

Economics of Cow Dung

a commercialized VC with a huge Green Jobs potential

Green Jobs in Asia Regional Conference, 29-31 August 2012 Surabaya, Indonesia

Hideki Kagohashi, Enterprise Development Specialist, ILO DWT for South Asia

Presentation structure

- 1. Why the number matters
- 2. Why creating 2 million GJs is possible
- 3. How the analysis was conducted
- 4. Why energy policy is an employment policy
- 5. Why 2 million GJs are not yet there
- 6. What's next

1. Why the number matters

- 2. Why creating 2 million GJs is possible
- 3. How the analysis was conducted
- 4. Why energy policy is an employment policy
- 5. Why 2 million GJs are not yet there
- 6. What's next

Highlights of the ILO study (forthcoming)

The dung economy in India supports

- Presently: Approx. 1.5 million jobs
 Many not decent jobs
- Potentially: 2.0 million additional Green (and decent) Jobs can be created
 - if right policy choices are made
 - if transformation is managed with care

... larger than total RE jobs of any single country/union

	Global	China	India	Brazil	USA	EU?	Germany	Spain	Others
TECHNOLOGIES				Th	Thousand jobs				
Biomass ¹	750	266	58		152	273	51	14	28
Biofuels	1,500			8896	47-160	151	23	2	1949
Biogas	230	90	85			53	51	1.4	
Geothermal ¹	90				10	53	14	0.6	
Hydropower (Small ²)	40		12		8	16	7	1.6	18
Solar PV	8204	3005	112		82	268	111	28	6010
CSP	40				9		2	24	
Solar Heating/ Cooling	900	800	41		9	50	12	10	18
Wind Power	6704	150	42	14	75	253	101	55	3311
Total ³	5,000	1,606	350	889	392-505	1,117	372	137	291

... comparable to the size of large public employment prog

- South Africa's Expanded Public Works
 Programme (EPWP) has created <u>one million</u>
 <u>work opportunities</u> over five years. EPWP
 Phase II (2009-2014) sought to <u>create two</u>
 <u>million full time equivalent jobs</u>.
- To respond to the financial crisis of early 2000, Argentina implemented the Plan Jefes y Jefas de Hogar (Jefes), <u>providing job</u> <u>opportunities to 2 million unemployed heads</u> of household in 2003.
- → But jobs created are temporal.

- 1. Why the number matters
- 2. Why creating 2 million GJs is possible
- How the analysis was conducted
- 4. Why energy policy is an employment policy
- 5. Why 2 million GJs are not yet there
- 6. What's next

A buffalo produces 3 l oil/day

Rising oil price reveals dung value

Commercialized Dung Value Chain

Dung cake making

Dung clearn up and collection

Lease his land to a middleman

Hire labour

Contract with dairy farms

Dung Contractor

Sell to brick kilns

Jabalpur <u>urban</u> dairy cluster location

Individual vs. contractor model

Contractors lease their own land or get a plot of dairy farm for dung cake making

Individuals without extra plots of land use road side for dung cake making

1/3 of dairy jobs are in the dung sector

Employment in milk & dung sector in Jabalpur

Composition of jobs in the dairy sector

Important facts & assumptions in calculating current employment

- Commercially usable dung comes from (confined) animal feeding operations (AFO and CFAO) in the urban/peri-urban dairy clusters. 100% of buffalo population and 25% of cattle and mixed breed fall under this category.
- Dung of a Cow is 10 kg/day, a Calf 5 kg/day and a Buffalo 15 kg/day.
- 50 % of dung not used in a productive way.

National dimension of present employment in the dung sector

Type of Jobs in dung sector	Estimation based on Jabalpur cluster
Cleaners and collectors	950,000
	(1.9 m half time jobs)
Dung cake makers	400,000
Compost makers	41,000
Transport & management	37,000
Small biogas construction	85,000
Total	1,513 million

Suggested changes in the dung VC

100% dung clean up and collection

Formalization of workers;
OSH guidelines

Analysis & dialogue to adjust energy pricing policies

Interventions

Growing market of organic farming

Employment impact of full productive use of dung

Potential Green Jobs creation	Estimation
Dung collectors and cleaners for additional 660,000 tons	1.24 million
Transport & dung management in urban clusters for additional 660,000 tons	55,000
Electricity plants of 1MW x 5000 incl. fertilizer production from slurry	950,000
Construction and maintenance of additional 10 million small biogas plants	140,000
Total	2.385 million
Jobs lost in dung cake making	-400,000
Total net employment gain	1.985 million

RE may not be labour intensive but part of the VC can be

Employment per ton of fresh dung in different dung activities

Biogas + compost will make more value than dung cake

Value of 1 kg fresh dung in final products (cake, biogas, electricity & compost)

- 1. Why the number matters
- 2. Why creating 2 million GJs is possible
- 3. How the analysis was conducted
- 4. Why energy policy is an employment policy
- 5. Why 2 million GJs are not yet there
- 6. What's next

Summary of how we did it

- Map VC and system
- 2. Count jobs and extrapolate
- 3. Identify bottlenecks and ways to address them

IMPORTANT: RE market is policy- and subsidydriven. "Commercialization" approach for massive replication of key technologies (to boost GJs) would rely on the level playing field and political decisions.

ILO's VCD process made green

- Structured participatory diagnosis and action planning
- VC steering committee by local stakeholders
- Put the circular/recycling channel and policy elements as part of the analysis

Value chain map w/ feedback loops

- 1. Why the number matters
- 2. Why creating 2 million GJs is possible
- How the analysis was conducted
- 4. Why energy policy is an employment policy
- 5. Why 2 million GJs are not yet there
- 6. What's next

The Large-scale biogas digesters

- Expected to absorb 53% of the dung in the periurban area (1,500 MT per day)
 - Contributes to reducing pollution, but not completely
 - Other measures (dung capture from river, dairy zoning)
- Slurry from the biogas digester can be used for vermin compost
- Not commercially feasible even with the subsidy
 - PPA rate is temporarily set low (Rs.3.36/kwh) while PPA rate for the solar technology is 5-6 times higher (Rs.14-17/kwh).
 - Power shed prevents from meeting the CDM target

118 countries have RE policy targets

92 countries enacted feed-in policies

Year	Cumulative #	Countries/States/Provinces Added That Year	
1978	1	United States	
1990	2	Germany	
1991	3	Switzerland	
1992	4	Italy	
1993	6	Denmark; India	
1994	9	Luxembourg; Spain; Greece	
1997	10	Sri Lanka	
1998	11	Sweden	
1999	14	Portugal; Norway; Slovenia	
2000	14	-	
2001	17	Armenia; France; Latvia	
2002	23	Algeria; Austria; Brazil; Czech Republic; Indonesia; Lithuania	
2003	29	Cyprus; Estonia; Hungary; South Korea; Slovak Republic; Maharashtra (India)	
2004	34	Israel; Nicaragua; Prince Edward Island (Canada); Andhra Pradesh and Madhya Pradesh (India)	
2005	41	Karnataka, Uttaranchal, and Uttar Pradesh (India); China; Turkey; Ecuador; Ireland	
2006	46	Ontario (Canada); Kerala (India); Argentina; Pakistan; Thailand	
2007	56	South Australia (Australia); Albania; Bulgaria; Croatia; Dominican Republic; Finland; Macedonia; Moldova; Mongolia; Uganda	
2008	69	Queensland (Australia); California (USA); Chhattisgarh, Gujarat, Haryana, Punjab, Rajasthan, Tamil Nadu, and West Bengal (India); Kenya; the Philippines; Tanzania; Ukraine	
2009	80	Australian Capital Territory, New South Wales, and Victoria (Australia); Hawaii, Oregon, and Vermont (USA); Japan; Kazakhstan; Serbia; South Africa; Taiwan	
2010	84	Bosnia and Herzegovina; Malaysia; Malta; United Kingdom	
2011	88	Rhode Island (USA); Nova Scotia (Canada); Netherlands; Syria	
2012 (early)	90	Palestinian Territories; Rwanda	
	92	Total Existing	

Electrification advancing but unevenly

	Electrification Rate
COUNTRY	(rural, urban and/or national)
All Developing	
Countries	75.0%
Africa	42.0%
North Africa	99.0%
Sub-Saharan Africa	30.0%
Developing Asia ¹	81.0%
China and East Asia	91.0%
South Asia	68.0%
Latin America	93.0%
Middle East	90.0%

- •China >99.5%
- Philippines 84%
- •Sri Lanka 76.6%
- •India 75%
- •Indonesia 65.1%
- •Rural Bangladesh 63.4%
- Pakistan 62%

- Afghanistan 16%
- Myanmar 13%
- •Nepal 10%
- •Rural Micronesia 4%

Policy feedback

- Provides feedback for the discussion at the GJ task force
 - Promote commercial replication of biogas plants
 - PPA rate comparing total benefits and mapping the commercialization scenario
 - Balancing jobs and subsidized energy for the poor
 - ALMP to help dung workers to move to the biogas and compost sector
 - Formalize workers and make jobs decent

- 1. Why the number matters
- 2. Why creating 2 million GJs is possible
- 3. How the analysis was conducted
- 4. Why energy policy is an employment policy
- 5. Why 2 million GJs are not yet there
- What's next

Brazil – biogas feasible

- Biogas generated electricity is cheaper than the grid price (less subsidized), so large farms generate electricity for selfuse.
 - Grid price (USD 18 cents /kwh) + demand charge for transformer + taxes +fees = up to USD 40 cents /kwh
 - Biogas generation cost: USD 17 cents /kwh

Nepal & Pakistan – biogas feasible

- Grid is unreliable. Power availability hour is low (up to 16 hours per day power cut in dry season), which forces many people to use diesel generators.
- Biogas generated electricity is cheaper than the diesel.
 - Diesel generation cost: USD 0.35 / kwh
 Biogas generation cost: USD 0.10 / kwh

India (Jabalpur case) – large biogas plant not feasible?

- Grid reliability is improving. Presently
 22 hours per day in urban Jabalpur.
- Biogas generated electricity is cheaper than diesel but costlier than the grid.
 - Grid price is INR 5 / kwh. (USD 0.10 / kwh)
 - Diesel generation cost: USD 0.32/kWh
 - Biogas: INR 10 / kwh. (USD 0.18 / kwh)

Population relying on traditional biomass for cooking

	Population			
REGIONS AND SELECTED COUNTRIES	Millions	Percent		
Africa	657	65%		
Nigeria	104	67%		
Ethiopia	77	93%		
Democratic Republic of the Congo	62	94%		
Tanzania	41	94%		
Kenya	33	83%		
Other Sub-Saharan Africa	335	74%		
North Africa	4	3%		
Developing Asia ¹	1,921	54%		
India	836	72%		
Bangladesh	143	88%		
Indonesia	124	54%		
Pakistan	122	72%		
Myanmar	48	95%		
Rest of Developing Asia	648	36%		
Latin America	85	19%		
Middle East	n.a.	n.a.		
All Developing Countries	2,662	51%		
World ²	2,662	39%		

India (Jabalpur case) – small biogas plants f/ cook stove

- High rate of non-functional plants
 - Competing energies: firewood, propane gas
 - Premature start of use
- → Diagnosed process bottlenecks and generated a problem solving guide

- 1. Why the number matters
- 2. Why creating 2 million GJs is possible
- 3. How the analysis was conducted
- 4. Why energy policy is an employment policy
- 5. Why 2 million GJs are not yet there
- 6. What's next

Implications to further research

- 1. Diesel dependency area map of India
 - Crossing this with major dairy clusters in urban centres, we will get a rough number of target farms for commercially viable electricity generation from the biogas digesters
- 2. Detailed review of the subsidized price of grid electricity vis-à-vis RE PPA on-grid and off-grid.
 - International comparison among Brazil, Nepal and Pakistan could be part of the study.

Way forward

- Explore policy and implementation space within the RE, energy and daily policies in India.
- Explore dairy sector opportunities in other countries through research and pilot.
- 3. Explore other sectors with great GJ potential.