MAD M1 Actuariat/ES

Chapitre III: Processus de Poisson

Pierre-Olivier Goffard

Université de Lyon 1 ISFA pierre-olivier.goffard@univ-lyon1.fr

> ISFA October 21, 2018

I. Processus de Poisson

On souhaite construire un processus stochastique en temps continu permettant le décompte d'évènement au cours du temps. On considère des évènements du type

- tremblement de terre
- accident de voiture
- arrivée d'un client dans un magasin

Soit une variable aléatoire N_t à valeur entière à l'instant $t \in [0, +\infty)$. On suppose que le processus démarre à 0, avec $N_0 = 0$, et augmente en effectuant des sauts de hauteur 1. Voici un exemple de trajectoire d'un tel processus.

Figure: Evolution du processus de comptage $\{N_t ; t \ge 0\}$.

Definition 1 (Processus de comptage)

Un processus de comptage $(N_t)_{t\geq 0}$ est un processus stochastique en temps continu qui compte les occurences d'un certain évènement dans le temps tel que

$$N_0 = 0$$
 and $N_t = \sum_{k=1}^{+\infty} \mathbb{1}_{T_n \le t}$.

où T_1,T_2,T_3,\ldots sont les temps d'arrivées, on convient que $T_0=0$. On définit la suite des temps inter-arrivée $\Delta_0^T,\Delta_1^T,\Delta_2^T,\ldots$ comme différence des temps d'arrivée avec

$$\Delta_k^T = T_{k+1} - T_k, \ k = 0, 1, 2 \dots.$$

- \hookrightarrow Cela corespond au temps entre le $(k+1)^{\text{\'eme}}$ and the $k^{\text{\'eme}}$ évènement.
- \hookrightarrow On parle parfois de temps de séjour de $(N_t)_{t\geq 0}$ dans l'état k
- \hookrightarrow Le temps d'arrivée est donné par la somme des temps d'inter-arrivée avec $T_n = \sum_{n=0}^{n-1} \Delta_k^T$.

Definition 2 (Processus de Poisson)

Si le processus $(N_t)_{t\geq 0}$ a

(i) des accroissements indépendants, soit pour $0 < t_1 \le ... \le t_n$, les variables aléatoires

$$N_{t_1}, N_{t_2} - N_{t_1}, \dots, N_{t_n} - N_{t_{n-1}}$$
 sont indépendantes.

 (ii) des accroissements stationnaires au sens où la distribution du nombre d'évènements durant un intervalle de longueur s > 0 ne dépend que de s.
 alors (N_t)_{t>0} est un processus de Poisson. On peut montrer que pour s, t ≥ 0, on a

$$N_{t+s} - N_t \sim \text{Pois}(\lambda s)$$
,

où $\lambda > 0$ est l'intensité du processus de Poisson.

Remarque 1

- Les processus stochastiques à accroissements indépendants et stationnaires sont les processus de Lévy. Le processus de Poisson est le seul processus de comptage de Lévy.
- On a
 - $\{N_t = 1\} = \{T_n \le t < T_{n+1}\}$
 - $\{N_t \le n\} = \{T_n > t\}$

Proposition 1 (La loi des temps inter-arrivés)

Soit $(N_t)_{t\geq 0}$ un processus de Poisson d'intensité λ . Les temps inter-arrivée $(\Delta_n^T)_{n\geq 1}$ forme une suite iid de variables aléatoires de loi exponentielle de paramètre λ .

Preuve:

On montre que le vecteur des temps d'arrivée $(T_1,...,T_n)$ admet pour densité

$$f_{T_1,...,T_n}(t_1,...,t_n) = \lambda^n e^{-\lambda t_n} \mathbb{I}_{0 < t_1 < ... < t_n}.$$
 (1)

Soit $t_1,...,t_n$ et h des réels positifs telles que

$$t_1 < t_1 + h < t_2 < \ldots < t_n < t_n + h,$$

on a

$$\begin{split} & \mathbb{P} \big(t_1 < T_1 < t_1 + h, \dots, t_n < T_1 < t_n + h \big) \\ & = & \mathbb{P} \big(N_{t_1} = 0, N_{t_1 + h} - N_{t_1} = 1, \dots, N_{t_n} - N_{t_{n-1} + h} = 0, N_{t_n + h} - N_{t_n} \ge 1 \big) \\ & = & e^{-\lambda t_1} e^{-\lambda h} \lambda h e^{-\lambda \big[t_2 - (t_1 + h) \big]} e^{-\lambda h} \lambda h \dots e^{-\lambda \big[t_2 - (t_1 + h) \big]} \big[1 - e^{-\lambda h} \big] \\ & = & e^{-\lambda t_n} \lambda^n h^{n-1} \big[1 - e^{-\lambda h} \big] \end{split}$$

On divise par h^n puis on laisse h tendre vers 0 pour obtenir (1). Il ne reste plus qu'a appliquer la formule de changement de variables pour constater que la loi jointe de $(\Delta_1^T, ..., \Delta_n^T)$ est celle d'un n-uplets de n variables iid de loi exponentielles.

Remarque 2 (Processus de renouvellement

Un processus de comptage dont les temps inter-arrivée sont ${\bf i.i.d.}$ est un processus de renouvellement.

Remarque 3 (Caractérisation d'un processus de Poisson)

Un processus de comptage dont les temps inter-arrivée sont **i.i.d.** de loi exponentielle est un processus de Poisson. La démonstration est calculatoire, on peut se contenter de noter que

$$\mathbb{P}(N_{t} = n) = \mathbb{P}(T_{n} \leq t, T_{n+1} > t)$$

$$= \mathbb{P}(T_{n} \leq t, T_{n} + \Delta_{n+1}^{T} > t)$$

$$= \int_{0}^{t} \int_{t-x}^{+\infty} f_{T_{n}, \Delta_{n+1}^{T}}(x, y) dy dx$$

$$= \int_{0}^{t} \int_{t-x}^{+\infty} \frac{\lambda^{n} e^{-\lambda x} x^{n-1}}{(n-1)!} \lambda e^{-\lambda y} dy dx$$

$$= \int_{0}^{t} \frac{\lambda^{n} e^{-\lambda x} x^{n-1}}{(n-1)!} e^{-\lambda (t-x)} dx$$

$$= \frac{\lambda^{n} e^{-\lambda t}}{(n-1)!} \int_{0}^{t} x^{n-1} dx$$

$$= \frac{(\lambda t)^{n} e^{-\lambda t}}{t-1}.$$

Proposition 2 (La distribution de $T_1, ..., T_n | N_t = n$)

Sachant que $\{N_t = n\}$, les instants de saut $T_1, ..., T_n$ admettent la même distribution que les statistiques d'ordre associées à un échantillon de n variables aléatoires indépendantes de loi uniforme sur [0,t], concrétement

$$T_1,...,T_n|N_t = n \sim U_{1:n}(0,t),...,U_{n:n}(0,t)$$

Fact 1 (Algorithme de simulation)

Pour simuler la trajectoire d'un processus de Poisson $\{N_t ; t \ge 0\}$ d'intensité λ jusqu'à l'instant t.

- **①** On simule le nombre d'évènement N_t de loi de Poisson Pois (λt)
- ② On simule un échantillon $U_1(0,t),...,U_n(0,t)$ de n variables aléatoires **i.i.d.** de loi uniforme sur [0,t] et on les trie de manière croissante pour obtenir les statistiques d'ordre

$$U_{1:n}(0,t),...,U_{n:n}(0,t)$$

Les temps de saut sont alors donnés par

$$T_k = U_{k:n}(0,t)$$
 pour $k = 1,...,n$.

Exemple 1

On suppose que le nombre de tremblements de terre en Californie depuis le 1er janvier 2017 suit un processus de Poisson $(N_t)_{t\geq 0}$. Supposons que l'unité de temps est l'année et que le nombre moyen de tremblements de terre par an est de 20.

- Quelle est la probabilité d'observer entre 39 et 41 tremblements de terre dans les deux prochaines années.
- Quelle est la probabilité d'observer au moins un tremblement de terre dans les trois prochains mois.

L'intensité de N_t est $\lambda = 20$.

0

$$\begin{split} \mathbb{P}\big(N_2 \in \{39, 40, 41\}\big) &= \mathbb{P}\big(N_2 = 39\big) + \mathbb{P}\big(N_2 = 40\big) + \mathbb{P}\big(N_2 = 41\big), \\ &= e^{-40} \frac{(40)^{39}}{39!} + e^{-40} \frac{(40)^{40}}{40!} + e^{-40} \frac{(40)^{41}}{41!} \end{split}$$

8

$$\mathbb{P}(N_{0.25} \ge 1) = 1 - \mathbb{P}(N_{0.25} = 0),$$
$$= 1 - e^{-5},$$

Proposition 3 (Somme de deux processus de Poisson)

Soient $\{N_t ; t \ge 0\}$ et $\{M_t ; t \ge 0\}$ deux processus de Poisson indépendants d'intensité respectives λ et μ , alors le processus $\{X_t ; t \ge 0\}$ défini par

$$X_t = N_t + M_t$$
, for $t \ge 0$,

est un processus de Poisson d'intensité $\lambda + \mu$. Le résultat se généralise à la somme de n processus de Poisson.

Remarque 4 (Généralisation courante du processus de Poisson)

- $oldsymbol{\bullet}$ Lorsque l'intensité est une variable aléatoire Λ , on parle de processus de Poisson mélange.
- ② Lorsque l'intensité est une fonction du temps, on parle de processus de Poisson non-homogène. On a alors

$$N(t) \sim \text{Pois}[\lambda(t)],$$

avec $\lambda: \mathbb{R}_+ \mapsto \mathbb{R}_+$.

Dans les deux cas, on perd les propriétés d'accroissement indépendants et stationnaires

Exemple 2 (Croissance des blockchain)

Retour sur le problème de la double dépense: On modélise par

- $(z + N_t)_{t \ge 0}$ le nombre de blocs dans la chaine honnète, où $z \in \mathbb{N}^*$
- \bullet $(M_t)_{t\geq 0}$ le nombre de blocs dans la chaine malicieuse

Soit $\tau_Z = \inf\{t \geq 0 \; ; \; z + N_t = M_t\}$ le temps de succès de la double dépense. Si (N_t) et (M_t) sont des processus de Poisson d'intensité respective λ et μ alors la probabilité de succès de la double dépense est donnée par

$$\mathbb{P}(\tau_z < \infty) = \left(\frac{\mu}{\lambda}\right)^z.$$

Voir Goffard [2]. Un bon exercice consiste à évaluer par simulation $\mathbb{P}(\tau_z < t)$, la probabilité de double dépense avant l'instant $t \ge 0$.

II. Processus de Poisson composé

Definition 3 (Distribution composée)

La variable aléatoire

$$X = \sum_{k=1}^{N} U_k,$$

οù

- N est une variable aléatoires de comptage
- (U_k)_{k≥1} est une suite de variables aléatoires positives, i.i.d. de densité f_U, et indépendante de N.

admet une distribution composée. La loi de probabilité de X est donnée par

$$d\mathbb{P}_X(x) = \mathbb{P}(N=0)\delta_0(x) + \sum_{k=1}^{\infty} f_U^{*k}(x)\mathbb{P}(N=k),$$

Remarque 5 (Interprétation actuarielle)

Modèle fréquence/coût classique en assurance non-vie, sur une période d'exercice donnée,

- N représente le nombre de sinistres,
- $U_1, ..., U_N$ représente les montants de sinistres.

Proposition 4

La fonction génératrice des moments de X est donnée par

$$\mathcal{M}_X(t) = \mathbb{E}(e^{tX}) = \mathcal{G}_N[\mathcal{M}_U(t)], \ t \in \mathbb{R}.$$

où $\mathscr{G}_N(t) = \mathbb{E}(t^N)$ désigne la fonction génératrice des probabilités de N. On en déduit que $\mathbb{E}(X) = \mathbb{E}(N)\mathbb{E}(U) \text{ et } Var(X) = \mathbb{E}(U)^2 Var(N) + \mathbb{E}(N)Var(U).$

preuve:

$$\begin{split} \mathcal{M}_{X}(t) &= \mathbb{E}\left(e^{tX}\right) = \mathbb{E}\left(e^{t\sum_{k=1}^{N}U_{k}}\right) \\ &= \mathbb{E}\left[\mathbb{E}\left(e^{t\sum_{k=1}^{N}U_{k}}|N\right)\right] = \sum_{n=0}^{\infty}\mathbb{E}\left(e^{t\sum_{k=1}^{N}U_{k}}|N=n\right)\mathbb{P}(N=n) \\ &= \sum_{n=0}^{\infty}\mathbb{E}\left(e^{t\sum_{k=1}^{n}U_{k}}|N=n\right)\mathbb{P}(N=n) = \sum_{n=0}^{\infty}\mathbb{E}\left(e^{tU}\right)^{n}\mathbb{P}(N=n) \\ &= \sum_{n=0}^{\infty}\mathbb{E}\left(e^{tU}\right)^{n}\mathbb{P}(N=n) = \sum_{n=0}^{\infty}\mathcal{M}_{U}(t)^{n}\mathbb{P}(N=n) = \mathcal{G}_{N}[\mathcal{M}_{U}(t)]. \end{split}$$

L'expression de l'espérance et de la variance s'obtient alors par dérivation et évaluation en 0.

Definition 4 (Processus de Poisson composé)

Soit

- $(N_t)_{t\geq 0}$ un processus de Poisson d'intensité λ ,
- $(U_k)_{k\geq 1}$ une suite **i.i.d.** de variables aléatoires positives indépendante de N_t .

Le processus stochastique $\{X_t ; t \ge 0\}$ défini par

$$X_t = \sum_{k=1}^{N_t} U_k, \text{ for } t \ge 0,$$

est un processus de Poisson composé.

Remarque 6

Le processus de Poisson composé est une généralisation du processus de Poisson permettant des sauts de hauteur aléatoire.

Figure: Evolution du processus $(X_t)_{t\geq 0}$.

Proposition 5

Soit $(X_t)_{t\geq 0}$ un processus de Poisson composé, on a

$$\mathbb{E}(X_t) = \lambda t \mathbb{E}(U)$$
 and $\mathbb{V}(S_t) = \lambda t \mathbb{E}(U^2)$.

Exemple 3 (Le modèle de Cramer-Lundberg)

Une compagnie d'assurance est supposée capable de suivre l'évolution de sa réserve financière continuement dans le temps. On suppose que

- Le nombre de sinistre $(N_t)_{t\geq 0}$ enregistrés jusqu'à t, est un processus de Poisson d'intensité λ .
- Les sinistres $(U_k)_{k\geq 1}$ sont modélisés par une suite **i.i.d.** de variables aléatoires positives indépendantes de N_t .

Les engagements de la compagnie d'assurance à l'instant t s'élèvent à

$$X_t = \sum_{k=1}^{N_t} U_k, \ t \ge 0,$$

qui est un processus de Poisson composé. De plus, La compagnie

- dispose d'une réserve initiale de montant $u \ge 0$
- récupère les primes linéairement dans le temps à un taux c > 0
 - Typiquement, les primes compensent le cout moyen des assurés par unité de temps avec

$$c = (1 + \eta)\mathbb{E}(X_1)$$
, avec $\eta > 0$.

Finalement la réserve financière de la compagnie d'assurance est donnée par

$$R_t = u + ct - X_t$$
, $t \ge 0$.

On note $\tau_u = \inf\{t \ge 0 \; ; \; R_t \le 0\}$ l'instant de ruine et la probabilité de ruine

$$\psi(u,T) = \mathbb{P}(\tau_u < T)$$

pour un horizon de temps \mathcal{T} . Pour plus d'informations, on pourra consulter le livre d'Asmussen et Albrecher [1].

Problème 1

On suppose que les sinistres sont distribués suivant une loi Gamma $\Gamma(\alpha,\beta)$, donnez la moyenne et la variance de X_t en fonction de λ,α et β .

Mes notes se basent sur les documents [5, 4, 3].

Søren Asmussen and Hansjörg Albrecher.

Ruin probabilities.

World Scientific Publishing Co Pte Ltd, 2010.

Pierre-Olivier Goffard.

Fraud risk assessment within blockchain transactions.

2018

http://pierre-olivier.goffard.me/Publications/FraudRiskAssessmentWithinBlockChainTransaction_Goffard0218.pdf.

Maryann Hohn.

PSTAT160A: Applied Stochastic Processes - Lecture notes.

2017.

Nabil Kazi-Tani.

Modèles aléatoires discrets - Cours scannés ISFA.

Statistique des processus 3A - Note de cours.

http://www.ensai.fr/files/_media/documents/Enseignants%20chercheurs% 20-%20doctorants/ltruquet%20-%20documents/polystatdesprocessus2.pdf.