>_

S13/L4

DNS TRAFFIC, MYSQL ATTACKS, SERVER LOGS

CONTENUTI

Traccia Traccia

Working with Text Files in the CLI

Getting Familiar with the Linux Shell

Linux Servers

Navigating the Linux Filesystem and Permission Settings

00 TRACCIA

1) Working with Text Files in the CLI

Iln this lab, you will get familiar with Linux commandline text editors and configuration files.

3) Linux Servers

In this lab, you will use the Linux command line to identify servers that are running on a computer.

2) Getting Familiar with the Linux Shell

In this lab, you will use the Linux command line to manage files and folders and perform some basic administrative tasks.

4) Navigating the Linux Filesystem and Permission Settings

In this lab, you will familiarize yourself with Linux filesystems.

01 - WORKING WITH TEXT FILES IN THE CLI

Apro **SciTE** dal menu Applications > CyberOPS > SciTE, **scrivo qualcosa e salvo il file come space.txt** nella mia home directory. Mi accorgo che SciTE non mi mostra immediatamente il file salvato. Questo succede perché non riconosce automaticamente i file con estensione .txt. Seleziono "**Tutti i file**" dal menu a discesa per visualizzare correttamente il file salvato.

Provo ad aprire SciTE anche dal **terminale** usando il comando **scite space.txt**. Notando che il terminale rimane "bloccato" finché SciTE è aperto, capisco che il terminale sta eseguendo il programma in primo piano e non può ricevere altri comandi finché non chiudo l'applicazione.

01 - WORKING WITH TEXT FILES IN THE CLI

I file di configurazione sono vitali in Linux e possono essere usati per configurare applicazioni e servizi. Ci sono **due** principali categorie di file di configurazione: quelli a **livello utente**, che sono nascosti nella home directory, e quelli a **livello di sistema**, che si trovano in /etc.

Uso il comando **Is -la** per vedere i **file nascosti** nella mia home directory. Questo mi permette di trovare file come .**bashrc**, che contiene configurazioni personalizzate per il mio terminale. Uso cat per visualizzare il contenuto di .bashrc, scoprendo che questo file gestisce la **configurazione** del prompt e altri **alias** utili.

```
GNU nano 2.9.5 /etc/bash.bashrc

# /etc/bash.bashrc

# If not running interactively, don't do anything
[[ $- != *i* ]] && return

[[ $DISPLAY ]] && shopt -s checkwinsize

PS1='[\u@\h \w]\$'

case ${TERM} in
    xterm*|rxvt*|Eterm|aterm|kterm|gnome*)
    PROMPT_COMMAND=${PROMPT_COMMAND:+$PROMPT_COMMAND; }'printf "\033]0;%s@%s:%s$

;;
screen*)
    PROMPT_COMMAND=${PROMPT_COMMAND:+$PROMPT_COMMAND; }'printf "\033_%s@%s:%s\0$;;
;;
```

```
[analyst@secOps ~]$ ls -la

total 1264
drwx----- 15 analyst analyst 4096 Sep 5 08:31 .
drwxr-xr-x 3 root root 4096 Mar 20 2018 .
-rw----- 1 analyst analyst 1422 Sep 3 10:15 .bash_history
-rw-r--r-- 1 analyst analyst 21 Feb 7 2018 .bash_logout
-rw-r--r-- 1 analyst analyst 57 Feb 7 2018 .bash_profile
-rw-r--r-- 1 analyst analyst 97 Mar 20 2018 .bashrc
```

```
PS1='\[\e[1;32m\][\u@\h \W]\$\[\e[0m\] '
alias ls="ls —-color"
alias vi="vim"
```

Passo poi a esplorare i file di configurazione di sistema in /etc, che richiedono permessi di root per essere modificati. Provo a visualizzare e modificare /etc/bash.bashrc, ma ovviamente bisogna essere root per farlo.

01 - WORKING WITH TEXT FILES IN THE CLI

Per cambiare il colore del prompt, apro .bashrc e cambio il codice colore da 32 (verde) a 31 (rosso). Dopo aver salvato le modifiche e riavviato il terminale, vedo il prompt colorato in rosso. Faccio lo stesso processo con nano, cambiando il colore del prompt a giallo e ricarico la configurazione con il comando bash.

Infine, modifico il file di **configurazione di nginx**, cambiando la porta su cui il server web ascolta e la directory da cui serve le pagine web. Avvio nginx e verifico che tutto funzioni correttamente accedendo al server tramite il browser.

02 - GETTING FAMILIAR WITH THE LINUX SHELL

Il comando man, è la bibbia dei sistemi Linux/Unix-Like. Ecco alcuni esempi:

02 - GETTING FAMILIAR WITH THE LINUX SHELL

Ho usato **mkdir** per creare nuove cartelle e cd per spostarmi tra le directory. Con **Is -I** ho verificato il contenuto delle directory.

```
[analyst@secOps ~]$ mkdir cyops_folder1 cyops_folder2 cyops_folder3
[analyst@secOps ~]$ ls -1
total 1144
-rw-r--r-- 1 root root 7326 Sep 3 08:41 capture.pcap
drwxr-xr-x 2 analyst analyst 4096 Sep 5 09:40 cyops_folder1
drwxr-xr-x 2 analyst analyst 4096 Sep 5 09:40 cyops_folder2
drwxr-xr-x 2 analyst analyst 4096 Sep 5 09:40 cyops_folder3
```

```
[analyst@secOps ~]$ echo il mio testo > miofile.txt
[analyst@secOps ~]$ cat miofile.txt
il mio testo
[analyst@secOps ~]$
```

Con **echo** ho stampato messaggi e ho reindirizzato il risultato in un file usando >. Con >> ho aggiunto nuove righe al file **senza sovrascrivere il contenuto precedente**.

Con **Is -la** ho visualizzato i file nascosti nella directory, come .bashrc, che contengono configurazioni utente.

```
[analyst@secOps ~]$ ls -la

total 1264
drwx----- 15 analyst analyst  4096 Sep  5 08:31 .
drwxr-xr-x  3 root  root  4096 Mar  20  2018 .
-rw-----  1 analyst analyst  1422 Sep  3 10:15 .bash_history
-rw-r--r--  1 analyst analyst  21 Feb  7  2018 .bash_logout
-rw-r--r--  1 analyst analyst  57 Feb  7  2018 .bash_profile
-rw-r--r--  1 analyst analyst  97 Mar  20  2018 .bashrc
```

02 - GETTING FAMILIAR WITH THE LINUX SHELL

Ho usato cp per copiare un file da una cartella all'altra.

```
[analyst@secOps ~]$ cp miofile.txt cyops_folder2/
[analyst@secOps ~]$
```

```
[analyst@secOps ~]$ rm miofile.txt
[analyst@secOps ~]$
```

Ho usato **rm** per eliminare file e **rm -r** per eliminare intere cartelle e il loro contenuto.

Ho usato mv per spostare un file da una cartella alla directory home.

```
[analyst@secOps ~]$ mv cyops_folder2/miofile.txt .
[analyst@secOps ~]$ ls
capture.pcap cyops_folder3 httdump.pcap miofile.txt space.txt
cyops_folder1 Desktop httpsdump.pcap README
cyops_folder2 Downloads lab.support.files second_drive
[analyst@secOps ~]$
```

03 - LINUX SERVERS

In questo esercizio ho usato il comando **sudo ps -elf** che mi ha mostrato i **processi attivi sul sistema**. Ho dovuto usare sudo per vedere i processi che non appartengono all'utente corrente.

Ho avviato il server **nginx** e ho usato il comando **ps** per visualizzare la gerarchia dei processi attivi.

03 - LINUX SERVERS

Ho poi usato **netstat** per analizzare le connessioni di rete, filtrando con opzioni combinate. Nel man questo è ciò che si impara riguardo i singoli parametri. t: Mostra le connessioni TCP, u: Mostra le connessioni UDP, n: Disabilita la risoluzione DNS e visualizza indirizzi e porte in formato numerico, a: Mostra sia i socket in ascolto che quelli non in ascolto, p: Mostra l'ID del processo e il nome del programma associato a ogni connessione.

```
analyst@secOps ~]$ sudo netstat -tunap
Active Internet connections (servers and established)
                                                                                 PID/Program name
Proto Recv-Q Send-Q Local Address
                                            Foreign Address
                                                                     State
                  0 0.0.0.0:6633
                                            0.0.0.0:*
                                                                     LISTEN
                                                                                 284/python2.7
                                                                                 1432/nginx: master
                  0 0.0.0.0:80
                                            0.0.0.0:*
                                                                     LISTEN
top
tep
                 0 0.0.0.0.8080
                                            0.0.0.0:*
                                                                     LISTEN
                                                                                 840/nginx: master p
tcp
                  0 0.0.0.0:21
                                                                     LISTEN
                                                                                 299/vsftpd
                                            0.0.0.0:*
tcp
                 0 0.0.0.0:22
                                            0.0.0.0:*
                                                                     LISTEN
                                                                                 301/sshd
tcp6
                  0 :::22
                                            1111*
                                                                     LISTEN
                                                                                 301/sshd
                  0 192.168.1.74:68
                                            0.0.0.0:*
                                                                                 207/systemd-network
```

Questo mi ha permesso di vedere i servizi attivi, come nginx, su specifiche porte. **Ho incrociato queste informazioni con il comando ps**:

```
malyst@secOps ~]$ sudo ps -elf | grep 1432
                                              09:52 ?
                   1 0 80 0 - 7192 -
                                                             00:00:00 nginx: master process /usr/sbin/nginx
            1433 1432 0 80 0 - 8457 SyS_ep 09:52 ?
                                                             00:00:00 nginx: worker process
S analyst 1451 1385 0 80 0 - 2720 -
                                              09:55 pts/1
                                                            00:00:00 grep 1432
analyst@secOps ~]$ sudo ps -elf | grep 840
sudo] password for analyst:
                                              09:24 ?
S root
                    1 0 80 0 - 7192 -
                                                             00:00:00 nginx: master process nginx -c custom_s
r.conf
             841 840 0 80 0 - 8457 SyS_ep 09:24 ?
                                                             00:00:00 nginx: worker process
           1485 1385 0 80 0 - 2720 -
                                                             00:00:00 grep 840
```

03 - LINUX SERVERS

Telnet è obsoleto e senza crittografia. In questo esempio l'ho usato per connettermi alla porta **80** e verificare la risposta del server web. Dopo aver inviato una richiesta casuale, il server nginx ha risposto con un errore HTTP, confermando che era attivo e in esecuzione.

Ho ripetuto il test per la porta 22, associata al servizio **SSH**. Anche qui, il server SSH ha risposto con una stringa di identificazione, confermando la sua presenza.

```
[analyst@secOps ~]$ telnet 127.0.0.1 80
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
HTTP/1.1 400 Bad Request
Server: nginx/1.12.2
Date: Thu, 05 Sep 2024 14:10:14 GMT
Content-Type: text/html
Content-Length: 173
Connection: close
<html>
<head><title>400 Bad Request</title></head>
<body bgcolor="white">
<center><h1>400 Bad Request</h1></center>
<hr><center>nginx/1.12.2</center>
</body>
/html>
Connection closed by foreign host.
```

```
[analyst@secOps ~]$ telnet 127.0.0.1 22
Trying 127.0.0.1...
Connected to 127.0.0.1.
Escape character is '^]'.
SSH-2.0-OpenSSH_7.7
```

04 - NAVIGATING THE LINUX FILESYSTEM AND PERMISSION SETTINGS

Ho usato **Isblk** per visualizzare i dispositivi di blocco e ho notato che i dispositivi di archiviazione sono **sda** e **sdb**. Con il comando **mount**, ho verificato quali filesystem sono montati, trovando che /dev/sda1 è il filesystem principale, montato su /. Poi ho usato il comando cd per navigare nella directory radice e ho usato Is per elencare i file, che in realtà sono contenuti fisicamente in /dev/sda1. Per montare manualmente un filesystem, ho creato una directory con mkdir e ho usato mount per montare /dev/sdb1 su ~/second_drive, successivamente ho verificato i contenuti con Is.

```
[analyst@secOps ~]$ lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT
sda 8:0 0 10G 0 disk
└─sda1 8:1 0 10G 0 part /
sdb 8:16 0 1G 0 disk
└─sdb1 8:17 0 1023M 0 part
sr0 11:0 1 51M 0 rom
```

```
dev/sda1 on / type ext4 (rw,relatime,data=ordered)
```

```
[analyst@secOps ~]$ mkdir second_drive
mkdir: cannot create directory 'second_drive': File exists
[analyst@secOps ~]$ ls -l second_drive/
total 0
[analyst@secOps ~]$ sudo mount /dev/sdb1 ~/second_drive/
[sudo] password for analyst:
[analyst@secOps ~]$ ls -l second_drive/
total 20
drwx----- 2 root root 16384 Mar 26 2018 lost+found
-rw-r--r-- 1 analyst analyst 183 Mar 26 2018 myFile.txt
[analyst@secOps ~]$
```

04 - NAVIGATING THE LINUX FILESYSTEM AND PERMISSION SETTINGS

Ho usato Is -I nella directory ~/lab.support.files/scripts/ per visualizzare i permessi dei file. I file hanno permessi che specificano chi può leggere, scrivere o eseguire. Per esempio, il file cyops.mn ha permessi di lettura e scrittura per il proprietario e di sola lettura per gli altri. Ho poi usato touch per creare un file vuoto, ma ho ottenuto un errore di permessi in /mnt. Usando chmod, ho modificato i permessi di myFile.txt da -rw-r--r-- a -rw-rw-r-x. Infine, ho cambiato il proprietario del file con chown, rendendo analyst il proprietario del file e confermando che potevo modificarlo con successo.

```
nalyst@secOps ~]$ ls -l ~/lab.support.files/scripts,
rwxr-xr-x 1 analyst analyst 952 Mar 21 2018 configure_as_dhcp.sh
rwxr-xr-x 1 analyst analyst 1153 Mar 21 2018 configure_as_static.sh
-rwxr-xr-x 1 analyst analyst 3459 Mar 21 2018 cyberops_extended_topo_no_fw.py
rwxr-xr-x 1 analyst analyst 4062 Mar 21  2018 cyberops_extended_topo.py-
-rwxr-xr-x 1 analyst analyst 3669 Mar 21 2018 cyberops_topo.py
-rw-r--r-- 1 analyst analyst 2871 Mar 21  2018 cyops.mn
  wxr-xr-x 1 analyst analyst 458 Mar 21 2018 fw_rules
                              70 Mar 21 2018 mal_server_start.sh
rwxr-xr-x 2 analyst analyst 4096 Mar 21 2018 net_configuration_files
-rwxr-xr-x 1 analyst analyst 65 Mar 21 2018 reg_server_start.sh
-rwxr-xr-x 1 analyst analyst 189 Mar 21 2018 start_ELK.sh
-rwxr-xr-x 1 analyst analyst 85 Mar 21 2018 start_miniedit.sh
-rwxr-xr-x 1 analyst analyst 76 Mar 21 2018 start_pox.sh
rwxr-xr-x 1 analyst analyst  106 Mar 21  2018 start_snort.sh
rwxr-xr-x 1 analyst analyst 61 Mar 21 2018 start_tftpd.sh
 nalyst@secOps ~]$
```

```
[analyst@secOps second_drive]$ ls -l
total 20
irwx----- 2 root
                    root
                            16384 Mar 26
                                          2018 lost+found
rw-r--r-- 1 analyst analyst 183 Mar 26 2018 myFile.txt
analyst@secOps second_drive]$ sudo chmod 665 myFile.txt
sudo] password for analyst:
analyst@secOps second_drive]$ 1s -1
total 20
                            16384 Mar 26
drwx----- 2 root
                    root
                                          2018 lost+found
-rw-rw-r-x 1 analyst analyst
                              183 Mar 26 2018 myFile.txt
analyst@secOps second_drive]$
```

In Linux, i permessi dei file sono rappresentati in ottale (base 8) per semplificare la gestione dei permessi binari. Ogni cifra ottale rappresenta tre bit: lettura (r), scrittura (w) ed esecuzione (x). Ad esempio, "rw-" per il proprietario è 6 in ottale (110 in binario), mentre "r-x" per gli altri è 5 in ottale (101 in binario). La notazione ottale riassume i permessi in modo compatto.

04 - NAVIGATING THE LINUX FILESYSTEM AND PERMISSION SETTINGS

Ho creato un file simbolico con **In -s** e un hard link con **In**. Usando **Is -I**, ho verificato che il link simbolico **punta al nome del file originale**, mentre l'hard link **punta all'inode**, il che significa che cambia il contenuto di un file cambia anche l'altro. Quando ho rinominato i due file, il collegamento simbolico si è rotto, mentre l'hard link ha continuato a funzionare.

```
[analyst@secOps ~]$ echo "symbolic" > file1.txt
[analyst@secOps ~]$ cat file1.txt
symbolic
[analyst@secOps ~]$ echo "hard" > file2.txt
[analyst@secOps ~]$ cat file2.txt
hard
```

```
analyst@secOps ~]$ ln -s file1.txt file1symbolic
analyst@secOps ~]$ In file2.txt file2hard
analyst@secOps ~]$ ls -1
total 1160
-rw−r--r-- 1 root
                             7326 Sep 3 08:41 capture.pcap
                   root
drwxr-xr-x 2 analyst analyst 4096 Sep 5 09:40 cyops_folderi
drwxr-xr-x 2 analyst analyst
                             4096 Sep 5 09:47 cyops_folder2
drwxr-xr-x 2 analyst analyst
                             4096 Sep 5 09:40 cyops_folder3
drwxr-xr-x 5 analyst analyst
                             4096 Sep 5 09:39 Desktop
drwxr-xr-x 3 analyst analyst 4096 Mar 22 2018 Downloads
                                9 Sep 5 10:41 file1symbolic -> file1.txt.
lrwxrwxrwx 1 analyst analyst
rw-r--r-- 1 analyst analyst
                                9 Sep 5 10:37 file1.txt
-rw-r--r-- 2 analyst analyst
                                5 Sep 5 10:37 file2.txt
-rw-r--r-- 2 analyst analyst
                           276408 Sep 3 10:17 httdump.pcap
 rw-r--r-- 1 root
                   root
                           847378 Sep 3 10:30 https://pcap
                   root
drwxr-xr-x 9 analyst analyst 4096 Jul 19 2018 lab.support.files
-rw-r--r-- 1 analyst analyst
                               13 Sep 5 09:46 miofile.txt
-rw-r--r-- 1 analyst analyst
                             2748 Sep 3 10:36 README
                             4096 Mar 26 2018 second_drive
drwxr-xr-x 3 root
                   root
                                6 Sep 5 08:31 space.txt
 rw-r--r-- 1 analyst analyst
```


GRAZIE

Flavio Scognamiglio