Diffusion models

Polyakov Gregory

MIPT, 2022

November 20, 2022

- VAE
- 2 Hierarchical VAE
- Variational Diffusion Models
- 4 Equivalent interpretations of diffusion
- Guidance
- 6 References

VAE

Optimization

Let encoder and decoder define distributions $q_{\phi}(z|x)$ and $p_{\theta}(x|z)$. While training we optimize ELBO.

$$\log p(x) \ge \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p(x,z)}{q_{\phi}(z|x)} \right] = \mathbb{E}_{q_{\phi}(z|x)} \left[\log \frac{p_{\theta}(x|z)p(z)}{q_{\phi}(z|x)} \right]$$
(1)

$$= \mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - D_{KL}(q_{\phi}(z|x)||p(z)) \tag{2}$$

Figure: VAE graphically represented

VAE

Monte Carlo estimate

Encoder models multivatiate normal with diagonal covariance $q(z|x) \sim \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}^2(x)I), \ p(z) \sim \mathcal{N}(0, I)$

$$argmax_{\phi, \theta} \left(\mathbb{E}_{q_{\phi}(z|x)} \left[\log p_{\theta}(x|z) \right] - D_{KL}(q_{\phi}(z|x) || p(z)) \right)$$

$$pprox argmax_{\phi, heta} \left(\sum_{l=1}^{L} \log p_{ heta}(x|z^{(l)}) - D_{KL}(q_{\phi}(z|x)||p(z))
ight)$$

where latents $z^{(l)}_{l=1}^{L}$ are sampled from $q_{\phi}(z|x)$

Reparametrization trick

 $z \sim \mathcal{N}(\mu_{\phi}(x), \sigma_{\phi}^2(x)I)$ could be modeled as

$$z = \mu_{\phi}(x) + \sigma_{\phi}^{2}(x) \odot \varepsilon$$
 which $\varepsilon \sim \mathcal{N}(0, I)$

Hierarchical VAE

HVAE

Joint distribution and the posterior

$$p(x, z_{1:T}) = p(z_t)p_{\theta}(x|z_1) \prod_{t=2}^{T} p_{\theta}(z_{t-1}|z_t)$$

$$q_{\phi}(z_{1:T}|x) = q_{\phi}(z_{1}|x) \prod_{t=2}^{r} q_{\phi}(z_{t}|z_{t-1})$$

Figure: Markovian Hierarchical Variational Autoencoder with T latents

Hierarchical VAE

HVAE

During traning we also optimize ELBO

$$\log p(x) \geq \mathbb{E}_{q_{\phi}(z_{1:T}|x)} \left[\frac{p(x, z_{1:t})}{q_{\phi}(z_{1:T}|x)} \right]$$

$$\mathbb{E}_{q_{\phi}(z_{1:T}|x)} \left[\frac{p(z_{t})p_{\theta}(x|z_{1}) \prod_{t=2}^{T} p_{\theta}(z_{t-1}|z_{t})}{q_{\phi}(z_{1}|x) \prod_{t=2}^{T} q_{\phi}(z_{t}|z_{t-1})} \right]$$

Figure: Markovian Hierarchical Variational Autoencoder with T latents

Similarities with HVAE

VDM is a Markovian HVAE with several restrictions

- Latent dimension is equal to data dimension
- Structure of each latent encoder is predefined as linear Gaussian model (not learned)
- Latent encoders are designed in such way that final latent x_T is standard Gaussian

Figure: A visual representation of a Variational Diffusion Model

Distributions

Latent variable posterior is same to MHVAE

$$q(x_{1:T}|x_0) = \prod_{t=1}^T q(x_t|x_{t-1})$$

Encoder transitions are denoted as Gaussian centered around previous latent

$$q(x_t|x_{t-1}) = \mathcal{N}(x_t, \sqrt{\alpha_t}x_{t-1}, (1-\alpha_t)I)$$

Last variable is a standard Gaussian $x_T \sim \mathcal{N}(0, I)$. The joint distribution is

$$p(x_{0:T}) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t)$$

Optimization

The VDM can be optimized by maximizing the ELBO

$$\log p(x) = \log \int p(x_{0:T}) dx_{1:T}$$

$$\mathbb{E}_{q(x_1|x_0)} \left[\log p_{\theta}(x_0|x_1) \right] - \mathbb{E}_{q(x_{T-1}|x_0)} D_{KL} \left(q(x_T|x_{T-1}) || p(x_T) \right)$$

$$- \sum_{t=0}^{T-1} \mathbb{E}_{q(x_{t-1},x_{t+1}|x_0)} D_{KL} \left(q(x_t|x_{t-1}) || p_{\theta}(x_t|x_{t+1}) \right)$$

Interpretation

Each term in ELBO could be interpreted as

- Reconstruction term. Predicts the log probability of the data given first-step latent
- Prior matching term. Is minimized when the final latent distribution matches standard Gaussian prior
- Consistency term. A denosing step from a noisier image should match the corresponding noising step from a cleaner image

Figure: A visual interpretation of ELBO

Rewriting ELBO

The consistency term is computed as an expectation over two random variance, so Monte Carlo estimation variance could be high. By Bayes rule:

$$q(x_t|x_{t-1},x_0) = \frac{q(x_{t-1}|x_t,x_0)q(x_t|x_0)}{q(x_{t-1}|x_0)}$$

Let's rewrite ELBO so the expectation is taken only by one random variable

Last term will be:

$$-\sum_{t=2}^{T}\mathbb{E}_{q(x_{t}|x_{0})}D_{KL}\left(q(x_{t-1}|x_{t},x_{0})||p_{\theta}(x_{t-1}|x_{t})\right)$$

Now we learn desired denoising transition step as an approxiamtion of ground-truth denoising transition step

Figure: Visual interpretation of ELBO with consistency term

Figure: Visual interpretation of ELBO with denoising matching term

Denoising term distributions

Each KL Divergence term $(D_{KL}(q(x_{t-1}|x_t,x_0)||p_{\theta(x_{t-1}|x_t)}))$ in the sum of denoising matching term is hardly to optimize for complex distributions. Bayes rule again

$$q(x_{t-1}|x_t,x_0) = \frac{q(x_t|x_{t-1},x_0)q(x_{t-1}|x_0)}{q(x_{t-1}|x_0)}$$

Distribution of each component

$$q(x_t|x_{t-1},x_0) = q(x_t|x_{t-1}) = \mathcal{N}(x_t, \sqrt{\alpha_t}x_{t-1}, (1-\alpha_t)I)$$

Also

$$x_t = \sqrt{\alpha_t} x_{t-1} + \sqrt{1 - \alpha_t}$$

So

$$x_t \sim \mathcal{N}\left(\sqrt{\overline{\alpha}_t}, (1 - \overline{\alpha}_t)I\right)$$

Denoising term distributions

Using previous equations we can derive $q(x_{t-1}|x_t, x_0) \sim \mathcal{N}(\mu_q(x_t, x_0), \Sigma_q(t))$. Where

$$\mu_q(x_t, x_0) = \frac{\sqrt{\alpha_t}(1 - \overline{\alpha}_{t-1})x_t + \sqrt{\overline{\alpha}_{t-1}}(1 - \alpha_t)x_0}{1 - \overline{\alpha_t}}$$

$$\Sigma_q(t) = \frac{\sqrt{\overline{\alpha}_{t-1}}(1-\alpha_t)x_0}{1-\overline{\alpha}_t}, \frac{(1-\alpha_t)(1-\overline{\alpha}_{t-1})}{1-\overline{\alpha}_t}$$

Optimizing denoising matching term

We can also model denoising transition distribution $p_{\theta}(x_{t-1}|x_t)$ as Gaussian As all α are fixed, variance of denoiser should also be

$$\Sigma_p(t) = \Sigma_q(t) = \sigma_q^2(t)I$$
 $argmin_{ heta}D_{KL}(q(x_{t-1}|x_t,x_0)||p_{ heta}(x_{t-1}|x_t))$

Optimizing denoising matching term

Furthermore

$$\begin{aligned} & \textit{argmin}_{\theta} D_{\textit{KL}}(q(x_{t-1}|x_{t},x_{0})||p_{\theta}(x_{t-1}|x_{t})) \\ &= \textit{argmin}_{\theta} D_{\textit{KL}}\left(\mathcal{N}(x_{t-1},\mu_{q},\Sigma_{q}(t))||\mathcal{N}(x_{t-1},\mu_{\theta},\Sigma_{q}(t))\right) \\ &= \textit{argmin}_{\theta} \frac{1}{2\sigma_{q}^{2}(t)} \left[\left\| \mu_{\theta} - \mu_{q} \right\|_{2}^{2} \right] \end{aligned}$$

Using definition of μ_q

$$\mu_q(x_t, x_0) = \frac{\sqrt{\alpha_t}(1 - \overline{\alpha}_{t-1})x_t + \sqrt{\overline{\alpha}_{t-1}}(1 - \alpha_t)x_0}{1 - \overline{\alpha_t}}$$

We can match μ_{θ} to it closely by setting it

$$\mu_{\theta}(x_t, x_0) = \frac{\sqrt{\alpha_t}(1 - \overline{\alpha}_{t-1})x_t + \sqrt{\overline{\alpha}_{t-1}}(1 - \alpha_t)\widehat{x}_{\theta}(x_t, t)}{1 - \overline{\alpha_t}}$$

Optimizing denoising matching term

Thus, the optimization problem simplifies to

$$argmin_{\theta}D_{KL}(q(x_{t-1}|x_t,x_0)||p_{\theta}(x_{t-1}|x_t))$$

$$= argmin_{\theta} \frac{1}{2\sigma_{\theta}^{2}(t)} \frac{\overline{\alpha}_{t}(1-\alpha_{t})^{2}}{(1-\overline{\alpha}_{t})^{2}} \left[\left\| \widehat{x}_{\theta}(x_{t},t) - x_{0} \right\|_{2}^{2} \right]$$

Therefore, optimizing a VDM boils down to learning a neural network to predict the original ground truth image from a noisified version of it.

Equivalent interpretations of diffusion

Reparametrization trick

$$x_0 = \frac{x_t - \sqrt{1 - \overline{\alpha}_t} \varepsilon_0}{\sqrt{\overline{\alpha}_t}}$$

Where $\varepsilon_0 \sim \mathcal{N}(0, I)$

Therefore, denoising transition mean:

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} x_t - \frac{1 - \alpha}{\sqrt{1 - \overline{\alpha_t}} \sqrt{\alpha_t}} \widehat{\varepsilon}_{\theta}(x_t, t)$$

Optimization problem:

$$argmin_{ heta} rac{1}{2\sigma_q^2(t)} rac{\overline{lpha}_t (1-lpha_t)^2}{(1-\overline{lpha}_t)^2} \left[\|\widehat{arepsilon}_{ heta}(\mathbf{x}_t,t) - \mathbf{x}_0\|_2^2
ight]$$

Where $\widehat{\varepsilon}_{\theta}(x_t, t)$ is a neural network that learns to predict noise

4 D > 4 A > 4 B > 4 B > 9 Q (

Equivalent interpretations of diffusion

Tweedie's Formula

The true mean of an exponential family distribution, given samples drawn from it, can be estimated by the maximum likelihood estimate of the samples plus some correction term

$$\mathbb{E}[\mu_z|z] = z + \sum_z \nabla \log p(z)$$

Where $z \sim \mathcal{N}(\mu_z, \Sigma_z)$

Our case

In our case

$$q(x_t|x_0) \sim \mathcal{N}(\sqrt{\overline{\alpha}_t}x_0, (1-\overline{\alpha}_t)I$$

By Tweedie's formula

$$\mathbb{E}[\mu_{x_t}|x_t] = x_t + (1 - \overline{\alpha}_t) \nabla_{x_t} \log p(x_t)$$

Equivalent interpretations of diffusion

Our case

However, we know exact form of $\mu_{x_t} = \sqrt{\overline{\alpha}_t}$. Thus, we could derive

$$\mu_q(x_t, x_0) = \frac{1}{\sqrt{\alpha_t}} x_t + \frac{1 - \alpha_t}{\sqrt{\alpha_t}} \nabla_{x_t} \log p(x_t)$$

Approximation:

$$\mu_{\theta}(x_t, t) = \frac{1}{\sqrt{\alpha_t}} x_t + \frac{1 - \alpha_t}{\sqrt{\alpha_t}} s_{\theta}(x_t, t)$$

Optimization:

$$argmin_{ heta} rac{1}{2\sigma_q^2(t)} rac{(1-lpha_t)^2}{lpha_t} \left[\|s_{ heta}(x_t,t) -
abla_{x_t} \log p(x_t)\|_2^2
ight]$$

Here neural network learns to predict score function - gradient of the log likelihood

Guidance

Conditioning

Often our aim is not only to model p(x), but to model it given some additional information (p(x|y)) (image-text DALL-E 2). The joint distribution could be rewritten as

$$p(x_{0:T}|y) = p(x_T) \prod_{t=1}^{T} p_{\theta}(x_{t-1}|x_t, y)$$

For example, y could be a text encoding in image-text generation, or a low-resolution image to perform super-resolution on.

Thus, we are able to learn neural networks by predicting

$$\widehat{x}_{\theta}(x_t, t, y) \approx x_0$$

But a conditional diffusion model trained in this way may potentially learn to ignore any given conditioning information.

Guidance

Classifier guidance

Let's use score-based definition of a diffusion model. Our goal is to learn $\nabla_{x_t} \log(p(x_t|y))$. By Bayes rule:

$$\nabla \log(p(x_t|y)) = \nabla \log(p(x_t)) + \nabla \log(p(y|x_t))$$

Importance of the last term could be controlled:

$$\nabla \log(p(x_t|y)) = \nabla \log(p(x_t)) + \gamma \nabla \log(p(y|x_t))$$

Drawback - relies on separate model which must be complex enough to deal with noised inputs.

Guidance

Classifier-Free guidance

Let's rewrite the classifier term from classifier guidance

$$\nabla \log(p(y|x_t)) = \nabla \log(p(x_t|y)) - \nabla \log(p(x_t))$$

Thus

$$\nabla \log(p(x_t|y)) = \nabla \log(p(x_t)) + \gamma(\nabla \log(p(x_t|y)) - \nabla \log(p(x_t)))$$

$$= \nabla \log(p(x_t)) + \gamma \nabla \log(p(x_t|y)) - \gamma \nabla \log(p(x_t))$$

$$= \gamma \nabla \log(p(x_t|y)) + \nabla \log(p(x_t))(1 - \gamma)$$

References

Understanding Diffusion Models: A Unified Perspective; Calvin Luno; 2022