

GISAS for soft matter

P. Müller-Buschbaum

Technische Universität München, Lehrstuhl für Funktionelle Materialien, Physik-Department, James-Franck-Str. 1, 85748 Garching, Germany

Technische Universität München, Heinz Maier-Leibnitz Zentrum (MLZ), Forschungs-Neutronenquelle Heinz Maier-Leibnitz (FRM II), Lichtenbergstraße 1, 85748 Garching, Germany

Outline

- 1. General introduction
- 2. Selected X-Ray Examples
- 3. Selected Neutron Examples

Statistical analysis of AFM data

isotropic structure \rightarrow circular ring \rightarrow well described by one in-plane length

AFM data accessible with scan ranges up to \approx 100 μ m

- \rightarrow determination of most prominent in-plane length Λ_{PSD}
- → only sample surface probed!

GISAS (grazing incidence small angle scattering)

- fixed incidence angle α_i <<1°
- two high quality entrance cross-slits
- mostly evacuated pathway
- two dimensional detector array
- controlling sample position and orientation with respect to the beam

sample-detector distance determines resolution

 \rightarrow sub-nm up to several μ m

GISAXS: first experiment:

Levine et al.; J. Appl. Cryst. 22, 528 (1989)

GISANS:

Müller-Buschbaum et al.; Colloid.Polym.Sci. 277, 1193 (1999)

Review: Müller-Buschbaum; Polymer Journal 45, 34 (2013)

horizontal line cut

 \rightarrow q_v-dependence: in-plane structures

Distorted-wave Born approximation:

cut at constant q_v

vertical line cut

 \rightarrow mainly q_z-dependence: correlation perpendicular to surface

Term 4

Surface sensitivity

scattering depth of x-rays or neutrons

$$D = \frac{\lambda}{\sqrt{2}\pi(l_i + l_f)} \qquad l_{i,f} = \left[\sin^2\alpha_c - \sin^2\alpha_{i,f} + \sqrt{(\sin^2\alpha_{i,f} - \sin^2\alpha_c)^2 + \left(\frac{\mu\lambda}{2\pi}\right)^2}\right]^{1/2}$$

$$\frac{10^8}{10^4} \qquad \alpha_i \qquad (deg)$$

$$10^2 \qquad \alpha_i \qquad (deg)$$

$$10^2 \qquad \alpha_i \qquad (deg)$$

 \rightarrow vary incident angle $\alpha_{\rm i}$ < $\alpha_{\rm c}$ to probe surface near region only or to penetrated large sample volume

GIWAXS (grazing incidence wide angle X-ray scattering)

molecular order with respect to substrate

GIWAXS 2D pattern

Outline

- 1. General introduction
- 2. Selected X-Ray Examples
- 3. Selected Neutron Examples

Structural degradation during operation

In-operando study of P3HT:PCBM BHJ solar cell in vacuum

morphological degradation as consequence of demixing reduces short-circuit current J_{SC}

In-operando study of changes in crystalline parts

P3HT:PCBM BHJ solar cell: GIWAXS + IV tracking in air

illumination: increase of FWHM and change in intensities

control (dark): no change of crystalline P3HT parts

longtime exposure to light: degradation mechanisms like oxidation, photobleaching reduce crystallinity

link between crystalline state and photovoltage

Morphological degradation in low bandgap polymer solar cells

In-operando study of PCPDTBT:PC₇₁BM + 3 v% 1,8-octanedithiol (ODT)

shrinking domains lose their connection to interpenetrating network

- → charge carriers get trapped in isolated domains
- → amplification of recombination lowers fill factor

one none-equilibrium state changes into another without ODT

Printing of PEDOT:PSS electrodes

- solvent evaporation
- polymer crystallization
- film formation times& processes

Printing of P3HT:PCBM active layers

from chlorobenzene

initial slow formation of P3HT crystallites in well-aligned edge-on orientation followed by a rapid crystal growth

Metal top contact deposition

In-situ GISAXS during sputter deposition of gold

sputter rate = 12 nm/min

 α_i =0.41°

counting time 10 ms

exposure period 15 ms 10000 frames

Outline

- 1. General introduction
- 2. Selected X-Ray Examples
- 3. Selected Neutron Examples

Internal nano-structure

Active layer of organic solar cells

NEUTRONS FOR SCIENCE®

P3HT:PCBM on Si/SiO_x

at most efficient blend ratio → structure size ~ exciton diffusion length → largest PCBM objects – charge transport

Time resolved GISANS

swelling of dry casein film in D₂O

Ingression of moisture into hybrid perovskite thin films

in-situ GISANS with $\Delta t = 600 \text{ s}$

- ingression of moisture at low %RH
 - → level of monohydrate
 - → no morphological changes
 - → most water adsorbed
- sponge-like behavior at high %RH
 - → strong morphological changes of crystal domains for ≥ 73 %RH
 - → formation of di-hydrates

recovery of perovskite possible for certain conditions

Summary

GISAXS/GISANS open new possibilities of advanced sample characterization GISAXS/GISANS : reciprocal space analysis technique

- non-destructive structural probe
- sensitive to structures between nm to μm
- does not require a special sample preparation
- yields excellent sampling statistics
 (averages over macroscopic regions to provide information on nanometer scale)

- buried structures: object geometry, size distributions and spatial correlations

Acknowledgments

