Question Number	Answer	Notes	Marks
5	(a)		
	$\log_7(2x-3) = 2 \implies (2x-3) = 7^2$	M1	
	$2x = 52 \qquad x = 26$	A1	
	(b) (i) $2x(\ln 3x - 2) - 4(\ln 3x - 2)$ $= (2x - 4)(\ln 3x - 2)$ or $2(x - 2)(\ln 3x - 2)$ or $(x - 2)(2\ln 3x - 4)$	M1A1	
	(ii) $2x-4=0$ $x=2$	B1	
	$\ln 3x = 2 3x = e^2, x = \frac{1}{3}e^2$	M1,A1	
			(7)

Notes

(a)

M1 for
$$(2x-3) = 7^2$$

A1 for
$$x = 26$$

(b)

(i)

M1for an attempt at factorising any pair.

for a fully correct factorisation seen. (alternatives above). A1

(ii)

$$B1$$
 $x=2$

M1 for
$$\ln 3x = 2 \Rightarrow 3x = e^{-3x}$$

M1 for
$$\ln 3x = 2 \Rightarrow 3x = e^2$$

A1 for $x = \frac{e^2}{3}$