

Autonomous Rocket Recovery System

Rice Eclipse Rocketry Club Beck Edwards, Arush Adabala, Ahitagni Das

RICE OEDK

Steering a Payload

- Uses real-time data to navigate its way to a targeted location.
- The payload is released from 3,000 feet in the air before apogee of a rocket launch. post deployment.

Project Goal

To design a system of automatic recovery for a payload inside a rocket, providing a basis for future autonomous full-rocket recovery

Navigation

angle between the two vectors. Deadzone If the navigad is within 15.

[3] The onboard pi calculates the

If the payload is within 15 degrees of the target vector, the payload will continue in the direction it is going to prevent overcorrection

Tilt Correction

If the payload is tilted over 30 degrees from the vertical axis, data will not be collected, to prevents errors due to stability

Calibration

Software allows for automatically calibration of the IMU to correct for bias

Overall Payload Design

Failsafe

In the event of navigation failure, the paload enters its failsafe protocol and pulls on one end of the parachute causing it to spiral downward.

Drone Testing System

Phase 1

A PLA Outer Tube encases the payload. The Deployment Servo is left extended, The carbon-fiber-framed drone attaches to the top of the Outer Tube, flying 400 feet in the air

Phase 2

At 400 feet, a **GPIO pin** on the **raspberry pi** to send a signal to the emitter pin on the transistor causing the servo to **contract**.

The entire payload navigates itself to the desired location.

Nose Cone

- Korekau is attached to the Nose cone.
- When the payload detaches from the launch rocket, the nose cone will detach from the rocket alongside it.
- The nose cone will protect the payload from any heavy impact.

Results

Starting at intramural field 3 in the bottom right the payload successfully navigates to intramural field 1 in the top left covering a distance of over 0.5 miles

Future Plans

- Launch the payload from Hermes a second time to ensure correctness of design and algorithm..
- Apply the algorithm to a mechanical design for full-scale rocket payload, in order to enable fully autonomous recovery of rocket payloads.

