Assignment 8

5.1 – The Properties of Determinants: 1, 2, 3, 8, 13

Questions 1-12 are about the rules for determinants.

If a 4 by 4 matrix has det $A = \frac{1}{2}$, find det(2A) and det(-A) and det (A^2) and

If a 4 by 4 matrix has
$$\det A = \frac{1}{2}$$
, find $\det(2A)$ and $\det(-A)$ and $\det(A^2)$ and $\det(A^{-1})$.

$$\det(2A) = 2^4 \cdot \frac{1}{2}$$

$$= 8$$

$$\det(2A) = 2^4 \cdot \frac{1}{2}$$

$$= \frac{1}{2}$$

$$\det(A^2) = (\frac{1}{2})^2$$

$$= \frac{1}{2}$$

$$= \frac{1}{2}$$

If a 3 by 3 matrix has
$$\det A = -1$$
, find $\det(\frac{1}{2}A)$ and $\det(-A)$ and $\det(A^2)$ and $\det(A^{-1})$.

$$\det(A^{-1}).$$

$$\det(A^{-1}).$$

$$\det(A^{-1}) = \frac{1}{2} \cdot -1$$

$$= -\frac{1}{8}$$

$$\det(A^{-1}) = \frac{1}{2} \cdot -1$$

$$= -1$$

$$= -1$$

- 3 True or false, with a reason if true or a counterexample if false:
 - (a) The determinant of I + A is $1 + \det A$.

(b) The determinant of ABC is |A| |B| |C|.

(c) The determinant of 4A is 4|A|.

(d) The determinant of AB - BA is zero. Try an example with $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$.

$$AB - BA = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

- 8 Prove that every orthogonal matrix $(Q^{T}Q = I)$ has determinant 1 or -1.
 - (a) Use the product rule |AB| = |A| |B| and the transpose rule $|Q| = |Q^{T}|$.

$$Q^{T}Q = T \Rightarrow |Q^{T}||Q| = |Q|^{2} = 1 \Rightarrow |Q|^{-\frac{1}{2}}$$

(b) Use only the product rule. If $|\det Q| > 1$ then $\det Q^n = (\det Q)^n$ blows up. How do you know this can't happen to Q^n ?

Questions 13-27 use the rules to compute specific determinants.

Reduce A to U and find $\det A = \text{product of the pivots:}$

$$U = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} \quad \Leftarrow \quad A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 3 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 2 & 3 \\ 3 & 3 & 3 \end{bmatrix} . \implies \qquad U = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -2 & -3 \\ 0 & 0 & -2/3 \end{bmatrix}$$

Product of
$$1,-2,-2/3=\boxed{3}$$

5.2 – Permutations and Cofactors: 12, 13, 16

Problems 11–22 use cofactors $C_{ij} = (-1)^{i+j} \det M_{ij}$. Remove row i and column j.

12 Find the cofactor matrix C and multiply A times C^{T} . Compare AC^{T} with A^{-1} :

$$det = 2(4-1) + A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix} \qquad A^{-1} = \frac{1}{4} \begin{bmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{bmatrix}.$$

$$1(-2-0) + 2(4-0) + 3(-2$$

13 The n by n determinant C_n has 1's above and below the main diagonal:

$$C_1 = |0|$$
 $C_2 = \begin{vmatrix} 0 & 1 \\ 1 & 0 \end{vmatrix}$ $C_3 = \begin{vmatrix} 0 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{vmatrix}$ $C_4 = \begin{vmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{vmatrix}$.

(a) What are these determinants C_1, C_2, C_3, C_4 ?

$$C^{1}=0$$
 $C^{3}=0$

$$C_2 = -1$$
 $C_4 = 1$

(b) By cofactors find the relation between C_n and C_{n-1} and C_{n-2} . Find C_{10} .

$$C_{h} = -C_{h-2}$$
 $C_{10} = -C_{8} = +C_{6} = -C_{4} = > \left[-\frac{1}{2}\right]$

16 F_n is the determinant of the 1, 1, -1 tridiagonal matrix of order n:

$$F_2 = \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2 \qquad F_3 = \begin{vmatrix} 1 & -1 & 0 \\ 1 & 1 & -1 \\ 0 & 1 & 1 \end{vmatrix} = 3 \qquad F_4 = \begin{vmatrix} 1 & -1 & 1 \\ 1 & 1 & -1 \\ 1 & 1 & 1 \end{vmatrix} \neq 4.$$

Expand in cofactors to show that $F_n = F_{n-1} + F_{n-2}$. These determinants are Fibonacci numbers $1, 2, 3, 5, 8, 13, \ldots$ The sequence usually starts 1, 1, 2, 3 (with two 1's) so our F_n is the usual F_{n+1} .

1, 1 cofactor of the nxn matrix is
$$F_{n-1}$$
.

Multiply by
$$(-1)^{1+2}$$
 and (-1) from 1,2 entry
to find $F_n = F_{n-1} + F_{n-2}$.

5.3 – Cramer's Rule, Inverses, and Volumes: 2, 16, 19

2 Use Cramer's Rule to solve for y (only). Call the 3 by 3 determinant D:

a.
$$2x_1 + 5x_2 = 1$$

 $x_1 + 4x_2 = 2$

$$y = \frac{\det(B_z)}{\det(A)} = \frac{(fg - id)}{0}$$

$$y_1 + 2x_2 + x_3 = 0$$

$$x_1 + 2x_3 = 0$$

$$x_2 + 2x_3 = 0$$

$$x_3 + 2x_3 = 0$$

$$x_4 + 2x_3 = 0$$

Problems 16-26 are about area and volume by determinants.

16 (a) Find the area of the parallelogram with edges v = (3, 2) and w = (1, 4).

$$\begin{bmatrix} 3 & 2 \\ 1 & 4 \end{bmatrix} = A$$
 det $(A) = 3 \cdot 4 - 2 \cdot 1 = 12 - 2 = 10$

(b) Find the area of the triangle with sides v, w, and v + w. Draw it.

(c) Find the area of the triangle with sides v, w, and w - v. Draw it.

The parallelogram with sides (2,1) and (2,3) has the same area as the parallelogram with sides (2,2) and (1,3). Find those areas from 2 by 2 determinants and say why they must be equal. (I can't see why from a picture. Please write to me if you do.)

$$\begin{bmatrix} 2 & 1 \\ 2 & 3 \end{bmatrix} = 6 - 2 = 4$$

$$\begin{bmatrix} 2 & 2 \\ 1 & 3 \end{bmatrix} = 6 - 2 = 4$$

Transpose has some determinant.