Zadanie 3–4

Patryk Lisik

11 Luty 2024

Treść

Niech \mathcal{C} będzie [6,3]-birnarnym kodem liniowym rozpinanym przez bazowe słowa kodowe $\mathbf{u}_1=011011,\ \mathbf{u}_2=101101$ i $\mathbf{u}_3=111000.$ Wyznacz macierz generującą \mathbf{G} dla kodu \mathcal{C} w postaci systematycznej, następnie wyznacz macierz sprawdzanai parzystości \mathbf{H} dla kodu \mathcal{C} . Znajdź słowo kodowe \mathbf{c} dla wiadomości 110 i sprawdź, $\mathbf{cH^T}=0$. Znajdź tempo R i minimalną odległość d dla kodu \mathcal{C} . Wyznacz tablę syndormu dla \mathcal{C} ; jakie wzorce błędu są przez niego poprawiane? Znajdź prawdopodobieństwo błędnego dekodowania Pr_E przy przesyłaniu wiadomości zadkodowanej tym kodem przez binarny kanał symertyczny $\Gamma \circ P < \frac{1}{2}$ i regule dekodowania Δ przez najbiższgo sąsiada.

Rozwiązanie

Macierz generująca G i macierz parzystości H

$$\mathbf{G}' = \begin{pmatrix} 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{G} = \begin{bmatrix} 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \longleftrightarrow = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \longleftrightarrow_{+} = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix} \longleftrightarrow_{+} = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{bmatrix}$$

$$\mathbf{H} = \begin{pmatrix} 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 \end{pmatrix}$$

Obliczenie wiadomości i sprawdzenie poprawności

$$c = (110) \cdot \begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 & 1 & 0 \end{pmatrix} = (110110)$$

$$c\mathbf{H}^{T} = (110110) \cdot \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = (000)$$

Tempo transmisji kodu R

$$R = \frac{k}{n} = \frac{3}{6} = \frac{1}{2}$$