

Fundação Oswaldo Cruz Escola Nacional de Saúde Pública Programa de Pós-graduação em Epidemiologia em Saúde Pública Doutorado Acadêmico em Epidemiologia em Saúde Pública

Análise de agrupamentos

Elizabeth Leite Barbosa Isiyara Taverna Pimenta

DEFINIÇÃO

Grupos de técnicas multivariadas cuja finalidade principal é agregar objetos/indivíduos com base nas características que eles possuem. A ideia é maximizar a homogeneidade de objetos dentro dos grupos e a heterogeneidade entre os grupos.

Problema de pesquisa

Selecionar objetivos:
Descrição taxonômica
Simplificação de dados
Revelação de relações
Selecionar variáveis de agrupamentos

Por quê deve existir a estrutura? Quais tipos de medidas que devem ser usadas para caracterizar os objetos?

Descrição taxonômica -> fins exploratóriosclassificação de objetos com base empírica.

Tipologia proposta (classificação com base teórica) pode ser comparada com aquela obtida pela análise de agrupamentos -> fins confirmatórios

FIGURA 8-4 Diagrama de perfil.

Detecção bi e multivariada ou Medidas de similaridade

D² de Mahalanobis: mede a distância de cada observação em um espaço multidimensional a partir do centro médio de todas as observações. Valores elevados indicam observações afastadas.

Distância euclidiana

Distância de city-block

Distância de Mahalanobis

Diferentes escalas ou magnitudes entre as variáveis

Cenário 1: Medidas de distância baseadas em probabilidade de compra e minutos de comercial assistido

	Distância et	uclidiana simples	Distância euclidiana ao quadrado ou absoluta		Distância city-block	
Par de objetos	Valor	Ordem	Valor	Ordem	Valor	Ordem
A-B	5,025	3	25,25	3	5,5	3
A-C	3,162	2	10,00	2	4,0	2
B-C	2,062	1	4,25	1	2,5	1

Cenário 2: Medidas de distância baseadas em probabilidade de compra e segundos de comercial assistido

	Distância eu	ıclidiana simples	Distância euclidiana ao quadrado ou absoluta		Distância city-block	
Par de objetos	Valor	Ordem	Valor	Ordem	Valor	Ordem
A-B	30,41	2	925	2	35	3
A-C	60,07	3	3,609	3	63	2
B-C	30,06	1	904	1	32	1

Cenário 3: Medidas de distância baseadas em valores padronizados de probabilidade de compra e minutos ou segundos de comercial assistido

	Valore	s padronizados		ia euclidiana mples	Distância euclidiana ao quadrado ou absoluta		Distância city block	
Par de objetos	Probabilidade de compra	Minutos/segundos de comercial assistido	Valor	Ordem	Valor	Ordem	Valor	Ordem
A-B	-1,06	-1,0	2,22	2	4,95	2	2,99	2
A-C	0,93	0,0	2,33	3	5,42	3	3,19	3
B-C	0,13	1,0	1,28	1	1,63	1	1,79	1

Suposições

A amostra é representativa da população? A multicolinearidade é substancial o suficiente para afetar resultados? As exigências de normalidade, linearidade e homocedasticidade, que eram tão importantes em outras técnicas, realmente têm pouco peso na análise de agrupamentos.

Multicolinearidade atua como um processo de ponderação não visível para o observador, mas que afeta a análise.

- Reduzir as variáveis a números iguais em cada conjunto
- Usar uma das medidas de distância, como a de Mahalanobis, que compensa essa correlação.

ESTÁGIO 4 Seleção de um algoritmo de agrupamento É hierárquico, não-hierárquico ou uma combinação dos dois métodos usados? Métodos hierárquicos Métodos não-hierárquicos Combinação Métodos de designação disponíveis: Métodos de ligação disponíveis: Usar um método hierárquic Ligação simples Referência següencial especificar pontos semente Referência paralela Ligação completa agrupamento para um mét não-hierárquico Ligação média Otimização Método de Ward Seleção de pontos sementes Método centróide duantos agrupamentos são formados? Examinar aumentos no coeficiente de aglomeração Examinar dendrograma e o diagrama vertical Considerações conceituais Reespecificação da análise de agrupamentos Alguma observação foi eliminada como: Sim -Atípica? Membro de um agrupamento pequeno? Não

TABELA 8-2 Processo de agrupamento hierárquico aglomerativo

	PROCESSO DE A	GLOMERAÇÃO	SOLUÇÃO DE AGRUPAMENTO					
Passo	Distância mínima entre observações não-agrupadasª	Par de observações	Pertinência a agrupamento	Número de agrupamentos	Medida de similaridade ge ral (distância média dentro do agrupamento)			
	Solução inicial		(A) (B) (C) (D) (E) (F) (G)	7	0			
1	1,414	E-F	(A) (B) (C) (D) (E-F) (G)	6	1,414			
2	2,000	E-G	(A) (B) (C) (D) (E-F-G)	5	2,192			
3	2,000	C-D	(A) (B) (C-D) (E-F-G)	4	2,144			
4	2,000	B-C	(A) (B-C-D) (E-F-G)	3	2,234			
5	2,236	B-E	(A) (B-C-D-E-F-G)	2	2,896			
6	3,162	A-B	(A-B-C-D-E-F-G)	1 7 5	3,420			

^aDistância euclidiana entre observações.

FIGURA 8-2 Descrições gráficas do processo de agrupamento hierárquico.

- Especificar sementes de agrupamento
- Designação:
 - Sequencial-> começa pela seleção de uma semente de agrupamento e inclui todos os objetos dentro de uma distância pré-especificada. Depois passa para a segunda semente.
 - Paralela->considera todas as sementes simultâneamente
 - Otimização-> permite a redesignação de observações.

Estágio 4

REGRAS DE PARADA

- Medidas de mudanças de heterogeneidade
- Variações percentuais de heterogeneidade
 -> coeficiente de aglomeração
- Medidas de variação de variância -> raiz do desvio padrão quadrático médio (RMSSTD)
 -> Grandes aumentos na RMSSTD sugerem a união de dois agrupamentos bastante distintos
- Medidas estatísticas de variação de heterogeneidade
- Medidas diretas de heterogeneidade

Empregar diversas regras de parada e procurar por uma solução que seja consenso.

Estágio 5

Interpretação dos agrupamentos

Examinar centróides de agrupamento Nomear agrupamentos com base nas variáveis de agrupamento O estágio de interpretação envolve o exame de cada agrupamento em termos da variável estatística de agrupamento para nomear ou designar um rótulo que descreva precisamente a natureza dos agregados.

Estágio 6

Validação e caracterização dos agrupamentos

Validação com variáveis de resultado selecionadas

Caracterização com variáveis descritivas adicionais Tentativas do pesquisador para garantir que a solução de agrupamentos seja representativa da população geral, e assim seja generalizável para outros objetos e estável com o passar do tempo.

ANÁLISE DE AGRUPAMENTOS NO R

Peter S. Fader & Leonard M. Lodish

A Cross-Category Analysis of Category Structure and Promotional Activity for Grocery Products

- → Objeto: 331 categorias de produtos de mercearia
- → Variáveis promocionais

FEAT: porcentagem do volume vendido do produto durante as semanas em que a marca foi anunciada no panfleto da loja ou no jornal local

DISP: porcentagem do volume vendido do produto durante as semanas em que a marca comprada recebeu exibição (suporte final) do varejista

PCUT: porcentagem do volume vendido do produto com uma redução temporária de preço

→ Variáveis promocionais

MCOUP: porcentagem do volume vendido do produto com cupom promocional do fabricante

SCOUP: porcentagem do volume vendido do produto com cupom promocional da loja varejista

Objetivo: analisar se é possível agrupar as categorias de produtos em políticas promocionais diferentes

Passo a passo:

- 1. Análise das variáveis e dos objetos a serem agrupados
- 2. Seleção da medida de similaridade
- 3. Seleção do algoritmo de agrupamento
- 4. Definição do número de agrupamentos
- 5. Interpretação dos agrupamentos

1. Análise das variáveis e dos objetos a serem agrupados

	FEAT ‡	DISP ‡	PCUT ‡	SCOUP ‡	MCOUP ‡
BEER	1.44902441	3.41156077	2.09969557	0.6229513	-1.02344041
WINE	0.77624847	2.57488280	-0.44938134	-0.6908370	-1.02344041
RESH_BRE	0.50713809	-0.49293641	0.48975226	0.6229513	-0.91482367
CUPCAKES	-0.56930341	0.34374156	-0.18105745	0.6229513	-0.69759019
IUFF/BAGE	1.31446922	1.04097320	1.16056197	1.9367396	-0.91482367
PIES/CAKE	-0.70385860	-0.49293641	-0.58354328	-0.6908370	-0.80620693
PASTRY	-0.70385860	-0.49293641	-0.44938134	-0.6908370	-0.69759019
NACK_PAS	-0.43474822	0.34374156	-0.18105745	-0.6908370	-0.69759019
DWCH_RO	1.04535884	-0.21404376	0.62391420	0.6229513	-1.02344041

Padronizar as variáveis

1. Análise das variáveis e dos objetos a serem agrupados

Há outliers?

Distância de Mahalanobis:

$$d_{ij} = \sqrt{(X_i - X_j)'.S^{-1}.(X_i - X_j)}$$

X_i = vetor de atributos do objeto i
 X_j = vetor de atributos do objeto j
 S = matriz de covariâncias

CANNED_HA 119.3003744		DRY_SLD_M 24.7555290		DISP_DIAP 22.6813983
WINE 21.0138776	BCN/MT_ST 21.0063215		PIE_FILLI 17.4499023	

2. Seleção da medida de similaridade

Distância euclideana

	BEER	WINE	FRESH_BRE	CUPCAKES
BEER	0.00	3.06	4.33	4.34
WINE	3.06	0.00	3.48	2.95
FRESH_BRE	4.33	3.48	0.00	1.53
CUPCAKES	4.34	2.95	1.53	0.00

3. Seleção do algoritmo de agrupamento (método hierárquico)

Qual o melhor algoritmo?

Comparar os resultados usando a correlação cofenética - mensura quão bem o agrupamento reflete os dados

Compara as distâncias
efetivamente observadas
entre os objetos e as
distâncias previstas a partir
do processo de grupamento.
Espera-se observar
correlações altas

3. Seleção do algoritmo de agrupamento (método hierárquico)

$$cor = 0,53$$

Medida de distância entre dois clusters é a soma das distâncias ao quadrado entre eles - agrupa clusters cuja soma das distâncias ao quadrado seja a menor possível.

Método da ligação média

Considera a distância média de todos os objetos de um cluster com todos os objetos de outro cluster.

4. Definição do número de agrupamentos

4. Definição do número de agrupamentos

Alternativa: NbClust

4. Interpretação dos agrupamentos

Obtenção de valores centróides

valor médio dos objetos contidos no agrupamento em cada variável

```
[,1] [,2] [,3] [,4]
FEAT 22.3 5.9 8.0 30.3
DISP 14.3 6.4 6.7 24.3
PCUT 24.7 9.2 9.3 28.7
SCOUP 1.4 0.4 0.3 4.7
MCOUP 6.5 10.6 49.0 5.0
```

Padrões alimentares de idosos no Brasil: Pesquisa Nacional de Saúde, 2013

Dietary patterns of the elderly in Brazil: National Heath Survey, 2013

Ingrid Freitas da Silva Pereira (https://orcid.org/0000-0001-6863-4227) ¹ Diôgo Vale (https://orcid.org/0000-0003-2636-4956) ¹ Mariana Silva Bezerra (https://orcid.org/0000-0002-5095-5804) ¹ Kenio Costa de Lima (https://orcid.org/0000-0002-5668-4398) ² Angelo Giuseppe Roncalli (https://orcid.org/0000-0001-5311-697X) ² Clélia de Oliveira Lyra (https://orcid.org/0000-0002-1474-3812) ³