UMass · CS685 | Advanced Natural Language Processing (2020)

CS685 (2020)· 课程资料包 @ShowMeAl

视频 中英双语字幕 课件 一键打包下载 笔记

官方笔记翻译

代码

作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1BL411t7RV

课件 & 代码・博客[扫码或点击链接]

http://blog.showmeai.tech/umass-cs685

迁移学习

7___

 语言模型
 问答系统
 文本生成
 BERT

 语义解析
 GPT-3

 知识推理
 模型蒸馏

transformer 注列

注意力机制

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料包**页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者?回复[添砖加瓦]

neural language models

CS 685, Fall 2020

Advanced Natural Language Processing http://people.cs.umass.edu/~miyyer/cs685/

Mohit lyyer

College of Information and Computer Sciences
University of Massachusetts Amherst

Stuff from last time...

- Pass/fail policy? (technically SAT / UNSAT)
 - Deadline to notify us that you want pass/fail: same as final report deadline (12/4)
 - Send an email to the instructors account with your request
 - Send a reminder email at the end of the semester
- HW0 due this Friday!
- Form final project groups by Friday or we'll do it for you!

language model review

 Goal: compute the probability of a sentence or sequence of words:

$$P(W) = P(w_1, w_2, w_3, w_4, w_5...w_n)$$

- Related task: probability of an upcoming word: $P(w_5|w_1,w_2,w_3,w_4)$
- A model that computes either of these:

P(W) or $P(w_n|w_1,w_2...w_{n-1})$ is called a language model or LM

n-gram models

$$p(w_j | \text{students opened their}) = \frac{\text{count(students opened their } w_j)}{\text{count(students opened their)}}$$

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if "students opened their w_j " never occurred in data? Then w_j has probability 0!

$$p(w_j | \text{students opened their}) = \frac{\text{count(students opened their } w_j)}{\text{count(students opened their)}}$$

Problems with n-gram Language Models

Sparsity Problem 1

Problem: What if "students opened their w_j " never occurred in data? Then w_j has probability 0!

(Partial) Solution: Add small δ to count for every $w_j \in V$. This is called *smoothing*.

$$p(w_j | \text{students opened their}) = \frac{\text{count(students opened their } w_j)}{\text{count(students opened their)}}$$

Problems with n-gram Language Models

Storage: Need to store count for all possible n-grams. So model size is $O(\exp(n))$. $P(\boldsymbol{w}_j|\text{students opened their}) = \frac{\text{count}(\text{students opened their }\boldsymbol{w}_j)}{\text{count}(\text{students opened their})}$

Increasing *n* makes model size huge!

another issue:

 We treat all words / prefixes independently of each other!

students opened their ____ Shouldn't we share information across these pupils opened their ____ semantically-similar prefixes? scholars opened their __ undergraduates opened their ____ students turned the pages of their ____ students attentively perused their ____

one-hot vectors

- n-gram models rely on the "bag-of-words" assumption
- represent each word as a vector of zeros with a single 1 identifying the index of the word

one-hot vectors

- n-gram models rely on the "bag-of-words" assumption
- represent each word as a vector of zeros with a single 1 identifying the index of the word

movie =
$$<0, 0, 0, 0, 1, 0>$$

film = $<0, 0, 0, 0, 0, 1>$

what are the issues of representing a word this way?

all words are equally (dis)similar!

movie =
$$<0, 0, 0, 0, 1, 0>$$

film = $<0, 0, 0, 0, 0, 1>$

all words are equally (dis)similar!

```
movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>
dot product is zero!
these vectors are orthogonal
```

all words are equally (dis)similar!

```
movie = <0, 0, 0, 0, 1, 0>
film = <0, 0, 0, 0, 0, 1>
dot product is zero!
these vectors are orthogonal
```

What we want is a representation space in which words, phrases, sentences etc. that are semantically similar also have similar representations!

Enter neural networks!

Students opened their

Enter neural networks!

Students opened their

This lecture: the forward pass, or how we compute a prediction of the next word given an existing neural language model

Enter neural networks!

Students opened their

This lecture: the forward pass, or how we compute a prediction of the next word given an existing neural language model

Next lecture: the backward pass, or how we train a neural language model on a training dataset using the backpropagation algorithm

words as basic building blocks

 represent words with low-dimensional vectors called embeddings (Mikolov et al., NIPS 2013)

composing embeddings

 neural networks compose word embeddings into vectors for phrases, sentences, and documents

Predict the next word from composed prefix representation

How does this happen? Let's work our way backwards, starting with the prediction of the next word

How does this happen? Let's work our way backwards, starting with the prediction of the next word

Softmax layer:

convert a vector representation into a probability distribution over the entire vocabulary

$P(w_i | \text{vector for "students opened their"})$

Let's say our output vocabulary consists of just four words: "books", "houses", "lamps", and "stamps".

Low-dimensional representation of "students opened their"

Let's say our output vocabulary consists of just four words: "books", "houses", "lamps", and "stamps".

books houses lamps tamps <0.6, 0.2, 0.1, 0.1>

We want to get a probability distribution over these four words

Low-dimensional representation of "students opened their"

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\}$$

Here's an example 3-d prefix vector

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, \; -0.3, \; 0.9 \\ 0.2, \; 0.4, \; -2.2 \\ 8.9, \; -1.9, \; 6.5 \\ 4.5, \; 2.2, \; -0.1 \end{array} \right\} \text{ first, we'll project our } \\ \text{3-d prefix representation to 4-d with a matrix-vector} \\ \text{with a matrix-vector} \\ \text{and the product of the$$

product

Here's an example 3-d prefix vector

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\}$$

intuition: each row of **W** contains feature weights for a corresponding word in the vocabulary

$$\mathbf{W} = \begin{cases} 1.2, & -0.3, & 0.9 \\ 0.2, & 0.4, & -2.2 \\ 8.9, & -1.9, & 6.5 \\ 4.5, & 2.2, & -0.1 \end{cases}$$

$$\mathbf{x} = \langle -2.3, 0.9, 5.4 \rangle$$

intuition: each row of **W** contains feature weights for a corresponding word in the vocabulary

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\} \begin{array}{l} books \\ houses \\ houses \\ kamps \\ stamps \\ stamps \end{array}$$

$$\mathbf{x} = \langle -2.3, 0.9, 5.4 \rangle$$

intuition: each row of **W** contains feature weights for a corresponding word in the vocabulary

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\} \begin{array}{l} \text{pooks} \\ \text{houses} \\ \text{lamps} \\ \text{stamps} \\ \text{stamps} \end{array}$$

CAUTION: we can't easily interpret these features! For example, the second dimension of **x** likely does not correspond to any linguistic property

How did we compute this? It's just the dot product of each row of **W** with **x**!

$$\mathbf{W} = \left\{ \begin{array}{l} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{array} \right\}$$

$$\mathbf{x} = \langle -2.3, 0.9, 5.4 \rangle$$

How did we compute this? It's just the dot product of each row of **W** with **x**!

$$\mathbf{W} = \begin{cases} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{cases}$$

$$\mathbf{x} = \langle -2.3, 0.9, 5.4 \rangle$$

How did we compute this? Just the dot product of each row of **W** with **x**!

$$\mathbf{W} = \begin{cases} 1.2, -0.3, 0.9 \\ 0.2, 0.4, -2.2 \\ 8.9, -1.9, 6.5 \\ 4.5, 2.2, -0.1 \end{cases}$$

Okay, so how do we go from this 4-d vector to a probability distribution?

We'll use the softmax function!

$$softmax(x) = \frac{e^x}{\sum_{j} e^{x_j}}$$

- x is a vector
- x_j is dimension j of x
- each dimension j of the softmaxed output represents the probability of class j

$$\mathbf{W}\mathbf{x} = \langle 1.8, -1.9, 2.9, -0.9 \rangle$$

 $\mathbf{softmax}(\mathbf{W}\mathbf{x}) = \langle 0.24, 0.006, 0.73, 0.02 \rangle$

We'll use the softmax function!

$$softmax(x) = \frac{e^x}{\sum_{j} e^{x_j}}$$

- x is a vector
- x_j is dimension j of x
- each dimension j of the softmaxed output represents the probability of class j

$$\mathbf{W}\mathbf{x} = \langle 1.8, -1.9, 2.9, -0.9 \rangle$$

 $\mathbf{softmax}(\mathbf{W}\mathbf{x}) = \langle 0.24, 0.006, 0.73, 0.02 \rangle$

We'll see the softmax function over and over again this semester, so be sure to understand it!

so to sum up...

- Given a d-dimensional vector representation x of a prefix, we do the following to predict the next word:
 - 1. Project it to a *V*-dimensional vector using a matrix-vector product (a.k.a. a "linear layer", or a "feedforward layer"), where *V* is the size of the vocabulary
 - 2. Apply the softmax function to transform the resulting vector into a probability distribution

Now that we know how to predict "books", let's focus on how to compute the prefix representation \boldsymbol{x} in the first place!

Composition functions

input: sequence of word embeddings corresponding to the tokens of a given prefix

output: single vector

- Element-wise functions
 - e.g., just sum up all of the word embeddings!
- Concatenation
- Feed-forward neural networks
- Convolutional neural networks
- Recurrent neural networks
- Transformers (our focus this semester)

Let's look first at *concatenation*, an easy to understand but limited composition function

concatenated word embeddings

$$x = [c_1; c_2; c_3; c_4]$$

hidden layer

$$h = f(W_1 x)$$

concatenated word embeddings

$$x = [c_1; c_2; c_3; c_4]$$

f is a nonlinearity, or an element-wise nonlinear function. The most commonly-used choice today is the rectified linear unit (ReLu), which is just ReLu(x) = max(0, x). Other choices include tanh and sigmoid.

hidden layer

$$h = f(W_1 x)$$

concatenated word embeddings

$$x = [c_1; c_2; c_3; c_4]$$

output distribution

$$\hat{y} = \text{softmax}(W_2h)$$

hidden layer

$$h = f(W_1 x)$$

concatenated word embeddings

$$x = [c_1; c_2; c_3; c_4]$$

how does this compare to a normal n-gram model?

Improvements over *n*-gram LM:

- No sparsity problem
- Model size is O(n) not O(exp(n))

Remaining **problems**:

- Fixed window is too small
- Enlarging window enlarges W
- Window can never be large enough!
- Each c_i uses different rows of W. We don't share weights across the window.

Recurrent Neural Networks!

$$c_1, c_2, c_3, c_4$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

$$c_1, c_2, c_3, c_4$$

output distribution

$$\hat{y} = \text{softmax}(W_2 h^{(t)})$$

hidden states

$$h^{(t)} = f(W_h h^{(t-1)} + W_e c_t)$$

h⁽⁰⁾ is initial hidden state!

word embeddings

$$c_1, c_2, c_3, c_4$$

 $\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

 $\hat{\boldsymbol{y}}^{(4)} = P(\boldsymbol{x}^{(5)}|\text{the students opened their})$

why is this good?

RNN Advantages:

- Can process any length input
- Model size doesn't increase for longer input
- Computation for step t can (in theory) use information from many steps back
- Weights are shared across timesteps > representations are shared

RNN **Disadvantages**:

- Recurrent computation is slow
- In practice, difficult to access information from

__many steps back

Be on the lookout for...

- Next lecture on backpropagation, which allows us to actually train these networks to make reasonable predictions
- Next week, we'll focus on the **Transformer** architecture, which is the most popular composition function used today

UMass · CS685 | Advanced Natural Language Processing (2020)

CS685 (2020)· 课程资料包 @ShowMeAl

视频 中英双语字幕 课件 一键打包下载 笔记

官方笔记翻译

代码

作业项目解析

视频·B站[扫码或点击链接]

https://www.bilibili.com/video/BV1BL411t7RV

课件 & 代码・博客 [扫码或点击链接]

http://blog.showmeai.tech/umass-cs685

迁移学习

语言模型 问答系统 文本生成 BERT 语义解析 GPT-3 知识推理 模型蒸馏 注意力机制

Awesome Al Courses Notes Cheatsheets 是 <u>ShowMeAl</u> 资料库的分支系列,覆盖最具知名度的 <u>TOP50+</u> 门 Al 课程,旨在为读者和学习者提供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料包**页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS23In

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 **AI 内容创作者?** 回复[添砖加瓦]