Robot klasy LineFollower "MegaZord" PTM - projekt

Patryk Szydlik

26 czerwca 2020

Zabezpieczenie przed odwrotną polaryzacją

Zastosowane elementy:

- Tranzystor unipolarny oznaczenie Q-PMOS-GSD
- Switch oznaczenie SW1 ON/OFF
- Dioda kontrolna oznaczenie D4 GREEN

Układ ma na celu zablokowanie przepływu prądu w układzie w wypadku odwrotnego podłączenia akumulatora. Przełącznik pozwala na odcięcie zasilania przy podłączonej baterii a dioda sygnalizuje dopływ zasilania do robota.

Zabezpieczenie przed odwrotną polaryzacją

Rysunek: Schemat układu z tranzystorem

Zabezpieczenie przed odwrotną polaryzacją

Rysunek: Dioda kontrolna

Stabilizator napięcia

Zastosowane elementy:

Stabilizator +3.3V - oznaczenie U8 LM1117

Układ ma na celu konwersje napięcia wejściowego wynoszącego max 8.4V do stabilnej wartości +3.3V, przy której pracować może mikroprocesor oraz inne układy elektroniczne wykorzystane w robocie.

Stabilizator napięcia

Rysunek: Stabilizator LM1117 +3.3V

Pomiar wartości napięcia na akumulatorze

Zastosowane elementy:

Dzielnik napięcia 100k - 47k

Dzielnik wykorzystany jest do pomiaru wartości napięcia w akumulatorze i kontroli jego rozładowania. Zastosowanie dzielnika było wymagane, ponieważ kontroler może przyjąć sygnał maksymalnie +3.3V. Obecne ustawienie (wynikające z dostępności oporników) podaje na mikrokontoler maksymalnie około +2.8V napięcia wejściowego.

Pomiar wartości napięcia na akumulatorze

Rysunek: Dzielnik napięcia

Koszt układu zasilającego

Zastosowane elementy wraz z ceną poglądową:

- Stabilizator LM117 cena 1 zł/szt
- Tranzystor PMOS cena 3 zł/szt
- Akumulator Li-Pol 220 mAh 7.4V cena 21 zł/szt
- Ładowarka do akumulatorów cena 35 zł/szt
- Kondensator 10uF cena 3,2 zł/szt
- Pozostałe elementy pasywne cena 5 zł

RAZEM: około 75 zł

Czujniki linii KTIR0711S

Czujniki odbiciowe wykorzystują do działania diodę emitującą promieniowanie oraz fototranzystor odbierający światło odbite. W ten sposób w zależności od właściwości refleksyjnych i pochłaniających materiału oświetlanego na fototranzystorze emitowane jest napięcie proporcjonalne do ilości otrzymanego światła.

Czujniki linii KTIR0711S

Stąd też czarna linia (która pochłania światło) jest odbierana przez mikrokontroler jako sygnał niski natomiast biała przestrzeń toru (odbijająca światło) jako sygnał wysoki.

Rysunek: Czujnik linii na schemacie

Czujnik odległości SHARP GP2Y 15cm

Cyfrowy czujnik odległości sharp wykrywa obiekty w odległości do 15 cm. Zakupiłem produkt wraz z podstawką PCB ułatwiającą montaż modułu. Czujnik wysyła sygnał wysoki gdy wykryje obiekt.

Koszt czujników

- Czujnik KTIR cena 2 zł/szt
- Czujnik SHARP cena 42 zł/szt
- Pozostałe elementy pasywne cena 5 zł

RAZEM: około 70 zł

Mikrokontroler STM32L052K8

Mikrokontroler dobrany został do ilości potrzebnych wyjść na podstawie dobranej wcześniej konfiguracji w programie STM32CubeMX , który pozwala na przeszukiwanie biblioteki mikrokontrolerów i dobranie elementu właściwego do naszych potrzeb.

Mikrokontroler

STM32L052K8

Rysunek: Konfiguracja mikrokontrolera w programie STM32CUBE

Mikrokontroler STM32L052K8

Schemat połączeń wykonany w programie KiCAD przy wykorzystaniu lokalnych bibliotek schematów oraz footprintów. Widoczny mikrokontroler oraz elementy pasywne połączone do niego zapewniające jego prawidłową pracę (wymagane w specyfikacji technicznej).

Wyjście od programatora wymaga podłączenia specjalnego układu (np znajdującego się na płytce NUCLEO L476RG), który pozwala na połączenie robota do komputera i programowanie.

Mikrokontroler

STM32L052K8

Rysunek: Schemat podłączenia mikrokontrolera

17/35

Sterownik silników Mostek H TB6612FNG

Zadaniem sterownika silników jest przeanalizowanie sygnału wejściowego od mikrokontrolera (PWM oraz IN1, IN2 dla każdego z silników) z zakresu 0 - 3.3 V , a następnie na podstawie wypełnienia sygnału podanie na silniki odpowiedniego napięcia z zakresu 0-8.4 V.

Zasada sterowania przez mikrokontroler opiera się na generowaniu na wyjściu PWM sygnału prostokątnego o określonym wypełnieniu (czestotliwosciach chwilowych), które są proporcjonalne do podanego przez sterownik napięcia. Natomiast wyjścia IN1 IN2 wyznaczają kierunek obrotu kół.

Sterownik silników

Mostek H TB6612FNG

Rysunek: Schemat podłączenia sterownika silników

Moduł BlueTooth

moduł HC-06

Moduł bluetooth pozwala na komunikację mikrokontrolera (a tym samym robota) z dowolnym urządzeniem Bluetooth obsługującym komunikacje szeregową UART. Czyli np komputerem lub telefonem.

Koszt elementów

- Mikrokontroler STM32L052K8 cena 10 zł
- Mostek H TB6612FNG cena 9 zł
- Moduł Bluetooth HC-06 cena 20 zł
- Płytka Nucleo cena 75 zł
- Elementy pasywne cena 10 zł

RAZEM: około 125 zł

Silniki

Pololu HP 10:1

Silniki Pololu zakupione w sklepie Botland. Najważniejsze elementy specyfikacji:

- Zasilanie 3-9 V
- Moment obrotowy 0,22 kg*cm
- Masa 10 g
- Wymiary $26 \times 10 \times 12$ mm

Opony i felgi

Kyosho MINI Z wide with high grip

Felgi zostały wydrukowane z materiału PLA na drukarce 3D specjalnie pod opony Kyosho MINI Z, które stosuje się w modelach samochodów wyścigowych sterowanych RC. Opona cechuje się dużą przyczepnością i dobrym wykonaniem.

Projekt KiCad

Model płytki wykonany został w darmowym programie KiCad na podstawie schematu również wykonanego w tym programie.

Płytka PCB zamówiona w JLCPCB

Firma JLCPCB mieszcząca się w Chinach oferuje w bardzo atrakcyjnej cenie możliwość wytworzenia dowolnej płytki PCB na podstawie schematów klientów. Główne atuty:

- Rozmiar maksymalny 400 x 500 mm
- Minimalna szerokość ścieżek 3.5 mila
- Minimalny odstęp między ścieżkami 3.5 mila
- Minimalny promień przelotki 0,2 mm (wew) oraz 0,45 mm
- Cena za projekt 100x100 mm to 2\$ za 5 płytek
- Cena za projekt nieregularny to 10\$ za 5 płytek

Zamówiona w JLCPCB

Rysunek: Płytka główna z góry

Zamówiona w JLCPCB

Rysunek: Płytka główna z dołu

Zamówiona w JLCPCB

Rysunek: Płytka z czujnikami z góry

Zamówiona w JLCPCB

Rysunek: Płytka z czujnikami z dołu

Koszt elementów

- Silnik cena 130 zł/ 2szt
- Mocowanie do silników cena 17 zł/ 2szt
- Opony cena 40 zł
- Płytka PCB cena 85 zł

RAZEM: około 270 zł

Nagrania testowe

Przejazd testowy 10% mocy

Przejazd testowy 20% mocy

Przejazd testowy 30% mocy

Przejazd testowy 40% mocy

Trasa próbna

Trasa próbna w przeciwnym kierunku

