Определение атомарной формулы. Пусть S — некотрая сигнатура языка атомарных формул. Ладим определение атомарной S-формулы (т. е. атомарной формулы сигнатуры S), которую также будем называть просто атомарной формулой.

Определение. Атомарной формилой назовем слово вида

$$P^n t_1 \dots t_n$$

где P^n есть символ n-местного отношения из Rel, а t_1, \ldots, t_n термы.

ПРИМЕРЫ. атомарными формулами сигнатуры $\{c_0, f_1^1, f_2^2, P_1^1, P_2^2\}$ являются: $P_1^1 x_0$, $\simeq x_0 c_0$, $P_2^2 f_2^2 c_0 f_1^1 x_1 f_1^1 f_1^1 x_1$.

Определение. Всякую формулу и всякий терм будем называть правильным выражением языка атомарных формул.

УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- 1. О каждом из следующих слов докажите, что оно является атомарной формулой сигнатуры $\{c_0, c_1, c_2, c_3, f_1^3, f_2^2, f_3^1, P_1^1, P_2^2\}$:
 - (a) $P_2^2 f_2^2 x_1 x_2 f_3^1 x_0$;
- $(6) = f_3^1 f_2^2 x_0 f_3^1 c_0 x_1;$
- (B) $P_1^1 f_1^3 f_2^1 f_2^2 c_0 x_0 x_1 x_2$; (r) $= f_1^3 f_2^2 x_0 x_1 c_0 x_1 f_3^1 x_2$.
- 2. В данном слове переставьте местами два вхождения символов алфавита стандартного языка атомарных формул так, чтобы получилась атомарная формула:
- (a) $f_3^2 P_1^1 x_1 f_1^1 x_0$; (b) $P_1^1 x_0 f_1^2 f_1^1 c_0$; (b) $P_2^2 x_0 x_1 f_2^2 f_3^2 x_3$.
- 3. Вычеркните один из символов так, чтобы оставшееся слово оказалось атомарной формулой:
 - (a) $P_1^1 f_1^1 f_2^2 f_1^1 c_0$; (b) $P_2^2 f_3^2 f_1^1 x_0 f_1^1 x_1$; (b) $P_2^2 f_2^2 x_1 f_1^1 x_2$.
- 4. Заполните, если возможно, пустые клетки символами сигнатуры $\{c_0, f_1^1, f_2^2, \cong\}$ так, чтобы получилась атомарная формула:

- **5.** Заполните пустые клетки символами $c_0, f_1^1, f_2^2, \simeq$ так, чтобы получилась атомарная формула. Найдите все решения этой задачи.

- x_1
- 6. Являются ли следующие слова атомарными формулами сигнатуры $\{c_0, c_1, c_2, c_3, f_1^3, f_2^2, f_3^1, P_1^1, P_2^2\}:$

 x_2

 x_1

(a) $P_2^2 f_2^2 f_3^1 c_1 c_2 c_3$;

(B) $f_3^1 P_2^2 f_2^2 x_0 x_1 c_0$;

- (д) $P_2^2 f_2^2 f_3^1 f_3^1 x_0 f_2^2 x_1 x_2 x_3$;
- (6) $f_2^2 f_3^1 x_0 x_1;$ (r) $P_2^2 f_2^2 x_3 f_2^2 P_1^1 x_0 f_3^1 x_1;$ (e) $= f_2^2 f_1^3 c_0 c_1 f_3^1 c_2 f_3^2 c_2 c_3?$
- 7. Рассматривается стандартный язык атомарных формул, сигнатура которого содержит символы P_1^2 , P_2^3 , P_3^1 , f_1^1 , f_2^2 , f_3^3 , c_1 , c_2 , c_3 . Определите, является ли слово α правильным выражением стандартного языка атомарных формул или нет:
 - (a) $\alpha = f_2^2 = x_1 x_2 x_2;$ (6) $\alpha = P_1^2 x_1 f_3^3 x_1 x_2 x_3;$ (7) $\alpha = P_1^2 f_1^1 t_1 c_1;$

- (д) $\alpha = f_3^3 x_1 x_2 P_3^1 x_1;$ (e) $\alpha = P_2^3 (f_2^2 x_1 x_2) (f_1^1 c_1) c_1.$
- 8. Найдите количество атомарных формул, не содержащих вхождений предметных переменных в стандартном языке сигнатуры $\{c_0, c_1, P_1^1, P_2^2\}$?

ЗАДАНИЕ 6. Семантика языка атомарных формул

Правила семантики языка атомарных формул содержат в себе правила семантики языка термов. Правила семантики языка атомарных формул содержат в себе дополнения правил языка атомарных формул, относящиеся к атомарным формулам и к символам отношений.