小圆蓝细胞瘤亚型分类

Classification of small, round blue-cell tumors subtypes by machine learning models

OVERVIEW

- · 小圆蓝细胞瘤(SRBCTS)亚型
- "扁平"的数据集

小圆蓝细胞瘤(SRBCTS)亚型

- NB-neuroblastoma 神经母细胞瘤
- RMS-rhabdomyosarcoma 横纹肌肉瘤
- NHL-non-Hodgkin lymphoma 非霍金淋巴瘤
- EWS-the Ewing family of tumors 尤因肿瘤群

亚型	NB	RMS	NHL	EWS	合计
Train	12	20	8	23	63
Test	6	5	3	6	20
合计	18	25	П	29	83

EWS

NHL

"扁平"的数据集

VISUALIZE & DIMENSIONALITY REDUCTION

- INFINITE FEATURE SELECTION降维算法
- 降维后效果

降维算法

- 图中元素所对应的数据特性:
- 特征子集= 图中的路径
- 点=特征
- 边表示两个特性的相互独立性
- 路径的能量 = 其边的分值乘积。
- 算法目标:
- 高能量路径 = 获得高分值边 = 高独立性特征
- Inf-FS 考虑给定长度L时的所有路径:

$$S_l(\mathbf{i}) = \Sigma_j \in vA^l(\mathbf{i}, j)$$

降维后可视化-2D

降维后可视化-3D

- X轴——V1
- Y轴 —— V2
- Z轴 —— V3
- 圆点颜色 —— 所属类别

MODELS

- 模型选择
- 预测试
- 模型调参/模型训练
- 测试

模型选择

- Logistic regression
- Naïve Bayes
- Decision Trees / Random Forest
- Artificial Neural Network

Natively support

预测试

- Default hyperparameters / settings
- 5-fold cross-validation (scoring="accuracy")

Accuracy

F1 value

预测试

• Confusion matrix

模型调参/模型训练

Logistic Regression

Hyperparameters	Values
solver	"lbfgs", "sag", "newton-cg"
multi-class	"ovr", "multinomial"
С	4,6,8,10

Decision Trees / Random Forest

Hyperparameters	Values
N_estimators	100,150,200,300
max_depth	4,5,6

模型调参/模型训练

Before samples expansion

After samples expansion

模型调参/模型训练

测试

Accuracy

测试

CONCLUSION

- 发现
- 不足

发现

- 高维性
- 样本数目少

Logistic Regression (1.0) = ANN (1.0) > Random Forest (0.95)

- 利用Inf-FS算法进行降维
- 利用SE对降维数据进行样本扩充

不足

- SE1DCNN and SESAE
- 对Inf-FS算法的理解
- 调参
- 高维数据可视化

谢娜看,有不足,请多包涵。

