MC458 — Projeto e Análise de Algoritmos I

C.C. de Souza C.N. da Silva O. Lee

Antes de mais nada...

- Uma versão anterior deste conjunto de slides foi preparada por Cid Carvalho de Souza e Cândida Nunes da Silva para uma instância anterior desta disciplina.
- O que vocês tem em mãos é uma versão modificada preparada para atender a meus gostos.
- Nunca é demais enfatizar que o material é apenas um guia e não deve ser usado como única fonte de estudo. Para isso consultem a bibliografia (em especial o CLR ou CLRS).

Orlando Lee

Agradecimentos (Cid e Cândida)

- Várias pessoas contribuíram direta ou indiretamente com a preparação deste material.
- Algumas destas pessoas cederam gentilmente seus arquivos digitais enquanto outras cederam gentilmente o seu tempo fazendo correções e dando sugestões.
- Uma lista destes "colaboradores" (em ordem alfabética) é dada abaixo:
 - Célia Picinin de Mello
 - ▶ José Coelho de Pina
 - Orlando Lee
 - Paulo Feofiloff
 - ► Pedro Rezende
 - Ricardo Dahab
 - Zanoni Dias

Recorrências

• Relações de recorrência expressam a complexidade de algoritmos recursivos como, por exemplo, os algoritmos de divisão e conquista.

- Relações de recorrência expressam a complexidade de algoritmos recursivos como, por exemplo, os algoritmos de divisão e conquista.
- É preciso saber resolver as recorrências para que possamos efetivamente determinar a complexidade dos algoritmos recursivos.

Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Qual é a complexidade de MERGESORT?

Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

Qual é a complexidade de MERGESORT?

Seja T(n):= o consumo de tempo máximo (pior caso) em função de n=r-p+1

Complexidade do Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

consumo de tempo
?
?
?
?
?

Complexidade do Mergesort

```
MERGESORT(A, p, r)

1 se p < r

2 então q \leftarrow \lfloor (p+r)/2 \rfloor

3 MERGESORT(A, p, q)

4 MERGESORT(A, q+1, r)

5 INTERCALA(A, p, q, r)
```

	linha	consumo de tempo
	1	b_0
	2	b_1
	3	$T(\lceil n/2 \rceil)$
	4	$T(\lfloor n/2 \rfloor)$
	5	an
T(n) = 7	$\lceil (\lceil n/2 \rceil \rceil \rceil$	$\overline{)+T(\lfloor n/2 \rfloor)+an+}(b_0+b_1)$

• Queremos resolver a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + an + b$ para $n \ge 2$.

Queremos resolver a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + an + b$ para $n \ge 2$.

• Resolver uma recorrência significa encontrar uma fórmula fechada para T(n).

• Queremos resolver a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + an + b$ para $n \ge 2$.

- Resolver uma recorrência significa encontrar uma fórmula fechada para T(n).
- Não é necessário achar uma solução exata.

• Queremos resolver a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + an + b$ para $n \ge 2$.

- Resolver uma recorrência significa encontrar uma fórmula fechada para T(n).
- Não é necessário achar uma solução exata. Basta encontrar uma função f(n) tal que $T(n) \in \Theta(f(n))$.

Veremos os seguintes métodos para resolução de recorrências:

Veremos os seguintes métodos para resolução de recorrências:

- substituição
- árvore de recorrência
- Teorema Master

Algumas relações

Antes de vermos as técnicas, vamos relembrar alguns fatos que são úteis quando lidamos com chão, teto e logaritmos:

- $\lceil \frac{n}{2} \rceil + \lfloor \frac{n}{2} \rfloor = n$ para todo inteiro $n \ge 0$,
- $|x| \le x$ para todo número real x,
- $\left\lfloor \frac{|x/a|}{b} \right\rfloor = \left\lfloor \frac{x}{ab} \right\rfloor$ para quaisquer número real $x \geq 0$ e inteiros a, b > 0,
- $\left\lceil \frac{\lceil x/a \rceil}{b} \right\rceil = \left\lceil \frac{x}{ab} \right\rceil$ para quaisquer número real $x \geq 0$ e inteiros a, b > 0,
- $\lceil \frac{n}{2} \rceil \leq \frac{n}{2} + 1$ (ou $\lceil \frac{n}{2} \rceil \leq n$),
- $\log(xy) = \log x + \log y$ (qualquer base),
- $\log(\frac{x}{y}) = \log x \log y$ (qualquer base),
- $\lg(\lfloor \frac{n}{2} \rfloor) \le \lg n 1$ e
- $\bullet \ a^{\log_b n} = n^{\log_b a}.$

Observação: $\log_b n = \frac{\log_a n}{\log_a b}$. Isto implica que $\log_b n \in \Theta(\log_a n)$ para quaisquer a, b > 0.

 Idéia básica: "adivinhe" qual é a solução e prove por indução que ela funciona!

- Idéia básica: "adivinhe" qual é a solução e prove por indução que ela funciona!
- Método poderoso mas nem sempre aplicável (obviamente).

- Idéia básica: "adivinhe" qual é a solução e prove por indução que ela funciona!
- Método poderoso mas nem sempre aplicável (obviamente).
- Com prática e experiência fica mais fácil de usar!

Considere a recorrência:

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

Considere a recorrência:

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

Chuto que $T(n) \in O(n \lg n)$.

Considere a recorrência:

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

Chuto que $T(n) \in O(n \lg n)$.

Mais precisamente, chuto que $T(n) \leq 3n \lg n$.

(Lembre-se que $\lg n = \log_2 n$.)

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$$

$$\leq 3 \left\lceil \frac{n}{2} \right\rceil \lg \left\lceil \frac{n}{2} \right\rceil + 3 \left\lfloor \frac{n}{2} \right\rfloor \lg \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$\leq 3 \left\lceil \frac{n}{2} \right\rceil \lg n + 3 \left\lfloor \frac{n}{2} \right\rfloor (\lg n - 1) + n$$

$$= 3 \left(\left\lceil \frac{n}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor \right) \lg n - 3 \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$= 3n \lg n - 3 \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$\leq 3n \lg n.$$

• Mas espere um pouco!

- Mas espere um pouco!
- T(1) = 1 e 3.1. $\lg 1 = 0$ e a base da indução não funciona!

- Mas espere um pouco!
- T(1) = 1 e 3.1. $\lg 1 = 0$ e a base da indução não funciona!
- ullet Certo, mas lembre-se da definição da classe $O(\).$

- Mas espere um pouco!
- T(1) = 1 e 3.1. $\lg 1 = 0$ e a base da indução não funciona!
- ullet Certo, mas lembre-se da definição da classe $O(\).$

Só preciso provar que $T(n) \le 3n \lg n$ para $n \ge n_0$ onde n_0 é alguma constante.

- Mas espere um pouco!
- T(1) = 1 e 3.1. $\lg 1 = 0$ e a base da indução não funciona!
- Certo, mas lembre-se da definição da classe O().

Só preciso provar que $T(n) \le 3n \lg n$ para $n \ge n_0$ onde n_0 é alguma constante.

Vamos tentar com $n_0 = 2$. Neste caso, para poder fazer o passo de indução é necessário que $\lfloor n/2 \rfloor$, $\lceil n/2 \rceil \ge 2$, ou seja, $n \ge 4$. Assim, usamos como base os valores n = 2, 3:

$$T(2) = T(1) + T(1) + 2 = 4 \le 3.2. \lg 2,$$

 $T(3) = T(1) + T(2) + 3 = 1 + 4 + 3 = 8 \le 3.3. \lg 3.$

• Certo, funcionou para T(1) = 1.

- Certo, funcionou para T(1) = 1.
- Mas e se por exemplo T(1) = 8?

- Certo, funcionou para T(1) = 1.
- Mas e se por exemplo T(1) = 8?

Então T(2) = T(1) + T(1) + 2 = 8 + 8 + 2 = 18 e 3.2. lg 2 = 6. Não deu certo...

Exemplo

- Certo, funcionou para T(1) = 1.
- Mas e se por exemplo T(1) = 8?

Então
$$T(2) = T(1) + T(1) + 2 = 8 + 8 + 2 = 18$$
 e 3.2. $\lg 2 = 6$. Não deu certo...

• Certo, mas aí basta escolher uma constante maior. Provamos que $T(n) \le 10n \lg n$ como antes e para esta escolha:

$$T(2) = 18 \le 10.2$$
. $\lg 2$
 $T(3) = T(1) + T(2) + 3 = 8 + 18 + 3 = 29 \le 10.3$. $\lg 3$

Exemplo

- Certo, funcionou para T(1) = 1.
- Mas e se por exemplo T(1) = 8?

Então
$$T(2) = T(1) + T(1) + 2 = 8 + 8 + 2 = 18$$
 e 3.2. lg $2 = 6$. Não deu certo...

• Certo, mas aí basta escolher uma constante maior. Provamos que $T(n) \le 10n \lg n$ como antes e para esta escolha:

$$T(2) = 18 \le 10.2$$
. $\lg 2$ $T(3) = T(1) + T(2) + 3 = 8 + 18 + 3 = 29 \le 10.3$. $\lg 3$

De modo geral, se o passo de indução funciona, é possível escolher c
 e no de modo conveniente!

Como achar as constantes?

• Tudo bem. Dá até para chutar que T(n) pertence a classe $O(n \lg n)$.

Como achar as constantes?

- Tudo bem. Dá até para chutar que T(n) pertence a classe $O(n \lg n)$.
- Mas como descobrir que $T(n) \le 3n \lg n$? Como achar a constante 3?

Como achar as constantes?

- Tudo bem. Dá até para chutar que T(n) pertence a classe $O(n \lg n)$.
- Mas como descobrir que $T(n) \le 3n \lg n$? Como achar a constante 3?
- Eis um método simples: prove por indução que $T(n) \le cn \lg n$ para $n \ge n_0$ onde c e n_0 são constantes a serem determinadas para que as contas funcionem.

Descobrindo c

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$$

$$\leq c \left\lceil \frac{n}{2} \right\rceil \lg \left\lceil \frac{n}{2} \right\rceil + c \left\lfloor \frac{n}{2} \right\rfloor \lg \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$\leq c \left\lceil \frac{n}{2} \right\rceil \lg n + c \left\lfloor \frac{n}{2} \right\rfloor (\lg n - 1) + n$$

$$= c \left(\left\lceil \frac{n}{2} \right\rceil + \left\lfloor \frac{n}{2} \right\rfloor \right) \lg n - c \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$= cn \lg n - c \left\lfloor \frac{n}{2} \right\rfloor + n$$

$$\leq cn \lg n.$$

Para garantir a última desigualdade basta que $-c \lfloor n/2 \rfloor + n \leq 0$. Tomando $c \geq 3$ funciona.

Mostramos que a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

satisfaz $T(n) \in O(n \lg n)$.

Mostramos que a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

satisfaz $T(n) \in O(n \lg n)$.

Mas quem garante que T(n) não é "menor"?

Mostramos que a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

satisfaz $T(n) \in O(n \lg n)$.

Mas quem garante que T(n) não é "menor"?

O melhor é mostrar que $T(n) \in \Theta(n \lg n)$.

Mostramos que a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

satisfaz $T(n) \in O(n \lg n)$.

Mas quem garante que T(n) não é "menor"?

O melhor é mostrar que $T(n) \in \Theta(n \lg n)$.

Resta então mostrar que $T(n) \in \Omega(n \lg n)$.

A prova é similar. (Exercício!)

Não há nenhuma receita genérica para adivinhar soluções de recorrências. A experiência é o fator mais importante.

Não há nenhuma receita genérica para adivinhar soluções de recorrências. A experiência é o fator mais importante.

Felizmente, há várias idéias que podem ajudar.

Não há nenhuma receita genérica para adivinhar soluções de recorrências. A experiência é o fator mais importante.

Felizmente, há várias idéias que podem ajudar.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

Não há nenhuma receita genérica para adivinhar soluções de recorrências. A experiência é o fator mais importante.

Felizmente, há várias idéias que podem ajudar.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

Ela é quase idêntica à anterior e podemos chutar que $T(n) \in \Theta(n \lg n)$.

Não há nenhuma receita genérica para adivinhar soluções de recorrências. A experiência é o fator mais importante.

Felizmente, há várias idéias que podem ajudar.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

Ela é quase idêntica à anterior e podemos chutar que $T(n) \in \Theta(n \lg n)$.

Chuto que existem c, n_0 tais que $T(n) \le cn \lg n$ para $n \ge n_0$.

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2c\lfloor n/2 \rfloor \lg(\lfloor n/2 \rfloor) + n$$

$$\leq 2c(n/2) \lg(n/2) + n$$

$$= cn \lg n - cn \lg 2 + n$$

$$= cn \lg n - cn + n$$

$$\leq cn \lg n,$$

onde a última desigualdade vale se $c \ge 1$.

Considere agora a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lceil n/2 \rceil) + n$ para $n \ge 2$.

Considere agora a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lceil n/2 \rceil) + n$ para $n \ge 2$.

Ela é quase idêntica à anterior e podemos chutar novamente que $T(n) \in \Theta(n \lg n)$. (Exercício!)

Observação: será necessário fortalecer a hipótese de indução (veja mais adiante).

Considere agora a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ para $n \ge 2$.

Considere agora a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ para $n \ge 2$.

Ela parece bem mais difícil por causa do "17" no lado direito.

Considere agora a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ para $n \ge 2$.

Ela parece bem mais difícil por causa do "17" no lado direito.

Intuitivamente, porém, isto não deveria afetar a solução. Para n grande a diferença entre T(|n/2|) e T(|n/2|+17) não é tanta.

Considere agora a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor + 17) + n$ para $n \ge 2$.

Ela parece bem mais difícil por causa do "17" no lado direito.

Intuitivamente, porém, isto não deveria afetar a solução. Para n grande a diferença entre $T(\lfloor n/2 \rfloor)$ e $T(\lfloor n/2 \rfloor + 17)$ não é tanta.

Chuto então que $T(n) \in \Theta(n \lg n)$. (Exercício!)

Observação: será necessário fortalecer a hipótese de indução. Além disso, a prova requer também alguns truques...

Algumas vezes adivinhamos corretamente a solução de uma recorrência, mas as contas aparentemente não funcionam! Em geral, o que é necessário é fortalecer a hipótese de indução.

Algumas vezes adivinhamos corretamente a solução de uma recorrência, mas as contas aparentemente não funcionam! Em geral, o que é necessário é fortalecer a hipótese de indução.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$ para $n \ge 2$.

Algumas vezes adivinhamos corretamente a solução de uma recorrência, mas as contas aparentemente não funcionam! Em geral, o que é necessário é fortalecer a hipótese de indução.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$ para $n \ge 2$.

Chutamos que $T(n) \in O(n)$ e tentamos mostrar que $T(n) \le cn$ para alguma constante c > 0.

Algumas vezes adivinhamos corretamente a solução de uma recorrência, mas as contas aparentemente não funcionam! Em geral, o que é necessário é fortalecer a hipótese de indução.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$ para $n \ge 2$.

Chutamos que $T(n) \in O(n)$ e tentamos mostrar que $T(n) \le cn$ para alguma constante c > 0.

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

$$\leq c \lceil n/2 \rceil + c \lfloor n/2 \rfloor + 1$$

$$= cn + 1.$$

(Humm, falhou...)

Algumas vezes adivinhamos corretamente a solução de uma recorrência, mas as contas aparentemente não funcionam! Em geral, o que é necessário é fortalecer a hipótese de indução.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$ para $n \ge 2$.

Chutamos que $T(n) \in O(n)$ e tentamos mostrar que $T(n) \le cn$ para alguma constante c > 0.

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

$$\leq c \lceil n/2 \rceil + c \lfloor n/2 \rfloor + 1$$

$$= cn + 1.$$

(Humm, falhou...)

E agora? Será que erramos o chute? Será que $T(n) \notin O(n)$?

Na verdade, adivinhamos corretamente. Para provar isso, é preciso usar uma hipótese de indução mais forte.

Na verdade, adivinhamos corretamente. Para provar isso, é preciso usar uma hipótese de indução mais forte.

Vamos mostrar que $T(n) \le cn - b$ onde b > 0 é uma constante.

Na verdade, adivinhamos corretamente. Para provar isso, é preciso usar uma hipótese de indução mais forte.

Vamos mostrar que $T(n) \le cn - b$ onde b > 0 é uma constante.

$$T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + 1$$

$$\leq c \lceil n/2 \rceil - b + c \lfloor n/2 \rfloor - b + 1$$

$$= cn - 2b + 1$$

$$\leq cn - b$$

onde a última desigualdade vale se $b \ge 1$.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + 1$ para $n \ge 2$.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + 1$ para $n \ge 2$.

Chutamos que $T(n) \in O(\lg n)$ e tentamos mostrar que que $T(n) \le c \lg n$ para alguma constante c > 0.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = T(\lceil n/2 \rceil) + 1$ para $n \ge 2$.

Chutamos que $T(n) \in O(\lg n)$ e tentamos mostrar que que $T(n) \le c \lg n$ para alguma constante c > 0.

$$T(n) = T(\lceil n/2 \rceil) + 1$$

$$\leq c \lg(\lceil n/2 \rceil) + 1$$

$$\leq c \lg(n/2 + 1) + 1$$

$$= c \lg((n+2)/2) + 1$$

$$= c \lg(n+2) - c \lg 2 + 1$$

$$= c \lg(n+2) - c + 1.$$

(Humm, falhou...)

Tudo que conseguimos foi mostrar que $T(n) \le c \lg(n+2)$.

Tudo que conseguimos foi mostrar que $T(n) \le c \lg(n+2)$.

Vamos tentar nos livrar do termo +2 fortalecendo a hipótese de indução.

Truques e sutilezas

Tudo que conseguimos foi mostrar que $T(n) \le c \lg(n+2)$.

Vamos tentar nos livrar do termo +2 fortalecendo a hipótese de indução.

Vamos mostrar que $T(n) \le c \lg(n-2)$ para alguma constante c > 0.

Truques e sutilezas

Tudo que conseguimos foi mostrar que $T(n) \le c \lg(n+2)$.

Vamos tentar nos livrar do termo +2 fortalecendo a hipótese de indução.

Vamos mostrar que $T(n) \le c \lg(n-2)$ para alguma constante c > 0.

$$T(n) = T(\lceil n/2 \rceil) + 1$$

$$\leq c \lg(\lceil n/2 \rceil - 2) + 1$$

$$\leq c \lg(n/2 + 1 - 2) + 1$$

$$= c \lg(n/2 - 1) + 1$$

$$= c \lg((n-2)/2) + 1$$

$$= c \lg((n-2) - c \lg 2 + 1)$$

$$= c \lg((n-2) - c + 1)$$

$$\leq c \lg((n-2) - c + 1)$$

onde a última desigualdade vale tomando $c \geq 1$.

Não precisa adivinhar a resposta!

- Não precisa adivinhar a resposta!
- Permite visualizar o que acontece quando a recorrência é iterada.

- Não precisa adivinhar a resposta!
- Permite visualizar o que acontece quando a recorrência é iterada.
- É relativamente fácil organizar as contas.

- Não precisa adivinhar a resposta!
- Permite visualizar o que acontece quando a recorrência é iterada.
- É relativamente fácil organizar as contas.
- Útil para recorrências de algoritmos de divisão-e-conquista.

Considere a recorrência

$$T(n) = \Theta(1)$$
 para $n = 1, 2, 3$, $T(n) = 3T(\lfloor n/4 \rfloor) + cn^2$ para $n \ge 4$,

onde c > 0 é uma constante.

Considere a recorrência

$$T(n) = \Theta(1)$$
 para $n = 1, 2, 3$,
 $T(n) = 3T(\lfloor n/4 \rfloor) + cn^2$ para $n \ge 4$,

onde c > 0 é uma constante.

CLRS costuma usar a notação $T(n) = \Theta(1)$ para indicar que T(n) é uma constante.

Simplificação

Vamos supor que a recorrência está definida apenas para potências de 4

$$T(n) = \Theta(1)$$
 para $n = 1$,
 $T(n) = 3T(n/4) + cn^2$ para $n = 4, 16, ..., 4^i, ...$

Simplificação

Vamos supor que a recorrência está definida apenas para potências de 4

$$T(n) = \Theta(1)$$
 para $n = 1$,
 $T(n) = 3T(n/4) + cn^2$ para $n = 4, 16, ..., 4^i, ...$

Isto permite descobrir mais facilmente a solução. Depois usamos o método da substituição para formalizar.

Total: $O(n^2)$

• O número de níveis é $\log_4 n + 1 \ (0, 1, 2, ..., \log_4 n)$.

- O número de níveis é $\log_4 n + 1 \ (0, 1, 2, ..., \log_4 n)$.
- No nível i o tempo gasto (sem contar as chamadas recursivas) é $(3/16)^i cn^2$.

- O número de níveis é $\log_4 n + 1 \ (0, 1, 2, ..., \log_4 n)$.
- No nível i o tempo gasto (sem contar as chamadas recursivas) é $(3/16)^i cn^2$.
- Uma árvore ternária de altura h tem (no máximo) 3^h folhas.

- O número de níveis é $\log_4 n + 1 \ (0, 1, 2, ..., \log_4 n)$.
- No nível i o tempo gasto (sem contar as chamadas recursivas) é $(3/16)^i cn^2$.
- Uma árvore ternária de altura h tem (no máximo) 3^h folhas.

Logo, no último nível há $3^{\log_4 n} = n^{\log_4 3}$ folhas.

Como $T(1) = \Theta(1)$ o tempo gasto é $\Theta(n^{\log_4 3})$.

Logo,

$$T(n) = cn^{2} + \frac{3}{16}cn^{2} + \left(\frac{3}{16}\right)^{2}cn^{2} + \left(\frac{3}{16}\right)^{3}cn^{2} + \dots +$$

$$+ \left(\frac{3}{16}\right)^{\log_{4}n - 1}cn^{2} + \Theta(n^{\log_{4}3})$$

$$= \left[\sum_{i=0}^{\log_{4}n - 1}\left(\frac{3}{16}\right)^{i}\right]cn^{2} + \Theta(n^{\log_{4}3})$$

$$\leq \left[\sum_{i=0}^{\infty}\left(\frac{3}{16}\right)^{i}\right]cn^{2} + \Theta(n^{\log_{4}3}) = \frac{16}{13}cn^{2} + \Theta(n^{\log_{4}3}),$$

e
$$T(n) \in O(n^2)$$
. Observação: $\sum_{i=0}^{\infty} q^i = \frac{1}{1-q}$ para $0 < q < 1$.

Mas $T(n) \in O(n^2)$ é realmente a solução da recorrência original?

Mas $T(n) \in O(n^2)$ é realmente a solução da recorrência original?

Com base na árvore de recorrência, chutamos que $T(n) \le dn^2$ para alguma constante d > 0.

Mas $T(n) \in O(n^2)$ é realmente a solução da recorrência original?

Com base na árvore de recorrência, chutamos que $T(n) \le dn^2$ para alguma constante d > 0.

$$T(n) = 3T(\lfloor n/4 \rfloor) + cn^{2}$$

$$\leq 3d\lfloor n/4 \rfloor^{2} + cn^{2}$$

$$\leq 3d(n/4)^{2} + cn^{2}$$

$$= \frac{3}{16}dn^{2} + cn^{2}$$

$$\leq dn^{2}$$

onde a última desigualdade vale se $d \ge (16/13)c$.

Resumo

 O número de nós em cada nível da árvore é o número de chamadas recursivas.

Resumo

- O número de nós em cada nível da árvore é o número de chamadas recursivas.
- Em cada nó indicamos o "tempo" ou "trabalho" gasto naquele nó que não corresponde a chamadas recursivas.

Resumo

- O número de nós em cada nível da árvore é o número de chamadas recursivas.
- Em cada nó indicamos o "tempo" ou "trabalho" gasto naquele nó que não corresponde a chamadas recursivas.
- Na coluna mais à direita indicamos o tempo total naquele nível que não corresponde a chamadas recursivas.

Resumo

- O número de nós em cada nível da árvore é o número de chamadas recursivas.
- Em cada nó indicamos o "tempo" ou "trabalho" gasto naquele nó que **não** corresponde a chamadas recursivas.
- Na coluna mais à direita indicamos o tempo total naquele nível que não corresponde a chamadas recursivas.
- Somando ao longo da coluna determina-se a solução da recorrência.

Vamos tentar juntos?

Eis um exemplo um pouco mais complicado.

Vamos tentar juntos?

Eis um exemplo um pouco mais complicado.

Vamos resolver a recorrência

$$T(n) = \Theta(1)$$
 para $n = 1, 2,$ $T(n) = T(\lceil n/3 \rceil) + T(\lfloor 2n/3 \rfloor) + cn$ para $n \ge 3.$

usando a árvore de recorrência.

Vamos tentar juntos?

Eis um exemplo um pouco mais complicado.

Vamos resolver a recorrência

$$T(n) = \Theta(1)$$
 para $n = 1, 2,$ $T(n) = T(\lceil n/3 \rceil) + T(\lfloor 2n/3 \rfloor) + cn$ para $n \ge 3$.

usando a árvore de recorrência.

Para simplificar as contas, vamos aproximar $\lceil n/3 \rceil$ e $\lfloor 2n/3 \rfloor$ por n/3 e 2n/3, respectivamente.

• No nível i o tempo gasto (sem contar as chamadas recursivas) é cn.

- No nível i o tempo gasto (sem contar as chamadas recursivas) é cn.
- Nem todas as folhas têm a mesma profundidade. A altura da árvore é obtida descendo pelo ramo direito (lado 2n/3).

Árvore de recorrência

- No nível i o tempo gasto (sem contar as chamadas recursivas) é cn.
- Nem todas as folhas têm a mesma profundidade. A altura da árvore é obtida descendo pelo ramo direito (lado 2n/3).

Os níveis correspondem a: $n, (2/3)n, (2/3)^2n, ..., (2/3)^in, ...$

Assim, a altura é $\Theta(\log_{3/2} n) = \Theta(\log n)$.

Árvore de recorrência

- No nível i o tempo gasto (sem contar as chamadas recursivas) é cn.
- Nem todas as folhas têm a mesma profundidade. A altura da árvore é obtida descendo pelo ramo direito (lado 2n/3).
 - Os níveis correspondem a: $n, (2/3)n, (2/3)^2n, \dots, (2/3)^in, \dots$ Assim, a altura é $\Theta(\log_{3/2} n) = \Theta(\log n)$.
- Assim o tempo total é $cn\Theta(\log n) = \Theta(n \log n)$.

Árvore de recorrência

- No nível i o tempo gasto (sem contar as chamadas recursivas) é cn.
- Nem todas as folhas têm a mesma profundidade. A altura da árvore é obtida descendo pelo ramo direito (lado 2n/3).
 - Os níveis correspondem a: $n, (2/3)n, (2/3)^2n, \dots, (2/3)^in, \dots$ Assim, a altura é $\Theta(\log_{3/2} n) = \Theta(\log n)$.
- Assim o tempo total é $cn\Theta(\log n) = \Theta(n \log n)$.
- Para formalizar o resultado prove que $T(n) = \Theta(n \log n)$ usando o método de substituição. (Exercício!)

Uma "recorrência"

$$T(n) = \Theta(1)$$
 para $n = 1, 2,$
$$T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$$
 para $n \ge 3$

Uma "recorrência"

$$T(n) = \Theta(1)$$
 para $n = 1, 2$,
 $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$ para $n \ge 3$

representa todas as recorrências da forma

$$T(n) = a$$
 para $n = 1, 2,$
$$T(n) = 3T(\lfloor n/4 \rfloor) + bn^2$$
 para $n \ge 3$

onde a e b são constantes.

Uma "recorrência"

$$T(n) = \Theta(1)$$
 para $n = 1, 2$,
 $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$ para $n \ge 3$

representa todas as recorrências da forma

$$T(n) = a$$
 para $n = 1, 2,$
 $T(n) = 3T(|n/4|) + bn^2$ para $n \ge 3$

onde a e b são constantes.

As soluções exatas dependem dos valores de a e b, mas estão todas na mesma classe Θ .

Uma "recorrência"

$$T(n) = \Theta(1)$$
 para $n = 1, 2$,
 $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$ para $n \ge 3$

representa todas as recorrências da forma

$$T(n) = a$$
 para $n = 1, 2,$ $T(n) = 3T(\lfloor n/4 \rfloor) + bn^2$ para $n \ge 3$

onde a e b são constantes.

As soluções exatas dependem dos valores de a e b, mas estão todas na mesma classe Θ .

A "solução" é
$$T(n) = \Theta(n^2)$$
, ou seja, $T(n) \in \Theta(n^2)$.

Uma "recorrência"

$$T(n) = \Theta(1)$$
 para $n = 1, 2$,
 $T(n) = 3T(\lfloor n/4 \rfloor) + \Theta(n^2)$ para $n \ge 3$

representa todas as recorrências da forma

$$T(n) = a$$
 para $n = 1, 2,$ $T(n) = 3T(\lfloor n/4 \rfloor) + bn^2$ para $n \ge 3$

onde a e b são constantes.

As soluções exatas dependem dos valores de a e b, mas estão todas na mesma classe Θ .

A "solução" é
$$T(n) = \Theta(n^2)$$
, ou seja, $T(n) \in \Theta(n^2)$.

As mesmas observações valem para as classes O, Ω, o, ω .

Podemos escrever a recorrência de tempo do MERGESORT da seguinte forma

Podemos escrever a recorrência de tempo do MERGESORT da seguinte forma

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n \ge 2$.

Podemos escrever a recorrência de tempo do MERGESORT da seguinte forma

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n \ge 2$.

A solução da recorrência é $T(n) = \Theta(n \lg n)$.

Podemos escrever a recorrência de tempo do MERGESORT da seguinte forma

$$T(1) = \Theta(1)$$

 $T(n) = T(\lceil n/2 \rceil) + T(\lfloor n/2 \rfloor) + \Theta(n)$ para $n \ge 2$.

A solução da recorrência é $T(n) = \Theta(n \lg n)$.

A prova é essencialmente a mesma do primeiro exemplo. (Exercício!)

A notação assintótica é muito versátil e expressiva. Entretanto, deve-se tomar alguns cuidados.

A notação assintótica é muito versátil e expressiva. Entretanto, deve-se tomar alguns cuidados.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

A notação assintótica é muito versátil e expressiva. Entretanto, deve-se tomar alguns cuidados.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

É similar à recorrência do MERGESORT!

A notação assintótica é muito versátil e expressiva. Entretanto, deve-se tomar alguns cuidados.

Considere a recorrência

$$T(1) = 1$$

 $T(n) = 2T(\lfloor n/2 \rfloor) + n$ para $n \ge 2$.

É similar à recorrência do MERGESORT!

Mas eu vou "provar" que T(n) = O(n)!

Vou mostrar que $T(n) \le cn$ para alguma constante c > 0.

Vou mostrar que $T(n) \le cn$ para alguma constante c > 0.

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2c \lfloor n/2 \rfloor + n$$

$$\leq cn + n$$

$$= O(n)$$

Vou mostrar que $T(n) \le cn$ para alguma constante c > 0.

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2c \lfloor n/2 \rfloor + n$$

$$\leq cn + n$$

$$= O(n) \iff \text{ERRADO!!!}$$

Por quê?

Vou mostrar que $T(n) \le cn$ para alguma constante c > 0.

$$T(n) = 2T(\lfloor n/2 \rfloor) + n$$

$$\leq 2c \lfloor n/2 \rfloor + n$$

$$\leq cn + n$$

$$= O(n) \iff \text{ERRADO!!!}$$

Por quê?

Não foi feito o passo indutivo, ou seja, não foi mostrado que $T(n) \leq cn$.

 Veremos agora um resultado que descreve soluções para recorrências da forma

$$T(n) = aT(n/b) + f(n),$$

onde a > 1 e b > 1 são constantes.

 Veremos agora um resultado que descreve soluções para recorrências da forma

$$T(n) = aT(n/b) + f(n),$$

onde a > 1 e b > 1 são constantes.

 O caso base é omitido na definição e convenciona-se que é uma constante para valores pequenos.

 Veremos agora um resultado que descreve soluções para recorrências da forma

$$T(n) = aT(n/b) + f(n),$$

onde a > 1 e b > 1 são constantes.

- O caso base é omitido na definição e convenciona-se que é uma constante para valores pequenos.
- A expressão n/b pode indicar tanto $\lfloor n/b \rfloor$ quanto $\lceil n/b \rceil$.

 Veremos agora um resultado que descreve soluções para recorrências da forma

$$T(n) = aT(n/b) + f(n),$$

onde a > 1 e b > 1 são constantes.

- O caso base é omitido na definição e convenciona-se que é uma constante para valores pequenos.
- A expressão n/b pode indicar tanto $\lfloor n/b \rfloor$ quanto $\lceil n/b \rceil$.
- O Teorema Master não fornece a resposta para todas as recorrências da forma acima.

Teorema Master (CLRS). Sejam $a \ge 1$ e b > 1 constantes, seja f(n) uma função e seja T(n) definida para os inteiros não-negativos pela relação de recorrência

$$T(n) = aT(n/b) + f(n).$$

Então T(n) pode ser limitada assintoticamente da seguinte maneira:

Teorema Master (CLRS). Sejam $a \ge 1$ e b > 1 constantes, seja f(n) uma função e seja T(n) definida para os inteiros não-negativos pela relação de recorrência

$$T(n) = aT(n/b) + f(n).$$

Então T(n) pode ser limitada assintoticamente da seguinte maneira:

① Se $f(n) \in O(n^{\log_b a - \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$

Teorema Master (CLRS). Sejam $a \ge 1$ e b > 1 constantes, seja f(n) uma função e seja T(n) definida para os inteiros não-negativos pela relação de recorrência

$$T(n) = aT(n/b) + f(n).$$

Então T(n) pode ser limitada assintoticamente da seguinte maneira:

- ① Se $f(n) \in O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- **2** Se $f(n) \in \Theta(n^{\log_b a})$, então $T(n) \in \Theta(n^{\log_b a} \log n)$

Teorema Master (CLRS). Sejam $a \ge 1$ e b > 1 constantes, seja f(n) uma função e seja T(n) definida para os inteiros não-negativos pela relação de recorrência

$$T(n) = aT(n/b) + f(n).$$

Então T(n) pode ser limitada assintoticamente da seguinte maneira:

- ① Se $f(n) \in O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) \in \Theta(n^{\log_b a})$
- **2** Se $f(n) \in \Theta(n^{\log_b a})$, então $T(n) \in \Theta(n^{\log_b a} \log n)$
- ③ Se $f(n) \in \Omega(n^{\log_b a + \epsilon})$, para alguma constante $\epsilon > 0$ e se $af(n/b) \le cf(n)$, para alguma constante c < 1 e para n suficientemente grande, então $T(n) \in \Theta(f(n))$

Exemplos onde o Teorema Master se aplica:

Exemplos onde o Teorema Master se aplica:

• Caso 1:

$$T(n) = 9T(n/3) + n$$

$$T(n) = 4T(n/2) + n \log n$$

Exemplos onde o Teorema Master se aplica:

• Caso 1:

$$T(n) = 9T(n/3) + n$$

$$T(n) = 4T(n/2) + n \log n$$

• Caso 2:

$$T(n) = T(2n/3) + 1$$

 $T(n) = 2T(n/2) + (n + \log n)$

Exemplos onde o Teorema Master se aplica:

• Caso 1: T(n) = 9T(n/3) + n $T(n) = 4T(n/2) + n \log n$

• Caso 2:

$$T(n) = T(2n/3) + 1$$

 $T(n) = 2T(n/2) + (n + \log n)$

• Caso 3:

$$T(n) = 3T(n/4) + n \log n$$

Exemplos onde o Teorema Master não se aplica:

Exemplos onde o Teorema Master não se aplica:

•
$$T(n) = T(n-1) + n$$

Exemplos onde o Teorema Master não se aplica:

- T(n) = T(n-1) + n
- T(n) = T(n-a) + T(a) + n, $(a \ge 1 \text{ inteiro})$

Exemplos de Recorrências

Exemplos onde o Teorema Master não se aplica:

- T(n) = T(n-1) + n
- T(n) = T(n-a) + T(a) + n, $(a \ge 1 \text{ inteiro})$
- $T(n) = T(\alpha n) + T((1 \alpha)n) + n$, $(0 < \alpha < 1)$

Exemplos de Recorrências

Exemplos onde o Teorema Master não se aplica:

- T(n) = T(n-1) + n
- T(n) = T(n-a) + T(a) + n, $(a \ge 1 \text{ inteiro})$
- $T(n) = T(\alpha n) + T((1 \alpha)n) + n$, $(0 < \alpha < 1)$
- $T(n) = T(n-1) + \log n$

Exemplos de Recorrências

Exemplos onde o Teorema Master não se aplica:

- T(n) = T(n-1) + n
- T(n) = T(n-a) + T(a) + n, $(a \ge 1 \text{ inteiro})$
- $T(n) = T(\alpha n) + T((1 \alpha)n) + n$, $(0 < \alpha < 1)$
- $T(n) = T(n-1) + \log n$
- $T(n) = 2T(\frac{n}{2}) + n \log n$

Teorema Master Especializado

Teorema Master (Manber). Sejam $a \ge 1$, b > 1 e $k \ge 0$ constantes. Seja T(n) definida para os inteiros não-negativos pela relação de recorrência

$$T(n) = aT(n/b) + \Theta(n^k).$$

Então

$$T(n) = \begin{cases} \Theta(n^{\log_b a}) & \text{se } a > b^k, \\ \Theta(n^k \log n) & \text{se } a = b^k, \\ \Theta(n^k) & \text{se } a < b^k. \end{cases}$$

Exemplos de análise de complexidade

 Mostraremos a seguir exemplos de como fazer análise de complexidade de algoritmos descritos em pseudo-código.

Exemplos de análise de complexidade

- Mostraremos a seguir exemplos de como fazer análise de complexidade de algoritmos descritos em pseudo-código.
- Para algoritmos iterativos simplesmente "contamos" o tempo gasto em cada linha e depois somamos o total.

Exemplos de análise de complexidade

- Mostraremos a seguir exemplos de como fazer análise de complexidade de algoritmos descritos em pseudo-código.
- Para algoritmos iterativos simplesmente "contamos" o tempo gasto em cada linha e depois somamos o total.
- Para algoritmos recursivos é necessário obter alguma fórmula de recorrência e depois resolvê-la.

Análise de complexidade do INSERTION-SORT

```
INSERTION-SORT(A, n)

1 para j \leftarrow 2 até n faça

2 chave \leftarrow A[j]

3 \triangleright Insere A[j] no subvetor ordenado A[1 \dots j-1]

4 i \leftarrow j-1

5 enquanto i \ge 1 e A[i] > chave faça

6 A[i+1] \leftarrow A[i]

7 i \leftarrow i-1

8 A[i+1] \leftarrow chave
```

Vamos analisar a complexidade de tempo de pior caso de INSERTION-SORT.

1				i	j				n
20	25	35	40	44	55	99	10	65	50

C.C. de Souza, C.N. da Silva, O. Lee

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1								j		n
10	20	25	35	38	40	44	55	99	10	65	50

chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1							j			n
99	20	25	35	38	40	44	55	99	10	65	50
chave	1								j		n
10	20	25	35	38	40	44	55	99	10	65	50
chave	1								j		n
10				35	38	40	44	55			

chave	1									j	n
65	10	20	25	35	38	40	44	55	99	65	50

chave	1									j	n
65	10	20	25	35	38	40	44	55	99	65	50
chave	1									j	n

chave	1									j	n
65	10	20	25	35	38	40	44	55	99	65	50
chave	1									j	n
65	10	20	25	35	38	40	44	55	65	99	50
chave	1										j
50	10	20	25	35	38	40	44	55	65	99	50

chave	1									j	n
65	10	20	25	35	38	40	44	55	99	65	50
chave	1									j	n
65	10	20	25	35	38	40	44	55	65	99	50
chave	1										j
50	10	20	25	35	38	40	44	55	65	99	50
chave	1										j
50	10	20	25	35	38	40	44	50	55	65	99

Análise de complexidade do INSERTION-SORT

Ins	SERTION-SORT (A, n)	Tempo
1 p	para $j \leftarrow 2$ até n faça	?
2	$chave \leftarrow A[j]$?
3	\triangleright Insere $A[j]$ em $A[1j-1]$?
4	$i \leftarrow j-1$?
5	enquanto $i \ge 1$ e $A[i] > \text{chave faça}$?
6	$A[i+1] \leftarrow A[i]$?
7	$i \leftarrow i - 1$?
8	$A[i+1] \leftarrow \text{chave}$?
	Total	?

Método típico de análise de um algoritmo iterativo.

Preenchemos em cada linha na coluna à direita o tempo gasto durante a execução do algoritmo. Depois calculamos a soma (ou o máximo) das entradas para obter a complexidade total do algoritmo.

Complexidade de InsertionSort

Ins	SERTION-SORT (A, n)	Tempo
1 p	para $j \leftarrow 2$ até n faça	$\Theta(n)$
2	$chave \leftarrow A[j]$	$\Theta(n)$
3	\triangleright Insere $A[j]$ em $A[1j-1]$	0
4	$i \leftarrow j-1$	$\Theta(n)$
5	enquanto $i \ge 1$ e $A[i] > \text{chave faça}$	$\Theta(n).O(n)$
6	$A[i+1] \leftarrow A[i]$	$\Theta(n).O(n)$
7	$i \leftarrow i - 1$	$\Theta(n).O(n)$
8	$A[i+1] \leftarrow \text{chave}$	$\Theta(n)$
	Total	$O(n^2)$

Note que em alguns pontos usamos $\Theta(\)$ e em outros $O(\)$. Por quê?

Complexidade de POTÊNCIA

```
Entrada: real a e inteiro d \ge 0.

Saída: a^d.

POTÊNCIA(a, d)

1 y \leftarrow a, n \leftarrow d, x \leftarrow 1

2 enquanto n > 0 faça

3 se n é ímpar então x \leftarrow xy

4 n \leftarrow \lfloor n/2 \rfloor

5 y \leftarrow y^2

6 devolva x
```

Complexidade de Potência

Po	OTÊNCIA (a,d)	Tempo
1	$y \leftarrow a, \ n \leftarrow d, \ x \leftarrow 1$?
2	enquanto $n > 0$ faça	?
3	se n é impar então $x \leftarrow xy$?
4	$n \leftarrow \lfloor n/2 \rfloor$?
5	$y \leftarrow y^2$?
6	devolva x	?
	Total	?

Quantas vezes a linha 2 é executada?

Complexidade de Potência

Po	OTÊNCIA (a,d)	Tempo
1	$y \leftarrow a, \ n \leftarrow d, \ x \leftarrow 1$?
2	enquanto $n > 0$ faça	?
3	se n é impar então $x \leftarrow xy$?
4	$n \leftarrow \lfloor n/2 \rfloor$?
5	$y \leftarrow y^2$?
6	devolva x	?
	Total	?

Quantas vezes a linha 2 é executada? $\Theta(\lg d)$

Complexidade de POTÊNCIA

Po	Tempo	
1	$y \leftarrow a, \ n \leftarrow d, \ x \leftarrow 1$	$\Theta(1)$
2	enquanto $n > 0$ faça	$\Theta(\lg d)$
3	se n é impar então $x \leftarrow xy$	$\Theta(\lg d)$
4	$n \leftarrow \lfloor n/2 \rfloor$	$\Theta(\lg d)$
5	$y \leftarrow y^2$	$\Theta(\lg d)$
6	devolva x	$\Theta(1)$
	Total	$\Theta(\lg d)$

Complexidade de MISTÉRIO

```
Entrada: um vetor A[p..r] de reais.

Saída: é um mistério...

MISTÉRIO(A, p, r)

1 n \leftarrow r - p + 1

2 se n \ge 3 faça

3 q \leftarrow p + \lfloor n/3 \rfloor

4 ARRUMA(A, p, q, r)

5 MISTÉRIO(A, p, q - 1)

6 MISTÉRIO(A, q, r)
```

Suponha que $A_{RRUMA}(A, p, q, r)$ tenha complexidade de tempo O(n).

Complexidade de MISTÉRIO

MISTÉRIO(A, p, r)		Tempo
1	$n \leftarrow r - p + 1$?
2	se $n \ge 3$ faça	?
3	$q \leftarrow p + \lfloor n/3 \rfloor$?
4	ARRUMA(A, p, q, r)	?
5	MISTÉRIO(A, p, q - 1)	?
6	Mistério(A, q, r)	?
	Total	?

Suponha que Arruma(A, p, q, r) tenha complexidade de tempo O(n).

Complexidade de MISTÉRIO

Mistério(A, p, r)		Tempo	
1	$n \leftarrow r - p + 1$	$\Theta(1)$	
2	se $n \ge 3$ faça	$\Theta(1)$	
3	$q \leftarrow p + \lfloor n/3 \rfloor$	O(1)	
4	Arruma(A, p, q, r)	O(n)	
5	Mistério(A, p, q - 1)	$T(\lfloor n/3 \rfloor)$	
6	Mistério(A, q, r)	$T(\lceil 2n/3 \rceil)$	
	T(n) =	$T(\lfloor n/3 \rfloor) + T(\lceil 2n/3 \rceil) + O(n)$	

A solução de
$$T(n) = T(\lfloor n/3 \rfloor) + T(\lceil 2n/3 \rceil) + O(n)$$
 é $T(n) = O(n \lg n)$ (Exercício!).

Note que não dá para usar o Teorema Master...

Observação: $n = \lfloor n/3 \rfloor + \lceil 2n/3 \rceil$ (Exercício!).