

第一讲:函数的切线问题

题型一、在点问题

- 1.求 $f(x) = \ln x$ 在 x = 1 处的切线方程?
- $2.求 f(x) = e^x 在 (0,1)$ 处的切线方程?
- 3. 求 $f(x) = \sin x$ 在 (0,0) 处的切线方程?
- 4. 已知函数 y = f(x) 的图像在点 M(1, f(1)) 处的切线方程是 $y = \frac{1}{2}x + 2$,则 $f(1) + f'(1) = _____.$
- 5.直线 y = kx + 1 与曲线 $y = x^3 + ax + b$ 相切于点 A(1,3),则 2a + b 的值为
- 6.(2009 安徽)已知函数 f(x) 在 R 上满足 $f(x) = 2f(2-x) x^2 + 8x 8$,则曲线 y = f(x) 在点 (1, f(1)) 处的切线方程是_____.
- 7.设曲线 $y = x^{n+1}$ $(n \in N^*)$ 在点 (1,1) 处的切线与 x 轴的交点的横坐标为 x_n ,令 $a_n = \lg x_n$,则 $a_1 + a_2 + a_3 + \dots + a_{99}$ 的值为_____.

8.(2011 江苏)在平面直角坐标系 xoy 中,已知点 P 是函数 $f(x) = e^x(x > 0)$ 的图像上的动点,该图像在 P 处的切线 l 交 y 轴于点 M,过点 P 作 l 的垂线交 y 轴于点 N,该线段 MN 的中点的纵坐标为 t,则 t 的最大值是

- 9. (2014 安徽) 若直线 l 与曲线 C 满足下列两个条件:
 - (1) 直线l在点 $P(x_0, y_0)$ 处与曲线C相切;
- (2) 曲线C在点P附近位于直线l的两侧,则称直线l在点P处"切过"曲线C. 下列命题正确的是_____.
 - ①直线l: y = 0在点P(0,0)处"切过"曲线 $C: y = x^3$
 - ②直线l: x = -1 在点P(-1,0) 处"切过"曲线 $C: y = (x+1)^2$
 - ③直线l: y = x 在点P(0,0) 处"切过"曲线 $C: y = \sin x$
 - ④直线l: y = x 在点P(0,0) 处"切过"曲线 $C: y = \tan x$
 - ⑤直线l: y = x 1在点P(1,0)处"切过"曲线 $C: y = \ln x$
- 10.已知曲线 $y = \frac{1}{e^x + 1}$,则曲线的切线的斜率取得最小值时的直线方程为()
 - A. x+4y-2=0 B. x-4y+2=0
 - C. 4x+2y-1=0 D. 4x-2y-1=0
- 11. (2016 山东理) 若函数 y = f(x) 的图像上存在两点,使得函数的图像在这两点处的切线互相垂直,则称 y = f(x) 具有 T 性质.下列函数中具有 T 性质的是(
 - A. $y = \sin x$ B. $y = \ln x$ C. $y = e^x$ D. $y = x^3$

12. (2016 四川) 设直线 l_1, l_2 分别是函数 $f(x) = \begin{cases} -\ln x, 0 < x < 1 \\ \ln x, x > 1 \end{cases}$ 图象上点 P_1, P_2 处的切

线, l_1, l_2 垂直相交于点 P,且 l_1, l_2 分别于 y 轴相交于点 A, B ,则 $\triangle PAB$ 的面积的取值 范围是()

- A. (0,1)
- B. (0,2)
- C. $(0,+\infty)$
- D. $(1,+\infty)$

题型二、过点问题

13. 过原点作函数 $f(x) = e^x$ 的切线, 求切线方程?

14.过原点作函数 $f(x) = \ln x$ 的切线, 求切线方程?

15.已知函数 $f(x) = x^3 - 4x^2 + 5x - 4$.

- (1) 求曲线 f(x) 在点 (2, f(2)) 处的切线方程;
- (2) 求经过点 A(2,-2) 的曲线 f(x) 的切线方程.

16. 已知曲线 $C: f(x) = x^3 - ax + a$,若过曲线 C 外一点 A(1,0) 引曲线 C 的两条切线,且它们的倾斜角互补,则 a 的值为______.

17.直线 $y = \frac{1}{2}x + b$ 是曲线 $y = \ln x(x > 0)$ 的一条切线,则实数 b =_____.

18.(2009 全国)已知直线 y = x + 1 与曲线 $y = \ln(x + a)$ 相切,则 a 的值为_____

19.若直线 y = x 是曲线 $y = x^3 - 3x^2 + ax$ 的切线, 求 a 的值.

20.(2010 清华)设函数 $f(x) = e^{ax}(a > 0)$.过点 P(a,0) 且平行于 y 轴的直线与 f(x) 的交 点为Q, f(x) 过点Q 的切线交x 轴于点R,则 ΔPQR 的面积的最小值是(

题型三、距离最值问题

21.已知函数 $f(x) = x^2 - \ln x$,求函数 f(x) 上的点到直线 x - y - 2 = 0 的最小距离

22.(2012 全国新课标)设点 P 在曲线 $y = \frac{1}{2}e^{x}$ 上, 点 Q 在曲线 $y = \ln(2x)$ 上, 则 |PQ| 的 最小值为(

- $1 \ln 2$
- B. $\sqrt{2}(1-\ln 2)$
- C.
 - $1 + \ln 2$ D. $\sqrt{2}(1 + \ln 2)$

23.若实数 a,b,c,d 满足 $(b+a^2-3\ln a)^2+(c-d+2)^2=0$,则 $(a-c)^2+(b-d)^2$ 的最 小值为(

- $\sqrt{2}$ *A*.
- $C. \qquad 2\sqrt{2}$
- D.

24.已知不等式 $(m-n)^2 + (m-\ln n + \lambda)^2 \ge 2$ 对任意的 $m,n \in (0,+\infty)$,则 λ 的取值范围为

题型四、公切线问题

- 25. 已知定义在正实数集上的函数 $f(x) = \frac{1}{2}x^2 + 2ax$, $g(x) = 3a^2 \ln x + b$, 其中 a > 0. 设 两曲线 y = f(x), y = g(x) 有公共点,且在该点处的切线相同.
 - (1) 用 a 表示 b ,并求 b 的最大值;

26.(2016 全国甲卷) 若直线 y = kx + b 是曲线 $y = \ln x + 2$ 的切线,也是 $y = \ln(x + 1)$ 的切线, $b = _____$.

27. (2009 江西) 若存在过点 (1,0) 的直线与曲线 $y = x^3$ 和 $y = ax^2 + \frac{15}{4}x - 9$ 都相切, 则 a 等于 ()

A.
$$-1$$
或 $-\frac{25}{64}$ B. -1 或 $\frac{21}{4}$ C. $-\frac{7}{4}$ 或 $-\frac{25}{64}$ D. $-\frac{7}{4}$ 或7

28.设函数 $f(x) = p(x - \frac{1}{x}) - 2\ln x, g(x) = \frac{2e}{x}$,若直线 l 与函数 f(x), g(x) 都相切,且与函数 f(x) 的图像相切于点 (1,0),求 p 的值.

题型五、切线条数问题

29.(2014 大连二模)过点 A(2,1) 作曲线 $f(x) = x^3 - 3x$ 的切线最多有(

- 3条
- 2条
- *C*. 1条
- D. 0条

30.已知函数 $f(x) = x^3 - 3x$, 过点 $A(1,m)(m \neq -2)$ 可作 f(x) 的三条切线, 则实数 m的取值范围是

- A. (-1,1) B. (-2,3) C. (-1,2)
- D. (-3,-2)

31.已知函数 $f(x) = x^3 - x$.

- (1) 求曲线 y = f(x) 在点 M(t, f(t)) 处的切线方程;
- (2) 设a > 0,如果过点(a,b)可作曲线y = f(x)的三条切线,证明:-a < b < f(a).

32.已知函数 $f(x) = a(x - \frac{1}{x}) - b \ln x (a, b \in R)$, $g(x) = x^2$.

(3) 若b=2,试探究函数 f(x) 与g(x) 的图象在其公共点处是否存在公切线,若 存在,研究 a 的个数;若不存在,请说明理由.

33.已知函数 $f(x) = \frac{1}{2}x^2 + m \ln x + x$.

- (1) 求 f(x) 的单调区间;
- (2) 令 $g(x) = f(x) \frac{1}{2}x^2$, 试问过点 P(1,3) 存在多少条直线与曲线 g(x) 相切?并 说明理由.

1.已知函数 f(x) 在 R 上满足 $f(2-x) = 2x^2 - 7x + 6$,则曲线 y = f(x) 在 (1, f(1)) 处的 切线方程是

2.已知点 A(12) 在函数 $f(x) = ax^3$ 的图像上,则过点 A 的曲线 f(x) 的切线方程是 ()

A.
$$6x - y - 4 = 0$$

$$B. \quad x-4y+7=0$$

C.
$$6x - y - 4 = 0$$
 $x - 4y + 7 = 0$

$$6x - y - 4 = 0$$
 $\Rightarrow x - 4y + 7 = 0$ D. $6x - y - 4 = 0$ $\Rightarrow 3x - 2y + 1 = 0$

3. 若实数 a,b,c,d 满足 $\frac{a^2-2\ln a}{b} = \frac{3c-4}{d} = 1$,则 $(a-c)^2 + (b-d)^2$ 的最小值为

4.已知函数 $f(x) = ae^x + x^2$, $g(x) = \sin \frac{\pi x}{2} + bx$, 直线 l 与曲线 y = f(x) 切于点 (0, f(0)), 且与曲线 y = g(x) 切于点 (1, g(1)) 求 a,b 的值和直线 l 的方程.

第二讲:函数单调性含参讨论

题型一、导后"一次"型

- 1.已知 $f(x) = ax \ln(x+1) 1$,求 f(x) 的单调区间.
- 2.已知 $f(x) = ax (a+1)\ln(x+1)$, $a \ge -1$, 求 f(x) 的单调区间.
- 3.已知函数 $f(x) = e^x ax$,讨论函数的单调性.
- 4.已知函数 $f(x) = e^x ax$,讨论函数 f(x) 在 [0,1] 上的单调性.
- 5.已知函数 $f(x) = \ln(2-x) + a(x-2)(a \in R)$, 求 f(x) 的单调区间.

题型二、导后"二次型"

6.已知函数 $f(x) = \ln x + x^2 - ax(a \in R)$,求 f(x) 的单调区间.

7.(2014 山东文) 设函数 $f(x) = a \ln x + \frac{x-1}{x+1}$ 其中 a 为常数 .

- (I) 若 a = 0,求曲线 f(x) 在点 (1, f(1))处的切线方程.
- (||) 讨论函数 f(x) 的单调性.

- 8.已知函数 $f(x) = x^2 + b \ln(x+1)$, $b \neq 0$, 讨论函数 f(x) 的单调性.
- 9. 已知函数 $f(x) = m \ln(x+2) + \frac{1}{2}x^2 + 1$,讨论函数 f(x) 的单调性.
- 10.求函数 $f(x) = (1-a)\ln x x + \frac{ax^2}{2}$ 的单调区间.

11.(2010 山东理)已知函数 $f(x) = 1nx - ax + \frac{1-a}{x} - 1(a \in R)$.

(
$$I$$
) 当 $a \le \frac{1}{2}$ 时,讨论 $f(x)$ 的单调性;

- 12.(2016 新课标 | 文)已知函数 $f(x) = (x-2)e^x + a(x-1)^2$.
 - (1)讨论 f(x) 的单调性;

13.(2016 山东理)已知
$$f(x) = a(x - \ln x) + \frac{2x - 1}{x^2}, a \in R$$
.

(1)讨论 f(x) 的单调性;

14.已知函数
$$f(x) = (ax^2 - x) \ln x - \frac{1}{2} ax^2 + x$$
 , 讨论 $f(x)$ 的单调性.

- 15. (2017 山东) 已知函数 $f(x) = x^2 + 2\cos x$, $g(x) = e^x(\cos x \sin x + 2x 2)$.
 - (1) 求曲线 y = f(x) 在点 $(\pi, f(\pi))$ 处的切线方程;
- (2) 令 h(x) = g(x) af(x) ($a \in R$), 讨论 h(x) 的单调性并判断有无极值, 有极值时求出极值.

题型三、导后求导型

16.已知函数 $f(x) = e^x - x^2$,求函数的单调性.

17.函数
$$f(x) = \frac{\ln x + 1}{e^x}$$
,求函数的单调性.

1. 已知函数 $f(x) = e^{ax} + 3x$, 求 f(x) 的单调区间.

2.已知函数 $f(x) = ax^2 + bx - \ln x (a, b \in R)$

(1)设 $a \ge 0$,求f(x)的单调区间

3.已知函数 $f(x) = 2\ln x + \frac{1}{2}ax^2 - (2a+1)x$, 讨论 f(x) 的单调性

.

- 4.(2015新课 2 理)设函数 $f(x) = e^{mx} + x^2 mx$.
- (1)证明: f(x) 在 $(-\infty, 0)$ 单调递减,在 $(0, +\infty)$ 单调递增.,

第三讲:已知单调性求参数

- 1. 若 $f(x) = -\frac{1}{2}x^2 + b\ln(x+2)$ 在 $(-1,+\infty)$ 上是减函数,则b 的取值范围_____
- A. $\begin{bmatrix} -1,+\infty \end{bmatrix}$ B. $\begin{pmatrix} -1,+\infty \end{pmatrix}$ C. $\begin{pmatrix} -\infty,-1 \end{pmatrix}$ D. $\begin{pmatrix} -\infty,-1 \end{bmatrix}$
- 2. (2015 重庆) 设函数 $f(x) = \frac{3x^2 + ax}{e^x}$ ($a \in R$).
 - (II) 若 f(x) 在 $[3,+\infty)$ 上为减函数,求 a 的取值范围.
- 3. (2009 山东) 已知函数 $f(x) = \frac{1}{3}ax^3 + bx^2 + x + 3$, 其中 $a \neq 0$.
 - (2) 已知a>0,且f(x)在区间(0,1]上单调递增,试用a表示出b的取值范围.
- 4.已知函数 $f(x) = (2ax x^2)e^{ax}$, 其中 $a \ge 0$.

 - (2) 若函数 f(x) 在区间 ($\sqrt{2}$,2) 上单调递减,求实数 a 的取值范围.
- 5.已知函数 $f(x) = \ln(ax+1) + x^3 x^2 ax$ 在 $[1,+\infty)$ 上为增函数,求 a 的取值范围.

6.已知函数 $f(x) = \ln x + (x - a)^2, a \in \mathbb{R}$,若函数 f(x) 在区间 [1,2] 上存在单调递增区间,求实数 a 的取值范围.

7.已知函数 $f(x) = \frac{mx^2}{3} + ax^2 + (1-b^2)x$, $m,a,b \in \mathbb{R}$. 当 $a = 1,b = \sqrt{2}$ 时,函数 f(x) 在 $(2,+\infty)$ 上存在单调递增区间,求m的取值范围.

- 8.已知函数 $f(x) = x ax^2 \ln x$ 在定义域上是单调函数,求 a 的取值范围.
- 9. (2009 浙江) 已知函数 $f(x) = x^3 + (a-1)x^2 + (a+5)x 1$ 在区间(0,3) 上不单调,求 a 的范围.

10.已知函数 $f(x) = -2\ln x + 2x - 3$,对任意的 $t \in [1,2]$,函数 $g(x) = x^3 + x^2 \left[f'(x) + \frac{m}{2} \right]$ 在 区间 (t,3) 上总不是单调函数,求m 的取值范围.

- 11. (2009 全国) 已知函数 $f(x) = (x^3 + 3x^2 + ax + b)e^{-x}$.
 - (1) 若 a=b=-3, 求函数 f(x) 的单调区间;
- (2) 若 f(x) 在 $(-\infty,\alpha)$, $(2,\beta)$ 内单调递增,在 $(\alpha,2)$, $(\beta,+\infty)$ 内单调递减,证明: $\beta-\alpha>6$.

- 1. 若函数 $f(x) = ax^3 3xe^x + 1$ 在 (0,1]上是减函数,则实数 a 的取值范围是_____.
- 2. 已知 $f(x) = (ax^2 + x)e^x$ 在 [-1,1] 上是单调递增函数,求 a 的取值范围.
- 3. 已知 $f(x) = (x^2 2ax)e^x$ 在 [-1,1] 上是单调函数,求 a 的取值范围.

第四讲:利用导数研究函数的极值最值问题

题型一、极值最值的概念

- 1.已知函数 $f(x) = \frac{1}{3}x^3 + \frac{1}{2}(b-1)x^2 + b^2x$ 在 x = 1 处取得极值,求 b 的值.
- 2. 已知函数 $f(x) = \frac{ax}{x^2 + b}$ 在 x = 1 处取得极值 2 ,求函数 f(x) 的解析式.
- 3. (2017 全国 II) 若 x = -2 是函数 $f(x) = (x^2 + ax 1)e^{x-1}$ 的极值点,则 f(x) 的极小值为()
 - *A*. −1
- B. $-2e^{-3}$
- C. $5e^{-3}$
- D. 1
- 4. (2011 浙江文) 设函数 $f(x) = ax^2 + bx + c$ ($a,b,c \in R$) ,若 x = -1 为函数 $f(x)e^x$ 的 一个极值点,则下列图象不可能为 y = f(x) 的图象是 ()

B.

C

ъ

- 5. (2013 全国 II) 已知函数 $f(x) = x^3 + ax^2 + bx + c$, 下列结论中错误的是 ()
 - $A. \quad \exists x_0 \in R \ , \quad f(x_0) = 0$
 - B. 函数 y = f(x) 的图象是中心对称图形
 - C. 若 x_0 是 f(x) 的极小值点,则 f(x) 在区间 $(-\infty, x_0)$ 上单调递减
 - D. 若 x_0 是f(x)的极值点,则 $f(x_0)=0$

- (2013 浙江) 设函数 $f(x) = (e^x 1)(x 1)^k$ (k = 1,2) 则 (
 - A. 当 k=1 时, f(x) 在 x=1 处取到极小值
 - B. 当 k=1 时, f(x) 在 x=1 处取到极大值
 - C. 当 k=2 时, f(x) 在 x=1 处取到极小值
 - D. 当 k=2 时, f(x) 在 x=1 处取到极大值
- 7.函数 $y = 2x^3 3x^2 12x + 5$ 在 [0,3] 上的最大值、最小值分别是
- (2011 湖南) 设直线 x=t 与函数 $f(x)=x^2$, $g(x)=\ln x$ 的图象分别交于点 M,N, 则当|MN|达到最小时t的值为(
- *A*. 1
- $C. \quad \frac{\sqrt{5}}{2} \qquad D.$
- 9.已知直线 y=a 分别与函数 $y=e^{x+1}$ 和 $y=\sqrt{x-1}$ 交于 A,B 两点,则 A,B 之间的最小 距离是
- 10.设函数 $f(x) = -\frac{1}{3}x^3 + \frac{1}{2}x^2 + 2ax$,其中 0 < a < 2,若函数 f(x) 在 [1,4]上的最小值 为 $-\frac{16}{3}$, 求函数 f(x) 在[1,4]上的最大值.

题型二、已知极值最值问题求参

- 11.已知函数 $f(x) = \ln x + \frac{a}{x}$.
 - (2) 若函数 f(x) 在 [1,e]上的最小值是 $\frac{3}{2}$,求 a 的值.
- 12. 已知函数 $f(x) = x \frac{1}{2}ax^2 \ln(1+x)$. 若 f(x) 在 $[0,+\infty)$ 上的最大值是 0 ,求 a 的取 值范围.
- 13.已知函数 $f(x) = [3x^2 + (2a-6)x + 12-a] \cdot e^x$ 有极大值和极小值,求实数 a 的取值 范围.
- 14.若函数 $f(x) = x^3 3bx + 3b$ 在 (0,1) 内有极小值,则 b 的范围是
- 15.若函数 $f(x) = x^3 + bx^2 + cx + 1$ 有两个极值点 x_1, x_2 ,且 $x_1 \in [-2, -1]$, $x_2 \in [1, 2]$,则 f(-1)的取值范围是(

$$B. \left[-\frac{3}{2}, 6 \right]$$

$$C. \left[-\frac{3}{2}, 3\right]$$

B.
$$\left[-\frac{3}{2},6\right]$$
 C. $\left[-\frac{3}{2},3\right]$ D. $\left[-\frac{3}{2},12\right]$

(2013 湖北文) 已知函数 $f(x) = x(\ln x - ax)$ 有两个极值点, 则实数 a 的取值范

围是()

- A. $(-\infty,0)$ B. $(0,\frac{1}{2})$ C. (0,1) D. $(0,+\infty)$

- (2013 湖北理) 已知a为常数,函数 $f(x) = x(\ln x ax)$ 有两个极值点 x_1, x_2 $\left(x_1 < x_2 \right), \quad \text{II} \quad \left(\qquad \right)$
 - A. $f(x_1) > 0$, $f(x_2) > -\frac{1}{2}$ B. $f(x_1) < 0$, $f(x_2) < -\frac{1}{2}$
 - C. $f(x_1) > 0$, $f(x_2) < -\frac{1}{2}$ D. $f(x_1) < 0$, $f(x_2) > -\frac{1}{2}$
- 18. (2011 全国 II) 已知函数 $f(x) = x^3 + 3ax^2 + (3-6a)x + 12a 4$ ($a \in R$).
 - (1) 证明:曲线y = f(x)在x = 0处的切线过点(2,2);
 - (2) 若 f(x) 在 $x = x_0$ 处取得最小值, $x_0 \in (1,3)$, 求 a 的取值范围.
- 19. (2009 全国 II 理) 设 $f(x) = x^2 + a \ln(1+x)$ 有两个极值点 $x_1, x_2, \exists x_1 < x_2$.
 - (1) 求实数 a 的范围;
 - (2) 证明: $f(x_2) > \frac{1-2\ln 2}{4}$.

- 20. (2007 全国) 设函数 $f(x) = \ln(x+a) + x^2$.
 - (1) 若当 x = -1 时, f(x) 取得极值,求 a 的值,并讨论 f(x) 的单调性;
 - (2) 若 f(x) 存在极值,求 a 的取值范围,并证明所有极值之和大于 $\ln \frac{e}{2}$.
- 21.已知函数 $f(x) = \frac{1}{2}x^2 x + a \ln x$ (a > 0),若函数 f(x) 存在两个极值点 x_1, x_2 ,求证: $f(x_1) + f(x_2) > \frac{-3 2 \ln 2}{4}$.
- 22. (2011 湖南文) 设函数 $f(x) = x \frac{1}{x} a \ln x$ ($a \in R$).
 - (I)讨论 f(x) 的单调性 f(x)
- (II) 若 f(x) 有两个极值点 x_1 和 x_2 ,记过点 $A(x_1, f(x_1))$, $B(x_2, f(x_2))$ 的直线的斜率为 k ,问:是否存在 a ,使得 k = 2 a ?若存在,求出 a 的值,若不存在,请说明理由 .
- 23.已知函数 $f(x) = ax^2 2x + \ln x$ 有两个极值点,证明: f(x) 的极小值小于 $-\frac{3}{2}$.

24.(2015 郑州模拟)已知函数 $f(x) = \ln x - \frac{1}{2}ax^2 + x, a \in \mathbb{R}$.

- (1) 求函数 f(x) 的单调区间;
- (2) 是否存在实数 a ,使得函数 f(x) 的极值大于 0 ,若存在,求 a 的取值范围;若不存在,请说明理由.

25.已知函数 $f(x) = (x^2 + ax + a)e^{-x}, a \in R$.

- (1) 当 a = 0 时,求 f'(2) ;
- (2) 若 f(x) 在 x = 0 时取得极小值, 试确定 a 的取值范围;
- (3) 在 (2) 的条件下, 设由 f(x) 的极大值所构成的函数为 g(a), 将 a 换元为 x , 试判断曲线 y = g(x) 是否能与直线 3x 2y + m = 0 (m 为确定的常数) 相切, 并说明理由.

1. 已知函数 $f(x) = x^3 + ax^2 + bx - a^2 - 7a$ 在 x = 1 处取得极大值 10 ,则 a + b =

2.已知 $f(x) = e^x$, $g(x) = \ln x$, 若 f(t) = g(s), 则 g - t 取得最小值时, f(t) 所在的区 间是(

- A. $(\ln 2,1)$

- B. $(\frac{1}{2}, \ln 2)$ C. $(\frac{1}{3}, \frac{1}{e})$ D. $(\frac{1}{e}, \frac{1}{2})$

3. (2014 湖南) 已知常数 a > 0, 函数 $f(x) = \ln(1 + ax) - \frac{2x}{x+2}$. 若 f(x) 存在两个极值 点,且 $f(x_1)+f(x_2)>0$,求a的取值范围.

- 4. (2014 山东) 设函数 $f(x) = \frac{e^x}{x^2} k(\frac{2}{x} + \ln x)$ (k 为常数)
 - (I) 当 $k \le 0$ 时, 求函数 f(x) 的单调区间;
 - (II) 若函数 f(x) 在 (0,2) 内存在两个极值点,求 k 的取值范围.