Programming assignment 1: MNIST Classification using MLP

Arunima Sarkar, EE21S062

August 2022

1 Backpropagation from scratch

1.1 Backpropagation on Baseline model

The baseline parameters are, batch size = 64, epoch size = 15, learning rate $\eta=0.01$. Due to memory constraints I have been able to implement only 30000 images on train set. Below are the results for these hyper-parameters.

Activation function: Sigmoid

$$\sigma(x) = \frac{1}{1 + \exp^{-x}} \tag{1}$$

Figure 1: Batch Loss for sigmoid

Figure 2: Accuracy on train set with sigmoid

On test set we used all of 10,000 images and the test set accuracy is achieved as 62%.

Activation function: Tanh

$$tanh x = \frac{\exp^x - \exp^{-x}}{\exp^x + \exp^{-x}} \tag{2}$$

Figure 3: Batch Loss for with Tanh

Figure 4: Accuracy on train set with Tanh

On test set the accuracy reaches high values, the test accuracy being 94.3%.

Activation function: ReLU

$$ReLU(x) = \max(0, x)$$
 (3)

Figure 5: Batch Loss for with ReLU

Figure 6: Accuracy on train set with ReLU

On train set the accuracy reaches 95.7%.

This proves that ReLU is the best activation for MLP classification on this dataset.

Confusion matrix:

Figure 7: Confusion matrix for Relu

((a)) Confusion matrix for Tanh

((b)) Confusion matrix for Sigmoid

Figure 8: Confusion matrix

1.2 Backpropagation with two different learning rates

I have tried to train the model on all of the 3 activation functions with learning rate $\eta=0.001$ and learning rate $\eta=0.1$. Below are the results.

1.2.1 Learning rate: $\eta = 0.001$

((b)) Loss graph for ReLu

Figure 9: Metrics with ReLU

The test accuracy is 90%.

((a)) Accuracy graph for Tanh

((b)) Loss graph for Tanh

Figure 10: Metrics with Tanh

The test accuracy is 89%.

((a)) Accuracy graph for Sigmoid

((b)) Loss graph for Sigmoid

Figure 11: Metrics with Sigmoid

The test accuracy is 11.3%.

Thus we can conclude that this learning rate is not efficient for efficient results, thus I took a higher learning rate of 0.1.

1.2.2 Learning rate: $\eta = 0.1$

((a)) Accuracy graph for ReLU

((b)) Loss graph for ReLU

Figure 12: Metrics with ReLU

The test accuracy reaches 97.8%.

((a)) Accuracy graph for Tanh

((b)) Loss graph for Tanh

Figure 13: Metrics with Tanh

The test accuracy reaches 97%.

((a)) Accuracy graph for Sigmoid

((b)) Loss graph for Sigmoid

Figure 14: Metrics with Sigmoid

The test accuracy reaches 92%.

Thus a 0.1 learning rate is better in our baseline model compared to the one given.

2 Package: Using Pytorch on the same baseline architecture

2.1 Using pytorch without Regularization

The loss curves for different activation functions are shown below:

Figure 15: Loss of Baseline model with different activation function

Figure 16: Loss graph for Sigmoid

The test accuracy for ReLU activation is 97%, for Tanh activation is 96% and for sigmoid is 93%, without regularization.

2.2 Using pytorch with L2 Regularization

Figure 17: Loss graph for ReLU

The test accuracy was 96.3%. Here I have added a weight decay term of value 10^{-5} , Larger weight decays just increases the train loss value.

Figure 18: Loss graph for Tanh

The test accuracy is 96.3% thus model has improves over the test dataset. The weight decay paramater, i,e the $\lambda{=}10^{-5}$.

Figure 19: Loss graph for Sigmoid

The test accuracy has reached 95%.

Thus with L2 regularization there is a overall increase in test accuracy which was expected from theory.