Практическое задание №1

Установка необходимых пакетов:

```
In [2]: !pip install -q tqdm
        !pip install --upgrade --no-cache-dir gdown
        Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-wheel
        s/public/simple/
        Requirement already satisfied: gdown in /usr/local/lib/python3.8/dist-packages (4.
        4.0)
        Collecting gdown
          Downloading gdown-4.5.4-py3-none-any.whl (14 kB)
        Requirement already satisfied: tqdm in /usr/local/lib/python3.8/dist-packages (fro
        m gdown) (4.64.1)
        Requirement already satisfied: filelock in /usr/local/lib/python3.8/dist-packages
        (from gdown) (3.8.0)
        Requirement already satisfied: requests[socks] in /usr/local/lib/python3.8/dist-pa
        ckages (from gdown) (2.23.0)
        Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.8/dist-pac
        kages (from gdown) (4.6.3)
        Requirement already satisfied: six in /usr/local/lib/python3.8/dist-packages (from
        gdown) (1.15.0)
        Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/loc
        al/lib/python3.8/dist-packages (from requests[socks]->gdown) (1.24.3)
        Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.8/dist
        -packages (from requests[socks]->gdown) (2022.9.24)
        Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.8/dist-
        packages (from requests[socks]->gdown) (3.0.4)
        Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.8/dist-packa
        ges (from requests[socks]->gdown) (2.10)
        Requirement already satisfied: PySocks!=1.5.7,>=1.5.6 in /usr/local/lib/python3.8/
        dist-packages (from requests[socks]->gdown) (1.7.1)
        Installing collected packages: gdown
          Attempting uninstall: gdown
            Found existing installation: gdown 4.4.0
            Uninstalling gdown-4.4.0:
              Successfully uninstalled gdown-4.4.0
        Successfully installed gdown-4.5.4
```

Монтирование Baшего Google Drive к текущему окружению:

```
In [3]: from google.colab import drive
    drive.mount('/content/drive', force_remount=True)
```

Mounted at /content/drive

Константы, которые пригодятся в коде далее, и ссылки (gdrive идентификаторы) на предоставляемые наборы данных:

```
In [5]:
    EVALUATE_ONLY = True
    TEST_ON_LARGE_DATASET = True
    TISSUE_CLASSES = ('ADI', 'BACK', 'DEB', 'LYM', 'MUC', 'MUS', 'NORM', 'STR', 'TUM')
    '''DATASETS_LINKS = {
        'train': '1XtQzVQ5XbrfxpLHJuL0XBGJ5U7CS-cLi',
        'train_small': '1qd45xXfDwdZjktLFwQb-et-mAaFeCzOR',
        'train_tiny': '1I-2Z0uXLd4QwhZQQltp817Kn3J0Xgbui',
        'test': '1RfPou3pFKpuHDJZ-D9XDFzgvwpUBFlDr',
        'test_small': '1wbRsog0n7uGlHIPGLhyN-PMeT2kdQ21I',
```

```
'test_tiny': '1viiB0s041CNsAK4itvX8PnYthJ-MDnQc'
}'''

DATASETS_LINKS = {
  'train': '18bNP8R_k8FYq0Gx0DnC2j_UEOaGqVl14',
  'train_small': '1d-FUmCUvuYyzbMkeD64mT88yW3SBOd6u',
  'train_tiny': '1zdQ4BoKXR-bRU0j0_ja5LeDjl_bPtbGO',
  'test': '14lLsHGRxcTlMkX2Y5j9KxH1W62ZjSiye',
  'test_small': '1Poc6jx3jaHGoYIdAnOIwA7YFgDFuCdEY',
  'test_tiny': '1JcDlKmFQ-ohdFVMQDINGY2EauuSGSVgv'
}
```

Импорт необходимых зависимостей:

```
In [6]: from pathlib import Path
   import numpy as np
   from typing import List
   #from tqdm.notebook import tqdm
   #from time import sleep
   from PIL import Image
   import IPython.display
   from sklearn.metrics import balanced_accuracy_score
   import gdown
```

Класс Dataset

Предназначен для работы с наборами данных, обеспечивает чтение изображений и соответствующих меток, а также формирование пакетов (батчей).

```
In [7]: class Dataset:
            def __init__(self, name):
                self.name = name
                self.is_loaded = False
                url = f"https://drive.google.com/uc?export=download&confirm=pbef&id={DATASI
                output = f'{name}.npz'
                gdown.download(url, output, quiet=False)
                print(f'Loading dataset {self.name} from npz.')
                np_obj = np.load(f'{name}.npz')
                self.images = np_obj['data']
                self.labels = np_obj['labels']
                self.n_files = self.images.shape[0]
                self.is loaded = True
                print(f'Done. Dataset {name} consists of {self.n_files} images.')
            def image(self, i):
                # read i-th image in dataset and return it as numpy array
                if self.is loaded:
                    return self.images[i, :, :, :]
            def images_seq(self, n=None):
                # sequential access to images inside dataset (is needed for testing)
                for i in range(self.n_files if not n else n):
                    yield self.image(i)
            def random_image_with_label(self):
                # get random image with label from dataset
                i = np.random.randint(self.n files)
                return self.image(i), self.labels[i]
```

```
def random_batch_with_labels(self, n):
    # create random batch of images with labels (is needed for training)
    indices = np.random.choice(self.n_files, n)
    imgs = []
    for i in indices:
        img = self.image(i)
        imgs.append(self.image(i))
    logits = np.array([self.labels[i] for i in indices])
    return np.stack(imgs), logits

def image_with_label(self, i: int):
    # return i-th image with label from dataset
    return self.image(i), self.labels[i]
```

Пример использвания класса Dataset

Загрузим обучающий набор данных, получим произвольное изображение с меткой. После чего визуализируем изображение, выведем метку. В будущем, этот кусок кода можно закомментировать или убрать.

Got numpy array of shape (224, 224, 3), and label with code 8. Label code corresponds to TUM class.

Класс Metrics

Реализует метрики точности, используемые для оценивания модели:

- 1. точность,
- 2. сбалансированную точность.

```
In [8]: class Metrics:

    @staticmethod
    def accuracy(gt: List[int], pred: List[int]):
        assert len(gt) == len(pred), 'gt and prediction should be of equal length'
        return sum(int(i[0] == i[1]) for i in zip(gt, pred)) / len(gt)

    @staticmethod
    def accuracy_balanced(gt: List[int], pred: List[int]):
        return balanced_accuracy_score(gt, pred)

    @staticmethod
    def print_all(gt: List[int], pred: List[int], info: str):
        print(f'metrics for {info}:')
        print('\t accuracy {:.4f}:'.format(Metrics.accuracy(gt, pred)))
        print('\t balanced accuracy {:.4f}:'.format(Metrics.accuracy_balanced(gt, pred)))
```

Класс Model

Класс, хранящий в себе всю информацию о модели.

Вам необходимо реализовать методы save, load для сохранения и заргрузки модели. Особенно актуально это будет во время тестирования на дополнительных наборах данных.

Пожалуйста, убедитесь, что сохранение и загрузка модели работает корректно. Для этого обучите модель, протестируйте, сохраните ее в файл, перезапустите среду выполнения, загрузите обученную модель из файла, вновь протестируйте ее на тестовой выборке и убедитесь в том, что получаемые метрики совпадают с полученными для тестовой выбрки ранее.

Также, Вы можете реализовать дополнительные функции, такие как:

- 1. валидацию модели на части обучающей выборки;
- 2. использование кроссвалидации;
- 3. автоматическое сохранение модели при обучении;
- 4. загрузку модели с какой-то конкретной итерации обучения (если используется итеративное обучение);
- 5. вывод различных показателей в процессе обучения (например, значение функции потерь на каждой эпохе);
- 6. построение графиков, визуализирующих процесс обучения (например, график зависимости функции потерь от номера эпохи обучения);
- 7. автоматическое тестирование на тестовом наборе/наборах данных после каждой эпохи обучения (при использовании итеративного обучения);
- 8. автоматический выбор гиперпараметров модели во время обучения;
- 9. сохранение и визуализацию результатов тестирования;

10. Использование аугментации и других способов синтетического расширения набора данных (дополнительным плюсом будет обоснование необходимости и обоснование выбора конкретных типов аугментации)

11. и т.д.

Полный список опций и дополнений приведен в презентации с описанием задания.

При реализации дополнительных функций допускается добавление параметров в существующие методы и добавление новых методов в класс модели.

```
import keras
import tensorflow as tf
from keras import layers
from keras.applications import EfficientNetV2S
from sklearn.model_selection import train_test_split
from keras import callbacks
import matplotlib.pyplot as plt
```

```
from tensorflow.python.util.tf_export import kwarg_only
In [36]:
         class Model:
             def __init__(self):
                 # аугментация
                 data_augmentation = keras.Sequential(
                     layers.RandomFlip(),
                     layers.RandomRotation(0.2),
                     layers.RandomZoom((-0.2, 0)),
                 )
                 self.model_1_epoch_num = 40
                 self.model_1 = keras.models.Sequential()
                 self.model 1.add(layers.Input(shape=(224, 224, 3)))
                 # augmentation layer
                 self.model_1.add(data_augmentation)
                 self.model_1.add(layers.Normalization())
                 self.model 1.add(EfficientNetV2S(include top=False, input shape=(224, 224,
                 self.model_1.add(layers.Flatten())
                 self.model 1.add(layers.Dense(9, activation='softmax'))
                 self.model 1.compile(optimizer=keras.optimizers.Adam(),
                                       loss=keras.losses.SparseCategoricalCrossentropy(from !
                                       metrics=['sparse categorical accuracy'])
             def save(self, name: str):
                 print(f'saving started')
                 self.model_1.save(f'/content/drive/MyDrive/{name}.hdf5')
                 print(f'saving done')
             def load(self, name: str = 'best'):
                 print(f'loading started')
                 name_to_id_dict = {
                      'best': '1-8StHduxeVrtZAEl-5AQIPT0YQj11Rso'
                 output = f'{name}.hdf5'
                 gdown.download(f'https://drive.google.com/uc?id={name_to_id_dict[name]}', (
                 self.model 1 = tf.keras.models.load model(f'{name}.hdf5')
```

```
print(f'loading done')
def loading_history(self, name: str = 'model_1_cur_logs'):
    print(f'loading started')
    name to id dict = {
        'model_1_cur_logs': '1-49Mm_4ePquWz9ydjz6V54N8O7xVMc7X'
   output = f'{name}.csv'
    gdown.download(f'https://drive.google.com/uc?id={name_to_id_dict[name]}', (
    self.history_1 = pd.read_csv(f'{name}.csv')
    print(f'loading done')
def train(self, dataset: Dataset, val_dataset = None):
    # you can add some plots for better visualization,
    # you can add model autosaving during training,
   # etc.
   print(f'training started')
   if val_dataset is None:
        self.train_1(dataset.images, dataset.labels)
        self.train_1(dataset.images, dataset.labels, (val_dataset.images, val_d
    print(f'training done')
def train_1(self, images_train, labels_train, validation_data=None):
    # weights of different classes
   val, counts = np.unique(labels_train, return_counts=True)
    sort = np.argsort(val)
   val = val[sort]
   counts = 1 / (counts[sort] + 0.001) * labels train.shape[0] / 2
   weights = dict(zip(val, counts))
   print("weights done")
   # splitting data
    if validation data:
        images_train = images_train
        labels_train = labels_train
    else:
        # валидация
        images_train, images_val, labels_train, labels_val = train_test_split()
        validation_data = (images_val, labels_val)
   # callbacks
    initial_learning_rate = 0.0001
    def lr exp decay(epoch, lr):
        k = 0.1
        return initial_learning_rate * np.exp(-k*epoch)
    # сохранение модели
   checkpoint = keras.callbacks.ModelCheckpoint('/content/drive/MyDrive/model
                                                  verbose=1, save best only=True
   # выбор гиперпараметров
    # (количество эпох)
   earlystopping = keras.callbacks.EarlyStopping(monitor='val loss', min delta
                                                  mode='auto', baseline=None)
    # (learning rate)
    lrscheduler = keras.callbacks.LearningRateScheduler(lr_exp_decay, verbose=
    reduce_lr = keras.callbacks.ReduceLROnPlateau(monitor='val_loss', factor=0
```

```
mode='auto', min_delta=0.01,
   # сохранение показателей
    csvlogger = keras.callbacks.CSVLogger('/content/drive/MyDrive/model_1_cur_]
    callbacks = [lrscheduler, checkpoint, earlystopping, reduce lr, csvlogger]
   # train
   # вывод показателей
   # (fit выводит показатели для каждой эпохи)
    self.train = self.model_1.fit(images_train, labels_train,
                                      epochs=self.model_1_epoch_num,
                                      class_weight=weights,
                                      validation data=validation data,
                                      callbacks=callbacks)
   self.history_1 = self.train.history
    self.model_1.save(f'/content/drive/MyDrive/cur_trial_1.hdf5')
    print("model_1 done")
def test_on_dataset(self, dataset: Dataset, limit=None):
    # you can upgrade this code if you want to speed up testing using batches
    n = dataset.n_files if not limit else int(dataset.n_files * limit)
    predictions = self.test_on_dataset_1(dataset.images[:n])
   return predictions
def test_on_dataset_1(self, images):
    predictions_1 = tf.argmax(self.model_1.predict(images), axis=1)
    return predictions_1
def test_on_image(self, img: np.ndarray):
   # todo: replace this code
    img_array = tf.keras.utils.img_to_array(img)
    img_array = tf.expand_dims(img_array, 0)
    prediction = self.model.predict(img_array)
   return prediction
def learning_plots(self):
     acc = self.history_1['sparse_categorical_accuracy']
     val_acc = self.history_1['val_sparse_categorical_accuracy']
     loss = self.history 1['loss']
     val_loss = self.history_1['val_loss']
     lr = self.history_1['lr']
     epochs_range = range(len(lr))
     plt.figure(figsize=(15, 5))
     plt.subplot(1, 3, 1)
     plt.plot(epochs_range, acc, label='Training Accuracy')
     plt.plot(epochs_range, val_acc, label='Validation Accuracy')
     plt.legend(loc='lower right')
      plt.title('Training and Validation Accuracy')
     plt.grid()
      plt.subplot(1, 3, 2)
     plt.plot(epochs_range, loss, label='Training Loss')
     plt.plot(epochs_range, val_loss, label='Validation Loss')
     plt.legend(loc='upper right')
     plt.title('Training and Validation Loss')
     plt.grid()
     plt.subplot(1, 3, 3)
```

```
plt.plot(epochs_range, lr, label='Learning rate')
                   plt.legend(loc='upper right')
                   plt.title('Learning rate')
                   plt.grid()
                   plt.show()
In [ ]: from sklearn.model_selection import KFold
        from sklearn.metrics import balanced_accuracy_score
        from collections import defaultdict
In [ ]: # кросс-валидация
        def cross_val(dataset: Dataset, n_splits=3):
             X = dataset.images
             y = dataset.labels
             scorer = balanced accuracy score
             cv = KFold(n_splits=n_splits, shuffle=True, random_state=42)
             res=[]
             t = cv.split(X)
             for train_i, test_i in t:
                X_train = X[train_i]
                 y_train = y[train_i]
                 X_{\text{test}} = X[\text{test_i}]
                 y_test = y[test_i]
                 model = Model()
                 model.train_1(images_train=X_train, labels_train=y_train, validation_data=
                 pred = model.test_on_dataset_1(X_test)
                 res.append(scorer(y_test, pred))
             splits_num = range(len(res))
             plt.figure(figsize=(4, 3))
             plt.plot(splits_num, res, label='accuracy')
             plt.legend(loc='lower right')
             plt.title('Cross validation accuracy')
             plt.ylim([0,1])
             plt.grid()
             plt.show()
             return res
```

Классификация изображений

Классификация изображений. Используем полные датасеты train, test.

```
In []: d_train = Dataset('train')

Downloading...
From: https://drive.google.com/uc?export=download&confirm=pbef&id=18bNP8R_k8FYq0Gx
0DnC2j_UEOaGqVl14
To: /content/train.npz
100%| 2.10G/2.10G [00:09<00:00, 218MB/s]
Loading dataset train from npz.
Done. Dataset train consists of 18000 images.</pre>
```

Обучение модели

Используется аугментация данных стандартными функциями библиотеки keras.layers. Далее используется архитектура EfficientNetV2S с уже обученными на ImageNet слоями. После нее добавлен обычный полносвязный слой с 9 выходами и функцией активации softmax для окончательной классификации.

Модель обучена на 14 эпохах.

Использованы callback -функции:

- LearningRateScheduler learning rate зависит от эпохи (экспоненциально)
- ModelCheckpoint периодически сохраняет модель (только с лучшими весами)
- EarlyStopping ранняя остановка для недопуска переобучения
- ReduceLROnPlateau уменьшить learning rate, если лосс выходит на плато
- CSVLogger сохранение информации об обучении (loss, accuracy, ...) в формате .csv

```
In [ ]: model = Model()
   if not EVALUATE_ONLY:
        model.train(d_train)
        model.save('best')
   else:
        model.load('best')
```

```
Downloading data from https://storage.googleapis.com/tensorflow/keras-application
s/efficientnet_v2/efficientnetv2-s_notop.h5
training started
weights done
Epoch 1: LearningRateScheduler setting learning rate to 0.0001.
Epoch 1/40
ical_accuracy: 0.8936
Epoch 1: val_loss improved from inf to 0.15565, saving model to /content/drive/MyD
rive/model_1_cur.hdf5
_categorical_accuracy: 0.8936 - val_loss: 0.1556 - val_sparse_categorical_accurac
y: 0.9544 - lr: 1.0000e-04
Epoch 2: LearningRateScheduler setting learning rate to 9.048374180359596e-05.
Epoch 2/40
ical accuracy: 0.9618
Epoch 2: val_loss improved from 0.15565 to 0.10841, saving model to /content/driv
e/MyDrive/model 1 cur.hdf5
_categorical_accuracy: 0.9618 - val_loss: 0.1084 - val_sparse_categorical_accurac
y: 0.9633 - 1r: 9.0484e-05
Epoch 3: LearningRateScheduler setting learning rate to 8.187307530779819e-05.
Epoch 3/40
ical_accuracy: 0.9727
Epoch 3: val loss improved from 0.10841 to 0.06697, saving model to /content/driv
e/MyDrive/model 1 cur.hdf5
_categorical_accuracy: 0.9727 - val_loss: 0.0670 - val_sparse_categorical_accurac
y: 0.9767 - lr: 8.1873e-05
Epoch 4: LearningRateScheduler setting learning rate to 7.408182206817179e-05.
Epoch 4/40
ical accuracy: 0.9810
Epoch 4: val_loss improved from 0.06697 to 0.04043, saving model to /content/driv
e/MyDrive/model 1 cur.hdf5
_categorical_accuracy: 0.9810 - val_loss: 0.0404 - val_sparse_categorical_accurac
y: 0.9856 - lr: 7.4082e-05
Epoch 5: LearningRateScheduler setting learning rate to 6.703200460356394e-05.
Epoch 5/40
ical_accuracy: 0.9851
Epoch 5: val loss did not improve from 0.04043
535/535 [========================] - 258s 482ms/step - loss: 0.2172 - sparse
_categorical_accuracy: 0.9851 - val_loss: 0.0734 - val_sparse_categorical_accurac
y: 0.9733 - lr: 6.7032e-05
Epoch 6: LearningRateScheduler setting learning rate to 6.065306597126335e-05.
Epoch 6/40
ical accuracy: 0.9874
Epoch 6: val loss did not improve from 0.04043
535/535 [============] - 258s 482ms/step - loss: 0.1813 - sparse
_categorical_accuracy: 0.9874 - val_loss: 0.0729 - val_sparse_categorical_accurac
y: 0.9767 - lr: 6.0653e-05
```

```
Epoch 7: LearningRateScheduler setting learning rate to 5.488116360940264e-05.
Epoch 7/40
ical_accuracy: 0.9905
Epoch 7: val loss did not improve from 0.04043
535/535 [========================] - 258s 482ms/step - loss: 0.1367 - sparse
_categorical_accuracy: 0.9905 - val_loss: 0.0883 - val_sparse_categorical_accurac
y: 0.9756 - lr: 5.4881e-05
Epoch 8: LearningRateScheduler setting learning rate to 4.965853037914095e-05.
Epoch 8/40
ical accuracy: 0.9899
Epoch 8: val loss did not improve from 0.04043
_categorical_accuracy: 0.9899 - val_loss: 0.0738 - val_sparse_categorical_accurac
y: 0.9822 - lr: 4.9659e-05
Epoch 9: LearningRateScheduler setting learning rate to 4.493289641172216e-05.
Epoch 9/40
ical accuracy: 0.9921
Epoch 9: val_loss improved from 0.04043 to 0.03137, saving model to /content/driv
e/MyDrive/model_1_cur.hdf5
Epoch 9: ReduceLROnPlateau reducing learning rate to 2.246644908154849e-05.
_categorical_accuracy: 0.9921 - val_loss: 0.0314 - val_sparse_categorical_accurac
y: 0.9878 - lr: 4.4933e-05
Epoch 10: LearningRateScheduler setting learning rate to 4.0656965974059915e-05.
Epoch 10/40
ical_accuracy: 0.9928
Epoch 10: val_loss did not improve from 0.03137
_categorical_accuracy: 0.9928 - val_loss: 0.0464 - val_sparse_categorical_accurac
y: 0.9856 - lr: 4.0657e-05
Epoch 11: LearningRateScheduler setting learning rate to 3.678794411714424e-05.
Epoch 11/40
ical accuracy: 0.9932
Epoch 11: val_loss did not improve from 0.03137
535/535 [========================] - 257s 481ms/step - loss: 0.0922 - sparse
_categorical_accuracy: 0.9932 - val_loss: 0.0368 - val_sparse_categorical_accurac
y: 0.9911 - lr: 3.6788e-05
Epoch 12: LearningRateScheduler setting learning rate to 3.3287108369807955e-05.
Epoch 12/40
ical accuracy: 0.9953
Epoch 12: val_loss did not improve from 0.03137
535/535 [========================] - 258s 481ms/step - loss: 0.0587 - sparse
_categorical_accuracy: 0.9953 - val_loss: 0.0500 - val_sparse_categorical_accurac
y: 0.9889 - 1r: 3.3287e-05
Epoch 13: LearningRateScheduler setting learning rate to 3.0119421191220204e-05.
Epoch 13/40
ical accuracy: 0.9954
Epoch 13: val_loss did not improve from 0.03137
_categorical_accuracy: 0.9954 - val_loss: 0.0323 - val_sparse_categorical_accurac
```

```
y: 0.9878 - lr: 3.0119e-05
       Epoch 14: LearningRateScheduler setting learning rate to 2.725317930340126e-05.
       Epoch 14/40
       ical accuracy: 0.9958
       Epoch 14: val_loss did not improve from 0.03137
       Epoch 14: ReduceLROnPlateau reducing learning rate to 1.3626589861814864e-05.
       535/535 [============] - 260s 485ms/step - loss: 0.0576 - sparse
       _categorical_accuracy: 0.9958 - val_loss: 0.0426 - val_sparse_categorical_accurac
       y: 0.9833 - lr: 2.7253e-05
       Epoch 14: early stopping
       model 1 done
       training done
       saving started
       saving done
In [ ]:
```

Тестируем на датасете test

Чтение данных

Есть возможность считывать веса и данные обучения лучшей модели.

141/141 [=========] - 20s 125ms/step

```
metrics for full test:
                   accuracy 0.9916:
                   balanced accuracy 0.9916:
          import pandas as pd
In [22]:
          model_1.loading_history()
In [39]:
          loading started
          Downloading...
          From: https://drive.google.com/uc?id=1-49Mm 4ePquWz9ydjz6V54N8O7xVMc7X
          To: /content/model_1_cur_logs.csv
          100% | 1.40k/1.40k [00:00<00:00, 2.91MB/s]
          loading done
In [40]:
          model_1.history_1.head()
Out[40]:
             epoch
                        loss
                                   Ir sparse categorical accuracy
                                                                val loss val sparse categorical accuracy
                 0 1.451855 0.000100
                                                      0.893626 0.155648
                                                                                            0.954444
                 1 0.536886 0.000090
                                                      0.961813 0.108412
                                                                                            0.963333
          2
                 2 0.366590 0.000082
                                                      0.972749 0.066970
                                                                                            0.976667
                 3 0.288158 0.000074
                                                      0.980994 0.040435
                                                                                            0.985556
                 4 0.217177 0.000067
                                                      0.985146 0.073438
                                                                                            0.973333
```

Визуализации

Матрица ошибок для выборки test.

```
In [45]: final_model = Model()
         final model.load('best')
         d_test = Dataset('test')
         pred 1 = final model.test on dataset(d test)
         Metrics.print_all(d_test.labels, pred_1, 'test')
         loading started
         Downloading...
         From: https://drive.google.com/uc?id=1-8StHduxeVrtZAEl-5AQIPT0YQj11Rso
         To: /content/best.hdf5
         100%
                    251M/251M [00:03<00:00, 68.9MB/s]
         loading done
         Downloading...
         From: https://drive.google.com/uc?export=download&confirm=pbef&id=141LsHGRxcTlMkX2
         Y5j9KxH1W62ZjSiye
         To: /content/test.npz
                  525M/525M [00:05<00:00, 89.5MB/s]
         100%
         Loading dataset test from npz.
         Done. Dataset test consists of 4500 images.
         141/141 [=========== ] - 20s 125ms/step
         metrics for test:
                 accuracy 0.9916:
                 balanced accuracy 0.9916:
```

01.12.2022, 15:48

```
notebook final
In [46]: # матрица ошибок
          import sklearn
          conf_matr = sklearn.metrics.confusion_matrix(d_test.labels[:len(pred_1)], pred_1)
          disp = sklearn.metrics.ConfusionMatrixDisplay(conf_matr)
          disp.plot()
          <sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at 0x7f741ef89eb0>
Out[46]:
                                                    500
               496
                   0
               0
                  498
                                 0
                                            0
            1
                                                    400
                          0
            2
                                            0
            3
               0
                                                   - 300
            4
                       0
                             499
                                 0
                                     0
            5
                                                   200
               0
                                 498
               0
                          0
                                        0
                   0
            6
                                                   - 100
            7
               0
                          0
                              0
                                        486
                                         0
            8
               0
                   1
                       2
                          3
                              4
                                 5
                                     6
                                         7
                                            8
                         Predicted label
In [47]:
         mcm = sklearn.metrics.multilabel_confusion_matrix(d_test.labels[:len(pred_1)], pred
          tn = mcm[:, 0, 0]
          tp = mcm[:, 1, 1]
          fn = mcm[:, 1, 0]
          fp = mcm[:, 0, 1]
          print("Sensitivity for each label:")
          print(tp / (tp + fn))
          print("Specificity for each label:")
          print(tn / (tn + fp))
          Sensitivity for each label:
          [0.992 0.996 0.986 1.
                                    0.998 0.996 0.988 0.972 0.996]
          Specificity for each label:
          [1.
                   0.9995 0.9995 1.
                                             0.998
                                                     0.997
                                                              0.99925 0.9985 0.99875]
          Параметры (loss, accuracy, learning rate) в процессе обучения
          final_model.loading_history()
In [48]:
          loading started
```

Downloading... From: https://drive.google.com/uc?id=1-49Mm_4ePquWz9ydjz6V54N8O7xVMc7X To: /content/model_1_cur_logs.csv | 1.40k/1.40k [00:00<00:00, 3.68MB/s]

loading done

```
In [49]:
         # графики обучения
         final_model.learning_plots()
```


In []:

Кросс-валидация

Написана также функция кросс-валидации для модели.

Ниже приведен пример работы функции. На полном датасете проводить кроссвалидацию слишком долго, и, в общем-то, не особо имеет смысл.

Модель обучается на 5 эпохах на датасете train_tiny.

weights done

```
Epoch 1: LearningRateScheduler setting learning rate to 0.001.
Epoch 1/5
al_accuracy: 0.6583
Epoch 1: val_loss improved from inf to 1.20344, saving model to /content/drive/MyD
rive/model 1 cur.hdf5
tegorical_accuracy: 0.6583 - val_loss: 1.2034 - val_sparse_categorical_accuracy:
0.8111 - lr: 0.0010
Epoch 2: LearningRateScheduler setting learning rate to 0.0009048374180359595.
Epoch 2/5
al_accuracy: 0.8139
Epoch 2: val_loss improved from 1.20344 to 0.46617, saving model to /content/driv
e/MyDrive/model_1_cur.hdf5
tegorical_accuracy: 0.8139 - val_loss: 0.4662 - val_sparse_categorical_accuracy:
0.8889 - lr: 9.0484e-04
Epoch 3: LearningRateScheduler setting learning rate to 0.0008187307530779819.
Epoch 3/5
al_accuracy: 0.8597
Epoch 3: val_loss improved from 0.46617 to 0.42818, saving model to /content/driv
e/MyDrive/model_1_cur.hdf5
tegorical_accuracy: 0.8597 - val_loss: 0.4282 - val_sparse_categorical_accuracy:
0.9056 - lr: 8.1873e-04
Epoch 4: LearningRateScheduler setting learning rate to 0.0007408182206817179.
Epoch 4/5
al_accuracy: 0.8972
Epoch 4: val_loss did not improve from 0.42818
tegorical accuracy: 0.8972 - val loss: 1.0566 - val sparse categorical accuracy:
0.8222 - lr: 7.4082e-04
Epoch 5: LearningRateScheduler setting learning rate to 0.0006703200460356394.
Epoch 5/5
al_accuracy: 0.9000
Epoch 5: val loss did not improve from 0.42818
23/23 [=============] - 12s 517ms/step - loss: 2.3558 - sparse_ca
tegorical accuracy: 0.9000 - val loss: 0.5252 - val sparse categorical accuracy:
0.9056 - lr: 6.7032e-04
model 1 done
6/6 [======= ] - 3s 129ms/step
weights done
Epoch 1: LearningRateScheduler setting learning rate to 0.001.
Epoch 1/5
al accuracy: 0.6431
Epoch 1: val_loss improved from inf to 1.53536, saving model to /content/drive/MyD
rive/model 1 cur.hdf5
tegorical_accuracy: 0.6431 - val_loss: 1.5354 - val_sparse_categorical_accuracy:
0.7167 - lr: 0.0010
```

Epoch 2: LearningRateScheduler setting learning rate to 0.0009048374180359595.

```
Epoch 2/5
al accuracy: 0.7667
Epoch 2: val_loss improved from 1.53536 to 1.46090, saving model to /content/driv
e/MyDrive/model 1 cur.hdf5
tegorical_accuracy: 0.7667 - val_loss: 1.4609 - val_sparse_categorical_accuracy:
0.7167 - lr: 9.0484e-04
Epoch 3: LearningRateScheduler setting learning rate to 0.0008187307530779819.
Epoch 3/5
al accuracy: 0.8292
Epoch 3: val loss improved from 1.46090 to 0.70322, saving model to /content/driv
e/MyDrive/model_1_cur.hdf5
tegorical_accuracy: 0.8292 - val_loss: 0.7032 - val_sparse_categorical_accuracy:
0.8944 - lr: 8.1873e-04
Epoch 4: LearningRateScheduler setting learning rate to 0.0007408182206817179.
Epoch 4/5
al accuracy: 0.8264
Epoch 4: val_loss did not improve from 0.70322
tegorical_accuracy: 0.8264 - val_loss: 0.8855 - val_sparse_categorical_accuracy:
0.8833 - lr: 7.4082e-04
Epoch 5: LearningRateScheduler setting learning rate to 0.0006703200460356394.
Epoch 5/5
al accuracy: 0.8653
Epoch 5: val_loss did not improve from 0.70322
tegorical_accuracy: 0.8653 - val_loss: 0.8769 - val_sparse_categorical_accuracy:
0.8889 - lr: 6.7032e-04
model_1 done
6/6 [=======] - 4s 133ms/step
weights done
Epoch 1: LearningRateScheduler setting learning rate to 0.001.
Epoch 1/5
al_accuracy: 0.6458
Epoch 1: val_loss improved from inf to 2.09458, saving model to /content/drive/MyD
rive/model 1 cur.hdf5
tegorical accuracy: 0.6458 - val loss: 2.0946 - val sparse categorical accuracy:
0.7167 - lr: 0.0010
Epoch 2: LearningRateScheduler setting learning rate to 0.0009048374180359595.
Epoch 2/5
al_accuracy: 0.7972
Epoch 2: val_loss improved from 2.09458 to 1.53172, saving model to /content/driv
e/MyDrive/model 1 cur.hdf5
tegorical_accuracy: 0.7972 - val_loss: 1.5317 - val_sparse_categorical_accuracy:
0.6389 - lr: 9.0484e-04
Epoch 3: LearningRateScheduler setting learning rate to 0.0008187307530779819.
Epoch 3/5
al_accuracy: 0.8194
```

```
Epoch 3: val_loss improved from 1.53172 to 1.25236, saving model to /content/driv
e/MyDrive/model 1 cur.hdf5
tegorical_accuracy: 0.8194 - val_loss: 1.2524 - val_sparse_categorical_accuracy:
0.8389 - lr: 8.1873e-04
Epoch 4: LearningRateScheduler setting learning rate to 0.0007408182206817179.
Epoch 4/5
al_accuracy: 0.8514
Epoch 4: val_loss improved from 1.25236 to 0.80076, saving model to /content/driv
e/MyDrive/model_1_cur.hdf5
tegorical accuracy: 0.8514 - val loss: 0.8008 - val sparse categorical accuracy:
0.8278 - lr: 7.4082e-04
Epoch 5: LearningRateScheduler setting learning rate to 0.0006703200460356394.
Epoch 5/5
al_accuracy: 0.9208
Epoch 5: val_loss did not improve from 0.80076
tegorical_accuracy: 0.9208 - val_loss: 0.8178 - val_sparse_categorical_accuracy:
0.8944 - lr: 6.7032e-04
model 1 done
6/6 [======= ] - 4s 131ms/step
weights done
Epoch 1: LearningRateScheduler setting learning rate to 0.001.
Epoch 1/5
al accuracy: 0.6403
Epoch 1: val_loss improved from inf to 1.83547, saving model to /content/drive/MyD
rive/model_1_cur.hdf5
tegorical_accuracy: 0.6403 - val_loss: 1.8355 - val_sparse_categorical_accuracy:
0.7056 - lr: 0.0010
Epoch 2: LearningRateScheduler setting learning rate to 0.0009048374180359595.
Epoch 2/5
al accuracy: 0.8264
Epoch 2: val_loss did not improve from 1.83547
tegorical_accuracy: 0.8264 - val_loss: 1.8554 - val_sparse_categorical_accuracy:
0.7889 - lr: 9.0484e-04
Epoch 3: LearningRateScheduler setting learning rate to 0.0008187307530779819.
Epoch 3/5
al accuracy: 0.8458
Epoch 3: val_loss improved from 1.83547 to 1.31485, saving model to /content/driv
e/MyDrive/model_1_cur.hdf5
tegorical_accuracy: 0.8458 - val_loss: 1.3149 - val_sparse_categorical_accuracy:
0.8000 - lr: 8.1873e-04
Epoch 4: LearningRateScheduler setting learning rate to 0.0007408182206817179.
Epoch 4/5
al accuracy: 0.8625
Epoch 4: val_loss improved from 1.31485 to 0.70417, saving model to /content/driv
e/MyDrive/model 1 cur.hdf5
```

```
tegorical_accuracy: 0.8625 - val_loss: 0.7042 - val_sparse_categorical_accuracy:
0.8722 - lr: 7.4082e-04
Epoch 5: LearningRateScheduler setting learning rate to 0.0006703200460356394.
al accuracy: 0.9097
Epoch 5: val_loss improved from 0.70417 to 0.55556, saving model to /content/driv
e/MyDrive/model_1_cur.hdf5
tegorical_accuracy: 0.9097 - val_loss: 0.5556 - val_sparse_categorical_accuracy:
0.9000 - lr: 6.7032e-04
model 1 done
6/6 [======= ] - 4s 134ms/step
weights done
Epoch 1: LearningRateScheduler setting learning rate to 0.001.
Epoch 1/5
al_accuracy: 0.6542
Epoch 1: val_loss improved from inf to 2.14505, saving model to /content/drive/MyD
rive/model 1 cur.hdf5
tegorical_accuracy: 0.6542 - val_loss: 2.1450 - val_sparse_categorical_accuracy:
0.6889 - lr: 0.0010
Epoch 2: LearningRateScheduler setting learning rate to 0.0009048374180359595.
Epoch 2/5
al_accuracy: 0.7861
Epoch 2: val loss did not improve from 2.14505
tegorical_accuracy: 0.7861 - val_loss: 2.2032 - val_sparse_categorical_accuracy:
0.7333 - lr: 9.0484e-04
Epoch 3: LearningRateScheduler setting learning rate to 0.0008187307530779819.
Epoch 3/5
al accuracy: 0.8028
Epoch 3: val_loss improved from 2.14505 to 0.59682, saving model to /content/driv
e/MyDrive/model_1_cur.hdf5
tegorical_accuracy: 0.8028 - val_loss: 0.5968 - val_sparse_categorical_accuracy:
0.8278 - lr: 8.1873e-04
Epoch 4: LearningRateScheduler setting learning rate to 0.0007408182206817179.
Epoch 4/5
al accuracy: 0.8556
Epoch 4: val_loss improved from 0.59682 to 0.58581, saving model to /content/driv
e/MyDrive/model 1 cur.hdf5
tegorical_accuracy: 0.8556 - val_loss: 0.5858 - val_sparse_categorical_accuracy:
0.9056 - lr: 7.4082e-04
Epoch 5: LearningRateScheduler setting learning rate to 0.0006703200460356394.
Epoch 5/5
al accuracy: 0.8986
Epoch 5: val loss did not improve from 0.58581
tegorical_accuracy: 0.8986 - val_loss: 0.7394 - val_sparse_categorical_accuracy:
0.8722 - lr: 6.7032e-04
```

```
model_1 done
6/6 [=======] - 4s 132ms/step
```


Использование аугментации данных

В нейронной сети используется слой аугментации данных (поворот вертикальный/горизонтальный, поворот на угол, увеличение масштаба изображения).

Выбраны параметры, не слишком сильно увеличивающие изображение (чтобы не терять в качестве). Zoom выбран исключительно отрицательным чтобы не дополнять изображение паддингом (т.к. тогда создаются зеркальные края, не всегда отражающие реальную структуру ткани).

```
In [ ]: import keras
    from keras import layers
    import matplotlib.pyplot as plt

plt.figure(figsize=(3, 3))
    images, lbl = d_train.random_batch_with_labels(1)
    print(images.shape)
    ax = plt.subplot(1, 1, 1)
    plt.imshow(images[0].astype("uint8"))
    plt.axis("off")

(1, 224, 224, 3)
    (-0.5, 223.5, 223.5, -0.5)
```

```
In [ ]: plt.figure(figsize=(10, 10))
    for i in range(9):
        augmented_images = data_augmentation(images, 0.1)
        ax = plt.subplot(3, 3, i + 1)
        plt.imshow(augmented_images[0].numpy().astype("uint8"))
        plt.axis("off")
```


In []:

Пример тестирования модели на полном наборе данных:

```
In [ ]: # evaluating model on full test dataset (may take time)
if TEST_ON_LARGE_DATASET:
    pred_2 = model.test_on_dataset(d_test)
    Metrics.print_all(d_test.labels, pred_2, 'test')
```

Результат работы пайплайна обучения и тестирования выше тоже будет оцениваться. Поэтому не забудьте присылать на проверку ноутбук с выполнеными ячейками кода с демонстрациями метрик обучения, графиками и т.п. В этом пайплайне Вам необходимо продемонстрировать работу всех реализованных дополнений, улучшений и т.п.

Настоятельно рекомендуется после получения пайплайна с полными результатами обучения экспортировать ноутбук в pdf (файл -> печать) и прислать этот pdf вместе с самим ноутбуком.

Тестирование модели на других наборах данных

Ваша модель должна поддерживать тестирование на других наборах данных. Для удобства, Вам предоставляется набор данных test_tiny, который представляет собой малую часть (2% изображений) набора test. Ниже приведен фрагмент кода, который будет осуществлять тестирование для оценивания Вашей модели на дополнительных тестовых наборах данных.

Прежде чем отсылать задание на проверку, убедитесь в работоспособности фрагмента кода ниже.

```
In [14]: final_model = Model()
         final model.load('best')
         d_test_tiny = Dataset('test_tiny')
         pred = final_model.test_on_dataset(d_test_tiny)
         Metrics.print_all(d_test_tiny.labels, pred, 'test_tiny')
         loading started
         Downloading...
         From: https://drive.google.com/uc?id=1-8StHduxeVrtZAEl-5AQIPT0YQj11Rso
         To: /content/best.hdf5
                    251M/251M [00:00<00:00, 293MB/s]
         100%
         loading done
         Downloading...
         From: https://drive.google.com/uc?export=download&confirm=pbef&id=1JcDlKmFQ-ohdFVM
         QDINGY2EauuSGSVgv
         To: /content/test_tiny.npz
                 | 10.6M/10.6M [00:00<00:00, 16.6MB/s]
         Loading dataset test_tiny from npz.
         Done. Dataset test_tiny consists of 90 images.
         3/3 [======== ] - 4s 484ms/step
         metrics for test_tiny:
                 accuracy 0.9889:
                 balanced accuracy 0.9889:
         Отмонтировать Google Drive.
         drive.flush_and_unmount()
```

Дополнительные "полезности"

Ниже приведены примеры использования различных функций и библиотек, которые могут быть полезны при выполнении данного практического задания.

Измерение времени работы кода

Измерять время работы какой-либо функции можно легко и непринужденно при помощи функции timeit из соответствующего модуля:

```
In []: import timeit

def factorial(n):
    res = 1
    for i in range(1, n + 1):
        res *= i
    return res

def f():
    return factorial(n=1000)

n_runs = 128
print(f'Function f is caluclated {n_runs} times in {timeit.timeit(f, number=n_runs)}
```

Scikit-learn

Для использования "классических" алгоритмов машинного обучения рекомендуется использовать библиотеку scikit-learn (https://scikit-learn.org/stable/). Пример классификации изображений цифр из набора данных MNIST при помощи классификатора SVM:

```
In [ ]: # Standard scientific Python imports
        import matplotlib.pyplot as plt
        # Import datasets, classifiers and performance metrics
        from sklearn import datasets, svm, metrics
        from sklearn.model_selection import train_test_split
        # The digits dataset
        digits = datasets.load_digits()
        # The data that we are interested in is made of 8x8 images of digits, let's
        # have a look at the first 4 images, stored in the `images` attribute of the
        # dataset. If we were working from image files, we could load them using
        # matplotlib.pyplot.imread. Note that each image must have the same size. For the
        # images, we know which digit they represent: it is given in the 'target' of
        # the dataset.
         _, axes = plt.subplots(2, 4)
        images and labels = list(zip(digits.images, digits.target))
        for ax, (image, label) in zip(axes[0, :], images_and_labels[:4]):
            ax.set axis off()
            ax.imshow(image, cmap=plt.cm.gray_r, interpolation='nearest')
            ax.set_title('Training: %i' % label)
        # To apply a classifier on this data, we need to flatten the image, to
        # turn the data in a (samples, feature) matrix:
        n_samples = len(digits.images)
        data = digits.images.reshape((n samples, -1))
        # Create a classifier: a support vector classifier
        classifier = svm.SVC(gamma=0.001)
        # Split data into train and test subsets
        X_train, X_test, y_train, y_test = train_test_split(
            data, digits.target, test_size=0.5, shuffle=False)
```

Scikit-image

Реализовывать различные операции для работы с изображениями можно как самостоятельно, работая с массивами numpy, так и используя специализированные библиотеки, например, scikit-image (https://scikit-image.org/). Ниже приведен пример использования Canny edge detector.

```
In [ ]: import numpy as np
        import matplotlib.pyplot as plt
        from scipy import ndimage as ndi
        import cv2
        from skimage import feature
        # Generate noisy image of a square
        im = d_train.images[np.random.randint(d_train.images.shape[0])][:,:,0]
        # Compute the Canny filter for two values of sigma
        edges1 = feature.canny(im)
        edges2 = feature.canny(im, sigma=2)
        ridge filter = cv2.ximgproc.RidgeDetectionFilter create()
        edges3 = ridge_filter.getRidgeFilteredImage(im)
        # display results
        fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(nrows=2, ncols=2, figsize=(8, 3),
                                             sharex=True, sharey=True)
        fig.set size inches(10, 10)
        ax1.imshow(im, cmap=plt.cm.gray)
        ax1.axis('off')
        ax1.set_title('noisy image', fontsize=20)
        ax2.imshow(edges1, cmap=plt.cm.gray)
        ax2.axis('off')
        ax2.set title(r'Canny filter, $\sigma=1$', fontsize=20)
        ax3.imshow(edges2, cmap=plt.cm.gray)
        ax3.axis('off')
        ax3.set_title(r'Canny filter, $\sigma=2$', fontsize=20)
        ax4.imshow(edges3, cmap=plt.cm.gray)
```

```
ax4.axis('off')
ax4.set_title(r'Canny filter, $\sigma=3$', fontsize=20)

fig.tight_layout()

plt.show()

In []: plt.figure(figsize=(3, 3))
    images, lbl = d_train.random_batch_with_labels(1)
    print(images.shape)
    ax = plt.subplot(1, 1, 1)
    plt.imshow(images[0].astype("uint8"))
    plt.axis("off")
```

Tensorflow 2

Для создания и обучения нейросетевых моделей можно использовать фреймворк глубокого обучения Tensorflow 2. Ниже приведен пример простейшей нейроной сети, использующейся для классификации изображений из набора данных MNIST.

```
In [ ]: # Install TensorFlow
        import tensorflow as tf
        mnist = tf.keras.datasets.mnist
        (x_train, y_train), (x_test, y_test) = mnist.load_data()
        x_train, x_test = x_train / 255.0, x_test / 255.0
        model = tf.keras.models.Sequential([
          tf.keras.layers.Flatten(input_shape=(28, 28)),
          tf.keras.layers.Dense(128, activation='relu'),
          tf.keras.layers.Dropout(0.2),
          tf.keras.layers.Dense(10, activation='softmax')
        ])
        model.compile(optimizer='adam',
                      loss='sparse categorical crossentropy',
                      metrics=['accuracy'])
        model.fit(x_train, y_train, epochs=5)
        model.evaluate(x_test, y_test, verbose=2)
```

Для эффективной работы с моделями глубокого обучения убедитесь в том, что в текущей среде Google Colab используется аппаратный ускоритель GPU или TPU. Для смены среды выберите "среда выполнения" -> "сменить среду выполнения".

Большое количество туториалов и примеров с кодом на Tensorflow 2 можно найти на официальном сайте https://www.tensorflow.org/tutorials?hl=ru.

Также, Вам может понадобиться написать собственный генератор данных для Tensorflow 2. Скорее всего он будет достаточно простым, и его легко можно будет реализовать, используя официальную документацию TensorFlow 2. Но, на всякий случай (если не удлось сразу разобраться или хочется вникнуть в тему более глубоко), можете посмотреть следующий отличный туториал:

https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly.

Numba

В некоторых ситуациях, при ручных реализациях графовых алгоритмов, выполнение многократных вложенных циклов for в python можно существенно ускорить, используя JIT-компилятор Numba (https://numba.pydata.org/). Примеры использования Numba в Google Colab можно найти тут:

- 1. https://colab.research.google.com/github/cbernet/maldives/blob/master/numba/numba_cu
- 2. https://colab.research.google.com/github/evaneschneider/parallel-programming/blob/master/COMPASS_gpu_intro.ipynb

Пожалуйста, если Вы решили использовать Numba для решения этого практического задания, еще раз подумайте, нужно ли это Вам, и есть ли возможность реализовать требуемую функциональность иным способом. Используйте Numba только при реальной необходимости.

→

Работа с zip архивами в Google Drive

Запаковка и распаковка zip архивов может пригодиться при сохранении и загрузки Вашей модели. Ниже приведен фрагмент кода, иллюстрирующий помещение нескольких файлов в zip архив с последующим чтением файлов из него. Все действия с директориями, файлами и архивами должны осущетвляться с примонтированным Google Drive.

Создадим 2 изображения, поместим их в директорию tmp внутри PROJECT_DIR, запакуем директорию tmp в архив tmp.zip.

```
In [ ]: PROJECT_DIR = "/dev/prak_nn_1/"
    arr1 = np.random.rand(100, 100, 3) * 255
    arr2 = np.random.rand(100, 100, 3) * 255

img1 = Image.fromarray(arr1.astype('uint8'))
    img2 = Image.fromarray(arr2.astype('uint8'))

p = "/content/drive/MyDrive/" + PROJECT_DIR

if not (Path(p) / 'tmp').exists():
        (Path(p) / 'tmp').mkdir()

img1.save(str(Path(p) / 'tmp' / 'img1.png'))
    img2.save(str(Path(p) / 'tmp' / 'img2.png'))

%cd $p
!zip -r "tmp.zip" "tmp"
```

Распакуем архив tmp.zip в директорию tmp2 в PROJECT_DIR. Теперь внутри директории tmp2 содержится директория tmp, внутри которой находятся 2 изображения.

```
In [ ]: p = "/content/drive/MyDrive/" + PROJECT_DIR
%cd $p
!unzip -uq "tmp.zip" -d "tmp2"
```