Capítulo 4

El espacio dual

4.1. Dualidad. Aplicación dual

El conjunto, $\mathcal{L}(E, F)$, de todas las aplicaciones lineales entre dos espacios vectoriales E y F sobre \mathbb{K} , con las operaciones

suma:
$$f + g$$
: $E \longrightarrow F$, definida por: $(f + g)(u) = f(u) + g(u)$

producto por escalares: $\lambda f: E \longrightarrow F$, definida por: $(\lambda f)(u) = \lambda f(u)$

para cualesquiera $f, g \in \mathcal{L}(E, F)$ y $\lambda \in \mathbb{K}$, es un espacio vectorial sobre \mathbb{K} .

Para un espacio vectorial E, llamamos ENDOMORFISMO a toda aplicación lineal $f: E \longrightarrow E$. El espacio $\mathcal{L}(E,E)$ se denota $\operatorname{End}(E)$, y se dice el espacio de endomorfismos de E.

Ya hemos probado el siguiente resultado:

Teorema 9 Sean E y F dos espacios vectoriales de dimensiones finitas, n y m respectivamente, sobre un cuerpo K. Sean B_E y B_F bases de E y F respectivamente. La aplicación:

$$\phi: \mathcal{L}(E, F) \longrightarrow \mathcal{M}_{m \times n}(\mathbb{K})$$

que a cada aplicación lineal $f \in \mathcal{L}(E, F)$ asocia la matriz de la aplicación respecto a las bases \mathcal{B}_E y \mathcal{B}_F , es un isomorfismo de espacios vectoriales. En particular, el espacio vectorial $\mathcal{L}(E, F)$ tiene dimensión $m \cdot n$.

Definición 13 Dado un espacio vectorial E sobre un cuerpo \mathbb{K} , llamamos formas a las aplicaciones lineales de E en \mathbb{K} . Denotaremos por $E' = \mathcal{L}(E, \mathbb{K})$ y lo llamaremos el ESPACIO DUAL DE E.

En particular, si E es un espacio de dimensión finita sobre \mathbb{K} , su dual E' también es un espacio vectorial sobre \mathbb{K} con la misma dimensión: $\dim(E') = \dim(E)$. Dada una base $\{u_1, \ldots, u_n\}$ de E, las aplicaciones:

para cada $i=1,\ldots,n$, forman una base de E', que denominaremos BASE DUAL de $\{u_1,\ldots,u_n\}$.

Ejemplo 1. Mostrar las bases duales de las bases de \mathbb{R}^3 :

$$\mathcal{B}_1 := \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}, \ \mathcal{B}_2 := \{u_1 = (1,0,0), u_2 = (1,1,2), u_3 = (0,2,1)\}.$$

La base dual de \mathcal{B}_1 , que denotaremos \mathcal{B}_1' , está formada por las formas e_1' , e_2' y e_3' dadas por:

$$e'_i((x_1, x_2, x_3)) = x_i, \quad i = 1, 2, 3.$$

En efecto, si $[v]_{\mathcal{B}_1} = (x_1, x_2, x_3) = x_1(1, 0, 0) + x_2(0, 1, 0) + x_3(0, 0, 1)$, basta aplicar la definición de base dual.

Consideremos ahora la base $\mathcal{B}_2 := \{u_1 = (1,0,0), u_2 = (1,1,2), u_3 = (0,2,1)\}$. Si $w \in \mathbb{R}^3$ estal que $[w]_{\mathcal{B}_2} = y_1(1,0,0) + y_2(1,1,2) + y_3(0,2,1)$ la base dual \mathcal{B}_2' está conformada por las formas $\{u_1', u_2', u_3'\}$ tales que:

$$u_i'(w) = y_i, \quad i = 1, 2, 3.$$

Obsérvese que, a pesar de que $e_1 = u_1$, se tiene que $e'_1 \neq v'_1$. En efecto, para que fueran iguales tendrían que darnos la misma aplicación lineal de \mathbb{R}^3 en \mathbb{R} , pero:

$$\begin{split} e_1'(e_1) &= 1 = u_1'(e_1 = u_1) \,; \qquad e_1'(e_2) = 0 \neq \frac{-1}{3} = u_1' \left(e_2 = \frac{1}{3}u_1 - \frac{1}{3}u_2 + \frac{2}{3}u_3 \right) \,; \\ e_1'(e_3) &= 0 \neq \frac{-2}{3} = u_1' \left(e_3 = \frac{-2}{3}u_1 + \frac{-1}{3}u_2 + \frac{2}{3}u_3 \right) \,. \end{split}$$

Proposición 19 (Coordenadas duales) Sea $\{u_1, \ldots, u_n\}$ una base del espacio E y $\{u'_1, \ldots, u'_n\}$ su base dual. Las coordenadas de una forma $\omega \in E'$ en la base $\{u'_1, \ldots, u'_n\}$ son $\omega(u_1), \ldots, \omega(u_n)$, es decir:

$$\omega = \sum_{i=1}^{n} \omega(u_i) u_i'.$$

Dem.: Basta ver que para todo vector $u_k \in E$ de la base de E se tiene

$$\left(\sum_{i=1}^n \omega(u_i)u_i'\right)(u_k) = \sum_{i=1}^n \omega(u_i) u_i'(u_k) = \omega(u_k).$$

Definición 14 (Aplicación dual de una aplicación) Fijada una aplicación lineal $f: E \longrightarrow F$, cada elemento $\omega \in F'$ nos da, al componer con f, un elemento $\omega \circ f \in E'$

Tenemos así una aplicación $f': F' \longrightarrow E'$ definida por $f'(\omega) = \omega \circ f$, que llamaremos APLICACIÓN DUAL DE f. Es fácil ver que f' es lineal puesto que:

$$f'(\omega_1 + \omega_2) = (\omega_1 + \omega_2) \circ f$$

$$= \omega_1 \circ f + \omega_2 \circ f = f'(\omega_1) + f'(\omega_2)$$

$$f'(\lambda \omega) = (\lambda \omega) \circ f$$

$$= \lambda(\omega \circ f) = \lambda f'(\omega)$$

para cualesquiera ω , ω_1 , $\omega_2 \in F'$ y $\lambda \in \mathbb{K}$. Además se tiene que

$$(g \circ f)' = f' \circ g',$$

puesto que para toda forma ω se tiene:

$$(q \circ f)'(\omega) = \omega \circ (q \circ f) = (\omega \circ q) \circ f = f'(\omega \circ q) = f'(q'(\omega)) = (f' \circ q')(\omega)$$
.

Ejemplo 2. Sea $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ la aplicación lineal dada por la matriz:

$$A = \left(\begin{array}{ccc} 1 & -1 & 3 \\ 3 & 5 & 0 \\ 2 & -2 & 1 \end{array}\right) .$$

Calcular la matriz de la aplicación dual f'.

Se suponen dadas las bases canónicas en ambos espacios, de manera que las bases duales son, en ambos casos, la canónica:

La aplicación f es tal que: f(x, y, z) = (x - y + 3z, 3x + 5y, 2x - 2y + z), y así:

$$\begin{split} f'(e_1') &= e_1' \circ f : \mathbb{R}^3 & \longrightarrow & \mathbb{R} \\ & (x,y,z) & \longmapsto & x-y+3z \\ f'(e_2') &= e_2' \circ f : \mathbb{R}^3 & \longrightarrow & \mathbb{R} \\ & (x,y,z) & \longmapsto & 3x+5y \\ f'(e_3') &= e_3' \circ f : \mathbb{R}^3 & \longrightarrow & \mathbb{R} \\ & (x,y,z) & \longmapsto & 2x-2y+z \,. \end{split}$$

En particular, como aplicaciones, se tienen las identidades:

$$f'(e'_1) = e'_1 - e'_2 + 3e'_3$$

$$f'(e'_2) = 3e'_1 + 5e'_2$$

$$f'(e'_3) = 2e'_1 - 2e'_2 + e'_3$$

por tanto, la matriz de la aplicación $f':(\mathbb{R}^3)'\longrightarrow(\mathbb{R}^3)'$ es:

$$\left(\begin{array}{rrr} 1 & 3 & 2 \\ -1 & 5 & -2 \\ 3 & 0 & 1 \end{array}\right) ,$$

que coincide con la traspuesta, A^t , de A.

A la vista de este ejemplo, enunciamos y probamos el siguiente resultado.

Proposición 20 Si A es la matriz de la aplicación f en unas determinadas bases, la matriz de su dual f' en las correspondientes bases duales es la matriz traspuesta de A.

Dem.: Sea $f: E \longrightarrow F$ una aplicación lineal, y

$$\mathcal{B}_E := \{u_1, \dots, u_n\}, \qquad \mathcal{B}_F := \{v_1, \dots, v_m\},\$$

bases respectivas de E y F (se suponen de dimensión finita). Sea $A=(a_{i,j})\in\mathcal{M}_{m\times n}(\mathbb{K})$ la matriz de f, y $B=(b_{i,j})\in\mathcal{M}_{n\times m}(\mathbb{K})$ la matriz de $f':F'\longrightarrow E'$. Se tiene entonces que:

$$b_{i,j} = (f'(v_i'))(u_i),$$

por la proposición 19, pues $b_{i,j}$ es la coordenada i ésima de la imagen del vector j ésimo de la base de F'. Ahora bien:

$$b_{i,j} = (f'(v'_j))(u_i) = (v'_j \circ f)(u_i) = v'_j(f(u_i))$$
$$= v'_j \left(\sum_{k=1}^m a_{k,i} v_k\right) = a_{j,i}.$$

Como caso particular de aplicaciones entre duales tenemos los isomorfismos; más específicamente, los cambios de base.

Proposición 21 (Cambio de base) Sea E es un espacio vectorial de dimensión n sobre un cuer po \mathbb{K} , y sean

$$\mathcal{B}_u := \{u_1, \dots, u_n\}, \qquad \mathcal{B}_v := \{v_1, \dots, v_n\}$$

dos bases del mismo. Si $P = (\lambda_{i,j})$ es la matriz cuyas entradas vienen dadas por

$$[v_j]_{\mathcal{B}_u} = (\lambda_{1,j}, \lambda_{2,j}, \dots, \lambda_{n,j}) = \sum_{i=1}^n \lambda_{i,j} u_i$$

entonces P^t es la matriz de cambio de base de la base \mathcal{B}'_u a la base \mathcal{B}'_v .

De otra manera, si $\omega \in E'$, $\omega = \sum_{i=1}^{n} \omega(u_i)u_i'$ y $\omega = \sum_{i=1}^{n} \omega(v_i)v_i'$, entonces:

$$\begin{pmatrix} \omega(v_1) \\ \vdots \\ \omega(v_n) \end{pmatrix} = \begin{pmatrix} \lambda_{i,j} \end{pmatrix}^t \begin{pmatrix} \omega(u_1) \\ \vdots \\ \omega(u_n) \end{pmatrix}$$

siendo $(\lambda_{1,j},\ldots,\lambda_{n,j})=[v_j]_{\mathcal{B}_u}$ para $j=1,\ldots,n$.

Dem.: Si $\lambda_{i,j} \in \mathbb{K}$ son tales que $v_j = \sum_{i=1}^n \lambda_{i,j} u_i$, al sustituir cada v_j en la igualdad:

$$\omega = \sum_{j=1}^{n} \omega(v_j) v_j'$$

obtenemos:

$$\omega = \sum_{j=1}^{n} \omega(v_j) v_j' = \sum_{j=1}^{n} \omega \left(\sum_{i=1}^{n} \lambda_{i,j} u_i \right) v_j'$$
$$= \sum_{j=1}^{n} \left(\sum_{i=1}^{n} \lambda_{i,j} \omega(u_i) \right) v_j'$$
$$= \sum_{i=1}^{n} \left(\sum_{i=1}^{n} \lambda_{i,j} v_j' \right) \omega(u_i)$$

utilizando que $\omega \in E'$ es lineal. Pero $\omega = \sum \omega(u_i)u_i'$ y así hemos de tener:

$$u_i' = \sum_{j=1}^n \lambda_{i,j} \, v_j', \, i = 1, \dots, n \qquad \Longleftrightarrow \qquad u_j' = \sum_{i=1}^n \lambda_{j,i} \, v_i', \, j = 1, \dots, n \, .$$

Basta aplicar ahora el teorema de cambio de base para el espacio vectorial E' con bases:

$$\mathcal{B}'_u := \{u'_1, \dots, u'_n\}, \qquad \mathcal{B}'_v := \{v'_1, \dots, v'_n\}.$$

Ejemplo 3. Retomemos el ejemplo 1, esto es, tomemos las bases:

$$\mathcal{B}_1 := \{e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1)\}, \ \mathcal{B}_2 := \{u_1 = (1,0,0), u_2 = (1,1,2), u_3 = (0,2,1)\}.$$

de \mathbb{R}^3 . Sea P la matriz

$$P = \left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 1 \end{array}\right)$$

en cuyas columnas aparecen las coordenadas de los vectores de \mathcal{B}_2 en la base \mathcal{B}_1 . Si tenemos una forma $\omega = ae'_1 + be'_2 + ce'_3$, sus coordenadas en la base dual u'_1, u'_2, u'_3 se calcularán con P^t , es decir, $\omega = ru'_1 + su'_2 + tu'_3$ con

$$\begin{pmatrix} r \\ s \\ t \end{pmatrix} = P^t \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 2 \\ 0 & 2 & 1 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} a \\ a+b+2c \\ 2b+c \end{pmatrix}$$

En particular:

$$e'_1 = u'_1 + u'_2, \quad e'_2 = u'_2 + 2u'_3, \quad e'_3 = 2u'_2 + u'_3,$$

identificaciones que podemos constatar evaluando sobre una base de \mathbb{R}^3 . Sobre \mathcal{B}_2 es muy sencillo realizar la comprobación:

$$\begin{array}{lll} e_1'(u_1) = 1 = u_1'(u_1) + u_2'(u_1) & e_1'(u_2) = 1 = u_1'(u_2) + u_2'(u_2) & e_1'(u_3) = 0 = u_1'(u_3) + u_2'(u_3) \\ e_2'(u_1) = 0 = u_2'(u_1) + 2u_3'(u_1) & e_2'(u_2) = 1 = u_2'(u_2) + 2u_3'(u_2) & e_2'(u_3) = 2 = u_2'(u_3) + 2u_3'(u_3) \\ e_3'(u_1) = 0 = 2u_2'(u_1) + u_3'(u_1) & e_3'(u_2) = 2 = 2u_2'(u_2) + u_3'(u_2) & e_3'(u_3) = 1 = 2u_2'(u_3) + u_3'(u_3) \\ \end{array}$$

4.2. Isomorfismo de dualidad

Definición 15 Si E es un espacio vectorial llamamos BIDUAL de E al espacio vectorial dual de E', i.e. al espacio (E')', y le denotaremos E''.

Consideremos la aplicación

$$\Psi: E' \times E \longrightarrow \mathbb{K}$$

$$(\omega, u) \longmapsto \Psi(\omega, u) = \omega(u).$$

Si fijamos $u \in E$, obtenemos una aplicación

$$\Psi_u : E' \longrightarrow \mathbb{K}$$

$$\omega \longmapsto \Psi_u(\omega) = \omega(u) .$$

que es lineal y, por tanto, un elemento de E''.

Proposición 22 Si la dimensión de E es finita, la aplicación

$$\varphi: E \longrightarrow E''$$

$$u \longmapsto \Psi_u$$

es un isomorfismo ("isomorfismo de dualidad").

Dem.: La aplicación φ es lineal, ya que para cualesquiera $u, v \in E, \lambda \in \mathbb{K}$ y todo $\omega \in E'$ se tienen las igualdades:

$$\begin{split} (\varphi(u+v))(\omega) &= & \Psi_{u+v}(\omega) = \omega(u+v) \\ &= & \omega(u) + \omega(v) = \Psi_u(\omega) + \Psi_v(\omega) \\ &= & \varphi(u)(\omega) + \varphi(v)(\omega) = (\varphi(u) + \varphi(v))(\omega) \\ (\varphi(\lambda u))(\omega) &= & \Psi_{\lambda u}(\omega) = \omega(\lambda u) = \lambda \omega(u) = \lambda \Psi_u(\omega) \\ &= & (\lambda \varphi(u))(\omega) \,. \end{split}$$

Por otra parte, φ es inyectiva. En efecto, si $u \in \text{Nuc}\,\varphi$ entonces para todo $\omega \in E'$ se ha de tener:

$$\mathbf{0} = \varphi(u)(\omega) = \Psi_u(\omega) = \omega(u) .$$

Ahora bien si suponemos $u \neq \mathbf{0}$, podemos tomar una base de E de la forma:

$$\{u, u_2, \ldots, u_n\}$$
.

Sabemos entonces que existe $\omega = u' \in E'$ tal que $\omega(u) = 1$ y $\omega(u_i) = 0$ para i = 2, ..., n, pero entonces $u \notin \text{Nuc } \varphi$. De otra manera, si $u \in E$ y $u \neq 0$ entonces $u \notin \text{Nuc } \varphi$, es decir, $\text{Nuc } \varphi = \{0\}$.

Finalmente φ es sobreyectiva, puesto que es una aplicación lineal inyectiva entre espacios vecto riales de la misma dimensión finita.

Nota. Si E es de dimensión infinita, la aplicación φ anterior es un monomorfismo.

Ejercicio. Sea $f: E \longrightarrow F$ una aplicación lineal entre espacios de dimensión finita, y sea $f'': E'' \longrightarrow F''$ su bidual (la dual de f'). Sean $\varphi_E: E \longrightarrow E''$ y $\varphi_F: F \longrightarrow F''$ los isomorfismos canónicos de la proposición 22. Demostrar que la aplicación:

$$\varphi_F^{-1} \circ f'' \circ \varphi_E : E \longrightarrow F \quad \text{coincide con } f.$$

4.3. Dualidad y ecuaciones de subespacios

Anulador de un subespacio

Sea E un espacio vectorial de dimensión finita, y sea A un subconjunto de E. Definimos el ANULADOR de A como el conjunto:

$$\operatorname{Ann}(A) = \{\omega \in E' \, : \, \omega(u) = 0 \,\, \forall u \in A\} \subset E' \, .$$

Se tienen las siguientes propiedades:

- 1. Ann(A) es un subespacio vectorial de E'.
- 2. $A \subset B \implies \operatorname{Ann}(B) \subset \operatorname{Ann}(A)$.
- 3. $Ann(E) = \{\mathbf{0}_{E'}\}, Ann(\{\mathbf{0}_{E}\}) = E'.$

Todas ellas se comprueban directamente. También se tiene:

4. Si F es un subespacio de E, $\dim(Ann(F)) = \dim E - \dim F$.

Dem.: Sea $\{u_1, \ldots, u_k\}$ una base de F y completémosla a una base $\{u_1, \ldots, u_k, u_{k+1}, \ldots, u_n\}$ de E. Sea $\{u'_1, \ldots, u'_n\} \subset E'$ la base dual correspondiente.

Para $j=k+1,\ldots,n,\ u'_j$ se anula sobre la base $\{u_1,\ldots,u_k\}$ de F y por tanto sobre todo F. Así $\{u'_{k+1},\ldots,u'_n\}$ dan un sistema linealmente independiente de $\mathrm{Ann}(F)\subset E'$. De hecho generan $\mathrm{Ann}(F)$, pues si $\omega=\lambda_1u'_1+\ldots,\lambda_nu'_n\in\mathrm{Ann}(F)\subset E'$, como $u_\ell\in F$ para $\ell=1,\ldots,k$, se tiene que

$$\lambda_{\ell} = \omega(u_{\ell}) = 0$$
 para $\ell = 1, \dots, k$

y así $\omega = \lambda_{k+1} u'_{k+1} + \dots, \lambda_n u'_n$ si $\omega \in \text{Ann}(F)$.

Quisiéramos ahora definir el anulador de cualquier subconjunto B de E'. Tenemos dos opciones:

I. Como hemos hecho antes, definiendo cierto subconjunto del dual de E^{\prime}

$$\operatorname{Ann}(B) = \{ \alpha \in E'' \, : \, \alpha(\omega) = 0 \,\, \forall \omega \in B \} \subset E'' \,.$$

II. Definiendo cierto subconjunto del espacio inicial E:

$$Ann(B) = \{ u \in E : \omega(u) = 0 \ \forall \omega \in B \} \subset E.$$

De hecho estos dos anuladores se corresponden por el isomorfismo canónico de la proposición 22. Efectivamente, si $\alpha \in E''$ el isomorfismo canónico le hace corresponder un único vector $u \in E$ tal que $\alpha = \Psi_u$. Así:

$$\begin{split} \{\alpha \in E'' \,:\, \alpha(\omega) = 0 \; \forall \omega \in B\} &= \; \{\Psi_u \in E'' \,:\, \Psi_u(\omega) = 0 \; \forall \omega \in B\} \\ &= \; \{\Psi_u \in E'' \,:\, \omega(u) = 0 \; \forall \omega \in B\} \\ &= \; \{u \in E \,:\, \omega(u) = 0 \; \forall \omega \in B\} \,. \end{split}$$

De la primera definición vemos que se verifican las propiedades $5.1\,$ 4 anteriores. Otras propiedades de los anuladores son:

- 5. Si $A \subset E$, $\text{Ann}(\text{Ann}(A)) = \langle A \rangle$. En particular, si F es un subespacio vectorial de E, Ann(Ann(F)) = F.
- 6. Si $F \vee G$ son subespacios vectoriales de E:

$$\operatorname{Ann}(F \cap G) = \operatorname{Ann}(F) + \operatorname{Ann}(G)$$
 v $\operatorname{Ann}(F + G) = \operatorname{Ann}(F) \cap \operatorname{Ann}(G)$.

7. Si $E = F \oplus G$, $E' = \text{Ann}(F) \oplus \text{Ann}(G)$.

Dem.: Propiedad 5: Si $A \subset E$, entonces Ann(A) es un subespacio vectorial de E', y Ann(Ann(A)) es un subespacio vectorial de E. Sea < A > el subespacio vectorial de E generado por el conjunto A. En particular $A \subset < A >$ y por la propiedad 3 se tiene:

$$Ann(\langle A \rangle) \subset Ann(A)$$
.

Aplicando de nuevo la propiedad 3 para esta inclusión en E', tendremos la siguiente inclusión de espacios vectoriales:

$$\operatorname{Ann}(\operatorname{Ann}(A)) \subset \operatorname{Ann}(\operatorname{Ann}(< A >))\,,$$

que por la propiedad 4 son de la misma dimensión, y por tanto coinciden.

Si F es un subespacio vectorial de E se tiene:

$$u \in F \implies (\forall \omega \in \operatorname{Ann}(F), \ \Psi_u(\omega) = \omega(u) = 0) \implies u \in \operatorname{Ann}(\operatorname{Ann}(F)).$$

Así $F \subset \text{Ann}(\text{Ann}(F))$. Pero la propiedad 4 nos dice que estos dos espacios tienen la misma dimensión, y por tanto F = Ann(Ann(F)).

Propiedad 6:

$$\begin{split} F \cap G \subset F, \ F \cap G \subset G &\implies \operatorname{Ann}(F) \subset \operatorname{Ann}(F \cap G), \ \operatorname{Ann}(G) \subset \operatorname{Ann}(F \cap G) \\ &\implies \operatorname{Ann}(F) + \operatorname{Ann}(G) \subset \operatorname{Ann}(F \cap G) \\ F + G \supset F, \ F + G \supset G &\implies \operatorname{Ann}(F) \supset \operatorname{Ann}(F + G), \ \operatorname{Ann}(G) \supset \operatorname{Ann}(F + G), \\ &\implies \operatorname{Ann}(F + G) \subset (\operatorname{Ann}(F) \cap \operatorname{Ann}(G)) \,. \end{split}$$

Utilizando la propiedad 5 se tiene entonces que:

$$F \cap G = \operatorname{Ann}(\operatorname{Ann}(F \cap G)) \subset \operatorname{Ann}(\operatorname{Ann}(F) + \operatorname{Ann}(G))$$
$$\subset \operatorname{Ann}(\operatorname{Ann}(F)) \cap \operatorname{Ann}(\operatorname{Ann}(G)) = F \cap G,$$

y todas las inclusiones son igualdades; en particular

$$F \cap G = \operatorname{Ann}(\operatorname{Ann}(F) + \operatorname{Ann}(G))$$

de donde por 5, $\operatorname{Ann}(F \cap G) = \operatorname{Ann}(F) + \operatorname{Ann}(G)$.

La otra igualdad es análoga.

Ejercicio. Demostrar la propiedad 7.

Proposición 23 Sea $f: E \longrightarrow F$ una aplicación lineal entre espacios vectoriales de dimensión finita $y f': F' \longrightarrow E'$ su dual. Entonces:

$$\operatorname{Ann}(\operatorname{Im} f) = \operatorname{Nuc} f'$$
 y $\operatorname{Ann}(\operatorname{Nuc} f) = \operatorname{Im} f'$.

Dem.:

$$\begin{aligned} & \text{Ann}(\text{Im}f) = \{\omega \in F' : \omega(v) = 0, \, \forall v \in \text{Im}f \} \\ & = \{\omega \in F' : \omega(f(u)) = 0, \, \forall u \in E \} \\ & = \{\omega \in F' : (f'(\omega))(u) = 0, \, \forall u \in E \} \\ & = \{\omega \in F' : f'(\omega) = 0 \} = \text{Nuc}f' \end{aligned}$$

$$& \text{Ann}(\text{Im}f') = \{u \in E : \alpha(u) = 0, \, \forall \alpha \in \text{Im}f' \} \\ & = \{u \in E : (f'(\omega))(u) = 0, \, \forall \omega \in F' \} \\ & = \{u \in E : \omega(f(u)) = 0, \, \forall \omega \in F' \} \\ & = \{u \in E : f(u) = 0 \} = \text{Nuc}f. \end{aligned}$$

La propiedad 5 nos da entonces la segunda igualdad.

Cerramos este capítulo con una, ahora, sencilla demostración de que el rango por filas y por columnas de una matriz coinciden. Definimos este último, el rango por columnas, como el rango por filas de la matriz traspuesta. De igual manera que, a partir de una matriz cualquiera, podemos llegar a una escalonada reducida única realizando operaciones elementales con las filas, se puede llegar a una escalonada reducida única realizando operaciones elementales con sus columnas. Aunque, a priori, no es evidente que el número de escalones al que se llega sea el mismo, el siguiente resultado demuestra que sí.

Corolario 4 Sea $h: E \longrightarrow F$ una aplicación lineal entre espacios vectoriales de dimensión finita. Supongamos fijadas bases en ambos espacios y sea A la matriz de la aplicación h respecto a esas bases. Si $\operatorname{rg}_f(A)$ es el rango por filas de A y $\operatorname{rg}_c(A)$, el rango por columnas, entonces:

$$\operatorname{rg}_f(A) = \operatorname{rg}_c(A)$$
.

Dem.: Sabemos que:

$$\begin{split} \operatorname{rg}_f(A) &= \operatorname{dim}(E) - \operatorname{dim}(\operatorname{Nuc} h) \\ \operatorname{rg}_c(A) &= \operatorname{rg}_f(A^t) &= \operatorname{dim} F' - \operatorname{dim}(\operatorname{Nuc} h') \\ &= \operatorname{dim}(\operatorname{Im} h') = \operatorname{dim}(\operatorname{Ann}(\operatorname{Nuc} h)) \\ &= \operatorname{dim}(E) - \operatorname{dim}(\operatorname{Nuc} h) \,. \end{split}$$