COMPULET VISION Lecture 10

Degree of Freedom

Camera Coordinates

World Coordinates

Hence, a total of 11 equations are required to estimate the parameters.

Before I move to Camera Calibration - let me take a d'tour

- Find the biggest/ smallest circle
- Find the location of all circles
- Remove all circles except three big ones.

Question: boundary extraction

- a How do we detect edges?
- a How do we detect lines?
- a How do we detect corners?

Preview

- Morphology About the form and structure of objects
- o Mathematical morphology
 - o Using set theory
 - e Extract image component
 - Representation and description of region shape

Preview (cont.)

 Sets in mathematical morphology represent objects in an image

@ Example

- \emptyset Binary image: the elements of a set is the coordinate (x,y) of the pixels, in \mathbb{Z}^2
- \circ Gray-level image: the element of a set is the triple, (x, y, gray-value), in Z^3

Preliminaries — set theory

o A be a set in Z2.

 $a = (a_1, a_2)$ is an element of A. $a \in A$

 \circ a is not an element of A $a \notin A$

Null (empty) set: ∅

set operations

- ullet A is a subset of B: every element of A is an element of another set B $A \subseteq B$
- \bullet Union $C = A \cup B$
- \odot Intersection $C = A \cap B$

Mutually exclusive

$$A \cap B = \emptyset$$

Craphical examples

Graphical examples (cont.)

$$A^c = \{ w | w \notin A \}$$

$$A - B = \{ w | w \in A, w \notin B \}$$

Logic operations on dinary images

p	q	p AND q (also $p \cdot q$)	p OR q (also p + q)	NOT (p) (also \bar{p})
0	0	0	0	1
0	1	0	1	1
1	0	0	1	0
1	1	1	1	0

Special set operations for morphology

$$(A)_z = \{c | c = a + z, \text{ for } a \in A\}$$
 $\hat{B} = \{w | w = -b, \text{ for } b \in B\}$

reflection

$$\hat{B} = \{ w | w = -b, \text{ for } b \in B \}$$

Structuring element (SE)

- small set to probe the image under study
- for each SE, define origin
- shape and size must be adapted to geometric properties for the objects

a b c d e

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring element. (c) The set padded with background elements to form a rectangular array and provide a background border. (d) Structuring element as a rectangular array. (e) Set processed by the structuring element.

Operation

- Create a new set by running B over A so that the origin of B visits every element of A.
- At each location of the origin of B, if B is completely contained in A, mark that location as member of the new set otherwise not.

a b c d e

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring element. (c) The set padded with background elements to form a rectangular array and provide a background border. (d) Structuring element as a rectangular array. (e) Set processed by the structuring element.

Dilacion

Dilation of A by B is the set of all displacements, z, such that \hat{B} and A overlap by at least one element

$$A \oplus B = \left\{ z \middle| (\hat{B})_z \cap A \neq \emptyset \right\}$$

Dilacion

B:structuring element

$$A \oplus B = \left\{ z \middle| (\hat{B})_z \cap A \neq \varnothing \right\}$$

$$\hat{B} = B$$

$$d$$

Dilacion

Application of dilatio 1 bridging gaps in imag

0 1 0 1 1 1 0 1 0

Structuring element

Effects: increase size, fill gap

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

Historically, certain computer programs were written using only two digits rather than four to define the applicable year. Accordingly, the company's software may recognize a date using "00" as 1900 rather than the year 2000.

max. gap=2 pixels

Erosion

Erosion of A by B is the set of all points z such that B, translated by z, is contained in A.

$$A - B = \left\{ z | (B)_z \subseteq A \right\}$$

$A - B = \left\{ z | (B)_z \subseteq A \right\}$

z: displacement

Erosion (cont.)

Application of erosion: eliminate irrelevant detail

Squares of size 1,3,5,7,9,15 pixels

Erode with 13x13 square

Boundary extraction:

© Extract boundary of a set A:

- - @ First erode A (make A smaller)

 $\beta(A)$ $A - (A \ominus B)$

Application: boundary extraction

Edge Delection

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}}$$

derivative of Gaussian

$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$

 ∇^2 is the **Laplacian** operator:

$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

Canny edge delector

Find magnitude and orientation of gradient

Non-maximum suppression

Linking and thresholding

Non-maximum suppression

Check if pixel is local maximum along gradient direction

Line Delection

r Define the response of the mask:

$$R = \sum_{i=1}^{9} w_i z_i$$

• Point detection: $|R| \ge T$

Delection of Discontinuities

w_1	w_2	w_3
w_4	w_5	w_6
w_7	w_8	w_9

Point Detection

 -1
 -1

 -1
 8

 -1
 -1

 -1
 -1

b c d

FIGURE 10.2

- (a) Point detection mask.
- (b) X-ray image of a turbine blade with a porosity.
- (c) Result of point detection.
- (d) Result of using Eq. (10.1-2). (Original image courtesy of X-TEK Systems Ltd.)

Line Delection

Masks that extract lines of different directions.

rigure 10.3 Line masks.	-1	-1	-1	-1	-1	2	-1	2	-1	2	-1	-1
	2	2	2	-1	2	-1	-1	2	-1	-1	2	-1
	-1	-1	-1	2	-1	-1	-1	2	-1	-1	-1	2
	Н	orizon	tal		+45°		1	Vertica	1		-45°	

Corner Delection

- a Next Lecture
- o Need to discuss
 - © Exam 1
 - o Mid-term course feedback