Gravitation-2

Potential Enny of Point mag if Point object is outside he spine then in that (are we can
assume Sphue as point mass Potertial Every of point object U(r) = Valid for it Point oly 15 outside $U_A = U_S phi + (U_P)_A \qquad U_S - U_A = (U_P)_E (U_P)_E$ $U_R = U_S phi + (U_P)_B$

$$= 9R^{2}\left[\frac{1}{R} - \frac{1}{R+h}\right] = \frac{1}{2}v^{2}$$

$$= 9R^{2}\left[\frac{R+n-R}{R^{2}+Rh}\right] = \frac{1}{2}v^{2}$$

$$= \frac{ghR}{R+h} = \frac{1}{2}v^{2}$$

$$\begin{cases} h < cR \end{cases}$$

= +GMH RZ

\\ \ccR\\

If we are near

7 9 = +4M

+ GM= 9 12

 $\frac{1}{2} - \frac{GM}{(R+m)} + \frac{GM}{R} = \frac{1}{2} v^2$

 $-\frac{gR^2+\frac{gR^2}{R}}{R+\nu}=\frac{1}{2}v^2$

$$gh = \frac{1}{2} \sqrt{2}$$

$$\sqrt{-1}$$

: motion of Satellite:

ape velocity: "it is the velocity with which leaves gravitationed field of planet"

$$\begin{cases} \frac{\partial P}{\partial R} & \frac{\partial P}{\partial R}$$

The order of earth

The suface of earth

$$R = 11.2 \text{ Km}$$
 See

$$V_6 = \int \frac{GM}{(R+n)}$$
 $T = \frac{2\pi}{\sqrt{2\pi}}$
 V_0
 $T = \frac{2\pi}{\sqrt{2\pi}}$
 V_0
 V_0

Total Energy =
$$(Ke)_S = \frac{1}{2}m\left(\frac{G_m M}{\pi}\right)^2$$

$$= \frac{1}{2}m\left(\frac{G_m M}{\pi}\right)^2$$

(°iv)

$$KE = -TE = -\frac{PE}{2}$$

Gravitation Potostial! # it is defined at point

1. A satellite moves in a circular orbit round the earth at height $R_e/2$ from earth's surface when R_e is the radius of the earth. Calculate its period of revolution.

Solution!
$$T^{2} = \frac{\sqrt{\pi^{2}}}{Gm} r^{3}$$

$$T = \frac{2\pi}{\sqrt{4\pi}} \left(\frac{3Re}{2}\right)^{3}$$

$$\left(T = \frac{2\pi}{\sqrt{9Re^{2}}} \left(\frac{2 + Re^{3}}{8}\right)^{1/2}\right) dr$$

- 5. If the earth is at one fourth of its present distance from the sun, the duration of the year will be:
 - (A) half the present year
 - (C) one-fourth the present year

(B)

(D)

- one-eighth the present year
- one-sixth the present year

- 9. An artificial satellite moving is circular orbit around the earth has a total (kinetic + potential) energy E_0 . Its potential energy is:
 - (A) $-E_0$ (B) $1.5 E_0$ $2E_0$ (D)

Keples laws & Planding moder!

- Law of Orbits: Each planet revolves around the sun in an elliptical orbit with the sun at one focus of the ellipse.
- **Law of Areas :** This law states that the radius vector from the sun to the planet sweeps out equal areas in equal time intervals.

Both shaded areas are equal if the time from A to B is equal to the time from P to Q.

Law of Periods: It states that the square of the time taken by the planet about the sun is proportional to the cube of the planet's mean distance from the sun.

If T be the time period of the planet and r be the mean distance of planet from the sun (average of maximum and minimum distances from sun)

$$r = \frac{r_{min} + r_{max}}{2}$$
 T^2/r^3 is same for all planets

$$A = \left(\frac{1}{2}v^2o\right)$$

$$A = \left(\frac{1}{2}v^2o\right)$$

$$\frac{\pi n^2}{2\pi} = \frac{1}{2} p^2 o$$

$$\frac{1}{\sqrt{2\pi}} \left(0 - \frac{1}{\sqrt{2\pi}} \right) = \frac{1}{3} \frac{\rho}{\rho}$$

$$\frac{d\Delta}{dr} = \frac{1}{2}r^2 dr$$

$$\Rightarrow w \Rightarrow z \Rightarrow k$$

10. A planet revolves in an elliptical orbit around the sun. Then out of following physical quantities the one which remains constant is:

(A) velocity (B) kinetic energy (C) momentum

(D) angular momentum

10. A planet is moving round the sun in an elliptical orbit as shown. As the planet moves from A to B:

(B) its potential energy will remain unchanged

(1) its speed is minimum at A

Trajectory of a Satellite for different speeds:

 $v = V_c$

Let V be the velocity given to a satellite. Let V represent the velocity for a circular orbit and V be the escape velocity.

$$V_c = \sqrt{\frac{GM}{r}}$$
 and $V_e = \sqrt{\frac{2GM}{r}}$

Remembe

Where *r* is the distance of the satellite from centre of the earth.

	$V < V_c$	The satellite follows an elliptical path with centre of earth as the farther focus. In this case, if satellite
		is projected from near the surface of earth, it will hit the earth's surface without completing the orbit.

The satellite follows a circular orbit with the centre of earth as the centre of orbit.

The satellite escapes from the field of earth along a parabolic trajectory.

The figure represents an elliptical orbit of a planet around sun. The planet takes time T_1 to travel from A to B and it takes time T_2 to travel from C to D. If the area CSD is double that of area ASB, then:

- $(A) T_1 = T_2$
- **(B)** $T_1 = 2T_2$
- (C) $T_1 = 0.5 T_2$
- (D) Data insufficient

A space vehicle approaching a planet has a speed v, very long way out and is on a trajectory which would miss the centre of the planet by a distance R if it continued in a straight line. If the planet has a mass M and radius r, what is the smallest value of R in order that the resulting orbit will just miss the surface :

(A)
$$R = \frac{2GMv}{r}$$
 (B) $R = vr\left[1 + \frac{2GM}{r}\right]$

$$(C) R = \frac{r}{v} \left[v^2 + \frac{2GM}{r} \right]$$

(D)
$$R = \frac{r}{v} \left[v^2 + \frac{2GM}{r} \right]^{1/2}$$

$$m \times R = m \times r$$

(1) Solve

Assuming that the earth is spherical and of radius R, gravitational acceleration on its surface is g and mass m, then its mean density is:

$$\frac{3g}{4\pi GR}$$

$$\frac{\textbf{(B)}}{3g} \quad \frac{4\pi GR}{3g}$$

(C)
$$\frac{4\pi^2 G}{3Rg}$$

$$\mathbf{(D)} \quad \frac{3g\,GR}{4\pi^2}$$

