

Index

1. Purpose

2. FBS

- 2.1. FBS with rigid body assumption
- 2.2. FBS with joint property (1); C,K
- 2.3. FBS with joint property (2); M
- 2.4. FBS with weight matrix

3. VPT results

- 3.0. Experimental Setup
- 3.1. C,K matrix
- 3.2. M matrix
- 3.3. Weight Matrix
- 3.4. Performance indicator (FRAC, Reciprocity)

4. Future work

Purpose

- ► My future research interests = 'Robotics'.
- ▶ My current research interest fields have expanded to "Vibration".
- ► My purpose of internship
 - 1. Enhance ability of Modeling dynamic mechanical system.
 - 2. Experience both Experiment & Theory.
 - 3. Study further about theory of Mechanical Vibration.

FBS with Rigid body assumption

- ► FBS(Frequency Based Substructuring): A frequency based method that combines FRF(Frequency Response Functions) of substructures and use it to form a FRF of a large dynamic system response.
- ► Combine FRFs using the Compatibility and Force Equilibrium expressions at the joining point. Assuming the joint is rigid

Equilibrium : $\mathbf{F}_2^{A} + \mathbf{F}_2^{B} = 0$ Compatibility : $\mathbf{u}_2^{A} = \mathbf{u}_2^{B}$

$$\mathbf{Y}^{AB} = \begin{pmatrix} \mathbf{Y}_{11}^{A} - \mathbf{Y}_{12}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{21}^{A} & \mathbf{Y}_{12}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{23}^{B} \\ \mathbf{Y}_{32}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{21}^{B} & \mathbf{Y}_{33}^{B} - \mathbf{Y}_{32}^{B} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{23}^{B} \end{pmatrix} \qquad \mathbf{Y}_{2} = \mathbf{Y}_{22}^{A} + \mathbf{Y}_{22}^{B}$$

FBS with Joint Property (1)

When a rigid assumption of a single joint is failed (i.e., shows dynamic behavior), using assumed Damping (C), Stiffness (K) matrices, we can model Joint Property H_I .

Equilibrium:
$$F_2^A + F_2^B = 0$$
 Compatibility: $u_2^A - u_2^B = H_J F_2^{A}$ [1]

$$\mathbf{Y}^{AB} = \begin{pmatrix} \mathbf{Y}_{11}^{A} - \mathbf{Y}_{12}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{21}^{A} & \mathbf{Y}_{12}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{23}^{B} \\ \mathbf{Y}_{32}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{21}^{B} & \mathbf{Y}_{33}^{B} - \mathbf{Y}_{32}^{B} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{23}^{B} \end{pmatrix} \qquad \mathbf{Y}_{2} = \mathbf{Y}_{22}^{A} + \mathbf{Y}_{22}^{B} + \mathbf{H}_{\mathbf{J}}$$

[1] Tsai, J.-S., and Y.-F. Chou. "The Identification of Dynamic Characteristics of a Single Bolt Joint." Journal of Sound and Vibration, vol. 125, no. 3, 1988, pp. 487-502.

FBS with Joint Property (2)

► When a joint is assumed to be rigid, using assumed Mass (M) matrix, we can model the Joint Property.

$$\mathbf{M} = \begin{bmatrix} \mathbf{m} & 0 & 0 & 0 & 0 & 0 \\ 0 & \mathbf{m} & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{m} & 0 & 0 & 0 \\ 0 & 0 & 0 & J_{xx} & 0 & 0 \\ 0 & 0 & 0 & 0 & J_{yy} & 0 \\ 0 & 0 & 0 & 0 & 0 & J_{zz} \end{bmatrix}$$

Equilibrium :
$$F_2^A + F_2^B = -M\omega^2 u_2^A$$
 Compatibility : $u_2^A = u_2^B$

$$\mathbf{Y}^{AB} = \begin{pmatrix} \mathbf{Y}_{11}^{A} - \mathbf{Y}_{12}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{21}^{A} & \mathbf{Y}_{12}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{23}^{B} \\ \mathbf{Y}_{32}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{21}^{B} & \mathbf{Y}_{33}^{B} - \mathbf{Y}_{32}^{B} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{23}^{B} \end{pmatrix} \qquad \mathbf{Y}_{2} = \mathbf{Y}_{22}^{A} + \mathbf{Y}_{22}^{A} + \mathbf{Y}_{22}^{A} \mathbf{M} \mathbf{W}_{22}^{B} \text{ (Receptance)}$$

$$\mathbf{Y}_{2} = \mathbf{Y}_{22}^{A} + \mathbf{Y}_{22}^{A} - \mathbf{Y}_{22}^{A} \mathbf{M} \mathbf{Y}_{22}^{B} \text{ (Inertance)}$$

Experimental Setup

VP: The midpoint of Interface between A & B.

Result (1): Obtaining Joint Property

▶ Result 1. Compute the Joint Property with the Least Square Method

$$\mathbf{Y}^{AB} = \begin{pmatrix} \mathbf{Y}_{11}^{A} - \mathbf{Y}_{12}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{21}^{A} & \mathbf{Y}_{12}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{23}^{B} \\ \mathbf{Y}_{32}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{21}^{B} & \mathbf{Y}_{33}^{B} - \mathbf{Y}_{32}^{B} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{23}^{B} \end{pmatrix}$$

$$\mathbf{Y}_{2} = \mathbf{Y}_{22}^{A} + \mathbf{Y}_{22}^{B} + (\mathbf{K} + \mathbf{j}\omega\mathbf{C})^{-1}$$
Joint Property (C, K)

$$(K + j\omega C)(u_2^A - u_2^B) = f_2^A$$

 \bullet C

254	1588	-3065	44274	-18905	-84831
2482	79627	8861	-527528	-1244658	-3998438
623	-114256	-98192	1541422	-2242944	7308024
-69354	-122181	1491262	-17610556	46150094	-10741408
-203021	-5018155	1837132	-4393057	48084870	262990060
-45661	1562817	2097951	-52415639	18707176	-93354612

Negative values exist in the term. Improved modeling is needed.

K

1050	.=	2212=	0.1.00.0		000001=
1953	-45686	-33107	910326	-415095	2602017
-7760	806335	436128	731581	46034418	-62203814
22132	-927111	-733067	9160861	-45801352	68330767
-213027	5064646	6686704	-262229057	-136294039	-219391688
-496268	11013527	20998719	-969794490	-1.186E+09	-108866815
318949	2146482	-8031996	79249722	-247728924	-24527886

Observed that
 beam has a large stiffness along a short length i.e., (y, z) direction.

Obtained Joint Properties can be used to improve the accuracy of the Virtual Point Transformation by this joint.

Result (2): Modeling using Mass matrix

▶ Result 2. Use Mass matrix to improve the accuracy of the FRF.

$$\mathbf{Y}^{AB} = \begin{pmatrix} \mathbf{Y}_{11}^{A} - \mathbf{Y}_{12}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{21}^{A} & \mathbf{Y}_{12}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{23}^{B} \\ \mathbf{Y}_{32}^{A} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{21}^{B} & \mathbf{Y}_{33}^{B} - \mathbf{Y}_{32}^{B} \mathbf{Y}_{2}^{-1} \mathbf{Y}_{23}^{B} \end{pmatrix}$$

$$\mathbf{Y}_{2} = \mathbf{Y}_{22}^{A} + \mathbf{Y}_{22}^{A} - \mathbf{Y}_{22}^{A} \mathbf{M} \mathbf{Y}_{22}^{B} \quad \text{(Inertance)}$$

- At Low Frequency:
 Dynamic property of system heavily influenced by damping and stiffness.
- At High Frequency:
 Influenced by mass.

At high frequency range, modeling of a joint mass improve the accuracy.

Result (3): Using Weight Matrix

▶ Result 3. Use weight matrix to improve the results of VPT

Example

$$u = Rq + \mu,$$
 $u = \begin{bmatrix} 1 \\ 2 \\ 10 \end{bmatrix}, R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}, q = ?$

Using Left-inverse of R,

$$q = \begin{bmatrix} 10/3 \\ 13/3 \end{bmatrix}$$

Now, let weight matrix as

$$\mathbf{W} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \mathbf{0} \end{bmatrix}$$

Then,

$$q = \begin{bmatrix} \mathbf{1} \\ \mathbf{2} \end{bmatrix}$$

From this example, weight matrix can be used to unwanted signals from inaccuate sensor.

Result (3): Using Weight Matrix

- \blacktriangleright In this experiment, the coherence of the FRFs is in the order of z < x < y (see figure below).
 - Use the weight matrix to lessen the signals from z-direction.
 - ullet Expectation: improved VPT results particularly when the driven force is along y axis.

▶ Use Weight Matrix only for FBS for displacement, not for FBS for force.

$$\mathbf{u} = \mathbf{R}_{\mathbf{u}} \mathbf{q} + \mathbf{\mu}$$

$$(3n \times 6) \quad (6 \times 1)$$

$$\mathbf{q} = \left(\mathbf{R}_{\mathbf{u}}^{\mathsf{T}} \mathbf{R}_{\mathbf{u}}\right)^{-1} \mathbf{R}_{\mathbf{u}}^{\mathsf{T}} \mathbf{u} = \mathbf{T}_{\mathbf{u}} \mathbf{u} \qquad \qquad \mathbf{W} = \mathbf{I}.$$

$$\mathbf{q} = \left(\mathbf{R}_{\mathbf{u}}^{\mathsf{T}} \mathbf{W} \mathbf{R}_{\mathbf{u}}\right)^{-1} \mathbf{R}_{\mathbf{u}}^{\mathsf{T}} \mathbf{W} \mathbf{u} = \mathbf{T}_{\mathbf{u}} \mathbf{u} \qquad \mathbf{W} \neq \mathbf{I}.$$

Result (3): Using Weight Matrix

 \triangleright Set the weight of noisy signal channel (z direction) to be less than 1.

$$W_{(3,3)} = 0.5$$
 $W_{(6,6)} = 0.4$
 $W_{(9,9)} = 0.3$
Otherwise, 1
This corresponds to the z direction.

Weight matrix successfully worked and Accuracy improved comparing with the conventional VPT. More improvements when the driven force is along the y-axis.

Performance Indicator (FRAC)

- ► Calculate the Frequency Response Assurance Criterion (FRAC) to measure the correlation between VPT results and reference results.
 - Validation

$$FRAC_{pq} = \frac{|\sum_{\omega=\omega_1}^{\omega_2} H_{pq}(\omega) \widehat{H}_{pq}^*(\omega)|^2}{\sum_{\omega=\omega_1}^{\omega_2} H_{pq}(\omega) H_{pq}^*(\omega) \sum_{\omega=\omega_1}^{\omega_2} \widehat{H}_{pq}(\omega) \widehat{H}_{pq}^*(\omega)|^2}$$

$$\mathbf{FRAC_{VPT,REF}} = \begin{bmatrix} \mathbf{0.60} & 0.04 & 0.16 & 0.34 & 0.02 & 0.21 \\ 0.01 & 0.14 & 0.18 & 0.04 & 0.06 & 0.05 \\ 0.11 & 0.06 & 0.14 & 0.20 & 0.04 & 0.17 \\ \mathbf{0.68} & 0.02 & 0.17 & 0.23 & 0.08 & 0.18 \\ 0.01 & 0.02 & 0.08 & 0.01 & 0.18 & 0.17 \\ 0.10 & 0.02 & 0.11 & 0.24 & 0.02 & 0.23 \end{bmatrix}$$

Correlation between VPT and Reference.

Calculated FRAC is very small except two driven/measured points (Uncorrelated)

[2] Allemang, Randall J. "The Modal Assurance Criterion - Twenty Years of Use and Abuse." Sound and Vibration, vol. 37, no. 8, 2003, p. 14.

Performance Indicator (Reciprocity)

- ► Calculate the Reciprocity factor by assuming the Joint Property and Weight Matrix
 - Validation of modeling of mass is physically justified.

$$x_{ij} = \frac{(H_{ij} + H_{ji})(H_{ij}^* + H_{ji}^*)}{2(H_{ij}^* + H_{ii}^* + H_{ji}^*)} : \text{function of frequency.}$$

When considering Mass in the joint property, the reciprocity of the VPT results can be improved in high frequency range than the traditional VPT results. Close to the value of 1 (i.e, physically correct)

Future Work

Additional Experiments

Justify measured Damping and Stiffness Matrix (C, K) can improve VPT results.

Weight matrix used in Force FBS.

Weight Matrix is a vague concept that is determined through the experiment. I don't understand why previous research use weight matrix for Force FBS. Further research on the weight matrix is needed

Modeling

More precise modeling than other three modeling options outlined today.

I failed to complete linear modeling that satisfies the Equilibrium and Compatibility conditions.

Further research on the modeling of system is needed

