

Module N° 3 : Architecture des Ordinateurs et Electronique Numérique Devoir Surveillé Nº. 1 Durée: 1h 30min

Partie 1 (12 pts)

1. Compléter le tableau ci-dessous :

Code Décimal	Code Hexadécimal	Code Binaire	Code Octale
	A2F5		
		1101001.10011	

1.5pts

2pts

1pts

1.25pts

1.25pts

1pts 1pts

1.5pts

1.5pts

1pts

1.5pts

1.5pts

1.5pts

1.5pts

- **2.** Effectuer les opérations binaires suivantes :
 - $(1101010)_2 (1001011)_2$
 - $(645)_7 + (246)_7$

- $(CB1)_{16} (7E6)_{16}$
- $(679)_{12} + (785)_{12}$

3. Effectuer les transformations suivantes : 413,95 Ko = ... Bits et 2,77 Mo = ... Go

- 4. En utilisant la méthode des compléments, réaliser les opérations suivantes
 - (73)₁₀ (163)₁₀ à l'aide du complément vrai.
 - $(149)_{10} (51)_{10}$ à l'aide du complément restreint.
- **5.** En utilisant le codage IEEE 754 simple précision :

 - Présenter sous forme hexadécimale, le résultat binaire du nombre (149,875)₁₀
- **6.** Pour un codage en virgule flottante, la norme proposée est écrite sous forme 1.M *B^E:
 - 1 bit pour le signe (1 : positif et 0 : négatif), p bits pour représenter l'exposant biaisé, q bits pour représenter la mantisse. La représentation du résultat est: EB + M + S.
 - Représenter le nombre : (- 163,125)₁₀ selon cette norme sachant que p=6 et q=13.
- 7. Trouver l'équivalent octal du message à envoyer 101101010101 en utilisant $G(x) = x^3 + 1$.

Partie 2 (8 pts)

- 1. Expliquer le principe de dualité d'algèbre de Boole en citant un exemple.
- 2. En appliquant le code de Gray:
 - Donner l'équivalent décimal précédent des nombres : 10101 et 1011001.
 - Donner l'équivalent décimal suivant du nombre 1000110.
- 3. Exprimer en 2ème forme canonique l'expression logique ci-dessous :

$$F(a,b,c) = (a.b + a.b.c + a.c + a.b.c)$$

 $F(a,b,c) = (\bar{a}.b + \bar{a}.b.c + \bar{a}.\bar{c} + \bar{a}.\bar{b}.\bar{c})$ 1pts

CD

4. Simplifier graphiquement la fonction F et représenter ensuite un logigramme correspondant pour la forme simplifiée:

$$F = b.c.\overline{d} + \overline{a}.b.\overline{c}.d + b.\overline{c} + a.b.c + \overline{a}.b.c.d$$

- 5. A partir du tableau de Karnaugh ci-dessous, exprimer la forme simplifiée de la fonction logique en utilisant les minterms d'une part et les maxterms d'une autre part.
- **6.** Donner l'équation logique, ainsi que le chronogramme du circuit logique ci-dessous.

		AB					
		00	01	11	10		
	00	0	1	0	1		
	01	X	X	1	0		
	11	0	X	1	0		
	10	X	1	0	0		

Prof: A. GUEZZAZ