SE2228 Analysis and Design of Algorithms

Introduction

Al-Khwarizmi : About 780 - about 850

(In Turkish: El Harezmi)

Al'Khwarizmi was an Islamic mathematician of Central Asian Turcic origins (Khorasan, Uzbekistan), who wrote on Hindu-Arabic numerals and was among the first to use zero as a place holder in positional base notation.

The word *algorithm* derives from his name. His algebra treatise "Hisab al-jabr w'al-muqabala" gives us the word *algebra* and can be considered as the first book to be written on algebra.

About the Course

- Purpose: A rigorous introduction to the design and analysis of algorithms
- In this course, we will look at:
 - The design and analysis of Algorithms for solving problems efficiently
 - Advanced Data structures for efficiently storing, accessing, and modifying data.

Main Reference Books:

- Introduction to Algorithms, Cormen, Leiserson, Rivest, Stein
- 2. The Design and Analysis of Algorithms, A.Levithin.
- Data Structures and Algorithms in C++,Goodrich,Tamasia,Mount (Other options: Java,Python)

About the Course

- Format:
 - Two lectures/week/Two lab hours
 - Homeworks-Assignments
 - Problem sets
 - Occasional programming assignments
 - One or two Quiz exams+Midterm + Final exam
 - Attendance and participation are effective on the final grade.

A Review of Basic Concepts

- Computer Science is the study of algorithms, including:
 - Their formal and mathematical properties
 - Their hardware realizations
 - Their linguistic realizations
 - Their applications
- Formal and mathematical properties of algorithms:
 - Correctness, efficiency, computability ...
 - A central concept in Computer Science
 - Consequently, it is also a central concept in Computer and Software Engineering.

Problem Solving

- The single most important skill for a computer scientist/engineer is problem solving.
- Problem solving means the ability to formulate problems, think creatively about solutions, and express a solution clearly and accurately.
- Learning about algorithms is an excellent opportunity to practice and improve problem-solving skills

Problem Solving Steps in Computer Science

Algorithms and Data Structures

- •An algorithm is a sequence of unambiguous instructions for solving a problem.
- •A data structure is a specialized format for organizing, processing, retrieving and storing data. Data structures are intermediary between algorithms and computer programs.

Properties of Algorithms

- An algorithm can be a recipe, process, method, technique, procedure, routine,... with the following requirements:
 - Finiteness: terminates after a finite number of steps
 - Definiteness: the steps are unambiguously specified
 - Input: valid inputs are clearly specified
 - Output: can be proven to produce the correct output given a valid input
 - Effectiveness: steps are sufficiently simple, basic, and "feasible"

Some Important Points

- Each step of an algorithm should be clear and precise
- The range of inputs has to be specified carefully
- The same algorithm can be represented in different ways
- The same problem may be solved by different algorithms
- Different algorithms may take different times to solve the same problem we may prefer one to the other

Some Important Points

Algorithm analysis

Analysis of resource usage of given algorithms (time, space)

Efficient algorithms

- Algorithms that make an efficient usage of resources
- Efficient algorithms lead to efficient programs

Algorithm design

Methods for designing efficient algorithms

Complexity and Efficiency

- For a given algorithm, the resources needed for its execution determine the complexity of that algorithm.
- A related concept is efficiency: Efficiency of algorithms and complexity of algorithms are the same area.
- The same algorithm can be represented in different ways and there may be several algorithms for solving the same problem
- The complexity of a problem is the complexity of the algorithm that solves this problem.
- How to classify problems according to their computational difficulty?

Complexity and Efficiency

- Suppose we have two algorithms, how can we tell which one is better?
- We could implement both algorithms, run them both
 - Expensive and error prone
- Preferably, we should analyze them mathematically:
 Algorithm analysis
- Algorithm analysis is expected to produce a simple measure of complexity.

Classification of Computational Problems

"How difficult is it to solve a given algorithmic problem?"

- If something can be computed, what resources (time, memory, storage ...) will be needed?
 - → A computation may be possible but not practical!
- Some problems do not have algorithmic solutions at all:
 →Solvable/unsolvable problems
- Some solvable problems are easy problems, some are hard.
- The hard problems have algorithmic solutions that do not complete in a reasonable amount of time:

tractable / intractable problems <--> easy / hard problems

All computational problems **Solvable problems Unsolvable problems Tractable (easy) problems** KEEP DO NOT **OUT** ENTER Intractable (hard) problems

Solvable Problems

- Tractable (easy) problems
 - There exists a solution of polynomial time or better efficiency:
 - → polynomial-time problems
- Intractable (hard) problems
 - There exists no exact solution better than exponential efficiency:
 - →non-polynomial (exponential) time problems

Dealing with Hard Problems

• In order to deal practically with hard computational problems, one must often accept weakening of the requirement to guarantee computing the correct result.

This can be done in different ways:

- Accept a "reasonable" solution which is not exactly correct and slightly suboptimal.
 - → approximate algorithms.
- Accept that the probability for finding a correct, or optimal solution may be slightly less than 1
 - → randomized algorithms.

Categories of Algorithms

This leads us to two independent categories of algorithms:

- 1.Exact (precise) algorithms vs. approximate algorithms
- 2.Deterministic algorithms vs. randomized (stochastic) algorithms

Important Computational Problem Types

- Sorting
- Searching
- String processing
- Graph problems
- Combinatorial problems
- Numerical problems
- Optimization problems
- Geometric problems
- •

Review of Fundamental Math

• If you understand the first n slides, you will understand the slide n+1

Floor and ceiling functions

• The *floor* function maps any real number *x* onto the greatest integer less than or equal to *x*:

$$\begin{bmatrix} 3.2 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix} = 3$$
$$\begin{vmatrix} -5.2 \end{vmatrix} = \begin{vmatrix} -6 \end{vmatrix} = -6$$

 The ceiling function maps x onto the least integer greater than or equal to x:

Floor and Ceiling: More Examples

$$X$$
 Floor function: the largest integer $\leq X$

$$\lfloor 2.7 \rfloor = 2$$
 $\lfloor -2.7 \rfloor = -3$ $\lfloor 2 \rfloor = 2$

$$X$$
 Ceiling function: the smallest integer $\geq X$

$$\begin{bmatrix} 2.3 \end{bmatrix} = 3$$
 $\begin{bmatrix} -2.3 \end{bmatrix} = -2$ $\begin{bmatrix} 2 \end{bmatrix} = 2$

Summations: Arithmetic Series

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^{2} = \frac{n(n+1)(2n+1)}{6} \approx n^{3}/3 \text{ for large n}$$

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

$$\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$$

Proof: Sum of first n Integers

Write out the series twice and add each column

$$1 + 2 + 3 + \dots + n - 2 + n - 1 + n$$

$$+ n + n - 1 + n - 2 + \dots + 3 + 2 + 1$$

$$(n+1) + (n+1) + (n+1) + \dots + (n+1) + (n+1) + (n+1)$$

$$= n(n+1)$$

Since we added the series twice, we must divide the result by 2

Sum Manipulation Rules

$$1. \quad \sum_{i=1}^{u} ca_i = c \sum_{i=1}^{u} a_i$$

2.
$$\sum_{i=l}^{u} (a_i \pm b_i) = \sum_{i=l}^{u} a_i \pm \sum_{i=l}^{u} b_i$$

3.
$$\sum_{i=l}^{m} a_i = \sum_{i=l}^{m} a_i + \sum_{i=m+1}^{u} a_i$$
, where $l \le m < u$

Summation Properties

$$\sum_{k=1}^{n} ca_k = c \sum_{k=1}^{n} a_k$$

$$\sum_{k=1}^{n} a_k \pm b_k = \sum_{k=1}^{n} a_k \pm \sum_{k=1}^{n} b_k$$

$$\sum_{k=1}^{n} c = nc$$

$$\sum_{i=a}^{b} 1 = b-a+1$$

Summation Examples-1

Example 1

$$\sum_{k=1}^{3} (2k+1) = (2 \times 1 + 1) + (2 \times 2 + 1) + (2 \times 3 + 1)$$

$$= 3 + 5 + 7$$

$$= 15$$

Example 2

$$\sum_{k=0}^{4} (-2)^k = (-2)^0 + (-2)^1 + (-2)^2 + (-2)^3 + (-2)^4$$
$$= 1 + (-2) + 4 + (-8) + 16$$
$$= 11$$

Example 3

$$\sum_{k=2}^{5} (3k^2 - 7) = (3 \times 2^2 - 7) + (3 \times 3^2 - 7) + (3 \times 4^2 - 7) + (3 \times 5^2 - 7)$$

$$= 5 + 20 + 41 + 68$$

$$= 134$$

Summation Examples-2

1. What is this ?
$$\sum_{i=1}^{4} \sum_{j=1}^{3} ij$$

• The double summation is equivalent to:

```
int sum = 0;
for ( int i = 1; i <= 4; i++ )
    for ( int j = 1; j <= 3; j++ )
    sum += i*j;</pre>
```

2.
$$\sum_{i=1}^{6} (i^2 + 1) = \sum_{i=1}^{6} i^2 + \sum_{i=1}^{6} 1$$

Summations: Examples-3

Evaluate
$$\sum_{i=0}^{10} (4i - 3)$$

$$\sum_{i=1}^{10} (4i - 3) = \sum_{i=1}^{10} 4i - \sum_{i=1}^{10} 3 = 4 \sum_{i=1}^{10} i - 3 \sum_{i=1}^{10} 1 = 4 \frac{10(10 + 1)}{2} - 3(10)$$
=190

Evaluate
$$\sum_{i=1}^{6} (i^3 - i^2).$$

=350

Geometric Series

• Series with a constant ratio between successive terms.

Example-1:

```
1/2, 1/4, 1/8, 1/16,...
```

→ Each successive term can be obtained by multiplying the previous term by 1/2.

Example-2:

```
1, 2, 4, 8, 16, 32, 64, 128, 256, ...
```

→ Each successive term can be obtained by multiplying the previous term by 2.

Geometric Series

The sum of geometric series with a common ratio r can be expressed as

$$\sum_{k=0}^{n} r^{k} = \frac{1 - r^{n+1}}{1 - r}$$

and if |r| < 1 then it is also true that

$$\sum_{k=0}^{\infty} r^k = \frac{1}{1-r}$$

(For justification, try the formulas using small n,k and r=1/2)

Geometric series

A common geometric series involves the ratios

 $r = \frac{1}{2}$ and r = 2. Use these in the expressions on previous

page:

$$\sum_{i=0}^{n} \left(\frac{1}{2}\right)^{i} = \frac{1 - \left(\frac{1}{2}\right)^{n+1}}{1 - \frac{1}{2}} = 2 - 2^{-n} \qquad \sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} = 2$$

$$\sum_{i=0}^{\infty} \left(\frac{1}{2}\right)^{i} = 2$$

$$\sum_{k=0}^{n} 2^{k} = \frac{1 - 2^{n+1}}{1 - 2} = 2^{n+1} - 1$$

Combinatorial Formulas

You have **n** items and want to find the number of ways **k** items can be ordered(Selected):

Permutation: Order is important → AB ≠ BA

The number of possible results :

$$nPr = n!/(n - r)!$$

Combination (Binomial factors, Order is not important → AB=BA):

$$nCr = n!/r!(n - r)!$$

→ Permutation: (Ali, Selin) \neq (Selin, Ali), Who is the first?

Combination: (Ali, Selin) = (Selin, Ali), We just need a group of two.

Combinations

You have also seen this in expanding polynomials:

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$$

For example,

$$(x+y)^4 = \sum_{k=0}^4 {4 \choose k} x^k y^{4-k}$$

$$= {4 \choose 0} y^4 + {4 \choose 1} x y^3 + {4 \choose 2} x^2 y^2 + {4 \choose 3} x^3 y + {4 \choose 4} x^4$$

$$= y^4 + 4xy^3 + 6x^2 y^2 + 4x^3 y + x^4$$

Exponents

- $X^0 = 1$ by definition
- $X^aX^b = X^{(a+b)}$
- $X^a / X^b = X^{(a-b)}$

Show that :
$$X^{-n} = 1 / X^n$$

• $(X^a)^b = X^{ab}$

Logarithms

The log function is the inverse of an exponent

⇒
$$log_aX = Y \Leftrightarrow a^Y = X$$
, $a > 0$, $X > 0$
E.G: $log_28 = 3$; Since $2^3 = 8$

a is the "base" of logarithm

• $log_a 1 = 0$ because $a^0 = 1$ log X means $log_2 X$ (In computer science) ln X means $log_e X$

In most algorithm related problems we use base a=2.

• Warning: Since a positive number to any exponent can never be negative, it follows that you can never take the log of any negative value (and 0).

Logarithms and Exponents: Meaning

```
x = 2^{y} if log_{2} x = y

• 32 = 2^{5}, so log_{2} 32 = 5

• 65536 = 2^{16}, so log_{2} 65536 = 16
```

- The exponent of a number says how many times to use the number in a multiplication. e.g. $2^3 = 2 \times 2 \times 2 = 8$ (2 is used 3 times in a multiplication to get 8)
- A logarithm says how many times one number to multiply to get another number.
 - → It asks "what exponent produced this?"
- e.g. $log_2 8 = 3$ (2 makes 8 when used 3 times in a multiplication)

Logarithms: Some Identities

- 1. If x>y, log x > log y
- 2. $log_a(XY) = log_aX + log_aY$
- 3. $log_a(X/Y) = log_a X log_a Y$
- 4. $log_a(X^n) = nlog_aX$
- 5. $\log_a b = (\log_2 b)/(\log_2 a)$
- 6. $a^{\log_a x} = x$ (Ex: $2^{\log 64} = 64$)

Equivalence of Logarithms

Any base B log is equivalent to base 2 log within a constant factor.

In particular,

$$\log_2 x = 3.22 \log_{10} x$$

In general, all logarithms are scalar multiples of each others:

$$\log_{B} x = (\log_{A} x) / (\log_{A} B)$$

This matters in doing math but not CS!

→In algorithm analysis, we tend to not care much about constant factors

Logarithms: Growth

Example: $f(n) = n^{1/2} = \sqrt{n}$ is strictly greater than $\ln(n)$

Logarithms

A plot of $log_2(n) = lg(n)$, ln(n), and $log_{10}(n)$

Function Growth and Limits

- $\lim (n) = \infty, n \rightarrow \infty$
- $\lim (n^a) = \infty, n \rightarrow \infty, a > 0$
- $\lim (1/n) = 0, n \to \infty$
- $\lim (1/(n^a)) = 0, n \to \infty, a > 0$
- $\lim (\log(n)) = \infty, n \rightarrow \infty$
- $\lim (a^n) = \infty, n \rightarrow \infty, a > 0$

Examples

- $\lim (n/n^2) = 0, n \rightarrow \infty$
- $\lim (n^2/n) = \infty, n \rightarrow \infty$
- $\lim (n^2 / n^3) = 0, n \to \infty$
- $\lim (n^3/n^2) = \infty, n \rightarrow \infty$
- $\lim (n / ((n+1)/2) = 2, n \rightarrow \infty.$

Sequences may be defined explicitly:

$$x_n = 1/n$$
 $\rightarrow 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots$

- A recurrence relationship is a means of defining a sequence based on previous values in the sequence
- Such definitions of sequences are said to be recursive

• Recurrence relations are recursive definitions of mathematical functions or sequences.

Examples:

1.
$$g(n) = g(n-1) + 2n - 1$$

 $g(0) = 0$
2. $f(n) = f(n-1) + f(n-2)$
 $f(1) = 1$
 $f(0) = 1$

Solving Recurrence Relations

Example: Find the value of T(n) = T(n-1) + 1 for n=4, Initial condition T(1)=2

Substituting up from T(1):

- T(1) = 2, Initial condition
- T(2) = T(1) + 1 = 2 + 1 = 3
- T(3) = T(2) + 1 = 3+1 = 4
- T(4) = T(3) + 1 = 4 + 1 = 5

Substituting down from T(4):

```
T(4) = T(3) + 1
= [T(2) + 1] + 1
= [[T(1) + 1] + 1] + 1
= 2+1+1+1 = 5
```

Solving Recurrence Relations

- Given a function defined by a recurrence relation, we want to eliminate recursion from the function definition and obtain its "closed" form.
- Two main techniques are the iteration method and the Master Theorem method.
- Example: Solving the recurrence relation for g(n) using the iteration method:

```
g(n) = g(n-1) + 2n - 1 , g(0) = 0

g(n) = g(n-1) + 2n - 1

= [g(n-2) + 2(n-1) - 1] + 2n - 1

(because g(n-1) = g(n-2) + 2(n-1) - 1)
```

Solving Recurrence Relations

```
= g(n-2) + 2(n-1) + 2n - 2
= [g(n-3) + 2(n-2) - 1] + 2(n-1) + 2n - 2 (because g(n-2) = g(n-3) + 2(n-2) - 1)
= g(n-3) + 2(n-2) + 2(n-1) + 2n - 3
= g(n-i) + 2(n-i+1) + ... + 2n - i
= g(n-n) + 2(n-n+1) + ... + 2n - n
= 0 + 2 + 4 + ... + 2n - n (because g(0) = 0)
= 2 + 4 + ... + 2n - n
= 2*(1+2+3+.....+n) -n
= 2*n*(n+1)/2 - n (using arithmetic progression formula 1+...+n = n(n+1)/2)
 = n^2
```

This is the closed form solution of the initial recurrence relation.

We will also use functional forms of recurrence relations:

^ - I	1 _ 1	
Cal		HIC
Val	loui	ıus

$$x_1 = 1$$

$$x_n = x_{n-1} + 2$$

$$x_n = 2x_{n-1} + n$$

SE 2228

$$f(1) = 1$$

$$f(n) = f(n-1) + 2$$

$$f(n) = 2 f(n-1) + n$$

Recurrence Relations: Examples

Given the two recurrence relations

$$x_n = x_{n-1} + 2$$
 $x_n = 2x_{n-1} + n$

and the initial condition $x_1 = 1$, we would like to find explicit formulae for these sequences.

The solutions are:

$$x_n = 2n - 1$$
 $x_n = 2^{n+1} - n - 2$

respectively

 The previous examples using the functional notation are:

$$f(n) = f(n-1) + 2$$
 $g(n) = 2 g(n-1) + n$

With the initial conditions f(1) = g(1) = 1, the solutions are:

$$f(n) = 2n - 1$$
 $g(n) = 2^{n+1} - n - 2$

A simple solution may be obtained for the first one by substitution:

Recurrence: Example

Consider the following recurrence:

```
T(n)={3T(n-1), if n>0,}
    = 1, otherwise
Let us solve using substitution.
T(n) = 3T(n-1)
   = 3(3T(n-2))
   = 3^2T(n-2)
   = 3^3T(n-3)
    . . .
   =3^{n}T(n-n)
   = 3^{n}T(0)
```

 $= 3^{n}$