Taller 5

(1) Demuestre que el número de caminatas de v_1 a v_2 en el grafo

$$G = (\{v_1, v_2\}, \{(v_1, v_1), (v_1, v_2), (v_2, v_1)\})$$

de longitud n es F_n .

Demostración. Denote como L_n el conjunto de caminatas de v_1 a v_2 de longitud n. Para n=0 no existe ningún camino de v_1 a v_2 de longitud 0 ya que dicho caminata sería $\{v_1\}$ lo cúal nunca llega a v_2 . Luego, $|L_0| = 0$. Además, para n=1 el único caminata posible es $\{v_1, v_2\}$, ya que cualquier otra caminata tendría más elementos, por lo que $|L_1| = 1$. Con esto, ya tenemos que el caso base de F_n y de $|L_n|$ son iguales. Solo es necesario probar que para $n \geq 2$ se tiene que $F_n = |L_n|$. Para ello, considere la siguiente biyección:

$$\varphi: L_n \cup L_{n+1} \to L_{n+2}$$

$$C = \{v_i\} \mapsto \varphi(C)$$

Donde si $C \in L_n$ entonces $\varphi(C) = \{u_i\}_{i \in [n+3]}$ donde $u_1 = 1$, $u_2 = 2$ y $u_i = v_{i-2}$ para todo $i \ge 3$, y si $C \in L_{n+1}$ entonces $\varphi(C) = \{w_i\}_{i \in [n+3]}$ de forma que $w_1 = 1$ y $w_i = v_{i-1}$ para todo $i \ge 2$.

- Inyectividad: Note que no pueden existir elementos que pertenezcan a L_n y L_{n+1} al tiempo, ya que eso implicaría que n=n+1. Suponga que $C=\{a_i\}_{i\in[n]}$ y $D=\{b_i\}_{i\in[n]}$ son caminatas de L_n de forma que $\varphi(C)=\varphi(D)$. Eso quiere decir que las sucesiones $\{v_i\}_{i\in[n+3]}$ y $\{u_i\}_{i\in[n+3]}$ son iguales(En correspondencia con $\varphi(C)$ y $\varphi(D)$). Luego, quiere decir que $v_i=u_i$ para todo $i\in[n+3]$. Ya es fácil determinar $v_1=u_1=1$ y que $v_2=u_2=2$. Suponga que $i\geq 3$ y llame ahora k=i-2 y dado que $3\leq i\leq n+3$ entonces $1\leq k\leq n+1$ y $v_i=u_i$ entonces $a_k=b_k$ para todo $k\in[n+1]$, por lo que C=D. De manera similar se concluye que si $C,D\in L_{n+1}$ y $\varphi(C)=\varphi(D)$ entonces C=D(Reemplazando k=i-1).
- Sobreyectividad: Note que siempre que tome $C = \{v_i\}_{i \in [n+3]}$ una caminata de longitud $n+2, v_1=1$, pero v_2 puede tomar dos valores. Si $v_2=1$ entonces definida la caminata $A = \{u_i\}_{i \in [n+2]}$ con $u_i = v_{i+1}$, y esta es una caminata de v_1 a v_2 de longitud n+1, y luego $\varphi(A) = C$. Si $v_2=2$ entonces defina $B = \{u_i\}_{i \in [n+1]}$ de forma que $u_i = v_{i+2}$ y esta será una caminata de v_1 a v_2 de longitud n, para obtener que $\varphi(B) = C$.

Luego, gracias a que demostramos que $L_n \cup L_{n+1} \cong L_{n+2}$ y gracias al hecho de que $L_n \cap L_{n+1} = \emptyset$ demostramos que $|L_n| + |L_{n+1}| = |L_{n+2}|$, por lo que al comprobar los casos bases y la recursión de F_n con L_n , podemos concluir que en general $|L_n| = F_n$.

2 Recuerde que dada una relación binaria $R \subseteq X^2$ con X un conjunto finito de la forma $\{x_1, x_2, \dots, x_n\}$ puede representarse de forma gráfica como una matriz A_R de la siguiente forma:

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix},$$

donde:

$$a_{i,j} = \begin{cases} 1, & (x_i, x_j) \in R \\ 0, & (x_i, x_j) \notin R \end{cases}$$

(a) £Que matriz representa la relación de aristas del grafo G del punto anterior? La matriz definida por:

$$A_G = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

(b) Si A y B son de la forma:

$$A = \begin{pmatrix} a_{1,1} & a_{1,2} & \cdots & a_{1,n} \\ a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1} & a_{n,2} & \cdots & a_{n,n} \end{pmatrix}, B = \begin{pmatrix} b_{1,1} & b_{1,2} & \cdots & b_{1,n} \\ b_{2,1} & b_{2,2} & \cdots & b_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ b_{n,1} & b_{n,2} & \cdots & b_{n,n} \end{pmatrix},$$

entonces $A \cdot B$ es la matriz

$$A \cdot B = \begin{pmatrix} c_{1,1} & c_{1,2} & \cdots & c_{1,n} \\ c_{2,1} & c_{2,2} & \cdots & c_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{n,1} & c_{n,2} & \cdots & c_{n,n} \end{pmatrix}$$

con $c_{i,j} = \sum_{k=1}^{n} a_{i,k} b_{k,j}$. Pruebe usando inducción que si G = (V, E) es un grafo con $E \subseteq V^2$ entonces:

$$A_E^n = \underbrace{A_E \cdot A_E \cdots A_E \cdot A_E}_{n \text{ veces}} = \begin{pmatrix} a_{1,1}^{(n)} & a_{1,2}^{(n)} & \cdots & a_{1,n}^{(n)} \\ a_{2,1}^{(n)} & a_{2,2}^{(n)} & \cdots & a_{2,n}^{(n)} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n,1}^{(n)} & a_{n,2}^{(n)} & \cdots & a_{n,n}^{(n)} \end{pmatrix}$$

contiene como entradas, $a_{i,j}^{(n)}$ que cuenta el número de caminatas de v_i a v_j de longitud n.

Demostración. El caso k=1 es trivial, ya que la cantidad de caminatas de v_i a v_k de longitud 1 será la arista que los conecte o no. Supongamos que en $A_E^k = (a_{i,j}^{(k)})$, la entrada $a_{i,j}^{(k)}$ representa la cantidad de caminatas de v_i a v_j de longitud k. Luego, para el producto $A_E^k \cdot A$ cada entrada estará dada, gracias a la definición del producto de matrices como:

$$a_{i,j}^{(k+1)} = \sum_{l=1}^{k} a_{i,l}^{(n)} \cdot a_{l,j}$$

Ahora, la entrada $a_{i,l}^{(k)}$ es la cantidad de caminatas desde v_i hasta v_l de longitud l. Luego, si hay caminatas de v_i a v_l , esta servirá para llegar a v_j solo si v_l esta conectado con v_j . En caso de que sí, $a_{l,j}$ será un 1 contando que por los $a_{i,l}^{(k)}$ caminos se puede llegar a v_j , y note que será de longitud k+1 ya que el camino anterior era de longitud k y le agregamos un vertice más. En caso de que alguno de los dos valores sea 0 quiere decir que no se puede llegar a v_j através de v_l . Luego, al verificar esto para $1 \le l \le k$ y sumarlo, serán los posibles caminos de v_i a v_j de longitud k+1.

(c) Pruebe que si G es el grafo del problema 1, entonces:

$$A_G^n = \begin{pmatrix} F_{n+1} & F_n \\ F_n & F_{n-1} \end{pmatrix}$$

Demostración. Ya determinamos en el punto anterior que la entrada de la matriz anterior son las caminatas de v_i a v_j de longitud n. Recordemos por el punto 1, que el número de caminatas de v_1 a v_2 de longitud n es F_n lo que explica las entradas $a_{1,2}$ y $a_{2,1}$ (Note que las caminatas de v_2 a v_1 de longitud n es invertir aquellas de v_1 a v_2). Para las otras dos entradas de la matriz:

■ Para demostrar que $a_{1,1}^{(n)} = F_{n+1}$, se usará inducción. El caso n = 1 es evidente, por lo que directamente supongamos que es verdad para n y demostraremos que pasa lo mismo para n+1. Note que esto saldrá directamente de la multiplicación de $A^n \cdot A$, y la entrada $a_{1,1}^{(n+1)}$ será:

$$a_{1,1}^{(n+1)} = \sum_{k=1}^{2} a_{i,k}^{(n)} \cdot a_{k,j}$$

$$= a_{1,1}^{(n)} \cdot a_{1,1} + a_{2,1}^{(n)} \cdot a_{2,1}$$

$$= F_{n+1} \cdot 1 + F_n \cdot 1$$

$$= F_{n+2}$$

■ Para demostrar que $a_{2,2}^{(n)} = F_{n-1}$, se usará inducción. El caso n = 1 es evidente, por lo que directamente supongamos que es verdad para n y demostraremos que pasa lo mismo

para n+1. Note que de nuevo, saldrá sobre la multiplicación de $A^n \cdot A$, y la entrada $a_{2,2}^{(n+1)}$ será:

$$a_{2,2}^{(n+1)} = \sum_{k=1}^{2} a_{2,k}^{(n)} \cdot a_{k,2}$$

$$= a_{2,1}^{(n)} \cdot a_{1,2} + a_{2,2}^{(n)} \cdot a_{2,2}$$

$$= F_n \cdot 1 + F_{n-1} \cdot 0$$

$$= F_n$$

3 Sea G un grafo no dirigido y conexo. Suponga que $e \in E$ es una arista que está contenida en un cíclo. Pruebe que el grafo $G' = (V, E \setminus \{e\})$ es conexo.

Demostración. Dado que e pertenece a un cíclo, quiere decir que existe un ciclo (Como sucesión de vertices) $\{v_i\}_{i\in[k+1]}$ donde para algún n, $(v_n, v_{n+1}) = e$. Supongamos que en realidad G' no es convexo, es decir $|V\backslash R_{G'}| = 2$. Esto quiere decir que existen dos clases distintas de equivalencia, [[u]] y [[v]]. De esto, podemos derivar dos posibles escenarios:

• $v_n \in [[u]]$ y $v_{n+1} \in [[v]]$, es decir, no existe una caminata desde v_n hasta v_{n+1} en G'. Pero gracias a la existencia del ciclo donde pertenece e, y gracias a que G es no dirigido, podemos generar dos caminos:

$$\{v_n, v_{n-1}, \dots, v_1\}$$
 $\{v_1, v_k, \dots v_{n+1}\}$

Pero esto quiere decir que existe un camino desde v_n a v_{n+1} (Por la transitividad de la relación), concluyendo que $[[u]] \cap [[v]] \neq \emptyset$ lo que contradice el hecho de que sean clases de equivalencia distintas.

Con lo anterior concluimos que sin perdida de generalidad, $v_n, v_{n+1} \in [[u]]$. Ahora, por lo menos $v \in [[v]]$, por lo que no debería existir ninguna caminata de v_n a v en G'. Recordemos que dicho caminata si debe existir en el grafo G ya que era conexo, es decir existe $\{a_i\}_{i\in[x+1]}$ una caminata de forma que $a_i = v_n$ y $a_{x+1} = v \neq v_{n+1}$. Note que $a_2 = v_{n+1}$ ya que si no fuese así, e nunca estará en esta caminata, por lo que será totalmente valido en G', contradiciendo que no hay caminata de v_n a v(De manera más general, podemos concluir que el número de veces que $a_i = v_n$ y $a_{i+1} = v_{n+1}$ debe ser mayor que el número de veces que $a_i = v_{n+1}$ y $a_{i+1} = v_n$ ya que si no fuera así, podríamos encontrar una caminata directa desde v_n a v, de nuevo, una contradicción). Podemos deducir entonces que existe un caminata de v_{n+1} y v, pero esto contradice el hecho de que $[[u]] \cap [[v]] = \emptyset$, ya que existiría una caminata desde v_{n+1} hasta v, y por extensión, una caminata de v_n hasta v.

Hemos visto que suponer que existen dos clases de equivalencia distintas genra una contradicción, por lo que podemos concluir que [[u]] = [[v]] (De manera inductiva, para más de dos clases de equivalencia distintas, podemos concluir dos a dos que son iguales). Por lo que $|V \setminus R_{G'}| = 1$ y por tanto G' es conexo.

(4) Sea G un grafo no dirigido y sin loops. Si |V| = n, |Deg(x)| = k para todo $x \in V$ y:

$$\begin{cases} k \ge \frac{n-3}{2} & \text{Si } n-1 \text{ es divisible por 4} \\ k \ge \frac{n-1}{2} & \text{Si } n-1 \text{ no es divisible por 4} \end{cases}$$

entonces G es un grafo conexo.

Demostración. Suponga que en realidad el grafo no es conexo. Es decir, $|V/R_G| = 2$. Desde este punto es bueno notar que cada componente conexa del grafo tendrá que tener k+1 vertices para poder tener grado k en cada vertice. Luego, tendremos dos casos:

- Si n-1 es divisible por 4, entonces n-1 es par. Luego, esto nos dice que n debería ser impar. Ahora, gracias a que las componentes conexas forman una partición de V, la suma de la cantidad de elementos en cada una deberá ser |V|. Esto es k+1+k+1=2k+2, pero note que este es un número par, por lo que n debería ser par, lo que contradice el hecho de que sea impar.
- Si n-1 no es divisible por 4, la suma de los elementos de las componentes conexas seguirá siendo 2k+2 que debe ser n. Esto nos permite desarrollar la igualdad dada por los casos como sigue:

$$k \ge \frac{n-1}{2}$$
$$2k \ge n-1$$
$$2k+2 \ge n+1$$
$$n \ge n+1$$
$$0 \ge 1$$

Lo que de nuevo es una contradicción.

Para extender este razonamiento a varias componentes conexas, basta con pensar en que si hay s componentes conexas entonces el número de vertices será sk + s que será n. Eso llevará a una contradicción con n y n - 1, o con la desigualdad dada por los casos.

Un r-coloramiento de un grafo no dirigido G = (V, E) con $E \subseteq \binom{V}{2}$ es una función $f : V \to [r]$ tal que $f(x) \neq f(y)$ si $\{x,y\} \in E$. Un grafo se dice r-coloreable si existe un r-coloramiento en él.

- £Qué tipo de grafos son 1-coloreables?

 Para que un grafo sea 1-coloreable, quiere decir que existe una función $f:V\to [1]$, tal que $f(x)\neq f(y)$ si $\{x,y\}\in E$. Pero note que f(x)=1 para todo $x\in V$, por lo que el contrareciproco de la condición nos diría que f(x)=f(y) entonces $\{x,y\}\not\in E$, lo que permite concluir que $\{u,v\}\not\in E$ para todo $u,v\in V$, por lo que $E=\emptyset$ y por tanto los únicos grafos que son 1-coloreable
- **6** Pruebe que si T=(V,E) es arbol, entonces es 2-coloreable. £Cuantos 2-coloreamientos del arbol hay?

Demostración. Recuerde que para un arbol T, existe una función $d:V^2\to\mathbb{Z}^{\geq 0}$ que representa la distancia entre dos vertices del arbol. Tome cualquier elemento arbitrario $r\in V$, y considere T_r . Definiremos una función $f:V\to\{1,2\}$ de forma que f(x)=f(y) si y solo si d(r,x)=d(r,y). Esta función es un coloreamiento. Supongamos que f(x)=f(y) pero $\{x,y\}\in E$. Nombre k como d(x,r),d(y,r), entonces existen dos caminos $\{v_i\}_{i\in[k+1]}$ y $\{u_i\}_{i\in[k+1]}$, tal que $v_1=x,u_1=y,v_{k+1}=u_{k+1}$. Pero se puede hacer un nuevo camino $\{w_i\}_{i\in[k+2]}$ de forma que $w_i=v_{k+1-i+1}$ para $1\leq i\leq k+1$ y $w_{k+2}=x$. Y al combinar los caminos $\{v_i\}_{i\in[k+1]}$ y $\{w_i\}_{i\in[k+2]}$ formamos un cíclo dentro del arbol, lo cúal es una contradicción con la definición de arbol. Por tanto, si f(x)=f(y), $\{x,y\}\notin E$, lo que por definición nos muestra que f es un 2-coloreamiento de T.

Note que de manera más general f(x) = f(y) si y solo si $d(r,x) \equiv d(r,y)$ (mód 2). Moralmente, esto indica que el coloreamiento los "niveles.º profundidad de un .ªrbol", en base a si la profundidad es par o impar. Luego, solo hay dos formas que intercambiar ambos estados, por lo que existen únicamente 22-coloreamientos para T_r . Pero note que la elección de r no afecta el coloreamiento de T, por lo que en general para T existen 22-coloreamientos.

- 7 De una expresión en terminos de n y m para el número de m-coloreamientos de:
 - $V_n: \to m^n$

son los grafos vácios V_n .

- $G = ([n], E) \text{ con } E = \{(i, i+1) : i \in [n-1]\}: \to m \cdot (m-1)^{n-1}$
- $K_n: \to \binom{m}{n} \cdot n! \cdot n!$
- 8 Note que si un grafo es k-coloreable, entonces es (k+1)-coloreable. Denote $\chi(G)$ el minimo número k tal que G es k-coloreable.
 - (a) Cálcule $\chi(G)$ para los grafos del punto anterior.
 - $\chi(V_n)$ es 1 dado que como se demostró en la primera parte del punto, V_n es 1-coloreable y dado que 1 es el minimo número natural, $\chi(V_n) = 1$.

- $\chi(G)$ con G = ([n], E) con $E = \{(i, i+1) : i \in [n-1]\}$ es 2 para todo $n \geq 2$, ya que no puede ser 1 coloreable, ya que $(1, 2) \in E$ por lo que $f(1) \neq f(2)$. El coloreamiento será una función tal que f(x) = f(y) si y solo si $f(x) \equiv f(y)$ mód 2). Para n = 1 será 1, ya que es directamente V_1 .
- $\chi(K_n)$ es n ya que tomando un v arbitrario en V, sabemos que |Deg(v)| = n 1, por lo que tendremos que tener n 1 valores para los vertices, y añadiendo el propio valor de v, necesitaremos n valores distintos. Luego, $\chi(K_n) = n$.
- (b) Pruebe que $\chi(G) \leq \Delta(G) + 1$ si $\Delta(G)$ es el máximo grado de G i.e, $\Delta(G) = \max_{x \in V} |Deg(x)|$ Demostración. Suponga que $x \in V$ es tal que $|Deg(x)| = \Delta(G)$, entonces para cada uno de los vertices en Deg(x) se puede escoger un color diferente para cada uno de los vertices(Aunque esto no llega a ser necesario a no ser que estén conectados entre sí), y dado que no hay otro vertice con dicha caracteristica, llegaremos a que agregando la imagen para x en el coloreamiento:

$$\chi(G) \le \Delta(G) + 1$$