Sequential Probability Ratio Test

Xi Li

November 25, 2024

1 Boundaries

I have calculated the Wald's boundaries, where

$$\begin{cases} a_0 = \frac{\alpha_1}{1 - \alpha_0} \\ a_1 = \frac{1 - \alpha_1}{\alpha_0} \end{cases}$$

Comparing with given boundaries, Wald's boundaries are much wider and conservative. We use given boundaries in this project for a better performance. Boundary of side with a smaller error rate would be wider, since it is more strict to conclude that the statistic has reached boundary.

alpha_0	$alpha_{-}1$	$a0$ _Wald	$a1$ _Wald	$a0_{-}$ given	$a1$ _given
0.001	0.001	6.906755	6.906755	6.611755	6.611755
0.001	0.0001	9.209340	6.906755	8.91434	6.611755
0.0001	0.001	6.906755	9.209340	6.611755	8.91434

Table 1: Comparison of Wald Boundaries and Given Boundaries

2 Average Sample Number

The Average Sample Number (ASN) is computed by solving the linear equation

$$\mathbf{u}_N = \boldsymbol{\nu} + \mathcal{K}_{\vartheta} \mathbf{u}_N,$$

then summing the product of \mathbf{u}_N 's with indicator list χ 's, for each ϑ in $[\vartheta_0, \vartheta_1]$.

The ASN against ϑ plots are attached below. We can see for each senario, ASN would be small when ϑ is closer to end points ϑ_0 and ϑ_1 , and very high when ϑ is in middle. The curve in senario 1 is symmetric, since $\alpha_1 = \alpha_2 = 0.001$. However, the curve in Senario 2 & 3 are skewed, since $\alpha_0 \neq \alpha_1$ in these senarios. The side with smaller α would need more observations to reject hypothesis.

The Neyman-Pearson test sample size is added to plots, as red dashed lines. From the plots, we can see that with most ϑ 's, ASN is smaller than n_{NP} . When ϑ is in the middle, ASN would exceed n_{NP} . This means, in most times, SPRT is more efficient than NP-test.

ASN vs Theta (s = 1, a0 = 6.611755, a1 = 8.91434)

ASN vs Theta (s = 1, a0 = 6.611755, a1 = 8.91434)

