Chap 13. Continuous functions on a compact intervals

13.1 Compact intervals

The principal goal is to prove three important **local-to-global** type theorems:

If f(x) is **continuous** on any <u>finite closed</u> (= closed and bounded) interval I, then on I

- (i) f(x) is bounded
- (ii) f(x) has a maximum and minimum
- (iii) f(x) is **uniformly continuous** (the notion of uniform continuity will be introduced in section 13.5)

Note: Continuity (on I) is a local property but (i), (ii), & (iii) (i.e., boundedness, maximum (minimum) property, and uniform continuity on I) are global properties.

From now on, we call a <u>finite closed</u> (= closed and bounded) interval [a, b] a **compact** interval. Such intervals alone have the property called "sequential compactness"

Def. A set $S \subseteq \mathbb{R}$ is said to be sequentially compact if every sequence of points in S has a subsequence converging to a point in S. (i.e., \forall sequence (x_n) in S, \exists a convergent subsequence (x_{n_i}) such that $\lim_{n \to \infty} x_{n_i} \in S$)

Theorem Sequential Compactness Theorem (SCT)

A compact interval [a, b] is sequentially compact

Pf. Let $\{x_n\}$ be any seq in [a,b]. Then it is bounded since the interval is finite.

By BWT, it has a convergent subsequence $\left\{x_{n_i}\right\}$; set $\lim_{i \to \infty} x_{n_i} = c$

(--- boundedness of
$$[a,b]$$
 is used ---)

Since every $x_n \in [a,b]$, we have in particular $a \leq x_{n_i} \leq b$ for all i

Thus, by LLT (or by taking limits),

$$a \leq \lim_{i \to \infty} x_{n_i} \leq b \qquad \text{i.e., } c \in [a,b]$$

$$(\text{--- closedness of } [a,b] \text{ is used ---})$$

Therefore, [a, b] is sequentially compact

Remark. recall the different types of intervals:

$$[a,b]: \text{ finite closed} \qquad \text{i.e., compact} \\ [a,\infty), (-\infty,a]: \text{ semi-infinite closed} \\ (a,b): \text{ finite open} \\ (a,\infty), (-\infty,a): \text{ semi-infinite open} \\ (a,b], [a,b): \text{ finite half-open} \\ (-\infty,\infty) = \mathbb{R}: \text{ infinite open and closed} \\ \end{bmatrix} \text{ not compact}$$

For example,

 $[a,\infty)$ (or (a,∞)) contains the sequence $\{n\}_{n_0}^\infty$ (with $n_0>a$), which has no convergent subsequence

 $I=(a,b] \ \ ({\rm or}\ (a,b)) \ \ {\rm contains}\ \ {\rm a}\ \ {\rm tail}\ \ {\rm of}\ \ {\rm the}\ \ {\rm seq}\ \ \left\{a+\frac{1}{n}\right\}_{n_0}^{\infty}, \ \ {\rm which}\ \ {\rm converges}\ \ {\rm to}\ \ {\rm the}\ \ {\rm point}\ \ \ a
ot\in I\ .$

 \therefore any subsequence of $\left\{a+\frac{1}{n}\right\}_{n=1}^{\infty}$ also converges to $a\not\in I$, by the Subsequence Theorem.

$$[a,b): \ {\rm consider} \ \left\{b-\frac{1}{n}\right\}_{n_0}^{\infty}$$

13.2 Bounded continuous functions

Theorem (Boundedness Theorem)

If f(x) is continuous on a compact interval I, then f(x) is bounded on I

Pf. Suppose f(x) is not bounded on I. Then

f(x) is not bounded above on I or f(x) is not bounded below on I.

Suppose first that f(x) is not bounded above on I. Then

$$\exists x_1 \in I \quad \text{s.t.} \quad f(x_1) > 1$$

$$\exists x_2 \in I \quad \text{s.t.} \quad f(x_2) > 2$$

$$\vdots$$

$$\exists x_n \in I \quad \text{s.t.} \quad f(x_n) > n$$

$$\vdots$$

That is, \exists a seq $\{x_n\}_1^{\infty}$ in I s.t. $f(x_n) > n$

 $\{x_n\}_{n=1}^{\infty} \ \text{ is a seq in the compact interval} \ \ \mathbf{I} \quad \overset{\text{SCT}}{\Rightarrow} \ \ \exists \ \ \text{a subseq} \ \ \big\{x_{n_i}\big\} \ \ \text{converging to a point} \ \ c \in \mathbf{I} :$

$$\lim_{i \to \infty} x_{n_i} = c, \quad \text{where } c \in \mathcal{I}$$

We note first that, since $f(x_{n_i}) > n_i$,

$$\lim_{i \to \infty} f(x_{n_i}) \ge \lim_{i \to \infty} n_i = \infty \qquad i.e., \quad \lim_{i \to \infty} f(x_{n_i}) = \infty$$

But since f is conti at $c \in I$ and $\lim_{i \to \infty} x_{n_i} = c$,

$$\lim_{i \to \infty} f(x_{n_i}) = f(c)$$
 (by Sequential Continuity Theorem)

This leads to a contradiction, since $c \in I$ implies that f(c) is definite and finite

 \therefore f(x) must be bounded above

To show that f(x) is also bounded below, we note that

-f(x) is conti on the compact interval I

the above result \Rightarrow -f(x) is bounded above on I i.e., -f(x) < K for all $x \in I$ \Rightarrow f(x) > -K for all $x \in I$

 \therefore f(x) is bounded below on I

Remark. The conclusion in the Boundedness theorem would be false if "compact" were omitted. For example,

$$f(x) = \frac{1}{x}$$
 is conti on $(0,1]$ but it is not bounded there

Or

$$f(x) = x$$
 is conti on $[0, \infty)$ but it is not bounded there

13.3 Extremal points of continuous functions

Theorem (최대-최소 정리)

Let f(x) be continuous on the compact interval I. Then $\exists \overline{x}, \underline{x} \in I$ such that

$$f(\overline{x}) = \sup_{x \in I} f(x), \qquad f(\underline{x}) = \inf_{x \in I} f(x)$$

i.e., every contift f(x) has a maximum and minimum on the compact interval I.

$$(\text{Recall} \quad M \stackrel{\text{let}}{=} \sup_{x \in \mathcal{I}} f(x) \quad \Rightarrow \quad f(x) \leq M \quad \forall x \in \mathcal{I}$$

Thus if $\exists \overline{x} \in I$ s.t. $f(\overline{x}) = M$, then M becomes the maximum of f(x) on I)

Pf. Since f(x) is continuous on a compact interval I,

f(x) is bounded on I (by the Boundedness Theorem)

$$M = \sup_{x \in I} f(x)$$
 exists (by the Completeness Property for sets)

Then by the definition of the supremum, $f(x) \leq M \quad \forall x \in I$

We have to show that $\exists \overline{x} \in I \text{ s.t. } f(\overline{x}) = M$

To do this, for each integer n > 0, we can choose a point $x_n \in I$ s.t.

$$(M \ge) f(x_n) \ge M - \frac{1}{n}$$

This is possible, since $M - \frac{1}{n}$ is not an upper bound for f(x) on I

By the SCT, $\{x_n\}$ has a convergent subsequence $\{x_{n_i}\}$ converging to a point of $\ I$:

$$x_{n_i} \rightarrow \overline{x}, \quad \overline{x} \in I$$

By the Squeeze theorem, we now have

$$\underbrace{M - \frac{1}{n_i}}_{M} \leq \underbrace{f(x_{n_i})}_{M} \leq \underbrace{M}_{M}$$

This shows

$$\lim_{i\to\infty} f(x_{n_i}) = M \qquad ---(*)$$

On the other hand, since f(x) is conti at $\overline{x} \in I$ & $x_{n_i} \to \overline{x} \ (as \ i \to \infty),$

$$\lim_{i \to \infty} f(x_{n_i}) = f(\overline{x}) \qquad ---(**) \quad \text{(by the Sequential Continuity Theorem)}$$

$$(*) \& (**) \Rightarrow f(\overline{x}) = M.$$

To see that f(x) also attains its minimum on I, we apply the above to -f(x)

Note that -f(x) is continuous on the compact interval I

the above
$$\Rightarrow$$
 $-f(x)$ has a maximum point $\underline{x} \in I$ \Rightarrow $f(x)$ has a minimum point $\underline{x} \in I$

Remark.

(i) The conclusion in the Max-Min theorem would be false if "compact" were omitted; for example,

$$f(x) = x$$
 has no max & no min on $(0,1)$
has no max on $[0,\infty)$

(ii) The conclusion in the Max-Min theorem would be false if "continuity" were omitted; for example,

$$f(x) = \begin{cases} 1/x & x \neq 0 \\ 0 & x = 0 \end{cases} \quad \forall x \in \underbrace{[-1,1]}_{\text{cpt interval}}$$

Obviously f(x) is discontinuous at 0, and it has no max or min on [-1,1]

13.4 The mapping view point (about conti functions)

Q: Suppose f is continuous. Is it true that

- (i) open interval $\stackrel{?}{\rightarrow}$ open interval
- (ii) closed interval $\stackrel{?}{\rightarrow}$ closed interval
- (iii) bounded interval $\stackrel{?}{\rightarrow}$ bounded interval
- (iv) compact interval $\stackrel{?}{\rightarrow}$ compact interval
- (v) interval $\xrightarrow{?}$ interval

$$f(x) = \tan x$$
 $(x \in (-\pi/2, \pi/2))$ \Rightarrow $f\{(-\pi/2, \pi/2)\} = (-\infty, \infty)$ \therefore (iii) is false

$$f(x) \equiv 1 \ (\forall x \in (-\infty, \infty)) \Rightarrow f \{\text{any interval}\} = \{1\} (\text{single point})$$

Note: IVT (사이값 정리): continuous fct maps interval \rightarrow an interval or a single point

(Ex: Prove this)

 \therefore (v) is true if we regard single point as an (trivial)interval

Expect: any connected set in \mathbb{R} = an interval or single point (trivial interval)

(Easy to expect)

Thus, continuous function maps "connected sets" → "connected sets"

Remark.

$$f(x) = \begin{cases} 1 & \text{if } x \ge 0 \\ 0 & \text{if } x < 0 \end{cases} \text{ (unit step function)} \quad \Rightarrow f\left\{[-1, 1]\right\} = \{0, 1\} \text{ (two points)}$$

This example shows that if f is discontinuous, then the image of an interval under the map f need not be an interval.

The next theorem shows that (iv) is true.

Theorem Continuity Mapping Theorem

If f(x) is defined and continuous on the compact interval I, then f(I) is a compact interval; that is, the continuous image of a compact interval is a compact interval.

 $\mbox{Pf.} \quad \mbox{ By the Max-Min theorem, } \ \exists \ \ \underline{x}, \, \overline{x} \in I \ \ s.t.$

$$f(\underline{x}) = m = \inf_{x \in I} f(x),$$
 $f(\overline{x}) = M = \sup_{x \in I} f(x)$

We shall prove f(I) = [m, M]

$$f(I) \subset [m, M]$$
 is easy $(: x_0 \in I \Rightarrow m \le f(x_0) \le M \Rightarrow f(x_0) \in [m, M])$

To prove $f(I) \supset [m, M]$, we must show that

$$y_0 \in [m, M] \implies \exists x_0 \in I \text{ s.t. } y_0 = f(x_0)$$

Note that

$$y_0 \in [m, M] \iff f(\underline{x}) \le y_0 \le f(\overline{x}), \text{ where } \underline{x}, \overline{x} \in I$$

Since f is conti on $[\underline{x}, \overline{x}]$ if $\underline{x} < \overline{x}$ or on $[\overline{x}, \underline{x}]$ if $\overline{x} < \underline{x}$

 $\stackrel{\text{IVT}}{\Rightarrow} \quad \exists \ x_0 \quad \text{between} \quad \underline{x} \quad \text{and} \quad \overline{x} \quad (\because x_0 \in \mathbf{I}) \quad \text{s.t.} \quad y_0 = f(x_0) \, . \quad \text{Thus we are done}$

Often useful to remember:

$$f: \text{conti on } [a,b] \quad \Rightarrow \quad f\{[a,b]\} = [m,M],$$

where
$$m = \min_{x \in [a,b]} f(x) (= \inf_{x \in [a,b]} f(x)), \quad M = \max_{x \in [a,b]} f(x) (= \sup_{x \in [a,b]} f(x))$$

A comment on the IVT:

A subset I of \mathbb{R} is called an *interval* if whenever $a < c < b \& a, b \in I$, then $c \in I$ Every interval is one of the following forms:

$$(a,b)$$
, $(a,b]$, $[a,b)$, $[a,b]$ (where $a < b$), (a,∞) , $[a,\infty)$, $(-\infty,b)$, $(-\infty,b]$
Singleton sets are often regarded as *degenerate* intervals

Notice that if I_1 and I_2 are intervals with $I_1 \cap I_2 \neq \emptyset$ then $I_1 \cup I_2$ is an interval.

Ex. Show that if f is continuous on an interval I, then f(I) is an interval

Pf. Notice that IVT can be stated as follows:

Suppose that f is continuous on an interval I, and $a,b \in I$ with a < b, and that f(a) < k < f(b)Then $a < \exists c < b$ such that f(c) = k --- \spadesuit

To show that f(I) is an interval, we have to show that whenever r < k < s with $r, s \in f(I)$, then $k \in f(I)$ Obviously, $\exists a,b \in I$ s.t. f(a) = r, f(b) = s. May assume a < b That is, $\exists a,b \in I$ with a < b such that f(a) < k < f(b) By $IVT[= \spadesuit]$, $\exists c \in (a,b) \subset I$ s.t. f(c) = k --- this is what we wanted

Ex [optional].

Show that if f is continuous and strictly monotone on an **open** interval I, then f(I) is an **open** interval.

Hint:

- I: an open interval and $x \in I \Rightarrow \exists a, b \in I \text{ with } a < x < b$
- •• $\forall x \in I[= \text{ an interval}], \exists a, b \in I \text{ with } a < x < b \Rightarrow I = \text{ open interval}$

Pf. If I is an open interval and $x \in I$, then $\exists a, b \in I$ with a < x < b

Hence

either $f(x) \in (f(a), f(b)) \subset f(I)$ or $f(x) \in (f(b), f(a)) \subset f(I)$ [$\leftarrow f$ is strictly monotone] This shows that f(I) is an open interval by $\bullet \bullet$

13.5 Uniform continuity

Uniform continuity is stronger than continuity

- · Continuity is a local property
- **Uniform continuity is a global property**, formulated only for a function on an interval; "uniform continuity at a point" makes no sense

Def. We say that f is uniformly conti on the interval I (on the set $E(\neq \emptyset) \subset \mathbb{R}$) if:

given $\varepsilon > 0$, $\exists \delta > 0$ (depending only on ε) such that

$$f(x') \underset{\xi}{\approx} f(x'')$$
 for $x' \underset{\xi}{\approx} x''$, $x', x'' \in I$ (E)

Recall: f is continuous on the interval I ($\stackrel{def}{\Leftrightarrow}$ f is continuous at every point $a \in I$)

 \Leftrightarrow Given $a \in I$ and given $\varepsilon > 0$, $\exists \delta = \delta(a, \varepsilon) > 0$ (may depending on $\varepsilon \& a$) s.t.

$$f(x) \underset{\varepsilon}{\approx} f(a)$$
 for $x \underset{\delta}{\approx} a$, $x \in I$

(점을 고정할 때 마다 연속이라는 것을 의미함; 점을 먼저 고정하고 조사함)

Meaning of the (pointwise) continuity: The curve y = f(x) does <u>not touch</u> the <u>top</u> or <u>bottom</u> of the rectangle $(= 2\varepsilon \times 2\delta)$ which is centered at f(a)

주의: δ (밑변의 길이)는 ε (세로의 길이) 뿐만 아니라 점 a의 위치에 따라 변할 수 있다 ※ 세로의 길이 $(2\varepsilon>0)$ 가 주어졌을때, 곡선의 기울기의 절대값이 큰 부분일수록 위 조건을 만족하는 직사각형의 밑변의 길이 (2δ) 는 작다

(Rough) Meaning of the the uniform continuity: 점에 영향을 받지 않는 밑변의 길이 [즉, 세로의 길이에만 영향을 받는 직사각형]가 존재한다

f(x) is uniformly continuous on [a, b]

ina bottom

Expect f(x) is not uniformly conti

- f is uniformly contion $I \Leftrightarrow \sup_{\substack{|x'-x''|<\delta\\x',x''\in I}} \left|f(x')-f(x'')\right| \to 0$ as $\delta \to 0$
- f is contion $I \Leftrightarrow For each <math>a \in I$, $\sup_{\substack{|x-a| < \delta \\ x \in I}} |f(x) f(a)| \to 0$ as $\delta \to 0$

Exa 1. $f(x) = x^2$ is uniformly conti on [-a, a], a > 0.

Pf. Let $\varepsilon > 0$ be given. Then for $x', x'' \in [-a, a]$,

$$\begin{aligned} \left| f(x') - f(x'') \right| &= \left| x'^2 - x''^2 \right| = \left| x' - x'' \right| \left| x' + x'' \right| \\ &\leq \left| x' - x'' \right| \left(\left| x' \right| + \left| x'' \right| \right) \\ &\leq 2a \left| x' - x'' \right| < \varepsilon \quad \text{if} \quad \left| x' - x'' \right| < \frac{\varepsilon}{2a} (= \delta) \end{aligned}$$

That is, $f(x') \underset{\varepsilon}{\approx} f(x'')$ for $x' \underset{\varepsilon/2a}{\approx} x''$, $x', x'' \in [-a, a]$

 \therefore $f(x) = x^2$ is uniformly conti on [-a, a].

Exa 2. Show that $f(x) = x^2$ is not uniformly conti on $[0,\infty)$

Pf. Suppose to the contrary that f is uniformly conti on $[0,\infty)$. Then

$$\exists \ \delta > 0 \text{ s.t. } |x'^2 - x''^2| < 1 \text{ if } |x' - x''| < \delta, \ x', x'' \in [0, \infty)$$

By the A.P., \exists a natural number n so large that $n\delta > 1$.

Set
$$x' = n$$
 and $x'' = n + \frac{\delta}{2}$. Then $|x' - x''| = \frac{\delta}{2} < \delta$ but
$$1 > |x'^2 - x''^2| = \left|n^2 - (n + \frac{\delta}{2})^2\right| = n\delta + \frac{\delta^2}{4} > n\delta > 1, \text{ is a contradiction}$$

Remember: f is uniformly conti on $I \Rightarrow f$ is conti on I.

X Standard examples of uniformly continuous functions

1. Lipschitz functions (often called Lipschitz continuous functions)

Suppose $f: I \to \mathbb{R}$ is a Lipschitz function, that is,

$$\exists M > 0 \text{ s.t. } |f(x) - f(y)| \le M|x - y| \text{ for all } x, y \in I$$

Then f is uniformly continuous on I

Pf. Given $\varepsilon > 0$,

$$|f(x) - f(y)| \le M|x - y| < \varepsilon$$
 if $|x - y| < \underbrace{\frac{\varepsilon}{M}}_{\text{(depends only on }\varepsilon)}$ and $x, y \in I$

i.e.,
$$f(x) \underset{\varepsilon}{\approx} f(y)$$
 for $x \underset{\varepsilon/M}{\approx} y$, $x, y \in I$

Therefore, f is uniformly continuous on I

Examples: ax (a : real), $\sin x$, $\cos x$, $\sin^2 x$, $\cos^2 x$, $\frac{1}{1+x^2}$ are Lipschitz fcts

For instance, if $f(x) = \frac{1}{1+x^2}$, then $\exists \xi$ between x and y such that

$$f(x) - f(y) = f'(\xi)(x - y)$$
 (by MVT)
= $-\frac{2\xi}{(1 + \xi^2)^2}(x - y)$

$$\therefore |f(x) - f(y)| = \frac{2 |\xi|}{1 + \xi^2} \cdot \frac{1}{1 + \xi^2} |x - y| \le 1 \cdot 1 \cdot |x - y| \quad \text{for all } x, y \in \mathbb{R}$$

Remark: f is diff on I and $|f'(x)| \le M \ \forall x \in I \Rightarrow f$ is Lipschitz on I

Ex (easy). Give a geometric interpretation of Lipschitz function

Remark.

① $f: I \to \mathbb{R}$ is such that

$$\exists M > 0: |f(x) - f(y)| \le M|x - y|^{\alpha} (0 < \alpha < 1)$$

 \Rightarrow f is uniformly conti on I

② $f: I \to \mathbb{R}$ is such that

$$\exists M > 0: |f(x) - f(y)| \le M|x - y|^{\alpha} (\alpha > 1)$$

 \Rightarrow f is constant on I

Pf. ① Given $\varepsilon > 0$,

$$|f(x) - f(y)| \le M|x - y|^{\alpha} < \varepsilon \quad \text{if} \quad |x - y| < \underbrace{\left(\underbrace{\frac{\varepsilon}{M}}\right)^{1/\alpha}}_{\equiv \delta \text{(depends only on } \varepsilon)} \& x, y \in I$$

$$f(x) \approx f(y)$$
 for $x \approx y$, $x, y \in I$

② Suppose $\alpha > 1$ and let $y \in I$ be fixed. Then the hypo \Rightarrow

$$\left| \frac{f(x) - f(y)}{x - y} \right| \le M |x - y|^{\alpha - 1} \quad \forall x, y \in I \text{ with } x \ne y$$

$$\therefore \lim_{x \to y} \left| \frac{f(x) - f(y)}{x - y} \right| \le M \lim_{x \to y} |x - y|^{\alpha - 1} = 0 \quad (\because \alpha > 1)$$

$$LHS = \left| \lim_{x \to y} \frac{f(x) - f(y)}{x - y} \right| \quad \text{(by the continuity of } | \quad |)$$

i.e.,
$$f'(y) = 0 \quad \forall y \in I$$
. $\therefore f = \text{constant on } I$

Note. In general, f is Lipschitz on $I \not \Rightarrow f$ is diff on I

For example, f(x) = |x| is Lipschitz on [-1, 1] (easy to check), but clearly

the function $\mid x \mid$ is not diff at the point 0.

Ex. Already seen that if f is diff & has bounded derivative on I, then f is Lipschitz on I. However, in general, f is diff on $I \not \Rightarrow f$ is Lipschitz on I: Give such an example

Ex. Prove that $f(x) = \sqrt{x}$ is uniformly continuous on $[0, \infty)$.

2. Uniform Continuity Theorem (= UCT)

If I is a compact interval, then

f is conti on I \Rightarrow f is uniformly conti on I

Pf. Suppose to the contrary that f is not uniformly continuous on I.

$$\forall \delta > 0, \quad \exists \text{ a pair of points } x', x'' \in I \text{ s.t.}$$

$$\left| x' - x'' \right| < \delta, \quad \text{but } \left| f(x') - f(x'') \right| \ge \varepsilon_0 \quad \text{for some } \varepsilon_0 > 0$$

In particular, the above property holds for $\ \delta=\frac{1}{2},\frac{1}{3},\frac{1}{4},\cdots,\frac{1}{n},\cdots$

In other words, for every positive integer $n \geq 2$, \exists a pair of points $x'_n, x''_n \in I$ s.t.

(1)
$$|x'_n - x''_n| < \frac{1}{n}$$
, but

(2)
$$|f(x_n') - f(x_n'')| \ge \varepsilon_0$$

Since I is compact, the Sequential Compactness Theorem says the sequence $\{x'_n\}$ has a convergent subsequence $\{x'_{n_i}\}$ converging to a point $c \in I$:

(3)
$$\lim_{i \to \infty} x'_{n_i} = c, \quad c \in \mathcal{I}$$

Also, (4)
$$\lim_{i \to \infty} (x'_{n_i} - x''_{n_i}) = 0$$
 (by (1))

Then we also have

$$\lim_{i \to \infty} x''_{n_i} = c \quad \left(:: \quad x''_{n_i} = (x''_{n_i} - x'_{n_i}) + x'_{n_i} \to 0 + c = c \right)$$

We now show f(x) is not continuous at $c \in I$.

If f were continuous at c, then the Sequential Continuity Theorem, together with (3) & (4), would imply that

$$f(x'_{n_i}) - f(x''_{n_i}) \rightarrow f(c) - f(c) = 0$$
 as $i \rightarrow \infty$

Therefore

$$|f(x'_{n_i}) - f(x''_{n_i})| < \varepsilon_0$$
 for $i \gg 1$, which contradicts (2).

Thus f(x) is not continuous at c. This completes the proof by contraposition

Remark.

Theorem (A useful criterion for non-uniform continuity)

Let $f: I \to \mathbb{R}$ be a function. Then

f is not uniformly conti on I if and only if

 $\exists \ \ arepsilon_0 > 0 \ \ \ {\rm and} \ \ {\rm apair} \ \ {\rm of} \ \ {\rm sequences} \ \ \left\{x_n'\right\} \ \ {\rm and} \ \ \left\{x_n''\right\} \ \ {\rm in} \ \ {\rm I} \ \ {\rm such \ that}$

$$x'_n - x''_n \to 0$$
 as $n \to \infty$, but $|f(x'_n) - f(x''_n)| \ge \varepsilon_0$ for every n

Pf. (\Rightarrow) Already seen

 (\Leftarrow) Assume that the latter holds. Then, by the first part, given $\delta > 0$,

$$x'_n, x''_n \in \mathcal{I}$$
 and $x'_n \underset{\delta}{\approx} x''_n$ for $n \gg 1$, say for $n \geq N$ (In particular, $x'_N, x''_N \in \mathcal{I}$ and $x'_N \underset{\delta}{\approx} x''_N$)

Consequently,

$$\forall \delta > 0$$
, \exists a pair of points $x'_N, x''_N \in I$ such that $x'_N \approx x''_N$, but $|f(x'_N) - f(x''_N)| \ge \varepsilon_0$ (for some $\varepsilon_0 > 0$)

 \therefore f is not uniformly conti on I

Exa A. $f(x) = \frac{1}{x}$ is conti (already seen) but not uniformly conti on $(0, \infty)$

Pf. Choose the sequences $\{x_n'\}$ and $\{x_n''\}$ in $(0,\infty)$ as

$$x'_n = \frac{1}{n}$$
 and $x''_n = \frac{1}{n+1}$ $(n = 1, 2, \dots)$

Then
$$x'_n - x''_n = \frac{1}{n} - \frac{1}{n+1} = \frac{1}{n(n+1)} \to 0$$
 as $n \to \infty$

But

$$|f(x'_n) - f(x''_n)| = |n - (n+1)| = 1 \ge \varepsilon_0 (\equiv 1/2)$$
 for every n

 \therefore f is not uniformly conti on $(0,\infty)$

Exa B. $f(x)=x^2$ is not uniformly conti on $[0,\infty)$

First pf. An indirected proof was previously given in Exa 2

Second pf. Let
$$x'_n = n + \frac{1}{n}$$
, $x''_n = n$ $(n = 1, 2, \cdots)$

Then $\left\{x_n'\right\}$ and $\left\{x_n''\right\}$ are two sequences in $[0,\infty)$ such that

$$x_n' - x_n'' = \frac{1}{n} \to 0$$
 as $n \to \infty$,

but

$$|f(x'_n) - f(x''_n)| = (n + \frac{1}{n})^2 - n^2 = 2 + \frac{1}{n^2} \ge 2 (\equiv \varepsilon_0)$$
 for every n

 $\therefore \quad f \quad \text{is not uniformly conti on} \quad [0,\infty)$

Exa C. f(x) = x is uniformly conti on $(-\infty, \infty)$

Pf.
$$|f(x) - f(y)| = |x - y|$$
 for all $x, y \in (-\infty, \infty)$

Thus, given $\varepsilon > 0$,

$$|f(x) - f(y)| = |x - y| < \varepsilon$$
 whenever $|x - y| < \varepsilon (\equiv \delta)$

f is uniformly conti on $(-\infty, \infty)$

In fact, f is Lipschitz continuous on $(-\infty, \infty)$

Exa D. $f(x) = x^2$ is uniformly conti on [0, b], where b > 0

Pf. f is conti on [0,b] & [0,b] is a compact interval $\stackrel{\text{UCT}}{\Rightarrow} f$ is uniformly conti on [0,b]

"Another pf"

$$|f(x) - f(y)| = |x^{2} - y^{2}| = |x - y| |x + y|$$

$$\leq |x - y| (|x| + |y|)$$

$$\leq 2b |x - y| \quad \forall x, y \in [0, b]$$

 \therefore f is Lipschitz conti on [0, b]

 \therefore f is uniformly conti on [0, b]

Remark. $f(x) = x^2$ is uniformly conti on (0, b), where b > 0

Pf 1. f is uniformly conti on [0, b] by UCT

 \therefore f is uniformly conti on the smaller interval (0, b)

Pf 2.

$$| f(x) - f(y) | = | x^2 - y^2 | = | x - y | | x + y |$$

 $\leq | x - y | (| x | + | y |)$
 $\leq 2b | x - y | \forall x, y \in (0, b)$

 \therefore f is Lipschitz conti on (0, b)

 \therefore f is uniformly conti on (0, b)

Exa E. $f(x) = \sqrt{x}$ is uniformly conti on $[1, \infty)$

Pf.
$$|f(x) - f(y)| = |\sqrt{x} - \sqrt{y}| = \frac{|x - y|}{\sqrt{x} + \sqrt{y}} \le \frac{1}{2} |x - y| \quad \forall x, y \in [1, \infty)$$

 \therefore f is Lipschitz conti on $[1, \infty)$

 \therefore f is uniformly conti on $[1, \infty)$

Exa F. Not every uniformly continuous function is Lipschitz

Sol. $f(x) = \sqrt{x}$ is uniformly conti on [0, 2] (by UCT)

Claim: f is not Lipschitz conti on [0, 2]

Pf of Claim: Suppose f were Lipschitz conti on [0, 2]. Then

$$\exists M > 0$$
 such that $|f(x) - f(y)| \le M |x - y| \quad \forall x, y \in [0, 2]$

In particular (by taking y = 0), we have

$$|f(x)| \le M |x| \quad \forall x \in [0, 2]$$

$$\therefore \frac{|f(x)|}{|x|} \le M \quad \forall x \in (0,2]$$

Recall that M is independent of $x \in (0,2]$

Letting
$$x \to 0^+ \Rightarrow \lim_{x \to 0^+} \frac{|f(x)|}{|x|} \le M$$

This contradicts the fact that

$$\frac{|f(x)|}{|x|} = \frac{\sqrt{x}}{|x|} = \frac{1}{\sqrt{x}} \to \infty \quad \text{as} \quad x \to 0^+$$

Therefore, f is not Lipschitz conti on [0, 2]

Exa. Show that $f(x) = x \sin \frac{1}{x}$ is u.c. on (0,1)

Pf.
$$F(x) \stackrel{\text{def}}{=} \begin{cases} x \sin \frac{1}{x} & x \neq 0 \\ 0 & x = 0 \end{cases}$$

It is obvious that $\lim_{x\to 0} F(x) = 0 = F(0)$

It follows that F(x) is continuous $\forall x \in (-\infty, \infty)$

In particular, F(x) is conti on the compact interval [0, 1]

Thus F(x) is u.c. on [0,1] (by UCT), and so F(x) is u.c. on (0,1)

But, since $F(x) = x \sin \frac{1}{x} = f(x)$ on (0, 1), f(x) is u.c. on (0, 1)

Remark. Assume f is continuous on (a, b).

If, in addition, $\lim_{x\to a^+} f(x)$ and $\lim_{x\to b^-} f(x)$ both exist, then f is uniformly continuous on (a,b)

Question. f is **conti & bounded** on an interval $I \stackrel{?}{\Rightarrow} f$ is **u.c.** on I

Ans

Yes if I is any compact interval (by UCT). In fact, in that case, the boundedness of f on I is not necessary (automatically satisfied by Boundedness theorem) but no in general if I is *not* a compact interval.

For example, $f(x) \stackrel{\text{let}}{=} \sin \frac{1}{x}$ on the open interval $(0, \infty)$

Then f(x) is conti & bounded (by 1) on $(0, \infty)$

However, f(x) is not u.c. on $(0,\infty)$ (roughly) because it is too oscillates near 0

(Draw the picture of f(x))

To give a rigorous pf, take $\ x_n'=rac{1}{n\pi}, \quad x_n''=rac{1}{2n\pi+\pi/2} \quad (n=1,2,\cdots).$

Then $\left\{x_n'\right\}$ and $\left\{x_n''\right\}$ are two sequences in $(0,\infty)$ such that

$$x_n' - x_n'' \to 0$$
 as $n \to \infty$,

But $|f(x'_n) - f(x''_n)| = 1 \ge \frac{1}{2} (\equiv \varepsilon_0)$ for every n $\therefore f(x)$ is not u.c. on $(0, \infty)$

Home-Study problems.

1. Find an example of a continuous function $f: \mathbb{R} \to [-1,1]$ such that f is **not** uniformly continuous

Answer. $f(x) := \cos(x^2)$ [or $f(x) := \sin(x^2)$] is the desired example --- verify this

2. Let $f(x) = 2\sqrt{x} - 3\sin x + \ln(x^2 + 1)$, $I = [1, \infty)$ Is the function f uniformly continuous on I?

Ex. Show that $f(x) = \sqrt{x}$ is uniformly conti on $[0, \infty)$.

Pf. We know that

$$f(x) = \sqrt{x}$$
 is uniformly conti on $[0, 1]$ (by **UCT**)

and

 $f(x) = \sqrt{x}$ is uniformly conti on $[1, \infty)$. $[\leftarrow f(x) = \sqrt{x}$ is Lipschitz conti on $[1, \infty)$

Hence, given any $\varepsilon > 0$, there is a $\delta_1 = \delta_1(\varepsilon) > 0$ such that

$$x, y \in [0, 1], |x - y| < \delta_1 \implies |f(x) - f(y)| < \varepsilon$$
.

There is also a $\delta_2 = \delta_2(\varepsilon) > 0$ such that

$$x, y \in [1, \infty), |x - y| < \delta_2 \implies |f(x) - f(y)| < \varepsilon.$$

Now define $\delta := \min \{ \delta_1(\varepsilon), \delta_2(\varepsilon) \}$ and let $x, y \in [0, \infty)$ be such that $|x - y| < \delta$.

If both $\ x \ \& \ y \in [0,1]$, or if both $\ x \ \& \ y \in [1,\infty)$, then it is clear that $\ \left| f(x) - f(y) \right| < \varepsilon$

For the remaining case, we may suppose without essential loss of generality that x < 1 < y. Then

$$|1-x|<|y-x|<\delta\leq\delta_{_{1}}$$
 and so $|f(1)-f(x)|$

Similarly,

$$\mid y-1\mid <\mid y-x\mid <\delta \leq \delta_{_{2}} \ \ \text{and so} \ \ \left|f(y)-f(1)\right|<\varepsilon$$

Therefore,

$$|f(x) - f(y)| \le |f(x) - f(1)| + |f(1) - f(y)| < \varepsilon + \varepsilon = 2\varepsilon$$

Another (lucky) pf. For any $x, y \in [0, \infty)$, we have

$$|f(x) - f(y)|^2 = |\sqrt{x} - \sqrt{y}|^2 \le |\sqrt{x} - \sqrt{y}||\sqrt{x} + \sqrt{y}| = |x - y|$$

$$\therefore |f(x) - f(y)| \le |x - y|^{1/2}$$

Let $\varepsilon > 0$ be given. Take $\delta = \varepsilon^2$. Then

$$|x-y| < \delta \quad \Rightarrow \quad |f(x) - f(y)| \le |x-y|^{1/2} < \sqrt{\delta} = \varepsilon$$

Proposition [A criterion for non-uniform continuity: essentially proved earlier]

--- Remember the result ---

Let $f: I[\subset \mathbb{R}] \to \mathbb{R}$ be the function. Then

$$f$$
 is uniformly continuous on $I \Leftrightarrow \begin{cases} \forall \text{ two sequences } \{u_n\} \& \{v_n\} \text{ such that} \\ \lim_{n \to \infty} (u_n - v_n) = 0 \Rightarrow \lim_{n \to \infty} [f(u_n) - f(v_n)] = 0 \end{cases}$

Pf. (\Rightarrow) Let $\varepsilon > 0$. Since f is u.c. on I, $\exists \delta > 0$ such that

$$x, y \in I \& |x - y| < \delta \Rightarrow |f(x) - f(y)| < \varepsilon - \blacksquare$$

Suppose $\{u_n\}$ & $\{v_n\}$ are two sequences in I such that $\lim(u_n - v_n) = 0$

$$\Rightarrow \exists N [= N(\delta) = N(\varepsilon)] \in \mathbb{N} \text{ such that } |u_n - v_n| < \delta \text{ for } \forall n \ge N$$

$$\therefore |f(u_n) - f(v_n)| < \varepsilon \text{ for every } n \ge N \quad [\leftarrow \blacksquare]$$

Therefore, $\lim_{n \to \infty} [f(u_n) - f(v_n)] = 0$

 (\Leftarrow) Suppose f is not uniformly continuous on I.

$$\Rightarrow \exists \varepsilon_0 > 0 \text{ such that } \forall \delta > 0, \exists x_\delta, y_\delta \in I \text{ for which } |x_\delta - y_\delta| < \delta \& |f(x_\delta) - f(y_\delta)| \ge \varepsilon_0$$

Set
$$\delta = 1 \implies \exists x_1, y_1 \in I$$
 for which $|x_1 - y_1| < 1 \& |f(x_1) - f(y_1)| \ge \varepsilon_0$

Set
$$\delta = 1/2 \implies \exists x_2, y_2 \in I$$
 for which $|x_2 - y_2| < 1/2$ & $|f(x_2) - f(y_2)| \ge \varepsilon_0$

In general, set $\delta = 1/n \implies \exists x_n, y_n \in I$ for which $|x_n - y_n| < 1/n \& |f(x_n) - f(y_n)| \ge \varepsilon_0$

Consequently, we have two sequences $\{x_n\}$ & $\{y_n\}$ in I s.t.

$$(x_n - y_n) \to 0$$
 but $(f(x_n) - f(y_n)) \not\to 0$ as $n \to \infty$