[Co-Ordination Compound]

Inside the Chapter.....

- 9.1 योगात्मक यौगिक
- 9.2 उपसहसंयोजक यौगिकों से संबंधित प्रमुख शब्द एवं उनकी परिभाषाएँ
- 9.3 लिंगेडो के प्रकार
- 9.4 उपसहसंयोजक यौगिकों से संबंधित परिभाषिक शब्द
- 9.5 समन्वय मंडल एवं आयनिक मंडल
- 9.6 समन्वय बहुफलक
- 9.7 होमोलेप्टिक तथा हैट्रोलेप्टिक संकल
- 9.8 केन्द्रिय धातु परमाणुओं की ऑक्सीकरण संख्याँ
- 9.9 उपसहसंयोजक यौगिकों के IUPAC नामकरण

- 9.10 उपसहसंयोजक यौगिकों में समावयवता
- 9.11 संरचनात्मक समावयवता
- 9.12 त्रिविम समावयवता
- 9.13 उपसहसंयोजक यौगिकों में बंध
- 9.14 उपसहसंयोजक यौगिकों का स्थायित्व
- 9.15 उपसहसंयोजक यौगिकों का महत्व
- 9.16 पाठ्यपुस्तक के प्रश्न-उत्तर
- 9.17 कुछ महत्त्वपूर्ण प्रश्न

9.1 योगात्मक योगिक

- जब दो या दो से अधिक सरल स्थायी यौगिकों को आण्विक अनुपात में मिश्रित कर वाष्पित किया जाता है, तो इसके फलस्वरूप नवीन स्टाईकियोमितीय पदार्थों के क्रिस्टल प्राप्त होते हैं।
- इन यौगिकों को योगात्मक यौगिक कहते हैं। इनके निम्न उदाहरण है— उदा.
- (i) $K_2SO_4 + Al_2(SO_4)_3 + 24H_2O \rightarrow$

 K_2SO_4 $Al_2(SO_4)_3.24H_2O$

(ii) $\text{FeSO}_4 + (\text{NH}_4)_2 \text{SO}_4 + 6\text{H}_2 \text{O} \rightarrow$

FeSO₄.(NH₄)₂ SO₄.6H₂O

- (iii) $KCl + MgCl_2 + 6H_2O \rightarrow KCl.MgCl_2.6H_2O$
- (iv) $4KCN + Fe(CN)_2 \rightarrow K_4[Fe(CN)_6]$
- (v) $CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]SO_4$
- (v) KCN + AgCN \rightarrow K[Ag(CN)₂] योगात्मक यौगिक दो प्रकार के होते हैं-

(i) द्विक लवण (Double Salt)

द्विक लवण, यौगिकों का एक भिन्न वर्ग है।

- जब समान ऋणायन युक्त दो साधारण लवणों को आपस में मिश्रित कर शुष्क होने तक वाष्पित करते हैं, तो द्विक लवण प्राप्त होते हैं।
- ये प्राय: जलयोजित (जलीय) क्रिस्टलीय लवण होते हैं।
- इनका अस्तित्व सिर्फ ठोस अवस्था में होता है।
- ये जलीय विलयनों में अपने आयनों में पृथक हो जाते हैं।
- इन लवणों में धातु आयन अपनी सामान्य संयोजकता प्रदर्शित करते हैं।
- इन लवणों से तीन आयन्स बनते हैं दो सामान्य धनायन व एक सामान्य ऋणायन है।

जैसे—

1. मोर लवण (Mohar's Salt)— $FeSO_4$ (NH_4) $_2SO_4$ $6H_2O$ उपर्युक्त लक्षण, $FeSO_4$ व (NH_4) $_2SO_4$ के सममोलर अनुपात में वाष्पिकृत होने से बनता है। जब इस द्विक लवण को जल में घोलते हैं तो ये निम्न आयनों का परीक्षण देते हैं।

 ${\rm Fe^{2^+}},\,{\rm NH_4}^+,\,{\rm SO_4}^{2^-}$ आयन का परीक्षण देते है।

- 2. क्रोमएलम (Cromealum)— K₂SO₄.Cr₂(SO₄)₃.24H₂O
- 3. फेरिक एलम (Ferricalum)— (NH₄)₂SO₄,Fe₂(SO₄)₃.24H₂O
- 4. पोटाश फिटकरी (Potashalum)— K₂SO₄.Al₂(SO₄)₃.24H₂O
- 5. कार्नेलाइट (Carnelite)—KCl, MgCl₂.6H₂O

सारणी 9.2

क्र.	द्विक लवण	परीक्षण देने वाले
सं.		आयन्स
1.	कार्नेलाइट KCl, MgCl ₂ .6H ₂ O	K [⊕] , Mg ²⁺ , Cl
2.	मोर लवण	Fe ² ¹ . NH ₄ [⊕] , SO ₄ ² ⁻
	$FeSO_4$, $(NH_4)_2SO_4$. $6H_2O$	
3.	क्रोम एलम	K ⁻ . Cr ³⁻ . SO ₄ ²⁻
	K_2SO_4 - $Cr_2(SO_4)_3$ -24 H_2O	•
4.	फेरिक एलम	NH ₄ : Fe ³⁻ , SO ₄ ²⁻
ļi	$(NH_4)_2SO_4.Fe_2(SO_4)_3.24H_2O$	•
[5.	पोटाश फिटकरी	K ⁻ . Al ³⁺ , \$O ₄ ²⁻
ļ 	K ₂ SO ₄ Al ₂ (SO ₄) ₃ ,24H ₂ O	

(ii) संकुल यौगिक या उपसहसंयोजक यौगिक (Co-ordination compounds)

- इनका निर्माण ठीक उसी प्रकार से होता है जिस प्रकार से द्विक लवणों को बनाते हैं।
- एक बीकर में पोटेशियम सायनाइड एवं फेरस सायनाइड के जलीय बिलयन को मिश्रित कर शुष्क होने तक वाष्पिकृत करने पर, संकुल यौगिक वा उपसहसंयोजक यौगिक प्राप्त होते हैं। जिसे पोटेशियम फेरोसायनाइड कहते हैं।

 $4KCN_{(aq)} + Fe (CN)_{2(aq)} \rightarrow K_4[Fe(CN)_6]$

- जब किसी उपसहसंयोजक यौगिक को जल में घोला जाता हैतो ये सिर्फ दो आयन्स देते हैं।
- (i) एक साधारण धनायन व एक संकुल ऋणायन— $K_4 Fe(CN)_6 \xrightarrow{\ \ aq} \ 4K^-_{(aq)} + [Fe(CN)_6]^4_{\ \ (aq)}$ साधारण धनायन संकुल ऋणायन
- (ii) एक संकुल धनायन व एक सामान्य ऋणायन $[Co(NH_3)_6]Cl_3 \xrightarrow{-aq} [Co(NH_3)_6]^{3-} + 3Cl^-$ संकुल धनायन साधारण ऋणायन
- (iii) एक संकुल धनायन व एक संकुल ऋणायन

 $[Co(NH_3)_6]$ $[Cr(CN)_6]$ $\xrightarrow{\text{aq}}$ $[Co(NH_3)_6]^{3+}$ + $[Cr(CN)_6]^{3-}$ $\stackrel{\text{discrete services}}{\text{discrete services}}$ $\stackrel{\text{discrete services}}{\text{discrete services}}$

संकुल धनायन संकुल ऋणायन "जब दो स्थायी आण्विक यौगिकों के संयोग के परिणामस्वरूप बने आण्विक यौगिक, जिसमें इनकी पहचान टोस व विलयन अवस्था में बनी रहती है एवं इसके गुण इनके अवयवी कणों से बिल्कुल भिन्न होते हैं, उपसहसंयोजक यौगिक कहते हैं।

Note—हमने देखा कि KCN व $Fe(CN)_2$ को मिलाने से $K_4Fe(CN)_6$ प्राप्त हुआ, संयोग में भाग लेने वाले साधारण लवणों से प्राप्त आयन K^- व CN है लेकिन $[K_4Fe(CN)_6]$ से प्राप्त आयन K^- व $[Fe(CN)_6]^4$ है। अत: पहले से उपस्थित आयन Fe^2 व CN अब $[Fe(CN)_6]^4$ फेरोसायनाइड में बदल गये है। अत: प्राप्त यौगिक $K_4Fe(CN)_6$. Fe^2 व CN आयन के परीक्षण नहीं देता है।

सारणी 9.3 उपसहसंयोजक यौगिक धनायन ऋणायन 1. $[Ag(NH_3)_2]C1$ $[Ag(NH_3)_2]^T$ C1- $[\mathrm{Cu}(\mathrm{H_2O})_4]\mathrm{SO}_4$ $[Cu(H_2O)_4]^{2^{+}}$ $SO_4^{2..}$ 3. $K_2[PtF_6]$ Κ. $[PtF_6]^2$ 4. $K_3[Al(C_2O_4)_3]$ K^{\dagger} [Al(C₂O₄)₃]³[Co(NH₃)₆][Cr(CN)₆] $[Co(NH_3)_6]^{3-}$ $[Cr(CN)_6]^3$ 6. $[Pt(NH_3)_4]$ $[PtCI_4]$ $[Pt(NH_3)_4]^{2-}$ $[P1Cl_4]^{2}$

- उपसहसंयोजक यौगिकों में कम से कम एक संकुल आयन अवश् उपस्थित होता है।
- संकुल आयन या अणु में एक धातु धनायन उपस्थित होता है जो द या दो से अधिक उदासीन अणुओं या आयनों से जुड़ा होता है। धाः धनायन से जुड़े ये उदासीन अणु या आयन, लिगेणड कहलाते हैं।
- िलगेण्ड व धातु धनायन के मध्य उपसहसंयोजक बन्ध बनता है इसिलए इन यौगिकों को उपसहसंयोजक यौगिक कहते हैं।

(iii) द्विक लवण एवं उपसहसंयोजक यौगिकों में अन्तर (Difference in double & Complex Salts)

द्विक लवण (Double Sait)

- द्विक लवणों का निर्माण, दो साधारण लवणों के सममोलर अनुपात : मिश्रित होने से बनते हैं।
- 2. इन लवणों का अस्तित्व सिर्फ ठोस अवस्था में होता है।
- ये जलीय बिलयनों में तीन प्रकार के आयनों मे टूटते हैं दो धनायन र एक ऋणायन
- इन लवणों में धातु आयन अपनी सामान्य संयोजकता प्रदर्शित करः हैं।
- 5. संघटक लवणों की प्रकृति आयनिक होती है।
- 6. इनके गुण, उपस्थित संघटक आयनों के गुण होते हैं।

उपसहसंयोजक योगिक (Co-ordination Compounds)

- उपसहसंयोजक यौगिकों का निर्माण दो साधारण लवणों के सममोल अनुपात से भी हो सकता है और नहीं भी।
- 2. इनका अस्तित्व ठोस व विलयन दोनों में होता है।
- 3. इन्हें जल में घोलने पर ये दो आयनों में बदलते हैं। एक जटील व एक साधारण आयन या दोनों जटिल आयनों में
- 4. उपसहसंयोजक यौगिकों में उपस्थित धातु आयन की संयोजकता पूर्णतया भिन्न होती है।
- 5. इनमें आयनिक व उपसहसंयोजक प्रकृति होती है।
- 6. जटील आयन का गुण उपस्थित संघटकों के गुणों से प्राय: भिन्न होते हैं।

अभ्यास-८.१

- द्विक लवण किसे कहते हैं? दो उदाहरण दीजिये।
- 2. संकुल यौगिक किसे कहते हैं। समझाइये।
- निम्न यौंगिकों को साधारण लक्ण, द्विकलवण व संकुल यौंगिकों में छांटियें।
 - (i) NaCl (ii) KCl. MgCl₂. $6H_2O$ (iii) $[Cu(NH_3)_4]SO_4$

- (iv) FeSO₄. (NH₄)₂SO₄.6H₂O(v) Al₂(CO₃)₃(vi) CaSO₄ (vii) K₂SO₄. Al₂ (SO₄)₃. 24H₂O(viii) K₄Fe(CN)₆ (ix) K₃Fe(CN)₆ (x) K₃[Cu(CN)₄]
- 4. निम्न के सूत्र लिखिये—
 - (i) पोटाश फिटकरी (ii) मोर लवण (iii) कार्नेलाइट
 - (iv) पोटैशियम फेरोसायनाइड (v) पोटेशियम फेरीसायनाइड
- द्विक लवण व उपसहसंयोजक यौगिकों में अन्तर बताइये।
- निम्न द्विक लवण, जलीय विलयन में कौन से आयन देंगे।
 - (i) KCl.MgCl₂.6H₂O (ii) FeSO₄.(NH₄)₂SO₄.6H₂O
 - (iii) K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$
 - (iv) $(NH_4)_2SO_4Fe_2(SO_4)_3$, $24H_2O$
 - (v) $K_2SO_4Cr_2(SO_4)_3.24H_2O$
- निम्न उपसहसंयोजक यौगिक जल में घोलने पर कौनसे आयन देंगे।
 - (i) $[Ag(NH_3)_2]C1$
- (ii) $[Cu(H_2O)_4]SO_4$

- (iii) $K_2[PtF_6]$
- (iv) $K_3[Al(C_2O_4)_3]$
- (v) $[Co(NH_3)_6]$ $[Cr(CN)_6]$
- (vi) $[Pt(NH_3)_4]$ $[PtCl_4]$

उत्तरमाला

- 1. पृष्ठ संख्या ९.1 पर देखें।
- 2. पृष्ठ संख्या ९.1 पर देखें।
- 3. (i) NaCl

- साधारण लवण
- (ii) KCl.MgCl26H2O -
- -- द्विकलवण
- (iii) [Cu(NH₃)₄] SO₄
- संकुल यौगिक
- (iv) $FeSO_4$. $(NH_4)_2SO_4.6H_2O$
- --द्विक लवण

(v) Al₂(CO₃)₃

- -- साधारण लवण
- (vi) CaSO₄
- साधारण लवण
- (vii) K₂SO₄.Al₂ (SO₄)₃. 24H₂O
- −द्विक लवण – संकुल यौंगिक
- (viii) K₄Fe(CN)₆

- $(ix) K_3 Fe(CN)_6$
- संकुल यौगिक
- (x) $K_3[Cu(CN)_4]$

- संकुल यौगिक
- 4. (i) K₂SO₄.Al₂(SO₄)₃.24H₂O
 - (ii) $FeSO_4$ (NH₄)₂. SO_4 . $6H_2O$
 - (iii) KCl MgCl₂.6H₂O
 - (iv) K_4 Fe(CN)₆
 - (v) K_3 Fe(CN)₆
- 5. पृष्ठ संख्या ९.२ पर देखें।
- (i) KCl, MgCl₂.6H₂O-द्विकलवण निम्न आयन देगा K⁺. Mg²⁺ व Cl⁻ आयनस देता है।
 - (ii)FeSO $_4$ (NH $_4$) $_2$ SO $_4$.6H $_2$ O द्विक लवण निम्न आयन देगा। Fe $^{2+}$, (NH $_4$) $^+$, SO $_4$ $^{2-}$ आयन देगा।
 - (iii)(NH₄) $_2$ SO $_4$ Fe $_2$ (SO $_4$) $_3$.24H $_2$ O द्विक लवण निम्न आयन देगा । NH $_4$ $^-$, Fe 3 $^+$, SO $_4$ 2 $^-$ आयन देता है ।
 - (iv) K_2SO_4 $Al_2(SO_4)_3$, 24 H_2O द्विक लवण निम्न आयन देगा। K^+ , Al^{3+} व SO_4^{2-} आयन देता है।

- (v) $K_2SO_4Cr_2(SO_4)_3.24H_2O$ द्विक लवण निम्न आयनस देता है K^+ , Cr^{3+} , SO_4^{-2} आयन देता है।
- 7. (i) [Ag(NH₃)₂]Cl उपसहसंयोजक यौगिक निम्न आयन देगा। [Ag(NH₃)₂]ंव Cl
 - (ii) $[Cu(H_2O)_4]SO_4$ उपसहसंयोजक यौगिक निम्न आयन देगा। $[Cu(H_2O)_4]^{2+}$ व SO_4^{-2}
 - (iii) $K_2[PtF_6]$ उपसहसंयोजक यौगिक निम्न आयन देगा। K^+ व $[PtF_6]^{2+}$
 - (iv) $K_3[Al(C_2O_4)_3]$ उपसहसंयोजक यौगिक निम्न आयन देगा। K^+ व $[Al(C_2O_4)_3]^3$
 - (v) [Co(NH₃)₆|[Cr(CN)₆| उपसहसंयोजक थौगिक निम्न आयन देगा।

 $[Co(NH_3)_6]^{3+}$ व $[Cr(CN)_6]^3$

(vi) $[Pt(NH_3)_4]$ $[PtCl_4]$ उपसहसंयोजक यौगिक निम्न आयन देगा + $[Pt(NH_3)_4]^2$ व $[Pt|Cl_4]^2$

9.2 उपसहसंयोजक यौगिकों में सम्बन्धित प्रमुख शब्द एवं उनकी परिभाषाएँ

- (1) केन्द्रीय आयन-धनायन या उदासीन धातु परमाणु जिससे दो या दो से अधिक उदासीन अणु या ऋणायन उपसहसंयोजक बंध से बंधित हो केन्द्रीय आयन कहलाता है।
- केन्द्रीय आयन इलेक्ट्रॉन युग्म ग्राही की तरह व्यवहार करता है क्योंकि लगभग समान ऊर्जा वाले रिक्त कक्षक होते हैं।

(2) लिगैन्ड (Ligands)

ये एक परमाणु या परमाणुओं का समृह होते हैं, जिनमें इलेक्ट्रॉन युग्म देने की प्रवृत्ति होती है, लिगेण्ड कहलाते हैं। लिगेण्ड का वह परमाणु जो इलेक्ट्रॉन युग्म देता है, उसे दाता परमाण् कहते हैं।

9.3 लिगेण्ड के प्रकार

दाता परमाणुओं की संख्या के आधार पर, लिगेन्डों को विभिन्न वर्गों में विभाजित किया जा सकता है —

1. एकल दन्तुक लिगैण्ड (Unidentate Ligand)

- वह लिगैण्ड, जिसमें केवल एक दाता परमाणु होता है जो कि एक इलेक्ट्रॉन युग्म देने की प्रवृत्ति रखता है, एकल दन्तुक लिगेण्ड कहलाता है, उदाहरण - CN . F . Cl . Br . OH⁻. H₂O. NH₃. NO₂ . C₅H₅N (पिरीडीन) आदि।
- ये तीन प्रकार के होते हैं—
 - (i) उदासीन एकदन्तुक लिगैण्ड।
 - (ii) ऋणात्मक एकदन्तुक लिगैण्ड !
 - (iii) धनात्मक एकदन्तुक लिगैण्ड।
- (i) उदासीन एक दन्तुक लिगेण्ड (Neutral-monodentate ligands)
 - इन लिगैन्ड पर कोई आवेश नहीं होता।
 - इनके नाम में कोई लाक्षणिक समापन नहीं होता!

S.N.	Name of Neutral ligands	Formula	Charge	Name of ligand in its complex	Donor atom
1.	Amonia	H N—H H	Zero	Ammine	N
2.	Water	н—о—н	Zero	Aqua	0
3.	Phosphine	н— :- -н Н Н	Zero	Phosphine	P
4.	Nitric Oxide	:N=O:	Zero	Nitrosyl	N
5.	Carbon monoxide	:C = O:	Zero	Carbonyl	С
6.	Pyridine (py)	Ĭ,	Zero	Pyridine	N
7.	Thiourea	S: H ₂ N- C-NH ₂	Zero	Thiourea	S
}.	Triphenyl Phosphin	C ₆ H ₅ —P—C ₆ H ₅ C ₆ H ₅	Zero	Triphenyl Phosphin	P
, ,	Thiocarbonyl	:C = S :	Zero	Thiocarbonyl	C

(ii) ऋणात्मक एक दन्तुक लिगेन्ड इन लिगेण्डों का नाम 'O' से समाप्त होता है।

S.N.	Name of -ve legand	Formula	Charge	Name of ligand in its complex	Donor atom
l.	Halide ion	:F:⊖	1	Fluorido	F
		:ċi:⊖	-1	Chlorido	Cl
		: Br:⊖	- 1	Bromido	Br .
		:ï:⊖	- 1	lodido	1

2.	Hydroxide	⊖ : O – H	- 1	Hydroxo	0
3	Cyanide	⊖ C ≅ N:	-1	Cyano	C
4.	Isocyanide	⊖ :N ≐ C:	– 1	Isocyano	N
5.	Nitro	÷NCO	1	Nitro	N
6.	Nitrite	O = N - O:	- 1	Nitrito	0
7.	Cyanate	$ \bigoplus_{\mathbf{C} \equiv \mathbf{N} \to \mathbf{O} $	– 1	Cyanato	0
8.	Isocyanate	⊖ N = C = O	- I	Isocyanato	N
9.	Thiocyanate ion	$N \equiv C - S$	N = C - S Thiocyanat		S
10.	Isothiocyanate ion		– 1	Iso thiocyanato	N
11.	Amide	; N	- 1	Amido	N
12.	Acetate	O	1	Acetato	О
13.	Cyclopentadienyl ion	HC CH Cyclopen -tadienyl		С	
14.	Oxide ion	:0:2-	-2	Oxido	0 .
15.	Sulphide ion	: s. : ²⁻	-2	Sulphido	S

16.	Imide ion	ıı—n:⊖	. 1	Imido	N
17.	Carbonate	$O = \left(\begin{array}{c} O \\ O \\ O \end{array} \right)$	2	Carbonato	О
18.	Peroxide	; o − o: ⊖ ⊖	-2	Peroxido	О
19.	Sulphite	⊖ ⊖ :o s o: 	2	Sulphito	0
20	Sulphate	⊕ ° ⊕ :o s − o: o	-2	Sulphato	0

(iii) धनात्मक एक दन्तुक लिगेण्ड (Positive monodentate ligands)

्र इन लिगेन्डों पर एक धन आवेश होता है। • इनके नाम के अन्त में 'ium' (इयम) लिखते है।

धनात्मक एक दन्तुक लिगेण्ड

S.N.	Name of +ve ligand	Formula	Charge	Name of ligand in its complex	Donor atom
1.	Nitroniumion	$^{\oplus}_{{ m NO}_2}$	1	Nitronium	N
2.	Nitrosonium	. ⊕ :N = O	+]	Nitrosonium	N ·
3.	Hydrazinium ion	йн ₂ Фн ₃	+ 1	Hydrozinium	N

2. द्विदन्तुक लिगैन्ड (Bidentate ligands)

इन लिगैण्ड में दो दाता परमाणु उपस्थित होते है।

• इनके निम्न उदाहरण है-

S.N.	Name of ligand Formula Charge		Name of ligand in its complex	Donor atom	
1.	Oxalate ion (ox)	o c ö:⊖ c ö:⊖	- 2	Oxalato	2 oxygen
2.	Ethylenediamine (en)	СН ₂ — <mark>і</mark> ін ₂ СН ₂ —іін ₂	Zero	Ethane 1, 2- diamine	2(N)
3.	Glycinate ion (Gły)	CH ₂ NH ₂ C−O: O	· — 1	Glycinato	N and O

4.	Dipyridyl (dipy)		Zero	Dipyridyl	2(11)
5.	Dimehtyl glyoximate (dmg)	$CH_3 - C - \ddot{N} - OH$ $CH_3 - C = \ddot{N} - \ddot{O}$	1	Dimethyl glyoximato	N and O
6.	Acetylacetonate (acac)	CH ₃ CH ₃ CH ₃ CO	1	Acetyl acetonato	2[0]

3. त्रियन्तुक लिगेण्ड (Tridentate ligands)

- वे लिगैण्ड, जिनमें तीन दाता परमाणु उपस्थित हो, उन्हें त्रिदन्तुक लिगेण्ड कहते हैं!
- ये तीन इलेक्ट्रॉन युग्म देते है। उदाहरण —

ठाईएथीलीन द्राईएमीन (Dien)

4. चतुःदन्तुक लिगेण्ड (Tetradentate ligands)

- वे लिगेण्ड, जिनमें चार दाता परमाणु उपस्थित हों, उन्हें चतु-दन्तुक लिगेण्ड कहते है।
- ये चार इलेक्ट्रॉन युग्म देते है।
- उदाहरण-

5. पंचदन्तुक लिगैण्ड (Pentadentate ligands)

- वे लिगैण्ड, जिनमें पांच दाता परमाणु उपस्थित हो, उन्हें पंच दन्तक लिगेण्ड कहते हैं।
- इनमें पांच इलेक्ट्रॉन युग्म देने की प्रवृति होती है।
- उदाहरण- एथिलीनडाईऐमीनट्राइऐसीटेटों [EDTA] ³

$$\begin{array}{c} \text{CH}_2\text{--N} \stackrel{\text{CH}_2\text{COO}^{\ominus}}{\stackrel{\text{CH}_2\text{COO}^-}{\text{CH}_2\text{COO}^-}} \\ \text{CH}_2\text{--NH}\text{--CH}_2\text{COO}^- \end{array}$$

6. हेक्सादन्तुक लिगेण्ड (Hexadentate ligands)

- वे लिगेण्ड, जिनमें छः दाता परमाणु उपस्थित हो, उन्हें **हेक्सा** दन्तुक लिगेण्ड कहते हैं।
- इनमें छः इलेक्ट्रॉन युग्म देने की प्रवृति होती है।
- उदाहरण- एथिलीनडा**इऐ**मीनटेट्राऐसीटेटो [EDTA]⁻⁻

$$\begin{array}{c|c} \operatorname{CH_2COO^{\circ}} \\ \operatorname{CH_2COO^{\circ}} \\ \operatorname{CH_2COO^{\circ}} \\ \operatorname{CH_2COO^{\circ}} \\ \operatorname{CH_2COO^{\circ}} \end{array}$$

याद रखने योग्य बार्ते-

- यदि किसी लिगैण्ड में एक ही दाता परमाणु पर दो एकांकी इलेक्ट्रॉन युग्म उपस्थित हों तो वह द्विदन्तुक लिगेण्ड नहीं कहलाता, वह एक दन्तुक लिगेण्ड ही कहलायेगा: जैसे-H2O:
- en- Ethylenediamine Ethane 1, 2-diamine लिखते है।
 अर्थात यहा amine में एक ही m का प्रयोग करते हैं। लेकिन
 NH₃ के नाम में ammine. वो m का प्रयोग करते हैं।
- कुछ लिगैन्ड में दो दाता परमाणु होते है जैसे
 SO₄² .CO₃² .SO₃² .S₂O₃² . अतः इन्हे द्विदन्तुक कहना चाहिए। लेकिन यें एक दन्तुक लिगैण्ड की तरह ही कार्य करते है। क्योंकि यहाँ दोनों दाता परमाणु एक ही परमाणु से जुड़े होते हैं अतः एक ही दाता परमाणु माना जाता है।
- कुछ पॉलीदन्तुक लिगैन्ड नम्यदन्तुक [Flexidentates] होते हैं जो एक सामान्य संकेत से प्रदर्शित होते हैं। लेकिन उनमें दाता परमाणुओं की संख्या अलग—अलग होती है। जैसे— (i) EDTA यह षटदन्तुक लिगैन्ड होने पर इसका नाम Ethylene diamine tetra acetato होगा, पंचदन्तुक लिगैन्ड होने पर इसका नाम Ethylene diamine triacetato होगा

$$CH_2 - N < CH_2 COO CH_2 COO$$

Ethylenediaminetetracetato [EDTA]*

$$_{\text{CH}_2-N}\!<^{\text{CH}_2\,\text{COO}}_{\text{CII}_2\,\text{COO}}\!\overline{}$$

CH₂ - NH - CH₂ COO

Ethylenediaminetriacetato [EDTA]³⁻

9.4 उपसहस्रयोजक यौगिकों से सम्बन्धित प्रमुख परिभागिक शब्द

- (1) उभयदन्ती लिगैण्ड-
- कुछ लिगैन्ड में दो प्रकार के दाता परमाणु उपस्थित होते है।
 परन्तु एक समय में केवल एक ही दाता परमाणु का कार्य करते
 है, ऐसे लिगेन्ड को उभयदन्तुक लिगैन्ड कहते है।
 जैसे --

 - (ii) $: S C \equiv N$ (Thiocyanato)

:N = C= S Isothiocyanato

(iii)
$$: N \stackrel{\Theta}{\smile}_{O} Nitro \stackrel{\Theta}{:}_{O-N=O} (Nitrito)$$

(2) कीलेट लिगैंड—बहुदंतुक लिगैंड केन्द्रीय आयन से अपने दो या दो से अधिक दाता परमाणुओं का प्रयोग उपसहसंयोजक बंध के लिए करता है, तो एक वलय संरचना प्राप्त होती है। इस वलय को कीलेट बलय और लिगैंड को कीलेट लिगैंड कहते हैं।

उदा.-एथिलीन डाइऐमीन (en), ऑक्सेलेटो (ox) आयन आदि।

(i)
$$[Cu(en)_2]^{2+}\begin{bmatrix} CH_2 - H_2N & NH_2 - CH_2 \\ 1 & NH_2 - CH_2 \end{bmatrix}^{2+}$$

 $\begin{bmatrix} CH_2 - H_2N & NH_2 - CH_2 \end{bmatrix}$

(ii)
$$[Fe(ox),]^{4-}$$
 $[COO \longrightarrow Fe \longrightarrow OOC]^{3-}$ $[COO \longrightarrow Fe \longrightarrow OOC]^{3-}$

- (3) उपसहसंयोजन संख्या-केन्द्रीय धातु आयन से लिगैंडों द्वारा बनाए गए उपसहसंयोजक बंध की कुल संख्या उपसहसंयोजन संख्या कहलाती है।
- उदाहरणार्थ [Cu(NH3)4]2+ में Cu की उपसहसंयोजन संख्या 4 है।

 $[Ag(CN)_2]^-$ में Ag की उपसहसंयोजन संख्या 2 है।

 इसी प्रकार एथिलीन डाई ऐमीन (en) तथा आक्सेलेटो (ox) द्विदंतुक लिगैंड है, तो [Fe(ox)₃]³⁻ एवं [Co(en)₃]³⁻ में क्रमश: Fe एवं Co की समन्वयन संख्या 6, 6 है।

9.5 समन्वय महल एवं आयनिक मंडल

 जब यौगिक में उपस्थित धातु परमाणु अथवा धातु आयन से एक निश्चित संख्या में आबन्धित आयन अथवा अणु मिलकर एक उपसहसंयोजन सत्ता का निर्माण करते हैं, इसे समन्वय मण्डल कहते हैं।

इसे वर्गाकार कोष्ठक में रखकर, प्रदर्शित करते हैं।

- जैसे— [CoCl₃(NH₃)₃]: [PtCl₂(NH₃)₂]: [Fe(CN)₆]⁴⁻ व [Co(NH₃)₆]³⁺
- िकसी उपसहसंयोजन सत्ता में उपस्थित केन्द्रिय धातु परमाणु/आयन जो एक निश्चित संख्या में अन्य आयनों/समूहों से एक निश्चित ज्यामिती व्यवस्था में परिबद्ध रहता है, केन्द्रिय परमाणु अथवा आयन कहलाता है।
- जैसे— $[NiCl_2(H_2O)_4]$ में केन्द्रिय आयन Ni^{2^4} है। $[PtCl_2(NH_3)_2]$ में केन्द्रिय आयन Pt^{2^-} है। $[CoCl(NH_3)_5]^{2^+}$ में केन्द्रिय आयन Co^{3^-} है।

 $[Ag(NH_3)]Cl$ $\Longrightarrow [Ag(NH_3)_2]^- + Cl^-$ आयिनिक मंडल

अभ्यास-९.२

- लिगेण्ड की पूर्ण व्याख्या दीजिये।
- 2. एक दन्तुक लिगैण्ड किसे कहते हैं। उदाहरण दीजिये।
- 3. द्वि दन्तुक लिगेण्ड किसे कहते हैं। उदाहरण दीजिये।
- 4. त्रि दन्तुक लिगेण्ड किसे कहते हैं उदाहरण दीजिये।
- चतुः दन्तुक लिगेण्ड किसे कहते हैं उदाहरण दीजिये।
- पंच दन्तुक लिगेण्ड किसे कहते है। उदाहरण दीजिये।
- हैक्सा दन्तुक लिगेण्ड किसे कहते हैं। उदाहरण दीजिये।
 निम्न लिगेण्ड का नाम संकुल यौगिकों में क्या देंगे।
 - (i) ⁻CN
- (ii) ONO-
- (iii) CH₃COO-

- (iv) "CNO
- (v) NCO
- (vi) $\overline{N}H_2$

(vii) $N\overline{O}_3$

- (viii) |
- (ix) CO₃²⁻

 $(x) S_2 O_3^{2-}$

- तिम्न की संरचनायें दीजिये।
 - (i) कार्बोनेटो (ii) इमिडो (iii) ऐमीन (iv) ऐक्वॉ (v) पिरीडीन (vi) नाइट्रोनियम आयन (vii) hydraziniumcation (viii) एथिलीन डाइऐमीन (ix) ऑक्सेलेटो (x) ग्लाइसिनेटो (xi) डाइएथिलीन ट्राइऐमीन (xii) ट्राइएथिलीन टेट्राऐमीन (xiii) एथिलीन डाइऐमीन ट्राइऐसीटेटों

(xiv) $[EDTA]^{-4}$

10. कीलेट वलय किसे कहते हैं उदाहरण द्वारा समझाइये।

11. निम्न संकेतों के नाम व संरचना दीजिये।

(i) en (ii) dien (iii) py (iv) Dipy (v) [EDTA]⁻³ (vi) [EDTA]⁻¹

12. निम्न लिगैण्डों में कौन से तत्त्र दाता परमाण् है।

(i) कार्बोनेटो (ii) सल्फेटों (iii) ऐथिलीन डाइऐमीन (iv) नाइट्राइटो

(v) नाइट्रेटो (vi) [EDTA] ³ (vii) [EDTA]⁻⁴

13. निम्न लिगेण्डों पर आवेश की संख्या बताइये।

(i) Imido (ii) amido (iii) Gly (iv) dmg (v) OX (vi) acac (vii) carbonato (viii) Sulphato (ix) Nitrato (x) Ethylene diamine triacetato (xi) Isothiocyanato (xii) peroxo.

14. निम्न लिगेण्डों का वर्गीकरण कीजिये। [एक दन्तुक, द्विदन्तुक.....]

(i) OX (ii) trien (iii) dipy (iv) [EDTA]³⁻ (v) Gly (vi) dmg (vii) nitrato (viii) terpy (ix) acac (x) en

15. उभय दन्तुक लिगेण्ड किसे कहते हैं। तीन उदाहरण दीजिये।

उत्तरमाला

- पृष्ठ संख्या 9.3 पर बिन्दु 9.2 भाग 2 पर देखें।
- 2. पृष्ठ संख्या ९.३ पर बिन्दु ९.३ भाग 1 पर देखें।
- 3. पृष्ठ संख्या ५.६ पर बिन्दु ५.३ भाग २ पर देखें।
- 4. पृष्ठ संख्या ९.७ पर बिन्दु ९.३ भाग ३ पर देखें।
- 5. पृष्ठ संख्या ९.७ पर बिन्दु ९.३ भाग ४ पर देखें।
- पृष्ठ संख्या 9.7 पर बिन्दु 9.3 भाग 5 पर देखें।
- पृष्ठ संख्या 9.7 पर भाग 6 देखें।
- 8. (i) Cyano
- (ii) Nitrito
- (iii) Acetato
- (vi) सायनेटों
- (v) आइसोसायनेटो
- (vi) ऐमीडो
- (vii) नाइट्रेटो
- (viii) ऑक्सेलेटों
- (ix) कार्बीनेटो
- (x) थायोसल्फेटो
- 9. (i) CO₃²
- (ii) --- NH²⁻
- (iii) NH₃
- (iv) H₂O
- (v) C_5H_5N
- $(v) NO_2^+$

(vii) $NH_2 - NH_3$ (viii) CH_2NH_2

 CH_2NH_2

COO

- (ix)
- (x) $NH_2CH_2COO^-$
- (xi) $NH_2 CH_2CH_2NHCH_2CH_2 NH_2$
- (xii) $NH_2(CH_2)_2NH(CH_2)_2NH(CH_2)_2NH_2$

$$(xiii) \begin{array}{c} CH_2-N < CH_2COO \\ CH_2COO \\ CH_2-NH-CH_2COO \end{array}$$

10. पृष्ठ संख्या ९.८ पर बिन्दु ९.४ (२) भाग देखें।

11. (i) en – एथिलीनडाइऐमीन

- (ii) dien- डाइएथिलीनट्राइऐमीन
- (iii) py- पिरीडीन
- (iv) Bipy 2,2-डाइपिरीडील
- $(v) [EDTA]^{-3}$ एथिलीन डाइऐमीनट्राइऐसीटेटो
- (vi) [EDTA]-⁴ एथिलीनडाइऐमीनटेट्राऐसीटेटो
- 12. (i) O
 - (ii) O
 - (iii) Two N
 - (iv) O
 - (v) O
 - (vi) Two N and Three O
 - (vii) Two N and four O
- 13. (i) -2(ii) -1
- (iii) -1
- (iv) -1(viii) -2
- (v) -2(vi)-1(vii) -2(ix) -1 (x) -3
 - - (xi)-1
- (xii) -2

14. (i) द्विदन्तुक (ii) चतुदन्तुक (iii) द्विदन्तुक

- (iv) पंचदन्तुक (v) द्विदन्तुक (vi) द्विदन्तुक
- (vii) एक दन्तुक (viii) त्रिदन्तुक (ix) द्विदन्तुक
- (x) द्विदन्तुक
- 15. पृष्ठ संख्या 9.8 पर बिन्दु 9.4 भाग (1) देखे।

- संकुल यौगिक में उपस्थित केन्द्रिय धातु परमाणु/आयन से सीधे जुड़े लिगेण्ड समूहों की दि्क स्थान व्यवस्था (Special arrangement) की समन्वय बहुफलक कहते हैं।
- समन्त्रय बहुफलक प्राय अष्टफलकीय, वर्गाकार समतलीय तथा चतुष्फलकीय मुख्य है।
- $[Co(NH_3)_6]^{3+}, [Cr(H_2O)_6]^{3+}$ अष्टफलकीय बहुफलक है ।
- [Ni(CO)4] चतुष्फलकीय बहुफलक है।
- [PtCl₄]²- वर्गाकार समतलीय बहुफलक है।

अष्टफलकीय बहुफलक

चतुष्फलकीय बहुफलक

.7 होमोलेप्टिक तथा हैट्रोलेप्टिक संकुल (Homoleptic and Heteroleptic Complexes)

- ऐसे संकुल जिनमें धातु परमाणु/आयन केवल एक प्रकार के दाता
 समृह से जुड़ा हो, उन्हें होमोलेप्टिक संकुल कहते हैं।
- जैसे—[Co(NH₃)₆]³⁻, [Cr(H₂O)₆]³⁻. [Fe(CN)₆]⁴ संकुल
 होमोलेप्टिक संकुल कहते हैं।
- ऐसे संकुल जिनमें धातु परमाणु/आयन एक से अधिक प्रकार के दाता
 समृहों से जुड़ा हो, उन्हें हेट्रोलेप्टिक संकुल कहते है।
- जैसे— [Co(NH₃)₄Cl₂]⁺. [Cr(H₂O)₅Cl]²⁺ हैट्रोलेप्टिक संकुल कहते हैं।

9.8 केन्द्रीय धातु परमाणु की ऑक्सीकरण अंक

- केन्द्रीय धातु परमाणु से अन्य सभी परमाणुओं, अणुओं एवं आयनों को पृथक कर लेने के पश्चात् शेष आवेश की संख्या धातु परमाणु की ऑक्सीकरण संख्या प्रदर्शितकरती है।
- िकसी संकुल यौगिक में केन्द्रीय धातु परमाणु की ऑक्सीकरण अवस्था निर्धारित करने के लिए निम्निलिखित नियमों को ध्यान में रखना आवश्यक है।
- (i) किसी भी उदासीन संकुल में अवयवी केन्द्रीय धातु परमाणु और उससे जुड़े लिगैंड के आवेशों का योग शून्य होता है।
- (ii) संकुल आयन के समन्वयी मंडल पर उपस्थित आवेश उसके अवयवी केन्द्रीय धातु परमाणु और उससे जुड़े लिगैंडों के आवेश का योग होता है। उदाहरण-
- (i) [Pt(NH₃)₃Cl₃] में Pt की ऑक्सीकरण अवस्था निम्न प्रकार निर्धारित कर सकते हैं—

 NH_3 की ऑक्सीकरण अवस्था =0

Cl की ऑक्सीकरण अवस्था = -1

Pt ऑक्सीकरण अवस्था = x

अत: x + 3(0) + 3(-1) = 0, x + 0 - 3 = 0, x = +3

(ii) K₄[Fe(CN)₆] में Fe की ऑक्सीकरण अवस्था निम्न प्रकार निर्धारित कर सकते हैं-

K की ऑक्सीकरण अवस्था = +1

CN की ऑक्सीकरण अबस्था = -1

Fe की ऑक्सोकरण अवस्था = x

अत: 4(+1) + x + 6(-1) = 0, +4 + x - 2 = 0 = +2

Table 9.2. उपसहसंयोजक यौगिकों में प्रयोग से आने वाले शब्द

उपसहसंयोजक यौगिक	समन्वय मण्डल	्र लिग <u>ैण्ड</u>	केन्द्रीय धारु आयन व उस पर ऑक्सीकरण अंक	उपसहसंयोजक संख्या	आकृति
$K_3[Fe(C_2O_4)_3]$	$[Fc(C_2O_4)_3]^3$	3C ₂ O ₄ ²	Fe III	6 .	Octahedral
$K_a[FeF_6]$	[FeF ₆]	6F	Fe II	6	Octahedral
[Co(NH ₃) ₆]Cl ₃	[Co(NH ₃) ₆] ³⁻	6NH ₃	Co III	6	Octahedral
$ \operatorname{ViCl}_2(H_2O)_4 $	[NiCl ₂ (H ₂ O) ₄]	2C1 & 4H ₂ O	Ni II	6	Octahedral
[Co(CN) ₅ F]	$[Co(CN)_5F]^{3+}$	5CN - & F	Co III	6	Octahedral
压[Ni(CN) ₄]	[Ni(CN) ₄] ²⁻	4CN	Ni II	4	Square planar
%:(CO)₄	[Ni(CO) ₄]	4CO	Ni(O)	4	Tetrahedral
+ NiCl ₄]	[NiCl ₄] ²⁻	4Cl	Ni II	4	Tetrahedral

9.9 उपसहसंयोजक यौगिकों का नामकरण

- िकसी दिये गये उपसहसंयोजक यौगिक का I.U.P.A.C. में नामकरण करने पर निम्न नियमों का ध्यान रखना चाहिये—
- साधारण लवणों के समान ही इन यौगिकों के नामकरण में पहले धनायन का नामकरण करते हैं व फिर ऋणायन का नामकरण।

 $K_4 Fe(CN)_6
ightarrow$ पोटेशियम हेक्सासायनोफेरेट (II)

 $[\text{CoCO}_3(\text{NH}_3)_3]\text{Cl}
ightarrow \underline{$ ट्राइऐमीन कार्बोनेटोकोबाल्ट(III) क्लोराइड $\underline{}$ क्लावन

- नामकरण में धनायन व ऋणायन का नाम लिखते समय उनकी संख्या का उल्लेख नहीं करते। जैसे—
- (i) K₃Fe(CN)₆ के नाम में धनायन के यहां तीन पोटेशियम है। अत: इसे ट्राईपोटेशियम नहीं लिखना चाहिये, लेकिन इसे सिर्फ पोटेशियम ही लिखेंगे।
- (ii) इसी प्रकार [Co(H₂O)₆]Cl₃ में ऋणायन को ट्राइ क्लोराइड नहीं लिखना चाहिये, लेकिन यहां हम सिर्फ क्लोराइड ही लिखेंगे।

K₃Fe(CN)₆ ट्राइपोटेशियम फेरीसायनाइड पोटेशियम फेरीसायनाइड

गलत है। सही है।

{Co(H₂O)₆JCl₃ hexaaquocobalt(III) trichloride hexaaquocobalt (III) chloride

गलत है। सही है।

3. किसी उपसहसंयोजक यौगिक में धनायन या ऋणायन में से कोई भी संकुल हो सकता है, या दोनों भी संकुल हो सकते हैं। अत: किसी संकुल का नामकरण निम्न प्रकार से करते हैं।

(a) धनायन संकुल को नामकरण

 िकसी धनायन संकुल के नामकरण करते समय सबसे पहले अंग्रेजी वर्णमाला क्रम में लिगेण्ड का नाम लिखते हैं। इसके बाद केन्द्रीय धातु परमाणु आयन का नाम लिखते हैं। इसके पश्चात् छोटे कोष्ठक में धातु परमाणु की ऑक्सीकरण अवस्था रोमन अंकों में लिखते हैं।

लिगेण्ड केन्द्रीय भातु परमाणु

धातु की ऑक्सीकरण

का नाम या आयन का नाम

अवस्था रोमन अंकों में

- संकुल धनायन और उदासीन संकुल अणु का नाम लिखते समय, धातु परमाणु के नाम के साथ कोई अनुलग्न नहीं लगाते हैं परन्तु धातु परमाणु का वह नाम लिखते हैं, जिस नाम से धातु परमाणु का प्रतीक चिन्ह बना होता है। जैसे— सिल्वर (Ag) का संकुल आयन में नाम "अर्जेण्टम" प्रयुक्त करते हैं। इसी प्रकार Au आरम कहते हैं।
- यदि समान लिगेण्ड की संख्या दो, तीन, चार, पांच एवं छ: हो तो इनके नामकरण के पूर्व क्रमश: di. tri. tetra, penta व hexa शब्दों का प्रयोग करते हैं, परन्तुं इन शब्दों को अंग्रेजी वर्णमाला क्रम में प्राथमिकता नहीं देते हैं।

उदा. $[Co(NH_3)_6]Cl_3$ हैक्साऐमीनकोबाल्ट (III) क्लोराइड $[PtCl_2(NH_3)_3(NO)]Br$ ट्राइऐमीनडाइक्लोरीडोनाइट्रोसिल प्लेटिनम (III) ब्रोमाइड

 यदि लिगेण्ड के नाम में डाइ, ट्राई, टेट्रा आदि शब्द पहले से उपस्थित हो, ऐसे लिगेण्ड एक से अधिक क्रमश: 2, 3 या 4 होने पर क्रमश: पूर्वलग्न बिस, ट्रिस व ट्रेटािकस आदि का प्रयोग करते हैं। जैसे— ट्राइफेनिल फॉस्फीन के दो अणुओं (Pli₃P)₂ को लिगेण्ड के रूप में बिस [ट्राइफेनिलफॉस्फीन] लिखेंगे। इसी प्रकार [cn]₃ को ट्रिस (एथिलीनडाइऐमीन) लिखेंगे।

(b) ऋणायन संकुल का नामकरण

किसी ऋणायन संकुल का नामकरण धनायन संकुल की तरह होता है। सिर्फ ऋणायन संकुल में उपस्थिति धातु आयन के नाम के अन्त में ऐंट लगाते हैं।

जैसे— [Co(CN)₆]⁻³ हैक्सासायनोकोबाल्टेट (III) आयन |Co(CN)₆]⁻³ हैक्सासायनोकोबाल्ट (III) आयन

लिगेण्ड का नामकरण पीछे देखें। उपरोक्त नियमों को अच्छी तरह समझने के लिये हम निम्न उदाहरण देखते हैं।

ध्यान रखने वाले बिन्दु---

 संकुल यौगिक का नाम बड़े अक्षर [Capital Letter] से प्रारम्भ नहीं करना चाहिये।

 $K_2[Zn(CN)_4]$ Potassium tetracyanozincate (II) मलत है । vertex potassium tetracyanozincate (II) सही है ।

- संकुल यौगिक का नाम एक ही शब्द में लिखा जाना चाहिये इनमें कीं अन्तराल नहीं होना चाहिये।
- आयिनकं संकुलों के नाम में संकुल आयन और प्रति आयन के मध्य स्थान छोडना चाहिये।

 $K_3[Fe(CN)_6]$ potassium hexacyanoferrate (III) $\overline{\xi}$ ਸ਼ਿੰਗ ਤੋਂ । potassiumhexacyanoferrate (III) $\overline{\xi}$ । गलत $\overline{\xi}$ ।

- अन आयनिक संकुलों के नाम एक ही शब्द में लिखे जाने चाहिये!
- एक से अधिक उपसहसंयोजक परमाणुओं वाले एक दन्तुक लिगेण्ड डभय दन्तुक लिगेण्ड को या तो अलग-अलग नामों द्वारा प्रदर्शि करते हैं जैसे cyano एवं Isocyano अथवा लिगेण्ड के नाम के बाद दाता परमाणु का प्रतीक लिखते हैं, इनको एक योजक [Hyphen] द्वारा पृथक करते हैं।

 $(NH_4)_3$ [Cr(SCN)₆]

ammonium hexathiocyanato-S-chromate (III)

या

ammonium hexathiocyanatochromate (III)

 $(NH_4)_2[Pt(NCS)_6]$

ammonium hexaisothiocyanato-N-platinate (IV) ammonium hexaisothiocyanatoplatinate (IV)

 धनात्मक व उदासीन लिगेण्डों का नाम तो किसी विशेष रूप से रम्मम नहीं होता है परन्तु ऋणायनों के नाम के अन्त में ऐट [ate] लगता है!

Lead - plumbate

Zinc - Zincate

Silver - Argentate

Iron - Ferrate

Platinium – platinate

Gold - Aurate

Tin - Stanate

Cobalt - Cobaltate

Copper – Cuprate Chromium – Chromate

 सामान्यतया केन्द्रीय धातु परमाणु या आयन की ऑक्सीकरण अवस्था को उसके नाम के बाद रोमन अंकों जैसे— I, II, III, IV या 0 द्वारा एक कोष्ठक में रखकर दर्शाते हैं।

 $[\text{Co(NH}_3)_6]\text{Cl}_3$ hexaamminecobalt (III) chloride

[Ni(CO)₄] tetracarbonylnickle [0]

Na₃[Fe(CN)₆] sodium hexacyanoferrate (III)

IUPAC में नामकरण को समझने के लिए निम्न उदाहरण देखते हैं-

Naming of anionic complexes

K[Ag(CN)₂] potassium dicyanoargentate (I)

2. K₂[Hg Cl₄] potassium tetrachloridomercurate (II)

3. $K[Pt Cl_3(NH_3)]$

potassium amminetrichloridoplatinate (II)

4. Na[Au (CN)₂] sodium dicyanoaurate (I)

5. Na₃[Co (NO₂)₆] sodium hexanitrito-N-cobaltate (III)

6. K₃[Fe (CN)₅NO] potassium pentacyanonitrosylferrate (II)

7. K₃[Co(C₂O₄)₃] potassium trioxalatocobaltate (III)

8. K₄[Ni(CN)₄] potassium tetracyanonickelate [O]

9. Na [Co(CO)₄] sodium tetracarbonylcobaltate (-I)

10. K_2 [Pt F_6] potassium hexafluoridoplatinate (IV)

11. K₂[Os Cl₅N] potassium pentachloridonitridoosmate (VI)

12. Fe₄[Fe (CN)₆]₃ ferric hexacyanoferrate (II)

13. Na [Pt Br Cl (NO₂) (NH₃)]
Sodium amminebromidochloridonitrito-N-platinate (II)

14. K₂[Pd Cl₄] potassium tetrachloridopalladate (II)

15. K₂[Zn(OH)₄] potassium tetrahydroxozincate (II)

16. Hg [Co(CNS)₄] mercury tetrathiocyanatocobaltate.

17. K[CrF₄O] potassium tetrafluoridoxochromate (V)

Naming of Cationic Complexes

1. [Pt Cl (NH₂-CH₃) (NH₃)₂] Cl diamminechlorido(methylamine)platinium II chlordie

2. $[Co(NH_3)_6] ClSO_4$

hexaaminecobalt (III) chloridesulphate

3. [Pt Cl (NO₂) (NH₃)₄] SO₄ tetramminechloridonitrito-N-platinum (IV) sulphate

4. [CrCl₂(H₂O)₆] NO₃ tetraaquadichloridochromium (III) nitrate

5. [Cu(H₂O)₂(NH₃)₄]SO₄ tetramminediaquacopper (II) sulphate

6. [Rh {(C₆H₅)₃P}₃]Cl tris(triphenyl phosphine) rhodium (1) chloride

7. [CoBr₂(en)₂]Cl dibromidobis (ethane– 1, 2-diamine) cobalt (III) chloride.

8. [Co F₂ (en)₂]ClO₄ bis(ethylenediamine) difluoridocobalt (III) perchlorate

9. $[\text{Co Cl}_2 (\text{en})_2]_2 \text{SO}_4$

dichloridobis (ethane-1, 2-diamine) cobalt (III: sulphate.

10. [Co Cl(NH₃)₄(H₂O)]Cl₂ tetrammineaquachloridocobalt (III) chloride.

Naming of Neutral ligands

1. [CoCl₂ (NO₂) (NH₃)₃] triamminedichloridonitrito-N-cobalt (III)

2. [Cr(PPH₃) (CO)₅] pentacarbonyltriphenylphosphinechromium (O)]

3. Ni (CO)₄ tetracarbonylnickel (O).

4. [Ni(dmg)₂] bis (dimethylglyoximato)nickel (II)

5. $[Fe(C_5H_5)_2]$ bis (cyclopentadienyl) iron(II).

6. [PtCl₂(C₅H₅N) (NH₃)] amminedichlorido(pyridine) platinum(II)

7. [V(acac)₂O] bis (acetylacetonato) oxovanedium (IV)

8. $Mn_3(CO)_{12}$ dodecarbonyltrimanganese [O]

9. [Pt (NH₃)₄] [PtCl₄] tetrammineplatinum (II) tetrachlordioplatinate (II)

10. [Cr(NCS) (NH₃)₅] [ZnCl₄]
pentaammineisothiocyanatochromium
tetrachloridozincate (II)

11. [CoCl₂ (NH₃)₄]₃ [Cr(CN)₆] tetramminedichlorido cobalt (III) hexacyanochromical (III)

12. [Pt (Py)₄] [PtCl₄] tetrapyridinoplatinum (II) t

tetrapyridinoplatinum (II) tetrachloridoplatinate

बहुकेन्द्रीय संकुल यौगिकों का नामकरण

 यदि किसी जटिल यौगिक में दों या दो से अधिक धातु चन्नु उपस्थित हो तो उसे बहुकेन्द्रीय जटिल यौगिक कहते हैं

 वे लिगेन्ड [संतु लिगेन्ड] जो दो धातु परमाणुओं को उन्हर इ उनसे पहले µ पूर्व लग्न प्रयुक्त करते है।

• सेतु लिगेन्ड को अन्य लिगेन्डों के साथ वर्णमाला क्रम न निवा जाता है। उदा.

$$\left[(NH_{3})_{4} C_{0} < NH_{2} > C_{0} (NH_{3})_{4} \right]_{Cl_{4}}$$

टेट्राऐमीन कोबाल्ट (III) μ ऐमीडो $-\mu$ - नाइट्रोट्रेटाएँ में नाम स्थापित (III) chloride

tetramminecobalt (III) μ-amido-μ-nitritotramminecomati (III) chloride

$$\begin{bmatrix} OH \\ (en)_2 & Co & Cr (en)_2 \end{bmatrix} Cl_4$$

bis.-(ethylenediamine) Cobalt (III)- μ -dihydroxi-ris-(ethylenediamine) chromium (III) chloride

 $\left[(NH_3)_4 \ Co \left< \frac{NH_2}{O_2} \right> Co \ (NH_3)_4 \right]^{4+}$

tetraminecobalt

(III)-μ-amido-μ-super

oxotetramminecobalt (III) ion,

IPUAC नाम के आधार पर सूत्र लिखना

- किसी संकुल यौगिक का IUPAC नाम ज्ञात होने पर, उसका सूत्र निम्न नियमों के अनुसार लिखा जा सकता है -
- (1) यौगिक के नाम को दो भागों धनायन और ऋणायन में बांट लेते है।
- (2) सरल धनायन या ऋणायन को, उस पर उसका आवेश/संयोजकता को प्रदर्शित करते हुए लिखते है। जैसे – Na⁺.K⁺.Cl⁻,SO₄⁻² आदि।
- (3) संकुल आयन का सूत्र लिखते समय सर्वप्रथम धातु आयन का संकेत, फिर ऋणावेशित लिगेन्ड, उदासीन लिगेन्ड और अन्त में धनावेशित लिगेन्ड लिखते हैं। दो या दो से अधिक ऋणात्मक लिगेन्ड आने पर, उन्हें अंग्रेजी वर्णमाला के अनुसार लिखेंगें। उदा. — [NiCl₂(en)₂],[Cr(NCS)₄(NH₃)₂]⁻¹

$\left[\text{CrBrCl}(\text{NH}_3)_4\right]^{+1}$

- (4) पूरे संकुल आयन को बड़े कोष्ठंक [] में लिखते है जो कि समन्वयन क्षेत्र कहलाता है।
- (5) अब धातु आयन और लिगेण्ड पर उपस्थित आवेश की सहायता से, संकुल आयन पर आवेश ज्ञात करते है और यह आवेश बड़े कोष्ठक के ऊपर लिख देते है। उदा - Ni(en)₂Br₂ पर आवेश =(+4)+(0)+(-2)=+2 है, अतः इसे [Ni(en)₂Br₂]⁺² धातु आयन पर आवेश उसके नाम के साथ कोष्ठक () में लिखी रोमन संख्या से ज्ञात हो जाता है।
- (6) अब धनायन और ऋणायन को ऐसी पूर्ण संख्याओं से गुणा करते है कि कुल धनावेश और कुल ऋणावेश बराबर हो जावें।
- dibromidobis (ethylenediamine) nickle (IV) chloride
 [NiBr₂(en)₂] च Cl
 यहाँ वर्गाकार कोष्टक में उपस्थित Ni का ऑक्सीकरण अंक (IV) है
 2Br का आं अंक -2 है en का आं अंक शून्य है। अत: समन्वय
 मण्डल पर कुल आवेश [+4 2 = +2] +2 होगा।

[NiBr₂(en)₂]²⁺Cl⁻

अत: उपरोक्त यौगिक का सूत्र

[NiBr2(en)2] Cl2 होगा।

potassium tetracyanonicklate (II)
 K[Ni(CN)₄]
 यहाँ K का आं अंक +1 है, समन्वय मण्डल में Ni का आं अंक +2

व चार CN⁻ आयन का आं अंक -4 है। समन्त्रय मण्डल पर कुल आवेश [-2] है।

K* [Ni(CN)4] -2

अत: उपरोक्त यौगिक का सूत्र

K₂[Ni(CN)₄] होगा।

tetrammineaquobromidocobalt(III) nitrate [CoBr(NH $_3$) $_4$ H $_2$ O] NO $_3$ यहाँ वर्गाकार कोष्टक में उपस्थित Co का ऑक्सीकरण अंक +3 है। Br का -1 है, NH $_3$ का शून्य व H $_2$ O का शून्य है अत: समन्वय मण्डल पर कुल आवेश [+3 -1 = +2] +2 है। NO $_3$ नाइट्रेट पर -1 है। अत:

 $[CoBr(NH_3)_4H_2O]^2$ ' NO_3 '' अत: उपरोक्त यौगिक का सूत्र होगा $[CoBr(NH_3)_4H_2O]$ $(NO_3)_2$

अन्य उदाहरण -

- (i) copper hexacyanoferrate (II) $Cu[Fe(CN)_6]:Cu^{2+}[Fe(CN)_6]^{4+}:Cu_2[Fe(CN)_6]$
- (ii) amonium diamminetetraisothiocyanatochromate (III) $NH_4[Cr(NCS)_4(NH_3)_2]; \ NH_4^{\dagger}[Cr(NCS)_4(NH_3)_2]^{-1}$ $3Ta: \ NH_4[Cr(NCS)_4(NH_3)_2]$
- (iii) diamminedichloridoplatinium (II) [Pt Cl₂(NH₃)₂]
- (iv) hexaammineplatinium (II) chloride $[Pt(NH_3)_6]Cl; [Pt(NH_3)_6]^{2+}Cl^-; [Pt(NH_3)_6]Cl_2$
- (vi) अमोनियम डाईऐमीनटेट्राआइसोथायोसायनेटोक्रोमेट (III) $NH_4[Cr(NCS)_4(NH_3)_2], NH_4^{\dagger}[Cr(NCS)_4(NH_3)_2]^{\top}$
- (vii) डाईऐम्मीनडाइक्लोरीडोप्लेटिनम (II) |Pt Cl₂(NH₃)₂]:
- (viii) हेक्साऐम्मीनप्लेटिनम (11) क्लोराइड [Pt(NH₃)₆]Cl₂

9.10 डपसहसंयोजक यौगिकों में समावयवता (Isomerism in Co-ordination Compounds)

- वे दो या दो से अधिक यौगिक, जिनके अणुसूत्र समान हो लेकिन उनकी संरचना या त्रिविम व्यवस्था मिन्न हो, समावयवी कहलाते है व इसके गुण को समावयवता कहते हैं।
- ये यौगिक दो प्रकार की समावयवता प्रदर्शित करते हैं—
 (A) संरचनात्मक समावयवता (Structural Isomerism)
 - (B) त्रिविम समावयवता (Stereo Isomerism)

संरचनात्मक समावयवता (Structural Isomerism)

- इस समावयवता में उपसहसंयोजक यौगिकों की संरचना में भिन्नता होती है, अतः इन्हें संरचना समावयवी कहते हैं व इनके इस गुण को संरचनात्मक समावयवता कहते है।
- संरचनात्मक समावयवता को निम्न भागों में बांटा गया है-

9.11.1 आयनन समावयवता (Ionisation Isomerism)

- इस समावयवता में उपसहसंयोजक यौगिकों के अणुसूत्र समान रहते है।
- वे उपसहसंयोजक यौगिक, जिनके विलयन में प्राप्त आयन भिन्न-भिन्न हो, आयनन समावयवी कहलाते हैं तथा इसे आयनन समावयवता कहते है।
- उदाहरण--
 - [CoBr(NH₃)₅]\$O₄
 पेन्टाऐमीनक्षोमीडोकोबाल्ट (III) सल्फेट
 [Co\$O₄(NH₃)₅]Br

पेन्टाऐमीनसल्फेटोंकोबाल्ट (III) ब्रोमाइड

- उपरोक्त दोनों उपसहसंयोजक यौगिक, आयनन समावयव कहलाते हैं। क्योंकि ये दोनों अलग—अलग आयन देते हैं। [CoBr(NH₃)₅]SO₄ → [CoBr(NH₃)₅]⁺² + SO₄⁻² [CoSO₄(NH₃)₅]Br → [CoSO₄(NH₃)₅]⁻ + Br⁻
- उपरोक्त दोनों विलयनों में, जिसमें SO₄² आयन उपस्थित है, वह बैंगनी रंग देता है व जिस विलयन में Br आयन है, लाल रंग देते हैं। इसके अन्य उदाहरण निम्न है-
 - (i) [CrCl(NO₂)(NH₃)₄]Cl व [CrCl₂(NH₃)₄]NO₂
 - (ii) $[PtCl_3(NH_3)_3]Br \ \overline{q} \ [PtBrCl_2(NH_3)_3]Cl$
 - (iii) $[Co(NO_3)(NH_3)_5]SO_4 = [CoSO_4(NH_3)_5]NO_3$
 - (iv) $[Pt(NH_3)_4Cl_2]Br_2 = [Pt(NH_3)_4Br_2]Cl_2$
 - (v) $[CrI_2(NH_3)_4]ONO = [CrI(ONO)(NH_3)_4]I$

9.11.2. बन्धक समावयवता (Linkage Isomerism)

- यह समावयवता ऐसे उपसहसंयोजक यौगिक प्रदर्शित करते हैं,
 जिनमें उभयदन्तुक लिगेण्ड उपस्थित होता है।
- ऐसे यौगिकों के दो बन्धक समावयवी होते हैं, जिनमें केन्द्रीय धातु परमाणु या आयन से उपसहसंयोजक बन्ध से जुड़े लिगैण्ड दाता परमाणु भिन्न-भिन्न होता है।
- इस प्रकार के यौगिक एक तरह से क्रियात्मक समावयवी होते हैं।
- जैसे−(i) M -- () N = () & M -- N नाइट्राइटो- O नाइट्टो- N

- (ii) M~S~C≡N & M~N=C=S थायोसायनेटो~S आइसोथायोसायनेट~V
- इस समावयवता के निम्न उदाहरण है।
 - (i) [CoNO₂(NH₃)₅]Cl₂ & [Co(ONO) (NH₃)₅]Cl₂ पीला रंग लाल रंग पेन्टाऐमीननाइट्रोकोबाल्ट (III) पेन्टाऐमीननाइट्राइटोकोबाल्ट (III)
- (ii) [CrSCN(H2O)]²⁻ पेन्टाऐक्वाथायोसायनेटो क्रोमियम (III) आयन

क्लोराइड

& [CrNCS(H₂O)₅] ² पेन्टाएक्वाआइसोथायोसायनेटो क्रोमियम (III) आयन

क्लोराइड

9.11.3. हाइड्रेट समावयवता (Hydrate Isomerism)

- इस समावयवी में एक समावयवी में जल लिगेण्ड के रूप में व दूसरे समावयवी में क्रिस्टलीय जल के रूप में रहते हैं। अतः उपसहसंयोजक यौगिक के समन्वयन क्षेत्र और आयनन क्षेत्र में उपस्थित जल के अणुओं की संख्या में अन्तर होता है।
- अतः इस प्रकार के समावयवीयों को हाइड्रेट समावयवी कहते है।
- उदाहरण--
 - (i) $CrCl_{2}.6H_{2}O$ में तीन प्रकार के हाइड्रेट समावयक्यी पाये जाते हैं।

[Cr(H₂O)₆] Cl₃ बैंगनी रंग [CrCl(H₂O)₅]Cl₂.H₂O हल्का हरा रंग [CrCl₂(H₂O)₄]Cl.2H₂O गहरां हरा अन्य उदाहरण—

- (ii) $[CoCl(NH_3)_4(H_2O)] Cl_2 \& [CoCl_2(NH_3)_4]Cl.H_2O$
- (iii) [CrCl(NH₃)₄ (H₂O] Br₂ & [CrBrCl(NH₃)₄]Br₁H₂O
- (iv) $[Co(en)_2(H_2O)Cl] Cl_2 & [Co(en)_2Cl_2]Cl.H_2O$
- (v) Co(py)₂(H₂O)₂Cl₂] Cl & [Cr(py)₂ (H₂O)Cl₃],H₂O

9.11.4. समन्वयी समावयवता (Co-ordination Isomerism)

- यह समावयवता उन संकुल यौगिकों में पाई जाती है जिनमें दोनों भाग (धनायन व ऋणायन) संकुल आयन के रूप में स्थित होते हैं।
- दो संकुल आयनों के मध्य लिगैण्ड़ों के विनिमय के कारण इस प्रकार की समावयवता उत्पन्न होती है।

उदाहरणार्थ-

- (i) $[Cr(NH_3)_6][Co(CN)_6]$ & $[Co(NH_3)_6][Cr(CN)_6]$
- (ii) $[Pt(NH_3)_4] [PtCl_4] & [PtCl(NH_3)_3] [PtCl_3(NH_3)]$
- (iii) $[Co(NH_3)_6] [Cr(C_2O_4)_3] \& [Cr(NH_3)_6] [Co(C_2O_4)_3]$
- (iv) $[Cu(NH_3)_4][PtCl_4] \& [Pt(NH_3)_4][CuCl_4]$
- (v) $[Pt(NH_3)_4] [PtCl_4] & [PtCl(NH_3)_3] [PtCl_3(NH_3)]$

9.11.5. लिगेण्ड समावयवता (Ligand Isomerism)

 वे संकुल यौिंगक जिनमें लिगैण्ड स्वयं समावयवता प्रदर्शित करते हो, लिगैण्ड समावयवी कहलाते हैं:
 क्लोरोफिनिल लिगैण्ड तीन प्रकार की स्थिति समावयवता दर्शाता है।

े क्लोरोफेनिल 3 क्लोरोफेनिल 4-क्लोरोफेनिल अतः निम्न तीनों संकुल यौग्कि लिगेण्ड समावयवी कहलाते हैं--

- 1. $[Cr(NH_3)_5\{C_6H_4Cl(2)]Cl_2$
- 2. $[Cr(NH_3)_5 \{C_0H_4Cl(3)\}]Cl_2$
- 3. $[Cr(NII_3)_5 \{C_6H_4Cl(4)\}]Cl_2$

9.12 त्रिविम समावयवता (Stereo Isomerism)

- जब दो या दो से अधिक उपसहसयोजक यौगिक आपस में संरचना व अणुसूत्र में समानता प्रदर्शित करते हैं, लेकिन उनमें उपस्थित केन्द्रीय धातु परमाणु से बन्धित लिगेण्डों की आकाशीय व्यवस्था में भिन्नता हो तो, उन्हें त्रिविम समावयवी व इनके इस गुण को त्रिविम समावयवता कहते हैं।
- ये यौगिक दो प्रकार की समावयवता प्रदर्शित करते हैं—
 (a) ज्यामिती समावयवता (b) प्रकाशिक समावयवता

9.12.1. ज्यामिती समावयवता (Geometrical Isomerism)

- संकुल यौगिकों में उपस्थित लिगेण्ड की भिन्न ज्यामिती व्यवस्था के कारण उत्पन्न समावयवता को, ज्यामिति समावयवता कहते है!
- इसमें एक समावयवी में दोनों समान लिगेण्ड एक ही ओर या एक - दूसरे के निकट उपस्थित होते हैं तथा दूसरे समावयवी में दोनों समान लिगेण्ड विपरित दिशाओं में होते हैं तथा इन्हें क्रमशः समपक्ष और विपक्ष समावयवी कहते हैं।
- अतः इसे **समपक्ष-विपक्ष समावयवता** भी कहते हैं।
- यह समावयवता समन्वय संख्या चार के वर्ग समतलीय तथा छः
 के अष्टफलकीय संकुल यौगिकों में पाई जाती है।
- 4 समन्वय संख्या वाले चतुष्फलकीय संरचना वाले संकुल यौगिक,
 ज्यामितिय समावयता प्रदर्शित नहीं करते हैं क्योंकि इनमें किन्हीं
 भी दो लिगेण्ड के मध्य कोण हमेशा समान रहता है।
- वर्गाकार समतलीय संकुलों में ज्यामिति समावयवता के लिये हमें बन्ध कोण को समझना होगा।
- इनमें दो प्रकार के बन्ध कोण होते है 90° व 180°

- उपरोक्त संचरना में 1, 2, = 2, 3 = 3, 4 = 4.1 = 90°
- उपरोक्त संरचना में 1. 3 = 2. 4 = 180°
- अतः जब दो समान लिगेण्डो के मध्य कोण 90° होगा तो उन्तः समपक्ष ज्यामिति समावयव कहेंगे।
- अतः जब दो समान लिगेण्डो के मध्य कोण 180° होगा तो अन्ह विपक्ष ज्यामिति समावयव कहेंगे।

(1) समन्वय संख्या 4 वाले संकुल यौगिक

 यदि केन्द्रिय धातु आयन को M से व विभिन्न एक दन्तुक लिगेण्ड को A. B. C. D से प्रदर्शित करे तो निम्न प्रकार के वर्ग समतलीय यौगिक ज्यामिती समावयवता प्रदर्शित करते हैं।

MA2B2, MA2BC, MABC3 एवं MABCD

(1.a) MA2B2 प्रकार के समतलीय यौगिक

 [PtCl₂(NH₃)₂] इसका समपक्ष रूप हल्का पीला व विपक्ष रूप गहरा पीला होता है ।

 [CoCl₂(NH₃)₂] भी समपक्ष व विपक्ष ज्यामिती समावयवता प्रदक्षित करते हैं।

(1.b) MA2BC प्रकार के समतलीय यौगिक-

- ये भी दो रूपों में पाये जाते हैं। जिन्हें समपक्ष व विपक्ष कहते हैं।
- [CoCl(NO₂) (NH₃)₂] में दो रूप समपक्ष व विपक्ष

(1.c) MABCD प्रकार के समतलीय यौगिकों के लिये

- इस प्रकार के उपसहसंयोजक वर्गसमतलीय यौगिक, तीन प्रकार के ज्यामिती समावयवी प्रदर्शित करते हैं।
- इस प्रकार के संरचनाओं को प्राप्त करने के लिये किसी एक लिगेण्ड की स्थिति को निश्चित करते हैं और अन्य तीनों लिगेण्डों को बारी—बारी से इसकी विपक्ष स्थिति पर रखते हैं।

(I.d) M(AB)2 प्रकार के वर्ग समतलीय उपसहसंयोजक यौगिक में (AB) असममित द्विदन्तुक लिगेण्ड हैं, ये भी ज्यामिती समावयवता प्रदर्शित करते हैं।

$[Pt(Gly)_2]$

यहाँ Gly \rightarrow H_2N - CH_2 - COO^- लिगेण्ड है |

डाई (ग्लाइसीनेटो) प्लेटिनम (II)

नोटः ज्यामिती समावयवता MA4, MA3B, MAB3 प्रकार के वर्ग समतलीय संकुल यौगिक प्रदर्शित नहीं करते है।

- अष्टफलकीय समतलीय संकुलों में ज्यामिती समावयवता के लिये हमें बन्ध कोण को समझना होगा।
- इनमें दो प्रकार के बन्ध कोण होते है 90° व 180°

- उपर्युक्त संरचना में 1, 2=2, 3, = 3, 4=4, 1=1, 6=2, 6=3.6 = 4, 6=1.5=2.5=3.5=4.5=90° के कोण है। अतः स्थिति 1, 2=2, 3=3.4=4.1=1.6=2.6=3.6=4.6=90° स्थिति 1, 3=2.4=5.6 समान है व इनके मध्य कोण 180°
- जब समान दो लिगेण्डों के मध्य कोण 90° हो तो उन्हें समपक्ष समाययव कहते है।
- जब समान दो लिगेण्डों के मध्य कोण 180° हो तो उन्हें विपक्ष समावयव कहते हैं।

- 2. समन्वयी संख्या 6 वाले संकुल यौगिक
 - इनकी आकृति अष्टफलकीय होती है।
 - इस समन्वय संख्या में निम्न प्रकार के यौगिक ज्यामिति समावयवता
 प्रदर्शित करते है MA₄B₂,MA₂B₄,MA₃B₃,MA₄BC

2a. MA_4B_2 , या MA_2B_4 , प्रकार के यौगिक $[CoCl_2(NH_3)_4]^+$

2b. MA_3B_3 में उदाहरण $[CoCl_3(NH_3)_3]$ एवं $[RhCl_3(P_y)_3]$

- उपर्युक्त उदाहरण में समपक्ष रूप में समान लिगेण्ड अष्टफलक के एक फलक के तीनों कोनों पर उपस्थित होते हैं। इसलिये इसे फलकीय [Facial] या fac. समावयवी भी कहते हैं। जबिक विपक्ष समावयवी में ऐसा नहीं होता। इसे रेखांशिक (meridional) या mer. समावयवी कहते हैं।
- 2c. MABCDEF प्रकार के अष्टफलकीय संकुल में 15 प्रकार के विभिन्न ज्यामिती समावयव बनते हैं।
- 2d. $M(AA)_2B_2$ या $M(AA)_2BC$ प्रकार के अष्टफलकीय उपसहसंयोजक यौगिक के लिये (यहाँ (AA) समद्विदन्तुक लिगेण्ड है) $[CoCl_2(en)_2]^+$ एवं $[NiCl_2(OX)_2]^{-4}$ में यह समावयवता प्रदर्शित होती है।

o 1826, venifore Atherism (Optical Isomerism)

 वे संकुल यौगिक जो ध्रुवित प्रकाश के तल को बच्चे या दांये घुमाते हो, उन्हें प्रकाशिक समावयवी कहते है व इनकें इस गुण को प्रकाशिक समावयवता कहते है।

- ये एक दूसरे के दर्पण प्रतिबिम्ब होते है और ये एक दूसरे पर आध्यारोपित नहीं होते।
- इनमें किसी प्रकार की सममिती नहीं होती।
- समन्वय संख्या 4 वाले चतुष्फलकीय संरचनाओं में प्रकाशिक समावयवता पाई जाती है। परन्तु वर्ग समतलीय संकुल सममिती तल की उपस्थिति के कारण, प्रकाशिक समावयवता प्रदर्शित नहीं करते हैं।
- समन्वय संख्या 6 वाले अष्टफलकीय संरचना वाले यौगिक भी प्रकाशिक समावयवता प्रदर्शित करते है।
- वे समावयव जो ध्रुवित प्रकाश को बायें और घुमाये उन्हे /(–) द्वारा प्रदर्शित करते है, जो ध्रुवित प्रकाश को दायी और घुमाये उन्हें d(+) द्वारा प्रदर्शित करते है।

1. समन्वयी संख्या (4) के चतुष्कलकीय संकुल

ऐसे संकुल यौगिक, जिनमें केन्द्रीय परमाणु से असममित द्विदन्तुक के दो लिगेण्ड जुडे हो, तो वे प्रकाशिक समावयवता प्रदर्शित करते है। जैसे —

 $M(AB)_2$.[Ni(CH₂NH₂COO⁺)₂]

इसी प्रकार डाइबेन्जायलऐसीटोनेटोबेरिलियम (II) भी प्रदर्शित करते है।

2. अष्टफलकीय संकुलों द्वारा

निम्न तीन प्रकार के अष्टफलकीय संकुल प्रकाशिक समावयवता प्रदर्शित करते है –

 $\mathbf{M}(\mathbf{A}\mathbf{A})_3$ प्रकाश के अष्टफलकीय यौगिक, जिसमें तीन 2a. समद्विदन्तुक लिगेण्ड उपस्थित होते है। उदाहरण — [Co(cn)3]+3 तीन रूपों में प्रकाशीय समावयवता प्रदर्शित करते हैं। (i) [CoCl₂(en) (NH₃)₂]*

2b. $M(AA)_2B_2$ और $M(AA)_2BC$ प्रकार के अष्टफलकीय यौगिक, जिनमें दो समद्विदन्तुक लिगेण्ड उपस्थित होते है।

उदाहरण -

 $[\operatorname{CoCl}_2(\operatorname{en})_2]^+ \& [\operatorname{RhCl}_2(\operatorname{en})_2]^+$

- उपर्युक्त दोनों [CoCl2(en)2] के समक्ष रूप के d और / दो प्रकाशिक समावयवी है। इसका विपक्ष रूप सममिति तल की उपस्थिति के कारण प्रकाशिक समावयवता प्रदर्शित नहीं करता है।
- अतः [CoCl2(en)2] * ज्यामितिय और प्रकाशिक दोनों समावयवता प्रदर्शित करता है।
- $M(AA)B_2C_2$ प्रकार के अष्टफलकीय यौगिक, जिनमें एक 2c. समद्विदन्तुक लिगेण्ड उपस्थित होते है। उदाहरण -

 $[CoCl_2(en)(NH_3)_2]^+$

d-समावयवता

(ii) $[Co(C_2O_4) (NH_3)_2 (NO_2)_2]^-$

ol-समावयव

l-समावयव

मीसोरूप

अभ्यास-९.३

- प्र. 1 आयनन समावयवता किसे कहते है ? उदाहरण देकर समझाइये।
- प्र. 2 बन्धक समावयवता किसे कहते है ? उदाहरण देकर समझाइये।
- प्र. 3 हाइड्रेट समावयवता किसे कहते है ? उदाहरण देकर समझाइये।
- प्र. 4 समन्वयी समावयवता किसे कहते है ? उदाहरण देकर समझाइये।
- प्र. 5 लिगेण्ड समावयवता किसे कहते है ? उदाहरण देकर समझाइये।
- प्र. 6 बहुलीकरण समावयवता किसे कहते है ? उदाहरण देकर समझाइये।
- प्र. 7 ज्यामिती समावयवता किसे कहते है ? उदाहरण देकर समझाइये।
- प्र. 8 प्रकाशिक समावयवता किसे कहते है ? उदाहरण देकर समझाइये।
- प्र. 9 निम्न यौगिक कौनसी समावयवता प्रदर्शित करते है।
 - (i) [(CO)5MnSCN] 쥑[(CO)5MnNCS]
 - (ii) $[Co(en)_3][Cr(CN)_6] \exists [Cr(en)_3][Co(CN)_6]$
 - (iii) $[CoNO_3(NH_3)_5]SO_4$ व $[CoSO_4(NH_3)_5]NO_3$
 - (iv)

 $[\text{CoCl}_2(\text{py})_2(\text{H}_2\text{O})_2]\text{Cl}$ व $[\text{CoCl}_3(\text{Py})_2(\text{H}_2\text{O})].\text{H}_2\text{O}$

- प्र. 10 निम्न संकुल यौगिक कौनसी समावयवता प्रदर्शित करेंगें।
 - (i) $[(Cr(NH_3)_6][Co(CN_6)] = [(Cr(CN)_2(NH_3)_4]$ $[Co(CN)_4(NH_3)_2]$

 - (iii) $[PtBt_2(NH_3)_4]Cl_2$ व $[PtCl_2(NH_3)_4]Br_2$
 - (iv) $[CoNO_2(NH_3)_5]Cl_2 = [CoONO(NH_3)_5]Cl_2$
- प्र. 11 समन्वय संख्या 4 वाले कौनसे संकुल यौगिक ज्यामिती समावयवता प्रदर्शित करते हैं।
- प्र. 12 समन्वय संख्या 4 वाले कौनसे संकुल यौगिक ज्यामिती समावयवता प्रदर्शित नहीं करते।
- प्र. 13 समन्वय संख्या 6 वाले कौनसे संकुल यौगिक ज्यामिती समावयवता प्रदर्शित करते हैं।
- प्र. 14 समन्वय संख्या 6 वाले कौनसे संकुल यौगिक ज्यामिती समावयवता प्रदर्शित नहीं करते।
- प्र. 15 MABCDEF प्रकार का संकुल यौगिक कितने प्रकार की ज्यामिती समावयवता प्रदर्शित करेगा।
- प्र 16 MABCD प्रकार का वर्गाकार समतलीय संकुल यौगिक कितने

- प्रकार की ज्यामिती समावयवता प्रदर्शित करेगा।
- प्र. 17 MABCD संकुलन यौगिक से बनने वाले तीनो ज्यामिती समावयवी की संरचनायें बनाइये।
- प्र. 18 $[\text{CoCl}_2(\text{en})_2]^{+1}$ के ज्यामिती समावयवों की संरचना बनाये।
- प्र. 19 समन्वय संख्या 4 वाले कौनसे संकुल यौगिक प्रकाशिक समावयव प्रदर्शित करते है।
- प्र. 20 समन्वय संख्या 6 वाले कौनसे संकुल यौगिक प्रकाशिक समावयवता प्रदर्शित करते हैं।

उत्तरमाला

- पृष्ठ संख्या 9.14 पर 9.16.1 भाग पर देखें।
- पृष्ठ संख्या 9.14 पर 9.11.2 भाग पर देखें।
- पृष्ठ संख्या 9.14 पर 9.11.3 भाग पर देखें।
- पृष्ठ संख्या 9.14 पर 9.11.4 भाग पर देखें ।
- 5. पृष्ठ संख्या 9.15 पर 9.11.5 भाग पर देखें।
- 6. पृष्ट संख्या 9.15 पर 9.11.6 भाग पर देखें।
- पृष्ठ संख्या 9.15 पर 9.12.1 पर देखें।
- पृष्ठ संख्या 9.16 पर 9.12.2 पर देखें।
 (i) बन्धक (ii) समन्त्राप्ति
 - (i) बन्धक (ii) समन्वयी
 - (iii) आयनन (iv) हाङ्रेट (i) समन्वयी (ii) हाङ्डेट
- (i) समन्वयी (ii) हाइड्रेट
 (iii) आयनन (iv) बन्धन
- 11. $MA_2B_2.MA_2BC,MABC_2$ एवं MABCD प्रकार के संकुल यौगिक ज्यामिति समावयवता प्रदर्शित करते हैं।
- 12. MA_{4,} MA₃B व MAB₃ प्रकार के संकुल यौगिक ज्यामिती समावयवता प्रदर्शित नहीं करते।
- $13. \quad MA_4B_2$ या $MA_2B_4, MA_3B_3; M(AA)_2B_2; M(AA)_2BC$ प्रकार के संकुल थौगिक ज्यामिती समावयवता प्रदर्शित करते है।
- 14. MA₆,MA₅B संकुल यौगिक ज्यामिती समावयता प्रदर्शित नहीं करते।
- 15. यह 15 प्रकार के ज्यामिती समावयवता प्रदर्शित करेग
- 16. तीन प्रकार की ज्यामिती समावयवता प्रदर्शित करता है

9.13 STATE THE PROPERTY OF THE

- उपसहसंयोजक यौगिकों में धातु आयन तथा उससे जुड़े लिगेण्डों के मध्य बन्धन की प्रकृति को निम्न सिद्धान्तों द्वारा समझाया जा सकता हैं—
- (1) संयोजकता बन्ध सिद्धान्त (2) क्रिस्टल क्षेत्र सिद्धान्त

SEL PRINCE OF THE PROPERTY OF MARKET BARBERS OF THE PROPERTY O

- यह सिद्धान्त वैज्ञानिक लाइनस पालिंग के द्वारा दिया गया है।
 इस सिद्धान्त द्वारा संकुल यौगिकों की संरचना और चुम्बकीय
 गुणों की व्याख्या की जा सकती है। यह सिद्धान्त संकरण पर
 आधारित है। इस सिद्धान्त की मुख्य धारणाएं निम्न हैं—
- (i) सर्वप्रथम केन्द्रीय घातु परमाणु अपनी ऑक्सीकरण अंक के अनुरूप, इलैक्ट्रॉन त्यागकर धनायन बनाता है।
- (ii) अब केन्द्रीय धातु आयन, लिगैण्डों के साथ बन्ध बनाने के लिए आवश्यक संख्या में रिक्त कक्षक उपलब्ध कराता है, जिनकी संख्या समन्वयी संख्या और संकरण पर निर्भर करती है। ये रिक्त कक्षक, संयुक्त होकर समान ऊर्जा व आकृति के नये संकरित कक्षक बनाते हैं, जिनकी विशिष्ट ज्यामिति होती है।
- (iii) ये रिक्त संकरित कक्षक, लिगेण्ड के दाता परमाणु के इलैक्ट्रॉन युग्म युक्त कक्षकों से अतिव्यापन करके, उपसहसंयोजक बन्ध बनाते हैं। इस प्रकार बने बन्धों की ऊर्जा समान होती है तथा ये बन्ध दिशात्मक होते है। इस प्रकार केन्द्रीय धातु आयन के संकरित कक्षक और लिगेण्ड के मध्य बन्ध बनने से बने संकुल अणु या आयन की एक निश्चित ज्यामिति होती हैं।

- (iv) यदि संकरण में केन्द्रीय धातु परमाणु के बाह्य d-कक्षक (nd कक्षक) भाग लेते हैं तो इसे बाह्य कक्षक संकुल या चक्रण मुक्त संकुल या उच्च चक्रण संकुल कहते हैं। यदि आन्तरिक d-कक्षक [(n-1)d कक्षक] भाग लेते हैं तो इसे आन्तरिक कक्षक संकुल, चक्रण युग्मित संकुल या निम्न चक्रण संकुल कहते हैं।
- (v) यदि लिगेण्ड प्रबल इलैक्ट्रॉन युग्म दाता होता है तो यह धातु आयन के इलैक्ट्रॉन का पुनर्विन्यास करके, अयुग्मित इलैक्ट्रॉन को युग्मित कर देता है। जिससे अधिक संख्या में रिक्त त कक्षक संकरण में भाग लेने के लिए उपलब्ध हो जाते हैं। इस प्रकार इलैक्ट्रॉन के युग्मन से चुम्बकीय आघूर्ण कम हो जाता है, जिससे निम्न चक्रण संकुल बनता है। आन्तरिक त कक्षक [(n-1)d] निम्न चक्रण संकुल बनाते हैं।
- (vi) यदि लिगैण्ड दुर्बल इलैक्ट्रॉन युग्म दाता होता है तो यह धातु आयन के अयुग्मित इलैक्ट्रॉन का युग्मन नहीं कर सकता है। अतः अयुग्मित इलैक्ट्रॉन की संख्या अधिक होने से चुम्बकीय आधूर्ण अधिक हो जाता है, जिससे उच्च संकुल बनता है। बाह्य d - कक्षक (nd), उच्च चक्रण संकुल बनाते हैं।

दुर्बल लिगेण्ड = $I^- < Br^- < Cl^- < F^- < OH^- < C_2O_4^{-2} < H_2O$ प्रबल लिगेण्ड

 $= NCS^{-} < Py < NH_3 < en < bipy < NO_2^{-} < CN^{-} < CO$

- (vii) लिगेण्ड के पास एकाकी इलैक्ट्रॉन युग्म युक्त न्यूनतम एक कक्षक अवश्य होता है जो धातु के रिक्त संकरित कक्षक के साथ अतिव्यापन करके σ बन्ध (L→M) बनाता है।
- (viii) धातु के इलेक्ट्रॉन युग्म युक्त असंकरित d कक्षक, लिगेण्ड के रिक्त बंधी या विपरित बंधी कक्षकों से अतिव्यापन करके π बन्ध बनाते हैं तो इसे **पश्च आबन्धन** (Back bonding) कहते हैं। इस प्रकार o बन्ध बनने से धातु आयन पर एकत्रित ऋणावेश का धातु तथा लिगेण्ड पर π बन्धन द्वारा पुनः वितरण हो जाता है।

(ix) यदि संकुल यौगिक में अयुग्मित इंलैक्ट्रॉन उपस्थित होते हैं तो वह अनुचुम्बकीय होता है और यदि युग्मित इंलैक्ट्रॉन उपस्थित हो तो वह प्रतिचुम्बकीय होता है।

9.20

(x) यदि संकुल यौगिक में संकरण के प्रकार का ज्ञान हो तो संकुल यौगिक के अणु की आकृति, बन्ध कोण और चुम्बकीय प्रकृति की जानकारी हो जाती है। उपसहसंयोजक यौगिकों में संकरण के प्रकार, ज्यामिति और उदाहरण निम्न हैं—

समन्वयी संख्या	संकरण	ज्यामिति	उदाहरण
2	sp	रेखीय	$[Ag(NH_3)_2]^{\oplus}$, $[Cu(NH_3)_2]^{\oplus}$ $[Ag(CN)_2]^{\Theta}$
3	sp ²	त्रिकोणीय	[HgI₃] [©]
4	sp³	चतुष्फलकीय	$[Ni(CO)_4], [ZnCl_4]^{-2}$ $[NiCl_4]^{-2}, [Zn(NH_3)_4]^{+2}$
4	dsp ²	समतलीय वर्गाकार	[Cu(NH3)4]+2 $[Ni(CN)4]-2$
6	d ² sp ³	अष्टफलकीय	$[Cr(NH_3)_6]^{+3}$, $[Fe(CN)_6]^{-4}$, $[Co(NH_3)_6]^{+3}$
6	sp³d²	अष्टफलकीय	$[CoF_6]^{-3}$, $[Co(H_2O)_6]^{+3}$, $[FeF_6]^{-3}$

9.13.2 अन्दरभूतकीय संयुक्त (समन्दर्य संख्या 6)

- (1) हैक्साऐमीनक्रोमियम (III) आयन $[Cr(NH_3)_6]^{3+}$
 - क्रोमियम का बाह्य इलेक्ट्रॉनीय विन्यास 3d⁵ 4s¹
 - इस संकुल में क्रोमियम परमाणु की आं. अ. =+3 है।
 - इसकी समन्यवय संख्या 6 है।
 - Ст परमाणु का आद्य अवस्था में इलेक्ट्रॉनीय विन्यास

Cr³⁺ का इलेक्ट्रॉनीय विन्यास

		3d		4	s	 4p	
1	1	1					

Cr³⁺ में d²sp³ सकरण

 $\left[\operatorname{Cr}(\operatorname{NH}_3)_6\right]^{3+}$ का बनना

1	1	1	••	••	••	••	• •	• •

छः NH3 अणुओं से छः एकांकी इलेक्ट्रॉन युग्म प्रदान करने पर
 छः उपसहसंयोजक बंध बनते हैं।

उपसहसंयोजन यौगिक

- इस संकुल की अष्टफलकीय आकृति होगी और प्रत्येक बन्ध कोण 90° होता है।
- तीन अयुग्मित इलेक्ट्रॉन उपस्थित होने के कारण यह रंगीन व अनुचुम्बकीय है।
- इसका चुम्बकीय आघूर्ण का मान 3.87 है।
 यह एक आन्तरिक कक्षक (निम्न चक्रण) संकुल है क्योंकि इसके संकरण में आंतरिक d-कक्षक भाग लेते हैं।

- (2) हेक्सासायनोफैरेट (III),आयन, $[Fe(CN)_6]^{3-}$
 - Fe परमाणु का बाह्य इलेक्ट्रॉनीय विन्यास 3d⁶4s² होता है इस संकुल में Fe की आक्सीकरण अवस्था +3 है।
 - इसकी समन्वय संख्या = 6
 - Fe परमाणु का आद्य अवस्था में इलेक्ट्रनीय विन्यास
 3d⁶ 4s² 4p

Fe ⁺³ आयन का इलेक्टॉनीय विन्यास												
	1	T	1	1	1	1						

Fe $^{+3}$ का d^2sp^3 संकरण [प्रबल लिगैण्ड CN $^-$ के कारण] युग्मत

 $[\mathrm{Fe}(\mathrm{CN})_6]^3$ का बनना

छ: CN से छ: एकांकी इलेक्ट्रॉन युग्म

- CN प्रबल लिगेण्ड हैं। इसके प्रबल इलेक्ट्रॉन युग्मदाता प्रभाव के कारण, Fe+3 में इलेक्ट्रॉन का पुनर्विन्यास होने से 3d के चार अयुग्मित इलेक्ट्रॉन, युग्मित हो जाते हैं। जिससे दो d - कक्षक रिक्त हो जाते हैं।
- d²sp³ संकरण के कारण इस संकुल आयन की ज्यामिति अष्टफलकलीय होगी।
- इसमें एक अयुग्मित इलेक्ट्रॉन उपस्थित होने के कारण यह रंगीन एवं अनुचुम्बकीय होगा।
- यह एक आन्तरिक कक्षक (निम्न चक्रण) संकुल है।
- इसका चुम्बकीय आघूर्ण का मान =1.7 है।

(3) हेक्साफ्लुओरोकोबाल्टेट (III) आयन $[C_0F_6]^{3-}$

- कोबाल्ट (Z = 27) का बाह्य इलेक्ट्रॉनीय विन्यास 3d⁷4s² है।
- इस संकुल में Co की आक्सीकरण अवस्था +3 है।
- इसकी समन्वय संख्या = 6
 Coपरमाणु का आद्यअवस्था में इलेक्ट्रोनिक विन्यास

	3 d 7	$4s^2$	4p	4d	
1 1	1 1	1 1			

Co³¹ आयन का इलेक्ट्रॉनीय विन्यास (d⁶s²)

 Co^{3+} का sp^3d^2 संकरण

[CoF₆]³⁻ आयन का बनना

छः F से छः एकांकी इलेक्ट्रॉन युग्म

- sp³d² संकरण के कारण इसकी ज्यामिति अष्टफलकीय है।
- इसमें 4 अयुग्मित इलेक्ट्रॉन उपस्थित होने के कारण, यह रंगीन तथा अनुचुम्बकीय है।
- F आयन के दुर्बल लिगेण्ड क्षेत्र के कारण Co³⁺ में 3d-इलेक्ट्रॉनों का युग्मन नहीं हो पाता। इसलिये इसमें बाह्य 4d- कक्षक संकरण में प्रयुक्त होते हैं। उच्च कोश के d- कक्षक प्रयुक्त होने के कारण यह बाह्य कक्षक (उच्च चक्रण) संकुल है जो इसके अनुचुम्बकीय गुण से भी पता चलता है।

(4) हेक्साएमीनकोबाल्ट (III) आयन

- इसमें Co की आ. अवस्था +3 और समन्वयी संख्या 6 हैं।
- Co⁻³ का इलैक्ट्रॉन विन्यास निम्न है—

Co⁺³ में d²sp³ संकरण

[Co(NH₃)₆]⁺³ का बनना

- 6NH₃ अणुओं से छः lp ग्रहण करने से 6 उपसहसंयोजक बन्ध बनते हैं। (आन्तरिक कक्षक संकुल)
- NH₃ प्रंबल लिगेण्ड हैं। इसके प्रबल इलैक्ट्रॉन युग्म दाता प्रभाव के कारण Co⁺³में इलैक्ट्रॉन का पुनर्विन्यास होने से चार अयुग्मित इलैक्ट्रॉन (3d कक्षकों के) युग्मित हो जाते हैं, जिससे दो 3d-कक्षक रिक्त हो जाते हैं।
- अब दो रिक्त 3d- कक्षक, एक रिक्त 4s कक्षक और तीन रिक्त 4p कक्षकों के मध्य d²sp³ संकरण से समान ऊर्जा व आकृति के 6 नये संकरित कक्षक बनते हैं, जिनकी अष्टफलकीय व्यवस्था होती हैं।
- 6NH₃ अणु अपना एक—एक e युग्म इन रिक्त संकरित कक्षकों को देकर 6 उपसहसंयोजक बन्ध बनाते हैं। अतः [Co(NH₃)₆]⁺³ आयन की अष्टफलकीय आकृति होती है तथा प्रत्येक बन्ध कोण 90° का होता हैं।
- क्योंकि इसमें आन्तरिक d- कक्षक संकरण में भाग लेते हैं, अतः यह आन्तरिक कक्षक (निम्न चक्रण) संकृल है।
- इसमें सभी इलैक्ट्रॉन युग्मित हैं, अतः यह प्रतिचुम्बकीय होता हैं।

9.13.1 किंग्सल क्षेत्र सिद्धान्त (Crystal-field Theory)

- प्रारम्भ में इस सिद्धान्त को केवल आयिनक क्रिस्टलों पर लागू किया गया था। इसलिये इसे क्रिस्टल क्षेत्र सिद्धान्त कहते हैं। इस सिद्धान्त की मुख्य धारणाएँ निम्न हैं–
- (1) इस सिद्धान्त के अनुसार संकुल आयनों में धातु आयन और लिगेण्ड के मध्य आयनिक बन्ध होता है। अतः धातु आयन और लिगेण्ड के मध्य स्थिर विद्युत आकर्षण बल होता है। अतः लिगेण्ड के इलेक्ट्रॉन धातु आयन के कक्षकों में प्रवेश नहीं करते हैं और कक्षकों में संकरण नहीं होता है। यदि लिगेण्ड ऋणायन होता है तो वह धातु आयन की ओर स्थिर वैद्युत आकर्षण बल से आकर्षित होता है। यदि लिगेण्ड उदासीन होता है तो इसका ऋण ध्रुव धातु आयन की ओर आकर्षित होता है।
- (2) धातु आयन और लिगेण्ड के मध्य निम्न दो प्रकार के बल कार्य करते हैं—
- (i) आकर्षण बल-धातु आयन की नाभिक और लिगेण्ड के इलेक्ट्रॉन के मध्य आकर्षण बल लगता है।
- (II) प्रतिकर्षण बल-धातु आयन और लिगेण्ड के इलेक्ट्रॉन के मध्य

प्रतिकर्षण बल लगता है। धातु आयन के जो कक्षक, लिगेण्ड के अधिक निकट होते हैं, वे अधिक प्रतिकर्षित होते हैं, जिससे धातु आयन के कक्षकों की समभ्रशंता समाप्त हो जाती है।

- इस कारण धातु आयन के समभ्रंश d-कक्षकों का दो भिन्न ऊर्जा स्तरों के समूहों में विभाजन हो जाता है। यह विभाजन लिगेण्डों के क्रिस्टल क्षेत्र के कारण होता है। इसे क्रिस्टल क्षेत्र विपाटन कहते हैं तथा दोनों समूहों में विभाजित कक्षकों की ऊर्जा के अन्तर को क्रिस्टल क्षेत्र विपाटन ऊर्जा कहते हैं तथा इसे △ से व्यक्त करते हैं।
- विभिन्न समन्वयी संख्या और विभिन्न ज्यामिति के संकुलों में क्रिस्टल क्षेत्र विभाजन भिन्न-भिन्न होता है। उदाहरण-

अष्टफलकीय संकुलों में बे-कक्षकों का विभाजन-

- धातु आयन के पांचों d-कक्षकों की ऊर्जा परस्पर समान (समभ्रंश) होती है। इनमें से दो d_{x²-y²} व d_{z²} कक्षकों में इलेक्ट्रॉन घनत्व, अक्षों पर केन्द्रित होता है जबिक शेष तीनों d_{xy}, d_{yz} और d_{xz} कक्षकों में इलेक्ट्रॉन घनत्व, अक्षों के मध्य केन्द्रित होता है।
- अष्टफलकीय संकुल में धातु आयन अष्टफलक के केन्द्र पर पाया जाता है और 6 लिगेण्ड, अष्टफलक के 6 कोनों की ओर से केन्द्रीय धातु आयन की ओर अग्रसित होते हैं तथा इनके इलेक्ट्रॉन

- के द्वारा d-कक्षक प्रतिकर्षित होते हैं, जिससे d-कक्षकों की ऊर्जाओं में परिवर्तन होता है।
- क्योंकि d_{x²} _{y²} और d_{z²} कक्षकों की पालियाँ धातु आयन की ओर x, y a z अक्ष पर अग्रसित होने वाले लिगेण्डों के मार्ग में आती है, अतः इन पर अधिक प्रतिकर्षण लगता है।
- जबिक शेष तीनों d_{xy}, d_{yz} व d_{xz} कक्षकों की पालियाँ अक्षों के मध्य होने के कारण, इन पर कम प्रतिकर्षण लगता है।
- इस कारण पांचों d-कक्षक दो ऊर्जा समूहों में विमाजित हो जाते हैं। एक समूह में d_x2 – y² व d_z2 कक्षक होते हैं, जिनकी ऊर्जा अिं कि होती है तथा इन्हें e_g कक्षक कहते हैं क्योंकि इन पर लिगेण्डों का अधिक प्रतिकर्षण लगता है।
- जबिक दूसरे समूह में d_{xy}, d_{y2} व d_{x2} कक्षक होते हैं, जिनकी ऊर्जा कम होती है तथा इन्हें t_{2g} कक्षक कहते हैं क्योंकि इन पर लगेण्डों का प्रतिकर्षण कम लगता है।
- इसे क्रिस्टल क्षेत्र विपाटन कहते हैं तथा e_g और t_{2g} कक्षकों की ऊर्जा के मध्य अन्तर को क्रिस्टल क्षेत्र विपाटन ऊर्जा कहते हैं। इसे Δ_0 (Δ = ऊर्जा का अन्तर व O = अष्टफलकीय) द्वारा या 10Dq द्वारा व्यक्त करते हैं।

 क्रिस्टल क्षेत्र विपाटन ऊर्जा Δ₀ का मान धातु आयन और लिगैण्ड की प्रकृति पर निर्भर करता है। यदि लिगैण्ड दुर्बल क्षेत्र उत्पन्न करे तो विपाटन कम होगा और यदि लिगैण्ड प्रबल क्षेत्र उत्पन्न करे तो विपाटन अधिक होगा अर्थात

- धातु आयन पर धनावेश बढ़ने पर क्रिस्टल क्षेत्र विपाटन (Δ₀) ऊर्जा का मान भी बढ़ता है। अर्थात् Δ₀ के मान में वृद्धि होती है। क्योंकि अधिक धनावेशित धातु आयन लिगैण्ड को अधिक ध्रुवित करेगा।
- विभिन्न लिगैण्डों को उनकी बढ़ती हुई विपाटन अर्थात् उनकी बढ़ती हुई प्रबलता के क्रम में एक श्रेणी में व्यवस्थित किया जाये तो यह श्रेणी स्पेक्ट्रो रासायनिक श्रेणी (spectrochemical series) कहलाती है।

$$I^- < Br^- < SCN^- < CI^- < S^{2-} < F^- < OH^- < C_2O_4^{2-} < H_2O < NCS^- < EDTA^{-4} < NH_3 < en < CN^- < CO.$$

क्रिस्टल क्षेत्र सिद्धान्त के अनुप्रयोग-

- इस सिद्धान्त द्वारा संकुल यौगिकों के चुम्बकीय गुणों की व्याख्या आसानी से की जा सकती है। किसी धातु आयन में d-कक्षकों के इलेक्ट्रॉन का वितरण निम्न दो बातों पर निर्भर करता है—
 - (1) क्रिस्टल क्षेत्र विपाटन ऊर्जा Δ_0 का मान।
 - (2) युग्मन ऊर्जा π अर्थात् दो इलैक्ट्रॉन के युग्मन हेतु आवश्यक ऊर्जा
- प्रबल क्षेत्र लिगेण्ड के लिए Δ_0 का मान, π की तुलना में अधिक होता है और दुर्बल क्षेत्र लिगेण्ड के लिए Δ_0 का मान, π की तुलना में कम होता है। इस प्रकार दो स्थितियाँ उत्पन्न होती है—
- (1) जब $\Delta_0 > \pi$ व अर्थात् प्रबल क्षेत्र लिगेण्ड में, इलेक्ट्रॉन कम ऊर्जा के कक्षकों में भरे जायेंगे। इस प्रकार निम्न चक्रण संकुल बनता है। क्योंकि इलेक्ट्रॉन का युग्मन होगा।

COMPLEX SHOWING DIFFERENT CHARACTERS

(In Nature D-Diamagnetic - प्रतिचुम्बकीय; P-Paramagnetic- अनुचुम्बकीय)

Complex ions	Central ions	Co-ordination number	Electronic configura configuration Excited-		Hybridi sation	No. of upparied electrons	Bond angle	Shape.	Nature
			Ground-state	state					
$[Ag(NH_3)_2]^+$	Ag ⁻	2	$4d^{10}s^{0}p^{0}$	4d ¹⁰ s ⁰ p ⁰	sp	zero	180°	Linear	D
[Ag(CN) ₂]	Ag ⁻	2	$4d^{10}s^{0}p^{0}$	4d ¹⁰ s ⁰ p ⁰	sp	zero	180°	Linear	D
[FeCl ₄]	Fe ³⁻	4	$3d^5s^0p^0$	$3d^5s^0p^0$	sp ²	5	109°28'	Tetra-	P
								hedral	
[Ni(CO) ₄]	Ni	4	$3d^8s^2p^0$	$3d^{10}s^0p^0$	sp ³	zero	109°28′	Tetra-	D
•	İ							hedral	
$[Zn(NH_3)_4]^{2-}$	Zn ²⁻	4	$3d^{10}s^0p^0$	3d ¹⁰ s ⁰ p ⁰	sp ³	zero	109°28'	Tetra-	D
								hedral	
$[ZnCl_4]^{2-}$	Zn ² *	4	$3d^{10}s^0p^0$	$3d^{10}s^0p^0$	sp ³	zero	109°28'	Tetra-	D
								hedral	
[CuCl ₄] ²⁻	Cu ²⁺	4	$3d^{9}s^{0}p^{0}$	$3d^9s^0p^0$	sp ³	1	109°28'	Tetra-	P
	ļ							hedral	
$[Cd(NH_3)_4]^{2+}$	Cd ²⁻	4	4d ¹⁰ s ⁰ p ⁰	4d ¹⁰ s ⁰ p ⁰	sp ³	zero	109°28'	Tetra-	D
								hedral	
$[Hg(NH_3)_4]^{2^{+}}$	Hg ⁺²	4	5d ¹⁰ s ⁰ p ⁰	5d ¹⁰ s ⁰ p ⁰	sp ³	zero	109°28′	Tetra-	D
								hedral	
Ni(CN) ₄] ²⁻	Ni ²⁺	4	$3d^8s^0p^0$	$3d^8s^0p^0$	dsp ²	zero	90°	Square	D
]				planar	
$[Pt(NH_3)_4]^{2+}$	Pt ²⁺	4	4d ⁸ s ⁰ p ⁰	4d ⁸ s ⁰ p ⁰	dsp ²	zero	90°	Square	P
								planar	_
$[Cr(NH_3)_6]^{3-}$	Cr ³⁺	6	$3d^34s^04p^0$	$3d^34s^04p^0$	d^2sp^3	3	90°	Oct	P
								hedral	
$[Cr(H_2O)_6]^{3+}$	Cr ³⁻	6	$3d^34s^04p^0$	$3d^34s^04p^0$	d^2sp^3	3	90°	Oct	P
								hedral	1
[Fe(CN) ₆] ⁴⁻	Fe ²⁺	6	$3d^64s^04p^0$	$3d^64s^04p^0$	d^2sp^3	zero	90°	Oct	D
								hedral	
$[\text{Co(NH}_3)_6]^{3+}$	Co ³⁺	6	$3d^64s^04p^0$	$3d^64s^04p^0$	d^2sp^3	zero	90°	Oct	D
				5.00				hedral	_
$[Fe(CN)_6]^{3+}$	Fe ³⁺	6	$3d^54s^0p^0$	$3d^54s^0p^0$	d ² sp ³	1	90°	Oct	P

317773	
	 art tra-
- 4/16	 यौगिक
	 1.1 4.40

		!		· · · · · · · · · · · · · · · · · · ·					<u></u>	• • • •
[CoF ₆] ³⁻	Co ³	6	3d ⁶ 4s ⁰ 4p ⁰ 4d ⁰	3d ⁶ 4s ⁰ 4p ⁰ 4d ⁰	3,2		,	hedral		7
	!		жа 15 тр та	эц 45°4р°4д°	sp ³ d ²	4	90°	Oct	P	
[FeF ₆] ³⁻	Fe ³⁺	6	$3d^54s^04p^04d^0$			Ì	ĺ	hedral	1	1
0.5	**		30°48°4p°40°	3d ⁵ 4s ⁰ 4p ⁰ 4d ⁰	sp^3d^2	5	90°	Oct	P	
[Ni(NH ₃) ₆] ²⁺	Ni ²⁺	6	2484-04 0440					hedral		
3761	'''		$3d^84s^04p^04d^0$	3d84s04p04d0	sp ³ d ²	2	90°	Oct	P	
[Cr(H ₂ O) ₆] ²⁺	Cr ²⁺	6	2144 04 04 0			1		hedral		
1 - 1 - 2 - 761			$3d^44s^04p^04d^0$	3d ⁴ 4s ⁰ 4p ⁰ 4d ⁰	sp ³ d ²	4	90°	Oct-	P	
(2)				<u> </u>				hedral		

(2) जब Δ₀ < π अर्थात् दुर्बल क्षेत्र लिगेण्ड में इलेक्ट्रॉन का युग्मन नहीं होगा। इलेक्ट्रॉन उच्च ऊर्जा के कक्षकों में भी रहेंगे। इसमें अधिकतम इलेक्ट्रॉन अयुग्मित होंगे। इस प्रकार उच्च चक्रण संकुल बनेगा।

 उदाहरण [Fc(CN)₆]⁻⁴ संकुल आयम प्रतिचुम्बकीय होगा और [Fc(H₂O)₆]⁻²अनुचुम्बकीय होगा।

विभिन्न इलेक्ट्रॉन विन्यास वाले धातु आयनों में d-कक्षकों का क्रिस्टल क्षेत्र विपाटन—

(i) d¹, d² और d³ इलेक्ट्रॉन विन्यास वाले धातु आयनों के द्वारा रंगीन और अनुचुम्बकीय संकुल बनाये जाते हैं। इन धातु आयनों के साथ चाहे दुर्बल क्षेत्र लिगेण्ड से संकुल बने या चाहे प्रबल क्षेत्र लिगेण्ड से संकुल बने, इनका इलेक्ट्रॉनीय विन्यास दोनों में एक समान निम्न रहता है—

(ii) जिन धातु आयनों का इलेक्ट्रॉन विन्यास d^{4 7} होता है, इनमें पहले t_{2g} में तीन अयुग्मित इलेक्ट्रॉन, फिर eg में अयुग्मित इलेक्ट्रॉन भरते हैं तथा इसके पश्चात् अगर इलेक्ट्रॉन शेष बचता है तो वह

t_{2g} में जाकर युग्मन करते हैं। यह क्रम धातु आयन के दुर्बल क्षेत्र लिगेण्ड के साथ बन्ध बनाकर संकुल बनाते समय होता है क्योंकि इनके लिए .Δ₀ < π होता है।

(III) d^{4-7} इलेक्ट्रॉन विन्यास वाले धातु आयन, प्रबल क्षेत्र लिगेण्ड $(\Delta_0 \geq \pi)$ के साथ संकुल बनाने पर, पहले t_{2g} कक्षकों में इलेक्ट्रॉन का युग्मन होता है तथा फिर शेष बचे इलेक्ट्रॉन eg कक्षकों में भरे जाते हैं। क्योंकि इनके लिए $\Delta_0 \geq \pi$ होता है।

इलेक्ट्रॉन विन्यास $t^4_{2g} \, eg^0 - t^5_{2g} \, eg^0 - t^6_{2g} \, eg^1$ (IV) d^{8-10} इलेक्ट्रॉन विन्यास वाले धातु आयनों के दुर्बल और प्रबल क्षेत्र लिगेण्ड में से किसी के साथ भी संकुल बनाने पर, इनके लिए केवल एक ही संभावना होती है जो कि निम्न है—

इलेक्ट्रॉन विन्यास $t^6_{2g}, eg^2 = t^6_{2g}, eg^3 = t^6_{2g}, eg^4$

(V) उपर्युक्त इलेक्ट्रॉन विन्यास के आधार पर यह निष्कर्ष निकलता है कि अष्टफलकीय ज्यामिति में d⁰, d¹⁰ तथा प्रबल क्षेत्र लिगेण्ड के d⁶ संकुल प्रतिचुम्बकीय होते हैं।

(VI) चतुष्कलकीय संकुलों में d-कक्षकों का विभाजन—चतुष्कलकीय संकुलों में d-कक्षकों का विभाजन अष्टफलकीय संकुलों के विभाजन का उल्टा तथा कम होता है। ऐसा इसलिए होता है क्योंकि चारों लिगैण्ड अक्षों के मध्य से केन्द्रीय परमाणु की ओर अग्रसर होते हैं। अतः t2g जिनकी पालिया अक्षों के मध्य विद्यमान है। अधिक प्रतिकर्षण अनुभव करती हैं। और eg कक्षकों पर कम प्रतिकर्षण अनुभव होता है।

अतः चतुष्फलकीय क्षेत्र में d-कक्षकों का विभाजन इस प्रकार होता है की t_{2g} कक्षकों की ऊर्जा में +0.4 की वृद्धि होती है तथा eg कक्षकों में -0.6 Δ_t की कमी होती है |

अतः

$$\Delta_0$$
 = 9/4 Δt अथवा $\Delta t = 0.44 \Delta_0$

$$\Delta_{\rm t} = \frac{4}{9} \Delta_0 \qquad \Delta_{\rm t} > \Delta_0$$

यहाँ कक्षकों की विभाजित ऊर्जा इनकी जयादा नहीं होती है जो इलेक्ट्रॉनों को युग्मन के लिऐ बाध्य करे इसलिए चतुष्फलकीय संकुलों में निम्न चक्रण संकुल मुश्किल से प्राप्त होते हैं।

चतुष्फलकीय संकुलों में $\mathbf{t}_{2\mathsf{g}}$ व \mathbf{e}_{g} कक्षकों में इलेक्ट्रॉनों का वितरण-

क्रम संख्या	चतुष्फलकीय संकुल के d-कक्षकों में e	प्रबल क्षेत्र लिगैण्डों के लिए विन्यास $(\Delta_0 > P)$		दुर्बल क्षेत्र लिगैण्डों के लिए विन्र $(\Delta_0 < P)$		
1.	d ¹	$e_g^l t_{2g}^0$	P	e _g ¹	t_{2g}^{0}	P
2.	d^2	$e_g^2 t_{2g}^0$	P	e _g ²	t_{2g}^{0}	P ·
3.	d ³	$e_g^3 t_{2g}^0$	P	e_g^2	t_{2g}^{l}	P
4.	$ m d^4$	$e_g^4 t_{2g}^0$	P	e _g ²	t_{2g}^{2}	P
5.	ď ⁵	$e_g^4 t_{2g}^{-1}$	P	e_g^2	t_{2g}^{3}	P
6.	d^6	$e_g^4 t_{2g}^2$	Ρ .	$e_g^{\ 3}$	t_{2g}^{3}	P
7.	\mathbf{d}^7 .	$e_g^4 t_{2g}^3$	Ρ.	e_g^4	t_{2g}^{3}	P
8.	\mathbf{d}^8	$e_g^4 t_{2g}^4$	P	e_g^{-4}	t_{2g}^{4}	P
9.	d^9	$e_g^4 t_{2g}^5$	P	${ m e_g}^4$	t_{2g}^{5}	P
10.	d ¹⁰ D = Diamegnetic (प्रतिचुम्बकीय)	$e_g^4 t_{2g}^6$	D	e_g^{4}	t_{2g}^{6}	D
·	P = Parameganetic (अनुचुम्बकीय)					·

क्रिस्टल क्षेत्र स्थायीकरण ऊर्जा (CFSE) :

अष्टफलकीय संकुल हेतु

(CFSE) = $[-4 \text{ n}(t_{2g}) + 6\text{n}(e_g)] D_q$

चतुष्फलकीय संकुल हेतु

(CFSE) = [+6 $n(t_{2g}) - 4n(e_g)] D_t$

जहाँ n = इंगित कक्षकों में इलेक्ट्रॉनों की संख्या है।

संक्रमण धातु आयनों के रंग और संकुल यौगिकों के रंग

- किसी संक्रमण धातु आयन और इसके संकुल यौगिकों के रंग का कारण, क्रिस्टल क्षेत्र सिद्धान्त के आधार पर समझाया जा सकता है।
- एक गैसीय धातु आयन के पांचों d-कक्षकों की ऊर्जा परस्पर समान होती है परन्तु संकुल यौगिक में धातु आयन, चारों ओर से लिगेण्डों से घिरा रहता है।
- जिससे पांचों d-कक्षक, दो भागों \mathbf{e}_{g} व \mathbf{t}_{2g} में विभाजित हो जाते हैं।
- क्रिस्टलीय लवण और जलीय विलयन में जल के अणु लिगेण्ड के समान कार्य करते हैं, जिससे ये d-कक्षकों के क्रिस्टल क्षेत्र विपाटन के लिए जिम्मेदार होते हैं।
- उदा.—जलीय Ti(III) आयन एक संकुल आयन $[Ti(H_2O)_6]^{+3}$ की तरह व्यवहार करता है। यह संकुल आयन, दृश्य प्रकाश क्षेत्र से Δ_0

के मान के बराबर (5000Å) ऊर्जी का अवशोषण करके, \mathbf{t}_{2g} के एक इलेक्ट्रॉन को eg कक्षक में उत्तेजित कर देता है। जिससे संकुल का रंग बैंगनी दिखाई देता है। अतः $[\mathrm{Ti}(\mathbf{H}_2\mathbf{O})_6]^{-3}$ के बैंगनी रंग का कारण \mathbf{t}_{2g} इलेक्ट्रॉन का eg में d-d संक्रमण है।

- वे कारक, जो क्रिस्टल क्षेत्र विपाटन ऊर्जा (Δ₀) के मान को प्रभावित करते हैं, वे कारक संकुल के रंग को भी प्रभावित करते हैं। ये कारक निम्न हैं—
 - (1) लिगेण्ड की प्रकृति
- (2) धातु आयन पर आवेश
- (3) संकुल की ज्यामिति
- (4) d-इलेक्ट्रॉन की संख्या
- अतः विभिन्न कारकों के प्रभाव के कारण, एक धातु आयन के विभिन्न संकुल यौगिकों के रंग भिन्न-भिन्न हो सकते हैं। उदा.

$[Ni(H_2O)_6]^{+2}$	[Ni(NH ₃) ₆] ⁺²	$[Ni(en)_2]^{-2}$,
हरा रंग	नीला रंग	गहरा नीला रंग
$[Co(H_2O)_6]^{+2}$,	[CoCl ₄] ⁻² ,	
गुलाबी रंग	नीला रंग	
$[Mn(H_2O)_6]^{12}$	[MnCl₄] ⁻² आदि।	
गुलाबी रंग	हरा रंग	

9.14 उपसहसंयोजक यौगिकों का स्थायित्व

- उपसहसंयोजक यौगिक केन्द्रीय धातु आयन और लिगेण्डों के संयोग से बनते हैं।
- यदि इनके मध्य प्रबल आकर्षण बल लगता है तो संकुल आयन स्थायी होता है।
- यद्यपि अधिकतर संकुल आयन स्थायी होते है परन्तु जलीय विलयन में इनका थोंड़ी सी मात्रा में अपघटन हो जाता है।
- इस प्रकार अपघटित आयनों और अनअपघटित संकुल आयनों के मध्य एक साम्य स्थापित हो जाता है, जिसे निम्न प्रकार से प्रदर्शित कर सकते हैं—

साम्य स्थिरांक $K = \frac{[[MLx]^n]}{[M^n][L]^x}$

- यहाँ साम्य स्थिरांक K, संकुल यौगिकों का स्थायित्व स्थिरांक कहलाता है। अतः इसे K_s से व्यक्त करते हैं।
- किसी संकुल के लिए K_S का मान जितना अधिक होता है, वह संकुल उतना ही अधिक स्थायी होता है।
- एक ही धातु आयन का विभिन्न लिगेण्डों के साथ K_S का मान भिन्न-भिन्न होता है।

अतः इनका स्थायित्व भी भिन्न-भिन्न होता है। उदा.-साम्य स्थायित्व स्थिरांक (K.)

 $\text{Fe}^{+3} + 6\text{CN}^- \iff [\text{Fe}(\text{CN})_6]^{-3} \quad 1.2 \times 10^{31}$

 $Fe^{+2} + 6CN^{-} \rightleftharpoons [Fe(CN)_{6}]^{-4} - 1.8 \times 10^{6}$

 $Cu^{+2} + 4CN^{-} \iff [Cu(CN)_{4}]^{-2} = 2 \times 10^{27}$

 $Cu^{+2} + 4NH_3 \iff [Cu(NH_3)_4]^{+2} + 4.5 \times 10^{11}$

 $Ag^{+} + 2NH_{3} \rightleftharpoons [Ag(NH_{3})_{2}]^{+} 1.6 \times 10^{7}$

 $Ag^+ + 2CN^- \rightleftharpoons [Ag(CN)_2]^- 5.4 \times 10^8$

(क) अतः $[Fe(CN)_6]^{-3}$ अधिक स्थाई है $[Fc(CN)_6]^{-4}$ से इसी प्रकार $[Cu(CN)_4]^{-2}$ अधिक स्थाई है $[Cu(NH_3)_4]^{+2}$ से इसी प्रकार $[Ag(CN)_2]^-$ अधिक स्थाई है $[Ag(NH_3)_2]^-$ से उपसहसंयोजक यौगिकों के स्थायित्व को प्रभावित करने वाले कारक

- (Factors affecting the stability of coordination compounds)

 उपसहसंयोजक यौगिकों का स्थायित्व मुख्यतः निम्न तीन कारकों पर निर्भर करता है—
- (1) केन्द्रीय धातु आयन की प्रकृति- केन्द्रीय धातु आयन पर आवेश धनत्व (आवेश/त्रिज्या) बढ़ने पर संकुल यौगिक का स्थाईत्व बढ़ता है।

उदा.— Fe^{+3} पर आवेश घनत्व, Fe^{+2} से अधिक है। अतः $[Fe(CN)_6]^{-3}$ का स्थाईत्व, $[Fe(CN)_6]^{-4}$ से अधिक है।

- Cu⁺², Ni⁺², Co⁺² और Fe⁺² में, Cu⁺² का आकार सबसे छोटा होता है। अतः इन सभी आयनों का एक समान लिगैण्ड से बनने वाले संकुलों में Cu⁺² का संकुल सबसे अधिक स्थायी होता है क्योंकि इन सभी में Cu⁺² पर आवेश घनत्व सर्वाधिक है।
- (2) लिगेण्ड की प्रकृति- लिगेण्ड में इलेक्ट्रॉन युग्म देने की प्रकृति बढ़ने पर, संकुल का स्थाईत्व बढ़ता है। लिगेण्ड की इलेक्ट्रॉन युग्म देने की प्रवृति, लिगेण्ड के क्षारीय गुणों पर निर्भर करती है। लिगेण्ड की क्षारीय प्रकृति बढ़ने पर, इसकी इलेक्ट्रॉन युग्म देने की प्रकृति भी बढ़ती है, जिससे संकुल का स्थाईत्व बढ़ता है।
- उदा— CN^- लिगेण्ड, NH_3 लिगेण्ड की अपेक्षा प्रबल क्षारीय है। इस कारण $[Cu(CN)_4]^{-2}$ का स्थायित्व, $[Cu(NH_3)_4]^{+2}$ से अधिक है। जिन ऋणावेशित लिगेण्डों पर उच्च ऋणावेश और आकार छोटा
- होता है, उनके संकुल अधिक स्थायी होते हैं। (ख) [Fe F₆]³⁻ आयन [Fe Cl₆]³⁻ से अधिक स्थाई है। [Fe Cl₆]³ आयन [Fe Br₆]³⁻ से अधिक स्थाई है।
- (3) किलेट वलय की उपस्थिति यदि लिगेण्ड, धातु आयन के साथ किलेट वलय बनाते हैं तो संकुल का स्थाईत्व बढ़ता है। उदा.— $[Ni(NH_3)_6]^{+2}$ की तुलना में किलेट वलय युक्त $[Ni(en)_3]^{+2}$ अधिक स्थायी है।

9.15 उपसहस्योजन ग्रीगर्दी का महत्व तथा अगुद्धा

उपसहसंयोजन यौगिकों का महत्व, निम्न में होता है-

- 1. गुणात्मक विश्लेपण में
- 2. धातुओं के निष्कर्षण में
- 3. जैव प्रणालियों में।

2.15.⁴ पुणालक विश्लेषण में अपसारसंग्राजक ग्रेंकिस का महत्व

- गुणात्मक विश्लेषण की दृष्टि से उपसहसंयोजक यौगिकों का विशेष महत्व है। गुणात्मक विश्लेषण में क्षारीय मूलकों की पहचान करते समय अनेक ऐसे उदाहरण आते हैं जिनमें घातु आयनों के संकुल यौगिक बनते हैं।
- (i) प्रथम समूह में Ag^+ और Hg_2^{+2} के अवक्षेप $AgCla\ Hg_2Cl_2$ का मिश्रण प्राप्त होता है। इन्हें पृथक करने के लिए, इसमें NH_4OH मिलाते हैं तो $[Ag(NH_3)_2]Cl$ का घुलनशील संकुल और $Hg(NH_2)Cl$ का अघुलनशील काला संकुल बनता हैं, जिन्हें छानकर अलग कर लेते हैं।

 $AgCl + 2NH_4OH \longrightarrow [Ag(NH_3)_2]Cl + 2H_2O$ (जल में विलयशील संकुल)

Hg₂Cl₂ + NH₄OH → HgNH₂Cl + Hg + HCl + H₂O काला अवक्षेप

(ii) द्वितीय समूह के धातु सल्फाइडों का समूह II-A तथा समूह II-

B में पृथक्करण पीले अमोनियम सल्फाइड में विलेयता के आधार पर किया जाता है। II-B समूह के सल्फाइड पीले अमोनियम सल्फाइड से क्रिया कर विलेयशील संकुल बनाते हैं। जबिक II-A समूह के सल्फाइड अविलेय रहते हैं। SbaSa + 3(NH4)a Sa → 2(NH4)a [SbS.1 + S

 ${
m Sb}_2{
m S}_3 + 3{
m (NH}_4)_2 {
m S}_2
ightarrow 2{
m (NH}_4)_3 {
m [SbS}_4] + {
m S}$ अमोनियम थायो एण्टिमोनेट

 $m As_2S_3 + 3(NH_4)_2S_2
ightarrow 2(NH_4)_3 [AsS_4] + S$ अमोनियम थायोआर्सेनेट

 $SnS_2 + (NH_4)_2 S_2 \rightarrow (NH_4)_2 [SnS_3] + 2S$ अमोनियम थायोस्टेनेट

- (iii) Cu^{2+} आयनों का परीक्षण इसकी द्रव अमोनिया से क्रिया द्वारा प्राप्त नीले रंग के संकुल यौगिक के आधार पर किया जाता है। $CuSO_4 + 4NH_3 \rightarrow [Cu(NH_3)_4]SO_4$ टेट्राऐम्मीनकॉपर (II) सल्फेट
- (iv) इसी प्रकार Cu^{2+} आयन, पोटैशियम फैरो साइनाइड विलयन से क्रिया कर चॉकलेट रंग का संकुल बनाते हैं। यह क्रियायें Cu^{2-} आयनों का परीक्षण है। $2CuSO_4 + K_4 \ Fe(CN)_6 \rightarrow Cu_2 \ [Fe(CN)_6] + 2K_2 SO_4$ चॉकलेट रंग का अवक्षेप
- (v) तृतीय समूह में Fe³⁺ आयनों का परीक्षण निम्न दो अभिक्रियाओं पर आधारित है जिनमें Fe³⁻ आयन के संकुल यौगिक बनते हैं।

 4FeCl₃ +3K₄ [Fe(CN)₆] → Fe₄ [Fe(CN)₆]₃ +12KCl
 फैरी—फेरोसायनाइड (नीला रंग)

 FeCl₃ +3KCNS → Fe(CNS)₃ 3KCI
 फैरिक थायोसायनेट (लाल रंग)

 $2Fe^{3+} + 6CN\overline{S} \rightarrow Fe$ [Fe(CNS)₆] फेरी—फेरिक थायोसायनेट (लाल रंग)

(vi) चतुर्थ समूह में Ni²⁺ आयनों का परीक्षण डाइमेथिल ग्लाइऑक्सीम अभिकर्मक द्वारा किया जाता है। इस अभिक्रिया में गुलाबी रंग का संकुल निकल डाइमेथिल ग्लाइऑक्सीमेट प्राप्त होता है।

अस्ति विकास स्थापन के महत्व

) सिल्वर तथा गोल्ड का निष्कर्षण, उनके अयस्कों से संकुल यौगिक बनाकर किया जाता है। उदाहरणार्थ, सान्द्रित सिल्वर अयस्क (सिल्वर ग्लांस) को सोडियम सायनाइड विलयन में मिलाकर उसमें वायु प्रवाहित की जाती है। सिल्वर एक विलेयशील संकुल के रूप में घुल जाता है, जिसे जिंक की छिलन डाल कर पृथक कर लिया जाता है।

 $Ag_2S + 4NaCN \rightleftharpoons 2Na[Ag(CN)_2] + Na_2S$ (अयस्क) सोडियम अर्जेन्टोसाइनाइड (जल में विलयशील संकूल)

 $4Na_2S + 5O_2 + 2H_2O \rightarrow 2Na_2SO_4 + 4NaOH + 2S$

 $2Na[Ag(CN)_2] + Zn \rightarrow Na_2[Zn(CN)_4] + 2Ag$

सोडियम टेट्रा सायनोजिंकेट निकल का अन्य धातुओं से पृथक्करण कार्बन मॉनोक्साइड की (ii) अभिक्रिया द्वारा वाष्पशील संकुल (निकल टेट्रा कार्बोनिल) बनाकर किया जाता है (मॉड प्रक्रम)। यह गर्म करने पर पुनः विघटित होकर शुद्ध निकल तथा कार्बन मॉनोक्साइड देता है।

 $Ni + 4CO \rightarrow$

 $Ni(CO)_4 \rightarrow$

Ni+4CO

(अन्य धातुओं से सम्बद्ध)

संकृल

शुद्धनिकल

9.15.3 र्षेव प्रणालियों में उपसहसंयोजक योगिक का महत्व

धातु संकुलों का जैव प्रणालियों में महत्वपूर्ण योगदान है। रक्त में पाया जाने वाला हीमोग्लोबिन आयरन Fe2+ का एक संकुल यौगिक है जो जीव जन्तुओं की कोशिकाओं तक ऑक्सीजन पहुंचाता है।

हरे पेड़-पौधों में उपस्थित क्लोरोफिल Mg का एक संकुल यौगिक है। यह पेड़--पौधों में होने वाली प्रकाश संश्लेषी प्रक्रिया में सहायक है ।

उपसहसंयोजन यौगिक

विटामिन 'बी-12' (सायनोकोबालेमिन) एक $_{{
m Co}^{3+}}$ संकुल यौगिक है। यह एनिमिया रोग में काम आता है।

विटामिन 6-12 (सायनोकोबाल्मीन)

- [Pt(NH3)2 Cl2] को सिस-प्लाटिन कहते हैं, यह ऐन्टीट्यूमर कर्मक है। यह केन्सर के उपचार हेतु प्रयोग में लेते हैं। Ca [EDTA] संकुल यौगिक, शरीर में उपस्थित Pb को हटाने में प्रयुक्त करते है।
- इनके अतिरिक्त भी अनेक ऐसे संकुल जिनका जैविक तंत्र प्रणाली में महत्वपूर्ण योगदान है।
- जैसे, साइटोक्रोम- सी (Fe2+ का एक संकुल) जैविक प्रणाली में होने वाली इलेक्ट्रॉन स्थानान्तरण अभिक्रियाओं में सहायक है।
- इसी प्रकार प्लास्टोसाइनिन (Cu^{2+} का संकुल) पेड़-पौधों में प्रकाश संश्लेषण के समय इलेक्ट्रॉन स्थानान्तरण में सहायक है।

9.16 TO STATE OF THE PARTY OF THE PA

वस्तुनिष्ठ प्रश्न-

K₃Fe(CN)₆ में स्थित Fe का ऑक्सीकरण अंक है-

(a) 2

(b) 3

(c) 0

(d) कोई नहीं

Ans.(b)

2. निम्न में किसकी आकृति चतुष्फलकी है-

(a) $[Ni(CN)_4]^{2-}$

(b) [NiCl₄]²⁻

(c) [PdCI₄]²⁻

(d) Ni(CO)₄

Ans.(d)

- 3. [EDTA] 4- की उपसहसंयोजक संख्या क्या है-
 - (a) 3

(b) 6

(c) 4

(d) 5

Ans.(b)

- 4. [Pt(NH₃)₂Cl₂] के कुल ज्यामिति समावयवों की संख्या है-
 - (a) 3

(b) 2

(c) 4

(d) I

Ans.(b)

- एक जटील यौगिक का निर्माण NO₃- व Cl- लिगैण्ड से प्राप्त होते हैं, जब AgNO₃ विलयन मिलाया जाता है, तो AgCl के दो मोल अवश्लेपित होते हैं, यौगिक का सूत्र होगा—
 - (a) $[Co(NH_3), NO_3]Cl_2$
- (b) [Co(NH₃)₅Cl]NO₃Cl
- (c) $[Co(NH_3)_5Cl]NO_3$
- (d) None

Ans.(a)

- 6. निम्न में से कौन प्रकाशिक समावयवता प्रदर्शित करता है-
 - (a) $[Co(CN)_6]^{3-}$
- (b) $[ZnCl_4]^{2-}$
- (c) $[Co(en)_2Cl_2]$
- (d) $[Cu(NH_3)_4]^{2+}$

Ans.(c)

- 7. Ni(CO)4 में संकरण अवस्था है-
 - (a) sp

(b) sp^2

- (c) dsp^2
- (d) sp^3

Ans.(d)

- 8. क्लोरोफिल में कौनसा तत्व पाया जाता है-
 - (a) Co

(b) Mg

(c) Fe

(d) Ni

Ans.(b)

अतिलघुत्तरात्मक प्रश्न-

[K₃Fe(CN)₆] में केन्द्रीय धातु आयन का आं. अं व उपसहसंयोजक संख्या बताइये?

उत्तर- [K₃Fe(CN)₆]

$$3[+1] + 1[x] + 6[-1] = 0$$

 $3 + x - 6 = 0$

 $_{\rm X}$ =

अतः Fe आयन का ऑक्सीकरण अंक +3 है। Fe आयन से छः CN- जुड़े हैं, अतः उपसहसंयोजक संख्या 6 है।

2. जल की कठोरता को दूर करने के लिये कौनसा लिगैण्ड की जरूरत होगी?

उत्तर- [EDTA]4-

- 3. LiAlH4 का IUPAC में नाम होगा?
- उत्तर- Lithium Tetrahydro aluminate III
- 4. $Cis[Co(en)_2Cl_2]$ के दोनों प्रकाशिक समावयव के चित्र बताइये।

उत्तर-

cis isomer shows optical isomers

5. Ni²⁺ ion का चुम्बकीय आधूर्ण का मान क्या होगा?

उत्तर- Ni²⁺ में दो अयुग्मित es उपस्थित है।

6. [Mn₂(CO)₁₂] का IUPAC में नाम होगा?

उत्तर- Mn₂[CO]₁₂

Dodeca carbonyl magnese (o)

7. उभयदन्तुक लिगैण्ड का एक उदाहरण दीजिए एवं बताइये कि इसे उभयदन्तुक लिगैण्ड क्यों कहते हैं?

उत्तर $-C \equiv N$

 $-N \equiv C$

सायनाइड एक उभयदन्तुक लिगैण्ड का उदाहरण है, क्योंकि इससे दो प्रकार के दाता परमाणु [C एवं N] भाग लेते हैं।

- 8. निम्न लिगैण्डों में एक दन्तुक एवं द्विदन्तुक लिगैण्ड को पहचानिए।
 - (a) en
- (b) CN-
- (c) acac
- (d) dmg

उत्तर- (a) cn - ethylenediamine - द्विदन्तुक

- (b) CN- Cyanide एक दन्तुक
- (c) acac Acetylacetonato द्विदन्तुक
- (d) dmg dimethylglyoximinato দ্বিবন্তুক

लघुत्तरात्मक प्रश्न–

1. किलेट प्रभाव क्या है? उदाहरण देकर समझाइये।

उत्तर–बिन्दु 9.4 (2) पेज 9.8 देखें।

2. दो जटिल यौगिक जिनके अणुसूत्र Co(NH₃)₅SO₄Br को बोतल A व B में रखा गया। इनमें से एक में BaCl₂ के साथ सफेद अवक्षेप देता है, जबिक दूसरा AgNO₃ के साथ पीला अवक्षेप देता है, A व B बोतल में उपस्थित यौगिकों का सूत्र दीजिए।

उत्तर— बोतल A [Co(NH $_3$) $_5$ CI] SO $_4$ यह BaCl $_2$ के साथ BaSO $_4$ का सफेद अवक्षेप होता है।

बोतल B $[Co(NH_3)_5SO_4]$ Br यह $AgNO_3$ के साथ AgBr का पीला अवक्षेप देता है +

- निम्न यौगिकों में केन्द्रीय घात आयन का ऑक्सीकरण अंक ज्ञात कीजिए।
 - (a) $K_3[Fe(C_2O_4)_3]$
- (b) $[Fe(CN)_6]^{3-}$
- उत्तर- (a) K₃|Fe(C₂O₄)₃|

- 3 [+1] +1 [x] +3[-2] = 0 3 + x 6 = 0 x = +3
- (b) $[Fe(CN)_6]^{3-}$ 1[x] + 6[-1] = -3 x - 6 = -3x = +3
- 4. sp^3 व dsp^2 संकरणों की ज्यामिति एवं एक उदाहरण दीजिए। उत्तर— sp^3 चतुष्फलकीय $Ni(CO)_4$ dsp^2 वर्गाकार समतलीय $[Ni(CN)_4]^2$ -
- 5. धातुओं के निष्कर्षण में उपसहसंयोजक योगिकों के महत्त्व के बारे में बताइये।

उत्तर- बिन्दु 9.15.2 (पेज 9.27 पर) देखें।

निबंधात्मक प्रश्न-

 [Ni(CN)₄]²⁻ का स्वच्छ चित्र दीजिए एवं केन्द्रीय धातु आयन पर संकरण अवस्था बताइये।

संकरण अवस्था dsp² वर्गाकार समतलीय आकृति

2. क्रिस्टल क्षेत्र सिद्धांत के आधार पर निम्न यौगिकों के गुणों का वर्णन कीजिए।

 $[Fe(H_2O)_6]^{3+}$ & $[Fe(CN)_6]^{3-}$

उत्तर- बिन्दु 9.13.2 (2)

आयनन समावयवता को समझाइये।
 निम्न के IUPAC नाम दीजिए।
 [Co(NH₃)₅Cl]SO₄ and [Co(NH₃)₅SO₄] Cl
 उपर्युक्त समावयव आयनन समावयव के लिये evidence भी दे।

उत्तर-जब दो या दो से अधिक यौगिकों को उनके जलीय विलयन में विलेय कराया जावे, तो वे भिन्न-भिन्न आयनन देते हो, तो उन्हें आयनन समावयव कहते हैं।

 $[\mathsf{Co}(\mathsf{NH_3}),\mathsf{Cl}]\mathsf{SO_4} \& [\mathsf{CO}(\mathsf{NH_3}),\mathsf{SO_4}]\mathsf{Cl}$

- · Penta ammine chloridocobalt III sulphate
- Pentaammine sulphato cobalt III chloride
- उपरोक्त प्रथम समावयव में $BaCl_2$ मिलाने पर $BaSO_4$ का सफेद अवक्षेप प्राप्त होता है, जबिक दूसरे समावयव में $AgNO_3$ मिलाने पर AgCl का सफेद अवक्षेप बनाता है।
- 4. निम्न के IUPAC नाम दीजिए।
- (i) [Pt(NH₃)₂Cl(NO₂)] Diammine chlorido nitroplatinium (o)

- (ii) Na [BH₄] sodium tetrahydro borate III
- (iii) [Co(NH₃)₅CO₃]Cl Pentaammine carbonato cobalt III chloride
- (iv) Zn₂[Fe(CN)₆] Zinc hexacyano ferrate II

9.17

- प्र.1. $FeSO_4$ विलयन तथा $(NH_4)_2SO_4$ विलयन का 1:1 मोलर अनुपात में मिश्रण Fe^{2+} आयन का परीक्षण देता है परंतु $CuSO_4$ व जलीय अमोनिया का 1:4 मोलर अनुपात का मिश्रण Cu^{2+} आयनों का परीक्षण नहीं देता।
- उत्तर- जब $FeSO_4$ एवं $(NH_4)_2SO_4$ विलयनों को 1:1 मोलर अनुपात में मिलाया जाता है तो मोर (Mohar's) का लवण नामक एक द्विक लवण बनता है। इसका सूत्र $FeSO_4$. $(NH_4)_2SO_4$. $6H_2O$ हैं। जलीय विलयन में यह लवण निम्नवत् वियोजित होता है—

FeSO₄(NH₄)₂SO₄.6H₂O(aq) $\xrightarrow{(aq)}$ Fe²⁺(aq) + 2NH₄⁺ (aq) + 2SO₄²⁻(aq) + 6H₂O

यह विलयन Fe2+ आयन समेत सभी आयनों का परीक्षण देता है।

- दूसरी ओर, जब CuSO₄ एवं NH₃ को 1:4 मोलर अनुपात में मिलाया जाता है तो [Cu(NH₃)₄]SO₄ संकुल बनता है। चूँिक Cu⁺ आयन संकुल सत्ता का भाग है अत: यह अपना लाक्षणिक परीक्षण नहीं देता है।
- प्र.2. प्रत्येक के दो उदाहरण देते हुए निम्नलिखित को समझाइए-उपसहसंयोजन सत्ता, लिगेण्ड, उपसहसंयोजन संख्या, उपसहसंयोजन बहुफलक, होमोलेप्टिक तथा हेट्रोलेप्टिक।

उत्तर-कृपया उत्तर के लिए पाट्य पुस्तक देखिए।

प्र.3. एकदन्तुक, द्विदन्तुक तथा उभयदन्तुक लिगेण्ड से क्या तात्पर्य है? प्रत्येक के दो उदाहरण दीजिए।

उत्तर- कृपया उत्तर के लिए पाठ्य पुस्तक देखिए।

- प्र.4. निम्नलिखित उपसहसंयोजन सत्ता में धातुओं के ऑक्सीकरण संख्या का उल्लेख कीजिए-
 - (i) $[Co(CN)(H_2O)(en)_2]^{2+}$ (ii) $[PtCl_4]^{2-}$
 - (iii) [CrCl₃(NH₃)₃]
- (iv) $[CoBr_2(en)_2]^+$
- (v) $K_3[Fe(CN)_6]$

उत्तर- (i) Co की ऑक्सीकरण संख्या : x-1+0+2 (0) = +2

$$x = +2 + 1 = +3$$

(ii) Pt की ऑक्सीकरण संख्या : x + 4 (-1) = -2

या
$$x = -2 + 4 = +2$$

(iii) Cr की ऑक्सीकरण संख्या : x + 3(-1) + 3(0) = 0

$$x = +3$$

(iv) Co की ऑक्सोकरण संख्या : x + 2(-1) + 2(0) = 1

$$x = +1 + 2 = +3$$

(v) Fe की ऑक्सीकरण संख्या : x + 6 (-1) = -3

$$x = -3 + 6 = +3$$

प्र.5. IUPAC नियमों के आधार पर निम्नलिखित के लिए सूत्र लिखिए-

- (i) टेट्राहाइड्रोऑक्सो जिंकेट (II)
- (ii) हेक्साऐम्मीनकोबाल्ट (III) सल्फेट
- (iii) पोटाशियम टेट्राक्लोरिडोपैलेडिमेट (II)
- (iv) पोटाशियम ट्राई (ऑक्सेलेटो) क्रोमेट (III)
- (v) डाइऐमीनडाइक्लोरिडोप्लैटिनम (II)
- (vi) हेक्साऐम्मीनप्लैटिनम (IV)
- (vii) पोटाशियम टेट्रासायनोनिकैलेट (II)
- (viii) टेट्राब्रोमिडोक्युपरेट (II)
- (ix) पेण्टाऐम्मीननाइट्रीटो-O- कोबाल्ट (III)
- (x) पेन्टाऐम्मीननाइट्रीटो-N- कोबाल्ट (III)
- उत्तर-(i) [Zn(OH)4]²⁻
- (ii) $[Co(NH_3)_6]_2(SO_4)_3$
- (iii) $K_2[PdCl_4]$
- (iv) $K_3[Cr(OX)_3]$
- (v) $[Pt(NH_3)_2Cl_2]$
- (vi) [Pt(NH₃)₆]⁴ (viii) [CuBr₄]²⁻
- (vii) K₂[Ni(CN)₄]
- (ix) $[Co(NH_3)_5(ONO)]^{2-}$ (x) $[Co(NH_3)_5(NO_2)]^{2-}$

प्र.6. IUPAC नियमों के आधार पर निम्नलिखित के सुव्यस्थित नाम लिखिए-

- (i) $[Co(NH_3)_6]Cl_3$
- (ii) $[Co(NH_3)_4Cl(NO_2)]Cl$
- (iii) [Ni(NH₃)₆]Cl₂
- (iv) $[Pt(NH_3)_2Cl(NH_2CH_3)]Cl$
- (v) $[Mn(H_2O)_6]^{2+}$
- (vi) [Co(en)₃]³⁺
- (vii) $[\mathrm{Ti}(\mathrm{H_2O})_6]^{3+}$
- (viii) $[NiCl_4]^{2-}$
- (ix) $[Ni(CO)_4]$

उत्तर-(i) हेक्साऐमीनकोबाल्ट (III) क्लोराइड

- (ii) टेट्राऐमीनक्लोरिडोनाइट्रिटो-N- कोबाल्ट (III) क्लोराइड
- (iii) हेक्साऐमीननिकल (II) क्लोराइड
- (iv) डाइऐमीनक्लोरिडो (मेथिलऐम्मीन) प्लेटिनम (II) क्लोराइड
- (v) हेक्साऐक्वामैंगनीज (II) आयन
- (vi) ट्रिस (एथेन-1, 2-डाइऐमीन) कोबाल्ट (III) आयन
- (vii) हेक्साएकबाटाइटेनियम (III) आयन
- (viii) टेट्राक्लोटिडोनिकिलेट (II) आयन
- (ix) टेट्राकार्बोनिलनिकिल (O)

प्र.7. उपसहसंयोजन यौगिक के लिए संभावित विभिन्न प्रकार की समावयवताओं को सूचीबद्ध कीजिए तथा प्रत्येक का एक उदाहरण दीजिए।

उत्तर- कृपया उत्तर के लिए पाठ्यभाग को देखिए।

प्र8. निम्नलिखित उपसहसंयोजन सत्ता में कितने ज्यामितीय समावयव संभव हैं?

- (i) $[Cr(C_2O_4)_3]^{3-}$
- (ii) $[Co(NH_3)_3Cl_3]$

- उत्तर-(i) $[\operatorname{Cr}(\mathsf{C}_2\mathsf{O}_4)_3]^{3-}$: ज्यामितीय समावयता नहीं दर्शाता है।
 - (ii) [Co(NH₃)₃Cl₃]: दो ज्यामितीय समावयव: fac एवं mer

प्र.9. निम्न के प्रकाशित समावयवों की संरचनाएँ बनाइए-

- (i) $[Cr(C_2O_4)_3]^{3-}$
- (ii) $[PtCl_2(en)_2]^{2+}$
- (iii) [CrCl₂(en)(NH₃)₂]⁺

उत्तर-(i) $[Cr(C_2O_4)_3]^3$: पुस्तक का पाठ्य भाग देखें।

(ii) Cis $[PtCl_2(en)_2]^{2+}$

(iii) Cis-[Cr(NH₃)₂Cl₂(en)]

- प्र.10. निम्नलिखित के सभी समायवों (ज्यामितीय और धुवण) की संरचनाएं बनाओ।
 - (i) $[CoCl_2(en)_2]^+$
- (ii) $[Co(NH_3)Cl(en)_2]^{2+}$
- (iii) $\left[C_0(NH_3)_2Cl_2(en)\right]^+$
- **उत्तर** उत्तर हेतु पुस्तक का पाठ्य भाग में देखें।
- प्र.11. [Pt(NH₃)(Br)(Cl)(py)] के सभी ज्यामितीय समावयव लिखिए। इनमें से कितने धुवण समावयवता दर्शाएंगे?

- प्र.12. जलीय कॉपर सल्फेट विलयन (नीले रंग का) निम्नलिखित प्रेक्षण दर्शाता है...
 - (i) जलीय पोटैशियम प्लुओराइड के साथ हरा रंग
 - (ii) जलीय पोटैशियम क्लोराइड के साथ चमकीला हरा रंग उपर्युक्त प्रायोगिक परिणामों को समझाइए।
- उत्तर-(i) हरा अवक्षेप जटिल पोटैशियम टेट्राफ्लोरीडोंक्यूपरेट (II) के बनने के कारण होता है।

$$[{\rm Cu(H_2O)_4}]^{2+} + 4{\rm F^-} \rightarrow [{\rm CuF_4}]^{2-} + 4{\rm H_2O}$$

नीला हरा अवक्षेप

(ii) चमकदार हरा विलयन टेट्राक्लोरोक्यूपरेट (II) के बनने के कारण होता है।

$$[Cu(H_2O)_4]^{2+} + 4Cl^- \rightarrow [CuCl_4]^{2-} + 4H_2O$$

नीला चमकदार हरा विलयन

- प्र.13. कॉपर सल्फेट के जलीय विलयन में जलीय KCN को आधिक्य में मिलाने पर बनने वाली उपसहसंयोजन सत्ता क्या होगी? इस विलयन में जब H₂S गैस प्रवाहित की जाती है तो कॉपर सल्फाइड का अवक्षेप क्यों नहीं प्राप्त होता?
- उत्तर-KCN और CuSO4 के जलीय विलयमों को मिलाने पर, पोटैशियम टेट्रासायनोक्यूप्रेट (II) का संकुल प्राप्त होता है।

$$\text{CuSO}_4(\text{aq}) + 4\text{KCN}(\text{aq}) \rightarrow \text{K}_2[\text{Cu(CN)}_4] (\text{aq}) + \text{K}_2\text{SO}_4(\text{aq})$$

विलेय

यह संकुल पर्याप्त स्थायी होता है जैसा कि स्थिरता नियतांक के मान $(K=2\times 10^{27})$ से स्पष्ट है। अतः H_2S गैस को विलयन से प्रवाहित करने पर यह विखण्डित नहीं होता है तथा CuS का कोई अवक्षेप प्राप्त नहीं होता है।

- प्र.14. संयोजकता आबंध सिद्धान्त के आधार पर निम्नलिखित उपसहसंयोजक सत्ता में आबंध की प्रकृति की विवेचना कीजिए—
 - (i) $[Fe(CN_6)]^{4-}$

(ii) [FeF₆]³⁻

(iii) $[C_0(C_2O_4)_3]^{3-}$

(iv) $[C_0F_6]^{3-}$

उत्तर- उत्तर के लिए कृपया पाठ्य भाग देखिए।

- प्र.15. अष्टफलकीय क्रिस्टल क्षेत्र में d- कक्षकों के विपाटन को दर्शाने के लिए चित्र बनाइए।
- उत्तर-कृपया उत्तर के लिए पाठ्य भाग का अवलोकन कीजिए।
- प्र.16. स्पेक्ट्रोमीरासायनिक श्रेणी क्या है? दुर्बल क्षेत्र लिगेण्ड तथा प्रबल क्षेत्र लिगेण्ड में अंतर स्पष्ट कीजिए।
- उत्तर-लिगेण्डो के क्षेत्र प्रबलता के क्रम को स्पेक्ट्रमी रासायनिक श्रेणी कहते हैं।

$$\begin{split} &I^- < Br^- < SCN^- < Cl^- < S^{2-} < F^- < OH^- < C_2O_4{}^{2-} < H_2O \\ &< NCS^- < EDTA^{4-} < NH_3 < en < CN^- < CO \end{split}$$

- यहाँ I दुर्बलतम लिगेण्ड व CO अधिकतम क्षेत्र सामर्थ्य युक्त प्रबलतम लिगेण्ड है।
- (i) दुर्बल क्षेत्र लिगेण्ड जैसे I , Br⁻, SCN⁻, Cl⁻, S²⁻, F⁻ के सन्दर्भ में Δ < π यह ऊर्जा की व मात्रा है जो एकल कक्षक में इलेक्ट्रॉनों के युग्मन के लिए आवश्यक होती है, इनसे बनने वाला संकुल उच्च चक्रण (High spin) का होता है।
- (ii) प्रबल क्षेत्र लिगेण्ड जैसे CN⁻, CO, en, NH₃ के सन्दर्भ में Δ>π
 इनमें बनने वाला संकुल निम्न चक्रण (law spin) का होता है।
- प्र.17. क्रिस्टल क्षेत्र विपाटन ऊर्जा क्या है? उपसहसंयोजन सत्ता में d-कक्षकों के वास्तविक विन्यास को ∆ॢ के मान के आधार पर कैसे निर्धारित किया जाता है?
- उत्तर- जब लिगेण्ड किसी विशिष्ट धातु आयन की ओर जाते हैं तो d-कक्षक दो सेटों में टूट जाता है, जिसमें से एक ऊर्जा की अपेक्षाकृत कम तथा दूसरे की ऊर्जा अपेक्षाकृत अधिक होती है। कक्षकों के इन दोनों सेटों की ऊर्जाओं में अन्तर को क्रिस्टल क्षेत्र स्थायित्व ऊर्जा (CFSE) कहते हैं। विस्तृत विवरण हेतु कृपया पाठ्य पुस्तक देखिए।
- प्र.10. $[Ni(H_2O)_6]^{2+}$ का विलयन हरा है परंतु $[Ni(CN)_4]^{2+}$ का विलयन रंगहीन है। समझाइए।

उत्तर- Ni परमाणु (Z = 28)

	(जांध अपस्था)				
	3d	4s	4p	4d	
	<u> </u>] ↑↓ .			
Ni(II)	14 14 14 1				
संकरण			sp ³ d ² - संकर	on	<u> </u>

 $[Ni(H_2O)_6]^{2+}$

		_					
		1	&: &:	A: A:	A1 A :		1 1
♦ ♦	₩ 1	П	1 1 1 1 4	T	174 (74 (F	1
7. 1.	<u>' </u>	_	17 17	1 7 1 7	_	1	1

छः ${ m H_2O}$ अणुओं से छः इलेक्ट्रॉन युग्म

चूँकि H_2O दुर्बल लिगेण्डों को निरूपित करता है, अत: वे कोई इलेक्ट्रॉन युग्म नहीं बनाते हैं। परिणामस्वरूप संकुल में दो अयुग्मित इलेक्ट्रॉन होते हैं और संकुल रंगीन होता है। d-d संक्रमण लाल रंग के संगत विकिरणों को अवशोषित करता है और विकिरित पूरक रंग हरा होता है।

[Ni(CN)₄]²⁻ का निर्माण-विस्तृत विवरण हेतु पाठ्य पुस्तक देखिए। जैसा कि संकुल में कोई अयुग्मित इलेक्ट्रॉन नहीं होता है, इसकी प्रकृति प्रतिचुम्बकीय होती है।

- प्र.19. $[Fe(CN)_6]^{4-}$ तथा $[Fe(H_2O)_6]^{2+}$ के तनु विलयनों के रंग भिन्न होते हैं। क्यों?
- उत्तर- इन दोनों संकुलों में Fe की ऑक्सीकरण अवस्था +2 तथा विन्यास

प्रसहसंयोजन यागिक

 d^6 होता है। इसका अर्थ है कि इसमें चार अयुग्मित इलेक्ट्रॉन होते हैं। दुर्बल H_2O लिगेण्डों की उपस्थिति में इलेक्ट्रॉन युग्मित नहीं होते हैं। जब कि CN^- प्रबल लिगेण्डों को निरूपित करता है। यह इलेक्ट्रॉनों की युग्मित कराता है और संकुल में कोई अयुग्मित इलेक्ट्रॉन नहीं बचता है। अतः इस संकुल का रंग भिन्न होता है।

1.20. निम्न संकुलों में केंद्रीय धातु आयन की ऑक्सीकरण अवस्था, d- कक्षकों का अधिग्रहण एवं उपसहसंयोजन संख्या बतलाइए-

(i) $K_3[C_0(C_2O_4)_3]$

(ii) $(NH_4)_2[C_0F_4]$

(iii) Cis[CrCl2(en)2]Cl

(iv) [Mn(H2O)6]SO4

उत्तर-(i) ऑक्सीकरण अवस्था = +3 उपसहसंयोजन संख्या = 6

d- कक्षक अध्यासन है: $3d^6 = t_{2g}^6 e_g^0$

(ii) ऑक्सीकरण अवस्था = +2, उपसहसंयोजन संख्या = 4

$$3d^7 = (t_{2g}^6 e_g^1)$$

(iii) ऑक्सीकरण अवस्था =+3 उपसहसंयोजन संख्या = 6

$$3d^3 = (t_{2g}^3)$$

(iv) ऑक्सीकरण अवस्था = + 2 उपसहसंयोजन संख्या = 6

$$3d^5 = (t_{2g}^3 e_g^2)$$

प्र.21. निम्न संकुलों के IUPAC नाम लिखिए तथा ऑक्सीकरण अवस्था, इलेक्ट्रॉनिक विन्यास और उपसहसंयोजन संख्या दर्शाइए। संकुल का त्रिविम रसायन तथा चुंबकीय आघूर्ण भी बतलाइए:

(i) $K[Cr(H_2O)_2(C_2O_4)_2]$.3 H_2O (ii) $[CrCl_3(Py)_3]$

(iii) K₄[Mn(CN)₆]

(iv) [CO(NH₃)₅Cl]Cl₂

(v) Cs[FeCl₄]

उत्तर- (i) IUPAC नाम : पोटैशियम डाइएक्वाडाइऑक्जेलेटोक्रोमियम (III) ट्राईहाइड्रेट

Cr की ऑक्सोकरण अवस्था = +3; $3d^3(t_{2g}^3e_g^0)$

उपसहसंयोजन संख्या =6; आकृति = अष्टफलकीय, तीन अयुग्मित इलेक्ट्रॉन

चुंबकीय आघूर्ण (μ)= $\sqrt{n(n+2)} = \sqrt{3 \times 5} = \sqrt{15}$ BM = 3.84BM

त्रिविम रसायन

(cis)

(trans)

cis समायवयवी d तथा ! प्रकाशिक समायवों के रूप में पाया जाता है।

(ii) IUPAC नाम: ट्राइक्लोरिडोट्राईपिरीडीनक्रोमियम (III)

Cr की ऑक्सीकरण अवस्था = +3; $3d^3(t_{2g}^3 e_g^0)$

उपसहसंयोजन संख्या (CN) = 6

आकृति = अष्टफलकीय; तीन अयुग्मित इलेक्ट्रॉन

चुंबकीय आधूर्ण (µ) = 3.87BM

cis

trans

(iii) IUPAC नाम: पोटैशियम हेक्सासायनोर्मैंगनेट (II)

Mn की ऑक्सीकरण अवस्था = +2; $3d^5(t_{2g}^5 e_g^0)$

उपसहसंयोजन संख्या = 6

आकृति = अष्टफलकीय; एक अयुग्मित इलेक्ट्रॉन

चुंबकीय अरघूर्ण (μ) = $\sqrt{n(n+2)}$ = $\sqrt{1 \times 3}$ = $\sqrt{3}BM$ = 1.73BM

त्रिविम समावयवता अनुपस्थित

(iv) IUPAC नाम: पेन्टाऐम्मीनक्लोरिडोकोबाल्ट (III) क्लोराइड

 C_0 की ऑक्सीकरण अवस्था = +3; $3d^6(t_{2g}^6e_g^0)$

उपसहसंयोजन संख्या (CN) = 6

आकृति = अष्टफलकीय, शून्य अयुग्मित इलेक्ट्रॉन

चुबंकीय आंघूर्ण (µ) = 0

त्रिविम समावयवता अनुपस्थित

(v) IUPAC नाम: सीजियमटेट्राक्लोरिडोफेरेट (III)

Fe की ऑक्सीकरण अवस्था = +3; $3d^5 t_{2g}^3 e_g^2$

उपसहसंयोजन संख्या (CN) = 4

आकृति= चतुष्फलकीय, पाँच अयुग्मित इलेक्ट्रॉन

चुबंकीय आघूर्ण (µ)

$$= \sqrt{n(n+2)} = \sqrt{5 \times 7} = \sqrt{35} BM = 5.92 BM$$

त्रिविम समावयवता अनुपस्थित

प्र.22. उपसहसंयोजन यौगिकों के विलयन में स्थायित्व से आप क्या समझते हैं? संकुलों के स्थायित्व को प्रभावित करने वाले कारकों का उल्ख कीजिए।

उत्तर-कृपया उत्तर हेतु पाठ्य भाग का अध्ययन कीजिए।

प्र.23. कीलेट प्रभाव से क्या तात्पर्य है? एक उदाहरण दीजिए। उत्तर- कृपया उत्तर हेतु पाठ्य भाग का अध्ययन कीजिए।

प्र.24. निम्नलिखित आयनों में से किसके चुंबकीय आधूर्ण का मान सर्वोधिक होगा?

(i) $\{Cr(H_2O)_6\}^{3+}$

(ii) $[Fe(H_2O)_6]^{2+}$

(iii) $[Zn(H_2O)_6]^{2+}$

उत्तर- संकुलों में धातुओं की ऑक्सीकरण संख्या एवं उनके इलेक्ट्रॉनीय विन्यास निम्न हैं—

(i) $Cr^{3+}: 3d^3$ विन्यास, आयुग्मित इलेक्ट्रॉन = 3

(ii) Fe^{2+} : $3d^6$ विन्यास, आयुग्मित इलेक्ट्रॉन = 4

(iii) Zn^{2+} : $3d^{10}$ विन्यास, आयुग्मित इलेक्ट्रॉन = 0अधिकतम अयुग्मित इलेक्ट्रॉनों वाले (ii) संकुल का चुबंकीय आघूर्ण उच्चतम है। अत: सही विकल्प (ii) है।

प्र.25. निम्न में सर्वाधिक स्थायी संकुल है—

(a) $[Fe(H_2O)_6]^{3+}$ (b) $[Fe(NH_3)_6]^{3+}$

(c) $[Fe(C_2O_4)_3]^{3-}$ (d) $[FeCl_6]^{3-}$

उत्तर- इन सभी संकुलों में Fe की आ. सं. (O.S.) +3 है। जबिक (c) संकुल एक कीलेट है क्योंकि तीन $C_2O_4^{2-}$ आयन कीलेटकारी लिगेण्डों की भांति कार्य करते हैं। अत: सबसे स्थायी संकुल (c) है।