Universidad Nacional de Río Negro Física III B - 2018

Unidad 01 -

Clase U01 C02 - 02

Fecha 12 Mar 2019

Cont Teoría Cinética

Cátedra Asorey

Web github.com/asoreyh/unrn-f3b

YouTube https://goo.gl/nNhGCZ

Unidad 1: Calor

Termodinámica:

(del griego θερμο-, termo, que significa **calor** y δύναμις, dínamis, que significa **fuerza**)

parte de la **Física** que describe **estados de equilibrio a nivel macroscópico**.

• Entre todos:

- Es una forma de energía
- Está relacionado con la transferencia de energía
- "flujo" de calor → concepto antiguo: "calórico"
- Sin acciones externas, el calor se transfiere (*fluye*) de un objeto "caliente" a un objeto "frío"

• Entonces:

- La transferencia de calor (energía) se produce sólo cuando hay una diferencia de temperatura entre los objetos
- Pero entonces ¿qué es la temperatura? →

¿Qué es la temperatura?

- Entre todos:
 - Hay características de un cuerpo que dependen de la cantidad de calor → propiedades termométricas
 - Si entre dos objetos no hay transferencia de calor, están en en equilibrio térmico
 - Magnitud comparativa →
- Dos objetos que están en equilibrio térmico están a la misma temperatura.
 - Luego, si entre dos objetos hay transferencia de calor → no están en equilibrio térmico → los objetos están a diferente temperatura

Principio Cero de la Termodinámica

- Principio → es una regla que cuyo cumplimiento se verifica experimentalmente y que aún no ha podido refutarse, pero tampoco probarse
- Principio cero:

Si dos objetos están en equilibrio térmico con un tercer objeto, entonces los tres están en equilibrio térmico entre sí.

Esta definición → escala de temperaturas

Escalas de temperaturas

Imagen tomada de http://www.quimicafisica.com/escalas-de-temperatura.html
Mar 12, 2019 H. Asorey - F3B 2019

8/35

Escalas de temperaturas Kelvin (siempre), Celsius (a veces)

Mar 12, 2019 H. Asorey - F3B 2019 9/35

- Gas: estado de agregación de la materia en el cuál sus constituyentes interactúan muy débilmente y no forman enlaces entre sí
- Un gas ideal es una construccion teórica (mencionen otras). Según este modelo:
 - Las partículas que lo forman son puntuales (volumen despreciable)
 - Las partículas no interactúan entre sí, salvo a través de choques elásticos
- Hay sistemas físicos reales que se asemejan al comportamiento idealizado de un gas ideal

Gases reales

- Átomos y moléculas con interacción entre si (pero de corta distancia) → Fuerzas de Van der Waals
 - Monoatómicos: nobles, He, Ar,...
 - Diatómicos: H₂, O₂, N₂,...
 - Triatómicos: CO₂, H₂O(*)
 - Complejos: NH₃
- Mejor aproximación: gases monoatómicos en condiciones de baja presión y temperatura (baja densidad)

Por ejemplo: agitación térmica (volveremos)

Algunos números

- Radio H2: 0,74A
- ¿Volumen de la molécula?
- ¿Mol de moléculas?
- Volumen molar de un gas CNPT
- ¿Fracción ocupada por las moléculas del gas?

Algunos números

- Radio H2: 0,74A
- ¿Volumen de la molécula?
- ¿Mol de moléculas?
- Volumen molar de un gas CNPT
- ¿Fracción ocupada por las moléculas del gas?

10-5

~ 1 mL en un balde de 20L

Value I mal h gas
$$H_z = 22.4 L$$
 (a) $A = 1.02 \times 10^{-6} \text{ m}^3$

Tolume I mal h gas $A = 22.4 L$ (a) $A = 1.02 \times 10^{-6} \text{ m}^3$

The fracción $A = 1.02 \times 10^{-6} \text{ m}^3$

Thocain $A = 1.02 \times 10^{-6} \text{ m}^3$

Así se vería un gas ideal (a muy alta presión)

Mar 12, 2019 H. Asorey - F3B 2019 16/35

Postulados de la teoría cinética: Gas ideal

- Formado por un gran número de moléculas idénticas
- Separación media es grande respecto a las dimensiones
 - Volumen despreciable respecto al volumen contenedor
- Se mueven aleatoriamente con velocidades diferentes
 - La velocidad media de las moléculas es constante
- Obedecen las leyes de Newton
 - Sólo interactúan (entre sí y con el recipiente) a través de choques elásticos
- El gas está en equilibrio térmico con el recipiente

El modelo de trabajo

 Sean N partículas idénticas de masa m en un recipiente de volúmen V

Sobre las velocidades

Sea el vector velocidad de la molécula i-ésima:

$$\vec{\mathbf{v}}_{i} = (\mathbf{v}_{i,x}, \mathbf{v}_{i,y}, \mathbf{v}_{i,z})$$

 El promedio de la velocidad en alguna dirección es cero (si no, el centro de masas del sistema se desplaza en la dirección no nula!):

$$\langle v_{x} \rangle \equiv \frac{1}{N} \sum_{i}^{N} v_{i,x} \rightarrow \langle v_{x} \rangle = 0, \langle v_{y} \rangle = 0, \langle v_{z} \rangle = 0$$

 Las velocidades en cada dirección no están relacionadas entre sí

$$\langle v_x v_y \rangle = 0, \langle v_x v_z \rangle = 0, \langle v_y v_z \rangle = 0$$

• Entonces:

$$\langle \vec{v}^{2} \rangle = \langle \vec{v} \cdot \vec{v} \rangle = \langle (v_{x}, v_{y}, v_{z}) \cdot (v_{x}, v_{y}, v_{z}) \rangle$$

$$\langle \vec{v}^{2} \rangle = \langle v_{x}^{2} + v_{y}^{2} + v_{z}^{2} + 2(v_{x}v_{y} + v_{x}v_{z} + v_{y}v_{z}) \rangle$$

$$\langle \vec{v}^{2} \rangle = \langle v_{x}^{2} \rangle + \langle v_{y}^{2} \rangle + \langle v_{z}^{2} \rangle + 2(\langle v_{x}v_{y} \rangle + \langle v_{x}v_{z} \rangle + \langle v_{y}v_{z} \rangle)$$

$$\langle \vec{v}^{2} \rangle = \langle v_{x}^{2} \rangle + \langle v_{y}^{2} \rangle + \langle v_{y}^{2} \rangle + \langle v_{z}^{2} \rangle$$

Y como todas son equivalentes (volveremos)

$$\langle \mathbf{v}_{x}^{2} \rangle = \langle \mathbf{v}_{y}^{2} \rangle = \langle \mathbf{v}_{z}^{2} \rangle$$

• Entonces:

$$\langle v^2 \rangle = 3 \langle v_x^2 \rangle$$

Choques en las paredes del recipiente

Choques en las paredes del recipiente

Antes del choque

Después del choque

- El choque es elástico. Luego, en el choque con las paredes:
 - en la dirección y, $v_y = u_y$
 - en la dirección x, $v_x = -u_x$

(¿qué pasa con la conservación de p en este caso?)

El cambio de p en la dirección x:

$$\Delta \vec{p} = \Delta p_x = m(v_x - u_x)$$

$$\Delta p = -2mv_x$$

$$\Rightarrow |(\Delta p)| = 2mv_x$$

¿Cuántos choques se producen en la pared en un tiempo At?

- En el intervalo ∆t, sólo impactarán en la pared A aquellas que estén a cierta distancia y en una cierta dirección
 - tres casos posibles

¿Cuántas moléculas golpearán A en At?

- Verdes son las de interés: golpearán A en el tiempo Δt
- El volúmen de interés es $V_i = A x = A \langle v_x \rangle \Delta t$
- En ese volumen hay $N' = \left(\frac{N}{V}\right)V_i$ Supongamos la mitad van en dirección a A: $N_i = \left(\frac{N}{V}\right)\left(\frac{V_i}{2}\right)$

¿Cuántas moléculas golpearán A en At?

- Verdes son las de interés: golpearán A en el tiempo Δt
- El volúmen de interés es $V_i = A x = A \langle v_x \rangle \Delta t$
- En ese volumen hay $N' = \left(\frac{N}{V}\right)V_i$ Supongamos la mitad van en dirección a A: $N_i = \left(\frac{N}{V}\right)\left(\frac{V_i}{2}\right)$

Cambio total de cant. de movimiento

- En el volúmen de interés tengo entonces
- En cada choque "promedio": $\langle \Delta p \rangle = 2 \text{ m} \langle v_x \rangle$
- Luego, en N_i choques el cambio total en la dirección x:

$$\Delta p_{x} = \sum_{j=0}^{N_{i}} \Delta p_{j} = \left(\frac{N_{i}}{N_{i}}\right) \left(\sum_{j=0}^{N_{i}} \Delta p_{j}\right)$$
$$\Delta p_{x} = N_{i} \langle \Delta p \rangle$$

Y entonces

$$\Delta p_{x} = \left(\frac{N}{V}\right) \left(\frac{A \langle v_{x} \rangle \Delta t}{2}\right) \left(2 m \langle v_{x} \rangle\right) \rightarrow \Delta p_{x} = \left(\frac{N}{V}\right) \langle v_{x} \rangle^{2} A \Delta t$$

Mar 12, 2019

Presión en el recipiente

Y la fuerza sobre la pared A en la dirección x:

$$F_{x} = \frac{dp_{x}}{dt} \simeq \frac{\Delta p_{x}}{\Delta t} \rightarrow F = \frac{N}{V} m \langle v_{x}^{2} \rangle A$$
Notar el cambio

Y por lo tanto la presión en la pared A, P,=F/A →

$$P_x = \frac{N}{V} m \langle v_x^2 \rangle$$

• Todas las paredes son iguales, y dado que: $\langle v^2 \rangle = 3 \langle v_x^2 \rangle$

$$P = \left(\frac{N}{V}\right) \frac{1}{3} m \langle v^2 \rangle \rightarrow P = \frac{2}{3} \left(\frac{N}{V}\right) \left(\frac{1}{2} m \langle v^2 \rangle\right)$$
H. Asorey - F3B 2O19

H. Asorey - F3B 2019

27/35

La presión, hasta aquí:

$$P = \frac{2}{3} \left(\frac{N}{V} \right) \left(\frac{1}{2} m \langle v^2 \rangle \right)$$

Reordenando

$$\frac{PV}{N} = \left(\frac{2}{3} \langle E_K \rangle\right)$$

Ecuación de estado microscópica

O también:

$$\frac{PV}{N}$$
 = constante

¿Cómo? ¿¿¿no era PV = n R T????

- La <E_k> es "macroscópicamente inaccesible"
- Definimos la temperatura media

$$T \equiv \frac{1}{k_{B}} \left(\frac{2}{3} \langle E_{K} \rangle \right)$$

donde k_B = 1,3806 x 10⁻²³ J/K es la constante de Boltzmann.

- La temperatura media es una medida de la energía cinética media de las partículas del sistema.
- Luego: $\frac{PV}{N} = k_b T$
- Y entonces

$$PV = Nk_bT$$

Al fin, PV = nRT

Multiplicando y dividiendo por el Número de Avogadro:

$$PV = \frac{N}{N_A}(N_A k_b)T$$

• N/N_A es el número de moles de gas en el recipiente V, n:

$$PV = n(N_A k_b)T$$

• Y al producto $(N_{\Delta} k_{B})$:

$$R = N_A k_b = (6,022 \times 10^{23} \text{ mol}^{-1})(1,3806 \times 10^{-23} \text{ J K}^{-1})$$

$$R = N_A k_b = 8,314 \text{ J mol}^{-1} \text{ K}^{-1}$$

Resultando:

PV=nRTH. Asorey - F3B 2019

Ecuación de estado de un gas ideal 30/35

De la teoría cinética, obtuvimos

Ecuación de estado de un gas ideal

$$PV=nRT$$

$$R \equiv N_A k_b = 8,314 \text{ Jmol}^{-1} \text{ K}^{-1}$$

Aplicación: buscando al Helio

- La concentración de Helio en la atmósfera es tan baja (~5.2 ppm) que este gas fue descubierto en el Sol (Lockyer, 1868)
- Sin embargo, es muy abundante en el Universo
- ¿Dónde está el Helio?

Nota:

Vamos a hacer esta cuenta varias veces durante el semestre. Empezamos aquí

Escape atmosférico (1ra parte)

Ма

VOI-COZ - 2

Mejorando el cálculo

- Lo que hay que recordar es que hemos utilizado la velocidad promedio del Helio
- Un conjunto grande (~Número de Avogadro) de átomos de Helio a 300K, la <v> ~ 1370 m/s ~ 0,1 v_e.
- Es ~ 10% de la velocidad de escape
- Las velocidades de cada átomo individual podrá distar (y mucho) de la promedio

Funciones de distribución seguimos en la próxima

probability density $f(u) = \left[\frac{M}{2\pi RT}\right]^{3/2} \cdot 4\pi u^2 \cdot e^{-Mu^2/2RT}$ function for speed