Designs for Forests with Seven Edges

Danny Banegas

University of Minnesota: Duluth

October 2, 2024

Designs for Forests with Seven Edges

• A graph G = (V, E) consists of a set of vertices V and a set of edges E.

- A graph G = (V, E) consists of a set of vertices V and a set of edges E.
- An edge $e \in E$ is a pair of vertices $e = \{u, v\}$ where $u, v \in V$.

- A graph G = (V, E) consists of a set of vertices V and a set of edges E.
- An edge $e \in E$ is a pair of vertices $e = \{u, v\}$ where $u, v \in V$.
- A subgraph H of G is a graph whose vertices and edges are subsets of V and E, respectively.

- A graph G = (V, E) consists of a set of vertices V and a set of edges Ε.
- An edge $e \in E$ is a pair of vertices $e = \{u, v\}$ where $u, v \in V$.
- A subgraph H of G is a graph whose vertices and edges are subsets of V and E, respectively.
- A simple graph is one where two vertices may only share one edge and where no vertex shares an edge with itself.

2 / 42

Here is an example of a disconnected simple graph. G = (V, E) where:

Here is an example of a disconnected simple graph. G = (V, E) where:

• $V = \{a, b, c, d, e, f, g, h, i\}$

3 / 42

Here is an example of a disconnected simple graph. G = (V, E) where:

- $V = \{a, b, c, d, e, f, g, h, i\}$
- $E = \{\{a, b\}, \{a, c\}, \{a, d\}, \{a, e\}, \{a, f\}, \{a, g\}, \{h, i\}\}$

Here is an example of a disconnected simple graph. G = (V, E) where:

- $V = \{a, b, c, d, e, f, g, h, i\}$
- $E = \{\{a, b\}, \{a, c\}, \{a, d\}, \{a, e\}, \{a, f\}, \{a, g\}, \{h, i\}\}$

• A cycle graph C_n is a graph that consists of a single cycle. A cycle is an internally non-repeating sequence of vertices which starts and ends at the same vertex.

- A cycle graph C_n is a graph that consists of a single cycle. A cycle is an internally non-repeating sequence of vertices which starts and ends at the same vertex.
- It has n vertices and n edges. pause
- We denote can these cycles using cycle notation like in a symmetric group, $(012345) = (501234) = (450123) = \cdots = (123450)$. The previous cycle is the only one in C_6 which is shown below.

- A cycle graph C_n is a graph that consists of a single cycle. A cycle is an internally non-repeating sequence of vertices which starts and ends at the same vertex.
- It has *n* vertices and *n* edges. pause
- We denote can these cycles using cycle notation like in a symmetric group, $(012345) = (501234) = (450123) = \cdots = (123450)$. The previous cycle is the only one in C_6 which is shown below.

The Cycle graph C_6

• A tree graph is an acyclic connected graph. An acyclic graph is one which contains no cycles.

- A tree graph is an acyclic connected graph. An acyclic graph is one which contains no cycles.
- It has n vertices and n-1 edges.

- A tree graph is an acyclic connected graph. An acyclic graph is one which contains no cycles.
- It has n vertices and n-1 edges.

A tree graph on 6 edges

Path Graphs

Path Graphs

• A path graph is a special type of tree graph. It is simply a graph that can be described completely by a sequence of vertices.

Path Graphs

- A path graph is a special type of tree graph. It is simply a graph that can be described completely by a sequence of vertices.
- It has n vertices and n-1 edges.

A path graph on 6 edges

Designs for Forests with Seven Edges

• A forest is a disjoint union of trees.

- A forest is a disjoint union of trees.
- It consists of multiple components, each being a tree.

- A forest is a disjoint union of trees.
- It consists of multiple components, each being a tree.

A Forest graph composed of trees with 3 and 4 vertices, respectively

Designs for Forests with Seven Edges

• The **complete graph** K_n is one where every pair of distinct vertices is connected by a unique edge.

- The **complete graph** K_n is one where every pair of distinct vertices is connected by a unique edge.
- It has *n* vertices and how many edges?

- The **complete graph** K_n is one where every pair of distinct vertices is connected by a unique edge.
- It has *n* vertices and how many edges?

The Complete graph K_{10}

- The **complete graph** K_n is one where every pair of distinct vertices is connected by a unique edge.
- It has *n* vertices and $\binom{n}{2}$ edges.

The Complete graph K_{10}

Designs for Forests with Seven Edges

10 / 42

• Let K be a simple graph. A **decomposition** of K is a collection of pairwise edge disjoint subgraphs $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ such that every edge of K belongs to exactly one member of \mathcal{G} .

- Let K be a simple graph. A **decomposition** of K is a collection of pairwise edge disjoint subgraphs $\mathcal{G} = \{G_0, G_1, \ldots, G_m\}$ such that every edge of K belongs to exactly one member of \mathcal{G} .
- We call such a collection of subgraphs a decomposition because their union is the entire graph.

- Let K be a simple graph. A **decomposition** of K is a collection of pairwise edge disjoint subgraphs $\mathcal{G} = \{G_0, G_1, \ldots, G_m\}$ such that every edge of K belongs to exactly one member of \mathcal{G} .
- We call such a collection of subgraphs a decomposition because their union is the entire graph.

Decomposition of K_4 into a C_4 and two P_2 's

- Let K be a simple graph. A **decomposition** of K is a collection of pairwise edge disjoint subgraphs $\mathcal{G} = \{G_0, G_1, \ldots, G_m\}$ such that every edge of K belongs to exactly one member of \mathcal{G} .
- We call such a collection of subgraphs a decomposition because their union is the entire graph.

Decomposition of K_4 into a C_4 and two P_2 's

- Let K be a simple graph. A **decomposition** of K is a collection of pairwise edge disjoint subgraphs $\mathcal{G} = \{G_0, G_1, \ldots, G_m\}$ such that every edge of K belongs to exactly one member of \mathcal{G} .
- We call such a collection of subgraphs a decomposition because their union is the entire graph.

Decomposition of K_4 into a C_4 and two P_2 's

Graph Decompositions

- Let K be a simple graph. A **decomposition** of K is a collection of pairwise edge disjoint subgraphs $\mathcal{G} = \{G_0, G_1, \ldots, G_m\}$ such that every edge of K belongs to exactly one member of \mathcal{G} .
- We call such a collection of subgraphs a decomposition because their union is the entire graph.

Decomposition of K_4 into a C_4 and two P_2 's

Graph Decompositions

- Let K be a simple graph. A **decomposition** of K is a collection of pairwise edge disjoint subgraphs $\mathcal{G} = \{G_0, G_1, \ldots, G_m\}$ such that every edge of K belongs to exactly one member of \mathcal{G} .
- We call such a collection of subgraphs a decomposition because their union is the entire graph.

Decomposition of K_4 into a C_4 and two P_2 's

• Let $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ be a decomposition of some graph K.

- Let $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ be a decomposition of some graph K.
- If every subgraph in \mathcal{G} is isomorphic to some graph G, then we call \mathcal{G} a G-decomposition of K and say that K allows a G-decomposition or (K,G)-design.

- Let $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ be a decomposition of some graph K.
- If every subgraph in $\mathcal G$ is isomorphic to some graph G, then we call $\mathcal G$ a G-decomposition of K and say that K allows a G-decomposition or (K,G)-design.
- If $K \cong K_n$ then we call \mathcal{G} a G-design of order n.

- Let $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ be a decomposition of some graph K.
- If every subgraph in $\mathcal G$ is isomorphic to some graph G, then we call $\mathcal G$ a G-decomposition of K and say that K allows a G-decomposition or (K,G)-design.
- If $K \cong K_n$ then we call \mathcal{G} a G-design of order n.

A P₃-Design of order 4

- Let $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ be a decomposition of some graph K.
- If every subgraph in $\mathcal G$ is isomorphic to some graph G, then we call $\mathcal G$ a G-decomposition of K and say that K allows a G-decomposition or (K,G)-design.
- If $K \cong K_n$ then we call \mathcal{G} a G-design of order n.

A P₃-Design of order 4

- Let $\mathcal{G} = \{G_0, G_1, \dots, G_m\}$ be a decomposition of some graph K.
- If every subgraph in \mathcal{G} is isomorphic to some graph G, then we call \mathcal{G} a G-decomposition of K and say that K allows a G-decomposition or (K,G)-design.
- If $K \cong K_n$ then we call \mathcal{G} a G-design of order n.

A P₃-Design of order 4

• Let G be a graph on m edges. Then there exists a (K, G)—design only if m divides |E(G)|.

- Let G be a graph on m edges. Then there exists a (K, G)—design only if m divides |E(G)|.
- If $K \cong K_n$, then there exists a (K, G)—design only if m divides $\binom{n}{2} = \frac{n(n-1)}{2}$.

- Let G be a graph on m edges. Then there exists a (K, G)—design only if m divides |E(G)|.
- If $K \cong K_n$, then there exists a (K, G)—design only if m divides $\binom{n}{2} = \frac{n(n-1)}{2}$.
- Equivalently, there exists a G—design of order n only if n is idempotent modulo 2m. This is easy to show.

- Let G be a graph on m edges. Then there exists a (K, G)—design only if m divides |E(G)|.
- If $K \cong K_n$, then there exists a (K, G)—design only if m divides $\binom{n}{2} = \frac{n(n-1)}{2}$.
- Equivalently, there exists a G—design of order n only if n is idempotent modulo 2m. This is easy to show.

Proof

Let $m, n \in \mathbb{N}$. Suppose $m \mid \binom{n}{2}$. Then $\frac{n(n-1)}{2} = mq$ for some $q \in \mathbb{N}$. So then $\frac{n(n-1)}{2m} = q$, and thus $n(n-1) \equiv 0 \pmod{2m}$. Therefore $n \equiv n^2 \pmod{2m}$, and so n is idempotent modulo 2m. Suppose n is idempotent modulo 2m, then $n^2 > n$ and therefore $n^2 - n = n(n-1) = 2mp$ for some $p \in \mathbb{N}$. So then $\frac{n(n-1)}{2} = \binom{n}{2} = mp$ and m divides $\binom{n}{2}$. \square

• Let
$$V(K_n) = \mathbb{Z}_n$$

- Let $V(K_n) = \mathbb{Z}_n$
- A *G*-design is *cyclic* if the permutation $v \mapsto v + 1$ on $V(K_n)$ is an automorphism of the design.

- Let $V(K_n) = \mathbb{Z}_n$
- A G-design is cyclic if the permutation $v \mapsto v + 1$ on $V(K_n)$ is an automorphism of the design.
- We call this act of applying permutations to a labeling *clicking*.

13 / 42

Cyclic P₃-design of order 5

Cyclic P_3 -design of order 5 $\{1, 0, 3\}$

Cyclic P₃-design of order 5

 $\{1,0,3\}$ $\{2,1,4\}$

Cyclic P₃-design of order 5

 $\{1, 0, 3\}$

 $\{2, 1, 4\}$

 $\{3, 2, 0\}$

Cyclic P₃-design of order 5

 $\{1,0,3\}$

 $\{2, 1, 4\}$

 ${3, 2, 0}$

 $\{4, 3, 1\}$

Cyclic P_3 -design of order 5

 $\{1,0,3\}$

 $\{2, 1, 4\}$

 ${3, 2, 0}$

{4, 3, 1} {0, 4, 2}

Cyclic P_3 -design of order 5

Edge length

• Let
$$V(K_n) = \{0, 1, ..., n-1\}$$

Edge length

- Let $V(K_n) = \{0, 1, \dots, n-1\}$
- The *length* of edge $xy \in E(K_n)$ is min(|x y|, n |x y|)

Edge length

- Let $V(K_n) = \{0, 1, \dots, n-1\}$
- The *length* of edge $xy \in E(K_n)$ is min(|x-y|, n-|x-y|)
- If the length of xy is n-|x-y| or equivalently, if $|x-y|>\lfloor\frac{n}{2}\rfloor$, then we call xy a wrap-around edge

Edge lengths of K_7

• length 1

Edge lengths of K_7

- length 1
- length 2

Edge lengths of K_7

- length 1
- length 2
- length 3

• Notice that edge length is preserved by the permutation $v\mapsto v+1$ on $V(K_n)$

- Notice that edge length is preserved by the permutation $v\mapsto v+1$ on $V(\mathcal{K}_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- Notice that edge length is preserved by the permutation $v \mapsto v + 1$ on $V(K_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

24 / 42

- Notice that edge length is preserved by the permutation $v\mapsto v+1$ on $V(\mathcal{K}_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- Notice that edge length is preserved by the permutation $v\mapsto v+1$ on $V(\mathcal{K}_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- Notice that edge length is preserved by the permutation $v\mapsto v+1$ on $V(\mathcal{K}_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

- Notice that edge length is preserved by the permutation $v\mapsto v+1$ on $V(\mathcal{K}_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

Edge Length and Cyclic Decomposition

- ullet Notice that edge length is preserved by the permutation $v\mapsto v+1$ on $V(\mathcal{K}_n)$
- Also, when n is odd, edge length partitions $E(K_n)$ into $\frac{n-1}{2}$ (the number of lengths) sets of size n (the number of edges of each length)

• Recall the length of $xy \in E(K_n)$ is $\min(|x-y|, n-|x-y|)$.

- Recall the length of $xy \in E(K_n)$ is min(|x-y|, n-|x-y|).
- A σ -labeling is a ρ -labeling such that the length of every edge $xy \in E(K_n)$ is |x-y|.

- Recall the length of $xy \in E(K_n)$ is min(|x y|, n |x y|).
- A σ -labeling is a ρ -labeling such that the length of every edge $xy \in E(K_n)$ is |x-y|.
- Freyberg and Tran introduced the following restricted σ -labeling in 2020.

Definition

Let G be a bipartite graph with m edges and bipartition $V(G) = A \cup B$. A σ^{+-} -labeling of G is a σ -labeling with:

- **1** f(a) < f(b) for every edge $ab \in E(G)$ with $a \in A$ and $b \in B$
- 2 $f(a) f(b) \neq m$ for all $a, b \in V(G)$
- **3** $f(v) \notin \{2m-1, 2m\}$ for all $v \in V(G)$

Theorem (Freyberg, Tran, 2020)

Let G be a graph with m edges and a σ^{+-} -labeling such that the edge of length m is a pendant edge. Then there exists cyclic G-decompositions of K_{2mt} and K_{2mt+1} for every positive integer t.

- Recall that if G has m edges, then there exists a G-design of order n only if n is idempotent modulo 2m.
- So F is a forest on 7 edges, there exists an F-design of order n only if $n \equiv 0, 1, 7$, or 8 (mod 14), since those are all the idempotents in \mathbb{Z}_{14} .
- So by Freyberg and Tran, if there exists a σ^{+-} -labeling of all forests F on 7 edges, then there exists a F-design of order 2mt and 2mt + 1 for all t > 0.

- The matching on 7-edges: $\prod_{i=1}^{n} P_2$ we solved by De Werra in 1970.
- \bullet This summer I found a σ^{+-} labeling of all forests on seven edges, up to isomorphism except $\bigsqcup_{i=1} P_2$. There are 46 total excluding the matching.

A σ^{+-} -labeling of $S_6 \cup P_2$

What about the cases where $n \equiv 7$ or 8 (mod 14)?

What about the cases where $n \equiv 7$ or 8 (mod 14)?

• This is more complicated. σ^{+-} -labelings work because there are only lengths $\{0, \ldots, 7\}$ in K_{14} and so for for K_{14t} we can simply increase the size of the B partite set on our σ^{+-} -labeling by 7i for each $1 \le i \le t$ where and then click these new labelings by 1 to get our G-design of order 14t.

What about the cases where $n \equiv 7$ or 8 (mod 14)?

- This is more complicated. σ^{+-} -labelings work because there are only lengths $\{0, \ldots, 7\}$ in K_{14} and so for for K_{14t} we can simply increase the size of the B partite set on our σ^{+-} -labeling by 7i for each $1 \le i \le t$ where and then click these new labelings by 1 to get our G-design of order 14t.
- This idea also gives G-designs of order 14t + 1 where the new node is labeled ∞ , and the lengths are still $\{0,\ldots,7\}$ since $\lfloor \frac{15}{2} \rfloor = 7$.

What about the cases where $n \equiv 7$ or 8 (mod 14)?

What about the cases where $n \equiv 7$ or 8 (mod 14)?

- Lets look at the starting case we want for K_{14t+7} where t > 0 or K_n where $n \equiv 7 \pmod{14}$. This is K_{21} .
- $\lfloor \frac{21}{2} \rfloor = 10$, so we have lengths $\{1, \ldots, 10\}$. This means we can't simply use a labeling which we click by 1 because a 7 edge forest can only fit 7 distinct lengths...
- Well, what if we can account for counting edges of some lengths $\{a,b,c\}$ from $\{1,\ldots,10\}$? Then we can simply click some variation of our σ^{+-} -labelings accounting for lengths $\{1,\ldots,10\}\setminus\{a,b,c\}$ by 1.

Construction for 7-edge forest designs of order 14t + 7 and 14t + 8

- For each forest up to isomorphism: I found three pairwise edge distinct labelings F_1, F_2, F_3 consisting of only lengths $\{1, 2, 3\}$.
- These labelings also had another property, which requires a new edge function: $\ell_7^+ := f(\{u,v\}) = u + v \pmod{7}$. This function partitions edges by the sum of their endpoints modulo 7. This induces a another partition on the edges: $\ell \times \ell_7^+$ where ℓ is the standard edge length function defined previously.
- Each partite set $P_{i,j}$ is the set of all edges of length i with endpoint sum j. This gives a new way to count edges of each length, it will allow us to click by 7 to collect all edges of any length.

Construction for 7-edge forest designs of order 14t + 7 and 14t + 8

- Let E_i be the set of all edges of length i in K_{21} . Let us now take ℓ_7^+ to be a relation between edges in the natural way. This is clearly an equivalence relation.
- Then, E_i/ℓ_7^+ the set of all equivalence classes of edges of length i with respect to ℓ_7^+ ; $E_i/\ell_7^+ = \{[e_0], [e_1], \ldots, [e_6]\}$ where $\ell(e_j) = i$ for all $0 \le j \le 6$.

An example:

 $\begin{array}{l} [\{1,2\}]_{\ell_7^+} = \{\{1,2\},\{8,9\},\{15,16\}\} \text{ and if we click } \{1,2\} \text{ by 7 we get the} \\ \text{whole equivalence class. The equivalence class is in fact a partite set of} \\ \ell \times \ell_7^+ \text{ on the edges of } \mathcal{K}_{21}. \end{array}$

Construction for 7-edge forest designs of order 14t + 7 and 14t + 8

- So we see this equivalence relation in fact induces a group action on the edges in E_i . We use use unions of representatives of these equivalence classes to build 'blocks' which will contain all edges of lengths $\{1,2,3\}$ of K_{21} between then in order to collect all these edges and complete our design.
- Recall: For each forest up to isomorphism except $S_6 \cup P_2$, I found three pairwise edge distinct labelings F_1, F_2, F_3 consisting of only lengths $\{1, 2, 3\}$, with the added property that they are all pairwise $\ell \times \ell_7^+$ -edge disjoint.
- Then, we can see that we will collect all 7 equivalence classes for edges of lengths 1, 2, 3 and clicking by 7 all edges of lengths 1, 2, 3. Then we simply adapt a σ^{+-} -labeling to contain edges of lengths 4, 5, 6, 7, 8, 9, 10, and click that by 1 to get our decompositions.

An example of such a $S_5 \sqcup P_3$ -design of order 21

Summary

- Notice that that there are no wrap-around edges in this decomposition. This means we can click the graphs in the first column of the previous figure by 7 a total of |7| in \mathbb{Z}_{14t+7} for any t > 0 to get all length 1, 2, 3 edges in K_{14t+7}
- Then we do the same thing we did for σ^{+-} -labelings with the graph in the fourth row, just make copies of it for the next new edge lengths for each t and click all those by 1
- We simply add one more labeling for K_{14t+8} and a new edge length ∞ that goes with the new ∞ node.
- We had to take a different combinatorial approach for $S_6 \sqcup P_2$ where we broke off edges from 7-star decompositions of K_{21} proven to exist by P. Cain in 1974.

Thank you!

What's left?

- I still have to finish the labelings for K_{22} which give the decomposition for K_{14t+8} where t > 0. Going smoothly.
- We have to prove we can break off edges for all graphs in the design constructions by P. Cain to get our S₆

 P₂-designs.
- Once done with the above we can probably extend this strategy to other 7 edge graphs to complete all 7-edge designs of order n. There are similar labelings to σ^{+-} and our approach to the other idempotent n's are not family specific.

Thank you all for coming!