Алгебра. Экзамен

Бобень Вячеслав @darkkeks, GitHub

За билеты начиная с 17-го спасибо Даниэлю Хайбулину и Анастасии Григорьевой @kiDaniel, @weifoll

2020

"Какой-то ты слишком идеальный, редуцируем ero!".

- Bottom text

Содержание

1	Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры групп. Порядок группы. Подгруппы. Описание всех подгрупп в группе $(\mathbb{Z},+)$	
2	Подгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы	Ę
3	Смежные классы. Индекс подгруппы. Теорема Лагранжа	(
4	Пять следствий из теоремы Лагранжа	7
5	Нормальные подгруппы и факторгруппы	8
6	Гомоморфизмы групп. Простейшие свойства гомоморфизмов. Изоморфизмы групп. Ядро и образ гомоморфизма групп, их свойства	(
7	Теорема о гомоморфизме для групп	10
8	Классификация циклических групп	11
9	Прямое произведение групп. Разложение конечной циклической группы. Теорема о строении конечных абелевых групп	12
10	Экспонента конечной абелевой группы и критерий цикличности	13
11	Криптография с открытым ключом. Задача дискретного логарифмирования. Система Диффи Хелмана обмена ключами. Криптосистема Эль-Гамаля	IЛ- 14
12	Кольца. Коммутативные кольца. Обратимые элементы, делители нуля и нильпотенты. Примеры колец. Поля. Критерий того, что кольцо вычетов является полем	1
13	Идеалы колец. Факторкольцо кольца по идеалу. Гомоморфизмы и изоморфизмы колец. Ядро и образ гомоморфизма колец. Теорема о гомоморфизме для колец	16
14	Кольцо многочленов от одной переменной над полем: деление с остатком, наибольший общий делитель двух многочленов, теорема о его существовании и линейном выражении	17
15	Теорема о том, что кольцо многочленов от одной переменной над полем является кольцом главных идеалов	18
16	Неприводимые многочлены. Факториальность кольца многочленов от одной переменной над по- лем	19

17 Критерий того, что факторкольцо $\mathbb{K}[x]/(h)$ является полем. Базис и размерность факторкольц $\mathbb{K}[x]/(h)$ как векторного пространства над полем \mathbb{K}	(a 20
18 Лексикографический порядок на множестве одночленов от нескольких переменных. Лемма конечности убывающих цепочек одночленов	o 21
19 Старший член многочлена от нескольких переменных. Элементарная редукция многочлена относительно другого многочлена. Лемма о конечности цепочек элементарных редукций относительн системы многочленов	
20 Остаток многочлена относительно заданной системы многочленов. Системы Грёбнера. Характеризация систем Грёбнера в терминах цепочек элементарных редукций	e- 23
21 S-многочлены. Критерий Бухбергера	24
22 Базис Грёбнера идеала в кольце многочленов от нескольких переменных, теорема о трёх эквива лентных условиях. Решение задачи вхождения многочлена в идеал	a- 25
23 Лемма о конечности цепочек одночленов, в которых каждый следующий одночлен не делится на один из предыдущих. Алгоритм Бухбергера построения базиса Грёбнера идеала	и 26
24 Теорема Гильберта о базисе идеала	27
25 Редуцируемость к нулю S -многочлена двух многочленов с взаимно простыми старшими членами	z 28
26 Характеристика поля. Расширение полей. Конечное расширение и его степень. Степень композиции двух расширений	2 9
27 Присоединение корня неприводимого многочлена. Существование конечного расширения исход ного поля, в котором заданный многочлен (a) имеет корень; (б) разлагается на линейные множи тели	
28 Алгебраические и трансцендентные элементы. Минимальный многочлен алгебраического элемента и его свойства	e- 31
29 Подполе в расширении полей, порождённое алгебраическим элементом	32
30 Порядок конечного поля. Автоморфизм Фробениуса	33
31 Теорема существования для конечных полей	34
32 Цикличность мультипликативной группы конечного поля и неприводимые многочлены над \mathbb{Z}_p	35

1 Бинарные операции. Полугруппы, моноиды и группы. Коммутативные группы. Примеры групп. Порядок группы. Подгруппы. Описание всех подгрупп в группе $(\mathbb{Z},+)$

Определение 1.1. *Множество с бинарной операцией* — это множество M с заданным отображением

$$M \times M \to M$$
, $(a,b) \mapsto a \circ b$.

Множество с бинарной операцией обычно обозначают (M, \circ) .

Определение 1.2. Множество с бинарной операцией (M, \circ) называется *полугруппой*, если данная бинарная операция *ассоциативна*, то есть

$$a \circ (b \circ c) = (a \circ b) \circ c$$
 для всех $a,b,c \in M$.

Не все естественно возникающие операции ассоциативны. Например, если $M=\mathbb{N}$ и $a\circ b=a^b$, то

$$2^{(1^2)} = 2 \neq (2^1)^2 = 4.$$

Другой пример неассоциативной бинарной операции: $M=\mathbb{Z}$ и $a\circ b:=a-b$.

Полугруппу обычно обозначают (S, \circ) .

Определение 1.3. Полугруппа (S, \circ) называется *моноидом*, если в ней есть *нейтральный элемент*, то есть такое элемент $e \in S$, что $e \circ a = a \circ e = a$ для любого $a \in S$.

Замечание. Если в полугруппе есть нейтральный элемент, то он один. В самом деле, $e_1 \circ e_2 = e_1 = e_2$.

Определение 1.4. Моноид (S, \circ) называется *группой*, если для каждого элемента $a \in S$ найдется *обратный элемент*, то есть такой $b \in S$, что $a \circ b = b \circ a = e$.

Обратный элемент обозначается a^{-1} .

Группу принято обозначать (G, \circ) или просто G, когда понятно, о какой операции идёт речь. Обычно символ \circ обозначения операции опускают и пишут просто ab.

Определение 1.5. Группа G называется коммутативной или абелевой, если групповая операция коммутативна, то есть ab = ba для любых $a, b \in G$.

Если в случае произвольной группы G принято использовать мультипликативные обозначения для групповой операции $-gh, e, g^{-1}$, то в теории абелевых групп чаще используют аддитивные обозначения, то есть a+b, 0, -a.

Определение 1.6. *Порядок* группы G — это число элементов в G. Группа называется *конечной*, если её порядок конечен, и *бесконечной* иначе.

Порядок группы G обозначается |G|.

Приведем несколько серий примеров групп.

1. Числовые аддитивные группы:

$$(\mathbb{Z}, +), (\mathbb{Q}, +), (\mathbb{R}, +), (\mathbb{C}, +), (\mathbb{Z}_n, +).$$

2. Числовые мультипликативные группы:

$$(\mathbb{Q}\setminus\{0\},\times), (\mathbb{R}\setminus\{0\},\times), (\mathbb{C}\setminus\{0\},\times), (\mathbb{Z}_p\setminus\{\overline{0}\},\times), \, p-\text{простое}.$$

3. Группы матриц:

$$\mathrm{GL}_n(\mathbb{R}) = \{A \in \mathrm{Mat}_{n \times n}(\mathbb{R}) \mid \det A \neq 0\}$$
 — полная линейная группа;

$$\mathrm{SL}_n(\mathbb{R}) = \{A \in \mathrm{Mat}_{n \times n}(\mathbb{R}) \mid \det A = 1\}$$
 — специальная линейная группа.

4. Группы перестановок (с операцией композиции):

симметрическая группа S_n — все перестановки длины $n, |S_n| = n!;$

знакопеременная группа A_n — чётные подстановки длины $n, |A_n| = \frac{n!}{2}$.

5. Группы преобразований: симметрия, движение.

Определение 1.7. Подмножество H группы G называется noderpynnoй, если выполнены следующие три условия:

- 1. $e \in H$;
- $2. \ ab \in H$ для любых $a,b \in H$;
- 3. $a^{-1} \in H$ для любого $a \in H$.

В каждой группе G есть несобственные подгруппы $H = \{e\}$ и H = G. Все прочие подгруппы называются собственными. Например, чётные числа $2\mathbb{Z}$ образуют собственную подгруппу в $(\mathbb{Z}, +)$.

Предложение 1.1. Всякая подгруппа в $(\mathbb{Z},+)$ имеет вид $k\mathbb{Z}$ для некоторого целого неотрицательного k.

Доказательство. Очевидно, что все подмножества вида $k\mathbb{Z}$ являются подгруппами в \mathbb{Z} .

Пусть $H \subseteq \mathbb{Z}$ — подгруппа. Если $H = \{0\}$, то $H = 0\mathbb{Z}$.

Иначе положим $k = \min(H \cap \mathbb{N}) \neq 0$. (это множество непусто, так как $\forall x \implies -x \in H$)

Тогда $k\mathbb{Z} \subseteq H$.

Покажем, что $k\mathbb{Z}=H.$ Пусть $a\in H$ — произвольный элемент. Поделим его на k с остатком.

a = qk + r, где $q \in H$, $0 \leqslant r < k \implies r = a - qk \in H$.

В силу выбора k получаем $r=0 \implies a=qk \in k\mathbb{Z}$.

2 Подгруппы. Циклические подгруппы. Циклические группы. Порядок элемента. Связь между порядком элемента и порядком порождаемой им циклической подгруппы

Пусть G — группа, $g \in G$ и $n \in \mathbb{Z}$. Определим степень следующим образом:

$$g^{n} = \begin{cases} \underbrace{g \cdots g}, & n > 0, \\ e, & n = 0 \\ \underbrace{g^{-1} \cdots g^{-1}}_{n}, & n < 0. \end{cases}$$

Свойства:

1.
$$g^m \cdot g^n = g^{m+n}, \forall n, m \in \mathbb{Z};$$

2.
$$(g^k)^{-1} = g^{-k}, \forall k \in \mathbb{Z};$$

3.
$$(q^n)^m = q^{nm}, \forall n, m \in \mathbb{Z}.$$

Определение 2.1. Пусть G — группа и $g \in G$. *Циклической подгруппой*, порожденной элементом g, называется подмножество $\{g^n \mid n \in \mathbb{Z}\}$ в G.

Циклическая подгруппа, порождённая элементом g, обозначается $\langle g \rangle$. Элемент g называется nopo ж дающим или образующим для подгруппы $\langle g \rangle$.

Например, подгруппа $2\mathbb{Z}$ в $(\mathbb{Z}, +)$ является циклической, и в качестве порождающего элемента в ней можно взять g = 2 или g = -2. Другими словами, $2\mathbb{Z} = \langle 2 \rangle = \langle -2 \rangle$.

Определение 2.2. Группа G называется $uu\kappa nuveckou$, если найдется такой элемент $g \in G$, что $G = \langle g \rangle$.

Определение 2.3. Пусть G — группа и $g \in G$. Порядком элемента g называется такое наименьшее натуральное число m, что $g^m = e$. Если такого натурального числа m не существует, говорят, что порядок элемента g равен бесконечности.

Порядок элемента обозначается $\operatorname{ord}(g)$. Заметим, что $\operatorname{ord}(g)=1$ тогда и только тогда, когда g=e.

Предложение 2.1. Пусть G — группа и $g \in G$. Тогда $\operatorname{ord}(g) = |\langle g \rangle|$.

Доказательство. Заметим, что если $g^k=g^s$, то $g^{k-s}=e$. Поэтому если элемент g имеет бесконечный порядок, то все элементы $g^n, n \in \mathbb{Z}$, попарно различны, и подгруппа $\langle g \rangle$ содержит бесконечно много элементов. Если же порядок элемента g равен m, то из минимальности числа m следует, что элементы $e=g^0, g=g^1, g^2, \ldots, g^{m-1}$ попарно различны. Далее, для всякого $n \in \mathbb{Z}$ мы имеем n=mq+r, где $0 \leqslant r \leqslant m-1$, и

$$g^n = g^{mq+r} = (g^m)^q g^r = e^q g^r = g^r.$$

Следовательно, $\langle g \rangle = \{e, g, g^2, \dots, g^{m-1}\}$ и $|\langle g \rangle| = m$.

Ясно, что всякая циклическая группа коммутативна и не более чем счётна. Примерами циклических группа являются группы $(\mathbb{Z},+)$ и $(\mathbb{Z}_n,+),$ $n\geqslant 1$.

Смежные классы. Индекс подгруппы. Теорема Лагранжа 3

Пусть G — группа, $H \subseteq G$ — подгруппа. Определим отношение L_H следующим образом: $(a,b) \in L_H \iff a^{-1}b \in H$.

Предложение 3.1. L_H — отношение эквивалентности.

Доказательство.

- 1. $a^{-1}a = e \in H$;
- 2. $a^{-1}b \in H \implies b^{-1}a = (a^{-1}b)^{-1} \in H;$ 3. $a^{-1}b \in H, b^{-1}c \in H \implies a^{-1}c = (a^{-1}b)(b^{-1}c) \in H.$

Заметим, что $a^{-1}b \in H \iff b \in aH$, поэтому класс эквивалентности элемента $a \in G$ совпадает с множеством aH.

Определение 3.1. Левым смежным классом элемента g группы G по подгруппе H называется подмножество

$$gH = \{gh \mid h \in H\}.$$

Наряду с левым смежным классом можно определить правый смежный класс элемента g:

$$Hq = \{hq \mid h \in H\}.$$

Все дальнейшие доказательства для правых смежный классов формулируются и доказываются аналогично.

Лемма 3.1. Пусть G — конечная группа и $H \subseteq G$ — конечная подгруппа. Тогда |gH| = |H| для любого $g \in G$.

Доказательство. Поскольку $gH = \{gh \mid h \in H\}$, в gH элементов не больше, чем в H. Если $gh_1 = gh_2$, то домножаем слева на g^{-1} и получаем $h_1 = h_2$. Значит, все элементы вида gh, где $h \in H$, попарно различны, откуда |gH| = |H|.

Определение 3.2. Пусть G — группа и $H \subseteq G$ — подгруппа. Индексом подгруппы H в группе G называется число левых смежных классов G по H.

Индекс группы G по подгруппе H обозначается [G:H].

Теорема 3.1 (Теорема Лагранжа). Пусть $G - \kappa$ онечная группа и $H \subseteq G - n$ одгруппа. Тогда

$$|G| = |H| \cdot [G:H].$$

Доказательство. Каждый элемент группы G лежит в (своём) левом смежном классе по подгруппе H, разные смежные классы не пересекаются (лемма 1) и каждый из них содержит по |H| элементов (лемма 2).

4 Пять следствий из теоремы Лагранжа

Теорема 4.1 (Теорема лагранжа). Пусть G- конечная группа и $H\subseteq G-$ подгруппа. Тогда

$$|G| = |H| \cdot [G:H].$$

Рассмотрим некоторые следствия из теоремы Лагранжа.

Следствие 4.1. Пусть G — конечная группа и $H \subseteq G$ — подгруппа. Тогда |H| делит |G|.

Следствие 4.2. Пусть G — конечная группа и $g \in G$. Тогда $\operatorname{ord}(g)$ делит |G|.

Доказательство. Вытекает из следствия 1 и факта, что $\operatorname{ord}(g) = |\langle g \rangle|$.

Следствие 4.3. Пусть G — конечная группа и $g \in G$. Тогда $g^{|G|} = e$.

 \mathcal{A} оказательство. Согласно следствию 2, мы имеем $|G|=\operatorname{ord}(g)\cdot s$, откуда $g^{|G|}=\left(g^{\operatorname{ord}(g)}\right)^s=e^s=e$.

Следствие 4.4 (малая теорема Ферма). Пусть \overline{a} — ненулевой вычет по простому модулю p. Тогда $\overline{a}^{p-1}=1$.

Доказательство. Применим следствие 3 к группе $(\mathbb{Z}_p \setminus \{0\}, \times)$.

Следствие 4.5. Пусть G — группа. Предположим, что |G| — простое число. Тогда G — циклическая группа, порождаемая любым своим неединичным элементов.

Доказательство. Пусть $g \in G$ — произвольный неединичный элемент. Тогда циклическая подгруппа $\langle g \rangle$ содержит более одного элемента и $|\langle g \rangle|$ делит |G| по следствию 1. Значит, $|\langle g \rangle| = |G|$, откуда $G = \langle g \rangle$.

5 Нормальные подгруппы и факторгруппы

Определение 5.1. Подгруппа H группы G называется *нормальной*, если gH = Hg для любого $g \in G$.

Пример.

- 1. G абелева. Тогда любая подгруппа H нормальная.
- 2. $G = S_3, G = \{ Id, (12) \}$. Тогда H не является нормальной.
- 3. Несобственные подгруппы H = G и $H = \{0\}$ нормальны.

Предложение 5.1. Для подгруппы $H \subseteq G$ следующие условия эквивалентны:

- 1. H нормальна;
- 2. $gHg^{-1} = H$ для любого $g \in G$;
- 3. $gHg^{-1} \subseteq H$ для любого $g \in G$.

Доказательство.

- $(1) \implies (2) gH = Hg \implies gHg^{-1} = H.$
- $(2) \implies (3)$ Очев.
- $(3) \implies (1) \ gHg^{-1} \subseteq H \implies gH \subseteq Hg. \ \text{Теперь возьмем} \ g = g^{-1}. \ \text{Тогда} \ g^{-1}Hg \subseteq H \implies Hg \subseteq gH \implies gh = Hg. \quad \blacksquare$

Рассмотрим множество смежных классов по нормальной подгруппе G/H.

Определим на G/H бинарную операцию, полагая $(g_1H)(g_2H) = (g_1g_2)H$.

Корректность Пусть $g_1'H = g_1H$ и $g_2'H = g_2H$. Тогда $g_1' = g_1h_1$, $g_2' = g_2h_2$, где $h_1, h_2 \in H$.

$$(g_1'H)(g_2'H) = (g_1'g_2')H = (g_1h_1g_2h_2)H = (g_1g_2\underbrace{g_2^{-1}h_1g_2}_{\in H})h_2H \subseteq (g_1g_2)H \implies (g_1'g_2')H = (g_1g_2)H.$$

Структура группы G/H.

- 1. Ассоциативность очевидна.
- 2. Нейтральный элемент eH.
- 3. Обратный к $gH g^{-1}H$.

Определение 5.2. Множество G/H с указанной операцией называется факторгруппой группы G по нормальной подгруппе H.

 Π ример. Если $G=(\mathbb{Z},+)$ и $H=n\mathbb{Z}$, то G/H — это в точности группа вычетов $(\mathbb{Z}_n,+)$.

6 Гомоморфизмы групп. Простейшие свойства гомоморфизмов. Изоморфизмы групп. Ядро и образ гомоморфизма групп, их свойства

Определение 6.1. Пусть (G, \circ) и (F, \cdot) — две группы.

Отображение $\varphi \colon G \to F$ называется гомоморфизмом, если

$$\varphi(g_1 \circ g_2) = \varphi(g_1) \cdot \varphi(g_2), \quad \forall g_1, g_2 \in G.$$

Замечание. Пусть $\varphi \colon G \to F$ — гомоморфизм групп, и пусть e_G и e_F — нейтральные элементы группы G и F соответственно. Тогда:

- 1. $\varphi(e_G) = e_F$.
- 2. $\varphi(a^{-1}) = \varphi(a)^{-1}$ для любого $a \in G$.

Доказательство.

- 1. Имеем $\varphi(e_G) = \varphi(e_G e_G) = \varphi(e_G) \varphi(e_G)$. Теперь умножая крайние части этого равенства на $\varphi(e_G)^{-1}$, получим $e_F = \varphi(e_G)$.
- 2. $\varphi(g \cdot g^{-1}) = e_F = \varphi(g)\varphi(g^{-1})$. Умножив обе части на $\varphi(g)^{-1}$ получаем необходимое.

Определение 6.2. Гомоморфизм групп $\varphi \colon G \to F$ называется *изоморфизмом*, если отображение φ биективно.

Определение 6.3. Группы G и F называет uзомор ϕ нымu, если между ними существует изоморфизм. Обозначение: $G \simeq F$.

В алгебре рассматривают с точностью до изоморфизма: изоморфные группы считаются «одинаковыми».

Определение 6.4. С каждым гомоморфизмом групп $\varphi: G \to F$ связаны его ядро

$$\ker \varphi = \{ g \in G \mid \varphi(g)e_f \},\$$

и образ

$$\operatorname{Im} \varphi = \varphi(G) = \{ a \in F \mid \exists g \in G : \varphi(g) = a \}.$$

Ясно, что $\ker \varphi \subseteq G$ и $\operatorname{Im} \varphi \subseteq F$ — подгруппы.

Лемма 6.1. Гомоморфизм групп $\varphi: G \to F$ инъективен тогда и только тогда, когда $\ker \varphi = \{e_G\}$.

Доказательство. Ясно, что если φ инъективен то $\ker \varphi = \{e_G\}$.

Обратно, пусть
$$g_1, g_2 \in G$$
 и $\varphi(g_1) = \varphi(g_2)$. Тогда $g_1^{-1}g_2 \in \ker \varphi$, поскольку $\varphi(g_1^{-1}g_2) = \varphi(g_1^{-1})\varphi(g_2) = \varphi(g_1)^{-1}\varphi(g_2) = e_F$. Отсюда $g_1^{-1}g_2 = e_G$ и $g_1 = g_2$.

Следствие 6.1. Гомоморфизм групп $\varphi \colon G \to F$ является изоморфизмом тогда и только тогда, когда $\ker \varphi = \{e_G\}$ и $\operatorname{Im} \varphi = F$.

Предложение 6.1. Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда подгруппа $\ker \varphi$ нормальна в G.

Доказательство. Достаточно проверить, что $g^{-1}hg \in \ker \varphi$ для любых $g \in G$ и $h \in \ker \varphi$. Это следует из цепочки равенств

$$\varphi(g^{-1}hg) = \varphi(g^{-1})\varphi(h)\varphi(g) = \varphi(g^{-1})e_F\varphi(g) = \varphi(g^{-1})\varphi(g) = \varphi(g)^{-1}\varphi(g) = e_F.$$

7 Теорема о гомоморфизме для групп

Теорема 7.1 (Теорема о гомоморфизме). Пусть $\varphi \colon G \to F$ — гомоморфизм групп. Тогда группа $\operatorname{Im} \varphi$ изоморфна факторгруппе $G/\ker \varphi$.

Доказательство. Рассмотрим отображение $\psi \colon G/\ker \varphi \to \operatorname{Im} \varphi$, заданное формулой $\psi(g\ker \varphi) = \varphi(g)$.

1. Корректность.

$$g_1 \ker \varphi = g_2 \ker \varphi \implies g_1 h_1 = g_2 h_2$$
 для некоторых $h_1, h_2 \in \ker \varphi$. $\psi(g_1 \ker \varphi) = \varphi(g_1) = \varphi(g_1 h_1) = \varphi(g_2 h_2) = \varphi(g_2) = \psi(g_2 \ker \varphi)$.

2. ψ — гомоморфизм.

$$\psi\left((g_1 \ker \varphi)(g_2 \ker \varphi)\right) = \psi((g_1 g_2) \ker \varphi) = \varphi(g_1 g_2) = \varphi(g_1)\varphi(g_2) = \psi(g_1 \ker \varphi)\psi(g_2 \ker \varphi).$$

- 3. Сюръектинвость из построения.
- 4. Инъективность.

$$\psi(g_1 \ker \varphi) = \psi(g_2 \ker \varphi) \implies \varphi(g_1) = \varphi(g_2) \implies \varphi(g_1)\varphi(g_2)^{-1} = e_F \implies \varphi(g_1g_2^{-1}) = e_F \implies g_1g_2^{-1} \in \ker \varphi \implies g_1 \ker \varphi = g_2 \ker \varphi.$$

Тем самым, чтобы удобно реализовать факторгруппу G/H, можно найти такой гомоморфизм $\varphi \colon G \to F$ в некоторую группу F, что $H = \ker \varphi$, и тогда $G/H \simeq \operatorname{Im} \varphi$.

 Π ример. Пусть $G=(\mathbb{R},+)$ и $H=(\mathbb{Z},+)$. Рассмотрим группу $F=(\mathbb{C}\setminus\{0\},\times)$ и гомоморфизм

$$\varphi \colon G \to F, \quad a \mapsto e^{2\pi i a} = \cos(2\pi a) + i\sin(2\pi a).$$

Тогда $\ker \varphi = H$ и факторгруппа G/H изоморфна окружности S^1 , рассматриваемой как подгруппа в F, состоящая из комплексных чисел с модулем 1.

Классификация циклических групп 8

Пусть G — циклическая группа. Тогда

- 1. Если $|G| = \infty$, то $G \simeq (\mathbb{Z}, +)$,
- 2. Если $|G| = n < \infty$, то $G \simeq (\mathbb{Z}_n, +)$.

Доказательство. Пусть $G=\langle g \rangle$. Рассмотрим отображение $\varphi\colon \mathbb{Z} \to G, \ k\mapsto g^k$. Тогда $\varphi(k+l)=g^{k+l}=g^kg^l=\varphi(k)\varphi(l),$ поэтому φ — гомоморфизм. Из определения циклической группы следует, что φ сюръективет, то есть $\operatorname{Im} \varphi=G.$ Тогда по теореме о гомоморфизме мы получаем $G\simeq \mathbb{Z}/\ker \varphi$. Так как $\ker \varphi$ подгруппа в \mathbb{Z} , то получаем $\ker \varphi = m\mathbb{Z}$ для некоторого $m \geqslant 0$. (так как любая подгруппа \mathbb{Z} имеет вид $k\mathbb{Z}$) Если m = 0, то $\ker \varphi = \{0\}$, откуда $G \simeq \mathbb{Z}/\{0\} \simeq \mathbb{Z}$. Если m > 0, то $G \simeq \mathbb{Z}/m\mathbb{Z} = \mathbb{Z}_m$.

9 Прямое произведение групп. Разложение конечной циклической группы. Теорема о строении конечных абелевых групп

Определение 9.1. Прямым произведением групп G_1, \ldots, G_m называется множество

$$G_1 \times \cdots \times G_m = \{(g_1, \dots, g_m) \mid g_1 \in G_1, \dots, g_m \in G_m\}$$

с операцией $(g_1, \ldots, g_m)(g'_1, \ldots, g'_m) = (g_1 g'_1, \ldots, g_m g'_m).$

Ясно, что эта операция ассоциативна, обладает нейтральным элементом $(e_{G_1}, \ldots, e_{G_m})$ и для каждого элемента (g_1, \ldots, g_m) есть обратный элемент $(g_1^{-1}, \ldots, g_m^{-1})$.

Замечание. Группа $G_1 \times \cdots \times G_m$ коммутативна в точности тогда, когда коммутативна каждая из групп G_1, \ldots, G_m .

Замечание. Если все группы G_1, \ldots, G_m конечны, то $|G_1 \times \cdots \times G_m| = |G_1| \cdots |G_m|$.

Определение 9.2. Группа G раскладывается в прямое произведение своих подгрупп H_1, \ldots, H_m если отображение $H_1 \times \cdots \times H_m \to G, \ (h_1, \ldots, h_m) \mapsto h_1 \cdots h_m,$ является изоморфизмом.

Теорема 9.1. Пусть n = ml - pазложение натурального числа n на два взаимно простых сомножителя. Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \simeq \mathbb{Z}_m \times \mathbb{Z}_l$$
.

Доказательство. Рассмотрим отображение

$$\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_m \times \mathbb{Z}_l, \quad (k \bmod n) \mapsto (k \bmod m, k \bmod l).$$

Поскольку m и l делят n, отображение φ определено корректно. Ясно, что φ — гомоморфизм. Далее, $a \bmod n \in \ker \varphi \implies a \bmod m = 0, a \bmod l = 0 \implies a \vdots m, a \vdots l$.

Так как HOД(m,l)=1, то $a:n\implies a \mod n=0\implies \ker \varphi=\{0\}.$

Отсюда следует, что гомоморфизм φ инъективен. Поскольку множества \mathbb{Z}_n и $\mathbb{Z}_m \times \mathbb{Z}_l$ содержат одинаковое число элементов, отображение φ биективно.

Следствие 9.1. Пусть $n\geqslant 2$ — натуральное число и $n=p_1^{k_1}\cdots p_s^{k_s}$ — его разложение в произведение простых множителей (где $p_i\neq p_j$ при $i\neq j$). Тогда имеет место изоморфизм групп

$$\mathbb{Z}_n \simeq \mathbb{Z}_{p_1^{k_1}} \times \cdots \times \mathbb{Z}_{p_s^{k_s}}.$$

Определение 9.3. Конечная абелева группа A называется npuмарной, если $|A|=p^k$, где p — простое и $k\in\mathbb{N}$.

Теорема 9.2. Пусть A- конечная абелева группа. Тогда $A\simeq \mathbb{Z}_{p_1^{k_1}}\times \cdots \times \mathbb{Z}_{p_t^{k_t}}$, где p_1,\ldots,p_t- простые числа (не обязательно различные!) и $k_1,\ldots,k_t\in\mathbb{N}$. Более того, набор примарных циклических множителей $\mathbb{Z}_{p_1^{k_1}},\ldots,\mathbb{Z}_{p_t^{k_t}}$ определен однозначно с точностью до перестановки (в частности, число этих множителей определено однозначно).

10 Экспонента конечной абелевой группы и критерий цикличности

Определение 10.1. Экспонентой конечной абелевой группы A называется число

$$\exp A := \min\{m \in \mathbb{N} \mid ma = 0 \ \forall a \in A\}.$$

Замечание.

- 1. Так как $ma=0\iff m$: $\mathrm{ord}(a)\ \forall a\in A$ и $m\in\mathbb{Z}$, то определение экспоненты можно переписать ещё в виде $\exp A=\mathrm{HO}\mathbb{Z}\{\mathrm{ord}(a)\mid a\in A\}.$
- 2. Так как |A| \vdots ord(a) $\forall a \in A$, то |A| общее кратное множества $\{ \operatorname{ord}(a) \mid a \in A \}$, а значит, |A| \vdots exp A. В частности, exp $A \leq |A|$.

Предложение 10.1. $\exp A = |A| \iff A -$ циклическая группа.

Доказательство. Пусть $|A| = n = p_1^{k_1} \cdot \ldots \cdot p_s^{k_s}$ — разложение на простые множители, где p_i — простое и $k_s \in \mathbb{N}$. $(p_i \neq p_j \text{ при } i \neq j)$

- \longleftarrow Если $A=\langle a \rangle$, то ord a=n, откуда сразу получаем $\exp A=n$.
- Если $\exp A = n$, то для $i = 1, \ldots, s$ существует элемент $c_i \in A$, такой что $\operatorname{ord} c_i = p_i^{k_i} m_i$, где $m_i \in \mathbb{N}$. Для каждого $i = 1, \ldots, s$ положим $a_i = m_i c_i$, тогда $\operatorname{ord}(a_i) = p_i^{k_i}$. Теперь рассмотрим элемент $a = a_1 + \cdots + a_s$ и покажем, что $\operatorname{ord}(a) = n$. Пусть ma = 0 для некоторого $m \in \mathbb{N}$, то есть $ma_1 + \cdots + ma_s = 0$. При фиксированном $i \in \{1, \ldots, s\}$ умножим обе части последнего равенства на $n_i := n/p_i^{k_i}$. Легко видеть, что $mn_i a_j = 0$ при всех $i \neq j$, поэтому в левой части выживет только слагаемое $mn_i a_i$, откуда получаем $mn_i a_i = 0$. Следовательно, $mn_i : p_i^{k_i}$, а так как n_i не делится на p_i , то $m : p_i^{k_i}$. В силу произвольности выбора i отсюда вытекает, что m : n. Так как na = 0, то мы окончательно получаем $\operatorname{ord}(a) = n$. Значит, $A = \langle a \rangle$ циклическая группа.

11 Криптография с открытым ключом. Задача дискретного логарифмирования. Система Диффи Хеллмана обмена ключами. Криптосистема Эль-Гамаля

Пусть G — конечная абелева группа (например, $G = (\mathbb{Z}_p \setminus \{0\}, \times)$, где p — большое простое число) и $g \in G$ — элемент достаточно большого порядка.

Задача 11.1. Задача дискретного логарифмирования.

Дано $g \in G,$ $\operatorname{ord}(g) \gg 0,$ $h \in \langle h \rangle.$ Найти такое $k \in \mathbb{N},$ что $g^k = h.$

При этом задача возведения в степень имеет быстрый алгоритм — повторное возведение в квадрат.

$$g^{16} = \left(\left(\left(g^2 \right)^2 \right)^2 \right)^2 \quad g^{15} = \left(\left(g^2 \cdot g \right)^2 \cdot g \right)^2 \cdot g.$$

Сама же задача нахождения степени решается только переборными и близкими к перебору способами.

Задача 11.2. Система Диффи-Хеллмана обмена ключами (1976).

G и g известны всем.

Алиса фиксирует свое секретное $\alpha \in \mathbb{N}$ и сообщает всем пользователям g^{α} .

Боб совершает аналогичные действия — $\beta \in \mathbb{N}, g^{\beta}$.

Теперь Алиса и Боб возводят элемент другого в свою секретную степень, оба получают $(g^{\alpha})^{\beta} = (g^{\beta})^{\alpha} = g^{\alpha\beta}$.

Теперь по этому ключу можно устроить шифрованный канал связи, к которому никто не имеет доступа. При этом действительно в силу сложности задачи дискретного логарифмирования по g^{α} и g^{β} нельзя быстро получить $g^{\alpha\beta}$.

Задача 11.3. Криптосистема Эль-Гамаля.

Алиса фиксирует свое секретное $\alpha \in \mathbb{N}$ и сообщает всем пользователям g^{α} .

Боб хочет передать Алисе элемент $h \in G$.

Для этого Боб фиксирует какое-то $\beta \in \mathbb{N}$ и объявляет пару $\{g^{\beta}, h \cdot (g^{\alpha})^{\beta}\}.$

Отсюда $h = (h \cdot (g^{\alpha})^{\beta}) \cdot ((g^{\beta})^{\alpha})^{-1} = (h \cdot (g^{\alpha})^{\beta}) \cdot (g^{\beta})^{|G|-\alpha}$, то есть зная α можно легко получить h.

Следовательно, получить его может только Алиса, а всем остальным придется решать задачу дискретного логарифмирования.

12 Кольца. Коммутативные кольца. Обратимые элементы, делители нуля и нильпотенты. Примеры колец. Поля. Критерий того, что кольцо вычетов является полем

Определение 12.1. *Кольцо* — это множество R, на котором заданы две бинарные операции «+» (сложение) и «·» (умножение), удовлетворяющее следующим условиям:

- 1. (R, +) абелева группа;
- 2. $\forall a, b, c \in R$ a(b+c) = ab + ac и (a+b)c = ac + bc;
- 3. $\forall a, b, c \in R \quad (ab)c = a(bc)$.
- 4. $\exists 1 \in R$, такой что $1 \cdot a = a \cdot 1 = a \quad \forall a \in R$.

Замечание.

- 1. $0 \cdot a = a \cdot 0 = 0 \quad \forall a \in R;$
- 2. Если |R| > 1, то $1 \neq 0$.

Доказательство.

- 1. a0 = a(0+0) = a0 + a0, откуда 0 = a0.
- 2. Следует из условий выше.

Пример.

- 1. числовые кольца $\mathbb{Z}, \mathbb{Q}, \mathbb{R}, \mathbb{C}$;
- 2. кольцо \mathbb{Z}_n вычетов по модулю n;
- 3. кольцо матриц $\operatorname{Mat}_{n\times n}(\mathbb{R})$;
- 4. $\mathbb{R}[x]$ кольцо многочленов от переменной x с коэффициентами из \mathbb{R} ;
- 5. $\mathbb{R}[x_1, \dots, x_n]$ кольцо многочленов от нескольких переменных x_1, \dots, x_n с коэффициентами из \mathbb{R} ;
- 6. $F(M,\mathbb{R})$ кольцо функций из множества M в \mathbb{R} (с поточечными операциями сложения и умножения): $(f_1+f_2)(m):=f_1(m)+f_2(m), \quad (f_1\cdot f_2)(m):=f_1(m)\cdot f_2(m).$

Определение 12.2. Кольцо R называется *коммутативным*, если ab = ba для всех $a, b \in RR$.

Определение 12.3. Элемент $a \in R$ называется *обратимым*, если найдется такой $b \in R$, что ab = ba = 1.

Замечание. Все обратимые элементы кольца R образуют группу по умножению.

Определение 12.4. Элемент $a \in R$ называется левым (соответственно правым) делителем нуля, если $a \neq 0$ и $\exists b \in R$, $b \neq 0$, такой что ab = 0 (соответственно ba = 0).

Замечание. Если R коммутативно, то множества левых и правых делителей нуля совпадают. Тогда левые и правые делители нуля называются просто «делителями нуля».

Замечание. Все делители нуля в R необратимы. Если $ab=0, a\neq 0, b\neq 0$ и существует a^{-1} , то получаем $a^{-1}ab=a^{-1}0$, откуда b=0 — противоречние.

Определение 12.5. Элемент $a \in R$ называется *нильпотентным* (*нильпотентом*), если $a \neq 0$ и найдется такое $n \in \mathbb{N}$, что $a^n = 0$.

Замечание. Всякий нильпотент является делителем нуля: если $a \neq 0$ и n минимально, то $a = a^{n-1} = 0$.

Определение 12.6. Кольцо R называется *полем*, если оно коммутативно (ассоциативно с 1), $0 \neq 1$ и любой ненулевой элемент обратим.

 $\Pi p u м e p. \mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_2.$

Предложение 12.1. Кольцо вычетов \mathbb{Z}_n является полем $\iff n$ — простое число.

Доказательство. Соглашение: $a \in \mathbb{Z} \leadsto \overline{a} \in \mathbb{Z}_n$ — вычет $a \bmod n$.

- \implies Если n=1, то $\mathbb{Z}_n=\{0\}$ не поле.
 - Если n > 1 и $n = m \cdot k$, где 1 < m, k < n, то $\overline{m} \cdot \overline{k} = \overline{0} \implies$ в \mathbb{Z}_n есть делитель нуля $\implies \mathbb{Z}_n$ не поле.
- \longleftarrow n = p простое. Пусть $\overline{a} \in \mathbb{Z}_p \setminus \{\overline{0}\}$.

Тогда $HOД(a, p) = 1 \implies \exists k, l \in \mathbb{Z}$, такие что ak + pl = 1.

Значит, $\overline{a} \cdot \overline{k} + \overline{p} \cdot \overline{l} = \overline{1} \implies \overline{a} \cdot \overline{k} = \overline{1} \implies \overline{a}$ обратим.

13 Идеалы колец. Факторкольцо кольца по идеалу. Гомоморфизмы и изоморфизмы колец. Ядро и образ гомоморфизма колец. Теорема о гомоморфизме для колец

Определение 13.1. Подмножество $I \subseteq R$ называется (двусторонним) идеалом, если

- 1. I подгруппа по сложению;
- 2. $\forall \in I \ \forall r \in R \quad ar \in I, ra \in I$.

Обозначение $I \triangleleft R$.

Пример. Несобственные идеалы $\{0\}$, R. Остальные называются собственными.

Определение 13.2. Множество $(a) := \{ra \mid r \in R\}$ называется главным идеалом, порождаемым элементом a.

 $\Pi pumep.$ $(k) = k\mathbb{Z} -$ главный идеал в \mathbb{Z} .

Замечание. $(a) = R \iff a$ обратим $(a) = \{0\} \iff a = 0.$

Определение 13.3. Если $S \subseteq R$ — подмножество, то

$$(S) := \{r_1 s_1 + \dots + r_k s_k \mid r_i \in R, s_i \in S\}$$

называется иdeanom, порожdehnum поdmhoжесmeom S.

Рассмотрим факторгруппу (R/I, +) и введём на ней операцию умножения, полагая $(a+I) \cdot (b+I) := ab+I$.

Корректность a+I=a'+I, $b+I=b'+I \implies a'=a+x$, b'=b+y, где $x,y\in I$. Тогда,

$$(a'+I)(b'+I) = a'b' + I = (a+x)(b+y) + I = ab + \underbrace{ay + xb + xy}_{\in I} + I = ab + I.$$

Замечание. R/I — кольцо.

Определение 13.4. R/I называется факторкольцом кольца R по идеалу I.

Пример. $\mathbb{Z}/n\mathbb{Z} = \mathbb{Z}_n$.

Определение 13.5. Если R,S — два кольца, то отображение $\varphi \colon R \to S$ называется гомоморфизмом колец, если $\varphi(a+b) = \varphi(a) + \varphi(b)$ и $\varphi(ab) = \varphi(a) \cdot \varphi(b)$.

Изоморфизм — биективный гомоморфизм.

Пусть $\varphi \colon R \to R'$ — гомоморфизм колец.

Тогда $\ker \varphi := \{r \in R \mid \varphi(r) = 0\} \subseteq R$

$$\operatorname{Im} \varphi := \varphi(R) \subseteq R$$

Замечание.

- 1. $\ker \varphi \triangleleft R$;
- 2. $\operatorname{Im} \varphi$ подкольцо в R'.

Доказательство.

1. Так как φ — гомоморфизм абелевых групп, то $\ker \varphi$ является подгруппой в R по сложению. Покажем теперь, что $ra \in \ker \varphi$ и $ar \in \ker \varphi$ для произвольных элементов $a \in \ker \varphi$ и $r \in R$.

Имеем $\varphi(ra) = \varphi(r)(\varphi(a) = \varphi(r)0 = 0$, откуда $ra \in \ker \varphi$. Аналогично для $ar \in \ker \varphi$.

Теорема 13.1 (Теорема о гомоморфизме колец). $R/\ker\varphi\simeq\operatorname{Im}\varphi$.

Доказательство. Пусть $I := \ker \varphi$. Тогда из доказательства теоремы о гомоморфизме для групп отображение $\psi \colon R/I \to \operatorname{Im} \varphi, \ \psi(a+I) := \varphi(a)$ является изоморфизмом групп (по сложениею).

Остается проверить, что ψ — гомоморфизм колец.

$$\psi((a+I)(b+I)) = \psi(ab+I) = \varphi(ab) = \varphi(a)\varphi(b) = \psi(a+I)\psi(b+I).$$

Пример. K — поле, $a \in K$, $\varphi \colon K[x] \to K$, $f \mapsto f(a)$.

Это гомоморфизм, он сюръективен $(b = \varphi(b))$.

$$\ker \varphi = (x - a) \implies K[x]/(x - a) \simeq K.$$

14 Кольцо многочленов от одной переменной над полем: деление с остатком, наибольший общий делитель двух многочленов, теорема о его существовании и линейном выражении

Пусть K- поле, K[x]- кольцо многочленов от x с коэффициентами из K.

$$K[x] = \{a_n x^n + \dots + a_1 x + a_0 \mid n \geqslant 0, a_i \in K\}.$$

Тогда $\forall f \in K[x] \setminus \{0\}$ определена степень $\deg f$.

Удобно полагать, что $\deg 0 = -\infty$.

Тогда $\deg(fg) = \deg f + \deg g$,

$$\deg(f+g) \leqslant \max(\deg f, \deg g)$$

Обратимые элементы в $K[x] : \{f \mid \deg f = 0\} \not\ni 0.$

Делителей нуля нет.

Теорема 14.1 (деление с остатком). $\forall f \in K[x] \ \forall g \in K[x] \setminus \{0\}$ $\exists ! q, r \in K[x], make umo <math>f = q \cdot g + r$ и либо r = 0, либо $\deg r < \deg g$.

Доказательство.

Существование Индукция по $\deg f$.

Если f=0, то можно взять q=r=0. Далее считаем $\deg f=n\geqslant 0$.

Пусть $f = a_n x^n + \dots + a_1 x + a_0 \ (a_n \neq 0), \ g = b_m x^m + \dots + b_1 x + b_0 \ (b_m \neq 0).$

Если $\deg f < \deg g$, то достаточно взять q = 0 и r = f.

Иначе положим $h = f - \frac{a_n}{b_m} x^{n-m} g$, тогда $\deg h < \deg f$.

По предположению индукции $h=q\cdot g+r$, где либо r=0, либо $\deg r<\deg g$. Тогда $f=\left(q+\frac{a_n}{b_m}x^{n-m}\right)g+r-$ искомое представление.

Единственность Пусть $f = q_1 g + r_1 = q_2 g + r_2$ — два представления.

Тогда $(q_1-q_2)g=r_2-r_1$. Если $q_1-q_2\neq 0$, то $\deg(q_1-q_2)g\geqslant \deg g>\deg(r_2-r_1)$ — противоречие. Значит, $q_1=q_2$ и тогда $r_1=r_2$.

Замечание. Доказательство дает алгоритм деления «в столбик».

Определение 14.1. Пусть $f,g \in K[x], g \neq 0$. Говорят, что f делится на g (g делит f), если $\exists h \in K[x]$, такой что $f = g \cdot h$.

Определение 14.2. *Наибольший общий делитель* многочленов $f,g \in K[x]$ — это такой $h \in K[x]$, что

- 1. h делит оба f, g;
- 2. h имеет максимальную возможную степень.

Теорема 14.2. Пусть $f, g \in K[x]$ $u (f, g) \neq (0, 0)$. Тогда

- 1. $\exists HOД(f,g) =: h;$
- 2. $\exists u, v \in K[x]$, такие что $h = u \cdot f + v \cdot g$.

Доказательство.

- 1. Прямой ход алгоритма Евклида;
- 2. Обратный ход алгоритма Евклида.

Замечание. HOД(f,g) определен однозначно с точностью до пропорциональности.

$$2 = \text{HOД}(2x^2, 2x + 1) = 1.$$

15 Теорема о том, что кольцо многочленов от одной переменной над полем является кольцом главных идеалов

Определение 15.1. Коммутативное кольцо R без делителей нуля называется *кольцом главных идеалов* (КГИ), если всякий идеал в R является главным.

 Π ример. \mathbb{Z} — все идеалы это $k\mathbb{Z}=(k)$ $(k\geqslant 0)$ — главные.

Предложение **15.1.** $K[x] - K\Gamma U$.

Доказательство. Пусть $I \lhd K[x]$. Если $I = \{0\}$, то I = (0) — главный. Если $I \neq \{0\}$, то выберем в I многочлен наименьшей степени $g \neq 0$. Тогда $(g) \subseteq I$. Пусть $f \in I$, разделим f на g с остатком: $f = q \cdot g + r$, где либо r = 0, либо $\deg r < \deg g$. Но тогда $r = f - q \cdot g \in I$. Так как $\deg g$ минимально, то $r = 0 \implies f \in (g) \implies I \subseteq (g)$. Итог: I = (g).

16 Неприводимые многочлены. Факториальность кольца многочленов от одной переменной над полем

Определение 16.1. Многочлен $h \in K[x]$, $\deg h > 0$ называется *неприводимым*, если его нельзя представить в виде $h = h_1 h_2$, где $\deg h_1 < \deg h$ и $\deg h_2 < \deg h$.

Иначе h называется npuводимым.

Замечание.

- 1. $h \in K[x]$, $\deg h = 1 \implies h$ неприводим;
- 2. $h \in K[x]$, $\deg g \geqslant 2$, h неприводим $\implies h$ не имеет корней в K (следствие теоремы Безу);
- $3.\ h\in K[x],\ \deg h\in\{2,3\}\implies [h$ неприводим $\iff h$ не имеет корней в K].

Пример. $K = \mathbb{C}, h \in \mathbb{C}[x], \deg h \geqslant 1.$

Если $\deg h \geqslant 2$, то h имеет корень $\implies h$ неприводим $\iff \deg h = 1$.

Лемма 16.1. Если $h \in K[x]$ — неприводим и h делит $g_1 \cdot \ldots \cdot g_k$ для некоторых $g_1, \ldots, g_k \in K[x]$, то $\exists i : h$ делит g_i .

Доказательство. Индукция по k.

k = 1 — ясно.

k=2. Пусть g_1 :/h. Так как h неприводим, то $HOД(g_1,h)=1 \implies \exists u,v \in K[x]$, такие что $1=ug_1+vh$. Умножим на g_2 :

$$g_2 = u \cdot \underbrace{g_1 g_2}_{\text{i}h} + v \cdot \underbrace{h \cdot g_2}_{\text{i}h} \implies g_2 \vdots h.$$

Для k>2 надо применить предыдущее рассуждение для $(g_1\cdot\ldots\cdot g_{k-1})\cdot g_k$ и воспользоваться предположением индукции.

Теорема 16.1. Пусть $f \in K[x]$ $u \deg f \geqslant 1$.

 $T_{02}\partial a$

- 1. \exists разложение $f = h_1 \cdot \ldots \cdot h_k$, где все h_i неприводимы;
- 2. это разложение единственно с точностью до перестановки множителей и пропорциональности. Точнее, если $f = h'_1 \cdot \ldots \cdot h'_m \partial p$ угое такое разложение, то k = m и после подходящей перестановки множителей h_i и h'_i пропорциональны.

 Π_{pumep} . $f = 6x^3 + 6x \implies f = (3x)(2x^2 + 2) = (x^2 + 1)(6x)$ — одинаковые разложения с точки зрения теоремы.

Доказательство. Пусть $\deg f = n$. Индукция по n.

 $n=1 \implies f$ неприводим, единственность есть.

n > 1

Существование f неприводим \Longrightarrow уже есть разложение.

Если же f приводим, то $f = f_1 \cdot f_2$, $\deg f_i < n$.

Тогда по предположению индукции $f_1 = g_1 \cdot \ldots \cdot g_p, f_2 = h_1 \cdot \ldots \cdot h_q,$ где g_i, h_j — неприводимы.

Значит, $f = g_1 \cdot \dots \cdot g_q \cdot h_1 \cdot \dots \cdot h_q$ — разложение f на неприводимые.

Единственность Пусть $f=h_1\cdot\ldots\cdot h_k=h'_1\cdot\ldots\cdot h'_m$ — два разложение на неприводимые множители.

Если h_1 делит $h'_1 \cdot \ldots \cdot h'_m$, то по лемме существует i, такое что h_1 делит h'_i .

Переставив множители, будем считать, что h_1 делит h'_1 . Так как h_1 , h'_1 неприводимы, то $h' = \varepsilon \cdot h$, где $\varepsilon \in K \setminus \{0\}$. Так как в K[x] нет делителей нуля, то можем сократить на h_1 , получим

$$h_2 \cdot \ldots \cdot h_k = \varepsilon h'_2 \cdot \ldots \cdot h'_m \quad \leftarrow \deg < n.$$

Осталось применить предположение индукции.

Замечание.

- 1. Всякое КГИ факториально;
- 2. $K[x_1,...,x_n], n \ge 2$ это не КГИ, но тоже факториально.

17 Критерий того, что факторкольцо $\mathbb{K}[x]/(h)$ является полем. Базис и размерность факторкольца $\mathbb{K}[x]/(h)$ как векторного пространства над полем \mathbb{K}

$$h = a_n x^n + \dots + a_1 x + a_0 \in K[x], \deg h > n > 0.$$

$$F := K[x]/(h) \quad f \in K[x] \leadsto \overline{f} := f + (h) \in F$$

$$\overline{f} = \overline{0} \Leftrightarrow f : h$$

Предложение. F – поле \Leftrightarrow h неприводим.

 \mathcal{A} оказательство. \Rightarrow Если $h=h_1\cdot h_2, \ \deg h_i < n \Rightarrow \overline{h}=\overline{h_1}\cdot \overline{h_2}.$ Так как $\overline{h}=0, \ \mathrm{тo}\ \overline{h_1}\cdot \overline{h_2}=0 \Rightarrow \mathrm{B}\ \mathrm{F}$ есть делители нуля $\Rightarrow \mathrm{F}$ не поле.

 $\Leftarrow f \in K[x], \overline{f} \neq \overline{0} \Rightarrow f \not : h \Rightarrow HOД(f,h) = 1 \Rightarrow \exists \ u,v \in K[x]: \ 1 = uf + vh \Rightarrow \overline{1} = \overline{u}\overline{f} + \overline{v}\overline{h} = \overline{u}\overline{f} \Rightarrow \overline{f}$ обратим, в силу произвольности выбора f все элементы обратимы \Rightarrow F – поле.

Рассмотрим отображение $K \to F, \alpha \to \overline{\alpha} = \alpha + (h)$, оно инъективно \Rightarrow K отождествляется с подполем в F \Rightarrow F становится векторным пространством над K.

Предложение. Элементы $\overline{1}, \overline{x}, ..., \overline{x}^{n-1}$ образуют базис в F над K. В частности, $\dim_K F = n$

Доказательство. $\overline{f} \in F, f \in K[x]$. Поделим f на h с остатком:

$$f = q \cdot h + r, \begin{cases} r = 0 \\ \deg r < n \end{cases} \Rightarrow \overline{f} = \overline{q} \cdot \overline{h} + \overline{r} = \overline{r} \in \langle \overline{1}, \overline{x}, ..., \overline{x}^{n-1} \rangle$$

Если $b_0\overline{1}+b_1\overline{x}+\ldots+b_{n-1}\overline{x}^{n-1}=0$ для некоторых $b_i\in K$, то $b_0\cdot 1+b_1\cdot x+\ldots+b_{n-1}x^{n-1}$: $h_0=\ldots=b_{n-1}=0$

18 Лексикографический порядок на множестве одночленов от нескольких переменных. Лемма о конечности убывающих цепочек одночленов

```
\mathbf{K} – поле, R=K[x_1,...,x_n] M:=\{ax_1^{k_1}\cdot...\cdot x_n^{k_n}\mid a\in K\backslash\{0\}, k_i\geqslant 0\} – все одночлены от x_1,...,x_n. Определение. Лексикографический порядок на \mathbf{M} ax_1^{i_1}\cdot...\cdot a_n^{i_n}\succ bx_1^{j_1}\cdot...\cdot x_n^{j_n}\Leftrightarrow \exists k: \forall\; q\in\{1,...,k-1\}: i_q=j_q,\; i_k>j_k
```

Лемма. Не существует бесконечно убывающих цепочек одночленов $m_1 \succ m_2 \succ m_3 \succ ...$, где $m_i \in M \ \forall \ i \in \mathbb{N}$

Доказательство. От противного. Пусть $m_1 \succ m_2 \succ m_3 \succ \dots$ – бесконечная убывающая цепочка. Пусть $m_i = a_i x_1^{k_1(i)} \cdots x_n^{k_n(i)} \ \forall i \in \mathbb{N}$

Имеем:

$$\begin{array}{l} k_{1}(1) \geqslant k_{1}(2) \geqslant k_{1}(3) \geqslant \ldots \Rightarrow \exists \ i_{1} \in \mathbb{N} : k_{1}(i) = k_{1}(i_{1}) \ \forall i \geqslant i_{1} \\ k_{2}(i_{1}) \geqslant k_{2}(i_{1}+1) \geqslant k_{2}(i_{1}+2) \geqslant \ldots \Rightarrow \exists \ i_{2} \geqslant i_{1} : k_{2}(i) = k_{2}(i_{2}) \ \forall i \geqslant i_{2} \\ \ldots \qquad \ldots \qquad \ldots \\ \ldots \qquad \vdots \\ \ldots \qquad \vdots \\ \vdots \\ i_{n} \geqslant i_{n-1} : k_{n}(i) = k_{n}(i_{n}) \ \forall i \geqslant i_{n} \end{array}$$

Итог: при $i\geqslant i_n$ все m_i имеют одинаковые наборы степеней – противоречие.

19 Старший член многочлена от нескольких переменных. Элементарная редукция многочлена относительно другого многочлена. Лемма о конечности цепочек элементарных редукций относительно системы многочленов

Определение. $f \in R \setminus \{0\} \Rightarrow$ **старший член** L(f) – это наибольший в лексикографическом порядке моном, присутствующий в f.

 $g \in R \leadsto M(g) := \{$ все одночлены, входящие в g $\}$

Лемма о старшем члене. $f,g \in R \setminus \{0\} \Rightarrow L(fg) = L(f) \cdot L(g)$

Доказательство. $u \in M(f), v \in M(g) \Rightarrow L(f) \succcurlyeq u, L(g) \succcurlyeq v$ $uv \preccurlyeq L(f)v \preccurlyeq L(f) \cdot L(g) \Rightarrow$ Равенство только в случае u = L(f), v = L(g). А значит, что $L(f) \cdot L(g)$ больше любого другого монома в fg. Итог: L(fg) = L(f)L(g)

Пусть $g,f\in R\backslash\{0\},$ g содержит одночлен m, такой что m : $L(f)\Rightarrow m=L(f)m',$ где $m'\in M$

Элементарная редукция: $g \stackrel{f}{\to} g' := g - m'f$

В g одночлен m заменяется суммой нескольких меньших одночленов.

 $F \in R \setminus \{0\}$

Определение. g **редуцируется** к g' при помощи F, если \exists конечная цепочка элементарных редукций

$$g \xrightarrow{f_1} g_1 \xrightarrow{f_2} g_2 \xrightarrow{f_2} \dots \xrightarrow{f_k} g_k = g'$$
, где $f_i \in F$

Обозначение. $g \stackrel{F}{\rightarrow} g'$

g нередуцируем относительно F, если $\forall m \in M(g) \ \forall f \in F \ m \not L(f)$

Конечность цепочек элементарных редукций.

Лемма. $F \subseteq R \setminus \{0\} \Rightarrow$ всякая последовательно элементарных редукций относительно F за конечное число шагов приводит к нередуцируемому многочлену.

Обозначение. $L_K(g)$ – k-й по старшинству одночлен в $g \in R$.

Доказательство. От противного. Пусть существует бесконечная цепочка элементарных редукций $g_1 \xrightarrow{f_1} g_2 \xrightarrow{f_2} g_3 \xrightarrow{f_3} \dots$ В силу того, что не существует бесконечно убывающих цепочек одночленов:

$$L(g_1) \succcurlyeq L(g_2) \succcurlyeq L(g_3) \succcurlyeq \dots \Rightarrow \exists i_1 \in \mathbb{N} : L(g_i) = L(g_{i_1}) \ \forall i \geqslant i_1$$

 $L_2(g_{i_1}) \succcurlyeq L_2(g_{i_1+1}) \succcurlyeq \dots \Rightarrow \exists i_2 \geqslant i_1 : L_2(g_i) = L_2(g_{i_2}) \ \forall i \geqslant i_2$

... ... и так далее

Mtor: $L(g_{i_1}) = L(g_{i_2}) \succ L_2(g_{i_2}) = L_2(g_{i_3}) \succ L_3(g_{i_3}) = L_3(g_{i_4}) \succ \dots$

 $\Rightarrow L(g_{i_1}) \succ L_2(g_{i_2}) \succ L_3(g_{i_3}) \succ \dots$ – бесконечно убывающая цепочка одночленов – противоречие.

20 Остаток многочлена относительно заданной системы многочленов. Системы Грёбнера. Характеризация систем Грёбнера в терминах цепочек элементарных редукций

Определение. Если $g \stackrel{F}{\leadsto} r$ и г нередуцируем, г называется **остатком** многочлена g относительно F. Замечание. Вообще говоря, остаток определён неоднозначно.

Определение. Множество F называется **системой Грёбнера**, если $\forall g \in R$, остаток g относительно F определён однозначно, то есть не зависит от цепочки приводящих к нему элементарных редукций.

```
Предложение. Следующие условия эквивалентны:
```

```
1) F – система Грёбнера.
```

2) $\forall g \in R$ обладает следующим свойством: если $g \xrightarrow{f_1} g_1$ и $g \xrightarrow{f_2} g_2$ – две элементарные редукции, то $\exists g' \in R$: $\begin{cases} g_2 \overset{F}{\leadsto} g' \\ g_1 \overset{F}{\leadsto} g' \end{cases}$

Доказательство. (1) \Rightarrow (2) В качестве g' можно взять остаток g относительно системы F.

 $(2) \Rightarrow (1)$

B(F) := все многочлены из R, для которых остаток относительно F определён неоднозначно.

 $E_F(g)$ – множество всех элементарных редукций многочлена g относительно F.

Пусть $B(F) \neq \emptyset$ и $g \in B(F)$

Если $E_F(g) \cap B(F) \neq \emptyset$, то возьмём $g_1 \in E_F(g) \cap B(F)$

Если $E_F(g_1) \cap B(F) \neq \emptyset$, то возьмём $g_2 \in E_F(g_1) \cap B(F)$

И так далее

Из того, что цепочки элементарных редукций конечны, вытекает $\exists \ i \in \mathbb{N} : E_F(g_i) \cap B(F) = \varnothing$

Тогда ∃ две цепочки элементарных редукций

$$\begin{cases} g_i \to h_1 \to \dots \to r_1 \\ g_i \to h_2 \to \dots \to r_2 \end{cases}$$
 – неравные остатки.

По условию $\exists r \in R$ – нередуцируемый, такой что $h_1 \leadsto r, h_2 \leadsto r$.

Так как $h_1, h_2 \notin B(F)$, то $r_1 = r, r_2 = r$

 $\Rightarrow r_1 = r_2$ – противоречие.

21 S-многочлены. Критерий Бухбергера

```
f_1, f_2 \in R \leadsto рассмотрим m = \operatorname{HOK}(L(f_1), L(f_2)) \in M. Пусть m_1, m_2 \in M таковы, что m = m_1 L(f_1) = m_2 L(f_2) Определение. Многочлен S(f_1, f_2) := m_1 f_1 - m_2 f_2 называется S-многочленом построенным по f_1, f_2. Замечание. S(f_2, f_1) = -S(f_1, f_2) Теорема. (Критерий Бухбергера) Для системы F \subseteq R \setminus \{0\} следующие условия эквивалентны: (1) F – система Грёбнера. (2) \forall f_1, f_2 \in F \quad S(f_1, f_2) \overset{F}{\leadsto} 0
```

Доказательство. (1) \Rightarrow (2) Если F – система Грёбнера, то $S(f_1,f_2) \stackrel{F}{\leadsto} 0$, но при этом $S(f_1,f_2) \stackrel{F}{\leadsto} r$. Знаем, что остаток определён однозначно, следовательно r=0. Противоречие (брали ненулевой г изначально).

Следствие. Если $f_1, f_2 \in F$, $S(f_1, f_2) \stackrel{F}{\leadsto} r$ – остаток и $r \neq 0$, то F не система Грёбнера.

```
Доказательство. (1)\Rightarrow (2)m=\mathrm{HOK}(L(f_1),L(f_2))=m_1L(f_1)=m_2L(f_2) m_1f_1\xrightarrow{f_1}0 m_1f_1\xrightarrow{f_2}m_1f_1-m_2f_2=S(f_1,f_2)\xrightarrow{F}r - остаток Так как F - система Грёбнера, то r=0 (2)\Rightarrow (1) Пусть g\in R,m_1,m_2\in M(g) и мы проделаем элементарную редукцию m_1 при помощи f_1\in F и m_2 при помощи f_2. m_1=m_1'L(f_1),m_2=m_2'L(f_2) g\xrightarrow{f_1}g_1=g-m_1'f_1 g\xrightarrow{f_2}g_2=g-m_2'f_2 Достаточно показать, что g_1-g_2\xrightarrow{F}0 Случай 1 L(m_2'f_2) и L(m_1'f_1) не пропорциональны, можно считать, что L(m_2'f_2)>L(m_1'f_1) m_2'f_2-m_1'f_1\xrightarrow{f_1}0-m_1'f_1\xrightarrow{f_1}0 Случай 2 L(m_2'f_2)=L(m_1'f_1). Тогда \exists m\in M, такой что m_2'f_2-m_1'f_1=mS(f_1,f_2)\xrightarrow{F}0 Случай 3 L(m_2'f_2)=\alpha L(m_1'f_1) при некотором \alpha\neq 1. Тогда L(m_2'f_2)=m_1'f_1 \xrightarrow{f_1}m_2'f_2-m_1'f_1 \xrightarrow{f_1}m_2'f_2-m_1'f_1
```

22 Базис Грёбнера идеала в кольце многочленов от нескольких переменных, теорема о трёх эквивалентных условиях. Решение задачи вхождения многочлена в идеал

Пусть $I \triangleleft R$ – идеал.

Определение. Множество F называется базисом Грёбнера идеала I, если

- (1) I = (F)
- (2) F система Грёбнера.

Теорема. $F \subseteq I \setminus \{0\} \Rightarrow$ следующие условия эквивалентны:

- (1) F базис Грёбнера в I
- $(2) \ \forall g \in I \ g \stackrel{F}{\leadsto} 0$
- (3) $\forall g \in I \setminus \{0\} \exists f \in F : L(g) : L(f)$

Доказательство. (1) \Rightarrow (2): пусть $I_0 = \{g \in I | \stackrel{F}{\leadsto} 0\}$, тогда

- 1) $0 \in I_0$
- $2) g \in I_0 \Rightarrow -g \in I_0$
- 3) $g_1,g_2\in I_0\Rightarrow g_1+g_2\in I_0$ Пусть $g=(g_1+g_2)-g_2\overset{F}{\leadsto}0\Rightarrow$ существует остаток r, такой что $g_1+g_2\overset{F}{\leadsto}r,g_2\overset{F}{\leadsto}r$ Но F базис Грёбнера \Rightarrow остаток определён однозначно и для g_2 получаем r=0.
- $\Rightarrow g_1 + g_2 \overset{F}{\leadsto} 0$
 - 4) $g \in I_0 \Rightarrow \forall m \in M \ mg \in I_0$
 - $1)-3)\Rightarrow I_0$ подгруппа в I по сложению.
 - $(3) 4) \Rightarrow I_0$ идеал в R.

 $F \subseteq I_0 \Rightarrow I = (F) \subseteq I_0 \Rightarrow I_0 = I$

$$(2)\Rightarrow (1)\ g\in I\Rightarrow g\overset{F}{\leadsto}0\Rightarrow g=m_1f_1+...+m_kf_k, \text{ где }m_1,...,m_k\in M, f_1,...,f_k\in F$$

$$\Rightarrow g \in (F) \Rightarrow I \subseteq (F)$$
. Ho $F \subseteq I \Rightarrow (F) \subseteq I \Rightarrow I = (F)$

 $f_1f_2 \in F \Rightarrow S(f_1,f_2) \in (F) = I \Rightarrow S(f_1,f_2) \overset{F}{\leadsto} 0 \Rightarrow F$ – система Грёбнера по критерию Бухбергера.

$$(3)\Rightarrow (2)\ g\in I, g\overset{F}{\leadsto} r$$
, где r – остаток. $\Rightarrow r=g-m_1f_1-...-m_kf_k,\ m_i\in M, f_i\in F$

 $\Rightarrow r \in I,$ если $r \neq 0,$ то $L(r) \dot{:} L(f)$ для некоторого $f \in F$

 $\Rightarrow r$ редуцируем дальше – противоречие $\Rightarrow r = 0$

Следствие. F – базис Грёбнера в $I \Rightarrow$

- 1) $\forall g \in I$ любая цепочка элементарных редукций относительно F приводит к 0
- 2) $\forall g \in R : g \in I \Leftrightarrow$ остаток g относительно системы f равен 0

23 Лемма о конечности цепочек одночленов, в которых каждый следующий одночлен не делится ни на один из предыдущих. Алгоритм Бухбергера построения базиса Грёбнера идеала

Лемма. $\not\exists$ бесконечных последовательностей одночленов $m_1, m_2, \ldots,$ таких что $m_i \not\mid m_i \ \forall i > j.$

Доказательство. Индукция по n: $n=1\Rightarrow$ степени убывают \Rightarrow цепочка конечна.

Пусть доказано для < n, докажем для n. Пусть есть бесконечная последовательность $m_1, m_2, \ldots, m_i \not : m_j \quad \forall i > j:$ $m_i = a_i x_1^{k_1(i)} \cdot \ldots \cdot x_n^{k_n(i)}$. Тогда $\forall j \geqslant 2 \ m_j \not : m_1 \Rightarrow \exists i \in \{1, \ldots, n\}$, такое что $k_i(j) < k_i(1)$ для **бесконечного числа значений** j.

Без ограничения общности считаем i=n. Перейдя к подпоследовательности, можем считать, что $k_n(j) < k_n(1), \ \forall j \geqslant 2$. Тогда $k_n(j)$ принимает лишь конечное число значений \Rightarrow какое—то из этих значений встретится бесконечно много раз. Снова перейдя к подпоследовательности, можем считать, что $k_n(1) = k_n(2) = \ldots$, полагая $x_n = 1$, получим последовательность от x_1, \ldots, x_{n-1} с тем же свойством – противоречие.

Алгоритм Бухбергера построения базиса Грёбнера идеала.

Дано: $I = (F), F = f_1, \dots, f_k$

Перебираем все пары i < j. Если $\exists i < j$, такое что $S(f_i, f_j) \stackrel{F}{\leadsto} r_1 \neq 0$, r_1 - остаток, то добавляем r_1 в F и повторяем процедуру для $F \cup \{r_1\}$. В итоге получаем $\forall i, j : S(f_i, f_j) \stackrel{F \cup \{r_n\}}{\leadsto} 0$. Полученное F - это система Грёбнера по критерию Бухбергера $\Rightarrow F$ - базис Грёбнера в I. Если алгоритм не закончится за конечное число шагов, то получим бесконечную последовательность r_1, r_2, r_3, \ldots , такую что $L(r_i) \not L(r_j)$ при i > j - противоречие с леммой.

24 Теорема Гильберта о базисе идеала

Теорема. Всякий идеал в R порождается конечным числом элементов.

```
Доказательство. I \triangleleft R. I = \{0\} = I = (0) - \text{ок}. I \neq 0. Выберем r_1 \in I \setminus \{0\}. Если I = (r_1), то ок; Иначе выберем f_2 \in I \setminus (r_1), f_2 \overset{\{r_1\}}{\leadsto} r_2 - остаток. Тогда r_2 \in I \setminus (r_1), L(r_2) \not L(r_1). Если I = (r_1, r_2), то ок. Иначе выберем f_3 \in I \setminus (r_1, r_2), f_3 \overset{\{r_1, r_2\}}{\leadsto} r_3 - остаток. Тогда r_3 \in I \setminus (r_1, r_2), L(r_3) \not L(r_1), L(r_2). ... Если процесс не закончится, то получится бесконечная последовательность r_1, r_2, \ldots, такая что L(r_i) \not L(r_j) при i > j - невозможно по лемме \Rightarrow \exists k : I = (r_1, \ldots, r_k)
```

25 Редуцируемость к нулю S-многочлена двух многочленов с взаимно простыми старшими членами

Предложение. $f_1,f_2\in R\setminus\{0\},$ НОД $(L(f_1),L(f_2))=1\Rightarrow S(f_1,f_2)\stackrel{\{f_1,f_2\}}{\leadsto}0$

Доказательство. Достаточно показать, что f_1, f_2 – базис Грёбнера в идеале (f_1, f_2) .

Пусть $g \in (f_1, f_2)$ и $g = h_1 f_1 + h_2 f_2$, где $h_1, h_2 \in R$. Покажем, что $L(g) \dot{:} L(f_1)$ или $L(g) \dot{:} L(f_2)$.

Пусть это не так, тогда $L(h_1f_1) = -L(h_2f_2) \Rightarrow$ [по лемме о старшем члене] $\Rightarrow L(h_1) = L(f_2) \cdot m, L(h_2) = -L(f_1) \cdot m, m \in M$.

Положим $h_1' = h_1 - f_2 m, h_2' = h_2 + f_1 m; L(h_1') \prec L(h_1), L(h_2') \prec L(h_2).$ Имеем $g = (h_1' + f_2 m) f_1 + (h_2' - f_1 m) f_2 = h_1' f_1 + h_2' f_2$ и $L(h_1' f_1) = -L(_2' f_2).$ Повторяя процедуру, получим бесконечную цепочку равенств $g = h_1 f_1 + h_2 f_2 = h_1' f_1 + h_2' f_2 = \ldots = h_1^{(i)} f_1 + h_2^{(i)} f_2 = \ldots$, причём $L(h_1) \succ L(h_1') \succ \ldots \succ L(h_1^{(i)}) \succ \ldots$ – противоречие.

Характеристика поля. Расширение полей. Конечное расширение и его 26 степень. Степень композиции двух расширений

Поля $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}_p$, где p – простое. K[x]/(h) (К – поле, h – неприводимый многочлен) **Определение. Характеристика** поля k – наименьшее $p \in \mathbb{N}$, такое что $\underbrace{1+1+...+1}_p = 0$

Если такого р не существует, то говорят, что характеристика поля К равна 0.

Обозначение: charK

Примеры: $char\mathbb{Q} = char\mathbb{C} = char\mathbb{R} = 0, \ char\mathbb{Z}_p = p$

Предложение. К – поле \Rightarrow либо charK = 0, либо charK – простое число.

Доказательство. char K = p, пусть p > 0. Так как $0 \neq 1$, то $p \geqslant 2$.

Если $p=m\cdot k$, тогда $0=\underbrace{1+\ldots+1}_p=\underbrace{1+\ldots+1}_{m\cdot k}=\underbrace{1+\ldots+1}_m\cdot\underbrace{(1+\ldots+1)}_k$. Но мы знаем, что $\underbrace{(1+\ldots+1)}_k\neq 0$ и $\underbrace{1+\ldots+1}_m\neq 0$

0, а значит в K есть делители нуля, из чего следует, что K – не поле. Противоречие.

 \Rightarrow p – простое.

Определение. K, F – поля, $K \subseteq F \Rightarrow f$ называется расширением поля K. $("K \subseteq F"$ – расширение полей)

Определение. Степень расширения полей $K \subseteq F$ – это размерность F как векторного пространства над K.

Обозначение: [F:K]

Примеры: $[\mathbb{C}:\mathbb{R}]=2$, $[\mathbb{R}:\mathbb{Q}]=\infty$

Определение. Расширение полей $K\subseteq F$ называется конечным, если $[F:K]<\infty$

Лемма о степени композиции расширения полей.

Пусть $K \subseteq F, F \subseteq L$ – конечные расширения полей. Тогда $K \subseteq L$ – тоже конечное расширение, причём [L:K] = [L:K] $F] \cdot [F:K]$

Доказательство. Пусть $e_1,...,e_n$ – базис F над $K, f_1,...,f_m$ – базис L над F.

Покажем, что $\{e_if_j\}$ – базис L над K. 1) $a\in L\Rightarrow a=\sum_{j=1}^m a_jf_j$, где $a_j\in F$.

При этом a_j раскладывается по базису $e_1,...,e_m$: $a_j = \sum_{i=1}^n b_{ij}e_i$, где $b_ij \in K$ $\Rightarrow a = \sum_{j=1}^m \left(\sum_{i=1}^n b_{ij}e_i\right) f_j = \sum_{j=1}^m \sum_{i=1}^n b_{ij}e_i f_j$ Итог: $L = \langle e_if_j \rangle$ 2) Если $\sum_{j=1}^m \sum_{i=1}^n c_{ij}e_i f_j = 0$, где $c_{ij} \in K$, то $= \sum_{j=1}^m \left(\sum_{i=1}^n c_{ij}e_i\right) f_j = 0$ $\{f_j\}$ – базис L над $F \Rightarrow \forall j \sum_{i=1}^n c_{ij}e_i = 0$, знаем, что $\{e_i\}$ – базис F над $K \Rightarrow \forall i,j: c_{ij} = 0 \Rightarrow$ Система $\{e_if_j\}$ линейно независима.

27 Присоединение корня неприводимого многочлена. Существование конечного расширения исходного поля, в котором заданный многочлен (а) имеет корень; (б) разлагается на линейные множители

K – поле, $h=a_nx^n+\ldots+a_1x+a_0\in K[x], a_n\neq 0,$ $\deg h=n$ h неприводим $\Rightarrow F:=K[x]/(h)$ $K\subseteq F$ [F:K]=n $\forall f\in K[x]\leadsto \overline{f}=f+(h)\in F$

Предложение. Элемент \overline{x} является корнем многочлена h в F.

Доказательство. $h(\overline{x}) = a_n \overline{x}^n + ... + a_1 \overline{x} + a_0 = \overline{h} = \overline{0}$ в поле F.

Замечание. Переход от K к F называется присоединением корня неприводимого многочлена h. **Следствие.** $f \in K[x], \deg f \geqslant 1$ \exists конечное расширение $K \subseteq F$, такое что f имеет корень в F.

Доказательство. Достаточно взять F := K[x]/(h), где h – неприводимый делитель f.

Следствие. $\forall f \in K[x], \deg f \geqslant 1$ \exists конечное расширение $K \subseteq F$, такое что f разлагается на линейные множители над F.

Доказательство. Предыдущее следствие + следствие из теоремы Безу + индукция по $\deg f$.

28 Алгебраические и трансцендентные элементы. Минимальный многочлен алгебраического элемента и его свойства

$$K \subseteq F$$

Определение. Элемент $\alpha \in F$ называется алгебраическим над K, если $\exists \ f \in K[x], \deg f \geqslant 1$, такой что $f(\alpha) = 0$ и трансцендентным иначе.

Определение. Минимальным многочленом элемента $\alpha \in F$, алгебраического над K, называется такой $h \in K[x], \deg h \geqslant 1$, что $h(\alpha) = 0$ и h имеет минимальную степень.

Свойства минимального многочлена

Пусть $K \subseteq F$ — расширение полей, $\alpha \in F$ — элемент, алгебраический над K, и $h \in K[x]$ — его минимальный многочлен. Тогда:

- 1) h определён однозначно с точностью до пропорциональности.
- 2) Для всякого $f \in K[x]$ имеем $f(\alpha) = 0 \Leftrightarrow f\dot{h}$
- 3) h неприводим над К

Доказательство. Положим $I = \{ f \in K[x] \mid f(\alpha) = 0 \}$. Тогда I – идеал в K[x]. Так как K[x] – КГИ, то $\exists g \in I : I = (g)$.

 $h(\alpha) = 0 \Rightarrow h \in I \Rightarrow \dot{h} : g \Rightarrow h$ пропорционален g в силу минимальности \Rightarrow (1) и (2)

(3) Если $h = h_1 h_2$, $\deg h_i < \deg h$, i = 1,2. Тогда либо $h_1(\alpha) = 0$ либо $h_2(\alpha) = 0$, ну а это противоречие, так как мы выбирали минимальный h.

29 Подполе в расширении полей, порождённое алгебраическим элементом

 $K \subseteq F, \alpha \in F$ – элемент, алгебраический над K, h_{α} – минимальный многочлен для α $K(\alpha) :=$ пересечение всех подполей в F, содержащих K и $\alpha =$ наименьшее подполе в F, содержащее K и α .

Замечание.
$$K(\alpha) = \left\{ \frac{f(\alpha)}{g(\alpha)} \mid f,g \in K[x], g(\alpha) \neq 0 \right\}$$

Теорема. Существует изоморфизм $\psi: K[x]/(h_\alpha) \xrightarrow{\sim} K(\alpha)$, такое что $\psi(\overline{x}) = \alpha$

Доказательство. Рассмотрим гомоморфизм $\varphi:K[x]\to F, f\to f(\alpha)$

Тогда $\ker \varphi = (h_{\alpha}) \Rightarrow$ по теореме о гомоморфизме для колец получаем изоморфизм $\psi : K[x]/(h_{\alpha}) \xrightarrow{\sim} Im\varphi, \overline{x} \to \alpha$ Так как $K[x]/(h_{\alpha})$ – поле, то $Im\varphi$ – подполе в $F, K \subseteq Im\varphi, \ \alpha = \psi(\overline{x}) \in Im\varphi$

 $\Rightarrow K[\alpha]\varphi \subseteq Im\varphi$

С другой стороны, $Im\varphi=\{f(\alpha)\mid f\in K[x]\}$ — содержится в любом поле, содержащем K и $\alpha.$

 $\Rightarrow Im\varphi \subseteq K(\alpha)$

Следствие. $\forall y \in K(\alpha)$ единственным образом представим в виде $y = \beta_0 + \beta_1 \alpha + ... + \beta_{n-1} \alpha^{n-1}$, где $\beta_i \in K$.

30 Порядок конечного поля. Автоморфизм Фробениуса

K – конечное поле char K = p > 0 – простое число.

Пусть $\langle 1 \rangle \subseteq K$ — подгруппа по сложению, порождаемая 1.

Заметим, что $\langle 1 \rangle$ – подкольцо, изоморфное $\mathbb{Z}_p \Rightarrow \langle 1 \rangle$ – поле, изоморфное \mathbb{Z}_p .

Теорема. $|K| = p^n$, где $n = \dim_{\mathbb{Z}_n} K$

Доказательство. $K \subseteq \mathbb{Z}_p \Rightarrow K$ – векторное пространство над \mathbb{Z}_p .

Пусть $n = \dim_{\mathbb{Z}_p} K$. Выберем базис $e_1,...,e_n$ в K над \mathbb{Z}_p .

Тогда $K = \{a_1e_1 + ... + a_ne_n \mid a_i \in \mathbb{Z}_p\}$

 $\forall a_i$ есть ровно p вариантов $\Rightarrow |K| = p^n$

Общая конструкция конечных полей.

Выбираем неприводимый многочлен $h \in \mathbb{Z}_p[x]$, $\deg h = n$. Тогда $F := \mathbb{Z}_p[x]/(h)$ – поле, векторное пространство над \mathbb{Z}_p размерности $n \Rightarrow |F| = p^n$.

Автоморфизм Фробениуса.

 $a,b \in K \Rightarrow$

 $(a+b)^p=a^p+C_p^1a^{p-1}b+C_p^2a^{p-2}b^2+\ldots+C_p^{p-1}ab^{p-1}+b^p=a^p+b^p,$ так как C_p^k : p при $1\leqslant k\leqslant p-1$ Рассмотрим отображение $\varphi:K\to K, a\to a^p.$ Имеем:

 $\varphi(a+b) = (a+b)^p = a^p + b^p = \varphi(a) + \varphi(b),$

 $\varphi(ab) = (ab)^p = a^p b^p = \varphi(a) \cdot \varphi(b)$

 $\Rightarrow \varphi$ – гомоморфизм колец.

 $\ker \varphi$ – идеал в K, но в поле нет собственных идеалов \Rightarrow либо $\ker \varphi = K$, либо $\ker \varphi = \{0\}$. Так как $\varphi(1) = 1$, то $\ker \varphi \neq K \Rightarrow \ker \varphi = \{0\} \Rightarrow \varphi$ инъективно.

Если $|K|<\infty$, то φ – биекция. В этом случае φ называется **автоморфизмом Фробениуса**. ("автоморфизм"="изоморфизм в себя")

31 Теорема существования для конечных полей

Замечание. Если K – поле и $\psi: K \to K$ – автоморфизм, то подмножество $K^{\psi} := \{x \in K \mid \psi(x) = x\}$ неподвижных элементов всегда является подполем в K.

Теорема. Для любого простого числа p и всякого $n \in \mathbb{N}$ существует единственное с точностью до изоморфизма поле K, такое что $|K| = p^n$

Доказательство. Существование. Положим $q=p^n$.

Рассмотрим многочлен $f=x^q-x\in\mathbb{Z}_p[x]$. Пусть $F\subseteq\mathbb{Z}_p,|F|<\infty$ – конечное расширение, такое что f разлагается в F на линейные множители.

Пусть $K \subseteq F$ – это множество всех корней многочлена f в F.

Покажем, что $|K| = q = p^n$. Если это не так, то $\exists \alpha \in K$, такое что $f : (x - \alpha)^2 \Rightarrow f = (x - \alpha)^2 \cdot g$, где $g \in K[x]$. Тогда $f' = 2(x - \alpha) \cdot g + (x - \alpha)^2 \cdot g' : (x - \alpha)$.

Но $f = x^q - x \Rightarrow f' = q \cdot x^{q-1} - 1 = p^n \cdot x^{q-1} - 1 = -1$ /($(x - \alpha)$) — противоречие $\Rightarrow |K| = q$.

 $a \in K \Leftrightarrow f(a) = 0 \Leftrightarrow a^q - a = 0 \Leftrightarrow a^q = a \Leftrightarrow a^{p^n} = a \Leftrightarrow \varphi^n(a) = a \Leftrightarrow a$ – неподвижный элемент для автоморфизма $\psi = \varphi^n$

Вывод: $K = F^{\psi} \Rightarrow K$ – подполе в F.

32 Цикличность мультипликативной группы конечного поля и неприводимые многочлены над \mathbb{Z}_p

Обозначение: Поле из q элементов обозначается \mathbb{F}_q Обозначение: K – поле $\Rightarrow K^{\times} = (K \setminus \{0\}, \times)$ – мультипликативная группа поля K.

Предложение. Группа \mathbb{F}_q^{\times} является циклической.

 \mathcal{A} оказательство. Положим $m = \exp(\mathbb{F}_q^{\times}), m \leqslant q-1$. Если \mathbb{F}_q^{\times} не циклическая, то m < q-1. Но тогда $a^m = 1 \ \forall a \in \mathbb{F}_q^{\times}$ \Rightarrow многочлен x^m-1 имеет \mathbb{F}_q не меньше q-1 корней, но это невозможно, так как m < q-1

Предложение. Пусть p – простое и $n \in \mathbb{N}$. Тогда поле \mathbb{F}_q можно реализовать в виде $\mathbb{Z}_p[x]/(h)$, где $h \in \mathbb{Z}_p[x]$ – неприводимый многочлен, $\deg h = n$. В частности, $\forall n \in \mathbb{N}$ в $\mathbb{Z}_p[x]$ существуют неприводимые многочлены степени n.

Доказательство. Пусть $\alpha \in \mathbb{F}_q^{\times}$ — порождающий элемент циклической группы \mathbb{F}_q^{\times} . $\mathbb{Z}_p \subseteq F_q \Rightarrow Z_p(\alpha)$ содержит $\alpha,...,\alpha^{q-1}$ $(q=p^n) \Rightarrow \mathbb{Z}_p(\alpha) = \mathbb{F}_q \Rightarrow \mathbb{F}_q \simeq \mathbb{Z}_p[x]/(h)$, где h — минимальный многочлен для α над \mathbb{Z}_p . Если $\deg h = d$, то $|\mathbb{Z}_p[x]/(h)| = p^d$ $\Rightarrow p^d = p^n \Rightarrow d = n$

Теорема. Пусть $q=p^n$, где p – простое.

- 1) $F\subseteq \mathbb{F}_q$ подполе, то $F\simeq \mathbb{F}_{p^m},$ где m|n
- 2) $\forall m \in \mathbb{N}, \ m|n, \$ существует единственное подполе $F \subseteq \mathbb{F}_q$, такое что $|F| = p^m$