Лабораторная работа

Изучение механизма окисления $LiFePO_4$ водным раствором пероксида водорода методом прямой потенциометрии

Александров Максим, Кузнецов Роман, Тналиев Тимур Б04-202

27 сентября 2024

1 Введение:

В работе изучается механизм окисления водными растворами пероксида водорода микрочастиц $LiFePO_4$, который является одним из наиболее перспективных материалов используемых при создании литий-ионных аккумуляторов. Работа имеет вариабельную практическую часть для отработки методики экспрессной оценки функциональных свойств различных коммерческих образцов $LiFePO_4$.

2 Теоретическая справка:

Данная лабораторная работа посвящена исследованию кинетики процесса деинтеркаляции (делитирования) одного из активных материалов положительного электрода - литий железо фосфата.

Окисление нерастворимых в воде микрочастиц $LiFePO_4$ проводится в слабо щелочной среде с рH > 8. При этом из них происходит выделение ионов лития (делитирование), а отрицательный заряд фосфат-иона компенсируется за счет изменения окисления ионов железа с +2 до +3. Стехиометрическое уравнение реакции окисления $LiFePO_4$ имеет вид:

$$2LiFePO_4 + H_2O_2 \longrightarrow 2FePO_4 + 2LiOH \tag{1}$$

Образующийся фосфат железа $FePO_4$ является нерастворимым в воде соединением, но в кислой среде он растворяется с образованием ионов трехвалентного железа и фосфатной кислоты. Поэтому проведение этой реакции в данных условиях моделирует процессы, происходящее при зарядке литий-ионного аккумулятора с катодом из композита на основе $LiFePO_4$:

$$LiFePO_4 - xe^- \longrightarrow Li_{(1-x)}FePO_4 + xLi^+$$
 (2)

Задачей лабораторной работы является исследования влияния pH растворов H_2O_2 на скорость окисления $LiFePO_4$, с целью изучения механизма данного процесса. Для этого предлагается проводить эту реакцию в буферных растворах K_2HPO_4 с концентрацией 5-10 мМ и значениями pH в диапозоне 7-9 в режиме pH-статирования, реализуемого с помощь постепенного

добавления раствора соляной кислоты. Другим вариантом эксперимента может быть сравнительный анализ кинетики окисления различных коммерческих и опытных образцов $LiFePO_4$, отличающихся дисперсным составом, а также наличием специальных химических добавок и примесей природного происхождения.

Окисление нерастворимого в воде $LiFePO_4$ пероксидом водорода к гетерогенным гетерофазным реакциям. Характерной особенностью этого процесса является локализация реакционной зоны на поверхности раздела твердого реагента - $LiFePO_4$ и твердого продукта реакции - $FePO_4$. Такая поверхность образуется и изменяется в результате самого химического процесса, что может приводить к переходу реакции из одной макрокинетической области в другую даже при сохранении постоянными значений концентраций жидких реагентов.

Кинетика хорошо описывается уравнением Ерофеева:

$$\alpha = 1 - e^{-\int pdt},\tag{3}$$

где p- вероятность реагирования, α - доля прореагировавшего вещества к моменту времени t.

$$\alpha = 1 - e^{-kt^n},\tag{4}$$

Обобщённо- кинетическое уравнение Ерофеева-Колмогорова, где n - число последовательных стадий при образовании устойчивого начального центра новой фазы, плюс постоянное число, характеризующее форму зародыша, и равное 3 при образовании сферического зародыша, 2 – цилиндрического и 1 – плоского. Если n>1, то процесс находится в кинетической области, при n<1 - процесс в диффузионной области. Для анализа данных строят график в линеаризованных координатах $ln(-ln(1-\alpha))$ от lnt. Тангенс угла наклона - n, пересечение - lnk.

Другой закон зародышеобразования был предложен Авраами:

$$N(t) = N_0[1 - exp(-kt^n)], (5)$$

где N_0 - число потенциальных центров зародышеобразования, имеющих равную вероятность превратиться в растущий зародыш; N(t) - реальное число зародышей, образовавшееся к моменту времени t.

Выражение для скорости изменения степени превращения вещества (α) в продукт новой фазы имеет вид(справедливо при малых α :

$$\alpha(t) = \frac{8\pi\rho N_0 \nu}{k_1^3 m_0} \left[e^{-k_1 t} - 1 + k_1 t - \frac{(k_1 t)^2}{2} + \frac{(k_1 t)^3}{6} \right]$$
 (6)

Эту реакцию можно рассматривать как реакцию ионного обмена между Li^+ и Fe^3+ . При этом значения сорбционной ёмкости зависят от времени сорбции. Изотермы катионного обмена описываются уравнением Ленгмюра:

$$A_t = A_m k C_p \frac{1}{1 + k C_p},\tag{7}$$

где К - константа Ленгмюра, C_p -равновесная концентрация сорбата, A_t - текущее значение сорбционной ёмкости, A_m - величина сорбционной емкости в равновесных условиях. .

При предположении, что количество реагирующих центров в сорбенте зависит не только от концентрации сорбата в растворе C, о и от времени сорбции. Также десорбция принята зависимой от концентрации сорбата в растворе и относительной величины ёмкости сорбента:

$$A_t = k_1 C t (1 - \frac{A_t}{A_m})$$
 $A_t = k_2 C \frac{A_t}{A_m}$ $\frac{1}{A_t} = \frac{1}{A_m} + \frac{1}{ktA_m},$ (8)

где k -константа скорости реакции ионного обмена (c^{-1}) , определяется из угла наклона $1/A_t(1/t)$.

Поскольку в эксперименте для определения концентрации протонов и ионов лития используется метод потенциометрии, рассмотрим его основные теоретические положения. Метод потенциометрии основан на измерении напряжения на электродах ячейки в отсутствие тока. При этом, один из электродов является индикаторным электродом, а другой — электродом сравнения. Измеряемое вольтметром напряжение на электродах ячейки в соответствии с уравнением Нернста в общем случае равно:

$$E_{eq} = E_0 + \frac{RT}{zF} ln \frac{a_{ox}}{a_{red}} \tag{9}$$

3 Ход работы:

Снизу представлены данные, которые мы получили в ходе лабораторной работы.

t, мин	С, ммоль/л	V, мкл
0	0.586	1000
1	0.885	960
2	1.102	930
3	1.3	900
4	1.55	880
5	1.83	860
6	1.87	845
7	2.04	825
8	2.2	805
9	2.45	790
10	2.43	780
11	2.61	765
12	2.75	750
13	2.87	740
14	2.99	725
15	3.12	710

 ${
m Ta}$ блица 1: p ${
m H}=9.5$

$egin{array}{c cccccc} t, \ \text{мин} & C, \ \text{ммоль}/л & V, \ \text{мкл} \\ \hline 0 & 0.770 & 880 \\ \hline 1 & - & - \\ \hline 2 & 1.48 & 725 \\ \hline 3 & 1.81 & 700 \\ \hline 4 & 2.13 & 655 \\ \hline 5 & 2.38 & 620 \\ \hline 6 & 2.67 & 595 \\ \hline 7 & 2.94 & 565 \\ \hline 8 & 3.17 & 540 \\ \hline 9 & 3.4 & 515 \\ \hline 10 & 3.63 & 490 \\ \hline 11 & 3.87 & 465 \\ \hline 12 & 4.08 & 435 \\ \hline \end{array}$			
1 - 2 1.48 725 3 1.81 700 4 2.13 655 5 2.38 620 6 2.67 595 7 2.94 565 8 3.17 540 9 3.4 515 10 3.63 490 11 3.87 465	t, мин	С, ммоль/л	V, мкл
2 1.48 725 3 1.81 700 4 2.13 655 5 2.38 620 6 2.67 595 7 2.94 565 8 3.17 540 9 3.4 515 10 3.63 490 11 3.87 465	0	0.770	880
3 1.81 700 4 2.13 655 5 2.38 620 6 2.67 595 7 2.94 565 8 3.17 540 9 3.4 515 10 3.63 490 11 3.87 465	1	-	-
4 2.13 655 5 2.38 620 6 2.67 595 7 2.94 565 8 3.17 540 9 3.4 515 10 3.63 490 11 3.87 465	2	1.48	725
5 2.38 620 6 2.67 595 7 2.94 565 8 3.17 540 9 3.4 515 10 3.63 490 11 3.87 465	3	1.81	700
6 2.67 595 7 2.94 565 8 3.17 540 9 3.4 515 10 3.63 490 11 3.87 465	4	2.13	655
7 2.94 565 8 3.17 540 9 3.4 515 10 3.63 490 11 3.87 465	5	2.38	620
8 3.17 540 9 3.4 515 10 3.63 490 11 3.87 465	6	2.67	595
9 3.4 515 10 3.63 490 11 3.87 465	7	2.94	565
10 3.63 490 11 3.87 465	8	3.17	540
11 3.87 465	9	3.4	515
	10	3.63	490
12 4.08 435	11	3.87	465
	12	4.08	435

Таблица 2: pH = 8.2

t, мин	С, ммоль/л	V, мкл
0	-	-
1	-	-
2	2.74	840
3	3.30	760
4	3.80	695
5	4.28	645
6	7.83	595
7	5.14	545
8	5.54	520
9	5.96	460
10	6.36	420
11	6.74	380
12	7.05	335
13	7.36	310
14	7.73	265
15	8.08	225

Таблица 3: pH = 7.0

По этим таблицам построим кинетические кривые.

Рис. 1: pH = 7

Рис. 2: pH = 8

Рис. 3: pH = 9.5

Построим графики в координатах $\ln{(-\ln{(1-\alpha)})}(\ln{t})$, где $\alpha=\frac{C}{C_0}$ - доля прореагировавшего вещества к моменту времени t.

Рис. 4: Уравнение Ерофеева-Колмогорова: pH=9.5

Рис. 5: Уравнение Ерофеева-Колмогорова: pH = 8

Рис. 6: Уравнение Ерофеева-Колмогорова: pH=7

рН	9.5	8.0	7.0
$n = \tan a$	1/2	2/3	3/4
$\ln k$	-2.49	-2.33	-1.73
k	0.082	0.097	0.17

Таблица 4: Константы скорости и коэффициент п

По уравнению (8) определим константы скорости другим способом. Построим зависимость обратной концентрации ионов лития от обратной величины времени:

Рис. 7: Уравнение Ленгмюра: pH = 9.5

Рис. 8: Уравнение Ленг
мюра: р ${
m H}=8$

Рис. 9: Уравнение Ленг
мюра: р ${
m H}=7$

Экспериментальные точки апроксимируются прямой. Получаем зависимость y=ax+b, где $a=\frac{1}{A_m},\,b=\frac{1}{k\cdot A_m}$

рН	9.5	8.0	7.0
k	0.087	0.076	0.068

Таблица 5: Константы скорости

Также построим график зависимости $lg(K)(lg[H^+])$:

Рис. 10: График

4 Вывод:

В данной лабораторной работе была изучения кинетика окисления $LiFePO_4$ в водной щелочной среде в растворе для определния кинетических характеристик процесса делитирования в зависимости от кислотности среды. Сделан вывод о переносе через слой продукта реакции как лимитирующей стадии в щелочной среде. Были использованы 2 модели (Ленгмюр и Ерофеев-Колмогоров) для расчета константы скорости. Одна модель описывает опыт в начальные моменты времени, другая - в конце опыта. В первых 2 опытах мы получили, что константы скорости совпадают по порядку.