1 The Real Number

1.1 Number Systems

Examples of number systems include:

- $\mathbb{N} := \text{set of all natural numbers} = 1, 2, 3, \cdots$
- \mathbb{Z} := set of all **integers** = \cdots , -3, -2, -1, 0, 1, 2, 3, \cdots
- $\mathbb{Q} := \text{set of all rational numbers} = \{ \frac{p}{q} \mid p, q \in \mathbb{Z}, q \neq 0 \}$
- $\mathbb{R} := \text{set of all real numbers}$.

Theorem 1.1. $\sqrt{2}$ is an irrational number.

1.2 Natural Numbers

 \mathbb{N} has the well-ordering property:

Every non-empty subset S of $\mathbb N$ has a **minimum** element, i.e., there exists $m \in S$ such that $m \leq n$ for every $n \in S$.

Theorem 1.2 (Principle of Mathematical Induction).

Let $S \subseteq \mathbb{N}$. If

- (i) $1 \in S$, and
- (ii) for every $k \in \mathbb{N}, k \in S \Rightarrow k+1 \in S$,

then $S = \mathbb{N}$.

Remark: The Theorem can be rephrased as:

For each $n \in \mathbb{N}$, let P(n) be a statement about n. Suppose that

- (i) P(1) is true, and
- (ii) for every $k \in \mathbb{N}$, if P(k) is true, then P(k+1) is true.

Then P(n) is true for every $n \in \mathbb{N}$.

1.3 The Algebraic Properties of \mathbb{R}

The binary operation addition (denoted by +) on the set \mathbb{R} of real numbers satisfies the following properties:

- (A1) (Commutativity) a + b = b + a for all $a, b \in \mathbb{R}$.
- (A2) (Associativity) (a+b)+c=a+(b+c) for all $a,b,c\in\mathbb{R}$
- (A3) (Existence of zero element) There exists a zero element $0 \in \mathbb{R}$ such that a + 0 = 0 + a = a for all $a \in \mathbb{R}$
- (A4) (Existence of inverse) For each $a \in \mathbb{R}$, there exists an element $-a \in \mathbb{R}$ such that a + (-a) = (-a) + a = 0.

Similarly, the binary operation **multiplication** (denoted by \cdot or \times) on the set \mathbb{R} satisfies the following properties:

- (M1) (Commutativity) $a \cdot b = b \cdot a$ for all $a, b \in \mathbb{R}$.
- (M2) (Associativity) $(a \cdot b) \cdot c = a \cdot (b \cdot c)$ for all $a, b, c \in \mathbb{R}$
- (M3) (Existence of unit element) There exists a unit element $1 \in \mathbb{R}$ such that $1 \neq 0$ and $a \cdot 1 = 1 \cdot a = a$ for all $a \in \mathbb{R}$
- (M4) (Existence of inverse) For each $a \neq 0$ in \mathbb{R} , there exists an element $\frac{1}{a} \in \mathbb{R}$ such that $a \cdot \frac{1}{a} = \frac{1}{a} \cdot a = 1$.

In addition, the two binary operations satisfy the following property:

(D) (Distributivity of multiplication over addition) $a \cdot (b+c) = a \cdot b + a \cdot c$ for all $a, b, c \in \mathbb{R}$.

Because of properties (A1)—(A4),(M1)—(M4) and (D), we say that $(\mathbb{R}, +, \cdot)$ forms a field.

Theorem 1.3 (Some properties of \mathbb{R}).

Let $a, b, c \in \mathbb{R}$

- (i) (Uniqueness of additive inverse) If a + b = 0, then b = -a.
- (ii) (Uniqueness of multiplicative inverse) If $a \cdot b = 1$ and $b \neq 0$, then $b = \frac{1}{a}$.
- (iii) If a + b = b, then a = 0.

- (iv) If $b \neq 0$ and $a \cdot b = b$, then a = 1.
- (v) $a \cdot 0 = 0$ for all $a \in \mathbb{R}$.
- (vi) If $a \cdot b = 0$, then a = 0 or b = 0.
- (vii) (Cancellative property) If $a \neq 0$ and $a \cdot b = a \cdot c$, then b = c.

Theorem 1.4 (Order Properties of \mathbb{R}).

There is a binary relation > on $\mathbb R$ which has the following properties:

Let $a, b, c, d \in \mathbb{R}$.

- (O1) If a > b, then a + c > b + c.
- (O2) If a > 0 and b > 0, then $a \cdot b > 0$.
- (O3) (**Trichotomy Property**) If $a, b \in \mathbb{R}$, then exactly one of the following holds:

$$a > b$$
, $a = b$, $b > a$

(O4) (Transitive Property) If a > b and b > c, then a > c.

The other oder relations $<, \ge, \le$ can be defined in terms of >.

Because of the order relation satisfies (O1)—(O4), we say that $(\mathbb{R},+,\cdot,>)$ forms an **ordered field**.

Theorem 1.5 (Some more properties of \mathbb{R}).

Let $a, b, c \in \mathbb{R}$. Then the following statements hold:

- (i) $a > b \Leftrightarrow a b > 0$. In particular, $c < 0 \Leftrightarrow -c > 0$
- (ii) Exactly one of the following holds:

$$a > 0, \quad a = 0, \quad a < 0$$

- (iii) If a > b and c > 0, then $c \cdot a > c \cdot b$. If a > b and c < 0, then $c \cdot a < c \cdot b$.
- (iv) If $a \ge b$ and $b \ge a$, then a = b.

Theorem 1.6.

- (i) If $a \in \mathbb{R}$ and $a \neq 0$, then $a^2 > 0$
- (ii) 1 > 0
- (iii) If $n \in \mathbb{N}$, then n > 0
- (iv) If a > 0, then $\frac{1}{a} > 0$

Theorem 1.7. If $a \in \mathbb{R}$ is such that $0 \le a < \epsilon$ for every positive number ϵ , then a = 0.

1.4 Intervals

An interval is a subset I of \mathbb{R} with the following property:

If
$$x, y \in I$$
 and $x < y$, then $x < t < y \Rightarrow t \in I$

1.5 Solving Inequalities

THe following two rules are often useful in solving inequalities:

Rule 1 If $a \cdot b > 0$, then either

- (i) a > 0 and b > 0, or
- (ii) a < 0 and b < 0

Rule 2 If $a \cdot b < 0$, then either

- (i) a > 0 and b < 0, or
- (ii) a < 0 and b > 0

Theorem 1.8 (Bernoulli's inequality). If $x \ge -1$, then

$$(1+x)^n \ge 1 + nx \ \forall n \in \mathbb{N}$$

Definition 1.1. Let $n \geq 2$ and let a_1, a_2, \ldots, a_n be positive numbers.

- The arithmetic mean of a_1, a_2, \ldots, a_n is defined as $A = \frac{a_1 + a_2 + \ldots + a_n}{n}$.
- The geometric mean of a_1, a_2, \ldots, a_n is defined as $G = (a_1 a_2 \cdots a_n)^{\frac{1}{n}}$
- The harmonic mean of a_1, a_2, \ldots, a_n is defined as $H = \frac{n}{\frac{1}{a_1} + \frac{1}{a_2} + \cdots + \frac{1}{a_n}}$

Theorem 1.9 (AM-GM-HM inequality).

Let A, G, H be the arithmetic mean, the geometric mean and the harmonic mean of the positive numbers a_1, a_2, \ldots, a_n respectively. Then

$$H \le G \le A$$

Moreover, the equalities hold if and only if $a_1 = a_2 = \cdots = a_n$.

1.6 Absolute Value

Definition 1.2. Let $a \in \mathbb{R}$. The absolute value of a is defined by

$$|a| = \begin{cases} x & \text{if } a > 0 \\ -x & \text{if } a < 0 \\ 0 & \text{if } a = 0 \end{cases}$$

Theorem 1.10 (Properties of absolute value).

For all $a, b, c \in \mathbb{R}$, the following statements hold:

- (i) $|a| \ge 0$, $a \le |a|$ and $-a \le |a|$
- (ii) $|a| = 0 \Leftrightarrow a = 0$
- (iii) |-a| = |a|
- (iv) $|ab| = |a| \cdot |b|$
- (v) $|a|^2 = a^2$
- (vi) If $c \ge 0$, then $|a| \le c \Leftrightarrow -c \le a \le c$
- (vii) $-|a| \le a \le |a|$

Theorem 1.11 (Triangle inequality).

For all $a, b \in \mathbb{R}$, we have

$$|a+b| \le |a| + |b|$$

Corollary 1.1.

For all $a, b \in \mathbb{R}$, we have

- (i) $||a| |b|| \le |a b|$
- (ii) $|a| |b| \le |a| + |b|$

Corollary 1.2. For $a_1, a_2, \ldots, a_n \in \mathbb{R}$, we have

$$|a_1 + a_2 + \dots + a_n| < |a_1| + |a_2| + \dots + |a_n|$$

2 The Completeness of Real Numbers

2.1 Boundedness

Definition 2.1. A non-empty set of real numbers $S \subset \mathbb{R}$ is said to be **bounded above** if there exists some $M \in \mathbb{R}$ such that

$$x \le M \ \forall x \in S$$

Such an M is called a **upper bound** of S.

Definition 2.2. A non-empty set of real numbers $S \subset \mathbb{R}$ is said to be **bounded below** if there exists some $m \in \mathbb{R}$ such that

$$m \leq x \; \forall x \in S$$

Such an m is called a **lower bound** of S.

Definition 2.3. A non-empty set of real numbers S is said to be **bounded** if it is both bounded above and bounded below.

2.2 Maximum and Minimum of a set of real numbers

Definition 2.4 (Maximum).

For a non-empty set $S \subset \mathbb{R}$, one defines the **maximum** of S to be the (necessarily unique) number M such that

max-i $M \in S$, and

max-ii $M \ge x$ for all $x \in S$

Definition 2.5 (Minimum).

Similarly, the **minimum** of S to be the (necessarily unique) number m such that

min-i $M \in S$, and

min-ii $m \ge x$ for all $x \in S$

Remark:

- 1. If a set $S \subset \mathbb{R}$ has a maximum, then S is bounded above, since by (max-ii), max S is an upper bound of S. Similarly if a set $S \subset \mathbb{R}$ has a minimum, then S is bounded below.
- 2. If a set S has a maximum, then $\max S$ is unique.

2.3 Infimum and Supremum

Definition 2.6. Let E be a non-empty set of real numbers. A real number $M \in \mathbb{R}$ is called the least upper bound or **supremum** of E if

- (S-i) M is an upper bound of E, i.e., $x \leq M \ \forall x \in E$, and
- (S-ii) if M' is an upper bound of E, then $M' \geq M$.

Lemma 2.1. Let E be a non-empty set of real numbers. Then $M = \sup E$ if and only if M satisfies (S-i) and

(S-ii' for every $\epsilon > 0$, there exists $x_{\epsilon} \in E$ such that $x_{\epsilon} > M - \epsilon$

Remark:

- (i) $\sup E$ is unique whenever it exists.
- (ii) The main difference between $\sup E$ and $\max E$ is that $\sup E$ may not be an element of E, whereas $\max E$ must be an element of E, if it does exist.
- (iii) If E has a maximum, then $\sup E = \max E$.

Definition 2.7. Let E be a non-empty set of real numbers. A real number $m \in \mathbb{R}$ is called the greatest lower bound or **infimum** of the set E if

- (I-i) m is a lower bound of E, i.e., $m \le x \ \forall x \in E$, and
- (I-ii) if m' is a lower bound of E, then $m' \leq m$.

Lemma 2.2. Let E be a non-empty set of real numbers. Then $m = \inf E$ if and only if m satisfies (I-i) and

(I-ii') for every $\epsilon > 0$, there exists $x_{\epsilon} \in E$ such that $x_{\epsilon} < m + \epsilon$.

Remark:

- (i) inf E is unique whenever it exists.
- (ii) The main difference between $\inf E$ and $\min E$ is that $\inf E$ may not be an element of E, whereas $\min E$ must be an element of E, if it does exist.
- (iii) If E has a minimum, then $\inf E = \min E$.

2.4 Completeness Property of \mathbb{R}

Theorem 2.1. Every non-empty subset of \mathbb{R} which is bounded above has a supremum in \mathbb{R} .

2.4.1 Infimum property of \mathbb{R}

Theorem 2.2. Every non-empty subset of \mathbb{R} which is bounded below has an infimum in \mathbb{R} .

2.4.2 Some consequences of the completeness of $\mathbb R$

Theorem 2.3 (Archimedian property of \mathbb{R}).

For any $x \in \mathbb{R}$, there exists $n_x \in \mathbb{N}$ such that $x < n_x$.

Remark: The Archimedean property of \mathbb{R} is equivalent to the statement that \mathbb{N} is not bounded above in \mathbb{R} .

Corollary 2.1.

- 1. Let $A = \{\frac{1}{n} \mid n \in \mathbb{N}\}$. Then inf A = 0.
- 2. In particular, if $\epsilon > 0$, then there exists $n_{\epsilon} \in \mathbb{N}$ such that $0 < \frac{1}{n_{\epsilon}} < \epsilon$

Theorem 2.4. Let c > 0 and $k \in \mathbb{N}$. Then there exists a unique positive real number a with $a^k = c$.

Theorem 2.5 (The Density Theorem).

For any two real number $x, y \in \mathbb{R}$ satisfying x < y, there exists a rational number $r \in \mathbb{Q}$ such that

Corollary 2.2. If $a, b \in \mathbb{R}$ is such that a < b, then there exists $x \in \mathbb{R} \setminus \mathbb{Q}$ such that a < x < b.

Corollary 2.3. If an interval $I \subseteq \mathbb{R}$ has at least two elements, then I contains infinitely many rational numbers and infinitely many irrational numbers.

Definition 2.8. A subset D of \mathbb{R} is said to be **dense** in \mathbb{R} if for any $a, b \in \mathbb{R}$ with $a < b, D \cap (a, b) \neq \emptyset$

Remark: Both \mathbb{Q} and $\mathbb{R} \setminus \mathbb{Q}$ are dense in \mathbb{R} .

2.5 More on Intervals

Theorem 2.6. Every interval belongs to one of the following 9 types:

$$(a,b) = \{x \in \mathbb{R} : a < x < b\}$$

$$[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$$

$$[a,b) = \{x \in \mathbb{R} : a \le x < b\}$$

$$(a,b] = \{x \in \mathbb{R} : a < x \le b\}$$

$$[a,\infty) = \{x \in \mathbb{R} : x \ge a\}$$

$$(a,\infty) = \{x \in \mathbb{R} : x > a\}$$

$$(-\infty,b] = \{x \in \mathbb{R} : x \le b\}$$

$$(-\infty,b) = \{x \in \mathbb{R} : x < b\}$$

$$(-\infty,b) = \{x \in \mathbb{R} : x < b\}$$

Definition 2.9. A sequence of intervals $I_n, n \in \mathbb{N}$, is said to be **nested** if $I_n \supseteq I_{n+1}$ for each $n \in \mathbb{N}$.

$$I_i \supseteq I_2 \supseteq \cdots \supseteq I_n \supseteq I_{n+1} \supseteq \cdots$$

Theorem 2.7 (Nested Interval Property).

If $I_n = [a_n, b_n], n \in \mathbb{N}$, is a nested sequence of non-empty closed bounded intervals, then there exists a number $\xi \in \mathbb{R}$ such that $\xi \in I_n$ for all $n \in \mathbb{N}$, i.e. $\bigcap_{n=1}^{\infty} I_n \neq \emptyset$.

Theorem 2.8. If $I_n = [a_n, b_n], n \in \mathbb{N}$, is a nested sequence of non-empty closed bounded intervals, and the length $b_n - a_n$ of I_n satisfy

$$\inf\{b_n - a_n : n \in \mathbb{N}\} = 0$$

then $\bigcap_{n=1}^{\infty} I_n$ has exactly one element.

Theorem 2.9. Let I = [0, 1]. There does not exist a bijection $f : \mathbb{N} \to I$ from \mathbb{N} onto I.

3 Sequences

Definition 3.1.

A **sequence** in \mathbb{R} is a real-valued function X with demain \mathbb{N} , that is

$$X: \mathbb{N} \to \mathbb{R}$$

The numbers X(n) for n = 1, 2, 3, ... are called the terms of the sequence X by (x_n) .

Definition 3.2 (Limit of sequence).

We say that x is the **limit** of (x_n) if for every $\epsilon > 0$, there exists $K = K(\epsilon) \in \mathbb{N}$ such that

$$|x_n - x| < \epsilon \forall n \ge K$$

Definition 3.3 (Convergence and Divergence).

If x is the limit of (x_n) , then we as say that (x_n) converges to x, and we write

$$\lim_{n \to \infty} x_n = x$$

We say that a sequence (x_n) converges, if (x_n) converges to a **finite** limit $x \in \mathbb{R}$.

We say that a sequence (x_n) diverges if (x_n) does not converge.

Theorem 3.1. If (x_n) converges, then it has exactly one limit.

3.1 Limit Theorems

Definition 3.4. A sequence (x_n) is said to be **bounded** if there exists M>0 such that

$$|x_n| \le M \quad \forall n \in \mathbb{N}$$

Theorem 3.2. Every convergent sequence is bounded.

Theorem 3.3.

If $\lim_{n\to\infty} x_n = x$ and $\lim_{n\to\infty} y_n = y$, then

- 1. $\lim_{n \to \infty} (x_n + y_n) = x + y$
- $2. \lim_{n \to \infty} x_n y_n = xy$
- 3. $\lim_{n\to\infty}\frac{x_n}{y_n}=\frac{x}{y}$, provided $y_n\neq 0 \ \forall n\in\mathbb{N}$, and $y\neq 0$.

Corollary 3.1. If (x_n) converges and $k \in \mathbb{N}$, then

$$\lim_{n \to \infty} x_n^k = \left(\lim_{n \to \infty} x_n\right)^k$$

Theorem 3.4 (Squeeze Theorem).

If $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$ and $\lim_{n \to \infty} x_n = \lim_{n \to \infty} z_n = a$. Then,

$$Limn \to \infty y_n = a$$

Remark: the condition " $x_n \leq y_n \leq z_n$ for all $n \in \mathbb{N}$ " can be replaced by weaker condition $x_n \leq y_n \leq z_n$ for all natural numbers $n \geq K_0$.

Theorem 3.5. If $|x_n| \to 0$, then $x_n \to 0$.

Theorem 3.6. If 0 < b < 1, then $\lim_{n \to \infty} b^n = 0$.

Theorem 3.7. If c > 0, then $\lim_{n \to \infty} c^{\frac{1}{n}} = 1$

Theorem 3.8. 1. If $\lim_{n\to\infty} x_n = x$, then $\lim_{n\to\infty} |x_n| = |x|$.

2. If all $x_n \geq 0$ and $\lim_{n \to \infty} x_n = x$, then $\lim_{n \to \infty} \sqrt{x_n} = \sqrt{x}$.

Theorem 3.9.

$$\lim_{n \to \infty} n^{\frac{1}{n}} = 1$$

Theorem 3.10. 1. If $x_n \geq 0$ for all $n \in \mathbb{N}$, and (x_n) converges, then $\lim_{n \to \infty} x_n \geq 0$.

2. If (x_n) and (y_n) are convergent and $x_n \geq y_n$ for all $n \in \mathbb{N}$, then

$$\lim_{n \to \infty} x_n \ge \lim_{n \to \infty} y_n$$

3. If $a, b \in \mathbb{R}$, and $a \leq x_n \leq b$ for all n and (x_n) is convergent, then

$$a \leq \lim_{n \to \infty} x_n \leq b$$

3.2 Monotone Sequences

Definition 3.5. We say that the sequence (x_n) is

• increasing if

$$x_1 \le x_2 \le \dots \le x_n \le x_{n+1} \le \dots$$

• decreasing if

$$x_1 \ge g_2 \ge \cdots \ge x_n \ge x_{n+1} \ge \cdots$$

• monotone if it is either increasing and decreasing

Theorem 3.11 (Monotone Convergence Theorem).

If (x_n) is monotone and bounded, then it is convergent. In this case,

$$\lim_{n \to \infty} x_n = \begin{cases} \sup\{x_n \mid n \in \mathbb{N}\} \text{ if } x_n \text{ is increasing} \\ \inf\{x_n \mid n \in \mathbb{N}\} \text{ if } x_n \text{ is decreasing} \end{cases}$$

Corollary 3.2. 1. If (x_n) is increasing and bounded above, then it converges and

$$\lim_{n \to \infty} x_n = \sup\{x_n \mid n \in \mathbb{N}\}\$$

2. If (x_n) is decreasing and bounded below, then it converges and

$$\lim_{n \to \infty} x_n = \inf\{x_n \mid n \in \mathbb{N}\}\$$

3.3 Subsequences and the Bolzano-Weierstrass Theorem

Definition 3.6 (Subsequence).

Let (x_n) be a sequence and let

$$n_1 \le n_2 \le \dots \le n_k \le n_{k+1} \le \dots$$

be an increasing sequence of natural numbers. The sequence

$$(x_{n_k})=(x_{n_1},x_{n_2},\cdots,x_{n_k},\cdots)$$

is called a subsequence of (x_n) .

Theorem 3.12. If (x_n) converges to x, then any subsequence (x_{n_k}) also converges to x.

Corollary 3.3. If (x_n) has a subsequence which is divergent, then (x_n) diverges.

Corollary 3.4. If (x_n) has two convergent subsequences whose limits are not equal, then (x_n) diverges.

Theorem 3.13 (Monotone Subsequence Theorem).

Every sequence has a monotone subsequence.

Theorem 3.14 (Bolzano-Weierstrass Theorem).

Every bounded sequence has a convergent subsequence.

3.4 Limit superior and limit inferior

Definition 3.7. Let (x_n) be a sequence of real numbers. A real number x is called a **subsequential limit** of (x_n) if (x_n) has a subsequence (x_{n_k}) which converges to x, that is,

$$x_{n_k} \to x$$

Definition 3.8. Let $S(x_n)$ denote the set of all subsequential limits of (x_n) .

Definition 3.9. 1. We define the **limit superior** of (x_n) to be

$$\lim \sup x_n := \sup S(x_n)$$

2. We define the **limit inferior** of (x_n) to be

$$\lim\inf x_n := \inf S(x_n)$$

Theorem 3.15. Let (x_n) be a bounded sequence and let $M = \limsup x_n$.

1. For each $\epsilon > 0$, there are at most finitely many n's such that $x_n \geq M + \epsilon$. Equivalently, for each $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$x_n < M + \epsilon \quad \forall n \ge K$$

2. For each $\epsilon > 0$, there are infinitely many n's such that $x_n > M - \epsilon$.

The converse is also true.

Theorem 3.16. Let (x_n) be a bounded sequence and let $m = \liminf x_n$.

1. For each $\epsilon > 0$, there are at most finitely many n's such that $x_n \leq m - \epsilon$. Equivalently, for each $\epsilon > 0$, there exists $K \in \mathbb{N}$ such that

$$x_n > m - \epsilon \quad \forall n \ge K$$

2. For each $\epsilon > 0$, there are infinitely many n's such that $x_n < m + \epsilon$.

The converse is also true.

Theorem 3.17 (Equivalent definition of \limsup).

If (x_n) is a bounded sequence of real numbers, then the following statements for a real number x^* are equivalent.

- 1. $x^* = \limsup (x_n)$. The limit superior of (x_n) is the infimum of the set V of $v \in \mathbb{R}$ such that $v < x_n$ for at most a finite number of $n \in \mathbb{N}$.
- 2. If $\epsilon > 0$, there are at most a finite number of $n \in \mathbb{N}$ such that $x^* + \epsilon < x_n$, but an infinite number of $n \in \mathbb{N}$ such that $x^* \epsilon < x_n$.
- 3. If $u_m = \sup\{x_n \mid n \ge m\}$, then $x^* = \inf\{u_m \mid m \in \mathbb{N}\} = \lim(u_m)$.
- 4. If S is the set of subsequential limits of (x_n) , then $x^* = \sup S$.

Theorem 3.18. Let (x_n) be a bounded sequence. Then (x_n) converges if and only if

$$\lim \sup x_n = \lim \inf x_n$$

Theorem 3.19. Let (x_n) and (y_n) be bounded sequences such that $x_n \leq y_n$ for every $n \in \mathbb{N}$. Then,

$$\limsup x_n \leq \limsup y_n$$

and

$$\liminf x_n \leq \liminf y_n$$

3.5 The Cauchy Criterion

Definition 3.10. A sequence (x_n) is called a Cauchy sequence if for every $\epsilon > 0$, there exists $K = K(\epsilon) \in \mathbb{N}$ such that

$$|x_n - x_m| \le \epsilon \quad \forall n, m \ge K$$

Theorem 3.20. Every convergent sequence is Cauchy.

Theorem 3.21. Every Cauchy sequence is bounded.

Theorem 3.22 (Cauchy Criterion).

Every Cauchy sequence is convergent.

Definition 3.11. A sequence (x_n) is said to be **contractive** if there exists C with 0 < C < 1 such that

$$|x_{n+2} - x_{n+1}| \le C|x_{n+1} - x_n| \quad \forall n \in \mathbb{N}$$

Theorem 3.23. Every contractive sequence is Cauchy.

3.6 Properly Divergent Sequences

Definition 3.12. We say that a sequence (x_n) tends to ∞ if for every M>0, there exists $K=K(M)\in\mathbb{N}$ such that

$$x_n > M \quad \forall n \ge K$$

In this case, we write

$$\lim_{n\to\infty} x_n = \infty$$

Remark: If a sequence (x_n) is increasing and unbounded, then $x_n \to \infty$.

Definition 3.13. We say that a sequence (x_n) tends to $-\infty$ if for every M < 0, there exists $K = K(M) \in \mathbb{N}$ such that

$$x_n < M \quad \forall n \ge K$$

In this case, we write

$$\lim_{n\to\infty} x_n = -\infty$$

Definition 3.14. We call a sequence (x_n) properly divergent if either $x_n \to \infty$ or $x_n \to -\infty$.

Definition 3.15 $(o(x_n))$.

Let (x_n) and (y_n) be two sequences of positive numbers such that $\lim_{n\to\infty} x_n = \infty$ and $\lim_{n\to\infty} y_n = \infty$. We write,

$$x_n = o(y_n)$$
 and also $x_n \ll y_n$ if $\lim_{n \to \infty} \frac{x_n}{y_n} = 0$

Remark: $n^k \ll a^n \ll n!$

Infinite Series

Definition 4.1. Given a series $\sum_{k=1}^{\infty} a_k$, its *n*th **partial sum** s_n is given by

$$s_n = \sum_{k=1}^n a_k = a_1 + a_2 + \dots + a_n$$

The sequence (s_n) is called the sequence of partial sums of the series $\sum_{k=1}^{\infty} a_k$.

Definition 4.2. Consider the sequence of partial sums (s_n) of the series $\sum_{k=1}^{\infty} a_k$. If the sequence (s_n) converges to a number $S \in \mathbb{R}$, we say that the series $\sum_{k=1}^{\infty} a_k$ converges to S and write

$$\sum_{k=1}^{\infty} a_k = \lim_{n \to \infty} s_n = S$$

In this case, S is called the **sum** of the seriess $\sum_{k=1}^{\infty} a_k$. If (s_n) diverges, then we say $\sum_{k=1}^{\infty} a_k$ diverges.

Definition 4.3 (Geometric Series).

Let $a \neq 0$ and r be fixed real numbers. Consider the geometric series

$$\sum_{k=1}^{\infty} ar^{k-1} = a + ar + ar^2 + \cdots$$

Here r is called the **common ratio** of the series.

In summary, the **geometric series**

$$\sum_{k=1}^{\infty} ar^{k-1} = \begin{cases} \frac{a}{1-r}, & \text{if } |r| < 1\\ \text{diverges} & \text{if } |r| \ge 1 \end{cases}$$

Theorem 4.1 (Linear Combination of convergent sequences is convergent).

- 1. If the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ are convergent, then the series $\sum_{n=1}^{\infty} (a_n + b_n)$ is also convergent and $\sum_{n=1}^{\infty} (a_n + b_n) = \sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.
- 2. If the series $\sum_{n=1}^{\infty} a_n$ is convergent and $c \in \mathbb{R}$, then the series $\sum_{n=1}^{\infty} ca_n$ is also convergent and $\sum_{n=1}^{\infty} ca_n = c \sum_{n=1}^{\infty} a_n$.

Theorem 4.2. If $\sum_{n=1}^{\infty} a_n$ converges, then $\lim_{n\to\infty} a_n = 0$.

Theorem 4.3 (The *n*th term divergence test).

- 1. If $\lim_{n\to\infty} a_n \neq 0$, then $\sum_{n=1}^{\infty} a_n$ diverges.
- 2. If $\lim_{n\to\infty} a_n = 0$, then NO conclusion for $\sum_{n=1}^{\infty} a_n$ can be drawn.

Theorem 4.4 (Cauchy Criterion for Series).

The series $\sum_{n=1}^{\infty} a_n$ converges if and only if for every $\epsilon > 0$, there exists $K = K(\epsilon) \in \mathbb{N}$ such that

$$|a_{n+1} + a_{n+2} + \dots + a_m| < \epsilon$$
 for all $m > n \ge K$

Series with nonnegative terms

Definition 4.4. A series $\sum_{k=1}^{\infty} a_k$ is called an **eventually nonnegative series** if each term $a_k \ge 0$. Here $a_k \ge 0$ eventually means there exists $K \in \mathbb{N}$ such that $a_k \geq 0$ for all $k \geq K$.

Theorem 4.5. Let $\sum_{n=1}^{\infty} a_n$ be an (eventually) non-negative series. Then $\sum_{n=1}^{\infty} a_n$ converges if and only if the sequences (s_n) of partial sums if bounded.

Theorem 4.6. If p > 1, then p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges.

Theorem 4.7 (Comparison Test).

Consider 2 nonnegative series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$. Suppose that there exists $K \in \mathbb{N}$ such that

$$0 \le a_k \le b_k$$
 for all $k \ge K$

- 1. If $\sum_{k=1}^{\infty} b_k$ converges, then $\sum_{k=1}^{\infty} a_k$ converges.
- 2. If $\sum_{k=1}^{\infty} a_k$ diverges, then $\sum_{k=1}^{\infty} b_k$ diverges.

Theorem 4.8. If $p \leq 1$, then the *p*-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges.

Theorem 4.9 (Limit Comparison Test).

Let $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ be two eventually positive series, and suppose that the limit

$$\rho = \lim_{n \to \infty} \frac{a_n}{b_n}$$

exists.

- 1. If $\rho > 0$, then either the two series both converge or both diverge.
- 2. If $\rho = 0$ and $\sum_{n=1}^{\infty} b_n$ converges, then $\sum_{n=1}^{\infty} a_n$ converges.

Theorem 4.10 (Ratio Test).

Let $\sum_{n=1}^{\infty} a_n$ be eventually positive series and suppose that the limit

$$\rho = \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$$

exists.

- 1. If $\rho < 1$, then the series $\sum_{n=1}^{\infty} a_n$ converges.
- 2. Ig $\rho > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.
- 3. No conclusion if $\rho = 1$.

Theorem 4.11 (Root Test).

Let $\sum_{n=1}^{\infty} a_n$ be an eventually non-negative series, and suppose $(a_n^{\frac{1}{n}})$ is a bounded sequence. Let

$$\rho = \limsup a_n^{\frac{1}{n}}$$

- 1. If $\rho < 1$, then the series $\sum_{n=1}^{\infty} a_n$ converges.
- 2. Ig $\rho > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.
- 3. No conclusion if $\rho = 1$.

Theorem 4.12 (Simplified Root Test).

Let $\sum_{n=1}^{\infty} a_n$ be an eventually non-negative series. Suppose

$$\rho = \lim_{n \to \infty} a_n^{\frac{1}{n}}$$

- 1. If $\rho < 1$, then the series $\sum_{n=1}^{\infty} a_n$ converges.
- 2. If $\rho > 1$, then the series $\sum_{n=1}^{\infty} a_n$ diverges.
- 3. No conclusion if $\rho = 1$.

4.2Alternating series

Definition 4.5. An alternating series is a series of the form

$$\sum_{k=1}^{\infty} (-1)^k a_k = a_1 - a_2 + a_3 - a_4 + \cdots, \text{ or }$$

$$\sum_{k=1}^{\infty} (-1)^{k+1} a_k = -a_1 + a_2 - a_3 + a_4 - \dots$$

with each $a_k \geq 0$.

Theorem 4.13 (Alternating series Test). Let $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ or $\sum_{n=1}^{\infty} (-1)^n a_n$ be an alternating series. Suppose that

- 1. $a_n \geq 0$ for all n,
- 2. (a_n) is decreasing, and
- $3. \lim_{n \to infty} a_n = 0.$

Then $\sum_{n=1}^{\infty} (-1)^{n+1} a_n$ or $\sum_{n=1}^{\infty} (-1)^n a_n$ is convergent.

4.3 Series with both positive and negative terms

Definition 4.6.

- 1. We say that the series $\sum_{n=1}^{\infty} a_n$ converges absolutely if the series $\sum_{n=1}^{\infty} |a_n|$ converges.
- 2. We say that the series $\sum_{n=1}^{\infty} a_n$ converges conditionally if
 - (a) $\sum_{n=1}^{\infty} a_n$ converges, and
 - (b) $\sum_{n=1}^{\infty} |a_n|$ diverges.

Theorem 4.14. If the series $\sum_{n=1}^{\infty} a_n$ converges absolutely, then it converges.

Theorem 4.15. Every series is either absolutely convergent, conditionally convergent or divergent.

4.4 Grouping of series

Theorem 4.16. If the series $\sum_{n=1}^{\infty} a_n$ converges, then any series obtained by grouping the terms of $\sum_{n=1}^{\infty} a_n$ is also convergent and has the same sum as $\sum_{n=1}^{\infty} a_n$.

4.5 Rearrangement of series

Definition 4.7. A series $\sum_{n=1}^{\infty} b_n$ is a **rearrangement** of the series $\sum_{n=1}^{\infty} a_n$ if there is a bijection $f: \mathbb{N} \to \mathbb{N}$ such that $b_n = a_{f(n)}$ for all $n \in \mathbb{N}$.

Theorem 4.17. If the series $\sum_{n=1}^{\infty} a_k$ converges absolutely, then any rearrangement $\sum_{n=1}^{\infty} b_k$ of $\sum_{n=1}^{\infty} a_k$ also converges and has the same sum as $\sum_{n=1}^{\infty} a_n$.

5 Limits of Functions

5.1 Definition of Limits

Definition 5.1. Let $\emptyset \neq A \subset \mathbb{R}$. A number $c \in \mathbb{R}$ is said to be a **cluster point** of A if for every $\delta > 0$, the open interval $(c - \delta, c + \delta)$ contains a point of $A \setminus \{c\}$.

Theorem 5.1. A real number c is a cluster point of $\emptyset \neq A \subset \mathbb{R}$ if and only if there exists a sequence (a_n) in $A \setminus \{c\}$ converging to c.

Definition 5.2 (ϵ – δ definition of limit).

Let $f: A \to \mathbb{R}$ be a function, where $\emptyset \neq A \subset \mathbb{R}$, and let c be a cluster point of A. We say that a real number L is the **limit** of f at x = c and write

$$\lim_{x \to a} f(x) = L$$

if for every $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$|f(x) - L| < \epsilon$$
 for all $x \in A$ satisfying $0 < |x - c| < \delta$

In this case, we also say that f converges to L at x = a.

Definition 5.3. If h > 0, then the h-neighbourhood of the point a is the set

$$V_h(a) = \{x : |x - a| < h\} = (a - h, a + h)$$

Define

$$V_h^*(a) = V_h(a) \setminus \{a\} = \{x : 0 < |x - a| < h\}$$

 $V_h^*(a)$ is called a **deleted neighbourhood** of a.

Remark: Let $f: A \to \mathbb{R}$ be a function, and let c be a cluster point of A as before. Then the definition of limit can be restated as follows: $\lim_{x\to c} f(x) = L$ if and only if for any given $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$f(A \cap V_{\delta}^*(c)) \subset V_{\epsilon}(L)$$

Theorem 5.2 (Sequential Criterion for Limits).

Let $\emptyset \subsetneq A \subset \mathbb{R}$, and let c be a cluster point of A. Suppose that $f:A \to \mathbb{R}$ is a function and $L \in \mathbb{R}$. Then the following statements are equivalent.

- 1. $\lim_{x \to c} f(x) = L$
- 2. For every sequence (x_n) in $A \setminus \{c\}$ satisfying $\lim_{n \to \infty} x_n = c$, one has $\lim_{n \to \infty} f(x_n) = L$.

Theorem 5.3 (Uniqueness of Limits).

If $f: A \to \mathbb{R}$ is a function and c is a cluster point of A, then the limit of f at x = c is unique, if it does exist. In other words, if $\lim_{x \to c} f(x) = L_1$ and $\lim_{x \to c} f(x) = L_2$ also, then $L_1 = L_2$.

Theorem 5.4. Let $f: A \to \mathbb{R}$ be a function, and let c be a cluster point of A. Then $\lim_{x \to c} f(x) \neq L \Leftrightarrow$ there is a sequence (x_n) in $A \setminus \{c\}$ such that $x_n \to c$, but $f(x_n)$ does not converge to L.

Theorem 5.5 (Divergence Criteria).

Let $f:A\to\mathbb{R}$ be a function, and let c be a cluster point of A. To prove that $\lim_{x\to c} f(x)$ does not exist:

thod 1 Find a sequence (x_n) in $A \setminus \{c\}$ such that $x_n \to c$, but the sequence $(f(x_n))$ diverges.

thod 2 Find two sequences (x_n) and (y_n) in $A \setminus \{c\}$ such that $x_n \to c$, $y_n \to c$, but $\lim_{n \to \infty} f(x_n) \neq \lim_{n \to \infty} f(y_n)$.

Theorem 5.6. Let $c \in \mathbb{R}$.

- 1. There exists a sequence (x_n) such that x_n is rational for all $n, x_n \neq c$ for each n and $x_n \to c$.
- 2. There exists a sequence (y_n) such that y_n is irrational for all $n, y_n \neq c$ for each n and $y_n \rightarrow c$.

5.2 Limit Theorems

Theorem 5.7. Let $f: A \to \mathbb{R}$ be a function, and let c be a cluster point of A. If $\lim_{x \to c} f(x)$ exists, then there exist constants $M, \delta > 0$ such that

$$|f(x)| \le M \quad \forall x \in A \text{ satisfying } 0 < |x - c| < \delta$$

Definition 5.4. Consider two functionss, $f, g: A \to \mathbb{R}$, and let $k \in \mathbb{R}$. One can define associated functions f + g, f - g, kf and $f \cdot g$ given by

$$(f+g)(x) = f(x) + g(x)$$
$$(f-g)(x) = f(x) - g(x)$$
$$(kf)(x) = kf(x)$$

 $(f \cdot g)(x) = f(x) \cdot g(x)$

In general, one can also define the function $\frac{f}{g}$ on $A \setminus \{x \in \mathbb{R} : g(x) = 0\}$ given by

$$\frac{f}{g}(x) = fracf(x)g(x)$$

Theorem 5.8. Let $f, g: A \to \mathbb{R}$ be two functions, and let c be a cluster point of A. Suppose that

$$\lim_{x \to c} f(x) = L$$
 $\lim_{x \to c} g(x) = M$, where $L, M \in \mathbb{R}$

Also, let $k \in \mathbb{R}$ be a fixed constant. Then the following statements hold:

- 1. $\lim_{x \to c} (f+g)(x) = L + M$
- 2. $\lim_{x \to a} (f g)(x) = L M$
- 3. $\lim_{x \to c} (kf)(x) = kL$
- 4. $\lim_{x \to a} (f \cdot g)(x) = LM$
- 5. If, in addition, $g(x) \neq 0$ for all $x \in A$, and $M \neq 0$, then

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{L}{M}$$

Remark: For any $k \in \mathbb{N}$,

$$\lim_{x \to c} [f(x)]^k = [\lim_{x \to c} f(x)]^k$$

Theorem 5.9 (Basic Principle). Let $f, g: A \to \mathbb{R}$ be two functions, and let c be a cluster point of A. Suppose that there exists a deleted neighbourhood $V_h^*(c)$ (with h > 0) such that f(x) = g(x) for all $x \in A \cap V_h^*(c)$, then

$$\lim_{x \to c} f(x) = \lim_{x \to c} g(x)$$

Theorem 5.10. Let $f, g: A \to \mathbb{R}$ be two functions, and let c be a cluster point of A. Suppose that there exists a deleted neighbourhood $V_h^*(c)$ (with h > 0) such that $f(x) \le g(x)$ for all $x \in A \cap V_h^*(c)$, and both $\lim_{x \to c} f(x) and \lim_{x \to c} g(x)$ exist, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x)$$

Theorem 5.11 (Squeeze Theorem).

Let $f, g, h : A \to \mathbb{R}$ be three functions and let c be a cluster point of A. Suppose that there exists a deleted neighbourhood $V_h^*(c)$ (with h > 0) such that $f(x) \le g(x) \le h(x)$ for all $x \in A \cap V_h^*(c)$, and $\lim_{x \to c} f(x) = \lim_{x \to c} h(x) = L$, then

$$\lim_{x \to c} g(x) = L$$

Theorem 5.12. Let $f: A \to \mathbb{R}$ be a function and let c be a cluster point of A. If $\lim_{x\to c} f(x) = L$ exists and L > 0, then there exists $\delta > 0$ such that

$$f(x) > 0$$
 for all $x \in A \cap V_{\delta}^*(c)$

5.3 One-sided Limits

Definition 5.5. Let $\varnothing \subsetneq A \subset \mathbb{R}$ and let $f: A \to \mathbb{R}$.

1. Let c be a cluster point of $A \cap (c, \infty)$. We say that L is the **right-hand** limit of f at c if for any given $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$x \in A \text{ and } c < x < c + \delta \Rightarrow |f(x) - L| < \epsilon$$

In this case, we write

$$\lim_{x \to c^+} f(x) = L$$

2. Let c be a cluster point of $A \cap (-\infty, c)$. We say that L is the **left-hand** limit of f at c if for any given $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$x \in A \text{ and } c - \delta < x < c \Rightarrow |f(x) - L| < \epsilon$$

In this case, we write

$$\lim_{x \to c^{-}} f(x) = L$$

3. The limits $\lim_{x\to c^+} f(x)$ and $\lim_{x\to c^-} f(x)$ are called **one-sided** limits at the point x=c.

Theorem 5.13. Let c be a cluster point of both $A \cap (c, \infty)$ and $A \cap (-\infty, c)$. Then $\lim_{x \to c^-} f(x) = L$ exists if and only if both $\lim_{x \to c^+} f(x)$ and $\lim_{x \to c^-} f(x)$ exist and

$$\lim_{x \to c^+} f(x) = \lim_{x \to c^-} f(x) = L$$

Theorem 5.14 (Basic Principle). Let $f, g: A \to \mathbb{R}$ be two functions, and let c be a cluster point of $A \cap (c, c+h)$ for some h > 0. If f(x) = g(x) for all $x \in A \cap (c, c+h)$, then

$$\lim_{x \to c^+} f(x) = \lim_{x \to c^+} g(x)$$

provided one of these limits exists.

Definition 5.6 (The greatest integer function).

For $x \in \mathbb{R}$, we let

[x] = greatest integer less than or equal to x

So for each $n \in \mathbb{Z}$,

$$[x] = n$$
 if $x \in [n, n+1)$

Theorem 5.15 (Sequential Criterion for right-hand limits).

Let $f:A\to\mathbb{R}$ be a function, and let c be a cluster point of $A\cap(c,\infty)$. Then the following statements are equivalent:

$$Limx \rightarrow c^+ f(x) = L$$

For every sequence (x_n) in $A \cap (c, \infty)$ satisfying $\lim_{n \to \infty} x_n = c$, one has $\lim_{x \to \infty} f(x_n) = L$.

Remark: Limit theorems and squeeze theorem for single sided limit is similar and thus not introduced here.

5.4 Infinite Limit

Definition 5.7. Let $f: A \to \mathbb{R}$ be a function, and let c be a cluster point of A.

1. We say that f(x) tends to ∞ as $x \to c$ if for every M > 0, there exists $\delta = \delta(M) > 0$ such that

$$x \in A \text{ and } 0 < |x - c| < \delta \Rightarrow f(x) > M$$

In this case, $\lim_{x \to c} f(x) = \infty$

2. We say that f(x) tends to $-\infty$ as $x \to c$ if for every M < 0, there exists $\delta = \delta(M) > 0$ such that

$$x \in A \text{ and } 0 < |x - c| < \delta \Rightarrow f(x) < M$$

In this case, $\lim_{x\to a} f(x) = -\infty$

Theorem 5.16 (Sequential criterion for infinite limits).

Let $f:A\to\mathbb{R}$ be a function and let c be a cluster point of A. Then the following are equivalent:

- 1. $\lim_{x \to c} f(x) = \infty$
- 2. For every sequence $\{x_n\}$ in $A \setminus \{c\}$ satisfying $\lim_{n \to \infty} x_n = c$, one has

$$\lim_{n\to\infty} f(x_n) = \infty$$

5.5 Limits and Infinity

Definition 5.8. Let $\emptyset \subseteq A \subset \mathbb{R}$, and let $f: A \to \mathbb{R}$ be a function.

1. Suppose that A is **not** bounded above.

We say that L is the **limit** of f as $x \to \infty$ if for any given $\epsilon > 0$, there exists $M = M(\epsilon) > 0$ such that

$$x \in A$$
 and $x > M \Rightarrow |f(x) - L| < \epsilon$

2. Suppose that A is **not** bounded below.

We say that L is the **limit** of f as $x \to \infty$ if for any given $\epsilon > 0$, there exists $M = M(\epsilon) < 0$ such that

$$x \in A$$
 and $x < M \Rightarrow |f(x) - L| < \epsilon$

In this case, we write $\lim_{x\to\infty} f(x) = L$

Theorem 5.17 (Sequential Criterion for limits at Infinity).

Let $f:A\to\mathbb{R}$ be a function, and suppose A is not bounded above. Then the following statements are equivalent:

- 1. $\lim_{x \to \infty} f(x) = L$.
- 2. For any sequence (x_n) in A such that $x_n \to \infty$, one has $f(x_n) \to L$.

Remark: The limit theorems and squeeze theorem are similar and not stated here.

5.6 Infinite Limits at Infinity

Definition 5.9. Let $f: A \to \mathbb{R}$ be a function, and suppose that A is **not** bounded above.

We say that f(x) tends to ∞ as $x \to \infty$, if for any M > 0, there exists K = K(M) > 0 such that

$$x \in A \text{ and } x > K \Rightarrow f(x) > M$$

In this case, we write

$$\lim_{x \to \infty} f(x) = \infty$$

6 Continuous Functions

Definition 6.1 ($\epsilon - \delta$ definition of continuity).

Let $\emptyset \subsetneq A \subset \mathbb{R}$ and $a \in A$. A function $f: A \to \mathbb{R}$ is said to be **continuous at** x = a if for any given $\epsilon > 0$, there exists $\delta = \delta(\epsilon, a) > 0$ such that

$$|f(x) - f(a)| < \epsilon$$
 for all $x \in A$ satisfying $|x - a| < \delta$

(or equivalently, $x \in A$ and $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \epsilon$)

(or equivalently, $f(A \cap V_{\delta}(a)) \subset V_{\epsilon}(f(a))$)

If f is **not** continuous at a, we say that f is **discontinuous** at x = a.

If f is continuous at **every** point in A, we say that f is **continuous** on A.

Remark: If $a \in A$ is **not** a cluster point of A, then f is always continuous at a, since there exists $\delta > 0$ such that

$$A \cap (a - \delta, a + \delta) = \{a\}$$

Theorem 6.1 (Continuity in terms of Limits).

If $a \in A$ is a cluster point of A, then

f is continuous at
$$x = a \Leftrightarrow \lim_{x \to a} f(x) = f(a)$$

Theorem 6.2 (Sequential Criterion for Continuity).

Let $\varnothing \subseteq A \subset \mathbb{R}$, $a \in A$ and $f : A \to \mathbb{R}$. Then the following conditions are equivalent:

- 1. f is continuous at a.
- 2. For every sequence (x_n) in A satisfying $\lim_{n\to\infty} x_n = a$, one has $\lim_{n\to\infty} f(x_n) = f(a)$.

Remark: By this theorem, if we can find a sequence (x_n) of numbers in A such that

$$x_n \to a$$
, but $f(x_n) \not\to f(a)$

then f is not continuous at x = a.

6.1 Combinations of continuous functions

Theorem 6.3. Let $A \subseteq \mathbb{R}$ and let $f, g : A \to \mathbb{R}$ be functions that are continuous at $a \in A$. Let $k \in \mathbb{R}$.

- 1. Then the functions f+g, f-g, kf and $f\cdot g$ are all continuous at x=a, and
- 2. If $g(a) \neq 0$, then the function $\frac{f}{g}$ is also continuous at x = a.

Definition 6.2 (Composite functions).

Suppose that $f: A \to \mathbb{R}$, $g: B \to \mathbb{R}$ and $f(A) \subseteq B$.

We define the **composite function** $g \circ f : A \to \mathbb{R}$ by

$$(g \circ f)(x) = g(f(x)) \forall x \in A$$

Theorem 6.4.

Let A, B be subsets of \mathbb{R} and let $f: A \to \mathbb{R}$ and $g: B \to \mathbb{R}$ be functions such that $f(A) \subset B$. If f is continuous at $a \in A$ and g is continuous at f(a), then the composite function $g \circ f$ is continuous at a.

6.2 Continuous functions on Intervals

Definition 6.3. A function $f: A \to \mathbb{R}$ is said to be **bounded** on A if the image f(A) is a bounded set, i.e., there exists M > 0 such that

$$|f(x)| < M \forall x \in A$$

Similarly, f is said to be **bounded** above(resp. below) on A if the image f(A) is bounded above(resp. below).

Theorem 6.5.

Let $f:[a,b]\to\mathbb{R}$ be a continuous function on the closed bounded interval [a,b]. Then f is bounded on [a,b].

Definition 6.4 (Absolute Maximum/Minimum).

Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$.

1. We say that f has an absolute maximum on A if there exists $x^* \in A$ such that

$$f(x^*) \ge f(x) \forall x \in A$$

In this case, x^* is called an **absolute maximum point** for f on A, and we have

$$f(x^*) = \max f(A)$$

2. We say that f has an **absolute minimum** on A if there exists $x_* \in A$ such that

$$f(x^*) \le f(x) \forall x \in A$$

In this case, x_* is called an **absolute maximum point** for f on A, and we have

$$f(x_*) = \max f(A)$$

Theorem 6.6 (Extreme Value Theorem).

Suppose that $f:[a,b] \to \mathbb{R}$ is a continuous function on the closed bounded interval [a,b]. Then f has a absolute maximum and an absolute minimum on [a,b], i.e., there exists $c_1, c_2 \in [a,b]$ such that

$$f(c_1) \le f(x) \le f(c_2) \forall x \in [a, b]$$

Theorem 6.7 (Intermediate Value Theorem).

Suppose that a function $f:[a,b]\to\mathbb{R}$ is continuous on the closed bounded interval [a,b].

Then for any number L between f(a) and f(b), there exists $c \in (a,b)$ such that f(c) = L.

Theorem 6.8. Let $a, b \in \mathbb{R}$ with a < b. Suppose that $f : [a, b] \to \mathbb{R}$ is continuous on [a, b]. Then the image f([a, b]) is the closed bounded interval [m, M], where

$$m = \min f([a, b]), \quad M = \max f([a, b])$$

i.e., we have f([a, b]) = [m, M].

Theorem 6.9 (Preservation of Intervals).

Let I be an interval in \mathbb{R} , and suppose a function $f: I \to \mathbb{R}$ is continuous on I. Then f(I) is an interval.

Remark: The image interval f(I) may not have the same form as the domain interval I.

6.3 Monotone and Inverse functions on Intervals

Definition 6.5. Let $A \subseteq \mathbb{R}$ and let $f: A \to \mathbb{R}$ be a function.

1. f is said to be **increasing** on A if

$$x_1, x_2 \in A \text{ and } x_1 \leq x_2 \Rightarrow f(x_1) \leq f(x_2)$$

f is said to be **strictly increasing** on A if

$$x_1, x_2 \in A \text{ and } x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$$

2. f is said to be **decreasing** on A if

$$x_1, x_2 \in A \text{ and } x_1 \leq x_2 \Rightarrow f(x_1) \geq f(x_2)$$

f is said to be **strictly decreasing** on A if

$$x_1, x_2 \in A \text{ and } x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$$

A function is said to be **monotone** on A if it is either increasing or decreasing on A.

A function is said to be **strictly monotone** on A if it is either strictly increasing or strictly decreasing on A.

Theorem 6.10. Let $f: I \to \mathbb{R}$ be increasing on I. If $c \in I$ is not an endpoint of I, then

- 1. $\lim_{x \to c^{-}} f(x) = \sup\{f(x) : x \in I, x < c\}$
- 2. $\lim_{x \to c^+} f(x) = \int \{ f(x) : x \in I, x > c \}.$
- 3. $\lim_{x \to c^{-}} f(x) \le f(c) \le \lim_{x \to c^{+}} f(x)$.

Theorem 6.11 (Continuous Inverse Theorem).

Let $I \subseteq \mathbb{R}$ be an interval and $f: I \to \mathbb{R}$ be a strictly monotone function. If f is continuous on I and J = f(I), then its inverse function $f^{-1}: J \to \mathbb{R}$ is strictly monotone and continuous on J.

6.4 Uniform Continuity

Definition 6.6 (Uniform continuity).

Let $\emptyset \subsetneq A \subseteq \mathbb{R}$. A function $f: A \to \mathbb{R}$ is said to be **uniformly continuous** on A if for any given $\epsilon > 0$, there exists $\delta = \delta(\epsilon) > 0$ such that

$$x, u \in A \text{ and } |x - u| < \delta \Rightarrow |f(x) - f(u)| < \epsilon$$

(or equivalently,)

$$|f(x) - f(u)| < \epsilon \quad \forall x, u \in A \text{ such as } |x - u| < \delta$$

Theorem 6.12 (Sequential Criterion for Uniform Continuity).

The function $f: A \to \mathbb{R}$ is uniformly continuous on A if and only if for any two sequences (x_n) and (u_n) in A such that $x_n - u_n \to 0$. we have $f(x_n) - f(u_n) \to 0$.

Theorem 6.13. The function $f: A \to \mathbb{R}$ is not uniformly continuous on A if and only if there exist two sequences (x_n) and (u_n) in A such that $x_n - u_n \to 0$ but $f(x_n) - f(u_n) \not\to 0$.

Theorem 6.14.

Let $f:[a,b]\to\mathbb{R}$ be continuous on a closed bounded interval [a,b]. Then f is uniformly continuous on [a,b].

Theorem 6.15.

Let $A \subseteq \mathbb{R}$, and let $f: A \to \mathbb{R}$ be uniformly continuous on A. If (x_n) is a Cauchy sequence in A, then $(f(x_n))$ is a Cauchy sequence in \mathbb{R} .

Theorem 6.16 (Continuous Extension Theorem).

A function $f:(a,b)\to\mathbb{R}$ is uniformly continuous on the open interval (a,b) if and only if f can be defined at the endpoints x=a and x=b, so that the extended function is continuous on [a,b].