COSC 290 Discrete Structures

Lecture 17: Proof by structural induction

Prof. Michael Hay Friday, Oct. 6, 2017

Colgate University

Wrap up Strong Induction

Plan for today

- 1. Wrap up Strong Induction
- 2. Structural Induction
- 3. Mid-semester feedback

Tilings

Jacobsthal numbers: $J_0=0$, $J_1=1$ and $J_n=J_{n-1}+2J_{n-2}$ for $n\geq 2$.

- 1. Claim: for any $n \ge 0$, given $n \times 2$ grid, the number of tilings using either 1×2 dominoes or 2×2 squares is J_{n+1} .
- 2. Claim: $J_n = \frac{2^n (-1)^n}{3}$

Proof shown on board

Structural Induction

Applications in computer science

Many fundamental computer science structures are recursively defined structures:

- lists
- trees
- propositional logic
- · circuits
- · syntax of all programming languages

Many practical systems/applications are built using recursively defined structures. Example: Apache Spark Resilient Distributed Datasets (RDDs).

Having the ability to reason about such structures is important!

Recursively defined structures

A recursively defined structure is a structure defined in terms of one or more base cases and one or more inductive cases.

Example: Binary Tree

A binary tree is either:

- a) (base case) an empty tree, denoted null
- b) (inductive case) a root node x, a left subtree T_ℓ, and a right subtree T_ℓ where x is an arbitrary value and T_ℓ and T_ℓ are both binary trees.

Terminology: nodes and edges

Can think of a tree T in terms of nodes and edges.

Node: root value x for each subtree in T.

Edge: a connection between a node and a non-empty subtree.

Examples shown on board.

Property of trees

Claim: For any binary tree T, if T is non-empty, then edges(T) = nodes(T) - 1 where edges(T) denotes the number of edges in T and nodes(T) denotes the number of nodes.

Proof by Structural Induction Template

Let S be a (well-ordered) set of structures generated by a recursive definition

- Claim: $\forall x \in S : P(x)$
- · Proof by structural induction:
 - Base cases: for every x defined as a base case in the definition of
 server P(x)
 - Inductive case: for every x defined in terms of y₁, y₂,..., y_k ∈ S by an inductive case in the definition of S, prove that P(y₁) ∧ P(y₂) ∧ ··· ∧ P(y_k) ⇒ P(x).
 - Assume: P(y₁) ∧ P(y₂) ∧ · · · ∧ P(y_b) is true.
 - Want to show: P(x) is true.
 - "Suppose that [P(y₁) ∧ P(y₂) ∧ · · · ∧ P(y_k) is true]..."
 - ... body of proof for inductive case...
 "... therefore the inductive step holds."
 - · Conclusion: "By structural induction, the claim has been shown."

Proof of claim

- Claim: Let T be a binary tree. If T is non-empty, then
 edges(T) = nodes(T) 1.
- · Proof by structural induction:
 - · Base cases: T is empty, therefore...
 - Inductive case: T is non-empty, consisting of node x and left and right subtrees T_ℓ and T_r.
 Therefore

Therefore..

Poll: base case

- Claim: If T is non-empty, then edges(T) = nodes(T) − 1.
- · Proof by structural induction:
 - · Base cases: T is empty, therefore... what goes here?
- A) nodes(T) = 1 and edges(T) = 0 because T is empty.
- B) The claim does not apply because T is empty.
- C) The claim does is false because \emph{T} is empty.
- D) The claim is true because T is empty.
- E) None of the above.

10

Poll: base case

- Claim: If T is non-empty, then edges(T) = nodes(T) 1.
- · Proof by structural induction:
 - Base cases: T is empty, therefore the statement is true (because the antecedent is False and p ⇒ q is True whenever p is False).

Poll: Inductive case

Claim: If T is non-empty, then edges(T) = nodes(T) - 1.

Inductive case: T is non-empty, consisting of node x and left and right subtrees T_ℓ and $T_r.$

Inductive hypothesis: $edges(T_{\ell}) = nodes(T_{\ell}) - 1$ (same for T_r).

 $\begin{aligned} & nodes(T) = 1 + nodes(T_t) + nodes(T_t) \end{aligned} \tag{+1 for root} \\ & edges(T) = (1 + edges(T_t)) + (1 + edges(T_t)) \\ & = (1 + (nodes(T_t) - 1)) + (1 + (nodes(T_t) - 1)) \end{aligned} \end{aligned} (\text{+1 for each edge}) \\ & = nodes(T_t) + nodes(T_t) \\ & = edges(T) - 1 \end{aligned}$

- A) The proof is correct.
- B) The inductive assumption is incorrect.
- C) There is an error in the proof logic/math.
- D) None / More than one
 - The inductive hypothesis only asserts a property for non-empty trees!

Proof of claim

Claim: If T is non-empty, then edges(T) = nodes(T) - 1.

Inductive case: T is non-empty, consisting of node x and left and right subtrees T_{ℓ} and T_{r} . Cases:

• T_{ℓ} = null and T_{r} = is null: nodes(T) = 1 and edges(T) = 0.

- $T_{\ell} \neq \text{null and } T_r = \text{null:}$
 - $nodes(T) = 1 + nodes(T_{\ell})$

$$edges(T) = 1 + edges(T_\ell) = 1 + (nodes(T_\ell) - 1) = nodes(T) - 1$$

- $T_{\ell} = \text{null}$ and $T_r \neq \text{null}$: same ideas as previous.
- $T_{\ell} \neq \text{null and } T_{\ell} \neq \text{null:}$

$$nodes(T) = 1 + nodes(T_{\ell}) + nodes(T_r)$$

 $edges(T) = 2 + edges(T_{\ell}) + edges(T_r)$

$$= 2 + (nodes(T_{\ell}) - 1) + (nodes(T_r) - 1)$$

$$= nodes(T_{\ell}) + nodes(T_r) = nodes(T) - 1$$

13

11

N	Иi	d	-se	me	st	er	fe	ed	lh	a	cl

Your feedback

Please complete the feedback form. When you are finished, please place your form on the front desk.

(If the last person could bring the forms to my office, I would appreciate it!)