Greedy algorithms

Activity selection

An Activity Selection Problem (Conference Scheduling Problem)

- \square Input: A set of activities $S = \{a_1, ..., a_n\}$
- Each activity has start time and a finish time $\langle a_i = [s_i, f_i] \rangle$
- ☐ Two activities are compatible if and only if their interval does not overlap
- □ Output: a maximum-size subset of mutually compatible activities

Optimum structure

- \Box Let us denote by S_{ij} the set of activities that start after activity a_i finishes and that finish before activity a_i starts
- \square and the maximum set of mutually compatible activities in S_{ij} by A_{ij}

$$\square c[i,j] = \begin{cases} 0 & S_{ij} = \emptyset \\ \max_{k} \{c[i,k] + c[k,j] + 1\} & S_{ij} \neq \emptyset \end{cases}$$

$$\Box c[0, n+1]$$
?

The Activity Selection Problem

☐ Here are a set of start and finish times

į	1	2	3	4	5	6	7	8	9	10	11
$\overline{s_i}$	1	3	0	5	3	5	6	8	9 8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

- ☐ What is the maximum number of activities that can be completed?
 - \checkmark {a₃, a₉, a₁₁} can be completed
 - ✓ But so can {a1, a4, a8' a11} which is a larger set
 - ✓ But it is not unique, consider {a2, a4, a9' a11}

Interval Representation

i	1	2	3	4	5	6	7	8	9 8 12	10	11
$\overline{s_i}$	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	8	9	10	11	12	13	14

Early Finish Greedy

- □ Select the activity with the earliest finish
- □ Eliminate the activities that could not be scheduled
- □ Repeat!

Assuming activities are sorted by finish time

```
GREEDY-ACTIVITY-SELECTOR (s, f)
1 n \leftarrow length[s]
A \leftarrow \{a_1\}
3 \quad i \leftarrow 1
4 for m \leftarrow 2 to n
           do if s_m \geq f_i
                  then A \leftarrow A \cup \{a_m\}
                         i \leftarrow m
     return A
```