Machine Learning

Introduction

marie.szafranski@ensiie.fr

Début: 09h30

De quoi parle-t-on?

Buzzwords en vrac

De quoi parle-t-on?

Une structure

2023-2024

De quoi parle-t-on?

Une autre structure

Définition

(tentative I)

NON

Machine learning : une boîte noire?

https://xkcd.com/1838/

Traduction de machine learning

- Apprentissage machine
- Apprentissage artificiel
- Apprentissage automatique

• Apprentissage statistique

littéralement

référence à l'IA

 $\rightsquigarrow \textit{algorithmes} \\$ connotation informatique

Définition

Wikipedia

Machine learning is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead

Apprentissage automatique vs statistique

Deux points de vue complémentaires

[Breiman, 2001]

Scientifique

Quelles données?

N individus décrits par D variables

Quelques o	rdres de	grandeur
------------	----------	----------

[Wikistat, 2016]

- kO
 Analyse de données
- MO
 - Apprentissage automatique \leadsto réseaux de neurones
- GO
 Exploration et fouille de données

 Apprentissage statistique → SVM
- **TO**Bioinformatique
- BioinformatiquePO
 - Réseaux sociaux, e-commerce, etc...

1970s

1980s

1990s

[Fayyad et al., 1996] [Vapnik, 1995]

2000s

 $D \gg N$

2010s

 $N \gg D$

Des données à grande échelle

N ou/et D très grands

Évolutions technologiques dans les techniques d'acquisition

- + Augmentation des capacités de stockage
- → Explosion de la quantité d'information disponible

Génomique

- N : quelques centaines de patients
- D : mesure de l'expression de plusieurs millions de variants génétiques

Des données à grande échelle

N ou/et D très grands

Évolutions technologiques dans les techniques d'acquisition

- + Augmentation des capacités de stockage
- → Explosion de la quantité d'information disponible

Astronomie

- N : plusieurs millions de corps célestes
- *D* : quelques centaines de mesures (positions, vitesses, etc.)

Des données à grande échelle

N ou/et D très grands

Évolutions technologiques dans les techniques d'acquisition

- + Augmentation des capacités de stockage
- → Explosion de la quantité d'information disponible

Web et text mining

- ullet N: plusieurs millions de sites
- *D* : liens entrants et sortants, ancres, nom de domaine, hébergeur, etc.

Quelle finalité pour ces données?

Définir un modèle et réaliser l'algorithme associé dans une perspective prédictive et / ou explicative

Exemples

- Bioinformatique : identifier les gènes qui permettent de distinguer des patients sains de patients atteints d'une maladie
- Astronomie : étudier des relations liant des paramètres de positions et de vitesses de corps célestes à leur composition chimique
- Web mining : analyser le comportement d'internautes pour définir un algorithme de recherche sur les sites web (PageRank de Google)

ensiie

10

Schéma global

À la croisée de l'informatique et des statistique

- 1. Phase de collecte et d'intégration
 - Architecture des données
 - Web et réseaux distribués

Schéma global

À la croisée de l'informatique et des statistique

2. Phase exploratoire

- Analyse de données
- Recherche d'information et de motifs

Schéma global

À la croisée de l'informatique et des statistique

- 3. Phase explicative ou décisionnelle
 - Machine Learning
 - IA interprétable

$$(\neq XAI)$$

Besoins et défis actuels

À la croisée de l'informatique et des statistique

3. Phase explicative ou décisionnelle

- Machine Learning
- IA interprétable

$$(\neq XAI)$$

Environnement: vraie R&D

Concurrence: +++ (> doctorat)

Besoins et défis actuels

À la croisée de l'informatique et des statistique

2. Phase exploratoire

- Analyse de données
- Recherche d'information et de motifs

Concurrence: ++ (ingé. XP / doct.)

Besoins et défis actuels

À la croisée de l'informatique et des statistique

1. Phase de collecte et d'intégration

- Architectures des données
- Web et réseaux distribués


```
Environnement: partout
```

Concurrence :
$$-/=$$
 (ingé. / doct.)

DataOps → MLOps

Différentes classes de méthodes

Pourquoi différentes classes?

- Différents types de données
- Différents objectifs

Classes de méthodes

- Méthodes descriptives
- Méthodes factorielles
- Méthodes non supervisées
- Méthodes supervisées

Méthodes descriptives

Objectif

Résumés numériques ou graphiques des données

https://www.rpubs.com/cparoissin/iris

Exemple

Données : les iris de Fisher

- 3 espèces
 - Setosa
 - Virginica
 - Versicolor
 - 4 variables
 - longueur des pétales
 - largeur des pétales
 - longueur des sépales
 - largeur des sépales

2023-2024

Méthodes factorielles

Objectif

Remplacer D variables (souvent redondantes) par un nombre réduit de nouvelles variables en conservant le maximum d'information

http://www.stats.ox.ac.uk/~sejdinov/teaching/dmml17/PCA_crabs.html

Exemple

Données: 200 crabes

- 5 variables
 - longueur de la carapace
 - hauteur du crabe
 - ...
- 2 espèces
 - orange
 - bleue

Méthodes factorielles

Objectif

Remplacer D variables (souvent redondantes) par un nombre réduit de nouvelles variables en conservant le maximum d'information

http://www.stats.ox.ac.uk/~sejdinov/teaching/dmml17/PCA_crabs.html

Exemple

Données: 200 crabes

- 5 variables
 - longueur de la carapace
 - hauteur du crabe
 - ...
- 2 espèces
 - orange
 - bleue

Méthodes factorielles

Objectif

Remplacer D variables (souvent redondantes) par un nombre réduit de nouvelles variables en conservant le maximum d'information

http://www.stats.ox.ac.uk/~sejdinov/teaching/dmml17/PCA_crabs.html

Exemple

Données: 200 crabes

- 5 variables
 - longueur de la carapace
 - hauteur du crabe
 - ...
- 2 espèces
 - orange
 - bleue

Méthodes de classification

(clustering – non supervisé)

Objectif

Identifier par une procédure automatique des classes « naturelles »

Exemple

47 villes identifiées par les distances kilométriques qui les séparent des autres

Méthodes de régression

(supervisé)

Objectif

Étudier la dépendance entre une ou plusieurs variables *explicatives* et une variable *à expliquer*

Exemple

Différentes classes de méthodes

Une déclinaison partielle

Quelles classes de méthodes dans ce cours

Méthodes descriptives

```
http://wikistat.fr/pdf/st-l-Intro-statElem.pdf
+ http://wikistat.fr/pdf/st-l-des-uni.pdf
+ http://wikistat.fr/pdf/st-l-des-bi.pdf
```

→ à connaître |

19

Méthodes factorielles

```
→ un champ à part entière, à connaître aussi...
http://wikistat.fr/pdf/st-m-Intro-ExploMultidim.pdf
```

Méthodes supervisées

→ un focus sur la régression et les arbres de décisions

• Méthodes non supervisées

ightsquigar un focus sur les K-means et la classification hiérarchique

2023-2024 ensiie

Informations pratiques

Logistique

• Supports https://pydio.pedago.ensiie.fr/ → /pub/FISE_PYDS35

• Rendus https://exam.ensiie.fr

Projet : mise en place d'un protocole rigoureux

https://github.com/rfordatascience/tidytuesday/tree/master/data

1. Jeu de données avec problématique	1 page : 09/10/2023
2 Description du jeu de données	2 pages : 16/10/2023

3. Exploration du jeu de données 2 pages : 06/11/2023

+ Comparaison de méthodes supervisées 2 pages : 06/11/2023

+ Notebook Python 06/11/2023

20

Informations pratiques

Planning prévisionnel

Séances	Matin	\sim 3h30	Après-midi	\sim 3h30
02/10	J1. Méthodologie	// TP	J1. Méthodologie	// TP + projets
09/10	J2. Supervisé	// TP	J2. Supervisé	// TP $+$ projets
16/10	J3. Non supervisé	// TP	J3. Non supervisé	// TP + projets
06/11	Soutenances projets		Soutenances projets	

Intervenants

- Kylliann De Santiago
- Marie Szafranski

ensiie

Informations pratiques

Language pour les TP et le projet

Python

Ceci n'est pas un cours de Python

Pratique avec python

https://github.com/paris-saclay-cds/data-science-workshop-2019

Numpy, Pandas, Matplolib, Seaborn

maniplation : day 1

• Scikit-learn

ML : day 2

Références I

Leo Breiman. Statistical modeling: The two cultures. Statistical Science, 16:199–231, 2001. URL https://doi.org/10.1214/ss/1009213726.

Usama M. Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth. Advances in Knowledge Discovery and Data Mining. American Association for Artificial Intelligence, 1996.

Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

Team Wikistat. Wikistat, 2016. URL http://wikistat.fr/.

2023-2024