Praca domowa 6 Klasyfikator Bayesa oraz K-NN

Damian Jankowski s188597 29 maja 2023

1 Wstęp

Celem pracy domowej było zapoznanie się z klasyfikatorem Bayesa oraz klasyfikatorem K-NN. W dziedzinie uczenia maszynowego klasyfikatory Bayesa i K-NN (k najbliższych sąsiadów) są często wykorzystywane do rozwiązywania problemów klasyfikacji. Klasyfikator Bayesa jest probabilistycznym modelem, który wykorzystuje twierdzenie Bayesa do obliczenia prawdopodobieństwa przynależności obserwacji do danej klasy. Klasyfikator K-NN natomiast jest modelem, który przypisuje nową obserwację do klasy najczęściej występującej wśród jej k najbliższych sąsiadów.

1.1 Klasyfikator Bayesa

Klasyfikator Bayesa oparty jest na twierdzeniu Bayesa, które jest podstawą teorii prawdopodobieństwa. Zakłada się, że obserwacje są niezależne i pochodzą z pewnego rozkładu prawdopodobieństwa. Klasyfikator Bayesa wykorzystuje te informacje, aby obliczyć prawdopodobieństwo przynależności danej obserwacji do poszczególnych klas.

Załóżmy, że mamy zbiór danych uczących składający się z obserwacji d i odpowiadających im etykiet klas C. Klasyfikator Bayesa szacuje prawdopodobieństwo warunkowe $P(C_i|d)$, czyli prawdopodobieństwo przynależności i-tej klasy do obserwacji. Wykorzystuje przy tym twierdzenie Bayesa, które można zapisać jako:

$$P(C_i|d) = \frac{P(C_i)P(d|C_i)}{P(d)} \tag{1}$$

Po zamianie obserwacji d na wektor cech w otrzymujemy:

$$P(C_i|w_1, w_2, ..., w_n) = \frac{P(C_i)P(w_1, w_2, ..., w_n|C_i)}{P(w_1, w_2, ..., w_n)}$$
(2)

co można przedstawić w postaci:

$$P(C_i|w_1, w_2, ..., w_n) = \frac{P(C_i) \prod_{j=1}^n P(w_j|C_i)}{P(w_1, w_2, ..., w_n)}$$
(3)

gdzie:

- $P(C_i)$ prawdopodobieństwo wystąpienia i-tej klasy, wyrażona jako stosunek liczby obserwacji ze znaną i-tą klasą do liczby wszystkich obserwacji należących do m klas: $P(C_i) = \frac{|C_i|}{\sum_{j=1}^m |C_j|}$
- $P(w_j|C_i)$ prawdopodobieństwo wystąpienia j-tej cechy w i-tej klasie, wyrażona jako stosunek liczby obserwacji z i-tą klasą, w których występuje j-ta cecha, do liczby wszystkich obserwacji z i-tą klasą: $P(w_j|C_i) = \frac{|w_j, C_i|}{|C|}$

By uniknąć problemu z zerowymi prawdopodobieństwami, które mogą wystąpić, gdy na przykład w zbiorze uczącym nie ma obserwacji z daną cechą, stosuje się wygładzanie Laplace'a. Polega ono na wyznaczeniu stosunku liczby wystąpień danej cechy w danej klasie powiększonej o 1, do liczby wszystkich cech w danej klasie powiększonej o liczbę wszystkich cech w zbiorze uczącym.

$$P(w_j|C_i) = \frac{|w_j, C_i| + 1}{|w, C_i| + |v|}$$
(4)

Po wyznaczeniu prawdopodobieństw warunkowych $P(C_i|w_1, w_2, ..., w_n)$ dla każdej klasy C_i klasyfikator Bayesa przypisuje obserwację d do klasy C_i , dla której prawdopodobieństwo warunkowe jest największe (z zasady maksimum a posteriori).

$$C_{pred} = \arg\max_{i} P(C_i|w_1, w_2, ..., w_n)$$
 (5)

1.2 Klasyfikator K-NN

Klasyfikator K-NN przypisuje nową obserwację do klasy najczęściej występującej wśród jej k najbliższych sąsiadów. W tym celu wykorzystuje metrykę odległości, która określa odległość między dwoma obserwacjami. Najczęściej stosowaną metryką jest metryka euklidesowa, która dla dwóch obserwacji d_1 i d_2 wyraża się wzorem:

$$d(d_1, d_2) = \sqrt{\sum_{i=1}^{n} (d_{1i} - d_{2i})^2}$$
(6)

gdzie:

- d_{1i} i-ta cecha obserwacji d_1
- d_{2i} i-ta cecha obserwacji d_2
- n liczba cech

Klasyfikator K-NN wyznacza k najbliższych sąsiadów dla danej obserwacji i przypisuje jej klasę, która występuje najczęściej wśród tych sąsiadów.

2 Przykładowe obliczenia

2.1 Klasyfikator Bayesa

Przygotowałem przykładowe dane do obliczeń. Zadaniem jest klasyfikacja obserwacji d_6 do jednej z 3 klas $C_1,\,C_2$ lub $C_3.$

Klasy. P(li)=	$fikator$ $\frac{ C_i }{Z_i C_i }$	Bayese i=1	a ρ(w _i c)	() =	(wi, C))+1 (w, c) f(0)
Klasa	W_1	W 2	w 3	My	w 5
<u></u>	0	1	1	0	O da
C2	1	1	0	0	1 02
C2	1	0	0	0	1 d ₃
<u>C3</u>	0	0	1	1	1 du
63	1 1	1	1	1	1 dy
Klasa	W ₁	W ₂	W ₃	Wa	Ws
2		1	0	1	O d ₆

Korzystając z twierdzenia Bayesa wyznaczamy najpierw prawdopodobieństwa:

- wystąpienia każdej klasy $P(C_i)$
- wystąpienia każdej cechy w każdej klasie $P(w_j|C_i)$

Następnie wyznaczamy prawdopodobieństwa warunkowe $P(C_i|d_6)$, i przypisujemy obserwację d_6 do klasy, dla której prawdopodobieństwo warunkowe jest największe.

W tym przypadku obserwacja d_6 zostanie przypisana do klasy C_3 .

P(C1) = 5	$P(\zeta_2) = \frac{2}{5} P(\zeta_3) = \frac{2}{5}$
	$(W_1/l_2) = \frac{2+1}{5+5} = \frac{3}{10}$
P(W2/(1): 1+1 = 2 P	(W2/C2): 141 = 2 = 15
P(W3/L1)= 1+1 = 2 P	$(W_3/C_2) = \frac{0+1}{5+5} = \frac{1}{10}$
P(w4/l1): 0+1= 17 P	(W4/C2): Ot1 = 1 5+5 = 10
$P(w_5/l_1) = \frac{0+1}{2+5} = \frac{1}{2}$	$(w_5/c_2) = \frac{211}{515} = \frac{3}{10}$
P(W1/63): 1+1 = 2 P(1/d,)=P((1).P(w2/4).P(wn/4):
P(W2/(3): 1+1 = 2	$\frac{1}{5} \cdot \frac{2}{7} \cdot \frac{1}{7} = \frac{2}{245} = 0,00216$
P(W3/C3) = 2+1/9 = 3/13 P(C2	$/d_6) = P(\ell_2) \cdot P(W_2/\ell_2) \cdot P(W_4/\ell_2)$
P(w4/l3): 8+5 = 3	$=\frac{2}{5}\cdot\frac{1}{5}\cdot\frac{1}{10}\cdot\frac{2}{250}$
P(Wx/l3)= 2+1 = 3 8+5= 13	(3/d6) = P(b3). P(W2/63)P(W4/L3)
2 = 63	= = = 0,01/2

2.2 Klasyfikator K-NN

Wybrałem następujące punkty obserwacji:

• $d_1 = (1,1)$ Klasa: C_1

• $d_2 = (-1, 2)$ Klasa: C_1

• $d_3 = (-2, -2)$ Klasa: C_2

• $d_4 = (2, -2)$ Klasa: C_2

• $d_5 = (\frac{1}{2}, -\frac{1}{2})$ Klasa: C_2

Zadaniem jest sklasyfikowanie obserwacji $d_6=(-\frac{1}{2},\frac{1}{2})$. Za metrykę odległości przyjąłem metrykę euklidesową oraz K=3.

Według tego modelu obserwacja d_6 zostanie przypisana do klasy C_1 .