class07

Edward Vo (A16215241)

Clustering

We will start today's lab with clustering methods, in particular so-called K-means. The main function for this in R is kmeans()

Let's try it on some made up data where we know what the answer should be.

```
x<-rnorm(60, mean=3)
hist(x)</pre>
```

Histogram of x

60 points

```
tmp <- c(rnorm(30, mean=3), rnorm(30, -3))
x <- cbind(x=tmp, y=rev(tmp))
head(x)</pre>
```

```
x y
[1,] 4.122997 -2.521245
[2,] 1.959693 -1.596079
[3,] 2.206045 -3.949734
[4,] 4.831754 -2.414815
[5,] 4.579543 -4.932044
[6,] 4.176482 -2.493994
```

We can pass this to the base R plot() function for a quick plot

```
plot(x)
```



```
k <- kmeans(x, centers=2, nstart=20)
k</pre>
```

K-means clustering with 2 clusters of sizes 30, 30

```
Cluster means:

x y

1 -3.161203 2.898770

2 2.898770 -3.161203
```

Clustering vector:

Within cluster sum of squares by cluster:

[1] 82.84454 82.84454 (between_SS / total_SS = 86.9 %)

Available components:

- [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
- [6] "betweenss" "size" "iter" "ifault"
 - Q1. How many points are in each cluster?

k\$size

[1] 30 30

Q2. Cluster membership?

k\$cluster

- - Q3. Cluster centers?

k\$centers

x y 1 -3.161203 2.898770 2 2.898770 -3.161203

Q4. Plot my clustering results

Q5. Cluster the data again into 4 groups and plot the results

```
k4 <- kmeans(x, centers=4, nstart=20)
plot(x, col=k4$cluster, pch=16)</pre>
```


K-means is very popular mostly because it is fast and relatively straightforward to run and understand. It has a big limitation in that you need to tell it how many groups(k, or centers) you want.

Hierarchical clustering

The main function in base R is called hclust(). You have to pass it in a "distance matrix" not just your input data.

You can generate a distance matrix with the dist() function.

```
hc <- hclust(dist(x))
hc</pre>
```

Call:

hclust(d = dist(x))

Cluster method : complete
Distance : euclidean

Number of objects: 60

plot(hc)

Cluster Dendrogram

dist(x) hclust (*, "complete")

To find clusters (cluster membership vector) from a hclust() result we can "cut" the tree at a certain height that we like.

```
plot(hc)
abline(h=8, col="red")
```

Cluster Dendrogram

dist(x)
hclust (*, "complete")

```
grps <- cutree(hc, h=8)

table(grps)

grps
1 2
30 30

Q6. Plot out hclust results

plot(x, col=grps)</pre>
```


Principal Component Analysis

PCA of UK food data

```
url <- "https://tinyurl.com/UK-foods"
x <- read.csv(url)</pre>
```

Question 1

```
dim(x)

[1] 17 5

head(x)

X England Wales Scotland N.Ireland
1 Cheese 105 103 103 66
```

2	Carcass_meat	245	227	242	267
3	Other_meat	685	803	750	586
4	Fish	147	160	122	93
5	Fats_and_oils	193	235	184	209
6	Sugars	156	175	147	139

Change index

```
# Note how the minus indexing works
rownames(x) <- x[,1]
x <- x[,-1]
head(x)</pre>
```

	England	Wales	${\tt Scotland}$	${\tt N.Ireland}$
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

```
# Alternatively
x <- read.csv(url, row.names=1)
head(x)</pre>
```

	England	Wales	Scotland	N.Ireland
Cheese	105	103	103	66
Carcass_meat	245	227	242	267
Other_meat	685	803	750	586
Fish	147	160	122	93
Fats_and_oils	193	235	184	209
Sugars	156	175	147	139

Question 2

I prefer second method since code is simpler & assigns directly I would use first method when the names column is in the first column (no other data to the left)

Spotting major differences and trends

barplot(as.matrix(x), beside=T, col=rainbow(nrow(x)))

Question 3

barplot(as.matrix(x), beside=F, col=rainbow(nrow(x)))

Changing to beside=F stacks the individual bars instead of side-by-side

Question 5

```
pairs(x, col=rainbow(10), pch=16, cex=2)
```


Paired plot matrix generated Above diagonal is flipped from below diagonal If lie on straight line = same amount

Question 6

Northern Ireland has a lot of deviation from the straight line

PCA to the rescue PCA can help us make sense of these types of datasets

```
# Switch countries and foods with `t()`
head(t(x))
```

	Cheese	Carcass_r	neat	Other	_meat	Fish	Fats_and_	oils	Sugars
England	105		245		685	147		193	156
Wales	103		227		803	160		235	175
Scotland	103		242		750	122		184	147
N.Ireland	66		267		586	93		209	139
	Fresh_p	ootatoes	Fresl	n_Veg	Other	_Veg	Processed	l_potat	toes
England		720		253		488			198
Wales		874		265		570			203
Scotland		566		171		418			220

N.Ireland	1033	3 143	143 355		187
	Processed_Veg	Fresh_fruit	Cereals	Beverages	Soft_drinks
England	360	1102	1472	57	1374
Wales	365	1137	1582	73	1256
Scotland	337	957	1462	53	1572
N.Ireland	334	674	1494	47	1506
	Alcoholic_drink	s Confection	nery		
England	3	375	54		
Wales	4	175	64		
Scotland	4	158	62		
N.Ireland	1	135	41		

```
# Use the prcomp() PCA function
pca <- prcomp(t(x))
summary(pca)</pre>
```

Importance of components:

	PC1	PC2	PC3	PC4
Standard deviation	324.1502	212.7478	73.87622	2.921e-14
Proportion of Variance	0.6744	0.2905	0.03503	0.000e+00
Cumulative Proportion	0.6744	0.9650	1.00000	1.000e+00

PC1 captures 67% of all data, very representative

Question 7

pca\$x

```
      PC1
      PC2
      PC3
      PC4

      England
      -144.99315
      -2.532999
      105.768945
      -9.152022e-15

      Wales
      -240.52915
      -224.646925
      -56.475555
      5.560040e-13

      Scotland
      -91.86934
      286.081786
      -44.415495
      -6.638419e-13

      N.Ireland
      477.39164
      -58.901862
      -4.877895
      1.329771e-13
```

```
# Plot PC1 vs PC2
plot(pca$x[,1], pca$x[,2])
text(pca$x[,1], pca$x[,2], colnames(x))
```


Question 8

```
plot(pca$x[,1], pca$x[,2], col=c("orange", "red", "blue", "darkgreen"), pch=16)
text(pca$x[,1], pca$x[,2], colnames(x))
```


head(pca\$rotation)

```
PC1
                                     PC2
                                                 PC3
                                                              PC4
               -0.056955380
                              0.01601285
                                          0.02394295 -0.40938259
Cheese
                              0.01391582
                                          0.06367111
                                                       0.72948192
Carcass_meat
                0.047927628
Other_meat
               -0.258916658 -0.01533114 -0.55384854
                                                       0.33100113
Fish
               -0.084414983 -0.05075495
                                          0.03906481
                                                       0.02237588
Fats_and_oils
               -0.005193623 -0.09538866 -0.12522257
                                                       0.03451216
Sugars
               -0.037620983 -0.04302170 -0.03605745
                                                       0.02494334
```

Contribution to PCA

"Loadings" tell us how much the original variables (in our case, the foods) contribute to the new variables (the PCA)

```
## Lets focus on PC1 as it accounts for > 90% of variance
par(mar=c(10, 3, 0.35, 0))
barplot( pca$rotation[,1], las=2 )
```

