# DISCUSSION OF Consumption Wedges: Measuring and Diagnosing Distortions BY INDARTE, KLUENDER, MALMENDIER, AND STEPNER

Tim de Silva Stanford GSB & SIEPR

June 24th, 2025

WFA ANNUAL MEETING 2025

## BACKGROUND: MPCs IN MACROECONOMICS

- MPC out of a temporary income shock is a key statistic in macroeconomic models
  - Old Keynesian models: structural parameter that determines fiscal multiplier
  - NK models: endogenous object that also determines monetary policy transmission
- Large body of empirical work using different variation to estimate MPCs
  - Example = Johnson et al. (2006): MPC out of  $\sim$ \$500 transfer check is  $\sim$ 0.3

## BACKGROUND: MPCs in Macroeconomics

- MPC out of a temporary income shock is a key statistic in macroeconomic models
  - Old Keynesian models: structural parameter that determines fiscal multiplier
  - NK models: endogenous object that also determines monetary policy transmission
- Large body of empirical work using different variation to estimate MPCs
  - Example = Johnson et al. (2006): MPC out of  $\sim$ \$500 transfer check is  $\sim$ 0.3
- High MPCs inconsistent with PIH ⇒ incomplete markets models
  - Borrowing constraints generate high MPCs, but only for low wealth households

## BACKGROUND: MPCs IN MACROECONOMICS

- MPC out of a temporary income shock is a key statistic in macroeconomic models
  - Old Keynesian models: structural parameter that determines fiscal multiplier
  - NK models: endogenous object that also determines monetary policy transmission
- Large body of empirical work using different variation to estimate MPCs
  - Example = Johnson et al. (2006): MPC out of  $\sim$ \$500 transfer check is  $\sim$ 0.3
- High MPCs inconsistent with PIH ⇒ incomplete markets models
  - Borrowing constraints generate high MPCs, but only for low wealth households
- To generate high average MPCs, literature has settled on two core models:
  - 1 One-asset incomplete markets model + heterogeneous  $\beta$  Auclert et al. 2025
  - 2 Two-asset (liquid + illiquid) incomplete markets model Kaplan-Violante 2014, 2022

## CURRENT STATE OF THE LITERATURE: HOW TO DISTINGUISH MODELS?

- Examine other characteristics of MPCs
  - MPCs decay slowly after shock, consistent with two-asset model Auclert et al. 2024
  - MPCs non-trivial for big shocks, inconsistent with two-asset model Beraja-Zorzi 2024
  - MPCs are asymmetric, consistent with mental accounting Baugh et al. 2021
- 2 Require the model to be consistent with aggregates
  - Two-asset model can also generate a realistic wealth distribution, while one-asset model has a "missing-middle" Kaplan-Violante 2022
- 3 Examine other decisions
  - Revolving credit card borrowing suggests a role for present bias Lee-Maxted 2025

## CURRENT STATE OF THE LITERATURE: HOW TO DISTINGUISH MODELS?

- Examine other characteristics of MPCs
  - MPCs decay slowly after shock, consistent with two-asset model Auclert et al. 2024
  - MPCs non-trivial for big shocks, inconsistent with two-asset model Beraja-Zorzi 2024
  - MPCs are asymmetric, consistent with mental accounting Baugh et al. 2021
- Require the model to be consistent with aggregates
  - Two-asset model can also generate a realistic wealth distribution, while one-asset model has a "missing-middle" Kaplan-Violante 2022
- 3 Examine other decisions
  - Revolving credit card borrowing suggests a role for present bias Lee-Maxted 2025

My summary: **two-asset model** is a good starting point, but still need to figure out what other ingredients are important quantitatively

## CURRENT STATE OF THE LITERATURE: How TO DISTINGUISH MODELS?

- Examine other characteristics of MPCs
  - MPCs decay slowly after shock, consistent with two-asset model Auclert et al. 2024
  - MPCs non-trivial for big shocks, inconsistent with two-asset model Beraja-Zorzi 2024
  - MPCs are asymmetric, consistent with mental accounting Baugh et al. 2021
- 2 Require the model to be consistent with aggregates
  - Two-asset model can also generate a realistic wealth distribution, while one-asset model has a "missing-middle" Kaplan-Violante 2022
- 3 Examine other decisions
  - Revolving credit card borrowing suggests a role for present bias Lee-Maxted 2025
- 4 This paper: use consumption wedges!

My summary: **two-asset model** is a good starting point, but still need to figure out what other ingredients are important quantitatively

## THIS PAPER IN ONE SLIDE

- **1** Derive an **approximation** for consumption under complete markets that is a function of  $\beta$ ,  $\gamma$ , and data
- 2 Compute the "wedge" between the approximated and observed consumption using (awesome) data on consumption, income, and expectations
  - Note: Big innovation to have the latter with the former two!
- 3 Document facts using estimated wedges:
  - Are large on average ⇒ deviate from frictionless models (less surprising)
  - Are often positive ⇒ borrowing constraints alone not enough (more surprising)
  - Positively correlate with MPCs, consumption commitments, and financial distress

### THIS PAPER IN ONE SLIDE

- **1** Derive an **approximation** for consumption under complete markets that is a function of  $\beta$ ,  $\gamma$ , and data
- 2 Compute the "wedge" between the approximated and observed consumption using (awesome) data on consumption, income, and expectations
  - Note: Big innovation to have the latter with the former two!
- 3 Document facts using estimated wedges:
  - Are large on average ⇒ deviate from frictionless models (less surprising)
  - Are often positive ⇒ borrowing constraints alone not enough (more surprising)
  - Positively correlate with MPCs, consumption commitments, and financial distress

#### Main comment: Sharpen analysis of which theories can explain results

- Would increase impact by showing readers how to use wedges
- 2 This literature is **quantitative** ⇒ want to know what models predict for your facts!

## THIS PAPER IN ONE SLIDE

- **1** Derive an **approximation** for consumption under complete markets that is a function of  $\beta$ ,  $\gamma$ , and data
- 2 Compute the "wedge" between the approximated and observed consumption using (awesome) data on consumption, income, and expectations
  - Note: Big innovation to have the latter with the former two!
- 3 Document facts using estimated wedges:
  - Are large on average ⇒ deviate from frictionless models (less surprising)
  - Are often positive ⇒ borrowing constraints alone not enough (more surprising)
  - Positively correlate with MPCs, consumption commitments, and financial distress

Main comment: Sharpen analysis of which theories can explain results

My discussion: A preliminary attempt at doing this

### COMPUTING CONSUMPTION WEDGES IN CANONICAL MODELS

Solve and simulate several benchmark incomplete markets models



- One-asset model (Bewley): infinite horizon, stochastic and mean-reverting income, hard borrowing constraint, constant return
- **Two-asset model** (Kaplan-Violante): one-asset model + higher return illiquid asset, fixed transaction costs, stochastic arrival of adjustment opportunities
- Add "naive" present bias to both models

## COMPUTING CONSUMPTION WEDGES IN CANONICAL MODELS

Solve and simulate several benchmark incomplete markets models



- One-asset model (Bewley): infinite horizon, stochastic and mean-reverting income, hard borrowing constraint, constant return
- **Two-asset model** (Kaplan-Violante): one-asset model + higher return illiquid asset, fixed transaction costs, stochastic arrival of adjustment opportunities
- Add "naive" present bias to both models
- 2 Compute frictionless consumption, following the paper as closely as possible
  - Solve models assuming rational expectations ⇒ use these to compute wedges
  - Impose perfect foresight about portfolio choice in two-asset model for  $E_t R_{t+j}$
  - No inflation, so ignore it in computation
  - Approximate around model-implied steady-states
  - Note: I found this computation to be non-trivial, which is part of why an exercise along these lines in the paper would be helpful!

### COMPUTING CONSUMPTION WEDGES IN CANONICAL MODELS

Solve and simulate several benchmark incomplete markets models



- One-asset model (Bewley): infinite horizon, stochastic and mean-reverting income, hard borrowing constraint, constant return
- **Two-asset model** (Kaplan-Violante): one-asset model + higher return illiquid asset, fixed transaction costs, stochastic arrival of adjustment opportunities
- Add "naive" present bias to both models
- 2 Compute frictionless consumption, following the paper as closely as possible
  - Solve models assuming rational expectations ⇒ use these to compute wedges
  - Impose perfect foresight about portfolio choice in two-asset model for  $E_t R_{t+j}$
  - No inflation, so ignore it in computation
  - Approximate around model-implied steady-states

3 Compute wedges = simulated choice - frictionless choice at current states

| Mean (Abs.) Median (Abs.) Fraction Positive Mean Median | Data | 39.0%       | 35.3%         | 29.6%             | -14.8% | -23.7% |
|---------------------------------------------------------|------|-------------|---------------|-------------------|--------|--------|
|                                                         |      | Mean (Abs.) | Median (Abs.) | Fraction Positive | Mean   | Median |

|           | Mean (Abs.) | Median (Abs.) | Fraction Positive | Mean   | Median |
|-----------|-------------|---------------|-------------------|--------|--------|
| Data      | 39.0%       | 35.3%         | 29.6%             | -14.8% | -23.7% |
| One-Asset | 60.7%       | 62.1%         |                   |        |        |

Unsigned wedges are too large in one-asset model

|           | Mean (Abs.) | Median (Abs.) | Fraction Positive | Mean   | Median |
|-----------|-------------|---------------|-------------------|--------|--------|
| Data      | 39.0%       | 35.3%         | 29.6%             | -14.8% | -23.7% |
| One-Asset | 60.7%       | 62.1%         |                   |        |        |
| Two-Asset | 50.1%       | 51.5%         |                   |        |        |

Unsigned wedges are smaller in two-asset model, but still too large

|           | Mean (Abs.) | Median (Abs.) | Fraction Positive | Mean   | Median |
|-----------|-------------|---------------|-------------------|--------|--------|
| Data      | 39.0%       | 35.3%         | 29.6%             | -14.8% | -23.7% |
| One-Asset | 60.7%       | 62.1%         | 0.0%              | -60.7% | -62.1% |
| Two-Asset | 50.1%       | 51.5%         | 0.0%              | -50.1% | -51.5% |

Both one-asset and two-asset models cannot generate positive wedges

|                              | Mean (Abs.) | Median (Abs.) | Fraction Positive | Mean   | Median |
|------------------------------|-------------|---------------|-------------------|--------|--------|
| Data                         | 39.0%       | 35.3%         | 29.6%             | -14.8% | -23.7% |
| One-Asset                    | 60.7%       | 62.1%         | 0.0%              | -60.7% | -62.1% |
| Two-Asset                    | 50.1%       | 51.5%         | 0.0%              | -50.1% | -51.5% |
| One-Asset + $\hat{eta}=$ 0.8 | 58.3%       | 59.1%         | 0.0%              | -58.3% | -59.1% |

|                               | Mean (Abs.) | Median (Abs.) | Fraction Positive | Mean   | Median |
|-------------------------------|-------------|---------------|-------------------|--------|--------|
| Data                          | 39.0%       | 35.3%         | 29.6%             | -14.8% | -23.7% |
| One-Asset                     | 60.7%       | 62.1%         | 0.0%              | -60.7% | -62.1% |
| Two-Asset                     | 50.1%       | 51.5%         | 0.0%              | -50.1% | -51.5% |
| One-Asset + $\hat{eta}=$ 0.8  | 58.3%       | 59.1%         | 0.0%              | -58.3% | -59.1% |
| One-Asset + $\hat{eta}=$ 0.53 | 55.5%       | 60.1%         | 1.2%              | -55.5% | -60.1% |

|                               | Mean (Abs.) | Median (Abs.) | Fraction Positive | Mean   | Median |
|-------------------------------|-------------|---------------|-------------------|--------|--------|
| Data                          | 39.0%       | 35.3%         | 29.6%             | -14.8% | -23.7% |
| One-Asset                     | 60.7%       | 62.1%         | 0.0%              | -60.7% | -62.1% |
| Two-Asset                     | 50.1%       | 51.5%         | 0.0%              | -50.1% | -51.5% |
| One-Asset + $\hat{eta}=$ 0.8  | 58.3%       | 59.1%         | 0.0%              | -58.3% | -59.1% |
| One-Asset + $\hat{eta}=$ 0.53 | 55.5%       | 60.1%         | 1.2%              | -55.5% | -60.1% |
| One-Asset + $\hat{eta}=$ 0.3  | 55.4%       | 59.2%         | 2.1%              | -54.6% | -59.2% |

Adding present bias helps qualitatively, but not quantitatively

|                                | Mean (Abs.) | Median (Abs.) | Fraction Positive | Mean   | Median |
|--------------------------------|-------------|---------------|-------------------|--------|--------|
| Data                           | 39.0%       | 35.3%         | 29.6%             | -14.8% | -23.7% |
| One-Asset                      | 60.7%       | 62.1%         | 0.0%              | -60.7% | -62.1% |
| Two-Asset                      | 50.1%       | 51.5%         | 0.0%              | -50.1% | -51.5% |
| One-Asset + $\hat{eta}=$ 0.8   | 58.3%       | 59.1%         | 0.0%              | -58.3% | -59.1% |
| One-Asset + $\hat{eta} =$ 0.53 | 55.5%       | 60.1%         | 1.2%              | -55.5% | -60.1% |
| One-Asset + $\hat{eta}=$ 0.3   | 55.4%       | 59.2%         | 2.1%              | -54.6% | -59.2% |
| Two-Asset + $\hat{eta} =$ 0.8  | 49.9%       | 52.2%         | 1.6%              | -49.8% | -52.2% |

Positive wedges with less present bias in two-asset model due to higher return

|                                | Mean (Abs.) | Median (Abs.) | Fraction Positive | Mean   | Median |
|--------------------------------|-------------|---------------|-------------------|--------|--------|
| Data                           | 39.0%       | 35.3%         | 29.6%             | -14.8% | -23.7% |
| One-Asset                      | 60.7%       | 62.1%         | 0.0%              | -60.7% | -62.1% |
| Two-Asset                      | 50.1%       | 51.5%         | 0.0%              | -50.1% | -51.5% |
| One-Asset + $\hat{eta}=$ 0.8   | 58.3%       | 59.1%         | 0.0%              | -58.3% | -59.1% |
| One-Asset + $\hat{eta}=$ 0.53  | 55.5%       | 60.1%         | 1.2%              | -55.5% | -60.1% |
| One-Asset + $\hat{eta}=$ 0.3   | 55.4%       | 59.2%         | 2.1%              | -54.6% | -59.2% |
| Two-Asset + $\hat{eta}=$ 0.8   | 49.9%       | 52.2%         | 1.6%              | -49.8% | -52.2% |
| Two-Asset + $\hat{eta} = 0.53$ | 64.4%       | 68.4%         | 0.0%              | -64.4% | -68.4% |

Present bias has another effect in two-asset model: eventually, it stops saving in high return asset ⇒ lower return on savings ⇒ higher frictionless consumption

## CONSUMPTION WEDGES AND MPCS: MODELS



Canonical models have correlation between wedges and MPCs with wrong sign

- In canonical one- and two-asset models:
  - 1 Naive present bias struggles to quantitatively give positive wedges in the data
  - 2 Correlation between wedges and MPCs is negative, independent of present bias

- In canonical one- and two-asset models:
  - 1 Naive present bias struggles to quantitatively give positive wedges in the data
  - 2 Correlation between wedges and MPCs is negative, independent of present bias
- Some other possible deviations from frictionless models to match the data:
  - Consumption inertia
     Q: how would consumption be so high in the first place?
  - Consumption commitments
     Q: why would HHs take on these commitments?

- In canonical one- and two-asset models:
  - 1 Naive present bias struggles to quantitatively give positive wedges in the data
  - 2 Correlation between wedges and MPCs is negative, independent of present bias
- Some other possible deviations from frictionless models to match the data:
  - Consumption inertia
  - Consumption commitments
  - Gul-Pescendorfer temptation utility maybe

maybe can give cov(wedge, MPC) > 0?

- In canonical one- and two-asset models:
  - 1 Naive present bias struggles to quantitatively give positive wedges in the data
  - 2 Correlation between wedges and MPCs is negative, independent of present bias
- Some other possible deviations from frictionless models to match the data:
  - Consumption inertia
  - Consumption commitments
  - Gul-Pescendorfer temptation utility
  - Misperception of borrowing and/or default costs
  - Access to lower cost informal credit/insurance
  - Measurement issues
     example = missing wealth and/or income

- In canonical one- and two-asset models:
  - 1 Naive present bias struggles to quantitatively give positive wedges in the data
  - 2 Correlation between wedges and MPCs is negative, independent of present bias
- Some other possible deviations from frictionless models to match the data:
  - Consumption inertia
  - Consumption commitments
  - Gul-Pescendorfer temptation utility
  - Misperception of borrowing and/or default costs
  - Access to lower cost informal credit/insurance
  - Measurement issues
- I'd like to see more progress on **distinguishing** these/other theories
  - Suggestion: formalize predictions of these deviations in one-asset model
  - Having a fact that rejects theories makes a great paper, but need clear predictions!

## SUGGESTION: EXPLORE PANEL DIMENSION MORE IN DATA



Wedges are almost perfectly **persistent** in canonical models. Is this true in data? If not, want to think of deviations that can break this persistence!

## OTHER COMMENTS FOR AUTHORS (SKIP)

- Can you isolate the effects of beliefs by computing wedges using rational expectations? Maybe you could do this
  by replacing expectations with future realizations? Or alternatively, just ignore forward-looking expectations
  terms entirely and plug-in averages.
- Can you address concerns about not perfectly observing income and wealth by using your data to evaluate the budget constraint directly and seeing how big the residual is?
- I find the "wedge" terminology somewhat confusing when compared with other papers, like Chari et al. or Berger
  et al. In those settings, measuring the wedge <u>only</u> requires data. Here, it requires taking a stand on structural
  parameters.
- I found calling wedges "sufficient statistics" confusing. The Chetty (2009) view of a sufficient statistic is something that I can compute using only data and allows me to make directional statements about welfare. You need to take a stand on structural parameters to measure wedges, and you're not interested in using these for welfare. Instead, they are used more as a model diagnostic (which I like!), so maybe a better term is wedges as a "identifying moment" or "model diagnostic".
- Can you do anything to address the concern that your sample is potentially very selected to be the most constrained (your net worth to income ratio is quite low)?
- It's not obvious to me that the steady-state around which you linearize is going to exist generically. In some
  reasonable calibrations of an infinite-horizon one-asset model, some of my quantitative results suggested it
  might not. Maybe the infinite horizon assumption is the problem here, but it would be helpful to work this out.

#### Conclusion

- Nice paper that makes a step forward by providing a new set of moments for consumption-savings models to match: consumption wedges
  - Approach and findings are very thoughtful-provoking (got me to solve models!)
- Main comment: sharpen analysis of which theories work quantitatively
  - In my <u>preliminary</u> analysis, present bias doesn't help, but happy to be corrected!
- Three promising clues for a candidate theory:
  - **1** Canonical models: cov(MPC, wedge) < 0, Data: cov(MPC, wedge) > 0
  - 2 Canonical models = wedges are very persistent, Data = ?
  - 3 Data = positive wedges concentrated among those without mortgages

• I look forward to seeing future versions of this paper and follow-ups!

## CALIBRATED PARAMETERS

| Parameter                | One-Asset | Two-Asset | Description                           |
|--------------------------|-----------|-----------|---------------------------------------|
| δ                        | 0.005     | 0.005     | Quarterly death rate                  |
| $\beta$                  | 0.995     | 0.985     | Quarterly discount factor             |
| $\gamma$                 | 2.0       | 2.0       | Relative risk-aversion                |
| $\rho$                   | 0.988     | 0.988     | Income persistence                    |
| $\sigma_{arepsilon}^{2}$ | 0.0108    | 0.0108    | Variance of income shocks             |
| r                        | 1.0025    | 0.995     | Liquid asset gross return             |
| au                       |           | 0.0205    | Illiquidity premium                   |
| $\lambda$                |           | 0.95      | Probability of adjustment opportunity |
| $\kappa_{\it f}$         | •         | 0.087     | Fixed adjustment cost                 |

◆ Back