Assignment 2

Author: Danis Alukaev Email: d.alukaev@innopolis.university

1. Theoretical question on K-means Clustering

Consider two possible cluster-partitionings:

1.
$$D_1 = \{-2, -2, ..., -2\}, D_2 = \{0, 0, ..., 0, a\}$$

2.
$$D_1 = \{-2, -2, ..., -2, 0, 0, ..., 0\}, D_2 = \{a\}$$

Note that for these cases the sum-of-squared errors is less for the first partitioning than for the second.

Let's find centers of clusters in both cases:

1.
$$\mu_1 = \frac{-2 \cdot m}{m} = -2$$
 and $\mu_2 = \frac{0 \cdot m + a}{m+1} = \frac{a}{m+1}$

2.
$$\mu_1 = \frac{-2 \cdot m + 0 \cdot m}{2 \cdot m} = -1$$
 and $\mu_2 = \frac{a}{1} = a$

Further, compute the sum-of-squared errors J for both clusters.

$$J(D_1, \mu_1, \mu_2) = \sum_{i: D_i \neq \phi} \sum_{x \in D_i} (x - \mu_i)^2$$

1.
$$J(D_1, \mu_1, \mu_2) = m \cdot (-2 - (-2))^2 + m \cdot (0 - \frac{a}{m+1})^2 + 1 \cdot (a - \frac{a}{m+1})^2 = \frac{a^2 m}{m+1}$$

2.
$$J(D_1, \mu_1, \mu_2) = m \cdot (-2 - (-1))^2 + m \cdot (0 - (-1))^2 + 1 \cdot (a - a)^2 = 2m$$

Recall that the first sum-of-squared errors should be less than the second:

$$\frac{a^2m}{m+1} < 2m$$

$$a^2 < 2(m+1)$$

Thus, the desired function f(m) is equal to 2(m+1).

Answer: 2(m+1).

2. Theoretical question on SVM

1. Formulation I

- (a) Yes.
- (b) No. Given plane does not pass through the origin, although by the condition $\theta_0=0$.
- (c) No. Two positive points located inside the margin, although the SVM (I) is hard-margin and should satisfy $y_t\theta^Tx_t \geq 1$.

2. Formulation II

- (a) No. For $\theta_0 \neq 0$ there is a better hyper-plane with smaller θ_0 and $||\theta||^2$ (greater width of margins).
- (b) Yes.
- (c) No. Two positive points located inside the margin, although the SVM (II) is hard-margin and should satisfy $y_t(\theta^T x_t + \theta_0) \ge 1$.

3. Formulation III

- (a) Yes.
- (b) No. Given plane does not pass through the origin, although by the condition $\theta_0=0$.
- (c) Yes.