Sayısal Sistemler-H6CD1 Kombinasyonel Devreler-3

Dr. Meriç Çetin versiyon171020

Bu derste öğreneceklerimiz

4 Combinational Logic

4.1	Introduction	125
4.2	Combinational Circuits	125
4.3	Analysis Procedure	126
4.4	Design Procedure	129
4.5	Binary Adder–Subtractor	133
4.6	Decimal Adder	144
4.7	Binary Multiplier	146
4.8	Magnitude Comparator	148
4.9	Decoders	150
4.10	Encoders	155
4.11	Multiplexers	158
4.12	HDL Models of Combinational Circuits	164

Kod çözücüler (Decoders)

- Sayısal sistemlerde ayrık bilgiler ikili kodlarla temsil edilir.
- n bitlik bir ikili kod, kodlanmış bilginin en fazla 2ⁿ farklı elemanını temsil edebilir.
- Bir kod çözücü, ikili bilgileri n giriş hattından maksimum 2ⁿ benzersiz çıkış hattına dönüştüren kombinasyonel bir devredir.

• n-bit kodlu bilginin kullanılmayan kombinasyonları varsa, kod çözücü 2ⁿ den daha az

çıktıya sahip olabilir.

Figure: wikimedia.org

- Burada sunulan kod çözücülere **nxm** kod çözücüler denir (m ≤ 2ⁿ). Örneğin 2x4, 3x8, 4x16,... kod çözücüler.
- Amaç; n giriş değişkeninin 2ⁿ (veya daha az) mintermlerini oluşturmaktır.
- Kod çözücü tasarımları «active low» ya da «active high» mantığına göre yapılabilir.

FIGURE 4.19
Two-to-four-line decoder with enable input

active high decoder design

EN	A	B	0	1	2	3
0	Х	X	0	0	0	0
1	0	0	1	0	0	0
1	0	1	0	1	0	0
1	1	0	0	0	1	0
1	1	1	0	0	0	1

$$D_0 = E \overline{A} \overline{B}$$

$$D_1 = E \overline{A} \overline{B}$$

$$D_2 = E A \overline{B}$$

$$D_3 = E A B$$

• Şekil 4.18'deki **3x8 hatlı kod çözücü** devresini düşünün. Üç girişin kodu, her biri üç giriş değişkeninin mintermlerinden birini temsil eden sekiz çıkışa çözülür.

Table 4.6 *Truth Table of a Three-to-Eight-Line Decoder*

	Inputs					Out	puts			
x	y	z	D ₀	D_1	D ₂	D_3	D_4	D ₅	D_6	D ₇
0	0	0	1	0	0	0	0	0	0	0
0	0	1	0	1	0	0	0	0	0	0
0	1	0	0	0	1	0	0	0	0	0
0	1	1	0	0	0	1	0	0	0	0
1	0	0	0	0	0	0	1	0	0	0
1	0	1	0	0	0	0	0	1	0	0
1	1	0	0	0	0	0	0	0	1	0
1	1	1	0	0	0	0	0	0	0	1

FIGURE 4.18
Three-to-eight-line decoder

Çoğunluk Kod Çözücüler

Bu device aitis va jinisten en az itisi dofin ise dofin dur. Efer iti veya daha fazla gris yenhe ise aitis yenhetis

A	B	C	11
0	0	0	0
0	0	1	10
0	7	0	0
0	7	1	I
1	0	0	0
1	0	1	1
7	T	0	1
1	1	1	1

$$f = BC + AC + AB$$

 $f = \overline{f} = \overline{BC + AC + AB}$
 $f = \overline{BC - AC - AB}$

Azınlık Kod Çözücüler

$$f = \overline{A}\overline{g}\overline{c} + \Delta g c$$

$$f = \overline{A}\overline{g}\overline{c} + \Delta g c$$

$$f = \overline{A}\overline{g}\overline{c} + \Delta g c$$

ABCI.	f A	10 00	"	10
000	0	丁口	17	7
007 7	\	下中了		7
0707				
0 77 7	- ^ -	_	_	
100 1	+ = A8	STACTB	C	
707 7	0 = =	2 2	=	
170 7	+=+= A	13+AC+B	C	
17710	f = AB	Āc. 80	7	

BCD Kod Çözücüler

• BCD kod çözücü devre; onluk (decimal) sistemi ikilik (binary) sisteme kodlayıcı devresinin tersini yapar. İkili olarak kodlanmış bilginin çözülerek çıkışlardan hangisinin aktif olacağını belirler. BCD kod çözücü 4 giriş 10 çıkışlı olup her seferinde tek bir çıkış 1 olmalıdır ki ilgili çıkışın aktif olacağı anlaşılabilsin.

DCBA	800	8 0	00	00	0,	, 0	3020	100	Gibiel	Land-
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000000	H0000000	0000000	000000000	000040000	000 400000		700000000	वे व व व व व व व व व व	ABCO CO C
	120	O	17501		1000			0	ag	ABED

- Birleşik mantık devrelerinin en önemli uygulamalarından biri olan kodlayıcılar, bir kod çözücünün ters işlemini gerçekleştiren sayısal bir devrelerdir.
- Bir kodlayıcının 2ⁿ (veya daha az) giriş hattı ve n çıkış hattı vardır.
- Kodlayıcılar türleri 4x2, 8x3, 16x4,.. şeklinde ifade edilir.

• 4x2'li bir kodlayıcıda

Da	Dz	DI	Do	OT	00
-0	0	0	1	0	0
0	0	1	0	0	7
0	L	0	0	1	0
1	0	0	0	11	7

O, lain it love minlam varter by durindar!

$$O_1 = \overline{O_3} D_2 \overline{D_1} \overline{D_0} + D_3 \overline{D_2} \overline{D_1} \overline{D_0}$$
 ober.

 $= \overline{D_1} \overline{D_0} \left(\overline{O_3} D_2 + D_3 \overline{D_2} \right) \Longrightarrow \left[\overline{O_1} = \overline{D_1} \overline{D_0} \left(\overline{D_2} \bigoplus \overline{O_3} \right) \right]$

Benzer zetilde)

 $O_0 = \overline{O_3} \overline{O_2} \overline{O_1} \overline{D_0} + \overline{D_3} \overline{D_2} \overline{D_1} \overline{D_0}$ ober. Her it iprode de $\overline{D_2} \overline{D_0}$ or bot

 $= \overline{D_2} \overline{O_0} \left(\overline{O_3} D_1 + \overline{O_3} \overline{D_1} \right)$ ober $\Longrightarrow \left[\overline{O_0} = \overline{D_2} \overline{D_0} \left(\overline{D_1} \bigoplus \overline{D_3} \right) \right]$

• 4x2'li bir kodlayıcıda

• 8x3'lü bir kodlayıcı için doğruluk tablosu Tablo 4.7'deki gibidir.

Table 4.7 *Truth Table of an Octal-to-Binary Encoder*

			Inp	uts				C)utpu1	S
D ₀	D ₁	D ₂	D ₃	D_4	D ₅	D ₆	D ₇	х	y	z
1	0	0	0	0	0	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0	1
0	0	1	0	0	0	0	0	0	1	0
0	0	0	1	0	0	0	0	0	1	1
0	0	0	0	1	0	0	0	1	0	0
0	0	0	0	0	1	0	0	1	0	1
0	0	0	0	0	0	1	0	1	1	0
0	0	0	0	0	0	0	1	1	1	1

Kod Çeviriciler (Code Converters)

- Farklı ikili sistemde kodlanmış sistemlerin birbirine dönüştürülmesi için kullanılırlar.
 - Örneğin gray koddan BCD koda çeviren devre, BCD'den 7 parçalı göstergeye (seven segment display) çeviren devre, ikili koddan gray koda çeviren devre, gray koddan ikili koda çeviren devre vb.
- Hesap makinelerinde basılan rakamın ekranda 7 parçalı göstergede görünmesi,
 bilgisayarlarda klavyeden veri girilmesi gibi işlemlerde bu tür kod çeviriciler kullanılır.
- Çevirici hangi iki sistem için tasarlanacak ise ona göre giriş/çıkış sayıları belirlenmelidir.
 - Örneğin BCD'den 7 parçalı göstergeye çevrim yapılacaksa BCD'den giriş yapılabilmesi için girişte 4 değişken olması gerekirken, çıkışta 7 değişken bulunmalıdır.

BCD Yeli gerceli kod christicide negatif dypt ucu kulland.
diginda ordak andlin, pozitif drypt ucu kullandiginda ordak
katatlu yapidan soir edilir.

Onluk	BCD	1	A=71	Percali		68 stage		
	DCBA	CA	b	C	7	e	2	0
0	0000	7	7	7	1	1	1	0
7	0007	0	1	1	0	0	0	0
2	0010	1	1	0	1	7	0	7
3	0017	T	1	1	7	0	0	1
4	0700	0	1	1	0	0	1	7
5	D 7 0 7	1	0	1	7	0	1	7
6	0 1 1 0	0	0	7	1	1	1	7
7	0777	1	上	7	0	0	0	0
8	1000	1	1	1	1	7	1	7
9	7007	1	1	1	0	O	7	7

Her alkis kin (a, b, c, d, e, 1, g) agni agni Karnaugh digagrami düzenlerip aikişların ifadeleri belirler melidir.

Her bir çıkış Karnaugh diyagramları İle sadeleştirilirse;

