

Plano de Ensino para o Ano Letivo de 2021

IDENTIFICAÇÃO							
Disciplina:				Cód	digo da Disciplina:		
Microcontroladores e Sistemas Microcontrolados				ECA409			
Course:							
Microcontrollers and Systems							
Materia:							
	I						
Periodicidade: Anual	Carga horária total:	80	Carga horária sema	anal: 00	- 00 - 02		
Curso/Habilitação/Ênfase:	•	,	Série:	Período	0:		
Engenharia de Controle e Automação		5	Notur	no			
Engenharia de Controle e Automação 4 Diurno		0					
Engenharia de Controle e Autor	nação		4	Notur	no		
Professor Responsável:		Titulação - Graduaç	ção		Pós-Graduação		
Fernando Silveira Madani		Engenheiro em Controle e Automação Dou		Doutor			
Professores:		Titulação - Graduação		Pós-Graduação			
Fernando Silveira Madani		Engenheiro em Controle e Automação Doutor		Doutor			
MODALIDADE DE ENSINO							

Presencial: 100%

Mediada por tecnologia: 0%

* Em qualquer modalidade a entrega de atividades e trabalhos deve ser realizada segundo orientações do professor da disciplina.

ATIVIDADES DE EXTENSÃO

A DISCIPLINA NÃO CONTEMPLA ATIVIDADES DE EXTENSÃO.

EMENTA

Análise e projeto de circuitos sequenciais. Arquitetura de microprocessadores e microcontroladores. Arquitetura Von Neumann e Harvard. Desenvolvimento de projetos de sistemas microprocessados e microcontrolados. Linguagem Assembly. Laboratório: Utilização de ambiente dedicado para Desenvolvimento de projetos e implementações com microcontroladores. Desenvolvimento de projetos e implementações utilizando entradas e saídas digitais, botões, teclados, leds, displays, timers, interrupção, PWM, EEPROM, conversor D/A e conversor A/D.

SYLLABUS

Analysis and design of sequential circuits. Microprocessors and microcontrollers architectures. Von Neumann and Harvard Architectures. Microprocessor and microcontrollers systems design. Assembly Language. Lab: Environment for design and implementations with microcontrollers. Design and implementations using digital inputs and outputs, push-buttons, keyboards, LEDs, displays, timers, interrupts, PWM, EEPROM, D/A and A/D converter.

2021-ECA409 página 1 de 9

TEMARIO

Análisis y diseño de circuitos secuenciales. Arquitectura de microprocesadores y microcontroladores. La arquitectura Von Neumann y la arquitectura Harvard. Desarrollo de proyectos de sistemas de microprocesadores y microcontroladores. Lenguaje Ensamblador. Lab: El uso del entorno dedicado al desarrollo de proyectos e implementaciones con microcontroladores. Desarrollo de proyectos e implementaciones que utilizan entradas y salidas digitales, mandos, teclados, LEDs, displays, temporizadores, interrupciones, PWM, EEPROM, convertidor D / A y convertidor A/D.

CONHECIMENTOS PRÉVIOS NECESSÁRIOS PARA O ACOMPANHAMENTO DA DISCIPLINA

Física - Campo elétrico e campo magnético.

Circuitos Elétricos - Análise de circuitos elétricos, capacitores, resistores e indutores.

Eletrônica Analógica - Diodos, transistores e análise de circuitos digitais.

Matemática - Lógica Booleana e conversão de bases numéricas.

Eletrônica Digital - Funcões e portas lógicas, memórias semicondutoras,(ALU) Unidade Lógica Aritmética, flip-flops e máquinas de estados.

Língua portuguesa -- redação, leitura e interpretação de textos.

Língua Inglesa - leitura de manuais técnicos.

COMPETÊNCIAS DESENVOLVIDAS NA DISCIPLINA

COMPETÊNCIA 1:

I - Conceber, projetar e analisar sistemas, produtos, componentes e processos.II - Aprender de forma autônoma e lidar com situações e contextos complexos, atualizando-se em relação aos avanços da ciência, da tecnologia e aos desafios da inovação.

OBJETIVOS - Conhecimentos, Habilidades, e Atitudes

Conhecimentos:

- c3) Sólida formação nas áreas da engenharia eletrônica relacionada à eletrônica analógica e digital, microprocessadores e microcontroladores, em específico sobre:
- Circuitos Seqüenciais;
- Arquitetura de um sistema digital microprocessado e microcontrolado
- Familias de microprocessadores e microcontroladores;
- Memórias e dispositivos de entrada/saída;
- Microcontroladores;
- Linguagem Assembly.
- Linguagem C para Microcontroladores.
- c15) Conhecimento para projetar, executar e analisar resultados de experimentos;
- c16) Conhecimentos práticos para manusear equipamentos mecânicos, eletrônicos, de informática e de controle e automação;

Habilidades:

- h1) Aplicar conhecimentos matemáticos, científicos, tecnológicos e instrumentais à engenharia na sua área de atuação;
- h2) Assumir a postura de permanente busca de atualização profissional;

2021-ECA409 página 2 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

- h3) Atuar em equipes multidisciplinares;
- h11) Desenvolver raciocínio espacial, lógico e matemático;
- h12) Desenvolver e/ou utilizar novas ferramentas e técnicas;
- h13) Esboçar, ler e interpretar desenhos, gráficos e imagens;
- h17) Projetar e conduzir experimentos;
- h18) Sintetizar informações e desenvolver modelos para a solução de problemas nas áreas da Engenharia de Controle e Automação;
- h20) Utilizar os recursos de informática necessários para o exercício da sua profissão;
- h21) Interpretar resultados de experimentos e de simulações de modelos matemáticos;

Atitudes:

- al) Ter espírito de liderança e capacidade para inserir-se no trabalho em equipe;
- a4) Ter visão sistêmica e interdisciplinar na solução de problemas técnicos;
- a5) Ter percepção do conjunto e capacidade de síntese;
- a8) Ter posição crítica com relação a conceitos de ordem de grandeza;
- a10) Ter compromisso com a segurança no trabalho e com a segurança do publico em geral;
- all) Ter dinamismo para saber acompanhar as mudanças tecnológicas em constante transformação.
- al4) Ter auto-crítica para reconhecer os limites dos modelos e dos experimentos estabelecidos.

ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM - EAA

Aulas de Laboratório - Sim

LISTA DE ESTRATÉGIAS ATIVAS PARA APRENDIZAGEM

- Sala de aula invertida
- Problem Based Learning

METODOLOGIA DIDÁTICA

Aulas expositivas, implementação de projetos, atividades práticas, avaliação escrita.

INSTRUMENTOS DE AVALIAÇÃO

NENHUM INSTRUMENTO DE AVALIACAO FOI ADICIONADA.

AVALIAÇÃO (conforme Resolução RN CEPE 16/2014) e CRITÉRIOS DE APROVAÇÃO

Disciplina anual, com trabalhos.

Pesos dos trabalhos:

 $k_1: 4,0 \quad k_2: 6,0$

2021-ECA409 página 3 de 9

INFORMAÇÕES SOBRE INSTRUMENTOS DE AVALIAÇÃO

CONTRIBUIÇÃO DA DISCIPLINA

A disciplina de Microprocessadores e Microcontroladores fornecerá as técnicas necessárias para a análise e projeto de sistemas controlados eletronicamente através de implementações em sistemas digitais comerciais. Os conceitos apresentados serão reutilizados em disciplinas que envolvam o projeto integrado de sistemas eletrônicos com sistemas mecânicos. A disciplina introduz os conceitos necessários para a compreensão da arquitetura básica dos sistemas digitais microprocessados ou microcontrolados, permitindo sua análise e a elaboração de projetos de sistemas digitais complexos utilizando ferramentas modernas de desenvolvimento. No curso de laboratório serão treinadas as habilidades de analisar sistemas eletrônicos digitais e projetar sistemas baseados em microcontroladores comerciais.

BIBLIOGRAFIA

Bibliografia Básica:

MIYADAIRA, Alberto Noboru. Microcontroladores PIC 18: aprenda e programa em linguagem C. São Paulo, SP: Érica, 2009. 400 p. ISBN 9788536502441.

PEREIRA, Fábio. Microcontroladores PIC: técnicas avançadas. São Paulo, SP: Érica, 2002. 358 p. ISBN 85-7194-727-9.

TOCCI, Ronald J; WIDMER, Neal S. Sistemas digitais: princípios e aplicações. Trad. de José Lucimar do Nascimento; rev. téc. de Antonio Pertence Jr. 8. ed. São Paulo, SP: Pearson/Prentice Hall, 2003. 753 p. ISBN 8587918206.

Bibliografia Complementar:

FLOYD, Thomaz L. Sistemas digitais: fundamentos e aplicações. Trad. José Lucimar do Nascimento. 9. ed. Porto Alegre, RS: Bookman, 2007. 888 p. ISBN 9788560031931.

SEDRA, Adel S; SMITH, Kenneth C. Microeletrônica. 4. ed. São Paulo, SP: Makron Books, 2000. 1270 p. ISBN 85-346-1044-4.

SOUSA, Daniel Rodrigues de; SOUZA, David José de; LAVINIA, Nicolás César. Desbravando o microcontrolador PIC18: recursos avançados. São Paulo, SP: Érica, 2010. 336 p. ISBN 9788536502632.

TOOLEY, Mike. Circuitos eletrônicos: fundamentos e aplicações. Trad. de Luiz Cláudio de Queiroz Faria; rev. tec. de Henrique Serdeira. Rio de Janeiro, RJ: Elsevier, 2008. 417 p. ISBN 9788535223644.

2021-ECA409 página 4 de 9

ZANCO, Wagner da Silva. Microcontroladores PIC18 com linguagem C: uma abordagem prática e objetiva com base no PIC18F4520. 1. ed.. São Paulo: Prentice-Hall, c2010. 446 p. ISBN 9788536502854.

SOFTWARES NECESSÁRIOS PARA A DISCIPLINA

MPlab X IDE

XC 8

Eagle

Microchip MCC

Proteus 8 professional

INFORMAÇÕES SOBRE PROVAS E TRABALHOS

A nota T1 é a média dos trabalhos realizados no primeiro semestre e a T2 a média dos trabalhos do segundo semestre. Os trabalhos serão realizados em laboratório, em forma de experimentos e avaliados no próprio laboratório. As notas de trabalhos dos alunos dependentes podem, por solicitação dos alunos e aceite do professor, ser utilizadas na disciplina.

2021-ECA409 página 5 de 9

C	DUTRAS INFORMAÇÕES

2021-ECA409 página 6 de 9

APROVAÇÕES

2021-ECA409 página 7 de 9

PROGRAMA DA DISCIPLINA SAN Semanta Sem			
1 L		PROGRAMA DA DISCIPLINA	
1 L Apresentação do curso 2 L Exemplos de microcontroladores e suas aplicaçãoes. 3 L Arquitetura de Microprocessadores e Microcontroladores. 4 L Implementação de uma aplicação com microcontroladore. 5 L Ambiente de desenvolvimento para programação de microcontroladores PIC 6 L Prática de programação em assembly. 7 L Microinstruções de ciclo de fetch, movimentação de dados, operações aritméticas e lógicas, desvios condicionais e incondicionais. 8 L Ambiente de desenvolvimento para microcontroladores PIC 9 L Instruções de movimentação de dados, operações aritméticas e lógicas, desvios condicionais e incondicionais. 8 L Ambiente de desenvolvimento para microcontroladores PIC 9 L Instruções de movimentação de dados, operações aritméticas e lógicas e desvios incondicionais e condicionais. 9 L Instruções de movimentação de dados, operações aritméticas e lógicas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e lógicas. 11 L Entradas e saídas digitais em microcontroladores. 11 L Programação e gravação de dispositivos (microcontroladores). 11 L A que de la Programação de um projeto utilizando entradas e saídas digitais em microcontroladores. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displaya de dia 60% 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 18 A 40% microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores en linguagem C. 41% a 60% 18 L Ambiente de desenvolvimento em linguagem C para microcontroladores PIC. 20 L Simulação e implementação de entrada digital e acionamento dia 40% a 60% 18 L Ambiente de desenvolvimento em linguagem C para microcontroladores em linguagem C. 21 L Implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 22 L Sibiliotecas em linguagem C utilizando bibliotecas. 23 L Programação em linguagem C utilizando bibliotecas. 24 L Miterrupções (Interrupção (interrupt) e temporizad	Nº da	Conteúdo	EAA
2 L Exemplos de microcontroladores e suas aplicaçãoes. 3 L Arquitetura de Microprocessadores e Microcontroladores. 0 L Implementação de uma aplicação com microcontrolador. 11% a 40% microcontroladores PIC 6 L Prática de programação em assembly. 7 L Microinstruções de ciclo de fetch, movimentação de dados, disa a 60% operações aritméticas e lógicas, desvios condicionais e incondicionais. 8 L Ambiente de desenvolvimento para microcontroladores PIC 11% a 40% (simulador). 9 L Instruções de movimentação de dados, operações aritméticas e displação de instruções de movimentação de dados, operações aritméticas e lógicas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e lógicas e desvios incondicionais e condicionais. 11 L Entradas e saídas digitais em microcontroladores. 11 L Programação e gravação de dispositivos (microcontroladores). 11 L Pritadas e saídas digitais em microcontroladores. 11 L Pritadas e atraso (delay). 11 L Implementação de um projeto utilizando entradas e saídas digitais, com rotinas de atraso. 12 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 13 L Rotinas de atraso (delay). 14 L Implementação de um projeto utilizando botões, leds e displays de digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores PIC. 11 L Ambiente de desenvolvimento em linguagem C para microcontroladores PIC. 12 L Linguagem C para microcontroladores PIC. 13 A 40% microcontroladores PIC. 14 L Implementação de implementação de entrada digital e acionamento dia 41% a 60% digital em linguagem C. 24 L Interrupções (Interrupta) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação em linguagem C PVM (Pulse Midth Modulation). 28 L Modulo de Captura, comparação e PVM (Pulse Midth Modulation). 11% a 40% programação utilizando Conversor Analógico/Digital (ADC) em dia 40% didth Modulation).	semana		
3 L Arquitetura de Microprocessadores e Microcontroladores. 4 L Implementação de uma aplicação com microcontrolador. 5 L Ambiente de desenvolvimento para programação de 11% a 40% microcontroladores PIC 6 L Prática de programação em assembly. 7 L Microinstruções de ciclo de fetch, movimentação de dados, operações aritméticas e lógicas, desvios condicionais e incondicionais. 8 L Ambiente de desenvolvimento para microcontroladores PIC (simulador). 9 L Instruções de movimentação de dados, operações aritméticas e 16gicas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e 16gicas e desvios incondicionais e condicionais. 11 L Entradas e saídas digitais em microcontroladores. 11 L Entradas e saídas digitais em microcontroladores. 11 L Entradas e saídas digitais em microcontroladores. 11 L Implementação de um projeto utilizando entradas e saídas digitais, com rotinas de atraso. 14 L Implementação de um projeto utilizando entradas e saídas digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 18 L Ambiente de desenvolvimento em linguagem C para microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 41% a 60% digital em linguagem C. 21 L Implementação de implementação de entrada digital e acionamento digital em linguagem C. 22 L Bibliotecas em linguagem C. 11% a 40% microcontroladores PIC. 23 L Programação em linguagem C utilizando bibliotecas. 41% a 60% digital em linguagem C. 24 L Implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 11% a 40% linguagem C. 27 L Programação utilizando Conversor Analógico/Digital (ADC) em dil% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% pl	1 L	Apresentação do curso	0
4 L Implementação de uma aplicação com microcontrolador. 11% a 40% microcontroladores PIC 6 L Prática de programação em assembly. 41% a 60% perações aritméticas e lógicas, desvios condicionais e incondicionais. 8 L Ambiente de desenvolvimento para microcontroladores PIC 11% a 40% cámulador). 9 L Instruções de movimentação de dados, operações aritméticas e 16gicas desvios condicionais e incondicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e 16gicas e desvios incondicionais e condicionais. 11 L Entradas e asídas digitais em microcontroladores PIC 11% a 40% aritméticas e 16gicas. 11% a 40% aritméticas e 16gicas e microcontroladores PIC. 11% a 40% aritméticas e 16gicas e microcontroladores PIC. 11% a 40% aritméticas e 16gicas e microcontroladores PIC. 11% a 40% aritméticas e 16gicas e 16gica	2 L	Exemplos de microcontroladores e suas aplicaçãoes.	0
S. L. Ambiente de desenvolvimento para programação de microcontroladores PIC Prática de programação em assembly. 41% a 60% operações aritméticas e lógicas, desvios condicionais e incondicionais. 11% a 40% (simulador). 11% a 40% (simulação de instruções de movimentação de dados, operações aritméticas e 1691cas. 11% a 40% aritméticas e 1691cas. 11% a 40% aritméticas e 1691cas. 11% a 40% aritméticas e saídas digitais em microcontroladores. 11% a 40% a 40% aritméticas e 1691cas. 11% a 40% a 40% aritméticas e 1691cas. 11% a 40% a 40% aritméticas e 1691cas. 11% a 40% a 40% a 40% aritméticas e 1691cas. 11% a 40% a	3 L	Arquitetura de Microprocessadores e Microcontroladores.	0
microcontroladores PIC 6 L Prática de programação em assembly. 7 L Microinstruções de ciclo de fetch, movimentação de dados, operações aritméticas e lógicas, desvios condicionais e incondicionais. 8 L Ambiente de desenvolvimento para microcontroladores PIC (simulador). 9 L Instruções de movimentação de dados, operações aritméticas e digicas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e lógicas e desvios incondicionais e condicionais. 11 L Entradas e saídas digitais em microcontroladores. 11 L Entradas e saídas digitais em microcontroladores. 11 L Programação e gravação de dispositivos (microcontroladores). 11 L Auguação e gravação de dispositivos (microcontroladores). 11 L Implementação de um projeto utilizando entradas e saídas digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de 41% a 60% 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C para microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento d1% a 60% digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 22 L Bibliotecas em linguagem C utilizando bibliotecas. 24 L Troterupções (Interrupçis) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em d1% a 60% linguagem C. 28 L Módulo de Captura, comparação e PMM (Pulse Width Modulation). 11% a 40%	4 L	Implementação de uma aplicação com microcontrolador.	11% a 40%
6 L Prática de programação em assembly. 7 L Microinstruções de ciclo de fetch, movimentação de dados, operações aritméticas e lógicas, desvios condicionais e incondicionais. 8 L Ambiente de desenvolvimento para microcontroladores PIC 11% a 40% (simulador). 9 L Instruções de movimentação de dados, operações aritméticas e 16gicas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e 16gicas e lógicas e lógicas. 11 L Entradas e safdas digitais em microcontroladores. 11% a 40% aritméticas e 16gicas. 12 L Programação e gravação de dispositivos (microcontroladores). 11% a 40% a 40% digitais, com rotinas de atraso. 14 L Implementação de um projeto utilizando entradas e saídas digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de 41% a 60% 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 11% a 40% microcontroladores PIC. 11% a 40% a 60% a 40% a	5 L	Ambiente de desenvolvimento para programação de	11% a 40%
7 L Microinstruções de ciclo de fetch, movimentação de dados, operações aritméticas e lógicas, desvios condicionais e incondicionais. 8 L Ambiente de desenvolvimento para microcontroladores PIC 11% a 40% (simulador). 9 L Instruções de movimentação de dados, operações aritméticas e 14% a 60% lógicas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e 16gicas. 11 L Entradas e saídas digitais em microcontroladores. 11% a 40% a 71% a 40% aritméticas e lógicas. 11% a 40% a 40% aritméticas e lógicas. 11% a 40% a 40% aritméticas e gravação de dispositivos (microcontroladores). 11% a 40% a		microcontroladores PIC	
operações aritméticas e lógicas, desvios condicionais e incondicionais. 8 L Ambiente de desenvolvimento para microcontroladores PIC 11% a 40% (simulador). 9 L Instruções de movimentação de dados, operações aritméticas e 14% a 60% lógicas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e 16gicas. 11 L Entradas e saídas digitais em microcontroladores. 11% a 40% 12% L Programação e gravação de dispositivos (microcontroladores). 11% a 40% 13% L Rotinas de atraso (delay). 11% a 40% digitais, com rotinas de atraso. 11% a 40% digitais, com rotinas de atraso. 15% L Filtro para eliminar ruídos em entradas e saídas digitais, com rotinas de atraso. 15% L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16% L Implementação de um projeto utilizando botões, leds e displays de 41% a 60% 7 segmentos. 17% L Linguagem C para microcontroladores PIC. 11% a 40% microcon	6 L	Prática de programação em assembly.	41% a 60%
incondicionais. 8 L Ambiente de desenvolvimento para microcontroladores PIC 11% a 40% (simulador). 9 L Instruções de movimentação de dados, operações aritméticas e 169icas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações 41% a 60% aritméticas e 169icas. 11 L Entradas e saídas digitais em microcontroladores. 11% a 40% 12% L Programação e gravação de dispositivos (microcontroladores). 11% a 40% 13% L Rotinas de atraso (delay). 11% a 40% 14% L Implementação de um projeto utilizando entradas e saídas 41% a 60% digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 11% a 40% 15% L Implementação de um projeto utilizando botões, leds e displays de 41% a 60% 7 segmentos. 11% a 40% 11% a 4	7 L	Microinstruções de ciclo de fetch, movimentação de dados,	41% a 60%
8 L Ambiente de desenvolvimento para microcontroladores PIC (simulador). 9 L Instruções de movimentação de dados, operações aritméticas e lógicas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e lógicas. 11 L Entradas e saídas digitais em microcontroladores. 11% a 40% aritméticas e lógicas. 11% a 40% aritméticas e lógicas. 11% a 40% aritméticas e saídas digitais em microcontroladores. 11% a 40% a 41% a 60% digitais, com rotinas de dispositivos (microcontroladores). 11% a 40% digitais, com rotinas de atraso. 11% a 40% microcontroladores. 11% a 40% a 60% 7 segmentos. 11% a 40% 11% a 60% 7 segmentos. 11% a 40% 11% a 60% 11% a 40% microcontroladores PIC. 11% a 40% microcontroladores PIC. 11% a 40% 11% a 60% 11% a 40%		operações aritméticas e lógicas, desvios condicionais e	
(simulador). 9 L Instruções de movimentação de dados, operações aritméticas e lógicas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e lógicas. 11 L Entradas e saídas digitais em microcontroladores. 11 L Programação e gravação de dispositivos (microcontroladores). 11 L Rotinas de atraso (delay). 12 L Implementação de um projeto utilizando entradas e saídas digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 11 a 40% 18 L Ambiente de desenvolvimento em linguagem C para microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento digital em linguagem C. 21 L Implementação otilizando vetores e matrizes em linguagem C. 22 L Bibliotecas em linguagem C utilizando bibliotecas. 23 L Programação em linguagem C utilizando bibliotecas. 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em linguagem C. 28 L Módulo de Captura, comparação e PVM (Pulse Width Modulation). 11% a 40% 29 L PVM (Pulse Width Modulation) em linguagem C. 11% a 40%		incondicionais.	
9 L Instruções de movimentação de dados, operações aritméticas e lógicas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e lógicas. 11 L Entradas e saídas digitais em microcontroladores. 11 L Entradas e saídas digitais em microcontroladores. 11 a 40% 12 L Programação e gravação de dispositivos (microcontroladores). 11 a 40% 13 L Rotinas de atraso (delay). 14 L Implementação de um projeto utilizando entradas e saídas digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de displays de 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 18 L Ambiente de desenvolvimento em linguagem C para microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 22 L Bibliotecas em linguagem C utilizando bibliotecas. 24 L Interruções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 11% a 40% 11% a 40% 11% a 40% 1100 em linguagem C.	8 L	Ambiente de desenvolvimento para microcontroladores PIC	11% a 40%
lógicas e desvios incondicionais e condicionais. 10 L Simulação de instruções de movimentação de dados, operações aritméticas e lógicas. 11 L Entradas e saídas digitais em microcontroladores. 11 a 40% 12 L Programação e gravação de dispositivos (microcontroladores). 11 a 40% 12 L Rotinas de atraso (delay). 11 a 40% 14 L Implementação de um projeto utilizando entradas e saídas digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de displays de 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 11 a 40% 18 L Ambiente de desenvolvimento em linguagem C para microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 22 L Bibliotecas em linguagem C utilizando bibliotecas. 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 11% a 40% 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 11% a 40%		(simulador).	
10 L Simulação de instruções de movimentação de dados, operações aritméticas e lógicas. 11 L Entradas e saídas digitais em microcontroladores. 11% a 40% 12 L Programação e gravação de dispositivos (microcontroladores). 11% a 40% 13 L Rotinas de atraso (delay). 11% a 40% 14% a 60% digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas e saídas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 11% a 40% digital em linguagem C. 11% a 60% digital em linguagem C. 11% a 40% digital e	9 L	Instruções de movimentação de dados, operações aritméticas e	41% a 60%
aritméticas e lógicas. 11 L Entradas e saídas digitais em microcontroladores. 11 L Programação e gravação de dispositivos (microcontroladores). 11 Rotinas de atraso (delay). 12 L Rotinas de atraso (delay). 13 L Rotinas de atraso (delay). 14 L Implementação de um projeto utilizando entradas e saídas digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de omicrocontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de di% a 60% 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 18 L Ambiente de desenvolvimento em linguagem C para microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 22 L Bibliotecas em linguagem C. 23 L Programação em linguagem C utilizando bibliotecas. 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em dinguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 11% a 40% 11% a 40% 1100 pw dilagagem C.		lógicas e desvios incondicionais e condicionais.	
11 L Entradas e saídas digitais em microcontroladores. 11% a 40% 12 L Programação e gravação de dispositivos (microcontroladores). 11% a 40% 13 L Rotinas de atraso (delay). 11% a 40% 14 L Implementação de um projeto utilizando entradas e saídas 41% a 60% digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de 41% a 60% 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 11% a 40% microcontroladores PIC. 11% a 40% microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 41% a 60% digital em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento 41% a 60% digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 41% a 60% 22 L Bibliotecas em linguagem C. 11% a 40% 23 L Programação em linguagem C utilizando bibliotecas. 41% a 60% implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 11% a 40% 11% a 40% 119 a	10 L	Simulação de instruções de movimentação de dados, operações	41% a 60%
12 L Programação e gravação de dispositivos (microcontroladores). 11% a 40% 13 L Rotinas de atraso (delay). 11% a 40% 14% L Implementação de um projeto utilizando entradas e saídas 41% a 60% digitais, com rotinas de atraso. 60% digitais, com rotinas de atraso. 7 Filtro para eliminar ruídos em entradas digitais de microcontroladores. 7 Implementação de um projeto utilizando botões, leds e displays de 41% a 60% 7 segmentos. 7 segmentos. 11% a 40% 11% a 4		aritméticas e lógicas.	
13 L Rotinas de atraso (delay). 14 L Implementação de um projeto utilizando entradas e saídas digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 11% a 40% microcontroladores PIC. 11% a 40% microcontroladores PIC. 11% a 40% microcontroladores PIC. 12 Entradas e saídas digitais de microcontroladores em linguagem C. 13 L Simulação e implementação de entrada digital e acionamento digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 22 L Bibliotecas em linguagem C. 23 L Programação em linguagem C utilizando bibliotecas. 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 11% a 40% 11% a 40%	11 L	Entradas e saídas digitais em microcontroladores.	11% a 40%
14 L Implementação de um projeto utilizando entradas e saídas digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 18 L Ambiente de desenvolvimento em linguagem C para microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento 41% a 60% digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 22 L Bibliotecas em linguagem C. 23 L Programação em linguagem C utilizando bibliotecas. 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 11% a 40% 20 L PWM (Pulse Width Modulation).	12 L	Programação e gravação de dispositivos (microcontroladores).	11% a 40%
digitais, com rotinas de atraso. 15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de 41% a 60% 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 11% a 40% microcontroladores PIC. 11% a 40% microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 41% a 60% digital em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento 41% a 60% digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 41% a 60% 22 L Bibliotecas em linguagem C utilizando bibliotecas. 41% a 60% 11% a 40% implementação de interrupts) e temporizadores (Timers). Simulação e 11% a 40% implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 11% a 40% 11% a 40% linguagem C. 26 L Conversor Analógico/Digital (ADC). 11% a 40% linguagem C. 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 11% a 40% PWM (Pulse Width Modulation) em linguagem C.	13 L	Rotinas de atraso (delay).	11% a 40%
15 L Filtro para eliminar ruídos em entradas digitais de microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de 41% a 60% 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 11% a 40% microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 41% a 60% digital em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento 41% a 60% digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 41% a 60% 22 L Bibliotecas em linguagem C. 11% a 40% 23 L Programação em linguagem C utilizando bibliotecas. 41% a 60% implementação de interrupts) e temporizadores (Timers). Simulação e 11% a 40% implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 11% a 40% 11%	14 L	Implementação de um projeto utilizando entradas e saídas	41% a 60%
microcontroladores. 16 L Implementação de um projeto utilizando botões, leds e displays de 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 11% a 40% microcontroladores PIC. 11% a 40% microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 41% a 60% digital em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento 41% a 60% digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 41% a 60% digital em linguagem C. 11% a 40% dimplementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 11% a 40% digital em linguagem C. 11%		digitais, com rotinas de atraso.	
16 L Implementação de um projeto utilizando botões, leds e displays de 7 segmentos. 17 L Linguagem C para microcontroladores PIC. 18 L Ambiente de desenvolvimento em linguagem C para 11% a 40% microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 41% a 60% digital em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento 41% a 60% digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 41% a 60% 22 L Bibliotecas em linguagem C. 11% a 40% 23 L Programação em linguagem C utilizando bibliotecas. 41% a 60% implementação de interrupts) e temporizadores (Timers). Simulação e 11% a 40% implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 11% a 40% 26 L Conversor Analógico/Digital (ADC). 11% a 40% linguagem C. 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation). 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation). 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a 40% 20% PWM (Pulse Width Modulation) em 11% a	15 L	Filtro para eliminar ruídos em entradas digitais de	0
7 segmentos. 17 L Linguagem C para microcontroladores PIC. 11% a 40% microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 22 L Bibliotecas em linguagem C. 23 L Programação em linguagem C utilizando bibliotecas. 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em d1% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 11% a 40% 11% a 40% 11% a 40% 11% a 60% 11% a 40% 11% a 60% 11% a 40% 11% a 60% 11% a 40% 11		microcontroladores.	
17 L Linguagem C para microcontroladores PIC. 18 L Ambiente de desenvolvimento em linguagem C para microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 22 L Bibliotecas em linguagem C. 23 L Programação em linguagem C utilizando bibliotecas. 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 11% a 40%	16 L	Implementação de um projeto utilizando botões, leds e displays de	41% a 60%
18 L Ambiente de desenvolvimento em linguagem C para microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 41% a 60% digital em linguagem C. 20 L Simulação e implementação de entrada digital e acionamento digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 41% a 60% digital em linguagem C. 11% a 40% digital em linguagem C utilizando bibliotecas. 41% a 60% digital em linguagem C utilizando bibliotecas. 41% a 60% dimplementação de interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 11% a 40% digital (ADC) em digital (ADC) em dinguagem C. 27 L Programação utilizando Conversor Analógico/Digital (ADC) em dinguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% digital em linguagem C. 11% a 40% digital em		7 segmentos.	
microcontroladores PIC. 19 L Entradas e saídas digitais de microcontroladores em linguagem C. 41% a 60% 20 L Simulação e implementação de entrada digital e acionamento digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 41% a 60% 22 L Bibliotecas em linguagem C. 11% a 40% 23 L Programação em linguagem C utilizando bibliotecas. 41% a 60% 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 11% a 40% 26 L Conversor Analógico/Digital (ADC). 11% a 40% 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%	17 L	Linguagem C para microcontroladores PIC.	11% a 40%
19 L Entradas e saídas digitais de microcontroladores em linguagem C. 41% a 60% 20 L Simulação e implementação de entrada digital e acionamento 41% a 60% digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 41% a 60% 22 L Bibliotecas em linguagem C. 11% a 40% 23 L Programação em linguagem C utilizando bibliotecas. 41% a 60% 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 11% a 40% 26 L Conversor Analógico/Digital (ADC). 11% a 40% 1	18 L	Ambiente de desenvolvimento em linguagem C para	11% a 40%
20 L Simulação e implementação de entrada digital e acionamento digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 22 L Bibliotecas em linguagem C. 23 L Programação em linguagem C utilizando bibliotecas. 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em dinguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%			
digital em linguagem C. 21 L Implementação utilizando vetores e matrizes em linguagem C. 41% a 60% 22 L Bibliotecas em linguagem C. 11% a 40% 23 L Programação em linguagem C utilizando bibliotecas. 41% a 60% 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%	19 L	Entradas e saídas digitais de microcontroladores em linguagem C.	41% a 60%
21 L Implementação utilizando vetores e matrizes em linguagem C. 41% a 60% 22 L Bibliotecas em linguagem C. 11% a 40% 23 L Programação em linguagem C utilizando bibliotecas. 41% a 60% 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 11% a 40% 26 L Conversor Analógico/Digital (ADC). 11% a 40% 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%	20 L		41% a 60%
22 L Bibliotecas em linguagem C. 11% a 40% 23 L Programação em linguagem C utilizando bibliotecas. 41% a 60% 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 11% a 40% 26 L Conversor Analógico/Digital (ADC). 11% a 40% 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%			
Programação em linguagem C utilizando bibliotecas. 24 L Interrupções (Interrupts) e temporizadores (Timers). Simulação e 11% a 40% implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 26 L Conversor Analógico/Digital (ADC). 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 29 L PWM (Pulse Width Modulation) em linguagem C.			
Interrupções (Interrupts) e temporizadores (Timers). Simulação e implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM. 11% a 40% 26 L Conversor Analógico/Digital (ADC). 11% a 40% 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%			
<pre>implementação de interrupção (interrupt) e temporizador (timer) em linguagem C. 25 L Memória EEPROM.</pre>			
em linguagem C. 25 L Memória EEPROM. 11% a 40% 26 L Conversor Analógico/Digital (ADC). 11% a 40% 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%	24 L		11% a 40%
25 L Memória EEPROM. 11% a 40% 26 L Conversor Analógico/Digital (ADC). 11% a 40% 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C.			
26 L Conversor Analógico/Digital (ADC). 11% a 40% 27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%			
27 L Programação utilizando Conversor Analógico/Digital (ADC) em 41% a 60% linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%			
linguagem C. 28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%			
28 L Módulo de Captura, comparação e PWM (Pulse Width Modulation). 11% a 40% 29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%	2/ L		41% a 60%
29 L PWM (Pulse Width Modulation) em linguagem C. 11% a 40%	20. 7		110 400
30 L CONCLOTE de uma carga DC uclilizando PWM (Pulse Width Modulation). 41% a 60%			
	эо Б	controle de una carga DC utilizando PWM (Pulse Width Modulation).	416 d 008

2021-ECA409 página 8 de 9

INSTITUTO MAUÁ DE TECNOLOGIA

31 L	Comunicação Serial.	11% a 40%			
32 L	Projeto com comunicação serial.	41% a 60%			
33 L	Utilização de recursos combinados.	41% a 60%			
34 L	Comunicação USB.	11% a 40%			
35 L	Desenvolvimento de interface com PC.	41% a 60%			
36 L	Implementação utilizando recursos combinados.	41% a 60%			
37 L	Comunicação I2C	11% a 40%			
38 L	Prática de programação	41% a 60%			
39 L	Projeto T2 - desenvolvimento de sistema microcontrolado.	61% a 90%			
40 L	Projeto T2 - desenvolvimento de sistema microcontrolado.	61% a 90%			
41 L	Apresentação final do projeto T2	61% a 90%			
Legend	Legenda: T = Teoria E = Exercício L = Laboratório				

Legenda: T = Teoria, E = Exercício, L = Laboratório

2021-ECA409 página 9 de 9