Complex Analysis Cheat Sheet

Guide

- Unless explicitly stated, G is a domain (open and connected)
- Hol(G) is the set of holomorphic functions on G, Mer(G) and Har(G) are the sets of meromorphic (holomorphic, save for countable isolated singularities) and harmonic functions on
- C(G) is the set of continuous functions on G.

Theorems

Topology

- 1. The set S is closed \iff S^c is open
- 2. Let $G \in \mathbb{C}$ be an open set. The following definitions for *connectivity* are equivalent:
 - (a) G cannot be decomposed into two disjoint open sets: if $X \subseteq G$ is open and $X \setminus G$ is open, then either X = G or $X = \emptyset$.
 - (b) Let $a, b \in G$. So there exitsts a polygonal curve that starts at a and ends at b.
 - (c) For each locally constant $f: G \to \mathbb{C}$, f is necessarily globally constant.
 - (d) Every continuous $f: G \to \mathbb{R}$ satisfies the intermediate value property: $\exists \alpha, \beta, f(\alpha) = \emptyset$ $s, f(\beta) = t \Rightarrow [s, t] \subseteq \operatorname{Img}(f)$
- 3. $\gamma:[a,b]\to\mathbb{C}$ is cont. and does not vanish. Then $\exists \psi:[a,b]\to\mathbb{C}$ such that $e^{\psi(t)}=\gamma(t)$. It is unique up to $\pm 2\pi i$.
- 4. $\operatorname{ind}_{\gamma}(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-z_0}$
- 5. $\gamma \subset G$ is closed and piecewise C^1 , $f \in Hol(\gamma)$, them $\int_{\gamma} \frac{f'}{f} dz = 2\pi i \cdot \operatorname{ind}_{f \circ \gamma}(0)$
- 6. $f \in Hol(G)$; $\gamma_0, \gamma_1 : [\alpha, \beta] \to G$. Then $\gamma_0 \sim \gamma_1 \Rightarrow \int_{\gamma_0} f = \int_{\gamma_1} f$
- 7. Jordan: if γ is simple, it divides \mathbb{C} into two connected components.
- 8. If G is simply connected:
 - (a) γ is closed, $f \in Hol(G)$. Then $\int_{G} f = 0$
 - (b) $f \in Hol(G)$ has a primitive, $F(z) = \int_{z \to z_0} f(z) dz$
 - (c) γ is closed, $z_0 \notin G$, then $\operatorname{ind}_{\gamma}(z_0) = 0$
 - (d) $f \in Hol(G)$ and does not vanish, then it has a branch of $\log f, \sqrt{f}$ there.
- 9. $f \in Hol(G), \gamma \subset G$ is closed. Then: G is simply connected $\iff \overline{\mathbb{C}}\backslash G$ is connected \iff $\forall z_0 \notin G$, is closed them $\operatorname{ind}_{\gamma}(z_0) = 0 \iff \int_{\gamma} f = 0 \iff \text{if } f \text{ does not vanish on } G \text{ there}$ exists $\log f \in Hol(G)$.
- 10. $G_1, G_2 \subset \mathbb{C}$, $f: G_1 \to G_2$ is continuous, 1-1 and onto with a continuous f^{-1} , then G_1 is simply connected $\iff G_2$ is simply connected.
- 11. Schwarz's Lemma: $Hol(\mathbb{D}) \ni f : \mathbb{D} \to \mathbb{D}$ with f(0) = 0. Then $|f(z)| \le |z|$ and only reaches equality when $f(z) = \lambda z, |\lambda| = 1$
- 12. $Hol(\mathbb{D}) \ni f : \mathbb{D} \to \mathbb{D}$, 1-1 and onto with f(0) = 0. Then there exists $\theta \in [0, 2\pi]$ such that
- 13. $f: \mathbb{D} \to \mathbb{D}$ is conformal on \mathbb{D} . Then there exist $|a| < 1, \theta \in [0, 2\pi]$ such that $f(z) = \frac{z-a}{1-\overline{a}z}$
- 14. **Riemann's thm:** Let $G \subset \mathbb{C}$, $G \neq \mathbb{C}$ and is simply connected. Then there exists a unique holomorphic transform $f: G \to \mathbb{D}$, 1-1 and onto, with $f(a) = 0, \mathbb{R} \ni f'(a) > 0$.
- 15. Pick's Lemma : $f: \mathbb{D} \to \mathbb{D}$ is holomorphic, so $|f'(z)| \leq \frac{1-|f(z)|^2}{1-|z|^2}$, and $\left|\frac{f(z)-f(w)}{1-f(z)\overline{f(w)}}\right| \leq \left|\frac{z-w}{1-z\overline{w}}\right|$

Differentiation

Curves

- 1. If f is differentiable at z_0 , g is differentiable at $w_0 = f(z_0)$, then $\frac{d}{dt}g(f(z))\Big|_{z=z_0}$
- 2. f is differentiable, at $x_0 \iff$ it verifies the Cauchy-Riemann equations.

1. Chain rule for curves: suppose γ is differentiable at t_0 , f is holomorphic at $\gamma(t_0)$. So $(f \circ g)' =$ $f'\left(\gamma\left(t_0\right)\right)\dot{\gamma}\left(t_0\right)$

Holomorphic Functions

- 1. Suppose $f: G \to \mathbb{C}$ is holomorphic. Then f is constant $\iff \forall z \in G: f'(z) = 0$
- 2. If $f: G \to \mathbb{C}$ is holomorphic and real, then f is constant.
- 3. Suppose $f: G \to \mathbb{C}$ is holomorphic such that |f| is constant in G, then f is globally constant.
- 4. Suppose that $f: G \to \mathbb{C}$ is holomorphic and $f'(t) \neq 0, \forall z \in G$. Then f is a conformal transformation, such that $\angle (f(\gamma_1), f(\gamma_2)) = \angle (\gamma_1, \gamma_2)$.
- 5. Suppose $f: \mathbb{C} \to \mathbb{C}$ is an \mathbb{R} -linear transformation. then $\forall z \in \mathbb{C} f(z) = az + b\overline{z}$, such that $a = \frac{\partial f}{\partial z}(0); b = \frac{\partial f}{\partial \bar{z}}(0).$
- 6. Suppose $f: G \to \mathbb{C}$ is \mathbb{R} -differentiable and conformal. Then f is holomorphic.

Harmonic Functions

- 1. $f \in Hol(G)$. If f has continuous second partial derivatives, then f is harmonic (meaning $\operatorname{Im}(f)$, $\operatorname{Re}(f)$ are both harmonic),
- 2. $u: G \to \mathbb{C}$ is harmonic, then $\frac{\partial u}{\partial z} \in Hol(G)$.
- 3. Let $u: G \to \mathbb{R}$ be harmonic. Then:
 - (a) If $G = \mathbb{C}$, there always exists a harmonic conjugate v.
 - (b) For each G, it is single up to $\pm c$.

Möbius Transformations $(\varphi(z) = \frac{az+b}{cz+d}, C \text{ is a clircle})$

- 1. For each $A \in GL_2$, $h_A(z)$ transformations clircles to clircles.
- 2. If $A, B \in GL_2$, then $h_A \circ h_B = h_{AB}$. Therefore:
 - (a) $\forall \lambda \neq 0, h_{\lambda A} = h_A$.
 - (b) $h_{\lambda d\bar{d}} = h_I$.
- 3. φ has at most 2 fixed points. If h_A has 3 fixed points, then it is h_I .
- 4. $z_1, z_2, z_3, z_4 \in \mathbb{C}$ are distinct. Then $[z_1, z_2, z_3, z_4] = [\varphi(z_1), \varphi(z_2), \varphi(z_3), \varphi(z_4)]$. Therefore, if $w_1, w_2, w_3, w_4 \in \mathbb{C}$ are distinct, there exists φ such that $\forall_{1 \leq j \leq 4} Tz_j = w_j$
- 5. Suppose φ operates on $C_1 \longmapsto C_2$. Then every $z, [z]_{C_1}^* \mapsto z, [z]_{C_2}^*$.
- 6. z_2, z_3, z_4 are distinct and on C. Then $[z_1]_C^*, z_2, z_3, z_4 = \overline{[z_1, z_2, z_3, z_4]}$
- 7. $z_j, 1 \leq j \leq 4$ are all on the same clircle if $(z_1, z_2, z_3, z_4) \in \mathbb{R}$.

- 1. Let $G \subseteq \mathbb{C}$, u_1, u_2 be branches of log. Then $u_1 u_2 \equiv \text{const.}$
- 2. Let $G \subseteq \mathbb{C}$, $l: G \to \mathbb{C}$ be a branch of log. Then $l \in Hol(G)$ and $l'(z) = \frac{1}{z}$.
- 3. Let $f(:G\to\mathbb{C})\in Hol(G)$ and suppose that u is a branch of $\log(f)$. Then u is holomorphic and $\forall z \in G.u'(z) = \frac{f'(z)}{f(z)}$.
- 4. Let $f(:G \to \mathbb{C}) \in Hol(G)$, $z_0 \in G, f(z_0) \neq 0$. Then $\exists \delta > 0$ such that $\mathbb{D}(z_0, \delta)$ contains a

Series

- 1. If a series converges absolutely to a, it is invariant to any permutation of its order of summation.
- 2. Weierstrass' M-Test: let $\{u_n(z)\}_{n=0}^{\infty}$ be a series of functions in G, and $\{M_n\}_{n=0}^{\infty}$ a series of positive numbers such that:
 - (a) $\sup_{z \in G} |u_n| < M_n$
 - (b) $\sum_{n=0}^{\infty} M_n < +\infty$

Then $\sum_{n=0}^{\infty} u_n(z)$ uniformly and absolutely in G.

- 3. D'alembert: For $\sum_{n=0}^{\infty} c_n z^n$, $R = \lim_{n\to\infty} \left|\frac{c_n}{c_{n+1}}\right|$; Cauchy-Hadamard: $R^{-1} =$ $\lim_{n\to\infty} \sup \sqrt[n]{|a_n|}$
- 4. Suppose $f(z) = \sum_{n=0}^{\infty} c_n (z-z_0)^n$ is a power series with convergence radius $R \in [0, \infty]$.
 - (a) The series converges normally at $\mathbb{D}(z_0, R)$.
 - (b) If $|z z_0| > R$ the series diverges.
 - (c) f(z) is holomorphic in $\mathbb{D}(z_0, R)$ and its derivative is $f'(z) = \sum_{n=1}^{\infty} c_n n (z z_0)^{n-1}$. Its convergence radius is the same as in f(z).

Therefore:

- (a) $f(z) = \sum_{n=0}^{\infty} c_n (z z_0)^n$ is C^{∞} on $\mathbb{D}(z_0, R)$, and $f^{(k)}(z) = \sum_{n=k}^{\infty} \frac{n!}{(n-k)!} c_n (z z_0)^{n-k}$. Specifically for $z = z_0 : \frac{f^{(k)}(z_0)}{k!} = c_k$.
- (b) Suppose WLOG that $z_0 = 0$. f has a primitive function with the same radius of convergence: $G(z) = \sum_{n=0}^{\infty} c_n \frac{z^{n+1}}{n+1}$.
- 5. **Tauber:** Suppose $n|c_n| \stackrel{n\to\infty}{\to} 0$, and $f(z) = \sum c_n z^n$ has a limit $\lim_{\mathbb{R}\ni n\to 1} f(x) = L$, so
- 6. **Abel:** Suppose $\sum c_n$ converges. Then if $z_n \stackrel{n \to \infty}{\to} 1$ and $\sup \frac{|z_n 1|}{1 |z_n|} < \infty$, then $\lim_{n \to \infty} f(z_n) =$ $\sum c_n$.

Integrals

- 1. Newton-Leibnitz Formula: Suppose $f:G\to\mathbb{C}$ is Holomorphic, $\gamma:[a,b]\to G$ is piecewise differentiable. Then $\int_{\gamma} f'(z) dz = f(\gamma(b)) - f(\gamma(a))$
 - (a) $\int_{\mathcal{X}} f'$ depends only on the edges of γ
 - (b) If the curve closed, the integral is 0.
- 2. Suppose $f:[a,b]\to\mathbb{C}$, then $\int_a^b f(t)\,dt=\int_a^b \operatorname{Re} f(t)\,dt+i\int_a^b \operatorname{Im} f(t)\,dt$.
- 3. Suppose γ_2 is a reparametrization of γ_1 and f is defined on the image of γ_1 , then $\int_{\gamma_1} f = \int_{\gamma_2} f$
- 4. Suppose $f_n: G \to \mathbb{C}$ is a sequence of continuous functions such that $f_n \rightrightarrows f$ on G. Let $\gamma: [a,b] \to \mathbb{C}$ be piecewise C^1 . Then $\int_{\gamma} f_n \to \int_{\gamma} f$.
- 5. $\left| \int_{\gamma} f \right| \leq \operatorname{Length}(\gamma) \cdot \sup_{t \in [a,b]} |f(\gamma(t))|$
- 6. Let $G \subset \mathbb{C}$, $f: G \to \mathbb{C}$ be continuous and $\gamma: [a,b]$ be piecewise C^1 . Let $\varepsilon > 0$. So there exists $\delta > 0$ such that for every partition $\pi = \{a = t_0 < \ldots < t_N = b\}$, such that $\lambda(\pi) < \delta$:
 - (a) $\left| \int_{\gamma} f \sum_{i=0}^{N-1} f(z_i) (z_{i+1} z_i) \right| < \varepsilon, \ z_i = \gamma(t_i).$
 - (b) Let γ_{π} be the polygonal curve connecting the vertices in $f\{\pi\}$, then $\left|\int_{\gamma_{\pi}} \int_{\gamma}\right| < \varepsilon$
- 7. Goursat: Let $G \subset \mathbb{C}$, $f: G \to \mathbb{C}$ be holomorphic. Suppose T is a triangle in G, with counterclockwise orientation. Then $\int_{\mathcal{X}} f = 0$.
- 8. If $G \subset \mathbb{C}$ is convex and $f: G \to \mathbb{C}$ is holomorphic, then f has a primitive in G.
- 9. If $G \subset \mathbb{C}$ is convex and $f: G \to \mathbb{C}$ is holomorphic, and suppose γ is closed and piecewise continuous. Then $\int_{\gamma} f = 0$.
- 10. Cauchy's formula for a disk: See Section.

- 11. Intermediate Value Theorem: suppose f is holomorphic inside a circle containing $\overline{D} \subset \mathbb{C}$ about Hyperbolic Geometry z_0 , then $\forall z \in D$: $f(z) = \frac{1}{2\pi i} \int_0^{2\pi} f(z + e^{it}) dt$. Therefore, any holomorphic function is locally
- 12. The Cauchy integral is holomorphic outside the curve on which it is defined, and is C^{∞} there.
- 13. Power Series Coefficients: Suppose f is holomorphic on $D(z_0, R)$. So $\forall z \in$ $D(z_0, R), f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$, and:
 - (a) $a_n = \frac{n!}{2\pi i} \int_{\partial D(z_0, R)} \frac{f(z)dz}{(z z_0)^{n+1}}$
 - (b) $f^{(n)}(z_1) = \frac{n!}{2\pi i} \int_{\partial D(z_0, R)} \frac{f(z)dz}{(z z_1)^{n+1}}$
- 14. Morera (Convex): Suppose G is convex, then (see 20)
- 15. **Liouville:** If f is entire (harmonic/holomorphic) and bounded, it is fixed.
- 16. Fundamental thm of Algebra: $P \in \mathbb{C}[z]$ is a nonconstant polynomial, then P has a root.
- 17. General Cauchy thm+formula: See Section
- 18. There Exists no nonconstant holomorphic function for the following cases:
 - (a) $f: \mathbb{C} \to \mathbb{D}$ (but any domain that isn't \mathbb{C} is applicable)
 - (b) $f: \mathbb{CP}^1 \to \mathbb{C}$
 - (c) $f: \mathbb{C} \to \mathbb{C}$ with two linearly independent cycles.
- 19. Maximum Modulus Principle: G is bounded with a regular contour, $f \in Hol(G) \cap C(G)$. So the strict maximum is achieved on the boundary. Otherwise, the function is constant
- 20. Morera (General): Suppose f is continuous in G and for every triangle $T \subset G$: $\int_{\partial T} f(z) dz = 0$. Then f is holomorphic in G.
- 21. Suppose $I \subset G$ is a closed contour. $f \in Hol(G \setminus I) \cap C(G)$, Then $f \in Hol(G)$.

Laurent Series

- 1. A nonconstant holomorphic function has a finite nullset.
- 2. Suppose f is holomorphic around z_0 . If f has a zero of order m there, then f(z)Suppose f is nonmorphic around z_0 . If f has a zero of $z=z_0$ $(z-z_0)^m g(z)$, where $Hol(G)\ni g(z)=\begin{cases} (z-z_0)^{-m} f(z) & z=z_0\\ a_m & z\neq z_0 \end{cases}$
- 3. The nullset for f does not contain an accumulation point in G.
- 4. Suppose $f, g \in Hol(G)$ and f = g on $A \subset G$. If A has an accumulation point, $f \equiv g$. Therefore functions in \mathbb{R} have a single analytic continuation.
- 5. Weierstraß convergence thm: Suppose $f_n: G \to \mathbb{C}$ is a sequence of holomorphic functions converging uniformly to a limit function f.
 - (a) $f \in Hol(G)$.
 - (b) For every $k, f_n^{(k)} \to f^{(k)}$ locally uniformly.
- 6. Laurent Coefficients: Suppose $f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$ in the annulus $A = \{R_1 < |z| < R_2\}$. Then for every $r \in (R_1, R_2)$, $a_n = \frac{1}{2\pi i} \int_{|z|=r} \frac{f(z)}{z^{n+1}} dz$. Therefore:
 - (a) Laurent series can be reconstructed from one circle.
 - (b) Two laurent series which agree on one circle are equivalent.
- 7. Laurent's thm: $f \in Hol(A)$ for $A = \{R_1 < |z| < R_2\}$. Then there exist $\{a_n\}_{n=-\infty}^{\infty}$ such that $f = \sum_{n=-\infty}^{\infty} a_n z^n$

Isolated Singularities

- 1. Riemann's Criterion: f is bounded in $D\setminus\{z_0\}$, then z_0 is removable. If $z_0=\infty$. it also needs a bounded neighborhood.
- 2. Pole Criterion: $f \in Hol(D(z_0, r) \setminus \{z_0\})$. Then z_0 is a pole $\iff \lim_{z \to z_0} |f(z)| = \infty$.
- 3. Casorati-Weierstraß: f has an essential singularity at $z_0 \iff \forall \varepsilon > 0, f\{D(z_0, \varepsilon) \setminus \{z_0\}\}$
- 4. **Picard's Thm:** If f has an essential singularity, then $\#\{\mathbb{C}\setminus f\{D(z_0,\varepsilon)\setminus\{z_0\}\}\}\}\leq 1$.
- 5. $f \in Hol(D(z_0, r) \setminus \{z_0\})$. Then $\forall 0 < \varepsilon < r, \int_{|z-z_0|=\varepsilon} f(z) dz = 2\pi i \cdot \operatorname{res}_{z_0} f$
- 6. Argument principle: $f \in Mer(G) \cap C(\overline{G}) \Rightarrow \int_{\partial G} \frac{f'}{f} = 2\pi i \sum (Z_G P_G)$. ∂G Must not vanish.
- 7. Rouché's thm: $f, g \in Hol(G) \cap C(\overline{G}), \forall z \in \partial G | f(z) g(z) | < | f(z) |$. Then $Z_f = Z_g$ in
- 8. Open Mapping thm: $f \in Hol(G)$ and nonconstant. Then f maps open sets to open sets
- 9. Inverse function thm: $f:G\to\mathbb{C}$ is holomorphic and 1-1. Then f^{-1} is holomorphic and
- 10. Change of variables: $\int_{g\left(\gamma\right)}f\left(z\right)dz=\int_{\gamma}f\left(g\left(w\right)\right)g'\left(w\right)dw$
- 11. Residue at ∞ : If $f \in Hol(\{z \mid |z| > R\})$ then $\forall r > R, -\int_{|z|=r} f(z) dz = 2\pi i \cdot res_{\infty}(f)$
- 12. The sum of residues on \mathbb{C} is 0.
- 13. $f \in Hol(\mathbb{C})$ with a pole at $\infty \Rightarrow f$ is a polynomial.
- 14. $f \in Mer(\mathbb{C})$ with a pole/removable sg. at $\infty \Rightarrow f$ is rational.
- 15. Local Mapping thm: $f \in Hol(G)$ and nonconstant. If $z_0 \in G$, $w_0 = f(z_0)$ with multiplicity m. Then for every sufficiently small $\delta > 0$, there exists $\varepsilon > 0$ such that every $|w - w_0| < \varepsilon$ has m preimages in $|z-z_0| < \delta$.

Cauchy Theorems:

- 1. General thm: Suppose G is bounded with a regular contour, $f: \overline{G} \to \mathbb{C}$ is continuous and holomorphic in G. Then $\int_{\partial G} f(z) dz = 0$
- 2. Isolated Singularities: $G \setminus \{a_1, \ldots, a_n\}, \int_{\partial G} f = 2\pi i \sum \operatorname{res}_{a_k} f$
- 3. Residue thm: Γ is a contour which doesn't run through any singularities. Then $\int_{\Gamma} f =$ $2\pi i \sum \operatorname{ind}_{\Gamma}(a_k) \operatorname{res}_{a_k} f$
- 4. Using Winding Numbers: $\gamma \subset G$ is closed, $z_0 \in G \setminus \gamma$. Then $\operatorname{ind}_{\gamma}(z_0) f(z_0) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(z)}{z z_0 dz}$
- 5. Disk formula: if $D \subseteq \mathbb{C}$ is open and f is holomorphic inside a disk containing \bar{D} , then $\forall z_0 \in D$, $f(z_0) = \frac{1}{2\pi i} \int_{\partial D} \frac{f(z)}{z - z_0}$
- 6. General formula: For said G and $Hol(G) \cap C(\overline{G}) \supset f : G \to \mathbb{C}$: $\frac{1}{2\pi i} \int_{\partial G} \frac{f(\zeta)}{\zeta z} d\zeta =$ $\begin{cases}
 f(z) & z \in G
 \end{cases}$

- 1. $Aut(\mathbb{D}) \ni f: \mathbb{D} \to \mathbb{D}, \gamma: [a, b] \to \mathbb{D}$ piecewise C^1 . Then $L_H(\gamma) = L_H(f \circ \gamma)$.
- 2. If said f is not an autmorphism, then $L_H[f \circ \gamma] \leq L_H[\gamma]$
- 3. There exists a unique Geodesic between two points, and it is contained in a clircle orthogonal

Equations

Arithmetic

$$\frac{1}{z} = \frac{\overline{z}}{|z|^2}; \ \overline{zw} = \overline{zw} \ |z| |w| = |zw|$$

Residues

- For $\sum a_n z^n$ about p, $\operatorname{res}_p f = a_{-1}$
- g, h are holomorphic in an open set with z_0 , and suppose h has a simple pole. Then $\operatorname{res}_{z_0} \frac{g}{h} =$
- If f is holomorphic in an open set with z_0 and it has a zero of order m there, then $\operatorname{res}_{z_0} \frac{f}{f} = m$
- if c is a pole of order n:

$$\operatorname{res}_{c} f = \frac{1}{(n-1)!} \lim_{z \to c} \frac{d^{n-1}}{dz^{n-1}} ((z-c)^{n} f(z))$$

Residues at ∞

- If $\lim_{z\to\infty} f(z) = 0$, then $\operatorname{res}_{\infty} f = \lim_{z\to\infty} z \cdot f(z)$
- $\operatorname{res}_{\infty} f = \operatorname{res}_{0} \left(-\frac{1}{w^{2}} f\left(\frac{1}{w}\right) \right)$
- $\operatorname{res}_{z_0} f \circ g = \operatorname{res}_{z_0} (f(g(z_0))) g'(z_0))$

Laurent Series

- $r = \overline{\lim}_{n \to \infty} |a_{-n}|^{1/n}$
- $\frac{1}{B} = \overline{\lim}_{n \to \infty} |a_n|^{1/n}$

Written by Omer Shapira, using course notes from lectures by Prof. Bo'az Klartag, Tel Aviv University http://www.omershapira.com