2. Popravni kolokvij iz Moderne fizike 2 20.9.2010

- 1. Z mikrovalovi z valovno dolžino 8 mm obsevamo molekule joda I_2 , ki se nahajajo v osnovnem stanju. Ali lahko s temi valovi vzbudimo molekule v prvo rotacijsko in prvo vibracijsko vzbujeno stanje? Molekulo pri rotaciji obravnavaj kot tog rotator z razdaljo med atomoma 0.267 nm, pri vibraciji pa kot harmonski oscilator s konstanto vzmeti 173 N/m. Masa atoma I je $2.12 \cdot 10^{-25}$ kg.
- 2. Jedro $^{17}_9$ F razpada z emisijo pozitrona e⁺ (razpad β^+) na jedro $^{17}_8$ O in elektronski nevtrino $\nu_{\rm e}$. Izračunaj maksimalno energijo nevtrina in maksimalno odrivno energijo jedra $^{17}_8$ O. Jedro $^{17}_9$ F pred razpadom miruje. Masi jeder sta $m_{\rm F}=17.007486\,u$ in $m_{\rm O}=17.004533\,u$, kjer je $u=931.484\,{\rm MeV}/c^2$, masa elektrona pa $0.511\,{\rm MeV}/c^2$. Maso nevtrina zanemari.
- 3. Pri čistih rotacijskih prehodih molekule CH opazimo, da je razmik med dvema zaporednima valovnima številoma $(2\pi/\lambda)$ v spektru izsevanih fotonov enak $0.29\,\mathrm{cm}^{-1}$. Izračunaj razdaljo med atomoma v molekuli CH. Masa atoma H je $m_{\mathrm{H}} \approx 1u$, masa atoma C pa $m_{\mathrm{C}} \approx 12u$.
- 4. Tanek sloj zlata $^{197}\mathrm{Au}$ debeline $0.2\,\mathrm{mm}$ obstreljujemo z nevtroni in tako sprožamo reakcijo

$$n + {}^{197}Au \longrightarrow {}^{198}Au + \gamma$$
.

Izotop ¹⁹⁸Au je nestabilen in razpada z razpadnim časom 2.7 dneva. Vpadni tok nevtronov je $10^{12}/\mathrm{cm}^2$ s. Sloj obstreljujemo 5 minut. Izračunaj aktivnost ¹⁹⁸Au v sloju (število razpadov na enoto ploščine in enoto časa). Izračunaj še maksimalno ploskovno gostoto jeder ¹⁹⁸Au, ki jih lahko pridobimo z obstreljevanjem. Gostota zlata je $19.3\,\mathrm{g/cm}^3$. Presek za opisano reakcijo je $97.8\cdot10^{-24}\,\mathrm{cm}^2$.