HackerRank Quiz Questions

(Reinforcement Learning and Deep Learning)

Q1. Now let's revise the previous slides. We have learned that:

- A neural network is a (crude) mathematical representation of a brain, which consists of smaller components called neurons.
- Each neuron has an input, a processing function, and an output.
- These neurons are stacked together to form a network, which can be used to approximate any function.
- To get the best possible neural network, we can use techniques like gradient descent to update our neural network model.

Given above is a description of a neural network. When does a neural network model become a deep learning model?

- A. When you add more hidden layers and increase depth of neural network
- B. When there is higher dimensionality of data
- C. When the problem is an image recognition problem
- D. None of these

Solution: (A)

More depth means the network is deeper. There is no strict rule of how many layers are necessary to make a model deep, but still if there are more than 2 hidden layers, the model is said to be deep.

Q2. Given below is an input matrix named I, kernel F and Convoluted matrix named C. Which of the following is the correct option for matrix C with stride =2?

							- 1		
		12	1	0	1	1	0	0	1
		F	1	0	1	1	1	0	0
			1	0	1	0	1	1	1
0	0	1	0	0	0	1	0	1	1
1	1	0	0	1	1	0	1	0	1
	-	-	1	1	0	0	1	1	0
	1	1	1	1	0	1	1	1	0

	4		4	3	3		3	
	4	2		3	. 3	-	2	
<u>A)</u> _	3	3		3	1		3	
	3		4		3	_	3 2 3 2	
	4		3	3	2		4	
	4		4	3	3		3	
-	4		2	3	2		2	
B)	3		2	3	3		3 2 3 2 4	
<u>B)</u> .	3		4	2	3		2	
	4		3	2	2		4	
<u>C).</u>		4		3		3		
		3		3		3		
		4		3		4		
<u>D)</u>		4		3		3		
		3		2		2		
		3		3		4		

Solution:

1 and 2 are automatically eliminated since they do not conform to the output size for a stride of 2. Upon calculation option 3 is the correct answer.

Q3. Q-learning can learn the optimal Q-function Q* without ever executing the optimal policy.

- A) True
- B) False

Solution: True. It may not even be able to represent the optimal policy

Q4: MDPs For this question, assume that the MDP has a finite number of states.

- (i) [true or false] For an MDP (S, A, T, γ , R) if we only change the reward function R the optimal policy is guaranteed to remain the same.
- (ii) [true or false] Value iteration is guaranteed to converge if the discount factor (γ) satisfies 0 < γ < 1.
- (iii) [true or false] Policies found by value iteration are superior to policies found by policy iteration.
- (iv) [true or false] If an MDP has a transition model T that assigns non-zero probability for all triples T(s, a, s0) then Q-learning will fail.

Q5. What is the significance of Pooling layers?

- 1. It helps in dimensionality reduction.
- 2. It is invariant to transformations of rotation and translation.
- 3. It helps in regularization
- 4. None of the above