# 応用量子物性講義ノート

Yuto Masuda and Haruki Aoki

更新日 November 16, 2024

# Abstract 物理情報工学科 2024 年度秋学期前半「応用量子物性」(担当: 安藤和也先生) の学生による自作講義ノートである.2 年生秋学期後半「量子力学入門」,3 年生春学期前半「量子力学」を履修済みであることが望ましい?

# Contents

| 1 | 近似                | f似法                                     |          |  |
|---|-------------------|-----------------------------------------|----------|--|
|   | 1.1               | 変分法                                     | 3        |  |
|   |                   | 1.1.1 基本原理                              | 3        |  |
|   |                   | 1.1.2 (変分法の例題) ヘリウム原子                   | 6        |  |
|   |                   | 1.1.3 変分法の誤差の評価                         | 7        |  |
|   |                   | 1.1.4 練習問題                              | 8        |  |
|   | 1.2               | 摂動 I(定常摂動)                              | 10       |  |
|   |                   |                                         | 10       |  |
|   |                   |                                         | 11       |  |
|   |                   | (                                       | 11       |  |
|   |                   |                                         | 12       |  |
|   |                   | ( 1 11 11 11 11 11 11 11 11 11 11 11 11 | 13       |  |
|   |                   |                                         | 14       |  |
|   |                   | ( = : : : : : = / : : : : = :           | 15       |  |
|   |                   |                                         | 18       |  |
|   | 1.3               | (                                       | 19       |  |
|   |                   |                                         | 21       |  |
|   |                   | (                                       | 23       |  |
|   |                   |                                         | 25       |  |
|   |                   | ( = =                                   | 26       |  |
|   |                   | ( = =                                   | 28       |  |
|   | 1.4               |                                         | 29       |  |
|   |                   |                                         | 30       |  |
|   |                   |                                         | 30       |  |
|   |                   | 1.4.3 電磁場中の電子の摂動論                       | 31       |  |
| 0 | 散乱                | m∋∆                                     | ഹ        |  |
| 2 | <b>取此</b><br>2.1  | <del>室論</del><br>立体角                    | 33       |  |
|   | $\frac{2.1}{2.2}$ |                                         | ээ<br>33 |  |
|   | 2.2               |                                         | აა<br>33 |  |
|   | $\frac{2.3}{2.4}$ |                                         | 34       |  |
|   | $\frac{2.4}{2.5}$ |                                         |          |  |
|   | -                 | . –                                     | 39       |  |
|   | 2.6               | 部分波展開                                   | 42       |  |
| 3 | 相対                | <b>倫的量子論</b>                            | 49       |  |
| - |                   | ······································  | 40       |  |

# Contents

# Chapter 1

# 近似法

## 1.1 変分法

$$\hat{H}|k\rangle = E_k|k\rangle \tag{1.1.1}$$

変分法 (variational principle) とは Hamiltonian の基底エネルギー  $E_0$  の近似法である $^1$ . 変分法は式 (1.1.1) において  $\hat{H}$  の一般の固有値を求めることが困難であるとき、基底エネルギーのみを求めるにときに用いられる、量子系において、基底エネルギーは系の特徴の 1 つであるため、それが分かることだけでも、十分な議論となる場合があるのだ.

#### 1.1.1 基本原理

変分法は,

- 1. **試行関数**  $|\psi\rangle$  をたくさん用意し,
- 2. それぞれのエネルギー  $E(\psi)$  を計算し,
- 3. その中で最小の  $E(\psi)$  を  $E_0$  の近似解とする

近似法である. ここでは,変分法の基本原理を説明する.

#### 命題 1.1: 変分法の基本原理

任意の状態ベクトル  $|\psi\rangle$  に対して  $|\psi\rangle$  でのエネルギー関数  $E(\psi)$  について,式 (1.1.2) なる不等式が成り立つ.

$$E(\psi) = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \ge E_0 \tag{1.1.2}$$

ただし  $E_0$  は  $\hat{H}$  の固有エネルギーの中で最低のものである.

*Proof.* 任意の状態ベクトル  $|\psi\rangle$  を Hilbert 空間の基底  $|k\rangle$  を用いて,

$$|\psi\rangle = \sum_{k} c_k |k\rangle \tag{1.1.3}$$

と展開する. 左から  $\langle k'|$  を作用させると

$$\langle k'|\psi\rangle = \sum_{k} c_k \langle k'|k\rangle = \sum_{k} c_k \delta_{k',k} = c_{k'}$$
(1.1.4)

 $<sup>^1</sup>$ 近似法には摂動法と変分法がある。 摂動法は Hamiltonian が厳密に解ける項  $\hat{H}^0$  と摂動項  $\hat{\delta}$  を用いて, $\hat{H}=\hat{H}^0+\hat{\delta}$  と表され,摂動項が小さいときのみ有効である。これに対し,変分法はどんなときでも有効である。

を得る.式 (1.1.4) は任意のkに対して成り立つので式 (1.1.3) は以下のように変形できる.

$$|\psi\rangle = \sum_{k} \langle k|\psi\rangle \,|k\rangle \tag{1.1.5}$$

$$= \sum_{k} |k\rangle \langle k|\psi\rangle \tag{1.1.6}$$

式 (1.1.6) を用いて式 (1.1.2) の分子を以下のように変形する.

$$\langle \psi | \hat{H} | \psi \rangle = \langle \psi | \, \hat{H} \sum_{k} | k \rangle \, \langle k | \psi \rangle \tag{1.1.7}$$

$$= \sum_{k} \langle \psi | \, \hat{H} \, | k \rangle \, \langle k | \psi \rangle \tag{1.1.8}$$

$$= \sum_{k} E_{k} \langle \psi | k \rangle \langle k | \psi \rangle \tag{1.1.9}$$

$$= \sum_{k} E_k |\langle k | \psi \rangle|^2 \tag{1.1.10}$$

また,

$$\langle \psi | \psi \rangle = \sum_{k} |\langle k | \psi \rangle|^2$$
 (1.1.11)

であるから,

$$E(\psi) = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \tag{1.1.12}$$

$$=\frac{\sum_{k} E_{k} |\langle k | \psi \rangle|^{2}}{\sum_{k} |\langle k | \psi \rangle|^{2}}$$
(1.1.13)

$$\geq \frac{\sum_{k} E_0 |\langle k | \psi \rangle|^2}{\sum_{k} |\langle k | \psi \rangle|^2} = E_0 \tag{1.1.14}$$

を得る.

**命題 1.1** より. あらゆる状態ベクトル  $|\psi\rangle$  のエネルギーは基底エネルギー  $E_0$  以上である.

#### 例題 1.1

ポテンシャル  $V(x) = \lambda x^4$  中に粒子がある系を考える. この系の Hamiltonian は

$$\hat{H} = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \lambda x^4$$
 (1.1.15)

である. 予想される基底状態が満たすべき条件は

- x = 0 で存在確率が最大
- $|x| \to \infty$  で存在確率が 0
- 節がない<sup>a</sup>

である. この条件と変分法を用いて, エネルギーの近似値を求めよ.

。 <sup>©</sup>節があると微係数が大きい点が存在し,これは運動エネルギーを大きくしてしまう. 試行関数として  $\psi(x,\alpha)=\mathrm{e}^{-\alpha x^2/2},\ \alpha>0$  として、エネルギー関数を計算する.見通しをよくするために、

$$I_0 := \int_{-\infty}^{\infty} e^{-\alpha x^2} dx \tag{1.1.16}$$

$$I_1 := \int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} dx \tag{1.1.17}$$

$$I_2 := \int_{-\infty}^{\infty} x^4 e^{-\alpha x^2} dx \tag{1.1.18}$$

とすると,

$$E(\alpha) = \frac{\int_{-\infty}^{\infty} \psi^* \hat{H} \psi \, \mathrm{d}x}{\int_{-\infty}^{\infty} \psi^* \psi \, \mathrm{d}x}$$
(1.1.19)

$$= \frac{-\frac{\hbar^2 \alpha^2}{2m} \int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} dx + \lambda \int_{-\infty}^{\infty} x^4 e^{-\alpha x^2} dx}{\int_{-\infty}^{\infty} e^{-\alpha x^2} dx}$$
(1.1.20)

$$= \frac{-\frac{\hbar^2 \alpha^2}{2m} I_1 + \lambda I_2}{I_0} \tag{1.1.21}$$

である.  $I_1$  は,

$$I_1 = \int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} dx = \int_{-\infty}^{\infty} x \frac{d}{dx} \left( -\frac{e^{-\alpha x^2}}{2\alpha} \right) dx$$
 (1.1.22)

$$= -\frac{1}{2\alpha} \left( \left[ x e^{-\alpha x^2} \right]_{-\infty}^{\infty} - \int_{-\infty}^{\infty} e^{-\alpha x^2} dx \right)$$
 (1.1.23)

$$= \frac{1}{2\alpha} \int_{-\infty}^{\infty} e^{-\alpha x^2} dx \tag{1.1.24}$$

$$= \frac{1}{2\alpha} I_0 \tag{1.1.25}$$

と計算できる.  $I_2$  は,

$$I_2 = \int_{-\infty}^{\infty} x^4 e^{-\alpha x^2} dx = \int_{-\infty}^{\infty} x^3 \frac{d}{dx} \left( -\frac{e^{-\alpha x^2}}{2\alpha} \right) dx$$
 (1.1.26)

$$= -\frac{1}{2\alpha} \left( \left[ x^3 e^{-\alpha x^2} \right]_{-\infty}^{\infty} - 3 \int_{-\infty}^{\infty} x^2 e^{-\alpha x^2} dx \right)$$
 (1.1.27)

$$=\frac{3}{2\alpha}I_1\tag{1.1.28}$$

$$=\frac{3}{4\alpha^2}I_0\tag{1.1.29}$$

であるから,式 (1.1.21) は,

$$E(\alpha) = \frac{-\frac{\hbar^2 \alpha^2}{2m} \frac{1}{2\alpha} I_0 + \lambda \frac{3}{4\alpha} I_0}{I_0}$$

$$(1.1.30)$$

$$= -\frac{\hbar^2 \alpha}{4m} + \frac{3\lambda}{4\alpha^2} \tag{1.1.31}$$

5

となる.第1項は運動エネルギーを,第2項はポテンシャルエネルギーを,それぞれ表している<sup>a</sup>.式 (1.1.21) の最小値が基底エネルギー  $E_0$  の近似解である.よって, $\frac{\mathrm{d}}{\mathrm{d}\alpha}E(\alpha_0)=0$  となる  $\alpha_0$  を式 (1.1.21) に代入することで近似解,

$$E(\alpha_0) = \frac{3}{8} \left( \frac{6\hbar^4 \lambda}{m^2} \right)^{1/3} \tag{1.1.32}$$

を得る.

 $^a$ ポテンシャルエネルギーの項は  $\alpha$  が大きくなるほど小さくなる。 これは,波動関数が狭まり x=0 での存在確率が大きくなるためである.一方,運動エネルギーの項は  $\alpha$  が大きくなるほど大きくなる. これは,不確定性関係  $\Delta x \Delta p \geq \frac{\hbar}{2}$  より,運動量のばらつきが大きくなるためである.

#### 1.1.2 (変分法の例題) ヘリウム原子

本節では,変分法の威力を確認するために,ヘリウム原子の基底エネルギーを考える.ヘリウム原子において, $\frac{m}{M} \to 0$ であり,原子核が動かない(原子核の運動エネルギーが無視できる)とする.これを Born-Oppenheimer 近似という.ヘリウム原子は電荷 2e の原子核と電荷 -e の電子を 2 つもつので,Hamiltonian は,

$$\hat{H} = -\frac{\hbar^2}{2m} \nabla_1^2 - \frac{\hbar^2}{2m} \nabla_2^2 - \frac{2e^2}{4\pi\varepsilon_0 r_1} - \frac{2e^2}{4\pi\varepsilon_0 r_2} + \frac{e^2}{4\pi\varepsilon_0 r_{12}}$$
(1.1.33)

である.第1項から第4項は水素陽原子の Hamiltonian  $\hat{H}^0$  であり厳密に解くことが出来ることを利用して,第5項を無視して考えたときと,試行関数を定めて変分法を用いたときを比較する.なお,実験によりヘリウム原子の基底エネルギーは $-78.6~{
m eV}$ と求まっている.

#### 例題 1.2: ヘリウム原子の基底エネルギー (荒い近似)

計算を行うと、ヘリウムの原子番号を Z として  $\hat{H}^0$  の基底波動関数、

$$\psi = \frac{Z^3}{\pi a_0^3} \exp\left(-Z\frac{r_1 + r_2}{a_0}\right) \tag{1.1.34}$$

と $\hat{H}^0$ の基底エネルギー、

$$E = -8 \text{ Ry} \approx -108.8 \text{ eV}$$
 (1.1.35)

が求まるabc

$$a_{a0} = \frac{4\pi\varepsilon_0\hbar^2}{me^2} \approx 5.29 \times 10^{-11} \text{ m: Bohr 半径}$$
  $bZ = 2$   $c^2\text{Ry} = \frac{\hbar^2}{2m\omega^2} \approx 13.6 \text{ eV: Rydberg 定数}$ 

#### 例題 1.3: ヘリウム原子の基底エネルギー (変分法)

**例題 1.2** の結果とヘリウム原子の基底エネルギーの測定結果は-78.6 eV と大きく異なっているため,相互作用の項を取り入れた近似を考える.式 (1.1.34) を試行関数  $\psi(Z)$  とする. $\psi(Z)$  を用いてエネルギーを計算する.

$$E(Z) = \frac{\int \psi^* \hat{H} \psi \, \mathrm{d}\mathbf{r}_1 \, \mathrm{d}\mathbf{r}_2}{\int \psi^* \psi \, \mathrm{d}\mathbf{r}_1 \, \mathrm{d}\mathbf{r}_2}$$
(1.1.36)

$$= -2\left(4Z - Z^2 - \frac{5}{8}Z\right) \text{ Ry} \tag{1.1.37}$$

となる. 式 (1.1.37) が最小となるような Z を  $Z_0$  とすると  $Z_0 = 27/16$  であったので,

$$E(Z) \ge E(Z_0) = -77.5 \text{ eV}$$
 (1.1.38)

となった.式 (1.1.38) と式 (1.1.35) を比べると,荒い近似の方が真の基底エネルギ-78.6 eV に近い値が得られた $^{ab}$ .

 $^{a}Z_{0}<2$  は遮蔽効果により有効電荷が 2e より小さくなったことを意味する.

#### 1.1.3 変分法の誤差の評価

真の基底状態  $|E_0\rangle$  に第 1 励起状態  $|E_1\rangle$  を 10%含んだ試行関数  $|\psi\rangle=|E_0\rangle+\frac{1}{10}|E_1\rangle$  を使ってエネルギーを計算する.

$$E(\psi) = \frac{\langle \psi | \hat{H} | \psi \rangle}{\langle \psi | \psi \rangle} \tag{1.1.39}$$

$$= \frac{\langle E_0 | \hat{H} | E_0 \rangle + \frac{1}{100} \langle E_1 | \hat{H} | E_1 \rangle}{1 + \frac{1}{100}}$$
(1.1.40)

$$=\frac{E_0 + 0.01E_1}{1.01} \tag{1.1.41}$$

$$\approx 0.99E_0 + 0.01E_1 \tag{1.1.42}$$

試行関数で10%含まれていた誤差がエネルギーでは1%に収まっている.

#### 例題 1.4

無限井戸型ポテンシャル [-a,a] を考える. この問題を厳密に解けばn 番目のエネルギー準位は、

$$E_n = \frac{\hbar^2}{2m} \left(\frac{n\pi}{2a}\right)^2 \tag{1.1.43}$$

と計算できるが、ここでは変分法を用いて近似解を求める. 予想される試行関数の条件は

- $\psi(a) = \psi(-a) = 0$
- 節がない

である. よって今回は

$$\psi(x) = a^2 - x^2 \tag{1.1.44}$$

を採用する. この試行関数を用いたときの基底エネルギーを見積もれ.

$$E(\psi) = \frac{\int_{-a}^{a} (a^2 - x^2) \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2}\right) (a^2 - x^2) dx}{\int_{-a}^{a} (a^2 - x^2)^2 dx}$$
(1.1.45)

$$=\frac{10}{-2}E_1\tag{1.1.46}$$

$$\approx 1.01E_1 \tag{1.1.47}$$

真の基底エネルギー $E_1$ に近い値が得られたa.

 $^a$ このくらいの計算が期末試験に出たことがある.

<sup>&</sup>lt;sup>b</sup>積分の計算は David J. Griffith, Introduction to Quantum Mechanics, pp. 333-334 にある.

#### 1.1.4 練習問題

#### 練習問題 1.1: Griffith Example 8.1

1 次元調和振動子  $\hat{H}=-\frac{\hbar^2}{2m}\frac{\mathrm{d}^2}{\mathrm{d}x^2}+\frac{1}{2}m\omega^2x^2$  の基底エネルギーを見積もれ. ただし、試行関数を  $\psi(x)=\left(\frac{2b}{\pi}\right)^{1/4}\mathrm{e}^{-bx^2}$  とせよ. 試行関数は規格化されている.

$$E(b) = \langle \psi | \hat{H} | \psi \rangle = \left(\frac{2b}{\pi}\right)^{1/2} \int_{-\infty}^{\infty} e^{-bx^2} \left(-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + \frac{1}{2}m\omega^2 x^2\right) e^{-bx^2} dx$$
 (1.1.48)

$$=\frac{\hbar^2 b}{2m} + \frac{m\omega^2}{8b} \tag{1.1.49}$$

次に E(b) の最小値を求める.

$$\frac{\mathrm{d}}{\mathrm{d}b}E(b_0) = \frac{\hbar^2}{2m} - \frac{m\omega^2}{8b_0^2} = 0 \Rightarrow b_0 = \frac{m\omega}{2\hbar}$$
 (1.1.50)

$$E(b_0) = \frac{1}{2}\hbar\omega \tag{1.1.51}$$

偶然にも試行関数は基底エネルギーの固有関数となっていたため、 $E(b_0)$  は基底エネルギーと一致した.

#### 練習問題 1.2: Griffith Example 8.2

デルタ関数型ポテンシャル  $\hat{H}-\frac{\mathrm{d}^2}{\mathrm{d}x^2}-\alpha\delta(x)$  の基底エネルギーを見積もれ. ただし,試行関数を  $\psi(x)=\left(\frac{2b}{\pi}\right)^{1/4}\mathrm{e}^{-bx^2}$  とせよ.試行関数は規格化されている.

$$\langle V \rangle = -\alpha \left(\frac{2b}{\pi}\right)^{1/2} \int_{-\infty}^{\infty} e^{-2bx^2} \delta(x) \, \mathrm{d}x = -\alpha \left(\frac{2b}{\pi}\right)^{1/2} \tag{1.1.52}$$

$$\langle T \rangle = \frac{\hbar^2 b}{2m} \tag{1.1.53}$$

$$E(b) = \frac{\hbar^2 b}{2m} - \alpha \left(\frac{2b}{\pi}\right)^{1/2} \tag{1.1.54}$$

E(b) の最小値を求める.

$$\frac{\mathrm{d}}{\mathrm{d}b}E(b_0) = \frac{\hbar^2}{2m} - \frac{\alpha}{\sqrt{2\pi b_0}} = 0 \Rightarrow b_0 = \frac{2m^2\alpha^2}{\pi\hbar^4}$$
 (1.1.55)

よって, 基底エネルギーの近似解として

$$E(b_0) = -\frac{m\alpha^2}{\pi\hbar^2} \tag{1.1.56}$$

を得る $^a$ .

 $^a$ 厳密解を求めることができ、 $\psi(x)=rac{\sqrt{mlpha}}{\hbar}\mathrm{e}^{-mlpha|x|/\hbar^2},\; E_0=-rac{mlpha^2}{2\hbar^2}$ である.

#### 練習問題 1.3: Griffith Example 8.3

[0, a] の無限井戸型ポテンシャルの基底エネルギーを見積もれ. ただし, 試行関数を

$$\psi(x) = \begin{cases} Ax & \text{if } 0 \le x \le a/2\\ A(a-x) & \text{if } a/2 \le x \le a\\ 0 & \text{otherwise} \end{cases}$$
 (1.1.57)

とせよ.

規格化条件より, $A=rac{2}{a}\sqrt{rac{3}{a}}$ を得る.波動関数の導関数は

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = \begin{cases} Ax & \text{if } 0 \le x \le a/2\\ A(a-x) & \text{if } a/2 \le x \le a\\ 0 & \text{otherwise} \end{cases}$$
 (1.1.58)

である. よって、2次の微係数として

$$\frac{\mathrm{d}^2 \psi}{\mathrm{d}x^2} = A\delta(x) - 2A\delta\left(x - \frac{a}{2}\right) + A\delta(x - a) \tag{1.1.59}$$

を得る. したがって近似解は

$$E = \int_0^a \psi(x) \left( -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} \right) \psi(x) \, \mathrm{d}x$$
 (1.1.60)

$$= -\frac{\hbar^2}{2m} \int_0^a A \left[ \delta(x) - \delta \left( x - \frac{a}{2} \right) + \delta(x - a) \right] \psi(x) dx$$
 (1.1.61)

$$=\frac{12\hbar^2}{2ma^2} \tag{1.1.62}$$

である<sup>a</sup>.

$$a$$
厳密解は  $E_0=rac{\pi^2\hbar^2}{2ma^2}$ 

#### 練習問題 1.4: Griffith Problem8.4 (a)

試行関数  $|\psi\rangle$  が基底状態と直交するとき, つまり  $\langle\psi|0\rangle$  のとき,

$$E(\psi) \ge E_1 \tag{1.1.63}$$

であることを示せ $^a$ . ただし  $E_1$  は第 1 励起状態のエネルギーである.  $|\psi\rangle$  は規格化されている.

 $^a$ 例えば偶関数のポテンシャルに対し奇関数の試行関数で計算すれば第 1 励起状態のエネルギーの近似解が得られる.

Proof.

$$E(\psi) = \sum_{k=0} E_k |\langle \psi | k \rangle|^2$$
(1.1.64)

$$= E_0 |\langle \psi | 0 \rangle|^2 + \sum_{k=1} |\langle \psi | k \rangle|^2$$
(1.1.65)

$$=0+\sum_{k=1}|\langle\psi|k\rangle|^2\tag{1.1.66}$$

$$\geq E_1 \sum_{k=1} \left| \langle \psi | k \rangle \right|^2 = E_1 \tag{1.1.67}$$

# 1.2 摂動 I(定常摂動)

Hamiltonian が時間に依存しない定常摂動 (time-independent perturbation) を扱う.

#### 1.2.1 準備

摂動が無い状態の Schödinger 方程式,

$$\hat{H}^{(0)} \left| n^{(0)} \right\rangle = E_0^{(0)} \left| n^{(0)} \right\rangle \tag{1.2.1}$$

が厳密に解くことができるとする. ここに摂動  $\hat{V}$  を加わったこと を考えると、摂動 Hamiltonian を  $\hat{V}$  として、

$$\left(\hat{H}^{(0)} + \hat{V}\right)|n\rangle = E_n|n\rangle \tag{1.2.2}$$

とかける. 摂動の大きさを表すパラメータを  $\lambda$  として式 (1.2.2) を

$$\hat{H} = \hat{H}^{(0)} + \lambda \hat{V} \tag{1.2.3}$$

とする.  $\lambda \to 0$  ならば明らかに、

$$\begin{cases} |n\rangle \to \left| n^{(0)} \right\rangle \\ E_n \to E_n^{(0)} \end{cases} \tag{1.2.4}$$

である. ここで,式(1.2.3)の解が,

$$\begin{cases} |n\rangle &= \left| n^{(0)} \right\rangle + \lambda \left| n^{(1)} \right\rangle + \lambda^2 \left| n^{(2)} \right\rangle + \cdots \\ E_n &= E_n^{(0)} + \lambda E_n^{(1)} + \lambda^2 E_n^{(2)} + \cdots \end{cases}$$
(1.2.5)

と書けたとする.  $\left|n^{(1)}\right\rangle,\;\left|n^{(2)}\right\rangle,\;E_n^{(1)},\;E_n^{(2)}$  を考える. 規格化条件として

$$\left\langle n^{(0)} \middle| n \right\rangle = 1 \tag{1.2.6}$$

を定める. 式 (1.2.5) を式 (1.2.3) に代入して、 $\lambda$  の次数ごとにまとめると、

$$(E_n^{(0)} - \hat{H}^{(0)}) | n^{(0)} \rangle = 0$$
 (1.2.7)

$$(E_n^{(0)} - \hat{H}^{(0)}) \left| n^{(1)} \right\rangle + E_n^{(1)} \left| n^{(0)} \right\rangle = \hat{V} \left| n^{(0)} \right\rangle \tag{1.2.8}$$

$$(E_n^{(0)} - \hat{H}^{(0)}) \left| n^{(2)} \right\rangle + E_n^{(1)} \left| n^{(1)} \right\rangle + E_n^{(2)} \left| n^{(0)} \right\rangle = \hat{V} \left| n^{(1)} \right\rangle \tag{1.2.9}$$

(1.2.10)

を得る.

<sup>2</sup>摂動の例: 光, 電場

#### 1.2.2 1次摂動

まずエネルギー補正  $E_n^{(1)}$  について考える. 式 (1.2.8) の両辺に  $\left\langle n^{(1)} \right|$  を作用すると,

$$\left\langle n^{(1)} \middle| (E_n^{(0)} - \hat{H}^{(0)}) \middle| n^{(1)} \right\rangle + \left\langle n^{(1)} \middle| E_n^{(1)} \middle| n^{(0)} \right\rangle = \left\langle n^{(1)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{1.2.11}$$

$$\Leftrightarrow E_n^{(0)} \left\langle n^{(1)} \middle| n^{(1)} \right\rangle - \left\langle n^{(1)} \middle| \hat{H}^{(0)} \middle| n^{(1)} \right\rangle + E_n^{(1)} \left\langle n^{(1)} \middle| n^{(0)} \right\rangle = \left\langle n^{(1)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{1.2.12}$$

$$\Leftrightarrow 0 + E_n^{(1)} \left\langle n^{(0)} \middle| n^{(0)} \right\rangle = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{1.2.13}$$

$$\Leftrightarrow E_n^{(1)} = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{1.2.14}$$

を得る.よって、1次摂動によるエネルギー補正は

- 1 次摂動によるエネルギー補正 -----

$$E_n^{(1)} = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{1.2.15}$$

である.

次に固有ベクトル $\left|n^{(1)}\right>$  の補正を求める.式 (1.2.8) の両辺に $\left< m^{(0)} \right|$ ,ただし m 
eq n を作用すると,

$$\left\langle m^{(0)} \middle| (E_n^{(0)} - \hat{H}^{(0)}) \middle| n^{(1)} \right\rangle + \left\langle m^{(0)} \middle| E_n^{(1)} \middle| n^{(0)} \right\rangle = \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{1.2.16}$$

$$E_n^{(0)} \left\langle m^{(0)} \middle| n^{(1)} \right\rangle - E_m^{(0)} \left\langle m^{(0)} \middle| n^{(1)} \right\rangle + 0 = \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{1.2.17}$$

$$\langle m^{(0)} | n^{(1)} \rangle = \langle m^{(0)} | \hat{V} | n^{(0)} \rangle \left( E_n^{(0)} - E_m^{(0)} \right)$$
 (1.2.18)

(1.2.19)

ただし、エネルギー縮退は無く、

$$E_n^{(0)} - E_m^{(0)} \neq 0 (1.2.20)$$

とする. ところで、Hermite 演算子である  $\hat{H}^{(0)}$  の固有ベクトルに関する完全性より、

$$I = \sum_{m} \left| m^{(0)} \right\rangle \! \left\langle m^{(0)} \right| \tag{1.2.21}$$

であるから,式 (1.2.21) の両辺に右から  $\left|n^{(1)}\right\rangle$  をかけて,

$$\left| n^{(1)} \right\rangle = \sum_{m} \left| m^{(0)} \right\rangle \left\langle m^{(0)} \middle| n^{(1)} \right\rangle$$
 (1.2.22)

を得る.式(1.2.22)を式(1.2.18)に代入すると、

- 1 次摂動による固有ベクトル補正

$$\left| n^{(1)} \right\rangle = \sum_{m \neq n} \frac{\left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle}{E_n^{(0)} - E_m^{(0)}} \left| m^{(0)} \right\rangle \tag{1.2.23}$$

を得る.

## 1.2.3 (1 次摂動の例題) ヘリウム原子

再びヘリウム原子のエネルギーを考えてみよう. 今度は、変分法ではなく、1次の摂動を用いる.

#### 例題 1.5: ヘリウム原子の基底エネルギー (1 次摂動)

水素陽原子の Hamiltonian を  $\hat{H}_0$  とし、電子-電子相互作用を水素陽原子に対する摂動  $\hat{V}$  と解釈してヘリウム原子の基底エネルギーを計算せよ.ただし、

$$\hat{H} \coloneqq \hat{H}^{(0)} + \hat{V} \tag{1.2.24}$$

$$\hat{H}^{(0)} := -\frac{\hbar^2}{2m} \nabla_1^2 - \frac{\hbar^2}{2m} \nabla_2^2 - \frac{2e^2}{4\pi\varepsilon_0 r_1} - \frac{2e^2}{4\pi\varepsilon_0 r_2}$$
(1.2.25)

$$\hat{V} \coloneqq \frac{e^2}{4\pi\varepsilon_0 r_{12}} \tag{1.2.26}$$

(1.2.27)

である.

 $\hat{H}^{(0)}$  の基底状態の固有関数は、

$$\psi^{(0)} = \frac{Z^3}{\pi a_0^3} \exp\left[-\frac{Z(r_1 + r_2)}{a_0}\right]$$
 (1.2.28)

である. よって、 $\hat{V}$  による 1 次のエネルギー補正は以下のように計算できる.

$$E^{(1)} = \left\langle \psi^{(0)} \middle| \hat{V} \middle| \psi^{(0)} \right\rangle \tag{1.2.29}$$

$$= \int \psi^{(0)*} \frac{e^2}{4\pi\varepsilon_0 r_{12}} \psi^{(0)} \, \mathrm{d}\mathbf{r}_1 \, \mathrm{d}\mathbf{r}_2$$
 (1.2.30)

$$=\frac{5}{4}Z \text{ Ry} \tag{1.2.31}$$

よって、基底エネルギー

$$E_0 = E^{(0)} + E^{(1)} (1.2.32)$$

$$= -8 \text{ Ry} + \frac{5}{4} \times 2 \text{ Ry} \tag{1.2.33}$$

$$= -74.8 \text{ eV}$$
 (1.2.34)

を得る<sup>a</sup>.

<sup>a</sup>測定値は −78.6 eV

#### 1.2.4 2次摂動

式 (1.2.9) の両辺に  $\langle n^{(0)} |$  を作用すると,

$$\left\langle n^{(0)} \left| \left( E_n^{(0)} - \hat{H}^{(0)} \right) \right| n^{(2)} \right\rangle + \left\langle n^{(0)} \left| E_n^{(1)} \right| n^{(1)} \right\rangle + \left\langle n^{(0)} \left| E_n^{(2)} \right| n^{(0)} \right\rangle = \left\langle n^{(0)} \left| \hat{V} \right| n^{(1)} \right\rangle \tag{1.2.35}$$

$$E_{n}^{(0)}\left\langle n^{(0)} \middle| n^{(2)} \right\rangle - E_{n}^{(0)}\left\langle n^{(0)} \middle| n^{(2)} \right\rangle + E_{n}^{(1)}\left\langle n^{(0)} \middle| n^{(1)} \right\rangle + E_{n}^{(2)}\left\langle n^{(0)} \middle| n^{(0)} \right\rangle = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(1)} \right\rangle \tag{1.2.36}$$

$$E_n^{(2)} = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(1)} \right\rangle$$
 (1.2.37)

となる. 式 (1.2.23) を式 (1.2.37) に代入すると,

$$E_n^{(2)} = \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(1)} \right\rangle \tag{1.2.38}$$

$$= \sum_{m \neq n} \frac{\left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle}{E_n^{(0)} - E_m^{(0)}} \left\langle n^{(0)} \middle| \hat{V} \middle| m^{(0)} \right\rangle \tag{1.2.39}$$

$$= \sum_{m \neq n} \frac{\left| \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \right|^2}{E_n^{(0)} - E_m^{(0)}}$$
 (1.2.40)

と計算できて、2次摂動によるエネルギー補正を得る.

- 2 次摂動によるエネルギー補正 --

$$E_n^{(2)} = \sum_{m \neq n} \frac{\left| \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \right|^2}{E_n^{(0)} - E_m^{(0)}}$$
(1.2.41)

また,基底状態においては  $E_0^{(0)} < E_m^{(0)}$  である.常に式 (1.2.41) の和の部分の分母は負であるため,**基底状態のエネルギーは 2 次摂動により必ず下がる**.

#### 1.2.5 (2 次摂動の例題) 量子閉じ込め Stark 効果

ここでは、2 次摂動を用いた例題として Stark 効果 $^{34}$ を考えよう.

#### 例題 1.6: 量子閉じ込め Stark 効果

定常状態のの Hamiltonian $\hat{H}^{(0)}$  に,電場による摂動  $\hat{V}$  を加えた Hamiltonian $\hat{H}$  を考える.ただし,定常状態のポテンシャルは,長さ L の無限井戸型ポテンシャル $\hat{U}$  である. $\hat{U}$ ,  $\hat{V}$ ,  $\hat{H}^{(0)}$ ,  $\hat{H}$  は,

$$U(x) := \begin{cases} 0 & |x| \le L/2 \\ \infty & \text{otherwise} \end{cases}$$
 (1.2.42)

$$V(x) := -e\phi(x) = eEx \ (e > 0) \tag{1.2.43}$$

$$\hat{H}^{(0)} := -\frac{\hbar^2}{2m} \frac{\mathrm{d}^2}{\mathrm{d}x^2} + \hat{U}(x) \tag{1.2.44}$$

$$\hat{H} := \hat{H}^{(0)} + \hat{V}(x) \tag{1.2.45}$$

(1.2.46)

と定義される. また、 $\hat{H}^{(0)}$  の固有エネルギーとそれに属する固有関数は、

$$E_n^{(0)} = \frac{\hbar^2}{2m} \left(\frac{\pi}{L}\right)^2 n^2, \ (n = 1, 2, 3, \dots)$$
 (1.2.47)

$$\phi_n(x) = \begin{cases} \sqrt{\frac{2}{L}} \cos\left(\frac{n\pi}{L}x\right) & n : \text{odd} \\ \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi}{L}x\right) & n : \text{even} \end{cases}$$
 (1.2.48)

のようになっている. このとき、2次の摂動まで用いて $\hat{V}$ の影響によるエネルギー補正を計算せよ.

- 1 次摂動によるエネルギー補正は奇関数の積分になるため 0 である. a.
- 2次摂動によるエネルギー補正は.

$$E_1^{(2)} = \sum_{m \neq 1} \frac{|V_{m1}|^2}{E_1^{(0)} - E_m^{(0)}}$$
(1.2.49)

$$V_{m1} = eE \int \phi_m^* x \phi_1 \, \mathrm{d}x \tag{1.2.50}$$

<sup>&</sup>lt;sup>3</sup> Johanes Stark(1874-1957)

 $<sup>^4</sup>$ 電場によるエネルギー準位の変化を Stark 効果という.

$$\begin{cases} = 0 & n : \text{odd} \\ \neq 0 & n : \text{even} \end{cases}$$
 (1.2.51)

$$E_1^{(2)} = \frac{|V_{21}|^2}{E_1^{(0)} - E_2^{(0)}} + \frac{|V_{41}|^2}{E_1^{(0)} - E_4^{(0)}} + \cdots$$
(1.2.52)

$$\approx \frac{|V_{21}|^2}{E_1^{(0)} - E_2^{(0)}} \tag{1.2.53}$$

$$= -\frac{256}{234\pi^4} \frac{(eEL)^2}{E_1^{(0)}} \tag{1.2.54}$$

と計算できて、2次の摂動を考えるとエネルギーは低下することがわかる.

#### 1.2.6 縮退がある場合の摂動論

1次摂動のエネルギー補正を求めるときに縮退が無いという条件である式 (1.2.20) を用いて、

$$\left(E_n^{(0)} - \hat{H}^{(0)}\right) \left| n^{(1)} \right\rangle + E_n^{(1)} \left| n^{(0)} \right\rangle = \hat{V} \left| n^{(0)} \right\rangle \tag{1.2.55}$$

$$\left| n^{(1)} \right\rangle = \sum_{m \neq n} \left| m^{(0)} \right\rangle \frac{\left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle}{E_n^{(0)} - E_m^{(0)}} \tag{1.2.56}$$

と計算していた.では,エネルギー縮退が存在するとき,どのように計算すればよいだろうか. $\hat{H}^{(0)}$  の固有値  $E_n^{(0)}$  に,異なる 2 つの固有ベクトル  $\left|n_a^{(0)}\right>$ ,  $\left|n_b^{(0)}\right>$  が属すると状況を考える.すなわち,

$$\hat{H}^{(0)} \left| n_a^{(0)} \right\rangle = E_n^{(0)} \left| n_a^{(0)} \right\rangle \tag{1.2.57}$$

$$\hat{H}^{(0)} \left| n_b^{(0)} \right\rangle = E_n^{(0)} \left| n_b^{(0)} \right\rangle \tag{1.2.58}$$

が成立するときである。ただし、Hermite 演算子の固有ベクトルは規格直交化できるので、 $\left\langle n_i^{(0)} \middle| n_j^{(0)} \right\rangle = \delta_{ij}$  とする。  $\left| n_a^{(0)} \right\rangle \, \mathsf{と} \, \left| n_b^{(0)} \right\rangle \, \mathsf{は同じ固有値をもつため}, \,\, \mathsf{これらの線形結合},$ 

$$\left| n^{(0)} \right\rangle = \alpha \left| n_a^{(0)} \right\rangle + \beta \left| n_b^{(0)} \right\rangle \tag{1.2.59}$$

も,固有値 $E_n^{(0)}$ に属する固有ベクトルである.

まず、式 (1.2.55) の両辺に左から  $\left\langle n_a^{(0)} \right|$  を作用すると、

$$\left\langle n_a^{(0)} \middle| \left( E_n^{(0)} - \hat{H}^{(0)} \right) \middle| n^{(1)} \right\rangle + \left\langle n_a^{(0)} \middle| E_n^{(1)} \middle| n^{(0)} \right\rangle = \left\langle n_a^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{1.2.60}$$

$$\Leftrightarrow E_n^{(0)} \left\langle n_a^{(0)} \middle| n^{(1)} \right\rangle - E_n^{(0)} \left\langle n_a^{(0)} \middle| n^{(1)} \right\rangle + E_n^{(1)} \left\langle n_a^{(0)} \middle| n^{(0)} \right\rangle = \left\langle n_a^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{1.2.61}$$

$$\Leftrightarrow \alpha E_n^{(1)} = \left\langle n_a^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \tag{1.2.62}$$

となる.  $V_{ij}\coloneqq\left\langle n_i^{(0)}\middle|\hat{V}\middle|n_i^{(0)}\right\rangle$  とすれば式 (1.2.62) は、

$$\alpha E_n^{(1)} = \alpha V_{aa} + \beta V_{ab} \tag{1.2.63}$$

と書ける.同様に式 (1.2.55) の両辺に左から  $\left\langle n_b^{(0)} \right|$  を作用させたときも考えれば,

$$\begin{cases} \alpha V_{aa} + \beta V_{ab} = \alpha E_n^{(1)} \\ \alpha V_{ba} + \beta V_{bb} = \beta E_n^{(1)} \end{cases}$$

$$(1.2.64)$$

を得る. これは行列を用いて,

$$\begin{pmatrix} V_{aa} - E_n^{(1)} & V_{ab} \\ V_{ba} & V_{bb} - E_n^{(1)} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (1.2.65)

のように書き直される。行列の部分が Hermite 行列になっているので,式 (1.2.65) は永年方程式である。永年方程式が非自明な解を持つ条件は,

$$\begin{vmatrix} V_{aa} - E_n^{(1)} & V_{ab} \\ V_{ba} & V_{bb} - E_n^{(1)} \end{vmatrix} = 0$$
 (1.2.66)

である. よって1次の摂動エネルギーとして,

縮退がある場合の摂動論による1次エネルギー補正 -

$$E_n^{(1)} = \frac{1}{2} \left[ (V_{aa} + V_{bb} \pm \sqrt{(V_{aa} - V_{bb})^2 + 4|V_{ab}|^2}) \right]$$
 (1.2.67)

を得る.式 (1.2.67) をみると、定常状態では1種類であったエネルギーが、縮退が解けて2つに分かれている.

#### 例題 1.7

 $V_{aa} = V_{bb} = 0$ ,  $V_{ab} = V_{ba} = V$  の場合式 (1.2.65) は,

$$\begin{pmatrix} -E_n^{(1)} & V \\ V & -E_n^{(1)} \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (1.2.68)

となる. よって1次エネルギー補正は,

$$E_n^{(1)} = \begin{cases} +V & \alpha = 1, \beta = 1\\ -V & \alpha = 1, \beta = -1 \end{cases}$$
 (1.2.69)

と求まる.これは摂動を加える前に縮退していた 2 つの状態  $\left|n^{(0)}\right> = \left|n_a^{(0)}\right> \pm \left|n_b^{(0)}\right>$  の縮退が解け,エネルギー  $E_n^{(0)} + V$  をもつ状態  $\left|n_a^{(0)}\right> + \left|n_b^{(0)}\right>$  とエネルギー  $E_n^{(0)} - V$  をもつ状態  $\left|n_a^{(0)}\right> - \left|n_b^{(0)}\right>$  に分かれたことを意味している.

#### 1.2.7 (定常摂動の例題)物質中の電子

#### 例題 1.8: バンドギャップ

長さ L の無限井戸型ポテンシャル中の 1 次元自由電子の波動関数  $\phi_k(x)$  とエネルギー固有値  $\varepsilon_0(k)$  は、

$$\phi_k(x) = \langle x|k\rangle = \frac{1}{\sqrt{L}} e^{ikx}$$
 (1.2.70)

$$\varepsilon_0(k) = \frac{\hbar^2 k^2}{2m} \left( k = \frac{2\pi}{L} N, \ N \in \mathbb{N} \right)$$
 (1.2.71)

である.無限井戸型ポテンシャルに V(x+a)=V(x) を満たすポテンシャル V(x) が加わったときを考える. V(x) は,

$$V(x) = 2V\cos\left(\frac{2\pi}{a}x\right) \tag{1.2.72}$$

$$= V(e^{i\frac{2\pi}{a}x} + e^{-i\frac{2\pi}{a}x}) \tag{1.2.73}$$

$$= V(e^{igx} + e^{-igx}) (1.2.74)$$

と書けるとする. ただしgは,

$$g := \frac{2\pi}{a} \tag{1.2.75}$$

である.

以下の問いに答えよ.

- 1. 結晶中の周期ポテンシャルによりバンドギャップができることを2次までの摂動論を用いて説明せよ.
- 2. 縮退のある場合の摂動論を用いてバンドギャップエネルギーを見積もれ. また, Brillouin ゾーン端近傍で近似した波動関数を表せ.
- 3. バンドギャップと Bragg の回折条件との関係について議論せよ.
- 1. バンドギャップの成り立ち

2次の摂動によるエネルギー補正は,

$$E_n = E_n^{(0)} + \left\langle n^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle + \sum_{m \neq n} \frac{\left| \left\langle m^{(0)} \middle| \hat{V} \middle| n^{(0)} \right\rangle \right|^2}{E_n^{(0)} - E_m^{(0)}}$$
(1.2.76)

と書ける. 式 (1.2.76) に対して離散 Fourier 変換を行うことで,式 (1.2.76) の状態とエネルギーのラベリングを n から k に変更する.  $V_{k'k} \coloneqq \left\langle k' \middle| \hat{V} \middle| k \right\rangle$  とすると,

$$E(k) = \varepsilon^{(0)}(k) + V_{kk} + \sum_{k' \neq k} \frac{|V_{k'k}|^2}{\varepsilon^{(0)}(k) - \varepsilon^{(0)}(k')}$$
(1.2.77)

と書ける. 摂動によるエネルギーは.

$$V_{k'k} = \frac{V}{L} \int_{-L/2}^{L/2} \phi_{k'}^*(x) \hat{V}(x) \phi_k(x) dx$$
 (1.2.78)

$$=V\left[\frac{\sin\left(\frac{q_{+}L}{2}\right)}{\frac{q_{+}L}{2}} + \frac{\sin\left(\frac{q_{-}L}{2}\right)}{\frac{q_{-}L}{2}}\right] \tag{1.2.79}$$

と計算される. ただし $q_+$ と $q_-$ を,

$$q_{+} \coloneqq -k' + g + k \tag{1.2.80}$$

$$q_{-} \coloneqq -k' - g + k \tag{1.2.81}$$

と定義した. 摂動によるエネルギーは sinc 関数の形になっているので,  $L \to \infty$  では規格化されたデルタ関数  $\tilde{\delta}(x_1,x_2)$  と解釈できる. よって,

$$V_{k'k} = V(\tilde{\delta}(q_+, 0) + \tilde{\delta}(q_-, 0)) = \begin{cases} V & q_+ = 0 \text{ or } q_- = 0\\ 0 & \text{otherwise} \end{cases}$$
 (1.2.82)

である. なお,  $q_+=q_-=0$  となるのは g=0 であるが, g の定義である式 (1.2.75) よりありえない. エネルギーは,

$$E(k) = \varepsilon^{(0)}(k) + \frac{V^2}{\varepsilon(k) - \varepsilon(k+g)} + \frac{V^2}{\varepsilon(k) - \varepsilon(k-g)}$$
(1.2.83)

となる. **式** (1.2.83) の振る舞いを第 1 Brillouin ゾーンの内側と外側で確認する. ポテンシャルの対称性から右側のみを計算すればよい.

(a) 第 1 Brillouin ゾーン内側  $\left(k=k_1<\frac{\pi}{a}\right)$  の振る舞い  $\varepsilon(k)$  は放物線なので、

$$\begin{cases} \varepsilon(k_1) \ll \varepsilon^{(0)}(k_1 + g) \\ \varepsilon(k_1) < \varepsilon^{(0)}(k_1 - g) \end{cases}$$
 (1.2.84)

が成りたつ. よって, $E(k) < \varepsilon^{(0)}(k)$  が成り立ち,摂動が加わった後のエネルギーは加わる前のエネルギーより小さくなる.

(b) 第 1 Brillouin ゾーン外側  $\left(k=k_2>\frac{\pi}{a}\right)$  の振る舞い 第 1 Brillouin ゾーン内側のときと同様に考えると,

$$\begin{cases} \varepsilon(k_2) \ll \varepsilon^{(0)}(k_2 + g) \\ \varepsilon(k_2) > \varepsilon^{(0)}(k_2 - g) \end{cases}$$
 (1.2.85)

を得る. よって,  $E(k) > \varepsilon^{(0)}(k)$  が成り立ち, 摂動が加わった後のエネルギーは加わる前のエネルギーより大きくなる.

以上の議論により、結晶中の周期ポテンシャルによりバンドギャップが形成されることがわかった.

2. バンドギャップエネルギーの見積もりと波動関数

式 (1.2.83) に  $k=\pm\frac{\pi}{a}$  を代入すると発散してしまう.以下では 2 重縮退があるときの摂動を考えバンド ギャップエネルギー  $\Delta E$  を求める. $k_+$  と  $k_-$  を,

$$k_{+} \coloneqq \frac{\pi}{a} \tag{1.2.86}$$

$$k_{-} \coloneqq -\frac{\pi}{a} \tag{1.2.87}$$

と定義する.  $V_{k_+k_+}=V_{k_-k_-}=0$ ,  $V_{k_+k_-}=V_{k_-k_+}=V$  なので,式 (1.2.67) より,1 次摂動によるエネルギーは,

$$E_n^{(1)} = \frac{1}{2} \left[ (V_{k_+ k_+} + V_{k_- k_-} \pm \sqrt{(V_{k_+ k_+} - V_{k_- k_-})^2 + 4 |V_{k_+ k_-}|^2}) \right]$$

$$= \pm V$$
(1.2.88)

である. 2つのエネルギー補正の差がバンドギャップエネルギー  $\Delta E$  と解釈できるので、

$$\Delta E = 2V \tag{1.2.90}$$

を得る.

式 (1.2.59) の  $\alpha$  と  $\beta$  は式 (1.2.65) の解であるから、 $\sqrt{\alpha^2 + \beta^2} = 1$  なる規格化条件を課すと、

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{cases} \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ 1 \end{pmatrix} & E_n^{(1)} = V \\ \frac{1}{\sqrt{2}} \begin{pmatrix} 1 \\ -1 \end{pmatrix} & E_n^{(1)} = -V \end{cases}$$
(1.2.91)

となる. よって、 $\Delta E = \pm V$  に対応する波動関数は Brillouin ゾーン端で、

$$\psi_{+} = \frac{1}{\sqrt{2}} \left( \phi_{\pi/a} + \phi_{-\pi/a} \right) \propto \cos \left( \frac{\pi}{a} x \right) \tag{1.2.92}$$

$$\psi_{-} = \frac{1}{\sqrt{2}} \left( \phi_{\pi/a} - \phi_{-\pi/a} \right) \propto \sin\left(\frac{\pi}{a}x\right) \tag{1.2.93}$$

であり、定在波が生じる.

3. バンドギャップと Bragg 反射

バンドギャップの起源は Bragg 反射である. Bragg 反射は,

$$2a\sin\theta = \lambda \tag{1.2.94}$$

を満たす. 今回の場合は 1 次元なので  $\theta = \pi/2$  であり、波数は  $k = 2\pi/\lambda$  である. よって、Bragg 条件は

$$k = \frac{\pi}{a} \tag{1.2.95}$$

と書き換えられる. つまり, 式 (1.2.95) を満たす波数のみが反射し定在波をつくる.  $V(x)=2V\cos\left(\frac{2\pi}{a}x\right)$  であったから, 式 (1.2.92) で表される波動関数はポテンシャルが最小となる波数で確率振幅が最大となる. 式 (1.2.93) で表される波動関数はポテンシャルが最大となる波数で確率振幅が最大となる. よって, エネルギーは  $\psi_+$  が  $\psi_-$  より低くなる. これによりバンドギャップが生じる.

#### 1.2.8 練習問題

#### 練習問題 1.5: Griffith Example7.1

[0.a] 無限井戸型ポテンシャルに次の摂動が加わったときの1次摂動によるエネルギーを求めよ.

$$V_1(x) = \begin{cases} V_0, & 0 \le x \le a \\ 0, & \text{otherwise} \end{cases}$$
 (1.2.96)

$$V_2(x) = \begin{cases} V_0, & 0 \le x \le a/2\\ 0, & \text{otherwise} \end{cases}$$
 (1.2.97)

 $V_1(x)$  の場合

$$E_n^1(x) = \left\langle \psi_n^{(0)} \middle| V_0 \middle| \psi_n^{(0)} \right\rangle = V_0 \tag{1.2.98}$$

 $V_2(x)$  の場合

$$E_n^1 = \frac{2V_0}{a} \int_0^{a/2} \sin^2\left(\frac{n\pi}{a}x\right) dx = V_0/2$$
 (1.2.99)

#### 練習問題 1.6: Griffith Example 7.3

2 次元調和振動子  $\hat{H^0}=\frac{\hat{p}^2}{2m}+\frac{1}{2}m\omega^2(\hat{x}^2+\hat{y}^2)$  の第 1 励起状態は縮退している.

$$\psi_a^0 = \psi_0(x)\psi_1(y) = \sqrt{\frac{2}{\pi}} \frac{m\omega}{\hbar} y \exp\left(\frac{m\omega}{2\hbar} (x^2 + y^2)\right)$$
(1.2.100)

$$\psi_a^0 = \psi_1(x)\psi_0(y) = \sqrt{\frac{2}{\pi}} \frac{m\omega}{\hbar} x \exp\left(\frac{m\omega}{2\hbar} (x^2 + y^2)\right)$$
(1.2.101)

ここに摂動  $\hat{H}' = \varepsilon m \omega^2 xy$  を加える.

$$\begin{pmatrix} \omega_{aa} - E_n^1 & \omega_{ab} \\ \omega_{ba} & \omega_{bb} - E_n^1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (1.2.102)

を用いて摂動を加えた後の固有関数及び摂動による補正エネルギーを求めよ.

$$W_{aa} = \int \int \psi_a^0 \hat{H}' \psi_a^0 dx dy \tag{1.2.103}$$

$$= \varepsilon m\omega^2 \int |\psi_0(x)|^2 x dx \int |\psi_1(x)|^2 y dy \qquad (1.2.104)$$

$$= 0 = W_{bb} (1.2.105)$$

$$W_{ab} = \left[ \int \psi_0(x) \varepsilon m\omega^2 x \psi_1(x) dx \right]^2$$
 (1.2.106)

$$= \varepsilon \frac{\hbar \omega}{2} \left[ \int \psi_0(x) (\hat{a}_+ + \hat{a}_-) \psi_1(x) dx \right]^2$$
 (1.2.107)

$$= \varepsilon \frac{\hbar \omega}{2} \left[ \int \psi_0(x) \psi_0(x) dx \right]^2 \tag{1.2.108}$$

$$=\varepsilon\frac{\hbar\omega}{2}\tag{1.2.109}$$

よって、摂動による補正エネルギーは $E_1=\pm arepsilon rac{\hbar \omega}{2}$ 、固有関数は

$$\psi_{\pm}^{0} = \frac{1}{\sqrt{2}} (\psi_{b}^{0} \pm \psi_{a}^{0}) \tag{1.2.110}$$

である.

## 1.3 摂動 II(非定常摂動)

摂動項が時間に依存する場合の摂動 (time-dependent perturbation)<sup>5</sup>を扱う. 本節では,量子系の時間発展が状態ベクトルの時間変化で描像する Schrödinger 描像で記述する.時間に依存する Schrödinger 方程式,

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \hat{H} |\psi(t)\rangle$$
 (1.3.1)

を考える. なお,  $|\psi(t)\rangle$  は  $\hat{H}^{(0)}$  の固有ベクトルを用いて,

$$|\psi(t)\rangle = \sum_{n} c_n(t) |n\rangle$$
 (1.3.2)

と展開できたとする.  $\hat{H}^{(0)}$  の固有ベクトルが完全系を成すので、状態ベクトルが時間変化した空間は  $\{|n\rangle\mid n=0,1,\cdots\}$  が張る空間の部分空間となることに注意する. 以下の議論では特に断らない限り, $\hat{H}^{(0)}$  の固有ベクトルは Schmidt の直交化法などを用いて,正規直交化してあるものとする.  $\hat{H}$  の性質ごとに  $|\psi(t)\rangle$  の具体的な形を議論する.

1.  $\hat{H} = \hat{H}^{(0)}$  の場合<sup>6</sup>

<sup>5</sup>電磁波による摂動など.

 $<sup>^6 \</sup>hat{H}^{(0)}$  は厳密に解ける Hamiltonian.

量子状態  $|\psi(t)\rangle$  の時間発展は時間発展演算子 $^{78}\exp\left(-\mathrm{i}rac{\hat{H}t}{\hbar}
ight)$  を用いて,

$$|\psi(t)\rangle = \exp\left(-i\frac{\hat{H}^{(0)}}{\hbar}t\right)|\psi(0)\rangle$$
 (1.3.3)

$$= \sum_{n} c_n(0) \exp\left(-i\frac{\hat{H}^{(0)}}{\hbar}t\right) |n\rangle \tag{1.3.4}$$

$$= \sum_{n} c_n(0) \exp\left(-i\frac{E_n}{\hbar}t\right) |n\rangle \tag{1.3.5}$$

のように表すことができる.

時間発展演算子を用いることなく計算することもできる. 式 (1.3.2) を式 (1.3.1) に代入すると, $\hat{H}$  が時間に依存しないことに注意すれば、

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \left( \sum_{n} c_{n}(t) | n \rangle \right) = \hat{H} \left( \sum_{n} c_{n}(t) | n \rangle \right)$$
(1.3.6)

$$\Leftrightarrow \sum_{n} \left( i\hbar \frac{\mathrm{d}}{\mathrm{d}t} c_n(t) |n\rangle \right) = \sum_{n} \left( c_n(t) E_n |n\rangle \right) \tag{1.3.7}$$

$$\Leftrightarrow \forall n \text{ i}\hbar \frac{\mathrm{d}}{\mathrm{d}t} c_n(t) |n\rangle = c_n(t) E_n |n\rangle \tag{1.3.8}$$

$$\Leftrightarrow \forall n \ c_n(t) = \exp\left(-i\frac{E_n}{\hbar}t\right) \tag{1.3.9}$$

を用いれば,

$$|\psi(t)\rangle = \sum_{n} \exp\left(-i\frac{E_n}{\hbar}t\right)|n\rangle$$
 (1.3.10)

を得る.

2.  $\hat{H} = \hat{H}^{(0)} + \hat{V}(t)$  の場合

このときは  $|\psi(t)\rangle$  を簡単な形で書き下すことが出来ないから、便宜的に、

$$\psi(t) = \sum_{n} c_n(t) \exp\left(-i\frac{E_n}{\hbar}t\right) |n\rangle$$
 (1.3.11)

と展開しておく.なお, $c_n(t)$  が定数のときの  $|\psi(t)\rangle$  との整合性をとるために  $\exp\left(-\mathrm{i}\frac{E_n}{\hbar}t\right)$  をかけてある.原理的には  $c_n(t)$  が求まれば量子系の時間発展の様子がわかる.

さて、いずれの場合でも、量子系の性質を調べるには  $c_n(t)$  の具体的な形がわかればよいことを発見した。本節では、まず Schrödinger 表示から相互作用表示に書き換え、 $c_n(t)$  を厳密に知ることが困難であることを知り、 $c_n(t)$  の近似解を導く。式 (1.3.1) と式 (1.3.11) をまとめて、Schrödinger 表示の非定常摂動基本方程式と呼ぶ。

$$|\psi(\Delta t)\rangle = \exp\left[-\mathrm{i}\frac{\hat{H}}{\hbar}\Delta t\right]|\psi(0)\rangle \approx \left(\hat{I} - \mathrm{i}\frac{\hat{H}}{\hbar}\Delta t\right)|\psi(0)\rangle = |\psi(0)\rangle + \Delta t\left.\left(\frac{\mathrm{d}}{\mathrm{d}t}\left|\psi(t)\right\rangle\right)\right|_{t=0}$$

より微分の形で書けることから、確かに時間発展すると私は解釈する.

 $^8$ 演算子が交換するときは数字と同じ扱いをしても良いと考える. 一般に演算子は、

$$e^{\hat{A}}e^{\hat{B}} = \exp\left\{\hat{A} + \hat{B} + \frac{1}{2}\left[\hat{A}, \hat{B}\right] + \cdots\right\} \neq e^{\hat{A} + \hat{B}}$$

なる BCH 公式を満たす.

 $<sup>^{7}\</sup>Delta t \ll 1 \ \text{LLT}$ .

#### 1.3.1 相互作用表示

Schrödinger 表示の非定常摂動基本方程式は、式 (1.3.12) と式 (1.3.11) であり、

$$\begin{cases} i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle = \left(\hat{H}^{(0)} + \hat{V}(t)\right) |\psi(t)\rangle \\ |\psi(t)\rangle = \sum_{n} c_{n}(t) \exp\left(-\mathrm{i}\frac{E_{n}}{\hbar}t\right) |n\rangle \end{cases}$$
(1.3.12)

と書けるのであった. 相互作用表示 (interaction picture) を式 (1.3.13) のような  $|\psi(t)\rangle \to |\psi(t)\rangle_{\rm I}$  の変換を行って得られる状態ベクトルと定義する.

· 相互作用表示 -

$$|\psi(t)\rangle_{\mathrm{I}} \coloneqq \exp\left(\mathrm{i}\frac{\hat{H}^{(0)}}{\hbar}t\right)|\psi(t)\rangle$$
 (1.3.13)

式 (1.3.13) を用いて,式 (1.3.12) と等価な基本方程式である,相互作用表示の非定常摂動基本方程式を導く.まず,式 (1.3.12) の第 2 式を用いて,

$$|\psi(t)\rangle_{\rm I} = \exp\left(\mathrm{i}\frac{\hat{H}^{(0)}}{\hbar}t\right) \sum_n c_n(t) \exp\left(-\mathrm{i}\frac{E_n}{\hbar}t\right) |n\rangle$$
 (1.3.14)

$$= \sum_{n} c_n(t) \exp\left(-i\frac{E_n}{\hbar}t\right) \exp\left(i\frac{\hat{H}^{(0)}}{\hbar}t\right) |n\rangle$$
 (1.3.15)

$$= \sum_{n} c_n(t) \exp\left(-i\frac{E_n}{\hbar}t\right) \exp\left(i\frac{E_n}{\hbar}t\right) |n\rangle$$
 (1.3.16)

$$= \sum_{n} c_n(t) |n\rangle \tag{1.3.17}$$

と計算できる.

次に、相互作用表示の時間微分を計算してみる。相互作用表示での摂動項 Ŷ を、

$$\hat{V}_{I} := \exp\left(i\frac{\hat{H}^{(0)}}{\hbar}t\right)\hat{V}(t)\exp\left(-i\frac{\hat{H}^{(0)}}{\hbar}t\right)$$
(1.3.18)

とする. 計算の途中で,式(1.3.12)の第1式を用いると,

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle_{\mathrm{I}} = \frac{\mathrm{d}}{\mathrm{d}t} \left[ \exp\left(i\frac{\hat{H}^{(0)}}{\hbar}t\right) \right] |\psi(t)\rangle + \exp\left(i\frac{\hat{H}^{(0)}}{\hbar}t\right) \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle \tag{1.3.19}$$

$$= i\frac{\hat{H}^{(0)}}{\hbar} \exp\left(i\frac{\hat{H}^{(0)}}{\hbar}t\right) |\psi(t)\rangle + \exp\left(i\frac{\hat{H}^{(0)}}{\hbar}t\right) \frac{1}{i\hbar} \left(\hat{H}^{(0)} + \hat{V}(t)\right) |\psi(t)\rangle$$
(1.3.20)

$$= \frac{\mathrm{i}}{\hbar} \left[ \hat{H}^{(0)}, \exp\left(\mathrm{i}\frac{\hat{H}^{(0)}}{\hbar}t\right) \right] |\psi(t)\rangle + \exp\left(\mathrm{i}\frac{\hat{H}^{(0)}}{\hbar}t\right) \hat{V}(t) |\psi(t)\rangle \tag{1.3.21}$$

$$= \exp\left(i\frac{\hat{H}^{(0)}}{\hbar}t\right)\hat{V}(t)|\psi(t)\rangle \tag{1.3.22}$$

$$= \exp\left(i\frac{\hat{H}^{(0)}}{\hbar}t\right)\hat{V}(t)\exp\left(-i\frac{\hat{H}^{(0)}}{\hbar}t\right)\exp\left(i\frac{\hat{H}^{(0)}}{\hbar}t\right)|\psi(t)\rangle$$
(1.3.23)

$$= \exp\left(i\frac{\hat{H}^{(0)}}{\hbar}t\right)\hat{V}(t)\exp\left(-i\frac{\hat{H}^{(0)}}{\hbar}t\right)|\psi(t)\rangle_{I}$$
(1.3.24)

$$=\hat{V}_{\mathrm{I}}(t)\left|\psi(t)\right\rangle_{\mathrm{I}}\tag{1.3.25}$$

を得る. 式 (1.3.25) と式 (1.3.18) は Schödinger 表示の非定常摂動基本方程式と等価な方程式であるから,これを**朝永・Schwinger 方程式**と呼ぶ.  $^{910}$  <sup>11</sup> <sup>12</sup>.

- 朝永・Schwinger 方程式 —

$$\begin{cases} i\hbar \frac{\mathrm{d}}{\mathrm{d}t} |\psi(t)\rangle_{\mathrm{I}} = \hat{V}_{\mathrm{I}}(t) |\psi(t)\rangle_{\mathrm{I}} \\ \hat{V}_{\mathrm{I}}(t) = \exp\left(\mathrm{i}\frac{\hat{H}^{(0)}}{\hbar}t\right) \hat{V}(t) \exp\left(-\mathrm{i}\frac{\hat{H}^{(0)}}{\hbar}t\right) \end{cases}$$
(1.3.26)

さて、定常状態の Schrödinger 方程式が、

$$\forall m \ \hat{H}^{(0)} | m \rangle = E_m | m \rangle \tag{1.3.27}$$

を満たすとする. 式 (1.3.26) の第 1 式に左から  $\langle m|$  を演算する. 途中, 式 (1.3.17) を用いて  $|\psi(t)\rangle_{\rm I}$  を展開し, 式 (1.3.26) の第 2 式を用いて  $\hat{V}_{\rm I}(t)$  を  $\hat{V}(t)$  に戻す. また,  $\hat{V}_{\rm I}(t)$  は  $c_n(t)$  に作用しないものとすると,

$$\left\langle m \middle| i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \middle| \psi(t) \right\rangle_{\mathrm{I}} = \left\langle m \middle| \hat{V}_{\mathrm{I}}(t) \middle| \psi(t) \right\rangle_{\mathrm{I}} \tag{1.3.28}$$

$$\Leftrightarrow \langle m | i\hbar \sum_{n} c_n(t) | n \rangle = \sum_{n} c_n(t) \left\langle m \middle| \exp \left( i \frac{\hat{H}^{(0)}}{\hbar} t \right) \hat{V}(t) \exp \left( -i \frac{\hat{H}^{(0)}}{\hbar} t \right) \middle| n \right\rangle$$
(1.3.29)

$$\Leftrightarrow i\hbar \sum_{n} \frac{\mathrm{d}}{\mathrm{d}t} c_{n}(t) \langle m|n \rangle = \sum_{n} c_{n}(t) \exp\left(-i\frac{E_{n} - E_{m}}{\hbar}t\right) \langle m|\hat{V}(t)|n \rangle$$
(1.3.30)

$$\Leftrightarrow i\hbar \frac{\mathrm{d}}{\mathrm{d}t} c_m(t) = \sum_n c_n(t) \exp\left(i\frac{E_m - E_n}{\hbar}t\right) \left\langle m \middle| \hat{V}(t) \middle| n \right\rangle$$
(1.3.31)

となる.  $\omega_{mn}$  と  $V_{mn}$  を,

$$\omega_{mn} \coloneqq \frac{E_m - E_n}{\hbar} \tag{1.3.32}$$

$$V_{mn}(t) := \left\langle m \middle| \hat{V}(t) \middle| n \right\rangle \tag{1.3.33}$$

と定義する. 非定常摂動量子系の時間発展は以下の式を満たす.

非定常摂動量子系の時間発展 -

$$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} c_m(t) = \sum_n c_n(t) V_{mn}(t) e^{\mathrm{i}\omega_{mn}t}$$
(1.3.34)

これは  $c_n(t)$  の連立方程式になっていて,一般に解くことは困難である.例えば  $\hat{V}(t)$  が有限次元であり,行列表示ができたとすると式 (1.3.34) は,

$$i\hbar \frac{d}{dt} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} V_{11}(t) & V_{12}(t)e^{i\omega_{12}t} & \cdots & V_{1n(t)}e^{i\omega_{1n}t} \\ (V_{12}(t)e^{i\omega_{12}t})^* & V_{22}(t) & \cdots & V_{2n}(t)e^{i\omega_{2n}t} \\ \vdots & \vdots & \ddots & \vdots \\ (V_{1n}(t)e^{i\omega_{1n}t})^* & (V_{2n}(t)e^{i\omega_{2n}t})^* & \cdots & V_{nn}(t) \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{pmatrix}$$

$$(1.3.35)$$

となる. 途中で,

$$(V_{mn}(t)e^{i\omega_{mn}t})^* = V_{mn}(t)^* (e^{i\omega_{mn}t})^*$$
(1.3.36)

 $<sup>^9</sup>$ Schrödinger 描像は量子状態が時間発展するとみなす.Heisenberg 描像は物理量が時間発展するとみなす.相互作用表示はその中間であるといえる.

<sup>&</sup>lt;sup>10</sup>朝永振一郎 (1906-1979)

<sup>&</sup>lt;sup>11</sup> Julian Schwinger(1918-1994)

<sup>&</sup>lt;sup>12</sup>朝永と Schwinger は 1964 年に Richard Feynmann とともにノーベル賞を受賞.

$$= \left\langle m \middle| \hat{V}(t) \middle| n \right\rangle^* \exp\left(-i\frac{E_m - E_n}{\hbar}t\right) \tag{1.3.37}$$

$$= \left\langle n \middle| \hat{V}(t) \middle| m \right\rangle \exp\left(i\frac{E_n - E_m}{\hbar}t\right) \tag{1.3.38}$$

$$= (V_{nm}(t)e^{i\omega_{nm}t}) \tag{1.3.39}$$

を用いた.式(1.3.35)の行列の部分も時間に依存することを考えるとnが大きなときに厳密に解くことは困難である.

#### 1.3.2 (相互作用表示の例題)Rabi 振動

前節の最後に,一般に時間発展する量子系を正確に追跡すること,すなわち, $c_n(t)$  の厳密解を求めることが困難であると述べた.にもかかわらず,ある特殊な条件下では近似を行うことなく,厳密解を得ることができる.以下の**例題 1.9** では,そのような物理現象として **Rabi 振動** (Rabi cycle)  $^{13}$   $^{14}$  を議論する.

#### 例題 1.9: Rabi 振動

厳密に解くことのできる2準位系,

$$|1\rangle := \begin{pmatrix} 1\\0 \end{pmatrix} \tag{1.3.40}$$

$$|2\rangle \coloneqq \begin{pmatrix} 0\\1 \end{pmatrix} \tag{1.3.41}$$

$$\hat{H}^{(0)} := \begin{pmatrix} E_1 & 0\\ 0 & E_2 \end{pmatrix} \tag{1.3.42}$$

を考える.明らかに, $E_1$  と  $E_2$  は  $\hat{H}^{(0)}$  のエネルギー固有値で,それぞれに属する固有ベクトルは  $|1\rangle$  と  $|2\rangle$  である.この 2 準位系に,時刻 t=0 から  $\hat{V}(t)$  なる摂動を加える.ただし, $\hat{V}(t)$  は,

$$\hat{V}(t) = \begin{pmatrix} 0 & \gamma e^{i\omega t} \\ \gamma e^{-i\omega t} & 0 \end{pmatrix}$$
 (1.3.43)

によって与えられる  $^a$ . 系全体の Hamiltonian を  $\hat{H} \coloneqq \hat{H}^{(0)} + \hat{V}(t)$  とする. 系の状態ベクトルを相互作用表示を用いて、

$$|\psi(t)\rangle_{\mathsf{T}} \coloneqq c_1(t)\,|1\rangle + c_2(t)\,|2\rangle \tag{1.3.44}$$

と書いたとき,以下の問いに答えよ.

- 1.  $c_1(t)$  と  $c_2(t)$  の時間発展を調べよ. ただし、初期条件は  $c_1(0) = 1$ ,  $c_2(0) = 0$  とする.
- 2. 1. の条件のもとで、 $c_2(t)$  の確率振幅が最大となる  $\omega$  を求めよ.

 $^a\gamma$  は摂動の強さを表す.

1.  $c_1(t)$  と  $c_2(t)$  の時間発展

今回の設定での $\omega_{mn}$ や $V_{mn}$ を計算すると,

$$\omega_{11} = \omega_{22} = 0 \tag{1.3.45}$$

$$\omega_{21} = -\omega_{12} = \frac{E_2 - E_1}{\hbar} \tag{1.3.46}$$

$$V_{11} = V_{22} = 0 (1.3.47)$$

$$V_{21} = V_{12}^* = \gamma e^{-i\omega t} \tag{1.3.48}$$

<sup>&</sup>lt;sup>13</sup>I.I.Rabi(1898 - 1988)

<sup>14</sup>量子状態の振動を Rabi 振動という.

である. 非定常摂動の時間発展の式より,

$$\begin{cases}
i\hbar \frac{d}{dt}c_{1}(t) = c_{1}(t)V_{11}e^{i\omega_{11}t} + c_{2}(t)V_{12}e^{i\omega_{12}t} = c_{2}(t)\gamma e^{i(\omega+\omega_{12})t} \\
i\hbar \frac{d}{dt}c_{2}(t) = c_{1}(t)V_{21}e^{i\omega_{21}t} + c_{2}(t)V_{22}e^{i\omega_{22}t} = c_{1}(t)\gamma e^{-i(\omega-\omega_{21})t}
\end{cases} (1.3.49)$$

が成り立つ. 次に、 $\Delta\omega \coloneqq \omega - \omega_{21}$  として**式** (1.3.49) を解く. 2 式目を 1 式目に代入して  $c_1(t)$  を消去すると、

$$\frac{\mathrm{d}^2}{\mathrm{d}t^2}c_2(t) + \mathrm{i}\Delta\omega\frac{\mathrm{d}}{\mathrm{d}t}c_2(t) + \left(\frac{\gamma}{\hbar}\right)^2c_2 = 0 \tag{1.3.50}$$

2 階の斉次微分方程式の解は  $c_2(t)=\mathrm{e}^{\mathrm{i}\lambda t}$  と書けるので,これを式 (1.3.50) に代入すると,

$$\lambda^2 + \Delta\omega\lambda - \left(\frac{\gamma}{\hbar}\right) = 0\tag{1.3.51}$$

$$\Rightarrow \lambda = -\frac{\Delta\omega}{2} \pm \sqrt{\left(\frac{\Delta\omega}{2}\right)^2 + \left(\frac{\gamma}{\hbar}\right)^2} \tag{1.3.52}$$

を得る.  $\Omega$  を,

$$\Omega := \sqrt{\left(\frac{\Delta\omega}{2}\right)^2 + \left(\frac{\gamma}{\hbar}\right)^2} \tag{1.3.53}$$

と定義して、これを Rabi 周波数と呼ぶ.  $c_2$  の一般解は、

$$c_2(t) = \exp\left(-i\frac{\Delta\omega}{2}t\right)\left(Ae^{i\Omega t} + Be^{-i\Omega t}\right)$$
(1.3.54)

と書ける. 式 (1.3.54) を式 (1.3.49) の第2式に代入すると,

$$c_1(t) = \frac{\hbar}{\gamma} \exp\left(-i\frac{\Delta\omega}{2}t\right) \left[\frac{\Delta\omega}{2} \left(Ae^{i\Omega t} + Be^{-i\Omega t}\right) - \Omega\left(Ae^{i\Omega t} - Be^{-i\Omega t}\right)\right]$$
(1.3.55)

となる. 初期条件を考えると,

$$\begin{cases} A + B = 0 \\ A - B = -\frac{\gamma}{\hbar\Omega} \end{cases} \tag{1.3.56}$$

であるから,

$$B = -A = \frac{\gamma}{2\hbar\Omega} \tag{1.3.57}$$

となる. よって,

$$c_1(t) = \exp\left(-i\frac{\Delta\omega}{2}t\right)\left(\cos\Omega t - i\frac{\Delta\omega}{2\Omega}\sin\Omega t\right)$$
 (1.3.58)

$$c_2(t) = -i\frac{\gamma}{\hbar\Omega} \exp\left(-i\frac{\Delta\omega}{2}t\right) \sin\Omega t \tag{1.3.59}$$

である.時刻 t で  $|1\rangle$ , $|2\rangle$  に状態を見出す確率, $|c_1(t)|^2$ , $|c_2(t)|^2$  はそれぞれ,

$$|c_1(t)|^2 = \cos^2 \Omega t + \left(\frac{\Delta\omega}{2}\right)^2 \frac{1}{\Omega^2} \sin^2 \Omega t \tag{1.3.60}$$

$$|c_2(t)|^2 = \frac{\gamma^2}{\hbar^2 \Omega^2} \sin^2 \Omega t$$
 (1.3.61)

である. 簡単な計算により、 $|c_1(t)|^2 + |c_2(t)|^2 = 1$ となることが容易に確かめられる.

2.  $c_2(t)$  の振幅が最大となる  $\omega$  の値

振幅の大きさは $\Omega$ の定義式(1.3.53)より,

$$\frac{(\gamma/\hbar)^2}{(\gamma/\hbar)^2 + (\Delta\omega/2)^2} \tag{1.3.62}$$

と表されるので, $\Delta \omega = \omega - \omega_{21} = 0$  のときに最大となる.つまり,摂動の周波数  $\omega$  と 2 準位のエネルギー差に由来する  $\omega_{21}$  が一致したときに遷移が起こりやすい.

例題 1.9 では、Rabi 振動に関する 2 つの重要な物理量を得たので、下にまとめる.

Rabi 周波数

$$\Omega = \sqrt{\left(\Delta\omega/2\right)^2 + \left(\gamma/\hbar\right)^2} \tag{1.3.63}$$

共鳴条件

$$\omega = \omega_{21} = \frac{E_2 - E_1}{\hbar} \tag{1.3.64}$$

#### 1.3.3 非定常摂動の近似解

非定常摂動量子系の時間発展は,

$$\begin{cases} |\psi(t)\rangle_{\mathrm{I}} = \sum_{n} c_{n}(t) |n\rangle \\ \forall \mathrm{i} \ \hbar \frac{\mathrm{d}}{\mathrm{d}t} c_{m}(t) = \sum_{n} V_{mn}(t) \mathrm{e}^{i\omega_{mn}t} c_{n}(t) \end{cases}$$
(1.3.65)

で表されるのであった.一般に式 (1.3.65) を解くことはできないので,近似解を得ることを考える. $\hat{V}(t) \to \lambda \hat{V}(t)$  として  $c_m(t)$  をべき級数展開すると,

$$c_m(t) = c_m^{(0)}(t) + \lambda c_m^{(1)}(t) + \lambda^2 c_m^{(2)}(t) + \cdots$$
(1.3.66)

となる. 式 (1.3.66) を式 (1.3.65) の第2式に代入すると,

$$\forall m \text{ i}\hbar \frac{\mathrm{d}}{\mathrm{d}t} \Big( c_m^{(0)}(t) + \lambda c_m^{(1)}(t) + \lambda^2 c_m^{(2)}(t) + \cdots \Big) = \sum_n \lambda V_{mn}(t) \mathrm{e}^{i\omega_{mn}t} \Big( c_m^{(0)}(t) + \lambda c_m^{(1)}(t) + \lambda^2 c_m^{(2)}(t) + \cdots \Big)$$
(1.3.67)

となるから,

$$\begin{cases} \lambda^{0}: & \forall m \text{ i}\hbar \frac{\mathrm{d}}{\mathrm{d}t} c_{m}^{(0)}(t) = 0\\ \lambda^{1}: & \forall m \text{ i}\hbar \frac{\mathrm{d}}{\mathrm{d}t} c_{m}^{(1)}(t) = \sum_{n} V_{mn}(t) \mathrm{e}^{\mathrm{i}\omega_{mn}t} c_{n}^{(0)}(t) \end{cases}$$

$$(1.3.68)$$

式 (1.3.68) の  $\lambda^0$  の項の結果より、

$$\forall m \ c_m^{(0)}(t) = \text{const.}$$
 (1.3.69)

である.

 $t=t_0$  から摂動  $\hat{V}(t)$  を加え始めたときを考える.  $t=t_0$  で系の量子状態が  $|i\rangle$  であったとする. このとき,

$$c_m^{(0)}(t_0) = \delta_m^i \tag{1.3.70}$$

である. 式 (1.3.69) より、0 次の係数  $c_m(t)$  は時間変化しないので、

$$c_m^{(0)}(t) = \delta_m^i \tag{1.3.71}$$

となる.この系の状態は初期状態  $|i\rangle$  に依ることがわかったので,これからは  $c_m(t) \to c_{m,i}(t)$ , $c_m^{(0)}(t) \to c_{m,i}^{(0)}(t)$ , $c_m^{(1)}(t) \to c_{m,i}^{(1)}(t)$  のように書き替える.式 (1.3.68) の  $\lambda^1$  の係数より,

$$i\hbar \frac{d}{dt} c_{m,i}^{(1)}(t) = \sum_{n} V_{mn}(t) e^{i\omega_{mn}t} c_{n,i}^{(0)}(t)$$
(1.3.72)

$$=V_{m,i}(t)e^{i\omega_{mi}t} \tag{1.3.73}$$

$$\Rightarrow c_{m,i}^{(1)}(t) = -\frac{i}{\hbar} \int_{t_0}^t V_{m,i}(t) e^{i\omega_{mi}t} dt$$
 (1.3.74)

となり, $c_{m,i}^{(1)}(t)$  が求まった.また,系の量子状態を  $\lambda^1$  の項までで近似すると,

$$|\psi(t)\rangle_{\mathrm{I}} = \sum_{n} c_{n,i}(t) |n\rangle$$
 (1.3.75)

$$\simeq \sum_{n} \left( c_{n,i}^{(0)}(t) + c_{n,i}^{(1)}(t) \right) |n\rangle \tag{1.3.76}$$

$$= |i\rangle + \sum_{n} c_{n,i}^{(1)}(t) |n\rangle \tag{1.3.77}$$

$$= |i\rangle + c_{i,i}^{(1)}(t)|i\rangle + \sum_{n \neq i} c_{n,i}^{(1)}(t)|n\rangle$$
(1.3.78)

と表される。なお今後のために, $c_{n,i}^{(1)}$ で n=i と  $n\neq i$  に分けた.まとめると, $|\psi(t_0)\rangle_{\rm I}=|i\rangle$  の時間発展は以下のように書ける.

-  $|\psi(t_0)
angle_{\mathtt{I}}=|i
angle$  の時間発展 -

$$\begin{cases} |\psi(t)\rangle_{I} &= \left(1 + c_{i,i}^{(1)}(t)\right)|i\rangle + \sum_{n \neq i} c_{n,i}^{(1)}(t)|n\rangle \\ c_{n,i}^{(1)}(t) &= -\frac{\mathrm{i}}{\hbar} \int_{t_{0}}^{t} V_{n,i} \mathrm{e}^{i\omega_{n}it} \,\mathrm{d}t \end{cases}$$
(1.3.79)

また、始状態  $|i\rangle$  から終状態  $|f\rangle$   $(f \neq i)$  への遷移確率は、

$$|\langle f | \psi(t) \rangle_{\rm I}|^2 = \left| \left( 1 + c_{i,i}^{(1)}(t) \right) \langle f | i \rangle + \sum_{n \neq i} c_{n,i}^{(1)}(t) \langle f | n \rangle \right|^2$$
 (1.3.80)

$$= \left| c_{f,i}^{(1)}(t) \right|^2 \tag{1.3.81}$$

である.

さて,このようにして得られた  $|\psi\rangle_{\rm I}$  の時間発展について,次節では  $\hat{V}$  が一定のときを,次々節では  $\hat{V}$  が余弦関数で書けるときを議論する.

#### 1.3.4 (非定常摂動の近似解の例題) 一定の摂動

本節では、摂動の大きさが時間に依存しない場合を考える. 摂動の大きさが時間に依存しないことは、定常摂動とは 異なる. 定常摂動では、量子系に摂動をかけ始めてから十分長い時間が経った状況のみ扱えるが、非定常摂動を考え ると、量子系の時間変化を任意の時刻で追跡できる.

さて、時刻 t=0 から一定の摂動  $\hat{V}$  を加え始めたとき考える.  $\hat{V}(t)$  は、

$$\hat{V}(t) = \begin{cases} 0 & t \le 0\\ \hat{V} & t \ge 0 \end{cases} \tag{1.3.82}$$

と書ける.  $V_{fi}(t)$  は,

$$V_{fi}(t) = \left\langle f \middle| \hat{V}(t) \middle| i \right\rangle = \begin{cases} 0 & t \le 0 \\ \left\langle f \middle| \hat{V} \middle| i \right\rangle & t \ge 0 \end{cases}$$
 (1.3.83)

である.  $V_{fi}$  を

$$V_{fi} := \left\langle f \middle| \hat{V} \middle| i \right\rangle \tag{1.3.84}$$

定義する. また, t=0 で量子状態は  $|i\rangle$  であったとする. 時刻 t で状態  $|f\rangle$  である確率を考える. 式 (1.3.79) の第 2 式 より,

$$c_{f,i}^{(1)}(t) = -\frac{i}{\hbar} \int_0^t V_{fi} e^{i\omega_{fi}t'} dt'$$
(1.3.85)

$$= -\frac{V_{fi}}{\hbar \omega_{fi}} \left( e^{i\omega_{fi}t} - 1 \right) \tag{1.3.86}$$

$$= -\frac{V_{fi}}{\hbar\omega_{fi}} \exp\left(\frac{\mathrm{i}\omega_{fi}}{2}t\right) \left[\exp\left(\frac{\mathrm{i}\omega_{fi}}{2}t\right) - \exp\left(-\frac{\mathrm{i}\omega_{fi}}{2}t\right)\right]$$
(1.3.87)

$$=2i\frac{V_{fi}}{\hbar\omega_{fi}}\exp\left(\frac{i\omega_{fi}}{2}t\right)\cdot\sin\left(\frac{\omega_{fi}}{2}t\right)\tag{1.3.88}$$

と計算できるから,|i
angle から |f
angle への遷移確率  $\left|c_{f,i}^{(1)}(t)
ight|^2$  は,

$$\left|c_{f,i}^{(1)}(t)\right|^2 = \frac{|V_{fi}|^2}{\hbar^2} \left[\frac{\sin\left(\frac{\omega_{fi}}{2}t\right)}{\left(\frac{\omega_{fi}}{2}\right)}\right]^2$$
 (1.3.89)

$$=\frac{\left|V_{fi}\right|^{2}}{\hbar^{2}}t^{2}\left[\frac{\sin\left(\frac{\omega_{fi}}{2}t\right)}{\left(\frac{\omega_{fi}}{2}t\right)}\right]^{2} \tag{1.3.90}$$

である。式 (1.3.90) において,t を固定して  $\omega_{fi}$  が満たすべき物理条件を考える。まず, $\left|c_{f,i}^{(1)}(t)\right|^2$  が 0 でない,つまり, $|i\rangle$  から  $|f\rangle$  への遷移が起きるのは, $\sin\left(\frac{\omega_{fi}}{2}t\right)$  が 0 でないときである。また,  $\left[\frac{\sin\left(\frac{\omega_{fi}}{2}t\right)}{\left(\frac{\omega_{fi}}{2}\right)}\right]^2$  を  $\omega_{fi}$  の関数とみたとき, $\sin$  が 1 周期の間のみで有効な値を持つ。言い換えれば, $|\omega_{fi}|<\frac{2\pi}{t}$  で有効な値をもつ。これは, $\sin$  の 2 周期目の最大値が 1 周期目の最大値の  $\left(\frac{2}{3\pi}\right)^2\simeq 4.4$  % 程度であること依る。従って,t が小さいときはこの範囲が十分広く, $\omega_{fi}\neq 0$  の状態への遷移が起こるが,t が大きいときは  $\omega_{fi}\simeq 0$  の状態( $\sin$  の 1 周期目)への遷移しか起きない.摂動を与えた瞬間に測定を行うことは困難であるという実験上の理由から,通常は  $t\to\infty$  としておけば良い.また,規格化されたデルタ関数  $\delta$  を用いると, $\delta$  を可能な  $\delta$  を

$$\lim_{t \to \infty} \left( \frac{\sin\left(\frac{\omega_{fi}t}{2}\right)}{\frac{\omega_{fi}t}{2}} \right)^2 = \frac{2\pi}{t} \tilde{\delta}(\omega_{fi})$$
(1.3.91)

を使うと<sup>15</sup>,

$$\lim_{t \to \infty} \left| c_{f,i}^{(1)}(t) \right|^2 = \frac{|V_{fi}|^2}{\hbar^2} 2\pi t \delta(\omega_{fi})$$
(1.3.92)

$$= \frac{2\pi}{\hbar} |V_{fi}|^2 \delta(E_f - E_i)t$$
 (1.3.93)

 $<sup>^{15}\</sup>delta(ax) = \frac{1}{|a|}\delta(x)$ 

が得られる. t をあまりにも大きくすると, $\left|c_{f,i}^{(1)}(t)\right|^2>1$  となり, $\left|c_{f,i}^{(1)}(t)\right|^2$  の時刻 t での  $|i\rangle$  から  $|f\rangle$  への遷移確率 という物理的な意味が失われることに注意しながら, $t\to\infty$  の領域での単位時間当たりの  $|i\rangle$  から  $|f\rangle$  への遷移確率  $\omega_{i\to f}$  は,

$$\omega_{i \to f} = \frac{\left| c_{f,i}^{(1)}(t) \right|^2}{t} \tag{1.3.94}$$

$$= \frac{2\pi}{\hbar} \left| \left\langle f \middle| \hat{V} \middle| i \right\rangle \right|^2 \delta(E_f - E_i) \tag{1.3.95}$$

である. これを Fermi の黄金律という<sup>16</sup>.

Fermi の黄金律・

$$\omega_{i \to f} = \frac{2\pi}{\hbar} \left| \left\langle f \middle| \hat{V} \middle| i \right\rangle \right|^2 \delta(E_f - E_i) \tag{1.3.96}$$

#### 例題 1.10: 電子の弾性散乱

弾性散乱では散乱前後で粒子のエネルギーが保存される. 電子のエネルギーは

$$E_{\mathbf{k'}} = \frac{\hbar^2 |\mathbf{k'}|^2}{2m} \tag{1.3.97}$$

と表される. よって、終状態は多く存在する. 始状態iから終状態集合 $\{f\}$ への遷移確率を求める.

$$\omega_{i \to \{f\}} = \sum_{f} \omega_{i \to f} \tag{1.3.98}$$

$$= \sum_{f} \frac{2\pi}{\hbar} \left| \left\langle f \middle| \hat{V} \middle| i \right\rangle \right|^{2} \delta(E_{f} - E_{i}) \tag{1.3.99}$$

$$= \frac{2\pi}{\hbar} \overline{\left|\left\langle f \middle| \hat{V} \middle| i \right\rangle\right|^2} \sum_{f} \delta(E_f - E_i) \tag{1.3.100}$$

$$= \frac{2\pi}{\hbar} \overline{\left|\left\langle f \middle| \hat{V} \middle| i \right\rangle\right|^2} \rho(E_f) \tag{1.3.101}$$

 $\overline{\left|\left\langle f\middle|\hat{V}\middle|i\right\rangle\right|^2}$  は散乱体の性質を、状態密度  $ho(E_f)$  は物質の性質を反映している.この関係も Fermi の黄金律という.

## 1.3.5 (非定常摂動の近似解の例題)調和摂動

時間に依存する摂動を調和摂動という. 以下の摂動を考える<sup>17</sup>.

$$\hat{V}(t) = \begin{cases} 0 & t \le 0\\ 2V\cos\omega t & t > 0 \end{cases}$$
 (1.3.102)

 $2V\cos\omega t = V(e^{i\omega t} + e^{-i\omega t})$  であるので,

$$c_{f,i}^{(1)}(t) = \frac{i}{\hbar} \int_0^t \left\langle f \middle| \hat{V} \middle| i \right\rangle (e^{i\omega t} + e^{-i\omega t}) e^{i\omega_{fi}t} dt$$
(1.3.103)

$$= -\frac{V_{fi}}{\hbar} \left( \frac{e^{i(\omega_{fi} + \omega)t} - 1}{\omega_{fi} + \omega} + \frac{e^{i(\omega_{fi} - \omega)t} - 1}{\omega_{fi} - \omega} \right)$$
(1.3.104)

<sup>&</sup>lt;sup>16</sup>Enrico Fermi(1901-1954)

<sup>&</sup>lt;sup>17</sup>光のイメージ

を得る.ここで  $V_{fi} = \left\langle f \middle| \hat{V} \middle| i \right\rangle$  とした.

1.  $\omega_{fi} - \omega \approx 0$  のとき

式 (1.3.103) の第2項は第1項より十分大きい. よって,

$$c_{f,i}^{(1)}(t) \approx -\frac{V_{fi}}{\hbar} \frac{e^{i(\omega_{fi}-\omega)t} - 1}{\omega_{fi} - \omega} = -\frac{V_{fi}}{\hbar} e^{i\frac{\omega_{fi}-\omega}{2}t} \frac{\sin\frac{\omega_{fi}-\omega}{2}t}{\frac{\omega_{fi}-\omega}{2}}$$
(1.3.105)

と近似できる. このとき  $|i\rangle \rightarrow |f\rangle$  の遷移確率は

$$\left| c_{f,i}^{(1)}(t) \right|^2 = \frac{V_{fi}^2}{\hbar^2} \frac{\sin^2 \frac{\omega_{fi} - \omega}{2} t}{\left( \frac{\omega_{fi} - \omega}{2} \right)^2}$$
 (1.3.106)

 $\dfrac{\sin^2 \frac{\omega_{fi} - \omega}{2} t}{\left(\frac{\omega_{fi} - \omega}{2}\right)^2}$  は  $t \to \infty$  で  $2\pi t \delta(\omega_{fi} - \omega) = 2\pi t \hbar \delta(E_f - E_i - \hbar \omega)$  と近似できるので単位時間当たりの遷移確率は,

$$\omega_{f \to i} = \frac{\left| c_{f,i}^{(1)}(t) \right|^2}{t} = \frac{2\pi}{\hbar} |V_{fi}|^2 \delta(E_f - E_i - \hbar\omega)$$
 (1.3.107)

である. これも Fermi の黄金律という.  $E_f = E_i + \hbar \omega$  へと遷移することがわかる.

2.  $\omega_{fi} + \omega \approx 0$  のとき

式 (1.3.103) の第 1 項が支配的となる.上記の議論を  $\omega \to \omega$  と置き換えて繰り返すと単位時間当たりの遷移確率として

$$\omega_{i \to f} = \frac{\left| c_{f,i}^{(1)}(t) \right|^2}{t} = \frac{2\pi}{\hbar} |V_{fi}|^2 \delta(E_f - E_i + \hbar\omega)$$
 (1.3.108)

を得る.  $E_f = E_i - \hbar \omega$  へと遷移することがわかる.

# 1.4 電磁場中の電子

電磁場中の電子の運動方程式は

$$m\frac{d\mathbf{v}}{dt} = -e(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \tag{1.4.1}$$

である. 電磁場中の電子の Hamiltonian は

電磁場中の電子の Hamiltonian -

$$H = \frac{1}{2m}(\boldsymbol{p} + e\boldsymbol{A})^2 - e\phi \tag{1.4.2}$$

である.ここで A はベクトルポテンシャルで

$$\boldsymbol{E} = -\frac{\partial \boldsymbol{A}}{\partial t} - \nabla \phi, \ \boldsymbol{B} = \nabla \times \boldsymbol{A} \tag{1.4.3}$$

を満たす.

本節では $U(1)^{18}$ Gauge 対称性を扱い説明し電磁場の起源を探る.

<sup>18</sup> Unitary

#### 1.4.1 大域的 Gauge 変換

波動関数  $\psi(\mathbf{r})$  を次のように変換する.

$$\psi(\mathbf{r}) \to \psi'(\mathbf{r}) = e^{i\alpha}\psi(\mathbf{r}) \tag{1.4.4}$$

これを Schrödinger 方程式に代入する.

$$i\hbar \frac{\partial}{\partial t} \psi \to i\hbar \frac{\partial}{\partial t} \psi' = e^{i\alpha} i\hbar \frac{\partial}{\partial t} \psi$$
 (1.4.5)

$$-\frac{\hbar^2}{2m}\nabla^2\psi \to -\frac{\hbar^2}{2m}\nabla^2\psi' = -e^{i\alpha}\frac{\hbar^2}{2m}\nabla^2\psi \tag{1.4.6}$$

よって,

$$i\hbar \frac{\partial}{\partial t} \psi' = -\frac{\hbar^2}{2m} \nabla^2 \psi' \tag{1.4.7}$$

が成り立つことがわかる. また期待値も

$$\langle \psi | \hat{A} | \psi \rangle = \langle \psi' | \hat{A} | \psi' \rangle \tag{1.4.8}$$

である. つまり、物理は大域的 Gauge 変換に対して不変である.

#### 1.4.2 局所的 Gauge 変換

波動関数  $\psi(\mathbf{r})$  を次のように変換する.

$$\psi(\mathbf{r}) \to \psi'(\mathbf{r}) = e^{i\alpha(\mathbf{r})}\psi(\mathbf{r}) \tag{1.4.9}$$

この場合、運動量が Gauge 不変でなくなってしまう。 例えば波動関数の微分を計算すると

$$\nabla \psi'(\mathbf{r}) = i(\nabla \alpha(\mathbf{r})e^{i\alpha(\mathbf{r})})\psi(\mathbf{r}) + e^{i\alpha(\mathbf{r})}\nabla \psi(\mathbf{r}) = e^{i\alpha((\mathbf{r}))}(\nabla + i\nabla \alpha(\mathbf{r}))\psi(\mathbf{r})$$
(1.4.10)

余分な項が加わってしまう. よって,

$$\begin{cases} i\hbar \frac{\partial}{\partial t} \psi' \neq -\frac{\hbar^2}{2m} \nabla^2 \psi' \\ \langle \psi | \hat{A} | \psi \rangle \neq \langle \psi' | \hat{A} | \psi' \rangle \end{cases}$$
(1.4.11)

である. したがって、局所 Gauge 変換に対して物理は不変ではない.

#### 局所 Gauge 不変性を基本原理とする物理を再構築する.

まずは、微分を次の共変微分として再定義する.

$$\mathbf{D} = \nabla + \mathrm{i}\frac{e}{\hbar}\mathbf{A} \tag{1.4.12}$$

ただし、 $\psi$  と  $\boldsymbol{A}$  は Gauge 変換により

$$\psi \to \psi' = e^{i\alpha r} \psi \tag{1.4.13}$$

$$\mathbf{A} \to \mathbf{A}' = \mathbf{A} - \frac{\hbar}{e} \nabla \alpha(\mathbf{r})$$
 (1.4.14)

このように微分を定義すると,

$$\mathbf{D}'\psi'(\mathbf{r}) = e^{i\alpha(\mathbf{r})}\mathbf{D}\psi(\mathbf{r}) \tag{1.4.15}$$

つまり、局所 Gauge 変換は波動関数の微分を

$$D\psi(r) \to e^{i\alpha(r)}D\psi(r)$$
 (1.4.16)

と変換することがわかる. これは大域的 Gauge 変換による  $\nabla \psi(\mathbf{r}) \to \mathrm{e}^{\mathrm{i}\alpha} \nabla \psi(\mathbf{r})$  と同じ形をしている. 次に、 $\alpha(\mathbf{r})$  に時間依存性を持たせ、 $alpha(\mathbf{r},t)$  とする. つまり波動関数を

$$\psi \to \psi' = e^{i\alpha(\mathbf{r},t)}\psi \tag{1.4.17}$$

と変換する. このとき, 時間についての偏微分を

$$D_t = \frac{\partial}{\partial t} - i \frac{e}{\hbar} \phi \tag{1.4.18}$$

と定義する. ただし,

$$\phi \to \phi' + \frac{\hbar}{e} \frac{\partial}{\partial t} \alpha(\mathbf{r}, t)$$
 (1.4.19)

である. 以上で定義した共変微分と時間微分を用いると Schrödinger 方程式は

$$i\hbar D_t'\psi' = -\frac{\hbar^2}{2m} \mathbf{D}'^2\psi' \tag{1.4.20}$$

$$i\hbar \frac{\partial}{\partial t}\psi = -\frac{\hbar^2}{2m} \left(\nabla + i\frac{e}{\hbar}\mathbf{A}\right)^2 \psi - e\phi\psi$$
 (1.4.21)

$$= \left[ -\frac{\hbar^2}{2m} \left( \frac{\mathrm{i}}{\hbar} \boldsymbol{p} + \mathrm{i} \frac{e}{\hbar} \boldsymbol{A} \right)^2 - e\phi \right] \psi \tag{1.4.22}$$

と変換される. よって,

- 局所 Gauge 変換に対して不変な Schrödinger 方程式 -

$$i\hbar \frac{\partial}{\partial t}\psi = \left[\frac{1}{2m}(\mathbf{p} + e\mathbf{A})^2 - e\phi\right]\psi$$
 (1.4.23)

を得る.

以上の流れをまとめると,局所 Gauge 不変性を要請した.それにより Gauge 場  ${\pmb A}$  が導入された.よって,電磁場の起源は局所 Gauge 不変性であるといえる.

#### 1.4.3 電磁場中の電子の摂動論

電磁場中の Hamiltonian は

$$H = \frac{1}{2m}(\boldsymbol{p} + e\boldsymbol{A})^2 - e\phi \tag{1.4.24}$$

である. 今回は $\phi = 0$ とする. 電磁場が十分弱いとし,

$$\hat{H} = \frac{1}{2m}(\boldsymbol{p} + e\boldsymbol{A})^2 \tag{1.4.25}$$

$$\simeq \frac{1}{2m} (\mathbf{p}^2 + e\mathbf{p} \cdot \mathbf{A} + e\mathbf{A} \cdot \mathbf{p})$$
 (1.4.26)

(1.4.27)

と近似する. ここで, $\hat{H}^0\equiv \frac{{m p}^2}{2m}$ ,摂動項 $\hat{V}(t)\equiv \frac{e}{2m}({m p}\cdot{m A}+{m A}\cdot{m p})$  とする. さらに, $\nabla\cdot{m A}=0$  となるように  ${m A}$  を決める $^{19}$ . すると,

$$(\mathbf{p} \cdot \mathbf{A})\psi = -\mathrm{i}\hbar\nabla \cdot (\mathbf{A}\psi) \tag{1.4.28}$$

$$= i\hbar[(\nabla \cdot \mathbf{A})\psi + \mathbf{A} \cdot (\nabla \psi)] \tag{1.4.29}$$

$$= (\mathbf{A} \cdot \mathbf{p})\psi \tag{1.4.30}$$

となる.よって、電子と電磁場の相互作用を摂動として加えた Hamiltonian,

$$\hat{H} = \hat{H}^0 + \frac{e}{m}(\mathbf{A} \cdot \mathbf{p}) \tag{1.4.31}$$

を得る.

#### 例題 1.11: 直線偏光

$$\mathbf{A}(\mathbf{r},t) = 2A_0 \mathbf{e}_x \cos(\mathbf{k} \cdot \mathbf{r} - \omega t) \tag{1.4.32}$$

 $<sup>^{19}</sup>$ Coulomb Gauge

を加える. ただし,  $\mathbf{k} = \frac{\omega}{c} \mathbf{e}_z$  とする. ベクトルポテンシャルと電磁場の関係より,

$$\begin{cases} \boldsymbol{E}(\boldsymbol{r},t) = \frac{\partial \boldsymbol{A}}{\partial t} = E_0 \boldsymbol{e}_x \sin(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t) \\ \boldsymbol{B}(\boldsymbol{r},t) = \nabla \times \boldsymbol{A} = \frac{E_0}{c} \boldsymbol{e}_y \sin(\boldsymbol{k} \cdot \boldsymbol{r} - \omega t) \\ E_0 = -2\omega A_0 \end{cases}$$
(1.4.33)

が成り立っている. 摂動項は,

$$\hat{V}(t) = \frac{e}{m}(\mathbf{A} \cdot \mathbf{p}) \tag{1.4.34}$$

$$= \frac{2eA_0}{m}\cos(\mathbf{k}\cdot\mathbf{r} - \omega t)\mathbf{e}_x\cdot\mathbf{p}$$
 (1.4.35)

$$= \frac{eA_0}{m} \left[ e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} + e^{-i(\mathbf{k} \cdot \mathbf{r} - \omega t)} \right] p_x$$
 (1.4.36)

$$= \frac{eA_0}{m} \left( e^{i\mathbf{k}\cdot\mathbf{r}} p_x e^{-i\omega t} + e^{-i\mathbf{k}\cdot\mathbf{r}} p_x e^{i\omega t} \right)$$
 (1.4.37)

と表せる.光の吸収を考えるときは、,第1項  $\frac{eA_0}{m}$   $\mathrm{e}^{\mathrm{i} \pmb{k} \cdot \pmb{r}} p_x$  が支配的なのでこの項を  $\hat{V}$  とする.単位時間当たりの遷移確率を計算する.

$$\omega_{i \to f} = \frac{2\pi}{\hbar} \left| \langle f | \hat{V} | i \rangle \right|^2 \delta(E_f - E_i - \hbar \omega) \tag{1.4.38}$$

$$= \frac{2\pi}{\hbar} \left( \frac{eA_0}{m} \right)^2 \left| \langle f | e^{i\mathbf{k} \cdot p_x | i \rangle} \right|^2 \delta(E_f - E_i - \hbar\omega)$$
 (1.4.39)

と表せるので  $\left|\langle f|\,\mathrm{e}^{\mathrm{i}{m k}\cdot p_x|i\rangle}\right|^2$  を**電気双極子近似**を用いて計算する。原子の準位間隔は  $E_f-E_i1\,\mathrm{eV}$  である。これと相互作用する電磁場のエネルギーは  $\hbar\omega 1\,\mathrm{eV}$  である。これを波長に換算すると,

$$\lambda = \frac{2\pi}{\hbar} = \frac{2\pi c}{\omega} 1000 \text{ nm}$$
 (1.4.40)

である.これは原子のスケール 1 Åよりもはるかに大きいため,電子・原子を扱う上では電磁場は空間的に一様だとみなせる.よって,

$$e^{i\mathbf{k}\cdot\mathbf{r}} \simeq 1 + i\mathbf{k}\cdot\mathbf{r} + \dots \simeq 1$$
 (1.4.41)

と近似できる. これを電気双極子近似という. この近似を用いると

$$\langle f | e^{i\mathbf{k}\cdot\mathbf{r}} | i \rangle \simeq \langle f | p_x | i \rangle$$
 (1.4.42)

を得る. さらに

$$[x, \hat{H}^0] = \frac{\mathrm{i}\hbar}{m} p_x \tag{1.4.43}$$

であるため

$$\langle f | p_x | i \rangle = \frac{m}{i\hbar} \langle f | [x, \hat{H}^0] | i \rangle \tag{1.4.44}$$

$$= \frac{m}{i\hbar} (\langle f | xE_i | i \rangle - \langle f | E_f x | i \rangle)$$
(1.4.45)

$$= \frac{m}{i\hbar} (E_i - E_f) \langle f | x | i \rangle \tag{1.4.46}$$

を得る. よって、電磁場による単位時間当たりの遷移確率

$$\omega_{i \to f} = \frac{2\pi}{\hbar^3} (eA_0)^2 (E_i - E_f)^2 |\langle f | x | i \rangle|^2 \delta(E_f - E_i - \hbar \omega)$$
 (1.4.47)

を得る.これは  $\langle f|x|i \rangle \neq 0$  のときのみ  $\omega_{i \to f} \neq 0$  という選択則を表している.

# Chapter 2

# 散乱理論

## 2.1 立体角

今後の議論のために**立体角**を導入する.立体角とは 1 点を中心としたときの広がり具合を表す指標である. 2 次元の場合,微小円弧と半径の比は角度にのみ依り,r に依らない. つまり,

$$\frac{dl_1}{r_1} = \frac{dl_2}{r_2} = \frac{d\theta}{1} \tag{2.1.1}$$

が成り立つ.この関係から平面角  $d\theta=\frac{dl}{r}$  を定義する.これを 3 次元に拡張する.単位球上の面積を考えると,

$$\frac{dS_1}{r_1^2} = \frac{dS_2}{r_2^2} = \frac{dS}{1} \tag{2.1.2}$$

である.ここから立体角を  $d\Omega = \frac{dS^2}{r}$  と定義する.また,これを球座標表示に変換すると,

$$d\Omega = \frac{dS}{r^2} = \frac{r^2 \sin \theta d\theta d\phi}{r^2} = \sin \theta d\theta d\phi \tag{2.1.3}$$

である.

# 2.2 散乱断面積

単位時間単位面積当たり N 個の粒子を z 軸方向に入射する.単位時間内に散乱体からの位置  $(r,\theta,\phi)$  にある面積  $\mathrm{d}S$  の検出器に到達する粒子数は

$$dN \propto N \frac{dS}{r^2} = N \, d\Omega \tag{2.2.1}$$

を満たす. 比例係数を  $\sigma(\theta, \phi)$  とする.

$$dN = \sigma(\theta, \phi) N d\Omega \tag{2.2.2}$$

この  $\sigma(\theta,\phi)$  を微分断面積という. 散乱が z 軸まわりに軸対称なとき, $\phi$  依存性を取り除き  $\sigma(\theta,\phi)=\sigma(\theta)$  とできる.このとき,全断面積を式  $(\ref{eq:condition})$  のように定義する.

$$\sigma^{\text{tot}} = \int \sigma(\theta) \, d\Omega = 2\pi \int_0^{\pi} \sigma(\theta) \sin \theta \, d\theta$$
 (2.2.3)

# 2.3 古典力学における散乱

z に沿って粒子を単位時間単位面積当たり N 個入射する. z 軸から距離 b (衝突パラメータ),角度  $\mathrm{d}\phi$ ,面積  $\mathrm{d}S'$  のスリットを単位時間当たりに通過する粒子数は

$$N \, \mathrm{d}S' = N \, \mathrm{d}\phi \, (b \, \mathrm{d}\phi) \tag{2.3.1}$$

を満たす.また、単位時間に検出器に到達する粒子数は微分断面積の定義から、

$$dN = \sigma(\theta) N d\Omega \tag{2.3.2}$$

である. 古典力学ではこれらは必ず一致するため,

$$\sigma(\theta)N\,\mathrm{d}\Omega = N\,\mathrm{d}\phi\,(b\,\mathrm{d}\phi)\tag{2.3.3}$$

を得る. よって、微分断面積は

$$\sigma(\theta) = \frac{1}{\sin \theta} b \left| \frac{\mathrm{d}b}{\mathrm{d}\theta} \right| \tag{2.3.4}$$

と表される.

#### 例題 2.1: 剛体球

散乱体を半径 a の剛体球

$$V(r) = \begin{cases} \infty & (r < a) \\ 0 & (r > a) \end{cases}$$
 (2.3.5)

とする. 衝突パラメータをb, 粒子が散乱体の角度 $\phi$ の位置で散乱し、その散乱角を $\theta$ とする. これらは

$$\begin{cases} 2\phi + \theta = \pi \\ b = a\sin\phi \end{cases} \tag{2.3.6}$$

を満たすため,

$$b = a\cos\frac{\theta}{2} \tag{2.3.7}$$

を得る. よって、微分断面積は

$$\sigma(\theta) = \frac{1}{\sin \theta} b \left| \frac{\mathrm{d}b}{\mathrm{d}\theta} \right| \tag{2.3.8}$$

$$=\frac{a^2}{4}\tag{2.3.9}$$

となる.  $\theta$  に依存しない等方散乱であることがわかる. また、全断面積は

$$\sigma^{\text{tot}} = \int \sigma(\theta) \, d\Omega = \pi a^2$$
 (2.3.10)

である. 剛体球の断面積と一致する.

## 2.4 量子力学における散乱

散乱体が球対称ポテンシャルV(r)を持つとする. Schrödinger 方程式は以下のようになる.

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(r)\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
(2.4.1)

ここで、V(r) は  $r \to \infty$  で十分早く  $V \to 0$  となるとする. z 軸に沿う入射波は平面波なので

$$\psi_{\rm in} = e^{ikz} \ (z \to \infty) \tag{2.4.2}$$

と表せる. また、散乱波は外向きの球面波となるので

$$\psi_{\rm sc} \simeq \frac{\mathrm{e}^{\mathrm{i}kr}}{r} \ (r \to \infty)$$
(2.4.3)

である. 散乱問題とは $\to \infty$  で

$$\psi(\mathbf{r}) = e^{ikz} + f(\theta) \frac{e^{ikr}}{r}$$
(2.4.4)

を満たす式 (2.4.1) の定常解を求めることである.  $f(\theta)$  を散乱振幅という.

この問題を解くための準備として確率密度  $(\rho = \psi^* \psi)$  の時間変化を考える.

$$\frac{\partial}{\partial t}\rho = \frac{\partial}{\partial t}(\psi^*\psi) \tag{2.4.5}$$

$$= \frac{\partial \psi^*}{\partial t} \psi + \psi^* \frac{\partial \psi}{\partial t} \tag{2.4.6}$$

$$= -\frac{1}{\mathrm{i}\hbar} \left( -\frac{\hbar^2}{2m} \nabla^2 + V \right) \psi^* \psi + \psi^* \frac{1}{\mathrm{i}\hbar} \left( -\frac{\hbar^2}{2m} \nabla^2 + V \right) \psi \tag{2.4.7}$$

$$= \frac{\hbar}{2mi} \left[ (\nabla^2 \psi^*) \psi - \psi^* (\nabla^2 \psi) \right]$$
 (2.4.8)

$$= -\frac{\hbar}{2mi} \nabla \cdot (\psi^* \nabla \psi - \psi \nabla \psi^*) \tag{2.4.9}$$

ここで, 確率流密度を

$$\mathbf{j} = \frac{\hbar}{2m\mathbf{i}} (\psi^* \nabla \psi - \psi \nabla \psi^*) \tag{2.4.10}$$

$$= \frac{\hbar}{m} \operatorname{Im}(\psi^* \nabla \psi) \tag{2.4.11}$$

と定義すれば、確率密度に対する連続の式

$$\frac{\partial}{\partial t}\rho = -\nabla \cdot \boldsymbol{j} \tag{2.4.12}$$

を得る.

次に微分断面積と散乱振幅の関係を考える.入射波は  $\psi_{
m in}={
m e}^{{
m i}kz}$  である.入射波の確率流密度は

$$j_z = \frac{\hbar}{m} \operatorname{Im}(e^{-ikz}ike^{ikz})$$
 (2.4.13)

$$=\frac{\hbar k}{m} \tag{2.4.14}$$

である.散乱波は  $\psi_{\mathrm{sc}}=rac{f( heta)}{r}\mathrm{e}^{\mathrm{i}kr}$  である.散乱波の確率流密度は

$$j_r(\theta) = \frac{\hbar}{m} \operatorname{Im}(\psi_{\rm sc}^* \nabla \psi_{\rm sc})$$
 (2.4.15)

$$\simeq \frac{\hbar}{m} \operatorname{Im}(\psi_{\rm sc}^* \frac{\partial}{\partial r} \psi_{\rm sc}) \tag{2.4.16}$$

$$= \frac{\hbar}{m} \operatorname{Im} \left[ \frac{f(\theta)}{r} e^{-ikr} \left( \frac{ik}{r} - \frac{1}{r^2} \right) f(\theta) e^{ikr} \right]$$
 (2.4.17)

$$\simeq \frac{\hbar}{m} \operatorname{Im} \left[ \frac{f(\theta)}{r} e^{-ikr} \frac{ik}{r} f(\theta) e^{ikr} \right]$$
 (2.4.18)

$$=\frac{\hbar}{m}\frac{k}{r^2}|f(\theta)|^2\tag{2.4.19}$$

$$=\frac{\left|f(\theta)\right|^2}{r^2}j_z\tag{2.4.20}$$

である. ここで, 1行目から2行目では

$$\nabla \psi_{\rm sc} = \left(\frac{\partial}{\partial r} \mathbf{e}_r + \frac{1}{r} \frac{\partial}{\partial \theta} \mathbf{e}_\theta + \frac{1}{r \sin \theta} \frac{\partial}{\partial \phi} \mathbf{e}_\phi\right) \psi_{\rm sc}$$
 (2.4.21)

$$\simeq \frac{\partial}{\partial r} \psi_{\rm sc} e_r \ (r \to \infty) \tag{2.4.22}$$

という近似を用いた.

微分断面積と粒子数の関係

$$dN = \sigma(\theta) N d\Omega \tag{2.4.23}$$

の両辺をNで割る.

$$\frac{\mathrm{d}N}{N} = \sigma(\theta) \,\mathrm{d}\Omega \tag{2.4.24}$$

上式の左辺を言葉に直すと,

単位時間に位置 
$$(r,\theta)$$
 にある  $\mathrm{d}S$  に入射する粒子数  
単位時間単位面積当たりの入射粒子数  $(2.4.25)$ 

である. これは

単位時間に位置 
$$(r,\theta)$$
 にある dS に粒子が入射する確率 
$$= \frac{j_z\,\mathrm{d}S}{j_z} \end{(2.4.26)}$$

と等しいので

$$\sigma(\theta) d\Omega = \frac{|f(\theta)|^2 dS}{r^2}$$
(2.4.27)

が得られる. よって,  $d\Omega = \frac{dS}{r^2}$  だから,

$$\sigma(\theta) = |f(\theta)|^2 \tag{2.4.28}$$

という関係が成り立つ.これは、散乱振幅から微分断面積が求められることを意味する.

- 散乱振幅と微分断面積の関係 ----

$$\sigma(\theta) = |f(\theta)|^2 \tag{2.4.29}$$

次に  $f(\theta)$  を求めるための式を作る. 散乱の Schrödinger 方程式は

$$\left(-\frac{\hbar^2}{2m}\nabla^2 + V(r)\right)\psi(\mathbf{r}) = E\psi(\mathbf{r})$$
(2.4.30)

である. ここで,

$$\begin{cases} \kappa = \frac{\sqrt{2mE}}{\hbar} \\ U(\mathbf{r}) = \frac{2m}{\hbar^2} V(\mathbf{r}) \end{cases}$$
 (2.4.31)

とおくと,

$$(\nabla^2 + \kappa^2)\psi(\mathbf{r}) = U(\mathbf{r})\psi(\mathbf{r})$$
(2.4.32)

と表せる. 式 (??) の解は,

$$(\nabla^2 + \kappa^2)\phi(\mathbf{r}) = 0 \tag{2.4.33}$$

の一般解  $\phi(\mathbf{r}) = e^{ikz}$  と

$$(\nabla^2 + \kappa^2)\chi(\mathbf{r}) = U(\mathbf{r})\chi(\mathbf{r}) \tag{2.4.34}$$

と特解  $\chi(\mathbf{r})$  の和である.

では、式 (2.4.34) の特解を求めよう. レシピはこうである.

1.  $(\nabla^2 + \kappa^2)G_0(\mathbf{r}) = \delta(\mathbf{r})$  を満たす Green 関数  $G_0$  を求める.

2. 
$$\chi(\mathbf{r}) = \int d\mathbf{r'} G_0(\mathbf{r} - \mathbf{r'}) U(\mathbf{r'}) \phi(\mathbf{r'})$$
 から特解を求める.

2から特解が求められるのは,

$$(\nabla^2 + \kappa^2)\chi(\mathbf{r}) = (\nabla^2 + \kappa^2) \int d\mathbf{r'} G_0(\mathbf{r} - \mathbf{r'}) U(\mathbf{r'}) \phi(\mathbf{r'})$$
(2.4.35)

$$= \int d\mathbf{r'} \, \delta(\mathbf{r} - \mathbf{r'}) U(\mathbf{r'}) \phi(\mathbf{r'})$$
 (2.4.36)

$$=U(\mathbf{r})\phi(\mathbf{r})\tag{2.4.37}$$

が成り立つためである.

Green 関数を求めよう.

$$(\nabla^2 + \kappa^2)G_0(\mathbf{r}) = \delta(\mathbf{r}) \tag{2.4.38}$$

の両辺を Fourier 変換する.

$$(\nabla^2 + \kappa^2) \int d\mathbf{k'} G_0(\mathbf{k'}) e^{i\mathbf{k'}\cdot\mathbf{r}} = \frac{1}{(2\pi)^3} \int d\mathbf{k'} e^{i\mathbf{k'}\cdot\mathbf{r}}$$
(2.4.39)

$$\int d\mathbf{k} \left( -\mathbf{k'}^2 + \kappa^2 \right) G_0(\mathbf{k'}) e^{i\mathbf{k'} \cdot \mathbf{r}} = \frac{1}{(2\pi)^3} \int d\mathbf{k'} e^{i\mathbf{k'} \cdot \mathbf{r}}$$
(2.4.40)

両辺を比較すると

$$(\kappa^2 - k'^2)G_0(\mathbf{k'}) = \frac{1}{(2\pi)^2}$$
 (2.4.41)

$$G_0(\mathbf{k'}) = \frac{1}{(2\pi)^2(\kappa^2 - k'^2)}$$
 (2.4.42)

を得る. よって Green 関数は

$$G_0(\mathbf{r}) = \frac{1}{(2\pi)^2} \int d\mathbf{k'} \frac{e^{i\mathbf{k'}\cdot\mathbf{r}}}{\kappa^2 - k'^2}$$
(2.4.43)

と表される.極座標に変換しこの積分を実行する.

$$G_0(\mathbf{r}) = \frac{1}{(2\pi)^2} \int \frac{\exp(ik'r\cos\theta)}{\kappa^2 - k'^2} k'^2 \sin\theta \,d\theta \,d\phi \,dk'$$
(2.4.44)

$$= \int \frac{1}{(2\pi)^3} 2\pi \int_0^\infty k'^2 \, dk' \int_0^\pi \sin\theta \, d\theta \, \frac{\exp(ik'r\cos\theta)}{\kappa^2 - k'^2}$$
 (2.4.45)

$$= \frac{1}{(2\pi)^2} \int_0^\infty \frac{k'^2 dk'}{\kappa^2 - k'^2} \frac{e^{ik'r} - e^{-ik'r}}{ik'r}$$
(2.4.46)

$$= \frac{1}{4\pi^2 i r} \int_0^\infty k' \, dk' \, \frac{e^{ik'r} - e^{-ik'r}}{(\kappa - k')(\kappa + k')}$$
 (2.4.47)

$$= \frac{1}{8\pi^2 i r} \int_0^\infty k' \, dk' \, \frac{e^{ik'r} - e^{-ik'r}}{(\kappa - k')(\kappa + k')}$$
 (2.4.48)

$$= \frac{1}{8\pi^2 i r} \int_0^\infty k' \, dk' \left( \frac{e^{ik'r}}{(\kappa - k')(\kappa + k')} - \frac{e^{-ik'r}}{(\kappa - k')(\kappa + k')} \right)$$
(2.4.49)

$$=\frac{1}{8\pi^2 \mathrm{i}r}(I_1 - I_2) \tag{2.4.50}$$

$$I_1 \equiv \int_0^\infty dk' \frac{k' e^{ik'r}}{(\kappa - k')(\kappa + k')}, \quad I_2 \equiv \int_0^\infty dk' \frac{k' e^{-ik'r}}{(\kappa - k')(\kappa + k')}$$
(2.4.51)

最後の積分を実行するには Cauchy の積分公式を用いる.

Cauchy の積分公式 -

$$\oint \frac{f(z)}{(z-z_0)} dz = 2\pi i f(z_0)$$
(2.4.52)

今回の場合は極は  $\kappa$  と  $-\kappa$  である。しかし,極の避け方にはいくつかのパターンがあり,それに応じて Green 関数の計算結果は変化する。今回は図 2.1 のように  $-\kappa$  を上に避け, $\kappa$  を下に避ける。まず  $I_1$  を計算する。 $I_1$  は k' が虚部が正の値を取るときに小さな値をとる。よって,積分路は上方に閉じる形とする。この時,積分範囲内に極は  $\kappa$  のみになるため,

$$I_1 = -i\pi e^{ikr} \tag{2.4.53}$$

となる.  $I_2$  の積分路は下方に閉じる形とする. この時積分範囲内に含まれる極は $-\kappa$  のみである. よって,

$$I_2 = i\pi e^{ikr} \tag{2.4.54}$$

したがって、Green 関数は

$$G_0(r) = -\frac{e^{ikr}}{4\pi r}$$
 (2.4.55)

となる. これは外に広がる球面波を表す.



Figure 2.1: 積分経路

以上の計算から Schrödinger 方程式 (2.4.1) の形式解は

$$\psi(\mathbf{r}) = e^{ikz} - \frac{1}{4\pi} \int \frac{e^{ik|\mathbf{r} - \mathbf{r'}|}}{|\mathbf{r} - \mathbf{r'}|} \frac{2m}{\hbar^2} V(r') \psi(\mathbf{r'}) dr'$$
(2.4.56)

である. これは平面波と球面波の和となっている.

次に式 (2.4.56) から散乱振幅  $f(\theta)$  を求める.仮定として,V(r') は r' < a でのみ  $V \neq 0$  とする.式 (2.4.56) において  $r \gg r'$  では

$$|\boldsymbol{r} - \boldsymbol{r'}| = \sqrt{r^2 - 2\boldsymbol{r} \cdot \boldsymbol{r'} + r'^2}$$
(2.4.57)

$$=r\sqrt{1-\frac{2\mathbf{r'}\cdot\mathbf{n}}{r+\left(\frac{r'}{-}\right)^2}}\tag{2.4.58}$$

$$\simeq r - \boldsymbol{n} \cdot \boldsymbol{r'} \tag{2.4.59}$$

が成り立つ. よって,

$$e^{ik|\boldsymbol{r}-\boldsymbol{r'}|} \simeq e^{ik(r-\boldsymbol{n}\cdot\boldsymbol{r'})}$$
 (2.4.60)

$$= e^{ikr} - e^{-i\mathbf{k'}\cdot\mathbf{r'}} \tag{2.4.61}$$

を得る. ここで、 $\mathbf{k'} = k\mathbf{n}$  を z 軸と角度  $\theta$  をなす散乱方向の波数ベクトルとする. また、

$$\frac{1}{|\boldsymbol{r} - \boldsymbol{r'}|} \simeq \frac{1}{r\left(1 - \frac{\boldsymbol{n} \cdot \boldsymbol{r'}}{r}\right)} \tag{2.4.62}$$

$$= \simeq \frac{1}{r} \tag{2.4.63}$$

である. 以上より,

$$\psi(\mathbf{r}) = e^{ikz} - \left(\frac{1}{4\pi} \int d\mathbf{r'} e^{-i\mathbf{k'} \cdot \mathbf{r'}} \frac{2m}{\hbar^2} V(r') \psi(r')\right) \frac{e^{ikr}}{r}$$
(2.4.64)

である. したがって、散乱振幅は

$$f(\theta) = -\frac{1}{4\pi} \int d\mathbf{r'} e^{-i\mathbf{k'}\cdot\mathbf{r'}} \frac{2m}{\hbar^2} V(r') \psi(r')$$
(2.4.65)

となる.

## 2.5 Born 近似

散乱の波動関数は

$$\psi(\mathbf{r}) = e^{ikz} + \int G_0(\mathbf{r} - \mathbf{r}') \frac{2m}{\hbar^2} V(r') \psi(\mathbf{r}') d\mathbf{r}'$$
(2.5.1)

と表されるのであった. この波動関数を厳密に求めることは困難であるため近似をする. まず, 式 (2.5.1) を簡略化して

$$\psi(\mathbf{r}) = \psi_0 + \int gV\psi(\mathbf{r}')\,\mathrm{d}\mathbf{r}' \tag{2.5.2}$$

と表現する. 式 (2.5.2) を繰り返し代入していくと

$$\psi(\mathbf{r}) = \psi_0 + \int gV\psi(\mathbf{r}')\,\mathrm{d}\mathbf{r}' \tag{2.5.3}$$

$$= \psi_0 + \int gV \left(\psi_0 + \int gV \psi(\mathbf{r''}) \, d\mathbf{r''}\right) d\mathbf{r'}$$
(2.5.4)

$$= \psi_0 + \int gV \psi_0(\mathbf{r}') \, d\mathbf{r}' + \iint gV gV \psi(\mathbf{r}'') \, d\mathbf{r}' \, d\mathbf{r}''$$
(2.5.5)

$$= \psi_0 + \int gV \psi_0(\mathbf{r}') d\mathbf{r}' + \iint gV gV \psi_0(\mathbf{r}'') d\mathbf{r}' d\mathbf{r}'' + \iiint gV gV gV \psi_0(\mathbf{r}''') d\mathbf{r}' d\mathbf{r}''' + \cdots \qquad (2.5.6)$$

を得る.これを第1項までで近似する.これは散乱の波動関数を平面波で近似することに相当する.つまり,

$$\psi \simeq \psi_0 \tag{2.5.7}$$

とする. これを $\mathbf{\hat{n}}$  1 $\mathbf{Born}$  近似という $^{12}$ .

Born 近似を用いて散乱振幅を求める.  $\psi(\mathbf{r}') = e^{\mathrm{i}kz} = e^{\mathrm{i}\mathbf{k}\cdot\mathbf{r}'}$  だから,

$$f^{(1)}(\theta) = -\frac{1}{4\pi} \int e^{i\mathbf{k'}\cdot\mathbf{r'}} \frac{2m}{\hbar} V(r')\psi(\mathbf{r'}) d\mathbf{r'}$$
(2.5.8)

<sup>&</sup>lt;sup>1</sup>Max Born(1882-1970)

 $<sup>^2</sup>$ 砂川, 散乱の量子論,「第  $^1$ Born 近似がとくによく利用される理由は,何といってもその簡単さにある。したがって,ある散乱問題を手がけたとき,だれもが最初に試してみるのが、この近似である。そして思わしい結果がえられないとき,他の近似法を考えるのである。」

$$\simeq -\frac{1}{4\pi} \frac{2m}{\hbar^2} \int e^{-i(\mathbf{k}' - \mathbf{k}) \cdot \mathbf{r}'} V(r') d\mathbf{r}'$$
(2.5.9)

$$\equiv -\frac{1}{4\pi} \frac{2m}{\hbar^2} \int e^{-i\mathbf{q}\cdot\mathbf{r}'} V(r') d\mathbf{r}'$$
 (2.5.10)

となる.ここで散乱による運動量変化を  $q\equiv k'-k$  と置いた.つまり,散乱振幅はポテンシャル V(r') の Fourier 変換から得られることがわかる³.また,球対称ポテンシャルのときこれは簡略化でき,

$$f^{(1)}(\theta) = -\frac{1}{4\pi} \frac{2m}{\hbar^2} \int e^{-i\boldsymbol{q}\cdot\boldsymbol{r}'} V(r') d\boldsymbol{r}'$$
(2.5.11)

$$= -\frac{1}{4\pi} \frac{2m}{\hbar^2} 2\pi \iint e^{-iqr'\cos\theta'} V(r') r'^2 \sin\theta' d\theta' dr'$$
 (2.5.12)

$$= -\frac{m}{\hbar^2} \int r'^2 dr' V(r') \left[ \frac{e^{-iqr'\cos\theta}}{iqr'} \right]^{\cos\theta = -1}_{\cos\theta = 1}$$
(2.5.13)

$$= -\frac{m}{\hbar^2} \int r'^2 \, dr' \, \frac{2i \sin qr'}{iqr'} V(r')$$
 (2.5.14)

$$= -\frac{2m}{\hbar^2 q} \int rV(r) \sin qr \, \mathrm{d}r \tag{2.5.15}$$

となる.

球対称ポテンシャルの散乱振幅・

$$f^{(1)}(\theta) = -\frac{2m}{\hbar^2 q} \int_0^\infty rV(r) \sin qr \, dr$$
 (2.5.16)

### 例題 2.2: 湯川ポテンシャル

湯川ポテンシャル

$$V(r) = V_0 \frac{e^{-\mu r}}{\mu r} \tag{2.5.17}$$

による散乱を考える $^a$ . これは, V(r) の到達距離が  $\frac{1}{\mu}$  ほどであり,核子同士に働く力を表す.物質中では,伝導電子に遮蔽された不純物の Coulomb ポテンシャルを表す.このポテンシャルの下で散乱振幅を求める.

$$f^{(1)}(\theta) = -\frac{1}{4\pi} \frac{2m}{\hbar^2} \iiint e^{-iqr'\cos\theta'} V(r') r'^2 \sin\theta' dr' d\theta' d\phi'$$
 (2.5.18)

$$= -\frac{1}{4\pi} \frac{2m}{\hbar^2} 2\pi \int_0^\infty \left( \frac{e^{iqr'} - e^{-iqr'}}{iqr'} \right) V(r') r'^2 dr'$$
 (2.5.19)

$$= -\frac{mV_0}{i\hbar^2 q\mu} \int_0^\infty \left[ e^{(-\mu + iq)r'} - e^{(-\mu - iq)r'} \right] dr'$$
 (2.5.20)

$$= -\frac{2mV_0}{\hbar^2\mu} \frac{1}{\mu^2 + q^2} \tag{2.5.21}$$

よって散乱断面積は

$$\sigma^{(1)}(\theta) = \left| f^{(1)}(\theta) \right|^2 \tag{2.5.22}$$

$$= \left(\frac{2mV_0}{\hbar^2 \mu}\right)^2 \frac{1}{(\mu^2 + q^2)^2} \tag{2.5.23}$$

$$= \left(\frac{2mV_0}{\hbar^2 \mu}\right)^2 \frac{1}{(\mu^2 + 4K^2 \sin^2 \theta/2)^2}$$
 (2.5.24)

 $<sup>^3</sup>f^{(n)}$  は第 nBorn 近似による散乱振幅を意味する.

である. ここで、 $\mathbf{k'}$  と  $\mathbf{k}$  のなす角が  $\theta$  であるため  $q = 2k \sin \theta/2$  であることを用いた.

<sup>a</sup>湯川秀樹 (1907-1981)

#### 例題 2.3: Rutherford 散乱 (Griffith Example 10.6)

湯川ポテンシャルで  $V_0=rac{q_1q_2}{4\piarepsilon_0},\;\;\mu=0$  とすると Coulomb ポテンシャル

$$V(r) = \frac{q_1 q_2}{4\pi\varepsilon_0} \tag{2.5.25}$$

と一致する. 式 (2.5.16) に代入して散乱振幅を求める.

$$f(\theta) = -\frac{2m}{\hbar^2 q} \int_0^\infty r \frac{q_1 q_2}{4\pi \varepsilon_0 r} \sin qr \, \mathrm{d}r$$
 (2.5.26)

$$= -\frac{2m}{\hbar^2 q} \frac{q_1 q_2}{4\pi\varepsilon_0} \int_0^\infty \sin qr \, \mathrm{d}r$$
 (2.5.27)

$$= -\frac{2m}{\hbar^2 q} \frac{q_1 q_2}{4\pi\varepsilon_0} \left( -\frac{1}{q} [\cos q r]_0^{\infty} \right)$$

$$\simeq -\frac{m q_1 q_1}{2\pi\varepsilon_0 \hbar^2 q^2}$$
(2.5.29)

$$\simeq -\frac{mq_1q_1}{2\pi\varepsilon_0\hbar^2a^2} \tag{2.5.29}$$

$$= -\frac{mq_1q_1}{8\pi\varepsilon_0\hbar^2\sin^2\theta/2} \tag{2.5.30}$$

次に、Born 近似の適用範囲について考える. 散乱振幅は

$$f(\theta) = -\frac{1}{4\pi} \int e^{-i\mathbf{k}\cdot\mathbf{r}} \frac{2m}{\hbar^2} V(r) \psi(\mathbf{r}) d\mathbf{r}$$
 (2.5.31)

であり、散乱の波動関数は

$$\psi(\mathbf{r}) = \psi_0(\mathbf{r}) + \int g(\mathbf{r} - \mathbf{r'})V(\mathbf{r'})\psi_0(\mathbf{r'}) d\mathbf{r'} + \cdots$$
(2.5.32)

である. この波動関数を

$$\psi(\mathbf{r}) \simeq \psi_0(\mathbf{r}) \tag{2.5.33}$$

と近似するのが第 1Born 近似であった. この近似がうまくいく, つまり,

$$\int e^{-i\boldsymbol{k}\cdot\boldsymbol{r}} \frac{2m}{\hbar^2} V(r)\psi(\boldsymbol{r}) d\boldsymbol{r}$$
(2.5.34)

を正しく評価するには、 $V(r) \neq 0$ となる  $r \simeq 0$ で、

$$\psi(\mathbf{r}) \simeq \psi_0(\mathbf{r}) \tag{2.5.35}$$

と近似できる必要がある.

 $r \simeq 0$  で式 (2.5.32) の第1項がそれ以外の項より十分大きければいいため、

$$|\psi_0(\mathbf{0})| \gg \left| \int g(\mathbf{0} - \mathbf{r}') V(r') \psi_0(\mathbf{r}') \, d\mathbf{r}' \right|$$
 (2.5.36)

これを整理すると,

$$\left| e^{ikz} \right| \gg \left| \int -\frac{2m}{\hbar^2} \frac{e^{ikr'}}{4\pi r'} V(r') e^{i\mathbf{k}\cdot\mathbf{r}'} d\mathbf{r}' \right|$$
 (2.5.37)

$$1 \gg \frac{m}{2\pi\hbar^2} \left| \int \frac{e^{ikr'}}{r'} V(r') e^{i\mathbf{k}\cdot\mathbf{r}'} d\mathbf{r}' \right|$$
 (2.5.38)

を得る. これが第 1Born 近似が有効であるための条件じゃ.

### 例題 2.4: Born 近似の適用条件

ポテンシャル

$$V(r) = \begin{cases} -V_0 & (r \le a) \\ 0 & (r \ge a) \end{cases}$$
 (2.5.39)

による散乱を考える. Born 近似の適用条件 (2.5.38) より、

$$1 \gg \frac{m}{2\pi\hbar^2} \left| \int \frac{e^{ikr'}}{r'} V_0 e^{i\mathbf{k}\cdot\mathbf{r}'} d\mathbf{r}' \right|$$
 (2.5.40)

$$= \frac{mV_0}{2\pi\hbar^2} \left| \int e^{ikr'} e^{ikr'\cos\theta'} r' \sin\theta' dr' d\theta' d\phi' \right|$$
 (2.5.41)

$$= \frac{mV_0}{2\hbar^2 k^2} \left| e^{2ika} - 1 - 2ika \right| \tag{2.5.42}$$

を得る<sup>a</sup>. これを低エネルギー散乱と高エネルギー散乱に場合分けして見積もる.

(i) 低エネルギー散乱 (ka ≪ 1)

$$\left| e^{2ika} - 1 - 2ika \right| \simeq \left| \left( 1 + 2ika + \frac{1}{2} (2ika)^2 \right) - 1 - 2ika \right|$$
 (2.5.43)

$$=2k^2a^2\tag{2.5.44}$$

より, 適用条件は

$$1 \gg \frac{mV_0}{2\hbar^2 k^2} 2k^2 a^2 = \frac{mV_0 a^2}{\hbar^2}$$
 (2.5.45)

である. つまり、ポテンシャルの大きさ  $V_0$  または半径 a が小さい時に近似が有効であることがわかる. (ii) 高エネルギー散乱  $(ka\gg 1)$ 

$$|e^{2ika} - 1 - 2ika| \simeq 2ka$$
 (2.5.46)

より,適用条件は

$$1 \gg \frac{mV_0 a}{\hbar^2 k} \tag{2.5.47}$$

である.  $k \to \infty$  に対して近似が成立することがわかる. つまり, Born 近似は高エネルギー粒子に対して常によい近似であることがわかる.

## 2.6 部分波展開

近似法の一つである部分波展開を扱う. 古典力学において,角運動量は

$$\boldsymbol{L} = \boldsymbol{r} \times \boldsymbol{p} = m\boldsymbol{r} \times \boldsymbol{v} \tag{2.6.1}$$

である. 球対称ポテンシャルの下では,

$$\frac{\mathrm{d}\boldsymbol{L}}{\mathrm{d}t} = m\frac{\mathrm{d}\boldsymbol{r}}{\mathrm{d}t} \times \boldsymbol{v} + m\boldsymbol{r} \times \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t}$$
(2.6.2)

$$= \mathbf{r} \times \mathbf{F} \tag{2.6.3}$$

$$= \mathbf{r} \times (-\nabla V(r)) \tag{2.6.4}$$

a「試験に出そうな計算.」

$$= \mathbf{r} \times |\nabla V| \frac{\mathbf{r}}{r} \tag{2.6.5}$$

$$=0 (2.6.6)$$

より、角運動量は保存される. 衝突パラメータb、運動量pの粒子の角運動量は

$$|\boldsymbol{L}| = |\boldsymbol{r} \times \boldsymbol{p}| \tag{2.6.7}$$

$$= pb (2.6.8)$$

である. 散乱体を半径 a の球とすると、衝突の条件は

$$b < a \tag{2.6.9}$$

$$L/p < a \tag{2.6.10}$$

$$L < pa (2.6.11)$$

である. つまり、角運動量が小さい粒子のみ散乱することがわかる. 式 (2.6.11) を半古典的な散乱条件へと焼き直す.

$$L = \hbar \sqrt{l(l+1)} < pa = \hbar ka \tag{2.6.12}$$

ここで、l は方位量子数で  $l=0,1,2,\ldots$  の値を取る. つまり、散乱の影響を受けるのは l が小さいときのみであることがわかる. よって、波動関数を

$$\psi = \phi^{l=0} + \phi^{l=1} + \cdots \tag{2.6.13}$$

のように異なる l の固有関数で展開し、l が小さい状態についてだけ散乱の影響を考える.これを**部分波展開**という. 散乱の波動関数

$$\psi(\mathbf{r}) = e^{ikz} + f(\theta) \frac{e^{ikr}}{r}$$
(2.6.14)

を部分波展開する<sup>4</sup>. Helmholtz 方程式

$$[\nabla^2 + \kappa^2]\psi(\mathbf{r}) = 0 \tag{2.6.15}$$

を球座標系で表すと

$$\[ \frac{1}{r} \frac{\partial^2}{\partial r^2} r + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \phi^2} + \kappa^2 \] \psi(r, \theta, \phi) = 0$$
 (2.6.16)

である.この方程式の解は動径波動関数 R(r) と球面調和関数  $Y_{l,m}( heta,\phi)$  を用いて

$$\psi(r,\theta,\phi) = \sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_{lm} R(r) Y_{l,m}(\theta,\phi)$$
 (2.6.17)

と表される. ここで、球面調和関数と Lgendre 陪関数、Legendre 多項式は以下の関係にある.

$$Y_{l,m}(\theta,\phi) = (-1)^m \left[ \frac{(2l+1)}{4\pi} \frac{(l-m)!}{(l+m)!} \right]^{1/2} P_l^m(\cos\theta) \exp(im\phi)$$
 (2.6.18)

$$P_l^m(x) = (1 - x^2)^{m/2} \frac{\mathrm{d}^m P_l(x)}{\mathrm{d}x^m}$$
 (2.6.19)

いま、角度 $\phi$ によらないとすると、m=0とすることで

$$\psi(r,\theta) = \sum_{l=0}^{\infty} (2l+1)R_l(r)P_l(\cos\theta)$$
 (2.6.20)

 $<sup>^{4}</sup>$ ここから式 (2.6.42) までは飛ばしても良い.

を得る. (2l+1) は縮退の数を表す. これを式 (2.6.16) に代入する.

$$\left[\frac{1}{r}\frac{\partial^2}{\partial r^2}r + \frac{1}{r^2\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial}{\partial\theta}\right) + \kappa^2\right]\sum_{l=0}^{\infty}(2l+1)R_l(r)P_l(\cos\theta) = 0$$
 (2.6.21)

整理すると

$$\frac{P_l(\cos\theta)}{r} \left[ 2 \frac{\partial R_l(r)}{\partial r} + r \frac{\partial^2 R_l(r)}{\partial r^2} \right] + \frac{R_l(r)}{r^2 \sin\theta} \frac{\partial}{\partial \theta} \left( \sin\theta \frac{\partial}{\partial \theta} P_l(\cos\theta) \right) + \kappa^2 R_l(r) P_l(\cos\theta) = 0$$
 (2.6.22)

である. ここで, Legendre 多項式は

$$\frac{\mathrm{d}}{\mathrm{d}x} \left[ (1 - x^2) \frac{\mathrm{d}P_l(x)}{\mathrm{d}x} \right] + l(l+1)P_l(x) = 0$$
(2.6.23)

を満たす. これを変数変換すると

$$\frac{1}{\sin \theta} \frac{\mathrm{d}}{\mathrm{d}\theta} \left[ \sin \theta \frac{\mathrm{d}P_l(\cos \theta)}{\mathrm{d}\theta} \right] + l(l+1)P_l(\cos \theta) = 0 \tag{2.6.24}$$

となる. よって, 式 (2.6.22) は

$$\frac{P_l(\cos\theta)}{r} \left[ 2\frac{\partial R_l(r)}{\partial r} + r\frac{\partial^2 R_l(r)}{\partial r^2} \right] - l(l+1)\frac{R_l(r)}{r^2} P_l(\cos\theta) + \kappa^2 R_l(r) P_l(\cos\theta) = 0$$
 (2.6.25)

と変形される. したがって,  $R_t(r)$  が満たすべき式は

$$\left[\frac{\mathrm{d}^2}{\mathrm{d}r^2} + \frac{2}{r}\frac{\mathrm{d}}{\mathrm{d}r} + \kappa^2 - \frac{l(l+1)}{r^2}\right]R_l(r) = 0$$
 (2.6.26)

である.この微分方程式の解  $R_l(r)$  は球面 Bessel 関数  $j_l(\kappa r)$  と球面 Neumann 関数  $n_l(\kappa r)$  の和で与えられる.よって.波動関数は

$$\psi(r,\theta) = \sum_{l=0}^{\infty} (2l+1)[A_l j_l(\kappa r) + B_l n_l(\kappa r)] P_l(\cos \theta)$$
(2.6.27)

となる. また、球面 Bessel 関数と球面 Neumann 関数は以下の性質を持つ.

$$x \to 0 \tag{2.6.28}$$

$$j_l(x) \to \frac{x^l}{(2l+1)!} \left( 1 - \frac{x^2}{2(2l+3)} \cdots \right)$$
 (2.6.29)

$$n_l(x) \to -\frac{(2l-1)!!}{r^{l+1}}$$
 (2.6.30)

平面波  $e^{iz} = e^{ikr\cos\theta}$  は明らかに Helmholtz 方程式を満たす. さらに, r=0 で有限の値をもつため,

$$B_l = 0 (2.6.31)$$

であることがわかる.以上の計算から、

$$e^{i\kappa r\cos\theta} = \sum_{l=0}^{\infty} (2l+1)A_l j_l(\kappa r)P_l(\cos\theta)$$
(2.6.32)

を得る. 左辺を展開すると,

$$\sum_{l=0}^{\infty} \frac{(i\kappa r \cos \theta)^l}{l!} \tag{2.6.33}$$

右辺を展開すると,

$$\sum_{l=0}^{\infty} (2l+1)A_l \frac{(\kappa l)^l}{(2l+1)!!} P_l(\cos \theta)$$
 (2.6.34)

である. また、 $P_l(\cos\theta)$  の  $(\cos\theta)^l$  の項の係数は

$$\frac{1}{2^l l!} \frac{(2l)!}{l!} \tag{2.6.35}$$

である. よって, 左辺と右辺を比較することで

$$\frac{(i\kappa r\cos\theta)^l}{l!} = (2l+1)A_l \frac{(2l)!}{2^l(l!)^2} \frac{(\kappa r\cos\theta)^l}{(2l+1)!!}$$
(2.6.36)

$$A_l = i^l \tag{2.6.37}$$

を得る. したがって, Rayleigh の公式

$$e^{ikz} = e^{ikr\cos\theta} = \sum_{l=0}^{\infty} (2l+1)i^l j_l(kr) P_l(\cos\theta)$$
 (2.6.38)

が成り立つ. 以上で、平面波の Legendre 多項式による表現が得られた. 同様に、散乱振幅を未定係数  $a_l$  を用いて

$$f(\theta) = \sum_{l=0}^{\infty} (2l+1)a_l P_l(\cos \theta)$$
 (2.6.39)

と展開する. これにより球面波は

$$\sum_{l=0}^{\infty} (2l+1)a_l P_l(\cos\theta) \frac{e^{ikr}}{r}$$
(2.6.40)

と展開される. したがって, 部分波展開した散乱の波動関数は

$$\psi(\mathbf{r}) = e^{ikr\cos\theta} = \sum_{l=0}^{\infty} (2l+1)i^l j_l(kr) P_l(\cos\theta) + \sum_{l=0}^{\infty} (2l+1)a_l P_l(\cos\theta) \frac{e^{ikr}}{r}$$
(2.6.41)

である.

- 部分波展開した散乱の波動関数 -

$$\psi(\mathbf{r}) = \sum_{l=0}^{\infty} (2l+1)i^l j_l(kr) P_l(\cos\theta) + \sum_{l=0}^{\infty} (2l+1)a_l P_l(\cos\theta) \frac{e^{ikr}}{r}$$
(2.6.42)

このとき, 散乱断面積は

$$\sigma(\theta) = |f(\theta)|^2 \tag{2.6.43}$$

$$= \sum_{l} \sum_{l'} (2l+1)(2l'+1)a_l^* a_{l'} P_l(\cos \theta) P_{l'}(\cos \theta)$$
 (2.6.44)

である. 全断面積は

$$\sigma^{\text{tot}} = 2\pi \int \sigma(\theta) \sin \theta \, d\theta \tag{2.6.45}$$

$$=2\pi \sum_{l=0}^{\infty} (2l+1)^2 |a_l|^2 \left(\frac{2}{2l+1}\right)$$
 (2.6.46)

$$=4\pi \sum_{l=0}^{\infty} (2l+1)|a_l|^2 \tag{2.6.47}$$

である. ここで、Legendre 多項式の直交性

$$\int_0^{\pi} P_l(\cos \theta) P_{l'}(\cos \theta) \sin \theta \, d\theta = \frac{2}{2l+1} \delta_{l,l'}$$
(2.6.48)

を用いた.

以上の議論から、部分波展開を用いた散乱問題は未定係数  $a_l$  を求めることに帰着する.

量子力学における散乱では、散乱の前後で位相が変化する.これを位相シフトとよぶ.例えば、ポテンシャル

$$V(x) = \begin{cases} 0 & (x < 0) \\ V_0 & (x \ge 0) \end{cases}$$
 (2.6.49)

に左から入射する粒子を考える.入射粒子のエネルギーは  $E < V_0$  とする.Schrödinger 方程式を解くことにより波動 関数は

$$\psi(x) = \begin{cases} e^{ikx} + \frac{k - i\alpha}{k + i\alpha} e^{-ikx} & (x < 0) \\ \frac{2k}{k + i\alpha} e^{-\alpha x} & (x \ge 0) \end{cases}$$

$$(2.6.50)$$

となる。ただし, $k\equiv\sqrt{\frac{2mE}{\hbar^2}}$ , $\alpha\equiv\sqrt{\frac{2m(V-E)}{\hbar^2}}$  とおいた。式 (2.6.50) において  $\mathrm{e}^{\mathrm{i}kx}$  は入射波を, $\frac{k-\mathrm{i}\alpha}{k+\mathrm{i}\alpha}\mathrm{e}^{-\mathrm{i}kx}$  は反射波を表している。反射波は

$$k + i\alpha = \sqrt{k^2 + \alpha^2} e^{i\delta_k} \tag{2.6.51}$$

とすると

$$e^{-2i\delta_k}e^{-ikx} \tag{2.6.52}$$

と表される. よって, 波動関数は

$$\psi(x) = e^{ikx} + e^{-2i\delta_k}e^{-ikx}$$
(2.6.53)

となる. この  $\delta_k$  は位相シフトと呼ばれ、量子力学的散乱を特徴づけるパラメータである.

これを 3 次元に拡張する.式 (2.6.42) において  $r \to \infty$  とすると, $j_l(kr) \to \frac{\mathrm{e}^{\mathrm{i}(kr - \frac{l\pi}{2})} - \mathrm{e}^{-\mathrm{i}(kr - \frac{l\pi}{2})}}{2\mathrm{i}kr}$  であるため,

$$\psi(\mathbf{r}) = \sum_{l=0}^{\infty} \frac{2l+1}{2ikr} \left[ i^{l} \left( e^{i(kr - \frac{l\pi}{2})} - e^{-i(kr - \frac{l\pi}{2})} \right) + (2ik)a_{l}e^{ikr} \right] P_{l}(\cos\theta)$$
 (2.6.54)

を得る. さらに

$$i^{l}\left(e^{i(kr-\frac{l\pi}{2})} - e^{-i(kr-\frac{l\pi}{2})}\right) = i^{l}e^{-i\frac{l\pi}{2}}\left(e^{ikr} - e^{-ikr}e^{il\pi}\right)$$
(2.6.55)

$$= 1 \cdot (e^{ikr} - (-1)^l)e^{-ikr}$$
 (2.6.56)

と直せるため、波動関数として

$$\psi(\mathbf{r}) = \sum_{l=0}^{\infty} \left[ (1 + 2ika_l)e^{ikr} - (-1)^l e^{-ikr} \right] P_l(\cos \theta)$$
 (2.6.57)

を得る. 第 1 項は外向き球面波,第 2 項は内向き球面波を表す. この散乱は全反射であるため入射波と反射波の振幅は等しい. つまり、

$$|1 + 2ika_l| = 1 (2.6.58)$$

が成り立つ. よって、散乱による位相のずれを  $\delta_l$  とおくと

$$1 + 2ika_l = e^{2i\delta_l} \tag{2.6.59}$$

である. この式から  $a_l$  を求めると

$$a_l = \frac{1}{2ik} (e^{i\delta_l} - 1)$$
 (2.6.60)

$$= \frac{1}{k} e^{i\delta_l} \sin \delta_l \tag{2.6.61}$$

を得る. さらに全断面積と散乱振幅を求めることができる.

$$\sigma^{\text{tot}} = 4\pi \sum_{l=0}^{\infty} (2l+1)|a_l|^2$$
 (2.6.62)

$$= \frac{4\pi}{k^2} \sum_{l=0}^{\infty} (2l+1) \sin^2 \delta_l \tag{2.6.63}$$

$$f(\theta) = \sum_{l=0}^{\infty} (2l+1)a_l P_l(\cos \theta)$$
 (2.6.64)

$$= \frac{1}{k} \sum_{l=0}^{\infty} (2l+1) e^{i\delta_l} \sin \delta_l P_l(\cos \theta)$$
 (2.6.65)

ここで、 $\theta = 0$  のとき、

$$f(0) = \frac{1}{k} \sum_{l=0}^{\infty} (2l+1)(\cos \delta_l + i \sin \delta_l) \sin \delta_l P_l(1)$$
 (2.6.66)

が成り立つ. したがって以下の光学定理が成り立つ.

光学定理

$$\sigma^{\text{tot}} = \frac{4\pi}{k} \operatorname{Im} f(0) \tag{2.6.67}$$

これは全断面積が前方散乱の散乱振幅からわかることを示している5.

#### 例題 2.5: 半径 a の剛体球による散乱

散乱体のポテンシャルを

$$V(r) = \begin{cases} \infty & (r \le a) \\ 0 & (r \ge a) \end{cases}$$
 (2.6.68)

とする. 低エネルギー散乱  $(ka \ll 1)$  とする. このとき, 散乱の影響を受けるのはほぼ l=0 のみである. 式 (2.6.57) において l=0 とすることで

$$\psi(\mathbf{r}) = \frac{1}{2ikr} \left[ (1 + 2ika_0)e^{ikr} - e^{-ikr} \right] P_0(\cos \theta)$$
 (2.6.69)

を得る.位相シフトを考慮し  $\mathrm{e}^{2\mathrm{i}\delta_0}=1+2\mathrm{i}ka_0$  とおく.境界条件より

$$\psi(r = a) = 0 \tag{2.6.70}$$

であるから

$$e^{2i\delta_0}e^{ika} - e^{-ika} = 0 (2.6.71)$$

が成り立つ. よって位相シフトは

$$\delta_0 = -ka \tag{2.6.72}$$

 $<sup>^5</sup>$ 砂川,散乱の量子論,「光学定理は,前方散乱によって,入射波の強度が減少した分だけ,四方に散乱されるという,まことに当然なことを述べているのである.」

である. 全断面積は

$$\sigma^{\text{tot}} = \frac{4\pi}{k^2} \sin^2 \delta_0$$
 (2.6.73)  

$$\simeq \frac{4\pi}{k^2} \delta_0$$
 (2.6.74)  

$$= 4\pi a^2$$
 (2.6.75)

$$\simeq \frac{4\pi}{L^2} \delta_0 \tag{2.6.74}$$

$$=4\pi a^2 (2.6.75)$$

である.これは古典力学における剛体級の散乱  $\sigma^{\mathrm{tot}}=\pi a^2$  の 4 倍の値である.波長  $\lambda=\frac{2\pi}{k}$  が散乱体の半径 a より十分に大きいため,回折によって剛体球を取り囲み,球の表面積を疑似的に増加させたためと説明できる.

## Chapter 3

# 相対論的量子論

## 3.1 特殊相対論

特殊相対性理論 (Special Relativity) は次の2つの事柄を原理とする.

- 特殊相対性原理 -

あらゆる慣性系で同じ物理法則が成り立つ.

光速度不変の原理 -

あらゆる慣性形で進級中の光の速さは同一である.

この原理の下で成り立つ座標変換の法則 (Lorentz 変換) を導く. まず,慣性系 X 系の原点 O とと X' 系の原点 O' が t=t'=0 で一致している. t=t'=0 で光が原点 (O=O') を通過したとする. X 系の空間座標を (x,y,z), X' 系の空間座標を (x',y',z') とすると,光速度不変の原理より,

$$\frac{\sqrt{x^2 + y^2 + z^2}}{t} = \frac{\sqrt{x'^2 + y'^2 + z'^2}}{t'} = c \tag{3.1.1}$$

が成り立つ. 上式から世界長さ

$$s^{2} = x^{2} + y^{2} + z^{2} - (ct)^{2}$$
(3.1.2)

が不変量であることが導かれる.

慣性系 X' が x 軸正の方向に速さ v で移動している.. このとき y=y',z=z' である. わかりやすいように T=it とおく. 光速不変より,

$$x^{2} - (ct)^{2} = x'^{2} - (ct')^{2}$$
(3.1.3)

$$x^{2} + (cT)^{2} = x'^{2} + (cT)^{2}$$
(3.1.4)

が成り立つ. これが回転座標変換と類似していることから,

$$\begin{pmatrix} cT' \\ x' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} cT \\ x \end{pmatrix}$$
 (3.1.5)

と置く.表示をtに戻すと

$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \begin{pmatrix} \cos \theta & i \sin \theta \\ i \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}$$
 (3.1.6)

である. さらに,  $\theta = i\phi$  とすると

$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \begin{pmatrix} \cosh \phi & -\sinh \phi \\ -\sinh \phi & \cosh \phi \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}$$
(3.1.7)

となる. よって,

$$x' = (-\sinh\phi)ct + (\cosh\phi)x \tag{3.1.8}$$

を得る. X 系において時刻 t が経過したとする. X 系から見るお X' 系の原点の位置は x=vt である. 一方,X' 系 から見ると x'=0 である. よって上式から

$$0 = (-\sinh\phi)ct + (\cosh\phi)vt \tag{3.1.9}$$

が成り立つ. よって, これを変形すると

$$\frac{v}{c} = \frac{\sinh \phi}{\cosh \phi} = \tanh \phi \tag{3.1.10}$$

である. 以上より,

$$\begin{cases} \sinh \phi = \frac{v/c}{\sqrt{1 - (v/c)^2}} \\ \cosh \phi = \frac{1}{\sqrt{1 - (v/c)^2}} \end{cases}$$
(3.1.11)

であることがわかる. したがって,

- Lorent 変換 -

$$\begin{pmatrix} ct' \\ x' \end{pmatrix} = \frac{1}{\sqrt{1-(v/c)^2}} \begin{pmatrix} 1 & -v/c \\ -v/c & 1 \end{pmatrix} \begin{pmatrix} ct \\ x \end{pmatrix}$$
 (3.1.12)

を得る.