Course Project, Spring 2016

Cluster-State Quantum Computing

Mayra Amezcua, Dileep V. Reddy, Zach Schmidt

May 24, 2016

CIS410/510 Introduction to Quantum Information Theory

Lecturer: Prof. Xiaodi Wu

Computer and Information Science, University of Oregon

Table of Contents (optional frame. Can delete.)

- Motivation
 - Gates through teleportation
- 2 Cluster states (CS)
 - Definition
 - Representations
 - Properties
- Universal computation through CS

- Linear wire
- Arbitrary single qubit operations
- Two qubit operations
- Advantages and disadvantages
 - Parallelizability
 - Experimental implementations
 - CS model as an analysis tool

template frame (delete me)

some text

test varblock

Variable block (here 4cm)

test alert

some alert

test example

some example citation ¹

¹Auth, DV, 123, 2001.

Arbitrary quantum circuit involving unitary operations on 3 qubits.

One-way quantum computing, measurement based quantum computing As opposed to circuit based quantum computing

Basic teleporation

Blah

Figure: Figure showing representative 2-D cluster shapes. The vertices are qubits with integer indices, and the edges indicate entanglement connectivity between select neighbors.

Gate $C_z^{(0,1)}$, followed by measurements $M_\chi^{(0)}$, $M_\chi^{(1)}$, & $M_\chi^{(2)}$.

Callback to teleportation discussion

Universal computation through CS Advantages and disadvantages

Apply $C_z^{(A,1)}$ and $C_z^{(B,5)}$ to input quantum information into cluster state.

Apply $C_z^{(A,1)}$ and $C_z^{(B,5)}$ to input quantum information into cluster state.

