Nim 游戏

- Nim 游戏

Nim 游戏是一种公平博弈的组合游戏, 标准的 Nim 游戏定义如下:

给定石子堆集合 $S=\{a_i\}, |S|=n$, A 与 B 轮流操作,每次操作可以任选一堆石子 $a_i>0$,拿走 $k\in[1,a_i]$ 个石子,即 $a_i\leftarrow a_i-k$,不能操作者输,问先手必胜还是必败

对于这种问题的研究, 一般难以构造方案, 只能模拟比较小的情况, 找出规律

现在给出一种系统的分析方法,但这种方法本质上是构造结论,需要去凑规律能够"自圆其说"(采用数学归纳法),发挥人类智慧

现在给出结论, 设 $\delta = \bigoplus_{i=1}^n a_i$ (其中 \oplus 表示异或运算), 若 $\delta = 0$ 则先手必败, 否则先手必胜 虽然这个玩意看起来与原问题十分不搭边, 但经过下面的论证不难发现其正确性

首先给出一些定义

对于任意一个时刻的局面 / 状态 A, 如果当前操作的人有一种策略使得他最终能够取胜, 那么我们称这个状态为 **先手必胜态** (N - position, N 状态), 如果当前操作的人无论如何最终都会失败, 那么称这个状态为 **先手必败态** (P - position, P 状态), 不难发现, 对于任意一个状态 A, 它要么是 N, 要么是 P

那么两个基本事实是:

- 如果当前游戏处于 N 状态, 那么 存在 一种策略 / 操作, 使得执行完这个操作后, 这个游戏将处于 P 状态
- 如果当前游戏处于 P 状态, 那么 不存在 一种策略 / 操作, 使得执行完这个操作后, 这个游戏将处于 P 状态 (换言之, 任何一种操作都将导致游戏进入到 N 状态)

上面的事实将对我们接下来的论证大有裨益

回到原问题, 假设结论成立 (即 $\delta=0$, 则游戏处于 P 状态, 否则处于 N 状态), 归纳证明结论正确性 :

1. 对于局面 $S = \{0\}$, 结论显然成立

- 2. 若 $\delta=0$, 假设我们存在一种策略使得 $\delta'=0$ (即操作完后局面依然为 P 状态, 等价于先手可以胜利), 不妨设这个操作是拿走第 i 堆的 k 个石子, 即 $a_i\leftarrow a_i-k$, 那么有 $\delta'=\delta\oplus a_i\oplus(a_i-k)=a_i\oplus(a_i-k)\neq 0$, 这一段式子的正确性是显然的, 这就意味着不存在一种策略使得先手获胜
- 3. 对于 $\delta \neq 0$, 我们尝试构造一种策略使得 $\delta' = 0$, 那么就是要让一堆 a_i 变成 $a_i \oplus \delta$, 满足 $a_i \oplus \delta < a_i$, 万幸的是, 一定存在这样一堆石子

直接考虑 δ 的二进制最高位 2^k , 找到一堆石子 a_i , 满足 a_i and $2^k=2^k$ (and 表示按位与), 一定存在这样的石子堆, 不然 δ 的 2^k 位一定是 0, 显然有 $a_i\oplus\delta< a_i$

上面就是 Nim 游戏的基本内容, 这对 sq 函数有很大的启发性与帮助

- 参考

csdn blog

cnblogs