

FCC PART 15.249 TEST REPORT

For

Atmel Norway AS

Vestre Rosten 79, TRONDHEIM, Norway 7075

FCC ID: VW4A092353

Report Type: Product Type: ATREB215-XPRO-A Original Report **Test Engineer:** Hill He Report Number: RSZ151231001-00A **Report Date:** 2016-03-15 Candy, Li Candy Li Reviewed By: RF Engineer Bay Area Compliance Laboratories Corp. (Shenzhen) 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Prepared By: Shenzhen, Guangdong, China Tel: +86-755-33320018 Fax: +86-755-33320008 www.baclcorp.com.cn

Note: This test report is prepared for the customer shown above and for the equipment described herein. It may not be duplicated or used in part without prior written consent from Bay Area Compliance Laboratories Corp.

TABLE OF CONTENTS

GENERAL INFORMATION	3
PRODUCT DESCRIPTION FOR EQUIPMENT UNDER TEST (EUT)	
OBJECTIVE	
RELATED SUBMITTAL(S)/GRANT(S)	
TEST METHODOLOGY	
SYSTEM TEST CONFIGURATION	
JUSTIFICATION	
EUT Exercise Software	
SUPPORT EQUIPMENT LIST AND DETAILS	
SUPPORT CABLE DESCRIPTIONS.	
BLOCK DIAGRAM OF TEST SETUP	
SUMMARY OF TEST RESULTS	6
FCC§15.203 - ANTENNA REQUIREMENT	7
APPLICABLE STANDARD	
ANTENNA CONNECTOR CONSTRUCTION	7
FCC §15.107 – AC LINE CONDUCTED EMISSIONS	8
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
EUT SETUP	
EMI TEST RECEIVER SETUP TEST PROCEDURE	
TEST FROCEBURE TEST EQUIPMENT LIST AND DETAILS.	
CORRECTED FACTOR & MARGIN CALCULATION	9
Test Results Summary	
TEST DATA	
FCC§15.205, §15.209 & §15.249 - RADIATED EMISSIONS	15
APPLICABLE STANDARD	
MEASUREMENT UNCERTAINTY	
TEST EQUIPMENT SETUP	
EUT SETUP TEST PROCEDURE	
CORRECTED AMPLITUDE & MARGIN CALCULATION	
TEST EQUIPMENT LIST AND DETAILS	17
TEST RESULTS SUMMARY	
TEST DATA	
FCC§15.215(C) - 20DB EMISSION BANDWIDTH	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST DATA	
FCC§15.249(D) - OUT OF BAND EMISSION (50 DB ATTENUATION)	
APPLICABLE STANDARD	
TEST PROCEDURE	
TEST EQUIPMENT LIST AND DETAILS.	
Test Data	30

Report No.: RSZ151231001-00A

GENERAL INFORMATION

Product Description for Equipment under Test (EUT)

The *Atmel Norway AS*'s product, model number: *A09-2353 (FCC ID: VW4A092353)* or the "EUT" in this report was an *ATREB215-XPRO-A*, which was measured approximately: 11.0 cm (L) x 3.0 cm (W) x 1.0 cm (H), rated with input voltage: DC 3.3 V from system.

Report No.: RSZ151231001-00A

*All measurement and test data in this report was gathered from production sample serial number: 1507586 (Assigned by BACL, Shenzhen). The EUT supplied by the applicant was received on 2015-12-31.

Objective

This type approval report is prepared on behalf of *Atmel Norway AS* in accordance with Part 2-Subpart J, and Part 15-Subparts A, B and C of the Federal Communication Commissions rules.

The tests were performed in order to determine compliance with FCC Part 15, Subpart C, and section 15.203, 15.205, 15.209 and 15.249 rules.

Related Submittal(s)/Grant(s)

FCC Part 15.247 DTS submissions with FCC ID: VW4A092353.

Test Methodology

All measurements contained in this report were conducted with ANSI C63.10-2013, American National Standard of Procedures for Compliance Testing of Unlicensed Wireless Devices.

All radiated and conducted emissions measurement was performed at Bay Area Compliance Laboratories Corp. (Shenzhen). The radiated testing was performed at an antenna-to-EUT distance of 3 meters.

Measurement uncertainty with radiated emission is 5.81 dB for 30MHz-1GHz and 4.88 dB for above 1GHz, 1.95dB for conducted measurement.

Test Facility

The test site used by Bay Area Compliance Laboratories Corp. (Shenzhen) to collect test data is located on the 6/F, the 3rd Phase of WanLi Industrial Building, ShiHua Road, FuTian Free Trade Zone Shenzhen, Guangdong, China.

Test site at Bay Area Compliance Laboratories Corp. (Shenzhen) has been fully described in reports submitted to the Federal Communication Commission (FCC). The details of these reports have been found to be in compliance with the requirements of Section 2.948 of the FCC Rules on October 31, 2013. The facility also complies with the radiated and AC line conducted test site criteria set forth in ANSI C63.10-2013.

The Federal Communications Commission has the reports on file and is listed under FCC Registration No.: 382179. The test site has been approved by the FCC for public use and is listed in the FCC Public Access Link (PAL) database.

FCC Part 15.249 Page 3 of 32

SYSTEM TEST CONFIGURATION

Justification

The system was configured for testing in engineering mode.

For 2.4GHz:

For FSK modulation mode: 407 channels are provided to testing and channel list as follows:

(Note: The channel separation is 200 kHz. Modulation Order: 2FSK, Data rate of 50 kb/s, FEC: OFF and Modulation Index: 1.0)

Report No.: RSZ151231001-00A

Channel	Frequency (MHz)
3	2400.8
·	
204	2441
·	
·	
409	2482

EUT was tested with Channel 2400.8MHz, 2441MHz and 2482MHz.

For 900MHz:

For FSK modulation mode: 127 channels are provided to testing and channel list as follows: (Note: The channel separation is 200 kHz. Modulation Order: 2FSK, Data rate of 50 kb/s, FEC: ON and

Modulation Index: 1.0)

Channel	Frequency (MHz)
1	902.4
64	915
127	927.6

EUT was tested with Channel 902.4MHz, 915MHz and 927.6MHz.

EUT Exercise Software

The software "Atmel Studio 6.2" was used for testing, which was provided by manufacturer.

Equipment Modifications

No modifications were made to the unit tested.

FCC Part 15.249 Page 4 of 32

Support Equipment List and Details

Manufacturer	Description	Model	Serial Number
DELL	PC	VOSTRO 220S	127BP2X
TCL	LCD Monitor	TL710	N/A
DELL	Keyboard	L100	CNORH656658907BL0 5DC
DELL	Mouse	MOC5UO	G1900NKD / G1B009ZQ

Report No.: RSZ151231001-00A

Support Cable Descriptions

Cable Description	Length (m)	From/Port	То
Un-Shielding Detachable USB Cable	1.5	Host PC	Mouse
Un-Shielding Detachable K/B Cable	1.5	Host PC	Keyboard
Un-Shielding Detachable VGA Cable	1.5	Host PC	LCD Monitor
Un-Shielding Detachable USB Cable	1.2	Host PC	Test Jig

Block Diagram of Test Setup

For conducted emission

FCC Part 15.249 Page 5 of 32

SUMMARY OF TEST RESULTS

FCC Rules Description of Test		Result
§15.203	Antenna Requirement	Compliance
§15.207(a)	Conduction Emissions	Compliance
15.205, §15.209, §15.249	Radiated Emissions	Compliance
§15.215 (c)	20 dB Bandwidth	Compliance
§15.249(d)	Outside of Band Emission (50dB attenuation)	Compliance

Report No.: RSZ151231001-00A

FCC Part 15.249 Page 6 of 32

FCC§15.203 - ANTENNA REQUIREMENT

Applicable Standard

For intentional device, according to §15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used.

Report No.: RSZ151231001-00A

Antenna Connector Construction

The EUT used one 2.4GHz and one 900MHz rubber stubby antenna with RP-SMA female straight arrangement and each antenna gain is 0 dBi, fulfill the requirement of this section. Please refer to the EUT photos.

Result: Compliant.

FCC Part 15.249 Page 7 of 32

FCC §15.107 – AC LINE CONDUCTED EMISSIONS

Applicable Standard

According to FCC §15.107

Measurement Uncertainty

Input quantities to be considered for conducted disturbance measurements maybe receiver reading, attenuation of the connection between LISN/ISN and receiver, LISN/ISN voltage division factor, LISN/ISN VDF frequency interpolation and receiver related input quantities, etc.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of conducted disturbance test at Bay Area Compliance Laboratories Corp. (Shenzhen) is shown as below. And the uncertainty will not be taken into consideration for the test data recorded in the report

Report No.: RSZ151231001-00A

Port	Measurement uncertainty
AC Mains	3.34 dB (k=2, 95% level of confidence)
CAT 3	3.72 dB (k=2, 95% level of confidence)
CAT 5	3.74 dB (k=2, 95% level of confidence)
CAT 6	4.54 dB (k=2, 95% level of confidence)

EUT Setup

Note: 1. Support units were connected to second LISN.

2. Both of LISNs (AMN) 80 cm from EUT and at the least 80 cm from other units and other metal planes support units.

The measurement procedure of EUT setup is according with per ANSI C63.10-2013. The related limit was specified in FCC Part 15.207.

The spacing between the peripherals was 10 cm.

FCC Part 15.249 Page 8 of 32

EMI Test Receiver Setup

The EMI test receiver was set to investigate the spectrum from 150 kHz to 30 MHz.

During the conducted emission test, the EMI test receiver was set with the following configurations:

Frequency Range	IF B/W
150 kHz – 30 MHz	9 kHz

Report No.: RSZ151231001-00A

Test Procedure

During the conducted emission test, the adapter was connected to the first LISN and the other relevant equipments were connected to the second LISN.

Maximizing procedure was performed on the six (6) highest emissions of the EUT.

All final data was recorded in the Quasi-peak and average detection mode.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	EMI Test Receiver	ESCS30	100176	2015-06-03	2016-06-03
Rohde & Schwarz	LISN	ENV216	3560.6650.12- 101613-Yb	2015-12-01	2016-12-01
Rohde & Schwarz	LISN	ESH2-Z5	892107/021	2015-06-09	2016-06-09
Rohde & Schwarz	Transient Limitor	ESH3Z2	DE25985	2015-05-14	2016-05-14
Rohde & Schwarz	CE Test software	EMC 32	V8.53	NCR	NCR
Ducommun technologies	Conducted Emission Cable	RG-214	CB031	2015-06-15	2016-06-15

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements that traceable to National Primary Standards and International System of Units (SI).

Corrected Factor & Margin Calculation

The Corrected factor is calculated by adding LISN/ISN VDF (Voltage Division Factor), Cable Loss and Transient Limiter Attenuation. The basic equation is as follows:

Correction Factor = LISN VDF + Cable Loss + Transient Limiter Attenuation

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7 dB means the emission is 7 dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

FCC Part 15.249 Page 9 of 32

Test Results Summary

According to the recorded data in following table, the EUT complied with the <u>FCC Part 15.107</u>, the worst margin as below:

Report No.: RSZ151231001-00A

10.7 dB at 1.148750 MHz in the Neutral conducted mode for Transmitting (900MHz)

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level is in compliance with the limit if

$$L_{\rm m} + U_{(L{\rm m})} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL., $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25 ℃
Relative Humidity:	50 %
ATM Pressure:	101.0 kPa

The testing was performed by Hill He on 2016-01-20.

FCC Part 15.249 Page 10 of 32

EUT Operation Mode: Transmitting (900MHz)

EMI Auto Test L

Report No.: RSZ151231001-00A

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.162500	41.0	20.0	65.3	24.3	QP
0.162500	20.6	20.0	55.3	34.7	Ave.
0.301500	41.3	19.9	60.2	18.9	QP
0.301500	34.7	19.9	50.2	15.5	Ave.
1.046190	34.0	20.0	56.0	22.0	QP
1.046190	28.7	20.0	46.0	17.3	Ave.
13.630690	37.0	20.1	60.0	23.0	QP
13.630690	35.0	20.1	50.0	15.0	Ave.
14.340910	36.3	20.1	60.0	23.7	QP
14.340910	26.4	20.1	50.0	23.6	Ave.
14.414490	37.5	20.1	60.0	22.5	QP
14.414490	29.7	20.1	50.0	20.3	Ave.

FCC Part 15.249 Page 11 of 32

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
1.148750	37.5	20.0	56.0	18.5	QP
1.148750	35.3	20.0	46.0	10.7	Ave.
3.371450	36.4	20.0	56.0	19.6	QP
3.371450	27.6	20.0	46.0	18.4	Ave.
4.376390	35.9	20.0	56.0	20.1	QP
4.376390	30.7	20.0	46.0	15.3	Ave.
4.592070	35.8	20.0	56.0	20.2	QP
4.592070	32.6	20.0	46.0	13.4	Ave.
25.840090	31.9	20.2	60.0	28.1	QP
25.840090	28.8	20.2	50.0	21.2	Ave.
26.989090	30.7	20.2	60.0	29.3	QP
26.989090	26.6	20.2	50.0	23.4	Ave.

FCC Part 15.249 Page 12 of 32

EUT Operation Mode: Transmitting (2.4GHz)

AC 120V/60 Hz, Line

EMI Auto Test L

Report No.: RSZ151231001-00A

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.301470	41.0	19.9	60.2	19.2	QP
0.301470	34.7	19.9	50.2	15.5	Ave.
0.325170	38.8	19.9	59.6	20.8	QP
0.325170	33.4	19.9	49.6	16.2	Ave.
1.050130	32.6	20.0	56.0	23.4	QP
1.050130	27.7	20.0	46.0	18.3	Ave.
14.125090	37.7	20.1	60.0	22.3	QP
14.125090	32.2	20.1	50.0	17.8	Ave.
14.479630	36.3	20.1	60.0	23.7	QP
14.479630	27.3	20.1	50.0	22.7	Ave.
14.479990	37.5	20.1	60.0	22.5	QP
14.479990	26.6	20.1	50.0	23.4	Ave.

FCC Part 15.249 Page 13 of 32

AC 120V/60 Hz, Neutral

EMI Auto Test N

Report No.: RSZ151231001-00A

Frequency (MHz)	Corrected Amplitude (dBµV)	Correction Factor (dB)	Limit (dBµV)	Margin (dB)	Detector (PK/Ave./QP)
0.150000	41.2	20.0	66.0	24.8	QP
0.150000	37.1	20.0	56.0	18.9	Ave.
0.861070	35.4	20.0	56.0	20.6	QP
0.861070	34.5	20.0	46.0	11.5	Ave.
1.101470	34.9	20.0	56.0	21.1	QP
1.101470	27.0	20.0	46.0	19.0	Ave.
1.219730	35.9	20.0	56.0	20.1	QP
1.219730	34.0	20.0	46.0	12.0	Ave.
1.862070	34.9	20.0	56.0	21.1	QP
1.862070	33.7	20.0	46.0	12.3	Ave.
4.804890	36.1	20.0	56.0	19.9	QP
4.804890	35.2	20.0	46.0	10.8	Ave.

Note:

- 1) Correction Factor =LISN VDF (Voltage Division Factor) + Cable Loss + Transient Limiter Attenuation The corrected factor has been input into the transducer of the test software.
- 2) Corrected Amplitude = Reading + Correction Factor
 3) Margin = Limit Corrected Amplitude

FCC Part 15.249 Page 14 of 32

FCC§15.205, §15.209 & §15.249 - RADIATED EMISSIONS

Applicable Standard

As per FCC§15.249 (a), except as provided in paragraph (b) of this section, the field strength of emissions from intentional radiators operated within these frequency bands shall comply with the following:

Fundamental frequency	Field strength of fundamental (millivolts/meter)	Field strength of harmonics (microvolts/meter)		
902–928 MHz	50	500		
2400–2483.5 MHz	50	500		
5725–5875 MHz	50	500		
24.0–24.25 GHz	250	2500		

Report No.: RSZ151231001-00A

As per FCC§15.249 (c), Field strength limits are specified at a distance of 3 meters.

Measurement Uncertainty

All measurements involve certain levels of uncertainties, especially in field of EMC. The factors contributing to uncertainties are spectrum analyzer, cable loss, antenna factor calibration, antenna directivity, antenna factor variation with height, antenna phase center variation, antenna factor frequency interpolation, measurement distance variation, site imperfections, mismatch (average), and system repeatability.

Based on CISPR 16-4-2:2011, the expended combined standard uncertainty of radiation emissions at Bay Area Compliance Laboratories Corp. (Shenzhen) is 5.81 dB for 30MHz-1GHz, 4.88 dB for above 1GHz, and it will not be taken into consideration for the test data recorded in the report

Test Equipment Setup

The spectrum analyzer or receiver is set as:

Below 1000MHz:

RBW = 100 kHz / VBW = 300 kHz / Sweep = Auto

Above 1000MHz:

Peak: RBW = 1MHz / VBW = 1MHz / Sweep = Auto Average: RBW = 1MHz / VBW = 10Hz / Sweep = Auto

FCC Part 15.249 Page 15 of 32

EUT Setup

Below 1G:

Report No.: RSZ151231001-00A

Above 1GHz:

The radiated emission and out of band emission tests were performed in the 3 meters chamber test site, using the setup accordance with the ANSI C63.10-2013. The specification used was the FCC 15.209/15.205 and FCC 15.249 limits.

Test Procedure

Maximizing procedure was performed on the highest emissions to ensure that the EUT complied with all installation combinations.

FCC Part 15.249 Page 16 of 32

The EUT is set 3 meter away from the testing antenna, which is varied from 1-4 mete, and the EUT is placed on a turntable, which is 0.8 meter above ground plane, the table shall be rotated for 360 degrees to find out the highest emission. The receiving antenna should be changed the polarization both of horizontal and vertical.

Report No.: RSZ151231001-00A

Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Loss, and subtracting the Amplifier Gain from the Meter Reading. The basic equation is as follows:

Corrected Amplitude = Meter Reading + Antenna Factor + Cable Loss - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of 7dB means the emission is 7dB below the limit. The equation for margin calculation is as follows:

Margin = Limit – Corrected Amplitude

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
НР	Amplifier	HP8447E	1937A01046	2015-05-06	2016-05-06
Rohde & Schwarz	EMI Test Receiver	ESCI	101120	2015-11-03	2016-11-03
Sunol Sciences	Bi-log Antenna	ЈВ1	A040904-2	2014-12-07	2017-12-06
A.H. System	Horn Antenna	SAS-200/571	135	2015-08-18	2018-08-17
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
Mini	Pre-amplifier	ZVA-183-S+	5969001149	2015-04-03	2016-04-03
DUCOMMUN	Pre-amplifier	ALN- 22093530-01	991373-01	2015-08-03	2016-08-03
Rohde & Schwarz	EMI Test Receiver	ESR	1316.3003K03- 101746-zn	2015-06-13	2016-06-13
the electro- Mechanics Co.	Horn Antenna	3116	9510-2270	2013-10-14	2016-10-13
Rohde & Schwarz	Auto test Software	EMC32	V9.10	NCR	NCR
Ducommun technologies	RF Cable	UFA210A-1- 4724-30050U	MFR64369 223410-001	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	104PEA	218124002	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	RG-214	1	2015-06-15	2016-06-15
Ducommun technologies	RF Cable	RG-214	2	2015-06-15	2016-06-15

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

FCC Part 15.249 Page 17 of 32

Test Results Summary

According to the data in the following table, the worst margin reading as below:

1.06 dB at 902.4 MHz in the Vertical polarization for 900MHz Low channel

Report No.: RSZ151231001-00A

Refer to CISPR16-4-2:2011 and CISPR 16-4-1:2009, the measured level complies with the limit if

$$L_{\rm m} + U_{\rm (Lm)} \leq L_{\rm lim} + U_{\rm cispr}$$

In BACL, $U_{(Lm)}$ is less than U_{cispr} , if L_m is less than L_{lim} , it implies that the EUT complies with the limit.

Test Data

Environmental Conditions

Temperature:	25 ℃			
Relative Humidity:	50 %			
ATM Pressure:	101.0 kPa			

The testing was performed by Hill He on 2015-10-28.

FCC Part 15.249 Page 18 of 32

Test Mode: Transmitting (900MHz) **30 MHz to 10 GHz:**

Frequency	R	eceiver	Turntable Rx Antenna		ntenna			FCC 15.249/15.2	
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low Ch	annel (9	902.4 M	Hz)			
55.3	45.09	QP	58	1.7	V	-14.1	30.99	40	9.01
902.4	90.30	QP	284	1.8	Н	-3.0	87.30	94	6.70
902.4	95.94	QP	107	1.7	V	-3.0	92.94	94	1.06
901.999	41.18	QP	284	1.8	Н	-3.0	38.18	46	7.82
901.999	45.36	QP	107	1.7	V	-3.0	42.36	46	3.64
1804.8	59.82	PK	357	1.7	V	-11.01	48.81	74	25.19
1804.8	45.92	Ave.	357	1.7	V	-11.01	34.91	54	19.09
2707.2	55.93	PK	173	1.8	V	-4.20	51.73	74	22.27
2707.2	53.70	Ave.	173	1.8	V	-4.20	49.50	54	4.50
3609.6	40.35	PK	355	1.3	V	-1.00	39.35	74	34.65
3609.6	25.40	Ave.	355	1.3	V	-1.00	24.40	54	29.60
4512.0	43.82	PK	189	1.8	V	2.60	46.42	74	27.58
4512.0	25.74	Ave.	189	1.8	V	2.60	28.34	54	25.66
5414.4	37.83	PK	155	1.7	Н	4.63	42.46	74	31.54
5414.4	26.13	Ave.	155	1.7	Н	4.63	30.76	54	23.24
6316.8	36.67	PK	266	1.0	V	5.20	41.87	74	32.13
6316.8	25.42	Ave.	266	1.0	V	5.20	30.62	54	23.38
			Middle (Channel	(915 M	IHz)			
55.3	45.23	QP	22	2.2	V	-14.1	31.13	40	8.87
915.0	87.81	QP	103	1.7	Н	-3.0	84.81	94	9.19
915.0	91.62	QP	180	1.9	V	-3.0	88.62	94	5.38
1830.0	54.44	PK	263	1.1	V	-11.01	43.43	74	30.57
1830.0	49.29	Ave.	263	1.1	V	-11.01	38.28	54	15.72
2745.0	56.48	PK	196	1.1	V	-4.20	52.28	74	21.72
2745.0	54.18	Ave.	196	1.1	V	-4.20	49.98	54	4.02
3660.0	50.59	PK	84	2.0	V	0.30	50.89	74	23.11
3660.0	46.35	Ave.	84	2.0	V	0.30	46.65	54	7.35
4575.0	44.04	PK	6	1.7	V	2.57	46.61	74	27.39
4575.0	26.63	Ave.	6	1.7	V	2.57	29.20	54	24.80
5490.0	43.19	PK	90	2.2	Н	4.12	47.31	74	26.69
5490.0	25.31	Ave.	90	2.2	Н	4.12	29.43	54	24.57
6405.0	41.28	PK	118	1.8	Н	11.43	52.71	74	21.29
6405.0	24.59	Ave.	118	1.8	Н	11.43	36.02	54	17.98

Report No.: RSZ151231001-00A

FCC Part 15.249 Page 19 of 32

Frequency	R	eceiver	Turntable	Rx An	itenna		Corrected	FCC 15.249/15.2			
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)		
	High Channel (927.6 MHz)										
55.3	45.03	QP	76	1.1	V	-14.1	30.93	40	9.07		
927.6	89.49	QP	309	1.5	Н	-2.6	86.89	94	7.11		
927.6	91.20	QP	316	1.6	V	-2.6	88.60	94	5.40		
928.001	44.27	QP	309	1.5	Н	-2.6	41.67	46	4.33		
928.001	46.71	QP	316	1.6	V	-2.6	44.11	46	1.89		
1855.2	56.73	PK	171	1.8	V	-9.20	47.53	74	26.47		
1855.2	45.87	Ave.	171	1.8	V	-9.20	36.67	54	17.33		
2782.8	54.20	PK	354	1.5	V	-3.21	50.99	74	23.01		
2782.8	53.34	Ave.	354	1.5	V	-3.21	50.13	54	3.87		
3710.4	42.25	PK	200	1.4	V	0.30	42.55	74	31.45		
3710.4	28.68	Ave.	200	1.4	V	0.30	28.98	54	25.02		
4638.0	42.58	PK	159	1.8	Н	2.57	45.15	74	28.85		
4638.0	25.19	Ave.	159	1.8	Н	2.57	27.76	54	26.24		
5565.6	41.44	PK	112	1.0	Н	5.79	47.23	74	26.77		
5565.6	26.06	Ave.	112	1.0	Н	5.79	31.85	54	22.15		
6493.2	39.85	PK	286	1.5	V	11.93	51.78	74	22.22		
6493.2	24.85	Ave.	286	1.5	V	11.93	36.78	54	17.22		

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

FCC Part 15.249 Page 20 of 32

Test Mode: Transmitting (2.4GHz)

30 MHz to 25 GHz:

Frequency	R	eceiver	Turntable	Rx Ar	itenna		Corrected	FCC 15.249/15.2	
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)	Degree	Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)
			Low Cha	nnel (24	00.80 N	AHz)			
167.98	37.89	QP	269	2.1	V	-8.4	29.49	43.5	14.01
2400.80	102.75	PK	27	1.4	Н	-6.46	96.29	114	17.71
2400.80	102.08	PK	285	2.3	V	-6.46	95.62	114	18.38
2385.13	58.37	PK	45	1.3	Н	-6.46	51.91	74	22.09
2385.13	58.31	PK	266	2.3	Н	-6.46	51.85	74	22.15
2389.96	59.31	PK	71	1.8	Н	-6.46	52.85	74	21.15
2389.96	59.07	PK	72	1.7	V	-6.46	52.61	74	21.39
2489.31	56.37	PK	216	1.4	Н	-4.74	51.63	74	22.37
2489.31	56.03	PK	253	2.4	V	-4.74	51.29	74	22.71
4801.60	50.31	PK	112	1.2	Н	3.79	54.10	74	19.90
4801.60	49.01	PK	145	1.7	V	3.79	52.80	74	21.20
7202.40	46.08	PK	84	1.6	Н	9.79	55.87	74	18.13
7202.40	45.99	PK	108	1.5	V	9.79	55.78	74	18.22
9603.20	43.01	PK	201	2.5	Н	11.85	54.86	74	19.14
9603.20	42.97	PK	207	1.4	V	11.85	54.82	74	19.18
			Middle C	hannel	(2441 N	ЛНz)			
167.98	38.51	QP	355	1.8	V	-8.4	30.11	43.5	13.39
2441.00	101.96	PK	29	1.1	Н	-6.46	95.50	114	18.50
2441.00	101.32	PK	85	1.5	V	-6.46	94.86	114	19.14
2369.63	56.31	PK	209	2.2	Н	-6.46	49.85	74	24.15
2369.63	57.39	PK	33	1.0	V	-6.46	50.93	74	23.07
2483.66	59.21	PK	80	1.3	Н	-4.74	54.47	74	19.53
2483.66	59.33	PK	113	1.7	V	-4.74	54.59	74	19.41
2484.73	58.13	PK	213	1.4	Н	-4.74	53.39	74	20.61
2484.73	58.15	PK	349	2.1	V	-4.74	53.41	74	20.59
4882.00	51.36	PK	298	1.3	Н	3.56	54.92	74	19.08
4882.00	50.93	PK	315	1.3	V	3.56	54.49	74	19.51
7323.00	44.35	PK	76	1.6	Н	10.11	54.46	74	19.54
7323.00	45.16	PK	293	1.1	V	10.11	55.27	74	18.73
9764.00	43.14	PK	239	1.7	Н	13.21	56.35	74	17.65
9764.00	41.98	PK	215	2.4	V	13.21	55.19	74	18.81

Report No.: RSZ151231001-00A

FCC Part 15.249 Page 21 of 32

Frequency	R	Receiver		Rx Ar	itenna		Corrected	FCC 15.249/15.2		
(MHz)	Reading (dBµV)	Detector (PK/QP/Ave.)		Height (m)	Polar (H/V)	Factor (dB)	Amplitude (dBµV/m)	Limit (dBµV/m)	Margin (dB)	
	High Channel (2482 MHz)									
167.98	38.91	QP	192	2.0	V	-8.4	30.51	43.5	12.99	
2482.00	95.39	PK	25	1.4	Н	-4.74	90.65	114	23.35	
2482.00	94.31	PK	329	1.6	V	-4.74	89.57	114	24.43	
2389.31	56.99	PK	111	1.4	Н	-6.46	50.53	74	23.47	
2389.31	57.03	PK	343	2.4	V	-6.46	50.57	74	23.43	
2484.56	58.16	PK	141	2.4	Н	-4.74	53.42	74	20.58	
2484.56	58.05	PK	142	1.1	V	-4.74	53.31	74	20.69	
2489.31	58.06	PK	47	2.1	Н	-4.74	53.32	74	20.68	
2489.31	57.98	PK	74	1.8	V	-4.74	53.24	74	20.76	
4964.00	53.04	PK	230	2.5	Н	3.19	56.23	74	17.77	
4964.00	52.96	PK	68	1.9	V	3.19	56.15	74	17.85	
7446.00	47.30	PK	223	2.1	Н	8.17	55.47	74	18.53	
7446.00	47.06	PK	69	1.3	V	8.17	55.23	74	18.77	
9928.00	43.14	PK	36	1.6	Н	13.21	56.35	74	17.65	
9928.00	42.97	PK	301	2.1	V	13.21	56.18	74	17.82	

Note:

Corrected Factor = Antenna factor (RX) + Cable Loss – Amplifier Factor Corrected Amplitude = Corrected Factor + Reading Margin = Limit - Corrected. Amplitude

FCC Part 15.249 Page 22 of 32

Field Strength (Average)

	Peak		Duty Cycle	Average	15.2	49
Frequency (MHz)	Measurement @ 3m (dBμV/m)	Polar (H/V)	Correction Factor (dB)	Average Amp. (dBμV/m)	Limit (dBµV/m)	Margin (dB)
		Operating I	Frequency:2400.	.8 MHz		
2400.80	96.29	Н	-6.02	90.27	94	3.73
2400.80	95.62	V	-6.02	89.60	94	4.40
2385.13	51.91	Н	-6.02	45.89	54	8.11
2385.13	51.85	V	-6.02	45.83	54	8.17
2389.96	52.85	Н	-6.02	46.83	54	7.17
2389.96	52.61	V	-6.02	46.59	54	7.41
2489.31	51.63	Н	-6.02	45.61	54	8.39
2489.31	51.29	V	-6.02	45.27	54	8.73
4801.60	54.10	Н	-6.02	48.08	54	5.92
4801.60	52.80	V	-6.02	46.78	54	7.22
7202.40	55.87	Н	-6.02	49.85	54	4.15
7202.40	55.78	V	-6.02	49.76	54	4.24
9603.20	54.86	Н	-6.02	48.84	54	5.16
9603.20	54.82	V	-6.02	48.80	54	5.20
		Operating	Frequency:2441	MHz		
2441.00	95.50	Н	-6.02	89.48	94	4.52
2441.00	94.86	V	-6.02	88.84	94	5.16
2369.63	49.85	Н	-6.02	43.83	54	10.17
2369.63	50.93	V	-6.02	44.91	54	9.09
2483.66	54.47	Н	-6.02	48.45	54	5.55
2483.66	54.59	V	-6.02	48.57	54	5.43
2484.73	53.39	Н	-6.02	47.37	54	6.63
2484.73	53.41	V	-6.02	47.39	54	6.61
4882.00	54.92	Н	-6.02	48.90	54	5.10
4882.00	54.49	V	-6.02	48.47	54	5.53
7323.00	54.46	Н	-6.02	48.44	54	5.56
7323.00	55.27	V	-6.02	49.25	54	4.75
9764.00	56.35	Н	-6.02	50.33	54	3.67
9764.00	55.19	V	-6.02	49.17	54	4.83

FCC Part 15.249 Page 23 of 32

	Peak		Duty Cycle	Average	15.2	49
Frequency (MHz)	Measurement @ 3m (dBμV/m)	Polar (H/V)	Correction Factor (dB)	Average Amp. (dBμV/m)	Limit (dBμV/m)	Margin (dB)
		Operating	Frequency:2482	2 MHz		
2482.00	90.65	Н	-6.02	84.63	94	9.37
2482.00	89.57	V	-6.02	83.55	94	10.45
2389.31	50.53	Н	-6.02	44.55	54	9.45
2389.31	50.57	V	-6.02	47.40	54	6.60
2484.56	53.42	Н	-6.02	47.29	54	6.71
2484.56	53.31	V	-6.02	47.30	54	6.70
2489.31	53.32	Н	-6.02	47.22	54	6.78
2489.31	53.24	V	-6.02	50.21	54	3.79
4964.00	56.23	Н	-6.02	50.13	54	3.87
4964.00	56.15	V	-6.02	49.45	54	4.55
7446.00	55.47	Н	-6.02	49.21	54	4.79
7446.00	55.23	V	-6.02	50.33	54	3.67
9928.00	56.35	Н	-6.02	50.16	54	3.84
9928.00	56.18	V	-6.02	50.49	54	3.51

Note: Calculate Average value based on duty cycle correction factor: The maximum duty cycle is 50% under normal operation declared by manufacturer. Duty cycle correction factor = 20*log (duty cycle) =20*log (50%) = -6.02dB Average= Peak+ Duty cycle correction factor.

FCC Part 15.249 Page 24 of 32

FCC§15.215(c) - 20dB EMISSION BANDWIDTH

Applicable Standard

Intentional radiators operating under the alternative provisions to the general emission limits, as contained in § 15.217 through 15.257 and in Subpart E of this part, must be designed to ensure that the 20 dB bandwidth of the emission, or whatever bandwidth may otherwise be specified in the specific rule section under which the equipment operates, is contained within the frequency band designated in the rule section under which the equipment is operated.

Report No.: RSZ151231001-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect it to measurement instrument. Then set it to any one convenient frequency within its operating range. Set a reference level on the measuring instrument equal to the highest peak value.
- 3. Measure the frequency difference of two frequencies that indicated 20dB bandwidth.
- 4. Repeat above procedures until all frequencies measured were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	10dB Attenuator	5324	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed in accordance to requirements, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23~25 ℃
Relative Humidity:	45~50 %
ATM Pressure:	100.1~101.0 kPa

The testing was performed by Hill He on 2016-01-20 and 2016-03-15.

Please refer to the following table and plots.

FCC Part 15.249 Page 25 of 32

Test Mode: Transmitting(900MHz)

Channel	Frequency (MHz) 20dB Bandw (MHz)	
Low	902.4	0.109
Middle	915.0	0.110
High	927.6	0.110

Low Channel

FCC Part 15.249 Page 26 of 32

Middle Channel

Report No.: RSZ151231001-00A

High Channel

FCC Part 15.249 Page 27 of 32

Test Mode: Transmitting(2.4GHz)

Channel	Frequency (MHz)	20dB Bandwidth (MHz)
Low	2400.8	0.109
Middle	2441	0.105
High	2482	0.111

Low Channel

FCC Part 15.249 Page 28 of 32

Middle Channel

Report No.: RSZ151231001-00A

High Channel

FCC Part 15.249 Page 29 of 32

FCC§15.249(d) - OUT OF BAND EMISSION (50 dB ATTENUATION)

Applicable Standard

Emissions radiated outside of the specified frequency bands, except for harmonics, shall be attenuated by at least 50 dB below the level of the fundamental or to the general radiated emission limits in §15.209, whichever is the lesser attenuation

Report No.: RSZ151231001-00A

Test Procedure

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- 3. Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

Test Equipment List and Details

Manufacturer	Description	Model	Serial Number	Calibration Date	Calibration Due Date
Rohde & Schwarz	Signal Analyzer	FSIQ26	8386001028	2015-12-11	2016-12-11
Ducommun technologies	RF Cable	RG-214	3	2015-06-15	2016-06-15
WEINSCHEL	10dB Attenuator	5324	AU0709	2015-06-18	2016-06-18

^{*} Statement of Traceability: Bay Area Compliance Laboratories Corp. (Shenzhen) attests that all calibrations have been performed, traceable to National Primary Standards and International System of Units (SI).

Test Data

Environmental Conditions

Temperature:	23~25 ℃
Relative Humidity:	45~50 %
ATM Pressure:	100.1~101.0 kPa

The testing was performed by Hill He on 2016-01-13 and 2016-03-15.

Test Result: Compliant.

Please refer to the following plots:

FCC Part 15.249 Page 30 of 32

900MHz

Report No.: RSZ151231001-00A

Band edge - Right Side

Note: The EUT is compliant to the general radiated emission limits in §15.209.

FCC Part 15.249 Page 31 of 32

2.4GHz

Band edge - Left Side

Report No.: RSZ151231001-00A

Band edge - Right Side

***** END OF REPORT *****

FCC Part 15.249 Page 32 of 32