

## SHANGHAI JIAO TONG UNIVERSITY

# 课程报告



## BI908 脑肿瘤分割项目报告

518021910971 裴奕博 学号丁一 学号陈波 学号栗行健



## 目录

| 1 | 项目简介与预处理  |                      |   |  |
|---|-----------|----------------------|---|--|
|   | 1.1       | 项目简介                 | 2 |  |
|   | 1.2       | 各文件(夹)功能             | 2 |  |
|   | 1.3       | 预处理方法                | 4 |  |
| 2 | 实现方法与结果 4 |                      |   |  |
|   | 2.1       | 基于多阈值 Otsu 的图像分割     | 4 |  |
|   |           | 2.1.1 传统的多阈值 Otsu 方法 | 4 |  |
|   |           | 2.1.2 改进后的 Otsu 方法   | 4 |  |
|   | 2.2       | 基于区域增长的图像分割          | 4 |  |
|   |           | 2.2.1 传统的区域增长方法      | 4 |  |
|   |           | 2.2.2 改进后的区域增长方法     | 4 |  |
|   | 2.3       | 基于深度学习的图像分割          | 4 |  |
| 3 | 项目        | 评价                   | 4 |  |
|   | 3.1       | 各方法效果比较              | 4 |  |
|   | 3.2       | 项目优势                 | 4 |  |
|   | 3.3       | 项目缺点                 | 4 |  |
| 4 | 成员        | 分工与贡献                | 4 |  |
|   | 4.1       | 表奕博                  | 4 |  |
|   | 4.2       | 丁一                   |   |  |
|   | 4.3       | 陈波                   | 4 |  |
|   | 4.4       | 栗行健                  | 4 |  |
| 5 | 感想        | 。<br>5月展望            | 4 |  |



## 1 项目简介与预处理

#### 1.1 项目简介

本项目采用了阈值分割,区域增长,深度学习等多种分割算法,结合锐化滤波,形态学处理等辅助增强手段,对给定的脑肿瘤进行了分割,并取得了不错的效果。整个项目均采用自己实现的 Python 算法,项目的总流程如下:



图 1: 总工作流程图

其中:

- 1) nii.gz 文件的输入输出均由 SimpleITK 包完成
- 2) 数据预处理部分的算法包括
- 3) 图像分割算法包括:去除背景的三维 Otsu 算法,传统的三维区域增长算法,改进后的三维区域增长算法。
- 4) 分割结果的形态学后处理方法包括: 开运算和闭运算操作。

我们组的编号为 04,采用的数据集是 Dataset\_Group/04 文件夹下的三个待分割样本,编号分别为  $BRAT\_008, BRAT\_033, BRAT\_259$ 。

#### 1.2 各文件(夹)功能

- README.md 文件: 说明了本项目的主要信息和使用方法。
- requirements.txt 文件: 说明了本项目所需环境中的依赖包。
- Dataset\_Group 文件夹: 存放待分割样本和标签。
- train data 文件夹:存放经切片之后的二维图像,可供深度学习使用。
- output 文件夹: 存放经过算法之后输出的文件,文件夹下共由 5 个子文件夹,对应 5 种分割和结果后处理的方法。
- run.bat 文件: 命令行运行脚本,用户若需要再不同的分割方式下进行切换,可以直接在该文件中 修改参数实现。
- main.py 文件:整个项目的主函数,包含了从数据读入,调用算法和结果评估,输出结果的全过程。



- iotest.py/sitk\_test.py/iotest.nii.gz 文件:项目实现过程中的调试文件和调试输出,用户使用时不要运行。
- prepare.py 文件: 用于将原始数据切片并上采样至 256×256 的二维图像, 其结果输出为 jpg 格式, 存放在 train data 文件夹中。
- otsu.py 文件: 实现了三维的 Otsu 阈值分割函数。
- region growing.py 文件: 实现了三维的区域增长分割函数。
- validation.py 文件: 实现了混淆矩阵 (confusion matrix) 和所有评价指标的求取。
- utils.py 文件:存放运行过程中所需的常量。实现其余所有需要用到的辅助函数(如输入输出、可 视化、形态学算法等)
- result.json 文件: 存放分割算法的评价指标原始数据。
- result\_to\_csv.py 文件:将 json 中的原始数据读出后转换并整理为 csv 格式。
- result.csv 文件: 存放本项目各方法的最终对比结果。



#### 1.3 预处理方法

### 2 实现方法与结果

- 2.1 基于多阈值 Otsu 的图像分割
- 2.1.1 传统的多阈值 Otsu 方法
- 2.1.2 改进后的 Otsu 方法
- 2.2 基于区域增长的图像分割
- 2.2.1 传统的区域增长方法
- 2.2.2 改进后的区域增长方法
- 2.3 基于深度学习的图像分割

### 3 项目评价

- 3.1 各方法效果比较
- 3.2 项目优势
- 3.3 项目缺点

## 4 成员分工与贡献

#### 4.1 裴奕博

- 完成了输入输出、可视化、结果评估、运行脚本等辅助函数的实现。
- 尝试了用 Pytorch 实现 UNet 等网络结构进行深度学习的算法。
- 与组内其他成员共同讨论,提出了分割算法改进的思路。
- 完成了后续说明文档的书写,并与组内其他成员共同完成了项目报告。
- 4.2 丁一
- 4.3 陈波
- 4.4 栗行健

## 5 感想与展望