# Zero Knowledge

application area & developer tools

# Zero Knowledge Proofs

```
What is Zero Knowledge Proofs (ZKP)?
```

Why & where do we need ZKP?

What technologies can be used for programming?





Proof

Here is X and Z, I know of an Ysuch that F(X, Y) = Z

#### Range (Age) proof example



Proof

Here is X and Z, I know of an Y
such that F(X, Y) = Z





# Application area



# Scaling



# Scaling



Nov 2017

Eth volume per day



Nov 2018

May 2018

## Features change



Kitty price

Speed

Amount of transactions

### Transactions distribution



KryptoKitties

Other

# Why scaling?



- Enable new use-cases (games, prediction, logistics, etc.)
- Future need for many TXs

# Scaling blockchains





# Comparison

Secure
Less secure

- InsecureTo be done
- Not available yet
- O Radius = size



# Layer two scaling



# Privacy

1

Secure Payments

Mixers

2

Settlement layer for DEXes

Prevent front-running attack

3

Private smart contracts

New opportunities for DeFi

# Tech approach

## **zkSNARKs**

## zkSTARKs

## Bulletproofs

Based on range proof & pedersen commitments (Monero)

### Aztec

Custom privacy protocol With custom elliptic curve

#### Legend

- ZKP = Zero-Knowledge Proof
- zkSNARK = ZK Succinct Non-Interactive ARgument of Knowledge
- zkSTARK = ZK Scalable Transparent ARgument of Knowledge
- AZTEC = Anonymous Z(K) Transactions with Efficient Communication







# **SNARKs**

- Required trusted setup: Groth16 SONIC
- Based on elliptic curves: BN256 for Ethereum, bls12-381 for Zcash

# **STARKs**

- Based on hashes in merkle trees
- Not proven by time
- Post quantum resistant

## SNARKS VS STARKS

|                                       | SNARKs                          | STARKS                                      |
|---------------------------------------|---------------------------------|---------------------------------------------|
| Algorithmic complexity: power         | 0(N * log(N))                   | O(N * poly-log(N))                          |
| Algorithmic complexity: verifier      | ~ 0(1) 😜                        | O(poly-log(N))♀                             |
| Communication complexity (proof size) | ~ 0(1) 😜                        | O(poly-log(N))♀                             |
| Size estimate for 1 TX                | Tx: 200 bytes,<br>Key: 50 MB 😄  | 45 kb😧                                      |
| Size estimate for 10.000 TX           | Tx: 200 bytes,<br>Key: 500 MB 😄 | 135 kb😴                                     |
| Ethereum/EVM verification gas cost    | ∼ 600k (Groth16) <b>⊜</b>       | ~ 2.5M<br>(estimate, no impl.) <del>v</del> |
| Trusted setup required?               | YES 😌                           | NO 😄                                        |
| Post-quantum secure                   | NO 😴                            | YES 😄                                       |
| Crypto assumptions                    | Strong 😌                        | Collision resistant<br>hashes 😄             |
| Time to generate a proof              |                                 |                                             |

# What are SONICs?

SONIC is a proof system, that:

- (#) Universal
- 👏 Updatable



nttps://eprint.iacr.org/2019/099

# Libraries

#first\_in\_class

ZoKrates

Python style, Rust based Oldest one

#faster

LibSnark / EthSnarks

C++ based
Examples: Roll\_up, miximus

#user\_friendly

Iden3 - Circom

JS based Recommended as entry point

#faster

Bellman

Used by zCash, Rust based

# **Proposal**

- 1 Precompile for generic elliptic curves (BN256, Groth16)
- 2 Cost of transaction data vs Storage
- Wallet support for DApp specific crypto
- 4 WebAssembly support for ADDC, MULQ, CMUL
- 5 WebCrypto support for custom crypto?

Ethereum Improvement Proposals

🦙 Fellowship of Ethereum Magicians 🦮

Reduce the cost of transaction data

■ EIPs istanbul, eip, scaling, gas

**Extensible crypto for wallets** 

Working Groups Wallet Ring security

## ZKP research links

#### **BASICS**

- Awesome ZKP list
  https://github.com/matter-labs/awesome-zero-knowledge-proofs
- ZKP From Zero to Hero: R1CS + QAP (Quadratic Arithmetic Programs)
  https://medium.com/@VitalikButerin/quadratic-arithmetic-programs-from-zero-to-hero-f6d558cea649

#### **ELLIPTIC CURVES IMPLEMENTATIONS**

- https://github.com/dis2/bls12
- https://github.com/ethereum/go-ethereum/tree/master/crypto/bn256

#### **PAIRING**

- Explainer (by Vitalik)

  https://medium.com/@VitalikButerin/exploring-elliptic-curve-pairings-c73c1864e627
- About Pairings by zcash:
   https://z.cash/blog/snark-explain7/

## ZKP development links

#### **CIRCOM**

https://github.com/iden3/circom/

#### Examples:

- Original
  https://github.com/iden3/circom/blob/master/TUTORIAL.md
- Confidential transactions EthDenver winner project https://github.com/zdai-io/zDai-mixer
- https://github.com/GuthL/roll\_up\_circom\_tutorial

#### LIBSNARK / ETHSNARKs

- https://github.com/HarryR/ethsnarks
- https://github.com/howardwu/libsnark-tutorial

## ZKP development links 2

#### BELLMAN (RUST)

https://github.com/matter-labs/bellman

#### Examples:

- Edcon2019 material
  https://github.com/matter-labs/Edcon2019\_material
- Igor's example
  https://github.com/snjax/bellman\_cube

#### ZKP in WebAssembly

- https://github.com/kobigurk/wasm\_proof
- https://blog.decentriq.ch/zk-snarks-primer-part-one/
- https://slideslive.com/38911801/snarks-for-mixing-si

#### **Zokrates**

Devcon ZKPs tutorial
https://github.com/leanthebean/puzzle-hunt

#### Contact





# Petr Korolev

- Researcher
  - Developer •
  - ETHusiast •