Application Processor Card (APP)

Hardware Design Document (HDD)

Revision 1.0

Ownership Disclaimer

This document contains proprietary and confidential material that is the sole property of Compressor Controls Corporation. The information contained herein is intended for internal use by Compressor Controls Corporation employees and is not intended for distribution outside of the company. As an unpublished work of trade secrets, the recipient shall keep this document confidential. Any re-use, copying, or distribution, either in whole or in part, of this material without the express written consent of Compressor Controls Corporation is strictly forbidden.

Copyright © 2011 by Compressor Controls Corporation. All rights reserved.

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Docum	nent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 2 of 39

Revision History

Revision	Date	Description	Author
1.0	7-Sep-11	First Release	Akhilesh Jaiswal

Α	D	D	r	O'	V	a	ı	S
---	---	---	---	----	---	---	---	---

Product Manager	Date

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 3 of 39

Table of Contents

1	Intro	oduction	5
	1.1	Purpose	5
	1.2	Audience	5
	1.3	Scope	5
2	Gen	eral Description	6
	2.1	Board Features	6
	2.2	Implementation Block Diagram	7
3	Desc	cription of Functional Blocks	8
	3.1	Processor	8
	3.2	DDR-3 SODIMM	9
	3.3	NAND Flash	11
	3.4	MRAM	11
	3.5	SPI Flash	12
	3.6	Micro SD Card Interface	12
	3.7	DUART	12
	3.8	Enhanced Triple Speed Ethernet Controller (eTSEC) Interface	13
	3.9	QUICC Engine RMII1 and RMII5 Interface	16
	3.10	EtherCAT Slave Interface	18
	3.11	QUICC Engine SER3 and SER7 Interface	18
	3.12	USB	18
	3.13	I2C	19
	3.14	CPLD	20
	3.15	Hot Swap Control	23
	3.16	Power	23
	3.17	Debug Support	25
	3.18	Front Panel LEDs	27
	3.19	Backplane Connectors	28
4	Sche	ematic Design	32
	4.1	Design Tool	32
5	Boar	d Layout Design	32
	5.1	Board Thickness	32
	5.2	Board Stack-up	32

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 4 of 39

1 Introduction

1.1 Purpose

The objective of this document is to describe the hardware design of Application Processor Card (APP Card).

1.2 Audience

This document is targeted at Personnel involved in development and testing of board at Mindteck as well as CCC.

1.3 Scope

The scope of this document is to describe APP card hardware design in brief. The document details the various functional level block diagrams. Also this document details about the board power budget analysis, any kind of mathematical / simulation analysis.

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 5 of 39

2 General Description

2.1 Board Features

Sr. No.	Feature	Description
1	Processor	QorIQ P1021 from Freescale
2	DDR-3	204 pin SODIMM Module
3	NAND Flash	1GB Nand flash
4	MRAM	1MBit MRAM (x8)
5	SPI Flash	128 MBit
6	SD Card	Top mounting Micro SD card
7	UART ports	Four UART ports to backplane
8	10/100 Ethernet	Two 10/100 Ethernet ports to backplane
9	EtherCAT Master	Two EtherCAT Master ports to backplane
10	EtherCAT Slave	One EtherCAT slave interface using ET1100
11	SGMII	One SGMII Interface to backplane
12	USB OTG	One USB OTG with on-board mini connector
13	I2C	Two separate I2C interfaces connecting
		EEPROMs, RTC, Temperature sensor
15	CPLD	One CPLD to control power/reset sequencing
16	Hot-swap Control	Hot-swap compatible
17	Power	Multiple on-board power
18	Debug support	COP connector, debug RS-232 port, debug
		LEDs, manual reset, test points

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 6 of 39

2.2 Implementation Block Diagram

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 7 of 39

3 Description of Functional Blocks

3.1 Processor

P1021 QorIQ processor from Freescale is used as main processing unit. The P1021 integrates dual PowerPC™ e500v2 processor cores with the system logic required for networking, wireless infrastructure, and telecommunications applications. It is a member of the Ultra Low End Dual Core QorIQ™ family that combines system-level support for industry-standard interfaces with processors that implement the PowerPC architecture. The PowerPC cores in the P1021 with its 32 Kbytes of instruction and data cache, implement enhanced PowerPC core instruction set architecture and provide hardware and software debugging support. The key features include

- Dual e500v2 cores with a large L2 cache of 256 Kbytes
- One 32-bit DDR2/DDR3 memory controller with ECC support
- Three-speed (10/100/1000 Mbps) Ethernet controllers
- Flexible enhanced local bus controller
- PCI Express
- SGMII
- USB 2.0 host and device controller
- Enhanced SD/MMC controller
- eSPI controller
- Dual I2C controller
- DUART
- QUICC Engine
- Security engine controller

The P1021 incorporates a single RISC QUICC Engine™ block that provides termination, inter-working, and switching between a wide range of communication protocols including ATM, Ethernet, POS, HDLC, and the IEEE Std.1588™ Precise Time Protocol.

P1021 Critical Performance Parameters

The following list describes the critical performance parameters:

- e500v2 core frequency of 800 MHz at VDD = 1.0 V
- \bullet Power consumption of less than 5 W at 800 MHz core speed at VDD = 1.0 V
- 45-nm SOI process technology

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 8 of 39

- Data rate of up to 800 Mbps for DDR2 and DDR3
- Maximum QUICC Engine block frequency of 400 MHz
- Supply voltages:
 - Core: 1.0 V
 - PCI Express, SGMII: 1.0 V
 - Ethernet: 3.3 or 2.5 V (subject to protocol)
 - Local bus: 3.3, 2.5, or 1.8 V (Board supports only 3.3 V)
 - DDR: 1.8 V for DDR2, 1.5 V for DDR3 (conforms to JEDEC standard)
 - 8-bits of GPIO, I2C, DUART: 3.3 V
 - SPI, SD/MMC, USB: 3.3 V, 2.5 V, or 1.8 V (Board supports only 3.3 V)
- Operating junction temperature (Tj) range: -40° C to 125° C
- \bullet Package: 31 imes 31 mm 689-pin TEPGBA II (thermally-enhanced plastic BGA)

P1021 Clocking

The diagram below shows the processor P1021 clocking implementation on board

3.2 DDR-3 SODIMM

The DDR3 SDRAM interface is implemented with a single, ready-for-operation, 204-pin standard SODIMM socket that supports unbuffered DDR3 SODIMM modules.

The DDR3 SDRAM module operates in 32-bit mode with a clock rate of up to 333MHz MHz (667 MHz data rate) with ECC.

There are four clock pairs MCK[0:3]+/- available on P1021 for DDR3 interface with flexibility of using any of these. On APP card, clock pairs

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 9 of 39

MCK[2:3]+/- are used. Selection of these pairs is done mainly to help routing.

DDR3 ECC support is provided by connecting MECC[0:7], MDQS8, MDQS8#, and MDQM8 of the memory controller to DQ[32:39], DQS8, DQS8#, and DQM8 of SODIMM.

DDR3 memory needs active low reset on power on. On APP card, this reset is driven from CPLD. Reset generation logic is shown below. R8 is pulled up to GVDD (1.5V) as DDR3 memory runs on this power.

Implementation of the Serial presence-detect (SPD) function is done by connecting the SODIMM's SPD memory to the P1021 device's I2C1 interface.

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 10 of 39

3.3 NAND Flash

1 Gigabit NAND Flash is implemented on external local bus interface of P1021. To help debug activities, NAND flash socket is assembled on the board. NAND flash socket is footprint compatible NAND flash IC. As P1021 supports big endian, its LAD[7:0] lines are connected to IO[0:7] of flash device.

3.4 MRAM

128K \times 8 MRAM memory is implemented on external local bus interface of P1021. There are two limitations while implementing MRAM circuit on APP card.

- Only 16 address lines can be used on eLBC which can cater to max 64K.
 This is due to QE implementation on APP card which have pins shared with eLBC
- 2. Only x8 implementation can be used due to pin multiplexing of ENET5_RXD[1] and LWE1#/LBS1# on PB9 pin. As RMII5 is implemented on APP card, LWE1#/LBS1# is not available. In this case x16 devices on local bus can't be used.

On APP card LAD[0:15] of P1021 are used for interfacing to MRAM device. LA[16:31] can't be used for this purpose as these lines are used for QE Ethernet and serial port implementations. In order to do so It is required to explicitly set LBCR[ABSWP]=1 so that the address LSBs will be driven on LAD[0:15]. And the address multiplexing in case ABSWP=1 is:

TITLE:		DOC NO.	REV. 1.0
APP Card Hard	ware Design		
Docum	nent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 11 of 39

3.5 SPI Flash

128MBit SPI flash is implemented on eSPI Bus. SPI_CS0 is used for selecting this device. The P1021 has the ability to boot from an SPI serial Flash device in addition to supporting other peripheral devices conforming to SPI standard.

3.6 Micro SD Card Interface

The enhanced SD host controller (eSDHC) provides an interface between host system and SD/MMC cards.. For the P1021, booting from on-chip ROM is supported through the eSDHC. A micro SD card socket is provided on the bottom side of the board. This socket support top loading of the micro SD card. Below is the SD card interface diagram

3.7 DUART

The P1021 has two UART controllers.

The P1021 DUART consists of two independent UARTs and has these distinctive features:

- Full-duplex operation
- Software-programmable baud generators:
- Clear-to-send (CTS) and ready-to-send (RTS) modem control functions
- Software-selectable serial interface data format that includes:
- Overrun, parity, and framing error detection

UART0 signals are not muxed with any other functional signals. UART1 is muxed with QUICC Engine PortB bit [14–17]. A mux/demux is used to select between the functionalities.

Both UART signals are routed to backplane connectors

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Docum	nent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 12 of 39

For debug activities UART0 is provided with an option to implement RS232 port on APP card.

RX lines of UARTO and UART1 are buffered in order to avoid any kind of damage to the P1021. This buffer is enabled only after all the power rails are settled and processor reset is released.

3.8 Enhanced Triple Speed Ethernet Controller (eTSEC) Interface

The P1021 processor supports three eTSEC ports. eTSEC1 supports GMII/RGMII/RTBI/MII/RMII MAC modes; eTSEC2 supports only SGMII; and eTSEC3 supports RGMII/RTBI/RMII.

On the APP card, eTSEC1 and eTSEC3 are implemented in RMII mode while eTSEC2 in SGMII mode. Two on board 10/100 Ethernet PHYs (KSZ8721BL from Micrel) are used to connect to eTSEC1 and eTSEC3 MACs. These PHYs are configured using management interface signals MDC and MDIO.

The diagram below shows the implementation of eTSEC ports on the card

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 13 of 39

PHY Addresses

TSEC1 PHY: 0x01 TSEC3 PHY: 0x11 TSEC2 PHY: 0x00

RMII Interface

This section describes the reduced media-independent interface (RMII) intended to be used between the PHYs and the GMII MAC. The RMII is a reduced-pin alternative to the IEEE802.3u MII. The RMII reduces the number of signals required to interconnect the MAC and the PHY from a maximum of 18 signals (MII) to 10 signals. To accomplish this objective, the data paths are halved in width and clocked at twice the MII clock frequency, while clocks, carrier sense and error signals have been partly combined.

For 100 Mbps operation, the reference clock operates at 50 MHz, whereas for 10 Mbps operation, the clock remains at 50MHz, but only every 10th cycle is used.

The diagram below depicts the basic components of the reduced mediaindependent interface and the signals required to establish an eTSEC's connection with a PHY (KSZ8721BL).

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 14 of 39

SGMII Interface

This section describes the serial gigabit media-independent interface (SGMII) intended to be used between a SerDes PHY (AR8031) and the eTSEC2 to implement a serial gigabit version of a media-independent interface.

SGMII communication using the eTSEC2 is accomplished through the SerDes interface.

Diagram below depicts the basic components of the SGMII including the signals required to establish eTSEC2 module connection with PHY device (AR8031).

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Docum	nent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 15 of 39

3.9 QUICC Engine RMII1 and RMII5 Interface

The diagram below shows block level implementation of QUICC Engine Ethernet ports RMII1 and RMII5

PHY Addresses

RMII1 PHY: 0x0 RMII5 PHY: 0x1

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Docum	nent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 16 of 39

RMII Interface

This section describes the reduced media-independent interface (RMII) intended to be used between the PHYs and the RMII1/RMII5 MAC block of QUICC Engine. The RMII is a reduced-pin alternative to the IEEE802.3u MII. The RMII reduces the number of signals required to interconnect the MAC and the PHY from a maximum of 18 signals (MII) to 10 signals. To accomplish this objective, the data paths are halved in width and clocked at twice the MII clock frequency, while clocks, carrier sense and error signals have been partly combined.

For 100 Mbps operation, the reference clock operates at 50 MHz, whereas for 10 Mbps operation, the clock remains at 50MHz, but only every 10th cycle is used.

The diagram below depicts the basic components of the reduced mediaindependent interface and the signals required to establish an eTSEC's connection with a PHY (LAN8721Ai).

TITLE:		DOC NO.	REV. 1.0
APP Card Hard	ware Design		
Docum	nent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 17 of 39

3.10 EtherCAT Slave Interface

EtherCAT slave interface is implemented using ET1100 on SPI bus of P1021. SPI_CS1 is used as chip select for this interface. ET1100 needs 25MHz crystal for its operation. ET1100 is used in EBus mode. The EBus signals (TX+/- and RX+/-) are routed to backplane connector. There is a 16KBit EEPROM is connected to ET1100 on its local I2C bus. This EEPROM is used for power on configuration of ET1100.

3.11 QUICC Engine SER3 and SER7 Interface

Serial interfaces SER3 and SER7 from QUICC Engine are implemented on board. These ports are directly connected to backplane connector.

3.12 USB

The P1021 USB 2.0 controller provides point-to-point connectivity complying with the USB specification, Rev 2.0. The USB controller can be configured to operate as a standalone host or device. To complete the USB interface, an external PHY (SMSC's USB3300) is employed and connected to the processor's ULPI signals. The

USB3300 PHY is used. The board features:

- High-speed (480 Mbps), full-speed (12 Mbps), and low-speed (1.5 Mbps) operation
- Host, device, and OTG modes

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Docum	nent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 18 of 39

• Mini-AB connector provided in the board

The P1021 supports two USB ports where one port is non-multiplexed and the other is multiplexed with local bus. APP card has a PHY connected to the non-multiplexed port. The other port is not used

3.13 I2C

Figure below shows a block diagram of the I2C interfaces implemented on APP card.

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Docum	nent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 19 of 39

The block diagram illustrates intended I2C1 (non-muxed) bus usage:

- Used with boot sequencer EEPROM
- Read DDR SPD EEPROMs; provides correct information for using SODIMM
- Read board temperature near the P1021
- Obtain Real Time Clock information for application program synchronization

The I2C2 (muxed) bus is intended for use with an on-board BRD EEPROM storing board-related information such as history updates and PCB and CPU revisions. The I2C2 bus is multiplexed with the QUICC Engine bus, and an appropriate mux/demux is used to select between the functionalities.

3.14 CPLD

A CPLD part EPM3064 from Altera is used on board. Here is the list of functions implemented in CPLD

- Power sequencing
- System power good generation
- Reset generation
- P1021 power-on reset configuration control
- Clock control

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 20 of 39

 $25\mbox{MHz}$ clock is supplied to CPLD. There is an option provided to supply $66.666\mbox{MHz}$ to CPLD.

The table below lists details of the signals implemented on the CPLD

SR NO	SIGNAL	DIR	ACTIVE STATE	Function
1	CPU_HRESET#	OUT	LOW	On PGOOD_SYS: Should be asserted LOW for 200uS and then deassert. ALWAYS: Pass COP_HRESET# to this pin such that changes in COP_HRESET# is reflected in CPU_RESET#
2	CPU_SRESET#	OUT	LOW	On PGOOD_SYS: Should be asserted LOW for 100uS and then deassert. ALWAYS: Pass COP_SRESET# to this pin such that changes in COP_SRESET# is reflected in CPU_SRESET#
3	CPU_HRESET_REQ#	IN	LOW	
4	CPU TRST#	OUT	LOW	On PGOOD_SYS: Should be asserted LOW for 100uS and then deassert. ALWAYS: Pass COP_TRST# to this pin such that changes in COP_TRST# is reflected in CPU TRST#
5	COP_HRESET#	IN	LOW	
6	COP_SRESET#	IN	LOW	
7	COP_TRST#	IN	LOW	
8	DDR3_RESET	OUT	HIGH	Drive HIGH at power up. When CPU_HRESET# is deasserted HIGH, start driving it LOW
9	SGMII_PHY_RESET#	OUT	LOW	Drive LOW at power up. After a delay of 100us from CPU_HRESET# going HIGH, start driving it HIGH
10	ENET_PHY_RESET#	OUT	LOW	Drive LOW at power up. After a delay of 100us from CPU_HRESET# going HIGH, start driving it HIGH
11	TSEC_PHY_RESET#	OUT	LOW	Drive LOW at power up. After a delay of 100us from CPU_HRESET# going HIGH, start driving it

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Docum	ent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 21 of 39

Local action				HIGH
12	MUX_EN1#	OUT	LOW	Should be made LOW after PGOOD_SYS becomes HIGH
13	MUX_EN2#	OUT	LOW	Should be made LOW after PGOOD_SYS becomes HIGH
14	MUX_SEL1	OUT	HIGH	At power up, drive it LOW. Drive it HIGH within 5 system clock cycles (66.666MHz) from the CPU_HRESET# going HIGH
15	MUX_SEL2	OUT	HIGH	At power up, drive it LOW. Drive it HIGH within 5 system clock cycles (66.666MHz) from the CPU_HRESET# going HIGH
16	BUF_EN#	OUT	LOW	At power up, drive it LOW. Drive it HIGH within 5 system clock cycles (66.666MHz) from the CPU_HRESET# going HIGH
17	PWR_ON_GVDD	OUT	HIGH	At power up, drive it LOW. Drive it HIGH after sampling PGOOD_VDD_CPU HIGH
18	PWR_OFF_VDD_CPU	OUT	HIGH	RESERVE. Keep it in Z state
19	PWR_GOOD_DDR3	IN	HIGH (OD)	
20	SD_1588_CLK_EN	OUT	HIGH	RESERVE. Keep it in Z state
21	PGOOD_SYS	OUT	HIGH	Should be asserted HIGH after PGOOD_VDD_CPU and PWR_GOOD_DDR3 are HIGH
22	PGOOD_VDD_CPU	IN	HIGH	
23	CPLD_RESET#	IN	LOW	

CPLD JTAG Header

Pin	Function	Pin	Function
1	TCK	2	GND
3	TDO	4	VCC
5	TMS	6	NC

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Docum	nent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 22 of 39

7	NC	8	NC
9	TDI	10	GND

3.15 Hot Swap Control

A hot-swap circuit is used to make this board ready for live insertion and removal in the system. The circuit also provides oring of the two input voltages 6.5A and 6.5B. This circuit is enabled only when it sit properly in the backplane.

3.16 Power

Power delivery diagram along with system power good generation circuit is shown below.

Board Power Requirement

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Docum	nent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 23 of 39

Sr No	Component	Condition	Typ Current (A)	Max Current (A)	Typ Power (W)	Max Power (W)
	1V Requirement					
1	P1012 Core	P1012 Core @ 800MHz		2.7		2.7
		PCI Express, x4 Link (SVDD)	0.229	0.321	0.11	
		SGMII (SVDD)	0.096	0.134	0.096	
		Current at 1V		3.155		
		1.5V Requi	rement			
1	P1012 (GVDD)	DDR3 75% utilization @ 667MHz	0.547	0.765	0.82	
2	DDR3 SODIMM 1GB @ 667MHz	All banks interleaved read current		2		
		Current at 1.5V		2.765		
		0.75V.D				
	DDR3 SODIMM 1GB @	0.75V Requ	irement			
1	667MHz	Termination Voltage Vtt		0.6		
		Current at 0.75V		0.600		
		3.3V Requi	rement			
1	P1012	eLBC (BVDD)	0.014	0.020	0.047	
		eTSEC (RGMII) (LVDD)	0.075	0.105	0.248	
		eSDHC (CVDD)	0.004	0.006	0.014	
		USB (CVDD)	0.004	0.005	0.012	
		eSPI (CVDD)	0.003	0.004	0.01	
		I2C (OVDD)	0.001	0.001	0.002	
		DUART (OVDD)	0.002	0.003	0.006	
		IEEE 1588 (LVDD)	0.002	0.003	0.007	
		QUICC Engine (BVDD)	0.024	0.034	0.08	
2	S25FL128P0XNFI001 SPI Flash	Active Page Program Current		0.026		
3	S29GL01GP11TFIR10 NOR Flash	Active Read Current	0.06	0.11		
4	MR4A16BCMA35 MRAM	AC active supply current - write modes1	0.11	0.154		
5	M24256-BWMN6TP EEPROM	Supply current (Write)	2.7.1	0.005		
6	AT24C01BN-SH-B EEPROM	Supply current (Write)	0.002	0.003		
7	LAN8720Ai Ethernet PHY	100BASE-T /W TRAFFIC (2 Nos)	0.1	0.108	0.164	0.179
8	USB3300 USB PHY	FS Transmit 3.3V Current	0.036	0.042		

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 24 of 39

9	KSZ8721BLI Ethernet PHY	Normal 100BASE-TX (2 Nos)	0.302	0.423		
10	SD Card			0.2		
11	LED	(12 Nos)		0.12		
12	CPLD			0.3		
	Current at 3.3V			1.672		
	5V Requirement					
1	USB Port			0.5		
		Current at 5V		0.500		

Power Sequencing

The processor P1021 requires that its power rails be applied in a specific sequence in order to ensure proper device operation. These requirements are as follows for power up:

1. VDD, VDDC, AVDD, BVDD, LVDD, CVDD, OVDD, SVDD_SRDS and, $XVDD_SRDS$

2. GVDD

All supplies must be at their stable values within 50 ms. Items on the same line have no ordering requirement with respect to one another. Items on separate lines must be ordered sequentially such that voltage rails on a previous step must reach 90% of their value before the voltage rails on the current step reach 10% of theirs.

Here is list of list of voltages used for P1021

- VDD, VDDC, AVDD, SVDD_SRDS, XVDD_SRDC => 1.0V
- BVDD, LVDD, CVDD, OVDD => 3.3V
- GVDD => 1.5V

3.17 Debug Support

JTAG COP Header

The JTAG header provides a connection between the P1021 device and an external, compatible JTAG converter. The default is the CodeWarrior USB TAP.

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 25 of 39

The diagram below shows COP connector physical pinouts

COP_TDO	1	2	NC
COP_TDI	3	4	COP_TRST
NC	5	6	COP_VDD_SENSE
COP_TCK	7	8	COP_CHKSTP_IN
COP_TMS	9	10	NC
COP_SRESET	11	12	NC
COP_HRESET	13	KEY No pin	
COP_CHKSTP_OUT	15	16	GND

Debug RS-232 Port

An RS-232 port is provided on board just for debug purpose only. This is implemented using DUART port0 of P1021. The access to this port is available through 3-pin header. Below is the pin assignment for this header (J8).

PIN#	SIGNAL
1	TX
2	RX
3	GND

Debug LEDs

There are two LEDs provided to help debugging of the board. These are defined as below.

LED	Color	Description
LED1 (D26)	Green	User Programmable
LED2 (D27)	Green	User Programmable

Manual Reset Switch

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 26 of 39

There is a manual switch (SW1) provided on board to reset the board. This switch is accessible on the front panel. Whenever it is pressed (activated), CPLD gets reset which in turn generates the system reset.

Test Points/ Jumpers

Test points are provided for probing important signals, power and ground nets during debugging/ testing.

3.18 Front Panel LEDs

Table below describes the LEDs used on front panel

Name	Description	Controlled by	Label	Color	No of LEDs
STATUS					
Power	Power Supply(ies) status ok	HW (CPLD)	POWER	Blue	3
Active	Card is controlling output channels	SW	ACTIVE	Green	1
Ready	Card is healthy and has no detectable faults	SW	READY	Green	1
Alarm	Card has a detectable non- critical issue	SW	ALARM	Yellow	1
Fault	Card has a critical error	SW/HW	FAULT	Red	1
CPU	CPU is active/heartbeat	SW	CPU	Green	1
Learn	Card in initializing/booting/learning from peer	SW	LEARN	Green	1
COMMUNICATIONS					
Ecat LINKACT(x)	EtherCAT Link/Activity	HW (U15)		Green	1
Ecat LINKACT(x)	EtherCAT Speed	HW (U15)		Yellow	1
Serial Tx/Rx	Serial port activity - 2/port	HW (U1)	Tx/Rx	Green	8
Ethernet	Ethernet Activity - 2/port	HW (U13, U14)		Green	2
Ethernet	Ethernet Speed	HW (U13, U14)		Yellow	2

All status LEDs excluding "Power" are directly driven by the processor. Power LEDs are driven by the CPLD after confirming all the on board rails are within the specified limit. Below the circuit used to drive power LEDs.

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 27 of 39

3.19 Backplane Connectors

This section gives the details of the backplane connectors used on the board.

Connecto	Connector : 1 (54 Pins Connector)		
Pin No.	Signal Name	Description	
A1	APP_IES+	MII interface Transmit data to IES (+)	
B1	APP_IES-	MII interface Transmit data to IES(-)	
C1	GND	Ground	
D1	IES_APP+	MII interface Receive data from IES(+)	
E1	IES_APP-	MII interface Receive data from IES(-)	
F1	GND	Ground	
G1	APP_ECAT+	MII interface Transmit data to ECAT(+)	
H1	APP_ECAT-	MII interface Transmit data to ECAT(-)	
l1	GND	Ground	
A2	GND	Ground	
B2	ECAT_APP+	MII interface Receive data from ECAT(+)	
C2	ECAT_APP-	MII interface Receive data from ECAT(-)	
D2	GND	Ground	
E2	NC	NC	
F2	NC	NC	
G2	GND	Ground	
H2	APP_IES_EBUS+	EBUS interface Transmit data to opposite IES(+)	

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 28 of 39

C		
12	APP_IES_EBUS-	EBUS interface Transmit data to opposite IES(-)
A3	IES_APP_EBUS+	EBUS interface Receive data from opposite IES(+)
B3	IES_APP_EBUS-	EBUS interface Receive data from opposite IES(-)
C3	GND	Ground
D3	APP_MBUS_1_DE	Transmit Enable to MOD BUS Port 1
E3	APP_MBUS_2_DE	Transmit Enable to MOD BUS Port 2
F3	GND	Ground
G3	APP_TLINK_1_DE	Transmit Enable to Train Link Port 1
H3	APP_TLINK_2_DE	Transmit Enable to Train Link Port 2
13	GND	Ground
A4	GND	Ground
B4	TLINK_APP_2	Receive Data 2 from Train Link
C4	APP_TLINK_2	Transmit Data 2 to Train Link
D4	GND	Ground
E4	APP-A_E4	Connector Short Pin
F4	NC	NC
G4	GND	Ground
H4	TLINK_APP_1	Receive Data 1 from Train Link
14	APP_TLINK_1	Transmit Data 1 to Train Link
A5	APP_MBUS_2	Transmit Data 2 to MODBUS
B5	MBUS_APP_2	Receive Data 2 from MODBUS
C5	GND	Ground
D5	APP_MBUS_1	Transmit Data 1 to MODBUS
E5	MBUS_APP_1	Receive Data 1 from MODBUS
F5	GND	Ground
G5	APP_APP_3-	GBE between APPs
H5	APP_APP_3+	GBE between APPs
15	GND	Ground
A6	GND	Ground
B6	APP_APP_2-	GBE between APPs
C6	APP_APP_2+	GBE between APPs
D6	GND	Ground
E6	APP_APP_1-	GBE between APPs
F6	APP_APP_1+	GBE between APPs
G6	GND	Ground
H6	APP_APP_0-	GBE between APPs
16	APP_APP_0+	GBE between APPs

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 29 of 39

Connecto	r :2 (72 Pins Connector)	
Pin No.	Signal Name	Description
A1	APP_EEC1+	10/100 Eth Interface Transmit to EEC1(+)
B1	APP_EEC1-	10/100 Eth Interface Transmit to EEC1(-)
C1	GND	Ground
D1	EEC_APP-1+	10/100 Eth Interface Receive from EEC1(+)
E1	EEC_APP-1-	10/100 Eth Interface Receive from EEC1(-)
F1	GND	Ground
G1	APP_EEC2+	10/100 Eth Interface Transmit to EEC2(+)
H1	APP_EEC2-	10/100 Eth Interface Transmit to EEC2(-)
l1	GND	Ground
A2	GND	Ground
B2	EEC_APP-2+	10/100 Eth Interface Receive from EEC2(+)
C2	EEC_APP-2-	10/100 Eth Interface Receive from EEC2(-)
D2	GND	Ground
E2	GND	Ground
F2	2V5_APP_EEC-1	2.5V supply to EEC1 port
G2	GND	Ground
H2	2V5_APP_EEC-2	2.5V supply to EEC2 port
12	GND	Ground
A3	NC	NC
B3	GND	Ground
C3	NC	NC
D3	GND	Ground
E3	APP_IES_SCL-A	I2C Clock
F3	GND	Ground
G3	APP_IES_SDA-A	I2C Data
H3	GND	Ground
13	NC	NC
A4	GND	Ground
B4	NC	NC
C4	GND	Ground
D4	NC	NC
E4	APP-A_E4	Connector Short Pin
F4	NC	NC
G4	GND	Ground
H4	APP_IES_DET	APP board detect signal from same side IES
14	GND	Ground

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Docum	nent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 30 of 39

A5	APP_IES_DET_OPP	APP board detect signal from opp. Side IES
B5	GND	Ground
C5	NC	NC
D5	GND	Ground
E5	NC	NC
F5	GND	Ground
G5	NC	NC
H5	GND	Ground
15	NC	NC
A6	GND	Ground
B6	NC	NC
C6	GND	Ground
D6	IES_APP_DET_OPP	Opposite side IES board detect from APP
E6	GND	Ground
F6	IES_APP_DET	Same side IES board detect from APP
G6	GND	Ground
H6	GND	Physical Slot addr 0
16	GND	Ground
A7	NC	Physical Slot addr 1
B7	GND	Ground
C7	PCC_APP_OPP4	Signal 4 input from opp side PCC
D7	GND	Ground
E7	PCC_APP_OPP3	Signal 3 input from opp side PCC
F7	GND	Ground
G7	PCC_APP_OPP2	Signal 2 input from opp side PCC
H7	GND	Ground
17	PCC_APP_OPP1	Signal 1 input from opp side PCC
A8	GND	Ground
B8	PCC_APP4	Signal 4 input from same side PCC
C8	GND	Ground
D8	PCC_APP3	Signal 3 input from same side PCC
E8	GND	Ground
F8	PCC_APP2	Signal 2 input from same side PCC
G8	GND	Ground
H8	PCC_APP1	Signal 1 input from same side PCC
18	GND	Ground

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 31 of 39

4 Schematic Design

4.1 Design Tool

Schematic entry is done PAD9.3

5 Board Layout Design

5.1 Board Thickness

Thickness of the Board designed is 1.6mm \pm 10% [0.063" \pm 10%]

5.2 Board Stack-up

The Main Board is designed with four layer stack-up with no blind or buried vias. Most of the components are placed top side of the board except for few discrete which are placed on bottom.

Layer		Stack up	Description	Base Thickness	Finish Thickness	Isolation Distance	Copper Coverage
			Taiyo PSR 2000				
1	A		Copper Foil 18 microns	0.689	1.968		100.000
			EM827B Prepreg 2113	4.850	3.850	3.384	
2				1.260	1.260	(A) Usa Luat	63.000
3			EM827 4 mil core 1/1	4.000 1.260	4.000 1.260	4.000	18.000
			EM827B Prepreg 1080	4.050	3.050	2.792	10.000
	1 7		EM827B Prepreg 7628LR	8.350	7.350	6.729	
	Ιī		EM827B Prepreg 7628LR	8.350	7.350	6.729	
4	8			1.260	1.260		63.000
5	62.7398		EM827 4 mil core 1/1	4.000 1.260	4.000 1.260	4.000	59.000
3	9		EM827B Prepreg 7628LR	8.350	7.350	6.714	33.000
	- 1 5		EM827B Prepreg 7628LR	8.350	7.350	6.714	
	- 1 1		EM827B Prepreg 1080	4.050	3.050	2.786	
6				1.260	1.260	S1777717777	19.000
			EM827 4 mil core 1/1	4.000	4.000	4.000	
7				1.260	1.260	V-2-22-2	64.000
			EM827B Prepreg 2113	4.850	3.850	3.396	
8	*	· · · · · · · · · · · · · · · · · · ·	Copper Foil 18 microns	0.689	1.968		100.000
			Taiyo PSR 2000				

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Docum	ent		
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 32 of 39

Appendix - A

Power-on Reset strapping options on APP card

System PLL Ratio

Cyclom : == mano			
Functional Signals	Value (Binary)	CCB Clock : SYSCLK Ratio	APP Inplementation
LA[29:31]	000	4:1	LA29: Pull-down (R228: GND)
No Default	001	5:1	LA30: Pull-up (R220: 3.3V; R227: DNI) LA31: Pull-down (R279: GND; R278:
No Deladit	010	6:1	DNI)
	other	Reserved	,

DDR PLL Ratio

Functional Signals	Value (Binary)	DDR Complex : DDRCLK Ratio	APP Inplementation
TSEC_1588_CLK_OUT,	000	3:1	TSEC_1588_CLK_OUT: Pull-up (R299:
TSEC_1588_PULSE_OUT1, TSEC 1588 PULSE OUT2	001	4:1	3.3V; R233: DNI) TSEC 1588 PULSE OUT1: Pull-down
1020_1000_1 0202_0012	010	6:1	(R311: GND; R300: DNI)
	011	8:1	TSEC_1588_PULSE_OUT2: Pull-down
No Default	100	10:1	(R312: GND; R301: DNI)
	101	Reserved	
	110	Reserved	
	111	Synchronous mode	

e500 Core0 PLL Ratios

Functional Signals	Value (Binary)	e500 Core:CCB Clock Ratio	APP Inplementation
LBCTL, LALE,	000	Reserved	LBCTL: Pull-up (R283: 3.3V; R291:
LGPL2/LOE/LFRE	001	Reserved	† DNI) LALE: Pull-down (R292: GND; R284:
	010	1:1	DNI)
No Default	011	3:2 (1.5:1)	LGPL2/LOE/LFRE: Pull-down (R293:
	100	2:1	GND; R285: DNI)
	101	5:2 (2.5:1)	
	110	3:1	
	111	Reserved	

e500 Core1 PLL Ratios

Functional Signals	Value (Binary)	e500 Core:CCB Clock Ratio	APP Inplementation
LWE0, UART_SOUT1,	000	Reserved	LWE0: Pull-up (R286: 3.3V; R294: DNI)
READY_P1	001	Reserved	UART_SOUT1: Pull-down (R267: GND;
	010	1:1	R250: DNI) READY P1: Pull-down (R247: GND;
No Default	011	3:2 (1.5:1)	R246: DNI)
	100	2:1	
	101	5:2 (2.5:1)	
	110	3:1	
	111	Reserved	

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 33 of 39

Boot ROM Location

Functional Signals	Value (Binary)	Meaning	APP Inplementation
TSEC3_TXD[2:0],	0000	PCI Express 1	TSEC3_TXD2: Pull-up (R315: 3.3V;
TSEC1_TX_ER	0001	PCI Express 2	R305: DNI) TSEC3 TXD1: Pull-down (R254: GND;
	0010	Reserved	R253: DNI)
Default (1111)	0011	Reserved	TSEC3_TXD0: Pull-down (R252: GND;
	0100	DDR controller	R251: DNI)
	0101	Reserved	TSEC1_TX_ER: Pull-down (R304: GND; R219: DNI)
	0110	On-chip boot ROM—SPI configuration	GIVE, FIZ TO. SIVI)
	0111	On-chip boot ROM—eSDHC configuration	
	1000	Local bus FCM—8-bit NAND flash small page	
	1001	Reserved	
	1010	Local bus FCM—8-bit NAND flash large page	
	1011	Reserved	
	1100	Reserved	
	1101	Local bus GPCM—8-bit ROM	
	1110	Local bus GPCM—16-bit ROM	
	1111	Local bus GPCM—16-bit ROM (default)	

Host/Agent Configuration

Functional Signals	Value (Binary)	Meaning	APP Inplementation
LWE1, LA[18:19]	000	P1021 acts as an agent on all its PCI Express interfaces	LWE1: Pull-up (R107: 3.3V) LA18: Pull-up (R235: 3.3V) LA19: Pull-up (R258: 3.3V)
Default (111)	001	P1021 acts as an agent on PCI Express 1 and acts as a host on PCI Express 2.	
	010	P1021 acts as a host on PCI Express 1 and acts as an agent on PCI Express 2.	
	011 - 110	Reserved	
	111	P1021 acts as the host processor/root complex for all PCI Express interfaces (default).	

I/O Port Selection

Functional Signals	Value (Binary)	Meaning	APP Inplementation
TSEC1_TXD[3:1],	0000	PCI Express 1 (×1) (2.5Gbps) →	TSEC1_TXD3: Pull-up (R229: 3.3V)
CFG_IO_PORTS3		SerDes lane 0	TSEC1_TXD2: Pull-up (R256: 3.3V)
		SerDes lanes 1-3 powered down	TSEC1_TXD1: Pull-up (R265: 3.3V)
	0001	SerDes lanes 0-3 powered down	CFG_IO_PORTS3: Pull-down (R232:

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 34 of 39

Default (1111)	0100-0101	Reserved	GND)
	0110	PCI Express 1 (×4) (2.5 Gbps) → SerDes lanes 0–3	
	0111-1101	Reserved	
	1110		
		PCI Express 1 (x1) (2.5 Gbps) → SerDes lane 0 PCI Express 2 (x1) (2.5 Gbps) → SerDes lane 1 SGMII eTSEC2 (x1) (1.25Gbps) → SerDes lane 2 SGMII eTSEC3 (x1) (1.25Gbps) → SerDes lane 3	
	1111	PCI Express 1 (x2) (2.5 Gbps) → SerDes lanes 0–1 SGMII eTSEC2 (x1) (1.25Gbps) → SerDes lane 2 SGMII eTSEC3 (x1) (1.25Gbps) → SerDes lane 3 (see Note) (default)	

CPU Boot Configuration

CFO BOOL Configuration			
Functional Signals	Value (Binary)	Meaning	APP Inplementation
LA27, LA16 Default (11)	00	CPU boot holdoff mode for both cores. The e500 cores are prevented from booting until configured by an external master	LA27: Pull-up (R240: 3.3V; R241: DNI) LA16: Pull-down (R238: GND; R237: DNI)
	01	e500 core 1 is allowed to boot without waiting for configuration by an external master, while e500 core 0 is prevented from booting until configured by an external master or the other core	
	10	e500 core 0 is allowed to boot without waiting for configuration by an external master, while e500 core 1 is prevented from booting until configured by an external master or the other core	
	11	Both e500 cores are allowed to boot without waiting for configuration by an external master (default)	

Boot Sequencer Configuration

Functional Signals	Value (Binary)	Meaning	
LGPL3/LFWP,	00	Reserved	LGPL3: Pull-up (R287: 3.3V; R295:

TITLE: APP Card Hardware Design Document		DOC NO.	REV. 1.0
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 35 of 39

LGPL5		N 1100 11 1 1 1 1	DNI)
Default (11)		Normal I2C addressing mode is used. Boot sequencer is enabled and loads configuration information from a ROM on the I2C1 interface.	LGPL5: Pull-up (R289: 3.3V; R297: DNI)
	01	A valid ROM must be present	
	10	Extended I2C addressing mode is used. Boot sequencer is enabled and loads configuration information from a ROM on the I2C1 interface. A valid ROM must be present	
	11	Boot sequencer is disabled. No I2C ROM is accessed (default)	

DDR SDRAM Type

Functional Signals	Value (Binary)	Meaning	APP Inplementation
CFG_DRAM_TYPE		DDR2	CFG_DRAM_TYPE: Pull-up (R225:
Default (1)	0	1.8 V, CKE low at reset	(3.3V)
= =:5.501(1)	1	DDR3 1.5 V, CKE low at reset (default)	

SerDes Reference Clock Configuration

Functional Signals	Value (Binary)	Meaning	APP Inplementation
TSEC_1588_ALARM_OUT1		SerDes expects a 125 MHz	TSEC_1588_ALARM_OUT1: Pull-up (R274: 3.3V)
Default (1)	0	reference clock frequency	(
_3 (*)	1	SerDes expects a 100 MHz reference clock frequency (default)	

eTSEC3 SGMII Mode

Functional Signals	Value (Binary)	Meaning	APP Inplementation
TSEC_1588_ALARM_OUT2		eTSEC3 Ethernet interface operates	TSEC_1588_ALARM_OUT2: Pull-up
		in SGMII mode and uses SGMII	(R290: 3.3V)
Default (1)	0	SerDes lane 3 pins	
	1	eTSEC3 Ethernet interface operates in standard parallel interface mode and uses the TSEC3_* pins (default)	

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 36 of 39

eTSEC1 Width

Functional Signals	Value (Binary)	Meaning	APP Inplementation
EC_MDC		eTSEC1 Ethernet interface operates	EC_MDC: Pull-down (R255: GND)
		in reduced pin mode (either RGMII	
Default (1)	0	or RMII mode)	
	1	eTSEC1 Ethernet interface operates	
		in standard width MII mode (default)	

eTSEC1 Protocol

Functional Signals	Value (Binary)	Meaning	APP Inplementation
TSEC1_TXD0,	00	Reserved	TSEC1_TXD0: Pull-down (R262: GND)
TSEC3_TXD3 Default (11)	01	The eTSEC1 controller operates using the MII protocol (or RMII if configured in reduced mode as described in "eTSEC1 Width").	TSEC3_TXD3: Pull-up (R314: 3.3V)
	10	The eTSEC1 controller operates using the RGMII protocol if configured in reduced mode as described in "eTSEC1 Width"	
	11	Reserved	

eTSEC3 Protocol

Functional Signals	Value (Binary)	Meaning	APP Inplementation
UART_RTS0,	00	Reserved	UART_RTS0: Pull-down (R271: GND)
UART_RTS1	01	The eTSEC3 controller operates	UART_RTS1: Pull-up (R249: 3.3V)
Default (11)		using the RMII protocol if not configured to operate in SGMII	
		mode	
	10	The eTSEC3 controller operates using the RGMII protocol if not configured to operate in SGMII mode	
	11	Reserved	

Memory Debug Configuration

Functional Signals Value (Binary) Meaning	APP Inplementation
---	--------------------

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 37 of 39

CFG_MEM_DEBUG		Debug information from the	CFG_MEM_DEBUG: Pull-up (R226: 3.3V; R234: DNI)
Default (1)		enhanced local bus controller (eLBC) is driven on the MSRCID	0.0V, 11204. DIVI)
	0	and MDVAL signals	
	1	Debug information from the DDR SDRAM controller is driven on the MSRCID and MDVAL signals (default)	

DDR Debug Configuration

Functional Signals	Value (Binary)	Meaning	APP Inplementation
CFG DDR DEBUG			CFG_DDR_DEBUG: Pull-up (R280:
		Debug information is driven on the	3.3V; R281: DNI)
Default (1)		ECC pins instead of normal ECC	,
()		I/O. ECC signals from memory	
	0	devices must be disconnected.	
	1	Debug information is not driven on	
		ECC pins. ECC pins function in their	
		normal mode (default)	

General-Purpose POR Configuration

Functional Signals	Value (Binary)	Meaning	APP Inplementation
LAD[0:15]		General-purpose POR configuration	Not Implemented
No Default		vector to be placed in GPPORCR.	
No Default			

Engineering Use POR Configuration

Functional Signals	Value (Binary)	Meaning	APP Inplementation
LA[20:22],	1_1111	Default operation	LA20: pull-up (R239: 3.3V)
UART_SOUT[0], MSRCID[4]	0_0000-1_1110	Reserved	LA21: pull-up (R260: 3.3V) LA22: pull-up (R236: 3.3V)
Default (1 1111)			UART SOUT[0]: pull-up (R248: 3.3V)
\ =			MSRCID[4]: pull-up (R302: 3.3V)

eLBC ECC Enable Configuration

Functional Signals	Value (Binary)	Meaning	APP Inplementation
MSRCID0	0	eLBC ECC checking is disabled.	MSRCID0: pull-down (R296: GND;
Default (1)	1	Default operation: eLBC ECC checking is enabled	R110: DNI)

System Speed

Functional Signals	Value (Binary)	Meaning	APP Inplementation
LA28	0	Reserved	LA28: pull-up (R221: 3.3V)
Default (1)	1	SYSCLK frequency is at or above	
		66 MHz (default)	

TITLE: APP Card Hardware Design		DOC NO.	REV. 1.0
Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 38 of 39

Platform Speed

Functional Signals	Value (Binary)	Meaning	APP Inplementation		
LA23		Platform clock frequency is above	LA23: pull-up (R223: 3.3V; R231: DNI)		
Default (1)	0	267 MHz and below 300 MHz			
	1	Platform clock frequency is at or above 300 MHz (default)			

Core 0 Speed

Functional Signals	Value (Binary)	Meaning	APP Inplementation
LA24	0	Core 0 clock frequency is less than 500 MHz	LA24: pull-up (R222: 3.3V; R224: DNI)
Default (1)	1	Core 0 clock frequency is greater than or equal to 500 MHz (default)	

Core 1 Speed

Functional Signals	Value (Binary)	Meaning	APP Inplementation
LA25	0	Core 1 clock frequency is less than 500 MHz	LA25: pull-up (R244: 3.3V; R245: DNI)
Default (1)	1	Core 1 clock frequency is greater than or equal to 500 MHz (default)	

DDR Speed

Functional Signals	Value (Binary)	Meaning	APP Inplementation
LA26	0	DDR data rate is less than 500 MHz	LA26: pull-up (R242: 3.3V; R243: DNI)
Default (1)	1	DDR data rate is greater than or equal to 500 MHz (default)	

Appendix - B

TITLE:		DOC NO.	REV. 1.0
APP Card Hardware Design			
Document			
PREPARED BY:	DATE:		SHEET:
Akhilesh Jaiswal	7 th Sep 2011		Page 39 of 39