An External Memory Relational Product

Steffan Christ Sølvsten, Jaco van de Pol

January 8, 2024

$$RelProd(S, T) \equiv (\exists \vec{x}. S(\vec{x}) \land T(\vec{x}, \vec{x'}))[\vec{x'}/\vec{x}]$$

$$RelProd(S, T) \equiv (\exists \vec{x}. S(\vec{x}) \land T(\vec{x}, \vec{x'}))[\vec{x'}/\vec{x}]$$

$$RelProd(S, T) \equiv (\exists \vec{x}. \ S(\vec{x}) \land T(\vec{x}, \vec{x'}))[\vec{x'}/\vec{x}]$$

Definition

A relabelling π is monotonic if $x_i < x_j \implies \pi(x_i) < \pi(x_j)$

Definition

A relabelling π is monotonic if $x_i < x_j \implies \pi(x_i) < \pi(x_j)$

If π is monotonic

- 1-Var / Push: Apply π in $O(L_N)$ extra time during the final bottom-up Reduce sweep.
- Bounce:

 $x_i' < x_j' \implies x_i < x_j$: π can be applied during the outermost Reduce sweep.

That is, applying π can (essentially) be done for free.

Definition

A relabelling π is monotonic if $x_i < x_j \implies \pi(x_i) < \pi(x_j)$

If π is monotonic

- 1-Var / Push: Apply π in $O(L_N)$ extra time during the final bottom-up Reduce sweep.
- Bounce:

 $x_i' < x_j' \implies x_i < x_j$: π can be applied during the outermost Reduce sweep.

That is, applying π can (essentially) be done for free.

If π is not monotonic

to be continued...