Lecture one: Mathematical Functions

MATLAB offers many predefined mathematical functions for technical computing which contains a large set of mathematical functions. Typing help elfun and help specfun calls up full lists of elementary and special functions respectively. There is a long list of mathematical functions that are built into MATLAB. These functions are called built-ins. Many standard mathematical functions, such as $\sin(x), \cos(x), \tan(x), e^x$, $\ln(x)$, are evaluated by the functions \sin , \cos , \tan , \exp , and \log respectively in MATLAB.

Table 1 lists some commonly used functions, where variables x and y can be numbers, vectors, or matrices.

Table1: Elementary Functions

Matlab name	Comment
cos()x)	Cosine
sin(x)	Sine
tan(x)	Tangent
atan(x)	Arc tangent
asin(x)	Arc cosine
acos(x)	Arc sine
abs(x)	Absolute value
sign(x)	Signum function
max(x)	Maximum value
min(x)	Minimum value
ceil(x)	Round towards +∞
floor(x)	Round towards -∞
exp(x)	Exponential
round(x)	Round to nearest integer
sqrt(x)	Square root
rem(x)	Remainder after division
log(x)	Natural logarithm
log10(x)	Common logarithm
angle(x)	Phase angle
conj(x)	Complex conjugate

Example:

We illustrate here some typical examples which related to the elementary functions previously defined. As a first example, the value of the expression $y = e^{-a} \sin(x) + 10\sqrt{10}$, for a = 5, x = 2 and y = 8 are computed by:

```
>> a=5;x=2;y=8;
A=exp(-a)*sin(x)+10*sqrt(y)
A =
28.2904
fx >> |
```

The subsequent examples are:

```
>> log(142)

ans =

4.9558

>> log10(142)

ans =

2.1523
```

Note the difference between the natural logarithm log(x) and the decimal logarithm (base 10) log10(x).

To calculate $\sin (\pi/4)$ and e ¹⁰, we enter the following commands in MATLAB,

```
>> sin(pi/4)

ans =

0.7071

>> exp(10)

ans =

2.2026e+004
```