Espirales en la naturaleza

Cuando estuve investigando sobre la presencia de las matemáticas en la naturaleza encontré que hay determinadas espirales presentes en la forma de algunas conchas. El nautilus es un molusco marino que tiene una concha en espiral con unas particiones que le dotan de flotabilidad. El molusco adulto puede crecer hasta alcanzar una anchura de 25-30 centímetros, y la concha es capaz de soportar bajo el agua profundidades de hasta 650 metros. Las cámaras de la concha están separadas unas de otras, pero están interconectadas a través de un tubo que pasa por todas ellas. Para desplazarse, el tubo vierte gas o vierte líquido a través del tubo, lo que hace que la criatura se hunda o flote, respectivamente. Las curvas de la concha del nautilus son de tipo logarítmico y equiangular, con unas proporciones ligeramente distintas a las de otras espirales, como la proporción aurea.

A La introducción incluye un objetivo general y una base o fundamento.

Tengo un fósil de una amonita que contiene una espiral. Quiero averiguar si se trata de una espiral de Arquímedes (una espiral descrita en coordenadas polares por $r = a\theta$, donde a es una constante), de una espiral logarítmica (una espiral descrita en coordenadas polares por $r = ke^{c\theta}$, donde $c = \operatorname{ctg} \phi$), o de algo completamente distinto de lo anterior.

Como se muestra a continuación, he escaneado el fósil y voy a tratar de obtener un modelo que se ajuste a la espiral. Para ello, he marcado varios puntos sobre su superficie (como se ve en la figura) y he calculado las coordenadas x e y de dichos puntos.

C El alumno desarrolla su propio ejemplo.

 Aplicación de
 aspectos matemáticos desconocidos sobre curvas y puntos polares.

Buen ejemplo de compromiso personal.

En total había 31 puntos. Éstas son las coordenadas y la representación gráfica de las mismas, para comprobar que no me he equivocado y que con ellas se obtiene la forma correcta.

Ahora quiero ver si la espiral se puede describir mediante $r=a\theta$. Para ello, necesito hallar el radio y el ángulo de cada punto. Voy a calcular el ángulo en radianes. El radio es fácil de obtener: $r=\sqrt{x^2+y^2}$. El ángulo resulta un poco más complicado: por un lado, quiero que el punto (-25,74) tenga un ángulo menor que π pero, a su vez, quiero que el punto (-105,11) tenga un ángulo de casi 3π , porque en el gráfico se puede ver que es necesario girar más de una vuelta para llegar hasta ahí. Por otro lado, $\arctan\left(\frac{y}{x}\right)$ da un ángulo en el $1^{\rm er}$ o en el $4^{\rm o}$ cuadrante,

con lo que deduje que si sé en qué cuadrante se encuentra un punto y coloco todos los puntos en orden podré obtener el ángulo teniendo siempre en mente cuantas veces necesito añadir π . Así,

 $\theta = \operatorname{arctg}\left(\frac{y}{x}\right) + n\pi$, donde *n* aparece definida en la siguiente hoja de cálculo:

x	V	cuadrante	n	θ	r	logθ	logr
648	-639	4	8	24.35433596	910.0687	1.386576	2.959074
434	-741	4	8	24,09177962	858,7415	1,381869	2,933862
221	-786	4	8	23,83603866	816,4784	1,377234	2,911945
7	-773	4	8	23,57100028	773,0317	1,372378	2,888197
-212	-742	3	7	23,28364524	771,6916	1,367051	2,887444
-421	-586	3	7	22,93895658	721,5518	1,360574	2,858268
-639	-216	3	7	22,31711851	674,5198	1,348638	2,828995
-635	105	2	7	21,82727704	643,6226	1,339	2,808631
-537	323	2	7	21,44963438	626,6562	1,33142	2,797029
-421	461	2	7	21,16042999	624,3092	1,325524	2,7954
-207	581	2	7	20,76261275	616,7739	1,317282	2,790126
2	599	1	6	20,41701336	599,0033	1,309992	2,777429
221	537	1	6	20,02993254	580,6979	1,301679	2,76395
434	336	1	6	19,50836196	548,8643	1,290221	2,739465
506	114	1	6	19,0711525	518,6829	1,280377	2,714902
429	-158	4	6	18,49667356	457,1706	1,267094	2,660078

E Buena
comprensión
del uso de la
periodicidad de
las tangentes.
Supera las
expectativas
para un alumno
del NM.

225	-332	4	6	17.87436924	401.0598	1.252231	2.603209
2	-349	4	6	17,28449019	349.0057	1.237657	2.542833
-				,	,	,	,
-212	-212	3	5	16,49336143	299,8133	1,217309	2,476851
-283	7	2	5	15,68323333	283,0866	1,195436	2,451919
-198	203	2	5	14,91009692	283,5719	1,17348	2,452663
7	305	1	4	14,11422015	305,0803	1,149657	2,484414
221	198	1	4	13,29693121	296,7238	1,123751	2,472352
221	-46,8	4	4	12,35768885	225,901	1,091937	2,353918
7	-126	4	4	11,05107279	126,1943	1,043404	2,10104
-105	11	2	3	9,320396808	105,5746	0,969434	2,02356
11	167	1	2	7,788208383	167,3619	0,891438	2,223657
73	96	1	2	7,203847123	120,6027	0,857564	2,081357
96	33	1	2	6,614281384	101,5135	0,820483	2,006524
7	-47	4	2	4,860238346	47,51842	0,686658	1,676862
-25	74	2	1	1,896595442	78,1089	0,277975	1,892701

Si la espiral fuese una espiral de Arquímedes, se cumpliría que $r=a\theta$. Así, representando gráficamente r en función de θ deberíamos obtener una recta de pendiente a que cortase al eje vertical en el origen de coordenadas. He representado gráficamente r frente a θ y he calculado con el computador una recta de ajuste óptimo.

Regresión lineal (ax+b) regEQ(x) = 38.9346x + -201.183

¡Esto no parece muy prometedor!

De todos modos, trataré de dibujar con el computador la curva $r = 38,9346 \theta$ superpuesta a los datos.

Bueno, sí, es una espiral, pero no se ajusta bien a los datos.

He observado el gráfico de r frente a θ y he utilizado el computador para ajustar a los puntos una curva cuadrática y una curva cúbica. La cúbica parece que se ajusta bastante bien. Tiene este aspecto:

Regresión cúbica $reEQ(x)=.041132x^3 + .287964x^2 + 1.73643x + 64.6669$

Trataré de utilizar el computador para dibujar la curva

 $r = 0.041132 \theta^3 + 0.287964 \theta^2 + 1.73643 \theta + 64.6669$ superpuesta a los datos.

E Buena comprensión de la relación entre los gráficos y los gráficos polares.

En este caso parece que los puntos están más cerca de la espiral.

Ahora intentaré ajustar una espiral logarítmica. En la Enciclopedia Británica se dice que la curva era de la forma $r = ke^{c\theta}$, donde $c = \operatorname{ctg} \phi$. Creo que c es una constante, por lo que:

$$\ln r = \ln k e^{c\theta}$$

$$= \ln k + \ln e^{c\theta}$$

$$= \ln k + c\theta \ln e$$

$$= \ln k + c\theta$$

De modo que si represento gráficamente $\log r$ frente a θ debería obtener una recta de pendiente c y cuya intersección con el eje y fuese $\ln k$.

θ	r	ln r
24,35434	910,0687	6,81352
24,09178	858,7415	6,755468
23,83604	816,4784	6,705
23,571	773,0317	6,65032
23,28365	771,6916	6,648585
22,93896	721,5518	6,581404
22,31712	674,5198	6,514001
21,82728	643,6226	6,467112
21,44963	626,6562	6,440398
21,16043	624,3092	6,436646
20,76261	616,7739	6,424502
20,41701	599,0033	6,395267
20,02993	580,6979	6,364231
19,50836	548,8643	6,307851
19,07115	518,6829	6,251293
18,49667	457,1706	6,125057
17,87437	401,0598	5,994111
17,28449	349,0057	5,855088
16,49336	299,8133	5,70316
15,68323	283,0866	5,645753
14,9101	283,5719	5,647466
14,11422	305,0803	5,720575
13,29693	296,7238	5,692802
12,35769	225,901	5,420097
11,05107	126,1943	4,837823
9,320397	105,5746	4,659418
7,788208	167,3619	5,120158
7,203847	120,6027	4,792501
6,614281	101,5135	4,620192
4,860238	47,51842	3,861117
1,896595	78,1089	4,358104

Regresión lineal regEQ(x) = .123083x + 3.80866

¡Esto ya parece un poco más probable! Lo intentaré ahora con c=0,123083 y $\ln k=3,80866$.

Así,
$$k=e^{3.80866}$$
 $k=45.09$

De modo que $r = 45,09 \times e^{0,123083\theta}$

D Oportunidades para considerar la aproximación y si el uso de parámetros menos precisos afectaría la racionabilidad.

D Reflexión significativa acerca de cuál es el mejor enfoque.

Creo que esto tiene muy buena pinta. Sin embargo, como el ejemplo de la curva cúbica también tenía muy buena pinta voy a tratar de compararlos. Cada punto de la espiral tiene asociado un valor de zeta (θ) y un valor de r y cada modelo da un valor aproximado de r para ese valor de zeta. He decidido hallar el error absoluto de cada valor aproximado de r. A continuación, sumaré estos errores para cada uno de mis modelos para ver cuál es el que tiene la suma menor y, por lo tanto, cuál es el modelo que más se acerca a los puntos reales de la espiral.

θ	r	38,93460	abs(r-aprox)	cúbica	abs(r-aprox)	logarítmica	abs(r-aprox)
24,35434	910,0687	•	38,15765008	871,9249	38,14378905	903,4901656	6,578513127
24,09178	858,7415	938,0038	79,2622816	848,796	9,945556819	874,7595101	16,01798906
23,83604	816,4784	928,04663	111,5682173	826,6997	10,22125627	847,6532419	31,1748282
23,571	773,0317	917,72747	144,6957735	804,2457	31,21404107	820,4474975	47,4158035
23,28365	771,6916	906,53941	134,8477658	780,4084	8,716744071	791,9366489	20,24500065
22,93896	721,5518	893,1191	171,5672989	752,5031	30,95132975	759,0412207	37,48942073
22,31712	674,5198	868,90808	194,3882533	704,0279	29,50807324	703,1135427	28,59371351
21,82728	643,6226	849,8363	206,2137403	667,5018	23,87923796	661,97463	18,35206976
21,44963	626,6562	835,13293	208,4767293	640,3202	13,66404316	631,9092812	5,25307558
21,16043	624,3092	823,87288	199,5636593	620,0709	4,238321177	609,8113805	14,49783772
20,76261	616,7739	808,38402	191,6101577	593,0079	23,76599034	580,6714795	36,10238507
20,41701	599,0033	794,92825	195,9249096	570,23	28,77338712	556,4891914	42,51414745
20,02993	580,6979	779,85741	199,1595555	545,5137	35,18410793	530,5980037	50,09985234
19,50836	548,8643	759,55027	210,6859875	513,5152	35,34907515	497,605805	51,25847699
19,07115	518,6829	742,52769	223,8447468	487,8235	30,85943987	471,5358609	47,14708662
18,49667	457,1706	720,16059	262,9899399	455,5973	1,573385921	439,3456954	17,82495108
17,87437	401,0598	695,93142	294,8715709	422,601	21,54119205	406,9504697	5,890623833
17,28449	349,0057	672,96471	323,9589812	393,1081	44,10233203	378,4512999	29,44556931
16,49336	299,8133	642,16243	342,3491548	356,1887	56,37547441	343,337146	43,52387082
15,68323	283,0866	610,62042	327,5338571	321,3955	38,30890977	310,753471	27,66691183
14,9101	283,5719	580,51866	296,9467993	290,9142	7,342293638	282,5455996	1,026260809
14,11422	305,0803	549,53152	244,4511986	262,1922	42,88811306	256,1801867	48,9001306
13,29693	296,7238	517,7107	220,9869207	235,3722	61,35154229	231,6636828	65,06009451
12,35769	225,901	481,14167	255,2407206	207,7241	18,17688581	206,3723186	19,52863313
11,05107	126,1943	430,2691	304,0748041	174,5371	48,34277322	175,7143535	49,52005884

La suma de los errores absolutos correspondientes a la espiral de Arquímedes es superior a 6000									sea concisa.
									exploración no
			suma	6238,41671	suma	840,1973621	suma	914,4071688	hace que la
1,	896595	78,1089	73,843185	4,265713442	•	8,832254711	56,94575507		y detallada
,		,	189,23144	141,7130184	- ,	37,11249648	82,01262581		3 muy grande
,		,	257,5244	156,0108541	100,6524	0,861137386	101,7751622		A Una tabla
7,	203847	120,6027	280,47891	159,8762528	107,4969	13,10570694	109,4350922	11,1675612	
7,	788208	167,3619	303,23078	135,8688947	115,0883	52,27362354	117,5961792	49,7657042	2
9,	320397	105,5746	362,88592	257,3113034	139,1695	33,59484783	142,0022486	36,42763044	1

La suma de los errores absolutos correspondientes a la espiral de Arquímedes es superior a 6000. La suma de los errores absolutos de la espiral logarítmica apenas supera 914, mientras que la espiral cúbica, que simplemente se me ocurrió, porque cuando representé gráficamente r frente a θ parecía que los puntos podían ajustarse a una curva polinómica, es la que presenta la suma de errores absolutos más pequeña; 840, aproximadamente. Pensé que sería la espiral logarítmica la que mejor se iba a ajustar, porque había leído que la forma de las conchas de los nautilus siguen estas curvas, pero éste no parece ser el caso de mi fósil.

A Una buena conclusión.

Sería interesante encontrar otros ejemplos de amonitas, de entre las muchas fotografías que hay disponibles en Internet, y tratar de modelizar sus curvas mediante espirales cúbicas y logarítmicas, para ver qué tipo se ajusta mejor, y para averiguar si en general la forma cúbica constituye un buen modelo para estas espirales o si ha sido una coincidencia y sólo sirve para este caso concreto.

D Reflexión limitada acerca de cómo se podría extender la exploración.

Bibliografía

http://www.bsu.edu/web/math/exchange/01-01/allen.pdf

Britannica 2002 Deluxe Edition [en línea] http://www.britannica.com [consulta: 6 de enero de 2010]

MURTHY, Amarnath. "Maths of Nature and Nature of Maths Chapter 1" [Las matemáticas de la naturaleza y la naturaleza de las matemáticas, Capítulo 1] [en línea]

http://www.scribd.com/doc/21990600/Maths-of-

Nature-and-Nature-of-Maths-Chapter-1> [Consulta: 6 de enero de 2010]

Imágenes

Chambered Nautilus. Imagen digital.[en línea]

http://blog.lib.umn.edu/myee/architecture/Nautilus%20Shell%202.gif [Consulta: 6 de enero de 2010]

Shell. Imagen digital. FH Perry Builder - Relationships [en línea] http://www.fhperry.com/pages/relationships.html [Consulta: 6 de enero de 2010]