Homework 2

Convex Optimization

Due February 19

1. Given $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$, cast each of the following problems as LP

- min $||Ax b||_1$ s.t. $||x||_{\infty} \le 1$
- min $||x||_1$ s.t. $||Ax b||_{\infty} \le 1$
- min $||Ax b||_1 + ||x||_{\infty}$
- 2. Consider the L4-norm approximation problem:

min
$$||Ax - b||_4 = \left[\sum_{i=1}^m (a_i^t x - b_i)^4\right]^{1/4}$$

where $A \in \mathbb{R}^{m \times n}$ and $b \in \mathbb{R}^m$. Formulate this problem as a QCQP.

3. Consider the LP problem:

min
$$e^T x + f$$

s.t. $a_i^T x + b_i = 0$, $i = 1, \dots, m$
 $c_i^T x + d_i \le 0$, $i = 1, cdots, k$

Find A_0, \dots, A_n to formulate this problem as a SDP:

min
$$e^T x + f$$

s.t. $A_0 + A_1 x_1 + \dots + A_n x_n \leq 0$

4. Consider the optimization problem

$$\min \quad f(x) \quad \text{s.t.} \quad x \ge 0$$

where f is convex. Let x^* be a point such that

$$x^* \ge 0$$
, $\nabla f(x^*) \ge 0$, $[\nabla f(x^*)]_i x_i^* = 0$, $i = 1, \dots, n$

1

Prove that x^* is a solution of the optimization problem.