

Ants Together Strong(3)

ML/DL을 이용한 주가 향방 예측

김동수 안태용 이찬영 최선빈

목차

_ 개요

모델링

웹구현

주식이란?

개인 / 단체가 특정 회사에 일정 금액을 투자

- 1. 투자금에 걸맞은 이익을 배당받음
- 2. 회사 경영권에 행사 : 주주총회 참여 및 투표권
- 을 보장하는 증서

즉, 배당 / 경영참여권

증시란?

국가에서 증권을 거래하는 시장을 운영 이 거래소를 증권시장, 즉 증시라고 함 국내에는 유가증권시장, 코스닥 해외에는 NYSE / NASDAQ 등이 있음 증시의 과거 대비 현 위치를 나타내는 숫자 값을 '지수'라고 함 KOSPI / KOSDAQ / S&P500 등이 있음

선물(futures)이란?

특정 기초자산을, 특정일에, 특정 가격으로 거래하겠다는 계약을 선도계약(forwards)라고 함. 이를 표준화하여 거래소 에서 거래 할 수 있게 만든 계약을 '선물계약' 이라고 함

WTI유 선물 - 2022년 7월물 \$ 116.09

-> 2022년 7월 계약 만기일에, 배럴 당 \$116.09에, WTI유를 사겠다 / 팔겠다는 "계약"

KODEX 200 069500 >

35,300 • 455 (+1.31%)

ETF란?

상장 지수 펀드. 주가 지수나 채권 지수 등 특정 지수를 추종하여 거래소에 상장되어 거래되는 "펀드" 선물 지수 또한 추종 대상이 될 수 있고,

대표적으로 KODEX 200은 선물 지수 KOSPI 200을 추종

선물 거래는 규모가 크기 때문에, 개인이 지수에

투자하기에 가장 좋은 수단

워렌 버핏, 옥시덴탈 페트롤리움 90만주 추가 매수

"초단타매매로 개미 털었다" 금감원도 칼 뽑아...시타델 "공정 거래"

환율 내리자 돌아온 외국인...'안도랠리 기대' - 서울경제

'피엔티' 52주 신고가 경신, 단기·중기 이평선 정배열로 상승세

주식의 향방을 예측하는 지표는 너무나도 많다

각자의 지표는 의미를 가질 것이라는 기대 컴퓨터를 활용해 각자의 지표 학습 / 합치면 수익 기대?

ML / DL을 통한 주가 향방 분석

각자 주가 분석에 있어 '유의'하다고 생각되는 부분을 선택

- 차트 지표
- 캔들 차트
 - 수급
 - 시계열
- 자연어 / 거시경제
- 1. KODEX 200의 상승 / 하락 예측
 - 2. 개별주 차원으로 확장

GIOIE

	Close	Open	High	Low	Volume	Change	
Date							
2018-01-01	93500	93500	93500	93500	0.0	0.0000	
2018-01-02	102500	95900	104000	93300	6760000.0	0.0963	
2018-01-03	103000	102600	104900	99500	4720000.0	0.0049	
2018-01-04	92200	102600	104000	92200	6390000.0	-0.1049	
2018-01-05	100000	85800	101200	85700	8250000.0	0.0846	
2018-01-07	100000	100000	100000	100000	0.0	0.0000	
2018-01-08	93800	98000	98400	92500	6280000.0	-0.0620	
2018-01-09	109000	96500	119200	93800	12290000.0	0.1620	
2018-01-10	98000	105000	107300	97800	6510000.0	-0.1009	
2018-01-11	96700	97600	100600	95200	4040000.0	-0.0133	

데이터 출처

주로 FinanceDataReader 라이브러리 사용 가격, 거래량, 종목 구성 등의 정보를 바로 가져올 수 있음 추가로 한국거래소, pykrx 라이브러리 등을 사용

1. 차트 지표

주가 흐름 상 현재 주가가 어디에 있는지를 나타내는 지표들을 사용 RSI / STOCASTIC / Bollinger Band(%b) / MACD / MA5, MA20 열이 많아서 과최적화 + 학습이 느림 개별주 차원으로 학습량 추가(1.5m) + 파라미터 조정 없이도 어느 정도 성능이 보장되는 Catboost 사용

```
for i in range(15, len(data)): # 15행 종가부터 시작
   close = list(data.iloc[i - 14 : i + 1]['Close'])
   positive = []
   negative = []
   for j in range(14):
       diff = close[j + 1] - close[j]
       if diff >= 0:
           positive.append(diff)
           negative.append(diff)
   AU = np.sum(positive) / 13
   AD = abs(np.sum(negative) / 13)
   RSI = AU / (AU + AD)
   RSI_list.append(RSI)
```

2. 캔들 차트


```
label = (data.iloc[i]['Change'] > 0).astype(int)

fig = plt.figure(figsize=(1, 1), dpi = 300)

ax = fig.add_subplot(111)

candlestick2_ohlc(ax, local_data['Open'], local_data['High'],

plt.axis('off')

plt.savefig('drive/My Drive/datasets/datasets/{}_{{}_{-}}{}_{-}.png'.fillabel == 1:
    plt.savefig('datasets/1/{}_.png'.format(variable))

else:
    plt.savefig('datasets/0/{}_.png'.format(variable))
```

CNN을 활용한 관련 연구 많이 있었음

: CNN을 통해 N일 전까지의 주가 봉 차트를 학습 -> 주가 상 / 하방 예측

Mplfinance 라이브러리 사용: 봉 차트를 생성(20일)

-> CNN 모델 생성 후 학습(50,000)

3. 수급

일자	지수	등락폭	개인	외국인	기관	
2022/05/31	2,666,10	▼ 3,56	283	275	-598	
2022/05/30	2,669,66	▲ 31,61	-8,021	3,540	4,203	
2022/05/27	2,638,05	▲ 25,60	-7,447	2,759	5,543	
2022/05/26	2,612,45	▼ 4.77	930	376	-1,546	
2022/05/25	2,617,22	▲ 11,35	-3,581	-1,654	5,112	
2022/05/24	2,605,87	▼ 41,51	5,786	-3,254	-2,820	
2022/05/23	2,647,38	▲ 8,09	-1,652	-303	1,697	
2022/05/20	2,639,29	▲ 46,95	-10,412	1,966	8,364	

국내 주식시장은 투자주체를 크게 세 가지로 구분함 개인 / 외국인 / 기관지수를 견인하는건 '외국인'

개별주를 견인하는건 '투신' -> 투자주체와 주가 간 유의미성을 예측 SVC를 활용하여 모델링: 크게 유의하지 않은 것으로 나타남

예측 모델 및 추후 보팅에서 제외

4. 시계열


```
#Build the LSTM model
model = Sequential()
model.add(LSTM(50, return_sequences=True, input_shape=(x_train.shape[1],6)))
model.add(LSTM(50, return_sequences=False))
model.add(Dense(25))
model.add(Dense(1))
#Compile the model
model.compile optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']
```

LSTM

RNN의 한 종류이며 긴 기간의 의존성(long-term dependencies)이 필요한 문제를 해결하기 위해 고안된 모델. 다양한 시계열 데이터 해석 문제에 사용됨.

간단한 LSTM 모델을 사용하여 주가 차트 내용을 바탕으로 분석.

그림출처: https://dgkim5360.tistory.com/entry/understanding-long-short-term-memory-lstm-kr

4. 시계열


```
for i in range(60, len(train_data)):
    x_train.append(train_data.iloc[i-60:i,0:6])
    y_train.append(train_data.iloc[i,6])
```

```
#Convert the train data to numpy arrrays
x_train, y_train = np.array(x_train), np.array(y_train)

ed in 104ms, finished 01:08:31 2022-05-27

#Reshape the data
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1],6))
x_train.shape
```

LSTM

RNN의 한 종류이며 긴 기간의 의존성(long-term dependencies)이 필요한 문제를 해결하기 위해 고안된 모델. 다양한 시계열 데이터 해석 문제에 사용됨.

시계열 데이터이므로 X_data에 시간 열을 넣어주기 위해 다음과 같은 전처리 작업을 거쳐 (N,60,6) 형태로 변형

그림출처: https://dgkim5360.tistory.com/entry/understanding-long-short-term-memory-lstm-kr

4. 시계열

```
1 result = model.evaluate(x_test, y_test, batch_size=1)
executed in 6.96s, finished 01:17:56 2022-05-27

100/100 [==========] - 7s 6ms/step - loss: 6.7870 - accuracy: 0.5600
```

간단하게 작성된 모델이라 정확도가 0.56~0.6 정도로 나옴 데이터 측면: OHLCV만 사용된 데이터라 장의 분위기 정도 밖에 읽지 못하였다.

모델적 측면: TCN(Temporal Convolutional Network), Bi-LSTM(bidirectional-LSTM), attention mechanism, DTML(Data-axis Transformer with Multi-Level contexts) 등 다양한 모델을 적용한다면 성능 이 올라 갈 것이라 생각.

LSTM

그림출처 : https://dgkim5360.tistory.com/entry/understanding-long-short-term-memory-lstm-kr

5. 자연어 / 거시경제

	Open	High	Low	Close	Volume	Change	Target	NASDAQ	ILD	GOLD	KRW	EUR	CNY	sentiment
2007-01-03	14451	14455	14195	14232	1106268	-0.014268	0	2423.16	12474.52	627.1	926.15	0.7597	7.8160	0.000000
2007-01-05	14058	14065	13818	13929	2322080	-0.007128	0	2434.25	12398.01	604.9	934.45	0.7689	7.8090	1.000000
2007-01-08	13907	13907	13727	13783	1869083	-0.010482	0	2438.20	12423.49	607.5	938.10	0.7680	7.8127	1.000000
2007-02-02	13916	14214	13916	14208	1357483	0.021350	1	2475.88	12653.49	646.2	937.25	0.7712	7.7560	-1.000000
2007-02-05	14195	14284	14113	14300	1572882	0.006475	1	2470.60	12661.74	650.9	935.80	0.7733	7.7585	0.000000
2022-05-16	34850	34925	34395	34470	7376786	-0.003901	0	11662.79	32224.01	1814.0	1280.38	0.9583	6.7822	-0.454545
2022-05-17	34525	34850	34520	34805	3999458	0.009719	1	11984.52	32655.05	1818.9	1266.50	0.9478	6.7337	-0.400000
2022-05-18	34990	35145	34770	34870	6376438	0.001868	1	11418.15	31493.56	1815.9	1275.33	0.9551	6.7540	0.071429
2022-05-19	34125	34450	34060	34370	6054919	-0.014339	0	11388.50	31253.26	1841.2	1262.61	0.9442	6.7085	-0.800000
2022-05-20	34515	35025	34485	34985	4661990	0.017894	1	11354.62	31260.58	1842.1	1273.59	0.9466	6.6921	-0.333333

- 1. 나스닥 / 다우 / 금 / 유로 / 위안화 등 거시경제 지표 사용
- 2. KoBERT를 사용하여 그 날 네이버 뉴스 감성 분석 진행
- -> Sentiment 지수로 나타내어 변수로 사용
- ⇒ LSTM 모델을 활용해 주가 향방 학습 (Target 열)

결이 조금 다르다고 판단, 개별 모델로써는 사용하지만 보팅 모델에는 포함하지 않았음

주요 성능

$$\underline{p(i \ 1 \ | \mathbf{x})} = \frac{0.9 + 0.8 + 0.3 + 0.4}{4} = 0.6$$

$$\underline{p(i \ 2 \ | \mathbf{x})} = \frac{0.1 + 0.2 + 0.7 + 0.6}{4} = 0.4$$

$$\hat{y} = \arg\max_{i}[p(i \mid \mathbf{x}), p(i \mid \mathbf{x})] = 1$$

- 1. 차트 지표 모델
- 2. CNN을 통한 캔들 차트 분석 모델
- 3. LSTM을 통한 시계열 분석 모델
- -> Soft Voting을 통한 예측 모델 생성

KODEX 200의 상승 / 하락 예측 개별주 차원으로 확장

오늘의 지수 예측을 '투자 날씨'로써 표현 + 특정 모델을 과거 데이터를 바탕으로 실험하는 백테스팅 기능으로 구현

주요 성능

캔들 차트 모델의 2022년 코스피 예측률은 : 0.5463917525773195 차트 지표 모델의 2022년 코스피 예측률은 : 0.5360824742268041

LSTM 모델의 2022년 코스피 예측률은 : 0.5

보팅 모델의 2022년 코스피 예측률은 : 0.5463917525773195

- 백테스팅 기능을 구현해 놓아서, 사용자가 직접 인터랙티브하게 성능 측정 가능
- 대표격으로 KODEX 200의 2022년 이후 accuracy를 테스트함
- Cross-entropy / accuracy 모두 보팅 모델이 우수한 결과를 보임
- 그래서 보팅 모델을 대상으로 2022년 이후 국내 개별주 500개에 대한 성능을 테스트 : MEAN 0.56 / STD : 0.057

아쉬운 점

- 성능이 덜 나오는 모델 성능 향상 집착
- 생각보다 많은 모델을 구현하지 못함
- 구현한 모델도 성능 평가에 있어 시계열적 흐름 / 인풋 추가 옵션을 반영하지 못함
 - 퀄리티 나쁜 논문들 / 학회지들에 속았음
 - 결국 시간부족