Amendment "B" page 2 of 8 10/650,296

DOCKET NO. 03-0861 81580 (6653)

Amendment to the Claims:

- 1 (currently amended): A method of cell placement and clock tree synthesis comprising steps of:
- (a) identifying critical paths in an integrated circuit design;
- (b) partitioning the integrated circuit design into a timing group for each of the critical paths wherein each timing group includes only critical paths;
- (c) assigning each flip-flop in a critical path to a timing group corresponding to the critical path;
- (d) performing a cell placement to minimize a function of propagation delay and maximum distance between flip-flops within each timing group; and
 - (e) constructing a clock sub-net for each timing group.
- 2 (original): The method of Claim 1 wherein each timing group contains only flip-flops that are included in a critical path.
- 3 (original): The method of Claim 1 further comprising a step of replacing a flip-flop in a critical path with a flip-flop in a non-critical path connected to the critical path.
- 4 (original): The method of Claim 3 further comprising a step of inserting a clock skew between the critical path and the non-critical path.
- 5 (original): The method of Claim 1 wherein flipflops in connected critical paths are assigned to the same

Amendment "B" page 3 of 8 10/650,296 timing group.

DOCKET NO. 03-0861 81580(6653)

- 6 (original): The method of Claim 1 wherein every flip-flop that is included in a critical path is assigned to a timing group.
- 7 (original): The method of Claim 1 further comprising a step of coupling a clock buffer to the clock subnet so that the clock buffer is equidistant from each flipflop in the timing group.
- 8 (original): The method of Claim 7 further comprising a step of coupling a clock signal to the clock buffer from a clock tree.
- 9 (original): The method of Claim 7 wherein the clock tree is a balanced clock tree.
- 10 (currently amended): A computer program product for cell placement and clock tree synthesis comprising:
- a medium for embodying a computer program for input to a computer; and
- a computer program embodied in the medium for causing the computer to perform steps of:
- (a) identifying critical paths in an integrated circuit design;
- (b) partitioning the integrated circuit design into a timing group for each of the critical paths;
- (c) assigning each flip-flop in a critical path to a timing group corresponding to the critical path wherein each timing group includes only critical paths;
 - (d) performing a cell placement to minimize a function of

Amendment "B" page 4 of 8 10/650,296

DOCKET NO. 03-0861 81580(6653)

propagation delay and maximum distance between flip-flops within each timing group; and

- (e) constructing a clock sub-net for each timing group.
- 11 (original): The computer program product of Claim 10 wherein each timing group contains only flip-flops that are included in a critical path.
- 12 (original): The computer program product of Claim 10 further comprising a step of replacing a flip-flop in a critical path with a flip-flop in a non-critical path connected to the critical path.
- 13 (original): The computer program product of Claim 12 further comprising a step of inserting a clock skew between the critical path and the non-critical path.
- 14 (original): The computer program product of Claim 10 wherein flip-flops in connected critical paths are assigned to the same timing group.
- 15 (original): The computer program product of Claim 10 wherein every flip-flop that is included in a critical path is assigned to a timing group.
- 16 (original): The computer program product of Claim 10 further comprising a step of coupling a clock buffer to the clock sub-net so that the clock buffer is equidistant from each flip-flop in the timing group.
- 17 (original): The computer program product of Claim 16 further comprising a step of coupling a clock signal

Amendment "B" page 5 of 8 10/650,296

DOCKET NO. 03-0861 81580(6653)

to the clock buffer from a clock tree.

18 (original): The computer program product of Claim 17 wherein the clock tree is a balanced clock tree.