Vaja 13: Bernoullijeva enačba

Matevž Demšar

Januar 2024

Opis. Pri vaji smo s pomočjo Venturijeve cevi merili pretok vode.

Uvod. Prostorninski tok vode skozi cev lahko predvidimo z enačbo $\Phi = K\sqrt{\Delta h}$, v kateri je Δh razlika gladin živega srebra v manometru, K pa neka konstanta.

$$K^2 = (\rho_{Hq} - \rho_v)g/k,$$

v kateri je k odvisen od lastnosti cevi, in sicer:

$$k = \frac{1}{2}\rho_{Hg} \left(\frac{1}{S_2^2} - \frac{1}{S_1^2} \right)$$

Vrednost Φ lahko izmerimo tako, da opazujemo, v kolikšnem času skozi cev steče določena prostornina vode.

Meritve. Meritve opravimo pri šestih različnih vodnih pretokih. Vodni pretok izmerimo tako, da cev preusmerimo v posodo z znano prostornino 1 $L\pm0,05$ L vode. Za večjo natančnost vodni pretok izmerimo trikrat. Pri vsaki meritvi odčitamo tudi razliko gladin v manometru.

$\Delta h \ [mm]$	$\Delta t [s]$	$\bar{t}[s]$	$\Delta h \ [mm]$	$\Delta t [s]$	\bar{t} [s]
	16,73			22,25	
35	17,17	17,0	23	$22,\!25$	22,5
	17,02			22,87	
	18,62			27,19	
30	18,33	18,4	17	27,54	27,4
	18,25			27,39	
	19,88			36,19	
26	20,03	19,9	10	36,44	36,5
	19,78			36,76	

Izračuni. Vodni pretok določimo Najprej na podlagi lastnosti cevi in znanih konstant določimo konstanto K.

$$K = \sqrt{(\rho_{Hg} - \rho_v)g/k}$$

$$k = \frac{1}{2}\rho_v \left(\frac{1}{S_2^2} - \frac{1}{S_1^2}\right)$$

$$K = \sqrt{\frac{(\rho_{Hg} - \rho_v)g}{\frac{1}{2}\rho_{Hg}\left(\frac{1}{S_2^2} - \frac{1}{S_1^2}\right)}}$$

$$S_2 = 113 \times 10^{-6} \ m^2$$

$$S_1 = 515 \times 10^{-6} \ m^2$$

$$T = 21^{\circ}C$$

$$\rho_v = 998 \ kgm^{-3}$$

$$\rho_{Hg} = 13546 \ kgm^{-3}$$

$$K = 4.94 \times 10^{-4} \ m^{5/2} s^{-1}$$

Zdaj lahko iz izmerjenih vrednosti izračunamo $\Phi=K\sqrt{\Delta h}$ in $\Phi=V/\bar{t}$. Pričakujemo, da bosta ti dve vrednosti enaki.

Meritev	$\Phi = K\sqrt{\Delta h} \ [m^3/s]$	$\Phi = V/\bar{t} \ [m^3/s]$
1	$9,24 \times 10^{-5}$	$5,9 \times 10^{-5}$
2	$8,55 \times 10^{-4}$	$5,4 \times 10^{-5}$
3	$7,96 \times 10^{-4}$	$5,0 \times 10^{-5}$
4	$7,49 \times 10^{-4}$	$4,4 \times 10^{-5}$
5	$6,44 \times 10^{-4}$	$3,6 \times 10^{-5}$
6	$4,93 \times 10^{-4}$	$2,7\times 10^{-5}$

Graf. Konstanto K lahko določimo tudi iz grafa $\Delta h(\Phi^2)$. Z linearno regresijo lahko podatkom priredimo premico, katere koeficient je $1/K^2$.

$$K = 3.4 \times 10^{-4}$$

Zaključek. Izračunane vrednost se znatno razlikujejo od izmerjenih. Do največjih napak je prihajalo pri izmerjeni vrednosti, saj smo dotok vode v posodi pogosto prekinili prezgodaj ali prepozno.

