

Eötvös Lóránd Tudományegyetem

Programozási nyelvek és fordítóprogramok tanszék

Diplomaterv sablon Markdown leírónyelven

DIPLOMAMUNKA

Témavezető Konzulens Elemér Doktorandusz hallgató Készítette Thier Richárd István Programtervező Informatikus MSc

2018. február 27.

Témabejelentő

Az elfogadott és aláírt témabejelentőt a dolgozat második oldalaként szükséges elhelyezni, amelyet az adminisztrációban lehet átvenni. Itt tehát már a tanszéki pecséttel ellátott és aláírt lapot kell belefűzni (ezen oldal *helyett*, ez az oldal csak útmutatás). Az elektronikusan feltöltött dolgozatba már nem szabad beleszerkeszteni ezt a feladatkiírást.

Tartalomjegyzék

Ki	Kivonat				
Al	bstract	3			
1.	Bevezetés	4			
2.	Markdown-eszközök	5			
	2.1. A dokumentum lefordítása Linux alatt	5			
	2.2. Alapadatok megadása	5			
3.	A dolgozat formai kivitele	7			
	3.1. A dolgozat kimérete	7			
	3.2. A dolgozat nyelve	7			
	3.3. A dokumentum nyomdatechnikai kivitele	8			
4.	A Markdown-sablon használata	9			
	4.1. Ábrák és táblázatok	9			
	4.2. Felsorolások és listák	10			
	4.3. Képletek	10			
	4.4. Irodalmi hivatkozások	12			
	4.5. A dolgozat szerkezete és a forrásfájlok	14			
5.	Összefoglaló	16			
Kö	öszönetnyilvánítás	17			
Α.	. Függelék	21			
	A.1. Válasz az "Élet, a világmindenség, meg minden" kérdésére	21			

Kivonat

Jelen dokumentum egy diplomamunka / diplomaterv sablon, amely formai keretet ad az Eötvös Lóránd Tudományegyetem Informatikai Karán végző hallgatók által elkészítendő (elsősorban MSc) diplomamunkának. A sablon használata opcionális. Ez a sablon Markdown leírónyelven készült, Pandoc rendszerrel fordítható le TEX Live vagy MiKTEX IATEX disztribúciókkal.

Abstract

This document is a skeleton for MSc theses of students at the Informatics Faculty of Eötvös Lóránd University - Budapest. The usage of this skeleton is optional. The skeleton was implemented in Markdown and can be compiled with Pandoc, using the TEX Live and or the MiKTEX IATEX compiler.

Bevezetés

A bevezető tartalmazza a diplomaterv-kiírás elemzését, történelmi előzményeit, a feladat indokoltságát (a motiváció leírását), az eddigi megoldásokat, és ennek tükrében a hallgató megoldásának összefoglalását.

A bevezető szokás szerint a diplomaterv felépítésével záródik, azaz annak rövid leírásával, hogy melyik fejezet mivel foglalkozik.

Markdown-eszközök

2.1. ábra. A Markdown nyelv logója

2.1. A dokumentum lefordítása Linux alatt

A dokumentum fordításához szükséges a Pandoc és a TFXLive LATFX-disztribúció telepítése:

sudo apt-get install texlive-base pandoc pandoc-citeproc

A diplomatery a make parancssal fordítható le, a konfigurációt a Makefile állomány tartalmazza.

2.2. Alapadatok megadása

A diplomaterv alapadatait (cím, szerző, konzulens, konzulens titulusa) a Makefile fájlban lehet megadni a változók módosításával:

AUTHOR=...
TITLE=...

Az alapértelmezett kimenet a PDF, de különböző kimeneteket is megadhatunk a make parancs céljának változatásával:

make pdf
make html
make mobi

A dolgozat formai kivitele

A dokumentum kialakítása során törekedtünk az ELTE IK MSc szakdolgozati tudnivalóknak való megfelelésre. Az itt található információk egy része is innen került átvételre. Az eredeti dokumentum az alábbi linken érhető el: https://www.inf.elte.hu/content/programtervezo-informatikus-bsc-programozo-matematikus-szakdolgozat-programtervezo-matematikus-dijt.1138?m=192.

3.1. A dolgozat kimérete

Minimálisan elvárható 50, de az optimális kiméret 60–80 oldal (függelékkel együtt). A bírálók és a záróvizsga bizottság sem szereti kifejezetten a túl hosszú dolgozatokat, így a bruttó 90-100 oldalt nem érdemes jelentősen túlszárnyalni. Egyébként függetlenül a dolgozat kiméretétől, ha a dolgozat nem érdekfeszítő, akkor az olvasó már az elején a végét fogja várni. Érdemes zárt, önmagában is érthető művet alkotni.

3.2. A dolgozat nyelve

Mivel Magyarországon a hivatalos nyelv a magyar, ezért alapértelmezésben magyarul kell megírni a dolgozatot. Aki külföldi posztgraduális képzésben akar részt venni, nemzetközi szintű tudományos kutatást szeretne végezni, vagy multinacionális cégnél akar elhelyezkedni, annak célszerű lehet angolul megírnia diplomadolgozatát. Mielőtt a hallgató az angol nyelvű verzió mellett dönt, erősen ajánlott mérlegelni, hogy ez mennyi többletmunkát fog a hallgatónak jelenteni fogalmazás és nyelvhelyesség terén, valamint – nem utolsó sorban – hogy ez mennyi többletmunkát fog jelenteni a konzulens, illetve a bíráló számára. Egy nehezen olvasható, netalán érthetetlen szöveg teher mindenki számára.

3.3. A dokumentum nyomdatechnikai kivitele

A diplomamunkát kemény kötésben kell leadni , 1 példányban. Fedőlapjának színe fekete, aranyszínű feliratokkal. A lap mérete: A4-es méret, színe fehér; betűméret: 12 pont. Sorokra vonatkozó megkötés: sorkizárt igazítás, 1,5-es sortávolság.

Standard margó: - belső: 3,5 cm - külső: 2,5 cm - alsó: 2,5 cm - felső: 2,5 cm

A Markdown-sablon használata

Ebben a fejezetben röviden, implicit módon bemutatjuk a sablon használatának módját, ami azt jelenti, hogy sablon használata ennek a dokumentumnak a forráskódját tanulmányozva válik teljesen világossá. Amennyiben a szoftver-keretrendszer telepítve van, a sablon alkalmazása és a dolgozat szerkesztése Markdownban a sablon segítségével tapasztalataink szerint jóval hatékonyabb, mint egy WYSWYG (What You See is What You Get) típusú szövegszerkesztő esetén (pl. Microsoft Word, OpenOffice).

A IATEX tördelőrendszer használatához képest a Markdown nyelv több megszorítást is tartalmaz, így az elkészített dokumentum általában kevésbé testreszabható. Cserébe viszont a Markdownban készült dokumentumok exportálhatók HTML vagy e-könyv (EPUB) formátumba is.

4.1. Ábrák és táblázatok

A képeket a veszteségmentes PNG, valamint a veszteséges JPEG formátumban érdemes elmenteni.

Az egyes képek mérete általában nem, de sok kép esetén a dokumentum összmérete így már szignifikáns is lehet. A dokumentumban felhasznált képfájlokat a dokumentum forrása mellett érdemes tartani, archiválni, mivel ezek hiányában a dokumentum nem fordul újra. Ha lehet, a vektorgrafikus képeket vektorgrafikus formátumban is érdemes elmenteni az újrafelhasználhatóság (az átszerkeszthetőség) érdekében.

A képek beillesztésére a Markdown eszközök fejezetben mutattunk be példát. Az előző mondatban egyúttal az automatikusan feloldódó ábrahivatkozásra is láthatunk példát.

A táblázatok használatára az alábbi táblázat mutat példát.

4.1. táblázat. Az órajel-generátor chip órajel-kimenetei.

Órajel	Frekvencia	Cél pin
CLKA	$100 \mathrm{\ MHz}$	FPGA CLK0

Órajel	Frekvencia	Cél pin
CLKB	48 MHz	FPGA CLK1
CLKC	$20~\mathrm{MHz}$	Processzor
CLKD	$25~\mathrm{MHz}$	Ethernet chip
CLKE	$72~\mathrm{MHz}$	FPGA CLK2
XBUF	$20~\mathrm{MHz}$	FPGA CLK3

4.2. Felsorolások és listák

Számozatlan felsorolásra mutat példát a jelenlegi bekezdés:

- első bajusz: ide lehetne írni az első elem kifejését,
- második bajusz: ide lehetne írni a második elem kifejését,
- ez meg egy szakáll: ide lehetne írni a harmadik elem kifejését.

Számozott felsorolást is készíthetünk az alábbi módon:

- 1. *első bajusz:* ide lehetne írni az első elem kifejését, és ez a kifejtés így néz ki, ha több sorosra sikeredik,
- 2. második bajusz: ide lehetne írni a második elem kifejését,
- 3. ez meg egy szakáll: ide lehetne írni a harmadik elem kifejését.

A felsorolásokban sorok végén vessző, az utolsó sor végén pedig pont a szokásos írásjel. Ez alól kivételt képezhet, ha az egyes elemek több teljes mondatot tartalmaznak.

Listákban a dolgozat szövegétől elkülönítendő kódrészleteket, programsorokat, pszeudo-kódokat jeleníthetünk meg.

- * *első bajusz: * ide lehetne írni az első elem kifejését, és ez a kifejtés így néz ki,
- * *második bajusz:* ide lehetne írni a második elem kifejését,
- * *ez meg egy szakáll:* ide lehetne írni a harmadik elem kifejését.

A listákban definiálható a használt programozási nyelv (pl. java, latex, bash stb.).

4.3. Képletek

Ha egy formula nem túlságosan hosszú, és nem akarjuk hivatkozni a szövegből, mint például a $e^{i\pi}+1=0$ képlet, szövegközi képletként szokás leírni. Csak, hogy másik példát is lássunk, az $U_i=-d\Phi/dt$ Faraday-törvény a rot $E=-\frac{dB}{dt}$ differenciális alakban adott Maxwell-egyenlet felületre vett integráljából vezethető le. Látható, hogy a LATEX-fordító a sorközöket betartja, így a szöveg szedése esztétikus marad szövegközi képletek használata esetén is.

Képletek esetén az általános konvenció, hogy a kisbetűk skalárt, a kis félkövér betűk (\mathbf{v}) oszlopvektort – és ennek megfelelően \mathbf{v}^T sorvektort – a kapitális félkövér betűk (\mathbf{V}) mátrixot jelölnek. Ha ettől el szeretnénk térni, akkor az alkalmazni kívánt jelölésmódot célszerű külön alfejezetben definiálni. Ennek megfelelően, amennyiben \mathbf{y} jelöli a mérések vektorát, ϑ a paraméterek vektorát és $\hat{\mathbf{y}} = \mathbf{X}\vartheta$ a paraméterekben lineáris modellt, akkor a *Least-Squares} értelemben optimális paraméterbecslő $\hat{\vartheta}_{LS} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$ lesz.

Emellett kiemelt, sorszámozott képleteket is megadhatunk, ennél az equation és a eqnarray környezetek helyett a korszerűbb align környezet alkalmazását javasoljuk (több okból, különféle problémák elkerülése végett, amelyekre most nem térünk ki). Tehát

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u},\tag{4.1}$$

$$\mathbf{y} = \mathbf{C}\mathbf{x},\tag{4.2}$$

ahol \mathbf{x} az állapotvektor, \mathbf{y} a mérések vektora és \mathbf{A} , \mathbf{B} és \mathbf{C} a rendszert leíró paramétermátrixok. Figyeljük meg, hogy a két egyenletben az egyenlőségjelek egymáshoz igazítva jelennek meg, mivel a mindkettőt az & karakter előzi meg a kódban. Lehetőség van számozatlan kiemelt képlet használatára is, például

$$\dot{\mathbf{x}} = \mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u},$$

 $\mathbf{y} = \mathbf{C}\mathbf{x}.$

Mátrixok felírására az $\mathbf{A}\mathbf{x} = \mathbf{b}$ inhomogén lineáris egyenlet részletes kifejtésével mutatunk példát:

$$\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix} \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{pmatrix}. \tag{4.3}$$

A \frac utasítás hatékonyságát egy általános másodfokú tag átviteli függvényén keresztül mutatjuk be, azaz

$$W(s) = \frac{A}{1 + 2T\xi s + s^2 T^2}. (4.4)$$

A matematikai mód minden szimbólumának és képességének a bemutatására természetesen itt nincs lehetőség, de gyors referenciaként hatékonyan használhatók a

következő linkek:

- http://www.artofproblemsolving.com/LaTeX/AoPS_L_GuideSym.php,
- http://www.ctan.org/tex-archive/info/symbols/comprehensive/symbols-a4.pdf,
- ftp://ftp.ams.org/pub/tex/doc/amsmath/short-math-guide.pdf.

Ez pedig itt egy magyarázat, hogy miért érdemes align környezetet használni: http://texblog.net/latex-archive/maths/eqnarray-align-environment/.

4.4. Irodalmi hivatkozások

Az irodalmi hivatkozások alkalmazására javasolt a BiBTEX használata, ezért ez a sablon is ezt támogatja. Ebben az esetben egy külön szöveges adatbázisban definiáljuk a forrásmunkákat, és egy külön stílusfájl határozza meg az irodalomjegyzék kinézetét. Ez, összhangban azzal, hogy külön formátumkonvenció határozza meg a folyóirat, a könyv-, a konferenciacikk stb. hivatkozások kinézetét az irodalomjegyzékben (a sablon használata esetén ezzel nem is kell foglalkoznia a hallgatónak, de az eredményt célszerű ellenőrizni). A felhasznált hivatkozások adatbázisa egy .bib kiterjesztésű szöveges fájl, amelynek szerkezetét az alábbi kódrészlet demonstrálja. A forrásmunkák bevitelekor a sor végi vesszők külön figyelmet igényelnek, mert hiányuk a BiBTEX-fordító hibaüzenetét eredményezi. A forrásmunkákat típus szerinti kulcsszó vezeti be (@book könyv, @inproceedings konferenciakiadványban megjelent cikk, @article folyóiratban megjelent cikk, @techreport valamelyik egyetem gondozásában megjelent műszaki tanulmány, @manual műszaki dokumentáció esetén stb.). Nemcsak a megjelenés stílusa, de a kötelezően megadandó mezők is típusról-típusra változnak. Egy jól használható referencia a http://en.wikipedia.org/wiki/BibTeX oldalon található.

```
@BOOK{Wettl04,
   author = "Ferenc Wettl and Gyula Mayer and Péter Szabó",
   title = "\LaTeX~kézikönyv",
   publisher = "Panem Könyvkiadó",
   year = 2004
}
@ARTICLE{Candy86,
   author = "James C. Candy",
   title = "Decimation for Sigma Delta Modulation",
   journal = "{IEEE} Trans.\ on Communications",
   volume = 34,
   number = 1,
   pages = "72--76",
```

```
month = jan,
 year = 1986,
}
@INPROCEEDINGS{Lee87,
 author = "Wai L. Lee and Charles G. Sodini",
 title = "A Topology for Higher Order Interpolative Coders",
 booktitle = "Proc.\ of the IEEE International Symposium on Circuits and Systems",
 year = 1987,
 vol = 2,
 month = may # "^4--7",
 address = "Philadelphia, PA, USA",
 pages = "459--462"
}
@PHDTHESIS{KissPhD,
 author = "Peter Kiss",
 title = "Adaptive Digital Compensation of Analog Circuit Imperfections for Cascaded I
 school = "Technical University of Timi\c{s}oara, Romania",
 month = apr,
 year = 2000
@MANUAL{Schreier00,
 author = "Richard Schreier",
 title = "The Delta-Sigma Toolbox v5.2",
 organization = "Oregon State University",
 year = 2000,
 month = jan,
 note = "\newline URL: http://www.mathworks.com/matlabcentral/fileexchange/"
@MISC{DipPortal,
    author = "Budapesti {M}űszaki és {G}azdaságtudományi {E}gyetem, {V}illamosmérnöki é
 title = "{D}iplomaterv portál (2011 február 26.)",
 howpublished = "\url{http://diplomaterv.vik.bme.hu/}",
}
```

A stílusfájl egy .sty kiterjesztésű fájl, de ezzel lényegében nem kell foglalkozni, mert vannak beépített stílusok, amelyek jól használhatók. Ez a sablon a BiBTEX-et használja, a hozzá tartozó adatbázisfájl a mybib.bib fájl. Megfigyelhető, hogy az irodalomjegyzéket a dokumentum végére (a \end{document} utasítás elé) beillesztett \bibliography{mybib} utasítással hozhatjuk létre, a stílusát pedig ugyanitt a \bibliographystyle{plain}

utasítással adhatjuk meg. Ebben az esetben a plain előre definiált stílust használjuk (a sablonban is ezt állítottuk be). A plain stíluson kívül természetesen számtalan más előre definiált stílus is létezik. Mivel a .bib adatbázisban ezeket megadtuk, a BiBTEX-fordító is meg tudja különböztetni a szerzőt a címtől és a kiadótól, és ez alapján automatikusan generálódik az irodalomjegyzék a stílusfájl által meghatározott stílusban.

Az egyes forrásmunkákra a szövegből továbbra is a <code>@[...]</code> paranccsal tudunk hivatkozni, így a fenti kódrészlet esetén a hivatkozások rendre <code>[@Wett104]</code>, <code>[@Candy86]</code>, <code>[@Lee87]</code>, <code>[@KissPhD]</code>, <code>[@Schreirer00]</code> és <code>[@DipPortal]</code>. Az irodalomjegyzékben alapértelmezésben csak azok a forrásmunkák jelennek meg, amelyekre található hivatkozás a szövegben, és ez így alapvetően helyes is, hiszen olyan forrásmunkákat nem illik az irodalomjegyzékbe írni, amelyekre nincs hivatkozás.

Mivel a fordítási folyamat során több lépésben oldódnak fel a szimbólumok, ezért gyakran többször (TeXLive és TeXnicCenter esetén 2-3-szor) is le kell fordítani a dokumentumot. Ilyenkor ez első 1-2 fordítás esetleg szimbólum-feloldásra vonatkozó figyelmeztető üzenettel zárul. Ha hibaüzenettel zárul bármelyik fordítás, akkor nincs értelme megismételni, hanem a hibát kell megkeresni. A .bib fájl megváltoztatáskor sokszor nincs hatása a változtatásnak azonnal, mivel nem mindig fut újra a BibTeX fordító. Ezért célszerű a változtatás után azt manuálisan is lefuttatni (TeXnicCenter esetén Build/BibTeX).

Hogy a szövegbe ágyazott hivatkozások kinézetét demonstráljuk, itt most sorban meghivatkozzuk a [6], [2], [4], [3] és az [5] forrásmunkát, valamint az [1] weboldalt. teszt'

4.5. A dolgozat szerkezete és a forrásfájlok

A diplomatervsablon (a kari irányelvek szerint) az alábbi fő fejezetekből áll:

- tájékoztató a szakdolgozat/diplomaterv szerkezetéről, ami a végső dolgozatból törlendő, valamint a feladatkiírás (guideline.md), a dolgozat nyomtatott verzójában ennek a helyére kerül a tanszék által kiadott, a tanszékvezető által aláírt feladatkiírás, a dolgozat elektronikus verziójába pedig a feladatkiírás egyáltalán ne kerüljön bele, azt külön tölti fel a tanszék a diplomaterv-honlapra,
- címoldal (generált),
- tartalomjegyzék (generált),
- a diplomatervező nyilatkozata az önálló munkáról (generált),
- 1-2 oldalas tartalmi összefoglaló magyarul és angolul, illetve elkészíthető még további nyelveken is (abstract.md),
- fejezetek: bevezetés (feladat értelmezése, a tervezés célja, a feladat indokoltsága, a diplomaterv felépítésének rövid összefoglalása, chapter1.md), a feladatkiírás pontosítása és részletes elemzése, előzmények (irodalomkutatás, hasonló alkotások), az

ezekből levonható következtetések, a tervezés részletes leírása, a döntési lehetőségek értékelése és a választott megoldások indoklása, a megtervezett műszaki alkotás értékelése, kritikai elemzése, továbbfejlesztési lehetőségek (chapter{2..n}.md),

- összefoglalás (summary.md),
- esetleges köszönetnyilvánítások (acknowledgement.md),
- részletes és pontos irodalomjegyzék (generált),
- függelékek (appendices.md).

Összefoglaló

A diplomaterv összefoglaló fejezete.

Köszönetnyilvánítás

A köszönetnyilvánítás nem kötelező, akár törölhető is. Ha a szerző szükségét érzi, itt lehet köszönetet nyilvánítani azoknak, akik hozzájárultak munkájukkal ahhoz, hogy a hallgató a szakdolgozatban vagy diplomamunkában leírt feladatokat sikeresen elvégezze. A konzulensnek való köszönetnyilvánítás sem kötelező, a konzulensnek hivatalosan is dolga, hogy a hallgatót konzultálja.

Táblázatok jegyzéke

4.1.	Az órajel-generátor chip	órajel-kimenetei.		ϵ
------	--------------------------	-------------------	--	------------

Ábrák jegyzéke

2.1.	A Markdown nyelv logója		
------	-------------------------	--	--

Irodalomjegyzék

- [1] Villamosmérnöki és Informatikai Kar Budapesti Műszaki és Gazdaságtudományi Egyetem. Diplomaterv portál (2011 február 26.). http://diplomaterv.vik.bme.hu/.
- [2] James C. Candy. Decimation for sigma delta modulation. *IEEE Trans. on Communications*, 34(1):72–76, January 1986.
- [3] Peter Kiss. Adaptive Digital Compensation of Analog Circuit Imperfections for Cascaded Delta-Sigma Analog-to-Digital Converters. PhD thesis, Technical University of Timişoara, Romania, April 2000.
- [4] Wai L. Lee and Charles G. Sodini. A topology for higher order interpolative coders. In *Proc. of the IEEE International Symposium on Circuits and Systems*, pages 459–462, Philadelphia, PA, USA, May 4–7 1987.
- [5] Richard Schreier. The Delta-Sigma Toolbox v5.2. Oregon State University, January 2000.
 URL: http://www.mathworks.com/matlabcentral/fileexchange/.
- [6] Ferenc Wettl, Gyula Mayer, and Péter Szabó. La TeX kézikönyv. Panem Könyvkiadó, 2004.

A. függelék

Függelék

A.1. Válasz az "Élet, a világmindenség, meg minden" kérdésére

A Pitagorasz-tételből levezetve

$$c^2 = a^2 + b^2 = 42.$$

A Faraday-indukciós törvényből levezetve

$$\operatorname{rot} E = -\frac{dB}{dt} \longrightarrow U_i = \oint_{\mathbf{L}} \mathbf{Edl} = -\frac{d}{dt} \int_{A} \mathbf{Bda} = 42.$$