0.0.1 Function Concepts

Definition 0.0.1 (Functions, Domains, Values, and Range). Consider two sets A and B, whose elements may be any objects whatsoever, and suppose that with each element of x of A there is a associated, in some manner, an element of B, which we denote by f(x).

- The function f is said to be a function from A into B;
- The set A is called the *domain* of f;
- The elements f(x) are called the *values* of f;
- The set of values of f is called the range of f

Definition 0.0.2 (Images, Onto). Let A and B be two sets and let f be a mapping of A into B. If $E \subset A$, then f(E) is called the set of all elements f(x), for $x \in E$.

- We call f(E), the *image* of E under f.
- We call f(A) the range of f. Clearly, we have $f(A) \subset B$.
- If f(A) = B, we say that f maps onto B.

Definition 0.0.3 (Inverse Images, One-to-one). • If $E \subset B$, $f^{-1}(E)$ denotes the set of all $x \in A$ such that $f(x) \in E$. We call $f^{-1}(E)$ the *inverse image* of E under f.

- If $y \in B$, $f^{-1}(y)$ is the set of all $x \in A$ such that f(x) = y. If, for each $y \in B$, $f^{-1}(y)$ consists of at most one element of A, then f is said to be a 1-1 (*one-to-one*) mapping of A into B.
- Another way to state this is to say that for any $x_1, x_2 \in A$, if $f(x_1) = f(x_2)$ implies $x_1 = x_2$ is called a 1-1 function.
- Alternatively, if $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$ is also called a 1-1 function (this is just contrapositive of the last statement).

Definition 0.0.4 (Correspondence). If there exists a 1-1 mapping of A onto B, we say that A and B can be put in 1-1 correspondence, or that A and B have the same cardinality, or, that A and B are equivalent. For this, we write $A \sim B$.

This relation contains the following properties:

- Reflexive: $A \sim A$.
- Symmetric: If $A \sim B$, then $B \sim A$.
- Transitive: If $A \sim B$ and $B \sim C$, then $A \sim C$.

Definition 0.0.5 (Finite, Infinite, Countable, Uncountable, At most countable). For any positive integer n, let \mathbb{N}_n be the set whose elelemts are the integers $1, 2, \ldots, n$; let \mathbb{N} be the set consisting of all positive integers. For any set A, we say:

(a) A is finite if $A \sim \mathbb{N}_n$ for some n (the empty set is also considered to be finite).

- (b) A is *infinite* if A is not finite.
- (c) A is countable if $A \sim \mathbb{N}$.
- (d) A is uncountable if A is neither finite n or countable.
- (e) A is at most countable if A is finite or countable.

Proposition 0.0.1. Every infinite subset of a countable set A is countable.

Proof. Suppose $E \subset A$, and E is infinite. Arrange the elements of x of A as a sequence (x_n) of distinct elements. Construct a sequence (n_k) as follows: Let n_1 be the smallest positive integer such that $x_{n_1} \in E$. Having chosen $n_1, \ldots n_{k-1}$ with $(k = 2, 3, 4, \ldots)$, let n_k be the smallest integer greater than n_{k-1} such that $x_{n_k} \in E$, let n_k be the smallest integer greater than n_{k-1} such that $x_{n_k} \in E$. Putting $f(k) = x_{n_k}$ with $(k = 1, 2, 3, \ldots)$, we obtain a 1-1 correspondence between E and \mathbb{N} . Thus, by definition, we see that E is an infinite subset of E that is countable.

Definition 0.0.6. Let A and Ω be sets, and suppose that with each element α of A there is associated a subset of Ω which we denote by E_{α} .

- We can have sets whose elements are also sets.
- To make this easier to understand, we usually denote these kinds of sets as a collection of sets.

Definition 0.0.7 (Union). The *union* of the sets E_{α} is defined to be the set S such that $x \in S$ if $x \in E_{\alpha}$ for at least one $\alpha \in A$. We use the notation

$$S = \bigcup_{\alpha \in A} E_{\alpha}.$$

If our collection of sets A is finite, then we can use the notation

$$S = \bigcup_{m=1}^{n} E_m$$

for $E_1, E_2, \ldots, E_n \in A$

On the other hand, when the collection of sets A contains a countable number of elements, then we can use the notation

$$S = \bigcup_{m=1}^{\infty} E_m.$$

The ∞ on the top of the union symbol should not be confused with $+\infty$ and $-\infty$.

Definition 0.0.8 (Intersection). The *intersection* of the sets E_{α} is defined to be the set P such that $x \in P$ if $x \in E_{\alpha}$ for every $\alpha \in A$, we have

$$P = \bigcap_{\alpha \in A} E_{\alpha}.$$

Like the union, A can either have a finite collection of sets or a countable collection of sets. Thus, we have

$$P = \bigcap_{m=1}^{n} E_m \text{ and } P = \bigcap_{m=1}^{\infty} E_m,$$

respectively.

Definition 0.0.9 (Nonempty Intersections and Disjoint Sets). If we have $A \cap B \neq \emptyset$, then we say that A and B intersect. Otherwise, we say that they are disjoint.

Here are some list of algebraic properties of sets:

- Commutativity: $A \cup B = B \cup A$ and $A \cap B = B \cap A$.
- Associativity: $(A \cup B) \cup C = A \cup (B \cup C)$ and $(A \cap B) \cap C = A \cap (B \cap C)$.
- Distributivity: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.
- $A \subset A \cup B$.
- $A \cap B \subset A$.
- $A \cup \emptyset$ and $A \cap \emptyset = \emptyset$.
- If $A \subset B$, then

$$A \cup B = B, \ A \cap B = A$$

Theorem 0.0.1. Let $\{E_n\}$ with $n \in \mathbb{N}$ be a countable collection of countable sets, and put

$$S = \bigcup_{n=1}^{\infty} E_n,$$

Then S is countable.

Proof. Let every set E_n be arranged in a sequence (x_{n_k}) with $k = 1, 2, 3, \ldots$. We can consider an infinite array such that, in each row, we have all the elements of each E_n . If we take the diagonal entries, starting from left to right, we can rearrange these entries into a sequence

$$x_{11}; x_{21}, x_{12}; x_{31}, x_{22}, x_{13}; x_{41}, x_{32}, x_{23}, x_{14}; \dots$$

starting from n=2. Notice how the sum of each index in the sequence adds up to the index of the sequence above. Thus, there exists a subset of T of the set of all positive integers such that $S \sim T$, which shows that S is at most countable, using our result about infinite subsets of countable sets. Since each $E_1 \subset S$, and E_1 is infinite, S is infinite, and thus S is countable.

Corollary. Suppose A is at most countable, and, for every $\alpha \in A$, B_{α} is at most countable. Then

$$T = \bigcup_{\alpha \in A} B_{\alpha}$$

is at most countable, for ${\cal T}$ is equivalent to a subset of

$$\bigcup_{n=1}^{\infty} B_n,$$

where $B_n \in A$.

Theorem 0.0.2. Let A be a countable set, and let B_n be the set of all n-tuples (a_1, \ldots, a_n) , where $a_k \in A(k = 1, \ldots, n)$, and the elements a_1, \ldots, a_n need not be distinct. Then B_m is countable.