Optimizing Inter-Hospital Patient Transfer (IHT) Routing

Max Petruzzi (MBAn) Rachit Jain (MBAn)

Executive Summary

46.8% fuel cost reduction over real-world baseline

Go Electric! More Distance; Less Cost

- Realistic
- Interpretable
 - Robust

Problem Statement

Fictional patient transport company based in Boston

- Given: Pre-determined demand of patient transfers
- Goal: Optimize multi-ambulance routing and vehicle type to minimize direct costs to the company

- Maintenance costs

 # ambulances deployed

Motivation

(3.5% of net admissions)

- Specialized care hospital dependent
- 1.3M inter-hospital

 Specialized care nospital dependent transfers/year

 Cost reduction → Investment to improve healthcare infrastructure

for cardiac arrests not witnessed*

Data

Extracted Data

- Coordinates of hospitals
- # Staffed beds
- \$/mi for Fuel (ICE) & EV

Processed Data

O Distance & Time (TravelTime API)

Intelligently Synthesized Data

- Vehicle maintenance cost & driver wages

Mixed Integer Formulation

Multi-Objective

$\min_{x,y,u}$	$\sum f_k *$	$x^k + \sum \sum \sum c^k * d_i$	$x_{ij} * x_{ij}^k + w * \sum_{i \in V} \sum_{j \in V} \sum_{k \in V} (t_{ij} + t_b) * x_{ij}^k$
-,3,-	$k \in K$	$i \in V \ j \in V \ k \in K$	$i \in V \ j \in V \ k \in K$

Flow Constraints

$\sum_{j \in V} \sum_{k \in K} x_{ij}^k = 1$	$\forall i \in P \ (2)$
$\sum_{k \in K} x_{i(i+ P)}^k = 1$	$\forall i \in P \ (3)$
$\sum_{i \in V} x_{ij}^k - \sum_{i \in V} x_{ji}^k = 1$	$\forall j \in V, k \in K \ (4)$

Bounds & Linking Constraints

$\sum_{i \in V} \sum_{j \in V} x_{ij}^k * (t_{ij} +$	$(-t_b) \le t_{max} \qquad \forall \ k \in K $ (5)
$\sum_{i \in V} \sum_{j \in V} x_{ij}^k \le d_{elec}$	$\forall k \in E \ (6)$
$x_{ij}^k=0$	$\forall i \in D, j \in D, k \in K (7)$
$x_{ij}^k \le y^k * depot_i^k$	$\forall i \in D, j \in V \ k \in K \ (8)$

Sequence Constraints

$u_i^k = 1$	$\forall i \in D, k \in K$ (9)
$u_i^k - u_j^k + 1 \le ($	$V -1)*(1-x_{ij}^k)$
$\forall i \in P \cup$	$ \exists H, \ j \in P \cup H, \ k \in K \ (1) $
$2 \leq u_i^k \leq V $	$\forall i \in P \cup H, \ k \in K \ (1$

Decision Variables

)		$x_{ij}^k = \begin{cases} $	1 if ambulance k transfers patient from node i to node j otherwise
)		$y^k =$	$\begin{cases} 1 & \text{if ambulance } k \text{ is used for patient transfers} \\ 0 & \text{otherwise} \end{cases}$
)	ı	$u_i^k =$	sequence of traversing node i by ambulance k

Key Features

- ✓ Multi-Depot
- ✓ Gas Ambulances vs EVs
- ✓ Sequenced Outputs

Key Additions

- ✓ Driver travel constrained by 8hrs
- ✓ EV ambulances travel less than 60mi in one charge

Flavor of Robustness

Scenario 1	Scenario 2	Scenario 3	Scenario 4
t (Actual)	<i>t</i> ± 5%	t ± 10%	t ± 50%

Added traffic scenarios; uniformly averaged for robust route

Results & Impact

Formulation	Metric			
	Fuel Costs	Wage Costs	Fixed Costs	Overall
Baseline (USD)	27.29	166.97	9.60	203.85
Optimized (USD)	14.52	170.40	6.10	191.02
Percent Improvement (%)	46.78	-2.06	36.46	6.29

- → Baseline based on current standard practice
- → Ambulances at central "regions" + real-time dispatch

Geographical Visualizations

Optimal routes available on interactive webpage for interpreting model output

Scope of Improvement

- → Scaling up the problem with duality techniques
- → Quantify emission reduction with minimization of Total distance traveled & Utilization of EV
- → Allowing ambulances to start and end at different depots, incorporating notion of depot capacity
- → Adding time windows based on patient availability
- → Priority variable for emergency or special needs

