14.1 概要

時間を計ります。具体的には、タイマ RB で 1ms ごとに割り込みを発生させ、その回数で時間を計ります。

■使用ポート

ポート	
(J2)	

実習基板を使ったときの接続例を次に示します。

操作は特にありません。電源を入れると LED が点滅します。 LED の点滅の仕方をよく観察してください。

	固定割り込みベクタアドレスの設定、スタートアッププログラム、RAM の初期化(初期値の
	ルは共通で、どのプロジェクトもこのファイルから実行されます。
	実際に制御するプログラムが書かれています。R8C/35Aの内蔵周辺機能(SFR)の初期化
	R8C/35A マイコンの内蔵周辺機能を制御するためのレジスタ(Special Function

1:	/*******	********	***********	*****
3:	/* ファイル内容	タイマRB割り込みによる	5タイマ	*/
5:	/* Date	2010. 04. 19		*/
7:	/*	日立インターメディック	クス株式会社	*/
9:	/*			
11:				
13:	タイマはタイマR	B割り込みによる正確な。	タイマを使用します。	
15:				
17:	/* インクルード		*/	
19 : 20 :	#include "sfr_r	835a. h"	/* R8C/35A SFR⊅	
22 :	/* シンボル定義		*/	
24:				
26:	/* プロトタイプ	宣言	*/	
28 :	void init(void	1);		
30 :				
32:	/* グローバル変	数の宣言	*/	
34:	unsigned long c	nt_rb;	/* タイマRB用	*/

```
37: /* メインプログラム
                                                           */
39 : void main(void)
41:
       init();
                                   /* 初期化
                                                           */
43:
45 :
         p6 = 0x55;
47:
          p6 = 0xaa;
49:
         p6 = 0x00;
51:
53:
55: /* R8C/35A スペシャルファンクションレジスタ(SFR)の初期化
57: void init(void)
59:
        int i;
        /* クロックをXINクロック(20MHz)に変更 */
61:
                                   /* P4_6, P4_7をXI
/* XINクロック発振
63 :
64 :
        cm13 = 1;
cm05 = 0;
       ocd2 = 0;
prc0 = 0;
                                   /* システムクロックをXIN
/* プロテクトON
69:
        /* ポートの入出力設定 */
71:
        pd0 = 0xe0;
                                   /* 7-5:LED 4:MicroSW 3-0:Sensor */
73:
        pd1 = 0xdf;
                                   /* 5:RXD0 4:TXD0 3-0:LED
75 :
        pd3 = 0xfb;
                                   /* 4:Buzzer 2:IR
                                                           */
        pd5 = 0x40;
77 :
                                   /* 7:DIP SW
                                                           */
79:
        /* 割り込み周期 = 1 / 20[MHz] * (TRBPRE+1) * (TRBPR+1)
81:
                   = 0.001[s] = 1[ms]
83:
85:
        trbmr = 0x00;
                                   /* 動作モード、分周比設定
                                                           */
87 :
        trbpr = 100-1;
                                   /* プライマリレジスタ
                                                           */
                                   /* カウント開始
89 :
        trbcr = 0x01;
                                                           */
91:
93: /* タイマ本体
97: {
99:
       while( cnt_rb < timer_set );</pre>
101:
103: /* タイマRB 割り込み処理
                                                           */
105 : #pragma interrupt intTRB(vect=24)
107: {
109 : }
```

14.5.1 割り込みとは

例えば、ピザ屋さんが家 1~3 に注文がないか回るとします。バイト君は、定期的に家を回らなければいけませ ポーリング また、注文がなければ無駄足になってしまいます(下図)。

来ればその家に届ければよいので作業効率が良いです(下図)。

の受け答えをする必要があります。割り込みプログラムに当たります。

・注文がないか聞	きに回る	
視が遅れたり、	監視もれが意	起こります。
制御の用語(て	きもないです	が)で「割り込み」といいます。電話のように、きっかけがあったときにだけ対処すれ
人で例えました	が、マイコン・	の場合は下記のようになります。
ベルが鳴る	\rightarrow	割り込みが発生する

R8C/35Aの割り込みの種類を、下表に示します。

マスカブル割り込み	や割り込み優先レベルによる割り込み優先順位の変更が可能
	フラグレジスタ(FLG)の割り込み許可フラグ(I フラグ)による割り込みの許可(禁止) 不可能

タイマRBを使って、1msごとに割り込みを発生させます。

81: /* 割り込み周期 = 1 / 20[MHz] * (TRBPRE+1) * (TRBPR+1)

83 : = 0.001[s] = 1[ms]

85: trbmr = 0x00; /* 動作モード、分周比設定 */

87: trbpr = 100-1; /* プライマリレジスタ */

89: trbcr = 0x01; /* カウント開始 */

R8C/35A には、タイマ RB というタイマが 1 個内蔵されています。 タイマ RB には、次の 4 種類のモードがありま

モード	
	内部カウントソース(周辺機能クロックまたはタイマ RA のアンダフロー)をカウントする
波形発生モード	
ワンショット発生モード	
ワンショット発生モード	

※タイマ RB の端子構成

	出力	プログラマブルワンショット発生モード、

今回は、タイマRBをタイマモードで使用して、1msごとに割り込みを発生させるように設定にします。レジスタの

タイマ RB のモードを設定します。

上:ビット名	内容	内容
タイマ RB カウントソース遮断	1:カウントソース遮断	0
tckcut_trbmr		O
	"0"を設定	
タイマ RB カウントソース選択 bit5:tck1_trbmr	00:f1 (1/20MHz=50ns) 10:タイマ RA のアンダフロー	
	fl を選択します。	
タイマ RB 書き込み制御ビット	1:リロードレジスタのみ書き込み	0
twrc_trbmr		
	"0"を設定	
タイマ RB 動作モード選択ビッ	00:タイマモード	
bit1:tmod1_trbmr	10:プログラマブルワンショット発生モード	
	タイマモードで動作させるので"00"を設定します。	

TCSTF ビットが共に"0"(カウント停止)のときに変更してください。

ラマブルワンショット発生モード、プログラマブルウェイトワンショット発生モードでは"1"(リロードレジスタの

タイマ RB モードレジスタ(TRBMR)の設定値を下記に示します。

0		0	0	0	0	0
	C					

タイマ RB モードレジスタ(TRBMR)のタイマ RB カウントソース選択ビット(bit5,4)で、タイマ RB プリスケーラレジタイマ RB モードレジスタ(TRBMR)のタイマ RB カウントソース選択ビットの値と、割り込み間隔の関係を下記に

TRBMR	内容
	タイマ RB プリスケーラレジスタ (TRBPRE) がカウントアップする時間を、f1 に設定します。 時間は、
	設定できる割り込み間隔の最大は、 3. 2768ms
	設定したい場合は次以降の値を検討します。
	タイマ RB プリスケーラレジスタ(TRBPRE)がカウントアップする時間を、f2 に設定します。 時間は、
	設定できる割り込み間隔の最大は、 6.5536ms
	設定したい場合は次以降の値を検討します。
	タイマ RB プリスケーラレジスタ (TRBPRE) がカウントアップする時間を、f8 に設定します。 時間は、
	設定できる割り込み間隔の最大は、 2 6.2144ms
	これ以上の割り込み
	間隔を設定することはできません ム側で工夫してください。

"00"の設定…最大の割り込み間隔は3.2768ms、今回設定したい1msの割り込み間隔を設定できるのでOK

③タイマ RB プライマリレジスタ(TRBPR:Timer RB Primary Register)の設定
を設定します。
タイマ RB 割り込み要求周期=タイマ RB カウントソース×(TRBPRE+1)×(TRBPR+1)
(TRBPRE+1)×(TRBPR+1)=タイマ RB 割り込み要求周期/タイマ RB カウントソース
bit5,4 に設定している内容で、今回は f1(50ns)です。よって、
次の条件になるよう、A、B、C 部分を設定してください。
B…1~256以下になるよう、値を設定してください。値は整数です。
今回、A は 20,000 なので、A の条件は満たしています。
例えば、B=200 とすると、
\therefore C=100
B=TRBPRE+1TRBPRE 199 TRBPR 99

このパルスが割り込みを発生させるきっかけになり

震す

タイマ RB プリスケーラレジスタ(TRBPRE)の設定値を下記に示します。

1 9 9							

bit	7	6	5	4	3	2	1	0
				9	9			

タイマ RB の割り込み関係の設定をします。

	上:ビット名	内容	内容
		"0"を設定	
割り込	込み要求ビット	0:割り込み要求なし 割り込みが発生すると自動で"1"になります。割り込 みプログラムプログラムを実行すると自動的に"0"に なります。設定は、"0"にします。	
bit2:	込み優先レベル選択ビッ ilvl2_trbic ilvl0_trbic	 001:レベル 1 011:レベル 3 101:レベル 5 111:レベル 7 優先させるか設定します。レベルの高い割り込みが優先させるかここで決めます。今回の割り込みは、タイマせん。一応、レベルのいちばん高い"111"を設定しま 	111

bit	7	6	5	4	3	2	1	0
		0	0		0	1	1	1
	О							

タイマ RB のカウント動作を開始するよう設定します。

上:ビット名	内容		
	"00000"を設定		
タイマ RB カウント強制停止ビ			
tstop_trbcr	読んだ場合、その値は"0"になります。		
タイマRBカウントステータスフ	1:カウント中(注 3)		
testf_trber	無効です。書き込むときは"0"を設定します。		
タイマ RB カウント開始ビット	1:カウント開始		
tstart_trbcr	設定した瞬間から、カウントが開始されます。		

マRB使用上の注意」を参照してください。

CSTF

注 3. タイマモード、プログラマブル波形発生モードでは、カウント中を示します。プログラマブルワンショット発生を示します。

bit	7	6	5	4	3	2	1	0
		0	0		0		0	1
	О							

先の設定で、タイマ RB を 1ms ごとに割り込みを発生させる設定にしました。intTRB 関数は、この割り込みが発

105 :	#pragma interrupt intTRB(vect=24)
107 :	{
109 :	}

#pragma interrupt (vect=)
ソフトウェア割り込み番号の表を次ページに示します。タイマ RB 割り込みは表より、24 番です。 #pragma interrupt 定します。
タイマ RB 割り込みにより実行する関数です。割り込み関数は、引数、戻り値ともに指定することはでvoid 関数名(void)
cnt_rb 変数を+1 します。この関数は 1ms ごとに実行されるので、cnt_rb は 1ms ごとに+1 されることに

数は割り込み処理関数名ですよ」ということを、宣言します。

void 割り込み処理関数名(void)

プログラム

timer 関数は、実行した行で時間稼ぎをする関数です。プロジェクト「timer1」はソフトウェアによるタイマでした。 ールチェインの設定により、時間が変わる可能性があります。今回の timer 関数は、クリスタルの値を基準として

94: /* 引数 タイマ値 1=1ms

96 : void timer (unsigned long timer_set)

 $98 : cnt_rb = 0;$

100 : }

cnt_rb が timer_set より小さいなら、99 行を繰り返し続けます。

数でセットした値です。

timer(500);

timer 関数を実行したいちばん最初は、

となり、成り立つので99行を繰り返します。1ms後は、割り込みプログラムでcnt_rbが+1されるので、

となります。まだ成り立つので、99 行目を繰り返します。timer 関数を実行してから 500ms たったな

while(500 < 500);

す。

```
39: void main( void )
41: init(); /* 初期化 */
43:
45: p6 = 0x55;
47: p6 = 0xaa;
49: p6 = 0x00;
51: }
```

全体の割り込みを許可する命令です。

は発生しません。全体の割り込みを許可する命令は、C 言語で記述することができないため、asm

main 関数の while(1)のカッコ内の C 言語をアセンブリ言語に変換すると、下記のようになります。

;変換した内容

mov. w #0001H, R0

mov. b #55H, _p6_addr

push.w #03e8H

add. b #04H, SP

(右上へ続く)

push.w #0000H

jsr _timer

mov.b #00H, _p6_addr

push.w #03e8H

add. b #04H, SP

L3:

イメージを下記に示します。

;変換した内容

mov. w #0001H, R0

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

(左下から続き)

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

割り込み要求があるかチェック

L3:

割り込み応答時間を下記に示します。割り込み応答時間は、割り込み要求が発生してから割り込みルーチン命令が終了するまでの時間(a)と割り込みシーケンスを実行する時間(20 サイクル(b))で構成されます。

1/20MHz = 50ns

割り込みシーケンスの時間 = 1 サイクル×20 = $50 \text{ns} \times 20$ = 1000 ns = $1 \mu \text{ s}$

割り込みルーチンの処理が終わったら、割り込みシーケンス発生前に実行していた命令の、次の命令から実