Föreläsning 5 Exponentiell utjämning

Kapital 4

Tre typer av utjämningar

 Enkel exponentiell utjämning: Används när tidsserien rör sig runt en viss nivå.

Bok: First order exponential smoothing.

Minitab: Single exponential smoothing

Dubbel exponentiell utjämning: Använd då en trend finns i tidsserien.

Bok: Second order exponetial smoothing

Minitab: Double exponential smoothing

 Holt Winters metod: Används när trend- och säsongsvariation finns i tidsserien.

Bok: Higher order exponential smoothing

Minitab: Winters method

- Exponentiell utjämning liknar glidande medelvärden (MA) men nyare obs får mer vikt.
- Exponentiell utjämning baseras dock på en modell vilket inte MA gör.
- Istället för att skatta parametrarna till ett fixt värde, såsom görs vid minsta-kvadrat-skattning vid regressionsanalys så tillåts parameterskattningarna att ändra sig vid varje ytterligare tidpunkt vid exponentiell utjämning.
- Parameterskattningarna går inte att tolka vid exponentiell utjämning.
- Exponentiell utjämning används för prognostisering eller för trendanalys.

Enkel exponentiell utjämning Kapital 4,2

- Används för att göra prognoser för en tidsserie som inte innehåller varken trendeller säsongskomponenter, t ex årlig försäljning av en vara.
- Tänkbar modell: $y_t = \beta_0 + \varepsilon_t$
- Modellen ska *inte* ses som <u>statisk</u> utan nivån (β_0) kan tillåtas ändras, men inte enligt någon statisk trendstruktur.

- Enkel exponentiell utjämning innebär att man använder historiska data för att "jämna ut" serien och därmed plocka bort den rent slumpmässiga variationen.
- Vid utjämningen kan man låta gamla värden och nyare värden spela olika stor roll
- Den utjämnade serien använder vi sen för att göra prognoser efter den sista observationen.

Beteckna de tillgängliga historiska observationerna $y_1, y_2, ..., y_T$ För enkel exponentiell utjämning används <u>utjämningsekvationen</u>:

$$\tilde{\mathbf{y}}_T = \lambda \cdot \mathbf{y}_T + (1 - \lambda) \cdot \tilde{\mathbf{y}}_{T-1}, \qquad T = 1, \dots, n$$

dvs vi har här infört termen \tilde{y}_T som anger det utjämnade värdet vid tidpunkt T. \tilde{y}_T är skattningen av β_0 vid tiden T

 λ är den så kallade *utjämningskonstanten* (discount factor) eller *utjämningsparametern* (smoothing parameter). $0 < \lambda < 1$, och den styr hur mycket vikt det nyaste värdet i serien ska ha.

Val av utjämningskonstant λ

Med ett lågt värde på λ (nära 0) spelar de tidigare värdena i serien en större roll än de senare: Serien blir mer utjämnad (mer lik ett medelvärde av samtliga observationer)

Med ett stort värde på λ spelar de senare värdena i serien en större roll än de äldre: Serien blir mindre utjämnad och \tilde{y}_T kommer i högre grad att fånga upp de successiva förändringarna i tidsserien

Välj λ så att något valideringsmått minimeras. Dvs minimera MSD, MAD eller MAPE

Val av startvärde \tilde{y}_0

Valet av \tilde{y}_0 kan göras på olika sätt beroende hur stabil serien är:

Ej stabil serie:

- Använd 10-50% av de historiska värdena och beräkna ett medelvärde av dessa. Detta medelvärde är en skattning av β_0 i modellen och blir också det värde vi sätter \tilde{y}_0 till. Dvs $\tilde{y}_0 = \bar{y}$

Stabil serie

- Sätt $\tilde{y}_0 = y_1$
- den första observationen i det resterande datamaterialet och börja utjämningen från denna, eller
- den första observationen i hela datamaterialet och börja utjämningen från denna.

Exempel: Försäljning av tandkrämstuber, veckodata, 101 obs Hämtat från MINITAB

Medelvärdet över alla veckor ligger på 39,6 tuber.

Modell:
$$y_t = \beta_0 + \varepsilon_t$$

Skattning av β_0 med minstakvadrat-metoden ger $b_0=\bar{y}=39,6$

Vi ska nu istället skatta eta_0 succesivt. Dvs skatta eta_0 på nytt vid varje ny tidpunkt. Så $\hat{eta}_0=b_0=\tilde{y}_T$

Börja med ett startvärde \tilde{y}_0 för att sätta igång rekursionen. Ta t ex medelvärdet av de första 20 observationerna.

$$\tilde{y}_0 = \frac{49 + 51 + 51 + 55 + \dots + 36}{20} = 46,4$$

Anta först att försäljningen är ganska stabil, dvs, under den studerade perioden antas inte genomsnittsvärdet β_0 ändra sig nämnvärt.

Då kan man välja ett relativt lågt värde på λ . Detta innebär att de tidigare värdena i serien kommer att spela en större roll i prognoserna än de senare.

Vi låter $\lambda = 0.2$

Vi använder nu uppdateringsformeln, som egentligen uppdaterar skattningen av β_0 . Vi låter y_1 vara <u>det första värdet</u> i tidsserien.

Nu ska vi beräkna värden på \tilde{y}_0 , \tilde{y}_1 , \tilde{y}_2 , ..., \tilde{y}_T med formeln:

$$\tilde{y}_T = \lambda \cdot y_T + (1 - \lambda) \cdot \tilde{y}_{T-1}, \qquad T = 1, ..., n$$

De första 3 värden på y är 49, 51, 51 och $\tilde{y}_0 = 46,4$

$$\tilde{y}_1 = \lambda \cdot y_1 + (1 - \lambda) \cdot \tilde{y}_0$$
 $\tilde{y}_1 = 0.2 \cdot 49 + 0.8 \cdot 46.4 = 46.9$ $\tilde{y}_2 = \lambda \cdot y_2 + (1 - \lambda) \cdot \tilde{y}_1$ $\tilde{y}_2 = 0.2 \cdot 51 + 0.8 \cdot 46.9 = 47.7$ $\tilde{y}_3 = \lambda \cdot y_3 + (1 - \lambda) \cdot \tilde{y}_2$ $\tilde{y}_3 = 0.2 \cdot 51 + 0.8 \cdot 47.7 = 48.4$

OSV

 \tilde{y}_T är det utjämnade värdet för y_T (smoothed value) \tilde{y}_{T+1} är det predikterade värdet för y_T (fitted value, predicted value)

Som prognos för ett framtida värden används:

$$\hat{y}_{T+\tau}(T) = \tilde{y}_T$$

 $\hat{y}_{T+\tau}(T) = \tilde{y}_T$ Prognos τ steg fram i tiden

Uppdateringsformeln

$$\tilde{y}_T = \lambda \cdot y_T + (1 - \lambda) \cdot \tilde{y}_{T-1}$$

$$T=1,\ldots,n$$

är en rekursionsformel

Analys med hjälp av Minitab

Stat → Time Series → Single Exp Smoothing...

Ur MINITAB.

$$SMOO1 = \tilde{y}_T$$

$$FITS1 = \tilde{y}_{T-1}$$

vecka	SMO01	FITS1
99	59,8712	59,8390
100	60,2969	59,8712
101	59,8376	60,2969

Autocorrelation Function for RESI2

(with 5% significance limits for the autocorrelations)

Prognos vid enkel exponentiell utjämning

Som prognos för ett framtida värden används:

$$\hat{y}_{T+\tau}(T) = \tilde{y}_T$$
 Prognos τ steg fram i tiden

Prognoser för veckorna 102, 103, 104

$$\tilde{y}_{101} = 59.8$$

$$\hat{y}_{T+\tau}(T) = l_T$$

$$\hat{y}_{102}(101) = \tilde{y}_{101} = 59.8$$

$$\hat{y}_{103}(101) = \tilde{y}_{101} = 59.8$$

$$\hat{y}_{104}(101) = \tilde{y}_{101} = 59.8$$

Smoothing Plot for Sales Single Exponential Method

Smoothing Plot for Sales Single Exponential Method

Autocorrelation Function for RESI4

(with 5% significance limits for the autocorrelations)

Smoothing Plot for Sales Single Exponential Method

Dubbel exponentiell utjämning Kapitel 4,4

Data antas här innehålla en linjär trend. (Nu följer jag inte beteckningarna i boken)

Modell:
$$y_t = \beta_0 + \beta_1 t + \varepsilon_t$$

Två utjämningsparametrar α och γ (Holt's metod):

Utjämningsekvationer:
$$l_T = \alpha y_T + (1 - \alpha)(l_{T-1} + b_{T-1})$$

$$b_T = \gamma (l_T - l_{T-1}) + (1 - \gamma)b_{T-1}$$

$$T=1,\ldots,n$$

Val av startvärden

Detta görs automatiskt i MINITAB

En dator tar några värden i början av serien och anpassar en enkel linjär regressionslinje. Sätt $l_0=\hat{\beta}_0$ och $b_0=\hat{\beta}_1$ där $\hat{\beta}_0$ och $\hat{\beta}_1$ är de skattade regressionskoefficienterna.

Val av utjämningskonstanter lpha och γ

Välj en combination av dessa så att något av valideringsmåtten minimeras. Dvs MSD, MAD eller MAPE

Prognoser:

$$\hat{y}_{T+\tau}(T) = l_T + b_T \tau$$

Exempel: Försäljningsintäkter i tusentals dollar

Små utjämningskonstanter

Optimalt val av utjämningskonstanter

Exponentiell utjämning av tidsserier med trend och säsong Kapitel 4,7

- (Holt-)Winters' additiva metod
- (Holt-)Winters' multiplikativa metod

Bägge metoderna använder tre utjämningsparametrar α , γ , δ för nivå, lutning och säsongssvängning.

Val av metod (additiv eller multiplikativ) görs enligt samma principer som vid klassisk komponentuppdelning

Additiv Holt-Winter

Modell: $y_t = \beta_0 + \beta_1 t + s n_t + \varepsilon_t$

Utjämningsekvationer:

$$l_{T} = \alpha(y_{T} - sn_{T-L}) + (1 - \alpha)(l_{T-1} + b_{T-1})$$

$$b_{T} = \gamma(l_{T} - l_{T-1}) + (1 - \gamma)b_{T-1}$$

$$sn_{T} = \delta(y_{T} - l_{T-L}) + (1 - \delta)sn_{T-L}$$

$$T = 1, ..., n$$
 $L = s$ äsongslängd

Prognoser: $\hat{y}_{T+\tau}(T) = l_T + b_T \tau + s n_{T+\tau-L}$

Multiplikativ Holt-Winter

Modell: $y_t = (\beta_0 + \beta_1 t) s n_t + \varepsilon_t$

Utjämningsekvationer:

$$l_{T} = \alpha(y_{T}/sn_{T-L}) + (1 - \alpha)(l_{T-1} + b_{T-1})$$

$$b_{T} = \gamma(l_{T} - l_{T-1}) + (1 - \gamma)b_{T-1}$$

$$sn_{T} = \delta(y_{T}/l_{T-L}) + (1 - \delta)sn_{T-L}$$

T = 1, ..., n $L = s \ddot{a} s ong s \ddot{a} n g d$

Prognoser: $\hat{y}_{T+\tau}(T) = (l_T + b_T \tau) sn_{T+\tau-L}$

Exempel: Kvartalsvisa försäljningsdata

quarter	sales
1	124
2	157
3	163
4	126
1	119
2	163
3	176
4	127
1	126
2	160
3	181
4	121
1	131
2	168
3	189
4	134
1	133
2	167
3	195
4	131
	1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3

Stat→Time Series→Winters' Method...

Winters' multiplicative model

Data sales

Length 20.0000

NMissing 0

Smoothing Constants

Alpha (level): 0.2

Gamma (trend): 0.2

Delta (seasonal): 0.2

Accuracy Measures

MAPE: 2.6446

MAD: 3.8808

MSD: 23.7076

Row	Period	Forecast	Lower	Upper
1	21	135.625	126.117	145.133
2	22	174.430	164.724	184.136

Prognoser för kvartal 1 och 2 1996 med Winters' multiplikativa metod

Prognoser för kvartal 1 och 2 1996 med Winters' multiplikativa metod

Ingen möjlighet att låta MINITAB välja den bästa uppsättningen av parametrar. Man måste prova sig fram.

Om man har en tidsserie som ovan, med tydliga säsongskomponenter som inte ändrar sig över tiden och en linjär trend, så finns det inga fördelar med exponentiell utjämning framför tidsserieregression (eller klassisk komponentuppdelning).

Prognoser för kvartal 1 och 2 1996 med klassisk mult. metod

Tidsserie över andelen anställda i USA

Däremot kan det vara bra att använda exponentiell utjämning om komponenterna ändras över tiden och om det finns tydliga cykliska komponenter.

Tidsserie över andelen anställda i USA

Komponentuppdelning

Decomposition Fit for Value

Klassisk komponentuppdelning med prognos för 12 månader

Decomposition Fit for Value

Winters' metod:

Winters' Multiplicative Model for Value

