ID: Name:
II. Examples of Mathematical Induction. p(h)
1. Prove that $n^2 + n$ is divisible by 2 for all $n \in \mathbb{Z}^+$.
proof (1) show p(1) is true:
1)71 is divisible by 2 True (2 is divisible by 2
2) Assume P(k) is true.
P(k): [k²+k is divisible by 2) = k²+k=== m == k²+k=== m
3 Prove P(K) -> P(K+1)
P(k+1) looks like: 7 L.H.S = [k+1) + (k+1) = k+2k+1 + k+1
$(k+1)^2+(k+1)$ is $= k^2+k+2k+1+1$
divisible by 2 the assumption 2M +2K72
in(2) = 2 (M+K+1)
> (K+1) + (K+1) is divisible by 2
The statement is true for all nezt by induction
2. Prove that $n^3 + 2n$ is divisible by 3 for every integer $n \ge 3$.
Prof. (i) Show P(2) is true
$3^3+2\cdot 3=27+6=33$ is divisible by 3 True.
@ Assume P(K) is true
k3+2k is divisble by 3 Kt2k=3m, meZ
3) Prove P(k) -> P(k+1)
P(K+1) looks like 1 1.H.s = (K+1)+2 (K+1)
$\frac{3}{3}$
is divisible by 3 = $k^3 + 2k + 3k^2 + 3k + 1 + 2$
based on $= 3m + 3k^2 + 3k + 3$
is divisible by 3 $= k^{3}t^{2}k + 3k^{2}t^{2}k + 1 + 2$ based on $= 3m + 3k^{2}t^{3}k + 3$ This in $= 3 (m+k^{2}+k+1) \Rightarrow 1s \text{ divisible by 3}$ By Industry, based on (i) (2.5), this statement is the constant.
By Industry, based on (1) (2) (5) this statement is

3. Use mathematical induction to prove the inequality for all positive integer n Proof: (1) Show P(1) is true $\lfloor n < 2^n \rfloor$ p(n) 1 < 2 | True P Assume P(K) is true.: K<2^k is true. Derive ruty

(left Hand side)

P(kt1) locks like | L.H.S = kt1

kt1 < 2^{k+1} | based on the $3 < 2^k + 1$ $< 2^k + 2^k$ $< 2^k + 2^k$ Ref. | Diff (Prove P(K) → P(KH) $= 2.2^{k} = 2^{k+1} = R.H.S$ By induction, based D, D, B, this statement is true for all nezt 4. Use mathematical induction to prove the inequality for every positive integer $n \ge 4$ Proof: Phot: $2^n < n! \rightarrow P(n)$ (1) When n = 4, $2^4 = 16$ 4! = 4.3.2.(= 24) $16 < 24 \Rightarrow P(4)$ is trace ② Assume P(F) is true $(F \geqslant 4)$ $(2^{k} < k!)$ 3 show $P(E) \rightarrow P(EH)$ L.H.S of $P(EH) = 2^{KH} = 2 \cdot 2^{K}$ P(EH) | Color | ColorBy induction, based on 0, 0,0, the statement is true for