Министерство образования и науки Российской Федерации

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА имени И.М. ГУБКИНА

И.Н. Мельникова, Н.О. Фастовец

ТЕОРИЯ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО ОПЕРАЦИОННОЕ ИСЧИСЛЕНИЕ

(Для факультета АиВТ

кроме специальности «Прикладная математика»)

Рецензент:

доцент кафедры высшей математики РГУ нефти и газа имени И.М. Губкина, к.ф.-м.н. А.К. Тюлина

М37 Мельникова И.Н., Фастовец Н.О.

Теория функций комплексного переменного. Операционное исчисление (Для факультета AuBT кроме специальности «Прикладная математика») — М.: Издательский центр РГУ нефти и газа имени И.М. Губкина, 2015. — 92с.

Пособие предназначено для студентов, изучающих теорию функций комплексного переменного и операционное исчисление в курсе высшей математики. В пособии содержится необходимый теоретический материал, примеры с подробным решением, задачи для самостоятельной работы, а также типовые варианты контрольных работ.

Пособие может использоваться студентами всех специальностей, изучающими теорию функций комплексного переменного и операционное исчисление, а также магистрантами и аспирантами, которые занимаются исследованиями, связанными с применением математических методов. Издание подготовлено на кафедре высшей математики РГУ нефти и газа им. И.М. Губкина.

- © Мельникова И.Н., Фастовец Н.О., 2015
- © РГУ нефти и газа им. И.М. Губкина, 2015

Содержание

1. Комплексные числа	4
2. Числовые ряды в комплексной плоскости	15
3. Функции комплексного переменного	19
4. Аналитические функции	25
5. Интегрирование функций комплексного переменного	31
6. Ряды Тейлора и Лорана	42
7. Изолированные особые точки	49
8. Вычеты	56
9. Бесконечно удаленная точка	63
10. Вычисление определенных интегралов с помощью вычетов	68
11. Преобразование Лапласа и его свойства	71
12. Нахождение оригинала по изображению	78
13. Решение линейных дифференциальных уравнений и систем	82
Типовые варианты контрольных работ	86
Ответы	89
Литература	92

1.КОМПЛЕКСНЫЕ ЧИСЛА

Основные понятия

Комплексным числом называется выражение вида

$$z = x + iy$$
,

где $x, y \in \mathbb{R}$, i – **мнимая единица**, удовлетворяющая условию $i^2 = -1$.

Число x — называется **действительной частью** комплексного числа z, а y — **мнимой**. Обозначение: x = Re z, y = Im z.

Комплексное число вида z = x + i0 отождествляется с действительным числом x.

z = 0 тогда и только тогда, когда x = 0, y = 0.

Комплексное число $\overline{z} = x - iy$ называется *сопряженным* комплексному числу z = x + iy.

Комплексные числа $z_1 = x_1 + iy_1$ и $z_2 = x_2 + iy_2$ **равны** тогда и только тогда, когда $x_1 = x_2$, $y_1 = y_2$ (в отношении комплексных чисел понятия «больше» или «меньше» не применяются).

Любое комплексное число z = x + iy изображается на плоскости Oxy точкой M(x,y) или радиус-вектором $\overrightarrow{OM} = \{x,y\}$. Плоскость, на которой изображаются комплексные числа, называется комплексной плоскостью и обозначается \mathbb{C} , ось Ox называется deucmbu осью, а ось Oy - mhumou.

Длина вектора \overrightarrow{OM} называется *модулем* комплексного числа z = x + iy и обозначается |z| или r, то есть

$$|z| = r = \sqrt{x^2 + y^2} .$$

Угол, образованный вектором \overrightarrow{OM} с положительным направлением оси Ox, называется *аргументом* комплексного числа z и обозначается Arg z или φ .

Аргумент комплексного числа z=0 не определен. Аргумент числа $z\neq 0$ определяется с точностью до слагаемого $2\pi k$:

Arg
$$z = \varphi = \arg z + 2\pi k \ (k = 0, \pm 1, \pm 2,...)$$
,

где $\arg z \ (-\pi < \arg z \le \pi)$ – главное значение аргумента, причем

$$\arg z = \begin{cases} \arctan \frac{y}{x}, & x > 0; \\ \pi + \arctan \frac{y}{x}, & x < 0, y \ge 0; \\ -\pi + \arctan \frac{y}{x}, & x < 0, y < 0; \\ \frac{\pi}{2}, & x = 0, y > 0; \\ -\frac{\pi}{2}, & x = 0, y < 0. \end{cases}$$

Три формы записи комплексных чисел

1. Алгебраическая форма записи комплексного числа

$$z = x + iy$$
.

2. Тригонометрическая форма записи комплексного числа

$$z = r(\cos \varphi + i \sin \varphi)$$
 $(r = |z|, \varphi = \arg z)$

получается, если в алгебраической форме перейти к полярным координатам: $x = r \cos \varphi$, $y = r \sin \varphi$.

3. Показательная форма записи комплексного числа

$$z = re^{i\varphi}$$
 $(r = |z|, \varphi = \arg z)$

получается из тригонометрической формы с помощью **формулы** $\mathbf{\mathcal{F}}$ $\mathbf{\mathcal{$

ПРИМЕР 1. Записать в тригонометрической и показательной формах следующие комплексные числа:

a).
$$z_1 = 2 + 2i$$
; 6). $z_2 = \sqrt{3} - i$; B). $z_3 = -3$; Γ). $z_4 = -3 - 2i$.

Решение. а). Для комплексного числа $z_1 = 2 + 2i$ имеем:

$$|z_1| = \sqrt{2^2 + 2^2} = 2\sqrt{2},$$

 $\arg z_1 = \operatorname{arctg} \frac{2}{2} = \frac{\pi}{4} \quad (x > 0).$

Следовательно,

$$z_1 = 2 + 2i = 2\sqrt{2} \cdot \left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right) = 2\sqrt{2} \cdot e^{i\frac{\pi}{4}}.$$

мригонометрическая форма
форма

Заметим, что Arg $z_1 = \frac{\pi}{4} + 2\pi k$ $(k = 0, \pm 1, \pm 2, ...)$.

б). Для $z_2 = \sqrt{3} - i$ имеем:

$$|z_2| = \sqrt{(\sqrt{3})^2 + (-1)^2} = 2,$$

 $\arg z_2 = \operatorname{arctg} \frac{-1}{\sqrt{3}} = -\frac{\pi}{6} \quad (x > 0),$

$$\begin{array}{c|c}
 & x \\
\hline
 & \sqrt{3} - i
\end{array}$$

$$z_2 = 2\left(\cos\left(-\frac{\pi}{6}\right) + i\sin\left(-\frac{\pi}{6}\right)\right) = 2e^{i\left(-\frac{\pi}{6}\right)}.$$

в). Для числа $z_3 = -3$ получаем:

$$|z_3| = \sqrt{(-3)^2 + 0^2} = 3,$$

 $\arg z_3 = \pi + \operatorname{arctg} 0 = \pi \ (x < 0, y = 0),$
 $z_3 = 3(\cos \pi + i \sin \pi) = 3e^{i\pi}.$

г). Для $z_4 = -3 - 2i$ имеем:

$$|z_4| = \sqrt{(-3)^2 + (-2)^2} = \sqrt{13},$$

$$\arg z_4 = -\pi + \arctan \frac{-2}{-3} = \arctan \frac{2}{3} - \pi,$$

$$z_4 = \sqrt{13} \left(\cos \left(\arctan \frac{2}{3} - \pi \right) + i \sin \left(\arctan \frac{2}{3} - \pi \right) \right) = \sqrt{13}e^{i\left(\arctan \frac{2}{3} - \pi\right)}.$$

Действия над комплексными числами

Сумма, разность, произведение и частное комплексных чисел $z_1 = x_1 + iy_1, \ z_2 = x_2 + iy_2, \$ заданных в алгебраической форме, определяются следующим образом:

$$\begin{split} z_1 &\pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2); \\ z_1 z_2 &= (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1); \\ \frac{z_1}{z_2} &= \frac{(x_1 + i y_1)(x_2 - i y_2)}{(x_2 + i y_2)(x_2 - i y_2)} = \frac{x_1 x_2 + y_1 y_2}{x_2^2 + y_2^2} + i \frac{y_1 x_2 - x_1 y_2}{x_2^2 + y_2^2} \quad (z_2 \neq 0). \end{split}$$

Заметим, что

1.
$$z\overline{z} = x^2 + y^2 = |z|^2$$
, где $z = x + iy$;

2. $|z_1-z_2|=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}$, то есть $|z_1-z_2|$ является расстоянием между точками z_1 и z_2 на комплексной плоскости.

ПРИМЕР 2. Даны комплексные числа $z_1=2-3i,\ z_2=-4+5i$. Найти $z_1+z_2,\ z_1-z_2,\ z_1z_2,\ z_1/z_2$.

Решение. Используя формулы для суммы и разности, имеем:

$$(2-3i) + (-4+5i) = (2+(-4)) + i(-3+5) = -2+2i;$$

 $(2-3i) - (-4+5i) = (2-(-4)) + i(-3-5) = 6-8i.$

Перемножая двучлены (2-3i) и (-4+5i), получаем

$$(2-3i)(-4+5i) = 2 \cdot (-4) + 2 \cdot 5i - 3i \cdot (-4) - 3i \cdot 5i =$$

$$= -8 + 10i + 12i - 15i^{2} = \langle i^{2} = -1 \rangle = -8 + 15 + 22i = 7 + 22i.$$

U, наконец, для нахождения частного $\frac{2-3i}{-4+5i}$ умножим числитель и знаменатель дроби на комплексное число, сопряженное знаменателю:

$$\frac{2-3i}{-4+5i} = \frac{(2-3i)\cdot(-4-5i)}{(-4+5i)\cdot(-4-5i)} = \frac{-8-15-10i+12i}{16+25} = -\frac{23}{41}+i\frac{2}{41}.$$

Для комплексных чисел, заданных в тригонометрической или показательной форме

$$z_1 = r_1(\cos\varphi_1 + i\sin\varphi_1) = r_1e^{i\varphi_1}\,,\quad z_2 = r_2(\cos\varphi_2 + i\sin\varphi_2) = r_2e^{i\varphi_2}\,,$$
 имеет место формула

$$z_1 z_2 = r_1 r_2 (\cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2)) = r_1 r_2 e^{i(\varphi_1 + \varphi_2)}$$
.

Заметим, что при умножении комплексных чисел их модули перемножаются, а аргументы складываются. Это правило распространяется на любое конечное число множителей, то есть справедлива формула для возведения комплексного числа в натуральную степень

$$z^{n} = (r(\cos\varphi + i\sin\varphi))^{n} = r^{n}(\cos n\varphi + i\sin n\varphi) = r^{n}e^{in\varphi},$$

в частности, имеет место формула Муавра

$$(\cos \varphi + i \sin \varphi)^n = \cos n\varphi + i \sin n\varphi.$$

Для частного чисел $z_1, z_2 \ (z_2 \neq 0)$ имеем

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} (\cos(\varphi_1 - \varphi_2) + i \sin(\varphi_1 - \varphi_2)) = \frac{r_1}{r_2} e^{i(\varphi_1 - \varphi_2)},$$

то есть при делении модули делятся, а аргументы вычитаются.

ПРИМЕР 3. Вычислить: a). $(1-i\sqrt{3})^{90}$; б). $(1+i)^{45}$.

<u>Решение.</u> а). Запишем комплексное число $z = 1 - i\sqrt{3}$ в тригонометрической или показательной форме

$$1 - i\sqrt{3} = 2\left(\cos\left(-\frac{\pi}{3}\right) + i\sin\left(-\frac{\pi}{3}\right)\right) = 2e^{-i\frac{\pi}{3}}.$$

Применяя формулу возведения в натуральную степень, получаем

$$(1 - i\sqrt{3})^{90} = 2^{90}e^{-i\frac{90\pi}{3}} = 2^{90}e^{-i30\pi} = 2^{90}(\cos 30\pi - i\sin 30\pi) = 2^{90}.$$

б). Для числа
$$z = 1 + i = \sqrt{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \sqrt{2} e^{i\frac{\pi}{4}}$$
 имеем
$$(1+i)^{45} = (\sqrt{2})^{45} \left(\cos \left(45 \cdot \frac{\pi}{4} \right) + i \sin \left(45 \cdot \frac{\pi}{4} \right) \right) =$$
$$= 2^{22} \cdot \sqrt{2} \left(-\frac{1}{\sqrt{2}} - i \frac{1}{\sqrt{2}} \right) = -2^{22} (1+i). \blacksquare$$

Извлечение корней из комплексных чисел

Корень n-й степени из комплексного числа $z = r(\cos \varphi + i \sin \varphi)$ имеет n различных значений, которые находятся по формуле

$$\sqrt[n]{z} = \sqrt[n]{r} \cdot \left(\cos\frac{\varphi + 2\pi k}{n} + i\sin\frac{\varphi + 2\pi k}{n}\right) = \sqrt[n]{r} \cdot e^{i\frac{\varphi + 2\pi k}{n}},$$
где $k = 0, 1, 2, ..., n - 1, \ \varphi = \arg z.$

Точки, соответствующие корням n-й степени из комплексного числа z, находятся в вершинах правильного n-угольника, вписанного в окружность радиуса $R = \sqrt[n]{r}$ с центром в начале координат.

ПРИМЕР 4. Найти все значения корней: a). $\sqrt[4]{-1}$; б). $\sqrt[3]{-1+i}$.

<u>Решение.</u> а). Запишем число z=-1 в тригонометрической или показательной форме: $-1=1\cdot(\cos(\pi+2\pi k)+i\sin(\pi+2\pi k))=e^{i(\pi+2\pi k)}$, тогда

$$\sqrt[4]{-1} = \sqrt[4]{1} \cdot \left(\cos\frac{\pi + 2\pi k}{4} + i\sin\frac{\pi + 2\pi k}{4}\right) = \sqrt[4]{1} \cdot e^{i\frac{\pi + 2\pi k}{4}}, \quad k = 0, 1, 2, 3.$$

Подставляя k = 0, 1, 2, 3, получаем четыре различных значения $\sqrt[4]{-1}$:

$$z_{0} = \cos\frac{\pi}{4} + i\sin\frac{\pi}{4} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2},$$

$$z_{1} = \cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4} = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2},$$

$$z_{2} = \cos\frac{5\pi}{4} + i\sin\frac{5\pi}{4} = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2},$$

$$z_{3} = \cos\frac{7\pi}{4} + i\sin\frac{7\pi}{4} = \frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}.$$

Точки, соответствующие значениям $\sqrt[4]{-1}$, находятся в вершинах квадрата, вписанного в окружность радиуса 1 с центром в начале координат.

б). Так как
$$-1+i = \sqrt{2} \left(\cos \left(\frac{3\pi}{4} + 2\pi k \right) + i \sin \left(\frac{3\pi}{4} + 2\pi k \right) \right)$$
, то
$$\sqrt[3]{-1+i} = \sqrt[6]{2} \cdot \left(\cos \frac{3\pi/4 + 2\pi k}{3} + i \sin \frac{3\pi/4 + 2\pi k}{3} \right), \quad k = 0, 1, 2.$$

Подставляя k = 0,1,2, получаем:

$$z_{0} = \sqrt[6]{2} \left(\cos \frac{\pi}{4} + i \sin \frac{\pi}{4} \right) = \frac{\sqrt[3]{4}}{2} (1+i),$$

$$z_{1} = \sqrt[6]{2} \left(\cos \frac{11\pi}{12} + i \sin \frac{11\pi}{12} \right) = \sqrt[6]{2} \left(-\cos \frac{\pi}{12} + i \sin \frac{\pi}{12} \right),$$

$$z_{2} = \sqrt[6]{2} \left(\cos \frac{19\pi}{12} + i \sin \frac{19\pi}{12} \right) = \sqrt[6]{2} \left(\sin \frac{\pi}{12} - i \cos \frac{\pi}{12} \right).$$

Точки, соответствующие значениям $\sqrt[3]{-1+i}$, находятся в вершинах равностороннего треугольника, вписанного в окружность радиуса $\sqrt[6]{2}$ с центром в начале координат.

ПРИМЕР 5. Решить уравнение $z^2 + 2z + 2 = 0$.

<u>Решение.</u> Корни квадратного уравнения $az^2 + bz + c = 0$ находятся по формуле

$$z_{1,2} = \frac{-b + \sqrt{D}}{2a}$$
, где $D = b^2 - 4ac$.

Заметим, что \sqrt{D} (при $D \neq 0$) принимает два различных значения, поэтому уравнение имеет два различных решения.

В нашем случае D = -4, следовательно,

$$z_{1,2} = \frac{-2 + \sqrt{-4}}{2} = \left\langle \sqrt{-4} = \pm 2i \right\rangle = \frac{-2 \pm 2i}{2} = -1 \pm i . \blacksquare$$

ПРИМЕР 6. Решить уравнение $z^2 + (1-3i)z - 2 - 2i = 0$.

Решение. Так как корни квадратного уравнения $z^2 + pz + q = 0$ находятся по формуле

$$z_{1,2} = -\frac{p}{2} + \sqrt{\frac{p^2}{4} - q} ,$$

то в нашем случае имеем

$$z_{1,2} = -\frac{1-3i}{2} + \sqrt{\frac{(1-3i)^2}{4} - (-2-2i)} = \frac{3i-1+\sqrt{2i}}{2},$$

где

$$\sqrt{2i} = \sqrt{2} \left(\cos \frac{\pi/2 + 2\pi k}{2} + i \sin \frac{\pi/2 + 2\pi k}{2} \right), \quad k = 0, 1.$$

Тогда

$$z_1 = \frac{3i - 1 + 1 + i}{2} = 2i, \quad z_2 = \frac{3i - 1 - 1 - i}{2} = -1 + i.$$

Замечание. Если в уравнении $a_n z^n + a_{n-1} z^{n-1} + ... + a_0 = 0$ все коэффициенты являются действительными числами, и комплексное число $z_0 = x_0 + iy_0$ является его корнем, то число $\overline{z}_0 = x_0 - iy_0$ также является корнем этого уравнения (см. пример 5).

Множества точек на комплексной плоскости

ПРИМЕР 7. Какое множество точек на комплексной плоскости задается условием $|z-2i| \le 3$?

Решение. Пусть z = x + iy, тогда

$$|z-2i| = |x+i(y-2)| = \sqrt{x^2 + (y-2)^2} \le 3 \implies x^2 + (y-2)^2 \le 9.$$

Последнее неравенство задает круг радиуса 3 с центром в точке $z_0 = 2i$.

Этот же ответ можно получить, если воспользоваться тем, что |z-2i| равен расстоянию между точками z и $z_0=2i$.

ПРИМЕР 8. Какое множество точек на комплексной плоскости задается условиями $1 < |z-1| \le 2$?

<u>Решение.</u> Требуется найти все точки z комплексной плоскости, удовлетворяющие двум условиям: расстояние от z до точки $z_0 = 1$ должно быть строго больше единицы и меньше либо равно двум. Этим условиям

удовлетворяют точки z, находящиеся в кольце, ограниченном окружностями радиуса 1 и 2 с центром в точке $z_0 = 1$, включая окружность радиуса 2.

ПРИМЕР 9. Какая линия определяется условием Im(i+z) = |z|?

<u>Решение.</u> Так как z=x+iy, то ${\rm Im}(i+z)={\rm Im}(i+x+iy)=1+y$. Тогда имеем

$$y+1 = \sqrt{x^2 + y^2} \implies y^2 + 2y + 1 = x^2 + y^2 \implies y = \frac{x^2}{2} - \frac{1}{2}.$$

Полученное уравнение определяет параболу с вершиной в точке (0;–0,5), ветви параболы направлены вверх.■

Задачи

- 1. Представить в тригонометрической и показательной формах комплексные числа: $z_1 = -\sqrt{2} + i\sqrt{2}, \ z_2 = -1 i\sqrt{3}, \ z_3 = 4i, \ z_4 = 1 5i$.
- 2. Дано: $z_1=1+4i, \ z_2=-2+i$. Найти $z_1+z_2, \ z_1-z_2, \ z_1z_2, \ z_1/z_2$.
- 3. Вычислить: a). $(1-i\sqrt{3})^{11}$; б) $(2+2i)^{20}$; в). $\left(\frac{4+3i}{5}\right)^{10}$.
- 4. Найти: a) $\sqrt[3]{-8i}$; б) $\sqrt[4]{16}$; в) $\sqrt{-\sqrt{3}+i}$.
- 5. Решить уравнения: a). $z^2 + 4z + 5 = 0$; б) $z^2 + (1-2i)z 3 i = 0$.
- 6. Определить и нарисовать области, заданные неравенствами:

a).
$$-1 < \text{Re } z \le 2$$
; 6). $-\frac{\pi}{4} < \text{arg } z < \frac{\pi}{2}$; B). $|z - 1 - 2i| > 2$.

Ответы: 1. $z_1 = 2(\cos(3\pi/4) + i\sin(3\pi/4)) = 2e^{3\pi i/4}$;

$$z_2 = 2(\cos(-2\pi/3) + i\sin(-2\pi/3)) = 2e^{-2\pi i/3};$$

$$z_3 = 4(\cos(\pi/2) + i\sin(\pi/2)) = 4e^{i\pi/2};$$

$$z_4 = \sqrt{26} \left(\cos(-\arctan 5) + i \sin(-\arctan 5) \right) = \sqrt{26} \cdot e^{i(-\arctan 5)}.$$

2.
$$-1+5i$$
; $3+3i$; $-6-7i$; $0,4-1,8i$.

- **3. a).** $2^{10}(1+i\sqrt{3})$; **6).** -2^{30} ; **B).** $\cos(10 \cdot \operatorname{arctg} 0, 75) + i\sin(10 \cdot \operatorname{arctg} 0, 75)$.
- **4.** a). 2i; $\pm \sqrt{3} i$; **6).** ± 2 ; $\pm 2i$; **B).** $\pm \sqrt{2} \left(\cos(5\pi/12) + i \sin(5\pi/12) \right)$.

5. a).
$$-2 \pm i$$
; **6).** $1+i$; $-2+i$.

Домашнее задание

Теоретические упражнения

- 1. Показать, что $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$, $\overline{z_1 z_2} = \overline{z_1} \overline{z_2}$.
- 2. Показать, что Re $z = \frac{z + \overline{z}}{2}$, Im $z = \frac{z \overline{z}}{2i}$.
- 3. Используя формулу Муавра, выразить $\sin 3\varphi$, $\cos 4\varphi$ через степени $\sin \varphi$ и $\cos \varphi$.
- 4. Как изменится модуль и аргумент комплексного числа z, если это число умножить на: а). 3; б). i; в) -2i?

Задачи

1.1. Представить в тригонометрической и показательной формах комплексные числа:

a).
$$z_1 = \frac{1}{\sqrt{2}} - i\frac{1}{\sqrt{2}}$$
; 6). $z_2 = -\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}$; B). $z_3 = -2 - 3i$;

г).
$$z_4 = 3\sqrt{3} + 3i$$
; д). $z_5 = -5i$; e). $z_6 = -7$; ж). $z_7 = 1 - 2i$.

1.2. Дано:
$$z_1 = -3 - i$$
, $z_2 = 2 + 3i$. Найти $z_1 + z_2$, $z_1 - z_2$, $z_1 z_2$, z_1/z_2 .

1.3. Вычислить: a).
$$\frac{2-i}{3i}$$
 + $(1-i)^2$; б). $(1-2i)^3 - \frac{4i}{1+i}$; в). $i^2 + i^3 + i^4 + i^5$.

1.4. Найти расстояние между точками: $z_1 = 2 - 5i$ и $z_2 = 3i$.

1.5. Вычислить: a).
$$(-\sqrt{3}+3i)^{14}$$
; б) $(-1-i)^{25}$; в). $\left(\frac{1-i\sqrt{3}}{1+i}\right)^{18}$.

1.6. Найти все значения корня:

a)
$$\sqrt[6]{64}$$
; б) $\sqrt{-4i}$; в). $\sqrt{1-i\sqrt{3}}$; г). $\sqrt[3]{\sqrt{2}+i\sqrt{2}}$.

1.7. Решить уравнения:

a).
$$z^2 - 4z + 8 = 0$$
; 6). $z^6 - 9z^3 + 8 = 0$; B). $z^2 - (1 + 2i)z - 1 + i = 0$.

1.8. На комплексной плоскости нарисовать области, заданные неравенствами:

a).
$$|z+i| > 1$$
; 6). $1 < |z+3i| < 3$; B). $-2 \le \text{Im } z < 3$; F). $|z| - \text{Re } z \le 0$.

2. РЯДЫ В КОМПЛЕКСНОЙ ПЛОСКОСТИ

Основные понятия

Ряд с комплексными членами

$$\sum_{n=1}^{\infty} z_n = z_1 + z_2 + \dots + z_n + \dots, \quad z_n = x_n + iy_n ,$$

называется cxodsumcs, если последовательность его частичных сумм $S_n = \sum_{k=1}^n z_k$ имеет конечный предел, то есть $\lim_{n \to \infty} S_n = S$. При этом число S называется cymmoŭ psda. Если конечного предела нет, то ряд называется pacxodsumcs.

Для сходимости ряда $\sum_{n=1}^{\infty} z_n$ необходимо и достаточно, чтобы

сходились оба ряда
$$\sum_{n=1}^\infty x_n$$
 и $\sum_{n=1}^\infty y_n$, при этом $\sum_{n=1}^\infty z_n = \sum_{n=1}^\infty x_n + i \sum_{n=1}^\infty y_n$.

Ряд $\sum_{n=1}^{\infty} z_n$ называется *абсолютно сходящимся*, если сходится

ряд из модулей $\sum_{n=1}^{\infty} |z_n|$. Всякий абсолютно сходящийся ряд сходится.

Если ряд $\sum_{n=1}^{\infty} |z_n|$ расходится, а ряд $\sum_{n=1}^{\infty} z_n$ сходится, то ряд $\sum_{n=1}^{\infty} z_n$ называется *условно сходящимся*.

Необходимый признак сходимости ряда. Если ряд $\sum_{n=1}^{\infty} z_n$ сходится, то $\lim_{n \to \infty} z_n = 0$.

Замечание. Из необходимого признака следует, что если $\lim_{n\to\infty}z_n\neq 0\,,\, \text{то ряд }\sum_{n=1}^\infty z_n\,\,\text{расходится}.$

Достаточные признаки сходимости

- **1°. Признак сравнения рядов.** Если члены ряда $\sum_{n=1}^{\infty} z_n$ для всех $n>N_0$ удовлетворяют условию $|z_n|\leq b_n$, причем ряд $\sum_{n=1}^{\infty} b_n$ сходится, то ряд $\sum_{n=1}^{\infty} z_n$ сходится абсолютно. Если $0< c_n \leq |z_n|$ для всех $n>N_1$ и ряд $\sum_{n=1}^{\infty} c_n$ расходится, то ряд $\sum_{n=1}^{\infty} z_n$ не сходится абсолютно.
- **2°.** Предельный признак сравнения. Если ряд $\sum_{n=1}^{\infty} b_k$ сходится абсолютно, и существует конечный предел $\lim_{n\to\infty} \left|\frac{z_n}{b_n}\right| = q < +\infty$, то ряд $\sum_{n=1}^{\infty} z_n$ также сходится абсолютно.

Замечание 1. Если члены рядов $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ действительные положительные числа и $0 < \lim_{n \to \infty} \frac{a_n}{b_n} < +\infty$, то ряды $\sum_{n=1}^{\infty} a_n$ и $\sum_{n=1}^{\infty} b_n$ либо оба сходятся, либо оба расходятся.

Замечание 2. При использовании указанных выше признаков сравнения полезны следующие ряды:

а). *геометрический ряд*, составленный из членов геометрической прогрессии,

$$a + aq + aq^2 + ... + aq^n + ... = a \sum_{n=0}^{+\infty} q^n \quad \begin{cases} \text{еходится при } \left| q \right| < 1 \ \text{и } S = \frac{a}{1-q}, \\ \text{расходится при } \left| q \right| \ge 1; \end{cases}$$

б). *ряд Дирихле* (при p = 1 ряд называется *гармоническим*)

$$\sum_{n=1}^{+\infty} \frac{1}{n^p} \quad \begin{cases} \text{сходится при } p > 1, \\ \text{расходится при } p \le 1. \end{cases}$$

3°. Признак Даламбера. Если существует предел

$$\lim_{n\to\infty}\left|\frac{z_{n+1}}{z_n}\right|=q\,,$$

то при $0 \le q < 1$ ряд $\sum_{n=1}^{\infty} z_n$ сходится абсолютно, при q > 1 ряд $\sum_{n=1}^{\infty} z_n$ расходится, а при q = 1 требуется дополнительное исследование.

4°. Радикальный признак Коши. Если существует предел

$$\lim_{n\to\infty} \sqrt[n]{|z_n|} = q,$$

то при $0 \le q < 1$ ряд $\sum_{n=1}^{\infty} z_n$ сходится абсолютно, при q > 1 ряд $\sum_{n=1}^{\infty} z_n$ расходится, а при q = 1 требуется дополнительное исследование.

5°. Интегральный признак Коши. Пусть функция f(x) положительна и монотонна при $x \ge 1$, и пусть $f(n) = |z_n| \ \forall n \in \mathbb{N}$. Тогда ряд $\sum_{n=1}^{\infty} |z_n|$ и несобственный интеграл $\int_{a(a \ge 1)}^{+\infty} f(x) dx$ либо оба сходятся, либо оба расходятся.

ПРИМЕР 1. Исследовать на сходимость ряд
$$\sum_{n=1}^{\infty} \frac{1}{2n-i}$$
.

Решение. Преобразуем данный ряд:

$$\sum_{n=1}^{\infty} \frac{1}{2n-i} = \sum_{n=1}^{\infty} \frac{2n+i}{4n^2+1} = \sum_{n=1}^{\infty} \frac{2n}{4n^2+1} + i \sum_{n=1}^{\infty} \frac{1}{4n^2+1}.$$

Так как первый из рядов расходится по признаку сравнения с гармоническим, то данный ряд расходится.

■

ПРИМЕР 2. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{n^n}{n!(e-i)^n}$.

Решение. Так как $|(e-i)^n| = (\sqrt{e^2+1})^n$, то по признаку **3**°:

$$\lim_{n \to \infty} \left| \frac{z_{n+1}}{z^n} \right| = \lim_{n \to \infty} \frac{(n+1)^{n+1} \cdot n! \left(\sqrt{e^2 + 1} \right)^n}{(n+1)! \left(\sqrt{e^2 + 1} \right)^{n+1} \cdot n^n} = \lim_{n \to \infty} \frac{(n+1)^n}{n^n \sqrt{e^2 + 1}} = \frac{e}{\sqrt{e^2 + 1}} < 1.$$

Следовательно, данный ряд сходится абсолютно. ■

ПРИМЕР 3. Исследовать на сходимость ряд $\sum_{n=1}^{\infty} \frac{\cos(in)}{3^n}$.

Решение. По определению (см. стр. 20) $\cos z = \frac{e^{iz} + e^{-iz}}{2}$, тогда

$$\sum_{n=1}^{\infty} \frac{\cos(in)}{3^n} = \sum_{n=1}^{\infty} \frac{e^{-n} + e^n}{2 \cdot 3^n} = \frac{1}{2} \left(\sum_{n=1}^{\infty} \frac{1}{(3e)^n} + \sum_{n=1}^{\infty} \left(\frac{e}{3} \right)^n \right).$$

Так как оба ряда сходятся (замечание 2), то данный ряд сходится. ■

Задачи

1. Исследовать ряды на сходимость:

a).
$$\sum_{n=1}^{\infty} \frac{(3-4i)^n \sqrt{n+3}}{7^n}$$
; 6). $\sum_{n=1}^{\infty} \frac{\sin(in)}{2^n}$; B). $\sum_{n=1}^{\infty} \left(\frac{n+2i}{(1+i)n+3}\right)^n$.

Ответы: 1. а). сходится абсолютно; **б).** расходится; **в).** сходится абсолютно.

Домашнее задание

2.1. Исследовать ряды на сходимость:

a).
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n-i}}$$
; б). $\sum_{n=1}^{\infty} \frac{e^{i2\pi}}{n\sqrt{n}}$; в). $\sum_{n=1}^{\infty} \frac{(2+i)^n \cdot n}{2^n}$; г). $\sum_{n=1}^{\infty} \frac{\cos(in^2)}{5^{n^2}}$.

3. ФУНКЦИИ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

Если каждой точке z из некоторого множества D ($D \subset \mathbb{C}$) поставлено в соответствие одно или несколько комплексных значений w, то говорят, что в D определена (однозначная или многозначная) функция комплексного переменного w = f(z). Множество D называется областью определения этой функции.

Пусть z = x + iy, w = u + iv, тогда f(z) может быть представлена в виде

$$f(z) = u(x, y) + iv(x, y),$$

где u(x, y), v(x, y) — действительные функции действительных переменных x и y. Функция u(x, y) называется **действительной частью** f(z), а функция v(x, y) — **мнимой**. Обозначения: u(x, y) = Re f(z), v(x, y) = Im f(z).

ПРИМЕР 1. Найти действительную и мнимую части функции $f(z) = z^2 + \text{Im } z$.

Решение. Так как z = x + iy, то

$$f(z) = (x+iy)^2 + y = x^2 + i2xy - y^2 + y$$
.

Следовательно,

$$u(x, y) = \text{Re } f(z) = x^2 - y^2 + y, \ v(x, y) = \text{Im } f(z) = 2xy.$$

Основные элементарные функции

1. Дробно-рациональная функция

$$f(z) = \frac{a_n z^n + a_{n-1} z^{n-1} + \dots + a_0}{b_m z^m + b_{m-1} z^{m-1} + \dots + b_0},$$

в частности, дробно-рациональной функцией является многочлен

$$f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0.$$

2. Показательная функция

$$f(z) = e^{z} = e^{x+iy} = e^{x}(\cos y + i\sin y).$$

Показательная функция является периодической с периодом $2\pi i$, то есть

$$e^{z+2\pi ki} = e^z$$
 $(k = 0, \pm 1, \pm 2,...)$.

Для показательной функции справедливы соотношения:

$$e^{z_1+z_2}=e^{z_1}e^{z_2}, e^{z_1-z_2}=e^{z_1}:e^{z_2}.$$

3. Тригонометрические функции:

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2}, \quad \operatorname{tg} z = \frac{\sin z}{\cos z}, \quad \operatorname{ctg} z = \frac{\cos z}{\sin z}.$$

Для тригонометрических функций остаются в силе все известные формулы тригонометрии.

Заметим, что $\sin z$ и $\cos z$ не ограничены в комплексной плоскости. Например, $\cos 8i = \frac{e^{-8} + e^8}{2} > 1400$.

4. Гиперболические функции

$$\sinh z = \frac{e^z - e^{-z}}{2}$$
, $\cosh z = \frac{e^z + e^{-z}}{2}$, $\tan z = \frac{\sinh z}{\cosh z}$, $\coth z = \frac{\cosh z}{\sinh z}$

удовлетворяют следующим соотношениям:

$$ch^2 z - sh^2 z = 1,$$
 $ch 2z = ch^2 z - sh^2 z,$ $sh 2z = 2 sh z ch z,$ $ch(-z) = ch z,$ $ch(z_1 + z_2) = ch z_1 ch z_2 + sh z_1 sh z_2,$ $sh(-z) = -sh z$ и т.д.

Кроме того тригонометрические, гиперболические и показательная функции связаны соотношениями:

$$\sin z = -i \operatorname{sh} iz$$
, $\operatorname{sh} z = -i \operatorname{sin} iz$, $\cos z = \operatorname{ch} iz$,
 $\operatorname{ch} z = \cos iz$, $\operatorname{tg} z = -i \operatorname{th} iz$, $\operatorname{th} z = -i \operatorname{tg} iz$,
 $\operatorname{ctg} z = i \operatorname{cth} iz$, $\operatorname{cth} z = i \operatorname{ctg} iz$, $\operatorname{sh} z + \operatorname{ch} z = e^z$.

ПРИМЕР 2. Вычислить $\cos(2-3i)$ (записать в алгебраической форме).

Решение. Используя определения $\cos z$, $\cosh z$, $\sinh z$ и формулу Эйлера, имеем

$$\cos(2-3i) = \frac{1}{2} \left(e^{i(2-3i)} + e^{-i(2-3i)} \right) = \frac{1}{2} \left(e^{3+2i} + e^{-3-2i} \right) =$$

$$= \frac{1}{2} \left(e^{3} e^{2i} + e^{-3} e^{-2i} \right) = \frac{1}{2} \left(e^{3} (\cos 2 + i \sin 2) + e^{-3} (\cos 2 - i \sin 2) \right) =$$

$$= \cos 2 \cdot \frac{e^{3} + e^{-3}}{2} + i \sin 2 \cdot \frac{e^{3} - e^{-3}}{2} = \cos 2 \cosh 3 + i \sin 2 \sinh 3. \blacksquare$$

5. Логарифмическая функция

$$f(z) = \text{Ln } z = \ln |z| + i \text{ Arg } z = \ln |z| + i (\text{arg } z + 2\pi k),$$

где $z \neq 0$, $k = 0, \pm 1, \pm 2, ...$

Логарифмическая функция комплексного переменного имеет бесконечно много значений. Главным значением $\operatorname{Ln} z$ называется значение, которое получается при k=0, и обозначается $\operatorname{ln} z$:

$$\ln z = \ln |z| + i \arg z \implies \text{Ln } z = \ln z + i 2\pi k \ (k = 0, \pm 1, \pm 2, ...).$$

Справедливы соотношения:

$$\operatorname{Ln}(z_1 z_2) = \operatorname{Ln} z_1 + \operatorname{Ln} z_2, \quad \operatorname{Ln}\left(\frac{z_1}{z_2}\right) = \operatorname{Ln} z_1 - \operatorname{Ln} z_2.$$

ПРИМЕР 3. Вычислить a). Ln(1-i); б). ln(-8).

Решение. а). Так как
$$|1-i| = \sqrt{2}$$
, $\arg(1-i) = -\frac{\pi}{4}$, то

Ln(1-i) = ln
$$\sqrt{2}$$
 + i $\left(-\frac{\pi}{4} + 2\pi k\right)$, $k = 0, \pm 1, \pm 2, ...$

б). Так как |-8| = 8, $arg(-8) = \pi$, то

$$ln(-8) = ln \, 8 + i\pi$$
 (это главное значение $Ln(-8)$).

6. Общая степенная функция

$$f(z) = z^a = e^{a \operatorname{Ln} z}$$
, где $a = \alpha + i\beta$

имеет бесконечно много значений; главное значение: $z^a = e^{a \ln z}$

7. Общая показательная функция

$$f(z) = a^z = e^{z \operatorname{Ln} a}$$
, где $a = \alpha + i\beta \neq 0$,

также имеет бесконечно много значений; главное значение: $a^z = e^{z \ln a}$.

ПРИМЕР 4. Вычислить $(1+i)^{2-2i}$.

Решение. Так как
$$|1+i| = \sqrt{2}$$
, $\arg(1+i) = \pi/4$, то
$$(1+i)^{2-2i} = e^{(2-2i)\operatorname{Ln}(1+i)} = e^{(2-2i)(\ln\sqrt{2}+i(\pi/4+2\pi k))} =$$
$$= 2 \cdot e^{(\pi/2+4\pi k)+i(\pi/2+4\pi k-\ln2)}, \quad k = 0, \pm 1, \pm 2, \dots \blacksquare$$

8. Обратные тригонометрические функции:

$$\operatorname{Arccos} z = -i\operatorname{Ln}\left(z - \sqrt{z^2 - 1}\right), \quad \operatorname{Arcsin} z = -i\operatorname{Ln}\left(iz + \sqrt{1 - z^2}\right),$$

$$\operatorname{Arctg} z = -\frac{i}{2}\operatorname{Ln}\frac{1 + iz}{1 - iz} \quad (z \neq \pm i), \quad \operatorname{Arcctg} z = -\frac{i}{2}\operatorname{Ln}\frac{z + i}{z - i} \quad (z \neq \pm i).$$

9. Обратные гиперболические функции:

Arch
$$z = \operatorname{Ln}\left(z + \sqrt{z^2 - 1}\right)$$
, Arch $z = \operatorname{Ln}\left(z + \sqrt{z^2 + 1}\right)$,
Arth $z = \frac{1}{2}\operatorname{Ln}\frac{1+z}{1-z}$ $(z \neq \pm 1)$, Arch $z = \frac{1}{2}\operatorname{Ln}\frac{z+1}{z-1}$ $(z \neq \pm 1)$.

ПРИМЕР 5. Записать в алгебраической форме Arcsin i.

Решение. Подставляя z = i в формулу для Arcsin z, имеем

Arcsin
$$i = -i \operatorname{Ln} \left(i^2 + \sqrt{1 - i^2} \right) = -i \operatorname{Ln} (-1 + \sqrt{2}),$$

откуда для различных значений $\sqrt{2}$ получаем

Arcsin
$$i = -i \operatorname{Ln}(-1 + \sqrt{2}) = -i (\ln(\sqrt{2} - 1) + i 2\pi k) = 2\pi k - i \ln(\sqrt{2} - 1),$$

Arcsin $i = -i \operatorname{Ln}(-1 - \sqrt{2}) = -i (\ln(\sqrt{2} + 1) + i(\pi + 2\pi k)) =$

$$= (2k + 1)\pi - i \ln(\sqrt{2} + 1) \quad (k = 0, \pm 1, \pm 2, ...). \blacksquare$$

ПРИМЕР 6. Для $f(z) = \operatorname{ch} \overline{z}$ найти действительную и мнимую части.

Решение. Пусть z = x + iy, тогда $\overline{z} = x - iy$. Следовательно, $\operatorname{ch} \overline{z} = \operatorname{ch}(x - iy) = \frac{1}{2} \left(e^{x - iy} + e^{-(x - iy)} \right) = \frac{1}{2} \left(e^x e^{-iy} + e^{-x} e^{iy} \right) =$ $= \frac{1}{2} \left(e^{x} (\cos y - i \sin y) + e^{-x} (\cos y + i \sin y) \right) =$ $= \cos y \cdot \frac{e^x + e^{-x}}{2} - i \sin y \cdot \frac{e^x - e^{-x}}{2} = \cos y \cdot \operatorname{ch} x - i \sin y \cdot \operatorname{sh} x.$

Таким образом,

$$u(x, y) = \cos y \cdot \operatorname{ch} x, \ v(x, y) = -\sin y \cdot \operatorname{sh} x.$$

Задачи

1. Вычислить:

- a). e^{2+5i} :
- б). $\cos 3i$; в). $\cosh(3+4i)$;
- Γ). $\sin(1-i)$;
- д). th πi ;
- e). Ln($\sqrt{3}-i$);

- ж). Ln e;
- 3). Ln(-4i);
- и). 2^{i} ;
- к). $\left(\frac{1}{\sqrt{2}} + i \frac{1}{\sqrt{2}}\right)^{-5i}$; л). i^{2-i} ;

м). Arctg 2*i*.

2. Для данных функций найти действительную и мнимую части:

- a). $f(z) = \overline{z}^2 z + i$; 6). $f(z) = e^{\overline{z}}$;
- B). $f(z) = \cos(z+1)$; Γ). $f(z) = \frac{1}{z-i}$.

Ответы: 1. a). $e^2(\cos 5 + i \sin 5)$; б). ch 3; в). ch 3cos 4 + i sh 3sin 4;

- г). ch1sin1-ish1cos1; д). 0; е). ln2+ $i(-\pi/6+2\pi k)$; ж). 1+ $2\pi ki$;
- 3). $\ln 4 + i(-\pi/2 + 2\pi k)$; w). $e^{-2\pi k}(\cos \ln 2 + i \sin \ln 2)$; κ). $e^{5\pi/4 + 10\pi k}$;

л).
$$-e^{\pi/2+2\pi k}$$
; м). $\frac{\pi}{2}+\pi k+i\frac{\ln 3}{2}$.

- **2. a).** $u = x^2 y^2 x$, v = -2xy y + 1; **6).** $u = e^x \cos y$, $v = -e^x \sin y$;
- **B).** $u = \cos(x+1) \cosh y$, $v = -\sin(x+1) \sinh y$;

r).
$$u = \frac{x}{x^2 + (y-1)^2}, \ v = \frac{1-y}{x^2 + (y-1)^2}.$$

Домашнее задание

3.1. Вычислить значение функции f(z) в указанной точке:

a).
$$f(z) = z^2 + 3\overline{z} - 2i$$
, $z_0 = 1 - 3i$;

6).
$$f(z) = \frac{z+1}{z-1}$$
, $z_0 = -2 + i$;

B).
$$f(z) = e^{\overline{z}}$$
, $z_0 = \ln 4 - 15\pi i$.

3.2. Вычислить:

a).
$$e^{-3+2i}$$
;

6).
$$\cos(3+2i)$$
;

B).
$$sh(1+i\pi/4)$$
;

$$\Gamma$$
). ctg(πi);

e).
$$Ln(5i)$$
;

3).
$$Ln(-2+2i)$$
;

и).
$$Ln(2-3i)$$
;

κ).
$$10^{3-i}$$
;

л).
$$(-1+i\sqrt{3})^{4i}$$

м). Arccos
$$i$$
.

3.3. Для данных функций найти действительную и мнимую части:

a).
$$f(z) = z^3 + iz + 3$$
;

6).
$$f(z) = \sin \overline{z}$$
;

B).
$$f(z) = \operatorname{Re}(z^2) + i \operatorname{Im}(\overline{z}^2)$$
;

$$\Gamma$$
). $f(z) = e^{z^2}$;

$$\mathbf{g}(z) = \frac{z+1}{z-i};$$

e).
$$f(z) = z |z+1|$$
.

4. АНАЛИТИЧЕСКИЕ ФУНКЦИИ

Пусть функция f(z) определена в окрестности точки z_0 .

Функция f(z) называется **дифференцируемой в точке** z_0 , если существует и конечен предел

$$\lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z},$$

который называется *производной* функции f(z) в точке z_0 и обозначается $f'(z_0)$.

Функция f(z) называется **аналитической в точке** z_0 , если она дифференцируема в самой точке z_0 , а также в каждой точке некоторой ее окрестности.

Функция f(z) называется **аналитической в области** D, если она дифференцируема в каждой точке области D.

Точка, в которой функция f(z) не является аналитической, называется *особой точкой* функции f(z).

Условия Коши-Римана

Для того чтобы функция w = f(z) = u(x,y) + iv(x,y) имела производную в точке z = x + iy, необходимо и достаточно, чтобы в точке (x,y) существовали и были непрерывны $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ и выполнялись *условия Коши-Римана*

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Для аналитической функции f(z) справедливо

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y} = \frac{\partial u}{\partial x} - i \frac{\partial u}{\partial y} = \frac{\partial v}{\partial y} + i \frac{\partial v}{\partial x}.$$

Для функций комплексного переменного имеют место правила дифференцирования, аналогичные правилам дифференцирования функций действительного переменного.

ПРИМЕР 1. Показать, что функция $f(z) = e^z$ является аналитической во всей комплексной плоскости. Найти ее производную.

Решение. Так как
$$e^z = e^x(\cos y + i\sin y)$$
, то $u(x, y) = e^x \cos y$, $v(x, y) = e^x \sin y$.

Проверим выполнение условий Коши-Римана:

$$\frac{\partial u}{\partial x} = e^x \cos y, \quad \frac{\partial u}{\partial y} = -e^x \sin y,
\frac{\partial v}{\partial x} = e^x \sin y, \quad \frac{\partial v}{\partial y} = e^x \cos y \qquad \Rightarrow \qquad \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \quad \forall (x, y).$$

Так условия Коши-Римана выполняются во всей плоскости, и функции u и v как функции действительных переменных x и y дифференцируемы в любой точке (x,y), то функция $f(z) = e^z$ является аналитической во все комплексной плоскости, и

$$(e^{z})' = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = e^{x} \cos y + i e^{x} \sin y = e^{z}$$
.

ПРИМЕР 2. Найти область аналитичности функции $f(z) = \overline{z}$.

<u>Решение.</u> Так как $\overline{z} = x - iy$, то u(x, y) = x, v(x, y) = -y. Проверим выполнение условий Коши-Римана:

$$\frac{\partial u}{\partial x} = 1$$
, $\frac{\partial u}{\partial y} = 0$, $\frac{\partial v}{\partial x} = 0$, $\frac{\partial v}{\partial y} = -1$ \Rightarrow $\frac{\partial u}{\partial x} \neq \frac{\partial v}{\partial y}$.

Первое из условий Коши-Римана не выполняется ни в одной точке комплексной плоскости, следовательно, функция $f(z) = \overline{z}$ нигде не дифференцируема и нигде не аналитична.

ПРИМЕР 3. Найти область аналитичности функции $f(z) = z^2 + iz$ и вычислить производную, если это возможно.

Решение. Так как
$$f(z) = z^2 + iz = x^2 - y^2 - y + i(2xy + x)$$
, то $u(x, y) = x^2 - y^2 - y$, $v(x, y) = 2xy + x$.

Проверим выполнение условий Коши-Римана

$$\frac{\partial u}{\partial x} = 2x, \qquad \frac{\partial u}{\partial y} = -2y - 1, \qquad \Rightarrow \frac{\partial u}{\partial x} = \frac{\partial v}{\partial y},$$

$$\frac{\partial v}{\partial x} = 2y + 1, \quad \frac{\partial v}{\partial y} = 2x \qquad \Rightarrow \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$$

Условия Коши-Римана выполняются в любой точке (x, y), и функции u и v как функции действительных переменных x и y дифференцируемы в любой точке (x, y), следовательно, функция $f(z) = z^2 + iz$ является аналитической во все комплексной плоскости.

Найдем ее производную:

$$(z^2 + iz)' = \frac{\partial u}{\partial x} + i\frac{\partial v}{\partial x} = 2x + i(2y + 1) = 2x + i2y + i = 2z + i. \blacksquare$$

Восстановление аналитической функции

Функция $\varphi(x,y)$ называется *гармонической* в области D, если она в этой области имеет непрерывные частные производные второго порядка и удовлетворяет уравнению Лапласа

$$\Delta \varphi = \frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2} = 0,$$

где Δ – оператор Лапласа.

Справедливо следующее утверждение:

Если функция f(z) = u(x, y) + iv(x, y) аналитична в области D, то u(x, y) и v(x, y) являются гармоническими в D. Обратно, если u(x, y)

и v(x, y) – гармонические функции, удовлетворяющие условиям Коши-Римана, то f(z) = u(x, y) + iv(x, y) является аналитической в D.

Если u(x, y) (v(x, y)) — гармоническая функция в области D, то существует аналитическая функция f(z), для которой функция u(x, y) (v(x, y)) является действительной (мнимой) частью.

ПРИМЕР 4. Может ли функция $u = x^2 - y^2 + 2xy$, быть действительно частью некоторой аналитической функции f(z) = u + iv? Если да, то восстановить эту функцию.

<u>Решение.</u> Проверим, является ли функция u(x, y) гармонической. Так как

$$\frac{\partial u}{\partial x} = 2x + 2y, \qquad \frac{\partial^2 u}{\partial x^2} = 2,$$

$$\frac{\partial u}{\partial y} = -2y + 2x, \qquad \frac{\partial^2 u}{\partial y^2} = -2$$

$$\Rightarrow \Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 2 - 2 = 0,$$

то функция u(x, y) является гармонической и может быть действительной частью аналитической функции.

Найдем v(x, y). Применяя первое условие Коши-Римана, имеем:

$$\frac{\partial v}{\partial y} = \frac{\partial u}{\partial x} = 2x + 2y \quad \Rightarrow \quad v = \int (2x + 2y) dy = 2xy + y^2 + C(x),$$

откуда

$$\frac{\partial v}{\partial x} = 2y + C'(x).$$

Применяя второе условие Коши-Римана, получаем

$$\frac{\partial v}{\partial x} = -\frac{\partial u}{\partial y} = \frac{2y - 2x}{2} \implies C'(x) = -2x,$$

то есть $C(x) = -x^2 + C$ $(C \in \mathbb{R})$ и мнимая часть имеет вид

$$v(x, y) = 2xy + y^2 - x^2 + C$$
.

Окончательно имеем

$$f(z) = u + iv = x^{2} - y^{2} + 2xy + i(2xy + y^{2} - x^{2} + C) =$$

$$= \underbrace{x^{2} + i2xy - y^{2}}_{(x+iy)^{2}} - i\underbrace{(x^{2} + i2xy - y^{2})}_{(x+iy)^{2}} + iC = (1-i)z^{2} + iC. \blacksquare$$

Замечание. Для определения константы C необходимо задать дополнительное условие вида: $f(z_0) = c_0$.

ПРИМЕР 5. Восстановить аналитическую функцию f(z) = u + iv, если $v = x^2 + 4x - y^2$, f(0) = 1.

Решение. Так как

$$\frac{\partial v}{\partial x} = 2x + 4, \qquad \frac{\partial^2 v}{\partial x^2} = 2,$$

$$\frac{\partial v}{\partial y} = -2y, \qquad \frac{\partial^2 v}{\partial y^2} = -2$$

$$\Rightarrow \Delta v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 2 - 2 = 0,$$

то функция v(x, y) является гармонической и, следовательно, может быть мнимой частью аналитической функции.

Чтобы найти действительную часть u(x, y), воспользуемся условиями Коши-Римана:

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} = -2y \implies u = \int (-2y)dx = -2xy + C(y),$$

$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} = -2x - 4 \quad \text{if} \quad \frac{\partial u}{\partial y} = -2x + C'(y),$$

откуда C'(y) = -4, то есть C(y) = -4y + C ($C \in \mathbb{R}$) и u = -2xy - 4y + C.

Следовательно,

$$f(z) = u + iv = -2xy - 4y + C + i(x^2 + 4x - y^2) =$$

$$= i(x^2 + i2xy - y^2) + 4i(x + iy) + C = iz^2 + 4iz + C.$$

По условию f(0)=1. Подставляя z=0, получаем C=1, то есть

$$f(z) = iz^2 + 4iz + 1. \blacksquare$$

Задачи

1. Определить область аналитичности функции и найти производную, если она существует:

a).
$$f(z) = z^2 \overline{z}$$
;

6).
$$f(z) = e^{3z}$$
;

2. Восстановить аналитическую функцию f(z) = u + iv, если

a).
$$u = e^{-y} \cos x - x$$
;

a).
$$u = e^{-y} \cos x - x$$
; 6). $v = 3x + 2xy$, $f(-i) = 2$.

Ответы: 2. a). $f(z) = e^{iz} - z + iC(C \in \mathbb{R})$; **б).** $f(z) = z^2 + 3iz$.

Домашнее задание

Теоретические упражнения

- 1. Может ли функция, аналитическая в области D, быть суммой (произведением) двух функций, не аналитических в этой области?
- 2. Показать, что если функция f(z) = u + iv аналитическая в области

D, то в этой области выполняется равенство $\frac{\partial u}{\partial x} \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y} \frac{\partial v}{\partial y} = 0$.

3. Доказать, что не существует аналитической функции, для которой функция $u = x^2 - y$ являлась бы действительной частью.

Задачи

4.1. Для следующих функций определить область аналитичности. Найти производную, если она существует:

a).
$$f(z) = |z| \operatorname{Im} z;$$
 6). $f(z) = \frac{z}{z};$ B). $f(z) = e^{\overline{z}};$

$$6). \ f(z) = \frac{z}{\overline{z}};$$

B).
$$f(z) = e^{\overline{z}}$$
;

$$\Gamma). \ f(z) = \operatorname{ch} z;$$

$$g(z) = \sin(iz)$$
;

г).
$$f(z) = \cosh z$$
; д). $f(z) = \sin(iz)$; e). $f(z) = z^2 - 3z + 2i$.

4.2. Восстановить аналитическую функцию f(z) = u + iv, если

a).
$$v = x + 2$$
, $f(-2) = 3$; 6). $u = x^3 - 3xy^2 + 2$;

6).
$$u = x^3 - 3xy^2 + 2$$

B).
$$u = 2\sin x \cosh y - x$$
, $f(0) = 0$.

5. ИНТЕГРИРОВАНИЕ ФУНКЦИЙ КОМПЛЕКСНОГО ПЕРЕМЕННОГО

Пусть однозначная функция f(z) = u(x, y) + iv(x, y) определена и непрерывна в области D, а L – ориентированная кусочно-гладкая кривая, лежащая в D. Вычисление интеграла от функции f(z) по кривой L сводится к вычислению двух криволинейных интегралов второго рода от действительных функций действительных переменных x и y

$$\int_{L} f(z)dz = \int_{L} (u(x, y) + iv(x, y))d(x + iy) =$$

$$= \int_{L} u(x, y)dx - v(x, y)dy + i\int_{L} v(x, y)dx + u(x, y)dy.$$

Некоторые свойства интеграла

1°.
$$\int_{L} (f_1(z) + f_2(z))dz = \int_{L} f_1(z)dz + \int_{L} f_2(z)dz;$$

2°. $\int_{L} cf(z)dz = c \int_{L} f(z)dz;$

3°.
$$\int_{L^{+}}^{L} f(z)dz = -\int_{L^{-}}^{L} f(z)dz$$

(здесь кривые L^+ и L^- имеют противоположную ориентацию);

4°.
$$\int_{L_1 \cup L_2} f(z)dz = \int_{L_1} f(z)dz + \int_{L_2} f(z)dz.$$

Если кривая L задана параметрически z=z(t)=x(t)+iy(t), и $t=t_0$ соответствует началу кривой, а $t=t_1$ – ее концу, то

$$\int_{L} f(z)dz = \int_{t_0}^{t_1} f(z(t))z'(t)dt.$$

ПРИМЕР 1. Вычислить интеграл $\int_{T}^{Z} e^{\overline{z}} dz$, где L – отрезок прямой, соединяющий точки $z_1 = 0$ и $z_2 = -\pi + \pi i$;

 Решение.
 Параметрические уравнения

 прямой, проходящей через точки z_1 и z_2 ,

$$\begin{array}{c|c}
-\pi + \pi i & y \\
L & x \\
\hline
O & \end{array}$$

$$x = t$$
, $y = -t$ или $z = t - it$.

Тогда $\overline{z} = t + it$, dz = (1-i)dt и $t_0 = 0$, $t_1 = -\pi$. Следовательно,

$$\int_{L} e^{\overline{z}} dz = \int_{0}^{-\pi} e^{t+it} (1-i) dt = (1-i) \int_{0}^{-\pi} e^{t+it} dt = \frac{(1-i)}{(1+i)} e^{t+it} \Big|_{0}^{-\pi} = (e^{-\pi} + 1)i. \blacksquare$$

Замечание. Кривая L может быть задана функцией y = y(x), $a \le x \le b$. В этом случае переменную x можно считать параметром.

ПРИМЕР 2. Вычислить интеграл
$$\int\limits_L (\overline{z} + 2i) dz$$
, где

- а). L отрезок прямой, соединяющий точки $z_1 = 0$ и $z_2 = 1 + i$;
- б). L дуга параболы $y = x^2$, соединяющая точки z_1 и z_2 .

Решение. а). Прямая, проходящая через точки z_1 и z_2 , имеет уравнение y = x, следовательно, dy = dx. Точке $z_1 = 0$ (начало кривой) соответствует x = 0, а точке $z_2 = 1 + i$ (конец) соответствует x = 1.

Следовательно,

$$\int_{L} (\overline{z} + 2i)dz = \int_{L} (x + i(2 - y))(dx + idy) = \int_{L} xdx - (2 - y)dy + i\int_{L} (2 - y)dx + xdy = \int_{0}^{1} (x + x - 2)dx + i\int_{0}^{1} (2 - x + x)dx = -1 + 2i.$$

б). Для параболы $y = x^2$ имеем dy = 2xdx, y пределы интегрирования те же, что и в предыдущем случае. Тогда

$$\int_{L} (\overline{z} + 2i)dz = \int_{L} (x + i(2 - y))(dx + idy) = \int_{L} xdx - (2 - y)dy + i\int_{L} (2 - y)dx + xdy = \int_{0}^{1} (x + (x^{2} - 2) \cdot 2x)dx + i\int_{0}^{1} (2 - x^{2} + x \cdot 2x)dx = -1 + \frac{7}{3}i.$$

Заметим, что ответы в случаях а) и б) не совпали. Можно сделать вывод, что интеграл от неаналитической функции, вообще говоря, зависит от пути интегрирования. ■

Замечание. Если кривая L является окружностью радиуса R с центром в точке z_0 , то имеет смысл делать замену переменной $z = z_0 + Re^{i\varphi}$.

ПРИМЕР 3. Вычислить интеграл $\int_{z} z\overline{z}dz$, где L – верхняя половина окружности |z| = 2 от $z_1 = 2$ до $z_2 = -2$.

Решение. Для точек кривой L имеем

$$z = 2e^{i\varphi} \ (0 \le \varphi \le \pi),$$

откуда получаем:

$$\overline{z} = 2e^{-i\varphi}, \quad z\overline{z} = |z|^2 = 4, \quad dz = 2ie^{i\varphi}d\varphi.$$

Следовательно,

$$\int_{L} z\overline{z}dz = \int_{0}^{\pi} 4 \cdot 2ie^{i\varphi}d\varphi = 8i\int_{0}^{\pi} e^{i\varphi}d\varphi = 8e^{i\varphi}\Big|_{0}^{\pi} = -16. \blacksquare$$

Интегрирование аналитических функций

Будем называть область D ($D \subset \mathbb{C}$) односвязной, если она обладает следующим свойством: для любого контура, принадлежащего области D, часть плоскости, ограниченная этим контуром, является подмножеством D. Область, не являющаяся односвязной (область с «дырами»), называется многосвязной.

Теорема Коши. Если f(z) — однозначная и аналитическая в односвязной области D функция, то интеграл от этой функции по любому замкнутому контуру L, лежащему в области D, равен нулю:

$$\oint_{I} f(z)dz = 0$$

(контур обходится так, чтобы область, ограниченная контуром, оставалась слева, это положительное направление обхода конура).

Следствие. Если f(z) — аналитическая функция в односвязной области D, а точки z_1 и z_2 лежат в этой области, то интеграл $\int\limits_L f(z)dz$ не зависит от формы кривой L, соединяющей точки z_1 и z_2 , а зависит только от точек z_1 и z_2 . Обозначение: $\int\limits_L f(z)dz = \int\limits_{z_1}^{z_2} f(z)dz$.

Для аналитических функций справедлива формула Ньютона-Лейбница

$$\int_{z_1}^{z_2} f(z)dz = F(z_2) - F(z_1),$$

где F(z) – первообразная для функции f(z) в области D.

Справедлива также формула интегрирования по частям

$$\int_{z_1}^{z_2} f(z)g'(z)dz = \left[f(z)g(z) \right]_{z_1}^{z_2} - \int_{z_1}^{z_2} f'(z)g(z)dz.$$

Теорема Коши (для многосвязной области). Если функция f(z) однозначна и аналитична в многосвязной области D и на ее границе L, где L состоит из конечного числа замкнутых кусочно-гладких кривых ($L = \Gamma \cup \gamma_1 \cup \gamma_2 \cup ... \cup \gamma_n$), то

$$\oint_L f(z)dz = 0.$$

Из свойства 4° следует, что

$$\oint_{\Gamma} f(z)dz + \oint_{\gamma_{1}^{-}} f(z)dz + \oint_{\gamma_{2}^{-}} f(z)dz + \dots + \oint_{\gamma_{n}^{-}} f(z)dz = 0,$$

откуда получаем

$$\oint_{\Gamma} f(z)dz = \oint_{\gamma_1^+} f(z)dz + \oint_{\gamma_2^+} f(z)dz + \dots + \oint_{\gamma_n^+} f(z)dz.$$

Знаки «+» и «-» в обозначениях контуров указывают на направление обхода.

ПРИМЕР 4. Вычислить интеграл $\int\limits_{L}e^{z}dz$, где L — дуга параболы $y=x^{2}$ от точки $z_{1}=0$ до точки $z_{2}=1+i$.

<u>Решение.</u> Так как подынтегральная функция аналитична всюду в комплексной плоскости, то интеграл не зависит от пути интегрирования, а зависит только от точек $z_1 = 0$ и $z_2 = 1 + i$. Поскольку функция $F(z) = e^z$ является первообразной функции $f(z) = e^z$, применим формулу Ньютона-Лейбница

$$\int_{0}^{1+i} e^{z} dz = e^{z} \Big|_{0}^{1+i} = e^{1+i} - e^{0} = e \cos 1 - 1 + ie \sin 1. \blacksquare$$

ПРИМЕР 5. Вычислить интеграл $\int_{0}^{i} z \sin z dz$.

<u>Решение.</u> Под интегралом аналитические функции. Применим формулу интегрирования по частям

$$\int_{0}^{i} z \sin z dz = -z \cos z \Big|_{0}^{i} + \int_{0}^{i} \cos z dz = -i \cos i + \sin z \Big|_{0}^{i} =$$

$$= -i \cos i + \sin i = -i/e. \blacksquare$$

Интегральная формула Коши

Если функция f(z) аналитична в области D, ограниченной кусочно-гладким замкнутым контуром L, и на самом контуре, то справедлива *интегральная формула Коши*

$$f(z_0) = \frac{1}{2\pi i} \oint_L \frac{f(z)}{z - z_0} dz \quad (z_0 \in D)$$

Контур L обходится так, чтобы область D оставалась слева.

ПРИМЕР 6. Вычислить интегралы:

a).
$$\oint_{|z+2i|=1} \frac{(z^2+3)e^z}{z} dz; \quad \text{f). } \oint_{|z|=2} \frac{(z^2+3)e^z}{z} dz.$$

<u>Решение.</u> а). Так как подынтегральная функция аналитична в области, ограниченной контуром |z+2i|=1, и на самом контуре, то по теореме Коши

$$\oint_{|z+2i|=1} \frac{(z^2+3)e^z}{z} dz = 0.$$

б). Функция $f(z) = (z^2 + 3)e^z$ — аналитическая в области, ограниченной контуром |z| = 2, и на самом контуре, а точка $z_0 = 0$, в которой знаменатель

подынтегральной функции обращается в нуль, принадлежит указанной области. Применим интегральную формулу Коши:

$$f(0) = \frac{1}{2\pi i} \oint_{|z|=2} \frac{(z^2 + 3)e^z}{z - 0} dz \implies \oint_{|z|=2} \frac{(z^2 + 3)e^z}{z - 0} dz = 2\pi i f(0) = 6\pi i . \blacksquare$$

ПРИМЕР 7. Вычислить интегралы:

a).
$$\oint \frac{\cos z}{z^2 - 2z} dz$$
; 6). $\oint \frac{\cos z}{|z - 2z|} dz$; B). $\oint \frac{\cos z}{z^2 - 2z} dz$.

<u>Решение.</u> а). Знаменатель подынтегральной функции обращается в нуль в двух точках: $z_1 = 0$ и $z_2 = 2$. В области, ограниченной контуром |z| = 1, находится только точка $z_1 = 0$. Преобразуем подынтегральную функцию

$$\oint_{|z|=1} \frac{\cos z}{z^2 - 2z} dz = \oint_{|z|=1} \frac{\frac{\cos z}{z - 2}}{z} dz.$$

Так как функция $f(z) = \frac{\cos z}{z-2}$ аналитична в указанной области и на ее границе, то применяя интегральную формулу Коши, получаем

$$\oint_{|z|=1} \frac{\cos z}{z^2 - 2z} dz = 2\pi i \frac{\cos z}{z - 2} \bigg|_{z=0} = -\pi i.$$

б). В области, ограниченной контуром |z-2|=1, находится точка $z_2=2$. Функция $f(z)=\frac{\cos z}{z}$ аналитична в этой области и на ее границе, поэтому применяя интегральную

формулу Коши, имеем $\frac{\cos z}{\cos z}$

$$\oint_{|z-2|=1} \frac{\cos z}{z^2 - 2z} dz = \oint_{|z-2|=1} \frac{\frac{\cos z}{z}}{z - 2} dz = 2\pi i \frac{\cos z}{z} \bigg|_{z=2} = i\pi \cos 2.$$

в). Внутри области, ограниченной окружностью |z|=3, находятся обе точки $z_1=0$ и $z_2=2$. Интегральную формулу Коши применять нельзя.

<u>Первый способ.</u> Представим дробь $\frac{1}{z^2 - 2z}$ в виде суммы простейших дробей:

$$\frac{1}{z^2 - 2z} = -\frac{1}{2} \cdot \frac{1}{z} + \frac{1}{2} \cdot \frac{1}{z - 2}.$$

Подставив полученное выражение в интеграл и применяя свойство 1° и интегральную формулу Коши к каждому слагаемому, получаем

$$\oint_{|z|=3} \frac{\cos z}{z^2 - 2z} dz = -\frac{1}{2} \oint_{|z|=3} \frac{\cos z}{z} dz + \frac{1}{2} \oint_{|z|=3} \frac{\cos z}{z - 2} dz =$$

$$= -\pi i \cos z \Big|_{z=0} + \pi i \cos z \Big|_{z=2} = \pi i (\cos 2 - 1).$$

<u>Второй способ.</u> Воспользуемся теоремой Коши для многосвязной области. Для этого окружим точки $z_1 = 0$ и $z_2 = 2$ окружностями γ_1 и γ_2 малых радиусов так, y_1

чтобы эти окружности не пересекались и лежали внутри круга |z| < 3. Функция

$$\begin{array}{c|c} y \\ \hline \gamma_1 & \gamma_2 \\ \hline O & 2 \\ \end{array}$$

$$f(z) = \frac{\cos z}{z^2 - 2z}$$
 аналитична в многосвязной

области D, ограниченной контурами |z|=3, γ_1 и γ_2 , и на самих контурах, причем внешний контур проходится в положительном направлении, а внутренние — в отрицательном. По теореме Коши для многосвязной области имеем

$$\oint_{|z|=3} \frac{\cos z}{z^2 - 2z} dz + \oint_{\gamma_1^-} \frac{\cos z}{z^2 - 2z} dz + \oint_{\gamma_2^-} \frac{\cos z}{z^2 - 2z} dz = 0,$$

следовательно,

$$\oint_{|z|=3} \frac{\cos z}{z^2 - 2z} dz = \oint_{\gamma_1^+} \frac{\cos z}{z^2 - 2z} dz + \oint_{\gamma_2^+} \frac{\cos z}{z^2 - 2z} dz.$$

Применяя формулу Коши к слагаемым в правой части, получаем

$$\oint_{|z|=3} \frac{\cos z}{z^2 - 2z} dz = \oint_{\gamma_1^+} \frac{\cos z}{z} dz + \oint_{\gamma_2^+} \frac{\cos z}{z - 2} dz =$$

$$= 2\pi i \frac{\cos z}{z - 2} \Big|_{z=0} + 2\pi i \frac{\cos z}{z} \Big|_{z=2} = \pi i (\cos 2 - 1) . \blacksquare$$

Если f(z) – аналитическая функция в области D и на ее границе L, то она имеет производные всех порядков и справедлива формула

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_L \frac{f(z)}{(z - z_0)^{n+1}} dz, \quad z_0 \in D, \quad n = 1, 2, \dots$$
 (*)

ПРИМЕР 8. Вычислить интеграл
$$\oint_{|z|=2} \frac{\cosh z dz}{(z-1)^2(z+1)}$$
.

<u>Решение.</u> В область, ограниченную контуром |z|=2, попали две точки $z_1=-1$ и $z_2=1$.

Так как

$$\frac{1}{(z-1)^2(z+1)} = -\frac{1}{4}\frac{1}{z-1} + \frac{1}{4}\frac{1}{z+1} + \frac{1}{2}\frac{1}{(z-1)^2},$$

TO

$$\oint_{|z|=2} \frac{\operatorname{ch} z dz}{(z-1)^2 (z+1)} = -\frac{1}{4} \oint_{|z|=2} \frac{\operatorname{ch} z dz}{(z-1)} + \frac{1}{4} \oint_{|z|=2} \frac{\operatorname{ch} z dz}{(z+1)} + \frac{1}{2} \oint_{|z|=2} \frac{\operatorname{ch} z dz}{(z-1)^2} .$$

Применяя к первым двум интегралам интегральную формулу Коши, а к третьему формулу (*), получаем:

$$\oint_{|z|=2} \frac{\operatorname{ch} z dz}{(z-1)} = 2\pi i \operatorname{ch} 1, \quad \oint_{|z|=2} \frac{\operatorname{ch} z dz}{(z+1)} = 2\pi i \operatorname{ch} 1,$$

$$\oint_{|z|=2} \frac{\operatorname{ch} z dz}{(z-1)^2} = 2\pi i (\operatorname{ch} z)' \Big|_{z=1} = 2\pi i \operatorname{sh} 1.$$

Окончательно, имеем

$$\oint_{|z|=2} \frac{\operatorname{ch} z dz}{(z-1)^2 (z+1)} = -\frac{1}{2} \pi i \operatorname{ch} 1 + \frac{1}{2} \pi i \operatorname{ch} 1 + \pi i \operatorname{sh} 1 = \pi i \operatorname{sh} 1. \blacksquare$$

Задачи

- 1. Вычислить интеграл $\int_{L} (1+i-2\overline{z})dz$, где
 - а). L отрезок прямой, соединяющий точки $z_1 = 0$ и $z_2 = 1 + 2i$;
 - б). L дуга окружности |z| = 1, $0 \le \arg z \le \pi/2$.
- 2. Вычислить интеграл $\int \cos z dz$, где L отрезок прямой, соединяющий точки $z_1 = \pi/2$ и $z_2 = \pi + i$.
- 3. Вычислить интеграл $\int_{0}^{i} (z-i)e^{-z}dz$.
- 4. Вычислить интегралы:

a).
$$\oint_{|z-i|=1} \frac{e^{iz}}{z^2+1} dz$$
; 6). $\oint_{|z|=1} \frac{\sin iz}{z^2-4} dz$; B). $\oint_{|z|=2} \frac{e^z}{z^2-z} dz$.

г).
$$\oint_{|z|=1} \frac{\cos z}{z^5} dz$$
; д). $\oint_{|z-1|=1} \frac{dz}{(z+1)^3 (z-1)^2}$.

Ответы: 1. a). -6+3i; **б).** $-2-i\pi$. **2.** $-(1+i\sinh 1)$. **3.** $1-\cos 1+i(\sin 1-1)$.

4. a).
$$\pi e^{-1}$$
; **б).** 0; **в).** $2\pi i(e-1)$; **г).** $\frac{\pi i}{12}$; д). $-\frac{3\pi i}{8}$.

Домашнее задание

- 5.1. Вычислить интеграл $\int \operatorname{Re} z dz$, где L ломаная, соединяющая точки $z_1 = 0$, $z_2 = 2$, $z_3 = 2 + i$.
- 5.2. Вычислить интеграл $\int\limits_{L} (i\overline{z}+z^2)dz$, где L часть окружности $|z|=2, \ \pi/2 \le \arg z \le \pi$.
- 5.3. Вычислить интеграл $\int\limits_{r} |z| dz$, где L отрезок прямой от точки $z_1 = 0$ до точки $z_2 = 3 + 2i$.
- 5.4. Вычислить интеграл $\int (z^2 3iz)dz$, где L отрезок прямой от точки $z_1 = 1$ до точки $z_2 = i$.
- 5.5. Вычислить интегралы:

a).
$$\int_{-i}^{i} ze^{z^2} dz;$$

$$6). \int_{1}^{1} z^{2} \cos z dz.$$

5.6. Вычислить интегралы:

a).
$$\oint_{|z-1|=1} \frac{\sin \frac{\pi z}{2}}{z^2 + 2z - 3} dz;$$
 6).
$$\oint_{|z+1|=3} \frac{\sin \frac{\pi z}{2}}{z^2 + 2z - 3} dz;$$
 8).
$$\oint_{|z|=1} \frac{e^{2z}}{z^2 - 3z} dz;$$
 7).
$$\oint_{|z|=4} \frac{e^{2z}}{z^2 - 3z} dz;$$

$$6). \oint_{|z+1|=3} \frac{\sin \frac{\pi z}{2}}{z^2 + 2z - 3} dz;$$

B).
$$\oint_{|z|=1} \frac{e^{2z}}{z^2 - 3z} dz$$
;

$$\Gamma). \oint_{|z|=4} \frac{e^{2z}}{z^2 - 3z} dz$$

$$\mathbf{\Pi}). \oint_{|z|=1} \frac{1-\sin z}{z^2} dz;$$

д).
$$\oint_{|z|=1} \frac{1-\sin z}{z^2} dz$$
; e). $\oint_{|z-1|=1} \frac{z \operatorname{sh} z}{(z-1)^2} dz$.

6. РЯДЫ ТЕЙЛОРА И ЛОРАНА

I. Функция f(z), однозначная и аналитическая в круге $|z-z_0| < R$, может быть единственным образом разложена в этом круге в сходящийся *ряд Тейлора*

$$f(z) = \sum_{n=0}^{+\infty} c_n (z - z_0)^n,$$

коэффициенты c_n которого вычисляются по формулам

$$c_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz = \frac{f^{(n)}(z_0)}{n!} \quad (n = 0, 1, 2, ...),$$

где γ — произвольная окружность с центром в точке $z=z_0$, целиком лежащая внутри круга $|z-z_0| < R$.

Разложения элементарных функций в ряд Тейлора

1.
$$e^z = 1 + \frac{z}{1!} + \frac{z^2}{2!} + \frac{z^3}{3!} + \dots = \sum_{n=0}^{+\infty} \frac{z^n}{n!}, \quad z \in \mathbb{C};$$

2.
$$\sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} - \frac{z^7}{7!} + \dots = \sum_{n=0}^{+\infty} \frac{(-1)^n z^{2n+1}}{(2n+1)!}, \quad z \in \mathbb{C};$$

3.
$$\cos z = 1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \dots = \sum_{n=0}^{+\infty} \frac{(-1)^n z^{2n}}{(2n)!}, \quad z \in \mathbb{C};$$

4.
$$\ln(1+z) = z - \frac{z^2}{2} + \frac{z^3}{3} - \frac{z^4}{4} + \dots = \sum_{n=1}^{+\infty} \frac{(-1)^{n+1} z^n}{n}, \quad |z| < 1;$$

5.
$$(1+z)^{\alpha} = 1 + \frac{\alpha}{1!}z + \frac{\alpha(\alpha-1)}{2!}z^2 + \frac{\alpha(\alpha-1)(\alpha-2)}{3!}z^3 + \dots =$$

= $1 + \alpha z + \sum_{n=0}^{+\infty} \frac{\alpha(\alpha-1)...(\alpha-n+1)}{n!}z^n$, $|z| < 1$.

В частности,

6.
$$\frac{1}{1-z} = 1 + z + z^2 + z^3 + \dots = \sum_{n=0}^{+\infty} z^n, \quad |z| < 1;$$

7.
$$\frac{1}{1+z} = 1 - z + z^2 - z^3 + \dots = \sum_{n=0}^{+\infty} (-1)^n z^n, \quad |z| < 1.$$

ПРИМЕР 1. Функцию $f(z) = \frac{z+1}{z^2 + 2z - 3}$ разложить в ряд

Тейлора по степеням z.

<u>Решение.</u> Представляя данную функция в виде суммы простейших дробей и используя разложения **6** и **7**, имеем

$$f(z) = \frac{z+1}{z^2 + 2z - 3} = \frac{1}{2(z-1)} + \frac{1}{2(z+3)} = -\frac{1}{2} \cdot \frac{1}{1-z} + \frac{1}{6} \cdot \frac{1}{1+\frac{z}{3}} =$$

$$= -\frac{1}{2} \sum_{n=0}^{+\infty} z^n + \frac{1}{6} \sum_{n=0}^{+\infty} (-1)^n \left(\frac{z}{3}\right)^n = \sum_{n=0}^{+\infty} \left(-\frac{1}{2} + \frac{(-1)^n}{6 \cdot 3^n}\right) z^n.$$

$$|z| < 1 \Rightarrow |z| < 3$$

Полученный ряд сходится в круге |z| < 1. ■

ПРИМЕР 2. Функцию $f(z) = \ln(2+3z)$ разложить в ряд Тейлора по степеням z-1.

<u>Решение.</u> Преобразуя исходную функцию и используя разложение **4**, получим

$$\ln(2+3z) = \ln(5+3(z-1)) = \ln\left(5\left(1+\frac{3(z-1)}{5}\right)\right) = \ln 5 + \ln\left(1+\frac{3(z-1)}{5}\right)$$
$$= \ln 5 + \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{n} \left(\frac{3(z-1)}{5}\right)^n = \ln 5 + \sum_{n=1}^{+\infty} \frac{(-1)^{n+1}3^n}{n5^n} (z-1)^n.$$

Ряд сходится при условии $\left| \frac{3(z-1)}{5} \right| < 1$, то есть $|z-1| < \frac{5}{3}$.

■

II. Функция f(z), однозначная и аналитическая в кольце $r < |z - z_0| < R$ ($0 \le r < R \le +\infty$), единственным образом разлагается в этом кольце в сходящийся *ряд Лорана*

$$f(z) = \sum_{n=-\infty}^{+\infty} c_n (z - z_0)^n = \sum_{n=1}^{+\infty} \frac{c_{-n}}{(z - z_0)^n} + \sum_{n=0}^{+\infty} c_n (z - z_0)^n,$$

коэффициенты которого находятся по формулам

$$c_n = \frac{1}{2\pi i} \oint_{\gamma} \frac{f(z)}{(z - z_0)^{n+1}} dz \quad (n = 0, \pm 1, \pm 2, ...),$$

где γ — произвольная окружность с центром в точке $z=z_0$, целиком лежащая внутри кольца $r<\left|z-z_0\right|< R$.

При разложении в ряд Лорана используют стандартные разложения элементарных функций в ряд Тейлора.

ПРИМЕР 3. Найти все разложения функции $f(z) = \frac{5-z}{z^2-z-2}$ по степеням z.

I:
$$|z| < 1$$
;
II: $1 < |z| < 2$;

III:
$$2 < |z| < +\infty$$
.

Для каждой из указанных областей найдем разложение функции f(z) по степеням z. Для этого разложим данную дробь на простейшие дроби и используем разложения $\mathbf{6}$ и $\mathbf{7}$.

В круге |z| < 1 имеем следующее разложение в ряд Тейлора:

$$\frac{5-z}{z^2-z-2} = \frac{1}{z-2} - \frac{2}{z+1} = -\frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}} - 2 \cdot \frac{1}{1+z} =$$

$$= -\frac{1}{2} \sum_{n=0}^{+\infty} \left(\frac{z}{2}\right)^n - 2 \sum_{n=0}^{+\infty} (-1)^n z^n = -\sum_{n=0}^{+\infty} \left(\frac{1}{2^{n+1}} + (-1)^n\right) z^n.$$

В кольце 1 < |z| < 2 функция раскладывается в ряд Лорана:

$$\frac{5-z}{z^2-z-2} = \frac{1}{z-2} - \frac{2}{z+1} = -\frac{1}{2} \cdot \frac{1}{1-\frac{z}{2}} - \frac{2}{z} \cdot \frac{1}{1+\frac{1}{z}} =$$

$$= -\frac{1}{2} \sum_{n=0}^{+\infty} \left(\frac{z}{2}\right)^n - \frac{2}{z} \sum_{n=0}^{+\infty} \frac{(-1)^n}{z^n} = -\sum_{n=0}^{+\infty} \frac{z^n}{2^{n+1}} - 2\sum_{n=0}^{+\infty} \frac{(-1)^n}{z^{n+1}}.$$

$$|z| < 2 \qquad |1/z| < 1 \Rightarrow |z| > 1 \qquad 1 < |z| < 2$$

Для кольца $2 < |z| < +\infty$ имеем разложение в ряд Лорана:

$$\frac{5-z}{z^2-z-2} = \frac{1}{z-2} - \frac{2}{z+1} = \frac{1}{z} \cdot \frac{1}{1-\frac{2}{z}} - \frac{2}{z} \cdot \frac{1}{1+\frac{1}{z}} =$$

$$= \frac{1}{z} \sum_{n=0}^{+\infty} \frac{2^n}{z^n} - \frac{2}{z} \sum_{n=0}^{+\infty} \frac{(-1)^n}{z^n} = \sum_{n=0}^{+\infty} \frac{2^n}{z^{n+1}} - 2 \sum_{n=0}^{+\infty} \frac{(-1)^n}{z^{n+1}} = \sum_{n=0}^{+\infty} \frac{2^n - 2 \cdot (-1)^n}{z^{n+1}}.$$

$$|z| > 2$$

Итак, получены три различных разложения одной и той же функции.■

ПРИМЕР 4. Функцию $f(z) = \frac{2z-3}{z^2-3z+2}$ разложить в Лорана в окрестности точки z = 2.

<u>Решение.</u> Данная функция имеет особые точки $z_1 = 1$ и $z_2 = 2$. Существуют два O(1)кольца с центром в точке $z_2 = 2$, в которых

данная функция является аналитической:

I:
$$0 < |z-2| < 1$$
;

II:
$$1 < |z-2| < +\infty$$
.

По условию задачи требуется найти разложение только в первом кольце. Представив функцию в виде суммы простейших дробей и используя разложения **6** и **7**, получаем

$$\frac{2z-3}{z^2-3z+2} = \frac{1}{z-2} + \frac{1}{z-1} = \frac{1}{z-2} + \frac{1}{1+(z-2)} = \frac{1}{z-2} + \sum_{n=0}^{+\infty} (-1)^n (z-2)^n . \blacksquare$$

ПРИМЕР 5. Разложить в ряд Лорана функцию $f(z) = \frac{\sin z}{z^2}$ в окрестности точки z = 0.

<u>Решение.</u> Данная функция является аналитической в кольце $0 < |z| < +\infty$ и раскладывается в этом кольце в ряд Лорана. Используя разложение 2, получаем

$$\frac{\sin z}{z^2} = \frac{1}{z^2} \left(\frac{z}{1!} - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots \right) = \frac{1}{z} - \frac{z}{3!} + \frac{z^3}{5!} - \dots = \frac{1}{z} + \sum_{n=1}^{+\infty} \frac{(-1)^n z^{2n-1}}{(2n+1)!}. \blacksquare$$

ПРИМЕР 6. Разложить в ряд Лорана функцию $f(z) = z^2 e^{1/z}$ в окрестности точки z = 0.

<u>Решение.</u> Функция f(z) является аналитической в кольце $0 < |z| < +\infty$ и раскладывается в нем в ряд Лорана. Применим разложение **1**:

$$z^{2}e^{1/z} = z^{2}\left(1 + \frac{1}{z \cdot 1!} + \frac{1}{z^{2} \cdot 2!} + \frac{1}{z^{3} \cdot 3!} + \frac{1}{z^{4} \cdot 4!} + \dots\right) =$$

$$= z^{2} + z + \frac{1}{2} + \frac{1}{z \cdot 3!} + \frac{1}{z^{2} \cdot 4!} + \dots = z^{2} + z + \frac{1}{2} + \sum_{n=1}^{+\infty} \frac{1}{z^{n} \cdot (n+2)!}. \blacksquare$$

Задачи

- 1. Разложить функцию $f(z) = \frac{z+1}{z^2+4z-5}$ в ряд Тейлора по степеням z. Указать область сходимости.
- 2. Разложить функцию $f(z) = \frac{1}{5-2z}$ в ряд Тейлора по степеням z+1. Указать область сходимости.
- 3. Разложить функцию $f(z) = e^z$ в ряд Тейлора по степеням z+4. Указать область сходимости.
- 4. Найти все разложения функции $f(z) = \frac{1}{z^2 5z + 6}$ по степеням z.
- 5. Функцию $f(z) = \frac{1 e^{-z}}{z^3}$ разложить в ряд Лорана в окрестности точки $z_0 = 0$.
- 6. Функцию $f(z) = \frac{z+1}{z+2}$ разложить в ряд Лорана в кольце $3 < |z-1| < +\infty$.

Ответы: 1.
$$\frac{1}{3} \sum_{n=0}^{+\infty} \left(-1 + 2 \frac{(-1)^n}{5^{n+1}} \right) z^n, |z| < 1.$$
 2. $\sum_{n=0}^{+\infty} \frac{2^n (z+1)^n}{7^{n+1}}, |z+1| < \frac{7}{2}.$

3.
$$e^{-4} \sum_{n=0}^{+\infty} \frac{(z+4)^n}{n!}, z \in \mathbb{C}$$
. 4. $\sum_{n=0}^{+\infty} \left(\frac{1}{2^{n+1}} - \frac{1}{3^{n+1}} \right) z^n, |z| < 2;$

$$-\sum_{n=0}^{+\infty} \frac{z^n}{3^{n+1}} - \sum_{n=0}^{+\infty} \frac{2^n}{z^{n+1}}, 2 < |z| < 3; \sum_{n=0}^{+\infty} \frac{3^n - 2^n}{z^{n+1}}, 3 < |z| < +\infty.$$

5.
$$\frac{1}{z^2} - \frac{1}{2z} + \sum_{n=0}^{+\infty} \frac{(-1)^n z^n}{(n+3)!}, 0 < |z| < +\infty$$
. **6.** $1 - \sum_{n=0}^{+\infty} \frac{(-1)^n 3^n}{(z-1)^{n+1}}$.

Домашнее задание

6.1. Следующие функции разложить в ряд Тейлора и указать область сходимости:

a).
$$f(z) = \frac{z}{z^2 + 3}$$
 по степеням z ;

б).
$$f(z) = \ln(3 - 2z - z^2)$$
 по степеням z ;

в).
$$f(z) = \cos z$$
 по степеням $z - \frac{\pi}{4}$;

г).
$$f(z) = \frac{z}{2z+1}$$
 по степеням $z-1$.

6.2. Найти все разложения функции $f(z) = \frac{z+2}{z^2 + 2z - 8}$

- а). по степеням z;
- б). по степеням z-2.

6.3. Разложить следующие функции в ряд Лорана в окрестности точки $z_0 = 0$:

a).
$$f(z) = z^4 \cos \frac{2}{z}$$
; 6). $f(z) = \frac{z^5 - 2z^3 + 3}{z^4}$; B). $f(z) = \frac{\sin^2 z}{z}$.

6.4. Разложить следующие функции в ряд Лорана в указанных кольцах:

a).
$$f(z) = \frac{1}{(z-2)(z-3)}$$
, $2 < |z| < 3$;

6).
$$f(z) = \frac{1}{(z-2)(z-3)}$$
, $0 < |z-3| < 1$;

B).
$$f(z) = \frac{1}{z^2 + 1}$$
, $0 < |z - i| < 2$.

7. ИЗОЛИРОВАННЫЕ ОСОБЫЕ ТОЧКИ

Нули функции

Пусть f(z) – функция, аналитическая в точке z_0 .

Точка z_0 называется **нулем k-го порядка функции** f(z), если выполняются условия:

$$f(z_0) = 0$$
, $f'(z_0) = 0$, ..., $f^{(k-1)}(z_0) = 0$, $f^{(k)}(z_0) \neq 0$.

Если k = 1, то z_0 называется **простым нулем**.

Для определения порядка нуля функции можно использовать следующие утверждения:

1. Точка z_0 — нуль k-го порядка функции $f(z) \Leftrightarrow$ существует окрестность точки z_0 , в которой функция f(z) может быть представлена в виде

$$f(z) = (z - z_0)^k \varphi(z),$$

где функция $\varphi(z)$ аналитична в точке z_0 , и $\varphi(z_0) \neq 0$.

2. Точка z_0 — нуль k-го порядка функции $f(z) \Leftrightarrow$ разложение функции f(z) в ряд Тейлора в окрестности точки z_0 имеем следующий вид

$$f(z) = c_k (z - z_0)^k + c_{k+1} (z - z_0)^{k+1} + \dots = \sum_{n=k}^{+\infty} c_n (z - z_0)^n \quad (c_k \neq 0).$$

3. Если точка z_0 является нулем k-го порядка функции $f_1(z)$ и нулем l-го порядка функции $f_2(z)$, то точка z_0 является нулем (k+l)-го порядка функции $f_1(z)\cdot f_2(z)$.

ПРИМЕР 1. Найти нули функции $f(z) = z^3 \sin z$ и определить их порядки.

<u>Решение.</u> Решая уравнение $z^3 \sin z = 0$, получаем нули данной функции: $z_n = \pi n \ (n = 0, \pm 1, \pm 2, ...)$.

Рассмотрим точку z = 0. Так как разложение функции f(z) в ряд Тейлора в окрестности этой точки имеет вид

$$f(z) = z^3 \sin z = z^3 \left(z - \frac{z^3}{3!} + \frac{z^5}{5!} - \dots \right) = z^4 - \frac{z^6}{3!} + \frac{z^8}{5!} - \dots,$$

то точка z = 0 является нулем 4-го порядка функции f(z).

Рассмотрим точки $z_n = \pi n \ (n = \pm 1, \pm 2,...)$. Так как

$$f(\pi n) = 0$$
, $f'(\pi n) = (3z^2 \sin z + z^3 \cos z)|_{z=\pi n} \neq 0$,

то $z_n = \pi n \ (n = \pm 1, \pm 2,...)$ – простые нули функции $f(z) = z^3 \sin z$.

ПРИМЕР 2. Найти нули функции $f(z) = z^4 + 9z^2$ и определить их порядки.

<u>Решение.</u> Так как $f(z) = z^4 + 9z^2 = z^2(z+3i)(z-3i)$, то точка z = 0 является нулем 2-го порядка, а точки $z = \pm 3i$ — простые нули функции f(z).■

Изолированные особые точки (конечные)

Особая точка z_0 $(z_0 \neq \infty)$ называется **изолированной особой точкой** функции f(z), если существует такая окрестность этой точки, в которой нет других особых точек.

Изолированная особая точка z_0 называется устранимой особой точкой функции f(z), если существует конечный предел $\lim_{z \to z_0} f(z)$.

Изолированная особая точка z_0 называется **полюсом** функции f(z), если $\lim_{z \to z_0} f(z) = \infty$.

Точка z_0 называется **полюсом k-го порядка** функции f(z), если эта точка является нулем k-го порядка функции $\varphi(z) = \frac{1}{f(z)}$. Если k=1, то полюс называется **простым**.

Изолированная особая точка z_0 называется *существенно особой точкой* функции f(z), если $\lim_{z \to z_0} f(z)$ не существует.

Ряд Лорана в окрестности изолированной особой точки

Определить характер изолированной особой точки z_0 можно с помощью разложения функции f(z) в ряд Лорана в окрестности этой точки:

$$f(z) = \sum_{n=1}^{+\infty} \frac{c_{-n}}{(z-z_0)^n} + \sum_{n=0}^{+\infty} c_n (z-z_0)^n , \quad 0 < \left|z-z_0\right| < R .$$

 z_0 — *устранимая особая точка* \Leftrightarrow ряд Лорана не содержит главной части, то есть

$$f(z) = c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + c_3(z - z_0)^3 + \dots = \sum_{n=0}^{+\infty} c_n(z - z_0)^n.$$

 z_0 — *полюс k-го порядка* \Leftrightarrow главная часть ряда Лорана содержит конечное число слагаемых, то есть

$$f(z) = \underbrace{\frac{c_{-k}}{(z-z_0)^k} + ... + \frac{c_{-1}}{z-z_0}}_{\text{главная часть}} + \underbrace{\sum_{n=0}^{+\infty} c_n (z-z_0)^n}_{\text{правильная часть}} \quad (c_{-k} \neq 0) \, .$$

 z_0 — *существенно особая точка* \Leftrightarrow главная часть ряда Лорана содержит бесконечно много слагаемых, то есть бесконечно много отрицательных степеней $(z-z_0)$.

Признаки полюса

- **1°.** Точка z_0 является полюсом k-го порядка функции f(z), если f(z) может быть представлена в виде $f(z) = \frac{\varphi(z)}{(z-z_0)^k}$, где $\varphi(z)$ функция, аналитическая в точке z_0 , и $\varphi(z_0) \neq 0$.
- **2°.** Точка z_0 является полюсом k-го порядка функции f(z), если существует $\lim_{z\to z_0} \left[f(z)(z-z_0)^k \right] = C \neq 0$.
- **3°.** Если $f(z) = \frac{f_1(z)}{f_2(z)}$, и точка z_0 является нулем k-го порядка функции $f_1(z)$ и нулем l-го порядка функции $f_2(z)$, то при $k \ge l$ точка z_0 является устранимой особой точкой функции f(z), при k < l точка z_0 полюс порядка l k.

<u>Решение.</u> Данная функция имеет две конечные изолированные особые точки: $z_1 = \pi, \ z_2 = 0$.

Рассмотрим $z_1 = \pi$:

$$\lim_{z \to \pi} \frac{\sin z}{z^2 (z - \pi)} = -\lim_{z \to \pi} \frac{\sin(z - \pi)}{z^2 (z - \pi)} = -\frac{1}{\pi^2} \quad \Rightarrow \quad z_1 = \pi - \text{yctp.oc.t.}$$

Рассмотрим $z_2 = 0$:

$$\lim_{z \to 0} \frac{\sin z}{z^2 (z - \pi)} = \lim_{z \to 0} \frac{1}{z (z - \pi)} = \infty \implies z_2 = 0 - \text{полюс}.$$

Найдем порядок полюса, используя, например, признак 2°:

$$\lim_{z\to 0} \big[f(z) \cdot z \big] = \lim_{z\to 0} \frac{\sin z}{z(z-\pi)} = -\frac{1}{\pi} \neq 0 \quad \Rightarrow \quad z_2 = 0 - \text{простой полюс.} \blacksquare$$

ПРИМЕР 4. Найти конечные особые точки функции $f(z) = \frac{\cos z - 1}{z^4} \text{ и определить их тип.}$

<u>Решение.</u> Функция f(z) имеет единственную конечную особую точку $z_0=0$. Разложим функцию в ряд Лорана в окрестности этой точки $(0<|z|<+\infty)$:

$$\frac{\cos z - 1}{z^4} = \frac{1}{z^4} \left(1 - \frac{z^2}{2!} + \frac{z^4}{4!} - \frac{z^6}{6!} + \frac{z^8}{8!} - \dots - 1 \right) = -\frac{1}{2z^2} \underbrace{+\frac{1}{4!} - \frac{z^2}{6!} + \frac{z^4}{8!} - \dots}_{\text{правильная часть}},$$

Главная часть ряда Лорана содержит конечное число слагаемых. Так как $c_{-2}=-1/2\neq 0$, то точка $z_0=0$ — полюс второго порядка.

ПРИМЕР 5. Найти конечные особые точки функции $f(z) = \frac{z+1}{(z-2)^2(z+4)^3(z-1)^4}$ и определить их тип.

<u>Решение.</u> Функция f(z) имеет изолированные особые точки $z_1=2,\ z_2=-4,\ z_3=1,\$ которые являются ее полюсами, так как $\lim_{z\to z_n} f(z)=\infty\ (n=1;2;3).$

Чтобы определить порядок полюса $z_1=2$, используем, например, признак ${\bf 1}^{\rm o}$. Так как функцию f(z) можно представить в виде

$$f(z) = \frac{\frac{z+1}{(z+4)^3(z-1)^4}}{(z-2)^2} = \frac{\varphi(z)}{(z-2)^2},$$

где $\varphi(z)$ — функция, аналитическая в точке $z_1=2$, и $\varphi(2)\neq 0$, то точка $z_1=2$ является полюсом второго порядка. Аналогично можно показать, что точка $z_2=-4$ — полюс третьего порядка, а точка $z_1=1$ — полюс четвертого порядка.

ПРИМЕР 6. Найти конечные особые точки функции $f(z) = \sin \frac{1}{z+3}$ и определить их тип.

<u>Решение.</u> Функция f(z) имеет единственную конечную изолированную особую точку $z_0 = -3$. Разложим функцию f(z) в ряд Лорана в окрестности этой точки:

$$\sin\frac{1}{z+3} = \frac{1}{z+3} - \frac{1}{3!} \cdot \frac{1}{(z+3)^3} + \frac{1}{5!} \cdot \frac{1}{(z+3)^5} - \dots, \quad 0 < |z+3| < +\infty.$$

Так как главная часть ряда Лорана содержит бесконечное число слагаемых, то $z_0 = -3$ — существенно особая точка.

ПРИМЕР 7. Найти конечные особые точки функции $f(z) = \frac{1}{\cos z}$ и определить их тип.

<u>Решение.</u> Функция $f(z) = \frac{1}{\cos z}$ имеет бесконечно много особых точек:

$$z_n = \frac{\pi}{2} + \pi n \ (n = 0, \pm 1, \pm 2, ...).$$

Так как $\lim_{z \to z_n} \frac{1}{\cos z} = \infty$, то z_n — полюсы. Для определения их порядка рассмотрим функцию $\varphi(z) = \frac{1}{f(z)} = \cos z$. Для функции $\varphi(z)$ точки z_n являются простыми нулями, так как $\varphi(z_n) = 0$ и $\varphi'(z_n) = -\sin(z_n) \neq 0$. Следовательно, точки z_n являются простыми полюсами функции $f(z) = \frac{1}{\cos z}$.

Задачи

1. Для функции $f(z) = \frac{1}{z - \sin z}$ определить тип особой точки $z_0 = 0$.

2. Для следующих функций найти все конечные особые точки и определить их тип:

a).
$$f(z) = \frac{e^z - 1 - z}{z^3}$$
;

$$6). \ f(z) = \frac{\sin z}{z^5 + 2z^4 + z^3};$$

$$\mathbf{B}). \ f(z) = \operatorname{ch}\frac{1}{z};$$

$$\Gamma). \ f(z) = \frac{z}{\sin z};$$

д).
$$f(z) = \frac{\cos z}{\pi z - 2z^2}$$
;

e).
$$f(z) = \frac{\sin(z^2 - 1)}{(z^2 + 1)(z - 1)}$$
.

Ответы: 1. Полюс 3-го пор. **2. а).** $z_0 = 0$ — простой полюс;

б). $z_1 = 0, z_2 = -1$ — полюсы 2-го пор.; **в).** $z_0 = 0$ — сущ. ос. точка;

г). $z_1 = 0$ – устр. ос. точка, $z_n = \pi n (n = \pm 1, \pm 2,...)$ – простые полюсы;

д). $z_1 = 0$ — пр. полюс, $z_2 = \pi/2$ — устр. ос. точка;

e). $z_{1,2} = \pm i$ – пр. полюсы, $z_3 = 1$ – устр. ос. точка.

Домашнее задание

Для следующих функций найти все конечные особые точки и определить их тип:

55

a).
$$f(z) = \frac{e^z}{(z-2)^3 z^4}$$
;

$$6). f(z) = \frac{\sin z - z}{z^3};$$

B).
$$f(z) = \frac{\sin z}{z^3 + z^2 - z - 1};$$
 Γ). $f(z) = \frac{z}{1 - \cos z};$

$$\Gamma). \ f(z) = \frac{z}{1 - \cos z};$$

д).
$$f(z) = ze^{-1/z^2}$$
;

e).
$$f(z) = \frac{z - 2i}{(z^2 + 4)(z^2 - 1)}$$
;

ж).
$$f(z) = \frac{\cos z - 1}{(z^2 - 4\pi^2)z^3}$$
;

3).
$$f(z) = \frac{8 + 4z^3 - 3z^5}{z^6}$$
.

8. ВЫЧЕТЫ

Вычетом функции f(z) в изолированной особой точке z_0 $(z_0 \neq \infty)$ называется число

res
$$f(z_0) = \frac{1}{2\pi i} \oint_{\gamma} f(z) dz$$
,

где γ — окружность с центром в точке z_0 малого радиуса, не содержащая внутри других особых точек функции f(z).

Вычисление вычетов

1°. Из формулы для коэффициентов c_n ряда Лорана следует, что $extraction f(z_0) = c_{-1},$

где c_{-1} – коэффициент при $(z-z_0)^{-1}$ в лорановском разложении функции f(z) в окрестности изолированной особой точки z_0 . То есть, если z_0 – *устранимая особая точка*, то res $f(z_0) = 0$.

2°. Если z_0 – *простой полюс* функции f(z), то

$$\operatorname{res} f(z_0) = \lim_{z \to z_0} [f(z) \cdot (z - z_0)]$$

 $\boxed{ \text{res } f(z_0) = \lim_{z \to z_0} \left[f(z) \cdot (z - z_0) \right] }.$ **3°.** Если z_0 – **простой полюс** функции $f(z) = \frac{\varphi(z)}{\psi(z)},$ где функции $\varphi(z)$, $\psi(z)$ – аналитические в точке z_0 , причем $\varphi(z_0) \neq 0$, $\psi(z_0) = 0$ и $\psi'(z_0) \neq 0$, то

$$\operatorname{res} f(z_0) = \frac{\varphi(z_0)}{\psi'(z_0)} \ .$$

4°. Если z_0 – *полюс k-го порядка* функции f(z), то

$$\operatorname{res} f(z_0) = \frac{1}{(k-1)!} \lim_{z \to z_0} \frac{d^{k-1} \left[f(z) \cdot (z - z_0)^k \right]}{dz^{k-1}} .$$

ПРИМЕР 1. Найти вычеты функции $f(z) = \frac{\sin z^2}{z^3 - z^2}$ в конечных особых точках.

Решение. Особые точки данной функции: $z_1 = 0$, $z_2 = 1$.

В точке $z_1 = 0$ имеем:

$$\lim_{z \to 0} \frac{\sin z^2}{z^2(z-1)} = \lim_{z \to 0} \frac{1}{z-1} = -1,$$

следовательно, $z_1 = 0$ — устранимая особая точка и res f(0) = 0.

Точка $z_2 = 1$ — простой полюс, так как

$$\lim_{z \to 1} \frac{\sin z^2}{z^2(z-1)} = \infty,$$

и в точке $z_2 = 1$ числитель дроби $\frac{\sin z^2}{z^2(z-1)}$ в нуль не обращается, а

знаменатель имеет в этой точке нуль первого порядка. Тогда, используя, например, формулу 2° , имеем

res
$$f(1) = \lim_{z \to 1} [f(z) \cdot (z-1)] = \lim_{z \to 1} \frac{\sin z^2}{z^2} = \sin 1.$$

ПРИМЕР 2. Найти вычеты функции $f(z) = z \sin \frac{1}{z^2}$ в конечных особых точках.

<u>Решение.</u> Единственной конечной особой точкой функции f(z) является точка $z_0 = 0$. Лорановское разложение функции f(z) в окрестности этой точки имеет вид

$$z\sin\frac{1}{z^2} = z\left(\frac{1}{z^2} - \frac{1}{3!z^6} + \frac{1}{5!z^{10}} - \dots\right) = \frac{1}{z} - \frac{1}{3!z^5} + \frac{1}{5!z^9} - \dots, \quad 0 < |z| < +\infty.$$

Так как главная часть содержит бесконечно много слагаемых, то $z_0=0$ — существенно особая точка. Коэффициент при z^{-1} равен 1, следовательно, res f(0)=1.

ПРИМЕР 3. Найти вычеты функции $f(z) = \frac{e^z}{(z-1)^2(z+2)}$ в конечных особых точках.

<u>Решение.</u> Особые точки данной функции: $z_1 = 1$, $z_2 = -2$. В точке $z_1 = 1$ имеем:

$$\lim_{z \to 1} \frac{e^z}{(z-1)^2(z+2)} = \infty \text{ if } f(z) = \frac{\varphi(z)}{(z-1)^2}, \ \varphi(z) = \frac{e^z}{z+2}, \ \varphi(1) \neq 0,$$

то есть $z_1 = 1$ — полюс 2-го порядка. Используя формулу **4°**, имеем

$$\operatorname{res} f(1) = \frac{1}{1!} \lim_{z \to 1} \left(f(z) \cdot (z - 1)^2 \right)' = \lim_{z \to 1} \left(\frac{e^z}{z + 2} \right)' = \lim_{z \to 1} \frac{e^z (z + 1)}{(z + 2)^2} = \frac{2e}{9}.$$

В точке $z_2 = -2$ имеем:

$$\lim_{z \to -2} \frac{e^z}{(z-1)^2(z+2)} = \infty \text{ if } f(z) = \frac{\varphi(z)}{z+2}, \ \varphi(z) = \frac{e^z}{(z-1)^2}, \ \varphi(-2) \neq 0,$$

то есть $z_2 = -2$ — простой полюс. Используя формулу **2°**, имеем:

res
$$f(-2) = \lim_{z \to -2} (f(z) \cdot (z+2)) = \lim_{z \to -2} \frac{e^z}{(z-1)^2} = \frac{1}{9e^2}.$$

ПРИМЕР 4. Найти вычеты функции $f(z) = \frac{1}{z^2 + 1}$ в конечных особых точках.

<u>Решение.</u> Функция имеет две конечные особые точки $z_1 = i, \ z_2 = -i,$ которые, очевидно, являются простыми полюсами.

Используя формулу 3°, найдем вычеты в этих точках:

res
$$f(i) = \frac{1}{(z^2 + 1)'} \bigg|_{z=i} = \frac{1}{2z} \bigg|_{z=i} = -\frac{i}{2};$$

res
$$f(-i) = \frac{1}{(z^2 + 1)'} \bigg|_{z = -i} = \frac{1}{2z} \bigg|_{z = -i} = \frac{i}{2} . \blacksquare$$

Вычисление интегралов с помощью вычетов

Теорема Коши о вычетах. Если функция f(z) является аналитической на границе L области D и всюду внутри области, за исключением конечного числа изолированных особых точек $z_1, z_2, ..., z_n$, то

$$\oint_L f(z)dz = 2\pi i \sum_{k=1}^n \operatorname{res} f(z_k).$$

ПРИМЕР 5. Вычислить интеграл $\oint_{|z|=2} \frac{e^z - 1}{z^2 - z} dz$.

<u>Решение.</u> Так как функция $f(z) = \frac{e^z - 1}{z^2 - z}$ аналитична всюду в круге $|z| \le 2$ кроме точек $z_1 = 0$, $z_2 = 1$, то по теореме Коши о вычетах

$$\oint_{|z|=2} \frac{e^z - 1}{z^2 - z} dz = 2\pi i (\text{res } f(0) + \text{res } f(1)).$$

Для точки $z_1 = 0$ имеем:

$$\lim_{z \to 0} \frac{e^z - 1}{z(z - 1)} = -1 \implies z_1 = 0 - \text{yctp.oc.t.} \implies \text{res } f(0) = 0.$$

Точка $z_2=1$ — простой полюс функции f(z), так как эта точка не является нулем для числителя дроби $\frac{e^z-1}{z(z-1)}$ и является простым нулем для знаменателя. Тогда

res
$$f(1) = \lim_{z \to 1} [f(z) \cdot (z-1)] = \lim_{z \to 1} \frac{e^z - 1}{z} = e - 1.$$

Таким образом,

$$\oint\limits_{|z|=2} \frac{e^z - 1}{z^2 - z} dz = 2\pi i (e - 1) . \blacksquare$$

ПРИМЕР 6. Вычислить интеграл $\oint_{|z|=1} z \operatorname{tg} \pi z dz$.

<u>Решение.</u> Из точек $z_n = \frac{1}{2} + n \ (n = 0, \pm 1, \pm 2, ...)$, в которых $\cos \pi z = 0$, только две $z_1 = \frac{1}{2}, \ z_2 = -\frac{1}{2}$ попадают в область, ограниченную контуром |z| = 1. По теореме Коши о вычетах имеем

$$\oint_{|z|=1} z \operatorname{tg} \pi z dz = 2\pi i \left(\operatorname{res} f\left(\frac{1}{2}\right) + \operatorname{res} f\left(-\frac{1}{2}\right) \right).$$

Точки $z_1 = \frac{1}{2}$, $z_2 = -\frac{1}{2}$ являются простыми полюсами (проверьте!), тогда используя формулу **3**°, имеем

$$\operatorname{res} f\left(\frac{1}{2}\right) = \frac{z\sin\pi z}{(\cos\pi z)'}\bigg|_{z=\frac{1}{2}} = -\frac{1}{2\pi}, \quad \operatorname{res} f\left(-\frac{1}{2}\right) = \frac{z\sin\pi z}{(\cos\pi z)'}\bigg|_{z=-\frac{1}{2}} = \frac{1}{2\pi}.$$

Окончательно

$$\oint_{|z|=1} z \operatorname{tg} \pi z dz = 0. \blacksquare$$

ПРИМЕР 7. Вычислить интеграл $\oint_{|z|=1} \left(z^3 \cos \frac{1}{z^2} - \frac{3}{z} \right) dz.$

<u>Решение.</u> В области, ограниченной контуром |z|=1, находится только одна особая точка $z_0=0$, поэтому по теореме Коши о вычетах имеем

$$\oint_{|z|=1} \left(z^3 \cos \frac{1}{z^2} - \frac{3}{z} \right) dz = 2\pi i \operatorname{res} f(0).$$

Так как

$$z^{3}\cos\frac{1}{z^{2}}-\frac{3}{z}=z^{3}-\frac{1}{2z}+\frac{1}{4!z^{5}}-\frac{1}{6!z^{9}}+...-\frac{3}{z}, \ \ 0<|z|<+\infty,$$

то точка $z_0 = 0$ — существенно особая точка (главная часть ряда Лорана содержит бесконечного много слагаемых)

Так как
$$c_{-1} = -\frac{1}{2} - 3 = -\frac{7}{2}$$
, то res $f(0) = -\frac{7}{2}$, откуда получаем
$$\oint_{|z|=1} \left(z^3 \cos \frac{1}{z^2} - \frac{3}{z}\right) dz = -7\pi i. \blacksquare$$

ПРИМЕР 8. Вычислить интеграл
$$\oint_{|z-i|=3/2} \frac{\cos \frac{1}{z}}{z^2+1} dz$$
.

<u>Решение.</u> В область, ограниченную данным контуром попали две изолированные особые точки: $z_1 = 0$ — существенно особая точка и $z_2 = i$ — простой полюс (проверьте!). Тогда

$$\oint_{|z-i|=3/2} \frac{\cos\frac{1}{z}}{z^2+1} dz = 2\pi i (\text{res } f(0) + \text{res } f(i)).$$

Найдем вычет в полюсе:

$$\operatorname{res} f(i) = \frac{\cos \frac{1}{z}}{(z^2 + 1)'} \bigg|_{z=i} = \frac{\cos \frac{1}{z}}{2z} \bigg|_{z=i} = -i \frac{\operatorname{ch} 1}{2}.$$

Для нахождения вычета в существенно особой точке $z_1 = 0$, вообще говоря, требуется лорановское разложение функции f(z) в окрестности этой точки. Но в данном случае в силу четности функции f(z), очевидно, что в лорановском разложении будут присутствовать

только четные степени z и $\frac{1}{z}$, поэтому $c_{-1} = 0$. Таким образом,

$$\oint_{|z-i|=3/2} \frac{\cos\frac{1}{z}}{z^2+1} dz = \pi \operatorname{ch} 1. \blacksquare$$

Задачи

1. Найти вычеты данных функции в конечных особых точках:

a).
$$f(z) = \frac{e^{-z} - 1 + z}{z^5}$$
;

6).
$$f(z) = \frac{z}{(z+1)^2(z-2)}$$
;

B).
$$f(z) = \frac{\cos z - 1}{z^3 - z^2}$$
;

$$\Gamma). \ f(z) = \frac{\operatorname{tg} z}{4z^2 - \pi z}.$$

2. Вычислить интегралы:

a).
$$\oint_{|z|=1} \frac{\cos z^2 + 2z^4}{z^5} dz;$$

6).
$$\oint_{|z|=3} \frac{e^{z^2} - 1}{z^3 - iz^2} dz;$$

B).
$$\oint_{|z|=3} \frac{dz}{(z-1)^3(z+2)};$$
 Γ). $\oint_{|z|=4} \frac{\sin iz}{z^2 + \pi^2} dz$.

$$\Gamma). \oint_{|z|=4} \frac{\sin iz}{z^2 + \pi^2} dz$$

Ответы: 1. a). res f(0) = 1/24; **б).** res f(-1) = -2/9; res f(2) = 2/9;

B). res f(0) = 0; res $f(1) = \cos 1 - 1$; Γ). res f(0) = 0; res $f(\pi/4) = 1/\pi$;

res
$$f\left(\frac{\pi}{2} + \pi n\right) = \frac{-2}{\pi^2(2n+1)(4n+1)}$$
. 2.a). $3\pi i$; 6). $2(1-e^{-1})\pi i$; β). 0; Γ). 0.

Домашнее задание

62

8.1. Вычислить интегралы:

a).
$$\oint_{|z|=3} \frac{\operatorname{ch} iz}{z^2 + 4} dz;$$

$$6). \oint_{|z|=2} \frac{e^z - 1}{z^3} dz;$$

B).
$$\oint_{|z|=2} \frac{e^z}{z^3(z+1)} dz$$
;

$$\Gamma$$
). $\oint_{|z|=3} \frac{e^z - 1 - z}{z^3 + z^2} dz$;

д).
$$\oint_{|z|=1} z^2 \sin \frac{\pi}{z} dz;$$

e).
$$\oint_{|z-1|=1} \frac{z}{(z-1)^2(z+1)} dz;$$

$$\mathfrak{K}). \oint_{|z|=1} \frac{z^2}{\sin^3 z \cos z} dz;$$

3).
$$\oint_{|z|=2} \frac{\cos \pi z}{2z^2 - z} dz.$$

9. БЕСКОНЕЧНО УДАЛЕННАЯ ТОЧКА

Под окрестностью бесконечно удаленной точки $z=\infty$ будем понимать внешность любого круга радиуса R с центром в начале координат, то есть |z|>R.

Точка $z = \infty$ называется **изолированной особой точкой** функции f(z), если существует окрестность этой точки, в которой нет других особых точек функции f(z).

Изолированная особая точка $z = \infty$ называется

yстранимой особой точкой, если существует конечный предел $\lim_{z\to\infty}f(z)$;

полюсом, если $\lim_{z\to\infty} f(z) = \infty$;

существенно особой точкой, если $\lim_{z\to\infty} f(z)$ не существует.

Ряд Лорана в окрестности бесконечно удаленной точки

Определить тип бесконечно удаленной точки $z = \infty$ можно с помощью разложения функции f(z) в ряд Лорана

$$f(z) = \sum_{n=0}^{+\infty} \frac{c_{-n}}{z^n} + \sum_{n=1}^{+\infty} c_n z^n, \ R < |z| < +\infty.$$
правильная главная часть

 $z=\infty$ — *устранимая особая точка* \Leftrightarrow ряд Лорана не содержит главной части.

 $z = \infty$ — **полюс k-го порядка** \Leftrightarrow главная часть ряда Лорана содержит конечное число слагаемых, то есть

$$f(z) = \sum_{n=0}^{+\infty} \frac{c_{-n}}{z^n} \underbrace{+c_1 z + ... + c_k z^k}_{\text{главная}}, \ c_k \neq 0.$$

 $z = \infty$ — *существенно особая точка* \Leftrightarrow главная часть ряда Лорана содержит бесконечно много слагаемых, то есть бесконечно много положительных степеней z.

Замечание. Пусть функция f(z) аналитична всюду в области |z| > R, кроме, может быть, бесконечно удаленной точки. Выяснить характер бесконечно удаленной точки $z = \infty$ можно, сделав замену переменной $z = 1/\xi$. Тогда функция

$$\varphi(\xi) = f\left(\frac{1}{\xi}\right)$$

аналитична всюду в области $|\xi| < 1/R$, кроме может быть точки $\xi = 0$. Характер точки $\xi = 0$ совпадает с характером бесконечно удаленной точки $z = \infty$.

ПРИМЕР 1. Для функции $f(z) = \frac{z^5 - z + 1}{z^2 + 4}$ определить характер бесконечно удаленной точки.

Решение. Сделаем замену переменной $z = 1/\xi$:

$$\varphi(\xi) = f\left(\frac{1}{\xi}\right) = \frac{\frac{1}{\xi^5} - \frac{1}{\xi} + 1}{\frac{1}{\xi^2} + 4} = \frac{1 - \xi^4 + \xi^5}{\xi^3 + 4\xi^5} = \frac{1 - \xi^4 + \xi^5}{\xi^3 (1 + 4\xi^2)}.$$

Точка $\xi=0$ является полюсом третьего порядка функции $\varphi(\xi)$, так как точка $\xi=0$ является нулем третьего порядка знаменателя, а числитель в этой точке в нуль не обращается.

Следовательно, бесконечно удаленная точка $z = \infty$ также является полюсом третьего порядка функции f(z).

Вычетом функции f(z) в бесконечно удаленной особой точке $z=\infty$ называется число

res
$$f(\infty) = \frac{1}{2\pi i} \oint_{\gamma^{-}} f(z)dz$$
,

где γ^- — окружность достаточно большого радиуса, проходимая по часовой стрелке, чтобы окрестность точки $z=\infty$ оставалась слева, причем в этой окрестности не должно быть других особых точек.

Из определения вычета следует, что

$$\operatorname{res} f(\infty) = -c_{-1},$$

где c_{-1} — коэффициент при $(z-z_0)^{-1}$ в лорановском разложении функции f(z) в окрестности $z=\infty$.

Замечание 1. Вычет функции в бесконечно удаленной устранимой особой точке может быть отличным от нуля.

Замечание 2. Известные разложения функций e^z , $\sin z$, $\cos z$ можно рассматривать как лорановские разложения в окрестности $z = \infty$, причем для указанных функций $z = \infty$ — существенно особая точка.

ПРИМЕР 2. Для функции $f(z) = z^4 e^{\frac{1}{z}}$ определить характер бесконечно удаленной точки и найти вычет.

<u>Решение.</u> Используя известное разложение для e^z , получаем ряд Лорана функции f(z) в окрестности $z=\infty$

$$z^4 e^{rac{1}{z}} = \underline{z^4 + z^3 + rac{z^2}{2!} + rac{z}{3!}} + rac{1}{4!} + rac{1}{5!z} + rac{1}{6!z^2} + ..., 0 < |z| < +\infty$$
.

Так как главная часть ряда Лорана содержит конечное число слагаемых и старшая степень z равна 4, то $z=\infty$ — полюс 4-го порядка.

Найдем вычет в точке $z = \infty$:

res
$$f(\infty) = -c_{-1} = -\frac{1}{5!} = -\frac{1}{120}$$
.

ПРИМЕР 3. Найти вычеты функции $f(z) = \frac{1}{z-4}$ во всех особых точках.

 $\underline{\textit{Pewehue}}$ Функция f(z) имеет всего две особые точки: $z_1=4,\ z_2=\infty$. Так как разложение в ряд Лорана этой функции в окрестности точки $z_1=4$ имеет вид

$$f(z) = \frac{1}{z-4}, \ \ 0 < |z-4| < +\infty,$$

то $z_1 = 4$ — простой полюс, и res $f(4) = c_{-1} = 1$.

Найдем лорановское разложение функции f(z) в окрестности точки $z_2=\infty$

$$\frac{1}{z-4} = \frac{1}{z\left(1-\frac{4}{z}\right)} = \frac{1}{z} \sum_{n=0}^{\infty} \frac{4^n}{z^n} = \sum_{n=0}^{\infty} \frac{4^n}{z^{n+1}}, \ 4 < |z| < +\infty.$$

Так как разложение не содержит главной части, то точка $z_2 = \infty$ является устранимой особой точкой, при этом $\operatorname{res} f(\infty) = -c_{-1} = -1$.

Справедливо следующее утверждение:

Если функция f(z) имеет конечное число изолированных особых точек $z_1, z_2, ..., z_n$, то

$$\sum_{k=1}^{n} \operatorname{res} f(z_k) + \operatorname{res} f(\infty) = 0 \implies \sum_{k=1}^{n} \operatorname{res} f(z_k) = -\operatorname{res} f(\infty).$$

ПРИМЕР 4. Вычислить интеграл
$$\oint_{|z|=2} \frac{dz}{1+z^9}.$$

<u>Решение.</u> Функция f(z) имеет девять изолированных особых точек $z_1, z_2, ..., z_9$, и все они принадлежат области, ограниченной контуром |z| = 2. Тогда

$$\oint_{|z|=2} \frac{dz}{1+z^9} = 2\pi i \sum_{k=1}^{9} \text{res } f(z_k) = -2\pi i \text{ res } f(\infty).$$

Чтобы найти $\operatorname{res} f(\infty)$ разложим функцию f(z) в ряд Лорана в окрестности бесконечно удаленной точки |z|>1

$$\frac{1}{1+z^9} = \frac{1}{z^9} \frac{1}{1+\frac{1}{z^9}} = \frac{1}{z^9} \sum_{n=0}^{\infty} (-1)^n \frac{1}{z^{9n}} = \sum_{n=0}^{\infty} (-1)^n \frac{1}{z^{9(n+1)}},$$

откуда следует, что $c_{-1}=0$, то есть $\oint_{|z|=2} \frac{dz}{1+z^9} = 0$.

Задачи

1. Определить характер точки $z = \infty$ и найти вычет в этой точке:

a).
$$f(z) = \frac{3z^4 - z^3 + 5z^2 + 2}{z^3}$$
; 6). $f(z) = \cos\frac{\pi}{z}$;

B).
$$f(z) = \frac{e^z - 1}{z^5}$$
; Γ). $f(z) = \frac{z}{z^2 - 1}$.

2. Используя вычет в бесконечности, вычислить интегралы:

Ответы: 1. а). простой полюс, res $f(\infty) = -5$; **б).** устранимая особая точка, res $f(\infty) = 0$; **в).** существенно особая точка, res $f(\infty) = -1/24$; г). устранимая особая точка, res $f(\infty) = -1$. 2. а). 0; б). $-2\pi i$.

10. ВЫЧИСЛЕНИЕ ОПРЕДЕЛЕННЫХ ИНТЕГРАЛОВ С ПОМОЩЬЮ ВЫЧЕТОВ

1. Вычисление интегралов вида

$$\int_{0}^{2\pi} R(\cos x, \sin x) dx,$$

где $R(\cos x, \sin x)$ — рациональная функция $\cos x$ и $\sin x$.

Вводится комплексная переменная $z = e^{ix}$. При этом, когда x пробегает отрезок $[0,2\pi]$, переменная z проходит окружность |z|=1 на комплексной плоскости против часовой стрелки.

Переходя к новой переменной, имеем:

$$dz = ie^{ix} dx = izdx \implies dx = \frac{dz}{iz},$$

$$\cos x = \frac{e^{ix} + e^{-ix}}{2} = \frac{z + z^{-1}}{2} = \frac{z^2 + 1}{2z},$$

$$\sin x = \frac{e^{ix} - e^{-ix}}{2i} = \frac{z - z^{-1}}{2i} = \frac{z^2 - 1}{2iz},$$

$$\int_{0}^{2\pi} R(\cos x, \sin x) dx = \oint_{|z|=1} R\left(\frac{z^2 + 1}{2z}, \frac{z^2 - 1}{2iz}\right) \frac{dz}{iz}.$$

Полученный интеграл вычисляется с помощью вычетов.

ПРИМЕР 1. Вычислить интеграл
$$\int_{0}^{2\pi} \frac{dx}{5 + 3\cos x}.$$

Решение. Пусть
$$z = e^{ix}$$
, тогда $dx = \frac{dz}{iz}$, $\cos x = \frac{z^2 + 1}{2z}$.

Подставляя выражения для dx, $\cos x$ в данный интеграл, получаем

$$\int_{0}^{2\pi} \frac{dx}{5 + 3\cos x} = \oint_{|z|=1} \frac{2dz}{i(3z^2 + 10z + 3)} = \frac{2}{3i} \oint_{|z|=1} \frac{dz}{(z+3)(z+1/3)} =$$

$$= \frac{2}{3i} \cdot 2\pi i \cdot \operatorname{res} f\left(-\frac{1}{3}\right) = \frac{4\pi}{3} \operatorname{res} f\left(-\frac{1}{3}\right),$$

так как в область, ограниченную контуром |z|=1, попадает только одна точка z=-1/3, которая очевидно является простым полюсом функции $f(z)=\frac{1}{(z+3)(z+1/3)}$. Следовательно,

$$\operatorname{res} f(-1/3) = \lim_{z \to -1/3} \frac{1}{z+3} = \frac{3}{8} \quad \text{if} \quad \int_{0}^{2\pi} \frac{dx}{5+3\cos x} = \frac{\pi}{2}. \blacksquare$$

2. Вычисление интегралов вида

$$\int_{-\infty}^{+\infty} \frac{P_m(x)}{Q_n(x)} dx,$$

где $P_m(x)$ и $Q_n(x)$ — многочлены степени m и $n,\ Q_n(x)\neq 0$ и $n\geq m+2$. Справедлива следующая формула

$$\int_{0}^{+\infty} \frac{P_m(x)}{Q_n(x)} dx = 2\pi i\sigma,$$

где σ — сумма вычетов функции $f(z) = \frac{P_m(z)}{Q_n(z)}$ во всех полюсах, расположенных в верхней полуплоскости.

ПРИМЕР 2. Вычислить интеграл
$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+4)(x^2+9)}$$
.

<u>Решение.</u> Введем в рассмотрение функцию комплексного переменного

$$f(z) = \frac{1}{(z^2+4)(z^2+9)} = \frac{1}{(z+2i)(z-2i)(z+3i)(z-3i)},$$

для которой точки $z=\pm 2i$ и $z=\pm 3i$ являются простыми полюсами. Из них в верхней полуплоскости находятся точки $z_1=2i$ и $z_2=3i$.

Найдем вычеты функции f(z) в этих точках:

res
$$f(2i) = \lim_{z \to 2i} \frac{1}{(z+2i)(z^2+9)} = -\frac{i}{20};$$

res
$$f(3i) = \lim_{z \to 3i} \frac{1}{(z+3i)(z^2+4)} = \frac{i}{30}$$
.

Окончательно получаем

$$\int_{-\infty}^{+\infty} \frac{dx}{(x^2+4)(x^2+9)} = 2\pi i \left(-\frac{i}{20} + \frac{i}{30} \right) = \frac{\pi}{30} . \blacksquare$$

Задачи

1. Вычислить с помощью вычетов интегралы:

a).
$$\int_{0}^{2\pi} \frac{dx}{3 + \cos x};$$

$$6). \int_{0}^{2\pi} \frac{dx}{(5+4\cos x)^{2}};$$

B).
$$\int_{0}^{+\infty} \frac{x^2 dx}{(x^2 + a^2)^2} \quad (a > 0); \qquad \qquad \Gamma). \int_{0}^{+\infty} \frac{dx}{(x^2 + 4)^4}.$$

$$\Gamma$$
). $\int_{0}^{+\infty} \frac{dx}{(x^2+4)^4}$

Ответы: 1. a).
$$\frac{\pi}{\sqrt{2}}$$
; б). $\frac{10\pi}{27}$; в). $\frac{\pi}{4a}$; г). $\frac{5\pi}{4^6}$.

Домашнее задание

10.1. Вычислить с помощью вычетов интегралы:

a).
$$\int_{0}^{2\pi} \frac{dx}{5 - 3\cos x};$$

a).
$$\int_{0}^{2\pi} \frac{dx}{5 - 3\cos x};$$
 6).
$$\int_{0}^{2\pi} \frac{\cos x dx}{1 - 2a\sin x + a^{2}} (0 < a < 1);$$

B).
$$\int_{0}^{+\infty} \frac{dx}{(x^2+9)^2}$$
;

$$\Gamma$$
). $\int_{0}^{+\infty} \frac{x^2 + 1}{x^4 + 1} dx$.

11. ПРЕОБРАЗОВАНИЕ ЛАПЛАСА И ЕГО СВОЙСТВА

Комплекснозначная функция f(t) действительного аргумента называется *оригиналом*, если

- 1. f(t) = 0 при t < 0;
- 2. на любом конечном отрезке [0,t] функция f(t) может иметь лишь конечное число точек разрыва, причем только 1-го рода;
- 3. функция f(t) возрастает при $t \to +\infty$ не быстрее показательной функции, то есть существуют действительные числа M>0 и $s \ge 0$ такие, что

$$|f(t)| < Me^{st}$$
 при $t > 0$.

Наименьшее число s_0 , для которого выполняется последнее неравенство, называется **показателем роста** функции f(t).

Изображением оригинала f(t) называется функция F(p) комплексного переменного, определяемая формулой

$$F(p) = \int_{0}^{\infty} f(t)e^{-pt}dt,$$

причем в полуплоскости $\operatorname{Re} p > s_0$ интеграл сходится абсолютно, и функция F(p) является аналитической.

Переход от функции f(t) к функции F(p) называется **преобразованием Лапласа**. Обозначение: f(t)
otin F(p).

ПРИМЕР 1. Найти изображение функции Хевисайда

$$\eta(t) = \begin{cases} 1, & t \ge 0; \\ 0, & t < 0. \end{cases}$$

<u>Решение.</u> Очевидно, что функция $\eta(t)$ является оригиналом, ее показатель роста $s_0=0$.

Найдем изображение функции Хевисайда по определению

$$\eta(t) \doteq F(p) = \int_{0}^{\infty} \eta(t)e^{-pt}dt = -\frac{1}{p}e^{-pt}\Big|_{0}^{\infty} = \frac{1}{p}$$

(здесь $\lim_{t\to +\infty} e^{-pt} = 0$, так как $\left| e^{-pt} \right| = e^{-t\operatorname{Re} p}$ и $\operatorname{Re} p > s_0 = 0$).

ПРИМЕР 2. Найти изображение функции $f(t) = \eta(t)e^{at}$ $(a \in \mathbb{C})$.

<u>Решение.</u> Очевидно, что функция f(t) является оригиналом, ее показатель роста $s_0 = \operatorname{Re} a$, тогда

$$\eta(t)e^{at} \doteq F(p) = \int_{0}^{\infty} e^{at}e^{-pt}dt = \frac{e^{(a-p)t}}{a-p}\Big|_{0}^{\infty} = \frac{1}{p-a}$$

(здесь $\lim_{t \to +\infty} e^{(a-p)t} = 0$ при $\operatorname{Re} p > \operatorname{Re} a$).
■

Замечание. В дальнейшем для краткости будем опускать множитель $\eta(t)$, считая, что при t < 0 f(t) = 0, то есть

$$1
div \frac{1}{p}, e^{at}
div \frac{1}{p-a}.$$

Свойства оригиналов и изображений

1°. Линейность. Если $f_1(t)
in F_1(p), f_2(t)
in F_2(p)$, то

$$C_1 f_1(t) + C_2 f_2(t) \stackrel{.}{=} C_1 F_1(p) + C_2 F_2(p) \ (C_1, C_2 \in \mathbb{C})$$

ПРИМЕР 3. Найти изображение оригинала $f(t) = 3 + 4e^{-2t}$.

Решение. Так как $1
in \frac{1}{p}$, $e^{at}
in \frac{1}{p-a}$, то по свойству **1**°

$$f(t) = 3 + 4e^{-2t} = 3\frac{1}{p} + 4\frac{1}{p+2} = \frac{7p+6}{p^2+2p}$$
.

ПРИМЕР 4. Найти изображение оригинала $f(t) = \cos t$.

<u>Решение.</u> Так как $\cos t = \frac{e^{it} + e^{-it}}{2}$, то по свойству **1**° имеем

$$\cos t = \frac{1}{2}e^{it} + \frac{1}{2}e^{-it} \doteq \frac{1}{2}\frac{1}{p-i} + \frac{1}{2}\frac{1}{p+i} = \frac{p}{p^2 + 1}. \blacksquare$$

Точно так же можно показать, что

$$\sin t \doteq \frac{1}{p^2 + 1}; \quad \operatorname{sh} t \doteq \frac{1}{p^2 - 1}; \quad \operatorname{ch} t \doteq \frac{p}{p^2 - 1}.$$

2°. *Теорема подобия.* Если f(t)
in F(p), то

$$f(\lambda t) \stackrel{.}{\div} \frac{1}{\lambda} F\left(\frac{p}{\lambda}\right) \ (\lambda > 0) \ .$$

ПРИМЕР 5. Найти изображение оригинала $f(t) = \cos at$.

Решение. Так как $\cos t \doteq \frac{p}{p^2 + 1}$, то по свойству **2°** получаем

$$\cos at \doteq \frac{1}{a} \frac{p/a}{(p/a)^2 + 1} = \frac{p}{p^2 + a^2}. \blacksquare$$

3°. *Теорема смещения.* Если f(t)
in F(p), то для любого a

$$e^{at}f(t)
div F(p-a)$$
.

ПРИМЕР 6. Найти изображение оригинала $f(t) = e^{5t} \cos 3t$.

<u>Решение.</u> Так как $\cos 3t
in \frac{p}{p^2 + 9}$, то используя теорему

смещения при a = 5, имеем

$$e^{5t}\cos 3t = \frac{p-5}{(p-5)^2+9} = \frac{p-5}{p^2-10p+34}.$$

4°. Дифференцирование изображения. Если f(t)
in F(p), то

$$F^{(n)}(p) \doteq (-1)^n \cdot t^n \cdot f(t)$$
.

ПРИМЕР 7. Найти изображение оригинала $f(t) = t^3$.

$$\left(\frac{1}{p}\right)' = \frac{-1}{p^2} \doteq -t; \left(\frac{-1}{p^2}\right)' = \frac{2}{p^3} \doteq t^2; \left(\frac{2}{p^3}\right)' = -\frac{6}{p^4} \doteq -t^3 \implies t^3 \doteq \frac{6}{p^4}. \blacksquare$$

ПРИМЕР 8. Найти изображение функции $f(t) = t \sin t$.

Решение. Так как $\sin t = \frac{1}{p^2 + 1}$, то по свойству **4**° получаем

$$\left(\frac{1}{p^2+1}\right)' = \frac{-2p}{(p^2+1)^2} \doteq -t\sin t \implies t\sin t \doteq \frac{2p}{(p^2+1)^2}. \blacksquare$$

5°. Дифференцирование оригинала

Если f(t), f'(t), f''(t), ... $f^{(n)}(t)$ являются оригиналами и f(t)
ightharpoonup F(p), то

$$f'(t) = pF(p) - f(0);$$

$$f''(t) = p^{2}F(p) - pf(0) - f'(0);$$
...
$$f^{(n)}(t) = p^{n}F(p) - p^{n-1}f(0) - p^{n-2}f'(0) - \dots - f^{(n-1)}(0).$$

6°. Интегрирование оригинала. Если f(t)
in F(p), то

$$\left[\int_{0}^{t} f(\tau)d\tau \doteqdot \frac{F(p)}{p} \right].$$

ПРИМЕР 9. Найти изображение оригинала $f(t) = \int_{0}^{t} \tau e^{\tau} d\tau$.

Решение. Используя свойства **4°** и **6°**, имеем

$$te^t
div \frac{1}{(p-1)^2}; \quad \int_0^t \tau e^{\tau} d\tau
dt = \frac{1}{p(p-1)^2}. \blacksquare$$

7°. Интегрирование изображения. Если f(t)
in F(p), то

$$\left| \frac{f(t)}{t} \doteqdot \int_{p}^{\infty} F(p) dp \right|.$$

ПРИМЕР 10. Найти изображение оригинала $f(t) = \frac{\sin t}{t}$.

$$\frac{\sin t}{t} \doteqdot \int_{p}^{\infty} \frac{dp}{p^2 + 1} = \operatorname{arctg} \left. p \right|_{p}^{\infty} = \frac{\pi}{2} - \operatorname{arctg} \left. p \right|_{p}^{\infty}$$

8°. *Теорема запаздывания.* Если $f(t) \doteqdot F(p)$, то для любого $\tau > 0$

$$f(t-\tau)\cdot\eta(t-\tau) \doteq e^{-p\tau}F(p), \ \tau > 0$$

ПРИМЕР 11. Найти изображение оригинала

$$f(t) = \begin{cases} 1, & 0 \le t \le 2; \\ 0, & t < 0, t > 2. \end{cases}$$

Решение. Функция f(t) может быть представлена в виде

$$f(t) = \eta(t) - \eta(t-2).$$

Используя свойства 1° и 8°, получаем

$$f(t) = \eta(t) - \eta(t-2) \stackrel{.}{=} \frac{1}{p} - \frac{e^{-2p}}{p}.$$

9°. Умножение изображений. Если $f_1(t) \doteqdot F_1(p), \ f_2(t) \doteqdot F_2(p)$, то

$$F_1(p)F_2(p) \doteqdot \int_0^t f_1(\tau)f_2(t-\tau)d\tau \ .$$

Интеграл в правой части называется сверткой функций $f_1(t)$ и $f_2(t)$ и обозначается $f_1(t) * f_2(t)$. То есть

$$f_1(t) * f_2(t) = F_1(p)F_2(p)$$
.

Заметим, что $f_1(t) * f_2(t) = f_2(t) * f_1(t)$.

Таблица оригиналов и изображений

$1 otin \frac{1}{p}$	$e^{at} div \frac{1}{p-a}$	$t^n \doteqdot \frac{n!}{p^{n+1}}$
$\sin bt \doteqdot \frac{b}{p^2 + b^2}$	$\cos bt \doteqdot \frac{p}{p^2 + b^2}$	sh bt
$\cosh bt \doteqdot \frac{p}{p^2 - b^2}$		

Задачи

1. Используя свойства преобразования Лапласа и таблицу оригиналов и изображений, найти изображения для следующих оригиналов:

76

a).
$$f(t) = 5 - 2e^{-3t} + 3t$$
; 6). $f(t) = \sin^2 t$;

$$6$$
). $f(t) = \sin^2 t$

B).
$$f(t) = 5e^{-t} \cosh 3t$$
;

$$\Gamma$$
). $f(t) = 3^t$;

д).
$$f(t) = t^2 \cos 2t;$$

в).
$$f(t) = 5e^{-t} \operatorname{ch} 3t$$
; г). $f(t) = 3^{t}$; д). $f(t) = t^{2} \cos 2t$; е). $f(t) = te^{2t} \sin 3t$;

ж).
$$f(t) = \frac{1 - \cos t}{t};$$

3).
$$f(t) = \int_{0}^{t} \tau \sin 2\tau d\tau;$$

$$\mathbf{H}). \ f(t) = \begin{cases} t, & 0 \le t \le 1; \\ 1, & 1 < t \le 2; \\ 0, & t < 0, \ t > 2. \end{cases} \quad \mathbf{K}). \ f(t) = \begin{cases} 1, & 0 < t < 1; \\ -1, & 1 < t < 2; \\ 0, & t < 0, \ t > 2. \end{cases}$$

Ответы: 1. a).
$$\frac{5}{p} - \frac{2}{p+3} + \frac{3}{p^2}$$
; **б).** $\frac{1}{2p} - \frac{p}{2(p^2+4)}$; **в).** $\frac{5(p+1)}{(p+1)^2-9}$;

г).
$$\frac{1}{p-\ln 3}$$
; д). $\frac{2p^3-24p}{(p^2+4)^3}$; е). $\frac{6(p-2)}{((p-2)^2+9)^2}$; ж). $\ln \frac{\sqrt{p^2+1}}{p}$;

3).
$$\frac{4}{(p^2+4)^2}$$
; **и).** $\frac{1}{p^2} - \frac{e^{-p}}{p^2} - \frac{e^{-2p}}{p}$; **к**). $\frac{1-2e^{-p}+e^{-2p}}{p}$.

Домашнее задание

11.1. Используя таблицу оригиналов и изображений и свойства преобразования Лапласа, найти изображения следующих оригиналов:

a).
$$f(t) = 3e^{5t} - 2\sin 3t + 4$$
; 6). $f(t) = e^{-4t}(\sin t + \cos 2t)$;

6).
$$f(t) = e^{-4t} (\sin t + \cos 2t)$$
;

B).
$$f(t) = \frac{t^3}{2} - 8t^2 + 4t - 1;$$
 Γ). $f(t) = e^t \cos^2 2t;$

$$\Gamma). \ f(t) = e^t \cos^2 2t;$$

д).
$$f(t) = t^2 e^{-5t}$$
;

e).
$$f(t) = \cosh 4t \cos 2t$$
;

ж).
$$f(t) = \frac{e^t - 1}{t}$$
;

3).
$$f(t) = \int_{0}^{t} e^{-3t} \sinh 2t d\tau$$
;

и).
$$f(t) = \begin{cases} t, & 0 < t < 1; \\ 2 - t, & 1 < t < 2; \\ 0, & t < 0, t > 2. \end{cases}$$

12. НАХОЖДЕНИЕ ОРИГИНАЛА ПО ИЗОБРАЖЕНИЮ

Для восстановления оригинала по изображению применяют следующие приемы:

- а). использование свойств преобразования Лапласа и таблицы оригиналов и изображений;
- б). представление функции F(p) в виде суммы простейших дробей;
 - в). выделение полного квадрата в знаменателе дроби;
- г). представление функции F(p) в виде произведения дробей и использование свойства 9° ;
 - д). использование теоремы о разложении.

Теорема о разложении. Если функция $F(p) = \frac{Q(p)}{R(p)}$ является правильной рациональной дробью и имеет полюсы в точках p_k (k=1,2,...,n), то оригинал находится по формуле

$$f(t) = \sum_{k=1}^{n} \operatorname{res}_{p=p_k} (F(p) \cdot e^{pt}).$$

ПРИМЕР 1. Найти оригинал изображения

$$F(p) = \frac{4}{p} - \frac{3}{p^3} + \frac{4}{p-2}.$$

<u>Решение.</u> Преобразуем F(p) так, чтобы можно было воспользоваться таблицей оригиналов и изображений, и применим свойство линейности преобразования Лапласа, тогда:

$$F(p) = 4 \cdot \frac{1}{p} - \frac{3}{2!} \cdot \frac{2!}{p^3} + 4 \cdot \frac{1}{p-2} = 4 - \frac{3}{2}t^2 + 4e^{2t}.$$

ПРИМЕР 2. Найти оригинал изображения $F(p) = \frac{3p+1}{p^2+4p+13}$.

<u>Решение.</u> Выделяя полный квадрат в знаменателе и выполняя необходимые преобразования, получаем:

$$F(p) = \frac{3p+1}{p^2 + 4p + 13} = \frac{3(p+2) - 5}{(p+2)^2 + 9} =$$

$$= 3\frac{p+2}{(p+2)^2 + 9} - \frac{5}{3}\frac{3}{(p+2)^2 + 9} \stackrel{.}{=} 3e^{-2t}\cos 3t - \frac{5}{3}e^{-2t}\sin 3t. \blacksquare$$

ПРИМЕР 3. Найти оригинал изображения $F(p) = \frac{p}{(p-1)^2}$.

Решение. Преобразуя F(p) таким образом, чтобы можно было использовать таблицу и свойства **1°** и **4°**, получаем

$$F(p) = \frac{p}{(p-1)^2} = \frac{p-1+1}{(p-1)^2} = \frac{1}{p-1} + \frac{1}{(p-1)^2} \stackrel{.}{=} e^t + te^t.$$

ПРИМЕР 4. Найти оригинал изображения

$$F(p) = \frac{13p - 21}{(p-1)(p-2)(p+3)}.$$

Решение. Разложим F(p) на простейшие дроби

$$F(p) = \frac{13p-21}{(p-1)(p-2)(p+3)} = \frac{2}{p-1} + \frac{1}{p-2} - \frac{3}{p+3}.$$

Тогда, используя свойство линейности, получаем

$$F(p) = \frac{13p - 21}{(p-1)(p-2)(p+3)} \doteq 2e^t + e^{2t} - 3e^{-3t}. \blacksquare$$

ПРИМЕР 5. Найти оригинал изображения $F(p) = \frac{1}{(p^2 + 1)^2}$.

<u>Решение.</u> Представим F(p) в виде произведения дробей и применим свойство **9**° преобразования Лапласа:

$$F(p) = \frac{1}{p^2 + 1} \frac{1}{p^2 + 1} = \sin t \cdot \sin t.$$

Найдем свертку функций $\sin t$ и $\sin t$:

$$\sin t * \sin t = \int_{0}^{t} \sin \tau \sin(t - \tau) d\tau = \frac{1}{2} \int_{0}^{t} (\cos(t - 2\tau) - \cos t) d\tau =$$

$$= \frac{1}{2} \left(-\frac{1}{2} \sin(t - 2\tau) - \tau \cos t \right) \Big|_{0}^{t} = \frac{1}{2} \sin t - \frac{1}{2} t \cos t.$$

Итак, окончательно имеем

$$F(p) = \frac{1}{(p^2+1)^2} = \frac{1}{2} \sin t - \frac{1}{2} t \cos t$$
.

ПРИМЕР 6. Найти оригинал изображения $F(p) = \frac{1}{p(p^2 + 1)}$.

<u>Решение.</u> Используем теорему о разложении. Функция F(p) имеет три простых полюса: $p_1 = 0, \ p_2 = i, \ p_3 = -i,$ для которых

$$\operatorname{res}_{p=0} \left(F(p)e^{pt} \right) = \operatorname{res}_{p=0} \frac{e^{pt}}{p(p^2+1)} = \lim_{p \to 0} \frac{e^{pt}}{(p^2+1)} = 1;$$

$$\operatorname{res}_{p=i} \left(F(p)e^{pt} \right) = \operatorname{res}_{p=i} \frac{e^{pt}}{p(p^2+1)} = \lim_{p \to i} \frac{e^{pt}}{p(p+i)} = -\frac{e^{it}}{2};$$

$$\operatorname{res}_{p=-i} \left(F(p)e^{pt} \right) = \operatorname{res}_{p=-i} \frac{e^{pt}}{p(p^2+1)} = \lim_{p \to -i} \frac{e^{pt}}{p(p-i)} = -\frac{e^{-it}}{2}.$$

Следовательно, по теореме о разложении

$$F(p) = \frac{1}{p(p^2 + 1)} = 1 - \frac{e^{it}}{2} - \frac{e^{-it}}{2} = 1 - \frac{e^{it} + e^{-it}}{2} = 1 - \cos t. \blacksquare$$

Задачи

1. Найти оригиналы следующих изображений:

a).
$$F(p) = \frac{2}{p} + \frac{5}{p^3} - \frac{7}{p+1};$$
 6). $F(p) = \frac{3p+4}{p^2+9};$

6).
$$F(p) = \frac{3p+4}{p^2+9}$$
;

B).
$$F(p) = \frac{2}{(p-3)^2} + \frac{4}{(p+5)^3}$$
; Γ). $F(p) = \frac{4-p}{p^2+4p+8}$;

r).
$$F(p) = \frac{4-p}{p^2+4p+8}$$
;

д).
$$F(p) = \frac{p+3}{(p+1)^2}$$
;

e).
$$F(p) = \frac{3p-2}{p(p-1)(p+3)}$$
;

ж).
$$F(p) = \frac{p}{(p^2+4)^2}$$
;

3).
$$F(p) = \frac{2e^{-p}}{p+2}$$
.

Ответы: 1. a). $2 + \frac{5}{2}t^2 - 7e^{-t}$; **6).** $3\cos 3t + \frac{4}{2}\sin 3t$; **B).** $2te^{3t} + 2t^2e^{-5t}$;

г).
$$3e^{-2t}\sin 2t - e^{-2t}\cos 2t$$
; д). $e^{-t} + 2te^{-t}$; **e).** $\frac{2}{3} + \frac{1}{4}e^t - \frac{11}{12}e^{-3t}$;

ж).
$$\frac{1}{4}t\sin 2t$$
; **3).** $2\eta(t-1)e^{-2(t-1)}$.

Домашнее задание

12.1. Найти оригиналы следующих изображений:

$$6). \ F(p) = \frac{5p-1}{p^2-4};$$

B).
$$F(p) = \frac{1}{(p+4)^3} - \frac{3}{(p-2)^4}$$
; Γ). $F(p) = \frac{p+3}{p^2 + 2p - 5}$;

r).
$$F(p) = \frac{p+3}{p^2 + 2p - 5}$$
;

д).
$$F(p) = \frac{p-1}{(p+2)^3}$$
;

e).
$$F(p) = \frac{1}{p^2(p+1)(p+2)}$$
;

ж).
$$F(p) = \frac{p}{(p^2+4)(p^2+1)};$$
 3). $F(p) = \frac{e^{-3p}}{p^2+6p+10}.$

3).
$$F(p) = \frac{e^{-3p}}{p^2 + 6p + 10}$$
.

13. РЕШЕНИЕ ЛИНЕЙНЫХ ДИФФЕРЕНЦИЛЬНЫХ УРАВНЕНИЙ И СИСТЕМ

Если дана задача Коши для обыкновенного линейного дифференциального уравнения с постоянными коэффициентами

$$a_n x^{(n)} + a_{n-1} x^{(n-1)} + \dots + a_1 x' + a_0 = f(t),$$

 $x(0) = x_1, \quad x'(0) = x_2, \quad \dots, \quad x^{(n-1)}(0) = x_n,$

и f(t) — оригинал, то искомое решение x(t) также является оригиналом.

Пусть $x(t) \doteqdot X(p)$, $f(t) \doteqdot F(p)$. Применяя преобразование Лапласа к обеим частям уравнения и учитывая, что

$$x'(t) \doteq pX(p) - x(0);$$

$$x''(t) \doteq p^2 X(p) - px(0) - x'(0);$$
...
$$x^{(n)}(t) \doteq p^n X(p) - p^{n-1} x(0) - p^{n-2} x'(0) - \dots - x^{(n-1)}(0),$$

получаем операторное уравнение, которое является линейным алгебраическим уравнением относительно X(p). По найденному из этого уравнения изображению X(p) можно восстановить x(t).

ПРИМЕР 1. Решить задачу Коши:

$$x'' + 4x = \cos 2t$$
, $x(0) = 1$, $x'(0) = -1$.

<u>Решение.</u> Пусть $x(t) \doteqdot X(p)$, тогда по свойству **5°** преобразования Лапласа имеем

$$x''(t) \doteq p^2 X(p) - px(0) - x'(0) = p^2 X(p) - p + 1.$$

Так как $\cos 2t
ightharpoonup = \frac{p}{p^2 + 4}$, то операторное уравнение имеет вид

$$p^{2}X(p)-p+1+4X(p)=\frac{p}{p^{2}+4}.$$

Выражая отсюда X(p), получаем

$$X(p) = \frac{p}{(p^2+4)^2} + \frac{p}{p^2+4} - \frac{1}{p^2+4}.$$

Поскольку

$$\frac{p}{p^2+4} = \cos 2t, \quad \frac{1}{p^2+4} = \frac{1}{2}\sin 2t, \quad \frac{p}{(p^2+4)^2} = -\frac{1}{4}\left(\frac{2}{p^2+4}\right)' = \frac{1}{4}t\sin 2t$$

(свойство 4°), то решение задачи Коши имеет вид

$$x(t) = \frac{1}{4}t\sin 2t + \cos 2t - \frac{1}{2}\sin 2t. \blacksquare$$

Замечание. Аналогично можно решать дифференциальные уравнения с произвольными начальными условиями, получая тем самым общие решения уравнений.

ПРИМЕР 2. Найти общее решение уравнения $x'' - 2x' + x = e^t$.

Решение. Пусть
$$x(0) = c_1, x'(0) = c_2$$
 и $x(t) \doteqdot X(p)$, тогда

$$x'(t) \doteq pX(p) - c_1, \quad x''(t) \doteq p^2X(p) - c_1p - c_2,$$

и соответствующее операторное уравнение имеет вид

$$p^2X(p)-c_1p-c_2-2pX(p)+2c_1+X(p)=\frac{1}{p-1},$$

откуда

$$X(p) = \frac{c_1 p + c_2 - 2c_1}{(p-1)^2} + \frac{1}{(p-1)^3}.$$

Следовательно,

$$X(p) = \frac{c_1(p-1+1)}{(p-1)^2} + \frac{c_2 - 2c_1}{(p-1)^2} + \frac{1}{(p-1)^3} = \frac{c_1}{p-1} + \frac{c_2 - c_1}{(p-1)^2} + \frac{1}{(p-1)^3}.$$

Итак, общее решение дифференциального уравнения

$$x(t) = c_1 e^t + \tilde{c}_2 t e^t + \frac{1}{2} t^2 e^t \ (\tilde{c}_2 = c_2 - c_1). \blacksquare$$

ПРИМЕР 3. Решить систему дифференциальных уравнений

$$\begin{cases} x' = y - z, \\ y' = x + y, \quad x(0) = 1, \quad y(0) = 2, \quad z(0) = 3. \\ z' = x + z, \end{cases}$$

<u>Решение.</u> Пусть x(t)
div X(p), y(t)
div Y(p), z(t)
div Z(p), тогда x'(t)
div pX(p) - 1, y'(t)
div pY(p) - 2, z'(t) = pZ(p) - 3.

Система операторных уравнений имеет вид

$$\begin{cases} pX(p) - Y(p) + Z(p) = 1, \\ X(p) - (p-1)Y(p) = -2, \\ X(p) + (1-p)Z(p) = -3. \end{cases}$$

Применяя метод Крамера, получаем

$$X(p) = \frac{(p-1)(p-2)}{p(p-1)^2} = \frac{p-2}{p(p-1)} = \frac{2}{p} - \frac{1}{p-1} \stackrel{.}{=} 2 - e^t;$$

$$Y(p) = \frac{2p^2 - p - 2}{p(p-1)^2} = -\frac{2}{p} + \frac{4}{p-1} - \frac{1}{(p-1)^2} \stackrel{.}{=} -2 + 4e^t - te^t;$$

$$Z(p) = \frac{3p^2 - 2p - 2}{p(p-1)^2} = -\frac{2}{p} + \frac{5}{p-1} - \frac{1}{(p-1)^2} \stackrel{.}{=} -2 + 5e^t - te^t.$$

$$\text{Итак, } x(t) = 2 - e^t, \quad y(t) = -2 + 4e^t - te^t, \quad z(t) = -2 + 5e^t - te^t.$$

Задачи

- 1. Решить задачу Коши $x'' + 2x' + x = \cos t$, x(0) = x'(0) = 0.
- 2. Решить задачу Коши x''' x'' = 0, x(0) = 2, x'(0) = 0, x''(0) = 1.
- 3. Найти общее решение уравнения $x'' + 9x = \cos 3t$.
- 4. Решить задачу Коши $x'' x' = t^2$, x(0) = 0, x'(0) = 1.
- 5. Решить систему

$$\begin{cases} x' = -y, \\ y' = 2x + 2y, \end{cases} x(0) = 1, y(0) = 1.$$

Ответы: 1. $x(t) = \frac{1}{2}\sin t - \frac{1}{2}te^t$. **2.** $x(t) = 1 - t + e^t$.

3.
$$x(t) = c_1 \cos 3t + c_2 \sin 3t + \frac{1}{6}t \sin 3t$$
. **4.** $x(t) = 3e^t - 3 - 2t - t^2 - \frac{t^3}{3}$.

5. $x(t) = e^t(\cos t - 2\sin t), y(t) = e^t(\cos t + 3\sin t).$

Домашнее задание

- 13.1. Решить задачу Коши x' + 2x = 2 3t, x(0) = 0.
- 13.2. Решить задачу Коши $x'' 3x' + 2x = 2e^{3t}$, x(0) = 1, x'(0) = 3.
- 13.3. Решить задачу Коши $x'' x' = t^2$, x(0) = 0, x'(0) = 1.
- 13.4. Решить задачу Коши x''' x'' = 0, x(0) = 2, x'(0) = 0, x''(0) = 1.
- 13.5. Решить систему

$$\begin{cases} x' = y - 7x, \\ y' = -2x - 5y, \end{cases} x(0) = 2, y(0) = 0.$$

13.6. Решить систему

$$\begin{cases} x' + 2x + 2y = 10e^{2t}, \\ y' - 2x + y = 7e^{2t}, \end{cases} x(0) = 1, y(0) = 3.$$

13.7. Решить систему

$$\begin{cases} x'' - 3x - 4y + 3 = 0, \\ y'' + x + y - 5 = 0, \end{cases} \quad x(0) = x'(0) = 0, \quad y(0) = y'(0) = 0.$$

13.8. Решить систему

$$\begin{cases} x' = 2x - y + z, \\ y' = x + z, \\ z' = -3x + y - 2z, \end{cases} x(0) = 1, \ y(0) = 1, \ z(0) = 0.$$

ТИПОВЫЕ ВАРИАНТЫ КОНТРОЛЬНЫХ РАБОТ

Контрольная работа № 1

Вариант 1

1. Вычислить:

a).
$$\sqrt[3]{-2+2i}$$
; 6). 3^{2-i} ; B). $ch(2+i)$.

2. Для функции f(z) найти область аналитичности и производную, если она существует

a).
$$f(z) = z^2 - \text{Re } z + 2i$$
; 6). $f(z) = \frac{1}{z - 4i}$.

3. Проверить, может ли функция $v(x,y) = x^2 - y^2 - 2y$ быть мнимой частью аналитической функции. Если может, то восстановить эту функцию.

Вариант 2

1. Вычислить:

a).
$$(1-i)^{25}$$
; 6). $\text{Ln}(\sqrt{3}-i)$; B). $\sin(-3+4i)$.

2. Для функции f(z) найти область аналитичности и производную, если она существует

a).
$$f(z) = z^2 + 3iz - 2$$
; 6). $f(z) = \text{ch } \overline{z}$.

3. Проверить, может ли функция $u(x, y) = 2\sin x \cosh y - x$ быть действительной частью аналитической функции. Если может, то восстановить эту функцию.

Контрольная работа № 2

Вариант 1

- 1. Вычислить интеграл: $\int\limits_L {{\rm Re}(z^2)dz}$, где L дуга параболы $y=2x^2$ от точки $z_1=0$ до точки $z_2=1+2i$.
- 2. Разложить функцию в ряд Лорана в указанном кольце:

$$f(z) = \frac{1}{z^2 + 3z - 4}, \quad 2 < |z + 1| < 3.$$

3. Найти все конечные изолированные особые точки функции f(z), определить их тип. Найти вычеты.

a).
$$f(z) = \frac{e^{2z} - z}{z^2}$$
; 6). $f(z) = \frac{\sin z}{z^3(z+1)}$.

4. Вычислить интегралы:

a).
$$\oint_{|z-i|=2} \frac{\operatorname{ch} z}{(z-i)(z+2)} dz$$
; 6). $\oint_{|z|=3} \frac{z}{(z-2)^2} dz$.

Вариант 2

- 1. Вычислить интеграл: $\int\limits_L (2z+1)\overline{z}dz$, где L часть окружности |z|=2, $\pi/2<\arg z<\pi$.
- 2. Разложить функцию в ряд Лорана в указанном кольце:

$$f(z) = \frac{1}{z^2 + 4}, \quad 2 < |z| < +\infty.$$

3. Найти все конечные изолированные особые точки функции f(z), определить их тип. Найти вычеты.

a).
$$f(z) = \frac{\cos z - 1}{z^2 (z - 3)^2}$$
; 6). $f(z) = z^2 \sin \frac{1}{2z}$.

4. Вычислить интегралы:

a).
$$\oint_{|z|=3} \frac{e^z}{(z-1)(z+2)} dz; \quad \text{ 6). } \oint_{|z|=1} \frac{z^2 - 3z^3 + z^4}{z^4} dz.$$

Контрольная работа № 3

Вариант 1

- 1. Найти изображение оригинала $f(t) = t^2 \sin 5t + 3e^{-2t}$
- 2. Найти оригинал по изображению $F(p) = \frac{p+1}{p^3 + 4p^2 + 5p}$.
- 3. Решить уравнение $x'' + x' 2x = e^t$, x(0) = 1, x'(0) = 0.

Вариант 2

- 1. Найти изображение оригинала $f(t) = \frac{4}{e^{2t}} e^{-t} \operatorname{ch} 2t$.
- 2. Найти оригинал по изображению $F(p) = \frac{2p-3}{(p-2)^4}$.
- 3. Решить систему дифференциальных уравнений

$$\begin{cases} x' + x + y = 0, \\ y' + x + y = 0, \end{cases} \quad x(0) = y(0) = 1.$$

Вариант 3

- 1. Найти изображение оригинала $f(t) = 3^t + 4t^3e^{-2t}$.
- 2. Найти оригинал по изображению $F(p) = \frac{p}{p^2 + 1} (e^{-p} + 2e^{-2p})$.
- 3. Решить уравнение x'' 4x' + 4x = 4t, x(0) = 4, x'(0) = 7.

Ответы

1.1. a).
$$1 \cdot e^{-i\pi/4}$$
; б). $1 \cdot e^{4\pi i/5}$; в). $\sqrt{13}e^{i(\arctan 1,5-\pi)}$; г). $6e^{i\pi/6}$; д). $5e^{-i\pi/2}$;

e).
$$7e^{i\pi}$$
; ж). $\sqrt{5}e^{-i\arctan 2}$. **1.2.** $-1+2i$; $-5-4i$; $-3-11i$; $(-9+7i)/13$.

1.3. a).
$$-(1+8i)/3$$
; 6). -13 ; B). 0. **1.4.** $\sqrt{68}$.

1.5. a).
$$-2^{13}3^7(1+i\sqrt{3})$$
; 6). $-2^{12}(1+i)$; B). $-i2^9$.

1.6. a).
$$\pm 2$$
; $1 \pm i\sqrt{3}$; $-1 \pm i\sqrt{3}$; б). $\pm (\sqrt{2} - i\sqrt{2})$; в). $\pm \sqrt{2} \left(\frac{\sqrt{3}}{2} - i\frac{1}{2} \right)$;

$$\Gamma).\sqrt[3]{2}\left(\cos\frac{\pi}{12} + i\sin\frac{\pi}{12}\right);\sqrt[3]{2}\left(\cos\frac{9\pi}{12} + i\sin\frac{9\pi}{12}\right);\sqrt[3]{2}\left(\cos\frac{17\pi}{12} + i\sin\frac{17\pi}{12}\right).$$

1.7. a).
$$2 \pm 2i$$
; б). 2; $-1 \pm i\sqrt{3}$; 1; $(-1 \pm i\sqrt{3})/2$; в). i ; $1+i$.

- 2.1. а). расходится; б). сходится абсолютно; в). расходится;
- г). сходится.

3.1. a).
$$-5+i$$
; б). $0,4-0,2i$; в). -4 .

3.2. a).
$$e^{-3}(\cos 2 + i \sin 2)$$
; б). $\cos 2 \cosh 2 - i \sin 2 \sinh 2$; в). $(\sinh 1 + i \cosh 1)/\sqrt{2}$;

г).
$$-i \operatorname{cth} \pi$$
; д). $\ln 2 + i(\pi + 2\pi k)$; е). $\ln 5 + i(\pi/2 + 2\pi k)$; ж). $\ln 3 + i2\pi k$;

3).
$$\ln \sqrt{8} + i(3\pi/4 + 2\pi k)$$
; и). $\ln \sqrt{13} + i(-\arctan 1, 5 + 2\pi k)$;

к).
$$1000e^{2\pi k}(\cos \ln 10 - i \sin \ln 10)$$
; л). $e^{-8\pi/3 - 8\pi k}(\cos \ln 16 + i \sin \ln 16)$;

M).
$$2\pi k \pm \pi/2 - i \ln(\sqrt{2} \pm 1)$$
.

3.3. a).
$$u = x^3 - 3xy^2 - y + 3$$
, $v = 3x^2y - y^3 + x$;

б).
$$u = \sin x \operatorname{ch} y$$
, $v = -\cos x \operatorname{sh} y$; в). $u = x^2 - y^2$, $v = -2xy$;

r).
$$u = e^{x^2 - y^2} \cos(2xy)$$
, $v = e^{x^2 - y^2} \sin(2xy)$;

д).
$$u = \frac{x^2 + x + y^2 - y}{x^2 + (y - 1)^2}, \quad v = \frac{x - y + 1}{x^2 + (y - 1)^2};$$

e).
$$u = x\sqrt{(x+1)^2 + y^2}$$
, $v = y\sqrt{(x+1)^2 + y^2}$.

4.2. a)
$$f(z) = iz + 3 + 2i$$
; б) $f(z) = z^3 + 2 + iC$; в). $f(z) = 2\sin z - z$.

5.1.
$$2+2i$$
. **5.2.** $-2\pi - \frac{8}{3} + \frac{8}{3}i$. **5.3.** $\frac{\sqrt{13}}{2}(3+2i)$. **5.4.** $-\frac{1}{3} + \frac{8}{3}i$.

5.5. a) 0; б) $2\cos 1 - \sin 1 + i(3\sin 1 - 2\cosh 1)$.

5.6. а).
$$\frac{\pi i}{2}$$
; б). 0; в). $-\frac{2\pi i}{3}$; г) $\frac{2\pi (e^6-1)i}{3}$; д). $-2\pi i$; е). $2\pi ei$.

6.1. a).
$$\sum_{n=0}^{+\infty} \frac{(-1)^n z^{2n+1}}{3^{n+1}}, |z| < \sqrt{3}; \, 6). \, \ln 3 + \sum_{n=1}^{+\infty} \left(\frac{(-1)^{n+1}}{3^n n} - \frac{1}{n} \right) z^n, |z| < 1;$$

B).
$$\frac{1}{\sqrt{2}} \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n)!} \left(z - \frac{\pi}{4}\right)^{2n} - \frac{1}{\sqrt{2}} \sum_{n=0}^{+\infty} \frac{(-1)^n}{(2n+1)!} \left(z - \frac{\pi}{4}\right)^{2n+1}, z \in \mathbb{C};$$

$$\Gamma). \ \frac{1}{2} - \frac{1}{6} \sum_{n=0}^{+\infty} \frac{(-1)^n 2^n}{3^n} (z-1)^n, |z-1| < \frac{3}{2}.$$

6.2. a).
$$\frac{1}{3} \sum_{n=0}^{+\infty} \left(\frac{(-1)^n}{4^{n+1}} - \frac{1}{2^n} \right) z^n, |z| < 2; \sum_{n=0}^{+\infty} \frac{(-1)^n z^n}{3 \cdot 4^{n+1}} + \sum_{n=0}^{+\infty} \frac{2^{n+1}}{3 \cdot z^{n+1}}, 2 < |z| < 4;$$

$$\sum_{n=0}^{+\infty} \frac{2^{n+1} + (-1)^n 4^n}{3z^{n+1}}, |z| > 4; 6). \frac{2}{3} \frac{1}{z-2} + \frac{1}{18} \sum_{n=0}^{+\infty} \frac{(-1)^n}{6^n} (z-2)^n, 0 < |z-2| < 6;$$

$$\frac{2}{3} \frac{1}{z-2} + \frac{1}{3} \sum_{n=0}^{+\infty} \frac{(-1)^n 6^n}{(z-2)^{n+1}}, 6 < |z-2| < +\infty.$$

6.3. a).
$$z^4 - 2z^2 + \frac{2}{3} + \sum_{n=1}^{+\infty} \frac{(-1)^n 2^{2n+4}}{(2n+4)! z^{2n}}, 0 < |z| < +\infty;$$

6).
$$z - \frac{2}{z} + \frac{3}{z^4}$$
, $0 < |z| < +\infty$; B). $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1} 2^{2n-1}}{(2n)!} z^{2n-1}$, $0 < |z| < +\infty$.

6.4. a).
$$-\sum_{n=0}^{+\infty} \frac{2^n}{z^{n+1}} - \sum_{n=0}^{+\infty} \frac{z^n}{3^{n+1}}$$
; 6). $\frac{1}{z-3} - \sum_{n=0}^{+\infty} (-1)^n (z-3)^n$;

B).
$$-\frac{i}{2}\frac{1}{z-i} + \frac{1}{4}\sum_{n=0}^{+\infty} \frac{i^n(z-i)^n}{2^n}$$
.

7.1. а). z = 2 — полюс 3-го порядка, z = 0 — полюс 4-го порядка;

б). z = 0 — устранимая особая точка; в). z = -1 — полюс 2-го порядка, z = 1 — простой полюс; г). z = 0 — простой полюс, $z = 2\pi k (k = \pm 1, 2, ...)$

- полюса 2-го порядка; д). z = 0 — существенно особая точка;

е).
$$z = -2i, z = \pm 1$$
 — простые полюса; $z = 2i$ — устранимая особая точка;

ж).
$$z = \pm 2\pi$$
 — устранимые особые точки, $z = 0$ — простой полюс;

3). z = 0 — полюс 6-го порядка.

8.1. а). 0;б).
$$\pi i$$
; в). $\pi i \left(1-\frac{2}{e}\right)$; г). $\frac{2\pi i}{e}$; д). $-\frac{\pi^4 i}{3}$; е). $\frac{\pi i}{2}$; ж). $2\pi i$;

3). $-2\pi i$.

10.1. a).
$$\pi/2$$
; б). 0; в). $\pi/54$; г). $\pi/\sqrt{2}$.

11.1. a).
$$\frac{3}{p-5} - \frac{6}{p^2+9} + \frac{4}{p}$$
; 6) $\frac{1}{(p+4)^2+1} + \frac{p+4}{(p+4)^2+4}$;

в).
$$\frac{3}{p^4} - \frac{16}{p^3} + \frac{4}{p^2} - \frac{1}{p}$$
; г). $\frac{1}{2(p-1)} + \frac{p-1}{2((p-1)^2 + 16)}$; д). $\frac{2}{(p+5)^3}$;

e).
$$\frac{p-4}{2((p-4)^2+9)} + \frac{p+4}{2((p+4)^2+9)}$$
; ж). $\ln \frac{p}{p-1}$; 3). $\frac{2}{p((p+3)^2-4)}$;

и).
$$\frac{1-2e^{-p}+e^{-2p}}{p^2}.$$

12.1. a).
$$3 - \frac{7}{6}t^3 + 2e^{3t}$$
; б). $5 \cosh 2t - \frac{1}{2} \sinh 2t$; в). $\frac{1}{2}t^2e^{-4t} - \frac{1}{2}t^3e^{2t}$;

г).
$$e^{-t} \operatorname{ch} \sqrt{6}t + \frac{2}{\sqrt{6}} e^{-t} \operatorname{sh} \sqrt{6}t$$
; д). $te^{-2t} - \frac{3}{2}t^2 e^{-2t}$; e) $\frac{1}{2}t - \frac{3}{4} + e^{-t} - \frac{1}{4}e^{-2t}$;

ж).
$$-\frac{1}{3}\cos 2t + \frac{1}{3}\cos t$$
; 3). $e^{-3(t-3)}\sin(t-3)$.

13.1.
$$x(t) = 1,75-1,5t-1,75e^{-2t}$$
. **13.2.** $x(t) = e^{3t}$.

13.3.
$$x(t) = 3e^t - 3 - 2t - t^2 - t^3/3$$
. **13.4.** $x(t) = 1 - t + e^t$.

13.5.
$$x(t) = 2e^{-6t}(\cos t - \sin t), y(t) = -4e^{-6t}\sin t.$$

13.6.
$$x(t) = e^{2t}$$
, $y(t) = 3e^{2t}$.

13.7.
$$x(t) = 7t \operatorname{sh} t - 17 \operatorname{ch} t + 17$$
, $y(t) = 12 \operatorname{ch} t - 3$, $5t \operatorname{sh} t - 12$.

13.8.
$$x(t) = 2 - e^{-t}$$
, $y(t) = 2 - e^{-t}$, $z(t) = 2e^{-t} - 2$.

Литература

- 1. *Письменный Д.Т.* Конспект лекций по высшей математике. Т.2. М.: Айрис-пресс, 2006. 256с.
- 2. *Лунгу К.Н.*, *Письменный Д.Т.* и др. Сборник задач по высшей математике. 2 курс. М.: Айрис-пресс, 2009. 592с.
- 3. *Краснов М.Л., Киселев А.И.* и др. Вся высшая математика. Т.4. М.: Эдиториал УРСС, 2001. 352с.
- 4. *Краснов М.Л.*, *Киселев А.И.*, *Макаренко Г.И.* Функции комплексного переменного. Задачи и примеры с подробными решениями. М.: Книжный дом «ЛИБРОКОМ», 2010. 208с.
- 5. Сборник задач по математике для втузов. В 4 частях. Под редакцией Ефимова А.В. Ч.3. М.: ФИЗМАТЛИТ, 2003. 576с.
- 6. *Афанасьев В.И.*, *Зимина О.В.* и др. Высшая математика. Специальные разделы М.: ФИЗМАТЛИТ, 2001. 400с.