Grafo de Subproblemas

Integrantes

- Christian Echeverría 221441
- Gustavo Cruz 22779
- Josué Say 22801
- Mathew Cordero 22982
- Pedro Guzmán 22111

Ejercicio 6

Convierta el arbol de recursion de la pregunta anterior en un grafo de subproblemas, donde se elimine la ineficiencia planteada. Para que se plantee un grafo completo, considere el caso n = 5.

Figure 1: Diagrama Ejemplo

Analisis

Podemos ver que tenemos un problema hay calculos que se realizan de manera redundante, por ejemplo :

Como puedes observar n-2 y n-3 se calcula dos veces en el grafo esto es ineficiente ya que puede hacer que calculemos una y otra vez el mismo calculo del numero n.

Para solucionarlo haremos lo siguiente

Solucion

Usaremos el metodo Abajo hacia arriba que consiste en obtener el fibonaci de los numeros mas abajo de n y en base a ellos ir construyendo lo del siguiente repetidamente hasta que lleguemos a n.

Para ello se define el caso base:

Figure 2: Identificando Nodos Redundantes

$$S[0] = 0, S[1] = 1$$

Donde definiremos un stack o pila:

S[i]

Donde se almacenara el fibonnaci del i-esimo numero n de la sucesion.

Por ello se define como el siguiente pseudocodigo para la solucion

nodo(n){

- 1. pila de enteros S[n+1]
- 2. S[0] = 0
- 3. S[1] = 1
- 4. para cada i de 2 a n
- 5. S[i] = S[i-1] + S[i-2]
- 6. i+=1
- 7. devolver S[n]

}

Si lo visualizamos en un grafo de suproblemas para un n = 5 tendremos:

Aqui lo que pasa es que estamos calculando en un stack de tamaño n+1 la secuencia de sucesiones que vimos en el grafo anterior.

Pongamos un ejemplo tenemos un n = 5, si seguimos el algoritmo tendriamos

Figure 3: Subproblemas Grafo

```
nodo(5){
1. pila de enteros S[6] //tenemos [0,0,0,0,0,0]
2. S[0] = 0
3. S[1] = 1
    //tenemos [0,1,0,0,0,0]
4. para cada i de 2 a 5
      S[i] = S[i-1] + S[i-2]
5.
      //i = 2 \rightarrow [0,1,1,0,0,0]
      //i= 3 \rightarrow [0,1,1,2,0,0]
       //i= 4 \rightarrow [0,1,1,2,3,0]
      //i=5 \rightarrow [0,1,1,2,3,5]
6.
      i+=1
7. devolver S[5]
}
```

Como te das cuenta suma dos posiciones anteriores y una posicion anterior de la pila para dar el siguiente numero de la sucesion numerica.