

Collocations

HAP/LAP. Corpus Linguistics.

Frequency lists and beyond

- Key insight: frequency lists are very helpful.
- But: top 10 frequent words in any corpora are the same.
- Exploit frequency data to get deeper insights.
 - Collocations.

Collocations

- What are collocations?
 - systematic co-occurrence of words in use.
 - words which are likely to occur in the context of another.
- Usually within a window of words.

MLWE

- Collocation is a type of Multi-Word Expression (MLWE)
- What is a MLWE?
 - Lexical unit larger than a word
 - Include the range of phenomena
 - Many terms (with slightly different semantics)
 - chunk, cliché, collocation, extended lexical unit, fixed expression, formulaic sequence, idiom, idiomatic expression, lexical/lexicalized phrase, multi-word unit, phraseme, phraseologism, phraseological unit, phrasal lexical item, phrasal lexeme, prefabricated chunk, prefab

MLWE

- Many types of MLWEs
 - Compounds: "disk drive"
 - Phrasal verbs: "make up"
 - Other phrases: "bacon and eggs"
- May be several words long
 - "international best practice"
- May be discontinuous:
 - "make [something] up"

MLWE: Compositionality

- MLWEs are often not compositional
 - An NLP expression is *compositional* if the meaning of the expression can be predicted from the meaning of the parts.
- Degrees of compositionality:
 - "fish and chips" (collocation): fully compositional, non-idiomatic.
 - "strong tea" (collocation) but strong used in a slightly different manner.
 - "black market": one or several words are idiomatic.
 - "red herring", "kick the bucket" (idioms): fully opaque, non-compositional.

MIWEs: more criteria

- Non-substitutability: We cannot substitute other words for the components of a MLWE, even if they have the same meaning in the context.
 - "Fast foot" ⇒ "Quick food" ?
 - "White wine" ⇒ "Yellow wine" ?
- Non-modifiability: many MLWEs can not be freely modified with additional lexical material or through grammatical transformations.
 - The cat has got your tongue" ⇒
 - "The large, furry cat has your tongue" or
 - "The cats have your tongues"

MLWEs and terminology

- Overlap between MLWEs and notions like
 - term
 - technical term
 - terminological term
- Usually, used when collocations are extracted from technical domains
 - terminology extraction

MLWEs: applications

- Statistical NLP (such as SMT)
 - word translates differently according to MLWE it occurs in
- Information Retrieval (IR)
 - index only "interesting" phrases
 - language models
- Lexicographers
 - frequent ways a word is used.
 - multiword detection (and inclusion in dictionaries)

- Simple case: how to identify **contiguous**, **two words collocations**.
- First idea: find the most common two word sequences in text (bigrams)

$C(w^1, w^2)$	w^1	W^2
80,871	of	the
58,841	in	the
26,430	to	the
21,842	on	the

- The table (taken from Manning and Shütze, 1999) shows bigram frequency counts.
- Do not capture the collocations present in the text.
- Frequent bigrams represent common syntactic constructions.
- Many function words: grammatical words which always occur in sentences.

Obtaining bigrams (bigrams.py)

Obtain bigrams from gutenberg corpus. Create a program to output bigrams:

- First line is total counts:
 N_bigrams TAB N_tokens
- Then, one line per bigram:
 wordA TAB wordB TAB freq_big TAB freq_A TAB freq_B

Example:

2447	7758	2543994		
,	and	41331	192338	78770
of	the	18911	70040	125730
in	the	9793	31874	125730
;	and	7589	27837	78770
and	the	6432	78770	125730

- Problem: Frequent bigrams give almost no information
- Workarounds:
 - Take into account individual word frequencies. Measure association by chance.
 - 2. Filter collocations according to external factor.
 - Use POS tags to get, for instance, adjective noun, noun noun, etc.

Collocations: beyond frequencies

- There are many techniques to overcome the limitations of frequency.
- Hypothesis testing: whether two words occur more frequently than by chance
 - t test
 - chi square
 - likelihood ratios
- Mutual information (pointwise mutual information, pmi)
 - information theoretically motivated.
 - measure of the variable's mutual dependence.
- Dice coefficient

Contingency table

	V = v	$V \neq v$
U = u	O_{11}	O ₁₂
U ≠ u	O_{21}	O_{22}

- Count how many times the words u and v appear together,
- and also how many times each word occur by its own.
- For instance, for the words "box" and "black"

	V = box	$V \neq box$
U = black	123	13, 168
	$black\ box$	e.g. black house
$U \neq black$	1,810	4, 951, 883
	e.g white box	e.g. white house

• We can derive many association measures using this matrix.

Contingency table: marginal frequencies

	V = box	$V \neq box$	
U = black	O ₁₁	O ₁₂	f_A
$U \neq black$	O ₂₁	O ₂₂	$f_{\neq A}$
	f _B	$f_{\neq B}$	N

- N = number of words in the corpus.
- Observed frequencies:

•
$$f_A = O_{11} + O_{12}$$
 $f_{\neq A} = O_{21} + O_{22}$

•
$$f_B = O_{11} + O_{21}$$
 $f_{\neq B} = O_{12} + O_{22}$

Expected frequencies:

•
$$E_{11} = \frac{f_A f_B}{N}$$
 $E_{12} = \frac{f_A f_{\neq B}}{N}$
• $E_{21} = \frac{f_{\neq A} f_B}{N}$ $E_{22} = \frac{f_{\neq A} f_{\neq B}}{N}$

•
$$E_{21} = \frac{f_{\neq A}f_B}{N}$$
 $E_{22} = \frac{f_{\neq A}f_{\neq B}}{N}$

Association measures

Student t test $\frac{O_{11}-E_{11}}{\sqrt{O_{11}}}$

chi square $\frac{N(O_{11}-E_{11})^2}{E_{11}E_{22}}$ $\frac{N(f_{AB}-\frac{f_Af_B}{N})^2}{f_Af_Bf_{\neq A}f_{\neq B}}$

log likelihood $2\sum_{ij} O_{ij} \log \frac{O_{ij}}{E_{ij}}$ omit $O_{ij}=0$ from formula

pmi $\log \frac{p(A,B)}{p(A)p(B)} = \log \frac{O_{11}}{E_{11}} = \log(N \frac{f_{AB}}{f_A f_B})$

Dice $\frac{2O_{11}}{f_A + f_B}$ $= \frac{2f_{AB}}{f_A + f_B}$

Jaccard $\frac{O_{11}}{O_{11} + O_{12} + O_{21}}$

Using bigram file,calculate *pmi* association measures. Discard bigrams whose frequency **is below 3**.

Additional issues

- Normalization: case insentitive, etc.
- Filter out non interesting words:
 - Named Entities, numbers, etc.

Using trigrams

• PMI for trigrams (as Perl NSP package)

$$pmi(w_1, w_2, w_3) = 2 \log N_t + \log O_{111} - \log O_{1pp} - \log O_{p1p} - \log O_{pp1}$$

where

- N_t : total number of trigrams.
- O_{111} : (w_1, w_2, w_3) trigram count.
- O_{1pp} : number of trigrams starting with w_1 .
- O_{p1p} : number of trigrams starting with w_2 .
- O_{pp1} : number of trigrams starting with w_3 .

Collocations: filter by POS

Tag Pattern	Example
A N	linear function
NN	regression coefficients
AAN	Gaussian random variable
ANN	cumulative distribution function
N A N	mean squared error
NNN	class probability function
NPN	degrees of freedom

• (Justeson and Katz, 1995): pass candidate phrases through a POS filter that are likely to be phrases. See patterns above.

Collocations: filter by POS

$C(w^1, w^2)$	w^1	w^2	Tag Pattern
11487	New	York	A N
7261	United	States	A N
5412	Los	Angeles	NN
3301	last	year	A N
3191	Saudi	Arabia	NN
2699	last	week	A N
2514	vice	president	A N
2378	Persian	Gulf	A N
2161	San	Francisco	NN

- The table shows the most highly ranked phrases after applying the filter.
- Surprisingly good results: only two are compositional ("last year", "last week")

Collocations: filter by POS

Exercise (bigrams_pos.py)

Obtain most frequent $\operatorname{Adj}\ \operatorname{Noun}\ \operatorname{and}\ \operatorname{Noun}\ \operatorname{bigrams}$ from gutenberg corpus.

