Test About Graph 2nd

- 1. 文件名全部小写!
- 2. 输入输出文件名为主文件名 +.in/.out
- 3. 请认真思考题目,尽量优化算法。
- 4. 考试时长为4小时,请把握好时间。
- 5. 默认编译选项(设主文件名为 main)

```
g++ -o main main.cpp -lm
gcc -o main main.cpp -lm
fpc main.pas
```

- 6. 除非特别说明
 - 输入均为不超过 int 范围的非负整数
 - 空间限制为 256Mb , 时间限制 1s

1 multi

1.1 问题描述

给出一张无向边带权图 G(V,E) ,请你求出一条从 $S \to T$ 的路径,使得边权的乘积和最小。

1.2 输入格式

第一行包括两个正整数 N, M ,分别描述图的点数和边数、

接下来 M 行,每行三个正整数 x,y,weight ,描述一条权值为 weight 的,连接 x,y 的无向 边。

最后一行两个正整数 S,T ,描述起点与终点。 保证没有自环和重边。

1.3 输出格式

输出一行若干个正整数,描述你选择的路径依次经过的所有点(包括 S 和 T)。如果有多条路径,输出任意一条即可。

1.4 样例

1.4.1 输入

4 4

 $1\ 2\ 3$

 $2\ 4\ 2$

 $4\ 3\ 2$

1 3 15

13

1.4.2 输出

 $1\ 2\ 4\ 3$

1.5 数据范围

测试点编号	数据范围及特殊说明
1,2,3	$N, M \leq 10, 1 \leq weight \leq 4$
4,5	$N, M \leq 10^5, weight \in \{2^K K \geq 0\}$
6, 7, 8, 9, 10	$N, M \leq 10^5, weight \leq 10000$

2 chessboard

2.1 问题描述

有一张 $N \times N$ 的棋盘,格子有黑有白。现在,你可以在白色格子上放棋子,并且要满足每行每列至多放一枚棋子。

请你告诉我, 你最多能放多少枚棋子。

2.2 输入格式

第一行一个正整数 N 。

接下来 N 行,第 i+1 行有一个长度为 N 的字符串,描述棋盘的第 i 行。字符 '.' 表示白色格子, '#' 表示黑色格子。

2.3 输出格式

一行一个整数, 描述答案。

2.4 样例 1

2.4.1 输入

3

..#

.#.

#.#

2.4.2 输出

3

2.5 样例2

2.5.1 输入

3

#.#

##.

#..

2.5.2 输出

2

2.6 数据范围

测试点编号	数据范围及特殊说明
1,2,3	$N \le 10$
4,5,,9,10	$N \le 100$

3 mst

3.1 问题描述

给出一张无向图 G(V, E) ,每条边有两个权值 a, b 。 现在请你求出 G 的一个最小生成树,并定义其的权值 V 为:

$$V = \frac{\sum a}{\sum b}$$

你的任务就是求出权值最小的生成树。

3.2 输入格式

第一行有两个正整数 N, M ,分别描述图的点数和边数。 接下来 M 行,每行有三个正整数 x, y, a, b ,描述一条连接 x, y 的边。

3.3 输出格式

输出一行一个实数, 描述答案。

你的答案与标准答案的绝对误差不超过10-3时,即可得到全部分数。

3.4 样例

3.4.1 输入

3 3

1 2 1 1

2 3 1 3

3 1 1 2

3.4.2 输出

0.4

3.4.3 解释

选择 (2,3) 和 (3,1) 两条边作为生成树。

3.5 数据范围

测试点编号	数据范围及特殊说明
1,2,3	$N, M \le 20$
4,5,,9,10	$N, M \le 10^4$

4 select

4.1 问题描述

有一张有向图 G(V, E) 。 现在,你需要选择若干个点(也可以不选)。选择一个点可能获得收益,也可能需要付出代价。并且,如果选择了i 点,且向i 直接连边的所有点中有任意一个没有被选择,则还需要付出额外的代价 P_i 。

请你求出你能获得的最大收益。

4.2 输入格式

第一行包含两个正整数 N, M。 描述图的点数与边数。

接下来 N 行,第 i+1 行有两个整数, V_i, P_i 。若 $V_i < 0$,则表示选择 i 点需要付出 $|V_i|$ 的代价,反之,则表示选择 i 点可以获得 $|V_i|$ 的收益。

接下来 M 行,每行两个正整数 x,y,描述一条 x 向 y 的边。

4.3 输出格式

输出一行一个整数, 描述最大收益。

4.4 样例

4.4.1 输入

- 3 2
- 5 10
- -3 2
- -17
- 2 1
- 3 1

4.4.2 输出

1

4.4.3 解释

将点 1,2,3 全选。

4.5 数据范围

测试点编号	数据范围及特殊说明
1,2,3	$N \le 15, \ M \le N(N-1), \ V_i , P_i \le 10000$
4,5,9,10	$N \le 100, M \le N(N-1), V_i , P_i \le 10000$