Heterogeneous Treatment Effects

Structure

- General Definitions
- What do we know about best practices?
 - The alphabet soup of learners
- What tools can you use to do this?
- How can you peel open the black box?

The HTE Problem

- For each unit, we observe Y(1) xor Y(0)
- We want to estimate the supervised regression problem of:
 - $Y(1) Y(0) \sim X$
 - This is impossible! Holland (1986)
- Lots of approaches, some of them are very good!

Assumptions

- Consistency: $Y_i = Y_i(A_i)$
- No Unmeasured Confounding: A ⊥ (Y(1), Y(0)) | X
- Positivity: $0 < \varepsilon \le \pi_i \le 1 \varepsilon < 1$ with probability 1

Under these assumptions, $\tau(x) = E[Y(1) - Y(0) | X = x]$

• Regularity conditions based on chosen model

Alphabet Soup

The Zoo of HTE Learners

S-learner

Single Regression model approach (e.g. Hill 2011)

- Easy to estimate!
- Treatment is just another feature
- Over-regularizes

Algorithm SI 2 S-learner

1: **procedure** S-LEARNER(X, Y, W)

2: $\hat{\mu} = M(Y \sim (X, W))$

3: $\hat{\tau}(x) = \hat{\mu}(x,1) - \hat{\mu}(x,0)$

T-learner

Two Regression model approach (e.g. Athey et al 2015)

- Easy to estimate!
- *Under*-regularizes

Algorithm SI 1 T-learner

1: **procedure** T-LEARNER(X, Y, W)

2:
$$\hat{\mu}_0 = M_0(Y^0 \sim X^0)$$

3:
$$\hat{\mu}_1 = M_1(Y^1 \sim X^1)$$

4:
$$\hat{\tau}(x) = \hat{\mu}_1(x) - \hat{\mu}_0(x)$$

Causal Forests

Modify the splitting criteria of RFs (e.g. Wager and Athey 2017)

- There's software out there for you.
- You get a very particular form of unbiasedness!
- Important insight!
 - HONESTY

X-learner

T-learner then run some extra regressions (Künzel et al 2019)

```
Algorithm SI 3 X-learner

1: procedure X-learner(X, Y, W, g)

2: \hat{\mu}_0 = M_1(Y^0 \sim X^0)
3: \hat{\mu}_1 = M_2(Y^1 \sim X^1)

4: \tilde{D}_i^1 = Y_i^1 - \hat{\mu}_0(X_i^1)

Estimates CATT

5: \tilde{D}_i^0 = \hat{\mu}_1(X_i^0) - Y_i^0

Estimates CATC

6: \hat{\tau}_1 = M_3(\tilde{D}^1 \sim X^1)

7: \hat{\tau}_0 = M_4(\tilde{D}^0 \sim X^0)

8: \hat{\tau}(x) = g(x)\hat{\tau}_0(x) + (1 - g(x))\hat{\tau}_1(x)

\triangleright Average the estimates
```

- Now we're getting somewhere!
- More complicated and not doubly-robust
- Regularizes reasonably!
- Under unconfoundedness, CATT = CATC = CATE

The Approach

Kennedy (n.d.)

- Nuisance training
 - Propensity score (for us: known)
 - Regression functions (Y⁰ / Y¹)
- Make an unbiased estimate of each unit's CATE (pseudo-outcome)

$$\widehat{\varphi}(Z) = \frac{A - \widehat{\pi}(X)}{\widehat{\pi}(X)\{1 - \widehat{\pi}(X)\}} \Big\{ Y - \widehat{\mu}_A(X) \Big\} + \widehat{\mu}_1(X) - \widehat{\mu}_0(X) \quad \text{Unbiased estimate of the unit's treatment effect}$$

- Smooth pseudo-outcome smoothing
- Training nuisance models and smoothing should be on separate subsamples (cross-fitting)

Optimality!

Dimension d=20, CATE smoothness γ =2d

Why does this work?

- Pseudo-outcome is the uncentered efficient influence function of the ATE
- Estimation is harder than the ATE by a factor increasing in dimension of covariates and decreasing in smoothness of the true CATE function

Why does it work better than X-learner?

- X-learner doesn't benefit from convergence in propensity score
- In these experiments we *know* the true propensity score!
- We're using our outcome models as a *control variate* to reduce variance.
 - For a stratified second stage model, this is just AIPW.

Toos

Introducing tidyhte

Nuisance Models

- SuperLearner to learn an ensemble of machine learning models.
- Component models:
 - Intercept-only
 - OLS
 - OLS + 2-way interactions
 - Elastic Net
 - Elastic Net + 2-way interactions
 - Random forests (up to 2000 trees)
 - GBDTs (up to 500 iterations)

SuperLearner Ensemble

Low heterogeneity

High heterogeneity

Coefficient in SuperLearner Ensemble

Variable Importance

- R² based feature importance on the *pseudo-outcome*.
- Fully semiparametric as in nuisance function estimation.
- Williamson, Gilbert, Carone and Simon (2020) "Nonparametric variable importance assessment using machine learning techniques" *Biometrics*
- Shows the reduction in R² from removing a given covariate from a joint model of HTE.
- A well-defined quantity, but not quite as causal as you'd probably like.

HTES

- About to show "Marginal" CATEs:
 - One-dimensional slices of the HTEs.
 - This is simply the average treatment effect at the given covariate level.
 - This does not disentangle which covariates are 🕹 driving 🕹 heterogeneity.

Outcome variable: Affective polarization

Significance level | p>=0.05

Outcome variable: % of feed that is political news

Vignettes

ddimmery.github.io/tidyhte

- devtools::install_github("ddimmery/tidyhte")
- vignette("experimental_analysis")

