

Modeling with R, TensorFlow, and Spark

An Introduction to the Landscape for Machine Learning with R

How we think about data science

Models and methods

- Regression models
 - Logistic regression (stats)
 - Lasso and Elastic Net Regularized GLM (glmnet)
 - Gradient Boosting Machine (gbm)
- Convolutional neural networks
 - Tensorflow (tensorflow)
- Helpers
 - Keras (keras)
 - Classification and regression training (caret)

Workflow - Census Data

- Data wrangling
 - Tidy + Transformation
- Visualization
 - Exploratory data analysis
- Modeling
 - Logistic regression (stats)
 - Lasso and Elastic Net Regularized GLM (glmnet)
 - Gradient Boosting Machine (gbm & caret)
- Communicate
 - Flex Dashboard
 - Shiny

Census Data

- Prediction task is to determine whether a person makes over 50K a year in the year 1994.
- https://archive.ics.uci.edu/ml/datasets/Census+Income

	labet	gender	native_country	education [‡]	education_num	occupation [‡]	workclass [‡]	marital_status	race	age_buckets
1	0	Male	United-States	Bachelors	13	Adm-clerical	State-gov	Never-married	White	(35,40]
2	0	Male	United-States	Bachelors	13	Exec-managerial	Self-emp-not-inc	Married-civ-spouse	White	(45,50]
3	0	Male	United-States	HS-grad	9	Handlers-cleaners	Private	Divorced	White	(35,40]
4	0	Male	United-States	11th	7	Handlers-cleaners	Private	Married-civ-spouse	Black	(50,55]
5	0	Female	Cuba	Bachelors	13	Prof-specialty	Private	Married-civ-spouse	Black	(25,30]
6	0	Female	United-States	Masters	14	Exec-managerial	Private	Married-civ-spouse	White	(35,40]
7	0	Female	Jamaica	9th	5	Other-service	Private	Married-spouse-absent	Black	(45,50]
8	1	Male	United-States	HS-grad	9	Exec-managerial	Self-emp-not-inc	Married-civ-spouse	White	(50,55]
9	1	Female	United-States	Masters	14	Prof-specialty	Private	Never-married	White	(30,35]
10	1	Male	United-States	Bachelors	13	Exec-managerial	Private	Married-civ-spouse	White	(40,45]
11	1	Male	United-States	Some-college	10	Exec-managerial	Private	Married-civ-spouse	Black	(35,40]
12	1	Male	India	Bachelors	13	Prof-specialty	State-gov	Married-civ-spouse	Asian-Pac-Islander	(25,30]
13	0	Female	United-States	Bachelors	13	Adm-clerical	Private	Never-married	White	(18.25)

Census Demo

TensorFlow

Smart Reply Are you free tomorrow? Yes, what's up?

https://www.tensorflow.org/about/uses

TensorFlow & RStudio

- tensorflow R package
- https://tensorflow.rstudio.com/
- Connects to TensorFlow API
- Runs in standalone or cluster mode
- Portable across servers and devices
- Works with Keras
- Easy to get started!

TensorFlow – MNIST Example

- Define your model
 - y = softmax(Wx + b)
- Set up the loss function
 - cross entropy = -sum(y*log(yhat))
- Optimize using stochastic gradient decent
 - Enhanced by backpropogation

TensorFlow Demo

Keras

- Allows the same code to run on CPU or on GPU, seamlessly.
- **User-friendly** API which makes it easy to quickly prototype deep learning models.
- **Built-in support** for convolutional networks (for computer vision), recurrent networks (for sequence processing), and any combination of both.
- Supports arbitrary network architectures: multi-input or multi-output models, layer sharing, model sharing, etc. This means that Keras is appropriate for building essentially any deep learning model, from a memory network to a neural Turing machine.

Keras & RStudio

- keras R package
- https://rstudio.github.io/keras
- Uses friendly magrittr syntax
- Runs in standalone or cluster mode
- Uses tensorflow on the backend
- Portable across servers and devices
- Even easier to get started!

O Reference R interface to Keras Keras is a high-level neural networks API developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research. Keras has the following key features: Allows the same code to run on CPU or on GPU, seamlessly. User-friendly API which makes it easy to quickly prototype deep learning models. · Built-in support for convolutional networks (for computer vision), recurrent networks (for sequence processing), and any combination of both. Supports arbitrary network architectures: multi-input or multi-output models, layer sharing, model sharing, etc. This means that Keras is appropriate for building essentially any deep learning model, from a memory network to a neural Turing machine. This website provides documentation for the R interface to Keras. See the main Keras website at https://keras.io for additional information on the project. Installation The R interface to Keras uses TensorFlow™ as it's default tensor backend engine. To get started you should therefore install both the keras R package and the TensorFlow engine. First, install the keras R package from GitHub as follows: devtools::install_github("rstudio/keras") Then, use the install tensorflow() function to install TensorFlow:

Keras – Reuters Example

- Sequential model
- Layers
 - Densely connected NN
 - ReLU activation
 - Dropout regularization
 - Densely connected NN
 - Softmax activation
- Optimization
 - Categorical cross entropy
 - Adam
 - Accuracy
- Fit Model
- Assess Performance

Reuters Text Categorization data set (Reuters-21578) document

<REUTERS TOPICS="YES" LEWIS SPLIT="TRAIN" CGISPLIT="TRAINING-SET" OLDID="12981" NEWID="798">

<DATE> 2-MAR-1987 16:51:43.42</DATE>

<TOPICS><D>livestock</D><D>hog</D></TOPICS>

<TITLE>AMERICAN PORK CONGRESS KICKS OFF TOMORROW</TITLE>

<DATELINE> CHICAGO, March 2 - </DATELINE><BODY>The American Pork Congress kicks off tomorrow, March 3, in Indianapolis with 160 of the nations pork producers from 44 member states determining industry positions on a number of issues, according to the National Pork Producers Council, NPPC.

Delegates to the three day Congress will be considering 26 resolutions concerning various issues, including the future direction of farm policy and the tax law as it applies to the agriculture sector. The delegates will also debate whether to endorse concepts of a national PRV (pseudorabies virus) control and eradication program, the NPPC said.

A large trade show, in conjunction with the congress, will feature the latest in technology in all areas of the industry, the NPPC added. Reuter

\$4 \</BODY></TEXT></REUTERS>

Keras Demo

If you are investing in Spark, then there is nothing stopping you from using it with the full power of R.

Apache Spark

Fast and general engine for large-scale data processing

- Can integrate with the Hadoop ecosystem
- Supports Spark SQL (HiveQL)
- Built-in machine learning
- Designed for performance
- Extensible

The sparklyr package lets use Spark with R

sparklyr has full support for

- dplyr syntax
- Spark ML
- Third party extensions

And the RStudio IDE

Integrated with the RStudio IDE

dplyr backend

select arr_delay
from flights
where distance > 100

Analyze at scale with Spark ML

Create your own extensions

Run in local mode

Connect to your cluster

For more information see: spark.rstudio.com

sparklyr Demo