Block I

Martin Azpillaga

1. nth root determinations of a function

Relationship between nth root determinations

Let:

 $\cdot\, X$ connected topological space

 $f: X \to \mathbb{C} \setminus \{0\}$ continuous

 $\cdot g, h$ nth root determinations of f

Then, holds:

 $\cdot \exists \zeta \in \mu_n(\mathbb{C})$:

 $\cdot h = \zeta g$

Demonstration:

h,g continuous $,g\neq 0\rightarrow h/g$ continuous

 $\forall x \in X$:

$$h(x)^n = f(x), \ g(x)^n = f(x)$$

$$\left(\frac{h(x)}{g(x)}\right)^n = \frac{h(x)^n}{g(x)^n} = \frac{f(x)}{f(x)} = 1$$

$$\frac{h(x)}{g(x)} \in \mu_n(\mathbb{C})$$

 $\operatorname{Im}(h/g) = \mu_n(\mathbb{C})$ finite

h/g constant over connected components

X connected $\rightarrow h/g$ constant

 $\exists \zeta \in \mu_n(\mathbb{C})$:

 $h = \zeta g$

Cubic root determinations

Let: h_0, h_1, h_2 cubic root determinations over $\mathbb{C} \setminus (\mathbb{R}^- \times \{0\})$ with $\cdot h_0(1) = 1$ $h_1(1) = \exp(\frac{2\pi i}{3})$ $h_2(1) = \exp(\frac{4\pi i}{3})$ Study: $\cdot \operatorname{Im}(h_0), \operatorname{Im}(h_1), \operatorname{Im}(h_2)$ \cdot Relationship with Log and ArgDemonstration: $\forall z \in \mathbb{C} \setminus (\mathbb{R}^- \times \{0\})$: $\sqrt[3]{z} = \sqrt[3]{|z|} \exp\left(\frac{i(Arg(z) + 2k\pi)}{3}\right)$ $\forall k \in 3:$ $\sqrt[3]{z} = \sqrt[3]{|z|} \exp\left(\frac{iArg(z)}{3}\right)$ $arg(z) = \frac{Arg(z)}{3}$ $Arg(z) \in (-\pi, \pi) \to arg(z) \in (\frac{-\pi}{3}, \frac{\pi}{3})$ $\Omega_0 := \{ z \in \mathbb{C} \mid Arg(z) \in (\frac{-\pi}{3}, \frac{\pi}{3}) \}$ $\forall k \in \dot{3} + 1$: $\sqrt[3]{z} = \sqrt[3]{|z|} \exp\left(\frac{i(Arg(z)+2\pi)}{3}\right)$ $arg(z) = \frac{Arg(z)}{3} + \frac{2\pi}{3}$ $Arg(z) \in (-\pi, \pi) \to arg(z) \in (\frac{\pi}{3}, \pi)$ $\Omega_1 := \{z \in \mathbb{C} \mid Arg(z) \in (\frac{\pi}{3}, \pi)\}$ $\forall k \in \dot{3} + 2$: $\sqrt[3]{z} = \sqrt[3]{|z|} \exp\left(\frac{iArg(z)}{3}\right)$

$$\sqrt{z} - \sqrt{|z|} \exp(\frac{\pi}{3})$$

$$arg(z) = \frac{Arg(z)}{3} + \frac{4\pi}{3}$$

$$arg(z) = \frac{Arg(z)}{3} + \frac{4\pi}{3}$$

$$Arg(z) \in (-\pi, \pi) \to arg(z) \in (\pi, \frac{5\pi}{3})\Omega_2 := \{z \in \mathbb{C} \mid Arg(z) \in (\pi, \frac{5\pi}{3})\}$$

$$h_0(1) = 1 \rightarrow \operatorname{Im}(h_0) = \Omega_0$$

$$h_1(1) = \exp(\frac{2\pi i}{3}) \to \text{Im}(h_1) = \Omega_1$$

 $h_2(1) = \exp(\frac{4\pi i}{3}) \to \text{Im}(h_2) = \Omega_2$

$$h_2(1) = \exp(\frac{4\pi i}{3}) \rightarrow \operatorname{Im}(h_2) = \Omega_2$$

In particular:

$$h_0(i) = \sqrt[3]{|i|} \exp(\frac{iArg(i)}{3}) = \exp(\frac{\pi}{6}i)$$

$$h_0(i) = \sqrt[3]{|i|} \exp(\frac{iArg(i)+2\pi}{3}) = \exp(\frac{5\pi}{6}i)$$

$$h_0(i) = \sqrt[3]{|i|} \exp(\frac{i(Arg(i)+4\pi)}{3}) = \exp(\frac{9\pi}{6}i)$$