	number	carat	cut	color	clarity	depth	table	x	У	z	price
0	1	0.23	Ideal	Е	SI2	61.5	55.0	3.95	3.98	2.43	326.0
1	2	0.21	Premium	Е	SI1	59.8	61.0	3.89	3.84	2.31	326.0
2	3	0.23	Good	Е	VS1	56.9	65.0	4.05	4.07	2.31	327.0
3	4	0.29	Premium	1	VS2	62.4	58.0	4.20	4.23	2.63	334.0
4	5	0.31	Good	J	SI2	63.3	58.0	4.34	4.35	2.75	335.0

```
In [3]: dataDiamonds.shape
```

Out[3]: (53940, 11)

```
In [4]: dataDiamonds.isnull().sum()
```

```
Out[4]: number
                     0
         carat
                     1
         cut
                     1
         color
                     0
         clarity
                     0
         depth
                     1
         table
                     1
                     1
         У
                     0
         price
                     1
         dtype: int64
```

```
In [5]: dataDiamonds=dataDiamonds.dropna()
```

```
In [6]: dataDiamonds.isnull().sum()
Out[6]: number
                    0
        carat
                    0
        cut
                    0
        color
                    0
        clarity
                    0
        depth
                    0
        table
                    0
                    0
        Х
                    0
        У
                    0
        Z
        price
        dtype: int64
In [7]: dataDiamonds.shape
Out[7]: (53934, 11)
In [8]: dataDiamonds.dtypes
Out[8]: number
                      int64
        carat
                    float64
        cut
                     object
        color
                     object
                     object
        clarity
                    float64
        depth
        table
                    float64
                    float64
        Х
                    float64
        У
                    float64
        Z
                    float64
        price
        dtype: object
```

```
In [9]: plt.figure(figsize=(10,6))
sns.regplot(x="carat", y="price", data=dataDiamonds)
```

Out[9]: <AxesSubplot:xlabel='carat', ylabel='price'>


```
In [12]: from scipy import stats
    pearson_coef, p_value = stats.pearsonr(dataDiamonds['carat'],
    dataDiamonds['price'])
    print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of
```

The Pearson Correlation Coefficient is 0.9215841496289539 with a P-value of P = 0.0

```
In [13]: plt.figure(figsize=(10,6))
sns.regplot(x="depth", y="price", data=dataDiamonds)
```

Out[13]: <AxesSubplot:xlabel='depth', ylabel='price'>


```
In [14]: from scipy import stats
    pearson_coef, p_value = stats.pearsonr(dataDiamonds['depth'],
    dataDiamonds['price'])
    print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of
```

The Pearson Correlation Coefficient is -0.010693095749490195 with a P-value of P = 0.013015483356338804

```
In [15]: plt.figure(figsize=(10,6))
sns.regplot(x="table", y="price", data=dataDiamonds)
```

Out[15]: <AxesSubplot:xlabel='table', ylabel='price'>


```
In [16]: from scipy import stats
    pearson_coef, p_value = stats.pearsonr(dataDiamonds['table'],
    dataDiamonds['price'])
    print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of
```

The Pearson Correlation Coefficient is 0.12718726509573478 with a P-value of P = 2.722006886258901e-193

```
In [17]: plt.figure(figsize=(10,6))
sns.regplot(x="x", y="price", data=dataDiamonds)
```

Out[17]: <AxesSubplot:xlabel='x', ylabel='price'>

The Pearson Correlation Coefficient is 0.884427005776203 with a P-value of P = 0.0

```
In [19]: plt.figure(figsize=(10,6))
sns.regplot(x="y", y="price", data=dataDiamonds)
```

Out[19]: <AxesSubplot:xlabel='y', ylabel='price'>


```
In [20]: from scipy import stats
    pearson_coef, p_value = stats.pearsonr(dataDiamonds['y'],
    dataDiamonds['price'])
    print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of
```

The Pearson Correlation Coefficient is 0.8654091969013185 with a P-value of P = 0.0

```
In [21]: plt.figure(figsize=(10,6))
sns.regplot(x="z", y="price", data=dataDiamonds)
```

Out[21]: <AxesSubplot:xlabel='z', ylabel='price'>


```
In [22]: from scipy import stats
    pearson_coef, p_value = stats.pearsonr(dataDiamonds['z'],
    dataDiamonds['price'])
    print("The Pearson Correlation Coefficient is", pearson_coef, " with a P-value of
```

The Pearson Correlation Coefficient is 0.8612381284689564 with a P-value of P = 0.0

In [26]: sns.boxplot(x="cut", y="price", data=dataDiamonds)

Out[26]: <AxesSubplot:xlabel='cut', ylabel='price'>


```
In [27]: plt.figure(figsize=(10,6))
    sns.boxplot(x="color", y="price", data=dataDiamonds)
```

Out[27]: <AxesSubplot:xlabel='color', ylabel='price'>

In [28]: sns.boxplot(x="clarity", y="price", data=dataDiamonds)

Out[28]: <AxesSubplot:xlabel='clarity', ylabel='price'>


```
In [29]: dataDiamonds.shape
```

Out[29]: (53934, 11)

In [30]: dataDiamonds.describe()

Out[30]:

	number	carat	depth	table	x	У	
count	53934.000000	53934.000000	53934.000000	53934.000000	53934.000000	53934.000000	53934
mean	26973.498220	0.797994	61.749475	57.457105	5.731313	5.734677	3
std	15569.552129	0.474009	1.432550	2.234333	1.121726	1.142108	0
min	1.000000	0.200000	43.000000	43.000000	0.000000	0.000000	0
25%	13490.250000	0.400000	61.000000	56.000000	4.710000	4.720000	2
50%	26973.500000	0.700000	61.800000	57.000000	5.700000	5.710000	3
75%	40456.750000	1.040000	62.500000	59.000000	6.540000	6.540000	4
max	53940.000000	5.010000	79.000000	95.000000	10.740000	58.900000	31

→

In [31]: dataDiamonds.describe(include=['object'])

Out[31]:

	cut	color	clarity
count	53934	53934	53934
unique	5	7	8
top	Ideal	G	SI1
freq	21550	11292	13061

In [32]: from sklearn.preprocessing import LabelEncoder
 labelencoder = LabelEncoder()
 dataDiamonds.clarity=labelencoder.fit_transform(dataDiamonds.clarity)
 dataDiamonds.color = labelencoder.fit_transform(dataDiamonds.color)
 dataDiamonds.cut = labelencoder.fit_transform(dataDiamonds.cut)

In [33]: dataDiamonds.head(10)

Out[33]:

	number	carat	cut	color	clarity	depth	table	X	у	Z	price
0	1	0.23	2	1	3	61.5	55.0	3.95	3.98	2.43	326.0
1	2	0.21	3	1	2	59.8	61.0	3.89	3.84	2.31	326.0
2	3	0.23	1	1	4	56.9	65.0	4.05	4.07	2.31	327.0
3	4	0.29	3	5	5	62.4	58.0	4.20	4.23	2.63	334.0
4	5	0.31	1	6	3	63.3	58.0	4.34	4.35	2.75	335.0
5	6	0.24	4	6	7	62.8	57.0	3.94	3.96	2.48	336.0
6	7	0.24	4	5	6	62.3	57.0	3.95	3.98	2.47	336.0
7	8	0.26	4	4	2	61.9	55.0	4.07	4.11	2.53	337.0
8	9	0.22	0	1	5	65.1	61.0	3.87	3.78	2.49	337.0
9	10	0.23	4	4	4	59.4	61.0	4.00	4.05	2.39	338.0

In [34]: import scipy.stats as stats
 dataDiamonds = stats.zscore(dataDiamonds)
 dataDiamonds = stats.zscore(dataDiamonds)

In [35]: dataDiamonds

Out[35]:

	number	carat	cut	color	clarity	depth	table	x	
0	-1.732404	-1.198287	-0.538064	-0.937124	-0.484410	-0.174149	-1.099714	-1.588025	-1.536
1	-1.732339	-1.240481	0.435009	-0.937124	-1.064283	-1.360856	1.585676	-1.641515	-1.658
2	-1.732275	-1.198287	-1.511137	-0.937124	0.095463	-3.385237	3.375935	-1.498876	-1.457
3	-1.732211	-1.071706	0.435009	1.414636	0.675336	0.454107	0.242981	-1.365153	-1.317
4	-1.732147	-1.029513	-1.511137	2.002576	-0.484410	1.082363	0.242981	-1.240344	-1.212
53935	1.731762	-0.164543	-0.538064	-1.525064	-1.064283	-0.662793	-0.204584	0.016660	0.022
53936	1.731826	-0.164543	-1.511137	-1.525064	-1.064283	0.942751	-1.099714	-0.036830	0.013
53937	1.731890	-0.206737	1.408081	-1.525064	-1.064283	0.733332	1.138111	-0.063575	-0.047
53938	1.731954	0.130812	0.435009	0.826696	-0.484410	-0.523181	0.242981	0.373256	0.337
53939	1.732018	-0.101253	-0.538064	-1.525064	-0.484410	0.314494	-1.099714	0.087979	0.118

53934 rows × 11 columns

In [37]: x_train=dataDiamonds.iloc[:,0:5]

y_train=dataDiamonds.iloc[:,6]

x_test=dataDiamonds.iloc[:,0:5]

y_test=dataDiamonds.iloc[:,6]

```
In [38]: x train
Out[38]:
                   number
                                                  color
                                                           clarity
                               carat
                                          cut
               0 -1.732404
                          -1.198287
                                    -0.538064
                                              -0.937124 -0.484410
               1 -1.732339
                          -1.240481
                                     0.435009
                                              -0.937124
                                                       -1.064283
               2 -1.732275 -1.198287
                                     -1.511137 -0.937124
                                                        0.095463
                 -1.732211 -1.071706
                                     0.435009
                                               1.414636
                                                        0.675336
                 -1.732147
                          -1.029513
                                     -1.511137
                                               2.002576
                                                       -0.484410
           53935
                  1.731762 -0.164543
                                    -0.538064 -1.525064
                                                       -1.064283
           53936
                  1.731826
                           -0.164543
                                     -1.511137
                                              -1.525064
                                                       -1.064283
           53937
                  1.731890
                          -0.206737
                                     1.408081 -1.525064 -1.064283
           53938
                  1.731954
                           0.130812
                                     0.435009
                                               0.826696 -0.484410
           53939
                  1.732018 -0.101253 -0.538064 -1.525064 -0.484410
          53934 rows × 5 columns
In [39]:
          rg = LinearRegression()
          mdl=rg.fit(x train,y train)
In [40]: y pred1 = rg.predict(x test)
          print('The R-square for Multiple Linear regression is: ',
In [42]:
          rg.score(x train,y train))
          The R-square for Multiple Linear regression is: 0.05915398362024349
          mse1 = mean_squared_error(y_test, y_pred1)
In [43]:
          print('The mean square error for Multiple Linear Regression: ', mse1)
          The mean square error for Multiple Linear Regression: 0.9408460163797565
In [44]:
          mae1= mean_absolute_error(y_test, y_pred1)
          print('The mean absolute error for Multiple Linear Regression: ', mae1)
```

The mean absolute error for Multiple Linear Regression: 0.73592452542974

```
In [45]: plt.figure(figsize=(10,6))
    ax1 = sns.distplot(y_test, hist=False, color="r", label="Actual Value")
    sns.distplot(y_pred1, hist=False, color="b", label="Fitted Values" , ax=ax1)
    plt.title('Actual vs Fitted Values for Price')
    plt.xlabel('Price (in dollars)')
    plt.ylabel('Proportion of Cars')
    plt.show()
    plt.close()
```


The R-square for Random Forest is: 0.8989164640256592

```
In [49]: mse2 = mean_squared_error(y_test, y_pred2)
print('The mean square error of price and predicted value is: ', mse2)
```

The mean square error of price and predicted value is: 0.10108353597434079

```
In [50]: mae2= mean_absolute_error(y_test, y_pred2)
print('The mean absolute error of price and predicted value is: ', mae2)
```

The mean absolute error of price and predicted value is: 0.23087997032390323

```
In [51]: plt.figure(figsize=(10,6))
    ax1 = sns.distplot(y_test, hist=False, color="r", label="Actual Value")
    sns.distplot(y_pred2, hist=False, color="b", label="Fitted Values" , ax=ax1)
    plt.title('Actual vs Fitted Values for Price')
    plt.xlabel('Price (in dollars)')
    plt.ylabel('Proportion of Cars')
    plt.show()
    plt.close()
```



```
In [52]: LassoModel=Lasso()
lm=LassoModel.fit(x_train,y_train)
```

```
In [53]: y_pred3 = lm.predict(x_test)
```

```
In [54]: print('The R-square for LASSO is: ', lm.score(x_train,y_train))
```

The R-square for LASSO is: 0.0

```
In [55]: mae3= mean_absolute_error(y_test, y_pred3)
         print('The mean absolute error of price and predicted value is: ', mae3)
         The mean absolute error of price and predicted value is: 0.7926247334183725
In [56]: mse3 = mean_squared_error(y_test, y_pred3)
         print('The mean square error of price and predicted value is: ', mse3)
         The mean square error of price and predicted value is: 1.0
In [57]: scores = [('MLR', mae1),
          ('Random Forest', mae2),
          ('LASSO', mae3)
In [58]: | mae = pd.DataFrame(data = scores, columns=['Model', 'MAE Score'])
Out[58]:
                   Model MAE Score
                    MLR
                           0.735925
             Random Forest
                           0.230880
                  LASSO
```

0.792625

```
In [59]: mae.sort_values(by=(['MAE Score']), ascending=False, inplace=True)
    f, axe = plt.subplots(1,1, figsize=(10,7))
    sns.barplot(x = mae['Model'], y=mae['MAE Score'], ax = axe)
    axe.set_xlabel('Mean Absolute Error', size=20)
    axe.set_ylabel('Model', size=20)
    plt.show()
```



```
In [ ]:
```