Mater 135- Solving recurrences-7.2 - HW due Friday - Next HW out by Friday, due in I week

Solving Linear recurrences Dh: A linear homogenous vecurrence has

the form: $a_n = c_1 a_{n-1} + c_2 a_{n-2} + ... + c_d a_{n-d}$ where $c_1,..., c_d$ are constants and $c_1 \neq 0$. The order of the recurrence 15 d. Ex: an= 3an-1 + 2an-2 order 2)

Examples Yes or no?

$$\Rightarrow P(n) = 1.06 P(n-1) \text{ Yes, order 1}$$

 $H(n) = 2H(n-1) + D_n \text{ No}$
 $\Rightarrow R(n) = R(n-1) + (R(n-2))^2 \text{ No}$
 $A(n) = 3A(n-5) \leftarrow \text{Yes, order 5}$
 $C(n) = (nC(n-1) + \text{No})$
 $f(n) = f(n-1) + F(n-2) + \text{Yes}$
 $f(n) = f(n-1) + f(n-2) + \text{Yes}$
 $f(n) = f(n-1) + f(n-2) + \text{Yes}$

Basic Approach

Look for solutions of the form an=r", where

So if $a_n = r^n$ is a solution, have: $a_n = c_1 a_{n-1} + c_2 a_{n-2} + \cdots + c_k a_{n-k}$ $r^n = c_1 r^{n-1} + c_2 r^{n-2} + \cdots + c_k r^{n-k}$

divide () $V^{k} = (, V^{k-1} + (, V^{k-2} + ... + C_{k})$

Characteristics rk-c, rk-c, rk-2 - - Ck=0

The sequence an= {vn} (s a solution v is a solution of characteristic
equation $r^k - c_i r^{k-1} - \cdots - c_k = 0$ the roots of the characteristic equation are called the characteristic roots

X = 1.06 X = 1.06

constant = 1 = (n-1) +OF(1 $\chi^2 = 1 \cdot \chi + 1$ $\pm \pm 1 \pm 1 - 4(-1)^2$

Ex:
$$A(n) = A(n-1) + 2A(n-2)$$
 degree 2
 $poly: x^2 = x + 2$
 $x^2 - x - 2 = 0$
 $(x + 1)(x - 2) = 0$ roots: $2, -1$
Ex: $B(n) = 2B(n-1) - B(n-2)$
 $x^2 = 2x - 1$
 $x^2 - 2x + 1 = 0$ root: 1
 $x^2 - 2x + 1 = 0$ root: 1
 $x^2 - 2x + 1 = 0$ root: 1

 $a_n = \lambda a_{n-2} + a_{n-3}$ $\rightarrow \chi^3 = 2\chi + 1$

Finding General Solutions

- · If r is a non-repeated root of the characteristic equation, then rⁿ is a solution to the recurrence.
- a If r is a repeated root with multiplicity k,
 then

 on nor ..., nk-1 or n

 are all solutions.
- · Use linear combinations of these

Ex:
$$P(n) = 1.06 P(n-1)$$
, $P(0) = 10,000$
 $= x - 1.06 = 0$ had root $x = 1.06$
 $P(n) = C \cdot (1.06)^n$ (c is constant)

use base case to solve for $C : C = 10,000 = C = 10,000$
 $C = 10,000$

Final closed form: $P(n) = 10000 \cdot (1.06)^n$

Ex:
$$F(n) = F(n-1) + F(n-2)$$
, $F(\delta) = 0$, $F(1) = 1$
 $x^{2}-x^{-1} = 0$, $y = c_{1}$ (1 + \sqrt{s}) $y = \frac{1+\sqrt{s}}{2}$ $y = \frac{s$

5x:
$$B(n) = 2B(n-1) - B(n-2)$$
, $B(0) = 0$, $B(1) = 1$
 $x^2 - 2x + 1 = 0$ had $\frac{1}{2}$ root, $x = 1$, w/multiplicity 2
So $B(n) = C_1 \cdot 1^n + C_2 \cdot (n \cdot 1^n)$
Solve: $B(0) = 0 = C_1 \cdot 1^n + C_2 \cdot 0 \cdot 1^n$
 $= 0$
 $B(1) = 0 \cdot 1^n + C_2 \cdot 1 \cdot 1^n = 1$
 $C_2 = 1$
 $S_0 : B(n) = 0 \cdot 1^n + 1 \cdot n \cdot 1^n$
 $S_0 : B(n) = 0 \cdot 1^n + 1 \cdot n \cdot 1^n$

What is form of the general solution? voots: $((n)^{2}C_{1}q^{n}+C_{2}b^{n}+C_{3}nb^{n}+J$ $((n)^{2}C_{1}q^{n}+C_{2}b^{n}+C_{3}nb^{n}+C_{6}n^{2}\cdot 2^{n}$

Den: Inhomogeneous recurrences have an added function g(n): $f(n)=c_if(n-1)+\cdots+c_df(n-d)+g(n)$

 $\frac{E_{x}}{F(n)} = F(n-1) + F(n-2) + 1$ $A(n) = 4 A(n-1) + 3^{n}$ $+ n^{2} + 2^{n}$

Method for inhomogeneous recurrences:

(D'Egnore" g(n) and find general solution

for the rest char root

(D) Find general solution for g(n) a complex (4) Use base cases (+ possibly recurrence) to solve for constants.

We'll talk about how to do step 2 when $g(n) = (polynomial of degree k) \cdot 5^n$ (where s constant)

 $\frac{Ex:}{g(n)} = (n^2 + 1) \cdot 2^n$ $g(n) = (n+5) \cdot 1^n$

Is a char rout?

Is s a characteristic root? Yes No try a general solution of the form (polynomial of degree k). 5" what is its multiplicity Let this be m try a general solution of the form nm (poly. of dogree k):5"

Ex:
$$f(0) = 1$$
 $f(n) = 4f(n-1) + 3^n \in 1$

$$f(n) = 4f(n-1) + 3^n \in 1$$

$$f(n) = 4f(n-$$

