Westlake University Fundamental Algebra and Analysis I

Exercise sheet 6 - 3 : linear algebra : polynomial and formal power series

You probably think that one knows everything about polynomials.

— Serge Lang

- 1. Find the quotient and remainder of f(T) dividing g(T).
 - (1) $f(T) = T^5 + 4T^4 + T^2 + 2T + 3$, g(T) = T 2;
 - (2) $f(T) = T^n 1$, g(T) = T a, where a is a scalar.
- **2.** Find the greatest common divisor of f(T) and g(T).
 - (1) $f(T) = T^5 + T^4 5T^3 5T^2 + 4T + 4$, $g(T) = T^4 + T^3 17T^2 21T + 36$:
 - (2) $f(T) = 3T^4 8T^2 3$, $g(T) = T^3 2T^2 3T + 6$.
- **3.** Find a polynomial $P \in \mathbb{R}[T]$ divisible by $T^2 + 1$ such that P(T) + 1 is divisible by $T^3 + T^2 + 1$.
- **4.** Suppose $f \in k[T]$, $f(f(T)) = (f(T))^k$, where $k \in \mathbb{N}$. Find all such f.
- **5.** Let a, b be two strictly positive real numbers. Find all positive integer n, such that the polynomial $T^2 (a^2 + b^2)$ can devise $T^{2n} (a^n + b^n)^2$ in $\mathbb{R}[T]$.
- **6.** Find the polynomial f(T) with the smallest degree, such that the remainder of f(T) dividing $(T-1)^2$ is 2T, and the remainder of f(T) dividing $(T-2)^2$ is 3T.
- 7. Let k be a field. In the k-algebra k[T], we consider the sub-k-algebra \mathscr{A} generated by T^2 and T^3 , noted $\mathscr{A} = k[T^2, T^3]$. Prove that k[T] and \mathscr{A} are not isomorphic as k-algebras.
- **8.** Let K and L be two fields. If the rings K[T] and L[T] are isomorphic, prove that K and L are isomorphic as fields.
- **9.** Let k be a field, $P \in k[T]$, and $b, c \in \mathbb{N}$ satisfying gcd(b, c) = 1. Prove that $(P^b 1)(P^c 1)$ devises $(P 1)(P^{bc} 1)$.
- **10.** Let $m_1, \ldots, m_k \in \mathbb{N}^+$. Prove that the least common multiple of the polynomials $(T^{m_i} 1)_{1 \leq i \leq k}$ is $T^d 1$, where $d = \text{lcm}(m_1, \ldots, m_k)$.

- **11.** Let k be a field, and $r_1, \ldots r_k \in \mathbb{N}$, such that $0 \leq r_1 < \cdots < r_k \leq n-1$, where $n \in \mathbb{N}_{\geq 2}$. We give $m_1, \ldots, m_k \in \mathbb{N}$, such that $m_i \equiv r_i \pmod{n}$ for $i = 1, \ldots, k$. Prove that the remainder in the Euclidean division of $T^{m_1} + \cdots + T^{m_k}$ by $T^n 1$ in k[T] is $T^{r_1} + \cdots + T^{r_k}$, and calculate the quotient.
- **12.** Let $q, m \in \mathbb{N}^+$. Find a sufficient and necessary condition such that $1 + T^m + \cdots + T^{qm}$ is divisible by $1 + T + \cdots + T^q$ in k[T], where k is a field.
- **13.** Let $g(X), p(X) \in K[X]$ with $\deg(p) > 0$. Prove that there exist polynomials $\{a_i(X)\}_{i \geq 0}$, such that $\deg(a_i) < \deg(p)$,

$$g(X) = a_0(X) + a_1(X)p(X) + \dots + a_{e-1}(X)p(X)^{e-1},$$

and

$$\frac{g(X)}{p(X)^e} = \frac{a_0(X)}{p(X)^e} + \frac{a_1(X)}{p(X)^{e-1}} + \dots + \frac{a_{e-1}(X)}{p(X)}.$$

Find an analog of this property over \mathbb{Z} .

- **14.** Let k be a field, $f(T) = a_n T^n + \cdots + a_0 \in k[T]$, and $c \in k$. We define $f(c) = a_n c^n + \cdots + a_0 \in k$ is the **value** of f(T) at c. If f(c) = 0, then we say c is a **root** of f(T), or T = c is a **root** or **solution** to the equation f(T) = 0.
 - (1) Let $f(T) \in k[T]$, and $c \in k$. Prove that the remainder of f(T) divided by T c is f(c). In particular, f(T) is divisible by T c if and only if f(c) = 0.
 - (2) When $\deg(f) = n$, prove that f(T) has at most n roots counting multiplicities.
 - (3) Let $f(T), g(T) \in k[T]$, $\deg(f), \deg(g) \leq n$. Suppose there exist $c_0, \ldots, c_n \in k$, such that $f(c_i) = g(c_i)$. $i = 0, \ldots, n$. Prove that f(T) = g(T).
 - (4) Let $f(T) \in k[T]$ satisfying $\deg(f) \leqslant n$, and $a_0, \ldots, a_n \in k$ be different. Prove

$$f(T) = \sum_{i=0}^{n} \frac{(T - a_0) \cdots (T - a_{i-1})(T - a_{i+1}) \cdots (T - a_n)}{(a_i - a_0) \cdots (a_i - a_{i-1})(a_i - a_{i+1}) \cdots (a_i - a_n)} f(a_i).$$

This is called Lagrange interpolation formula.

- **15.** Let k be a field, and $f(T) \in k[T]$. We denote by f'(T) the derivative of f(T). Let $c \in k$, and prove the following results:
 - (1) c is a multiple root of f(T) if and only if f(c) = f'(c) = 0.

- (2) c is a multiple root of f(T) if and only if c is a root of gcd(f(T), f'(T)).
- (3) If gcd(f(T), f'(T)) = 1, then f(T) has no multiple root (even in the extension of k).
- (4) If f(T) is irreducible over k and $f'(T) \neq 0$, then f(T) has no multiple root (even in the extension of k).
- (5) Let $p(T) \in k[T]$ be irreducible. Then p(T) is a multiple factor of f(T) if and only if p(T) is a common factor of f(T) and f'(T).
- (6) f(T) has no common factor if and only if gcd(f(T), f'(T)) = 1.
- **16.** Let k be a field, k' is an extension of k. Let $a \in k'$, and we denote

$$J(a) = \{ f \in k[T] \mid f(a) = 0 \}.$$

Suppose $J(a) \neq \{0\}$.

- (1) Prove that there exists the unique polynomial m(T) whose leading coefficient is 1, such that $J(a) = \{h(T)m(T) \mid h(T) \in k[T]\}.$
- (2) Prove that the previous m(T) is irreducible.
- 17. Expand the following rational functions as formal power series.

 - (1) $\frac{1}{1+T+\cdots+T^{n-1}}$, where $n \in \mathbb{N}_{\geq 2}$. (2) $\frac{1}{(1-aT)^p(1-bT)^q}$, where $a \neq b, p, q \in \mathbb{N}^+$.
 - (3) $\frac{1}{(1-T^p)(1-T^q)}$ with p and q are coprime.
- **18.** For an $n \in \mathbb{N}$, let u_n be the number of permutations $\sigma \in \mathfrak{S}_n$ such that $\sigma^2 = \text{Id. We put } u_0 = u_1 = 1.$
 - (1) Prove that for all $n \in \mathbb{N}_{\geq 2}$, we have $u_n = u_{n-1} + (n-1)u_{n-2}$.
 - (2) We consider the formal power series $S = \sum_{n \geq 0} \frac{u_n}{n!} T^n \in \mathbb{C}[T]$. Prove that S' - (1+T)S = 0, and deduce that $S = \exp\left(T + \frac{T^2}{2}\right)$. Deduce the expression of u_n .