

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ FACULTY OF INFORMATION TECHNOLOGY

ÚSTAV INFORMAČNÍCH SYSTÉMŮ DEPARTMENT OF INFORMATION SYSTEMS

DEMONSTRACE - KARGERŮV ALGORITMUS

DEMONSTRATION - KARGER'S ALGORITHM

PROJEKTOVÁ DOKUMENTACE PROJECT DOCUMENTATION

AUTOR PRÁCE AUTHOR KATEŘINA PILÁTOVÁ, MICHAL TABÁŠEK

BRNO 2017

Úvod

Cílem tohoto projektu je návrh a implementace demonstrační aplikace Kargerova algoritmu pro nalezení minimálního řezu. Daný algoritmus byl navržen a implementován s využitím vhodných doporučených nástrojů.

Návrh aplikace

Předběžný návrh aplikace je důležitým krokem ve vývoji. Při tomto postupu je možno se vyhnout případným problémům, které by mohly nastat v pozdější fázi vývoje. Prvním krokem byl návrh základního rozložení hlavního okna aplikace.

Obrázek 1: Uspořádání hlavního okna aplikace.

Použité nástroje

Dalším krokem návrhu aplikace byl výběr programovacího jazyka, ve kterém bude aplikace napsána. Výsledná aplikace by měla mít grafické rozhraní (GUI) a měla by být spustitelná na jakékoliv platformě, především na studentském serveru Merlin. Na základě těchto kritérii byl zvolen jazyk Java spolu s knihovnou Swing pro tvorbu grafického rozhraní. Ze seznamu povolených formátů grafů byl vybrán formát mxGraph a knihovna JGraphX s tímto formátem pracující.

Swing

Swing [2] je knihovna plně založená na platformě Java a postavená na AWT (Abstract Windowing Toolkit), sloužící k ovládání počítače pomocí grafického rozhraní. S využitím této knihovny je možno vytvářet okna (JFrame), dialogy (JOptionPane), tlačítka (JButton), seznamy a mnoho dalšího.

JGraphX

JGraphX [1] je knihovna licencovaná pod licencí BSD, založená na Java Swing knihovně, poskytující funkcionalitu pro vizualizaci a interakci s grafy založenými na systému uzelhrana. JGraphX také obsahuje funkce pro podporu XML šablon, různých importů a exportů a rozvržení grafu.

Implementace

Hlavní částí vývoje byla implementace algoritmu podle zvolené varianty zadání, v případě tohoto projektu o Kargerův algoritmus.

Algoritmus

Jedná se o deterministický randomizovaný algoritmus, který náhodně vybírá hranu mezi všemi hranami grafu a slučuje koncové uzly této hrany, dokud nezůstanou pouze dva tzv. super uzly [3] reprezentující dvě skupiny uzlů v grafu a jedna hrana/skupina hran představující velikost řezu. Jednoduchý pseudokód hlavní smyčky programu:

Algorithm 1 Karger Algorithm

- 1: Let G = (V, E)
- 2: **while** |V| > 2 **do**
- 3: $nahodne\ vyber\ dva\ sousedni\ uzly\ v_1,\ v_2$
- 4: $mergeCells(v_1, v_2)$

Spojení dvou uzlů:

Algorithm 2 $mergeCells(v_1, v_2)$

- 1: for each $v \in Adj[v_2]$ do
- 2: $presmeruj hranu (v, v_2) na (v, v_1)$
- 3: pripadne multihrany oznac poctem hran nad reprezentujici hranou
- 4: $prejmenuj v_1 // konkatenace nazvu v_1 a v_2$
- 5: odstran v2 a vsechny jeho hrany

Časová složitost Kargerova algoritmu je polynomiální. Je potřeba vyzkoušet všechny možnosti – těch je |E|!. Pro každou možnost se spustí jeden běh o O(|E|) krocích, kde každý krok má polynomiální složitost (zejména kvůli vyhledávání hran ze seznamu při označování multihran a přesměrovávání hran).

Běh aplikace

Na začátku je uživateli zobrazen výchozí graf. Uživatel může buď spustit krok/běh/algoritmus nad tímto grafem, nebo tento graf upravit, anebo si vytvořit svůj vlastní graf od základů.

Vnitřně je graf reprezentován třídou KargerGraph, kde je uložen samotný graf a informace o něm. Důležitými proměnnými jsou graphEdges, kde je seřazený seznam hran, curOrder s aktuálním pořadím výběru hran v tomto běhu, runs obsahující všechny zatím dosažené výsledky či encodedResetGraph, který uchovává původní graf, který se obnovuje při každém dalším běhu algoritmu.

V každém kroku se nejprve na základě **cur0rder**, čísla kroku a seznamu hran vybere hrana, která se bude odstraňovat a podle ní se určí na ni napojené uzly, co se spojí. Uvnitř metody **mergeCells(v1, v2** již probíhá samotné spojování (tedy přesměrovávání hran, vytváření multihran a odstraňování uzlu **v2**).

Pokud uživatel zvolí manuální krokování aplikace, je mu v pravém panelu vždy zobrazen řádek algoritmu, ve kterém se aplikace právě nachází. V první fázi tohoto kroku jsou mu

zvýrazněny ty uzly, co se spojí a po dokončení druhé fáze dostane výsledek po spojení těchto uzlů jako při normálním kroku.

Při dokončení celého běhu algoritmu je kromě původního grafu uživateli zobrazen nejlepší výsledek a ostatní výsledky jsou seřazeny od nejlepšího pod ním.

Struktura aplikace

Celá aplikace je tvořena jedním hlavním oknem MainWindow. Rozložení hlavního okna je zobrazeno v návrhu aplikace na obrázku 1. Po spuštění aplikace proběhne načtení a zobrazení výchozího grafu. Uživatel má možnost vybrat pro zpracování jiný graf. Graf je možno editovat přidáním nebo odebráním uzlů a hran. Případná komunikace s uživatelem je realizována prostřednictvím dialogových oken.

Obrázek 2: Zobrazení výsledku aplikace algoritmu na daný graf.

Aplikace

Minimální požadavky

- OpenJDK
- Ant (kompilace a spouštění)
- JGraphX (knihovna pro práci s grafem)

Spuštění a instalace

Odevzdaný archiv obsahuje:

- src adresář se zdrojovými soubory
- lib adresář s využitými knihovnami
- latex zdrovojé kódy této dokumentace
- README.md
- \bullet dokumentace.pdf tato dokumentace
- build.xml skript pro kompilaci a spuštění aplikace pomocí Ant

Pro sputění aplikace je nutno mít nainstalovaný OpenJDK a Java knihovnu Apache Ant. Aplikace se spouští přes soubor *karger.jar*.

Možnosti aplikace

- vytvoření/načtení/uložení grafu ve formátu XML
- editace grafu přidání a odebrání uzlu/hrany
- ovládání grafu pomocí ovládacího panelu resetování, další krok, dokončení jednoho běhu, dokončení algoritmu
- podrobnější krokování provádění algoritmu spolu s vyznačením právě provedených částí pseudokódu
- přesun uzlů pomocí kliknutí a tažení myší
- zobrazení uživatelského manuálu pod záložkou Help v horním menu

Závěr

Cílem práce bylo vytvořit aplikaci, která demonstruje Kargerův algoritmus pro nalezení minimálního řezu. Samotné řešení projektu s využitím knihovny JGraphX bylo poučné a vedlo k pochopení fungování Kargerova algoritmu. Řešení výsledné aplikace by mělo uživateli pomoci minimálně s pochopením základního principu algoritmu.

Literatura

- [1] JGraphX (JGraph 6) User Manual. [Online; navštíveno 12.10.2017]. URL https://github.com/jgraph/jgraphx
- [2] Lesson: Getting Started with Swing. [Online; navštíveno 12.10.2017]. URL https://docs.oracle.com/javase/tutorial/uiswing/start/index.html
- [3] Williams, V. V.: Min Cut and Karger's Algorithm. Květen 2016, [Online; navštíveno 12.10.2017].

 $\label{lem:url} \begin{tabular}{ll} URL \ http://web.stanford.edu/class/archive/cs/cs161/cs161.1166/lectures/lecture15.pdf \end{tabular}$

Příloha A

Uživatelská příručka

Tato aplikace slouží k demonstraci Kargerova algoritmu.

Ovládání aplikace

Obrázek A.1: Rozhraní ovládání aplikace.

Aplikaci lze ovládat pomocí:

- Menu Práce se souborem, nápověda.
- Editoru Úprava grafu.
- Ovládacího panelu Aplikace algoritmu na graf.

Menu

Možnosti práce se souborem:

- vytvoření nového grafu
- načtení uloženého grafu ve formátu XML
- uložení grafu ve formátu XML

Možnosti nápovědy:

- uživatelská příručka
- o aplikaci

Editor

Editor obsahuje seznam uzlů ($Node\ List$) a seznam hran ($Edge\ List$). Ke každému z těchto seznamů jsou přidružena dvě tlačítka:

- Vložení uzlu/hrany do grafu
- Odebrání uzlu/hrany z grafu

Ovládací panel

Ovládací panel obsahuje pět různých tlačítek, přičemž aplikace může běžet ve dvou různých módech. První tlačítko zleva je:

Resetování grafu. Vrátí graf do počátečního stavu a umožňuje začít znovu.

Zbývající čtyři tlačítka pracují v různých módech aplikace:

Tzv. Single Run Mode

- Kliknutím na toto tlačítko dojde k provedení jednoho kroku algoritmu, tedy ke sloučení jedné dvojice uzlů a zobrazení aktualizovaného grafu.
- Kliknutím na toto tlačítko dojde ke spuštění jednoho běhu algoritmu a zobrazení výsledku tohoto běhu.
- Kliknutím na toto tlačítko je aktivováno manuální krokování algoritmu v pravém panelu, doprovázeno zobrazováním změn na grafu.

Multiple Runs Mode

– Kliknutím na dané tlačítko je spuštěn kompletní běh algoritmu.

Algoritmus tedy proběhne pro všechny možné varianty. Po dokončení zobrazí graf v počátečním stavu, nejlepší možný výsledek a všechny další výsledky.