

电子实习部: 芮新芳

思考

- 1、为什么要建立封装库文件?哪些元器件需要自定义封装?
- 2、封装建立过程中,哪些方面要注意?
- 3、封装建好之后,如何把相应元件的封装由默认设置成自己绘制的封装?
- 4、元器件没有被设置封装或者封装设置不合适将会怎么样?

PCB文件中的各个元件的封装

传感器实物

为什么要建立自己的 封装文件? 元器件默认的封装和实际所 用的元器件物理尺寸不匹配。

系统默认封装

要绘制的封装

元器件实物与封装

按键

晶振

发光二极管

要求绘制的封装及参数

BEEP(蜂鸣器)

JZ (晶振)

SEN (光电传感器)

要求绘制的封装及参数(续一)

KEY(2脚按键)

ONOFF (侧拨开关)

LED5(发光二极管)

SOP8(语音芯片)

要求绘制的封装及参数 (续二)

即将开始演示绘制封装,请认真听课。。。。。。

常见错误

- 1、元器件的轮廓应该在顶层丝印层(Topoverlayer)绘制,非顶层(Toplayer);
- 2、焊盘编号从"1"开始,编号顺序不能错,与实际引脚顺序一致;
- 3、所有封装都在一个封装库文件中,不需要建立多个库文件;
- 4、参考点勿忘记设置;

其余补充说明参见P13·····

Altium Designer的绘图单位

Altium Designer提供了两种绘图尺寸的单位:

英制 (imperial)和公制 (Metric)。

1英寸=1000mi1=25.4mm, 1mm=39.37mi1

绝大多数器件的管脚间距是以英制单位定义的。

例如: 电阻封装AXIAL-0.4表示管脚间距400mi1=10.16mm;

电容封装RAD-0.1表示两管脚间距=100mi1=2.54mm;

直插IC相邻管脚间距=100mi1=2.54mm。

TopOverlayer:顶层丝印层,用于字符的丝网露印(默认黄色)

PCB板样例

练习2封装更改

元器件 编号	注释	封装名及所在库文件	在库中的名 称	元件所在库文件名
C1	Cap Pol1	cd-0.1t(给学生的封装库)	Cap Pol1	Miscellaneous Connectors
P1	Header 2	HDR1X2(默认,给学生的封装库也有)	Header 2	Miscellaneous Connectors
P3	Header 4	SIP4(给学生的封装库)	Header 4	Miscellaneous Connectors
P2	Header 6	USBTYPEC6(给学生的封装库)	Header 6	Miscellaneous Connectors 或EPL Scblib
D1~D30	LED0	LED5(自己绘制)	LED0	Miscellaneous Devices

练习2封装更改—续

元器件 编号	注释	封装名及所在库文件	在库中的名 称	元件所在库文件名
Q1	MESFET-P	sot23(给学生的封装库)	MESFET-P	Miscellaneous Devices
S 1	ON/OFF	ONOFF(自己绘制)	SW-SPST	Miscellaneous Devices
U1	P89C51RC2 HBP	DIP40(给学生的封装库)	P89C51RC2H BP	Philips Microcontroller 8- Bit
R1~R35	Res2	R-0.3(给学生的封装库)	Res2	Miscellaneous Devices
Y1	XTAL	JZ(自己绘制)	XTAL	Miscellaneous Devices

练习3封装更改

元件编号	注释	封装名及所在库文件	在元件库中的原理图符名称
C8		C-0.1(给学生的封装库)	Cap
J3\J4		JUMP3(给学生的封装库)	Header 3
J6		BEEP2(给学生的封装库)	Header 2
S 1		POW3(给学生的封装库)	SW-SPST
U1		SEN(自己绘制)	Optoisolator1
U2		SMG(自己绘制)	Component_1
C1	100uF	cd-0.1t(给学生的封装库)	Cap Pol1
C2\C3\C4C5\C 8	104	C-0.1(给学生的封装库)	Cap

练习3封装更改—续1

元器件编号	注释	封装名及所在库文件	在库中的名称
USB1		USBTYPEC6(给学生的封 装库)	Header 6
V 1	1N4007	D-0.3(给学生的封装库)	Diode 1N4007
J 1	5.7V	sip2(给学生的封装库)	Header 2
Y 1	6M	JZ(自己绘制)	XTAL
R14	10K	3362P(给学生的封装库)	RPot
C1	100uF	cd-0.1t(给学生的封装库)	Cap Pol1
C2\C3\C4C5\C8	104	C-0.1(给学生的封装库)	Cap
V6\V7\V8	8550	TO92C(给学生的封装库)	2N3906
C10\C11	Cap	C-0.1(给学生的封装库)	Cap
C12\C13	Cap	C0805R(给学生的封装库)	Cap

练习3封装更改—续2

元器件编号	注释	封装名及所在库文件	在库中的名称
C3\C9	Cap Pol1	CD-0.1T(给学生的封装库)	Cap Pol1
C6\C7	Cap Pol1	CD-0.2T(给学生的封装库)	Cap Pol1
J2	GND	sip2(给学生的封装库)	Header 2H
J5	ISP	SIP4(给学生的封装库)	Header 4
V2~V5	LED	led3(给学生的封装库)	LED0
IC1	LM324M	DIP14(给学生的封装库)	LM324M
S3	MODE	KEY(自己绘制)	SW-PB
IC3	NY3P065	SOP8(自己绘制)	SOUND
R1~R31	Res2	R-0.3(给学生的封装库)	Res2
S2	START	KEY(自己绘制)	SW-PB
IC2	STC89C52RC	DIP40(给学生的封装库)	P89C51RC2HBP
LS1~LS4	TEST	HLS(给学生的封装库)	TEST
T1~T5	TEST	SIP1(给学生的封装库)	TEST

修改封装的方法

方法一:逐个修改

方法二: 统一类别, 批量修改

需要强调的几个方面

- 1、焊盘标号从1开始;根据自需选择线宽为10-20mil;注意界面的角落里不要有多余的线段或焊盘
- 2、数码管封装中的小数点,用画圆工具画,线宽为半径的2倍左右,即为实心圆
- 3、每个封装都必须设置参考点(否则在后续PCB文件中,该元件将无法被捕捉到)
- ;每个封装都必须人为给它命名字(绝对不能用系统默认的封装名Pcbcomponent_1)
- 4、自己画的所有封装全部在同一个封装库文件中
- 5、封装中除焊盘外,线条、字符、图案均应在正确的层(topoverlay)
- 6、打开界面右下方,PCB——"pcb library"即可查看当前封装库中所有的封装
- 7、如果PCB绘制过程中发现某个元件的封装有问题,该怎么办?当改正封装后,需要PCB重新导入吗?
- 8、在原理图中,需要改元件封装,怎么改?改封装之前一定要把自己建的封装库文件提前加载。

回答

- 1、为什么要建立封装库文件?哪些元器件需要自定义封装?
- 2、封装建立过程中,哪些方面要注意?
- 3、封装建好之后,如何把相应元件的封装由默认设置成自己绘制的封装?
- 4、元器件没有被设置封装或者封装设置不合适将会怎么样?