Hinweis. Die Aufgaben sind aus Staatsexamina früherer Jahre entnommen. Die in Klammern angegebene Punktzahl ist die Punktzahl die damals erreicht werden konnte und ist nur zu Ihrer Orientierung angegeben.

Aufgabe 6.1 (H14T2A1). Es sei R ein kommutativer Ring mit Eins. Ein Element $e \in R$ ist *idempotent* genau dann, wenn $e^2 = e$ ist (zum Beispiel sind 0 und 1 idempotent). Zeigen Sie:

- (a) Wenn e idempotent ist, dann ist auch 1 e idempotent, und $e \cdot (1 e) = 0$. (2 Punkte)
- (b) Ist e idempotent, dann sind die Ideale eR und (1 e)R relativ prim (2 Punkte)
- (c) Genau dann ist R isomorph zu einem direkten Produkt von zwei Ringen, die beide keine Nullringe sind, wenn es in R ein idempotentes Element $e \notin \{0,1\}$ gibt. (8 Punkte)

Aufgabe 6.2 (F13T3A3). Beweisen Sie, daß jeder endliche Integritätsbereich ein Körper ist. Hinweis: Man betrachte eine durch Multiplikation gegebene Abbildung. (6 Punkte)

Aufgabe 6.3 (H14T1A2). Es sei R ein kommutativer Ring mit Eins, der nicht der Nullring ist. Sei \mathfrak{p} ein Primideal von R. Betrachten Sie die Teilmenge

$$\mathfrak{p}R[X] := \left\{ \sum_{i=1}^r a_i f_i(X) \mid r \in \mathbb{N}, a_i \in \mathfrak{p} \text{ und } f_i(X) \in R[X] \right\}$$

im Polynomring R[X].

- (a) Zeigen Sie, daß $\mathfrak{p}R[X]$ ein Ideal von R[X] ist (2 Punkte)
- (b) Geben Sie einen Isomorphismus $R[X]/\mathfrak{p}R[X] \to (R/\mathfrak{p})[X]$ and (mit Beweis). (6 Punkte)
- (c) Zeigen Sie, daß $\mathfrak{p}R[X]$ ein Primideal, aber kein maximales Ideal von R[X] ist. (6 Punkte)

Aufgabe 6.4 (F14T1A3). Es seien K ein Körper und K[x] der Polynomring über K. Es seien weiter m, n nichtnegative ganze Zahlen. Zeigen Sie:

- (a) Ist m > 0, dann ist $x^r 1$ der Rest bei Division von $x^n 1$ durch $x^m 1$, wobei r der Rest bei Division von n durch m ist. (5 Punkte)
- (b) Sei g = ggT(m, n). Dann ist $x^g 1$ ein größter gemeinsamer Teiler von $x^n 1$ und $x^m 1$ in K[x]. (7 Punkte)

Aufgabe 6.5 (F14T2A1). Es seien die Polynome $p(X) = X^{500} - 2X^{301} + 1$ und $q(X) = X^2 - 1$ in $\mathbb{Q}[X]$ gegeben. Berechnen Sie den Rest der Division von p(X) durch q(X). (8 Punkte)