Linear Algebra: Inner Product Spaces

Arjun Vardhan

†

Created: 22nd July 2022 Last updated: 22nd July 2022

1 Introduction

- An inner product is a function that assigns a scalar to a pair of vectors.
- Let $x=(x_1,x_2,...,x_n),y=(y_1,y_2,...,y_n)\in\mathbb{R}^n$. The norm of a vector in \mathbb{R}^n is defined as $||x||=\sqrt{x_1^2+x_2^2+...+x_n^2}$. The inner product of two vectors is defined as $\langle x,y\rangle=x_1y_1+x_2y_2+...+x_ny_n$.
- Let V be a vector space over \mathbb{C} . An inner product in V must satisfy the following properties:
 - 1. Conjugate symmetry: $\langle x, y \rangle = \overline{\langle y, x \rangle}$ for all $x, y \in V$.
 - 2. Linearity: $\langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$, for all $x, y, z \in V$ and all $\alpha, \beta \in \mathbb{C}$.
 - 3. Non-negativity: $\langle x, x \rangle \geq 0$ for all $x \in V$.
 - 4. Non-degeneracy: $\langle x, x \rangle = 0$ if and only if x = 0.

If such a function exists, then V together with its inner product is an inner product space.

- Given an inner product space, the norm of a vector x is defined as $||x|| = \sqrt{\langle x, x \rangle}$.
- Let $x \in V$. Then x = 0 if and only if $\langle x, y \rangle = 0$ for all $y \in V$. Proof:

•

2 Orthogonality, Orthogonal and Orthonormal Bases

• Two vectors u and v are called orthogonal if $\langle u, v \rangle = 0$. This is denoted by $u \perp v$.

3 Orthogonal Projection and Gram-Schmidt Orthogonalization

•