Mathematical basis

-PROMISE-

Tuesday 5th April, 2022

1 线性代数

1.1 向量 vector

- 对于向量 $x = (x_1 \ x_2, ..., x_d)^d \in \mathbb{R}^d$
- 内积: $x^T y = y^T x = \sum_{i=1}^{d} x_i y_i$
- 向量长度 $\parallel x \parallel = \sqrt{x^T x}, \parallel x \parallel^2 = x^T x$
- ||x|| = 1 的时候, x 是单位向量
- 正交: $x^T y = 0$ 时, x, y 互相垂直

1.2 内积,角度,投影

- $\|x\|$ 为向量长度, $\frac{x}{\|x\|}$ 为向量方向
- 向量夹角: $x^T y = ||x|| \cdot ||y|| \cdot \cos \theta$, $||x^T y|| \le ||x|| \cdot ||y||$
- x 在 y 上的投影 (projection):

方向: $\frac{y}{\|y\|}$, 长度: $\|x\|\cos\theta = \|x\|\frac{x^Ty}{\|x\|\cdot\|y\|} = \frac{x^Ty}{\|y\|}$

● 投影:

 $proj_y x = \frac{x^T y}{\|y\|^2} y, proj_y x \perp z, proj_y x + z = x$

1.3 柯西-施瓦茨不等式

1.3.1 Cauchy's inequality

• $(\sum_{k=1}^{n} a_k b_k)^2 \le (\sum_{k=1}^{n} a_k^2)(\sum_{k=1}^{n} b_k^2)$ 等号当且仅当存在固定实数 c,使得 $\forall k, a_k = cb_k$

1.3.2 Schwarz's Inequality

• $[\int_a^b f(x)g(x)dx]^2 \le [\int [f(x)]^2 dx][\int [g(x)]^2 dx]$ 等号当且仅当存在固定实数 c,使得 $\forall x \in [a,b], f(x) = cg(x)$

1.4 矩阵

• 矩阵 $m \times n$ 的矩阵, m 行 n 列 m=n 时为方阵 对角阵是只有对角线非零的方阵, 其中对角线全是 1 就是单位阵

I_n T

• 方阵行列式的值

$$\begin{aligned} |X| &= |X^T| \\ |XY| &= |X||Y| \\ |\lambda X| &= \lambda^n |X|(X:n\times n) \end{aligned}$$

• 逆矩阵

$$|X| \neq 0$$
 则 X 可逆($|X|$ 写作 $\det(X)$) $XX^{-1} = X^{-1}X = I_n$ $(X^{-1})^{-1} = X, (\lambda X)^{-1} = \frac{1}{\lambda}X^{-1}$ $(XY)^{-1} = Y^{-1}X^{-1}, (X^{-1})^T = (X^T)^{-1}$

1.5 方阵特征值

• $Ax = \lambda x \lambda$ x 特征值和对角线的关系: $\sum_{i=1}^{n} a_{ii} = \sum_{i=1}^{n} \lambda_i$, $det(A) = \prod_{i=1}^{n} \lambda_i$ 方阵的迹 (trace): $tr(A) = \sum_{i=1}^{n} a_{ii} = ??, tr(AB) = tr(BA)$

1.6 实对称矩阵

• 矩阵中每一项都是实数

特征值都是实数,特征向量都是实向量 特征值为 $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ 对应的特征向量记为 $\xi_1, \xi_2, ...,]xi_n$ 特征向量互相垂直: $\xi_i^T \xi_i = 0 (i \neq j)$ $E = [\xi_1 \xi_2 ... \xi_n] \quad rank(E) = n$

1.7 实对称矩阵

• $X = \sum_{i=1}^{n} \lambda_i \xi_i \xi_i^T$ 属于矩阵的谱分布,约定 $\|\xi_i\|=1$,则 E 实则正交矩阵 $X = E\Lambda E^T, \ \Lambda \ \Lambda_{ii} = \lambda_i$ $EE^T = E^TE = I$

1.8 正定, 半正定

• 对称矩阵 A 是正定的当且仅当:

 $\forall x \neq 0, x^T A x = \sum_{i,j} x_i x_j A_{ij} > 0$, 此时特征值全是正数 $\forall x \neq 0, x^T A x = \sum_{i,j} x_i x_j A_{ij} \geq 0$ 则 A 为半正定 记为 $A \succ 0$ 或 $A \succcurlyeq 0$ 常用到二次型: $x^T A x$

1.9 矩阵求导

 $(\frac{\partial x}{\partial \mathbf{a}})_i = \frac{\partial x}{\partial a_i}, \ (\frac{\partial x}{\partial A})_{ij} = \frac{\partial a_i}{\partial A_{ij}}, \ (\frac{\partial \mathbf{a}}{\partial \mathbf{x}})_{ij} = \frac{\partial a_i}{\partial x_j}$ 用 Matrix Cookbook 查表

2 概率论

2.1 概率密度函数,分布函数

● PDF 和 CDF 的关系: p(x)=F'(x)

2.2 联合、条件分布、变换

- 联合: P(X=x), $p(x) \ge 0 \int p(x)dx = 1$
- 条件: p(x,y) = p(y)p(x|y), $p(x) = \int_y p(x,y)dy$ (边界分布)
- 假设 $x = g(y), p_Y(y) = p_X(x) \left| \frac{dx}{dy} \right| = p_X(g(y)) |g'(y)|$

2.3 期望和方差

• 常规的省略, 条件期望: $E(f(x)|Y=y) = \sum_{x} f(x) \cdot p(x|y)$

2.4 估计均值和协方差矩阵

• 训练样本: $x_1, x_2, ..., x_n$ 均值估计 $x = \frac{1}{n} \sum_{i=1}^{n} x_i$

Covariance 估计: $Cov(x) = \frac{1}{n} \sum_{i=1}^{n} (x_i - x)(x_i - x)^T$

无偏估计: $Cov(x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - x)(x_i - x)^T$

2.5 两随机变量的独立、相关

- (,) = (x) () 则 X,Y 互相独立 $\begin{aligned} & \operatorname{cov}(\mathbf{X},\mathbf{Y}) {=} \mathbf{E}[(\mathbf{X}{-}\mathbf{E}\mathbf{X})(\mathbf{Y}{-}\mathbf{E}\mathbf{Y})] {=} \mathbf{E}\mathbf{X} {+} \mathbf{E}\mathbf{Y}{-} \mathbf{E}\mathbf{X}\mathbf{Y} \\ & \rho_{XY} = \frac{\operatorname{cov}(X,Y)}{\sqrt{(Var(X)Var(Y))}} \; \rho_{XY} = 0 \; \text{时为不相关}, \;\; \rho_{XY} \pm 1, \end{aligned}$
- 独立保证一定不相关,但不相关不一定独立

2.6 正态分布(高斯分布)

- 一维: $p(x) = (2\pi)^{-\frac{1}{2}} (\sigma^2)^{-\frac{1}{2}exp-\frac{1}{2}(x-\mu)(\sigma^2)^{-1}(x-\mu)}$ 多维:: $p(x) = (2\pi)^{-\frac{D}{2}} |\Sigma|^{-\frac{1}{2}exp-\frac{1}{2}(x-\mu)|\Sigma|^{-1}(x-\mu)}$, 其中 $D: , \Sigma$
- ,记为 $x N(\mu, \Sigma)$
 - 正态分布中不相关等价于独立

两个正态分布的加权和: aX+bY 也是正态分布

条件分布: $x_a|x_b$ 也是高斯分布

边际分布: $p(x_a) = \int p(x_a, x_b) dx_n$ 也是正态分布