MATEMATYKA OBLICZENIOWA

RÓŻNICZKOWANE I CAŁKOWANIE NUMERYCZNE

<u>RÓŻNICZKOWANIE – SFORMUŁOWANIE ZADANIA</u>

Na podstawie znajomości wartości y_i funkcji f(x) w punktach x_i (narzuconych lub wybieranych) wyznaczyć wartość P pochodnej funkcji w punkcie a, czyli nachylenie stycznej do funkcji w punkcie a:

Z definicji pochodnej otrzymujemy:

$$f'(x_k) = \lim_{h \to 0} \frac{f(x_k + h) - f(x_k)}{h}$$

Dla dostatecznie małego h

$$f'(x_k) \cong \frac{f(x_k+h) - f(x_k)}{h}$$

$$f'(x_k) \cong \frac{f(x_k+h) - f(x_k)}{h}$$

Wniosek:

im mniejsze h, tym lepiej przybliżymy pochodną

Ograniczenia typowe dla arytmetyki zmiennopozycyjnej na maszynach liczących :

- nie da się na komputerze przedstawić dowolnie małej liczby,
- jeżeli h będzie zbyt małe w porównaniu z x, to w argumencie x+h może dojść do zaniedbania składnika,
- dla małych h wartości f(x + h) i f(x) mogą tak nieznacznie różnić się od siebie, ze przy odejmowaniu dojdzie do utraty cyfr znaczących.

Wzory pozwalające wyznaczyć przybliżoną wartość pochodnej funkcji:

Założenie:

Na osi x wyznaczamy punkty rozłożone równomiernie w odległości h czyli: $h = x_{k+1} - x_k$

Przybliżenie pochodnej funkcji:

• Wzory dwupunktowe: pochodna prawostronna:
$$f'(x_k) = \frac{f(x_{k+1}) - f(x_k)}{h}$$

pochodna lewostronna:
$$f'(x_k) = \frac{f(x_k) - f(x_{k-1})}{h}$$

• Wzór trójpunktowy:
$$f'(x_k) = \frac{f(x_{k+1}) - f(x_{k-1})}{2h}$$

• Wzór pięciopunktowy:
$$f'(x_k) = \frac{1}{12h} \cdot (f(x_{k-2}) - 8 \cdot f(x_{k-1}) + 8 \cdot f(x_{k+1}) - f(x_{k+2}))$$

WZORY DWUPUNKTOWE

Wzory dwupunktowe:

pochodna prawostronna:

$$f'(x_k) = \frac{f(x_{k+1}) - f(x_k)}{h}$$

pochodna lewostronna:

$$f'(x_k) = \frac{f(x_k) - f(x_{k-1})}{h}$$

WZORY DWUPUNKTOWE

Wzory dwupunktowe - analiza błędu obcięcia

Rozwijamy funkcję f(x) w szereg Taylora i otrzymujemy:

$$f(x_k + h) = f(x_k) + h \cdot f'(x_k) + \frac{h^2}{2}f''(x_k) + \cdots$$

$$f(x_k - h) = f(x_k) - h \cdot f'(x_k) + \frac{h^2}{2}f''(x_k) + \cdots$$

Z powyższego rozwinięcia otrzymujemy wzory na:

pochodną prawostronną:
$$f'(x_k) = \frac{f(x_{k+1}) - f(x_k)}{h} + O(h)$$

pochodną lewostronną:
$$f'(x_k) = \frac{f(x_k) - f(x_{k-1})}{h} + O(h)$$

Przy założeniu, że na osi x punkty są rozłożone równomiernie w odległości h czyli: $h=x_{k+1}-x_k$

WZORY DWUPUNKTOWE

Wzory dwupunktowe – podsumowanie:

- wolna zbieżność,
- im mniejsze h tym większy koszt obliczeń (aby otrzymać większą dokładność konieczne jest zmniejszanie h)
- aby zminimalizować błąd przybliżenia pochodnej h powinno być liczbą maszynową.

WZÓR TRÓJPUNKTOWY

Wzór trójpunktowy (pochodna centralna) - analiza błędu obcięcia

Rozwijamy funkcję f(x) w szereg Taylora i otrzymujemy:

$$f(x_k + h) = f(x_k) + h \cdot f'(x_k) + \frac{h^2}{2}f''(x_k) + \cdots$$

$$f(x_k - h) = f(x_k) - h \cdot f'(x_k) + \frac{h^2}{2}f''(x_k) + \cdots$$

Obliczając:
$$f(x_k + h) - f(x_k - h) = 2h \cdot f'(x_k) + \frac{2h^3}{3!}f'''(x_k) + \cdots$$

Z powyższego rozwinięcia otrzymamy:

pochodną centralną:
$$f'(x_k) = \frac{f(x_{k+1}) - f(x_{k-1})}{2h} + O(h)$$

WZÓR TRÓJPUNKTOWY

Wzór trójpunktowy (pochodna centralna)

Dobór długość kroku h w zależności od charakteru funkcji

WZÓR TRÓJPUNKTOWY

Wzór trójpunktowy:

$$f'(x_k) = \frac{f(x_{k+1}) - f(x_{k-1})}{2h}$$

WZÓRY TRÓJPUNKTOWE

Wzór trójpunktowy centralny:

$$f'(x_k) = \frac{f(x_{k+1}) - f(x_{k-1})}{2h}$$

Wzór trójpunktowy – pochodna prawostronna:

$$f'(x_k) = \frac{-3f(x_k) + 4f(x_{k+1}) - f(x_{k+2})}{2h}$$

Wzór trójpunktowy – pochodna lewostronna:

$$f'(x_k) = \frac{f(x_{k-2}) - 4f(x_{k-1}) + 3f(x_k)}{2h}$$

WZÓR PIĘCIOPUNKTOWY

Wzór pięciopunktowy:

$$f'(x_k) = \frac{1}{12h} \cdot \left(f(x_{k-2}) - 8 \cdot f(x_{k-1}) + 8 \cdot f(x_{k+1}) - f(x_{k+2}) \right)$$

Wzory pozwalające wyznaczyć przybliżoną wartość pochodnej funkcji:

Wzory dwupunktowe:

pochodna prawostronna:
$$f'(x_k) = \frac{f(x_{k+1}) - f(x_k)}{h}$$

pochodna lewostronna:
$$f'(x_k) = \frac{f(x_k) - f(x_{k-1})}{h}$$

gdzie:
$$h = x_{k+1} - x_k$$

- Wzór trójpunktowy: $f'(x_k) = \frac{f(x_{k+1}) f(x_{k-1})}{2h}$
- Wzór pięciopunktowy:

$$f'(x_k) = \frac{1}{12h} \cdot \left(f(x_{k-2}) - 8 \cdot f(x_{k-1}) + 8 \cdot f(x_{k+1}) - f(x_{k+2}) \right)$$

ZADANIE I Oblicz wartości pochodnej funkcji:

×	0		2	3	4	5	6	7	8
f(x)	0	4	12	24	40	60	84	112	144

ZADANIE 2 Oblicz wartości pochodnej funkcji:

X	0	I	2	3	4	5	6
f(x)	0	I	8	27	64	125	216

ZADANIE I Rozwiązanie:

	x	0	I	2	3	4	5	6	7	8
	f(x)	0	4	12	24	40	60	84	112	144
PP	f'(x)	4	8	12	16	20	24	28	32	X
PL	f'(x)	X	4	8	12	16	20	24	28	32
W3	f'(x)	X	6	10	14	18	22	26	30	X
W5	f'(x)	X	X	10	14	18	22	26	X	X

ZADANIE 2 Rozwiązanie:

	x	0	I	2	3	4	5	6
	f(x)	0	I	8	27	64	125	216
PP	f'(x)	I	7	19	37	61	91	X
PL	f'(x)	X	I	7	19	37	61	91
W3	f'(x)	X	4	13	28	49	76	X
W5	f'(x)	X	X	12	27	48	X	X

Wzory pozwalające wyznaczyć przybliżoną wartość drugiej pochodnej funkcji:

Wzór trójpunktowy:
$$f''(x_k) = \frac{f(x_{k+1}) - 2 \cdot f(x_k) + f(x_{k-1})}{h^2}$$

• Wzór pięciopunktowy:
$$f''(x_k) = \frac{1}{12h^2} \cdot \left(-f(x_{k-2}) + 16 \cdot f(x_{k-1}) - 30 \cdot f(x_k) + 16 \cdot f(x_{k+1}) - f(x_{k+2}) \right)$$

ZADANIE I Oblicz wartości drugiej pochodnej funkcji:

x	0	I	2	3	4	5	6	7	8
f(x)	0	4	12	24	40	60	84	112	144

ZADANIE 2 Oblicz wartości drugiej pochodnej funkcji:

×	0	I	2	3	4	5	6
f(x)	0	—	8	27	64	125	216

ZADANIE I Rozwiązanie:

	×	0	I	2	3	4	5	6	7	8
	f(x)	0	4	12	24	40	60	84	112	144
W3	f''(x)	X	4	4	4	4	4	4	4	X
W5	f''(x)	Х	X	4	4	4	4	4	Х	X

ZADANIE 2 Rozwiązanie:

	X	0	I	2	3	4	5	6
	f(x)	0	I	8	27	64	125	216
W3	f''(x)	Х	6	12	18	24	30	Х
W5	f''(x)	X	Х	12	18	24	Х	Х

CAŁKOWANIE – WPROWADZENIE

Chcemy obliczyć całkę oznaczoną:

$$\int_{a}^{b} f(x) dx$$

Problem:

• brak możliwości wyznaczenia dokładnych wartości (całki nieoznaczone wielu funkcji nie mogą być przedstawione w skończonej postaci przez funkcje elementarne).

Rozwiązanie:

- przybliżenie (interpolacja), w przedziale [a, b], funkcji f(x) prostszą funkcją g(x) dla której można łatwo obliczyć całkę Problem:
 - jak dobrać węzły dla funkcji interpolacyjnej,
 - ile powinno być punktów

CAŁKOWANIE – KWADRATURY

Przybliżenie funkcji podcałkowej interpolacją wielomianową pozwala na zapisanie całki w postaci wyrażenia zwanego kwadraturą:

$$\int_{a}^{b} f(x)dx \approx \sum_{i=0}^{n} A_{i}f(x_{i})$$

gdzie: x_i – węzły kwadratury,

 A_i – współczynniki kwadratury.

W zależności od rozłożenia węzłów kwadratury otrzymujemy

- kwadraturę Newtona Cotesa przy węzłach równoodległych,
- kwadraturę Gaussa przy innym rozłożeniu węzłów.

- Chcemy obliczyć całkę oznaczoną: $\int_a^b f(x)dx$
- Założenia:

Dzielimy przedział całkowania na n równych części o długości $h = \frac{b-a}{n}$

Wyznaczamy punkty $x_1, x_2, \dots x_{n-1}$

$$x_0 = a, x_n = b$$

Obliczamy wartość funkcji podcałkowej w wyznaczonych punktach i na krańcach przedziału całkowania

$$y_0 = f(a)$$
, $y_1 = f(x_1)$, $y_2 = f(x_2)$,..., $y_{n-1} = f(x_{n-1})$, $y_n = f(b)$,

CAŁKOWANIE – METODA PROSTOKĄTÓW

$$I = h \cdot \sum_{i=0}^{n-1} y_i$$

wynik dokładny = 0.4564

CAŁKOWANIE – METODA PROSTOKĄTÓW

Obliczanie całki z poprawianiem:

$$I = h \cdot \sum_{i=0}^{n-1} y_i + poprawka$$

wynik dokładny = 0.4564

CAŁKOWANIE – METODA TRAPEZÓW

$$I = h \cdot \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i \right)$$

CAŁKOWANIE – METODA TRAPEZÓW

$$I = h \cdot \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i\right) + poprawka$$

CAŁKOWANIE – METODA PARABOL (SIMPSONA)

$$I = \frac{h}{3} \cdot \left(y_0 + y_n + 4 \cdot \sum_{i=1}^{n-1} y_{2i-1} + 2 \cdot \sum_{i=1}^{n-2} y_{2i} \right)$$

ZADANIE:

Oblicz całkę $\int_0^4 (x^2 + 2x) dx$ w przedziale (0,4) z krokiem h = 1 następującymi metodami:

- prostokątów (wszystkie warianty metody),
- trapezów,
- parabol.

$$a=0$$
,

$$b = 4$$
,

$$h = 1$$
,

$$n = 4$$

х	0	I	2	3	4
f(x)	0	3	8	15	24

ZADANIE: Oblicz całkę $\int_0^4 (x^2 + 2x) dx$ w przedziale (0,4) z krokiem h = 1 metodą prostokątów (wszystkie warianty).

X	0		2	3	4
f(x)	0	3	8	15	24

X	0.5	1.5	2.5	3.5
f(x)	1.25	5.25	11.25	19.25

$$I = 26$$

$$I = 37$$

I = 50

ZADANIE: Oblicz całkę $\int_0^4 (x^2 + 2x) dx$ w przedziale (0,4) z krokiem h = 1 metodą trapezów.

X	0	I	2	3	4
f(x)	0	3	8	15	24

$$I = h \cdot \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i \right)$$

$$I = 1 \cdot \left(\frac{0+24}{2} + 3 + 8 + 15\right) = 38$$

ZADANIE: Oblicz całkę $\int_0^4 (x^2 + 2x) dx$ w przedziale (0,4) z krokiem h = 1 metodą simpsona.

×	0	I	2	3	4
f(x)	0	3	8	15	24

$$I = \frac{h}{3} \cdot \left(y_0 + y_n + 4 \cdot \sum_{i=1}^{n-1} y_{2i-1} + 2 \cdot \sum_{i=1}^{n-2} y_{2i} \right)$$

$$I = \frac{1}{3} \cdot \left(0 + 24 + 4 \cdot (3 + 15) + 2 \cdot (8) \right) = 37.3333$$

CAŁKOWANIE – METODA MONTE CARLO

$$I = \frac{strzały\ celne}{liczba\ strzałów} \cdot pole\ obszaru$$

CAŁKOWANIE – METODA MONTE CARLO

INNY WARIANT METODY

$$I = \frac{b-a}{N} \cdot \sum_{i=1}^{N} y_i$$

gdzie: N - liczba strzałów

wynik dokładny = 2.9744

CAŁKOWANIE – METODA MONTE CARLO

Metoda Monte Carlo – podsumowanie:

- im większa liczba użytych punktów tym większa dokładność uzyskanego wyniku,
- możliwość rozwiązywania trudnych problemów,
- prosta forma zastąpienia rozwiązań analitycznych,
- rosnąca moc obliczeniowa komputerów i możliwość zrównoleglania obliczeń pozwala na uzyskiwanie dokładnych wyników (wykorzystując dużą liczbę punktów).

