Package 'CSLSfluxes'

April 5, 2021

```
Type Package
Title CSLS Chemistry Flux Analysis
Version 1.0.0
Author Carolyn Voter
Maintainer Carolyn Voter < cvoter@wisc.edu>
Description Analyze CSLS MODFLOW scenarios for lake water and solute budgets.
License MIT + file LICENSE
Imports CSLSdata,
     CSLSevap,
     dplyr,
     lubridate,
     magrittr,
     NISTunits,
     reshape2,
     rlang,
     stats,
     zoo
Suggests CSLSscenarios,
     DT,
     extrafont,
     ggplot2,
     knitr,
     rmarkdown,
     stringr,
     patchwork,
     purrr,
     raster
Encoding UTF-8
LazyData true
RoxygenNote 7.1.1
VignetteBuilder knitr
Depends R (>= 2.10)
```

2 add_pcpn_isotopes

R topics documented:

	add_pcpn_isotopes	- 2
	calculate_Cevap	3
	calculate_C_GWin	3
	calculate_C_lake	2
	calculate_ice_thickness	4
	calculate_water_balance_tracer	
	Cevap_Catm	
	Cevap_isotope_frac	
	Cevap_kinetic_frac	
	Cevap_normalized_humidity	
	Cevap_sat_vapor_press	
	Cevap_total_frac	
	ilter_ltmp	
	ilter_parameter	
	get_C_lake	
	get_C_pcpn	
	nterpolate_values	
	MODFLOW_Mg_metrics	
	process_lake_temp	
	process_levels	
	process_tracer	
	process_weather	
	rocess_weather	10
Index		19

 $add_pcpn_isotopes$

Add precipitation isotopes to dataset

Description

Adds precipitation stable isotope measurements from Maribeth Kniffin (May 2016 - April 2017) and incorporates them in the current timeseries, but only for months without CSLS precipitation measurements.

Usage

```
add_pcpn_isotopes(tracer, start_date, end_date)
```

Arguments

tracer data frame with water chemistry information for stable isotope.

start_date start date of analysis period, POSIXct end_date end date of analysis period, POSIXct

Value

tracer, same data frame as provided, but with additional precipitation measurements during the analysis period for months with missing precipitation measurements.

calculate_Cevap 3

calculate_Cevap E	Evaporation stable	isotope
---------------------	--------------------	---------

Description

Calculates the stable isotope composition of evaporation based on equation 5 in Krabbenhoft et al. (1990). Note that alpha* is equivalent to alpha^-1.

Usage

```
calculate_Cevap(atmp, ltmp, RH, Cpcpn, Clake, parameter)
```

Arguments

atmp	air temperature (C)
1tmp	lake surface temperature (C)
RH	relative humidity (percent)
Cpcpn	stable isotope composition of precipitation
Clake	stable isotope composition of the lake
parameter	name of stable isotope, "d18O" or "d2H"

Value

Cevap - the isotope composition of evaporation

References

Krabbenhoft, D. P., C. J. Bowser, M. P. Anderson, and J. W. Valley. (1990). Estimating Groundwater Exchange with Lakes: 1. The Stable Isotope Mass Balance Method. Water Resources Research, 26(10):2445-2453. https://doi.org/10.1029/WR026i010p02445

calculate_C_GWin

Calculate lake concentration of parameter

Description

Calculates the concentration of a parameter in the lake given an initial lake concentration, monthly fluxes of precipitation, groundwater, and lake volume, and median concentrations of groundwater and precipitation.

```
calculate_C_GWin(
   C_vals,
   fluxes = CSLSdata::MODFLOW,
   scenario = "cal",
   sim = 0,
   start_date = as_datetime("2017-10-01"),
   end_date = as_datetime("2018-09-30"),
   lakes = c("Pleasant", "Long", "Plainfield")
```

4 calculate_C_lake

Arguments

C_vals	data frame with columns for "lake", "C_pcpn", "C1_lake", "C2_lake", and "C_GWout"
fluxes	data frame with lake, date, level_m, GWin_m3, and P_m3 from MODFLOW simulations to use for mass balance calculations.
scenario	which MODFLOW scenario is being evaluated here, defaults to "cal".
sim	which MODFLOW simulation is being evaluated here, defaults to 0
start_date	start date for evaluation, defaults to 2017-10-01
end_date	end date for evaluation, defaults to 2018-09-30.
lakes	name of lakes to include in analysis, defaults to c("Pleasant", "Long", "Plainfield")

Value

C_GWin, a data frame with the following columns:

lake name of lakes, i.e., "Pleasant", "Long", and "Plainfield"C_GWin calculated concentration in groundwater inflow

calculate_C_lake

Calculate lake concentration of parameter

Description

Calculates the concentration of a parameter in the lake given an initial lake concentration, monthly fluxes of precipitation, groundwater, and lake volume, and median concentrations of groundwater and precipitation.

Usage

```
calculate_C_lake(
   C_vals,
   fluxes = CSLSdata::MODFLOW,
   scenario = "no_irr",
   sim = 1,
   start_date = as_datetime("1985-10-01"),
   end_date = as_datetime("2018-09-30"),
   lakes = c("Pleasant", "Long", "Plainfield"),
   dt = "year"
)
```

Arguments

C_vals	data frame with columns for "lake", "C0_lake", "C_pcpn" and "C_GWin".
fluxes	data frame with lake, date, level_m, GWin_m3, and P_m3 from MODFLOW simulations to use for mass balance calculations.
scenario	which MODFLOW scenario is being evaluated here (e.g., "cal", "no_irr", "cur_irr")
sim	which MODFLOW simulation is being evaluated here (a number)
start_date	start date for evaluation, defaults to 1985-10-01

calculate_ice_thickness 5

end_date	end date for evaluation, defaults to 2018-09-30.
lakes	a list of lakes being evaluated. Defaults to c("Pleasant", "Long", "Plainfield")
dt	time step of calculations. Defaults to "year", can also be "month", or "day".

Value

output, a data frame with the following columns:

scenario	name of MODFLOW scenario evaluated (e.g., "cal", "no_irr")
sim	number of MODFLOW simulation evaluated
lake	name of lake, i.e., "Pleasant", "Long", and "Plainfield"
date	date of observation (POSIX) used for weather inputs in MODFLOW
level_m	lake level (m) from MODFLOW
vol_m3	lake volume (m3) from MODFLOW
P_m3	precipitation (m3) from MODFLOW
C_pcpn	median precipitation concentration (mg/L) from CSLSdata observations
M_P	calculated mass of parameter in precipitation (g)
GWin_m3	groundwater inflow (m3) from MODFLOW
C_GWin	median groundwater inflow concentration (mg/L) from CSLSdata observations
M_GWin	calculated mass of parameter in groundwater inflow (g)
GWout_m3	groundwater outflow (m3) from MODFLOW
M_GWin	calculated mass of parameter in groundwater outflow (g)
C0_lake	initial lake concentration (mg/L) provided to function
M_lake	calculated mass of parameter in lake (g)
C_lake	calculated concentration of parameter in lake (mg/L)

```
calculate_ice_thickness
```

Calculate ice thickness

Description

Calculates the thickness of ice on a lake. Assumes a linear increase from a static ice-on date to a static ice-off date with a static date of max thickness and a static max thickness.

```
calculate_ice_thickness(
  date,
  ice_on = 320,
  ice_off = 105,
  ice_max = 60,
  ice_max_depth = NISTunits::NISTinchTOmeter(24) * 1000
)
```

Arguments

date	date to calculate ice thickness (POSIX)
ice_on	day of year when ice starts forming. Defaults to day 320 (Nov 16).
ice_off	day of year when ice is all gone. Defaults to day 105 (Apr 15)
ice_max	day of year when ice thickness is at a maxiumum. Defaults to day 60 (Mar 1).
ice_max_depth	max thickness of ice (m). Defaults to 24 inches.

Value

ice_depth, a numeric value of ice thickness (m).

```
calculate_water_balance_tracer

Calculate water balance
```

Description

Calculates the water balance using desired tracer, e.g., stable isotopes or conservative anion/cation.

Usage

```
calculate_water_balance_tracer(
  param = "d180",
  start_date = as_datetime("2018-10-01"),
  end_date = as_datetime("2019-09-30"),
  dt = "annual",
  no_ice = FALSE,
  C_evap = 0,
  C_ice = 0,
  mean_lake = TRUE
)
```

Arguments

param	name of water chemistry parameter to grab concentration information for. Must match the "description" field of CSLSdata::water_chem for the desired parameter. Defaults to "d180". Options include "d180", "d2H", "CALCIUM TOTAL RECOVERABLE" "MACCHESHIM TOTAL RECOVERABLE" "CHI O
	TAL RECOVERABLE", "MAGNESIUM TOTAL RECOVERABLE", "CHLORIDE", and "SODIUM TOTAL RECOVERABLE".
start_date	start date of analysis. Defaults to start of WY2019 ("2018-10-01").
end_date	end date of analysis. Defaults to end of WY2019 ("2019-09-30").
dt	desired time step of inputs (e.g., "day" or "month")
no_ice	logical defaults to TRUE to ignore ice formation.
C_evap	concentraion in evaporation, defaults to zero
C_ice	concentration in ice, defaults to zero.
mean_lake	logical defaults to TRUE to calculate and use mean of min and max lake value (should equate to fall and spring turnover samples) for water budget calculations.

Cevap_Catm 7

Value

lake_inputs

Cevap_Catm Atmosphere d180

Description

Calculates the d18O isotope composition of the atmosphere based on Equation 18 and the definition for espilon+ in the explanation for Equation 3 in Gibson et al. (2016). Alternatively, can instead calculate this value based on Equation 1.10 and the definition for epsilon in the explanation for Equation 1.4 in Mook (2000).

Usage

```
Cevap_Catm(Cpcpn, alpha, method = "Mook_corrected", k = 1)
```

Arguments

Cpcpn	isotopic composition of precipitation
alpha	equilibrium isotope fractionation factor $(-)$ at the temperature of the air-water interface in LV form (i.e., alpha > 1).
method	defaults to "Gibson" to use those equations, can also be "Mook".
k	weighted factor which reflects seasonality, ranging from 0.5 for highly seasonal climates to 1 for non-seasonal climates. Defaults to 0.8

Value

Catm - the d18O isotope composition of the atmosphere

References

Gibson, J.J., S.J. Birks, and Y. Yi. 2016. Stable isotope mass balance of lakes: a contemporary perspective. Quaternary Science Reviews, 131:316-328. https://doi.org/10.1016/j.quascirev.2015.04.013

Mook, W.G. (ed.) 2000. Environmental Isotopes in the Hydrologic Cycle: Volume III: Surface Water. UNESCO. Paris, France.

8 Cevap_kinetic_frac

Cevap_isotope_frac

Equilibrium Isotope Fractionation Factor

Description

Calculates the equilibrium isotope fractionation factor at the temperature of the air-water interface based on Eq. 16a in Gibson et al. (2016) or Eq. 1.6 in Mook (2000). Returns this value as the ratio in liquid vs. the ratio in vapor (i.e., LV form, alpha > 1). Gibson et al. refer to this formulation as alpha+ and to the VL form (i.e., alpha < 1) as alpha*. Krabbenhoft et al. (1990) use alpha* (i.e, VL form, alpha < 1) in their equations.

Usage

```
Cevap_isotope_frac(ltmp, method = "Mook")
```

Arguments

1tmp lake surface temperature (K)

method equation to use, defaults to "Gibson" but can also be "Mook".

Value

alpha (-), the equilibrium isotope fractionation factor in LV form (i.e., alpha > 1)

References

Gibson, J.J., S.J. Birks, and Y. Yi. 2016. Stable isotope mass balance of lakes: a contemporary perspective. Quaternary Science Reviews, 131:316-328. https://doi.org/10.1016/j.quascirev.2015.04.013

Mook, W.G. (ed.) 2000. Environmental Isotopes in the Hydrologic Cycle: Volume III: Surface Water. UNESCO. Paris, France.

Krabbenhoft, D. P., C. J. Bowser, M. P. Anderson, and J. W. Valley. (1990). Estimating Groundwater Exchange with Lakes: 1. The Stable Isotope Mass Balance Method. Water Resources Research, 26(10):2445-2453. https://doi.org/10.1029/WR026i010p02445

Cevap_kinetic_frac

Kinetic Fractionation Factor

Description

Calculates the kinetic fractionation factor based on equation 6 in Krabeenhoft et al. (1990).

Usage

```
Cevap\_kinetic\_frac(h, K = 14.3)
```

Arguments

h relative humidity normalized to the temperature of the surface water (-)

K constant determinded by wind tunnel experiments for different isotopes, defaults

to K(180) = 14.3.

Value

delta_epsilon - the kinetic fractionation factor (-)

References

Krabbenhoft, D. P., C. J. Bowser, M. P. Anderson, and J. W. Valley. (1990). Estimating Groundwater Exchange with Lakes: 1. The Stable Isotope Mass Balance Method. Water Resources Research, 26(10):2445-2453. https://doi.org/10.1029/WR026i010p02445

Cevap_normalized_humidity

Normalized Relative Humidity

Description

Calculates the relative humidity normalized to the temperature of the surface water. Based on Equation 1.8 of Mook (2000).

Usage

```
Cevap_normalized_humidity(RH, es_a, es_1)
```

Arguments

RH relative humidity (percent)

es_a saturation vapor pressure for the air (kPa)
es_1 saturation vapor pressure for the lake (kPa)

Value

h - the relative humidity normalized to the temperature of the surface water (-)

References

Mook, W.G. (ed.) 2000. Environmental Isotopes in the Hydrologic Cycle: Volume III: Surface Water. UNESCO. Paris, France.

Cevap_sat_vapor_press Saturation Vapor Pressure

Description

Calculates the saturation vapor pressure based on temperature (of air or water) based on equations 11 and 12 of Allen et al. (1998).

```
Cevap_sat_vapor_press(tmp)
```

10 Cevap_total_frac

Arguments

tmp temperature of air or water (degrees C)

Value

es - saturation vapor pressure (kPa)

References

Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: Guidelines for computing crop water requirements. Rome: FAO. Retrieved from http://www.fao.org/docrep/X0490E/x0490e00.htm.

Cevap_total_frac

Total Fractionation Factor

Description

Calculates the total fractionation factor based on the definition of epsilon for equation 5 in Krabbenhoft et al. (1990). Note that while here we calculate calculates alpha in LV form (i.e, alpha+ > 1), the equation in Krabbenhoft et al. (1990) assumes alpha is in V/L form (i.e., alpha+ < 1).

Usage

```
Cevap_total_frac(alpha, delta_epsilon)
```

Arguments

alpha equilibrium isotope fractionation factor (-) at the temperature of the air-water

interface in LV form (i.e., alpha > 1).

delta_epsilon kinetic fractionation factor (-)

Value

epsilon - the total fractionation factor (-)

References

Krabbenhoft, D. P., C. J. Bowser, M. P. Anderson, and J. W. Valley. (1990). Estimating Groundwater Exchange with Lakes: 1. The Stable Isotope Mass Balance Method. Water Resources Research, 26(10):2445-2453. https://doi.org/10.1029/WR026i010p02445

filter_ltmp 11

<u> </u>	: 7	ter	٦.	tmp
T 1		TAL	- 1	Tmn

Filter to lake surface or bottom temperature

Description

Filters large dataset of water chemistry parameters to only lake surface or lake bottom temperature measurements.

Usage

```
filter_ltmp(chem_df = CSLSdata::water_chem, depth = "surface", use_HOBO = TRUE)
```

Arguments

chem_df data frame with water chemistry information for all sites. Defaults to CSLSdata::water_chem. depth indicates which depth to use. "surface" pulls shallowest records, "bottom" pulls deepest records. Defaults to "shallow". use_HOBO logical defaults to TRUE to use HOBO data for temperature measurements. if

false, uses field profile data.

Value

lst, same data frame as chem_df, but subset to only lake surface temperature measurements.

filter_parameter

Filter SWIMS by parameter

Description

Subsets SWIMS dataset for a CSLS lake to only measurements for a parameter of interest.

```
filter_parameter(
 water_chem = CSLSdata::water_chem,
 param,
 plotting_name = "",
 numeric = TRUE,
 no_blanks = TRUE,
 no_dups = TRUE,
 no_age = FALSE,
 no_bad_well = FALSE,
 no_bad_sample = TRUE,
 no_lod = FALSE,
 no_comment = FALSE,
  note_lake_bottom = FALSE
)
```

12 get_C_lake

Arguments

water_chem	data frame with water_chem information for sites of interest	
param	parameter to subset by, must exactly match DNR description (e.g., "ALUMINUM,TOTAL RECOVERABLE"). Can be a vector of multiple descriptors.	
plotting_name	- name of parameter to use for plotting, e.g., "Total Recoverable Alumninum", no units. Defaults to "".	
numeric	logical defaults to TRUE to indicate results should be numeric	
no_blanks	logical defaults to TRUE to exclude blank samples	
no_dups	logical defaults to TRUE to exclude duplicate samples	
no_age	logical defaults to FALSE to include samples that were analyzed past the holding date.	
no_bad_well	logical defaults to FALSE to include samples from wells known to behave weirdly.	
no_bad_sample	logical defaults to TRUE to exclude bad measurements from QC.	
no_lod	logical defaults to FALSE to include samples with results below the limit of detection.	
no_comment	logical defaults to FALSE to include samples with other comments from the lab	
note_lake_bottom		
	logical defaults to FALSE to leave all lake samples as "lake". If true, notes samples > 5m deep as "lake_bottom".	

Value

df, same data frame, with only the results for the parameter of interest. Also includes the given plotting name ("name").

get_C_lake	Calculate lake concentration	
_		

Description

Calculates the concentration of a parameter in the lake across all samples (default) or between given dates.

```
get_C_lake(
  param = "MAGNESIUM TOTAL RECOVERABLE",
  water_chem = CSLSdata::water_chem,
  start_date = NULL,
  end_date = NULL,
  summary_type = "median",
  value_name = "C_lake"
)
```

 get_C_pcpn 13

Arguments

param description of parameter to evaluate, defaults to "MAGNESIUM TOTAL RE-

COVERABLE"

water_chem data frame with water chemistry to evaluate in "filter_parameter", defaults toC-

SLSdata::water_chem.

start_date start date for evaluation, defaults to NULL to start with first sample. end_date end date for evaluation, defaults to NULL to end with last sample.

summary_type Either "median", "min", or "max". Defaults to "median".
value_name of column with resulting values. Defaults to "C_lake".

Value

C_pcpn, a data frame with the following columns:

lake name of lakes, i.e., "Pleasant", "Long", and "Plainfield"

C_lake summary value of parameter in lake to use

get_C_pcpn Calculate precipitation concentration

Description

Calculates the median concentration of a parameter in precipitation across all samples (default) or between given dates.

Usage

```
get_C_pcpn(
  param = "MAGNESIUM TOTAL RECOVERABLE",
  water_chem = CSLSdata::water_chem,
  start_date = NULL,
  end_date = NULL,
  lakes = c("Pleasant", "Long", "Plainfield")
)
```

Arguments

param description of parameter to evaluate, defaults to "MAGNESIUM TOTAL RE-

COVERABLE"

water_chem data frame with water chemistry to evaluate in "filter parameter", defaults toC-

SLSdata::water chem.

start_date start date for evaluation, defaults to NULL to start with first sample. end_date end date for evaluation, defaults to NULL to end with last sample.

lakes to map precipitation values to.

Value

C_pcpn, a data frame with the following columns:

lake name of lake, i.e., "Pleasant", "Long", and "Plainfield" C_pcpn median value of parameter in precipitation to use

Description

Interpolates values to a daily time step given start and end date of desired timeseries. Can summarize at a larger time step (e.g., monthly) if desired using final_dt flag.

Usage

```
interpolate_values(
   df,
   group_vars,
   val_var,
   start_date,
   end_date,
   final_dt = "day"
)
```

Arguments

df	data frame with water chemistry information for tracer/solute. Includes: * **date:** date of measurement * **group1 and/or group2:** grouping for measurements * **value:** value of measurement
group_vars	name of group1 and/or group2 columns, for identifying and renaming them.
val_var	name of value column, for identifying and renaming it
start_date	start date of interpolated timeseries (POSIX). If earlier than earliest date in df, values before earliest date in df will have value equal to earliest date in df.
end_date	end date of interpolated timeseries (POSIX). If later than latest date in df, values after latest date in df will have value equal to latest date in df.
final_dt	unit of time to use for interpolation. Defaults to "day", can also be "month". Used as the unit for lubridate::floor_date

Value

df, a data frame with interpolated values.

MODFLOW_Mg_metrics Dataset: MODFLOW Mg budget metrics

Description

Mg budget metrics calculated using all simulation results from monte carlo MODFLOW scenarios

```
data(MODFLOW_Mg_metrics)
```

process_lake_temp 15

Format

A data frame with the following columns.

```
lake name of lake, e.g., Pleasant, Long, Plainfield
metric name of hydrologic metric, i.e. solute_budget
variable name of variation on metrics, e.g. median, max, q10
value value of hydrologic metric
scenario MODFLOW scenario (e.g., "cur_irr" or "no_irr")
sim id of MODFLOW simulation
```

process_lake_temp

Process lake temperature data for calcs

Description

Processes CSLS lake temperature data for water/solute balance calculations. Filters HOBO temperature data from CSLSdata::water_chem for surface and bottom temperatures, and summarizes at a daily or monthly time step for the desired time period.

Usage

```
process_lake_temp(start_date, end_date, dt = "day")
```

Arguments

start_date start date of analysis period (POSIX).
end_date end date of analysis period (POSIX).

dt time step at which to summarize data. Defaults to "day" for daily time step, can

also be "month" for monthly time step.

Details

If using with non-CSLS data, will need an alternate way to get weather data (including lake evaporation) into the format outputted by this function.

Value

df, a data frame with the following columns:

lake name of lake, i.e., "Pleasant", "Long", and "Plainfield"

date date of observation (POSIX). If monthly time step, monthly summary is as-

signed to first day of the month

ltmp_bot_Clake temperature at bottom of lake, deg C. Used for some solute reaction rates.ltmp_surf_Clake temperature at surface of lake, deg C. Used for stable isotope in evaporation

calculations

process_tracer

process_levels Process	lake elevation, area, volume data for calcs
------------------------	---

Description

Processes CSLS lake level data for water/solute balance calculations. Ensures no gaps in daily lake elevation data from CSLSdata::lake_levels, uses CSLSdata::bathymetry to convert daily elevations to areas and volumes, then summarizes to desired time step (daily or monthly).

Usage

```
process_levels(start_date, end_date, dt = "month")
```

Arguments

start_date start date of analysis period (POSIX).
end_date end date of analysis period (POSIX).

dt time step at which to summarize data. Defaults to "day" for daily time step, can

also be "month" for monthly time step.

Details

If using with non-CSLS data, will need an alternate way to get lake level, lake area, and lake volume data into the format outputted by this function.

Value

df, a data frame with the following columns:

Take	name of lake, i.e., "Pleasant", "Long", and "Plainfield"
date	date of observation (POSIX). If monthly time step, monthly summary is assigned to first day of the month
level_m	mean lake elevation (mamsl) for the time step (daily or monthly)
area_m2	mean lake area (m2) for the time step (daily or monthly)
vol_m3	mean lake volume (m3) for the time step (daily or monthly)
dV_m3	change in lake volume (m3) for the time step (daily or monthly)

process_tracer	Process tracer data for water balance calcs
process_tracer	Process tracer data for water balance calcs

Description

Processes concentrations of parameters (e.g., d18O, Magnesium, Calcium) for use in water/solute balances. Filters CSLSdata::water_chem to specified parameter, limits to lake, precipitation, and upgradient groundwater sites, and interpolates to a daily timestep.

process_tracer 17

Usage

```
process_tracer(
  parameter,
  start_date,
  end_date,
  dt = "day",
  use_kniffin = TRUE,
  median_gw = TRUE,
  mean_lake = FALSE
)
```

Arguments

parameter	description of parameter to use in analysis, as in CSLSdata::water_chem\$description (e.g., "d180", "MAGNESIUM TOTAL RECOVERABLE")
start_date	start date of analysis period (POSIX).
end_date	end date of analysis period (POSIX).
dt	time step at which to summarize data. Defaults to "day" for daily time step, can also be "month" for monthly time step.
use_kniffin	logical defaults to TRUE to use kniffin precip stable isotope data (only when stable isotopes selected as the paramter)
median_gw	logical defaults to TRUE to use median groundwater values, rather than dynamic time series of interpolated groundwater values.
mean_lake	logical defaults to FALSE. If TRUE, calculate and use mean of min and max lake value (should equate to fall and spring turnover samples)

Details

If using with non-CSLS data, will need an alternate way to get solute/isotope concentrations into the format outputted by this function.

Value

df, a data frame with the following columns:

lake	name of lake, i.e., "Pleasant", "Long", and "Plainfield"
date	date of observation (POSIX). If monthly time step, monthly means are assigned to first day of the month
C_lake	concentration in the lake (units in per mil, mg/L, or whatever unit parameter has in CSLSdata::water_chem)
C_pcpn	$concentration\ in\ precipitation\ (units\ in\ per\ mil,\ mg/L,\ or\ whatever\ unit\ parameter\ has\ in\ CSLSdata::water_chem)$
C_GWin	concentration in upgradient groundwater (units in per mil, mg/L, or whatever unit parameter has in CSLSdata::water_chem)

18 process_weather

|--|

Description

Processes CSLS weather data for water/solute balance calculations. Transforms data from CSLS-data package, calculates lake evaporation using CSLSevap package, and summarizes at a daily or monthly time step for the desired time period.

Usage

```
process_weather(start_date, end_date, dt = "day")
```

Arguments

start_date start date of analysis period (POSIX).
end_date end date of analysis period (POSIX).

dt time step at which to summarize data. Defaults to "day" for daily time step, can

also be "month" for monthly time step.

Details

If using with non-CSLS data, will need an alternate way to get weather data (including lake evaporation) into the format outputted by this function.

Value

df, a data frame with the following columns:

lake name of lake, i.e., "Pleasant", "Long", and "Plainfield"

date of observation (POSIX). If monthly time step, monthly summary is as-

signed to first day of the month

day of year of observation (1-366)

P_mm precipitation (mm)
E_mm lake evaporation (mm)

 $\begin{array}{ll} \text{atmp_C} & \text{mean air temperature (deg C)} \\ \text{RH_pct} & \text{mean relative humidity (percent)} \end{array}$

irr_factor irradiance factor, fraction from 0-1 representing relative intensity of solar ra-

diation based on day of year. For use in dynamic lake model for some solute

reactions

Index

```
* datasets
    MODFLOW_Mg_metrics, 14
add_pcpn_isotopes, 2
calculate_C_GWin, 3
calculate_C_lake, 4
calculate_Cevap, 3
calculate_ice_thickness, 5
calculate_water_balance_tracer, 6
Cevap_Catm, 7
Cevap_isotope_frac, 8
Cevap_kinetic_frac, 8
Cevap_normalized_humidity, 9
{\tt Cevap\_sat\_vapor\_press}, 9
Cevap_total_frac, 10
filter_ltmp, 11
filter_parameter, 11
get_C_lake, 12
get_C_pcpn, 13
interpolate\_values, \\ 14
MODFLOW_Mg_metrics, 14
process_lake_temp, 15
process_levels, 16
process_tracer, 16
process_weather, 18
```