CS & IT SERING

THEORY OF COMPUTATION

Grammar

Lecture - 01

Recap of Previous Lecture

Mealy machine ?????

Topics to be Covered

Mealy Machine:

It is a mathematical model in which output is associated

with transition.

Moore Machine:

It is a mathematical model in which output is associated

with state.

[NAT]

#Q. Construct mealy machine that takes all strings of a's and b's as input and produces 1 as output if last two symbols in the input are same otherwise produces 0 as output.

 $\sum = \{a,b\}$ Construct mealy machine that takes all strings of a's and b's as input and #Q. produces 1 as output if last two symbols in the input are different otherwise

produces 0 as output.

#Q. Construct mealy machine that takes all strings of 0's and 1's as input and produces A as output if input ending with 10 or produces B as output if input ending with 11 otherwise produces output C.

[NAT]

#Q. Construct mealy machine that produces 1's complement of given binary number as output.

[NAT]

#Q. Construct mealy machine that produces 2's complement of given binary number as output.(assume we are reading string from LSB to MSB)

#Q. Construct Moore machine that takes all binary strings as input and produces Residue modulo 4 as output.

- A Mealy machine to find 2's complement of a number
- B A Moore machine to find 2's complement of a number
- A Mealy machine to find 1's complement of a number
- A Moore machine to find 1's complement of a number

[MCQ]

#Q. A finite state machine with the following state table has a single input x and a single output z.

	Present state x = 1	Next state, z x = 0
A	D, 0	B, 0
В	B, 1	C, 1
С	B, 2	D, 1
D	B, 1	C, 0

If the initial state is unknown, then the shortest input sequence to reach the final state C is:

A

01

В

10

С

101

D

110

[MCQ]

#Q. The Finite state machine described by the following state diagram with A as starting state, where an arc label is x/y and x stands for 1-bit input and y stands for 2-bit output.

- Outputs the sum of the present and the previous bits of the input
- Outputs a "01" whenever the input sequence contain "11"
- Outputs a "00" whenever the input sequence contains "10"
- D None of the above

[MCQ]

#Q. Consider the following finite state transducer where the label on an edge x/t denotes if the input is x, follow the arrow and emit t

For the input, aabbbaaaabbbbaaaabb the output is:

A aaaa

Baaaaaaaa

C ab ab ab ab

abbbabbbababb

Topic: Regular expression

DFA NFA 50% E-NFA Regular Expressions Régular Language Detection Closure proposties F. A. With 8 p

Topic: Grammar

- Set of rules used to describe strings of a language is known as grammar.
- Formal definition of grammar is

$$G=(N, T, P, S)$$
 $\{S, A, B, C\}$

- Nance of variables
- ightharpoonup T:- Terminals $a_1d_1b_1$
- P:- no. of productions —> 4
- Starting symbol

$$|S| > A B C - 1$$

$$|A| > a | e - 2$$

$$|B| = |A| = |A|$$

$$|C| > b | |C| = |A|$$

$$|A| = |A|$$

$$|C| > b | |C| = |A|$$

Topic: Grammar

- For every language grammar exittly every grammar generates one language.
- \triangleright All grammars is of a from α replacement of $\alpha \rightarrow \beta$, where β is replacement of α

For a given danguage many no of grammars can be Constructed.

Danguage Gz

(3) Cervalmar -> Pandrade

Topic: Derivation

- The process of deriving strings from the given grammar known as derivation.
- The derivation can be either left most derivation or right most derivation

Left most derivation:

It is the derivation in which left most non terminal is replaced by its R.H.S part at every step.

> Right most derivation:

It is a derivation in which right most non terminal is replaced by its R.H.S part at every step.

Derivation Tree (or)Parse Tree

- Tree representation of the derivation is known as derivation tree.
- All leaf node of the parse tree is known as yield of parse tree.
- while reading yield from left to right sentence of the grammar can be generate.

Sentential form

- Each step in the derivation is one sentential form.
- Hence sentential form is combination of terminals & non terminals (sentence also can be included)
- If the derivation is left most then sentential form is left sentential form.
- If the derivation is right most then sentential is right sentential form
- Every grammar represents only one language but for one language more than one grammar may exist.
- For regular languages there exist a grammar known as regular grammar.

- Context free language there exist a grammar known as context free grammar.
- Context sensitive language there exist a grammar known as context sensitive grammar.
- For recursive enumerable language there exist a grammar known as unrestricted grammar.

- #Q. Identify language generated by following grammar.
 - (1) $S \rightarrow 0 (S) (a) = \{a, a^2, a^3 --\} = (a^4)$

$$|S \rightarrow aS|e = danguage?$$

$$\{\epsilon, a, a^2, a^3 - --\} = a$$

E = danguage ₹, a, b, a, a, a, abb b, b, b, b, a, b,

.0

(5)
$$S \rightarrow AB$$
 $A \rightarrow AB$
 $A \rightarrow AB$

*

6 S -> a Ab|bAa -> danguage?

A -> aA|bA|E -> (a+b)*

even length palindrome

(8)

S->aSa/bSb/a/b

danquage =?

(anti) S->AB danguage = ? B-> 6B/6 Non Regular alle

(b) $S \rightarrow aSd[aAd]$ $A \rightarrow bAc[bc = \{b^nc^n\}$

Language ?? anjuage?? anjuage??

 $\Gamma = \left\{ \frac{1}{2} \sum_{n=1}^{\infty} |u_n|^{2} d_n \left[u'w \right] \right\}$

#Q. Construct grammar for the following languages.

$$S \rightarrow 2S \in$$

A
$$\Rightarrow aA \in B$$
B $\Rightarrow bB \in B$

(3) L= (a+b)*b

S-005/6/6)

$$S \rightarrow Ab$$

$$A \rightarrow aA|bA|\epsilon \qquad (a+b)^{\epsilon}$$

(5) L = { a b | (n+m) is odd} a (aa)*(bb)* + (aa)*b(bb)*

(6)
$$d = \{a^n b^{2n} | n \ge 1\}$$

$$\mathcal{F} = \left\{ \frac{1}{2} \int_{-\infty}^{\infty} \left| \frac{1}{2} \int_$$

S-AB A-saAblab B-scBlc

(orln)

 $\binom{\omega}{\omega}$

(8) $L = \{an+m \mid m \mid c^n \mid n, m \geq l\}$ 5-10 Sclatic
A-) a/b/ab $9 \quad L = \left\{ \frac{1}{2} \left[\frac{1}{2} \left$ S-saSdlaAd
A-sbAclbc (10) L = a(a+b)* a + b (a+b)* b + a+b

Home Worle

Types of Grammar

Type	Language (Grammers)	From of Productions	Accepting Dived
3	Regular	$A \rightarrow aB, A \rightarrow A$	Finite Automaton
2	Context -free	$A \rightarrow \alpha$	Pushdown Automaton
1	Context sensitive	$A \rightarrow \beta$ With $ \alpha \ge \beta $	LBA
0	Unrestricted	$\alpha \rightarrow \beta$	Turing machine

Unrestricted grammar

Type 0 - Recursively enumerable

grammar

Type 1 - Context -sensitive

Type 2 - Context- free

grammar (a) grammar

Type 3 - Regular

Grammar grammer

2) Language -> Grammar Construction.

2 mins Summary

Topic One

Topic Two

Topic Three

Topic Four

Topic Five

THANK - YOU