Exercício - Busca Informada - Inteligência Artificial Pontifícia Universidade Católica de Campinas

Prof. Dr. Denis M. L. Martins

Instruções

- 1. Forme grupos de 3 alunos.
- 2. Trabalhem apenas com papel e caneta.

Relembrando

Elemento	Busca Gulosa	Busca A*
Função de Avaliação Custo acumulado $g(n)$	f(n) = h(n) Não considerado na escolha do próximo nó	f(n) = g(n) + h(n) Fundamental para garantir optimalidade
Heurística admissível	Simples: distância em linha reta (ou 0).	Deve ser admissível e preferencialmente consistente .

Exercício - Consistência de heurística em grade bidimensional

Um robô deve se mover em uma grade 5×5 (células numeradas de (1,1) até (5,5)). O objetivo está na célula (5,5). Existem obstáculos nas células: (2,3), (3,3), e (4,3). O robô pode se mover apenas em quatro direções (Norte, Sul, Leste, Oeste). Cada movimento tem custo 1.

Defina a heurística h(n) como a distância Manhattan do nó atual ao objetivo: h((x,y)) = |5-x| + |5-y|.

- a. Verificar se essa heurística é admissível (não sobreestima o custo real). Justifique.
- b. Checar se a heurística é **consistente**, ou seja, para quaisquer nós adjacentes n e m, verifica-se $h(n) \le c(n,m) + h(m)$. Faça essa verificação apenas para os quatro pares de nós que envolvem o obstáculo na coluna 3 (ex.: (2,2)-(2,4), (1,3)-(2,3), etc.).
- c. Usando A*, determinar manualmente o caminho ótimo do robô a partir da célula inicial (1,1) até (5,5). Anotar os valores g(n), h(n) e f(n) = g(n) + h(n) para cada nó expandido.
- d. Se você alterasse a heurística para a distância Euclidiana (arredondada para cima), discutir se ela seria admissível e consistente, e como isso afetaria o caminho resultante de A*.

++ S ++	1	1	1 1
 +	X		
	X		1
	X	1	1 1
	Ī	1	G I

Exercício Extra - Comparação entre GBFS e A* em um grafo ponderado

Enunciado

Considere o grafo abaixo (arestas pesadas). O nó inicial é $\bf S$ e o objetivo é $\bf T$. A heurística h(n) para cada nó está indicada.

Nó	h(n)
\overline{S}	12
A	10
В	8
\mathbf{C}	6
D	4
\mathbf{E}	2
${ m T}$	0

As arestas e pesos são:

- $S \leftrightarrow A$ (7)
- $S \leftrightarrow B$ (5)
- $A \leftrightarrow C$ (4)
- $B \leftrightarrow C$ (3)
- $C \leftrightarrow D$ (2)
- $D \leftrightarrow E$ (1)
- $E \leftrightarrow T$ (2)

Tarefas

- a. Executar **Busca Gulosa** a partir de S, registrando a ordem dos nós expandidos e o caminho final que chega em T.
- b. Executar A^* a partir de S, calculando f(n) = g(n) + h(n) para cada nó expandido, onde g(n) é o custo acumulado do caminho inicial ao nó n. Registrar a ordem de expansão e o caminho final encontrado.
- c. Comparar os caminhos obtidos: qual deles tem menor custo total? Justificar por que um algoritmo pode ter superado ou não o outro neste caso.
- d. Identificar se a heurística h(n) é admissível (não sobreestima o custo real ao objetivo). Se for, qual algoritmo garante optimalidade?
- e. Propor uma pequena modificação na estrutura do grafo (alterar pesos de arestas) que faça com que GBFS encontre um caminho diferente daquele obtido por A*. Descrever a nova configuração e prever qual caminho cada algoritmo encontrará.

Boa sorte!