Math 106: Problem Set 4

Owen Jones

2/18/2024

Prime Divisor Property

Let p be prime, and suppose $p \mid ab$.

WLOG assume $p \nmid a$. We want to show $p \mid b$. Since the only factors of p are 1 and p, if $p \nmid a$, then gcd(p, a) = 1. It follows there exists integers m, n s.t am + pn = 1. It follows abm + bpn = b. Since $p \mid bpn$ and $p \mid abm$, p must divide a linear combination of bpn and abm. Hence, $p \mid b$.

Fundamental Theorem of Arithmetic

Part 1: prime factorization of n

Pf by induction

Base case: n=2 is a prime number, so its factors are 1 and itself. Thus, it's prime factorization is 2.

Induction hypothesis: Assume for some n > 2 that every integer k s.t $2 \le k < n$ can be factored into a product of primes.

Induction step: We want to show n can be factored into a product of primes. The case where n is a prime is trivial. Its factorization is just n. Suppose n is not a prime. Thus, n has a proper divisor. Let $d \mid n$ where $d \neq n$. It follows there exists an integer k s.t dk = n. Since both d and k are less than n, the induction hypothesis states that d and k can be written as a product of primes. Thus, n can be written as a product of primes. Hence, by induction, every integer 2 or greater can be written as a product of primes.

Part 2: Uniqueness of the prime factorization

Pf by contradiction

Assume to the contrary the prime factorization of n is not unique.

Let $n = p_1 p_2 \dots p_k$ and $n = q_1 q_2 \dots q_m$ be prime factorizations for n. Let s_1, s_2, \dots, s_l be the shared prime factors between the two factorizations.

We relabel and reindex each factorization as $n=s_1s_2\dots s_lp_{l+1}^*\dots p_k^*$ and $n=s_1s_2\dots s_lq_{l+1}^*\dots q_m^*$. By assuption, there exists some $p_i^*\notin\{q_{l+1}^*,\dots,q_m^*\}$. However, $p_l\frac{n}{s_1s_2\dots s_l}=q_{l+1}^*\dots q_m^*$, so $p_i=q_j$ for some $j=l+1,\dots m$. Thus, we obtain a contradiction because $p_i^*\notin\{q_{l+1}^*,\dots,q_m^*\}$. Hence, n has a unique prime factorization.

5.2.1 Suppose $mp \equiv 1 \pmod{a}$. It follows there exists some integer k s.t mp - ak = 1. Because mp - ak is a linear combination of p and a, $\gcd(p, a) \mid mp - ak$. Thus, $\gcd(p, a) \mid 1$. However, the only divisor of 1 is itself, so

$$gcd(p, a) = 1.$$

5.2.2 Suppose $m_1, \ldots m_k$ be pairwise relatively prime integers and let x be an integer that satisfies the following system of congruence relations:

$$x \equiv a_1 \pmod{m_1}$$

 $x \equiv a_2 \pmod{m_2}$
 \cdots
 $x \equiv a_k \pmod{m_k}$

Let $M = \prod m_i$ and let $z_i = \frac{M}{m_i}$. Because z_i and m_i are relatively prime, Bezout's identity says there exists an integer y_i s.t $y_i z_i \equiv 1 \pmod{m_i}$. It follows $a_i y_i z_i \equiv a_i \pmod{m_i}$. For any i, j s.t $i \neq j$ $m_j \mid z_i$, so $a_i y_i z_i \equiv 0$

(mod m_j). Thus, $x = \sum_{i=1}^{\kappa} a_i y_i z_i$ is a solution to the system of congruence relations.

Let x_1, x_2 both be solutions to the system of congruence relations. It follows

$$x_1 \equiv x_2 \pmod{m_1}$$

 $x_1 \equiv x_2 \pmod{m_2}$
 \dots
 $x_1 \equiv x_2 \pmod{m_k}$

Because $m_i \mid x_1 - x_2$ for all $i = 1 \dots k$ and the m_i 's are relatively prime, $M \mid x_1 - x_2$. Thus, the solution $x = \sum_{i=1}^k a_i y_i z_i$ is unique (mod M).

5.3.2
$$17 \cdot 15 - 21 \cdot 12 = 3$$

5.4.2 Suppose
$$(x_1, y_1, k_1)$$
 and (x_2, y_2, k_2) are solutions to $x^2 - Ny^2 = k$. We are given $k_1k_2 = (x_1^2 - Ny_1^2)(x_2^2 - Ny_2^2)$ $= (x_1 - \sqrt{N}y_1)(x_1 + \sqrt{N}y_1)(x_2 - \sqrt{N}y_2)(x_2 + \sqrt{N}y_2)$.

$$(x_1 - \sqrt{N}y_1)(x_2 - \sqrt{N}y_2) = x_1x_2 - \sqrt{N}(x_1y_2 + x_2y_1) + Ny_1y_2$$

$$= (x_1x_2 + Ny_1y_2) - \sqrt{N}(x_1y_2 + x_2y_1)$$

$$(x_1 + \sqrt{N}y_1)(x_2 + \sqrt{N}y_2) = x_1x_2 + \sqrt{N}(x_1y_2 + x_2y_1) + Ny_1y_2$$

$$= (x_1x_2 + Ny_1y_2) - \sqrt{N}(x_1y_2 + x_2y_1)$$

$$\Rightarrow k_1k_2 = (x_1^2 - Ny_1^2)(x_2^2 - Ny_2^2) = (x_1x_2 + Ny_1y_2)^2 - N(x_1y_2 + x_2y_1)^2$$

5.4.3 A positive integer is a perfect square if and only if every prime in its factorization occurs an even number of times. Let N be a nonsquare integer. By the Fundamental Theorem of Arithmetic, N can be written as a product of primes. It follows there exists some prime p that occurs an odd number of times. Assume to the contrary that $\sqrt{N} = \frac{a}{b}$ is rational, where $a, b \in \mathbb{Z}$ are relatively prime and b > 0. Squaring both sides and multiplying by b^2 , we obtain $b^2N = a^2$. Because b^2 is a perfect square, p occurs an even number of times in its prime factorization. Thus, p occurs an odd number of times in the prime factorization of a^2 because a^2 is also a perfect square, so by the uniqueness of a number's prime factorization, we obtain a contradiction. Hence, \sqrt{N} cannot be rational.

Assume to the contrary $a_1 - \sqrt{N}b_1 = a_2 - \sqrt{N}b_2$, but $a_1 \neq a_2$ or $b_1 \neq b_2$. Suppose WLOG $b_1 \neq b_2$. It follows $\sqrt{N} = \frac{a_1 - a_2}{b_1 - b_2}$. However, N is not a perfect square, so \sqrt{N} is irrational. Because $a_1, a_2, b_1, b_2 \in \mathbb{Z} \Rightarrow \frac{a_1 - a_2}{b_1 - b_2} \in \mathbb{Q}$ which is a contradiction, so $b_1 = b_2$. Suppose $a_1 \neq a_2$. Since $b_1 = b_2 \Rightarrow \sqrt{N}b_1 = \sqrt{N}b_2$. It follows $a_1 - \sqrt{N}b_1 \neq a_2 - \sqrt{N}b_2$ which is a contradiction, so $a_1 = a_2$.

- **5.4.4** $(x_1 \sqrt{N}y_1)(x_2\sqrt{N}y_2) = (x_1x_2 + Ny_1y_2) \sqrt{N}(x_1y_2 + x_2y_1)$. By **5.4.3** $(x_1x_2 + Ny_1y_2) \sqrt{N}(x_1y_2 + x_2y_1) = x_3 \sqrt{N}y_3 \Rightarrow x_1x_2 + Ny_1y_2 = x_3$ and $x_1y_2 + x_2y_1 = y_3$.
- **6.3.1** Let L be the line through rational points $p_1 = (x_1, y_1)$ and $p_2 = (x_2, y_2)$. We can define L by the equation $(y y_1)(x_2 x_1) = (y_2 y_1)(x x_1)$. Because $x_1, x_2, y_1, y_2 \in \mathbb{Q}$, the addition, subtraction, multiplication, and nonzero division of x_1, x_2, y_1, y_2 are rational. Moreover, the coefficients of $(x_2 x_1)y + (y_1 y_2)x = y_1x_2 y_2x_1$ are all rational.
- **6.3.2** Let the center of the circle be $c=(x_1,y_1)$ with point on the radius $r=(x_2,y_2)$. Define the equation for the circle, $(x-x_1)^2+(y-y_1)^2=(x_2-x_1)^2+(y_2-y_1)^2$. Because $x_1,x_2,y_1,y_2\in\mathbb{Q}$, the addition, subtraction, multiplication, and nonzero division of x_1,x_2,y_1,y_2 are rational. Thus, $x^2-2x_1x+x_1^2+y^2-2y_1y+y_1^2=x_2^2-2x_1x_2+x_1^2+y_2^2-2y_1y_2+y_1^2$ are all rational.

- **6.3.3** Define the lines $\ell_1: a_1x + b_1y = c_1, \ell_2: a_2x + b_2y = c_2$. Suppose they intersect at some point (x^*, y^*) . By elimination, we obtain $(a_2b_1 a_1b_2)y = a_2c_1 a_1c_2 \Rightarrow y^* = \frac{a_2c_1 a_1c_2}{a_2b_1 a_1b_2}$. $\ell_1 \parallel \ell_2$ if $a_1b_2 = a_2b_1$. Plugging in y^* into one of the two equations, we can solve for $x^* = \frac{b_2c_1 b_1c_2}{a_1b_2 a_2b_1}$.
- **6.3.4** The case of the vertical line x = c is a simpler case where the line and circle intersect at $(c, k + \sqrt{r^2 (c h)^2}), (c, k \sqrt{r^2 (c h)^2})$. Suppose a line y = mx + b and circle $(x h)^2 + (y k)^2 = r^2$ intersect at some point(s). Substituting y with mx + b we get $(x h)^2 + (mx + b k)^2 = r^2$.

$$\det c = b - k$$

$$x^{2} - 2hx + h^{2} + m^{2}x^{2} + 2cmx + c^{2} - r^{2} = 0$$

$$(m^{2} + 1)x^{2} + (2cm - 2h)x + h^{2} + c^{2} - r^{2} = 0$$

$$x^{*} = \frac{h - cm \pm \sqrt{-2cmh - m^{2}h^{2} - c^{2} + m^{2}r^{2} + r^{2}}}{m^{2} + 1}$$

$$x^{*} = \frac{h - (b - k)m \pm \sqrt{r^{2}(m^{2} + 1) - (b - k + mh)^{2}}}{m^{2} + 1}$$

so we can find solutions for x^* using only rational equations and square roots. Plugging the solutions for x^* into y = mx + b we can find the corresponding y^* values.

- **6.4.1** Assume to the contrary $\sqrt[3]{2} = \frac{a}{b}$ is rational where a and b are coprime. Cubing both sides and multiplying by b^3 we obtain $2b^3 = a^3$. It follows $2 \mid a^3$ and by the FTA $2 \mid a$. Thus, there exists some integer a' s.t a = 2a'. This implies $b^3 = 4a'^3 \Rightarrow 2 \mid b^3$, and once again, by the FTA $2 \mid b$. However, $2 \mid a$ and $2 \mid b$, so we obtain a contradiction because we originally stated a and b are coprime.
- **6.4.2** Proof by induction

Base case: The set of rational numbers is trivially a field. Induction hypothesis: Assume for some k that F_k is a field. Induction step: Let $x=a_1+b_1\sqrt{c_{k1}},y=a_2+b_2\sqrt{c_k}$ $x+y\in F_{k+1}$ because $a_1+a_2,b_1+b_2,c_k\in F_k$ $x-y\in F_{k+1}$ because $a_1-a_2,b_1-b_2,c_k\in F_k$ $xy\in F_{k+1}$ because $a_1a_2+b_1b_2c_k,a_1b_2+a_2b_1,c_k\in F_k$ $xy\in F_{k+1}$ because $\frac{a_1a_2-b_1b_2c_k}{a_2^2-b_2^2c_k},\frac{a_2b_1-a_1b_2}{a_2^2-b_2^2c_k},c_k\in F_k$ Hence, by induction, the claim holds for all k.