Recommender System: Algorithms & Architecture

xiangliang@hulu.com

Outline

- Problem
- Data
- Algorithms
- Cold start
- Architecture

Problem

Recommend items to users to make user, content partner, websites happy!

More Items to Consider

You viewed

Customers who viewed this also viewed

Handbook of Mathematical Functions...

Milton Abramowitz, Irene A. Stegun

Paperback

\$39.95 \$24.55

NIST Handbook of Mathematical Functions Frank W. J. Olver, Daniel W. Lozier, ... Paperback

\$50.00 \$43.45

CRC Standard Mathematical Tables and...

Daniel Zwillinger
 Hardcover

\$69.95 \$41.97

Mathematical Handbook for Scientists...

Granino A. Korn, Theresa M. Korn

Paperback \$40.95 \$27.03

Table of Integrals, Series, and...

Daniel Zwillinger, I. S. Gradshte?n, I. M. Ryzhik

Hardcover

\$103.00 \$82.81

View or edit your browsing history

Data

• User behaviors data

Behavior	User	Size
Page view	All user	Very Large
Watch video	All user	Large
Favorite	Register user	Middle
Vote	Register user	Middle
Add to playlist	Register user	Small
Facebook like	Register user	Small
Share	Register user	Small
Review	Register user	Small

Data

- Which data is most important
 - Main behavior in the website
 - All user can have such behavior
 - Cost
 - Reflect user interests on items

Behavior	User	Size
Page view	All user	Very Large
Watch video	All user	Large
Favorite	Register user	Middle
Vote	Register user	Middle
Add to playlist	Register user	Small
Facebook like	Register user	Small
Share	Register user	Small
Review	Register user	Small

Data

- Data Structure
 - User ID
 - Item ID
 - Behavior Type
 - Behavior Content
 - Context
 - Timestamp
 - Location
 - Mood

Sheldon watch **Star Trek** with his friends at home

Algorithms

Neighborhood-based

- User-based
 - Digg
- Item-based
 - Amazon, Netflix, YouTube, Hulu, ...

User-based

Algorithm

- For user u, find a set of users S(u) have similar preference as u.
- Recommend popular items among users in S(u) to user u.

User-based CF

$$p_{ui} = \sum_{v \in S(u,K) \cap N(i)} w_{uv} r_{vi}$$

$$\mathbf{w}_{uv} = \frac{\left| N(u) \cap N(v) \right|}{\left| N(u) \cup N(v) \right|}$$

Item-based

- Algorithm
 - For user u, get items set N(u) this user like before.
 - Recommend items which are similar to many items in N(u) to user u.

Item-based CF

$$p_{ui} = \sum_{j \in S(i,K) \cap N(u)} w_{ji} r_{uj}$$

$$\mathbf{w}_{ij} = \frac{|N(i) \cap N(j)|}{|N(i) \cup N(j)|}$$

Item-based CF

Customers Who Bought This Item Also Bought

Programming Collective Intelligence: Building ... > Toby Segaran (76)
Paperback \$26.39

Mining the Social Web:
Analyzing Data from ...

Matthew A. Russell

(16)
Paperback

\$26.39

The Art of R Programming: A Tour of Statistical ...

Norman Matloff

(21)

Paperback \$24.05

Think Complexity: Complexity
Science and ...
Allen Downey B.

Allen Downey B.

Paperback
\$29.99

Why not use
$$W_{ij} = \frac{|N(i) \cap N(j)|}{|N(i)|}$$
 ?

Neighborhood-based

User-based vs. Item-based

	User-based	Item-based
Scalability	Bad when user size is large	Bad when item size is large
Explanation	Bad	Good
Novelty	Bad	Good
Coverage	Bad	Good
Cold start	Bad for new users	Bad for new items
Performance	Need to get many users history	Only need to get current user's history

References

- Amazon.com Recommendations item-toitem Collaborative Filtering.
- Empirical Analysis of Predictive Algorithms for Collaborative Filtering.

Graph-based

 Users' behaviors on items can be represented by bi-part graph.

Graph-based

- Two nodes will have high relevance if
 - There are many paths in graph between two nodes.
 - Most of paths between two nodes is short.
 - Most paths do not go through nodes with high out-degree.

Graph-based

- Advantage
 - Heterogeneous data
 - Multiple user behaviors
 - Social Network
 - Context (Time, Location)
- Disadvantage
 - Statistical-based
 - High cost for long path

References

- A Graph-based Recommender System for Digital Library.
- Random-walk computation of similarities between nodes of a graph with application to collaborative recommendation.

• Users and items are connect by latent features.

$$\hat{r}_{ui} = \sum_{k} p_{uk} q_{ik}$$

Science Fiction	0.5
Universe	0.9
Physical	0.8
Space Travel	0.8
Animation	0.3
Romance	0.0

Science Fiction	0.9
Universe	0.9
Physical	0.5
Space Travel	0.7
Animation	0.1
Romance	0.0

How to get p, q?

$$\min \sum_{(u,i)} (r_{ui} - \sum_{k} p_{uk} q_{ik})^2 + \lambda (||p_{u}||^2 + ||q_{i}||^2)$$

$$p_{uk} += \alpha (e_{ui} q_{ik} - \lambda p_{uk})$$

$$q_{ik} += \alpha (e_{ui} p_{uk} - \lambda q_{ik})$$

- How to define r_{ui}
 - Rating prediction
 - Top-N recommendation
 - Implicit feedback data: only have positive samples and missing values, how to select negative samples?

1 (Sci-fi)	2 (Crime)	3 (Family)	4 (Horror)
The invisible Man	Jaws	101 Dalmatians	The Blair Witch Project
Frankenstein Meets the Wolf Man	Lethal Weapon	Back to the Future	Pacific Heights
Godzilla	Total Recall	Groundhog Day	Stir of Echoes
Star Wars VI	Reservoir Dogs	Tarzan	Dead Calm
The Terminator	Donnie Brasco	The Aristocats	Phantasm
Alien	The Fugitive	The Jungle Book 2	Sleepy Hollow
Alien 2	La shou Shen tan	Antz	The Faculty

- Advantage
 - High accuracy in rating prediction
 - Auto group items
 - Scalability is good
 - Learning-based
- Disadvantage
 - Incremental updating
 - Real-time
 - Explanation

References

 http://www.informatik.unitrier.de/~ley/db/indices/atree/k/Koren:Yehuda.html

Cold Start

- Problems
 - User cold start: new users
 - Item cold start: new items
 - System cold start : new systems

User Cold Start

- How to recommend items to new users?
 - Non-personalization recommendation
 - Most popular items
 - Highly Rated items
 - Using user register profile (Age, Gender, ...)

User Cold Start

Example: Gender and TV shows

Data comes from IMDB: http://www.imdb.com/title/tt0412142/ratings

User Cold Start

Male
Age: 20-30
Theoretical physicist
Doctor
American
Irreligious

How to get user interest quickly

- When new user comes, his feedback on what items can help us better understand his interest?
 - Not very popular
 - Can represent a group of items
 - Users who like this item have different preference with users who dislike this item

Item Cold Start

- How to recommend new items to user?
 - Do not recommend

How to recommend news??

Item Cold Start

- How to recommend new items to user?
 - Using content information

System Cold Start

- How to design recommender system when there is no user?
 - Pandora : Music Genome Project
 - Jinni : Movie Genome Project

Architecture

• Feature-based recommendation framework:

Architecture

Male

Scientist

Physics

Architecture

- Advantage:
 - Heterogeneous data
 - Reasonable Explanation
- Disadvantage:
 - Do not support user-based methods

Open Questions

- How to weight multiple behaviors?
- How to improve diversity, novelty?
- How to build feedback loop?

Thanks!