

Enhancing Adversarial Robustness for Deep Metric Learning

Mo Zhou <mzhou32@jhu.edu> Johns Hopkins University Nov. 2021

Deep Metric Learning (DML)

Goal: to learn a mapping function $\phi: \mathcal{X} {\mapsto} \Phi \subseteq \mathbb{R}^D$

Appliations: image retrieval, face recognition, cross-modal retrieval, self-supervised learning.

Adversarial Attack

Attack against DNN Classifier [2]

Attack against Image Retrieval (DML) model [3]

^[2] Explaining and Harnessing Adversarial Examples, ICLR 2015

³

Adversarial Defense & Robustness for DML

Important, but Insufficiently Explored

(1) EST Defense

Embedding-Shifted Triplet (EST) [9] adopts adversarial counterparts of a, p, n with maximum embedding move distance off their original locations, *i.e.*,

$$L_{\text{EST}} = L_{\text{T}}(\tilde{\boldsymbol{a}}, \tilde{\boldsymbol{p}}, \tilde{\boldsymbol{n}}; \gamma) \tag{1}$$

where $\tilde{a} = \phi(A + r^*)$, and $r^* = \arg \max_{r} d_{\phi}(A + r, A)$. The \tilde{p} and \tilde{n} are obtained similarly.

Fig. 4. Gradient Direction of Anti-Collapse Triplet (ACT). ACT does not suffer from misleading gradient or inefficient mini-batch exploitation. It does not create excessively hard adversarial example neither.

(2) ACT Defense

Anti-Collapse Triplet (ACT) [10] "collapses" the embedding vectors of positive and negative sample, and enforces the model to separate them apart, *i.e.*,

$$L_{\text{ACT}} = L_{\text{T}}(\boldsymbol{a}, \overrightarrow{\boldsymbol{p}}, \overleftarrow{\boldsymbol{n}}; \gamma),$$
 (2)

$$[\overrightarrow{p}, \overleftarrow{n}] = [\phi(P + r_p^*), \phi(N + r_n^*)]$$
(3)

$$[\boldsymbol{r}_p^*, \boldsymbol{r}_n^*] = \operatorname*{arg\,min}_{\boldsymbol{r}_p, \boldsymbol{r}_n} d_{\phi}(\boldsymbol{P} + \boldsymbol{r}_p, \boldsymbol{N} + \boldsymbol{r}_n). \tag{4}$$

Common problems: high training cost (low efficiency), performance drop, etc.

[4] M. Zhou, et al., Adversarial Ranking Attack and Defense, ECCV 2020

[5] M. Zhou, et al., Adversarial Attack and Defense in Deep Ranking, ArXiv 2021

Rethink on DML Defense -- "Interpolation"

Strengths of adversarial examples used for adversarial training as a defense:

Hardness Manipulation (HM)

• "Hardness" H: Internal component of triplet loss [7]

Given an image triplet
$$(\boldsymbol{A}, \boldsymbol{P}, \boldsymbol{N})$$
 $H(\boldsymbol{A}, \boldsymbol{P}, \boldsymbol{N}) = d_{\phi}(\boldsymbol{A}, \boldsymbol{P}) - d_{\phi}(\boldsymbol{A}, \boldsymbol{N}).$ FYI: $L_{\mathrm{T}}(\boldsymbol{a}, \boldsymbol{p}, \boldsymbol{n}; \gamma) = \max(0, d(\boldsymbol{a}, \boldsymbol{p}) - d(\boldsymbol{a}, \boldsymbol{n}) + \gamma),$ (triplet loss)

- Hardness Manipulation: flexible tool for creating adversarial examples
 - (1) hardness of adversarial triplet $H_{\mathsf{S}} = H(\boldsymbol{A} + \boldsymbol{r}_a, \boldsymbol{P} + \boldsymbol{r}_p, \boldsymbol{N} + \boldsymbol{r}_n)$
 - (2) projected gradient descent (create adv examples) $\hat{\boldsymbol{r}}_a, \hat{\boldsymbol{r}}_p, \hat{\boldsymbol{r}}_n = \operatorname*{arg\,min}_{\boldsymbol{r}_a, \boldsymbol{r}_p, \boldsymbol{r}_n} \big\| \max(0, H_{\mathsf{D}} \tilde{H}_{\mathsf{S}}) \big\|_2^2.$
 - (3) optimize model parameters (adversarial training) $L_{\rm T}(\phi(\bm{A}+\hat{\bm{r}}_a),\phi(\bm{P}+\hat{\bm{r}}_p),\phi(\bm{N}+\hat{\bm{r}}_n))$

HM: Characteristics

• Direct & Efficient in reaching the "intermediate" point.

$$\Delta \mathbf{r} = \operatorname{sign} \left\{ -\frac{\partial}{\partial \mathbf{r}} \| \max(0, H_{\mathsf{D}} - \tilde{H}_{\mathsf{S}}) \|_{2}^{2} \right\}$$

$$= \operatorname{sign} \left\{ 2(H_{\mathsf{D}} - \tilde{H}_{\mathsf{S}}) \frac{\partial}{\partial \mathbf{r}} \tilde{H}_{\mathsf{S}} \right\} = \operatorname{sign} \left\{ \frac{\partial}{\partial \mathbf{r}} \tilde{H}_{\mathsf{S}} \right\}.$$
 (5)
$$\mathbf{r} \leftarrow \operatorname{Proj}_{\Gamma} \left\{ \mathbf{r} + \alpha \Delta \mathbf{r} \right\}$$

The same sign of gradient as that for directly maximizing the hardness (Madry case).

Interpretation: direct maximization process of the hardness which stops "halfway" at the specified destination hardness, instead of pushing it towards theoretical upper bound.

HM: Destination Hardness H_D

- Constant (not flexible)
- Hardness of another benign triplet (unbalanced)
- Pseudo-hardness function (requires prior-knowledge)

Experiment: Selection of Hardness

 Start from Hardness of another benign triplet. Because these harder but benign triplets does not lead to model collapse in regular DML training.

(1) sorting triplet sampling strategies based on mean & variance

Statistics	Random	Semihard	Softhard	Distance	Hardest
E[H]	-0.164	-0.126	-0.085	0.043	0.044
Var[H]	0.00035	0.00013	0.00122	0.00021	0.00021

Table 1. Mean & variance of hardness w/ various triplet samplers. Calculated as the average statistics over 1000 mini-batches from the CUB dataset with an imagenet-initialized RN18 model.

(2) experiment all combinations

H_{D}	Rand	dom	Semi	ihard	Soft	hard	Dista	ance	Har	dest
H_{S}	R@1	ERS	R@1	ERS	R@1	ERS	R@1	ERS	R@1	ERS
Random	53.9	3.8	27.0	35.1	Coll	apse	Coll	apse	Coll	apse
Semihard	43.9	5.4	44.0	5.0	Coll	apse	Coll	apse	Coll	apse
Softhard	48.3	13.7	38.4	29.6	55.7	6.2	Coll	apse	Coll	apse
Distance	52.7	4.8	50.7	4.8	Coll	apse	51.4	4.9	54.7	5.4
Hardest	51.0	4.7	52.2	4.8	Coll	apse	52.6	5.1	48.9	5.0

Table 2. Combinations of source & destination hardness. Evaluated on the CUB Dataset with RN18 model. The last-epoch performance is reported instead of the peak performance for alignment. Models on the diagonal are regularly (instead of adversarially) trained.

Experiment: Two cases with good performance

Dataset	Defense η			Benign l	Example				White	e-Box At	tacks for	r Robust	ness Eva	luation			ERS↑
Dataset	Defense	11	R@1↑	R@2↑	mAP↑	NMI↑	CA+↑	CA-↓	QA+↑	QA-↓	TMA↓	ES:D↓	ES:R↑	LTM↑	GTM↑	GTT↑	EKS
CUB	$N/A[\mathcal{R}]$	N/A	53.9	66.4	26.1	59.5	0.0	100.0	0.0	99.9	0.883	1.762	0.0	0.0	14.1	0.0	3.8
	$ACT[\mathcal{R}]$ [53]	2	46.5	58.4	29.1	55.6	0.6	98.9	0.4	98.1	0.837	1.666	0.2	0.2	19.6	0.0	5.8
	$ACT[\mathcal{R}]$ [53]	4	38.4	49.8	22.8	49.7	4.6	81.9	2.8	80.5	0.695	1.366	2.9	2.3	18.8	0.1	13.9
CUB	$ACT[\mathcal{R}]$ [53]	8	30.6	40.1	16.5	45.6	13.7	46.8	12.6	39.3	0.547	0.902	13.6	9.8	21.9	1.3	31.3
	$ACT[\mathcal{R}]$ [53]	16	28.6	38.7	15.1	43.7	15.8	37.9	16.0	31.5	0.496	0.834	11.3	9.8	21.2	2.1	34.7
	$ACT[\mathcal{R}]$ [53]	32	27.5	38.2	12.2	43.0	15.5	37.7	15.1	32.2	0.472	0.821	11.1	9.4	14.9	1.0	33.9
	ACT[S] [53]	2	53.0	65.1	34.7	59.9	0.0	100.0	0.0	99.8	0.877	1.637	0.0	0.0	20.4	0.0	5.1
	ACT[S][53]	4	49.3	61.0	31.5	56.6	0.6	97.6	0.2	98.1	0.799	1.485	0.3	0.2	18.9	0.0	7.1
CUB	ACT[S][53]	8	42.8	54.7	26.6	53.3	4.8	72.8	2.7	73.3	0.619	1.148	8.3	4.9	23.5	0.3	18.7
	ACT[S][53]	16	40.5	51.6	24.8	51.7	6.7	62.1	4.9	60.6	0.566	1.014	12.4	8.6	22.5	0.9	23.7
	ACT[S][53]	32	39.4	50.2	18.6	51.3	6.8	61.5	5.2	60.4	0.506	1.032	12.8	11.3	17.7	0.3	24.2
CUB	$HM[\mathcal{R},\mathcal{M}]$	2	34.3	44.9	19.5	47.4	7.7	77.5	6.5	70.8	0.636	1.281	4.3	2.6	21.1	0.2	18.1
	$HM[\mathcal{R},\mathcal{M}]$	4	30.7	40.3	16.4	45.3	13.9	60.4	13.5	48.1	0.582	1.041	6.6	6.6	20.2	1.2	27.1
	$HM[\mathcal{R},\mathcal{M}]$	8	27.0	36.0	13.2	42.5	19.4	48.0	22.2	32.0	0.535	0.867	11.6	10.4	19.3	2.9	35.1
	$HM[\mathcal{R},\mathcal{M}]$	16	23.8	32.6	11.6	40.6	20.9	45.0	24.6	28.6	0.494	0.805	15.6	11.3	22.1	3.2	38.0
	$HM[\mathcal{R},\mathcal{M}]$	32	23.1	31.9	11.3	40.3	22.8	46.0	24.3	28.3	0.495	0.800	14.2	11.7	19.7	3.8	38.0
	$HM[\mathcal{S},\mathcal{M}]$	2	44.5	56.1	27.8	53.3	1.9	87.7	1.6	88.8	0.827	1.101	3.7	0.3	19.0	0.0	11.6
	$HM[\mathcal{S},\mathcal{M}]$	4	40.6	51.8	24.2	51.0	7.3	64.1	6.3	60.9	0.715	0.894	7.9	4.4	22.8	0.2	22.1
CUB	$HM[\mathcal{S},\mathcal{M}]$	8	38.4	49.7	22.9	50.3	10.9	50.5	10.8	44.6	0.680	0.722	13.3	11.2	25.8	1.2	29.6
	$HM[\mathcal{S},\mathcal{M}]$	16	37.4	47.3	21.0	48.2	14.4	42.0	14.8	34.7	0.599	0.693	17.5	14.4	26.5	2.4	34.8
	$HM[\mathcal{S},\mathcal{M}]$	32	35.3	46.1	20.2	48.0	15.1	41.8	15.2	33.0	0.589	0.686	18.7	14.9	27.8	2.9	35.7

Table 3. Hardness manipulation in adversarial training. The "↑" mark means "the higher the better", while "↓" means the opposite.

Experiment: Curves for the previous page

Figure 6. Performance of $HM[\mathcal{R}, \mathcal{M}]$ & $HM[\mathcal{S}, \mathcal{M}]$ in Tab. 3.

Gradual Adversary

- Existing issues
 - (1) adv example insufficiently strong in the late phase of training (shown by subfigure (b) below)
 - → can be alleviated by slightly boosting H D in the late phase of training (shown by subfigure(c))
 - (2) adv example being too strong in the early phase of training when the embedding space is not "in-shape".

We propose Linear Gradual Adversary, a pseudo-hardness function for HM

$$g_{\mathsf{LGA}}(\bar{\ell}_{t-1}) = -\gamma \cdot \bar{\ell}_{t-1} \in [-\gamma, 0].$$

Experiment: Linear Gradual Adversary

Figure 7. Performance of "HM[S, g_{LGA}]" in Tab. 4.

Nobody really reads such bulky table from slides. It is provided just as a reference.

Intra-Class Structure (ICS) Loss

- Benign triplet + Adversarial triplet = Sextuplet (i.e., 6-item tuple).
- Enforcing intra-class structure is possible
- There are attacks aiming to change item ranking within the same class
- Neglected by previous defense methods.

• ICS loss term: $L_{\rm ICS} = \lambda \cdot L_{\rm T}(\boldsymbol{a}, \phi(\boldsymbol{A} + \hat{\boldsymbol{r}}_a), \boldsymbol{p}; 0),$

Dotocot	Dofonco	8		Benign F	Benign Example				White	-Box At	tacks for	White-Box Attacks for Robustness Evaluation	ness Eval	luation			₽DC+
Dataset	Detellise	1	R@1↑	R@2↑	mAP↑	NMI↑	CA+↓	CA-↑	QA+↓	ÓA-	TMA↓	ES:D↑	ES:R↑	LTM↑	GTM↑	GTT↑	CW3
9	$HM[\mathcal{R},\mathcal{M}]$	∞	27.0	36.0	13.2	42.5	19.4	48.0	22.2	32.0	0.535	0.867	11.6	10.4	19.3	2.9	35.1
COD	$HM[\mathcal{R}, \mathcal{M}]$ &ICS	∞	25.6	34.3	12.5	41.8	21.9	41.0	23.6	26.4	0.497	0.766	14.5	13.0	21.8	4.7	39.0
9	HM[S, M]	∞	38.4	49.7	22.9	50.3	10.9	50.5	10.8	9.44	0.680	0.722	13.3	11.2	25.8	1.2	29.6
COB	$HM[S, \mathcal{M}]$ &ICS	∞	36.9	48.9	21.6	48.8	12.4	42.9	12.5	36.6	0.850	0.446	17.0	13.9	27.2	1.9	32.3
9	$HM[\mathcal{R}, g_{LGA}]$	∞	24.8	33.9	12.2	41.6	21.4	45.0	21.7	31.3	0.452	0.846	13.2	12.0	20.9	4.6	37.3
COD	HM[R, glgA]&ICS	∞	25.7	35.2	12.8	41.7	22.1	37.1	23.4	23.7	0.464	0.725	14.5	13.3	21.1	5.3	40.2
	$HM[S, g_{LGA}]$	∞	38.0	48.3	21.8	49.3	12.7	46.4	11.6	39.9	0.567	0.783	16.8	11.9	27.9	1.4	32.4
CUB	HM[S, glgA]&ICS	∞	37.2	47.8	21.4	48.4	12.9	40.9	14.7	33.7	908.0	0.487	17.1	13.2	26.3	2.3	33.5
	$HM[S, g_{LGA}]\&ICS(\lambda=1.0)$	∞	36.0	46.7	20.7	48.0	14.2	41.0	15.1	31.7	0.907	0.329	17.0	14.2	24.5	2.1	33.7
	HM[S, glgA]&ICS	2	45.2	57.2	28.5	53.7	3.0	79.9	2.4	78.9	0.936	609.0	3.6	1.2	19.9	0.0	15.2
	HM[S, glgA]&ICS	4	41.8	53.0	25.3	52.0	8.1	57.3	7.9	54.1	0.892	0.514	8.6	6.7	22.9	0.5	24.6
CUB	HM[S, glgA]&ICS	∞	37.2	47.8	21.4	48.4	12.9	40.9	14.7	33.7	908.0	0.487	17.1	13.2	26.3	2.3	33.5
	HM[S, glgA]&ICS	16	35.5	46.4	20.4	47.5	14.9	37.2	17.1	30.3	0.771	0.495	18.2	15.3	28.7	2.8	36.0
	OCTOR CHAIR	00	0 4 0		0				, , ,	000	0	000			0	0	0

Experiment: ICS Loss

Figure 8. Performance of "HM[S, g_{LGA}]&ICS" in Tab. 5.

Simplified Plot: all improvements combined

Figure 1. Comparison in robustness, training cost, and recall@1 between our method (i.e., "HM[S, g_{LGA}]&ICS") and the state-of-theart method (i.e., "ACT[R]" and "ACT[S]") on the CUB Dataset.

Comparison with SoTA

Dataset	Defense	22		Benign l	Example				White	-Box A	ttacks for	r Robust	ness Eva	luation			ERS↑
Dataset	Defense	η	R@1↑	R@2↑	mAP↑	NMI↑	CA+↑	CA-↓	QA+↑	QA-↓	TMA↓	ES:D↓	ES:R↑	LTM↑	GTM↑	GTT↑	EKS
	N/A[R]	N/A	53.9	66.4	26.1	59.5	0.0	100.0	0.0	99.9	0.883	1.762	0.0	0.0	14.1	0.0	3.8
	$EST[\mathcal{R}]$ [51]	8	37.1	47.3	20.0	46.4	0.5	97.3	0.5	91.3	0.875	1.325	3.9	0.4	14.9	0.0	7.9
	$ACT[\mathcal{R}]$ [53]	8	30.6	40.1	16.5	45.6	13.7	46.8	12.6	39.3	0.547	0.902	13.6	9.8	21.9	1.3	31.3
	$\text{HM}[\mathcal{S}, g_{LGA}]$	8	38.0	48.3	21.8	49.3	12.7	46.4	11.6	39.9	0.567	0.783	16.8	11.9	27.9	1.4	32.4
CUB	$HM[S, g_{LGA}]\&ICS$	8	37.2	47.8	21.4	48.4	12.9	40.9	14.7	33.7	0.806	0.487	17.1	13.2	26.3	2.3	33.5
	$EST[\mathcal{R}]$ [51]	32	8.5	13.0	2.6	25.2	2.7	97.9	0.4	97.3	0.848	1.576	1.4	0.0	4.0	0.0	5.3
	$ACT[\mathcal{R}]$ [53]	32	27.5	38.2	12.2	43.0	15.5	37.7	15.1	32.2	0.472	0.821	11.1	9.4	14.9	1.0	33.9
	$\text{HM}[\mathcal{S}, g_{LGA}]$	32	36.5	46.7	21.0	48.6	14.7	39.6	15.6	34.2	0.523	0.736	16.5	15.0	26.7	2.9	35.9
	$HM[\mathcal{S}, g_{LGA}]\&ICS$	32	34.9	45.0	19.8	47.1	15.5	37.7	16.6	30.9	0.753	0.506	17.9	16.7	27.3	2.9	36.0
	N/A[R]	N/A	62.5	74.0	23.8	57.0	0.2	100.0	0.1	99.6	0.874	1.816	0.0	0.0	13.4	0.0	3.6
	$EST[\mathcal{R}]$ [51]	8	57.1	68.4	30.3	47.7	0.1	99.9	0.1	98.1	0.902	1.681	0.7	0.2	15.4	0.0	4.4
CARS	$ACT[\mathcal{R}]$ [53]	8	46.8	58.0	23.4	45.5	19.3	33.1	20.3	32.3	0.413	0.760	18.4	15.0	28.6	1.2	39.8
	$HM[\mathcal{S},g_LGA]$	8	63.2	73.7	36.8	53.5	15.3	32.0	17.9	33.9	0.463	0.653	23.4	28.5	44.6	5.8	42.4
	$HM[S, g_{LGA}]\&ICS$	8	61.7	72.6	35.5	51.8	21.0	23.3	23.1	22.2	0.698	0.415	31.2	38.0	47.8	9.6	47.9
	$EST[\mathcal{R}]$ [51]	32	30.7	41.0	5.6	31.8	1.2	98.1	0.4	91.8	0.880	1.281	2.9	0.7	8.2	0.0	7.3
	$ACT[\mathcal{R}]$ [53]	32	43.4	54.6	11.8	42.9	18.0	32.3	17.5	30.5	0.383	0.763	16.3	15.3	20.7	1.6	38.6
	$\text{HM}[\mathcal{S}, g_{LGA}]$	32	62.3	72.5	35.3	52.7	17.4	28.2	18.2	28.8	0.426	0.613	27.1	30.7	42.3	7.9	44.9
	$HM[\mathcal{S}, g_{LGA}]\&ICS$	32	60.2	71.6	33.9	51.2	19.3	25.9	19.6	25.7	0.650	0.446	30.3	36.7	46.0	8.8	46.0
	N/A[R]	N/A	62.9	68.5	39.2	87.4	0.1	99.3	0.2	99.1	0.845	1.685	0.0	0.0	6.3	0.0	4.0
	$EST[\mathcal{R}]$ [51]	8	52.7	58.5	30.1	85.7	6.4	69.7	3.9	64.6	0.611	1.053	3.8	2.2	10.2	1.3	19.0
	$ACT[\mathcal{R}]$ [53]	8	45.3	50.6	24.1	84.7	24.8	10.7	25.4	8.2	0.321	0.485	15.4	17.7	25.1	11.3	49.5
	$\text{HM}[\mathcal{S}, g_{LGA}]$	8	49.0	54.1	26.4	85.0	29.9	4.7	31.6	3.6	0.455	0.283	39.3	40.9	38.8	43.0	61.7
SOP	$HM[S, g_{LGA}]\&ICS$	8	48.3	53.4	25.7	84.9	32.5	4.8	32.4	3.5	0.586	0.239	38.6	39.8	38.3	44.5	61.2
	$EST[\mathcal{R}]$ [51]	32	46.0	51.4	24.5	84.7	12.5	43.6	10.6	34.8	0.468	0.830	9.6	7.2	17.3	3.8	31.7
	$ACT[\mathcal{R}]$ [53]	32	47.5	52.6	25.5	84.9	24.1	10.5	22.7	9.4	0.253	0.532	21.2	21.6	27.8	15.3	50.8
	$\text{HM}[\mathcal{S}, g_{LGA}]$	32	47.7	52.7	25.3	84.8	30.6	4.7	31.2	3.5	0.466	0.266	38.6	40.3	38.6	44.3	61.8
	$ HM[\mathcal{S}, g_{LGA}]\&ICS $	32	46.8	51.7	24.5	84.7	32.0	4.2	33.7	3.0	0.606	0.207	39.1	39.8	37.9	45.6	61.6

Table 6. Comparison of our defense with the state-of-the-art methods on commonly used DML datasets.

Conclusions

- Defense for DML is important.
- HM: flexible and efficient tool.
- LGA: balancing training objectives. Contribution 2
- ICS: further improve robustness. Contribution 3
- Outperforms SoTA by a margin.

Contribution 1

Thanks!