Simple Linear Regression Exercise

July 19, 2024

1 Simple linear regression

Real estate is one of those examples that every regression course goes through as it is extremely easy to understand and there is a (almost always) certain causal relationship to be found.

The data is located in the file: 'real estate price size.csv'.

In this exercise, the dependent variable is 'price', while the independent variable is 'size'.

1.1 Import the relevant libraries

```
[]: import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm
```

1.2 Load the data

```
[ ]: data = pd.read_csv('real_estate_price_size.csv')
[ ]: data.head()
```

```
[]: price size
0 234314.144 643.09
1 228581.528 656.22
2 281626.336 487.29
3 401255.608 1504.75
4 458674.256 1275.46
```

```
[]: data.describe()
```

```
[]:
                     price
                                    size
               100.000000
                             100.000000
     count
     mean
            292289.470160
                             853.024200
     std
             77051.727525
                             297.941951
            154282.128000
                             479.750000
     min
     25%
            234280.148000
                             643.330000
     50%
            280590.716000
                             696.405000
     75%
            335723.696000
                            1029.322500
```

1.3 Create the regression

1.3.1 Declare the dependent and the independent variables

```
[]: y = data['price'] 
x1 = data['size']
```

1.3.2 Explore the data

```
[]: plt.scatter(x1,y)
  plt.xlabel('Size',fontsize=20)
  plt.ylabel('Price',fontsize=20)
  plt.show()
```


1.3.3 Regression itself

```
[]: x = sm.add_constant(x1)
results = sm.OLS(y,x).fit()
results.summary()
```

[]:

Dep. Variable:	price	R-squared:	0.745
Model:	OLS	Adj. R-squared:	0.742
Method:	Least Squares	F-statistic:	285.9
Date:	Fri, 19 Jul 2024	Prob (F-statistic):	8.13e-31
Time:	12:02:17	Log-Likelihood:	-1198.3
No. Observations:	100	AIC:	2401.
Df Residuals:	98	BIC:	2406.
Df Model:	1		
Covariance Type:	nonrobust		

	coef	std err	t	$\mathbf{P} > \mathbf{t} $	[0.025]	0.975]
const	1.019e + 05 223.1787	1.19e+04 13.199	8.550 16.909	$0.000 \\ 0.000$	7.83e+04 196.986	$1.26e + 05 \\ 249.371$
0	mnibus:	6.262	Durbi	in-Watso	on: 2	2.267
Prob(Omnibus): 0.044		Jarque-Bera (JB): 2.938			2.938	
\mathbf{S}	kew:	0.117	Prob(JB):	(0.230
K	Turtosis:	2.194	Cond	No.	2.7	5e + 03

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.75e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
plt.scatter(x1,y)
yhat = x1*223.1787+101900
fig = plt.plot(x1,yhat, lw=4, c='black', label ='regression line')
plt.xlabel('Size', fontsize = 20)
plt.ylabel('Price', fontsize = 20)
plt.show()
```


[]: