BECA / Dr. Huson / IB Mathematics

19 September 2019

Do Now: Laws of sines and cosines practice

1a. The following diagram shows triangle ABC.

AB = 6 cm, BC = 10 cm, and $A\hat{B}C = 100^{\circ}$.

Find AC. [3 marks]

1b. Find BĈA.

2a. In triangle ABC, $AB=6\,\mathrm{cm}$ and $AC=8\,\mathrm{cm}$ The area of the triangle is $16\,\mathrm{cm}^2$.

Find the two possible values for \hat{A} . [4 marks]

2b. Given that \hat{A} is obtuse, find BC.

3a. The following diagram shows a triangle ABC.

The area of triangle ABC is $80~\mathrm{cm}$, $\mathrm{AB}=18~\mathrm{cm}$, $\mathrm{AC}=x~\mathrm{cm}$ and $\mathrm{BAC}=50^\circ$.

Find x. [3 marks]

3b. Find BC. [3 marks]

4a. The following diagram shows ΔPQR , where RQ = 9 cm, $P\hat{R}Q=70^{\circ}$ and $P\hat{Q}R=45^{\circ}$.

 $\operatorname{Find}\operatorname{R}\!\hat{\mathrm{P}}\mathrm{Q}$ [1 mark]

4b. Find PR. [3 marks]

4c. Find the area of ΔPQR . [2 marks]

5a. The diagram shows a circle of radius 8 metres. The points ABCD lie on the circumference of the circle.

BC = 14 m, CD = 11.5 m, AD = 8 m, $\hat{ADC} = 104^{\circ}$, and $\hat{BCD} = 73^{\circ}$.

Find AC. [3 marks]

5b. (i) Find \hat{ACD} [5 marks]

(ii) Hence, find \hat{ACB} .

5c. Find the area of triangle ADC. [2 marks]

5d. Hence or otherwise, find the total area of the shaded regions. [6 marks]