Thème: volumes

Un cône de révolution a pour patron la figure ci-contre.

5 cm 216° 5 cm

Déterminer le volume de ce cône.

Les réponses de deux élèves de seconde

Élève 1

La base a comme aire 15π cm². Je le trouve par proportionnalité :

angle	360	216
aire	25π	15π

$$AB^2 = AC^2 - BC^2 = 5^2 - (\sqrt{15})^2 = 10$$
, $donc AB = \sqrt{10} cm$

J'utilise un triangle rectangle et Pythagore pour trouver la hauteur du cône. $AB^2 = AC^2 - BC^2 = 5^2 - \left(\sqrt{15}\right)^2 = 10, \ donc \ AB = \sqrt{10} \ cm.$ Le volume du cône est $\frac{b \times h}{3} = \frac{15\pi \times \sqrt{10}}{3} = 5\pi \sqrt{10} \approx 49,7 \ cm^3$.

Élève 2

angle	360	216	Le rayon du cercle de base est 3 cm.
longueur	5	3	

Le volume du cône est $\frac{b \times h}{3}$.

Ici $B = 2 \times 3 \times \pi = 6\pi$ cm² et h = 5, donc le volume est $\frac{b \times h}{3} = \frac{6\pi \times 5}{3} = 10\pi$ cm³.

Le travail à exposer devant le jury

- 1- Analysez les productions des élèves en mettant en évidence leurs réussites et leurs erreurs.
- 2- Présentez une correction de l'exercice telle que vous l'exposeriez devant une classe de seconde.
- 3- Proposez au moins deux exercices sur le thème aires et volumes concernant des niveaux de classe différents.