Cálculo 1

Lista de Aplicações – Semana 02

Temas abordados: Limites no ponto (conceito intuitivo e formal)

Seções do livro: 2.1 a 2.4

- 1) Suponha que um comprimido tenha a forma de um cilindro circular reto de raio da base igual a 4 mm, altura h > 0, e deva ter volume igual a 20 mm³. Como o processo de fabricação está sujeito a erros, a altura h deve ser razoavelmente precisa, uma vez que dela depende a dosagem de medicamento que é ingerida pelo paciente.
 - (a) Determine, em função de h, o volume V(h) do comprimido.

- (b) Determine o valor h_0 para que o volume do comprimido seja igual a $V(h_0) = V_0 = 20 \text{ mm}^3$.
 - (c) Determine, em mm, o erro máximo tolerado na altura h de maneira que |V(h) 20| seja inferior a 1/10.
- (d) Dado $\varepsilon > 0$, encontre $\delta > 0$ tal que o erro |V(h) 20| no volume do comprimido seja menor do que ε sempre que o erro na altura $|h h_0|$ seja menor do que δ .
- 2) Uma companhia de turismo cobra uma taxa de serviço fixa de R\$50,00 para pacotes turísticos de valor menor ou igual a R\$1.000,00. Para pacotes de valor superior a R\$1.000,00 e menor ou igual a R\$5.000,00, a companhia cobra uma taxa fixa de R\$30,00 acrescida de 2% do valor do pacote. Para os demais pacotes, a taxa fixa é de R\$c, acrescida de 1% do valor do pacote. Indicando por T(x) o valor total da taxa de serviço cobrada por um pacote turístico no valor de x reais, julgue os itens abaixo, justificando suas respostas.
 - (a) O gráfico da função T(x) contém o ponto (3000, 90).
 - (b) Para c = 100, não é possível encontrar um pacote turístico de valor R\$ x_0 de modo que se tenha $T(x_0) = 140$.
 - (c) $\lim_{x\to 1000^+} T(x) = 50$.
 - (d) Não existe o limite $\lim_{x\to 1000} T(x)$.
 - (e) $\lim_{x\to 5000^+} T(x)$ não depende de c.
 - (f) c = 80 se, e somente se, $\lim_{x\to 5000} T(x) = T(5000)$.

- 3) Um gás é mantido a uma temperatura constante em um pistão. À medida que o pistão é comprimido, o volume do gás decresce com a função V(P) = 200/P litros, até atingir a pressão crítica de 100 torr quando ele se liquidifica, havendo nesse momento uma variação brusca de volume. Em seguida, o seu volume passa a ser dado pela função V(P) = -0.01P + 2 até que seja atingida a nova pressão crítica de 150 torr, a partir da qual o volume permanece constante e igual a 0,5 litros.
 - (a) Determine a expressão de V(P).
 - (b) Calcule os limites laterais $\lim_{P\to P_0^-}V(P)$ e $\lim_{P\to P_0^+}V(P)$ para $P_0=100$. Em seguida, decida sobre a existência do limite $\lim_{P\to P_0}V(P)$
 - (c) Repita o item acima para $P_0 = 150$.
 - (d) O que acontece com o volume V(P) para valores P próximos de zero?
- 4) Considere o círculo unitário da figura abaixo, em que α denota um ângulo no intervalo $(0, \pi/2)$. O triângulo Δ_{OAB} , cuja altura está representada por h, está contido no setor circular S_{OAB} , que, por sua vez, está contido no triângulo Δ_{OCB} de altura H.
 - (a) Determine, em termos de h, α e H, as expressões das áreas do triângulo Δ_{OAB} , do setor circular S_{OAB} e do triângulo Δ_{OCB} . Em seguida, use a figura para comparar tais grandezas.
 - (b) Determine, com ajuda de funções trigonométricas convenientes, uma equação que relaciona α e h; e outra que relaciona α e H.
 - (c) Use os itens (a) e (b) para mostrar que se $\alpha \in (0,\pi/2)$, então vale $0<\sin\alpha<\alpha<\tan\alpha$.
 - (d) Use o item (c) para mostrar que $\lim_{\alpha\to 0^+} \operatorname{sen} \alpha = 0$.
 - (e) Usando o mesmo método para ângulos pertencentes ao intervalo $(-\pi/2, 0)$, mostre que $\lim_{\alpha \to 0^-} \operatorname{sen} \alpha = 0$. Em seguida, conclua que $\lim_{\alpha \to 0} \operatorname{sen} \alpha = 0$.

 α

0

 $\overline{OA} = \overline{OB} = 1$

H

B

- 5) Ainda com respeito à figura do exercício acima, vamos mostrar o Limite Trigonométrico Fundamental.
 - (a) Sabendo que $\cos\alpha>0$ sempre que $\alpha\in(-\pi/2,\pi/2)$ faça $\cos\alpha=\sqrt{1-(\sin\alpha)^2}$ e conclua que $\lim_{\alpha\to 0}\cos\alpha=1$.
 - (b) Inverta a desigualdade sen $\alpha < \alpha < \operatorname{tg} \alpha$, válida para $\alpha \in (0, \pi/2)$.
 - (c) Lembrando que se $\alpha \in (0, \pi/2)$ temos sen $\alpha > 0$ use o item acima para mostrar que, nesse intervalo, vale $\cos \alpha < \frac{\sin \alpha}{\alpha} < 1$.
 - (d) Mostre que $\lim_{\alpha \to 0^+} \frac{\sin \alpha}{\alpha} = 1$.
 - (e) Use um procedimento análogo para ângulos pertencentes ao intervalo $(-\pi/2,0)$ e mostre que $\lim_{\alpha\to 0^-}\frac{\sin\alpha}{\alpha}=1$. Em seguida, conclua que $\lim_{\alpha\to 0}\frac{\sin\alpha}{\alpha}=1$.

Gabarito

1. (a)
$$V(h) = 4^2 \pi h$$

(b)
$$h_0 = 20/(4^2\pi)$$

(c)
$$1/(10 \times 4^2\pi)$$

(d)
$$\delta \leq \varepsilon/(4^2\pi)$$

$$V(P) = \begin{cases} 200/P, & \text{se } 0 < P \le 100, \\ -0.01P + 2, & \text{se } 100 < P \le 150, \\ 0.5, & \text{se } 150 < P. \end{cases}$$

(b)
$$\lim_{P\to 100^-} V(P) = 2$$
, $\lim_{P\to 100^+} V(P) = 1$. Não existe o limite.

(c)
$$\lim_{P\to 150^-} V(P)=1/2$$
, $\lim_{P\to 150^+} V(P)=1/2$. O limite existe e vale $1/2$

4. (a) área
$$\Delta_{OAB}\,=h/2;$$
área $S_{OAB}\,=\alpha/2$; área $\Delta_{OBC}\,=H/2$

(b)
$$h = \operatorname{sen} \alpha$$
; $H = \operatorname{tg} \alpha$

(b)
$$\frac{\cos \alpha}{\sin \alpha} < \frac{1}{\alpha} < \frac{1}{\sin \alpha}$$