

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502

DUAL-CHANNEL HCPL-2530 HCPL-2531

DESCRIPTION

The HCPL-4502/HCPL-2503, 6N135/6 and HCPL-2530/HCPL-2531 optocouplers consist of an AlGaAs LED optically coupled to a high speed photodetector transistor.

A separate connection for the bias of the photodiode improves the speed by several orders of magnitude over conventional phototransistor optocouplers by reducing the base-collector capacitance of the input transistor.

An internal noise shield provides superior common mode rejection of 10kV/µs. An improved package allows superior insulation permitting a 480 V working voltage compared to industry standard 0f 220 V.

FEATURES

- High speed-1 MBit/s
- Superior CMR-10 kV/µs
- Dual-Channel
 - HCPL-2530/HCPL-2531
- Double working voltage-480V RMS
- CTR guaranteed 0-70°C
- U.L. recognized (File # E90700)

APPLICATIONS

- Line receivers
- Pulse transformer replacement
- Output interface to CMOS-LSTTL-TTL
- Wide bandwidth analog coupling

ABSOLUTE MAXIMUM RATINGS (T _A = 25°C unless otherwise specified)						
Parameter	Symbol	Value	Units			
Storage Temperature	T _{STG}	-55 to +125	°C			
Operating Temperature	T _{OPR}	-55 to +100	°C			
Lead Solder Temperature	Tsol	260 for 10 sec	°C			
EMITTER						
DC/Average Forward Input Current Each Channel (Note 1)	I _F (avg)	25	mA			
Peak Forward Input Current (50% duty cycle, 1 ms P.W.) Each Channel (Note 2)	I _F (pk)	50	mA			
Peak Transient Input Current - (≤ 1 µs P.W., 300 pps) Each Channel	IF (trans)	1.0	А			
Reverse Input Voltage Each Channel	V_{R}	5	V			
(6N135/6N136 and HCPL-2503/4502)	_	100	147			
Input Power Dissipation (HCPL-2530/2531) Each Channel (Note 3)	Pb	45	mW			
DETECTOR						
Average Output Current Each Channel	I _O (avg)	8	mA			
Peak Output Current Each Channel	I _O (pk)	16	mA			
Emitter-Base Reverse Voltage (6N135, 6N136 and HCPL-2503 only)	V_{EBR}	5	V			
Supply Voltage	V_{CC}	-0.5 to 30	V			
Output Voltage	Vo	-0.5 to 20	V			
Base Current (6N135, 6N136 and HCPL-2503 only)	Ι _Β	5	mA			
Output power (6N135, 6N136, HCPL-2503, HCPL-4502) (Note 4)	<u> </u>	100	mW			
dissipation (HCPL-2530, HCPL-2531) Each Channel	P_{D}	35	mW			

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502 DUAL-CHANNEL HCPL-2530 HCPL-2531

ELECTRICAL CHARACTERISTICS (T_A = 0 to 70°C Unless otherwise specified)

INDIVIDUAL COMPONENT CHARACTERISTICS

INDIVIDUAL COMPO						- **	24	
Parameter		Test Conditions	Symbol	Device	Min	Typ**	Max	Unit
EMITTER	(I _F = 1	6 mA, T _A =25°C)	V _F			1.45	1.7	. v
Input Forward Voltage	(I _F = 16 mA)		·				1.8	
Input Reverse Breakdown Vo		$(I_R = 10 \mu A)$	B _{VR}		5.0			V
Temperature coefficient of fo	rward voltage	$(I_F = 16 \text{ mA})$	$(\Delta V_F/\Delta T_A)$			-1.6		mV/°C
DETECTOR								
	$(I_F = 0 \text{ mA}, V)$	$V_{\rm O} = V_{\rm CC} = 5.5 \text{ V}$		All		0.001	0.5	
		(T _A =25°C)						
Logic high output current			I _{OH}	6N135				μA -
Logio ingli output ourioni	$(I_F = 0 \text{ mA}, V)$	$V_{\rm O} = V_{\rm CC} = 15 \text{ V}$	-OH	6N136		0.005	1	
		$(T_A = 25^{\circ}C)$		HCPL-4502				
				HCPL-2503				
	$(I_F = 0 \text{ mA}, V)$	$V_{\rm O} = V_{\rm CC} = 15 \text{ V}$		All			50	
			I _{CCL}	6N135		120	200	μА
	(I _F = 16	$mA, V_O = Open)$		6N136				
Logic low supply current		$(V_{CC} = 15 V)$		HCPL-4502		120		
Logic low supply current				HCPL-2503				
	$(I_{F1} = I_{F2} = 16)$	$mA, V_O = Open)$		HCPL-2530		200		
		$(V_{CC} = 15 V)$		HCPL-2531		200	400	
				6N135				
(I _F	$= 0 \text{ mA}, V_0 = 0$	= 0 mA, V_O = Open, V_{CC} = 15 V)		6N136			1	
Logic high supply current		$(T_A = 25^{\circ}C)$		HCPL-4502			'	
				HCPL-2503			2	
			1	6N135				
	$(I_{F} = 0)$	$(I_F = 0 \text{ mA}, V_O = \text{Open})$	Іссн	6N136				μΑ
		$(V_{CC} = 15 V)$		HCPL-4502				
				HCPL-2503				
	(I _F = 0	$mA, V_O = Open)$		HCPL-2530		0.02	4	
		$(V_{CC} = 15 \text{ V})$		HCPL-2531				

^{**} All typicals at $T_A = 25$ °C

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502 DUAL-CHANNEL HCPL-2530 HCPL-2531

Parameter	Test Conditions	Symbol	Device	Min	Тур**	Max	Unit
COUPLED	() 40 4		6N135 HCPL-2530	7	18	50	%
	$(I_F = 16 \text{ mA}, V_O = 0.4 \text{ V})$		6N136	19			
	$(V_{CC} = 4.5 \text{ V}, T_A = 25^{\circ}\text{C})$		HCPL-4502		27	50	%
			HCPL-2531				
Current transfer ratio		OTD.	HCPL-2503	12	27		%
(Note 5)		CTR	6N135	-	21		0/
			HCPL-2530	5			%
	$(I_F = 16 \text{ mA}, V_O = 0.5 \text{ V})$		6N136				
	$(V_{CC} = 4.5 \text{ V})$		HCPL-4502	15	30		%
			HCPL-2531				
			HCPL-2503	9	30		%
Logic low output voltage output voltage	$(I_F = 16 \text{ mA}, I_O = 1.1 \text{ mA})$		6N135		0.18	0.4	
	$(V_{CC} = 4.5 \text{ V}, T_A = 25^{\circ}\text{C})$		HCPL-2530		0.18	0.5	
			6N136				
	$(I_F = 16 \text{ mA}, I_O = 3 \text{ mA})$		HCPL-4502		0.25	0.4	
	$(V_{CC} = 4.5 \text{ V}, T_A = 25^{\circ}\text{C})$		HCPL-2503				
		V _{OL}	HCPL-2531		0.25	0.5	V
	$(I_F = 16 \text{ mA}, I_O = 0.8 \text{ mA})$]	6N135			0.5	
	$(V_{CC} = 4.5 \text{ V})$		HCPL-2530				
			6N136				
	$(I_F = 16 \text{ mA}, I_O = 2.4 \text{ mA})$		HCPL-4502			0.5	
	$(V_{CC} = 4.5 \text{ V})$		HCPL-2503			0.5	
			HCPL-2531				

^{**} All typicals at $T_A = 25$ °C

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502 DUAL-CHANNEL HCPL-2530 HCPL-2531

Parameter	Test Conditions	Symbol	Device	Min	Тур**	Max	Unit
T _A = 25°C,	(P = 4.1 k0 L = 16 mA) (Note 6) (Fig. 7)		6N135		0.45	1.5	110
	$(R_L = 4.1 \text{ k}\Omega, I_F = 16 \text{ mA}) \text{ (Note 6) (Fig. 7)}$		HCPL-2530		0.43	1.5	μs
•			6N136				
	$(R_L = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA}) \text{ (Note 7) (Fig. 7)}$		HCPL-4502		0.45	0.0	μs
Propagation delay	$T_A = 25$ °C		HCPL-2503		0.45	0.8	
time to logic low			HCPL-2531				
	(D. 44 kO I. 40 m A) (Nata C) (Fig. 7)	T _{PHL}	6N135			2.0	
	$(R_L = 4.1 \text{ k}\Omega, I_F = 16 \text{ mA}) \text{ (Note 6) (Fig. 7)}$		HCPL-2530			2.0	μs
			6N136				
	(R _L = 1.9 k Ω , I _F = 16 mA) (Note 7) (Fig. 7)		HCPL-4502			1.0	μs
			HCPL-2503			1.0	
			HCPL-2531				
T _A = 25°C, Propagation delay time to logic high	(D. 44 kO I. 40 m A) (Note C) (Fig. 7)		6N135		0.5	4.5	
	$R_L = 4.1 \text{ k}\Omega, I_F = 16 \text{ mA} \text{ (Note 6) (Fig. 7)}$ $(R_L = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA} \text{ (Note 7) (Fig. 7)}$ $T_A = 25^{\circ}\text{C}$	-	HCPL-2530		0.5	0.8	μs
			6N136				
			HCPL-4502				
			HCPL-2503				
		_	HCPL-2531				
	$(R_L = 4.1 \text{ k}\Omega, I_F = 16 \text{ mA})$ (Note 6) (Fig. 7) ($R_L = 1.9 \text{ k}\Omega, I_F = 16 \text{ mA})$ (Note 7) (Fig. 7)	- T _{PLH}	6N135				
			HCPL-2530			2.0	μs
		-	6N136			4.0	
			HCPL-4502				
			HCPL-2503			1.0	μs
			HCPL-2531				
	$(I_F = 0 \text{ mA}, V_{CM} = 10 V_{P-P}, R_L = 4.1 \text{ k}\Omega)$		6N135		40.000		\ //
Common mode	(Note 8) (Fig. 8) $T_A = 25^{\circ}C$		HCPL-2530		10,000		V/µs
transient	$(I_F = 0 \text{ mA}, V_{CM} = 10 V_{P-P})$	lona i	6N136				
immunity at	$T_A = 25^{\circ}C, (R_L = 1.9 \text{ k}\Omega)$	CM _H	HCPL-4502		40,000		\ //···
logic high	(Note 8) (Fig. 8)		HCPL-2503		10,000		V/µs
			HCPL-2531				
	$(I_F = 16 \text{ mA}, V_{CM} = 10 V_{P-P}, R_L = 4.1 \text{ k}\Omega)$		6N135		10,000		\ //
Common mode	(Note 8) (Fig. 8) $T_A = 25^{\circ}C$		HCPL-2530		10,000		V/µs
transient	$(I_F = 16 \text{ mA}, V_{CM} = 10 V_{P-P})$	1 1004	6N136				
immunity at	$(R_L = 1.9 \text{ k}\Omega)$	CM _L	HCPL-4502		10,000		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
logic low	(Note 8) (Fig. 8)		HCPL-2503		10,000		V/µs
			HCPL-2531				

^{**} All typicals at $T_A = 25$ °C

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502

DUAL-CHANNEL HCPL-2530 HCPL-2531

Characteristics	Test Conditions	Symbol	Min	Typ**	Max	Unit	
	(Relative humidity = 45%)						
Input-output	$(T_A = 25^{\circ}C, t = 5 s)$				4.0		
insulation leakage current	$(V_{I-O} = 3000 \text{ VDC})$	I _{I-O}			1.0	μA	
	(Note 9)						
NA/:thesternal in collections to at a called ma	$(RH \le 50\%, T_A = 25^{\circ}C)$	1/	2500				
Withstand insulation test voltage	(Note 9) ($t = 1 \text{ min.}$)	V _{ISO}	2500			V_{RMS}	
Resistance (input to output)	(Note 9) $(V_{I-O} = 500 \text{ VDC})$	R _{I-O}		10 ¹²		Ω	
Capacitance (input to output)	(Note 9) (f = 1 MHz)	C _{I-O}		0.6		pF	
DC Current gain	$(I_O = 3 \text{ mA}, V_O = 5 \text{ V})$	HFE		150			
Input-Input (RH $\leq 45^{\circ}$	%, V _{I-I} = 500 VDC) (Note 10)			0.005			
Insulation leakage current t =	5 s, (HCPL-2530/2531 only)	I _{I-I}		0.005		μA	
Input Input Decistores	$(V_{I-I} = 500 \text{ VDC}) \text{ (Note 10)}$	D		10 ¹¹		Ω	
Input-Input Resistance	(HCPL-2530/2531 only)	R _{I-I}		10			
Input Input Canaditanas	(f = 1 MHz) (Note 10)			0.03		הר	
Input-Input Capacitance	(HCPL-2530/2531 only)	C _{I-I}		0.03		pF	

^{**} All typicals at $T_A = 25$ °C

NOTES

- 1. Derate linearly above 70°C free-air temperature at a rate of 0.8 mA/°C.
- 2. Derate linearly above 70°C free-air temperature at a rate of 1.6 mA/°C.
- 3. Derate linearly above 70°C free-air temperature at a rate of 0.9 mW/°C.
- 4. Derate linearly above 70°C free-air temperature at a rate of 2.0 mW/°C.
- 5. Current Transfer Ratio is defined as a ratio of output collector current, I_O, to the forward LED input current, I_F, times 100%.
- 6. The 4.1 k Ω load represents 1 LSTTL unit load of 0.36 mA and 6.1k Ω pull-up resistor.
- 7. The 1.9 k Ω load represents 1 TTL unit load of 1.6 mA and 5.6 k Ω pull-up resistor.
- 8. Common mode transient immunity in logic high level is the maximum tolerable (positive) dV_{cm}/dt on the leading edge of the common mode pulse signal V_{CM} , to assure that the output will remain in a logic high state (i.e., $V_O > 2.0$ V). Common mode transient immunity in logic low level is the maximum tolerable (negative) dV_{cm}/dt on the trailing edge of the common mode pulse signal, V_{CM} , to assure that the output will remain in a logic low state (i.e., $V_O < 0.8$ V).
- 9. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 10. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502

1.2

1.0

0.8

0.2

0.0 L -60

-40

NORMALIZED CTR

DUAL-CHANNEL HCPL-2530 HCPL-2531

Fig. 1 Normalized CTR vs. Forward Current

Fig. 2 Normalized CTR vs. Temperature

Fig. 3 Output Current vs. Output Voltage

Fig. 4 Logic High Output Current vs. Temperature

T_A - TEMPERATURE (°C)

60

80

100

Fig. 5 Propagation Delay vs. Temperature

Fig. 6 Propagation Delay vs. Load Resistance

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502 DUAL-CHANNEL HCPL-2530 HCPL-2531

Fig. 7 Switching Time Test Circuit

Fig. 8 Common Mode Immunity Test Circuit

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502

DUAL-CHANNEL HCPL-2530 HCPL-2531

NOTE

All dimensions are in inches (millimeters)

www.qtopto.com

Call QT Optoelectronics for more information or the phone number of your nearest distributor.

United States 800-533-6786 • France 33 [0] 1.45.18.78.78 • Germany 49 [0] 89/96.30.51 • United Kingdom 44 [0] 1296 394499 • Asia/Pacific 603-7352417

SINGLE-CHANNEL 6N135, 6N136 HCPL-2503 HCPL-4502

DUAL-CHANNEL HCPL-2530 HCPL-2531

ORDERING INFORMATION

Option	Order Entry Identifier	Description
R2	.R2	Opto Plus Reliability Conditioning
S	.S	Surface Mount Lead Bend
SD	.SD	Surface Mount; Tape and reel
SDL	.SDL	Surface Mount; Tape and reel
W	.W	0.4" Lead Spacing

Corporate Headquarters

QT Optoelectronics 610 North Mary Avenue Sunnyvale, CA 94086 (408) 720-1440 Phone (408) 720-0848 Fax

European Sales

QT Optoelectronics
"Le Levant"
2, rue du Nouveau Bercy
F-94277-CHARENTON-LE PONT Cedex
FRANCE
33 [0] 1.45.18.78.78 Phone
33 [0] 1.43.75.77.57 Fax

North American Sales

QT Optoelectronics 16775 Addison Rd.,Suite 200 Addison, TX 75001 (972) 447-1300 Phone (972) 447-0784 Fax

Asia/Pacific Sales

QT Optoelectronics B613, 6th Floor East Wing, Wisma Tractors Jalan SS16/1, Subang Jaya 47500 Petaling Jaya Selangor Darul Eshan, Malaysia 603/735-2417 Phone 603/736-3382 Fax

European Sales

Quality Technologies Deutschland GmbH Max-Huber-Strasse 8 D-85737 Ismaning, Germany 49 [0] 89/96.30.51 Phone 49 [0] 89/96.54.74 Fax

European Sales

Quality Technologies (U.K) Ltd. 10, Prebendal Court, Oxford Road Aylesbury, Buckinghamshire HP19-3EY United Kingdom 44 [0] 1296/30.44.99 Phone 44 [0] 1296/39.24.32 Fax

www.qtopto.com

Call QT Optoelectronics for more information or the phone number of your nearest distributor.

United States 800-533-6786 • France 33 [0] 1.45.18.78.78 • Germany 49 [0] 89/96.30.51 • United Kingdom 44 [0] 1296 394499 • Asia/Pacific 603-7352417

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.