CAPITAL ONE BREACH (2019)

COSC 4362 Group 5

Sandhya Malla

PROJECT OBJECTIVES

ANALYZE THE CAPITAL ONE DATA BREACH.

UNDERSTAND
VULNERABILITIES IN
CONFIDENTIALITY,
INTEGRITY, AND
AVAILABILITY (CIA)

PROPOSE SECURITY
MEASURES TO MITIGATE
FUTURE RISKS.

DEVELOP AN
IMPLEMENTATION AND
MONITORING PLAN.

BREACH OVERVIEW AND TIMELINE

Occurred in 2019.

Victim: Capital One, one of the largest financial institutions in the U.S.

Attacker: Paige A. Thompson exploited a server-side request forgery (SSRF) vulnerability.

Data Exposed: Over 100 million customer private data like SSNs, credit scores, and financial details...

BREACH TIMELINE

Mar. 2019

SSRF vulnerability exploited.

19 July 2019

Breach disclosed.

100M+ records exfiltrated.

Apr. 2019

Thompson arrested.

30 July 2019

IMPACT ON CIA TRIAD

Confidentiality: Exposure of sensitive customer data (140K SSNs, financial details).

Integrity: No evidence of data tampering, but trust in systems weakened.

Availability: Services remained operational, but resources were diverted to damage control.

KEY FINDINGS AND SECURITY VIOLATIONS

Root Causes:

- Misconfigured Web Application Firewall (WAF).
- Lack of proactive vulnerability scanning and patching.
- Over reliance on default cloud settings.

Security Violations:

- Absence of Zero Trust Architecture.
- Weak access controls.

PROPOSED SECURITY MEASURES

Enhanced
Encryption: AES-256
for data at rest, RSA2048 for data in
transit.

Improved
Authentication:
Multi-Factor
Authentication (MFA).

Access Controls: Role-Based Access Control (RBAC).

Database Security: Data masking, regular backups. Network Protection: Firewalls, IDS/IPS, and secure communication protocols (TLS 1.3).

IMPLEMENTATION PLAN

Top Priorities:

Encryption, MFA, RBAC.

Deployment Steps:

Secure sensitive data with AES-256 and RSA-2048.

Roll out MFA starting with highrisk users.

Configure RBAC based on roles and privileges.

Timeline:

Weeks 1-2: Encryption.

Weeks 3–4: MFA deployment.

Weeks 5–6: RBAC setup and audits.

MONITORING AND WAINTENANCE

Monitoring Tools:

- Security Information and Event Management (SIEM).
- Regular log reviews and anomaly detection.

Incident Reporting:

- Real-time alerts.
- Incident response protocols (categorize, escalate, document, review).

Continuous Improvement:

• Regular vulnerability scans and penetration tests.

COMPLIANCE AND TRAINING

Compliance:

Meet GLBA, PCI DSS, GDPR standards.

Vendor security audits.

Training:

Phishing awareness workshops.

Regular updates on security protocols.

Promote a security-conscious culture.

CONCLUSION AND LESSONS LEARNED

Key Takeaways:

- Misconfigurations can lead to significant breaches.
- $\bullet Stronger\ encryption,\ MFA,\ and\ RBAC\ are\ critical\ to\ mitigating\ risks.$
- •Continuous monitoring and employee training are vital.

Future Focus: Proactive measures and adaptability in cybersecurity practices.

