通信系统课程设计

栾慎吉 刘超

杭州电子科技大学 信息工程学院

基于 FSK 调制的 PC 机通信电路设计	3
1目的、内容与要求	3
2 系统总体方案框图	3
3 系统设计技术要求	4
4 主要器件型号的选择及功能	4
5 系统中各种滤波器设计要求	4
6 系统中各部分模块参考电路	6
7 系统中电路原理图及 PCB 说明	14
实验报告要求	19
OrCAD/PSPICE 使用简介	20

基于 FSK 调制的 PC 机通信电路设计

1目的、内容与要求

- **目的:** 掌握用 FSK 调制和解调实现数据通信的方法,掌握 FSK 调制和解调电路中相关模块的设计方法。初步体验从事通信产品研发的过程.
- **课程设计任务:** 设计并制作能实现全双工 FSK 调制解调器电路,掌握用 Orcad Pspice、Protel99se 进行系统设计及电路仿真。
- **要求**: 合理设计各个电路,尽量使仿真时的频率响应和其他参数达到设计要求。尽量选择符合标称值的元器件构成电路,正确完成电路调试。

2系统总体方案框图

图 2.1 FSK 系统总体方案图

● 信号调制过程如下:

调制数据由信号发生器产生(电平为 TTL,波特率不超过 9600Baud),送入电平/幅度调整电路完成电平的变换,再经过锁相环(CD4046),产生两个频率信号分别为 30kHz 和 40kHz(发"1"时产生 30kHz 方波,发"0"时产生 40kHz 方波),再经过低通滤波器 2,变成平滑的正弦波,最后通过线圈实现单端到差分信号的转换。

● 信号的解调过程如下:

首先经过带通滤波器 1,滤除带外噪声,实现信号的提取。在本设计中 FSK 信号的解调方式是**过零检测法**。所以还要经过比较器使正弦信号变成方波,再经过微分、整流电路和低通滤波器 1 实现信号的解调,最后经过比较器使解调信号成为 TTL 电平。在示波器上会看到接收数据和发送数据是一致的。

● 各主要电路模块作用:

电平/幅度调整电路: 完成 TTL 电平到 VCO 控制电压的调整;

VCO 电路: 在控制电压作用下,产生 30KHz 和 40KHz 方波;

低通 2: 把 30KHz、40KHz 方波滤成正弦波;

线圈: 完成单端信号和差分信号的相互转换;

带通1:对带外信号抑制,完成带内信号的提取;

限放电路:正弦波整形成方波,同时保留了过零点的信息;

微分、整流、脉冲形成电路: 完成信号过零点的提取;

低通1: 提取基带信号,实现初步解调;

比较器: 把初步解调后的信号转换成 TTL 电平;

3 系统设计技术要求

(1)FSK 解调方案: 过零检测法

(2)信道复用方式: 频分复用, 全双工通信

(3)频率分配: f=35±5KHz, "1"--30KHz, "0"--40KHz

(4)系统工作最高码元速率: R_B=9600Baud

(5)线路阻抗: 100 欧姆

(6)信号接收灵敏度:优于 10mv

(7)信号发送电平: 1Vpp

图 3.1 FSK 信号的频谱

4 主要器件型号的选择及功能

74HC132: 四 2 输入与非施密特触发器(用作过零检测电路)

LM339: 4比较器(用作限放和比较器)

CD4046: COMS 锁相环 (用作 VCO)

TL084: 运算放大器 (用作滤波器和电平/幅度调整电路用)

5 系统中各种滤波器设计要求

(1)带通 1 滤波器设计指标:

通带: 26KHz-46KHz, 通带波动 3dB;

阻带截止频率: fc=75KHz 时,要求衰减大于10dB;

带通1滤波器的作用是在接受端滤除信号带外噪声。经分析,采用4阶巴特沃斯带通滤波器可满足此指标。电路形式采用多路反馈(MFB)有源滤波器,用二级四阶带通滤波器串联实现。具体电路形式见"有源滤波器精确设计手册":(附录1)

图 5.1 带通 1 滤波器的 Matlab 仿真图

(2)低通 2 滤波器设计指标:

通带: 0-50KHz, 通带波动 3dB

阻带截止频率: fc=100KHz 时, 要求衰减大于 25dB

低通 2 的作用是将 VCO 输出的方波变为正弦波形(滤除高次谐波分量)。由于高次谐波分量会造成对另一通路信号的干扰,对滤波器指标有较高要求。可用一个在通带(0-50KHz)内波动为 3dB,3dB 截止频率为 50KHz 的 4 阶巴特沃兹低通滤波器实现。

设计频率响应为:

图 5.2 低通 2 滤波器的 Matlab 仿真图

(3)低通 1 指标:

通带: 0-20KHz, 通带波动 3dB;

阻带截止频率: fc=30KHz 时,要求衰减大于 10dB;

低通滤波器可用 4 阶切比雪夫低通滤波器实现。

低通1的作用: 提取过零脉冲的直流分量;

设计频率响应为:

图 5.3 低通 1 滤波器的 Matlab 仿真图

6 系统中各部分模块参考电路

(1)带通 1(4 阶带通)-- 接收滤波器原理图及仿真图

要求通带: 26KHz—46KHz, 通带波动 3dB; 阻带截止频率: fc=75KHz 时,

要求衰减大于 10dB。经分析,二级四阶巴特沃斯带通滤波器来提取信号。

具体数值和电路见图 6.1, 图中参数为理论计算值,仅 SPICE 仿真时作元件初始值参考。仿真结果见图 6.2。

图 6.1 带通 1 电路原理图

图 6.2 带通 1 电路仿真结果

(2) 低通 1 (4 阶低通)-- 低通 1 原理图及仿真图

这两个低通的指标一样,可用一通带(0-20KHz)波动为 3dB, 3dB 截止频率为 20KHz 的四阶切比雪夫低通滤波器实现。

通过查表得 B=0.6449, C=0.707949, 根据

$$C_{2} = \frac{10}{f_{c}} \qquad F_{1} \leq \frac{B^{2}C_{2}}{4C(K+1)}, \quad R_{2} = \frac{2(K+1)}{[BC_{2} + \sqrt{B_{2}C_{2}^{2} - 4CC_{1}C_{2}(K+1)}]w_{c}},$$

$$R_{1} = \frac{R_{2}}{K}, \quad R_{3} = \frac{1}{CC_{1}C_{2}w_{c}^{2}R_{2}}, \quad \text{$\not\equiv + K=1$}$$

$$(6-1)$$

求得理论值为: C2=333p, C1=24p, R1=R2=86.9k, R3=57.2k。用这些数值

进行 Pspice 仿真,然后根据仿真结果微调电路各参数,使仿真结果与要求相一致,并使各电阻电容为标称值。在调试时,改变 R3 可调整 fc,改变 R1 可调整出现幅度峰值时的频率 fm。由于每一节的增益是反相的,其绝对值 K=R2/R1,因此可用一只电位器 R2 取代来调定增益。改变 C1 和 C2 也可调整低通滤波器的滤波效果,可以固定 C1 微调 C2,使低通滤波器的过渡带尽量窄。具体数值和电路见图 6.3,仿真结果见图 6.4。

图 6.3 低通 1 电路

图 6.4 低通 1 电路仿真结果

(3) 低通 2 (4 阶低通)-- 低通 2 原理图及仿真图

低通 2 的作用是将 VCO 输出的方波变为正弦波形 (滤除高次谐波分量)。由于高次谐波分量会造成对另一通路信号的干扰,对滤波器指标有较高要求。可用一通带波动为 3dB,3dB 截止频率为 50KHz 的四阶巴特沃兹滤波器实现。电路形式采用多路反馈 (MFB) 有源滤波器,用两级二阶 (四阶) 低通滤波器串联实现。

通过查表得: B1=0.765367, C1=1; B2=1.847759, C2=1。根据(6-1)式求得理论值为: 第一级 C2=220p, C1=15p, R1=R2=75, R3=62k; 第二级 C4=220p,

C3=91p, R4=R5=33k, R6=15k。用这些数值进行 Pspice 仿真, 其频率响应基本达到要求, 并且各电阻电容为标称值。具体数值和电路见图 6.5, 仿真结果见图 6.6。

图 6.5 低通 2 电路

图 6.6 低通 2 电路仿真结果

限放电路设计

限放电路采用过零点比较器(LM339)制作,比较电压为 0,即当输入信号的电压在零点处变化时,输出信号发生阶跃。比较电压的值就是 R8 上的电压,即输入的直流电压在 R8 上的分压。要使比较电压为 0,则 R4 与 R8 的比值应尽量大,使 R8 上的电压尽可能接近于 0。在图 6.7 中,R4 与 R8 的比值为 10: 1,所以进入电压比较器 LM339 第 5 脚的电压接近于 0,满足了比较电压的要求。另外,电路中要求 R3 与 R1、R2 相加值的比值应等于 R4 与 R8 的比值,在实际电路中取 R3=R4=100k,R8=10k,R1=R2=5.1k,符合了要求。

图 6.7 限幅放大电路

图 6.8 限幅放大电路仿真结果

微分、整流、脉冲形成电路

在下图中, R1 和 C1 构成一个微分电路, 作为方波信号的高电平输出。R2 和 C2 构成另一个微分电路, 作为方波信号的低电平输出。

图 6.9 微分、整流、脉冲形成电路

图 6.10 微分、整流、脉冲形成电路仿真结果

比较器

比较器的电路形式与限幅放大电路相同,如图 6.11 所示,只是比较电压不同。它的比较电压即 R1 和 R2 上的分压值,这个比较电压值也是输入的方波信号的高电平与低电平的平均值。这里取 R1=40k,R2=6k,R3=3k,R4=10meg,实际电路中,R2 为一 10k 的可调电阻。电路仿真结果如图 6.12,可见,输出结果为一 TTL 电平的方波。

图 6.11 比较器电路

图 6.12 比较器电路仿真结果

电平/幅度调整电路

电平/幅度调整电路如图 6.13, 根据 VCO 电路的实际调试结果得出与各频率相对应的输入电压即电平/幅度调整电路的输出电压,并据此进行 Pspice 仿真。

$$V_0 = V_1 - \frac{Vi - V_1}{R_1} \times Rf = \frac{V_1(R_1 + Rf) - ViRf}{R_1}$$

在实际电路中 R1=75k, Rf 是一阻值为 10k 的可调电阻, 所以调整 Rf 可以改变输出 Vo 的大小, 若减小 Rf, 则 Vo 增大; 若增大 Rf, 则 Vo 减小, 据此进行电路调整, 使输出符合要求。而电阻 R2、R3 的分压值决定了输出 Vo 的中心电平, 在实际电路中, R2 为一阻值为 10k 的可调电阻, 改变 R2, 可以调整输出 Vo 的中心电平, 使输出满足要求。

中心频率 fo=35kHz 时对应的电压为 1.9V,f=30kHz 对应的电压为 1.74V,f=40kHz 对应的电压为 2.08V,这就是电路输出的直流电压分量和方波信号的电压范围。其中直流电压就是 TL084 第 3 脚输入的电压 V1,即 5V 的电源电压在 R3 上的分压。按比例计算得 R2、R3 的值。输出的方波信号的电压 Vo 由 R2、Rf 来调节,使之高低电平分别为 1.74V 和 2.08V,在 Pspice 仿真中使用参数扫描,仿真结果如图 6.14,得到符合要求的 R2、Rf 值,具体数值见电路。

图 6.14 电平/幅度调整电路仿真结果

● VCO 电路

图 6.15 VCO 电路管脚图

CD4046 锁相环结构如图 6.15,采用的是 RC 型压控振荡器,必须外接电容 C1 (接在 6 脚与 7 脚之间)和电阻 R1 作为充放电元件。由于 PLL 对跟踪的输入信号的频率宽度有要求,所以还需要外接电阻 R2。由于 VCO 是一个电流控制振荡器,对定时电容 C1 的充电电流与从 9 脚输入的控制电压成正比,使 VCO 的振荡频率亦正比于该控制电压。当 VCO 控制电压为 0 时,其输出频率最低;当输入控制电压等于电源电压 VDD 时,输出频率则线性地增大到最高输出频率。 VCO 的工作频率是由 9 管脚上的电压以及 6 和 7 管脚上的电容和 R1、R2 的阻值确定的。R1 确定最高频率,R2 确定最低工作频率。由于它的充电和放电都由同一个电容 C1 完成,所以输出的波形是对称方波。

利用 CD4046 的 VCO 可组成一个 V—F(电压—频率)转换器,当其 9 脚输入的电压从 Vss 变化到 Vdd 时,从 4 脚输出的振荡方波信号的频率成线性变化。

变化的频率范围依外接 C1、R1 和 R2 值的不同而异。在 Fmax 和 Fmin 的比值较小的情况下,R2/R1 可看做与 Fmax/Fmin 成线性关系。

当 Fmin=30kHz, Fmax=40kHz 时, 计算得 R1=2.4k, R2=15k, C1=3300p, 在实际的电路板上进行调试,发现中心频率 fo=35kHz 时对应的电压为 1.9V, f=30kHz 对应的电压为 1.74V,f=40kHz 对应的电压为 2.08V,这就是电平/幅度调整电路所输出的直流电压和方波信号的电压范围。

7 系统中电路原理图及 PCB 说明

本系统的电路原理图如图 7.1 所示,由以下几部分组成:电源电路、FSK 调制电路及 FSK 解调电路组成。相应的 PCB 如图 7.2,该版图的尺寸是 7cm×8cm,为双面版。版图的尺寸应尽量小,以减少制版费用。按照这个尺寸在 KeepOutLayer 层先画出 PCB 的边界,然后进行元器件的布局、调整,合理的布局能够带来良好的布线效果。

图 7.2 系统 PCB 版图

该设计的材料清单	(一份)如下:
11. III	ムイム

该设计的材料消单	(一份) 如 \cdot :	
元件值	名称	封装
0.1u(8 个)	C19	capnew
0.1u	C18	capnew
0.1u	C20	capnew
0.1u	C22	capnew
0.1u	C21	capnew
0.1u	C17	capnew
0.1u	C16	capnew
0.1u	C14	capnew
1k	R41	AXIAL0.3
2.4k	R42	AXIAL0.3
2.7k	R7	AXIAL0.3
3.9k	R9	AXIAL0.3
3k	R35	AXIAL0.3
4.7k(4 个)	R28	AXIAL0.3
4.7k	R31	AXIAL0.3
4.7k	R29	AXIAL0.3
4.7k	R30	AXIAL0.3
5.1k(3 个)	R13	AXIAL0.3
5.1k	R11	AXIAL0.3
5.1k	R12	AXIAL0.3
10Meg	R34	AXIAL0.3
10k(6 个)	R19	AXIAL0.3
10k	R18	AXIAL0.3
10k	R16	AXIAL0.3
10k	R17	AXIAL0.3
10k	R20	AXIAL0.3
10k	R21	AXIAL0.3
10k(可调变阻器, 3 个)	R40	VR5
10k	R39	VR5
10k	R32	VR5
$10n(2 \uparrow)$	C10	capnew
10n	C11	capnew
13k(2 个)	R23	AXIAL0.3
13k	R24	AXIAL0.3
15k(3 个)	R27	AXIAL0.3
15k	R25	AXIAL0.3
15k	R26	AXIAL0.3
15p	C23	capnew
20Meg	R22	AXIAL0.3
33k(4 个)	R3	AXIAL0.3
33k	R6	AXIAL0.3
33k	R4	AXIAL0.3
33k	R5	AXIAL0.3
33p	C12	capnew
40k	R33	AXIAL0.3
62k	R43	AXIAL0.3

75k(3 个)	R36	AXIAL0.3
75k	R37	AXIAL0.3
75k	R38	AXIAL0.3
91p	C24	capnew
100(2 个)	R1	AXIAL0.3
100	R2	AXIAL0.3
100k(2 个)	R15	AXIAL0.3
100k	R14	AXIAL0.3
100p(3 个)	C4	capnew
100p	C3	capnew
100p	C5	capnew
200k	R8	AXIAL0.3
220p(4 个)	C8	capnew
220p	C9	capnew
220p	C6	capnew
220p	C7	capnew
270p(2 个)	C1	capnew
270p	C2	capnew
300k	R10	AXIAL0.3
680p	C13	capnew
3300p	C15	capnew
9012	Q2	TO-92B
9013	Q1	TO-92B
DIODE	D2	DIODE0.4
DIODE	D1	DIODE0.4
DIODE	D3	DIODE0.4
TRANS1	T1	t
TRANS1	T2	t

芯片	总个数
TL084	2 只
LM339	1 只
74HC132	1 只
CD4046	1 只

插件名称及个数	封装
J1、J2、J3(共 3 只)	MT6CON2
	V
U5	DIP16
U1、U2、U3 和 U4(共 4 只)	DIP14
s1、s2、s3、s4、s5 和 s6 (共 6 只)	SIP2

实验报告要求

- 一、 目的、内容与要求
- 二、总体方案设计
- 三、 单元电路设计原理、计算机仿真分析
- 四、 总结(仿真遇到的问题、解决方法及心得体会)

OrCAD/PSPICE 使用简介

杭州电子科技大学 信息工程学院

2021年

Orcad/Pspice 电路分析步骤

1. 启动 Capture CIS:

2. 新建设计项目,通过选择 File/New/Project 进入:

3. 选择 Project 类型时应选 Analog or Mixed-signal Ciucuit,

并确定文件名和存盘路径:

4. 选择必要的元器件库(以后也可添加):

5. 选 完成进入设计窗口:

注1:接地一定要选0符号:

6. 完成电原理图的绘制

- 电路元件要从 PSPICE 子目录下的库中选择 (带仿真模型)
- 电路中一定要有地,并用正确的接地符号(0符号)
- 注意连线正确
- 根据 DC、AC、TRANSIENT 分析类型的不同,选用合适的信号源,正确设置信号源参数

7. 在 **PSPICE** 菜单下新建或编辑 Simulation Profile(模拟模式文件)文件:

8. 设置 Simulation Profile 文件参数

● 选择分析类型:

- 对选定的分析类型设置正确的参数 对瞬态分析要选择合适的分析时间和最大步长(Maximun step)。对脉冲、正弦等 具有周期性质的信号而言,最大分析步长可取周期的 1/10-1/5。
- AC 分析可附带进行噪声分析, Time Domain 分析可附带进行傅里叶分析(谐波失真分析)
- 9. 选 PSPICE 菜单中的 RUN 或快捷工具条进行电路分析

10.观测模拟结果

- 增加曲线: Trace/Add Trace
- 显示光标、极值等搜索功能

● 可将曲线拷入剪贴板中,供嵌入 word 等文档使用

Orcad/Pspice 电路分析上机练习题 练习题

1. 二极管伏安特性分析(DC 扫描分析,单参数扫描)

注: 二极管在 Diode 库中, 电压源在 SOURCE 库中

参考参数设置:

参考分析结果:

2. 三极管共射输出特性曲线分析(DC 扫描分析,双扫描参数)

注: 三极管在 Bipolar 库中, 电压源、电流源在 SOURCE 库中

参考参数设置:

主扫描参数:

参变量参数设置:

分析结果:

3. 如下电路,试计如所示的电路在(0 $^{\circ}$)到 40 $^{\circ}$ 时的直流工作点 I_{BQ} 、 V_{BEQ} 、 I_{CQ} 随温度升变化时的工作点变化曲线。

提示: 参数设置如下:

仿真结果参考:

练习题 (AC 分析)

1. 分析如下图所示放大器的幅频特性和相频特性,并计算中频电压增益和输入输阻出抗和 3dB 带宽。

提示:

参数设置:

ulation Settin		Data Collecti	on	Prob	e Window
General	Analysis	Include Fi		Libraries	Stimulus
Analysis type AC Sweep/Nois Options	e ▼ tings	AC Sweep Type C Linear Logarithmi Decade		Start End Points/Decade	1 10meg
│ Monte Carlo │ Parametric │ Temperature │ Save Bias P │ Load Bias P	Sweep (Sweep) oint	Noise Analysi: □ E <u>n</u> abled	Output I/Y Interva		
		确定	取消	(帮助

模拟结果:

从图中可见, 中频增益为 45.7dB, 3dB 带宽为 1.73MHz.

从上图可见, 中频增益为 45.7dB, 3dB 带宽为 1.73MHz.

从上图可见,中频的输入阻抗为6Kohm.

为了计算输出阻抗,需要修改电原理图如下(输入信号源短路,输出端加信号源测试):

对上图模拟后,显示下列输出数据:

由上图可知,中频输出阻抗为 6.79KOHM

2. 分析如下有源低通滤波器电路。扫描 R1 的值从 60K 到 100K 时 (每 10K 扫描一点), 滤波器频率特性的变化。

PARAMETERS: Rval = 91k

提示:

- 将 R1 的值改为 {Rval} (用于参数扫描)
- 放置 PARAMETERS 符号,在 SPECIAL 库中,选 PARAM 元件

● 双击电原理图中的 PARAM 元件,编辑属性参数:

选 New,添加 Rval 新字段,将 Rval 值设为 91K(Rval 不作扫描分析时的默认值)。 选中 Rval 字段,再选 Display 属性,Display Format 选为 Name and Value,如下图:

选 OK 后关闭属性编辑窗口。

● 设置分析 Profile 设置分析类型及频率点,如下图:

设置扫描变量及参数,如下图:

分析结果如下所示:

36

3. 当改变两电感间的耦合系数时,分析对如下双调谐电路的选频特性的影响:

提示: K 在库 ANALOG 中, 分析 Profile 设置如下:

Options		Data Collection		Prob	e Window
General	Analysis	Include Files		Libraries	Stimulus
nalysis type: AC Sweep/Noise ptions General Sett: Monte Carlo/N Farametric S	ings Worst Cas	weep variable C Voltage sourc C Current sourc G Global paramete C Model parameter C Temperature	Mame Model Model		val
Temperature Save Bias Po	(Sweep) S int int	weep type Linear Logarithmi Decad	e 🔻	Start End Increment:	0 1 0.2
	1.0		取消	应用 (A)	帮助

参考结果:

