FÍSICA ONLINE

JAVIER GARCÍA

QUANTUM FIELD THEORY (39)

Verificar $[M^{\mu\nu}, M^{\rho\sigma}] = g^{\nu\rho}M^{\mu\sigma} - g^{\mu\rho}M^{\nu\sigma} - g^{\nu\sigma}M^{\mu\rho} + g^{\mu\sigma}M^{\nu\rho}$

Teniendo en cuenta que $M^{\mu\nu}=-M^{\nu\mu}$ i que [A,B]=-[B,A] nos podemos reducir a 5 casos:

1. 4 índices iguales: $\mu = \nu = \rho = \sigma$

$$[M^{\mu\mu}, M^{\mu\mu}] = g^{\mu\mu}M^{\mu\mu} - g^{\mu\mu}M^{\mu\mu} - g^{\mu\mu}M^{\mu\mu} + g^{\mu\mu}M^{\mu\mu} = 0$$

Correcto, pués toda matriz conmuta consigo misma y además $M^{\mu\mu}=0 \ \ \forall \mu.$

2. 3 índices iguales: $\mu = \nu = \rho$

$$[M^{\mu\mu}, M^{\mu\sigma}] = g^{\mu\mu}M^{\mu\sigma} - g^{\mu\mu}M^{\mu\sigma} - g^{\mu\sigma}M^{\mu\mu} + g^{\mu\sigma}M^{\mu\mu} = 0$$

Correcto, pués $M^{\mu\mu}=0$.

3. 2 índices iguales:

I.
$$\mu = \nu$$

$$[M^{\mu\mu}, M^{\rho\sigma}] = g^{\mu\rho}M^{\mu\sigma} - g^{\mu\rho}M^{\mu\sigma} - g^{\mu\sigma}M^{\mu\rho} + g^{\mu\sigma}M^{\mu\rho} = 0$$

II.
$$\mu = \rho$$

$$[M^{\mu\nu}, M^{\mu\sigma}] = g^{\nu\mu}M^{\mu\sigma} - g^{\mu\mu}M^{\nu\sigma} - g^{\nu\sigma}M^{\mu\mu} + g^{\mu\sigma}M^{\nu\mu} = -g^{\mu\mu}M^{\nu\sigma}$$

Reencontramos [K,K]=J (μ =0), [J,J]=J (μ , σ , ν ≠0) i [K,J]=K (μ ≠0; σ ó ν =0).

4. Todos diferentes:

$$[M^{\mu\nu}, M^{\rho\sigma}] = 0$$

Correcto; correspon a los conmutadores entre J i K con superíndices iguales.

Comprobar $(M^{\mu\nu})^{lpha}_{\ eta}=g^{\mulpha}\delta^{
u}_{eta}-g^{
ulpha}\delta^{\mu}_{eta}$

Notemos que solo hay 2 posibilidades (que, en el fondo, son la misma) de que el resultado sea diferente de zero, que derivan de la definición de la g i la δ :

$$\mu = \alpha , \nu = \beta \implies (M^{\mu\nu})^{\mu}_{\ \nu} = g^{\mu\mu} \delta^{\nu}_{\nu} = \begin{cases} 1 \ (\mu = 0) \\ -1 \ (\mu \neq 0) \end{cases}$$

$$\mu = \beta$$
, $\nu = \alpha \Rightarrow (M^{\mu\nu})^{\nu}_{\mu} = -g^{\nu\nu}\delta^{\mu}_{\mu} = \begin{cases} -1 \ (\mu = 0) \\ 1 \ (\mu \neq 0) \end{cases}$

Correcte, pués (0,a) marca la posición del 1 en las K i (a,b) la del (-1) en las J.