In class work **25** has questions **1** through **1** with a total of **8** points. Turn in your work at the end of class *on paper*. This assignment is due at *Thursday 2 May 13:20*.

"Perhaps my greatest wisdom is the knowledge that I do not know." JOHN STEINBECK¹

- 1. Define a curve $\mathscr C$ parametrically as $\mathscr C = \begin{cases} x = \cosh(t) \\ y = \sinh(t) \end{cases}$, $t \in \mathbf R$.
- [2] (a) Ask Desmos to sketch $\mathscr C$ and reproduce the graph here.

[2] (b) Show that if $(x, y) \in \mathcal{C}$, then $x^2 - y^2 = 1$.

¹ Travels with Charley: In Search of America

[2] (c) Show that $(x = -1, y = 0) \notin \mathcal{C}$, but that (x = -1, y = 0) is a point on the curve $x^2 - y^2 = 1$. **Hint:** Use the fact that range(cosh) = $[1, \infty)$.

2 (d) Express the arclength of the portion of \mathscr{C} if the parameter space is [-1,1] as a definite integral. But do not attempt to use the FTC to find this value (unless you want to learn about elliptic integrals).