Term Test Bb version 1

(1) [5 points] There is a linear relationship between the latitude of the centre of a US state and that state's skin cancer mortality rate (deaths per ten million in one year). Ideally, you would use the data from all fifty states, but that's a large matrix and impractical for a term test. Find the best estimate for a linear regression line from the following data, treating latitude as the independent variable:

State	Alabama	California	Nebraska	Wisconsin
Mortality Rate	219	182	122	110
Centre Latitude	33.0	37.5	41.5	44.5

Show all of your steps using the YAVE method.

(2) [5 points] Linearize the following function around $x = 2, y = \pi$.

$$f\left(\left[\begin{array}{c} x\\y \end{array}\right]\right) = \left[\begin{array}{c} x\cos(xy)\\x^2 + 2y^2 \end{array}\right] \tag{1}$$

(3) [5 points] Find the distance between the point T=(2,7,5) and the plane containing P=(5,3,-6), Q=(5,10,-10), R=(-9,-11,10). (Hint: find the displacement vectors $\vec{PT}, \vec{PQ}, \vec{PR}$ and project \vec{PT} onto the plane spanned by \vec{PQ} and \vec{PR} ; then find the difference between \vec{PT} and its projection.)