CS 446: Machine Learning Homework

Due on Tuesday, February 27, 2018, 11:59 a.m. Central Time

1. [8 points] Backpropagation

Consider the deep net in the figure below consisting of an input layer, an output layer, and a hidden layer. The feed-forward computations performed by the deep net are as follows: every input a_i is multiplied by a set of fully-connected weights u_{ij} connecting the input layer to the hidden layer. The resulting weighted signals are then summed and combined with a bias e_j . This results in the activation signal $z_j = e_j + \sum_i a_i u_{ij}$. The hidden layer applies activation function g on z_j resulting in the signal b_j . In a similar fashion, the hidden layer activation signals b_j are multiplied by the weights connecting the hidden layer to the output layer w_{jk} , a bias f_k is added and the resulting signal h_k is transformed by the output activation function g to form the network output c_k . The loss between the desired target t_k and the output c_k is given by the MSE: $E = \frac{1}{2} \sum_k (c_k - t_k)^2$, where t_k denotes the ground truth signal corresponding to c_k . Training a neural network involves determining the set of parameters $\theta = \{U, W, e, f\}$ that minimize E. This problem can be solved using gradient descent, which requires determining $\frac{\partial E}{\partial \theta}$ for all θ in the model.

(a) For $g(x) = \sigma(x) = \frac{1}{1 + e^{-x}}$, compute the derivative g'(x) of g(x) as a function of $\sigma(x)$.

$$\begin{split} \sigma(x) &= \frac{1}{1 + e^{-x}} \\ \frac{\partial \sigma(x)}{\partial x} &= \frac{\partial}{\partial x} \frac{1}{1 + e^{-x}} \\ &= \frac{e^{-x}}{(1 + e^{-x})^2} \\ &= \frac{1}{1 + e^{-x}} \frac{e^{-x}}{1 + e^{-x}} \\ &= \sigma(x) \frac{1 + e^{-x} - 1}{1 + e^{-x}} \\ &= \sigma(x) (\frac{1 + e^{-x}}{1 + e^{-x}} - \frac{1}{1 + e^{-x}}) \\ &= \sigma(x) (1 - \sigma(x)) \end{split}$$

(b) We denote by $\delta_k = \frac{\partial E}{\partial h_k}$ the error signal of neuron k in the second linear layer of the network. Compute δ_k as a function of c_k , t_k , g' and h_k .

Your answer:

$$c_k = g(h_k)$$

$$\delta_k = \frac{\partial E}{\partial h_k}$$

$$= \frac{\partial}{\partial h_k} (\frac{1}{2} \sum_k (c_k - t_k)^2)$$

$$= \sum_k ((c_k - t_k)g'(h_k))$$

(c) Compute $\frac{\partial E}{\partial w_{jk}}$. Use δ_k and b_j .

$$\begin{split} h_k &= \sum_j (w_{jk}b_j) + f_k \\ \frac{\partial E}{\partial w_{jk}} &= \frac{\partial E}{\partial h_k} \frac{\partial h_k}{\partial w_{jk}} \\ &= \delta_k \frac{\partial h_k}{\partial w_{jk}} \\ &= \delta_k \frac{\partial}{\partial w_{jk}} \Big(\sum_j (w_{jk}b_j) + f_k \Big) \\ &= \delta_k \sum_j b_j \end{split}$$

(d) Compute $\frac{\partial E}{\partial f_k}$. Use δ_k .

Your answer:

$$\begin{split} h_k &= \sum_j (w_{jk}b_j) + f_k \\ \frac{\partial E}{\partial f_k} &= \frac{\partial E}{\partial h_k} \frac{\partial h_k}{\partial f_k} \\ &= \delta_k \frac{\partial h_k}{\partial f_k} \\ &= \delta_k \frac{\partial}{\partial f_k} \Big(\sum_j (w_{jk}b_j) + f_k \Big) \\ &= \delta_k \end{split}$$

(e) We denote by $\psi_j = \frac{\partial E}{\partial z_j}$ the error signal of neuron j in the first linear layer of the network. Compute ψ_j as a function of δ_k , w_{jk} , g' and z_j .

$$h_k = \sum_{j} (w_{jk}b_j) + f_k$$
$$\frac{\partial h_k}{\partial b_j} = \sum_{j} w_{jk}$$

$$b_{j} = g(z_{j})$$

$$\psi_{j} = \frac{\partial E}{\partial z_{j}}$$

$$= \frac{\partial E}{\partial h_{k}} \frac{\partial h_{k}}{\partial b_{j}} \frac{\partial b_{j}}{\partial z_{j}}$$

$$= \delta_{k} \sum_{j} (w_{jk}g'(z_{j}))$$

(f) Compute $\frac{\partial E}{\partial u_{ij}}$. Use ψ_j and a_i .

Your answer:

$$z_{j} = \sum_{i} (u_{ij}a_{i}) + e_{j}$$

$$\frac{\partial E}{\partial u_{ij}} = \frac{\partial E}{\partial z_{j}} \frac{\partial z_{j}}{\partial u_{ij}}$$

$$= \psi_{j} \frac{\partial z_{j}}{\partial u_{ij}}$$

$$= \psi_{j} \frac{\partial}{\partial u_{ij}} \left(\sum_{i} (u_{ij}a_{i}) + e_{j} \right)$$

$$= \psi_{j} \sum_{i} a_{i}$$

(g) Compute $\frac{\partial E}{\partial e_j}$. Use ψ_j .

$$z_{j} = \sum_{i} (u_{ij}a_{i}) + e_{j}$$

$$\frac{\partial E}{\partial e_{j}} = \frac{\partial E}{\partial z_{j}} \frac{\partial z_{j}}{\partial e_{j}}$$

$$= \psi_{j} \frac{\partial z_{j}}{\partial e_{j}}$$

$$= \psi_{j} \frac{\partial}{\partial e_{j}} \left(\sum_{i} (u_{ij}a_{i}) + e_{j} \right)$$

$$= \psi_{i}$$