Introduction to LATEX

John Fink

McMaster University

March 8, 2023

Who am I?

What can you do with LATEX?

What can you do with LATEX?

- Scholarly articles
- Books and book chapters
- (bibliography support through BibT_EX)
- Presentations (like this one!)
- Resumes/CVs

Why choose typesetting over (most) word processing?

- The source is *portable* and *versionable*. Anything that can edit text can edit LATEX.
- It is way easier to do things like inline formulas $(E = mc^2)$, images, and tables.
- Easy to generate indices, bibliographies, cross references
- It allows you to write without worrying what the writing looks like.
- LATEX can produce some beautiful output. Even the stock PDF output is pleasant!
- The documentation for LATEX is vast (and beautiful, of course) and there's a StackExchange answer for just about anything you'd think to ask.
- You can generate many document types PDFs, ePubs, Markdown, HTML, yes, even Word format from LATEX source.

And perhaps most importantly...

Most STEM specific journals can accept submissions in LATEX, and some will **only** accept submissions in LATEX.

Worry about content, not (or not as much) about form.

Why choose word processing *over* typesetting?

- Everybody everywhere uses Word.
- LATEX is a programming language
- LATEX final documents have to be compiled (this presentation takes about 10 seconds on first compile)
- Word is *much better* than it used to be re: generating ToCs, using templates, etc.

What is LATEX?

What is... TEX?

- Invented by Donald Knuth in 1978.
- Intended as a replacement for the Unix *troff* command, which by 1978 was apparently a very patchy mess.
- So rather than make more patches, Knuth developed TFX.

So what is LATEX? It's TEX with added sauce:

- Optimized for publishing
- Numbering, cross-referencing
- Tables and figures
- Page layout
- Bibliographies

The **structure** of a LATEX document.

В

Χ,

```
\documentclass{beamer}
\usetheme{McMaster}
\usepackage{verbatim}
\usepackage{fancyvrb}
%comments start with a % sign.
```

```
%title page details:
\title{Introduction to \LaTeX{}}
\author{John Fink}
\institute{McMaster University}
\date{March 8, 2023}
```

So just about any LATEX specific markup will look like:

- A \ character
- A command, like includegraphics
- options passed to the command, in [], like [height=8cm]
- The information fed to the command, in {}, like {imagename}
- So, the command \includegraphics[height=8cm]{imagename} will display the image titled *imagename*, scaled to 8cm height.

Drawing in \prescript{LATEX} with the tikz package

Drawing in LATEX with the tikz package

```
\begin{tikzpicture}
\draw[gray, thick] (-1,2) -- (2,-4);
\draw[gray, thick] (-1,-1) -- (2,2);
\filldraw[black] (0,0) circle (2pt) node[anchor=west]{Intersection point};
\end{tikzpicture}
```

Drawing in LATEX with the tikz package

Doing Math Stuff in LATEX

- Inline formulas are done with \$..\$ or \..\ or \begin{math}..\end{math}
- (these are all, as far as I know, identical in use)
- e.g. the universal law of gravitation: $F = \frac{Gm_1m_2}{r^2}$.
- In code: \$F=\frac{Gm_1 m_2}{r^2}\$.

Doing Math Stuff in LATEX

 Display mode formulas are done with \..\, \begin{displaymath}..\end{displaymath}, \begin{equation}..\end{equation}

$$E=m \tag{1}$$

Tables in LATEX

Left	Center	Right	Paragraph
1	1	1	Lorem ipsum dolor sit amet, con-
			sectetuer adipiscing elit.
12	12	12	Ut purus elit, vestibulum ut, placerat
			ac, adipiscing vitae, felis.
123	123	123	Curabitur dictum gravidamauris.

```
\begin{tabular}{||1|c|r|p{6cm}||}
Left & Center & Right & Paragraph \\
    1 & 1 & 1 & Lorem ipsum dolor sit amet, consectetuer a
    12 & 12 & 12 & Ut purus elit, vestibulum ut, placerat
    123 & 123 & 123 & Curabitur dictum gravidamauris. \\
\end{tabular}
```

Chemical formulas are written similarly to math formulas, except support for chemical formulas is not built-in but requires a usepackage statement, like \usepackage{chemfig}

- A simple example: O === H
- \chemfig{O=H}

• Angled formulae:

• \chemfig{A-[1]B-[7]C}

• Regular polygons

• \chemfig{A*5(-B=C-D-E=)}

Branched molecules

• $\left\{H-C(-[2]H)(-[6]H)-C(=[1]0)-[7]H\right\}$

For *typesetting* chemical formulae, we can use a package like *mhchem* in our preamble: \usepackage{mhchem}

- 3 H₂O
- \ce{3H2O}
- AgCl₂⁻
- \ce{AgCl2-}
- H_{2(aq)}
- \ce{H2_{(aq)}}

LATEXresources: Editors

- Anything that can edit plain text (Emacs, Vim, Notepad etc)
- (but note you need a *compiler* to generate the actual output)
- Compilers: MikTEX(Windows), MacTEX(MacOS), TEXLive (Linux)
- Purpose-built editors: TEXstudio, TEXmaker
- (These will come with built-in support for compilers)
- General IDEs: vscode, atom
- Online: Overleaf (gdocs-esque)

Signing up for Overleaf

- Go to www.overleaf.com/register
- Sign up for an account by whatever method you prefer
- 3 Create a new blank project.
- Type "done" in the chat.

Any questions?
jfink@mcmaster.ca
https://github.com/jbfink/20230308-latex
https://glammr.us/@jbfink