Problème. Une fonction et une suite.

Partie A: Variations de f.

La fonction ln est définie sur $]0, +\infty[$ et s'annule en 1. La fonction f est définie sur

$$D =]0,1[\cup]1,+\infty[.$$

La fonction f est dérivable sur]0,1[comme quotient de fonctions dérivables sur cet intervalle. On a

$$\forall x \in]0,1[\quad f'(x) = \frac{\ln(x) - 1}{\ln^2(x)} = \frac{1}{\ln(x)} \left(1 - \frac{1}{\ln(x)} \right).$$

On obtient le tableau de variations suivant.

x	0	$e + \infty$
$\ln(x) - 1$	_	- 0 +
f'(x)	_	- 0 +
f	$\begin{bmatrix} 0 \\ -\infty \end{bmatrix}$	$+\infty$ $+\infty$

On a utilisé les croissances comparées pour obtenir la limite en $+\infty$.

 $\underline{\text{Partie B}}$: Étude de la régularité de f en 0.

- 1. Par quotient de limites (pas de croissances comparées ici), on a $f(x) \xrightarrow[x \to 0+]{} 0$. Ceci donne que f est prolongeable par continuité en posant f(0) = 0.
- 2. On a déjà dit en partie A que f est dérivable sur]0,1[et que

$$\forall x \in]0,1[f'(x) = \frac{1}{\ln(x)} \left(1 - \frac{1}{\ln(x)}\right).$$

On a $\lim_{x\to 0+} \frac{1}{\ln(x)} = 0$ donc

$$f'(x) \xrightarrow[x \to 0+]{} 0 \times 1 = 0.$$

La fonction f, définie sur [0,1[, est continue en 0 et dérivable sur $[0,1[\setminus\{0\}$. Sa dérivée a une limite finie en 0 (qui est 0). D'après le théorème de la limite de la dérivée, f est dérivable en 0, de dérivée f'(0) = 0.

La fonction f' est continue en 0 (c'est toujours le cas lorsque la dérivabilité en un point est établie via le théorème la limite de la dérivée). Elle est aussi clairement continue sur]0,1[.

Ce qui précède montre donc que f est de classe \mathcal{C}^1 sur [0,1[

3. Soit $x \in]0,1[$. On a

$$\frac{f'(x) - f'(0)}{x - 0} = \frac{\ln(x) - 1}{x \ln(x)^2} = \frac{1}{x \ln(x)} \left(1 - \frac{1}{\ln(x)} \right) \xrightarrow[x \to 0+]{} -\infty.$$

En effet, par croissances comparées, $x \ln(x) \underset{x \to 0+}{\longrightarrow} 0-.$

Ceci montre que f' n'est pas dérivable en 0

Partie C: Suite récurrente associée à f.

- 1. Pour $n \in \mathbb{N}$, notons $\mathcal{P}(n)$ la proposition « $v_n \geq e$ ».
 - L'approximation $e \approx 2,7$ nous donne que $\mathcal{P}(0)$ est vraie.
 - Supposons $\mathcal{P}(n)$ vraie pour un certain $n \in \mathbb{N}$, c'est-à-dire $v_n \geq e$. On sait (voir tableau de variations) que f est croissante sur $[e, +\infty[$. Par conséquent, $v_{n+1} = f(v_n) \geq f(e) = e$, et $\mathcal{P}(n+1)$ est vraie.
 - D'après le principe de récurrence, $\mathcal{P}(n)$ est vraie pour tout $n \in \mathbb{N}$, ce qu'il fallait démontrer.
- 2. Existence de la limite. Pour $n \in \mathbb{N}$, on a $v_n \geq e$ donc $\ln(v_n) \geq 1$ et $v_{n+1} = \frac{v_n}{\ln(v_n)} \leq v_n$. La suite (v_n) est strictement positive, et on a $v_{n+1}/v_n \leq 1$ pour tout n; on en déduit que (v_n) est décroissante. Elle est aussi minorée par e (démontré en B.1). D'après le théorème de la limite

monotone, (v_n) est convergente. On note ℓ sa limite; elle est telle que $\ell \geq e$.

<u>Valeur de la limite</u>. La fonction f est continue sur $[e, +\infty[$, notamment continue en ℓ donc $f(v_n) \to f(\ell)$. En passant à la limite dans $v_{n+1} = f(v_n)$, on obtient $\ell = f(\ell)$ d'où $\ln(\ell) = 1$ et enfin $\ell = e$: $\overline{\lim v_n = e}$.

3. Une brève étude du trinôme $u \mapsto u(1-u)$ montre que la parabole atteint son maximum en $\frac{1}{2}$ [entre les deux racines 0 et 1, symétrie oblige!] On obtient donc facilement l'inégalité demandée.

Soit $x \ge e$. On a $f'(x) = \frac{1}{\ln(x)}(1 - \frac{1}{\ln(x)})$. Or, $\frac{1}{\ln(x)} \in [0, 1]$. En appliquant l'inégalité précédente avec $u = \ln(x)$, on obtient l'encadrement demandé.

4. On vient de montrer que f, fonction dérivable sur $[e, +\infty[$ vérifie $\forall x \geq e \ 0 \leq f'(x) \leq \frac{1}{4}.$

D'après l'inégalité des accroissements finis, f est $\frac{1}{4}$ -lipschitzienne sur $[e, +\infty[$. Rappelons que pour tout n entier, $v_n \in [e, +\infty[$.

$$\forall n \ge 0$$
 $|v_{n+1} - e| = |f(v_n) - f(e)| \le \frac{1}{4}|v_n - e|.$

Soit n un entier naturel

$$|v_n - e| \le \frac{1}{4} |v_{n-1} - e| \le \left(\frac{1}{4}\right)^2 |v_{n-2} - e| \le \dots \le \left(\frac{1}{4}\right)^n |v_{n-n} - e|.$$

Les maniaques écriront une récurrence. Or, $|v_0 - e| = |3 - e| \approx 0, 3 \le 1$, ce qui permet de conclure :

$$\forall n \in \mathbb{N}, \quad |v_n - e| \le \frac{1}{4^n}.$$

5. On a

$$|v_{20} - e| \le \left(\frac{1}{4}\right)^{20} \le \left(\frac{1}{2^{10}}\right)^4 \le \left(\frac{1}{10^3}\right)^4 = 10^{-12}.$$

On a utilisé que $2^{10} = 1024 \ge 10^3$.

L'entier n = 20 (ainsi que tout entier supérieur) convient.

Exercice. Calcul des nombres $\left[\frac{\mathrm{d}^n}{\mathrm{d}x^n}\arcsin^2\right]$ (0).

Dans cet exercice, on note $f: x \mapsto \arcsin^2(x)$. Elle est de classe \mathcal{C}^{∞} sur]-1,1[.

1. La fonction f est de classe C^{∞} sur]-1,1[comme produit de fonctions C^{∞} . Pour x un élément de]-1,1[, on a

$$f'(x) = 2(1 - x^2)^{-1/2} \arcsin(x)$$

$$f''(x) = 2(-1/2)(-2x)(1 - x^2)^{-3/2} \arcsin(x) + 2(1 - x^2)^{-1}$$

Ceci donne bien

$$(1 - x^2)f''(x) - xf'(x) = 2$$

2. Soit $n \in \mathbb{N}^*$. On dérive n fois l'égalité établie à la question précédente. Puisque $n \geq 1$, on a $\frac{\mathrm{d}^n}{\mathrm{d}x^n}[2] = 0$ (dérivée d'une constante). Soit $x \in]-1,1[$. Par linéarité de la dérivée nème, on a

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \left[(1 - x^2) f''(x) \right] - \frac{\mathrm{d}^n}{\mathrm{d}x^n} \left[x f'(x) \right] = 0.$$

Le terme de gauche.

Notons $u: x \mapsto 1 - x^2 = \text{et } v = f''$, deux fonctions de classe \mathcal{C}^{∞} donc \mathcal{C}^n . La formule de Leibniz donne

$$(u \times v)^{(n)} = \sum_{k=0}^{n} \binom{n}{k} u^{(k)} v^{(n-k)}.$$

Or, pour tout $k \geq 3$, la fonction $u^{(k)}$ est nulle. Ceci laisse trois termes dans la somme précédente :

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \left[(1 - x^2) f''(x) \right]
= \binom{n}{0} (1 - x^2) v^{(n)}(x) + \binom{n}{1} (-2x) v^{(n-1)}(x) + \binom{n}{2} (-2) v^{(n-2)}(x)
= (1 - x^2) f^{(n+2)}(x) - 2nx f^{(n+1)}(x) - n(n-1) f^{(n)}(x).$$

Le terme de droite.

On calcule, de même

$$\frac{\mathrm{d}^n}{\mathrm{d}x^n} \left[x f'(x) \right] = \binom{n}{0} x f^{(n+1)}(x) + \binom{n}{1} \cdot 1 \cdot f^{(n)}(x)$$
$$= x f^{(n+1)}(x) + n f^{(n)}(x)$$

La différence des deux dérivées nèmes ci-dessus laisse comme attendu

$$(1 - x^2)f^{(n+2)}(x) - (2n+1)xf^{(n+1)}(x) - n^2f^{(n)}(x) = 0.$$

3. Il suffit d'évaluer en 0 l'identité écrite à la question précédente : on obtient

$$\forall n \in \mathbb{N}^* \quad f^{(n+2)}(0) = n^2 f^{(n)}(0).$$

4. Puisque f'(0) = 0, la question précédente nous donne $f^{(3)}(0) = 1^2 f'(0) = 0$. Une récurrence facile amène

$$\forall n \in \mathbb{N} \quad f^{(2n+1)}(0) = 0.$$

Pour un entier n supérieur à 2, on calcule

$$f^{(2n)}(0) = (2n-2)^{2} f^{(2n-2)}(0)$$

$$= (2n-2)^{2} (2n-4)^{2} f^{(2n-4)}(0)$$

$$= \cdots$$

$$= (2n-2)^{2} (2n-4)^{2} \cdots 2^{2} \underbrace{f^{(2)}(0)}_{=1}$$

$$= \left(\prod_{k=1}^{n-1} (2n-2k)\right)^{2}$$

$$= 2^{2n-2} \left(\prod_{k=1}^{n-1} (n-k)\right)^{2}$$

$$= 2^{2n-2} [(n-1)!]^{2}$$

L'expression trouvée est valable pour n=1. Maintenant qu'on a déterminé une expression compacte, on peut proposer une preuve en bonne et due forme par récurrence (ou estimer, et c'est ce que je vais faire, que le calcul ci-dessus est suffisamment clair). On conclut par

$$\forall n \in \mathbb{N}^* \quad f^{(2n)}(0) = 2^{2n-2} [(n-1)!]^2$$