INTRODUCTION TO LIE ALGEBRAS - EXERCISES

- 11. For each of the following classical Lie algebras \mathfrak{g} over \mathbb{C} prove that the *centre* of \mathfrak{g} consists of the zero element only: if [Z, X] = 0 for every $X \in \mathfrak{g}$, then Z = 0.
 - (i) $\mathfrak{g} = \mathfrak{sl}_n \mathbb{C}$, the special linear Lie algebra with n = 3.
 - (ii) $\mathfrak{g} = \mathfrak{so}_n \mathbb{C}$, the orthogonal Lie algebra with n = 4.
- 12. Let \mathfrak{g} be the two-dimensional non-Abelian Lie algebra over the field \mathbb{C} . It has two basis vectors E and F with the commutation relation [E,F]=E. Take any element $X=aE+bF\in\mathfrak{g}$ with $a,b\in\mathbb{C}$. Compute the matrix of the linear operator $\mathrm{ad}_X:Y\mapsto [X,Y]$ in \mathfrak{g} relative to the basis E,F.