Tree Structured Classifier

- Reference: *Classification and Regression Trees* by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone, Chapman & Hall, 1984.
- A Medical Example (CART):
 - Predict high risk patients who will not survive at least 30 days on the basis of the initial 24-hour data.
 - 19 variables are measured during the first 24 hours. These include blood pressure, age, etc.
 - A tree structure classification rule is as follows:

- Denote the feature space by \mathcal{X} . The input vector $X \in \mathcal{X}$ contains p features $X_1, X_2, ..., X_p$, some of which may be categorical.
- Tree structured classifiers are constructed by repeated splits of subsets of \mathcal{X} into two descendant subsets, beginning with \mathcal{X} itself.
- Definitions: node, terminal node (leaf node), parent node, child node.
- The union of the regions occupied by two child nodes is the region occupied by their parent node.
- Every leaf node is assigned with a class. A query is associated with class of the leaf node it lands in.

• Notation:

- A node is denoted by t. Its left child node is denoted by t_L and right by t_R .
- The collection of all the nodes is denoted by T; and the collection of all the leaf nodes by \tilde{T} .
- A split is denoted by s. The set of splits is denoted by S.

The Three Elements

- The construction of a tree involves the following three elements:
 - 1. The selection of the splits.
 - 2. The decisions when to declare a node terminal or to continue splitting it.
 - 3. The assignment of each terminal node to a class.
- In particular, we need to decide the following:
 - 1. A set \mathcal{Q} of binary questions of the form $\{\text{Is } X \in A?\}, A \subseteq \mathcal{X}.$
 - 2. A goodness of split criterion $\Phi(s,t)$ that can be evaluated for any split s of any node t.
 - 3. A stop-splitting rule.
 - 4. A rule for assigning every terminal node to a class.

Standard Set of Questions

- The input vector $X = (X_1, X_2, ..., X_p)$ contains features of both categorical and ordered types.
- Each split depends on the value of only a *unique* variable.
- For each ordered variable X_j , Q includes all questions of the form

$$\{ \text{Is } X_j \leq c? \}$$

for all real-valued c.

- Since the training data set is finite, there are only finitely many distinct splits that can be generated by the question $\{\text{Is } X_i \leq c?\}$.
- If X_j is categorical, taking values, say in $\{1, 2, ..., M\}$, then \mathcal{Q} contains all questions of the form

$${\operatorname{Is} X_j \in A?}$$
.

A ranges over all subsets of $\{1, 2, ..., M\}$.

• The splits for all p variables constitute the standard set of questions.

Goodness of Split

• The goodness of split is measured by an impurity function defined for each node.

- Intuitively, we want each leaf node to be "pure", that is, one class dominates.
- Definition: An impurity function is a function ϕ defined on the set of all K-tuples of numbers $(p_1,...,p_K)$ satisfying $p_j \ge 0$, j = 1, ..., K, $\sum_j p_j = 1$ with the properties:
 - 1. ϕ is a maximum only at the point $(\frac{1}{K}, \frac{1}{K}, ..., \frac{1}{K})$.
 - 2. ϕ achieves its minimum only at the points (1, 0, ..., 0), (0, 1, 0, ..., 0), ..., (0, 0, ..., 0, 1).
 - 3. ϕ is a symmetric function of p_1 , ..., p_K , i.e., if you permute p_j , ϕ remains constant.

• Definition: Given an impurity function ϕ , define the impurity measure i(t) of a node t as

$$i(t) = \phi(p(1 \mid t), p(2 \mid t), ..., p(K \mid t)),$$

where $p(j \mid t)$ is the estimated probability of class j within node t.

ullet Goodness of a split s for node t, denoted by $\Phi(s,t)$, is defined by

$$\Phi(s,t) = \Delta i(s,t) = i(t) - p_R i(t_R) - p_L i(t_L) ,$$

where p_R and p_L are the proportions of the samples in node t that go to the right node t_R and the left node t_L respectively.

- Define I(t) = i(t)p(t), that is, the impurity function of node t weighted by the estimated proportion of data that go to node t.
- \bullet The impurity of tree T, I(T) is defined by

$$I(T) = \sum_{t \in \tilde{T}} I(t) = \sum_{t \in \tilde{T}} i(t) p(t) \ .$$

• Note for any node t the following equations hold:

$$p(t_L) + p(t_R) = p(t)$$

$$p_L = p(t_L)/p(t), \quad p_R = p(t_R)/p(t)$$

$$p_L + p_R = 1$$

• Define

$$\Delta I(s,t) = I(t) - I(t_L) - I(t_R)
= p(t)i(t) - p(t_L)i(t_L) - p(t_R)i(t_R)
= p(t)(i(t) - p_Li(t_L) - p_Ri(t_R))
= p(t)\Delta i(s,t)$$

- Possible impurity function:
 - 1. Entropy: $\sum_{j=1}^{K} p_j \log \frac{1}{p_j}$. If $p_j = 0$, use the limit $\lim_{p_j \to 0} p_j \log p_j = 0$.
 - 2. Misclassification rate: $1 \max_j p_j$.
 - 3. Gini index: $\sum_{j=1}^{K} p_j (1 p_j) = 1 \sum_{j=1}^{K} p_j^2$.
- Gini index seems to work best in practice for many problems.
- ullet The twoing rule: At a node t, choose the split s that maximizes

$$\frac{p_L p_R}{4} \left[\sum_j |p(j \mid t_L) - p(j \mid t_R)| \right]^2.$$

Estimate the posterior probabilities of classes in each node:

- The total number of samples is N and the number of samples in class j, $1 \le j \le K$, is N_j .
- The number of samples going to node t is N(t); the number of samples with class j going to node t is $N_j(t)$.
 - $-\sum_{j=1}^{K} N_j(t) = N(t).$
 - $-N_j(t_L) + N_j(t_R) = N_j(t).$
 - For a full tree (balanced), the sum of N(t) over all the t's at the same level is N.
- Denote the prior probability of class j by π_j .
 - The priors π_j can be estimated from the data by N_j/N .
 - Sometimes priors are given before-hand.
- The estimated probability of a sample in class j going to node t is $p(t \mid j) = N_j(t)/N_j$.
 - $-p(t_L | j) + p(t_R | j) = p(t | j).$
 - For a full tree, the sum of $p(t \mid j)$ over all t's at the same level is 1.

• The joint probability of a sample being in class j and going to node t is thus:

$$p(j,t) = \pi_j p(t \mid j) = \pi_j N_j(t) / N_j.$$

• The probability of any sample going to node t is:

$$p(t) = \sum_{j=1}^{K} p(j,t) = \sum_{j=1}^{K} \pi_j N_j(t) / N_j.$$

Note $p(t_L) + p(t_R) = p(t)$.

• The probability of a sample being in class j given that it goes to node t is:

$$p(j \mid t) = p(j, t)/p(t) .$$

For any t, $\sum_{j=1}^{K} p(j \mid t) = 1$.

• When $\pi_j = N_j/N$, we have the following simplification:

$$-p(j \mid t) = N_j(t)/N(t).$$

$$-p(t) = N(t)/N.$$

$$-p(j,t) = N_j(t)/N.$$

Stopping Criteria

ullet A simple criteria: stop splitting a node t when

$$\max_{s \in \mathcal{S}} \Delta I(s, t) < \beta ,$$

where β is a chosen threshold.

- The above stopping criteria is unsatisfactory.
 - A node with a small decrease of impurity after one step of splitting may have a large decrease after multiple levels of splits.

Class Assignment Rule

- A class assignment rule assigns a class $j = \{1, ..., K\}$ to every terminal node $t \in \tilde{T}$. The class assigned to node $t \in \tilde{T}$ is denoted by $\kappa(t)$.
- For 0-1 loss, the class assignment rule is:

$$\kappa(t) = \arg \max_{j} p(j \mid t)$$
.

• The resubstitution estimate r(t) of the probability of misclassification, given that a case falls into node t is

$$r(t) = 1 - \max_{j} p(j \mid t) = 1 - p(\kappa(t) \mid t) \ .$$

- Denote R(t) = r(t)p(t).
- ullet The resubstitution estimate for the overall misclassification rate R(T) of the tree classifier T is:

$$R(T) = \sum_{t \in \tilde{T}} R(t) \ .$$

ullet Proposition: For any split of a node t into t_L and t_R ,

$$R(t) \geq R(t_L) + R(t_R)$$
.

Proof:

Denote $j^* = \kappa(t)$.

$$p(j^* \mid t) = p(j^*, t_L \mid t) + p(j^*, t_R \mid t)$$

$$= p(j^* \mid t_L)p(t_L \mid t) + p(j^* \mid t_R)p(t_R \mid t)$$

$$= p_L p(j^* \mid t_L) + p_R p(j^* \mid t_R)$$

$$\leq p_L \max_j p(j \mid t_L) + p_R \max_j p(j \mid t_R)$$

Hence,

$$r(t) = 1 - p(j^* | t)$$

$$\geq 1 - \left[p_L \max_j p(j | t_L) + p_R \max_j p(j | t_R) \right]$$

$$= p_L (1 - \max_j p(j | t_L)) + p_R (1 - \max_j p(j | t_R))$$

$$= p_L r(t_L) + p_R r(t_R)$$

Finally,

$$R(t) = p(t)r(t)$$

$$\geq p(t)p_Lr(t_L) + p(t)p_Rr(t_R)$$

$$= p(t_L)r(t_L) + p(t_R)r(t_R)$$

$$= R(t_L) + R(t_R)$$

Digit Recognition Example (CART)

- The 10 digits are shown by different on-off combinations of seven horizontal and vertical lights.
- Each digit is represented by a 7-dimensional vector of zeros and ones. The *i*th sample is $x_i = (x_{i1}, x_{i2}, ..., x_{i7})$. If $x_{ij} = 1$, the *j*th light is on; if $x_{ij} = 0$, the *j*th light is off.

Digit	$x_{\cdot 1}$	$x_{\cdot 2}$	$x_{\cdot 3}$	$x_{\cdot 4}$	$x_{\cdot 5}$	$x_{\cdot 6}$	$x_{.7}$
1	0	0	1	0	0	1	0
2	1	0	1	1	1	0	1
3	1	0	1	1	0	1	1
4	0	1	1	1	0	1	0
5	1	1	0	1	0	1	1
6	1	1	0	1	1	1	1
7	1	0	1	0	0	1	0
8	1	1	1	1	1	1	1
9	1	1	1	1	0	1	1
0	1	1	1	0	1	1	1

- The data for the example are generated by a malfunctioning calculator.
- Each of the seven lights has probability 0.1 of being in the wrong state independently.
- The training set contains 200 samples generated according to the specified distribution.
- A tree structured classifier is applied.
 - The set of questions Q contains: Is $x_{\cdot j} = 0$?, j = 1, 2, ..., 7.
 - The twoing rule is used in splitting.
 - The pruning cross-validation method is used to choose the right sized tree.
- Classification performance:
 - The error rate estimated by using a test set of size 5000 is 0.30.
 - The error rate estimated by cross-validation using the training set is 0.30.
 - The resubstitution estimate of the error rate is 0.29.
 - The Bayes error rate is 0.26.
 - There is little room for improvement over the tree classifier.

- Accidently, every digit occupies one leaf node.
 - In general, one class may occupy any number of leaf nodes and occasionally no leaf node.
- $X_{.6}$ and $X_{.7}$ are never used.

Waveform Example (CART)

• Three functions $h_1(\tau)$, $h_2(\tau)$, $h_3(\tau)$ are shifted versions of each other, as shown in the figure.

• Each h_j is specified by the equal-lateral right triangle function. Its values at integers $\tau=1\sim 21$ are measured.

- The three classes of waveforms are random convex combinations of two of these waveforms plus independent Gaussian noise. Each sample is a 21 dimensional vector containing the values of the random waveforms measured at $\tau = 1, 2, ..., 21$.
 - To generate a sample in class 1, a random number u uniformly distributed in [0, 1] and 21 random numbers $\epsilon_1, \epsilon_2, ..., \epsilon_{21}$ normally distributed with mean zero and variance 1 are generated.

$$x_{.j} = uh_1(j) + (1 - u)h_2(j) + \epsilon_j, \quad j = 1, ..., 21.$$

– To generate a sample in class 2, repeat the above process to generate a random number u and 21 random numbers $\epsilon_1, ..., \epsilon_{21}$ and set

$$x_{\cdot j} = uh_1(j) + (1 - u)h_3(j) + \epsilon_j, \quad j = 1, ..., 21.$$

- Class 3 vectors are generated by

$$x_{.j} = uh_2(j) + (1 - u)h_3(j) + \epsilon_j, \quad j = 1, ..., 21.$$

• Example random waveforms are shown below.

• 300 random samples are generated using prior probabilities $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$ for training.

• Construction of the tree:

- The set of questions: {Is $x_{\cdot j} \leq c$?} for c ranging over all real numbers and j = 1, ..., 21.
- Gini index is used for measuring goodness of split.
- The final tree is selected by pruning and cross-validation.

• Results:

- The cross-validation estimate of misclassification rate is 0.29.
- The misclassification rate on a separate test set of size 5000 is 0.28.
- The Bayes classification rule can be derived. Applying this rule to the test set yields a misclassification rate of 0.14.

Advantages of the Tree-Structured Approach

- Handles both categorical and ordered variables in a simple and natural way.
- Automatic stepwise variable selection and complexity reduction.
- It provides an estimate of the misclassification rate for a query sample.
- It is invariant under all monotone transformations of individual ordered variables.
- Robust to outliers and misclassified points in the training set.
- Easy to interpret.

Variable Combinations

• Splits perpendicular to the coordinate axes are inefficient in certain cases.

• Use linear combinations of variables:

Is
$$\sum a_j x_{\cdot j} \le c$$
?

- The amount of computation is increased significantly.
- Price to pay: model complexity increases.

Missing Values

- Certain variables are missing in some training samples.
 - Often occurs in gene-expression microarray data.
 - Suppose each variable has 5% chance being missing independently. Then for a training sample with 50 variables, the probability of missing some variables is as high as 92.3%.
- A query sample to be classified may have missing variables.
- Find surrogate splits.
 - Suppose the best split for node t is s which involves a question on X_m . Find another split s' on a variable X_j , $j \neq m$, which is most similar to s in a certain sense. Similarly, the second best surrogate split, the third, and so on, can be found.