Tutorial Sheet 3

Let the function f be given by the rule $f(x) = x - \log(x) - \sqrt{2}$.

- 1. Using intervals of 0.5, evaluate f from x = 0.5 to x = 3 and hence sketch the graph of f(x) over this interval.
- 2. Use the bisection method to estimate the root of f(x) in the interval [0.5, 3]. Start with an interval of length 1 and iterate until the size of the interval is less than 0.01.
- 3. Given that $f'(x) = 1 \frac{1}{x}$, use the Newton-Raphson method to estimate the root of f(x) in the interval [0.5, 3]. Use an integer as an initial estimate for the root.

 Ans $\cong 2.20489216557483$

n	x_n	$f(x_n)$	$f'(x_n)$	$f(x_n)/f'(x_n)$
0				
1				
2				
3				
4				

4. Use Newton's Method to find a root of f(x) starting with an initial guess of 0.5.

 $Ans \cong 0.342380252644745$

n	x_n	$f(x_n)$	$f'(x_n)$	$f(x_n)/f'(x_n)$
0				
1				
2				1 1 1 1 1 1 1
3				
4				
5				

Tutorial Sheet 4

Derivatives of polynomials $f(x) = x^n$, $f'(x) = nx^{n-1}$ f(x) = C, f'(x) = 0f(x) = Ag(x) + Bh(x), f'(x) = Ag'(x) + Bh'(x)

1. Find the derivatives of the following polynomials

i)
$$x^2 + x + 1$$
 Ans. $2x + 1$ vi) $\frac{x^2}{3} + \frac{4x}{5}$ Ans. $\frac{2x}{3} + \frac{4}{5}$ ii) $3x^2 - 9x + 4$ Ans. $6x - 9$ vii) \sqrt{x} Ans. $\frac{1}{2\sqrt{x}}$ iii) $\frac{1}{x}$ Ans. $-\frac{1}{x^2}$ viii) $11x^7 - 7x^{11} + 12$ Ans. $77(x^6 - x^{10})$ iv) $\frac{4}{x^3}$ Ans. $-\frac{12}{x^4}$ ix) $7x^4 - x^3 + x(x - 1)$ v) $\frac{10}{x^4} - \frac{3}{x^5}$ Ans. $\frac{15}{x^6} - \frac{40}{x^5}$ Ans. $28x^3 - 3x^2 + 2x - 1$

2. The Newton-Heron method to compute $\sqrt[k]{D}$ starts from an initial guess x_0 and updates according to the rule

$$x_{n+1} = \left(\frac{k-1}{k}\right)x_n + \frac{D}{kx_n^{k-1}}$$

Use Newton's method to derive this formula by considering the problem of finding the k^{th} root as an inverse problem.

3.

Consider the function

$$f(x) = e^x (1 - x)$$

Show that this function has a root at x = 1. Comment on using Newton's method to estimate this root using the initial guesses -1, 0, 1, 2.

- 4. By considering the inverse problem, use Newton's method to estimate $\cosh^{-1}(2)$ using an initial guess of $\cosh^{-1}(2) \cong 1$. Note that the derivative of $\cosh(x)$ is $\sinh(x)$. Stop when the cosh of your estimate is within 0.001 of 2.
- 5. Given $f(x) = \tan^{-1}(x)$ and $f'(x) = \frac{1}{1+x^2}$, use Newton's method to estimate the root of f using the following initial estimates and comment on the results.

i)
$$x_0 = 0$$

ii)
$$x_0 = 1$$

iii)
$$x_0 = 2$$