Below are the questions corresponding to the second midterm exam. Please read the following instructions before starting:

- The exam must be submitted on Gradescope tomorrow, Friday 6/17 by 11:59AM Boston Time. You may upload a scan or a picture of you documents. Late submissions won't be accepted. Please indicate which pages correspond to which question when uploading.
- During the completion of this exam, you may **NOT** check the official textbook, notes, or any material posted on the course website.
- The use of any on-line/physical/personal resources will be considered cheating.
- Each step on each answer must be justified. Indicate the methods you use to solve the equations (separable, guess and check, ...) to integrate function (*u*-substitution, by parts, partial fractions).
- By submitting the answers you agree to abide by the BU honor code. As instructors, we reserve our right, after the completion of the exam, to **ask privately** about your solutions to any of the problems.

1. (20 points) You are given the following linear system:

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} 5 & -1 \\ 1 & 7 \end{pmatrix} \mathbf{Y}.$$

- (a) (15 points) Find the general solution and sketch the phase portrait. Make sure the eigenvalues are correct!!!
- (b) (5 points) Come up with a real life situation which can be represented by the model above.

2. (20 points) Below are the plots of solutions to four different harmonic oscillators of equation

$$y'' + py' + qy = A\cos(\omega t),$$

corresponding to different values of p, q, A and ω . Describe the type of oscillators by indicating if there is damping and/or forcing and what type. Indicate **possible** values of p, q, A and ω in each case. Indicate A = 0, if you think there is no forcing.

3. (20 points) Consider the one-parameter family of linear systems, where $0 \le \theta \le 2\pi$, given as follows.

$$\frac{d\mathbf{Y}}{dt} = \begin{pmatrix} \frac{\theta}{2} & -\frac{\sin(\theta)}{2} \\ \frac{\theta^2}{2} & \frac{\theta}{2} \end{pmatrix} \mathbf{Y}$$

- (a) (10 points) Compute the trace and determinant and sketch the curve as θ varies in the trace-determinant plane. Make sure to add any relevant curves on your sketch.
- (b) (10 points) Describe the bifurcations that occur in the parameter θ .

(**Hint:** Compare the curve with the parabola that corresponds to linear systems with repeated eigenvalues.)

- 4. (20 points) Let BUID(n) be the *n*-th **nonzero** number of your BUID. Consider a harmonic oscillator with mass m = BUID(1), spring constant k = BUID(2), and damping coefficient b = BUID(3).
 - (a) (0 points) Write your BUID (in case you are not a BU student, use your date of birth MMDDYYYY).
 - (b) (5 points) Write down the second-order differential equation, which models this oscillator, as well as the corresponding first-order system.
 - (c) (5 points) Classify the oscillator and, when appropriate, give the natural period. Describe how typical solutions behave.
 - (d) (10 points) Find the eigenvalues and eigenvectors of the linear system, as well as the general solution.