project #2: Image stitching

台科組員 1: M10915104 袁瑋成 組員 2: M10915105 溫勇威 組別: 29

作業內容

本次作業我們使用 Harris Corner Detector 演算法來尋找特徵點,並實作brute-force matching 的方式來做特徵匹配,最後用 RANSAC 隨機抽樣,從疊代中找出最佳的 Homography,用這平面投影轉換矩陣來做 Image Stitching。

附上的檔案可執行 ImageStitching.py, path 為必須參數。

ImageStitching.py 執行的 code

Untils.py 輔助程式

FeatureMatching.py 尋找特徵點與匹配的 Code

詳細可參考 Readme.md

實作細節

對多張圖片做 Image Stitching 必須經過 Feature Detection, Feature Matching, Image Matching 三大部分,我們把圖片從最左邊開始拼接。

Feature Detection:

特徵點偵測我們使用 Harris Corner Detector 演算法做特徵提取,先對圖像的 width, height 作微分,再利用這微分後的值計算特徵矩陣,之後我們使用這特徵矩陣的行列式 Det 與 Trace 來求出 R 來對每個點做平分,由於 Harris Corner 有可能會找出過多特徵點,有些會比較接近,我們需要做篩檢,所以我們只取做符合的幾%,再對每個特徵周遭的點做刪除,確保不要有太多接近的特徵點。

Feature Matching:

找完所有特徵點後,我們要再每兩張圖做特徵點的匹配,才能算出兩個圖片間的 transform,從 harris Corner 中我們可以取得每張圖再哪些 pixel 是feature,針對這所有 feature,我們使用 brute-force matching 比較暴力的方式來搜尋,對第一張圖的每個 feature 分別做一次操作,每一個 feature 都要對第二張圖的每個 feature 做距離測試,最後返回距離最近的特徵點。匹配完 Feature後,要利用這匹配來尋找兩張圖的 transform,我們使用 RANSAC 演算法來對每個對應可能做隨機抽樣,藉此找出最符合的匹配點來計算 Homography 矩陣。

Image Matching:

在 Feature Matching 過後我們取得了 Homography 投影用的矩陣,panorama 的成果圖的 size 我們把高度固定,將其中一個圖面拿來做 transform,轉換過後 的圖片直接截掉超過的高度,用一定的 gradient 來處理重疊的部分,所以可以 看到成果圖有些重疊部分會有鬼影。

實作成果

我們圖片是從自己家裡的房間做取景,但由於 Detection 的方法是使用 Harris Corner,所以家裡的東西比較雜導致很難做拼接,所以只取最成功的四張圖拼接,範圍是房間中的一面半的牆壁,同時我們有輸出 matching 的過程。

取用的四張圖片

每次的 Feature Matching

最終成果圖

