Projet IODAA - PFR Dynamique des cirses

Amine KABECHE, Joseph ALLYNDREE, Delpierot AUGUSTIN, Nora PICAUT

Plan:

- 1. Problématique de l'INRAE
- 2. Les différentes pistes explorées
- 3. Développement de l'approche par réseau de neurone à convolution
- 4. Résultats obtenus
- 5. Discussion des résultats et perspective future

1. Problématique de l'INRAE

Cirse ou chardon des champs = adventice **persistante** très commune dans les cultures et les prairies

Pertes de rendements

Problème(s):

Comment identifier les zones envahies par les cirses dans un champ ?

Comment quantifier la présence de ces cirses dans ces différentes zones ?

1. Problématique de l'INRAE

Données:

- 656 photos prises par drônes d'un champ de moutarde, 10 à 12 m d'altitude du sol, Dijon
- 1202 photos prises par drones du même champ de moutarde, reçues plus tardivement

Plan:

- 1. Problématique de l'INRAE
- 2. Les différentes pistes explorées
- 3. Développement de l'approche par réseau de neurone à convolution
- 4. Résultats obtenus
- 5. Discussion des résultats et perspective future

1. Approche par segmentation par seuillage

2. Approche par réseau de neurones à convolution

1. Approche par segmentation par seuillage

2. Approche par réseau de neurone à convolution

2. Approche par réseau de neurone à convolution

Etape 2: annotation des sous-images

On annote ces sous-images, c'est à dire pour chaque dire "Oui cette image contient une cirse", ou "Non cette image ne contient pas de cirse"

Exemple:

Positive

Négative

Pour cela on développe notre propre outil d'annotation

L'entraînement se fera sur un ensemble de couples (sous image + annotation)

2. Approche par réseau de neurone à convolution

Stratégie d'apprentissage

- Limitation à ResNet18 (seulement de la classification binaire d'image)
- Modification du neurone de sortie pour prédire 2 classes
- Charger le modèle pré entraîné et entraîner uniquement les dernières couches
- Evaluation des performances

Plan:

- 1. Problématique de l'INRAE
- 2. Les différentes pistes explorées
- 3. Développement de l'approche par réseau de neurone à convolution
- 4. Résultats obtenus
- 5. Discussion des résultats et perspective future

3. Développement de l'approche par réseau de neurone à convolution

Idées:

- Apprentissage d'un classifieur sur un triple modèle indépendant (apprenant sur excess green, la squelettisation et les images classiques)
- Palier au problème de déséquilibre des classes en augmentant les données

3. Développement de l'approche par réseau de neurone à convolution

Démarche:

1. Prétraitement des images automatisé: Exg, Sklt

2. Augmentation des données

- 3. Entraîner 3 ResNet18 sur images brutes, images excess green et images squelettisées
 - 1. Comparer performances de chaque modèle et avec et sans augmentation
 - 2. Faire voter les prédictions des 3 modèles
- 4. Visualisation des résultats sur une image
- 5. Essayer de tout automatiser

Plan:

- 1. Problématique de l'INRAE
- 2. Les différentes pistes explorées
- 3. Développement de l'approche par réseau de neurone à convolution
- 4. Résultats obtenus
- 5. Discussion des résultats et perspective future

Comparer performances de chaque modèle **SANS** augmentation des données

Images brutes

Comparer performances de chaque modèle **SANS** augmentation des données

Images squelettisées

Images excess green

Modèle **SANS** augmentation des données

Est-ce que ce que le modèle apprend a du sens pour l'œil humain ?

Saliency map

Images brutes

Comparer performances de chaque modèle **AVEC** augmentation

Images brutes

Comparer performances de chaque modèle **AVEC** augmentation des données

Images squelettisées

Images excess green

Comparaison de tous les modèles en validation

Visualisation des résultats sur une image

Inférence et interprétabilité sur le modèle qui nous semble le plus pertinent

2 images pour faire de l'inférence :

- une image issus des premières photos prises par drône
- une images issus du 2ème vol de drône avec une luminosité différente et un stade de développement des cirses plus avancé

Faire voter les prédictions des 3 modèles

Visualisation des résultats sur une image

Deux conditions de luminosité différentes, réseau entraîné sur la première => possibilité d'augmenter les performances en "normalisant" la luminosité ?

Transfert de couleur

Transfert de couleur

Image en inférence originale

Inférence sur les images après transfert de couleur

Essayer de tout automatiser

Ebauche de pipeline

```
First all the annotations must be done (images must be located in the folder "/Images" to do so)
     -> the annotations are done by running the annotation.py script
  Then we preprocess them
     -> the preprocessing is done by running the preprocessing.py script
# use it with the following commands, which can be found in the README.md file as well :
           --data augmentation True
```

Essayer de tout automatiser

Ebauche de pipeline

Plusieurs commandes pour le moment :

```
$ python full_process.py
```

- --preprocess True/False
- --subimages True/False
- --subimage_size (100, 100)
- --annotation True/False
- --data_augmentation True/False

Pas encore complet pour le moment, pas une priorité par rapport aux exigences du projet fil rouge

Plan:

- 1. Problématique de l'INRAE
- 2. Les différentes pistes explorées
- 3. Développement de l'approche par réseau de neurone à convolution
- 4. Résultats obtenus
- 5. Discussion des résultats et perspective future

5. Discussion des résultats et perspectives

- On a obtenus des résultats très disparates sur les données non augmentées
- L'augmentation des données a fortement amélioré les performances
- En inférence les résultats ne sont finalement pas très bons

5. Résultats obtenus

- Les modèles obtenus jusque là semblent peu généralisables notamment quand la luminosité change ainsi que l'anatomie des cirses ...
- Sûrement plus pertinent d'utiliser un réseau qui prend en entrée les 3 types d'images plutôt que trois réseaux indépendants
- Avec plus de temps, il aurait été intéressant de regarder plusieurs tailles de sous images (ou en tout cas des sous images "flottantes")
- Automatisation de l'analyse

4. Approche par réseau de neurone à convolution

Etape 3 : Entrainement d'un ResNet

Schéma explicatif d'un ResNet comparé à un réseau fully-connected. Crédit K. HE et all 2015

4. Conclusion

Saliency map

True label : 1 Predicted label : 1

Inférence

Clustering

