Modal Logic, Winter 2019 Homework 8 due Tuesday, March 19

1 Sentences from the past

We shall use the following notation at several points later on.

$$\alpha_{1} = \Box F \wedge p \qquad \alpha_{5} = \Box \neg p \wedge \neg \Diamond p \wedge p
\alpha_{2} = \Box F \wedge \neg p \qquad \alpha_{6} = \Box \neg p \wedge \neg \Diamond p \wedge \neg p
\alpha_{3} = \Box p \wedge \Diamond p \wedge p \qquad \alpha_{7} = \Diamond p \wedge \Diamond \neg p \wedge p
\alpha_{4} = \Box p \wedge \Diamond p \wedge \neg p \qquad \alpha_{8} = \Diamond p \wedge \Diamond \neg p \wedge \neg p$$
(1)

Check that $\alpha_1, \ldots, \alpha_8$ are satisfiable and hence consistent in K.

[Hint: it's not hard to do this directly by drawing pictures. But if you wish, you might look back at Homework 2, problem 5.]

Recall the α_i sentences from Exercise 1 above. Fill in the following chart, putting a $\sqrt{}$ in the box if the given sentence is consistent in the given logic, and an \times if it is not. A few of the entries are given for you.

	α_1	α_2	α_3	α_4	α_5	α_6	α_7	α_8
K								
KT	×	×		×	×			
KD	×	×						
KB	√							
<i>K</i> 4								
<i>S</i> 4	×	×		×	×			
<i>S</i> 5	×	×		×	×			

Reasons for above are attached on scratch paper.

2 An unprovable sentence

Show that the B axiom $p \to \Box \Diamond p$ is not provable in KD45. [The way to start is to find a graph which is serial, transitive, and euclidean, and at the same time is not symmetric. Then one needs to find a point and put a valuation on the graph so that the point does not satisfy the given B-axiom.

Consider the following model $M = (\{x, y\}, \{(x, y), (y, y)\}, Val)$ where $Val(x) = \{p\}$ and $Val(y) = \emptyset$. This model is serial, transitive, and euclidean while also not symmetric. At point x, p is true but $\Box \Diamond p$ is not. By this counter-example, we know the B axiom is not provable in KD45

3 The logics *KB* and *KB'*

Recall that the B axioms are the sentences of the form $\varphi \to \Box \Diamond \varphi$. Let's call the B' axioms the sentences of the form $(\varphi \land \Diamond \psi) \to \Diamond (\psi \land \Diamond \varphi)$. So we get a logical system KB' by adding the B' axioms to K.

Prove that $KB' \leq KB$.

1.
$$\varphi \land \diamond \psi$$
 Assume
2. $\diamond \psi$ $\land_e, 1$
3. φ $\land_e, 1$
4. $\Box \diamond \varphi$ B axiom, 3
5. $\diamond \psi \land \Box \diamond \varphi$ $\land_i, 2, 4$
6. $\diamond \psi \land \Box \diamond \varphi \rightarrow \diamond (\psi \land \diamond \varphi)$ Powerpoint
7. $\diamond (\psi \land \diamond \varphi)$ Powerpoint
8. $(\varphi \land \diamond \psi) \rightarrow \diamond (\psi \land \diamond \varphi)$ $\rightarrow_e, 5, 6$

4 The Converse

Continuing with the last problems, show that $KB \leq KB'$.

It follows that the two logical systems KB and KB' can prove each other's axioms, and hence prove all the same sentences. That is, if $\vdash \varphi$ in KB, then $\vdash \varphi$ in KB'; and vice-versa.

5 A result on *KB*

1. Assume that $\psi \land \diamond \varphi$ is inconsistent in KB'. (This means that in KB', $\vdash \neg(\psi \land \diamond \varphi)$.) Show that in KB', $\varphi \land \diamond \psi$ is also inconsistent. [Hint: you will need to use the following axiom of KB':

$$(\varphi \land \Diamond \psi) \to \neg \Box \neg (\psi \land \Diamond \varphi).$$

(I have "unabbreviated" the ♦ on the right.)]

1.	$\varphi \wedge \Diamond \psi$	Assume
2.	$\neg(\psi \land \Diamond \varphi)$	Given as assumption
3.	$\Box \neg (\psi \land \Diamond \varphi)$	*,,2
4.	$(\varphi \land \Diamond \psi) \to \neg \Box \neg (\psi \land \Diamond \varphi)$	B' axiom
5.	$ \Box \neg (\psi \land \Diamond \varphi) (\varphi \land \Diamond \psi) \rightarrow \neg \Box \neg (\psi \land \Diamond \varphi) \neg \Box \neg (\psi \land \Diamond \varphi) $	$\rightarrow_e, 4, 1$
6.	F	F _i , 3, 5
7	¬(φ∧ ◊ψ)	\neg_{i} , 1 – 6

2. Using the last part, prove the following: if $\varphi \land \Diamond \psi$ is consistent in KB', then $\psi \land \Diamond \varphi$ is also consistent in KB'.

We prove the contrapositive. We assume $\psi \land \Diamond \varphi$ is inconsistent in KB' and prove $\varphi \land \Diamond \psi$ is inconsistent in KB'. For this, we have just constructed a proof above of $\vdash \neg (\varphi \land \Diamond \psi)$ which is the definition of inconsistent. Hence we're done.

3. Show that *KB* and *KB'* have the same consistent sentences.

Fix a sentence φ . Assume about φ that φ is consistent in KB. We prove φ is consistent in KB'. So in KB, $\vdash \neg \varphi$. Suppose, towards a contradiction, that φ is inconsistent in KB'; this means in KB', $\vdash \neg \varphi$. By the previous result (5.3), $\vdash \neg \varphi$ in KB, a contradiction! Hence φ is consistent in KB'

4. Putting things together, show that if $\varphi \land \Diamond \psi$ is consistent in *KB*, then $\psi \land \Diamond \varphi$ is also consistent in *KB*.

Assume $\varphi \land \Diamond \psi$ is consistent in KB. We prove $\psi \land \Diamond \varphi$ is consistent in KB. By part 3, we know that $\varphi \land \Diamond \psi$ is also consistent in KB'. By part 2, we know that if $\varphi \land \Diamond \psi$ is consistent in KB' then $\psi \land \Diamond \varphi$ is consistent in KB'. By part 3 again, we know that $\psi \land \Diamond \varphi$ is consistent in KB. Done.