2023-06-03

 $\begin{bmatrix} egin{align*} & egin{ali$

(2007) (16) 已知点 O 在二面角 $\alpha - AB - \beta$ 的棱上,点 P 在 α 内,且 $\angle POB = 45^{\circ}$. 若对于 β 内异于 O 的任意一点 Q,都有 $\angle POQ \ge 45^{\circ}$,则二面角 $\alpha - AB - \beta$ 的大小是______. 90° (09高考) 如图,在长方形ABCD中,AB = 2, BC = 1, E 为DC的中点,F 为线段EC(端点除外)上一动点. 现将 ΔAFD 沿AF 折起,使平面ABD 上平面ABC.在平面ABD 内过点D作 $DK \perp AB$,K 为垂足.

设AK = t,则t的取值范围是 _____. $(\frac{1}{2}, 1)$

变式: 平面 $ADF \perp$ 平面ABC? $(\frac{2}{5}, \frac{1}{2})$

变式 1(1) 已知四面体 A-BCD, $AB=\sqrt{2}$, BC=BD=2, $AB\perp$ 平面BCD, $BE\perp AC$ 干E, $BF\perp AD$ 干F,则() A.AC 可能与EF 垂直, ΔBEF 的面积有最大值 B.AC 不可能与EF 垂直, ΔBEF 的面积没有最大值 C.AC 可能与EF 垂直, ΔBEF 的面积没有最大值

key: 取CD的中点G, $\therefore BC = BD$, $\therefore BG \perp CD$, AD = AC

 $:: AB \perp$ 平面 $BCD,:: AG \perp CD$

 $\therefore BE \perp AC, BF \perp AD, \therefore BE = BF = \frac{2}{\sqrt{3}}, EF / \frac{1}{3}CD,$

现将 $\triangle ABE$ 沿着直线 BE 翻折至 $\triangle A'BE$,设二面角 A'-CD-B 的大小

为 $\theta(0 < \theta < \pi)$,则 $\sin \theta$ 的最大值是__

key: 连BE,取其中点O,连AO交BC于E₁,

则 $BE \perp$ 平面 $A'OE_1$,设 $\angle A'OE_1 = \alpha \in [0,\pi]$

 $\therefore OH = \sqrt{2}\cos\alpha, HF = 2 - \cos\alpha$

作 $A'H \perp OE_1$ 于H,作HF / /AD交CD于F,

$$\text{III} \angle A'FH = \theta, \therefore \tan \theta = \frac{A'H}{HF} = \frac{\sqrt{2} \sin \alpha}{2 - \cos \alpha} = \sqrt{2} \cdot \frac{0 - (-\sin \alpha)}{2 - \cos \alpha} \le \frac{\sqrt{6}}{3}, \therefore (\sin \theta)_{\text{max}} = \frac{B\sqrt{10}}{5}$$

(1998 全国竞赛) $\triangle ABC$ 中, $\angle C = 90^{\circ}$, $\angle B = 30^{\circ}$, AC = 2, M 是 AB 的中点,将 $\triangle ACM$ 沿 CM 折起,使 A, B 两点间的距离为 $2\sqrt{2}$,此时三棱锥 A - BCM 的体积等于______.

2023-06-03

变式 1 (1) 已知点P到二面角 $\alpha - l - \beta$ 的面 α 、l、 β 的距离依次为 $\sqrt{2}$ 、2、 $\sqrt{3}$,则二面角 $\alpha - l - \beta$ 的大小为_. key:15°,165°,75°,105°

(2) 已知二面角 $\alpha - l - \beta$ 的大小为 60° ,若过空间一点P可作四个平面与 α, β 都成 θ 角,则 θ 的 取值范围为_____. (60°,90°)

(15高考)如图,已知 $\triangle ABC$,D是AB的中点,沿直线CD将 $\triangle ACD$ 折成

 $\triangle A'CD$,所成二面角A'-CD-B的平面角为 α ,则(

 $A.\angle A'DB \le \alpha \quad B.\angle A'DB \ge \alpha \quad C.\angle A'CB \le \alpha \quad D.\angle A'CB \ge \alpha$

变式 1 (1) 在三棱锥A-BCD中, $BD\perp CD$, $AB\perp DB$, $AC\perp DC$, AB=DB=5, CD=4, 将围成三棱锥的四个

三角形的面积从小到大依次记为 S_1, S_2, S_3, S_4 ,则面积为 S_4 的三角形

在面积为S,的三角形所在平面上的射影面积为()A

$$A.2\sqrt{34}$$
 $B.\frac{25}{2}$ $C.10$ $D.30$

(2) 已知在正方体 $ABCD - A_lB_lC_lD_l$ 中,点E为棱BC的中点,直线l在平面 $A_lB_lC_lD_l$ 内.若

二面角A-l-E的平面角为 θ ,则 $\cos \theta$ 的最小值为()

$$A.\frac{\sqrt{3}}{4}$$
 $B.\frac{11}{21}$ $C.\frac{\sqrt{3}}{3}$ $D.\frac{3}{5}$

key:(异面直线上两点间的距离公式) $\frac{5}{4} = d^2 + m^2 + n^2 - 2mn\cos\theta$

得
$$\cos \theta = \frac{m^2 + n^2 + d^2 - \frac{5}{4}}{2mn} \ge \frac{m^2 + n^2 - \frac{5}{4}}{2mn} (m = \sqrt{1 + x^2}, n = \sqrt{1 + (\frac{\sqrt{5}}{2} - x)^2})$$

$$\frac{1}{x} + \frac{1}{\frac{\sqrt{5}}{2} - x} = \frac{\frac{1}{x} + \frac{1}{\frac{\sqrt{5}}{2} - x}}{1 - \frac{1}{x(\frac{\sqrt{5}}{2} - x)}} = \frac{\frac{\sqrt{5}}{2}}{-x(\frac{\sqrt{5}}{2} - x) + 1} \in [\frac{\sqrt{5}}{2}, \frac{8\sqrt{5}}{11}](\because x \in [0, \frac{\sqrt{5}}{2}]) A_1$$

$$\therefore \cos \theta_{\min} = \frac{11}{24}$$

$$\therefore \cos \theta_{\min} = \frac{11}{21}$$

(17高考) 如图,已知正四面体D-ABC,P,Q,R分别为AB,BC,CA上点,AP=PB, $\frac{BQ}{OC}=\frac{CR}{RA}=2$,

 $A.\gamma < \alpha < \beta$ $B.\alpha < \gamma < \beta$ $C.\alpha < \beta < \gamma$ $D.\beta < \gamma < \alpha$

2023-06-03

(202001学考)18.如图,在圆锥SO中,A,B是 \odot O上动点,BB'是 \odot O的直径,M,N是SB的两个三等分点, $\angle AOB = \theta(0 < \theta < \pi)$, 记二面角N - OA - B, M - AB' - B的平面角分别为 $\alpha, \beta, \Xi \alpha \leq \beta$, 则 θ 的最大值是

()
$$A.\frac{5\pi}{6}$$
 $B.\frac{2\pi}{3}$ $C.\frac{\pi}{2}$ $D.\frac{\pi}{4}$ B

$$key: \tan \alpha = \frac{\frac{1}{3}SO}{\frac{2}{3}R\sin\theta} = \frac{SO}{2R\sin\theta} \le \tan \beta = \frac{\frac{2}{3}SO}{\frac{4}{3}R\sin\frac{\theta}{2}} = \frac{SO}{2R\sin\frac{\theta}{2}}$$

$$\therefore \cos \frac{\theta}{2} \ge \frac{1}{2}, \therefore \frac{\theta}{2} \le \frac{\pi}{3} \, \exists \exists \theta \le \frac{2\pi}{3}$$

(201804 学考) 如图,设矩形 ABCD 所在平面与梯形 ACEF 所在平面相交于 AC,若 AB = 1, BC = $\sqrt{3}$, AF = FE = EC = 1,则下列二面角的平面角大小为定值的是(B)

$$A.F-AB-C$$
 $B.B-EF-D$ $C.$ $A-BF-C$ $D.B-AF-D$

$$kev: B - EF - D$$
的大小 = $\angle NFB + \angle DEM$

$$=\frac{\pi-\angle FNB}{2}+\frac{\pi-\angle DME}{2}=\frac{\pi}{2}$$

变式 1 (1) ①如图, 矩形 ABCD 中, AB=1,BC=2 ,将 $\triangle ADC$ 沿对角线 AC 翻折至 $\triangle AD'C$,使顶点 D'在平面 ABC 的投影 O 恰好落在边 BC 上,连结 BD' . 设二面角 D'-AB-C , D'-AC-B , B-AD'-C大小分别为 α , β , γ ,则() A

A.
$$\alpha + \beta > \gamma$$
 B. $\alpha + \beta = \gamma$

B.
$$\alpha + \beta = \gamma$$

C.
$$\gamma + \alpha > \beta$$
 D. $\gamma + \beta > \alpha$

D.
$$\gamma + \beta > \alpha$$

key:作 $DE \perp AC \rightarrow E$, 交 $BC \rightarrow O$, 则

AD' = 2, AB = 1, $BD' = \sqrt{3}$, $\therefore AB \perp BD'$, $\therefore AB \perp \overline{+} \overline{m}BCD'$,

- \therefore 平面ACD' ⊥ 平面ABD', $\therefore \gamma = 90^{\circ}$, $\therefore \alpha + \beta > \gamma$
- ②在菱形 ABCD 中, $\angle BAD = 60^{\circ}$,现将 $\triangle ABD$ 沿BD折起,形成三棱锥A' BCD,当0 < A'C < BC时, 记二面角A' - BD - C的大小为 α ,二面角A' - BC - D的大小为 β ,二面角A' - CD - B的大小为 γ ,则() B $A.\alpha > \beta = \gamma$ $B.\alpha < \beta = \gamma$ $C.\alpha > \beta > \gamma$ $D.\gamma < \alpha < \beta$
- (2) 如图,在等腰梯形 ABCD 中, AB = 2AD = 2CD = 4.现将 $_{\Delta}DAC$ 沿对角线AC所在的直线翻折成 $_{\Delta}D'AC$.

记二面角
$$D' - AC - B$$
大小为 $\alpha(0 < \alpha < \pi)$,则()B

A.存在 α ,使得D'A \bot 平面D'BC

B.存在 α ,使得 $D'A \perp BC$

C.不存在 α ,使得平面 $D'AC \perp$ 平面ABC D.存在 α ,使得平面 $D'AB \perp$ 平面ABC

 $key: DE \bot AC ∓ E$,

 \therefore 存在 α , $D'E \perp BC$, \therefore $D'A \perp BC$

(3) 已知O, A, B在平面 α 内, $\angle AOB = \frac{\pi}{6}$, 过OA, OB分别作平面 β, γ , 且锐二面角 $\alpha - OA - \beta$ 的 大小为 $\frac{\pi}{4}$,

锐二面角 $\alpha - OB - \gamma$ 的大小为 $\frac{\pi}{3}$,则平面 β , γ 所成的锐二面角的平面角的余弦值是()B

$$A.\frac{\sqrt{3}}{6}$$
 $B.\frac{\sqrt{2}}{8}$ $C.\frac{1}{4}$ $D.\frac{1}{3}$

 $key2: A(1,0,0), B(\frac{\sqrt{3}}{2}, \frac{1}{2}, 0), C(a,b,1), \text{ } \overrightarrow{\square}_{AB} = (0,0,1),$

设
$$\overrightarrow{n_{AC}} = (x, y, z)$$
,则
$$\begin{cases} x = 0 \\ xa + yb + z = 0 \end{cases}$$
 , $\therefore \overrightarrow{n_{AC}} = (0, 1, -b)$

$$|xa + yb + z = 0|$$

$$\therefore \begin{cases} \overrightarrow{n_{AB}} \cdot \overrightarrow{n_{AC}} = \sqrt{1 + b^2} \cdot \frac{\sqrt{2}}{2} = -b \\ \overrightarrow{n_{AB}} \cdot \overrightarrow{n_{BC}} = \sqrt{4 + (-a + \sqrt{3}b)^2} \cdot \frac{1}{2} = -a + \sqrt{3}b \end{cases} \begin{cases} b = -1 \\ a = -\frac{5}{\sqrt{3}}, \therefore \cos \theta = \frac{|(0, 1, 1) \cdot (1, -\sqrt{3}, \frac{2}{\sqrt{3}})|}{\sqrt{2} \cdot \frac{4}{\sqrt{3}}} = \frac{\sqrt{2}}{4} \end{cases}$$

(4) 如图, 在 $\triangle ABC$ 中, 点 M 是边 BC 的中点, 将 $\triangle ABM$ 沿着 AM 翻折成 $\triangle AB'M$, 且点 B' 不在平面 AMC内, 点 P 是线段 B'C 上一点.若二面角 P-AM-B' 与二面角 P-AM-C 的平面角相等,则直线 AP 经过

△*AB'C* 的(A)A. 重心 B. 垂心 C. 内心 D. 外心

变式lkey:由三垂线定理作二面角的平面角得 $d_{P \rightarrow AB'M} = d_{P \rightarrow ACM}$

$$\therefore V_{P-AB^+M} = V_{P-ACM} \ \ \exists \ V_{A-PB^+M} = V_{A-PCM} \ , \\ \therefore \ S_{\Delta PB^+M} = S_{\Delta PCM} \ , \\ \therefore \ B \ 'P = CP$$

$$key2: \angle F'EQ = \angle CEQ, \therefore \frac{F'Q}{QC} = \frac{F'E}{EC} = \frac{FE}{EC}, \therefore QE / /FF' / /BB',$$

(5)①在长方体 $ABCD - A_1B_1C_1D_1$ 中, $AB = AA_1 = 2AD = 2$,E 为棱 CC_1 上一点,记平面 BD_1E 与底面 ABCD所成的锐二面角为 α ,则当 α 取得最小值时 CE 的长度为_____.

key: 延长 D_1F 交DC的延长线于F,连BF,作 $CH \perp BF$ 于H,则 $\alpha = \angle FHC$,

设
$$CE = x$$
, 则 $CF = \frac{2x}{2-x}$, $CH = \frac{1 \cdot \frac{2x}{2-x}}{\sqrt{1 + \frac{4x^2}{(2-x)^2}}} = \frac{2x}{\sqrt{(2-x)^2 + 4x^2}}$

②设点 M 是长方体 $ABCD - A_iB_iC_iD_i$ 的棱 AD 的中点, $AA_i = AD = 4$, AB = 5,点 P 在面 BCC_iB_i 上,若平 面 D_iPM 分别与平面 ABCD 和平面 BCC_iB_i 所成的锐二面角相等,则 P 点的轨迹为(C

A. 椭圆的一部分 B. 抛物线的一部分 C. 一条线段 D. 一段圆弧 key:利用射影面积公式得P在面 AA_1D_1D 上的射影为 ΔDMP_2 ,其面积为5

2023-06-03

2.(2022 新高考 I)如图,直三棱柱 $ABC - A_iB_iC_i$ 的体积为4, $△A_iBC$ 的面积为2 $\sqrt{2}$.

(1) 求A到平面A,BC的距离;

(2) 设D为 A_i C的中点, $AA_i = AB$,平面 $A_iBC \perp$ 平面 ABB_iA_i ,求二面角A - BD - C的正弦值.

解: (1) 由
$$V_{A-A_1BC} = \frac{1}{3}V_{ABC-A_1B_1C_1} = \frac{4}{3} = \frac{1}{3} \cdot 2\sqrt{2} \cdot d$$
得 $d = \sqrt{2}$ 即为所求的

(2) 作 $AH \perp A_1B$ 于H, :: 平面 $A_1BC \perp$ 平面 ABB_1A_1 , :: $AH \perp$ 平面 A_1BC , 且 $AH = \sqrt{2}$, 作 $AI \perp BD$ 于I,连AI,则 $\angle AIH$ 是二面角A - BD - C的平面角的补角,

$$\therefore AB = AA_1, \therefore AB = AA_1 = 2, A_1B = 2\sqrt{2},$$

而
$$V_{ABC-A_1B_1C_1} = S_{_{\triangle}ABC} \cdot 2 = 4$$
得 $S_{_{\triangle}ABC} = 2 = 2\sqrt{2} \cdot \frac{\sqrt{2}}{2} = S_{_{\triangle}A_1BC} \cdot \cos 45^\circ$,

 $\therefore AB \perp BC, A_1B \perp BC, BC = 2$

(或者由平面 A_1ABB_1 \bot 平面ABC, 平面 A_1BC \bot 平面 ABB_1A_1 得BC \bot 平面 ABB_1A_1

$$\therefore HI = \sqrt{2} \cdot \frac{1}{\sqrt{3}}, \therefore \tan \angle AIH = \frac{\sqrt{2}}{\frac{\sqrt{2}}{\sqrt{3}}} = \sqrt{3}, \therefore 二面角A - BD - C$$
的正弦值为 $\frac{\sqrt{3}}{2}$.

3. 如图,四棱锥A'-BCDE是由直角 $\triangle ABC$ 沿其中位线DE翻折而成,且 $\angle ABC=\frac{\pi}{2},PC=2PA'$,

设
$$AB = 1$$
, $AC = 3$.(I) 若 $\angle A'EB = \frac{\pi}{3}$, 求二面角 $A' - BD - P$ 的余弦值;

(II) 若二面角C - A'D - E的大小为 $\frac{5\pi}{6}$,求三棱锥P - A'ED的体积.

解: (I)建立空间直角坐标系,如图,则B(0,0,0),

$$C(2\sqrt{2},0,0), D(\sqrt{2},\frac{1}{2},0), E(0,\frac{1}{2},0), A'(0,\frac{1}{4},\frac{\sqrt{3}}{4}), P(\frac{2\sqrt{2}}{3},\frac{1}{6},\frac{\sqrt{3}}{6}),$$

设平面A'BD的法向量
$$\overrightarrow{n_1} = (x, y, z)$$
,则
$$\begin{cases} \overrightarrow{n_1} \cdot \overrightarrow{BA'} = \frac{1}{4}y + \frac{\sqrt{3}}{4}z = 0 \\ \overrightarrow{n_1} \cdot \overrightarrow{BD} = \sqrt{2}x + \frac{1}{2}y = 0 \end{cases}$$

$$\begin{cases} \overrightarrow{n_1} \cdot \overrightarrow{BA'} = \frac{1}{4}y + \frac{\sqrt{3}}{4}z = 0\\ \overrightarrow{n_1} \cdot \overrightarrow{BD} = \sqrt{2}x + \frac{1}{2}y = 0 \end{cases}$$

$$\Rightarrow$$
y = $\sqrt{3}$ 得 $\vec{n_1}$ = $(-\frac{\sqrt{3}}{2\sqrt{2}}, \sqrt{3}, -1)$

设平面
$$PBD$$
的法向量 $\overrightarrow{n_2} = (x, y, z)$,则
$$\begin{cases} \overrightarrow{n_2} \cdot \overrightarrow{BD} = \sqrt{2}x + \frac{1}{2}y = 0 \\ \overrightarrow{n_2} \cdot \overrightarrow{BP} = \frac{2\sqrt{2}}{3}x + \frac{1}{6}y + \frac{\sqrt{3}}{6}z = 0 \end{cases}$$
 令 $x = \sqrt{2}$ 得 $\overrightarrow{n_2} = (\sqrt{2}, -4, -\frac{4}{\sqrt{3}})$

$$\therefore \cos \theta = \frac{|\overrightarrow{n_1} \cdot \overrightarrow{n_2}|}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{19}{35}$$
即为所求的

(II) 设 $\angle A'EB = \theta$,作 $BB_1 \perp A'E + B_1$,由(I)得: $BB_1 \perp \text{平面}A'ED$,且 $BB_1 = \frac{1}{2}\sin\theta$,

而BC / /平面A'DE, :: C到平面A'DE的距离 $CC_1 = \frac{1}{2}\sin\theta$,

作 $A'A_1 / EE_1, CE_1 / BE, CC_1 / BB_1$,

在矩形 $A'EE_1A_1$ 中, $EB_1=E_1C_1=\frac{1}{2}\cos\theta$,

$$\therefore \frac{1}{2} \cdot \frac{3}{2} \cdot d_{C_1 \rightarrow A'D} = \sqrt{2} - (\frac{\sqrt{2}}{4} + \frac{\sqrt{2}}{4} \cos \theta + \frac{\sqrt{2}}{2} (1 - \cos \theta))$$

得
$$d_{C_1 \to A'D} = \frac{\sqrt{2}(1+\cos\theta)}{3}$$
, $\therefore \tan\frac{\pi}{6} = \frac{CC_1}{d_{C_1 \to A'D}} = \frac{3\sin\theta}{2\sqrt{2}(1+\cos\theta)} = \frac{1}{\sqrt{3}}$ 得 $\cos\theta = \frac{19}{35}$

$$\therefore V_{P-A'ED} = \frac{1}{3}V_{C-A'ED} = \frac{1}{6}V_{C-A'EE_1A_1} = \frac{1}{12}V_{A'BE-A_1CE_1} = \frac{1}{12} \cdot 2\sqrt{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{12\sqrt{6}}{35} = \frac{\sqrt{3}}{70}$$

(201711 月学考)(18)等腰直角 $\triangle ABC$ 斜边BC上的一点P满足 $CP \le \frac{1}{4}CB$.将 $\triangle CAP$ 沿AP翻折至 $\triangle C'AP$,

使二面角C'-AP-B为 60° .记直线C'A,C'B,C'P与平面ABP所成角分别为 α,β,γ .则($A.\alpha < \beta < \gamma$ $B.\alpha < \gamma < \beta$ $C.\beta < \alpha < \gamma$ $D.\gamma < \alpha < \beta$

$$key$$
: 设 $CP = t < \frac{\sqrt{2}}{4!}$ $(AB = AC = 1)$, 则 $CH = \frac{3}{2}CD = \frac{3}{2}\sin\angle CAP$, \therefore $\tan \alpha = \frac{C'H}{AH}$, $\tan \beta = \frac{C'H}{BH}$, $\tan \gamma = \frac{C'H}{PH}$, \therefore 选 C

(2018 高考) 8. 已知四棱锥 S-ABCD 的底面是正方形,侧棱长均相等,E 是线段 AB 上的点(不含端 点),设SE与BC所成的角为 θ ,SE与平面ABCD所成的角为 θ 2,二面角S-AB-C的平面角为 θ 3,则

(D)
$$A. \theta_1 \le \theta_2 \le \theta_3$$

B.
$$\theta_2 \le \theta_2 \le \theta$$

$$C. \theta_1 \leq \theta_3 \leq \theta$$

)
$$A. \theta_1 \le \theta_2 \le \theta_3$$
 $B. \theta_3 \le \theta_2 \le \theta_1$ $C. \theta_1 \le \theta_3 \le \theta_2$ $D. \theta_2 \le \theta_3 \le \theta_1$

(201811 月学考) 如图,四边形ABCD为矩形,沿AC将 $_{\Delta}ADC$ 翻折成 $_{\Delta}AD'C$.设二面角D'-AB-C的平面角为 θ ,直线AD'与直线BC所成角为 θ ,直线AD'与平面ABC所成角为 θ ,当 θ 为锐角时,有() B $A.\theta_2 \le \theta_1 \le \theta$ $B.\theta_2 \le \theta \le \theta_1$ $C.\theta_1 \le \theta_2 \le \theta$ $D.\theta \le \theta_2 \le \theta_1$

(19高考) (8)设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点). 记直线PB与直线AC所成角为 α ,直线PB与平面ABC所成角为 β ,二面角P-AC-B的平面角为 γ ,

) $A.\beta < \gamma, \alpha < \gamma$ $B.\beta < \alpha, \beta < \gamma$ $C.\beta < \alpha, \gamma < \alpha$ $D.\alpha < \beta, \gamma < \beta$

平面角为γ,则(

 $A.\alpha \le \beta \le \gamma$ $B.\beta \le \alpha \le \gamma$ $C.\beta \le \gamma \le \alpha$ $D.\alpha \le \gamma \le \beta$

2023-06-03

key:作 FF_1 / / AA_1 交AC于 F_1 ,作 $F_1H \perp BC$ 于H,连FH

则
$$\alpha = \angle EFF_1 \ge \frac{\pi}{4} \ge \beta = \frac{\pi}{2} - \angle EFF_1, \gamma = \angle FHF_1 \ge \beta$$
,

连FB, FC,则平面 FF_1H 上平面BCF,: $\alpha \ge \gamma$,: 选C

(2022 II) 20. (12 分) 如图, PO 是三棱锥 P-ABC 的高, PA=PB, $AB \perp AC$, E 为 PB 的中点.

- (1) 证明: OE// 平面 PAC ; (2) 若 $\angle ABO = \angle CBO = 30^\circ$, PO = 3 , PA = 5 , 求二面角 C AE B 正余 弦值.
- 20. (1) 证明: 连接 BO 并延长交 AC 于点 D, 连接 OA、 PD,

因为PO是三棱锥P-ABC的高,所以PO上平面ABC,AO,BO \subset 平面ABC

所以 $PO \perp AO$ 、 $PO \perp BO$,

又PA = PB, 所以 $\triangle POA \cong \triangle POB$, 即OA = OB, 所以 $\angle OAB = \angle OBA$,

又 $AB \perp AC$, 即 $\angle BAC = 90^{\circ}$, 所以 $\angle OAB + \angle OAD = 90^{\circ}$, $\angle OBA + \angle ODA = 90^{\circ}$,

所以 $\angle ODA = \angle OAD$

所以AO = DO, 即AO = DO = OB, 所以O为BD的中点,又E为PB的中点,所以OE//PD,

又OE \subset 平面PAC, PD \subset 平面PAC,

所以 OE// 平面 PAC

 $(2) \frac{11}{13}$

A.异面直线EB',GD'所成角的取值范围是 $(0,\frac{\pi}{6}]$

B.异面直线EB',GD'所成角的取值范围是 $(0,\frac{\pi}{2}]$

C.异面直线FB',HD'所成角的取值范围是 $(0,\frac{\pi}{2})$

D.异面直线FB',HD'所成角的取值范围是 $(0,\frac{\pi}{2}]$

 $key: EF / /AC / HG, \angle DGH = FEB = \frac{\pi}{6}, \angle DHG = \angle EFB = \frac{\pi}{3},$

HD',GD',EB',FB'的轨迹为圆锥

(2) 如图,在正四棱锥 P-ABCD 中,设直线 PB 与直线 DC,平面 ABCD 所成的角分别为 α , β ,二面角 P-CD-B的大小为 γ ,则()A

A. $\alpha > \beta, \gamma > \beta$ B. $\alpha > \beta, \gamma < \beta$ C. $\alpha < \beta, \gamma > \beta$ D. $\alpha < \beta, \gamma < \beta$

(3) 已知等边 $_{\triangle ABC}$,点 E,F 分别是边 AB,AC 上的动点,且满足 EF//BC,将 $_{\triangle AEF}$ 沿着 EF 翻折至 P 点处,如图所示,记二面角 P-EF-B 的平面角为 α ,二面角 P-FC-B

2023-06-03

的平面角为 β ,直线 PF 与平面 EFCB 所成角为 γ ,则(

A.
$$\alpha \ge \beta \ge \gamma$$
 B. $\alpha \ge \gamma \ge \beta$

C.
$$\beta \ge \alpha \ge \gamma$$

D.
$$\beta \ge \gamma \ge \alpha$$

 $kev: H, G \to EF, BC$ 的中点,则 $\angle PHI = \alpha, \angle PJI = \beta, \angle PFI = \gamma$,

 $\therefore \gamma \geq \alpha, \gamma \geq \beta, \overrightarrow{m}PH = AH > HI,$

$$\therefore \tan \alpha = \frac{PI}{PH} = \frac{PI}{AH} < \tan \beta = \frac{PI}{IJ} = \frac{PI}{(AH + HI)\sin 30^{\circ}} = \frac{PI}{(AH + AH\cos\alpha) \cdot \frac{1}{2}},$$

A'-EF-D的大小为 $\theta(0<\theta<\frac{\pi}{A})$,直线A'E,A'F与平面BCD所成角分别

为 α , β , 则 () $A.\alpha + \beta > \theta$ $B.\alpha + \beta < \theta$ $C.\alpha + \beta > \frac{\pi}{2}$ $D.\alpha + \beta > 2\theta$

$$\therefore \sin(\alpha + \beta) = \frac{A'H}{A'E} \cdot \frac{HF}{A'F} + \frac{EH}{A'E} \cdot \frac{A'H}{A'F} > \frac{A'H \cdot EF}{A'E \cdot A'F}$$
$$= \frac{A'H \cdot EF}{AG \cdot EF} = \frac{A'H}{AG} = \sin \theta$$

$$\therefore \alpha + \beta > \theta$$

2(1)如图,矩形 ABCD 的边长 AB=1, $BC=\sqrt{3}$,将矩形沿对角线 AC 翻折,形成空间四边形 ABCD,连结 DB, 记 DA 与面 BCD 所成角为 α , 记 DB 与面 ACD 所成角为 β , 记 DC 与面 ABD 所成角为 γ , 则在翻

$$A.\alpha < \beta$$
 $B.\beta < \alpha$ $C.\alpha < \gamma$ $D.\gamma < \alpha$

$$key : \sin \alpha = \frac{4d_{F \to BCD}}{\sqrt{3}} < \sin \gamma = \frac{4d_{E \to ABD}}{1} (d_{F \to BCD} = d_{E \to ABD}), \therefore \alpha < 0$$

(2) 如图,在矩形ABCD中,AD < CD,现将 $\triangle ACD$ 折至 $\triangle ACD'$,使得二面角A - CD' - B为锐角, 设直线AD'与直线BC所成角的大小为 α ,直线BD'与平面ABC所成角的大小为 β ,二面角A-CD'-B的大小为 γ ,则 α , β , γ 的大小关系是() $A.\alpha > \beta > \gamma$ $B.\alpha > \gamma > \beta$ $C.\gamma > \alpha > \beta$ D.不能确定

 $key: \alpha = \angle D'AD > \angle D'AH, \beta = \angle D'BH$

$$\therefore AH < BH, \therefore \alpha > \beta$$

而 $A - D'EE_1$ 与 $C - FF_1'B$ 全等,

$$\therefore \gamma = B - CF_1' - F = D' - AE_1 - E \in (\beta, \alpha)$$

$$1) \tan \beta \le \frac{\sqrt{3}}{2} \tan \alpha; 2\gamma \le \beta; \quad 3\gamma > \alpha. \quad A.1 \quad B.12 \quad C.23 \quad D.13$$

2023-06-03

key:(线面角的转化方法一: 体积)

$$\therefore MH > EH, \therefore \tan \beta = \frac{B'H}{MH}, \tan \alpha = \frac{B'H}{EH}, \overrightarrow{\text{mi}} \frac{EH}{MH} \leq \frac{\sqrt{3}}{2}. \quad B \xrightarrow{E} H$$

$$\sin \beta = \frac{d_{B' \to AMC}}{MB'}, \sin \gamma = \frac{d_{M \to B'CA}}{MC}, \sin \alpha = \frac{d_{B' \to AMC}}{B'E}$$

$$\because BD < \frac{1}{2}BA, \therefore MB' < MC, S_{\triangle AMC} < S_{\triangle B'CA}, \therefore d_{B' \to AMC} > d_{M \to B'CA}, \therefore \beta \ge \gamma$$

(4)(诸暨)如图,在三棱锥 P-ABC 中, $AB\perp AC$,AB=AP,D 是棱 BC 上一点(不含端点)且 PD=BD,记 $\angle DAB$ 为 α ,直线 AB 与平面 PAC 所成角为 β ,直线 PA 与平面 ABC 所成角为 γ ,则(A)

A.
$$\gamma \leq \beta, \gamma \leq \alpha$$
 B. $\beta \leq \alpha, \beta \leq \gamma$ C. $\beta \leq \alpha, \gamma \leq \alpha$ D. $\alpha \leq \beta, \gamma \leq \beta$

key: E为PB的中点,则PB \ 平面AED,

$$\sin \beta = \frac{d_{B \to PAC}}{AB} > \sin \gamma = \frac{d_{P \to ABC}}{PA} = \frac{d_{P \to ABC}}{AB} \, (\because AP = AB)$$

$$(\because S_{\triangle ABC} \geq S_{\triangle PAC}, V_{B-PAC} = V_{P-ABC} \therefore d_{P \rightarrow ABC} \leq d_{B \rightarrow PAC}), \therefore \beta \geq \gamma,$$

