XJ4810 晶体管特性图示仪介绍

晶体管测量仪器是以通用电子测量仪器为技术基础,以半导体器件为测量对象的电子仪器。用它可以测试晶体三极管(NPN型和PNP型)的共发射极、共基极电路的输入特性、输出特性;测试各种反向饱和电流和击穿电压,还可以测量场效管、稳压管、二极管、单结晶体管、可控硅等器件的各种参数。下面以XJ4810型晶体特性图示仪为例介绍晶体管图示仪的使用方法。

图 1 XJ4810 型半导体管特性图示仪

◆XJ4810 型晶体管特性图示仪面板功能介绍

XJ4810型晶体管特性图示仪面板如图 A-23 所示:

- 1. 集电极电源极性按钮,极性可按面板指示选择。
- 2. 集电极峰值电压保险丝: 1.5A。
- 3. 峰值电压%: 峰值电压可在 $0\sim10V$ 、 $0\sim50V$ 、 $0\sim100V$ 、 $0\sim500V$ 之连续可调,面板上的标称值是近似值,参考用。
- 4. 功耗限制电阻: 它是串联在被测管的集电极电路中,限制超过功耗,亦可作为被测半导体管集电极的负载电阻。
- 5. 峰值电压范围:分0~10V/5A、0~50V/1A、0~100V/0.5A、0~500V/0.1A 四挡。当由低挡改换高挡观察半导体管的特性时,须先将峰值电压调到零值,换 挡后再按需要的电压逐渐增加,否则容易击穿被测晶体管。

AC 挡的设置专为二极管或其他元件的测试提供双向扫描,以便能同时显示器件正反向的特性曲线。

6. 电容平衡: 由于集电极电流输出端对地存在各种杂散电容,都将形成电

容性电流,因而在电流取样电阻上产生电压降,造成测量误差。为了尽量减小电容性电流,测试前应调节电容平衡,使容性电流减至最小。

- 7. 辅助电容平衡: 是针对集电极变压器次级绕组对地电容的不对称,而再次进行电容平衡调节。
- 8. 电源开关及辉度调节: 旋钮拉出,接通仪器电源,旋转旋钮可以改变示波管光点亮度。
 - 9. 电源指示:接通电源时灯亮。
 - 10. 聚焦旋钮:调节旋钮可使光迹最清晰。
 - 11. 荧光屏幕: 示波管屏幕, 外有座标刻度片。
 - 12. 辅助聚焦:与聚焦旋钮配合使用。
- 13. Y 轴选择(电流/度)开关: 具有 22 挡四种偏转作用的开关。可以进行集电极电流、基极电压、基极电流和外接的不同转换。
 - 14. 电流/度×0.1 倍率指示灯: 灯亮时, 仪器进入电流/度×0.1 倍工作状态。
- 15. 垂直移位及电流/度倍率开关:调节迹线在垂直方向的移位。旋钮拉出,放大器增益扩大 10 倍,电流/度各挡 Ic 标值×0.1,同时指示灯 14 亮.
 - 16. Y 轴增益:校正 Y 轴增益。
 - 17. X 轴增益:校正 X 轴增益。
 - 18.显示开关:分转换、接地、校准三挡,其作用是:
- (1)转换:使图像在I、III象限内相互转换,便于由 NPN 管转测 PNP 管时简化测试操作。
 - (2) 接地: 放大器输入接地,表示输入为零的基准点。
- (3) 校准:按下校准键,光点在 X、Y 轴方向移动的距离刚好为 10 度,以达到 10 度校正目的。
 - 19. X 轴移位:调节光迹在水平方向的移位。
- 20. X 轴选择(电压/度)开关:可以进行集电极电压、基极电流、基极电压和外接四种功能的转换,共 17 挡。
 - 21. "级/簇"调节: 在 $0 \sim 10$ 的范围内可连续调节阶梯信号的级数。
- 22. 调零旋钮:测试前,应首先调整阶梯信号的起始级零电平的位置。当 荧光屏上已观察到基极阶梯信号后,按下测试台上选择按键"零电压",观察光点

停留在荧光屏上的位置,复位后调节零旋钮,使阶梯信号的起始级光点仍在该处,这样阶梯信号的零电位即被准确校正。

- 23. 阶梯信号选择开关:可以调节每级电流大小注入被测管的基极,作为测试各种特性曲线的基极信号源,共22挡。一般选用基极电流/级,当测试场效应管时选用基极源电压/级。
- 24. 串联电阻开关: 当阶梯信号选择开关置于电压/级的位置时,串联电阻将串联在被测管的输入电路中。
- 25. 重复一一关按键:弹出为重复,阶梯信号重复出现;按下为关,阶梯信号处于待触发状态。
- 26. 阶梯信号待触发指示灯: 重复按键按下时灯亮, 阶梯信号进入待触发状态。
- 27. 单簇按键开关: 单簇的按动其作用是使预先调整好的电压(电流)/级, 出现一次阶梯信号后回到等待触发位置,因此可利用它瞬间作用的特性来观察被 测管的各种极限特性。
 - 28. 极性按键:极性的选择取决于被测管的特性。
 - 29. 测试台: 其结构如图 2 所示。
 - 30. 测试选择按键:
- (1)"左"、"右"、"二簇":可以在测试时任选左右两个被测管的特性,当置于"二簇"时,即通过电子开关自动地交替显示左右二簇特性曲线,此时"级/簇"应置适当位置,以利于观察。二簇特性曲线比较时,请不要误按单簇按键。
- (2)"零电压"键:按下此键用于调整阶梯信号的起始级在零电平的位置,见(22)项。
- (3) "零电流"键: 按下此键时被测管的基极处于开路状态,即能测量 I_{CEO} 特性。

图 2 XJ4810 型半导体管特性图示仪测试台

- 31、32. 左右测试插孔: 插上专用插座 (随机附件),可测试 F_1 、 F_2 型管座的功率晶体管。
 - 33、34、35.晶体管测试插座。
 - 36. 二极管反向漏电流专用插孔(接地端)。

在仪器右侧板上分布有图 3 所示的旋钮和端子:

图 3 XJ4810 型半导体管特性图示仪右侧板

- 37. 二簇移位旋钮:在二簇显示时,可改变右簇曲线的位置,更方便于配对晶体管各种参数的比较。
 - 38. Y 轴信号输入: Y 轴选择开关置外接时, Y 轴信号由此插座输入。
 - 39. X 轴信号输入: X 轴选择开关置外接时, X 轴信号由此插座输入。
 - 40. 校准信号输出端: 1V、0.5V 校准信号由此二孔输出。

◆测试前注意事项

为保证仪器的合理使用,既不损坏被测晶体管,也不损坏仪器内部线路,在 使用仪器前应注意下列事项:

1. 对被测管的主要直流参数应有一个大概的了解和估计,特别要了解被测管的集电极最大允许耗散功率 $P_{\rm CM}$ 、最大允许电流 $I_{\rm CM}$ 和击穿电压 $BV_{\rm EBO}$ 、 $BV_{\rm CBO}$ 。

- 2. 选择好扫描和阶梯信号的极性,以适应不同管型和测试项目的需要。
- 3. 根据所测参数或被测管允许的集电极电压,选择合适的扫描电压范围。
- 一般情况下,应先将峰值电压调至零,更改扫描电压范围时,也应先将峰值电压调至零。选择一定的功耗电阻,测试反向特性时,功耗电阻要选大一些,同时将 X、Y 偏转开关置于合适挡位。测试时扫描电压应从零逐步调节到需要值。
- 4. 对被测管进行必要的估算,以选择合适的阶梯电流或阶梯电压,一般宜先小一点,再根据需要逐步加大。测试时不应超过被测管的集电极最大允许功耗。
 - 5. 在进行 I_{CM} 的测试时,一般采用单簇为宜,以免损坏被测管。
- 6. 在进行 $I_{\rm C}$ 或 $I_{\rm CM}$ 的测试中,应根据集电极电压的实际情况选择,不应超过本仪器规定的最大电流,见表 1。

电压范围/V	0~10	0~50	0~100	0~500
允许最大电流/A	5	1	0.5	0.1

表 1 最大电流对照表

7. 进行高压测试时,应特别注意安全,电压应从零逐步调节到需要值。观察完毕,应及时将峰值电压调到零。

◆基本操作步骤

- 1. 按下电源开关,指示灯亮,预热 15 分钟后,即可进行测试。
- 2. 调节辉度、聚焦及辅助聚焦, 使光点清晰。
- 3. 将峰值电压旋钮调至零,峰值电压范围、极性、功耗电阻等开关置于测试所需位置。
 - 4. 对 X、Y 轴放大器进行 10 度校准。
 - 5. 调节阶梯调零。
- 6. 选择需要的基极阶梯信号,将极性、串联电阻置于合适挡位,调节级/簇 旋钮,使阶梯信号为 10 级/簇,阶梯信号置重复位置。
 - 7. 插上被测晶体管,缓慢地增大峰值电压,荧光屏上即有曲线显示。

◆测试实例

1. 晶体管 $h_{\rm FE}$ 和 β 值的测量

以 NPN 型 3DK2 晶体管为例,查手册得知 3DK2 h_{FE} 的测试条件为 V_{CE} =1V、 I_{C} =10mA。将光点移至荧光屏的左下角作座表零点。仪器部件的置位详见表 2。

		,	
部件	置位	部件	置位
峰值电压范围	0∼10V	Y轴集电极电流	1 mA/度
集电极极性	+	阶梯信号	重复
功耗电阻	250Ω	阶梯极性	+
X轴集电极电压	1V/度	阶梯选择	20μΑ

表 2 3DK2 晶体管 h_{FE} 、 β 测试时仪器部件的置位

逐渐加大峰值电压就能在显示屏上看到一簇特性曲线,如图 4 所示.读出 X 轴集电极电压 Vce =1V 时最上面一条曲线(每条曲线为 20μ A,最下面一条 I_B =0 不计在内) I_B 值和 Y 轴 I_C 值,可得

$$h_{\text{FE}} = \frac{I_C}{I_B} = \frac{8.5 \text{mA}}{200 \mu \text{A}} = \frac{8.5}{0.2} = 42.5$$

若把 X 轴选择开关放在基极电流或基极源电压位置,即可得到图 5 所示的电流放大特性曲线。即

$$\beta = \frac{\Delta I_{\mathcal{C}}}{\Delta I_{\mathcal{B}}}$$

0 I_B/mA 0, 2

图 4 晶体三极管输出特性曲线

图 5 电流放大特性曲线

PNP 型三极管 h_{FE} 和 β 的测量方法同上,只需改变扫描电压极性、阶梯信号极性、并把光点移至荧光屏右上角即可。

2.晶体管反向电流的测试

以 NPN 型 3DK2 晶体管为例,查手册得知 3DK2 I_{CBO} 、 I_{CEO} 的测试条件为 V_{CB} 、 V_{CE} 均为 10V。测试时,仪器部件的置位详见表 3。

逐渐调高"峰值电压"使 X 轴 $V_{CB}=10V$,读出 Y 轴的偏移量,即为被测值。被测管的接线方法如图 6,其中图 6 (a) 测 I_{CBO} 值,图 6 (b) 测 I_{CEO} 值、图 6 (c) 测 I_{EBO} 值。

图 6 晶体管反向电流的测试

表 3 3DK2 晶体管反向电流测试时仪器部件的置位

	I_{CBO}	$I_{ m CEO}$
峰值电压范围	0∼10V	0∼10V
极性	+	+
X轴集电极电压	2V/度	2V/度
Y轴集电极电流	10μA/度	10μA/度
倍率	Y 轴位移拉出×0.1	Y 轴位移拉出×0.1
功耗限制电阻	5ΚΩ	5ΚΩ

测试曲线如图 7 所示。

图 7 反向电流测试曲线

PNP 型晶体管的测试方法与 NPN 型晶体管的测试方法相同。可按测试条件,适当改变挡位,并把集电极扫描电压极性改为"—",把光点调到荧光屏的右下角(阶梯极性为"—"时)或右上角(阶梯极性为"—"时)即可。

3.晶体管击穿电压的测试

以 NPN 型 3DK2 晶体管为例,查手册得知 3DK2 BV_{CBO} 、 BV_{CEO} 、 BV_{EBO} 的测试条件 I_C 分别为 100μ A、 200μ A 和 100μ A。测试时,仪器部件的置位详见表 4。逐步调高"峰值电压",被测管按图 4(a)的接法,Y 轴 I_C =0.1mA 时,X 轴

的偏移量为 BV_{CEO} 值;被测管按图 4(b)的接法,Y 轴 I_{C} =0.2m A 时,X 轴的偏移量为 BV_{CEO} 值;被测管按图 4(c)的接法,Y 轴 I_{C} =0.1mA 时,X 轴的偏移量为 BV_{EBO} 值。

表 4	3DK2 晶体官击穿甲		等部件的直位

	BV_{CBO}	$BV_{ m CEO}$	$BV_{ m EBO}$
峰值电压范围	. 0∼100V	0∼100V	0∼10V
极性	+	+	+
X轴集电极电压	10V/度	10V/度	1V/度
Y轴集电极电流	20μA/度	20μA/度	20μA/度
功耗限止电阻	1 kΩ~5 kΩ	1 kΩ~5 kΩ	1 kΩ~5kΩ

测试曲线如图 8 所示。

图 8 反向击穿电压曲线 (NPN)

图 9 反向击穿电压曲线 (PNP)

读数: BV_{CBO} =70V(I_{C} =100 μ A) BV_{CEO} =60V(I_{C} =200 μ A) BV_{EBO} =7.8V(I_{C} =100 μ A)

PNP 型晶体管的测试方法与 NPN 型晶体管的测试方法相似。其测试曲线如图 9 所示。

4.稳压二极管的测试

以 2CW19 稳压二极管为例,查手册得知 2CW19 稳定电压的测试条件 $I_R=3\text{mA}$ 。测试时。仪器部件置位详见表 5。

逐渐加大"峰值电压",即可在荧光屏上看到被测管的特性曲线,如图 10 所示。

部件	置位	部件	置位
峰值电压范围	AC 0∼10V	X轴集电极电压	5V/度
功耗限止电阻	5 kΩ	Y轴集电极电流	1mA/度

表 5 2CW19 稳压二极管测试时仪器部件的置位

读数:正向压降约0.7V,稳定电压约12.5V。

5.整流二极管反向漏电电流的测试

以 2DP5C 整流二极管为例,查手册得知 2DP5 的反向电流应≤500nA。测试时,仪器各部件的置位详见表 6。

逐渐增大"峰值电压",在荧光屏上即可显示被测管反向漏电电流特性,如图 11 所示。

读数: *I*_R=4div×0.2μA×0.1(倍率)=80 nA

测量结果表明,被测管性能符合要求。

图 10 稳压二极管特性曲线

图 11 二极管反向电流测试

表 6 2DP5C 整流二极管测试时仪器部件的置位

部件	置位	部件	置位
峰值电压范围	0∼10V	Y轴集电极电流	0.2μA/度
功耗限制电阻	1 kΩ	倍率	Y 轴位移拉出×0.1
X轴集电极电压	1V/度		

6.二簇特性曲线比较测试

以 NPN 型 3DG6 晶体管为例,查手册得知 3DG6 晶体管输出特性的测试条

件为 $I_{\rm C}$ =10 mA、 $V_{\rm CE}$ =10V。测试时,仪器部件的置位详见表 7。

将被测的两只晶体管,分别插入测试台左、右插座内,然后按表 6 置位各功能键,参数调至理想位置。按下测试选择按钮的"二簇"琴键,逐步增大峰值电压,即可要荧光屏上显示二簇特性曲线,如图 12 所示。

部件	置位	部件	置位
峰值电压范围	0∼10V	Y轴集电极电流	1 mA/度
极性	+	"重复--关"开关	重复
功耗限制电阻	250Ω	阶梯信号选择开关	10μA/级
X轴集电极电压	1V/度	阶梯极性	+

表 7 二簇特性曲线测试时仪器部件的置位

当测试配对管要求很高时,可调节"二簇位移旋钮"(37),使右簇曲线左移,视其曲线重合程度,可判定其输出特性的一致程度。

图 12 二簇输出特性曲线