High Performance
Computing for Weather
and Climate (HPC4WC)

Content: Distributed Memory Parallelism / MPI

Lecturers: Oliver Fuhrer

Block course 701-1270-00L

Summer 2020

Learning goals

- Understand distributed memory parallelism and how it is different from shared memory parallelism
- Learn basic message passing patterns using MPI
- Be able to apply domain decomposition for solving partial differential equations
- Understand the concept of halo points and able to implement a halo-update.

Supercomputer Architecture

Core 12/socket

(Numbers are for Piz Daint and vary from system to system) **System Cabinet** Distributed Memory BUS **Blade** 48/cabinet **Node** 4/blade **Socket** Shared Memory 2/node

Computer Architecture

Von Neumann

Cache hierarchy

Modern CPU

Multicore Node

Many nodes

Distributed Memory

All cores on a node share the same address space / memory

>>> print(a)
42

Nodes have different address spaces / memories. Variables are not shared.

Message Passing

 Information between nodes is transferred over a network cable using a message passing protocol.

```
>>> send(a, destination=1)
>>> address(a)
0x001a947e3211
```

```
>>> a = recv(source=0)
>>> print(a)
42
>>> addres(a)
0x002f33498e77
```


Parallel Computing

Message Passing Interface (MPI)

- MPI is a standardized and portable message passing standard.
 (https://github.com/mpi-forum)
- Version 1.0 in 1992, latest Version 3.1 in 2015, Version 4.0 ratification in progress
- Support for Fortran, C, C++, Python, Julia, ...
- Implemented as a library that provides message passing semantics.
- Several implementations
 - MVAPICH
 - OpenMPI
 - Cray MPI
 - ...
- Available on almost any architecture
 - Linux Laptop (apt-get install mpich)
 - Supercomputer
 - Google Cloud Platform
 - ..

Lab Exercises

01-test-MPI-setup.ipynb

Test the setup of your JupyterHub Server to make sure that MPI is working correctly.

02-MPI-introduction.ipynb

• Step-by-step introduction to MPI concepts in Python (mpi4py).

03-domain-decomposition.ipynb

- Learn about domain-decomposition.
- Apply domain-decomposition to a simple 1d example.
- Apply domain-decomposition to the stencil2d.py program.