	Name:
	Vorname:
Biol 🖵	Studiengang:
Pharm 🖵	
BWS □	

Basisprüfung Winter 2009 Lösungen

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)	Teil OCII	Punkte (max 50)
Aufgabe 1	9.5	Aufgabe 6	15
Aufgabe 2	5.5	Aufgabe 7	15
Aufgabe 3	12.5	Aufgabe 8	10
Aufgabe 4	16.5	Aufgabe 9	10
Aufgabe 5	6		
Total OC I	50	Total OC II	50
Note OC I	6	Note OC II	6
		Note OC	6

1. Aufgabe (9.5 Pkt)

2. Aufgabe (5 1/2 Pkt)

Z. Adiguse (6 1/2 1 Kg)		
	Lewisformeln die fehlenden Formalladungen	
ein:		
	0	
H ₃ C ⊕ CH ₃	CH ₃	
	H_3C CH_3 \oplus N .	
O CH ₃	C_{H_3} $\Theta \setminus O \setminus O \setminus O$	
1) 4 4 (2 5) 4 7 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		
	e eine weitere möglichst gute Grenzstruktur	
der untenstehenden Verbind	ungen	
⊕		
$H_2N \longrightarrow C \longrightarrow C \longrightarrow N$	H_2N — C \equiv C — C \equiv N	
	Θ	
O II	O	
	() () () () () () () () () ()	
N,	N N	
	,	
/ . N	/	
⊕ N	oo	
	\	
-) 0 Dist. October 2012 11 Dist.		
	ometrie und Hybridisierung an den	
nummerierten Atomen an.		
//	Bindungsgeometrie Hybridisierung	
PΘ / 1	trigonal pyramidal sp ³	
$\left \begin{array}{cccc} \left(\begin{array}{cccc} 1 \\ 1 \\ S \end{array}\right) \left \begin{array}{ccccc} 4 \\ N \end{array}\right \left \begin{array}{cccccc} 3 \\ NH \end{array}\right = 2$	linear sp + 2 p	
$/\oplus$	trigonal planar sp ² + p	
3		
(2)	trigonal pyramidal sp ³	
4		
	Punkte Aufgabe 2	
	. a.m.c / talgabo L	

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den folgenden Strukturen Isomerie vor?		
Wenn ja, um welche Art von Isomerie handelt es sich?		
HO OH HO OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
HO OH OH OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
ноос соон ноос соон	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
SH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
	Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung)

b) 2 Pkt. Welche der angegebenen Moleküle sind chiral? Welches ist die Beziehung zwischen a und d?	
chiral X X X X A X A A X A A A A A A A A A A	
c) 5 Pkt. Die Fischerprojektion eines Mannitols ist unten angegeben.	
1 _{CH2} OH HO 2 H HO 3 H H 4 OH H 5 OH 6 CH2OH 2) OH H H OH HOH OH H A OH H OH OH H H OH OH OH OH H H OH OH OH OH H H	
Mannitol Perspektivformel Enantiomeres	İ
c1) 1/2 Pkt. Handelt es sich um D- oder L- Mannitol?	Ì
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).	1
c3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zum dargestellten Mannitol enantiomeren Moleküls (Projektion ergänzen).	İ
 c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C2 und C4 im abgebildeten Mannitol mit CIP Deskriptoren. C2: R X S C4: R X S c5) 1 1/2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es? 	
10 (2 Mesoformen und 4 Enantiomerenpaare Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung).

4. Aufgabe (16.5 Pkt)

Aufgabe 4 (Fortsetzung).

b) 5 Pkt. Welche der beiden Säuren ist stärker? (ankreuzen). Welcher Effekt ist dafür hauptsächlich verantwortlich? (1-8) einsetzen. Wichtgste Effekte: 1. Elektronegativität des direkt an das Proton gebunden Atoms. 2. Atomgrösse/Polarisierbarkeit des direkt an das Proton gebunden Atoms. 3. Hybridisierung des durch Deprotonierung entsehenden lone pairs 4. σ -Akzeptor = -I Effekt. 5. π -Akzeptor Effekt (-M). 6. π -Donor Effekt (+M). 7. Solvatation (Wechselwirkung mit dem Lösungsmittel). 8. Wasserstoffbrücken. wichtigster Effekt (1-8)8 5 2 3 6

Übertrag Aufgabe 4

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle **protoniert**? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

Begründung

Protonierung von Pyrrol hebt die Aromatizität in jedem Fall auf. Durch Protonierung α zum Stickstoff entsteht das stabilste linear konjugierte System mit N am Ende.

Begründung

Wie Amide werden auch Lactame (Ausnahme 4-Ring) am O protoniert. Protonierung des Lactams im rechten Ring erlaubt die Ausbildung einer stabilisierenden Wasserstoffbrücke zum Carbonyl im linken Ring.

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert?
 Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

Begründung:

Es entsteht ein aromatisches Cyclopentadienyl-System

$$0 = \frac{1}{100} \times$$

Begründung:

Amide sind am N leichter zu deprotonieren (pKa ca 17) als CH in α -Stellung zu einer Thioester-Gruppe (pKa ca 20)

Punkte Aufgabe 4

5. Aufgabe (6 Pkt)

a) 2 Pkt. Wie gross ist die Gleichgewichtskonstante K₂?

1)
$$K_1$$
 K_1 $\Delta G^{\circ}(1) = -5.7 \text{ kJ/mol}$

$$\frac{\mathsf{K}_2}{\mathsf{Ph}} \qquad \mathbf{K}_2 = 100$$

$$\mathbf{3)} \quad \underset{\mathsf{H}_2\mathsf{N}}{\overset{\mathsf{H}_2\mathsf{N}}{\longleftarrow}} \quad \underset{\mathsf{Ph}}{\overset{\mathsf{N}\mathsf{H}_2}{\longleftarrow}} \quad \underset{\mathsf{Ph}}{\overset{\mathsf{N}\mathsf{N}_2}{\longleftarrow}} \quad \underset{\mathsf{Ph}}{\overset{\mathsf{N}\mathsf{N}_2}{\longleftarrow}} \quad \underset{\mathsf{N}}{\overset{\mathsf{N}\mathsf{N}_2}{\longleftarrow}} \quad \underset{\mathsf{N}}{\overset{\mathsf{N}\mathsf{N}_2}{\longleftarrow}} \quad \underset{\mathsf{N}}{\overset{\mathsf{N}\mathsf{N}_2}{\longleftarrow}} \quad \underset{\mathsf{N}}{\overset{\mathsf{N}}} \quad \underset{\mathsf$$

Wie gross ist K_3 ? Antwort: $K_3 = 1$

(Keine Punkte ohne schriftliche Herleitung des Resultats)

 $\Delta G^{\circ}(1)$ = -5.7 kJ/mol entspricht K₁=10. K₃ = K₂ / K₁² = 100/(10•10) = 1

b) 2 Pkt. Zeichnen Sie die Konformere von (2S,3R)-2,3-Dibrombutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil [E(Θ)] der Rotation um die C(2)-C(3) Bindung (Θ= Diederwinkel C(4)-C(3)-C(2)-C(1), d.h. Θ=0°, wenn die Bindungen C(4)-C(3) und C(2)-C(1) verdeckt stehen). Brom hat etwa den gleichen Van der Waals Radius wie eine Methylgruppe.

c) 2 Pkt. 2 Pkt.

Inosin ist eine Nucleobase, die nicht zu den 4 kanonischen Basen der DNA gehört. Mit welchen kanonischen DNA-Nucleobasen kann Inosin ein Watson-Crick Basenpaar bilden? **Antwort: T** oder **A**

Punkte Aufgabe 5

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

Wie würden Sie die nachstehenden Umwandlungen durchführen? Geben Sie alle benötigten Reagenzien, Lösungsmittel und allenfalls Katalysatoren an! Bemerkung: eine Stufe beinhaltet auch die entsprechende Aufarbeitung! .OH a) p-TsOH (kat.) ЮH Toluol 16 h Rückfluss am Wasserabscheider 1) SOCl₂, 2 h Rückfluss b) 2) HN(2 Stufen) (±) + 1 Equiv. Et₃N c) NaOEt, EtOH **EtO EtO** (±) Br **E**1 (Saytzeff-Produkt) d) 5 % H₂SO₄ ОН 8 h Rückfluss CN CN e) Diels-Alder NC `CN (±) $\Delta\mathsf{T}$ OH 1) Mg, Et₂O Grignard f) (±) 3) H₂O Punkte Aufgabe 6

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

8. Aufgabe (*a*=8 *Pkt*, *b*=2 *Pkt*; *total* 10 *Pkt*)

b) Ist der neugebildete Heterocyclus aromatisch? ja: | **x** |

Begründung: $H\ddot{u}ckel$ -Regel (4n + 2) π -Elektronen in parallel zueinander stehenden p_z-Orbitalen ist erfüllt (dazu müssen beide N's sp² hybridisiert sein).

nein:

9. Aufgabe (*a=4 Pkt,b=2x3 Pkt; total 10Pkt*)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Mechanismus: Aldolisierung mit anschliessender Crotonisierung

b) Wie lautet die Regel von Saytzew? Geben Sie ein Anwendungsbeispiel!

Regel: Bei der E1-Eliminierung bildet sich bevorzugt das höher mit Alkylresten substituierte Olefin.

Anwendungsbeispiel:
$$\begin{array}{c} OH \\ H, -H_2O \end{array} \downarrow \uparrow$$
 es entsteht nur wenig
$$\begin{array}{c} OH \\ H, -H_2O \end{array} \downarrow \uparrow$$
 Hauptprod.

Punkte Aufgabe 9