

COS 426, Spring 2022
Felix Heide
Princeton University

3D Object Representations

- Points
 - Range image
 - Point cloud

- Surfaces
 - Polygonal mesh
 - > Parametric
 - Subdivision
 - Implicit

- Solids
 - Voxels
 - BSP tree
 - CSG
 - Sweep

- High-level structures
 - Scene graph
 - Application specific

- Applications
 - Design of smooth surfaces in cars, ships, etc.

- Applications
 - Partitioning into surface patches.

- Applications
 - Design of smooth surfaces in cars, ships, etc.
 - Creating characters or scenes for movies

- Applications
 - Defining motion trajectories for objects or cameras

- Applications
 - Defining motion trajectories for objects or cameras
 - Defining smooth interpolations of sparse data

Google Street View

Outline

- Parametric curves
 - Cubic B-Spline
 - Cubic Bézier
- Parametric surfaces
 - Bi-cubic B-Spline
 - Bi-cubic Bézier

Outline

- > Parametric curves
 - Cubic B-Spline
 - Cubic Bézier
- Parametric surfaces
 - Bi-cubic B-Spline
 - Bi-cubic Bézier

Defined by parametric functions:

$$\circ x = f_x(u)$$

$$\circ \ y = f_y(u)$$

Example: line segment

Defined by parametric functions:

$$\circ x = f_x(u)$$

$$\circ \ \ y = f_y(u)$$

Example: line segment

$$f_{x}(u) = (1-u)x_{0} + ux_{1}$$

$$f_{y}(u) = (1-u)y_{0} + uy_{1}$$

$$u \in [0..1]$$

Defined by parametric functions:

$$\circ x = f_x(u)$$

$$\circ y = f_y(u)$$

Example: circle

$$f_x(u) = r \cos(2\rho u)$$

$$f_y(u) = r \sin(2\rho u)$$

$$u \hat{|} [0..1]$$

Defined by parametric functions:

$$\circ x = f_x(u)$$

$$\circ \ \ y = f_y(u)$$

Example: ellipse

$$f_x(u) = r_x \cos(2\rho u)$$
$$f_y(u) = r_y \sin(2\rho u)$$
$$u \mid [0..1]$$

How to easily define arbitrary curves?

$$x = f_x(u)$$

$$y = f_y(u)$$

How to easily define arbitrary curves?

$$x = f_x(u)$$
$$y = f_y(u)$$

How to easily define arbitrary curves?

$$x = f_x(u)$$
$$y = f_y(u)$$

Slightly different notation than before:

How to easily define arbitrary curves?

$$x = f_{x}(u)$$

$$y = f_{y}(u)$$

$$v_{0}$$

$$v_{0}$$

$$v_{0}$$

$$v_{0}$$

$$v_{0}$$

Use functions that "blend" control points

$$x = f_x(u) = \frac{VO_x^*(1 - u) + V1_x^*u}{y = f_y(u) = \frac{VO_y^*(1 - u) + V1_y^*u}{\sqrt{1 - u}}$$
Simple functions of u

More generally:

$$x(u) = \sum_{i=0}^{n} B_i(u) * Vi_x$$

$$y(u) = \sum_{i=0}^{n} B_i(u) * Vi_y$$

More generally:

$$x(u) = \sum_{i=0}^{n} B_i(u) * Vi_x$$

$$y(u) = \sum_{i=0}^{n} B_i(u) * Vi_y$$

May use **all** points!

$$x(u) = \sum_{i=0}^{n} B_i(u) * Vi_x$$

$$y(u) = \sum_{i=0}^{n} B_i(u) *Vi_y$$

$$x(u) = \sum_{i=0}^{n} B_i(u) * Vi_x$$

$$y(u) = \sum_{i=0}^{n} B_i(u) *Vi_y$$

$$x(u) = \sum_{i=0}^{n} B_i(u) * Vi_x$$

$$y(u) = \sum_{i=0}^{n} B_i(u) *Vi_y$$

$$x(u) = \sum_{i=0}^{n} B_i(u) * Vi_x$$

$$y(u) = \sum_{i=0}^{n} B_i(u) *Vi_y$$

$$x(u) = \sum_{i=0}^{n} B_i(u) * Vi_x$$

$$y(u) = \sum_{i=0}^{n} B_i(u) *Vi_y$$

Blending Functions B

$$x(u) = \sum_{i=0}^{n} B_i(u) * Vi_x$$

$$y(u) = \sum_{i=0}^{n} B_i(u) * Vi_y$$

Blending Functions B

Blending Functions B

- Advantages of polynomials
 - Easy to compute
 - Easy to derive curve properties

Parametric Polynomial Curves

$$B_i(u) = \sum_{j=0}^m a_j u^j$$

- What degree polynomial?
 - Easy to compute
 - Easy to control
 - Expressive

Piecewise Parametric Polynomial Curves

Splines:

Split curve into segments

 Each segment defined by low-order polynomial blending subset of control vertices

Piecewise Parametric Polynomial Curves

Splines:

- Split curve into segments
- Each segment defined by low-order polynomial blending subset of control vertices

Motivation:

- Same blending functions for every segment
- Prove properties from blending functions
- Provides local control & efficiency

Challenges

- How choose blending functions?
- How determine properties?

Cubic Splines

- Some properties we might like to have:
 - Local control
 - Continuity
 - Interpolation?
 - Convex hull?

$$B_i(u) = \sum_{j=0}^m a_j u^j$$

Blending functions determine properties

Properties determine blending functions

Outline

- Parametric curves
 - ➤ Cubic B-Spline
 - Cubic Bézier
- Parametric surfaces
 - Bi-cubic B-Spline
 - Bi-cubic Bézier

Cubic B-Splines

- Properties:
 - Local control
 - C² continuity at joints (infinitely continuous within each piece)
 - Approximating
 - Convex hull

Cubic B-Splines

Notes on continuity

[from Robert Duvall]

[from Carlo Séquin]

Cubic B-Splines

Notes on local control:

and convex hull property:

Cubic B-Spline Blending Functions

Cubic B-Spline Curve Formation:

$$x(u) = \sum_{i=0}^{n} B_i(u) * Vi_x$$

$$y(u) = \sum_{i=0}^{n} B_i(u) *Vi_y$$

$$B_i(u) = \sum_{j=0}^m a_j u^j$$

In plot form backwards (start at 3):

$$B_i(u) = \sum_{j=0}^m a_j u^j$$

$$y_p(u) = \sum_{i=0}^n B_{-i}(u) * V_{p-i_x}$$

$$x_p(u) = \sum_{i=0}^n B_{-i}(u) * V_{p-i_y}$$

- A single blending function
- Local support
- Approximating

- Replicate blending functions
- Still local support

Try online at http://bl.ocks.org/mbostock/4342190

- How derive blending functions?
 - Cubic polynomials
 - Local control
 - C² continuity
 - Convex hull

- How derive blending functions?
 - Cubic polynomials
 - Local control
 - C² continuity
 - Convex hull

- Four cubic polynomials for four vertices
 - 16 variables (degrees of freedom)
 - Variables are a_i, b_i, c_i, d_i for four blending functions

$$b_{-0}(u) = a_0 u^3 + b_0 u^2 + c_0 u^1 + d_0$$

$$b_{-1}(u) = a_1 u^3 + b_1 u^2 + c_1 u^1 + d_1$$

$$b_{-2}(u) = a_2 u^3 + b_2 u^2 + c_2 u^1 + d_2$$

$$b_{-3}(u) = a_3 u^3 + b_3 u^2 + c_3 u^1 + d_3$$

- C² continuity implies 15 constraints
 - Position of two curves same
 - Derivative of two curves same
 - Second derivatives same

Fifteen continuity constraints:

$$0 = b_{-0}(0) \qquad 0 = b_{-0}'(0) \qquad 0 = b_{-0}''(0)$$

$$b_{-0}(1) = b_{-1}(0) \qquad b_{-0}'(1) = b_{-1}'(0) \qquad b_{-0}''(1) = b_{-1}''(0)$$

$$b_{-1}(1) = b_{-2}(0) \qquad b_{-1}'(1) = b_{-2}'(0) \qquad b_{-1}''(1) = b_{-2}''(0)$$

$$b_{-2}(1) = b_{-3}(0) \qquad b_{-2}'(1) = b_{-3}'(0) \qquad b_{-2}''(1) = b_{-3}''(0)$$

$$b_{-3}(1) = 0 \qquad b_{-3}''(1) = 0$$

One more convenient constraint:

$$b_{-0}(0) + b_{-1}(0) + b_{-2}(0) + b_{-3}(0) = 1$$

Solving the system of equations yields:

$$b_{-3}(u) = \frac{1}{6}u^3 + \frac{1}{2}u^2 - \frac{1}{2}u + \frac{1}{6}$$

$$b_{-2}(u) = \frac{1}{2}u^3 - u^2 + \frac{2}{3}$$

$$b_{-1}(u) = \frac{-1}{2}u^3 + \frac{1}{2}u^2 + \frac{1}{2}u + \frac{1}{6}$$

$$b_{-0}(u) = \frac{1}{6}u^3$$

In matrix form:

$$Q(u) = \sum_{i=0}^{n} B_i(u) * V_i \qquad B_i(u) = \sum_{j=0}^{m} a_j u^j$$

In matrix form:

$$Q(u) = \sum_{i=0}^{n} B_i(u) * V_i \qquad B_i(u) = \sum_{j=0}^{m} a_j u^j$$

$$Q(u) = \begin{pmatrix} u^3 & u^2 & u & 1 \end{pmatrix} \frac{1}{6} \begin{pmatrix} -1 & 3 & -3 & 1 \\ 3 & -6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0 \end{pmatrix} \begin{pmatrix} V_0 \\ V_1 \\ V_2 \\ V_3 \end{pmatrix}$$

Outline

- Parametric curves
 - Cubic B-Spline
 - ➤ Cubic Bézier
- Parametric surfaces
 - Bi-cubic B-Spline
 - Bi-cubic Bézier

- Developed around 1960 by both
 - Pierre Bézier (Renault)
 - Paul de Casteljau (Citroen)
- Today: graphic design (e.g. FONTS)
- Properties:
 - Local control
 - Continuity depends on control points
 - Interpolating (every third for cubic)

Blending functions determine properties

Cubic Bézier Curves

Blending functions:

$$Q(u) = \sum_{i=0}^{n} B_i(u) * V_i \qquad B_i(u) = \sum_{j=0}^{m} a_j u^j$$

Basic properties of Bézier Curves

Endpoint interpolation:

$$Q(0) = V_0$$

$$Q(1) = V_n$$

- Convex hull:
 - Curve is contained within convex hull of control polygon

Symmetry

$$Q(u)$$
 defined by $\{V_0,...,V_n\} \equiv Q(1-u)$ defined by $\{V_n,...,V_0\}$

Cubic Bézier Curves

Bézier curves in matrix form:

$$Q(u) = \sum_{i=0}^{n} V_{i} \binom{n}{i} u^{i} (1-u)^{n-i}$$

$$= (1-u)^{3} V_{0} + 3u(1-u)^{2} V_{1} + 3u^{2} (1-u) V_{2} + u^{3} V_{3}$$

$$= (u^{3} \quad u^{2} \quad u \quad 1) \binom{-1}{3} \quad \frac{3}{-6} \quad \frac{3}{3} \quad 0 \quad 0 \quad V_{1} \quad V_{2} \quad V_{3}$$

$$= (u^{3} \quad u^{2} \quad u \quad 1) \binom{-1}{3} \quad \frac{3}{3} \quad 0 \quad 0 \quad 0 \quad 0 \quad 0$$

• Curve Q(u) can also be defined by nested interpolation:

• Curve Q(u) can also be defined by nested interpolation:

• Curve Q(u) can also be defined by nested interpolation:

• Curve Q(u) can also be defined by nested interpolation:

• Curve Q(u) can also be defined by nested interpolation:

• Curve Q(u) can also be defined by nested interpolation:

Enforcing Bézier Curve Continuity

•
$$C^0$$
: $V_3 = V_4$

•
$$C^1$$
: $V_5 - V_4 = V_3 - V_2$

•
$$C^2$$
: $V_6 - 2V_5 + V_4 = V_3 - 2V_2 + V_1$

Outline

- Parametric curves
 - Cubic B-Spline
 - Cubic Bézier
- Parametric surfaces
 - Bi-cubic B-Spline
 - Bi-cubic Bézier

Defined by parametric functions:

$$\circ \ \ x = f_x(u,v)$$

$$\circ \ \ y = f_y(u,v)$$

$$\circ$$
 z = f_z(u,v)

Defined by parametric functions:

$$\circ \ \ x = f_x(u,v)$$

$$\circ y = f_v(u,v)$$

$$\circ$$
 z = f_z(u,v)

Example: quadrilateral

$$f_x(u,v) = (1-v)\left((1-u)x_0 + ux_1\right) + v\left((1-u)x_2 + ux_3\right)$$

$$f_y(u,v) = (1-v)\left((1-u)y_0 + uy_1\right) + v\left((1-u)y_2 + uy_3\right)$$

$$f_z(u,v) = (1-v)\left((1-u)z_0 + uz_1\right) + v\left((1-u)z_2 + uz_3\right)$$

Defined by parametric functions:

$$\circ x = f_x(u,v)$$

$$\circ y = f_v(u,v)$$

$$\circ$$
 z = f_z(u,v)

Example: quadrilateral

$$f_x(u,v) = (1-v)((1-u)x_0 + ux_1) + v((1-u)x_2 + ux_3)$$

$$f_y(u,v) = (1-v)((1-u)y_0 + uy_1) + v((1-u)y_2 + uy_3)$$

$$f_z(u,v) = (1-v)((1-u)z_0 + uz_1) + v((1-u)z_2 + uz_3)$$

Defined by parametric functions:

$$\circ x = f_x(u,v)$$

$$\circ \ \ y = f_v(u,v)$$

$$\circ$$
 z = f_z(u,v)

Example: ellipsoid

$$f_x(u, v) = r_x \cos v \cos u$$

$$f_y(u, v) = r_y \cos v \sin u$$

$$f_z(u, v) = r_z \sin v$$

To model arbitrary shapes, surface is partitioned into parametric patches

Each patch is defined by blending control points

Each patch is defined by blending control points

Same ideas as parametric curves!

Parametric Bicubic Patches

Point Q(u,v) on any patch is defined by combining control points with polynomial blending functions:

$$Q(u, v) = \mathbf{UM} \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix} \mathbf{M}^{\mathsf{T}} \mathbf{V}^{\mathsf{T}}$$

$$\mathbf{U} = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix} \qquad \mathbf{V} = \begin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix}$$

Where M is a matrix describing the blending functions for a parametric cubic curve (e.g., Bézier, B-spline, etc.)

B-Spline Patches

$$Q(u, v) = \mathbf{UM_{B-Spline}} \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix} \mathbf{M_{B-Spline}^T \mathbf{V}}$$

$$\mathbf{M}_{\mathbf{B-Spline}} = \begin{bmatrix} -1/& 1/& -1/& 1/\\ /6 & /2 & /2 & /6\\ 1/& -1 & 1/& 0\\ /2 & -1/& 2 & 0\\ -1/& 2 & /2 & 0\\ 1/6 & /3 & /6 & 0 \end{bmatrix}$$

Bézier Patches

- Properties:
 - Interpolates four corner points
 - Convex hull
 - Local control

Bézier Patches

$$Q(u, v) = \mathbf{UM_{Bezier}} \begin{bmatrix} P_{1,1} & P_{1,2} & P_{1,3} & P_{1,4} \\ P_{2,1} & P_{2,2} & P_{2,3} & P_{2,4} \\ P_{3,1} & P_{3,2} & P_{3,3} & P_{3,4} \\ P_{4,1} & P_{4,2} & P_{4,3} & P_{4,4} \end{bmatrix} \mathbf{M_{Bezier}^T V}$$

$$\mathbf{M}_{\text{Bezier}} = \begin{bmatrix} -1 & 3 & -3 & 1\\ 3 & -6 & 3 & 0\\ -3 & 3 & 0 & 0\\ 1 & 0 & 0 & 0 \end{bmatrix}$$

Piecewise Polynomial Parametric Surfaces

Surface is composition of many parametric patches

Piecewise Polynomial Parametric Surfaces

Must maintain continuity across seams

Same ideas as parametric splines!

Bézier Surfaces

 Continuity constraints are similar to the ones for Bézier splines

Bézier Surfaces

• C⁰ continuity requires aligning boundary curves

Bézier Surfaces

 C¹ continuity requires aligning boundary curves and derivatives

Patches

Watt Figure 6.26b

Properties

- ? Natural parameterization
- ? Guaranteed smoothness
- ? Intuitive editing
- ? Concise
- ? Accurate
- ? Efficient display
- ? Easy acquisition
- ? Efficient intersections
- ? Guaranteed validity
- ? Arbitrary topology

- Properties
 - Natural parameterization
 - © Guaranteed smoothness
 - Intuitive editing
 - © Concise

 - Efficient display
 - ⊗ Easy acquisition
 - Efficient intersections
 - ⊗ Guaranteed validity
 - Arbitrary topology

