Transformation Review

1. Explain what each does to the *original* graph y = f(x).

Assume $c > 0$	Description	Assume $c > 1$	Description
f(x) + c	Shift y=f(x) per	cf(x)	Stretch yef(x)
	c units upward		vertically by c
f(x) - c	shift y=f(x) per	f(cx)	Shrink y=f(x)
	c runks downward		horizoutally by c
$\int f(x+c)$	shift y=f(x) per	-f(x)	reflect y=f(x)
	c units to the left		about 2 axis
f(x-c)	Shift y=f(x) per	f(-x)	reflect y= f(x)
	c with to the right		about u-axis

2. Let $f(x) = x^2$. Graph each of the following using the ideas from # 1 above.

(a) f(x)

(c)
$$f(x-1)$$

(b)
$$-f(x)$$

(d)
$$f(x-1)-1$$

Trigonometry Review

3. An isosceles triangle has a height of 10 ft and its base is 8 feet long. Determine the sine, cosine, tangent, cotangent, secant and cosecant of the base angle α .

4. Using a 45-45-90 triangle and a 30-60-90 triangle find the coordinates of **any three marked points**, **one of each color** on the unit circle. (The blue points are at multiples of $\frac{\pi}{6}$, the red points are at multiples of $\frac{\pi}{4}$, and the black points are at multiples of $\frac{\pi}{2}$.)

5. Without a calculator evaluate:

(a)
$$\sin(\frac{2\pi}{3})$$
 (b) $\cos(\frac{5\pi}{4})$ = (c) $\tan(\frac{-\pi}{4})$ = -4 $\sin(\frac{\pi}{4})$ = -4 \sin

6. On the axes below, graph at least two cycles of $f(x) = \sin x$, $f(x) = \cos(x)$. Label all x- and y-intercepts.

7. (a) Graph $y = \sin(2x)$ and $y = \frac{3}{2} - 2\cos(x)$ on adjacent graphs. Label the points $0, \pi/2, \pi, 3\pi/2$ and 2π on the x-axis.

(b) Use the graph of $f(x) = \sin(2x)$ to determine the domain of $f(x) = \csc(2x)$