NSLS-II Beamline Requirements

Daron Chabot V4 Working Group Meeting Brookhaven National Lab 10/18/12

Outline

- The Problem(s)
- Approaches
 - Hardware
 - Software
- Time Line

10,000 ft View

Zooming In: Next-Gen 2D Detectors

- Eiger (Dectris/PSI)
 - 1-4 Mpix @ 2-24 kHz
 - 47 Gbps @ 3 kHz (1Mpix)

- LBNL FastCCD
 - 2 Mpix @ 200 Fps
 - 6.4 Gbps

Example: CSX

Data Analysis Example

O. G. Shpyrko et al., Nature 447, 68 (2007)

1000 ft View: Hardware Architecture

- Time-based data acquisition
 - EVR is the Master
 - Up to 1 kHz

Software Components

Interface/Presentation "Macro" DAQ DAQ DAQ Data Implementation Config GUI CLI Presentation Library Manager Application/Services Data Acquisition Reader Looker Writer Reciprocal Space Meta-Control System Management Management PV HKL DiffCalc OPI Archiver MASAR CAC Traj. Gen. Manager Manager Manager Control System/Hardware EVR-DAQ 2D Detector HKL Motor Output Position

On

Position

Capture

Level Shifter Integration

Support

Support

Support

Scanning Engine

Fly Scanning: EPICS

Scheduling

- Pkgs (optics) arriving Apr-Nov 2013
 - All Control System/Hardware pieces by 6/1/13
 - Mtr Support to include ID-Mono coordination
 - SRX and CSX-B (then SST & BMM)
- Cold commissioning Dec 2013
 - Meta-Control System Mgmt by 9/1/13
- Hot commissioning after Jan 2014
 - HKL, DAQ, and basic "macros" by 9/1/13
 - Data presentation (basic!) by 9/1/13

Summary

- New detectors pose a challenge
 - Demand for "instant feedback" even more so
- DAQ must become more broad
 - Greater degree of hardware participation
 - Software must permit interactive exploration
 - Applies to acquisition and analysis
- Collaborative efforts seem to be a must have

Feel free to throw stones...:-)

Hardware Architecture (1)

- Position Capture (0.1-0.5 kHz)
 - Detector is Master

Hardware Architecture (2)

- Output on Position (< 1kHz)
 - Motor Controller is the Master

Reciprocal Space

- "Q-space" or "k-space"
- Crystallography defines reciprocal axes as [h k
 I]
 - Orientation of [h k l] maps to several physical axes:
 - Multiple diffractometer angles + detector position
- No existing representation in V3 EPICS
 - Cannot archive, save/restore, alarm, etc

Reciprocal Space (2)

- Many scanning operations are defined in terms of Reciprocal Space operations
 - "scan from [1 0 0] to [8 0 0] in 100 steps"
 - "scan circularly around the [0 0 2] vector"

Hardware Filtering

 Proactive collaboration with detector vendors can produce powerful results

