TATA65 Diskret matematik 6hp Kurs-PM HT2025

1 Kursinnehåll

Ansvarig kursledare och examinator: Jonna Gill, B-huset, ing. 21, 1 tr, A-korr, rum 681. Tel: 013-28 12 45. E-post: jonna.gill@liu.se

Grupp	Lektionsledare	E-post
D1a	Jacob Alvarsson	jacal005@student.liu.se
D1b	Jonna Gill	jonna.gill@liu.se
D1c	Erik Martinsson	erima686@student.liu.se
U1a	Carl Johan Casselgren	carl.johan.casselgren@liu.se
U1b	Armen Asratian	armen.asratian@liu.se

Kursens hemsida: https://courses.mai.liu.se/GU/TATA65/

Material som delas ut på föreläsningarna, t.ex. inlämningsuppgifter, kommer att finnas tillgängligt på hemsidan. Information om kursen finns även i Lisam och i studieinfo: https://studieinfo.liu.se/kurs/TATA65/

1.1 Kurslitteratur

• A. Asratian, A. Björn, B. O. Turesson, Diskret matematik, Liber, 2020.

Kursen omfattar följande kapitel i boken: 2.1-6, 4, 5.1-11, 7.1-3,5-8, 8, 9.1-3, 10.1-5, 11.1-3, 12, 13, samt 14. Boken finns att köpa på Bokakademin i Kårallen.

För ytterligare litteratur med fler exempel och tillämpningar för den intresserade, föreslås till exempel *Discrete and Combinatorial Mathematics* av R. P. Grimaldi.

2 Undervisning och självstudier

Undervisningen består av 12 st föreläsningar (24 timmar) och 18 lektioner (36 timmar). Dessutom finns 9 mentorsmöten (18 timmar).

Kursen omfattar 6 högskolepoäng, dvs c:a 160 arbetstimmar. Av denna tid är alltså c:a 80 timmar schemalagda, och den förväntade självstudietiden (utöver den schemalagda tiden) är c:a 80 timmar. Du förväntas därmed göra hälften av arbetet med kursen utanför den schemalagda tiden.

För att få ut mesta möjliga av kursen är det lämpligt att delta så mycket som möjligt i undervisningen och att alltid förbereda sig inför varje undervisningstillfälle.

2.1 Föreläsningar

På föreläsningarna presenteras valda delar av innehållet i kursen. Viktiga exempel och metoder för problemlösning diskuteras och även teorin.

Föreläsningarna ger endast en grund för det du ska lära dig i varje avsnitt av kursen och ska ses som ett komplement till litteraturen. Det är därför lämpligt att du förbereder varje föreläsning genom att bekanta dig med det eller de avsnitt som ska behandlas.

Efter föreläsningen bör du arbeta med anteckningarna du gjort. Renskriv gärna dessa och tänk igenom det du har skrivit. Jämför med dina kurskamraters anteckningar.

2.2 Lektioner

På lektionerna arbetar du med de övningsuppgifter som står på schemat. Det år i detta arbete den huvudsakliga inlärningen av varje moment i kursen sker. Avsikten med lektionerna är att du ska ha någon att fråga och diskutera med när du fastnat på en uppgift. Erfarenheten visar att det bästa sättet att lära sig är att kämpa med uppgifterna och inte vara rädd att köra fast ibland.

För att få så mycket nytta av lektionerna som möjligt ska du ha förberett lektionen i lugn och ro hemma genom att repetera föreläsningen och att läsa texten i boken. Det är också bra om du har försökt lösa en del övningsuppgifter i förväg.

På lektionen har du också tillfälle att fråga en lärare om oklarheter i boken eller i dina föreläsningsanteckningar.

2.3 Mentorsmöten

Mentorsmötena är ett komplement till föreläsningar och lektioner. De leds av studenter och tanken är att du ska få chansen att arbeta med problemlösning i grupp, med uppgifter som ges vid mentorsmötet.

3 Examination

Kursen examineras genom en skriftlig tentamen (4 hp; betyg U, 3, 4, 5) och obligatoriska inlämningsuppgifter (2 hp; betyg U, G).

3.1 Tentamen

Tentamen består av flera uppgifter, som alla testar förståelse av delar av kursinnehållet. Tentamen är indelad i 2 delar och för godkänt krävs att man samlar ett visst antal poäng på både första och andra delen av tentamen. Exakta betygsgränser anges i samband med tentamen. Mer information om vilka lärandemål som testas och hur dessa relaterar till bedömningskriterier för olika betyg finns på https://studieinfo.liu.se/kurs/TATA65/

3.2 Inlämningsuppgifter

Inlämningsuppgifterna är uppdelade i två omgångar.

Omgång 1 delas ut vid föreläsningen 29/8, och sista inlämningsdatum är fredag 12/9. Omgång 2 delas ut vid föreläsningen 15/9, och sista inlämningsdatum är fredag 26/9. Alla inlämningsuppgifter ska vara godkända senast 24/10 2025.

Uppgifterna belyser ett flertal *viktiga moment i kursen* som du måste behärska. Förutom att du ska lära dig dessa moment är syftet också att du via rättningen ska *lära dig att presentera lösningar på matematiska problem* på ett logiskt hållbart och ändå lättläst sätt. Just detta att presentera lösningar kan i början uppfattas som svårt. En vanlig

fråga från studenter är "Vad ska jag skriva?". Försök skriva så att du själv (och dina kurskamrater!) kan förstå vid en ny genomläsning efter några dagar. Skriv heller aldrig något som du själv inte förstår.

Tänk också på att alltid *kontrollera lösningarna* innan du lämnar in dem. Är svaren rimliga? Är alla resultat på vägen riktiga? Dels skaffar du dig en god vana som du kommer att ha stor nytta av i senare kurser, dels kan du också undvika onödiga returer.

Även om all examination är individuell får (och bör) man samarbeta med andra vid lösning av inlämningsuppgifterna. Avskrivning är dock inte tillåten, och skriv aldrig något som du själv inte begriper.

(Det som tas upp i inlämningsuppgifterna är självklart inte heltäckande utan det finns moment som man förväntas behärska och som ej tas upp i inlämningsuppgifterna.)

De två uppgiftsomgångarna lämnas till lektionsledarna för rättning. Vid behov lämnas returer så att du kan rätta till eventuella felaktigheter. Lämna alltid in eventuella returer så fort som möjligt, och allra senast i god tid före "Godkänd senast"-datumet. Den som inte fått en viss omgång godkänd inom utsatt tid för göra om samma omgång nästa läsår. Vi rättar inga för sent inlämnade returer.

4 Program för föreläsningar och lektioner

På programmet nedan står angivet de moment som belyses på föreläsningarna, samt de räkneövningar som hör till varje lektion. Här finns också förslag på lite svårare extrauppgifter för den som vill räkna mer.

Fö 1	Introduktion. Mängdlära.	Kap 2.1–2.6
LE 1	Lektion & hemma: 2. 1, 2, 4, 6, 8a, 9, 11, 13, 14, 17a, 20, 21, 22ab öva mer: 2. 3, 5, 7, 8b, 17b, 32, 33.	Mängder
Fö 2	Induktion. Rekursion.	Kap 4
LE 2	Lektion & hemma: 4.1 , 2, 9abcd, 10, 14. öva mer: 4.9 efgh, 12, 17.	Induktion
LE 3	Lektion & hemma: 4. 6, 19, 20, 8. öva mer: 4. 7, 13, 21, 22.	Induktion, rekursion.
Fö 3	Kombinatorik.	Kap 5.1–5.5
LE 4	Lektion & hemma: 5. 1, 3, 4, 5, 7, 9, 10, 30, 32. öva mer: 5. 6, 31, 42.	Kombinatorik
Fö 4	Mer kombinatorik. Inklusion/exklusion.	Kap 5.6–5.11
LE 5	Lektion & hemma: 5. 33, 35, 39, 40, 11, 12, 13, 14, 15.	Kombinationer med
	öva mer: 5. 41.	upprepningar, binomialsatsen.
LE 6	Lektion & hemma: 5. 17a, 18, 19, 20, 25, 26, 29, 45.	Lådprincipen,
	öva mer: 5. 16, 22.	PIE

Fö 5	Elementär talteori.	Kap 7.1–7.3, 7.5–7.7
LE 7	Lektion & hemma: 7. 1, 3, 4, 5, 33, 41, 43. öva mer: 7. 6.	Delare, primtal
LE 8	Lektion & hemma: 7. 9, 10, 36, 14, 15, 17. öva mer: 7. 38, 44.	Mer talteori
Fö 6	Diofantiska ekvationer. Relationer.	Kap 7.8, 8,1
LE 9	Lektion & hemma: 7. 20, 21, 22, 23, 8. 1, 6. öva mer: 7. 25, 8. 5, 7.	Diofantiska ekvationer, relationer
Fö 7	Mer relationer. Ekvivalensrelationer.	Kap 8.2–8.4
LE 10	Lektion & hemma: 8.2, 3, 13, 14, 15ab, 26, 9. öva mer: 8.15c.	Relationer
LE 11	Lektion & hemma: 8. 16, 17, 10, 11, 8, 20, 22. öva mer: 8. 18, 21, 24.	Ekvivalensrelationer
Fö 8	Kongruensräkning.	Kap 9.1–9.3
LE 12	Lektion & hemma: 9.1 , 2, 4, 3, 5, 16, 6, 8. öva mer: 9.1 7, 18, 19.	Kongruensräkning, ekvationer
Fö 9	Grafteori. Träd.	Kap 10.1–10.5, 11.1–11.3
LE 13	Lektion & hemma: 10. 1, 2, 3, 4, 5, 7, 8, 11, 30. öva mer: 10. 6 ¹ , 10, 13, 19.	Grafteori
LE 14	Lektion & hemma: 11. 2, 3, 6, 17, 18, 10. 17, 28 ¹ . öva mer: 11. 14, 15, 22, 24.	Träd
Fö 10	Kromatiska tal och polynom.	Kap 12
LE 15	Lektion & hemma: 12. 6, 7, 11abc, 12, 1. öva mer: 12. 8, 11d, 14.	Färgningar
Fö 11	Partialordningar. Lattice.	Kap 13
LE 16	Lektion & hemma: 13. 1, 2, 3, 9, 13, 15, 4, 5. öva mer: 13. 10, 12.	Partialordningar
LE 17	Lektion & hemma: öva mer: 13.6, 7, 8, 16, 17. Extra: 13.21.	Topologisk sortering, lattice
Fö 12	Booleska funktioner och algebror.	Kap 14
LE 18	Lektion & hemma: 14. 1, 2ab, 3ab, 8, 4. öva mer: 14. 9, 11.	Booleska funktioner och algebror

 $[\]overline{\,^{1}\text{Notera}}$ att i facit till denna uppgift kan grafen ha multipla kanter.