Københavns Universitets Økonomiske Institut

1. årsprøve 2018 V-1B ex ret

Rettevejledning til skriftlig eksamen i Matematik B

Tirsdag den 9. januar 2018

Opgave 1. For ethvert tal $s \in \mathbf{R}$ betragter vi 3×3 matricen

$$A(s) = \begin{pmatrix} 1 & s & 1 \\ s & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix}.$$

(1) Udregn determinanten for matricen A(s), og bestem de $s \in \mathbf{R}$, for hvilke A(s) er regulær.

Løsning. Vi ser, at

$$\det A(s) = 2s - s^2 - 1 = -s^2 + 2s - 1 = -(s^2 - 2s + 1) = -(s - 1)^2,$$

og denne determinant er lig med nul, når og kun når s=1. Matricen A(s) er derfor regulær, når og kun når $s\neq 1$.

(2) Vis, at matricen A(s) er positiv semidefinit, når og kun når s=1.

Løsning. Matricen A(s) har følgende hovedunderdeternimanter: Af første orden $\Delta_1 = 1, 2, 1$, af anden orden $\Delta_2 = 2 - s^2, 1, 0$, og af tredje orden $\Delta_2 = \det A(s) = -(s-1)^2$. Da $2 - s^2 \ge 0$, netop når $-\sqrt{2} \le s \le \sqrt{2}$, ser vi, at alle disse hovedunderdeterminanter er ikke-negative, når og kun når s = 1.

(3) Vis, at matricen A(s) er indefinit for ethvert $s \in \mathbb{R} \setminus \{1\}$.

Løsning. Ved atter at se på alle hovedunderdeterminanterne fremkommer resultatet umiddelbart.

(4) Bestem egenværdierne for matricen A(1). (Her er s = 1.)

Løsning. Vi ser, at

$$A(1) = \left(\begin{array}{rrr} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{array}\right),$$

Så det karakteristiske polynomium er

$$P(t) = \det(A(1) - tE) = -t^3 + 4t^2 - 2t = -t(t^2 - 4t + 2).$$

Heraf ser vi, at de karakteristiske rødder (og dermed egenværdierne for matricen A(1)) er 0 og $2 \pm \sqrt{2}$.

(5) Udregn matricen $B = A(1)A(1) = ((A(1))^2$.

Løsning. Vi finder, at

$$B = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 3 & 4 & 3 \\ 4 & 6 & 4 \\ 3 & 4 & 3 \end{pmatrix}.$$

(6) Bestem egenværdierne for matricen B, og angiv deres egenværdimultipliciteter.

Løsning. Egenværdierne for matricen B er kvadraterne på egenværdierne for matricen A(1), så de er altså 0 og $6 \pm 4\sqrt{2}$. De har alle egenværdimultipliciteten 1.

Opgave 2. Vi betragter den funktion $f: \mathbb{R}^2 \to \mathbb{R}$, som er givet ved forskriften

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = \frac{x+y}{e^x}.$$

(1) Bestem de partielle afledede

$$\frac{\partial f}{\partial x}(x,y)$$
 og $\frac{\partial f}{\partial y}(x,y)$

af første orden for funktionen f i et vilkårligt punkt $(x,y) \in \mathbf{R}^2$.

Løsning. Vi ser, at

$$\frac{\partial f}{\partial x}(x,y) = \frac{e^x - xe^x - ye^x}{e^{2x}} = \frac{1 - x - y}{e^x} \text{ og } \frac{\partial f}{\partial y}(x,y) = \frac{1}{e^x}.$$

(2) Bestem eventuelle stationære punkter for funktionen f.

Løsning. Der er ingen stationære punkter, thi $\frac{\partial f}{\partial y}(x,y) = \frac{1}{e^x} \neq 0$ for ethvert $x \in \mathbf{R}$.

(3) Bestem værdimængden for funktionen f.

Løsning. Da f(0,y) = y, ser vi, at funktionen f har værdimængden $R(f) = \mathbf{R}$.

(4) Udregn størrelsen

$$S(x,y) = \frac{\partial f}{\partial x}(x,y) - \frac{\partial f}{\partial y}(x,y)$$

for eth vert punkt $(x,y) \in \mathbf{R}^2$, og vis derved, at S(x,y) = -f(x,y).

Løsning. Det ses umiddelbart, at

$$S(x,y) = -\frac{x+y}{e^x} = -f(x,y).$$

(5) Bestem de partielle elasticiteter $f^\epsilon_x(x,y)$ og $f^\epsilon_y(x,y)$ i ethvert punkt $(x,y)\in {\bf R}^2$, hvor $x+y\neq 0$.

Løsning. Vi finder, at

$$f_x^{\epsilon}(x,y) = \frac{x - x^2 - xy}{x + y}$$
 og $f_y^{\epsilon}(x,y) = \frac{y}{x + y}$.

Opgave 3. For ethvert t > 0 betragter vi differentialligningen

$$\frac{dx}{dt} + (\ln t + 1)x = e^{t-t\ln t}.$$

(1) Bestem den fuldstændige løsning til differentialligningen (*).

Løsning. Idet $p(t) = \ln t + 1$, er $P(t) = t \ln t - t + t = t \ln t$. Da får vi, at

$$x = Ce^{-t \ln t} + e^{-t \ln t} \int e^{t \ln t} \cdot e^{t - t \ln t} dt = Ce^{-t \ln t} + e^{-t \ln t} \int e^t dt =$$

$$Ce^{-t \ln t} + e^{-t \ln t} e^t = e^{-t \ln t} (C + e^t) = (C + e^t) t^{-t}, \text{ hvor } C \in \mathbf{R}.$$

(2) Bestem den specielle løsning $\tilde{x} = \tilde{x}(t)$ til (*), så betingelsen $\tilde{x}(1) = 5e$ er opfyldt.

Løsning. Vi ser umiddelbart, at C = 4e, så

$$\tilde{x}(t) = e^{-t \ln t} (4e + e^t) = (4e + e^t)t^{-t}.$$

(3) Bestem en forskrift for funktionen $\tilde{x}(e^{-s})$, hvor $s \in \mathbf{R}$, og bestem grænseværdien

$$\lim_{s \to \infty} \tilde{x}(e^{-s}).$$

Løsning. Vi ser, at

$$\tilde{x}(e^{-s}) = e^{se^{-s}} \left(4e + e^{e^{-s}} \right).$$

Der følger nu, at

$$\lim_{s \to \infty} \tilde{x}(e^{-s}) = 4e + 1.$$

Opgave 4. Betragt den hyperplan H_0 i vektorrummet \mathbf{R}^4 , som er givet ved ligningen

$$H_0: x_1 + 2x_2 - x_3 + 3x_4 = 0,$$

idet \mathbb{R}^4 er forsynet med det sædvanlige indre produkt (prikproduktet), og underrummet

$$U = \text{span}\{(1, 0, 1, 2), (0, 1, 0, 1)\}.$$

(1) Begrund, at hyperplanen H_0 er et underrum af \mathbf{R}^4 , og bestem tre vektorer v_1, v_2 og v_3 , så

$$H_0 = \text{span}\{v_1, v_2, v_3\}.$$

Løsning. Hyperplanen H_0 er et underrum af vektorrummet \mathbf{R}^4 , thi $\underline{0} \in H_0$. Desuden ser vi, at $x_1 = -2x_2 + x_3 - 3x_4$, så

$$x = (x_1, x_2, x_3, x_4) = x_2(-2, 1, 0, 0) + x_3(1, 0, 1, 0) + x_4(-3, 0, 0, 1).$$

Dette viser, at

$$H_0 = \text{span}\{(-2, 1, 0, 0), (1, 0, 1, 0), (-3, 0, 0, 1)\}.$$

(2) Bestem fællesmængden $M = H_0 \cap U$, og godtgør, at M er et underrum af \mathbb{R}^4 .

Løsning. Det er klart, at fællesmængden $M = H_0 \cap U$ er et underrum af \mathbb{R}^4 .

Idet

$$U = \{y(1,0,1,2) + z(0,1,0,1) \mid y, z \in \mathbf{R}\},\$$

kan vi bestemme M ved at løse det lineære ligningssystem, som har totalmatricen

$$T = \left(\begin{array}{ccc|c} -2 & 1 & -3 & y \\ 1 & 0 & 0 & z \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & 2y+z \end{array}\right).$$

Reduceres totalmatricen T til echelonmatrix, får vi, at

$$T = \begin{pmatrix} 1 & 0 & 0 & z \\ 0 & 1 & 0 & y \\ 0 & 0 & 1 & 2y + z \\ 0 & 0 & 0 & 6y + 5z \end{pmatrix}.$$

Der er nu løsninger, hvis og kun hvis 6y+5z=0. Vi ser da, at $z=-\frac{6}{5}y$, så

$$M = \left\{ \left(y, -\frac{6}{5}y, y, \frac{4}{5}y\right) \right\} = \operatorname{span}\left\{ \left(1, -\frac{6}{5}, 1, \frac{4}{5}\right) \right\}.$$

(3) Bestem mængden

$$M^{\perp} = \{ x \in \mathbf{R}^4 \mid \forall z \in M : x \perp z \},\$$

og godtgør, at mængden M^{\perp} er et underrum af vektorrummet \mathbf{R}^4 .

Mængden M^\perp kaldes det ortogonale komplement til M.

Løsning. Lad $x=(x_1,x_2,x_3,x_4)\in M^{\perp}.$ Vi ser da, at

$$x_1 - \frac{6}{5}x_2 + x_3 + \frac{4}{5}x_4 = 0 \Leftrightarrow x_1 = \frac{6}{5}x_2 - x_3 - \frac{4}{5}x_4.$$

Heraf finder vi, at

$$x = (x_1, x_2, x_3, x_4) = \left(\frac{6}{5}x_2 - x_3 - \frac{4}{5}x_4, x_2, x_3, x_4\right) =$$

$$x_2\left(\frac{6}{5},1,0,0\right) + x_3(-1,0,1,0) + x_4\left(-\frac{4}{5},0,0,1\right).$$

Dette viser, at

$$M^{\perp} = \mathrm{span} \left\{ \left(\frac{6}{5}, 1, 0, 0 \right), (-1, 0, 1, 0), \left(-\frac{4}{5}, 0, 0, 1 \right) \right\},$$

hvoraf det også fremgår, at M^{\perp} er et underrum.