

به نام خدا

نام ونام خانوادگی: حامد باغستانی(۲۱۴۳)

پاییز ۲۰۰۳

فهرست مطالب

- المودار خروجي صورت سوال
 - پ تخمین تابع تبدیل سیستم
- Sysidentification نخمین تابع تبدیل به کمک تابه *
- العیین محدوده پایداری به کمک معیار پایداری راث و مکان یابی هندسی
 - ($C(s) = K(s-z_0)$) PD بررسی محدوده پایداری با جبرانساز
 - $(C(s) = K \frac{(s-z_0)}{s})$ PI بررسی محدوده پایداری با جبرانساز
 - $G(s) = \frac{0.1}{s^2 + 0.9s + 9}$ طراحی جبران ساز برای سیستم
 - استفاده از ابزار sysotool برای طراحی جبران ساز
 - ♦ طراحی به کمک تابع تبدیل حساسیت

تخمین تابع تبدیل سیستم

- نمودار بود در ابتدا باشیب ۲۰ دسیبل کاهشی است $\left(\frac{1}{s}\right)$
- باتوجه به وجود فراجهش در مداریس مقدار ضریب میرایی باید از $^{\circ}$ کمتر باشد.(فرض: 0/1=0
 - · نمودار اندازه بود در فرکانس ۲ دارای یک روند افزایشی است
- شیب نمودار در فرکانس ۳ دو برابر شده در حالی که ما فقط یک نقطه شکست داریم(وجود یک سیستم مرتبه ۲ پایدار)
 - $20 \log k = -30 \Rightarrow k \approx 0,032 \in (K$ در فرکانس صفر، نمودار اندازه از صفر آغاز نشده است وجود عامل
 - جمع بندی تمام موارد بالا:

$$G(s) = 0.032 * \frac{(s-2)}{s(s^2 + 2\zeta\omega s + \omega^2)} = \frac{(0.032s - 0.064)}{s(s^2 + 0.6s + 9)} = \frac{(0.032s - 0.064)}{s^3 + 0.6s^2 + 9s} .$$

Sysidentification تخمین تابع تبدیل به کمک تابه

tf1=

From input "u1" to output "y1:"

 $s^3 + 0.9 s^2 + 9 s$

تعیین محدوده پایداری به کمک معیار پایداری راث و مکان یابی هندسی

$(C(s) = K(s-z_0))$ PD بررسی محدوده پایداری با جبرانساز

If $z_0 > 0$ پایداری به ازای K مثبت

If $z_0 = 0$ پایداری به ازای K مثبت

If $z_0 < 0$ پایداری به ازای K منفی

$(C(s) = K \frac{(s-z_0)}{s})$ PI بررسی محدوده پایداری با جبرانساز

If $z_0 > 0$ پایداری به ازای هیچ مقدار

Wanted:

ts < 10s $10 < \%MP < 15 \Rightarrow PM = 56$

$$G(s) = \frac{0.1}{s^2 + 0.9s + 9}$$
 mumia $g(s) = \frac{0.1}{s^2 + 0.9s + 9}$

 $: G_3(s)$ پاسخ پله سیستم

%MP = 15 %ts = 1

Lead_lag

: G₂(s) پاسخ پله سیستم

مقدار فراجهش مطلوب نیست % MP = 109% اما مقدار حاشیه فاز بهبود می یابد

lead

پاسخ پله سیستم جبران نشده:

مقدار فراجهش مطلوب نیست % MP = 61/7%

Wanted:

خطای ماندگار به ورودی شیب برابر صفر

If $k = -2250 \Rightarrow$

بهره بزرگ هم سیستم را ناپایدار می کند و هم صرفه اقتصادی ندار د

استفاده از ابزار sysotool برای طراحی جبران ساز

Wanted:

ts < 6s %Ud <6

$Td = \frac{\frac{s}{\tau} + 1}{(s+1)^3} \Rightarrow Td(2) = 0 \Rightarrow \tau = -2$

$$Sd = 1-Td = \frac{s^3 + 3s^2 + 3.5s}{(s+1)^3}$$

C(s) =
$$\frac{Td}{Sd*P}$$
 = $\frac{-5s(s^2+0.9s+9)}{s^3+3s^2+3.5s}$

• L = C*G =
$$\frac{-0.5(s-2)}{s(s^2+3s+3.5)}$$

طراحی به کمک تابع تبدیل حساسیت

 $My_gain = 1/15$

undershoot is: 3.0931

Settling Time is: 5.8331

Step response

THEEND