

King County

Ian Kindle-Pyle Astha Grover Elizabeth Evans Freda Li Nidhi Pancholi Dajia Bao

Who we are

Team of data scientists

What we want to achieve

Predict the right price of the house in Seattle

Our problem statement

There is a lack of clarity on the housing price of Seattle

What's our future goal

Increase the scope of the project from only Seattle to Washington

Facts

There are nearly as many pieces of digital information as there are stars in the universe.

Bad data costs US businesses alone \$600 billion annually.

The US leads the data science market, requiring 190,000 data scientists by next year.

Outline

Introduction

Data description

Data preprocessing

Data exploration

Data exploration - Frequency Distribution

Data exploration

Data exploration - Average price per month

Data exploration - Correlation matrix

Bedrooms 1

Bathrooms 2

Sqft footage of interior space, above ground space, basement space, plot of land

Sq footage of fifteen nearest neighbors interior and plots of land

Waterfront 5

View 6

Floors 7

Condition 8

Accuracy: 4.15%

Bedrooms 1

Bathrooms 2

Sqft Footage of interior space, above ground space, basement space, plot of land

Sq footage of fifteen nearest neighbors interior and plots of land

Waterfront 5

View 6

Floors 7

Condition 8

RMSE: 257242.2

K Nearest Neighbor

- Divided price into bins, experimented to find most effective categories
- Optimal values after running the model are with price bins for \$700000 and k
 nearest neighbors as 9. We obtain accuracy as 85.01% and sensitivity and specificity
 for the classes (0 and 1) having the majority of the observations is very good.
- Sensitivity for class 0 -> 0.8260, Specificity for class 0 -> 0.9332
- Sensitivity for class 1 -> 0.9142, Specificity for class 1 -> 0.7714

Price bins	K (number of nearby	KNN result (Accuracy)			
	neighbors)				
100,000	Tried with K between 1 to 20	Ranges from 40 to 45%			
200,000	Tried with K between 1 to 20	Ranges from 60 to 65%			
300,000	Tried with K between 1 to 20	Ranges from 70 to 75%			
400,000	Tried with K between 1 to 20	Ranges from 75 to 80%			
500,000	Tried with K between 1 to 20	Around 82 to 83 %			
600,000	Tried with K between 1 to 20	Around 84%			
700,000 and above	Tried with K between 1 to 20	Around 85%			

K-means clustering

	price	bedrooms	bathrooms	sqft_living	sqft_lot	floors	waterfront	view	condition	grade	sqft_above	sqft_basement	yr_built	yr_renovated	zipcode	lat	long	sqft_living15	sqft_lot15
1	0.20856279	0.4263255	0.01251378	0.13917716	-0.19095431	-0.361330607	-0.08694538	0.3484534	0.8227312	-0.15678867	-0.32692211	0.8958645	-0.97378531	-0.20999497	1.0733598	0.470449	-0.8431643	-0.13341059	-0.22357464
2	0.20578496	-0.06404943	0.3489898	0.6760701	5.78310631	0.121541145	-0.08694538	0.3879655	-0.1486541	0.39239572	0.80498389	-0.1071354	0.4430092	-0.03700109	-0.6768876	-0.6408733	1.3806714	0.57405608	6.35973012
3	-0.1824159	0.03081552	0.49641389	0.04225745	-0.17365316	1.08056094	-0.08694538	-0.2238193	-0.4895375	0.2614059	0.33001391	-0.5278522	0.95019274	-0.20999497	-0.2485281	-0.1593497	0.2964195	0.07398076	-0.1888992
4	1.49695413	0.87218203	1.31214865	1.78720925	0.13752998	0.854082699	-0.08694538	0.4280801	-0.3116565	1.75721748	1.88173453	0.1756381	0.76403667	-0.15534869	-0.4009535	0.292316	0.5780647	1.71413038	0.1439053
5	-0.58594308	-0.38053857	-0.65653444	-0.67218518	-0.03990566	-0.77212593	-0.08694538	-0.2558022	0.3432528	-0.6191273	-0.53100708	-0.3953554	-0.06315534	-0.20999497	-0.8159992	-0.6081945	0.4471825	-0.52714042	-0.03331594
6	-0.45475782	-0.82744197	-1.09668561	-0.90669623	-0.20835078	-0.618025798	-0.08694538	-0.2084647	-0.1264397	-0.81631943	-0.81823046	-0.3432951	-0.91514472	-0.20999497	1.0515715	0.3071588	-0.8192894	-0.7703095	-0.23403772
7	3.02329793	-0.08940456	0.72062901	1.15940091	0.26604209	0.268821804	11.50094132	4.6318338	0.195647	0.94147446	0.79604182	0.9052352	-0.29521821	1.04345452	0.3576015	-0.1688904	-0.4833653	0.98419614	0.37635255
8	0.35702773	0.06508067	0.14280814	0.11584246	-0.06101796	0.000292033	-0.08694538	0.2595495	-0.3032229	-0.04161412	-0.01433002	0.2653476	-1.10623562	4.76196016	0.3470289	0.1653127	-0.3382354	-0.15079996	-0.09727142
9	0.07421582	0.71376077	0.33896817	0.43199305	0.04990687	-0.828609708	-0.08694538	0.0318674	0.4061868	0.0912354	-0.26220044	1.3784997	0.05669488	-0.20999497	-0.7470278	0.1172167	0.2617973	0.36300405	0.06970867

K-means clustering

- Of the 9 clusters, cluster 7 was the most expensive with a normalized price of 3.02 and positive values throughout the selected variables. This cluster most likely corresponds to expensive homes with multiple bedrooms and ample living space. Cluster 4 had a price value of 1.49 and positive values throughout.
- Three clusters (3,5, & 6) all had negative normalized values for price and a preponderance of negative values throughout. These clusters probably correspond to lower income housing and apartments.
- Four clusters have positive normalized values for price but are significantly less than cluster 7. Clusters 1, 2, 8, and 9 have price values ranging from 0.081 to 0.46. These clusters probably represent more middle-income housing environments.

Multi Linear Regression

Model Number	Adjusted R-squared	RMSE	Predictors	Notes			
MLR Model 1	0.7033	204826.8	All predictors	Multicollinearity +singularities			
MLR Model 2	0.7033	204826.8	Removed sqft_basement	Best performing; same outcomes but no errors; applied to K-clusters			
MLR Model 3	0.6615	218882.5	Predictors with correlation coefficient >0.3	Multicollinearity			
MLR Model 4	0.6124	228963.8	Predictors with correlation coefficient >0.5	No errors but worse outcomes			

Insights

Strong predictors

- Bedrooms & Bathrooms
- Sqrt_living & Floors
- Waterfront area
- Grade & View

Locations

- 98039 zip code has a median sale price of \$ 2.16 million whereas 98002 has a median sale price of \$ 234.28 K
- Clustering analysis: among 9 clusters, we observe very strong correlation within two clusters, corresponding to the most expensive cluster and the least expensive cluster (R squares are well above 0.80)
- Model has highest accuracy when predicting extreme values

Conclusions

Buyers

- Evaluate the individual listing prices based on the property factors.
- Get crucial insights regarding the asking price, future appreciation of the property.

Real estate agents

- Visualization and model prediction
- Understand the pricing trends in the King County

Real estate companies

 Better allocate resources based on the current pricing trends.

Challenges

Recommendations for improvement

Better understand the greater Seattle area housing market Add more crucial factors Re-training our model on a periodic basis Test the seasonality by isolating the month Further K means as a variable analysis & logistical regression

Thank you!

