2019년 태성고 수학(하) 중간고사

	점 (2,-7 a+b의 값		에 대하여	겨 대칭	이동 한	<u></u> 점의	좌표는	(a, b))이다.			'0 ≤ x k의 Ž			든 x ^C	ᅦ대히	하여 -	-1 ≤ :	$x \le 4$	이다.'	가 참(이 되도
1	3	② 5		③ 7		4 9)	(5)	11	①	1		2	2		3 3		(4) 4		(5)	5
	전체집합 $A = \{1, 2, 3\}$							의 값·	은?					-2 ≤: 실수								
1	1	② 2		③ 3		4 4	4	(5)	5	1	-10		2	-5		3 0		(4)) 5		(5)	10
3.	두 함수 <i>)</i> 1	$\widehat{C}(x) = x + \frac{1}{2}$		$=x^{2}$ \otimes 3	대하0	(f ·		값은 ⑤				대하여										={1,2}, 합 <i>B</i> 의
										1	0		2	1		3 2		4) 4		(5)	8

- **7.** 두 함수 f(x) = -x+3, g(x) = 2x+k에 대하여 $f \circ g = g \circ f$ 가 항상 성립하도록 하는 상수 k의 값은?

- ① -2 ② $-\frac{3}{2}$ ③ -1 ④ $-\frac{1}{2}$ ⑤ 0

- **8.** 두 집합 $X = \{x | 0 \le x \le 3\}$, $Y = \{y | -2 \le y \le 4\}$ 에 대하여 X에서 Y로의 함수 f(x) = ax + b가 일대일대응이 되도록 하는 상수 a,b에 대하여 a+b의 값은? (단, a < 0이다.)
- ① -4 ② -2 ③ 0 ④ 2

- ⑤ 4

- **9.** 두 점 A(1,1), B(2,4)와 y축 위를 움직이는 점 C에 대하여 $\overline{AC} + \overline{BC}$ 가 최소가 되도록 하는 점 C의 y좌표는 k이다. 이 때, $\overline{AC} + \overline{BC}$ 의 최솟값을 m이라 할 때, k+m의 값은?
- (1) $2+3\sqrt{2}$
- ② $3+3\sqrt{2}$
- $3 + 4\sqrt{2}$

- (4) $2+3\sqrt{3}$
- ⑤ $3+3\sqrt{3}$

- **10.** 실수 전체의 집합에서 정의된 함수 $f(x) = \begin{cases} ax + x & (x \geq 1) \\ ax x + 2 & (x < 1) \end{cases}$ 이 일대일대응이 되도록 하는 상수 a값의 범위는?

 - ① a < -1 또는 a > 1 ② a < -2 또는 a > 2 ③ -1 < a < 1
- - $\textcircled{4} \quad -2 < a < 2 \qquad \qquad \textcircled{5} \quad a > 3$

 $\mathbf{11}$. 원 $x^2 + (y-1)^2 = 13$ 을 x축의 방향으로 a만큼 평행이동 하였더니 직선 2x-3y-1=0과 접하였다. 다음은 양수 a의 값을 구하는 과정이다. 다음 과정에서 (γ) 에 알맞은 식을 f(x), (\downarrow) 에 알맞은 식을 g(y), (다)에 알맞은 식을 h(a)라 할 때, f(a)+g(5)+h(1)의 값은?

원 $x^2(y-1)^2=13$ 을 x축의 방향으로 a만큼 평행이동 한 원의 방정식은 [(가)]² +[(나)]² = 13이다.

그런데 이 원은 직선 2x-3y-1=0과 접하므로 원의 중심 (a,1)과 직선 2x-3y-1=0사이의 거리가 원의 반지름과 같으므로 |(다)|=13이다.

그런데 a는 양수이므로 $a = \frac{17}{2}$

- ① 2 ② 4 ③ 6 ④ 8
- (5) 10
- $\mathbf{12}$. 자연수 전체의 집합에서 정의된 함수 f(x)가

$$f(x) = \begin{cases} \frac{x}{2} & (x 는 짝 +) \\ \frac{x+1}{2} & (x 는 홀 +) \end{cases}$$
라 하자. 〈보기〉에서 옳은 것만을 있는

대로 고른 것은?

$$(\Box, \ f^1(x) = f(x), f^{n+1}(x) = f(f^n(x)) \ (n = 1, 2, 3, \dots) \ O[\Box].$$

----- 〈보기〉 ---

- $\neg f(99) = 10 | \Box f$
- $L. f^2(99) = 250$ 다.
- $C. f^{n}(99) = 1$ 을 만족시키는 자연수 n의 최솟값은 7이다.

- ③ ∟, ⊏

- (1) ¬ (2) ¬, L (4) ¬, □ (5) ¬, L, □

[단답형1] x > 3일 때, $x^2 + \frac{49}{x^2 - 9}$ 의 값은 x = a에서 최솟값 b를 갖는다. a와 b를 각각 구하시오.

[서술형1] 실수 전체의 집합에 대하여 명제 '어떤 실수 x에 대하여 $x^2-16x+k<0$ 이다.' 의 부정이 참이 되도록 하는 상수 k의 최솟값을 구하시오.

[단답형2] 두 함수 y=f(x)와 y=g(x)의 그래프가 각각 다음 그림과 같다. $h(x)=(g\circ f)(x)$ 라 할 때, $\frac{3}{2}\{h(-1)+h(0)+h(1)\}$ 의 값을 구하시오.

[**서술형2**] 집합 $A=\{1,2,3,4\}$ 에 대하여 함수 $f\colon A\to A$ 를 $f(x)=\begin{cases} x+1 & (x\leq 3)\\ 1 & (x=4) \end{cases}$ 로 정의 하자. $f^{2019}(1)+f^{2020}(2)+f^{2021}(3)$ 의 값을 구하시오. (단, $f^1(x)=f(x)$, $f^{n+1}(x)=f(f^n(x))$ $(n=1,2,3,\cdots)$ 이다.)

[단답형3] 두 조건 'p: $x^2-2x+a<0$ ', 'q: (x+1)(x-3)<0'에 대하여 조건 p,q가 다음 두 조건을 만족한다고 한다. 실수 a값의 범위를 구하시오. (단, p의 진리집합은 공집합이 아니다.)

- (가) p는 q이기 위한 충분조건이다.
- (나) 명제 $p \rightarrow q$ 의 역은 참이 아니다.

[서술형3] 좌표평면에서 원 $x^2+y^2=2$ 를 x축 방향으로 1만큼, y축 방향으로 3만큼 평행이동한 원과 함수 y=m|x|의 그래프가 서로 다른 두점에서만 만나도록 하는 m의 값의 범위를 구하시오.

- 1) ④
- 2) ③
- 3) ⑤
- 4) ④
- 5) ②
- 6) ⑤
- 7) ②
- 8) ④
- 9) ①
- 10) ①
- 11) ①
- 12) ③
- 13) [단답형1] a=4, b=23
- 14) [단답형2] $\frac{9}{2}$
- 15) [단답형3] -3<a<1
- 16) [논술형1] 64
- 17) [논술형2] 10
- 18) [논술형3] 1 < m < 7