ДВОЙНЫЕ ИНТЕГРАЛЫ

Каждый решенный пример стоит по 1 баллу.

I. Расставить пределы интегрирования в интеграле

$$\int \int_D f(x,y) dx dy$$

двумя способами, если D — это

- 1) Область, ограниченная линиями $y = x, y = \frac{1}{x}, x = 2;$
- 2) Четырехугольник с вершинами (2,3), (-5,-1), (-3,4), (0,1);
- 3) Пятиугольник с вершинами (-1,2), (0,3), (1,-1), (2,-2), (4,1);

- 4) Область, ограниченная кривыми $y^2 = ax$, $x^2 + y^2 = 2ax$, y = 0 (a > 0, y > 0); 5) Область, ограниченная кривыми $x^2 + y^2 = 2a^2$, $x^2 = ay$ (a > 0, y > 0); 6) Область, ограниченная кривыми $x^2 + y^2 = ax$, $x^2 + y^2 = 2ax$, y = 0 (a > 0, y > 0).

II. Поменять порядок интегрирования

$$7) \int_{3}^{7} dx \int_{9/x}^{3} f(x,y) dy + \int_{7}^{9} dx \int_{9/x}^{10-x} f(x,y) dy; \ 8) \int_{0}^{4} dx \int_{\sqrt{4x-x^{2}}}^{\sqrt{16-x^{2}}} f(x,y) dy; \ 9) \int_{-2}^{6} dx \int_{-3-\sqrt{12+4x-x^{2}}}^{-3+\sqrt{12+4x-x^{2}}} f(x,y) dy;$$

$$10) \int_{-1}^{1} dy \int_{y^{2}-1}^{1-y^{2}} f(x,y) dx; \ 11) \int_{0}^{1} dx \int_{\sqrt{x}}^{\sqrt{2-x^{2}}} f(x,y) dy; \ 12) \int_{-2}^{2} dx \int_{0}^{(x+2)/2} f(x,y) dy + \int_{2}^{10/3} dx \int_{\sqrt{x^{2}-4}}^{(x+2)/2} f(x,y) dy;$$

$$13) \int_{0}^{1} dy \int_{y^{2}/9}^{y} f(x,y) dx + \int_{1}^{3} dy \int_{y^{2}/9}^{1} f(x,y) dx; \ 14) \int_{-\sqrt{2}}^{\sqrt{2}} dy \int_{y^{2}-1}^{y^{2}/2} f(x,y) dx; \ 15) \int_{0}^{a} dx \int_{\sqrt{2ax-x^{2}}}^{a+\sqrt{a^{2}-x^{2}}} f(x,y) dy.$$

III. Вычислить двойной интеграл

16)
$$\int \int_G (x^2 + y^2) dx dy$$
, где область G ограничена кривыми $y = x$, $x + y = 2a$, $x = 0$; 17) $\int \int_G (x^2 + y^2) dx dy$, где область G ограничена кривой $x^2 + y^2 = 2ax$;

18)
$$\int \int_G (x^2+y^2) dx dy$$
, где область G ограничена кривыми $x^2+y^2=ax, \ x^2+y^2=2ax, \ y=0 \ (y>0);$

19)
$$\int \int_G dx dy$$
, где область G ограничена кривыми $x^2 = ay$, $x^2 + y^2 = 2a^2$, $y = 0$ $(x > 0, a > 0)$;

20)
$$\int \int_G x \sqrt{x^2 + y^2} dx dy$$
, где область G ограничена лепестком лемнискаты $(x^2 + y^2)^2 = a^2(x^2 - y^2)$ $(x \geqslant 0)$;

21)
$$\int \int_G xy dx dy$$
, где область G ограничена кривыми $x+y=2, \ x^2+y^2=2y \ (x>0);$

22)
$$\int \int_G (x+2y)dxdy$$
, где область G ограничена кривыми $y=x^2,\ y=\sqrt{x};$

23)
$$\int \int_G (4-y) dx dy$$
, где область G ограничена кривыми $x^2 = 4y$, $y = 1$, $x = 0$ $(x > 0)$;

24)
$$\int \int_G \frac{x dx dy}{x^2 + y^2}$$
, где область G ограничена кривыми $y = x \operatorname{tg} x$, $y = x$, $x = \pi/8$ $(x \geqslant \pi/8)$;

25)
$$\int \int_G \sqrt{a^2+x^2} dx dy$$
, где область G ограничена кривыми $y^2-x^2=a^2$, $x=a,\ x=0,\ y=0\ (y>0,\ a>0)$;

26)
$$\int \int_G e^{x+y} dx dy$$
, где область G ограничена кривыми $y=e^x$, $y=2$, $x=0$.

- 27) Площадь фигуры, ограниченной кривымии xy = 4, x + y = 5;

- 28) Площадь фигуры, ограниченной кривыми $y^2 = 4ax + 4a^2$, x + y = 2a (a > 0); 29) Площадь фигуры, ограниченной кривыми $y = \frac{8a^3}{x^2 + 4a^2}$, x = 2y, x = 0 (a > 0); 30) Площадь фигуры, ограниченной кривыми $(x^2 + y^2)^2 = 2a^2(x^2 y^2)$, $x^2 + y^2 = 2ax$;
- 31) Координаты центра масс фигуры, ограниченной кривыми $y^2 = ax$, y = x;
- 32) Координаты центра масс фигуры, ограниченной кривыми $xy=a^2, \ y^2=8ax, \ x=2a \ (a>0).$