Example Project Document

Your Name

Experimental Aerodynamics and Concepts Group Daniel Guggenheim School of Aerospace Engineering Georgia Institute of Technology Atlanta GA 30332-0150

Updated March 25, 2013

Contents

T	Abstract	2
2	Introduction	3
3	Define Objectives	4
4	Prior Work	5
5	Project Schedule	6
6	Experimental Setup 6.0.1 Model Details	7
	6.0.3 Calculations of expected forces and moments	
7	Flow and Test Conditions	9
8	Expected results and plots	10
9	Conclusions	11

Abstract

This document shell is assuming that the user has a basic understanding of using LaTeX including adding figures, equations , and citations and referencing them in the document to make a coherent document.

Introduction

Add an introduction to the report here.

Define Objectives

Primary Objectives:

Secondary Objectives:

Prior Work

Provide a literture survey of previous work done by you and others on this topic

Project Schedule

The project schedule should give dates of the projected time the task will be started and completed

Experimental Setup

6.0.1 Model Details

Give a full decription of your model, include all dimmentions in a computer animated drawing.

6.0.2 Load Cell Details

The wind tunnel has two options for the type of load cell you can choose. Please make a decision on the values given in the following tables.

Table 6.1: Load Cell Selection: Sensing Ranges

	Calibration	Fx, Fy (lbf)	Fz (lbf)
Delta	US-150-600	150	450
Gamma	US-30-100	30	100

Table 6.2: Load Cell Selection: Sensing Ranges

	Calibration	Tx, Ty (lbf-in)	$\operatorname{Tz}\ (\operatorname{lbf-in})$
Delta	US-150-600	600	600
Gamma	US-30-100	100	100

Table 6.3: Load Cell Selection: Resolution

	Calibration	Fx, Fy (N)	Fz (N)
Delta	US-150-600	1/16	1/8
Gamma	US-30-100	1/40	1/20

6.0.3 Calculations of expected forces and moments

6.0.4 Static testing of the model

Table 6.4: Load Cell Selection: Resolution

	Calibration	Tx, Ty (Nm)	Tz (Nm)
Delta	US-150-600	3/16	1/8
Gamma	US-30-100	1/800	1/800

Figure 6.1: Delta load cel specs

Figure 6.2: Gamma load cell specs

Flow and Test Conditions

Add here what are the flow conditions and test conditions you want to run the experiments at.

For example - Reynolds number sweep, or angle of attack sweep etc. The best would be to use a matrix of test runs so that it can be optimized to reduce the number of runs.

Table 7.1: Test Matrix

Run Reynolds Number Wind Tunnel Fan RPM Angle of Attack (deg)

Expected results and plots

Conclusions

Bibliography

[Doe] First and last $\cancel{B}T_{E\!\!X}$ example., John Doe 50 B.C.