## 本节主题

## 流水线的优化

北京大学。嘉课

计算机组成

制作人:连续旅





### 流水线的分析

时钟周期=1分钟







1分钟



1分钟



1分钟

≈4倍

|       | 流水线方式     | 非流水线方式   |
|-------|-----------|----------|
| 单独一道菜 | 4+分钟      | 4分钟      |
| 做四道菜  | 7+分钟      | 16分钟     |
| 连续工作  | 每1+分钟上一道菜 | 每4分钟上一道菜 |

### 流水线的平衡性











1分钟

2分钟

1分钟

1分钟

| 不平衡的流 | 水线)流水线方式  | 非流水线方式   |
|-------|-----------|----------|
| 单独一道菜 | 8+分钟      | 5分钟      |
| 做四道菜  | 14+分钟     | 20分钟     |
| 连续工作  | 每2+分钟上一道菜 | 每5分钟上一道菜 |

### 流水线的调整







1分钟







1分钟

中 1分钟

| 平衡的流力 | 线 流水线方式   | 非流水线方式   |    |
|-------|-----------|----------|----|
| 单独一道菜 | 5+分钟      | 5分钟      |    |
| 做四道菜  | 8+分钟      | 20分钟     |    |
| 连续工作  | 每1+分钟上一道菜 | 每5分钟上一道菜 | ≈5 |

#### "超级流水线"

- ◉ "超级流水线"技术(Super Pipelining)
  - 。将五级流水线细分为更多的阶段,增加流水线的深度
  - 。提升时钟频率,从而提高指令吞吐率
- 五级流水线S1S2S3S4S5
  - 。时钟周期:200ps+50ps=250ps

⑤ 十级流水线 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

。时钟周期:100ps+50ps=150ps

#### 流水线的深度

- № 流水线的级数是越多越好吗?
  - 。否!
- 五级流水线S1S2S3S4S5
  - 。时钟周期:200ps+50ps=250ps
  - 。单条指令的延迟:1250ps
  - 。流水线寄存器延迟所占比例:50ps/250ps=20%
- 十级流水线 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10
  - 。时钟周期:100ps+50ps=150ps
  - 。单条指令的延迟:1500ps
  - 。流水线寄存器延迟所占比例:50ps / 150ps = 33%

#### 处理器流水线深度的变化

1986年, R2000: 5级

1988年,R3000:5级

1991年, R4000 (64位):8级

1993年, Pentium: 5级

1995年, Pentium Pro: 12级

1997年,ARM9: 5级

2002年, ARM11: 8级

取指 译码 地址生成 执行 回写 RAT ROB DIS IF1 IF2 IF3 |ID1|ID2| EX WB RR RET 取指 执行 译码 访存 写回 发射 取指1 取指2 译码 执行1 执行2 执行3 写回

2004年, Pemtium 4(Prescott): 31级

2006年, Core 2 Duo(Merom): 14级

2008年 , Core i7(Nehalem) : 16级

2009年, Cortex-A8:13级

2010年,Cortex-A9:11级

2011年, Cortex-A15:15级

2013年, Core i7(Haswell): 14级

2013年, Cortex-A57:15级

# 本节小结

## 流水线的优化

北京大学。嘉课

计算机组成

制作人:连续旅



