

Characteristics of an Edge (1)

- Edge: A sharp change in brightness
- Ideal edge is a step function in some direction

Characteristics of an Edge (2)

- Real (non-ideal) edge is a slightly blurred step function
- Edges can be characterized by high value first derivative

$$f'(x) = \frac{df}{dx}(x)$$

Characteristics of an Edge (3)

- Ideal edge is a step function in certain direction.
- First derivative of I(x) has a **peak** at the edge
- Second derivative of I(x) has a zero crossing at edge

Finite Differences

- Left and right slope may not be same
- Solution? Take average of left and right slope

Forward difference (right slope)

$$\Delta_+ f(x) = f(x+1) - f(x)$$

Backward difference (left slope)

$$\Delta_{-}f(x) = f(x) - f(x-1)$$

• Central Difference (average slope)

$$\Delta f(x) = \frac{1}{2} (f(x+1) - f(x-1))$$

Desinition: Function Gradient

- Let f(x,y) be a 2D function
- Gradient: Vector whose direction is in direction of maximum rate of change of f
 and whose magnitude is maximum rate of change of f
- Gradient is perpendicular to edge contour

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]^T$$

• magnitude =
$$\left[\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2 \right]^{1/2}$$

• direction =
$$\tan^{-1}(\frac{\partial f}{\partial y})$$

Image Gradient

- Image is 2D discrete function
- Image derivatives in horizontal and vertical directions

$$\frac{\partial I}{\partial u}(u,v)$$
 and $\frac{\partial I}{\partial v}(u,v)$

Image gradient at location (u,v)

$$abla I(u,v) = \begin{bmatrix} rac{\partial I}{\partial u}(u,v) \\ rac{\partial I}{\partial v}(u,v) \end{bmatrix}$$

Gradient magnitude

$$|\nabla I|(u,v) = \sqrt{\left(\frac{\partial I}{\partial u}(u,v)\right)^2 + \left(\frac{\partial I}{\partial v}(u,v)\right)^2}$$

Magnitude is invariant under image rotation, used in edge detection

Derivative Fifters

• We can compute derivative of discrete function as

$$\frac{df}{du}(u) \approx \frac{f(u+1) - f(u-1)}{2} = 0.5 \cdot (f(u+1) - f(u-1))$$

Can we make linear filter that computes central differences

$$H_x^D = \begin{bmatrix} -0.5 & \mathbf{0} & 0.5 \end{bmatrix} = 0.5 \cdot \begin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix}$$

Finite Differences as Convolutions (1)

Forward difference

$$\Delta_+ f(x) = f(x+1) - f(x)$$

• Take a convolution kernel H = [0 -1 1]

$$\Delta_+ f = f * H$$

Finite Differences as Convolutions (2)

Central difference

$$\Delta f(x) = \frac{1}{2} (f(x+1) - f(x-1))$$

• Convolution kernel is: $H = \begin{bmatrix} -0.5 & 0 & 0.5 \end{bmatrix}$

$$\Delta f(x) = f * H$$

• **Notice:** Derivative kernels sum to zero

x-Derivative of Image using Central Difference

* $[-0.5 \quad \mathbf{0} \quad 0.5] =$

y-Derivative of Image using Central Difference

$$*$$

$$\begin{bmatrix} -0.5 \\ \mathbf{0} \\ 0.5 \end{bmatrix} =$$

Derivative Fifters

Gradient slope in horizontal direction

Edge Operators

- Approximating local gradients in image is basis of many classical edge-detection operators
- Main differences?
 - Type of filter used to estimate gradient components
 - How gradient components are combined
- We are typically interested in
 - Local edge direction
 - Local edge magnitude

Partial Image Derivatives

Partial derivatives of images replaced by finite differences

$$\Delta_{x}f = f(x,y) - f(x-1,y)$$
 $\Delta_{y}f = f(x,y) - f(x,y-1)$

Alternatives are:

• Robert's gradient

$$\Delta_{+}f = f(x+1,y+1) - f(x,y)$$

$$\Delta_{-}f = f(x,y+1) - f(x+1,y)$$

$$\Delta_{-}f = f(x,y+1) - f(x+1,y)$$

Prewitt

Sobel

Prewitt and Sobel Edge Operators

Prewitt Operator

$$H_x^P = \begin{bmatrix} -1 & 0 & 1 \\ -1 & \mathbf{0} & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad H_y^P = \begin{bmatrix} -1 & -1 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 1 & 1 \end{bmatrix}$$

Written in separable form
$$\longrightarrow$$
 $H_x^P = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} * \begin{bmatrix} -1 & \mathbf{0} & 1 \end{bmatrix}$ and $H_y^P = \begin{bmatrix} 1 & \mathbf{1} & 1 \end{bmatrix} * \begin{bmatrix} -1 \\ \mathbf{0} \\ 1 \end{bmatrix}$

Sobel Operator

$$H_x^S = \begin{bmatrix} -1 & 0 & 1 \\ -2 & \mathbf{0} & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad H_y^S = \begin{bmatrix} -1 & -2 & -1 \\ 0 & \mathbf{0} & 0 \\ 1 & 2 & 1 \end{bmatrix}$$

Roberts Edge Operators (1)

- Estimates directional gradient along 2 image diagonals
- Edge strength E(u,v): length of vector obtained by adding 2 orthogonal gradient components $D_1(u,v)$ and $D_2(u,v)$

• Filters for edge components

$$H_1^R = \begin{bmatrix} 0 & \mathbf{1} \\ -1 & 0 \end{bmatrix}$$
 and $H_2^R = \begin{bmatrix} -1 & 0 \\ 0 & \mathbf{1} \end{bmatrix}$

Roberts Edge Operators (2)

Diagonal gradient components produced by 2 Robert filters

Other Edge Operators

- Problem with edge operators based on first derivatives:
 - Edge is proportional to underlying intensity transition
 - Edges may be difficult to localize precisely
- Solution? Use second derivative
- Recall: An edge corresponds to a zero crossing of the 2nd derivative
- Since 2nd derivatives amplify image noise, pre-smoothing filters used first

Canny Edge Detector (1)

- Popular edge detector that operates at different scales, then combines results into common edge map. Tries to:
 - 1. Minimize number of false edgepoints
 - 2. Achieve good localization of edges
 - 3. Deliver only a single mark on each edge
- Essentially gradient based using zero crossings of second derivative
- Typically, a single scale implementation (1 image) used with adjustable filter radius (smoothing parameter σ)

Canny Edge Detector (2)

Resulting edge maps for different settings of the smoothing (scale) parameter σ

Comparison of Various Edge Operators

Image Sharpening

- Blurring may occur during image scanning or scaling
- Sharpening reduces effects of blurring
- How? Amplify high frequency components
- High frequencies occur at edges
- We need to sharpenedges
- Two main approaches:
 - Using Laplace filter
 - Unsharp masking

Edge Sharpening using Laplace Fifter

Laplace Operator

- 2D Laplace operator: combines 2nd derivatives in horizontal and vertical directions
- Laplace operator defined as:

Laplacian Operator (1)

- Laplacian: $(\nabla^2 f)(x,y) = \frac{\partial^2 f}{\partial^2 x}(x,y) + \frac{\partial^2 f}{\partial^2 y}(x,y)$
- Digital approximation of laplacian is:

$$\nabla^2 f(x,y) = [f(x+1,y) - f(x,y)] - [f(x,y) - f(x-1,y)] + [f(x,y+1) - f(x,y)] - [f(x,y) - f(x,y-1)]$$

$$= [f(x+1,y) + f(x-1,y) + f(x,y+1) - f(x,y-1)] - 4f(x,y)$$

 $egin{array}{cccc} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \\ \end{array}$

Laplacian Operator (2)

• Laplacian: $(\nabla^2 f)(x,y) = \frac{\partial^2 f}{\partial^2 x}(x,y) + \frac{\partial^2 f}{\partial^2 y}(x,y)$

1d filters that estimate 2nd derivatives along x and y directions

$$\frac{\partial^2 f}{\partial^2 x} \equiv H_x^L = \begin{bmatrix} 1 - 2 & 1 \end{bmatrix}$$
 and $\frac{\partial^2 f}{\partial^2 y} \equiv H_y^L = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$

$$H^{L} = H_{x}^{L} + H_{y}^{L} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Results for Laplacian Operator

Synthetic test

Second partial derivative in horizontal direction

Second partial derivative in Vertical direction

(c)

(d)

Laplace filter

How to Computer Edge Detection?

Gradient Vertical

Gradient Horizontal

```
horizontal_kernel = vertical_kernel.T
gradient_horizontal = ndi.convolve(imm,horizontal_kernel)
fig, ax = plt.subplots()
ax.imshow(gradient_horizontal, cmap='gray');
horizontal_kernel
#print('dtype:', gradient_horizontal.dtype)
```

```
array([[-1, 0, 1]])
```


Gradient Magnitude

```
gradient_mag = np.sqrt(gradient_vertical**2 + gradient_horizontal**2)
print('dtype:', gradient_mag.dtype)
   gradient_mag
   print('Min. value:', gradient_mag.min())
6 print('Max value:', gradient mag.max())
8 #-----Untuk membenarkan clipping---#
9 im eq = gradient mag/np.amax(gradient mag) #
10 im_eq = np.clip(im_eq, 0, 255) #
11
12 print('Min. value:', im_eq.min())
13 print('Max value:', im_eq.max())
14 print('dtype:', im_eq.dtype)
15
16 from skimage import img_as_ubyte
17 gradient_mag2 = img_as_ubyte(im_eq) #convert to uint8
18 print('dtype:', gradient mag2.dtype)
19
20 fig, ax = plt.subplots()
21 ax.imshow(gradient mag2, cmap='gray')
22 plt.show()
```

dtype: float16
Min. value: 0.0
Max value: 15.91
Min. value: 0.0
Max value: 1.0
dtype: float16
dtype: uint8

Sobel Fifter

```
# Apply Sobel filter along both axes
   sobel ax0 = ndi.sobel(imm, axis=0) #horizontal axis=0
   sobel_ax1 = ndi.sobel(imm, axis=1) #vertikal axis=1
   #sobel horizontal_kernel = np.array([[-1,0,1],[-2,0,2],[-1,0,1]])
                                                                         22
   #sobel vertical kernel = np.array([[-1, -2, -1], [0, 0, 0], [1, 2, 1]])
   #sobel_ax0 = ndi.convolve(imm, sobel_horizontal_kernel)
   #sobel ax1 = ndi.convolve(imm, sobel vertical kernel)
 8
                                                                         26
   print('dtype:', sobel_ax0.dtype)
10
   # Calculate edge magnitude
   #edges = np.sqrt(np.square(sobel ax0)+np.square(sobel ax1))
                                                                         30
   edges = np.sqrt(sobel ax0**2 + sobel ax1**2)
   print('dtype mag sobel:', edges.dtype)
15
                                                                         33
   print('Min. value:', edges.min())
   print('Max value:', edges.max())
                                                                            dtype: uint8
```

```
#-----Untuk membenarkan clipping---#
im_edges = edges/np.amax(edges) #
im_edges = np.clip(im_edges, 0, 255) #

print('Min. value:', im_edges.min())
print('Max value:', im_edges.max())
print('dtype:', im_edges.dtype)

from skimage import img_as_ubyte
edges2 = img_as_ubyte(im_edges) #convert to uint8
print('dtype:', edges2.dtype)

# Plot edge magnitude
plt.imshow(edges2,cmap='gray')
```

dtype mag sobel: float16
Min. value: 0.0
Max value: 15.81
Min. value: 0.0
Max value: 1.0
dtype: float16
dtype: uint8