29 сен - 5 окт	5	Магнитное поле постоянного тока. Магнитный момент.	⁰ 5.1 ⁰ 5.2 ⁰ 5.3	5.5 5.10 5.17 5.26	5.12 5.14 5.23 T7
-------------------	---	--	--	-----------------------------	----------------------------

N5.1

 0 **5.1.** Определите индукцию магнитного поля в центре крайнего витка длинного соленоида с плотностью намотки n витков/см. По виткам соленоида протекает постоянный ток I.

$$\underline{\text{Ответ:}} B = \frac{2\pi nI}{c}.$$

Marnimure noue b yennye namyunni $B_o = \frac{4\pi}{c}$ In Paccisonyeen gbe namyunni, coegemenin noenegobanevsko.

Torga, elnu ux paemannpubans nejalumno, mo none B b morme A c ognoù emoponn, enraghbannel y nonin npainnex burner namywen 1 n 2. B = B n, 1 Bn z = 2 Bn

C grupoir emoponer, norganisals ogna sonsume nanguma c normals buyunger $B = B_0 = \frac{c}{C}$ In.

Onkun.
$$B_n = \frac{2\pi n I}{c}$$

⁰5.2. Проводящий контур, по которому течёт постоянный ток I, состоит из отрезков дуг и радиусов (см. рис.). Определите индукцию магнитного поля в точке O.

 $\underline{\text{OTBET:}} B = \frac{\pi I}{2c} \left(\frac{1}{r_1} - \frac{1}{r_2} \right)$

Dano: Venueure I, r, v_{ℓ} for q_{ℓ} re u_{ℓ} cabapa - Normaea: u_{ℓ} u_{ℓ}

=>B₀= B₀=
$$\int \frac{I}{c} \left[\frac{d\vec{l}}{r^3} \cdot \vec{r} \right]_{L^2} = \frac{I}{c} \left[\int \frac{r de}{r^3} + \int \frac{r de}{r^3} \right] =$$

 0 5.3. Плоский конденсатор с обкладками в виде круглых дисков радиуса R заполнен немагнитной слабо проводящей средой. Через конденсатор протекает постоянный ток I. Найдите индукцию магнитного поля на расстоянии $r \leq R$ от оси конденсатора.

$$\underline{\text{Otbet:}} B = \frac{2I}{c} \cdot \frac{r}{R^2}.$$

Dano Peruence

R. I for meopere o gapagnegau.

B=7 $f(\vec{b},d\vec{l}) = \frac{u_H}{c} \angle I_i$ $f(\vec{b},d\vec{l}) = \frac{u_H}{c} \angle I_i$

$$\Rightarrow B(r) = \frac{2J}{c} \frac{r}{R}.$$