Suites récurrentes du type $u_{n+1} = f(u_n)$

Exemple: Soit la suite définie par la relation de récurrence: $\forall n \in \mathbb{N} \ u_{n+1} = u_n - u_n^2$. En posant f la fonction définie sur \mathbb{R} par $x \mapsto x - x^2$, on obtient que pour tout $n \in \mathbb{N}$, $u_{n+1} = f(u_n)$. En fait, la plupart des suites étudiées jusqu'à présent sont de la forme $u_{n+1} = f(u_n)$ avec f bien choisie.

Dans tout ce chapitre, f désignera une fonction définie sur un intervalle I.

1 Existence de tous les termes de la suite

1.1 Intervalles stables

DÉFINITION

On dit que J est un intervalle stable par f si $f(J) \subset J$.

Rappels: 1. $f(J) \subset J$ signifie que pour tout $x \in J$, $f(x) \in J$.

2. L'ensemble image f(J) s'obtient par lecture du tableau de variations.

Exemple

L'intervalle [0, 1] est stable par la fonction $f(x) = x - x^2$.

En effet, f'(x) = 1 - 2x donc le tableau de variation de f est :

On en déduit que $f([0;1]) = [0, \frac{1}{4}] \subset [0;1]$.

x	0	$\frac{1}{2}$	1
f'(x)	+	0	_
f(x)	7 0	$\frac{1}{4}$	\searrow 0

1.2 Intérêt des intervalles stables

Pourquoi avons-nous introduit la notion d'intervalles stables? Pour cela considérons l'exemple suivant :

Exemple : Soit u la suite définie par $u_0 = 2$ et la relation de récurrence : $u_{n+1} = \frac{1}{u_n - 1}$

A priori, on peut penser que tous les termes de la suite u sont définis. Ce qui est faux.

En effet, $u_1 = \frac{1}{u_0 - 1} = \frac{1}{2 - 1} = 1$; et puisque $u_1 = 1$, $u_1 - 1 = 0$.

Donc il est impossible de calculer $u_2:u_2$ n'existe pas et les termes suivants non plus.

De ce fait, seuls les deux premiers termes de la suite u existent!

Méthode : Supposons que l'intervalle I soit un intervalle stable de f et que $u_0 \in I$.

Alors $\forall n \in \mathbb{N} \ u_n \text{ existe et } u_n \in I$

Pour le démontrer, posons l'hypothèse de récurrence suivante : \mathcal{P}_n : " u_n existe et $u_n \in I$ "

- $-\mathcal{P}_0$ est vraie car d'après l'énoncé, $u_0 \in I$.
- Supposons que \mathcal{P}_n est vrai. Alors u_n existe et $u_n \in I$. Or f est définie sur I donc $f(u_n)$ existe et par stabilité de I par f, $f(u_n) \in f(I) \subset I$. Donc $f(u_n) \in I$. Comme $f(u_n) = u_{n+1}$, \mathcal{P}_{n+1} est vraie.

Par conséquent $\forall n \in \mathbb{N}, \mathcal{P}_n$ est vraie.

Conclusion : si I est un intervalle stable de f et que $u_0 \in I$, alors $\forall n \in \mathbb{N}$ u_n existe et $u_n \in I$.

Retour exemple introductif : Soit la suite (u_n) définie par $u_{n+1} = u_n - u_n^2$. Si on suppose de plus que $u_0 \in [0,1]$, alors on en déduit que pour tout $n \in \mathbb{N}$, u_n existe et $u_n \in [0,1]$, puisque l'intervalle [0,1] est stable pour la fonction associée et contient u_0 .

2 Limites éventuelles

2.1 Points fixes

DÉFINITION

Soit $x \in I$. On dit que x est un point fixe de f si f(x) = x.

: Soit f une fonction continue sur I et $[a,b] \subset I$ un intervalle stable par f. Alors f possède un point fixe appartenant à [a; b].

En effet, posons g(x) = f(x) - x. La fonction g est continue sur [a;b] et $g(a) = f(a) - a \le 0$ et $g(b) = f(b) - b \ge 0$, car f(a) et $f(b) \in [a;b]$ puisque [a,b] est stable par f. Donc d'après le théorème des valeurs intermédiaires, il existe $c \in [a; b]$ tel que g(c) = 0 i.e. f(c) = c.

2.2Limites

Rappel chapitre continuité:

Théorème

Soit f une fonction **continue** en un point l (ou sur un intervalle contenant l) et u une suite convergeant vers l. Alors la suite $(f(u_n))_{n\geq 0}$ converge vers f(l).

Supposons maintenant que la suite u converge vers une limite finie $l: u_n \underset{n \to +\infty}{\longrightarrow} l$. Le théorème précédent montre que $u_{n+1} = f(u_n) \underset{n \to +\infty}{\longrightarrow} f(l)$. Mais d'autre part, $u_{n+1} \underset{n \to +\infty}{\longrightarrow} l$ et donc par passage à la limite dans la relation $u_{n+1} = f(u_n)$, on obtient que l = f(l).

Théorème

Soit $(u_n)_{n\in\mathbb{N}}$ une suite récurrente du type $u_{n+1}=f(u_n)$. Si la suite converge vers l et si la fonction f est continue en l, alors l est un point fixe de f.

Autrement dit l est solution de l'équation f(x) = x.

En général, la fonction f possède non pas un mais plusieurs points fixes. Pour déterminer la limite éventuelle, on utilise le résultat classique sur les suites : si $\forall n \in \mathbb{N}, u_n \in (a;b)$ et si la suite u converge vers l alors $l \in [a; b]$.

Exemple

Soit la suite u définie par : $u_0 = 1$ et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n + \frac{1}{n}$.

Etape 1 : la suite est-t-elle bien définie?

2 méthodes : la première est de montrer par récurrence que $\forall n \in \mathbb{N} \ u_n$ existe et $u_n > 0$.

La deuxième consiste à étudier la fonction $f(x) = x + \frac{1}{x}$ et à trouver un intervalle stable contenant $u_0 = 1$: l'intervalle $[1, +\infty[$ convient. On obtient que $\forall n \in \mathbb{N}, \ u_n$ existe et $u_n \in [1, +\infty[$.

Etape 2 : recherche de points fixes (limites éventuelles)

L'équation $x = x + \frac{1}{x}$ n'admet pas de solution dans $[1, +\infty[$ (ni même dans \mathbb{R}^* !), donc u n'admet pas de limite.

Etape 3: monotonie de la suite

 $u_{n+1} - u_n = \frac{1}{u_n} > 0$ donc u est strictement croissante; on en déduit que u diverge vers $+\infty$.

Représentation graphique 3

En utilisant la courbe C associée à f, on peut représenter la suite u définie par $u_{n+1} = f(u_n)$ sur l'axe des abscisses du repère orthonormé dans lequel on a tracé \mathcal{C} .

La droite d'équation y = x permet de reporter les points de l'axe des ordonnées à l'axe des abscisses et met en évidence l'éventuelle limite de la suite qui est l'abscisse d'un point d'intersection de cette droite avec C. (En effet un point fixe de f est l'abscisse d'une intersection de la courbe et de la droite y = f(x)!). Représentation graphique sur des exemples (Précis de Mathématiques édition Bréal).

Sur les deux figures, \mathscr{C}_f est la représentation graphique d'une même fonction f monotone croissante. Dans les deux cas, (u_n) est monotone (et elle converge vers ℓ), mais selon le choix de u_0 ($u_0 < \ell$ ou $u_0 > \ell$), (u_n) est croissante ou décroissante.

2)

D'après ce graphique, on peut penser que les deux suites extraites (u_{2n}) et (u_{2n+1}) sont adjacentes, donc qu'elles convergent vers la même limite ℓ et donc que (u_n) converge vers ℓ . Plus généralement, lorsque f est monotone décroissante, $f \circ f$ est monotone croissante. Les deux suites (u_{2n}) et (u_{2n+1}) , qui sont définies par la relation de récurrence $u_{k+1} = f \circ f(u_k)$, sont donc monotones. Dans ce cas, pour que la suite (u_n) soit convergente, il faut que les deux suites (u_{2n}) et (u_{2n+1}) soient convergentes et qu'elles aient la même limite. Illustrons des situations dans lesquelles la suite (u_n) ne converge pas :

- dans le cas \bigcirc , (u_n) est périodique ;
- dans le cas ②, même si les deux suites extraites (u_{2n}) et (u_{2n+1}) convergent, elles n'auront pas la même limite et u_n diverge.

4 Monotonie de la suite

Il ne reste plus qu'à justifier que la suite u converge. Nous allons essayer de déterminer la monotonie de la suite afin d'appliquer les théorèmes de convergence des suites monotones.

Attention: toutes ces méthodes seront à redémontrer à chaque fois. Il n'y a pas de théorème de cours.

Il y a plusieurs cas à distinguer : mais dans tous les cas, nous suppposons que f est continue sur un intervalle I, qui est stable par f et qui contient u_0 . Ainsi , $\forall n \in \mathbb{N}$ u_n existe et $u_n \in I$.

4.1 critère $u_{n+1} - u_n$

Quand est-ce-que ce critère permet de conclure? Quand le signe de f(x) - x est constant sur I.

Méthode

Supposons que f est continue sur un intervalle I stable par f et contenant u_0 .

Donc $\forall n \in \mathbb{N} \ u_n \text{ existe et } u_n \in I.$

Supposons en outre que $\forall x \in I, f(x) - x \ge 0$ (*) (resp. ≤ 0).

Alors la suite u est croissante (resp. décroissante).

En effet, en appliquant l'inégalité (*) au point $x = u_n \in I : u_{n+1} - u_n = f(u_n) - u_n \ge 0$ (resp. ≤ 0) Vrai pour tout $n \in \mathbb{N}$.

4.2 f est croissante

Méthode

Supposons que f est continue sur un intervalle I stable par f et contenant u_0 . Donc $\forall n \in \mathbb{N}$ u_n existe et $u_n \in I$. Supposons en outre que f est croissante sur l'intervalle I.

Alors la suite u est monotone.

On calcule explicitement $u_1(=f(u_0))$ et on distingue les deux cas suivants :

 $-u_0 \leqslant u_1$

On va montrer par récurrence que la suite u est croissante. Posons, \mathcal{P}_n : " $u_n \leqslant u_{n+1}$ "

- $-\mathcal{P}_0$ est trivialement vraie
- Supposons que \mathcal{P}_n est vrai donc $u_n \leq u_{n+1}$. Or la fonction f est croissante sur I et u_n ainsi que u_{n+1} appartiennent à I donc $f(u_n) \leq f(u_{n+1}) \Leftrightarrow u_{n+1} \leq u_{n+2}$ ce qui montre que \mathcal{P}_{n+1} est vraie. Par conséquent $\forall n \in \mathbb{N}$, \mathcal{P}_n est vraie et la suite u est croissante.
- $-\underline{u_0 \geqslant u_1}$

On va montrer par récurrence que la suite u est décroissante. Posons, \mathcal{P}_n : " $u_n \geqslant u_{n+1}$ "

- $-\mathcal{P}_0$ est trivialement vraie
- Supposons que \mathcal{P}_n est vrai donc $u_n \geqslant u_{n+1}$. Or la fonction f est croissante sur I et u_n ainsi que u_{n+1} appartiennent à I donc $f(u_n) \geqslant f(u_{n+1}) \Leftrightarrow u_{n+1} \geqslant u_{n+2}$ ce qui montre que \mathcal{P}_{n+1} est vraie. Par conséquent $\forall n \in \mathbb{N}$, \mathcal{P}_n est vraie et la suite u est décroissante

4.3 f est décroissante

Méthode

Supposons que f est continue sur un intervalle I stable par f et contenant u_0 . Donc $\forall n \in \mathbb{N}$ u_n existe et $u_n \in I$. Supposons en outre que f est décroissante sur l'intervalle I.

Nous introduisons alors deux suites auxiliaires a et b définies pour tout $n \in \mathbb{N}$ par : $a_n = u_{2n}$ et $b_n = u_{2n+1}$.

Calculons $a_{n+1}: a_{n+1} = u_{2(n+1)} = u_{2n+2} = f(u_{2n+1}) = f(f(u_{2n})) = (f \circ f)(a_n)$

Donc la suite a vérifie une relation de récurrence donnée par $a_{n+1} = (f \circ f)(a_n)$.

Par définition $\forall n \in \mathbb{N}, a_n (= u_{2n}) \in I$ et la fonction $f \circ f$ est croissante sur I!

On peut donc étudier la monotonie de la suite a à l'aide du paragraphe précédent.

De même, la suite b est définie par la relation $b_{n+1} = (f \circ f)(b_n)$ donc peut être étudiée comme a.

Remarque: Les deux suites a et b seront de monotonies contraires.

Idée de la preuve : si $a_0 \le a_1 \Leftrightarrow u_0 \le u_2$ alors par décroissance de f, $f(u_0) \ge f(u_1) \Leftrightarrow u_1 \ge u_3 \Leftrightarrow b_0 \ge b_1$. De même si $a_0 \ge a_1$ alors $b_0 \le b_1$.

5 Convergence

On suppose que $\forall n \in \mathbb{N}$ $u_n \in (a,b)$ (intervalle de bornes a et b, mais peu importe qu'il soit ouvert ou fermé, avec a et b pouvant être l'infini) et que f est continue sur (a,b).

5.1 u est monotone

Cas croissant

- 1. Si u est majorée (exemple, si $b \neq +\infty$) alors elle converge vers un point fixe de f appartenant à [a;b]
- 2. Si u ne <u>semble</u> pas majorée (par exemple $b=+\infty$). On <u>essaie</u> de minorer u par un nombre m tel qu'il n'existe pas de point fixe pour f sur l'intervalle [m;b] et on utilise le raisonnement suivant : $\forall n \in \mathbb{N}, \ u_n \geqslant m$. Supposons que la suite u converge vers une limite finie l. Par suite $l \geqslant m$ et l est un point fixe de f. Or f ne possède pas de point fixe sur [m;b]: contradiction. Donc la suite ne converge pas et puisqu'elle est croissante, elle diverge vers $+\infty$

A adapter dans le cas décroissant.

5.2 u n'est ni croissante ni décroissante

Il s'agit du cas étudié dans la section 'f décroissante '. Les suites a et b sont monotones donc on peut leur appliquer le raisonnement de la section précédente pour déterminer leurs convergences respectives. Puis on applique le théorème :

Théorème

La suite u converge vers l ssi (les suites $(u_{2n})_{n\geqslant 0}$ et $(u_{2n+1})_{n\geqslant 0}$ convergent et $\lim_{n\to +\infty}u_{2n}=\lim_{n\to +\infty}u_{2n+1}=l$).

5.3 Méthode fondée sur l'inégalité des accroissements finis

Une autre méthode, dans le cas de convergence vers le point fixe l, consiste à utiliser l'inégalité des accroissements finis.

Dans une première étape, on majore |f'(x)| sur l'intervalle stable, par un réel q < 1.

Puis après vérification de **toutes** les hypothèses, on applique l'IAF aux points u_n et l, qui appartiennent à l'intervalle stable :

$$|f(u_n) - f(l)| \le q|u_n - l| \Leftrightarrow |u_{n+1} - l| \le q|u_n - l|.$$

On montre alors par récurrence que $\forall n \in \mathbb{N}, |u_n - l| \leq q^n |u_0 - l|$ (*).

On conclut avec le théorème d'encadrement que $|u_n - l| \underset{n \to +\infty}{\longrightarrow} 0 \Leftrightarrow u_n \underset{n \to +\infty}{\longrightarrow} l$ car $0 \leq q < 1$.

L'inégalité (*) permet de connaître en plus la vitesse de convergence! (car u_n s'approche aussi vite de l que q^n de 0, c'est-à-dire très vite!)