Vaja 34: Hitrost zvoka v zraku

Matevž Demšar

Januar 2024

Opis. Pri vaji s pomočjo pojava stoječega valovanja določimo hitrost zvoka v zraku.

Postopek. S poskušanjem lahko najdemo frekvence, pri katerih v cevi pride do stoječega valovanja. Da določimo valovno dolžino, je cev napolnjena s plutovinastim prahom, ki v hrbtih valovanja poskakuje. Valovna dolžina valovanja je dvakrat večja od razdalje med zaporednima točkama, v katerih prah poskakuje.

Ocena napake.

Meritve.

$$L_{cevi} = 1,00\ m$$

N	ν $[Hz]$	d [cm]	
1	190	60	
2	250	44	
3	400	27,5	
4	560	19	
5	700	16,5	
6	860	13	
7	1020	10,5	
8	1170		
9	1340		
10	1480		
11	1640		
12	1800		
Merska napaka.			
	$\pm 10~Hz$	$\pm 5 cm$	

Izračuni. Valovno dolžino lahko izračunamo na dva načina: $\lambda = 2d$ in $\lambda = 2L_{cevi}/N$. Če ni prišlo do napak pri merjenju, bi se morali ti vrednosti ujemati.

\mathbf{N}	2d [cm]	$\frac{2L}{N}$ [cm]
1	120	200
2	88	100
3	55	66
4	38	50
5	33	40
6	26	33
7	21	29
Merska napaka.		
	$\pm 10~cm$	$\pm 2~cm$

Vrednosti valovne dolžine, pridobljene z enačbo $\lambda=2L_{cevi}/N$ se zdijo verodostojnejše, saj se izmerjena dolžina cevi od prave vrednosti razlikuje za kvečjemu 1 cm, kljub temu pa lahko za nadaljne izračune poskusimo uporabiti tudi vrednosti, pridobljene z enačbo $\lambda=2d$. Hitrost zvoka lahko iz valovne dolžine in frekvence izračunamo po enačbi $c=\lambda\nu$.

\mathbf{N}	$2d\nu \ [ms^{-1}]$	$\frac{2L}{N}\nu$ $[ms^{-1}]$	
1	230	384	
2	228	250	
3	220	267	
4	213	280	
5	231	280	
6	224	283	
7	214	296	
Merska napaka			

Merska napaka.

Do $\pm 107 \ ms^{-1}$ Do $\pm 23 \ ms^{-1}$

$$\overline{c_1} = 220 \ ms^{-1} \pm 107 \ ms^{-1}$$

$$\overline{c_2} = 290 \ ms^{-1} \pm 23 \ ms^{-1}$$

Graf.

Adiabatna stisljivost zraka.

$$c = \sqrt{\frac{1}{\chi_s \rho}}$$

$$\chi_s = \frac{1}{\rho c^2}$$

$$\rho = 1, 3 \ kgm^{-3}$$

$$\chi_1 = \frac{1}{1, 3 \ kgm^{-3}(222 \ ms^{-1})^2}$$

$$\chi_2 = \frac{1}{1, 3 \ kgm^{-3}(291 \ ms^{-1})^2}$$

$$\chi_1 = 15, 6 \times 10^{-6} \ Pa^{-1} \pm 15, 0 \times 10^{-6} \ Pa^{-1}$$

$$\chi_2 = 9, 1 \times 10^{-6} \ Pa^{-1} \pm 1, 4 \times 10^{-6} \ Pa^{-1}$$

Zaključek. Z znano vrednostjo se bolj ujemajo vrednosti hitrosti zvoka, izračunanih po enačbi $c=\frac{2L}{N}\nu\ [ms^{-1}]$, saj je bila pri merjenju dolžine cevi merska napaka manjša, kot pri merjenju razdalj med hrbti valovanja. A tudi zanesljivejša vrednost se od pričakovane vrednosti 340 ms^{-1} razlikuje za približno $50\ ms^{-1}$ ali 14,7 odstotka, kar ni v okviru merske napake.