

Computational Physics

numerical methods with C++ (and UNIX)
2020-21

Fernando Barao

Instituto Superior Tecnico, Dep. Fisica email: fernando.barao@tecnico.ulisboa.pt

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (1)

Computational Physics Number representation and Machine precision

Fernando Barao, Phys Department IST (Lisbon)

Introduction

Solving physical problems with a computer

- numbers and characters representation
 - binary, decimal and hexadecimal systems
 - characters
 - floating point
 - computation errors

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (3)

Numbers range...

Bohr radius calculation in SI units:

$$r_0 = \frac{4\pi\varepsilon_0\hbar^2}{m_e e^2}$$

$$= \frac{10^{-10} \times (10^{-34})^2}{10^{-30} \times (10^{-19})^2} \sim \frac{10^{-78}}{10^{-68}}$$

$$\sim 5.3 \times 10^{-11} \text{ m}$$

What type of variables to use to store the different constants?

single precision range: $[10^{-45}, 10^{38}]$

How can we control the problem?

```
m_e = 9.109 \cdots \times 10^{-31} \text{ Kg}
e = 1.602 \cdots \times 10^{-19} \text{ C}
\varepsilon_0 = 8.854 \cdots \times 10^{-12} \text{ F/m}
\hbar = 1.054 \cdots \times 10^{-34} \text{ J.s}
```

```
1 <type> me = 9.109E-31;
2 <type> e = 1.602E-19;
3 <type> p = 8.854E-12;
4 <type> h = 1.054E-34;
5 <type> num = p*pow(h,2.);
6 <type> den = me*pow(e,2.);
```

Numbers range...factorial

The calculation of factorial:

$$n! = n \times (n-1) \times (n-2) \times \cdots \times 2 \times 1$$

✓ Is it possible to calculate the factorial of any number on this way?

it is not, because the result can assume a range very high...

✓ We can mitigate the problem using *log* function ...although still time expensive!

$$log(n!) = log(n) + log(n-1) + log(n-2) + \dots + log(2)$$

✓ Use Stirling formula for n > 30:

$$n! = \sqrt{2\pi n} \ n^n \ e^{-n} \left(1 + \frac{1}{12n} + \frac{1}{288n^2} \cdots \right)$$

...and range mitigation still needed! Use log function.

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (5)

Numbers representation: integer

- ✓ In computers information is stored as a sequence of 0's and 1's: binary system
- ✓ Byte: sequence of 8 bits

KByte: 2^{10} *Bytes* = 1024 Bytes

MByte: $2^{10}KBytes = 1024$ KBytes

✓ A m bits integer number N in binary representation:

$$b_{m-1} 2^{m-1} + b_{m-2} 2^{m-2} + \cdots + b_0 2^0$$

✓ The sign of the number is stored in one bit (usually the MSB)

0 = positive

1 = negative

✓ A 32 bits signed integer (4 bytes) uses 31 bits (0...30) for storing the number max value of a signed 32bits integer:

 $2^{31} - 1 = \pm 2 \ 147 \ 483 \ 647$

Ex: 417 conversion to binary

division	remind	coeff
417/2 = 208	1	1×2^0
208/2 = 104	0	0×2^1
104/2 = 52	0	0×2^2
52/2 = 26	0	0×2^3
26/2 = 13	0	0×2^4
13/2 = 6	1	1×2^5
6/2 = 3	0	0×2^6
3/2 = 1	1	1×2^7
1/2 = 0	1	1×2^8

 $(417)_{10} = (0...0110100001)_2$

 $(-5)_{10} = -(101)_2 = (10...0101)_2$

Numbers representation: reals

32-bits real representation

s	exponent	mantissa	
31	30 2	3 22	0

real number has to be converted, the integral part and the decimal part into a binary

$$\underbrace{634}_{integral} \cdot \underbrace{28125}_{decimal}$$

✓ The binary representation

...
$$b_3b_2b_1b_0 \cdot b_{-1}b_{-2}b_{-3}$$
...
6.28125 = (110.01001)₂ \Rightarrow 2² + 2¹ + 2⁻² + 2⁻⁵

✓ real numbers are stored as a sequence of three bit fields: $(-1)^s \times m \times 2^e$

$$s = sign (0,1)$$
 $m = mantissa (hidden 1.)$
 $p = exponent (stored p=e+bias=e+127)$

$$6.28125 = (110.01001)_2 = 1.1001001 \times \underbrace{100}_{2}$$

$$s = 0$$
, $p = 2 + 127$, $m = 100100100...$

Example: 6.28125

Conversion of integral part

div	res	remain
6/2	3	0×2^0
3/2	1	1×2^1
1/2	0	1×2^2

stop when zero on result!

Conversion of decimal part

	mult	res	int
	0.28125×2	0.5625	0×2^{-1}
	0.5625×2	1.1250	1×2^{-2}
	0.1250×2	0.2500	0×2^{-3}
	0.2500×2	0.5000	0×2^{-4}
	0.5000×2	1.0000	1×2^{-5}
S	top when zero	on decim	al part!

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (7)

binary conversion: limited precision

Example: 11.20

Conversion of integral part

div	res	remain
11/2	5	1×2^0
5/2	2	1×2^1
2/2	1	0×2^3
1/2	0	1×2^4

 $(11.)_{10} = (1011\cdot)_2$

Conversion of decimal part

mult	res	int
0.20×2	0.40	0×2^{-1}
0.40×2	0.80	0×2^{-2}
0.80×2	1.60	1×2^{-3}
0.60×2	1.20	1×2^{-4}
0.20×2	0.40	0×2^{-5}
• • •		

 $(0.20)_{10} = (.0011001100110011 \cdots)_2$

 $+1.01100110011001100110011 \cdots 2^{+3}$

Example: 0.42

Conversion of decimal part

mult	res	int
0.42×2	0.84	0×2^{-1}
0.84×2	1.68	1×2^{-2}
0.68×2	1.36	1×2^{-3}
0.36×2	0.72	0×2^{-4}
0.72×2	1.44	1×2^{-5}
0.44×2	0.88	0×2^{-6}
0.88×2	1.76	1×2^{-7}
0.76×2	1.52	1×2^{-8}
0.52×2	1.04	1×2^{-9}
0.04×2	0.08	0×2^{-10}
	• • •	• • •

 $(0.42)_{10} = (.01101011110...)_2$

Shift now the point to the right two times to catch the first $1 \Rightarrow \times 2^{-2}$ $+1.101011 \cdots 2^{-2}$

p = e + 127 = 125 $m = 101011 \cdots$

Number representation: summary

- ✓ the first digit of the mantissa is always equal to 1
 gain one bit accuracy by avoiding the storage of the mandatory first mantissa 1 bit it means, the mantissa has one hidden bit
- ✓ the exponent (e) is shifted by an integer bias (127) to avoid negative numbers
 this avoid us an additional bit to store exponent signal
- ✓ particular cases

0.0

exponent bits \rightarrow **all** 0's mantissa bits \rightarrow **all** 0's

note: no confusion with the 1.0 representation that will have mantissa $\mathbf{m} = 000 \cdots 000$ and exponent $\mathbf{e} = 0 \Rightarrow \mathbf{p} = 127$

infinity

exponent bits \rightarrow **all** 1's mantissa bits \rightarrow **all** 0's

overflow, underflow

when exponent takes a value higher than the maximum value or lower than the minimum value that can be described with the available number of exponent bits $(2^8 - 1 = 255)$

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (9)

computer storage precision

the number of bytes assigned to a real variable (word length) is controlled by the programmer

single precision					
4 Bytes	s(1) p(8) m(23)				
double precision					
8 Bytes	s(1) p(11) m(52)				

accuracy

single

 $2^{-23} \sim 10^{-8}$ 0.00 00 01

double

 $2^{-52} \sim 10^{-16}$

max/min values (range)

singledouble bias:1023 $2^{127} \simeq 1.7 \times 10^{38}$ $2^{1023} \simeq 9 \times 10^{307}$ $2^{-127} \ 2^{-23} \sim \times 10^{-45}$ $2^{-1023} \ 2^{-52} \sim \times 10^{-324}$

✓ round-off errors

► a real number with a finite number of digits in the decimal system can require an infinite number of bits in the binary system

Types of errors

approximation errors errors resulting from the problem simplification in order to be solved on the computer

continuous functions are approximated by finite arrays of values

- problem discretization
- replacement of a infinite series by a sum for finite terms

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!} \simeq \sum_{n=0}^{N} \frac{x^{n}}{n!} = e^{x} + \Delta(x, N)$$

round-off errors
errors arising from using a finite number of digits to represent real numbers

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (11)

Example: derivative computation

✓ Function Taylor expansion:

$$f(x_0 + h) = f(x_0) + hf'(x_0) + \frac{h^2}{2}f''(x_0) + \dots + \frac{h^k}{k!}f^{(k)}(x_0) + \dots$$

✓ The derivative of the function can be calculated as:

$$f'(x_0) \simeq \frac{f(x_0+h)-f(x_0)}{h} + \frac{h}{2}f''(x_0) + \cdots$$

✓ The discretization error:

$$\Delta f_d^{'} \simeq \frac{h}{2} f^{''}(x_0)$$

Derivative computation errors

✓ Let's compute the error on the derivative $f'(x_0)$ as function of the discretization distance $h: \Delta f' = f'(x_0) - cos(x_0)$

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (13)

Loss of precision: sources

- \checkmark Every real number x has a machine representation x_c that is an approximation to the true value, x
- ✓ The absolute error of x is, $\Delta x = x$ (true value) – x_c (approx. value from computing represent.)
- ✓ The relative error is, $\varepsilon_x = \frac{\Delta x}{x} = 1 - \frac{x_c}{x}$
- ✓ That means every represented number can be expressed in terms of the true one, as

$$x_c = x \ (1 - \varepsilon_x)$$

where $|\varepsilon_x| \le \varepsilon_M$ is the relative error associated to the machine precision

- $\sim 10^{-7}$ for single precision representation
- $\sim 10^{-16}$ for double precision representation

Loss of precision: math operations

two numbers subtraction

$$a_c = b_c - c_c = b (1 - \varepsilon_b) - c (1 - \varepsilon_c)$$

$$= \underbrace{(b - c)}_{a \text{ (true nb)}} - b \varepsilon_b + c \varepsilon_c$$

$$\frac{a_c}{a} = 1 - \left(\frac{b}{a}\right)\varepsilon_b + \left(\frac{c}{a}\right)\varepsilon_c = 1 + \varepsilon_a$$

suppose that,

$$b \simeq c \implies a = b - c << 1$$
, we get,

$$\varepsilon_a \simeq \frac{b}{a} (\varepsilon_b - \varepsilon_c) \simeq \frac{b}{a} \varepsilon_M$$

Very large error on result! That's called catastrophic subtraction! We have a loss of significance!

two numbers multiplication

$$a_{c} = b_{c} \times c_{c}$$

$$= b(1 - \varepsilon_{b}) \times c(1 - \varepsilon_{c})$$

$$\simeq \underbrace{bc}_{a} - bc \varepsilon_{b} - bc \varepsilon_{c}$$

$$\frac{a_{c}}{a} = 1 - \varepsilon_{b} - \varepsilon_{c}$$

$$\varepsilon_{a} \simeq \varepsilon_{b} + \varepsilon_{c}$$

suppose that,

$$b>>c \implies \left(\varepsilon_c\sim \frac{\varepsilon_M}{c}\right)>>\left(\varepsilon_b\sim \frac{\varepsilon_M}{c}\right)$$
 we get,

$$\varepsilon_a \simeq \varepsilon_c$$

Very large error on result! That's called error magnification!

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (15)

Derivative computation errors (cont.)

operation

$$f' = \frac{f(x_0 + h) - f(x_0)}{h} = \frac{\delta f}{h}$$

errors

✓ Discretization:

$$\left(\Delta f'\right)_d = \frac{h}{2}f''(x_0)$$

✔ Round-off:

$$\left(\Delta f'\right)_r = \frac{\Delta(\delta f)}{h}$$
$$= \frac{f(x_0)}{h} \varepsilon_M$$
$$\sim \frac{10^{-7}}{h}$$

Error sum

✓ The total error if a sequence of N arithmetic operations are made, can be estimated assuming uncorrelated errors

$$F = \sum_{i=1}^{N} x$$
$$(\Delta_F)^2 = \sum_{N} (\Delta_X)^2 = N (\Delta_X)^2$$
$$\Delta_F = \sqrt{N} \Delta_X$$

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (17)

round-off error example

- Subtract two numbers, a and b steadily growing $a = pow(10., i) \times 1$. $b = pow(10., i) \times 1. + x$
- the accuracy of our result drops when the two numbers are very large (how large?)

```
int main() {
   for (int i=0; i<20; i++) {
      double a = pow(10,i);
      double b = a + 5.6789;
      float fa = (float)pow(10,i);
      float fb = fa + 5.6789;
      printf("i=%d a=%f b-a=%E
      fb-fa=%f\n",i, a, b-a, fb-fa);
   }
}</pre>
```

operation: a - b

relative error:

$$\frac{\delta(a-b)}{|a-b|} \sim \frac{\varepsilon_M}{|a-b|} \sim \frac{10^{-7}}{|a-b|}$$

Avoid large errors: tips

1. When making multplications / divisions, make your intermediate results as close as possible to 1

How to make the operation $\frac{ab}{c}$?

- $\checkmark \frac{(ab)}{c}$, if **a** and **b** have very differente values
- \checkmark $\left(\frac{a}{c}\right)b$, if **a** and **c** are close in magnitude
 - Prevent loss of significance avoiding bad-subtraction operations

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (19)

math.h constants

- Solving problems with a computer and requiring a good precision implies the use of double-precision in numbers representation
 - unless you are short in computer memory!
- a set of mathematical constants are already defined in the unix operating system
 - file: /usr/include/math.h (double-precision!)

speed up you program...

- ✓ It is important to realise that multiplication (*) and division operations (/)consume considerably more CPU time than addition (+), subtraction (-), comparison or assignment operations
 - → try to avoid redundant multiplication and division operations
- ✓ For instance try to define a 3rd-order polynomial written like this:

$$f(x) = P_0 + P_1 x + P_2 x^2 + P_3 x^3$$

In total, we have 6 multiplication operations. We can optimize the polynomial expression to reduce the number of multiplications:

$$f(x) = P_0 + x (P_1 + x (P_2 + P_3 x))$$

The number of multiplications is now 3.

- ✓ math library tend to be extremely expensive in terms of CPU time
 - → only use when absolutely necessary

For instance, instead of pow(x, 2) use x * x

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (21)

The hexadecimal system

✓ Binary numbers can be arranged in groups of 4-bits

$$(b_3 \ b_2 \ b_1 \ b_0)_2 = b_0 \ 2^0 + b_1 \ 2^1 + b_2 \ 2^2 + b_3 \ 2^3$$

min: $(0000)_2 = 0$

max: $(1111)_2 = 15$

base-16 system: 0, 2, 3, 4, 5, ..., 9, *A*, *B*, *C*, *D*, *E*, *F*

- ✓ one byte (8-bits) is represented by two hexadecimal numbers
- Examples:

$$(10\ 1111)_2 = (2F)_{16}$$

The corresponding decimal value:

$$2 \times 16^1 + 15 \times 16^0 = 47$$

$$1 \times 2^5 + 1 \times 2^3 + 1 \times 2^2 + 1 \times 2^1 + 1 \times 2^0 = 47$$

Characters representation

- Characters are 8-bit (byte) numbers
- ASCII (American Standard Code for Information Interchange) convention

128 characters are represented by numerical values in the range 0-127

7 bits needed

✓ The extended ASCII character set (ECS) includes 128 additional characters encoded by integers in the range 128-254

8 bits required

Computational Physics 2020-21 (Phys Dep IST, Lisbon)

Fernando Barao (23)

Characters representation (cont.)

The ASCII Table

Dec	Hex	Char									
00	00	NUL	32	20	SP	64	40	@	96	60	E
01	01	SOH	33	21	!	65	41	A	97	61	a
02	02	STX	34	22	"	66	42	В	98	62	b
03	03	ETX	35	23	#	67	43	С	99	63	С
04	04	EOT	36	24	\$	68	44	D	100	64	d
05	05	ENQ	37	25	%	69	45	E	101	65	е
06	06	ACK	38	26	&	70	46	F	102	66	f
07	07	BEL	39	27	,	71	47	G	103	67	g
08	08	BS	40	28	(72	48	Н	104	68	h
09	09	HT	41	29)	73	49	I	105	69	i
10	0A	LF	42	2A	*	74	4A	J	106	6A	j
11	0B	VT	43	2B	+	75	4B	K	107	6B	k
12	0C	FF	44	2C	,	76	4C	L	108	6C	1
13	0D	CR	45	2D	_	77	4D	М	109	6D	m

• • •

24-1