Лабораторная работа №4

Численные методы, продолжение Интеграция с языками C/C++

Вариант 1

При выполнении заданий 6-7 допускается использование символьных вычислений для получения решений обыкновенных дифференциальных уравнений, соответствующих аналитическому решению; для остальных заданий допускается использование стандартных библиотек языков C/C++, в том числе для работы с комплексными числами.

- 1 [2]. Реализовать mex-функцию [x1 x2 D] = quadsolve(A, B, C) на языке C, которая решает квадратное уравнение $Ax^2 + Bx + C = 0$, возвращает два его корня и дискриминант D. Все числа комплексные. Выходной аргумент D может быть не указан. Если выходных аргументов меньше двух или больше трёх, функция должна выдавать ошибку. Входные параметры A, B, C могут быть векторами или матрицами одинакового размера, тогда решение ищется поэлементно, а выходные аргументы будут матрицами того же размера. Вставить проверку правильности полученного ответа средствами Matlab.
- 2 [2]. Реализовать функции [L,U] = lu_matlab(A), [L,U] = lu_c(A), реализующие построение LU-разложения квадратной вещественной матрицы A при помощи элементарных преобразований (методом Гаусса), с использованием простейших средств Матлаба (можно использовать циклы; нельзя использовать встроенную функцию lu или другие средства факторизации матриц) и с использованием C/C++ (mex-функция). Если LU-разложения не существует, функция должна выводить сообщение об ошибке.
 - **3** [1]. Сравнить точность (вычислу.9091.50вычиЮ1по356м+

и возвращает результат работы solveDirichlet (то есть краевые условия в (1) берутся прямо из полученного аналитического решения). График аналитического решения сравнить с графиком приближенного решения, полученного из (2) при различных M и N, нарисовать график разности между численным и аналитическим решением.

7 [4]. Создать в системе L^AT_EX отчёт по выполнению предыдущего задания. Отчёт обязательно должен содержать:

1. Полную постановку задачи с описанием всех параметров.

2. Теоретические выкладки, как именно происходят вычисления, полностью соответствующие программе.

3. Вычисление точного аналитического решения для соответствующей конкретной функции f(x,y), указанной на стр. 7. При этом с полными промежуточными выкладками должен быть изложен процесс получения аналитического решения, однако окончательный ответ, представляющий сумму решений соответствующих дифференциальных уравнений, может быть выписан в виде, включающем константы, зависящие от u_1^0 и u_2^0 , не указывая в отчете эту зависимость явно (т.к. может оказаться, что полная формула для решения очень длинная, соответственно, допускаются сокращения этой формулы).

4. Для данной конкретной функции f(x,y) привести несколько иллюстраций, соответствующих аналитическому и численным решениям, а также разности между этими решениями при разных значениях μ , M, N, u_1^0 и u_2^0 .

- 5. Привести иллюстрации, соответствующие численным решениям задачи для некоторых произвольных функций f(x,y), $\xi(x)$ и $\eta(y)$ (при ограничениях, указанных выше), так что u(x,y) не обязательно представима в виде суммы $u_1(x)+u_2(y)$. Иллюстрации должны быть приведены при разных значениях μ , M и N.
- 6. Отчёт должен удовлетворять Требованиям по Написанию Отчетов.

Лабораторная работа №4

Численные методы, продолжение Интеграция с языками С/С++

Вариант 2

При выполнении заданий 6-7 допускается использование символьных вычислений для получения решений обыкновенных дифференциальных уравнений, соответствующих аналитическому решению; для остальных заданий допускается использование стандартных библиотек языков С/С++, в том числе для работы с комплексными числами.

1 [2]. Реализовать mex-функцию [x1 x2 x3] = cubesolve(A, B, C) на языке C, которая решает кубическое уравнение $Ax^3 + Bx + C = 0$, возвращает три его корня. Все числа комплексные. Выходной аргумент х3 может быть не указан. Если выходных аргументов меньше двух или больше трёх, функция должна выдавать ошибку. Входные параметры A, B, C могут быть векторами или матрицами одинакового размера, тогда решение ищется поэлементно, а выходные аргументы будут матрицами того же размера. Вставить проверку правильности полученного ответа средствами Matlab.

 $\mathit{Указаниe}$. Формула для решения ищется через замену $x = w - \frac{B}{3Aw}$.

- 2 [2]. Реализовать функции [Q,R] = qr_matlab(A), [Q,R] = qr_c(A), реализующие построение QRразложения квадратной вещественной матрицы A при помощи метода отражений (Хаусхолдера), с использованием простейших средств Матлаба (можно использовать циклы; нельзя использовать встроенную функцию qr или другие средства факторизации матриц) и с использованием C/C++ (mex-функция).
- ${f 3}$ [1]. Сравнить точность (вычислить невязки $\|A-QR\|$) функций ${f qr}$ (стандартная матлабовская функция), qr_matlab, qr_c для матриц различной размерности, построив соответствующие графики (на одних осях сразу 3 графика; по оси абсцисс – размер матриц, по оси ординат – невязка).
- 4~[1]. Сравнить быстродействие функций qr, qr_matlab, qr_c для матриц различной размерности, построив соответствующие графики (на одних осях сразу 3 графика; по оси абсцисс – размер матриц, по оси ординат – время вычисления).
- $\mathbf{5}$ [1]. Обозначим $T_s(n)$ время работы методов из предыдущего пункта на матрицах порядка n (s=qr, qr_matlab, qr_c). Написать функцию, которая, используя линейную регрессию, аппроксимирует эти функции с помощью многочленов степени не выше заданной. Отобразить отдельно 3 графика: функция $T_s(n)$ + линейная функция, для каждого s.
 - 6 [6]. Дана следующая краевая задача

$$u''_{xx}(x,y) + u''_{yy}(x,y) - \mu \cdot u(x,y) = f(x,y), \quad (x,y) \in [0,1] \times [0,1], u(x,0) \equiv u(x,1) \equiv \xi(x), \qquad u(0,y) \equiv u(1,y) \equiv \eta(y),$$
(1)

 $\mu > 0, f \in C^1([0,1] \times [0,1]), \xi, \eta \in C^1([0,1]), \xi(0) = \xi(1) = \eta(0) = \eta(1).$

Для этой краевой задачи рассматривается разностная схема:

$$\frac{y_{k+1,\ell}-2y_{k,\ell}+y_{k-1,\ell}}{h_x^2}+\frac{y_{k,\ell+1}-2y_{k,\ell}+y_{k,\ell-1}}{h_y^2}-\mu\cdot y_{k,\ell}=\varphi_{k,\ell},\\y_{k,0}=y_{k,N}=\xi_k,\quad y_{0,\ell}=y_{M,\ell}=\eta_\ell,\quad k=\overline{1,M-1},\ell=\overline{1,N-1}.$$
Здесь $h_x=1/M,\ h_y=1/N,\$ значения $y_{k,\ell}$ аппроксимируют функцию $u(x,y)$ в узлах сетки для $x_k=k/M,$ $y_\ell=\ell/N,\ \varphi_{k,\ell}=f(x_k,y_\ell),\ \xi_k=\xi(x_k),\ \eta_\ell=\eta(y_\ell).$

• Реализовать численный метод и подобрать примеры

Написать функцию solveDirichlet(fHandle,xiHandle,etaHandle,mu,M,N), возвращающую матрицу размера M imes N с численным решением задачи (1) при помощи разностной схемы (2), разрешенной при помощи БП Φ . При этом ${ t fHandle},$ xiHandle и etaHandle соответствуют function handle функций f(x,y), $\xi(x)$ и $\eta(y)$, а mu, М и N определяют значения параметров $\mu,\ M,\ N$. Реализовать в Matlab несколько функций общего вида для подстановки в fHandle, xiHandle и etaHandle (при соблюдении ограничений на них, упомянутых выше).

• Проверить корректность работы численного алгоритма

Для функции f(x,y), указанной на стр. 7 данного файла, реализовать в $exttt{Matlab}$ функцию $exttt{fGiven}$, так чтобы можно было

Для этой конкретной функции f(x,y) решить задачу (1) аналитически. Для этого, учитывая, что $f(x,y)=f_1(x)+$ $f_2(y)$, взять $u(x,y)=u_1(x)+u_2(y)$ и решить аналитически соответствующие дифференциальные уравнения для u_1 и u_2 с краевыми условиями $u_1(0)=u_1(1)=u_1^0$ и $u_2(0)=u_2(1)=u_2^0$. Аналитическое решение задачи (1) поместить в тело функции uAnalytical(xMat,yMat,u1Zero,u2Zero,mu), где xMat и yMat соответствуют матрицам одного размера со значениями переменных x и y, а u1Zero, u2Zero и mu дают значения скалярных параметров u_1^0 , u_2^0 и μ , соответственно.

Написать функцию uNumerical (u1Zero, u2Zero, mu, M, N), которая передает на вход функции solveDirichlet параметры

- fHandle=@fGiven,
- xiHandle=@(x)uAnalytical(x,zeros(size(x)),u1Zero,u2Zero,mu),
- etaHandle=@(y)uAnalytical(zeros(size(y)),y,u1Zero,u2Zero,mu)

и возвращает результат работы solveDirichlet (то есть краевые условия в (1) берутся прямо из полученного аналитического решения). График аналитического решения сравнить с графиком приближенного решения, полученного из (2) при различных M и N, нарисовать график разности между численным и аналитическим решением.

7 [4]. Создать в системе ІАТГХ отчёт по выполнению предыдущего задания. Отчёт обязательно должен содержать:

1. Полную постановку задачи с описанием всех параметров.

2. Теоретические выкладки, как именно происходят вычисления, полностью соответствующие программе.

3. Вычисление точного аналитического решения для соответствующей конкретной функции f(x,y), указанной на стр. 7. При этом с полными промежуточными выкладками должен быть изложен процесс получения аналитического решения, однако окончательный ответ, представляющий сумму решений соответствующих дифференциальных уравнений, может быть выписан в виде, включающем константы, зависящие от u_1^0 и u_2^0 , не указывая в отчете эту зависимость явно (т.к. может оказаться, что полная формула для решения очень длинная, соответственно, допускаются сокращения этой формулы).

4. Для данной конкретной функции f(x,y) привести несколько иллюстраций, соответствующих аналитическому и числен-

- ным решениям, а также разности между этими решениями при разных значениях $\mu,\ M,\ N,\ u_1^0$ и u_2^0 .
- 5. Привести иллюстрации, соответствующие численным решениям задачи для некоторых произвольных функций f(x,y), $\xi(x)$ и $\eta(y)$ (при ограничениях, указанных выше), так что u(x,y) не обязательно представима в виде суммы $u_1(x)+u_2(y)$. Иллюстрации должны быть приведены при разных значениях $\mu,~M$ и N.
- 6. Отчёт должен удовлетворять Требованиям по Написанию Отчетов.

Лабораторная работа №4

Численные методы, продолжение Интеграция с языками C/C++

Вариант 3

При выполнении заданий 6-7 допускается использование символьных вычислений для получения решений обыкновенных дифференциальных уравнений, соответствующих аналитическому решению; для остальных заданий допускается использование стандартных библиотек языков C/C++, в том числе для работы с комплексными числами.

- 1 [2]. Реализовать \max —функцию [x1 x2 x3 x4] = biquadsolve(A, B, C) на языке C, которая решает биквадратное уравнение $Ax^4 + Bx^2 + C = 0$, возвращает четыре его корня. Все числа комплексные. Выходные аргументы x3,x4 могут быть не указаны. Если выходных аргументов меньше двух или больше четырёх, функция должна выдавать ошибку. Входные параметры A, B, C могут быть векторами или матрицами одинакового размера, тогда решение ищется поэлементно, а выходные аргументы будут матрицами того же размера. Вставить проверку правильности полученного ответа средствами Matlab.
- 2 [2]. Реализовать функции [Q,R] = qr_matlab(A), [Q,R] = qr_c(A), реализующие построение QR-разложения квадратной вещественной матрицы A при помощи метода вращений (Гивенса), с использованием простейших средств Матлаба (можно использовать циклы; нельзя использовать встроенную функцию qr или другие средства факторизации матриц) и с использованием C/C++ (mex-функция).
- **3** [1]. Сравнить точность (вычислить невязки ||A QR||) функций **qr** (стандартная матлабовская функция), **qr_matlab**, **qr_c** для матриц различной размерности, построив соответствующие графики (на одних осях сразу 3 графика; по оси абсцисс размер матриц, по оси ординат невязка).
- 4 [1]. Сравнить быстродействие функций qr, qr_matlab, qr_c для матриц различной размерности, построив соответствующие графики (на одних осях сразу 3 графика; по оси абсцисс размер матриц, по оси ординат время вычисления).
- $\mathbf{5}$ [1]. Обозначим $T_s(n)$ время работы методов из предыдущего пункта на матрицах порядка n ($s=qr,qr_matlab,qr_c$). Написать функцию, которая, используя линейную регрессию, аппроксимирует эти функции с помощью многочленов степени не выше заданной. Отобразить отдельно 3 графика: функция $T_s(n)$ + линейная функция, для каждого s.
 - 6 [6]. Дана следующая краевая задача:

$$u''_{xx}(x,y) + u''_{yy}(x,y) - \mu \cdot u(x,y) = f(x,y), \quad (x,y) \in [0,1] \times [0,1], u(x,0) \equiv u(x,1) \equiv \xi(x), \qquad u(0,y) \equiv u(1,y) \equiv \eta(y),$$
(1)

 $\underline{\mu} > 0, \, f \in C^1([0,1] \times [0,1]), \, \xi, \eta \in C^1([0,1]), \, \xi(0) = \xi(1) = \eta(0) = \eta(1).$

Для этой краевой задачи рассматривается разностная схема:

$$\frac{y_{k+1,\ell} - 2y_{k,\ell} + y_{k-1,\ell}}{h_x^2} + \frac{y_{k,\ell+1} - 2y_{k,\ell} + y_{k,\ell-1}}{h_y^2} - \mu \cdot y_{k,\ell} = \varphi_{k,\ell},$$

$$y_{k,0} = y_{k,N} = \xi_k, \quad y_{0,\ell} = y_{M,\ell} = \eta_\ell, \quad k = \overline{1, M-1}, \ell = \overline{1, N-1}.$$
(2)

Здесь $h_x = 1/M$, $h_y = 1/N$, значения $y_{k,\ell}$ аппроксимируют функцию u(x,y) в узлах сетки для $x_k = k/M$, $y_\ell = \ell/N$, $\varphi_{k,\ell} = f(x_k,y_\ell)$, $\xi_k = \xi(x_k)$, $\eta_\ell = \eta(y_\ell)$.

- Реализовать численный метод и подобрать примеры
 - Написать функцию solveDirichlet(fHandle, xiHandle, etaHandle, mu, M, N), возвращающую матрицу размера $M \times N$ с численным решением задачи (1) при помощи разностной схемы (2), разрешенной при помощи БПФ. При этом fHandle, xiHandle и etaHandle соответствуют function handle функций f(x,y), $\xi(x)$ и $\eta(y)$, а mu, M и N определяют значения параметров μ , M, N. Реализовать в Matlab несколько функций общего вида для подстановки в fHandle, xiHandle и etaHandle (при соблюдении ограничений на них, упомянутых выше).
- Проверить корректность работы численного алгоритма

Для функции f(x,y), указанной на стр. 7 данного файла, реализовать в Matlab функцию fGiven, так чтобы можно было взять fHandle=@fGiven.

Для этой конкретной функции f(x,y) решить задачу (1) аналитически. Для этого, учитывая, что $f(x,y)=f_1(x)+f_2(y)$, взять $u(x,y)=u_1(x)+u_2(y)$ и решить аналитически соответствующие дифференциальные уравнения для u_1 и u_2 с краевыми условиями $u_1(0)=u_1(1)=u_1^0$ и $u_2(0)=u_2(1)=u_2^0$. Аналитическое решение задачи (1) поместить в тело функции uAnalytical (xMat,yMat,u1Zero,u2Zero,mu), где xMat и yMat соответствуют матрицам одного размера со значениями переменных x и y, а u1Zero, u2Zero и mu дают значения скалярных параметров u_1^0 , u_2^0 и μ , соответственно.

Написать функцию uNumerical (u1Zero, u2Zero, mu, M, N), которая передает на вход функции solveDirichlet параметры

- fHandle=@fGiven,
- xiHandle=@(x)uAnalytical(x,zeros(size(x)),u1Zero,u2Zero,mu),
- etaHandle=@(y)uAnalytical(zeros(size(y)),y,u1Zero,u2Zero,mu)

и возвращает результат работы solveDirichlet (то есть краевые условия в (1) берутся прямо из полученного аналитического решения). График аналитического решения сравнить с графиком приближенного решения, полученного из (2) при различных M и N, нарисовать график разности между численным и аналитическим решением.

- 7 [4]. Создать в системе L^AT_EX отчёт по выполнению предыдущего задания. Отчёт обязательно должен содержать:
 - 1. Полную постановку задачи с описанием всех параметров.
 - 2. Теоретические выкладки, как именно происходят вычисления, полностью соответствующие программе.
 - 3. Вычисление точного аналитического решения для соответствующей конкретной функции f(x,y), указанной на стр. 7. При этом с полными промежуточными выкладками должен быть изложен процесс получения аналитического решения, однако окончательный ответ, представляющий сумму решений соответствующих дифференциальных уравнений, может быть выписан в виде, включающем константы, зависящие от u_1^0 и u_2^0 , не указывая в отчете эту зависимость явно (т.к. может оказаться, что полная формула для решения очень длинная, соответственно, допускаются сокращения этой формулы).
 - 4. Для данной конкретной функции f(x,y) привести несколько иллюстраций, соответствующих аналитическому и численным решениям, а также разности между этими решениями при разных значениях μ , M, N, u_1^0 и u_2^0 .
 - 5. Привести иллюстрации, соответствующие численным решениям задачи для некоторых произвольных функций f(x,y), $\xi(x)$ и $\eta(y)$ (при ограничениях, указанных выше), так что u(x,y) не обязательно представима в виде суммы $u_1(x)+u_2(y)$. Иллюстрации должны быть приведены при разных значениях μ , M и N.
 - 6. Отчёт должен удовлетворять Требованиям по Написанию Отчетов.

Наборы функций к заданиям 6-7 о применении БПФ

1. Антонов К.Н.:
$$f(x,y) = (4-x^3)\sin(x) - 3ye^{4y} - \sin(2y)$$

2. Васянин О.А.:
$$f(x,y) = 3x^3 e^x \cos(x) + y \sin(4y) - \cos(y)$$

3. Витковская Т.С.:
$$f(x,y) = (1-x^2)\sin(x) + 2y^2\sin(3y)$$

4. Журавлева К.А.:
$$f(x,y) = -3x\sin(x) + (1+y^2)e^{-2y}$$

5. Заварзин Н.Ю.:
$$f(x,y) = \sin(5x) + 2x\cos(x) + (2+y^3)\cos(2y)$$

6. Исаков А.А.:
$$f(x,y) = xe^{-x}\cos(x) + (2+y)\cos(2y)$$

7. Котельницкий К.А.:
$$f(x,y) = e^{-3x} \sin(x) + 2y^2 e^{5y}$$

8. Преображенский М.Н.:
$$f(x,y) = (1-x^2)e^{3x-1} - 2y\cos(5y) + \sin(y)$$

9. Сучков Д.В.:
$$f(x,y) = (2-x^3-x)\sin(2x) - 3ye^{-y} + 2\cos(2y)$$

10. Цуканова В.С.:
$$f(x,y) = 2x^2 \cos(2x) - y^3 e^{-y} \sin(y)$$

11. Чиклина М.А.:
$$f(x,y) = -3e^{3x}\sin(2x) + (1-y^2)e^y$$

12. Чистяков Т.О.:
$$f(x,y) = x^2 e^x + 2\cos(3x) + 2ye^y \sin(y)$$

13. Шеститко А.В.:
$$f(x,y) = (x^2 - 1)e^{2x+1} + ye^{3y} + \sin(y)\cos(2y)$$

14. Юлдашев А.В.:
$$f(x,y) = e^{2x-1}\cos(3x) - y^2e^y$$