,פתרון מטלה -08 מבוא ללוגיקה,

2024 בדצמבר 26

 $x \in Var$ שפה לתחשיב יחסים, תהי φ נוסחה ונניח שפה לתחשיב עובר תהי

'סעיף א

 $\mathcal{A}\models \forall x arphi(\sigma)$ מתקיים כאלה מבנה לכל מבנה אם ורק אם אם מתקיים $\sigma: Var o A$ מתקיים לכל מבנה והשמה לכל מבנה אל ווכיח

 $A \models \varphi(\sigma[x:a])$ גם לכן בפרט לכן בפרט לכל הצבה לכל לכל לכל לכל לכל לכל לעבחין נקבע $A \models \varphi(\sigma)$ לכל $A \models \varphi(\sigma[x:a])$ לכל אבל במצב זה נבחין כי לכל $A \models \varphi(\sigma[x:a])$ הטענה מתקיימת, כלומר $A \models \forall x \varphi(\sigma)$, ומצאנו כי הטענה אכן חלה.

נוכל אם $A \models \varphi(\sigma[x:a])$ מתקיים $a \in A$ אז בפרט לכל אז בפרט שאם נקבל שאם נקבל את הטענה המקיים את כזה המקיים את $A \models \varphi(\sigma[x:a])$ כן לבנות כל $A \models \varphi(\sigma)$ כך ש־ $\sigma: Var \to A$ כן לבנות כל

סעיף ב׳

 $\mathcal{A} \models \psi$ מתקיים \mathcal{A} ל־ \mathcal{A} ולכל מבנה \mathcal{A} ולכל מבנה \mathcal{A} ולכל מתקיים $\sigma: Var \to A$ מתקיים ל־ \mathcal{A} ולכל מבנה ל־ \mathcal{A} ולכל מבנה ל־ \mathcal{A} ולכל מבנה ל־ \mathcal{A} ולכל מתקיים מתקי

הוכחה. נוכיח את הטענה באינדוקציה.

נבחין כי בסיס האינדוקציה הוא למעשה טענת הסעיף הקודם, ולכן נסיק שהיא אכן חלה.

```
\alpha\in form_L, תהי פסוקים, שפה לתחשיב עם L=\{p_0,\ldots,p_{n-1}\} תהי תהי \varphi_0,\ldots,\varphi_{n-1}\in form_{L'} וחסים יחסים יחסים עם על מפה לתחשיב יחסים המתקבלת מהחלפת כל מופע של lpha_{\varphi_0,\ldots,\varphi_{n-1}}^{p_0,\ldots,p_{n-1}} תהי lpha_{\varphi_0,\ldots,\varphi_{n-1}}^{p_0,\ldots,p_{n-1}}
```

'סעיף א

נוכיח שזוהי אכן נוסחה.

הוכחה. נוכיח באינדוקציה על מבנה הפסוק בתחשיב פסוקים.

. נניח שהטענה מתקיימת עבור α ונבחן את $(\neg \alpha)^{p_0,\dots,p_{n-1}}_{\varphi_0,\dots,\varphi_{n-1}}=(\neg \psi)$ ולכן מההגדרה $\alpha^{p_0,\dots,p_{n-1}}_{\varphi_0,\dots,\varphi_{n-1}}=\psi$ וזוהי כמובן נוסחה.

באופן דומה אם α,β מקיימות את הטענה אז קיימות החלפות ψ_0,ψ_1 בהתאמה עבורן, וברור ש־ $(\psi_0\Box\psi_1)$ נוסחה לכל ψ_0,ψ_1 אבל זוהי גם תוצאת החלפה של $(\alpha\Box\beta)$, ולכן השלמנו את מהלך האינדוקציה והטענה אכן מתקיימת.

'סעיף ב

Lב בנוסחה כנוסולוגיה מאוטולוגיה $\alpha^{p_0,...,p_{n-1}}_{\varphi_0,...,\varphi_{n-1}}$ בז אז מאוטולוגיה מאם נוכיח נוכיח נוכיח

'סעיף ג

L' בסוקים לתחשיב כלשהי ושפה שנוסחה עבור מאוטולוגיה עבור מהצורה היא מהצורה היא אם ורק אם היא ושפה לתחשיב יחסים היא נסיק שנוסחה בשפה מהצורה היא מהצורה היא מהצורה היא מהצורה היא מהצורה מהצורה אם היא מהצורה היא מודים היא מהצורה היא מודים היא מו

הוכחה. נניח את הכיוון הראשון ולכן משאלה 1 במטלה 3 נוכל להחליף את פסוקיה היסודיים בכל נוסחה תקינה על־פי המוגדר ונקבל נוסחה שהיא טאוטולוגיה מעל תחשיב פסוקים.

נקבל נוסחה שהיא תוצאת החלפה עבור של טאוטולוגיה נסיק מהסעיף הקודם את המבוקש.

.
ר ψ_1 אז אור ($\psi_0 \to \psi_1)$ וגם לתחשים שאם נוכיח היי,
 $\psi_0, \psi_1 \in form_L$ ויהיו פסוקים לתחשיב שפה תהי

ההיסק את עץ החרים, אז נבנה את לען לשרשר ואנו יכולים הוא סופי ואנו $\psi_0, (\psi_0 \to \psi_1)$ אז נבנה את כי קיים עץ היסק הוא הוא סופי ואנו יכולים את אותו לען אז נבנה את עץ החיסק אונו יכולים את עץ החיסק

- $\neg \psi_1$.1
- ψ_0 על מקרים על .2
 - ψ_0 (a)
- $(\psi_0
 ightarrow \psi_1)$ פיצול למקרים על (b)
 - $(\psi_0 \rightarrow \psi_1)$.i
- וסתירה (מודוס פוננס) לגרירה (ל היסק כלל היסק ψ_1 .ii
 - $\neg(\psi_0 \rightarrow \psi_1)$.i
- מטעמי הזה, מטעמי בעץ אבור כלל העלים עבור מפה החל מה שמופיע מה לל מעשה ($\psi_0 o \psi_1$) אבור (גוו .ii נוחות לא נכתוב את כך
 - וסתירה ($\psi_0
 ightarrow \psi_1$) .iii
 - $\neg \psi_0$ (a)
- בתוב מטעמי נוחות לא נכתוב של כלל העלים של כלל מה שמופיע החל מפה שמופיע מחל למשה כל מה למעשה עבור (b) זאת כך

וסתירה ψ_0 (c)

.
- ψ_1 אט מעיד היסק עץ ולכן ענף בכל לסתירה לסתירה ולכן אולכן ולכן אולכן

עבור כל טענה. KEP עבור במערכת עצי היסק במערכת בטעיפים אינים, $\psi_0, \psi_1, \psi_2 \in form_L$ עבור עדי שפה לתחשיב עדי שפה L

'סעיף א

$$.\psi_0 \vdash (\psi_0 \lor \psi_1)$$

פתרון נבנה את עץ ההיסק המתאים.

- $\neg(\psi_0 \lor \psi_1)$.1
- כללי איווי , $\neg \psi_0$.2
- הוספת הנחה, וסתירה, ψ_0 .3

סעיף ב׳

$$.(\psi_0 \vee \psi_1) \vdash (\psi_1 \vee \psi_0)$$

פתרון נבנה את עץ ההיסק המתאים.

- $\neg(\psi_1 \lor \psi_0)$.1
- כללי איווי ,
י ψ_0 .2
- הנחה , $(\psi_0 \lor \psi_1)$.3
 - הירה וסתירה, כללי איווי וסתירה, ψ_0 .4

. נבחין כי יכולנו גם לפצל למקרים על ערך ψ_0 ו־ ψ_0 כדי לבנות עץ היסק שמתיישב יותר טוב עם הדרך שבה אנו מוכיחים.

'סעיף ג

$$.((\psi_0 \vee \psi_1) \vee \psi_2) \vdash (\psi_0 \vee (\psi_1 \vee \psi_2))$$

פתרון נבנה את עץ ההיסק המתאים.

- $\neg(\psi_0 \lor (\psi_1 \lor \psi_2))$.1
- כללי איווי , $\neg(\psi_1 \lor \psi_2)$.2
 - יווי כללי איווי, $\neg \psi_2$.3
- הנחה ,($(\psi_0 \lor \psi_1) \lor \psi_2)$.4
 - ווי, וסתירה, כללי איווי, נסתירה, ψ_2 .5

'סעיף ד

$$.((\psi_0 \wedge \psi_1) \wedge \psi_2) \vdash (\psi_0 \wedge (\psi_1 \wedge \psi_2))$$

פתרון נבנה את עץ ההיסק המתאים.

- $\neg(\psi_0 \wedge (\psi_1 \wedge \psi_2))$.1
- הנחה , $(\psi_0 \wedge \psi_1) \wedge \psi_2$.2
 - כללי גימום, ψ_2 .3
 - ψ_0 פיצול למקרים .4
 - ψ_0 (a)
- כללי גימום, $\neg(\psi_1 \wedge \psi_2)$ (b)

- ψ_1 פיצול למקרים (c)
 - ψ_1 .i
- וסתירה כללי גימום וסתירה, $\neg \psi_2$.ii
 - $\neg \psi_1$.i
- 2־ם מ־ב כללי גימום ($\psi_0 \wedge \psi_1$) .ii
 - וסתירה, כללי גימום, כללי ψ_1 .iii
 - $\neg \psi_0$ (a)
 - 2־ם מ־ם, כללי גימום (b) כללי $\psi_0 \wedge \psi_1$
 - סתירה, כללי גימום, סתירה ψ_0 (c)

'סעיף ה

 $\vdash (((\psi_0 \lor \psi_1) \land \psi_2) \leftrightarrow ((\psi_0 \land \psi_2) \lor (\psi_1 \land \psi_2)))$

פתרון נבנה את עץ ההיסק המתאים.

- $\neg(((\psi_0 \vee \psi_1) \wedge \psi_2) \leftrightarrow ((\psi_0 \wedge \psi_2) \vee (\psi_1 \wedge \psi_2))) .1$
 - $((\psi_0 \lor \psi_1) \land \psi_2)$ פיצול למקרים .2
 - $((\psi_0 \vee \psi_1) \wedge \psi_2)$ (a)
 - ψ_2 (b)
- כלי גרירה דו־כיוונית, $\neg((\psi_0 \wedge \psi_2) \vee (\psi_1 \wedge \psi_2))$ (c)
 - $\neg(\psi_0 \wedge \psi_2)$ (d)
 - ψ_0 פיצול למקרים על (e)
 - ψ_0 .i
 - וסתירה, כללי גימום, כללי .ii
 - $\neg \psi_0$.i
 - \mathbf{a} ה מים גימום, $\psi_0 \vee \psi_1$.ii
 - יווי, כללי איווי, ψ_1 .iii
 - יווי כללי איווי, $\neg(\psi_1 \wedge \psi_2)$.iv
 - סתירה סתירה, כללי כללי ,
י $\neg \psi_2$.v
 - $\neg((\psi_0 \lor \psi_1) \land \psi_2)$ (a)
 - כללי גימום, $\neg(\psi_0 \lor \psi_1)$ (b)
 - יווי כללי איווי, $\neg \psi_0$ (c)
 - כיוונית גרירה גרירה ($\psi_0 \wedge \psi_2$) ($\psi_1 \wedge \psi_2$) (d)
 - $(\psi_0 \wedge \psi_2)$ על למקרים על (e)
 - $\psi_0 \wedge \psi_2$.i
 - הירה, כללי גימום, כללי .ii
 - $\neg(\psi_0 \wedge \psi_2)$.i
 - כללי איווי, כללי איווי, $\psi_1 \wedge \psi_2$.ii
 - הימום, כללי גימום, ψ_1 .iii

וסתירה ,b-לי איווי כללי ,
$$\neg \psi_1$$
 .iv

טעיף ו׳

$$.(\psi_0 o \psi_1), (\psi_1 o \psi_0) \vdash (\psi_0 \leftrightarrow \psi_1)$$
 TODO פתרון

טעיף ז׳

'סעיף ס

$$\vdash (\psi_0 \to (\psi_1 \to \psi_0))$$
 TODO פתרון

'סעיף ט

"סעיף

נאמר שכלל היסק ניתן להשמטה אם לכ שפה L לתחשיב פסוקים ולכל קבוצת פסוקים Σ ופסוק φ כך ש φ קיים עץ היסק לטענה כך שהכלל אינו מופיע בה, לכל כלל בסעיפים הבאים נוכיח שהוא ניתן להשמטה.

סעיף א׳	
$\frac{(A \to B), (\neg B)}{(\neg A)}$	
הוכחה. TODO	
סעיף ב׳	
$\frac{(A \leftrightarrow B), A}{B}$	
הוכחה. TODO	
סעיף ג׳	
$\frac{(A \leftrightarrow B), (\neg B)}{(\neg A)}$	
הוכחה. TODO	