RICERCA OPERATIVA prova parziale del 30 Aprile 2008

GRUPPO A

Domanda 1

Dare la definizione di problema combinatorico e di problema di ottimizzazione combinatoria.

Un problema combinatorico è definito da una coppia (U, \Im) , dove U è un insieme finito e \Im una famiglia di sottoinsiemi di U definita implicitamente tramite una predicato verificato da tutti e soli gli elementi di \Im . Il problema consiste nel dire se \Im è vuota oppure no.

Un problema di ottimizzazione combinatoria aggiunge a questi elementi una funzione $c: U \to IR$, e, posto $c(X) = \sum_{u \in U} c(u)$, consiste nell'individuare, se esiste, un $X^* \in \mathfrak{I}$ tale che $c(X^*) \leq c(X)$ per ogni $X \in \mathfrak{I}$.

Domanda 2

- 1. Dare la definizione di insieme dominante su un grafo.
- 2. Definire la coppia (U, \mathfrak{I}) del problema combinatorico associato all'insieme dominante di un grafo.
- 3. Dato il seguente grafo G illustrare e applicare l'algoritmo greedy per determinare l'insieme dominante di peso minimo rispetto alla funzione peso $c: V \to \mathbb{R}_+$ i cui valori sono rappresentati in figura.
- 4. La soluzione trovata è ottima?
- 5. In generale, l'algoritmo greedy determina un ottimo del problema dell'insieme dominante di peso minimo? Motivare la risposta.

- 1. Un insieme dominante è un insieme di vertici D tale che ogni $u \in V D$ è adiacente ad almeno un elemento di D.
- 2. U = V, $\Im = \{X \subseteq U : \forall u \in V D \exists v \in D : uv \in E\}$
- 3. Poiché l'insieme dominante è superclusivo occorre far ricorso a una codifica decrementale. Iniziando da D := V, l'algoritmo greedy elimina vertici da D in ordine di peso non crescente finché D conserva la proprietà di essere dominante. In questo caso un run dell'algoritmo eliminerebbe nell'ordine i vertici e, g, b, c, f. La soluzione ottenuta ha peso 6 ed è ottima.
- 4. In generale, però, l'algoritmo greedy non è in grado di determinare una soluzione ottima. Prendiamo il grafo $(\{1, 2, 3, 4\}, \{12, 13, 14\})$ e supponiamo $c_2 = c_3 = c_4 = 1$, $c_1 = 2$. L'algoritmo greedy elimina dunque il vertice 1 e raggiunge un insieme minimale di peso 3; tuttavia l'insieme $\{1\}$ è dominante e ha peso 2.

Domanda 3

- 1. Definire la combinazione conica di un insieme di vettori.
- 2. Dire se il vettore $\mathbf{v} = (-5/2, 2/3, -2)$ è una combinazione conica dei vettori $\mathbf{u}_1 = (1/2, 0, 2)$, $\mathbf{u}_2 = (-1, 1/3, 0)$ e $\mathbf{u}_3 = (2, 1, 1/2)$.
- 1. La combinazione conica di un insieme di m vettori è un vettore ottenuto combinandoli linearmente con coefficienti $l_1, \ldots l_m$ che verificano la condizione $l_i \ge 0$.
- 2. Il vettore \mathbf{v} è combinazione lineare di \mathbf{u}_1 , \mathbf{u}_2 , \mathbf{u}_3 con coefficienti $I_1 = -1$, $I_2 = 2$, $I_3 = 0$. La combinazione è affine, e poiché vi sono coefficienti negativi non è conica.

Domanda 4

- 1. Dare la definizione di matroide.
- 2. Dato un grafo G = (V, E), siano U = V l'insieme universo e \mathfrak{I} la famiglia così definita: $\mathfrak{I} = \{X \subseteq U: X = \{u_1, ..., u_m\} \text{ è un insieme stabile e per ogni } u_i \in X \text{ esiste un nodo } w \in V X \text{ tale che } wu_{i+1} \in E \text{ ma } u_j w \notin E \text{ per qualsiasi } j < i\}.$ Dire se la coppia (U, \mathfrak{I}) è un matroide oppure, in caso contrario, fornire un controesempio.
- 1. Una coppia (U, \Im) con $\Im \subseteq 2^U$ è un matroide se verifica le condizioni $(i) \varnothing \in \Im$; $(ii) X \in \Im$, $Y \subseteq X \Rightarrow Y \in \Im$; $(iii) X, Y \in \Im$, $|X| < |Y| \Rightarrow \exists y \in Y X : X \cup \{y\} \in \Im$.
- 2. Sia X in \Im . Allora i nodi di X possono essere ordinati in modo che ciascuno, tranne eventualmente il primo, sia adiacente a un nodo distinto di V-X (se così non fosse e due nodi di X avessero intorno coincidente si violerebbe la proprietà che definisce \Im). Questa proprietà si conserva evidentemente per ogni sottoinsieme di X, dunque \Im è subclusiva Banalmente però non vale la proprietà di scambio: consideriamo il grafo $P_4 = (\{1, 2, 3, 4\}, \{12, 23, 34\})$, con $X = \{2\}$, $Y = \{1, 3\}$ entrambi appartenenti a \Im . Chiaramente nessun elemento di Y può aggiungersi a X, perché l'insieme risultante non sarebbe stabile.

Domanda 5

In un grafo G si definisce taglio un qualsiasi insieme degli archi minimale che interseca gli archi di ogni cammino di G. Formulare come programmazione lineare 0-1 il problema di determinare il più piccolo insieme di archi di G che costituisca un taglio.

Il problema può formularsi in modi diversi. Il più diretto consiste nel passare per la definizione di (s, t)-taglio, vale a dire un taglio che separa due nodi specificati s e t. Definendo il vettore caratteristico \mathbf{x} di un taglio di G = (V, E) attraverso variabili $x_{uv} \in \{0, 1\}$ definite per ogni $uv \in E$, per definizione almeno una variabile x_{uv} dovrà valere 1 per gli uv appartenenti a qualsiasi cammino P di G che abbia s come primo nodo e t come ultimo nodo (s, t)-cammino. Il problema quindi si formula

min
$$\sum_{uv \in E} x_{uv}$$

 $\sum_{uv \in P} x_{uv} \ge 1$ per ogni $P \subseteq E$ che costituisce un (s, t) -cammino di G
 $x_{uv} \in \{0, 1\}$

A questo punto, il minimo taglio si calcola scegliendo il minimo tra gli (s, t)-tagli di G al variare di s e t in tutti i modi possibili.