各位无人机发烧友们:

你们好,最近在研究 Mavlink,发现国内没有中文资料可查,所幸翻译了一些,供大家交流使用。由于时间匆忙翻译得很粗糙,大家明白大意就好啦!

有意交流者可通过 thunder leiming@126. com 与我联系,期待你的出现!

mavlink 微型飞行器的通信协议

mavlink 是一个非常轻量级,对微型飞行器数据头信息进行引导的库。

它可以高速地传递 c 语言并发送这些数据包到地面控制站。它已被广泛的在 PIXHAWK, SLUGS 和 ArduPilotMega 平台上测试,并作为信息传递地主干网对有 MCU / IMU 以及 Linux 的进程和地面链路通信进行信息的传递。

整合教程

这些教程显示如何在您的自动驾驶仪整合 mavlink。

- 板载集成教程,使用内建的自动驾驶仪软件 mavlink
- ROS (机器人操作系统) 集成教程微型空中机器人中使用 mavlink
- mavlink 地面控制集成教程适应 QGroundControl。

QGroundControl 用户:虽然mavlink 本身不依赖于它,但 QGroundControl 调整的意见和基础设置都依赖 mavlink 的语言。QGroundControl 还使用这个消息跟踪如果一个系统不论它是正常的还是断开连接的。因此,请确保每60,30,10或1秒(发送消息1 Hz 的建议,但不要求)

Mavlink 编码和驱动

有一个 "common message set"包含广泛使用的消息。如果你想使用自己的自定义消息,您可以使用与这些 mavlink 启动器如(C/ C + +, Python)或QGroundControl。(下载QGC请访问http://qgroundcontrol.org/downloads)托管 mavlink 二进制版本:

https://github.com/ mavlink / mavlink /downloads mavlink 消息定义和驱动代码托管:

- https://github.com/ mavlink / mavlink /
- 以 mavlink 为 桥 的 ROS : https://github.com/ mavlink / mavlink -ros
- MAVCONN 轻型空中飞行器 http://pixhawk.ethz.ch/software/middleware/start
- oooArk / MAVSim http://www.youtube.com/watch?v=-wQVrM5SL2o&fe
- mavlink 的 Python 绑定
- MAVProxy(允许连接多个 UDP /串行链路,包括 FlightGear 的):

git://git.samba.org/tridge/UAV/MAVProxy.git

使用 mav link 的项目(使用请点击以下网站)

- ArduPilotMega http://code.google.com/p/ardupilot-mega/
- MatrixPilot UAV DevBoard http://code.google.com/p/gentlenav/
- PIXHAWK http://pixhawk.ethz.ch//
- ETH Flying Machine Arena http://www.idsc.ethz.ch/Research DAndrea/FMA
- ETH SenseSoarSolar airplane project http://www.sensesoar.ethz.ch/doku.php?id=news
- ETH Skye Blimp Project http://www.projectskye.ch/
- ArduCAM OSD http://code.google.com/p/arducam-osd/
- UC Santa Cruz SLUGS http://slugsuav. soe. ucsc. edu/index. html

牌照

mavlink 是 LGPL 的许可,因此可以被用来作为一个库在闭源和开源应用程序的免版税。

常见问题(FAQ)

从 0. 9. 0 升级到 1. 0. 0

- 问: 是升级容易做吗? -是的, v. 1. 0. 0 几乎是完全兼容的 API 与 v. 0. 9. 0。只有少数的消息已经改变,像消息协议解析(mavlink_parse_char) 的所有功能完全兼容。
- 问:升级的主要好处是什么? 1 mavlink 现在使用 little-endian 的 编码线,这使得很多在大多数平台上更有效。它仍然支持低端和高端平台。 2。现在检查每个消息包格式,所以如果两个通讯伙伴有不同的格式相同的 消息,它会检测这种不匹配。3。现在有较小的消息缓冲区的支持。4。参数的协议,现在支持 32 个无符号和有符号整数和浮点值。5。mavlink 现在 支持 IEEE 754 双精度浮点数。6。所有邮件都自动生成的测试套件测试,使该协议甚至更安全。7。一些消息已经清理,以更好地适应实际飞行使用。 8。mavlink 现在默认 C / C + +和 Python 的支持。
- 问:新版本将很快用于? -是的, QGroundControl 完全移植到和 ArduPilotMega 和 PIXHAWK 已经将他们的软件移植。不久, 所有采用移植到新的版本, 只是因为它是没有太多精力。

用户

- 问:有多少飞机确实 mavlink 支持 255 型飞机,从 1 到 255 不等。0
 不是一个有效的飞机编号。
- 问:如何高效是 mavlink? -每包 8 个字节,包括开始的标志和丢包检测,mavlink 是一个非常有效的协议。
- 问:在哪里可以使用 mavlink? mavlink 已被证明是工作在多个微控制器和操作系统,包括 ARM7 的,ATMEGA,DSPIC,STM32 的和 Windows,LINUX 和 MacOS。
- 问:安全性如何? mavlink 两年多前已用于 mavlink 在 PIXHAWK MAV 的飞行项目,并依靠行之有效的 ITU X. 25 的校验数据包损坏的检测。

包解剖

这是一个包的解剖。它的灵感来自于 CAN 和 SAE AS-4 标准。

字节的 索引	内容	值	解释
0	包开始标 志	V1. 0: 0xFE 的 (V0. 9: 将 0x55)	表示开始一个新的包。
1	有效载荷 的长度	0 - 255	表示以下的有效载荷的长度。
2	包序列	0 - 255	每个组件计数他的发送序列。允许检测丢包
3	系统 ID	1 - 255	发送系统的 ID。允许在同一网络 上区分不同的飞行器。
4	组件的 ID	0 - 255	发送组件的 ID。允许在同一系统中区分不同的组件,如 IMU 和自动驾驶仪。
5	消息 ID	0 - 255	消息 ID - ID 定义有效载荷"是指"应如何正确解码。
6 (N +6)	数据	(0 - 255)字节	消息数据,取决于消息的 ID。
(N +7) 至(n +8)	校验和 (低字 节,高字 节)	国际电联 X. 25/SAE AS-4 拼凑,不含包开始的标志,所以字节 1(n+6)注:校验包括 MAVL INK_CRC_EXTRA(数计算从消息字段保护了不同版本的解码包相同的数据包,但不同的变量)。	

- 校验和是相同的,在 ITU X. 25 和 SAE AS-4 标准(使用 CRC-16-CCITT 的),
 SAE 的 AS5669A 记录。请 mavlink 为一个文件的 C 执行它。源代码的链接为 CHECKSUM
- 确认<mark>无有效载荷包的最小数据包长度</mark>为 8 字节
- 最大包长度是充分有效载荷为 263 字节

支持的数据类型

mavlink 支持固定大小的整数数据类型, IEEE 754 单精度浮点数, 这些数据类型的数组(如 char [10])和特别的 mavlink_version 领域, 该协议将自动添加。这些类型可供选择:

■ char -字符/字符串

- uint8_t -无符号8位
- int8_t -签订8位
- uint16_t -无符号 16 位
- int16_t 16 位签名
- uint32_t 32 位无符号
- int32_t -符号 32 位
- uint64_t -无符号 64 位
- int64_t -签名的 64 位
- float IEEE 754 单精度浮点数
- double IEEE 754 双精度浮点数
- uint8_t_mavlink_version 无符号的 8 位字符自动补充到当前的 mavlink 版本-它不能被写入,只是读按照 8 位字符的方式读取。

性能

此协议由两大特性:传输速度快和安全性高。它可以检查邮件的内容,它也可以 检测丢失的消息,但仍然只需要每个数据包6个字节的开销。

传输的例子

链接速度	硬件	更新率	有效载荷	float 值
115200 波特	2. 4 千兆赫的 XBee	50 赫兹	224 字节	56
115200 波特	2. 4 千兆赫的 XBee	100 赫兹	109 字节	27
57600	2. 4 千兆赫的 XBee	100 赫兹	51 字节	12
9600 波特	XSC 900 的 XBee	50 赫兹	13 个字节	3
9600 波特	XSC 900 的 XBee	20 赫兹	42 字节	10

今后的工作/意见

- 变长数组
- 位域的支持(如包装成一个 uint8_t 8 个布尔值,但呼吁所有八个布尔提供的 C 函数。因此,用户不会转移/屏蔽自己摆弄。)
- 多变化的头函数,允许设置目标体系和目标组件(没有协议的变化,唯一的便利功能访问

ROS (机器人操作系统) MAVLink 集成教程

安装 ROS 可登录 http://ros.org。 在写作此教程时,当前版本是 ROS Fuerte (http://ros.org/wiki/fuerte/Installation)。

MAVLink ROS 桥安装

ETH PIXHAWK 团队提供了一个 MAVLink ROS 桥为最常见的消息。桥之间通过 UART / 串行端口和 UDP 连接,传输到装有 MAVLink 和 ROS 实例的计算机上。

快速简介

- \$ HOME 就是你的主目录,如果你的用户名是 John,它保存在 Mac OS /Users/John中。
- /opt/ros/fuerte 是 ROS 安装的地方。如果你的 ROS 安装到不同的位置,请自行调整。

下载文件

ROS 工作区的改变:

roscd

或者如果您想有一个不同的目录(我们),将它添加到 ROS_PACKAGE_PATH。要做到这一点,编辑\$ HOME / .bashrc 中(在 Linux 中)或\$ HOME / .bash_profile(MAC)和采购 ROS 的 安装脚本:

source /opt/ros/fuerte/setup.sh export ROS_PACKAGE_PATH=\$HOME/src:\$ROS_PACKAGE_PATH 这一步后, 关闭所有终端, 并重新打开 现在去你想要安放 MAVLink 桥或者是 ROS 工作区的地方,目录: roscd 或在不同的目录,如下: CD∽/ src 下载的 MAVLink 桥: git clone https://github.com/mavlink/mavlink_ros.git 更改到目录和编译 CD mavlink_ros rosmake

航点协议

航点的协议说明了发送到航点是如何从 MAV 读取的。目标是确保发送方和接收方之间的一致状态。 QGroundControl 有一个实施协议,每一个使用 MAVLINK 使用者可以与 QGroundControl 沟通和交流,并进行实时的更新。

通讯/主机

该协议包括不同的交易,每个交易或成功完成,或在以前的状态在由于接收端的航点列表方式不变而失败。只有当在通信双方之间没有其他的交易是活跃的时候,一个交易才可以启动一个特定的消息。这意味着启动一个交易双方通信双方必须是在*空闲*状态。如果一个事务开始的状态发生变化时,用这样一个简单的状态机的协议,可以轻松实现。

在每次发送的消息,发送组件启动一个计时器。如果没有收到任何答复,直到指定的时间已 经过去了,再次请求消息发送。重发时重试的次数,最后重试超时交易失败后,如果没有答 案。重试机制意味着所有组件必须能够处理重复消息。

阅读 MAV 的航点列表

要检索的所有航点从组件列表 WAYPOINT_REQUEST_LIST 消息发送。有针对性的组件将响应,说明在其名单的航点数量 WAYPOINT COUNT 消息。

请求组件会在此时要求每一个序列号 0 开始发送 WAYPOINT_REQUEST 消息,同时目标组件相应的回答每一个请求包含航点的数据信息 waypoint 航点。

当最后一个航点被成功接收请求组件发送 WAYPOINT_ACK 消息到目标的组成部分时,交易完成。请注意,有针对性的组件有听到 WAYPOINT_REQUEST 最后一个航点的消息,直到它得到的 WAYPOINT_ACK 或启动一个不同的交易或超时发生另一条消息。

写 MAV 的航点列表

发送一个航点列表 WAYPOINT_COUNT 含有清单中的数量航点的消息被发送到目标的组成部分。组件会做好接待准备,并开始从 0 发送检索 WAYPOINT_REQUEST 所有航点的序列号。航点列表的组件发送应答与所有的请求 WAYPOINT 消息

当最后一个航点已成功通过有针对性的组件收到,发送 WAYPOINT_ACK 邮件发送组件。这时交易完成。

如果一个航点规划者组件接收 waypoint 以外的交易的消息,它应以 WAYPOINT_ACK 消息的形式回应。

清除 MAV 的航点列表

在清除航点列表有针对性的组成部分答案 WAYPOINT_ACK 消息后。要清除一个航点列表组成部分 WAYPOINT_CLEAR_ALL 的消息发送。

设置新的当前 MAV 的航点

在用新的序列号 WAYPOINT_CURRENT 消息改变目前的航点后,对新的组件设置一个的活跃航点消息 WAYPOINT_SET_CURRENT。

航点达到 MAV 的状态消息

如果在 MAV 的航点规划者达到一个航点,它广播 WAYPOINT_REACHED 的消息。由于 ACK 消息没有通过广播发送,而且也没有接待保证可以被采取。

当前航点,改变了从微型飞行器的状态消息

如果在 MAV 的航点规划师,选择当前目标作为其新的航点,广播 WAYPOINT_CURRENT 的消息。由于 ACK 消息没有通过广播发送,而且也没有接待保证可以被采取。建议将这个消息发送一个小的延迟,以确保达到所有的接收器,高达两倍概率。

图像传输协议

本页面描述影像流功能如何实现,包括实施细则(在 MAV 和 QGroundControl)以及 MAV UND QGroundControl 之间的通信。

图像传输协议包括两个模块:一个图像流和视频流组件:

- 图像流组件使用 MAVLink 为沟通渠道,并可以用来运送任何从 MAV 到QGroundControl 的一种图像。它基本上是一个活的摄像机图像,把它分割成小块再通过 MAVLink 发送。此模块主要用于图像直接传送到 QGroundControl (即 HUD 的组件如下所示)
- 组件的视频流为"真实的"MPEG2 格式的视频。它采用现场摄像机图像和 FFmpeg 的 视频流进行编码。本模块的主要使用的情况下是观看上几乎任何移动设备(笔记本电脑,智能电话,…),此组件还可以通过移动媒体来发送大量的数据块图像而不尽尽 局限于 QGroundControl 或 MAVlink 客户端。

视频流,图像流组件的主要优点是更好地融入到 QGroundControl。主要缺点是它需要 MAVLink 支持(因此不作为跨 plattform 视频流组件)。

通讯

影像串流

图像流组件使用两个 mavlink 消息:一个手动消息,DATA_TRANSMISSION_HANDSHAKE 发起,控制和停止图像流;和数据容器的消息,ENCAPSULATED IMAGE,传输图像数据(见下图)。

- (1) 通信由 QGroundControl 发起请求启动流。要做到这一点,必须设置以下字段在 MAVLink 消息:
 - 目标: 到有针对性的微型飞行器的 ID,
 - 状态:通过0来发送请求请求,
 - ID: ID 的图像流,注:形象流光的那一刻,只支持每一个图像类型的流,因此需要你设置 ID 相同的整数类型的字符。
 - 类型: 在枚举类型的 mavlink.h 库中的任何 MAVLINK DATA STREAM TYPES
 - 频率: 大于 0 为"每秒帧数", 低于 0 为"每帧秒数"

要求一个特定的图像质量,这是可能的。要做到这一点,你必须设置质量领域。在初始请求里,所有其他领域应该是零。

- (2)当目标 MAV 的接待 handshake 请求,它发回一个确认,并开始在请求帧率的图像流。要求由 QGroundStation (状态设置为 1,因为它是一个 ACK) handshake ACK 包通常包含相同的值,并增加了关于未来发送图像大小的数据:
 - 地址 field 包含的 MAVLink 中的 ENCAPSULATED DATA 包,
 - payload 字段指定每个数据包的有效载荷(一般为 252 个字节)的大小。
 - size 字段指定以字节为单位的图像大小。
- (3)图像数据分割成块以适应分为正常 MAVLink 消息。然后将它们装进 ENCAPSULATED_DATA 包和超过 MAVLink 发送。每个数据包包含一个序列号,以及它属于图像流的 ID。图像流光现在定期发送新的图像而没有进一步交互的需要。每一个新的形象是一个新的 DATA_TRANSMISSION_HANDSHAKE 与更新图像 ACK 数据包 size, packets 和 payload 领域。之后,新图像作为 ENCAPSULATED_DATA 系列的包到达。注:对于每个流的新图像序列号都是从 0 开始的。
- (4)要停止图像数据流,你必须发送一个新的频率设置为 0 的 DATA_TRANSMISSION_HANDSHAKE 请求数据包。微型飞行器将承认由回送一个 ACK 包,包含在请求相同的数据。

视频流

视频传输通信协议是比流的一个图像要简单得多:它只是一个 MAVLink 消息,由

VIDEO STREAM,

这是用来启动 和停止视频流 (见左图)。

消息有两处需要设置:

■ target:目标微型飞行器

■ START_STOP: 1, 开始, 0停止。

微型飞行器方面 FFmpeg 所产生的视频流。小 MAVLink 包装抓起摄像机的图像,添加(Y)的紫外线渠道 YUV420 rawimage 格式和成分到 FFMPEG 形象。然后将输出发送到地面站(注:目前这需要一个固定的地面站的 IP 以及一个初始配置步骤时,设立了微型飞行器)。根据视频流 recieving,QGroundControl 打开了 VLC 窗口中重新分配视频流:这需要从微型飞行器流,此流的 RTP 流(组播地址)和提供的 HTTP流(直接单播流)网络。这样做不转原流,以保持尽可能低性能的影响。

现在可以连接到其他移动设备上的多播地址 239.255.12.45 流,或 HTTP 的流上 http://[QGC-HOST]/MAVLive.mpg.组播流通过 SAP 宣布一下的名称"MAVLive"。

使用/配置

MAV 的使用两个模块,你必须执行以下步骤。

影像串流

1. 编译您 MAV 的中间件: mayconn。

2. 开始对微型飞行器至少这些组件:

```
px_mavlink_bridge_udp &
```

px_system_control --heartbeat &

px_camera -o lcm &

3. 编译和启动 QGroundControl

4.	启动图 像流组件 (为 了看到一些更多的输出,您可以添加- v 标志):
1	px_imagestreamer
5.	发起的图像流:打开 HUD 的部件, 用鼠标右键单击到部件, 并选择"启用实时图像
你现	在应该能够看到一个每秒的图像(默认情况下,目前是硬编码)视频直播。
视 频	ī 流
1.	执行步骤图像流1至3
2.	在你的 home 目录中创建一个符号链接:
cd ~	
ln -	s mavconn/src/comm/video/px_videostreamer.sh px_videostreamer.sh
	(注意: 你也可以复制该文件,但不建议。)
3.	开始对 MAV 的视频流组件:
	px_videostreamer
4.	启动视频流:打开 HUD 的部件,到部件右键单击并选择"启用视频直播饲料"。
	的 VLC 窗口现在应该打开。不要关闭窗口,只要你想要的视频流给他人!如果你前流,只是在另一个 VLC 窗口打开流。

参数协议

内建的参数接口允许读取和写入到当前存储器(RAM),也将永久存储(EEPROM 或硬盘)参数(如 PID 增益) 实现,它可以是一个微控制器(如与 ARM7 pxlMU)标准的软件(例如在 Linux px multitracker 过程)。

支持的数据类型

MAVLink V1.0 支持这些数据类型:

- uint32 t 32 位无符号整数(使用的枚举值 MAVLINK TYPE UINT32 T)
- int32_t 32 位有符号整数(使用枚举值 MAVLINK_TYPE_INT32_T)
- 浮点- IEEE754 单精度浮点数(使用枚举值 MAVLINK TYPE FLOAT)

多系统和多组件支持

MAVLink 支持并行在同一链路上的多个系统/飞机。除此之外,它也支持在同一飞机多个MAVLink 设备。例如协议允许一个无线链路的自动驾驶仪和有效载荷单元进行通信。参数协议,也因为这个原因,组件之间的区别。从系统得到一个完整的参数列表,在target_component 设置为 0 时(枚举值:MAV_COMP_ID_ALL),发送请求参数的消息。所有板上的元件应响应参数请求消息,用自己的 ID 或 IDMAV_COMP_ID_ALL(0)。QGroundControl 默认查询所有系统组件(只查询当前选定的系统,并不是所有的系统),因此发送的 ID 0 / MAV COMP_ID_ALL。

通讯/主机

内建的参数,确定由 14 字符的字符串,并存储一个浮点值(独立外部评价的 754 单精度, 4 个字节)。此键→值对有许多重要的特性:

- 可读的名字,对于用户来说非常有用,但它仍然是足够小
- 地方选区没有提前知道板载参数存在

- **支持对未知的自动**驾驶**仪,只要他们执行该协**议,**保**证存在
- 加入参数仅仅是一个内建代码的变化。

读取参数

读取参数列表被激活发送 PARAM_REQUEST_LIST 消息。板载组件应该开始收到此消息后,单独 传送的参数。每个参数后,应推迟发送, 以不占用完整的无线电带宽。

面发送键→值对组件。作为 QGroundControl 保持轨道改变的参数,点击 Write 按钮只会发送那些已经改变的值。MAV 需要**承认写操作**所散发出的新参数值与 PARAM VALUE 值的消息。

板载永久存储

参数接口提供了两个按钮,载入参数从永久板载存储到 RAM 和当前参数保存到永久存储在 RAM。写一个新的值在上 QGroundControl 永久存储,首先值需要被传送,事后再写入 ROM 命令发出。

QGroundControl 参数文件

QGroundControl 允许板载参数的当前值保存在一个文本文件。该文件可以被再次引入和传输的微型飞行器。这样就使许多飞行器装配有相同的省略值。

在 QGroundControl 图形用户界面

出于这个原因参数界面会区分系统的 组成,这样不需要就翻译参数的中心载 板的情况下能够明显地得到分散的成 分参数。右边的图像中可以看到,每一 个组件代表在参数树的高位节点。在顶 层的下拉菜单,可以选择系统(微型飞 行器)。GUI 保持轨道改变的参数将发 送这些参数,从而改变相应的组件。

为了促进许多参数使用,树是在根据参数 名称中的第一个下划线("_")的顶层结构,。 所以 PID_POS_X_P 和 PID_POS_Y_P 将低于 PID 节点进行分组。

字段及描述

字段名称	描述
V_TYPE_GENERIC	通用的微型飞行器。
AV_TYPE_FIXED_WING	固定翼飞机。
AV_TYPE_QUADROTOR	旋翼
AV_TYPE_COAXIAL	共轴式直升机
AV_TYPE_HELICOPTER	普通带尾浆的直升机。
AV_TYPE_ANTENNA_TRACKER	地面安装装置
AV_TYPE_GCS	操作员控制单元/地面控制站
AV_TYPE_AIRSHIP	飞艇(受控制)
N_TYPE_FREE_BALLOON	自由气球(不受控制)
AV_TYPE_ROCKET	火箭
AV_TYPE_GROUND_ROVER	地面流 动 站
AV_TYPE_SURFACE_BOAT	水面舰艇,艇,船
AV_TYPE_SUBMARINE	潜艇

V_TYPE_HEXAROTOR	六旋翼
AV_TYPE_OCTOROTOR	八旋翼
AV_TYPE_TRICOPTER	八旋翼
AV_TYPE_FLAPPING_WING	扑翼
AV_TYPE_KITE	扑翼

MAV_MODE_FLAG

这些标志 MAV 的模式进行编码。

CMD 编号	字段名称	描述
128	MAV_MODE_FLAG_SAFETY_ARMED	0b100000000 MAV 的安全 设 置。
		电机启动/运行/可以启动。准备起飞。
64	MAV_MODE_FLAG_MANUAL_INPUT_ENABLED	0b01000000 启 用远程控制 输 入。
32	MAV_MODE_FLAG_HIL_ENABLED	0b00100000 硬件在线仿真。所有电机/同层是可以完整的运行的。
16	MAV_MODE_FLAG_STABILIZE_ENABLED	0b00010000 系 统 稳定 电 子状态(可 选 位
		置)。但它需要进一步控制 输 入。
8	MAV_MODE_FLAG_GUIDED_ENABLED	0b00001000 制导模式启用,系统飞行任 3

CMD 编号	字段名称	描述
		任务栏。
4	MAV_MODE_FLAG_AUTO_ENABLED	0b00000100 自驾模式 启 用,系 统可 找到E
		位置。取决于 实际情况 ,可以选择是否 设
		目标点。
2	MAV_MODE_FLAG_TEST_ENABLED	0b00000010 系 统启 用测试模式。此标志月
		临 时的系统 测试,稳定的 情况下 不应使用
1	MAV_MODE_FLAG_CUSTOM_MODE_ENABLED	0600000001 保留以供将来使用。

MAV_MODE_FLAG_DECODE_POSITION

这些值编码解码位置位的位置。这些值可以用来读取 base_mode 变量结合起来,与标志位置值的一个标志位的值。其结果将是 0 或 1,取决于如果设置与否的标志。

CMD 号	字段名称	描
128	MAV_MODE_FLAG_DECODE_POSITION_SAFETY	首先一点:10000000
64	MAV_MODE_FLAG_DECODE_POSITION_MANUAL	第二位:01000000
32	MAV_MODE_FLAG_DECODE_POSITION_HIL	第三位:00100000
16	MAV_MODE_FLAG_DECODE_POSITION_STABILIZE	第四位:00010000
8	MAV_MODE_FLAG_DECODE_POSITION_GUIDED	第五位:00001000

CMD 号	字段名称	描述
4	MAV_MODE_FLAG_DECODE_POSITION_AUTO	第六位:00000100
2	MAV_MODE_FLAG_DECODE_POSITION_TEST	第七位:00000010
1	MAV_MODE_FLAG_DECODE_POSITION_CUSTOM_MODE	第八位:00000001

MAV_GOTO

覆盖命令,暂停执行当前的任务,并立即移动到一个位置

CMD 编号	字段名称	描述
0	MAV_GOTO_DO_HOLD	保持在当前位置。
1	MAV_GOTO_DO_CONTINUE	继续在 执 行任 务 的下一个项目。
2	MAV_GOTO_HOLD_AT_CURRENT_POSITION	保持在当前的系 统 位置
3	MAV_GOTO_HOLD_AT_SPECIFIED_POSITION	保持在 DO_HOLD 参数指定的位置。

MAV_MODE

这些定义预定义或组合模式标志。有没有必要使用此枚举的值,但它简化了使用的模式标志。 注意: 启用安全覆盖所有的模式,手动输入。

CMD 号	字段名称	描述
0	MAV_MODE_PREFLIGHT	在无标志 设 置的情况下,系 统还 没有准 备 好起飞,引
		,校准等。
80	MAV_MODE_STABILIZE_DISARMED	辅助的 RC 控制下,系 统 是活跃的。

CMD 号	字段名称	描述
208	MAV_MODE_STABILIZE_ARMED	辅助的 RC 控制下,系统是活跃的。
64	MAV_MODE_MANUAL_DISARMED	在人工 RC 控制下,系统是活跃的,但是不稳定。
192	MAV_MODE_MANUAL_ARMED	在人工 RC 控制下,系统是活跃的,但是不稳定。
88	MAV_MODE_GUIDED_DISARMED	手动设定自主控制下,系统是活跃的。
216	MAV_MODE_GUIDED_ARMED	手动设定自主控制下,系统是活跃的。
92	MAV_MODE_AUTO_DISARMED	在主控制和导航状态下,系统是活跃的(轨迹由板
		载和未预先 设 定的 MISSIONS 决定)。
220	MAV_MODE_AUTO_ARMED	在主控制和导航状态下,系统是活跃的(轨迹由板
		载和未预先设定的 MISSIONS 决定)。
66	MAV_MODE_TEST_DISARMED	未定义模式。这完全取决于上的自动驾驶仪 (谨慎
		只适用于开 发 商。)
194	MAV_MODE_TEST_ARMED	未定义模式。这完全取决于上的自动驾驶仪 (谨慎
		只适用于开 发 商。)

MAV_STATE

CMD 编号	字段名称	描述
0	MAV_STATE_UNINIT	初始化系 统 ,状态是未知的。

CMD 编号	字段名称	描述
	MAV_STATE_BOOT	系统启动。
	MAV_STATE_CALIBRATING	系 统 校准和飞行准 备。
	MAV_STATE_STANDBY	系 统 接地, 处 于待命状态。它可以随时发射。
	MAV_STATE_ACTIVE	系 统 是活跃的,可能已 经 空降。机体正在准备。
	MAV_STATE_CRITICAL	系 统 是在非正常的飞行模式。不过,它可以仍然导航。
	MAV_STATE_EMERGENCY	系统是在非正常的飞行模式。它失去了部分或整个机身的:
		制。发出求救信号并进行降落。
	MAV_STATE_POWEROFF	系 统 只是初始化断电程序,将立即关闭。

MAV_COMPONENT

CMD 号	字段名称	描述
0	MAV_COMP_ID_ALL	
220	MAV_COMP_ID_GPS	
190	MAV_COMP_ID_MISSIONPLANNER	
195	MAV_COMP_ID_PATHPLANNER	
180	MAV_COMP_ID_MAPPER	

CMD 号	字段名称	描述
100	MAV_COMP_ID_CAMERA	
200	MAV_COMP_ID_IMU	
201	MAV_COMP_ID_IMU_2	
202	MAV_COMP_ID_IMU_3	
240	MAV_COMP_ID_UDP_BRIDGE	
241	MAV_COMP_ID_UART_BRIDGE	
250	MAV_COMP_ID_SYSTEM_CONTROL	
140	MAV_COMP_ID_SERVO1	
141	MAV_COMP_ID_SERVO2	
142	MAV_COMP_ID_SERVO3	
143	MAV_COMP_ID_SERVO4	
144	MAV_COMP_ID_SERVO5	
145	MAV_COMP_ID_SERVO6	
146	MAV_COMP_ID_SERVO7	
147	MAV_COMP_ID_SERVO8	

CMD 号	字段名称	描述
148	MAV_COMP_ID_SERVO9	
149	MAV_COMP_ID_SERVO10	
150	MAV_COMP_ID_SERVO11	
151	MAV_COMP_ID_SERVO12	
152	MAV_COMP_ID_SERVO13	
153	MAV_COMP_ID_SERVO14	

MAV_FRAME

CMD 编号	字段名称	描述
0	MAV_FRAME_GLOBAL	全球坐标系,WGS84 坐标系。第一个值/ X:纬/
		/ Y: 经 度,第三个 值 / Z:高出海平面的高度值。
1	MAV_FRAME_LOCAL_NED	局部坐标系,Z轴 正方向 (X:北部,Y: 东 ,Z
2	MAV_FRAME_MISSION	不是一个坐标系,表示任 务 的命令。
3	MAV_FRAME_GLOBAL_RELATIVE_ALT	全球坐标系,WGS84 坐标系统,对地面的相对语
		与位置。第一个 值 / X: 纬 度,第二个 值 / Y: 经 序
		第三个 值 / Z: 高出海平面的高度值 。

CMD 编号	字段名称				描述	
4	MAV_FRAME_LOCAL_ENU	局部坐标系,	Z轴负方向	(X:东	,Y:北,	Z:

MAVLINK_DATA_STREAM_TYPE

CMD 号	字段名称	描述
	MAVLINK_DATA_STREAM_IMG_JPEG	
	MAVLINK_DATA_STREAM_IMG_BMP	
	MAVLINK_DATA_STREAM_IMG_RAW8U	
	MAVLINK_DATA_STREAM_IMG_RAW32U	
	MAVLINK_DATA_STREAM_IMG_PGM	
	MAVLINK_DATA_STREAM_IMG_PNG	

MAV_CMD

要执行的命令的微型飞行器。他们可以执行用户的请求,或者作为一个任务脚本的一部分。如果这个动作是在任务中使用,参数映射到航点/任务的消息如下: 1 PARAM,参数 2,参数 3,参数 4, X: PARAM 5 Y: PARAM 6, Z 轴: PARAM 7。此命令列表是类似的 ARINC 424 是为商用飞机的数据格式如何解释航点/任务数据。

CMD 编 号	字段名称		描述
16	MAV_CMD_NAV_WAYPOINT	导航任务。	
	Mission Param #1	保持十进制的时间。(固定翼,	旋转翼忽

CMD 编 号	字段名称	描述
		略)
	Mission Param#2	以米为半径的验收(如果这个半球被击中
		,任 务 才算 达 成)
	Mission Param#3	0 通过的 WP, 如果> 0 米通过 WP。正 值
		针轨道, 负数逆时针轨道。允许轨迹控制,
	Mission Param#4	MISSIONS 中的偏航角(旋转翼)
	Mission Param #5	纬度
	Mission Param # 6	经 度
	Mission Param#7	海拔
17	MAV_CMD_NAV_LOITER_UNLIM	无限延长执行任务的时间
	Mission Param #1	空的
	Mission Param # 2	空的
	Mission Param#3	以米为单位在 MISSIONS 周围。如果是,
		时针,否则 逆时 针
	Mission Param#4	期望偏航角。
	Mission Param #5	纬度
	Mission Param # 6	经 度

CMD 编 号	字段名称	描述
	Mission Param #7	海拔
18	MAV_CMD_NAV_LOITER_TURNS	执行 MISSIONS, X 秒
	Mission Param #1	打开
	Mission Param # 2	空的
	Mission Param#3	使命米,周围半径。如果正游荡顺时针方
		, 否则逆 时 针
	Mission Param # 4	期望偏航角。
	Mission Param #5	纬度
	Mission Param # 6	经 度
	Mission Param #7	海拔
19	MAV_CMD_NAV_LOITER_TIME	解决这个任 务 游荡 X 秒
	Mission Param #1	秒 (十进制)
	Mission Param # 2	空的
	Mission Param #3	以米为单位在 MISSIONS 周围。如果是,
		时针,否则 逆时 针
	Mission Param # 4	期望偏航角。
	Mission Param # 5	纬度

CMD 编 号	字段名称	描述
	Mission Param#6	经度
	Mission Param #7	海拔
20	MAV_CMD_NAV_RETURN_TO_LAUNCH	返回 发 射地点
	Mission Param #1	空的
	Mission Param # 2	空的
	Mission Param#3	空的
	Mission Param#4	空的
	Mission Param # 5	空的
	Mission Param#6	空的
	Mission Param#7	空的
21	MAV_CMD_NAV_LAND	在指定位置
	Mission Param #1	空的
	Mission Param # 2	空的
	Mission Param#3	空的
	Mission Param#4	期望偏航角。
	Mission Param#5	纬度
	Mission Param # 6	经 度

CMD 编 号	字段名称	描述
	Mission Param #7	海拔
22	MAV_CMD_NAV_TAKEOFF	从地面/手中起飞
	Mission Param #1	最小间距(实时空速传感器), 无需传感:
	Mission Param # 2	空的
	Mission Param #3	空的
	Mission Param #4	偏航角(如果磁力出席),若无体则忽略
	Mission Param #5	纬度
	Mission Param#6	经 度
	Mission Param #7	海拔
80	MAV_CMD_NAV_ROI	设置传感器集的地区或机体本身的利反馈
		ROI)。然后可以使用的飞 机 控制系 统 来扩
		机体的态度和各种传感器,如相机的态度。
	Mission Param #1	intereset 模式的地区。(见 MAV_ROI 枚芝
	Mission Param # 2	任 务 指标/目标 ID。(见 MAV_ROI 枚举)
	Mission Param #3	反馈指标(允许 飞机 管理多个 ROI)
	Mission Param #4	空的
	Mission Param # 5	x 的位置固定的反馈值(见 MAV_FRAME

CMD 编 号	字段名称	描述
	Mission Param # 6	Ÿ
	Mission Param #7	ž
81	MAV_CMD_NAV_PATHPLANNING	微型 飞 行器自主路径规划 的控制
	Mission Param#1	0: 禁用局部避障/本地路径规划(无需重制
		图),1:启用本地路径规划,2:启用和
		局部路径规划
	Mission Param # 2	0: 禁用完整的路径规划(无需重置地图)
		1:启用 2:启用和重置地图/占用电网,
		3:启用和重置计划的路线,但不占用电网
	Mission Param#3	空的
	Mission Param#4	在目标偏航角度,指南针度,[0 到 360]
	Mission Param # 5	纬度/目标 X
	Mission Param#6	目标的 经 度/Y
	Mission Param #7	目标的高度/Z
95	MAV_CMD_NAV_LAST	NOP - 此命令仅用于 NAV/ACTION 的测量
		限
	Mission Param#1	空的

CMD编 号	字段名称	描述
	Mission Param # 2	空的
	Mission Param #3	空的
	Mission Param # 4	空的
	Mission Param #5	空的
112	Mission Param # 6	空的
	Mission Param #7	空的
	MAV_CMD_CONDITION_DELAY	延迟任务状态。
	Mission Param #1	在几秒钟的延迟(十进制)
	Mission Param # 2	空的
	Mission Param #3	空的
	Mission Param #4	空的
	Mission Param #5	空的
	Mission Param # 6	空的
	Mission Param #7	空的
113	MAV_CMD_CONDITION_CHANGE_ALT	以一定速率上升/下降。拖延执行任务的机
		直到到达到所需的高度。
	Mission Param #1	上升/下降的速率(米/秒)

CMD编 号	字段名称	描述
	Mission Param # 2	空的
	Mission Param#3	空的
	Mission Param #4	空的
	Mission Param # 5	空的
	Mission Param # 6	空的
	Mission Param #7	完成的高度
114	MAV_CMD_CONDITION_DISTANCE	推迟 NAV 点的直到打到下一状态
	Mission Param #1	距离(米)
	Mission Param # 2	空的
	Mission Param#3	空的
	Mission Param#4	空的
	Mission Param#5	空的
	Mission Param#6	空的
	Mission Param#7	空的
115	MAV_CMD_CONDITION_YAW	达到一定的目标角度。
	Mission Param#1	目标角度:[0-360],0 北

CMD 编 号	字段名称	描述
	Mission Param # 2	在偏航变化速度:(每秒度)
	Mission Param #3	负值: 逆时 针;正值:顺 时 针[-1,1]
	Mission Param #4	相对偏移或绝对角度:[1,0]
	Mission Param #5	空的
	Mission Param # 6	空的
	Mission Param #7	空的
159	MAV_CMD_CONDITION_LAST	NOP - 此命令只能用来标记在测量上限的
	Mission Param #1	空的
	Mission Param # 2	空的
	Mission Param #3	空的
	Mission Param #4	空的
	Mission Param # 5	空的
	Mission Param # 6	空的
	Mission Param #7	空的
176	MAV_CMD_DO_SET_MODE	设置系 统 模式。
	Mission Param # 1	模式,用 ENUM MAV_MODE 来定义

CMD 编 号	字段名称	描述
	Mission Param # 2	空的
	Mission Param #3	空的
	Mission Param # 4	空的
	Mission Param #5	空的
	Mission Param # 6	空的
	Mission Param #7	空的
177	MAV_CMD_DO_JUMP	跳转到任 务 列表中所需的命令。只有在指
		次数下重复这个动作
	Mission Param #1	序列号
	Mission Param # 2	重复计数
	Mission Param #3	空的
	Mission Param#4	空的
	Mission Param #5	空的
	Mission Param #6	空的
	Mission Param #7	空的
178	MAV_CMD_DO_CHANGE_SPEED	改 变 速度和/或节流阀的 设 定。

CMD 编 号	字段名称	描述
	Mission Param #1	速度类型(0=空速,1=地面速度)
	Mission Param # 2	速度(米/秒,-1 表示没有 变 化)
	Mission Param #3	节流阀 (百分比, -1 表示没有变化)
	Mission Param # 4	空的
	Mission Param # 5	空的
	使命 PARAM#6	空的
	使命 PARAM#7	空的
179	MAV_CMD_DO_SET_HOME	以当前的位置或指定位置改变地面站的位
	Mission Param #1	目前使用(1 =使用当前的位置,0 =使用指
		的位置)
	Mission Param # 2	空的
	Mission Param #3	空的
	Mission Param#4	空的
	Mission Param #5	纬度
	Mission Param # 6	经度
	Mission Param #7	海拔
180	MAV_CMD_DO_SET_PARAMETER	设 置系 统 参数。注意,使用此命令需要参

CMD 编 号	字段名称	描述
		数字测算的知识。
	Mission Param #1	参数号
	Mission Param # 2	参数 值
	Mission Param #3	空的
	Mission Param #4	空的
	Mission Param #5	空的
	Mission Param # 6	空的
	Mission Param #7	空的
181	MAV_CMD_DO_SET_RELAY	继电器设置条件。
	Mission Param #1	继电器号码
	Mission Param # 2	设 置(1 = 开启 ; 0 =关闭,其他的取决于系
		自身硬件)
	Mission Param #3	空的
	Mission Param # 4	空的
	Mission Param #5	空的
	Mission Param # 6	空的
	Mission Param #7	空的

CMD 编 号	字段名称	描述
182	MAV_CMD_DO_REPEAT_RELAY	周期继电器和关闭所需的时间与所需的圈
		量。
	Mission Param#1	继 电 器号码
	Mission Param # 2	循环计数
	Mission Param #3	周期时间(秒,十进制)
	Mission Param#4	空的
	Mission Param #5	空的
	Mission Param # 6	空的
	Mission Param #7	空的
183	MAV_CMD_DO_SET_SERVO	设置伺服所需的 PWM 值。
	Mission Param #1	伺服器数量
	Mission Param # 2	PWM (微秒,典型的 1000 至 2000)
	Mission Param #3	空的
	Mission Param #4	空的
	Mission Param #5	空的
	Mission Param #6	空的
	Mission Param #7	空的

CMD 编 号	字段名称	描述
184	MAV_CMD_DO_REPEAT_SERVO	周期之 间 的 设 置和指定 时间
		和指定周期 PWM 所需数量
	Mission Param #1	伺服器数量
	Mission Param # 2	PWM (微秒,典型的 1000 至 2000)
	Mission Param #3	循 环 计数
	Mission Param # 4	周期时间(秒)
	Mission Param #5	空的
	Mission Param # 6	空的
	Mission Param #7	空的
200	MAV_CMD_DO_CONTROL_VIDEO	控制板上的摄像系 统 。
	Mission Param #1	摄像机 ID(所有的:-1)
	Mission Param 2	变速箱:0:禁用1:启用压缩,2:启用原
	Mission Param 3	传 输 模式:0: 视 频流,>0:每 n 秒的单 ²
		像(十进制)
	Mission Param # 4	录音:"0:禁用 1:启用压缩;2:启用原
	Mission Param #5	空的
	Mission Param # 6	空的

CMD 编 号	字段名称	描述
	Mission Param #7	空的
240	MAV_CMD_DO_LAST	NOP - 此命令只能用来标记的 DO 命令枚
		上限
	Mission Param #1	空的
	Mission Param # 2	空的
	Mission Param#3	空的
	Mission Param#4	空的
	Mission Param # 5	空的
	Mission Param#6	空的
	Mission Param #7	空的
241	MAV_CMD_PREFLIGHT_CALIBRATION	触发校准。此命令将只接受飞行前的模式。
	Mission Param #1	陀螺仪校准:0:无,1:是
	Mission Param # 2	磁力计校准:0:无,1:是
	Mission Param#3	接地压力:0:NO, 1:是
	Mission Param#4	无线电校准:0:无,1:是
	Mission Param # 5	空的
	Mission Param # 6	空的

CMD 编 号	字段名称	描述
	Mission Param #7	空的
242	MAV_CMD_PREFLIGHT_SET_SENSOR_OFFSETS	设置传感器补偿。此命令将只接受飞行前
		式。
	Mission Param #1	传感器调整偏移:0:陀螺仪,加速度计,
		磁力仪,3:晴雨表,4:光流
	Mission Param # 2	X 轴偏移(或通用尺寸 1),在传感器的原
		位
	Mission Param #3	Y 轴偏移(或通用尺寸 2),在传感器的原位
	Mindian D. H.	
	Mission Param # 4	Z 轴偏移(或通用尺寸 3),在传感器的原位
	Mission Param #5	通用尺寸 4,在传感器的原始单位
	Mission Param#6	通用尺寸 5,在传感器的原始单位
	Mission Param#7	通用尺寸 6,在传感器的原始单位
880	MAV_CMD_PREFLIGHT_STORAGE	不同的参数 值 和日志要求存储。
	Mission Param #1	参数存储:0 阅读:闪存/ EEPROM,1 写
		前的闪存/ EEPROM
	Mission Param # 2	使命存储:0 阅读:闪存/ EEPROM,1 写

CMD 编 号	字段名称	描述
		前的 FLASH / EEPROM
	Mission Param#3	版权所有
	Mission Param#4	版权所有
	Mission Param # 5	空的
	Mission Param#6	空的
	Mission Param#7	空的
246	MAV_CMD_PREFLIGHT_REBOOT_SHUTDOWN	重新 启动 或关闭系 统 组件。
	Mission Param#1	0: 不对自驾仪产生影响,1:重新启动自:
		·2:关闭自 动 驾驶 仪 。
	Mission Param # 2	0: 机载计算机, 1:板载重新启动计
		算机, 2: 关闭机载计算机。
	Mission Param #3	版权所有
	Mission Param#4	版权所有
	Mission Param # 5	空的
	Mission Param#6	空的
	Mission Param#7	空的
252	MAV_CMD_OVERRIDE_GOTO	保留/继续目前的行 动

CMD 编 号	字段名称	描述
	Mission Param#1	MAV_GOTO_DO_HOLD:按住MAV_GC
		_DO_CONTINUE:继续下一个项目任 务 让
	Mission Param # 2	在指定的位置:在当前位置 MAV_GOTO_HOLD_AT_SPECIFIED_PO!
		ON:指定位置
		MAV_GOTO_HOLD_AT_CURRENT_POS
		ION :当前位置
	Mission Param 3	MAV_FRAME 坐标框架保持点
	Mission Param#4	所需偏航角的度数
	Mission Param # 5	纬 度/ X 的 位置
	Mission Param#6	经度/Y的位置
	Mission Param #7	高度/ Z 的位置
300	MAV_CMD_MISSION_START	开始 执 行任 务
	Mission Param # 1	first_item: 第一个任务项目运行
	Mission Param#2	last_item: 最后一个任 务运 行项目(该项目
		行后,任 务 结束)
400	MAV_CMD_COMPONENT_ARM_DISARM	装备/卸载组件

CMD编 号		字段名称		描述
	Mission Param#1		1:安装;0:解除	

MAV_DATA_STREAM

数据流的 ID。一个数据流是没有一套固定的消息,而是一个自动驾驶仪软件的建议。个别的自动驾驶仪可能或可能不遵守建议的消息。

CMD 编号	字段名称	描述
0	MAV_DATA_STREAM_ALL	使所有的数据流
1	MAV_DATA_STREAM_RAW_SENSORS	启用 IMU_RAW,GPS_RAW,GPS_STATUS
2	MAV_DATA_STREAM_EXTENDED_STATUS	启用 GPS_STATUS, CONTROL_STATUS,
		AUX_STATUS
3	MAV_DATA_STREAM_RC_CHANNELS	启用 RC_CHANNELS_SCALED,
		RC_CHANNELS_RAW,
		SERVO_OUTPUT_RAW"
4	MAV_DATA_STREAM_RAW_CONTROLLER	启用 ATTITUDE_CONTROLLER_OUTPUT, POSITION_CONTROLLER_OUTPUT,
		NAV_CONTROLLER_OUTPUT。
6	MAV_DATA_STREAM_POSITION	启用的 LOCAL_POSITION,
		GLOBAL_POSITION /
		GLOBAL_POSITION_INT 消息。

10 MAV_DATA_STREAM_EXTRA1 取决于自动驾驶仪
11 MAV_DATA_STREAM_EXTRA2 取决于自动驾驶仪
12 MAV_DATA_STREAM_EXTRA3 取决于自 动 驾驶 仪

MAV_ROI

车辆的ROI(感兴趣区域)。这可以被用来为相机车辆/车辆态度对齐(见 $MAV_CMD_NAV_ROI$)。

CMD 编号	字段名称		描述
0	MAV_ROI_NONE	无关区域。	
1	MAV_ROI_WPNEXT	指向下一个任 务 。	
2	MAV_ROI_WPINDEX	指向赋予的使命。	
3	MAV_ROI_LOCATION	指向固定位置。	
4	MAV_ROI_TARGET	指向给定的 id。	

MAV_CMD_ACK

的 ACK / NACK /错误作为一个 MAV_CMDs 的结果和任务项目传输值。

CMD 编号	字段名称	1
	MAV_CMD_ACK_OK	命令/任 务 项目是确定的

CMD 编号	字段名称	4
	MAV_CMD_ACK_ERR_FAIL	通用的错误信息(若
		没有其他原因失败及
		详细的错误 报告)
	MAV_CMD_ACK_ERR_ACCESS_DENIED	该系 统 拒绝接受此命令/
		/通讯伙伴。
	MAV_CMD_ACK_ERR_NOT_SUPPORTED	命令或任 务 的项目不支持
		其它命令将被接受。
	MAV_CMD_ACK_ERR_COORDINATE_FRAME_NOT_SUPPORTED	不支持此命令/任 务 项目
		坐标系。
	MAV_CMD_ACK_ERR_COORDINATES_OUT_OF_RANGE	这个命令的坐标系是确?
		,但他的坐标 值超过 本是
		的安全限制。这是一个社
		的错误,如果可能的话
		使用下面更具体的错误作
	MAV_CMD_ACK_ERR_X_LAT_OUT_OF_RANGE	X 或纬度值超出范围。
	MAV_CMD_ACK_ERR_Y_LON_OUT_OF_RANGE	Y 或 经 度值超出范围。
	MAV_CMD_ACK_ERR_Z_ALT_OUT_OF_RANGE	Z 或高度 值 超出范围。

MAV_RESULT

导致从 mavlink 命令

CMD 编号	字段名称	描述	
0	MAV_RESULT_ACCEPTED	被接受和执行的命令	
1	MAV_RESULT_TEMPORARILY_REJECTED	命令暂时拒绝/拒绝	
2	MAV_RESULT_DENIED	命令一直被拒绝	
3	MAV_RESULT_UNSUPPORTED	命令的未知/不支持	
4	MAV_RESULT_FAILED	执行命令,但失败了	

MAV_MISSION_RESULT

导致在 mavlink 使命 ACK

CMD 编号	字段名称	描述
0	MAV_MISSION_ACCEPTED	任 务 接受确定
1	MAV_MISSION_ERROR	一般性错误/不接受任务命令所有权利
2	MAV_MISSION_UNSUPPORTED_FRAME	不支持坐标系
3	MAV_MISSION_UNSUPPORTED	命令不支持
4	MAV_MISSION_NO_SPACE	任 务 项目超 过 存储空 间
5	MAV_MISSION_INVALID	参数的 值 无效

CMD 编号	字段名称	描述
6	MAV_MISSION_INVALID_PARAM1	param1 的有一个无效的值
7	MAV_MISSION_INVALID_PARAM2	param2 的有一个无效的值
8	MAV_MISSION_INVALID_PARAM3	param3 有一个无效的值
9	MAV_MISSION_INVALID_PARAM4	param4 有一个无效的值
10	MAV_MISSION_INVALID_PARAM5_X	param5 有一个无效的值
11	MAV_MISSION_INVALID_PARAM6_Y	param6 有一个无效的值
12	MAV_MISSION_INVALID_PARAM7	param7 有一个无效的值
13	MAV_MISSION_INVALID_SEQUENCE	航线偏离
14	MAV_MISSION_DENIED	不从此接受任何任 务 的命令

MAV_SEVERITY

表示严重性级别,一般用于状态消息,以表明其相对的紧迫性。使用扩展的定义: http://www.kiwisyslog.com/kb/info:-syslog-message-levels/基于 RFC-5424。

CMD 编号	字段名称	描述
0	MAV_SEVERITY_EMERGENCY	系 统 无法使用。 这 是一种"恐慌"的状况。
1	MAV_SEVERITY_ALERT	应 立即采取行动。表示在非关键系统的 错误。
2	MAV_SEVERITY_CRITICAL	必须立即采取行 动。 表示在主系 统发 生故障。

CMD 编号	字段名称	描述
3	MAV_SEVERITY_ERROR	表示在次级/多余的系 统 错误。
4	MAV_SEVERITY_WARNING	关于未来可能出现的错误,表示如果这不是一个给定的时内解决。比如一个低电量警告。
		TIMINO DOM TO GEGO.
5	MAV_SEVERITY_NOTICE	一个不寻常的事件 发 生,但不是一个错误。 这 应该 追究 其
		源。
6	MAV_SEVERITY_INFO	正常运作的消息。用于记录有用的。这些消息不需要任何
		作。
7	MAV_SEVERITY_DEBUG	有用的非 经 营性的信息,可以 协 助调试。 这 些不应该 发 生
		正常运作。

MAVLink 讯息

心跳 (<u>#0</u>)

心跳信息显示系统,是实时的。MAV和自动驾驶仪的硬件类型,允许接收系统来处理,从 这个系统得到适当(例如,通过铺设的用户界面上的自动驾驶仪)的进一步消息。

字段名称	类型	描述
type	uint8_t	微型飞行器的类型(旋翼,直升机等,高达 15
		在 MAV_TYPE ENUM 的定义)
autopilot	uint8_t	自动驾驶仪的类型/类。

		-
字段名称	类型	描述
		在 MAV_AUTOPILOT ENUM 的定义
base_mode	uint8_t	系 统 模式位域,枚举
		MAV_MODE_FLAGS 在 mavlink /include/
		mavlink_types.h
custom_mode	uint32_t	一个为自动档特定标志的使用位域。
system_status	uint8_t	系统状态标志,见 MAV_STATE 的 ENUM
mavlink_version	uint8_t_mavlink_version	MAVLink 版本,而不是由用户可写的,被添加的
		议,因为神奇的数据类型:
		uint8_t_mavlink_version

(SYS_STATUS)

一般的系统状态。如果系统是继 MAVLink 标准,是系统状态,主要是由三个正交的状态/模式:该系统的模式,这是锁定(发动机关闭和锁定),手动(下钢筋混凝土控制系统),导(系统定义自主定位控制,位置的设定手动控制)或自动(系统路径/航点规划师的指导下)。NAV_MODE 定义当前的飞行状态: 升空(通常是一个开环的机动),着陆,航点或向量。这代表内部导航状态机。系统状态显示天气的系统是目前活跃或不活跃,如果发生紧急情况。微型飞行器的关键和紧急状态期间仍然被认为是积极的,但应启动应急自主程序。发生故障后,首先应该在经过一定的盲区允许人工干预。

字段名称	类型	描述
onboard_control_sensors_present	uint32_t	位掩码显示板载控制器和传感器都存在。
		0:没有目前的价 值。
		1:目前的价值。指数:0:3D 陀螺仪,1:3D A
		,2:三维磁,3:绝 对压 力,差压,5:全球定位

字段名称	类型	描述
		统·6:光流,7:计算机视觉位置,8:基于激光
		位置,9:外部地面真相(维科或 Leica)。控制是
		10:3D 角速度管制 11:心态趋稳,12:13 偏航
		置,Z/高度控制,14:X/Y位置控制,15:电标
		出/控制
onboard_control_sensors_enabled	uint32_t	启用板载控制器和传感器的位掩码表现: 值 为 0:
		启用。值 1:启用。指数:0:3D 陀螺仪,1:3C
		ACC,2:三维磁,3:绝 对压 力,差压,5:全3
		位系 统,6: 光流,7:计算机 视 觉位置,8:基于
		光的位置,9:外部地面真相(维科或 Leica)。持
		器:10:3D 角速度管制 11:心态 趋 稳,12:13
		航位置,Z/高度控制,14:X/Y位置控制,15:
		机输出/控制
onboard_control_sensors_health	uint32_t	板载控制器和传感器的位掩码,放映 业务 或有一个
		误: 值 为 0:不 启 用。 值 1:启 用。指数:0:3D
		螺仪,1:3D ACC,2:三维磁,3:绝对压力,
		压,5:全球定位系 统,6 :光流,7:计算机 视 觉
		置,8:基于激光的位置,9:外部地面真相(维利
		Leica)。控制器:10:3D 角速度管制 11:心态
		,12:13 偏航位置,Z /高度控制,14:X / Y 位置
		制, 15 : 电机输 出/控制

字段名称	类型	描述	
加载	uint16_t	最大使用主循环时间的百分比(0%:0, 100%:	
		0) 应该始终低于 1000	
voltage_battery	uint16_t	电池电压,毫伏(1 = 1 毫伏)	
current_battery	int16_t	电 池的 电 流,在 10 毫安(1 = 10 毫安), -1:自	
		驾驶 仪 不测量 电 流	
battery_remaining	int8_t	剩余电池能量:(0%:0, 100%:100), -1:	
		动 驾驶 仪 ,估计剩余的 电 池	
drop_rate_comm	uint16_t	%, (0, 100%:0%10000) 通信(UART的 I2 下降的各个环节上的包(包上的微型飞行器被损坏	
		待)	
errors_comm	uint16_t	通信错误(的 UART, I2C, SPI 和 CAN),下降	
		个环节上的数据包(接收损坏的微型飞行器的数据	
errors_count1	uint16_t	自动驾驶仪,具体的错误	
errors_count2	uint16_t	自动驾驶仪,具体的错误	
errors_count3	uint16_t	自动驾驶仪,具体的错误	
errors_count4	uint16_t	自动驾驶仪,具体的错误	

SYSTEM_TIME (#2)

系统时间是主时钟的时间,通常是主要的车载计算机的计算机时钟。

字段名称	本型	描述
丁权 口 彻	大王	油地

字段名称	类型	描述
time_unix_usec	uint64_t	在 UNIX 时间点中以来的微秒为单位。
time_boot_ms	uint32_t	自 启动时间以毫秒 为单位。

PING (<u>#4</u>)

一个 ping 消息请求或 ping 响应。这使得测量系统的延迟,包括串口,无线调制解调器和 UDP 连接。

字段名称	类型	描述	
time_usec	uint64_t	Unix 时间轴(微秒)	
SEQ	uint32_t	ping 序列	
target_system	uint8_t	0: 请求平从所有接收系 统 ,如果大于 0:消息是 ping l	
		应和数量是请求系 统 的系 统 ID	
target_component	uint8_t	0: 平要求所有接收组件,如果大于 0:消息是 ping 响	
		和数量是请求系 统 的系 统 ID	

CHANGE_OPERATOR_CONTROL (#5)

要求控制这种微型飞行器

字段名称	类型	描述
target_system	uint8_t	系 统 GCS 的控制要求为
control_request	uint8_t	0: 请求控制 这 种微型飞行器, 1:释放 这 种微型飞行器 控制

字段名称	类型	描述
version	uint8_t	0: 纯文本文档,1-255 在以后不同的散列/加密变种的,
		选区一般应使用最安全的模式,然后逐渐向下移
		动加密级别,如果它得到一个 NACK 消息,表明加]
		密不匹配。
密钥	CHAR [25]	密码/密钥,根据版本或加密。25 个或更少的字符,
		NULL 终止。可能涉及的人物包括 大小写英文字母,数 号
		或标点符号。

CHANGE_OPERATOR_CONTROL_ACK (#6)

接受/拒绝这个微型飞行器的控制

字段名称	类型	描述
gcs_system_id	uint8_t	此消息在地方选区的 ID
control_request	uint8_t	0: 请求控制这种微型飞行器, 1:释放这种微型飞行器
		控制
ACK	uint8_t	0 确认, 1 : NACK 的:错误的密码, 2 : NACK 的:不
		持密钥加密方法,3:NACK的:已受控制

AUTH_KEY (**#7**)

发出签名/加密密钥,确定该系统。请注意:此协议一直保持简单,所以需要一个真正安全的加密通道传输的关键。

字段名称	类型	描述
关键	CHAR [32]	关键

SET_MODE (#11)

设置系统模式,由枚举 MAV_MODE 定义。模式定义为整体的飞机,不仅是一个组件,有没有目标组件的 ID。

字段名称	类型	描述
target_system	uint8_t	系 统设 置模式
base_mode	uint8_t	新基地的模式
custom_mode	uint32_t	新的自 动 驾驶 仪 的具体模式。此字段由自 动 驾驶 仪 可以
		略不计。

PARAM_REQUEST_READ (#20)

要求读板载的 param_id 字符串 ID 参数。板载存储的关键参数 key[const char*] -> value[float].这允许发送没有任何其他组件(如地方选区)可能的参数名称前面的知识需要一个参数。因此,同一个 GCS 可存储不同参数,不同的自动驾驶仪。还看到一个完整的文档 QGroundControl 和 IMU 代码

详情见 http://qgroundcontrol.org/parameter_interface。

字段名称	类型	描述
target_system	uint8_t	系统 ID
target_component	uint8_t	组件的 ID
param_id	CHAR [16]	板载 id 参数,以 NUL 终止,如果长度少于 16 人可读的
		符和无空终止(以 NUL)字节的长度是 16 个字符 - 应
		程序必须提供 16 +1 个字节存储,如果 ID 是作为字符音

字段名称	类型	描述
		储
param_index	int16_t	参数指标。发送-1 使用参数 ID 字段标识符(否则将被系略的参数 ID)

PARAM_REQUEST_LIST (#21)

要求该组件的所有参数。他的请求后, 所有参数都排放。

字段名称	类型		描述
target_system	uint8_t	系统 ID	
target_component	uint8_t	组件的 ID	

PARAM_VALUE (#22)

放出一个内建的参数值。消息 param_count 和 param_index 列入允许收件人保持跟踪接收的参数,并让他重新请求后失踪的损失或超时参数。

字段名称	类型	描述
param_id	CHAR [16]	板载 id 参数,以 NUL 终止,如果长度少于 16 人可读的
		和无空终止(以 NUL)字节的长度是 16 个字符 - 应用
		序必须提供 16 +1 个字节存储,如果 ID 是作为字符串存
		储
param_value	浮动	板载参数 值
param_type	uint8_t	板载参数类型:看到 MAVLINK_TYPE 枚举在 mavlink
		mavlink_types.h

字段名称	类型	描述
param_count	uint16_t	板载参数 总 数
param_index	uint16_t	本板载参数指数

PARAM_SET (# 23)

暂时设置一个参数值到 RAM。这将重置为默认系统重新启动。发送指令 MAV_ACTION_STORAGE_WRITE 永久性 RAM 的内容写入到 EEPROM。重要事项:接收组件应该承认所有的通讯伙伴发送 param_value 消息,作为新的参数值。这也将确保多个 GCS 的所有参数的最新名单。如果发送 GCS 的超时时间内没有收到 1 PARAM_VALUE 消息,它应该重新发送的 PARAM_SET 的消息。

字段名称	类型	描述
target_system	uint8_t	系 统 ID
target_component	uint8_t	组件的 ID
param_id	CHAR [16]	板载 id 参数,以 NUL 终止,如果长度少于 16 人可读的
		符和无空终止(以 NUL)字节的长度是 16 个字符 - 应
		程序必须提供 16 +1 个字节存储,如果 ID 是作为字符目
		存储
param_value	浮动	板载参数 值
param_type	uint8_t	板载参数类型:看到 MAVLINK_TYPE 枚举在 mavlink
		mavlink_types.h

GPS_RAW_INT (# 24)

全球定位,全球定位系统(GPS)返回。这并不是全球的系统正位置估计,而是一个原始 传感器值。全球定位估计消息 GLOBAL_POSITION。坐标系是右手系,Z 轴的 (GPS 帧)。

字段名称	类型	描述
time_usec	uint64_t	UNIX 时间轴(微秒)
fix_type	uint8_t	0-1: 没有修复,2:2D 修复,3:3D 定位。一些应用和
		序将不使用此字段的值,除非它至少有两个,所以 总 是
		修补程序的正确填写。
Lat	int32_t	在 1E7 度的 纬 度
Lon	int32_t	在 1E7 度 经 度
Alt	int32_t	高于平均海平面高度在 1E3 米(毫米)
Eph	uint16_t	GPS 的 HDOP 水平的稀释厘米(M * 100)的立场。如
		不知道, 设置 为:65535
EPV	uint16_t	GPS 下降的高度。如果不知
		道, 设置为:65535
VEL	uint16_t	GPS 地面速度(米/秒* 100)。如果不知道,
		设置为: 65535
cog	uint16_t	比地面(没有标题,但运动方向)* 100 度,
		0.0 359.99 度。如果不知道, 设 置为:65535
satellites_visible	uint8_t	可见的卫星数量。如果不知道,设置为 255

GPS_STATUS (<u>#25</u>)

,通过 GPS 定位状态。此消息是为了显示每个卫星接收机可见的状态信息。全球定位估计消息 GLOBAL_POSITION。此消息可以包含多达 20 颗卫星的信息。

字段名称	类型	描述
satellites_visible	uint8_t	可见的卫星数量
satellite_prn	uint8_t [20]	全球卫星 ID
satellite_used	uint8_t [20]	0: 不使用卫星, 1:用于本地化
satellite_elevation	uint8_t [20]	卫星高度(0:右顶部的接收器,90:在地平线上)
satellite_azimuth	uint8_t [20]	卫星, 0:0度, 255:360度的方向。
satellite_snr	uint8_t [20]	卫星的信号噪声比

SCALED_IMU (#26)

通常 9DOF 传感器设置的 RAW IMU 的读数。此消息应包含描述单位的刻度值

字段名称	类型		描述
time_boot_ms	uint32_t	时间戳(系统启动以来的毫秒)	
хасс	int16_t	X 加速(毫克)	
YACC	int16_t	Y 加速(毫克)	
zacc	int16_t	Z 加速(毫克)	
xgyro	int16_t	绕 X 轴的角速度(millirad /秒)	
ygyro	int16_t	绕 Y 轴的角速度(millirad /秒)	
zgyro	int16_t	绕 Z 轴角速度(millirad /秒)	
xmag	int16_t	X 磁场 (毫特斯拉)	

字段名称	类型	描述
ymag	int16_t	Y 磁场(毫特斯拉)
zmag	int16_t	Z 磁场(毫特斯拉)

RAW_IMU (#27)

通常 9DOF 传感器设置的 RAW IMU 的读数。此消息应始终包含真正的原始值无任何缩放,允许数据采集和系统调试。

字段名称	类型	描述
time_usec	uint64_t	时间戳(UNIX 纪元以来的微秒或系 统启动 以来的微秒)
хасс	int16_t	X 加速
YACC	int16_t	Y 加速
zacc	int16_t	Z加速
xgyro	int16_t	角速度绕X轴
ygyro	int16_t	角速度绕Y轴
zgyro	int16_t	角速度绕 Z 轴
xmag	int16_t	X磁场
ymag	int16_t	Y磁场
zmag	int16_t	Z磁场

RAW_PRESSURE (#28)

RAW 的典型设置一个绝对压力和差压传感器的压力读数。传感器的值应该是原始值,非标度的 ADC 值。

字段名称	类型	描述
time_usec	uint64_t	时间戳(UNIX 时间点的微秒或系统启动以来的微秒)
press_abs	int16_t	绝 对压 力
press_diff1	int16_t	差压 1
press_diff2	int16_t	差压 2
temperature	int16_t	原料温度测量

SCALED_PRESSURE (#29)

典型设置一个绝对和压差传感器的压力读数。在每个字段指定单位。

字段名称	类型	描述
time_boot_ms	uint32_t	时间戳(系统启动以来的毫秒)
press_abs	Float	绝对压力(百帕)
press_diff	Float	差压 1 (百帕)
temperature	int16_t	温度测量(0.01 摄氏度)

态**度(<u>#30</u>)**

在航空帧的态度(右手, Z轴, X-前, Y右)。

字段名称	类型	描述	
time_boot_ms	uint32_t	时间戳(系统启动以来的毫秒)	
滚动	Float	侧倾角(RAD)	

字段名称	类型		描述
音高	Float	俯仰角(RAD)	
偏航	Float	偏航角(RAD)	
rollspeed	Float	滚动的角速度(弧度/秒)	
pitchspeed	Float	俯仰角速度(弧度/秒)	
yawspeed	浮动	偏航角速度(弧度/秒)	

ATTITUDE_QUATERNION (#31)

航空帧的态度(右手, Z轴, X-前, Y右), 表示为四元。

字段名称	类型		描述
time_boot_ms	uint32_t	时间轴(系 统启动 以来的毫秒)	
Q1	Float	四元组件 1	
Q2	Float	四元组件 2	
Q3	Float	四元组件 3	
Q4	Float	四元组件 4	
rollspeed	Float	轧 辊的角速度(弧度/秒)	
pitchspeed	Float	俯仰角速度(弧度/秒)	
yawspeed	Float	偏航角速度(弧度/秒)	

LOCAL_POSITION_NED (#32)

过滤后的本地位置(例如,融合计算机视觉和加速度计)。坐标系是右手,**Z**轴下降(航空帧,非执行董事/东北向下公约)

字段名称	类型		描述
time_boot_ms	uint32_t	时间戳(系统启动以来的毫秒)	
x	Float	X 位置	
Ÿ	Float	Y位置	
ž	Float	Z位置	
vx	Float	X速度	
VY	Float	Y速度	
VZ	Float	Z速度	

GLOBAL_POSITION_INT (#33)

过滤后的全球定位(如融合 GPS 和加速度计)。位置是在 GPS 帧(右手,Z)。它被设计为规模整数消息以来,浮法决议是不够的。

字段名称	类型	描述
time_boot_ms	uint32_t	时间戳(系 统启动 以来的毫秒)
Lat	int32_t	纬 度,表示为* 1E7
LON	int32_t	经 度,表示为* 1E7
ALT	int32_t	用* 1000(毫米)表示,在万米高空,高于海平面
relative_alt	int32_t	米, 地面以上的高度, 表示为* 1000 (毫米)

字段名称	类型	描述	
VX	int16_t	地面 X 速度(纬度),表示为米/秒* 100	
VY	int16_t	地面 Y 高速(经度),表示为米/秒* 100	
VZ	int16_t	地面, Z高速(海拔高度), 表示为米/秒* 100	
HDG	uint16_t	罗盘航向度数* 100, 0.0 359.99 度。如果不知道,设	
		为:65535	

RC_CHANNELS_SCALED (#34)

收到 RC 通道的规模值。-10000(-100%),0(0%),(100%)10000

字段名称	类型	描述
time_boot_ms	uint32_t	时间轴(系 统启动 以来的毫秒)
Port	uint8_t	伺服输出端口(8 个输出= 1 端口 设 置)。最飞行器将只
		用一个,但允许超过8伺服编码。
chan1_scaled	int16_t	RC 通道值为 1,缩放, (-100%)-10000(0%)0
		(100%) 10000
chan2_scaled	int16_t	RC 通道缩放 2 值,(-100%)-10000(0%)0
		(100%) 10000
chan3_scaled	int16_t	RC 通道值 3 缩放, (-100%)-10000(0%)0(
		100%) 10000
chan4_scaled	int16_t	RC 通道 值 4 缩放, (-100%)-10000(0%)0(1009

字段名称	类型	描述
chan5_scaled	int16_t	RC 通道价 值 尺度(-100%)-10000(0%)0(100%)
		0000
chan6_scaled	int16_t	RC 通道 值 6 缩放, (-100%)-10000(0%)0(1009
) 10000
chan7_scaled	int16_t	RC 通道 值 7 缩放, (-100%)-10000(0%)0(1009
) 10000
chan8_scaled	int16_t	RC 通道 值 8 缩放, (-100%)-10000(0%)0(1009
) 10000
RSSI	uint8_t	接收信号强度指示器, 0:0%, 255:100%

RC_CHANNELS_RAW (#35)

收到 RC 通道的原始值。标准 PPM 调制如下: 1000 微秒: 0%, 2000 微秒: 100%。个别接收器/发射器可能违反本规范。

字段名称	类型	描述
time_boot_ms	uint32_t	时间戳(系统启动以来的毫秒)
Port	uint8_t	伺服输出端口(8个输出=1端口设置)。最飞行器将只
		使用一个,但允许超过8伺服编码。
chan1_raw	uint16_t	RC 通道值为 1,微秒
chan2_raw	uint16_t	RC 通道 2 的值,微秒
chan3_raw	uint16_t	RC 通道值 3,微秒

字段名称	类型	描述
chan4_raw	uint16_t	RC 通道值为 4,微秒
chan5_raw	uint16_t	RC 通道值为 5,微秒
chan6_raw	uint16_t	RC 通道值 6,微秒
chan7_raw	uint16_t	RC 通道值为 7,微秒
chan8_raw	uint16_t	RC 通道值 8,微秒
RSSI	uint8_t	接收信号强度指示器, 0:0%, 255:100%

SERVO_OUTPUT_RAW (#36)

伺服输出的 RAW 值(从远程遥控输入,使用 RC_CHANNELS"消息)。标准 PPM 调制如下: 1000 微秒: 0%, 2000 微秒: 100%。

字段名称	类型	描述
time_usec	uint32_t	时间轴(系统启动以来的微秒)
端口	uint8_t	伺服输出端口(8 个输出= 1 端口设置)。最飞行器将
		只使用一个,但允许超过8伺服编码。
servo1_raw	uint16_t	1 伺服输出值,微秒
servo2_raw	uint16_t	伺服 电 机的 输出值 ,微秒
servo3_raw	uint16_t	3 伺服输出值,微秒
servo4_raw	uint16_t	4 伺服输出值,微秒
servo5_raw	uint16_t	5 伺服输出值,微秒

字段名称	类型		描述
servo6_raw	uint16_t	6 伺服输出值,微秒	
servo7_raw	uint16_t	7 伺服输出值,微秒	
servo8_raw	uint16_t	8 伺服输出值,微秒	

MISSION_REQUEST_PARTIAL_LIST (#37)

要求整体系统/组件的任务列表。http://qgroundcontrol.org/mavlink/waypoint_protocol

字段名称	类型	描述
target_system	uint8_t	系 统 ID
target_component	uint8_t	组件的 ID
start_index	int16_t	起始索引,默认为 0
end_index	int16_t	结束索引,默认- 1 (- 1 : 发 送列表结束)。 其他有效的!
		引列表

MISSION_WRITE_PARTIAL_LIST (#38)

此消息被发送到了微型飞行器,写一个部分列表。如果起始索引==结束索引,只有一个项目将被发送/更新。如果起始索引是不为0及以上的当前列表的大小,这一要求应予以拒绝!

字段名称	类型		描述
target_system	uint8_t	系统 ID	
target_component	uint8_t	组件的 ID	

字段名称	类型	描述
start_index	int16_t	启动默认情况下,小于/等于目前板载列表的最大指数的
		数,0表示故障
end_index	int16_t	结束指数,等于或大于起始的指数。

MISSION_ITEM (#39)

为信息编码的使命项目。此消息发出后宣布使命项目的存在,并在系统上设置的使命项目。 任务项目可以是在 X,Y,Z 米(类型:本地)或 x:纬度,Y:LON,Z:海拔高度。本地 帧的 Z-下来,右手(NED),全球框架是 Z 轴,右手(ENU 的)。也见 http://qgroundcontrol.org/mavlink/waypoint_protocol。

字段名称	类型	描述	
target_system	uint8_t	系 统 ID	
target_component	uint8_t	组件的 ID	
SEQ	uint16_t	序列	
Frame	uint8_t	该 MISSION 的坐标系 统。mavlink_types.h MAV_FI	
Command	uint16_t	为使命的行 动 计划。见 common.xml MAVLink 规格	
		MAV_CMD	
Current	uint8_t	假:0, 真 实:1	
Autocontinue	uint8_t	自 动 继续到下一个 WP	
PARAM1	Float	PARAM1 /净值命令任务:MISSION 在被接受为达到在	
		米的半径,	

字段名称	类型	描述
param2 的	Float	/ param2 的净值命令任务:前推进 MAV 的
		应留 PARAM1 半径内的时间(以毫秒为单位),
param 3	Float	参数3/对于命令的任务:在半球周围圈的轨道。
		如果积极的轨道应顺时针方向,如果负的轨道方向应该
		逆时针。
param4	浮动	PARAM4 / NAV 和游荡命令任务:偏航度的方向,
		[0 到 360] 0 =向北
x	Float	PARAM5 /地方:X 位置,全球: 纬 度
Y	Float	PARAM6 / Y 位置:全球: 经 度
Z	Float	PARAM7 / z 位置:全球:海拔

MISSION_REQUEST (#40)

任务项要求的序列号 SEQ 的信息。系统响应此消息应该是 MISSION_ITEM 的消息。 http://qgroundcontrol.org/mavlink/waypoint_protocol

字段名称	类型		描述
target_system	uint8_t	系 统 ID	
target_component	uint8_t	组件的 ID	
SEQ	uint16_t	序列	

MISSION_SET_CURRENT (#41)

设置作为当前项目的数量和序列 SEQ 任务项目。这意味着,微型飞行器将继续这一使命项目上的最短路径(不遵守之间的任务物品)。

字段名称	类型		描述
target_system	uint8_t	系统 ID	
target_component	uint8_t	组件的 ID	
SEQ	uint16_t	序列	

MISSION_CURRENT (#42)

消息宣布的当前活动任务项目的序列号。微型飞行器将飞向这一使命的项目。

字段名称	类型	描述
SEQ	uint16_t	序列

MISSION_REQUEST_LIST (#43)

要求从整体任务物品清单系统/组件。

字段名称	类型	描述
target_system	uint8_t	系 统 ID
target_component	uint8_t	组件的 ID

MISSION_COUNT (#44)

此消息被发射作为响应,到 MAV 的 MISSION_REQUEST_LIST, 开始写交易。各选区的, 可以要求个别特派团的任务总数的知识基础上的项目。

字段名称	类型		描述
target_system	uint8_t	系 统 ID	

字段名称	类型	描述
target_component	uint8_t	组件的 ID
Seq	uint16_t	序列中的任 务 的数量

MISSION_CLEAR_ALL (#45)

一次删除所有任务物品。

字段名称	类型		描述
target_system	uint8_t	系统 ID	
target_component	uint8_t	组件的 ID	

MISSION_ITEM_REACHED (#46)

某任务项目已经达到了。该系统将持有这一立场(或循环的轨道上)或(如果成立的 WP 自动继续)继续下一个任务。

字段名称	类型		描述
SEQ	uint16_t	序列	

MISSION_ACK (#47)

任务处理过程中的ACK消息。类型字段的状态,如果这个消息是一个积极的ACK(类型=0),或者如果发生错误(类型=非零)。

字段名称	类型		描述
target_system	uint8_t	系 统 ID	
target_component	uint8_t	组件的 ID	

字段名称	类型		描述
Count	uint8_t	MAV_MISSION_RESULT 枚举	

SET_GPS_GLOBAL_ORIGIN (#48)

由于本地特派团的存在,全球使命参考允许局部坐标系和全球(GPS)坐标系之间的转换。 这可能是必要的,例如在户外设置连接和微型飞行器在户外移动时。

字段名称	类型		描述
target_system	uint8_t	系统 ID	
latitude	int32_t	全球定位* 1E7	
longitude	int32_t	全球定位* 1E7	
altitude	int32_t	全球定位* 1000	

GPS_GLOBAL_ORIGIN (#49)

一旦 MAV 的设置一个新的 GPS 本地通信,此消息宣布的原点(0,0,0)位置

字段名称	类型	描述
latitude	int32_t	* 1E7 表示 纬 度(WGS84)。
longitude	int32_t	经度(WGS84 坐标),表示为* 1E7
altitude	int32_t	海拔高度。(WGS84),表示为* 1000

SET_LOCAL_POSITION_SETPOINT (#50)

设置为本地位置控制器的设定值。这是在局部坐标系的位置,MAV 的应飞。此消息发送路径/任务计划的板载位置控制器。正如一些小牛所需的偏航角偏航自由(例如所有直升机/quadrotors 的")的程度,是消息的一部分。

字段名称	类型	描述
フャスロリの	天王	油处
target_system	uint8_t	系 统 ID
target_component	uint8_t	组 件的 ID
coordinate_frame	uint8_t	坐标系 - 有效值只 MAV_FRAME_LOCAL_NED 的, 🖫
		MAV_FRAME_LOCAL_ENU
X	Float	x 位置
V		<i>(</i>
Y		y 位置
Z	Float	z 位置
Yaw	Float	所需的偏航角

LOCAL_POSITION_SETPOINT (#51)

其他飞行器(防撞)和GCS的控制器,传输目前的本地设定点。

字段名称	类型	描述
coordinate_frame	uint8_t	坐标系 - 有效值只 MAV_FRAME_LOCAL_NED 的,
		或 MAV_FRAME_LOCAL_ENU
x	Float	x 位置
Y	Float	y位置

字段名称	类型	描述
Z	Float	z位置
Yaw	Float	所需的偏航角

GLOBAL_POSITION_SETPOINT_INT (#52)

其他飞行器(防撞)和GCS的控制器,传输目前的本地设定点。

类型	描述
uint8_t	协调帧 - 有效值只有 MAV_FRAME_GLOBAL 或 MAV_FRAME_GLOBAL_RELATIVE_ALT 的该
int32_t	WGS84 北 纬 度* 1E7
int32_t	WGS84 经度位置度* 1E7
int32_t	WGS84 的海拔高度在米* 1000(正达)
int16_t	* 100 度所需的偏航角
	uint8_t int32_t int32_t int32_t

SET_GLOBAL_POSITION_SETPOINT_INT (#53)

设置当前的全球定位设定值。

字段名称	类型	描述
coordinate_frame	uint8_t	协调帧 - 有效值只有 MAV_FRAME_GLOBAL 或 MAV_FRAME_GLOBAL_RELATIVE_ALT
Latitude	int32_t	WGS84 北 纬 度* 1E7
Longitude	int32_t	WGS84 经度位置度* 1E7

字段名称	类型	描述
Altitude	int32_t	WGS84 的海拔高度在米* 1000(正达)
Yaw	int16_t	* 100 度所需的偏航角

SAFETY_SET_ALLOWED_AREA (#54)

设置一个安全区(卷),这是由两个立方体的角落。可以使用这条消息告诉 MAV 的接受和 拒绝设定值/任务。安全领域往往是由国家或竞争法规的执行。

字段名称	类型	描述
target_system	uint8_t	系 统 ID
target_component	uint8_t	组件的 ID
Frame	uint8_t	坐标系,由枚举 MAV_FRAME 在 mavlink_types.h 定》
		无论是全球,全球定位系 统,Z 轴或地方,右手,Z轴
		的右手。
p1x	Float	x 位置 1 /纬度 1
P1Y	Float	y 位置 1 /经度 1
p1z	Float	Z 位置 1 /海拔 1
P2X	Float	x 位置 2/2 纬 度
P2Y	Float	y 位置 2/2 经 度
P2Z	Float	z 位置 2 /海拔 2

SAFETY_ALLOWED_AREA (#55)

字段名称	类型	描述
Frame	uint8_t	坐标系,由枚举 MAV_FRAME 在 mavlink_types.h 定义
		无论是全球,全球定位系 统,Z 轴或地方,右手,Z轴
		的右手。
p1x	浮动	x 位置 1 /纬度 1
P1Y	Float	y 位置 1 /经度 1
p1z	Float	Z 位置 1 /海拔 1
P2X	Float	x 位置 2/2 纬度
P2Y	Float	y 位置 2/2 经 度
P2Z	Float	z 位置 2 /海拔 2

SET_ROLL_PITCH_YAW_THRUST (# 56)

设置横滚,俯仰和偏航。

字段名称	类型	描述
target_system	uint8_t	系 统 ID
target_component	uint8_t	组件的 ID
Roll	Float	所需的侧倾角(弧度)
Pitch	Float	所需的俯仰角(弧度)
Yaw	Float	以弧度所需的偏航角

字段名称	类型	描述	
Thrust	Float	积累的推力	

SET_ROLL_PITCH_YAW_SPEED_THRUST (#57)

设置横滚,俯仰和偏航。

字段名称	类型		描述
target_system	uint8_t	系 统 ID	
target_component	uint8_t	组件的 ID	
roll_speed	Float	所需的 轧 辊 rad / s	
pitch_speed	Float	所需的角速度 rad / s	
yaw_speed	Float	所需的偏航角速度 rad / s	
Thrust	Float	积累的力	

ROLL_PITCH_YAW_THRUST_SETPOINT (# 58)

在目前活跃系统设定值横滚,俯仰,偏航。

字段名称	类型	描述
time_boot_ms	uint32_t	在系 统启动 以来的毫秒 时间 戳
Roll	Float	所需的侧倾(弧度)
Pitch	Float	所需的俯仰角(弧度)
Yaw	Float	以弧度所需的偏航角

字段名称	类型		描述
Thrust	Float	积累的力	

ROLL_PITCH_YAW_SPEED_THRUST_SETPOINT (

#59)

在目前活跃系统上设定在 rollspeed, pitchspeed, yawspeed。

字段名称	类型	描述
time_boot_ms	uint32_t	在系 统启动 以来的毫秒 时间 戳
roll_speed	Float	所需的轧辊 rad / s
pitch_speed	Float	所需的 角速度 rad / s
yaw_speed	Float	所需的偏航角速度 rad / s
Thrust	Float	积累的力

SET_QUAD_MOTORS_SETPOINT (#60)

在四个电机转速设定

字段名称	类型	描述
target_system	uint8_t	系统 ID 系统应该 设置这些电 机命令
motor_front_nw	uint16_t	前方用+配置,左前方用 x 配置
motor_right_ne	uint16_t	右方用+配置,右前方用 x 配置
motor_back_se	uint16_t	后方用+配置,右后方用×配置

字段名称	类型		描述
motor_left_sw	uint16_t	左方用+配置,左后方用 x 配置	

SET_QUAD_SWARM_ROLL_PITCH_YAW_THRUST

(<u>#61</u>)

设定点多达 4 组四旋翼

字段名称	类型	描述
Group	uint8_t	旋翼组 ID(0 - 255, 256 组支持)
Mode	uint8_t	飞行模式(0 - 255,最高支持 256 模式的 ID)
Roll	int16_t [4]	所需的侧倾角(弧度)+-32767)
Pitch	int16_t [4]	所需的俯仰角(弧度)+(-32767)
Yaw	int16_t [4]	所需的偏航弧度的角度,缩放到 INT16 + (PI + -32767
Thrust	uint16_t [4]	集体推力,缩放到 UINT16(0 到 65535)

NAV_CONTROLLER_OUTPUT (#62)

APM 导航控制器的输出。此消息的主要用途是检查前实际飞行控制器的响应和迹象,并协助调整控制器参数。

字段名称	类型		描述
nav_roll	Float	目前所需的滚动角度	
nav_pitch	Float	目前所需的 间 距度数	
nav_bearing	int16_t	目前所需的标定度数	

字段名称	类型		描述
target_bearing	int16_t	轴承目前的任务	
wp_dist	uint16_t	距离	
alt_error	Float	当前高度误差 (米)	
aspd_error	Float	当前的空速误差(米/秒)	
xtrack_error	Float	xy 平面上的错误(米)	

SET_QUAD_SWARM_LED_ROLL_PITCH_YAW_THR UST (#63)

设定点多达 4 组四旋翼

字段名称	类型	描述
Group	uint8_t	旋翼组 ID(0-255,256组支持)
Mode	uint8_t	飞行模式(0 - 255, 最高支持 256 模式的 ID)
led_red	uint8_t [4]	红色 RGB(0255)
led_blue	uint8_t [4]	绿色 RGB(0255)
led_green	uint8_t [4]	蓝色 RGB(0255)
Roll	int16_t [4]	所需的侧倾角(弧度)+(-32767)
Pitch	int16_t [4]	所需的俯仰角(弧度)+(-32767)
Yaw	int16_t [4]	所需的偏航弧度的角度,缩放到 INT16 + (PI + -32767

字段名称	类型	描述
Thrust	uint16_t [4]	积累的力,缩放到 UINT16 (0 到 65535)

STATE_CORRECTION (#64)

纠正系统的状态,加入误差修正项的位置和速度,并通过旋转校正角的态度。

字段名称	类型		描述
xErr	Float	x位置错误	
yErr	Float	y位置错误	
zErr	Float	z位置误差	
rollErr	Float	辊错误(弧度)	
pitchErr	Float	螺距误差(弧度)	
yawErr	Float	偏航误差(弧度)	
vxErr	Float	x 速度	
vyErr	Float	Y速度	
vzErr	Float	Z速度	

REQUEST_DATA_STREAM (#66)

字段名称	类型	描	描述
target_system	uint8_t	目标要求 发 送的消息。	
target_component	uint8_t	目标要求 发 送的消息。	

字段名称	类型	描述
req_stream_id	uint8_t	所要求的数据流的 ID
req_message_rate	uint16_t	要求间隔之间的这种类型的两个消息
START_STOP	uint8_t	1 开始 发 送,0 停止 发 送。

DATA_STREAM (#67)

字段名称	类型	描述
stream_id	uint8_t	所要求的数据流的 ID
message_rate	uint16_t	要求间隔之间的这种类型的两个消息
ON_OFF	uint8_t	1 启用流,0 停止。

MANUAL_CONTROL (#69)

字段名称	类型	描述
Target	uint8_t	要控制系 统
Roll	Float	滚动
Pitch	Float	倾斜
Yaw	Float	偏航
Thrust	Float	推力
roll_manual	uint8_t	滚动控制自动启用:0,手动:1
pitch_manual	uint8_t	自动: 0,手动:1

字段名称	类型	描述
yaw_manual	uint8_t	自动:0,手动:1
thrust_manual	uint8_t	自动: 0 , 手 动:1

RC_CHANNELS_OVERRIDE (#70)

RC 通道的原始值发送到 MAV 的覆盖从 RC 无线电接收的信息。-1 值意味着该通道没有改变。应释放回值 0 手段控制该通道的 RC 电台。标准 PPM 调制如下: 1000 微秒: 0%, 2000 微秒: 100%。个别接收器/发射器可能违反本规范。

字段名称	类型		描述
target_system	uint8_t	系统 ID	
target_component	uint8_t	组件的 ID	
chan1_raw	uint16_t	RC 通道值为 1,微秒	
chan2_raw	uint16_t	RC 通道 2 的值,微秒	
chan3_raw	uint16_t	RC 通道值 3,微秒	
chan4_raw	uint16_t	RC 通道值为 4,微秒	
chan5_raw	uint16_t	RC 通道值为 5,微秒	
chan6_raw	uint16_t	RC 通道值 6,微秒	
chan7_raw	uint16_t	RC 通道值为 7,微秒	
chan8_raw	uint16_t	RC 通道值 8,微秒	

VFR_HUD (#74)

字段名称	类型		描述
Airspeed	Float	米/秒,在当前空速	
Groundspeed	Float	目前地面速度 m / s	
Heading	int16_t	当前的方向以度为,在指南针单位,	(0 到 360, 0 = 2
Throttle	uint16_t	当前油门 设 置(0%到 100%)	
ALT	Float	当前高度(MSL),米	
Climb	Float	在当前米/秒爬升率	

COMMAND_LONG (#76)

发送命令到四个参数的微型飞行器

字段名称	类型	描述
target_system	uint8_t	系 统 应执行的命令
target_component	uint8_t	组件,它应该为所有组件执行的命令,0
Command	uint16_t	命令 ID,MAV_CMD 枚举定义。
Confirmation	uint8_t	0: 这个命令的第一次传输。1-255:确认传输(例如 ki
		命令)
PARAM1	Float	1, 参数定义 MAV_CMD 枚举。
param2	Float	2, 参数定义枚举 M AV_CMD。
Param3	Float	3,参数定义枚举 MAV_CMD。

字段名称	类型	描述
param4	Float	4, 参数定义枚举 MAV_CMD。
param5	Float	5, 参数定义枚举 M AV_CMD。
param6	Float	6,参数定义枚举 MAV_CMD。
param7	Float	7, 参数定义枚举 MAV_CMD。

COMMAND_ACK (#77)

报告状态的命令。包括反馈阉羊被执行死刑的命令。

字段名称	类型	描述
Command	uint16_t	命令 ID, MAV_CMD 枚举定义。
Result	uint8_t	MAV_RESULT 枚举

LOCAL_POSITION_NED_SYSTEM_GLOBAL_OFFSE

T (#89)

偏移,在X,Y,Z和偏航 MAV 的 X 的 $LOCAL_POSITION_NED$ 消息,并在NED 的坐标的全球坐标系之间。坐标系是右手,Z 轴下降(航空帧,非执行董事/东北向下公约)

字段名称	类型		描述
time_boot_ms	uint32_t	时间戳(系统启动以来的毫秒)	
x	Float	X 位置	
Y	Float	Y位置	
Z	Float	Z位置	

2	字段名称	类型		描述
Roll		Float	滚动	
Pitch		Float	音高	
Yaw		Float	偏航	

HIL_STATE (#90)

从模拟到自动驾驶仪发送。这个包是有用的高吞吐量的应用,如硬件在环仿真。

字段名称	类型	描述
time_usec	uint64_t	时间戳(UNIX 纪元以来的微秒或系统启动以来的微秒)
Roll	Float	侧倾角(RAD)
Piych	Float	俯仰角(RAD)
Yaw	Float	偏航角(RAD)
rollspeed	Float	轧 辊的角速度(弧度/秒)
pitchspeed	Float	俯仰角速度(弧度/秒)
yawspeed	Float	偏航角速度(弧度/秒)
Lat	int32_t	纬度,表示* 1E7
LON	int32_t	经 度表示为* 1E7
ALT	int32_t	海拔米, 表示为* 1000 (毫米)
vx	int16_t	地面 X 速度(纬度),表示为米/秒* 100

字	段名称	类型	描述	
VY	i	int16_t	地面 Y 高速(经度),表示为米/秒* 100	
VZ		int16_t	地面, Z高速(海拔高度), 表示为米/秒* 100	
хасс	i	int16_t	X 加速(毫克)	
YACC	i	int16_t	Ÿ加速(毫克)	
zacc		int16_t	Z 加速(毫克)	

HIL_CONTROLS (#91)

从自动驾驶仪发送到模拟。硬件在回路控制输出

字段名称	类型	描述
time_usec	uint64_t	时间戳(UNIX 纪元以来的微秒或系 统启动 以来的微秒)
roll_ailerons	Float	控制输出-11
pitch_elevator	Float	控制 输 出-1 1
yaw_rudder	Float	控制 输 出-1 1
Throttle	Float	油门 0 1
AUX1	Float	AUX 1, -1 1
AUX2	Float	AUX 2, -1 1
AUX3	Float	辅助 3, -1 1
AUX4	Float	辅助 4, -1 1

字段名称	类型	描述	2
Mode	uint8_t	系统模式(MAV_MODE)	
nav_mode	uint8_t	导航模式(MAV_NAV_MODE)	

HIL_RC_INPUTS_RAW (#92)

从模拟到自动驾驶仪发送。收到 RC 通道的原始值。标准 PPM 调制如下: 1000 微秒: 0%, 2000 微秒: 100%。个别接收器/发射器可能违反本规范。

字段名称	类型	描述
time_usec	uint64_t	时间轴(UNIX 时间点(微秒)或系统启动以来(微秒)
chan1_raw	uint16_t	RC 通道值为 1,微秒
chan2_raw	uint16_t	RC 通道 2 的值,微秒
chan3_raw	uint16_t	RC 通道值 3,微秒
chan4_raw	uint16_t	RC 通道值为 4,微秒
chan5_raw	uint16_t	RC 通道值为 5,微秒
chan6_raw	uint16_t	RC 通道值 6,微秒
chan7_raw	uint16_t	RC 通道值为 7,微秒
chan8_raw	uint16_t	RC 通道值 8,微秒
chan9_raw	uint16_t	RC 通道值 9,微秒
chan10_raw	uint16_t	RC 通道 值 为 10,微秒
chan11_raw	uint16_t	RC 通道 值 11 ,微秒

字段名称	类型	描述
chan12_raw	uint16_t	RC 通道 值 为 12,微秒
RSSI	uint8_t	接收信号强度指示器, 0:0%, 255:100%

OPTICAL_FLOW (# 100)

流量传感器(如光学鼠标传感器的光流)

字段名称	类型	描述
time_usec	uint64_t	时间轴(UNIX)
sensor_id	uint8_t	传感器 ID
flow_x	int16_t	流在 X 负半轴传感器方向的像素
flow_y	int16_t	在Y负轴传感器方向的像素流程
flow_comp_m_x	Float	在米 X 负轴传感器的方向流动,角速补偿
flow_comp_m_y	Float	在 y (米),流量传感器方向,角速补偿
Quality	uint8_t	光流的质量。0: 坏了, 255:最高质量
ground_distance	Float	地面的距离(米)。正 值: 已知的距离。负 值: 未
		知的距离

GLOBAL_VISION_POSITION_ESTIMATE (# 101)

	字段名称	类型		描述
USEC		uint64_t	时间戳(毫秒)	

字段名称	类型		描述
x	Float	全球的 X 位置	
Υ	Float	全球Y位置	
z	Float	全球 Z 位置	
Roll	Float	在 RAD 中的侧倾角	
Pitch	Float	在 RAD 的俯仰角	
Yaw	Float	在 RAD 偏航角	

VISION_POSITION_ESTIMATE (# 102)

字段名称	类型		描述
USEC	uint64_t	时间戳(毫秒)	
x	Float	全球的 X 位置	
Υ	Float	全球Y位置	
z	Float	全球 Z 位置	
Roll	Float	在 RAD 中的侧倾角	
Pitch	Float	在 RAD 的俯仰角	
Yaw	Float	在 RAD 偏航角	

VISION_SPEED_ESTIMATE (# 103)

字段名称	类型	描述

字段名称	类型		描述
USEC	uint64_t	时间轴(毫秒)	
x	Float	全球X速度	
Y	Float	全局 y 速度	
z	Float	全球 z 速度	

VICON_POSITION_ESTIMATE (# 104)

字段名称	类型		描述
USEC	uint64_t	时间戳(毫秒)	
x	Float	全球的 X 位置	
Υ	Float	全球Y位置	
z	Float	全球 Z 位置	
Roll	Float	侧倾角(RAD)	
Pitch	Float	俯仰角(RAD)	
Yaw	Float	偏航角(RAD)	

MEMORY_VECT (#249)

发送原始控制器内存。此消息不鼓励使用正常的数据包,但相当有效的方式,为测试新的消息和实验调试输出。

字段名称	类型		描述
Address	uint16_t	调试 变 量的起始地址	

字段名称	类型	描述
VER	uint8_t	版本代码的类型变量。0=未知,类型上被忽略,并假设
		int16_t.1
Туре	uint8_t	
		uint16_t, = $16 \times 2 = 16 \times Q15$, $3 = 16 \times 1Q14$
Value	int8_t [32]	在指定地址的存储器中的内容

DEBUG_VECT (#250)

类型		描述
CHAR [10]	名称	
uint64_t	时间戳	
Float	Х	
Float	Υ	
Float	Z	
	CHAR [10] uint64_t Float Float	CHAR [10] 名称 uint64_t 时间戳 Float x Float Y

NAMED_VALUE_FLOAT (#251)

作为浮动发送键。此消息不鼓励使用正常的数据包,但相当有效的方式,为测试新的消息和 实验调试输出。

字段名称	类型		描述
time_boot_ms	uint32_t	时间轴(系 统启动 (毫秒))	
Name	CHAR [10]	调试 变 量的名称	

字段名称	类型		描述
Value	Float	浮点 值	

NAMED_VALUE_INT (#252)

发送整数。此消息不鼓励使用正常的数据包,但相当有效的方式,为测试新的消息和实验调试输出。

字段名称	类型		描述
time_boot_ms	uint32_t	时间轴(系 统启动 (毫秒))	
Name	CHAR [10]	调试 变 量的名称	
Value	int32_t	符号的整数 值	

STATUSTEXT (#253)

状态的文本消息。这些信息印在黄色 COMM 中的 QGroundControl 的控制台。警告:他们消耗相当长的一段带宽,所以只用于重要的状态和错误消息。如果明智地使用,这些消息 MCU 上的缓冲和发送只在有限的速度(如 10 赫兹)。

字段名称	类型	描述
Severity	uint8_t	状态的严重性。依赖于定义在 RFC-5424。参见枚举
		MAV_SEVERITY。
Text	CHAR [50]	状态的文本消息,无空终止字符

调试 (#254)

发送调试的数值。该指数是用来区分值。这些值显示作为调试 N.中的 QGroundControl 的 阴谋

字段名称	类型	描述

字段名称	类型	描述
time_boot_ms	uint32_t	时间轴(系统启动(毫秒))
IND	uint8_t	调试 变 量指数
Value	Float	调试 值