manuale cremonese

ELETTROTECNICA

Quarta edizione

Per i Nuovi Tecnici a indirizzo Elettrotecnica ed Elettronica articolazione *Elettrotecnica* e articolazione *Automazione*

- DISCIPLINE PROPEDEUTICHE
- ELETTROTECNICA ed ELETTRONICA
- AUTOMAZIONE

ZANICHELLI

PREFAZIONE

La quarta edizione del manuale Cremonese di **Elettrotecnica** è stata profondamente rivista e aggiornata per rispondere alle esigenze didattiche dei Nuovi Istituti Tecnici, in particolare per l'indirizzo di Elettrotecnica ed Elettronica nell'articolazione *Elettrotecnica* e nell'articolazione *Automazione*.

Un unico volume raccoglie ora le discipline propedeutiche e la trattazione specialistica.

La prima parte, propedeutica, contiene argomenti che dovrebbero essere già acquisiti, ma che si è ritenuto utile riproporre nelle linee essenziali per consentire sempre allo studente una agevole consultazione. La sezione è anche stata aggiornata e in alcuni casi profondamente rivista (*fisica*, *matematica*) per rendere la trattazione dei contenuti coerenti con le attuali indicazioni ministeriali sulle materie di insegnamento; si è inoltre ritenuto utile aggiungere specifici approfondimenti (*statistica*, *matematica finanziaria*, *impatto ambientale*, *rifiuti*, *qualità* e sicurezza nei luoghi di lavoro).

Nella sezione specialistica si è privilegiata la componente disciplinare caratterizzante: si è intervenuti sulla parte di **elettrotecnica** aggiornando e rendendo più fruibile la consultazione e più didattica la trattazione, inserendo diversi capitoli di elettronica di base alla luce delle nuove Linee guida ministeriali. Particolare cura è stata rivolta ai capitoli di *Macchine elettriche*, *Macchine elettriche speciali* e *Motori a commutazione elettronica* in virtù del loro sempre più diffuso utilizzo.

La stretta attinenza del programma di elettrotecnica e di elettronica con le materie di **automazione** ha convinto i curatori ad approfondire questo tema con particolare riferimento alle più recenti applicazioni industriali del PLC. Si è poi organizzato in una unica trattazione l'argomento di *Impianti, materiali e apparecchiature, progettazione* aggiornandolo alla normativa vigente.

L'editore desidera ringraziare i curatori scientifici e didattici: in particolare *Antonino Liberatore* per la grande esperienza della manualistica Cremonese messa a disposizione; *Licia Marcheselli* per i continui consigli sulla didattica e sulle prospettive dell'insegnamento nei Nuovi Tecnici; *Giovanni Naldi* per la supervisione scientifica e il controllo dell'aggiornamento; *Michele Monti* per aver curato con grande dedizione la parte specialistica dando nuova forza a un manuale ormai classico.

Un ringraziamento infine a tutti i collaboratori, citati nella tavola degli autori, provenienti da Università, Aziende e Istituti tecnici, per il grande impegno profuso.

Febbraio 2015 l'Editore

AUTORI

BECCARI MARIO Impianti per il trattamento e lo smaltimento dei rifiuti

BONOLI ALESSANDRA Impatto ambientale • Impianti per il trattamento e lo smaltimento dei rifiuti

Bonomo Mario Illuminotecnica

BORCHI EMILIO Fisica

CABRUCCI ANDREA Unità di misura

Carfagni Monica Disegno tecnico • Autocad 2D

CARRARA GIANFRANCO Disegno tecnico

CAVALLI CAMILLA Disegno tecnico

CAVALLI MARIA ADELAIDE Disegno tecnico

CITTI PAOLO Sicurezza nei luoghi di lavoro: strumenti e metodi per l'analisi e la valutazione dei rischi • Qualità nel contesto industriale

DAPPORTO PAOLO Chimica

DI GERLANDO ANTONINO Azionamenti con macchine elettriche • Macchine elettriche speciali • Tecnologie elettriche

DI GIUDA GIUSEPPE MARTINO Impatto ambientale • Impianti per il trattamento e lo smaltimento dei rifiuti

FERRARIO MARCO LINO Tecnologie informatiche

GIORGETTI ALESSANDRO Qualità nel contesto industriale

GRASSO FRANCESCO Energie rinnovabili • Risparmio ed efficienza energetica

GUIDI PAOLO Principi di economia e matematica finanziaria • Azionamenti con macchine elettriche • Trazione elettrica • Disegno elettrico ed elettronico • Centrali di produzione dell'energia elettrica • Trasporto e produzione dell'energia elettrica • Sistemi di acquisizione, elaborazione e distribuzione dati • Sistemi di controllo analogici e digitali • Impianti per l'automazione industriale • Controllo iogici programmabili (PLC) • Fondamenti di robotica • Elementi di domotica • Software per l'automazione industriale

LAFFI MARIA CRISTINA Disegno tecnico

LAMBORGHINI STEFANO Disegno tecnico

Landi Nedo Controllori logici programmabili (PLC)

LIBERATORE ANTONINO Complementi di matematica • Elettrotecnica • Macchine elettriche • Disegno elettrico ed elettronico • Elettronica analogica

LORUSSO NICOLA Elettronica digitale • Microprocessori e

microcontrollori • Sistemi di acquisizione, elaborazione e distribuzione dati

Manetti Stefano Elettronica analogica

Marcheselli Licia Matematica • Complementi di matematica • Statistica e calcolo delle probabilità

MARINI MAURO *Matematica* • *Complementi di matematica* • *Statistica e calcolo delle probabilità*

MARIOTTI ALBERTO Controllori logici programmabili (PLC)

MARTINI DAVID Misure elettriche ed elettroniche

MARTINI PIETRO Misure elettriche ed elettroniche • Tecnologie elettriche • Convertitori statici • Elettronica analogica

MIRANDOLA STEFANO Microprocessori e microcontrollori • Elettronica analogica

MONTI MICHELE Tecnologie industriali: materiali e lavorazioni • Elettrotecnica • Misure elettriche ed elettroniche • Macchine elettriche • Macchine elettriche speciali • Motori a commutazione elettronica • Tecnologie elettriche

MONTICELLI MAURIZIO Energie rinnovabili • Risparmio ed efficienza energetica • Certificazione ed efficienza energetica degli edifici • Impianti, materiali e apparecchiature, progettazione

NALDI GIOVANNI Unità di misura

NESI STEFANIA Chimica

PAGNOTTA ROMANO Impatto ambientale

PALLANTE PIERO Fisica

Parretti Chiara Qualità nel contesto industriale

Patelli Stefano *Principi di economia e matematica finanziaria*

PEZZI MARIO Elettrotecnica • Macchine elettriche • Macchine elettriche speciali • Motori a commutazione elettronica • Tecnologie elettriche

Poggi Marco Unità di misura • Disegno tecnico

REATTI ALBERTO Macchine elettriche • Criteri di scelta delle macchine elettriche e loro applicazioni

Sammarone Sergio Tecnologie industriali: materiali e lavorazioni

Tortoli Piero Elettronica analogica

VISTOLI IVO Azionamenti con macchine elettriche • Macchine elettriche speciali • Tecnologie elettriche

INDICE GENERALE

DISCIPLINE PROPEDEUTICHE		11.7. Funzione inversa	. 31
		11.8. Limiti	
1 MATEMATICA		11.9. Teoremi sui limiti	
1. GEOMETRIA	3	11.10. Limiti notevoli	
1.1. Formulario di geometria euclidea	3	11.11. Infinitesimi e infiniti	
1.2. Geometria analitica nel piano	6	11.12. Funzioni continue	
1.3. Geometria analitica nello spazio	7	12. CALCOLO DIFFERENZIALE	. 36
2. RICHIAMI DI ALGEBRA DEGLI INSIEMI	8	12.1. Derivate	. 36
2.1. Principali operazioni	8	12.2. Regole di derivazione	
2.2. Principali relazioni	9	12.3. Derivate di funzioni elementari	. 37
2.3. Proprietà di relazioni e operazioni	9	12.4. Derivata di funzione composta	
2.4. Principio di dualità	10	12.5. Teoremi sulle funzioni derivabili	
2.5. Teorema di De Morgan	10	12.6. Massimi e minimi	. 38
2.6. Operatori funzionalmente completi	11	12.7. Forme indeterminate	. 39
2.7. Introduzione all'algebra di Boole	11	12.8. Derivate successive	. 40
3. STRUTTURE ALGEBRICHE	12	13. CALCOLO INTEGRALE	. 40
3.1. Gruppo	12	13.1. Primitive	. 40
3.2. Campo	13	13.2. Regole di integrazione	. 40
3.3. Spazio vettoriale	13	13.3. Integrazione di funzioni razionali	. 42
3.4. Applicazioni lineari	13	13.4. Integrale definito: definizione e proprietà	. 42
4. POTENZE DI NUMERI	13	13.5. Tavola di integrali definiti	. 43
5. RADICALI E OPERAZIONI SU DI ESSI	14	14. SERIE	. 43
6. LOGARITMI DI NUMERI	15	14.1. Successioni	
7. POLINOMI	15	14.2. Teoremi sui limiti	. 45
7.1. Generalità	15	14.3. Serie numeriche	. 45
7.2. Regola di Ruffini	15	14.4. Criteri di convergenza	. 45
7.3. Massimo comune divisore	16	14.5. Somma e prodotto di due serie	. 46
7.4. Fattorizzazione	16	14.6. Serie di potenze	. 47
7.5. Relazioni tra coefficienti e radici	16	14.7. Serie di Taylor	. 48
8. EQUAZIONI E DISEQUAZIONI DI I E II GRADO	17	14.8. Sviluppi di funzioni elementari	. 48
8.1. Identità ed equazioni	17	15. EQUAZIONI DIFFERENZIALI	
8.2. Disequazioni	17	15.1. Equazioni differenziali del primo ordine	. 48
9. TRIGONOMETRIA	18	15.2. Equazioni differenziali lineari	. 51
9.1. Le funzioni goniometriche	18	15.3. Equazioni lineari a coefficienti costanti	. 52
9.2. Le equazioni goniometriche	18	15.4. Sistemi lineari	. 53
9.3. Trigonometria piana	18		
9.4. Risoluzione delle figure piane	21	2 COMPLEMENTI DI MATEMATICA	. 55
10. NUMERI COMPLESSI	21	1. MATRICI E SISTEMI LINEARI	
10.1. Definizione	21	1.1. Matrici	
10.1. Berinizione	21	1.2. Determinante	
	26	1.3. Proprietà del determinante	
10.3. Forma trigonometrica	26	1.4. Operazioni tra matrici	
10.4. Forma esponenziale e formule di Eulero	27	1.5. Matrice inversa e matrice aggiunta	
	27	1.6. Matrice esponenziale	
11. FUNZIONI REALI	27	1.7. Autovalori e autovettori	
11.1. Generalità	27	1.8. Sistemi lineari	
11.2. Granici di funzioni elementari	30	2. CRITERIO DI HURWITZ	. 39
11.4. Funzioni razionali	30	5. STABILITA DI UNA EQUAZIONE DIFFERENZIALE	. 60
11.4. Funzioni razionali	30	4. FUNZIONI DI PIÙ VARIABILI	
	31		
11.6. Funzione composta	31	4.1. Derivate parziali	. 00

	4.2. Derivata di funzione composta	61	3.2. La concezione classica della probabilità	88
	4.3. Analisi vettoriale	62	3.3. La concezione statistica della probabilità	88
	4.4. Derivata direzionale	62	3.4. La concezione soggettiva della probabilità	88
	4.5. Funzioni implicite	62	3.5. L'impostazione assiomatica della probabilità	89
	4.6. Massimi e minimi	63	3.6. La probabilità della somma logica di eventi	89
	4.7. Derivazione e integrazione	63	3.7. La probabilità condizionata	89
	4.8. Curve e integrale curvilineo	63	3.8. La probabilità del prodotto logico di eventi	89
5.	. ANALISI COMPLESSA	64	3.9. Il problema delle prove ripetute	89
	5.1. Funzioni elementari	64	3.10. Il teorema di Bayes	89
	5.2. Funzioni analitiche	65	3.11. I giochi aleatori	89
	5.3. Integrale	65	3.12. Le variabili casuali discrete	
	5.4. Serie di Taylor e di Laurent	66	e le distribuzioni di probabilità	89
	5.5. Singolarità	66	3.13. I valori caratterizzanti una variabile	
	5.6. Residui	67	casuale discreta	90
	5.7. Funzioni reali positive	67	3.14. Le distribuzioni di probabilità di uso frequente	90
6	. FUNZIONI DI BESSEL	68	3.15. Le variabili casuali standardizzate	90
٥.	6.1. Gamma euleriana	68	3.16. Le variabili casuali continue	90
	6.2. Funzioni di Bessel	68	4. STATISTICA INFERENZIALE	91
7	. ANALISI DI FOURIER	68	4.1. La popolazione e il campione	91
/.	7.1. Sviluppo in serie di Fourier	00	4.2. I parametri della popolazione	
		68	e del campione	92
	di funzioni periodiche	00	4.3. La distribuzione della media campionaria	92
	7.2. Forma complessa dello sviluppo	69	4.4. Particolari distribuzioni campionarie	92
	in serie di Fourier	72	4.5. Gli stimatori e le loro proprietà	92
0	7.3. L'integrale e la trasformata di Fourier	72	4.6. La stima puntuale	92
δ.		. –	4.7. La stima per intervallo della media	93
	8.1. Generalità	72	4.8. La stima per intervallo della differenza fra due	75
	8.2. Definizione di trasformata di Laplace	72	medie	93
	8.3. Trasformata inversa	73	4.9. La stima per intervallo di una percentuale	93
	8.4. Proprietà della trasformata	73	4.10.La verifica delle ipotesi	94
	8.5. Scomposizione in fratti semplici (frazionamento	7.0	5. TEORIA DEGLI ERRORI	94
	parziale). Trasformata inversa	76	5.1. Generalità	94
	8.6. Teorema del valore iniziale	77	5.2. Misurazioni eseguite con lo stesso	94
	8.7. Teorema del valore finale	77	grado di precisione	95
_	8.8. Soluzioni delle equazioni integrodifferenziali	77		93
9.	. TRASFORMATA ZETA (Z)	78	5.3. Misurazioni eseguite con diverso grado di precisione	96
	9.1. Premessa	78	5.4. Misurazioni indirette e	90
	9.2. Definizioni	78		96
	9.3. Esempi di trasformata Z	78	propagazione degli errori	90
	9.4. Proprietà della trasformata Z	79	4 UNITÀ DI MISURA	
	9.5. Convoluzione discreta	80	1. GENERALITÀ	99
	9.6. Trasformata inversa	80	2. GRANDEZZE FONDAMENTALI	
	9.7. Risoluzione di equazioni alle differenze	80	E RELATIVE UNITÀ	99
2	STATISTICA E CALCOLO DELLE		3. MULTIPLI E SOTTOMULTIPLI	100
J	PROBABILITÀ	85	3.1. Esempi di applicazione	100
1	. CALCOLO COMBINATORIO	85	3.2. Uso delle unità SI e dei loro multipli e	
1.	1.1. Permutazioni semplici	85	sottomultipli	100
	1.2. Disposizioni semplici	85	4. GRANDEZZE FISICHE E UNITÀ DI MISURA	100
		85	5. TABELLE DI CONVERSIONE	107
	1.3. Combinazioni semplici. Binomio di Newton	86	6. IMPIEGO DELLE TABELLE DI CONVERSIONE	
	1.4. Disposizioni con ripetizione	86	DELLE UNITÀ DI MISURA	110
	1.5. Combinazioni con ripetizione	80	6.1. Premessa	110
	1.6. Permutazioni con ripetizione. Polinomio di	0.0	6.2. Note esplicative	110
2	Leibnitz	86	•	
۷.	STATISTICA	86	5 FISICA	111
	2.1. Popolazione, carattere, frequenza	86	1. VETTORI	111
	2.2. I dati statistici	87	1.1. Grandezze scalari e vettoriali	111
	2.3. Gli indici di posizione centrale	87	1.2. Somma e differenza di due vettori	112
	2.4. Gli indici di variabilità	87	1.3. Prodotto scalare	112
	2.5. I rapporti statistici	87	1.4. Prodotto vettoriale	112
	2.6. L'interpolazione statistica	87	2. CINEMATICA	113
	2.7. La dipendenza, la regressione e la correlazione	87	2.1. Cinematica del punto materiale	113
3.	. CALCOLO DELLE PROBABILITÀ	88	2.2. Cinematica del corpo rigido	115
	3.1 Gli avanti	88	3 STATICA	115

3.1. Le forze	115	1.7. Chimica nucleare	185
3.2. Forze elastiche, forza peso, forze di attrito		1.8. Chimica inorganica	
3.3. Condizioni per l'equilibrio	117	1.9. Chimica organica	194
4. DINAMICA	118	7 TECNOLOGIE INFORMATICHE	
4.1. Principio di inerzia e sistemi di riferimento		1. RAPPRESENTAZIONE NUMERICA	
inerziali	118	DELL'INFORMAZIONE	201
 Secondo principio della dinamica per un punto 		1.1. Le macchine e le informazioni	
materiale	118	1.2. Sistemi di numerazione	
4.3. Quantità di moto di un punto materiale		1.3. Codifiche binarie	
4.4. Lavoro di una forza e potenza	119	STRUTTURA DEI SISTEMI DI ELABORAZIONE	
4.5. Energia potenziale ed energia cinetica	120	2.1. Introduzione ai sistemi di elaborazione	
4.6. Conservazione dell'energia meccanica	120	2.2. Strutture di memorizzazione dei dati	
 4.7. Principio di azione-reazione 		2.3. Comunicazione fra elaboratori	
e dinamica dei sistemi		3. PRINCIPALI SISTEMI OPERATIVI	
4.8. Dinamica del corpo rigido		3.1. Windows	
4.9. Gravitazione universale		3.2. Linux	
4.10.Moti armonici e periodici		3.3. Android	
4.11.Problemi di urto		3.4. Mac OS X	
5. PROPRIETÀ MECCANICHE DEI SOLIDI		3.5. Altri sistemi operativi per dispositivi mobili	
6. FLUIDI		4. PRINCIPALI APPLICAZIONI	
6.1. Pressione		4.1. Wordprocessor	
6.2. Statica dei fluidi		4.2. Fogli elettronici	
6.3. Statica dell'atmosfera		4.3. Visual Basic for Applications	
6.4. Legge di Boyle e Mariotte		4.4. Presentazioni	
6.5. Dinamica dei fluidi		4.5. Altre applicazioni	
7. TERMODINAMICA			
7.1. Temperatura		8 DISEGNO TECNICO	267
7.2. Dilatazione termica dei solidi e dei liquidi		1. NORME FONDAMENTALI	
7.3. Equazione di stato		1.1. Formato dei fogli	
7.4. Calore		1.2. Tipi e grossezza delle linee	
7.5. Cambiamenti di stato		1.3. Scale di rappresentazione	
7.6. Trasmissione del calore		1.4. Requisiti generali per la scrittura	
7.7. Primo principio della termodinamica		2. COSTRUZIONI GEOMETRICHE	
7.8. Secondo principio della termodinamica		2.1. Divisione di segmenti e di angoli 2.2. Ovali e ovoli	
8. CAMPO ELETTRICO		2.3. Le curve coniche	
8.2. La Legge di Coulomb		2.4. Ellissi	
8.3. Campo elettrico e potenziale elettrico		2.5. Parabole	
8.4. Corrente elettrica e leggi di Ohm		2.6. Iperboli	
9. CAMPO MAGNETICO		3. PRINCIPI GENERALI DI RAPPRESENTAZIONE	
9.1. Induzione elettromagnetica		3.1. Rappresentazione in proiezione ortogonale	
10. OTTICA		3.2. Rappresentazione in proiezione assonometrica	
10.1. Caratteristiche della radiazione luminosa		3.3. Gli elementi fondamentali dell'assonometria	
10.2. Ottica geometrica		3.4. Sezioni	
10.3. Ottica fisica		3.5. Tratteggi	
11. ONDE		3.6. Particolarità di rappresentazione	
11.1. Generalità sulle onde		3.7. Quotatura	
11.2. Velocità di propagazione delle onde		3.8. Complessivi	
11.3. Energia trasportata dalle onde			
11.4. Interferenza		9 AUTOCAD 2D	201
11.5. Onde stazionarie		1. INTRODUZIONE	
11.6. Battimenti		2. AMBIENTE DI LAVORO	
11.7. Onde sonore ed Effetto Doppler	157	3. IMMISSIONE DEI COMANDI	294
		4. IMMISSIONE DI COORDINATE	295
6 CHIMICA		5. CREAZIONE, ORGANIZZAZIONE E	205
1. CHIMICA GENERALE, INORGANICA E	150	VISUALIZZAZIONE DEL DISEGNO	
ORGANICA	159	5.1. Inizio di un nuovo disegno	
1.1. Atomo e sistema periodico degli elementi	159	5.2. Unità e formato dell'unità di disegno	
1.2. Legame chimico e composti chimici	166	5.3. Layer	
Reazioni chimiche e stechiometria Requilibri chimici	176	5.4. Spazio modello e spazio carta	
	177	5.5. Strumenti per la visualizzazione	
1.5. L'energia e la velocità di reazione			
1.6. Ossidoriduzioni e Elettrochimica	182	7. STRUMENTI DI MODIFICA	300

8.	BLOCCHI	304	9.4. Istogramma	363
	QUOTE E TESTI		9.5. I diagrammi di correlazione	
	9.1. Quote		9.6. Diagramma di Pareto	
	9.2. Stili di quota		10. CONTROLLO STATISTICO DELLA QUALITÀ	
	9.3. Testi		10.1. La capacità di processo	
	9.4. Stili di testo		10.2. Le carte di controllo	
10	PRINCIPI DI ECONOMIA E MATEMATICA	312	13 TECNOLOGIA INDUSTRIALE	500
10	FINANZIARIA		1. PROPRIETÀ DEI MATERIALI	373
1	PRINCIPI DI ECONOMIA	315	1.1. Tipi di materiali	
1.	1.1. Bisogni, beni, utilità		1.2. Tipi di materiali	
	1.2. La produzione		2. PROVE DI LABORATORIO	
	1.3. Il mercato		2.1. Relazione sollecitazione-deformazione	
	1.4. La moneta		2.2. Prova di resistenza a trazione	
	1.5. Caratteristiche della moneta		2.3. Prova di resistenza a trazione	
2			•	
۷.	IMPRESA, AZIENDA E SOCIETÀ		2.4. Prova di resistenza a flessione	
	2.1. Enti economici		2.5. Prova di resistenza a torsione	
	2.2. Impresa		2.6. Prova di resistenza a taglio	
	2.3. Azienda		2.7. Prova di resilienza Charpy	
	2.4. Società		2.8. Prove di durezza	
	2.5. Organizzazione dell'impresa		3. FERRO E SUE LEGHE	
	2.6. Fine dell'impresa		3.1. Ferro	
	2.7. Utile dell'impresa		3.2. Il processo siderurgico	
3.	CAPITOLATI E PREVENTIVI		3.3. Il diagramma di stato delle leghe Fe–C	
	3.1. Contratto		3.4. Ghisa	
	3.2. Capitolati		3.5. Acciaio	
	3.3. Preventivi		4. MATERIALI METALLICI NON FERROSI	
4.	MATEMATICA FINANZIARIA	326	4.1. Alluminio e sue leghe	
	4.1. Interesse semplice	326	4.2. Rame e sue leghe	386
	4.2. Interesse composto	326	4.3. Magnesio e sue leghe	387
	4.3. Interesse convertibile	327	4.4. Altri elementi	387
	4.4. Mutui	328	4.5. Sinterizzati	388
	4.5. Riparti	328	5. MATERIALI NATURALI	388
11	CICUDEZZA NELI HOCHI DI LAVODO.		5.1. Legno	388
11	SICUREZZA NEI LUOGHI DI LAVORO:		5.2. Rocce	390
	STRUMENTI E METODI PER L'ANALISI E		5.3. Materiali per costruzioni	391
1	LA VALUTAZIONE DEI RISCHI	221	5.4. Ceramiche	391
	INTRODUZIONE		5.5. Vetro	391
	DEFINIZIONI		6. RESINE SINTETICHE	391
	VALUTAZIONE DEI RISCHI		6.1. Resine termoplastiche	
	MODALITÀ DI VALUTAZIONE DEI RISCHI		6.2. Resine termoindurenti	
	PROCESSO DI VALUTAZIONE DEI RISCHI		7. MATERIALI COMPOSITI	
	INDIVIDUAZIONE DEI PERICOLI		7.1. Cemento armato	
	STIMA DEI RISCHI		7.2. Compositi sintetici	
	MISURE DI TUTELA	33/	8. ALTRI MATERIALI	
9.	PROCEDURE STANDARDIZZATE PER	244	8.1. Abrasivi	
	PICCOLE E MEDIE IMPRESE	341	8.2. Acidi	
10.	DISPOSITIVI DI PROTEZIONE	244	8.3. Combustibili	
	INDIVIDUALE	344	8.4. Detergenti	
12	QUALITÀ NEL CONTESTO INDUSTRIALE		8.5. Fibre tessili	
	DEFINIZIONE DI QUALITÀ	351	8.6. Lubrificanti	
	INNOVATORI DELLA QUALITÀ		8.7. Protettivi	
	STORIA DELLA QUALITÀ		8.8. Refrattari	
	NASCITA DELLE NORME ISO 9000		9. CICLO DI LAVORAZIONE	
	ITER DI CERTIFICAZIONE		9.1. Metodi di lavorazione	
	DEFINIZIONE DEI REQUISITI E	550	9.2. Foglio di lavorazione	
0.	ANALISI DEL CLIENTE	357	9.3. Tracciatura	
7	COSTI DELLA NON-QUALITÀ		10. LAVORAZIONI AL BANCO	
	APPROCCIO PER PROCESSI		10.1. Fissaggio del pezzo	
	I SETTE STRUMENTI DELLA QUALITÀ		10.1. Pissaggio dei pezzo	
9.			•	
	9.1. Il diagramma causa-effetto		10.3. Tipi di lavorazione	
	9.3. Le schede di controllo		10.5. Limatura	

10.6. Piallatura	395 1	6 ENE	RGIE RINNOVABILI	
10.7. Foratura	396	1. INTR	ODUZIONE	453
10.8. Alesatura		1.1.	Richiesta di energia primaria nel mondo	453
10.9. Levigatura			Bilancio elettrico italiano	
10.10. Piegatura			Le energie rinnovabili: dati attuali e potenzialità	
11. LAVORAZIONI ALLE MACCHINE UTENSILI			di sviluppo	453
11.1. Tornitura	398		I limiti delle energie rinnovabili	454
11.2. Fresatura	401		Accumulo dell'energia elettrica	454
11.3. Rettificatura	404		Riserve di energia primaria fossile	
12. COLLEGAMENTI	404		accertate e costi	456
12.1. Tipi di collegamenti	404		Costo di produzione dell'energia da	
12.2. Filettatura	404		fonti rinnovabili	456
12.3. Incastri	405		Incentivi, contributi e finanziamenti: la	
12.4. Saldatura	407		legislazione nazionale e comunitaria	458
13. TRATTAMENTI TERMICI	409		Ritorno energetico sull'investimento energetico	460
13.1. Ciclo termico			ARE FOTOVOLTAICO	460
13.2. Tempra	102		Descrizione del fenomeno fisico	460
13.3. Rinvenimento		2.2.	Forme e tecnologie costruttive	462
13.4. Bonifica	410		Descrizione e componenti del sistema	
13.5. Ricottura			Funzionamento in isola e in rete	
13.6. Normalizzazione	411	2.5.	Dimensionamento	466
13.7. Cementazione	411	2.6.	Aspetti tecnici e normativi per l'installazione	470
13.8. Nitrurazione			Esempio di dimensionamento di un	
14. AUTOMAZIONE			impianto fotovoltaico da 3 kW	470
14. 1. Macchine a controllo numerico			RGIA IDROELETTRICA	
		3.1.	Descrizione della risorsa idrica	471
14.2. Centri di lavoro		3.2.	Tecnologie attuali	473
14.3. Robot	413		Modalità realizzative per impianti idroelettrici	
14 IMPATTO AMBIENTALE			Aspetti tecnici e normativi	
1. ALTERAZIONE DEI SISTEMI, ORIGINE DEGLI			Esempi di impianti mini-idro	
INQUINANTI	415		RGIA EOLICA	
1.1. Generalità	415	4.1.	Descrizione della risorsa eolica	477
1.2. L'inquinamento atmosferico	415	4.2.	Calcolo della massima potenza	479
1.3. Inquinamento del suolo e del sottosuolo	417		Tecnologie attuali e forme costruttive	
1.4. Inquinamento delle acque		4.4.	Scelta del sito e studio anemologico	480
2. BASI NORMATIVE PER LA TUTELA DEL		4.5.	Studio di fattibilità	480
PATRIMONIO AMBIENTALE: VALUTAZIONE DI		4.6.	Impatto ambientale	481
IMPATTO AMBIENTALE	421		Esempio di impianto	
2.1. La Valutazione di Impatto Ambientale	421	5. BIOM	MASSE	482
2.2. La tutela della qualità dell'aria	423	5.1.	Il principio fisico	482
2.3. Tutela del suolo		5.2.	Classificazione delle biomasse per uso energetico	483
2.4. Tutela delle acque	424	5.3.	Calcolo della disponibilità di biomasse	483
·		5.4.	Calcolo del potenziale energetico	
15 IMPIANTI PER IL TRATTAMENTO			delle biomasse	483
E LO SMALTIMENTO DEI RIFIUTI	107	5.5.	Il potere calorifico	484
1. PREMESSA	427	5.6.	I processi di conversione energetica	485
1.1. Definizione e classificazione dei rifiuti		5.7.	Le filiere di conversione energetica	486
1.2. La scala di priorità dell'Unione Europea	428	5.8.	Tipologie di impianto e componenti	
1.3. Produzione e caratteristiche dei rifiuti urbani	429		caratterizzanti	486
1.4. Produzione e caratteristiche dei rifiuti speciali e		5.9.	Dati e caratteristiche delle caldaie e dei generatori	
dei rifiuti pericolosi		i	alimentati a biomasse	488
2. GESTIONE INTEGRATA DEI RIFIUTI		6. ENER	RGIA GEOTERMICA	488
2.1. Raccolta differenziata e riciclo	431		Introduzione	488
2.2. Compostaggio	432	6.2.	Le pompe di calore geotermiche	489
2.3. Selezione e Trattamento Meccanico Biologico			Definizione di EER e COP	490
(TMB)	435	6.4.	Scambiatori geotermici	491
2.4. Il combustibile da rifiuto (CDR) e il combustibile			Principali componenti	
solido secondario (CSS)	437		La progettazione di un impianto geotermico	
2.5. Incenerimento	439		Esempio di calcolo	494
2.6. Discarica	440	7. ALTE	RE FONTI RINNOVABILI	495
APPENDICE 1 – ESEMPI DI PROCEDURA DI GESTIONE			Energia da maree e moto ondoso	495
DI UN RIFIUTO SPECIALE	445	7.2.	Solare termico	495
APPENDICE 2 – IL SISTRI	451	7.3.	Solare termodinamico	497

	7.4. Sistemi ibridi	498	5.4. Metodologie di calcolo	560
8.	ALLACCIAMENTO ALLA RETE ELETTRICA E			561
	MISURA DELL'ENERGIA	498		561
	8.1. Misura dell'energia elettrica prodotta	499		562
17	RISPARMIO ED EFFICIENZA ENERGETICA		5.8. Norme tecniche di riferimento	562
	INTRODUZIONE	503	6. SOFTWARE DI RIFERIMENTO PER IL CALCOLO	563
1.	1.1. Il ruolo del risparmio e dell'efficienza energetica	503	7. PROCEDURA PER IL CALCOLO SEMPLIFICATO	
	1.2. La legislazione europea		CERTIFICAZIONE ENERGETICA	564
	1.3. La legislazione finanziaria per il risparmio	303	8. TRASMITTANZA TERMICA COMPONENTI OPACHI	
	energetico	505	E TRASPARENTI	568
	1.4. Titoli di efficienza energetica (TEE)		8.1 Determinazione semplificata della trasmittanza	
	1.5. Emission Trading e protocollo di Kyoto		termica dei componenti opachi in	
2	CONTRATTI DI SERVIZIO ENERGIA E RUOLO	312	edifici esistenti	568
	DELL'ENERGY MANAGER	513	8.2 Determinazione semplificata della trasmittanza	
	2.1. Contratto di servizio energia		termica dei componenti trasparenti	570
	2.2. Ruolo dell'energy manager		9. PONTI TERMICI E SCAMBIO TERMICO VERSO	
3.	SISTEMI DI COGENERAZIONE E RECUPERO DEL		AMBIENTI NON CLIMATIZZATI E VERSO IL	
	CALORE	514	TERRENO	571
	3.1. Descrizione generale dei sistemi cogenerativi		10. DETERMINAZIONE DEI RENDIMENTI DEGLI	
	3.2. Funzionamento e vantaggi della cogenerazione	514	IMPIANTI	572
	3.3. Tipologie impiantistiche di cogenerazione	515		
	3.4. Recupero del calore in energia elettrica	516	ELETTROTECNICA	
	3.5. Recupero del calore in energia frigorifera	516		
4.	RISPARMIO ED EFFICIENZA ENERGETICA		19 ELETTROTECNICA	
	NEI SISTEMI DI RISCALDAMENTO E		1. ELETTROSTATICA	579
	CONDIZIONAMENTO DEGLI AMBIENTI		1.1. Azioni tra cariche elettriche (legge di Coulomb)	579
	4.1. Sistemi di riscaldamento e di condizionamento		1.2. Campo elettrico	579
	4.2. I combustibili		1.3. Linee di forza	579
	4.3. Generatori di energia termica		1.4. Intensità di campo elettrico	579
	4.4. Elementi radianti/diffondenti		1.5. Energia potenziale elettrica. Potenziale elettrico.	
_	4.5. Controllo, regolazione e contabilizzazione	524		580
5.	RISPARMIO ED ETICHETTATURA ENERGETICA	537	1	582
,	DEGLI ELETTRODOMESTICI	526	1.7. Capacità	
0.	RISPARMIO ED EFFICIENZA ENERGETICA	527	1.8. Condensatore	
	NELL'ILLUMINAZIONE		1.9. Rigidità dielettrica	585
	6.1. Energia ed efficienza luminosa		1.10. Energia immagazzinata da un condensatore	
	6.3. La tecnologia LED: principio di funzionamento e	320		585
	criticità	528	2. CORRENTI CONTINUE	
		320		586
18	CERTIFICAZIONE ED		2.2. Resistenza e resistività	
	EFFICIENZA ENERGETICA DEGLI EDIFICI		2.3. Conduttanza e conduttività	
	INTRODUZIONE		2.4. Legge di Ohm	
2.	DEFINIZIONI		2.6. Circuito elettrico	
	2.1. Definizioni e indirizzi generali		2.7. Convenzioni di segno	
	Parametri ed elementi per i calcoli Tipologia di interventi		2.8. Ordini di grandezza	
	1 &		2.9. Bipoli elettrici	
2	2.4. Altre definizioni	330	2.10. Tipologie di generatori reali	
٥.	AMBITI DI INTERVENTO, FINALITÀ E MODALITÀ		2.11. Circuiti in corrente continua.	
	OPERATIVE	537	2.12. Carica e scarica del condensatore	
4	CRITERI GENERALI E REQUISITI DELLE	331	2.13. Dualità e analogie	
т.	PRESTAZIONI ENERGETICHE DEGLI EDIFICI E		e e	609
	DEGLI IMPIANTI	537	2.15. Rendimento	
	4.1. Verifiche ed obblighi previsti sulla base del tipo di	551	2.16. Quadripoli	
	intervento e della categoria dell'edificio	537	3. CAMPI MAGNETICI E CIRCUITI MAGNETICI	
	4.2. Calcolo della trasmittanza termica			614
	4.3. Obbligo di integrazione delle fonti rinnovabili		3.2. Induzione magnetica	
5.	CERTIFICAZIONE ENERGETICA DEGLI EDIFICI			616
	5.1. Introduzione			616
	5.2. Finalità e campo di applicazione del Sistema		3.5. Applicazione della legge di Ampere al	
	nazionale di certificazione degli edifici	560		617
	5.3. Prestazione e classi energetiche degli edifici		3.6. Flusso del vettore B e teorema di Gauss	617

3.7.	Flusso del vettore B attraverso una superficie			3.2	Strumenti digitali	675
	non chiusa	617			. Caratteristiche degli strumenti analogici	
3.8.	Tensione magnetica o forza magnetomotrice					676
3.9.	Circuiti magnetici		4			679
	. Legge di Faraday-Neumann. Legge di Lenz				Misure di corrente	
	. Autoinduzione. Legge di Ohm per i circuiti	010			Misure di tensione.	
5.11.	induttivi in regime variabile	619			Misure di potenza	
2 12	. Collegamento in serie e in parallelo di	017			Misure di potenza	
3.12		619				684
2 12	induttanze		5		1	686
	. Espressioni del coefficiente di autoinduzione		٥.			000
	. Mutua induzione			3.1	. Gli strumenti elettronici per la misura delle	(0/
	. Energia connessa con i campi magnetici				C	686
	. Espressione del coefficiente di mutua induzione.	621		5.2	. Le misure di corrente e di tensione in corrente	(07
3.17	. Analogie tra campi magnetici ed elettrici e tra					687
	bipoli induttivi e capacitivi					688
	. Forza portante di un elettromagnete	621				689
3.19	. F.e.m. indotta in un conduttore di lunghezza				1 ,	690
	l che si muove in un campo magnetico di					690
	induzione B con velocità v	622	6.	PR	OVA A VUOTO, PROVA IN CORTOCIRCUITO,	
3.20	. Forza meccanica su un conduttore di lunghezza l			RE		694
	immerso in un campo magnetico di induzione B			6.1	. Macchina asincrona	694
	percorso da corrente I	622		6.2	. Macchina sincrona	696
3.21	Azioni elettrodinamiche			6.3	. Motori in corrente continua	698
3.22	. Correnti di Foucault	623	7.	MI	SURA DELLA POTENZA NEL CAMPO	
	NALI E FORME D'ONDA			DE	LLE RADIOFREQUENZE E DELLE	
	Generalità			ΜI	CROONDE	701
	Caratteristiche generali dei segnali			7.1	. Introduzione	701
	0	625				701
	Segnali di uso più frequente	023				702
		628			. La misura della potenza mediante circuiti	
	JSOIDALE			,		704
5.1.	Generalità		8	МІ	E 1	705
5.2.	Bipoli puramente resistivi		0.		. Principio di funzionamento del contatore	103
5.3.	Bipoli puramente induttivi			0.1	elettronico	705
5.4.	Bipoli puramente capacitivi			0 2		103
5.5.	Legge di Ohm per un bipolo passivo RLC serie			0.2	. I contatori per la misura della frequenza nel	706
5.6.	Ammettenza	633		0.2	campo delle microonde	710
5.7.	Criterio generale per la risoluzione dei circuiti e					/10
	delle reti in regime sinusoidale			8.4	. Alcune applicazioni delle misure di intervalli di	711
5.8.	Potenza in regime sinusoidale			0.5	tempo	711
5.9.	Rifasamento	639	0		. I contatori reciproci	711
5.10	. Potenza complessa. Teorema di Boucherot.		9.		ALIZZATORE DI SPETTRO E ANALIZZATORE	710
	Potenza deformante	640				712
5.11.	. Circuiti risonanti	640		9.1		712
5.12	. Adattamento di carico	646				712
5.13	. Adattamento d'impedenza nei circuiti risonanti			9.3	. Il generatore di inseguimento (tracking	
	parallelo	646			9 ,	715
6 SIST	EMI TRIFASE			9.4	. Glossario dei termini più comuni riguardanti	
	Definizioni					715
	Collegamenti caratteristici dei sistemi trifase			9.5	. Applicazioni dell'analizzatore di spettro	716
	Rifasamento di carico trifase			9.6	. L'analizzatore di reti	717
	Sistemi dissimmetrici			9.7	. Confronto fra l'analizzatore di spettro e	
	DICE – FENOMENI TRANSITORINEI CIRCUITI	033			l'analizzatore di reti	719
		655	10.	MI		719
ELE	TTRICI LINEARI	033		10.	Introduzione e definizione	719
20 MIS	URE ELETTRICHE ED ELETTRONICHE				Misura del fattore di rumore o della cifra di	
	AMPO DELLE MISURE	671			rumore	719
	ORI DI MISURA		11	OS		721
	La misura delle grandezze fisiche					721
	Tipi di errore e valutazione del limite superiore	0.2				722
	dell'errore	672			1 5	724
	Medie e scarti		12			725
	UMENTI DI MISURA		14.			725
	Strumenti analogici				2. I segnali di disturbo	
3.1.	ou umenti anaiogici	0/4		14.	2. 1 30511011 UI UISTUI 00	143

12.3. I livelli di disturbo tollerabili	726	2. DISPOSITIVI ATTIVI DEGLI AMPLIFICATORI	765
12.4. La misura del rumore condotto	727	2.1. Circuiti equivalenti dei dispositivi attivi discreti	103
12.5. Confronto fra i livelli di rumore misurati	, _ ,	e integrati	765
secondo normative diverse	728	2.2. Circuiti equivalenti elettrici	766
12.6. La misura del rumore irradiato		3. CIRCUITI EQUIVALENTI FISICI	766
12.7. Richiami su alcune grandezze riguardanti le		3.1. Circuito equivalente per i transistor bipolari	
emissioni per irradiazione	730	3.2. Circuito equivalente dei transistor a effetto di	
12.8. La suscettibilità elettromagnetica	731	campo	767
		4. RETI DI POLARIZZAZIONE	767
21 CONVERTITORI STATICI	722	4.1. Generalità	767
1. RADDRIZZATORI	733 733	4.2. Stabilizzazione del punto di lavoro del BJT	768
1.2. Classificazione	733	4.3. Polarizzazione dei circuiti integrati lineari	768
1.3. Raddrizzatore trifase a onda intera su carico	133	4.4. Polarizzazione del JFET	768
ohmico e induttivo	734	5. ANALISI NEL DOMINIO DELLA FREQUENZA	769
1.4. Effetti della reattanza di dispersione dei	754	6. REAZIONE NELL'ANALISI E NEL PROGETTO	
trasformatori	734	DEGLI AMPLIFICATORI	770
1.5. Filtri		6.1. Effetti della retroazione	771
1.6. Protezioni dei raddrizzatori	735	7. ANALISI E SINTESI DEGLI AMPLIFICATORI	
2. CONVERTITORI CA/CC A CONTROLLO DI FASE		REAZIONATI	771
2.1. Introduzione	735	8. STABILITÀ DEGLI AMPLIFICATORI REAZIONATI.	
2.2. Convertitori rigenerativi e non rigenerativi		9. SINTESI DEGLI AMPLIFICATORI	
monofase	736	9.1. Generalità	771
2.3. Circuiti monofase a onda intera	737	10. AMPLIFICAZIONE DEI SEGNALI DI PICCOLA AMPIEZZA	772
2.4. Circuiti trifase a semionda	737	10.1. Amplificazione di piccoli segnali nel campo	772
2.5. Convertitori monofase a onda intera su carico		delle basse frequenze	772
con forza controelettromotrice	740	10.2. Amplificazione dei segnali nel campo delle	112
2.6. Convertitore trifase su carico con forza		radiofrequenze	772
controelettromotrice	740	11. AMPLIFICATORI OPERAZIONALI	
2.7. Filtraggio nei convertitori con tiristori	740	11.1. Introduzione	
2.8. Circuiti di innesco per i convertitori a tiristori	741	11.2. Amplificatore operazionale ideale	
2.9. Convertitori a controllo di fase reazionati	742	11.3. Amplificatore operazionale reale	
3. CONVERTITORI CA/CAA CONTROLLO DI	7.12	11.4. Configurazioni circuitali di base	
FASE	743	11.5. Regole per l'analisi semplificata	
3.1. Generalità	743 744	11.6. Comportamento dell'A.O. a frequenze elevate	776
3.2. Cicloconvertitori 4. REGOLATORI A COMMUTAZIONE	744	11.7. Compensazione in frequenza	776
4.1. Generalità	746	11.8. Compensazione della corrente di polarizzazione	
4.2. Tipologie dei regolatori a commutazione	746	e della tensione di offset	777
4.3. Circuiti di controllo	747	11.9. Comportamento dell'A.O. per grandi segnali	
4.4. Circuiti di protezione e ausiliari	748	12. APPLICAZIONI LINEARI DEGLI A.O	
4.5. Regolatori a tiristori (<i>chopper</i>)	748	12.1. Amplificatori differenziali	
5. CONVERTITORI CC/CC	749	12.2. Sommatori	
5.1. Convertitori autooscillanti	749	12.3. Convertitore corrente-tensione	
5.2. Convertitore flyback	750	12.4. Convertitori tensione-corrente	
5.3. Convertitore forward	751	12.5. Amplificatori di corrente	
5.4. Configurazione push-pull	752	12.6. Integratore	
5.5. Convertitore di Cuk	752	12.7. Derivatore	
5.6. Configurazioni a mezzo ponte e a ponte	752	12.8. Amplificatori in corrente alternata	
5.7. Convertitori a uscite multiple	753	12.10. Generatori di corrente continua	
5.8. Convertitori risonanti e quasi risonanti		13. APPLICAZIONI NON LINEARI DELL'A.O	
5.9. Convertitori in classe E	754	13.1. Raddrizzatore di precisione	
5.10. Circuiti ausiliari	755	13.2. Amplificatore logaritmico	
6. CONVERTITORI CC/CA	756	14. COMPARATORI E LIMITATORI	
6.1. Generalità	756	14.1. Comparatore	784
	756	14.2. Rivelatore del passaggio per zero	
6.3. Inverter a ferrorisonanza		14.3. Trigger di Schmitt	
6.4. Inverter a tiristori	759	14.4. Limitatori di tensione	
6.5. Inverter trifase	/60	15. FILTRI ELETTRONICI	
	762	15.1. Quadripoli lineari	786
SEMICONDUTTORE	103	16. FILTRI PASSIVI	787
22 ELETTRONICA ANALOGICA		16.1. Filtri RC e RL (1° ordine)	788
1. AMPLIFICATORI A TRANSISTOR	765	16.2. Filtri <i>RLC</i> (2° ordine)	789

17.	FILTRI ATTIVI	790	6. REGISTRI	828
	17.1. Filtri attivi del 1° ordine		6.1. Classificazione e caratteristiche	828
	17.2. Filtri attivi del 2° ordine	792	6.2. Registri a scorrimento (shift register)	829
	17.3. Filtri attivi VCVS		6.3. Registri di memoria	
	17.4. Filtro VCVS passa basso		7. CONTATORI	
	17.5. Filtro VCVS passa alto	793	7.1. Caratteristiche e classificazione	833
	17.6. Filtri a reazione multipla passa banda			834
	17.7. Filtri attivi universali (a variabili di stato)		7.3. Contatori asincroni con modulo $M < 2^n$	837
	17.8. Filtri universali integrati		7.4. Limiti di funzionamento dei contatori asincroni	839
	17.9. Filtri attivi di ordine superiore			840
18	OSCILLATORI			844
10.	18.1. Prestazioni			846
19	CONDIZIONI DI OSCILLAZIONE			847
	OSCILLATORI SINUSOIDALI A BASSA	170		848
20.	FREQUENZA DI TIPO RC	797	· · · · · · · · · · · · · · · · · · ·	848
	20.1. Oscillatore a ponte di Wien		•	849
	•			849
	20.2. Oscillatore a T-pontato			849
2.1	20.3. Oscillatori a sfasamento		8.2. Memorie a lettura e scrittura (RAM)	
21.	OSCILLATORI PER ALTA FREQUENZA		, , ,	851
22	21.1. Oscillatori a quarzo		8.4. RAM dinamica	
22.	GENERATORI DI SEGNALE		8.5. Confronto tra SRAM e DRAM	
	22.1. Generatore d'onda quadra		8.6. ROM	
	22.2. Generatore d'onda triangolare		8.7. ROM a maschera	
	22.3. Circuiti integrati temporizzatori	800		
23	ELETTRONICA DIGITALE		8.8. ROM programmabili	
	SISTEMI DI NUMERAZIONE	803	8.9. Banco di memoria	
1.	1.1. Definizioni		9. DISPOSITIVI LOGICI PROGRAMMABILI	
2	PORTE LOGICHE			859
۷.	2.1. Definizioni		9.2. SPLD	
	2.2. Logica positiva e negativa.			860
	2.3. Porte logiche elementari			860
			E EE 1 E	860
	2.4. Porte logiche universali			861
	2.5. Porte XOR e XNOR.		6 6 6 6	861
	2.6. Porte logiche speciali			861
2	2.7. Gating dei segnali digitali		8 - 8	864
٥.	CIRCUITI COMBINATORI.		2 2	865
	3.1. Sintesi di circuiti combinatori		10.5. Famiglia logica BiCMOS	867
	3.2. Analisi di circuiti combinatori		10.6. Famiglia logica ECL	867
	3.3. Itinerari e livelli			867
4.	CIRCUITI INTEGRATI COMBINATORI		11. SISTEMI DI NUMERAZIONE	868
	4.1. Definizioni		11.1. Sistema di numerazione binario	868
	4.2. Codificatore (<i>encoder</i>)		11.2. Sistema di numerazione esadecimale	868
	4.3. Decodificatore (<i>decoder</i>)		11.3. Conversione tra sistemi di numerazione	868
	4.4. Multiplexer		 Rappresentazione dei numeri relativi nel sistema 	
	4.5. Demultiplexer		binario	869
	4.6. Comparatore	817	11.5. Le quattro operazioni nel sistema binario	871
	4.7. Generatore/rivelatore di parità	817	11.6. Somma algebrica con complemento a 1 e	
	4.8. Convertitore di codice	817	complemento a 2	871
	4.9. Circuiti aritmetici	817	12. CODICI BINARI	871
5.	LATCH E FLIP-FLOP	819	12.1. Definizioni	871
	5.1. Latch SR	819	12.2. Codici numerici	
	5.2. Il problema della corsa critica			873
	5.3. Flip-flop comandati su un fronte di clock		12.4. Codici a controllo di errore	873
	5.4. Tecnica della commutazione sul fronte di clock			874
	5.5. Flip-flop pulse triggered			874
	5.6. Flip-flop data lock-out			874
	5.7. Flip-flop SR		•	875
	5.8. Flip-flop D.			876
	5.9. Flip-flop <i>JK</i>			878
	5.10. Flip-flop <i>T</i>			879
	5.11. Ingressi asincroni.		13.7. Metodi di minimizzazione di una funzione	0/9
	5.12. Caratteristiche statiche e dinamiche			879
	J.12. Caratteristiche statiene e unidiffiche	04/	oooicana	0/9

24	MICROPROCESSORI E MICROCONTROLLO	RI	5.3. Trasformatori di misura	958
1.	MICROPROCESSORI	883	6. MACCHINE ASINCRONE	960
	1.1. Parametri e prestazioni	883	6.1. Campi magnetici rotanti	960
	1.2. Architettura	883	6.2. Campi rotanti trifasi	960
	1.3. Linguaggio di programmazione	889	6.3. Principio di funzionamento del motore asincrono	
	1.4. Tecniche di indirizzamento	891	trifase	962
	1.5. Il microprocessore 8086/8088	891	6.4. Tensioni indotte	962
	1.6. CISC e RISC	892	6.5. Equazioni fondamentali. Reazione rotorica	963
2.	MICROCONTROLLORI	893	6.6. Reti equivalenti	964
	2.1. Il microcontrollore PIC 16F84A	894	6.7. Funzionamento a vuoto	966
3.	ARDUINO	907	6.8. Funzionamento a carico. Perdite	966
	3.1. Caratteristiche della scheda Arduino Uno	908	6.9. Rendimento	966
	3.2. Input e Output	908	6.10. Diagramma circolare	967
	3.3. Sintassi del linguaggio C per Arduino	909	6.11. Caratteristica meccanica	
	3.4. Informazioni generali sulla programmazione di	, , ,	6.12. Avviamento	
	Arduino	909	6.13. Frenatura elettrica	970
	3.5. Struttura di un programma (<i>sketch</i>)	909	6.14. Motori asincroni monofasi	971
	3.6. Le istruzioni fondamentali	910	6.15. Generatori asincroni	974
	3.7. Lettura e scrittura di valori digitali sui pin	910	7. MACCHINE SINCRONE	977
	3.8. Lettura di valori analogici sui pin	910	7.1. Tensioni indotte	
	3.9. Uscita analogica (PWM) sui pin digitali	710	7.2. Circuiti d'indotto trifasi	977
	(3, 5, 6, 9, 10, 11)	911	7.3. Funzionamento a vuoto	
	3.10. Strutture di controllo del flusso del programma	911	7.4. Effetti della corrente d'indotto	979
		913	7.5. Studio della macchina sincrona	979
	3.11. Funzioni matematiche e trigonometriche		7.6. Curve caratteristiche	981
	3.13. Gli interrupt			901
			e e	981
	3.14. Le librerie	914	funzionamento isolato (autonomo)	981
25	MACCHINE ELETTRICHE		7.8. Coppia e potenza	
1.	CLASSIFICAZIONE	917	7.9. Parallelo degli alternatori	984
2.	MODELLI E ANALISI DELLE MACCHINE			904
	ELETTRICHE	918	7.11. Impiego della macchina sincrona per il rifasamento	987
	2.1. Il rendimento	918	8. GENERATORI A COLLETTORE IN CORRENTE	901
	2.2. Le perdite nelle macchine elettriche	918	CONTINUA	988
	2.3. Comportamento termico	921	8.1. Generalità	988
	2.4. Prove e collaudo delle macchine elettriche	923	8.2. Funzionamento a vuoto	
3.	TRASFORMATORE MONOFASE	925		
	3.1. Considerazioni sui flussi magnetici	925	8.3. Funzionamento a carico	
	3.2. Convenzioni sulle tensioni e sulle potenze. Fase		8.4. Perdite. Rendimento	
	delle tensioni indotte e delle correnti	926	8.5. Dinamo con eccitazione indipendente	990
	3.3. Equazioni fondamentali in regime sinusoidale	926	8.6. Dinamo con eccitazione in derivazione	990
	3.4. Funzionamento a carico. Diagramma vettoriale	928	9. MOTORI A COLLETTORE IN CORRENTE	994
	3.5. Funzionamento a vuoto	929	CONTINUA	
	3.6. Funzionamento in corto circuito	930	9.1. Generalità	
	3.7. Trasformatore ideale	930	9.2. Funzionamento a vuoto	995
	3.8. Reti equivalenti	932	9.3. Funzionamento a carico	995
	3.9. Caduta di tensione	935	9.4. Rendimento	996
	3.10. Caratteristiche esterne	938	9.5. Motori con eccitazione indipendente e in	007
	3.11. Perdite e rendimento	939	derivazione	
	3.12. Parallelo dei trasformatori	939	9.6. Motori con eccitazione in serie	998
	3.13. Prove a vuoto e di corto circuito	940	26 MOTORI A COMMUTAZIONE ELETTRONICA	A
4.	TRASFORMATORE TRIFASE	944	1. GENERALITÀ	
	4.1. Generalità	944	2. MOTORI A PASSO	
	4.2. Caratteristiche dei vari tipi di collegamento	945	2.1. Introduzione	
	4.3. Trasformatori a tre colonne	946	2.2. I tre tipi di motori a passo	
	4.4. Rapporto di trasformazione	947	2.3. Comportamento del motore a passo e sue	
	4.5. Reti equivalenti		caratteristiche	1009
	4.6. Caduta di tensione.	951	2.4. Definizioni delle grandezze e dei parametri	
	4.7. Trasformatori in parallelo	951	caratteristici	1014
	4.8. Prove a vuoto e di corto circuito	952	2.5. Circuiti di pilotaggio	
5	TRASFORMATORI SPECIALI	956	2.6. Conclusioni	
٥.	5.1. Autotrasformatori	956	3. MOTORI IN CORRENTE CONTINUA BRUSHLESS	
	5.2. Trasformatori a corrente costante	957	3.1. Introduzione	
		, , ,		- 01/

	3.2. Alcuni particolari costruttivi	1021	4.3. Trasmissione a ingranaggi	1081
	3.3. Principio di funzionamento del motore brushless		5. FATTORI GUIDA NELLA SCELTA DEL MOTORE	
	con f.e.m. trapezoidale	1021	5.1. Parametri di riferimento	1082
	3.4. Coppia-velocità		6. FATTORI DI SERVIZIO	1085
	3.5. Conclusioni		7. TECNICHE PER L'INVERSIONE DI MARCIA DEI	
27	AZIONAMENTI CON MACCHINE		MOTORI	1085
21	ELETTRICHE		8. FRENATURA DEI MOTORI ELETTRICI	1086
1		1027	8.1. Generalità	1086
	GENERALITÀ		8.2. Frenatura in controcorrente	1086
۷.	COMPONENTI.		8.3. Frenatura dinamica	1087
	2.1. Tipologie di convertitori statici		8.4. Frenatura rigenerativa	1087
2	2.2. Tipologie di motori elettrici		<u> </u>	
3.	CLASSIFICAZIONE		30 TRAZIONE ELETTRICA	1001
	3.1. In base alle applicazioni		1. CONCETTI INTRODUTTIVI	
	3.2. In base alle modalità di controllo		1.1. Concetto di trazione elettrica	
	3.3. In base alle caratteristiche strutturali		1.2. Vantaggi della trazione elettrica	
4.	APPLICAZIONI		1.3. Limiti di convenienza della trazione elettrica	
	4.1. Macchine utensili		1.4. Note storiche	
	4.2. Cementerie		2. TRAZIONE FERROVIARIA	
	4.3. Industria chimica		2.1. Impianti di trazione	
	4.4. Industria tessile		2.2. Note storiche	
	4.5. Cartiere		2.3. Progetto delle linee	
	4.6. Trattamento dei fluidi		2.4. Alimentazione delle linee	
	4.7. Industria siderurgica	1036	2.5. Struttura delle linee	1097
	4.8. Sollevamento dei carichi	1036	Struttura della sede ferroviaria	1098
	4.9. Lavorazione di plastica e gomma	1038	2.7. Meccanica del mezzo di trazione	1099
	4.10. Moti incrementali	1038	2.8. Alimentazione del mezzo di trazione	1101
5.	RIFERIMENTI NORMATIVI	1039	2.9. Azionamenti	1104
30	MACCHINE ELETTRICHE CRECIALI		2.10. Manovre	1111
	MACCHINE ELETTRICHE SPECIALI	1041	3. TRAZIONE URBANA TRADIZIONALE	1115
Ι.	MOTORI ELETTRICI DI PICCOLA POTENZA		3.1. Filovie	
	1.1. Generalità		3.2. Tramvie	
	1.2. Motore sincrono		3.3. Metropolitane	
	1.3. Motore asincrono		4. APPLICAZIONI PARTICOLARI	
	1.4. Motori in corrente continua		4.1. Trazione ad accumulatori	
2.	SERVOMOTORI		4.2. Trazione diesel-elettrica	
	2.1. Generalità		4.3. Ferrovie a cremagliera	
	2.2. Tipologie		5. NUOVE TECNOLOGIE	
3.	MICROMOTORI E PICCOLI ATTUATORI		5.1. Monorotaie	
	3.1. Generalità		5.2. Treni a levitazione magnetica	
	3.2. Motori monofasi asincroni a poli schermati		5.3. Alta velocità	
	3.3. Motori monofasi sincroni	1065		
	3.4. Motori a collettore con rotore a doppio e triplo T.	1069	31 DISEGNO ELETTRICO ED ELETTRONICO	
	3.5. Motori a ferro rotante	. 1071	1. SEGNI GRAFICI	1135
	3.6. Motore a bobina mobile	1071	1.1. Segni grafici secondo le Norme CEI	1135
	3.7. Piccoli attuatori	1072	1.2. Tracciamento dei segni grafici	1135
4.	FRENI E FRIZIONI ELETTROMAGNETICHE	1075	1.3. Segni grafici per diagrammi di flusso	1135
	4.1. Generalità	1075	1.4. Segni grafici secondo le Norme MIL	
	4.2. Freni e frizioni azionati da solenoidi	1076	1.5. Segni grafici per impianti pneumatici	
	4.3. Freni e frizioni a isteresi magnetica	1077	e oleoidraulici	1135
	4.4. Freni e frizioni a correnti parassite	1077	2. CLASSIFICAZIONE DEGLI SCHEMI ELETTRICI	1153
	4.5. Freni e frizioni a polvere magnetica		3. REALIZZAZIONE DI SCHEMI ELETTRICI	
	4.6. Freni e frizioni a ferro rotante			
	4.7. I motori autofrenanti		32 IMPIANTI, MATERIALI E APPARECCHIAT	URE,
			PROGETTAZIONE	
29	CRITERI DI SCELTA DELLE MACCHINE		1. LEGISLAZIONE E NORMATIVA PER	
	ELETTRICHE E LORO APPLICAZIONI		IL SETTORE ELETTRICO	1159
	INTRODUZIONE		1.1. Legislazione settore elettrico	
	TECNICHE DI AZIONAMENTO	1080	1.2. Normativa tecnica	1167
3.	SISTEMI DI CONNESSIONE FRA MOTORI E		2. CLASSIFICAZIONE E PRINCIPALI FENOMENI	
	MACCHINE		2.1. Classificazione degli impianti	
4.	SISTEMI DI TRASMISSIONE		2.2. Sovratensioni	
	4.1. Trasmissione a cinghia		2.3. Sovracorrenti	1177
	4.2. Trasmissione a catena	1081	3. PROTEZIONE DEGLI IMPIANTI	1184

	3.1. Protezione contro le sovracorre	enti		1.2.	Classificazione dei materiali isolanti secondo le	
	3.2. Protezione contro abbassamen				norme CEI	
	di tensione				Principali materiali isolanti	
	3.3. Protezioni da sovratensioni		2.		NDENSATORI	
	3.4. Sezionamento e comando			2.1.	Utilizzo e comportamento reale	1510
4.	. PROTEZIONE CONTRO GLI INFO				Caratteristiche elettriche	
	ELETTRICI				Caratteristiche costruttive	
	4.1. Pericolosità della corrente elet	trica 1196		2.4.	Condensatori variabili	1512
	4.2. Tensione totale di terra, di con	tatto e di passo 1198		2.5.	Codici di identificazione dei condensatori	1512
	4.3. Protezione contro i contatti dir	etti e indiretti 1199	3.	MA	TERIALI CONDUTTORI	1512
	4.4. Protezione con interruttore diff	ferenziale in casi		3.1.	Caratteristiche dei materiali più comuni	1512
	particolari	1210		3.2.	Elementi di dimensionamento	1513
	4.5. Impianto di messa a terra	1210			Principali materiali conduttori utilizzati in	
5.	. TIPOLOGIE REALIZZATIVE				elettromeccanica	1514
	5.1. Progetto			3.4	Conduttori per avvolgimenti	
	5.2. Impianti elettrici civili				Spazzole	
	5.3. Impianti nei locali tecnici				Conduttori per resistori	
	5.4. Impianti elettrici industriali				Proporzionamento di resistori per riscaldamento	
	5.5. Impianti elettrici speciali		4		ISTORI	
	5.6. Cabine di trasformazione		٦.		Resistori fissi	
6	. MATERIALI ELETTRICI E APPAR				Resistori variabili.	
0.	6.1. Cavi elettrici in bassa e media				Tempo di avviamento a coppia accelerante	. 1323
				4.3.		1526
	6.2. Apparecchiature e componenti			4.4	costante pari alla nominale	
	6.3. Apparecchiature di media tens				Resistori non lineari	
7	6.4. Apparecchiature per atmosfere				Parametri caratteristici dei resistori	
/.	. VERIFICHE SUGLI IMPIANTI EL		_		Criteri di dimensionamento dei resistori	
	7.1. Generalità		٥.		FERIALI MAGNETICI	
	7.2. Verifiche sugli impianti di terra				Proprietà dei materiali magnetici	1531
	7.3. Normativa di riferimento			5.2.	Valori numerici delle proprietà dei materiali	
	7.4. Valutazione dei rischi e proced				magnetici	
	7.5. Verifica della compatibilità del			5.3.	Principali materiali magnetici	1536
	da misurare e l'ambiente di mi		6.		UTTORI	
	caratteristiche dello strumento	1411			Parametri caratteristici	
	7.6. Stima dell'incertezza di misura	a1412			Caratteristiche costruttive degli induttori	
	7.7. Gestione e controllo della strui	mentazione 1414	7.	. TRA	SFORMATORI	1538
8.	. ESEMPI DI RIEPILOGO	1416		7.1.	Nucleo magnetico	1538
AP	PPENDICE A – CONDUTTORI, COND	DUTTURE E CAVI 1423		7.2.	Tipi di avvolgimento	1540
AP	PPENDICE B – APPARECCHI DI ME	DIA TENSIONE 1460		7.3.	Sovratemperatura e raffreddamento	1540
22	ILLUMINOTECNICA			7.4.	Elementi di dimensionamento di trasformatore	
		1467			trifase a colonne in olio, a 50 Hz, per	
1.	. GRANDEZZE FOTOMETRICHE				distribuzione (25 ÷ 3000 kVA)	1542
	1.1. Flusso luminoso			7.5.	Trasformatori di distribuzione inglobati in resina	1547
	1.2. Intensità luminosa				Autotrasformatore	
	1.3. Illuminamento			7.7.	Piccoli trasformatori monofase	1550
_	1.4. Luminanza		8.		CCHINE ROTANTI	
2.	. SORGENTI LUMINOSE				Tipi costruttivi	
	2.1. Grandezze caratteristiche				Strutture magnetiche	
	2.2. Apparecchiature ausiliarie				Avvolgimenti	
	2.3. Caratteristiche di funzionamen				Formule di dimensionamento	
	2.4. Principi di funzionamento		9		TORI TRIFASE A INDUZIONE (ASINCRONI)	
	2.5. Tipi di sorgenti		٠.		Generalità	
3.	. APPARECCHI D'ILLUMINAZION	E 1488			Esempio di proporzionamento di massima di	. 1501
	3.1. Ottiche			9.2.	motore asincrono trifase in bassa tensione	1562
	3.2. Rappresentazione delle caratte	ristiche di		0.2		
	emissione luminosa	1489			Inversione del senso del moto	
	3.3. Apertura del fascio luminoso				Regolazione della velocità	
4.	. PROGETTAZIONE DEGLI IMPIAN		1.0		Motori con rotore avvolto	
	4.1. Illuminazione d'interni		10.		TORI ASINCRONI MONOFASE	136/
	4.2. Strade di traffico e aree urbane	1495		10.1	. Motori monofase a polo suddiviso	1567
5.	. ALIMENTAZIONE			10.	(shaded-pole)	156/
				10.2	. Motori monofase a fase ausiliaria resistiva	1565
	TECNOLOGIE ELETTRICHE			10 -	(split-phase)	1567
1.	. MATERIALI ISOLANTI			10.3	. Motori monofase con condensatore	15.00
	L L Bringingli proprietà dei meteric	ali icolanti 1505			normanantemente incerito	1568

	10.4. Dimensionamento di base di un motore		7.	CAI	COLO ELETTRICO DELLE LINEE	1612
	monofase	. 1569		7.1.	Criterio della perdita di potenza	1612
	10.5. Motori trifase usati come monofase	. 1569		7.2.	Criterio della caduta di tensione ammissibile	1613
11.	LA MACCHINA SINCRONA	. 1570	,	7.3.	Criterio della caduta di tensione unitaria	1615
	11.1. Generalità	. 1570			Criterio della temperatura ammissibile	
	11.2. Indotto (statore)	. 1570	,	7.5.	Criterio dei momenti amperometrici	1616
	11.3. Induttore (rotore)	. 1571				
	11.4. Alternatore a poli salienti di media potenza			ΔΙ	JTOMAZIONE	
	11.5. Esempio di progetto di massima	. 1573			TOMALIONE	
12.	MACCHINE A CORRENTE CONTINUA		37	CEN	NSORI E CIRCUITI APPLICATIVI	
	12.1. Generalità				RODUZIONE	1621
	12.2. Il progetto di un motore a CC	. 1575			Parametri tipici dei sensori	
	12.3. Esempio numerico di progetto di un motore				Circuiti di amplificazione lineare	
	a CC	. 1580			Circuiti un lineari	
35	CENTRALI DI PRODUZIONE DELL'ENERGI	ſ.A.			Circuiti di conversione corrente-tensione	
33	ELETTRICA	171			Circuiti di conversione tensione-corrente	
1	GENERALITÀ	1581			Configurazioni di uscita	
1.	1.1. Fonti energetiche primarie				ISORI DI TEMPERATURA	
	1.2. Diagrammi di carico				Termocoppie	
2	IMPIANTI IDROELETTRICI				Termoresistenze	
2.	2.1. Funzionamento				Termistori	
	2.2. Tipologie d'impianto				Circuiti integrati	
	2.3. Elementi costruttivi	1584			ISORI DI UMIDITÀ	
	2.4. Considerazioni energetiche				Generalità	
3	IMPIANTI TERMOELETTRICI				Sensori di umidità capacitivi	
٥.	3.1. Funzionamento				Sensori di umidità resistivi	
	3.2. Tipologie d'impianto				Sensori di umidità a conduttività termica	
	3.3. Elementi costruttivi				ISORI DI PRESSIONE	
	3.4. Cicli termici				Generalità	
	3.5. Considerazioni energetiche				Sensori di pressione piezoresistivi	
4	IMPIANTI NUCLEARI				ISORI DI FORZA	
٦.	4.1. Funzionamento				Generalità	
	4.2. Tipologie d'impianto				Estensimetri	
	4.3. Elementi costitutivi				Celle di carico	
	4.4. Considerazioni energetiche				ISORI DI POSIZIONE, VELOCITÀ E	1047
5	CENTRALI E AMBIENTE				CELERAZIONE	1648
٥.	5.1. Centrali idroelettriche				Generalità	
	5.2. Centrali termoelettriche				Potenziometri	
	5.3. Centrali nucleari				LVDT	
		. 10,0			Encoder	
36	TRASPORTO E DISTRIBUZIONE				Dinamo tachimetriche	
	DELL'ENERGIA ELETTRICA				Accelerometri	
	GENERALITÀ				ISORI DI CAMPO MAGNETICO	
	RETI DI DISTRIBUZIONE				Generalità	
3.	LINEE AEREE				Sensori per campi di bassa intensità	
	3.1. Conduttori				Sensori per campi di media intensità	
	3.2. Sostegni				Sensori per campi di alta intensità	
	3.3. Isolatori				Misure di corrente con sensori magnetici	
	3.4. Funi di guardia				ISORI DI RADIAZIONE LUMINOSA	
	3.5. Organi di collegamento e fissaggio				Generalità	
4.	LINEE IN CAVO				Materiali ottici	
	4.1. Struttura dei cavi				Caratterizzazione dei sensori di radiazione	1000
	4.2. Tipi di posa					1666
	4.3. Caratteristiche elettriche			8.4	Sensori di tipo termico.	
_	4.4. Cavi in bassa tensione				Sensori di tipo fotonico.	
5.	MODELLO EQUIVALENTE DELLE LINEE				•	
	5.1. Resistenza di linea				TEMI DI ACQUISIZIONE, ELABORAZI	ONE
	5.2. Reattanza di linea				ISTRIBUZIONE DATI	
	5.3. Conduttanza di linea				ABORAZIONE E CONVERSIONE DEI SEGNAL	
	5.4. Suscettanza di linea			1.1.	Segnali analogici e digitali	
6.	LINEE CORTE			1.2.		
	6.1. Caduta di tensione industriale			1.3.		
	6.2. Rendimento	. 1611		1.4.	I codici	1676

	1.5. Convertitori D/A	1676	9.3. Controllo di posizione di un motore in continua	1740
	1.6. Convertitori A/D		10. SISTEMI DI CONTROLLO DIGITALI	
	1.7. Convertitori tensione/frequenza (VFC)		10.1. Concetti introduttivi	
	1.8. Convertitori frequenza/tensione (FVC)		10.2. Vantaggi e svantaggi	
	1.9. Amplificatore Sample & Hold (SHA)		10.3. Il campionatore ZOH	
	1.10. Multiplexer analogico		10.4. Risposta nel dominio del tempo	
	1.11. Sistema di elaborazione digitale dei segnali		10.5. Risposta in frequenza	
	1.12. Sistema di acquisizione dati			
	*		10.6. Studio della stabilità	
	1.13. Sistemi di distribuzione dati	. 1093	10.7. Errore a regime	
39	SISTEMI DI CONTROLLO ANALOGICI E		10.8. Regolatori industriali	1/44
	DIGITALI		40 IMPIANTI PER L'AUTOMAZIONE INDUSTR	IALE
1.	SISTEMI	. 1697	1. CONCETTI INTRODUTTIVI	1745
	1.1. Definizioni		1.1. Classificazione	1745
	1.2. Variabili		1.2. Impianti in logica cablata	1745
	1.3. Stato e traiettoria.		1.3. Impianti in logica programmata	
	1.4. Rappresentazione schematica		1.4. Azionamenti elettromeccanici	
	1.5. Classificazione		1.5. Azionamenti idropneumatici	
2	MODELLI		2. APPLICAZIONI DI AZIONAMENTI	1,.,
۷.			ELETTROMECCANICI	1749
	2.1. Definizioni		2.1. Avviamento di un motore asincrono trifase	
	2.2. Modello matematico		2.2. Inversione di marcia di un motore asincrono	1/7/
	2.3. Schema a blocchi		trifase	1750
	2.4. Componenti		2.3. Funzionamento ciclico di un motore asincrono	1/30
_	2.5. Analogie			1752
3.	SISTEMI AUTOMATICI		trifase	
	3.1. Definizioni		2.4. Comando di un impianto per semaforo	
	3.2. Sistemi di controllo		2.5. Controllo di velocità di un motore in continua	1/54
	3.3. Sistemi ad anello aperto		3. APPLICAZIONI DI AZIONAMENTI	
	3.4. Sistemi ad anello chiuso	. 1702	IDROPNEUMATICI	
4.	SISTEMI DI CONTROLLO ANALOGICI	. 1703	3.1. Sollevamento e spostamento di un oggetto	
	4.1. Regimi statico e dinamico	. 1703	3.2. Marcatura ed espulsione di un oggetto	
	4.2. Stabilità	. 1703	3.3. Spostamento e marcatura di un oggetto	1760
	4.3. Retroazione positiva e negativa		3.4. Sistema di smistamento dei bagagli	1761
	4.4. Criteri di progetto		4. PROGETTO DI AZIONAMENTI INDUSTRIALI	1762
	4.5. Elementi costitutivi		4.1. Scelta del tipo di motore	1762
5	ANALISI DEI SISTEMI LINEARI		4.2. Scelta dei dispositivi di protezione	1763
٥.	5.1. Tipi di analisi		4.3. Schemi in logica cablata per la movimentazione	
	5.2. Risposta nel dominio del tempo		di m.a.t.	1767
	5.3. Trasformata di Laplace applicata allo studio dei	. 1703	44 CONTROLLORIA COCICI	
	sistemi	1707	41 CONTROLLORI LOGICI	
			PROGRAMMABILI (PLC)	1.772
	5.4. Risposta in frequenza		1. CONCETTI INTRODUTTIVI	
	5.5. Diagrammi di Bode		2. CARATTERISTICHE	
_	5.6. Diagrammi di Nyquist		2.1. PLC piccoli	
6.	PROGETTO STATICO		2.2. PLC medio-grandi	1775
	6.1. Parametri di valutazione		3. ELEMENTI DI STIMA DI UN SISTEMA DI	
	6.2. Errore statico		CONTROLLO	. 1775
	6.3. Errori dovuti a disturbi additivi		3.1. Dispositivi di I/O	1775
	6.4. Errori dovuti a disturbi parametrici		3.2. Capacità di memoria	1775
7.	PROGETTO DINAMICO	. 1718	3.3. Programmazione	1776
	7.1. Parametri di valutazione	. 1718	3.4. Periferiche e opzioni	1776
	7.2. Prontezza e fedeltà di risposta	. 1718	4. STRUTTURA	
	7.3. Stabilità	. 1719	5. FUNZIONAMENTO	
	7.4. Reti correttrici	. 1722	5.1. Modularità	
8.	REGOLATORI INDUSTRIALI		5.2. Personal computer e PLC	1781
	8.1. Caratteristiche generali		6. PROGRAMMAZIONE	
	8.2. Regolatori P		6.1. Linguaggi	
	8.3. Regolatori PI		6.2. Esempi	
	8.4. Regolatori PD		6.3. Linguaggio Grafcet	
	8.5. Regolatori PID		7. APPLICAZIONI	
	8.6. Regolatori on/off		8. AFFIDABILITÀ. DISPONIBILITÀ E SICUREZZA	
0	APPLICAZIONI PRATICHE		8. AFFIDABILITA, DISPONIBILITA E SICUREZZA 8.1. Affidabilità	
7.	9.1. Controllo di velocità di un motore in continua			
			8.2. Disponibilità	
	9.2. Controllo della temperatura di un ambiente	. 1/33	8.3. Sicurezza	. 1/93

9. PLC SCHNEIDER	. 1796	12. SEQUENZE CICLICHE	1835
9.1. Programmazione		13. TECNICHE DI COMANDO	
10. PLC OMRON		13.1. Metodo diretto	
10.1. Installazione e montaggio		14. ARRESTO DI EMERGENZA	
10.2. Cablaggio		PARTE 4 – SCHEMI PER CIRCUITI	
10.3. Programmazione	. 1806	ELETTROPNEUMATICI	1837
10.4. Compilazione, salvataggio e caricamento	. 1807	15. CIRCUITI ELETTROPNEUMATICI	
10.5. Simulazione	. 1807	16. SCHEMI ELEMENTARI	1837
11. PLC SIMATIC	. 1807	17. SEQUENZE CICLICHE	1838
11.1. S7-200	. 1807	18. ARRESTO DI EMERGENZA	1838
11.2. S7-300	. 1810	PARTE 5 – PRINCIPI GENERALI DI	
11.3. Serie S7-400		OLEOIDRAULICA	
11.4. S7-1200		19. FLUIDI IDRAULICI	
11.5. S7-1500		19.1. Introduzione	
11.6. Ambiente di sviluppo STEP 7 Micro/Win		19.2. Caratteristiche generali	
11.7. Ambiente di sviluppo STEP 7	. 1816	19.3. Caratteristiche fisiche	
42 CIRCUITI E IMPIANTI PNEUMATICI		19.4. Caratteristiche chimiche	
E OLEOIDRAULICI		20. POMPE E MOTORI	
PARTE 1 – INTRODUZIONE	. 1819	20.1. Pompe oleoidrauliche	
1. PROPRIETÀ GENERALI DEI FLUIDI.		20.2. Regolatori di portata	
1.1. Caratteristiche dei fluidi comprimibili e		20.3. Motori oleoidraulici	
incomprimibili	. 1819	21. VALVOLE	
1.2. Leggi generali per lo studio dei fluidi ideali		21.1. Componenti di regolazione	
2. SISTEMI DI MISURA E STRUMENTAZIONE		21.2. Valvole di regolazione della pressione	
2.1. Sistemi di misura	. 1820	21.3. Valvole di regolazione della portata	
2.2. Strumenti di misura		21.4. Valvole di regolazione della direzione	
2.3. Misure di pressione	. 1820	21.5. Valvole di regolazione della potenza	
2.4. Misure di portata	. 1821	21.6. Scambiatori di calore	
2.5. Misure di temperatura	. 1822	PARTE 6 – SCHEMI PER CIRCUITI	1044
2.6. Misure di posizione	. 1822	OLEOIDRAULICI	18/15
PARTE 2 – PRINCIPI GENERALI DI PNEUMATICA		22. CIRCUITI E IMPIANTI	
3. PRODUZIONE, DISTRIBUZIONE E TRATTAMENTO		22.1. Circuiti oleoidraulici fondamentali	
DELL'ARIA COMPRESSA		22.2. Generazione della potenza idraulica	
3.1. Produzione dell'aria compressa		22.3. Centraline oleoidrauliche	
3.2. Tipi di compressori		22.4. Circuiti di controllo della portata	
3.3. Trattamento dell'aria compressa		22.5. Circuiti rigenerativi	
4. MOTORI PNEUMATICI LINEARI E ROTATIVI		22.6. Circuiti di sincronismo	
4.1. Generalità sugli attuatori		22.7. Circuiti di riempimento	
4.2. Cilindri pneumatici		22.8. Circuiti di controllo degli azionamenti	
4.3. Tipi di cilindri pneumatici		22.9. Circuiti di sicurezza	
4.4. Motori pneumatici rotativi		42 FOND AMENTI DI DODOTICA	
4.5. Tipi di motori		43 FONDAMENTI DI ROBOTICA 1. CONCETTI GENERALI	1051
5. VALVOLE		1.1. Robot	
5.1. Valvole pneumatiche		1.2. Robotica	
5.3. Schemi costruttivi più diffusi		1.3. Applicazioni	
5.4. Valvole di intercettazione		1.4. Robotica industriale	
5.5. Valvole di pressione		2. SISTEMA MECCANICO	
5.6. Valvole di controllo del flusso		2.1. Anatomia	
6. CIRCUITI E IMPIANTI		2.2. Meccanica dei robot	
6.1. Introduzione		2.3. Requisiti strutturali	
6.2. Diagramma delle fasi		2.4. Manipolatori	
7. LOGICA PNEUMATICA E INTERFACCIAMENTO		2.5. Robot mobili	
7.1. Elementi di logica pneumatica		2.6. Studio del modello	
7.2. Elementi pneumologici e micropneumatici		3. SISTEMA DI ATTUAZIONE	
7.3. Organizzazione di sistemi automatici		3.1. Trasformazioni energetiche	
7.4. Sistemi programmabili		3.2. Tipi di azionamento	1864
PARTE 3 – SCHEMI PER CIRCUITI PNEUMATICI	. 1832	3.3. Componenti	1864
8. CIRCUITI PNEUMATICI	. 1832	4. SISTEMA SENSORIALE	
9. SCHEMI ELEMENTARI	. 1832	4.1. Funzioni tipiche	
10. FUNZIONI LOGICHE		4.2. Impiego dei sensori	
11. TEMPORIZZATORI E CONTATORI	. 1834	4.3. Sistemi di visione	1865

5.	SISTEMA DI CONTROLLO	1866	6. STANDARD DOMOTICI	. 1877
	5.1. Caratteristiche	1866	7. NORMATIVA	. 1878
	5.2. Struttura	1866	8. CARATTERISTICHE DEGLI IMPIANTI DOMOTICI	. 1878
	5.3. Tecniche di controllo	1867	9. SISTEMI DOMOTICI COMMERCIALI	. 1879
	5.4. Sicurezza	1867	9.1. Sistema MyHome (BTicino)	. 1879
6.	PROGRAMMAZIONE	1868	9.2. Sistema KNX (Schneider Electric)	. 1883
	6.1. Ambiente	1868	10. APPLICAZIONI DEL PLC ALL'AUTOMAZIONE	
	6.2. Criteri	1868	CIVILE	. 1885
	6.3. Tecniche	1868	45 SOFTWARE PER L'AUTOMAZIONE	
	6.4. Linguaggi	1869	INDUSTRIALE	
7.	ROBOT LEGO		1. PROGRAMMA LABVIEW	1887
	7.1. Concetti introduttivi		1.1. Interfaccia grafica	
	7.2. Programmazione		1.2. Pannello frontale	
	7.3. Esempio applicativo	1872	1.3. Diagramma a blocchi	
44	ELEMENTI DI DOMOTICA		1.4. Simulazione	
	CONCETTI INTRODUTTIVI	1873	Esempi elementari di programmazione	
	CARATTERISTICHE DEI SISTEMI DOMOTICI		1.6. Programmazione avanzata	
	CLASSIFICAZIONE DEI SISTEMI DOMOTICI		1.7. Funzioni grafiche	
	TOPOLOGIA DELLE RETI		1.8. Interfacciamento	
	MEZZI TRASMISSIVI		2. PROGRAMMA MULTISIM	
	5.1. Sistemi a bus		2.1. Realizzazione di un circuito	
	5.2. Sistemi a onde convogliate		2.2. Prove di simulazione	
	5.3. Sistemi senza fili		2.3. Applicazioni	
			**	

NOTE PER LA CONSULTAZIONE DEL VOLUME

In ciascun capitolo i riferimenti di figure, tabelle, formule ed esempi sono numerati in ordine crescente e sempre preceduti dal numero del capitolo (per es. tab. 42.5, fig. 37.2)

I rimandi ad altri paragrafi sono preceduti dal simbolo § e riportano il numero del capitolo in grassetto (§ 38.1.4)

Sarà poi

$$\Delta R = 0.237 \cdot 17 = 4.03 \ \Omega$$

2.3. Conduttanza e conduttività

Si definisce conduttanza la grandezza

$$G = \frac{1}{R} = \frac{1}{\rho \frac{l}{S}} = \frac{1}{\rho} \frac{S}{l}$$

con già noto significato di simboli.

Ponendo $\gamma = 1 / \rho$ si ottiene $G = \gamma S / l$.

La grandezza y è denominata conduttività.

Le unità di misura di G e di γ sono rispettivamente Ω^{-1} , definito siemens (S), e Ω^{-1} · m/mm² ovvero S · m/mm².

2.4. Legge di Ohm

La legge di Ohm è espressa dalla seguente relazione:

$$R = \frac{V_{AB}}{I}$$

e sancisce la costanza del rapporto tra la tensione ai capi di un conduttore e la corrente che vi circola (fig. 19.7).

FIGURA 19.7 Legge di Ohm.

2.5. Caduta di tensione

Tra due punti A, B di un conduttore esiste, come è noto, una d.d.p. se, posta in uno dei due punti una carica elettrica, questa viene a possedere dell'energia potenziale rispetto all'altro punto. Questa d.d.p. è detta caduta di tensione (c.d.t.) (fig. 19.8).

$$V_A = V_A - V_0 = V_A - 0$$
(tensione in A)
$$V_B = V_B - V_0 = V_B - 0$$
(tensione in B)

$$V_{AB} = V_A - V_B \cos V_A > V_B$$
 (caduta di tensione)

FIGURA 19.8 Caduta di tensione.

2.6. Circuito elettrico

Nella forma più semplice il circuito elettrico è riconducibile sempre a un generatore (riceve energia in forma non elettrica e la trasforma in energia elettrica), a una linea (collega il generatore all'utilizzatore) e un utilizzatore (utilizza l'energia elettrica trasformandola nella forma richiesta), come rappresentato in fig. 19.9.

FIGURA 19.9 Schema semplificato di circuito elettrico.

2.7. Convenzioni di segno

L'energia fluisce in un circuito dal generatore verso l'utilizzatore. Il senso può essere individuato in base alle convenzioni di segno valide per tensioni e correnti: in un generatore la corrente esce dal morsetto positivo «+» ed entra da quello negativo «-» (l'energia fluisce nel senso uscente della corrente dal morsetto «+»); in un utilizzatore la corrente entra dal morsetto «+» ed esce da quello «-» (l'energia fluisce nel senso entrante della corrente dal morsetto «+»).

2.8. Ordini di grandezza

Gli ordini di grandezza di tensioni e correnti di impiego normale in elettrotecnica sono riportati in tab. 19.4.

TABELLA **19.4** Ordine di grandezza di tensioni e correnti di impiego normale in elettrotecnica.

Tensione/corrente	Impiego
4 ÷ 12 V	Pile e accumulatori portatili
6 ÷ 24 V	Impianti di bordo per veicoli
24 ÷ 60 V	Telefonia
10 ÷ 100 V	Impianti elettrochimici
230 V	Distribuzione domestica
400 V	Distribuzione industriale
500 V	Trazione tranviaria
1,5 ÷ 12 kV	Trazione ferroviaria
5 ÷ 60 kV	Trasporto a media distanza
60 ÷ 400 kV	Trasporto a grande distanza
1 ÷ 10 mA	Telecomunicazioni
10 ÷ 200 mA	Amplificatori, radiotecnica
0,1 ÷ 5 A	Applicazioni domestiche
5 ÷ 100 A	Applicazioni industriali
50 ÷ 300 A	Trazione
1 ÷ 10 kA	Elettrochimica e forni ad arco

25

MACCHINE ELETTRICHE

ANTONINO LIBERATORE • ALBERTO REATTI • MARIO PEZZI • Rev. MICHELE MONTI

1. CLASSIFICAZIONE

Le macchine elettriche possono lavorare con:

- corrente alternata (c.a.);
- · corrente continua (c.c.).

Le macchine a c.a. si distinguono, poi, in:

- macchine statiche a induzione (trasformatori, reattori, amplificatori magnetici);
- macchine asincrone (motori, generatori, regolatori di tensione e fase);
- macchine sincrone (generatori sincroni o alternatori, motori compensatori o condensatori rotanti);
- macchine speciali (motori monofasi a collettore, in serie, a repulsione semplice, a repulsione Deri, motori trifasi a collettore, in serie, in derivazione);
- macchine di conversione della corrente (gruppo convertitore, motore-generatore, convertitore o commutatore rotante, raddrizzatore statico, convertitori AC/AC).

Le macchine a c.c. si distinguono, invece, in:

- generatori di c.c. o dinamo (a eccitazione indipendente, a eccitazione in serie, in derivazione, composta);
- motori a c.c. (con eccitazione indipendente, in serie, in parallelo, composta);
- macchine speciali: dinamo Rosenberg, amplificatori rotanti (amplidina, rototrol), metadinamo (metatrasformatore, metageneratrice, metamotore);
- macchine statiche di conversione della corrente (invertitori, convertitori DC/AC).

Macchine statiche

Sono quelle per le quali il circuito magnetico, fisso, porta nell'esecuzione più semplice due avvolgimenti (uno primario e uno secondario) anch'essi fissi (fig. 25.1). La macchina risulta *eccitata* dalla tensione o dalla corrente variabile nel tempo (ad esempio con legge sinusoidale) applicata ad un avvolgimento cosicché il flusso nel circuito magnetico è anch'esso variabile nel tempo, per cui indurrà una f.e.m. nell'altro avvolgimento.

La potenza elettrica che si trasferisce da un avvolgimento all'altro è massima solo se il circuito magnetico risulta di riluttanza molto piccola. Ciò impone traferri ridotti al minimo (al limite nulli) e materiali magnetici ad alta permeabilità. A questo tipo di macchina appartengono i trasformatori (e gli autotrasformatori) mono e polifasi. I variatori di fase ad induzione, pur non rotando durante il funzionamento, fanno parte invece delle macchine rotanti.

FIGURA **25.1** Schematizzazione di un trasformatore monofase a due avvolgimenti.

Macchine rotanti

Il circuito magnetico principale può essere a *traferro co*stante (fig. 25.2a) oppure a *traferro variabile* (fig. 25.2b). Il traferro è lo spazio compreso tra *statore*, parte fissa della macchina, e il *rotore*, parte rotante della macchina.

FIGURA 25.2 Schematizzazione della parte attiva in ferro di una macchina a traferro costante (a) e a traferro variabile (b). Si dice che la macchina è *isotropa* quando la riluttanza di un qualsiasi circuito magnetico che interessi statore e rotore, riluttanza dovuta sostanzialmente al traferro (aria), è di valore indipendente dalla posizione assunta, rispetto alla direzione degli assi polari, dalle linee di flusso del circuito magnetico. Da questo punto di vista la macchina (a) è isotropa mentre la macchina (b) è anisotropa.

Figura 26.9 I tre passi b) c) d) successivi alla posizione di partenza a) riguardano il motore a passo di tipo a magnete permanente della figura precedente, nella sequenza di commutazione per rotazione destrogira. Il polo statorico eccitato è quello più scuro.

La caratteristica statica (ideale) della coppia dovuta all'interazione elettromagnetica statore-rotore in funzione dell'angolo di rotazione del rotore, nel campo di un intero giro e qualora rimanesse eccitata sempre la stessa fase, appare in fig. 26.10.

FIGURA 26.10 Andamento (ideale) della coppia statica in funzione dell'angolo di rotazione θ per un trasduttore elettromagnetico strutturalmente come quello di fig. 26.2, dove però il rotore è a magnete permanente. Come si vede il periodo corrisponde a 360° e tale rimane anche per il dispositivo di fig. 26.8 se riferito ad una fase.

In pratica il rotore a magnete permanente [in materiale ceramico (ferrite)] è come quello riportato in fig. 26.11 e viene impiegato ad esempio nel motore a passo denominato a denti (claw-poled PM motor) che costituisce un altro tipo di motore a magnete permanente. Detto rotore serve ad uno statore (fig. 26.12) che si presenta doppio, cioè con due sezioni affiancate, coassiali, essendo ogni sezione a sua volta realizzata da due parti in ferro dolce munite di poli a forma di dente trapezoidale. I poli sono ricavati per tranciatura da una lamiera e quindi ripiegati per realizzare una struttura a simmetria cilindrica con un numero di denti uguale a quello dei poli rotorici. Le due parti in ferro vengono polarizzate da un unico avvolgimento a solenoide, il cui asse coincide con quello del motore, cosicché la magnetizzazione è di polarità alterna sia lungo il traferro con il rotore, sia tra i denti statorici (fig. 26.13). Poiché ogni sezione ha un avvolgimento che può essere eccitato nei due versi, cioè che realizza due fasi (ad esempio si chiami con A la fase eccitata in un verso e con A' la fase eccitata in verso opposto), di conseguenza un motore che possiede due sezioni (A, B) è caratterizzato in realtà da 4 fasi (A, A', B, B'). D'altra parte, costruttivamente, le espansioni polari delle due sezioni sono sfasate tra loro di 1/4 del passo polare (i passi polari di statore e di rotore sono uguali, come riportato più sopra) per cui eccitando l'avvolgimento della fase A (con corrente positiva) si avrà una rotazione di 1/4 di passo polare, ec-

FIGURA 26.11 Esempio di rotore liscio per motori a passo di tipo a magnete permanente (magnetizzazione radiale) con molti poli rotorici (qui le coppie polari sono 12 per cui N_{dr} = 12) per abbassare il valore dell'angolo di passo (con uno statore a quattro fasi si ha che $\theta_s = 7.5^\circ$).

FIGURA 26.12 Motore a passo a magnete permanente di tipo a denti (griffe). Lo spaccato mostra: le due sezioni di cui è composto il motore, gli avvolgimenti (a solenoide) di statore, i poli di statore a forma di dente (questi vengono magnetizzati, per ogni sezione, dal rispettivo avvolgimento, alternativamente di segno opposto a causa del particolare traferro tra i denti). Il rotore è nascosto lai denti di statore. Il traferro statore rotore è più piccolo di quello esistente tra i denti: ciò costringe il flusso statorico a penetrare nel sottostante rotore.

impianti termoelettrici, nucleari, geotermoelettrici e idroelettrici ad acqua fluente come *centrali di base*, facendole cioè funzionare in maniera continuativa e a un carico il più vicino possibile a quello nominale e affidando agli impianti idraulici alimentati da serbatoi e a quelli termoelettrici a combustibile pregiato la copertura delle punte (*centrali di punta*); ciò è in accordo con i fondamentali problemi tecnico-economici dei grandi impianti termoelettrici consentendo di raggiungere i massimi rendimenti nel rispetto della minima usura del macchinario.

2. IMPIANTI IDROELETTRICI

2.1. Funzionamento

Il principio di funzionamento di un impianto idroelettrico risiede nell'utilizzo dell'energia che una massa d'acqua è in grado di fornire quando viene fatta defluire ad una quota inferiore, ossia quando le viene fatto compiere un salto.

Ciò si ottiene ad esempio sbarrando un fiume mediante dighe che creano laghi artificiali, e immettendo le acque così raccolte in una tubazione (condotta forzata) che copre con forte pendenza il dislivello necessario per raggiungere il luogo di produzione denominato *centrale*; la spinta dell'acqua fa quindi ruotare una turbina accoppiata ad un generatore di energia elettrica (alternatore).

Uno schema a blocchi che descrive sinteticamente il funzionamento di un impianto idroelettrico viene rappresentato schematicamente in fig. 35.3.

FIGURA 35.3 Schema a blocchi di impianto idroelettrico.

La centrale è l'edificio, o l'insieme di edifici, in cui sono installati i gruppi di produzione d'energia elettrica, con le relative apparecchiature di protezione, comando e controllo, nonché vari servizi ausiliari; alla centrale è annessa una stazione di trasformazione e sezionamento delle linee elettriche in partenza; le centrali possono essere realizzate all'aperto, seminterrate o in pozzo verticale, sotterranee o in caverna.

Negli impianti idroelettrici le trasformazioni energetiche fondamentali avvengono nelle *condotte forzate* (trasformano l'energia idraulica di posizione in energia idraulica di pressione, nella *turbina* (trasforma l'energia idraulica di pressione in energia meccanica di rotazione) e nell'alter-

natore (trasforma l'energia meccanica di rotazione in energia elettrica); le relazioni energetiche fra tali elementi sono schematizzate nella fig. 35.4.

FIGURA 35.4 Trasformazioni energetiche.

Complementari a tali macchine principali sono gli organi di intercettazione della portata o valvole di macchina e l'organo regolatore di velocità che consente di mantenere costante la rotazione, e quindi la frequenza elettrica, e di variare la portata immessa nella turbina a seconda della potenza richiesta dalla rete.

Per produrre la potenza necessaria al funzionamento dell'impianto vengono sfruttati la *portata d'acqua* (corrisponde alla massa d'acqua che fluisce nell'unità di tempo) e la *caduta* (dislivello esistente tra il punto da cui proviene la massa d'acqua e la centrale di produzione).

A causa delle successive trasformazioni di energia il valore della potenza effettivamente utilizzabile si riduce a causa di perdite per attrito idraulico nelle condotte, perdite meccaniche negli organi rotativi e perdite elettriche e magnetiche nei generatori.

Il rapporto fra la potenza resa all'uscita del generatore elettrico e la potenza teorica è denominato rendimento globale dell'impianto; esso varia dall'80% al 90% a seconda del tipo di impianto e delle sue caratteristiche costruttive.

In un sistema di produzione misto come quello italiano gli impianti idroelettrici forniscono un contributo del tutto peculiare; basti pensare alla capacità di raccolta di acque provenienti dai ghiacciai e ai relativi salti disponibili, caratteristiche geografiche assenti in diversi altri paesi europei.

Ciò rende tali impianti particolarmente adatti a svolgere funzioni di punta e di riserva; oltre alla rapidità di entrata in servizio in caso di necessità, essi sono dotati di altri pregi quali la *flessibilità*, e cioè la capacità di seguire l'andamento del carico, la continuità e la sicurezza del servizio.

2.2. Tipologie d'impianto

In relazione alla portata Q e alla caduta (o salto) H, come evidenziato in fig. 35.5, si hanno impianti di piccola, media e alta portata e impianti a bassa, media e alta caduta.

In relazione al funzionamento si hanno *impianti ad acqua fluente* (non consentono la regolazione degli afflussi), *impianti a deflusso regolato* (consentono la modifica del regime delle portate) e *impianti di pompaggio* (consentono di creare una riserva d'acqua).

FIGURA 37.29 Caratteristica R/T tipica di un PTC.

Le applicazioni tipiche dei termistori PTC possono essere suddivise in due classi a seconda o meno che la corrente interna produca dei fenomeni di riscaldamento sensibili. La prima classe raggruppa il maggior numero d'applicazioni pratiche nelle quali l'elemento è usato come fusibile autoripristinabile a protezione di sovraccarichi o cortocircuiti, oppure come elemento riscaldante per soluzioni liquide o ancora come dispositivo di avviamento per motori. La seconda classe è quella in cui il PTC si comporta da vero e proprio sensore di misura e controllo di temperatura, in genere allo scopo di proteggere apparati da fenomeni di surriscaldamento. In questo caso si preferisce al posto di $R_{\rm ref}$ specificare $R_{\rm NAT}$, definita come la resistenza nominale alla temperatura $T_{\rm NAT}$ all'interno della regione a α costante.

In particolari realizzazioni dei PTC si possono riscontrare dei coefficienti di temperatura di valore anche superiore a 30%/°C, decisamente maggiori di quelli di ogni altro sensore di temperatura resistivo. Occorre tuttavia notare che il campo di temperatura utile è piuttosto ristretto e ciò limita le applicazioni del sensore PTC al controllo di temperature nell'intorno di qualche grado a un valore prestabilito.

2.3.3 Resistori al silicio

Con la loro accuratezza e stabilità a lungo termine, i sensori resistivi al silicio forniscono un'attraente alternativa ai sensori convenzionali NTC e PTC. I principali vantaggi sono i seguenti.

- Stabilità a lungo termine. La resistenza del sensore a una data temperatura dipende essenzialmente dalla struttura chimica del silicio su cui è basato e la deriva nell'arco di vita del prodotto è molto ridotta. È stata stimata una deriva tipica di 0,2 °C (0,8 °C max) dopo 10 000 ore alla massima temperatura (150 °C).
- Processo di fabbricazione standard. Questo tipo di sensori beneficia indirettamente della tecnologia utilizzata per la realizzazione dei circuiti integrati convenzionali al

silicio, sia per quanto riguarda l'elemento sensibile che per il suo contenitore. Di conseguenza è possibile produrre questi componenti a basso costo in alti volumi.

Funzione caratteristica quasi lineare. I sensori a resistenza di silicio mostrano una funzione caratteristica molto più lineare rispetto a quella degli NTC agevolando la progettazione dei circuiti di condizionamento a valle.

Il coefficiente di temperatura α tipico 25 °C vale $0.6 \div 0.8\%$ °C a seconda del modello prescelto.

La linearità intrinseca permette accuratezze dell'ordine di $\pm 1,5$ °C nell'intervallo di temperatura $-10 \div +60$ °C. Se si desiderano accuratezze migliori si deve ricorrere all'aggiunta di opportune reti resistive oppure a tecniche di calcolo software basate su tabelle predefinite di coppie di valori R e T

Nelle applicazioni pratiche di questo tipo di sensori si deve fare attenzione a certe peculiarità come la dipendenza della resistenza dalla corrente d'eccitazione a causa dell'effetto della densità di corrente all'interno del silicio e una certa sensibilità alla polarizzazione del voltaggio applicato. La corrente d'eccitazione consigliata è in genere di 1 mA, triplicando questo valore si può avere un aumento di R_{25} anche del 5%. Nella tab. 37.6 sono riportate le caratteristiche più rilevanti di alcuni resistori al silicio.

La caratteristica resistenza-temperatura di un sensore resistivo al silicio è quasi lineare e in molte applicazioni è sufficiente alimentare il sensore con una corrente costante di 1 mA (fig. 37.30a) e misurare la caduta ai suoi capi. Nei casi in cui sia richiesta una maggiore accuratezza è opportuno introdurre una resistenza linearizzatrice. Consideriamo il circuito di fig. 37.30b dove una resistenza $R_{\rm L}$ è stata aggiunta in parallelo al sensore. È possibile dimensionare $R_{\rm L}$ imponendo che l'errore sia nullo su tre punti di temperatura $T_{\rm a} < T_{\rm b} < T_{\rm c}$ equidistanti. In questo caso si può scrivere

$$V_{o}(T_{c}) - V_{o}(T_{b}) = V_{o}(T_{b}) - V_{o}(T_{a})$$

da cui

$$R_{\rm L}/\!\!/R_{\rm c} - R_{\rm L}/\!\!/R_{\rm b} = R_{\rm L}/\!\!/R_{\rm b} - R_{\rm L}/\!\!/R_{\rm a}$$

e infine

$$R_{\rm L} = \frac{R_{\rm b}(R_{\rm a} + R_{\rm c}) - 2R_{\rm a}R_{\rm c}}{R_{\rm a} + R_{\rm c} - 2R_{\rm b}}$$
(37.5)

FIGURA 37.30 Linearizzazione di un sensore resistivo al silicio.

Tale metodo di stima può essere valido per I/O digitali standard, mentre nel caso di moduli analogici, di posizionamento o di comunicazione, la valutazione dell'impegno della memoria per ogni singolo canale di questo tipo è indicativamente almeno un ordine di grandezza maggiore, ma comunque estremamente variabile da un tipo di PLC a un altro.

La parte di memoria occupata dai dati è tanto maggiore quanto più complesso è il programma nell'ambito della manipolazione dei dati stessi.

3.3. Programmazione

Più un sistema possiede funzioni di programmazione sofisticate più è possibile risparmiare memoria e, nello stesso tempo, rendere più agevole sia la gestione sia la programmazione stessa del sistema; da ciò discende come le potenzialità del sistema di programmazione influiscono sul dimensionamento e quindi sulla scelta del PLC.

La possibilità di utilizzare strumenti software particolarmente sofisticati e ad alto livello può tuttavia essere spesso in contraddizione sia con le prestazioni, soprattutto nei confronti della velocità di esecuzione, sia con il costo del sistema

3.4. Periferiche e opzioni

Talvolta, nella scelta del PLC, influisce anche la necessità di disporre di particolari opzioni e fra queste:

- · video al posto del display di programmazione;
- possibilità di cambiare il programma durante il funzionamento, magari riservando, tramite opportuna protezione, tale operazione solo al personale autorizzato;
- necessità di interfacciamento con un computer supervisore.
- necessità di interfacce uomo-macchina particolarmente evolute:
- · necessità di comunicazione

Tutto ciò finisce con l'influire notevolmente sul dimensionamento del sistema in termini di I/O, di capacità di memoria e di modalità di programmazione.

4. STRUTTURA

Lo schema a blocchi di un PLC mette in evidenza gli stessi blocchi fondamentali di un qualunque microcomputer in quanto, come già accennato, tale dispositivo è da intendersi appunto un microcomputer dotato di specifiche caratteristiche per il suo uso in ambiente industriale; tale schema è visibile in fig. 41.2.

I suoi blocchi fondamentali sono:

- memoria interna:
- microprocessore;
- porte I/O;
- · unità di programmazione.

L'unità di programmazione provvista di tastiera è collegata esternamente tramite cavo.

FIGURA **41.2** Schema a blocchi di un PLC (architettura di un microcomputer secondo Von Neumann).

Memoria interna. È composta da una memoria RAM, che è usata come memoria di lavoro (in essa si scrivono e da essa si leggono dati e programmi) e che, data la sua volatilità, rende necessario l'uso di batterie tampone o di gruppi di continuità, e da una memoria EPROM o EEPROM, il cui compito è quello di immagazzinare i programmi necessaria l funzionamento intrinseco del sistema operativo (SO) e quindi che non devono essere alterati.

Microprocessore. Rappresenta il *cuore* del sistema. Scandisce ciclicamente gli ingressi, pone in esecuzione il programma e, sulla base dei risultati ottenuti, invia i relativi comandi agli attuatori.

Porte I/O. Permettono il collegamento con il «campo» e cioè con i trasduttori e gli attuatori. Data la modularità di molti PLC, queste porte sono rappresentate da dei moduli (di input e di output), ciascuno dei quali contiene un determinato numero di punti di collegamento raggruppati in una morsettiera; in corrispondenza di ogni morsetto è posto in genere un LED che ne identifica il suo stato (on-off). I vari moduli I/O affluiscono in genere a un rack di espansione che permette di ampliare le potenzialità del dispositivo rispetto a una sua struttura minima di base. I moduli I/O possono essere di tipo logico, numerico o analogico. Quelli di tipo logico possono ad esempio avere 1, 4, 8, 16, 32 ingressi logici.

Unità di programmazione. È un dispositivo esterno al PLC composto da una tastiera e un elemento di visualizzazione (display o monitor) e serve per la programmazione del PLC.

Attraverso delle interfacce il PLC può essere inoltre collegato con varie periferiche:

 dispositivo di simulazione: provvisto di interruttori per simulare gli ingressi e di LED per simulare le uscite, serve per verificare la perfetta funzionalità del programma prima che questo determini malfunzionamenti indesiderati del sistema reale; contribuisce inoltre alla rapida individuazione di un eventuale guasto all'interno del sistema: to riferimento alle seguenti applicazioni: comando di un cilindro a semplice effetto, comando di un cilindro a doppio effetto, comando con autoritenuta, comando temporizzato.

Il comando di un cilindro a semplice effetto può essere diretto (quando premendo un pulsante si eccita direttamente la bobina dell'elettrovalvola) o indiretto (quando l'eccitazione della bobina avviene tramite relè pilota).

Per il comando di un cilindro a doppio effetto rimangono valide le stesse considerazioni.

Il comando con autoritenuta prevede la pressione di un pulsante di avvio per avviare la corsa di andata e di un pulsante di stop per avviare la corsa di ritorno; il comando è indiretto tramite relè pilota; il contatto di autoritenuta viene posto in parallelo al pulsante di avvio.

Il comando temporizzato ha lo scopo di creare un ritardo intenzionale nell'esecuzione di una determinata azione (ad esempio la corsa di un cilindro) a seguito di un comando (ad esempio la pressione di un pulsante); per queste applicazioni possono essere utilizzati relè temporizzatori con ritardo all'eccitazione e alla diseccitazione

17. SEQUENZE CICLICHE

In fig. 42.45 viene riprodotto lo schema elettropneumatico per il comando di due cilindri a doppio effetto che funzionino seguendo il ciclo A+/A- semiautomatico e automatico.

Il cilindro A funziona rispettando un ciclo semiautomatico; premendo il pulsante PA viene avviato il ciclo in quanto l'eccitazione della bobina A+ dell'elettrovalvola porta il cilindro a fine corsa; raggiunta questa posizione il contatto di FCA+ si chiude eccitando la bobina A- con conseguente ritorno del cilindro a inizio corsa. Il cilindro B funziona rispettando un ciclo automatico; premendo il pulsante PB viene avviato il ciclo automatico in quanto l'eccitazione della bobina RA del relè ausiliario determina la chiusura dei contatti aperti del medesimo e la conseguente eccitazione della bobina dell'elettrovalvola B+ che porta il cilindro a fine corsa; questo funzionamento è possibile perché, anche se il contatto del finecorsa B- viene rappresentato aperto, in realtà è chiuso quando il cilindro si trova a inizio corsa; tale contatto consente quindi il passaggio di corrente; raggiunta la posizione di fine corsa la chiusura del contatto aperto del finecorsa B+ determina l'eccitazione della bobina dell'elettrovalvola B- e il conseguente rientro del cilindro: l'operazione si ripete ciclicamente in quanto la richiusura del contatto di B- quando il cilindro ritorna a inizio corsa determina nuovamente l'uscita del cilindro; il ciclo si interrompe premendo il pulsante PBS.

18. ARRESTO DI EMERGENZA

In fig. 42.46 viene riportato un esempio di schema elettropneumatico che prevede l'impiego dell'arresto di emergenza.

Il funzionamento viene di seguito descritto. La corsa positiva ha inizio per entrambi i cilindri con la pressione del pulsante di avvio PA che eccita la bobina del relè temporizzatore T1 ritardato alla diseccitazione; trascorso il tempo di conteggio, se non si interviene con l'arresto di emergenza, entrambi i cilindri rientrano (quello a semplice effetto per la presenza della molla, quello a doppio effetto per la presenza del contatto FCA+ che chiudendosi attiva la bobina B-): se si interviene con l'arresto di emergenza AE mentre i cilindri sono usciti il cilindro a semplice effetto rientra immediatamente per la presenza della molla, quello a doppio effetto mantiene la posizione perché la bobina B- non può più essere attivata.

Parte 5 Principi generali di oleoidraulica

19. FLUIDI IDRAULICI

19.1. Introduzione

Il sistema di trasmissione oleoidraulico utilizza come sorgente di energia per la trasmissione e l'azionamento di potenza quella contenuta in un fluido in pressione, comunemente chiamato *oleoidraulico*, per distinguerlo dall'acqua, e costituito generalmente da olio minerale o sintetico di determinate caratteristiche

Lo schema a blocchi di un impianto oleoidraulico viene riportato in fig. 42.47

FIGURA 42.45 Schema elettropneumatico dell'azionamento relativo al ciclo A+/A-

- -- secondario, 159
- -- spin. 164
- relativi, rappresentazione nel sistema binario 870
- -- con modulo e segno, 870
- -- in complemento a 1, 871
- in complemento a 2, 871
- --- binari negativi, 871
- --- binari positivi. 871
- NVRAM (Non Volatile RAM), 856

Nyauist

- criterio di, 1721
- -- punto critico, 1721
- -- semplificato, 1721
- diagrammi di, 1714

OEM (Original Equipment Manufacturer),

Oggetto di un contratto, 324 Ohm

- leggi di, 142, 588
- -- per i circuiti induttivi in regime variabile, 619
- -- per un bipolo passivo RLC serie, 631
- -- prima legge, 142
- -- seconda legge, 143
- Oleoidraulica, 1838

Oligopolio, 317

Olio, 1506, 1839

- minerale, 1839

Omron, 1804

- cablaggio, 1805
- caricamento, 1807
- compilazione, 1807
- installazione, 1804
- montaggio, 1804
- programmazione, 1806
- salvataggio, 1807
- serie CP SYSMAC, 1804
- simulazione, 1807

Onda/e, 154

- acustiche, 158
- battimento/i, 157
- -- frequenza di, 157
- densità media di energia, 156
- di pressione in un gas, 156
- effetto Doppler, 157
- elettromagnetiche nel vuoto, 156
- energia trasportata, 156
- fronte d'. 151
- intensità dell', 156
- interferenza, 152, 156
- -- costruttiva, 156
- --- nodi, 156
- --- ventri, 156
- -- distruttiva, 156
- longitudinali, 155
- -- nei liquidi, 156
- lunghezza d', 155
- meccaniche in una sbarra, 155
- non polarizzata, 155
- piana, 154
- -- sinusoidale, 155
- piano di polarizzazione, 155
- polarizzata linearmente, 155

- polarizzazione circolare, 155
- polarizzazione ellittica, 155
- riflessa, 147
- rifratta, 147
- risonanza, 157
- sferiche sinusoidali, 155
- sonore, 157
- -- infrasuoni, 158
- soglia del dolore. 158
- soglia di udibilità, 158
- -- ultrasuoni, 158
- velocità. 158
- sorgenti coerenti, 156
- stazionarie, 156
- -- armoniche superiori, 157
- -- frequenza fondamentale, 157
- -- modi normali di vibrazione, 157
- trasversali 155
- -- in corde, 155
- velocità di propagazione, 155

Ondametro eterodina, 705

Open drain, 865

Operatore vettoriale, 629 Operatori economici, 315

Operazioni booleane elementari, 875

- logiche, 11, 880
- nel sistema binario, 871
- prodotto logico (AND), 876
- segazione o complemento (NOT), 876
- somma logica (OR), 875
- tra. 57
- universali, 880

Opere

- di presa
- a pelo libero, 1586
- -- in pressione, 1586
- di sbarramento, 1585
- dighe di ritenuta in calcestruzzo, 1585
- --- a gravità, 1585
- --- ad arco, 1585
- --- in materiali sciolti, 1586
- -- traverse e paratoie, 1585
- --- di derivazione o paratoie mobili,

Optoisolatori, 1777, 1778

OR (operazione logica), 11, 804, 1833

- esclusivo (XOR), 12, 804

Orbitali

- atomici, 159
- -- numeri quantici, 159
- principio di esclusione di Pauli. 164

Ordine di grandezza, 588

Organi di trasmissione, 1864

Organigramma, 322

Organismi paritetici, 333

- Organizzazione, 318 - del lavoro nell'impresa, 321
- dell'impresa, 318, 321
- di un disegno, 295
- funzionale nell'impresa, 321
- gerarchica nell'impresa, 321
- mista nell'impresa, 322

- deliberativo, di una S.p.a., 320
- di controllo, di una S.p.a., 320

Oro (Au), 193

Oscillatore, 796

- a ponte di Wien, 797
- a guarzo, 798
- -- capacità di carico, 798
- -- overtone, 798
- -- parametri mozionali, 798
- a sfasamento, 797
- -- con rete di sfasamento 12R, 797
- a T-pontato, 797
- condizioni di oscillazione, 796
- -- criterio di
- --- Armstrong, 797
- --- Barkhausen, 797
- --- Colpitts, 797
- --- Hartley, 797

per alta frequenza, 797 Oscillazioni

- permanenti, 1703
- smorzate, 1703

Oscillografo, 705

- Oscilloscopio - analogico, 721
- -- sonde, 724
- -- visualizzazione alternate mode, 722
- - visualizzazione chopped mode, 722
- digitale, 722
- -- sonde, 724

Ossidazione, 1841

Ossidoriduzione, reazione, 182

Ossigeno (O), 191

- Ottica, 147 - caratteristiche della radiazione
- luminosa, 147 -- indice di rifrazione assoluto del
- mezzo, 147
- -- velocità della luce, 147
- --- in un mezzo materiale, 147 --- nel vuoto, 147
- física, 151
- -- diffrazione, 152
- -- interferenza, 152 --- anelli di Newton. 152
- --- esperienza di Young, 152
- --- nelle lamine sottili, 152 -- principio di Huygens-Fresnel, 151
- fotoni, 147
- geometrica, 147
- angolo di incidenza, 148
- angolo di riflessione, 148
- -- angolo di rifrazione, 148 -- angolo limite, 148
- -- diottro sferico, 150
- -- onda riflessa. 147
- -- onda rifratta, 147
- -- riflessione, 147
- --- totale, 148
- -- rifrazione, 147 -- specchio
- --- piano, 148 --- sferico, 149
- spettro elettromagnetico, 147
- teoria elettromagnetica, 147
- -- costante dielettrica, 156 -- permeabilità magnetica, 156
- Ottoni, 386
- comuni, 387

Consentito durante la prova di esame, indispensabile per la preparazione!

La quarta edizione del Manuale Cremonese di **Elettrotecnica** è stata profondamente rivista e aggiornata per rispondere alle esigenze didattiche dei Nuovi Istituti Tecnici, in particolare per l'indirizzo di *Elettrotecnica* ed *Elettronica* nell'articolazione *Elettrotecnica* e nell'articolazione *Automazione*.

In un solo volume sono raccolte le **discipline propedeutiche** (che trattano argomenti già acquisiti, ma che sono qui riproposti nelle linee essenziali per consentire sempre allo studente una agevole consultazione) e le **trattazioni specialistiche.** Il volume affronta non solo gli argomenti tradizionali del corso di elettrotecnica (macchine elettriche, motori a commutazione elettronica, impianti, illuminotecnica), ma anche automazione e azionamenti, fornendo inoltre indispensabili nozioni di elettronica di base.

Un manuale completo che accompagna lo studente durante lo studio fino all'Esame di Stato, ed è di efficace consultazione anche per il professionista grazie al ricco indice analitico: si spazia da discipline fondamentali quali la fisica e la matematica a specifici approfondimenti (statistica, matematica finanziaria) sino ad argomenti di stringente attualità, come il software per l'automazione industriale, la piattaforma Arduino, l'impatto ambientale e lo smaltimento rifiuti, la qualità e la sicurezza nei luoghi di lavoro.

Nella collana dei **Manuali Cremonese Zanichelli**: Elettronica, Meccanica, Elettrotecnica, Informatica e Telecomunicazioni, Geometra – Costruzione, Ambiente e Territorio

http://dizionaripiu.zanichelli.it/cremonese

MAN CREMONESE*ELETTROTECNICA 4E(CR)

