	.11045	.130			
13/32	.12962	.152	1 1/4	1.2272	1.44
7/16	.15033	.177	1 1/32	1.2893	1.51
15/32	.17257	.203	1 5/16	1.3530	1.59
			111/32	1.4182	1.67
1/2	.19635	.231	4 3/	1 4040	1.74
17/32	.22166	.260	1 3/8 113/32	1.4849	1.74
%16	.24851	.292	1 7/16	1.6230	1.82
19/32	.27688	.325	115/32	1.6943	1.99
	,27 000	.525	1 /32	1.0743	1.77

DIAMETER Inch	SECTION AREA Sq In.	WEIGHT Lb /Ft	DIAMETER Inch	SECTION AREA Sq In.	WEIGHT Lb /Ft
75	ROUND	ROD	ROU	ND ROD	(Cont.)
1 1/2	1.7672	2.08	4 1/2	15.904	18.7
1 %16	1.9175	2.25	4 3/4	17.721	20.8
1 5/8	2.0739	2.44			
111/16	2.2366	2.63	5	19.635	23.1
			5 1/4	21.648	25.4
1 3/4	2.4053	2.83	5 1/2	23.758	27.9
113/16	2.5802	3.03	5 3/4	25.967	30.5
1 7/8	2.7612	3.24	-		
115/16	2.9483	3.46	6	28.274	33.2
			6 1/4	30.680	36.0
2	3.1416	3.69	6 1/2	33.183	39.0
2 1/16	3.3410	3.93	6 3/4	35.785	42.0
2 1/8	3.5466	4.17			
2 3/16	3.7583	4.42	7	38.485	45.2
		1	7 1/4	41.283	48.5
2 1/4	3.9761	4.67	7 1/2	44.179	51.9
2 5/16	4.2001	4.93	7 3/4	47.173	55.4
2 3/8	4.4301	5.20		50.266	50.1
2 1/16	4.6664	5.48	8	30.200	59.1
2 1/2	4.9088	5.77	76 •	HEXAGON	AL BAR
2 %16	5.1573	6.06	3/4	.48714	570
2 5/8	5.4119	6.36	13/16	.57171	.572
21/16	5.6727	6.66	7/8	.66305	.072
2 3/4	5.9396	6.98	15/16	.76116	.894
213/16	6.2126	7.30		04400	1.00
2 1/8	6.4918	7.63	1 1/16	.86603 .97767	1.02
2 ¹⁵ /16	6.7771	7.96	1 1/8	1.0961	1.15
3	7.0686	8.30	1 3/16	1.2212	1.43
3 1/8	7.6699	9.01	1 1/4	1.3532	1.59
3 1/4	8.2958	9.75	1 5/16	1.4919	1.75
3 3/8	8.9462	10.5	1 3/8	1.6373	1.73
3 1/2	9.6212	11.3	1 7/16	1.7896	2.10
3 3/4	11.045	13.0	1 /10	137 070	2.10
		- 3	1 1/2	1.9486	2.29
4	12.566	14.8	1 %16	2.1144	2,48

	Sq In.	Lb/Ft	DISTANCE ACROSS FLATS Inches	SECTION AREA Sq In.	WEIGHT Lb/Ft	
77 • RECT	ANGULA	R BAR	RECTANGU	LAR BAR	(Cont.)	
Squa	re Edge	-	Squ	Square Edge		
15/32 x 1/4	0.3516	0.4130	%16 x 1	0.5625	0.6608	
7/8	0.4102	0.4819	1 1/8	0.6328	0.7434	
1	0.4687	0.5506	1 1/4	0.7031	0.8260	
1 1/8	0.5273	0.6195	1 3/8	0.7734	0.9086	
1 1/4	0.5859	0.6883				
1 3/8	0.6445	0.7572	1 1/2	0.8437	0.9912	
1 1/2	0.7031	0.8260	1 5/8	0.9141	1.074	
1 5/8	0.7617	0.8948	1 3/4	0.9844	1.156	
1 3/4	0.8203	0.9637	1 7/8	1.0547	1.239	
1 1/8	0.8789	1.032	2	1.1250	1.322	
2	0.9375	1.101	2 1/8	1.1953	1.404	
2 1/8	0.9961	1.170	2 1/4	1.2656	1.487	
2 1/4	1.0547	1.239	2 3/8	1.3359		
2 3/8	1.1133	1.308		-	1.569	
2 1/2	1.1719	1.377	2 1/2	1.4062	1.652	
		- 1	1000	1 -		
1/2 x 3/4	0.3750	0.4405	5/8 x 1	0.6250	0.7342	
7/8	0.4375	0.5140	1 1/8	0.7031	0.8260	
1	0.5000	0.5874	1 1/4	0.7812	0.9178	
1 1/8	0.5625	0.6608	1 3/8	0.8594	1.010	
1 1/4	0.6250	0.7343	1 1/2	0.9375	1.101	
1 3/8	0.6875	0.8077				
1 1/2	0.7500	0.8811	1 5/8	1.0156	1.193	
1 5/8	0.8125	0.9545	1 3/4	1.0937	1.285	
1 3/4	0.8750	1.028	1 7/8	1.1719	1.377	
2	1.000	1.101	2	1.2500	1.469	
2 1/8	1.0625	1.173	2 1/8	-1.3281	1.560	
2 1/4	1.1250	1.322	2 1/4	1.4063	1.652	
2 3/8	1.1875	1.395	2 3/8	1.4844	1.744	
2 1/2	1.2500	1.469	2 1/2	1.5625	1.836	

8 · forging stock

Loading forging stock for airplane propellers into preheating furnace

definitions: Aluminum alloy forging stock is available in a variety of forms to fulfill the diversified requirements of the forgings manufacturer. Definitions for the different forms are as follows:

FORGING ROD: Round forging stock having a diameter of % inch or more.

FORGING BAR: Forging stock of square or rectangular cross-section having a greatest distance across flats of % inch or more.

FORGING SHAPES: Forging stock having other than round, square, or rectangular cross-section.

Rod, bar, or shapes used for forging are rarely supplied in either the annealed or heat treated condition, and should always be identified as Forging Stock to avoid confusion with similar material used for other purposes.

manufacturing methods: Either of two basic manufacturing processes, rolling or extrusion, may be used to produce aluminum alloy forging stock. Forging shapes are usually extruded, but forging rod is nearly always rolled. Forging bar may be rolled or extruded. Material produced by either method may be cold finished to obtain close tolerances and to control the surface condition, or the material may be supplied hot finished, depending on requirements. In either case the forging stock is carefully conditioned and inspected to insure surfaces suitable for exacting forging requirements.

classes: Two classes of aluminum alloy forging bar and rod are produced. Class I forging stock is hot finished in most cases and is satisfactory for general forging use. Class II forging stock is cold finished to closer tolerances and is used for applications requiring close volume control. Forging shapes are produced only in Class I.

alloys: The alloys in which forging stock is produced and the characteristics of the material after forging and heat treatment are as follows:

ALLOY CHARACTERISTICS

- 14S High strength and relatively good forgeability.
- 17S Good strength, corrosion resistance and machinability.
- 18S Good properties at elevated temperatures.
- 25S Ease of forging, good strength, and fair corrosion resistance.
- 32S Good properties at elevated temperatures and low coefficient of expansion.

- A51S Ease of forging of large or intricate parts not requiring high strength. Better resistance to corrosion than 17S.
- R317 Good strength, corrosion resistance, and excellent machinability.
- R353 Excellent corrosion resistance, moderate strength, and good weldability.

Forging stock is designated only by the alloy, since a temper symbol is not affixed until after forging and heat treatment. All of the above alloys require heat treatment in addition to forging to develop optimum characteristics. Minimum mechanical properties of heat treated forgings are shown on page 187.

lengths: Aluminum alloy forging stock is usually ordered to one of the following classifications:

RANDOM LENGTHS: In accordance with the following table.

DIAMETER OR GREATEST	ACCEPTABLE LENGTH — Feet
DISTANCE BETWEEN	
PARALLEL FACES	

Inches	80% min.	20% max.
3/8 to 2	8-16	3
2 to 31/2	6-18	3
3½ and up	3-18	11/2

EXACT LENGTHS: All material cut to specified length with the following tolerances:

TOLERANCE	— Inches Plus
Lengths	Lengths
up thru	over
10 feet	10 feet
1/8	1/4
	Lengths up thru 10 feet

31/2 and over

MULTIPLE LENGTHS: Material cut to any convenient multiple of length specified within the Random length limits shown above. (Sufficient length for saw cuts should be included in the multiple specified.)

1/4

1/4

packing: Unless otherwise specified, forging stock in sizes up to approximately 3 inches is shipped in bundles weighing about 250

pounds. If shipment is made in carload lots or by through-truck, the bundles are spot wrapped. When considerable handling in shipment is anticipated, bundles are spirally wrapped with several thicknesses of suitable wrapping material and the ends protected by boots. Larger sizes may be loaded in bulk.

ordering data: Orders for aluminum alloy forging stock should include the following:

Quantity

Size (diameter or distance across flats for forging rod and bar — our die number or a print showing complete dimensions for shapes)

Section (indicate whether round, square, rectangle or shape)

Alloy (no temper designation is used for forging stock)

Class (except forging shapes)

Length Classification

EXAMPLE: 20,000 lbs. 2 inch dia. round 17S Forging Stock Class 2 in Random Lengths.

Orders for forging stock may reference specifications for finished forgings, in which case material conforming to the chemical requirements of the specification will be supplied. Specifications for other commodities do not apply to forging stock and should not be referenced.

sections and sizes: Round forging rod is used for the production of most forgings and pressings. However, there are instances in which some of the blocking operations can be eliminated by using one of the other forms. In the following table, and in the weight tables on pages 193 to 197, are shown forging stock sizes which are considered standard by many users and for which facilities are available for manufacturing in production quantities.

identification: Forging stock is supplied with the alloy number stamped (with metal stamps) on one end of the piece if the size permits. In addition, the alloy number, month of manufacture, the words "Forging Stock," and the name "Reynolds" is printed on the length of the forging stock near the ends. Material is tagged with this information if the size is such that it is impractical to stamp or stencil. Other identification may be supplied upon request.

7 8 •		ERCI		Z E S
SECTIONS	FROM	THRU		INCREMENTS
	-		Class I	Class II
	3/8	1 1/2	<i>y</i> 16	1/32
Round Forging Rod	1 1/2	3	<i>У</i> 16	<i>У</i> 16
	3 * *	31/2	⅓ 8	
	31/2	8	1/4	
Rectangular Forging Bar	15/32 × 3/4	5⁄8 × 21∕2	†	
Forging Shapes	in. providin	iximum cross-se ig shape cross-: in. diameter cir	section can b	of 12½ sq e enclosed
* * Minimum size † Standard sizes		eight tables.		

	ALLOYS	SIZES — Inches
		43/8 x 43/8
Large squares having ¾ inch	145	5% x 5%
corner flats are also available	175	6x6
in random, multiple, and ex-	32\$	7 x 7
act lengths up to a maximum	A51S	7% x 7% 9% x 9%
of 96 inches in the alloys and		4½ x 4½
sizes shown at right. Longer	-0.01.00	5½ x 5½
lengths may be supplied upon	185	6x6
request, with mill approval.	25\$	7 x 7
approval.		73/4 x 73/4
*Subject to change without notice.		91/4 x 91/4

79 • AFTER	FORGING A	ND HEAT T	REATMENT			
ALLOY AND	ST)	STRENGTH Lb/Sq In . Minimum				
TEMPER	Ultimate	Yield	Percent Minimum			
14S-W	55,000	30,000	16			
14S-T	65,000	50,000	10			
17S-T	55,000	30,000	16			
18S-T	55,000	40,000	10			
25S-T	55,000	30,000	16			
32S-T	52,000	40,000	5			
A51S-T	44,000	34,000	12			
R317-T	55,000	30,000	16			
R353-T	36,000	30,000	14			

compositions

		8 0	٠	S P	E C	I F	I E D		СН	E M	1 C	A L	
ı	ALLOY	ZILI	CON	IRON	COI	PPER	MANG	ANESE	MAGN	ESIUM	CHRO	MIUM	
ļ		Min	Max	Мах	Min	Max	Min	Max	Min	Max	Min	Max	1
I	145	.50	1.2	1.0	3.9	5.0	.40	1.2	.20	.80		.10	
ı	175		.80	1.0	3.5	4.5	.40	1.0	.20	.80		.25	
	18\$.90	1.0	3.4	4.5		.20	.45	.90		.10	
	25\$.50	1.2	1.0	3.9	5.0	.40	1.2		.0.5		.10	
	325	11.0	13.5	1.0	.50	1.3		.20	.80	1.3		.10	The second second
	A51S	.60	1.2	1.0		.35		.20	.45	.80	.15	.35	
	R317		1.0	1.0	3.5	4.5	.40	1.0	.20	.80		.25	1
	R353	45-659 Magne		.35		.10		.10	1.1	1.4	.15	.35	-

188 REYNOLDS

		PO			0 N	S	N	1	505	
NIC	KEL	LE	AD	BISA	HTUN	TITAN-	ZINC	OTH EACH	TOTAL	ALUMINUM
Min	Max	Min	Max	Min	Max	Max	Max	Max	Max	ALUMINUM
						.15	.25	.05	.15	Remainde
						.15	.25	.05	.15	Remainde
1.7	2.3					.15	.25	.05	.15	Remainde
						.15	.25	.05	.15	Remainder
.50	1.3					.15	.25	.05	.15	Remainder
						.15	.25	.05	.15	Remainder
		.30	.70	.30	.70	.15	.25	.05	.15	Remainder
						.15	.25	.05	.15	Remainder

A L U M I N U M 189

commercial tolerances

81 •	R O	UNDI	ORGI	N G	ROD		
	CLASS I		CLASS II				
DIAMETER Inches	TOLERANCE Inches Plus or Minus	CONDITIONING ALLOWANCE* Inches	DIAMETER Inches	TOLERANCE Inches Plus or Minus	CONDITIONING ALLOWANCE* Inches		
.375-1.000	.015	1/64	.375500	.0015	.005		
1.001-3.000	.015	<i>y</i> ₃₂	.501-1.000	.002	.008		
3.001-5.000	.031	<i>y</i> 16	1.001-1.500	.0025	.012		
5.001-8.000	.063	3/32	1.501-3.000	.008	.015		

^{*}Conditioning allowance is an additional tolerance at localized areas to permit removal of possible surface defects.

8 2	• [R E C	TAN	G U L	A R
		CL	ASS I		
THICKNESS Inches	TOLERANCE Inches Plus or Minus	CONDITIONING ALLOWANCE* Inches	WIDTH Inches	TOLERANCE Inches Plus or Minus	CONDITIONING ALLOWANCE* Inches
.365500	.010	<i>y</i> ₃₂	Up to 1.500	.018	<i>У</i> 16
.501-1.000	.015	<i>y</i> ₃₂	1.501- 4.000	.031	<i>y</i> ₁₆
1.001-2.000	.018	<i>y</i> ₃₂	4.001- 6.000	.047	<i>Y</i> 16
2.001-3.000	.020	<i>y</i> ₃₂	6.001-10.000	.063	<i>Y</i> 16
3.001-4.000	.031	<i>Y</i> 32			

^{*}Conditioning allowance is an additional tolerance at localized areas to permit removal of possible surface defects.

83 •	SQL	JARE	FORG	I N G	BAR
	CLASS I			CLASS II	
DISTANCE ACROSS FLATS Inches	TOLERANCE Inches Plus or Minus	CONDITIONING ALLOWANCE* Inches	DISTANCE ACROSS FLATS Inches	TOLERANCE Inches Plus or Minus	CONDITIONING ALLOWANCE* Inches
.375500	.010	1/32	.375500	.002	.005
.501-1.000	.015	<i>y</i> ₃₂	.501-1.000	.0025	.008
1.001-2.000	.018	<i>У</i> 32	1.001-1.500	.003	.012
2.001-3.000	.020	⅓32	1.501-3.000	.005	.015
3.001-4.000	.031	1/32	•••••	••••	

not.

1

9

8

3

*Conditioning allowance is an additional tolerance at localized areas to permit removal of possible surface defects.

		-
	CLASS II	
THICKNESS OR WIDTH Inches	TOLERANCE Inches Plus or Minus	CONDITIONING ALLOWANCE* Inches
.375500	.002	.005
.501-1.000	.0025	.008
1.001-1.500	.003	.012
1.501-3.000	.005	.015
	·	

commercial tolerances

8 4 • F O	RGING	SHAPES				
CLASS I						
DIMENSION Inches	TOLERANCE Inches Plus or Minus	CONDITIONING ALLOWANCE* Inches				
up to .125	.007	<i>У</i> 32				
.126500	.010	<i>y</i> ₃₂				
.501- 1.000	.015	V32				
1.001- 2.000	.017	<i>y</i> ₃₂				
2.001- 3.000	.020	<i>y</i> ₃₂				
3.001- 4.000	.025	<i>y</i> ₃₂				
4.001- 5.000	.030	<i>y</i> ₃₂				
5.001- 6.000	.035	<i>y</i> ₃₂				
6.001- 7.000	.040	<i>Y</i> ₃₂				
7.001- 8.000	.045	<i>Y</i> ₃₂				
8.001- 9.000	.050	<i>y</i> ₃₂				
9.001-10.000	.055	<i>Y</i> ₃₂				
10.001-11.000	.060	<i>y</i> ₃₂				
11.001-12.000	.065	<i>Y</i> ₃₂				

^{*} Conditioning allowance is an additional tolerance at localized areas to permit removal of possible surface defects.

weights

The weight tables in this booklet are based on the density of 2S, which is .0979 pounds per cubic inch. If more accurate determination of weight for other aluminum alloys is desired, the applicable conversion factor should be used. Conversion factors for other metals and alloys are also shown for ready reference.

$$\begin{pmatrix} 14S-1.03 \\ 17S-1.03 \\ 18S-1.03 \\ 25S-1.03 \\ 32S-.993 \\ A51S-.993 \\ R317-1.03 \\ R353-.993 \\ \\ brass-3.1 \\ copper-3.3 \\ nickel-3.26 \\ steel-2.89 \\ zinc-2.6 \\ \end{pmatrix} \times \text{weight of 2S}$$

A L U M I N U M 193

weights

DIAMETER Inches	SECTION AREA Sq In.	WEIGHT Lb /Ft	ı	DIAMETER Inchés	SECTION AREA Sq In.	WEIGHT Lb /Ft
85 •	ROUND	ROD	Ш	ROUN	D ROD	(Cont.)
			ı			
3/8	.11045	.130		1	.78540	.923
13/32	.12962	.152		1 1/32	.83526	.981
7/16	.15033	.177		1 1/16	.88665	1.04
15/32	.17257	.203		1 3/32	.93957	1.10
1/2	.19635	.231		1 1/8	.99402	1.17
17/32	.22166	.260		1 3/32	1.0500	1.23
%16	.24851	.292		1 3/16	1.1075	1.30
19/32	.27688	.325		1 1/32	1.1666	1.37
			ı			
5/8	.30680	.360		1 1/4	1.2272	1.44
21/32	.33824	.397	۱	1 1/32	1.2893	1.51
11/16	.37122	.436		1 5/16	1.3530	1.59
23/32	.40574	.4 <i>7</i> 7		111/32	1.4182	1.67
			۱			
3/4	.44179	.519	ı	1 3/8	1,4849	1.74
25/32	.47937	.563		113/32	1.5532	1.82
13/16	.51849	.609	B	1 7/16	1.6230	1.91
27/32	.55914	.657		115/32	1.6943	1.99
7/8	.60132	.706		1 1/2	1.7672	2.08
2%32	.64504	.758		1 %16	1.9175	2.25
15/16	.69029	.811		1 5/8	2.0739	2.44
31/32	.73708	.866		1 ¹ / ₁₆	2.2366	2.63

194 REYNOLDS

DIAMETER	SECTION AREA	WEIGHT	DIAM	AREA	WEIGHT
	Sq In.	Lb /Ft	Incl	sq In.	Lb /Ft
86 •	ROUND	ROD	R C	OUND RO	D (Conc.)
1 3/4	2.4053	2.83	3	7.0686	8.30
1 ¹³ ⁄16	2.5802	3.03	3 1/	7.6699	9.01
1 1/8	2.7612	3.24	3 1/	8.2958	9.75
115/16	2.9483	3.46	3 3/	-	0.5
			3 1/		11.3
2	3.1416	3.69	3 1/2	4 11.045	13.0
2 1/16	3.3410				
		3.93	4	12.566	14.8
2 1/8	3.5466	4.17	4 3/		16.7
2 3/16	3.7583	4.42	4 1/		18.7
			4 %	4 17.721	20.8
2 1/4	3.9761	4.67	5	19.635	23.1
2 5/16	4.2001	4.93	5 1/2		25.4
2 3/8	4.4301	5.20	5 1/3	23.758	27.9
2 7/16	4.6664	5.48	5 3/2	25.967	30.5
2 1/2	4.9088	6 77	6	28.274	33.2
2 %16		5.77	6 1/2		36.0
-	5.1573	6.06	6 1/2	_	39.0
2 5/8	5.4119	6.36	6 3/2	35.785	42.0
211/16	5.6727	6.66		20.405	45.0
			7 1/4	38.485	45.2
2 1/4	5.9396	6.98	7 1/3		48.5
2 ¹³ ⁄16	6.2126	7.30	7 3/4		51.9
2 1/8	6.4918	7.63	74	47.173	33.4
2 ¹ 5/16	6.7771	7.96	8	50.266	59.1

A L U M I N U M 195

Manipulating bar stock in a straightening machine

weights

DISTANCE ACROSS FLATS Inches	SECTION AREA Sq In.	WEIGHTS Lb /Ft
87 • REC	TANGUL	AR BAR
Squ	are Edge	•
1 5/3 2 × 1/4	0.3516	0.4130
7/8	0.4102	0.4819
. 1	0.4687	0.5506
1 1/8	0.5273	0.6195
1 1/4	0.5859	0.6883
1 3/8	0.6445	0.7572
1 1/2	0.7031	0.8260
1 5/8	0.7617	0.8948
1 3/4	0.8203	0.9637
1 1/8	0.8789	1.032
2	0.9375	1.101
2 1/8	0.9961	1.170
2 1/4	1.0547	1.239
2 3/8	1.1133	1.308
2 1/2	1.1719	1.377
½ x ¾	0.3750	0.4405
7∕8	0.4375	0.5140
1	0.5000	0.5874
1 1/8	0.5625	0.6608
1 1/4	0.6250	0.7343
1 3/8	0.6875	0.8077
1 1/2	0.7500	0.8811
1 3/8	0.8125	0.9545
1 3/4	0.8750	1.028
1 1/8	0.9375	1.101
2	1.000	1.175
2 1/8	1.0625	1.248
2 1/4	1.1250	1.322
2 3/8	1.1875	1.395
2 1/2	1.2500	1.469

DISTANCE	SECTION	
ACROSS FLATS	AREA	WEIGHTS
Inches	Sq In.	Lb /Ft
RECTAN	IGULAR	BAR
Square	Edge (Co	onc.)
%16 × 1	0.5625	0.6608
1 1/8	0.6328	0.7434
1 1/4	0.7031	0.8260
1 3/8	0.7734	0.9086
1 1/2	0.8437	0.9912
1 5/8	0.9141	1.074
1 3/4	0.9844	1.156
1 1/8	1.0547	1.239
2	1.1250	1.322
2 1/8	1.1953	1.404
2 1/4	1.2656	1.487
2 3/8	1.3359	1.569
2 1/2	1.4062	1.652
5/8 × 1	0.6250	0.7342
1 1/8	0.7031	0.8260
1 1/4	0.7812	0.9178
1 3/8	0.8594	1.010
1 1/2	0.9375	1.101
1 5/8	1.0156	1.193
1 3/4	1.0937	1.285
1 1/8	1.1719	1.377
2	1.2500	1.469
2 1/8	1.3281	1.560
2 1/4	1.4063	1.652
2 3/8	1.4844	1.744
2 1/2	1.5625	1.836

9 · ingots

definitions: Aluminum pig is metal poured into molds from the reduction pots, without remelting. Usual weight of a pig is 50-60 pounds. An aluminum ingot is pig metal that has been remelted, often with alloying elements added to give a specified chemical composition. An ingot weighs from 3 to 32 pounds.

100

THE RES

THE STREET

manufacturing methods: Reynolds aluminum ingots are produced in such a manner as to minimize inclusions and porosity. Uniform casting characteristics from shipment to shipment are assured. Castings made from Reynolds ingots will show a fine grained structure when normal foundry practice is employed.

chemical analysis: A guaranteed chemical analysis is provided with each shipment of ingots.

types: Metal available includes high purity aluminum pigs and ingots, foundry alloy ingots, notched aluminum ingots and special shapes for deoxidation applications in the steel industry, and ingots for extrusion purposes.

sizes: The 30-pound unnotched ingot currently being supplied measures approximately 27% inches long and 4% inches wide at base of the tapered cross section which is about 3% inches high. The 3 to 4-pound notched or unnotched ingot is approximately 14 inches long, 1½ inches high. Other sizes can be supplied.

nominal chemical composition: Table 6A (page 38) shows nominal chemical composition of 15 of the more common sand-casting alloys. Table 6B (page 38) gives similar data on 13 of the most widely used permanent-mold casting alloys; Table 6C (page 40) covers 6 common die-casting alloys.

typical mechanical properties: Table 9 (page 48) lists typical mechanical properties (tension, compression, shear, fatigue, hardness)

for 25 of the more common sand-casting alloys. Table 10A (page 50) gives similar information on 15 of the common permanent-mold casting alloys; with Table 10B (page 50) covering 9 of the most widely employed die-casting alloys.

densities and expansions: Table 11B (page 52) enumerates density and expansion values for 16 sand-casting alloys with Table 12A (page 54) including data on 6 more. Table 12B (page 54) gives similar information on 15 of the common permanent-mold casting alloys; with Table 12C (page 54) covering 10 die-casting alloys.

thermal and electrical conductivity: Values of thermal and electrical conductivity for sand-casting alloys appear in Table 14A (page 58); for permanent-mold casting alloys, in Table 14B (page 58); for die-casting alloys, in Table 14C (page 60).

identification: Each foundry ingot is stamped with a heat number and alloy identification. A detailed chemical analysis is supplied with each heat number.

packing: Small ingots are bundled and steel strapped into convenient shipping units. In carload shipments of more than a single alloy, the different alloys are carefully segregated for easy identification on receipt.

ordering data: When ordering pigs or ingots, the following information should be included:

- Alloy: If standard, specify alloy number; if other than standard, chemical composition should be given.
 - Quantity
 - Size and approximate weight of units
 - Delivery date, shipping schedule and routing

10 · forgings

Hot forging aluminum aircraft parts in a Reynolds plant

204 REYNOLDS

alloys and tempers: Press forgings are produced by Reynolds in the following alloys and tempers:

NON-HEAT TREATABLE ALLOYS

2S
3S
52S
O and F tempers

14S
18S
25S
32S
A51S
R353
R361
W and T tempers

1275 and

sizes: Reynolds produces press forgings in sizes up thru 30 square inches cross-sectional area in the forging plane (at the parting line) and 6½ inches thick perpendicular to the forging plane which can be contained in a die with face dimensions of 7 by 16 inches. Under certain conditions, much larger limits can be accommodated.

identification: Standard marking of press forgings consists of a raised part number, Reynolds trademark, and the die set number.

packing: Reynolds forgings are packed in paper lined wooden boxes.

ordering data: All orders for aluminum press forgings should include the following:

Quantity

Alloy and Temper

Print showing exact design, dimensions, and tolerances.

design service: Reynolds Engineering Department will gladly furnish forging designs, if provided with a sample part, "machined" print or dimensional description along with necessary data detailing mechanical loading and chemical exposure to which the part will be subjected.

A L U M I N U M 205

compositions

8	8	•	S P	E C	I F I	E) (Н	E M	I C	A L	
ALLOY	SILI	CON	IRON	СОР	PER	MANG	ANESE	MAGN	IESIUM	CHRO	MIUM	
	Min	Max	Max	Min	Max	Min	Max	Min	Max	Min	Max	
145	.50	1.2	1.0	3.9	5.0	.40	1.2	.20	.80		.10	
175		.80	1.0	3.5	4.5	.40	1.0	.20	.80		.25	
18\$.90	1.0	3.4	4.5		.20	.45	.90		.10	
25\$.50	1.2	1.0	3.9	5.0	.40	1.2		.05		.10	
325	11.0	13.5	1.0	.50	1.3		.20	.80	1.3		.10	
A51S	.60	1.2	1.0		.35		.20	.45	.80	.15	.35	
R303		.50	.50	.80	1.8		.10	2.1	3.0	.10	.35	
R317		1.0	1.0	3.5	4.5	.40	1.0	.20	.80		.25	
R353	45-6 of 1	55% Mg	.35		.10		.10	1.1	1.4	.15	.35	1

^{*} Minimum Zinc in R303 is 5.9 percent.

206 REYNOLDS

COMPOSITIONS										
N	ICKEL		EAD	BI	HTUM	TITAN	ZINC	O1 EACH	HERS	
Min	Max	Min	Max	Min	Max	Max	Max	Max	Max	ALUMINUM
						.15	.25	.05	.15	Remainder
						.15	.25	.05	.15	Remainder
1.7	2.3					.15	.25	.05	.15	Remainder
						.15	.25	.05	.15	Remainder
.50	1.3					.15	.25	.05	.15	Remainder
						.15	.25	.05	.15	Remainder
.05	.20						7.1 *	.05	.15	Remainder
		.30	.70	.30	.70	.15	.25	.05	.15	Remainder
		4.				.15	.25	.05	.15	Remainder

ea

A L U M I N U M 207

properties

89 • SPE	89 • SPECIFIED MECHANICAL PROPERTIES						
ALLOY AND		STRENGTH Lb/Sq In. Minimum					
TEMPER	Ultimate	Yield	Percent Minimum				
14S-W	55,000	30,000	16				
14S-T	65,000	50,000	10				
17S-T	55,000	30,000	16				
18S-T	55,000	40,000	10				
25S-T	55,000	30,000	16				
32S-T	52,000	40,000	5				
A51S-T	44,000	34,000	12				
R317-T	55,000	30,000	16				
R353-T	36,000	30,000	14				
R303-T275	74,000	68,000	10				
R303-T315	70,000	65,000	10				

radii: Fillet and corner radii should be designed as large as practicable, thereby increasing die life and in many cases decreasing number of forging operations required.

draft angles: A draft angle tolerance of plus or minus 1° for all outside surfaces, inside holes, ribs, etc. is allowed, with the usual draft angle being 7°.

90 •	SHRINKA	GE *
DIMENSION (Any Direction)	TOLER	IKAGE ANCE hes .
Inches	Plus	Minus
1	.004	.002
2	.008	.004
3	.012	.006
4	.016	.008
5	.020	.010
6	.024	.012
For each additional inch, add	.004	.002

^{*} Applies to unrestrained forgings only.

commercial tolerances

	91 · T	HICKNES	S
WEIGHT	T—Pounds	COMMERCIAL	TOLERANCES
Over	Thru	Inches Minus	Inches Plus
0.0	0.25	.010	.032
0.251	1.0	.015	.032
1.01	4.0	.032	.045
4.01	17.0	.032	.062
17.01	24.0	.032	.078
24.01	and up	.032	.093

Any closer tolerances will require additional operations, such as coining or cold re-striking, involving extra dies.

Thickness tolerances must be applied separately and independently of any other tolerance.

LENGTH	• STRA	I G H T N E	
Over	Thru	Commercial	Close
0	9	.016	.010
9	18	.031	.015
18	30	.047	.030
30	45	.063	.040
45	60	.094	.050
60	80	.125	.060

Any closer tolerances will require additional operations.

Straightness tolerances should be applied separately and independently of any other tolerances.

93 •	MISMAT	CHING
WEIGHT	Pounds	TOLERANCE
Over	Thru	Inches
0	2.50	.015
2.50	6.25	.018
6.25	8.50	.021
8.50	15.00	.024
15.00	20.00	.028
20.00	25 and up	.032

rivets

sizes: Standard rivets can be supplied in sizes up to 3/16-inch shank diameter, not exceeding 1 inch in length.

alloys: Rivets are available in various alloys, including 17S, A17S, 24S, 25, R353.

ordering data: All orders for aluminum alloy rivets should include the following information:

Quantity

Alloy

Temper (annealed; heat treated; aged; as fabricated)

Finish

Type Head

Type Shank

Complete Dimensions and Tolerances

other cold headed products, special rivets: For special rivets and other cold headed products, refer inquiries to Forging Division, Reynolds Metals Company, 2000 South Ninth Street, Louisville, Ky.

A L U M I N U M 211

Elaborate mechanical testing facilities are important factor in process control at Reynolds

11 • reference tables

213

comparison of gauges	. 214
decimal equivalents	. 217
related specifications	
— wrought alloys	217-227
— sand-casting alloys	217-227
— permanent-mold casting alloys	217-227
— die-casting alloys	217-227
— ingot	217-227
shrinkage allowances for sand castings	. 229
relative weights of various metals	. 229
principal characteristics	
— wrought aluminum alloy sheet	230
— aluminum forging alloys	. 231

U

M

N

U

	94 • COMPARISON OF GAUGES						
	uge o.	American or Brown & Sharpe's	Birm'ghar or Stubs'			London	United States Standard
7/ 6/ 5/ 4/ 3/	0	 .5800 .5165 .4600 .4096		.4900 .4615 .4305 .3938 .3625	.500 .464 .432 .400 .372		.500 .46875 .4375 .40625
2/ 0 1 2		.3648 .3249 .2893 .2576 .2294	.380 .340 .300 .284 .259	.3310 .3065 .2830 .2625 .2437	.348 .324 .300 .276	.380 .340 .300 .284	.34375 .3125 .28125 .265625
4 5 6 7 8		.2043 .1819 .1620 .1443	.238 .220 .203 .180 .165	.2253 .2070 .1920 .1770 .1620	.232 .212 .192 .176	.238 .220 .203 .180	.234375 .21875 .203125 .1875
9 10 11 12 13		.1144 .1019 .09074 .08081 .07196	.148 .134 .120 .109	.1483 .1350 .1205 .1055 .0915	.144 .128 .116 .104	.148 .134 .120 .109	.15625 .140625 .125 .109375
14 15 16 17 18	.0	06408 05707 05082 04526 04030	.083 .072 .065 .058	.0800 .0720 .0625 .0540	.080 .072 .064 .056	.083 .072 .065 .058	.078125 .0703125 .0625 .05625
19 20 21 22 23	0.0		.028	.0410 .0348 .0317 .0286 .0258	.040 .036 .032 .028	.040 .035 .0315 .0295 .0270	.04375 .0375 .034275 .03125 .028125

The gauges shown above are used in various localities and industries, but to avoid misunderstanding it is desirable to express size in fractions (decimal or common) of an inch.

9	95 • COMPARISON OF GAUGES (Concl'd)					
Gauge No.		Birm'ghan or Stubs'	Washburn & Moen	Imperial (British) S. W. G.	London or Old English	United States Standard
24 25 26 27 28	.02010 .01790 .01594 .01420 .01264	.022 .020 .018 .016	.0230 .0204 .0181 .0173 .0162	.022 .020 .018 .0164	.0250 .0230 .0205 .01875 .01650	.025 .021875 .01875 .0171875 .015625
29 30 31 32 33	.01126 .01003 .008928 .007950 .007080	.013 .012 .010 .009	.0150 .0140 .0132 .0128 .0118	.0136 .0124 .0116 .0108	.01550 .01375 .01225 .01125	.0140625 .0125 .0109375 .01015625 .009375
34 35 36 37 38	.006305 .005615 .005000 .004453	.007 .005 .004	.0104 .0095 .0090 .0085	.0092 .0084 .0076 .0068	.00950 .00900 .00750 .00650	.00859375 .0078125 .00703125 .006640625
39 40 41 42 43	.003531 .003145 .002800 .002494 .002221	••••	.0075 .0070 .0066 .0062 .0060	.0052 .0048 .0044 .0040 .0036	.00500	
44 45 46 47 48	.001978 .001761 .001568 .001397	••••	.0058 .0055 .0052 .0050 .0048	.0032 .0028 .0024 .0020		
49 50	.001108		.0046	.0012		••••••

The gauges shown above are used in various localities and industries, but to avoid misunderstanding it is desirable to express size in fractions (decimal or common) of an inch.

96	• DECIMA	L EQUIVALENTS
	1/64015625	³³ / ₆₄ 515625
	<i>y</i> ₃₂ 03125	17/3253125
	3/4046875	³⁵ ⁄ ₆₄ 546875
⅓16	0625	%165625
	%4078125	³ % ₄ 578125
	3/3209375	1%259375
	764109375	³ %4609375
√8	125	5/8625
	%4140625	41/64640625
	5/3215625	² / ₃₂ 65625
	11/4171875	⁴³ / ₆₄ 671875
3/16	1875	11/166875
	13/4203125	45/4703125
	⁷ / ₃₂ 21875	²³ ⁄ ₃₂ 71875
	15/4234375	4764734375
1/4	250	³ / ₄ 750
	17/64265625	4%4765625
	%3228125	²⁵ / ₃₂ 78125
	1%4296875	51/64796875
5∕16	3125	13/16
	² 1/64328125	⁵³ %4828125
	11/3234375	² / ₃₂ 84375
	²³ / ₄ 359375	⁵⁵ ⁄ ₄ 859375
3/8	375	7∕8875
	²⁵ / ₄ 390625	⁵ /⁄ ₄ 890625
	13/3240625	2%3290625
7/	² % ₄ 421875	⁵ %4921875
/16	4375	15/169375
	² %4453125	61/4953125
	15/3246875	³ / ₃₂ 96875
17	³ / ₄ 484375	63/4984375
/2	500	11.0000
-		

FEDERAL - Issued under the direction of the Director of Procurement, Procurement Division of the U. S. Treasury Department. Subject to the exceptions noted under other specifications, Federal specifications are used by the Army and other Government Departments except the Navy Department. However, the Bureau of Aeronautics of the Navy Department does use Federal specifications under the following conditions. (NOTE: For material for which there is no Army-Navy (AN) Aeronautical specification the Bureau of Aeronautics of the Navy Department, instead of using Navy specifications, uses those Federal specifications which state in section H that they are applicable to contracts of the Bureau.)

ARMY — Issued and used by the U. S. Army for material for which there is no Federal specification. Army specifications are usually cancelled when a Federal specification is issued for the same material.

NAVY — Issued and used by the U.S. Navy Department or by one of the Bureaus of the Navy. (See note under Federal specifications regarding use of Federal Specifications by the Bureau of Aeronautics of the Navy Department.) Individual Bureaus of the Navy Department may prepare Bureau specifications for materials which they require but which are not generally used by other Bureaus. Other Bureaus may use these specifications if they wish or may prepare their own specifications; however, if more than one Bureau uses the material a Navy Department specification is usually issued. When a Navy Department specification is revised, the Bureau responsible for its preparation usually issues an Interim (INT) Bureau specification which becomes applicable to contracts of that Bureau and may be used by other Bureaus during the time required for its approval and printing as the revised Navy Department specification. Since more than one issue of an Interim specification may be prepared, it is essential to observe the date of any Interim specification to which reference is made.

ARMY-NAVY (AN) AERONAUTICAL - Issued by the Joint Aeronautical Board of the Army Air Forces and the Bureau of Aeronautics of the Navy Department. Used by the Army Air Forces and the Bureau of Aeronautics of the Navy Department even though there may be Federal, Army, or Navy specifications for the same material. Army Air Forces specifications are cancelled when an AN specification is issued for the same material.

S.A.E. — Issued by the Society of Automotive Engineers. The Handbook Standards are the alloys described in the S.A.E. Handbook and are not in the form of purchase specifications. The A.M.S. are purchase specifications prepared by the Aeronautical Material Specifications Subdivision. S.A.E. Aeronautical Material Specifications have been approved by the Army Air Forces and the Bureau of Aeronautics of the Navy Department for use by builders of aircraft engines.

A.S.T.M. - Issued by the American Society for Testing Materials.

related specifications*

	9 7	• R E	LATED
ALLOY	PRODUCT	FEDERAL	ARMY AND ARMY AIR FORCES
25	Plate and Sheet	QQ-A-561	
	Bar, Rod, Wire, Shapes	QQ-A-411b	
	Tubing, Round	WW-T-783a	
	Rivets		
	Rivet Wire		
	Foil		
	Corrugated Sheet		AAF-11077
35	Plate and Sheet	QQ-A-359a	
	Bar, Rod, Wire, Shapes	QQ-A-356b	
	Tubing, Round	WW-T-788a	
	Rivets		
	Rivet Wire		
115	Bars and Rods	/	(AXS-1318-R1 (AAF-11330B
	Forgings		AXS-1524-R1
145	Shapes (Extruded)		
	Forgings	QQ-A-376b-1	
	Forging Stock		

^{*} Always use latest revision of any specification indicated by a higher amendment number or suffix letter.

SPECI	FICATIOI	V S		
NAVY	ARMY-NAVY (AN)		SAE	
	AERONAUTICAL	HAND- BOOK	AMS	MTZA
47A2e		25	{4001 A 4003 A	{B25-44T B178-44T
46A3e		25		
44T19c		25	4062A	
	AN-R-19-2	25	7220A	
	AN-QQ-W-298-3	25		
47A5b	AN-A-20-1			
•••••			•••••	
47A4d		29	{4006A 4008A	(B79-44T (B126-44T
46A6e		29		
44T20b				•••••
43R5g				
.43R5g			•••••	
	AN-A-8	260		
46A7e		260	{4134 4135C	
			{4134 4135C	

A L U M I N U M 219

related specifications*

	9 8	• R E	LATED	
ALLOY	PRODUCT	FEDERAL	ARMY AND ARMY AIR FORCES	-
175	Plate and Sheet	QQ-A-353a		
(1	Bar, Rod, Wire, Shapes	QQ-A-351b		
	Tubing, Round	WW-T-786a		
	Tubing, Streamline		57-187-2B	1
	Forgings	QQ-A-367b-1		
	Rivets			
	Rivet Wire			
	Corrugated Sheet		AAF-11077	1
Pureclad 17S	Plate and Sheet	QQ-A-361		
A17S	Rivets			
	Rivet Wire			
18\$	Forgings	QQ-A-367b-1		
	Forging Stock		••••••	
245	Plate and Sheet	QQ-A-355a		
	Bar, Rod, Wire, Shapes	QQ-A-354a		
X	Tubing, Round	WW-T-785		-
	Tubing, Streamline			-
	Rivets		,	
	Rivet Wire			- 5
Pureclad 24S	Plate and Sheet	QQ-A-362		•

^{*} Always use latest revision of any specification indicated by a higher amendment number or suffix letter.

NAVY	ARMY-NAVY (AN) AERONAUTICAL	SAE .		
		HAND- BOOK	AMS	ASTM
			{4030C 4032C	B78-44T
46A4g.		26	{4118B 4151A	B89-44T
44T21e				
46A7e		26		
• • • • • • • • • • • • • • • • • • • •	AN-R-19-2	26		
• • • • • • • • • • • • • • • • • • • •	AN-QQ-W-298-3	26		
	AN-R-19-2		7222A	
	AN-QQ-W-298-3			
46A7e		270	41 40C	
			41 40C	
47A10e	AN-A-12-1	24	{4035B 4037B	
46A9e		24	{4120A 4152B	
44T28b	AN-T-80	24	4088B	
	AN-T-80	24		
	AN-R-19-2	24		
	AN-QQ-W-298-3	24		
	AN-A-13-2	240	4040B 4041B 4042B	

3

1

3

3.

3

1

9

3

3

related specifications*

	9 9	• R	ELATED	
ALLOY	PRODUCT	FEDERAL	ARMY AND ARMY AIR FORCES	
255	Forgings	QQ-A-367b-1		
	Forging Stock			
325	Forgings	QQ-A-367b-1		
	Forging Stock			
A51S	Forgings	QQ-A-367b-1		
	Forging Stock			
52 S	Plate and Sheet	QQ-A-318-a		
	Bar, Rod, Wire, Shapes	QQ-A-315		
	Tubing, Round	WW-T-787	57-187-3	1
56S -	Bar, Rod, Wire			1
	Rivets			
	Rivet Wire			
75 S	Plate and Sheet			1
	Bar, Rod, Wire, Shapes		AXS-1641	1
	Tubing, Round			
	Forgings			
	Forging Stock			1
Clad 75S	Plate and Sheet		AXS-1649	S

^{*} Always use latest revision of any specification indicated by a higher amendment number or suffix letter.

SPECI	FICATIO	N S		
NAVY	ARMY-NAVY (AN)		SAE	
	AERONAUTICAL	HAND- BOOK	AMS	ASTM
46A7e		27	4130C	
			4130C	
46A7e		290	4145D	
			4145D	
46A7e		280	4125C	
			4125C	
47A11c		201	4015B 4016B 4017B	B109-44T
46A11a		201		
•••••		201	4070C	
{A28a (15C1(INT)	(See Par. E-36 (AN-WW-C-561a-3			
	AN-R-19-2	*******		
	AN-QQ-W-298-3			
	AN-A-9a			
•••••	AN-A-11a		{4122 4154	
	AN-T-32			
			4139	
			4139	
	AN-A-10b			

3

3

3

3

9

3

le.

related specifications*

	100	• R E	LATED
ALLOY	PRODUCT	FEDERAL	ARMY AND ARMY AIR FORCES
76\$	Forgings		
	Forging Stock		
Hard Clad R301	Plate and Sheet		
R303	Shapes (Extruded)		
R317	Bars and Rods		(AAF-11330B (AXS-1651
R353	Plate and Sheet	QQ-A-334	
	Bar, Rod, Wire, Shapes	QQ-A-331b	
	Tubing, Round	WW-T-790	
	Forgings	QQ-A-367b-1	
	Rivets		
	Rivet Wire		
R361	Plate and Sheet	QQ-A-327	
	Bar, Rod, Wire, Shapes	QQ-A-325	
	Tubing, Round	WW-T-789	
99.7%	Sheet		
99.75%	Ingot	QQ-A-451a	
99.5%	Ingot	QQ-A-451a	
99.3%	Ingot	QQ-A-451a	

^{*} Always use latest revision of any specification indicated by a higher amendment number or suffix letter.

SPECI	FICATIOI	N S		
NAVY	ARMY-NAVY (AN)	SAE		ASTM
	AERONAUTICAL	HAND- BOOK	AMS	AJIM
			4137	
•••••			4137	
	AN-A-22			
	AN-A-37			
		282		
•••••			4076B	
46A7e		282		
43R5g		282		
43R5g		282		
47A12b		281	(4025A 4026A 4027A	
46A10d		281	4150	
44T30b		281	{4080C 4082C	
			4000A	• • • • • • • • • • • • • • • • • • • •
46A2c			•••••	
46A2c				B24-44T
46A2c				

related specifications*

	101	• R E	LATED
ALLOY	PRODUCT	. FEDERAL	ARMY AND ARMY AIR FORCES
99.2%	Ingot		
99%	Ingot	QQ-A-451a	
98%	Ingot	QQ-A-451a	
13	Foundry Ingot		
43	Foundry Ingot	QQ-A-371a	
85	Foundry Ingot		
105	Foundry Ingot		
108	Foundry Ingot	QQ-A-371a	
A108	Foundry Ingot		
113	Foundry Ingot		
122	Foundry Ingot	QQ-A-371a	
A132	Foundry Ingot	QQ-A-371a	
142	Foundry Ingot	QQ-A-371a	
195	Foundry Ingot	QQ-A-371a	
B195	Foundry Ingot		
212	Foundry Ingot	QQ-A-371a	
214	Foundry Ingot	QQ-A-371a	
355	Foundry Ingot	QQ-A-371a	
A355	Foundry Ingot	QQ-A-371a	
356	Foundry Ingot	QQ-A-371a	
A380	Foundry Ingot		

^{*} Always use latest revision of any specification indicated by a higher amendment number or suffix letter.

226 REYNOLDS

	SPECI	FICATIO	N S		
	NAVY	ARMY-NAVY (AN) AERONAUTICAL	SAE HAND-		ASTM
		-	воок	AMS	
H	••••••	•••••			B24-44T
	46A2c				B24-44T
	46A2c				B24-44T
				• • • • • • •	B125-44T
	46A5e			•••••	(B58-44T B112-44T B125-44T
4	•••••			• • • • • • • • • • • • • • • • • • • •	B125-44T
	46A5e				B58-44T
		•••••			
					B112-44T
	••••••	•••••			B58-44T
	••••••				(B58-44T (B112-44T
	•••••				B112-44T
4	•••••				(B58-44T B112-44T
4	46A5e			•••••	B58-44T
	••••••••			•••••	B112-44T
Ц				•••••	•••••
Н	46A5e				B58-44T
4				• • • • • • • • •	B58-44T
4				• • • • • • • •	
Ц	46A5e			•••••	(B58-44T B112-44T
					B125-44T

A L U M I N U M 227

Effective packaging methods guard Reynolds products during shipment and storage

228 R E Y N O L D S

shrinkage allowances

103 . SAND CASTINGS, VARIOUS METALS

TOO JAND CASTINOS, TARIOUS	MEINES
METAL	CONTRACTION INCHES PER FOOT *
Aluminum Alloys Small castings of simple design	5/32
Larger castings or those of intricate design	1/8 to 1/12
Magnesium Alloys	5/32
Brass	3/16
Bronze	3/16
Gray Iron	1/10
Steel	1/4
Malleable Iron	1/8

^{*}Shrinkage allowances for castings will vary according to the type of construction, casting dimensions and other factors peculiar to the particular material involved. If maintenance of very exact dimensions is required, the foundry which is to produce the castings should be consulted for shrinkage allowance recommendations before the pattern is made.

relative weights

104 • EQUAL VOLUMES, VARIOUS METALS

METAL	RELATIVE
Magnesium	0.644
Aluminum, Commercially Pure	1.000
Zinc	2.65
Cast Iron (Gray)	2.65
Tin	2.71
Cast Steel	2.90
Cast Brass (60% Cu-40% Zn)	3.09
Cast Bronze (90% Cu-10% Sn)	3.26
Nickel	3.30
Copper	3.31
Lead	4.20

principal characteristics

105	· WROUGHT ALUMINUM ALLOY SHEET
ALLOY	CHARACTERISTICS
25	Low mechanical properties. Excellent drawing and forming properties. Excellent resistance to corrosion.
3\$	Slightly stronger than 2S. Very good drawing and forming properties. Excellent resistance to corrosion.
52 S	Medium mechanical properties. Good forming and drawing properties. Excellent resistance to corrosion in sea water.
175	Ages at room temperature. Good formability. A high- strength alloy. Good resistance to most type of corrosion.
245	Ages at room temperature. Has higher strengths than 17S with comparable workability and resistance to corrosion.
53S	Medium mechanical properties. Very good forming characteristics. Excellent resistance to all types of corrosion.
615	Medium physical properties. Forming characteristics slightly superior to 53S. Excellent resistance to corrosion.
R301	Clad material. Mechanical properties comparable to 14S. Corrosion resistance comparable to 61S. Good forming characteristics.
R303	Excellent mechanical properties. Formability inferior to 24S. Excellent resistance to all types of corrosion.

106	ALUMINUM FORGING ALLOYS
ALLOY	CHARACTERISTICS
A51\$	Excellent forging characteristics. Higher yield strengths than . 25S or 17S. Corrosion resistance comparable to 17S.
70\$	Excellent forging characteristics. For intricate contours. Flows more easily than 25S. Fills radial concavities.
25\$	Good forging properties. Mechanical properties comparable to 17S but more easily forged. Corrosion resistance inferior to 17S.
175	Machinability better than 25S. High mechanical properties. Good corrosion resistance. Forging flow resistance high.
145	Extremely high mechanical properties and hardness. Corrosion resistance comparable to 17S. "W" mechanical properties comparable to 17S-T.
185	Good performance at elevated temperatures, such as those encountered in piston and engine parts.
325	Low coefficient of expansion. Good corrosion resistance. Excellent performance at elevated temperatures.
53 S	Possess medium mechanical properties. Used where maximum resistance to all types of corrosion is required.
R303	High mechanical properties. Excellent resistance to corrosion. Slightly harder to forge than 14S.

13

-

e at

er at

LIST OF TABLES

Table No.	. Title			Page
1	Temper Designations for Wrought Alloys			26
2	Coefficient of Thermal Expansion			33
3	Specific Heat and Heat Content			33
4	Density vs. Temperature, High Purity Aluminum	•	•	34
5	Nominal Chemical Compositions, Wrought Alloys		•	36
6A	Nominal Chemical Compositions, Sand-Casting Alloys	•	•	38
6B	Nominal Chemical Compositions, Permanent-Mold Casting Alloys			38
6C	Nominal Chemical Compositions, Die-Casting Alloys			40
7	Typical Mechanical Properties, Wrought Alloys		Ċ	44
8	Typical Mechanical Properties, Wrought Alloys (Concl'd)			46
9	Typical Mechanical Properties, Sand-Casting Alloys			48
10A	Typical Mechanical Properties, Permanent-Mold Casting Alloys .			50
10B	Typical Mechanical Properties, Die-Casting Alloys		i	50
11A	Doneities and Europeines Mr. 11 All			52
11B	Densities and Expansions, Sand-Casting Alloys		Ċ	52
12A	Densities and Expansions, Sand-Casting Alloys (Concl'd)		Ì	54
12B	Densities and Expansions, Permanent-Mold Casting Alloys			54
12C	Densities and Expansions, Die-Casting Alloys			54
13	Thermal, Electrical Conductivity, Wrought Alloys			56
14A	Thermal, Electrical Conductivity, Sand-Casting Alloys		i	58
14B	Thermal, Electrical Conductivity, Permanent-Mold Casting Alloys .			58
14C	Thermal, Electrical Conductivity, Die-Casting Alloys			60
15	Annealing Cycles			60
16	Heat Treating Cycles			62
sheet a	nd plate			
17	Commercial Sizes, Flat Sheet			72
18	Commercial Sizes, Coiled Sheet			73
19	Standard Sizes, Flat Sheet and Plate			74
20	Specified Chemical Compositions, Sheet and Plate			76
21	Specified Mechanical Properties, Non-Heat Treatable Alloys			78
22	Specified Mechanical Properties, Heat Treatable Alloys			80
23	Specified Mechanical Properties, Heat Treatable Alloys (Concl'd).			82
24	Approximate Bend Radii for 90° Cold Bends in Sheet			84
25	Commercial Thickness Tolerances, Strong Flat and Coiled Sheet .			86
26	Commercial Width and Length Tolerances, Sheet and Plate			88
27	Commercial Thickness Tolerances, Common Alloys, Sheet and Plate			90
28	Commercial Tolerances for Lateral Bow and Camber			91
29	Weights, Sheet Aluminum			92
30	Weights of Circles, Pounds per Piece			94
31	Weights of Circles, Pounds per Piece (Cont'd)			96
32	Weights of Circles, Pounds per Piece (Cont'd)			98
33	Weights of Circles, Pounds per Piece (Concl'd)			100

LIST OF TABLES

o de la companya de l

73

=

Table No	o. Title	Page
extrud	led shapes	
34	Specified Chemical Compositions	108
35	Specified Mechanical Properties, Non-Heat Treatable Alloys	110
36	Specified Mechanical Properties, Heat Treatable Alloys	111
37	Specified Mechanical Properties, Heat Treatable Alloys (Concl'd)	112
38	Commercial Tolerances	113
roll fo	ormed shapes	
39	Specified Chemical Compositions	118
40	Specified Mechanical Properties, Non-Heat Treatable Alloys	
41	Specified Mechanical Properties, Heat Treatable Alloys	122
42	Specified Mechanical Properties, Heat Treatable Alloys (Concl'd) .	
43	Commercial Tolerances on Section Thickness	
44	Commercial Tolerances on Developed Width of Section	
45	Commercial Tolerances on Angles	125
46	Commercial Tolerances on Radius	
_	and pipe	
47	Commercial Sizes, Round Tubing	
48		134
49	Specified Chemical Compositions	
50	Specified Mechanical Properties, Non-Heat Treatable Alloys	
51	Specified Mechanical Properties, Heat Treatable Alloys	139
52		140
53	Commercial Tolerances on Wall Thickness, Round Tubing and Pipe	140
54	Commercial Tolerances on Length, Round Tubing and Pipe	142
55	Commercial Tolerances on Straightness, Round Tubing and Pipe .	
56	Commercial Tolerances on Oval, Elliptical and Streamline Tubing	
57	Pressure Data, Tensile Strengths	
58	Pressure Data, Ratio of D^2-d^2 to D^2+d^2 for Pipe	
59	Pressure Data, Ratio of D 2 — d 2 to D 2 + d 2 for Round Tubing .	146
60	Pressure Data, Ratio Data on Round Tubing (Concl'd)	
61	Weights, Round Tubing	152
62	Weights, Round Tubing (Concl'd)	
63	Weights, Aluminum Pipe	156
wire,	rod and bar	
64	Commercial Sizes	164
65	Specified Chemical Compositions	166
66	Specified Mechanical Properties, Non-Heat Treatable Alloys	
67	Specified Mechanical Properties, Heat Treatable Alloys	
68	Specified Mechanical Properties, Heat Treatable Alloys (Concl'd) .	
69	Commercial Tolerances, Round Wire and Rod	
70	Commercial Tolerances, Screw Machine Stock	
٨		000
A	LUMINUM	233

LIST OF TABLES

Tab	le No. Title	D
71	Commercial Tolerances Square Hayarenal Oct.	Pag
72	Commercial Tolorances Post	17
73	Weights, Round Wire .	17
74	Weights, Round Rod	17
75	Weights Round Rod (Const/d)	17
76	Weights, Hexagonal Bar	17
77	Weights, Rectangular Bar	17
		17
forg	ging stock	
78	Commercial Sizes	
79		18
80	Specified Chemical Compositions	182
81	Commercial Tolerances Pound Foreign D. I	18
82	Commercial Jolerances, Rectangular Foreign B.	190
83	Commercial Tolerances Square Foreign B	190
84	Commercial Tolerances, Forging Shapes	191
85	Weights, Round Rod	192
86		194
87	Weights Rectangular Ran	195
		197
ingo	t metal -	
(See	Tables 6A to 14C inclusive)	
•		
pres	s forgings	
88	Specified Chemical Compositions	
89	Specified Mechanical Properties	206
90		208
91	Commercial Tolerances on Thickness	209
92	Commercial Tolerances on Straightness	210
93	Commercial Tolerances on Mismatchina	210
	A state of the sta	211
refe	rence tables	
94	Comparison of Gauges	
95	Comparison of Gauges (Concl'd)	14
96	Decimal Equivalents	15
97	Related Specifications	17
98	Related Specifications	18
99	Related Specifications	20
100	Related Specifications	22 24
101	Related Specifications	
102	Related Specifications	26
103	Shrinkage Allowances for Sand Castings in Various Metals	28
104	Relative Weights of Equal Volumes of Various Metals	29
105	rrincipal Characteristics of Wrought Aluminum Alloy Sheet	29
106	Principal Characteristics of Aluminum E	30
	23	31
234	D	
434	REYNOLD	S

D

S

13 • itemized index

A	rage
alloys, characteristics	23
alloys, forging stock	183
alloys and tempers:	
extruded shapes	105
press forgings	205
roll formed shapes	116
tubing and pipe	129
wire, rod and bar	161
alloys, tempers, sizes, sheet and plate	71
aluminum forging alloys, principal characteristics (reference tables)	231
aluminum pipe, weights	156
angles, commercial tolerances, roll formed shapes	125
annealing cycles	60
atomic number, high purity aluminum	32
atomic structure	27
atomic volume, high purity aluminum	32
atomic weight, high purity aluminum	32
В	
brinell hardness	43
characteristics:	
alloys	00
annealing cycles	23
atomic structure	60 27
crystal structure	28
definitions:	20
brinell hardness	10
elongation	43
endurance limit	43
modulus of elasticity	42
poisson's ratio	43
shearing strength	
strain	40
stress	40
ultimate or tensile strength	42
yield strength	40
densities and expansions:	
die-casting alloys	54
permanent-mold casting alloys	54
sand-casting alloys5	2, 54
wrought alloys	52
density	28
electrical conductivity	29
fabrication	27
heat-treating cycles	62
list of applications in chemical and associated industries	65
mechanical properties	31
modulus of elasticity	31
nominal chemical compositions:	4.0
die-casting alloys	40
permanent-mold casting alloys	38
sand-casting alloys	38
wrought alloys	36
other thermal properties	30

=

3

3

=

=3

=3

=3

3

=3

	properties of high purity aluminum:	ge
	atomic number	
		32
	atomic weight	32
		32
	crystal structure	33 32
	density vs. temperature	34
	electrical properties	35
	electron arrangement	32
	Isotopes	32
	lattice edge	32
	mechanical properties	35
	offier properties	35
	specific near and heat content	33
	symbol	32
	mermai dara	32
	valence	32
	renectivity	30
	resistance to chemical attack	30
	resistance to corrosion	30
	rempers of cashing alloys	27
	tempers of wrought alloys	25
	thermal conductivity	29
	thermal and electrical conductivity:	
	die-casting alloys	50
	permanent-mold casting alloys	58
	suita-casing alloys	58
	wrought alloys	56
		29
	typical mechanical properties:	
	die-casting alloys	50
	permanent-mold casting alloys	50
	sand-casting alloys	10
	wrought alloys	
chem	nical analysis, ingot metal	00
CIUSSE	es, loiding stock	
coem	icient of thermal expansion, high purity aluminum	13
conec	u sneet, commercial sizes 7	3
comm	nercial sizes:	
1	flat sheet	2
1	torging stock	
- 1	round tubing	4
,	wire, rod and bar	4
comm	nercial tolerances:	
(angles, roll formed shapes	E
	common alloys, flat and coiled	
,	developed width of section, roll formed shapes	
(didmeters, tubing and pipe	0
	extroded shapes	2
1	fillets and corners, press forgings	0
	lorging shapes, tording stock	•
T	for fubing other than round	2
		2
	maximum for lateral bow, camber, sheet and plate	3
- 1	mismatching, press forgings	
	oval, elliptical, streamline tubing	2
r	radius, roll formed shapes	5
	12	

	Page
rectangular forging bar	100
rectangular wire and bar	174
round forging rod	100
round wire and rod screw machine stock, wire, rod and bar	172
section thickness, roll formed shapes	172
square forging rod :	124
square, nexagonal, octagonal wire and bar	172
straightness, press torgings	210
straightness, round tubing and pipe	1.42
strong diloys, flat and coiled	04 00
mickness, press forgings	210
wall thickness, tubing and pipe	140
common alloys, flat and coiled, commercial tolerances	90
comparison of gauges (reference tables)	214
conversion data, weights:	
forging stock	193
sheet and plate	91
tubing and pipewire, rod and bar	151
	177
crystal structure:	
characteristics	28
high purity aluminum	32
D	
decimal equivalents, reference tables	217
definitions:	
brinell hardness	43
elongation	40
endurance limit	43
forging stock ingot metal	183
modulus of elasticity	200
poisson's ratio	42
shearing strength	40
sheet and plate	71
STORE CONTRACTOR OF THE PROPERTY OF THE PROPER	40
siress	40
offiniale of lensile strength	40
wire, rod and bar yield strength	. 161
donatation and	. 40
densities and expansions:	
die-casting alloys	. 54
ingot metal	. 201
permanent-mold casting alloyssand-casting alloys	. 54
wrought dilays	E0
rensity, characteristics	
activity vs. lemperature, figh purity aluminum	0.4
diameters, commercial tolerances, tubing and pipe	. 140
die-casting alloys:	
densities and expansions	. 54
nominal chemical compositions	
mermal and electrical conductivity	40
typical mechanical properties	. 50

*

#3

*

3

1

3

3

electrical conductivity	. 29
electrical properties, high purity aluminum	0.5
election drighdement, high purity aluminum	-
elongation, definitions	. 32
endurance limit, definitions	. 42
	. 43
extruded shapes:	
alloys and tempers	. 105
commercial tolerances	110
Identification	107
lengths	10/
manufacturing methods	105
ordering data	107
packing	107
sections and sizes	. 107
specified chemical compositions	. 105
	. 108
specified mechanical properties:	
heat treatable (strong) alloys11	1, 112
non-heat treatable (common) alloys	. 110
foliation the second of the se	
fabrications, characteristics	. 27
milets and corners, commercial tolerances, press forgings	000
Tinisnes, roll formed shapes	
imisites, lubing and pipe	121
nor sileer, commercial sizes	70
flat sneet and plate, standard sizes	74
forging shapes, commercial tolerances	192
forging stock:	1/2
alloys	183
classes	183
commercial sizes	186
commercial tolerances:	
forging shapes	192
rectangular forging bar	100
round forging rod	190
square forging rod	190
definitions	191
identification	183
lengths	185
manufacturing methods	184
mechanical properties after forging and heat treatment	183
ordering data	187
ordering data	185
packing	184
sections and sizes	185
specified chemical composition	188
weights:	
conversion data	103
rectangular bar	197
round rod	194
for tubing other than round, commercial tolerances	
The state of the s	142
. н	
heat treatable (strong) alloys, specified mechanical properties:	
extruded chance	
extruded shapes	112
roll formed shapes	122

itemized index

239

	Page
sheet and plate	80
tubing and pipe	139
wire, rod and bar	. 169, 170
heat-treating cycles, characteristics	62
hexagonal bar, weights	
high purity aluminum:	
atomic number	32
atomic volume	
atomic weight	
coefficient of thermal expansion	
crystal structure	
density vs. temperature	
electrical properties	
electron arrangement	32
isotopes	32
lattice edge	32
mechanical properties	35
other properties	
specific heat and heat content	
symbol	
thermal data	
valence	
history	
11131017	13
identification:	
extruded shapes	107
forging stock	185
ingot metal	
press forgings	
roll formed shapes	
sheet and plate	
tubing and pipe	
wire, rod and bar	
ingot, related specifications (reference tables)	217.227
	.21/-22/
ingot metal:	
chemical analysis	
definitions	
densities and expansions	
identification	
manufacturing methods	200
nominal chemical composition	200
ordering data	201
packing	201
sizes	200
thermal and electrical conductivity	201
types	
typical mechanical properties	
isotopes, high purity aluminum	32
· · · · · · · · · · · · · · · · · · ·	
lattice edge, high purity aluminum	
length, round tubing and pipe, commercial tolerances	142
lengths:	
extruded shapes	106
forging stock	184
roll formed shapes	116
tubing and pipe	
wire, rod and bar	162
list of applications in chemical and associated industries	65
11	

43

山

-3

3

-8

A

L

U

M

N

U

M

	M	
manufacturing methods:		Pag
extruded shapes		
forging stock		10
ingot metal		18:
roll formed shapes		20
tubing and nine		116
Wire rod and have		120
maximum for lateral have	camber, commercial tolerance	161
mechanical properties (camber, commercial tolerances	91
mechanical properties affer	r forging and heat treatment	107
mechanical properties, cho	r forging and heat treatment	187
mechanical properties, high	practeristics purity aluminum plerances, press forgings	31
mismatching, commercial to	plerances, press forgings	35
modulus of elasticity, char	acteristicsitions	211
modulus of elasticity, defini	itions	31
	itions	42
	A.	
nominal chemical composit	tions	
die-casting alloys		
ingot metal	g alloys	40
permanent-mold sastin	II	200
sand-casting allows	g alloys	38
wrought allows	g diloys	38
moogin anoys	on) allow	30
extruded shapes	mechanical properties:	
roll formed shapes		. 110
sheet and plate		. 120
tubing and pine	************************************	78
Wire rod and bar		120
non-magnetic and	ing, characteristics	140
men magnetic and non-spark	ing, characteristics	. 100
		. 30
ordering data:	0	
ordering data:	0	
extruded shapes	0	
extruded shapes forging stock	•	. 107
extruded shapes forging stock ingot metal	•	. 107
extruded shapes forging stock ingot metal press forgings	•	. 107 . 185
extruded shapes	•	. 107 . 185 . 201
extruded shapes	•	. 107 . 185 . 201 . 205
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pine	•	. 107 . 185 . 201 . 205 . 117
extruded shapes	0	. 107 . 185 . 201 . 205 . 117 . 71
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar	•	. 107 . 185 . 201 . 205 . 117 . 71
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity	aluminum	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity	aluminum	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity	aluminum	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity	aluminum Ding, commercial tolerances	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub	aluminum	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub	aluminum Ding, commercial tolerances	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes	aluminum Ding, commercial tolerances	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock	aluminum ping, commercial tolerances	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal	aluminum ping, commercial tolerances	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings	aluminum Ding, commercial tolerances	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings roll formed shapes	aluminum Ding, commercial tolerances	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate	aluminum ping, commercial tolerances	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pine	aluminum ping, commercial tolerances P	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143 . 107 . 184 . 201 . 205 . 117 . 71
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pine	aluminum ping, commercial tolerances P	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143 . 107 . 184 . 201 . 205 . 117 . 71
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar	aluminum ping, commercial tolerances	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143 . 107 . 184 . 201 . 205 . 117 . 71
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar	aluminum ping, commercial tolerances P	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143 . 107 . 184 . 201 . 205 . 117 . 71
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar permanent-mold casting alloy related specifications (vol	aluminum Ding, commercial tolerances P	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143 . 107 . 184 . 201 . 205 . 117 . 71 . 131 . 163
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar permanent-mold casting alloy related specifications (rel densities and expansions	aluminum Ding, commercial tolerances P s: ference tables)	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143 . 107 . 184 . 201 . 205 . 117 . 71
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar permanent-mold casting alloy related specifications (rel densities and expansions	aluminum Ding, commercial tolerances P s: ference tables)	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143 . 107 . 184 . 201 . 205 . 117 . 71 . 131 . 163
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar permanent-mold casting alloy related specifications (rel densities and expansions	aluminum Ding, commercial tolerances P s: ference tables)	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143 . 107 . 184 . 201 . 205 . 117 . 71 . 184 . 107 . 184 . 107 . 184 . 101 . 105 . 117 . 118 . 11
extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar other properties, high purity other thermal properties oval, elliptical, streamline tub packing: extruded shapes forging stock ingot metal press forgings roll formed shapes sheet and plate tubing and pipe wire, rod and bar permanent-mold casting alloy related specifications (rel densities and expansions	aluminum Ding, commercial tolerances P	. 107 . 185 . 201 . 205 . 117 . 71 . 131 . 163 . 35 . 30 . 143 . 107 . 184 . 201 . 205 . 117 . 71 . 131 . 163 . 224 . 54

L

D

S

240

R

		Page
thermal and electrical conductivity		58
Typical mechanical properties		50
poisson's ratio, definitions		43
press forgings:		40
alloys and tempers		205
commercial tolerances:		
fillets and corners		209
mismatching		211
straightness		210
thickness		210
identification		205
ordering data		205
packing		205
sizes	• •	205
specified chemical composition	• •	
specified mechanical appearant		206
specified mechanical properties		208
pressure calculations:		•
ratio of D ² -d ² to D ² -d ² , tubing and pipe		1 40
tensile strengths, tubing and pipe	40,	148
tubing and pipe	٠.	145
tubing and pipe		144
principal characteristics:		
aluminum forging alloys (reference tables)		221
wrought aluminum alloy sheet (reference tables)	• •	231
died (reference lables)		230
R		
radii for 90° cold bends, sheet and plate		84
radii for 90° cold bends, sheet and plate		105
radius, commercial folerances, roll formed shapes		105
ratio of D^2 - d^2 to D^2 - d^2 , pressure calculations, tubing and pipe145, 14		105
ratio of D^2 - d^2 to D^2 - d^2 , pressure calculations, tubing and pipe145, 14 rectangular bar, weights:	46,	105
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe145, 14 rectangular bar, weights: forging stock	46,	125 148
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe145, 12 rectangular bar, weights: forging stock wire, rod and bar	46,	125 148 197
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe145, 12 rectangular bar, weights: forging stock	46,	125 148 197 179
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe145, 12 rectangular bar, weights: forging stock	46,	125 148 197 179
ratio of D ² -d ² to D ² —d ² , pressure calculations, tubing and pipe	46,	125 148 197 179
ratio of D ² -d ² to D ² —d ² , pressure calculations, tubing and pipe 145, 12 rectangular bar, weights: forging stock	46,	125 148 197 179 190 174
ratio of D ² -d ² to D ² —d ² , pressure calculations, tubing and pipe 145, 12 rectangular bar, weights: forging stock	46,	125 148 197 179 190 174
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe	46,	125 148 197 179 190 174
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe	46,	125 148 197 179 190 174
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe	46,	125 148 197 179 190 174 214
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe	17-	125 148 197 179 190 174 214
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe	17- 17-	125 148 197 179 190 174 2214 227 227
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe	17- 17- 17-	125 148 197 179 190 174 214 227 227 227
ratio of D²-d² to D²-d², pressure calculations, tubing and pipe	17- 17- 17- 17- 17-	125 148 197 179 190 174 227 227 227 227
ratio of D²-d² to D²-d², pressure calculations, tubing and pipe	17- 17- 17- 17- 17-	125 148 197 179 190 174 227 227 227 227
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe	17- 17- 17- 17- 17-	125 148 197 179 190 174 227 227 227 227
radios, Commercial tolerances, roll formed shapes ratio of D ² .d ² to D ² .d ² , pressure calculations, tubing and pipe 145, 14 rectangular bar, weights: forging stock wire, rod and bar rectangular forging bar, commercial tolerances rectangular wire and bar, commercial tolerances rectangular wire and bar, commercial tolerances reference tables: comparison of gauges related specifications: sheet and plate	17- 17- 17- 17- 17-	125 148 197 179 190 174 221 227 227 227 227 2216
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe 145, 14 rectangular bar, weights: forging stock wire, rod and bar rectangular forging bar, commercial tolerances rectangular wire and bar, commercial tolerances rectangular wire and bar, commercial tolerances reference tables: comparison of gauges related specifications: sheet and plate 2 ingot 2 bar, rod, wire, shapes 2 tubing, foil, rivets 2 forgings, forging stock 2 decimal equivalents principal characteristics: aluminum forging alloys	17- 17- 17- 17- 17-	125 148 197 179 190 174 214 227 227 227 227 227
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe	17- 17- 17- 17- 17-	125 148 197 179 190 174 214 227 227 227 227 227 227 227 227
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe 145, 14 rectangular bar, weights: forging stock wire, rod and bar rectangular forging bar, commercial tolerances rectangular wire and bar, commercial tolerances reference tables: comparison of gauges related specifications: sheet and plate ingot 2 bar, rod, wire, shapes 2 tubing, foil, rivets 2 forgings, forging stock 2 decimal equivalents principal characteristics: aluminum forging alloys wrought aluminum alloy sheet relative weights of various metals	17- 17- 17- 17- 17-	125 148 197 179 190 174 214 227 227 227 227 2216
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe	17- 17- 17- 17- 17- 17-	125 148 197 179 190 174 214 227 227 227 227 227 2216 231 230 232
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe	17- 17- 17- 17- 17- 17-	125 148 197 179 190 174 214 227 227 227 227 227 2216 231 230 232
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe 145, 14 rectangular bar, weights: forging stock wire, rod and bar rectangular forging bar, commercial tolerances rectangular wire and bar, commercial tolerances reference tables: comparison of gauges related specifications: sheet and plate ingot 2 bar, rod, wire, shapes tubing, foil, rivets forgings, forging stock 2 decimal equivalents principal characteristics: aluminum forging alloys wrought aluminum alloy sheet relative weights of various metals shrinkage allowances' sand castings reflectivity, characteristics	17- 17- 17- 17- 17- 17-	125 148 197 179 190 174 214 227 227 227 227 227 2216 231 230 232
radios, Commercial tolerances, roll formed shapes ratio of D ² .d ² to D ² .d ² , pressure calculations, tubing and pipe 145, 14 rectangular bar, weights: forging stock wire, rod and bar rectangular forging bar, commercial tolerances rectangular wire and bar, commercial tolerances rectangular wire and bar, commercial tolerances reference tables: comparison of gauges related specifications: sheet and plate 2 ingot 2 bar, rod, wire, shapes 2 tubing, foil, rivets 2 forgings, forging stock 2 decimal equivalents principal characteristics: aluminum forging alloys wrought aluminum alloy sheet relative weights of various metals shrinkage allowances' sand castings reflectivity, characteristics related specifications:	17- 17- 17- 17- 17- 17-	125 148 197 179 190 174 214 227 227 227 227 2216 231 230 229 30
ratio of D²-d² to D²-d², pressure calculations, tubing and pipe 145, 14 rectangular bar, weights: forging stock wire, rod and bar rectangular forging bar, commercial tolerances rectangular wire and bar, commercial tolerances rectangular wire and bar, commercial tolerances reference tables: comparison of gauges related specifications: sheet and plate 2 ingot 2 bar, rod, wire, shapes 2 tubing, foil, rivets 2 forgings, forging stock 2 decimal equivalents principal characteristics: aluminum forging alloys wrought aluminum alloy sheet relative weights of various metals shrinkage allowances' sand castings reflectivity, characteristics related specifications: sheet and plate (reference tables)	17- 17- 17- 17- 17- 17-	125 148 197 179 190 174 214 227 227 227 227 227 227 227 227 227 22
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe 145, 14 rectangular bar, weights: forging stock wire, rod and bar rectangular forging bar, commercial tolerances rectangular wire and bar, commercial tolerances reference tables: comparison of gauges related specifications: sheet and plate ingot bar, rod, wire, shapes tubing, foil, rivets forgings, forging stock decimal equivalents principal characteristics: aluminum forging alloys wrought aluminum alloy sheet relative weights of various metals shrinkage allowances' sand castings reflectivity, characteristics sheet and plate (reference tables) 125, 145, 145 145, 147 145, 1	17- 17- 17- 17- 17- 17- 17- 18-	125 148 197 179 190 174 214 227 227 227 227 227 227 228 30 229 30
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe 145, 14 rectangular bar, weights: forging stock wire, rod and bar rectangular forging bar, commercial tolerances rectangular wire and bar, commercial tolerances reference tables: comparison of gauges related specifications: sheet and plate ingot bar, rod, wire, shapes tubing, foil, rivets forgings, forging stock decimal equivalents principal characteristics: aluminum forging alloys wrought aluminum alloy sheet relative weights of various metals shrinkage allowances' sand castings reflectivity, characteristics related specifications: sheet and plate (reference tables) bar, rod, wire, shapes (reference tables) bar, rod, wire, shapes (reference tables)	17- 17- 17- 17- 17- 17- 18-	125 148 197 179 190 174 2214 227 227 227 227 2216 231 230 229 30 227 227 227
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe 145, 14 rectangular bar, weights: forging stock wire, rod and bar rectangular forging bar, commercial tolerances rectangular wire and bar, commercial tolerances reference tables: comparison of gauges related specifications: sheet and plate ingot bar, rod, wire, shapes tubing, foil, rivets forgings, forging stock decimal equivalents principal characteristics: aluminum forging alloys wrought aluminum alloy sheet relative weights of various metals shrinkage allowances' sand castings reflectivity, characteristics related specifications: sheet and plate (reference tables) bar, rod, wire, shapes (reference tables) bar, rod, wire, shapes (reference tables)	17- 17- 17- 17- 17- 17- 18-	125 148 197 179 190 174 2214 227 227 227 227 2216 231 230 229 30 227 227 227
radio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe 145, 14 rectangular bar, weights: forging stock wire, rod and bar rectangular forging bar, commercial tolerances rectangular wire and bar, commercial tolerances reference tables: comparison of gauges related specifications: sheet and plate ingot 2 bar, rod, wire, shapes tubing, foil, rivets forgings, forging stock 2 decimal equivalents principal characteristics: aluminum forging alloys wrought aluminum alloy sheet relative weights of various metals shrinkage allowances' sand castings reflectivity, characteristics related specifications: sheet and plate (reference tables) bar, rod, wire, shapes (reference tables) bar, rod, wire, shapes (reference tables) bar, rod, wire, shapes (reference tables)	17- 17- 17- 17- 17- 18- 18- 18-	125 148 197 179 190 174 2214 227 227 227 227 2216 231 230 229 30 227 227 227
ratio of D ² -d ² to D ² -d ² , pressure calculations, tubing and pipe 145, 14 rectangular bar, weights: forging stock wire, rod and bar rectangular forging bar, commercial tolerances rectangular wire and bar, commercial tolerances reference tables: comparison of gauges related specifications: sheet and plate ingot bar, rod, wire, shapes tubing, foil, rivets forgings, forging stock decimal equivalents principal characteristics: aluminum forging alloys wrought aluminum alloy sheet relative weights of various metals shrinkage allowances' sand castings reflectivity, characteristics related specifications: sheet and plate (reference tables) bar, rod, wire, shapes (reference tables) bar, rod, wire, shapes (reference tables)	17- 17- 17- 17- 17- 18- 18- 18-	125 148 197 179 190 174 2214 227 227 227 227 2216 231 230 229 30 227 227 227

3

3

relative weights of various and I /	Page
relative weights of various metals (reference tables)	220
resistance to chemical attack, characteristics resistance to corrosion, characteristics	227
resistance to corrosion, characteristics rivets, sizes, alloys, ordering data, etc	30
rivets, sizes, alloys, ordering data, etc.	30
rivets, sizes, alloys, ordering data, etc. , roll formed shapes:	211
alloys and tempers	337
angles	
angles	125
radius section thickness	105
section thickness finishes	123
finishes identification	124
identification lengths	117
lengths	117
lengths manufacturing methods ordering data	116
Ordering data	116
ordering data	117
packingsections and sizes	117
sections and sizes specified chemical compositions	11/
specified chemical compositions	116
specified chemical compositions specified mechanical properties:	118
properties:	
heat treatable (strong) alloys	
non-heat treatable (common) alloys round forging rod, commercial talerances	122
round forging rod, commercial tolerances	120
round rod, weights:	90
forging stock	0.4
wire, rod and bar round tubing, weights	74
round tubing, weights	78
round wire, weights	54
round wire and rod, commercial telegrapes	77
round wire and rod, commercial tolerances	72
sand-casting alloys:	
densities and expansions nominal chemical compositions	
nominal chamical	52
nominal chemical compositions thermal and electrical conductivity	38
thermal and electrical conductivity typical mechanical properties	
typical mechanical properties screw machine stock, commercial tolerances with a stock of the sto	58
	48
sections and sizes:	72
extruded shares	
extruded shapes	15
forging stock	
roll formed shapes	50
Section thickness communication in the section of the section that the section that the section is the section of the section that the section is the section of the sectin	
mickiness, commercial tolerances, roll formed shapes	6
shearing strength definitions 12	6
shearing strength definitions 12	6 4 3
shearing strength, definitions	
sheet aluminum, weights	3
sheet aluminum, weights	2
shearing strength, definitions 12 sheet aluminum, weights 4 sheet and plate: alloys, tempers, sizes 7	2
shearing strength, definitions 12 sheet aluminum, weights 4 sheet and plate: 9 alloys, tempers, sizes 7 coiled sheet	2
shearing strength, definitions 12 sheet aluminum, weights 4 sheet and plate: 9 alloys, tempers, sizes 7 coiled sheet	1
shearing strength, definitions 12 sheet aluminum, weights 4 sheet and plate: 9 alloys, tempers, sizes 7 commercial sizes: 7 coiled sheet 7 flat sheet 7	1 3
shearing strength, definitions sheet aluminum, weights sheet and plate: alloys, tempers, sizes commercial sizes: coiled sheet flat sheet commercial tolerances: 7	1 3
shearing strength, definitions sheet aluminum, weights sheet and plate: alloys, tempers, sizes commercial sizes: coiled sheet flat sheet commercial tolerances: common alloys, flat and coiled	1 3 2
shearing strength, definitions sheet aluminum, weights sheet and plate: alloys, tempers, sizes commercial sizes: coiled sheet flat sheet commercial tolerances: common alloys, flat and coiled maximum for lateral beautiful tolerance sizes.	1 3 2
shearing strength, definitions sheet aluminum, weights sheet and plate: alloys, tempers, sizes commercial sizes: coiled sheet flat sheet commercial tolerances: common alloys, flat and coiled maximum for lateral bow, camber strang alloys flat and solder general strang alloys flat and solder strang alloys flat and solder strang alloys flat and solder	1 3 2
shearing strength, definitions sheet aluminum, weights sheet and plate: alloys, tempers, sizes commercial sizes: coiled sheet flat sheet commercial tolerances: common alloys, flat and coiled maximum for lateral bow, camber strang alloys flat and solder general strang alloys flat and solder strang alloys flat and solder strang alloys flat and solder	1 3 2
shearing strength, definitions sheet aluminum, weights sheet and plate: alloys, tempers, sizes commercial sizes: coiled sheet flat sheet commercial tolerances: common alloys, flat and coiled maximum for lateral bow, camber strong alloys, flat and coiled definitions sheet shear sheet strong alloys, flat and coiled strong alloys, flat and coiled shear sh	1 3 2 0 1 3
shearing strength, definitions sheet aluminum, weights sheet and plate: alloys, tempers, sizes commercial sizes: coiled sheet flat sheet commercial tolerances: common alloys, flat and coiled maximum for lateral bow, camber strong alloys, flat and coiled definitions identification 7	13 12 1 1 3 2 0 1 1 3
shearing strength, definitions sheet aluminum, weights sheet and plate: alloys, tempers, sizes commercial sizes: coiled sheet flat sheet commercial tolerances: common alloys, flat and coiled maximum for lateral bow, camber strong alloys, flat and coiled definitions identification 7	1 1 3 2 0 1 3 1
shearing strength, definitions sheet aluminum, weights sheet and plate: alloys, tempers, sizes commercial sizes: coiled sheet flat sheet commercial tolerances: common alloys, flat and coiled maximum for lateral bow, camber strong alloys, flat and coiled definitions sheet shear sheet strong alloys, flat and coiled strong alloys, flat and coiled shear sh	1 1 3 2 0 1 3 1

itemized index

243

774.7	Page
packing	. 71
radii for 90° cold bends	. 84
specified chemical composition	. 76
specified mechanical properties:	
heat treatable (strong) alloys	. 80
non-heat treatable (common) alloys	78
standard sizes, flat sheet and plate	. 74
weights:	
conversion data	. 91
sheet aluminum	92
weight of circles	100
shrinkage allowances' sand castings (reference tables)	229
sizes:	
ingot metal	200
press forgings	205
tubing and pipe	130
wire, rod and bar specific heat and heat content, high purity aluminum	162
specifications, related	33
	/-22/
specified chemical composition:	
extruded shapes	108
forging stock	188
press forgings	206
roll formed shapes sheet and plate	118
tubing and pipe	76
wire, rod and bar	136 166
specified mechanical properties:	100
heat treatable (strong) alloys:	
extruded shapes111	, 112
roll formed shapes	122
sheet and plate tubing and pipe	80
wire, rod and bar	139
	, 170
non-heat treatable (common) alloys:	
extruded shapes	110
roll formed shapes	120
sheet and plate tubing and pipe	78
wire, rod and bar	138
press forgings	200
square forging rod, commercial tolerances	101
square, nexagonal, octagonal wire and bar, commercial tolerances	173
standard sizes, tlat sheet and plate	74
straightness, commercial tolerances, press forgings	210
straightness, round tubing and pipe, commercial tolerances	142
strain, definitions	40
stress, definitions	40
strong alloys, flat and coiled, commercial tolerances	
symbol, high purity aluminum	32
T	
tempers of casting alloys	27
tempers of wrought alloys	25
tensile strengths, pressure calculations, tubing and nine	145
thermal conductivity	29

1

N

U

M

M

U

4

1

=

-

-

=

7

3

-

7

=8

3

7

a a a a

A

L

	Page
thermal data, high purity aluminum	32
thermal and electrical conductivity:	32
die-casting alloys	60
mgor meigr , , , , , , , , , , , , , , , , , , ,	201
permanent-mola casting alloys	58
sand-casting alloys wrought alloys thermal expansion	58
	56
	29 210
tubing and pipe:	210
alloys and tempers	129
commercial sizes, round tubing	134
commercial tolerances:	
diameters	140
for lobing other than round	142
length, round tubing and pipe	1 40
oval, elliptical, streamline tubing	
Wall fillickliess	142
minimes	140
Tacilinication	
rengins	130
manufactoring memogs	129
packing	131
pressure data:	131
ratio of D ² -d ² to D ² -d ²	
lensile strengths	1 4 5
sizes and sections	
specified chemical composition	36
specified mechanical properties:	
heat treatable (strong) alloys	39
non-near treatable (common) alloys	38
weights:	
aluminum pipe	56
conversion data	51
round tubing	54
typical mechanical properties:	00
die-casting allows	
ingor meral	50
permunent-mold casting allows	50
sand-casting alloys	40
wrought alloys	46
U	
Ultimate or tensile strength, definitions	42
V	
valence, high purity aluminum	32
144) 2
vall thickness, commercial tolerances, tubing and pipe	
veight of circles, sheet and plate	40
veights:	00
aluminum pipe	
15	06
•	

R

E

Υ

N

0

D

S

itemized index

	Page
conversion data:	
forging stock	193
sheet and plate	91
tubing and pipe	151
wire, rod and bar	177
hexagonal bar	178
rectangular bar:	
forging stock	197
wire, rod and bar	179
	1/7
round rod:	
forging stock	194
wire, rod and bar177,	178
round tubing	154
round wire	
sheet aluminum	92
weight of circles, sheet and plate94, 96, 98,	100
wire, rod and bar:	
alloys and tempers	161
commercial sizes	164
commercial tolerances:	
rectangular wire and bar	174
round wire and rod	172
screw machine stock	172
square, hex, octagonal wire and bar	173
definitions	161
identification	163
lengths	162
manufacturing methods	161
ordering data	163
packing	163
sizes and sections	162
specified chemical compositions	166
specified mechanical properties:	
heat treatable (strong) alloys	170
non-heat treatable (common) alloys	160
weights:	100
conversion data	
hexagonal bar	176
round rod	179
round wire	178
	1//
wrought alloys:	
related specifications (reference tables)	
densities and expansions	52
nominal chemical compositions	36
thermal and electrical conductivity	56
typical mechanical properties	, 46
and, sheet, principal characteristics (reference tables)	230
Υ	
yield strength, definitions	40

FIELD SERVICE OFFICES

City:	Address:	Phone:
Akron 8, Ohio	.307 Builders Center BldgHemlock	
Atlanta 3, Ga	.616 Bona-Allen BldgJackson	4170
Baltimore 2, Md	.1132 Baltimore Trust BldgLexington	3010
Birmingham 3, Ala	.702 Watts BldgBirmingham 4	6884
Boston 16, Mass	.441 Park Square BldgLiberty	0655
Buffalo 3, N. Y	.1116 Rand BldgWashington	2606
Chicago, 11, III	.1004 Wrigley BldgWhitehall	2200
Cincinnati 2, Ohio	.4017 Carew TowerMain	2125
Cleveland 15, Ohio	.310 Hanna BldgCherry 7	214-5
Dallas 1, Texas	. 1806 Mercantile Bank BldgRiverside	3429
Dayton 2, Ohio	.215 Talbott BldgHemlock	5923
Denver 6, Colo	.380 Gaylord StEast	6727
Detroit 2, Mich	. 1010 Fisher BldgTrinity 1-	8800
Grand Rapids 2, Mich.	.719 Commerce BldgGrand Rapids 9-	6280
Indianapolis 4, Ind	.280 Century BldgFranklin	9459
Kansas City 6, Mo	.617 Dwight BldgVictor 20	596-7
Los Angeles 14, Calif	. 1709 West Eighth St Drexel	8311
Louisville 1, Ky	2500 South Third StMagnolia	4760
Milwaukee 3, Wis	1412 Majestic BldgMarquette	1051
Minneapolis 2, Minn	1150 Northwestern Bk. BldgBridgeport	6843
Moline, Ill	603 State Trust BldgMoline	178
New Orleans 12, La	1014 Canal Bank BldgRaymond 42	58-9
New York 17, N. Y	19 East 47th StEldorado 5-	7700
Philadelphia 3, Pa	1600 Arch StRittenhouse	4300
Pittsburgh 19, Pa	504 Grant BldgAtlantic	7888
Portland 5, Oregon	407 New Fleidner BldgBeacon	5312
St. Louis 2, Mo	1209 Landreth BldgChestnut 48	61-2
San Francisco 3, Cal	345 Ninth StHemlock	6130
Seattle 1, Wash	826 Henry BldgSeneca 2	2777
Tampa 2, Fla	522 Stovall Prof. Bldg	1468
washington 5, D. C	200 Southern BldgNational 5	5337
wichita 2, Kansas	304 Wheeler-Kelly-Hagny Bldg. Wichita 4-5	5976

REYNOLDS METALS COMPANY

LOUISVILLE 1, KY.

Digitized by:

ASSOCIATION FOR PRESERVATION TECHNOLOGY, INTERNATIONAL www.apti.org

BUILDING TECHNOLOGY HERITAGE LIBRARY

https://archive.org/details/buildingtechnologyheritagelibrary

From the collection of: Mike Jackson, FAIA