DAIICT

Assignment 4

Advanced Image Processing

Kishan Vaishnani - 202011004 Dhyanil Mehta - 202011032 3-21-2021

Table of Contents

Task 1.		3
Prob	lem Statement	3
Libra	ary Used	3
Meth	Method	
1.	Convolution formula used	3
2.	For rotating matrix by 180°	3
Obse	ervation	4
1.	Average 9*9 filter	4
2.	Weighted average 9*9 filter with higher center pixel value	4
Conc	clusion	4
Task 2		5
Prob	lem Statement	5
Libra	ary Used	5
Meth	ıod	5
1.	Equation used for unsharp & high boost filtering	5
Obse	ervation	6
2.	Unsharp masked image	6
3.	High boost filtered image with k = 2	6
4.	Plot intensity profile of 10 th row	7
Conc	lusion	8
Task 3		9
Prob	lem Statement	9
Libra	ary used	9
Meth	ıod	9
1.	Bilateral filtering	9
Obse	ervation	10
1.	Avg. filter v/s weighted Avg. filter v/s Gaussian Blur v/s Bilateral Image	10
Conc	clusion	10
Task 4		11
Proh	lem Statement	11

Libra	ary used	11
Meth	hod	11
1.	Applying/Convolving kernel filter on/with image	11
Obse	ervation & steps:	12
Conclusion		14

Problem Statement

Find out the difference between averaging operation and weighted averaging (higher weight to center pixel) operation on Fig. 1 by applying spatial filtering. For this purpose, convolve the image with 9×9 masks (averaging mask and weighted averaging mask).

Figure 1

Library Used: NumPy

Method

1. Convolution formula used

We used the following formula for implementing convolution function:

$$x[n]*h[n] = \sum_{k=0}^{N-1} x[k]h[n-k]$$

where we took x[n] = Lena Image, and h[n] = Averaging/Weighted Averaging 9x9 mask kernel

2. For rotating matrix by 180°

numpy.fliplr(matrix) -> matrix

Upper 2 library we have used before convolution as we need to rotate kernel matrix before apply to image.

Observation

1. Average 9*9 filter

2. Weighted average 9*9 filter with higher center pixel value

Conclusion

- Averaging filter blurs out the image and the blurriness is dependent on the size of the averaging filter.
- Weighted averaging filter also blurs the image but the intensity values are higher than that of averaging filter.

Problem Statement

Consider the image of Figure 2 and apply unsharp masking and high boost filtering to enhance the edges of the image. Consider a row of the original image and plot the intensity values. This kind of plot is known as intensity profile of that row. Plot similar intensity profiles (consider the same row) for the blurred image, unsharp mask, sharpened image, and the high-boost filtered image. Explain your observation.

Figure 2

Library Used: OpenCV

Method

1. Equation used for unsharp & high boost filtering

$$g_{mask}(x,y) = f(x,y) - \overline{f}(x,y)$$

$$g(x,y) = f(x,y) + k * g_{mask}(x,y)$$

where, k = 1 : Unsharp masking

k > 1: Highboost filtering

 $\bar{f}(x,y)$: Is a smoothened/blurred actual image. We used Gaussian blurring to blur the image.

cv2.GaussianBlur(image, kernel size, sigma) -> smoothen image

For high boost filtering, we have used k = 2

Observation

1. Gaussian blurred image with kernel size of (10,10) and sigma 10

2. Unsharp masked image

3. High boost filtered image with k = 2

4. Plot intensity profile of 10th row

Conclusion

- Gaussian blurring reduces details of the image overall. Edges are not preserved. Overall image quality is reduced.
- Unsharp masking enhances the edges of the image and increases the overall quality of the image.
- High-boost filtering also enhances the edges but they are enhanced much that the quality of the image is degraded as seen from the observation.

Problem Statement

Smooth the image of Figure 3 by using Bilateral filtering. Compare the result with average filtering and weighted average filtering. Which result is better? –Explain your understanding.

Figure 3

Library used: OpenCV

Method

1. Bilateral filtering

cv2.bilateralFilter(image, kernel size, σs , σr)

$$BF[I]p = \frac{1}{w} \sum_{q \in S} G_{\sigma s} \left(\left| \left| p - q \right| \right| \right) G_{\sigma r} \left(\left| I_p - I_q \right| \right) I_q$$

Where
$$G_{\sigma}(x) = \frac{1}{\sqrt{2\Pi}\sigma}e^{\left(\frac{-x^2}{2\sigma^2}\right)}$$

It will return a smooth image while also preserving the edges/edge information.

Observation

1. Avg. filter v/s weighted Avg. filter v/s Gaussian Blur v/s Bilateral Image

Conclusion

• Bilateral filter proves out to be the best in preserving the edges while blurring or smoothing out the image as compared to averaging or gaussian filter.

Problem Statement

Consider the image of Fig.2 and process it to bring out more skeletal detail. (You may use combination of sharpening and smoothing operations).

Figure 4

Library used: OpenCV

Method

1. Applying/Convolving kernel filter on/with image

cv2.filter2D(image, depth of image, kernel) -> image after applying kernel on it

Observation & steps:

1.	Input Image	
2	3x3 Laplacian filter of image Kernel= [[-1, -1, -1],	
3	Sharpened image obtained by adding Laplacian filter with input image	

4	Sobel gradient of image with some gamma transformation applied to enhance it X Kernel= [[-1, -2, -1],	
5	Sobel gradient smoothed by 5x5 averaging filter mask	
6	Generated mask by the product of Laplacian filter sharpened image and Smooth Sobel gradient	

7	Applying generated mask on Laplacian sharpened applied image	
8	Applying gamma transformation ($\gamma=3.0$) on the image generated on the 7 th step to adjust intensity	

Conclusion

• By applying a series of operations involving Laplacian filter mask and Sobel gradient mask along with some gamma transformation, skeletal details of the skeleton in the image were highlighted.