04. Randomization 1/35

04. Randomization CPSC 535

Kevin A. Wortman

This work is licensed under a Creative Commons Attribution 4.0 International License.

04. Randomization 2 / 35

Big Idea: Randomization

Big idea: a randomized algorithm deliberately makes random choices

- con: behavior and/or performance becomes stochastic (unpredictable)
- pro: other aspects can get better (speed, simplicity)
- often algorithm gets faster/simpler but analysis gets harder
- ► (this is a win)

A deterministic algorithm is not randomized.

04. Randomization 3/35

Recap: Quicksort

Recall:

- every sorting algorithm takes $\Omega(n \log n)$ time
- ▶ merge sort takes $\Theta(n \log n)$ worst-case time and $\Theta(n)$ space
- quicksort synopsis:
 - recursive divide-and-conquer
 - pick random pivot p
 - rearrange list into two zones: $\leq p$ and > p
 - recurse onto each zone
- quicksort
 - is randomized
 - \triangleright $\Theta(n \log n)$ expected time
 - \triangleright $\Theta(n^2)$ worst-case time
 - $ightharpoonup \Theta(\log n)$ space

04. Randomization 4/3

Recap: Analyzing Randomized Algorithms

For each randomized algorithm we make two separate efficiency claims:

- 1. expected time: the focus
- 2. worst-case time: disclaimer; secondary consideration

"Quicksort takes $\Theta(n \log n)$ expected time and $\Theta(n^2)$ worst-case time."

04. Randomization 5/35

Definition of Expected Time

Definition:

algo.'s expected time = E[algo.'s worst-case time]

For random variable X with outcomes x_1, \ldots, x_n of probability p_1, \ldots, p_n ,

$$E[X] = \sum_{\text{outcome } x_i} p_i x_i$$

So

algo.'s expected time =
$$\sum_{\text{sequence of random choices } i} p_i \cdot (\text{worst-case time steps given } i)$$

04. Randomization 6 / 35

The Hiring Problem

```
1: function DETERMINISTIC-HIRE-ASSISTANT(A)
2:
      best = NII
3:
     for x in A do
         if best is still NII or x is better than best then
4:
5:
            best = x
6:
         end if
     end for
7.
8:
     return best
9: end function
```

Analyze the number of reassignments (line 5)

04. Randomization 7/3

Adversarial Analysis

Adversarial analysis: Proof strategy for worst-case analysis

"Adversary"

- is a fictional opponent character
- seeks to show algorithm is inefficient
- has full knowledge of algorithm pseudocode
- picks least-flattering input

Big idea:

- randomization makes the adversary's job harder
- ▶ so improves the algorithm's expected performance

04. Randomization 8/35

Adversarial Analysis of Deterministic Hiring

```
1: function DETERMINISTIC-HIRE-ASSISTANT(A)
2:
      best = NII
3:
  for x in A do
4.
         if best is still NII or x is better than best then
5:
            hest = x
         end if
6:
7.
     end for
8:
     return best
9: end function
```

Q: How can an adversary arrange A to maximize reassignments?

Q: What is the worst-case number of reassignments?

04. Randomization 9 / 35

Randomized Hiring

```
1: function RANDOMIZED-HIRE-ASSISTANT(A)
       Randomly permute A
                                                                  ▷ only change
3:
      best = NIL
4:
      for x in A do
5:
          if best is still NII or x is better than best then
6:
             best = x
7.
          end if
      end for
8.
9:
      return best
10: end function
```

Observe

- the same worst-case scenario exists
- **but**, the adversary cannot force it to occur

Randomized Hiring Analysis

Define

 $X_i = \{1 \text{ if best is reassigned in iteration } i, 0 \text{ otherwise} \}.$

Observe

 $X_i=1$ when the ith element is the maximum so far and since A is permuted randomly,

$$Pr\{X_i = 1\} = 1/i \text{ so } E[X_i] = 1/i,$$

and the total number of reassigns is

$$X = 1/1 + 1/2 + 1/3 + 1/4 + \ldots + 1/n \in O(\log n).$$

reassignments is $O(\log n)$ expected and $\Theta(n)$ worst-case.

04. Randomization 11/35

Randomization Patterns

Randomization pattern: approach for using randomization, along with analysis

Best from random order pattern: best only gets reassigned expected $O(\log n)$ times, worst case $\Theta(n)$ times

04. Randomization 12 / 35

Balls and Bins

Story to help think about probabilities:

- b bins that can hold balls
- throw n balls
- ▶ a ball is equally likely to fall into each bin
- corresponds to a game called plinko

04. Randomization 13 / 35

Balls and Bins Q & A

Answers to questions:

- Q: After n throws, how many balls does a given bin have? expected n/b
- ▶ Q: How many throws before a given bin has a ball? expected b
- ▶ *Q*: How many throws before every bin has a ball? expected $b \ln b \in \Theta(b \log b)$

04. Randomization 14 / 35

Application: Web Server Load Balancer

- \blacktriangleright scenario: we have b webservers, n requests coming in, need to route each request to one of the servers $1, \ldots, b$
- adversary could make expensive requests, so if we take turns in a deterministic way, we are vulnerable to a denial-of-service attack
 - example: round-robin
- So route requests randomly somehow
- ldea: choose a **random** server in $\{1, \ldots, b\}$
- Worst-case user experience depends on the heaviest-loaded server

04. Randomization 15 / 35

With High Probability (WHP)

Terminology: Let p(n) be the probability that event X occurs as a function of n; then X occurs with high probability (w.h.p. or WHP) when

$$\lim_{n\to\infty}p(n)=1.$$

Examples of p(n) bounds considered w.h.p.: $O(1-\frac{1}{n})$, $O(1-\frac{1}{n^2})$, $O(1-\frac{1}{n\log n})$.

Typically, of the form $O(1 - \frac{1}{n^k})$ for $k \ge 1$.

Intuition: for sufficiently large n, event X is practically certain.

Analyzing Random Load Balancing

- ightharpoonup suppose n = b
- suppose the #balls in a bin is its load
- high load is bad
- ► After n throws, what is the maximum load?

$$\frac{\log n}{\log\log n} + o(1) \text{ w.h.p.}$$

Note that for $n \geq 2$,

$$\frac{\log n}{\log\log n} \ll \log n.$$

04. Randomization 17 / 35

The Power of Two Random Choices

two random choices: pick two bins at random, put the ball in the less-loaded bin; maximum load becomes

$$\frac{\log\log n}{\log 2} + \Theta(1) \text{ w.h.p.}$$

- ▶ Note that $\frac{\log\log n}{\log 2} \ll \frac{\log n}{\log\log n}$; the choosing dramatically decreases maximum load
- ▶ Intuition: what random events lead to a high load in each scenario?
- generally, if we make d random choices, maximum load is

$$\frac{\log\log n}{\log d} + \Theta(1) \text{ w.h.p.}$$

very slow-growing, nearly constant

04. Randomization 18 / 35

Load Balancing Patterns

Balance load with one random choice: for n balls in $\Theta(n)$ bins, expected load is $\Theta(1)$ and maximum load is $\Theta(\frac{\log n}{\log \log n})$ w.h.p.

Balance load with d random choices: expected load is still $\Theta(1)$, and maximum load is $\Theta(\frac{\log \log n}{\log d})$ w.h.p.

Trade-off:

- one random choice: choosing bin involves only one random number, $\Theta(1)$ time, and does not involve state of bins; *but* load can be more uneven
- ▶ d random choices: choosing bin involves querying the state of $\Theta(d)$ servers, but load is distributed **extremely** evenly

04. Randomization 19 / 35

Streaks

- ightharpoonup suppose we flip a fair coin, so $Pr\{\text{heads}\}=Pr\{\text{tails}\}=rac{1}{2}$
- streak: sequence of the same result (seq. of heads, or seq. of tails)
- Q: After n flips, what is the longest streak?
- ▶ A: expected length of the longest streak is $\Theta(\log n)$

04. Randomization 20/35

Hash Tables

Review hash tables

- can store a set of keys
- or a map from keys to arbitrary values
- keys must hashable: either integers, or can be mapped deterministically to integers (e.g. strings, floats, tuples of hashable objects, etc.)
- ▶ a search, insert, or delete operation takes $\Theta(1)$ expected time and $\Theta(n)$ worst-case time
- many variants with trade-offs: chaining vs. open addressing, universal vs. tabular functions, cuckoo, robin hood, etc.

04. Randomization 21 / 35

Hash Set Operations

Operation	Pseudocode Example	Exp. Time	W.C. Time
Create empty hash set	S = HashSet()	$\Theta(1)$	$\Theta(1)$
Insert an element	S.insert(x)	$\Theta(1)$	$\Theta(n)$
Remove an element	S.remove(x)	$\Theta(1)$	$\Theta(n)$
Search for an element	<pre>if S.contains(x):</pre>	$\Theta(1)$	$\Theta(n)$

Recall: A math set cannot have duplicates, so inserting the same x multiple times leaves only one copy in the set.

04. Randomization 22 / 35

Hash Map Operations

Operation	Pseudocode Example	Exp. Time	W.C. Time
Create empty hash map	<pre>M = HashMap()</pre>	$\Theta(1)$	$\Theta(1)$
Insert k, v	M.insert(k, v)	$\Theta(1)$	$\Theta(n)$
Remove key k	M.remove(k)	$\Theta(1)$	$\Theta(n)$
Search for key k	<pre>if M.contains(k):</pre>	$\Theta(1)$	$\Theta(n)$
Lookup key <i>k</i>	M.get(k)	$\Theta(1)$	$\Theta(n)$

Recall: Each key must be distinct, so re-inserting a new value for key k overwrites the old value.

04. Randomization 23 / 35

Reduce-to-Hash-Tables Pattern

- ▶ make critical use of a hash set or hash map
- ightharpoonup replace a $\Theta(n)$ loop with a $\Theta(1)$ expected-time hash table operation
- good: fast, simple
- bad: time efficiency becomes expected

04. Randomization 24/35

Duplicate Removal Problem

duplicate removal problem input: an array A[1..n] of objects output: a list D of the distinct elements of A (i.e. duplicates are removed)

04. Randomization 25 / 35

Duplicate Removal – Baseline Pseudocode

```
1: function REMOVE-DUPLICATES-BASELINE(A)
       D = \text{new list}
       for a in A do
 3.
 4:
          already-present = False
          for d in D do
 5:
             if a == d then
 6:
 7:
                 already-present = True
              end if
 8:
 9:
          end for
10.
          if not already-present then
11.
              D.add(a)
12:
          end if
       end for
13
14:
       return D
15: end function
```

04. Randomization 26 / 35

Duplicate Removal – Baseline Analysis

- outer loop: n iterations
- ▶ inner loop: $\Theta(n)$ time
- ▶ total $\Theta(n^2)$ time
- bottleneck is the nested loops
- ► Reduce-to-Hash-Tables Pattern: replace the inner loop with a hash table operation

04. Randomization 27 / 35

Duplicate Removal – Improved Algorithm

 $\Theta(n)$ expected time, $\Theta(n^2)$ worst-case time.

04. Randomization 28 / 35

Duplicate Removal – Analyze Trade-Offs

- ▶ baseline: $\Theta(n^2)$ time; more complicated; not dependent on hash tables knowledge
- randomized: $\Theta(n)$ expected time, $\Theta(n^2)$ worst-case time; simpler; depends on hash tables
- randomized is superior
- pay-off for learning about data structures!

04. Randomization 29 / 35

Planning a Hash Map

- hash set stores *key-value* associations
- each key is linked to a value
- key: identity of a thing
- value: information associated with that thing
- insert, remove, search
- Strategy: fill in the blanks "Given __key__, update __value__ ."
- ▶ Strategy: write out concrete data in a table like

Key	Value
key 1	value 1
key 2	value 2

04. Randomization 30 / 35

Mode Problem

mode problem

input: a list A of n elements

output: a most-frequently-ocurring element of A

Note:

- ▶ A is a list, not a set, so A may have duplicates
- in the event of ties, any of the ties may be output

04. Randomization 31/35

Mode - Baseline Pseudocode

```
1: function MODE-BASELINE(A)
       mode = NII
2:
3:
      mode-count = 0
4:
      for a in A do
5:
          a-count = 0
6:
          for b in A do
             if b == a then
7:
8:
                 a-count++
9:
             end if
          end for
10.
11:
          if a-count > mode-count then
12:
             mode = a
13:
             mode-count = a-count
14:
          end if
15.
       end for
16.
       return mode
17: end function
```

04. Randomization 32 / 35

Mode – Baseline Analysis

- ▶ total $\Theta(n^2)$ time
- again, bottleneck is the nested loops
- ► Reduce-to-Hash-Tables Pattern: replace the inner loop with a hash table operation
- ▶ Pre-compute each element's count
- Hash map: "Given (an element), update (its count)."
- Concrete data :

$$A = \langle 3, 1, 7, 1, 1, 1, 7 \rangle$$

Key	Value
3	1
1	4
7	2

04. Randomization 33 / 35

Mode - Second Draft

Hash table is used to speed up first draft, but we haven't initialized it yet.

```
function MODE-RANDOMIZED(A)
2:
       (somehow create and populate hash map ElementToCount)
3:
      mode = NII
4.
      mode-count = 0
5.
      for a in A do
          a-count = ElementToCount.get(a)
6:
7.
          if a-count > mode-count then
8:
             mode = a
9:
             mode-count = a-count
10.
          end if
11:
       end for
12.
       return mode
13: end function
```

04. Randomization 34 / 35

Mode - Final Draft

```
1: function MODE-RANDOMIZED(A)
2:
       ElementToCount = HashMap()
3:
       for a in A do
4.
          if ElementToCount.contains(a) then
5:
             ElementToCount.set(a, ElementToCount.get(a) +1)
6:
          else
7:
             ElementToCount.set(a, 1)
8:
          end if
9:
       end for
       mode = NII
10.
11:
       mode-count = 0
12.
       for a in A do
13:
          a-count = ElementToCount.get(a)
14:
          if a-count > mode-count then
15:
             mode = a
16:
             mode-count = a-count
17:
          end if
18.
       end for
19:
       return mode
20: end function
```

04. Randomization 35 / 35

Mode – Analyze Trade-Offs

- ▶ baseline: $\Theta(n^2)$ time
- randomized:
 - ▶ first loop: $\Theta(n)$ expected, $\Theta(n^2)$ worst-case
 - second loop: same
 - \triangleright everything else: $\Theta(1)$
 - ▶ total: $\Theta(n)$ expected, $\Theta(n^2)$ worst-case
 - like the maximum subarray algorithm, refactoring two nested loops into two sequential loops speeds things up
- again, randomized is superior