

Vytvoření výukové aplikace řešící blokové diagramy bezporuchovosti (RBD)

Ročníkový projekt

Studijní program: B2646 – Informační technologie Studijní obor: 1802R007 – Informační technologie

Autor práce: Jan Špecián

Vedoucí práce: Ing. Josef Chudoba, Ph.D.

Tento list nahraďte originálem zadání.

Prohlášení

Byl jsem seznámen s tím, že na můj ročníkový projekt se plně vztahuje zákon č. 121/2000 Sb., o právu autorském, zejména § 60 – školní dílo.

Beru na vědomí, že Technická univerzita v Liberci (TUL) nezasahuje do mých autorských práv užitím mého ročníkového projektu pro vnitřní potřebu TUL.

Užiji-li ročníkový projekt nebo poskytnu-li licenci k jeho využití, jsem si vědom povinnosti informovat o této skutečnosti TUL; v tomto případě má TUL právo ode mne požadovat úhradu nákladů, které vynaložila na vytvoření díla, až do jejich skutečné výše.

Ročníkový projekt jsem vypracoval samostatně s použitím uvedené literatury a na základě konzultací s vedoucím mého ročníkového projektu a konzultantem.

Současně čestně prohlašuji, že texty tištěné verze práce a elektronické verze práce vložené do IS STAG se shodují.

6. 5. 2019 Jan Špecián

Vytvoření výukové aplikace řešící blokové diagramy bezporuchovosti (RBD)

Abstrakt

Práce je zaměřena na tvorbu desktopové aplikace pro tvorbu RBD diagramů a spojených výpočtů a vyzualizací.

Klíčová slova: RBD

Poděkování

Tímto bych rád poděkoval Ing. Josef Chudobovi, Ph.D. za věnovaný čas v konzultacích a odborné vedení plné trpělivosti a s tím spojené nabyté zkušenosti.

Obsah

	Seznam zkratek	8
1	Přehled existujících softwarových nástrojů	10
2	Teoretický úvod 2.1 Distribuční funkce 2.2 Exponenciální rozdělění 2.3 Spolehlivost a střední doba mezi poruchami 2.4 Analýza blokového diagramu bezporuchovosti (RBD) 2.5 Základní zapojení bloků	11 11 11
3	Návrh desktopové aplikce .NET3.1 Objektová struktura	
4	Průběh vývoje 4.1 Rozdělení projektu na subprojekty	
5	Testování	15
6	Návod k použití	16
7	Závěr	17

Seznam obrázků

2.1	Příklad sériového zapojení komponent	12
2.2	Příklad paralelního zapojení kopmonent	12

Seznam zkratek

JSON JavaScript Object Notation LINQ Language Integrated Query

Úvod

U každého systému je velmi důležitá jeho funkční spolehlivost během doby jeho životnosti. Každý systém, pokud má existovat a fungovat co nejdéle a přitom bez závad, nebo alespoň s jejich co nejmenším počtem, musí splňovat jednu zásadní vlastnost, a tou je spolehlivost. Požadavek na dostatečně velkou a často až maximální spolehlivost námi užívaných systémů má tudíž zcela zásadní význam z hlediska bezpečnostního, ekonomického i ekologického.

Cílem ročníkového projektu je navrhnout a implementovat desktopovou aplikaci pro tvorbu a jednoduchou vizualizaci RBD diagramů a výpočet parametrů spolehlivosti. Zobrazit střední dobu do poruchy pro každý blok a poskytnout možnost vizualizace distribuční funkce pro každý blok v kombinace sérriového a paralelního zapojení bloků.

1 Přehled existujících softwarových nástrojů

2 Teoretický úvod

2.1 Distribuční funkce

2.2 Exponenciální rozdělění

2.3 Spolehlivost a střední doba mezi poruchami

Střední doba mezi poruchami

Základní veličinou pro měření spolehlivosti systému je střední doba mezi poruchami (MTBF, Mean Time Between Failure). Obvykle je udávána v hodinách. Čím vyšší je hodnota MTBF, tím vyšší je spolehlivost produktu.[3] Je statistická veličina používaná ke kvantifikaci spolehlivosti součásti, či celého výrobku. Určuje se pro výrobek nebo zařízení, které se opravuje. [3]

Spolehlivost

Spolehlivost je schopnost systému nebo součásti vykonávat požadované funkce za daných podmínek po určené časové období [4]

$$Spolehlivost = e^{-(\frac{Time}{MTBF})}$$

2.4 Analýza blokového diagramu bezporuchovosti (RBD)

Analýza blokového diagramu bezporuchovosti (RBD - Reliability Block Diagram) je metoda analýzy systému. Diagram RBD je grafická reprezentace logické struktury systému v podobě podsystémů a/nebo součástí. To umožňuje, aby byly cesty úspěchu (funkceschopného stavu) reprezentovány tak, jak jsou bloky (podsystémy/součásti) logicky propojeny.[1]

Blokové diagramy jsou mezi prvními úkoly dokončenými během etapy vymezení produktu. Mají být vypracovány jako součást vývoje počáteční koncepce. Práce na nich mají být zahájeny, jakmile existuje vymezení programu, a mají být dokončeny jako součást analýzy požadavků a mají se neustále rozšiřovat do větších úrovní

podrobnosti, jakmile budou k dispozici data, aby bylo možné činit rozhodnutí a provádět optimalizace nákladů a přínosů.[2]

2.5 Základní zapojení bloků

Sériové zapojení

Při poruše jedné komponenty dojde k poruše celého systému. Systém je v bezporuchovém stavu, pokud všechny jeho komponenty nemají poruchu.[5]

Obrázek 2.1: Příklad sériového zapojení komponent

Paralelní zapojení

K poruše celého systemu dochází pokud jsou v poruše všechny jeho komponenty. Bezporuchový stav trvá, dokud je alespoň jedna komponenta v bezporuchovém stavu. Z hlediska odhadu pravděpodobnosti představuje paralelní systém nejlepší variantu pro odhad pravděpodobnosti bezporuchového stavu.[5]

Obrázek 2.2: Příklad paralelního zapojení kopmonent

- 3 Návrh desktopové aplikce .NET
- 3.1 Objektová struktura
- 3.2 Pomocné třídy

- 4 Průběh vývoje
- 4.1 Rozdělení projektu na subprojekty
- 4.2

5 Testování

Pro testování funkčních bloků byla použita výchozí knihovna pro Unit testování v prostředí .NET pro desktopové aplikace MSTest. Za pomoci testování jsem došel ke správným výsledkům za pomoci připravené konfigurace a tím jsem ušetřil práci manuálním testováním. Další nespornou výhodou testování je odhalení chyb při změně tím, že testovací metody odhalí neočekávané výledky.

Testované byly třídy pro výpočet distribuční funkce.

6 Návod k použití

Pro spuštění aplikace pro vývoj je potřeba mít nainstalované Visual Studio 2017 a novější. V přiloženém CD ve složce SpecianPRJ spustte soubor SpecianPRJ.sln. Pro standartní spuštění aplikace stačí otevřít soubor s příponou .exe.

Pro obě varianty spuštní je nutným předpokladem nainstalovaný plný .NET Framework 4.6.1 a novější.

Založení nového diagramu

Uložení a otevření nového diagramu

Přidání prvku

Výpočty

7 Závěr

Literatura

- [1] 28.6.2007, Prof. Ing. Václav Legát, DrSc., Zdroj: Verlag Dashöfer
- [2]
- $[3] \ http://gabben.wbs.cz/mtbf1.pdf$
- [4] IEEE 90
- [5]