2020 秋冬学期复变函数回忆卷 (非数学系)

禁止用于商业用途,请勿去除水印

2020-11-19

1. 计算 $(1+i)^{2020}$

2. 在复平面上标出 $i, \, \frac{1}{\sqrt{2}}(1+i)$ 及和,并证明 $\tan \frac{3\pi}{8} = 1 + \sqrt{2}$

 $\mathbf{3.}z=x+iy,f(z)=x^2+iy^2,$ 问 f(z) 在何处可导? 在何处解析? 在可导处写出它的导数。

4. $\int z^3 + (Rez)^3 dz$, 路径从 0 到 1+i

 $5.\oint_{|z|=1} \frac{z}{1-e^{7z}} dz$

6. 将 $f(z) = \frac{1}{z(z-1)^2}$ 分别在 0 < |z| < 1 和 |z-1| > 1 处展开成洛朗级数

7. $\oint_{|z|=1} \frac{1}{z^2 \ln(z+e)} dz$

 $8. \int_0^\infty \frac{x \sin x + 1}{x^2 + 1} dz$

9. 求 $f(z) = \frac{\cos \pi z}{z^2 \sin \pi z}$ 在各个奇点处的留数

10. 求保角变换,将复平面上除 x 负半轴及原点 (即 $(-\infty,0]$),变换为单位圆。 $w(1)=0,\lim_{z\to 0}w(z)=1$

11. 求保角变换,将圆心在原点处半径为 2 的圆映射到自身。w(2) = 2, w(1) = 0

- 12. 求 $f(t) = \int_0^t \tau \sin \tau d\tau + t^2 u(t-1)$ 的 Laplace 变换
- 13. 求 $F(s) = \ln(1 + \frac{1}{s})$ 的 Laplace 逆变换
- 14.f(z) 在 $|z| \le 1$ 上解析,且 |z| = 1 时 $|f(z)| \le 1$
 - (1) 证明: $|f'(0)| \le 1$
 - (2) 证明: $|f'(z)| \leq \frac{1}{1-|z|^2}$. (提示: 利用 f(z) 与 $g(\zeta) = \frac{\zeta+z}{1+\overline{z}\zeta}$ 的复合函数)