$Praktikum\ 1: Stellen/Transitionsnetze$

André Harms, Oliver Steenbuck

06.06.2012

Inhaltsverzeichnis

1	Aufgabe 1 1.1 Punkt 1														2										
	1.1	Punkt 1 .																							2
	1.2	Punkt 2 .																							3
	1.3	Punkt 4 .																							4
	1.4	Punkt 7 .																							4
	1.5	Punkt 11																							5
	1.6	Punkt 16																							5
	1.7	Punkt 22																							5
	1.8	Punkt 29																							5
	1.9	Punkt 3 .																							5
	1.10	Punkt 5 .																							6
	1.11	Punkt 8 .																							6
	1.12	Punkt 12																							6
	1.13	Punkt 17																							7
	1.14	Punkt 23																							7
	1.15	Punkt 30																							7
	1.16	Punkt 6 .																							7
	1.17	Punkt 9 .																							8
	1.18	Punkt 13																							8
	1.19	Punkt 18																							8
	1.20	Punkt 24																							8
	1.21	Punkt 31																							9
	1.22	Punkt 10																							9
	1.23	Punkt 14																							9
	1.24	Punkt 19																							9
	1.25	Punkt 25																							9
	1.26	Punkt 32																							10

Abbildungsverzeichnis

1		3
2		3
3	Lebendig, reversibel	3
4	Nicht Lebendig, nicht reversibel	3
5		3
6	Nicht Lebendig, Beschränkt	3
7	Lebendig, nicht Beschränkt	3
8	Nicht Lebendig, nicht Beschränkt	4
9		4
10	Nicht Invariant, Nicht Lebendig	4
11	Invariant, Lebendig	4
12	Invariant, Nicht Lebendig	4
13	,	5
14	Nicht Beschränkt, Nicht Reversibel	5
15	Beschränkt, Reversibel	5
16		6
17	Nicht Invariant, Reversibel	6
18	Nicht Invariant, Nicht Reversibel	6
19	,	6
20	Invariant, Nicht Reversibel	6
21	,	7
22		7
23	,	7
24		7
25		8
26	Nicht Invariant, Nicht Beschränkt	8
27	Invariant, Beschränkt	8
28	Invariant, Nicht Beschränkt	8
29	KG 1 Knoten, Beschränkt	9
30	KG 1 Knoten, Nicht Beschränkt	9
31	KG 2 Knoten, Beschränkt	9
32	KG 2 Knoten, Nicht Beschränkt	9

1 Aufgabe 1

1.1 Punkt 1

Kein Zusammenhang

Generiert am: 1. Juni 2012

 $Oliver\ Steenbuck,\ Andr\'e\ Harms$

Abbildung 1: Lebendig, nicht reversibel

Abbildung 2: Nicht Lebendig, reversibel

Abbildung 3: Lebendig, reversibel

Abbildung 4: Nicht Lebendig, nicht reversibel

1.2 Punkt 2

Kein Zusammenhang

Abbildung 5: Lebendig, Beschränkt

Abbildung 6: Nicht Lebendig, Beschränkt

Abbildung 7: Lebendig, nicht Beschränkt

Abbildung 8: Nicht Lebendig, nicht Beschränkt

1.3 Punkt 4

Sei Erreichbarkeit definiert als die Erreichbarkeit aller Markierungen in N von N_{M0} also $\forall M \in EG|M$ ist Erreichbar von N_{M0} dann gilt Lebendigkeit \Longrightarrow Erreichbarkeit umgekehrt gilt dies nicht da für Erreichbarkeit nur der Hinweg gefordert ist.

1.4 Punkt 7

Kein Zusammenhang zwischen positiven Invarianten und Lebendigkeit.

Abbildung 9: NichtInvariant, Lebendig

Abbildung 10: Nicht Invariant, Nicht Lebendig

Abbildung 11: Invariant, Lebendig

Abbildung 12: Invariant, Nicht Lebendig

Generiert am: 1. Juni 2012

Oliver Steenbuck, André Harms

1.5 Punkt 11

Echt positive (alle Elemente positiv) T
 Invarianten \iff Lebendigkeit

1.6 Punkt 16

Sei $W_{all}(k)$ ein Weg der alle Knoten eines Graphen beinhaltet und bei k startet und endet. So gilt $\forall u \in UG | \exists W_{all}(u) \iff Lebendigkeit$

1.7 Punkt 22

 $|KG| = 1 \iff Lebendigkeit$

1.8 Punkt 29

 $Verklemmung \Longrightarrow nicht Lebendig und Lebendig \Longrightarrow keine Verklemmung.$

1.9 Punkt 3

Kein Zusammenhang zwischen Beschränktheit und Reversibilität.

Abbildung 13: Nicht Beschränkt, Reversibel

Abbildung 14: Nicht Beschränkt, Nicht Reversibel

Abbildung 15: Beschränkt, Reversibel

Abbildung 16: Beschränkt, Nicht Reversibel

1.10 Punkt 5

Reversibilität ist ein Spezialfall von Erreichbarkeit nämlich: $\forall m \in EG|M_0$ ist erreichbar

1.11 Punkt 8

Kein Zusammenhang zwischen P Invarianten und Reversibilität.

Abbildung 17: Nicht Invariant, Reversibel

Abbildung 18: Nicht Invariant, Nicht Reversibel

Abbildung 19: Invariant, Reversibel

Abbildung 20: Invariant, Nicht Reversibel

1.12 Punkt 12

Echt positive (alle Elemente positiv) T
 Invarianten \iff Reversibilität

Generiert am: 1. Juni 2012

Oliver Steenbuck, André Harms

1.13 Punkt 17

Sei $W_{all}(k)$ ein Weg der alle Knoten eines Graphen beinhaltet und bei k startet und endet. So gilt $\forall u \in UG | \exists W_{all}(u) \iff Reversibilit \ddot{a}t$

1.14 Punkt 23

 $|KG| = 1 \iff Reversibilit "at" umgekehrt gilt dies nicht.$

1.15 Punkt 30

 $Verklemmung \Longrightarrow nicht Reversibel und Reversibel \Longrightarrow keine Verklemmung.$

1.16 Punkt 6

Kein Zusammenhang zwischen Erreichbarkeit und Beschränktheit.

Abbildung 21: Nicht Erreichbar, Beschränkt

Abbildung 22: Nicht Erreichbar, Nicht Beschränkt

Abbildung 23: Erreichbar, Beschränkt

Abbildung 24: Erreichbar, Nicht Beschränkt

1.17 Punkt 9

Echt positive (alle Elemente positiv) P Invarianten \iff Beschränktheit.

1.18 Punkt 13

Es gibt keinen Zusammenhang zwischen echt positiven T Invarianten und der Beschränktheit eines Netzes.

Abbildung 25: Nicht Invariant, Beschränkt

Abbildung 26: Nicht Invariant, Nicht Beschränkt

Abbildung 27: Invariant, Beschränkt

Abbildung 28: Invariant, Nicht Beschränkt

1.19 Punkt 18

Überdeckungsgraph ohne $\omega \iff \operatorname{Beschränktheit}$

1.20 Punkt 24

Es besteht kein Zusammenhang zwischen der Größe des Kondensationsgraphen und der Beschränkheit des Netzes.

Generiert am: 1. Juni 2012

Oliver Steenbuck, André Harms

8 / 10

Abbildung 29: KG 1 Knoten, Beschränkt

Abbildung 30: KG 1 Knoten, Nicht Beschränkt

Abbildung 31: KG 2 Knoten, Beschränkt

Abbildung 32: KG 2 Knoten, Nicht Beschränkt

1.21 Punkt 31

 $Verklemmung \Longrightarrow Beschränktheit$

1.22 Punkt 10

Wir sehen keinen Zusammenhang, die Konzepte wirken komplett losgelöst voneinander.

1.23 Punkt 14

Positive T Invarianten \Longrightarrow Erreichbarkeit der positiven auftretenden Transisitionen.

1.24 Punkt 19

Ein Überdeckungsgraph ist eine mögliche endliche graphische Abbildung der Erreichbarkeitseigenschaften eines Netzes.

1.25 Punkt 25

 $|KG|=1 \Longleftrightarrow \forall m \in EG | \mathbf{m}$ ist Erreichbar

Generiert am: 1. Juni 2012

Oliver Steenbuck, André Harms

9 / 10

1.26 Punkt 32

 $\forall t \in T \ \neg \exists m \in M | \ {\bf t} \ {\rm ist} \ {\rm M\text{-}erreichbar} \ {\rm aus} \ {\rm m} \ \Longrightarrow {\rm Verklemmung}$

Generiert am: 1. Juni 2012

 $Oliver\ Steenbuck,\ Andr\'e\ Harms$