Introduction to the basics of Al

Session 5

Z. TAIA-ALAOUI

Outline

- Definitions
- T-est
- ANOVA Test
- LDA
- Fisher Score
- Mutual Information
- Implementation

Statistical Tools - Dataset

IRIS DATASET

Sample

$$X_{k \in [1,N]} \in R^p$$

Set of samples

$$\mathbf{X} = \{X_k \in \mathbb{R}^p\}_{k \in [1, N]}$$

		<i>p</i> varial	oles					
	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width				
1	5.1	3.5	1.4	0.2				
2	4.9	3.0	1.4	0.2				
3	Row = Sample - Observation = Measurement							
4	4.6	3.1	1.5	0.2				
5	5.0	3.6	1.4	0.2				
6	5.4	3.9	1.7	0.4				
7	4.6	3.4	1.4	0.3				
8	5.0	3.4	1.5	0.2				

Statistical Tools - Dataset

Set of N samples expressed in a space of p Variables

Statistical Tools - Variance

Three sets of normally distributed bivariate random samples with variance
$$(1, 1)$$
, $(10, 10)$ and $(30, 30)$

$$\overline{V}_{j} = \frac{1}{N} \sum_{i=1}^{N} x_{ij}$$

$$Var(V_{j}) = \frac{1}{N} \sum_{i=1}^{N} x_{ij}$$

$$Variance 1$$

$$Variance 10$$

$$Variance 30$$

$$Variance 30$$

Statistical Tools - Co-Variance

$$Cov(V_i, V_j) = \frac{1}{N-1} \sum_{k=1}^{N} (x_{ki} - \overline{V}_i) (x_{kj} - \overline{V}_j)$$

A T-test is used to infer whether two sets of data come from the same

distribution.

 The t-test consists in assessing whether the distance between means of two groups is significant regarding their respective variances.

 A high t-value indicates high significance, meaning the two samples come from different distributions.

- Calculating a t-test requires three elements:
 - the mean values of the two groups, or the mean difference,
 - the standard deviation of each group,
 - o and the number of data samples in each group.

Results: A value of t (degrees of freedom = n1 + n2 - 2)

 Interpretation of a t-value is realized using the t-table based on the values of t and df.

Equal-Variance Samples/ Pooled T-Test (eq. N° of samples)

$$ext{T-value} = rac{mean1-mean2}{rac{(n1-1) imes var1^2+(n2-1) imes var2^2}{n1+n2-2} imes \sqrt{rac{1}{n1}+rac{1}{n2}}}$$

Welch's t-test (unequal sample size / variances)

$$ext{T-value} = rac{mean1-mean2}{\sqrt{\left(rac{var1}{n1} + rac{var2}{n2}
ight)}}$$

T-distribution vs Normal Distribution

T-test

A p-value less than 0.05 is typically considered to be statistically significant, in which case the null hypothesis should be rejected

T-test

$$f(t) = rac{\Gamma\left(rac{
u+1}{2}
ight)}{\sqrt{\pi\,
u}\,\,\Gamma\left(rac{
u}{2}
ight)}igg(1+rac{t^2}{
u}\,igg)^{-(
u+1)/2} \ \Gamma(z) = \int_0^\infty t^{z-1}e^{-t}\,\,\mathrm{d}t, \qquad \mathfrak{R}(z) > 0$$

https://www.statology.org/how-to-calculate-a-p-value-from-a-t-test-by-hand/

t Table											
cum. prob	t.50	t.75	t.80	t.85	t.90	t.95	t.975	t.99	t.995	t.999	t.9995
one-tail	0.50	0.25	0.20	0.15	0.10	0.05	0.025	0.01	0.005	0.001	0.0005
two-tails	1.00	0.50	0.40	0.30	0.20	0.10	0.05	0.02	0.01	0.002	0.001
df							-				
1	0.000	1.000	1.376	1.963	3.078	6.314	12.71	31.82	63.66	318.31	636.62
2	0.000	0.816	1.061	1.386	1.886	2.920	4.303	6.965	9.925	22.327	31.599
	0.000	0.765	0.978	1.250	1.638	2.353	3.182	4.541	5.841	10.215	12.924
4	0.000	0.741	0.941	1.190	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	0.000	0.727	0.920	1.156	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6 7	0.000	0.718	0.906	1.134	1.440	1.943	2.447	3.143	3.707	5.208	5.959
	0.000	0.711	0.896	1.119	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	0.000	0.706	0.889	1.108	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	0.000	0.703	0.883	1.100	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	0.000	0.700	0.879	1.093	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	0.000	0.697	0.876	1.088	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	0.000	0.695	0.873	1.083	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	0.000	0.694	0.870	1.079	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	0.000	0.692	0.868	1.076	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	0.000	0.691	0.866	1.074	1.341	1.753	2.131	2.602	2.947	3.733 3.686	4.073
16 17	0.000	0.690	0.865		1.337	1.746 1.740	2.120 2.110	2.583 2.567	2.921 2.898		4.015 3.965
18	0.000	0.689 0.688	0.863 0.862	1.069 1.067	1.333	1.740	2.110	2.552	2.898	3.646 3.610	3.905
19	0.000	0.688	0.861	1.066	1.328	1.734	2.093	2.532	2.861	3.579	3.883
20	0.000	0.687	0.860	1.064	1.325	1.725	2.093	2.528	2.845	3.552	3.850
21	0.000	0.686	0.859	1.063	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	0.000	0.686	0.858	1.061	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	0.000	0.685	0.858	1.060	1.319	1.714	2.069	2.500	2.807	3.485	3.768
24	0.000	0.685	0.857	1.059	1.318	1.711	2.064	2.492	2.797	3.467	3.745
25	0.000	0.684	0.856	1.058	1.316	1.708	2.060	2.485	2.787	3.450	3.725
26	0.000	0.684	0.856	1.058	1.315	1.706	2.056	2.479	2.779	3.435	3.707
27	0.000	0.684	0.855	1.057	1.314	1.703	2.052	2.473	2.771	3.421	3.690
28	0.000	0.683	0.855	1.056	1.313	1.701	2.048	2.467	2.763	3.408	3.674
29	0.000	0.683	0.854	1.055	1.311	1.699	2.045	2.462	2.756	3.396	3.659
30	0.000	0.683	0.854	1.055	1.310	1.697	2.042	2.457	2.750	3.385	3.646
40	0.000	0.681	0.851	1.050	1.303	1.684	2.021	2.423	2.704	3.307	3.551
60	0.000	0.679	0.848	1.045	1.296	1.671	2.000	2.390	2.660	3.232	3.460
80	0.000	0.678	0.846	1.043	1.292	1.664	1.990	2.374	2.639	3.195	3.416
100	0.000	0.677	0.845	1.042	1.290	1.660	1.984	2.364	2.626	3.174	3.390
1000	0.000	0.675	0.842	1.037	1.282	1.646	1.962	2.330	2.581	3.098	3.300
Z	0.000	0.674	0.842	1.036	1.282	1.645	1.960	2.326	2.576	3.090	3.291
	0%	50%	60%	70%	80%	90%	95%	98%	99%	99.8%	99.9%
	Confidence Level										

ANOVA extends the use of the t-test to k>=2 groups

• H0 (Null hypothesis): $\mu 1 = \mu 2 = \mu 3 = ... = \mu k$

 H1 (Alternate hypothesis): It states that there will be at least one population mean that differs from the rest

 Factor: A variable under consideration that influences an observation (example: The type of flower in regards to sepal length)

 Level: A value for this factor (example: 0,1,2 for the type of flower in IRIS dataset)

• Assumptions:

Normality for each factor level

Equal Variances inside each level

 Variables are drawn independently and randomly from each factor level

Number of samples (or levels) = k

Number of observations in *i*th sample = n_i , i = 1, 2, ..., k

Total number of observations $= n = \sum_{i} n_{i}$

Observation j in ith sample $= x_{ij}, j = 1, 2, ..., n_i$

Sum of n_i observations in *i*th sample $= T_i = \sum_j x_{ij}$

Sum of all *n* observations $= T = \sum_{i} T_{i} = \sum_{i} \sum_{j} x_{ij}$

$$\mathbf{X} = \begin{pmatrix} x_{11} & x_{12} & x_{13} & \dots & x_{1p} \\ x_{21} & x_{22} & \dots & \dots & \dots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ x_{NI} & \vdots & \vdots & \ddots & x_{Np} \end{pmatrix}$$

Observation *j* in *i*th sample

$$= x_{ij}, j = 1, 2, ..., n_i$$

Sum of n_i observations in *i*th sample

$$=T_i=\sum_j x_{ij}$$

Sum of all *n* observations

$$= T = \sum_{i} T_{i} = \sum_{i} \sum_{j} x_{ij}$$

Total sum of squares,

$$SS_T = \sum_{i} \sum_{j} x_{ij}^2 - \frac{T^2}{n}$$

Between samples sum of squares,

$$SS_B = \sum_{i} \frac{T_i^2}{n_i} - \frac{T^2}{n}$$

Within samples sum of squares,

$$SS_W = SS_T - SS_B$$

$$= x_{ij}, \quad j = 1, 2, ..., n_{i}$$

$$= T_{i} = \sum_{j} x_{ij}$$

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & ... & x_{1p} \\ x_{21} & x_{22} & ... & ... \\ ... & ... & ... \\ x_{NI} & ... & ... & x_{Np} \end{pmatrix}$$

Total Sum of Squares (SST): The SST is the sum of all squared differences between the mean of a sample and the individual values in that sample

Total sum of squares,
$$SS_T = \sum_{i} \sum_{j} x_{ij}^2 - \frac{T^2}{n}$$

Between samples sum of squares,
$$SS_B = \sum_{i} \frac{T_i^2}{n_i} - \frac{T^2}{n}$$

Within samples sum of squares,
$$SS_W = SS_T - SS_B$$

Total mean square,
$$MS_T = \frac{SS_T}{n-1}$$

Between samples mean square,
$$MS_B = \frac{SS_B}{k-1}$$

Within samples mean square,
$$MS_W = \frac{SS_W}{n-k}$$

Source of variation	Sum of squares	Degrees of freedom	Mean square	F ratio	
Between samples	SS_B	k-1	MS_B	$\frac{MS_B}{MS_W}$	
Within samples	SS_W	n-k	MS_W		
Total	SS_{τ}	n-1			

• Fisher Test - Critical Value

F - Distribution (α = 0.01 in the Right Tail)

	- \ .	r	Numerator Degrees of Freedom								
	df_2/d	f _{l 1}	2	3	4	5	6	7	8	9	
	1	4052.2	4999.5	5403.4	5624.6	5763.6	5859.0	5928.4	5981.1	6022.5	
	2	98.503	99.000	99.166	99.249	99.299	99.333	99.356	99.374	99.388	
	3	34.116	30.817	29.457	28.710	28.237	27.911	27.672	27.489	27.345	
	4	21.198	18.000	16.694	15.977	15.522	15.207	14.976	14.799	14.659	
	5	16.258	13.274	12.060	11.392	10.967	10.672	10.456	10.289	10.158	
	6	13.745	10.925	9.7795	9.1483	8.7459	8.4661	8.2600	8.1017	7.976	
	7	12.246	9.5466	8.4513	7.8466	7.4604	7.1914	6.9928	6.8400	6.718	
	8	11.259	8.6491	7.5910	7.0061	6.6318	6.3707	6.1776	6.0289	5.910	
	9	10.561	8.0215	6.9919	6.4221	6.0569	5.8018	5.6129	5.4671	5.351	
,	10	10.044	7.5594	6.5523	5.9943	5.6363	5.3858	5.2001	5,0567	4.942	
	11	9.6460	7.2057	6.2167	5.6683	5.3160	5.0692	4.8861	4.7445	4.631	
	12	9.3302	6.9266	5.9525	5.4120	5.0643	4.8206	4.6395	4.4994	4.387	
	13	9.0738	6.7010	5.7394	5.2053	4.8616	4.6204	4.4410	4.3021	4.191	
,	14	8.8616	6.5149	5.5639	5.0354	4.6950	4.4558	4.2779	4.1399	4.029	
Denominator Degrees of Freedom	15	8.6831	6.3589	5.4170	4.8932	4.5556	4.3183	4.1415	4.0045	3.894	
	16	8.5310	6.2262	5.2922	4.7726	4.4374	4.2016	4.0259	3.8896	3.780	
,	17	8.3997	6.1121	5.1850	4.6690	4.3359	4.1015	3.9267	3.7910	3.682	
	18	8.2854	6.0129	5.0919	4.5790	4.2479	4.0146	3.8406	3.7054	3.597	
;	19	8.1849	5.9259	5.0103	4.5003	4.1708	3.9386	3.7653	3.6305	3.522	
i	20	8.0960	5.8489	4.9382	4.4307	4.1027	3.8714	3.6987	3.5644	3.456	
	21	8.0166	5.7804	4.8740	4.3688	4.0421	3.8117	3.6396	3.5056	3.398	
	22	7.9454	5.7190	4.8166	4.3134	3.9880	3.7583	3.5867	3.4530	3.345	
	23	7.8811	5.6637	4.7649	4.2636	3.9392	3.7102	3.5390	3.4057	3.298	
1	24	7.8229	5.6136	4,7181	4.2184	3.8951	3.6667	3.4959	3.3629	3.256	
	25	7.7698	5.5680	4.6755	4.1774	3.8550	3.6272	3.4568	3.3239	3.217	
	26	7.7213	5.5263	4.6366	4.1400	3.8183	3.5911	3.4210	3.2884	3.181	
	27	7.6767	5.4881	4.6009	4.1056	3.7848	3.5580	3.3882	3.2558	3.149	
	28	7.6356	5.4529	4.5681	4.0740	3.7539	3.5276	3.3581	3.2259	3.1195	
	29	7.5977	5.4204	4.5378	4.0449	3.7254	3.4995	3.3303	3.1982	3.0920	
	30	7.5625	5.3903	4.5097	4.0179	3.6990	3.4735	3.3045	3.1726	3.0665	
	40	7.3141	5.1785	4.3126	3.8283	3.5138	3.2910	3.1238	2.9930	2.8876	
	60	7.0771	4.9774	4.1259	3.6490	3.3389	3.1187	2.9530	2.8233	2.7185	
	120	6.8509	4.7865	3.9491	3.4795	3.1735	2.9559	2.7918	2.6629	2.5586	
	00	6.6349	4.6052	3.7816	3.3192	3.0173	2.8020	2.6393	2.5113	2.4073	

 LDA is an equivalent for PCA that is well suited for supervised classification problems.

 Unlike ANOVA, LDA has continuous independent variable (measurements) and categorical dependent variables (class labels).

 LDA is a feature extraction method that makes linear combination of input features in order to optimize class separability.

- LDA projects data into a new space in which between-class separation is maximized.
- Separation means maximizing the distance between the projected means and minimizing the projected variance within classes. (Fisher method again!).
- Assumptions:
 - Normal Distribution
 - Covariance Homogeneity

- 1. Compute the d-dimensional mean vectors for the different classes from the dataset.
- 2. Compute the scatter matrices (in-between-class and within-class scatter matrix).
- 3. Compute the eigenvectors (e_1, e_2, \ldots, e_d) and corresponding eigenvalues $(\lambda_1, \lambda_2, \ldots, \lambda_d)$ for the scatter matrices.
- 4. Sort the eigenvectors by decreasing eigenvalues and choose k eigenvectors with the largest eigenvalues to form a $d \times k$ dimensional matrix \boldsymbol{W} (where every column represents an eigenvector).
- 5. Use this $d \times k$ eigenvector matrix to transform the samples onto the new subspace. This can be summarized by the matrix multiplication: $\mathbf{Y} = \mathbf{X} \times \mathbf{W}$ (where \mathbf{X} is a $n \times d$ -dimensional matrix representing the n samples, and \mathbf{y} are the transformed $n \times k$ -dimensional samples in the new subspace).

Within class scatter matrix

$$S_W = \sum_{i=1}^c S_i$$
 $S_i = \sum_{oldsymbol{x} \in D_i}^n (oldsymbol{x} - oldsymbol{m}_i) \, (oldsymbol{x} - oldsymbol{m}_i)^T$

Between class scatter matrix

$$S_B = \sum_{i=1}^c N_i (oldsymbol{m}_i - oldsymbol{m}) (oldsymbol{m}_i - oldsymbol{m})^T$$

Eigenvalue and Eigenvectors computation

$$egin{aligned} oldsymbol{A} &= S_W^{-1} S_B \ oldsymbol{v} &= ext{Eigenvector} \ \lambda &= ext{Eigenvalue} \end{aligned} egin{aligned} oldsymbol{A} oldsymbol{v} &= \lambda oldsymbol{v} \end{aligned}$$

Final Projection of data

$$Y = X \times W$$

Feature Selection Based on score thresholds

• Fisher Score

$$F(\mathbf{x}^{j}) = \frac{\sum_{k=1}^{c} n_{k} (\mu_{k}^{j} - \mu^{j})^{2}}{(\sigma^{j})^{2}}$$

 μ^{j} , σ^{j} are mean and variance of j-th feature

 μ_k^j is the mean of the j-th feature for group k

Feature Selection Based on score thresholds

Mutual Information

 The Mutual Information is a measure of the similarity between two labels of the same data, so the input feature must be first categorized.

 Qualitatively, entropy is a measure of uncertainty – the higher the entropy, the more uncertain one is about a random variable.

$$I(X;Y) = H(X) + H(Y) - H(X,Y)$$
 $H(X) = -\sum_i p(x_i) \log_2 p(x_i)$

Sources

https://en.wikipedia.org/wiki/Gamma function

https://en.wikipedia.org/wiki/Student%27s_t-distribution

https://www.investopedia.com/terms/t/t-test.asp#:~:text=A%20t%2Dtest%20is%20an,flipping%20a%20coin%20100%20times

https://dmn92m25mtw4z.cloudfront.net/img_set/stat-6-6-x-6-article/v1/stat-6-6-x-6-article-1253w.png

https://www.kaggle.com/code/bhagyashree12/anova-test-on-iris-dataset

https://www.automacaodedados.com.br/en/stories/estatistica-em-testes-para-nao-matematicos-parte-5/images/thumbnail.jpg7

https://arxiv.org/html/2404.13664v1/extracted/5549913/TrueClusterPlot.png

https://analystprep.com/cfa-level-1-exam/quantitative-methods/t-distribution-and-degrees-of-freedom/

https://en.wikipedia.org/wiki/F-test

https://www.cimt.org.uk/projects/mepres/alevel/fstats_ch7.pdf