

Versão: A

DEI / Licenciatura em Engenharia Informática Arquitectura de Computadores Exame Época Recurso – Fevereiro 2020

- Autorizada apenas a consulta da folha de consulta oficial.

Nota mínima: 7.5/20 valores / Duração: 120 minutos

- A infração implica, no mínimo, a ANULAÇÃO da prova.

- Quando omissa a arquitectura, considere Linux/IA32.

Número:	Nome:			
Responda aos grupos II	, III, IV e V em folhas A4 sep	oaradas. O grupo I deve ser re	spondido nesta folha.	
[8v] Grupo I - Assinale no se	guinte grupo se as frases são verda	deiras ou falsas (uma resposta errad	a desconta 50% de uma correcta).	VE
1) Em C, admita a variável "ur	signed int x;". A expressão "	! (x&0x1)" é avaliada em um se x foi	· par	V F □□
		t y=(short)x;"armazena em y ur		
3) Em C, admita as variáveis "	unsigned char *a;"e"int b	;". A comparação "if (sizeof(a)) < sizeof(b))"é verdadeira	
4) Em C, um bloco de memória	alocado com malloc durante a exe	ecução de uma função é automaticamen	nte libertado no fim desta	
5) Em C, admita as variáveis ":	int x,y;". A comparação "x < y	y" pode ter um resultado diferente da co	omparação "x - y < 0"	
6) Em C, admita as variáveis ":	int x=0x01234567;"e"short	*ptr=(short*)&x". Logo, "* (pt	r+1)" equivale ao valor 0x4567	
7) Em C, admita a variável "ch	aar x=-128;". A atribuição "cha	r y=-x;" armazena o valor 128 em	у	.00
		Loc pode ser maior do que o número do		
		lo da comparação em %ebx e nos bits o		
		igem instruções distintas para valores o	_	
11) Em IA32, numa função, ap	ós o prólogo estudado nas aulas, o se	u endereço de retorno pode ser encontr	ado em 4 (%ebp)	
12) Em IA32, "subl \$12,%	esp" permite remover da stack os trê	es parâmetros inteiros de uma função in	vocada na linha anterior com call.	
		ecx" seguido de "movw a+2(,%ecx		
14) Em IA32, é possível usar "	shll \$3, %eax" seguido de "ne	gl %eax" para multiplicar por -8 o va	ılor de %eax	
15) Em IA32, a instrução "pus	hl %eax" é equivalente a "subl	\$4, %esp" seguido de "movl (%esp	o),%eax"	.00
	_	++) sum+=m[j][i];" exibe boa loc		
		ção da <i>heap</i> para melhorar o desempenl	_	
18) A fragmentação externa do	s blocos reservados na <i>heap</i> é consec	uência das regras de alinhamento e ove	erhead da gestão dos blocos	
19) Na hierarquia de memória,	à medida que nos afastamos do CPU	temos maior performance e menor cus	to por byte	.00
20) Uma das otimizações efetu	adas pelos compiladores de C é a alo	cação de variáveis locais aos registos d	isponíveis da arquitetura	.00
[2v] Grupo II – Responda n u	ıma folha A4 separada que deve as	sinar e entregar no final do exame.		
/	•	posto pelo byte menos significativo o ABCDEF e y=0x76543210, a express	1	
arquitetura que use deslocame	ntos aritméticos para a direita ou 0, eis do tipo int (com sinal). Deve se	arithmetic() que deve retornar l c caso contrário, isto é, que use desloca r possível compilar e executar a sua fu	amentos lógicos. Assuma que a sua	
[3v] Grupo III – Responda 1	numa folha A4 separada que deve a	assinar e entregar no final do exame.		
Considere as seguintes declarad	ões:			
struct s1{ char a; int b[3]; union u1 *c; struct s2 d;	<pre>struct s2{ int e; short *f[2]; long long *g; struct s3 h; }</pre>	<pre>struct s3{ short i; struct s2 *j; struct s3 *k; };</pre>	<pre>union u1{ short 1; char m; struct s2 *n; struct s1 *o; }</pre>	
} ;	};	i	};	

[1.5v] a) Indique o alinhamento dos campos de uma estrutura do tipo struct s1. Indique claramente, para cada campo, o seu endereço, bem como as partes alocadas, mas não usadas, para satisfazer as restrições de alinhamento. Indique o tamanho total da estrutura. Admita que a estrutura está colocada a partir do endereço 0x100.

[1.5v] b) Se definirmos os campos da estrutura struct s2 por outra ordem é possível reduzir o número de bytes necessários para o seu armazenamento? Justifique a sua resposta indicando, em caso afirmativo, qual a ordem dos campos que garante o menor tamanho, o novo endereço de cada campo e das partes alocadas, mas não usadas, para satisfazer as restrições de alinhamento, bem como o novo tamanho total da estrutura. Admita que a estrutura está colocada a partir do endereço 0x200.

[5v] Grupo IV — Responda numa folha A4 separada que deve assinar e entregar no final do exame.

[1v] a) Admita os seguintes endereços e conteúdo da memória e registos. Que valor (em hexadecimal) é armazenado em %eax em cada uma das seguintes instruções? Justifique as suas respostas.

Endereço	Conteúdo
0x8000	0x5
0x8004	0xA
0x8008	0xF

Registo	Conteúdo
%edx	0x8000
%ebx	2

```
leal (%edx), %eax
mov1 (%edx), %eax
leal 4(%edx), %eax
mov1 4(%edx), %eax
leal (%edx, %ebx, 4), %eax
mov1 (%edx, %ebx, 4), %eax
```

[2v] b) Admita a seguinte declaração de uma função em C: void xpto(int *p1, int p2);

Esta função terá de ser invocada dentro de uma função void func1 (int a, int b, int c) que está a desenvolver em Assembly. A função xpto deverá ser invocada passando-lhe como primeiro parâmetro o endereço do parâmetro b e, como segundo parâmetro, o resultado da soma do parâmetro a com o parâmetro c. Apresente a sequência de instruções em Assembly que permitam realizar essa invocação da função xpto, garantindo que quer a *stack* quer os registos que usar terão o mesmo estado antes e depois desse bloco.

[2v] c) Considerando o código Assembly à esquerda otimizado pelo compilador, preencha os espaços em branco no código em C com a mesma funcionalidade, mas não otimizado. (escreva a função completa na folha A4)

```
func2:
  pushl %ebp
  movl %esp, %ebp
  movl 8(%ebp), %eax
  testl %eax, %eax
  ie .L5
  xorl %edx, %edx
   testl %eax, %eax
   js .L3
.L4:
  addl $1, %edx
  shll %eax
  jns .L4
.L3:
  movl 12(%ebp), %ecx
  movl %edx, (%ecx)
  jmp .L2
.L5:
  mov1 $32, %eax
.L2:
  movl %ebp, %esp
  popl %ebp
  ret
```

```
int func2(int x, int *p){
   int n = _____;

if(_____)
   return _____;

while(_____){
   ____;
}

return ____;
}
```

[2v] Grupo V - Responda numa folha A4 separada que deve assinar e entregar no final do exame.

Admita o seguinte excerto de código em C. A função calc_hash recebe como primeiro parâmetro o endereço de uma estrutura onde está armazenado o endereço de um vetor de *strings* (strs), assim como o número de *strings* armazenadas nesse vetor (num). A função recebe como segundo parâmetro o endereço de um inteiro hash onde é armazenado o resultado computado.

```
typedef struct{
   int num;
   char **strs;
}data_t;

void calc_hash(data_t *src, int *hash) {
   int i, j;
   *hash = 0;

for(i = 0; i < get_num(src); i++)
   for(j= 0; j < strlen(src->strs[i]); j++)
   *hash += secret(src->strs[i],j) + strlen(src->strs[i])/2;
}

int get_num(data_t *src) {
   return src->num;
}

int secret(char *str, int pos) {
   return str[pos] % 26;
}

}
```

Apresente uma segunda versão da função calc_hash em C com a mesma funcionalidade, mas melhor desempenho. Admita que o compilador que é usado não efetua nenhuma otimização. Indique claramente cada uma das otimizações usadas sob a forma de comentário no código.