Алгоритмы и структуры данных

Практическая работа №6.

Разработка программ моделирования работы стека и очереди.

Задача 1.

Создать линейный список типа стек и занести в него следующее предложение (без кавычек) «Разработать алгоритм и программу умножения двух целочисленных матриц.»

В каждую «ячейку» (узел) стека заносится одно слово предложения, причем слова заносятся в обратном порядке, начиная с последнего. Затем производится вывод предложения на экран пословно в прямом порядке.

Задача 2.

Задача заключается в моделировании работы конвейера центрального процессора с помощью линейного списка типа очередь. Структурная схема конвейера, имеющего 5 ступеней (стадий), представлена на следующем рисунке.

На первой ступени конвейера (С1) команда вызывается из памяти и помещается в буфер, где хранится до тех пор, пока не будет нужна. На ступени С2 происходит декодирование команды, определяется ее тип и тип операндов, над которыми она будет выполняться. Ступень С3 определяет местонахождение операндов и вызывает их из регистров или из памяти. Ступень С4 выполняет команду. На ступени С5 результат записывается в регистр. Следующая схема иллюстрирует работу данного конвейера.

Команды

1	2	3	4	5	6	7	8	9	•
	1	2	3	4	5	6	7	8	
		1	2	3	4	5	6	7	
			1	2	3	4	5	6	•
				1	2	3	4	5	•
	1	1 2			1 2 3 4 1 2 3 1 2	1 2 3 4 5 1 2 3 4 1 2 3	1 2 3 4 5 6 1 2 3 4 5 1 2 3 4	1 2 3 4 5 6 7 1 2 3 4 5 6 1 2 3 4 5	1 2 3 4 5 6 7

Во время цикла 1 ступень С1 вызывает команду 1 из памяти. Во время цикла 2 ступень С2 декодирует команду 1, в то время как С1 вызывает из памяти команду 2. Во время цикла 3 ступень С3 вызывает операнды для команды 1, ступень С2 декодирует команду 2, а С1 вызывает третью команду. Во время цикла 4 ступень С4 выполняет команду 1, С3 вызывает операнды для команды 2, С2 декодирует команду 3, а С1 вызывает команду 4. Наконец, во время пятого цикла С5 записывает результат выполнения команды 1 обратно в регистр, тогда как другие стадии работают над следующими командами.

Необходимо пропустить через конвейер 10 команд. После прохода 5 ступени команда выводится на экран.