Table 12.2-1 (Continued)

	ASCE 7 Section Where	Response Modification Coefficient, R ^a	Overstrength Factor, Ω_0^s	Deflection Amplification Factor, C_d^b	Structural System Limitations Including Structural Height, h_n (ft) Limits ^c				
	Detailing Requirements Are Specified				Seismic Design Category				
Seismic Force-Resisting System					В	C	\mathbf{D}^d	\mathbf{E}^d	F^e
G. CANTILEVERED COLUMN SYSTEMS DETAILED TO CONFORM TO THE REQUIREMENTS FOR:	12.2.5.2								
Steel special cantilever column systems	14.1	21/2	11/4	21/2	35	35	35	35	35
2. Steel ordinary cantilever column systems	14.1	11/4	11/4	11/4	35	35	NP ⁱ	NP^i	NP^i
3. Special reinforced concrete moment frames ⁿ	12.2.5.5 and 14.2	21/2	11/4	21/2	35	35	35	35	35
4. Intermediate reinforced concrete moment frames	14.2	11/2	11/4	1½	35	35	NP	NP	NP
5. Ordinary reinforced concrete moment frames	14.2	1	11/4	1	35	NP	NP	NP	NP
6. Timber frames	14.5	1½	11/2	1½	35	35	35	NP	NP
H. STEEL SYSTEMS NOT SPECIFICALLY DETAILED FOR SEISMIC RESISTANCE, EXCLUDING CANTILEVER COLUMN SYSTEMS	14.1	3	3	3	NL	NL	NP	NP	NP

[&]quot;Response modification coefficient, R, for use throughout the standard. Note R reduces forces to a strength level, not an allowable stress level.

^bDeflection amplification factor, C_d , for use in Sections 12.8.6, 12.8.7, and 12.9.2.

^{&#}x27;NL = Not Limited and NP = Not Permitted. For metric units use 30.5 m for 100 ft and use 48.8 m for 160 ft.

^dSee Section 12.2.5.4 for a description of seismic force-resisting systems limited to buildings with a structural height, h_n , of 240 ft (73.2 m) or less.

[&]quot;See Section 12.2.5.4 for seismic force-resisting systems limited to buildings with a structural height, h_n , of 160 ft (48.8 m) or less.

Ordinary moment frame is permitted to be used in lieu of intermediate moment frame for Seismic Design Categories B or C.

⁸Where the tabulated value of the overstrength factor, Ω_0 , is greater than or equal to $2\frac{1}{2}$, Ω_0 is permitted to be reduced by subtracting the value of 1/2 for structures with flexible diaphragms.

^hSee Section 12.2.5.7 for limitations in structures assigned to Seismic Design Categories D, E, or F.

ⁱ See Section 12.2.5.6 for limitations in structures assigned to Seismic Design Categories D, E, or F.

Steel ordinary concentrically braced frames are permitted in single-story buildings up to a structural height, h_n , of 60 ft (18.3 m) where the dead load of the roof does not exceed 20 psf

^{(0.96} kN/m²) and in penthouse structures.

^kAn increase in structural height, h_n , to 45 ft (13.7 m) is permitted for single story storage warehouse facilities.

¹In Section 2.2 of ACI 318. A shear wall is defined as a structural wall.

[&]quot;In Section 2.2 of ACI 318. The definition of "special structural wall" includes precast and cast-in-place construction.

[&]quot;In Section 2.2 of ACI 318. The definition of "special moment frame" includes precast and cast-in-place construction.

 $^{^{}o}$ Alternately, the seismic load effect with overstrength, E_{mh} , is permitted to be based on the expected strength determined in accordance with AISI S110.

^pCold-formed steel – special bolted moment frames shall be limited to one-story in height in accordance with AISI S110.