

Problema 2. Considereu l'autòmat finit no determinista $M = (Q, \{a, b\}, \delta, \{1,3\}, \{2\})$:

i) Doneu expressions per als llenguatges L_1 i L_5 , on els llenguatges L_i , $i=1,\ldots,6$ venen definits per $L_i=\{\omega\in\Sigma^*|\delta(q_i,\omega)\in F\}$.

Les paraules acceptades de L_1 i L_5 que arriben al estat final F (2) son:

 $L_1 = \{a\}$ només podem arribar del estat 1 al estat 2 (final) amb.

 $L_5 = \{\}$ ja que mai arribarem al estat final des de el estat 5.

ii) Trobeu, usant el lema d'Arden, una expressió regular per al llenguatge L(M).

Sistemes d'equacions:

$$L_1 = a L_2$$

$$L_2 = b L_1 + a L_5 + \lambda =$$

$$L_3 = b L_1 + a L_4 + b L_5$$

$$L_4 = a L_3 + b L_5$$

$$L_5 = a L_6 + b L_6 = (a + b) L_6$$

$$L_6 = a L_6 + b L_5$$

Ara en el estat final
$$L_2$$
 substituïm $L_2=b(aL_2)+\left((a+b)(a*b)\right)*+\lambda$ $L_2=b(ba)*\cdot\left((a+b)(a*b)\right)*+\lambda)$ Apliquem Arden a $L_6=a*b$ L_5

iii) En el procés de determinització de M trobeu els estats.

$$\delta^d(\{1,3\},baa)$$
 i $\delta^d(\{1\},ba)$

$$\begin{split} \delta^d(\{1,3\},b) &\to \{1,5\} \\ \delta^d(\{1,3\},a) &\to \{2,6\} \\ \delta^d(\{1,3\},a) &\to \{5,6\} \end{split}$$

 $\delta^d(\{1\},ba) \to \{\}$ conjunt buit