UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS

GCE Advanced Subsidiary Level and GCE Advanced Level

MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9702 PHYSICS

9702/23

Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2			Mark Scheme: Teachers' version			Syllabus	Paper		
				GCE AS/A LEVEL – October/November 2011 9702		23				
1	(a)	sca	scalar has magnitude/size, vector has magnitude/size and direction				B1	[1]		
	(b)				ntum, weight or omission bu	t stop a	at zero)		B2	[2]
	(c)	(i) horizontally: $7.5\cos 40^\circ / 7.5\sin 50^\circ = 5.7(45) / 5.75$ not $5.8\mathrm{N}$ (ii) vertically: $7.5\sin 40^\circ / 7.5\cos 50^\circ = 4.8(2)\mathrm{N}$ (d) either correct shaped triangle correct labelling of two forces, three arrows and two angles or correct resolving: $T_2\cos 40^\circ = T_1\cos 50^\circ$ $T_1\sin 50^\circ + T_2\sin 40^\circ = 7.5$ $T_1 = 5.7(45)\mathrm{(N)}$ $T_2 = 4.8\mathrm{(N)}$ (allow $\pm 0.2\mathrm{N}$ for scale diagram)						A1	[1]	
								A1	[1]	
	(d)							M1 A1 (B1) (B1) A1 A1	[4]	
2	(a)	1.	cons	tant ve	locity / speed				B1	[1]
		either constant / uniform decrease (in velocity/speed) or constant rate of decrease (in velocity/speed)					B1	[1]		
	(b)	(i)	(i) distance is area under graph for both stages stage 1: distance (18 × 0.65) = 11.7 (m)					C1		
		stage 2: distance = $(9 \times [3.5 - 0.65]) = 25.7$ (m) total distance = $37.(4)$ m (-1 for misreading graph) {for stage 2, allow calculation of acceleration $(6.32 \mathrm{ms^{-2}})$ and then $s = (18 \times 2.85) + \frac{1}{2} \times 6.32 (2.85)^2 = 25.7 \mathrm{m}$ }					A1	[2]		
		(ii)	either F a		0)/(3.5 – 0.65)	or	$E_{K} = \frac{1}{2}mv^{2}$ $E_{K} = \frac{1}{2} \times 1250 \times (1250)$	8) ²	C1 C1	
		$F = 1250 \times 6.3 = 7900 \text{N}$ or $F = \frac{1}{2} \times 1250 \times (18)^2 / 25.7 = 7900 \text{N}$ or initial momentum = 1250×18 $F = \text{change in momentum / time taken}$ $F = (1250 \times 18) / 2.85 = 7900$				A1 (C1) (C1) (A1)	[3]			
	(c)	(i)	(i) stage 1: either half / less distance as speed is half / less or half distance as the time is the same or sensible discussion of reaction time				.	B1	[1]	
		(ii)	stage 2:		same accelera he distance	ition a	$nd s = v^2 / 2a or v'$	² is 1⁄4	B1 B1	[2]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE AS/A LEVEL – October/November 2011	9702	23

3 (a) (i) power = work done per unit time / energy transferred per unit time / rate of work [1] done **B1** [1] (ii) Young modulus = stress / strain **(b) (i) 1.** $E = T / (A \times \text{strain})$ (allow strain = ε) C1 $T = E \times A \times \text{strain} = 2.4 \times 10^{11} \times 1.3 \times 10^{-4} \times 0.001$ M1 $= 3.12 \times 10^4 \text{ N}$ **A0** [2] C1 **2.** T - W = ma $[3.12 \times 10^4 - 1800 \times 9.81] = 1800a$ C1 $a = 7.52 \text{ m s}^{-2}$ Α1 [3] (ii) 1. $T = 1800 \times 9.81 = 1.8 \times 10^4 \text{ N}$ **A1** [1] **2.** potential energy gain = mghC1 $= 1800 \times 9.81 \times 15$ $= 2.7 \times 10^5 J$ **A1** [2] (iii) P = FvC1 $= 1800 \times 9.81 \times 0.55$ C1 input power = $9712 \times (100/30) = 32.4 \times 10^3 \text{W}$ **A1** [3] 4 (a) p.d. = energy transformed from electrical to other forms **B1** unit charge e.m.f. = energy transformed from other forms to electrical [2] **B**1 unit charge (b) (i) sum of e.m.f.s (in a closed circuit) = sum of potential differences **B1** [1] (ii) $4.4 - 2.1 = I \times (1.8 + 5.5 + 2.3)$ M1 I = 0.24 A[2] Α1 (iii) arrow (labelled) I shown anticlockwise Α1 [1] (iv) 1. $V = I \times R = 0.24 \times 5.5 = 1.3(2) \text{ V}$ **A1** [1] **2.** $V_A = 4.4 - (I \times 2.3) = 3.8(5) V$ Α1 [1] 3. either $V_B = 2.1 + (I \times 1.8)$ or $V_B = 3.8 - 1.3$ C1 = 2.5(3) V**A1** [2]

	Page 4			Mark Scheme: Teachers' version	Syllabus	Paper	
				GCE AS/A LEVEL – October/November 2011 9702			
5	(a)	transverse waves have vibrations that are perpendicular / normal to the direction of energy travel longitudinal waves have vibrations that are parallel				B1	
		_	ne dii		B1	[2]	
	(b)	vibra eith or	er	s are in a single direction applies to transverse waves normal to direction of wave energy travel	M1		
		or		normal to direction of wave propagation		A1	[2]
	(c)	(i)	1.	amplitude = 2.8 cm		B1	[1]
				phase difference = 135° or 0.75π rad or $3/4\pi$ rad or 2.36 (three sf needed) numerical value	3 radians	M1	
				unit		A1	[2]
		(ii)	amp	olitude = 3.96 cm (4.0 cm)		A1	[1]
6	(a)	(i)	grea	eater deflection			
	` ,	()	greater electric field / force on α -particle			A1	[1]
		/:: \				N40	
		(ii)	<i>,</i> 			M0 A1	[1]
			greater electric field / force on α -particle			Ai	ניו
	(b)	/:\	oith	or deflections in apposite directions		M1	
	(b)	(1)	eithe	er deflections in opposite directions because oppositely charged		A1	
			or	β less deflection		(M1)	
				β has smaller charge		(A1)	[2]
		/::\	o. 00	nallar deflection		M1	
		(ii)	i) α smaller deflection because larger mass			A1	[2]
		200000 Idigo: Maco				[—]	
		(iii)	βles	ss deflection because higher speed		B1	[1]
	(c)	either $F = ma$ and $F = Eq$ or $a = Eq / m$ ratio = either $(2 \times 1.6 \times 10^{-19}) \times (9.11 \times 10^{-31})$ $(1.6 \times 10^{-19}) \times 4 \times (1.67 \times 10^{-27})$				C1	
				or [2e × 1 / 2000 u] / [e × 4u]		C1	
							_
		ratio) = 1	$/4000 \text{ or } 2.5 \times 10^{-4} \text{ or } 2.7 \times 10^{-4}$		A1	[3]