

13. Sučelje s analognom okolinom

- konceptualizacija sučelja
- digitalno-analogna pretvorba
- analogno-digitalna pretvorba

 pretvorba na sučelju digitalnog sustava i stvarnog svijeta koji ga okružuje:

- na *ulazu* digitalnog sustava
 - ~ (analogni) napon ⇒ broj: uzorkovanje (engl. sampling) + kvantizacija
 - → analogno-digitalna pretvorba (ADC)
- na *izlazu* digitalnog sustava:
 - ~ broj ⇒ (analogni) napon
 - → digitalna-analogno pretvorba (DAC)

- karakteristika pretvorbe za ADC (DAC ima isti oblik):
 - U_K: kvant, naponski interval, korak, kanal
 - broj koraka (kanala)
 ~ rezolucija ADC

- parametri pretvorbe:
 - rezolucija, razlučivanje
 - točnost
 - pogreška kvantizacije
 - vrijeme pretvorbe

- rezolucija, razlučivanje:
 - širina kanala kao
 max ulaznog napona (ADC), odnosno max izlaznog napona (DAC):

$$rezolucija = U_{M}/n_{M}$$

 izražavanje brojem bitova izlaznog (ADC), odnosno ulaznog (DAC) podataka, jer je n_M ~ U_M (uz k-bitni prikaz):

$$rezolucija = 1/n_M = 1/(2^k - 1)$$

tipične vrijednosti: ≈14 bitova

- točnost
 - ~ mjera za razliku *stvarnog* analognog izlaza i izlaza u *idealnom* slučaju

npr. realna karakteristika DAC

integralna nelinearnost
 granica pogreške:

$$\varepsilon_i = \frac{\Delta U}{U_M}$$

diferencijalna nelinearnost
 granica pogreške u kanalima

$$\varepsilon_{d} = \frac{\left(\frac{du_{a}}{dn}\right)_{\max} - \left(\frac{du_{a}}{dn}\right)_{idea \ln o}}{\left(\frac{du_{a}}{dn}\right)_{idea \ln o}} = \frac{\left(U_{K}\right)_{\max} - U_{K}}{U_{K}} = \frac{\Delta U_{K}}{U_{K}}$$

tipične vrijednosti za točnost: ≈10⁻²÷10⁻³

- pogreška kvantizacije:
 - rezultat diskretnog karaktera procesa konverzije
 - prava vrijednost
 ~ napon *u sredini kanala* → pogreška:

$$\varepsilon_{\scriptscriptstyle K} = \pm \frac{U_{\scriptscriptstyle K}}{2}$$

vrijeme pretvorbe:

~ od početka konverzije do pojave konačne vrijednosti na izlazu

tipične vrijednosti: ADC: ≈10 ns ÷10 s

DAC: ≈100 ns

- sučelje digitalnog sustava s analognom okolinom:
 - pretvornici, konvertori, pretvarači
 ~ sklopovi na sučelju analognog i digitalnog, i obratno
 - na ulazu digitalnog sustava
 ~ analogno-digitalni pretvornici (engl. analog-digital convertors, ADC)
 - na *izlazu* digitalnog sustava
 digitalno-analogni pretvornici
 (engl. digital-analog convertors, DAC)
 - "tehnologija" pretvorbe:
 - dinamički pretvornici
 pretvorba se odvija u vremenu!
 - statički pretvornici

- DA pretvorba:
 - jednostavniji sklopovi (jednostavniji od ADC)
 - (u nekim rješenjima) dijelovi AD pretvornika
 - cilj pretvorbe
 - ~ broj u binarnom prikazu konvertirati u analognu veličinu, obično napon:

$$N = a_{n-1} 2^{n-1} + a_{n-2} 2^{n-2} + \dots + a_1 2^1 + a_0 2^0$$

$$U_N = K \cdot U_{RFF} \cdot N$$

 $U'_{REF} = K \cdot U_{REF}$ [V]: faktor proporcionalnosti

princip DA pretvorbe:

$$U_N = U_{REF} \cdot (a_{n-1}2^{n-1} + a_{n-2}2^{n-2} + \dots + a_12^1 + a_02^0)$$

- pojedine težine binarnog broja izraziti strujama
- koeficijente uz odgovarajuće težine izvesti "sklopkama"
- principijelno rješenje
 ~ otporna mreža:
 statički DA pretvornik

- otporna mreža s težinski raspoređenim otporima:
 - R_i se međusobno odnose kao težine brojnih mjesta: → zbrojiti struje kroz R_i
 - analogna veličina je struja

+U_{REF}

- otporna mreža s težinski raspoređenim otporima
 obično se za izlaznu veličinu želi *napon*:
 - → *struja* na poznatom *R*

 $K = f(R_{izl}) \neq const.$

- izbjegavanje utjecaja R_{izl} u otpornoj mreži:
 - operacijsko pojačalo
 "nulti otpor" između ulaza:
 virtualna nula na ulazu pojačala
 - zbrajanje I_i na izlazu sklopa:

$$U_{izl} = -I_{N} \cdot R_{f}$$

$$= -\frac{U_{REF} \cdot R_{f}}{2^{n-1} \cdot R} \cdot \sum_{i=0}^{n-1} a_{i} \cdot 2^{i}$$

$$= \frac{2R}{2^{n-1} \cdot R}$$

- tehnološki problem izvedbe većih mreža:
 - preveliki odnos R_{n-1} (uz LSB) i R₀ (uz MSB)
 ~ uz zadanu pogrešku zbog tolerancija otpora R_{n-1} treba biti *vrlo precizan* (također i svi R_i, za i
 - koristiti drugo rješenje, već od n = 4

- *ljestvičasta otporna mreža* (engl. ladder network):
 - koristi samo dvije vrijednosti za R (R i 2·R)
 - za isti n potrebno dva puta više R_i

- određivanje izlaznog napona ljestvičaste otporne mreže $U_{izl} = f(N)$:
 - zaključenje 2·R "lijevo" od promatranog čvora a_i
 - koristiti *Théveninov teorem*

$$U_{n-1} = \frac{U_{REF}}{2}$$

$$U_{izl} = \sum_{i=0}^{n-1} U_i = \frac{U_{REF}}{2^n} \cdot \sum_{i=0}^{n-1} a_i \cdot 2^i = \frac{U_{REF}}{2^n} \cdot N$$

$$U_{n-2} = \frac{U_{REF}}{4}$$

- izvedba ljestvičaste otporne mreže s *operacijskim pojačalom*:
 - zaključenje 2·R s obje strane čvora a_i
 - određivanja doprinosa pojedinih bitova metodom superpozicije

$$U_{n-1} = \frac{1}{3} \cdot \frac{U_{REF}}{2^{n-1}} \sum_{i=0}^{n-1} a_i \cdot 2^i = \frac{1}{3} \cdot \frac{U_{REF}}{2^{n-1}} \cdot N$$

$$U_{izl} = -U_{n-1} \cdot \frac{R_f}{2R} = -U_{n-1} \cdot \frac{3R}{2R} = -\frac{1}{3} \cdot \frac{3R}{2R} \cdot \frac{U_{REF}}{2^{n-1}} \cdot N = -\frac{U_{REF}}{2^n} \cdot N$$

- svojstva izvedbi ljestvičastih otpornih mreža:
 - samo dvije vrijednosti otpora
 moguće zadovoljiti tolerancije,
 pogotovo stoga što se traži omjer vrijednosti
 - pogodno za integriranu izvedbu i za veći broj bitova
 ~ svi otpori i naponski izvori jednako opterećeni
 - sporije u pogledu vremenskog odziva ~ niz četveropola s C_{par}

- uklanjanje problema kašnjenja ljestvičaste otporne mreže:
 - virtualna nula:

 nema nabijanja C_{par}
 kod prebacivanja sklopki
 - nema promjena u opterećenju U_{REF} i R_i

$$U_{izl} = -\frac{U_{REF}}{2^{n-1}} \sum_{i=0}^{n-1} a_i \cdot 2^i$$

- sklopke za DA pretvornike:
 - konceptualni spoj:

• osigurati $R_{\rm ekv} << R_{\rm i}$

- svojstva integriranih otpornih mreža
 otporne mreže integrirane u DA pretvornike:
 - ljestvičaste
 - za veći broj bitova (8÷14)
 - tipično R = $10 \text{ k}\Omega$ / $20 \text{ k}\Omega$
 - tolerancije R: $\Delta R = \pm 5\%$
 - garantirana pogreška $U_{izl} \le 1/4$ doprinosa LSB u granicama -55° C \le T \le 125° C

- DA pretvornik s brojilom
 ~ ugrađeno brojilo s prethodnim postavljanjem:
 - u brojilo upisati dvojni komplement od N
 - B = 1 ⇒ pretvorba: brojilo broji, generira se pilasti napon U_{izl}
 - B = 0 \Rightarrow U_{izl} \sim N (n-bitni prikaz)

DA pretvornik s brojilom:

- dinamički DA pretvornik:
 - pretvorba traje izvjesno vrijeme
 - pretvorba *indirektna* ~ preko vremena
 (brojilo broji ⇒ B = 1 ⇒ porast U_{izl})!
- problemi pri pretvorbi
 osigurati f_{CP} = const. + linearnost pile

- AD pretvorba:
 - složeniji postupak!
 - tipično uključuje brojilo ~ dinamički postupci
 - karakteristična petlja povratne veze
 ~ naponski komparator:
 završavanje pretvorbe
 usporedbom generiranog U_d ~ N i U_{ul} = U_a
 - često uključuje DAC radi dobivanja U_d ~ N
 - najzahtjevnije izvedbe (stoga i najskuplje!)
 nema brojila!

- Wilkinsonov pretvornik
 ~ dinamički pretvornik: ugrađeno brojilo
 - dok brojilo broji generira se pilasti napon
 - komparator u petlji povratne veze
 usporedba pilastog napona
 s U_{ul} = U_a

- problemi Wilkinsonovog pretvornika
 ~ pretvorba indirektna obavlja se preko vremena!
 - generirana pila obično *nelinearna* ~ pogreške pri pretvorbi (U_d ≠ U_a)
 - potrebno osigurati $f_{CP} = const.$
 - ostvariti sinkronizaciju impulsa START i CP

 AD pretvornik s postepenim približavanjem (s DA pretvornikom), brojeći AD pretvornik (engl. counting ADC) ~ modifikacija Wilkinsonovog pretvornika koja rješava njegove probleme

- AD pretvornik s postepenim približavanjem:
 - pretvorba je direktna, bez posrednika (generatora pile)
 DA pretvornik umjesto generatora pile
 - eliminirana potreba za točnom i stabilnom f_{CP}
 - moguće dozvoliti f_{CP} ≠ const.
 ~ neperiodički impulsi pobude brojila
 - točnost pretvorbe
 ~ točnost DAC:
 ovisi o pasivnim komponentama (R_i),
 može se dobro namjestiti

- brzi AD pretvornik,
 AD pretvornik sa sukcesivnom aproksimacijom (engl. successive approximation ADC):
 - jako popularni AD pretvornik
 ~ široko korišten samostalno ili
 u kombinacijama s paralelnim AD pretvornikom
 - pretvorba *direktna* DA pretvornik u petlji povratne veze
 - cilj:
 - ubrzanje pretvorbe, $T_{max} << N_{max} \cdot T_{CP}$ ~ smanjenje broja koraka
 - konstantno vrijeme pretvorbe, T ≠ f(U_a)
 ~ konstantan broj koraka

- princip rada brzog AD pretvornika:
 - usporedba u_a i u_d : ~ postepeno formiranje u_d počev od MSB (a_{n-1}) : if $u_a > u_{d,i}$ then $u_k = 0$ else $u_k = 1$ {brisanje doprinosa a_i }

 obilazak binarnog stabla po dubini (engl. preorder tree traversal)

- princip rada brzog AD pretvornika:
 - broj koraka za proizvoljni u_a
 broj bitova zapisa N
 - izvedba sklopom za *slijedno ispitivanje* bitova:
 - prstenasto brojilo (početno 1 kod a_{n-1})
 - binarno brojilo s dekoderom
 - mreža logičkih sklopova

• izvedba brzog AD pretvornika prstenastim brojilom

- slijedni AD pretvornik
 (engl. tracking converter, servo converter), kontinuirano brojeći AD pretvornik
 (engl. continuous-digitall-ramp converter):
 - (dodatno) ubrzanja pretvorbe
 ~ modifikacija osnovnog AD pretvornika s brojilom
 (s postepenim približavanjem)
 - zamjena binarnog brojila (broji 0 → N ~ U_{a,i+1})
 brojilom naprijed-natrag

- slijedni AD pretvornik
 - ubrzanje pretvorbe korištenjem brojila naprijed-natrag:
 - smjer brojanja: $\mathbf{7}/\mathbf{Y} = f(\Delta U_a) = f(U_{a,i+1} U_{a,i})$ ~ u_d "slijedi" u_a
 - naročito pogodno kad se u_a mijenja "relativno sporo"
 - u prosjeku $T_{naprijed-natrag} \approx 1/2 \cdot T_{binarno}$ $\Rightarrow f_{naprijed-natrag} \approx 2 \cdot f_{binarno, max}$

- paralelni AD pretvornik, komparatorski AD pretvornik (engl. parallel-comparator ADC):
 - naročito rješenje za postizanje najbrže moguće ADC, također i najskuplje

usporediti u_a s nizom referentnih napona,
 ∀ naponsku razinu u intervalu 0÷U_M,
 s razmakom ∆U

- paralelni AD pretvornik, komparatorski AD pretvornik
 usporedba u_a s nizom referentnih napona:
 - najprikladnija izvedba "niza referentnih napona":
 ~ otporni djelitelj
 - niz naponskih komparatora
 ~ (2ⁿ-1) za n-bitnu pretvorbu
 - → dodatni bit dva puta više komparatora
 ~ cijena!

- paralelni AD pretvornik:
 - usporedba u_a s nizom referentnih napona ~ paralelni rad: ne treba brojati!
 - izvorni kod na izlazu komparatora
 - "termometarski niz":
 N u binarnom obliku tek nakon pretvorbe koda
 (ld n = log₂ n : broj bitova ADC)

B _{n-1}	B_{n-2}		B_3	B_2	B ₁	B_0	$m_{ld(n-1)}$	• • •	m_2	m_1	m_0
0	0		0	0	0	0	0		0	0	0
0	0		0	0	0	1	0		0	0	1
0	0		0	0	1	1	0		0	1	0
0	0		0	1	1	1	0		0	1	1
0	0		1	1	1	1	0		1	0	0
1	1		1	1	1	1	1		1	1	1

- paralelni AD pretvornik:
 - registar
 pohranjivanja
 rezultata pretvorbe;
 nije nužan
 - bistabili i pretvornik koda
 najbržom tehnologija, npr. ECL

 paralelni AD pretvornik \sim ujednačavanja ϵ_{κ} posebnom raspodjelom referentnih napona: $\varepsilon_{K} = U_{REF}/(2n-2)$

$$u_{n-1} = \frac{2n-3}{2(n-1)} U_{REF}$$

$$u_{n-2} = \frac{2n-5}{2(n-1)} U_{REF}$$

$$u_{n-3} = \frac{2n-7}{2(n-1)} U_{REF}$$

$$u_{3} = \frac{5}{2(n-1)} U_{REF}$$

$$u_{2} = \frac{3}{2(n-1)} U_{REF}$$

$$u_{1} = \frac{1}{2(n-1)} U_{REF}$$

$$u_{1} = \frac{1}{2(n-1)} U_{REF}$$

$$01...111 - \frac{n-2}{n-1} U_{REF}$$

$$00...111 - \frac{n-3}{n-1} U_{REF}$$

$$00...011 - \frac{2}{n-1} U_{REF}$$

$$00...001 - \frac{1}{n-1} U_{REF}$$

$$00...001 - \frac{1}{n-1} U_{REF}$$

Sklop za uzorkovanje

- sklop za uzorkovanje
 (engl. sample-and-hold, S/H circuit):
 - uzimanje uzoraka ("uzorkovanje")
 ~ nabijanje C zatvaranjem prikladno izvedene sklopke
 - otvoren sklopka
 ~ pridržavanje uzorka U_a za vrijeme pretvorbe
 - sklopka

~ "analogna sklopka" (engl. analog switch):

propušta *analogni* napon

- povezivanje sklopa za uzorkovanje i ADC:
 - uzorkovanje u intervalima pretvorbe
 - pridržavanje uzorka u_a za vrijeme pretvorbe
 - podešavanje opsega u_a

