Локальная и интегральная теоремы Муавра-Лапласа. Центральная предельная теорема. Теорема Берри-Эссеена. Семинар 12. 20 ноября 2018 г.

Подготовил: Горбунов Э.

Источники: [НатанТВ, Гл. 8], [Ширяев, Гл. 1, §6, Гл. 3, §4], [Боровков, Гл. 5, §2, 3, Гл. 8 §2, 4, 7], [Гнеденко, Гл. 2, §10-12, Гл. 8, §39-40]

КЛЮЧЕВЫЕ СЛОВА: ЛОКАЛЬНАЯ И ИНТЕГРАЛЬНАЯ ТЕОРЕМЫ МУАВРА-ЛАПЛАСА, КЛАССИЧЕСКАЯ ЦЕТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА, ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА В ФОРМЕ ЛИНДЕБЕРГА, ЦЕНТРАЛЬНАЯ ПРЕДЕЛЬНАЯ ТЕОРЕМА В ФОРМЕ ЛЯПУНОВА, ТЕОРЕМА БЕРРИ-ЭССЕЕНА

Локальная и интегральная теоремы Муавра-Лапласа

Рассмотрим для начала последовательности независимых одинаково распределённых случайных величин, имеющих распределение Бернулли.

Теорема 1. (Локальная теорема Муавра-Лапласа). Пусть $\{\xi_n\}_{n=1}^{\infty}$ — последовательность независимых случайных величин $\{\xi_n\}_{n=1}^{\infty}$ с распределением $\mathrm{Be}(p)$. Обозначим

$$S_n = \sum_{k=1}^n \xi_k.$$

Пусть последовательность целых чисел $\{c_n\}_{n=1}^{\infty}$ такова, что существуют числа a < b, для которых выполняется неравенство

$$a \leqslant \frac{c_n - np}{\sqrt{np(1-p)}} \leqslant b, \quad n \in \mathbb{N}.$$

Тогда

$$\frac{\mathbb{P}\{S_n = c_n\}}{\frac{1}{\sqrt{2\pi n p(1-p)}}} \xrightarrow[n \to \infty]{} 1.$$

 \mathcal{A} оказательство. Пусть $t_n = \frac{c_n - np}{n}$. Тогда

$$\frac{a\sqrt{p(1-p)}}{\sqrt{n}} \leqslant t_n \leqslant \frac{b\sqrt{p(1-p)}}{\sqrt{n}},$$

а значит, $t_n \xrightarrow[n \to \infty]{} 0$ и $t_n = \Omega\left(\frac{1}{\sqrt{n}}\right), n \to \infty$. Как мы знаем, $S_n \sim \text{Binom}(n,p)$. Кроме того, по формуле Стирлинга

$$n! \sim \sqrt{2\pi n} \left(\frac{n}{e}\right)^n$$

то есть

$$\lim_{n \to \infty} \frac{n!}{\sqrt{2\pi n} \left(\frac{n}{e}\right)^n} = 1.$$

Используя формулу Стирлинга, равенство $c_n=np+t_nn$ и $t_n=\Omega\left(\frac{1}{\sqrt{n}}\right), n\to\infty$, получим

$$\mathbb{P}\{S_{n} = c_{n}\} = \binom{n}{c_{n}} p^{c_{n}} (1-p)^{n-c_{n}} \\
\sim \frac{\sqrt{2\pi n} \binom{n}{e}}{2\pi \sqrt{c_{n}(n-c_{n})} \binom{c_{n}}{e}^{c_{n}} \binom{n-c_{n}}{e}^{n-c_{n}}} p^{c_{n}} (1-p)^{n-c_{n}} \\
= \frac{\sqrt{2\pi n \cdot n^{n}}}{2\pi n \sqrt{(p+t_{n})(1-p-t_{n})} (n(p+t_{n}))^{n(p+t_{n})} (n(1-p-t_{n}))^{n(1-p-t_{n})}} p^{n(p+t_{n})} (1-p)^{n(1-p-t_{n})} \\
= \frac{1}{\sqrt{2\pi n(p+t_{n})(1-p-t_{n})}} \left(\frac{p}{p+t_{n}}\right)^{n(p+t_{n})} \left(\frac{1-p}{1-p-t_{n}}\right)^{n(1-p-t_{n})} \\
\sim \frac{1}{\sqrt{2\pi np(1-p)}} \left(1+\frac{t_{n}}{p}\right)^{-n(p+t_{n})} \left(1-\frac{t_{n}}{1-p}\right)^{-n(1-p-t_{n})} \\
= \frac{1}{\sqrt{2\pi np(1-p)}} \exp\left(-n(p+t_{n}) \ln\left(1+\frac{t_{n}}{p}\right)-n(1-p-t_{n}) \ln\left(1-\frac{t_{n}}{1-p}\right)\right) \\
= \frac{1}{\sqrt{2\pi np(1-p)}} \exp\left(-nt_{n}-\frac{nt_{n}^{2}}{p}+\frac{nt_{n}^{2}}{2p}+nt_{n}-\frac{nt_{n}^{2}}{1-p}+\frac{nt_{n}^{2}}{2(1-p)}+o\left(nt_{n}^{2}\right) \\
\sim \frac{1}{\sqrt{2\pi np(1-p)}} \exp\left(-\frac{nt_{n}^{2}}{2p(1-p)}\right) = \frac{1}{\sqrt{2\pi np(1-p)}} \exp\left(-\frac{(c_{n}-np)^{2}}{2np(1-p)}\right).$$

Замечание 1. Отметим, что

$$\frac{1}{\sqrt{2\pi np(1-p)}}e^{-\frac{(c_n-np)^2}{2np(1-p)}} = f(c_n),$$

где $f(\cdot)$ — плотность распределения $\mathcal{N}(np, np(1-p))$.

Сходимость в доказанной теореме равномерная, поэтому справедлива следующая теорема.

Теорема 2. (Интегральная теорема Муавра-Лапласа). Пусть $\{\xi_n\}_{n=1}^{\infty}$ — последовательность независимых случайных величин $\{\xi_n\}_{n=1}^{\infty}$ с распределением $\mathrm{Be}(p)$. Обозначим

$$S_n = \sum_{k=1}^n \xi_k.$$

Тогда

$$\frac{S_n - np}{\sqrt{np(1-p)}} \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1).$$

В частности, для любых $a,b \in \mathbb{R}, a < b$ выполнено

$$\mathbb{P}\left\{a \leqslant \frac{S_n - np}{\sqrt{np(1-p)}} \leqslant b\right\} \xrightarrow[n \to \infty]{} \Phi(b) - \Phi(a),$$

где $\Phi(x) = \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{x} e^{-\frac{t^2}{2}} dt$ — функция распределения стандартной нормальной случайной величины.

Доказатель ство. Докажем это утверждения, используя метод характеристических функций. Пусть $\eta_n = \frac{S_n - np}{\sqrt{np(1-p)}}$. Так как $S_n \sim \text{Binom}(n,p)$, то, как мы знаем из девятого семинара, её характеристическая функция задаётся формулой:

$$\varphi_{S_n}(t) = \left(1 + p(e^{it} - 1)\right)^n.$$

Используя это и свойства характеристических функций (а именно, из формулы $\varphi_{a\xi+b}(t)=e^{itb}\varphi_{\xi}(at)$), получаем

$$\begin{split} \varphi_{\eta_n}(t) &= e^{-\frac{itnp}{\sqrt{np(1-p)}}} \cdot \varphi_{S_n} \left(\frac{t}{\sqrt{np(1-p)}} \right) \\ &= e^{-\frac{itnp}{\sqrt{np(1-p)}}} \cdot \left(1 + p \left(e^{\frac{it}{\sqrt{np(1-p)}}} - 1 \right) \right)^n \\ &= \left(e^{-\frac{itp}{\sqrt{np(1-p)}}} (1-p) + p e^{\frac{it(1-p)}{\sqrt{np(1-p)}}} \right)^n = \left(e^{-\frac{it\sqrt{p}}{\sqrt{n(1-p)}}} (1-p) + p e^{\frac{it\sqrt{1-p}}{\sqrt{np}}} \right)^n \\ &= \left((1-p) - (1-p) \frac{it\sqrt{p}}{\sqrt{n(1-p)}} - (1-p) \frac{t^2p}{2n(1-p)} + p + p \frac{it\sqrt{1-p}}{\sqrt{np}} - p \frac{t^2(1-p)}{2np} + o \left(\frac{1}{n} \right) \right)^n \\ &= \left(1 - \frac{t^2}{2n} \right)^n \xrightarrow[n \to \infty]{} e^{-\frac{t^2}{2}} = \varphi_{\eta}(t), \end{split}$$

где $\varphi(t) \sim \mathcal{N}(0,1)$. Следовательно, по теореме Леви о непрерывности $\frac{S_n - np}{\sqrt{np(1-p)}} \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1)$.

Упражнение 1. В тесто для выпечки булок с изюмом замешано N изюмин. Всего из данного теста выпечено K булок. Оцените вероятность того, что в случайно выбранной булке число изюмин находится в пределах от a до b.

Решение. Будем считать, что N достаточно большое число, чтобы можно было воспользоваться интегральной теоремой Муавра-Лапласа. Но где же здесь она возникает? Будем считать, что «изюмины независимы», то есть все события $A_{ij} = \{i$ -я изюмина попала в j-ю булку $\}$ независимы в совокупности. Рассмотрим случайные величины

 $\xi_k = \begin{cases} 1, & k$ -я изюмина попала в случайно выбранную нами булку, $0, & \text{иначе.} \end{cases}$

Тогда по формуле полной вероятности

$$\mathbb{P}\left\{\xi_k=1
ight\} = \sum\limits_{i=1}^K \mathbb{P}\{\xi_k=1|$$
 была выбрана i -я булка $\}\mathbb{P}\{$ была выбрана i -я булка $\}$ = $\sum\limits_{i=1}^K \mathbb{P}\{k$ -я изюмина попала в i -ю булку $\}\frac{1}{K}$ = $K\cdot \frac{1}{K^2}=\frac{1}{K},$

т. е. ξ_k — бернуллиевская случайная величина с параметром $p=\frac{1}{K}$. Тогда число изюмин в случайно выбранной нами булке есть случайная величина

$$S_N = \sum_{k=1}^N \xi_k.$$

Тогда по интегральной теореме Муавра-Лапласа

$$\mathbb{P}\left\{A \leqslant \frac{S_N - Np}{\sqrt{Np(1-p)}} \leqslant B\right\} \approx \Phi(B) - \Phi(A), \quad A < B,$$

откуда

$$\mathbb{P}\left\{Np + A\sqrt{Np(1-p)} \leqslant S_N \leqslant Np + B\sqrt{Np(1-p)}\right\} \approx \Phi(B) - \Phi(A).$$

Отсюда следует, что вероятность, что в случайно выбранной булке число изюмин будет находиться в отрезке [a,b], примерно равна

$$\mathbb{P}\{a \leqslant S_N \leqslant b\} \approx \Phi\left(\frac{b - \frac{N}{K}}{\sqrt{\frac{N(K-1)}{K^2}}}\right) - \Phi\left(\frac{a - \frac{N}{K}}{\sqrt{\frac{N(K-1)}{K^2}}}\right) = \Phi\left(\frac{bK - N}{\sqrt{N(K-1)}}\right) - \Phi\left(\frac{aK - N}{\sqrt{N(K-1)}}\right).$$

Центральная предельная теорема

Получим результаты, имеющие похожий на интегральную теорему Муавра-Лапласа вид, но для более широкого класса последовательностей случайных величин.

Теорема 3. (Классическая ЦПТ). Пусть $\{\xi_n\}_{n=1}^{\infty}$ — последовательность независимых одинаково распреде-

лённых случайных величин с
$$\mathbb{E}\xi_n=m$$
 и $\mathbb{D}\xi_n=\sigma^2$. Пусть $\eta_n=\frac{\sum\limits_{k=1}^n\xi_k-\mathbb{E}\left[\sum\limits_{k=1}^n\xi_k\right]}{\sqrt{\mathbb{D}\left[\sum\limits_{k=1}^n\xi_k\right]}}=\frac{\sum\limits_{k=1}^n(\xi_k-m)}{\sigma\sqrt{n}}$. Тогда

$$\eta_n \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1).$$

Доказательство. Воспользуемся методом характеристических функций. Характеристическая функция случайной величины η_n равна (пользуемся известными свойствами характеристических функций: $\varphi_{a\xi+b}(t)=e^{itb}\varphi_{\xi}(at),\ \varphi'_{\xi}(t)=i\mathbb{E}\xi$ и $\varphi''_{\xi}(t)=-\mathbb{E}\left[\xi^2\right]=-\left(\mathbb{E}[\xi]\right)^2-\mathbb{D}\xi$)

$$\varphi_{\eta_n} = e^{-\frac{it\mu\sqrt{n}}{\sigma}} \left(\varphi_{\xi_n} \left(\frac{t}{\sigma\sqrt{n}} \right) \right)^n = \exp\left(-\frac{it\mu\sqrt{n}}{\sigma} + n \ln\left(1 + \frac{imt\sqrt{n}}{\sigma\sqrt{n}} - \frac{(m^2 + \sigma^2)t^2}{\sigma^2 n} + o\left(\frac{1}{n}\right) \right) \right)$$

$$= \exp\left(-\frac{it\mu\sqrt{n}}{\sigma} + \frac{it\mu\sqrt{n}}{\sigma} - \frac{(m^2 + \sigma^2)t^2}{\sigma^2} + \frac{m^2t^2}{2\sigma^2} + o(1) \right) \xrightarrow[n \to \infty]{} e^{-\frac{t^2}{2}} = \varphi_{\eta}(t),$$

где $\eta \sim \mathcal{N}(0,1)$. Отсюда и из теоремы Леви о непрерывности получаем, что $\eta_n \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1)$.

Заметим, что из доказанной теоремы следует, что

$$\frac{\sum_{k=1}^{n} \xi_k - nm}{\sqrt{n}} \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \sigma^2).$$

Данное утверждение можно обобщить на случай последовательностей случайных векторов (причём доказательство будет не сильно отличаться, от доказательства в одномерном случае; подробности можно прочитать в [Боровков, Гл.8, §7]).

Теорема 4. (Классическая ЦПТ для случайных векторов). Пусть $\{\vec{\xi_i}\}$ — последовательность независимых одинаково распределённых случайных величин таких, что $\mathbb{E}[\vec{\xi_n}] = \vec{m}$ и $\mathbb{E}\left[(\vec{\xi_n} - \vec{m})(\vec{\xi_n} - \vec{m})^\top\right] = \Sigma$, $\det \Sigma \neq 0$. Тогда

$$\frac{\sum_{k=1}^{n} \vec{\xi}_{k} - n\vec{m}}{\sqrt{n}} \xrightarrow[n \to \infty]{d} \mathcal{N}(0, \Sigma).$$

Доказательство. Доказательство можно прочитать в [Боровков, Гл.8, §7].

Вообще говоря, сходимость к нормальному распределению для величин типа η_n из условия классической ЦПТ можно гарантировать и в более общем случае.

Теорема 5. (ЦПТ в форме Линдеберга). Пусть $\{\xi_n\}_{n=1}^{\infty}$ — последовательность независимых случайных величин с конечными математическими ожиданиями и дисперсиями. Обозначим

$$B_n^2 = \mathbb{D}\left[\sum_{k=1}^n \xi_k\right] = \sum_{k=1}^n \mathbb{D}\xi_k, \quad \eta_n = \frac{1}{B_n} \sum_{k=1} (\xi_k - \mathbb{E}\xi_k),$$

и для каждого $\tau > 0$ рассмотрим события

$$A_{n,\tau} = \{ |\xi_n - \mathbb{E}\xi_n| > \tau B_n \}.$$

Пусть для всех $\tau > 0$ выполнено **условие Линдеберга**:

$$\frac{1}{B_n^2} \sum_{k=1}^n \mathbb{E}\left[\left(\xi_k - \mathbb{E} \xi_k \right)^2 \mathbb{I}_{A_{n,\tau}} \right] \xrightarrow[n \to \infty]{} 0,$$

т. е.

$$\frac{1}{B_n^2} \sum_{k=1}^n \int_{|x-\mathbb{E}\xi_k| > \tau B_n} (x - \mathbb{E}\xi_k)^2 dF_{\xi_k}(x) \xrightarrow[n \to \infty]{} 0.$$

Тогда равномерно по $x \in \mathbb{R}$

$$\mathbb{P}\left\{\frac{1}{B_n}\sum_{k=1}^n\left(\xi_k - \mathbb{E}\xi_k\right) < x\right\} \xrightarrow[n \to \infty]{} \frac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-\frac{t^2}{2}}dt.$$

В частности,

$$\frac{1}{B_n} \sum_{k=1}^n (\xi_k - \mathbb{E}\xi_k) \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1).$$

Доказательство. Доказательство можно прочитать в [Гнеденко, Гл. 8, §40].

Упражнение 2. Пусть X_1, \ldots, X_n — случайная перестановка на n элементах (X_i — номер позиции, в которую переходит i-й элемент; все перестановки равновероятны). Будем говорить, что X_k образует инверсию с X_j , если j > k и $X_k > X_j$. Тогда случайная величина

$$\xi_k = \sum_{j=k+1}^n \mathbb{I}_{X_k > X_j}$$

равна числу инверсий X_k с X_{k+1}, \ldots, X_n , а случайная величина

$$T = \sum_{k=1}^{n-1} \xi_k$$

равна общему числу инверсий в перестановке. Найдите $\mathbb{E}T$ и $\mathbb{D}T$. Что можно сказать о предельном распределении величины $\frac{T-\mathbb{E}T}{\sqrt{\mathbb{D}T}}$?

Peшение. Для начала найдём вероятности $\mathbb{P}\{\xi_k=r\}$ для $0\leqslant r\leqslant n-k$:

$$\mathbb{P}\{\xi_k=r\}=\mathbb{P}$$
 {среди X_{k+1},\dots,X_n ровно r чисел $< X_k\}=\mathbb{P}$ {среди X_k,\dots,X_n число X_k является $(r+1)$ -м по возрастанию} = $\frac{(n-k)!}{(n-k+1)!}=\frac{1}{n-k+1}.$

Поэтому

$$\mathbb{E}\xi_k = \frac{1}{n-k+1} \sum_{r=0}^{n-k} r = \frac{n-k}{2},$$

И

$$\mathbb{E}T = \sum_{k=1}^{n-1} \mathbb{E}\xi_k = \sum_{k=1}^{n-1} \frac{n-k}{2} = \frac{n(n-1)}{4}.$$

Заметим, что случайная величина ξ_k не зависит от того, как переставлены числа до X_k (имеется в виду, что числа X_1, \ldots, X_{k-1} можно переставить между собой как угодно, не поменяв при этом значение ξ_k) и как переставлены числа после X_k (числа X_{k+1}, \ldots, X_n можно переставить между собой как угодно, не поменяв при этом значение ξ_k). Кроме того, ξ_k зависит только порядка X_k по возрастанию среди чисел X_k, \ldots, X_n , но

не зависит от порядка X_{k+1},\ldots,X_n . Следовательно, ξ_k не зависит от значений $\xi_{k+1},\ldots,\xi_{n-1}$, т. е. для любого набора r_k,\ldots,r_n

$$\mathbb{P}\{\xi_k = r_k | \xi_{k+1} = r_{k+1}, \dots, \xi_{n-1} = r_{n-1}\} = \mathbb{P}\{\xi_k = r_k\},\$$

в частности, для любого набора индексов $k+1 \leqslant d_1 < d_2 < \ldots < d_m \leqslant n-1$

$$\mathbb{P}\{\xi_k = r_k | \xi_{d_1} = r_{d_1}, \dots, \xi_{d_m} = r_{d_m}\} = \mathbb{P}\{\xi_k = r_k\}.$$

Отсюда следует, что для любого набора индексов $1 \leqslant d_1 < \ldots < d_m \leqslant n-1$ и любого набора r_1, \ldots, r_m

$$\mathbb{P}\{\xi_{d_1} = r_1, \dots, \xi_{d_m} = r_n\} = \mathbb{P}\{\xi_{d_1} = r_1, \dots, \xi_{d_{m-1}} = r_{m-1} | \xi_{d_m} = r_m\} \mathbb{P}\{\xi_{d_n} = r_n\} \\
= \mathbb{P}\{\xi_{d_1} = r_1, \dots, \xi_{d_{m-1}} = r_{m-1}\} \mathbb{P}\{\xi_{d_m} = r_m\} = \dots = \prod_{k=1}^m \mathbb{P}\{\xi_{d_k} = r_k\}.$$

В частности, отсюда следует, что ξ_k попарно независимы, откуда получаем, что

$$\mathbb{D}T = \sum_{k=1}^{n-1} \mathbb{D}\xi_k.$$

Вычислим $\mathbb{D}\xi_k$:

$$\begin{split} \mathbb{E}\left[\xi_k^2\right] &= \frac{1}{n-k+1} \sum_{r=0}^{n-k} r^2 = \frac{1}{n-k+1} \cdot \frac{(n-k)(n-k+1)(2n-2k+1)}{6} = \frac{(n-k)(2n-2k+1)}{6}, \\ \mathbb{D}\xi_k &= \mathbb{E}\left[\xi_k^2\right] - (\mathbb{E}\xi_k)^2 = \frac{(n-k)(2n-2k+1)}{6} - \frac{(n-k)^2}{4} = (n-k) \cdot \frac{4n-4k+2-3n+3k}{12} = \frac{(n-k)(n-k+2)}{12} \\ &= \frac{n^2-2nk+k^2+2n-2k}{12} = \frac{n^2+2n}{12} - \frac{(n+1)k}{6} + \frac{k^2}{12}. \end{split}$$

Отсюда получаем, что

Теперь заметим, что для любого $\tau > 0$ существует такое число n_0 , что для любого $n > n_0$

$$\mathbb{I}_{A_n|_{\tau}}=0,$$

где $A_{n,\tau}=\{|\xi_k-\mathbb{E}\xi_k|>\tau\sqrt{\mathbb{D}T}\}$, т. к. $|\xi_k-\mathbb{E}\xi_k|\lesssim n$, а $\sqrt{\mathbb{D}T}\sim\frac{n^{\frac{3}{2}}}{6}$ при $n\to\infty$. Отсюда следует, что для достаточно больших n выполнено условие Линдеберга:

$$\frac{1}{\mathbb{D}T} \sum_{k=1}^{n} \mathbb{E}\left[|\xi_k - \mathbb{E}\xi_k|^2 \mathbb{I}_{A_{n,\tau}} \right] = 0 \xrightarrow[n \to \infty]{} 0.$$

Следовательно,

$$\frac{T - \mathbb{E}T}{\sqrt{\mathbb{D}T}} \xrightarrow[n \to \infty]{} \mathcal{N}(0, 1),$$

а значит,

$$\frac{T - \frac{n(n-1)}{4}}{\sqrt{\frac{n(n-1)(2n+5)}{72}}} \sim \frac{T - \frac{n^2}{4}}{\frac{n^{\frac{3}{2}}}{6}} \xrightarrow[n \to \infty]{} \mathcal{N}(0, 1),$$

т. е. при больших n распределение T можно приблизить распределением $\mathcal{N}\left(\frac{n^2}{4},\frac{n^3}{36}\right)$. Например, это может удобно для подсчёта вероятностей вида $\mathbb{P}\{a\leqslant T\leqslant b\}$.

Условие Линдеберга требует знания хвостов распределения ξ_k . Однако его можно упростить и перейти к ограничению моментов.

Теорема 6. (ЦПТ в форме Ляпунова). Пусть $\{\xi_n\}_{n=1}^{\infty}$ — последовательность независимых случайных величин с конечными математическими ожиданиями и дисперсиями. Обозначим

$$B_n^2 = \mathbb{D}\left[\sum_{k=1}^n \xi_k\right] = \sum_{k=1}^n \mathbb{D}\xi_k, \quad \eta_n = \frac{1}{B_n} \sum_{k=1} (\xi_k - \mathbb{E}\xi_k).$$

Пусть для некоторого $\delta > 0$ выполнено **условие Ляпунова**:

$$\frac{1}{B_n^{2+\delta}} \sum_{k=1}^n \mathbb{E}\left[\left| \xi_k - \mathbb{E}\xi_k \right|^{2+\delta} \right] \xrightarrow[n \to \infty]{} 0.$$

Тогда равномерно по $x \in \mathbb{R}$

$$\mathbb{P}\left\{\frac{1}{B_n}\sum_{k=1}^n \left(\xi_k - \mathbb{E}\xi_k\right) < x\right\} \xrightarrow[n \to \infty]{} \frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-\frac{t^2}{2}} dt.$$

В частности,

$$\frac{1}{B_n} \sum_{k=1}^n (\xi_k - \mathbb{E}\xi_k) \xrightarrow[n \to \infty]{d} \mathcal{N}(0,1).$$

Доказатель ство. Достаточно показать, что из условия Ляпунова следует условие Линдеберга. Действительно, для любого $\tau>0$

$$\frac{1}{B_n^2} \sum_{k=1}^n \int_{|x-\mathbb{E}\xi_k| > \tau B_n} (x - \mathbb{E}\xi_k)^2 dF_{\xi_k}(x) = \frac{1}{B_n^2 \tau^{\delta} B_n^{\delta}} \sum_{k=1}^n \int_{|x-\mathbb{E}\xi_k| > \tau B_n} (\tau B_n)^{\delta} (x - \mathbb{E}\xi_k)^2 dF_{\xi_k}(x)$$

$$\leqslant \frac{1}{\tau^{\delta} B_n^{2+\delta}} \sum_{k=1}^n \int_{|x-\mathbb{E}\xi_k| > \tau B_n} |x - \mathbb{E}\xi_k|^{2+\delta} dF_{\xi_k}(x)$$

$$\leqslant \frac{1}{\tau^{\delta}} \cdot \frac{1}{B_n^{2+\delta}} \sum_{k=1}^n \mathbb{E}\left[|\xi_k - \mathbb{E}\xi_k|^{2+\delta}\right] \xrightarrow[n \to \infty]{} 0.$$

Замечание 2. Существуют результаты о сходимости и к другим распределениям. Например, на десятом семинаре мы доказали предельную теорему Пуассона (упражнение 4), которая утверждает, что если $\xi_n \sim \text{Binom}(n,p_n)$ и $np_n \xrightarrow[n \to \infty]{d} \lambda > 0$, то $\xi_n \xrightarrow[n \to \infty]{d} \text{Poisson}(\lambda)$.

Замечание 3. Отметим, что ЦПТ в форме Линдеберга и Ляпунова дают равномерную сходимость $\mathbb{P}\left\{\frac{1}{B_n}\sum_{k=1}^n(\xi_k-\mathbb{E}\xi_k)< x\right\}$ по $x\in\mathbb{R}$ к $\frac{1}{\sqrt{2\pi}}\int\limits_{-\infty}^x e^{-\frac{t^2}{2}}dt$, что сильнее поточечной сходимости функций распределения к функции распределения нормальной случайной величины (что по сути и есть сходимость по распределению), т. е. эти результаты достаточно сильные. Однако эти теоремы не устанавливают скорости сходимости к нормальному распределению.

Оценивание скорости сходимости в центральной предельной теореме

Рассмотрим без доказательства следующий факт.

Теорема 7. (**Теорема Берри-Эссеена**). Пусть $\{\xi_n\}_{n=1}^{\infty}$ — последовательность независимых одинаково распределенных случайных величин с нулевым математическим ожиданием и дисперсией σ^2 . Обозначим

$$\eta_n = \frac{\sum\limits_{k=1}^n \xi_k}{\sigma \sqrt{n}}$$

Пусть $\mathbb{E}\left[|\xi_1|^3\right]\leqslant \rho$. Тогда

$$\sup_{x \in \mathbb{R}} |\mathbb{P}\{\eta_n < x\} - \mathbb{P}\{\zeta < x\}| \leqslant \frac{c\rho}{\sigma^{\frac{3}{2}}\sqrt{n}}, \quad \zeta \sim \mathcal{N}(0, 1).$$

Замечание 4. Известно, что $0.4 \leqslant c < 0.8$. Если есть интерес разобраться с результатами в этой области, то стоит посмотреть ссылки в статье в Википедии.