Appendix A — **Proof Sketches of Main Theorems**

This appendix offers structured proof sketches for the theoretical results in Section 7. Each theorem outlines key assumptions, logical steps, and references to established results where relevant.

Notation:

- n: number of training samples;
- *y: convergence rate exponent;*
- $\varepsilon_{\mathcal{M}}$: model class approximation error;
- β: KL weight in VAEs;
- *T : diffusion steps;*
- L: Lipschitz constant of score network.
- δ : Confidence level (used in probabilistic bounds)
- α : Model-specific convergence constant
- p_{data} : True data distribution
- p_G : Model-generated distribution
- D: Divergence metric (e.g., KL, JS, Wasserstein)
- *E*: Expectation operator
- *ELBO*: Evidence Lower Bound
- FID: Fréchet Inception Distance
- *MCR*: Mode Coverage Ratio
- \mathcal{R}_n : Rademacher complexity on n samples
- F_G , F_D : Generator and discriminator function classes
- s(x), s'(x): Score functions learned from perturbed datasets

Theorem 7.1 (Unified Convergence Rate)

Let $M \in \{VAE, GAN, Diffusion\}$ denotes a generative model trained on n samples drawn from the data distribution p_{data} . Then, under standard regularity assumptions:

$$E[D(p_{\text{data}}, p_{\theta^{(n)}})] \le C_{\mathcal{M}} \cdot n^{-\alpha_{\mathcal{M}}} + \varepsilon_{\mathcal{M}}$$
 (A.1)

Where:

- $C_{\mathcal{M}}$ is a model-specific constant
- $\alpha_{\mathcal{M}}$ is the convergence exponent
- ullet $egin{aligned} arepsilon_{\mathcal{M}} & \text{is the model class approximation error} \end{aligned}$

We observe the ordering:

$$\alpha_{\text{Diffusion}} \ge \alpha_{\text{VAE}} \ge \alpha_{\text{GAN}}$$
 (A.2)

Sketch: This follows from uniform convergence bounds and classical VC-type inequalities, assuming bounded loss and Lipschitz continuity of model families. The diffusion case invokes SDE regularity; the GAN case applies minimax generalization bounds.

Theorem 7.2 (Lower Bound on Sample Quality)

Quality
$$(p_{\theta}) \ge \text{GIE}(p_{\theta}, p_{\text{data}}) - \mathcal{O}\left(\sqrt{\frac{\log n}{n}}\right)$$
 (A.3)

Sketch: The proof exploits the convexity of the ELBO and the KL-divergence penalty. Under over-regularization (large β), posterior collapse occurs, which geometrically excludes modes from the latent space. Taylor expansion of the KL term bounds the deviation.

Theorem 7.3 (Sample Complexity Bound):

To achieve distributional approximation error ε with confidence $1 - \delta$, the required number of samples satisfies: (See Appendix A for proof sketch.)

$$n(\varepsilon, \delta) = O\left(\frac{C(H) \cdot d_{\text{eff}} \cdot \log(1/\delta)}{\varepsilon^2}\right)$$
 (A.4)

Sketch: Using optimal transport theory and gradient penalties, the Wasserstein distance ensures smooth alignment between p_data and p_G . Collapse corresponds to Jacobian singularity. Bounding the discriminator's curvature stabilizes mode inclusion.

Theorem 7.4 (Adversarial Generalization Bound):

With probability at least $1 - \delta$:

$$\left| D_{\mathrm{JS}}(p_{\mathrm{data}}, p_G) - \widehat{D_{\mathrm{JS}}^{(n)}} \right| \le \mathcal{O}\left(\frac{\mathcal{R}_n(G \circ D) + \log(1/\delta)}{n}\right) \tag{A.5}$$

Where $\mathcal{R}_n(G \circ D)$ is the empirical Rademacher complexity of the composition of the generator and discriminator networks.

Sketch: Based on the score matching objective and the SDE formulation, diffusion models approximate the target distribution via repeated noisy refinements. A coupling argument over time steps yields a concentration result around all modes, with a convergence rate

$$\sim 1/\sqrt{T}$$
.

Theorem 7.5 (Diffusion Stability):

Let s_{θ} and $s_{\theta'}$ be score functions learned on datasets that differ in k samples. Then:

$$|s_{\theta} - s_{\theta'}|^2 \le \left(\frac{n}{2k}\right) \cdot L \cdot \sqrt{T}$$
 (A.6)

Where L is the Lipschitz constant of the score network, and T is the diffusion length. This proves that training stability improves as the sample size increases

Sketch: The result follows from the first-order expansion of the divergence function (e.g., KL or JS) under perturbations, assuming differentiability and strong convexity. The generator inherits robustness through parameter continuity.