

FUNDAMENTOS FÍSICOS Y TECNOLÓGICOS

2020/2021

Tema: 4

Problemas propuestos para trabajar de cara a la semana 7

PARA ALUMNOS CON LIBRO DE TEXTO O ACCESO A ÉL

Los problemas para trabajar de cara a la semana 7 con los contenidos de teoría vistos hasta ahora son:

- Volumen: Parte I.
- Problemas: 69, 70, 71, 72, 79, 80, 89, 92, 94, 95.

Estos problemas son de nivel básico e intermedio.

PARA ALUMNOS SIN ACCESO AL LIBRO DE TEXTO

Los problemas cuyos enunciados se recogen a continuación se corresponden con los del nivel básico e intermedio del libro de texto (segunda edición). Para facilitar su identificación, se ha respetado para cada uno la numeración que le corresponde en el libro.

69. Calcule la resistencia equivalente entre los puntos A y B de las siguientes asociaciones de resistencias.

NIVEL: BÁSICO

70. En el circuito que ilustra el problema, se pide:

- (a) Calcule la resistencia equivalente entre los puntos A y B.
- (b) Si la caída de potencial V_A-V_B es $12\,$ V, determine la corriente en cada resistencia.

Datos: $R_1=6~\Omega$, $R_2=R_4=R_5=4~\Omega$, $R_3=2~\Omega$, $R_6=R_7=8~\Omega$.

NIVEL: BÁSICO

71. Considere el siguiente circuito.

Se pide calcular:

- (a) La intensidad que circula por las resistencias R_2 , R_3 y R_4 .
- (b) La caída de tensión en la resistencia R_2 .
- (c) La potencia disipada por la resistencia R_6 .

NIVEL: BÁSICO

72. Sea el circuito mostrado en la figura

Se pide calcular:

- (a) La resistencia equivalente entre los puntos A y B.
- (b) La corriente que circula por el punto A.
- (c) La intensidad en todos los hilos.
- (d) Las diferencias de potencial V_{AB} , V_{AC} , V_{CD} y V_{DB} .

NIVEL: BÁSICO

79. Encuentre la tensión V_2 en el circuito siguiente utilizando resolución por nudos

Datos: $I_1=4$ mA, $I_2=6$ mA, $R_1=2$ k Ω , $R_2=4$ k Ω , $R_3=6$ k Ω , $R_4=8$ k Ω .

NIVEL: BÁSICO

80. Utilice el análisis por nudos para encontrar las tensiones V_0 y V_1 en el circuito de la imagen

Datos: $I_1=4$ mA, $I_2=2$ mA, $R_1=3$ k Ω , $R_2=6$ k Ω , $R_3=12$ k Ω , $R_4=2$ k Ω , $R_5=2$ k Ω .

NIVEL: BÁSICO

89. Utilice el análisis por nudos para obtener la diferencia de potencial en los extremos de la fuente de corriente del siguiente circuito

Datos: $V_1=12$ V, $I_1=2$ mA, $R_1=R_2=R_3=R_4=6$ k Ω .

NIVEL: INTERMEDIO

92. En el circuito siguiente, calcule la corriente que circula por cada rama esencial usando el método de los nudos y la potencia disipada por cada resistencia.

Datos: V=12 V, $R_1=2$ k Ω , $R_2=R_3=R_4=6$ k Ω .

NIVEL: BÁSICO

94. Considere el circuito siguiente

Se pide:

- (a) Calcule la corriente que circula por cada una de las resistencias usando el método de los nudos y la potencia consumida por cada una de ellas.
- (b) Si la resistencia R_2 se modifica pasando a valer $10 \, \mathrm{k}\Omega$, ¿cómo se modifica la diferencia de potencial entre los puntos A y B?, ¿se modifica la intensidad que circula por la rama esencial de la izquierda?

Datos: $V_1=5$ V, $R_1=1$ k Ω , $R_2=100$ Ω , $R_3=1$ k Ω , $R_4=2$ k Ω .

NIVEL: BÁSICO

95. Determine el valor de la tensión V_A usando el método de los nudos en el circuito que se muestra

Datos: $V_1=1$ V, $V_2=2$ V, $I_1=2$ mA, $R_1=R_2=R_3=1$ k Ω .

NIVEL: BÁSICO