and

$$(v - e^{-i\theta}u) \cdot (v - e^{-i\theta}u) = ||v||^2 + ||u||^2 - e^{-i\theta}u \cdot v - e^{i\theta}v \cdot u,$$
  
=  $2(||u||^2 - |u \cdot v|),$ 

and thus,

$$-2\frac{(u\cdot(v-e^{-i\theta}u))}{\|(v-e^{-i\theta}u)\|^2}(v-e^{-i\theta}u) = e^{i\theta}(v-e^{-i\theta}u).$$

But then,

$$s(u) = u + e^{i\theta}(v - e^{-i\theta}u) = u + e^{i\theta}v - u = e^{i\theta}v,$$

and  $s(u) = e^{i\theta}v$ , as claimed.

(2) This part is easier. Consider the Hermitian reflection

$$\rho_{v,\theta}(u) = u + (e^{i\theta} - 1) \frac{(u \cdot v)}{\|v\|^2} v.$$

We have

$$\rho_{v,\theta}(v) = v + (e^{i\theta} - 1) \frac{(v \cdot v)}{\|v\|^2} v,$$

$$= v + (e^{i\theta} - 1)v,$$

$$= e^{i\theta}v.$$

Thus,  $\rho_{v,\theta}(v) = e^{i\theta}v$ . Since  $\rho_{v,\theta}$  is linear, changing the argument v to  $e^{i\theta}v$ , we get

$$\rho_{v,-\theta}(e^{i\theta}v) = v,$$

and thus,  $\rho_{v,-\theta} \circ s(u) = v$ .

## Remarks:

- (1) If we use the vector  $v + e^{-i\theta}u$  instead of  $v e^{-i\theta}u$ , we get  $s(u) = -e^{i\theta}v$ .
- (2) Certain authors, such as Kincaid and Cheney [102] and Ciarlet [41], use the vector  $u + e^{i\theta}v$  instead of our vector  $v + e^{-i\theta}u$ . The effect of this choice is that they also get  $s(u) = -e^{i\theta}v$ .
- (3) If  $v = ||u|| e_1$ , where  $e_1$  is a basis vector,  $u \cdot e_1 = a_1$ , where  $a_1$  is just the coefficient of u over the basis vector  $e_1$ . Then, since  $u \cdot e_1 = e^{i\theta}|a_1|$ , the choice of the plus sign in the vector  $||u|| e_1 + e^{-i\theta}u$  has the effect that the coefficient of this vector over  $e_1$  is  $||u|| + |a_1|$ , and no cancellations takes place, which is preferable for numerical stability (we need to divide by the square norm of this vector).