SurveyRMD_BSIT2B

ZydrickCeniza,AiraMiaLego,KentHerveyGener

2024-04-29

Survey Table and Demographics

Zydrick Ceniza

Aira MIa Lego

Kent Hervey Gener

BSiT-2B

```
library(readxl)
library(dplyr)
##
## Attaching package: 'dplyr'
## The following objects are masked from 'package:stats':
##
##
       filter, lag
## The following objects are masked from 'package:base':
##
       intersect, setdiff, setequal, union
survey<-read_xlsx("survey.xlsx")</pre>
original_survey<-read_xlsx("survey.xlsx")</pre>
survey<- survey[,-2]</pre>
name<-survey$`Name:(first name, middle initial, last name)`</pre>
age<- survey$ Age:
gender<-survey$`Sex:`</pre>
survey$`Education Level`<-ifelse(is.na(survey$`Education Level`), "College", survey$`Education Level`)</pre>
education_level<-survey\(^\)Education Level\(^\)
experience <- survey $\text{How satisfied were you with the overall experience of ordering food through food de
experience<-as.data.frame(experience)</pre>
experience <- replace (experience, experience >= "Satisfied",1)
experience<-replace(experience, experience>="Average", 2)
experience <- replace (experience, experience >= "Disatisfied", 3)
survey$ How satisfied were you with the overall experience of ordering food through food deliveries ser
```

```
scale <-survey$`On a scale of 1 to 10, how would you rate the quality of the food you received?`
orderarrival <- survey$`Did your order arrive within the estimated delivery time?`
p1<-survey$`I would find the food delivery app useful for my needs`
p1 <- recode(p1,
             "Strongly Agree" = 1,
             "Agree" = 2,
             "Neutral" = 3,
             "Disagree" = 4,
             "Strongly Disagree" = 5)
p1mean <-mean(p1)
p1sd < -sd(p1)
survey$`I would find the food delivery app useful for my needs`<-p1</pre>
survey$`Performance Expectancy 1`<-survey$`I would find the food delivery app useful for my needs`</pre>
p2 <- survey \U00a7 Using the app enables me to order food more quickly and efficiently
p2 <- recode(p2,
             "Strongly Agree" = 1,
             "Agree" = 2,
             "Neutral" = 3,
             "Disagree" = 4,
             "Strongly Disagree" = 5)
survey$`Using the app enables me to order food more quickly and efficiently` <- p2
survey$ Performance Expectancy 2 <- survey$ Using the app enables me to order food more quickly and effi
p2mean<-mean(p2)
p2sd < -sd(p2)
p3 <- survey$ Using the app increases my satisfaction with the food delivery process`
p3 <- recode(p3,
             "Strongly Agree" = 1,
             "Agree" = 2,
             "Neutral" = 3,
             "Disagree" = 4,
             "Strongly Disagree" = 5)
survey ** Using the app increases my satisfaction with the food delivery process * <- p3
survey$ Performance Expectancy 3 <-survey$ Using the app increases my satisfaction with the food delive
p3mean<-mean(p3)
p3sd < -sd(p3)
p4 <- survey If I use the app, I believe it will enhance my overall dining experience
p4 <- recode(p4,
              "Strongly Agree" = 1,
             "Agree" = 2,
             "Neutral" = 3,
             "Disagree" = 4,
             "Strongly Disagree" = 5)
survey$ If I use the app, I believe it will enhance my overall dining experience <- p4</pre>
survey$`Performance Expectancy 4`<-survey$`If I use the app, I believe it will enhance my overall dining
p4mean <-mean(p4)
p4sd < -sd(p4)
```

```
e1<-survey* My interaction with the app would be clear and understandable
e1<-recode(e1,
           "Strongly Agree" = 1,
           "Agree" = 2,
           "Neutral" = 3,
           "Disagree" = 4,
           "Strongly Disagree" = 5)
e1mean <-mean (e1)
e1sd < -sd(e1)
survey$`My interaction with the app would be clear and understandable`<-e1</pre>
survey$`Effort Expectancy 1`<-survey$`My interaction with the app would be clear and understandable`</pre>
e2 <- survey$`It would be easy for me to become skillful at using the app`
e2 <- recode(e2,
               "Strongly Agree" = 1,
              "Agree" = 2,
              "Neutral" = 3,
               "Disagree" = 4,
              "Strongly Disagree" = 5)
e2mean <- mean(e2)
e2sd <- sd(e2)
survey$`It would be easy for me to become skillful at using the app`<-e2
survey$`Effort Expectancy 2`<-survey$`It would be easy for me to become skillful at using the app`</pre>
e3 <- survey$`I would find the app easy to navigate and use`
e3 <- recode(e3,
               "Strongly Agree" = 1,
              "Agree" = 2,
              "Neutral" = 3,
              "Disagree" = 4,
              "Strongly Disagree" = 5)
e3mean <- mean(e3)
e3sd \leftarrow sd(e3)
survey$`I would find the app easy to navigate and use`<-e3</pre>
survey$`Effort Expectancy 3`<-survey$`I would find the app easy to navigate and use`</pre>
e4 <- survey$`Learning to operate the app is easy for me`
e4 <- recode(e4,
               "Strongly Agree" = 1,
              "Agree" = 2,
              "Neutral" = 3,
              "Disagree" = 4,
              "Strongly Disagree" = 5)
e4mean <- mean(e4)
e4sd \leftarrow sd(e4)
survey$`Learning to operate the app is easy for me`<-e4
survey$`Effort Expectancy 4`<-survey$`Learning to operate the app is easy for me`</pre>
s1 <- survey People who influence my dining choices think that I should use the app
s1 <- recode(s1,</pre>
               "Strongly Agree" = 1,
              "Agree" = 2,
              "Neutral" = 3,
              "Disagree" = 4,
               "Strongly Disagree" = 5)
```

```
s1mean <- mean(s1)</pre>
s1sd \leftarrow sd(s1)
survey People who influence my dining choices think that I should use the app <-s1
survey$ Social Influence 1 <- survey$ People who influence my dining choices think that I should use the
s2 <- survey People who are important to me recommend using the food delivery app
s2 <- recode(s2,
              "Strongly Agree" = 1,
              "Agree" = 2,
              "Neutral" = 3,
              "Disagree" = 4,
              "Strongly Disagree" = 5)
s2mean <- mean(s2)</pre>
s2sd \leftarrow sd(s2)
survey $`People who are important to me recommend using the food delivery app`<-s2
survey$`Social Influence 2`<-survey$`People who are important to me recommend using the food delivery a
survey People who influence my dining choices think that I should use the app <-s2
survey $`People who are important to me recommend using the food delivery app`<-s2
s3 <-survey$`Using the app helps me to put more time to other chores`
s3 \leftarrow recode(s3,
              "Strongly Agree" = 1,
              "Agree" = 2,
              "Neutral" = 3,
              "Disagree" = 4,
              "Strongly agree" = 5)
s3mean <- mean(s3)
s3sd \leftarrow sd(s3)
survey$`Using the app helps me to put more time to other chores`<-s3</pre>
survey$`Social Influence3`<-survey$`Using the app helps me to put more time to other chores`</pre>
s4 <- survey$ In general, the food delivery app organization has supported its use`
s4 <- recode(s4,
              "Strongly Agree" = 1,
              "Agree" = 2,
              "Neutral" = 3,
              "Disagree" = 4,
              "Strongly Disagree" = 5)
s4mean <- mean(s4)
s4sd \leftarrow sd(s4)
survey$ In general, the food delivery app organization has supported its use <-s4
survey$ Social Influence 4 <- survey$ In general, the food delivery app organization has supported its u
f1 <- survey$`I have the resources necessary to use the food delivery app`
f1 <- recode(f1,
              "Strongly Agreee" = 1,
              "Agree" = 2,
```

```
"Neutral" = 3,
               "Disagree" = 4,
               "Strongly Disagree" = 5)
f1mean <- mean(f1)</pre>
f1sd \leftarrow sd(f1)
survey$`I have the resources necessary to use the food delivery app`<-f1
survey$`Facilitating Conditions 1`<-survey$`I have the resources necessary to use the food delivery app
f2 <- survey$`I have the knowledge required to use the app effectively`
f2 <- recode(f2,
               "Strongly Agree" = 1,
               "Agree" = 2,
               "Neutral" = 3,
               "Disagree" = 4,
               "Strongly Disagree" = 5)
f2mean <- mean(f2)
f2sd \leftarrow sd(f2)
survey$`I have the knowledge required to use the app effectively`<-f2
survey$`Facilitating Conditions 2`<-survey$`I have the knowledge required to use the app effectively`</pre>
f3 <- survey The app is compatible with other device I use for ordering food
f3 <- recode(f3,
               "Strongly Agree" = 1,
               "Agree" = 2,
               "Neutral" = 3,
               "Disagree" = 4,
               "Strongly Disagree" = 5)
f3mean <- mean(f3)
f3sd \leftarrow sd(f3)
survey$ The app is compatible with other device I use for ordering food <-f3
survey $\ Facilitating Conditions 3\ <-survey \$\ The app is compatible with other device I use for ordering
Performance <- data.frame(
  Variable = c("p1","p2","p3","p4"),
 Mean = c(p1mean, p2mean, p3mean, p4mean),
  SD = c(p1sd, p2sd, p3sd, p4sd)
PerformanceTotalMean <- mean (Performance $Mean)
PerformanceTotalSD<-mean(Performance$SD)
Effort <- data.frame(</pre>
  Variable = c("e1","e2","e3","e4"),
  Mean = c(elmean, elmean, elmean, elmean),
  SD = c(e1sd, e2sd, e3sd, e4sd)
EffortTotalMean<-mean(Effort$Mean)</pre>
EffortTotalSD<-mean(Effort$SD)</pre>
Social <- data.frame(</pre>
```

```
Variable = c("s1","s2","s3","s4"),
  Mean = c(s1mean, s2mean, s3mean, s4mean),
  SD = c(s1sd, s2sd, s3sd, s4sd)
SocialTotalMean <-mean (Social $Mean)
SocialTotalSD<-mean(Social$SD)</pre>
Facilitate <- data.frame(</pre>
  Variable = c("f1", "f2", "f3"),
  Mean = c(f1mean, f2mean, f3mean),
  SD = c(f1sd, f2sd, f3sd)
FacilitateTotalMean <-mean (Facilitate$Mean)
FacilitateTotalSD<-mean(Facilitate$SD)
Overall <- data.frame(</pre>
  Variable = c("PE","EE","SI","FC"),
  Description=c("Performance Expectancy", "Effort Expectancy", "Social Influence", "Facilitating Condition
  TOTAL_Mean = c(PerformanceTotalMean, EffortTotalMean, SocialTotalMean, FacilitateTotalMean),
  TOTAL_SD = c(PerformanceTotalSD, EffortTotalSD, SocialTotalSD , FacilitateTotalSD)
)
Overall
     Variable
                          Description TOTAL_Mean TOTAL_SD
## 1
           PE Performance Expectancy
                                         1.878571 0.6737912
## 2
                    Effort Expectancy
                                         1.846429 0.7116960
           EE
## 3
                     Social Influence
                                         2.017857 0.8217001
           SI
           FC Facilitating Conditions
                                        1.819048 0.7390437
survsumtable <- data.frame(</pre>
  Variable = c("p1", "p2", "p3", "p4", "e1", "e2", "e3", "e4", "s1", "s2", "s3", "s4", "f1", "f2", "f3"), Description=
 Mean = c(p1mean, p2mean, p3mean, p4mean, e1mean, e2mean, e3mean, e4mean, s1mean, s2mean, s3mean, s4me
  SD = c(p1sd, p2sd, p3sd, p4sd, e1sd, e2sd, e3sd, e4sd, s1sd, s2sd, s3sd, s4sd, f1sd, f2sd, f3sd)
library(openxlsx)
survsumtable
                            Description
##
      Variable
                                            Mean
## 1
            p1 Performance Expectancy 1.685714 0.5784251
## 2
            p2 Performance Expectancy 1.757143 0.6688886
## 3
            p3 Performance Expectancy 1.857143 0.7078384
## 4
            p4 Performance Expectancy 2.214286 0.7400129
## 5
            e1
                      Effort Expectancy 1.842857 0.6051881
## 6
            e2
                     Effort Expectancy 2.014286 0.8251984
## 7
            e3
                     Effort Expectancy 1.757143 0.7109030
## 8
                     Effort Expectancy 1.771429 0.7054946
            e4
## 9
            s1
                      Social Influence 2.214286 0.8828947
                      Social Influence 2.100000 0.8538065
## 10
            s2
## 11
            s3
                      Social Influence 1.885714 0.7902092
## 12
            s4
                      Social Influence 1.871429 0.7598899
## 13
            f1 Facilitating Conditions 1.871429 0.7787286
## 14
            f2 Facilitating Conditions 1.685714 0.7130839
## 15
            f3 Facilitating Conditions 1.900000 0.7253185
```

```
write.xlsx(survsumtable, "survey_mean_sd_table.xlsx")
write.csv(survey, "survey_added_factors.csv")
write.xlsx(Overall, "survey_total_mean&sd.xlsx")
```

Demographics

Age of the people who answer the surveys

```
library(ggplot2)
library(dplyr)

age_counts <- survey %>%
    count(`Age:`) %>%
    arrange(desc(`Age:`))

ggplot(age_counts, aes(x = "", y = n, fill = factor(`Age:`))) +
    geom_bar(width = 1, stat = "identity") +
    coord_polar(theta = "y") +
    labs(title = "Pie Chart of Age Distribution",
        fill = "Age",
        x = NULL,
        y = NULL) +
    theme_minimal() +
    scale_fill_manual(values = rainbow(nrow(age_counts)))
```

Pie Chart of Age Distribution

Most of the respondent are age between 19 and 20

```
categorize_age <- function(age) {</pre>
  case when(
    age >= 15 & age <= 18 ~ "15 - 18",
    age >= 19 & age <= 21 ~ "19 - 21",
    age >= 22 & age <= 24 ~ "22 - 24",
    age >= 25 & age <= 29 ~ "25 - 29",
    age >= 30 ~ "30 above",
    TRUE ~ NA_character_
 )
}
age_vector<-as.numeric(survey$`Age:`)</pre>
age_categories <- sapply(age_vector, categorize_age)</pre>
age_dataframe <- data.frame(OriginalAge = age_vector, CategorizedAge = age_categories)</pre>
age_counts <- table(age_dataframe$CategorizedAge)</pre>
age_counts_df <- as.data.frame(age_counts)</pre>
names(age_counts_df) <- c("AgeGroup", "Frequency")</pre>
age_colors <- c("15 - 18" = "maroon", "19 - 21" = "skyblue", "22 - 24" = "green", "25 - 29" = "gray", "
ggplot(age_counts_df, aes(x = "", y = Frequency, fill = AgeGroup)) +
 geom_bar(stat = "identity", width = 1) +
  coord_polar("y", start=0) +
  scale_fill_manual(values = age_colors) +
 labs(title = "Age Distribution",
      fill = "Age Group") +
 theme_void()
```

Age Distribution

Educational Level of the people who answer the surveys

```
EducationalLevel<- survey %>%
  group_by(`Education Level`) %>%
  summarise(count=n())

colors <- c("maroon", "pink")
pie(EducationalLevel$count, labels = EducationalLevel$count, col = colors, main = "School Level of the legend("bottomleft", legend = EducationalLevel$`Education Level`, fill = colors, title = "School Level"</pre>
```

School Level of the Surveyed People

Most of the respondents are college students

Gender of the people who answer the surveys

```
Gender<- survey %>%
  group_by(survey$`Sex:`) %>%
  summarise(count=n())

colors <- c("pink", "skyblue")
pie(Gender$count, labels = Gender$count, col = colors, main = "Genders of the Surveyed People",)
legend("bottomleft", legend = Gender$`survey$\`Sex:\``, fill = colors, title = "Genders")</pre>
```

Genders of the Surveyed People

There are more female respondents than male but it has a little difference. Satisfaction Level Per Age

Satisfaction per Age Group

Most of the respondents per age group are satisfied but as you can see the age group 25-29 are having equal number of satisfaction level which is satisfied and average

scaling of the people who uses the delivery app

Quality Rating Distribution of Received Food

The respondent are likely rate the quality of food 8 out 10 and have a count of more than 20 persons and the gap are not that far for those respondents who rate it a 10 out 10 and 9 out of 10

Customer delivery arrived on time

```
arrival<- survey %>%
group_by(survey$`Did your order arrive within the estimated delivery time?`) %>%
summarise(count=n())
```

```
colors <- c("pink","skyblue")
pie(Gender$count, labels = arrival$count, col = colors, main = "Surveyed People Arrived on time order",
legend("bottomleft", legend = arrival$^survey$\^Did your order arrive within the estimated delivery time.</pre>
```

Surveyed People Arrived on time order

Most of the respondent's orders arrived on time.

p1

```
p1<-survey$`I would find the food delivery app useful for my needs`
p1s <- data.frame(p1)
ggplot(p1s, aes(x = p1)) +
   geom_bar(fill = "blue", alpha = 0.5) +
   labs(title = "Usefulness of Food Delivery App",
        x = "Scale Values",
        y = "Count") +
   scale_fill_hue(name = "Scale Value")</pre>
```

Usefulness of Food Delivery App

Most of the respondents Agree in the PE1

$\mathbf{p2}$

```
p2<-survey$`Using the app enables me to order food more quickly and efficiently`
p2s <- data.frame(p2)
ggplot(p2s, aes(x = p2)) +
   geom_bar(fill = "blue", alpha = 0.5) +
   labs(title = "Efficiency in Food Ordering Through App Usage",
        x = "Scale Values",
        y = "Count") +
   scale_fill_hue(name = "Scale Value")</pre>
```

Efficiency in Food Ordering Through App Usage

Most of the respondents Agree in the PE2

p3

```
p3<-survey$`Using the app increases my satisfaction with the food delivery process`
p3s <- data.frame(p3)
ggplot(p3s, aes(x = p3)) +
   geom_bar(fill = "blue", alpha = 0.5) +
   labs(title = "Impact of App Usage on Satisfaction with Food Delivery",
        x = "Scale Values",
        y = "Count") +
   scale_fill_hue(name = "Scale Value")</pre>
```

Impact of App Usage on Satisfaction with Food Delivery

Most of the respondents Agree in the PE3

p4

```
p4<-survey$`If I use the app, I believe it will enhance my overall dining experience`
p4s <- data.frame(p4)
ggplot(p4s, aes(x = p4)) +
   geom_bar(fill = "blue", alpha = 0.5) +
   labs(title = "Expectation of Enhanced Dining Experience Through App Usage",
        x = "Scale Values",
        y = "Count") +
   scale_fill_hue(name = "Scale Value")</pre>
```

Expectation of Enhanced Dining Experience Through App Usage

Most of the respondents Agree in the PE4

```
e1<-survey$`My interaction with the app would be clear and understandable`
e1s <- data.frame(e1)
ggplot(e1s, aes(x = e1)) +
   geom_bar(fill = "blue", alpha = 0.5) +
   labs(title = "Perception of Clarity and Understandability in Food Delivery App Interaction",
        x = "Scale Values",
        y = "Count") +
   scale_fill_hue(name = "Scale Value")</pre>
```

Perception of Clarity and Understandability in Food Delivery App Interaction

Most of the respondents Agree in the EE1

Ease of Becoming Proficient with Food Delivery App

Most of the respondents Agree in the EE2

Easy App Navigation and Usage

Most of the respondents Agree in the EE3

Ease of Learning to Operate Food Delivery App

Most of the respondents Agree in the EE4

s1

```
s1<-survey$`People who influence my dining choices think that I should use the app`
s1s <- data.frame(s1)
ggplot(s1s, aes(x = s1)) +
   geom_bar(fill = "blue", alpha = 0.5) +
   labs(title = "Impact of Influential Dining Recommendations on App Usage",
        x = "Scale Values",
        y = "Count") +
   scale_fill_hue(name = "Scale Value")</pre>
```

Impact of Influential Dining Recommendations on App Usage

Most of the respondents Agree in the SI1

```
\#\#s2
```

Influence of Recommendations on Food Delivery App Usage

Most of the respondents Agree in the SI2

##s3

Effect of App Usage on Allocating Time to Other Chores

Most of the respondents Agree in the SI3

```
\#\#s4
```

Perception of Food Delivery App Organization Support

Most of the respondents Agree in the SI4

f1

Availability of Resources for Food Delivery App Usage

Most of the respondents Agree in the FC1

f2

User's App Knowledge and Familiarity

Most of the respondents Agree in the FC2

f3

```
f3<-survey$`The app is compatible with other device I use for ordering food`
f3s <- data.frame(f3)

ggplot(f3s, aes(x = f3)) +
   geom_bar(fill = "blue", alpha = 0.5) +
   labs(title = "Compatibility of the App with User's Devices for Ordering Food",
        x = "Scale Values",
        y = "Count") +
   scale_fill_hue(name = "Scale Value")</pre>
```


Most of the respondents Agree in the FC3