Trees

Pedigree

(a) 血統表

Lineal

(b) 直系表

Trees

- Tree: a finite set of one or more nodes such that
 - a special node r (root)
 - zero or more nonempty sub(trees) T_1 , T_2 , ..., T_k each of whose roots are connected by a directed edge from r

Definition

- A tree t is a finite nonempty set of elements.
- One of these elements is called the root.
- The remaining elements, if any, are partitioned into trees, which are called the subtrees of t.

Subtrees

A Sample Tree

- The root is at level 1
- The level of a node is the level of the node's parent + 1.
- The height or the depth of a tree is the maximum level of any node in the tree.

- The degree of a node is the number of subtrees of the node
 - The degree of A is 3; the degree of C is 1.
- The node with degree 0 is a leaf or terminal node.
 - The others are non-terminal
- A node that has subtrees is the **parent** of the roots of the subtrees.
 - The roots of these subtrees are the children of the node.
- Children of the same parent are siblings.
- The ancestors of a node are all the nodes long the path from the root to the node.

Representation of Trees

List Representation

The root comes first, followed by a list of sub-trees

$$T = (root (T_1, T_2, ..., T_n))$$

(<u>A</u>(<u>B(E(K,L),F),C(G),D(H(M),I,J)</u>))

List Representation of Trees

Possible Node Structure for a Tree of Degree *k*

. . .

Possible Node Structure for a Tree of Degree k

• Lemma 5.1: If T is a k-ary tree (i.e., a tree of degree k) with n nodes, each having a fixed size as below, then n(k-1)+1 of the nk child fields are 0, $n \geq 1$.

data	child1	child2	•••	child k

$$nk - (n - 1) = n(k - 1) + 1$$

Wasting memory!

Representation of Trees

- Left Child-Right Sibling Representation
 - Each node has two links (or pointers).
 - Each node only has one leftmost child and one closest sibling.

Degree Two Tree Representation

Rotate the right-sibling pointers in a left child-right sibling tree clockwise by 45°

Binary Tree!

Tree Representations

Binary Tree

Definition:

- A binary tree is a finite set of nodes that is either empty or consists of a *root* and two disjoint binary trees called the *left subtree* and the *right subtree*.
- There is no tree with zero nodes. But there is an empty binary tree.
- Binary tree distinguishes between the order of the children while in a tree we do not.

Distinctions between a Binary Tree and a Tree

	Binary tree	Tree
degree	≤ 2	Not limited
order of the subtrees	V	×
allow zero nodes	V	×

Binary Tree Examples

Skewed binary tree

Complete binary tree

Level

1

2

2

4

5

```
template<class T>
class BinaryTree
{ // object : a finite set of nodes either empty or consisting of a root node,
  // left BinaryTree and rightBinaryTree •
public:
     BinaryTree();
     // creaes an empty binary tree
     bool IsEmpty();
     // return true iff the binary tree ie empty
     BinaryTree(BinaryTree < T > \& bt1, T\& item, BinaryTree < T > \& bt2);
     // creaes an binary tree whose left subtree is bt1, whose right subtree bt2,
     // and whose root node contain item
     BinaryTree<T> LeftSubtree();
     // return the right subtree of *this
     BinaryTree<T> RightSubtree();
     // return the left subtree of *this
     T RootData();
     // return the data in the root node of *this
};
```

The Properties of Binary Trees

- Lemma 5.2 [Maximum number of nodes]
 - 1) The maximum number of nodes on level i of a binary tree is 2^{i-1} , $i \ge 1$.
 - 2) The maximum number of nodes in a binary tree of depth k is $2^k 1$, $k \ge 1$.
- Lemma 5.3 [Relation between number of leaf nodes and nodes of degree 2] For any non-empty binary tree, T, if n_0 is the number of leaf nodes and n_2 the number of nodes of degree 2, then

$$n_0 = n_2 + 1.$$

• **Definition**: A full binary tree of depth k is a binary tree of depth k having 2^{k-1} nodes, $k \ge 0$.

Maximum Number of Nodes in Binary Trees

• The maximum number of nodes on level i of a binary tree is 2^{i-1} , $i \ge 1$.

Prove by induction.

- 1. Max. no. of node on level i = 1 is $2^{1-1} = 1$
- 2. Assume the max. no. of node on level i-1 is 2^{i-2}
- 3. Since the max. degree of nodes in a binary tree is 2, the max. no. of node on level i is $2 \times 2^{i-2} = 2^{i-1}$
- The maximum number of nodes in a binary tree of depth k is 2^{k-1} , $k \ge 1$.

$$\sum_{i=1}^{k} 2^{i-1} = 2^{k} - 1$$

Relations between Number of Leaf Nodes and Nodes of Degree 2

• For any nonempty binary tree, T, if n_0 is the number of leaf nodes and n_2 the number of nodes of degree 2, then $n_0 = n_2 + 1$.

• proof:

- Let n and B denote the total number of nodes & branches in T.
- Let n_0 , n_1 , n_2 represent the nodes with no children, single child, and two children respectively.

$$-n = n_0 + n_1 + n_2, B = n - 1,$$

$$B = n_1 + 2n_2 ==> n_1 + 2n_2 + 1 = n,$$

$$-n_1 + 2n_2 + 1 = n_0 + n_1 + n_2 ==> n_0 = n_2 + 1$$

Full BT vs Complete BT

- A full binary tree of depth k is a binary tree of depth k having 2^{k-1} nodes, $k \ge 0$.
- A binary tree with n nodes and depth k is complete iff its nodes correspond to the nodes numbered from 1 to n in the full binary tree of depth k.

Numbering from top to bottom, to left to right

Full binary tree of depth 4

Complete binary tree

Array Representation of a Binary Tree

- **Lemma 5.4**: If a complete binary tree with n nodes is represented sequentially, then for any node with index $i, 1 \le i \le n$, we have:
 - parent(i) is at $\lfloor i/2 \rfloor$ if $i \neq 1$. If i = 1, i is at the root and has no parent.
 - $left_child(i)$ is at 2i if $2i \le n$. If 2i > n, then i has no left child.
 - $right_child(i)$ is at 2i + 1 if $2i + 1 \le n$. If 2i + 1 > n, then i has no right child.

Sequential Representation

Linked Representation

```
template < class T > class Tree; //forward declaration
template <class T>
class TreeNode {
friend class Tree < T >;
private:
    T data;
     TreeNode <T> *leftChild;
    TreeNode <T>*rightChild;
template <class T>
class Tree{
public:
    // tree operationa
private:
    TreeNode < T > *root;
```

leftChild data rightChild

Linked List Representation For The Binary Trees

Compare Two Binary Tree Representations

	Array representation	Linked representation
Determination the locations of the parent, left child and right child	Easy	Difficult
Space overhead	Much	Little
Insertion and deletion	Difficult	Easy

Binary Tree Traversals

- Let L, V, and R stand for moving left, visiting the node, and moving right.
 - There are six possible combinations of traversal LVR, LRV, VLR, VRL, RVL, RLV
- Adopt convention that we traverse left before right, only 3 traversals remain
 - LVR, LRV, VLR
 - inorder, postorder, preorder

Arithmetic Expression Using BT

inorder traversal A / B * C * D + E

preorder traversal
+ * * / A B C D E

postorder traversal A B / C * D * E +

level order traversal
+ * E * D / C A B

Inorder Traversal of A Binary Tree

```
1 template <class T>
 2 void Tree <T>::Inorder()
 3 { // driver calls workhosrse for traversal of entire tree. The driver
    // is declared as a public member function of Tree
      Inorder(root);
 5
 6 }
 7 template <class T>
 8 void Tree <T>::Inorder(TreeNode <T> *currentNode)
 9 { // workhorse traverses the subtree rooted at currentNode
10
    // The workhorse is declared as a private member function of Tree
11
     if (currrentNode) {
           Inorder(currentNode \rightarrow leftChild);
12
13
           Visit(currentNode); ≤
14
           Inorder(currentNode→ rightChild);
15
                                               visit: cout<<current->data;
16 }
```

Trace Operations of Inorder Traversal

```
if (currrentNode) {
                                                      11
                                                      12
                                                                 Inorder(currentNode \rightarrow leftChild);
                                                      13
                                                                 Visit(currentNode);
                                                                 Inorder(currentNode→rightChild);
                                                      14
                                                Value
Call of
            Value in
                        Action
                                    Call of
inorder
              root
                                   inorder
                                               in root
                                      11
                                      12
                                                NULL
                                      11
                                                           cout
                                      13
  4
5
                                                NULL
                                                           cout
  6
                                      14
             NULL
  5
                                      15
                                                NULL
               Α
                         cout
             NULL
                                      14
                                                           cout
                                      16
                                                NULL
                         cout
  8
               B
                                                           cout
  98
             NULL
                                      17
                                               NULL
                                      18
               B
                         cout
  10
             NULL
                                      17
                                                           cout
                                      19
                                                NULL
                         cout
```



```
Preorder Traversal
      template < class T>
      void Tree <T>::Preorder()
3
      {// driver
            Preorder(root);
5
      template < class T>
6
      void Tree <T>::Preorder(TreeNode<T> *currentNode)
      {// workhorse
8
9
            if (currentNode) {
10
                   Visit(currentNode);
11
                  Preorder(currentNode \rightarrow leftChild);
                  Preorder(currentNode \rightarrow rightChild);
12
13
```

14

Postorder Traversal

```
template < class T>
    void Tree <T>::Postorder()
    {// driver
         Postorder(root);
    template < class T>
                                                               AB/C*D*E+
    void Tree <T>::Postorder(TreeNode<T> *currentNode)
    {// workhorse
9
        if (currentNode) {
10
             Postorder(currentNode \rightarrow leftChild);
             Postorder(currentNode→rightChild);
12
             Visit(currentNode);
13
14
```

```
Iterative Inorder Traversal
      template < class T>
      void Tree <T>::NonrecInorder()
      {// Nonrecursive in order traversal using a stack
3
            Stack < TreeNode < T > * > s; // Declare and init stack
5
            TreeNode < T > *currentNode = root;
6
            while(1) {
                  while (currentNode) { // move down leftChild fields
8
                        s.Push(currentNode);
                        currentNode = currentNode \rightarrow leftChild;
10
11
                  if (s.IsEmpty()) return;
                                                                       Α
12
                  currentNode = s.Top();
                                                                                      В
13
                  s.Pop(); // delete from stack
                                                                       *
14
                  Visit(currentNode);
15
                  currentNode = currentNode \rightarrow rightChild;
16
                                                                       +
                                                                                      +
```

Using Iterator to Get Next Item

```
T* InorderIterator::Next()
class InorderIterator {
public:
     InorderIterator() { currentNode = root; }
                                                     while (currentNode) {
     T*Next();
                                                            s.Push(currentNode);
private
                                                            currentNode = currentNode \rightarrow leftChild;
     Stack < TreeNode < T > * > s;
     TreeNode<T>*currentNode;
                                                     if (s.Isempty()) return 0;
};
                                                     currentNode = s.Top();
                                                     s.Pop(); //delete the top
                                                     T\& temp = currentNode \rightarrow data;
                                                     currentNode = currentNode \rightarrow rightChild;
                                                     return & temp;
```

Level-Order Traversal

- All previous mentioned schemes use stacks
- Level-order traversal uses a queue
 - Queue: First In First Out
- Level-order scheme visit the root first, then the root's left child, followed by the root's right child
 - Level by level
- All the nodes at a level are visited before moving down to another level

Level-Order Traversal

```
template <class T>
void Tree <T>::LevelOrder()
{// traversae the binary tree in level order
      Queue < TreeNode < T > * > q;
      TreeNode<T> *currentNode = root;
                                                                             level order traversal
      while (currentNode) {
                                                                               + * E * D / C A B
             Visit(currentNode);
            if (currentNode \rightarrow leftChild) q.Push(currentNode \rightarrow leftChild);
            if (currentNode \rightarrow rightChild) q.Push(currentNode \rightarrow rightChild);
            if (q.IsEmpty()) return;
            currentNode = q.Front();
            q.Pop();
```

Some Other Binary Tree Functions

- With the inorder, postorder, or preorder mechanisms, we can implement all needed binary tree functions.
 e.g.,
 - Copying Binary Trees
 - Testing Equality
 - Two binary trees are equal if their topologies are the same and the information in corresponding nodes is identical.

Copying Binary Trees

```
template <class T>
void Tree < T > :: Tree(const Tree < T > & s) // driver
{// copy constructor
      root = Copy(s.root);
template <class T>
TreeNode<T>* Tree<T>::Copy(TreeNode<T>* origNode) // workhosrse
{ // return a pointer to an exact copy of the binary tree tooted at origNode
      if (!origNode) return 0;
      return new TreeNode < T > origNode \rightarrow data,
                                      Copy(origNode→leftChild),
Copy(origNode→rightChild));
```

Testing Equality

```
template <class T>
bool Tree < T > :: operator = = (const Tree & t) const
      return Equal(root, t.root);
template <class T>
bool Tree<T>::Equal(TreeNode<T>* a , TreeNode<T>* b)
                                                                           Repeating down the tree
{ // workhosrse
      if ((!a) \&\& (!b)) return true; //
      return (a \&\& b // both a and b are non-zero
                    && (a \rightarrow data == b \rightarrow data) // data is the same \checkmark
                    && Equal(a \rightarrow leftChild, b \rightarrow leftChild) // left subtrees equal
                    && Equal(a \rightarrow rightChild, b \rightarrow rightChild)); // right subtrees equal
```

Satisfiability Problem

Formulas of the Propositional Calculus

The set of expressions formed by using variables x_1 , x_2 , x_3 , and operators \neg (not), \wedge (and), \vee (or), as well as the following rules

- A variable is an expression.
- If x and y are expressions, then $\neg x, x \land y, x \lor y$ are expressions.
- Parentheses can be used to alter the normal order of evaluation $(\neg > \land > \lor)$.
- Example: $x_1 \lor (x_2 \land \neg x_3)$
 - If x_1 and x_3 are false and x_2 is true, the value of the expression is true

Satisfiability Problem

- Given a formula: Is there an assignment to make an expression true?
 - Brute Force: 2^n possible combinations for n variables

Perform Formula Evaluation

- To evaluate an expression, we can traverse its tree in postorder.
- To perform evaluation, assume that each node has four fields

leftChild

first second rightChild

- leftChild
- first: operator or value of the variable
- Second: value of the expression of the sub-tree
- rightChild
- enum Operator {Not, And, Or, True, False};

First Version of Satisfiability Algorithm

```
for all 2^n possible truth value combinations for the n variables
                generate the next combination;
(t,t,t)
                replace the variables by their values;
(t,t,f)
                evaluate the formula by traversing the tree it points to in postorder;
(t, f, t)
                if (fomula.Data().second()) { cout << combination; return; }</pre>
(t,f,f)
(f,t,t)
          cout << "no satisfiable combination";</pre>
(f,t,f)
(f, f, t)
(f, f, f)
```

Postorder Traversal

V

```
template < class T>
     void Tree <T>::Postorder()
     {// driver
         Postorder(root);
     template < class T>
     void Tree <T>::Postorder(TreeNode<T> *currentNode)
     {// workhorse
9
         if (currentNode) {
10
              Postorder(currentNode \rightarrow leftChild);
              Postorder(currentNode \rightarrow rightChild);
11
12
              Visit(currentNode);
13
14
```

Visit(currentNode)

```
switch (p \rightarrow data.first) {
        case Not: p \rightarrow data.second = !p \rightarrow rightChild \rightarrow data.second; break;
        case And: p \rightarrow data.second =
                          p \rightarrow leftChild \rightarrow data.second \&\& p \rightarrow rightChild \rightarrow data.second;
                          break;
        case Or: p \rightarrow data.second =
                          p \rightarrow leftChild \rightarrow data.second \parallel p \rightarrow rightchild \rightarrow data.second;
                          break;
        case True: p \rightarrow data.second = true; break;
        case False: p \rightarrow data.second = false;
```

Threaded Binary Trees

- Two many null pointers in current representation of binary trees
 - number of nodes: n
 - number of non-null links: n-1
 - total links: 2n
 - => null links: 2n (n 1) = n + 1
- For easy of traversal a tree, replace these <u>null pointers</u> with some useful "threads".

Threaded Binary Trees (contd.)

- If $ptr \rightarrow left_child$ is null,
 - replace it with a pointer to the node that would be visited before ptr in an inorder traversal

- If ptr -> right_child is null,
 - replace it with a pointer to the node that would be visited after ptr in an inorder traversal

Example: Threaded Binary Tree

Degree Two Tree Representation

Rotate the right-sibling pointers in a left child-right sibling tree clockwise by 45°

Threads

 To distinguish between normal pointers and threads, two boolean fields, LeftThread and RightThread, are added to the record in memory representation.

```
-t -> LeftThread = TRUE
=> t -> LeftChild is a thread
```

$$-t -> LeftThread = FALSE$$

=> $t -> LeftChild$ is a **pointer** to the left child.

Threads (Cont.)

 To avoid dangling threads, a head node is used in representing a binary tree.

The original tree becomes the left subtree of the

head

head node.

Empty Binary Tree

leftThread	leftChild	data	rightChild	rightTread
true	!			false
V	i			

Memory Representation of Threaded Tree

f = false; t = true

Find the inorder Successor

Inorder traversal can be performed without stack

Inserting a Node to a Threaded Binary Tree

- Inserting a node r as the right child of a node s.
 - If s has an empty right subtree, then the insertion is simple

Inserting a Node to a Threaded Binary Tree

- Inserting a node r as the right child of a node s.
 - If the right subtree of s is not empty, the this right subtree is made the right subtree of r after insertion.
 - When this is done, r becomes the inorder predecessor of a node that has a LeftThread == TRUE field, and consequently there is an thread which has to be updated to point to r.
 - The node containing this thread was previously the inorder successor of s.

Insertion of *r* As A Right Child of *s* in A Threaded Binary Tree (Cont'd)

Insertion of r As A Right Child of s

```
template <class T>
                   void ThreadedTree <T>::InsertRight (ThreadedNode <T>*s,
                                                                                ThreadedNode < T > *r)
                   {// insert r as the right son of s
               r 	o rightChild = s 	o rightChild;

r 	o rightThread = s 	o rightThread;

r 	o leftChild = s;

r 	o leftThread = True; // leftChild is a thread

s 	o rightChild = r;

s 	o rightThread = false;
if (! r \rightarrow rightThread) {

ThreadedNode <T> *temp = InorderSucc (r);

// return the inorder successor of r

temp \rightarrow leftChild = r;
}
```

Priority Queues

- In a priority queue, the element to be <u>deleted</u> is the one with highest (or lowest) priority.
- An element with arbitrary priority can be <u>inserted</u> into the queue according to its priority.
- A data structure supports the above two operations is called max (min) priority queue.
- Example
 - Selling machine service
 - Amount of time (min heap): fixed amount per use with different using time
 - Amount of payment (max heap): different amount for per service with the same using time

A Max Priority Queue ADT

```
template <class T>
class MaxPQ {
public:
    virtual \sim MaxPO() {}
        // constructor
    virtual bool IsEmpty () const = 0;
        // return true iff priority queue is empty
    virtual const T\& Top () const = 0;
        // return reference to the max elemet
    virtual void Push(\mathbf{const}\ T\&) = 0;
        // insert an element to the priority queue
    virtual void Pop() = 0;
        // delete element with max priority
};
```

Operators such as <, >, ==, = are defined with class T

Compared with Other Data Structures

- Unordered linked list
- Unordered array
- Sorted linked list
- Sorted array
- Heap

Representation	Insertion	Deletion
Unordered array	Θ(1)	$\Theta(n)$
Unordered linked list	$\Theta(1)$	$\Theta(n)$
Sorted array	O(n)	Θ(1)
Sorted list	O(n)	Θ(1)
Max heap	$O(\log_2 n)$	$O(\log_2 n)$

Max (Min) Heap

• Heaps are frequently used to implement priority queues. The complexity is $O(\log n)$.

Definition

- A max (min) tree is a tree in which the key value in each node is no smaller (larger) than the key values in its children (if any).
- A max heap is a complete binary tree that is also a max tree.
- A min heap is a complete binary tree that is also a min tree.

Example: Max Heap

Property: The root of max heap contains the largest.

Example: Min Heap

Property: The root of min heap contains the smallest.

ADT of MaxHeap

```
template <class T>
class MaxPQ {
public:
    virtual \sim MaxPQ() {}
    virtual bool IsEmpty () const = 0;
    virtual const T\& Top () const = 0;
    virtual void Push(const T\&) = 0;
    virtual void Pop() = 0;
                                                  Implement MaxHeap by
private:
   T*heap; //element array
                                                    using an array heap
   int heapSize; //no. of element in heap
   int capacity; //size of the array heap
};
template <class T>
MaxHeap < T > :: MaxHeap (int the Capacity = 10)
    if (the Capacity < 1) throw "Capacity must be >= 1.";
    capacity = the Capacity;
    heapSize = 0;
    heap = \mathbf{new} \ T \ [capacity + 1]; // \ heap \ [0] \ is \ not \ used
```

Insertion Into a Max Heap

 Insertion begins at a leaf of a complete binary tree and bubbles up toward the root to find a correct place

Insertion into a Max Heap (cont'd)

Insertion into a Max Heap (cont'd)

Insertion

```
O(\log(n))
Template <class T>
void MaxHeap < T > :: Push(const T & e)
{ // inset e to maxHeap
     if (heapSize == capacity) { // double the space
          ChangeSize 1D(heap, capacity, 2*capacity);
          capacity *= 2;
                                         Index to the next empty location
     int currentNode = + + heapSize;
     while (currentNode != 1 \&\& heap[currentNode / 2] < e)
     { // bubble up
          heap[currentNode] = heap[currentNode / 2]; // move pare down
          currentNode /= 2;
                                                Index to the parent node
     heap[currentNode] = e;
```

Deletion from a Max Heap (Cont.)

Deletion from a Max Heap (Cont.)

1	2	3	4
15	14	2	14

14

lastF = 10

1	2	3	4	
15	14	2	14	

1	2	3	4
15	14	2	10

Deletion from a Max Heap

```
Template <class T>
void MaxHeap<T>::Pop()
{ // delete the max element
    if (IsEmpty ()) throw "Heap is empty. Cannot delete.";
    heap[1]. ~T(); // delete the max element
    // removelast element from heap
    T lastE = heap\{heapSize--\};
    // trickle down
    int currentNode = 1; // root
    int child = 2;  // a child of currentNode
    while (child <= heapSize) {
         // set child to larger child of-currentNode----
         if (child < heapSize && heap[child] < heap[child + 1]) child++;
         // can we put lastE in currentNode?
         if (lastE >= heap[child]) break; // yes
         // no
         heap[currentNode] = heap[child]; // move child up
         currentNode = child; child *= 2; // move down a level
    heap[currentNode] = lastE;
```

Complexity of Heap

Heap

```
- a min (max) element is deleted. O(log_2 n)
```

- deletion of an arbitrary element O(n)
- search for an arbitrary element O(n)

•

Binary Search Tree

- Dictionary
 - A collection of pairs, each has a key and an element
 - Assume no two pair has the same key

```
template <class K, class E>
class Dictionary {
public:
    virtual bool IsEmptay() const = 0;
    // return true iff the dictionary is empty
    virtual pair <K, E>* Get(const K&) const = 0;
    // return pointer to the pair with specified key; return 0 if no such pair
    virtual void Insert(const pair <K, E>&) = 0;
    // insert the given pair; if key is a duplicate, update associated element
    virtual void Delete(const K&) = 0;
    // delete the pair with specified key
};
```

Binary Search Tree

- Binary search tree: A binary search tree is a binary tree. It may be empty. If it is not empty then it satisfies the following properties:
 - Every element has a unique key.
 - The keys in a nonempty left subtree are smaller than the key in the root.
 - The keys in a nonempty right subtree are larger than the key in the root.
 - The left and right subtrees are also binary search trees.

Binary Trees

Not binary search tree

Binary search trees

Searching a Binary Search Tree

- If the root is null, then this is an empty tree. No search is needed.
- If the root is not null, compare the k with the key of root.
 - If k is equal to the key of the root, then it's done.
 - If k is less than the key of the root, then no elements in the right subtree have key value k. We only need to search the left tree.
 - If k is larger than the key of the root, only the right subtree is to be searched.

Recursive Search

```
template <class E> // driver
pair < K, E > *BST < K, E > :: Get(\mathbf{const}\ K\&\ k)
{ // search the binary tree (*this) for a pair with key k
 // if found, return a pointer to the pair; otherwise, return 0.
     return Get(root, k);
template <class K, class E> // workhose
pair < K, E > * BST < K, E > :: Get(TreeNode < pair < K, E > * p, const K&
k)
   if (!p) return 0;
   if (k  return <math>Get(p \rightarrow leftChild, k);
   if (k > p \rightarrow data.first) return Get(p \rightarrow rightChild, k);
   return &p \rightarrow data;
```

Iterative Search

```
template <class K, class E> // Iterative Search
pair < K, E > * BST < K, E > :: Get(const K & k)
    TreeNode < pair < K, E > *currentNode = root;
    while (currentNode) {
         if (k < currentNode \rightarrow data.first)
              currentNode = currentNode \rightarrow leftChild;
          else if (k > currentNode \rightarrow data.first)
              currentNode = currentNode \rightarrow rightChild;
         else return & currentNode \rightarrowdata;
// no matching pair
return 0;
```

Search Binary Search Tree by Rank

- Rank of a node is its position in inorder
- To search a binary search tree by the ranks of the elements in the tree, we need an additional field LeftSize.
- LeftSize is the number of the elements in the left subtree of a node plus one.
- It is obvious that a binary search tree of height h can be searched by key as well as by rank in O(h) time.
 - What is the range of h?

Searching a Binary Search Tree by Rank

```
template <class K, class E> // search by rank
pair < K, E > * BST < K, E > :: RankGet(int r)
{ // search the binary search tree for the rth smallest pair
    TreeNode < pair < K, E > *currentNode = root;
    while (currentNode) {
         if (r < currentNode \rightarrow leftSize) currentNode = currentNode \rightarrow leftChild;
         else if (r > currentNode \rightarrow leftSize)
              r = currentNode \rightarrow leftSize;
              currentNode = currentNode \rightarrow rightSize;
                                                                          30
         else return & currentNode \rightarrowdata;
                                                                                          2
return 0;
                                                                                          40
```

Inserting a Node into a Binary Search Tree

- First, searching with the key
- The searching terminates unsuccessfully => insert the new pair as the right child or right child
- A node if found => simply update the element

Insert 80

Insert 35

BST Insertion

```
template <class K, class E>
void BST < K, E > :: Insert(const pair < K, E > & the Pair)
{ // insert the Pair into the binary search tree
     // search the Pair.first , pp is the parent of p
     TreeNode < pair < K, E > *p = root, *pp = 0;
     while (p) {
  if (thePair.first ) <math>p = p \rightarrow leftChild;

else if (thePair.first > p \rightarrow data.first) p = p \rightarrow rightChild;
         else // dupliacate, update the element
                 \{p \rightarrow data.second = thepair.second; return;\}
// perform insertion
p = new TreeNode < pair < K, E > > (thePair);
if (root) // tree is not empty

if (thePair.first < pp \rightarrowdata.first) pp \rightarrow leftChild = p;

else pp \rightarrow rightChild = p
else root = p;
```

- Leaf Node: directly set the left-child to 0 and dispose it
- Nonleaf Node with a single child: replace it by the child and dispose it

- Nonleaf Node with two child
 - Replace it by the smallest of the right subtree
 - Replace it by the largest of the left subtree

Before deleting 60

After deleting 60

Selection Trees

- To merge k ordered sequences (runs)
 - -K-1 comparisons are required to determine the next record to output
- To reduce comparisons
 - Winner tree
 - Loser tree

Winner Tree for k = 8

Analysis

- *K*: # of runs
- *n*: # of records
- setup time: O(K) (K-1)
- restructure time: $O(\log_2 K)$ $\log_2(K+1)$
- merge time: $O(nlog_2K)$
- **slight** modification: Loser Tree
 - consider the parent node only (vs. sibling nodes)

Loser Tree

Loser Tree

Forest

• A forest is a set of $n \ge 0$ disjoint trees

Transform a Forest into a Binary Tree

- T_1, T_2, \dots, T_n : a forest of trees
- $B(T_1, T_2, ..., T_n)$: a binary tree corresponding to this forest
- Algorithm
 - empty, if n=0
 - has root equal to $root(T_1)$; has left subtree equal to $B(T_{11}, T_{12}, ..., T_{1m})$; where $B(T_{11}, T_{12}, ..., T_{1m})$ are subtrees of $root(T_1)$; and has right subtree equal to $B(T_2, ..., T_n)$

Forest Traversals

Preorder

- If F is empty, then return
- Visit the root of the first tree of F
- Traverse the subtrees of the first tree in forest preorder
- Traverse the remaining trees of F in forest preorder

Forest Traversals (contd.)

Inorder

- If F is empty, then return
- Traverse the subtrees of the first tree in forest inorder
- Visit the root of the first tree
- Traverse the remaining trees of F in forest inorder

Postorder

- If F is empty, then return
- Traverse the subtrees of the first tree in forest postorder
- Traverse the remaining trees of F in forest inorder
- Visit the root of the first tree

(Disjoint) Set Representation

• $S_1 = \{0, 6, 7, 8\}, S_2 = \{1, 4, 9\}, S_3 = \{2, 3, 5\}$

- Two operations considered here
 - Disjoint set union: $S_1 \cup S_2 = \{0, 6, 7, 8, 1, 4, 9\}$
 - Find(i): Find the set containing the element i.

$$3 \in S_3$$
, $8 \in S_1$

Array Representation of S_1 , S_2 , S_3

- We could use an array for the set name.
 - Or the set name can be an element at the root.

set name	pointer		$(0, S_1)$ $(4, S_2)$
S ₁		7	$\begin{pmatrix} 1 \\ 7 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix}$
S_2	~	→ or	(6) (7) (8) (1) (9)
S_3		→	$2, S_3$
			3
	1		3

Array Representation of S_1 , S_2 , S_3

Each root has a pointer to the set name

Disjoint Set *Union*

- Make one of trees a subtree of the other
 - Possible representation for $S_1 \cup S_2$

Array Representation of S_1 , S_2 , S_3

• Assume set elements are numbered 0 through n-1

i	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
parent	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

i	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
parent	-1	4	-1	2	-1	2	0	0	0	4
_										

Array Representation of S_1 , S_2 , S_3

```
class Sets {
public:
    // set operations follow
private:
    int *parent;
    int n; // number of set elements
};
Sets::Sets(int numberOfElements)
    if (numberOfElements < 2)
            throw "Must have at least 2 elements.";
    n = numberOfElements;
    parent = new int[n];
    fill(parent, parent + n, -1);
```

SimpleUnion

i	[0]	[1]	[2]	[3]	[4]	[5]	[6]	[7]	[8]	[9]
parent	-1	4	-1	2	-1	2	0	0	0	4

SimpleUnion(0,4)

SimpleFind

```
int Sets::SimpleFind(int i)
{ // find the root of the tree containing element i
     while (parent[i] >= 0) i = parent[i];
    return i;
}
```


Degenerate Tree

- *union*(0,1)
- *union*(1,2)

• • •

• union(n-2, n-1)

- One union operation
 - -0(1)
- n-1 union operations
 - -O(n)

- find(0)
- *find*(1)

. . .

- find(n-1)
- One find operation
 - -0(n)
- *n* find operations
 - $O(n^2)$

degenerate tree

Weighting Rule

- Weighting rule for union(i, j)
 - If the number of nodes in the tree with root i is less than the number in the tree with root j, then make j the parent of i; otherwise make i the parent of j.

```
void Sets::WeightedUnion(int i, int j)
// union sets with roots i and j, i \neq j, using the weighting rule
// parent[i] = -count[i] and parent[j] = -count[j]
                              int temp = parent[i] + parent[j];
                               if (parent[i] > parent[j]) {// i has fewer nodes
                                                             parent[i] = j;
                                                             parent[j] = temp;
                              else \{//j \text{ has fewer nodes or } i \text{ and } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. of nodes } j \text{ have the same no. }
                                                             parent[j] = i;
                                                             parent[i] = temp;
                                                                                                                                                                                                                                                Use the weighting rule on the union operation
                                                                                                                                                                                                                                                                 to avoid the creation of degenerate trees.
```

Trees Obtained Using The Weighting Rule

Union (0,n-1)

Weighted Union

- **Lemma 5.5**: Assume that we start with a forest of trees, each having one node. Let T be a tree with m nodes created as a result of a sequence of unions each performed using WeightedUnion. The height of T is no greater than $\lfloor \log_2 m \rfloor + 1$
- Prove by induction.
 - Basis: The lemma is true when m=1
 - Hypothesis: Assume that the three The lemma is true for all trees with i nods, i < m.

Weighted Union (contd.)

– Induction:

- Let T be a tree wit m nodes created by WeightedUnion to union two trees j and k.
- Let tree j and tree k be with a and m-a nodes, respectively.
- Assume $1 \le a \le m/2$. The height of tree T is either (1) the same as tree k or

$$\lfloor \log_2(m-a) \rfloor + 1 \leq \lfloor \log_2 m \rfloor + 1$$

(2) one more than the height of tree j

$$\lfloor \log_2 a \rfloor + 1 + 1 \le \left| \log_2 \frac{m}{2} \right| + 2 \le \lfloor \log_2 m \rfloor + 1$$

Weighted Union (contd.)

- For the processing of an intermixed sequence of u-1 unions and f find operations, the time complexity is $O(u+f*log\ u)$.
- Worst case: Performing u-1 unions first and then performing f find operations
 - -u-1 unions: O(u)
 - The largest three is of at most u nodes. According lemma 5.5, the height of a tree is at most $O(\log u)$
 - Find operation: $O(\log u)$

Trees Achieving Worst-Case Bound

(a) Initial height trees

(b) Height-2 trees following union (0, 1), (2, 3), (4, 5), and (6, 7)

Trees Achieving Worst-Case Bound (Cont.)

(c) Height-3 trees following union (0, 2), (4, 6)

(d) Height-4 trees following union (0, 4)

Collapsing Rule

- Collapsing rule:
 - If j is a node on the path from i to its root and $parent[i] \neq root(i)$, then set parent[j] to root(i).
- The first run of find operation will collapse the tree.
 - Each following find operation of the same element only goes up one link to find the root.

CollapsingFind (contd.)

```
int Sets::CollapsingFind(int i)
\{// \text{ find the root of the tree containing element } i
 // use the collapsing ruleto collapse all nodes from i to the root
     for (int r = i; parent[r] >= 0; r = parent[r]); // find root
     while (i != r) \{ // \text{ collapse } \}
           int s = parent[i];
           parent[i] = r;
           i = s:
                                                 [-8]
                                                        0
     return r;
                                     CollapsingFind(7)
```

CollapsingFind

Before collapsing

After collapsing

find(7) find(7) find(7) find(7) find(7) find(7) find(7)

go up 3 1 1 1 1 1 1 1 1 1 reset 3

Applications

- Find equivalence class i j (two finds)
- Find S_i and S_j such that $i \in Si$ and $j \in S_j$

$$-S_i = S_j$$
 do nothing

$$-S_i \neq S_j \quad \text{do } union(S_i, S_j)$$

Example

$$0 \equiv 4, 3 \equiv 1, 6 \equiv 10, 8 \equiv 9, 7 \equiv 4, 6 \equiv 8, 3 \equiv 5, 2 \equiv 11, 11 \equiv 0$$

 $\{0, 2, 4, 7, 11\}, \{1, 3, 5\}, \{6, 8, 9, 10\}$

Example 5.5

$$0 \equiv 4, 3 \equiv 1, 6 \equiv 10, 8 \equiv 9, 7 \equiv 4, 6 \equiv 8, 3 \equiv 5, 2 \equiv 11, 11 \equiv 0$$

(a) Initial trees

(b) Height-2 trees following $0\equiv 4$, $3\equiv 1$, $6\equiv 10$, and $8\equiv 9$

Example 5.5 (Cont.)

$$0 \equiv 4, 3 \equiv 1, 6 \equiv 10, 8 \equiv 9, 7 \equiv 4, 6 \equiv 8, 3 \equiv 5, 2 \equiv 11, 11 \equiv 0$$

(c) Trees following $7\equiv 4$, $6\equiv 8$, $3\equiv 5$, and $2\equiv 11$

(d) Trees following 11≡0

Complexity

• n number and m equivalence pairs

- Setup: O(n)

- Find no: O(2m)

- Union no: At most $min\{n-1, m\}$

Counting Binary Trees

- Problem 1: The no. of distinct trees with n nodes
- Problem 2: The no. of distinct permutations of a the numbers from 1 through n obtaining by a stack
- Problem 3: The no of distinct ways of multiplying n-1 matrices

Distinct Binary Trees

• n = 1 or n = 1 => only one binary tree

•
$$n = 2$$

• n = 3

Uniqueness of a Binary Tree

- Suppose that we have the preorder sequence ABCDEFGHI and the inorder sequence BCAEDGHFI of the same binary tree.
- Does such a pair of sequence uniquely define a binary tree?
 - Yes.
 - How to prove it?

Constructing a Binary Tree From Its Preorder and Inorder Sequences

Preorder (VLR): A B C D E F G H I Inorder (LVR): B C A E D G H F I

Constructing a Binary Tree From Its Preorder and Inorder Sequences (Cont.)

Preorder (VLR): *A B C D E F G H I*1 2 3 4 5 6 7 8 9

Inorder (LVR): B C A E D G H F I 2 3 1 5 4 7 8 6 9

Distinct binary trees define distinct inorder permutations.

Distinct Binary Trees

 No. of Distinct BT: Distinct permutations obtainable by Passing 1 through n through a stack and deleting in al possible way

