深度学习实践: 庖丁解牛与盲人摸象

吴建鑫 南京大学 教授 & MINIEYE 首席科学家

What is my interest deep learning?

Co-occurrence is not enough

(妈妈每天晚上): 彬彬好好睡觉哦, 睡着以后会有狗狗 猫猫陪彬彬玩的哦

(爸爸中午):现 在给你脱衣服, 过 会儿彬彬该干嘛呢?

(彬彬): 狗狗猫猫!

感谢彬彬小朋友提供此例

DL engineering - research heavy, too!

比亚迪的ADAS前装系统为MINIEYE提供

Understanding & Accelerating

- What is in the representation?
- How is the representation generated?
 - Can we improve or customize it?

How to accelerate the inference?

What is the redundancy?

盲人摸象: 利用已有DL模型或方法,即便我们不理解该表示,我们是否能做些什么?

SCDA: What is object?

Object vs. non-object (background)

Selective Convolutional Descriptor Aggregation for Fine-Grained Image Retrieval Xiu-Shen Wei, Jian-Hao Luo, Jianxin Wu, Zhi-Hua Zhou IEEE Transactions on Image Processing, 2017, 26(6): 2868-2881

Distributed representation > Knowledge

Objectness

- Sum of channel responses as objectness
 - One score for every spatial position
 - Average scores over positions as threshold

■ Can localize objects well

DDT: What is this object?

Deep Descriptor Transforming for Image Co-Localization

Xiu-Shen Wei*, Chen-Lin Zhang*, Yao Li, Chen-Wei Xie, Jianxin Wu, Chunhua Shen, Zhi-Hua Zhou

International Joint Conference on Artificial Intelligence (IJCAI 2017), pp. 3048-3054

Representation for the common object

- Given n images containing the same object
 - What shall be the representation for this object?
- The answer is simple
 - One image $\rightarrow h \times w \times d$ visual descriptor
 - n images \rightarrow a large collection of visual descriptors
 - Find its principal component!
 - Named as DDT --- "deep descriptor transforming"
 - Threshold is O!!

DDT results

- Localizing 6 objects that are not in ILSVRC
 - Yes DDT generalized well!

■ Numerical results

Methods	Chipmunk	Rhino	Stoat	Racoon	Rake	Wheelchair	Mean
[Cho et al., 2015]	26.6	81.8	44.2	30.1	8.3	35.3	37.7
SCDA	32.3	71.6	52.9	34.0	7.6	28.3	37.8
[Li et al., 2016]	44.9	81.8	67.3	41.8	14.5	39.3	48.3
Our DDT	70.3	93.2	80.8	71.8	30.3	68.2	69.1

■ What about the 2nd eigenvector?

Where else are they useful?

■ SCDA

- Fine-grained image retrieval
- Classic general purpose image instance retrieval
- Grouping images for different attributes!

DDT

- Remember DDT is robust to exclude noise?
- Improve webly supervised images
 - Details: arXiv 1707.06397

ThiNet: fast inference on hardware

ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression

Jian-Hao Luo, Jianxin Wu, Weiyao Lin

International Conference on Computer Vision (ICCV 2017), pp. 5058-5066

What to prune?

Connections

$$\begin{pmatrix}
0 & 0.18 & 0 \\
0.23 & 0 & 0 \\
0 & 0 & -0.07
\end{pmatrix}$$

■ Flops vs. running time?

- 80% sparsity
- Dedicated sparse convolution software
- Speed versus dense kernel?
 - Sparse is 3x slower

■ Filter

- Can treat as group sparse
- Best implementation in
 - CPU
 - GPU
 - FPGA
 - ASIC
 - **..**

How to prune?

A technical view

Key: use the next layer's
 activation to guide which
 filter should be removed in
 the current one

An alternative explanation

Intuitive but slow

teacher model

student model

How to evaluate?

Speed

- On actual hardware

Accuracy

- Two most competitive baselines
 - Random pruning!
 - Train from scratch!

&

Generalization ability!

ThiNet applications

Ongoing work (improved upon ICCV paper)

■ ThiNet models

Tiny: 2.66MB disk space

Small: 4.67MB

■ Detection

Model	Size	FPS	mAP
AlexNet	21.3MB	93	51.7
SqueezeNet	17.1MB	68	59.1
ThiNet-Tiny	13.5MB	69	55.0
SqueezeNet-DSD	17.1MB	68	43.9
ThiNet-Small	16.1MB	45	66.4
SSD300 [44]	105.2MB	22	77.2
Fast-YOLO [46]	180MB	89	52.7
Tiny-YOLO [47]	63.5MB	66	57.1

More

- Tested on CPU/GPU/ARM/FPGA
- More applications
 - Image classification
 - Image retrieval
 - Semantic segmentation
 - Style transfer

庖丁解牛: 改进DL模型或方法, 我们能解决什么问题? 或者, 获得什么理解?

MGU— RNN Gates: to have or not to have

LSTM: 3G

- Long short-term memory
 - Avoids gradient vanishing / exploding

■ 3G - 3 gates

$$egin{aligned} oldsymbol{f}_t &= \sigma\left(W_f\left[oldsymbol{h}_{t-1}, oldsymbol{x}_t
ight] + oldsymbol{b}_f
ight)\,, \ oldsymbol{i}_t &= \sigma\left(W_o\left[oldsymbol{h}_{t-1}, oldsymbol{x}_t
ight] + oldsymbol{b}_o
ight)\,, \ oldsymbol{c}_t &= anh\left(W_c\left[oldsymbol{h}_{t-1}, oldsymbol{x}_t
ight] + oldsymbol{b}_o
ight)\,, \ oldsymbol{c}_t &= oldsymbol{f}_t\odot oldsymbol{c}_{t-1} + oldsymbol{i}_t\odot oldsymbol{c}_t\,, \ oldsymbol{c}_t &= oldsymbol{o}_t\odot anh(oldsymbol{c}_t)\,. \end{aligned}$$

Long ShortTerm Memory Sepp Hochreiter and Jurgen Schmidhuber Neural Computation, 9(8):1735-1780,1997

GRU: 2G

■ Gated recurrent unit

- Also widely used
- Similar accuracy with LSTM
- Faster speed

■ 2G - 2 gates

$$egin{aligned} oldsymbol{z}_t &= \sigma\left(W_z\left[oldsymbol{h}_{t-1}, oldsymbol{x}_t
ight] + oldsymbol{b}_z
ight)\,, \ oldsymbol{r}_t &= \sigma\left(W_r\left[oldsymbol{h}_{t-1}, oldsymbol{x}_t
ight] + oldsymbol{b}_r
ight)\,, \ oldsymbol{h}_t &= anh\left(W_h\left[oldsymbol{r}_t\odotoldsymbol{h}_{t-1}, oldsymbol{x}_t
ight] + oldsymbol{b}_h
ight)\,, \ oldsymbol{h}_t &= (1-oldsymbol{z}_t)\odotoldsymbol{h}_{t-1} + oldsymbol{z}_t\odotoldsymbol{ar{h}}_t\,. \end{aligned}$$

Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation

Kyunghyun Cho, Bart van Merienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, and Yoshua Bengio

Empirical Methods in Natural Language Processing (EMNLP), pages 1724-1735, 2014

Minimal gated unit: 1G

- Easier for analysis
- Good performance
 - Faster speed & smaller unit
 - Comparable accuracy

Only 1 gate

- which is minimal
- it is necessary to be gated

$$egin{aligned} oldsymbol{f}_t &= \sigma\left(W_f\left[oldsymbol{h}_{t-1}, oldsymbol{x}_t
ight] + oldsymbol{b}_f
ight)\,, \ oldsymbol{h}_t &= anh\left(W_h\left[oldsymbol{f}_t\odotoldsymbol{h}_{t-1}, oldsymbol{x}_t
ight] + oldsymbol{b}_h
ight)\,, \ oldsymbol{h}_t &= (1-oldsymbol{f}_t)\odotoldsymbol{h}_{t-1} + oldsymbol{f}_t\odotoldsymbol{\hat{h}}_t\,. \end{aligned}$$

[&]quot;Improving speech recognition by revising gated recurrent units", InterSpeech 2017

[&]quot;Parameter Compression of Recurrent Neural Networks and Degradation of Short-term Memory", IJCNN 2017

The CNN "cattle"

FC: this obscured layer is a firewall

(a) ImageNet

(b) Caltech-101

(c) Indoor-67 (d) 9-class RGB (e) 9-class NIR

(f) CUB

In Defense of Fully Connected Layers in Visual Representation Transfer Chen-Lin Zhang, Jian-Hao Luo, Xiu-Shen Wei, Jianxin Wu Pacific-Rim Conference on Multimedia (PCM 2017)

Better generalization via FC

Recognition

	FC	Caltech-101	indoor-67	RGB scene	NIR scene	CUB
VGG-wFC	√	87.24%	66.27%	80.20%	76.40%	73.24%
VGG-w/o-FC	X	88.17%	64.97%	78.80%	75.56%	71.90%
VGG-wFC-fix	√	88.64%	66.56%	81.60%	79.12%	68.42%
VGG-w/o-FC-fix	X	89.40%	64.86%	77.76%	76.52%	67.90%
ResNet-wFC	√	90.89%	74.75%	90.20%	87.87%	81.81%
ResNet-w/o-FC	X	91.03%	74.44%	89.90%	86.86%	81.50%

Retrieval (SCDA)

Models		Avg. pooling		1 0		Avg.+Max pooling	
		Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
VGG-wFC 7×7	√	56.42%	63.14%	58.35%	64.18%	59.72%	65.79%
VGG-w/o-FC 7×7	X	22.26%	29.33%	24.44%	31.51%	26.20%	33.31%
VGG-wFC 14×14	√	55.33%	62.04%	58.03%	63.93%	59.08%	65.45%
VGG-w/o-FC 14×14	X	22.51%	30.06%	24.21%	31.48%	26.61%	33.91%

Pooling: the more info. the higher acc

集成最大汇合:最大汇合时只有最大值有用吗? 张皓,吴建鑫 中国科学技术大学学报,2017,47(10):799-807

pooling = probabilistic ensemble

Max pooling

$$- \begin{bmatrix} 0.0 & 0.7 \\ 0.3 & 0.0 \end{bmatrix} \rightarrow [0.7]$$

■ Ensemble max-pooling

$$\begin{bmatrix}
0.0 & 0.7 \\
0.3 & 0.0
\end{bmatrix} \rightarrow (1-p) \times 0.3 + p \times 0.7$$

■ Implicit ensemble

Like dropout

DLDL: treasure beneath uncertainty

Deep Label Distribution Learning with Label Ambiguity Bin-Bin Gao, Chao Xing, Chen-Wei Xie, Jianxin Wu, Xin Geng IEEE Transactions on Image Processing, 26(6), 2017: 2825-2838

Distributions: generate & compare

- Groundtruth distribution
 - From dataset
 - From prior knowledge
 - Age = 35
 - *Normal* $\mu = 35, \sigma = 3$
- Whenever there is uncertainty is labels
 - Multi-label recognition
 - Semantic segmentation

- Compare distributions (aka, loss)
 - KL divergence between them
 - Softmax: activation → predicted distribution
- Backpropagation rule
 - Simple as you can imagine

$$- \frac{\partial T}{\partial \boldsymbol{\theta}} = (\widehat{\boldsymbol{y}} - \boldsymbol{y}) \frac{\partial x}{\partial \boldsymbol{\theta}}$$

More DLDL applications

■ Semantic segmentation

■ Multi-label recognition

ABC: magnitude not important, sign is!

Learning Effective Binary Visual Representations with Deep Networks

Jianxin Wu, Jian-Hao Luo

arXiv:1803.03004

Learning binary representation

- \blacksquare tanh(αx)
 - Increase α continually

- Approximately binary clamping
 - Decrease r gradually

Deep Binary Reconstruction for Cross-modal Hashing, Li et al., ACM MM 2017 HashNet: Deep Learning to Hash by Continuation, Cao et al., ICCV 2017

ABC properties & applications

- True binary representations
- Converges quickly
 - Fine tuning ILSCRC almost converges in 5 epochs
- Comparable accuracy
- Binary representations generalizes better!
 - 1% higher mAP in Fast R-CNN object detection

Thank you!