

# მართკუთხედები

ადრეულ მე-19 საუკუნეში შუახანებში მეფე ჰუსეინოღლუ ხან სარდარმა მდინარე ზანგის ზეგანზე სასახლის აშენება ბრძანა. ზეგანი წარმოდგენილია როგორც  $n \times m$ -ზე ზომის კვადრატულუჯროვანი ბადე, რომლის სტრიქონები გადანომრილია მთელი რიცხვებით 0-დან (n-1)-მდე, ხოლო სვეტები კი - 0-დან (m-1)-მდე. i-ურ სტრიქონში და j-ურ სვეტში  $(0 \le i \le n-1, 0 \le j \le m-1)$  განლაგებულ უჯრას ვუწოდოთ (i,j) უჯრა. ყოველ (i,j) უჯრას გააჩნია გარკვეული a[i][j] სიმაღლე.

ჰუსეინოღლუ ზან სარდარმა თავის არქიტექტორებს სასახლის ასაგებად **მართკუთხა არის** შერჩევა დაავალა. არე არ უნდა შეიცავდეს ბადის საზღვარზე განლაგებულ არცერთ უჯრას (სტრიქონი 0, სტრიქონი n-1, სვეტი 0, სვეტი m-1). შესაბამისად, არქიტექტორებმა უნდა შეარჩიონ ოთხი მთელი  $r_1$ ,  $r_2$ ,  $c_1$ ,  $c_2$  რიცხვი ( $1 \le r_1 \le r_2 \le n-2$  და  $1 \le c_1 \le c_2 \le m-2$ ), რომლებიც განსაზღვრავენ ყველა ისეთი (i,j) უჯრის შემცველ არეს, რომელთათვისაც  $r_1 \le i \le r_2$  და  $c_1 \le j \le c_2$ .

გარდა ამისა, არე ითვლება **გარგისად** მაშინ და მხოლოდ მაშინ, თუ მისი ყოველი (i,j) უჯრისათვის სრულდება შემდეგი პირობა:

• თუ i-ურ სტრიქონში განვიზილავთ მართკუთხა არის მოსაზღვრე ორ უჯრას (უჯრები  $(i,c_1-1)$  და  $(i,c_2+1)$ ) და j-ურ სვეტშიც განვიზილავთ ასევე მართკუთხა არის მოსაზღვრე ორ უჯრას (უჯრები  $(r_1-1,j)$  და  $(r_2+1,j)$ ), მაშინ (i,j) უჯრის სიმაღლე მკაცრად ნაკლები უნდა იყოს ოთხივე ამ უჯრის სიმაღლეზე.

თქვენი ამოცანაა დაეზმაროთ არქიტექტორებს იპოვონ სასაზლის ასაგებად საჭირო ვარგისი არეების რაოდენობა (ანუ, ვარგისი არის განმსაზღვრელი  $r_1$ ,  $r_2$ ,  $c_1$ ,  $c_2$  რიცხვების შერჩევათა რაოდენობა).

#### იმპლემენტაციის დეტალები

თქვენ უნდა მოახდინოთ შემდეგი ფუნქციის იმპლემენტაცია:

int64 count\_rectangles(int[][] a)

- a: მთელ რიცხვთა ორგანზომილებიანი  $n \times m$ -ზე ზომის მასივი, რომლითაც უჯრების სიმაღლეებია წარმოდგენილი.
- ამ ფუნქციამ უნდა დააბრუნოს სასახლის ასაგებად საჭირო ვარგისი არეების რაოდენობა.

#### მაგალითი

განვიხილოთ შემდეგი გამოძახება:

ამ შემთხვევაში არსებობს 5 ვარგისი არე, რომლებიც ქვემოთაა ჩამოთვლილი:

- $r_1 = r_2 = c_1 = c_2 = 1$
- $r_1 = 1, r_2 = 2, c_1 = c_2 = 1$
- $r_1 = r_2 = 1, c_1 = c_2 = 3$
- $r_1 = r_2 = 4, c_1 = 2, c_2 = 3$
- $r_1 = r_2 = 4, c_1 = c_2 = 3$

მაგალითად,  $r_1=1, r_2=2, c_1=c_2=1$  ვარგის არეს წარმოადგენს იმიტომ, რომ სრულდება ორივე ქვემოთ მოცემული პირობა:

- ullet a[1][1]=4 არის მკაცრად ნაკლები, ვიდრე a[0][1]=8, a[3][1]=14, a[1][0]=7 და a[1][2]=10.
- ullet a[2][1]=7 არის მკაცრად ნაკლები, ვიდრე a[0][1]=8, a[3][1]=14, a[2][0]=9 და a[2][2]=20.

### შეზღუდვები

- $1 \le n, m \le 2500$
- $0 \leq a[i][j] \leq 7\,000\,000$  ( $0 \leq i \leq n-1, 0 \leq j \leq m-1$ )

## ქვეამოცანები

1. (8 ქულა)  $n, m \leq 30$ 

- 2. (7 ქულა)  $n,m \leq 80$
- 3. (12 ქულა)  $n,m \leq 200$
- 4. (22 ქულა)  $n,m \leq 700$
- 5. (10 ქულა)  $n \leq 3$
- 6. (13 ქულა)  $0 \leq a[i][j] \leq 1$  ( $0 \leq i \leq n-1, 0 \leq j \leq m-1$ )
- 7. (28 ქულა) დამატებითი შეზღუდვების გარეშე.

## სანიმუშო გრადერი

სანიმუშო გრადერი კითხულობს შესატან მონაცემებს შემდეგი ფორმატით:

- სტრიქონი 1: n m
- ullet სტრიქონი 2+i ( $0\leq i\leq n-1$ ): a[i][0] a[i][1]  $\dots$  a[i][m-1]

სანიმუშო გრადერმა უნდა გამოიტანოს ერთ სტრიქონში ჩაწერილი count\_rectangles-ის მიერ დაბრუნებული მნიშვნელობა.