Exercises ITI9200

February 21, 2025

1 Weeks 1-2

Exercise 1:

(Light jumping jacks, but GySgt Hartman is behind you shouting "BOURBAK!!")

- 1. Prove or disprove that the following operations define monoid structures:
 - the set $\mathbf{R}^+ = \{x \in \mathbf{R} \mid x > 0\}$ of strictly positive real numbers, with respect to the operation of division, $(a, b) \mapsto a/b$;
 - the set of pairs of integers (m, n), with the operation $(p, q) \star (r, s) := (pr qs, ps + qr)$.
- 2. Let S be a *finite* set, consider the monoid S^S of all functions $f: S \to S$, with respect to function composition. Prove that the following conditions are equivalent:
 - *f* is an injective function;
 - f is a surjective function;
 - f is a bijective function.

This is blatantly false when S is infinite, say the set $\mathbb{N} = \{0, 1, 2, \dots\}$ of natural numbers. Build a counterexample.

Exercise 2:

(Epimenides, Cantor, and Gödel enter a bar..., [1])

An applicative construct (AC for short) (A, \circ) consists of a nonempty set A with a binary operation $\circ: A \times A \to A$. If $(f, a) \in A \times A$, we denote $\circ(f, a)$ as $f \circ a$ and read 'f applied to a'. If (A, \circ) is an AC we say that

- $f \in A$ has a fixpoint $\mu_f \in A$ if $f \circ \mu_f = \mu_f$;
- $f \in A$ has a diagonalizer $\delta_f \in A$ if for every $a \in A$ the identity

$$\delta_f \circ a = f(a \circ a)$$

holds (brackets position is important).

Prove Smullyan's mythological fixpoint theorem:

If f has a diagonalizer δ_f , then it has a fixpoint μ_f .

Exercise 3:

('I know what a category is...' —Show me.)

- Can a category with 7 objects and 5 morphisms exist?
- Count how many categories with 3 objects and (exactly) 5 morphisms there are.

2 Weeks 3-4

Exercise 4:

(You never put your hand in the same stream twice. —Heraclitus, probably debugging a recursive function)

The category **Stream** has

- as objects the sets A, B, C, \dots
- as arrows $f:A \leadsto B$ the functions of the form

$$f: \sum_{n>1} A^n \longrightarrow B$$

where the domain $A^+ = \sum_{n>1} A^n$ is the set of non-empty lists of elements of A, i.e., the set

$$A + (A \times A) + (A \times A \times A) + \dots$$

whose elements are ordered sequences of the form (a_1, \ldots, a_n) for $n \ge 1$ and $a_i \in A$ for each $i = 1, \ldots, n$.

You are invited to verify the category axioms for **Stream**:

- The identity morphisms are the functions $\sum_{n=1} A^n \to A$ defined by sending (a_1, \dots, a_n) to a_n ;
- composition is given, if $f: A \leadsto B$ and $g: B \leadsto C$, by the rule $g \circ f: A \leadsto C$

$$(a_1,\ldots,a_n) \longmapsto g(f(a_1),f(a_1,a_2),\ldots f(a_1,\ldots,a_{n-1}),f(a_1,\ldots,a_n)).$$

In other words, the composition $g \circ f$ computes the output that the function g generates from the inputs $f(a_1), f(a_1, a_2), \dots f(a_1, \dots, a_{n-1}), f(a_1, \dots, a_n)$.

The intuition to keep in mind is that an arrow $f \in \mathbf{Stream}(A, B)$ consists of an 'algorithm' that, given a non-empty list of inputs (a_1, \ldots, a_n) , computes an output $f(a_1, \ldots, a_n) \in B$ (which may clearly also depend on n), for every $n \geq 1$.

Exercise 5:

(The endofunction $f: \mathbb{C} \to \mathbb{C}$ on the class \mathbb{C} of mathematical objects sending 'X' to 'category theory and X' admits a fixpoint)

Let's gather some definitions:

• A ponoid is a monoid $(M, \cdot, 1)$ equipped with a partial order \leq such that

$$a \le b$$
 and $x \le y \implies ax \le by$

for all $a, b, x, y \in M$.

- An ordered set (P, \leq) is called *directed complete* when all *directed* subsets (the nonempty subsets $S \subseteq P$ such that for every $x, y \in S$ there is an upper bound $u \in S$) admit a *least* upper bound.
- A monoid is said to have a absorbing element when there is an element z with z = zx = xz for all $x \in M$.

Given this,

¹More formally, A^+ is the *free semigroup* generated by the set A, where a 'semigroup' is a set equipped with an associative binary operation.

- Prove that an absorbing element in a monoid is unique when it exists;
- prove that if $(M, \cdot, 1)$ is a directed complete ponoid with $1 \le x$ for all $x \in M$, then M has an absorbing element.

Use the latter result to prove that every monotone function $f: P \to P$ over a directed complete order has a smallest fixpoint (this means: there exists an $x \in P$ such that f(x) = x, and $x \le p$ for every p such that f(p) = p).

Exercise 6:

(The most merciful thing in the world, I think, is the inability of the human mind to correlate all its contents. —HPL)

Recall the definition of the category of discrete dynamical systems (dds for short):

- objects are triples $(X, x_0; f)$ where (X, x_0) is a pointed set, and $f: X \to X$ an endofunction.
- morphisms $u:(X,x_0;f)\to (Y,y_0;g)$ are basepoint-preserving functions $u:(X,x_0)\to (Y,y_0)$ such that g(ux)=u(fx) for every $x\in X$.

To every discrete dynamical $\mathbf{X} = (X, x_0; f)$ system one can associate the *exploded-view* category $\mathbf{EW}(\mathbf{X})$ having

- objects the elements $x, y, z, \dots \in X$;
- there is an arrow $\langle n \rangle : x \to f^n(x)$ for every $x \in X$ and $n \in \mathbb{N}$.

The identity i_x is $\langle 0 \rangle : x \to f^0 x = x$. Composition of morphisms is defined as $\langle n + m \rangle$, if $\langle n \rangle : x \to f^n x$ and $\langle m \rangle : f^n x \to f^m (f^n x) = f^{n+m} x$.

- prove the category axioms for $\mathbf{EW}(X)$;
- consider a subset $S \subseteq X$ in a dds $\mathbf{X} = (X, x_0; f)$ and define, inductively,

$$S^{(0)} := S$$
 $S^{(k+1)} := \{ f(s) \mid s \in S^{(k)} \}.$

The flow $\Phi_{\mathbf{X}}(S)$ of S is defined as $\bigcup_{k>0} S^{(k)}$.

Let $N = (\mathbb{N}, 0, c)$ be the dynamical system defined by $c : \mathbb{N} \to \mathbb{N}$,

$$c(2k) = k$$
 $c(2k+1) = 3k+1$

- Compute the flow $\Phi_N(S)$ of $S = \{3, 9, 15, 39, 43\}$ (draw a picture); do you see a pattern?
- (very hard, do *not* attempt. Seriously, stay away from this problem.) can you find $S, T \subseteq \mathbb{N}$ such that $\Phi_{\mathbb{N}}(S) \cap \Phi_{\mathbb{N}}(T) = \emptyset$?

References

[1] N. S. Yanofsky. A universal approach to self-referential paradoxes, incompleteness and fixed points. *Bulletin of Symbolic Logic*, 9(3):362–386, 2003.