Practical issues in training deep neural nets for genomics

Chris Probert & CS Foo Kundaje Lab We typically focus on the math and theory behind deep learning

Today: let's consider the systems problems in applying deep learning

Outline

- Training neural networks with online optimization
 - I/O considerations
 - Data augmentation
- Multi-threaded I/O
 - Keras prefetching with fit_generator
 - TensorFlow multi-threaded input pipelines

Training neural networks with online optimization

- Estimate gradient on full dataset using a small subset of examples (minibatch)
- Take small, locally optimal step w.r.t each minibatch → converge faster
- Minibatch needs to be "representative" take random sample from full dataset
- Minibatch size typically ranges from 16 512 examples

I/O Considerations: IOPS

- Need to randomly sample 16 512 examples per training iteration
- IOPS: I/O Operations Per Second
- Typical numbers for 4KB random reads
 - Hard drive: 100-500 IOPS
 - SSD: 10k 100k IOPS (100x of HDD)
 - On cloud platforms these numbers are likely lower due to hardware sharing
- SSDs are necessary when streaming from disk

I/O Considerations: Decompression

- Data is typically compressed (e.g. JPEGs) need to decompress before feeding into model
- Decompression for common formats is slow
 - JPEG 20-50 MB/s
 - GZIP (zlib) 80-100 MB/s
 - used in many genomics file formats, including BAM, bigWig, bigBed, BCF
- Example: 256 images from ImageNet (~200kb each)
 would take about 1s to decompress. One forward +
 backward pass through the network on a K40 for
 AlexNet only takes 0.5s.

Aside: Data Augmentation

- Add synthetic data to increase size of training set
- Synthetic data generated by perturbing training data
 - Reverse complements of sequence inputs
 - Jittering peaks/windows
 - Resampling/subsampling reads
 - Adding noise
- Can pick perturbations to make model robust to those
- This is also related to I/O because you can't possibly store and generate all perturbations beforehand

Latency hiding with concurrency

- Time taken for random data sampling & decompression (or other processing such as augmentation) can be as much as for a forward/backward pass
 - Especially when there are large number of inputs and/or a small model, as is typical in genomics applications
- Usual systems trick: hide this I/O time by running other processes simultaneously
- We will discuss threading based solutions that are implemented in popular deep learning packages

Simple approach: load data in memory

Before training, load data in memory.

Pros: fast data access (just copy from memory as needed)

Cons: requires data to fit in memory; data must be loaded before training

Streaming data - reduced memory footprint

If the data doesn't fit in memory, need to stream it from disk.

One option: pre-process data, write in an easy-to-stream format (like hdf5)

Pros: Can easily stream batches from disk by reading file blocks

Cons: Requires pre-processing; doesn't scale in number of data configurations; can significantly slow down training while reading from disk

Multi-threaded streaming I/O from disk

- Key idea: use separate threads to extract from files on disk
- Pros: de-couples training loop from data loading (can run in parallel)
 - Even true in Python, since GIL can be released during system calls
- Cons: requires work to set up, not as fast as in-memory

Keras - fit_generator

fit_generator

```
\label{lem:continuous} fit\_generator(self, generator, samples\_per\_epoch, nb\_epoch, verbose=1, callbacks=[], validation\_data=Notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=notation_data=no
```

Fits the model on data generated batch-by-batch by a Python generator. The generator is run in parallel to the model, for efficiency. For instance, this allows you to do real-time data augmentation on images on CPU in parallel to training your model on GPU.

Arguments

- generator: a generator. The output of the generator must be either
 - a tuple (inputs, targets)
 - o a tuple (inputs, targets, sample_weights). All arrays should contain the same number of samples. The generator is expected to loop over its data indefinitely. An epoch finishes when samples_per_epoch samples have been seen by the model.

TensorFlow - streaming I/O

- Queues are very useful for parallel algorithms
- Central to many TensorFlow I/O routines (and other ops)

Interactive example: TensorFlow streaming

Batch sizes and algorithms

- What's a good batch size?
 - Minimum: 4-16
 - Maximum: often, the size that can fit in GPU memory
 - Often: 64 256
 - Tradeoff between speed of convergence and proximity to stationary point
 - Power of 2 can have memory allocation + vectorization benefits
- What's a good algorithm?
 - ConvNets: Adam is a good default choice
 - Recurrent nets: RMSprop or SGD can be good default choices
 - Worth experimenting with as a hyperparameter