Sheet1

T	Ref	1	2	3	4	5	6	7	8	9	10	11	12
t1	639.65	633.16	317.28	212.1	157.41	125.79	105.79	90.02	78.87	70.63	63.31	57.61	52.91
t2	641.74	633.14	315.51	210.22	157.7	126.43	105.1	90.47	79.17	70.02	63.21	58.19	53.01
t3	638.97	638.49	317.06	210.14	157.58	126.29	105.31	90.01	78.9	71.21	63.3	57.72	52.95
m	640.12	634.93	316.62	210.82	157.56	126.17	105.4	90.17	78.98	70.62	63.27	57.84	52.96
su	1	1.01	2.02	3.04	4.06	5.07	6.07	7.10	8.10	9.06	10.12	11.07	12.09

Referenz durchlauf: Squenzielles Programm

Parameter: Threads 2 2 512 2 2 1000

Wir sehen das wir mit Hinzunahme von mehreren pthreads eine Laufzeitverbesserung von log n haben. Daraus ergibt sich aber auch, dass ab einer bestimmten Anzahl sich die Laufzeit nicht mehr weiter erhöht. Der Unterschied zwischen 11 und 12 Threads liegt nur noch bei 5 Sekunden.

Beim Speedupgraph sieht man indessen das wir eine Speedupsteigungerung von 1 pro Thread haben. Damit ist bei 12 Threads das Programm 12 mal schneller als unser Referenz durchlauf.