WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

A2

(11) International Publication Number:

WO 97/29103

C07D 401/12, 213/32

74

(43) International Publicati n Date:

14 August 1997 (14.08.97)

(21) International Application Number:

PCT/CA97/00081

(22) International Filing Date:

5 February 1997 (05.02.97)

(30) Priority Data:

2,168,939 2,173,820 6 February 1996 (06.02.96)

10 April 1996 (10.04.96)

) CA

(71) Applicant (for all designated States except US): PDI-RESEARCH LABORATORIES, INC. [CA/CA]; P.O. Box 353, Station "A", Richmond Hill, Ontario L4C 4Y6 (CA).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BEKHAZI, Michel [CA/CA]; 31 Compton Crescent, Pointe Claire, Quebec H9R 5V6 (CA). ZOGHBI, Michel [CA/CA]; Suite 501, 309 Major MacKenzie Drive E., Richmond Hill, Ontario L4C 9V5 (CA).
- (74) Agent: HUGHES, ETIGSON; Suite 200, 175 Commerce Valley Drive West, Thornhill, Ontario L3T 7P6 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

- (54) Title: SYNTHESIS OF OMEPRAZOLE-TYPE PYRIDINE DERIVATIVES AND INTERMEDIATES THEREOF
- (57) Abstract

A process of reacting (a) is provided wherein R, R_1 , R_2 , R_3 and X are selected from (b).

$$\begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_4 \\ R_5 \\ R_7 \\$$

R	R ₁	R ₂	R ₃	×	To produce the Medicine identified below:	
н	СН	CH,	S-N-COCH ₃	och,	Omepressole	
н	н	OCH ₅	S CCH ₂ F	осн	Pantoprazole	•
н	н	СН	s-XXXXXXXX	ocilica,	Lansoprasole	

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

(11) International Publication Number:

WO 97/29103

C07D 401/12, 213/32

AZ

(43) International Publicati n Date:

14 August 1997 (14.08.97)

(21) International Application Number:

(22) International Filing Date:

5 February 1997 (05.02.97)

PCT/CA97/00081

(30) Priority Data:

2,168,939 2,173,820 6 February 1996 (06.02.96)

10 April 1996 (10.04.96)

CA CA

(71) Applicant (for all designated States except US): PDI-RESEARCH LABORATORIES, INC. [CA/CA]; P.O. Box 353, Station "A", Richmond Hill, Ontario L4C 4Y6 (CA).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BEKHAZI, Michel [CA/CA]; 31 Compton Crescent, Pointe Claire, Quebec H9R 5V6 (CA). ZOGHBI, Michel [CA/CA]; Suite 501, 309 Major MacKenzie Drive E., Richmond Hill, Ontario L4C 9V5 (CA).
- (74) Agent: HUGHES, ETIGSON; Suite 200, 175 Commerce Valley Drive West, Thornhill, Ontario L3T 7P6 (CA).

(81) Designated States: AL, AM, AT, AU, AZ, BB, BG, BR, BY, CA, CH, CN, CZ, DE, DK, EE, ES, FI, GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: SYNTHESIS OF OMEPRAZOLE-TYPE PYRIDINE DERIVATIVES AND INTERMEDIATES THEREOF

(57) Abstract

A process of reacting (a) is provided wherein R, R_1 , R_2 , R_3 and X are selected from (b).

$$\begin{array}{c} R_1 \\ R_2 \\ R_3 \\ R_4 \\ R_4 \\ R_5 \\ R_7 \\$$

R	R ₁	R ₂	R ₃	×	To produce the Medicine identified below:	
H	CH ₃	CH ₂	s N OCH,	och,	Omeprezole	
н	н	оснь	S—N—CCH _A F	OCH ₀	Pantoprazole	(b)
н	н	СН	s—————————————————————————————————————	ocilica;	Lensopranole	

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malawi
AT	Austria	GE	Georgia	MX	Mexico
AU	Australia	GN	Guinea	NE	Niger
BB	Barbados	GR	Greece	NL	Netherlands
BE	Belgium	HU	Hungary	NO	Norway
BF	Burkina Faso	IE	Ireland	NZ	New Zealand
BG	Bulgaria	IT	Italy	. PL	Poland
BJ	Benin	JP	Japan	PT	Portugal
BR	Brazil	KE	Kenya	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sudan
CF	Central African Republic		of Korea	SE	Sweden
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	u	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Senegal
CN	China	LR	Liberia	SZ	Swaziland
CS	Czechoslovakia	LT	Lithuania	TD	Chad
CZ	Czech Republic	LU	Luxembourg	TG	Togo
DE	Germany	LV	Latvia	TJ	Tajikistan
DK	Denmark	MC	Monaco	TT	Trinidad and Tobago
EE	Estonia	MD	Republic of Moldova	UA	Ukraine
ES	Spain	MG	Madagascar	UG	Uganda
FI	Finland	ML	Mali	US	United States of America
FR	France	MN	Mongolia	UZ	Uzbekistan
GA	Gabon	MR	Mauritania	VN	Viet Nam

WO 97/29103 PCT/CA97/00081

TITLE OF INVENTION

SYNTHESIS OF OMEPRAZOLE-TYPE PYRIDINE DERIVATIVES AND INTERMEDIATES THEREOF

FIELD OF INVENTION

This invention relates to the manufacture of Omeprazole, intermediates suitable for the manufacture of Omeprazole and the use thereof to manufacture Omeprazole. This invention in its broadest aspects is directed to the manufacture of medicines such as Omeprazole, Pantoprazole, and Lansoprazole, intermediates suitable for the use to manufacture each of the medicines and the processes using those intermediates to manufacture the medicines.

BACKGROUND OF INVENTION

Omeprazole was discovered by Hassel chemists, and is derived from the oxidation of intermediate 1'.

15

5

10

Intermediates 2' and 3' are coupled to give 1.

20

(See for example Canadian Letters Patent No. 1,127,158)

Because the intermediates leading to the pyridine entity were very unstable, Hassel came up with the following starting intermediate, where the oxygen on the nitrogen is eliminated at the stage when X is converted from methyl to hydroxymethyl.

10

15

20

25

$$-X$$

Intermediate 4

(See Canadian Letters Patent No. 1,234,118)

EP 484,265 (Esteve) on the other hand, carried the synthesis with either of chloro or nitro at the 4 position. Once the skeleton was built, Esteve either substituted at the 4 position with methoxy and then reduced the nitroso or vice-versa.

US 5,374,730 (Torcan) purports to teach the manufacture of Omeprazole free from highly coloured impurities. Torcan achieves that result by making a solid intermediate, that can be crystallized. To this end, Torcan oxidized their substituted thioether and obtained a water soluble crystalline intermediate which upon decarboxylation yielded pure water insoluble Omeprazole.

Applicant is also aware of new and efficient oxidizing agents used for converting the thioether to S=O purportedly taught by recent Takeda (CA 1,263,119) and Hassel's (U.S. 5,386,032) patents.

Applicant has now discovered a novel method for the manufacture of Omeprazole, Pantoprazole and Lansoprazole and related medicines which Applicant believes is efficient and suitable to produce these medicines.

These methods are to be used to build substituted pyridines (useful pharmaceutical intermediates), which could be used as precursors for the synthesis of Omeprazole, Pantoprazole or Lansoprazole and related medicines.

In all the published synthesis covering Omeprazole or Lansoprazole, the appropriately substituted pyridine was reacted with A, B or C synthons.

$$R_1$$
 R_2
 R_1
 R_2
 R_1
 R_2
 R_2
 R_3
 R_4
 R_5
 R_6
 R_7
 R_8
 R_8
 R_8

Applicant believes that the following approach would be highly suitable for use to make pyridines which are intermediates that could be used to make medicines. Applicant proposes that the following pyridine compound:

$$R_1$$
 R_2
 R_3
 R_3
 R_3

10 could be prepared by the following scheme of reaction (in suitable solvents):

Scheme 1:

$$R_1$$
 R_2
 R_3
 R_1
 R_2
 R_3
 R_4
 R_2
 R_3
 R_4
 R_4
 R_4
 R_5
 R_7
 R_7

15 (Intermediate II is available. Intermediate I is generally known and may be prepared using methods known in the literature such as:

- 1. Lou, J.-D.; Lou, W.-X. Synthesis, 1987, 179 (and references cited therein).
- 2. E. Breitmaier; S. Gassenmann, Chem. Ber., 1971, 104, 665.
- 3. Kalina, N.N.; Klimko, V.T.; Protopopova, T.-V; Skoldinor, A.P. Zh. Obshch. Khim. 1962, 32, 2146, C.A., 58, 7825 g.
- 4. Klimko, V.T.; Protopopova, T.-V.; Smirnova, N.V.; Skoldinov, A.P. Zh. Obshch. Khim. 1962, 32, 2961.
- 5. Kalinina, N.N.; Klimko, V.T.; Protopopova; Skoldinov, A.P. J. Gen. Chem. USSR (Engl. Transl.), 1962, 32, 2116.
- 10 6. Klimko, V.T.; Protopopova, N.V.; Smirnova, N.V.; Skoldinov, A.P. J. Gen. Chem. USSR (Engl. Transl.), 1962, 32, 2913.
 - 7. Wang, Chia-Lin J.; Salvino, J.M., Tetrahedron Lett. 1984, 25(46), 5243-6.
 - 8. Seebach D., Chem. Ber. 1972, 102, 487.
- 9. Solladié, G.; Ruiz, P.; Colobert, F.; Carreno, M.C.; Garcia Ruano, J.L. Synthesis 1991, 1011.
 - 10. Thummel, R.P.; Kohli, D.K. J. Org. Chem. 1977, 42, 2742.
 - 11. Moller, R.; Engel, N.; Steglich, W. Synthesis, 1978, 621.
 - 12. Ullrich, F.-W.; Breitmaier Synthesis, 1983, 641.
- 20 13. Menicagli, R.; Malanga, C.; Guidi, M.; Lardicci, L. Tetrahedron, 1987, 43(1), 171 (and references cited therein).
 - 14. Breitmaier, E.; Ullrich, F.W.; Potthoff, B.; Bohme, R.; Bastian, H. Synthesis, 1987, 1 (Ubersicht).
 - 15. Hertenstein, U.; Hunig, S.; Oller, M. Chem. Ber 1980, 113, 3783.
- 25 16. Ruegg, R.; Lindlar, H.; Montavon, M.; Saucy, G.; Schaeren, S.F.; Schwieter, U.; Isler, O. Helv. Chim. Acta 1959, 42, 847.
 - 17. Nair, V.; Vietti, D.E.; Cooper, C.S. J. Am. Chem. Soc., 1981, 103, 3030.
 - 18. Gagan, J.M.F.; Lloyd, D. Chem. Comm. 1967, 1043.
 - 19. Weibenfels, M.; Schurig, H.; Huhsam, G. Chem. Ber., 1967, 100, 584.
- 30 20. Todoriki, R.; Ono, M.; Tamura, S. Heterocycles, 1986, 24(3), 775.
 - 21. Eskenazi, P.C.; Maitte, P. Bull. Soc. Chim. 1976, 995.
 - 22. Farina, F.; Gomez, M.J.; Martin, M.V. An. Quim. 1974, 70(12), 900-4.
 - 23. Farina, F.; Victory, P. Tetrahedron Lett. 1969, 38, 3219-22.

Intermediates I and II are selected to form A' and B' (the halves of the pyridine molecule). III is converted to the final product IV by oxidation [O]. The substituents R, R₁, R₂, R₃ and X are chosen having regard to the substituents on the medicines. Thus, the following combinations present themselves:

R	R ₁	R ₂	R ₃	X	Medicine
Н	CH₃	СН₃	S N OCH ₃	ОСН₃	Omeprazole
н	Н	OCH ₃	S N OCH ₂ F	ОСН₃	Pantoprazole
Н	Н	СН₃	S N OCH ₃	OCH ₂ CF ₃	Lansoprazole

or R may be selected from:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₁ may be selected from:

5

Н

10 Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from:

15

H

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

20 R₃ may be selected from:

Alkoxy

Hydroxy

Halogen

10

15

20

Activated Ester

Tosylate

Mesylate

Thiol

Xanthyl

and X may be selected from:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

Н

Compound III is novel and the precursor for the medicines identified above (Omeprazole, Pantoprazole and Lansoprazole).

Compound III may also be an intermediate where R₃ is a leaving group such as Halogen (for example chlorine, bromine, fluorine and the like) or a protected oxygen (OP where P is a protecting group). In this regard, intermediate "A"", useful to make the above medicines, may be made from intermediate IIIA where R₃ is OP (where P= a protecting group).

The following synthesis based on building intermediate "A"" set out below presents itself:

5

$$\begin{array}{c} R_1 \\ R_1 \\ R_2 \\ R_1 \\ R_2 \\ R_1 \\ R_2 \\ R_1 \\ R_2 \\ R_2 \\ R_3 \\ R_4 \\ R_4 \\ R_4 \\ R_4 \\ R_5 \\ R_4 \\ R_5 \\ R_6 \\ R_7 \\ R_7 \\ R_7 \\ R_7 \\ R_8 \\ R_7 \\ R_8 \\ R_8 \\ R_8 \\ R_9 \\$$

10

Compound IIA may be prepared from the corresponding alcohol and a suitable protecting group (e.g. tetrahydropuranyl, tert-butyldimethyl silyl, etc.). Other protecting groups like esters, carbonates and substituted methyl, ethyl, benzyl or silyl esters can also be used.

Intermediate A" is then used to manufacture one of the three medicines, as follows:

5

10

wherein R, R_1 , R_2 and X are defined above in the chart and L is selected from OCH₃ and OCH₂F.

Additionally, the pyridine may be built last so that all constituents of the molecules are attached to a skeleton first, and then the pyridine is completed last. For example, the following scheme presents itself. (Synthesis based on building the pyridine last):

wherein R, R_1 , R_2 , X and L are defined as previously.

In another scheme, the Benzimidazole is built last:

wherein R, R₁, R₂, X and L are as previously described.

According to other aspects of the invention, the processes may be carried out as follows:

5 Thus the following processes in schematic form are established:

ROUTE I

ROUTE II

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$H_{3}C$$

$$CH_{3}$$

$$CH_{4}OAc$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}OAc$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}OAc$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}OAc$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{6}$$

$$CH_{7}$$

$$CH_{7}$$

$$CH_{7}$$

$$CH_{8}$$

$$CH_{9}$$

$$CH_{1}$$

$$CH_{1}$$

$$CH_{2}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{3}$$

$$CH_{4}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{5}$$

$$CH_{7}$$

5 Compounds I, IIA, III, IIIA, VI, VII, VIII, IX, X, XI, XII and XIII following, are new:

$$\begin{array}{c} R_1 \\ R \\ O \end{array}$$

P=Protecting Group IIA

$$R_1 \xrightarrow{X} R_2 \\ R \xrightarrow{N} R_3$$

$$R_1 \xrightarrow{N} R_3$$

$$R_1 \xrightarrow{N} R_3$$

$$R_1$$
 R_2
 R_2
 R_1
 R_2
 R_2
 R_1
 R_2
 R_2
 R_3
 R_4
 R_4
 R_4
 R_4
 R_5
 R_4
 R_5
 R_5
 R_7
 R_7

$$0 \longrightarrow S \longrightarrow NH \longrightarrow L$$

$$VI$$

10

10

$$R_1 \xrightarrow{X} R_2 S \xrightarrow{NH} VII$$

$$R_1 \xrightarrow{X} NH S$$

$$R = IX$$

 R_1 R_2 O O S S

$$R_1 \longrightarrow R$$

$$X$$

$$X$$

$$\sum_{O}^{CH_3} \sum_{\parallel}^{O} \sum_{N}^{N} \sum_{XI}^{OCH_3}$$

R, R1, R2, R3, and X are as defined above.

The invention will now be illustrated with reference to the following proposed examples.

5 Example 1:

10

15

20

25

Synthesis of the chloro pyridine (scheme relating to building intermediate "A")

A base (e.g. Potassium t-Butoxide) (1.0 eq) will be added to a cooled solution (-20 to O C) of the protected hydroxy ketone (1.0 eq) in dry tetrahydrofuran (THF). A THF solution of the α,β unsaturated carbonyl (1.0 eq), would then be added dropwise. At the end of the reaction, ammonium chloride/ammonia (3.0 eq) will be added and the reaction mixture stirred at room temperature. Water may then be added to the mixture and the organic product extracted in toluene. The crude dihydropyridine will then be extracted with an acidic aqueous solution (sulfuric acid).

To the aqueous solution, nitric acid will be added and the mixture heated to reflux until the oxidation is complete. The solution will then be slowly cooled to OC. Crushed ice will then be added followed by ammonium hydroxide until the mixture is alkaline. The solid is then isolated and washed with cold water. The crude product will be recrystallized from alcohol.

Other oxidizing agents could be used to oxidize the dihydropyridine to the pyridine, e.g. 2,3-Dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).

The 2-Chloromethyl pyridine "Intermediate A" can be prepared by reacting the 2-hydroxymethylpyridine with thionylchloride (according to *Arch. Pharm.* Vol. 26 pp. 448-451 (1956)). Example 2:

30 Based on the scheme for building the pyridine last.

Tosylchloride (1.0 eq) is added to a solution of the hydroxy ketone (1.0 eq) and base (e.g. triethylamine) (1.0 eq) in a suitable solvent (e.g. toluene, methylene chloride). The mercaptobenzimidazole sodium salt (1.0 eq) will be added to the tosylate solution. At the end of the

reaction, the mixture will be washed successively with water, a saturated solution of sodium bicarbonate and brine. The organic extract will be dried over sodium sulfate, filtered and will be rotary evaporated to yield the crude product.

5 Example 3:

10

15

20

25

30

35

Benzimidazole formation (synthesis based on building the imidazole last)

Xanthate (1.0 eq) and the tosylate (1.0 eq) will be reacted in a solvent (e.g. ethanol) at reflux. When the reaction is complete, the solvent will be replaced with toluene and the organic layer will be washed with water and brine. The toluene is then rotary evaporated, THF will be added, and the solution cooled (-20 to O C).

A base (e.g. Potassium t-Butoxide) (1.0 eq) is added to the cooled solution of the xanthate adduct. A THF solution of the α, β unsaturated carbonyl (1.0 eq), is then added dropwise. At the end of the reaction, ammonium chloride/ammonia (3.0 eq) will be added and the reaction mixture stirred at room temperature. Water will be added to the mixture and the organic product extracted in toluene. Toluene will be rotary evaporated and the crude product will be used for the next step.

m-Chloroperbenzoic acid (2.0 eq) will be dissolved in chloroform, cooled to O C and added to the cooled chloroform solution (O C) of the dihydropyridine. The mixture will be stirred overnight at room temperature, filtered, and washed with 10% NaHCO₃, and dried over sodium sulfate. Filteration and rotary evaporation afford the crude product.

The crude product and 5-substituted phenylenediamine (1.0 eq) will be dissolved in toluene that contained TFA (1.0 eq). The mixture will be refluxed until the reaction is complete. At the end of the reaction, the mixture will be cooled, 10% NaOH will then be slowly added until the mixture is just alkaline. The crude benzimidazole will be then filtered, washed with water and recrystallized from alcohol.

Example 4:

Intermediate I which is 3-methoxy, 2-methyl, 2-propenal, may be prepared as follows:

Methanesulfonyl chloride (1 eq.) will be added to a solution of methylmalondialdehyde sodium salt (prepared by a literature procedure involving the Vilsmeier-Haack-Arnold acylation of propionaldehyde diethyl acetal: Nair, V.; Vietti, D.E.; Cooper, C.S. J. Am. Chem. Soc. 1981, 103, 3030-3036) (1 eq.) in a suitable solvent

WO 97/29103 PCT/CA97/00081
- 18 -

(e.g. methylene chloride, toluene). The mixture will be stirred at room temperature until the reaction is complete. At the end of the reaction, the product will be concentrated on the rotary evaporator and dissolved in anhydrous methanol. The mesylate methanol solution will then be added to a sodium methoxide (1-5 eq.) solution in the same solvent. The mixture will be stirred at room temperature until the reaction is complete. The product will be concentrated on the rotary evaporator, dissolved in methylene chloride (or other suitable solvent, e.g. toluene) and washed consecutively with saturated aqueous ammonium chloride, water, and brine. The solution will then be dried over anhydrous sodium sulfate, filtered, and rotary evaporated to yield the crude 3-methoxy, 2-methyl, 2-propenal (I).

Other specific intermediate (I) compounds can be prepared by persons skilled in the art having regard to the articles referred to herein and the above teachings.

Example 5:

5

10

15

20

25

The product from example 2 will be oxidized (route I, found at page 12 of the application) by reaction with MCPBA in methylene chloride. The product will be isolated after pH adjustment by extraction and evaporation.

The Michael, aminolysis, cyclization and oxidation of the resulting dihydropyridine will be then achieved as in example 1.

As many changes can be made to the invention without departing from the scope of the invention, it is intended that all material herein be interpreted as illustrative of the invention and not in a limiting sense.

THE EMBODIMENTS OF THE INVENTION IN WHICH AN EXCLUSIVE PROPERTY OR PRIVILEGE IS CLAIMED ARE AS FOLLOWS:

1. A process of reacting:

is provided wherein R, R₁, R₂, R₃ and X are selected from:

R	R ₁	R ₂	R ₃	x	To produce the Medicine identified below:
н	CH₃	CH₃	S N OCH3	ОСН₃	Omeprazole
н	н	OCH ₃	S N OCH ₂ F	ОСН₃	Pantoprazole
Н	Н	СН3	S N OCH ₃	OCH₂CF ₃	Lansoprazole

or R may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

 R_1 may be selected from the group consisting of:

H

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

 R_2 may be selected from the group consisting of:

H

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₃ may be selected from the group consisting of:

Alkoxy

Hydroxy

Halogen

Activated Ester

Tosylate

Mesylate

Thiol

Xanthyl

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

Η

2. The process of:

wherein R, R₁, R₂, R₃ and X are selected from the following group:

below: OCH₃ CH_3 CH₃ Н OCH₃ Omeprazole OCH₂F OCH₃ Н OCH₃ Н Pantoprazole OCH₃ CH_3 OCH₂CF₃ Н Н Lansoprazole H

or R may be selected from the group consisting of:

H
Alkyl (1-3C)
Carboxyl acid
Esters
Cyano

 R_1 may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₃ may be selected from the group consisting of:

Alkoxy

Hydroxy

Halogen

Activated Ester

Tosylate

Mesylate

Thiol

Xanthyl

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

Н

3. The process of reacting:

$$R_1$$
 R_2
 R_3
 R_3
 R_3

to produce:

$$R_1$$
 R_2
 R_3
 R_1
 R_2

wherein the substituents R, R_1 , R_2 , R_3 and X are selected as follows:

R	R ₁	R ₂	R ₃	x	To produce the Medicine identified below:
Н	CH ₃	CH₃	S N OCH ₃	ОСН₃	Omeprazole
Н	Н	OCH ₃	S N OCH ₂ F	OCH₃	Pantoprazole
Н	н	СН3	S N OCH ₃	OCH₂CF ₃	Lansoprazole

or R may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₁ may be selected from the group consisting of:

H

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₃ may be selected from the group consisting of:

Alkoxy

Hydroxy

Halogen

Activated Ester

Tosylate

Mesylate

Thiol

Xanthyl

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

H

PCT/CA97/00081

- 4. The process of claim 1 or 3 wherein the medicine Omeprazole is produced.
- 5. The process of claim 1 or 3 wherein the medicine Pantoprazole is produced.
- 6. The process of claim 1 or 3 wherein the medicine Lansoprazole is produced.
- 7. The process of reacting:

wherein R, R₁, R₂, R₃ and X are selected from:

					below.
Н	СН₃	СН₃	S N OCH ₃	OCH₃	Omeprazole
Н	Н	OCH₃	S N OCH ₂ F	ОСН₃	Pantoprazole
н	Н	CH ₃	s N OCH ₃	OCH ₂ CF ₃	Lansoprazole

or R may be selected from the group consisting of:

Н

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₁ may be selected from the group consisting of:

Н

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₃ may be selected from the group consisting of:

Alkoxy

Hydroxy

Halogen

Activated Ester

Tosylate

Mesylate

Thiol

Xanthyl

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

H

8. The process of reacting:

wherein R, R₁, R₂, R₃ and X are selected from:

		·			below:
Н	СН₃	CH₃	S N OCH ₃	OCH ₃	Omeprazole
Н	Н	OCH ₃	S N OCH ₂ F	ОСН₃	Pantoprazole
Н	Н	СН3	S N OCH ₃	OCH₂CF ₃	Lansoprazole

or R may be selected from the group consisting of:

Н

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

 R_1 may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from the group consisting of:

Н

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₃ may be selected from the group consisting of:

Alkoxy

Hydroxy

Halogen

Activated Ester

Tosylate

Mesylate

Thiol

Xanthyl

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

Η

9. The process of reacting:

$$\begin{array}{c|c}
R_1 & & \\
\hline
R_1 & & \\
\hline
R_2 & & \\
\hline
R_1 & & \\
\hline
R_2 & & \\
\hline
N & OH \\
\hline
IVA & \\
\end{array}$$

wherein R, R₁, R₂, R₃ and X are selected from:

					below:
Н	СН₃	CH₃	S N OCH ₃	ОСН₃	Omeprazole
Н	Н	OCH₃	S N OCH ₂ F	OCH₃	Pantoprazole
н	Н	СН3	s N OCH ₃	OCH ₂ CF ₃	Lansoprazole

or R may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₁ may be selected from the group consisting of:

H

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₃ may be selected from the group consisting of:

Alkoxy

Hydroxy

Halogen

Activated Ester

Tosylate

Mesylate

Thiol

Xanthyl

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

Н

10. The process of reacting:

$$R_1$$
 R_2
 Cl
 R_1
 R_2
 R_3
 R_4
 R_4
 R_4

wherein R, R₁, R₂, R₃ and X are selected from:

 $R R_1 R_2$

 R_3

X

To produce the Medicine

identified

			· · · · · · · · · · · · · · · · · · ·		below:
Н	CH₃	CH₃	S N OCH ₃	ОСН₃	Omeprazole
Н	Н	OCH₃	S N OCH ₂ F	ОСН₃	Pantoprazole
Н	Н	СН3	S N OCH ₃	OCH₂CF ₃	Lansoprazole ·

or R may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

 R_1 may be selected from the group consisting of:

H

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from the group consisting of:

Н

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₃ may be selected from the group consisting of:

Alkoxy

Hydroxy

Halogen

Activated Ester

Tosylate

Mesylate

Thiol

Xanthyl

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

Η

$$\begin{array}{c} R_{2} \\ OH \end{array}$$

$$\begin{array}{c} R_{1} \\ OH \end{array}$$

$$\begin{array}{c} R_{2} \\ OH \end{array}$$

$$\begin{array}{c} NH \\ OH \end{array}$$

$$\begin{array}{c} R_{2} \\ OH \end{array}$$

$$\begin{array}{c} NH \\ OH \end{array}$$

$$\begin{array}{c} R_{2} \\ OH \end{array}$$

$$\begin{array}{c} NH \\ OH \end{array}$$

$$\begin{array}{c} R_{2} \\ OH \end{array}$$

$$\begin{array}{c} NH \\ OH \end{array}$$

$$\begin{array}{c} R_{2} \\ OH \end{array}$$

$$\begin{array}{c} NH \\ OH \end{array}$$

$$\begin{array}{c} R_{2} \\ OH \end{array}$$

$$\begin{array}{c} NH \\ OH \end{array}$$

$$\begin{array}{c} R_{2} \\ OH \end{array}$$

$$\begin{array}{c} NH \\ OH \end{array}$$

$$\begin{array}{c} R_{2} \\ OH \end{array}$$

$$\begin{array}{c} NH \\ OH \end{array}$$

$$\begin{array}{c} R_{1} \\ OH \end{array}$$

wherein R, R_1 , R_2 and X are selected from:

				To produce the
R	R_1	R ₂	X	Medicine
				identified below:
н	CH₃	CH ₃	OCH ₃	Omeprazole
Н	н	OCH ₃	OCH ₃	Pantoprazole
Н	н	СН3	OCH ₂ CF ₃	Lansoprazole

and L is selected from OCH3 and OCH2F.

12. The process of reacting:

$$O = \frac{R_2}{O} = \frac{T_SCI}{V} = \frac{R_2}{V} = \frac{R_2}{V} = \frac{NH}{V} = \frac{1}{V}$$

wherein R₂ is selected from:

K ₂	To produce the Medicine identified below:
CH ₃	Omeprazole
OCH ₃	Pantoprazole
CH ₃	Lansoprazole

and L is selected from OCH3 and OCH2F.

wherein R, R_1 , R_2 and X are selected from:

R	R_1	R_2	X	10 produce the Medicine
	-			identified below:
Н	CH ₃	CH ₃	OCH ₃	Omeprazole
Н	н	ОСН₃	OCH ₃	Pantoprazole
Н	н	СН3	OCH₂CF ₃	Lansoprazole

and L is selected from OCH $_3$ and OCH $_2$ F.

$$\begin{array}{c|c}
X & R_2 & NH & VII \\
R & VII & VII
\end{array}$$

$$\begin{array}{c|c}
X & R_2 & O & NH & L \\
R_1 & & & & N & & L
\end{array}$$

wherein R, R₁, R₂ and X are selected from:

To produce the \mathbf{R} R_1 R_2 X Medicine identified below: OCH₃ CH₃ CH₃ Н Omeprazole OCH₃ OCH₃ Н Н Pantoprazole OCH₂CF₃ Н Н CH₃ Lansoprazole

and L is selected from OCH3 and OCH2F.

- 15. The process of claim 14 wherein the medicine Omeprazole is produced.
- 16. The process of claim 14 wherein the medicine Pantoprazole is produced.
- 17. The process of claim 14 wherein the medicine Lansoprazole is produced.

wherein R, R₁, R₂ and X are selected from:

R	R ₁	R ₂	x	To produce the Medicine identified below:
Н	CH ₃	CH ₃	OCH ₃	Omeprazole
Н	н	OCH ₃	OCH ₃	Pantoprazole
H	Н	CH ₃	OCH₂CF ₃	Lansoprazole

and L is selected from OCH3 and OCH2F.

wherein R_2 is selected from:

R ₂	To produce the Medicine identified below:
CH ₃	Omeprazole
OCH ₃	Pantoprazole
CH ₃	Lansoprazole

20. The process of reacting:

wherein R, R_1 , R_2 and X are selected from:

R	R ₁	R ₂	x	To produce the Medicine identified below:
н	CH ₃	CH ₃	OCH ₃	Omeprazole
Н	н	OCH ₃	OCH ₃	Pantoprazole
н	Н	CH ₃	OCH ₂ CF ₃	Lansoprazole

21. The process of reacting:

wherein R, R_1 , R_2 and X are selected from:

R	R_1	R ₂	X	Medicine
Н	CH ₃	CH₃	OCH ₃	identified below: Omeprazole
Н	н	OCH ₃	OCH ₃	Pantoprazole
1 1	١,,	Cu.	OCH CE	

wherein R, R₁, R₂ and X are selected from:

R	R ₁	R ₂	x	To produce the Medicine identified below:
Н	СН₃	CH ₃	OCH ₃	Omeprazole
н	Н	OCH ₃	OCH ₃	Pantoprazole
н	Н	CH ₃	OCH₂CF₃	Lansoprazole

and L is selected from OCH3 and OCH2F.

- 23. The process of claim 18 or 22 wherein the medicine Omeprazole is produced.
- 24. The process of claim 18 or 22 wherein the medicine Pantoprazole is produced.
- 25. The process of claim 18 or 22 wherein the medicine Lansoprazole is produced.

26. The product:

$$R_1 \xrightarrow{X} R_2 \\ R \xrightarrow{N} R_3$$
III

wherein R, R₁, R₂, R₃ and X are selected from:

below: OCH₃ CH₃ CH₃ Н OCH_3 Omeprazole OCH₂F OCH₃ Н Н OCH₃ Pantoprazole H OCH₃ Н Н CH_3 OCH₂CF₃ Lansoprazole S H

or R may be selected from the group consisting of:

H Alkyl (1-3C) Carboxyl acid Esters Cyano R₁ may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₃ may be selected from the group consisting of:

Alkoxy

Hydroxy

Halogen

Activated Ester

Tosylate

Mesylate

Thiol

Xanthyl

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

Н

27. The product:

P=Protecting Group

ПΑ

wherein R_2 is selected from:

R ₂	To produce the Medicine identified below:
CH ₃	Omeprazole
OCH ₃	Pantoprazole
CH ₃	Lansoprazole

R₂ may be selected from the group consisting of:

H
Alkyl (1-3C)
Carboxyl acid
Esters
Cyano

and P is a protecting group.

28. The product:

$$R_1$$
 R_2
 R_1
 R_2
 R_2
 R_1
 R_2
 R_2
 R_1
 R_2
 R_1
 R_2
 R_2
 R_1
 R_2
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5
 R_7
 R_7

To produce the

wherein R, R_1 , R_2 and X are selected from:

R	R ₁	R ₂	X	Medicine identified
				below:
Н	CH₃	CH ₃	OCH ₃	Omeprazole
н	Н	OCH ₃	OCH ₃	Pantoprazole
н	Н	CH ₃	OCH ₂ CF ₃	Lansoprazole

or R may be selected from the group consisting of:

H

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₁ may be selected from the group consisting of:

H

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

Η

and P is a protecting group.

29. The product:

$$O$$
 V
 O
 V
 O
 V

wherein Ts is Tosylate and R_2 is selected from:

R ₂	To produce the Medicine identified below:
CH ₃	Omeprazole
OCH ₃	Pantoprazole
CH3	Lansoprazole

or R₂ may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

Thiol

Xanthyl

30. The product:

$$O = \begin{cases} R_2 & \text{NH} \\ N & \text{VI} \end{cases}$$

wherein R2 and L are selected from:

R ₂	To produce the Medicine identified below:
CH ₃	Omeprazole
OCH ₃	Pantoprazole
CH ₃	Lansoprazole

or R2 may be selected from the group consisting of:

Н

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

31. The product:

$$\begin{array}{c|c} X & R_2 & NH \\ \hline R_1 & NH & VII \\ \hline \end{array}$$

wherein R, R₁, R₂, X and L are selected from:

н	CH ₃	CH ₃	OCH ₃	Omeprazole
н	н	OCH ₃	OCH ₃	Pantoprazole
н	Н	СН3	OCH ₂ CF ₃	Lansoprazole

or R may be selected from the group consisting of:

Н

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₁ may be selected from the group consisting of:

H

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from the group consisting of:

Н

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

Η

32. The product:

$$\begin{array}{c|c}
 & S \\
 & S \\
 & VIII
\end{array}$$
OEt

wherein R2 is selected from:

R ₂	To produce the Medicine identified below:	
CH ₃	Omeprazole	
OCH ₃	Pantoprazole	
CH ₃	Lansoprazole	

or R2 may be selected from the group consisting of:

Н

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

33. The product:

$$R_1$$
 R_2
 S
 S
 S
 S
 S
 S

wherein R, R₁, R₂ and X are selected from:

To produce the R R_1 R_2 X Medicine identified below: CH_3 Н CH_3 OCH₃ Omeprazole Н Н OCH_3 OCH₃ Pantoprazole Н CH_3 Н OCH₂CF₃ Lansoprazole

or R may be selected from the group consisting of:

Н

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

 R_1 may be selected from the group consisting of:

Н

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from the group consisting of:

Η

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

Η

and Et is ethyl.

34. The product:

$$R_1 \xrightarrow{X} R_2 \xrightarrow{Q} OEt$$

$$R_1 \xrightarrow{X} X$$

wherein R, R_1 , R_2 and X are selected from:

R	R ₁	R ₂	x	To produce the Medicine identified below:
Н	CH ₃	CH ₃	OCH ₃	Omeprazole
н	н	OCH ₃	OCH ₃	Pantoprazole
Н	Н	CH ₃	OCH₂CF ₃	Lansoprazole

or R may be selected from the group consisting of:

H
Alkyl (1-3C)
Carboxyl acid
Esters
Cyano

WO 97/29103 PCT/CA97/00081

- 51 -

 R_1 may be selected from the group consisting of:

H

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

R₂ may be selected from the group consisting of:

H

Alkyl (1-3C)

Carboxyl acid

Esters

Cyano

and X may be selected from the group consisting of:

Alkoxy

Halogen

Nitro

Cyano

Carboxyl

Alkyl

Η

and Et is ethyl.

35.

The process:

Route I

36.

The process:

Route II

37. The process:

38. The process:

39. The process:

40. The process:

OCH₃ CH₃
$$\stackrel{O}{\underset{H}{\text{II}}}$$
 OCH₃ $\stackrel{O}{\underset{H}{\text{II}}}$ $\stackrel{O}{\underset{H}{\text{OCH}_3}}$ OCH₃ $\stackrel{O}{\underset{H}{\text{CH}_3}}$ $\stackrel{O}{\underset{H}{\text{CH}_3}}$

41. The process:

42. The product:

$$\sum_{O}^{CH_3} \sum_{H}^{O} \sum_{N}^{N}$$

43. The product:

44. The product: