Python, Linux e Predições na Física de Partículas

André Zimermmane-Santos

Quais são os elementos que, quando combinados, compõem todo nosso universo?

1 H Hydrogen 1.008															200		ver 99	He Hesium 4.003
3 Li Lithium 6.94	Be Berylum 9.012												5 B Boron 10.81	6 C Carbon 12.011	7 N Nitragen 14,007	8 Oxygen 15.999	Fluorine 18.998	10 Ne Neon 20.180
11 Na Sodum 22,990	Mg Mg Magnesium 24,305												Al Al Alaminum 26.982	Si Siicon 28.065	15 P Phosphorus 30.974	16 S Sultur 32.06	17 CI Chlorine 35.45	18 Ar Argon 39,948
19 K Potassium 39,098	20 Ca Calcium 40.078		Scandium 44.956	Ti Titanium 47.867	23 V Vanadium 50.942	Cr Chromium 51.996	Mn Mn Mariganese 54.938	26 Fe tron 55.845	27 Co Cobell 58.933	28 Ni Nickel 58.693	29 Cu Capper 63.546	30 Zn Zinc 65.38	31 Ga Gallium 69.723	Ge Gemerium 72.630	33 AS Arsenic 74,922	Selerium 78.97	35 Br Bromine 79.904	36 Kr Krypton 83.798
37 Rb Rubidium 85,468	38 Sr Stronburn 87.62		39 Y Yttrium 88.906	40 Zr Zroonum 91.224	41 Nb Niobium 92,906	Mo Mo Molybdenum 95,95	TC Technetium [97]	Ru Ru Ruthenium 101.07	45 Rh Phodium 102.906	Palladum 106.42	47 Ag Silver 107.868	48 Cd Gadmum 112.414	49 In Indium 114.818	50 Sn 118.710	51 Sb Antimony 121.760	53 Te Tellurium 127.60	53 L locine 126,904	54 Xe Xenon 131.293
55 Cs Cesum 132,905	56 Ba Barium 137,327	* 57 - 70	71 Lu Lutetium 174,987	72 Hf Hatrium 178.49	73 Ta Tantalum 180,948	74 W Tungslen 183,84	75 Re Rhenium 186.207	76 Os Osmium 190.23	78 ir Indian 192,217	79 Pt Platinum 195.084	80 Au Gold 196,997	81 Hg Mercury 200.592	81 TI Thallium 204.38	82 Pb Lead 207.2	83 Bi Bismuth 208.980	Po Polonium [209]	At At Astatine [210]	86 Rn Radon [222]
87 Fr Francium [223]	Ra Ra Radum [226]	* * 89 - 102	103 Lr Lavatericium [262]	104 Rf Rutherlordium [267]	Db Dubrium [270]	106 Sg Seaborgium [269]	107 Bh Bohnum [270]	108 Hs Hssaum [270]	109 Mt Meitnerium [278]	DS Dametadium [281]	Rg Roentgemum [281]	Cn Copernicium [285]	113 Nh Nhonium [286]	Flerovium [289]	MC Mc Moscovium [289]	LV Lvermorium [293]	117 TS Temessine [293]	118 Og Oganesson [294]
*Lanthani	*Lanthanide series		Ce Cerum	59 Pr	Nd Nd	61 Pm	Samarium	63 Eu	Gd Gadolnium	65 Tb	66 Dy Dysprosum	67 Ho	68 Er Erblum	69 Tm	70 Yb			
**Actinide series		89 AC Activium [227]	90 Th Thorium 232,038	91 Pa Protectivium 231.036	92 U Uranium 238.029	93 Np Nepturium [237]	94 Pu Plutonium [244]	95 Am Americium [243]	96 Cm Curium [247]	97 Bk Berkelium [247]	98 Cf Cstitorsum [251]	99 Es Einsteinium [252]	100 Fm Fermium [257]	101 Md Mendelevium [258]	173.045 102 No Nobelum [259]			

1 H Hydrogen 1.008	S. V													1000	795 37			He Herium 4.003
Lithum 6,94	Be Berylum 9.012												5 B Boron 10.81	6 C Carbon 12.011	7 N Nitragen 14,007	8 Oxygen 15.999	Fluorine 18.998	10 Ne Neon 20.180
Na Sodum 22.990	Mg Mg Magnesium 24,305											A. T.	Al Al Alaminum 26.982	14 Si Silicon 28.085	15 P Phosphorus 30.974	16 S Sultur 32.06	17 CI Chlorine 35.45	Ar Ar Argon 39.948
19 K Potassium 39,098	20 Ca Calcium 40.078		21 SC Scandium 44.956	22 Ti Titanium 47.867	23 V Varsadium 50.942	Cr Chromium 51.996	Mn Mn Manganese 54.938	26 Fe	27 Cobell 58.933	28 Ni Nicke 58.9	Cu	30 Zn Zinc 85.38	31 Ga Gallium 69.723	32 Ge Germanium 72.630	33 As Areenic 74,922	Selerium 78.97	35 Br Bromine 79.904	36 Kr Krypton 83.798
37 Rb Rubidium 85,468	38 Sr Stronburn 87.62		39 Y Yttrium 88.906	40 Zr Ziroanumi 91.224	41 Nb Niobium 92,906	42 Me 95.95	TC Test Yearn	44 Ru 8/2/1/07	45 Pho. 102.	Pa	Silver 107.868	6 d 0 d 2414	49 In Indiam 114.818	50 Sn 118.710	51 Sb Antimony 121.760	53 Te Tellurum 127.60	53 lodine 126,904	54 Xe Xenon 131.293
55 Cs Cesum 132,905	56 Ba Barium 137,327	* 57 - 70	71 Lu Lutetum 174.967	72 Hf Halnium 178.49	73 Ta Tantalum 180,948	Tungster 183,84	75 Rhenium 186.207	Osh Osh 190.23	78 Ir Indiam 192.217	79 P+ 195.084	Au Gold 196,997	81 Hg Mercury 200.592	81 TI Thallium 204.38	Pb Lead 207.2	83 Bi Bismuth 208.980	Po Polorium [209]	At At Astatine [210]	86 Rn Ration [222]
87 Fr Ftancium [223]	Ra Ra Radum [226]	* * 89 - 102	103 Lr Lawrencium [262]	104 Rf Flutherfordium [267]	105 Db Dubrium [270]	06 Sesibe em [268	Bh Bohrium	108 Lussaum [270]	Mt Meitnerium [278]	DS Dametadium [281]	Rg Roentgentum [281]	Cn Copernicium [285]	113 Nh Nhonium [286]	Flerovium [289]	MC Mc Moscovium [289]	LV Lv Lvermorium [293]	117 TS Tennessina [293]	118 Og Oganesson [294]
*Lanthani	*Lanthanide series		Ce Cerum	59 Pr Praseodymium	60 Nd Neodymium	61 Pm	62 Sm Samarium	63 Eu Europium	64 Gd Gadolinium	65 Tb	66 Dy Dysprosum	67 Ho	68 Er Erblum	69 Tm	70 Yb			
**Actinide	Actinide series		90 Th Thorium 232.038	91 Pa Protactinium 231.036	92 U Uranium 238.029	93 Np Neptumum [237]	94 Pu Plutonium [244]	95 Am Americium [243]	96 Cm Ourium [247]	97 Bk Berkelium [247]	98 Cf Californium [251]	99 ES Einsteinium [252]	100 Fm Fermium [257]	101 Md Mendelevium [258]	173.045 102 No Nobelum [259]			

Modelo Padrão!

Faltam 96 %:

- Gravidade
- Matéria escura
- Energia escura

(Retirado de: Physik Institut, UZH)

Várias combinações possíveis !!!

Bárions (3 quarks) - Próton, Neutron, Lambdas, Sigmas, Deltas... etc.

Mésons (quark + anti-quark) - Pi, K , Eta, J/Psi...

A computação de alto desempenho tornou-se ferramenta para a determinação de

PROPRIEDADES DE PARTÍCULAS E DE SUAS INTERAÇÕES

CSD3 Peta4 CPU/KNL cluster is at position number 75 in the November 2017 Top500 list of the 500 most powerful commercially available computer systems.

Segunda Lei de Newton.

Quanto maior a força exercida sobre um corpo, maior a sua aceleração.

Mecânica clássica. Válida nas nossas atividades cotidianas

Princípio da Ação

O caminho percorrido é aquele em que a ação se mantém estacionária.

Mecânica Quântica

Probabilidade: depende de todos os caminhos possíveis e da Ação em cada caminho.

Para o caso de muita partículas: média vem do caminho de ação estacionária.

Interações fortes

- → Teoria Quântica -> Quantum Chromodynamics, QCD
- → Quarks e gluons
- → Formalismo Lattice (ou de rede) : parte de primeiros princípios

Discretização da malha que compõe o espaço-tempo

Campos de quarks são definidos nos nós.

Campos de gluons nos links.

 $\langle \phi(x_2)\phi(x_1)
angle_T=rac{1}{\mathcal{Z}}\int \mathrm{e}^{-S_{\scriptscriptstyle E}[\phi]}\phi(x_2)\phi(x_1)\prod_{x_j\in\mathrm{grid}}\,\mathrm{d}\phi(x_j)$

Usamos algoritmos monte carlo para somar as contribuições de cada caminho.

A solução Monte Carlo

Método/Algoritmo para resolução de Integrais

- Amostragem aleatória
- Média do valor da função nos pontos igualmente distribuídos
- error ~ 1 / √ N

From Wikipedia Commons

Adaptações:

- Amostragem por Importância das configs. (distribuições e^{-S phi})
- Algoritmo de Metropolis para geração de configs. (Cadeias de Markov).

_

Existem códigos abertos para se fazer simulações de Lattice QCD

MILC code

- Software Livre (licenças GNU)
- University of UTAH
- http://physics.utah.edu/~detar/milc/

The MILC Code is a body of high performance research software written in C for doing SU(3) lattice gauge theory on several different (MIMD) parallel computers in current use. In scalar mode, it runs on a variety of workstations making it extremely versatile for both production and exploratory applications. This manual is for the latest (7.7.3) version of the code. Currently supported code runs on:

- Scalar machines
- Linux+MPI clusters
- IBM BG/L BG/P BG/Q
- Cray XT3, XE6
- Multi-GPU clusters

Faça download do MILC no Github:

milc-qcd

Input-Script

- Algumas semanas rodando 1 única simulação
- Meses até rodar um conjunto de interesse
- Repetição em diferentes distâncias de rede

```
55 t0=$((src start + i*dsrc))
56 t0phase=$((1-2*t0 % 2))
58 tt=0
60 T=\$((Tstart+tt*dT))
61 Tt=$((t0+T))
62 Tt=$((Tt % nt))
64 corrfilet0=${corrfile} t${t0}
65 corrfilet=${corrfile}_t${t0}_T${T}
66
67 cat << HERE2
  70 # source time \{t0\}, meson separation T = \{T\}
  # Gauge field description
75 ${reload gauge cmd}
76 u0 ${u0}
77 no gauge fix
78 forget
79 staple weight 0
80 ape iter 0
81 coordinate origin 0 0 0 0
```

Análise de Dados

Ajuste dos Correlatores

Extração de Grandezas Físicas:

- 1. Constantes de Decaimento
- 2. Massas de Quarks e Hádrons
- 3. Parâmetros de interação
- 4. Espectros

Ajuste:

- lsqfit
- corrfitter

Prof. G. Peter Lepage da Universidade de Cornell.

lsqfit

- Mínimos Quadrados
- Funções multidimensionais e não lineares
- Uso de Priors Bayesianos

_

corrfitter

- Mínimos Quadrados
- Funções de correlação como função do tempo
 - o 2-pt -> hádrons
 - 3-pt -> interação hádrons-partícula
- Extração de grandezas

_

Módulos complementares

- Numpy
 - Arrays, funções otimizadas
- Gvar
 - Incertezas e correlações
- Matplolib
 - Gráficos

Resultados

Setembro 2017

→ Predição do comportamento do fator de forma à baixas GeV

J. Koponen, A. C. Zimermmane-Santos, C. T. H. Davies, G. P. Lepage, and A. T. Lytle "Pseudoscalar meson electromagnetic form factor at high Q^2 from full lattice QCD", **Physical Review D** 96, 054501, Sep. 2017

Resultados

Atual

→ Extensão para mésons reais:

π's

♦ K's

• η,

Perspectivas

- Aumento da capacidade computacional
- Cálculos de altíssima precisão possíveis
- Aproximação de massas físicas
- Cálculos com Hádrons leves

O que mais?

- Restrições ao Modelo Padrão
- Física de Íons-pesados:
- Estrela de Neutrons e "the beginning"
- Pistas de novas físicas

_

Mais Informações:

- → Fśicas de Partículas: Blog "Coleção de Partículas " (https://colecaodeparticulas.wordpress.com/blog/)
- "Lattice QCD for Novices" G. P. Lepage(
 https://arxiv.org/abs/hep-lat/0506036)
- → Lsqfit documentation (
 https://corrfitter.readthedocs.io/en/latest/)
- → Corrfitter documentation (https://corrfitter.readthedocs.io/en/latest/)