A PRELIMENERY REPORT ON

"Titanic survivor prediction"

SUBMITTED TO THE SAVITRIBAI PHULE PUNE UNIVERSITY, PUNE IN HE PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE AWARD OF THE DEGREE OF

BACHELOR OF ENGINEERING (COMPUTER ENGINEERING)

GUIDED BY

Prof Bhosale.S.S

SUBMITTED BY

JADHAV TEJAS VINOD (72155650H)

DEPARTMENT OF COMPUTER ENGINEERING HSBPVT's FACULTY OF ENGINEERING, KASHTI

SAVITRIBAI PHULE PUNE UNIVERSITY

SUBMISSION: 2023-2024

CERTIFICATE

This is to certify that the mini project report on

"Titanic survivor prediction"

SUBMITTED BY,

This is to certify that Mr. Tejas Vinod Jadhav has successfully completed the mini project
work entitled "Titanic survivor prediction" under my supervision, in the partial fulfillment of
Bachelor in Engineering (Computer) of Savitribai Phule Pune University, Pune.

Guide (Bhosale S. S.)
Department of Computer Engineering

Head (Hirnawale S. B.)
Department of Computer Engineering

Date:

Place:

Kashti

ACKNOWLDGEMENT

The present world of competition there is a race of existence in which those are having will to comeforward succeed. Project is like a bridge between theoretical and practical working. First of all, I would like to thank the supreme power the Almighty God who is obviously the one has always guided me to work on the right path of life.

I am indebted to our project guide **Miss. Bhosale S.S**, Department of Computer Science of faculty of engineering, kashti. I feel it's a pleasure to be indebted to our guide for his valuable support, advice and encouragement and thankful for HOD to cooperate I think him for his superb and constant guidance.

Mr. Tejas Vinod Jadhav

INDEX

Sr. No	Table of Contents	Page Number
1.	Introduction	5
2.	Abstract	6
3.	Problem Definition	7
4.	System Architecture	8
5.	Description	9
6.	Implementation	12
7.	Conclusion	16
8.	References	17

INTRODUCTION

Using the well-known Titanic dataset as a starting point, I would create a machine learning model. This provides a prognosis of the Titanic's likelihood of surviving, taking into consideration a number of variables like economic standing (class), sex, age, etc.

This is taken into account, and many features are compared and found to have relationships in order to estimate whether a passenger would survive on the Titanic. because it is a component of "Titanic: Machine Learning from Disaster." In this exercise, we must determine whether a Titanic passenger would have survived or not.

The RMS Titanic was the largest ship a float at the time it entered service and was the second of three Olympic-class ocean liners operated by the White Star Line. The Titanic was built by the Harland and Wolff shipyard in Belfast. Thomas Andrews, her architect, died in the disaster.

The RMS Titanic was a British passenger liner that sank in the North Atlantic Ocean in the early morning hours of 15 April 1912, after it collided with an iceberg during its maiden voyage from

PROBLEM DEFINITION

Titanic Survival Prediction Using Machine Learning:

Build a machine learning model that predicts the type of people who survived the titanicshipwreck using passenger data (i.e. name, age, gender, socioeconomic class, etc).

SYSTEM ARCHITECTURE

I will be understanding, how to analyze and predict, whether a person, who had boarded the RMSTitanic has a chance of survival or not, using Machine Learning's Logistic Regression model.

Brief description about Logistic Regression:

A simple yet crisp description of Logistic Description would be, "it is a supervised learning classification algorithm used to predict the probability of a target variable. The nature of target or dependent variable is dichotomous, which means there would be only two possible classes." The graphof logistic regression is as shown below:

For better understanding, let's split the task into smaller parts and depict them in a work flow as shownbelow:

Work Flow

As I now know what I have to do, to accomplish this task, I shall begin with the very first and the most important thing needed in machine learning, a **Dataset.**

What is a dataset:

A data set, as the name suggests, is a collection of data. In Machine Learning projects, we need atraining data set. It is the actual data set used to train the model for performing various actions.

DESCRIPTION

Data Set Column Descriptions:

- **pclass:** Passenger Class (1 = 1st; 2 = 2nd; 3 = 3rd)
- **survived:** Survival (0 = No; 1 = Yes)
- name: Name
- sex: Sex
- age: Age
- **sibsp:** Number of siblings/spouses aboard
- parch: Number of parents/children aboard
- **fare:** Passenger fare (British pound)
- **embarked:** Port of embarkation (C = Cherbourg; Q = Queenstown; S = Southampton)
- adult_male: A male 18 or older (0 = No, 1=Yes)
- **deck:** Deck of the ship
- **who:** man (18+), woman (18+), child (<18)
- alive: Yes, no
- embarked_town: Port of embarkation (Cherbourg, Queenstown, Southampton)
- **class:** Passenger class (1st; 2nd; 3rd)
- alone: 1= alone, 0= not alone (you have at least 1 sibling, spouse, parent or child on board) age:

Age is fractional if less than 1. If the age is estimated, is it in the form of xx.5

Sibsp:

The dataset defines family relations in this way:

- Sibling= brother, sister, stepbrother, stepsister
- Spouse= husband, wife (mistresses and fiancés were ignored)

Parch:

The dataset defines family relations in this way:

- Parent= mother, father
- Child= daughter, son, stepdaughter, stepson
 Some children traveled only with a nanny, therefore parch=0 for them.

Visualize the count of survivors for the columns who, sex, pclass, sibsp, parch, and embarked.

• From the charts below, we can see that a man (a male 18 or older) is not likely to survive from the chart who.

- Females are most likely to survive from the chart sex.
- Third class is most likely to not survive by chart pclass.
- If you have 0 siblings or spouses on board, you are not likely to survive according to chart sibsp.
- If you have 0 parents or children on board, you are not likely to survive according to the parchchart.
- If you embarked from Southampton (S), you are not likely to survive according to the embarkedchart.

IMPLEMENTATION

Start Programming: Now import the packages /libraries to make it easier to write the program.

```
Build a machine learning model that predicts the type of people who survived the titanic shipwreck using passenger data age name gender socio-economics
        class etc
In [44]: import pandas as pd
        import numpy as np
        from sklearn.preprocessing import LabelEncoder, StandardScaler
        from sklearn.model_selection import cross_val_score, train_test_split
        from sklearn.ensemble import RandomForestClassifier
        from sklearn.metrics import confusion_matrix, classification_report
        ## The matplotlib and seaborn library for result visualization and analysis
        import matplotlib.pyplot as plt
        import seaborn as sns
        sns.set theme(style='darkgrid')
In [45]: train = pd.read csv('C:/Users/DHAWADE/Desktop/BE/ML/train.csv')
         test = pd.read_csv('C:/Users/DHAWADE/Desktop/BE/ML/test.csv')
In [134]: train.shape, test.shape
Out[134]: ((891, 12), (418, 11))
In [135]: train.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 891 entries, 0 to 890
          Data columns (total 12 columns):
          # Column
                          Non-Null Count Dtype
          0
              PassengerId 891 non-null
              Survived
                          891 non-null
                                         int64
              Pclass
                          891 non-null
                                        int64
              Name
                          891 non-null
                                        object
              Sex
                          891 non-null
                                        object
                          891 non-null
                                         int32
                          891 non-null
              SibSp
                                        int64
              Parch
                          891 non-null
                                        int64
          8
              Ticket
                          891 non-null
                                        object
                                        float64
              Fare
                          891 non-null
          10 Cabin
                          891 non-null
                                        object
          11 Emharked
                          891 non-null
                                        object
          dtypes: float64(1), int32(1), int64(5), object(5)
          memory usage: 80.2+ KB
   In [136]: test.info()
                 <class 'pandas.core.frame.DataFrame'>
                 RangeIndex: 418 entries, 0 to 417
                 Data columns (total 11 columns):
                                         Non-Null Count Dtype
                       Column
                  0
                        PassengerId 418 non-null
                                                              int64
                                         418 non-null
                  1
                        Pclass
                                                              int64
                  2
                       Name
                                         418 non-null
                                                              object
                  3
                        Sex
                                         418 non-null
                                                              object
                  4
                                         418 non-null
                                                              int32
                       Age
                  5
                       SibSp
                                         418 non-null
                                                              int64
                  6
                       Parch
                                         418 non-null
                                                              int64
                  7
                        Ticket
                                         418 non-null
                                                              object
                  8
                                         418 non-null
                                                              float64
                        Fare
                  9
                                         418 non-null
                                                              object
                        Cabin
                  10 Embarked
                                         418 non-null
                                                               object
                 dtypes: float64(1), int32(1), int64(4), object(5)
```

memory usage: 34.4+ KB

In [137]: train.head()

Out[137]:

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22	1	0	A/5 21171	7.2500	Х	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38	1	0	PC 17599	71.2833	С	С
2	3	1	3	Heikkinen, Miss. Laina	female	26	0	0	STON/O2. 3101282	7.9250	Х	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35	1	0	113803	53.1000	С	S
4	5	0	3	Allen, Mr. William Henry	male	35	0	0	373450	8.0500	Х	S

In [138]: test.head()

Out[138]:

	Passengerld	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	22	0	0	330911	7.8292	Х	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	38	1	0	363272	7.0000	Х	S
2	894	2	Myles, Mr. Thomas Francis	male	26	0	0	240276	9.6875	Х	Q
3	895	3	Wirz, Mr. Albert	male	35	0	0	315154	8.6625	Х	s
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	35	1	1	3101298	12.2875	Х	S

In [139]: train.describe()

Out[139]:

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.388328	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	13.525408	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.000000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.000000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	37.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

In [140]: test.describe()

Out[140]:

	Passengerld	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	418.000000	418.000000	418.000000	418.000000
mean	1100.500000	2.265550	28.519139	0.447368	0.392344	35.627188
std	120.810458	0.841838	13.157991	0.896760	0.981429	55.840500
min	892.000000	1.000000	0.000000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	20.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	36.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	71.000000	8.000000	9.000000	512.329200

In [141]: train.nunique() Out[141]: PassengerId 891 Survived 2 3 Pclass 891 Name Sex 2 71 7 Age SibSp 7 Parch Ticket 681 Fare 248 Cabin 9 Embarked dtype: int64 In [142]: test.nunique() Out[142]: PassengerId 418 Pclass 3 418 Name Sex 2 62 7 Age SibSp Parch 8 Ticket 363 170 Fare Cabin 8 Embarked 3 dtype: int64 In [143]: train['Cabin'].fillna(value='X', inplace=True) train['Cabin'] = train['Cabin'].str[0] df_tr = train[['Cabin', 'Fare']].groupby('Cabin').mean().reset_index() a = sns.barplot(x=df_tr['Cabin'], y=df_tr['Fare']) 100

```
In [149]: FacetGrid = sns.FacetGrid(train, row='Embarked', aspect=1.6)
    FacetGrid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette=None, order=None, hue_order=None)
    FacetGrid.add_legend()
                C:\ProgramData\anaconda3\Lib\site-packages\seaborn\axisgrid.py:118: UserWarning: The figure layout has changed to tight
    self._figure.tight_layout(*args, **kwargs)
```

male female


```
In [150]: sns.barplot(x='Pclass', y='Survived', data=train)
```

Out[150]: <Axes: xlabel='Pclass', ylabel='Survived'>

In [151]: test['Fare'].fillna(value=test.Fare.mean(), inplace=True)
 test['Cabin'].fillna(value='X', inplace=True)
 test['Cabin'] = test['Cabin'].str[0]
 df_te = test[['Cabin', 'Fare']].groupby('Cabin').mean().reset_index()
 a = sns.barplot(x=df_te['Cabin'], y=df_te['Fare'])


```
In [152]: train['Embarked'] = train.Embarked.fillna(train.Embarked.dropna().max())
In [153]: guess_ages = np.zeros((2,3))
           combine = [train , test]
           # Converting Sex categories (male and female) to 0 and 1:
          for dataset in combine:guess_ages
In [154]: data = [train, test]
           for dataset in data:
               mean = train["Age"].mean()
               std = test["Age"].std()
               is_null = dataset["Age"].isnull().sum()
               # compute random numbers between the mean, std and is_null
               rand_age = np.random.randint(mean - std, mean + std, size = is_null)
               # fill NaN values in Age column with random values generated
               age_slice = dataset["Age"].copy()
               age_slice[np.isnan(age_slice)] = rand_age
          dataset["Age"] = age_slice
  dataset["Age"] = train["Age"].astype(int)
train["Age"].isnull().sum()
Out[154]: 0
In [155]: train.isna().sum()
Out[155]: PassengerId
           Survived
                           0
           Pclass
           Name
                           0
                           0
           Sex
                           0
           Age
           SibSp
                           0
           Parch
                           0
           Ticket
                           0
           Fare
                           0
           Cabin
                           0
           Embarked
                           0
           dtype: int64
In [156]: test.isna().sum()
Out[156]: PassengerId
           Pclass
                           0
           Name
                           0
                           0
           Sex
           Age
                           0
           SibSp
                           0
           Parch
                           0
           Ticket
                           0
           Fare
                           0
           Cabin
           Embarked
                           0
```


	Model
Score	
92.82	Random Forest
92.82	Decision Tree
87.32	KNN
81.14	Logistic Regression
80.81	Support Vector Machines
80.70	Perceptron
77.10	Naive Bayes
76.99	Stochastic Gradient Decent

train_df.head(10)

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	relatives	not_alone	Deck	Title
0	0	3	0	2	1	0	7	0	1	0	8	1
1	1	1	1	5	1	0	71	1	1	0	3	3
2	1	3	1	3	0	0	7	0	0	1	8	2
3	1	1	1	5	1	0	53	0	1	0	3	3
4	0	3	0	5	0	0	8	0	0	1	8	1
5	0	3	0	4	0	0	8	2	0	1	8	1
6	0	1	0	6	0	0	51	0	0	1	5	1
7	0	3	0	0	3	1	21	0	4	0	8	4
8	1	3	1	3	0	2	11	0	2	0	8	3
9	1	2	1	1	1	0	30	1	1	0	8	3

EXPECTED OUTPUT

	Passengerld	Survived	Polass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	s
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/02. 3101282	7.9250	NaN	s
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

After:

	Survived	Pclass	Sex	Age	SibSp	Parch	Fare	Embarked	relatives	not_alone	Deck	Title	Age_Class	Fare_Per_Pers
0	0	3	0	2	1	0	0	0	1	0	8	1	6	0
1	1	1	1	5	1	0	3	1	1	0	3	3	5	1
2	1	3	1	3	0	0	0	0	0	1	8	2	9	0
3	1	1	1	5	1	0	3	0	1	0	3	3	5	1
4	0	3	0	5	0	0	1	0	0	1	8	1	15	1

CONCLUSION:

We started with the data exploration where we got a feeling for the dataset, checked about missing data and learned which features are important. During this process we used seaborne and matplotlib to do the visualizations. During the data preprocessing part, we computed missing values, converted features into numeric ones, grouped values into categories and created a few new features.

REFERENCES:

- 1. Michalski R S, et al. Machine Learning: Challenges of the eighties. Machine Learning, 1986, 99-102.
- 2. Analyzing Titanic disaster using machine learning algorithms-Computing, Communication and Automation (ICCCA), 2012 International Conference on 21 December 2017, IEEE.
- 3.Eric Lam, Chongxuan Tang, "Titanic Machine Learning From Disaster", LamTang-Titanic Machine Learning From Disaster, 2012.

