Lab1实验报告

高辰潇

人工智能学院

SID: 181220014

任务1:实现multimod

- 我的实现的原理为将64位整数相乘转变为64次整数加法,并在每次相加的过程中累加计算结果。详情请见p1.c。
- 为了说明该实现的正确性,下面从两个方面给出证明

理论层面

我在p1中给出的实现的原理为,将a*b分解为 $a_0*b*2^0+a_1*b*2^1+...+a_{62}*b*2^{62}$ 。由于在计算 2^i*b 时实际上还是会导致溢出,因此需要寻找一个在同余意义上和 2^i*b 相等、但却不会溢出64位整形表达能力的等价表达式。简单分析可知, $(2^i*b) \bmod m = ((...((b \bmod m)*2) \bmod m...)*2) \bmod m$,其中共顺次进行了i+1次mod m操作,i次×2操作。因此可基于此原理设计迭代算法,计算 2^i*b 模m的余数。在p1中,每次取出a的最低位,如果是1,则计算 2^i*b 同余m的余数,然后将它与ret(当前的计算结果)相加,并再次模m。循环结束后,得到的结果即为 $(a*b) \bmod m$.

```
int64_t multimod_p1(int64_t a, int64_t b, int64_t m) {
   uint64_t ret = 0;
   assert(m);
   b = b % m;
   if (a==0 || b==0) return 0;

while(a>0) {
    if (a%2) {
      ret = (uint64_t)(ret + b)%m;
   }

   b = (uint64_t)(b*2)%m;
   a = a/2;
}
   return ret;
}
```

下面讨论溢出问题。可能溢出的语句为if中的(ret+b)和更新b时的b*2。由题目所给条件知, $0\le a,b,m\le 2^{63}-1$,由ret和b的更新公式知每次迭代开始时均有 $ret,b< m\le 2^{63}-1$,因此 $(ret+b)< 2m< 2^{64}-1$, $b*2< 2m< 2^{64}-1$,所以使用强制类型转换uint64_t即可避免溢出问题。

代码测试

在multimod目录下使用make编译,然后运行 test.py 即可进行代码测试,测试代码见 test.py test.py中共进行了100000+63次测试。每次测试都是随机从 $[0,2^{63}-1]$ 中随机生成a,b。对于m,前 63次测试中m取值为 $2^0,2^1,...,2^{62}$,后100000次测试中m取值为 $[0,2^{63}-1]$ 中的随机数。对于每一组输入,将p1的输出与python中的运算输出比对。

实验结果:对于每一组输入a,b,m,p1的结果均与python给出的正确答案吻合。

任务二:性能优化

- 我作出的优化为:将任务一中的乘除运算尽可能替换为移位操作.优化后代码见p2.c
- 首先测量p2实现的正确性。运行 test.py ,发现p2成功通过测试。
- 下面衡量性能差距

性能对比

- 使用time.h模块中的clock函数对multimod函数的性能进行度量,测量脚本为 timing.py.
- 由于我发现运行一次的时间太短,受制于测量精度很可能会测不准。因此需要反复运行多次后取平均值作为性能估计。为此,首先在p1.c和p2.c中定义宏TIMING,定义后会为 p1.c 和 p2.c 添加性能测试的main函数。分别编译 p1.c 和 p2.c ,然后运行 timing.py 。 timing.py 会生成1000000条样例输入写入文件 timing.txt ,而p1和p2将会为这些样例输入计算输出,并打印计算所耗费的总时间。 timing.py 接收到总时间后,计算平均时间作为性能度量,实验结果如下:(表格中每一项为执行一次multimod所需要的时间,单位为微秒。)

	p1	p2
-00	1.364525	1.267435
-01	1.265668	1.257761
-O2	1.229744	1.223874

• 分析:可以发现,在更高的优化选项下p1和p2的性能有一定提升,但是并不显著。横向对比p1和p2 可发现二者的性能有一定差距,但也并不明显。

任务三:分析神秘代码

```
int64_t multimod_p3(int64_t a, int64_t b, int64_t m) {
  int64_t t = (a * b - (int64_t)((double)a * b / m) * m) % m;
  return t < 0 ? t + m : t;
}</pre>
```

分析

- 计算结果的正确性要求以下两个条件
 - 。 不能溢出,即 (a * b (int64_t)((double)a * b / m) * m) (*)属于 $[0,2^{63}-1]$
 - o 数值正确,即 (a * b (int64_t)((double)a * b / m) * m)和 (a * b)模m同余。
- 显然,由于强制类型转换,条件2总是能被满足
- 对于条件1, (int64 t)((double)a * b / m) 可看作 (double)a * b / m 朝0方向的截断。
 - 。为了表示上的方便,定义 a * b / m 为a乘b除以m的精确计算结果, / 可被理解为python中的除号。不妨设 a * b / m 在数值上等于 M.N ,即 M 为整数部分, N 为小数部分
 - 。 若 (double) a*b 可以精确表示 a * b,则 (a * b (int64_t) ((double) a * b / m) * m) = (M.N) *m-M*m = (0.N) *m 。由于m小于 $2^{63}-1$,0.N 小于1,因此(*)式小于 $2^{63}-1$,条件1满足
 - 若 (double) a*b 不能精确表示 a * b , 且偏大,
 则 (int64_t)((double) a * b / m) * m) = M*m or (M+1) *m .因此(*)式
 = (0.N) *m or (0.N) *m-m , 由于 (0.N) *m-m 小于0, 故当后一种情况出现时会发生下溢,条件1可能不被满足
 - 若 (double) a*b 不能精确表示 a * b , 且偏小,
 则 (int64_t)((double) a * b / m) * m) = M*m or (M-1)*m 。因此(*)式
 = (0.N)*m or (0.N)*m+m 。由于 (0.N)*m+m 大于2⁶³ 1, 故当后一种情况出现时,可能会上溢,条件1可能不被满足。
- 综合上述分析可作出结论
 - 。 若 (double) a*b 可以精确表示 a * b ,则计算结果为准确值。为了能够精确表示, a*b 的大小不能超过 $2^{53}-1$,这样double类型的52位尾数+1位隐藏位才能精确表示整数部分。
 - 。 若 (double) a*b 不能精确表示 a * b ,则计算时**可能**会发生溢出,**可能**无法得到正确的结果。
- 注:上述分析中我仅考虑了 (double) a * b 能否精确表示 a * b ,而并未考虑 (double) a * b / m 中相除后使用double致使小数部分被舍入而带来的误差。这是因为:由于 a * b 在数值上可能很大,而double类型在数值较大时"表示能力"很弱,即能表示的数之间间隔很大,这些"间隔"是导致不精确表示的主要因素。相较于做除法时的小数舍入, a*b 时的整数迁移实际上更加宏观。

性能对比

• 测试方法同上,结果如下。

	p1	p2	р3
-O0	1.379005	1.225306	0.404211
-01	1.26583	1.225988	0.379488
-O2	1.264874	1.232756	0.375445