Heat Transfer: Radiation

Kirchhoff's Law

Prof. Dr.-Ing. Reinhold Kneer

Prof. Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Learning goals

Virtual experiment:

Relationship between absorptivity and emissivity

Kirchhoff's law:

Radiation: Kirchhoff's law

Conditions where "ε = α " (wavelength independent) is valid?

$$\varepsilon = \alpha$$

Virtual experiment

Enclosed body:

Radiation through cavity opening

$$t=0; T_1 > T_2$$

no back reflection through opening from Body ② to Body ① (very small gap)

⇒ complete absorption within the body ②

$$t \rightarrow \infty;$$

$$T_1 = T_2$$

$$\dot{q}_{1 \rightarrow 2}^{"} = \dot{q}_{2 \rightarrow 1}^{"}$$

The radiation of a **cavity** corresponds to that of a **black body**

Enclosed Body

Radiation: Kirchhoff's law

Radiation:

Incident Radiation: $\dot{q}_{\lambda,b}^{\prime\prime}$

Absorption: $\alpha_1(\lambda)\dot{q}_{\lambda,b}^{"}$

Emission: $\dot{q}_{\lambda,\epsilon}^{\prime\prime}$

Energy balance body (1):

$$\alpha_{1}(\lambda)\dot{q}_{\lambda,b}^{"} A_{1} = \dot{q}_{\lambda,\varepsilon}^{"} A_{1}$$

$$\alpha(\lambda) = \frac{\dot{q}_{\lambda,\varepsilon}^{"}}{\dot{q}_{\lambda,b}^{"}}$$

Emissivity definition:

 $\epsilon(\lambda) = \frac{\text{Heat flux emitted by the body}}{\text{Heat flux emitted by a black body}}$ with same temperature

Enclosed Body

Radiation:

Incident Radiation: $\dot{q}_{\lambda,b}^{\prime\prime}$

Absorption: $\alpha_1(\lambda)\dot{q}_{\lambda,b}^{"}$

Emission: $\dot{q}_{\lambda,\epsilon}^{\prime\prime}$

Energy balance body ①:

$$\alpha_{1}(\lambda)\dot{q}_{\lambda,b}^{\prime\prime} A_{1} = \dot{q}_{\lambda,\varepsilon}^{\prime\prime} A_{1}$$

$$\alpha(\lambda) = \frac{\dot{q}_{\lambda,\varepsilon}^{\prime\prime}}{\dot{q}_{\lambda,b}^{\prime\prime}}$$

Emissivity definition:

$$\varepsilon(\lambda) = \frac{\dot{q}_{\lambda,\varepsilon}^{\prime\prime}}{\dot{q}_{\lambda,b}^{\prime\prime}}$$

Kirchhoff's law

Frequently asked question:

When $\alpha(\lambda) = \epsilon(\lambda)$ is valid, are absorbed and emitted heat flux identical?

Example

Thermal equilibrium

Explanation for the example

Explanation:

At a fixed wavelength λ the red black body emits a heat flux, which is marked with 1 on the ordinate.

The blue black body absorbs all incoming radiation, i.e. exactly this heat flux.

At this wavelength, however, the blue black body can <u>emit</u> with T_{blue} at most the heat flux ② belonging to the Planck curve marked blue.

As a result of the difference 1 - 2, T_{blue} increases with time.

The red body receives the heat flux 2 from the blue body, but emits 1.

As a result of the difference 2 – 1, T_{red} decreases over time.

Final answer:

The absorptivity $\alpha(\lambda)$ and emissivity $\epsilon(\lambda)$ indicate proportions that do not necessarily refer to the same heat flux. The heat fluxes can therefore differ from each other.

Radiation:

Question:

When $\alpha(\lambda) = \epsilon(\lambda)$ is valid, can also be said that $\alpha = \epsilon$ is valid?

Verification:

alpha average: $\alpha = \frac{\dot{q}_{\alpha}^{\prime\prime}}{\dot{q}_{0}^{\prime\prime}} = \frac{\int_{0}^{\infty} \alpha(\lambda) \, \dot{q}_{\lambda,0}^{\prime\prime} \, \mathrm{d}\lambda}{\int_{0}^{\infty} \dot{q}_{\lambda,0}^{\prime\prime} \, \mathrm{d}\lambda}$

epsilon average: $\epsilon = \frac{\dot{q}_{\varepsilon}^{\prime\prime}}{\dot{q}_{b}^{\prime\prime}} = \frac{\int_{0}^{\infty} \epsilon(\lambda) \, \dot{q}_{\lambda,b}^{\prime\prime} \, \mathrm{d}\lambda}{\int_{0}^{\infty} \dot{q}_{\lambda,b}^{\prime\prime} \, \mathrm{d}\lambda}$

In which case is following equation valid?

$$\alpha = \varepsilon$$

Kirchhoff's law – special cases

Body is grey (case 1):

Grey Body: $\alpha, \varepsilon \neq f(\lambda)$

$$\frac{\int_0^\infty \alpha(\lambda) \, \dot{q}_{\lambda,0}^{"} \, d\lambda}{\int_0^\infty \dot{q}_{\lambda,0}^{"} \, d\lambda} = \frac{\int_0^\infty \epsilon(\lambda) \, \dot{q}_{\lambda,b}^{"} \, d\lambda}{\int_0^\infty \dot{q}_{\lambda,b}^{"} \, d\lambda}$$

$$\alpha \frac{\int_0^\infty \dot{q}_{\lambda,0}^{\prime\prime} d\lambda}{\int_0^\infty \dot{q}_{\lambda,0}^{\prime\prime} d\lambda} = \varepsilon \frac{\int_0^\infty \dot{q}_{\lambda,b}^{\prime\prime} d\lambda}{\int_0^\infty q_{\lambda,b}^{\prime\prime} d\lambda}$$

$$\alpha = \epsilon$$

Emitter is grey or black and temperatures are equal (case 2):

$$T_{\text{sou}} = T_{\text{K}}$$

$$\varepsilon_{\text{sou}} \neq f(\lambda)$$

$$\alpha(\lambda) = \varepsilon(\lambda)$$

$$\alpha \in \varepsilon$$

$$\frac{\int_0^\infty \alpha_{\rm K}(\lambda) \, \dot{q}_{\lambda,\rm sou}^{\prime\prime} \, \mathrm{d}\lambda}{\int_0^\infty \dot{q}_{\lambda,\rm sou}^{\prime\prime} \, \mathrm{d}\lambda} = \frac{\int_0^\infty \varepsilon_{\rm K}(\lambda) \, \dot{q}_{\lambda,b}^{\prime\prime}(T_{\rm K}) \, \mathrm{d}\lambda}{\int_0^\infty \dot{q}_{\lambda,b}^{\prime\prime}(T_{\rm K}) \, \mathrm{d}\lambda}$$

$$\frac{\int_0^\infty \alpha_{\mathsf{K}}(\lambda) \, \varepsilon_{\mathsf{sou}} \, \dot{q}_{\lambda,b}^{\prime\prime}(T_{\mathsf{sou}}) \, \mathrm{d}\lambda}{\int_0^\infty \varepsilon_{\mathsf{sou}} \, \dot{q}_{\lambda,b}^{\prime\prime}(T_{\mathsf{sou}}) \, \mathrm{d}\lambda} = \frac{\int_0^\infty \varepsilon_{\mathsf{K}}(\lambda) \, \dot{q}_{\lambda,b}^{\prime\prime}(T_{\mathsf{K}}) \, \mathrm{d}\lambda}{\int_0^\infty \dot{q}_{\lambda,b}^{\prime\prime\prime}(T_{\mathsf{K}}) \, \mathrm{d}\lambda}$$

$$\dot{q}_{\lambda,b}^{\prime\prime}(T_{sou}) = \dot{q}_{\lambda,b}^{\prime\prime}(T_{K}) \quad \boldsymbol{\subset}$$

$$\alpha = \epsilon$$

UNIVERSITY

OF TWENTE.

Comprehension questions

In which case can it be assumed that both $\alpha(\lambda) = \epsilon(\lambda)$ and $\alpha = \epsilon$ are valid?

To which part of radiation does the emissivity refer and to which part the Absorptivity?

When $\alpha(\lambda) = \epsilon(\lambda)$ is valid, is then the absorbed and emitted heat flux identical?

