QUÈ HEM FET FINS ARA?

El darrer que hem treballat és teoria de conjunts fins a conjunt de les parts.

CLASSE D'AVUI 30/10/2020

Continuem amb la teoria de conjunts.

EX.: (57) Demostreu que $A \times B = B \times A \Leftrightarrow A = B$ o $A = \emptyset$ o $B = \emptyset$.

- ullet \Rightarrow : suposem que és cert que $A \times B = B \times A$ i demostrem que A = B o $A = \varnothing$ o $B = \varnothing$; per demostrar això suposem que $A \neq \varnothing$ i $B \neq \varnothing$ i justifiquem que $A = \stackrel{???}{B}$: sigui un $a \in A$ (sabem que n'hi ha perquè no és buit) i vull demostrar que $a \in B$; com que $B \neq \varnothing$ agafo un element qualsevol $b \in B$ i llavors puc afirmar que $(a,b) \in A \times B = B \times A \Rightarrow (a,b) \in B \times A \Rightarrow a \in B$ i $b \in A$, i en particular $a \in B$ just el que volia demostrar; per demostrar l'altre inclusió es procedeix de la mateixa manera.
- \Leftarrow : suposem que és cert que A=B o $A=\varnothing$ o $B=\varnothing$ i hem de deduir que $A\times B={}^{???}B\times A$, per tant haurem d'analitzar tres cassos; si $A=\varnothing$ sabem per la propìetat 1 que $A\times B=A\times\varnothing=\varnothing=\varnothing\times A$; si $B=\varnothing$ es raona de la mateixa manera; i si A=B encara és més fàcil perquè $A\times B=B\times B=X$.

EX.: (65) Demostreu que $A \cap \emptyset = \emptyset$.

S'han de demostrar dues inclusions. En primer lloc $A \cap \varnothing \supseteq \varnothing$ que és cert sempre. En segon lloc demostrem $A \cap \varnothing \subseteq ^{???} \varnothing$ per la qual cosa suposo que tinc un $x \in A \cap \varnothing$ i arribem a una contradicció. Molt fàcil: si $x \in A \cap \varnothing$ llavors

 $x \in A$ i $x \in \emptyset$, en particular $x \in \emptyset$ cosa impossible.

EX.: (66) Demostreu que $A - A = \emptyset$.

S'han de demostrar dues inclusions. En primer lloc $A-A\supseteq\varnothing$ que és cert sempre. En segon lloc demostrem $A-A\subseteq^{???}\varnothing$ per la qual cosa suposo que tinc un $x\in A-A$ i arribem a una contradicció. Molt fàcil: si $x\in A-A$ llavors

 $x \in A$ i $x \notin A$, cosa impossible.

EX.: (67) Demostreu que $\emptyset - A = \emptyset$.

S'han de demostrar dues inclusions. En primer lloc $\emptyset - A \supseteq \emptyset$ que és cert sempre. En segon lloc demostrem $\emptyset - A \subseteq ??? \emptyset$ per la qual cosa suposo que tinc un $x \in \emptyset - A$ i arribem a una contradicció. Molt fàcil: si $x \in \emptyset - A$ llavors

 $x \in \emptyset$ i $x \notin A$, cosa impossible perquè el conjunt no pot tenir cap element.

EX.: (68) Demostreu que $(A - B) \cap B = \emptyset$.

S'han de demostrar dues inclusions. En primer lloc $(A-B)\cap B\supseteq\varnothing$ que és cert sempre. En segon lloc demostrem $(A-B)\cap B\subseteq^{???}\varnothing$ per la qual cosa suposo que tinc un $x\in (A-B)\cap B$ i arribem a una contradicció. Molt fàcil: si $x\in (A-B)\cap B$ llavors $x\in A$ i $x\notin B$ i $x\in B$, per tant, en particular $x\notin B$ i $x\in B$ cosa que és falsa.

EXERCICIS REPÀS INDUCCIÓ

EX.: Siguin els nombres reals $a_i \ge 0$ per a tot i. Demostreu per inducció que per a tot

$$\prod_{i=1}^{n} (1 + a_i) \ge 1 + \sum_{i=1}^{n} a_i.$$

Aquesta designaltat diu: $(1 + a_1)(1 + a_2)(1 + a_3)...(1 + a_n) \ge 1 + a_1 + a_2 + a_3 + ... + a_n$. Demostrem-la per inducció:

CAS n = 1: haig de demostrar que és cert $1 + a_1 \ge 1 + a_1$. És cert sempre.

CAS $n-1 \Rightarrow$ CAS n: sigui n > 1 suposem que

$$(1+a_1)(1+a_2)(1+a_3)...(1+a_{n-1}) \ge 1+a_1+a_2+a_3+...+a_{n-1}$$
 (HI)

i volem demostrar que es verifica

$$(1+a_1)(1+a_2)(1+a_3)...(1+a_n) \ge^{???} 1+a_1+a_2+a_3+...+a_n.$$

En efecte:

$$(1+a_1)(1+a_2)(1+a_3)...(1+a_{n-1})(1+a_n) \ge_{\mathsf{per}\,\mathsf{HI}} (1+a_1+a_2+a_3+...+a_{n-1})(1+a_n) = 1+a_1+a_2+a_3+...+a_{n-1}+a_n+a_na_1+a_na_2+a_na_3+...+a_na_{n-1} \ge 1+a_1+a_2+a_3+...+a_na_na_n$$

ja que $a_n a_1 + a_n a_2 + a_n a_3 + ... + a_n a_{n-1} \ge 0$.

EX.: Demostreu per inducció que per a tot n > 0 tenim que $\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}$.

Escrit d'una altra manera tenim que aquesta afirmació diu $1^3 + 2^3 + 3^3 + \ldots + n^3 = \frac{n^2(n+1)^2}{4}$

CAS n=1: haig de demostrar que $1^3=\frac{2^2(1+1)^2}{4}$; això és cert perquè $1^3=1$ i d'altra banda $\frac{1^2(1+1)^2}{4} = \frac{4}{4} = 1$.

CAS n-1 IMPLICA n: sigui n>1; suposem que és cert que $1^3 + 2^3 + 3^3 + ... + (n-1)^3 = \frac{(n-1)^2((n-1)+1)^2}{4}$ (HI) i volem demostrar que $1^3 + 2^3 + 3^3 + ... + n^3 = \frac{n^2(n+1)^2}{4}$. Per demostrar-ho calculem els dos membres per separat:

- $1^3 + 2^3 + 3^3 + \dots + n^3 = 1^3 + 2^3 + 3^3 + \dots + (n-1)^3 + n^3 = \frac{(n-1)^2((n-1)+1)^2}{4} + n^3$ = $\frac{(n-1)^2n^2+4n^3}{4} = \frac{n^2((n-1)^2+4n)}{4} = \frac{n^2(n^2+2n+1)}{4}$ $\frac{n^2(n+1)^2}{4} = \frac{n^2(n^2+2n+1)}{4}$

i ja hem vist que són iguals, per tant queda justificat.

EX.: Sigui el nombre real x. Demostreu per inducció que per a tot $n \ge 0$ tenim que $\sum_{i=0}^{n} x^{i} = \frac{x^{n+1}-1}{x-1}.$

EX.: Demostreu per inducció que per a tot $n \ge 0$ tenim que $7^{2n+1} + 1$ és un múltiple de 8.

EX.: Demostreu per inducció que per a tot $n \ge 0$ tenim que $3^{2n+2} + 2^{6n+1}$ és un múltiple de 11.

EX.: Demostreu per inducció que per a tot $n \ge 0$ tenim que $3^{2n+2} - 2^{n+1}$ és un múltiple

de 7.

EX.: Demostreu per inducció per a tot
$$n \ge 1$$
:
$$\frac{1^2}{1 \cdot 3} + \frac{2^2}{3 \cdot 5} + \frac{3^2}{5 \cdot 7} + \frac{4^2}{7 \cdot 9} + \ldots + \frac{n^2}{(2n-1)(2n+1)} = \frac{n(n+1)}{2(2n+1)}.$$

EX.: Demostreu per inducció per a tot $n \ge 1$:

$$\sum_{i=1}^{n} i^5 + \sum_{i=1}^{n} i^7 = \frac{n^4(n+1)^4}{8}.$$

EX.: Demostreu per inducció per a tot $n \ge 1$:

$$\frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \frac{1}{4 \cdot 5 \cdot 6} + \dots + \frac{1}{n(n+1)(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}.$$

EX.: Demostreu per inducció per a tot $n \ge 3$ i per a tot $x \in \mathbb{R}^+ - \{0\}$ tenim que $(1+x)^n > 1 + nx + nx^2.$

EX.: Demostreu per inducció per a tot $n \ge 4$ tenim que $2^n \ge n^2$.