# Membership Inference







# Split/Subsample







# Sout, ts: OUT

::IN 'IN 🤊

rain:

# Trained classifier

 $t_s = \operatorname{argmax} P[t_s | S]$ 





































Reference dataset



## Membership Inference



## Privacy Gain

• Under the assumption equal prior  $P[t_s] = 0.5$  and perfect linkage in case of raw dataset  $P[MIA_t(R) = t_s] = 1$ 

$$PG_t(S, R) \triangleq \frac{1 - P[MIA_t(S) = t_s]}{2}$$



$$P[MIA_t(S) = t_s] = 1$$

Publishing S is equivalent to publishing R

$$P[MIA_t(S) = t_s] = 0$$

Publishing S reduces the adversary's chance of success

$$PG_t = 0.25$$

$$PG_t = 0.5$$

$$P[MIA_t(S) = t_s] = 0.5$$

Publishing S gives the adversary no advantage over random guessing