

دورة: 2022

الجمهورية الجزائرية الديمقراطية الشعبية وزارة التربية الوطنية

الديوان الوطنى للامتحانات والمسابقات

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات، تقني رياضي

المدة: 04 سا و30 د اختبار في مادة: العلوم الفيزيائية

على المترشح أن يختار أحد الموضوعين الآتيين:

الموضوع الأول

يحتوي الموضوع على (05) صفحات (من الصفحة 01 من 10 إلى الصفحة 05 من 10)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

في رحلة مدرسية لمُرتفعات الشريعة في موسم تساقط الثلوج، صوَّر أحمد بواسطة هاتفه مُتزحلقًا على الثلج مرَّ من أمامه على مُنحدر مستو يميل عن الأفق بزاوية $\alpha=10^{\circ}$. أثناء إلقاء الأستاذ لدرس تطبيقات القانون الثاني لنيوتن عرض أحمد الفيديو على أستاذه الذي اقترح دراسة حركة المتزحلق.

يهدف هذا التمرين إلى دراسة حركة المتزحلق على مستوي مائل.

. G مركز عطالته m=80Kg مركز عطالته m=80Kgندرس حرکة G في معلم مُتعامد ومتجانس (O,\vec{i},\vec{j}) مُرتبط بمرجع أرضى

نعتبره غاليليا (الشكل1).

يُطبّق سطح المستوي المائل على المُتزحلق قوة \overrightarrow{R} ذات مركّبة ناظمية \overrightarrow{R}_N ومركّبة مماسية \overrightarrow{f} معاكسة لجهة الحركة $\vec{R} = 9.81 m.s^{-2}$ شدّتها ثابتة، حيث: $\vec{R} = \vec{R}_N + \vec{f}$ (نُهمل تأثير الهواء ونعتبر تسارع الجاذبية الأرضية

Oنختار مبدأ الأزمنة O لحظة مرور المتزحلق من الموضع

- 1. اكتب نص القانون الثاني لنيوتن.
- $\cdot G$. مثِّل القوى الخارجية المُؤثرة على مركز عطالة المتزحلق $\cdot G$
- G المركز العطالة a المركز العطالة عبارة التسارع a المركز العطالة af فيمة $g \circ m$ و باقش طبيعة حركة G حسب قيمة $\alpha \circ g \circ m$
 - 4. سمحت مُعالجة الفيديو بواسطة برنامج Avistep من تحديد سرعة المتزحلق v في مواضع مختلفة فواصلها x أثناء حركته ورسم (2 لا لشكل 2) (الشكل 2).
- x(t) والحركة y(t) والحركة الزمنية لكل من السرعة y(t) والحركة y(t)
- علاقة التي تربط بيْن v^2 و v^2 و يتُعطى بالعبارة: $v^2 = 2ax + v_0^2$ حيث السرعة الابتدائية على العبارة: v_0 حيث التي تربط بيْن أنّ المتزحلق عند مروره بالموضع .0

- v_0 والسرعة الابتدائية a والسرعة الابتدائية 3.4
 - \overrightarrow{f} . استنتج شدة قوة الاحتكاك \overrightarrow{f} .
- \overrightarrow{R}_N ثم استنتج قيمة شدة القوة مراكب ثم استنتج قيمة شدة أعرب .5

التمرين الثاني: (04 نقاط)

إنّ غالبية الأنوية المشعّة تتحول إلى أنوية مُستقرة أو أكثر منها استقرارا. الآلية التي تتحول بها تُدعى ظاهرة النشاط الاشعاعى، تُؤدي إلى إصدار اشعاعات يُمكن أن يكون لها مَنافع ومَخاطر.

يهدف هذا التمرين إلى التطرق لبعض المفاهيم المتعلقة بظاهرة النشاط الاشعاعي ومعرفة المقادير المتعلقة بها.

 $t_{\frac{1}{2}}(^{212}_{83}Bi)=60\,\mathrm{min}$, $M(^{212}_{83}Bi)=212g\,.mol^{-1}$, $N_A=6,02\times10^{23}mol^{-1}$ معطیات : – ثابت أفوغادرو

Z	81	82	83		
العنصر	التاليوم	الرصاص	البيزموت		
الرمز	T1	Ph	Ri		

- جزء من الجدول الدوري للعناصر.

1. استقرار وعدم استقرار الأنوية:

- 1.1. ما المقصود بنواة مُشعّة؟
- 2.1. ماهي القوة التي تُحافظ على تماسك النواة وتجعلها مُستقرة ؟ اشرح.
 - .3.1 تُوجد أربعة أنماط من الاشعاعات، أعط الرمز $_{Z}^{A}X$ لكل منها.

2. التحولات النووية:

يُمثل (الشكل 3)، جُزءًا من المُخطط (Z,A) لبعض الأنوية المُشعّة يُمثل (الشكل 3)، جُزءًا من المُخطط X_3 ، X_2 ، X_3 و X_3 ، X_4 و التحولات الثلاثة X_4 و التحولات الثلاثة و التحولات التحولات الثلاثة و التحولات الثلاثة و التحولات التحولات الثلاثة و التحولات ال

- الرمز $_{Z}^{A}X$ لكُل منها. في الأنوية بإعطاء الرمز $_{Z}^{A}X$ لكُل منها.
 - 2.2. هل النواتان X_1 و X_2 ثُمثلان نظيرين؟ علِّل.
- 3.2. اكتب المعادلات المُنمذجة للتحولات الثلاثة (١٠٠٥). (١٠)

3. قانون التناقص الاشعاعي:

نعتبر عند اللّحظة t=0 عيّنة من نظير البيزموت 212 كتلتها m_0 ، نشاطها A_0 تحتوي على N_0 نواة مشعّة تتفكك لتتحول إلى أنوية التاليوم 208. حيث N(t) عدد أنوية البيزموت 212 الموجودة في العيّنة عند لحظة t.

- 1.3. ذكِّر بقانون التناقص لعدد أنوية البيزموت 212 بدلالة: λ ، λ ، λ ، λ
- من تفكك عيّنة من نظير البيزموت $^{212}_{83}Bi$ خلال الزمن.

- $N_{(TI)}(t) = N_{0}(1-e^{-\lambda t})$: بَيِّن أَنَ عدد أنوية التاليوم 208 المُتشكّلة في لحظة t أَعطى بالعلاقة: 1.2.3
- .2.2.3 عرّف زمن نصف العمر $t_{1/2}$ ثم جِدْ بيانياً N_0 واستنتج قيمة كل من m_0 و d_0 لعيّنة البيزموت المشعّة.

التمرين الثالث: (06 نقاط)

المكثّفات فائقة السعة (Supercondensateur) عناصر كهربائية مثالية للسيارات الكهربائية والسيارات الهجينة حيث تُخزّن كمّية كبيرة من الطاقة، تُشحن بسهولة في مدّة قصيرة خلال عملية الكبح وهذا بتحويل الطاقة الحرارية إلى طاقة كهربائية وتساعد على تشغيل محرك السيّارة إذ يمكنها تخفيض نسبة استهلاك الوقود حتى %30 في السيارات الهجينة.

يهدف هذا التمرين إلى دراسة خصائص هذه المكتِّفة.

نُحقّق الدارة الممثّلة في (الشكل5) والمكوّنة من:

- مولد مثالي للتيار الكهربائي G.
 - ناقل أومى مقاومته R
- K_0 و K_1 و السعة K_1 و السعة K_1 و السعة K_1
 - جهاز آمبیرمتر قطبه السالب Com.

في لحظة t=0 أُغلق القاطعة K_1 ونترك القاطعة K_2 مفتوحة، فيُشير الأمبيرمتر إلى القيمة K_1 بواسطة برنامج معلوماتي مُناسب نُتابع تطور التوتر الكهربائي $u_c(t)$ بيْن طرفي المكثّفة.

عند اللّحظة t_1 يبلغ التوتر الكهربائي $u_c(t)$ القيمة $u_c(t)$ عندئذٍ نفتح القاطعة K_1 ونُغلق القاطعة K_2 مع تغيير المسح الأفقي للبرنامج المعلوماتي (تغيير سلم رسم الزمن t_1) فنحصل على البيانين (t_1) و (t_2) الموضّحين في (الشكل).

Com

الشكل 5

د حالة K_1 مغلقة و K_2 مفتوحة.

- 1.1. اذكر الظاهرة الكهربائية الحادثة للمكثّفة مجهرياً.
 - 2.1. حدِّد البيان المُوافق لهذه الظاهرة مع التعليل.
 - .t و C ، I_0 بدلالة u_C عبارة عبارة .3.1

- 4.1. باستغلال البيان الموافق لهذه الظاهرة:
 - 1.4.1. جد قيمة سعة المكثفة C
- . عين اللّحظة t_1 ثمّ احسب قيمة الطاقة $E_{c}(t_1)$ المخزّنة في المكثّفة عندئذِ. t_1
 - د حالة K_2 مغلقة و K_1 مفتوحة:
 - 1.2. اذكر الظاهرة الكهربائية الحادثة للمكثفة مجهرياً مع التعليل.
 - $u_{c}(t)$ جِدْ المعادلة التفاضلية لتطور التوتر الكهربائي .2.2
- عدلة التفاضلية السابقة و $au_{c}(t)=2.5e^{rac{(25-t)}{ au}}$ عدلًا للمعادلة التفاضلية السابقة و $au_{c}(t)=2.5e^{rac{(25-t)}{ au}}$ عدلًا للمعادلة.
 - 1.3.2. جِدْ عبارة ثابت الزمن au ثمّ تأكد أنّ له بُعدا زمنيا.
 - R وقيمة مقاومة الناقل الأومى R وقيمة مقاومة الناقل الأومى R
 - 3.3.2. احسب بوحدة ساعة (h) ، المدّة اللّازمة لتفريغ المُكتّفة كُلّيا.
 - 3. بناءً على ما سبق بين خصائص المُكثّفة فائقة السعة المدروسة.

الجزء الثاني: (06 نقاط)

التمرين التجريبي:

تُعتبر الأحماض الكربوكسيلية من المُركبات العضوية التي تُظهر الخاصيّة الحمضية في المحاليل المائية وتُستعمل في إنتاج مواد مُختلفة كالأسترات المُميّزة بنكهاتِها الخاصّة. صيغتها العامة $C_nH_{2n+1}COOH$ (عدد ذرات الكربون). يوجد في مخبر ثانوية قارورة لمحلول تجاري تحتوي على حمض عضوي مجهول، كُتِب على مُلصقتها كثافة المحلول التجاري d=1,05 أمّا باقي المعلومات المُتمثّلة في: الصيغة الجزيئية للحمض، كتلته المولية d=1,05 ونسبة نقاوة الحمض في المحلول التجاري d=1,05 أمّا باقي غير واضحة.

اقترح الأستاذ على فوجين من التلاميذ التجربتين الآتيتين:

I. الفوج الأول: كُلّف باستكمال المعلومات غير الواضحة في مُلصقة قارورة المحلول التجاري.

قام تلاميذ الفوج بالعمليات الآتية:

- $\cdot c$ من مُحتوى القارورة 175 مرّة لتحضير محلول مائي (S) تركيزه المولي تمديد حجم $V_0=2mL$
 - pH=2,9 المحلول (S) عند درجة الحرارة $pH=25^{\circ}C$ أعطى القيمة وpH=2.9
- $(Na^+(aq)+OH^-(aq))$ معايرة عيِّنة من المحلول (S) حجمها $V_a=10mL$ بواسطة محلول هيدروكسيد الصوديوم (S) حجمها تركيزه المولي تركيزه المولي $c_b=10^{-1}mol.L^{-1}$ باستعمال كاشف الفينول فتالين. تمّ الحصول على التكافؤ حمض أساس عند إضافة حجم $V_{bE}=10mL$ من المحلول الأساسي.
 - 1. حدِّد الزجاجية المُناسبة لأخذ الحجم $V_0 = 2m$ من القارورة مع ذكر الاحتياطات الأمنية الواجب توفيرها.
 - $C_n H_{2n+1} COOH$ والأساس. والأساس المعادلة الكيميائية المُنمذجة للتحول الحادث أثناء المُعايرة بيْن الحمض
 - c المُعاير. (c المُعاير) المُعاير (c المُعاير) المُعاير (c المُعاير) المُعاير (c المُعاير)
 - 4. أنجز جدول تقدم التفاعل الحادث بين الحمض الحمض $C_n H_{2n+1} COOH$ والماء ثم بيِّن أنّه حمض ضعيف.

 $.25^{0}C$ عند عيارة الثابت المُميّز للثنائية (أساس/حمض) بالشكل: $K_{a}=\frac{10^{-2\,pH}}{c-10^{-pH}}$ عند $.5^{\circ}$

. و ناساس/حمض عند (أساس/حمض) لبعض الثنائيات pK_a عند عند pK_a عند pK_a

(أساس/حمض)	(HCOOH / HCOO ⁻)	(CH_3COOH / CH_3COO^-)	$(C_2H_5COOH/C_2H_5COO^-)$
pK_a	3,80	4,80	4,87

1.6. استنتج الصيغة الجزيئية للحمض المجهول.

(p%) نسبة النقاوة M، نسبة النقاوة على مُلصقة القارورة (الكتلة المولية M)، نسبة النقاوة (p%)

II. الفوج الثاني: كُلّف بالتحقّق من الصيغة الجزيئية للحمض ومُراقبة تفاعله مع كحول.

قام تلاميذ الفوج بالعمليات الآتية:

- تحضير مزيج ابتدائي يتكون من كمّية المادة n=0,2mol للحمض مأخوذة من القارورة مع كمّية مادة n=0,2mol من كحول نقي صيغته العامة $C_3H_7OH(l)$ وإضافة قطرات من حمض الكبريت المركز .

- وضع المزيج الابتدائي عند t=0 في حمّام مائي درجة حرارته $\theta=60^\circ$

1. كيف نسمّي هذا التحول الحادث؟

2. اذكر العاملين الحركيين المُستعملين لتسريع التفاعل.

 $C_n H_{2n+1} COOH$ ييْن الحمض الحادث بيْن الحادث التفاعل التفاعل . $C_3 H_7 OH(l)$

4. استنتج من البيان (الشكل7):

1.4. خاصيتين للتحول الكيميائي الحادث.

r ثم استنتج صِنف الكحول المُستعمل r ثم النظامي. صيغته نصف المنشورة واسمه النظامي.

6. اكتب الصيغة نصف المنشورة للمركب العضوي الناتج ثم أعط اسمه النظامي.

7. طلب الأستاذ اقتراحات لتحسين مردود تصنيع المركب العضوي الناتج. قدِّم هذه الاقتراحات.
$$M(H)=1g.mol^{-1}$$
 ; $M(C)=12g.mol^{-1}$; $M(O)=16g.mol^{-1}$ تعطی:

 $n_{\text{acide}}(mol)$

الموضوع الثانى

يحتوي الموضوع على (05) صفحات (من الصفحة 06 من 10 إلى الصفحة 10 من 10)

الجزء الأول: (14 نقطة)

التمرين الأول: (04 نقاط)

شهيل سات 2 قمر اصطناعي قطري يظهر ساكنا لملاحظ على سطح الأرض، يُستعمل في الاتصالات اللّاسلكية للبث الإذاعي والتلفزي بتقنية عالية الجودة. يُستغّل في تغطية ونقل مُباريات وأحداث كأس العالم 2022 عبر القنوات الفضائية العالمية، أرسل إلى مداره في 15 نوفمبر 2018.

 $R_T = 6400 km$ معطیات: نصف قطر الأرض

 $T_T \simeq 24h$ دور الأرض حول محورها

سهبل سات2

نعتبر (S) القمر الاصطناعي شهيل سات 2، كتلته $m_{S}=5300kg$ يدور حول الأرض في مسار دائري

نصف قطره r ، على ارتفاع h من سطح الأرض، خاضع لقوة جذب الأرض h فقط.

1. حدِّد المرجع المناسب لدراسة حركة هذا القمر.

 $\vec{F}_{T/S}$ ومثِّل عليه شعاع السرعة المدارية \vec{v} وشعاع قوة جذب الأرض \vec{v} .

 $.\vec{n}$ و r ، m_{S} ، M_{T} ، G بدلالة: $\overrightarrow{F}_{T/S}$ و r ، m_{S} ، اكتب العبارة الشعاعية للقوة

(حيث \overline{n} شعاع وحدة ناظمي، M_T كتلة الأرض، \overline{n} ثابت الجذب العام).

4. بتطبیق القانون الثانی لنیوتن علی مرکز عطالة (S):

1.4. أعط مميزات شعاع تسارع مركز عطالة القمر (S) ثمّ استنتج طبيعة حركته.

.r و $M_{\scriptscriptstyle T}$ ، G بدلالة V عبارة عبارة V

ستنتج عبارة الدور T_S لحركة (S) بدلالة المقادير .3.4 المذكورة في السؤال (2.4).

II. تحديد بعض المقادير المميّزة للقمر سُهيل سات 2.

لغرض تحديد مميّزات القمر (S) تمّت محاكاة حركته بواسطة برمجية مناسبة. (الشكل2) يمثّل بيان تغيرات شدة قوة جذب الأرض للقمر الاصطناعي $\overrightarrow{F}_{T/S}$ ، بدلالة مقلوب $\left(\frac{1}{r^2}\right)$ مربع نصف قطر مداره

1. باستغلال البيان الممثّل في (الشكل2) اكتب معادلته $(K = GM_T)$ حيث الرياضية ثم استنتج قيمة الثابت

الشكل 1

◄ جهة الدوران

- 2. إذا علمت أنّ قيمة شدّة قوة جذب الأرض للقمر (S) هي $F_{T/S} = 11.8 \times 10^2 N$ ، استنتج قيمة المقادير الآتية:
 - 1.2. الارتفاع h عن سطح الأرض.
 - 2.2. السرعة المدارية ٧.
 - T_{S} الدور .3.2
 - 3. هل القمر سُهيل سات 2 جيومستقر؟ برّر إجابتك.

التمرين الثاني: (04 نقاط)

لدراسة تصرف وشيعة في دارة كهربائية وتحديد المقادير الفيزيائية المميّزة لها، نحقّق التركيب الكهربائي المبيّن في (الشكل3) والذي يضم على التسلسل:

- ناقل أومى مقاومته R قابلة للضبط.

r وشيعة ذاتيتها L ومقاومتها الداخلية r

– قاطعة– قاطعة

نضبط المقاومة R على القيمة $R=10\Omega$ ثمّ نغلق القاطعة K عند اللّحظة t=0. بواسطة راسم اهتزاز ذي ذاكرة، نُعايِن تغيرات كل من التوترين الكهربائيين u_{AM} و u_{MB} بدلالة الزمن فنتحصّل على المنحنيين المُمثّلين في (الشكل4). u(V)

1. انقل مُخطط الدارة على ورقة إجابتك ثمّ مثِّل عليه:

 u_{AM} ، سهمي التوترين الكهربائي ، i ، سهمي التوترين الكهربائيين ، جهة مرور و u_{MB} ومدخلى راسم الاهتزاز u_{MB}

- 2. بين مُعلّلا جوابك، أيّ مُنحنى (أو (يمكِّننا من متابعة تطور شدّة التيار الكهربائي المار في الدارة ثم استنتج تصرف الوشيعة لحظة غلق القاطعة K وتصرفها في النظام الدائم.
 - 3. اعتمادا على البيان(الشكل4) حدّد قيمة كل من:
 - 1.3. القوة المحركة الكهربائية
 - 2.3. المقاومة الداخلية للوشيعة r.
 - $I_{
 m max}$ النيار الكهربائي المار في النظام الدائم 3.3
 - L ثابت الزمن المميّز للدارة au ثمّ استنتج ذاتية الوشيعة au
- 4. من أجل معرفة تأثير مقاومة الناقل الأومى على بعض المقادير المميّزة للدارة، نستعمل نفس التركيب التجريبي السابق، ونُغيّر في كل حالة قيمة مقاومة الناقل الأومي R كما في الجدول الآتي:

40	20	$R(\Omega)$ المقاومة				
		$I_{\max}(A)$ الشدة الأعظمية				
		au(ms) ثابت الزمن				
		$U_{AM}(V)$	التوتر الكهربائي في			
		$U_{MB}(V)$	النظام الدائم			

- أتمم ملء الجدول. ماذا تستنتج؟

التمرين الثالث: (06 نقاط)

الجزء I والجزء II مُستقلان.

I- المتابعة الزمنية لتفاعل الماء الأكسجيني مع شوارد اليود في وسط حمضي.

المطهرات منتوجات كيميائية تستعمل في تطهير الجروح من الجراثيم والتعفن، نذكر منها الماء الأكسجيني. ندرس في هذا الجزء من التمرين الحركية الكيميائية لتفاعل أكسدة شوارد اليود بالماء الأكسجيني في وسط حمضي. $c_1=0.5\,mol\,.L^{-1}$ وفي درجة حرارة ثابتة $^{\circ}25$ ، نمزج حجما V_1 من الماء الأكسجيني تركيزه t=0 وفي درجة حرارة ثابتة $V_2=100\,mL$ من محلول يود البوتاسيوم ($V_1=100\,mL$) تركيزه $V_2=100\,mL$ المحمّض بحمض الكبريت المركز ، مع حجم $V_2=100\,mL$ من محلول يود البوتاسيوم ($V_1=100\,mL$) تركيزه $V_2=100\,mL$ معادلة التفاعل المنمذج للتحول الحادث هي: $V_1=100\,mL$

- 1. عرّف كل من الأكسدة والإرجاع.
 - 2. أنجز جدولا لتقدم التفاعل.
- 3. اذكر أهم طرق المتابعة الزمنية لهذا التحول. علَّل
- $n(I^{-}) = f(t)$ مكّنتنا إحدى الطرق من رسم المنحنيين بالطرق من الطرق من v = g(t) و v = g(t)
 - مادة I^- والسرعة اللّحظية للتفاعل بدلالة الزمن.
- 1.4. حدّد المنحنى الموافق لتغيرات سرعة التفاعل ثم استنتج المُتفاعل المُحد.
 - 2.4. بالاستعانة بجدول تقدم التفاعل والمُنحنيين(الشكل5) حدّد قيمة كل من:
- V_1 والحجم X_{\max} والحجم التقدم الأعظمي التركيز المولى د.2.4
 - t=0 السرعة الحجمية لتشكل I_2 في اللّحظة.

II- دراسة عمود نحاس – مغنيزبوم

يُعتبر العالم ألساندرو فولطا أول من اخترع عمود كهروكيميائي سنة 1800م، الذي يعتمد اشتغاله على مبدأ تحويل جزء من الطاقة الناتجة عن تفاعل أكسدة - إرجاع إلى طاقة كهربائية تستهلك عند الحاجة نقترح في هذا الجزء من التمرين دراسة مبسّطة للعمود ومبدأ اشتغاله.

 $1F = 96500 \,\mathrm{C} \cdot mol^{-1}$: ثابت فارادای: ثابت فارادای

يمثّل (الشكل6) رسم تخطيطي للعمود نحاس- مغنيزبوم والذي يتكون من:

 $(Cu^{2+}(aq) + SO_4^{2-}(aq))$ نصفي عمود يحتوي الأول على حجم $V_1 = 50 \, mL$ من محلول تركيزه المولي $c_1 = 0.1 mol. L^{-1}$ مغمورة فيه جزئيا صفيحة من النحاس $c_1 = 0.1 mol. L^{-1}$

الثاني على محلول ($C_2 = C_1$ مغمورة فيه جزئيا صفيحة ($Mg^{2+}(aq) + SO_4^{2-}(aq)$) مغمورة فيه جزئيا صفيحة من المغنيزبوم Mg.

R نصِل المحلولين بجسر ملحي شاردي وبواسطة أسلاك توصيل نربط الصفيحتين (المسريان) بناقل أومى مقاومته $I_0 = -70 \, m {
m A}$ متر رقمي وقاطعة K . نغلق القاطعة عند K = 0 ، فيشير جهاز الآمبير متر وقمي وقاطعة عندما يكون قطبه السالب (com) موصولا بصفيحة النحاس Cu.

- 1. حدِّد قطبي العمود ثم أعط رمزه الاصطلاحي.
 - 2. خلال اشتغال العمود:
- 1.2. اكتب المعادلة النصفية للتفاعل الحادث عند كل مسرى ثم استنتج المعادلة الإجمالية المنمذجة لاشتغال العمود.
- $X_{
 m max}$ باعتبار أنّ كتلة المسريين توجد بوفرة وأنّ .2.2 بالاستعانة بجدول تقدم التفاعل، حدِّد قيمة التقدم الأعظمي التحول الحادث تام.
 - .3.2 احسب Q_{\max} كمّية الكهرياء الأعظمية التي يُنتجها العمود.
 - 4.2. استنتج المدة الزمنية الأعظمية Δt بوحدة ساعة (h) لإشتغال هذا العمود قبل أن يستهلك.

الجزء الثاني: (06 نقاط)

التمرين التجريبي:

في حصة أعمال تطبيقية وبهدف دراسة حركة مركز عطالة كرة في الهواء ونمذجة قوة الاحتكاك، قام التلاميذ بتصوير حركة السقوط الشاقولي في الهواء لكرة كتلتها m = 5.8g بدون سرعة ابتدائية ومعالجة الصور ببرنامج مناسب فتحصّلوا على قيم شدّة محصلة القوى F المطبّقة على مركز عطالة الكرة في لحظات مختلفة:

t(s	r)	0,00	0,20	0,40	0,60	0,80	1,00	1,20	1,25	1,50	1,75
F(×10	(-2N)	4,00	1,48	0,54	0,20	0,07	0,03	0,00	0,00	0,00	0,00

1. ارسم بيان تغيّرات محصلة القوى بدلالة الزمن F = f(t). باستعمال سلم الرسم التالى:

$$1cm \to 0.5 \times 10^{-2} N$$
, $1cm \to 0.2s$

- 2. اعتماداً على البيان:
- 1.2. بيّن كيف تتغيّر شدّة محصلة القوى خلال الزمن وحدّد طبيعة حركة مركز عطالة الكرة.
 - t=0 في اللّحظة a_0 في اللّحظة .2.2
 - 3.2. احسب شدّة دافعة أرخميدس إن وُجدت.
 - 4.2. حدِّد قيمة ثابت الزمن au لهذه الحركة باستعمال طريقة المماس.
- 3. مثّل أشعة القوى المطبقة على مركز عطالة الكرة في اللّحظتين: t=1,5s ، t=0,4s باستعمال سلم الرسم t=1,5s ، t=0,4s التالى: t=1,5s ، t=0,4s التالى: t=1,5s ، t=0,4s التالى: t=1,5s ، t=0,4s باستعمال سلم الرسم المراحة المر
- 4. بتطبيق القانون الثاني لنيوتن على مركز عطالة الكرة السابقة في مرجع سطحي أرضي نعتبره غاليلياً، وباعتبار شدّة قوة الاحتكاك مع الهواء تعطى بالعبارة $f = k \, v^n$ ، حيث k معامل الاحتكاك و n عدد طبيعي.
 - $\frac{dv}{dt} + Av^n = B$: أثبت أنّ المعادلة التفاضلية لتطور سرعة مركز عطالة الكرة من الشكل 1.4

حيث A و B ثابتان يُطلب تحديد عبارتيهما بدلالة m ، F_0 ه و m ، و m ، و كابتان يُطلب تحديد عبارتيهما بدلالة m ، و m ، و m ، و كابتان يُطلب تحديد عبارتيهما بدلالة m ، و m ، و m ، و كابتان يُطلب تحديد عبارتيهما بدلالة m ، و m ، اm ، اm ، ا

- $\cdot k$ و F_0 بدلالة و V_{\lim}^n و 2.4
- $\cdot k = 0,029\,SI$ باعتبار n قيمة n استنتج قيمة $v_{
 m lim} = 1,38\,m.s^{-1}$ أنّ $\cdot v_{
 m lim} = 1,38\,m.s^{-1}$
 - 4.4. اكتب عبارة f المنمذجة لقوة الاحتكاك.

$$g = 9.81 m.s^{-2}$$
 يُعطى:

مة	العلا	/ 1 En - 11 \ 7 1 \ N1				
مجموع	مجزأة	عناصر الإجابة (الموضوع الأول)				
		التمرين الأول: (04 نقاط)				
0,25	0,25	1. نص القانون الثاني لنيوتن: في معلم عطالي المجموع الشعاعي للقوى الخارجية المطبقة على				
		مركز عطالة جملة مادية يساوي في كل لحظة جداء كتلتها في شعاع تسارع مركز عطالتها.				
		\overrightarrow{F} \overrightarrow{R}_N \overrightarrow{R}_N 2. \overrightarrow{R}_N				
		J = 1 (mix) 1 (mix)				
0,50	0,50	\overrightarrow{P} - فوة التقل \overrightarrow{R}_N - قوة فعل سطح المستوي على المتزحلق \overrightarrow{R}_N				
		\overrightarrow{f} قوة الاحتكاك \overrightarrow{f}				
		3. عبارة التسارع:				
	0,25	$\sum \overrightarrow{F}_{ext} = m \overrightarrow{a}$ بتطبيق القانون الثاني لنيوتن في معلم سطحي ارضي عطالي				
1,0	0,25	$\vec{P} + \vec{f} + \vec{R}_N = m\vec{a} \implies mg \sin \alpha - f = ma \implies a = \frac{mg \sin \alpha - f}{m} = g \sin \alpha - \frac{f}{m}$				
1,0		/// /// /// مناقشة طبيعة الحركة: بما أن التسارع ثابت والمسار مستقيم.				
	0,50	من أجل $a>0\;;v>0\;$ حركة مستقيمة متسارعة بانتظام				
	0,50	من أجل $a<0$, $a<0$ حركة مستقيمة متباطئة بانتظام $f>m\;g\;\sinlpha$				
		وفي حالة $a ightarrow a = 0$ تكون الحركة مستقيمة منتظمة $f = m \ g \sin lpha ightarrow a = 0$				
		G طبیعة حرکة: G :				
		$f < m \ g \sin lpha \rightarrow a > 0 \; ; v > 0$ نلاحظ من البيان أنّ السرعة تتزايد خلال الحركة وهي توافق				
	0,25	فإن الحركة مستقيمة متسارعة بانتظام.				
	0,25	$v = at + v_0$ المعادلة الزمنية للسرعة: $v = at + v_0$				
	0,25	$x = \frac{1}{2}at^2 + v_0t / x_0 = 0$ المعادلة الزمنية للحركة:				
		2.4. اثبات العلاقة:				
1,75	0,25	من معادلة السرعة: $t=\frac{v-v_0}{a}$ نعوض في معادلة الحركة نجد				
		$x = \frac{1}{2}a(\frac{v - v_0}{a})^2 + v_0(\frac{v - v_0}{a})$				
		$v^2 = 2ax + v_0^2$ ومنه نستنتج العلاقة				

	T	
	$0,25 \times 2$. v_0 والسرعة الابتدائية a والسرعة الابتدائية عند a
	0,23/(2	$v_0 = 16m/s$ و $a = 0,14m/s^2$ و $a = 0,14m/s^2$ و $v^2 = 0,28x+256$ و $v_0 = 16m/s$
	0.25	\overrightarrow{f} استنتاج شدة قوة الاحتكاك . \overrightarrow{f} .
	0,25	$f = m (g \sin \alpha - a) = 80 \times (9,81 \times \sin 10^{\circ} - 0,14) = 125 N$
	0,25	تم استنتاج قيمة شدة القوة \overrightarrow{R}_N ثم استنتاج قيمة شدة \overrightarrow{R} . بأسقاط العلاقة الشعاعية للقانون الثاني \overline{R}
0,50	0,23	$R_N = mg \cos \alpha = 80 \times 9.81 \times \cos 10^\circ = 772.9N$ لنيوتن على المحور (O, \vec{j}) نجد:
	0,25	$R = \sqrt{R_N^2 + f^2} = 782,9N$
		التمرين الثاني: (04 نقاط)
	0,25	1.1. المقصود بنواة مشعة: هي نواة غير مستقرة تتفكك تلقائيا لتعطي نواة أكثر استقرارا مع اصدار
		اشعاع.
1,0	0,25	2.1. القوة المسؤولة عن تماسك النواة هي القوة النووية القويّة إنها تربط النترونات والبروتونات مع
	0,23	بعضها البعض وشدتها أكبر من شدة قوة التنافر الكهربائي بين البروتونات.
	0,50	3.1. أنماط الاشعاعات:
		$lpha({}_{2}^{4}He)\ ;\ eta^{+}({}_{1}^{0}e)\ ;\ eta^{-}({}_{-1}^{0}e)\ ;\ {}_{0}^{\alpha}\gamma$
	0,50	1.2. التعرف على الأنوية:
		$X_{1} \rightarrow {}^{212}_{82}Pb$; $X_{2} \rightarrow {}^{212}_{83}Bi$; $X_{3} \rightarrow {}^{208}_{81}Tl$; $X_{4} \rightarrow {}^{208}_{82}Pb$
1,50	0,25	$:({}^{212}_{82}Pb\ , {}^{212}_{83}Bi)$ ، $X_1\ , \ X_2$ النواتان. 2.2
1,50		النواتان لا تمثلان نظيرين لأن لهما Z مختلف.
	0,25×3	3.2. معادلات التحولات النووية:
	0,25	$N_{Bi}(t) = N_0 e^{-\lambda t}$ عدد الأنوية المشعّة: $N_{Bi}(t) = N_0 e^{-\lambda t}$
	0,25	$N_{0} = N_{TI}(t) + N_{Bi}(t) = N_{TI}(t) + N_{0}e^{-\lambda t} \Rightarrow N_{TI}(t) = N_{0}(1 - e^{-\lambda t})$ اثبات العلاقة: $1.2.3$
	0,25	2.2.3 تعريف زمن نصف العمر: الزمن اللاّزم لتفكك نصف عدد الأنوية المشعّة الابتدائية
		- قيمة N_0 : من البيان عند اللّحظة $t=t_{1/2}=60\mathrm{min}$ فإنّ
1,50	0,25	(یمکن استخدام $N_{TI}(t) = N_0(1 - e^{-\lambda t})$ والبیان $\frac{N_0}{2} = 14 \times 10^{20} \rightarrow N_0 = 28 \times 10^{20}$
	0,25	$m_0 = \frac{N_0}{N_A} . M\left({^{212}_{83}}Bi \right) = 1g$: m_0 الكتلة m_0
	0,25	$A_{0}=\lambdaN_{0}=rac{\ln2}{t_{1/2}}.N_{0}=5,4 imes10^{17}Bq$: A_{0} قيمة $-$

		/t ime OC > ti2ti
	0,50	التمرين الثالث: (06 نقاط)
2.75		1.1. الظاهرة الكهربائية الحادثة مجهريا هي هجرة جماعية للإلكترونات من اللبوس المرتبط بـ
2,75		Com لمقياس الآمبير الى اللبوس الآخر عبر المولد (شحن المكثفة بمولد التيار الكهربائي).
	0,50	2.1. تحديد رقم البيان لعملية الشحن مع التعليل:
	,	لما $t=0$ فإن $u_c=0$ خلال الشحن و هذا يوافق البيان رقم (2).
	$0,25 \times 2$	t و t و t و t و t عبارة u_c
		$u_{C} = \frac{I_{0}}{C} \cdot t$ ونعلم أن: $q = I_{0} \cdot t$ إذا $q = I_{0} \cdot t$
	0,25×2	$\cdot C$ قيمة سعة المكثفة $\cdot C$
	0,23×2	(حيث a معامل توجيه البيان) $u_c=a.t=0,1t$ العبارة البيان:
		$C=rac{I_0}{a}=rac{150}{0.1}=1500F$ بالمطابقة مع العبارة $u_{\scriptscriptstyle C}=rac{I_0}{C}$. t
	0.25	$u_{_C}=2.5V \; \Rightarrow t_{_1}=25s \; $ ومن أجل (2) ومن أبيان (2) ومن أجل $t_{_1}$
	0,25	حساب قيمة الطاقة $E_{_{C}}(t_{_{1}})$ المخزّنة في المكثّفة:
	0,25×2	$E_C = \frac{1}{2} \cdot C \cdot U_C^2 = \frac{1}{2} \cdot 1500 \cdot (2,5)^2 \implies E_C = 4687,5J$
	0,50	1.2. الظاهرة الكهربائية الحادثة للمكثفة مجهرياً مع التعليل:
		الظاهرة الحادثة هي ظاهرة التفريغ يحدث خلالها هجرة الالكترونات من اللبوس السالب الى
		اللبوس الموجب حيث يتناقص التوتر الكهربائي بين طرفيها كما في البيان(1).
	0,25×2	$u_c(t)$ المعادلة التفاضلية لتطور التوتر الكهربائي.
		$rac{du_C}{dt} + rac{1}{RC}u_C = 0$ و بما أن: $u_R = Ri$ $i = Crac{du_C}{dt}$ و بما أن: $u_R + u_C = 0$
2,75		1.3.2. عبارة ثابت الزمن $ au$ ثمّ تأكد أنّ له بُعدا زمنيا:
, , ,	0,50	لدينا $\frac{du_{C}(t)}{dt} = -\frac{2.5}{\tau}e^{\frac{(25-t)}{\tau}}$ و $u_{C}(t) = 2.5e^{\frac{(25-t)}{\tau}}$ بالتعويض في المعادلة التفاضلية نجد
		$-\frac{2.5}{\tau}e^{\frac{(25-t)}{\tau}} + \frac{2.5}{RC}e^{\frac{(25-t)}{\tau}} = 0 \implies \tau = RC$
	0,25×2	$[\tau] = [R][C]$ / $[R] = \frac{[u]}{[i]}$; $[C] = \frac{[i][t]}{[u]}$: τ وحدة τ
		بالتعويض نجد: $[au] = [t] = [t]$ إذا له بعد زمني.
		t=25+ au الاستنتاج بیانیا قیمة ثابت الزمن $ au$: من أجل $t=25+ au$
	0,25	$ au = 7525 - 25 = 7.5 \times 10^3 s$ نجد $u_c (25 + au) = 0.37 \times 2.5 = 0.9 V$ نجد
	,	au=7500s=2,11h وهذا يوافق $ au=7500s=2,11h$
	0,25	$ au=RC$ $\Rightarrow R=rac{ au}{C}=rac{7500}{1500}$ $\Rightarrow R=5\Omega$: R قيمة مقاومة الناقل الأومي $=$

	0,25	3.3.2. الحساب بوحدة ساعة (h) المدة اللّازمة لتفريغ المُكثّفة كُلّيا:						
		$\Delta t = 5\tau = 37500s = 10,42h$						
0,50	0,50	خصائص المُكثّفة فائقة السعة المدروسة:						
0,50	0,50	 تشحن في مدة قصيرة – تخزن طاقة كبيرة – لها سعة كبيرة – تفرغ في مدة طويلة 						
		التمرين التجريبي: (06 نقاط)						
0.70	0,25	اً $V_0 = 2m$ مزودة $V_0 = 2m$ مزودة الخذ الحجم $V_0 = 2m$ مزودة الزجاجية المُناسبة لأخذ الحجم الحجم الحجم $V_0 = 2m$						
0,50	,	بإجاصة مص.						
	0,25	- الاحتياطات الأمنية الواجب توفيرها: المئزر، القفازات، النظارات، القناع.						
0,25	0.05	2. كتابة المعادلة الكيميائية المُنمذجة للتحول:						
0,23	0,25	$C_n H_{2n+1} COOH(aq) + OH^-(aq) = C_n H_{2n+1} COO^-(aq) + H_2 O(l)$						
	0.25	3. تعريف نقطة التكافؤ: عندها يكون المزيج التفاعلي ستكيومتري.						
0,50	0,25	استنتاج التركيز المولي c للمحلول الحمضي c :						
	0,25	$c.V_a = c_b.V_b \implies c = \frac{c_b.V}{V_a} = 0.1 mol/L$						
		4. جدول تقدم التفاعل الحادث بيْن الحمض $C_n H_{2n+1} COOH$ والماء:						
		المعادلة $C_n H_{2n+1}COOH(aq) + H_2O(l) = C_n H_{2n+1}COO^-(aq) + H_3O^+(aq)$						
		كمّية المادة (mol) الحالة						
0,50	0,25	t=0 $n=c.V$ بزیادة 0 0						
		t $n-x$ x x						
		t_f $n-x_f$ بزیادة x_f x_f						
	0,25	$pH = 2.9 \Rightarrow \left[H_3O^+\right]_f = 10^{-2.9} = 1.25 \times 10^{-3} \ mol \ / L$ اثبات أن حمض ضعيف: $-$						
		بما أن: $< c$ إذا الحمض ضعيف. $\left[H_3 O^+ ight]_c < c$ بما أن						
		رتقبل الإجابات الأخرى)						
		5. أيجاد عبارة الثابت المُميّز للثنائية (أساس/حمض):						
0,50	0,25	$K_a = \frac{\left[H_3O^+\right]_f \left[A^-\right]_f}{\left[AH\right]_c} = \frac{10^{-pH} \cdot 10^{-pH}}{c - 10^{-pH}} = \frac{10^{-2pH}}{c - 10^{-pH}}$						
	$K_a = rac{10^{-2(2,9)}}{0.1 - 10^{-2,9}} = 1,6 imes 10^{-5}$: K_a حساب قیمة حساب قیمة							
		1.6. استنتاج الصيغة الجزيئية للحمض المجهول:						
		$pK_a = -\log K_a = -\log(1,6 \times 10^{-5}) = 4,8$: pK_a حساب ثابت الحموضة						

تابع الإجابة النموذجية لموضوع. اختبار مادة: العلوم الفيزيائية . الشعبة: رياضيات، تقني رياضي . بكالوريا: 2022

	0,25	حسب الجدول فصيغة الحمض هي: CH3COOH
1,0		ي. استكمال معلومات الملصقة (الكتلة المولية M ، نسبة النقاوة $p\%$):
	0,25	$M = 2 \times 12 + 4 \times 1 + 2 \times 16 = 60 g / mol$ الكتلة المولية للحمض: من صيغة الحمض نجد:
	·	- نسبة النقاوة: لدينا من معامل التخفيف:
	0,25	$F = \frac{c_0}{c} = 175 \implies c_0 = 175c = 175 \times 0, 1 = 17,5 \mod /L$
	0,25	$c_0 = \frac{10p\%d}{M} \implies p\% = \frac{c_0M}{10d} = \frac{17,7\times60}{10\times1,05} = 100\%$: ومن العلاقة نجد:
0,25	0,25	II/ 1. نسمّي هذا التحول بالأسترة.
0,25	0,25	2. العاملان الحركيان المُستعملان لتسريع التفاعل: - رفع درجة الحرارة - إضافة حمض الكبريت
0,25	0,25	3. كتابة معادلة التفاعل الحادث بيْن الحمض والكحول:
0,23	0,23	$C_n H_{2n+1} COOH(l) + C_3 H_7 OH(l) = C_n H_{2n+1} COO - C_3 H_7(l) + H_2 O(l)$
	0,25	1.4. خاصيتان للتحول الكيميائي الحادث: - بطيئ - غير تام(محدود)
1,0	0.25	2.4. مردود التفاعل r:
1,0	0,25	$r = \frac{X_f}{X_{\text{max}}} \times 100 = \frac{0,2-0,08}{0,2} \times 100 = 60\%$
	0,25	- صِنف الكحول المُستعمل ثانوي – صِنف الكحول المُستعمل ثانوي
	0,25	وي -2 - صيغة الكحول نصف المنشورة واسمه النظامي. $-CH_3$ - $-CH_3$ بروبان -2 أول
0,25	0,25	.5 التحقّق من صيغة الحمض: بما أنّ: $m(aci)_f = m(alc)_f \implies n(aci)_f .M \ (aci) = n(alc)_f \ M \ (alc)_f$ $m(aci)_f = n(alc)_f \implies M \ (aci) = M \ (alc) = 60 \ g \ / mol$
		$14n + 46 = 60 \implies n = 1$
		ومنه تكون صيغة الحمض هي: CH ₃ COOH
	0,25	6. الصيغة نصف المنشورة للمركب العضوي الناتج واسمه النظامي:
0,50	0,25	$CH_3-C-O-CH-CH_3$ ایثانوات میثیل ایثیل CH_3
6.5=		7. اقتراحات لتحسين مردود تصنيع المركب العضوي الناتج:
0,25	0,25	- نزع أحد النواتج - مزيج ابتدائي غير متكافئ في كمية المادة

تابع الإجابة النموذجية لموضوع. اختبار مادة: العلوم الفيزيائية . الشعبة: رياضيات، تقني رياضي . بكالوريا: 2022

مة	العلاه	
مجموع	مجزأة	عناصر الإجابة (الموضوع الثاني)
0.25		التمرين الأول: (04 نقاط)
0,25	0,25	اً 1 . المرجع المناسب لدراسة حركة هذا القمر: مرجع جيو مركزي (مركزي أرضي).
0,50	0,25×2	$\vec{F}_{T/S}$:
0,25	0,25	$: \vec{n}$ و $r \cdot m_{S} \cdot M_{T} \cdot G$ بدلالة: $\vec{F}_{T/S}$ بدلالة: $r \cdot m_{S} \cdot M_{T} \cdot G$
0,23	0,23	$\overrightarrow{F}_{T/S} = G \cdot \frac{m_S \cdot M_T}{r^2} \overrightarrow{n}$
		1.4. مميزات شعاع تسارع مركز عطالة القمر (8) واستنتاج طبيعة الحركة:
	0,25	$\sum \overrightarrow{F}_{ext} = m_{_S} \overrightarrow{a}_{_G}$ بتطبيق القانون الثاني لنيوتن في معلم عطالي
		$\vec{F}_{T/S} = m_S \cdot \vec{a}_G \implies \vec{a}_G = \frac{\vec{F}_{T/S}}{m_S} = G \frac{M_T}{r^2} \cdot \vec{n}$
	0,25	- مبدؤه مركز العطالة – حامله ناظمي – جهته نحو مركز الأرض – شدته ثابتة
	0,25	- طبيعة الحركة: بما أن المسار دائري والتسارع مركزي (ناظمي) ثابت فالحركة دائرية منتظمة.
1,25	0,25	$a_G = \frac{F_{T/S}}{m_S} \Rightarrow \frac{v^2}{r} = \frac{G M_T}{r^2} \Rightarrow v = \sqrt{\frac{G M_T}{r}}$: $r \in M_T$ ($G \in M_T$ عبارة $v \in M_T$ عبارة $v \in M_T$ عبارة $v \in M_T$ ($v \in M_T$)
	0,25	$T=rac{2\pi r}{v} \Rightarrow T=2\pi\sqrt{rac{r^3}{GM_T}}$: T_S عبارة الدور 3.4
		II/ 1. باستغلال البيان الممثَّل كتابة المعادلة الرياضية:
	0,25	$F_{T/S} = A \cdot \frac{1}{r^2} = 2,1 \times 10^{16} \cdot \frac{1}{r^2}$ البيان خط مستقيم يمر من المبدأ معادلته من الشكل
0,50		$F_{T/S}=K.m_S.rac{1}{r^2}$ حيث A معامل توجيه البيان العلاقة النظرية
	0,25	$K=rac{A}{m_S}$ =39,6×10 13 SI . بالمطابقة: $K=GM_T$ حيث $K=GM_T$
	0,25	$h=r-R_{T}$. الارتفاع h عن سطح الأرض $h=r-R_{T}$
		$rac{1}{r^2}$ =5,58 $ imes 10^{-16}$ من البيان نجد: $F_{T/S}$ =11,8 $ imes 10^2 N$ بما أن:
0,75		$\frac{1}{r^2} = 5,58 \times 10^{-16} \Rightarrow r = \frac{1}{\sqrt{5,58 \times 10^{-16}}} = 4,23.10^7 m = 4,23.10^4 km$
		$h=4,23.10^4-6,4.10^3=3,59.10^4 km$

تابع الإجابة النموذجية لموضوع. اختبار مادة: العلوم الفيزيائية . الشعبة: رياضيات، تقني رياضي . بكالوريا: 2022

	0,25	2.2. السرعة المدارية v : $\overline{GM_{\pi}}$ \overline{K} $\overline{39.6 \times 10^{13}}$
		$v = \sqrt{\frac{GM_T}{r}} = \sqrt{\frac{K}{r}} = \sqrt{\frac{39,6 \times 10^{13}}{4,23 \times 10^7}} = 3060 m / s = 3,06 km / s$
	0,25	T_S . الدور T_S . الدور
	0,23	$T = \frac{2\pi r}{v} = \frac{2\pi \times 4,23 \times 10^7}{3060} = 86811,76s \approx 24h$
		3. نعم القمر سُهيل سات 2 جيو مستقر لأنه يحقق الشروط التالية:
0,50	0,50	$T_S = 24 h$ دوره يساوي دور الأرض حول محورها $T_S = 24 h$
	0,50	من السياق يظهر ساكنا بالنسبة لملاحظ على سطح الأرض فهو يدور في نفس جهة دوران
		الأرض ومساره يقع في مستوي خط الاستواء.
		التمرين الثاني: (04) نقاط)
1,0	0,25×4	الكهربائيين u_{AM} و مدخلي راسم الاهتزاز: u_{AM} الكهربائيين u_{AM} و مدخلي راسم الاهتزاز: u_{AM} الذر u_{AM} على المدخل u_{AM} المدخل u_{AM} المدخل u_{AM} على المدخل u_{AM} المدخل u_{AM} على المدخل
	0,20	الكهريائيين u_{AM} و مدخلي راسم الاهتزاز: u_{MB} الكهريائيين u_{AM} الكهريائيين u_{AM} الكهريائيين المهريائيين u_{AM} الكهريائيين المهريائيين المهريائين المهريائين المهريائيين المهريائين المهريا
		Y_1^{\bigvee} ملاحظة: الضغط على الزر INV على المدخل Y_2 . Y_2 ملاحظة
		2. المُنحنى الذي يمكِّننا من متابعة تطور شدّة التيار الكهربائي: عند $t=0$ فإن $i=0$ ومنه
	0,25	وهذا يوافق البيان رقم (2) الذي يمثل تطور التوتر بين طرفي الناقل الأومي ، وبما أن $u_{\scriptscriptstyle R}=0$
0,50	,	. $i(t)$ و $u_R(t)$ يتناسبان طرديا) فالبيان رقم $u_R(t)$ يمكننا من متابعة تطور $u_R(t)$ و $u_R(t)$
	0,25	استنتاج تصرف الوشيعة: لحظة غلق القاطعة K تمانع ظهور التيار في الدارة.
		- في النظام الدائم تتصرف الوشيعة كناقل أومي.
	0,25	E=6V : E القوة المحركة الكهربائية الكامربائية $E=6V$
1,25	0,20	2.3. المقاومة الداخلية للوشيعة r: في النظام الدائم لدينا:
1,23	0,25	$U_R = R I_{\text{max}} = 2V$; $U_b = r I_{\text{max}} = 4V \Rightarrow \frac{r I_{\text{max}}}{R I_{\text{max}}} = 2 \Rightarrow r = 2R = 20\Omega$
	0,25	$I_{\text{max}} = \frac{E}{R+r} = 0,2A$: I_{max} النظام الدائم النظام الدائم الدائم النظام الدائم 3.3
	0,25	$\tau = 50 ms$: من مماس البيان (1) نجد: $\tau = 50 ms$
	0,25	$ au=rac{L}{R+r}\Rightarrow L= au(R+r)=50 imes10^{-3} imes30=1,5H$: L استنتاج ذاتية الوشيعة $L= au(R+r)=50 imes10^{-3}$

تابع الإجابة النموذجية لموضوع. اختبار مادة: العلوم الفيزيائية . الشعبة: رياضيات، تقني رياضي . بكالوريا: 2022

			ı					
		40 20		$R(\Omega)$ اومة	المق	:	4. ملء الجدول	
	$0,25 \times 4$	0,10 0,15	I_{max}	دة الأعظمية (A)	الشر		الاستنتاج:	
1,25		25,0 37,5		au(ms) الزمن		_	تزايد المقاومة ينت	
	0.4.	4 3	$u_{AM}(V)$	تر الكهربائي في	au(n) التو		تناقص كل من:	
	0,25	2 3	$u_{MB}(V)$	لام الدائم	النظ	$u_{AM}(V)$ ميا	و (u _{MB} (V)، وتز	
			MD			(Mät 00)	التمرين الثالث:	
					<i>ح</i> اء:		المعرين العالم: العالم: العالم ا	
0,50	0,25			، تفاعل كيميائي.	_	•	- الأكسدة عملية <u>-</u>	
	0,25		ي.	لال تفاعل كيميائ	، الكترونات خ	يتم فيها إكتساب	- الإرجاع عملية	
						تفاعل:	2. جدولا لتقدم ال	
0.50		المعادلة	$2I^{-}(aq)$ +	$H_2O_2(aq) +$	- 2H O + (ac	$a = I_{\cdot}(aa)$	+ 4H ₁ O(1)	
0,50	0,50	الحالة	21 (eq)		مية المادة (ol			
		ح. ابتدائية	c_2V_2	c_1V_1	بوفرة	0	بوفرة	
		ح. انتقالية	c_2V_2-2x	c_1V_1-x	بو فرة بو فرة		بوفرة	
		ح. نهائية	$c_2V_2-2X_{\text{max}}$	$c_1V_1 - X_{\text{max}}$	بو فرة بو فرة	X X_{max}	بوفرة	
			Z Z IIIdX	1 1 IIIdA			3. أهم طرق المن	
0,50	0,25			لثنائي اليود.			- بواسطة المعاير	
	0,25			•			- بواسطة المعاير	
				ناعل:	برات سرعة الت	حنى الموافق لتغب	1.4. تحديد المند	
	0,25	.(1)	يوافق البيان رقم(حتى تنعدم فهذا	وقيمة أعظمية	اعل تتناقص مز	بما أن سرعة التف	
		ادة منه متبقية	ِد نلا حظ کمّی ة ما	لاختفاء شوارد اليو	لبيان رقم(2) ا	عل المُحد: من ا	استنتاج المُتفاء	
	0,25		يني.	هو الماء الأكسج	متفاعل المحد	لللله وعليه يكون الد	عند نهاية التفاعل	
1,75								
		$: c_2$ حساب التركيز المولى: $: c_2$						
	0,25	$c_2V_2 = 5 \times 2 \times 10^{-2} = 0,1 \mod \implies c_2 = \frac{0,1}{0,1} = 1 \mod L^{-1}$ من البيان (2) عند $t=0$ عند						
	,							
	0,25	التقدم الأعظمي X_{max} : في الحالة النهائية من البيان(2) لدينا: $0.1-0.05$						
		$c_2V_2 - 2X_{\text{max}} = 2,5 \times 2 \times 10^{-2} = 5 \times 10^{-2} \text{ mol } \Rightarrow X_{\text{max}} = \frac{0,1-0,05}{2} = 2,5 \times 10^{-2} \text{ mol }$						
	L							

	0,25	- الحجم V_1 : بما أن الماء الاكسجيني محد فإن: $c_1V_1 - X_{\max} = 0 \Rightarrow V_1 = \frac{X_{\max}}{c_1} = \frac{2.5 \times 10^{-2}}{0.5} = 0.05L = 50mL$					
	0,25			ُحظة 0 = t:	عة الحجمية لتشكل I_2 في الأ	2.2.4 السر	
	0,25	$v_{(Vol)}(I_2) = \frac{1}{V_T} \cdot \frac{dn(I_2)}{dt} = \frac{1}{V_T} \cdot \frac{dx}{dt} = \frac{1}{0.15} \cdot (4 \times 2 \times 10^{-3}) = 5.33 \times 10^{-2} \text{mol.m}$				$l \cdot \min^{-1} L^{-1}$	
0,50	0,25	الجزء الثاني:					
		1. تحديد قطبي العمود ورمزه الاصطلاحي:					
		بما أن القطب السالب للأمبير متر متصل بالمسرى النحاسي ويعطي قيمة سالبة إذا القطب					
		الموجب للعمود عند النحاس والقطب السالب عند المغنيزيوم.					
	0,25	$(-)Mg/Mg^{2+}$ $ Cu^{2+}/Cu(+) $ الرمز الاصطلاحي للعمود:					
2,25	0.25	1.2. المعادلة النصفية للتفاعل الحادث عند كل مسرى:					
	0,25	$Cu^{2+}(aq) + 2e^{-} = Cu(s)$ (+) عند القطب					
	0,25	$Mg(s) = Mg^{2+}(aq) + 2e^{-}$ عند القطب (–) عند					
		المعادلة الاجمالية:					
	0,25	$Mg(s) + (Cu^{2+}(aq) + SO_4^{2-}(aq)) = (Mg^{2+}(aq) + SO_4^{2-}(aq)) + Cu(s)$					
	0,25	$X_{ m max}$ قيمة التقدم الأعظمي: 2.2					
		المعادلة	Mg(s)	$+ Cu^{2+}(aq) =$	$= Mg^{2+}(aq) + Q$	Cu(s)	
		t = 0	بوفرة	n = c V	n = c V	بوفرة	
		t	بوفرة	n-x	n+x	بوفرة	
		t_f	بوفرة	$n-X_{\max}$	$n + X_{\text{max}}$	بوفرة	
		$n - X_{\text{max}} = 0 \implies X_{\text{max}} = c.V = 0,1 \times 50 \times 10^{-2} = 5 \times 10^{-3} mol$					
	0.70	كمّية الكهرباء الأعظمية: $Q_{ m max}$ حساب $Q_{ m max}$					
	0,50	$Q_{\text{max}} = Z . X_{\text{max}} . F = 2 \times 5 \times 10^{-3} \times 96500 = 965C$					
	0,50	المدة الزمنية الأعظمية Δt بوحدة ساعة (h):					
		$Q_{\text{max}} = I_0 . \Delta t \implies \Delta t = \frac{Q_{\text{max}}}{I_0} = \frac{965}{70 \times 10^{-3}} = 13785,71s = 3,82h$					

1,75	0,25×2	$rac{dv}{dt}+Av^n=B$: المعادلة التفاضلية لتطور سرعة مركز عطالة الكرة 1.4 $\sum \vec{F}_{ext}=m\vec{a}$ \Rightarrow $\vec{P}+\vec{\pi}+\vec{f}=m\vec{a}$
	0,25×2	$mg - \pi - f = m a \implies mg - \pi - kv^{n} = m \frac{dv}{dt} \implies \frac{dv}{dt} + \frac{k}{m}v^{n} = \frac{mg - \pi}{m}$ $A = \frac{k}{m} \qquad ; \qquad B = \frac{mg - \pi}{m} = \frac{F_{0}}{m}$
	0,25	2.4 عبارة v_{lim}^n بدلالة F_0 و k عبارة v_{lim}^n عبارة v_{lim}^n عبارة v_{lim}^n عبارة v_{lim}^n ومنه v_{lim}^n ومنه v_{lim}^n ومنه v_{lim}^n ومنه v_{lim}^n
	0,25	$v_{\text{lim}} = 1,38 m / s$ بما أن $k = 0,029 SI$ استنتاج قيمة n باعتبار $k = 0,029 SI$ بما أن $v_{\text{lim}}^n = \frac{F_0}{k} = \frac{4 \times 10^{-2}}{0,029} = 1,38 m / s \Rightarrow n = 1$
		$v_{\text{lim}}^{n} = \frac{F_0}{k} \implies \ln(v_{\text{lim}}^{n}) = \ln(\frac{F_0}{k}) \implies n \ln(v_{\text{lim}}) = \ln(\frac{F_0}{k})$ $n = \frac{\ln(\frac{F_0}{k})}{\ln(v_{\text{lim}})} = \frac{\ln(\frac{4 \times 10^{-2}}{0,029})}{\ln(1,38)} = 1$ (24)
	0,25	f=k.v عبارة f المنمذجة لقوة الاحتكاك: بما أنّ: $n=1$ فالعبارة هي: $f=k.v$