ΑΝΑΛΥΣΗ

ΚΕΦΑΛΑΙΟ 10 ΑΣΚΗΣΕΙΣ

1. Να βρεθεί το πεδίο ορισμού των συναρτήσεων:

$$\alpha$$
) $\sqrt[3]{1-2\sigma v x}$

$$\beta) f(x) = \sqrt{\frac{2x-4}{x+3}}$$

α)
$$\sqrt[3]{1-2\sigma v x}$$
 β) $f(x) = \sqrt{\frac{2x-4}{x+3}}$ γ) $f(x) = \sqrt[5]{|2x-1|+|x+3|-1}$ δ) $f(x) = \log(9^x - 4 \cdot 3^x - 45)$

$$\delta f(x) = \log(9^x - 4 \cdot 3^x - 45)$$

$$\varepsilon) f(x) = \sqrt{\log(\log \frac{5x+3}{5-2x})}$$

2. Αν f: [0,1] → R, να βρεθεί το πεδίο ορισμού των συναρτήσεων:

i)
$$f(3 \cdot x^2)$$

i)
$$f(3 \cdot x^2)$$
 ii) $f(x^2 - 4x + 3)$

3. Να βρεθεί το σύνολο τιμών των συναρτήσεων:

$$\alpha) f(x) = \frac{x^2 - 3x + 2}{x^2 - 1}$$

β)
$$f(x) = \frac{x-3}{x^2 - x + 4}$$

$$\gamma) f(x) = 1 - \sqrt{1 - x}$$

$$\alpha) f(x) = \frac{x^2 - 3x + 2}{x^2 - 1} \qquad \beta) f(x) = \frac{x - 3}{x^2 - x + 4} \qquad \gamma) f(x) = 1 - \sqrt{1 - x} \qquad \delta) f(x) = -\frac{|x + 1|}{2x + 10}, x \in [-2, 2]$$

- 4. Αν $f(x)=x^2-2x+3$ τότε: i) Να βρείτε το σύνολο τιμών της f , ii) να βρεθεί το σύνολο τιμών της $g(x)=f(x), x \in (1,2]$
- 5. Αν το σύνολο τιμών της $f(x)=2\cdot \eta\mu x-3$ είναι το [-2,-1] να βρεθεί το πεδίο ορισμού της συνάρτησης $f(x)=2\cdot \eta\mu x-3$ είναι το [-2,-1] να βρεθεί το πεδίο ορισμού της συνάρτησης [-2,-1] να θερεθεί να συνάρτησης [-2,-1] να συνάρτησης [-2,-1] να συνάρτηση [-2,-1] να συνάρτηση [-2,-1] να συνάρτηση [-2,-1] να συ
- 6. Να βρεθεί το πεδίο ορισμού της $f(x) = \sqrt{\lambda \cdot x^2 2 \cdot x + 1}$, $\lambda \in \mathbb{R}$
- 7. Να βρεθεί το σύνολο τιμών της $f(x) = \frac{\eta \mu x + 3}{\eta \mu x 2}$
- 8. Αν $f(x) = \frac{x^2 \lambda x}{x^2 + 2}$, να βρεθεί το $\lambda \in \mathbb{R}$, ώστε το σύνολο τιμών της f να είναι το διάστημα [-1,2].
- 9. i) Να βρεθεί το σύνολο τιμών της $f(x) = \sigma v v^2 x 2 \cdot \sigma v v x 1$, ii) Να βρεθεί το $\alpha \in \mathbb{R}$ ώστε να έχει μία τουλάχιστον λύση η εξίσωση: $συv^2x-2\cdot συvx+\alpha-2=0$
- 10. Να βρεθεί το σύνολο τιμών της f(x)=2+ $\sqrt{x-1}$ και της g(x)=2- $\eta\mu\frac{\pi\cdot x}{2}$. Να βρεθούν τα κοινά σημεία $\tau\omega\nu$ $C_{\rm f},$ $C_{\rm g}$.
- 11. Δείξτε ότι δεν υπάρχουν συναρτήσεις f,g ώστε για κάθε $x \in \mathbb{R}$ να ισχύει:

i)
$$f(\eta \mu x) + f(\sigma \nu x) = x$$
 ii) $g^2(x^2) + g(2^x) + 1 = 0$

ii)
$$g^2(x^2)+g(2^x)+1=0$$

- 12. Έστω $f: \mathbb{R} \to \mathbb{R}$ ώστε για κάθε $x, y \in \mathbb{R}$ να ισχύει: $f(x) \cdot f(y) = f(x) + f(y) + x \cdot y 1$
- i) Να βρεθεί το f(1)
- ii) Να προσδιοριστεί η f
- 13. Αν για την f ισχύει για κάθε $x \in \mathbb{R}$: $3 \cdot f(x) 5 \cdot f(-x) = 2 \cdot x^2 + 24 \cdot x + 4$, να βρεθεί το σύνολο τιμών της f.
- 14. Αν $f: \mathbb{R} \to \mathbb{R}$ έτσι ώστε για κάθε $x \in \mathbb{R}$, να ισχύει: $f(x+1994) \le x \le f(x)+1994$, να βρεθούν τα κοινά σημεία των C_f , C_g με $g(x)=x^2-4\cdot x-1998$, $x\in\mathbb{R}$.

- 15. Αν $f: \mathbb{R} \to \mathbb{R}$ μη σταθερή συνάρτηση ώστε για κάθε $x, y \in \mathbb{R}$ ισχύει: $f(x+y) = \frac{f(x) + f(y)}{1 + f(x) \cdot f(y)}$ να δειχθεί ότι: i) f(0) = 0, ii) $f = \pi$ εριττή, iii) $f(\mathbb{R}) \subseteq [-1,1]$.
- 16. Να γίνει η γραφική παράσταση των συναρτήσεων: α) $f(x) = \begin{cases} |x^2 4| & \text{, } x \le 0 \\ 3 & \text{, } x > 0 \end{cases}$, β) $f(x) = \left| \frac{x 1}{x^2 2 \cdot x + 3} \right| 1$
- 17. Αν $f(x)=x^2+6\cdot x+8$ και $g:\mathbb{R}\to\mathbb{R}$ ώστε για κάθε $x\in\mathbb{R}$ να ισχύει: $g(2\cdot x-3)=4\cdot x^2-1$ να δείξετε ότι f(x)=g(x).
- 18. An $f(x) = \frac{\lambda \cdot x^3 + 4 \cdot \lambda \cdot x^2 + 4 \cdot x + 3}{x^2 + \lambda \cdot x + 1}$ και $g(x) = \lambda \cdot x + 3$, να βρεθεί το $\lambda \in \mathbb{R}$ ώστε f(x) = g(x).
- 19. Αν f , g : $A \to \mathbb{R}$ ώστε για κάθε $x \in A$ να ισχύει ότι: $(f^2 + g^2)(x) + 10 \le 2 \cdot [(f + g)(x) + 2 \cdot g(x)]$ να δείξετε ότι: $g(x) = 3 \cdot f(x)$.
- 21. Αν f έτσι ώστε για κάθε x, y, z $\in \mathbb{R}$ να ισχύει: $f(x \cdot y) + f(x \cdot z) f(x) \cdot f(y \cdot z) \ge 1$ να δείξετε ότι: i) f(0) = f(1), ii) f = σταθερή
- 22. Αν $f(x)=x^2-1$ και $g(x)=\sqrt{x-3}$, να βρεθούν αν ορίζονται οι fog, gof.
- 23. An $f(x)=x^2-x+2$, $\varphi(x)=x+3$ και $g(x)=(\alpha+2\beta)\cdot x^2-(2\alpha+\beta)\cdot x+4\beta-\alpha+\gamma$, nα βρεθούν τα α , β , $\gamma\in\mathbb{R}$ ώστε φοf=g.
- 24. Αν f έτσι ώστε για κάθε $x \in \mathbb{R}$ (fof)(x)=2x-3, να βρεθεί ο $\lambda \in \mathbb{R}$ ώστε το σύστημα:

$$\begin{cases} (\lambda + 2)x + 7(\lambda - 3)y = (fof)(3) - 3 \\ x + (\lambda - 3)y = 3 - f(3) \end{cases}$$
 να έχει και μη μηδενικές λύσεις.

- 25. Αν η f ώστε για κάθε $x \in \mathbb{R}$ $f(x-1) = \eta \mu x$, να δείξετε ότι $(fog)^2(x) + \sigma \upsilon v^2(\sigma \upsilon v x + 1) = 1$, όταν $g(x) = \sigma \upsilon v x$.
- 26. An $f,g,\varphi:\mathbb{R} \to \mathbb{R}$ ki an g(x)=2x+1, $(fog)(x)=x^2+x-1$ kai $(fo\varphi)(x)=x^2+x-\frac{1}{4}$, na βρείτε i) την f και ii) την φ , όταν: $\varphi(\mathbb{R})=(0,+\infty)$.
- 27. Να βρεθεί η $g:\mathbb{R} \to \mathbb{R}$, όταν για κάθε $x \in \mathbb{R}$ ισχύει: i) f(x) = 4x 1 και $(fog)(x) = \eta \mu \frac{x}{2} + 3$
- ii) $f(x)=4x^2-4x+1$ και $(f \circ g)(x)=x^2+1$ και $g(x) \ge -\frac{1}{2}$.
- 28. Αν $f(x)=x^2+\frac{3}{4}x+\frac{1}{64}$ και $g(x)=-x^2+\frac{5}{4}x-\frac{1}{64}$ να δείξετε ότι για κάθε $x\in\mathbb{R}$ ισχύουν: i) α) $f(x)\geq x$, β) $g(x)\leq x$ ii) $(fofof)(x)\geq (gogog)(x)$

- 29. Να δείξετε ότι η συνάρτηση $f(x)=x^{1995}+x^{1993}+x+1$ είναι γνησίως αύξουσα. Ύστερα να λυθεί η ανίσωση: $x^{1995}+x^{1993}+x+1<4$. Τέλος να λυθεί η ανίσωση: (fof)(x)>4.
- 30. Αν $f(x) = \frac{x+1}{x+3}$ να εξετάσετε αν η f είναι i) φραγμένη ii) φραγμένη στο [0,1]
- 31. Να εξετάσετε αν είναι φραγμένη η συνάρτηση $f(x) = \frac{4 \cdot \eta \mu x + \sigma \upsilon v x}{x^2 + 1}$, $x \in \mathbb{R}$.
- 32. Να δείξετε ότι η συνάρτηση $f(x) = x^4 + 2 \cdot x^3 x^2 + 5$ είναι φραγμένη στο (-1,3) .
- 33. Να δείξετε ότι: i) αν f(-1)=0, f(2)=7 και η f είναι γνησίως αύξουσα στο [-1,2], τότε η f είναι φραγμένη στο [-1,2] , ii) αν f(3)+f(4)=2, $f(3)\cdot f(4)=-24$ και η f είναι γνησίως φθίνουσα στο [3,4] τότε η f είναι φραγμένη στο [3,4] .
- 34. Αν f , $g:\mathbb{R} \to \mathbb{R}$ ώστε για κάθε $x \in \mathbb{R}$ να ισχύει: $f(x) = \frac{g^2(x)}{1+g^2(x)}$ να δείξετε ότι η f είναι φραγμένη.
- 35. Αν $f:\mathbb{R} \to (0,+\infty)$ ώστε για κάθε $x,y \in \mathbb{R}$ να ισχύει: $[f(x)+f(3)]\cdot [f(x)-f(y)]\cdot (|x+y|+4-y) \le 0$, να δείξετε ότι η f έχει μέγιστο το f(3).
- 36. Αν f:[3,,11] → \mathbb{R} , η οποία είναι γνησίως φθίνουσα, να μελετηθεί η μονοτονία της $g(x)=f(x^2+2)$.
- 37. Αν $f:\mathbb{R} \to \mathbb{R}$ τέτοια ώστε (fofof)(x)=x, για κάθε $x\in\mathbb{R}$ και η f είναι γνησίως μονότονη και για κάθε $x\in\mathbb{R}$, να δείξετε ότι f(x)=x, $x\in\mathbb{R}$.
- 38. Αν η $f:\mathbb{R} \to \mathbb{R}$ είναι γνησίως φθίνουσα και αν για κάθε $x \in \mathbb{R}$ ισχύει ότι: $f(\frac{2x+5\cdot f(x)}{7})=x$, να δείξετε ότι f(x)=x , για κάθε $x \in \mathbb{R}$.
- 39. Αν f, g: $\mathbb{R} \to \mathbb{R}$ ώστε για κάθε $x \in \mathbb{R}$ να ισχύει ότι f(x) < 0 και g(x) > 0 και αν η f είναι γνησίως αύξουσα και η g είναι γνησίως φθίνουσα, τότε:
- i) Να δείξετε ότι f g είναι γνησίως μονότονη
- ii) Να λυθεί η ανίσωση: $\frac{f(\mathbf{x}^2)}{f(3 \cdot \mathbf{x} 2)} < \frac{g(3 \cdot \mathbf{x} 2)}{g(\mathbf{x}^2)}.$
- 40. Αν $f(x)=x^2+2x+3$ και η συνάρτηση $g(x)=\frac{\eta\mu x-\sigma v v 2x}{f(x)}$
- i) Να βρεθούν τα ακρότατα της f
- ii) Να δείξετε ότι η g είναι φραγμένη
- 41. Αφού δείξετε ότι $\alpha + \frac{1}{\alpha} \ge 2$ με $\alpha > 0$, και ελέγξετε πότε ισχύει η ισότητα, να βρεθούν τα ακρότατα της συνάρτησης $f(x) = \frac{x^2 + 2}{\sqrt{x^2 + 1}}$.
- 42. Αν f,g με: $f(x)+f(y)+g(x)-g(y)=\eta\mu x+\sigma v v y$, για κάθε x , $y\in\mathbb{R}$ να βρεθούν τα ακρότατα της f+g.

43. Να βρεθούν όπου ορίζονται οι αντίστροφες των συναρτήσεων: α) $f(x) = \sqrt{1 - \sqrt{x - 3}}$,

$$\beta) f(x) = \begin{cases} 3x - 5, x \ge 6 \\ 2x + 1, x < 6 \end{cases}$$

- 44. Αν $f: \mathbb{R} \to \mathbb{R}$ είναι γνησίως αύξουσα, i) να δείξετε ότι η g(x) = f(x) + x 2 είναι γνησίως αύξουσα, ii) να λυθεί η εξίσωση $f(\lambda^2 + 4\lambda) (5\lambda + 12) = f(5\lambda + 12) (\lambda^2 + 4\lambda)$
- 45. Αν $f,g:\mathbb{R} \to \mathbb{R}$, τότε i) Αν οι f,g είναι αντιστρέψιμες να δείξετε ότι η fog είναι αντιστρέψιμη ii) Αν η fog είναι αντιστρέψιμη να δείξετε ότι η g είναι αντιστρέψιμη
- 46. Αν $f(x)=-2x^3+4$ i) να μελετηθεί ως προς τη μονοτονία ii) να λυθεί η εξίσωση: $f(x^2-3x-9)=2$ iii) να βρεθεί αν ορίζεται η f^{-1} .
- 47. Αν $f,g:\mathbb{R}$ $\rightarrow \mathbb{R}$ ώστε για κάθε $x \in \mathbb{R}$ να ισχύει: (fog)(x)=x, να λυθεί η εξίσωση: $g(\eta\mu x)=g(\sigma \nu x)$.
- 48. Αν $f: \mathbb{R} \to (0, +\infty)$ ώστε για κάθε $x \in \mathbb{R}$ να είναι: $8f(x^2) f^2(x^2) \ge 16$ να δείξετε ότι η f δεν αντιστρέφεται.
- 49. Αν $f,g:\mathbb{R}$ \to \mathbb{R} ώστε για κάθε $x\in\mathbb{R}$ να ισχύει: $(gog)(x)=\alpha\cdot g(x)+\beta\cdot f(x^3+x+1995)$, όπου α , $\beta\neq 0$ και αν η f είναι ένα προς ένα να δείξετε ότι η g είναι ένα προς ένα.
- 50. Αν $f:A \rightarrow B$ και $g:B \rightarrow \Gamma$ και i) αν η gof είναι ένα προς ένα να δείξετε ότι η f είναι ένα προς ένα.
- ii) Av $f:(0,+\infty)$ \rightarrow (0,+∞) με $(fof)(x)=x^2$, να δείξετε ότι η f είναι αντιστρέψιμη.
- 51. Αν $f: \mathbb{R} \to \mathbb{R}$ με $f(f(x)) = x^2 x + 1$, για κάθε $x \in \mathbb{R}$ να δείξετε ότι i) f(1) = 1 ii) αν $g: \mathbb{R} \to \mathbb{R}$ με $g(x) = x^2 x f(x) + 1$ να δείξετε ότι η g δεν αντιστρέφεται.
- 52. Αν $f: \mathbb{R} \to \mathbb{R}$ είναι γνησίως αύξουσα και η συνάρτηση g τέτοια ώστε για κάθε $x \in \mathbb{R}$ ισχύει: $f(g(x+v)) \ge f(x) \ge f(g(x)+1)$ να δείξετε ότι: i) g(1995) = 1994, ii) (gogog...(v-φορές)...og)(x) = x-v, $v \in \mathbb{N} \setminus 0$
- 53. Αν $f: \mathbb{R} \to \mathbb{R}$ ώστε για κάθε $x, y \in \mathbb{R}$ να ισχύει: $f(x+y)=f^2(x)+f^2(y)$ (1), να δείξετε ότι: i) $f(0) \ge 0$ ii) να βρεθούν όλες οι συναρτήσεις f που ικανοποιούν την σχέση (1).
- 54. Αν $f,g:[\alpha,\beta]$ \rightarrow $[\alpha,\beta]$ ώστε i) η συνάρτηση f να είναι αύξουσα ii) η συνάρτηση g είναι γνησίως φθίνουσα iii) για κάθε x ∈ $[\alpha,\beta]$ να ισχύει: f(x)>g(x). Να δείξετε ότι i) gof < fog f0, ii) gof < fog f1.
- 56. Αν $f: \mathbb{R} \to \mathbb{R}$ τέτοια ώστε $f(\mathbb{R}) = \mathbb{R}$ και για κάθε $x, y \in \mathbb{R}$ ισχύει: f(x+y) = f(x) + f(y) να δείξετε ότι: i) α) f(0) = 0 β) f(-x) = -f(x) ii) Αν $f(\rho) = 0 \Leftrightarrow \rho = 0$ να δείξετε ότι α) η συνάρτηση f αντιστρέφεται β) για κάθε $x, y \in \mathbb{R}$ ισχύει: $f^{-1}(x+y) = f^{-1}(x) + f^{-1}(y)$.
- 57. Αν $f: \mathbb{R} \to \mathbb{R}$ τέτοια ώστε για κάθε $x \in \mathbb{R}$ να ισχύει: (fofof)(x) = (fof)(x) + x να δείξετε ότι: i) η f αντιστρέφεται , ii) f(0)=0 , iii) να βρείτε την αντίστροφη της f

- 58. Να βρεθεί ο αριθμός λ \in \mathbb{R} , ώστε να έχει νόημα το όριο: $\lim_{x \to \lambda^2 3 \, \lambda + 3} f(x)$, όταν $f(x) = \frac{1}{\sqrt{1 x^2}}$
- 59. Αν $f(x) = x + x^2 + ... + x^v$, $v \in \mathbb{N} \setminus 0$ να βρεθεί το όριο: $\lim_{x \to 1} \frac{f(x) v}{x 1}$.
- 60. Να βρεθούν τα όρια: α) $\lim_{x \to -4^+} \frac{\left|x^2 + 3x 4\right| + x^2 + 4x}{\left|x + 5\right| 1}$ β) $\lim_{x \to -1} \frac{2 \cdot \left|x + 3\right| + \left|x 4\right| 7}{x^2 + 9x + 8}$ γ) $\lim_{x \to -3} \frac{\left|x + 3\right| + x^2 x 12}{\left|x\right| \cdot (x + 3)}$
- δ) $\lim_{x\to 0} \frac{\sqrt[3]{1+x^2} \sqrt[4]{1-2x}}{x+x^2}$ ε) $\lim_{x\to 0} \frac{1-\sqrt{\sigma \upsilon v x}}{x^2}$ στ) $\lim_{x\to 0} \frac{1-\sqrt{\sigma \upsilon v x}}{\eta \mu^2 x}$
- 61. Να βρεθούν τα όρια:
- $\alpha) \lim_{x \to \frac{\pi}{6}} \frac{\eta \mu(x \frac{\pi}{6})}{\sqrt{3} 2 \cdot \sigma \upsilon vx} \quad \beta) \lim_{x \to \pi} \frac{\sqrt{1 + \eta \mu x} + \sigma \upsilon vx}{\pi x} \quad \gamma) \lim_{x \to 0} f(x) , \quad \alpha v \lim_{x \to 0} [f(x) + \frac{x^2 2x}{\eta \mu x}] = 1$
- 62. i) Να βρεθεί το όριο: $\lim_{x\to 0} x \cdot \eta \mu \frac{5}{x^2} 4 \cdot x \cdot \sigma \upsilon v \frac{1}{x}$ ii) Να βρεθεί το όριο: $\lim_{x\to 5} f(x)$ αν για κάθε $x \in \mathbb{R}$ ισχύει: $|f(x)+1| \le 2 \cdot (x-5)^{1996}$
- 63. Να βρεθούν οι πραγματικοί αριθμοί α,β ώστε: $\lim_{x\to 0} \frac{\beta \cdot x^2 + (\alpha^2 1) \cdot x}{\eta \mu^2 x + 3 \cdot \eta \mu x} = 1$
- 64. Av $f(x) = \frac{\eta \mu(x^2 4x + 3)}{x 3}$ να βρεθεί ο $\lambda \in \mathbb{R}$ ώστε $\lim_{x \to 3} f(x) = \lambda^2 + 5\lambda 4$, $\lambda \in \mathbb{R}$. Ποιό είναι τότε το $\lim_{x \to 3} f(x)$;
- 65. Να βρεθούν οι α , $\beta \in \mathbb{Z}$ τέτοιοι ώστε: $\lim_{x \to -\alpha^2 + 4\alpha 3} f(x) = 2$, $\mu \epsilon f : (0,1) \to \mathbb{R}$ και $f(x) = \frac{(1-\beta) \cdot x + 2 \beta}{x + 1}$.
- 66. Aν $f(x) = \frac{\alpha x^3 \beta x^2 2}{x 1}$ να βρεθούν οι α , $\beta \in \mathbb{R}$ ώστε $\lim_{x \to 1} f(x) = 5$
- 67. Αν $f(x) = \frac{\eta \mu^3 \pi |x|}{x^2}$, να βρεθούν αν υπάρχουν τα όρια: $\lim_{x \to 0} f(x)$, $\lim_{x \to 0} \frac{f(x)}{x}$
- 68. Αν $f:\mathbb{R} \to \mathbb{R}$ ώστε: $x \cdot \varepsilon \varphi x \cdot f(x) + \sigma v v x = \sqrt{x^2 + 1}$, για κάθε $x \in \mathbb{R}$, να βρεθεί το $\lim_{x \to 0} f(x)$.
- 69. An $f,g:\mathbb{R} \to \mathbb{R}$ ώστε: $\lim_{x \to 3} [f(x) g(x)] = 1$ και $\lim_{x \to 3} [f(x) \sqrt{x+1} \cdot g(x)] = 0$, na βρεθούν τα όρια: $\lim_{x \to 3} f(x)$, $\lim_{x \to 3} g(x)$.
- 70. Αν $f:\mathbb{R} \to \mathbb{R}$ ώστε για κάθε $x \in \mathbb{R}$ να είναι: f(x) = f(2-x) και αν $\lim_{x \to 2} [f(x) + x^3 \eta \mu \frac{\pi x}{2} + 1] = 10$, να βρεθεί το όριο: $\lim_{x \to 0} f(x)$.

71. Αν f τέτοια ώστε για κάθε $x \in \mathbb{R}$ ισχύει: $f(x) + f(x+3) = x^2 - x + 1$, κι αν $\lim_{x \to -3} [f(x) + 4x - 3] = 2$, να βρεθεί το $\lim_{x \to 0} f(x)$.

72. Aν
$$f,g:\mathbb{R} \to \mathbb{R}$$
 ώστε: $\lim_{x \to 0} \frac{f(x)}{\eta \mu^2 x} = 1$ και $\lim_{x \to 0} [g(x) \cdot (\sqrt{x^2 + 4} - 2)] = 2$ να βρεθεί το i) $\lim_{x \to 0} [f(x) \cdot g(x)]$ ii) $\lim_{x \to 0} \frac{f(x)}{x^4 \cdot g(x)}$

73. Αν f ώστε για κάθε x>1 να ισχύει: $|(x-1)\cdot f(x)-x+1| \le |\eta\mu(x-1)|$, να βρεθεί το $\lim_{x\to 1} f(x)$

74. Αν
$$f$$
 ώστε για κάθε $x \in \mathbb{R}$: $|f(x) - \eta \mu(x-3)| \le (x-3)^2$ να βρεθεί το όριο: $\lim_{x \to 3} \frac{f(x) - f(3)}{x-3}$

75. Αν $f:\mathbb{R}\setminus(-2)$ \Rightarrow $(0,+\infty)$ ώστε για κάθε $x\neq -2$ να ισχύει: $x^2+\eta\mu^2x+f^2(x)=xf(x)+\frac{16\cdot\eta\mu^2x-8x^2}{x+2}$ κι αν υπάρχει το όριο: $\lim_{x\to 0}\frac{f(x)}{x}$, τότε να βρείτε πόσο κάνει το προηγούμενο όριο.

76. Αν $f: \mathbb{R} \to \mathbb{R}$ ώστε $\lim_{x \to 0} \frac{f(x)}{x} = 1$ και για κάθε $x, y \in \mathbb{R}: f(x+y) = f(x) + f(y) + \alpha \cdot x \cdot y$, να βρεθεί ο αριθμός $\alpha \in \mathbb{R}$ ώστε $\lim_{x \to 3} \frac{f(x) - f(3)}{x - 3} = \alpha^2 - \alpha + 4$

77. Αν f ώστε για κάθε $x \in \mathbb{R}$: $x^2 \cdot f(x) \eta \mu x \le x^3 + \eta \mu^3 x$, να βρεθεί αν υπάρχει το όριο $\lim_{x \to 0} f(x)$

78. Αν f,g ώστε
$$f(4) \ge g(4)$$
 και $f(x) + \gamma \cdot \eta \mu(x-4) \le g(x)$ και για κάθε $x \in \mathbb{R}$, $\lim_{x \to 4} \frac{f(x) - f(4)}{x-4} = \beta$,

$$\lim_{x \to 4} \frac{g(x) - g(4)}{x - 4} = -\alpha \text{ , να δείξετε ότι: } \alpha + \beta + \gamma = 0.$$

79. Να βρεθούν εφόσον υπάρχουν τα όρια:

α)
$$\lim_{x\to 0} \left(\frac{x-4}{x\cdot|x|} + \frac{\sqrt{3+x}-\sqrt{3-x}}{x}\right)$$
 β) $\lim_{x\to 0} \frac{\eta \mu^2 x + \varepsilon \varphi^2 x}{x^2\cdot\sqrt{1-\sigma \nu v^2 x}}$ γ) $\lim_{x\to 0} \frac{\eta \mu 3x - \eta \mu x}{x^3}$

80. Να βρεθεί ο
$$\alpha \in \mathbb{R}$$
 ώστε: $\lim_{x \to \alpha} \frac{x^2 - 9}{x^3 + 3x^2} < -2$

81. Να βρεθούν οι α , $\beta \in \mathbb{R}$ ώστε: $\lim_{x \to 4} \frac{2x^2 + \alpha x + \beta}{x^2 - 4x} = 2$

82. An
$$f(x) = \frac{\alpha x - \beta + \sigma v v(x-1)}{(x-1)^2} + \alpha x$$
 kai $g(x) = \frac{\alpha}{x} - \frac{\beta}{2 \cdot (\sqrt{x+1}-1)}$ kai $\lim_{x \to 1} f(x) = \frac{3}{2}$, na breve to $\lim_{x \to 0^+} g(x), \alpha, \beta \in \mathbb{R}$

83. Αν
$$f:\mathbb{R} \to \mathbb{R}$$
 ώστε: $\lim_{x \to 4} [(x-4) \cdot f(x) - \sigma v v \frac{3}{x-4}] = +\infty$, να βρεθεί το $\lim_{x \to 4} f(x)$.

84. Αν
$$f(x) = \frac{x+1}{x-5}$$
, να βρεθούν , εφ' όσον υπάρχουν τα όρια: i) $\lim_{x \to 1} \left| f^{-1}(x) \right|$ ii) $\lim_{x \to 1} g(x)$, όπου

$$g(x) = \begin{cases} (x-1)^2 - (x-1) \cdot \sigma vv \frac{1}{x-1}, x < 1 \\ f^{-1}(x), x \ge 1 \end{cases}$$

85. Αν
$$f:\mathbb{R} \to \mathbb{R}$$
 ώστε για κάθε $x \in \mathbb{R}$ ώστε $f^3(x) - 3 \cdot f^2(x) + 3 \cdot f(x) = x + 2$, να βρεθεί το $\lim_{x \to 0} \frac{f^{-1}(x)}{\eta \mu x}$

86. Να μελετηθεί η συνάρτηση f στο
$$x_0 = 0$$
 ως προς την συνέχεια: $f(x) = \begin{cases} \frac{1 - \sigma v^2 x}{x^2}, x < 0 \\ \frac{6 \cdot \sqrt{x+9} - 18}{x}, x > 0 \end{cases}$

87. Αν
$$f(x) = \begin{cases} \alpha \cdot \eta \mu \frac{\pi \cdot x}{6} + \frac{\beta \cdot x}{3} - 1, x < 3 \\ \frac{3 \cdot (\alpha^2 + \beta^2)}{x^2 - x}, x \ge 3 \end{cases}$$
 να βρεθούν τα α , $\beta \in \mathbb{R}$ ώστε η f να είναι συνεχής

88. Av
$$f(x) = \begin{cases} \frac{x^3 + 1}{x + 1} , x < -1 \\ \frac{\alpha \cdot x + \beta + 2}{x + 1} , x > -1 \end{cases}$$
, να βρεθούν οι αριθμοί α,β ώστε η f να είναι συνεχής στο -1.

89. Αν η συνάρτηση
$$f: \mathbb{R} \rightarrow \mathbb{R}$$
 είναι συνεχής και $\lim_{x \rightarrow 0} \left(4 - x^2 \cdot \eta \mu \frac{1}{x} + 5 \cdot |f(x)|\right) = 4$, να βρεθεί το $f(0)$.

- 90. Αν η συνάρτηση $f: \mathbb{R} \to \mathbb{R}$ ώστε: $\eta \mu^2 x x^2 \le f(x) \le x^4 + x^3 \cdot \sigma v v x$, για κάθε $x \in \mathbb{R}$, τότε:
- i) Να δείξετε ότι: η f είναι συνεχής στο 0

ii) Να βρεθεί ο πραγματικός αριθμός α ώστε να είναι συνεχής στο
$$0$$
 η συνάρτηση: $g(x) = \begin{cases} \frac{f(x)}{x^2}, & x \neq 0 \\ \alpha^2 - 4, & x = 0 \end{cases}$

91. Av
$$f(x) = \frac{\sqrt{x-1} \cdot \sqrt[3]{x-1}}{\sqrt[3]{x^2-1}}$$
 kai $g(x) = \begin{cases} f(x) + \frac{4-\alpha^2}{\sqrt[3]{x^2-1}}, x \neq -1, +1 \\ \frac{\sqrt[3]{4} \cdot (\alpha^2-5)}{2}, x = -1, +1 \end{cases}$ tóte:

- i) Να βρεθεί το $\lim_{x\to 1} f(x)$
- ii) Να βρεθεί ο πραγματικός αριθμός α ώστε η g να είναι συνεχής στο 1

- 92. Αν $f:\mathbb{R} \to \mathbb{R}$ ώστε: $\lim_{x \to x_0^-} \frac{f(x) f(x_0)}{x x_0} = 1996$ και $\lim_{x \to x_0^+} \frac{f(x) f(x_0)}{x x_0} = 2000$, να δείξετε ότι: η f είναι συνεχής στο x_0
- 93. Αν $f(x)=x^3-\eta\mu\pi\cdot x+\sigma v \frac{\pi x}{2}$ +5 να δείξετε ότι υπάρχει τουλάχιστον ένα $\xi\in(-1,3)$ ώστε $f(\xi)=5$
- 94. Να δείξετε ότι η εξίσωση: $\frac{\sigma v x}{3x-\pi} = \frac{\eta \mu x}{3x+\pi}$ έχει μία τουλάχιστον ρίζα στο $(-\frac{\pi}{3},\frac{\pi}{3})$.
- 95. Αν $f:[\alpha,\beta] \rightarrow [\alpha,\beta]$ είναι συνεχής να δείξετε ότι η Cf τέμνει σε ένα τουλάχιστον σημείο $\xi \in [\alpha,\beta]$ την ευθεία y=x
- 96. Av $f:[-1,0] \rightarrow \mathbb{R}$ µε $f(x)=x^4-2x+\alpha, \alpha \in (0,1)$
- i) Να εξετασθεί ως προς την μονοτονία
- ii) Να βρεθεί το σύνολο τιμών
- iii) Να δείξετε ότι η εξίσωση f(x)=0 έχει μία ακριβώς λύση στο (-1,0)
- 97. Αν $f:[-1,3] \rightarrow \mathbb{R}$ ώστε f(1)+f(2)+f(3)=0 και αν για κάθε $x\in \mathbb{R}$, $f(x)\neq 0$, να δείξετε ότι η f δεν είναι συνεχής
- 98. Αν η f είναι συνεχής στο [-1,1] ώστε: $x^2 x + f^3(x) = 6$, να δείξετε ότι η f διατηρεί σταθερό πρόσημο στο (-1,1).
- 99. Αν $f:[\alpha,\beta]$ $\rightarrow \mathbb{R}$ συνεχής ώστε για κάθε $x\in[\alpha,\beta]$ να ισχύει: $x\cdot\eta\mu x-\alpha\cdot\eta\mu\alpha\leq f(x)\leq x^3-\beta\cdot x^2+\beta\cdot(x-\beta)$, να δείξετε ότι η εξίσωση f(x)=0 έχει μία τουλάχιστον ρίζα στο $[\alpha,\beta]$
- 100. Αν $f:[0,3] \rightarrow \mathbb{R}$, $g:[0,3] \rightarrow \mathbb{R}$, συνεχείς συναρτήσεις με κοινό σύνολο τιμών το [0,3] και αν f(0)=0 και f(3)=3, να δείξετε ότι οι Cf,Cg τέμνονται σε ένα τουλάχιστον σημείο.
- 101. Αν $f:[0,\alpha] \rightarrow [0,1)$ συνεχής, να δείξετε ότι για κάθε θετική λύση της ανίσωσης $\eta\mu\alpha > \frac{1}{4}$ υπάρχει τουλάχιστον ένα $\xi \in [0,\alpha)$ ώστε $f^2(x) + \eta\mu x = f(x)$
- 102. Αν $f:[\alpha,\beta]$ $\rightarrow \mathbb{R}$ συνεχής, να δείξετε ότι υπάρχει ένα τουλάχιστον $\xi\in[\alpha,\beta]$, ώστε: $2\cdot f(\xi)=(2-\lambda)\cdot f(\alpha)+\lambda\cdot f(\beta)$, $\lambda>0$
- 103. Έστω $f(x) = x^4 + \lambda \cdot x + e$ και $g(x) = -x^4 + \lambda \cdot x + e$, $\lambda \in \mathbb{R}$. Αν η Cf περνά από το (ρ1,0) και η Cg περνά από το (ρ2,0) με ρ1<ρ2 , να δείξετε ότι η Cφ με $\varphi(x) = \alpha \cdot f(x) + \beta \cdot g(x)$, α , β >0 περνά από ένα τουλάχιστον σημείο (ρ,0) με ρ1<ρ2.
- 104. i) Αν α1,α2,α3 >0 και β1<β2<β3, να δείξετε ότι η εξίσωση: $\frac{\alpha_1}{x-\beta_1} + \frac{\alpha_2}{x-\beta_2} + \frac{\alpha_3}{x-\alpha_3} = 0$.
- ii) Να δείξετε χρησιμοποιώντας το προηγούμενο ερώτημα ότι η εξίσωση: $\frac{\eta\mu\frac{\pi}{5}}{x+2} + \frac{\eta\mu\frac{\pi}{7}}{x+1} + \frac{\eta\mu\frac{\pi}{9}}{x} = 0 , \text{ δεν έχει}$ ακέραια ρίζα.

105. Αν $f: \mathbb{R} \to \mathbb{R}$ ώστε για κάθε $x \in \mathbb{R}$ να ισχύει: $x^2 + \eta \mu x \le f(x) \le x^3 + x$, να δείξετε ότι: i) η f είναι συνεχής

στο
$$x_0 = 0$$
 , ii) η $g(x) = \begin{cases} \frac{f(x)}{\eta \mu x}, x \neq \kappa \pi \\ 1, x = \kappa \pi \end{cases}$ είναι επίσης συνεχής στο $x_0 = 0$

106. Να βρεθούν τα όρια:

$$\alpha) \lim_{x \to +\infty} \frac{\sqrt[3]{x^3 - 1} + \sqrt{x^2 - 4} - 3}{\sqrt{4x^4 + x^3 + 1} - 2x^2} \qquad \beta) \lim_{x \to +\infty} \left(\sqrt{x^2 - 2x + 3} + \sqrt{4x^2 + 1} - \sqrt{9x^2 + x + 2} \right) \qquad \gamma) \lim_{x \to +\infty} \left(x \cdot \eta \mu \frac{1}{x} \right)$$

δ)
$$\lim_{x \to +\infty} \left(\frac{x^2 + 2x}{x - 1} + 3 \cdot \eta \mu x \right)$$
 ε) $\lim_{x \to +\infty} \left(\sqrt{x^2 - x + 2} - x \right)$ στ) $\lim_{x \to +\infty} \left[x \cdot \left(\frac{x + 2}{x - 1} + \eta \mu \frac{1}{x} - 1 \right) + 3 \eta \mu x + \sqrt{x^2 - x + 2} \right]$

$$\zeta) \lim_{x \to -\infty} \frac{(4-\lambda^2) \cdot x^3 + x^2 - x + 1}{\lambda x^2 - x + 2}, \lambda \in \mathbb{R}$$

106. Αν $f(x) = \sqrt{x^2 - x + 1} + \alpha x + \beta$, να δείξετε ότι υπάρχει μοναδικό ζεύγος (α,β) ώστε: $\lim_{x \to +\infty} f(x) = \frac{3}{2}$

107. Αν
$$f:(-\infty,0)$$
 $\rightarrow \mathbb{R}$ και αν $\lim_{x \to -\infty} \frac{f(x) - x \cdot \eta \mu \frac{3}{2x}}{\sqrt{x^2 + 3x + 5} + x} = -1$, να βρεθεί το όριο $\lim_{x \to -\infty} f(x)$.

108. Αν
$$f:(-\infty,0)$$
 → \mathbb{R} , ώστε: $\lim_{x\to -\infty} \frac{f(x)}{\eta \mu x} = 1996$ να δείξετε ότι $\lim_{x\to -\infty} \frac{f(x)}{x} = \lim_{x\to -\infty} [f(x) - 1996 \cdot \eta \mu x] = 0$.

109. Αν $f:\mathbb{R} \to \mathbb{R}$, ώστε $\lim_{x \to +\infty} \frac{f(x)}{\alpha} = \frac{1}{2}$ και $\lim_{x \to +\infty} [f(x) - \sigma \upsilon v^2 x] = 1$, να βρεθεί ο μη-μηδενικός αριθμός α ώστε:

$$\lim_{x \to +\infty} \frac{f(x) + \alpha \cdot (\sqrt{x^2 + x + 5} - x)}{f(x) + \eta \mu^2 x + x \cdot \eta \mu \frac{1}{x}} = 1$$

110. Να βρεθούν τα παρακάτω όρια: i) $\lim_{x \to +\infty} \left[\ln \left(\eta \mu \frac{1}{x} \right) + lnx \right]$ ii) $\lim_{x \to +\infty} \left(e^{3x} - e^{\sqrt{x^2 + 1} + \sqrt{4x^2 + x + 1}} \right)$ iii) $\lim_{x \to +\infty} f(x)$ με

$$f(x) = \frac{\alpha^{x+2} + \beta^x}{\alpha^x + \beta^{x+2}}, \alpha, \beta > 0$$

111. Να μελετηθεί ως προς τη συνέχεια η συνάρτηση: $f(x) = \lim_{t \to +\infty} \frac{e^t}{e^t + x^t}$, x > 0

112. Αν
$$f:\mathbb{R} \to \mathbb{R}$$
 ώστε για κάθε $x \in \mathbb{R}$ να ισχύει: $2 \cdot f(x) - 3 \cdot f(-x) = 5 \cdot \frac{e^x - e^{-x}}{e^x + e^{-x}}$,

- i) Να δείξετε ότι η f είναι περιττή
- ii) Να βρεθεί η συνάρτηση f
- iii) Να βρεθεί το σύνολο τιμών της f
- iv) Να δείξετε ότι η f αντιστρέφεται και να βρείτε τον τύπο της αντίστροφης αν υπάρχει
- v) Να βρεθούν τα όρια: $\lim_{x\to +\infty} f(x)$, $\lim_{x\to -\infty} f(x)$