2024, 1, 2
1. CDIV & SF.
Z. Lattice & Proj Toric Varieties
3- Polytopes
4. Polyrope L. Poric Varieties.
3, Div & Polytope, Sheures & Div-
Lar Jav Alline.
$\frac{\sum_{m_{\delta}} \chi_{\Sigma}}{(m_{\delta})_{\delta \in \Sigma}} = \sum_{m_{\delta}} CDiv(\chi_{\Sigma})$
D- Imo M/Mco>
Prop (Div(XI) = Ker (&M/M(6i) -> (A) M(0inay)
O;, of Moiloinar = morloinar.
Support Function.
Det I. Nir, III= Uo = Nir.
as P: 151 - 1R. linear on each (5)
PESF(I). piece n'ise linear. funció
cb. cp. integral wint. lattice N.
$2(1110N) \in \mathbb{Z}$.

Densee. STCI, N).

 $D = \sum_{\alpha \in D_{\rho}} \in CD^{2}v_{\pi}CXI)$, $\{m_{\delta}\}_{\delta \in \Sigma}$ $CD^{\alpha}t_{\alpha}$, $\{m_{\delta}\}_{\delta \in \Sigma}$ $CD^{\alpha}t_{\alpha}$, $\{m_{\delta}, u_{\rho}\} = -\alpha_{\rho}$, $\forall \rho \in \delta(1)$

RMK"

∀J ← P(X, O(D) d'v(D +D ≥0.

Thm.

(a). D. (mo).oGI. the function.

40: 121 - 1R.

U - PDCUD = < MO, N), UGO.

well-defined SFCII, N).

(b)- $P_D \subset U_P) = -\alpha_P$, $\forall P \in \overline{\Sigma}(1)$, so that $D = -\sum_{P} P_D \subset U_P \supset P_P$

(C) Dis Pio. induces an isomorphism.

CDiv7, (XZ) = SF(Z, N).

)>f:

Div Equivalence class in MLS).

Yo, Polo (U) = (mo, U), UGO.

coincide det of CDarta. in SF.

(a), (b) proved.

(6). PDE SFCIII,N), D, E.E CDIVTN(XI), KGZ

4Dte = 4b+ 4E. PKD = KPD CDIVCXI) - SF-CIII, N) inj by (b). 70 Show D'. P. Zzo-linear function. Plany: ONN -> Z · cho: No -> Z, No = Spanco) NN. Homz (No, Z) = M/M(6). =) I mo GM, Plo CW= (mo, u), UGO. D= - \(\superpresent \text{Poches} \) \(\text{Po} \) \(\text{Po} \) \(\text{Po} \) \(\text{Po} \) 2 SF(III), N) -> Pic(X2)->0 .D'IV ~ K-amp. Convers D ?~ Polytope very amp cos-

Lat Proj

Last - All he

 $A \subseteq M \cdot A = \{m, --, m_s\}$

 $\overline{\mathcal{J}}_{\mathcal{A}},(t);(\chi^{mi}(t),--,\chi^{ms}(t))$ P^{n} , n-1, CX_{0} ; $--X_{n}$) $\sim CkX_{0}$; $--ikX_{n}$? Tipn = { cto: :: :tn) e/P"; t; e coo}. $((1.7)^{n+1} - 1)^{n}$ $((1.7)^{n} - 1)^{n}$ $(1.7)^{n} - 1)$ $\lambda \in C^{\infty}$ $(\pm^{\alpha}, \pm^{\alpha}, --, \pm^{\alpha}) = ((\pm^{\alpha}, --, \pm^{\alpha}))$ =) [a; (ta, -an) N = 2/2(1,1,-1) M_m^* A = (m, --, ms? Det. Pry Variety Xu. Zariski cloure in 125-1 of the image of the map TN = Tpsi CP-1 Prop. dim (Xs) = dim Csmallest alt subspace containing s) The affine cone of Pry Toric Variety Xc. As with the Xu. >> YA

Ideal of Ys, o-1-Zs-M. IL= { x x - x } ; X - B = L }. Prop. Ys. Xa. Xs. Zu. TFAE: (a) Yacc s is adding cone Xa of XA EPS-1. (b) I₂ = I(X_{cs}) (c). I₂ is homogeneous (d) fuen, ke Zzo filmj, u>zk. 1=1,--,n. P(a) (b), (b) (c) obvious. (() =) (d)X2-XB EIL, same degree VLEL, L.(1,:-, 1) = 0. i. La - 2 dual by Q $N_{\mathbb{R}}$ $N_{\mathbb{R}}$ 7 TENQ (M; U)=1 REZ>2 KU =UEN. Kro 61 (d) =) (a) Ys irreducible. Ys = Xs.

 $\mathring{X}_{A} \cap (\mathbb{C}^{\infty})^{S} \leq \mathring{Y}_{A}.$ Ler pl. Xantps-1 torm of Xa. P= 24.(xm'(+), ---, xm'(+)), 21,66°, te TN. MeN, χ^{μ} , $C^{*} \longrightarrow T_{N}$. $q = (\chi^m(\lambda^u \alpha)t) - - - , \chi^m (\lambda^u \alpha t)$ = \(\frac{1}{k} \) (\(\chi^{m}, \chi^{\chi}, \cdots - - \), \(\gamma^{m} \sctr) \) k>0, 7 p=q E Y N. $A, \longrightarrow \{m, --, m_3\} \qquad (1, --1)$ ZA={ Iaimi; aiez, Iai=0} CM Prop. Xu, proj Toric vov. of A & M. Then: (00) Z/A is the character Lavotice of Xu. $\frac{1}{\text{dim } X_{M}} = \begin{cases}
\frac{\text{rank} ZA - 1}{\text{cond in last propo}} \\
\frac{1}{\text{cond in last propo}}
\end{cases}$ $\frac{1}{\text{rank} ZA}.$ $\frac{1}{\text{other wise}}.$

Alline Pieces of Pry Toric Variety $U_i = D_{CXO} = \mathbb{P}^{s_1} \setminus V_{CXO}$ $\Delta = \{m_1, \dots, m_s\} \subseteq M_{\mathcal{R}_{-}}, \chi_{\Delta}$ Xan Ui Ui ~ CS-? $(\alpha_0, -\cdot, \alpha_i, -\cdot, \alpha_b) \longrightarrow (\frac{\alpha_0}{\alpha_i}, -\cdot, \frac{\alpha_{i-1}}{\alpha_i}, \frac{\alpha_{i+1}}{\alpha_i}, -\cdot, \frac{\alpha_j}{\alpha_i})$ χ^{mio} χ^{mi} χ^{mj} $\chi^{mom'}$, ..., $\chi^{mi-j-m'}$, ... bias by mi) (attine piece of Ui) Xanui; Xanui; Xanui; Xanui; Spec(Etsil) Xanui; Xanui; Xanui; Xanui; Xanui; Xanui; Spec(Etsil) invertible. 21700 Xa = 1P5-1 Prop- A= {m,,-,m,3. =M. . P= Conv CA) J= [je(1,--,s] | mj is the vertex of P] $X_{A} = \bigcup_{j \in J} X_{A} \cap U_{j}$ $KMK^{2}, A \rightarrow X_{A}$ convex hall_

```
pt's show

Y; \(\xi \left( \frac{1}{1}, \cdots \cdots \frac{1}{2} \)

\(\chi \text{ \left( \frac{1}{2}, \cdots \cdots \frac{1}{2} \)
   P \cap MR = \{ \underbrace{Z}_{i \in I} r_i m_j : r_j \in \mathbb{R}_{>0}, \underbrace{Z}_{r_j = l} \}
   For given. iGS1,--, SJ. m; EPM, m; E.My
             k>0, kg>0.
             km_i = \sum k_j m_{ji} \sum k_j = k.
            \Rightarrow \sum k_j(m_j-m_i)=0
            \Rightarrow if k_j > 0, m_i - m_j \in S_i
   Fix j, \chi^{M_J-M_i} \in C[IJ_J] is invertible.
           CIf;J_{\chi m;m;} = CIf;J
  => Xan U: nuj = Xan U:
                                                                 17
3. Polytope 50% newst time.
2024-1-16.
```