Neural Machine Translation by Jointly Learning to Align and Translate

Authors: Dzmitry Bahdanau, KyungHyun Cho, Yoshua Bengio

Conference: ICLR 2015 arXiv ID: 1409.0473v7

Background

- Traditional NMT compresses the entire source sentence into one fixed vector → poor for long sentences.
- Attention-based mechanism allows dynamic focus on relevant parts of the input during translation.

Proposed Approach: RNNsearch

- Instead of a single vector, the encoder outputs a **sequence of annotations** (context-rich vectors).
- Decoder uses a soft attention mechanism to compute a context vector from source annotations.

Model Architecture

- Encoder: Bidirectional RNN (BiRNN)
 - Combines forward and backward hidden states for each source word.
- Decoder: RNN with attention
 - At each step, generates a word using previous word, previous hidden state, and a context vector.

• Context Vector (c_i):

- Weighted sum of encoder annotations.
- \circ Weights (α_{ij}) represent soft alignment between target word and source annotations.
- Alignment model is a feedforward neural network trained jointly with the rest of the model.

Results

BLEU Scores:

- RNNsearch significantly outperformed RNNencdec on all benchmarks.
- o RNNsearch-50 achieved BLEU = 34.16 (close to Moses system: 35.63).

Effect of Sentence Length:

o RNNencdec degraded with longer sentences.

o RNNsearch models were more stable and accurate on long sentences.

• Qualitative Analysis:

- \circ Attention weights (α_{ij}) show meaningful, mostly monotonic alignments.
- o Able to handle non-monotonic alignments (e.g., adjective-noun inversion).

Conclusions

- Fixed-length vectors limit traditional NMT performance.
- Attention mechanism improves translation, especially for long sentences.
- RNNsearch:
 - o Learns useful alignments.
 - o Achieves performance comparable to phrase-based systems.
 - End-to-end trainable.