- 1. DP, let $f[i][j][\ell]$ denote whether $s1[i,\ldots,j]$ can be matched with $s2[\ell,\ldots,\ell+j-i]$. Enumerate the breakpoint in O(n) time. In total $O(n^4)$.
- 2. Use bit packing. $O(\frac{n^4}{w})$.
- 3. The idea is to use boolean matrix multiplication (BMM). Wlog consider the case that we don't flip the string (the flip case is similar). Fix $i \ell = d$, let g[i][j] = f[i][j][i d], we simultaneously consider all such g[i][j]'s. The transition function is $g[i][j] = \bigvee (g[i][k] \land g[k+1][j])$, which is exactly BMM.

But we successfully compute g[i][j] only when the values of g[i][k] and g[k+1][j] have been already computed, and the dependency chain can have depth O(n). To fix this, let α be a parameter to be fixed later, if $\min\{k-i+1,j-k\} \leq n^{\alpha}$ then we compute g[i][k] by brute force, in $O(n^{\alpha})$ time. Now we only need to perform $O(n^{1-\alpha})$ rounds of BMMs, each round consists of O(n) BMMs (because there are O(n) possible d's). Set $\alpha = \frac{\omega-1}{2}$, the total running time is $O(n^3 \cdot n^{\alpha} + n^{1-\alpha} \cdot n \cdot n^{\omega}) = O(n^{\frac{5+\omega}{2}}) \approx O(n^{3.69})$.

The transition function is

$$f[i][j][\ell] = \bigvee (f[i][k][\ell] \wedge f[k+1][j][k+1-i+\ell]) \bigvee (f[i][k][\ell+j-k] \wedge f[k+1][j][\ell+j-k-1]).$$

For the second part, fix $\ell + j = d$, we can also use BMM.

References