[4]

ii. Draw the ILD for shear force at a section which is at a distance of 3 m from right support in a following continuous beam and calculate ordinates at 1 m interval.

OR iii. Draw the ILD for bending moment at support "B" in a following 8 continuous beam and calculate ordinate at 1 m interval.

- Q.6 i. Define Plastic Moment and Plastic Hinges.
 - ii. A mild steel I-section 200 mm wide and 250 mm deep has a mean 8 flange thickness of 20 mm and a web thickness of 10 mm. Calculate the Shape Factor.
- OR iii. Determine the collapse load for the frame shown in the diagram, Mp is 8 the same for all members.

Total No. of Questions: 6

Total No. of Printed Pages:4

P.T.O.

Enrollment No.....

Faculty of Engineering

End Sem (Even) Examination May-2019 CE3CO11 Structural Analysis-II

Programme: B.Tech. Branch/Specialisation: CE

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

.1 (N	MCQs)) should be written in full instead of only a, b, c or d.		
2.1	i.	Rotation factor in Kani's method is equal to (a) Distribution factor (b) Half of Distribution factor (c) Negative half of Distribution factor (d) Zero	1	
	ii.	The carry-over factor in prismatic member whose far end is hinged is-	1	
		(a) 0 (b) $\frac{1}{2}$ (c) $\frac{3}{4}$ (d) 1		
	iii.	The degree of freedom of a fixed support in plane structure is		
		(a) 1 (b) 2 (c) 3 (d) 0		
	iv.	The diagonal elements of flexibility matrix are	1	
		(a) Always positive		
		(b) Always negative		
		(c) May be positive or negative		
		(d) None of these		
	v.	The cantilever method is used to analyse the high-rise structure when	1	
		it is subjected to		
		(a) Horizontal & Vertical loads		
		(b) Horizontal loads only		
		(c) Vertical loads only		
		(d) None of these		
	vi.	In Portal method, Shear taken by interior columns is	1	
		(a) Twice the shear taken by exterior column		
		(b) Half of the shear taken by exterior column		
		(c) Equal to the shear taken by exterior column		
		(d) None of these		

- vii. The shape of ILD for BM at a section in Simply Supported Beam is
 - (a) Triangular with maximum ordinate at the centre of span
 - (b) Parabolic with maximum ordinate at the centre of span
 - (c) Triangular with maximum ordinate at the section
 - (d) Parabolic with maximum ordinate at the section
- viii. Muller Breslau Principle is used to draw the ILD of
 - (a) Determinate structure only
 - (b) Indeterminate structure only
 - (c) Determinate & Indeterminate structure both
 - (d) None of these
- ix. The shape factor of diamond section is
 - (a) 1
- (b) 1.5
- (c) 2
- (d) 2.34

1

1

1

8

- x. Effects of shear force and axial force on plastic moment capacity of a 1 structure are respectively to
 - (a) Increase and decrease
- (b) Increase and increase
- (c) Decrease and increase
- (d) Decrease and decrease
- Q.2 i. State the advantages of Kani's Method over Moment Distribution 2 method.
 - ii. Analyze the frame as shown in Fig-1 by moment distribution method 8 and draw BMD.

OR iii. Analyze the following beam by Kani's method and draw BMD.

- Q.3 i. Compare flexibility method and stiffness method.
 - ii. Analyze the beam as shown in Figure by Stiffness matrix method and 8 draw BMD.

OR iii. Analyze the truss as shown in Figure below. Use Flexibility matrix 8 method.

- Q.4 i. Explain the necessity of Approximate Methods.
 - ii. Analyze the following frame using portal method

- OR iii. Write a short note on
 - (a) Wind Load
- (b) Earthquake load.
- Q.5 i. Explain the Muller Breasla's principle.

P.T.O.

8

2

Marking Scheme CE3CO11 Structural Analysis-II

Q.1	i.	Rotation factor in Kani's method is equal to		1	
		(c) Negative half of Distribution factor			
	ii.	The carry-over factor in prismatic member whose far end is hinged is- (a) 0		1	
	iii.	The degree of freedom of a fixed support in	plane structure is	1	
		(d) 0	_		
	iv. The diagonal elements of flexibility matrix are				
	(a) Always positive				
	v. The cantilever method is used to analyse the high-rise structure w				
		it is subjected to			
		(b) Horizontal loads only			
	vi.	vi. In Portal method, Shear taken by interior columns is			
		(a) Twice the shear taken by exterior column			
	vii.	The shape of ILD for BM at a section in Simply Supported Beam is			
	(c) Triangular with maximum ordinate at the section				
	viii.	Muller Breslau Principle is used to draw the ILD of			
	(c) Determinate & Indeterminate structure both				
	ix.	The shape factor of diamond section is			
		(c) 2		1	
	x. Effects of shear force and axial force on plastic moment capacit				
		structure are respectively to			
		(d) Decrease and decrease			
Q.2	i. Advantages of Kani's Method over Moment Distribution method.		Distribution method.	2	
		1 mark for each advantages	(1 mark * 2)		
	ii.	Determination of Fixed End Moment	1 mark	8	
		Moment distribution cycle	3 marks		
		Shear equation	2 marks		
		Final end Moment	1 mark		
		BMD	1 mark	_	
OR	iii.	Analyze the following beam by Kani's method and draw BMD.		8	
		Determination of Fixed End Moment	2 marks		
		Kani's cycle	3 marks		
		Final end Moment	1 mark 2 marks		
		BMD	Z IIIdIKS		
Q.3	i.	Compare flexibility method and stiffness method		2	
		0.5 mark for each comparison	(0.5 mark * 4)		

	ii.	Analyze the beam by Stiffness matrix method and draw BMD.		8		
		Determination of Fixed End Moment	2 marks			
		Stiffness Matrix	3 marks			
		Final end Moment	1 mark			
		BMD	2 marks			
OR	iii. Analyze the truss by Flexibility matrix method.			8		
		Degree of redundancy	1 mark			
		Released Structure	1 mark			
		Flexibility Matrix	3 marks			
		Determination of redundant	1 mark			
		Final forces in all members	2 marks			
Q.4	i.	Necessity of Approximate Methods.		2		
	ii.	Analyze the following frame using portal m	nethod	8		
		Shear in column	1 mark			
		Moments in column	2 marks			
		Moments in beams	2 marks			
		Shear in beams	1 mark			
		Axial force in column	2 marks			
OR	iii.	(a) Wind Load	4 marks	8		
		(b) Earthquake load.	4 marks			
Q.5	i.	Muller Breasla's principle.		2		
		Definition	1 mark			
		Example	1 mark			
	ii.	Shape of ILD	2 marks	8		
		Determination of ordinate at 1 m interval	6 marks			
OR	iii.	Shape of ILD	2 marks	8		
		Determination of ordinate at 1 m interval	6 marks			
Q.6	i	Define Plastic Moment	1 mark	2		
Q.o	1.		1 mark	_		
	••	Plastic Hinges.	1 IIIaik	O		
	ii.	Calculate the Shape Factor.	2 1	8		
		Determination of Elastic section modulus	3 marks			
		Determination of Plastic section modulus	3 marks			
0.5		Determination of Shape eFactor	2 marks			
OR	iii.	Determine the collapse load for the frame s	· ·	8		
		No. of mechanism	1 mark			
		Beam mechanism	2 marks			
		Sway mechanism	2 marks			
		Combined mechanism	3 marks			
