RKIT

SOFTWARE PVT. LTD.

Module 1(understanding document)

By Lathiya Nirali

1.1 Different types of window

(a) Solution Explorer (Ctrl + Alt + L)

- It contains relatable files and folders of the project.
- You can navigate to any file and folder through solution explorer.

(b) Properties Window (F4)

 By using this window you can view the properties of selected files and folders or project and solution.

(c) Team Explorer (Ctrl + M)

 By using this window you can connect to your version control system like git or any other and work on the team project.

(d) Server Explorer (Ctrl + Alt + S)

 This window use for connect your application with database.

(d) Editor Window

 This window displays the file content, where we can edit the code.

(e) Toolbox Window (Ctrl + Alt + X)

 Toolbox contain the controls that you can add to the project like windows form application.

1.2 Solution, Project (Ctrl + Shift + O)

 At the start page of visual studio 2019 there is a availability of the option Open a project or solution by clicking that option you can open a existing project or solution from your local directories.

1.3 Code editor features

- In the code editor there is search box from where we can find the things.
- There is error and warning marks in code editor by that we can easily catch the error.
- It shows brace matching.
- Number of lines are available.

2.1 Windows Application

- This is the type of the application which runs on the windows platform.
- It has a Graphical User Interface.
- This type of application contains different controls like button, radio button, checkbox, text box etc.

2.2 Class Library

- There is already availability of the class library in .net framework which includes namespaces, classes and methods.
- In Visual Studio we can also create our own class library which contains some special methods which we can use in another program by including them.

2.3 Web Application

- Web application is something which we can run on any system on web server through web browser.
- ASP.NET is a framework to develop web application on visual studio.

1 What is Namespace?

- Namespace contains classes and their methods.
- By including that namespace in another program we can use that namespace's classes and their method.

3.2 What is class?

- A class is a one type of template or blueprint of the program.
- A class contains related variables and methods.

3.3 Variable and Method Declaration

(a) variable

- Variable is one type of container which contains the data.
- There is availability of different types of data to indicate particular type of data you need to put the datatype before the variable name

(b) Method

- Method is a one type of block which contains the lines of code.
- Whenever we want to use that block of code we can call that method

4.1 Program Flow

- The normal flow of the program, when the program runs the code is executed from the top of the program to the bottom
- Main method is the entry point of the program.
- If we want to change the flow of the program we can use different control statements like Continue, Break, Goto etc.

4.2 Understanding Syntax

- The first statement of any C# program is:
 using namespace where using keyword is used to include namespace in the program.
- You can include more than one namespaces
- After that there is a namespace of your program.
- After the namespace there is a class which contains the data and methods.
- Another thing that always available in c# program is
 Main method.
- Every C# statement ends with the semicolon.

5.1 Understanding structure of solution

- Extension of the solution file is .sln
- Solution file can contain one or more related project.
- When we open the solution in Visual Studio, it automatically load all the projects which solution contains.
- Solution file contain some of the files named Assemblyinfo.cs, App.config,Refrences.

5.2 Understanding structure of project

(a) Windows application

- Windows application is the application which runs on the windows platform.
- When we create this type of application editor window shows the form, in the form we can add controls using Toolbox window.

(b) Class Library.

- The extension of the file is .DLL
- By adding the reference this file in another project you can use the methods of this program in another program.

(c) Web application

- This type of application runs on web server.
- There is a index.cshtml file where we can edit our home page.

5.3 Extension

- .sln -> solution file
- .cs -> c# file
- .csproj -> c# project file
- .dll -> class library file
- .designer.cs -> form design file

6.1 Base datatype

- Datatype specifies that which type of data variable can store.
- There is a availability of several type of datatype
- (a) Int (size= 4 bytes)
- (b) long (size= 8 bytes)
- (d) float (size= 4 bytes)
- (e) double (size= 4 bytes)
- (f) decimal (size= 16 bytes)
- (g) Char (size= 2 bytes)
- (h) String (size= 2 bytes per character)
- (i) Bool (size= 1 byte)

6.2 Datatype Conversion

- When we want to assign the value of one datatype to another datatype it's called datatype conversion
- There is two type of datatype conversion.
 - (1) Implicit

In this conversion we can only assign the value of smaller datatype to the larger datatype

(2) Explicit

 When we want to assign the value of larger datatype to smaller datatype then we need to do the explicit conversion.

6.3 Boxing/ Unboxing

(a) Boxing

- When we convert value type to object type it's known as boxing.
- When we box the value CLR will convert it to the object type and that object give the reference of the value in heap memory

(b) Unboxing

In unboxing we convert object to value type.
 This unboxing conversion is explicit conversion

7. Understanding decision making & statements

. 7.1 If else

- This is the decision making statement.
- There is a condition, if the given condition is true than if block will execute otherwise else block will execute

7.2 Switch

- In switch statement there is availability of multiple sections called cases.
- The expression of switch statement is checked for different cases and whichever case matches with expression that will execute
- There is also default case if expression does not match with any case than default case will execute

• Program 1: Hello world

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;

namespace Helloworld
{
    class Program
    {
        static void Main(string[] args)
          {
            Console.WriteLine("Hello world");
            Console.ReadLine();
        }
     }
}
```

Output

■ E:\c# programs\Helloworld\Helloworld\bin\Debug\Helloworld.exe
Hello world

Program 2: Method declaration

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace MethodDeclaration
{
    class Mymethod
        public int sum (int x, int y)
         return x+y;
        static void Main(string[] args)
     {
            Mymethod m1 = new Mymethod();
            int Addition = m1.sum(10,20);
            Console.WriteLine("The sum of two numbers is:
" + Addition);
            Console.ReadLine();
        }
    }
```

```
File Edit View Project Build Debug Test Analyze Tools Extensions Wi
E:\c# programs\MethodDeclaration\MethodDeclaration\bin\Debug\MethodDeclaration.exe

PrThe sum of two numbers is: 30
```

Program 3: Datatype

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace Datatype
    class Program
        static void Main(string[] args)
            //Base Datatypes
            int num1 = 25;
            long num2 = 67438;
            float num3 = 56.76f;
            double num4 = 78.987;
            decimal num5 = 7895.56432m;
            char a = 'I';
            string s1 = "Apple";
            bool b = (num1 > num2);
            //Check the size of datatype
            Console.WriteLine("Min size of integer is: " +
int.MinValue);
            Console.WriteLine("Max size of double is: " +
double.MaxValue);
               Console.WriteLine("This is an Integer number:
{0}", num1);
            Console.WriteLine("This is Long number: {0}",
num2);
               Console.WriteLine("This is Float number:
{0}", num3);
```

```
E\c#programs\Datatype\Datatype\bin\Debug\Datatype.exe

Min size of integer is: -2147483648

Max size of double is: 1.79769313486232E+308

This is an Ineger number: 25

This is Long number: 67438

This is Float number: 56.76

This is Double number: 78.987

This is Decimal number: 7895.56432

This is a Character: I

This is a String: Apple

Integer num1 is greater than Long num 2: False
```

Program 4: Type Conversion

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Remoting.Metadata.W3cXsd2001;
using System.Text;
using System.Threading.Tasks;
namespace Datatypeconversion
    class Program
    {
        static void Main(string[] args)
            //implicit
            int num1 = 20;
            float num2 = num1;
            //explicit
            float num3 = 34.89f;
            int num4 = (int)num3;
            int num5 = Convert.ToInt32(num3);
            Console.WriteLine("Integer num1: " + num1);
            Console.WriteLine("Float num2: " + num2);
            Console.WriteLine("Float num3: " + num3);
            Console.WriteLine("Explicit conversion of Float
to int: " + num4);
            Console.WriteLine("Explicit conversion of Float
to int: " + num5);
            Console.ReadLine();
       }
    }
```


Program 5: Boxing Unboxing

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace BoxingUnboxing
{
    class Program
        static void Main(string[] args)
        {
            //boxing
            int num1 = 255;
            Console.WriteLine("Original value :" + num1);
            object obj = num1;
            Console.WriteLine("boxing object value: " +
obj);
            num1 = 456;
            Console.WriteLine("Change in original value :" +
num1);
            //Unboxing
            int num2 = (int)obj;
            Console.WriteLine("Unboxing value : " + num2);
            Console.ReadLine();
        }
    }
```


Program 6: IfElse

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.Remoting.Messaging;
using System.Text;
using System.Threading.Tasks;
namespace IfElse
{
    class Program
        static void Main(string[] args)
            Console.WriteLine("Enter the 24-hour clock
time");
            int time = int.Parse(Console.ReadLine());
            if ( time >= 5 && time <= 12)</pre>
            {
                Console.WriteLine("Good Morning...!!");
            else if(time >12 && time <= 18)</pre>
                Console.WriteLine("Good Afternoon...!!");
            else
            {
                Console.WriteLine("Good Evening..!!");
            }
            Console.ReadLine();
    }
}
```


Program 7: Switch

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace SwitchStatement
{
    class Program
        static void Main(string[] args)
            Console.WriteLine("Enter a alphabet to check
whether it's vowel or not: ");
            char ch =
Convert.ToChar(Console.ReadLine().ToLower());
            switch(ch)
            {
                case 'a':
                case 'e':
                case 'i':
                case 'o':
                case 'u':
                    Console.WriteLine("This alphabet is
vowel");
                    break;
                default:
                    Console.WriteLine("This alphabet is not
a vowel");
                    break;
            Console.ReadLine();
        }
    }
}
```


Program 8: Class Library

Create a class library

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace MathLibrary
    public class Class1
        public float addition(float a, float b)
            return a + b;
        public float subtraction(float a, float b)
            return a - b;
        public float multiply(float a, float b)
            return a * b;
        public float division(float a, float b)
            return a / b;
    }
}
```

Use of the class library in the program

```
using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using MathLibrary;
namespace MathApplication
    class Program
        static void Main(string[] args)
            Class1 math = new Class1();
            float addition = math.addition(34.32f, 32.98f);
            float substract = math.subtraction(84, 56);
            float multiplication = math.multiply(5, 2);
            float division = math.division(10, 2);
            Console.WriteLine("addition is: " + addition);
            Console.WriteLine("substraction is: " +
substract);
            Console.WriteLine("multiplication is: " +
multiplication);
            Console.WriteLine("division is: " + division);
            Console.ReadLine();
        }
   }
```

Program 9: Windows application

```
using System;
using System.Windows.Forms;
namespace LoginForm
{
    public partial class Form1 : Form
        public Form1()
        {
            InitializeComponent();
        private void label1_Click(object sender, EventArgs
e)
        {
        private void btnLogin_Click(object sender, EventArgs
e)
        {
            string user, pass;
            user = txtUser.Text;
            pass = txtPass.Text;
            if(user=="admin" && pass=="admin")
                MessageBox.Show("Login Successfully...!!");
            else
                MessageBox.Show("Incorrect username or
password..!!");
        }
    }
}
```

