Notes of Modern Quantum Chemistry, Szabo & Ostlund

hebrewsnabla

January 31, 2020

Contents

	1.1	
	1.2	
	1.3	
	1.4	N-D Complex Vector Spaces
		1.4.1 Change of Basis
2.	2.1	The Electronic Problem
		2.1.1 Atomic Units
		2.1.2 The B-O Approximation
		2.1.3 The Antisymmetry or Pauli Exclusion Principle
2.	2.2	Orbitals, Slater Determinants, and Basis Functions
		2.2.1 Spin Orbitals and Spatial Orbitals
		2.2.2 Hartree Products
		2.2.3 Slater Determinants
		2.2.4 The Hartree-Fock Approximation
		2.2.5 The Minimal Basis H_2 Model
		2.2.6 Excited Determinants
2.3	2.3	Operators and Matrix Elements
		2.3.1 Minimal Basis H ₂ Matrix Elements
		2.3.2 Notations for 1- and 2-Electron Integrals
		2.3.3 General Rules for Matrix Elements
•	2.4	Second Quantization
		2.4.1 Creation and Annihilation Operators and Their Anticommutation Relation
	2.5	Spin-Adapted Configurations
	-	2.5.1 Spin Operators
		2.5.2 Restricted Determinants and Spin-Adapted Configurations

3 The Hartree-Fock Approximation			ree-Fock Approximation
	3.1	The H	IF Equations
		3.1.1	The Coulomb and Exchange Operators
		3.1.2	The Fock Operator
	3.2	Deriva	ation of the HF Equations
		3.2.1	Functional Variation
		3.2.2	Minimization of the Energy of a Single Determinant
		3.2.3	The Canonical HF Equations
	3.3	Interp	pretation of Solutions to the HF Equations
		3.3.1	Orbital Energies and Koopmans' Theorem
		3.3.2	Brillouin's Theorem
		3.3.3	The HF Hamiltonian
	3.4	Restri	icted Closed-shell HF: The Roothaan Equations
		3.4.1	Closed-shell HF: Restricted Spin Orbitals
		3.4.2	Introduction of a Basis: The Roothaan Equations
		3.4.3	The Charge Density
		3.4.4	Expression for the Fock Matrix
		3.4.5	Orthogonalization of the Basis
		3.4.6	The SCF Procedure
		3.4.7	Expectation Values and Population Analysis

0

spatial mol orb – ψ – i,j,k,...spatial basis fxn – ϕ – $\mu,\nu,\lambda,...$ spin orb – χ occ mol orb – a,b,c,...vir mol orb – r,s,t,...exact many-elec wfn – Φ approx many-elec wfn – Ψ exact energy – $\mathscr E$ approx energy – E

1

- 1.1
- 1.2
- 1.3

1.4 N-D Complex Vector Spaces

Suppose

$$\mathcal{O}|a\rangle = |b\rangle \tag{1.1}$$

$$\langle i \mid \mathcal{O} \mid j \rangle = O_{ij} \tag{1.2}$$

def the **adjoint** of \mathcal{O} as \mathcal{O}^{\dagger}

$$\langle a | \mathcal{O}^{\dagger} = \langle b | \tag{1.3}$$

$$\langle i \mid \mathcal{O}^{\dagger} \mid j \rangle = O_{ii}^{*} \tag{1.4}$$

1.4.1 Change of Basis

$$|\alpha\rangle = \sum_{i} |i\rangle \langle i|\alpha\rangle = \sum_{i} |i\rangle U_{i\alpha}$$
 (1.5)

$$|i\rangle = \sum_{\alpha} |\alpha\rangle \langle i|\alpha\rangle = \sum_{\alpha} |\alpha\rangle U_{i\alpha}^*$$
 (1.6)

If i, α are all orthonormal, **U** must be unitary.

$$\Omega_{\alpha\beta} = \langle \alpha \, | \, \mathcal{O} \, | \, \beta \rangle = \dots \sum_{ij} U_{\alpha i}^* O_{ij} U_{j\beta}$$
(1.7)

or

$$\mathbf{\Omega} = \mathbf{U}^{\dagger} \mathbf{O} \mathbf{U} \tag{1.8}$$

2.1 The Electronic Problem

- 2.1.1 Atomic Units
- 2.1.2 The B-O Approximation
- 2.1.3 The Antisymmetry or Pauli Exclusion Principle
- 2.2 Orbitals, Slater Determinants, and Basis Functions
- 2.2.1 Spin Orbitals and Spatial Orbitals
- 2.2.2 Hartree Products
- 2.2.3 Slater Determinants

def

$$|\chi_{i}(\mathbf{x}_{1})\chi_{j}(\mathbf{x}_{2})\cdots\chi_{k}(\mathbf{x}_{N})\rangle \equiv \frac{1}{\sqrt{N!}}\begin{vmatrix} \chi_{i}(\mathbf{x}_{1}) & \chi_{j}(\mathbf{x}_{1}) & \cdots & \chi_{k}(\mathbf{x}_{1}) \\ \chi_{i}(\mathbf{x}_{2}) & \chi_{j}(\mathbf{x}_{2}) & \cdots & \chi_{k}(\mathbf{x}_{2}) \\ \vdots & \vdots & & \vdots \\ \chi_{i}(\mathbf{x}_{N}) & \chi_{j}(\mathbf{x}_{N}) & \cdots & \chi_{k}(\mathbf{x}_{N}) \end{vmatrix}$$
(2.1)

It can be further shortened to

$$|\chi_i\chi_j\cdots\chi_k\rangle$$
 (2.2)

2.2.4 The Hartree-Fock Approximation

2.2.5 The Minimal Basis H_2 Model

gerade, ungerade

2.2.6 Excited Determinants

Suppose the ground state det

$$|\psi_0\rangle = |\chi_1 \cdots \chi_a \cdots \chi_b \cdots \chi_N\rangle \tag{2.3}$$

thus, singly excited det

$$|\psi_a^r\rangle = |\chi_1 \cdots \chi_r \cdots \chi_b \cdots \chi_N\rangle \tag{2.4}$$

$$|\psi_{ab}^{rs}\rangle = |\chi_1 \cdots \chi_r \cdots \chi_s \cdots \chi_N\rangle \tag{2.5}$$

How does program determine what dets can exist? by gerade/ungerade?

2.3 Operators and Matrix Elements

2.3.1 Minimal Basis H₂ Matrix Elements

2.3.2 Notations for 1- and 2-Electron Integrals

For spin orb, physicists'

$$\langle ij | kl \rangle = \left\langle \chi_i(1)\chi_j(2) \left| \frac{1}{r_{12}} \right| \chi_k(1)\chi_l(2) \right\rangle$$
 (2.6)

$$\langle ij \parallel kl \rangle = \langle ij \mid kl \rangle - \langle ij \mid lk \rangle \tag{2.7}$$

chemists?

$$[ij|kl] = \left\langle \chi_i(1)\chi_j(1) \left| \frac{1}{r_{12}} \right| \chi_k(2)\chi_l(2) \right\rangle$$
 (2.8)

For spatial orb

$$(ij|kl) = \left\langle \psi_i(1)\psi_j(1) \left| \frac{1}{r_{12}} \right| \psi_k(2)\psi_l(2) \right\rangle$$
(2.9)

2.3.3 General Rules for Matrix Elements

1. $|K\rangle = |\cdots mn \cdots \rangle$

$$\langle K | \mathcal{H} | K \rangle = \sum_{m}^{N} [m|h|m] + \frac{1}{2} \sum_{m}^{N} \sum_{n}^{N} ([mm|nn] - [mn|nm])$$
 (2.10)

or (Since [mm|mm] - [mm|mm] = 0)

$$\langle K \mid \mathcal{H} \mid K \rangle = \sum_{m}^{N} [m|h|m] + \sum_{m}^{N} \sum_{n>m}^{N} ([mm|nn] - [mn|nm])$$
 (2.11)

2. $|K\rangle = |\cdots mn \cdots \rangle, |L\rangle = |\cdots pn \cdots \rangle$

$$\langle K \mid \mathcal{H} \mid L \rangle = [m|h|p] + \sum_{n=1}^{N} ([mp|nn] - [mn|np])$$
 (2.12)

3.
$$|K\rangle = |\cdots mn \cdots \rangle, |L\rangle = |\cdots pq \cdots \rangle$$

$$\langle K \mid \mathcal{H} \mid L \rangle = [mp|nq] - [mq|np] \tag{2.13}$$

2.4 Second Quantization

2.4.1 Creation and Annihilation Operators and Their Anticommutation Relations

$$a_i^{\dagger} a_i^{\dagger} + a_i^{\dagger} a_i^{\dagger} = 0 \quad a_i a_j + a_j a_i^{\dagger} 0 \tag{2.14}$$

$$\{a_i, a_j^{\dagger}\} \equiv a_i a_j^{\dagger} + a_j^{\dagger} a_i = \delta_{ij} \tag{2.15}$$

2.5 Spin-Adapted Configurations

2.5.1 Spin Operators

total spin

$$\hat{\mathscr{P}} = \sum_{i}^{N} \hat{\mathbf{s}}(i) \tag{2.16}$$

$$\hat{\mathscr{S}}_x = \sum_{i}^{N} \hat{\mathbf{s}}_x(i) \tag{2.17}$$

$$\hat{\mathscr{S}}_{+} = \sum_{i}^{N} \hat{\mathbf{s}}_{+}(i) \tag{2.18}$$

$$\hat{\mathcal{S}}^2 = \hat{\mathcal{S}}_+ \hat{\mathcal{S}}_- - \hat{\mathcal{S}}_z + \hat{\mathcal{S}}_z^2 \tag{2.19}$$

$$\hat{\mathscr{S}}^2 |\Phi\rangle = S(S+1) |\Phi\rangle \tag{2.20}$$

$$\hat{\mathscr{S}}_z |\Phi\rangle = M_S |\Phi\rangle \tag{2.21}$$

$$\hat{\mathscr{S}}_z |ij\cdots k\rangle = \frac{1}{2} (N^\alpha - N^\beta) |ij\cdots k\rangle$$
 (2.22)

2.5.2 Restricted Determinants and Spin-Adapted Configurations

$$|^{1}\Psi_{1}^{2}\rangle = \frac{1}{\sqrt{2}}(|1\bar{2}\rangle + |\bar{1}2\rangle) = \frac{1}{\sqrt{2}}(\psi_{1}(1)\psi_{2}(2)\alpha(1)\beta(2) - \psi_{2}(1)...)$$
 (2.23)

3 The Hartree-Fock Approximation

3.1 The HF Equations

- 3.1.1 The Coulomb and Exchange Operators
- 3.1.2 The Fock Operator

3.2 Derivation of the HF Equations

- 3.2.1 Functional Variation
- 3.2.2 Minimization of the Energy of a Single Determinant
- 3.2.3 The Canonical HF Equations

3.3 Interpretation of Solutions to the HF Equations

3.3.1 Orbital Energies and Koopmans' Theorem

$$\varepsilon_{i} = \langle i \mid h \mid i \rangle + \sum_{b} \langle ib \parallel ib \rangle \tag{3.1}$$

$$= \langle i \mid h \mid i \rangle + \sum_{b} (\langle ib \mid ib \rangle - \langle ib \mid bi \rangle)$$
 (3.2)

Koopmans' Theorem

$$IP = -\varepsilon_a \quad EA = -\varepsilon_r \tag{3.3}$$

Koopmans' EA is often bad.

3.3.2 Brillouin's Theorem

$$\langle \Psi_0 \, | \, \mathcal{H} \, | \, \Psi_a^r \rangle = 0 \tag{3.4}$$

3.3.3 The HF Hamiltonian

$$\mathcal{H}_0 = \sum_{i}^{N} f(i) \tag{3.5}$$

3.4 Restricted Closed-shell HF: The Roothaan Equations

3.4.1 Closed-shell HF: Restricted Spin Orbitals

$$E_0 = 2\sum_a h_{aa} + \sum_a \sum_b (2J_{ab} - K_{ab})$$
(3.6)

3.4.2 Introduction of a Basis: The Roothaan Equations

3.4.3 The Charge Density

3.4.4 Expression for the Fock Matrix

3.4.5 Orthogonalization of the Basis

$$\mathbf{X}^{\dagger}\mathbf{S}\mathbf{X} = \mathbf{1} \tag{3.7}$$

 ${f S}$ can be diagonalized by unitary matrix ${f U}$:

$$\mathbf{U}^{\dagger}\mathbf{S}\mathbf{U} = \mathbf{s} \tag{3.8}$$

Symmetric Orthogonalization

$$\mathbf{X} = \mathbf{S}^{-1/2} = \mathbf{U}\mathbf{s}^{-1/2}\mathbf{U}^{\dagger} \tag{3.9}$$

(linear dependence must be removed)

Canonical Orthogonalization

$$\mathbf{X} = \mathbf{U}\mathbf{S}^{-1/2} = \mathbf{U}\mathbf{s}^{-1/2}\mathbf{U}^{\dagger} \tag{3.10}$$

Suppose s has m small values, we make a truncated $K \times (K-m)$ matrix

$$\tilde{\mathbf{X}} = \dots \tag{3.11}$$

thus

$$\phi'_{\mu} = \sum_{\nu}^{K} \phi_{\nu} \tilde{X}_{\nu\mu} \qquad \mu = 1, 2, \cdots, K - m$$
 (3.12)

However, calculate 2e integrals in transformed matrix is very time-consuming. Since

$$\phi' = \phi \mathbf{X} \tag{3.13}$$

$$\psi = \phi \mathbf{C} \tag{3.14}$$

we have

$$\psi = \phi' \mathbf{X}^{-1} \mathbf{C} \tag{3.15}$$

Let

$$\mathbf{C}' = \mathbf{X}^{-1}\mathbf{C} \qquad or \ \mathbf{C} = \mathbf{X}\mathbf{C}' \tag{3.16}$$

thus

$$\mathbf{FXC'} = \mathbf{SXC'}\varepsilon \tag{3.17}$$

$$(\mathbf{X}^{\dagger}\mathbf{F}\mathbf{X})\mathbf{C}' = (\mathbf{X}^{\dagger}\mathbf{S}\mathbf{X})\mathbf{C}'\boldsymbol{\varepsilon} = \mathbf{C}'\boldsymbol{\varepsilon}$$
(3.18)

def:

$$\mathbf{F}' = \mathbf{X}^{\dagger} \mathbf{F} \mathbf{X} \tag{3.19}$$

3.4.6 The SCF Procedure

P. 148

I think \mathbf{C}' should be $(K-m) \times K$.

3.4.7 Expectation Values and Population Analysis

$$N = \sum_{\mu} \sum_{\nu} P_{\mu\nu} S_{\mu\nu} = \operatorname{tr} \mathbf{PS}$$
 (3.20)

Mulliken:

$$q_A = Z_A - \sum_{\mu \in A} (\mathbf{PS})_{\mu\mu} \tag{3.21}$$

Löwin:

$$q_A = Z_A - \sum_{\mu \in A} (\mathbf{S}^{1/2} \mathbf{P} \mathbf{S}^{1/2})_{\mu\mu}$$
 (3.22)

3.5 Model Calculations on H_2 and HeH^+

3.5.1 The 1s Minimal STO-3G Basis Set