Outline

Motivation:

Corollary 2.2.6

Definitions:

- Twisted forms
- First group cohomology set

Main result:

Examples:

- Hilbert's Theorem 90
- Quadratic forms
- CSA

Special goals:

- Justify the term "descent"
- Use diagrams to illustrate cocycle condition and cohomologous condition (Man Cheung)

Other resources:

- Notes by Joshua Ruiter
- Notes by Keith Conrad
- Video by Daniel Krashen

Corollary 2.2.6

Corollary

A finite dimensional k-algebra A is a CSA iff there exist an integer n > 0 and a finite Galois extension $K \mid k$ so that $A \otimes_k K$ is isomorphic to $M_n(K)$.

Corollary 2.2.6

Corollary

A finite dimensional k-algebra A is a CSA iff there exist an integer n > 0 and a finite Galois extension $K \mid k$ so that $A \otimes_k K$ is isomorphic to $M_n(K)$.

$$\begin{array}{ccc}
K & M_n(K) \\
\uparrow & & \\
k & CSA
\end{array}$$

What do we know about CSA from this?

Corollary 2.2.6

Corollary

A finite dimensional k-algebra A is a CSA iff there exist an integer n > 0 and a finite Galois extension $K \mid k$ so that $A \otimes_k K$ is isomorphic to $M_n(K)$.

$$\begin{array}{ccc}
K & M_n(K) \\
\uparrow & & \\
k & CSA
\end{array}$$

What do we know about CSA from this?

Generalization of the Question

 $K \mid k$ finite Galois extension. V is a k-object (k-vector space with or without additional structure). $V \otimes_k K$ is a K-object.

Generalization of the Question

 $K \mid k$ finite Galois extension. V is a k-object (k-vector space with or without additional structure). $V \otimes_k K$ is a K-object.

Given a K-object W.

- When does W descent?
- $? \otimes_k K = W?$
- Relation between A, B if $A \otimes K \cong B \otimes K \cong W$?

Generalization of the Question

 $K \mid k$ finite Galois extension. V is a k-object (k-vector space with or without additional structure). $V \otimes_k K$ is a K-object.

Given a K-object W.

- When does W descent?
- $? \otimes_k K = W?$
- Relation between A, B if $A \otimes K \cong B \otimes K \cong W$?

Vector Spaces: Speiser Lemma

Lemma

 $K \mid k$, finite Galois extension with Galois group G. V is a K-v.s. equipped with a G-action which is additive and K-semilinear.

$$\sigma(av) = \sigma(a)\sigma(v), \quad \sigma \in G, a \in K, v \in V.$$

Then the natural map

$$\lambda: V^{\mathsf{G}} \otimes_k K \to V.$$

k-object:

V a k-v.s. equipped with a tensor Φ of type (p, q), meaning

$$\Phi \in V^{\otimes p} \otimes_k (V^*)^{\otimes q} \cong \operatorname{Hom}_k(V^{\otimes q}, V^{\otimes p})$$

k-object:

V a k-v.s. equipped with a tensor Φ of type (p,q), meaning

$$\Phi \in V^{\otimes p} \otimes_k (V^*)^{\otimes q} \cong \operatorname{Hom}_k(V^{\otimes q}, V^{\otimes p})$$

• When $\Phi = 0$, v.s. without additional structure.

k-object:

V a k-v.s. equipped with a tensor Φ of type (p,q), meaning

$$\Phi \in V^{\otimes p} \otimes_k (V^*)^{\otimes q} \cong \operatorname{Hom}_k(V^{\otimes q}, V^{\otimes p})$$

- When $\Phi = 0$, v.s. without additional structure.
- When p=1, q=2, Φ is a k-linear map $V\otimes V\to V$. The theory of associative algebra is contained in this case.

k-object:

V a k-v.s. equipped with a tensor Φ of type (p,q), meaning

$$\Phi \in V^{\otimes p} \otimes_k (V^*)^{\otimes q} \cong \operatorname{Hom}_k(V^{\otimes q}, V^{\otimes p})$$

- When $\Phi = 0$, v.s. without additional structure.
- When p=1, q=2, Φ is a k-linear map $V\otimes V\to V$. The theory of associative algebra is contained in this case.

A k-isomorphism between (V, Φ) and (W, Ψ) is an isomorphism of

v.s.
$$f:V o W$$
 such that $V^{\otimes q}\xrightarrow{f^{\otimes q}}W^{\otimes q}$ \downarrow_{Ψ} commutes. $V^{\otimes p}\xrightarrow{f^{\otimes p}}W^{\otimes q}$

Twisted forms

k-objects $\to K$ -objects by $\otimes_k K$: Given (V, Φ) , let $V_K = V \otimes K$ and Φ_K the tensor on V_K induced by Φ

Twisted forms

k-objects $\to K$ -objects by $\otimes_k K$: Given (V, Φ) , let $V_K = V \otimes K$ and Φ_K the tensor on V_K induced by Φ

 $(V,\Phi),(W,\Psi)$ are k-objects. They become isomorphic over K if (V_K,Φ_K) and (W_K,Ψ_K) are isomorphic as K-objects. When they are K-isomorphic, say (W,Ψ) is a $(K\mid k)$ -twisted form or twisted form of (V,Φ) .

Twisted forms

k-objects $\to K$ -objects by $\otimes_k K$: Given (V, Φ) , let $V_K = V \otimes K$ and Φ_K the tensor on V_K induced by Φ

 $(V,\Phi),(W,\Psi)$ are k-objects. They become isomorphic over K if (V_K,Φ_K) and (W_K,Ψ_K) are isomorphic as K-objects. When they are K-isomorphic, say (W,Ψ) is a $(K\mid k)$ -twisted form or twisted form of (V,Φ) .

For $\sigma \in G$, it induces a k-automorphism of $V_K = V \otimes_k K$ (not a K-automorphism), still denoted by σ . For a K-linear map $f: V_K \to W_K$, σ induces a K-linear map $\sigma(f) = \sigma \circ f \circ \sigma^{-1}$.

For $\sigma \in G$, it induces a k-automorphism of $V_K = V \otimes_k K$ (not a K-automorphism), still denoted by σ . For a K-linear map $f: V_K \to W_K$, σ induces a K-linear map $\sigma(f) = \sigma \circ f \circ \sigma^{-1}$.

$$V_{K} \xrightarrow{f} W_{K}$$

$$\sigma^{-1} \uparrow \qquad \qquad \downarrow \sigma$$

$$V_{K} \xrightarrow{f} W_{K}$$

For $\sigma \in G$, it induces a k-automorphism of $V_K = V \otimes_k K$ (not a K-automorphism), still denoted by σ . For a K-linear map $f: V_K \to W_K$, σ induces a K-linear map $\sigma(f) = \sigma \circ f \circ \sigma^{-1}$.

$$V_{K} \xrightarrow{f} W_{K}$$

$$\sigma^{-1} \uparrow \qquad \qquad \downarrow \sigma$$

$$V_{K} \xrightarrow{f} W_{K}$$

Easy to check: if f is a K-isomorphism $(V_K, \Phi_K) \to (W_K, \Psi_K)$, then so is $\sigma(f)$. $f \mapsto \sigma(f)$ preserves composition (and hence is a left action of G on $\operatorname{Aut}_K(\Phi)$?).

$$(V_K, \Phi_K) \xleftarrow{\sigma(g)} (W_K, \Psi_K)$$

Given $g:(V_K,\Phi_K)\to (W_K,\Psi_K)$, we get a map $G\to \operatorname{Aut}_K(\Phi)$ associating $a_\sigma=g^{-1}\circ\sigma(g)$ to $\sigma\in G$.

cocycle relation:
$$a_{\sigma\tau} = a_{\sigma} \cdot \sigma(a_{\tau})$$
 (1)

For another K-automorphism $b:(V_K,\Phi_K)\to (W_K,\Psi_K)$,

coboundary relation:
$$a_{\sigma} = c^{-1}b_{\sigma}\sigma(c),$$
 (2)

where $c = h^{-1} \circ g \in \operatorname{aut}_K(\Phi)$.

Definition

Given groups G, A. G acts on A (on the left).

$$\sigma(ab) = \sigma(a)\sigma(b), \quad \sigma(\tau(a)) = \sigma\tau(a).$$

A 1-cocycle is a map $G \to A$ satisfying Equation 1 . Two cocycles a_{σ}, b_{σ} are called equivalent or cohomologous if they satisfy Equation 2.

 $H_1(G,A)$, called *the first cohomology set*, is the set of cohomologous classes of 1-cocycles. It is a *pointed set*. The equivalence class of the trivial 1-cocycle $\sigma \mapsto 1$ is the *base point*.

Theorem

$$TF_K(V, \Phi) \to H^1(G, \operatorname{Aut}_K(\Phi)),$$

$$[W, \Psi] \mapsto [a_{\sigma}]$$

is a bijection preserving the base point.

Example: Hilbert's Theorem 90

$$G = \operatorname{Gal}(K \mid k)$$

V is a v.s. of dim n over k without additional structure ($\Phi = 0$). Then

$$\operatorname{Aut}_{K}(\Phi) = \operatorname{GL}_{n}(K).$$

If two k-v.s. are K-isomorphic then they are k-isomorphic (Speiser Lemma). Consequently

$$TF_K(V,\Phi)\cong H^1(G,\operatorname{GL}_K(n))=\{1\}.$$

When n = 1,

$$H^1(G,K^*)=1.$$

Original form:

If G is cyclic and generated by σ , then for $x \in K$ with N(x) = 1, there exists $c \in K$ such that $x = \frac{\sigma(c)}{c}$.

Example: Quadratic Forms

 $\operatorname{char}(k) \neq 2$

 Φ is a tensor of type (0,2). That is, $\Phi: V \otimes V \to k$. Φ defines a nondegenerate symmetric bilinear form <,>. $\operatorname{Aut}_{\mathcal{K}}(\Phi)$ is the group $O_n(\mathcal{K})$ of matrices preserving <,>.

$$TF_K(V,\Phi)\cong H^1(G,O_n(K))$$

Example: CSA

Corollary

A finite dimensional k-algebra A is a CSA iff there exist an integer n > 0 and a finite Galois extension $K \mid k$ so that $A \otimes_k K$ is isomorphic to $M_n(K)$.

$$\operatorname{Aut}_{\mathcal{K}}(GL_n(\mathcal{K})) = \operatorname{PGL}_n(\mathcal{K})$$

$$CSA_{\mathcal{K}}(n) \cong H^1(G, \operatorname{PGL}_n(\mathcal{K}))$$

 $\mathit{CSA}_{\mathcal{K}}(n)$: k-isomorphism classes of CSA over k of degree n split by \mathcal{K}