第2节 三角恒等式的常见变形 (★★☆)

强化训练

1. (2022 • 福建漳州模拟改 •★) 在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 且 $\sqrt{3}a\cos B = b\sin A$, 则 B = ()

(A) $\frac{\pi}{6}$ (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{2\pi}{3}$

答案: C

解析: 题干等式左右都有齐次的边, 要求的是角, 故边化角,

因为 $\sqrt{3}a\cos B = b\sin A$,所以 $\sqrt{3}\sin A\cos B = \sin B\sin A$,又 $0 < A < \pi$,所以 $\sin A > 0$,故 $\sqrt{3}\cos B = \sin B$,

从而 $\tan B = \sqrt{3}$, 结合 $0 < B < \pi$ 可得 $B = \frac{\pi}{3}$.

2. (2022 •福建闽侯模拟 •★★) 在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 且 $b = a \cos C$,则 $\triangle ABC$ 是 (

(A) 等腰三角形 (B) 直角三角形 (C) 等腰直角三角形 (D) 等边三角形

答案: B

解法 1: 题干给出 $b = a \cos C$,可以考虑边化角或角化边,先试试边化角,

 $b = a \cos C \Rightarrow \sin B = \sin A \cos C$ (1),

要进一步变形,应拆左边的 $\sin B$,

 $\sin B = \sin[\pi - (A+C)] = \sin(A+C) = \sin A \cos C + \cos A \sin C,$

代入①得 $\sin A \cos C + \cos A \sin C = \sin A \cos C$,

所以 $\cos A \sin C = 0$,因为 $0 < C < \pi$,所以 $\sin C > 0$,

故 $\cos A = 0$,结合 $0 < A < \pi$ 可得 $A = \frac{\pi}{2}$,选 B.

解法 2:对于等式 $b = a \cos C$,也可利用余弦定理推论角化边,通过边的关系来判断三角形形状,

由余弦定理推论, $\cos C = \frac{a^2 + b^2 - c^2}{2ab}$,

代入 $b = a \cos C$ 可得 $b = a \cdot \frac{a^2 + b^2 - c^2}{2ab}$,

整理得: $b^2 + c^2 = a^2$, 所以 $\triangle ABC$ 为直角三角形.

3. $(2023 \cdot 江西模拟 \cdot ★★)在 △ABC 中,角 A,B,C 的对边分别为 a,b,c,且 b cos C + c sin B = a ,则$ $B = \underline{\hspace{1cm}}$.

答案: $\frac{\pi}{4}$

解析: 所给的等式有齐次的边, 且要求的是角, 故考虑用正弦定理边化角分析,

 $b\cos C + c\sin B = a \Rightarrow \sin B\cos C + \sin C\sin B = \sin A$ ①,

式①中左侧有 $\sin B \cos C$, 故拆右边的 $\sin A$ 可进一步化简,

代入①得: $\sin B \cos C + \sin C \sin B = \sin B \cos C + \cos B \sin C$,

所以 $\sin C \sin B = \cos B \sin C$ ②,

因为 $0 < C < \pi$,所以 $\sin C > 0$,在②中约去 $\sin C$ 可得

 $\sin B = \cos B$,故 $\tan B = 1$,结合 $0 < B < \pi$ 得 $B = \frac{\pi}{4}$.

4. (2022 • 海南琼海模拟 • ★★) 在 △ABC 中,内角 A, B, C 的对边分别为 a, b, c, 若 $c^2 = (a-b)^2 + 6$,

 $C = \frac{\pi}{3}$,则 $\triangle ABC$ 的面积为(

(A) 3 (B) $\frac{9\sqrt{3}}{2}$ (C) $\frac{3\sqrt{3}}{2}$ (D) $3\sqrt{3}$

答案: C

解析: 因为 $c^2 = (a-b)^2 + 6$,所以 $c^2 = a^2 + b^2 - 2ab + 6$,故 $a^2 + b^2 - c^2 = 2ab - 6$,

看到 $a^2+b^2-c^2$ 这一结构,联想到余弦定理推论,

所以
$$\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{2ab - 6}{2ab} = \frac{1}{2}$$
,从而 $ab = 6$,故 $S_{\Delta ABC} = \frac{1}{2}ab\sin C = \frac{1}{2} \times 6 \times \sin\frac{\pi}{3} = \frac{3\sqrt{3}}{2}$.

5.(2021 •全国乙卷 •★★)记 $\triangle ABC$ 的内角 A,B,C 的对边分别为 a,b,c,面积为 $\sqrt{3}$, $B=60^\circ$, $a^2+c^2=3ac$, 则 b=

答案: 2√2

解析: 先翻译面积这个条件, 已知角 B, 所以用 $S = \frac{1}{2}ac\sin B$ 算面积,

由题意, $B = 60^{\circ}$, $S_{\Delta ABC} = \frac{1}{2}ac\sin B = \frac{\sqrt{3}}{4}ac = \sqrt{3}$,所以ac = 4,

有了 ac,结合已知的 $a^2 + c^2 = 3ac$,想到对角 B 用余弦定理,

由余弦定理, $b^2 = a^2 + c^2 - 2ac\cos B = a^2 + c^2 - ac = 3ac - ac = 2ac = 8$,所以 $b = 2\sqrt{2}$.

6. (2023 • 四川绵阳模拟 • ★★★)在 $\triangle ABC$ 中,角 A,B,C 的对边分别为 a,b,c,且 $\frac{c}{b}$ = $\sin A$ − $\cos A$,

则
$$\frac{2}{\tan A} + \frac{1}{\tan B} = \underline{\qquad}.$$

答案: 1

解析: 所给等式左侧为边的齐次分式, 且要求的是角, 故考虑用正弦定理边化角分析,

$$\frac{c}{b} = \sin A - \cos A \Rightarrow \frac{\sin C}{\sin B} = \sin A - \cos A$$
,

所以 $\sin C = \sin B \sin A - \sin B \cos A$ ①,

注意到要求的式子中没有C,故将①中的 $\sin C$ 消掉,

 $\sin C = \sin[\pi - (A+B)] = \sin(A+B) = \sin A \cos B + \cos A \sin B,$

代入①整理得: $\sin A \cos B + 2\cos A \sin B = \sin B \sin A$ ②,

进一步化简不易,注意到要求的是关于正切的式子,故想办法把式②化正切,

在②两端同除以 $\cos A \cos B$ 可得 $\tan A + 2 \tan B = \tan A \tan B$,

所以
$$\frac{1}{\tan B} + \frac{2}{\tan A} = 1$$
.

7. (2022•安徽宣城模拟•★★★) 在 △ABC 中,内角 A,B,C 的对边分别为 a,b,c,若 $A = \frac{\pi}{3}$, b = 2,

$$c=3$$
,则
$$\frac{a-2b+2c}{\sin A-2\sin B+2\sin C}$$
 的值等于 ()

(A)
$$\sqrt{21}$$
 (B) $\frac{2\sqrt{21}}{3}$ (C) $\frac{4\sqrt{7}}{3}$ (D) $\frac{4\sqrt{3}}{3}$

答案: B

解析: 所求的式子中, 分子都是边, 分母都是角, 应先将其统一, 可用正弦定理边化角,

由正弦定理, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$,所以 $a = 2R\sin A$, $b = 2R\sin B$, $c = 2R\sin C$,

$$\frac{a-2b+2c}{\sin A-2\sin B+2\sin C}=\frac{2R\sin A-2\times 2R\sin B+2\times 2R\sin C}{\sin A-2\sin B+2\sin C}=2R,$$

要求2R,且已知A,所以只需求a,已知两边及夹角,可用余弦定理求第三边,

由余弦定理,
$$a^2 = b^2 + c^2 - 2bc\cos A = 4 + 9 - 2 \times 2 \times 3 \times \cos \frac{\pi}{3} = 7$$
, 所以 $a = \sqrt{7}$,

从而
$$2R = \frac{a}{\sin A} = \frac{\sqrt{7}}{\sin \frac{\pi}{3}} = \frac{2\sqrt{21}}{3}$$
,故 $\frac{a - 2b + 2c}{\sin A - 2\sin B + 2\sin C} = \frac{2\sqrt{21}}{3}$.

8. $(2022 \cdot 黑龙江期末节选 \cdot \star \star)$ 在 ΔABC 中,内角 A, B, C 的对边分别为 a, b, c, 且 $b\sin \frac{B+C}{2} = a\sin B$, 求 A.

解: (所给等式涉及半角,不易角化边,故考虑边化角) $b\sin\frac{B+C}{2} = a\sin B \Rightarrow \sin B\sin\frac{B+C}{2} = \sin A\sin B$,

又 $0 < B < \pi$,所以 $\sin B > 0$,故 $\sin \frac{B+C}{2} = \sin A$,(只要将B+C换成 $\pi-A$,就可将变量统一成A)

又
$$\sin \frac{B+C}{2} = \sin \frac{\pi-A}{2} = \cos \frac{A}{2}$$
,所以 $\cos \frac{A}{2} = \sin A$,故 $\cos \frac{A}{2} = 2\sin \frac{A}{2}\cos \frac{A}{2}$,

因为 $0 < A < \pi$,所以 $0 < \frac{A}{2} < \frac{\pi}{2}$,从而 $\cos \frac{A}{2} > 0$,故 $1 = 2\sin \frac{A}{2}$,所以 $\sin \frac{A}{2} = \frac{1}{2}$,从而 $\frac{A}{2} = \frac{\pi}{6}$,故 $A = \frac{\pi}{3}$.

9. (2022 ·江苏南京模拟节选 •★★)在 $\triangle ABC$ 中,内角 A, B, C 的对边分别为 a, b, c, 且 $\frac{\sin B + \sin C}{\sin A - \sin C} = \frac{a}{b-c}$, 求 B.

解: (对 $\frac{\sin B + \sin C}{\sin A - \sin C} = \frac{a}{b - c}$ 的处理,不外乎将左侧角化边,或将右侧边化角,若边化角,则对角进一步变形较为困难,所以角化边)

因为
$$\frac{\sin B + \sin C}{\sin A - \sin C} = \frac{a}{b - c}$$
,所以 $\frac{b + c}{a - c} = \frac{a}{b - c}$,从而 $(b + c)(b - c) = a(a - c)$,故 $b^2 - c^2 = a^2 - ac$,

所以 $a^2+c^2-b^2=ac$, (看到这个式子, 联想到余弦定理推论)

由余弦定理推论,
$$\cos B = \frac{a^2 + c^2 - b^2}{2ac} = \frac{ac}{2ac} = \frac{1}{2}$$
,结合 $0 < B < \pi$ 可得 $B = \frac{\pi}{3}$.

10. $(2022 \cdot 安徽芜湖模拟节选 \cdot ★★★)在 <math>\Delta ABC$ 中,内角 A,B,C 的对边分别为 a,b,c,已知 $\cos C + \sqrt{3}\sin C = \frac{a+c}{b}$,求 B.

解: (所给等式显然不易角化边,注意到右侧是边的齐次分式,可用正弦定理边化角)

因为
$$\cos C + \sqrt{3} \sin C = \frac{a+c}{b}$$
,所以 $\cos C + \sqrt{3} \sin C = \frac{\sin A + \sin C}{\sin B}$,

故 $\sin B \cos C + \sqrt{3} \sin B \sin C = \sin A + \sin C$ ①,(接下来应拆右侧的 $\sin A$ 或 $\sin C$,结合左边有 $\sin B \cos C$,故拆 $\sin A$)

因为 $\sin A = \sin[\pi - (B+C)] = \sin(B+C) = \sin B \cos C + \cos B \sin C$,

代入式①得 $\sin B \cos C + \sqrt{3} \sin B \sin C = \sin B \cos C + \cos B \sin C + \sin C$,整理得: $\sin C(\sqrt{3} \sin B - \cos B - 1) = 0$,

因为
$$0 < C < \pi$$
,所以 $\sin C > 0$,故 $\sqrt{3}\sin B - \cos B - 1 = 0$,所以 $2\sin(B - \frac{\pi}{6}) - 1 = 0$,故 $\sin(B - \frac{\pi}{6}) = \frac{1}{2}$,

因为
$$0 < B < \pi$$
,所以 $-\frac{\pi}{6} < B - \frac{\pi}{6} < \frac{5\pi}{6}$,从而 $B - \frac{\pi}{6} = \frac{\pi}{6}$,故 $B = \frac{\pi}{3}$.

11. $(2022 \cdot 河北邢台模拟节选 \cdot \star \star \star \star)$ 已知 $2\sqrt{3}(\cos^2 C - \cos^2 A) = (a-b)\sin B$,且 ΔABC 外接圆的半径 为 $\sqrt{3}$,求 C.

解: (题干给出外接圆半径,可由此利用正弦定理边角转化,角化边后左侧较复杂,故边化角)

因为
$$\triangle ABC$$
的外接圆半径为 $\sqrt{3}$,所以 $\frac{a}{\sin A} = \frac{b}{\sin B} = 2\sqrt{3}$,故 $a = 2\sqrt{3}\sin A$, $b = 2\sqrt{3}\sin B$,

代入 $2\sqrt{3}(\cos^2 C - \cos^2 A) = (a-b)\sin B$ 可得 $2\sqrt{3}(\cos^2 C - \cos^2 A) = (2\sqrt{3}\sin A - 2\sqrt{3}\sin B)\sin B$,

所以 $\cos^2 C - \cos^2 A = (\sin A - \sin B) \sin B$,

(上式右侧全是正弦,左侧全是余弦,考虑统一函数名,且左边的余弦都是平方项,容易化正弦)

故 $(1-\sin^2 C)-(1-\sin^2 A)=(\sin A-\sin B)\sin B$,整理得: $\sin^2 A+\sin^2 B-\sin^2 C=\sin A\sin B$,

(到这一步,全化为正弦了,而且是齐次式,要继续推进,可再角化边)

所以
$$a^2 + b^2 - c^2 = ab$$
,由余弦定理推论, $\cos C = \frac{a^2 + b^2 - c^2}{2ab} = \frac{ab}{2ab} = \frac{1}{2}$,结合 $0 < C < \pi$ 可得 $C = \frac{\pi}{3}$.

12. (2022 •安徽模拟改 •★★★)在 △ABC 中,内角 A,B,C 的对边分别为 a,b,c, $\cos A \sin B = (2 - \cos B) \sin A$,

$$\cos B = \frac{1}{4}$$
, $\triangle ABC$ 的周长为 10,求 b .

解: (将所给等式右侧的 $\cos B \sin A$ 移至左侧,可以合并)

因为 $\cos A \sin B = (2 - \cos B) \sin A$,

所以 $\sin A \cos B + \cos A \sin B = 2 \sin A$, 故 $\sin(A+B) = 2 \sin A$,

所以 $\sin C = 2\sin A$, 故 c = 2a,

(要求 b, 考虑建立关于 a, b, c 的方程组,且应建立 3 个方程,给出了 $\cos B$,所以用余弦定理可建立 1 个方程,周长可建立 1 个方程,结合上面的 c=2a, 3 个方程就有了)

由余弦定理, $b^2 = a^2 + c^2 - 2ac\cos B$,

又
$$\cos B = \frac{1}{4}$$
, 所以 $b^2 = a^2 + c^2 - \frac{1}{2}ac$ ①,

又
$$c = 2a$$
 , 代入式①可得 $b^2 = a^2 + 4a^2 - \frac{1}{2}a \cdot 2a = 4a^2$,

所以b=2a,因为 ΔABC 的周长为10,所以a+b+c=10,

从而 a+2a+2a=10, 故 a=2, 所以 b=4.

《一数•高考数学核心方法》