Name and student number:

[4] 1. (a) Prove that for each $a \in \mathbb{Z}$, $a \not\equiv 0 \pmod 3$ if and only if $a^2 \equiv 1 \pmod 3$.

Hint: For any $a \in \mathbb{Z}$, we must have $a \equiv 0 \pmod 3$, $a \equiv 1 \pmod 3$, or $a \equiv 2 \pmod 3$.

The first case will take care of one direction of the if and only if (by contrapositive) and the other two cases will take care of the other direction.

[2] (b) Prove that for each $n \in \mathbb{N}$, $\sqrt{3n+2}$ is not a natural number. Hint: Use part (a). [4] 2. Let A and B be sets. Prove that if $S \subseteq A$, then $S \times B \subseteq A \times B$.

Total: 10 points