CLAIMS

10

- A composition comprising at least one photocatalyst and at least one azo dyestuff and/or at least one triphenylmethane dyestuff, which produce a relative hue angle of 220 – 320° and wherein the dyestuff component is degraded when the composition is exposed to light.
 - 2. A composition according to Claim 1 wherein the dyestuff component is degraded when the composition is exposed to sunlight.

3. A composition according to Claim 1 or 2 wherein the decrease rate of the azo dyestuff(s) and/or the triphenylmethane dyestuff(s) is at least 1 % per 2 hours.

- A composition according to Claim 1, 2 or 3 wherein the photocatalyst is a water-soluble
 phthalocyanine of Zn, Fe(II), Ca, Mg, Na, K, Al, Si(IV), P(V), Ti(IV), Ge(IV), Cr(VI), Ga(III),
 Zr(IV), In(III), Sn(IV) or Hf(VI).
 - 5. A composition according to Claim 1, 2, 3 or 4 wherein the photocatalyst is a water-soluble phthalocyanine of the formula

20 (1a)
$$\left[Me\right]_{q}^{+}\left[PC\right]_{r}^{+}A_{s}^{-}$$
 or (1b) $\left[Me\right]_{q}^{-}\left[PC\right]_{r}^{+}\left[Q_{2}\right]_{r}^{-}$

in which

PC is the phthalocyanine ring system;

Me is Zn; Fe(II); Ca; Mg; Na; K; Al-Z₁; Si(IV); P(V); Ti(IV); Ge(IV); Cr(VI); Ga(III); Zr(IV); In(III); Sn(IV) or Hf(VI);

- 25 Z₁ is a halide; sulfate; nitrate; carboxylate; alkanolate; or hydroxyl ion;
 - q is 0; 1 or 2;
 - r is 1 to 4;
 - Q₁ is a sulfo or carboxyl group; or a radical of the formula $-SO_2X_2-R_1-X_3^+$; $-O-R_1-X_3^+$; or $-(CH_2)_1-Y_1^+$;
- 30 in which
 - R₁ is a branched or unbranched C₁-C₈alkylene; or 1,3- or 1,4-phenylene;
 - X_2 is -NH-; or -N-C₁-C₅alkyl;
 - X₃⁺ is a group of the formula

$$\begin{array}{c} R_{2} \\ -N_{-}^{+}R_{3} \\ R_{4} \end{array} ; \quad -N_{-}^{+} \begin{array}{c} R_{6} \\ (CH_{2})_{u} \\ +N_{-}^{-}R_{3} \end{array} ; \quad -COCH_{2} \\ N_{-}^{+} \begin{array}{c} A_{1} \\ R_{4} \end{array} ; \quad -COCH_{2} \\ -N_{-}^{+}R_{3} \end{array} ;$$

or, in the case where $R_1 = C_1-C_8$ alkylene, also a group of the formula

$$Y_1^+$$
 is a group of the formula A_1 ; $-s_{R_{15}}^+$; or $-s_1^-$; or $-s_1^-$; $N-R_{12}R_{13}$; $N-R_{12}R_{13}$;

5 t is 0 or 1;

where in the above formulae

R₂ and R₃ independently of one another are C₁-C₆alkyl;

R₄ is C₁-C₆alkyl; C₅-C₇cycloalkyl or NR₇R₈;

R₅ and R₆ independently of one another are C₁-C₅alkyl;

10 R₇ and R₈ independently of one another are hydrogen or C₁-C₅alkyl;

 R_9 and R_{10} independently of one another are unsubstituted C_1 - C_6 alkyl or C_1 - C_6 alkyl substituted by hydroxyl, cyano, carboxyl, carb- C_1 - C_6 alkoxy, C_1 - C_6 alkoxy, phenyl, naphthyl or pyridyl;

u is from 1 to 6;

20

- 15 A₁ is a unit which completes an aromatic 5- to 7-membered nitrogen heterocycle, which may where appropriate also contain one or two further nitrogen atoms as ring members, and
 - B₁ is a unit which completes a saturated 5- to 7-membered nitrogen heterocycle, which may where appropriate also contain 1 to 2 nitrogen, oxygen and/or sulfur atoms as ring members;
 - Q₂ is hydroxyl; C₁-C₂₂alkyl; branched C₃-C₂₂alkyl; C₂-C₂₂alkenyl; branched C₃-C₂₂alkenyl and mixtures thereof; C₁-C₂₂alkoxy; a sulfo or carboxyl radical; a radical of the formula

$$-SO_{2}-X_{4}- (T_{1})_{d}-(CH_{2})_{e}-N_{14}^{+} - (T_{1})_{d}-(CH_{2})_{e}-N_{14}^{+}-R_{14} - (T_{1})_{e}-(CH_{2})_{e}-N_{14}^{+}-R_{14} - (T_{1})_{e}-(CH_{2})_{e}-(CH_$$

$$-(SO_{2}X_{1})_{w} - (CH_{2}Y_{2})_{w} - (CH$$

$$-CH_{2}^{-}N^{+} \qquad \qquad \\ N \qquad ; \qquad -(CH_{2})_{w}^{-}S^{+} \qquad ; \qquad -(CH_{2})_{w}^{-}S^{+} = C \\ CI^{-} \qquad \qquad \\ R_{16} \qquad \qquad \\ CI^{-} \qquad \qquad \\ CI^{-} \qquad \qquad \\ N^{-}R_{15}^{-}R_{16} \qquad \qquad \\ CI^{-} \qquad \qquad \\ N^{-}R_{15}^{-}R_{16} \qquad \qquad \\ CI^{-} \qquad \qquad \\ CI^{-} \qquad \qquad \\ N^{-}R_{15}^{-}R_{16} \qquad \qquad \\ CI^{-} \qquad \qquad \\ N^{-}R_{15}^{-}R_{16} \qquad \qquad \\ CI^{-} \qquad \qquad \\ N^{-}R_{15}^{-}R_{16} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15} \qquad \qquad \\ N^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-}R_{15}^{-$$

5 a branched alkoxy radical of the formula $CH_2-(O)_a(CH_2)_b-(OCH_2CH_2)_c-B_2$ $CH_2-(O)_a(CH_2)_b-(OCH_2CH_2)_c-B_2$

$$\begin{array}{c} -{\rm O-CH_2} \\ | \\ {\rm CH-(O)_a(CH_2)_b-(OCH_2CH_2)_c-B_2} \\ | \\ {\rm CH_2-(O)_a(CH_2)_b-(OCH_2CH_2)_c-B_2} \end{array}; \ \ {\rm an \ alkylethyleneoxy \ unit \ of \ the \ formula}$$

-(T₁)_d-(CH₂)_b(OCH₂CH₂)_a-B₃ or an ester of the formula COOR₁₈ in which

B₂ is hydrogen; hydroxyl; C₁-C₃₀alkyl; C₁-C₃₀alkoxy; -CO₂H; -CH₂COOH; -SO₃-M₁; -OSO₃-M₁; -PO₃²-M₁; -OPO₃²-M₁; and mixtures thereof;

B₃ is hydrogen; hydroxyl; -COOH; -SO₃-M₁; -OSO₃-M₁ or C₁-C₆alkoxy;

M₁ is a water-soluble cation;

 T_1 is -O-; or -NH-;

10

X₁ and X₄ independently of one another are -O-; -NH- or -N-C₁-C₅alkyl;

15 R₁₁ and R₁₂ independently of one another are hydrogen; a sulfo group and salts thereof; a carboxyl group and salts thereof or a hydroxyl group; at least one of the radicals R₁₁ and R₁₂ being a sulfo or carboxyl group or salts thereof,

 Y_2 is -O-; -S-; -NH- or -N-C₁-C₅alkyl;

5

R₁₃ and R₁₄ independently of one another are hydrogen; C₁-C₆alkyl; hydroxy-C₁-C₆alkyl; cyano-C₁-C₆alkyl; sulfo- C₁-C₆alkyl; carboxy or halogen-C₁-C₆alkyl; unsubstituted phenyl or phenyl substituted by halogen, C₁-C₄alkyl or C₁-C₄alkoxy; sulfo or carboxyl or R₁₃ and R₁₄ together with the nitrogen atom to which they are bonded form a saturated 5- or 6-membered heterocyclic ring which may additionally also contain a nitrogen or oxygen atom as a ring member;

R₁₅ and R₁₆ independently of one another are C₁-C₆alkyl or aryl-C₁-C₆alkyl radicals;

- R₁₇ is hydrogen; an unsubstituted C₁-C₆alkyl or C₁-C₆alkyl substituted by halogen, hydroxyl, cyano, phenyl, carboxyl, carb-C₁-C₆alkoxy or C₁-C₆alkoxy;
- 10 R₁₈ is C₁-C₂₂alkyl; branched C₃-C₂₂alkyl; C₁-C₂₂alkenyl or branched C₃-C₂₂alkenyl; C₃-C₂₂alkoxy; branched C₃-C₂₂alkoxy; and mixtures thereof;
 - M is hydrogen; or an alkali metal ion or ammonium ion,
 - Z₂ is a chlorine; bromine; alkylsulfate or aralkylsulfate ion;
 - a is 0 or 1;
- 15 b is from 0 to 6;
 - c is from 0 to 100;
 - d is 0; or 1;
 - e is from 0 to 22;
 - v is an integer from 2 to 12;
- 20 w is 0 or 1; and
 - A is an organic or inorganic anion, and
 - is equal to r in cases of monovalent anions A^{-} and is \leq r in cases of polyvalent anions, it being necessary for A_s^{-} to compensate the positive charge; where, when $r \neq 1$, the radicals Q_1 can be identical or different,
- and where the phthalocyanine ring system may also comprise further solubilising groups.
 - 6. A composition according to any one of the preceeding claims wherein the azo dyestuff is a compound of formulae

$$(HO_3S)_n \xrightarrow{(Z)_m} N = N \xrightarrow{Y} N = N \xrightarrow{OH} N \xrightarrow{R_\alpha} OF$$

$$(HO_3S)_n \xrightarrow{(Z)_m} N = N \xrightarrow{Y} N = N \xrightarrow{OH} N \xrightarrow{R_\alpha}$$

wherein

X and Y, independently of one another, are each hydrogen; C_1 - C_4 -alkyl or C_1 - C_4 -alkoxy, $R\alpha$ is hydrogen or aryl,

Z is C₁-C₄-alkyl; C₁-C₄-alkoxy; halogen; hydroxyl or carboxyl, n is 1 or 2 and

m is 0, 1 or 2, as well as the corresponding salts thereof and mixtures thereof.

7. A composition according to any one of the preceding claims wherein the azo dyestuff
 10 is a compound of formula

$$SO_2NH_2$$
 N_1
 N_2
 N_3
 N_4
 N_4
 N_5
 N_5

8. A composition according to any one of the preceding claims wherein the triphenylmethane dyestuff is a compound of formula

5

10

15

- A composition according to any one of the preceeding claims wherein at least one FWA is comprised.
- 10. A granular formulation comprising a composition according to claims 1 9.
- 11. A granular formulation according to claim 9 comprising

a) from 2 to 75 wt-% of at least one water-soluble phthalocyanine compound

and at least one azo dyestuff and/or at least one triphenylmethane dyestuff as defined in claim 1 - 9, based

on the total weight of the granulate,

b) from 10 to 95 wt-% of at least one further additive, based on the total weight

of the granulate, and

c) from 0 to 15 wt-% water, based on the total weight of the granulate.

WO 2005/014769 PCT/EP2004/051627

- 83 -

- 12. A liquid formulation comprising a composition according to claims 1 9.
- 13. A detergent formulation comprising

5

15

I) from 5 to 70 wt-% A) of at least one anionic surfactant and/or B) at least one non-ionic surfactant, based on the total weight of the washing agent formulation,

- II) from 5 to 60 wt-% C) of at least one builder substance, based on the total weight of the washing agent formulation,
- III) from 0 to 30 wt-% D) of at least one peroxide and, optionally, at least one activator, based on the total weight of the washing agent formulation, and
 - IV) from 0.001 to 1 wt-% E) of at least one granulate which contains

a) from 2 to 75 wt-% of at least one water-soluble phthalocyanine compound and at least one azo dyestuff and/or at least one triphenylmethane dyestuff as defined in claim 1 - 9, based on the total weight of the granulate,

- b) from 10 to 95 wt-% of at least one further additive, based on the total weight of the granulate, and
- c) from 0 to 15 wt-% water, based on the total weight of the granulate,
- 20 V) from 0 to 60 wt-% F) of at least one further additive, and VI) from 0 to 5 wt-% G)water.
 - 14. A softener composition comprising
- (a) a composition comprising at least one photocatalyst and at least one azo dyestuff and/or at least one triphenylmethane dyestuff, as defined in claims 1 9, and
 - (b) a fabric softener.
 - 15. A shading process using a composition as claimed in claims1 14.
- 30 16. Textile treated with a composition as claimed in claims 1 14.