Search for Flavor Changing Neutral Currents in Top Quark Decays

Fake Rates and Initial Asimov Fits

Jason Barkeloo

January 16, 2020

Overview

```
Brief Background
The Top Quark
FCNC at the LHC
```

B-tagging Working Point Selection B-tagging Background Neural Network on B-tagging WPs

 $e
ightarrow \gamma$ Fake Rate: Studies $e
ightarrow \gamma$ Fake Rate Studies
Basic 1D Fake Rate Scale Factor
2D Fake Rate Scale Factor

 $j
ightarrow \gamma$ Fake Rate Studies $j
ightarrow \gamma$ Fake Rate Studies

Outlook and Conclusions

Top Quark Decays in the SM

- ► $t \rightarrow bW \approx 99.83\%$
- ightharpoonup t
 ightarrow sW pprox 0.16%
- $ightharpoonup t
 ightarrow dW \approx 0.01\%$

- $ightharpoonup t o q_{u.c} X \approx 10^{-17} 10^{-12}$
- Limits on $t \rightarrow \gamma q$ processes: [Phys.Lett. B800 135082]
 - ► $t \to \gamma u < 2.8 \times 10^{-5}$
 - ► $t \to \gamma c < 18 \times 10^{-5}$

FCNC: What are we looking for? $t\bar{t} o W(o I u) b + q \gamma$

Will further investigate BJets here.

- ► Final state topology
 - One Neutrino, from W
 - ► One Lepton, from W
 - ► One B-jet, SM Top
 - One Photon, FCNC Top
 - ► One Jet, FCNC Top

B-tagging

- ► B Hadrons travel a measureable distance before decay
- Tracks originate from outside of interaction point (Seconday Vertex)
- Backtracking tracks in displaced vertex gives an impact parameter
- ► Decay chain MVA attempts to reconstruct decay of the jet
- Outputs of these algorithms used in a BDT to determine if a Jet is from a b-quark

Mv2c10

MV2c10 is used to tag b-jets. The c10 implies a 10% c-jet fraction in the background training sample. Can use various fixed-cut working points for b-jet identification.

Using a different working point can change which jets are identified as originating from b-quarks in the analysis.

JHEP 08 (2018) 89

Neural Network Reminder

Branching ratio with Significance = 2: 1.18e-5

Fake Rate Studies

Want to be able to correct the number of fake photons predicted in MC to those present in Data

Barkeloo

Fake Rate Object Selection

- Want to calculate fake rate in events which could enter the signal region.
- ► Create 2 control regions: $Z \rightarrow ee$ and $Z \rightarrow e\gamma$
- ► Require:
 - ► Common Object Selection (MET, Jets, Triggers, etc.)
 - ► Exactly 1Bjet
 - lacktriangle Z
 ightarrow ee : 2 Opposite Sign Electrons, 86.1 GeV $< m_{e^+e^-} <$ 96.1 GeV
 - ▶ $Z \rightarrow e\gamma$:1 Electron, ≥1 Photon, 86.1 GeV $< m_{e\gamma} <$ 96.1 GeV
- Tag and Probe Method used
- Systematic determined by varying tail size and other parameters

Data and MC

Scale Factor

$$\mathsf{FR}^{\mathsf{e-fake}} = rac{N_{e,\gamma}}{N_{e,e}}$$
 $\mathsf{SF}^{\mathsf{e-fake}}_{\mathsf{FR}} = rac{\mathsf{FR}^{\mathsf{e-fake}}_{\mathsf{data}}}{\mathsf{FR}^{\mathsf{e-fake}}_{\mathsf{e-fake}}}$

Basic Scale Factor can be calculated for the entire spectrum:

$$\mathsf{SF}^{\mathsf{e-fake}}_{\mathsf{FR}} = 0.97 \pm 0.01$$

In practice this scale factor is calculated for converted and unconverted photons as well as in bins of η and ϕ

Data and MC Distributions

2D Fake Rates

ightharpoonup Converted γ

ightharpoonup Unconverted γ

Fake Rate Studies

Majority of hadronic fake photons from from $t\bar{t}$ events where a final state jet radiates a non-prompt photon. Similarly radiated photons for W+jets and single top processes can enter the signal region through the radiation of a non-prompt photon.

Outlook

- ► As always, still lots to be done
- Fake Rate: $e \rightarrow \gamma$ has been investigated, further systematic investigations will continue
- ▶ Fake Rate: $j \rightarrow \gamma$ to be investigated soon
- ► Was able to squeak an extra factor of 2 out of Neural Network since I had to redo it for working points anyway
- ► Questions?

Backup

FCNC Diagrams

Barkeloo

Jets/AntiKT

$$d_{ij} = min(rac{1}{
ho_{ti}^2}, rac{1}{
ho_{tj}^2})rac{\Delta_{ij}^2}{R^2}$$
 $d_{iB} = rac{1}{
ho_{ti}^2}$ $\Delta_{ij}^2 = (\eta_i - \eta_j)^2 + (\phi_i - \phi_j)^2$

- ▶ Find minimum of entire set of $\{d_{ij}, d_{iB}\}$
- ▶ If d_{ij} is the minimum particles i,j are combined into one particle and removed from the list of particles
- ► If *d_{iB}* is the minimum i is labelled as a final jet and removed from the list of particles
- ▶ Repeat until all particles are part of a jet with distance between jet axes Δ_{ii} is greater than R

$$\mathcal{L}_{tq\gamma}^{eff} = -e\bar{c}\frac{i\sigma^{\mu\nu}q_{\nu}}{m_{t}}(\lambda_{ct}^{L}P_{L} + \lambda_{ct}^{R}P_{R})tA_{\mu} + H.c.$$