ΠΡΑΒΝΤΕΛЬСΤΒΟ CAHKT-ΠΕΤΕΡБΥΡΓΑ

KOMNTET NO HAYKE N BUCUEN UKONE

САНКТ-ПЕТЕРБУРГСКОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ABTOTPAHCTOPTHЫЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЙ

КОЛЛЕДЖ»

РАСЧЁТНО-ГРАФИЧЕСКИЕ РАБОТЫ 1-4

Специальность 190604— Техническое обслуживание и ремонт автомобильного транспорта 190201— Автомобиле и тракторостроение

Дисциплина Техническая механика

РАБОЧАЯ ТЕТРАДЬ

AT3MK2. PT_0_. 000

Студента группы _______

Nº PIP	1	2	3	4
Оценка				
Дата				
Подпись преподавателя				

MPABUTE/IBCTBO CAHKT-NETEPSYPCA

KOMUTET NO HAYKE U BUCUEN UKONE

САНКТ-ПЕТЕРБУРГСКОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ABTOTPAHCTOPTHЫЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЙ

КОЛЛЕДЖ»

РАСЧЁТНО-ГРАФИЧЕСКИЕ РАБОТЫ 1-4

Специальность 190501 — Эксплуатация транспортного оборудования и автоматики городского электротранспорта

140613 — Техническая эксплуатация и обслуживание

злектрического и электромеханического

оборудования (по отраслям)

210102 — Светотехника и источники света

270116 — Монтаж, наладка и эксплуатация

злектрооборудования промышленных и гражданских эданий

Дисциплина Техническая механика

РАБОЧАЯ ТЕТРАДЬ

AT3MK2. PT_ 0 . 000

Студента группы _____

Nº PIP	1	2	3	4
Оценка				
Дата				
Подпись преподавателя				

ΠΡΑΒΝΤΕΛЬСΤΒΟ CAHKT-ΠΕΤΕΡБΥΡΓΑ

KOMUTET NO HAYKE U BUCUEN UKONE

САНКТ-ПЕТЕРБУРГСКОЕ ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ СРЕДНЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«ABTOTPAHCTOPTHЫЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЙ

КОЛЛЕДЖ»

РАСЧЁТНО-ГРАФИЧЕСКИЕ РАБОТЫ 1-4

Специальность 190701 — Организация перевозок и управление на автомобильном транспорте

Дисциплина Техническая механика

РАБОЧАЯ ТЕТРАЛЬ

AT3MK2. PT__O_. 000

Студента группы __-_ _______

Nº PSP	1	2	3	4
Оценка				
Дата				
Подпись преподавателя				

Содержание

1 Расчетно–графическая работа №1.	3
Плоская система сходящихся сил 2 Расчетно-графическая работа №2. Центр тяжести 3 Расчетно-графическая работа №3.	8 12
Растяжение–сжатие 4 Расчетно–графическая работа №4. Изгиб Приложение А. Сталь прокатная равнобокая. ГОСТ 8509–86	16 25
т ист 6309–66 Приложение Б Сталь прокатная неравнобокая. ГОСТ 8510–86	30
Приложение В. Сталь прокатная. Балки двутавровые.	33
ГОСТ 8239–89 Приложение Г. Сталь прокатная. Швеллеры. гост 9210, 94	35
ГОСТ 8240–86 Литература	<i>37</i>

Изм. Лист	№ докум.	Падп.	Дата	AT3MK2. PTO 000				
Разраб. Пров.				Расчетно-	Num.	<u>Лист</u> 2	Листов 37	
Н.контр. Утв.				графические работы	Гр	ynna		

1 Расчетно-графическая работа Nº1. Плоская система сходящихся сил

11 Игходные данные

Для заданной плоской системы сходящихся определить величину и направление равнодействующей, используя для этого метод параллелограмма, силового многоцгольника и метод проекций.

$$F_1 = _{KH}; F_2 = _{KH};$$

$$F_2 = \underline{\hspace{1cm}} KH;$$

$$F_3 = \underline{\hspace{1cm}} KH_7$$

$$F_3 = _{_{_{_{_{_{_{_{_{_{_{_{1}}}}}}}}}}} KH}$$

Силовая схема в соответствии с рисунком 1.1.

0

X

Масштаб:__ кH = 1 мм.

Рисунок 1.1 – Силовая схема

Изм	Лист	№ докцм.	Подп.	Дата

AT3MK2. PT_ O_. 00

Nucn

1.2 Метод параллелограмма

Построения представлены в соответствии с рисунком 1.2.

Масштаб: ___кH = 1 мм

Рисунок 1.2 – Определение равнодействующей методом параллелограмма

$$F_{\Sigma 1} = F_1 + F_2;$$

$$F_{\Sigma 1} = F_1 + F_2;$$

$$F_{\Sigma 1} = F_1 + F_2;$$

$$f = \underline{\qquad} MM;$$

$$F_{\Sigma} = \underline{\qquad} KH.$$

Изм	Лист	№ доким.	Подп.	Дата

1.3 Метод силового многоугольника

Силовая схема в соответствии с рисунком 1.3.

Масштаб: ___кH = 1 мм Рисунок 1.3 – Силовая схема

Построения в соответствии с рисунком 1.4

Масштаб: ___кH = 1 мм Рисунок 1.3 - Определение равнодействующей методом СИЛОВОГО МНОГОЦГОЛЬНИКО

Изм	Лист	№ докцм.	Подп.	Дата

1.4 Метод проекций

Исходные данные и равнодействующая в соответствии с рисунком 1.5.

Масшπаδ: ___ кH = 1 мм Рисцнок 1.5

$$F_{\Sigma x} = \sum_{k=1}^{4} F_{\kappa x} = \underline{\qquad} = \underline{\qquad} \kappa H$$

$$F_{\Sigma y} = \sum_{k=1}^{4} F_{\kappa y} = \underline{\qquad} = \underline{\qquad} \kappa H$$

$$F_{\Sigma} = \sqrt{F_{\Sigma x}^{2} + F_{\Sigma y}^{2}} = \sqrt{\qquad} = \underline{\qquad} KH$$

$$COS(F_{\Sigma} \times X) = \frac{F_{\Sigma x}}{F_{\Sigma}} = \underline{\qquad} = \underline{\qquad} KH$$

$$F_{\Sigma} \times F_{\Sigma} \times F_{\Sigma}$$

$$\cos(F_{\Sigma})^{2} = \frac{F_{\Sigma y}}{F_{\Sigma}} = \frac{F_{\Sigma y}$$

Изм	Лист	№ докцм.	Подп.	Дата

Вывод: Значения равнодействующей плоской системы сходящихся сил, полученные методом параллелограмма, методом силового многоугольника и методом проекций практически совпадают; сравнительные данные представлены в таблице 1.1.

Ταδηυμα 1.1

7467144 1.7					
Метод	f, MM	F _z , ĸH	∠(F _I ; X)	∠(F _Σ ; Y)	
Метод параллелограмма					
Метод силового многоугольника					
Метод проекций					

Изм Лигт Nº доким. Подп. Дата

AT3MK2. PT_0_. 00_

2 Расчетно-графическая работа Nº2. Центр тяжести 2.1 Исходные данные Определить положение центров тяжести ΠΛΟϹΚUΧ составных фигур. 2.2. Определение центра тяжести. фигуры 1 Фигура 1 представлена в соответствии с рисунком 2.1. 0 Масштаδ: ___: ___ Рисунок 2.1

Изм. Лист. № доким. Подп. Дата

AT3MK2. PT_0_. 00_

Лист

Ταδηυμα 2.1

	muqu Z. I					
No	Плоская	Площадь фигур,		динаты тяжести		ческие площади
	фигура	A, [M ²	UK, CM	VK, EM	S _v , CM ³	Su, CM3
1						
2						
3						
4						
5						
Σ						

Ответ: С (___; ___).

2.3 Определение центра тяжести. фигуры 2 Фигура 2 представлена в соответствии с рисунком 2.2. 1 U *Масштаб:* ___: ___ Рисунок 2.2 AT3MK2. PT_0_. 00_ Изм. Лист № докцм. <u>Подп. Дата</u>

Ταδηυμα 2.2

	77044 Z.Z	,				
No	Плоская фигура	Площадь фигур,		Пинаты тяжести		ческие площади
	ψυΖΎμα	A, [M ²	UK, MM	VK, MM	S_{ν} , MM ³	S_{u} , MM ³
1						
2						
3						
4						
5						
Σ						

$$V_{C} = \frac{S_{U}}{A_{\Sigma}} = \frac{1}{2.4}$$

Ответ: С (____; ___).

				_	
N3M. /IUL	777 N	O DOKUM.	//	одп.	Дата

3 Расчетно-графическая работа №3. Растяжение-сжатие

3.1. Исходные данные

Для заданного бруса построить эпюры продольных сил N_z , нормальных напряжений σ и эпюру перемещений поперечных сечений по длине бруса. λ

Материал бруса-сталь Ст3.

Модуль Юнга E=2,2*10⁵ МПа. Схема бруса в соответствии с рисунком 3.1.

Рисунок 3.1

			
111		Į.	∤
 			
			└ ┈┤
I Uami /IIIrmi	№ даким.	<i>l lođn.</i>	Цата

AT3MK2. PT_0_. 00_

Лист

3.2.Вычисление значения продольной силь	I HQ
участках бруса – эпюра \hat{N}_z	

$$N_{l} =$$
 = ___KH
 $N_{ll} =$ = __KH
 $N_{ll} =$ = __KH
 $N_{ll} =$ = __KH
 $N_{ll} =$ = __KH
 $N_{ll} =$ = __KH

3.3 Вычисление нормальных напряжений – эпюра о

Вычисление нормальных напряжений о, МПа, производится по формуле (3.1).

$$\sigma = \frac{N}{A}, \qquad (3.1)$$

где A – площадь поперечного сечения на данном участке бруса, мм².

Изм Лист Nº докум. Подп. Дата

AT3MK2. PT_0_. 00_

3.4 Вычисление абсолютных продольных деформаций отдельных участков бруса

Абсолютные продольные деформации Δl, мм, вычисляются по формуле (3.2).

$$\Delta l = \frac{N l}{E A} = \frac{\sigma l}{E}$$

$$\Delta l_{1} = \frac{MM}{\Delta l_{1}} = \frac{MM}{\Delta l_{2}} = \frac{MM}{\Delta l_{1}} = \frac{MM}{\Delta l_{1}} = \frac{MM}{\Delta l_{2}} = \frac{MM}{\Delta l_{2}$$

3.5 Вычисление перемещений пограничных сечений бруса – эпюра х

$$\lambda_A = 0$$
 $\lambda_B = \underline{\qquad} = \underline{\qquad} MM$
 $\lambda_B = \underline{\qquad} = \underline{\qquad} MM$
 $\lambda_L = \underline{\qquad} = \underline{\qquad} MM$
 $\lambda_R = \underline{\qquad} = \underline{\qquad} MM$
 $\lambda_R = \underline{\qquad} = \underline{\qquad} MM$
 $\lambda_R = \underline{\qquad} = \underline{\qquad} MM$

			L i	
				AT3MK2. PT 0 . 00
Изм. Листі	№ доким.	Подп.	Дата	

Aucr. 14 Эпюры представлены в соответствии с рисунком 3.2.

Рисунок 3.2

Изм	Лист	№ даким.	<u>Подп.</u>	Дата

4 Расчетно-графическая работа Nº4. Изгиб

4.1 Исходные данные

Для заданной балки построить эпюры поперечных сил $\mathcal{Q}_{_{V}}$ и изгибающих моментов $M_{\mu x}$, подобрать следующие поперечные Сечения::

двутавровое
 [σ] =160 MПа;

– прямоугольное [σ] =60 МП α ; $\frac{h}{h}$ = ___ ;

- КРЦ2ЛОВ

Схема нагружения балки в соответствии с рисунком 4.1.

	·	

Рисунок 4.1

Изм. Лист	№ ДОКЦМ.	Подп.	Дата

AT3MK2. PT_0_. 00_

16

4.2 Определение опорных реакций

действие Расчётная	пбождаем реакциям гсхема в са павляем цра	и связец Сответств	ї, чері. Виисри	пим рац сунком 2.	СЧЁППНУЮ	енив их Схему
	. ДЛКО ЛЕЖИ	•				
					 	
_						
B pe	зультате р	пешения по	ЛУЧОЕМ			
$R_a =$				£		кН
$R_b =$					/	кH
Προθ	Рерка: ΣF _y =	<i>O</i> :				
	ПНСОЛЬНОЕ К	'	балки.			_
$\sum M_A = 0$ $\sum F_v = 0$						
,	———— Зультате р			 -		
$M_A = $	_		_		=	_KH·M
$R_a = -$			<u></u>		=	_ <i>ĸ</i> H
Προβ	ερκα: ΣM _β =	: <i>O</i> :				
Отв	em: R _a =	<i>KH; ƙ</i>	? _b =	_ KH; M _A	=	_KH·M.

AT3MK2. PT_0_. 00_

Изм. Лист № докцм.

Подп. Дата

4.3 Определение поперечных сил Q_{ν}

Определяем значения поперечных сил в сечениях, соответствующих точкам приложения сил, пар сил, точкам начала и конца распределенной нагрузки:

$$Q_1 = \underline{\hspace{1cm}} KH$$

$$Q_2 = \underline{\hspace{1cm}} \kappa H$$

$$Q_3 = \underline{\hspace{1cm}} KH$$

$$Q_4 = \underline{\hspace{1cm}} KH$$

$$Q_5 = \underline{\hspace{1cm}} KH$$

$$Q_6 = \underline{\hspace{1cm}}$$
 KH

$$Q_7 = \underline{\hspace{1cm}} \kappa H$$

$$Q_{\beta} = \underline{\hspace{1cm}} \kappa H$$

4.4 Определение изгибающих моментов

М_{их} Определяем значения изгибающих моментов в сечениях, соответствующих точкам приложения сил, пар сил, точкам начала и конца распределенной нагрузки.

$M_{UX_1} = $	KH·M
$M_{UX_2} = $	KHM
$M_{UX_3} =$	KH:M
$M_{UX_4} = $, KH:M
$M_{UX_5} = $	KHM
$M_{UX_6} = $	KH-M
$M_{UX_7} = $	кН·м
$M_{UX_{\beta}} = $	кН·м
Определяем значения изгибающего момента сечении, где Q _y = O	7 M _{Max} B
X =	
Z = M _{max} = = KH·M =	
Z = M	

Изм	Лисп	№ докцм.	Подп.	Дата

AT3MK2. PT_0_. 00_

Схема нагружения балки, эпюры поперечных сил $Q_{_{\!\it Y}}$ и изгибающих моментов M_{ux} в соответствии с рисунком 4.2. $\exists n Q_v$ $3\pi M_{ux}$ Рисунок 4.2 AT3MK2. PT_0_. 00_

№ докцм.

4.5. Подбор сечений

Определение размеров поперечных сечений балки производится из условия прочности на изгиб.

$$\sigma = \frac{M_{\text{max}}}{W_{x}} \leq [\sigma], \qquad (4.1)$$

где W_x — осевой момент сопротивления, мм 3 .

Двитавровое сечение в соответствии с рисинком 4.3.

Рисцнок 4.3 – Двутавровое сечение балки

Рассчитаем момент сопротивления из условия прочности.

$$W_X \ge \frac{M_{\text{max}}}{[\sigma]} = -$$

В соответствии с ГОСТ 8239-86 "Сталь прокатная. Балки двутавровые", выбираем два двутавра: ГОСТ 8239-76 представлен в приложении В.

$$/N^{o}$$
______ $W_{x} =$ ______ CM^{3} $A =$ _____ CM^{2}
 $/N^{o}$ _____ $W_{x} =$ _____ CM^{3} $A =$ _____ CM^{2} .

$$A = CM^2$$

$$/N^{\circ}$$
 $W_{x} = CM^{3}$

$$A = \underline{\hspace{1cm}} CM^2$$

Изм	Лист	№ докум.	Подп.	Дата

Рассчитаем рабочие напряжения, возникающие в поперечном сечении двутавра Nº1

$$\sigma = \frac{M_{\text{max}}}{W_{\text{x}}} = \frac{M\Pi a}{M}$$

Перегрузка:

Вывод: условие прочности на изгиб_____ Рассчитаем рабочие напряжения, возникающие в поперечном сечении двутавра №2:

Недогрузка:

Вывод: условие прочности на изгиб_____

Окончательно выбираем / Nº ____.

AT3MK2. PT__O_. OO_

Прямоцгольное сечение представлено на рисунке 4.4.

Рисунок 4.4 – Прямоугольное сечение балки

$$[\sigma] = \underline{\qquad} M7A; \quad \frac{h}{b} = \underline{\qquad}; \qquad M_{Max} = \underline{\qquad} H\cdot MM$$

$$W_{x} \geq \frac{M_{max}}{[\sigma]} = \frac{b \cdot h}{6} = \underline{\qquad} b \qquad (4.2)$$

Отсюда

$$b \ge \sqrt[3]{\frac{M_{\text{Max}}}{I \sigma I}} = \sqrt[3]{\frac{MM}{MM}}$$

Принимаем
$$b =$$
_____ мм $h =$ ____ мм

Вывод: b = ____ мм
h = ____ мм

$$W_x = ____ мм^3$$

 $A = b h = ____ мм^2$

L L				
				1 1
U3M /IL	ICT A	^{ПО} ДОКЦМ.	Подо	Дата
	<i>1L///</i> 1 /\	ו עטאטיין.	ו וטטון.	дини

AT3MK2. PT__O_. OO_

Круговое сечение в соответствии с рисунком 4.5.

Рисунок 4.5 – Круговое сечение балки

Из условия прочности на изгиб

$$W_{x} \geq \frac{M_{max}}{[\sigma]} \leq \frac{\pi \ d^{3}}{32} \tag{4.3}$$

Отсюда

$$d \ge \sqrt[3]{\frac{32 \cdot M_{max}}{\pi \cdot [\sigma]}} = \sqrt[3]{\frac{32 \cdot M_{max}}{\pi \cdot [\sigma]}}} = \sqrt[3]{\frac{32 \cdot M_{max}}{\pi \cdot [\sigma]}} = \sqrt[3]{\frac{32 \cdot M_{max}}{\pi \cdot [$$

Принимаем d = ____ мм

Вывод:
$$d = _____ MM$$
 $W_x = _____ MM^3$
 $A = \frac{\pi d^2}{4} = _____ MM^2$

1					
ı					
1	Изм.	/lucm	№ докцм.	Подп.	Дата

Литература

Ицкович, Г. М. Сопротивление материалов, Москва, "Высшая школа", 1982 г.

Никитин, Е. М. Теоретическая механика, Москва, "Наука", 1988 г.

ГОСТ 8239—72, Сталь прокатная. Балки двутавровые.

_J
7
_
חמ
///
7

Приложение А (справочное)

Сталь прокатная угловая равнобокая, ГОСТ 8509-86

Ταδηυμα Α.1

	771040	<u> </u>	. /			, 								
	Pa	3ML	еры,/	MM	~	Ĺ	Спри	7 <i>004</i>	ные в	פאטי	ШНЫ	для	OCEŪ	
№ профиля	Ь	d	R	<i>\(\)</i>	у у улифоди Эртоиу	Bec 1 noz. m, Kl	χ	- X I _x , СМ	Xo max, CM t	I xo max , CM OX	Jumin, CM 4 OK	I ya min CM	$X_1 - X_1$ \uparrow W \uparrow \downarrow \uparrow	Z _{0,}
2	20	3	3,5	1,2	1,13 1,46	0,89 1,15	0,40 0,50		0,63 0,78					· 1
2,5	25	<i>3 4</i>	3,5	1,2	1,43 1,86	1,12 1,46	0,81 1,03	-, -	,	, .		, .		0,73 0,76
2,8	28	3	4	1,3	1,62	1,27	1,16	0,85	1,84	1,07	0,48	0,55	2,20	0,80
3,2	32	3	4,5	1,5	1,86 2,43	1,46 1,91	1,77 2,26	· 1	2,80 3,58	· '	-	•	- /	0,89 0,94
3,6	36	<i>3</i> 4	4,5	1,5	2,10 2,75	1,65 1,91	2,56 3,29		4,06 5,21	1,39	1,06	0,71	4,64 6,24	0,99 1,04

VIRM /JUCITA	Nº DOKUM.	Подп.	Дата

Поодолжение таблицы А.1

וויטעו ו	אווענ	<u> </u>	וון צון	UU/IL	<u>іцы А. І</u>									
,	Pas	BME,	ДЫ,	MM	7-	2. M	בחסכ	1BD4F	ые в	<i>2/1</i> 04	ЦНЫ	<u>для .</u>	oceu	
PUNS					CW,	י סט	X	- X	<i>X</i> ₀ -	$X_{\mathcal{O}}$	<i>y</i> ₀ -	y ₀	X ₁ -X ₁	$Z_{0,}$
Клифофиля	Ь	d	R	Γ	Площадь филя,	Bec 1 KF	J _x ,	<i>i</i> _χ , <i>C</i> Μ	Lo max, CM	, xo max , CM	Jyo min, CM		Ji, CM	CM
4	40	<i>3</i> 4	5	1,7	2,35 3,08	<i>1,85 2,42</i>	3,55 4,58	1,22	7,26	1,55 1,53	1,90	0,78	8,53	1,13
4,5	45	3 4 5	5	1,7	2,65 3,48 4,29	2,08 2,73 3,37	5,13 6,63 8,03	1,39 1,38 1,37	10,5 12,7	1,75 1,74 1,72	<i>3,33</i>	0,89 0,89 0,88	12,1 15,3	1,21 1,26 1,30
5	50	3 4 5	5,5	1,8	2,96 3,89 4,80	2,32 3,05 3,77	7,11 9,21 11,2	1,54	14,6 17,8		2,95 3,80 4,63	0,99 0,98		1,33 1,38 1,42
5,6	56	3,5 4 5	6	2	3,86 4,38 5,41	3,03 3,44 4,25	11,6 13,1 16,0	1,73	18,4 20,8 25,4	2,18 2,18 2,16		1,11	20,3 23,3 29,2	1,50 1,52 1,57
6,3	63	<i>4 5 6</i>	7	2,3	4,96 6,13 7,28	3,90 4,81 5,72	18,9 23,1 27,1	1,94 1,93	42,9	2,43	11,2	1,25 1,25 1,24	33,1 41,5 50,0	1,69 1,74 1,78
7	70	455678	8	2,7	6,20 6,86 8,15 9,42 10,7	4.87 5.38 6.39 7.39 8,37	29,0 31,9 37,6 43,0 48,2	222222	46.0 50.7 59.6 68.2 76,4	2,72 2,72 2,71 2,69 2,68	2U,U	139 139 137 137	51,0 56,7 68,4 80,1 91,9	1,88 1,90 1,94 1,99 2,02
7,5	<i>75</i>	56789	9	3	7,39 8,78 10,1 11,5 12,8	5,80 6,89 7,96 9,02 10,1	39,5 46,6 53,3 59,8 66,1	231 230 229 228 227	62,6 73,9 84,9 105	2,91 2,90 2,89 2,87 2,86	16,4 19,3 24,8 27,5	1,49 1,48 1,47 1,46	69,6 83,9 98,3 113 127	202 206 210 2,18 2,18
8	80	6 7 8 9	9	3	8,63 9,38 10,8 12,3	6,78 7,36 8,51 9,65	52,7 57,0 65,3		83,6 90,4 104 116	3,11 3,11 3,09 3,08	21,8 23,5 27,0 30,3	1,59 1,58 1,58	93,2 102 119 137	217 219 223 227

Nam AUCITA	№ доким.	Подп.	Дата

Поодолжение таблицы А.1

יטעו ו	אווטנ		<u> </u>	UU/IL	<u> ЩЫ А. /</u>									7
	Pas	BME,	ΩЫ, І	MM	2	2. M	Спрс	1BOYF	ые в	<i>2/1</i> U4	ЦНЫ	для і	OCEŪ	
BUN					. WЭ -0du	2011	X	- X	$X_{\mathcal{O}}$ -	$X_{\mathcal{O}}$	<i>y</i> ₀ -	y ₀	X ₁ -X ₁	$Z_{0,}$
<i>№ профиля</i>	Ь	ď	R	<i>_</i>	Площадь филя,	Bec 1 K	J _x ,	<i>i_χ,</i> <i>C</i> M	So max, CM	i xo max , CM	Jyo min, CM	I yo min , CM	\ \frac{\pi}{\chi'} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ΕМ
9	90	6789	10	3,3	10,6 12,3 13,6	833 964 109 12,2	82,1 94,3 106 118	2,78 2,77 2,76 2,75	130 150 168 186	3,50 3,49 3,48 3,46	34,0 38,9 43,8 48,6	1,79 1,78 1,77 1,77	145 169 194 219	2,43 2,47 2,51 2,55
10	100	657810121416	12	4	12,8 13,6 19,2 26,7 26,7	10,1 10,8 12,1 15,9 20,6 23,3	122 131 147 179 209 237 264	309 308 307 305 303 300 2,98	193 207 233 284 331 375 416	3,88 3,88 3,87 3,84 3,81 3,78	507 542 60,9 74,9 99,3 112	199 198 198 195 194 1,94	214 231 265 333 402 472 542	268 271 275 283 291 3,06
11	110	<i>7 8</i>	12	4	15.2 17,2	11,9 13,5	176 198	3,40 3,39	279 315	4,29 4,28	72,7 81,8	2,19 2,18	<i>308</i> <i>353</i>	2 <i>96</i> 3.00
12,5	125	8910121416	14	4,6	19.7 22.0 24.3 28.9 33.4 37.8	15,5 17,3 19,1 22,7 26,2 29,6	294 327 360 422 482 539	3,87 3,86 3,85 3,82 3,80 3,78	853	4,87 4,86 4,82 4,75 4,75	122 135 149 174 200 224	249 248 247 246 245 2,44	516 582 649 782 916 1051	
14	140	9 10 12	14	4,6	32,5	19,4 21,5 25,5	466 512 602	4,33 4,31	739 814 957	5,47 5,46 5,43	192 211 248	2.79 2.78 2.76	818 911 1097	3,82 3,90
16	160	10 11 12 14 16 18 20	16	5.5	31,4 34,4 37,4 43,3 49,1 54,8 60,4	24,7 27,0 29,4 34,0 38,5 43,0 47,4	1046 1175 1299	4,95 4,94 4,92 4,89 4,87	1450 1662 1866 2061	6,23 6,20 6,17 6,13	348 376 431 485 537	3.18 3.17 3.16 3.14 3.13	1633 1911 2191 2472	4,35 4,39 4,47 4,55 4,63

Изм.	Nucin	№ докцм.	Подп.	Дата

Продолжение таблицы А.1

יטעו ו	אווטנ		C 1110	טווטט	ЩЫ А.Т									, ,
	Раз	ME,	ОЫ, І	MM	2-	χ' .	Спра	вочн	ЫР	вели	ЧИНЫ	для	OCEU	
Ы					IJD.	NO2.	X	- X	<i>X</i> ₀ -	$X_{\mathcal{O}}$	<i>y</i> ₀ -	y ₀	$X_1 - X_1$	$Z_{0,}$
<i>№ продп ^о</i> И	Ь	<i>d</i>	R	<i>_</i>	Площадь филя,	Bec 1 KF	J _x ,	i _x , EM	Jo max, CM	i xo max , CM	Jo min, CM	I ya min , CM	Ji, CM	СМ
18	180	11 12	16	5,3	<i>38,8</i> <i>42,2</i>	<i>30,5</i> <i>33,1</i>	1216 1317	5,60 5,59	1933 2093	7,06 7,04	<i>500</i> <i>540</i>	3,59 3,58	1	4,85 4,89
20	200	12131416202530	18	6	47.1 50,9 54,6 62.0 76,5 94,3 115,5	37,0 39,9 42,8 48,7 60,1 74,0 87,6	1823 1961 2097 2363 2871 3466 4020	6,20 6,17 6,12 6,06 6,00	5494 6351	7,84 7,83 7,81 7,78 7,72 7,63 7,55	749 805 861 970 1182 1438 1688	3,96 3,93 3,91 3,89	3722 4264 5355 6733 8130	5,89 6,07
22	220'	14 16	21	7	60,4 68,6	47,4 53,8	2814 3175	6,83 6,81	1	8,60 8,58	1159 1306	4,38 4,36	4 <i>9</i> 4 <i>1</i> 5661	1 1
25	250	16182225830	24	8	78,4 87,7 97,0 106,1 119,7 133,1 142,0	61,5 68,9 76,1 83,3 94,0 104,5 111,4	4717 5247 5765 6270 7006 7717 8177	7,76 7,71 7,71 7,69 7,65 7,61 7,59	7492 8337 9160 9961 11125 12244 12965	9.78 9.75 9.72 9.69 9.59 9.56	1942 2158 2370 2579 2887 3190 3389	4,98 4,96 4,93 4,91 4,89 4,89		6,75 6,83 6,91 7,00 7,11 7,23 7,31

Изм Лист № докцм. П<u>од</u>п. Дата

AT3MK2. PT__O_. 000

Приложение Б (справочное)

Сталь прокатная угловая неравнобокая ГОСТ 8510-86

Ταδηυμα Б.1

, <u>u</u>	Pas			MM	42		בחסנ	7604	НЫС	вел	——— UYUF	ны дл	IA OC	: <i>EŪ</i>		tga
_					UNA, CM	X	- X	У	- <i>y</i>	X ₁		<i>y</i> ₁ -	_	Ц	<u>-</u> И	סכח
<i>№ профиля</i>	В	Ь	d	R	Площадь профиля,	J _x ,	i _x , EM	J, CM ⁴	i, CM	J _{x1} , CM ⁴	Расст. от ц.т. У., см	Jy1 min, CM	Расст. от ц.т. Ха, см	Jut min, CM	I'u min, CM	Угол наклона
<u>2,5</u> 1,6	25	16	3	3,5	1,16	0,70	0,78	0,22	0,44	1,56	0,86	0,43	0,42	0,13	0,34	0,392
<u>32</u> 2	32	20	<i>3</i> 4	3,5	1,49 1,94	1,52 1,93	1,01 1,00	•					0,49 0,53	·	1	0,382 0,374
<u>4</u> 2,5	40	25	<i>3</i> 4	4,0	1,89 2,47	3,06 3,93	1,27 1,26	- /			1,32 1,37			0,56 0,71	0,54 0,54	0,385 0,381
4,5 2,8	45	28	<i>3 4</i>	5,0	2,14 2,80	4,41 5,68	1,43 1,42	1,32	0,79	9,02 12,1	1,47 1,51		•	0,79 1,02		0,382 0,379
<u>5</u> 3,2	50	32	3	5,5	2,42 3,17	6,17 7,98	1,60	1,99								0,403 0,404

<u> </u>					
		_			
Изм	/lucm	№ доким.	Подп.	Дата	

Продолжение таблицы Б.1

ΤΙΡυ	יטטו	IXE	HUL	- ///	אַנאַנענע	<u> ДЫ D.</u>	. /									
	Раз	ME	ры,	MM	CM		Спра	вочн	ЫР	вели	ЧИНЫ	для	oceu			tge
8			i .		филя,	X	- X	y	- <i>y</i>	X ₁	- X ₁	<i>y</i> ₁ -	<i>Y</i> ₁	Ц	- 11	ОСЛ
ки пфофи №	В	Ь	d	R	Площадь про	<i>J_χ,</i> CM ⁴	i _x , CM	Jr. CM ⁴	i, CM	J, CM ⁴	Paccm. om ų.m. V., CM	Jy min, CM4	Paccm. om ų.m. x _o , CM	7,11	I'u min' CM	Угол наклона
<u>5,6</u> 3,6	56	36	3,5 4 5	6,0	3,16 3,58 4,41	10,1 11,4 13,8	1,79 1,78 1,77	3,30 3,70 4,48	1,02 1,02 1,01	20,3 23,2 29,2	1,80 1,82 1,86	5,43 6,25 7,91	0,82 0,84 0,88	1,95 2,19 2,06	0,79 0,78 0,78	0,407 0,406 0,404
<u>6,3</u> 4	63	40'	4568	7,0	4,04 4,98 5,90 7,68	163 199 233 296	2,01 2,00 1,99 1,96	5,16 6,26 7,28 9,15	1,13 1,12 1,11 1,09	33,0 41,4 49,9 66,9	2,03 2,08 2,12 2,20	8,51 10,8 13,1 17,9	0,91 0,95 0,99 1,07	3,07 3,73 4,36 5,58	0,87 0,86 0,86 0,85	0,397 0,396 0,393 0,386
<u>7</u> 4,5	70	45	4,5 5	7,5	5,07 5,59	25,3 27,8	2,23 2,23	8,25 9,05	<i>1,28</i> <i>1,27</i>	51 56,7	2,25 2,28	13,6 15,2	1,03 1,05	4,88 5,34	0,98 0,98	0,407 0,406
7,5 5	<i>75</i>	50	<i>5 6 8</i>	8	6,11 7,25 9,47	34,8 40,9 52,4	2,39 2,38 2,35	12,5 14,6 18,5	1,43 1,42 1,40	69,7 83,9 112	2,39 2,44 2,52	20,8 25,2 34,2	1,17 1,21 1,29	7,24 8,48 10,9	1,09 1,08 1,07	0,436 0,435 0,430
<u>8</u> 5	80	50	<i>5 6</i>	8	6,36 7,55	41,6 49,0	2,56 2,55	12,7 14,8	1,41 1,40	84,6 102	2,60 2,65	20,8 25,2	1,13 1,17	7,58 8,88	1,09 1,08	0,387 0,386
9 5,6	90	56	5,5 6 8	9	7,86 8,54 11,18	65,3 70,6 90,9		19,7 21,2 27,1	1,58 1,58 1,56	132 145 194	292 295 3,04	32,2 35,2 47,8	1,26 1,28 1,36	16,3	1,21	0,384 0,384 0,380
<u>10</u> 6,3	100	63	67 8 10	10	9,59 11,1 12,6 15,5	154	3,19 3,18 3,15	30,6 35,0 39,2 47,1	1,79 1,78 1,77 1,75	198 232 266 333	3,23 3,28 3,32 3,40	49,9 58,7 67,6 85,8	1,42 1,46 1,50 1,58	20.8 23.4 28,3	1,36 1,35	0,391 0,387
<u>11</u>	110	70	6,5 7 8	10	11,4 12,3 13,9	152	3,53 3,52 3,51	45,6 48,7 54,6	2,00 1,99 1,98	309	3,55 3,57 3,61	80,3	1,6	28,8	1,53	0,402 0,402 0,400

					AT3MK2. PT 0 . 000
Изм	Aurm	Nº Anklim	Пода	Лата	

Пподплжение таблицы Б.1

ווףנו	/סטו	TXP.	HUE	? ///	ַעַט/ונ	<u>ЩЫ Б</u>	. /									
	Раз	ME	ры,	MM	W		Спра	вочн	<i>Ы</i> 2	вели	ЧИНЫ	для_	oceú			tga
4					филя,	X	- X	y	- <i>y</i>	X ₁	- X ₁	<i>y</i> ₁ -	<i>y</i> ₁	Ц	- <i>U</i>	пза
№ профи ля	В	Ь	d	R	Площадь про	<i>J_χ</i> , <i>C</i> M ⁴	i _x , CM	J., CM ⁴	i, CM	J, CM ⁴	Расст. от ц.т. Ус. СМ	Jy TIMIN, CM	Paccm. om ų.m. x _o , CM	J.1 min, CM ⁴	1	Угол наклона
<u>12,5</u> 8	125	80	781012	11	14, 1 16 19,7 23,4	227 256 312 365	4,01 4 3,98 3,95	73,7 83,0 100 117	2,29 2,28 2,26 2,24	452 518 649 781	1	119 137 173 210	1,84 1,92 2	593 695	1,76 1,75 1,74 1,72	0,407 0.406 0,404 0,400
<u>14</u> 9	140	90	8 10	12	18 22,2	<i>364</i> 444	4,4 <i>9</i> 4,4 <i>7</i>	120 146	2,58 2,56	727 911	4,49 4,58	194 245	2,12	70,3 85,5	1,98 1.96	0,411 0,409
<u>16</u> 10	160	100	9 10 12 14	13	22,9 25,3 30 34,7	606 667 784 897	5,15 5,13 5,11 5,08	204 239	2,85 2,84 2,82 2,8		5,23 5,32	<i>335</i> <i>405</i>	2,28 2,36	110 121 142 162	2.2 2,19 2,18 2,16	0,391 0,390 0,388 0,385
<u>18</u> 11	180	110	10 12	14	28,3 33,7	952 1123	5,8 5,77	276 324	3,12 3,1	1933 2324	5,88 5,97	444 537	2,44 2,52	165 194	2,42 2,40	0,375 0,374
<u>20</u> 12,5	200	125	11 12 14 16	14	34,9 37,9 43.9	<i>1801</i>	6.41	4 <i>82</i> 551	3,54	3189 3726	<i>6,54 6,52</i>	922	2,83 2,91	327	2,13	0,392 0,392 0,390 0,388
<u>25</u> 16	250	160	12 16 18 20	18	48,3 63,6 71,1	3147 4091 4545	8,07 8,02 7,99	1032 1333 1475	4,62 4,58 4,56	6212 8308 9358	7,97 8,14 8,23	1634 2200 2487	3,53 3,69 3,77	604 781 866	3,54 3,50 3,49	0,410 0,408

Изм Лигт Nº доким, Подп. Дата

AT3MK2. PT__O_ 000

Приложение В (справочное)

Сталь прокатная. Балки двутавровые. ГОСТ 8239-89

Таблица В.1

ر ا	\\\		Pas	MPD	IJ	MM	_	2	Спра	впчн	ЫP	<i>пели</i>	ЧІНЫ	для	псей
	Į.	-	T US	ΠΕΡ	<i>υι,</i>	1111		7	Cripa	.,			14		-,,
BII	Σ,				1)				ــــــــــــــــــــــــــــــــــــــ	X -	<u>X</u>	, ——	<i>y_</i>	-	
2	.20U							36	4	2	~	2	4	2	_
пфоди	10	h	Ь	d	<i>†</i>	R		Площадь	CM ⁴	CM	$\mathcal{C}\mathcal{M}$	\mathcal{S}	CM ⁴	0	0
11/0	Вес 1,	''	D		,	/ \	,	אסני. ממני	*	Z	·	نحر	~~	'	· ~
1/0	BE											07.0			400
10	9,46	100	<i>55</i>	4,5		7	2,5	12,0		39,7				· -	
12	11,5	120	64	4,8	7,3	7,5	3	14,7		58,4	4,88			· · · —	1,38
14	13,7	140	<i>73</i>	4,9	7,5	8	3	17,4	572	81,7	5,73	46,8	41,9	11,5	1,55
16	15,9	160	81	5,0	7,8	8,5	3,5	20,2	873	109	6,57	62,3	58,6	14,5	1,70
18	18,4	180	90	5,1	8,1	9	3,5	23,4	1290	143	7,42	81,4	82,6	18,4	,
18a	19,9	180	100	5,1	8,3	9	3,5	25,4	1430	159	7,51	89,8	114	22,8	2,12
20	210	200	100	5,2	8.4	95	4	26,8	1840	184	8,28	104	115	23,1	2,07
20а	227	200	110	52			4	28,9	2030	203	8,37	114	155	28,2	2,32
22	,	220	–	5,4				<i>30,6</i>	l .	232	9.13	131	157	28,6	2,27
22a	, _	220		5.4				32,8	1	I _		143	206	34,3	2,50
24	. <u>.</u>			5.6	· _	10,5	4	34.8				J .	198	, -	
24a		240	125	, ,		1 . 2 1	4	37.5		1	l *	1	260		
27	315		125		9.8	' I	4,5		5010						
270	- ,,-	270		6,0	.'		· -		5500				337		280
Z /U	יל ,עני	210	ענו	0,0	10,2	/ /	7 , J	ナン,と		,,0,	11,0		1227	20,0	, _, _ ,

					AT3MK2. PT
Изм	/lucm	№ доким.	Подп.	Дата	

Продолжение табл. В.1

Изм Лист № докц<u>м. Подп. Дата</u>

TIPL	ווטטוו	<u>XLHL</u>	<u> </u>	<u>uu/i.</u>	<i>D. 1</i>										
	Kſ		Раз	мер	Ы,	MM		2	Спра	вочн	ЫР	вели	ЧИНЫ	для	OCEU
Ш	'n	-						CM		<i>X</i> –	X	·	y	-	y
ηφοσυ ολ	. 1 noz.	h	Ь	ď	<i>f</i>	R	/	Площадь Сечения,	J, CM ⁴	", CM ³	i, [M	., CM ³	, CM ⁴	", CM ³	", CM
No	Вес						_	77 CE	~	Z×		<i>ک</i> پُر		2	/
30	36,5	300	135	6,5	10,2	12	5	46,5	7080			268			
30a	39,2	300	145	6,5	10,7	12	5	49,9	7780	1		292	1	1	
33	42,2	330	140	7,0	11,2	13	5	53,8	9840	l	1 '	339	ı	ı	
36	48,6	360	145	7,5	12,3	14	6	61,9	13380	1	1 -	423	l		2,89
40	56,1	400	155	8,0	13,0			,	18930		, ,	540	1.		3,05
45	65,2	450	160	8,6	14,2	16	7		27450			699			3,12
50	76,8	500	170	9,5	15,2	17	7	97,8	39290	1		1	l		3,26
55	89,8	550	180	10,3	16,5	18	7	114	<i>55150</i>				1		-,
60	104	600	190	11,1	17,8	20	8	132	75450				1		3,60
65	120	650	200	12,0	19,2	22	9		101400						
70	138	700	210	12,0	20,8	24	10	176	134600					ſ	
70a	158	700	210	13,0	24,0	24	10	202	152700			<i>2550</i>	í	l	
705	184	700	210	17,5	28,2	24	10	<i>234</i>	175370	5010	27,4	2940	3910	373	4,09

AT3MK2. PT__O_. 000

Лист 34

Приложение Г (справочное)

Сталь прокатная. Швеллеры. ГОСТ 8240-86

Ταδηυμα Γ.1

7 40		<u>, u 1 .</u>	<u>′ </u>		_												
	K		Раз	MP	ры,	MM		2		Спра	вочн	Ы2_	вели	ЧИНЫ	для	oceu	
BU	Ŋ,				,	1		3			X -	X		y	_	y	W
№ профи	Вес 1 пог.	ħ	Ъ	d	<i>†</i>	R	Γ		KINHAHAJ	$\int_{\chi'} C \mathcal{M}^4$	W_{x} , CM^{3}	i, CM	Sx, CM3	J, CM4	W. CM3	1, CM	, Z _a ,
5 6,5 8 10 12 14 14 16 18 18 20 22 22 22 24	4,84 5,90 10,4 12,3 14,2 15,3 16,4 19,8 21,0 22,0	50 65 80 120 140 160 180 180 200 220 240	32 36 46 52 58 62 68 70 74 76 82 87 90	4,90 5,01 5,51 5,52 5,4	8.7 8.8 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9 9.9	8 8 5 9 9 9 5 9 5 10	3333535	8,96 10,1 15,6 17,0 18,1 20,2 25,2	18935715724278		15,0 22,4 34,8 50,6 77,8 10,3 15,2 15,2 16,7 21,2 21,2	2,54 3,99 4,60 5,66 6,49 7,24 7,32 8,89 8,89	29,6 40,8 45,1 59,4 69,8 76,1 87,8 110 121	8,70 12,8 20,4 31,2 45,4 57,5 63,3 10,5 1139 151 187	3,68 4,75 6,46 8,52 11,0 13,3 16,4 17,0 20,5 24,2 30,0	1,08 1,19 1,37 1,53 1,70 1,84 1,87 2,01 2,20 2,35	1,67 1,87 1,80 2,00 1,94 2,13 2,27 2,28 2,21

Продолжение табицы Г.1

	K		Раз	ME	ры,	MM		5	Спра	вочн	Ы2	вели	ЧИНЫ	для	OCEÚ	
BI	'n			}			{	5		<u>X</u> -	X		y	-	<u>y</u>	CM
М° профи	Bec 1 noz.	ħ	Ь	d	<i>f</i>	R	Γ	Площадь	J_x , CM^4	$W_{x'}$ CM^3	l	Sx. CM ³	Jr. CM ⁴	W, CM3	i, CM	Z _a ,
24a	25,8	240	95	5,6	10,7	10,5	4	32,9	3180	265	9,84	151	254	37,2	2,78	2,67
27	27,7	270	95	6,0	10,5	11	4,5	35,2	4160	308	10,9	178	262	37,3	2,73	2,47
30	31,8	300	100	6,5	11,0	12	5	40,5	5810	387	12,0	224	327	43,6	2,84	2,52
33	36,5	330	105	7,0	11,7	13	5	46,5	7980	484	13,1	281	410	51,8	2,97	2,59
36	41,9	360	110	7,5	12,6	14	6	53,4	10820	601	14,2	350	513	61,7	3,10	2,68
40	48,3	400	115	8,0	13,5	15	6	61,5	15220	761	15,7	444	642	73,4	3,23	2,75

Изм Лист Nº докум. Подп. Дата

AT3MK2. PT__O_. 000

Лист 36