KAPPA+

Moving from Lambda and Kappa Architectures to Kappa+ at UBER

ROSHAN NAIK

FLINK FORWARD 2019 – SAN FRANCISCO

PROBLEM

Realtime jobs often need an offline counterpart:

- Backfill Retroactively fix, or recompute values once all data has arrived.
- Offline Experimentation & Testing: Before taking the job online.
- Online and offline feature generation: for ML.
- Bootstrapping State: for realtime jobs.

CURRENT SOLUTIONS

1. Lambda Architecture [2011]

- Nathan Marz (Creator of Apache Storm)
 - "How to beat the CAP theorem"
- Evidence of prior art [1983]:
 - Butler Lampson (Turing Award Laureate)
 - "Hints for Computer System Design" Xerox PARC
- Core Idea: Streaming job for realtime processing. Batch job for offline processing.

2. Kappa Architecture [2014]

- Jay Krepps (Creator of Kafka, CoFounder/CEO Confluent)
 - "Questioning the Lambda Architecture"
- Core Idea: Long data retention in Kafka. Replay using realtime code from an older point.

LIMITATIONS: LAMBDA ARCHITECTURE

- Maintain <u>dual code</u> for Batch and Streaming
- Batch APIs often <u>lack required constructs</u> (e.g. sliding windows)
- Variation: Unified API: SQL / Beam. Offline job run in batch mode
- Limitations of Batch mode (e.g. Spark):
 - <u>Divide large jobs</u> into smaller ones to limit <u>resource consumption</u>
 - Manual/automated sub job <u>co-ordination</u>
 - Windows that span batch boundaries are problematic

LIMITATIONS: KAPPA ARCHITECTURE

Longer retention in Kafka: Expensive, Infeasible

- Kafka not really a data warehouse. More expensive than HDFS.
- Retention beyond a few days not feasible. Single node storage limits partition size.
- Workaround 1: Tiered Storage (Pulsar)
 - Data <u>duplication</u>: Usually need a separate queryable copy in Hive/warehouse.
 - Low <u>utilization</u>: old data accessed only by Backfill jobs.
- Workaround 2: Mini batches
 - Load small batches into Kafka and process one batch at a time.
 - Sort before loading in Kafka. Try to recreate original arrival order.
 - Expensive: Copying to Kafka and sorting are both costly.

Issues when using multiple sources

Low volume topic drains faster → messes up windowing → dropped data or OOM

DESIRED CHARACTERISTICS

- Reuse code for Online and Offline Processing.
- Windowing should work well in offline mode as well.
- No splitting jobs. Single job should processes any amount of data.
- Hardware requirements should not balloon with size of input data.
- Not have to rewrite jobs using new APIs.
- Efficient.

KAPPA+

Introducing the Architecture

KEY CHANGE IN PERSPECTIVE

Decoupling Concepts:

- Bounded vs Unbounded (Nature of Data)
- Batch vs Streaming (Nature of Compute)
- Offline vs Realtime (Mode of Use)
- Instead of thinking: How to enable any job in <u>Streaming and Batch</u> mode.
 - Lambda / SQL / Beam / Unified APIs
- Think: Limits to job types that can run in Realtime (and Offline) mode.
 - Kappa+

Impact:

- <u>No need to support every type of batch job</u> (departure from Unified API approach).
- Identify the types of jobs to support: Kappa+ job classification system.

ARCHITECTURE

Central Idea - counter intuitive

 Use Streaming compute to process data directly from warehouse. (i.e. not tied to Kafka)

Architectural Components:

- 1. Job classification system
 - 4 categories
- 2. Processing model
 - Same processing basic model with tweaks based on job category

Assumes: Data in warehouse (Hive/Hdfs/etc) is partitioned by time (hourly/daily/etc).

JOB CLASSIFICATION SYSTEM

- Category 1 : Stateless Jobs
 - No windowing. Memory not a concern.
 - Data order usually not concern.
- Category 2: Windowing with aggregation (Low - Medium Memory)
 - Eg: Aggregated Windows: sum / avg / count / min / max / reduce
 - Retains only aggregate value in each window.
 - Order of data is important. But solvable without need for strict ordering.

- Category 3: Windowing with retention (High Memory)
 - Holds on to all records till window expiration.
 - **Eg.** Joins, pattern analysis within window.
 - Memory requirements much higher than cat 2.
- Cat 4 : Global Windows with retention
 - **E.g.** Sorting entire input data. Joins without windowing.
 - Not found in realtime jobs.

PROCESSING MODEL

1. Partially ordered reads

- Strict Ordering across partitions: Only one partition at a time, older partitions first.
 - Constrains memory/container requirements to what is needed to process 1 partition.
 - Single job can process any number of partitions with finite resources.
 - Helps windowing correctness.

Un-Ordered reads <u>within</u> partition

- Read records/files within a partition in any order. Opens up concurrency and high throughputs.
- Order could be exploited if necessary.

2. Emit watermark when switching to next partition

Allows Out-Of-Order reads within partition and windowing correctness.

3. Lockstep progression, in case of multiple sources

- All sources move to next partition at the same time.
- Prevents low volume sources from racing ahead.

HANDLING EACH CATEGORY

- Cat 1 : Stateless
 - Nothing special. Set parallelisms based on desired throughput.
- Cat 2: Windowing with aggregation (Low Med mem)
 - Employ memory state backend.
 - Windowing parallelism based on amount of data hosted in memory for one partition. Other parallelisms, based on throughput.
- Cat 3: Windowing with retention (High Mem)
 - **Either:** Use RocksDB state backend.
 - Or: reduce partition size, and use Mem state backend.
 - Or: Look into exploiting order within partition.

BENEFITS OVER BATCH

BATCH (SQL/ BEAM/ UNIFIED API)

- Resource requirements grows with <u>total</u> data volume.
 - Tricky to estimate and allocate
- Split into smaller jobs and coordinate them.
 - Windows that cross batch boundaries are problematic.
- 3. Results visible after all data is

 Note: Kappat processing model could be adopted in Unified APIs to address these limitations.

KAPPA+

- Resources bounded by amount needed to process <u>1 partition</u>.
 - Easier to estimate and allocate
- 2. Single job can process any number of partitions.
- 3. Results visible after each partition.

IMPLEMENTATION

Architecture is not tied any Streaming Engine.

ADOPTING KAPPA+ ON STREAMING ENGINES

No new APIs.

Hdfs/Hive/etc. Sources need behavioral change:

- 1. One partition at a time, older partitions first.
- 2. Concurrent reads within partition.
- 3. Lock step progression in case of multiple sources.
 - Kafka source needs to only support #3 since data is already in order.

Watermarking:

Emit watermarks at the end of partition to flush windows.

A JOB SUPPORTING REALTIME & OFFLINE

```
dataSource = offlineMode ? hiveSource : kafkaSource;
watermaker = offlineMode ? new OfflineWM() : new RealtimeWM();
dataSource.assignWatermarkGenerator(watermarker);
// Same logic. Adjust parallelisms for offline & online modes.
job = dataSource.transform(..)
                .filter(..)
                .keyBy(..)
                .window(..)
```

KAPPA+ ON FLINK

UBER internal Hive (/HDFS) source with Kappa+ support.

ONE PARTITION AT A TIME & CONCURRENT READS

MULTI SOURCE LOCK STEP PROGRESSION

DETAILS

- 1. **Time Skew:** If arrival time is used for partitioning data in the warehouse, instead of event creation time (used by job). There can be two types of data skews:
 - Forward skew: Some events move into a future partition. For example due to late arrival.
 - Could lead to appearance of missing data.
 - Consider processing an additional partition after the last one, if this is an issue.
 - Backward skew: Some events moving into an older partition.
 - Can lead to appearance of data loss. As the events are not in the partition that you processed.
 - Improper watermarking can close Windows prematurely and cause data loss.
- 2. **Differing partition strategies:** Job has two sources. First source reads Hive table with daily partitions, second source reads table with hourly partition.
 - Solution: Watermark progression dictated by daily (i.e. larger) partition
- 3. May need to **throttle** throughput of offline job if writing to production critical destination.

DISTRIBUTED COMPUTING

Offline

DISTRIBUTED COMPUTING

DISTRIBUTED COMPUTING

QUESTIONS

Email: roshan@uber.com

@UberEng

UBER Engineering Blog: eng.uber.com

Twitter: <a>@naikrosh ,

UBER is hiring!! Realtime Platform needs your expertise!