Problem & Solution: Trigonometry – Bài Tập Lượng Giác & Lời Giải

Nguyễn Quản Bá Hồng*

Ngày 21 tháng 5 năm 2023

Tóm tắt nôi dung

Mục lục

1	Hệ Thức về Cạnh & Đường Cao Trong Tam Giác Vuông]
2	Tỷ Số Lượng Giác của Góc Nhọn	
3	Hệ Thức về Cạnh & Góc Trong Tam Giác Vuông	•
4	Miscellaneous	4
Tà	i liêu	_

1 Hệ Thức về Cạnh & Đường Cao Trong Tam Giác Vuông

Trong 1 tam giác vuông, nếu biết 2 cạnh, hoặc 1 cạnh & 1 góc nhọn thì có thể tính được các góc & các cạnh còn lại của tam giác đó.

Bài toán 1. Xét $\triangle ABC$ vuông tại A, cạnh huyền BC=a, 2 cạnh góc vuông AC=b, AB=c. Gọi AH=h là đường cao ứng với cạnh huyền BC^1 & CH=b', BH=c' lần lượt là hình chiếu của AC, AB trên cạnh huyền BC. Chứng minh: (a) $b^2=ab'$, $c^2=ac'$. (b) Dịnh lý Pythagore $a^2=b^2+c^2$. (c) $h^2=b'c'$. (d) bc=ah. (e) $\frac{1}{h^2}=\frac{1}{b^2}+\frac{1}{c^2}$.

Chứng minh. (a) $\triangle AHC \hookrightarrow \triangle BAC$ (g.g) vì 2 tam giác vuông này có chung \widehat{C} , nên $\frac{CH}{AC} = \frac{AC}{BC} \Rightarrow AC^2 = BC \cdot CH \Leftrightarrow b^2 = ab'$. Tương tự, $\triangle BHA \hookrightarrow \triangle BAC$ (g.g) vì 2 tam giác vuông này có chung \widehat{B} , nên $\frac{BH}{AB} = \frac{AB}{BC} \Leftrightarrow AB^2 = BC \cdot BH \Leftrightarrow c^2 = ac'$. (b) Theo (a), $b^2 + c^2 = ab' + ac' = a(b' + c') = a \cdot a = a^2$. (c) Vì $\triangle AHC \hookrightarrow \triangle BAC$ & $\triangle BHA \hookrightarrow \triangle BAC$ nên $\triangle AHC \hookrightarrow \triangle BHA$, suy ra $\frac{AH}{CH} = \frac{BH}{AH} \Rightarrow AH^2 = BH \cdot CH \Leftrightarrow h^2 = b'c'$. (d) Tính diện tích $\triangle ABC$ theo 2 cách: $S_{\triangle ABC} = \frac{1}{2}AH \cdot BC = \frac{1}{2}AB \cdot AC \Leftrightarrow AH \cdot BC = AB \cdot AC \Leftrightarrow ah = bc$. (e) $ah = bc \Leftrightarrow a^2h^2 = b^2c^2 \Leftrightarrow (b^2 + c^2)h^2 = b^2c^2 \Leftrightarrow \frac{1}{h^2} = \frac{b^2 + c^2}{b^2c^2} = \frac{1}{b^2} + \frac{1}{c^2}$.

Lưu ý 1. Các hệ thức trên có thể được suy ra trực tiếp từ các tỷ số đồng dạng của bộ 3 tam giác đồng dạng: $\Delta BHA \backsim \Delta AHC \backsim \Delta BAC$. Thật vậy, $\Delta AHC \backsim \Delta BAC \Leftrightarrow \frac{AH}{AB} = \frac{HC}{AC} = \frac{AC}{BC} \Leftrightarrow \frac{h}{c} = \frac{b'}{b} = \frac{b}{a} \Rightarrow bh = b'c$, $b^2 = ab'$, & ah = bc. $\Delta BHA \backsim \Delta BAC \Leftrightarrow \frac{HB}{AB} = \frac{AH}{AC} = \frac{AB}{BC} \Leftrightarrow \frac{c'}{c} = \frac{h}{b} = \frac{c}{a} \Rightarrow bc' = hc$, ah = bc, & $c^2 = ac'$. $\Delta AHC \backsim \Delta BHA \Leftrightarrow \frac{AH}{BH} = \frac{CH}{AH} = \frac{AC}{AB} \Leftrightarrow \frac{h}{c'} = \frac{b'}{h} = \frac{b}{c} \Rightarrow h^2 = b'c'$, bh = b'c, & ch = bc'. Hơn nữa, $\widehat{BAH} = \widehat{C}$ & $\widehat{CAH} = \widehat{B}$.

Định lý 1 (Hệ thức giữa cạnh góc vuông & hình chiếu của nó trên cạnh huyền). Trong 1 tam giác vuông, bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền \mathcal{E} hình chiếu của cạnh góc vuông đó trên cạnh huyền. $b^2 = ab'$, $c^2 = ac'$

3 hệ thức về đường cao trong tam giác vuông:

Định lý 2. 3 Trong 1 tam giác vuông, bình phương đường cao ứng với cạnh huyền bằng tích 2 hình chiếu của 2 cạnh góc vuông trên cạnh huyền. $h^2 = b'c'$.

Định lý 3. Trong 1 tam giác vuông, tích 2 cạnh góc vuông bằng tích của cạnh huyền \mathcal{E} đường cao tương ứng. bc = ah.

Định lý 4. Trong 1 tam giác vuông, nghịch đảo của bình phương đường cao ứng với cạnh huyền bằng tổng nghịch đảo của bình phương 2 cạnh góc vuông. $\frac{1}{h^2} = \frac{1}{h^2} + \frac{1}{c^2}$.

Bài toán 2. Cho $\triangle ABC$ có độ dài 2 cạnh góc vuông là b & c. Tính độ dài đường cao h xuất phát từ đỉnh góc vuông theo b,c.

^{*}Independent Researcher, Ben Tre City, Vietnam

e-mail: nguyenquanbahong@gmail.com; website: https://nqbh.github.io.

 $^{^{1}}AB, AC$ là đường cao ứng với nhau.

Giải. Có $\frac{1}{h^2} = \frac{1}{h^2} + \frac{1}{c^2} \Rightarrow h^2 = \frac{b^2c^2}{h^2+c^2}$.

Bài toán 3 ([Tuy23], Thí dụ 1, p. 103). Cho hình thang ABCD có $\widehat{B}=\widehat{C}=90^\circ$, 2 đường chéo vuông góc với nhau tại H. Biết $AB=3\sqrt{5}$ cm, HA=3 cm. Chứng minh: (a) HA:HB:HC:HD=1:2:4:8. (b) $\frac{1}{AB^2}-\frac{1}{CD^2}=\frac{1}{HB^2}-\frac{1}{HC^2}$.

Bài toán 4 ([Tuy23], 1., p. 105). Cho hình thang ABCD, $AB \parallel CD$, 2 đường chéo vuông góc với nhau. Biết AC = 16 cm, BD = 12 cm. Tính chiều cao của hình thang.

Bài toán 5 ([Tuy23], 2., p. 105). Cho $\triangle ABC$ vuông tại A, đường cao AH, đường phân giác AD. Biết BH=63 cm, CH=112 cm, tính HD.

Bài toán 6 ([Tuy23], 3., p. 105). Cho $\triangle ABC$ vuông tại A. 2 đường trung tuyến AD, BE vuông góc với nhau tại G. Biết $AB = \sqrt{6}$ cm. Tính cạnh huyền BC.

Bài toán 7 ([Tuy23], 4., p. 105). Gọi a, b, c là các cạnh của 1 tam giác vuông, h là đường cao ứng với cạnh huyền a. Chứng minh tam giác có các cạnh a + h, b + c, & h cũng là 1 tam giác vuông.

Bài toán 8 ([Tuy23], 5., p. 105). Cho $\triangle ABC$ vuông tại A, đường cao AH. Gọi I, K thứ tự là hình chiếu của H trên AB, AC. Dặt c = AB, b = AC. (a) Tính AI, AK theo b, c. (b) Chứng minh $\frac{BI}{CK} = \frac{c^3}{b^3}$.

Bài toán 9 ([Tuy23], 6., p. 105). Cho $\triangle ABC$, AB=1, $\widehat{A}=105^\circ$, $\widehat{B}=60^\circ$. Trên cạnh BC lấy điểm E sao cho BE=1. Về $ED\parallel AB$, $D\in AC$. Chứng minh: $\frac{1}{AC^2}+\frac{1}{AD^2}=\frac{4}{3}$.

Bài toán 10 ([Tuy23], 7., p. 105). Cho hình chữ nhật ABCD, AB = 2BC. Trên cạnh BC lấy điểm E. Tia AE cắt đường thẳng CD tại F. Chứng minh: $\frac{1}{AB^2} = \frac{1}{AE^2} + \frac{1}{4AF^2}$.

Bài toán 11 ([Tuy23], 8., p. 105). Cho 3 đoạn thẳng có độ dài a, b, c. Dựng đoạn thẳng x sao cho $\frac{1}{x^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$.

Bài toán 12 ([Tuy23], 9., p. 105). Cho hình thơi ABCD có $\widehat{A}=120^{\circ}$. 1 đường thẳng d không cắt các cạnh của hình thơi. Chứng minh: tổng các bình phương hình chiếu của 4 cạnh với 2 lần bình phương hình chiếu của đường chéo AC trên đường thẳng d không phụ thuộc vào vị trí của đường thẳng d.

Bài toán 13 ([Tuy23], 10., p. 106). Cho $\triangle ABC$ vuông tại A. Từ 1 điểm O ở trong tam giác ta vẽ $OD \perp BC$, $OE \perp CA$, $OF \perp AB$. Xác định vị trí của O để $OD^2 + OE^2 + OF^2$ nhỏ nhất.

Bài toán 14 ([Bìn+23], Ví dụ 1, p. 5). Cho $\triangle ABC$ vuông tại A, đường cao AH. Biết AB : AC = 3 : 4 & AB + AC = 21 cm. (a) Tính các cạnh của $\triangle ABC$. (b) Tính độ dài các đoạn AH, BH, CH.

Bài toán 15 (Mở rộng [Bìn+23], Ví dụ 1, p. 5). Cho $\triangle ABC$ vuông tại A, đường cao AH. Biết AB:AC=m:n & AB+AC=p cm. (a) Tính các cạnh của $\triangle ABC$. (b) Tính độ dài các đoạn AH, BH, CH.

Bài toán 16 ([Bìn+23], Ví dụ 2, p. 6). Cho hình thang ABCD có $\widehat{A}=\widehat{D}=90^{\circ},\ \widehat{B}=60^{\circ},\ CD=30$ cm, $CA\bot CB$. Tính diện tích của hình thang.

Bài toán 17 ([Bìn+23], Ví dụ 3, p. 7). Cho $\triangle ABC$ nhọn, đường cao CK, H là trực tâm. Gọi M là 1 điểm trên CK sao cho $\widehat{AMB} = 90^{\circ}$. S, S_1 , S_2 theo thứ tự là diện tích các $\triangle AMB$, $\triangle ABC$, $\triangle ABH$. Chứng minh $S = \sqrt{S_1S_2}$.

Bài toán 18 ([Bìn+23], 1.1., p. 7). Cho $\triangle ABC$ vuông cân tại $A \ \& \ diễm \ M$ nằm giữa $B \ \& \ C$ Gọi D, E lần lượt là hình chiếu của điểm M lên AB, AC. Chứng minh $MB^2 + MC^2 = 2MA^2$.

Bài toán 19 ([Bìn+23], 1.2., p. 7). Cho hình chữ nhật $ABCD \ \mathcal{E} \ diểm \ O \ nằm trong hình chữ nhật đó. Chứng minh <math>OA^2 + OC^2 = OB^2 + CD^2$.

Bài toán 20 ([Bìn+23], 1.3., p. 8). Cho hình chữ nhật ABCD có AD = 6 cm, CD = 8 cm. Đường thẳng kẻ từ D vuông góc với AC tại E, cắt cạnh AB tại F. Tính độ dài các đoạn thẳng DE, DF, AE, CE, AF, BF.

Bài toán 21 ([Bìn+23], 1.4., p. 8). Cho $\triangle ABC$ có AB=3 cm, BC=4 cm, AC=5 cm. Đường cao, đường phân giác, đường trung tuyến của tam giác kẻ từ đỉnh B chia tam giác thành A gam giác không có điểm trong chung. Tính diện tích của mỗi tam giác đó.

Bài toán 22 ([Bìn+23], 1.5., p. 8). Trong 1 tam giác vuông tỷ số giữa đường cao & đường trung tuyến kẻ từ đỉnh góc vuông bằng 40 : 41. Tính độ dài các cạnh góc vuông của tam giác đó, biết cạnh huyền bằng $\sqrt{41}$ cm.

Bài toán 23 ([Bìn+23], 1.6., p. 8). Cho $\triangle ABC$ vuông tại A, đường cao AH. Kể $HE \bot AB$, $HF \bot AC$. Gọi O là giao điểm của AH & EF. Chứng minh $HB \cdot HC = 4OE \cdot OF$.

Bài toán 24 ([Bìn+23], 1.7., p. 8).

```
Bài toán 25 ([Bìn+23], 1.8., p. 8).
Bài toán 26 ([Bìn+23], 1.9., p. 8).
Bài toán 27 ([Bìn+23], 1.10., p. 8).
Bài toán 28 ([Bìn+23], 1.11., p. 8).
Bài toán 29 ([Bìn+23], 1.12., p. 8).
Bài toán 30 ([Bìn+23], 1.13., p. 9).
Bài toán 31 ([Bìn+23], 1.14., p. 9).
Bài toán 32 ([Bìn+23], 1.15., p. 9).
```

Bài toán 33 ([Bìn+23], 1.16., p. 9).

2 Tỷ Số Lượng Giác của Góc Nhọn

Bài toán 34 ([Tuy23], Thí dụ 2, p. 107). Cho cot $\alpha = \frac{a^2 - b^2}{2ab}$ trong đó α là góc nhọn, a > b > 0. Tính $\cos \alpha$.

Bài toán 35 ([Tuy23], 11., p. 108, định lý sin). Cho $\triangle ABC$ nhọn, BC=a, CA=b, AB=c. Chứng minh: $\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$. Đẳng thức này còn đúng với tam giác vuông $\mathcal E$ tam giác tù hay không?

Bài toán 36 ([Tuy23], 12., p. 108). Chứng minh: (a) $1 + \tan^2 \alpha = \frac{1}{\cos^2 \alpha}$. (b) $1 + \cot^2 \alpha = \frac{1}{\sin^2 \alpha}$. (c) $\cot^2 \alpha - \cos^2 \alpha = \cot^2 \alpha \cdot \cos^2 \alpha$. (d) $\frac{1 + \cos \alpha}{\sin \alpha} = \frac{\sin \alpha}{1 - \cos \alpha}$.

Bài toán 37 ([Tuy23], 13., p. 108). Rút gọn biểu thức: (a) $A = \frac{1 + 2\sin\alpha \cdot \cos\alpha}{\cos^2\alpha - \sin^2\alpha}$. (b) $B = (1 + \tan^2\alpha)(1 - \sin^2\alpha) - (1 + \cot^2\alpha)(1 - \cos^2\alpha)$. (c) $C = \sin^6\alpha + \cos^6\alpha + 3\sin^2\alpha\cos^2\alpha$.

Bài toán 38 ([Tuy23], 14., p. 108). Tính giá trị của biểu thức $A = 5\cos^2\alpha + 2\sin^2\alpha$ biết $\sin\alpha = \frac{2}{3}$.

Bài toán 39 ([Tuy23], 15., p. 108). Không dùng máy tính hoặc bảng số, tính: (a) $A = \cos^2 20^\circ + \cos^2 30^\circ + \cos^2 40^\circ + \cos^2 50^\circ + \cos^2 60^\circ + \cos^2 70^\circ$. (b) $B = \sin^2 5^\circ + \sin^2 25^\circ + \sin^2 45^\circ + \sin^2 65^\circ + \sin^2 85^\circ$.

Bài toán 40 ([Tuy23], 16., p. 108). Cho $0^{\circ} < \alpha < 90^{\circ}$. Chứng minh: $\sin \alpha < \tan \alpha$, $\cos \alpha < \cot \alpha$. Áp dụng: (a) Sắp xếp các số sau theo thứ tự tăng dần: $\sin 65^{\circ}$, $\cos 65^{\circ}$, $\tan 65^{\circ}$. (b) Xác định α thỏa mãn điều kiện: $\tan \alpha > \sin \alpha > \cos \alpha$.

Bài toán 41 ([Tuy23], 17., p. 108). Cho $\triangle ABC$ vuông tại A. Biết $\sin B = \frac{1}{4}$, tính $\tan C$.

Bài toán 42 ([Tuy23], 18., p. 108). Cho biết $\sin \alpha + \cos \alpha = \frac{7}{5}$, $0^{\circ} < \alpha < 90^{\circ}$, tính $\tan \alpha$.

Bài toán 43 ([Tuy23], 19., p. 109). $\triangle ABC$, đường trung tuyến AM. Chứng minh nếu cot $B=3\cot C$ thì AM=AC.

Bài toán 44 ([Tuy23], 20., p. 109). Cho $\triangle ABC$, trực tâm H là trung điểm của đường cao AD. Chứng minh $\tan B \tan C = 2$.

Bài toán 45 ([Tuy23], 21., p. 109). Cho $\triangle ABC$ nhọn, 2 đường cao BD, CE. Chứng minh: (a) $S_{\triangle ADE} = S_{\triangle ABC}\cos^2 A$. (b) $S_{BCDE} = S_{\triangle ABC}\sin^2 A$.

Bài toán 46 ([Tuy23], 22., p. 109). Cho $\triangle ABC$ nhọn. Từ 1 điểm M nằm trong tam giác vẽ $MD \bot BC$, $ME \bot AC$, $MF \bot AB$. Chứng minh $\max\{MA, MB, MC\} \ge 2\min\{MD, ME, MF\}$, trong đó $\max\{MA, MB, MC\}$ là đoạn thẳng lớn nhất trong các đoạn thẳng MA, MB, MC & $\min\{MD, ME, MF\}$ là đoạn thẳng nhỏ nhất trong các đoạn thẳng MD, ME, MF.

3 Hệ Thức về Cạnh & Góc Trong Tam Giác Vuông

Bài toán 47 ([Tuy23], Thí dụ 3, p. 109). Từ giác ABCD có 2 đường chéo cắt nhau tại O. Cho biết $\widehat{AOD} = 70^{\circ}$, AC = 5.3 cm, BD = 4 cm. Tính diện tích từ giác ABCD.

Bài toán 48 ([Tuy23], 23., p. 110). Chứng minh: (a) Diện tích của 1 tam giác bằng nửa tích của 2 cạnh nhân với sin của góc nhọn tạo bởi các đường thẳng chứa 2 cạnh ấy. (b) Diện tích hình bình hành bằng tích của 2 cạnh kề nhân với sin của góc nhọn tạo bởi các đường thẳng chứa 2 cạnh ấy.

Bài toán 49 ([Tuy23], 24., p. 110). Cho hình bình hành ABCD, $BD \perp BC$. $Bi\acute{e}t$ AB=a, $\widehat{A}=\alpha$, tính diện tích hình bình hành $\mathring{a}o$.

Bài toán 50 ([Tuy23], 25., p. 110). Cho $\triangle ABC$, $\widehat{A} = 120^{\circ}$, $\widehat{B} = 35^{\circ}$, AB = 12.25 dm. Giải $\triangle ABC$.

Bài toán 51 ([Tuy23], 26., p. 110). Cho $\triangle ABC$ nhọn, $\widehat{A} = 75^{\circ}$, AB = 30 mm, BC = 35 mm. Giải $\triangle ABC$.

Bài toán 52 ([Tuy23], 27., p. 110). Cho $\triangle ABC$ cân tại A, đường cao BH. Biết BH=h, $\widehat{C}=\alpha$. Giải $\triangle ABC$.

Bài toán 53 ([Tuy23], 28., p. 110). Hình bình hành ABCD có $\widehat{A} = 120^{\circ}$, AB = a, BC = b. Các đường phân giác của 4 góc cắt nhau tao thành tứ giác MNPQ. Tính diễn tích tứ giác MNPQ.

Bài toán 54 ([Tuy23], 29., p. 110). Cho $\triangle ABC$, các đường phân giác AD, đường cao BH, đường trung tuyến CE đồng quy tại điểm O. Chứng minh $AC \cos A = BC \cos C$.

4 Miscellaneous

Bài toán 55 ([Tuy23], Thí dụ 4, p. 111). Cho $\triangle ABC$ vuông tại A. Gọi M,N lần lượt là 2 điểm trên cạnh AB,AC sao cho $AM = \frac{1}{3}AB$, $AN = \frac{1}{3}AC$. Biết độ dài $BN = \sin\alpha$, $CM = \cos\alpha$ với $0^{\circ} < \alpha < 90^{\circ}$. Tính cạnh huyền BC.

Bài toán 56 ([Tuy23], 30., p. 112). Cho $\triangle ABC$ nhọn, BC=a, AC=b, CA=b trong đó $b-c=\frac{a}{k}$, k>1. Gọi h_a,h_b,h_c lần lượt là các đường cao hạ từ A,B,C. Chứng minh: (a) $\sin A=k(\sin B-\sin C)$. (b) $\frac{1}{h_a}=k\left(\frac{1}{h_b}-\frac{1}{h_c}\right)$.

Bài toán 57 ([Tuy23], 31., p. 112). $Giải \Delta ABC \ biết \ AB = 14, \ BC = 15, \ CA = 13.$

Bài toán 58 ([Tuy23], 32., p. 112). Cho hình hộp chữ nhật ABCD.A'B'C'D'. $Biết \widehat{DC'D'} = 45^{\circ}$, $\widehat{BC'B'} = 60^{\circ}$. Tính $\widehat{BC'D}$.

Bài toán 59 ([Tuy23], 33., p. 112). Cho $\triangle ABC$, AB = AC = 1, $\widehat{A} = 2\alpha$, $0^{\circ} < \alpha < 45^{\circ}$. Vễ các đường cao AD, BE. (a) Các tỷ số lượng giác $\sin \alpha$, $\cos \alpha$, $\sin 2\alpha$, $\cos 2\alpha$ được biểu diễn bởi các đoạn thẳng nào? (b) Chứng minh $\triangle ADC \backsim \triangle BEC$, từ đó suy ra các hệ thức sau: $\sin 2\alpha = 2 \sin \alpha \cos \alpha$, $\cos 2\alpha = 1 - 2 \sin^2 \alpha = 2 \cos^2 \alpha - 1 = \cos^2 \alpha - \sin^2 \alpha$. (c) Chứng minh: $\tan 2\alpha = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$, $\cot 2\alpha = \frac{\cot^2 \alpha - 1}{2 \cot \alpha}$.

Bài toán 60 ([Tuy23], 34., p. 112). Cho $\alpha = 22^{\circ}30'$, tính $\sin \alpha$, $\cos \alpha$, $\tan \alpha$, $\cot \alpha$.

Bài toán 61 ([Tuy23], 35., p. 112). Cho $\triangle ABC$, đường phân giác AD. Biết AB=c, AC=b, $\widehat{A}=2\alpha$, $\alpha<45^{\circ}$. Chứng minh $AD=\frac{2bc\cos\alpha}{b+c}$.

Tài liệu

- [Bìn+23] Vũ Hữu Bình, Nguyễn Ngọc Đạm, Nguyễn Bá Đang, Lê Quốc Hán, and Hồ Quang Vinh. *Tài Liệu Chuyên Toán Trung Học Cơ Sở Toán 9. Tập 2: Hình Học.* Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 240.
- [Tuy23] Bùi Văn Tuyên. *Bài Tập Nâng Cao & Một Số Chuyên Đề Toán 9*. Tái bản lần thứ 18. Nhà Xuất Bản Giáo Dục Việt Nam, 2023, p. 340.