Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

Решение задачи о логической функции

Задача. Для заданной логической функции:

$$F = \overline{\left(\overline{A} \vee B \cdot \overline{C}\right)} \cdot \overline{\left(\overline{\left(B \downarrow C\right)} \cdot D\right)}.$$

- найти дизъюнктивную нормальную форму;
- составить таблицу истинности и построить диаграмму Карно;
- получить минимальную дизъюнктивную нормальную форму;
- от минимальной дизьюнктивной нормальной формы перейти к коньюнктивной нормальной форме.

Решение. Преобразуем формулу к виду дизъюнктивной нормальной формы:

$$F = \overline{\left(\overline{A} \vee B \cdot \overline{C}\right)} \cdot \overline{\left(\overline{\left(B \vee C\right)} \cdot D\right)} = \overline{\left(\overline{A} \vee B \cdot \overline{C}\right)} \cdot \overline{\left(\left(B \vee C\right) \cdot D\right)} = \left(A \cdot \overline{B \cdot \overline{C}}\right) \cdot \left(\overline{\left(B \vee C\right)} \vee \overline{D}\right) = \left(A \cdot \overline{B \cdot \overline{C}}\right) \cdot \overline{\left(B \vee C\right)} \cdot \overline{D} = \left(A \cdot \overline{B} \cdot \overline{C}\right) \cdot \overline{D} \cdot \overline{D} = A \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} = A \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} = A \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} = A \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} = A \cdot \overline{D} = A \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} = A \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} = A \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} = A \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} = A \cdot \overline{D} = A \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} \cdot \overline{D} = A \cdot \overline{D} \cdot$$

Получили $F = A \cdot \overline{B} \cdot \overline{C} \vee A \cdot \overline{B} \cdot \overline{D} \vee A \cdot C \cdot \overline{D}$.

Составим таблицу истинности для данной формулы.

					_	$B \cdot \overline{C}$	$\overline{A} \vee B \cdot \overline{C}$	$\overline{\left(\overline{A}\vee B\cdot\overline{C}\right)}$	$B \downarrow C$	$\overline{\left(B\downarrow C\right)}$	$\overline{\left(B\downarrow C\right)}\cdot D$	$\overline{\left(\overline{\left(B\downarrow C\right)}\cdot D\right)}$	
\boldsymbol{A}	\boldsymbol{B}	C	D	\overline{A}	\overline{C}								$\boldsymbol{\mathit{F}}$
0	0	0	0	1	1	0	1	0	1	0	0	1	0
0	0	0	1	1	1	0	1	0	1	0	0	1	0
0	0	1	0	1	0	0	1	0	0	1	0	1	0
0	0	1	1	1	0	0	1	0	0	1	1	0	0
0	1	0	0	1	1	1	1	0	0	1	0	1	0
0	1	0	1	1	1	1	1	0	0	1	1	0	0
0	1	1	0	1	0	0	1	0	0	1	0	1	0
0	1	1	1	1	0	0	1	0	0	1	1	0	0
1	0	0	0	0	1	0	0	1	1	0	0	1	1
1	0	0	1	0	1	0	0	1	1	0	0	1	1
1	0	1	0	0	0	0	0	1	0	1	0	1	1
1	0	1	1	0	0	0	0	1	0	1	1	0	0
1	1	0	0	0	1	1	1	0	0	1	0	1	0
1	1	0	1	0	1	1	1	0	0	1	1	0	0
1	1	1	0	0	0	0	0	1	0	1	0	1	1
1	1	1	1	0	0	0	0	1	0	1	1	0	0

Построим диаграмму Карно по полученной таблице истинности, подставляя единицы в нужные ячейки.

Задача скачана с сайта www.MatBuro.ru Еще примеры: https://www.matburo.ru/ex_subject.php?p=dm ©МатБюро - Решение задач по математике, экономике, статистике

$AB \setminus CD$	11 <i>CD</i>	$10 \ C\overline{D}$	$00 \overline{CD}$	$01 \overline{C}D$
<i>AB</i> 11		1		
$A\overline{B}$ 10		1	1	1
\overline{AB} 00				
$\overline{A}B$ 01				

Получим минимальную дизъюнктивную нормальную форму, используя диаграмму Карно. Объединяем 2 единицы во втором столбце: $AC\overline{D}$ и 2 единицы во второй строке справа: $A\overline{BC}$. Все единицы накрыты, минимальная форма $F_{\min} = AC\overline{D} \vee A\overline{BC}$

Перейдем от минимальной дизъюнктивной нормальной формы к конъюнктивной нормальной форме:

$$F = AC\overline{D} \lor A\overline{B}\overline{C} = A \cdot (C\overline{D} \lor \overline{B}\overline{C}) = A \cdot (C \lor \overline{B}\overline{C}) \cdot (\overline{D} \lor \overline{B}\overline{C}) =$$

$$= A \cdot (C \lor \overline{B}) \cdot (C \lor \overline{C}) \cdot (\overline{D} \lor \overline{C}) \cdot (\overline{D} \lor \overline{B}) = A \cdot (C \lor \overline{B}) \cdot (\overline{D} \lor \overline{C}) \cdot (\overline{D} \lor \overline{B}).$$