Lecture Notes For: Dynamical Systems

Ali Fele Paranj alifele@student.ubc.ca October 26, 2023

Contents

1	Systems of Linear Differential Equations	2
2	Poincare Map	3

1 Systems of Linear Differential Equations

In dealing with the systems of linear differential equations we encounter

$$\dot{x} = A(t)x,\tag{1}$$

where $x = x(t) \in \mathbb{R}^n$. It turns out that this system of linear differential equations has n linearly independent solutions

$$\{x_1(t), x_2(t), \dots, x_n(t)\}.$$

It is important to note that the span of all of these solutions is a n-dimensional subspace of the all continuous function from \mathbb{R}^n to \mathbb{R}^n . Thus any particular solution of the ODE can be expressed as the linear combination of the solutions stated above, i.e.

$$x(t) = \sum_{i=1}^{n} c_i x_i(t). \tag{1}$$

To show all of these ideas in a neat matrix form, we construct the matrix $\Psi(t)$ called a fundamental matrix (note that this is not unique) as

$$\Psi(t) = [x_1(t), x_2(t), \dots, x_n(t)],$$

that is a matrix whose jth column is $x_j(t)$. With this notation in hand we can express any particular solutions of the ODE system as

$$x(t) = \Psi(t)c. \tag{2}$$

Note that so far nothing serious is happening. What happened is that we just defined the matrix $\Psi(t)$ just to be able to write the equation (1) in a more fancy matrix notation (2).

So far, the functions $\{x_1(t), x_2(t), \ldots, x_n(t)\}$ where acting like the basis of the space they span. However, we can find another basis that is more interesting. Consider the functions $\{X_1(t), X_2(t), \ldots, X_n(t)\}$ where satisfy the (\mathfrak{I}) as well as

$$X_1(t_0) = \hat{e}_1, \ X_2(t_0) = \hat{e}_2, \ \dots, \ X_n(t_0) = \hat{e}_n,$$

where \hat{e}_j is the standard basis of \mathbb{R}^n . Note that we can calculate these functions easily since by equation (2) we can write

$$X_i(t) = \Psi(t)c_i \implies c_i = \Psi^{-1}(t)X_i(t) \implies c_i = \Psi^{-1}(t_0)\hat{e}_i$$

Thus any of $X_i(t)$ can be written as

$$X_i(t) = \Psi(t)\Psi^{-1}(t_0)\hat{e}_i$$

So we can now construct a new fundamental matrix $M(t, t_0)$ as

$$M(t, t_0) = [X_1(t), X_2(t), X_3(t), \dots, X_n(t)].$$

This fundamental matrix is useful when dealing with initial values problems, i.e.

$$\dot{x} = A(t)x, \qquad x(t_0) = x_0. \tag{1}$$

In this case the solution to initial values problem can be written as

$$x(t) = \phi(t, t_0, x_0) = M(t, t_0)x_0.$$

That is simply because, since $M(t, t_0)$ is a fundamental matrix, then any solution can be written as $x(t) = M(t, t_0)c$, where $c \in \mathbb{R}^n$. Let $t = t_0$, then we will have $x_0 = x(t_0) = M(t_0, t_0)c = Ic = c$, thus $c = x_0$.

Apart from being useful in solving initial values problems, $M(t, t_0)$ has the following properties as well. In fact, $M(t, t_0)$ is an example of a flow operator. Also, derivative of $M(t, t_0)$ is given by

$$\frac{d}{dt}M(t,t_0) = A(t)M(t,t_0).$$

That is because substituting $x(t) = M(t, t_0)x_0$ in $(\mbox{$\mbox{$\mbox{$\lambda$}}$})$ will yield in

$$\frac{d}{dt}M(t,t_0)x_0 = A(t)M(t,t_0)x_0, (\frac{d}{dt}M(t,t_0) - A(t)M(t,t_0))x_0 = 0.$$

Since this is true for all x_0 , then

$$\frac{d}{dt}M(t,t_0) = A(t)M(t,t_0).$$

2 Poincare Map

When dealing with dynamical systems that has periodic orbits, one useful machinery to study the stability of those orbits is to use Poincare map. We will explore the idea in the following example

Question 1. Consider the dynamical system described by the following ODE system.

$$\dot{x}_1 = x_1 - \omega x_2 - x_1^3 - x_1 x_2^2,$$

$$\dot{x}_2 = \omega x_1 + x_2 - x_1^2 x_2 - x_2^3,$$

in which $\omega > 0$. Analyze the behaviour of this system near the equilibrium points and the periodic orbits.

Answer.

The study the behaviour of the system near the equilibrium points, we first need to find them. So we solve the following equation

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

By analyzing the ODE system we can infer that $X = (0,0)^T$ a solution of the equation above. So the point $X = (0,0)^T$ is an equilibrium point. To study the stability of this equilibrium point, we need to linearize the system near the equilibrium point.

$$F_X(X)|_{X=0} = \begin{pmatrix} (f_1)_{x_1} & (f_1)_{x_2} \\ (f_2)_{x_1} & (f_2)_{x_2} \end{pmatrix}_{X=0} = \begin{pmatrix} 1 & -\omega \\ \omega & 1 \end{pmatrix}$$

Since the trance and determinant are both positive, then the origin is unstable.

However, to analyze the stability of the periodic orbits, we need to find them in the first place. To find the periodic orbit in this example, it is more convenient to convert this ODE system to the polar coordinate in which we have

$$x_1 = r \cos \theta, \qquad x_2 = r \sin \theta,$$

in which r > 0 and $\theta = \mathbb{S}^1$, in which \mathbb{S}^1 is the unit circle. Substituting in the ODE system and utilizing the chain rule, then we can write

$$\dot{r}\cos\theta - r\dot{\theta}\sin\theta = r\cos\theta - r\omega\sin\theta - r^3\cos^3\theta - r^3\cos\theta\sin^2\theta,$$
$$\dot{r}\sin\theta + r\dot{\theta}\cos\theta = r\omega\cos\theta + r\sin\theta - r^3\cos^2\theta\sin\theta - r^3\sin^3\theta.$$

Multiplying the first equation in $\sin \theta$ and the second one in $\cos \theta$ and then subtracting them, And then multiplying the second equation in $\cos \theta$ and the first one in $\sin \theta$ and then adding the equations will yield in

$$\dot{r} = r - r^3,$$

$$\dot{\theta} = \omega$$

It is clear that

$$p^{0}(t) = \begin{bmatrix} r(t) \\ \theta(t) \end{bmatrix} = \begin{bmatrix} 1 \\ \omega t \mod 2\pi \end{bmatrix},$$

a solution of the this ODE system (because, simply, it satisfies the differential equation). Also, this is a periodic orbit with period $T = 2\pi/\omega$, since

$$p^{0}(t + 2\pi/\omega) = \begin{bmatrix} 1 \\ (\omega t + 2\pi) \mod 2\pi \end{bmatrix} = \begin{bmatrix} 1 \\ \omega t \end{bmatrix}.$$

We can also write this periodic orbit in the original x_1 and x_2 coordinates

$$p_X^0(t) = \begin{bmatrix} r(t)\cos(\theta(t)) \\ t(t)\sin(\theta(t)) \end{bmatrix} = \begin{bmatrix} \cos(\omega t) \\ \sin(\omega t) \end{bmatrix}.$$

Note that we write $\sin(\theta)$ instead of $\sin(\theta \mod 2\pi)$, because they are the same and the modulu operator is kind of defined in the definition of sin and cos functions.

Now we can evaluate the stability of this periodic orbit in two ways: 1. staying in the polar coordinate, 2. translating stuff to the original rectangular coordinate.

Poincare map in the polar coordinate.

Drawing the phase space of this system in the polar coordinates makes to build intuition what is happening here.

Figure 2.1: State space of the system in polar coordinates.

Now we can choose $\Sigma \subset \mathbb{R} \times \mathbb{S}^1$ on which $F(r,\theta) \neq 0$. We choose

$$\Sigma = \{(r,\theta): \theta = 0 \mod 2\}.$$

Obviously, in this subset of state space we have

$$F(r,\theta) = \begin{bmatrix} r - r^3 \\ \omega \end{bmatrix} \neq \begin{bmatrix} 0 \\ 0 \end{bmatrix} \quad \forall (r,\theta) \in \Sigma.$$

Let $p_0^0 = p^0(t) = (1,0)^T \in \Sigma$. Now let's define a coordinate $\xi \in \mathbb{R}$ for Σ , by

$$r = 1 + \xi$$
.

With this definition $\xi = 0$ corresponds to the point $p_0^0 \in \Sigma$. Fix an arbitrary value of ξ_0 . Now we are interested to know starting from $(1 + \xi_0, 0)$ as initial value of the dynamical system, when and where we will return to Σ . So we need to solve

$$\dot{r} = r - r^3, \qquad r(0) = 1 + \xi_0,$$

 $\dot{\theta} = \omega, \qquad \theta(0) = 0.$

We can use elementary methods to solve this initial value problem. So we will get

$$r(t, \xi_0) = \frac{e^t}{\sqrt{(1+\xi)^{-2} - 1 + e^{2t}}},$$

 $\theta(t) = \omega t \mod 2\pi.$

From the definition of Σ , it is clear that the time of first return is when $\theta(T_0) = 2\pi$, so $T_0 = 2\pi/\omega$. Thus the value r in the first return will be $r_1 = r(T_0, \xi_0)$, and the value of ξ in the first return will be $\xi_1 = r_1 - 1$. So, we basically got

$$\xi_1 = r(2\pi/\omega, \xi_0).$$

Since the return time is always $T = 2\pi/\omega$, then we can conclude

$$\xi_{k+1} = r(2\pi/\omega, \xi_k).$$

This is the Poincare map $P: \mathbb{R} \to \mathbb{R}$ and we have

$$P(\xi) = \frac{e^{2\pi/\omega}}{\sqrt{(1+\xi)^{-2} - 1 + e^{4\pi/\omega}}} - 1.$$

We can analyze the fixed point of this map using linearization. First observe that $\xi = 0$ is a fixed point since P(0) = 0. With linearization argument at $\xi = 0$ we have

$$P_{\xi}(\xi)|_{\xi=0} = e^{-4\pi/\omega} < 1.$$

Thus the origin is a stable equilibrium point. This is also clear form the cobweb plot of this map

Figure 2.2: Cobweb plot of the poincare map.