Artificial intelligence 1

Anders Brodin
Evolutionary Ecology

Artificial life / Artificial intelligence / Computational intelligence:

- Cellular automata
- Evolutionary Programming
- Genetic Algorithms
- Genetic Programming
- Neural networks

$$x = x + 1$$

$$x = x + 1$$

$$x++$$

Artificial life / Artificial intelligence / Computational intelligence:

- Cellular automata
- Evolutionary Programming
- Genetic Algorithms
- Genetic Programming
- Neural networks

Cellular automata - global effects from local rules:

- Visually represented as a grid of cells (1D, 2D, 3D)
- Each cell contains a variable e.g., 0 or 1 (white or black, alive or dead).
- At the same level all cells update synchronously.
- All cells subject to the same rule
- Time advances in discrete steps

A one dimensional example:

"A New Kind of Science" Wolfram's ideas:

- Complex behaviour is often the result of simple computational rules.
- The proof: simple cellular automata can produce any complex behaviour.
- Traditional mathematics is not enough.

"When I made my first discoveries about cellular automata in the early 1980s I suspected that I had seen the beginning of something important. But I had no idea just how important it would all ultimately turn out to be. And indeed over the past twenty years I have made more discoveries than I ever thought possible. And a new kind of science that I have spent so much effort building has seemed an ever more central and critical direction for future intellectual development."

Stephen Wolfram, A New Kind of Science 2002

- A systematic way of naming 1-d automata
- Not important to learn, just understand
- Describes what happens at second row
- One cell in focus

First row (generation 1)
Second row (generation 2)

- A systematic way of naming 1-d automata
- Not important to learn, just understand
- Describes what happens at second row
- One cell in focus

First row (generation 1) Second row (generation 2)

- A systematic way of naming 1-d automata
- Not important to learn, just understand
- Describes what happens at second row
- One cell in focus

First row (generation 1) Second row (generation 2)

Cell in focus but the same rule applies to all cells in row 2 simultaneously

Base 2	Base 10
0	0
1	1
10	2
2	3

Fill in the following missing numbers:

Base 2	Base 10		
0	0		
1	1		
10	2		
11	3		
?	4		
?	5		
2	6		

Base 2		Base 10
0	0	0
1	2 ⁰ 2 ¹	1
10	2 ¹	2
11		3
100	2 ²	4
101		5
110		6
111		7
1000	2 ³	8
1001		9
1010		10

Base 2	Base 10
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10

Maximum binary number eight digits:

Base 2	Base 10
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10
Maximum binary	number eight digits:
1 1 1 1	1 1 1 1

Base 2	Base 10
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10
Maximum binary n	umber eight digits:
1 1 1 1	1 1 1 1

2⁷ 2⁶ 2⁵ 2⁴ 2³ 2² 2¹ 2⁰

Base 2	Base 10
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10

Maximum binary number eight digits:

			-				
1	1	1	1	1	1	1	1
27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	20
128	64	32	16	8	4	2	1

Base 2	Base 10
0	0
1	1
10	2
11	3
100	4
101	5
110	6
111	7
1000	8
1001	9
1010	10

Maximum binary number eight digits:

```
1 1 1 1 1 1 1 1 1 1 \frac{1}{2^7} \frac{2^6}{2^6} \frac{2^5}{2^4} \frac{2^3}{2^3} \frac{2^2}{2^1} \frac{2^0}{2^5} 128 64 32 16 8 4 2 1 = 255
```

Filled square = 1 or "yellow" or "alive" Open (blue) square = 0 or "blue" or "dead"

Binary representation:

Binary representation:

111 110 101 100 011 010 001 000 0 0 0 1 1 1 1 1 0
$$2^4 + 2^3 + 2^2 + 2^1$$

Same thing, different representation

Binary representation:

111 110 101 100 011 010 001 000
0 0 0 1 1 1 1 1 1 0
0 + 0 + 0 +
$$2^4$$
 + 2^3 + 2^2 + 2^1 + 0
16 + 8 + 4 + 2 = 30

Rule 30

Wolfram's classes:

Class 1: A fixed, homogeneous, state is eventually reached (e.g., rules 0, 8, 128, 136, 160, 168). 136: 10001000, seed with rows

Class 2: A pattern consisting of separated periodic regions is produced (e.g., rules 4, 37, 56, 73). 37: 00100101, seed with 1

Class 3: A chaotic, aperiodic, pattern is produced (e.g., rules 18, 45, 105, 126). 18: 00010010, seed with 1

Class 4: Complex, localized structures are generated (e.g., rules 30, 110). 30: 00011110, seed with 1

Game of Life: each cell is "alive" or "dead"

- Two dimensional CA with rules based on number of live neighbours among 8
- -N = 1 death (loneliness)
- -N=2 no change
- -N=3 birth
- -N = 4 death (overcrowding)

Applications:

- Biological systems
- Art and design
- Computer graphics
- Image processing
- Games

Evolutionary Computation:

- algorithmic models that use Darwinian-like evolution
- iterative optimization

Different types:

- Evolutionary strategy models
- Genetic algorithms
- Genetic programming

Genetic algorithms, GA:

- robust and global compared to calculus and enumerative solutions
- easier to use when little is known about the problem
- GA's can search a large solution space and find a global optimum
- use only for complex problems
- alternative: simulated annealing

A genetic algorithms step by step

1. Represent your problem as genes in a binary value chromosome (= solution)

Example:

Find the maximum of a 10 digits base 2 number:

MyChromosome <- c(1, 0, 0, 0, 1, 0, 1, 1, 0, 0)

2. Random generation of a "population" of chromosomes

In reality start with 50 chromosomes (=solutions)

3. Evaluate "fitness" of individual chromosomes

individual	representation	fitness
1	0 0 1 0 1 1 0 1 0	186
2	1 0 1 1 0 1 0 1 0	746
3	0 0 0 1 1 1 0 0 1	121
4	1 0 0 0 0 1 1 1 0	532

Fitness = how good is a chromosome as solution

4. Sort solutions after rank

individual	representation	fitness
1	1 0 1 1 0 1 0 1 0	746
2	1 0 0 0 1 1 1 0	532
3	0 0 1 0 1 1 0 1 0	186
4	0 0 0 1 1 1 1 0 0 1	121

5. Pairing, recombination

Elitistic pairing, random cut

5. Pairing, recombination → offspring

High quality offspring = good solution

6. Insert offspring in population, discard worst solutions

"killed"! (keep the number of chromosmes at 50)

Why cannot the GA solve this problem?

individual	representation	fitness
1	1 0 1 1 1 1 1 0	767
2	1 0 1 1 0 1 0 1 0	746
3	1 0 0 0 0 1 1 1 0	532
4	0 0 1 0 1 1 0 1 0	186

7. Mutation

individual	representation	fitness
1	1 0 1 1 1 1 1 0	767
2	1 1 1 1 0 1 0 1 0	874
3	1 0 0 0 0 1 1 1 0	532
4	0 0 1 0 1 1 0 1 0	186

7. Mutation

Now you can make a genetic algorithm!

- 1. Represent your problem as genes in a chromosome
- 2. Random generation of a population of chromosomes
- Evaluate fitness of individual chromosomes
- 4. Sort after rank
- 5. Pairing, recombination
- 6. Insert offspring
- 7. Mutation

- 1. Represent your problem as genes in a chromosome
- 2. Random generation of a population of chromosomes
- 3. Evaluate fitness of individual chromosomes
- 4. Sort after rank
- 5. Pairing, recombination
- 6. Insert offspring
- 7. Mutation

Termination?


```
for (g in 1:15)

{cycle algorithm} g = generation

while (diff > 10)

{diff = y_1 - y_2;

cycle algorithm
```


Why not a straight line? It is a very simple problem.

Genetic algorithm

Example 1, binary (= discreet) GA:

Find maximum of a 10 digits base 2 number:

MyChromosome <- c(1, 0, 0, 0, 1, 0, 1, 1, 0, 1)

2. find best solution of an equation with two unknowns

$$f(x, y) = x \sin(4x) + y \sin(2y)$$

MyChromosome <- c(3.43537, -1.0002345)

- real, direct values can be used (no goal function)
- decide range for gene values (e.g. $-5 \le x \le 5$)

Best solution of equation with two unknowns:

```
f(x, y) = x \sin(4x) + y \sin(2y)
```

individual values (start with randomly created numbers)

```
1 [ 3.435, -1.003]
```

- problems with recombination:

```
ind values

1 [ 3.435, -1.003]

2 [ -2.331, - 4.234]

3 [ -0.877, - 4.954]

4 [ 3.537, 1.645]

5 [ 2.479, - 1.541]
```

Question1: Why is direct crossover not good?

- problems with recombination:

```
ind values

1 [ 3.435, -1.003]

2 [ -2.331, - 4.234]

3 [ -0.877, - 4.954]

4 [ 3.537, 1.645]

5 [ 2.479, - 1.541]
```

Question 1: Why is direct crossover not good?

Question 2: Why is averaging better but not good?

```
blending
ind values
p<sub>1</sub> [ 3.435, -1.003]
p<sub>2</sub> [ -2.331, - 4.234]
```

Three solutions:

- i) proportional blending: $b * p_1 + (1 b) * p_2$ where $0 \ge b \ge 1$
- ii) linear blending gives three offspring:

```
offsp1 = 0.5p_1 + 0.5p_2
offsp2 = 1.5p_1 - 0.5p_2
offsp3 = 1.5p_2 - 0.5p_1
```

iii) combination between crossover and blending

Question: What problem may this blending process create? (Think about the min and max values -5, 5)

Suggest a solution to this problem

- individuals can be "out of range"

offsp2 =
$$1.5p_1 - 0.5p_2$$

$$p1 = 4.952$$
, $p2 = -4.213$ gives offspring 9.535

Three solutions:

- i) chop at limit
- ii) "gene repair"
- iii) give low fitness

Continuous vs discrete genetic algorithms:

Discrete (0 1 1 0 1)

binary

goal function

simple crossing over

traditional, original

Continuous (0.654, 3.564...)

real numbers

direct use of numbers

complex mating

newer

You have to visit: Göteborg, Borås, Norrköping, Kristianstad, start in Lund

You have to visit a number of geographic positions, calculate the shortest route

You have to visit: Göteborg, Borås, Norrköping, Kristianstad, start in Lund

Chromosome 1	Lund	Göteborg	Borås	N-köping	K-stad
Chromosome 2	Lund	Göteborg	N-köping	K-stad	Borås
Chromosome 3	Lund	K-stad	Göteborg	g Borås	N-köping

Etc.

You have to visit: Göteborg, Borås, Norrköping, Kristianstad, start in Lund

Chromosome 1	Lund	Göteborg	Borås	N-köping	K-stad
Chromosome 2	Lund	Göteborg	N-köping	K-stad	Borås
Chromosome 3	Lund	K-stad	Göteborg	g Borås	N-köping

Etc.

What is fitness?

You have to visit: Göteborg, Borås, Norrköping, Kristianstad, start in Lund

	Lund	Göteborg	Borås	N-köping	K-stad
Lund	0	262	275	431	77
Göteborg	262	0	63	311	264
Borås	275	63	0	250	264
N-köping	431	311	250	0	392
K-stad	77	264	264	392	0