Breadcrumbs: Unaliasing in Reinforcement Learning

Philip Raeisghasem

Reinforcement Learning

Exploration

Intrinsic Motivation

A way to provide agents with a denser reward signal (more feedback).

Curiosity- Rewarding agents for having new experiences.

Random Network Distillation (RND) - Curiosity algorithm.

Aliased States

Due to partial observability

Currently solved with:

- Memory
- Redefining "state" in MDP

Experiments

Results

Random variable is final return (Normal)

	Feature	Reward	Feature + Curiosity	Reward + Curiosity
sample mean	3.03	3.49	2.51	3.75
sample variance	1.76	1.71	1.17	2.22

Random variable is success rate (Bernoulli)

	Feature	Reward	Feature + Curiosity	Reward + Curiosity
р	18/40	28/40	8/40	29/40

Discussion

- Reward trails were significantly better than feature trails
- Curiosity did not significantly improve upon either method
- Both unaliasing methods performed better than pure curiosity, which failed every time

Future Work

- Hyperparameter search
- Try other approaches
- Compare to RNN memory methods
- Test in multi-agent scenarios