

Technical paper presentation Accelerating wind power deployment in India through decentralised plants

Speaker: Ashwani Arora, Programme Associate, **CEEW**

India's wind energy sector: A snapshot

Share of wind energy in India's installed capacity and generation mix is ~10% and ~5% respectively

Source: CEA reports

O Digital Platform

Current challenges and possible solution

Challenges associated with high concentration of WPPs in high speed wind pockets

Parallel focus need to be towards low-medium wind-rich states to achieve 140 GW by 2030

Small scale decentralised WPPs in low-medium wind rich states is one of the potential solutions

Proposed deployment model

Small/medium investors and developers

5 MW to 50 MW WPPs in land near STU

Substation < 10 MW WPP: 11/22/33 kV 10 MW to 50 MW WPP: 33kV and above

State transmission network

Offtaker: Discoms, other obligated entities

Benefits

- Boost small/medium scale investors, and developers
- Decentralised development

Utilise spare STU capacity

Local job creation

Equitable energy transition

Page: 4 of 12

LCoE for decentralised WPPs

Wind zones	Annual mean WPD (W/m²)	Average wind speed (m/s)	Expected average CUF (%)	LCoE (INR/kWh)
Zone I	200-250	5.6 to 6.0	22%	4.87
Zone II	250-300	6.0 to 6.4	25%	4.29
Zone III	300-400	6.4 to 7.0	30%	3.57
Zone IV	400-450	7.0 to 8.0	35%	3.06
Zone V	>450	>8.0	>40%	2.68

Moderate wind speed zones have high LCoE

Source: Authors' analysis

A case study for Maharashtra discom

Landed cost for decentralised WPPs

Source: Authors' analysis

A case study for Maharashtra discom

- Savings calculated as difference between avoided cost for the discom and landed cost
- Avoided costs considered are:
 - Fixed cost
 - Variable cost
 - Non-solar RPO penalty cost

——S1: STU connected - without indexation

-X-S2: STU connected - with indexation

-S3: Discom substation connected - without indexation

S4: Discom substation connected - with indexation

Ne	et savings for discom	S1	S2	S3	S4
	INR per kWh	0.85	0.85	1.02	1.02
II	NR Crore for 50MW	279	279	336	336

Source: Authors' analysis

Page: 7 of 12

A case study for Maharashtra discom

Cost	Estimate			
	INR 19 - 21 crores per annum (expected to reduce with new			
Grid balancing	dispatch and market mechanisms)			
Benefits to state/discom	Estimate			
Lease rentals	INR 5 – 15 lakhs per annum			
Land conversion charges, if applicable	~INR 68 lakhs			
Discom savings	INR 279 - 336 crores over 25 years			
	30 jobs in construction and commission			
Employment	25 jobs in operation and maintenance			
	8 jobs in business development and design			

Enablers for implementation

) (Central procurement guidelines for WPPs < 25MW (intra-state) and < 50MW (inter-state)

Frequent development of updated wind resource maps, and easy access

Load flow studies to identify spare capacities at STU

Development / digitization of land database

Single-stage permits and clearances for setting up infrastructure

Payment security mechanism for small and medium-scale players

Mechanisms to reduce the upfront impact of high tariff

Decentralised WPP needs innovative procurement mechanisms

Mechanisms must ensure the following:

- ✓ Attract large number of bidders, ensuring competitiveness
- ✓ Sustainable price discovery
- ✓ Reduce risk of under-bidding
- ✓ Reduce delays in project deployment

Additional analysis under progress:

- ✓ Plausible power procurement mechanism(s) and associated regulatory assessments
- ✓ Implementation framework for central programme/scheme: Assessment of different phases of implementation with possible facilitation framework for offtakers

Thank You

For discussions/suggestions/queries email: ashwani.arora@ceew.in, disha.agarwal@ceew.in, saxena.payal1@gmail.com https://www.ceew.in/

India Smart Grid Forum

CBIP Building, Malcha Marg, Chanakyapuri, Delhi-110021

Website: www.indiasmartgrid.org

References

- Central Electricity Authority, "Executive summary on power sector November-2021," 2021.
- Ministry of New and Renewable Energy, "State-wise installed capacity of renewable energy as on Nov 2021," 2021. .
- Harsha V. Rao and D. Agarwal, "How India's solar and wind policies enabled its energy transition A decade in review," 2021.
- Central Electricity Authority, "Report on optimal generation capacity mix for 2029-30," 2019.
- Central Electricity Authority, "Technical Standards for connectivity to the grid (Amendment) regulations, 2019," 2019.
- G. Sidhu and K. Shah, "The case for indexed renewable energy tariffs," 2020.
- N. Kuldeep, K. Ramesh, A. Tyagi, and S. Saji, "Valuing grid-connected rooftop solar," 2019.
- Maharashtra Electricity Regulatory Commission, "Approval of Truing-up for FY 2017-18 and FY 2018-19, Provisional Truing-up for FY 2019-20 and ARR for 4th Control Period from FY 2020-21 and FY 2024-25 for MSEDCL," 2020.
- 9. A. Kumar and S. Thapar, "Addressing Land Issues for Utility Scale Renewable Energy Deployment in India," 2017.
- 10. P. Denholm, M. Hand, M. Jackson, and S. Ong, "Land use requirements of modern wind power plants in the United States," 2009.
- 11. CEEW, NRDC, and SCGJ, "Powering jobs growth with green energy," 2019.
- 12. Central Electricity Authority, "Report of the technical committee on study of optimal location of various types of balancing energy sources/energy storage devices To facilitate grid integration of renewable energy sources and associated issues," no. December, pp. 1–39, 2017.
- 13. Ministry of Power, "Guidelines for tariff based competitive bidding process for procurement of power from grid connected wind power projects - Dec 2017," 2017.

