Topologia

Marco Ambrogio Bergamo

Anno 2023-2024

Teoria

Definizioni di base

Topologia Una topologia \mathcal{T} su un insieme X è una famiglia di sottoinsiemi di X (\coloneqq aperti) tali che:

- (A1) \emptyset e $X \in \mathcal{T}$
- (A2) $A, B \in \mathcal{T} \Rightarrow A \cup B \in \mathcal{T}$ (anche infiniti)
- (A3) $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$ (finita) \Longrightarrow intersezione infinita di aperti non è detto sia un aperto

Aperto Due definizioni equivalenti. $A \subset (X, \mathcal{T})$: (DIM)

- 1. è aperto se $A \in \mathcal{T}$.
- 2. è aperto se è intorno di ogni suo punto (ogni punto è interno).

Chiuso Due definizioni equivalenti. $C \subset (X, \mathcal{T})$: (DIM)

- 1. è chiuso se $X C \in \mathcal{T}$ (aperto).
- 2. è chiuso se C contiene tutti i suoi punti limite.

Passaggio al complementare Esso scambia:

- unione \longleftrightarrow intersezione: $(A \cup B)^C = A^C \cap B^C$ (e viceversa, **leggi di De Morgan**)
- parte interna \longleftrightarrow chiusura: $(A^{\circ})^{C} = \overline{(A^{C})}$ (e viceversa)

Topologia dei chiusi Come conseguenza delle leggi di De Morgan, in una topologia di aperti sia valgono le seguenti proprietà, sia può essere descritta proprio dai chiusi:

- (C1) \emptyset e $X \in \mathcal{T}_C$
- (C2) $A, B \in \mathcal{T}_C \Rightarrow A \cap B \in \mathcal{T}_C$ (anche infiniti)
- (C3) $A, B \in \mathcal{T}_C \Rightarrow A \cup B \in \mathcal{T}_C$ (finita) \Longrightarrow unione infinita di chiusi non è detto sia un chiuso

Per esempio, un'unione infinita di chiusi (punti) che non è chiusa in \mathbb{R} è: $\bigcup_{x\geq 0} \{\frac{1}{x}\}$ con $x\in\mathbb{R}$. Infatti 0 è un punto limite per l'insieme (appartiene alla chiusura) ma non appartiene all'insieme (notare che ciò varrebbe anche se $x\in\mathbb{N}$, ovvero se fosse unione numerabile)

Famiglia di sottoinsiemi localmente finita $\mathcal{F} = \{A \mid A \subset X\}$ è localmente finita se ogni intorno di ogni $x \in X \setminus \mathcal{F}$ interseca al più un numero finito di elementi di \mathcal{F}

Prop. Locale finitezza assicura che l'unione infinita di chiusi è chiusa o intersezione infinita di aperti è aperta

Punto limite / di accumulazione $x \in X$:

- 1. è un punto limite di (punto di accumulazione per) $S \subset X$ se ogni intorno aperto di x interseca S in almeno un punto diverso da x.
- 2. è un punto limite di S se $x \in \overline{S}$ e non è punto isolato.

Intorno $U \subset X$ intorno di $x \in X$ se: $\exists V$ aperto $\mid x \in V \subset U \subset X$ ("U contiene un aperto di X che contiene x", ovvero x è punto interno di B)

Base $\mathcal{B} \subset \mathcal{T}$ è base di \mathcal{T} se ogni elemento di \mathcal{T} (aperto) può essere scritto come unione di elementi di \mathcal{B} .

Topologia più fine \mathcal{T} e \mathcal{R} due topologie su X. \mathcal{T} è più fine di \mathcal{R} se $\mathcal{R} \subset \mathcal{T}$ (\mathcal{T} ha più aperti di \mathcal{R})

Chiusura Dato $B \subset X$ (sp. topologico), $\overline{B} := \cap \{C \mid B \subset C \subset X, C \text{ chiuso}\}$ (intersezione di tutti i chiusi che contengono B). Ovvero \overline{B} è il più piccolo chiuso di X contenente B. I suoi punti si dicono **aderenti** a B

Parte interna Dato $B \subset X$ (sp. topologico), $B^{\circ} := \bigcup \{A \mid A \subset B \subset X, A \text{ aperto} \}$ (unione di tutti gli aperti contenuti in B). Ovvero B° è il più grande aperto di X contenuto in B

Semi-aperto $S \subset X$ è un sottoinsieme semi-aperto se esiste un aperto $A \subset X$ tale che $A \subset S \subset \overline{A}$

Semi-chiuso $S \subset X$ è un sottoinsieme semi-aperto se esiste un chiuso $C \subset X$ tale che $C^{\circ} \subset S \subset C$

Sottospazio denso $A \subset X$ (sp. topologico), A denso se $\overline{A} = X$, ovvero se A interseca ogni aperto non vuoto di X. In generale, se $A \subset B \subset X$ (sp. topologico): A è denso in B se $B \subset \overline{A}$

Densità di X (sp. top.) è la cardinalità più piccola possibile di un sottospazio denso in X

Frontiera $\partial B := \overline{B} - B^{\circ} = \overline{B} \cap \overline{X - B}$

Base locale / sistema fondamentale di intorni È una famiglia $\mathcal{J} \subset \mathcal{I}(x)$ tale che: per ogni intorno di x esiste un elemento della famiglia che è contenuto in tale intorno.

Topologia di sottospazio/indotta X sp. topologico. Gli aperti in $Y \subset X$ sono gli aperti di X intersecati con Y. (Ovvero $U \subset Y \subset X$ aperto in Y se esiste un V aperto di X tale che $U = Y \cap V$). La stessa cosa vale coi chiusi. Attenione: per capire bene la def. pensare a sottoinsiemi sconnessi e pensare a cosa vuol dire intersecare un aperto di X (che ricopre una sola componente connessa) con tutto $Y \Rightarrow$ mi dà la sola componente connessa, che quindi è sia aperta che chiusa in $Y \subset X$ (poiché posso intersecarla sia con un aperto che con un chiuso di X).

PROP. (PROPRIETÀ UNIVERSALE DELLA TOP. DI SOTTOSPAZIO) Siano X, Y s.t., $Z \subset Y$ con topologia di sottospazio, $f: X \to Z$ app. e $i \circ f: X \to Y$ composizione con l'inclusione di Z in Y.

Allora: if continua $\iff f$ continua

Topologia prodotto Su $P \times Q$ è la topologia meno fine tra quelle che rendono continue entrambe le proiezioni.

TEOREMA La base della topologia prodotto su $P \times Q$ è formata dagli insiemi $A \times B \mid A \in \mathcal{T}_P, B \in \mathcal{T}_Q$, detta base canonica.

TEOREMA Le proiezioni sui fattori $p: P \times Q \to P$ e $q: P \times Q \to Q$ sono applicazioni aperte. Per ogni $(x,y) \in P \times Q$ le restrizioni $p: P \times \{y\} \to P, \ q: \{x\} \times Q \to Q$ sono omeomorfismi.

TEO. (PROP. UNIVERSALE DELLA TOP. PRODOTTO) $f: X \to P \times Q$ è continua \iff le sue componenti $\begin{cases} f_1 = p \circ f \\ f_2 = q \circ f \end{cases}$ sono continue.

Topologia quoziente X sp. topologico, Y insieme, $f: X \to Y$ applicazione suriettiva. La topologia quoziente rispetto ad f su $Y \in \mathcal{T} = \{A \subset Y \mid f^{-1}(A) \text{ è aperto in } X\}$ (è una topologia perchè f^{-1} commuta con unione e intersezione).

È l'unica topologia su Y che rende f una identificazione ed è la topologia più fine tra quelle che rendono continua f.

Applicazioni (funzioni)

$$f:(X,\mathcal{T}_X)\to (Y,\mathcal{T}_Y)\quad A\subset X,B\subset Y$$

Sottoinsieme f-saturo $A \subset X$ se contiene le fibre dell'immagine di ogni suo punto.

Sottoinsieme f**-coperto** (mia invenzione) $B \subset Y$ se $B \subset f(X)$

Funzione e "inversa" $f \circ f^{-1}$ e $f^{-1} \circ f$:

- 1. $B \supseteq f(f^{-1}(B))$ uguale se f suriettiva o se B è f-coperto (ovvero non è uguale solo se B contiene elementi che non hanno preimmagine)
- 2. $A \subseteq f^{-1}(f(A))$ uguale se f iniettiva o se A è f-saturo (ovvero non è uguale solo se A non contiene tutti gli elementi delle fibre)

Continuità "totale" A aperto in $Y \implies f^{-1}(A)$ aperto in X.

(Dato che f^{-1} commuta col passaggio al complementare e con l'unione, la def. può essere valutata sui chiusi o solo sugli aperti della base di Y.)

LEMMA f continua $\iff f(\overline{A}) \subset \overline{f(A)} \quad \forall A \subset X$

TEOREMA composizione di app. continue è continua.

Continuità locale f è continua in $x \in X$ se per ogni intorno U di f(x) esiste un intorno V di x tale che: $f(V) \subset U$.

NB se dicevo ...per ogni intorno di l dove $l = \lim_{y \to x} f(y)$ allora era la def. di limite, dicendo invece intorno della f(x) stessa implica che $\lim_{y \to x} f(y) = f(x)$ che è la canonica def. di continuità.

Teorema f continua \iff continua in ogni punto di X

Omeomorfismo Se:

- 1. Biunivoca
- 2. A aperto in $Y \implies f^{-1}(A)$ aperto in X (continua)
- 3. A aperto in $X \implies f(A)$ aperto in Y (inversa continua)

(Ovvero c'è una corrispondenza biunivoca sia tra gli elementi di X e Y che tra i loro aperti. Gli aperti sono tutti e soli quelli che vanno e provengono da un aperto).

Applicazione aperta se $A \subset X$ aperto $\Rightarrow f(A)$ aperto in Y

Applicazione chiusa se $C \subset X$ chiuso $\Rightarrow f(C)$ chiuso in Y

Lemma per una funzione $f: X \to Y$ sono equivalenti:

- 1. f è un omeomorfismo
- 2. f è continua, chiusa, biettiva
- 3. f è continua, aperta, biettiva

Applicazione limitata Se l'immagine è un insieme limitato.

Immersione f continua e iniettiva in cui A aperto in $X \iff A = f^{-1}(B)$, con B aperto di Y.

Oppure: $f: X \to f(X) \subset Y$ è un omeomorfismo.

aperta Un'immersione che è anche un'applicazione aperta.

chiusa Un'immersione che è anche un'applicazione chiusa.

LEMMA f continua, iniettiva, chiusa \implies immersione chiusa

LEMMA f continua, iniettiva, aperta \implies immersione aperta

Identificazione f continua e suriettiva in cui A aperto (chiuso) in $Y \iff f^{-1}(A)$ aperto (chiuso) in X.

Oppure: B aperto in $Y \iff B = f(A)$, con A aperto saturo di X.

aperta Un'identificazione che è anche un'applicazione aperta.

chiusa Un'identificazione che è anche un'applicazione chiusa.

Lemma f continua, suriettiva, chiusa \implies identificazione chiusa

LEMMA f continua, suriettiva, aperta \implies identificazione aperta

LEMMA (PROP. UNIVERSALE DELLE IDENT.) $f: X \to Y$ identificazione, $g: X \to Z$ continua. Allora: esiste $h: Y \to Z$ continua $| g = hf \iff g$ costante sulle fibre di f

Spazi metrici

Distanza Una distanza su un insieme X è un'applicazione $d: X \times X \to \mathbb{R}$ tale che per ogni $x, y, z \in X$:

- 1. $d(x,y) \ge 0, d(x,y) = 0 \iff x = y$
- 2. d(x,y) = d(y,x)
- 3. $d(x,y) \le d(x,z) + d(z,y)$

NB: la distanza è un'applicazione che va in \mathbb{R} , ciò è importantissimo perché mette in relazione un qualunque spazio (anche con le distanze più assurdi) con \mathbb{R} , che ha tutte le proprietà del mondo.

Spazio metrico È una coppia (X, d) con X un insieme e d una distanza su di esso.

Palla aperta Sia (X, d) uno sp. metrico, è il sottoinsieme $B(x, r) = \{y \in X \mid d(x, y) < r \in \mathbb{R}\}$

Topologia indotta da una distanza (X,d) uno sp. metrico, nella topologia su X indotta da d un sottoinsieme $A \subset X$ è **aperto** $\iff \forall x \in A$ esiste r > 0 tale che: $B(x,r) \subset A$ (ovvero ogni punto è interno)

Distanze equivalenti Se inducono la stessa metrica (non vale il viceversa).

Oppure:
$$d, d'$$
 equivalenti se $\forall x, y \in X \quad \exists A, B \in \mathbb{R} \mid \begin{cases} d(x, y) \leq Ad'(x, y) \\ d'(x, y) \leq Bd'(x, y) \end{cases}$

Spazio topologico metrizzabile Se la topologia è indotta da una distanza opportuna.

Sottoinsieme limitato (X,d) uno sp. metrico. $A \subset X$ limitato se esiste numero reale M tale che: $d(a,b) \leq M$ per ogni $a,b \in A$

Spazio metrico completo Se in esso ogni successione di Cauchy è convergente (ovvero se contiene i punti di accumulazione di ogni successione di Cauchy - vedere note sulle succ.d.C.)

Oss. Vedi dopo. Spazio metrico $\begin{cases} \implies \text{Normale (da T4 in giù)} \\ \implies 1\text{-numerabile} \\ \text{separabile} \iff 2\text{-numerabile} \\ + \text{compatto} \implies 2\text{-numerabile} \\ \text{compatto} \iff \text{c.p.s.} \iff \text{completo} + \text{tot. limitato} \end{cases}$

Connessione

Spazio connesso X è connesso se gli unici sottoinsiemi contemporaneamente aperti e chiusi sono \emptyset e X.

Lemma X è sconnesso \iff è unione disgiunta di aperti/chiusi propri (sottoinsiemi strettamente contenuti in X)

TEOREMA $f: X \to Y$ continua, allora se X connesso $\implies f(X)$ connesso

Connessione per archi X è connesso per archi se per ogni $x, y \in X$ esiste un'applicazione continua $\alpha : [0, 1] \to X$ tale che $\alpha(0) = x$ e $\alpha(1) = y$.

Lemma Spazio connesso per archi \implies connesso

LEMMA Sia $f: X \to (Y, \text{ connesso})$ continua e suriettiva allora se: $\begin{cases} \text{Ogni fibra \`e connessa} \\ f \text{ aperta o chiusa} \end{cases} \implies X \text{ connesso}$

TEOREMA Prodotto di spazi connessi è connesso

Componente connessa È un elemento massimale della famiglia dei sottospazi connessi, ordinata per inclusione. Ovvero $C \subset X$ è una c.c. se C connesso e se $C \subset A$ con A connesso $\Longrightarrow C = A$.

Lemma Se aggiungo punti limite a un sottospazio connesso esso rimane connesso. Ovvero: $Y \subset X$ connesso, se $Y \subset W \subset \overline{Y} \implies W$ connesso.

In particolare la chiusura di un connesso (cioè aggiungendo tutti i p.ti limite) è connessa.

Compattezza

Ricoprimento Un ricoprimento di un insieme X è una famiglia \mathcal{A} di sottoinsiemi di X tali che $X = \bigcup \{A \mid A \in \mathcal{A}\}.$

 $\mathbf{aperto}\,$ se ogni $A\in\mathcal{A}$ è aperto

chiuso se ogni $A \in \mathcal{A}$ è chiuso

localmente finito Se ogni punto di X ha almeno un intorno aperto con intersezione non vuota solo con un numero finito di elementi del ricoprimento.

fondamentale quando un sottoinsieme $U \subset X$ è aperto $\iff U \cap A$ è aperto in A per ogni $A \in \mathcal{A}$

Sottoricoprimento Se \mathcal{A} e \mathcal{B} sono ricoprimenti e $\mathcal{A} \subset \mathcal{B}$

Spazio compatto X è compatto se ogni suo ricoprimento aperto possiete un sottoricoprimento finito.

Oss. insieme finito \implies compatto

Oss. insieme finito \iff discreto + compatto

TEOREMA $f: X \to Y$ continua, allora se X compatto $\implies f(X)$ compatto

Spazio localmente compatto se ogni suo punto possiede un intorno compatto.

Sottospazio compatto se è compatto per la topologia di sottospazio (indotta).

TEOREMA [0,1] è compatto in \mathbb{R}

Prop. Sottospazio chiuso di un compatto \implies compatto

Prop. Unione finita di sottospazi compatti è compatta

COROLL. (HEINE-BOREL) Sottospazio di \mathbb{R} è compatto \iff chiuso + limitato

COROLL. X compatto $\implies f: X \to Y$ ammette massimo e minimo.

TEOREMA $f: X \to (Y, \text{ compatto})$ applicazione. Se ogni fibra è compatta $\implies X$ compatto.

Proprietà di numerabilità

Spazio topologico separabile Se contiene un sottoinsieme denso e numerabile.

Lemma X a base numerabile \implies separabile

LEMMA X metrico, allora è separabile \iff a base numerabile

Secondo assioma di numerabilità (secondo-numerabile) Lo soddisfa uno spazio topologico a base numerabile, ovvero se esiste una base della topologica con cardinalità numerabile.

Oss. Ogni sottospazio di un 2-numerabile è 2-numerabile. Prodotto di due 2-numeranili è 2-numerabile.

LEMMA Spazio 2-numerabile ⇒ separabile

Prop. In un 2-numerabile ogni ricoprimento ammette sottoricoprimento numerabile (ovvero 2-numerabile \implies Lindelöf)

Primo assioma di numerabilità (primo-numerabile) Uno sp. topologico lo soddisfa se ogni punto possiede un sistema fondamentale di intorni numerabile.

Oss. 2-numerabile \implies 1-numerabile

Lemma. Spazio metrico ⇒ 1-numerabile

Proprietà di separazione

Proprietà di separazione Determinano fino a che punto due punti distinti o due chiusi sono separati da aperti. Uno spazio topologico si dice:

- **T0** (di Kolmogoroff) se per ogni coppia di punti distinti **almeno** uno dei due ha in un intorno che non contiene l'altro. (\iff due punti non sono mai l'uno punto limite dell'altro)
- **T1** (di Fréchet) se per ogni coppia di punti distinti **ognuno** dei due ha in un intorno che non contiene l'altro (\iff i punti sono sottoinsiemi chiusi). (DIM)

- T2 (di Hausdorff / separato) se ogni coppia di punti distinti ammette intorni disgiunti (punti sono intersezione di loro intorni chiusi)
- T3 se ogni coppia (insieme chiuso punto) ammette una coppia (soprainsieme aperto intorno) disgiunta (⇔ ogni aperto contiene intorni chiusi di ogni suo punto ⇔ ogni chiuso è intersezione di suoi intorni chiusi)
- T4 se ogni coppia di chiusi disgiunti ammette una coppia di soprainsiemi aperti disgiunti.
- T5 se ogni coppia di sottoinsiemi separati (ognuno è disgiunto dalla chiusura dell'altro) ammette coppia di soprainsiemi aperti disgiunti.

Oss. Le uniche implicazioni tra le prop di separazione sono:

```
T2 \implies T1 \implies T0

T5 \implies T4

T3 + T0 \implies T2
```

 $T4 + T1 \implies T3$

Prop. Spazio metrico \implies Hausdorff

 \overrightarrow{Dim} . d distanza e $x \neq y \implies d(x,y) > 0$. Se $0 < r < \frac{d(x,y)}{2}$ allora le palle B(x,r), B(y,r) sono disgiunte: infatti se ci fosse z nell'intersezione delle palle $d(x,y) \leq d(x,z) + d(z,y) < 2r < d(x,y)$

LEMMA Hausdorff ⇒ sottoinsiemi finiti sono chiusi.

LEMMA Sottospazi e **prodotti** di spazi di Hausdorff sono di Hausdorff.

TEOREMA Hausdorff ← la diagonale è chiusa nel prodotto

Spazio normale Se ha tutte le proprietà fino a T4 (\iff T2 e T4 \iff T1 e T4)

Prop. Spazio metrizzabile \implies normale (\implies regolare \implies Hausdorff \implies T1 \implies T0)

Spazio regolare Se ha tutte le proprietà fino a T3 (← T1 e T3)

Prop. Spazio normale \implies regolare

Successioni

Successione (in uno spazio topologico) è un'applicazione $a: \mathbb{N} \to X$ (sp. topologico). Vediamo il dominio come un insieme di indici: $a(i) := a_i$.

Converge $\{a_n\}$ converge a $p \in X$ se $\forall U \subset X$ intorno di p esiste $N \in \mathbb{N} \mid a_n \in U$ per ogni $n \geq N$ (ovvero se la successione si avvicina sempre di più a un punto definitivamente)

Punto di accomulazione $p \in X$ è di accomulazione della successione se $\forall U \subset X$ intorno di $p \in \forall N \in \mathbb{N}$ esiste $n \geq N \mid a_n \in U$ (ovvero se riesco a trovare punti immagine della successione arbitrariamente vicini al punto)

Oss. Se una succ. converge a $p \implies p$ punto di accumulazione (viceversa non vale sempre, vedi successioni che ammettono sottosucc. convergente, che quindi converge a $q \implies q$ p.to di acc. ma la succ. non converge a q)

Prop. In un Hausdorff ogni successione converge al più ad un punto

Successione convergente $\{a_n\}$ convergente se converge a qualche putno $p \in X$. Se X è di Hausdorff diremo che p è il **limite** di $\{a_n\}$.

Sottosuccessione di una successione $a: \mathbb{N} \to X$ è la composizione di a con un'applicazione $k: \mathbb{N} \to \mathbb{N}$ strettamente crescente.

LEMMA se una successione possiede una sottosuccessione convergente a $p \implies p$ è p.to di accumulazione. (Viceversa SOLO in 1-numerabili, vedi prossima prop.)

Oss. Negli spazi che soddisfano gli assiomi di numerabilità, molte proprietà (come chiusura e compattezza) possono essere descritte in termini di successioni e sottosuccessioni

Prop. X 1-numerabile, $A \subset X$. Per $x \in X$ sono equivalenti:

1. Esiste succ. a valori in A che conv. a x

2. x è di acc. per qualche succ. a valori in A

 $3 \quad x \in \mathbb{Z}$

Lemma X compatto \implies ogni successione possiede p.ti di accumulazione (non implica compatto per successioni)

Compatto per successioni X (s. t.) lo è se ogni successione in X possiede una sottosuccessione convergente.

Lemma. 1-numerabile: compatto per successioni \iff ogni succ. ha p.ti di accumulazione.

In particolare: $\begin{cases} \text{Compatto} \\ \text{1-numerabile} \end{cases} \implies \text{compatto per successioni}$

Prop. In un 2-numerabile: compatto \iff (ogni succ. ha p.ti di acc.) \iff compatto per successioni

Successione di Cauchy $\{a_n\}$ successione in uno spazio **metrico** (X,d) in cui $\forall \varepsilon > 0$ esiste $N \in \mathbb{N} \mid d(a_n, a_m) < \varepsilon$ per ogni $n, m \geq N$. (ovvero la distanza tra due immagini diminuisce definitivamente). Differenze con una successione convergente:

- 1. È un concetto legato alla distanza, quindi richiede uno spazio metrico (mentre la convergenza no)
- 2. Non necessita del punto di accumulazione, ovvero del punto a cui converge. Infatti la def. è svincolata da esso, in quanto coinvolge solo la distanza relativa di due immagini. Quindi una successione di Cauchy certo che "converge", nel senso che si avvicina sempre di più a qualcosa, peccato che quel qualcosa può "non esistere", ovvero non appartenere all'insieme di definizione della succ., quindi per def. di convergenza (= succ. che converge a un punto $\underline{\text{di }X}$) non è convergente.

Lemma Successione convergente \implies di Cauchy

LEMMA Spazio metrico compatto ⇒ compatto per successioni ⇒ completo

Prop. Sottospazio di uno sp. metrico completo è chiuso \iff completo rispetto alla metrica indotta

Spazi metrici + compatti

Spazio totalmente limitato (X, d) sp. metrico lo è se $\forall r \in \mathbb{R}^+$ è possibile ricoprire tale spazio con un numero finito di palle aperte di raggio r.

Oss. Metrico + totalmente limitato \implies limitato

LEMMA Metrico + compatto per succ. \implies tot. limitato

Lemma Metrico + totalmente limitato ⇒ 2-numerabile

TEOREMA In uno spazio metrico sono equivalenti:

- 1. compatto
- 2. ogni succ. ha p.ti di accumulazione
- 3. compatto per successioni
- 4. completo + tot. limitato

Inoltre queste condizioni \implies 2-numerabile

Sottospazio relativamente compatto $A \subset X$ lo è se è contenuto in un sottospazio compatto di X.

Teorema di Baire

Sottoinsieme raro (mai-denso) se la parte interna della sua chiusura è vuota (i suoi punti sono solo di frontiera)

NB a non invertire le cose: parte interna della chiusura \neq chiusura della parte interna.

Pensare a $\mathbb{Q} \subset \mathbb{R}$ che ha parte interna vuota (infatti il più grande aperto **di** \mathbb{R} **contenuto in** \mathbb{Q} è \emptyset) \Rightarrow chiusura della parte interna vuota, ma la parte interna della chiusura (chiudere $(a,b) \subset \mathbb{Q}$ in \mathbb{R} significa aggiungere gli estremi e i numeri razionali) è non vuota.

Sottoinsieme magro se è contenuto nell'unione di una famiglia numerabile di sottoinsiemi rari.

Spazio di Baire se ogni suo sottoinsieme magro ha parte interna vuota.

Esplicitato: se l'unione numerabile di ogni famiglia di insiemi chiusi con interno vuoto ha interno vuoto. (vedi unione numerabile di rette per l'origine non coprono \mathbb{R}^2 , stessa cosa per unione numerabile di punti in $\mathbb{R} \implies$ spazi di Baire. Al contrario per \mathbb{Q}^2 e \mathbb{Q} che non lo sono)

LEMMA A mai-denso $\iff A^C$ denso Dim:

$$A \text{ mai-denso} \iff (\overline{A})^{\circ} = \emptyset \text{ (per def. di mai-denso)}$$

$$\iff ((\overline{A})^{\circ})^{C} = X$$

$$\iff \overline{((\overline{A})^{C})} = X \text{ (commutato compl. e p. interna)}$$

$$\iff \overline{((A^{C})^{\circ})} = X \text{ (commutato compl. e chiusura)}$$

$$\iff (A^{C})^{\circ} \text{ è denso in } X \text{ (per def di denso)}$$

$$\iff A^{C} \text{ contiene un aperto denso}$$

TEOREMA DI BAIRE

Spazio metrico completo
$$\implies \bigcup$$
 numerabile di sottoinsiemi rari è un raro
$$\iff \bigcap \text{ numerabile di aperti densi è densa}$$

$$\iff \text{ spazio di Baire}$$

Teoremi

Teorema (Esistenza di una topologia data una base). X un insieme $e \mathcal{B} \subset \mathcal{P}(X)$.

Esiste una topologia su X di cui
$$\mathcal{B}$$
 è una base $\iff \begin{cases} X = \cup \{B \mid B \in \mathcal{B}\} \\ A \cap B = \cup \{C \mid C \in \mathcal{B}\} \end{cases} \quad \forall A, B \in \mathcal{B}$

Dimostrazione.

Esempi

Topologia cofinita (del complementare finito) $\tau_c = \{X, \emptyset, A \mid X \setminus A \text{ finito}\}$. Quindi i chiusi sono i sottoinsiemi finiti.

NB: uno spazio con la topologia cofinita è sempre compatto

Topologia indiscreta $\tau_{in} = \{X, \emptyset\}$. È la meno fine.

Topologia discreta $\tau_d = \{\mathcal{P}(X)\}$ (può essere indotta dalla distanza $x \neq y \Rightarrow d(x,y) = 1, x = y \Rightarrow d(x,y) = 0$). È la più fine.

Topologia euclidea $\tau_{eu} = \{X, \emptyset, B(x, r)\} \text{ con } x \in X, r \in \mathbb{R}^+$

Topologia semirette aperte $\tau = \{\mathbb{R}, \emptyset, (-\infty, a) : a \in \mathbb{R}\}$

Topologia intervalli semiaperti (retta di Sorgenfrey)

Connesso non connesso per archi Pettine e la pulce (comb space)

 ${\bf T0}$ non ${\bf T1}$ Topologia delle semirette aperte, del punto particolare

 ${f T1}$ non ${f T2}$ Topologia cofinita

1-numerabile (e separabile) non 2-numerabile (neanche metrizzabile) La retta di Sorgenfrey (p.116)

C.p.s non compatto