The Unreasonable Effectiveness of Patches in Deep Convolutional Kernels Methods

Louis Thiry¹, Michael Arbel², Eugene Belilovsky³, Edouard Oyallon⁴

¹Departement of Computer Science, École Normale Supérieure, CNRS, PSL ²Gatsby Computational Neuroscience Unit, UCL

³Concordia University and Mila Montreal ⁴ LIP6, Sorbonne Université, CNRS

Introduction

- Recent works present competitive convolutional kernel methods, obtaining 87 90% accuracy on CIFAR-10.
- They are data-driven, share an implicit ingredient: data whitening.
- We present very simple convolutional kernel method using this ingredient and K-nearest-neighbors encoding
- We obtain comparable accuracies on CIFAR-10 with linear / 1-hidden-layer classifier.
- We scale this method on ImageNet and outperform existing non-learned visual representations.

Data-driven convolutional kernel methods

$$K_{k,\Phi,\mathcal{X}}(x,y) = k(\Phi L x, \Phi L y)$$

• Shift and rescale (e.g. whitening) operator

 I_{L}

Training data

 \mathcal{X}

Representation

Ф

• Predefined (e.g. Linear, Gaussian, Neural Tangent) kernel

k(x, y)

K(x, y) is **data-driven** if Φ or L depend on the training set \mathcal{X} , **data-independent** otherwise.

Examples of Data-driven kernels

- Random features (Coates et al. 2011, Recht et al. 2019)
- Convolutional kernel networks (Mairal 2016)
- Enhanced convolutional neural tangent kernels (Li at al. 2019)
- Neural Kernels Without Tangents (Shankar et al. 2020)

Our method

Figure 1:Our classification pipeline described synthetically.

- x: image viewed as a collection of overlapping patches.
- L: whitening operator

$$L: x \mapsto (\Sigma + \lambda I)^{-1}(x - \mu)$$

- Φ : K-nearest-neighbor encoding in a dictionary \mathcal{D} of randomly selected whitened patches.
- k(x, y): linear kernel.

Figure 2:Examples of whitened dictionary \mathcal{D} with patch size P=6 from ImageNet-64 (Top) and CIFAR-10 (Bottom).

Results

Linear classification on CIFAR-10											
	Method	$ \mathcal{D} $	$\mathbf{V}\mathbf{Q}$	Online	P	Acc.					
		- T									
	Coates et al. (2011)	1k	V	X	6	68.6					
	Wavelets (Oyallon et al. 2015)	-	×	×	8	82.2					
	Recht et al. (2019)	0.2M	×	×	6	85.6					
	SimplePatch (Ours)	10k	\checkmark	\checkmark	6	85.6					
	SimplePatch (Ours)	60k	×	\checkmark	6	86.9					

Non-linear classification on CIFAR-10

Method	VQ	Depth	Classifier	Acc.
SimplePatch (Ours)	\checkmark	2	1-hidden-layer	88.5
AlexNet (Krizhevsky et al. 2012)	×	5	e2e	89.1
NK (Shankar et al. 2020)	×	5	kernel	89.8
CKN (Mairal et al. 2016)	×	9	kernel	89.8

Linear classification on ImageNet

Method	$ \mathcal{D} $	$\mathbf{V}\mathbf{Q}$	P	Depth	Resolution	Top1	Top5
Random CNN (Arand. et al. 2017)	-	×	-	9	224	18.9	_
Wavelets (Zarka et al. 2019)	_	×	32	2	224	26.1	44.7
SimplePatch (Ours)	2k	\checkmark	12	1	128	35.9	57.4
SimplePatch (Ours)	2k	×	12	1	128	36.0	57.6

Non-linear classification on ImageNet

\mathbf{Method}	$\mathbf{V}\mathbf{Q}$	P	Depth	Resolution	Classifier	Top1	Top5
Greedy (Belilovsky et al. 2018)	X	_	2	224	e2e	_	44
SimplePatch (Ours)	\checkmark	6	2	64	1-layer	39.4	62.1
BagNet (Brendel et al. 2019)	×	9	50	224	e2e	_	70.0

Figure 3:CIFAR-10 ablation study, train accuracies in blue, test accuracies in red.

