Analyse des formes spatiales :

Analyse des surfaces et des mailles : données Raster / grid

A- TYPE DE SURFACE

- 1- Nature de l'information
 - a-phénomènes continus / phénomènes discrets :
 - b- phénomènes qualitatifs/phénomènes quantitatifs

Données primaire ou données secondaires???

Données primaire : collecte directe de l'information

Données secondaires : restituées a partir d'un échantillonnage en certains points (influencent les résultats de l'analyse et cela selon la méthode de restitution utilisée : ex moyenne...)

Dans ce cas Analyse spatiale:

Va utiliser des fonctionnalités qui permettent de <u>déduire de</u> <u>nouvelles information</u> à partir des informations contenues dans la base de données

Comment procèdent elle:

Elle exploitent <u>les différentes composantes</u> des données géographique : C. géométrie, C. Sémantique et C. Topologie

Elle utilise <u>des langages et des outils</u> élémentaires pour construire des outils plus complexes

Langages: Requêtes SQL

Outils: Opérateurs spatiaux (intersection, union;;;;;)

SURFACES OBSERVABLES DIRECTEMENT

- **2-** *Type de collecte*: Même si le phénomène est continu, la collecte des données se fait par :
- Recueil exhaustif? / Sondage aléatoire?? Carroyage?/Maillage?/Points représentatif? (observation objective (phéno mesurable), subjective)
- L'analyse d'une surface ne sera pas menée de la même manière (Elle varie selon la façon dont les <u>données ont été recueillies</u>

ex MNT, pas est de 5m, 10m...1km : qui définit l'espacement des points de collecte des altitudes.

NB: <u>l'analyse ne pourra repérer que des formes spatiales d'un</u> <u>niveau supérieur au niveau de résolution</u> (niveau de collecte des données)

Avant toute analyse il faut : connaître le mode d'obtention d'une information et la méthode d'agrégation ou de reconstitution utilisée pour son obtention

Même si un phénomène est continu, le recueil des informations se fait toujours à un certain niveau de résolution (pas de mesure) (élimination d'une certaine partie de variation spatiale

Avant toute analyse il faut : <u>connaître le mode d'obtention d'une information et la</u> <u>méthode d'agrégation ou de reconstitution utilisée pour son obtention (voir exemple ci dessous : données primaire ; données secondaire reconstituées)</u>

Agrégation par calcul des valeurs moyennes (lissage)

10	8	12			1
o,	5	15	13	4	7
თ	4	13	12	5	8
4	13	25	26	15	16
5		34			15
23	30	40	12	7	11

	8	13	5
	6	19	11
:moyenne=>	17	25	13

13

Agrégation par tirage au sort (échantillonnage)

10	Ω	12	10	8	1				
			12	-					
7	_5_			4_	_				
3	4	13	<u> 12</u>	5	8				
4	13	25	26	15	16				
5	10	34	14	19	15				
23	30	40	12	7	11	_tir	211	sort	
						— tii (. au	SOL	ι— <i>/</i>

	10	12	8
	4	26	5
>	30	34	19

=moyenne=>

12

B- ANALYSE DES PHENOMENES DISTRIBUES SUR UNE GRILLE : raster

Pour analyser un phénomène continu on regarde comment il varie localement : voisinage, moy locale, hétérogénéité locale, gradient local. Pour cela on fait appel à

1- Opérateurs locaux sur grille régulière : raster (pixel)

E un espace rectangulaire (Xmin, Ymin, Xmax, Ymax), on dispose d'une grille régulière de N points (Xi, Yi) affectés d'une valeur Zij.

a- voisinage dans une grille:

- C' est une fonction de pondération W qui associe à tout point (i,j) une nouvelle valeur de relation avec ses voisins (et avec lui-même) comprise entre 0 et 1; et telle que $\sum W = 1$
- (voisinage peut se limiter aux cellules contiguës, ou inclure des cellules lointaines)

Types de contiguïté : voisinage entre des surfaces

 Deux points de frontière en commun entre unités territoriales adjacents

(Cas de la tour)

Un seul point de frontière en commun (Cas du fou : cas théorique et déconseillé)

Plusieurs points de frontière en commun

Cas de la reine : Contiguïté au sens des SIG)

b- Opérateurs locaux

sont des fonctions f(Z,W) qui associent, à tout point (i,j) de la grille, une nouvelle valeur qui dépend des valeurs de la variable Z dans son voisinage W. Ils peuvent mesurer : la valeur moyenne, la valeur maximale, la valeur minimale, la variance locale, le gradient local, etc (TP: ex min>3 (0, 1), requetes SQL...

b1-Moyenne locale (voir exemple ci après)

Moyenne locale :
$$m(Zij,W) = \sum_{i=k,i=k}^{i+k,j+k} (Z_{ij} \times W_{ij})$$

b2-Gradient local

On calcule les pentes dans le sens des X et dans le sens des Y

$$Grad_X = dz/dX = (Z_{i+1J} - Z_{i-1J})/Distance (i-1, i+1)$$
 $Grad_Y = dz/dY = (Z_{i-i+1} - Z_{i-1J})/Distance (J-1, J+1)$

On en déduit la pente globale

$$Grad = dz/dXdY = \sqrt{(Grad_X)^2 + (Grad_Y)^2}$$

La direction de cette pente est = $ArcTangente Grad_Y / Grad_X$

Exemple de voisinage : calculer la moyenne locale dans les deux cas de voisinage ????

Coordo	nnées (i,	j)	Valeurs Z(i,j)	de	
(i-1,j+1)	(i, j+1)	(i+1,j+1)	110	110	150
(i-1, j)	(i, j)	(i+1, j)	80	100	130
(i-1,j-1)	(i , j-1)	(i+1,j-1)	90	90	120
Voisina	ge 1		Voisinage 2		
0	1/5	0	1/16	1/8	1/16
1/5	1/5	1/5	1/8	1/4	1/8
О	1/5	О	1/16	1/8	1/16

Exemple de voisinage : calculer la moyenne locale dans les deux cas de voisinage ????

Coordo	Coordonnées (i,j)			Valeurs de Z(i,j)		
(i-1,j+1)	(i, j+1)	(i+1,j+1)		110	110	150
(i-1, j)	(i, j)	(i+1, j)		80	100	130
(i-1,j-1)	(i , j-1)	(i+1,j-1)		90	90	120
Voisina	ge 1			Voisinage 2		
О	1/5	0		1/16	1/8	1/16
1/5	1/5	1/5		1/8	1/4	1/8
О	1/5	О		1/16	1/8	1/16

Exemple : pour le voisinage 1

la moyenne locale : (80+90+100+110+130)/5 = 510/5 = 102 m

Pour le voisinage 2,

la moyenne locale : [(100)/4 +(80+ 90+110+ 130)/8 + (110+90+120+150)/16] = **105,7 m**

2- Influence du niveau d'analyse sur le calcul des gradient

Sur une *carte au 1/50 000e*, une coupe de 25 km de longueur, on a relevé un échantillon de 100 points d'altitude, régulièrement espacés tous les :

900

300

(a) Alt. moy et Grad- pas de 250 m (voisinage de 250m)

(b) Alt. moy et Grad- pas de 2 km

■ pente17

-moy17

(C) Alt. moy et Grad- pas de 4 km

C- ANALYSE DES PHENOMENES CONNUS SELEMENT EN CERTAINS POINTS

information primaire: information secondaire??

	10	?	?	12	8	?
ı	۰.	۰.	۰.	?	۰.	۰.
I	?	4	?	?	5	?
	۰.	?	?	26	?	?
	?	?	34	?	19	?
ı	?	30	?	?	?	?

1-Technique d'interpolation

L'interpolation permet de reconstituer l'ensemble de la distribution d'un phénomène continu dont <u>les valeurs connues en certains points</u> de l'espace (ex: température, précipitation . Points : station météorologiques)

L'interpolation est une technique cartographique commune, basée sur les SIG, pour les données quantitatives.

Les méthodes d'interpolation très nombreuses ???

la plus simple est l'interpolation linéaire à partir d'une triangulation de l'espace entre les points pour lesquels la valeur est connue (voir exemple suivant

Exemple d'interpolation par triangulation : reconstitution des iso pièzes d'une nappe a partir du niveau piézométrique mesurés dans des puits (reconstitution de la surface de la nappe : reconstruit des iso lignes pour délimiter des surface

l'échelle de reconstitution a un (effet sur la lisibilité des surface : voir exemple ci après : densité commune ?? province ?? (svt Grande échelle sur grande superficie donne plus détail mais qui cache la tendance)

OSA. Carte de densite par Comies

Effet de l'échelle de reconstitution des surfaces sur la lisibilité des résultats obtenus : Plus de détaille cache la tendance générale : interprétation pas facile

Etats Unis d'Amérique : Densité de population 2005 par comtés

La répartition des densités est plus lisible (mais moins de détail que dans la première carte): ici la densité est calculée a

l'échelle des états (petite échelle):

Etats Unis d'Amérique : Densité de population 2005 par états

a- Interpolation à partir d'un échantillon de points connus :

- Les méthodes d'interpolation font appel à des notions mathématiques assez difficiles : fonctions polynomiales), les plus classiques :
- Splines (lissage), Krigeage, IDW,, Surfaces de tendance, etc... sont intégrées dans les logicielles SIG commerciales (Spatial Analyst, Vertical Mapper, Idrisi, Surfer...)

Quel usage pour l'interpolation?

- Descriptif (cartographie)
- Analytique (ex: zone d'intérêt ou analyse de risque : utilisation des requêtes)
- Modélisation (automatisation / model builder : ARGIS,

Différentes fonctions de lissage (voir cours de Bernoussi) sont possible, mais seules quelques unes sont réellement utiles

- Lissage Gaussien (normal)
- Lissage Triangulaire (conique)
- Lissage Quadratique (hémispherique)

Le choix de la fonction de lissage a une influence décisive sur les résultats estimés

Fonctions de lissage spatial

Le rayon de recherche diffère dans ces fonctions de lissage:

- * Lissage gaussien utilise un rayon de 2,7km
- * Lissages cylindrique et sphérique utilisent un rayon de 3km
- * Lissages triangulaire et exponentielle utilisent un rayon de 4km

Fonction de lissage Gaussien

Fonction de lissage gaussien

$$G(z_j) = \sum_{i} W_i \frac{1}{2\pi h^2} e^{-\frac{d_{ij}^2}{2h^2}}$$

- Forces
 - Surface très lisse
 - Estimateur continu
- Faiblesses
 - faible précision

Exemple IAA Picardie 1997 (pondération : Emploi)

Emplois dans l'industrie agro-alimentaire en Picardie 1997

Fonction de lissage Triangulaire

Fonction Triangulaire

- $\mathbf{Si} \, \mathbf{D} i \mathbf{j} < = \mathbf{h} \, (\text{sinon } \mathbf{Z} \mathbf{j} = \mathbf{0})!$

$$G(z_{j}) = \sum_{i} \left[K - \frac{K}{h} \right] d_{ij}$$

- Force
 - Résultat réaliste et détaillé
- Faiblesses
 - La pondération est décisive
 - Surface faiblement généralisée
 - Estimation locale (sauf si rayon de recherche flexible)

Exemple IAA Picardie 1997 (pondération : Emploi)

Fonction de lissage Quadratique

- Fonction Quadratique
 - $\mathbf{Si} \, \mathbf{D} i \mathbf{j} < = \mathbf{h} \, (\text{sinon } \mathbf{Z} \mathbf{j} = \mathbf{0})!$

$$G(z_{j}) = \sum_{i} W_{i} \frac{3}{\pi h^{2}} \left[1 - \frac{d_{ij}^{2}}{h^{2}} \right]^{2}$$

- Force
 - Compromis entre lissage et précision
- Faiblesse
 - Estimation locale (sauf si rayon de recherche *flexible*)

Exemple IAA Picardie 1997 (pondération : Emploi)

Emplois dans l'industrie agro-alimentaire en Picardie 1997

Généralisation cartographique par lissage

Cartographie : Jean Marc Zaninetti, université d'Orléans, laboratoire CEDETE

Communes de la région Centre : Migrations apparentes 1990 - 1999

-10 - 0

-40 - -20

-50 - -40

-113 - -50

en plages de valeur

1842 communes

minimum -33 pour mille

maximum + 74 pour mille

moyenne des taux +4,7 pour mille
écart type 10,9 pour mille (CV 232 %)

Conception : Jean-Marc Zaninetti laboratoire CEDETE

Interpolation duale de surface de densité lissage dans un voisinage gaussien de 15 kilomètre (numérateur : solde migratoire) et de 30 kilomètres (dénominateur : population) **b- Surfaces de tendances** (régression en statistique): grande tendance d'un phénomène

chercher l'équation d'une fonction Z=f(X,Y) qui s'ajuste le mieux aux informations connues, puis à extrapoler les résultats de cette fonction à l'ensemble de l'espace étudié.

Des **fonctions polynomiales** souvent utilisées (degrés plus ou moins élevés)

- Surface de tendance d'ordre 1 (plan de tendance): Z = aX + bY + c
- Surface de tendance d'ordre 2 (surface quadratique) :

$$Z = aX + bY + cXY + dX^2 + eY^2 + fX^2Y + gXY2 + hX2Y2 + i$$

Surface de tendance d'ordre n :

$$Z = aX+bY+ \dots + q.X^nY^n + w$$

- NB: Les surfaces de tendance <u>d'ordre 1 et 2</u> sont les <u>plus utilisées</u>; car leurs coefficients ne sont pas trop nombreux (sont aussi simple à résoudre)
 - Dans le cas des <u>surfaces d'ordre 1</u> (plans de tendance), les coefficients *a* et *b* permettent de calculer <u>la valeur moyenne du gradient principal</u> et sa direction par :
 - * Intensité du gradient = $\sqrt{(a^2+b^2)}$
 - * Direction du gradient = ArcTangente(b/a

C- APPLICATIONS DES SURFACES DE TENDANCE

Données: Le PNB/hab. des régions de l'Union Européenne en 1996

CODE	NOM	Pib96	Χ	Y
131	Abruzzo	14467	2382	1377
155	Alentejo	7512	546	1112
92	Alsace	20885	1891	2050
105	Anatoliki	8394	3345	1389
74	Andalucia	8633	786	948

Ajustement à une surface de tendance d'ordre 2

15000

Ajustement à une surface de **tendance d'ordre 1** PNB = 0.88 X + 3.90 Y + 7580 (**r2 = 19.5%**)

Commentaire:

Fig 1: D'après le premier l'ajustement (Surface de tendance d'ordre 1), le gradient principal de richesse par habitant dans l'Union Européenne est de direction NNE-SSW. Toutefois, la qualité de l'ajustement obtenue est très médiocre (r2=19.5%) et le modèle proposé ne peut être retenu pour décrire les variations de richesse à l'intérieur de l'Union Européenne.

<u>Fig2</u>:

L'ajustement à une surface quadratique (*Surface de tendance L'ordre* 2) donne un ajustement nettement meilleur (r2=50%).

Les inégalités de revenus en Europe correspondent davantage à une <u>opposition centre-périphérie</u> qu'à un simple gradient Nord-Sud

Altitude (non lissée)

Pentes (non lissées)

Altitude (lissée)

Pentes (lissées)

