Turing vence a von Neumann

Agustín Curto

FaMAF - UNC

2017

Introduciendo notación

Notación

Dados $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$, con $n, m \in \omega$, usaremos:

$$\|x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m\|$$

para denotar el estado

$$((x_1,\ldots,x_n,0,\ldots),(\alpha_1,\ldots,\alpha_m,\varepsilon,\ldots))$$

Nótese que por ejemplo:

$$\|x\| = ((x,0,\ldots),(\varepsilon,\ldots))$$
 Para $n=1,m=0$
 $\|\diamondsuit\| = ((0,\ldots),(\varepsilon,\ldots))$ Para $n=m=0$

Además es claro que:

$$\|x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m\| = \|x_1,\ldots,x_n,\overbrace{0,\ldots,0}^i,\alpha_1,\ldots,\alpha_m,\overbrace{\varepsilon,\ldots,\varepsilon}^j\|$$

cualesquiera sean $i, j \in \omega$.

Toda función Σ -computable es Σ -Turing computable

Probaremos

Si f es una función Σ -mixta que es computada por un programa $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$, entonces existe una máquina de Turing determinística con unit M la cual computa a f.

Definición

Dado $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$, definamos:

$$N(\mathcal{P}) = \text{menor } k \in \mathbb{N} \text{ tal que las variables que ocurren en } \mathcal{P}$$
 están todas en la lista $N1, \ldots, N\bar{k}, P1, \ldots, P\bar{k}$

Ejemplo: Sea $\Sigma = \{\&, \#\}$, si \mathcal{P} es el siguiente programa:

L1 N4
$$\leftarrow$$
 N4 + 1
P1 \leftarrow P1.&
IF N1 \neq 0 GOTO L1

entonces tenemos $N(\mathcal{P}) = 4$

Sea $\mathcal P$ un programa y sea k fijo y $k \leq N(\mathcal P)$. Describiremos como puede construirse una máquina de Turing la cual simulará a $\mathcal P$. La construcción de la máquina simuladora dependerá de $\mathcal P$ y de k.

Nótese que cuando ${\mathcal P}$ se corre desde algún estado de la forma

$$\|x_1,\ldots,x_k,\alpha_1,\ldots,\alpha_k\|$$

los sucesivos estados por los que va pasando son todos de la forma

$$||y_1,\ldots,y_k,\beta_1,\ldots,\beta_k||$$

es decir, en todos ellos las variables con índice mayor que k valen 0 o ε . La razon es simple, ya que en $\mathcal P$ no figuran las variables

$$N\overline{k+1}, N\overline{k+2}, \dots$$

 $P\overline{k+1}, P\overline{k+2}, \dots$

estas variables quedan con valores 0 y ε , respectivamente a lo largo de toda la computación.

Necesitaremos tener alguna manera de representar en la cinta los diferentes estados por los cuales se va pasando, a medida que corremos a \mathcal{P} . Esto lo haremos de la siguiente forma, al estado

$$\|x_1,\ldots,x_k,\alpha_1,\ldots,\alpha_k\|$$

lo representaremos en la cinta de la siguiente manera

$$B \mid^{x_1} B \dots B \mid^{x_k} B \alpha_1 B \dots B \alpha_k BBBB \dots$$

Ejemplo: consideremos el programa \mathcal{P} mostrado recién y fijemos k=6, entonces al estado

$$\|3, 2, 5, 0, 4, 2, \&, \&\&, \varepsilon, \#\&, \#, \#\#\#\|$$

lo representaremos en la cinta de la siguiente manera

Definición

A lo que que da entre dos blancos consecutivos, es decir que no hay ningún blanco entre el los, lo llamaremos bloque.

Ejemplo: en la cinta de arriba tenemos que los primeros 12 bloques son

III II IIII ε IIII II & && ε #& # ###

luego, los bloques siguientes, son todos iguales a ε .

Observación

Es que esta forma de representación de estados en la cinta depende del k elejido, es decir, si tomaramos otro k, por ejemplo k=9, entonces el estado anterior se representaría de otra forma en la cinta.

- Armaremos la máquina simuladora como concatenación de máquinas. Para esto, a continuación describiremos, para los distintos tipos de instrucciones posibles de \mathcal{P} , sus respectivas máquinas asociadas.
- Asumiremos que en \mathcal{P} no hay instrucciones de la forma $GOTO L\bar{m}$, ni de la forma $L\bar{n} GOTO L\bar{m}$.
- En esta etapa solo describiremos que propiedades tendrá que tener cada máquina simuladora de cada tipo posible de instrucción, y más adelante mostraremos como pueden ser construídas efectivamente dichas máquinas.
- Todas las máquinas descriptas tendrán:
 - I como unit
 - B como blanco
 - \bullet Σ como su alfabeto terminal
 - su alfabeto mayor será $\Gamma = \Sigma \cup \{B, I\} \cup \{\tilde{a} : a \in \Sigma \cup \{I\}\}.$
 - uno o dos estados finales con la siguiente propiedad:

Si q es un estado final $\Rightarrow \delta(q, \sigma) = \emptyset$, para cada $\sigma \in \Gamma$

Instrucción $N\bar{\imath} \leftarrow N\bar{\imath} + 1$

Para $1 \leq i \leq k$, sea $M_{i,k}^+$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1,\ldots,x_n\in\omega$ y $\alpha_1,\ldots,\alpha_m\in\Sigma^*$

Instrucción $N\bar{\imath} \leftarrow N\bar{\imath}-1$

Para $1 \leq i \leq k$, sea $M_{i,k}^-$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1,\ldots,x_n \in \omega$ y $\alpha_1,\ldots,\alpha_m \in \Sigma^*$

Instrucción $P\bar{\imath} \leftarrow P\bar{\imath}.a$

Para $1 \leq i \leq k$ y $a \in \Sigma$, sea $M^a_{i,k}$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$

Instrucción $P\bar{\imath} \leftarrow^{\curvearrowright} P\bar{\imath}$

Para $1 \leq i \leq k$, sea $M_{i,k}^{\cap}$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$

Instrucción $N\bar{\imath} \leftarrow N\bar{j}$

Para $1 \leq i,j \leq k$, sea $M^{\#,k}_{i \leftarrow j}$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1,\ldots,x_n \in \omega$ y $\alpha_1,\ldots,\alpha_m \in \Sigma^*$

Instrucción $P\bar{\imath} \leftarrow P\bar{j}$

Para $1 \leq i,j \leq k$, sea $M^{*,k}_{i \leftarrow j}$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1,\ldots,x_n \in \omega$ y $\alpha_1,\ldots,\alpha_m \in \Sigma^*$

Instrucción $N\bar{\imath} \leftarrow 0$

Para $1 \le i \le k$, sea $M_{i \leftarrow 0}^k$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$

Instrucción $P\bar{\imath} \leftarrow \varepsilon$

Para $1 \le i \le k$, sea $M_{i \leftarrow \varepsilon}^k$ una máquina con estado inicial q_0 y único estado final q_f tal que cualesquiera sean $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$

Instrucción SKIP

Sea

$$\textit{M}_{\text{SKIP}} = \big(\{\textit{q}_0,\textit{q}_f\}, \Gamma, \Sigma, \delta, \textit{q}_0,\textit{B}, I, \{\textit{q}_f\}\big)$$

con $\delta(q_0, B) = \{(q_f, B, K)\}\$ y $\delta = \emptyset$ en cualquier otro caso.

Instrucción IF $N\bar{j} \neq 0$ GOTO $L\bar{m}$

Para $1 \leq j \leq k$, sea $IF_{j,k}$ una máquina con estado inicial q_0 y dos estados finales q_{si} y q_{no} tal que cualesquiera sean $x_1,\ldots,x_n\in\omega$ y $\alpha_1,\ldots,\alpha_m\in\Sigma^*$

• Si $x_j \neq 0$, entonces

• Si $x_i = 0$, entonces

Instrucción IF $P\bar{j}$ BEGINS a GOTO $L\bar{m}$

Para $1 \leq j \leq k$, sea $IF_{j,k}^a$ una máquina con estado inicial q_0 y dos estados finales q_{si} y q_{no} tal que cualesquiera sean $x_1, \ldots, x_n \in \omega$ y $\alpha_1, \ldots, \alpha_m \in \Sigma^*$

• Si α_i comienza con a_i entonces

Caso contrario

Example

Sea $\Sigma = \{\&, \#\}$ y sea ${\mathcal P}$ el siguiente programa:

L3 N4
$$\leftarrow$$
 N4 + 1
P1 \leftarrow $^{\sim}$ P1
IF P1 BEGINS & GOTO L3
P3 \leftarrow P3.#

Tomemos k = 5, es claro que $k \ge N(\mathcal{P}) = 4$. A la máquina que simulará a \mathcal{P} respecto de k, la llamaremos M_{sim} y será la siguiente:

Veamos con un ejemplo como M_{sim} simula a \mathcal{P} . Supongamos que corremos \mathcal{P} desde el estado

$$\|2,1,0,5,3,\#\&\#\#,\varepsilon,\&\&,\#\&,\#\|$$

Tendremos entonces la siguiente sucesión de descripciones instantaneas:

$$(1, \|2, 1, 0, 5, 3, \#\&\#\#, \varepsilon, \&\&, \#\&, \#\|)$$

 $(2, \|2, 1, 0, 6, 3, \#\&\#\#, \varepsilon, \&\&, \#\&, \#\|)$

$$(3, \|2, 1, 0, 6, 3, \&\#\#, \varepsilon, \&\&, \#\&, \#\|)$$

$$(1, \|2, 1, 0, 6, 3, \&\#\#, \varepsilon, \&\&, \#\&, \#\|)$$

$$(2, \|2, 1, 0, 7, 3, \&\#\#, \varepsilon, \&\&, \#\&, \#\|)$$

$$(3, \|2, 1, 0, 7, 3, \#\#, \varepsilon, \&\&, \#\&, \#\|)$$

$$(4, \|2, 1, 0, 7, 3, \#\#, \varepsilon, \&\&, \#\&, \#\|)$$

$$(5, \|2, 1, 0, 7, 3, \#\#, \varepsilon, \&\&\#, \#\&, \#\|)$$

Si hacemos funcionar a M_{sim} desde:

$$q_0B$$
 $|^2$ B $|$ BB $|^5$ B $|^3$ $B#&##BB&&B#&B#B</math></math></p>$

obtendremos una sucesión de descripciones instantaneas dentro de las cuales estará la siguiente subsucesión

$$q_0B + ^2B + ^BB + ^5B + ^3B + ^4BB + ^4BB$$

$$q_1B + {}^2B + BB + {}^6B + {}^3B + {}^4\& \# BB \& \& B \# \& B \# B$$

$$q_2B + ^2B + ^BB + ^6B + ^3B \# \& \# \# BB \& \& B \# \& B \# B$$

$$q_3B + ^2B + ^BB + ^6B + ^3B \& \# \#BB \& \& B \# \& B \#B$$

$$q_4B + ^2B + ^BB + ^6B + ^3B + ^4BB + ^4B + ^$$

$$q_{si}B + {}^{2}B + BB + {}^{6}B + {}^{3}B + {}^{4}BB + {}^{4}BB$$

$$q_0B + {}^2B + BB + {}^6B + {}^3B + {}^4BB + {$$

$$q_1B$$
 | 2B | BB | 7B | $^3B\&\#\#BB\&\&B\#\&B\#B$
 q_2B | 2B | BB | 7B | $^3B\&\#\#BB\&\&B\#\&B\#B$

$$q_3B$$
 | 2B | BB | 7B | $^3B\#\#BB\&\&B\#\&B\#B$
 q_4B | 2B | BB | 7B | $^3B\#\#BB\&\&B\#\&B\#B$

$$q_{no}B + {}^{2}B + BB + {}^{7}B + {}^{3}B \# BB \& B\# \& B\# B$$

 $q_{5}B + {}^{2}B + BB + {}^{7}B + {}^{3}B \# BB \& \& B\# \& B\# B$

$$q_6B + {}^2B + BB + {}^7B + {}^3B \# \# BB \& \# B \# \& B \# B$$

Supongamos que $\mathcal{P} = I_1, \ldots, I_n$. Para cada $i = 1, \ldots, n$, llamaremos M_i a la máquina que simulará el efecto que produce la instrucción I_i , es decir tomemos:

-
$$M_i = M_{j,k}^+$$
, si $\mathit{Bas}(I_i) = \mathrm{N}\bar{j} \leftarrow \mathrm{N}\bar{j} + 1$

-
$$M_i = M_{j,k}^{\dot{-}}$$
, si $Bas(I_i) = \mathrm{N}\bar{j} \leftarrow \mathrm{N}\bar{j}\dot{-}1$

-
$$M_i = M_{j,k}^a$$
, si $Bas(I_i) = \mathrm{P}\bar{j} \leftarrow \mathrm{P}\bar{j}.a$

-
$$M_i = M_{j,k}^{\curvearrowright}$$
, si $Bas(I_i) = \mathrm{P}\bar{j} \leftarrow {}^{\curvearrowright}\mathrm{P}\bar{j}$

-
$$M_i = M_{j \leftarrow m}^{\#,k}$$
, si $Bas(I_i) = \mathrm{N}\bar{j} \leftarrow \mathrm{N}\bar{m}$

-
$$M_i = M_{i \leftarrow m}^{*,k}$$
, si $Bas(I_i) = P\bar{j} \leftarrow P\bar{m}$

-
$$M_i = M_{i \leftarrow 0}^k$$
, si $Bas(I_i) = N\bar{j} \leftarrow 0$

-
$$M_i = M_{j \leftarrow \varepsilon}^k$$
, si $Bas(I_i) = P\bar{j} \leftarrow \varepsilon$

-
$$M_i = M_{\mathrm{SKIP}}$$
, si $Bas(I_i) = \mathrm{SKIP}$

-
$$M_i = IF_{i,k}$$
, si $Bas(I_i) = \mathrm{IF} \ \mathrm{N}\bar{j} \neq 0 \ \mathrm{GOTO} \ \mathrm{L}\bar{m}$, para algún m

-
$$M_i = IF_{ik}^a$$
, si $Bas(I_i) = IF P_j^{\bar{i}} BEGINS a GOTO L \bar{m} , para algún $m$$

Ya que la máquina M_i puede tener uno o dos estados finales, la representaremos de la siguiente manera:

- Si M_i tiene un solo estado final, este está representado por el círculo de abajo a la izquierda
- Si M_i tiene **dos estados finales**, el estado final de la derecha corresponde al estado q_{si} y el de la izquierda al estado q_{no} .

Para armar la máquina que simulará a ${\mathcal P}$ hacemos lo siguiente:

1) Primero unimos las maquinas M_1,\ldots,M_n de la siguiente manera

2) Luego para cada i tal que $Bas(I_i)$ es de la forma α GOTO $L\bar{m}$, ligamos con una flecha de la forma

$$\xrightarrow{B,B,K}$$

el estado final q_{si} de la M_i con el estado inicial de la M_h , donde h es tal que I_h es la primer instrucción que tiene label $L\bar{m}$.

Lema

Sea $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ y sea $k \geq N(\mathcal{P})$. Supongamos que en \mathcal{P} no hay instrucciones de la forma $\operatorname{GOTO} \operatorname{L}\overline{m}$ ni de la forma $\operatorname{L}\overline{n} \operatorname{GOTO} \operatorname{L}\overline{m}$. Sean:

- Para cada $a \in \Sigma \cup \{1\}$, sea \tilde{a} un nuevo símbolo
- $\bullet \ \Gamma = \Sigma \cup \{B, \iota\} \cup \{\tilde{a} : a \in \Sigma \cup \{\iota\}\}\$

entonces existe una máquina de Turing determinística con unit $M = (Q, \Gamma, \Sigma, \delta, q_0, B, I, \{q_f\})$, la cual satisface:

- 1) $\delta(q_f, \sigma) = \emptyset$, para cada $\sigma \in \Gamma$.
- 2) Cualesquiera sean $x_1, \ldots, x_k \in \omega$ y $\alpha_1, \ldots, \alpha_k \in \Sigma^*$, el programa \mathcal{P} se detiene partiendo del estado

$$\|x_1,\ldots,x_k,\alpha_1,\ldots,\alpha_k\|$$

si y solo si M se detiene partiendo de la descripción instantanea

$$|q_0B|^{x_1}B...B|^{x_k}B\alpha_1B...B\alpha_kB|$$

3) Si $x_1, \ldots, x_k \in \omega$ y $\alpha_1, \ldots, \alpha_k \in \Sigma^*$ son tales que \mathcal{P} se detiene partiendo del estado

$$\|x_1,\ldots,x_k,\alpha_1,\ldots,\alpha_k\|$$

y llega al estado

$$||y_1,\ldots,y_k,\beta_1,\ldots,\beta_k||$$

entonces

$$\lfloor q_0 B \mid^{x_1} B \dots B \mid^{x_k} B \alpha_1 B \dots B \alpha_k B \rfloor \stackrel{\sim}{\underset{M}{\mid}} \lfloor q_f B \mid^{y_1} B \dots B \mid^{y_k} B \beta_1 B \dots B \beta_k B \rfloor$$

Para cada $j \ge 1$, sea D_j la máquina siguiente:

Nótese que:

$$\alpha B \beta_1 B \beta_2 B \dots B \beta_j B \gamma \stackrel{*}{\vdash} \alpha B \beta_1 B \beta_2 B \dots B \beta_j B \gamma
\uparrow \qquad \uparrow \qquad \qquad \uparrow
q_0 \qquad q_f$$

siempre que $\alpha, \gamma \in \Gamma^*, \beta_1, \dots, \beta_i \in (\Gamma - \{B\})^*$.

*l*_j cumplirá que:

$$\alpha B \beta_j B \dots B \beta_2 B \beta_1 B \gamma \qquad \stackrel{*}{\vdash} \qquad \alpha B \beta_j B \dots B \beta_2 B \beta_1 B \gamma$$

$$\uparrow \qquad \qquad \uparrow$$

$$q_0 \qquad q_f$$

siempre que $\alpha, \gamma \in \Gamma^*, \beta_1, \dots, \beta_j \in (\Gamma - \{B\})^*$. Dejamos al lector la manufactura de esta máquina.

Para $j \geq 1$, sea TD_j una máquina con un solo estado final q_f y tal que:

$$\begin{array}{cccc}
\alpha B \gamma & \stackrel{*}{\vdash} & \alpha B B \gamma \\
\uparrow & & \uparrow \\
q_0 & q_f
\end{array}$$

cada vez que $\alpha, \gamma \in \Gamma^*$ y γ tiene exactamente j ocurrencias de B.

Ejemplo: Sea $\Sigma = \{\&, \#\}$ podemos tomar TD_3 igual a la siguiente máquina

Análogamente, para $j \geq 1$, sea TI_j una máquina tal que

$$\alpha B \sigma \gamma \stackrel{*}{\vdash} \alpha B \gamma$$
 $\uparrow \qquad \uparrow$
 $q_0 \qquad q_f$

cada vez que $\alpha \in \Gamma^*, \sigma \in \Gamma$ y γ tiene exactamente j ocurrencias de B. Dejamos al lector la construcción de, por ejemplo, TI_3 para $\Sigma = \{\&, \#\}$.

Teniendo las máquinas auxiliares antes definidas podemos combinarlas para obtener las máquinas simuladoras de instrucciones.

 $M_{i,k}^a$ puede ser la siguiente máquina:

Una posible forma de diseñar la máquina $IF_{i,k}^a$ es la siguiente:

Una posible forma de diseñar la máquina $M^{*,k}_{i \leftarrow j}$ para el caso $\Sigma = \{\&,\#\}$ y i < j, es la siguiente:

Probaremos

El paradigma computacional de Turing es por lo menos tan expresivo como el paradigma imperativo dado por el lenguaje \mathcal{S}^{Σ} , es decir, probaremos que toda función Σ -computable es Σ -Turing computable.

Antes un lema:

Lemma

Si $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to \Sigma^*$ es Σ -computable, entonces existe un programa Q, el cual computa a f y cumple con las siguientes propiedades:

- 1) En $\mathcal Q$ no hay instrucciones de la forma GOTO $L\overline{\imath}$, ni de la forma $L\overline{\jmath}$ GOTO $L\overline{\imath}$.
- 2) Cuando Q termina partiendo de un estado cualquiera dado, el estado alcanzado es tal que las variables numéricas tienen todas el valor 0 y las alfabéticas tienen, todas exepto P1, el valor ε .

Demostración.

Sean:

- ullet ${\mathcal P}$ un programa que compute a f
- $r \in \mathbf{N}$ tal que $r \geq N(\mathcal{P}), n, m$
- $\tilde{\mathcal{P}}$ el resultado de reemplazar en \mathcal{P} cada instrucción de la forma $\alpha \mathrm{GOTO}\ \mathrm{L}\bar{\imath}$ con $\alpha \in \{\varepsilon\} \cup \{\mathrm{L}\bar{j}: j \in \mathbf{N}\}$ por $\alpha \mathrm{IF}\ \mathrm{N}\bar{\imath} \neq 0\ \mathrm{GOTO}\ \mathrm{L}\bar{\imath}$.

Ahora, sea Q el siguiente programa:

$$\begin{array}{l} \mathbf{N}\bar{r} \leftarrow \mathbf{N}\bar{r} + \mathbf{1} \\ \tilde{\mathcal{P}} \\ \mathbf{N}\mathbf{1} \leftarrow \mathbf{0} \\ \vdots \\ \mathbf{N}\bar{r} \leftarrow \mathbf{0} \\ \mathbf{P2} \leftarrow \varepsilon \\ \vdots \\ \mathbf{P}\bar{r} \leftarrow \varepsilon \end{array}$$

Theorem

Si $f: D_f \subseteq \omega^n \times \Sigma^{*m} \to O$ es Σ -computable, entonces f es Σ -Turing computable.

Demostración.

Supongamos $O = \Sigma^*$. Por el Lema anterior, existe $\mathcal{P} \in \operatorname{Pro}^{\Sigma}$ el cual computa f y tiene las propiedades (1) y (2). Sea $k = \max\{n, m, N(\mathcal{P})\}$ y sea M_{sim} la máquina de Turing con unit que simula a \mathcal{P} respecto de k. Como puede observarse, la máquina M_{sim} , no necesariamente computará a f. Sea M_1 la siguiente máquina:

Cuando n=0 debemos interpretar que $D_0=(\{q_0,q_f\},\Gamma,\Sigma,\delta,q_0,B,I,\{q_f\}),$ con $\delta(q_0,B)=\{(q_f,B,K)\}$ y $\delta=\emptyset$ en cualquier otro caso. Nótese que M_1 cumple que, para cada $(\vec{x},\vec{\alpha})\in\omega^n\times\Sigma^{*m}$

$$\lfloor q_0B \mid^{x_1} B \dots B \mid^{x_n} B\alpha_1B \dots B\alpha_mB \rfloor \stackrel{*}{\vdash} \lfloor q_fB \mid^{x_1} B \dots B \mid^{x_n} B^{k-n}B\alpha_1B \dots B\alpha_mB \rfloor$$

Nótese que en la confección de M_1 , para el caso m > 0 podriamos haber usado directamente la TD_m en lugar de usar TD_m .

Sea M_2 la siguiente máquina:

Nótese que M_2 cumple que para cada $\alpha \in \Sigma^*$

$$|q_0B^{k+1}\alpha| \stackrel{*}{\vdash} |q_fB\alpha|$$

Sea M la máquina dada por el siguiente diagrama:

Supongamos que $(\vec{x}, \vec{\alpha}) \in (\omega^n \times \Sigma^{*m}) - D_f$. Debemos ver que M no termina partiendo de:

$$\lfloor q_0 B \mid^{x_1} B \dots B \mid^{x_n} B \alpha_1 B \dots B \alpha_m B \rfloor$$
 (*)

Primero notemos que, ya que $\mathcal P$ computa a f, tenemos que $\mathcal P$ no termina partiendo de $\|x_1,\ldots,x_n,\alpha_1,\ldots,\alpha_m\|$ por lo cual $\mathcal P$ no termina partiendo de

$$\|x_1,\ldots,x_n,\overbrace{0,\ldots,0}^{k-n},\alpha_1,\ldots,\alpha_m,\overbrace{\varepsilon,\ldots,\varepsilon}^{k-m}\|$$

lo cual implica, por el primer Lema, que M_{sim} no termina partiendo de:

$$|q_0B|^{x_1}B...B|^{x_n}B^{k-n}B\alpha_1B...B\alpha_mB|$$
 (**)

Ahora, nótese que si hacemos funcionar a M desde la descripción instantánea dada en (*), llegaremos indefectiblemente a la siguiente descripción instantánea:

$$\left[q_2 B \mid^{x_1} B \dots B \mid^{x_n} B^{k-n} B \alpha_1 B \dots B \alpha_m B \right]$$

entonces (**) nos dice que al seguir trabajando M, la máquina M nunca terminará.

Para terminar de ver que M computa a f, tomemos $(\vec{x}, \vec{\alpha}) \in D_f$ y veamos que

$$\lfloor q_0 B \mid^{x_1} B ... B \mid^{x_n} B \alpha_1 B ... B \alpha_m B \rfloor \stackrel{*}{\underset{M}{\vdash}} \lfloor q_5 B f(\vec{x}, \vec{\alpha}) \rfloor$$

y que la maquina M se detiene en $\lfloor q_5Bf(\vec{x},\vec{\alpha})\rfloor$. La maquina M se detiene en $\lfloor q_5Bf(\vec{x},\vec{\alpha})\rfloor$ ya que q_5 es el estado final de una copia de M_2 y por lo tanto no sale ninguna flecha desde el. Ya que $\mathcal P$ computa a f y tiene la propiedad (2) del Lema $\ref{lem:mass:eq:properties}$, tenemos que $\mathcal P$ termina partiendo de $\lVert x_1,...,x_n,\alpha_1,...,\alpha_m\rVert$ y llega al estado $\lVert f(\vec{x},\vec{\alpha})\rVert$, o lo que es lo mismo, $\mathcal P$ termina partiendo de

$$x_1, ..., x_n, \overbrace{0, ..., 0}^{k-n}, \alpha_1, ..., \alpha_m, \overbrace{\varepsilon, ..., \varepsilon}^{k-m}$$

y llega al estado

$$\left\| \overbrace{0,...,0}^{k}, f(\vec{x},\vec{\alpha}), \overbrace{\varepsilon,...,\varepsilon}^{k-1} \right\|$$

Pero entonces el Lema ?? nos dice que

(***)
$$\left[q_0B \mid^{x_1} B...B \mid^{x_n} B^{k-n}B\alpha_1B...B\alpha_mB\right] \stackrel{*}{\underset{M_{sim}}{\vdash}} \left[q_fB^{k+1}f(\vec{x},\vec{\alpha})\right]$$

Como ya lo vimos, si hacemos funcionar a M desde $\lfloor q_0B \rfloor^{x_1} B...B \rfloor^{x_n} B\alpha_1B...B\alpha_mB \rfloor$, llegaremos (via la copia de M_1 dentro de M) indefectiblemente a la siguiente descripcion instantanea

$$\left[q_2B \mid^{x_1} B...B \mid^{x_n} B^{k-n}B\alpha_1B...B\alpha_mB\right]$$

Luego (***) nos dice que, via la copia de M_{sim} dentro de M, llegaremos a $\lfloor q_3 B^{k+1} f(\vec{x}, \vec{\alpha}) \rfloor$ e inmediatamente a $\lfloor q_4 B^{k+1} f(\vec{x}, \vec{\alpha}) \rfloor$. Finalmente, via la copia de M_2 dentro de M, llegaremos a $\lfloor q_5 B f(\vec{x}, \vec{\alpha}) \rfloor$, lo cual termina de demostrar que M computa a f