T7- Decaimento radioativo

T7.1- Natureza Aleatória do Decaimento Radioactivo

Objectivo

- Pretende-se demonstrar a flutuação estatística no tempo, da taxa de decaimento, para uma fonte radioativa de atividade constante.

Princípios Teóricos

Numa fonte radioativa com atividade constante, a taxa de contagem, quando medida em intervalos de tempo sucessivos, não é constante mas apresenta flutuações exibindo um comportamento estatístico. Devido a esta natureza aleatória dos processos de desintegração apenas nos podemos referir a taxas de contagem médias. Consideremos que os valores do número total de contagens observadas em \underline{n} medições, para um intervalo de tempo fixo, são $x_1, x_2, ...$

O tamanho da dispersão à volta do valor médio, para uma série de <u>n</u> observações, é expresso pelo desvio padrão, definido pela equação:

$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n-1}}$$

$$0.1\% \quad 2.1\% \quad 34.1\% \quad 34.1\%$$

$$0.1\% \quad 2.1\% \quad 0.1\%$$

$$0.1\% \quad 2.1\% \quad 0.1\%$$

$$0.1\% \quad 0.1\% \quad 0.1\%$$

O desvio padrão é, portanto, uma medida da incerteza na taxa de contagem média observada. O "erro provável" é numericamente igual a $0,6745\sigma$. A análise estatística mostra que 31,7% de uma série de observações será desviada da taxa de contagem média por mais de σ e 50% será desviada mais do que o erro provável. A teoria mostra também que, para observações da taxa de contagem do decaimento radioativo, o desvio padrão é aproximadamente igual à raiz quadrada do número médio de contagens.

Parte Experimental

Material:

Contador de Geiger-Müller
Tubo de Geiger-Müller
Fonte de radiação γ
Cronómetro

Procedimento

- 1- Ligar o contador de Geiger-Müller;
- 2- Colocar a fonte no suporte;
- 3- Medir o número de contagens durante 30 segundos;
- 4- Repetir o passo 3 pelo menos 100 vezes.

A distância entre a fonte e o detector tem de manter-se constante durante todo o procedimento*.

Resultados

- 1– Calcule \overline{x} , $x_i \overline{x}$, $\sum_{i=1}^n (x_i \overline{x})$, e σ
- 2– Compare o desvio padrão com $\sqrt{\overline{x}}$
- 3- Conte o número de medidas que se desviam da média mais do que $\pm \sigma$, e o número das que se desviam $0,674\sigma$ e expresse esses números como uma percentagem do número total de medidas. Compare com os valores 31,7% e 50% da teoria.
 - 4- Construa um histograma de frequências.

*Obs.: A radiação emitida pela fonte radioativa espalha-se em todas as direções do espaço, numa frente esférica (ver figura).

Portanto, a intensidade da radiação detectada variará com o inverso do quadrado da distância entre a fonte e o detetor.

31