Required Math Concepts

Before we begin to study quantum computing, an understanding of the following math concepts will be needed:

- From linear algebra
 - 1. What is a vector?
 - 2. Column vectors and row vectors
 - 3. Vector multiplication, the Inner Product
 - 4. The absolute value, norm, or modulus. If $v=(a\ b)$ then $|v|=\sqrt{v\cdot v}=\sqrt{a^2+b^2}$
 - 5. Normalization
 - 6. What is a Basis? Basis vectors. Orthonormality.
 - 7. What is a matrix?
 - 8. Matrix multiplication
 - 9. Multiplying a vector by a matrix. The Operator concept.
 - 10. The transpose of a matrix, M^T
 - 11. The inverse of a matrix, M^{-1}
 - 12. Eigenvalues and Eigenvectors.
- From complex arithmetic
 - 1. What is a complex number? z = a + bi
 - 2. How to add and multiply
 - 3. The conjugate, $z^* = a bi$
 - 4. The absolute value, norm, or modulus. If z = a + bi then $|z| = \sqrt{(z^*)(z)} = \sqrt{a^2 + b^2}$
 - 5. Argand diagrams (plotting numbers on the complex plane)
- Complex Vector Spaces (vectors and matrices with complex numbers)
 - 1. The adjoint of a matrix, M^{\dagger}
 - 2. What is a "unitary" matrix? $U^{\dagger} = U^{-1}$
 - 3. What is a "Hermitian" matrix? $H = H^{\dagger}$
- Dirac (bra and ket) notation
 - 1. For example: $\alpha|0\rangle + \beta|1\rangle$ is just the vector: $\begin{pmatrix} \alpha \\ \beta \end{pmatrix}$