Higgs boson production at the Large Hadron Collider: accurate theoretical predictions at higher orders in QCD

Jesús Urtasun Elizari

PhD thesis defense - Milan, February 25th, 2022

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.

Outline

- QCD and collider physics
 - The strong interactions
 - Asymptotic freedom and pQCD
 - Factorization in QCD
 - Phenomenology at the LHC
- 2 All order perturbative resummation
 - Higher order radiative corrections
 - Resummation of large logarithmic corrections
 - Resummed component, asymptotic and fixed-order
- 4 HTurbo numerical implementation
 - Higgs production at the LHC
 - HTurbo numerical implementation
 - N³LL implementation
- Results & Conclusions

Part I QCD and collider physics

Introduction

QCD and the strong interactions

- The Standard Model describes fundamental interactions at the TeV scale
- Fundamental objects described as irreducible representations of Lorentz group
- Particles as local excitations of fields with quantum mechanical behavior

$$\mathcal{L} = \bar{\psi}_q^i (i \gamma^\mu) (D_\mu)_{ij} \psi_q^j - m_q \bar{\psi}_q^i \psi_{qi} - \frac{1}{4} F_{\mu\nu}^a F^{a\mu\nu}$$

QCD is the theory of the strong interactions \longrightarrow interactions between quarks and gluons

Introduction

QCD and the strong interactions

How to explore proton's inner structure?

- At different scales, hadrons show different behavior
- From point-like to complex internal dynamics
- Scattering experiments (DIS) and hadronic physics (LHC)

"A way of describing high energy collisions is to consider any hadron as a composite object of point-like constituents \longrightarrow partons" R.Feynman, 1969

Asymptotic freedom and pQCD

- Parton model as LO approximation to QCD
- Real QCD coupling strength changes with energy
- At high energies the hadron involves extremely complex internal dynamics

QCD is strongly coupled at large distances / low energies — confinement

Non-perturbative physics

Asymptotic freedom and pQCD

Running coupling given by Renormalization Group Equation (RGE)

$$\mu \frac{d\alpha_s(\mu)}{d\mu} = \beta(\alpha_s(\mu)) = -\sum_{n=0}^{\infty} \beta_n \left(\frac{\alpha_s}{\pi}\right)^{n+1}$$

- ullet Coupling $lpha_s$ evolves with scale μ as given by RGE o LO behavior driven by eta_0
- $\beta_0^{\rm QED} < 0 \implies$ strongly coupled at large energies, UV divergent
- $\beta_0^{\rm QCD} > 0 \implies$ weakly coupled at large energies, IR divergent

Asymptotic freedom and pQCD

 Running coupling given by Renormalization Group Equation (RGE)

$$lpha_{s}(\mu) = rac{1}{eta_{0} \log\left(rac{\mu^{2}}{\Lambda_{\mathrm{QCD}}^{2}}
ight)}$$

- β_0 LO of the β function, is > 0
- $\Lambda_{\rm QCD}$, parameter that defines value of the coupling at large scales

QCD is weakly coupled for $\mu >> \Lambda_{\rm QCD} \longrightarrow$ asymptotically free

Perturbative Quantum Chromodynamics (pQCD)

Hadronic processes and factorization

- LHC physic rely on hadronic collisions → pQCD
- Compute cross section $\sigma^F \longrightarrow$ probability for a given process

Hadronic processes and factorization

Compute hadronic cross sections is a hard problem --> QCD Factorization

$$\sigma^{F}(p_{1}, p_{2}) = \int_{0}^{1} dx_{1} dx_{2} f_{\alpha}(x_{1}, \mu_{F}^{2}) * f_{\beta}(x_{2}, \mu_{F}^{2}) * \hat{\sigma}_{\alpha\beta}^{F}(x_{1}p_{1}, x_{2}p_{2}, \alpha_{s}(\mu_{R}^{2}), \mu_{F}^{2})$$

Hadronic processes and factorization

- Parton densities (PDFs) $f_{\alpha}(x_i, \mu_F^2)$: non perturbative but universal
- Partonic cross section $\hat{\sigma}_{\alpha\beta}^{\rm F}$: process dependent but computable as perturbative series in α_s

Parton densities

Parton Distribution Functions: probability distribution of finding a particular parton (u, d, ..., g) carrying a fraction x of the proton's momentum

- Each parton has a different PDF $\longrightarrow u(x), d(x), ..., g(x)$
- PDFs can not predicted and yet can not measured → extracted from data (MSTW, CTEQ, NNPDF collaborations)
- The N3PDF project: Machine Learning for PDFs determination [Urtasun-Elizari et al.] ref. at 1910.07049

The N3PDF project

- Use TensorFlow and Keras to determine the PDFs with ML fitting models
- See paper by S.Carraza J.Cruz-Martinez
 "Towards a new generation of parton densities with deep learning models", Carrazza et al., https://arxiv.org/abs/1907.05075
- TensorFlow operator implementation → optimize PDF fitting "Towards hardware acceleration for parton densities estimation", Urtasun-Elizari et al., https://arxiv.org/abs/1909.10547

Partonic cross section and pQCD

- Born cross section is the leading-order (LO) term of the perturbative series
- $\sigma^{(1)}, \sigma^{(2)}, \sigma^{(3)}$ are the NLO, NNLO, N³LO corrections

$$\hat{\sigma} = \sigma^{\mathtt{Born}} \Big(1 + \alpha_{\mathtt{s}} \sigma^{(1)} + \alpha_{\mathtt{s}}^2 \sigma^{(2)} + \alpha_{\mathtt{s}}^3 \sigma^{(3)} + \ldots \Big)$$

Lower order predictions strongly depend on the auxiliary / unphysical scales Need higher order corrections to increase theoretical accuracy!

LHC phenomenology

Part II All order resummation

Higher order corrections - need for resummation

- Calculation of higher order corrections is not an easy task due to infrared (IR) soft and collinear singularities
- ② Final state singularities cancel by combining real and virtual contributions → KLN theorem
- Initial state collinear singularities factorized inside the PDFs

Cancellation only works in completely inclusive final states!

q_{\perp} resummation

- Describing exclusive final states
- Study the differential q_{\perp} distribution $h_1(p_1) + h_2(p_2) \longrightarrow F(M, \mathbf{q}_{\perp}) + X$

$$\int_0^{Q_\perp^2} \ dq_\perp^2 \frac{d\hat{\sigma}}{dq_\perp^2} \sim c_0 + \alpha_s (c_{12}L^2 + c_{11}L + c_{10}) + ..., \quad \text{where} \quad \ L = \ln(M^2/q_\perp^2)$$

$\alpha_{S}L^{2}$	$\alpha_{\mathcal{S}} \mathcal{L}$	 $\mathcal{O}(lpha_{\mathcal{S}})$
$\alpha_S^2 L^4$	$\alpha_S^2 L^3$	 $\mathcal{O}(\alpha_S^2)$
• • •		
$\alpha_S^n L^{2n}$	$\alpha_S^n L^{2n-1}$	 $\mathcal{O}(\alpha_S^n)$
dominant logs		

Truncated fixed-order predictions \rightarrow enhanced $\alpha_s^n \ln^m(M^2/q_\perp^2)$ appear

q_{\perp} resummation

- Formalism developed by Catani-Bozzi (*)
 "Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC",
 Bozzi, Catani et al., https://arxiv.org/abs/hep-ph/0508068
- Separate partonic q_{\perp} distribution as follows:

$$\begin{split} \frac{d\hat{\sigma}_{ab}}{dq_{\perp}^2} &= \left[\frac{d\hat{\sigma}_{ab}^{(\mathrm{res.})}}{dq_{\perp}^2}\right]_{\mathrm{l.a.}} + \left[\frac{d\hat{\sigma}_{ab}^{(\mathrm{fin.})}}{dq_{\perp}^2}\right]_{\mathrm{f.o.}} , \quad \text{such that} \\ \int_0^{q_{\perp}^2} dq_{\perp}^2 \frac{d\hat{\sigma}_{ab}^{(\mathrm{res.})}}{dq_{\perp}^2} \sim \sum \alpha_s^n \log^m \left(\frac{M^2}{q_{\perp}^2}\right) \quad \text{for} \quad q_{\perp} \to 0 \\ \lim_{q_{\perp} \to 0} \int_0^{q_{\perp}^2} dq_{\perp}^2 \frac{d\hat{\sigma}_{ab}^{(\mathrm{fin.})}}{dq_{\perp}^2} = 0 \end{split}$$

Resummed and finite components can be matched (LL+LO, NLL+NLO, NNLO+NNLL, ...) to have uniform accuracy in a wide range of q_{\perp}

Resummed component

Resummation holds in impact parameter space b

$$\frac{d\hat{\sigma}_{ab}^{(\mathrm{res.})}}{dq_{\perp}^{2}} = \frac{\mathit{M}^{2}}{\hat{s}} \int db \; \frac{b}{2} \; J_{0}(bq_{\perp}) \; \mathcal{W}_{ab}(b, M)$$

with \mathcal{W}_{ab} also expressed in Mellin space (with respect to $z=M^2/\hat{s})$

$$\mathcal{W}_N(b, M) = \mathcal{H}_N(\alpha_s) \times \exp\{\mathcal{G}_N(\alpha_s, L)\}$$
 being $L \equiv \log(M^2 b^2)$

- Large logarithms exponentiated in the universal Sudakov form factor $\mathcal{G}_N(\alpha_s, L)$
- Constant (b-independent) terms factorized in the process dependent hard factor $\mathcal{H}_N(\alpha_s)$

Extend formalism to N³LL

Sudakov factor \mathcal{G}_N and hard coefficient \mathcal{H}_N can be expanded as perturbative series in $lpha_s$

$$\mathcal{G}_{N}(\alpha_{s}, L) = L g^{(1)}(\alpha_{s}L) + g^{(2)}(\alpha_{s}L) + \frac{\alpha_{s}}{\pi} g^{(3)}(\alpha_{s}L) + \left(\frac{\alpha_{s}}{\pi}\right)^{2} g^{(4)}(\alpha_{s}L) + \dots$$

$$\mathcal{H}_{N}(\alpha_{s}) = 1 + \alpha_{s}\mathcal{H}^{(1)} + \alpha_{s}^{2}\mathcal{H}^{(2)} + \alpha_{s}^{2}\mathcal{H}^{(3)} + \dots$$

For each new order implement a factor of \mathcal{G}_N and Hard \mathcal{H}_N

LL(
$$\sim \alpha_s^n L^{n+1}$$
): $g^{(1)}$, $\hat{\sigma}^{(0)}$
NLL($\sim \alpha_s^n L^n$): $g^{(2)}$, $\mathcal{H}^{(1)}$
NNLL($\sim \alpha_s^n L^{n-1}$): $g^{(3)}$, $\mathcal{H}^{(2)}$
N³LL($\sim \alpha_s^n L^{n-2}$): $g^{(4)}$, $\mathcal{H}^{(3)}$

- Implement Catani-Bozzi resummation up to C++ implementation
- Extend the formalism up to N³LO+N³LL accuracy!

Part III HTurbo numerical implementation

Resummation for Higgs differential distribution

- Fast and accurate predictions for Higgs boson production cross section
- Predictions for differential cross section $d\sigma^{\mathrm{H}}/dq_{\perp}^2$
- Numerical implementation of resummed and finite components

$$d\sigma_{(\mathrm{N})\mathrm{NLL}+(\mathrm{N})\mathrm{LO}}^{\mathrm{H}} = d\sigma_{(\mathrm{N})\mathrm{NLL}}^{\mathrm{(res.)}} - d\sigma_{(\mathrm{N})\mathrm{LO}}^{\mathrm{(asy.)}} + d\sigma_{(\mathrm{N})\mathrm{LO}}^{\mathrm{(f.o.)}}$$
 $d\sigma_{(\mathrm{N})\mathrm{NLL}}^{\mathrm{(res.)}} = \hat{\sigma}_{\mathrm{LO}}^{\mathrm{H}} imes \mathcal{H}_{(\mathrm{N})\mathrm{LO}} imes \exp \mathcal{G}_{(\mathrm{N})\mathrm{NLL}}$
 $d\sigma_{(\mathrm{N})\mathrm{LO}}^{\mathrm{(asy.)}} = \hat{\sigma}_{\mathrm{LO}}^{\mathrm{H}} imes \Sigma_{(\mathrm{N})\mathrm{LO}}$

ullet LO process is just gg o H, but NLO and beyond require gg o H + jet!

Predictions for Higgs q_{\perp} distribution

- q⊥ resummation implemented in numerical codes HqT, HRes, HNNLO [Catani, de Florian, Ferrera, Grazzini, Tommasini]
- Higher order accuracy require high computation times
- NNLL predictions can take more than 48h → need for fast numerical implementations

Codes producing fast and accurate predictions are needed for precision era of the LHC (High Luminosity LHC, from 80 - $140~{\rm fb}^{-1}$ to $2000~{\rm fb}^{-1}$!)

Starting point: DYTurbo

Numerical code **DYTurbo** [Camarda et al., https://arxiv.org/abs/1910.07049], fast and precise q_{\perp} resummation and several improvements for Drell-Yan $(h_1h_2 \rightarrow V + X \rightarrow I^+I^- + X)$

First goal: set up a numerical code for Higgs boson production starting from DYTurbo

- Set LO amplitude $gg \rightarrow H$
- Set Sudakov and Hard coefficients for resummed component
- Set Σ coefficients for asymptotic term
- Implement MC producing the LO and NLO H+jet cross sections
- Compare with HRes and HqT

Final goal: extend theoretical accuracy up to N³LL+N³LO

Code optimization

Optimized reimplementation of HqT, HRes and HNNLO for q_T -resummation

- C++ structure with Fortran interfaces → Multi-threading
- Optimization in the integration routines / integral transforms
 - Factorize boson and decay kinematics
 - Gauss-Legendre quadrature rules (1-dim.)
 - Vegas/Cuhre through Cuba (multi-dim.)

Comparison HRes and HTurbo - speed performance

Predictions	HRes	HTurbo
resummed NNLL	10h	10'
combined NNLO+NNLL	48h	2h

Comparison HTurbo and HRes - NLL resummed

- ullet Cross section for fully inclusive (LHS) and fiducial (RHS) phase space \checkmark
- CM energy $\sqrt{s} = 13$ GeV and PDF set NNPDF31_nlo_as_0118 PDF set

Comparison HTurbo and HRes - NNLL resummed

- Cross section for fully inclusive (LHS) and fiducial (RHS) phase space √
- CM energy $\sqrt{s} = 13$ GeV and PDF set NNPDF31_nnlo_as_0118 PDF set

Comparison HTurbo and HRes - LO asymptotic

- Cross section for fully inclusive (LHS) and fiducial (RHS) phase space √
- CM energy $\sqrt{s} = 13$ GeV and PDF set NNPDF31_nlo_as_0118 PDF set

Comparison HTurbo and HRes - NLO asymptotic

- Cross section for fully inclusive (LHS) and fiducial (RHS) phase space √
- ullet CM energy $\sqrt{s}=13$ GeV and PDF set NNPDF31_nnlo_as_0118 PDF set

Comparison HTurbo and HRes - LO fixed-order

- Cross section for fully inclusive (LHS) and fiducial (RHS) phase space √
- CM energy $\sqrt{s} = 13$ GeV and PDF set NNPDF31_nlo_as_0118 PDF set

Comparison HTurbo and HRes - NLO fixed-order

- Cross section for fully inclusive (LHS) and fiducial (RHS) phase space √
- ullet CM energy $\sqrt{s}=13$ GeV and PDF set NNPDF31_nnlo_as_0118 PDF set

N³LL implementation

Sudakov factor \mathcal{G}_N and hard coefficient \mathcal{H}_N can be expanded as perturbative series in α_s

$$\mathcal{G}_{N}(\alpha_{s}, L) = L g^{(1)}(\alpha_{s}L) + g^{(2)}(\alpha_{s}L) + \frac{\alpha_{s}}{\pi}g^{(3)}(\alpha_{s}L) + \left(\frac{\alpha_{s}}{\pi}\right)^{2}g^{(4)}(\alpha_{s}L) + \dots$$

$$\mathcal{H}_{N}(\alpha_{s}) = 1 + \alpha_{s}\mathcal{H}^{(1)} + \alpha_{s}^{2}\mathcal{H}^{(2)} + \alpha_{s}^{2}\mathcal{H}^{(3)} + \dots$$

For each new order implement a new factor of \mathcal{G}_N and Hard \mathcal{H}_N

- Extend the formalism up to N³LO+N³LL accuracy!
- Implementation of N³LL factors following
 - "Anomalous dimension for transverse-momentum resummation",
 Li Zhu, https://arxiv.org/abs/1604.01404,
 - "Cusp and collinear anomalous dimensions in four-loop QCD",
 Von Manteuffel et al., https://arxiv.org/abs/2002.04617

N³LL implementation

- Cross section for fully inclusive (LHS) and fiducial (RHS) phase space √
- Implementation of N³LL factors following [Li - Zhu, 1604.01404], [Von Manteuffel et al., 2002.04617]
- First implementation of resummation at N³LL accuracy!

Summary & Conclusions

- Accurate predictions are needed towards the precision era of the LHC
- Resummation is needed for describing differential distributions
- Second the precision of the LHC
 Second the precision of the LHC
- **1** Developing a novel numerical code, **HTurbo**, which implements q_{\perp} resummation for Higgs boson production
- 6 HTurbo is faster than any of the existing codes
- MTurbo contains the first implementation of resummation at N³LL accuracy!
- Next steps:
 - Add full N³LO+N³LL prediction
 - Perform phenomenological studies comparing with LHC data

Thank you!

This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 740006.

Back up

General structure of n3fit

- Use TensorFlow and Keras to determine the PDFs
- See paper by S.Carraza J.Cruz-Martinez
 "Towards a new generation of parton densities
 with deep learning models",
 https://arxiv.org/abs/1907.05075

General structure of n3fit

- **1** Build a NN to compute y_{pred} observables from a grid of momentum fractions x_i
- Compute loss function by comparing with LHC data

Operator implementation

- lacktriangledown TF relies in symbolic computation \longrightarrow High memory usage
- 2 Implement C++ operator replacing the convolution

Back up