Экзамен по математическому анализу. Часть 3

Харитонцев-Беглов Сергей, Ипатов Марк, Ерёмина Елизавета, Родионычев Михаил

28 марта 2022 г.

Содержание

Билет 01	1
Билет 02	1
Билет 03	2
Билет 04	3
Билет 05	4
Билет 06	4
Билет 07	6
Билет 08	7
Билет 09	7
Билет 10	8
Билет 11	9
Билет 12	10
Билет 13	10
Билет 14	11
Билет 15	11
Билет 16	12
Билет 17	14

СОДЕРЖАНИЕ	СОДЕРЖАНИЕ

Билет 18	14
Билет 19	15
Билет 20	16
Билет 21	17
Билет 22	19
Билет 23	20
Билет 24	21
Билет 25	23
Билет 26	24
Билет 27	24
Билет 28	25
Билет 29	27
Билет 30	28
Билет 31	28
Билет 32	28
Билет 33	29
Билет 34	29
Билет 35	29
Билет 36	29
Билет 37	29
Билет 38	29
Билет 39	29
Билет 40	29
Билет 41	29

СОДЕРЖАНИЕ СОДЕРЖАНИЕ

Билет 42	29
Билет 43	29
Билет 44	30
Билет 45	30
Билет 46	30
Билет 47	30
Билет 48	30
Билет 49	30
Билет 50	30
Билет 51	30
Билет 52	30
Билет 53	30
Билет 54	30
Билет 55	31
Билет 56	31
Билет 57	31
Билет 58	31
Билот 50	31

Билет 01

Пусть \mathcal{F} — совокупность (множество) ограниченных плоских фигур.

Определение 1.1. Площадь: σ : \mathcal{F} → $[0; +\infty)$, причём

- 1. $\sigma([a;b] \times [c,d]) = (b-a)(d-c)$
- 2. (Аддитивность). $\forall E_1, E_2 \in \mathcal{F} \colon E_1 \cap E_2 = \varnothing \Rightarrow \sigma(E_1 \cup E_2) = \sigma(E_1) + \sigma(E_2)$

 ${\it C}$ войство ${\it M}$ онотонность площа ${\it d}{\it u}$. $\forall E, \widetilde{E} \colon E \subset \widetilde{E} \Rightarrow \sigma(E) \leqslant \sigma(\widetilde{E})$.

Доказательство.
$$\widetilde{E} = E \cup (\widetilde{E} \setminus E) \Rightarrow \sigma(\widetilde{E}) = \sigma(E) + \sigma(\widetilde{E} \setminus E)$$
.

Определение 1.2. Псевдоплощадь: $\sigma: \mathcal{F} \to [0; +\infty)$, причём

- 1. $\sigma([a;b] \times [c,d]) = (b-a)(d-c),$
- 2. $\forall E, \widetilde{E} \in \mathcal{F} : E \subset \widetilde{E} \Rightarrow \sigma(E) \leqslant \sigma(\widetilde{E}),$
- 3. Разобьем E вертикальной или горизонтальной прямой, в том числе теми прямыми, которые правее или левее E. Тогда $E = E_- \cup E_+, E_- \cap E_+ = \emptyset$ и $\sigma(E) = \sigma(E_-) + \sigma(E_+)$.

Свойства. 1. Подмножество вертикального или горизонтального отрезка имеет нулевую площадь.

2. В определении E_- и E_+ неважно куда относить точки из l.

Доказательство. Пусть $\widetilde{E}=E_-\cup (E\cap l)=(E_-\setminus l)\cup (E\cap l)$. Тогда $\sigma(\widetilde{E})=\sigma(E_-\cup (E\cap l))=\sigma(E_-\setminus l)+\underbrace{\sigma(E\cap l)}_{=0}\Rightarrow$ вообще не имеет разницы куда относить точки из l.

Билет 02

Пример.

1.
$$\sigma_1(E) = \inf \left\{ \sum_{k=1}^n |P_k| \colon P_k - \text{прямоугольник}, \bigcup_{k=1}^n P_k \supset E \right\}.$$

2.
$$\sigma_2(E)=\infiggl\{\sum_{k=1}^\infty |P_k|\colon P_k$$
 — прямоугольник, $\bigcup_{k=1}^\infty P_k\supset Eiggr\}$.

Упражнение.

- 1. Доказать, что $\forall E \ \sigma_1(E) \geqslant \sigma_2(E)$.
- 2. $E = ([0,1] \cap \mathbb{Q}) \times ([0,1] \cap \mathbb{Q})$. Доказать, что $\sigma_1(E) = 1, \sigma_2(E) = 0$.

Теорема 2.1.

1. σ_1 — квазиплощадь.

2. Если E' — сдвиг E, то $\sigma_1(E) = \sigma_1(E')$.

Доказательство.

2. E' — сдвиг E на вектор v. Пусть P_k — покрытие $E \iff P'_k$ — покрытие E'. Знаем, что площади прямоугольников не меняются при сдвиге, а значит:

$$\sigma_1(E) = \inf\{\sum_{k=1}^n |P_k|\} = \inf\{\sum |P'_k|\} = \sigma_1(E').$$

1. \Rightarrow монотонность. Пусть есть $E \subset \widetilde{E}$. Тогда возьмем покрытие P_k для \widetilde{E} . $E \subset \widetilde{E} \subset \bigcup_{k=1}^n P_k$.

А теперь заметим, что σ_1 — inf, и любое покрытие для \widetilde{E} является покрытием и для E, т.е. все суммы из $\sigma_1(\widetilde{E})$ есть в $\sigma_1(E)$, а значит $\sigma_1(E) \leqslant \sigma_1(\widetilde{E})$ как инфинум по более широкому множеству.

1'. Докажем теперь аддитивность.

«
$$\leq$$
»: $\sigma_1(E) = \sigma_1(E_-) + \sigma_1(E_+)$. Пусть P_k — покрытие E_- , Q_j — покрытие E_+ .

Тогда
$$\bigcup_{k=1}^n P_k \cup \bigcup_{j=1}^n Q_j \supset E_- \cup E_+ = E.$$

А значит
$$\sigma_1(E) \leqslant \inf \left\{ \sum_{k=1}^n |P_k| + \sum_{j=1}^n |Q_j| \right\} = \inf \{ \sum |P_k| \} + \inf \{ \sum |Q_j| \} = \sigma_1(E_-) + \sigma(E_+).$$

Заметим, Что переход \dot{c} разделением инфинумов возможен, так как P и Q выбираются независимо.

«»: Пусть P_k — покрытие E. Тогда можно пересечь прямой (покрытие и само E) и разбить P_k на P_k^- и P_k^+ , а тогда: $|P_k| = |P_k^-| + |P_k^+|$, $\sum |P_k| = \sum |P_k^-| + \sum |P_k^+|$.

$$\sum |P_k^-| \geqslant \sigma_1(E_-), \sum |P_k^+| \geqslant \sigma_1(E^+) \Rightarrow \sum |P_k| \geqslant \sigma_1(E_-) + \sigma_1(E_+)$$
 для любого покрытия P_k , а значит и $\sigma_1(E) \geqslant \sigma_1(E_-) + \sigma_1(E_+)$

Таким образом $\sigma_1(E) = \sigma_1(E_-) + \sigma_1(E_+)$

1". Проверим, что сама площадь прямоугольника не сломалась: $\sigma_1([a,b] \times [c,d]) = (b-a)(d-c)$. Заметим, что $\sigma_1(P) \leqslant |P|$, т.к. прямоугольник можно покрыть им самим.

Чтобы доказать $\sigma_1(P) \geqslant |P|$, посмотрим на P_k . Проведем прямые содержащие все стороны прямоугольников из покрытия (и P). Заметим, что такими прямыми каждый прямоугольник разбивается на подпрямоугольники, сумма площадей которых равна площади исходного прямоугольника. Тогда заметим, что и площадь P это сумма «кусочков из нарезки» P, и некоторые части разбиения встречаются в P_k несколько раз. А значит выкинув все лишнее мы как раз получим |P|, а значит $\sigma_1(P) \geqslant |P|$.

Формально: Если
$$\bigcup_{k=1}^n P_k \supset P$$
, то $\sum_{k=1}^n |P_k| \geqslant P \Rightarrow \inf \left\{ \sum_{k=1}^n |P_k| \right\} \geqslant |P|$.

Таким образом $\sigma_1(P) = |P|$.

Билет 03

Глава **#3** 2 из 31 Автор: XБ

Определение 3.1. Пусть $f:[a,b] \to \mathbb{R}$. Тогда $f_+, f_-:[a,b] \to [0;+\inf)$. Причем $f_+(x) = \max\{f(x),0\}, f_- = \max\{-f(x),0\}.$ f_+ — положительная составляющая, а f_- — отрицательная составляющая.

Ceouchea. 1. $f = f_{+} - f_{-}$.

- 2. $|f| = f_+ + f_-$
- 3. $f_+ = \frac{f+|f|}{2}$, $f_- = \frac{|f|-f}{2}$. (Сложили и вычли первые два свойства)
- 4. Если $f \in C([a,b])$, то $f_{\pm} \in C([a,b])$. (Видно из 3-го пункта)

Определение 3.2. Пусть $f:[a,b] \to [0;+\infty)$.

Тогда подграфик $P_f([a;b]) := \{(x,y) \in \mathbb{R}^2 \mid x \in [a,b], 0 \leqslant y \leqslant f(x)\}$. Подграфик может быть взят и от какого-то подотрезка области определения функции!

Билет 04

Определение 4.1. Пусть $f \in C([a,b])$. Зафиксируем произвольную квазиплощадь σ . Тогда Определённый интеграл: $\int\limits_a^b f = \int\limits_a^b f(x) dx = \sigma(P_{f_+}([a;b])) - \sigma(P_{f_-}([a;b]))$.

Определение корректно, поскольку, раз функция непрерывна, то и составляющие непрерывны на отрезке, значит ограничены, значит под σ ограниченые множества, на которых σ определена. А позже проверим, что результат не зависит и от выбора σ .

 $m{Ceoйcmea.} \qquad 1. \int\limits_a^a f = 0. \; (\Pi$ лощадь отрезка = 0)

2. $\int_{a}^{b} c = c(b-a), c \geqslant 0$ (для отрицательных будет следовать из пунктов ниже)

Доказательство. По графику очевидно :)

- 3. $f \geqslant 0 \Rightarrow \int_{a}^{b} = \sigma(P_f)$.
- 4. $\int_{a}^{b} (-f) = -\int_{a}^{b} f$.

Доказательство. $(-f)_+ = \max\{-f,0\} = f_-$. $(-f)_- = \max\{f,0\} = f_+$, откуда $\int_a^b (-f) = \sigma(P_{(-f)_+}) - \sigma(P_{(-f)_-}) = \sigma(P_{f_-}) - \sigma(P_{f_+}) = -\int_a^b f$

5.
$$f \geqslant 0 \land \int_{a}^{b} f = 0 \land a < b \Rightarrow f = 0$$
.

Доказательство. От противного. Пусть $\exists c \in [a,b] \colon f(c) > 0$. Тогда, возьмем $\varepsilon \coloneqq \frac{f(c)}{2}, \delta$ из определения непрерывности в точке c. Если $x \in (c-\delta,c+\delta)$, то $f(x) \in (f(c)-\varepsilon,f(c)+\varepsilon) = (\frac{f(c)}{2};\frac{3f(c)}{2}) \Rightarrow f(x) \geqslant \frac{f(c)}{2}$ при $x \in (c-\delta;c+\delta) \Rightarrow P_f \supset [c-\frac{\delta}{2};c+\frac{\delta}{2}] \times [0;\frac{f(c)}{2}] \Rightarrow \int\limits_a^b f = \sigma(P_f) \geqslant \delta \cdot \frac{f(c)}{2} > 0$, противоречие.

Билет 05

Теорема 5.1 (Аддитивность интеграла). Пусть $f: [a, b] \to \mathbb{R}, c \in [a, b]$.

Тогда
$$\int_a^b f = \int_a^c f + \int_c^b f$$
.

Доказательство. $\int_a^b f = \sigma(P_{f_+}([a,b])) - \sigma(P_{f_-}([a,b]))$. Разделим наш [a,b] и соответствующие множества вертикальной прямой x = c. Тогда $\sigma(P_{f_+}[a,b]) - \sigma(P_{f_-}[a,b]) = \sigma_{P_{f_+}[a,c]} + \sigma_{P_{f_+}[c,b]} - \sigma(P_{f_-}[a,c]) - \sigma(P_{f_-}[c,b]) = \int_a^c f + \int_c^b f$

Теорема 5.2 (Монотонность интеграла). Пусть $f,g:[a,b]\to\mathbb{R}$ и $\forall x\in[a,b]:f(x)\leqslant g(x)$.

Тогда
$$\int_{a}^{b} f \leqslant \int_{a}^{b} g$$
.

Доказательство. $f_{+} = \max\{f, 0\} \leqslant \max\{g, 0\} = g_{+} \Rightarrow P_{f_{+}} \subset P_{g_{+}} \Rightarrow \sigma(P_{f_{+}}) \leqslant \sigma(P_{g_{+}}).$ $f_{-} = \max\{-f, 0\} \geqslant \max\{-g, 0\} = g_{-} \Rightarrow P_{f_{-}} \supset P_{g_{-}} \Rightarrow \sigma(P_{f_{-}}) \geqslant \sigma(P_{g_{-}}).$ $\int_{a}^{b} f = \sigma(P_{f_{+}}) - \sigma(P_{f_{-}}) \leqslant \sigma(P_{g_{+}}) - \sigma(P_{g_{-}}) = \int_{a}^{b} g.$

Credemeue. 1. $\left|\int\limits_a^b f\right| \leqslant \int\limits_a^b |f|$.

2.
$$(b-a) \min_{x \in [a,b]} f(x) \leqslant \int_{a}^{b} f \leqslant (b-a) \max_{x \in [a,b]} f(x)$$
.

Доказательство. 1. $-|f| \le f \le |f| \Rightarrow (\Pi$ рименим теорему к двум неравенствам)

$$\int_{a}^{b} -|f| \leqslant \int_{a}^{b} f \leqslant \int_{a}^{b} |f| \Rightarrow |\int_{a}^{b} f| \leqslant \int_{a}^{b} |f|.$$

2.
$$m := \min_{x \in [a,b]} f(x), M := \max_{x \in [a,b]} f(x). \ m \leqslant f(x) \leqslant M \Rightarrow \int_a^b m \leqslant \int_a^b f \leqslant \int_a^b M \Rightarrow m(b-a) \leqslant \int_a^b f \leqslant M(b-a).$$

Теорема 5.3 (Интегральная теорема о среднем). Пусть $f \in C([a,b])$.

Тогда
$$\exists c \in (a,b) : \int_a^b f = (b-a)f(c).$$

Доказательство. $m \coloneqq \min f = f(p), M \coloneqq \max f = f(q)$ (по теореме Вейерштрасса). Тогда $\frac{1}{b-a} \int\limits_a^b f = f(c) \Rightarrow f(p) \leqslant \frac{1}{b-a} \int\limits_a^b f \leqslant f(q) \xrightarrow{\text{т. B-K}} \exists c \in (p,q)$ или $(q,p) \colon f(c) = \frac{1}{b-a} \int\limits_a^b f$.

 ${\it Onpedenehue}$ 5.1. $I_f \coloneqq rac{1}{b-a} \int\limits_a^b f$ — среднее значение f на отрезке [a,b].

Билет 06

Определение 6.1. $f:[a,b]\to\mathbb{R}$. Интеграл с переменным верхним пределом $\Phi(x)\coloneqq\int\limits_a^x f$, где $x\in[a,b]$.

Определение 6.2. $f:[a,b]\to\mathbb{R}$. Интеграл с переменным нижним пределом $\Psi(x):=\int\limits_x^b f$, где $x\in[a,b]$.

Замечание. $\Phi(x) + \Psi(x) = \int\limits_a^b f$.

Теорема 6.1 (Теорема Барроу). Пусть $f \in C([a,b])$. Тогда $\Phi'(x) = f(x) \quad \forall x \in [a,b]$. То есть Φ — первообразная функции f.

Доказательство. Надо доказать, что $\lim_{y\to x} \frac{\Phi(y)-\Phi(x)}{y-x} = f(x)$. Проверим для предела справа (слева аналогично, но, возможно, с чуть другим порядком точек).

Тогда
$$\Phi(y) - \Phi(x) = \int_a^y f - \int_a^x f = \int_x^y f.$$

Тогда $\frac{\Phi(y)-\Phi(x)}{y-x}=\frac{1}{y-x}\int\limits_{x}^{y}f=f(c)$ для некоторого $c\in(x,y)$ по интегральной теореме о среднем.

Проверяем определение по Гейне. Берем $y_n > x$ и $y_n \to x$. Тогда $\frac{\Phi(y_n) - \Phi(x)}{y_n - x} = f(c_n)$, где $c_n \in (x, y_n), \ x < c_n < y_n \to x \Rightarrow c_n \to x \Rightarrow$ в силу непрерывности $f(c_n) \to f(x)$.

Cnedcmeue. $\Psi'(x) = -f(x) \quad \forall x \in [a, b].$

Доказательство.
$$\Psi(x) = \int\limits_a^b f - \Phi(x) = C - \Phi(x) \Rightarrow \Psi' = (C - \Phi(x))' = -\Phi'(x) = -f(x).$$

Теорема 6.2. Непрерывная на промежутке функция имеет первообразную.

Доказательство. $f: \langle a, b \rangle \to \mathbb{R}$.

Возьмём
$$c \in (a,b)$$
 Рассмотрим $F(x) \coloneqq \begin{cases} \int\limits_{c}^{x} f & \text{при } x \geqslant c \\ -\int\limits_{x}^{c} f & \text{при } x \leqslant c \end{cases}$

Утверждаем, что F(x) — первообразная f(x). Если x>c, то F'(x)=f(x). Если x< c, то F'(x)=-(-f(x))=f(x) Если x=c, то, так как производные слева и справа считаются правильно и равны, то и в этой точке производная есть f(x).

Теорема 6.3 (Формула Ньютона-Лейбница). $f:[a,b]\to\mathbb{R}$ и F – её первообразная. Тогда $\int\limits_a^b f=F(b)-F(a)$.

Доказательство. $\Phi(x) = \int_{a}^{x} f$ — первообразная и $F(x) = \Phi(x) + C$ (знаем, что две первообразные отличаются на константу)

Тогда
$$F(b) - F(a) = (\Phi(b) + C) - (\Phi(a) + C) = \Phi(b) - \Phi(a) = \int_a^b f$$

И ровно в этот момент мы поняли, что от выбора псевдоплощади не зависим, поскольку первообразные от них не зависят (отсылка к первому билету/началу конспекта про псевдоплощади)

Определение 6.3. $F \mid_a^b := F(b) - F(a)$

Билет 07

Теорема 7.1 (Линейность интеграла). $\int_{a}^{b} (\alpha f + \beta g) = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g$.

Доказательство. Пусть F, G — первообразные для f, g.

Тогда $\alpha F + \beta G$ — первообразная для $\alpha f + \beta g$. Тогда воспользуемся формулой Ньютона-Лейбница:

$$\int_a^b \alpha f + \beta g = (\alpha F + \beta G)|_a^b = \alpha F(b) + \beta G(b) - \alpha F(a) - \beta G(a) = \alpha \int_a^b f + \beta \int_a^b g.$$

Теорема 7.2 (Формула интегрирования по частям). Пусть $f,g\in C^1[a,b]$.

Тогда
$$\int_{a}^{b} fg' = fg \mid_{a}^{b} - \int_{a}^{b} f'g.$$

Доказательство. Докажем при помощи формулы Ньютона-Лейбница. Пусть H — первообразная f'g. Тогда fg - H — первообразная для fg'.

Проверим данный факт: (fg-H)'=f'g+fg'-f'g=fg'. А значит нам можно воспользоваться формулой Ньютона-Лейбница.

$$\int_{a}^{b} fg' = (fg - H) \mid_{a}^{b} = fg \mid_{a}^{b} - H \mid_{a}^{b} = fg \mid_{a}^{b} - \int_{a}^{b} f'g.$$

Замечание Соглашение. Если a>b, то $\int\limits_a^bf:=-\int\limits_b^af.$

Мотивация: Если F — первообразная, то $\int_a^b f = F \mid_a^b$.

Теорема 7.3 (Формула замены переменной). Пусть $f \in C[a,b], \varphi \colon [c,d] \to [a,b], \varphi \in C^1[c,d], p,q \in [c,d].$

Тогда
$$\int\limits_{p}^{q} f(\varphi(t))\varphi'(t)\mathrm{d}t = \int\limits_{\varphi(p)}^{\varphi(q)} f(x)\mathrm{d}x.$$

Доказательство. Пусть F — первообразная f. Тогда $\int_{\varphi(p)}^{\varphi(q)} f(x) dx = F \mid_{\varphi(p)}^{\varphi(q)} = F \circ \varphi \mid_{p}^{q}$. Заметим, что $F \circ \varphi$ — первообразная для $f(\varphi(t))\varphi'(t)$.

Проверим это: $(F(\varphi(t)))' = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t))\varphi'(t)$.

Тогда:
$$\int_{\varphi(p)}^{\varphi(q)} f(x) dx = F \circ \varphi|_{\varphi(p)}^{\varphi(q)} = \int_{p}^{q} f(\varphi(t)) \varphi'(t) dt$$

Глава #7 6 из 31 Aвтор: XБ

Пример.

$$\int_0^{\frac{\pi}{2}} \frac{\sin 2t}{1 + \sin^4 t} \mathrm{d}t. \tag{1}$$

Произведем замену $\varphi(t)=\sin^2t,\ f(x)=\frac{1}{1+x^2},\ \varphi'(t)=2\sin t\cos t=\sin 2t,\ \varphi(0)=0, \varphi(\frac{\pi}{2})=1$:

$$(1) = \int_0^{\frac{\pi}{2}} \frac{\varphi'(t)}{1 + (\varphi(t))^2} = \int_0^{\frac{\pi}{2}} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(0)}^{\varphi(\frac{\pi}{2})} f(x)dx = \int_0^1 f(x)dx = \int_0^1 \frac{dx}{1 + x^2} = \operatorname{arctg} x \mid_0^1 = \frac{\pi}{4}.$$

Билет 08

Пример. $W_n := \int_0^{\frac{\pi}{2}} \sin^n x dx = \int_0^{\frac{\pi}{2}} \cos^n t dt = (1)$ Докажем этот момент:

Положим $x = \frac{\pi}{2} - t =: \varphi(t), \ \varphi'(t) = -1, \ \sin(\frac{\pi}{2} - t) = \cos t.$

Тогда (1) =
$$-\int_{0}^{\frac{\pi}{2}} \sin^{n} \varphi(t) \cdot \varphi'(t) dt = \int_{\frac{\pi}{2}}^{0} \sin^{n} x dx$$

Частные случаи $W_0 = \frac{\pi}{2}$, $W_1 = \int_0^{\frac{\pi}{2}} \sin x \mathrm{d}x = -\cos \left|_0^{\frac{\pi}{2}} = 1\right|$

Общее решение: $W_n = \int\limits_0^{\frac{\pi}{2}} \sin^n x \mathrm{d}x = -\int\limits_0^{\frac{\pi}{2}} \sin^{n-1} x \cdot (\cos x)' \mathrm{d}x = (*)$. Воспользовались тем, что $\sin x = -(\cos x)', \ f'(x) = (n-1)\sin^{n-2} x \cdot \cos x$.

Тогда получаем:

$$(*) = -\left(\underbrace{\sin^{n-1} x \cdot \cos x \mid_{0}^{\frac{\pi}{2}}}_{=0} - \int_{0}^{\frac{\pi}{2}} (n-1)\sin^{n-2} x \underbrace{\cos^{2} x}_{=1-\sin^{2} x} dx\right) =$$

$$= (n-1)\left(\int_{0}^{\frac{\pi}{2}} \sin^{n-2} x dx - \int_{0}^{\frac{\pi}{2}} \sin^{n} x dx\right) = (n-1)(W_{n-2} - W_{n}).$$

Посчитаем для четных: $W_{2n}=\frac{2n-1}{2n}\cdot W_{2n-2}=\frac{2n-1}{2n}\cdot \frac{2n-3}{2n-2}W_{2n-4}=\ldots=\frac{(2n-1)!!}{(2n)!!}\frac{\pi}{2},$ где k!! произведение натуральных чисел $\leqslant k$ той же четности, что и k.

Для нечетных:
$$W_{2n+1} = \frac{2n}{2n+1}W_{2n-1} = \frac{2n}{2n+1} \cdot \frac{2n-2}{2n-1}W_{2n-3} = \dots = \frac{(2n)!!}{(2n+1)!!}W_1 = \frac{(2n)!!}{(2n+1)!!}$$

Билет 09

Теорема 9.1 (Формула Валлиса).

$$\lim_{n \to +\infty} \frac{(2n)!!}{(2n-1)!!} \cdot \frac{1}{\sqrt{2n+1}} = \sqrt{\frac{\pi}{2}}$$

Доказательство. $\sin^n x \geqslant \sin^{n+1} x$ на $[0, \frac{\pi}{2}]$. Тогда $W_n = \int_0^{\frac{\pi}{2}} \sin^n x dx \geqslant \int_0^{\frac{\pi}{2}} \sin^{n+1} x dx = W_{n+1}$.

Заметим, что $W_{2n+2}\leqslant W_{2n+1}\leqslant W_{2n}\iff \frac{\pi}{2}\frac{(2n+1)!!}{(2n+2)!!}\leqslant \frac{(2n)!!}{(2n+1)!!}\leqslant \frac{\pi}{2}\frac{(2n-1)!!}{(2n)!!}$. Поделим на $\frac{(2n-1)!!}{(2n)!!}$:

$$\frac{\pi}{2} \frac{2n+1}{2n+2} \leqslant \frac{((2n)!!)^2}{(2n+1)((2n-1)!!)^2} \leqslant \frac{\pi}{2} \implies \lim \left(\frac{(2n)!!}{\sqrt{(2n+1)(2n-1)!!}}\right)^2 = \frac{\pi}{2}.$$

Последний переход — по двум милиционерам, т.к. при $n \to +\infty$ $\frac{2n+1}{2n+2} \to 1$

Следствие.

$$\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \sim \frac{4^n}{\sqrt{\pi n}}.$$

Доказательство. Заметим, что $(2n)! = (2n)!! \cdot (2n-1)!!$, а $(2n)!! = 2 \cdot 4 \cdot 6 \cdot \ldots \cdot (2n) = 2^n \cdot n!$. Тогда подставим в Сшку:

$$\binom{2n}{n} = \frac{(2n)!!(2n-1)!!}{\frac{(2n)!!}{2^n} \frac{(2n)!!}{2^n}} = 4^n \cdot \frac{(2n-1)!!}{(2n)!!}.$$

При этом из Валлиса, заметим, что $\frac{(2n)!!}{(2n-1)!!} \sim \sqrt{\frac{\pi}{2}}\sqrt{2n+1} \sim \sqrt{\frac{\pi}{2}}\sqrt{2n} = \sqrt{\pi n}$. А значит все сойдется.

Билет 10

Теорема 10.1 (Формула Тейлора (с остатком в интегральной форме)). Пусть $f \in C^{n+1}[a,b]$, $x, x_0 \in [a,b]$. Тогда:

$$f(x) = \sum_{k=0}^{n} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{1}{n!} \int_{x_0}^{x} (x - t)^n f^{(n+1)}(t) dt.$$

Доказательство. Индукция по n:

- База. n = 0, $f(x) = f(x_0) + \int_{x_0}^x f'(t) dt = f(x_0) + f \mid_{x_0}^x$
- Переход. $n \to n+1$.
- Доказательство. $f(x) = T_n(x) + \frac{1}{n!} \int_{x_0}^x \underbrace{(x-t)^n}_{g'} \underbrace{f^{(n+1)}(t)}_f dt$. Проинтегрируем интеграл по частям. $g(t) = -\frac{(x-t)^{n+1}}{n+1}$.

Подставим:
$$\int_{x_0}^x (x-t)^n f^{(n+1)}(t) dt = -\frac{(x-t)^{n+1}}{n+1} \cdot f^{(n+1)}(t) \mid_{t=x_0}^{t=x} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) dt = \underbrace{\frac{1}{n+1} (x-x_0)^{n+1} f^{(n+1)}(x_0)}_{x_0} + \int_{x_0}^x \frac{1}{n+1} (x-t)^{n+1} \cdot f^{(n+2)}(t) dt$$

Вспомнив, что у нас там ещё был $\frac{1}{n!}$ перед исходным интегралом заметим, что мы действительно получили новый член суммы и новый интеграл с $\frac{1}{(n+1)!}$, что доказывает индукционный переход.

Билет 11

Пример.

$$H_j := \frac{1}{j!} \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2} \right)^2 - x^2 \right)^j \cos x \mathrm{d}x. \tag{2}$$

Свойство 1. $0 < H_j \leqslant \frac{1}{j!} \left(\frac{\pi}{2}\right)^{2j} \int_{0}^{\frac{\pi}{2}} \cos x \mathrm{d}x = \frac{\left(\frac{\pi}{2}\right)^{2j}}{j!}.$

Свойство 2. $\forall c > 0 : c^j \cdot H_j \xrightarrow{j \to \infty} 0. \ 0 < c^j H_j \leqslant \frac{\left(\frac{\pi}{2}\right)^{2j} \cdot c^j}{j!} = \frac{\left(\frac{\pi^2}{4}c\right)^j}{j!} \to 0.$

Свойство 3. $H_0 = 1, H_1 = 2$ (упраженение).

Свойство 4. $H_j = (4j-2)H_{j-1} - \pi^2 H_{j-2}$, при $j \geqslant 2$.

Доказательство.

$$j!H_j = \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2} \right)^2 - x^2 \right)^j (\sin x)' dx$$
 (3)

Заметим, что $\left(\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^j\right)'=j\left(\left(\frac{\pi}{2}\right)^2-x^2\right)^{j-1}\cdot(-2x).$ Тогда:

$$(3) = \underbrace{\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^j \sin x}_{=0} |x| = \frac{\pi}{2} + 2j \int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} x \underbrace{\sin x}_{=(-\cos x)'} dx = \underbrace{2j \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1} \cdot x \cdot (-\cos x)}_{=0} |x| = \frac{\pi}{2} - \int_0^{\frac{\pi}{2}} \left((j-1)\left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-2} (-2x)x + \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-1}\right) (-\cos x) dx = \underbrace{2j \left((j-1)!H_{j-1} - 2(j-1)\int_0^{\frac{\pi}{2}} \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)^{j-2} x^2 \cos x dx\right)}.$$

В процессе мы дважды интегрировали по частям, а теперь нужно избавиться во втором слагаемом от x^2 . Для этого заметим, что $x^2 = \left(\frac{\pi}{2}\right)^2 - \left(\left(\frac{\pi}{2}\right)^2 - x^2\right)$, подставим и разобьём интеграл на два, которые есть H_{j-2} и H_{j-1} с нужными коэффициентами:

$$j!H_j = 2j(j-1)!H_{j-1} - 4j(j-1)\left(((j-2)!\left(\frac{\pi}{2}\right)^2)H_{j-2} - (j-1)!H_{j-1}\right)$$

Откуда с легкостью получаем $j!H_j=2j!H_{j-1}-\pi^2j!H_{j-2}+4(j-1)j!H_{j-1}\iff H_j=(4j-2)H_{j-1}-\pi^2H_{j-2}.$

Свойство 5. Существует многочлен P_n с целыми коэффициентами степени $\leqslant n$, такой что $H_j = P_j(\pi^2)$.

Доказательство.
$$P_0 \equiv 1, P_1 \equiv 2, P_n(x) = (4n-2)P_{n-1}(x) - xP_{n-2}(x).$$

Теорема 11.1 (Ламберта, доказательство: Эрмит). Числа π и π^2 иррациональные.

Доказательство. От противного. Пусть π^2 — рационально. Тогда пусть $\pi^2 = \frac{m}{n}$. Тогда $H_j = P_j(\frac{m}{n}) = \frac{\text{целюе число}}{n^j} > 0$. $n^j H_j = \text{целое число} > 0 \Rightarrow n^j H_j \geqslant 1$

Ho, по свойству 2, при $j \to +\infty$ $n^j H_j \to 0$, противоречие.

Билет 12

Определение 12.1. $f: E \subset \mathbb{R} \to \mathbb{R}$ равномерно непрерывна на E, если $\forall \varepsilon > 0 \exists \delta > 0 \forall x, y \in E$: $|x-y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$

Определение 12.2. f непрерывна во всех точках из E: $\forall x \in E \forall \varepsilon > 0 \exists \delta > 0 \forall y \in E : |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon$

Концептуальное отличие в том, что в первом случае у нас $\delta(\varepsilon)$, а во втором — $\delta(x,\varepsilon)$, т.е. при равномерной непрерывности у нас есть общая дельта по эспилону на всю область, а при непрерывности во всех точках для каждой точки своё δ по ε

Пример. $\sin x$ и $\cos x$ равномерно непрерывны на \mathbb{R} .

 $|\sin x - \sin y| \le |x - y| \Rightarrow \delta = \varepsilon$ подходит. $|\cos x - \cos y| \le |x - y|$.

Пример. $f(x) = x^2$ не является равномерно непрерывной на \mathbb{R} . Рассмотрим $\varepsilon = 1$, никакое $\delta > 0$ не подходит. x и $x + \frac{\delta}{2}$. $f(x + \frac{\delta}{2}) - f(x) = (x + \frac{\delta}{2})^2 - x^2 = \ldots = \delta x + \frac{\delta^2}{4} > \delta x$. При $x = \frac{1}{\delta}$ противоречие.

Теорема 12.1 (Теорема Кантора). Пусть $f \in C[a,b]$, тогда f равномерно непрерывна на [a,b].

Доказательство. Берем $\varepsilon > 0$ и предположим, что $\delta = \frac{1}{n}$ не подходит, то есть $\exists x_n, y_n \in [a, b]$: $|x_n - y_n| < \frac{1}{n}$ и $|f(x_n) - f(y_n)| \ge \varepsilon$. По теореме Больцано-Вейерштрасса у последовательности x_n есть сходящаяся подпоследовательность $x_{n_k} \to c$, то есть $\lim x_{n_k} = c \in [a, b]$.

$$\underbrace{x_{n_k} - \frac{1}{n_k}}_{\to c} < y_{n_k} < \underbrace{x_{n_k} + \frac{1}{n_k}}_{\to c} \implies \lim y_{n_k} = c. \text{ Но } f \text{ непрерывна в точке } c \implies \lim f(x_{n_k}) = f(c) = \lim_{t \to c} f(y_{n_k}) \implies \lim_{t \to c} f(x_{n_k}) - f(y_{n_k}) = 0, \text{ но } |f(x_{n_k}) - f(y_{n_k})| \geqslant \varepsilon.$$

Замечание. Для интервала или полуинтервала неверно. $f(x) = \frac{1}{x}$ на (0;1]. Докажем, что нет равномерной непрерывности на (0;1].

Пусть $\varepsilon = 1$ и $\delta > 0$. Пусть $0 < x < \delta, \ y = \frac{x}{2}, \ |x-y| = \frac{x}{2} < \delta.$ Тогда $f(y) - f(x) = \frac{2}{x} - \frac{1}{x} = \frac{1}{x} > 1$.

Билет 13

Определение 13.1. Пусть $f: E \subset \mathbb{R} \to \mathbb{R}$.

Тогда $\omega_f(\delta)\coloneqq \sup\{|f(x)-f(y)|\mid \forall x,y\in E, |x-y|\leqslant \delta\}$ — модуль непрерывности f.

Ceoucmea. 1. $\omega_f(0) = 0$,

- 2. $|f(x) f(y)| \le \omega_f(|x y|)$.
- 3. $\omega_f \uparrow$.
- 4. Если f липшицева функция с константой L, то $\omega_f(\delta) \leqslant L\delta$. В частности, если $|f'(x)| \leqslant L \quad \forall x \in \langle a,b \rangle$.
- 5. f равномерна и непрерывна на $E \iff \omega_f$ непрерывна в нуле $\iff \lim_{\delta \to 0+} \omega_f(\delta) = 0.$
 - Доказательство. $1 \to 2$. $\forall \varepsilon > 0 \exists \gamma > 0 \forall x,y \in E : |x-y| < \gamma \implies |f(x)-f(y)| < \varepsilon$. Возьмем $\delta < \gamma$. Тогда $|x-y| \leqslant \delta \implies |x-y| < \gamma \implies |f(x)-f(y)| < \varepsilon \implies \sup \leqslant \varepsilon$. Тогда с одной стороны $\omega_f \geqslant 0$, а с другой ограничена ε . Следовательно предел ω_f равен 0.
 - 2 \rightarrow 1. Из $\lim_{\delta \to 0+} \omega_f(\delta) = 0$. Возьмем $\delta > 0$ для $\omega_f(\delta) < \varepsilon$: $|f(x) f(y)| \leqslant \omega_f(\delta) < \varepsilon \ \forall \varepsilon$, $\forall x,y \in E \colon |x-y| \leqslant \delta$.
- 6. $f \in C[a,b] \iff \omega_f$ непрерывен в нуле $\iff \lim_{\delta \to 0+} \omega_f(\delta) = 0.$

Доказательство. Для функции на отрезке равномерная непрерывность \iff непрерывность \iff теорема Кантора.

Билет 14

Определение 14.1. Пусть есть [a,b]. Тогда дробление (разбиение, пунктир) отрезка: набор точек: $x_0 = a < x_1 < x_2 < \ldots < x_n = b$.

Определение 14.2. Ранг дробления: $\max_{k=1,2,\dots,n}(x_k-x_{k-1})=:|\tau|,\ \tau=(x_0,x_1,\dots,x_n)$

Определение 14.3. Оснащение дробления — набор точек $\xi = (\xi_1, \xi_2, \dots, \xi_n)$, такой что $\xi_k \in [x_{k-1}, x_k]$.

Определение 14.4. Интегральная сумма (сумма Римана) $S(f, \tau, \xi) := \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}),$

По факту просто сумма площадей прямоугольников под графиком

Билет 15

Теорема 15.1 (Теорема об интегральных суммах). Пусть $f \in C[a,b],$

тогда
$$\left|\int\limits_a^b -S(f,\tau,\xi)\right| \leqslant (b-a)\omega_f(|\tau|).$$

Доказательство.

$$\Delta := \int_{a}^{b} f - \sum_{k=1}^{n} f(\xi_{k})(x_{k} - x_{k-1}) = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(t) dt - \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} f(\xi_{k}) dt = \sum_{k=1}^{n} \int_{x_{k-1}}^{x_{k}} (f(t) - f(\xi_{k})) dt.$$

$$|\Delta| \leqslant \sum |\int \dots| \leqslant \sum_{k=1}^{n} \int_{x_{k-1}}^{x_k} |f(t) - f(\xi_k)| dt \leqslant \sum_{k=1}^{n} (x_k - x_{k-1}) \omega_f(|\tau|) = (b - a) \omega_f(|\tau|).$$

$$\int_{x_{k-1}}^{x_k} |f(t) - f(\xi_k)| dt \leqslant \int_{x_{k-1}}^{x_k} \omega_f(|\tau|) dt = (x_k - x_{k-1}) \omega_f(|\tau|)..$$

Следствие. $\forall \varepsilon>0 \exists \delta>0 \forall$ дробления ранга $\leqslant \delta \ \forall$ оснащения $|\int\limits_a^b -S(f,\tau,\xi)|<\varepsilon$

Следствие. Если τ_n — последовательность дроблений, ранг которых $\to 0$, то $S(f, \tau_n, \xi_n) \to \int\limits_a^b f$.

Пример. $S_p(n) := 1^p + 2^p + \ldots + n^p$. Посчитаем $\lim_{n \to \infty} \frac{S_p(n)}{n^{p+1}}$.

Возьмем
$$f:[0,1] \to \mathbb{R}$$
 $f(t) = t^p \frac{S_p(n)}{n^{p+1}} = \frac{1}{n} \cdot \sum_{k=1}^n \left(\frac{k}{n}\right)^p = S(f,\tau,\xi)$, где $x_k = \xi_k = \frac{k}{n}$.

Тогда
$$\lim \frac{S_p(n)}{n^{p+1}} = \int_0^1 t^p dt = \frac{t^{p+1}}{p+1} \mid_{t=0}^{t=1} = \frac{1}{p+1}$$

Определение 15.1. Пусть $f:[a,b]\to\mathbb{R}$, тогда f интегрируема по Риману, если $\exists I\in\mathbb{R}\forall\varepsilon>0$ $\exists \delta>0$ дробления ранга $<\delta$ его оснащения $|S(f,\tau,\xi)-I|<\varepsilon.$

$$I$$
 — интеграл по Риману $\int_a^b f$.

Билет 16

Лемма. $f \in C^2[\alpha, \beta]$. Тогда

$$\int_{\alpha}^{\beta} f(t)dt - \frac{f(\alpha) + f(\beta)}{2}(\beta - \alpha) = -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t - \alpha)(\beta - t)dt.$$

Доказательство. Пусть $\gamma \coloneqq \frac{\alpha+\beta}{2}$. Тогда:

$$\int_{\alpha}^{\beta} f(t)dt = \int_{\alpha}^{\beta} f(t)(t-\gamma)'dt = f(t)(t-\gamma) \Big|_{t=\alpha}^{t=\beta} - \int_{\alpha}^{\beta} f'(t)(t-\gamma)dt.$$

Заметим, что $f(t)(t-\gamma)\mid_{t=\alpha}^{t=\beta}=f(\beta)(\beta-\gamma)-f(\alpha)(\alpha-\gamma)=\frac{f(\alpha)+f(\beta)}{2}(\beta-\alpha)$. Продолжим:

левая часть
$$= -\int_{\alpha}^{\beta} f'(t)(t-\gamma) \mathrm{d}t = \frac{1}{2} \int_{\alpha}^{\beta} f'(t)((t-\alpha)(\beta-t))' \mathrm{d}t =$$
$$= \frac{1}{2} f'(t)(t-\alpha)(\beta-t) \mid_{t=\alpha}^{t=\beta} -\frac{1}{2} \int_{\alpha}^{\beta} f''(t)(t-\alpha)(\beta-t) \mathrm{d}t.$$

Переход к $((t-\alpha)(\beta-t))'$:

$$((t - \alpha)(\beta - t))' = (-t^2 + (\alpha + \beta)t - \alpha\beta)' = -2t + (\alpha + \beta) = -2(t - \gamma).$$

 $\it 3$ амечание. $\it \frac{f(\alpha)+f(\beta)}{2}(\beta-\alpha)$ — площадь трапеции:

Теорема 16.1 (Оценка погрешности в формуле трапеции). Пусть $f \in C^2[a,b]$.

Тогда:

$$\left| \int_{a}^{b} f(t) dt - \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| \leq \frac{|\tau|^2}{8} \int_{a}^{b} |f''|$$

Доказательство. $\Delta \coloneqq \int_a^b - \sum \ldots = \sum_{k=1}^n \int_{x_{k-1}}^{x_k} f(t) \mathrm{d}t - \sum_{k=1}^n \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1})$

$$|\Delta| \leqslant \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f(t) dt - \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) \right| = \frac{1}{2} \sum_{k=1}^{n} \left| \int_{x_{k-1}}^{x_k} f''(t) (t - x_{k-1}) (x_k - t) dt \right|. \tag{4}$$

Тогда вспомним, что $(t - x_{k-1})(x_k - t) \leqslant \left(\frac{x_k - x_{k-1}}{2}\right)^2 \leqslant \frac{|\tau|^2}{4} \implies (4) \leqslant \frac{1}{2} \sum_{k=1}^n \int_{x_{k-1}}^{x_k} |f''(t)| \cdot \frac{|\tau|^2}{4} dt = \frac{|\tau|^2}{8} \sum_{k=1}^\infty \int_{x_k}^{x_k} |f''| = \frac{|\tau|^2}{8} \cdot \int_0^b |f''|$

Замечание. Пусть разбиение на n равных отрезков $x_k - x_{k-1} = \frac{b-a}{n} = |\tau|$:

$$\sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} (x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n} \frac{f(x_{k-1}) + f(x_k)}{2} = \frac{b-a}{n} (\frac{f(x_0)}{2} + \sum_{k=1}^{n-1} f(x_k) + \frac{f(x_n)}{2}).$$

Замечание. Возьмем разбиение на равные отрезки и $\xi_k=x_k$:

$$S(f,\tau,\xi) = \sum_{k=1}^{n} f(\xi_k)(x_k - x_{k-1}) = \frac{b-a}{n} \sum_{k=1}^{n} f(x_k).$$

Билет 17

Теорема 17.1 (формула Эйлера-Маклорена). Пусть $f \in C^2[m,n]$, тогда

$$\sum_{k=m}^{n} f(k) = \frac{f(m) + f(n)}{2} + \int_{m}^{n} f(t)dt + \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Доказательство. Подставим $\alpha = k$ и $\beta = k + 1$ в лемму:

$$\int_{k}^{k+1} f(t)dt = \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{k}^{k+1} f''(t)(t-k)(k+1-t)dt =$$

$$= \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{k}^{k+1} f''(t)\{t\}(1-\{t\})dt.$$

Дальше суммируем по k от m до n-1:

$$\int_{m}^{n} f(t)dt = \sum_{k=m}^{n-1} \frac{f(k) + f(k+1)}{2} - \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Заметим, что $\sum_{k=m}^{n-1} \frac{f(k)+f(k+1)}{2} = \frac{f(m)+f(n)}{2} + \sum_{k=m+1}^{n-1} f(k)$. И тогда:

$$\sum_{k=m}^{n} f(k) = \frac{f(m) + f(n)}{2} + \int_{m}^{n} f(t)dt + \frac{1}{2} \int_{m}^{n} f''(t)\{t\}(1 - \{t\})dt.$$

Билет 18

Пример.
$$S_p(n) = 1^p + 2^p + \ldots + n^p$$
, $f(t) = t^p$, $m = 1$, $f''(t) = p(p-1)t^{p-2}$.

$$S_p(n) = \frac{1+n^p}{2} + \int_1^n t^p dt + \frac{1}{2} \int_1^n p(p-1)t^{p-2} \{t\} (1-\{t\}) dt.$$

При
$$p \in (-1,1)$$
 $\int_1^n t^p dt = \frac{t^{p+1}}{p+1} \Big|_1^n = \frac{n^{p+1}}{p+1} - \frac{1}{p+1} = \frac{n^{p+1}}{p+1} + \mathcal{O}(1).$

$$\int_{1}^{n} t^{p-2} \underbrace{\{t\}(1-\{t\})}_{\leqslant \frac{1}{4}} dt \leqslant \frac{1}{4} \int_{1}^{n} t^{p-2} dt = \frac{1}{4} \cdot \frac{t^{p-1}}{p-1} \mid_{1}^{n} = \frac{1}{4} \cdot \frac{n^{p-1}-1}{p-1} = \mathcal{O}(1).$$

То есть $S_p(n) = \frac{n^{p+1}}{p+1} + \frac{n^p}{2} + \mathcal{O}(1)$.

При
$$p > 1$$
 $S_p(n) = \frac{n^{p+1}}{p+1} + \frac{n^p}{2} + \mathcal{O}(n^{p-1}).$

Пример. Гармонические числа: $H_n := 1 + \frac{1}{2} + \frac{1}{3} + \ldots + \frac{1}{n}$. $m = 1, f(t) = \frac{1}{t}, f''(t) = \frac{2}{t^3}$.

$$H_n = \frac{1 + \frac{1}{n}}{2} + \int_1^n \frac{\mathrm{d}t}{t} + \frac{1}{2} \int_1^n \frac{2}{t^3} \{t\} (1 - \{t\}) \mathrm{d}t$$

Откуда получаем $(a_n \coloneqq \int_1^n \frac{\{t\}(1-\{t\})}{t^3}; \int_1^n \frac{\mathrm{d}t}{t} = \ln t \mid_1^n = \ln n)$:

$$H_n = \ln n + \frac{1}{2} + \frac{1}{2n} + a_n.$$

Заметим, что $a_{n+1} = a_n + \int\limits_n^{n+1} \frac{\{t\}(1-\{t\})}{t^3} \mathrm{d}t > a_n$. То есть $a_n \uparrow$. Причем $a_n \leqslant \int\limits_1^n \frac{\mathrm{d}t}{t^3} = -\frac{1}{2t^2} \mid_1^n = \frac{1}{2} - \frac{1}{2n^2} < \frac{1}{2}$.

А значит a_n имеет предел, а значит $a_n = a + o(1)$.

Вывод: $H_n = \ln n + \gamma + o(1)$, где $\gamma \approx 0.5772156649$ — постоянная Эйлера.

Замечание. $H_n = \ln n + \gamma + \frac{1}{2n} + \mathcal{O}(\frac{1}{n^2})$ — точная формула.

Билет 19

Пример Формула Стирлинга. $m=1, f(t)=\ln t, f''(t)=-\frac{1}{t^2}.$

$$\ln n! = \sum_{k=1}^{n} \ln k = \underbrace{\frac{\ln 1 + \ln n}{2}}_{=\frac{1}{2} \ln n} + \underbrace{\int_{1}^{n} \ln t dt}_{=t \ln t - t|_{1}^{n} = n \ln n - n + 1}_{=t \ln n - n + 1} + \underbrace{\int_{1}^{n} \frac{\{t\}(1 - \{t\})}{t^{2}} dt}_{:=b_{n}} \Rightarrow \ln n! = \frac{1}{2} \ln n + n \ln n - n + 1 - b_{n}.$$

Посмотрим на b_n :

$$b_n \leqslant \frac{1}{2} \int_1^n \frac{\mathrm{d}t}{t^2} = \frac{1}{2} (-\frac{1}{t}) \mid_1^n = \frac{1}{2} (1 - \frac{1}{n}) < \frac{1}{2} \implies b_n = \underbrace{b}_{=\lim b_n} + o(1).$$

A значит $\ln n! = n \ln n - n + \frac{1}{2} \ln n + (1-b) + o(1)$.

Можем найти b, для этого представим обе части как экспоненты: $n! = n^n e^{-n} \sqrt{n} e^{1-b} e^{o(1)} \sim n^n e^{-n} \sqrt{n} C$.

Вспомним (из следствия формулы Валлиса): $\binom{2n}{n} \sim \frac{4^n}{\sqrt{\pi n}}$. А еще знаем, что $\binom{2n}{n} = \frac{(2n)!}{(n!)^2} \sim \frac{(2n)^{2n}e^{-2n}\sqrt{2n}C}{(n^ne^{-n}\sqrt{n}C)^2} = \frac{4^n\sqrt{2}}{\sqrt{n}C}$.

Тогда получаем, что $\frac{4^n}{\sqrt{\pi n}} \sim \frac{4^n\sqrt{2}}{\sqrt{n}C} \implies C \sim \frac{4^n\sqrt{2}}{\sqrt{n}} \cdot \frac{\sqrt{\pi n}}{4^n} = \sqrt{2\pi}.$

Итоговый результат (Формула Стирлинга):

$$n! \sim n^n e^{-n} \sqrt{2\pi n}$$

 $\ln n! = n \ln n - n + \frac{1}{2} \ln(2\pi n) + o(1).$

Замечание. Если посчитать точнее, то получим $\ln n! = n \ln n - n + \frac{1}{2} \ln(2\pi n) + \mathcal{O}(\frac{1}{n}).$

Билет 20

Определение 20.1. Пусть $-\infty < a < b \leqslant +\infty$ и $f \in C[a,b)$.

Тогда определим $\int\limits_a^{\to b} f := \lim\limits_{B \to b-} \int\limits_a^B f.$

Если
$$-\infty \leqslant a < b < +\infty, f \in C(a,b]$$
, тогда $\int_{\to a}^b f \coloneqq \lim_{A \to a+} \int_A^b f$.

Замечание. Если $b < +\infty$ и $f \in C[a,b]$, то определение не дает ничего нового:

$$\int_a^b f = \lim_{B \to b} f$$

$$\left| \int_a^b f - \int_a^B f \right| = \left| \int_B^b f \right| \leqslant M(b - B) \to 0, M = \max_{x \in [a, b]} f(x).$$

Пример. 1. $\int\limits_{1}^{+\infty} \frac{\mathrm{d}x}{x^{p}} = \lim_{y \to +\infty} \int\limits_{a}^{y} \frac{\mathrm{d}x}{x^{p}} = \lim_{\substack{y \to +\infty \\ \text{при } p \neq 1}} -\frac{1}{(p-1)x^{p-1}} \mid_{x=1}^{x=y} = \frac{1}{p-1} - \lim_{y \to +\infty} \frac{1}{(p-1)y^{p-1}} = \frac{1}{p-1} \text{ при } p > 1,$ при p < 1 получаем $+\infty$, а при p = 1 $\lim_{y \to +\infty} \ln x \mid_{1}^{y} = \lim_{y \to +\infty} \ln y = +\infty$

$$2. \int\limits_0^1 \frac{\mathrm{d}x}{x^p} = \lim\limits_{y \to 0+} \int\limits_y^1 \frac{\mathrm{d}x}{x^p} = \lim\limits_{y \to 0+} -\frac{1}{(p-1)x^{p-1}} \mid_{x=y}^{x=1} = -\frac{1}{p-1} + \lim\limits_{y \to 0+} = \frac{y^{1-p}}{p-1} = \frac{1}{1-p}$$
 при $p < 1$, при $p > 1$ получаем $+\infty$, а вот при $p = 1$ $\lim\limits_{y \to 0+} \ln x \mid_y^1 = \lim\limits_{y \to 0+} -\ln y = +\infty$.

То есть, при
$$p < 1 \int_{0}^{1} \frac{\mathrm{d}x}{x^{p}} = \frac{1}{1-p},$$
 при $p \geqslant 1 \int_{0}^{1} \frac{\mathrm{d}x}{x^{p}} = +\infty.$

Замечание. Если $f\in C[a,b)$ и F его первообразная, то $\int\limits_a^b f=\lim\limits_{B\to b-}F(B)-F(a).$

Если $f \in C[a,b)$ и F его первообразная, то $\int\limits_a^b f = F(b) - \lim\limits_{A \to a+} F(A)$.

Доказательство. Очевидно по формуле Ньютона-Лейбница.

Определение 20.2. $F\Big|_a^b := \lim_{B \to b^-} F(B) - F(a)$.

Определение 20.3. $\int\limits_a^{\to b} f$ сходится, если $\lim B$ в его определении существует и конечен.

Теорема 20.1 (Критерий Коши). Пусть $-\infty < a < b \le +\infty, f \in C[a,b)$.

Тогда
$$\int\limits_a^b f$$
 сходится $\iff \forall \varepsilon \exists c \in (a,b) \colon \forall A,B \in (c,b) \ \left| \int\limits_A^B f \right| < \varepsilon.$

Замечание. 1. Если $b=+\infty$ это означает, что $\forall arepsilon\exists c>a \forall A,B>c\colon \left|\int\limits_A^B f\right|<arepsilon.$

2. Если $b<+\infty$ это означает, что $\forall \varepsilon>0 \exists \delta>0 \forall A,B\in (b-\delta;b)\colon \left|\int\limits_A^B f\right|<\varepsilon.$

Доказательство. Для $b < +\infty$.

• " \Rightarrow " $\int\limits_a^b f$ сходится \Longrightarrow \exists конечный $I\coloneqq\lim_{B\to b-}\int\limits_a^B f$, обозначим $\int\limits_a^B f$ за g(B). Воспользуемся критерием Коши для функций:

$$\forall \varepsilon > 0 \\ \exists \delta > 0 \ \, \begin{cases} \forall B \in (b-\delta,b) & |g(B)-I| < \frac{\varepsilon}{2} \\ \forall A \in (b-\delta,b) & |g(A)-I| < \frac{\varepsilon}{2} \end{cases} \implies |g(B)-g(A)| \leqslant |g(B)-I| + |I-g(A)| < \varepsilon \end{cases}$$

• " \Leftarrow " $\int_a^B f =: g(B)$.

 $\forall \varepsilon>0 \exists \delta>0 \forall A,B\in (b-\delta,b): |g(B)-g(A)|<\varepsilon$ это условие из критерия Коши для $\lim_{B\to b^-}g(B).$

Замечание. Если существует $A_n, B_n \in [a,b)$: $\lim A_n = \lim B_n = b$: $\int\limits_{A_n}^{B_n} f \not\to 0$, то $\int\limits_a^b f$ расходится.

Доказательство. Возьмем A_{n_k} и $B_{n_k}\colon |\int\limits_{A_{n_k}}^{B_{n_k}} f|\to C>0 \implies |\int\limits_{A_{n_k}}^{B_{n_k}} f|>\frac{C}{2}$ при больших k. Но это противоречит критерию Коши.

Билет 21

Свойства несобственных интегралов. 1. Аддитивность. Пусть $f \in C[a,b), c \in (a,b)$. Если $\int\limits_a^b f$ сходится, то $\int\limits_c^b f$ сходится и $\int\limits_a^b f = \int\limits_a^c f + \int\limits_c^b f$.

2. Если $\int\limits_a^b f$ сходится, то $\lim\limits_{c \to b-} \int\limits_c^b f = 0$

Глава #21 17 из 31 Aвтор: XБ

- 3. Линейность $\alpha, \beta \in \mathbb{R}$ и $\int\limits_a^b f$ и $\int\limits_a^b g$ сходятся. Тогда $\int\limits_a^b (\alpha f + \beta g)$ сходится и $\int\limits_a^b (\alpha f + \beta g) = \alpha \int\limits_a^b f + \beta \int\limits_a^b g$.
- 4. Монотонность. Пусть $\int\limits_a^b f$ и $\int\limits_a^b g$ существует в \overline{R} и $f\leqslant g$ на [a,b). Тогда $\int\limits_a^b f\leqslant \int\limits_a^b g$.
- 5. Интегрирование по частям. $f,g\in C^1[a;b)\implies \int\limits_a^b fg'=fg\Big|_a^b-\int\limits_a^b f'g.$
- 6. Замена переменных. $\varphi \colon [\alpha,\beta) \to [a,b), \ \varphi \in C^1[\alpha,\beta)$ и $\exists \lim_{\gamma \to \beta^-} \varphi(\gamma) \eqqcolon \varphi(\beta^-)$ и $f \in C[a,b)$.

Тогда $\int\limits_{\alpha}^{\beta}f(\varphi(t))\varphi'(t)\mathrm{d}t=\int\limits_{\varphi(\alpha)}^{\varphi(\beta-)}f(x)\mathrm{d}x.$ «Если существует один из \int , то существует второй и они равны»

Доказательство. 1. $\int_a^b f = \lim_{B \to b-} F(B) - F(a) \implies \lim_{B \to b-} F(B)$ существует и конечный $\implies \int_c^b = \lim_{B \to b-} F(b) - F(c) - \text{сходится}.$

$$\int_{a}^{b} = \lim F(B) - F(a) = \lim F(B) - F(c) + F(c) - F(a) = \int_{c}^{b} f + \int_{a}^{c} f.$$

- 2. $\int_{c}^{b} f = \int_{a}^{b} f \int_{a}^{c} f \to \int_{a}^{b} f \int_{a}^{b} f = 0$
- 3. $\int_{a}^{b} (\alpha f + \beta g) = \lim_{B \to b^{-}} \int_{a}^{B} (\alpha f + \beta g) = \lim_{B \to b^{-}} (\alpha \int_{a}^{B} f + \beta \int_{a}^{B} g) = \alpha \lim_{B \to b^{-}} \int_{a}^{B} f + \beta \lim_{B \to b^{-}} \int_{a}^{B} g = \alpha \int_{a}^{b} f + \beta \int_{a}^{b} g.$
- 4. $\int_{a}^{B} f \leqslant \int_{a}^{B} g$ (монотонность интеграла), а дальше предельный переход.
- 5. a < B < b. $\int_{a}^{B} fg' = fg \Big|_{a}^{B} \int_{a}^{B} f'g$ и переход к пределу. Так как f, g непрерывные функции, то $\lim_{B \to b-} fg \Big|_{a}^{B} = fg \Big|_{a}^{b}$, а интеграл по определению.
- 6. $F(y) \coloneqq \int_{\varphi(\alpha)}^{y} f(x) \mathrm{d}x, \ \Phi(\gamma) \coloneqq \int_{\alpha}^{\gamma} f(\varphi(t)) \varphi'(t) \mathrm{d}t.$ Знаем, что $F(\varphi(\gamma)) = \Phi(\gamma)$ при $\alpha < \gamma < \beta$.

Пусть существует правый \int , то есть $\exists \lim_{y \to \varphi(\beta -)} F(y)$. Возьмем $\gamma_n \nearrow \beta \implies \varphi(\gamma_n) \to \varphi(\beta)$

$$\varphi(\beta-) \implies \Phi(\gamma_n) = F(\varphi(\gamma_n)) \to \int_{\varphi(\alpha)}^{\varphi(\beta-)} f(x) dx$$
. При этом $\Phi(\gamma_n) \to \int_{\alpha}^{\beta} f(\varphi(t)) \varphi'(t) dt$.

Пусть существует левый \int , то есть $\exists \lim_{\gamma \to \beta-} \Phi(\gamma)$. Докажем, что \exists правый \int . При $\varphi(\beta-) < b$ нечего доказывать.

Пусть $\varphi(\beta-)=b$. Тогда возьмем $b_n\nearrow b$. Можно считать, что $b_n\in [\varphi(\alpha),b)$. Тогда $\exists \gamma_n\in [\alpha,\beta)\colon \varphi(\gamma_n)=b_n$. Докажем, что $\gamma_n\to\beta$. Пусть это не так. Тогда найдется $\gamma_{n_k}\to\widetilde{\beta}<\beta\Longrightarrow \varphi(\gamma_{n_k})\to \varphi(\widetilde{\beta})< b$ по непрерывности в $\widetilde{\beta}$. Противоречие.

Итак,
$$\gamma_n \to \beta$$
, $F(b_n) = F(\varphi(\gamma_n)) = \Phi(\gamma_n) \to \int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt$.

Замечание ко второму свойству. 1. Если $\int\limits_a^b f$ сходится, а $\int\limits_a^b g$ расхоидится, то $\int\limits_a^b (f+g)$ расходится. Доказательство от противного, путь интеграл сходится, то $g=(f+g)-f \implies \int\limits_a^b g$ сходится.

2. Если $\int\limits_a^b f$ и $\int\limits_a^b g$ расходятся, то $\int\limits_a^b (f+g)$ может сходиться. $\int\limits_1^{+\infty} \frac{\mathrm{d}x}{x}$ и $\int\limits_1^{+\infty} -\frac{\mathrm{d}x}{x}$ расходятся.

Замечание к шестому свойству. $\int\limits_a^b f(x)\mathrm{d}x$. Сделаем замену $x=b-\frac{1}{t}=\varphi(t),\ \varphi'(t)=\frac{1}{t^2}, \varphi(\alpha)=a, \alpha=\frac{1}{b-a}$.

Тогда
$$\int_a^b f(x) dx = \int_{\frac{1}{b-a}}^{+\infty} f(b-\frac{1}{t}) \frac{1}{t^2} dt$$
.

Определение 21.1. Пусть f непрерывен на (a,b) за исключением точек $c_1 < c_2 < \ldots < c_n$.

 $\int_{a}^{b} f$ сходится, если сходятся интегралы по все маленьким отрезкам (содержащих только одну выколотую точку).

Билет 22

Теорема 22.1. Пусть $f \in C[a, b)$ и $f \geqslant 0$.

Тогда $\int\limits_a^b f$ сходится \iff $F(y) \coloneqq \int\limits_a^y f$ ограничена сверху.

Доказательство. $f\geqslant 0\implies F$ монотонно возрастает. $\int\limits_a^b f$ сходится \iff \exists конечный $\lim\limits_{y\to b^-}F(y)\iff F$ ограничена сверху.

Замечание. $f\in C[a;b), f\geqslant 0.$ $\int\limits_a^b f$ расходящийся означает, что $\int\limits_a^b f=+\infty.$

Следствие Признак сравнения. $f,h\in C[a,b),\,f,g\geqslant 0$ и $f\leqslant g.$

- 1. Если $\int_a^b g$ сходится, то $\int_a^b f$ сходится.
- 2. Если $\int\limits_a^b f$ расходится, то $\int\limits_a^b g$ расходится.

Доказательство. $F(y)\coloneqq\int\limits_a^y f$ и $G(y)\coloneqq\int\limits_a^y g.$

- 1. Пусть $\int\limits_a^b g$ сходящийся \implies G(y) ограничена, но $F(y)\leqslant G(y)$ \implies F(y) ограничена $\implies \int\limits_a^b f$ сходящаяся.
- 2. От противного.

Замечание. 1. Неравенство $f \le g$ нужно лишь для аргументов близких к b.

- 2. Неравенство $f\leqslant g$ можно заменить на $f=\mathcal{O}(g)$. $f=\mathcal{O}(g)\implies f\leqslant cg.\int\limits_a^b g\ \text{сходящийся}\ \Longrightarrow\int\limits_a^b cg\ \text{сходящийся}\ \Longrightarrow\int\limits_a^b f\ -\ \text{сходящийся}.$
- 3. Если $f=\mathcal{O}(\frac{1}{x^{1+\varepsilon}})$ для $\varepsilon>0,$ то $\int\limits_a^{+\infty}f-$ сходящийся. $g(x)=\frac{1}{x^{1+\varepsilon}}$ и можно считать, что $a\geqslant 1\int\limits_a^{+\infty}g(x)\mathrm{d}x-$ сходящийся.

Следствие. $f,g \in C[a,b), \, f,g \geqslant 0$ и $f(x) \sim g(x), x \to b-$. Тогда $\int\limits_a^b f$ и $\int\limits_a^b g$ ведут себя одинаково (либо оба сходятся, либо оба расходятся).

Доказательство. $f \sim g \implies f = \varphi \cdot g$, где $\varphi(x) \xrightarrow{x \to b-} 1 \implies$ в окрестности $b \frac{1}{2} \leqslant \varphi \leqslant 2 \implies f \leqslant 2g \land g \leqslant 2f$ в окрестности $b \implies$ из сходимости интеграла g следует сходимость $f \land$ наоборот.

Билет 23

Определение 23.1. $f \in C[a,b)$. $\int\limits_a^b f$ абсолютно сходится, если $\int\limits_a^b |f|$ сходится.

Теорема 23.1. $\int\limits_a^b f$ сходится абсолютно $\Longrightarrow \int\limits_a^b f$ сходится.

Доказательство. $f = f_+ - f_-, \ |f| = f_+ + f_-. \ |f| \geqslant f_\pm \geqslant 0$. Если $\int\limits_a^b f$ сходится абсолютно $\implies \int\limits_a^b f$ сходится $\int\limits_a^b f_\pm$ сходится $\implies \int\limits_a^b f = \int\limits_a^b f_+ - \int\limits_a^b f_-$ сходящийся.

Теорема 23.2 (Признак Дирихле). $f, g \in C[a, +\infty)$. Если

- 1. f имеет ограниченную на $[a, +\infty]$ первообразную, то есть $\left|\int\limits_a^y f(x) \mathrm{d}x\right| \leqslant K \quad \forall y.$
- 2. g монотонна.
- $3. \lim_{x \to +\infty} g(x) = 0$

, то $\int_{a}^{+\infty} f(x)g(x)dx$ сходится.

Доказательство. Только для случая $g \in C^1[a; +\infty)$.

Надо доказать, что \exists конечный $\lim_{y\to +\infty}\int\limits_a^y f(x)g(x)\mathrm{d}x,\ F(y)\coloneqq\int\limits_a^y f(x)\mathrm{d}x.$

$$\int_{a}^{y} f(x)g(x)dx = \int_{a}^{y} F'(x)g(x)dx = F(x)g(x)\Big|_{a}^{y} - \int_{a}^{y} F(x)g'(x)dx = F(y)g(y) - \int_{a}^{y} F(x)g'(x)dx$$

Чтобы доказать существование предела у разности каких-то штук, нужно доказать, что он существует у них по отдельности.

 $\lim_{y\to +\infty} F(y)g(y)=0$ — произведение бесконечно малой и ограниченной функции.

Хотим показать, что $\int\limits_a^y F(x)g'(x)\mathrm{d}x$ имеет конечный lim, то есть $\int\limits_a^{+\infty} F(x)g'(x)\mathrm{d}x$ сходится.

Тогда докажем, что он абсолютно сходится. $\int\limits_a^{+\infty} |F(x)||g'(x)|\mathrm{d}x, \ |F(x)||g'(x)| \leqslant K|g'(x)| = Kg'(x).$ (считаем, что g(x) возрастает) $\int\limits_a^{+\infty} g'(x)\mathrm{d}x = g \mid_a^{+\infty} = \lim_{y \to +\infty} g(y) - g(a) = -g(a) \Longrightarrow$ сходящийся.

Теорема 23.3 (Признак Абеля). $f, g \in C[a, +\infty]$, Если

- 1. $\int_{a}^{+\infty} f(x) dx$ сходится,
- 2. g монотонна,
- 3. д ограничена

Тогда $\int_{a}^{+\infty} f(x)g(x)dx$ сходится.

Доказательство. $2) + 3) \implies \exists l \in \mathbb{R} := \lim_{x \to +\infty} g(x).$

Пусть $\widetilde{g}(x)\coloneqq g(x)-l\implies \lim_{x\to +\infty}\widetilde{g}(x)=0$ и \widetilde{g} монотонна.

Пусть $F(x) \coloneqq \int_a^x f(t) \mathrm{d}t$. 1) \iff существует конечный предел $\lim_{x \to +\infty} F(x)$.

Тогда f и \widetilde{g} удовлетворяют условиям признака Дирихле $\Longrightarrow \int\limits_a^{+\infty} f(x)\widetilde{g}(x)\mathrm{d}x$ — сходится. Тогда:

$$\int_{a}^{+\infty} = \int_{a}^{+\infty} f(\widetilde{g} + l) = \int_{a}^{+\infty} f\widetilde{g} + l \int_{a}^{+\infty} f.$$

Где $\int\limits_a^{+\infty}f\widetilde{g}$ сходится по доказанному, а $\int\limits_a^{+\infty}f$ — по условию.

Билет 24

Утверждение 24.1. f — периодическая функция с периодом T. Тогда $\int\limits_a^{a+T}f=\int\limits_b^{b+T}f$

Доказательство. Картинка:

Следствие. $f,g\in C[a;+\infty),\ f$ — периодическая с периодом $T,\ g$ монотонная и $g\xrightarrow[a]{x\to+\infty}0$ $\int\limits_a^{+\infty}g(x)\mathrm{d}x$ расходится.

Тогда $\int\limits_{a}^{+\infty}fg$ сходится $\iff \int\limits_{a}^{a+T}f=0.$

Доказательство. \Leftarrow . $F(x) = \int\limits_a^x f$ — периодична с периодом T: $F(x+T) = \int\limits_a^{x+T} f = \int\limits_a^x f + \int\limits_x^{x+T} f = F(x)$. F — непрерывна и периодична \Longrightarrow ограничена \Longrightarrow $\int\limits_a^{+\infty} fg$ сходится по признаку Дирихле.

 \Rightarrow . Пусть $\int\limits_a^{a+T}f=:K
eq 0.$ $\widetilde{f}(x)=:f(x)-rac{K}{T}$ — периодична с периодом T. Тогда $\int\limits_a^{a+T}\widetilde{f}=\int\limits_a^{a+T}(f-rac{K}{T})=K-T\cdotrac{K}{T}=0 \implies \int\limits_a^{+\infty}\widetilde{f}g$ сходится.

Тогда $\int\limits_a^{+\infty}fg=\int\limits_a^{+\infty}(\widetilde{f}+\frac{K}{T})g=\int\limits_a^{+\infty}\widetilde{f}g+\frac{K}{T}\int\limits_a^{+\infty}g\implies\int\limits_a^{+\infty}fg$ расходится как сумма сходящегося и расходящегося.

Пример. Рассмотрим $\int_{a}^{+\infty} \frac{\sin x}{x^{p}} dx.$

- 1. p > 1 интеграл сходится абсолютно: $|\sin x| \leqslant 1 \implies \left|\frac{\sin x}{x^p}\right| \leqslant \frac{1}{x^p}$, а значит $\int\limits_a^{+\infty} \frac{\mathrm{d}x}{x^p}$ сходящийся.
- 2. $0 интеграл сходящийся, но не абсолютно. <math>\int_{a}^{+\infty} \frac{\mathrm{d}x}{x^{p}}$ расходится, $\frac{1}{x^{p}} \searrow 0$. $g(x) := \frac{1}{x^{p}}, f(x) = \sin x$. $\int_{0}^{2\pi} \sin x \mathrm{d}x = 0 \implies \int_{1}^{+\infty} \frac{\sin x}{x^{p}} \mathrm{d}x$ сходящийся.

Если взять $f(x) = |\sin x|$, то интеграл по периоду равен 4. Значит исходный интеграл расходится.

3. $p \leq 0$ интеграл расходится.

$$a_n \coloneqq \frac{\pi}{6} + 2\pi n, b_n \coloneqq \frac{5\pi}{6} + 2\pi n.$$
 Тогда $\int_{a_n}^{b_n} \frac{\sin x}{x^p} dx \geqslant \frac{1}{2} \int_{a_n}^{b_n} \frac{dx}{x^p} \geqslant \frac{1}{2} \int_{a_n}^{b_n} = \frac{b_n - a_n}{2} = \frac{\pi}{3}.$

(предъявили сколь угодно далеко такие отрезки, что интеграл по ним превосходит $\frac{\pi}{3}$ - это отрицание критерия Коши)

Билет 25

Определение 25.1. Метрика (расстояние) $\rho: X \times X \to [0; +\infty)$, если выполняются следующие условия:

- 1. $\rho(x,y) = 0 \iff x = y$,
- 2. $\rho(x, y) = \rho(y, x)$,
- 3. (неравенство треугольника) $\rho(x,z) \leq \rho(x,y) + \rho(y,z)$.

Определение 25.2. Метрическое пространство — пара (X, ρ) .

Пример. Дискретная метрика (метрика Лентяя) $\rho(x,y) = \begin{cases} 0, & x=y\\ 1 & x \neq y \end{cases}$

Пример. На \mathbb{R} : $\rho(x,y) = |x-y|$.

Пример. На \mathbb{R}^d : $\rho(x,y) = \sqrt{\sum_{k=1}^d (x_k - y_k)^2}$. Неравенство треугольника здесь — неравенство Минковского.

Пример. $C[a,b]. \ \rho(f,g) = \int_{a}^{b} |f-g|.$

Неравенство треугольника:

$$\rho(f,h) = \int_{a}^{b} |f - h| \leqslant \int_{a}^{b} (|f - g| + |g - h|) = \rho(f,g) + \rho(g,h).$$

 $(*)\iff |f(x)-h(x)|\leqslant |f(x)-g(x)|+|g(x)-h(x)|$ — неравенство треугольника для $(\mathbb{R},|x-y|)$.

Пример. Манхэтеннская метрика: \mathbb{R}^2 , $\rho((x_1, y_1), (x_2, y_2)) = |x_1 - x_2| + |y_1 - y_2|$.

Пример. Французская железнодорожная метрика. \mathbb{R}^2 . Есть точка P (Париж), тогда $\rho(A,B) = AB$, если A,B,P на одной прямой, иначе $\rho(A,B) = |AP| + |PB|$.

Определение 25.3. (X, ρ) — метрическое пространство. $B_r(x) := \{y \in X \mid \rho(x, y) < r\}$ — открытый шар радиуса r с центром в точке x.

Определение 25.4. (X, ρ) — метрическое пространство. $\overline{B}_r(x) := \{y \in X \mid \rho(x, y) \leqslant r\}$ — закрытый шар радиуса r с центром в точке x.

Cooutable 1. $B_{r_1}(a) \cap B_{r_2}(a) = B_{\min\{r_1, r_2\}}(a)$.

2.
$$x \neq y \implies \exists r > 0 : B_r(x) \cap B_r(y) = \emptyset \wedge \overline{B}_r(x) \cap \overline{B}_r(y) = \emptyset$$
.

Доказательство. 1. $x \in B_{r_1}(a) \cap B_{r_2}(a) \iff \begin{cases} \rho(x,a) < r_1 \\ \rho(x,a) < r_2 \end{cases} \iff \rho(x,a) < \min\{r_1,r_2\} \implies x \in B_{\min\{r_1,r_2\}}(a).$

2. $r := \frac{1}{3}\rho(x,y) > 0$. Пусть $\overline{B}_r(x) \cap \overline{B}_r(y) \neq \emptyset$.

Тогда $\exists z \in \overline{B}_r(x) \cap \overline{B}_r(y) \implies \rho(x,z) \leqslant r \wedge \rho(y,z) \leqslant r \implies \rho(x,y) \leqslant \rho(x,z) + \rho(z,y) \leqslant 2r = \frac{2}{3}\rho(x,y) \implies 1 \leqslant \frac{2}{3}$. Противоречие.

При этом, $B_r(x) \subset \overline{B}_r(x) \implies \exists r : B_r(x) \cap B_r(y) = \varnothing$.

Билет 26

Определение 26.1. $A \subset X$. A — открытое множество, если $\forall a \in A \exists B_r(a) \subset A \ (r > 0)$.

Теорема 26.1 (О свойствах открытых множеств). 1. \emptyset, X — открытые.

- 2. Объединение любого числа открытых множеств открытое.
- 3. Пересечение конечного числа открытых множеств открытое.
- 4. $B_R(a)$ открытое.

Доказательство. 2. A_{α} — открытые, $\alpha \in I$. $B =: \bigcup_{\alpha \in I} A_{\alpha}$. Берем $b \in B \implies b \in A_{\beta}$ для некоторого β . Но A_{β} — открытое $\implies \exists r > 0 \quad B_r(b) \subset A_{\beta} \subset B$.

- 3. A_1, A_2, \ldots, A_n открытые. $B := \bigcap_{k=1}^n A_k$. Берем $b \in B \implies b \in A_k \forall k = 1, 2, \ldots, n$. Но A_k открытое $\implies \exists r_k > 0 B_{r_k} \subset A_k$. $\forall k \ B_{r_k}(b) \subset \bigcap_{k=1}^n A_k = B \implies \exists r = \min_{i=1..k} r_k \colon B_r(b) \subset B \ \forall b \in B \implies B$ открытое.
- 4. $\rho(a,x) < R$, $r := R \rho(a,x) > 0$. Докажем, что $B_r(x) \subset B_R(a)$. Возьмем $y \in B_r(x)$, то есть $\rho(x,y) < r \implies \rho(y,a) \leqslant \rho(y,x) + \rho(x,a) < r + \rho(x,a) = R \implies y \in B_R(a)$.

Замечание. Существенна конечность. $\mathbb{R}.$ $\bigcap_{n=1}^{\infty}(-\frac{1}{n},1)=[0,1).$ А для нуля любой открытый шарик плохой.

Билет 27

Определение 27.1. $A \subset X$, $a \in A$. a — внутренняя точка множества A, если $\exists r > 0 \colon B_r(a) \subset A$.

Замечание. A — открытое \iff все его точки внутренние.

Определение **27.2.** Внутренность множества $\operatorname{Int} a := \{ a \in A \mid a - \text{внутренняя точка} \}.$

Пример. $A = [0, 1] \subset \mathbb{R}$. Тогда Int A = (0, 1).

Свойства внутренности. 1. Int $A \subset A$.

- 2. Int $A \bigcup$ всех открытых множеств, которые содержатся в A.
- 3. Int A открытое множество.
- 4. A открытое \iff A = Int A.
- 5. Если $A \subset B$, то Int $A \subset \text{Int } B$.
- 6. $\operatorname{Int}(A \cap B) = \operatorname{Int} A \cap \operatorname{Int} B$
- 7. Int(Int A) = Int A.

Доказательство.

2. $B := \bigcup_{\alpha \in I} A_{\alpha}, A_{\alpha} \subset A, A_{\alpha}$ открытые.

 $B \subset \operatorname{Int} A$. Берем $b \in B \implies \exists \beta \in I \colon b \in A_{\beta}$ — открытое $\implies \exists r > 0 \colon B_r(b) \subset A_{\beta} \subset A \implies b$ — внутренняя точка $A \implies b \in \operatorname{Int} A$.

Int $A \subset B$. Берем $b \in \text{Int } A \Longrightarrow \exists r > 0 B_r(b) \subset A$, но $B_r(b)$ — открытое множество \Longrightarrow оно участвует в объединении $\bigcup_{\alpha} A_{\alpha} \Longrightarrow B_r(b) \subset B \Longrightarrow b \in B$.

- $4. \Leftarrow$: пользуемся пунктом 3.
 - \Rightarrow : всего его точки внутренние $\Longrightarrow A = \operatorname{Int} A$.
- 6. \subset : $A \cap B \subset A$, $\subset B \implies \operatorname{Int}(A \cap B) \subset \operatorname{Int} A \wedge \operatorname{Int}(A \cap B) \subset \operatorname{Int} B$.
 - \supset . Пусть $x \in \operatorname{Int} A \cap \operatorname{Int} B \implies \begin{cases} \exists r_1 > 0 & B_{r_1}(x) \subset A \\ \exists r_2 > 0 & B_{r_2}(x) \subset B \end{cases} \implies \operatorname{если} r = \min\{r_1, r_2\} \implies B_r(x) \subset A \wedge B_r(x) \subset B \implies B_r(x) \subset A \cap B \implies x \in \operatorname{Int}(A \cap B).$
- 7. $B := \operatorname{Int} A$ открытое $\implies B = \operatorname{Int} B$.

Билет 28

Определение 28.1. $A \subset X$. A — замкнутое, если $X \setminus A$ — открытое.

Теорема 28.1 (о свойствах замкнутых множеств). 1. \varnothing, X — замкнуты.

- 2. Пересечение любого числа замкнутых множеств замкнуто.
- 3. Объединение конечного числа замкнутых множеств замкнуто.
- 4. $\overline{B}_R(a)$ замкнуто.

Доказательство. 2. A_{α} — замкнуты $\Longrightarrow X \setminus A_{\alpha}$ — открытые $\Longrightarrow \bigcup_{\alpha \in I} X \setminus A_{\alpha}$ — открыто $\Longrightarrow X \setminus \bigcup_{\alpha \in I} (X \setminus A_{\alpha}) = \bigcap_{\alpha \in I} A_{\alpha}$ — замкнутое.

4. $X\setminus \overline{B}_R(a)$ — открытое. Берем $x\notin \overline{B}_R(a)$. Возьмем $r\coloneqq \rho(a,x)-R>0$. Покажем, что $B_r(x)\subset X\setminus \overline{B}_R(a)$.

От противного. Пусть $B_r(x) \cap \overline{B}_R(a) \neq \emptyset$. Берем $y \in B_r(x) \cap \overline{B}_R(a) \implies \rho(x,y) < r \land \rho(a,y) \leqslant R \implies \rho(a,x) \leqslant \rho(a,y) + \rho(y,x) < R + r = \rho(a,x)$. Противоречие.

Замечание. В 3 важна конечность. $\mathbb{R}.$ $\bigcup_{n=1}^{\infty} [\frac{1}{n}, 1] = (0, 1]$ — не является замкнутой.

Определение 28.2. Замыкание множества $\operatorname{Cl} A$ — пересечение всех замкнутых множеств, содержащих A.

Теорема 28.2. $X \setminus \operatorname{Cl} A = \operatorname{Int}(X \setminus A)$ и $X \setminus \operatorname{Int} A = \operatorname{Cl}(X \setminus A)$.

Доказательство. $\operatorname{Int}(X \setminus A) = \bigcup B_{\alpha}$. B_{α} — открытые, $B_{\alpha} \subset X \setminus A \iff X \setminus B_{\alpha}$ — замкнутое. $X \setminus B_{\alpha} \supset A$.

$$\bigcap (X \setminus B_{\alpha}) = \operatorname{Cl} A \implies X \setminus \bigcap (X \setminus B_{\alpha}) = X \setminus \operatorname{Cl} A \iff \bigcup (B_{\alpha}) = \operatorname{Int}(X \setminus A).$$

Следствие. Int $A = X \setminus Cl(X \setminus A)$ и $Cl A = X \setminus Int(X \setminus A)$.

Свойства. 1. $\operatorname{Cl} A \supset A$.

- 2. ClA замкнутое множество.
- 3. A замкнуто $\iff A = \operatorname{Cl} A$.

Доказательство. \Leftarrow — пункт 2. \Rightarrow A — замкнутое \Rightarrow оно участвует в пересечении из определения \Longrightarrow $\operatorname{Cl} A \subset A \Longrightarrow \operatorname{Cl} A = A$.

4. $A \subset B \implies \operatorname{Cl} A \subset \operatorname{Cl} B$.

Доказательство.
$$X \setminus A \supset X \setminus B \implies \operatorname{Int}(X \setminus A) \supset \operatorname{Int}(C \setminus B) \implies X \setminus \operatorname{Int}(X \setminus A) \subset X \setminus \operatorname{Int}(X \setminus B)$$

- 5. $Cl(A \cup B) = Cl A \cup Cl B$.
- 6. Cl(Cl A) = Cl A.

Доказательство. $B \coloneqq \operatorname{Cl} A - \operatorname{замкнуто} \implies \operatorname{Cl} B = B$.

Упражнение. Cl Int Cl Int \dots A. Какое наибольшее количество различных множеств может получиться.

Теорема 28.3. $x \in \operatorname{Cl} A \iff \forall r > 0$ $B_r(x) \cap A \neq \emptyset$.

Доказательство. Запишем отрицание условия теоремы: $x \notin \operatorname{Cl} A \iff \exists r > 0 B_r(x) \cap A = \emptyset$.

Что означает, что $x \notin A$? Это значит, что $x \in X \setminus \operatorname{Cl} A = \operatorname{Int}(X \setminus A) \iff x \in \operatorname{Int}(X \setminus A) \iff x$ — внутренняя точка $X \setminus A \iff \exists r > 0 \colon B_r(x) \cap A = \varnothing \iff \exists r > 0 \colon B_r(x) \subset X \setminus A$.

Следствие. U — открытое, $U \cap A = \emptyset \implies U \cap \operatorname{Cl} A = \emptyset$.

Доказательство. Возьмем $x \in U \implies \exists r > 0 : B_r(x) \subset U \implies B_r(x) \cap A = \emptyset \implies x \notin \operatorname{Cl} A \implies U \cap \operatorname{Cl} A = \emptyset$.

Билет 29

Определение 29.1. Окрестностью точки x будем называть шар $B_r(x)$ для некоторого r>0. Обозначать будем U_x

Определение 29.2. Проколотой окрестностью точки $x - B_r(x) \setminus \{x\}$. Обозначать будем \dot{U}_x .

Определение 29.3. x — предельная точка множества A, если $\forall \dot{U}_x \colon \dot{U}_x \cap A \neq \varnothing$.

Обозначим через A' — множество предельных точек для A.

Свойства.

1. $\operatorname{Cl} A = A \cup A'$.

Доказательство.
$$x \in \operatorname{Cl} A \iff \forall U_x \colon U_x \cap A \neq \varnothing \iff \left[\begin{array}{c} x \in A \\ \forall \dot{U_x} \cap A \neq \varnothing \iff x \in A' \end{array} \right]$$

- 2. $A \subset B \implies A' \subset B'$. Очевидно.
- 3. A замкнуто $\iff A \supset A'$.

Доказательство.
$$A$$
 — замкнуто \iff $A = \operatorname{Cl} A \iff A = A \cup A' \iff A \supset A'$.

4. $(A \cup B)' = A' \cup B'$.

Доказательство. Докажем " \subset ". Возьмем $x \in (A \cup B)'$: $x \notin A' \implies \exists \dot{U}_x : \dot{U}_x \cap A = \emptyset$, но $\dot{U}_x \cap (A \cup B) \neq \emptyset \implies \dot{U}_x \cap B \neq \emptyset \implies x \in B'$.

Докажем ">". $A \cup B \supset A \implies (A \cup B)' \supset A'$. Провернем тот же фокус для B, получим $(A \cup B)' \supset A' \cup B'$.

Теорема 29.1. $x \in A' \iff \forall r > 0$ $B_r(x)$ содержит бесконечное количество точек из A.

Доказательство. Докажем " \Leftarrow ". $B_r(x) \cap A$ содержит бесконечное количество точек $\implies \dot{B_r}(x) \cap A$ содержит бесконечное число точек $\implies \dot{B_r}(x) \cap A \neq \varnothing \Rightarrow x \in A'$.

"⇒". Возьмем радиус r. Тогда $\dot{B}_r(x) \cap A \neq \varnothing \implies \exists x_1 \in A : 0 < \rho(x,x_1) < r$. Возьмем $r = \rho(x,x_1) \ \dot{B}_r(x) \cap A \neq \varnothing \implies \exists x_2 \in A : 0 < \rho(x,x_2) < \rho(x,x_1)$. Тогда можно взять $r = \rho(x,x_2)$, и так далее.

В итоге получили, что $r > \rho(x, x_1) > \rho(x, x_2) > \rho(x, x_3) > \ldots > 0 \implies$ все x_n различны. \square

Следствие. Конечное множество не имеет предельных точек.

Доказательство. Предположим предельная точка существует $\iff \exists r > 0 : B_r(x) \cap A$ содержит бесконечное количество точек. Но это невозможно, так как в A конечное число точек. \square

Билет 30

Определение 30.1. (X, ρ) — метрическое пространство $Y \subset X$.

Тогда $(Y, \rho \mid_{Y \times Y})$ — подпространство метрического пространства (X, ρ) .

Пример. $(\mathbb{R}, |x-y|)$. $Y = [a, b] \subset \mathbb{R}$, например, Y = [0, 1].

$$B_1(1)=(0,1], B_2(0)=[0,1].$$
 $B_r^Y(a)=Y\cap B_r^X(a).$ $(B_r^A-$ шарик радиуса r на множестве $A)$

Теорема 30.1 (об открытых и замкнутых множества в пространстве и подпространстве). (X, ρ) — метрическое пространство, (Y, ρ) — его подпространство, $A \subset Y$. Тогда

- 1. A открыто в $Y \iff \exists G$ открытое в X: $A = G \cap Y$.
- 2. A замкнуто в $Y \iff \exists F$ замкнутое в $X : A = F \cap Y$.

Доказательство.

1. "⇒" A — открыто в Y \Longrightarrow $\forall x \in A \exists r_x > 0 \colon B^Y_{r_x}(x) \subset A \implies A = \bigcup_{x \in A} B^Y_{r_x}(x)$.

То есть наше множество будет объединением большего числа шариков (возможно бесконечного). Найдем теперь $G\colon G\coloneqq\bigcup_{x\in A}B^X_{r_x}(x)$ — открыто. Посмотрим теперь на $G\cap Y=$

$$\bigcup_{x \in A} (B_{r_x}^X(x) \cap Y) = \bigcup_{x \in A} B_{r_x}^Y(x) = A.$$

В обратную сторону. Пусть $A=G\cap Y$, где G открыто в X. Возьмем $x\in G\cap Y$. G — открыто в X \Longrightarrow $\forall x\in G\cap Y\exists r>0$: $B_r^X(x)\subset G$ \Longrightarrow $B_r^X(x)\cap Y\subset G\cap Y=A$ \Longrightarrow $B_r^Y(x)\subset A$ \Longrightarrow x — внутренняя точка A \Longrightarrow A — открыто в Y.

- 2. A замкнуто в $Y \iff Y \setminus A$ открыто в $Y \iff \exists G$ открытое в X, такое что $Y \setminus A = Y \cap G \iff A = Y \setminus (Y \cap G) \stackrel{(1)}{=} Y \setminus G \stackrel{(2)}{=} Y \cap (X \setminus G) \iff \exists G$ открытое в X, такое что $A = Y \cap (X \setminus G) \iff \exists F$ замкнуто в X, такое что $A = Y \cap F$.
 - (1) Можно забить на пересечение с Y, потому что, если элемент G не лежит в Y, то и в $Y\setminus G$ он участия не принимает. (2) Помним, что $Y\subset X$, а значит такая операция корректна.

Пример. (\mathbb{R} , |x-y|). Y=[0,3). [0,1) — открыто в [0,3): $[0,1)=[0,3)\cap(-1,-1)$. [2,3) — замкнуто в [0,3): $[2,3)=[0,3)\cap[2,3]$.

Билет 31

- Билет 32
- Билет 33
- Билет 34
- Билет 35
- Билет 36
- Билет 37
- Билет 38
- Билет 39
- Билет 40
- Билет 41
- Билет 42

- Билет 43
- Билет 44
- Билет 45
- Билет 46
- Билет 47
- Билет 48
- Билет 49
- Билет 50
- Билет 51
- Билет 52
- Билет 53

Билет 54

Билет 55

Билет 56

Билет 57

Билет 58

Билет 59