Examen final de Ecuaciones Diferenciales II Viernes, 4 de noviembre de 2022

1. Considérese el problema de Cauchy

$$(P) \begin{cases} x' = 2t(x-2)\log(x) \\ x(0) = e \end{cases}$$

- (a) Probar que (P) tiene una única solución maximal $\varphi: I \to \mathbb{R}$, siendo I = (a, b), con $0 \in I$. ¿Puede aplicarse el TEUG?
- (b) Probar que φ es simétrica par (con lo que a=-b) y probar también que $\varphi(t)>2$ para todo $t\in I$.
- (c) Estudiar la monotonía de φ , y también su curvatura (concavidad y convexidad).
- (d) Probar que $I = \mathbb{R}$. Para ello, se propone seguir los siguentes pasos:
 - (d.i) Probar que, para $t \in [0, b)$,

$$\frac{\varphi'(t)}{\varphi(t)\log(\varphi(t))} \le 2t$$

- (d.ii) Deducir que, para $t \in [0, b)$, $\varphi(t) \le e^{e^{t^2}}$
- (d.iii) Concluir que $b = \infty$ y, en consecuencia, $I = \mathbb{R}$.
- (e) [Opcional] Probar que $\lim_{t\to\infty} \varphi(t)=\infty$. Ayuda: $si\ t>0\ y\ \delta=\frac{e-2}{e-1}$, entonces

$$\frac{\varphi'(t)}{(\varphi(t)-1)\log(\varphi(t)-1)} \ge 2\delta t$$

(a) Sea $D = \mathbb{R} \times (0,\infty)$ y considérese la función $f: D \to \mathbb{R}$ dada por $f(t,x) = 2t(x-2)\log(x)$. Como $f \in \mathcal{C}^1(D,\mathbb{R})$, entonces $f \in \mathcal{C}(D,\mathbb{R}) \cap \operatorname{Lip}_{\operatorname{loc}}(x,D,\mathbb{R})$. Además, $(0,e) \in \mathring{D}$, luego, por el TEUL, el problema (P) tiene solución local única, que puede extenderse (de manera única por verificarse también la PUG) a una solución maximal $\varphi: I \to \mathbb{R}$. Y como D es abierto, por el resultado sobre soluciones maximales con gráficas en abiertos, se tiene que I = (a,b), donde $-\infty \le a < 0 < b \le \infty$.

Obsérvese que no se puede aplicar el TEUG, pues *D* no es una banda vertical.

- (b) Considérese la función $\psi: (-b, -a) \to \mathbb{R}$ definida por $\psi(t) = \varphi(-t)$. Se tiene que
 - (i) Por la regla de la cadena, ψ es derivable (pues φ lo es) y, si $t \in (-b, -a)$,

$$\psi'(t) = -\varphi'(-t) = -2(-t)(\varphi(-t) - 2)\log(\varphi(-t)) = 2t(\psi(t) - 2)\log(\psi(t))$$

- (ii) gráf(ψ) \subset D.
- (*iii*) $\psi(0) = \varphi(0) = e$.

Por tanto, ψ es solución de (P), y como φ es la única solución maximal de (P), entonces φ es una prolongación de ψ , luego $(-b,-a)\subset (a,b)$ y $\varphi|_{(-b,-a)}=\psi$. Pero la primera contención implica $a\leq -b$ y $-a\leq b$, es decir, a=-b, así que (-b,-a)=(a,b) y en consecuencia $\varphi=\psi$, luego φ es una función par.

Por otra parte, obsérvese que la función constante 2 es solución de (E) x' = f(t,x) en \mathbb{R} , pero no resuelve el problema (P). Como (E) verifica la PUG, entonces la gráfica de φ no puede cortar a la de la solución constante 2, o, en otras palabras, $\varphi(t) \neq 2$ para todo $t \in I$. Pero $\varphi(0) = e > 2$, luego, por continuidad, debe ser $\varphi(t) > 2$ para todo $t \in I$.

(c) Para todo $t \in I$ se tiene que $\varphi(t) - 2 > 0$ y $\log(\varphi(t)) > 0$ (pues se acaba de ver que $\varphi(t) > 2$). Por tanto, si $t \in (-b,0)$, entonces $\varphi'(t) < 0$, y si $t \in (0,b)$, entonces $\varphi'(t) > 0$, luego φ es estrictamente decreciente en (-b,0] y estrictamente creciente en [0,b).

Para estudiar la curvatuva, se calcula la derivada segunda de φ . Si $t \in I$,

$$\begin{split} \varphi''(t) &= 2(\varphi(t) - 2)\log(\varphi(t)) + 2t\varphi'(t)\log(\varphi(t)) + \frac{2t(\varphi(t) - 2)}{\varphi(t)}\varphi'(t) \\ &= 2(\varphi(t) - 2)\log(\varphi(t)) + 2t\varphi'(t)\left(\log(\varphi(t)) + \frac{\varphi(t) - 2}{\varphi(t)}\right) \\ &= 2(\varphi(t) - 2)\log(\varphi(t)) + 4t^2(\varphi(t) - 2)\log(\varphi(t))\left(\log(\varphi(t)) + \frac{\varphi(t) - 2}{\varphi(t)}\right) \\ &= 2(\varphi(t) - 2)\log(\varphi(t))\left(1 + 2t^2\log(\varphi(t)) + 2t^2\frac{\varphi(t) - 2}{\varphi(t)}\right) \end{split}$$

Por ser $\varphi(t) > 2$ para todo $t \in I$, se tiene que $\varphi''(t) > 0$ para todo $t \in I$, luego φ es estrictamente convexa.

(*d*) Sea $t \in [0, b)$. Entonces

$$\frac{\varphi'(t)}{\varphi(t)\log(\varphi(t))} = \frac{2t(\varphi(t)-2)\log(\varphi(t))}{\varphi(t)\log(\varphi(t))} = \frac{2t\varphi(t)-4t}{\varphi(t)} = 2t - \frac{4t}{\varphi(t)} \le 2t,$$

donde en la última desigualdad se ha tenido en cuenta que $t \ge 0$ y que $\varphi(t) > 0$. Por tanto, por la monotonía de la integral,

$$\int_{0}^{t} \frac{\varphi'(s)}{\varphi(s)\log(\varphi(s))} ds \le \int_{0}^{t} 2s \, ds \iff \left[\log(\log(\varphi(s)))\right]_{0}^{t} \le \left[s^{2}\right]_{0}^{t}$$

$$\iff \log(\log(\varphi(t))) - \log(\log(e)) \le t^{2}$$

$$\iff \log(\varphi(t)) \le t^{2}$$

$$\iff \varphi(t) \le e^{t^{2}}$$

donde en algunas equivalencias se ha utilizado que la función exponencial es estrictamente creciente en \mathbb{R} . Supóngase, por reducción al absurdo, que $b < \infty$. Entonces, por el resultado sobre soluciones maximales con gráficas en abiertos, se tiene una de las dos circunstancias siguientes:

- (i) $\lim_{t\to b^-} |\varphi(t)| = \lim_{t\to b^-} \varphi(t) = \infty$.
- (ii) La gráfica de φ tiene algún punto límite para $t \to b$, y este y todos los puntos límite de la gráfica de φ están en $\partial D = \mathbb{R} \times \{0\}$.

Lo primero es imposible, pues al tomar límites cuando $t \to b^-$ en la desigualdad que se acaba de probar, se obtiene

$$\lim_{t \to b^{-}} \varphi(t) \le \lim_{t \to b^{-}} e^{e^{t^{2}}} = e^{e^{b^{2}}} < \infty$$

En cuanto a lo segundo, si (t,0) es un punto límite de la gráfica de φ , entonces existe una sucesión $\{t_j\}_{j=1}^{\infty}$ tal que $\lim_{j\to\infty}\varphi(t_j)=0$, pero esto es imposible porque $\varphi(t)>2$ para todo $t\in\mathbb{R}$. La contradicción viene de suponer $b<\infty$, luego $b=\infty$ y, por tanto, $I=(-b,b)=\mathbb{R}$.

(e) En primer lugar, como φ es estrictamente creciente en $[0, \infty)$, existe $A = \lim_{t \to \infty} \varphi(t) \in [2, \infty]$. Integrando en la desigualdad de ayuda, se obtiene

$$\int_{0}^{t} \frac{\varphi'(s)}{(\varphi(s)-1)(\log(\varphi(s)-1))} ds \ge \int_{0}^{t} 2\delta s \, ds \iff \left[\log(\log(\varphi(s)-1))\right]_{0}^{t} \ge \delta \left[s^{2}\right]_{0}^{t}$$

$$\iff \log(\log(\varphi(t)-1)) - \log(\log(e-1)) \ge \delta t^{2}$$

$$\iff \frac{\log(\varphi(t)-1)}{\log(e-1)} \ge e^{\delta t^{2}}$$

$$\iff \varphi(t)-1 \ge e^{\delta t^{2}\log(e-1)}$$

Ahora bien, como $\lim_{t\to\infty}e^{\delta t^2}=\infty$ y $\log(e-1)>0$ (pues e>2), entonces

$$\lim_{t\to\infty}e^{e^{\delta t^2}\log(e-1)}=\infty,$$

lo que implica, por la desigualdad probada, $\lim_{t\to\infty}(\varphi(t)-1)=\infty$, luego $\lim_{t\to\infty}\varphi(t)=\infty$.

2.

(a) Considérese la ecuación diferencial autónoma

$$(E) \quad x' = g(x),$$

siendo $g \in C^1(\mathbb{R}, \mathbb{R})$. Supóngase que $\varphi \colon I \to \mathbb{R}$, con I un intervalo de \mathbb{R} , es una solución maximal no constante de (E). Sabemos entonces, por teoría, que φ es estrictamente monótona, luego $\varphi(I)$ es también un intervalo de \mathbb{R} . Probar que, para cada $(t_0, x_0) \in \mathbb{R} \times \varphi(I)$, el problema

$$(P_{(t_0,x_0)}) \begin{cases} x' = g(x) \\ x(t_0) = x_0 \end{cases}$$

tiene solución maximal única, que además resulta ser una trasladada de φ .

(b) Realizar un estudio lo más exhaustivo posible de las soluciones maximales de la ecuación

(E)
$$x' = e^{x^2 - 1} - 1$$
,

y esbozar el aspecto de las gráficas de estas posibles soluciones. Probar asimismo que si $\varphi: I \to \mathbb{R}$ es la solución maximal de (E) que satisface $\varphi(0) = e$, entonces I no puede ser todo \mathbb{R} . Ayuda: si x > 1, entonces $e^{x^2-1} \ge x^2$.

(a) En primer lugar, por ser $g \in \mathcal{C}^1(\mathbb{R}, \mathbb{R})$, se tiene $g \in \mathcal{C}(\mathbb{R}, \mathbb{R}) \cap \operatorname{Lip}_{\operatorname{loc}}(x, \mathbb{R}, \mathbb{R})$, así que el TEUL proporciona una solución local única del problema $(P_{(t_0, x_0)})$ que puede ser extendida (de manera única por verificarse la PUG) a una solución maximal $\psi \colon J \to \mathbb{R}$.

Por otro lado, como $x_0 \in \varphi(I)$, existe $t_1 \in I$ tal que $x_0 = \varphi(t_1)$. Ahora se considera la función $\varphi_{t_0-t_1} : I + t_0 - t_1 \to \mathbb{R}$. dada por $\varphi_{t_0-t_1}(t) = \varphi(t-t_0+t_1)$. Entonces

- (i) $\varphi_{t_0-t_1}$ es derivable en $I+t_0-t_1$ por serlo φ .
- (ii) $\operatorname{gráf}(\varphi_{t_0-t_1}) \subset \mathbb{R}^2$.

$$(iii) \quad \varphi'_{t_0-t_1}(t) = \varphi'(t-t_0+t_1) = g(\varphi(t-t_0+t_1)) = g(\varphi_{t_0-t_1}(t)) \text{ para todo } t \in I+t_0-t_1.$$

(iv)
$$\varphi_{t_0-t_1}(t_0) = \varphi(t_1) = x_0$$
.

Además, $\varphi_{t_0-t_1}$ es una solución maximal de (E) por ser la traslación de una solución maximal de (E). Ahora bien, como $\varphi_{t_0-t_1}$ es solución de $(P_{(t_0,x_0)})$ y ψ es la única solución maximal de dicho problema, entonces $\psi=\varphi_{t_0-t_1}$, concluyéndose que $(P_{(t_0,x_0)})$ tiene solución maximal única, y resulta ser una trasladada de φ .

(b) Sea $g: \mathbb{R} \to \mathbb{R}$ la función definida por $g(x) = e^{x^2-1} - 1$. La ecuación (E) x' = g(x) es una ecuación diferencial escalar autónoma de primer orden. Se tiene que

$$e^{x^2-1}-1=0 \iff e^{x^2-1}=1 \iff x^2-1=0 \iff x=1, x=-1$$

Por tanto, $\varphi_{-1} \equiv -1$ y $\varphi_1 \equiv 1$ son las únicas soluciones constantes en $\mathbb R$ de la ecuación (E). Como (E) verifica la PUG en $\mathbb R$ (pues $g \in \mathcal C^1(\mathbb R,\mathbb R)$), entonces la gráfica de cualquier solución maximal no constante no debe cortar a la gráfica de ninguna solución constante. En otras palabras, si $\varphi \colon I \to \mathbb R$ es una solución maximal de (E) y consideramos las regiones

$$D_1 = \mathbb{R} \times (-\infty, -1),$$
 $D_2 = \mathbb{R} \times (-1, 1)$ y $D_3 = \mathbb{R} \times (1, \infty),$

entonces $\operatorname{gr\'{a}f}(\varphi) \subset D_i$ para algún $i \in \{1,2,3\}$. Además, por ser \mathbb{R}^2 abierto, el resultado sobre soluciones maximales con gr\'{aficas en abiertos permite asegurar que I=(a,b), y si t^* es un extremo finito de I, entonces $\lim_{t \to t^*} |\varphi(t)| = \infty$ (la casuística de los puntos límite es imposible por tener \mathbb{R}^2 frontera vacía). Se distinguen tres casos:

(i) $\operatorname{gr\'{a}f}(\varphi) \subset D_1$. Entonces $\varphi(t) < -1$, así que $\varphi(t)^2 - 1 > 0$, y, en consecuencia, se verifica $\varphi'(t) = e^{\varphi(t)^2 - 1} - 1 > 0$ para todo $t \in I$, obteniéndose que φ es estrictamente creciente. Por tanto, existen $A = \lim_{t \to a^+} \varphi(t)$ y $B = \lim_{t \to b^-} \varphi(t)$ (pudiendo ser infinitos). Si fuese $b < \infty$, entonces $\lim_{t \to b^-} |\varphi(t)| = \lim_{t \to b^-} -\varphi(t) = \infty$, luego $B = -\infty$, que es imposible por ser φ estrictamente creciente. Por tanto, $b = \infty$, y como no puede ser $B = -\infty$, entonces B = -1 (si fuera $-\infty < B < -1$, se obtendría una nueva solución constante de (E)). En el otro extremo, en principio, pudiera ocurrir $a > -\infty$ o $a = -\infty$, pero en cualquier caso, $A = -\infty$ (A = -1 no puede ser por el crecimiento de φ ; tampoco puede ser $-\infty < A < -1$ porque se obtendría otra solución constante). El resumen de este caso es que, o bien

$$a > -\infty$$
, $A = -\infty$, $b = \infty$ y $B = -1$,

o bien

$$a = -\infty$$
, $A = -\infty$, $b = \infty$ y $B = -1$,

(ii) gráf $(\varphi) \subset D_2$. Resulta que la gráfica de φ queda encerrada entre la gráfica de sendas soluciones constantes, así que ha de ser $I = \mathbb{R}$. Además, como $-1 < \varphi(t) < 1$, entonces $\varphi(t)^2 - 1 < 0$, y, por tanto, $\varphi'(t) = e^{\varphi(t)^2 - 1} - 1 < 0$ para todo $t \in \mathbb{R}$, así que φ decrece estrictamente. De esto se deduce que A = 1 y que B = -1. El resumen de este caso es

$$a = -\infty$$
, $A = 1$, $b = \infty$ y $B = -1$,

(iii) $\operatorname{gr\'{a}f}(\varphi) \subset D_3$. Entonces $\varphi(t) > 1$, así que $\varphi(t)^2 - 1 > 0$, y, en consecuencia, se verifica $\varphi'(t) = e^{\varphi(t)^2 - 1} - 1 > 0$ para todo $t \in I$, obteniéndose que φ es estrictamente creciente. Por tanto, existen $A = \lim_{t \to a^+} \varphi(t)$ y $B = \lim_{t \to b^-} \varphi(t)$ (pudiendo ser infinitos). Si fuese $a > -\infty$, entonces $\lim_{t \to a^+} |\varphi(t)| = \lim_{t \to a^+} \varphi(t) = \infty$, luego $A = \infty$, que es imposible por ser φ estrictamente creciente. Por tanto, $a = -\infty$, y como no puede ser $A = \infty$, entonces A = 1 (si fuera $1 < A < \infty$, se obtendría una nueva solución constante de (E)). En el otro extremo, en principio, pudiera ocurrir $b < \infty$ o $b = \infty$, pero en cualquier caso, $B = \infty$

 $(B=1 \text{ no puede ser por el crecimiento de } \varphi;$ tampoco puede ser $1 < B < \infty$ porque se obtendría otra solución constante). El resumen de este caso es que, o bien

$$a = -\infty$$
, $A = 1$, $b = \infty$ y $B = \infty$,

o bien

$$a = -\infty$$
, $A = 1$, $b < \infty$ y $B = \infty$

Por otra parte, sea $\varphi: I \to \mathbb{R}$ la única solución maximal del problema

$$(P) \begin{cases} x' = e^{x^2 - 1} - 1 \\ x(0) = e \end{cases}$$

La existencia y unicidad de φ son garantizadas por el apartado (a). Considérese el problema

$$(\widetilde{P}) \begin{cases} x' = x^2 - 1 \\ x(0) = e \end{cases}$$

La ecuación (\widetilde{E}) $x'=x^2-1$ es de Ricatti. Se busca una solución particular del tipo $x_p(t)=A$:

$$x' = x^2 - 1 \iff 0 = A^2 - 1 \iff A = 1, A = -1$$

Se escoge A = 1, y se realiza el cambio y(t) = x(t) - 1. Entonces x(t) = y(t) + 1, luego

$$y'(t) = x'(t) = x(t)^2 - 1 = (1 + y(t))^2 - 1 = 1 + y(t)^2 + 2y(t) - 1 = y(t)^2 + 2y(t)$$

Ahora se resuelve la ecuación (*B*) $y' = y^2 + 2y$, que es de Bernoulli. Obsérvese que la solución de (\widetilde{P}) verifica x(t) > 1 para todo t, luego $y(t) \neq 0$ para todo t, y por tanto,

$$y' = y^2 + 2y \iff y'y^{-2} = 1 + 2y^{-1} \iff -y'y^{-2} = -1 - 2y^{-1}$$

Haciendo el cambio $z = y^{-1}$, se tiene $z' = -y'y^{-2}$, luego ahora se resuelve (*L*) z' = -1 - 2z, que es lineal. La solución general de la ecuación homogénea (*L*) z' = -2z es

$$z_h(t) = ce^{\int -2 dt} = ce^{-2t}, \quad c \in \mathbb{R}$$

Se va a hallar una solución particular de (L), recurriendo al método de variación de los parámetros. La idea es buscar una solución de la forma $z(t) = c(t)e^{-2t}$. Se tendría entonces

$$z'(t) = -1 - 2z(t) \iff c'(t)e^{-2t} - 2c(t)e^{-2t} = -1 - 2c(t)e^{-2t} \iff c'(t) = -e^{2t}$$
$$\iff c(t) = \int -e^{2t} dt + d = -\frac{1}{2}e^{2t} + d$$

Tomando, por ejemplo, d = 0, se llega a la solución general de (L), que es

$$z(t) = ce^{-2t} - \frac{1}{2}, \quad c \in \mathbb{R}$$

Haciendo $z = y^{-1}$, se obtiene

$$y(t) = \frac{1}{ce^{-2t} - \frac{1}{2}}$$

Por último, haciendo y = x - 1 se llega a

$$x(t) = \frac{1}{ce^{-2t} - \frac{1}{2}} + 1$$

Como debe ser x(0) = e, hay que escoger

$$c = \frac{1}{e - 1} + \frac{1}{2}$$

Total, que tenemos una solución de (\widetilde{P}) dada por

$$\psi(t) = \frac{1}{(\frac{1}{e-1} + \frac{1}{2})e^{-2t} - \frac{1}{2}} + 1,$$

y está bien definida en los puntos donde no se tenga

$$\left(\frac{1}{e-1} + \frac{1}{2}\right)e^{-2t_0} - \frac{1}{2} = 0 \iff e^{2t_0} = 2\left(\frac{1}{e-1} + \frac{1}{2}\right) \iff t_0 = \frac{\log(2(\frac{1}{e-1} + \frac{1}{2}))}{2}$$

Como $t_0 > 0$, entonces ψ está bien definida en $[0,t_0)$. Como en D_3 se tiene $e^{x^2-1}-1 \ge x^2-1$ y además $\varphi(0)=\psi(0)=e$, entonces, suponiendo que $b \ge t_0$ (de lo contrario no habría nada que demostrar), por el teorema de comparación de soluciones de ecuaciones escalares, se tiene que $\varphi(t) \ge \psi(t)$ para todo $t \in [0,t_0)$. Pero es que

$$\lim_{t\to t_0^-}\psi(t)=\infty,$$

luego

$$\lim_{t \to t_0^-} \varphi(t) = \infty$$

y esto implica que $b = t_0$. Se concluye que $b \le t_0 < \infty$, luego $I \ne \mathbb{R}$.

3.

(a) Supóngase que $A: \mathbb{R} \to \mathcal{M}_n(\mathbb{R})$ es continua y ω -periódica, con $\omega \in (0, \infty)$. Considérese el sistema

$$(H) x' = A(t)x$$

- (a.i) Probar que si φ es una solución de (H) en \mathbb{R} con $\varphi(0) = \varphi(\omega)$, entonces φ es ω -periódica.
- (a.ii) Sea Φ una matriz fundamental de (H). Demostrar que H tiene solución ω -periódica no trivial si y solo si $\det(\Phi(0) \Phi(\omega)) = 0$. Ayuda: el determinante de una matriz $B \in \mathcal{M}_n(\mathbb{R})$ es cero y si solo si existe un vector $c \in \mathbb{R}^n$ no nulo tal que Bc = 0.
- (b) Considérese la ecuación (E) y'' + a(t)y = 0, con a: $\mathbb{R} \to \mathbb{R}$ continua y ω -periódica, y supongamos que φ_1 y φ_2 son soluciones de (E) tales que

$$\begin{pmatrix} \varphi_1(0) \\ \varphi_1'(0) \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \qquad y \qquad \begin{pmatrix} \varphi_2(0) \\ \varphi_2'(0) \end{pmatrix} = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$

- (b.i) Probar que $W(\varphi_1, \varphi_2)(t) = 1$ para todo $t \in \mathbb{R}$. Ayuda: calcular $W(\varphi_1, \varphi_2)'(t)$.
- (b.ii) Probar que (E) tiene una solución ω -periódica no trivial si y solo si $\varphi_1(\omega) + \varphi_2'(\omega) = 2$.
- (a) Sea $\varphi \colon \mathbb{R} \to \mathbb{R}^n$ una solución de (H) verificando $\varphi(0) = \varphi(\omega)$. Sea $x^0 = \varphi(0) = \varphi(\omega)$. Como (S) es un sistema diferencial lineal de primer orden, el problema

$$(P) \begin{cases} x' = A(t)x + b(t) \\ x(0) = x^0 \end{cases}$$

tiene solución única en \mathbb{R} . Por una parte, tenemos que φ es solución de (P). Por otra parte, si se define $\varphi_{\omega} \colon \mathbb{R} \to \mathbb{R}^n$ mediante $\varphi_{\omega}(t) = \varphi(t + \omega)$, se tiene que

- (i) φ_{ω} es derivable por serlo φ .
- (*ii*) gráf(φ_{ω}) $\subset \mathbb{R}^2$, evidentemente.
- (iii) Por la regla de la cadena,

$$\varphi'_{\omega}(t) = \varphi'(t+\omega) = A(t+\omega)\varphi(t+\omega) = A(t)\varphi(t+\omega) = A(t)\varphi_{\omega}(t),$$

donde se ha usado que A es ω -periódica.

(iv)
$$\varphi_{\omega}(0) = \varphi(\omega) = x^0$$
.

Por tanto, φ_{ω} es también solución de (P), así que debe ser $\varphi_{\omega} = \varphi$ por asuntos de unicidad, concluyéndose que φ es periódica de periodo ω .

Sea Φ una matriz fundamental de (H), y supóngase que $\varphi \colon \mathbb{R} \to \mathbb{R}^n$ es solución ω -periódica de (H) no trivial. Sea $x^0 = \varphi(0)$ y considérese el problema

$$(P) \begin{cases} x' = A(t)x \\ x(0) = x^0 \end{cases}$$

Como Φ es matriz fundamental, la única solución de (P) en \mathbb{R} viene dada por

$$\psi(t) = \Phi(t)\Phi^{-1}(0)x^0$$
,

y como φ es solución de (P), entonces

$$\varphi(t) = \Phi(t)\Phi^{-1}(0)x^0$$

Pero, por el apartado (a), $\varphi(0) = \varphi(\omega)$, luego

$$x^0 = \Phi(\omega)\Phi^{-1}(0)x^0$$

Equivalentemente,

$$(\Phi(\omega)\Phi^{-1}(0) - \mathrm{Id})x^0 = (\Phi(\omega) - \Phi(0))\Phi^{-1}(0)x^0 = 0,$$

Obsérvese que $x^0 \neq 0$ (si fuese x^0 se contradiría que φ es no trivial, ya que la función nula resolvería (P)) y $\Phi^{-1}(0) \neq 0$ (de lo contrario sería $\varphi(t) = \Phi(t)\Phi^{-1}(0)x^0 = 0$ para todo $t \in \mathbb{R}$, lo que también contradice que φ es no trivial). Por tanto, $\operatorname{rg}(\Phi(\omega) - \Phi(0)) < n$, o lo que es lo mismo, $\det(\Phi(\omega) - \Phi(0)) = \det(\Phi(0) - \Phi(\omega)) = 0$.

Recíprocamente, supóngase que $\det(\Phi(0)-\Phi(\omega))=0$. Entonces el sistema $(\Phi(0)-\Phi(\omega))X=0$ tiene solución no trivial, llámese x^0 . Nótese que $\Phi(0)x^0=\Phi(\omega)x^0$. Sea $\varphi\colon I\to\mathbb{R}^n$ la función definida por $\varphi(t)=\Phi(t)x^0$. Se tiene que

- (i) φ es solución de (E), pues $\varphi'(t) = \Phi'(t)x^0 = A(t)\Phi(t)x^0 = A(t)\varphi(t)$ para cada $t \in \mathbb{R}$.
- (ii) φ no es la función nula, pues $x^0 \neq 0$ y Φ es una matriz regular.
- (iii) $\varphi(0) = \Phi(0)x^0 = \Phi(\omega)x^0 = \varphi(\omega)$, luego, por lo probado anteriormente, φ es periódica de periodo ω .
- (b) Obsérvese que

$$W(\varphi_1, \varphi_2)(0) = \det\begin{pmatrix} \varphi_1(0) & \varphi_2(0) \\ \varphi_1'(0) & \varphi_2'(0) \end{pmatrix} = \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1$$

Por otra parte, por la fórmula de Abel-Liouville-Jacobi, para todo $t \in \mathbb{R}$ se tiene

$$W(\varphi_1, \varphi_2)(t) = W(\varphi_1, \varphi_2)(0)e^{-\int_0^t b(s) ds}$$

donde $b: \mathbb{R} \to \mathbb{R}$ es el coeficiente de y' en (E). En nuestro caso, b = 0, luego

$$W(\varphi_1, \varphi_2)(t) = W(\varphi_1, \varphi_2)(0)e^{-\int_0^t 0 \, ds} = W(\varphi_1, \varphi_2)(0) = 1$$

para todo $t \in I$.

Para el apartado segundo, considérese el sistema de primer orden asociado a la ecuación (*E*):

$$(S) \begin{cases} z_1' = z_2 \\ z_2' = -a(t)z_1 \end{cases}$$

Como φ_1 y φ_2 son soluciones de la ecuación (E) en \mathbb{R} , entonces $\widetilde{\varphi_1} = (\varphi_1, \varphi_1')$ y $\widetilde{\varphi_2} = (\varphi_2, \varphi_2')$ son soluciones de (S) en \mathbb{R} , así que $\Phi = \begin{pmatrix} \widetilde{\varphi_1} & \widetilde{\varphi_2} \end{pmatrix}$ es matriz solución de (S). Además,

$$\det(\Phi(0)) = \det\begin{pmatrix} \varphi_1(0) & \varphi_2(0) \\ \varphi_1'(0) & \varphi_2'(0) \end{pmatrix} = \det\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = 1 \neq 0,$$

luego $\det(\Phi(t)) \neq 0$ para todo $t \in \mathbb{R}$ y, por tanto, Φ es matriz fundamental de (S). Se tiene que

Por el apartado (a), (S) tiene solución ω -periódica no trivial si y solo si $\varphi_1(\omega) + \varphi_2'(\omega) = 2$. Para terminar el ejercicio, se va a probar que (S) tiene solución ω -periódica no trivial si y solo si (E) tiene solución ω -periódica no trivial.

En efecto, si (φ_1, φ_2) es solución ω -periódica de (S), entonces φ_1 es solución de (E), y como $(\varphi_1, \varphi_2)(t) = (\varphi_1(t), \varphi_2(t)) = (\varphi_1(t+\omega), \varphi_2(t+\omega))$ para todo $t \in \mathbb{R}$ por la periodicidad de (φ_1, φ_2) , entonces, en particular, $\varphi_1(t) = \varphi_1(t+\omega)$ para todo $t \in \mathbb{R}$, luego φ_1 es ω -periódica.

Recíprocamente, si φ es solución ω -periódica de (E), entonces (φ, φ') es solución de (S). Por la periodicidad de φ se tiene $\varphi(t) = \varphi(t+\omega)$ para todo $t \in \mathbb{R}$, y derivando se obtiene $\varphi'(t) = \varphi'(t+\omega)$ para todo $t \in \mathbb{R}$, concluyéndose que $(\varphi(t), \varphi'(t)) = (\varphi(t+\omega), \varphi'(t+\omega))$ para todo $t \in \mathbb{R}$, y, por tanto, (φ, φ') es ω -peródica.