Algorithmic Game Theory Assignment 2

Palash Dey Indian Institute of Technology, Kharagpur

1.	Which or	ne of the	following	is an	MSNE o	f the	rock-pa	per-scissor	game?
.	VVIIICII OI	ic or the	TOTTO WITTE	io aii	I IVIOI VI	I LIIC	TOCK Pu	PCI DCIDDOI	Summe.

- (a) $\left(\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right), \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3} \right) \right)$
- (b) $\left(\left(\frac{1}{2}, \frac{1}{2}, 0\right), \left(0, \frac{1}{2}, \frac{1}{2}\right)\right)$
- (c) $((0, \frac{1}{2}, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, 0))$
- (d) $((\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, 0, \frac{1}{2}))$

The correct answer is (a).

2. Consider the following battle of sexes game.

- \triangleright The set of players (N): $\{1, 2\}$
- ightharpoonup The set of strategies: $S_i = \{A, B\}$ for every $i \in [2]$

> Payoff matrix:

		Player 2		
		A	В	
Player 1	A	(1, 2)	(0,0)	
Tiayer 1	В	(0,0)	(2, 1)	

Which one of the following is an MSNE of the above normal form game?

- (a) $({A:\frac{1}{2},B:\frac{1}{2}},{A:\frac{1}{2},B:\frac{1}{2}})$
- (b) $({A:\frac{1}{3},B:\frac{2}{3}},{A:\frac{2}{3},B:\frac{1}{3}})$
- (c) $(\{A: \frac{2}{3}, B: \frac{1}{3}\}, \{A: \frac{1}{3}, B: \frac{2}{3}\})$
- (d) there is no MSNE

The correct answer is (b).

- 3. Consider the following coordination game.
 - $\,\,\,\,\,\,\,\,\,\,$ The set of players $(N):\{1,2\}$
 - $\,\rhd\,$ The set of strategies: $S_{\mathfrak{i}}=\{A,B\}$ for every $\mathfrak{i}\in[2]$

> Payoff matrix:

		Player 2			
		A	В		
Player 1	Α	(10, 10)	(0,0)		
r layer 1	В	(0,0)	(1, 1)		

1

- (a) $(\{A: \frac{1}{2}, B: \frac{1}{2}\}, \{A: \frac{1}{2}, B: \frac{1}{2}\})$
- (b) $({A:\frac{10}{11},B:\frac{1}{11}},{A:\frac{10}{11},B:\frac{1}{11}})$
- (c) $(\{A:\frac{1}{11},B:\frac{10}{11}\},\{A:\frac{1}{11},B:\frac{10}{11}\})$
- (d) there is no MSNE

The correct answer is (c).

4. Consider the following battle of sexes game.

- \triangleright The set of players $(N): \{1, 2\}$
- $\,\rhd\,$ The set of strategies: $S_{\mathfrak{i}}=\{A,B\}$ for every $\mathfrak{i}\in[2]$

 $\triangleright \text{ Payoff matrix:} \qquad \begin{array}{c|c} & \text{Player 2} \\ \hline & A & B \\ \hline \text{Player 1} & A & (1,2) & (0,0) \\ \hline & B & (0,0) & (2,1) \\ \hline \end{array}$

What is the security of the row player in pure strategies?

- (a) 0
- (b) 1
- (c) 2
- (d) since the game is not a zero-sum game, the concept of security does not make any sense.

The correct answer is (a).

- 5. Consider the following battle of sexes game.
 - ightharpoonup The set of players $(N):\{1,2\}$
 - ${\,\vartriangleright\,} \text{ The set of strategies: } S_{\mathfrak{i}} = \{A,B\} \text{ for every } {\mathfrak{i}} \in [2]$

 $\triangleright \text{ Payoff matrix:} \qquad \begin{array}{c|c} & \text{Player 2} \\ \hline & A & B \\ \hline \text{Player 1} & A & (1,2) & (0,0) \\ \hline B & (0,0) & (2,1) \\ \hline \end{array}$

What is the security of the row player in mixed strategies?

- (a) 0
- (b) 1
- (c) 1.5
- (d) since the game is not a zero-sum game, the concept of security does not make any sense.

The correct answer is (c).

Justification: Refer to week-2 lecture-2

- 6. In a two-player normal form game Γ , let (σ_1^*, σ_2^*) be a MSNE. If we multiply utilities of every player in every strategy profile by 10, then (σ_1^*, σ_2^*) continues to be a MSNE if
 - (a) the strategy set of each player is finite
 - (b) (σ_1^*, σ_2^*) is never an MSNE of the modified game
 - (c) (σ_1^*, σ_2^*) is always an MSNE of the modified game; no condition is required
 - (d) data insufficient

The correct answer is (c).

- 7. Let A be a 10 \times 10 matrix of a matrix game. If A is anti-symmetric, then what is the value of the row player in mixed strategies?
 - (a) 0
 - (b) 10
 - (c) -10
 - (d) data insufficient

The correct answer is (a).

8. Let A be a 10 \times 10 matrix of a matrix game. If A is symmetric, then what is the value of the row player in mixed strategies?

- (a) 0
- (b) 10
- (c) -10
- (d) data insufficient

The correct answer is (d).

- 9. Let $\mathcal A$ be a $n \times n$ matrix of a matrix game. Assume that (i,j) and (h,k) are two PSNEs of the matrix game. Then (i,k) is also a PSNE when
 - (a) A has full rank
 - (b) A is symmetric
 - (c) A is anti-symmetric
 - (d) always, no extra condition is required.

The correct answer is (d).

Justification: If (i, j) and (h, k) are two PSNEs of the matrix game, then (i, k) and (h, j) are also other two PSNEs of the game

- 10. Suppose in a matrix game, the players have 3 strategies each. Which numbers among $\{0, 1, 2, ..., 9\}$ cannot be the total number PSNEs in the matrix game?
 - (a) 2
 - (b) 3
 - (c) 4
 - (d) 5

The correct answer is (d).