

Ε

Emitter

 $V_{CES} = 600V$

 $I_C = 40A, T_C = 100$ °C

 $t_{SC} \ge 5\mu s$, $T_{J(max)} = 175^{\circ}C$

 $V_{CE(ON)}$ typ. = 1.60V @ Ic = 24A

n-channel

G

Gate

Insulated Gate Bipolar Transistor with Ultrafast Soft Recovery Diode

С

Collector

Applications

- Industrial Motor Drive
- Inverters
- **UPS**
- Welding

VVelding	
Features -	→ Benefits
Low V _{CE(ON)} and switching losses	High efficiency in a wide range of applications and switching
ISQUARE RESULTATION MAXIMUM JUNCTION TEMPERATURE 175°C.	Improved reliability due to rugged hard switching performance and high power capability
Positive V _{CE (ON)} temperature coefficient	Excellent current sharing in parallel operation
5µs Short Circuit SOA	Enables short circuit protection scheme
Lead-Free, RoHS Compliant	Environmentally friendly

Page nort number	Page nort number Dockore Type		ıck	Orderable Bort Number	
Base part number	Package Type	Form	Quantity	Orderable Part Number	
		Tube	50	IRGS4640DPbF	
IRGS4640DPbF	D ² Pak	Tape and Reel Right	800	IRGS4640DTRRPbF	
		Tape and Reel Left	800	IRGS4640DTRLPbF	
IRGSL4640DPbF	TO-262	Tube	50	IRGSL4640DPbF	
IRGB4640DPbF	TO-220AB	Tube	50	IRGB4640DPbF	
IRGP4640DPbF	TO-247AC	Tube	25	IRGP4640DPbF	
IRGP4640D-EPbF	TO-247AD	Tube	25	IRGP4640D-EPbF	

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	65	
I _C @ T _C = 100°C	Continuous Collector Current	40	Λ.
I _{CM}	Pulse Collector Current, V _{GE} = 15V	72	A
I _{LM}	Clamped Inductive Load Current, V _{GE} = 20V ①	96	
I _F @ T _C = 25°C	Diode Continuous Forward Current	65	
I _F @ T _C = 100°C	Diode Continuous Forward Current	40	
I _{FM}	Diode Maximum Forward Current ④	96	
V_{GE}	Continuous Gate-to-Emitter Voltage	±20	V
	Transient Gate to Emitter Voltage	±30	
P_D @ T_C = 25°C	Maximum Power Dissipation	250	W
P _D @ T _C = 100°C	Maximum Power Dissipation	125	VV
T _J	Operating Junction and	-55 to +175	
T_{STG}	Storage Temperature Range		
	Soldering Temperature, for 10 sec. (1.6mm from case)	300	C
	Mounting Torque, 6-32 or M3 Screw (TO-220, TO-247)	10 lbf·in (1.1 N·m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
D (IODT)	Thermal Resistance Junction-to-Case (D²Pak, TO-220, TO-262) ②			0.60	
$R_{\theta JC}$ (IGBT)	Thermal Resistance Junction-to-Case (TO-247) ②			0.60	
D (Diada)	Thermal Resistance Junction-to-Case (D²Pak, TO-220, TO-262) ②			1.53	
$R_{\theta JC}$ (Diode)	Thermal Resistance Junction-to-Case (TO-247) ②			1.62	
Б	Thermal Resistance, Case-to-Sink (flat, greased surface– TO 220, D ² Pak, TO-262)		0.50		°C/W
$R_{\theta CS}$	Thermal Resistance, Case-to-Sink (flat, greased surface– TO 247)		0.24		
	Thermal Resistance, Junction-to-Ambient (PCB Mount - D²Pak, TO-262) ®			40	
$R_{\theta JA}$	Thermal Resistance, Junction-to-Ambient (Socket Mount -TO-247)			40	
	Thermal Resistance, Junction-to-Ambient (Socket Mount -TO-220)			62	

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600		_	V	V _{GE} = 0V, I _C = 100μA ③
$\Delta V_{(BR)CES}/\Delta T_{J}$	Temperature Coeff. of Breakdown Voltage	_	0.30		V/°C	$V_{GE} = 0V, I_{C} = 1mA (25^{\circ}C-175^{\circ}C)$
		_	1.60	1.90		$I_C = 24A, V_{GE} = 15V, T_J = 25^{\circ}C$
$V_{CE(on)}$	Collector-to-Emitter Saturation Voltage	_	1.90	_	V	I _C = 24A, V _{GE} = 15V, T _J = 150°C
			2.0	_		I _C = 24A, V _{GE} = 15V, T _J = 175°C
$V_{GE(th)}$	Gate Threshold Voltage	4.0		6.5	V	$V_{CE} = V_{GE}$, $I_C = 700\mu A$
$\Delta V_{GE(th)} / \Delta T_{J}$	Threshold Voltage Temp. Coefficient	_	-18	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 1.0 \text{mA} (25^{\circ}\text{C}-175^{\circ}\text{C})$
gfe	Forward Transconductance	_	17	_	S	$V_{CE} = 50V, I_{C} = 24A, PW = 80\mu s$
			2.0	25	μA	V _{GE} = 0V, V _{CE} = 600V
I _{CES}	Collector-to-Emitter Leakage Current	_	775	_		$V_{GE} = 0V, V_{CE} = 600V, T_{J} = 175^{\circ}C$
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	V _{GE} = ±20V
\ /	Diede Fernand Vellage Deen	_	1.8	2.6	V	I _F = 24A
V_{FM}	Diode Forward Voltage Drop	_	1.28	_		I _F = 24A, T _J = 175°C

Submit Datasheet Feedback

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max	Units	Conditions
Q_q	Total Gate Charge	_	50	75		I _C = 24A
Q_{ge}	Gate-to-Emitter Charge	_	13	20	nC	V _{GE} = 15V
Q_{qc}	Gate-to-Collector Charge	_	21	31		V _{CC} = 400V
E _{on}	Turn-On Switching Loss	_	115	201		1 - 244 \ \ - 400\ \ \ \ -45\ \
E _{off}	Turn-Off Switching Loss	_	600	700	1 11.1	$I_{C} = 24A, V_{CC} = 400V, V_{GE} = 15V$
E _{total}	Total Switching Loss	_	715	901		$R_G = 10\Omega$, L = 200 μ H, L _S = 150nH,
t _{d(on)}	Turn-On delay time	_	41	53		T _J = 25°C
tr	Rise time	_	22	31		Energy losses include tail & diode
d(off)	Turn-Off delay time	_	104	115		reverse recovery ©
t _f	Fall time	_	29	41		leverse recovery
E _{on}	Turn-On Switching Loss	_	420	_		
E _{off}	Turn-Off Switching Loss	_	840	_	μυ	$I_C = 24A$, $V_{CC} = 400V$, $V_{GE} = 15V$
E _{total}	Total Switching Loss	_	1260	_		$R_G = 10\Omega$, L = 200 μ H, L _S = 150nH,
t _{d(on)}	Turn-On delay time	_	40	_		T _J = 175°C
t _r	Rise time	_	24	_	ns	Energy losses include tail & diode
t _{d(off)}	Turn-Off delay time	l –	125	_	113	reverse recovery ⑤
t _f	Fall time	_	39	_		leverse recovery @
C _{ies}	Input Capacitance	_	1490	_		$V_{GE} = 0V$
C _{oes}	Output Capacitance	l –	129	_	pF	V _{CC} = 30V
C _{res}	Reverse Transfer Capacitance	l –	45	_		f = 1.0MHz
RBSOA	Reverse Bias Safe Operating Area	FULL SQUARE			$T_J = 175$ °C, $I_C = 96A$ $V_{CC} = 480V$, $Vp \le 600V$ $R_G = 10\Omega$, $V_{GE} = +20V$ to $0V$	
SCSOA	Short Circuit Safe Operating Area	5.0	_	_	μs	$V_{CC} = 400V, Vp \le 600V$ $R_G = 10\Omega, V_{GE} = +15V \text{ to } 0V$
Erec	Reverse Recovery Energy of the Diode	_	621	_	μJ	T _J = 175°C
t _{rr}	Diode Reverse Recovery Time	_	89	_	ns	$V_{CC} = 400V$, $I_F = 24A$, $V_{GE} = 15V$,
I _{rr}	Peak Reverse Recovery Current	_	37	_	Α	Rg = 10Ω , L = 200μ H, L _S = 150 nH

Fig. 1 - Maximum DC Collector Current vs.

Case Temperature

Fig. 3 - Forward SOA $T_C = 25^{\circ}C; T_J \le 175^{\circ}C; V_{GE} = 15V$

Fig. 5 - Typ. IGBT Output Characteristics $T_J = -40$ °C; $tp = 80\mu s$

Fig. 2 - Power Dissipation vs. Case Temperature

Fig. 4 - Reverse Bias SOA T_J = 175°C; V_{GE} = 20V

Fig. 6 - Typ. IGBT Output Characteristics $T_J = 25$ °C; $tp = 80\mu s$

Fig. 7 - Typ. IGBT Output Characteristics $T_J = 175^{\circ}\text{C}$; tp = 80 μ s

Fig. 9 - Typical V_{CE} vs. V_{GE}

Fig. 11 - Typical V_{CE} vs. V_{GE} T_J = 175°C

Fig. 8 - Typ. Diode Forward Voltage Drop Characteristics

Fig. 10 - Typical V_{CE} vs. V_{GE} $T_J = 25^{\circ}C$

Fig. 12 - Typ. Transfer Characteristics $V_{CE} = 50V$; tp = $10\mu s$

Fig. 13 - Typ. Energy Loss vs. I_C T_J = 175°C; L = 200 μ H; V_{CE} = 400V, R_G = 10 Ω ; V_{GE} = 15V

 $\label{eq:Fig. 15} \textbf{Fig. 15} \mbox{ - Typ. Energy Loss vs. } R_G \\ T_J = 175 \mbox{°C; L} = 200 \mu \mbox{H; V}_{CE} = 400 \mbox{V, I}_{CE} = 24 \mbox{A; V}_{GE} = 15 \mbox{V}$

Fig. 17 - Typ. Diode I_{RR} vs. I_{F} $T_{.I}$ = 175°C

Fig. 14 - Typ. Switching Time vs. I_C T_J = 175°C; L = 200 μ H; V_{CE} = 400V, R_G = 10 Ω ; V_{GE} = 15V

Fig. 16 - Typ. Switching Time vs. R_G T_J = 175°C; L = 200 μ H; V_{CE} = 400V, I_{CE} = 24A; V_{GE} = 15V

Fig. 18 - Typ. Diode I_{RR} vs. R_G T_J = 175°C

Fig. 19 - Typ. Diode I_{RR} vs. di_F/dt V_{CC} = 400V; V_{GE} = 15V; I_F = 24A; T_J = 175°C

Fig. 21 - Typ. Diode E_{RR} vs. I_F $T_{J} = 175^{\circ}C$

Fig. 23 - Typ. Capacitance vs. V_{CE} V_{GE} = 0V; f = 1MHz

Fig. 20 - Typ. Diode Q_{RR} vs. di_F/dt $V_{CC} = 400V$; $V_{GE} = 15V$; $T_{J} = 175$ °C

Fig. 22 - V_{GE} vs. Short Circuit Time $V_{CC} = 400V; T_C = 25^{\circ}C$

Fig. 24 - Typical Gate Charge vs. V_{GE} I_{CE} = 24A; L = 600 μ H

Submit Datasheet Feedback

Fig. 25 - Maximum Transient Thermal Impedance, Junction-to-Case (IGBT-TO247 Pak)

Fig. 26 - Maximum Transient Thermal Impedance, Junction-to-Case (DIODE-TO-247 Pak)

Notes:

- $\bigcirc \quad V_{CC} = 80\% \; (V_{CES}), \; V_{GE} = 20V, \; L = 100 \mu H, \; R_G = 10 \Omega.$
- ② R_{θ} is measured at T_{J} of approximately 90°C.
- Pulse width limited by maximum junction temperature.
- S Values influenced by parasitic L and C in measurement.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994.http://www.irf.com/technical-info/appnotes/an-994.pdf

Fig. 27 - Maximum Transient Thermal Impedance, Junction-to-Case (IGBT-TO-220Pak)

Fig. 28 - Maximum Transient Thermal Impedance, Junction-to-Case (DIODE-TO-220Pak)

80 V + POUT VCC

Fig.C.T.1 - Gate Charge Circuit (turn-off)

Fig.C.T.2 - RBSOA Circuit

Fig.C.T.3 - S.C. SOA Circuit

Fig.C.T.4 - Switching Loss Circuit

Fig.C.T.5 - Resistive Load Circuit

Fig.C.T.6 - BVCES Filter Circuit

Fig. WF1 - Typ. Turn-off Loss Waveform @ T_J = 175°C using Fig. CT.4

Fig. WF3 - Typ. Diode Recovery Waveform @ T_J = 175°C using Fig. CT.4

Fig. WF2 - Typ. Turn-on Loss Waveform a T_J = 175°C using Fig. CT.4

Fig. WF4 - Typ. S.C. Waveform a T_J = 150°C using Fig. CT.3

D²-PAK (TO-263AB) Package Outline

Dimensions are shown in millimeters (inches)

S		N			
M B O	MILLIM	ETERS	INC	HES	O T E S
L	MIN.	MAX.	MIN.	MAX.	E S
Α	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
ь	0.51	0.99	.020	.039	
ь1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
ь3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1,14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270		4
Ε	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245		4
е	2.54	BSC	.100	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	-	1.65	-	.066	4
L2	_	1.78	-	.070	
L3	0.25	BSC	.010	BSC	
L4	4.78	5.28	.188	.208	

NOTES

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- O.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

D²-Pak (TO-263AB) Part Marking Information

VIEW A-A

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

TO-220AB Package Outline

(Dimensions are shown in millimeters (inches))

- 1.- DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS].
- LEAD DIMENSION AND FINISH UNCONTROLLED IN LT
- DIMENSION D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

DIMENSION 61, 63 & c1 APPLY TO BASE METAL ONLY.

- CONTROLLING DIMENSION: INCHES.
- THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED.
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (max.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE.

	DIMENSIONS				
SYMBOL	MILLIM	ETERS	INC	HES	
	MIN.	MAX.	MIN.	MAX.	NOTES
Α	3.56	4.83	.140	.190	
A1	1,14	1.40	.045	.055	
A2	2.03	2.92	.080	.115	
b	0.38	1.01	.015	.040	
b1	0.38	0.97	.015	.038	5
b2	1,14	1.78	.045	.070	
b3	1,14	1.73	.045	.068	5
С	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
e	2.54		.100	BSC	
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	3.56	4.06	.140	.160	3
ØΡ	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

LEAD ASSIGNMENTS

HEXFET

1.- GATE 2.- DRAIN 3.- SOURCE

IGBTs, CoPACK

1.- GATE 2.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE 2.- CATHODE 3.- ANODE

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010

LOT CODE 1789

ASSEMBLED ON WW 19,2000

IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead - Free"

TO-220AB package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

TO-262 Package Outline

Dimensions are shown in millimeters (inches)

S	DIMENSIONS				
M B O	MILLIM	ETERS	INC	HES	O T E S
O L	MIN.	MAX.	MIN.	MAX.	E S
Α	4.06	4.83	.160	.190	
A1	2.03	3.02	.080	.119	
b	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	-	.270	-	4
Ε	9.65	10.67	.380	.420	3,4
E1	6.22	-	.245		4
е	2.54	BSC	.100	BSC	
L	13.46	14.10	.530	.555	
L1	-	1.65	-	.065	4
L2	3.56	3.71	.140	.146	

NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED $^{\circ}$ 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

6. CONTROLLING DIMENSION: INCH.

7.— OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(max.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

LEAD ASSIGNMENTS

IGBTs, CoPACK

- 1.- GATE 2.- COLLECTOR 3.- EMITTER
- 4. COLLECTOR

<u>HEXFET</u>

- 1.- ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.- CATHODE
- 1.- GATE 2.- DRAIN 3.- ANODE
- 3. SOURCE 4. DRAIN

TO-262 Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.

2. DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED .005" (0.127)
PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

5. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

ØP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 ° TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AC .

		DIMEN	ISIONS			
SYMBOL	INC	HES	MILLIM	MILLIMETERS		
	MIN.	MAX.	MIN.	MAX.	NOTES	
A	.183	.209	4.65	5.31		
A1	.087	.102	2.21	2.59		
A2	.059	.098	1.50	2.49		
b	.039	.055	0.99	1.40		
b1	.039	.053	0.99	1.35		L
b2	.065	.094	1.65	2.39		
b3	.065	.092	1.65	2.34		
b4	.102	.135	2.59	3.43		
b5	.102	.133	2.59	3.38		
С	.015	.035	0.38	0.89		
c1	.015	.033	0.38	0.84		
D	.776	.815	19.71	20.70	4	
D1	.515	-	13.08	-	5	
D2	.020	.053	0.51	1.35		
E	.602	.625	15.29	15.87	4	
E1	.530	-	13.46	-		
E2	.178	.216	4.52	5.49		
e	.215	BSC	5.46	BSC	1	
Øk	.0	10	0.	25]	
L	.559	.634	14.20	16.10		
L1	.146	.169	3.71	4.29		
ØΡ	.140	.144	3.56	3.66		
øP1	-	.291	-	7.39		
Q	.209	.224	5.31	5.69		
S	.217	BSC	5.51	BSC		
	ı		J		1	ı

LEAD ASSIGNMENTS

<u>HEXFET</u>

1.- GATE 2.- DRAIN

3.- SOURCE

IGBTs, CoPACK

1.- GATE

2.- COLLECTOR 3.- EMITTER

4.- COLLECTOR

DIODES

1.- ANODE/OPEN

2.- CATHODE

3.- ANODE

TO-247AC Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

EXAMPLE: THIS IS AN IRFPE30

WITH ASSEMBLY LOT CODE 5657

ASSEMBLED ON WW 35, 2001

IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free"

TO-247AC package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

TO-247AD Package Outline

Dimensions are shown in millimeters (inches)

NOTES:

1. DIMENSIONING AND TOLERANCING AS PER ASME Y14.5M 1994.

DIMENSIONS ARE SHOWN IN INCHES.

CONTOUR OF SLOT OPTIONAL.

4. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.

THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS D1 & E1.

LEAD FINISH UNCONTROLLED IN L1.

OP TO HAVE A MAXIMUM DRAFT ANGLE OF 1.5 'TO THE TOP OF THE PART WITH A MAXIMUM HOLE DIAMETER OF .154 INCH.

OUTLINE CONFORMS TO JEDEC OUTLINE TO-247AD.

	DIMENSIONS				
SYMBOL	INCHES		MILLIN	ETERS	
	MIN.	MAX.	MIN.	MAX.	NOTES
A	.183	.209	4.65	5.31	
A1	.087	.102	2.21	2.59	
A2	.059	.098	1.50	2.49	
b	.039	.055	0.99	1.40	
ь1	.039	.053	0.99	1.35	
b2	.065	.094	1.65	2.39	
b3	.065	.092	1.65	2.34	
b4	.102	.135	2.59	3.43	
b5	.102	.133	2.59	3.38	
С	.015	.035	0.38	0.89	
c1	.015	.033	0.38	0.84	
D	.776	.815	19.71	20.70	4
D1	.515	-	13.08	-	5
D2	.020	.053	0.51	1.35	
E	.602	.625	15.29	15.87	4
E1	.530	-	13.46	-	
E2	.178	.216	4.52	5.49	
e	.215	BSC	5.46	BSC]
Øk	.0	10	0.	25	
L	.780	.827	19.57	21.00	
L1	.146	.169	3.71	4.29	
ØΡ	.140	.144	3.56	3.66	
øP1	-	.291	-	7.39	
Q	.209	.224	5.31	5.69	
S	.217	BSC	5.51	BSC	

LEAD ASSIGNMENTS

<u>HEXFET</u>

1.- GATE

2.- DRAIN 3.- SOURCE

4.- DRAIN

IGBTs, CoPACK

1.- GATE

2.- COLLECTOR 3.- EMITTER

4.- COLLECTOR

DIODES

1.- ANODE/OPEN 2.- CATHODE

3.- ANODE

TO-247AD Part Marking Information

EXAMPLE: THIS IS AN IRGP30B120KD-E

WITH ASSEMBLY

LOT CODE 5657

ASSEMBLED ON WW 35,2000 IN THE ASSEMBLY LINE "H"

Note: "P" in assembly line position indicates "Lead-Free'

TO-247AD package is not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

D²Pak Tape & Reel Information

(Dimensions are shown in millimeters (inches))

NOTES:

- COMFORMS TO EIA-418.
- CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Qualification Information[†]

Qualification Level		Industrial (per JEDEC JESD47F) ^{††}		
Moisture Sensitivity Level	D ² Pak	MSL1		
	TO-220AB	N/A		
	TO-262	N/A		
	TO-247AC	N/A		
	TO-247AD	N/A		
RoHS Compliant		Yes		

- † Qualification standards can be found at International Rectifier's web site: http://www.irf.com/product-info/reliability/
- †† Applicable version of JEDEC standard at the time of product release.

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA

To contact International Rectifier, please visit http://www.irf.com/whoto-call/