Memo: Tutorial 5

March 16, 2005

Question 1:

 $First(A) = \{a\}$ and $Follow(A) = \{a,\$\}$ Thus the LL(1) parsing table is given by:

M[N,T]	a	\$
A	$A \rightarrow a \ A \ a$	$A{\rightarrow}\varepsilon$
	$A{\rightarrow}\varepsilon$	

Since we have two entries in M(A, a), the grammar is not LL(1).

Question 2:

(a)Pass 1Pass 2stmt-sequence \rightarrow stmt stmt-seq'First(stmt-sequence)={s}stmt-seq' \rightarrow ; stmt-sequenceFirst(stmt-seq') = {;}stmt-seq' \rightarrow εFirst(stmt-seq') = {;, ε }stmt-sFirst(stmt)= {s}

Thus

 $First(stmt\text{-}sequence) = \{s\}$

 $First(stmt-seq') = \{;, \varepsilon\}$

 $First(stmt) = \{s\}$

(b)

Grammar rule	Pass 1
$stmt$ -sequence $\rightarrow stmt$ $stmt$ -seq	$Follow(stmt-sequence) = \{\$\}$
	$Follow(stmt) = \{;, \$\}$
	$Follow(stmt-seq') = \{\$\}$
$stmt\text{-}seq' \rightarrow ; stmt\text{-}sequence$	
$stmt ext{-}seq^{'} ext{-}arepsilon arepsilon$	
$stmt \rightarrow \mathbf{s}$	

Thus

 $\verb|Follow|(stmt\text{-}sequence)=\{\$\}$

 $Follow(stmt-seq') = \{\$\}$

 $Follow(stmt) = \{;, \$\}$

Question 3:

(a)							
M[N,T]	(number)	+	_	*	\$
exp	$exp \rightarrow$	$exp \rightarrow$					
	$term\ exp^{'}$	$term\ exp^{'}$					
$exp^{'}$			$exp' \rightarrow \varepsilon$	$exp^{\prime} \rightarrow$	$exp^{\prime} \rightarrow$		$exp' \rightarrow \varepsilon$
				addop	addop		
				$term\ exp^{'}$	$term\ exp^{'}$		
addop				$addop \rightarrow +$	$addop \rightarrow -$		
term	$term \rightarrow$	$term \rightarrow$					
	factor	factor					
	$term^{'}$	$term^{'}$					
$term^{'}$			$term' \rightarrow \varepsilon$	$term' \rightarrow \varepsilon$	$term' \rightarrow \varepsilon$	$term^{'} \rightarrow$	$term' \rightarrow \varepsilon$
						mulop	
						factor	
						term'	
mulop						$mulop \rightarrow *$	
factor	$factor \rightarrow$	$factor \rightarrow$					
	(exp)	number					

(b)

Parsing stack	Input	Action
\$ exp	$number + \ number * \ number - \ number\$$	$exp \rightarrow term \ exp^{'}$
$\$ \ exp^{'} \ term$	number + number * number - number	$term{ o}factor\ term^{'}$
$\$ \ exp^{'} \ term^{'} \ factor$	number + number * number - number	$factor ightarrow \mathbf{number}$
$\$ \ exp^{'} \ term^{'} \ \ \mathbf{number}$	number + number * number - number	match
$\$ \ exp' \ term'$	+ number * number - number	$term^{'}{ ightarrow}arepsilon$
$\$ \ exp^{'}$	+ number * number - number	$exp^{'}{ ightarrow}addop\; term\; exp^{'}$
$\$ \ exp^{'} \ term \ addop$	+ number * number - number	$addop{ o}{+}$
\$ exp' term +	+ number * number - number	match
$\$ \ exp^{'} \ term$	number * number - number	$term{ o}factor\ term^{'}$
$\$ \ exp^{'} \ term^{'} \ factor$	number * number - number	$factor ightarrow \mathbf{number}$
$\$ \ exp^{'} \ term^{'} \ \ \mathbf{number}$	number * number - number	match
$\$ \ exp' \ term'$	* number - number $$$	$term^{'} { ightarrow} mulop\ factor\ term^{'}$
$\$ exp^{'} term^{'} factor mulop$	* number - number $$$	$mulop{\longrightarrow}*$
$\$ \ exp^{'} \ term^{'} \ factor *$	* number - number $$$	match
\$ exp' term' factor	$\mathbf{number} - \ \mathbf{number}\$$	$factor ightarrow \mathbf{number}$
$\$ \ exp^{'} \ term^{'} \ \ \mathbf{number}$	$\mathbf{number} - \ \mathbf{number}\$$	match
\$ exp' term'	- number $$$	$term{ ightarrow}arepsilon$
$\$ \ exp^{'}$	- number $$$	$exp^{'}{ ightarrow}addop\; term\; exp^{'}$
$\$ \ exp^{'} \ term \ addop$	- number $$$	$addop{ o}{-}$
$\$ exp^{'} term -$	- number $$$	match
$\$ exp^{'} term$	$\mathbf{number}\$$	$term { ightarrow} factor \; term^{'}$
$\$ exp^{'} term^{'} factor$	${\bf number}\$$	$factor ightarrow \mathbf{number}$
$\$ \ exp^{'} \ term^{'} \ \ \mathbf{number}$	$\mathbf{number}\$$	match
\$ exp' term'	\$	$term^{'} \rightarrow \varepsilon$
$\$ \ exp^{'}$	\$	$exp^{'}{ ightarrow}arepsilon$
\$	\$	accept

Question 4:

- (a) and (b) A grammar can not be both LL(1) and ambiguous, since each string in an LL(1) grammar has exactly one leftmost derivation.
- (c) No. The grammar in Question 1 is unambiguous but not LL(1).