Section 12.5: Lines and Curves in Space

Warm up:

Group work:

Problem 1 Find a vector-valued function for the line segment connecting the points P = (-3, 7, 6) and Q = (5, -4, 7) in such a way that the value at t = 0 is P and the value at t = 1 is Q. Also, find the point two-thirds of the way from P to Q.

Problem 2 Find a vector-valued function for the line through the point (1, -2, 3) that is perpendicular to the lines

$$\vec{r}_1(t) = \langle 7, 8, -2 \rangle + t \langle 3, 5, 7 \rangle$$
 and $\vec{r}_2(s) = \langle 4, -3, -7 \rangle + s \langle 4, 9, -1 \rangle$

Problem 3 Show that the curve $\vec{r} = \langle t \cos t, t \sin t, t \rangle$ lies completely on the cone $z^2 = x^2 + y^2$.