

INF575 - Final Report

LAO Quentin

December 12, 2022

Table of Contents 1 Classical Abstract interpretations

► Classical Abstract interpretations

▶ DeepPoly relaxation

- Robustness: if $x \in I$, is $F(x) \in I'$?
- Soundness: $F(x) \subset \gamma(F^{\#}(x^{\#}))$
- Find an abstract form (similar for every neuron) that conveys the possible values with fewer approximations.

Box relaxation

Abstraction : $x \in [\ell, u]$

Affine Transformation

- New neuron : $x_{\text{new}} = b + \sum_{i} w_i x_i$
- Abstraction for new neuron:

 - $\begin{array}{ll} & \ell_{\text{new}} := b + \sum_{i} w_{i} (\mathbb{1}_{[w_{i} \geq 0]} \ell_{i} + \mathbb{1}_{[w_{i} < 0]} u_{i}) \\ & u_{\text{new}} := b + \sum_{i} w_{i} (\mathbb{1}_{[w_{i} \geq 0]} u_{i} + \mathbb{1}_{[w_{i} < 0]} \ell_{i}) \end{array}$

- Abstraction for new neuron:
 - $-\ell_{\text{new}} := \max(0, \ell)$
 - $-u_{\text{new}} := \max(0, u)$

Zonotope relaxation

Abstraction : $x = b + \sum_{k} \varepsilon_k a_k$, with $\varepsilon_k \in [-1, 1]$

Affine Transformation

- Abstraction for new neuron :
 - $-x_{\text{new}} := (b + \sum_{i} w_i b_i) + \sum_{i,k} \varepsilon_k^i (a_k^i w_i)$

- Abstraction for new neuron:
 - ReLU(x) = $\lambda x + \varepsilon_{\text{new}} \frac{\mu}{2} + \frac{\mu}{2}$

Polyhedra relaxation

Abstraction: many $\sum_{i} a_{k,i} x_i \leq b_k$ constraints

Summary

Soundness OK

Abstract name	+	-
Box Relaxation	memory friendly	not exact (Affine and ReLU)
Zonotone Relaxation	exact (Affine)	not exact (ReLU) + new uncertainties
Polyhedra Relaxation	more precised	computationally expensive

Summary

Soundness OK

Abstract name	+	-
Box Relaxation	memory friendly	not exact (Affine and ReLU)
Zonotone Relaxation	exact (Affine)	not exact (ReLU) + new uncertainties
DeepPoly?		
Polyhedra Relaxation	more precised	computationally expensive

Table of Contents

2 DeepPoly relaxation

► Classical Abstract interpretations

▶ DeepPoly relaxation

Abstraction:

- a lower bound ℓ_i and a upper bound u_i (Interval constraints) : $\ell_i \leq x_i \leq u_i$
- a_i^{\leq} and a_i^{\geq} both of the form $\sum_j w_j x_j + v$ (Relation constraints): $a_i^{\leq} < x_i < a_i^{\geq}$.

Abstraction:

- a lower bound ℓ_i and a upper bound u_i (Interval constraints) : $\ell_i \leq x_i \leq u_i$
- a_i^{\leq} and a_i^{\geq} both of the form $\sum_j w_j x_j + v$ (Relation constraints):

$$a_i^{\leq} \leq x_i \leq a_i^{\geq}$$
.

- Abstraction for new neuron:
 - $-a_{\text{new}}^{\leq} =: 0 \leq x_{\text{new}} \leq \lambda x + \mu =: a_{\text{new}}^{\geq}$
 - $-\ell_{\rm new}=0$
 - $-u_{\text{new}} = \lambda u + \mu$

DeepSRGR to improve DeepPoly

Main idea : remove spurious regions

DeepSRGR to improve DeepPoly

Main idea : remove spurious regions

References

- Gagandeep Singh, Timon Gehr, Markus Püschel, Martin Vechev 2019. An Abstract Domain for Certifying Neural Networks
- Matthew Mirman, Timon Gehr, and Martin Vechev. 2018. Differentiable Abstract Interpretation for Provably Robust Neural Networks. In Proc. International Conference on Machine Learning (ICML). 3575-3583.
- Pengfei Yang, Renjue Li, Jianlin Li, Cheng-Chao Huang, Jingyi Wang, Jun Sun, Bai Xue, and Lijun Zhang, *Improving Neural Network Verification through Spurious Region Guided Refinement*, 2021