习题课八

一、选择题

- 1. 下列结论正确的是()
 - (A) $\frac{d}{dx} \int_a^b f(x) dx = f(x);$ (B) $\frac{d}{dx} \int_a^x f(x) dx = f(x);$

 - (C) $\int_{a}^{b} f'(x)dx = f(x);$ (D) $\int_{a}^{b} f'(x)dx = f(x) + c.$
- 2. 设 $f(x) \in C, F(x) = \int_{a}^{b} |x-t| f(t) dt$, a < x < b, 则 F''(x) = (
- (A) 0
- (B) f(x)
- $(C) f(x) \qquad (D) \ 2f(x)$
- 3.设 $f(x) \in C_{[a,b]}$,则由y = f(x), x = a, x = b, y = 0所围成的 图形面积为()
- $(A).\int_{a}^{b} f(x)dx$

(B). $\left| \int_a^b f(x) dx \right|$

 $(C) \cdot \int_a^b |f(x)| dx$

- (D).不能确定
- 4. 设在区间[a,b]上,f(x)>0,f'(x)<0,f''(x)>0,

$$S_1 = \int_a^b f(x)dx$$
, $S_2 = f(b)(b-a)$; $S_3 = \frac{b-a}{2}[f(a)+f(b)]$,

则必有().

- (A) $S_1 < S_2 < S_3$;
- (B) $S_2 < S_1 < S_3$;
- (C) $S_3 < S_1 < S_2$;
- (D) $S_2 < S_3 < S_1$.

5. 设
$$f(x) = \int_0^{\sqrt{1+}x-1} \ln(1+t)dt$$
 , $g(x) = e^x - x - 1$, 则当 $x \to 0$ 时, $f(x)$ 是 $g(x)$ 的()

- (A) 等价无穷小; (B) 同阶但非等价无穷小;
- (C) 低阶无穷小; (D) 高阶无穷小。
- 6. 方程 $\sqrt{x} + \int_0^x \sqrt{1+t^4} dt = \cos x$ 在区间 $(0, +\infty)$ 内()
 - (A) 有且仅有一个实根; (B) 有且仅有两个实根;
 - (C) 有无穷个根; (D) 无实根。

二、计算题

1.
$$x = \int_1^t u \ln u du$$
, $y = \int_t^2 u^2 \ln u du$, $\Re \frac{dx}{dy}$, $\frac{d^2x}{dy^2}$.

5.
$$\lim_{n\to\infty} \left(\frac{1}{\sqrt{4n^2-1}} + \frac{1}{\sqrt{4n^2-2^2}} + \dots + \frac{1}{\sqrt{4n^2-n^2}} \right)$$

6. 设
$$F(x) = \begin{cases} \frac{\int_0^x tf(t)dt}{x^2}, & x \neq 0 \\ C, & x = 0 \end{cases}$$
 其中 $f(x)$ 有连续导数,且 $f(0) = 0$,

(1) 求C 使F(x)在x=0连续; (2) 求F'(x)。

三、证明题

1. 设f(x)在[a,b]上连续,在(a,b)内可导,且 $|f'(x)| \le M$,f(a) = 0,

试证
$$\left|\int_a^b f(x)dx\right| \leq \frac{M}{2}(b-a)^2$$
。

2. 设函数 f(x) 在[0, 1]上连续,在(0,1)内可导,且满足

$$f(1)=k\int_{0}^{\frac{1}{k}}xe^{1-x}f(x)dx \quad (k>1)$$
,

证明至少存在一点 $\xi \in (0, 1)$,使得 $f'(\xi) = (1 - \frac{1}{\xi})f(\xi)$ 。

3. 设 f(x)在[0, 1]上可导,且 $2\int_0^{\frac{1}{2}}xf(x)dx = f(1)$, 证明至少存在一点 $\xi \in (0, 1)$, 使

$$f'(\xi) = -\frac{1}{\xi}f(\xi)$$

4.设 $f(x), g(x) \in C_{[a,b]}$,证明至少存在一点 $\xi \in (a,b)$, 使

$$f(\xi) \int_{\xi}^{b} g(x) dx = g(\xi) \int_{a}^{\xi} f(x) dx$$

证明:
$$F(x) = \int_{x}^{b} g(x)dx \cdot \int_{a}^{x} f(x)dx$$

5. 设f(x),g(x)在[a,b]连续,试证施瓦茨(Schwarz)不等式

$$\left(\int_a^b f(x)g(x)dx\right)^2 \le \left(\int_a^b f^2(x)dx\right)\left(\int_a^b g^2(x)dx\right).$$

6. 设f(x)在[0,1]上连续可导,f(1)-f(0)=1,

试证
$$\int_0^1 f'^2(x) dx \ge 1$$
.