Logical Effort Outline

- □ Introduction
- Delay in a Logic Gate
- Multistage Logic Networks
- Choosing the Best Number of Stages
- Example
- Summary

Introduction

- ☐ Chip designers face a bewildering array of choices
 - (x) What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?

- Uses a simple model of delay
- Allows back-of-the-envelope calculations
- Helps make rapid comparisons between alternatives
- Emphasizes remarkable symmetries

Example

- Ben Bitdiddle is the memory designer for the Motorola 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Register File

Delay in a Logic Gate

☐ Express (normalized) delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

- $\tau = 3RC$ is the delay of an ideal fanout of 1 inverter with no parasitic capacitance
 - \approx 12 ps in 180 nm process 40 ps in 0.6 μm process

Delay in a Logic Gate (cont1)

■ Express(normalized) delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

$$d = f + p$$

- \Box Effort delay f = gh (a.k.a. stage effort)
 - Again f has two components

Delay in a Logic Gate (cont2)

■ Express(normalized) delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

$$d = f + p$$

- \Box Effort delay f = gh (also known as stage effort)
 - Again f has two components
 - g: logical effort
 - Measures relative ability of gate to deliver current
 - $g \equiv 1$ for inverter

Delay in a Logic Gate (cont3)

Express(normalized) delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

$$d = f + p$$

- \Box Effort delay f = gh (a.k.a. stage effort)
 - g: logical effort
 - h: electrical effort = C_{load} / C_{in}
 - Ratio of load capacitance to input capacitance
 - Sometimes called fanout

Delay in a Logic Gate (cont4)

■ Express(normalized) delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

$$d = f + p$$

- Parasitic delay p
 - Represents delay of gate driving itself (no load)
 - Set by internal parasitic capacitance (C_{db}, C_{sb})

Delay Plots

$$d = f + p = gh + p$$

As recalled, the rising delay of 2-input NAND gate with h fanout is d_{abs} =(4h+6)RC

$$d = \frac{d_{abs}}{\tau} = \frac{(4h+6)RC}{3RC} = (4/3)h + 2$$

- What about NOR2?
- \Box What about $\overline{(ab+c)}$?

Computing Logical Effort

- □ Def: Logical effort is the ratio of input capacitance of the analyzed gate to input capacitance of an inverter delivering the same output current (same effective resistance).
- Measure from delay vs. fanout plots; g=slope
- Or estimate by counting transistor widths

$$C_{in} = 3$$

 $g = 3/3$

$$C_{in} = 4$$
 $q = 4/3$

$$C_{in} = 5$$

g = 5/3

Catalog of Gates

☐ Logical effort (g) of common gates

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate / mux	2	2	2	2	2
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8	

Catalog of Gates

- □ Parasitic delay of common gates
 - In multiples of p_{inv} (≈1)

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

Example: Ring Oscillator

☐ Estimate the frequency of an N-stage ring oscillator

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Frequency: $f_{osc} =$

Example: Ring Oscillator

☐ Estimate the frequency of an N-stage ring oscillator

Logical Effort: g = 1

Electrical Effort: h = 1

Parasitic Delay: p = 1

Stage Delay: d = 2

Frequency: $f_{osc} = 1/(2*N*d) = 1/(4N)$

31 stage ring oscillator in

frequency of ~ 200 MHz

0.6 μm process has

Example: FO4 Inverter

☐ Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Example: FO4 Inverter

☐ Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g = 1

Electrical Effort: h = 4

Parasitic Delay: p = 1

Stage Delay: d = 5

The FO4 delay is about

200 ps in 0.6 μm process

60 ps in a 180 nm process

f(1/3-1/2) ps in an f nm process

Multistage Logic Networks

- ☐ Logical effort generalizes to multistage networks
- \Box Path Logical Effort $G = \prod g_i$
- □ Path Electrical Effort $H = \frac{C_{load-path}}{C_{in-path}}$
- \Box Path Effort $F = \prod f_i = \prod g_i h_i$

Multistage Logic Networks

- □ Logical effort generalizes to multistage networks
- \square Path Logical Effort $G = \prod g_i$
- □ Path Electrical Effort $H = \frac{C_{load-path}}{C_{in-path}}$
- \square Path Effort $F = \prod f_i = \prod g_i h_i$
- \Box Can we write F = GH?

Paths that Branch

■ No! Consider paths that branch:

Paths that Branch

■ No! Consider paths that branch:

G = 1(1)=1
H = 90 / 5 = 18
GH = 18

$$h_1$$
 = (15 +15) / 5 = 6
 h_2 = 90 / 15 = 6
F = $g_1h_1g_2h_2$ = 36 = 2GH

Branching Effort

- ☐ Introduce *branching effort*
 - Accounts for branching between stages in path

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

$$B = \prod b_i$$

Note:

$$\prod h_i = BH$$

■ Now we compute the path effort

$$-F = GBH$$

Multistage Delays

□ Path Effort Delay

$$D_F = \sum f_i$$

□ Path Parasitic Delay

$$P = \sum p_i$$

Path Delay

$$D = \sum d_i = D_F + P$$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

□ Delay is the smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$
 best stage effort

☐ Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

- □ This is a key result of logical effort
 - Find smallest possible delay
 - Doesn't require calculating gate sizes

Gate Sizes

☐ How wide should the gates be for least delay?

$$\hat{f} = gh = f_i = g_i \frac{C_{load}(i)}{C_{in}(i)}$$

$$\Rightarrow C_{in}(i) = \frac{g_i C_{load}(i)}{\hat{f}}$$

- □ Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- ☐ Check work by verifying input cap spec is met.

☐ Select gate sizes x and y for least delay from A to B

H =

Logical Effort

Electrical Effort

Branching Effort

Path Effort

Best Stage Effort

Parasitic Delay P =

Delay D =

Logical Effort

Electrical Effort

Branching Effort

Path Effort

Best Stage Effort

Parasitic Delay

Delay

$$G = (4/3)*(5/3)*(5/3) = 100/27$$

H = 45/8

$$B = 3 * 2 = 6$$

$$\hat{f} = \sqrt[3]{F} = 5$$

$$P = 2 + 3 + 2 = 7$$

$$D = 3*5 + 7 = 22 = 4.4 FO4$$

Work backward for sizes

Vork backward for sizes
$$Cin_i = (W_p + W_n) = \frac{g_i C_{load_i}}{f}$$

$$\chi =$$

■ Work backward for sizes

$$y = (5/3)*45 / 5 = 15$$

$$x = (5/3)*(15*2) / 5 = 10$$

$$Cin_i = (W_p + W_n)C = \frac{g_i C_{load i}}{f}$$

■ Work backward for sizes

$$Cin_i = (W_p + W_n) = \frac{g_i C_{loadi}}{f}$$

Best Number of Stages

- ☐ How many stages should a path use?
 - Minimizing number of stages is not always fastest
- ☐ Example: drive 64-bit data path with unit inverter

$$H = \frac{64}{1} = 64$$

Logical Effort

Best Number of Stages

- ☐ How many stages should a path use?
 - Minimizing number of stages is not always fastest
- ☐ Example: drive 64-bit datapath with unit inverter

Best stage effort: $\hat{f} = F^{1/N}$

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

Best Number of Stages

- ☐ How many stages should a path use?
 - Minimizing number of stages is not always fastest
- ☐ Example: drive 64-bit datapath with unit inverter

Best stage effort: $\hat{f} = F^{1/N}$

$$D = NF^{1/N} + P$$
$$= N(64)^{1/N} + N$$

Derivation

- Consider adding inverters to end of path
 - How many give least delay?

$$D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$$

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

 $oldsymbol{\square}$ Define best stage effort $ho = F^{rac{1}{N}}$

$$p_{inv} + \rho (1 - \ln \rho) = 0$$

Best Stage Effort

- $p_{inv} + \rho (1 \ln \rho) = 0 \text{ has no closed-form solution }$
- \Box For $p_{inv} = 1$, solve numerically for $\rho = 3.59$
- □ A path achieves the least delay by using the number of stages

$$\hat{N} = \log_{\rho} F$$

Sensitivity Analysis

→ How sensitive is delay to using exactly the best number of stages?

1.6 1 1.51.

- \square 2.4 < ρ < 6 gives delay within 15% of optimal
 - \square ρ = 4 is a reasonable number

Example, Revisited

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

Register File

Number of Stages

Decoder effort is mainly electrical and branching

Electrical Effort: H = (32*3)/10 = 9.6

Branching Effort: B = 16/2 = 8

- 16 bit decoder will be wired to either the address (A3-A0) or the address not (A3'-A0'), two options.
- \Box If we neglect logical effort (assume G = 1)

Path Effort: F = GBH = 76.8

Number of Stages: $N = log_4F = 3.1$

☐ Try a 3-stage design

Gate Sizes & Delay

Logical Effort: G =

Path Effort: F =

Stage Effort: $\hat{f} =$

Path Delay: D =

Gate sizes: z = y =

Gate Sizes & Delay

Logical Effort: G = 1 * 6/3 * 1 = 2

Path Effort: F = GBH = 2*8*9.6 = 154

Stage Effort: $\hat{f} = F^{1/3} = 5.36$

Path Delay: $D = 3\hat{f} + 1 + 4 + 1 = 22.1$

Gate sizes: z = 96*1/5.36 = 18 y = 18*2/5.36 = 6.7

Comparison

☐ Compare many alternatives with a spreadsheet

Design	N	G	Р	D
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV	6	16/9	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G = \prod g_i$
electrical effort	$h = \frac{C_{load}}{C_{in}}$	$H = \frac{C_{load-path}}{C_{in-path}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	$F = GBH = \prod f_i$
effort delay	f	$D_F = \sum f_i$
parasitic delay	p	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

Method of Logical Effort

1) Compute path effort

$$F = GBH$$

2) Estimate best number of stages

$$N = \log_4 F$$

3) Sketch path with N stages

$$D = NF^{\frac{1}{N}} + P$$

5) Determine best stage effort

$$\hat{f} = F^{\frac{1}{N}}$$

6) Find gate sizes
$$C_{in_i} = \frac{g_i C_{L_i}}{\hat{f}}$$

7) Using rising effective resistance equals falling effective resistance to find N and P transistors sizes

Limits of Logical Effort

- ☐ Linear delay model fails to capture the effort of input slope
- Logical Effort does not account for Interconnect
 - Iteration required in designs with wire
- Logical effort is most applicable to high speed circuit with regular layouts where routing delay does not dominate
- Maximum speed only
 - Not minimum area/power for constrained delay
- □ Paths with complex branching are difficult to analyze by hand.

Summary

- ☐ Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS
 - Paths are fastest when stage effort is ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about log₄F, FO4 inverter delays
 - Inverters and NAND2 best for driving large caps
 - Practical limit of about 4 transistors in series and 4 inputs to multiplexers
- Provides language for discussing fast circuits

4.3, 4.4, 4.6, 4.9, 4.10, 4.11

Logical Effort

CMOS VLSI Design