Math 63: Real Analysis

Winter 2024

PSET 3 — 01/24/2024

Prof. Erchenko Student: Amittai Siavava

Credit Statement

I worked on these problems alone, with reference to class notes and the following books:

(a) Introduction to Analysis by Maxwell Rosenlicht

Problem 1.

Let $a_i, b_i \in \mathbb{R}$ for $i = 1, 2, \dots, n$. Show that $(a_1, b_1) \times (a_2, b_2) \times \dots \times (a_n, b_n)$ is open in (\mathbb{R}^n, d_E) and $[a_1, b_1] \times [a_2, b_2] \times \dots \times [a_n, b_n]$ is closed in (\mathbb{R}^n, d_E) .

Problem 2.

Prove that any bounded open subset of $\ensuremath{\mathbb{R}}$ is the union of disjoint open intervals.

Problem 3.

Prove that if the points of a convergent sequence of points in a metric space are reordered, the new sequence converges to the same limit.

Let $\left\{p_i\right\}_1^\infty$ be a convergent sequence in a metric space (X,d).

Problem 4.

Prove that if $\lim_{n\to\infty}p_n$ = p in a given metrix space then the set of points $\{p,p_1,p_2,\dots\}$ is closed.

Problem 5.

Let $a_n = \frac{n}{n+1}$ for $n \in \mathbb{N}$. Show, using the definition of a limit, that $\lim_{n \to \infty} a_n = 1$.

Problem 6.

Consider the sequence $\{a_n\}_{n=1}^{\infty}$ such that $a_1 \geq a_2 \geq a_3 \geq \dots$ (i.e., it is a monotonically decreasing sequence). Assume that there exists m > 0 such that $a_n > m$ for all n. Show that $\{a_n\}_{n=1}^{\infty}$ converges in \mathbb{R} .