2022 HZ MA JCI Test | Solution

	Q1 Solution		MS
(i)	Let x and y be the price of each daily adult ticket and each student		
	ticket respectively.		
	Booth X:	5nx + ny = 5976(1)	
	Booth Y:	357x + 51y = 5763 (2)	
	Booth Z:	7nx + 2ny = 8712 (3)	
	$\int 5x + y - 5976 \left(\frac{1}{n}\right)$	$5x + y - 5976 \left(\frac{1}{n}\right) = 0 \dots (1)$	
	$357x + 51y + 0\left(\frac{1}{n}\right) = 5763$ (2)		
	$\int 7x + 2y - 8712 \left(\frac{1}{n}\right)$	$= 0 \cdots (3)$	
	From GC: $x = 15$	$5, y = 8, \frac{1}{n} = \frac{1}{72}$	
	Each adult ticket $n = 72$.	costs \$15, and each student ticket costs \$8 and	
	Alternatively: $\frac{5x+y}{7x+2y} = \frac{5976}{8712} = $ from above)	$\Rightarrow 1728x - 3240y = 0 \text{ (And solve together with (2))}$	

	Q2 Solution	MS
(i)	$\frac{7x-15}{x^2+x-6} \ge 1$	
	$\frac{7x-15}{x^2+x-6} - 1 \ge 0$	
	$\frac{7x-15-(x^2+x-6)}{x^2+x-6} \ge 0$	
	$\frac{7x-15-x^2-x+6}{x^2+x-6} \ge 0$	
	$\frac{-x^2 + 6x - 9}{x^2 + x - 6} \ge 0$	
	$\frac{x^2 - 6x + 9}{x^2 + x - 6} \le 0$	
	$\frac{\left(x-3\right)^2}{(x-2)(x+3)} \le 0$	
	(x-2)(x+3) = 3	
	Since $(x-3)^2 \ge 0$, $\frac{1}{(x-2)(x+3)} < 0$	
	o	
	+ -3 - 2 +	
	For $(x-2)^2$, $x = 3$	
	Therefore, $-3 < x < 2$ or $x = 3$	
(ii)	$-3 < \ln x < 2$	
	$\frac{1}{x^3} < x < e^2$	
	e e	

	Q3 Solution	MS
(i)	Sketch the graphs of $y = 2x + 2b - 1$ and $y = \frac{b}{x}$:	
	x = 0, y = 2b - 1	
	When $y = 0, x = \frac{1}{2} - b$	
	$2x + 2b - 1 = \frac{b}{x}$	
	$2x^2 + 2bx - x = b$	
	$2x^2 + (2b-1)x - b = 0$	
	(2x-1)(x+b) = 0	
	$x = \frac{1}{2} \text{ or } x = -b$	
	$\therefore y = 2b \text{ or } y = -1$	
	$y = \frac{b}{x}$ $y = \frac{b}{x}$ $y = 2x + 2b - 1$ $(\frac{1}{2}, 2b)$ $(-b, -1)$ $y = 0$ x	
(ii)	By observation, the 2 graphs intersect at $x = \frac{1}{2}$ and $x = \frac{1}{2} - b$.	
	Hence, for $\frac{b}{x} > 2x + 2b - 1(*)$, $0 < x < \frac{1}{2}$ or $x < -b$	

(iii) Replace
$$x$$
 in (*) by $x+b$:
$$\frac{b}{x+b} > 2(x+b) + 2b - 1$$

$$\frac{b}{x+b} > 2x + 2b + 2b - 1$$

$$\frac{b}{x+b} > 2x + 4b - 1$$

$$\therefore 0 < x+b < \frac{1}{2} \Rightarrow -b < x < \frac{1}{2} - b$$
Or $x+b < -b \Rightarrow x < -2b$

	Q4 Solution	MS
(i)	1	
	$\sqrt[3]{27+12x}$	
	$= (27 + 12x)^{-\frac{1}{3}}$	
	$= (27)^{-\frac{1}{3}} \left(1 + \frac{4}{9} x \right)^{-\frac{1}{3}}$	
	$= \frac{1}{3} \left(1 + \left(-\frac{1}{3} \right) \left(\frac{4}{9} x \right) + \frac{\left(-\frac{1}{3} \right) \left(-\frac{4}{3} \right)}{2!} \left(\frac{4}{9} x \right)^2 + \cdots \right)$	
	$= \frac{1}{3} \left(1 - \frac{4}{27} x + \frac{32}{729} x^2 + \cdots \right)$	
	$\approx \frac{1}{3} - \frac{4}{81}x + \frac{32}{2187}x^2 \dots (*)$	
	Valid range:	
	$\left \frac{4}{9}x\right < 1$	
	$-\frac{9}{4} < x < \frac{9}{4}$	

(ii)	Let $x = \frac{1}{8}$	
	Since expansion is valid for $-\frac{9}{4} < x < \frac{9}{4}$,	
	LHS: $\left(27 + 12\left(\frac{1}{8}\right)\right)^{-\frac{1}{3}}$	
	$=\frac{1}{\sqrt[3]{28.5}}$	
	$=\frac{1}{\sqrt[3]{19}\sqrt[3]{1.5}}$	
	$\frac{1}{\sqrt[3]{19}\sqrt[3]{1.5}} \approx \frac{1}{3} - \frac{4}{81} \left(\frac{1}{8}\right) + \frac{32}{2187} \left(\frac{1}{8}\right)^2 (*)$	
	$=\frac{716}{2187}$	
	$\frac{1}{\sqrt[3]{19}\sqrt[3]{1.5}} \approx \frac{716}{2187}$	
	$\sqrt[3]{19}\sqrt[3]{1.5} \approx 3.05447$	
	$\sqrt[3]{1.5} \approx 1.145$	