1 Supporting Standard Results in Real Analysis

{sectemberalyss(s)}

Proposition 1. Let $f: \mathbb{R}_{++} \to \mathbb{R}_{+}$ be a continuous function. Consider sequences x^n in \mathbb{R}_{++} and $f^n(x^n)$ in \mathbb{R}_{+} . If $f^n(x^n) \to f(x)$ as $n \to \infty$, then $x^n \to x$ as $n \to \infty$.

Proof. Given that f is continuous at x (with $x \in \mathbb{R}_{++}$), for every $\epsilon > 0$, there exists a $\delta > 0$ such that for all y in \mathbb{R}_{++} with $|y - x| < \delta$, we have $|f(y) - f(x)| < \epsilon$.

Given $f^n(x^n) \to f(x)$, for the above ϵ , there exists an N such that for all n > N, $|f^n(x^n) - f(x)| < \epsilon$.

Assume for the sake of contradiction that x^n doesn't converge to x. This implies that there exists a $\delta > 0$ such that for infinitely many terms of the sequence x^n , $|x^n - x| \ge \delta$.

By the continuity of f at x, if $|x^n - x| \ge \delta$ for infinitely many n, then $|f^n(x^n) - f(x)| \ge \epsilon$ for those n, contradicting our assumption that $f^n(x^n) \to f(x)$.

Therefore, our assumption for contradiction is false, and it follows that $x^n \to x$ as $n \to \infty$.

Fact 1. Let $g: X \to \mathbb{R}_+$ be a continuous function, where $X \subseteq \mathbb{R}^n$ is an open convex set. Define the weighted supremum norm $\|\cdot\|_g$ of a real-valued function $f: X \to \mathbb{R}$ by

$$\|\mathbf{f}\|_{\mathbf{g}} := \sup_{x \in X} \frac{|\mathbf{f}(x)|}{\mathbf{g}(x)}.$$
 (1)

If $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}^{\star}\|_{g} = 0$, \mathbf{f}_n converges to \mathbf{f}^{\star} uniformly on compact sets.

Proof. Let \tilde{X} be an arbitrary compact subset of X. Since \tilde{X} is compact, there exists a positive lower bound for g on this subset, denoted as

$$\bar{\mathbf{g}} = \min_{x \in \tilde{X}} \mathbf{g}(x) > 0. \tag{2}$$

Hence, on \tilde{X} , if $\lim_{n\to\infty} \|f_n - f^*\|_g = 0$, then $\lim_{n\to\infty} \|f_n - f^*\|_\infty = 0$ on \tilde{X} , where $\|\cdot\|_\infty$ denotes the supremum norm.

Now, let K be a compact subset of X. Given the continuity of g, there exists a positive maximum value for g on K, denoted as M_K . Then, we have

$$\sup_{x \in K} |f_n(x) - f(x)| \le M_K \sup_{x \in K} \frac{|f_n(x) - f(x)|}{g(x)} \le M_K \sup_{x \in X} \frac{|f_n(x) - f(x)|}{g(x)}.$$
 (3)

Thus, $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}\|_{=0}$ implies that \mathbf{f}_n converges uniformly to \mathbf{f} on the compact set K. It's also worth noting that the convexity and openness of X aren't strictly necessary for this argument.

 $\{fact:compactnt\}$

Fact 2. Let $\{f_n\}$ be a sequence of continuous functions defined on a subset of the real line and converging uniformly to a function on compact sets. If $\{x_n\}$ is a convergent sequence of real numbers with limit x, then $f_n(x_n)$ converges to f(x).

Proof. Let \tilde{X} be an arbitrary compact subset of X. Since \tilde{X} is compact, there exists a positive lower bound for g on this subset, denoted as

$$\bar{\mathbf{g}} = \min_{x \in \tilde{X}} \mathbf{g}(x) > 0. \tag{4}$$

{fact:compactnts}

Hence, on \tilde{X} , if $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}^*\|_{\mathbf{g}} = 0$, then $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}^*\|_{\infty} = 0$ on \tilde{X} , where $\|\cdot\|_{\infty}$ denotes the supremum norm.

Now, let K be a compact subset of X. Given the continuity of g, there exists a positive maximum value for g on K, denoted as M_K . Then, we have

$$\sup_{x \in K} |f_n(x) - f(x)| \le M_K \sup_{x \in K} \frac{|f_n(x) - f(x)|}{g(x)} \le M_K \sup_{x \in X} \frac{|f_n(x) - f(x)|}{g(x)}.$$
 (5)

Thus, $\lim_{n\to\infty} \|\mathbf{f}_n - \mathbf{f}\|_{=0}$ implies that \mathbf{f}_n converges uniformly to \mathbf{f} on the compact set K. It's also worth noting that the convexity and openness of X aren't strictly necessary for this argument.

Fact 3. Let $\{f_n\}$ be a sequence of continuous functions defined on a subset of the real line and converging uniformly to a function f on compact sets. If $\{x_n\}$ is a convergent sequence of real numbers with limit x, then $f_n(x_n)$ converges to f(x).

Proof. Since x_n converges to x, the sequence $\{x_n\}$ is bounded. Therefore, there exists a compact set K (specifically, a closed interval in the real line) that contains all the x_n as well as x.

Given the uniform convergence of f_n to f on K, for every $\epsilon > 0$, there exists an N such that for all $n \geq N$ and for all $y \in K$, we have

$$|f_n(y) - f(y)| < \epsilon.$$

In particular, for $y = x_n$, we have

$$|f_n(x_n) - f(x_n)| < \epsilon$$

for all $n \geq N$.

Now, each f_n being continuous and x_n converging to x implies that $f(x_n)$ converges to f(x). Thus, for sufficiently large n, $f(x_n)$ can be made arbitrarily close to f(x).

Combining the two inequalities and taking n large enough, we deduce that $|f_n(x_n) - f(x)|$ can be made smaller than any given ϵ . Hence, $f_n(x_n)$ converges to f(x).