

SAEED MDCAT PHYSICS NMDCAT

www.saeedmdcat.com

TO		00.
	Р.	CS:

	101	PIC WISE LEST (UNIT-3)
TOPI	CS:	
✓ R	otational and Circular	Motion
Q. 1	A particle is moving alon	ng a circular path with uniform speed. What is the angle
	between instantaneous vel	
	A. 45°	B. 0°
	C. 180°	D. 90°
Q. 2	The centripetal force requ	ired to keep the body in circular path is F. What would be
	centripetal force if radius	becomes two times (keeping linear speed constant)
	A. 2F	B. F/2
	C. 4F	D. F/4
Q. 3	-	ve a body of mass 1kg with velocity 10ms ⁻¹ along a circular
	path of radius 0. <mark>1m is</mark>	
	A. 100N	B. 1000 N
	C. 1N	D. Zero
Q. 4		e <mark>le, making equal angles in e</mark> qual time its velocity
	A. Remains constant	B. Changes in direction only
0.5	C. Changes in magnitude of	•
Q. 5	A. Constant linear moments	horizontal circle with constant angular velocity will have
	B. Constant energy but vary	
	C. Neither linear momentur	
	D. Both speed and linear ve	
Q. 6	A string can withstand a t	ension of 25N. What is the greatest speed at which a body
		ed in a ho <mark>rizonta</mark> l circle using 1m length of the string?
	A. 10ms ⁻¹	B. 7.5ms ⁻¹
	C. 5ms ⁻¹	D. 2.5ms ⁻¹
Q. 7		a circular path of radius 'R' with uniform speed of 1 ms ⁻¹ ,
	the time taken to complete	
	Α. πR	B. $\frac{\pi R}{2}$
	71. /II	2
	C. 2πR	D. 4πR
Q. 8	If the radius of the circula	r path of a particle is quadrupled without changing its
	frequency of rotation, the	
	A. halved	B. doubled
	C. quadrupled	D. unchanged

Q. 9 A spherically-shaped satellite of mass m and radius r is moving around the earth in a circular orbit of radius r with constant speed v. Which of the following represents the force acting on the satellite as seen by an observer on the earth?

Q. 10 Which of the following statements is false for a particle moving in a circle with a constant angular speed?

A. The velocity vector is tangent to the cir	rcl	C	the	to	tangent	r is	vector	velocity	The	A.
--	-----	---	-----	----	---------	------	--------	----------	-----	----

- B. The acceleration vector is tangent to the circle
- C. The acceleration vector points to the centre of the circle
- D. the velocity and acceleration vectors are perpendicular to each other.

Q. 11 In uniform circular motion, the factor that remains constant is

A. Linear velocity

B. Speed

C. Acceleration

D. All of these

Q. 12 The angular speed of fly wheel making 120 rev / min is in (rad/sec).

Α. π

 3.2π

 $C.4\tau$

D. $4\pi^{2}$

Q. 13 A point on the rim of a wheel 400 cm in diameter has a velocity of 1600 cms⁻¹. The angular velocity of the wheel is

A. 6 rad/s

B. 2 rad/s

C. 4 rad/s

D. 8 rad/s

Q. 14 The direction of angular velocity of a body moving in a circle is

A. Towards the axis of rotation

B. Away from the axis of rotation

C. Along the axis of rotation

D. Above the axis of rotation

Q. 15 A body is rotating clockwise with decreasing angular velocity. Its angular acceleration is directed

A. Into the plane of paper

B. Along the radius

C. Out of the plane of paper

D. Along the tangent to the circle

Q. 16 A satellite orbiting around the earth is an example of

A. Circular motion

B. Vibratory motion

C. Rectilinear velocity

D. All of these

Q. 17 If a wheel of radius r turns through an angle of 30°, then the distance through which any point on its rim moves is

A.
$$\frac{\pi}{3}$$

B.
$$\frac{\pi}{6}$$
r

C.
$$\frac{\pi}{30}$$
r

D.
$$\frac{\pi}{180}$$
r

Q. 18 An object of mass of 2 kg rotates at constant speed in a horizontal circle of radius 5 m. The time for one complete revolution is 3 s. What is the magnitude of the resultant force acting on the object?

A.
$$\frac{4\pi^2}{9}N$$

B.
$$\frac{40\pi^2}{9}N$$

C.
$$\frac{100\pi^2}{9}N$$

D.
$$\frac{400\pi^2}{9}N$$

Q. 19 A wheel from 1 m diameter makes 60 rev/min. The linear speed of a point on its rim in m/s is

Α. π

B.
$$\frac{\pi}{2}$$

 $C.2\pi$

D. 3π

Q. 20 What is the speed of the tip of second's hand of a clock if its length is 10 cm

A. 1.05 cms^{-1}

B. 2.05 cms^{-1}

C. 1.05 m/s

D. 3.05 cms^{-1}

Q. 21 A particle of rigid body is at a distance 0.1 m from axis of rotation to rotate with linear speed 3 m/s. What is angular speed of the rigid body

A. 0.3 rad/s

B. 30 rads⁻¹

C. 3 rad s^{-1}

D. 1.5 rad/s

Q. 22 A car of mass 1000 kg is moving with speed 72 km/h in a circular track of radius 100 m. The centripetal force acting on it is

A. 4 N

B. 400 N

C. 40 N

D. 4000 N

		30 0			
Q. 23	_	d body is at a distance 0.1 m from axis of rotation to rotate with s. What is angular speed of the rigid body			
	A. 0.3 rad/s	B. 30 rads ⁻¹			
	C. 3 rad s^{-1}	D. 1.5 rad/s			
Q. 24		a circle of radius 4 m with constant speed 8 m/s experiences			
~· - ·		128 N. What is the mass of body?			
	A. 2 Kg	B. 8 Kg			
	C. 4 Kg	D. 16 Kg			
O. 25		ving in a circle of radius r with a constant speed v, its angular			
	velocity is	1 / 8			
	A. v^2/r	B. v/r			
	C. vr	D. r/v			
Q. 26	A motor cyclist g	oing round in a circular track at constant speed has			
	A. Constant linear	velocity B. Constant angular velocity			
	C. Constant accele	eration D. Constant force			
Q. 27	A body is moving	g along a circular path with variable speed. It has			
	A. a radial acceleration				
	B. a tangential acc				
	C. zero acceleration				
		and radial accelerations			
Q. 28		<mark>s m is exec</mark> uting uniform c <mark>ircular motion</mark> on a path of radius r. If P			
	is the magnitude (o <mark>f its linear mo</mark> mentum, t <mark>hen, the radial f</mark> orce acting on the particle is,			
	A. pmr	B. $\frac{rm}{p}$ D. $\frac{p^2}{p}$			
	ri. piin	p. p			
	mn^2	n^2			
	C. $\frac{mp^2}{r}$	D. P			
Q. 29		vith a cons <mark>tant angular velocity</mark> of 600 r.p.m. What is the			
Q. 29		nich the whee <mark>l rotates in one se</mark> cond?			
	A. 5π radian	B. 20π radian			
Q. 30	C. 15π radian	D. 10π radian of a watch			
Q. 50					
	A. $\frac{\pi}{43200}$ rad/s	B. $\frac{\pi}{21600}$ rad/s			
		21600			
	C. $\frac{\pi}{30}$ rad/s	D. $\frac{\pi}{1800}$ rad/s			
Q. 31	Centripetal force	in vector form can be expressed as			
	A. $\vec{F} = \frac{mv^2}{r}$ C. $\vec{F} = m\omega^2 \vec{r}$	B. $\vec{F} = \frac{mv^2}{r}\vec{r}$ D. $\vec{F} = \frac{mv^2}{\vec{r}}\vec{r}$			
	A. $F = \frac{1}{r}$	B. $F = \frac{r}{r}$			
	1 30 AbdA III	, ,,,,,,2			
	C. $\vec{F} = m\omega^2 \vec{r}$	D. $\vec{F} = \frac{mv}{\vec{r}} \vec{r}$			
0 22	If a nantiala may	The state of the s			
Q. 32		es with uniform speed that its tangential acceleration will be B. constant			
	A. zero C. infinite	D. none of these			
0 33		round a circle of radius $1 m$ once. The time taken by it is $10 sec$.			
Q. 33	The average velo				
	The average velo	city of motion is			
	A. 0.2mm/s	$B.2 \pi\text{m/s}$			
	C. 2 m/s	D. Zero			
Q. 34		eration can be expressed as			
Q. 34	_	eration can be expressed as			
	A. $\frac{v^2}{r}$	Β. νω			
	C. $r\omega^2$	D. All of these			
Q. 35	A particle is mov	ing on a circular path with constant speed, then its acceleration wil			
	be				
	A. Zero	B. External radial acceleration			

C. Internal radial acceleration

D. Constant acceleration

	VV.OALL		3			
0. 36	A 500 kg car takes a round tu	n of radius 50 m with a velocity of 36 km/hr. The				
Q. 00	centripetal force is	or realized in which is vertically of the minutes and				
	A. 250 N	B. 750 N				
	C. 1000 N	D. 1200 N				
Q. 37	What is the value of linear vel	example 1.1 example 2.1 example 3.1 $\vec{i} - 4\hat{j} + \hat{k}$ and $\vec{r} = 5\hat{i} - 6\hat{j} + 6\hat{k}$				
	A. $6\hat{i} + 2\hat{j} - 3\hat{k}$	B. $-18\hat{i} - 13\hat{j} + 2\hat{k}$				
	C. $4\hat{i} - 13\hat{j} + 6\hat{k}$	D. $6\hat{i} - 2\hat{j} + 8\hat{k}$				
O. 38		l is 70 rad/sec. If the radius of the wheel is $0.5 m$, the	eı			
Q. 00	linear velocity of the wheel is	is to the factor of the wheel is the first	٠.			
	A. 70 m/s	B. 35 m/s				
	C. 30 m/s	D. 20 m/s				
Q. 39		city when it has a turn. A force <mark>acts on it o</mark> utwardly	7			
	because of					
	A. Centripetal force	B. Centrifugal force				
0 40	C. Gravitational force	D. All the above				
Q. 40	2 radians = A. 114.6°	B. 57.3°				
	C. 75.3°	D. 37.5°				
O. 41		orm velocity. It goes over a piece of mud which stick	75			
Q. 11		mud, as it leaves the ground are thrown				
	A. Vertically upwards	B. Vertically inwards				
	C. Towards north	D. Towards south				
Q. 42	Angle between centripetal acc	<mark>leration and radius ve</mark> ctor is				
	A. 90°	B. 180°				
	C. 0°	D. 45°				
Q. 43	The angular speed of a flywhe	<mark>l making 180 rpm</mark> is				
	A. $2\pi \ rads^{-1}$	B. 4π rads ⁻¹				
	C. $6\pi \ rads^{-1}$	D. $3\pi^2 \ rads^{-1}$				
Q. 44	In circular motion, if the angu	ar velocity and angular acceleration becomes				
	parallel, then the motion become					
	A. Slower	B. Faster				
0 4	C. Constant	D. Both A and C				
Q. 45		circula <mark>r path of radius 4m. What will be its angul</mark>	a			
	displacement if it moves 14m o	•				
	A. 5.5 radians C. 3.5 radians	B. 5.0 radians D. 4.5 radians				
Q. 46	For a particle in a non-uniform a					
Q. 40	A. velocity is radial and accelera					
	B. velocity is transverse and acceleration is radial only					
		cceleration has both radial and transverse componer	nt			
		tion has both radial and transverse components				
Q. 47	For a particle in circular moti	on the centripetal acceleration is				
	A. may be more or less than its					
	B. more than its tangential accel					
	C. equal to its tangential acceler					
0.40	D. less than its tangential accele					
Q. 48		sceeds 10 newtons. A stone of mass 250 gm tied to the	115			
		d in a horizontal circle. The maximum angular				
	velocity of rotation can be A. 20 rad/s	B. 40 rad/s				
	C. 100 rad/s	D. 200 rad/s				
0.49		completes one revolution in one second, then				

acceleration of the cycle is A. $0.4\pi ms^{-2}$ B. $0.8\pi ms^{-2}$ C. $0.4\pi^2 ms^{-2}$

D. $1.6\pi^2 \frac{m}{s^{-2}}$

Q. 50 The angle described in 2sec by an object rotating at a rate of 600 rpm is

A. 20π rad

B. 40π rad

C. 5π rad

D. zero

JOIN OUR WHATSAPP GROUP AND VISIT OUR WEBSITE WWW.SAEEDMDCAT.COM FOR LATEST TESTS OF ALL ACADEMIES

SAEED MDCAT TEAM SAEED MDCAT TEAM SAEED MDCAT TEAM

Chemistry 21 B 31 B 41	0
C 11 B 22 C 32 D 42	0
A 12 B 23 D 33 C 43	5
C 13 B 34 C 44	8 -
B 14 0 24 B 45	8-
D 15 C 25 7 36 B 46	A
D 16 C 25 C 117	C -
C 17 A 27 C 49	8
C 18 A 20 B	
C 19 D 29 A 39 B 49	8
A 20B .3° B 40 D	0
Physics	
0 -1 2 21 0 11	0
	B
220 - 45	C
5 15 5 5 5	
B 11 C 24B 34D 44	B
B 15 C 25 B 35 C US	C
C 16 A 26 B 36 C 46	C
C 17 B 27 D 27 D	
DC 0 B	A
18 D 38 B 48	A
293 (92 44	
B 20 A 30 B 49 20	B
	10

WWW.SAEEDMDCAT.COM

SAEEDMDCAT