Backtracking

bν

Dr. Günter Kolousek

Einführung

- allgemeine Problemlösung für das Finden von Lösungen
 - nicht durch Berechnung
 - sondern durch Versuchen und Nachprüfen (trial and error)
- Problem in Teilschritte zerlegen
 - oft rekursiv zu formulieren
 - Problem mit Teilproblemen als Baum darstellbar
 - ▶ in diesem Suchbaum ist die Lösung zu suchen
 - Suchbaum in der Regel sehr groß!
 - ▶ Idee ist: Teilbäume abzuschneiden
- ▶ Prinzip
 - Suche in Richtung Ziel
 - zeichne Weg auf
 - stellt sich heraus, dass Weg nicht zielführend (Sackgasse)
 - eingeschlagenen Weg verwerfen und zurückgehen

Springerproblem - Aufgabenstellung

- ▶ geg.: ist ein Schachbrett der Größe $n \times n$
- ges.: Finden eines Weges sodass ein Springer genau einmal über jedes der n² Felder springt (soferne dies möglich ist)
- Also: Positionieren auf Feld (1, 1) und von dort alle Möglichkeiten durchprobieren.
- Aber: Das sind sehr viele Möglichkeiten!

► Feld als zweidimensionales Array oder Liste

Wege eines Springers

	3		2	
4				1
		S		
5				8
	6		7	

Springen durch Addition von Differenzwerten

$$a = (2, 1, -1, -2, -2, -1, 1, 2)$$

 $b = (1, 2, 2, 1, -1, -2, -2, -1)$
 $u = x + a[k] # 0 <= k < 8$
 $v = y + b[k]$

- Bruteforce Algorithmus
 - Setze Springer am Anfang auf Position (1, 1)...
 - Alle Möglichkeiten probieren: Wenn außerhalb oder besetzt, dann verwerfen und nächsten probieren.
 - ▶ Wenn alle *n*² Felder besucht, dann Lösung gefunden.
- !!! d.h. alle Möglichkeiten probieren !!!

- Bruteforce Algorithmus
 - ▶ Setze Springer am Anfang auf Position (1, 1)...
 - ► Alle Möglichkeiten probieren: Wenn außerhalb oder besetzt, dann verwerfen und nächsten probieren.
 - ▶ Wenn alle *n*² Felder besucht, dann Lösung gefunden.
- !!! d.h. alle Möglichkeiten probieren !!!
 - ▶ bei n=5 gibt es 304 Lösungen!
 - ▶ bei n=6 gibt es 524.486 Lösungen!!
 - ▶ bei n=8 gibt es schon 13.267.364.410.532 Lösungen!!!
 - d.h. praktisch unmöglich!
- Verbesserung mittels Backtracking!

- Bruteforce Algorithmus
 - Setze Springer am Anfang auf Position (1, 1)...
 - Alle Möglichkeiten probieren: Wenn außerhalb oder besetzt, dann verwerfen und nächsten probieren.
 - ▶ Wenn alle *n*² Felder besucht, dann Lösung gefunden.
- !!! d.h. alle Möglichkeiten probieren !!!
 - ▶ bei n=5 gibt es 304 Lösungen!
 - ▶ bei n=6 gibt es 524.486 Lösungen!!
 - ▶ bei n=8 gibt es schon 13.267.364.410.532 Lösungen!!!
 - d.h. praktisch unmöglich!
- Verbesserung mittels Backtracking!
 - ...aber selbst für Schachbretter moderater Größe ist dies sinnlos!

- ▶ Weg nicht zielführend, dann eingeschlagenen Weg verwerfen und zurückgehen → Backtracking
- ► Prinzip:

Funktion nächsten Zug versuchen: initialisieren der Datenstrukturen wiederholen: nächsten Zug wählen wenn annehmbar: Zug aufzeichnen wenn brett nicht voll: nächsten Zug versuchen wenn nicht erfolgreich: lösche vorhergehenden Zug bis erfolgreich oder keine Züge mehr

Springerproblem – eine Lösung

```
def try_next(i, x, y): # Zug, Pos x, Pos y
   k = 0
   res = False
   while True:
      u = x + a[k]
      v = y + b[k]
      if 1 \le u \le n and 1 \le v \le n: # zug annehmbar? - 1
         u1 = u - 1
         v1 = v - 1
         if h[u1][v1] == 0: # zug annehmbar? - 2
            h[u1][v1] = i # aufzeichnen
            if i < n2: # brett nicht voll</pre>
               res = trv next(i + 1, u, v)
               if not res:
                  h[u1][v1] = 0 # nicht erfolgreich: loeschen
            else: # fertig => erfolgreich
               res = True
      k += 1
      if res or k == 8: # erfolgreich oder alle Zuege
         break
                     # besser in Kopf von while!
   return res
```

Allgemeine Struktur

initialisiere Wahl der Kandidaten wiederholen: nächsten Kandidaten wählen wenn annehmbar: Kandidaten aufzeichnen wenn Lösung unvollständig: nächsten Schritt versuchen wenn nicht erfolgreich: lösche Aufzeichnung bis erfolgreich oder keine weiteren Kandidaten

Implementierung für eine Lösung

- Voraussetzungen
 - expliziter Stufenparameter
 - der die Tiefe der Rekursion angibt
 - der eine einfache Bedingung der Terminierung erlaubt (n)
 - ▶ # der möglichen Kandidaten in jedem Schritt = m

Implementierung für *eine* Lösung – 2

```
def try_next(i):
    k = 0
    res = False
    while True:
        k += 1
        waehle_k_ten_kandidaten()
        if annehmbar():
            if i < n:
                 res = trv next(i + 1)
                 if not res:
                     loesche aufzeichnung()
        if res or k == m:
            break
    return res
res = try_next(1)
if res:
    print_loesung()
else:
    print("Keine Loesung")
```

Implementierung für alle Lösungen

- ges. alle Lösungen eines Problems
- ▶ dann:

```
def try_next(i):
    k = 0
    while True:
        k += 1
        waehle_k_ten_kandidaten()
        if annehmbar():
            if i < n:
                trv next(i + 1)
            else:
                 print_solution()
            loesche_aufzeichnung()
        if k == m:
            break
try_next(1)
```

Springerproblem – Alle Lösungen

```
def try_next(i, x, y):
    k = 0
    while k != 8: # nicht alle Kandidaten
        u = x + a[k]
        v = y + b[k]
        if 1 <= u <= n and 1 <= v <= n: # zug annehmbar 1
            u1 = u - 1
            v1 = v - 1
            if h[u1][v1] == 0: # zug annehmbar 2
                h[u1][v1] = i
                if i < n2: # brett nicht voll</pre>
                    try_next(i + 1, u, v)
                else: # eine Lösung gefunden
                    print_solution(h)
                h[u1][v1] = 0 # loeschen
        k += 1
h[0][0] = 1 # 1. Zug
try_next(2, 1, 1)
```