N°:		
APELLIDOS (escribir sobre la línea)	NOMBRE	DNI
TEORÍA DE CIRCUITOS 15 de septiembre 2017	Grado en Ingeniería de Tecnologías de Telecomunicación	

Nota: las cuestiones con respuestas tipo test no restarán nota en caso de responderse incorrectamente.

Cuestión 1: Seleccionar la respuesta correcta. Si un condensador estaba en régimen permanente de continua, y en el circuito (en el que solo hay fuentes de continua) se da un cambio de interruptor que da lugar a un transitorio, durante este transitorio...

El condensador siempre tiene potencia absorbida nula.	
El condensador sólo puede absorber energía. No puede cederla.	
El condensador sólo puede cambiar su corriente lentamente.	
El condensador puede absorber o ceder potencia durante el transitorio.	

Cuestión 2: Se tiene el transformador ideal de la figura. Si las vueltas de primario y secundario son, respectivamente, N1=1000; N2=100; y se sabe que $v_2 = 50$ V, e $i_2 = -30$ A, determinar los valores de v_I e i_1 .

Cuestiones 3: Dada una fuente real de tensión de continua que funciona a un rendimiento del 50 %:

Se pueden aumentar su potencia cedida y rendimiento.	
No se pueden aumentar ni su potencia cedida ni su rendimiento.	
Se puede aumentar su potencia cedida pero no su rendimiento.	
Se puede aumentar su rendimiento pero no su potencia cedida.	

Cuestión 4: En un sistema trifásico equilibrado, en una carga en triángulo:

La tensión de línea es $\sqrt{3}$ mayor que la de fase y desfasa $+30$ grados respecto de esta	
La tensión de línea es $\sqrt{3}$ menor que la de fase y desfasa $+30$ grados respecto de esta	
La intensidad de línea es √3 mayor que la de fase y desfasa -30 grados respecto de esta	
La intensidad de línea es √3 menor que la de fase y desfasa -30 grados respecto de esta	

Cuestión 5: En el circuito trifásico equilibrado de la figura, todas las impedancias son iguales. Si el amperímetro A2 marca 1 A, ¿cuánto marca el amperímetro A1?

a) $1/(2\sqrt{3})$

b) 1

c) 1/2

d) $2\sqrt{3}$

Cuestión 6: Obtener las magnitudes v e i en el circuito (c). Sabiendo que en (a) $I_1=2A$ $I_2=1A$ i=4A v=8V, en (b) $V_g=4V$ i=2A y en (c) $I_2=3A$. $R_1=2\Omega$.

Cuestión 7: Dado el circuito de la figura en régimen permanente de continua, obtener el equivalente Norton entre los terminales A \underline{y} B. Datos: Vg=10 V, R1=5 Ω , R2=1 Ω , L=1 H.

Cuestión 8: En el circuito de la figura en régimen permanente se sabe que la carga tiene una impedancia de valor absoluto $Z=1~\Omega$ y que consume reactiva con cos $\phi=0,8$. Calcular el valor eficaz de la intensidad I que absorbe la carga Z y el valor marcado por el vatímetro. DATOS: Ug= 1 V, R= 1 Ω .

Cuestión 9: Dado el circuito de la figura calcular i(t). DATOS: $I_g=4$ A, R=2 Ω , L=1 H, $u_g(t)=\sqrt{2}\cdot 10\cdot \cos(2\cdot t)$.

Cuestión 10: Dado un motor trifásico de 10 kW, 400 V, 50 Hz y cosφ= 0,8 inductivo, calcular el banco de condensadores que habría que colocar en estrella para conseguir un cosφ= 0,95 así como la relación entre las intensidades absorbidas antes y después de colocar dicho banco.

N°:		
APELLIDOS (escribir sobre la línea)	NOMBRE	DNI
TEORÍA DE CIRCUITOS 15 de septiembre 2017	Grado en Ingeniería de Tecnologías de Telecomunicación	

a

Cuestión 11-12: Escribir las ecuaciones de nudos del siguiente circuito.

Cuestión 13: Suponiendo que la solución del problema anterior fuese $V_A=20V$; $V_B=25V$; $V_C=22V$, calcular: a) La potencia cedida por la fuente I_{g1} , P_{Ig1})^{ced}; b) la potencia absorbida por la resistencia R_2 , P_{R2})^{abs}. Datos: $I_{g1}=10$ A; $R_2=1$ Ω ; $V_{g1}=1$ V.

Cuestión 14: Dado el circuito de la figura calcular la tensión V_{AB} y la potencia absorbida por R_4 . DATOS: R_1 =3 Ω , R_2 =1 Ω , R_3 =2 Ω , R_4 =3 Ω , V_{g1} =5 V, V_{g2} =2 V.

Cuestión 15: Sea una resistencia de 5 k Ω y una inductancia de 5 mH que se conectan en serie a una fuente de tensión constante de 50 V. Determinar la evolución de la tensión en la resistencia suponiendo condiciones iniciales nulas en el momento de la conexión, t=0.

v(t) =	A

Cuestión 16: Dada la fuente real de tensión de continua de la figura, se sabe que en régimen permanente circulan por la bobina 9 A y que si se elimina dicha bobina la fuente trabaja con un rendimiento del 75% en el nuevo régimen permanente. Calcular los parámetros internos de la fuente.

Cuestiones 17-18: Escribir las ecuaciones de mallas del siguiente circuito.

Cuestión 19: Dado el siguiente circuito trifásico equilibrado, hallar su equivalente monofásico estrella-

Cuestión 20: El circuito de la figura se encuentra en Régimen Permanente de Continua cuando en t=0 se cierra el interruptor. Calcular la potencia absorbida por la bobina, P_L)^{abs}, y la potencia total cedida por los condensadores, $P_{C,TOT}$) ^{ced}, justo después del cierre. DATOS: Ug1= 5V, Ug2= 2 V, Ig= 1 A, R1= 1 Ω , R2=1 Ω , R3= 2 Ω .

