Adversarial Game Playing Agent for Isolation - Heuristic Analysis*

Konrad Burnik

1 Background

The goal was to implement a game playing agent for the variant of the ISOLATION GAME in which players move like Knights instead of Queens in Chess. I implemented a Minimax search algorithm as well as Minimax with Alpha-Beta pruning. After this I tested the implemented agents with three different score evaluation heuristics against several baseline players which were provided. One in particular is useful to work with, namely the baseline agent which uses the ID_Improved heuristic from the lectures. In this report we present the results of improving further on this heuristic.

2 Implemented agents and heuristics

The ID_Improved heuristic is the following

$$ID_Improved = \#ownMoves - \#oppMoves$$
 (1)

The question is can we somehow improve on this heuristic by perhaps, adding some additional information? One additional useful information that comes to mind is the CenterScore heuristic which basically measures the distance of the current player's position from the center of the board. Let (x, y) be the position of the player. Let w = BoardWidth/2 and h = BoardHeight/2. Then the CenterScore metric is given by.

$$CenterScore = (x - w)^{2} + (y - h)^{2}$$
(2)

I believe that this additional information is useful for a game agent as the player which is "closer" to the center has more freedom to move. Therefore,

^{*}submitted as part of the Udacity AI Engineer Nanodegree

in the following I shall test the intuition that adding this information to an already good heuristic will improve further the playing strength of the agent.

In the following I shall work on incorporating this information in the ID_Improved heuristic and do several transformations of it. For a player, let

$$ownScore = \#ownMoves \cdot oppCenterScore$$

and

$$oppScore = \#oppMoves \cdot ownCenterScore$$

The reasoning is that, not only does a player know his number of available moves but also how far is his opponent from the center. If say, the opponent is very close to the center (CenterScore is then closer to zero) then that will make some of these moves not very useful since the opponent has a better strategic position on the board. For the improved metric we now define as a difference between these two scores:

$$CustomScore = ownScore - oppScore$$
 (3)

If we make a step back and try to also improve further on the measurement of ID_Improved we might think of considering the ratio of ownMoves versus oppMoves. The intuition is that the player who is better should have more available moves and the player which is worse should have less. In particular we can maximize

$$\frac{ownMoves}{oppMoves} - \frac{oppMoves}{ownMoves}$$

This is equivalent to maximizing $ownMoves^2 - oppMoves^2$ so that is what we shall use to define CustomScore2.

$$CustomScore2 = \#ownMoves^2 - \#oppMoves^2$$
 (4)

We now combine CustomScore2 with CenterScore in similar way we obtained CustomScore. The intuition is to combine the knowledge of player's position as well as the increase in player's available options and decrease of the opponent's.

$$CustomScore3 = oppCenter \cdot \#ownMoves^2 - ownCenter \cdot \#oppMoves^2$$
 (5)

3 Results

In the following table we present the results of playing 200 matches for each of our implemented agent against the test players provided by the testing system.

Match	# Opponent	AB_Improved	AB_Custom	AB_Custom_2	AB_Custom_3	
		Won Lost	Won Lost	Won Lost	Won Lost	
1	Random	177 23	185 15	177 23	182 18	
2	MM_Open	114 86	141 59	111 89	136 64	
3	MM_Center	149 51	169 31	158 42	156 44	
4	${\tt MM_Improved}$	109 91	124 76	92 108	130 70	
5	AB_Open	106 94	110 90	99 101	132 68	
6	AB_Center	88 112	107 93	98 102	126 74	
7	AB_Improved	105 95	116 84	99 101	121 79	
Win Rate:		60.6%	68.0%	59.6%	70.2%	

There is a question whether using simpler heuristics could perhaps replace our complicated heuristic. Suppose we take the CustomScore2 heuristic and add a weight to either side of the subtraction in a similar way that was done in the lectures. We can try replacing for CustomScore and CustomScore2 with example

$$CustomScoreImproved = \#ownMoves^2 - 1.6 \cdot \#oppMoves^2$$
 (6)

$$CustomScoreImproved2 = 1.6 \cdot \#ownMoves^2 - \#oppMoves^2$$
 (7)

respectively. Here the value 1.6 is chosen empirically. The following experiment shows that this simple change to the original metric (4) does improve it in one case for about 2% however it did not outperform CustomScore3. In the following custom_score is replaced by CustomScoreImproved and custom_score_2 is replaced by CustomScoreImproved2.

Match #	Opponent	AB_Improved	AB_Custom	AB_Custom_2	AB_Custom_3	
		Won Lost	Won Lost	Won Lost	Won Lost	
1	Random	173 27	181 19	172 28	183 17	
2	MM_Open	113 87	130 70	121 79	140 60	

Win Rate:		59 4%	<u>'</u>	62	8%	<u>/</u>	60	19	<u>'</u>	68	1%
7	AB_Improved	98 	102	104	 	96 	96 	 	104	112	88
6	AB_Center	104	96	92		108	92	1	108	115	85
5	AB_Open	96 l	104	106		94	100	1	100	114	86
4	${\tt MM_Improved}$	95	105	115		85	106	1	94	133	67
3	MM_Center	152	48	151		49	154		46	157	43

4 Conclusion

For this assignment, three different heuristics were implemented. Based on the experiment results, the CustomScore heuristic was better by about 8% than the ID_Improved heuristic. What is interesting to note here is that CustomScore2 has roughly the same performance as the ID_Improved. However, when CustomScore2 is combined with CenterScore to obtain CustomScore3 heuristic, the performance improves by 10%. It should be noted here that also to estimate the uncertainty in these measurements, we would need to perform this experiment several times and calculate the confidence intervals.

5 Recommended heuristic

I would recommend using the CustomScore3 heuristic for the following reasons.

- 1. Based on the experiment results, the heuristic improves on the ID_Improved heuristic as well as the other considered heuristics with a Win Rate of roughly 70%.
- 2. It depends only on the current state of the game and does not involve using any additional memory or move history of the game.
- 3. It aligns with the intuition that knowing more information, namely the players position should contribute to a better strategy.