```
In [1]: import numpy as np
    import pandas as pd
    import seaborn as sns
    import matplotlib.pyplot as plt
    from sklearn import preprocessing, svm
    from sklearn.model_selection import train_test_split
    from sklearn.linear_model import LinearRegression
```


Out[2]:

	ID	model	engine_power	age_in_days	km	previous_owners	lat	lon	price
0	1	lounge	51	882	25000	1	44.907242	8.611560	8900
1	2	pop	51	1186	32500	1	45.666359	12.241890	8800
2	3	sport	74	4658	142228	1	45.503300	11.417840	4200
3	4	lounge	51	2739	160000	1	40.633171	17.634609	6000
4	5	pop	73	3074	106880	1	41.903221	12.495650	5700
	•••								
1533	1534	sport	51	3712	115280	1	45.069679	7.704920	5200
1534	1535	lounge	74	3835	112000	1	45.845692	8.666870	4600
1535	1536	pop	51	2223	60457	1	45.481541	9.413480	7500
1536	1537	lounge	51	2557	80750	1	45.000702	7.682270	5990
1537	1538	pop	51	1766	54276	1	40.323410	17.568270	7900

1538 rows × 9 columns

```
In [3]: df=df[['age_in_days','km']]
df.columns=['age','km']
```

In [4]: df.head(10)

Out[4]:

	age	km
0	882	25000
1	1186	32500
2	4658	142228
3	2739	160000
4	3074	106880
5	3623	70225
6	731	11600
7	1521	49076
8	4049	76000
9	3653	89000

```
In [5]: sns.lmplot(x ="age", y= "km", data = df,order = 2, ci = None)
```

Out[5]: <seaborn.axisgrid.FacetGrid at 0x1af9ea27310>


```
In [6]: df.describe()
```

Out[6]:

```
km
              age
count 1538.000000
                     1538.000000
      1650.980494
                    53396.011704
mean
      1289.522278
                    40046.830723
       366.000000
                     1232.000000
 min
 25%
       670.000000
                    20006.250000
      1035.000000
 50%
                    39031.000000
      2616.000000
                    79667.750000
 max 4658.000000 235000.000000
```

```
In [7]: df.info()
```

```
In [8]: | df.fillna(method = 'ffill',inplace = True)
```

```
C:\Users\sweet\AppData\Local\Temp\ipykernel_16760\3028625988.py:1: SettingWithCopyWarning:
A value is trying to be set on a copy of a slice from a DataFrame
```

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy (https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy)

```
df.fillna(method = 'ffill',inplace = True)
```

```
In [9]: X = np. array(df['age']).reshape(-1, 1)
Y = np.array(df['km']).reshape(-1, 1)

In [10]: X_train,X_test,Y_train,Y_test=train_test_split(X,Y,test_size=0.25)
    regr = LinearRegression()
```

0.6897796921371845

6/9/23, 2:44 PM

```
In [11]: y_pred=regr.predict(X_test)
    plt.scatter(X_test, Y_test,color='b')
    plt.plot(X_test,y_pred,color='k')
    plt.show()
```

regr.fit(X_train, Y_train)

print(regr.score(X test, Y test))


```
In [12]: df500 = df[:][:500]
sns.lmplot(x ="age",y ="km", data = df500,order = 1,ci = None)
```

Out[12]: <seaborn.axisgrid.FacetGrid at 0x1af9eaa7f10>


```
In [13]: df500.fillna(method = 'ffill',inplace = True)
    X = np. array(df500['age']).reshape(-1, 1)
    y = np.array(df500['km']).reshape(-1, 1)
    df500.dropna(inplace = True)
    X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.25)
    regr = LinearRegression()
    regr.fit(X_train,y_train)
    print("Regression:",regr.score(X_test,y_test))
    y_pred=regr.predict(X_test)
    plt.scatter(X_test,y_test,color = 'b')
    plt.plot(X_test,y_pred,color = 'k')
    plt.show()
```

Regression: 0.7126781765533383


```
In [14]: from sklearn.linear_model import LinearRegression
    from sklearn.metrics import r2_score
    model = LinearRegression()
    model.fit(X_train,y_train)
    y_pred = model.predict(X_test)
    r2=r2_score(y_test,y_pred)
    print("R2 score:",r2)
```

R2 score: 0.7126781765533383