FINANSIERING 1

3 timers skriftlig eksamen, 9-12, onsdag 14/4 2010. Alle sædvanlige hjælpemidler (incl. blyant) tilladt. Sættet er på 3 sider og indeholder 8 numererede delspørgsmål, der indgår med lige vægt i bedømmelsen.

Opgave 1

Betragt en 2-periode-model for kursen, S, på en aktie, der i det betragtede tidsrum ikke udbetaler dividende. Den mulige udvikling er fastlagt ved nedenstående gitter med **tids-punkter**, aktiekurser og sandsynligheder. Desuden findes der et risikofrit aktiv (bankbogen) med en rente på 5% per periode.

 $\frac{\text{Spg. 1a}}{\text{Vis at}}$ modellen er abritrage-fri og komplet.

En såkaldt boosted call er karakteriseret ved et udøbstidspunkt (T) og en strike-kurs (K), og den har payoff

$$\frac{1}{2} \left(\frac{(S(T))^2}{K} - K \right)^+$$
på tid T .

Spg. 1b

Beregn i den givne 2-periode-model den arbitrage-fri tid-0-pris på en boosted call med

$$K = 400 \text{ og } T = 2.$$

Angiv den initiale sammensætning af den (aktie,bankbog)-portefølje, der replikerer den betragtede *boosted call*.

Spg. 1c

Vis at i en hvilkensomhelst arbitrage-fri model er prisen på en boosted call større end (eller lig med) prisen på en almindelig call-option med tilsvarende udløbstidspunkt og strike-kurs. (Vink: Sammenlign (tegn!) payoff-funktioner.)

Opgave 2

Betragt nedenstående model for mulige udviklinger i den korte rente (ρ) ; den indeholder som sædvanlig tidspunkter, niveauer og (betingede) sandsynligheder. Sandsynlighederne antages at være risko-neutrale, altså at afspejle et martingalmål.

 $\frac{\text{Spg. 2a}}{\text{Vis at}}$ nulkuponobligationspriserne på tidspunkt 0 er

$$(P(0,1), P(0,2), P(0,3)) = (0.9709, 0.9404, 0.9070).$$

Spg. 2b

Angiv betalingsrække, tid-0-kurs samt Fisher/Weil-varighed for et 3-periode serielån med 3% kuponrente og initial hovedstol på 100.

Spg. 2c

Et såkaldt flydende serielån med loft har samme afdragsprofil som et almindeligt serielån, men den resterende hovedstol forrentes til enhver tid med minimum af den gældende korte rente og et loft, κ . Eller udtrykt i Noternes notation

$$i_t = H_{t-1} \times \min(\rho(t-1), \kappa).$$

Beregn tid-0-kursen "flydende serielån med loft = 0.035"-varianten af lånet fra spg. 2b. (Vink: Der erindres om at

$$kurs(t-1) = E_{t-1}^{Q} \left(\frac{kurs(t) + dividende(t)}{1 + \rho(t-1)} \right),$$

hvor rollen som "dividende" her spilles "rentebetaling + afdrag".)

Opgave 3

Spg. 3a

 $\overline{\text{Lad }\{X_j\}_{j=0}^T}$ være en følge af uafhængige stokastiske variable (tilpasset en filtrering \mathcal{F}), hvorom det gælder at $P(X_i=1)=P(X_i=-1)=1/2$. Sæt M(0)=0 og definer

$$M(t) = \sum_{j=1}^{t} e^{X_{j-1}} X_j$$
 for $1 \le t \le T$.

Vis at M er en martingal (mht. \mathcal{F}).

Spg. 3b

Betragt Noternes udledning af CAPM-ligningen (afsnit 9.2). Hvor vil du sige, der bruges noget, der kan kaldes *ligevægtsargumenter*?