The de Rham Cohomology for the n-Sphere

I already proved that

$$H_p(S^1) = \begin{cases} \mathbb{R} &, p = 0, 1\\ 0 &, \text{ otherwise} \end{cases}$$
 (1)

I now want to prove that

$$H_p(S^2) = \begin{cases} \mathbb{R} &, p = 0, 2\\ 0 &, \text{ otherwise} \end{cases}$$
 (2)

Proof. Consider the 2-sphere S^2 with poles N=(0,0,1) and S=(0,0,-1). Let $U=S^2\setminus\{N\}$ and $V=S^2\setminus\{S\}$. Notice that

$$U \cap V = S^2 \setminus \{S, N\} \cong S^1 \times \mathbb{R} \simeq S^1 \tag{3}$$

where \cong denotes the homeomorphism relation and \simeq denotes the homotopy equivalence relation.

The Mayer-Vietoris Sequence is

Now, $H_0(S^2) = \mathbb{R}$ because S^2 has one connected component. For the same reason, $H_0(U) = H_0(V) = H_0(U \cap V) = \mathbb{R}$.

Also, U and V are homotopically equivalent to \mathbb{R}^2 . Hence,

$$H_p(U) = H_p(V) = H_p(\mathbb{R}^2) = \begin{cases} \mathbb{R} &, p = 0\\ 0 &, \text{ otherwise} \end{cases}$$
 (5)

and, since $U \cap V \simeq S^1$, we have $H_p(U \cap V) = H_p(S^1)$.

Thus, we can rewrite the MVS as follows:

And now I use a theorem that I read in Tu's book:

Lemma 1. Let $0 \to A^0 \to A^1 \to \dots \to A^m \to 0$ be an exact sequence of finite-dimensional vector spaces.

Then,

$$\sum_{k=0}^{m} (-1)^k \dim A^k = 0 \tag{7}$$

In our case, if we restrict ourselves to the exact sequence

we get

$$1 - 2 + 1 - x_1 + 0 - 1 + x_2 = 0 (9)$$

with $x_1 = \dim H_1(S^2)$ and $x_2 = \dim H_2(S^2)$.

 S_0

$$x_2 - x_1 = 1 (10)$$

Now, part of my exact sequence is

$$\dots \to 0 \xrightarrow{\partial} \mathbb{R} \xrightarrow{\partial'} H_2(S^2) \xrightarrow{\partial''} 0 \to \dots$$
 (11)

and therefore

$$\ker \partial' = \operatorname{Im} \partial = 0 \tag{12}$$

because ∂ is an homomorphism. Also,

$$\operatorname{Im}\partial' = \ker \partial'' = H_2(S^2) \tag{13}$$

and therefore ∂' is bijective and hence an isomorphism. We conclude that $\dim H_2(S^2) = \dim \mathbb{R} = 1$, so $H_2(S^2) = \mathbb{R}$ (up to vector space isomorphism).

Using (10), we see that
$$H_1(S^2) = 0$$
.

The expressions for $H_p(S^1)$ and $H_p(S^2)$ suggest that

$$H_p(S^n) = \begin{cases} \mathbb{R} &, p = 0, n \\ 0 &, \text{ otherwise} \end{cases}$$
 (14)

Let us prove that this is indeed true.

Proof. We shall prove by induction.

We already know that it is true for n = 1. Now, suppose it is true for n = k - 1. In a first moment, we proceed exactly as in the proof for the n = 2 case: where there is a 2, we replace it by an n. Things start to get little different in (6). In fact, in this case our MVS is

$$0 \rightarrow \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R} \oplus \mathbb{R} \rightarrow \mathbb{R} \rightarrow$$

$$\rightarrow H_{1}(S^{k}) \rightarrow 0 \rightarrow H_{1}(S^{k-1}) \stackrel{\text{I.H.}}{=} 0 \rightarrow$$

$$\rightarrow H_{2}(S^{k}) \rightarrow 0 \rightarrow H_{2}(S^{k-1}) \stackrel{\text{I.H.}}{=} 0 \rightarrow$$

$$\rightarrow \dots \qquad (15)$$

$$\rightarrow H_{k-1}(S^{k}) \rightarrow 0 \rightarrow H_{k-1}(S^{k-1}) \stackrel{\text{I.H.}}{=} \mathbb{R} \rightarrow$$

$$\rightarrow H_{k}(S^{k}) \rightarrow 0 \rightarrow 0 \rightarrow$$

Again, using lemma 1, we can easily see that

$$\begin{cases} 1 - 2 + 1 - x_1 - 1 + x_2 = 0 \iff x_2 - x_1 = 1 & \text{, if } 3(k-1) \text{ is even} \\ 1 - 2 + 1 - x_1 + 1 - x_2 = 0 \iff x_1 + x_2 = 1 & \text{, if } 3(k-1) \text{ is odd} \end{cases}$$
 (16)

with $x_1 = \dim H_1(S^k)$ and $x_2 = \dim H_k(S^k)$.

Now, part of my exact sequence is

$$\dots \to 0 \xrightarrow{\partial} \mathbb{R} \xrightarrow{\partial'} H_k(S^k) \xrightarrow{\partial''} 0 \to \dots$$
 (17)

and therefore

$$\ker \partial' = \operatorname{Im} \partial = 0 \tag{18}$$

because ∂ is an homomorphism. Also,

$$\operatorname{Im}\partial' = \ker \partial'' = H_k(S^k) \tag{19}$$

and therefore ∂' is bijective and hence an isomorphism. We conclude that $\dim H_2(S^2) = \dim \mathbb{R} = 1$, so $H_2(S^2) = \mathbb{R}$ (up to vector space isomorphism). Using (16), we conclude that $H_1(S^k) = 0$.

Using (16), we conclude that
$$H_1(S^k) = 0$$
.