

Algoritmica grafurilor XIII. Drum critic, clică

Mihai Suciu

Facultatea de Matematică și Informatică (UBB) Departamentul de Informatică

Mai, 30, 2018

Mihai Suciu (UBB) Algoritmica grafurilor Mai, 30, 2018 1 / 27

Continut

- Drum critic
 - Arce ca si activitati
 - Varfuri ca si activitati

Clica

Drum critic - graful activităților

Graful activităților

un graf G = (V, E, W) conex aciclic orientat cu următoarele proprietăți:

- arcele grafului reprezintă activități, ponderea arcelor reprezintă timpul necesar execuției unei activități;
- există un vârf de start, v_1 , pentru care $N^{in}(v_1) = \emptyset$;
- există un vârf ce reprezintă finalul activităților, v_n , pentru care $N^{out}(v_n) = \emptyset.$

Algoritmica grafurilor Mai, 30, 2018 3 / 27

Drum critic - Introducere

Conexiuni între activități:

- activitatea A trebuie încheiată înainte ca activitățile B și C să înceapă;
- posibil să existe activități cu timp de execuție 0, folosite doar la forțarea ordinii execuției activităților.
- activitatea E poate începe doar după execuția activităților D și F, G poate începe după execuția activității F.

Mihai Suciu (UBB) Algoritmica grafurilor Mai, 30, 2018 4 / 27

Drum critic

- Ne înteresează timpul maxim necesar pentru a termina proiectul;
- acest timp maxim este drumul de lungime maximă în graful activităților, drum între vârfurile de start și fnalizare;
- pentru a rezolva această problemă putem folosi algoritmi de drum minim înlocuind problema de minim cu una de maxim;
- mai există o opțiune.

Drum critic - descompunere în nivele

- Vârfurile unui graf de activități în care activitățile sunt arcele pot fi distribuite pe nivele;
- vârful ce reprezintă activitatea de start este pe nivelul 1;
- ullet dacă $(v_i,v_j)\in E$ atunci nivelul vârfului v_i este inferior nivelului lui v_j

Algoritmul pentru descompunere în nivele este (*I* este un atribut ce indică nivelul vârfului):

```
DESCOMPUNERE_NIVELE(G)

for v \in V do

v.l = 1

for 1 \le i \le n do

NEXT(i)
```

Drum critic - descompunere în nivele (II)


```
NEXT(i)

for 1 \le j \le n do

if (a_{ij}) \ne 0 \land v_j.l \le v_i.l then

v_j.l = v_i.l + 1

if j < i then

NEXT(j)
```

Drum critic - descompunere în nivele (exemplu)

Drum critic - descompunere în nivele (exemplu II)

Mihai Suciu (UBB) Algoritmica grafurilor Mai, 30, 2018 9 / 27

Drum critic - graful activităților

activitate	activitate precedenta	timp executie
A	_	1
В	=	2
С	_	3
D	A	2
E	A	3
F	A	4
G	B, F	5
H	C, G	2
I	C, G	3
J	B, F, D	4
K	B, F	1
L	B, F	1
M	E, H, J, K, L	2
N	H, I, L	3
О	H, L	2

Drum critic - graful activităților (II)

Graful corespunzator activitalor:

Drum critic - graful activităților (III)

- Fie vârfurile grafului de activități $v_1, ..., v_n$ distribuite pe nivele în această ordine;
- algoritmul CPM (Critical Path Method) da timpii t_i si t_i* atașați fiecărui vârf v_i din graful de activități;
- vârfurile pot fi considerate ca evenimente în proiect;
- dacă 0 este momentul începerii proiectului atunci t_i reprezintă timpul cel mai devreme și t_i* reprezintă timpul cel mai târziu când activitățile de la evenimentul v_i pot începe.

Drum critic - graful activităților(IV)


```
\begin{aligned} \mathsf{CPM}(i) \\ t_1 &= 0 \\ \textbf{for } 2 \leq j \leq n \ \textbf{do} \\ t_j &= \mathsf{max}_{v_i \in N^{in}(v_j)} (t_i + d_{ij}) \\ t_n^* &= t_n \\ \textbf{for } n - 1 \geq i \geq 1 \ \textbf{do} \\ t_i^* &= \mathsf{min}_{v_j \in N^{out}(v_i)} (t_j^* - d_{ij}) \end{aligned}
```

Drum critic - graful activităților (V)

De exemplu putem avea timpii:

varf	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
t_i	0	1	5	10	5	12	13	12	16
t_i^*	0	1	5	10	10	13	13	14	16

Drum critic - graful activităților (VI)

Putem defini următoarele resurse de timp pe perioada proiectului:

- $R_t(v_i, v_j) = t_j^* t_i d_{ij} =$ timp disponibil, activitatea (v_i, v_j) poate să înceapă cel târziu după $R_t(v_i, v_j)$ timp fără a influența durata totala a proiectului;
- $R_f(v_i, v_j) = t_j t_i d_{ij} = \text{timpul liber, activitatea } (v_i, v_j)$ poate să înceapă cel târziu după $R_f(v_i, v_j)$ timp fără a influența următoarea activitate;
- $R_s(v_i, v_j) = \max\{t_j t_i^* d_{ij}, 0\} = \text{timp sigur, activitatea } (v_i, v_j)$ poate fi terminată cel târziu dupa R_s timp fără a influența durata totală a proiectului;
- vârfurile pentru care acești timpi sunt egali cu 0 sunt pe drumul critic, activitățile de pe acest drum trebuie terminate fără întârzieri.

Drum critic - graful activităților (VII)

activitate	timp executie	R_t	R_f	R_s
A	1	0	0	0
В	2	3	3	3
С	3	7	7	7
D	2	7	2	2
Е	3	10	8	8
F	4	0	0	0
G	5	0	0	0
H	2	1	0	0
I	3	0	0	0
J	4	5	3	0
K	1	8	6	6
L	1	7	6	6
M	2	2	2	0
N	3	0	0	0
0	2	2	2	1

Drum critic - graful activităților (VIII)

Putem modifica algoritmul lui Floyd-Warshall pentru a determina dumul de lungime maximă între două vârfuri, pentru exemplul de mai sus aceste drumuri sunt:

	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
v_1	0	1	5	10	5	12	13	12	16
v_2	$-\infty$	0	4	9	4	11	12	11	15
v_3	$-\infty$	$-\infty$	0	5	0	7	8	7	11
v_4	$-\infty$	$-\infty$	$-\infty$	0	$-\infty$	2	3	2	6
v_5	$-\infty$	$-\infty$	$-\infty$	$-\infty$	0	$-\infty$	$-\infty$	4	6
v_6	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	0	0	0	3
v_7	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	$-\infty$	0	$-\infty$	3
v_8	$-\infty$	0	2						
v_9	$-\infty$	0							

Drum critic - graful activităților (IX)

Momentele de timp t_i și t_i^* :

varf	v_1	v_2	v_3	v_4	v_5	v_6	v_7	v_8	v_9
t_i	0	1	5	10	5	12	13	12	16
t_i^*	0	1	5	10	10	13	13	14	16

Drum critic - vârfuri ca și activități

Acest model a fost discutat la seminar.

Problema clicii

Definiție

O clică este un subgraf complet al unui graf dat.

Problema presupune găsirea de mulțimi de vârfuri în graf care formează subgrafuri complete.

Problema este NP-completă.

Definiție

Clică maximă: un subgraf care nu poate fi extins.

Aplicații în grafuri ce reprezintă rețele sociale (găsirea de comunități), chimie, bioinformatică, etc.

Problema clicii - exemplu

Algoritmul lui Bron-Kerbosch pentru problema clicii


```
R = \{\}
P = \{V\}
X = \{\}
BronKerbosch(P,R,X)
if P \cup X = \emptyset
R \text{ este o clică maximă}
for <math>v \in P
BronKerbosch(P \cap N(v), R \cup \{v\}, X \cap N(v))
P = P \setminus \{v\}
X = X \cup \{v\}
```

Exemplu Bron-Kerbosch

Exemplu Bron-Kerbosch (II)

Exemplu - rețele sociale

