Définition du problème

$$\min_{x \in \mathbb{R}^n} f(x)$$

sous contraintes

$$h(x) = 0,$$

$$g(x) \le 0,$$

$$x \in X.$$

- $f: \mathbb{R}^n \to \mathbb{R}$, n > 0
- $h: \mathbb{R}^n \to \mathbb{R}^m$, $m \geq 0$
- $g: \mathbb{R}^n \to \mathbb{R}^p$, $p \geq 0$
- $X \subseteq \mathbb{R}^n$ ensemble convexe

Définition du problème

Point admissible

Soit le problème d'optimisation ci-dessus. Un point $x \in \mathbb{R}^n$ est dit admissible s'il vérifie toutes les contraintes.

Analyse des contraintes

- Contraintes actives
- Indépendance linéaire des contraintes
- Directions admissibles
- Elimination des contraintes

 $\min_{x \in \mathbb{R}} x^2$

S.C.

$$x \leq 4$$

$$x > -10$$

Solution : $x^* = 0$

 $\min_{x \in \mathbb{R}} x^2$

S.C.

$$\begin{array}{ccc} x & \leq & 4 \\ x & \geq & -10 \end{array}$$

 $\min_{x \in \mathbb{R}} x^2$

S.C.

$$g_1(x) = x - 4 \le 0$$

 $g_2(x) = -x - 10 \le 0$

$$x^* = 0$$
 $g_1(x^*) = -4 < 0$
 $g_2(x^*) = -10 < 0$

Les deux contraintes sont inactives

 $\min_{x \in \mathbb{R}} x^2$

S.C.

 $x \leq 4$

 $x \geq 1$

Solution : $x^* = 1$

 $\min_{x \in \mathbb{R}} x^2$

S.C.

$$\begin{array}{ccc} x & \leq & 4 \\ x & \geq & 1 \end{array}$$

 $\min_{x \in \mathbb{R}} x^2$

S.C.

$$g_1(x) = x - 4 \leq 0$$

$$g_2(x) = 1 - x \leq 0$$

$$x^* = 1$$
 $g_1(x^*) = -3 < 0$
 $g_2(x^*) = 0$

 g_1 est inactive, g_2 est active

Contraintes actives

Soient $g:\mathbb{R}^n \to \mathbb{R}$ et $h:\mathbb{R}^n \to \mathbb{R}$. Une contrainte d'inégalité

$$g(x) \le 0$$

est dite active en x^* si

$$g(x^*) = 0,$$

et inactive en x^* si

$$g(x^*) < 0.$$

Contraintes actives (suite)

Par extension, une contrainte d'égalité

$$h(x) = 0$$

sera dite active en x^* si elle est vérifiée en x^* , c'est-à-dire si

$$h(x^*) = 0.$$

L'ensemble des indices des contraintes actives en x^* sera généralement noté $\mathcal{A}(x^*)$.

Contraintes actives Soit un vecteur $x^* \in \mathbb{R}^n$. Soit le problème d'optimisation P_1 ,

$$\min_{x \in \mathbb{R}^n} f(x)$$

sous contraintes

$$g(x) \le 0,$$

$$x \in Y \subseteq \mathbb{R}^n$$
.

avec $g:\mathbb{R}^n\longrightarrow\mathbb{R}^m$ et Y est un sous-ensemble de \mathbb{R}^n .

(suite)

Contraintes actives (suite) Si x^* est admissible, c'est-à-dire $g(x^*) \leq 0$, et si $\mathcal{A}(x^*) \subseteq \{1, \ldots, p\}$ est l'ensemble des indices des contraintes actives en x^* , c'est-à-dire

$$\mathcal{A}(x^*) = \{i | g_i(x^*) = 0\},\$$

nous considérons le problème d'optimisation P_2 suivant

$$\min_{x \in \mathbb{R}^n} f(x)$$

sous contraintes

$$g_i(x) = 0, \quad i \in \mathcal{A}(x^*),$$

 $x \in Y \subseteq \mathbb{R}^n.$

Alors, x^* est un minimum local de P_1 si et seulement si x^* est un minimum local de P_2 .

- On peut ignorer les contraintes inactives à la solution
- On peut considérer les contraintes actives à la solution comme des contraintes d'égalité

Indépendance linéaire des contraintes

- Analyse des contraintes très complexe
- Nécessité de définir des hypothèses qui
 - évitent les cas pathologiques,
 - restent générales en pratique.
- Cas linéaire : simple et intuitif
- Cas non linéaire : plus complexe

 $\min f(x)$

sous contraintes

 $\begin{array}{ccc}
Ax & = & b \\
x & \geq & 0
\end{array}$

Système linéaire:

- incompatible, $\not\exists x$ tel que Ax = b;
- sous-déterminé, un nombre infini de x tels que Ax = b
- non singulier, $\exists x$ unique qui vérifie Ax = b.

 $\min f(x)$

sous contraintes

Système linéaire:

- incompatible, $\not\exists x$ tel que Ax = b;
- sous-déterminé, un nombre infini de x tels que Ax = b
- non singulier, $\exists x$ unique qui vérifie Ax = b.

Contraintes redondantes Soit un système compatible de contraintes d'égalité linéaires Ax = b, avec $A \in \mathbb{R}^{m \times n}$, $m \leq n$. Si le rang de A est déficient, c'est-à-dire $\operatorname{rang}(A) = r < m$, alors il existe une matrice $\tilde{A} \in \mathbb{R}^{r \times n}$ de rang plein (i.e. $\operatorname{rang}(\tilde{A}) = r$), composée exclusivement de lignes ℓ_1, \ldots, ℓ_r de A telle que

$$\tilde{A}x = \tilde{b} \iff Ax = b.$$

où \tilde{b} est composées des éléments ℓ_1,\ldots,ℓ_r de b.

(p. 63)

$$x_1 + x_2 + x_3 = 1$$

$$x_1 - x_2 + x_4 = 1$$

$$x_1 - 5x_2 - 2x_3 + 3x_4 = 1$$

c'est-à-dire

$$A = \begin{pmatrix} 1 & 1 & 1 & 0 \\ 1 & -1 & 0 & 1 \\ 1 & -5 & -2 & 3 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- Système compatible : (2/3, 0, 1/3, 1/3)
- rang(A) = 2
- Combinaison linéaire : $a_3 = -2a_1 + 3a_2$

- On peut supprimer la contrainte 3
- Le système

$$\begin{array}{rcl} x_1 + x_2 + x_3 & = & 1 \\ x_1 - x_2 + x_4 & = & 1 \end{array}$$

est équivalent à

$$x_1 + x_2 + x_3 = 1$$

$$x_1 - x_2 + x_4 = 1$$

$$x_1 - 5x_2 - 2x_3 + 3x_4 = 1$$

- On peut toujours supposer que des contraintes linéaires sont linéairement indépendantes.
- Si ce n'est pas le cas, il y a des contraintes redondantes.
- Il suffit de les supprimer.

$$h(x) = 0$$

Linéarisation autour de x^+ (Taylor 1er ordre)

$$h(x^{+}) + \nabla h(x^{+})^{T}(x - x^{+}) = 0$$

ou encore

$$\nabla h(x^+)^T x = \nabla h(x^+)^T x^+ - h(x^+).$$

avec $\nabla h(x^+) \in \mathbb{R}^{n \times m}$, ou encore

$$Ax = b$$

avec
$$A = \nabla h(x^+)^T$$
 et $b = \nabla h(x^+)^T x^+ - h(x^+)$.

Les gradients des contraintes d'égalité jouent un rôle similaire aux lignes de la matrice A

Indépendance linéaire des contraintes

Soit le problème d'optimisation $\min_{x \in \mathbb{R}^n} f(x)$ sous contraintes h(x) = 0 et $g(x) \leq 0$, et soit un point admissible x^+ .

Nous dirons que la condition d'indépendance linéaire des contraintes est vérifiée en x^+ si les gradients des contraintes d'égalité et les gradients des contraintes d'inégalité actives en x^+ sont linéairement indépendants.

Par abus de langage, nous dirons parfois simplement que les contraintes sont linéairement indépendantes

Soit un problème d'optimisation dans \mathbb{R}^2 avec la contrainte d'inégalité

$$g(x) = x_1^2 + (x_2 - 1)^2 - 1 \le 0$$

et la contrainte d'égalité

$$h(x) = x_2 - x_1^2 = 0.$$

Nous avons

$$\nabla g(x) = \begin{pmatrix} 2x_1 \\ 2x_2 - 2 \end{pmatrix} \text{ et } \nabla h(x) = \begin{pmatrix} -2x_1 \\ 1 \end{pmatrix}$$

Direction admissible

Soit le problème général d'optimisation, et soit un point $x \in \mathbb{R}^n$ admissible. Une direction d sera dite admissible en x s'il existe $\eta > 0$ tel que $x + \alpha d$ soit admissible pour tout $0 < \alpha \leq \eta$.

Direction admissible dans un convexe Soit X un ensemble convexe, et soient $x, y \in X$, $y \neq x$.

La direction d=y-x est une direction admissible en x et, de plus $x+\alpha d=x+\alpha (y-x)$ est admissible pour tout $0\leq \alpha \leq 1$.

(par définition)

Directions admissibles : cas linéaire Soit le problème d'optimisation $\min f(x)$ sous contraintes Ax = b et $x \ge 0$, et soit un point admissible x^+ . Une direction d est admissible si et seulement si

- 1. Ad = 0, et
- 2. $d_i \ge 0$ si $x_i^+ = 0$.

(p. 69)

Attention : la généralisation aux contraintes non linéaires est compliquée Interprétons ce résultat en termes de gradients...

Contraintes d'égalité

$$h_i(x) = a_i^T x - b_i = 0 \quad i = 1, \dots, m.$$

Première condition du théorème

$$a_i^T d = 0$$
 ou encore $\nabla h_i(x)^T d = 0$ $i = 1, \dots, m$.

Contraintes d'inégalité

$$g_i(x) = -x_i (\leq 0)$$
 et donc $\nabla g_i(x)^T d = -d_i$.

Seconde condition du théorème Si la contrainte $g_i(x)$ est active en x^+ , alors $\nabla g_i(x^+)^T d \leq 0$

Malheureusement, la généralisation de ces résultats au cas non linéaire est non triviale.

Notons que le gradient des contraintes pointe toujours vers l'extérieur

Exemple:

$$g(x) = \frac{1}{2}(x_1 - 1)^2 + \frac{1}{2}(x_2 - 1)^2 - \frac{1}{2},$$

et donc

$$\nabla g(x) = \left(\begin{array}{c} x_1 - 1 \\ x_2 - 1 \end{array}\right).$$

Directions admissibles : une contrainte d'inégalité Soit

 $g:\mathbb{R}^n\longrightarrow\mathbb{R}$ une fonction différentiable, et soit $x^+\in\mathbb{R}^n$ tel que $g(x^+)\leq 0$.

- 1. Si la contrainte $g(x) \leq 0$ est inactive en x^+ , alors toute direction est admissible en x.
- 2. Si la contrainte est active en x^+ , et que $\nabla g(x^+) \neq 0$, alors une direction d est admissible en x^+ si

$$\nabla g(x^+)^T d < 0.$$

(p. 72)

Important : la condition 2 est suffisante mais pas nécessaire

Dans le cas linéaire, on a \leq au lieu de <

Que se passe-t-il si $\nabla g(x^+)^T d = 0$.

- Soit le gradient est nul.
- Soit d est tangent à la contrainte.

Taylor:

$$g(x^{+} + \alpha d) = g(x^{+}) + \alpha d^{T} \nabla g(x^{+}) + o(\alpha ||d||) = o(\alpha).$$

Rien ne garanti que $o(\alpha) \leq 0$.

Cependant, on peut rendre ce point "aussi peu non admissible" que désiré en choisissant un α suffisamment petit.

Il faudra donc utiliser des suites et passer à la limite.

Contrainte d'égalité:

$$h(x) = 0.$$

On peut écrire

$$h(x) \leq 0$$

$$-h(x) \leq 0.$$

Si x^+ est admissible, ces deux contraintes d'inégalité sont actives. Cependant, aucune direction d ne peut vérifier

$$\nabla h(x^+)^T d < 0 \text{ et } - \nabla h(x^+)^T d < 0$$

On a vu plus haut qu'il fallait utiliser des suites...

Suites admissibles

Suites admissibles

Considérons le problème d'optimisation $\min_{x \in \mathbb{R}^n} f(x)$ s.c. h(x) = 0, $g(x) \leq 0$ et $x \in X$, et un point $x^+ \in \mathbb{R}^n$ admissible.

Une suite $(x_k)_{k\in\mathbb{N}}$, avec $x_k\in\mathbb{R}^n$ pour tout k est appelée suite admissible en x^+ si les conditions suivantes sont vérifiées:

- 1. $\lim_{k \to \infty} x_k = x^+$,
- 2. Il existe k_0 tel que x_k est admissible pour tout $k \geq k_0$,
- 3. $x_k \neq x^+$ pour tout k.

L'ensemble des suites admissibles en x^+ est noté $S_a(x^+)$.

Suites admissibles

Considérons, dans \mathbb{R}^2 , la contrainte

$$h(x) = x_1^2 - x_2 = 0,$$

et le point admissible $x^+ = (0,0)^T$. La suite définie par

$$x_k = \begin{pmatrix} \frac{1}{k} \\ \frac{1}{k^2} \end{pmatrix}$$

vérifie les trois conditions de la définition et appartient donc à $S_a(x^+)$.

Suites admissibles

Considérons une suite $(x_k)_k$ admissible en x^+ , et relions chaque x^+ à chaque x_k

Nous obtenons des directions. En les normalisant, nous avons

$$d_k = \frac{x_k - x^+}{\|x_k - x^+\|},$$

Nous notons

$$d = \lim_{k \to \infty} d_k$$

Attention : le passage à la limite ne peut pas toujours se faire Exemple:

$$h(x) = x_1^2 - x_2 = 0,$$

et le point admissible $x^+ = (0,0)^T$. Suite admissible :

$$x_k = \left(\begin{array}{c} \frac{(-1)^k}{k} \\ \frac{1}{k^2} \end{array}\right)$$

Directions admissibles

Direction admissible à la limite

Considérons le problème d'optimisation $\min_{x \in \mathbb{R}^n} f(x)$ s.c. h(x) = 0, $g(x) \leq 0$ et $x \in X$, et un point $x^+ \in \mathbb{R}^n$ admissible.

Soit $(x_k)_{k\in\mathbb{N}}$ une suite admissible en x^+ .

La direction $d \neq 0$ est une direction admissible à la limite en x^+ pour la suite $(x_k)_{k \in \mathbb{N}}$ s'il existe une sous-suite $(x_{k_i})_{i \in \mathbb{N}}$ telle que

$$\frac{d}{\|d\|} = \lim_{i \to \infty} \frac{x_{k_i} - x^+}{\|x_{k_i} - x^+\|}.$$

Directions admissibles

- Toute direction admissible est aussi une direction admissible à la limite
- Pour le montrer, considérer la suite admissible

$$x_k = x^+ + \frac{1}{k}d$$

- Le concept de direction admissible est plus intuitif que celui basé sur $\nabla h(x)^T d$
- Mais il n'est pas utilisable en pratique
- Heureusement, les deux sont liés.

Cône des directions

Soit $\min_{x \in \mathbb{R}^n} f(x)$ s.c. h(x) = 0, $g(x) \le 0$ et $x \in X$, et un point $x^+ \in \mathbb{R}^n$ admissible.

L'ensemble constitué des directions d telles que

$$d^T \nabla g_i(x^+) \leq 0$$
, $\forall i = 1, \dots, p \text{ tel que } g_i(x^+) = 0$,

et

$$d^T \nabla h_i(x^+) = 0, \quad i = 1, \dots, m,$$

et de tous leurs multiples, c'est-à-dire

 $\{\alpha d | \alpha > 0 \text{ et } d \text{ v\'erifie les deux conditions ci-dessus}\}$

est appelé cône des directions en x^+ et est noté $\mathcal{D}(x^+)$.

Directions admissibles à la limite Considérons le problème d'optimisation $\min_{x \in \mathbb{R}^n} f(x)$ s.c. h(x) = 0, $g(x) \le 0$ et $x \in X$ et un point $x^+ \in \mathbb{R}^n$ admissible.

Toute direction admissible à la limite en x^+ appartient au cône des directions en x^+ .

(p. 78)

- On sait que toute direction admissible à la limite est dans le cône des directions
- L'inverse n'est pas toujours vrai
- Or, le cône de directions est plus pratique à manipuler
- Nous nous intéresserons aux cas où le cône des directions est exactement l'ensemble des directions admissibles à la limite.
- On dira dans ce cas que les contraintes sont qualifiées.

Qualification des contraintes

Soit un problème d'optimisation $\min_{x \in \mathbb{R}^n} f(x)$ s.c. h(x) = 0, $g(x) \leq 0$ et $x \in X$, et soit un point admissible x^+ .

La condition de qualification des contraintes est vérifiée si tout élément du cône des directions en x^+ est une direction admissible à la limite en x^+ .

- Si les contraintes sont linéaires, alors la qualification des contraintes est vérifiée en tout point admissible.
- Si les contraintes sont linéairement indépendantes en x^+ , alors la qualification des contraintes est vérifiée en x^+ .

- S'il existe un vecteur $d \in \mathbb{R}^n$ tel que
 - 1. $\nabla h_i(x^+)^T d = 0$, pour tout i = 1, ..., m,
 - 2. $\nabla g_i(x^+)^T d < 0$ pour tout $i = 1, \ldots, p$ tel que $g_i(x^+) = 0$ et que les contraintes d'égalité sont linéairement indépendantes en x^+ , alors la qualification des contraintes est vérifiée en x^+ .

• S'il n'y a pas de contrainte d'égalité, que les fonctions g_i sont convexes, et qu'il existe un vecteur x^- tel que

$$g_i(x^-) < 0$$
 pour tout $i = 1, ..., p$ tel que $g_i(x^+) = 0$,

alors la qualification des contraintes est vérifiée en x^+ .

En général, on supposera que la qualification des contraintes est vérifiée

$$\min f(x_1, x_2, x_3, x_4) = x_1^2 + \sin(x_3 - x_2) + x_4 + 1$$

sous contraintes

$$x_1 + x_2 + x_3 = 1$$

 $x_1 - x_2 + x_4 = 1$

Nous pouvons réécrire les contraintes :

$$\begin{array}{rcl} x_3 & = & 1 - x_1 - x_2 \\ x_4 & = & 1 - x_1 + x_2 \end{array}$$

On obtient un problème en x_1 et x_2 :

$$\min f(x_1, x_2) = x_1^2 + \sin(-x_1 - 2x_2 + 1) - x_1 + x_2 + 2$$

sans contrainte.

- Soit les contraintes Ax = b, avec $A \in \mathbb{R}^{m \times n}$ de rang plein.
- Soient m colonnes linéairement indépendantes de A correspondant aux variables que l'on désire éliminer.
- Appliquons une permutation $P \in \mathbb{R}^{n \times n}$ des colonnes de A de telle manière qu'il s'agisse des m premières colonnes.

$$AP = (B\ N)$$
 avec $B \in \mathbb{R}^{m \times m}, N \in \mathbb{R}^{m \times (n-m)}$

• On peut écrire

$$Ax = AP(P^Tx) = Bx_B + Nx_N = b$$

Comme B est carrée et non singulière

$$x_B = B^{-1}(b - Nx_N).$$

Donc,

$$\min_{x_B, x_N} f(x) = f\left(P\left(\begin{array}{c} x_B \\ x_N \end{array}\right)\right)$$

sous contraintes $(Ax =)Bx_B + Nx_N = b$, est équivalent au problème sans contrainte

$$\min_{x_N} f\left(P\left(\begin{array}{c} B^{-1}(b-Nx_N) \\ x_N \end{array}\right)\right).$$

$$\min f(x_1, x_2, x_3, x_4) = x_1^2 + \sin(x_3 - x_2) + x_4 + 1$$

sous contraintes

$$x_1 + x_2 + x_3 = 1$$

 $x_1 - x_2 + x_4 = 1$

Eliminons x_3 et x_4 , donc

$$P = \left(\begin{array}{cccc} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{array}\right)$$

$$AP = (B|N) = \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & -1 \end{pmatrix}$$

et
$$x_B =$$

$$\begin{pmatrix} x_3 \\ x_4 \end{pmatrix} = B^{-1}(b - Nx_N)$$

$$= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} - \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \end{pmatrix}$$

$$= \begin{pmatrix} 1 - x_1 - x_2 \\ 1 - x_1 + x_2 \end{pmatrix}$$

Dans le cas non linéaire, attention!

$$\min_{x} f(x_1, x_2) = x_1^2 + x_2^2$$
 s. c. $(x_1 - 1)^3 = x_2^2$

Solution: (1,0). Eliminons x_2^2

$$\min_{x_1} \tilde{f}(x_1) = x_1^2 + (x_1 - 1)^3.$$

 \widetilde{f} n'est pas borné inférieurement

Contrainte implicite : $x_1 - 1 \ge 0$

