

Gaussian distribution

- <u>Univariate</u> Gaussian distributions are determined by μ and σ
- μ = Mean value
 - → centre of distribution
- σ = standard deviation
 - → measure of dispersion

How for from the mean can the values take place.

The prob. of x occurring, now x is a vector that contains values n, & x2, is given by the joint probability of (x1, x2). Now, extimating this distribution.

The probability of a value x occurring is given by the joint probability of x1 and x2

- μ1 and μ2.
- $\sigma^2 1$ and $\sigma^2 2$.

From given values of $x_1 & x_2$ we can calculate the mean and variance.

- $\mu 1$ and $\mu 2$.
- $\sigma^2 1$ and $\sigma^2 2$.
- X1 ~N(μ 1=0, σ ²1=1)

- μ1 and μ2.
- σ^2 1 and σ^2 2.

• X1 ~N(
$$\mu$$
1=0, σ^2 1=1)

• X2 ~N(μ 2=0, σ^2 2=1)

But the params. of the respective variables are not enough to cleatribe the dispersion or joint occurance of each one of these values we want to find a function that allows us to estimate the prob. of each of these vectors occuring

- μ1 and μ2.
- $\sigma^2 1$ and $\sigma^2 2$.
- X1 ~N(μ 1=0, σ^2 1=1)
- $X2 \sim N(\mu 2=0, \sigma^2 2=1)$

This joint distribution has a center, denoting the mean of values, in this case it's a vector.

And a measure of dispersion, denoted by the Ellipse (here circle), shows the

dispersion that the values can take away from the mean in any direction.

- μ1 and μ2.
- $\sigma^2 1$ and $\sigma^2 2$.
- X1 ~N(μ 1=0, σ^2 1=1)
- X2 ~N(μ 2=0, σ^2 2=1)

- μ1 and μ2.
- $\sigma^2 1$ and $\sigma^2 2$.
- X1 ~N(μ 1=0, σ^2 1=1)
- $X2 \sim N(\mu 2=0, \sigma^2 2=1)$

Covariance matrix =
$$\Sigma = \begin{bmatrix} K_{X1X1} & K_{X1X2} \\ K_{X2X1} & K_{X2X2} \end{bmatrix} = \begin{bmatrix} \nabla_{\mathbf{x}_1 \mathbf{x}_1}^2 & \nabla_{\mathbf{x}_1 \mathbf{x}_2}^2 \\ \nabla_{\mathbf{x}_2 \mathbf{x}_1}^2 & \nabla_{\mathbf{x}_2 \mathbf{x}_2}^2 \end{bmatrix} \Rightarrow \text{Capturs variance}$$

•
$$\sigma^2 1$$
 and $\sigma^2 2$.

• μ1 and μ2.

• X1 ~N(
$$\mu$$
1=0, σ^2 1=1)

•
$$X2 \sim N(\mu 2=0, \sigma^2 2=1)$$

•
$$X = \begin{bmatrix} x1 \\ x2 \end{bmatrix} \sim N(\mu = \begin{bmatrix} m1 \\ m2 \end{bmatrix}, \Sigma = \begin{bmatrix} K_{X1X1} & K_{X1X2} \\ K_{X2X1} & K_{X2X2} \end{bmatrix})$$

- Generalizes the univariate Gaussian distribution to higher dimensions
 - ✓ More than 1 variable
 - ✓ Instead of values, we now have <u>vectors</u>
- Multivariate Gaussian distributions need μ , σ^2 and the covariance Σ
 - Covariance matrix: captures σ^2 and Σ

Measure of joint probability of 2 random variables.

Measure of correlation

• Cov(X1, X2) =
$$\frac{\sum (x_{ij} - x_{jmean})(x_{ik} - x_{kmean})}{n}$$

The covariance matrix $(\mathbf{\Sigma})$ describes the shape of multivariate (raussian dist.

The simplest convariance matrix is an identity matrix. This yields a circular

of some of the off-diagonal values are non-zero, this covariance b/w > components skews the orientation of the Craussian so that it no longer oriented along the axes. The off-diagonal cov. values tells that some components one non-independent, they vary winto

=> M = 0

$$\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \qquad \mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Train In Data

each other. The mean(i) defines the offset of the whole dist. shifting the whole thing in

Measure of joint probability of 2 random variables.

• Cov(X1, X2) =
$$\frac{\sum (x_{ij} - x_{jmean})(x_{ik} - x_{kmean})}{n}$$

X1	X2	
12	10	
8	7	
16	13	

$$Cov(X1, X2) = \frac{(12-12)*(10-10)+(8-12)*(7-10)+(16-12)*(13-10)}{3} = 8$$

x1	x2
12	10
8	7
16	13

x1	x2
12	10
8	13
16	7

12 10

Cov(X1, X2) = ?

(12 - 12) * (10 - 10) + (8 - 12) * (7 - 10) + (16 - 12) * (13 - 10)

= 8

$$Cov(X1, X2) = -8$$

= - 8

Cov(X1, X2) = -4

• Cov(x1,x2) < 0

 The bigger x1, the smaller x2

np.sum((x1 - np.mean(x1)) * (x2 - np.mean(x2))) / n

1.7016981044990922

Covariance Matrix

- Square matrix with the covariance of each pair of variables.
- Symmetric
- The diagonal contains the variances, i.e., the covariance of each variable with itself

 The covariance matrix provides a succinct way to summarize the covariance of all pairs of variables

$$\sum = \begin{bmatrix} T_{x_{1}x_{1}} & T_{x_{1}x_{2}} \\ T_{x_{2}x_{1}} & T_{x_{2}x_{2}} \end{bmatrix}$$

$$\sum = \begin{bmatrix} K_{x_{1}x_{1}} & K_{x_{1}x_{2}} \\ K_{x_{2}x_{1}} & K_{x_{2}x_{2}} \end{bmatrix}$$

Where:

- Kx1x1 = var(x1)
- Kx2x2 = var(x2)
- $Kx1x2 = K^Tx2x1 = cov(x1, x2)$

Covariance Matrix - General

$$\Sigma = \begin{bmatrix} Kx_1x_1 & \cdots & Kx_1x_n \\ \vdots & \ddots & \vdots \\ Kx_nx_1 & \cdots & Kx_nx_n \end{bmatrix}$$

Covariance Matrix

$$\Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$$

$$\Sigma = \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix}$$

Covariance Matrix: simulation

$$X = \begin{bmatrix} x1 \\ x2 \end{bmatrix} \sim N(\mu = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$$

$$\times \sim N(\mu, \Sigma)$$

$$\begin{bmatrix} x1\\ x2 \end{bmatrix} \sim \mathsf{N}(\mu = \begin{bmatrix} 0\\ 0 \end{bmatrix}, \Sigma = \begin{bmatrix} 1 & -0.5\\ -0.5 & 1 \end{bmatrix})$$

$$\begin{bmatrix} x1\\ x2 \end{bmatrix} \sim \mathsf{N}(\mu = \begin{bmatrix} 0\\ 0 \end{bmatrix}, \, \Sigma = \begin{bmatrix} 1 & 0.5\\ 0.5 & 1 \end{bmatrix})$$

$$f_{\mathbf{X}}(x_1,\ldots,x_k) = rac{\expigl(-rac{1}{2}(\mathbf{x}-oldsymbol{\mu})^{\mathrm{T}}oldsymbol{\Sigma}^{-1}(\mathbf{x}-oldsymbol{\mu})igr)}{\sqrt{(2\pi)^k|oldsymbol{\Sigma}|}}$$

The probability of a value x occurring is given by the joint probability of x1 and x2

THANK YOU

www.trainindata.com