Clase 15

Manuel Garcia.

October 4, 2023

1 Continuidad de una funcion compleja en variable compleja

- $z \in S$, $|z z_0| < \delta \rightarrow |f(z) f(z_0)| < \epsilon$, "limite".
- Continuidad, $\lim_{z \to z_0} f(z) = f(z_0)$

Propiedades Sean f y g continuas en z_0

- $Re\{f\}$ y $Im\{f\}$ son continuas en z_0
- $c_1 f + c_2 g$ es continua.
- $\frac{f}{g}$ es cotinua
- Si h está definida en un conjunto que contiene a $f(z_0)$ y es continua en $f(z_0)$ entonces la composición $h \circ g$ es continua en z_0

Sea $\omega \in f(S)$:

$$|\omega - f(z_0)| < \delta \quad \rightarrow \quad |h(\omega) - h(f(z_0))| < \epsilon \quad \text{"hipotesis"}$$

Como f(z) es continua en $z-z_0$, entonces

$$|z - z_0| < \nu \quad \rightarrow \quad |h(f(z)) - h(f(z_0))| < \epsilon$$

Ejercicio

- Demostrar que la funcion $arg\{z\}$ no es continua en el origen.
- analizar la continuidad de $f(z) = \frac{z^3 1}{z + \frac{1}{2} i \frac{\sqrt{3}}{2}}, \quad f(z) = \hat{z}.$
- Analizar $f(z) = \log z$ (valor principal). ¿Cual es el dominio d ela continuidad?

2 Funciones analíticas

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z}$$

$$\delta$$

$$f'(z) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$

Ejemplo:

$$f(z) = 4 + 5i$$

$$f'(z) = \lim_{\Delta z \to 0} \frac{(4 + 5i) - (4 + 5i)}{\Delta z} = 0$$

$$f(z) = 8z^{2}$$

$$f'(z) = \lim_{\Delta \to 0} \frac{8(z + \Delta z)^{2} - 8z^{2}}{\Delta z} = \lim_{\Delta \to 0} \frac{8z^{2} + 16z\Delta z + 8\Delta z^{2} - 8z^{2}}{\Delta}$$

$$= \frac{8\Delta z}{\Delta z} \underbrace{0}_{\Delta z} (2z + \Delta z) = 16z$$

2.1 Propiedades

- $(c_1 f + c_2 g)' = c_1 f' + c_2 g'.$
- $\bullet \ (fg)'(z) = fg' + f'g.$
- $\left(\frac{f}{g}\right)' = \frac{gf' fg'}{g^2}, \quad g(z) \neq 0.$
- $f(z) = az^n$, $f'(z) = anz^{n-1}$.