<u>Assignment – 7</u>

Assigned To = All 9 Class Students

Chapter = Triangles

MM = 30

- Q1. In right triangle ABC, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. Point D is joined to point B (see Fig. 7.23). Show that:
- (i) $\triangle AMC \cong \triangle BMD$
- (ii) ∠DBC is a right angle.
- (iii) ΔDBC ≅ ΔACB
- (iv) CM = $\frac{1}{2}$ AB

Fig. 7.23

Q2. \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see Fig. 7.34). Show that \angle BCD is a right angle.

Q3. In figure, AB divides $\angle DAC$ in the ratio 1 : 3 and AB = DB. Determine the value of x.

Q4. In a \triangle ABC, the internal bisectors of \angle B and \angle C meet at P and the external bisectors of \angle B and \angle C meet at Q. Prove that \angle BPC + \angle BQC = 180°.

Q5. If one angle of a triangle is equal to the sum of the other two, show that the triangle is a right angle triangle.

Q6. Two angles of a triangle are equal and the third angle is greater than each of those angles by 30°. Determine all the angles of the triangle.

Q7. In figure, the sides BC, CA and AB of a \triangle ABC have been produced to D, E and F respectively. If \triangle ACD = 105° and \triangle EAF = 45°, find all the angles of the \triangle ABC.

Q8. Show that the angles of an equilateral triangle are 60° each.

Q9. ΔABC and ΔDBC are two isosceles triangles on the same base BC and vertices A and D are on the same side of BC (see Fig. 7.39). If AD is extended to intersect BC at P, show that

- (i) $\triangle ABD \cong \triangle ACD$
- (ii) $\triangle ABP \cong \triangle ACP$
- (iii) AP bisects ∠A as well as ∠D.

(iv) AP is the perpendicular bisector of BC.

Q10. Two sides AB and BC and median AM of one triangle ABC are respectively equal to sides PQ and QR and median PN of ΔPQR (see Fig. 7.40). Show that:

- (i) $\triangle ABM \cong \triangle PQN$
- (ii) $\triangle ABC \cong \triangle PQR$

Fig. 7.40