A Logical Characterization of Timed Pushdown Languages

Manfred Droste and Vitaly Perevoshchikov¹

Leipzig University

CSR 2015, Listvyanka

¹Supported by the DFG Research Training Group "QuantLA"

(Dense-)Timed Pushdown Automata¹ (TPDA)

TPDA are nondeterministic finite automata (NFA) equipped with:

- real-valued clocks
- timed stack

¹Abdulla, Atig, Stenman '12

Timed Pushdown Automata¹ (TPDA)

Definition

A TPDA over an alphabet Σ : $\mathcal{A} = (Q, C, \Gamma, I, T, F)$ where

- Q is a finite set of states
- C is a finite set of clocks
- Γ is a stack alphabet
- $I, F \subseteq Q$ are initial and final state
- T is a finite set of edges of the form $q \xrightarrow{a, \phi, \Lambda} q'$ where:
 - $q, q' \in Q, a \in \Sigma$
 - ϕ is a clock constraint over C, $\Lambda \subseteq C$ is a set of clocks to be reset
 - s is: $push^{\mathcal{I}}(\gamma)$, # or $pop^{\mathcal{I}}(\gamma)$ where $\gamma \in \Gamma$ and \mathcal{I} is an interval

¹Abdulla, Atig, Stenman '12

$$\sum = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$\sum = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$\Sigma = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$A \text{ a, push}^{[0,0]}(\gamma)$$

$$b, x \le 2, x := 0, \#$$

$$2$$

A run of \mathcal{A} :

$$\Sigma = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$A \text{ a, push}^{[0,0]}(\gamma)$$

$$b, x \le 2, x := 0, \#$$

$$2$$

A run of \mathcal{A} :

$$\Sigma = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$A \text{ a, push}^{[0,0]}(\gamma)$$

$$b, x \le 2, x := 0, \#$$

$$2$$

$$\Sigma = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$A \text{ a, push}^{[0,0]}(\gamma)$$

$$b, x \le 2, x := 0, \#$$

$$2$$

$$\Sigma = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$A \text{ a, push}^{[0,0]}(\gamma)$$

$$b, x \le 2, x := 0, \#$$

$$2$$

$$\Sigma = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$A \text{ a, push}^{[0,0]}(\gamma)$$

$$b, x \le 2, x := 0, \#$$

$$2$$

$$\Sigma = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$A \text{ a, push}^{[0,0]}(\gamma)$$

$$b, x \le 2, x := 0, \#$$

$$2$$

$$\sum = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$A \text{ a, push}^{[0,0]}(\gamma)$$

$$b, x \le 2, x := 0, \#$$

$$2$$

$$\Sigma = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$A \text{ a, push}^{[0,0]}(\gamma)$$

$$b, x \le 2, x := 0, \#$$

$$2$$

$$\Sigma = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$A \text{ a, push}^{[0,0]}(\gamma)$$

$$b, x \le 2, x := 0, \#$$

$$2$$

$$\Sigma = \{a, b\}$$

$$C = \{x\}$$

$$\Gamma = \{\gamma\}.$$

$$A \text{ a, push}^{[0,0]}(\gamma)$$

$$b, x \le 2, x := 0, \#$$

$$2$$

A run of A:

Accepted timed word: (a, 0.3)(a, 1)(b, 2)(a, 2.1)(a, 2.2)

Relative Distance Logic (RDL)¹

Let Σ be an alphabet.

Definition

Relative distance logic RDL(Σ): consists of formulas of the form $\exists X_1...\exists X_n.\varphi$ where

$$\varphi ::= P_a(x) \mid x \leq y \mid x \in X \mid \boxed{d(X,x) \sim c} \mid \varphi \vee \varphi \mid \neg \varphi \mid \exists x. \varphi$$

with $a \in \Sigma$, $\sim \in \{<, =, >\}$, $c \in \mathbb{N}$.

¹Wilke '94

Relative Distance Logic (RDL)¹

Let Σ be an alphabet.

Definition

Relative distance logic RDL(Σ): consists of formulas of the form $\exists X_1...\exists X_n.\varphi$ where

$$\varphi := P_a(x) \mid x \le y \mid x \in X \mid d(X,x) \sim c \mid \varphi \vee \varphi \mid \neg \varphi \mid \exists x. \varphi$$

with $a \in \Sigma$, $\sim \in \{<, =, >\}$, $c \in \mathbb{N}$.

Model: a timed word $w = (a_1, t_1)...(a_n, t_n) \in \mathbb{T}\Sigma^+$.

$$(w,\sigma) \models d(X,x) \sim c$$

¹Wilke '94

Relative Distance Logic (RDL)¹

Let Σ be an alphabet.

Definition

Relative distance logic RDL(Σ): consists of formulas of the form $\exists X_1...\exists X_n.\varphi$ where

$$\varphi ::= P_a(x) \mid x \leq y \mid x \in X \mid \boxed{d(X,x) \sim c} \mid \varphi \vee \varphi \mid \neg \varphi \mid \exists x. \varphi$$

with $a \in \Sigma$, $\sim \in \{<, =, >\}$, $c \in \mathbb{N}$.

Theorem (Wilke '94)

Let $L \subseteq \mathbb{T}\Sigma^+$ be a timed language. TFAE:

- 1 L is recognizable by a timed automaton
- 2 L is definable by a RDL(Σ)-sentence.

¹Wilke '94

Logic for Pushdown Automata¹

Matching logic $\mathsf{ML}(\Sigma)$: $\exists^{\mathsf{match}} \mu.\mathsf{FO}(\Sigma,<,\mu)$

Definition (Matching).

A relation $M \subseteq \{1, ..., n\}^2$ is a matching if:

- $\bullet (x,y) \in M \Rightarrow x < y;$
- every $x \in \{1, ..., n\}$ belongs to at most one pair in M;

¹Lautemann, Schwentick, Thérien '94

Logic for Pushdown Automata¹

Matching logic $\mathsf{ML}(\Sigma)$: $\exists^{\mathsf{match}} \mu.\mathsf{FO}(\Sigma,<,\mu)$

Definition (Matching).

A relation $M \subseteq \{1, ..., n\}^2$ is a matching if:

- $(x, y) \in M \Rightarrow x < y$;
- every $x \in \{1, ..., n\}$ belongs to at most one pair in M;
- *M* is non-crossing:

¹Lautemann, Schwentick, Thérien '94

Logic for Pushdown Automata¹

Matching logic ML(Σ): $\exists^{match}\mu$.FO(Σ , <, μ)

Definition (Matching).

A relation $M \subseteq \{1, ..., n\}^2$ is a matching if:

- $(x, y) \in M \Rightarrow x < y$;
- every $x \in \{1, ..., n\}$ belongs to at most one pair in M;
- *M* is non-crossing:

¹Lautemann, Schwentick, Thérien '94

Timed Matching Logic (TML)

Definition

TML(Σ) is the set of formulas of the form $\exists^{\text{match}} \mu. \exists X_1.... \exists X_n. \varphi$ where φ is defined by the grammar:

$$\varphi ::= P_a(x) \mid x \le y \mid x \in X \mid \boxed{\mu(x,y) \sim c} \mid d(X,x) \sim c \mid$$
$$\varphi \lor \varphi \mid \neg \varphi \mid \exists x. \varphi$$

where $a \in \Sigma$, $\sim \in \{<, =, >\}$ and $c \in \mathbb{N}$.

Timed Matching Logic (TML)

Definition

TML(Σ) is the set of formulas of the form $\exists^{\text{match}} \mu. \exists X_1.... \exists X_n. \varphi$ where φ is defined by the grammar:

$$\varphi ::= P_a(x) \mid x \le y \mid x \in X \mid \mu(x, y) \sim c \mid d(X, x) \sim c \mid$$
$$\varphi \lor \varphi \mid \neg \varphi \mid \exists x. \varphi$$

where $a \in \Sigma$, $\sim \in \{<, =, >\}$ and $c \in \mathbb{N}$.

Let $w = (a_1, t_1)...(a_n, t_n) \in \mathbb{T}\Sigma^+$. Then, $(w, \sigma) \models \mu(x, y) \sim c$ iff:

•
$$(\sigma(x), \sigma(y)) \in \sigma(\mu)$$

$$t_{\sigma(y)} - t_{\sigma(x)} \sim c$$

- Let $\Sigma = \{a_1, ..., a_m\}$ be a set of opening brackets
- Let $\overline{\Sigma} = {\overline{a}_1, ..., \overline{a}_m}$ be a set of corresponding closing brackets

- Let $\Sigma = \{a_1, ..., a_m\}$ be a set of opening brackets
- Let $\overline{\Sigma} = {\overline{a}_1, ..., \overline{a}_m}$ be a set of corresponding closing brackets
- Let $I_1, ..., I_m$ be intervals (e.g., $(0,3], [2,\infty)$, etc.)

- Let $\Sigma = \{a_1, ..., a_m\}$ be a set of opening brackets
- Let $\overline{\Sigma} = {\overline{a}_1, ..., \overline{a}_m}$ be a set of corresponding closing brackets
- Let $I_1, ..., I_m$ be intervals (e.g., $(0,3], [2,\infty)$, etc.)
- A timed Dyck language $\mathcal{D}_{\Sigma}(I_1,...,I_m)$ consists of all timed words $(b_1,t_1)...(b_n,t_n) \in \mathbb{T}(\Sigma \cup \overline{\Sigma})^+$ such that:

- Let $\Sigma = \{a_1, ..., a_m\}$ be a set of opening brackets
- Let $\overline{\Sigma} = {\overline{a}_1, ..., \overline{a}_m}$ be a set of corresponding closing brackets
- Let $I_1, ..., I_m$ be intervals (e.g., $(0,3], [2,\infty)$, etc.)
- A timed Dyck language $\mathcal{D}_{\Sigma}(I_1,...,I_m)$ consists of all timed words $(b_1,t_1)...(b_n,t_n) \in \mathbb{T}(\Sigma \cup \overline{\Sigma})^+$ such that:
 - $b_1...b_n \in (\Sigma \cup \overline{\Sigma})^+$ is a correctly nested sequence of brackets

- Let $\Sigma = \{a_1, ..., a_m\}$ be a set of opening brackets
- Let $\overline{\Sigma} = {\overline{a}_1, ..., \overline{a}_m}$ be a set of corresponding closing brackets
- Let $I_1, ..., I_m$ be intervals (e.g., $(0,3], [2,\infty)$, etc.)
- A timed Dyck language $\mathcal{D}_{\Sigma}(I_1,...,I_m)$ consists of all timed words $(b_1,t_1)...(b_n,t_n) \in \mathbb{T}(\Sigma \cup \overline{\Sigma})^+$ such that:
 - $b_1...b_n \in (\Sigma \cup \overline{\Sigma})^+$ is a correctly nested sequence of brackets
 - the time distance between any two matching brackets a_j and \overline{a}_j is in I_j .

- Let $\Sigma = \{a_1, ..., a_m\}$ be a set of opening brackets
- Let $\overline{\Sigma} = {\overline{a}_1, ..., \overline{a}_m}$ be a set of corresponding closing brackets
- Let $I_1, ..., I_m$ be intervals (e.g., $(0,3], [2,\infty)$, etc.)
- A timed Dyck language $\mathcal{D}_{\Sigma}(I_1,...,I_m)$ consists of all timed words $(b_1,t_1)...(b_n,t_n) \in \mathbb{T}(\Sigma \cup \overline{\Sigma})^+$ such that:
 - $b_1...b_n \in (\Sigma \cup \overline{\Sigma})^+$ is a correctly nested sequence of brackets
 - the time distance between any two matching brackets a_j and \overline{a}_j is in I_j .

Definition

- Let $\Sigma = \{a_1, ..., a_m\}$ be a set of opening brackets
- Let $\overline{\Sigma} = {\overline{a}_1, ..., \overline{a}_m}$ be a set of corresponding closing brackets
- Let $I_1, ..., I_m$ be intervals (e.g., $(0,3], [2, \infty)$, etc.)
- A timed Dyck language $\mathcal{D}_{\Sigma}(I_1,...,I_m)$ consists of all timed words $(b_1,t_1)...(b_n,t_n) \in \mathbb{T}(\Sigma \cup \overline{\Sigma})^+$ such that:
 - $b_1...b_n \in (\Sigma \cup \overline{\Sigma})^+$ is a correctly nested sequence of brackets
 - the time distance between any two matching brackets a_j and \overline{a}_j is in I_j .

 $\mathcal{D}_{\Sigma}(I_1,...,I_m)$ is defined by the sentence:

$$\varphi = \exists^{\mathsf{match}} \mu. \left(\forall x. \exists y. (\mu(x, y) \lor \mu(y, x)) \land \\ \forall x. \forall y. \left(\mu(x, y) \to \bigvee_{j=1}^{m} (P_{a_j}(x) \land P_{\overline{a}_j}(y) \land \mu^{l_j}(x, y)) \right) \right)$$

Main Result

Theorem

Let Σ be an alphabet and $\mathcal{L} \subseteq \mathbb{T}\Sigma^+$ a timed language. TFAE:

- **1** \mathcal{L} is recognizable by a TPDA.
- **2** \mathcal{L} is definable by a TML(Σ)-sentence.

Main Result

Theorem

Let Σ be an alphabet and $\mathcal{L} \subseteq \mathbb{T}\Sigma^+$ a timed language. TFAE:

- L is recognizable by a TPDA.
- **2** \mathcal{L} is definable by a TML(Σ)-sentence.

Corollary

It is decidable, given an alphabet Σ and a sentence $\psi \in \mathsf{TML}(\Sigma)$, whether there exists a timed word $w \in \mathbb{T}\Sigma^+$ with $w \models \psi$.

¹Alur, Madhusudan '04

Visibly Pushdown Automata¹ (vPDA)

- \bullet Let $\Sigma^{push},\,\Sigma^{\#}$ and Σ^{pop} be pairwise disjoint alphabets
- Let $\Sigma = \Sigma^{\text{push}} \cup \Sigma^{\#} \cup \Sigma^{\text{pop}}$ and $\tilde{\Sigma} = \langle \Sigma^{\text{push}}, \Sigma^{\#}, \Sigma^{\text{pop}} \rangle$

Definition

A vPDA over $\tilde{\Sigma}$ is a tuple $\mathcal{A} = (Q, \Gamma, I, T, F)$ where:

- Q is a finite set of states, Γ is a stack alphabet
- $I, F \subseteq Q$ are sets of initial resp. final states
- $T = T^{\text{push}} \cup T^{\#} \cup T^{\text{pop}}$ where:
 - $T^{\text{push}} \subseteq Q \times \Sigma^{\text{push}} \times \Gamma \times Q$
 - $T^{\#} \subseteq Q \times \Sigma^{\#} \times Q$
 - $T^{\mathsf{pop}} \subseteq Q \times \Sigma^{\mathsf{pop}} \times (\Gamma \cup \{\bot\}) \times Q$

Accepted language: $\mathcal{L}(\mathcal{A}) \subseteq \Sigma^+$.

¹Alur, Madhusudan '04

Logic for Visibly Pushdown Languages¹

- Let Σ^{push} , $\Sigma^{\#}$ and Σ^{pop} be pairwise disjoint alphabets
- Let $\Sigma = \Sigma^{\text{push}} \cup \Sigma^{\#} \cup \Sigma^{\text{pop}}$ and $\tilde{\Sigma} = \langle \Sigma^{\text{push}}, \Sigma^{\#}, \Sigma^{\text{pop}} \rangle$

Definition

Logic $MSO(\tilde{\Sigma})$ is defined as:

$$\varphi \ ::= \ P_a(x) \mid x \leq y \mid x \in X \mid \ \mathsf{match}(x,y) \mid \varphi \lor \varphi \mid \neg \varphi \mid \exists x. \varphi \mid \exists X. \varphi$$

where $a \in \Sigma$.

Defined language of a sentence $\varphi \in \mathsf{MSO}(\tilde{\Sigma})$: $\mathcal{L}(\varphi) \subseteq \Sigma^+$.

Theorem¹

Let $\mathcal{L} \subseteq \Sigma^+$ be a language. TFAE:

- **1** \mathcal{L} is recognizable by a vPDA over $\tilde{\Sigma}$.
- \mathcal{L} is MSO($\tilde{\Sigma}$)-definable.

¹Alur, Madhusudan '04

Decomposition of TPDA

Extended alphabet

$$\Gamma_{k,n} = \sum_{\substack{k \in \mathbb{Z} \\ \text{clock constraints}}} (\mathbb{P}(k))^n \times \{0,1\}^n \times \mathbb{P}(k) \times \{\text{push}, \#, \text{pop}\}$$

- n := number of global clocks
- k := maximal number appearing in constraints
- $\mathbb{P}(k) := \{ [0,0], (0,1), [1,1], ..., (k-1,k), [k,k], (k,\infty) \}$

Decomposition of TPDA

Theorem

Let $\mathcal{L} \subseteq \mathbb{T}^+$. TFAE:

- $oldsymbol{0}$ \mathcal{L} is a timed pushdown language.
- 2 There exist $k, n \in \mathbb{N}$ and a vPDL $\mathcal{L}' \subseteq \Gamma_{k,n}^+$ with

$$\mathcal{L} = \pi(\mathcal{L}' \cap \mathcal{T}_{k,n})$$

Decomposition of TML

Theorem

Let $\mathcal{L} \subseteq \mathbb{T}^+$. TFAE:

- $oldsymbol{0}$ \mathcal{L} is TML-definable.
- ② There exist $k, n \in \mathbb{N}$ and a vPDL $\mathcal{L}' \subseteq (\Gamma_{k,n})^+$ with

$$\mathcal{L} = \pi(\mathcal{L}' \cap \mathcal{T}_{k,n})$$

- Weighted TPDA
- 2 TPDA with ε -transitions

- Weighted TPDA
- **2** TPDA with ε -transitions
- 3 Are TDPA without global clocks expressively equivalent to $\exists^{\rm match} \mu. {\rm FO}(<, \mu_{\sim c})$?

- Weighted TPDA
- **2** TPDA with ε -transitions
- **3** Are TDPA without global clocks expressively equivalent to $\exists^{\text{match}} \mu.FO(<, \mu_{\sim c})$?
- 4 Connection to timed tree automata

- Weighted TPDA
- **2** TPDA with ε -transitions
- **3** Are TDPA without global clocks expressively equivalent to $\exists^{\text{match}} \mu.FO(<, \mu_{\sim c})$?
- Connection to timed tree automata
- 6 A Chomsky-Schützenberger characterization

- Weighted TPDA
- **2** TPDA with ε -transitions
- **3** Are TDPA without global clocks expressively equivalent to $\exists^{\text{match}} \mu.FO(<, \mu_{\sim c})$?
- Connection to timed tree automata
- A Chomsky-Schützenberger characterization

THANK YOU!