

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра системного анализа

Курсовая работа

«Изучение динамических систем с дискретным временем»

Студентка 315 группы А. Ю. Скворцова

Руководитель курсовой работы к.ф.-м.н., доцент И. В. Востриков

Содержание

1	Пос	становка задачи	3
2	Изучение одномерной задачи		
	2.1	Поиск неподвижных точек	4
	2.2	Исследование неподвижных точек на устойчивость	
	2.3	Поиск циклов длины 2 и 3	
		2.3.1 Поиск циклов длины 2	6
		2.3.2 Поиск циклов длины 3	
	2.4	Бифуркационная диаграмма	7
	2.5	Показатель Ляпунова	
3	Изу	учение двумерной задачи	8
	3.1	Поиск неподвижных точек	8
	3.2	Исследование неподвижных точек на устойчивость	9
	3.3	Поиск циклов длины 2 и 3	
	3.4	Бифуркация Неймарка-Сакера	11

1 Постановка задачи

Заданы две динамические системы с дискретным временем:

$$u_{t+1} = ru_t^{\frac{3}{2}}(1 - bu_t), r > 0, b > 0$$
(1)

$$u_{t+1} = ru_t^{\frac{3}{2}}(1 - bu_{t-1}), r > 0, b > 0$$
(2)

Все значения u_{t-1}, u_t неотрицательны.

Требуется провести исследование, включающее в себя:

- 1. Нахождение неподвижных точек;
- 2. Исследование устойчивости неподвижных точек в зависимости от значений параметров;
- 3. Проверку существования циклов длиной 2 и 3;
- 4. Построение бифуркационной диаграммы в случае существования цикла длиной 3;
- 5. Построение графика показателя Ляпунова в зависимости от значения параметров;
- 6. Проверку возможности возникновения бифуркации Неймарка —Сакера в случае системы с запаздыванием;

2 Изучение одномерной задачи

2.1 Поиск неподвижных точек

Определение 1. Пусть дана система $u_{t+1} = f(u_t)$. Неподвижной точкой данной системы называется такая точка \hat{u} , для которой выполнено $\hat{u} = f(\hat{u})$.

Заметим, что u = 0 — неподвижная точка.

Для поиска остальных неподвижных точек составим уравнение и решим его относительно разных значений параметров r>0, b>0:

$$u = ru^{\frac{3}{2}}(1 - bu) \Rightarrow 1 = r\sqrt{(u)(1 - bu)}$$

Сделаем замену $v=\sqrt(u)\geq 0$, тогда имеем:

$$1 = rv(1 - bv^2) \Longleftrightarrow rbv^3 - rv + 1 = 0$$

Пусть $f(v) = rbv^3 - rv + 1$. Производная этой функции имеет вид:

$$f'(v) = 3rbv^2 - r$$

Тогда $v^{*2} = \frac{1}{3b} \Longleftrightarrow v^* = \frac{1}{\sqrt{3b}}$ — ноль производной и минимум функции. Сравним значение функции от данной точки с нулем:

$$rbv^{*3} - rv^{*} + 1 = rb(\frac{1}{\sqrt{3b}})^{3} - r\frac{1}{\sqrt{3b}} + 1 = 0 \Rightarrow r = \frac{3\sqrt{3b}}{2}$$

Тогда можем вывести следующую зависимость от параметров:

- 1. При $0 < r < \frac{3\sqrt{3b}}{2}$ у системы нет других неподвижных точек, кроме u = 0;
- 2. При $r = \frac{3\sqrt{3b}}{2}$ система имеет неподвижные точки $u_1 = v^{*2} = \frac{1}{3b}$ и $u_2 = 0$;
- 3. При $r>\frac{3\sqrt{3b}}{2}$ система имеет неподвижные точки $u_1\in(0,\frac{1}{3b}),\,u_2\in(\frac{1}{3b},\frac{1}{b})$ и $u_3=0;$

2.2 Исследование неподвижных точек на устойчивость

Дадим определение устойчивости неподвижной точки.

Определение 2. Неподвижная точка u^* системы с дискретным временем устойчива по Ляпунову, если для любого $\varepsilon > 0$ существует $\delta > 0$ такое, что для любых начальных данных u_0 из δ -окрестности точки u^* вся траектория системы u_t лежит в ε -окрестности точки u^* . Если, кроме того, $\lim_{t \to \infty} f(u_t) = u^*$, то точка называется асимптотически устойчивой.

Теорема 1. Пусть u^* — неподвижная точка дифференцируемого отображения f, и пусть f обратима в малой окрестности u^* . Тогда u^* асимптотически устойчива, если $|f'(u^*)| < 1$ и неустойчива, если $|f'(u^*)| > 1$.

По приведенной выше теореме точка $u^*=0$ всегда является асимптотически устойчивой.

Для проверки остальных точек найдем производную:

$$f(u) = ru^{\frac{3}{2}}(1 - bu) \Rightarrow f'(u) = r\frac{\sqrt{u}}{2}(3 - 5bu)$$

Рассмотрим устойчивость остальных точек в зависимости от параметра г:

- 1. При $0 < r < \frac{3\sqrt{3b}}{2}$ у системы нет других неподвижных точек, кроме u=0. Эта точка устойчива;
- 2. При $r = \frac{3\sqrt{3b}}{2}$ система имеет следующую производную в ненулевой точке $u^* = \frac{1}{3b}$:

$$f'(u^*) = \frac{3\sqrt{3b}}{2} \cdot \frac{1}{2\sqrt{3b}} (3 - 5b \cdot \frac{1}{3b}) = 1.$$

Тем самым, ничего об устойчивости данной точки сказать нельзя.

3. При $r>\frac{3\sqrt{3b}}{2}$ система имеет две ненулевые неподвижные точки $u_1^*\in(0;\frac{1}{3b})$ и $u_2^*\in(\frac{1}{3b},\frac{1}{b}).$

Изучим устойчивость u_1^* . Заметим, что для промежутка $(0; \frac{1}{3b})$ выражение 3-5bu будет всегда больше 0, а значит значение производной будет неотрицательным. Таким образом мы можем снять модуль. Так же используя то, что для неподвижной точки данной системы выполнено равенство $1 = r\sqrt{u}(1-bu)$, имеем:

$$f'(u_1^*) = r\frac{\sqrt{u}}{2}(3 - 5bu) = \frac{1}{2(1 - bu)} \cdot (3 - 5bu) = \frac{1}{2}\left(5 - \frac{2}{1 - bu}\right)$$

Значения функции убывает на $(0; \frac{1}{3b})$, при этом в точке $\frac{1}{3b}$ производная имеет значение 1. Значит на интервале f'(u) > 1, т.е. неподвижная точка $u_1^* \in (0; \frac{1}{3b})$ неустойчива.

Исследуем устойчивость точки $u_2^* \in (\frac{1}{3b}; \frac{1}{b})$:

$$|f'(u_2^*)| = \left|\frac{5}{2} - \frac{1}{1 - bu_2^*}\right| \bigvee 1$$

Проанализируем, когда точка является асимптотически устойчивой:

$$|f'(u_2^*)| < 1 \Leftrightarrow \left\{u_2^* > \frac{1}{3b}\right\} \Leftrightarrow 5 - \frac{2}{1 - bu_2^*} > -2 \Leftrightarrow 7 > \frac{2}{1 - bu_2^*} \Leftrightarrow u_2^* < \frac{5}{7b} = \bar{u}$$

Найдем, какие значения г соответствуют этой точке:

$$\bar{r} = \frac{1}{\sqrt{\bar{u}}(1 - b\bar{u})} = \frac{7\sqrt{35b}}{10}$$

Тогда при $r<\frac{7\sqrt{35b}}{10}$ точка u_2^* асимптотически устойчива, иначе, при $r>\frac{7\sqrt{35b}}{10}$ u_2^* неустойчива. При $r=\frac{7\sqrt{35b}}{10}$ ничего об устойчивости сказать нельзя, так как производная будет равна 1.

2.3 Поиск циклов длины 2 и 3

Определение 3. Циклом длины k дискретной динамической системы $u_{t+1} = f(u_t)$ называется последовательность различных точек $u_1, u_2, ..., u_k$ такая, что

$$u_2 = f(u_1), u_3 = f(u_2), ..., u_1 = f(u_k)$$

Из определения следует, что каждая из точек $u_1, u_2, ..., u_k$ является неподвижной точкой для системы $u_{t+1} = (\underbrace{f \circ ... \circ f})(u_t) = f_{\circ}^k(u_t)$.

Теорема 2. Цикл длины к дискретной системы является устойчивым тогда и только тогда, когда выполнено неравенство $|f'(u_1) \cdot ... \cdot f'(u_k)| < 1$.

2.3.1 Поиск циклов длины 2

Найти аналитическое решение уравнения f(f(u)) = u не удается. Воспользуемся следующим алгоритмом для поиска:

- (a) Выбирается произвольное $u_0 \in (0; \frac{1}{b})$, так как при $u_0 > \frac{1}{b}$ значение u_1 будет отрицательным.
- (b) Проводится достаточно большое число итераций функции, для того, чтобы последовательность u_k «сошлась» к циклу. Возьмем 400 итераций.
- (c) Проверяется равенство $f(f(u_{400})) = u_{400}$.

Таким образом, u_0 — некоторая фиксированная константа, перебор будет происходить по параметрам r, b. Фиксируем b, тогда $u \in (0; \frac{1}{b})$. Ограничим r так, чтобы u_1 оставалось в указанном интервале:

$$0 < r < \frac{1}{(1 - 1 \cdot bu_0)u_0^{\frac{3}{2}}}$$

2.3.2 Поиск циклов длины 3

Воспользуемся тем же алгоритмом с той разницей, что теперь будем проверять на равенство f(f(f(u))) = u. Ограничения на параметры остаются.

Введем упорядочивание натуральных чисел:

$$3 \succ 5 \succ 7 \succ \dots \succ$$

$$\succ 2 \cdot 3 \succ 2 \cdot 5 \succ 2 \cdot 7 \dots \succ$$

$$\succ 2^{2} \cdot 3 \succ 2^{2} \cdot 5 \succ 2^{2} \cdot 7 \dots \succ$$

$$\succ \dots \succ$$

$$\succ 2^{2} \succ 2 \succ 1.$$

Теорема 3. (Теорема Шарковского).Пусть $f: \mathbb{R} \to \mathbb{R}$ — непрерывное отображение, и пусть f имеет цикл длины k. Тогда f имеет цикл длины m для всех m таких, что $k \succ m$ в указанном выше порядке.

Тогда легко заметить, что из существования циклов длины 3 по приведенной теореме следует существование циклов произвольной длины.

2.4 Бифуркационная диаграмма

Приведем бифуркационную диаграмму данной системы. Она подтверждает то, что в системе есть циклы любой длины.

Также из приведенной диаграммы видно, что траектории с близкими начальными данными могут отдаляться друг от друга при большом количестве итераций. Таким образом, системе присуще хаотическое поведение.

Рис. 1: Бифуркационная диаграмма.

2.5 Показатель Ляпунова

Определение 4. Показателем Ляпунова траектории $\{u_n\}_{n=1}^{\infty}$ называется величина

$$l(u_1) = \lim_{n \to \infty} \frac{\ln f'(u_1) + \ln f'(u_2) + \dots + \ln f'(u_n)}{n} < \infty.$$

Этот показатель является характеристикой взаимного поведения траекторий с близкими данными. Если $l(u_1)>0$, то изначально близкие траектории расходятся — в системе можно видеть хаотическое поведение.

Рис. 2: Показатель Ляпунова.

3 Изучение двумерной задачи

3.1 Поиск неподвижных точек

Преобразуем систему, введя новую переменную $q_t = u_{t-1}$. получим двумерную задачу:

$$\begin{cases}
q_{t+1} = u_t, \\
u_{t+1} = ru_t^{\frac{3}{2}} (1 - bq_t).
\end{cases}$$
(3)

Неподвижные точки этой системы будут решениями следующей системы:

$$\begin{cases} q = u, \\ u = ru^{\frac{3}{2}}(1 - bu). \end{cases}$$

Заметим, что данная система уже была решена для одномерной задачи, поэтому воспользуемся уже полученной классификацией:

1. При $0 < r < \frac{3\sqrt{3b}}{2}$ у системы нет других неподвижных точек, кроме P = (0;0);

- 2. При $r=\frac{3\sqrt{3b}}{2}$ система имеет неподвижные точки $P_1=(\frac{1}{3b};\frac{1}{3b})$ и $P_2=(0;0);$
- 3. При $r>\frac{3\sqrt{3b}}{2}$ система имеет неподвижные точки $P_1=(p_1;p_1),\ P_2=(p_2;p_2),$ где $p_1\in(0,\frac{1}{3b}),p_2\in(\frac{1}{3b},\frac{1}{b})$ и $P_3=(0;0);$

3.2 Исследование неподвижных точек на устойчивость

Теорема 4. Пусть задана динамическая система с дискретным временем:

$$u \mapsto f(u), u \in \mathbb{R}^n$$

где f — гладкое отображение из \mathbb{R}^n в \mathbb{R}^n . Предположим, что отображение имеет неподвижную точку $\bar{u}: f(u) = \bar{u}$. Тогда неподвижная точка \bar{u} асимптотически устойчива, если все собственные значения $\lambda_1,...,\lambda_n$ матрицы Якоби вектор-функции f(u), вычисленной в точке \bar{u} , удовлетворяет условию $|\lambda_i| < 1$. Если хотя бы одно собственное значение $|\lambda_i| > 1$, то положение равновесия \bar{u} неустойчиво.

Используем эту теорему для исследования устойчивости неподвижных точек. Матрица Якоби для этой системе будет иметь следующий общий вид:

$$J(u,v) = \begin{bmatrix} \frac{3}{2}r\sqrt{u}(1-bv) & -bru^{\frac{3}{2}} \\ 1 & 0 \end{bmatrix}.$$

Матрица Якоби для точки P = (0;0):

$$J(0,0) = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \Longrightarrow \lambda_1 = \lambda_2 = 0$$

Значит, точка P=(0;0) является асимптотически устойчивой при любых значениях параметров r,b. Рассмотрим устойчивость остальных точек:

1. Пусть $r=\frac{3\sqrt{3b}}{2}$. Тогда единственная ненулевая точка это $P_1=(\frac{1}{3b};\frac{1}{3b})$. Матрица Якоби имеет вид:

$$J(P_1) = \begin{bmatrix} \frac{3}{4} - \frac{1}{4b} & -\frac{1}{2} \\ 1 & 0 \end{bmatrix} \Longrightarrow \lambda_1 = 1, \lambda_2 = \frac{1}{2}$$

Об устойчивости точки нельзя ничего сказать.

2. Пусть $r>\frac{3\sqrt{3b}}{2}$. Тогда имеются две ненулевые неподвижные точки $P_1=(p_1;p_1),$ $P_2=(p_2;p_2),$ где $p_1\in(0,\frac{1}{3b}),$ $p_2\in(\frac{1}{3b},\frac{1}{b}).$

Воспользуемся тем фактом, что $r\sqrt{u}(1-bv)=1$ — как в одномерной задаче. Тогда имеем:

$$J(P_1) = \begin{bmatrix} \frac{3}{2} \cdot 1 & -bru^{\frac{3}{2}} \\ 1 & 0 \end{bmatrix}.$$

Характеристическое уравнение: $\lambda(\lambda-\frac{3}{2})+bru^{\frac{3}{2}}=0 \Leftrightarrow \lambda^2-\frac{3}{2}\lambda+bru^{\frac{3}{2}}=0.$

По теореме Виета имеем:

$$\begin{cases} \lambda_1 \cdot \lambda_2 = bru^{\frac{3}{2}} = \left\{ u = ru^{\frac{3}{2}} (1 - bu) \right\} = -1 + \frac{1}{1 - bu}, \\ \lambda_1 + \lambda_2 = \frac{3}{2}. \end{cases}$$

Для точки P_1 справедливо: $-1 + \frac{1}{1-bu} \in (0; \frac{1}{2})$, при $u \in (0; \frac{1}{3b})$.

Будем считать, что $\lambda_1 > \lambda_2$ и положим $\lambda_1 = \frac{3}{4} + k, \lambda_2 = \frac{3}{4} - k, k > 0$:

$$\lambda_1 \cdot \lambda_2 = (\frac{3}{4} + k) \cdot (\frac{3}{4} - k) = \frac{9}{16} - k^2 = m \in (0; \frac{1}{2})$$

Отсюда следует, что при $k>\frac{1}{4}$ собственное значение $\lambda_1>1$ и точка P_1 неустойчива. Исследуем значения k:

$$k = \sqrt{\frac{9}{16} - m} > \sqrt{\frac{9}{16} - \frac{1}{2}} = \frac{1}{4}$$

Таким образом точка P_1 неустойчива.

Для точки P_2 справедливо: $-1+\frac{1}{1-bu}\in(\frac{1}{2};+\infty)$, при $u\in(\frac{1}{3b};\frac{1}{b})$. Будем считать, что $\lambda_1>\lambda_2$ и положим $\lambda_1=\frac{3}{4}+k,\lambda_2=\frac{3}{4}-k,k>0$:

$$k^2 = \frac{9}{16} - m$$

При $m>\frac{1}{2}$ значение $k^2<\frac{1}{16}.$ Тогда если считать, что $k\in\mathbb{R},$ то точка P_2 асимптотически устойчива:

$$-1 + \frac{1}{1 - bu} < 1 \Leftrightarrow u < \frac{1}{2b} \Leftrightarrow r < 2\sqrt{2b}$$

Если считать, что $k \in \mathbb{C}$, то имеем:

$$|\lambda_1| = |\lambda_2| = \sqrt{\frac{9}{16} - m} = \sqrt{m}, \lambda_1 = \bar{\lambda_2}$$

В итоге получаем, что при $r<2\sqrt{2b}$ точка P_2 асимптотически устойчива, при $r>2\sqrt{2b}$ точка P_2 неустойчива, а при $r=2\sqrt{2b}$ судить об устойчивости нельзя, т.к. собственные значения будут равны 1.

Таким образом, устойчивость всех неподвижных точек изучена.

3.3 Поиск циклов длины 2 и 3

Используя алгоритм, аналогичный тому, что использовался при поиске циклов одномерной системы, попробуем найти циклы двумерной системы. Для того чтобы задать последовательность u_n , нам необходимы u_0 и u_1 . Равномерный перебор этих значений из интервала $(0; \frac{1}{b})$ показывает, что циклов длинны 2 и 3 у заданной системы нет. Все последовательности сходятся либо к 0, либо к ненулевой неподвижной точке, либо значение u_n становится отрицательным.

3.4 Бифуркация Неймарка-Сакера

Определение 5. Бифуркация положения равновесия в системе

$$u \mapsto f(u, r), u \in \mathbb{R}^2, r \in \mathbb{R},$$

соответствующая появлению мультипликаторов $\lambda_1=\bar{\lambda_2}, |\lambda_1|=|\lambda_2|=1,$ называется бифуркацией Неймарка–Сакера или дискретной бифуркацией Хопфа.

Как было доказано выше, комплексные собственные значения могут получиться только при $r>\frac{3\sqrt{3b}}{2}.$

Рис. 3: Положение точки устойчиво, $b=1,\,r=2.82.$

Рис. 4: Положение точки неустойчиво,
b $=1,\,r=2.84.$

Список литературы

[1] А. С. Братусь, А. С. Новожилов, А. П. Платонов. Динамические системы и модели биологии. — М.: ФИЗМАТЛИТ, 2010.