Zadanie 2

Antoni Pokusiński

Znajdź wszystkie liczby zmiennopozycyjne, które można przedstawić w postaci $x=\pm(0.1e_{-2}e_{-3}e_{-4})_2\cdot 2^{\pm c}$, gdzie $e_{-2},e_{-3},e_{-4},c\in\{0,1\}$:

Każdy z bitów e_{-2}, e_{-3}, e_{-4} może być równy 0 albo 1. Łatwo więc zauważyć, że mamy 8 możliwych przypadków: $\frac{1}{2}(0.1000)_2, \frac{9}{16}(0.1001)_2, \ldots, \frac{15}{16}(0.1111)_2$. Oprócz tego mamy jeszcze 2 możliwości na znak liczby oraz 3 możliwości na wartość c. Wobec tego wszystkich możliwych liczb generowanych przez ten zapis jest 48.

Jaki jest najmniejszy przedział [A, B] zawierający te liczby?:

Największą możliwą liczbę uzyskamy biorąc największą mantysę oraz cechę: $B=(0.1111)_2\cdot 2^1=1.875$. Oczywiste zatem, że najmniejsza liczba to A=-B=-1.875. Najmniejszy przedział zawierający wszystkie nasze liczby to zatem [-1.875, 1.875]

Jak liczby rozkładają się w [A, B]? Co z tego wynika?:

Powyższy rozkład pokazuje, że im dalej od 0, tym bardziej tracimy na dokładności w reprezentowaniu liczb - odstępy między kolejnymi możliwymi do przedstawienia liczbami stają się większe wraz ze wzrostem c. Pondato należy pamiętać, że bardzo małych liczb (w tym wypadku mniejszych co do modułu od $(0.1000)_2 \cdot 2^{-1} = 0.25$) również nie jesteśmy w stanie reprezentować.