```
In [1]: import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
```

Diabetes Binary Classification Dataset

Input Features: 'preg_count', 'glucose_concentration', 'diastolic_bp', 'triceps_skin_fold_thickness', two_hr_serum_insulin', 'bmi', 'diabetes_pedi', 'age'

Target Feature: 'diabetes_class'

Objective: Predict diabetes_class for given input features

Data Source: https://archive.ics.uci.edu/ml/datasets/pima+indians+diabetes

Out[4]:		preg_count	glucose_concentration	diastolic_bp	$triceps_skin_fold_thickness$	two_hr_serum_insulin	bmi	diabetes_pedi	
	count	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000000	768.000
	mean	3.845052	120.894531	69.105469	20.536458	79.799479	31.992578	0.471876	33.240
	std	3.369578	31.972618	19.355807	15.952218	115.244002	7.884160	0.331329	11.76(
	min	0.000000	0.000000	0.000000	0.000000	0.000000	0.000000	0.078000	21.000
	25%	1.000000	99.000000	62.000000	0.000000	0.000000	27.300000	0.243750	24.000
	50%	3.000000	117.000000	72.000000	23.000000	30.500000	32.000000	0.372500	29.000
	75%	6.000000	140.250000	80.000000	32.000000	127.250000	36.600000	0.626250	41.000
	max	17.000000	199.000000	122.000000	99.000000	846.000000	67.100000	2.420000	81.000
4									•

In [17]: print(df.describe())

```
preg_count glucose_concentration diastolic_bp
        count 768.000000
                                       768.000000
                                                      768.000000
                  3.845052
                                       120.894531
                                                       69.105469
        mean
        std
                  3.369578
                                        31.972618
                                                      19.355807
        min
                  0.000000
                                         0.000000
                                                       0.000000
        25%
                  1.000000
                                        99.000000
                                                       62.000000
        50%
                  3.000000
                                       117.000000
                                                      72.000000
        75%
                 6.000000
                                       140.250000
                                                      80.000000
                17.000000
                                       199.000000
                                                      122,000000
        max
                triceps_skin_fold_thickness two_hr_serum_insulin
                                                                           bmi
        count
                                 768.000000
                                                        768.000000
                                                                    768.000000 \
                                  20.536458
                                                         79.799479
                                                                     31.992578
        mean
                                  15.952218
                                                        115.244002
                                                                      7.884160
        std
        min
                                   0.000000
                                                          0.000000
                                                                      0.000000
                                                                     27.300000
        25%
                                   0.000000
                                                          0.000000
        50%
                                  23.000000
                                                         30.500000
                                                                     32.000000
        75%
                                  32.000000
                                                        127.250000
                                                                     36.600000
                                  99.000000
                                                        846.000000
                                                                     67.100000
        max
                                      age diabetes_class
                diabetes_pedi
        count
                   768.000000
                               768.000000
                                                768.000000
                                                  0.348958
                     0.471876
                                33.240885
        mean
        std
                     0.331329
                                11.760232
                                                 0.476951
        min
                     0.078000
                                21.000000
                                                 0.000000
        25%
                                24.000000
                     0.243750
                                                 0.000000
        50%
                     0.372500
                                29.000000
                                                 0.000000
        75%
                     0.626250
                                41.000000
                                                 1.000000
                     2.420000
                                81.000000
        max
                                                 1.000000
        df['glucose_concentration'].hist()
In [5]:
        plt.show()
```



```
In [6]: df['diabetes_class'].value_counts()

Out[6]: diabetes_class
0 500
1 268
    Name: count, dtype: int64

In [7]: # Separate diabetic and normal samples
    diabetic = df.diabetes_class == 1
    normal = df.diabetes_class == 0

In [8]: # Glucose concentration histogram
    plt.hist(df[diabetic].glucose_concentration,label='diabetic')
    plt.hist(df[normal].glucose_concentration,alpha=0.5,label='normal')
    plt.title('Glucose Concentration')
    plt.xlabel('Glucose concentration')
```

```
plt.ylabel('Samples')
plt.legend()
plt.show()
```



```
In [9]: # BMI histogram
  plt.hist(df[diabetic].bmi,label='diabetic')
  plt.hist(df[normal].bmi,alpha=0.5,label='normal')
  plt.title('BMI')
  plt.xlabel('BMI')
  plt.ylabel('Samples')
  plt.legend()
  plt.show()
```



```
In [10]: # Age
    plt.hist(df[diabetic].age,label='diabetic')
    plt.hist(df[normal].age,alpha=0.5,label='normal')
    plt.title('Age')
    plt.xlabel('Age')
    plt.ylabel('Samples')
    plt.legend()
    plt.show()
```


Training and Validation Set

Target Variable as first column followed by input features:

'diabetes_class', 'preg_count', 'glucose_concentration', 'diastolic_bp', 'triceps_skin_fold_thickness', 'two_hr_serum_insulin', 'bmi', 'diabetes_pedi', 'age'

Training, Validation files do not have a column header

```
In [11]: # Training = 70% of the data
# Validation = 30% of the data
```

```
# Randomize the datset
         np.random.seed(5)
         1 = list(df.index)
         np.random.shuffle(1)
         df = df.iloc[1]
In [12]: rows = df.shape[0]
         train = int(.7 * rows)
         test = rows - train
In [13]: rows, train, test
Out[13]: (768, 537, 231)
In [14]: # Write Training Set
         df[:train].to_csv('diabetes_train.csv'
                                    ,index=False,index_label='Row',header=False
                                    ,columns=columns)
In [15]: # Write Validation Set
         df[train:].to_csv('diabetes_validation.csv'
                                    ,index=False,index_label='Row',header=False
                                    ,columns=columns)
In [16]: # Write Column List
         with open('diabetes_train_column_list.txt','w') as f:
             f.write(','.join(columns))
 In [ ]:
```