Algorithmic Human-Robot Interaction

Motion Planning II

CSCI 7000

Prof. Brad Hayes

Computer Science Department

University of Colorado Boulder

Today: Motion Planning & Projects

Making Robots Move

Algorithms for motion planning

Research Projects

Broad overview of some open HRI problems

ROS Installation

Any problems?

Next steps:

http://moveit.ros.org/

http://gazebosim.org/

Last Time...

Sample Problem Terminology

A **state** is a representation of the world

An **action** is something that transitions you from one state to another (can also be a self-transition!)

A **transition function** T(s,a,s') provides the probability that a particular action **a** taken in a particular state **s** will bring the system to state **s'**

A **reward function** R(s, a) provides the value of taking a particular action **a** in state **s**

Non-trivial Robots in C-Space

Workspace (x, y)

C-space (x, y, θ)

Robot

Path is hard to express

Path is just a space curve

State Representation is Critical

Ground Truth: None

Ground Truth: None

Ground Truth: None

Elapsed Time: 0.1sec Classified activity move to dash with likelihood 0.84128
Elapsed Time: 0.17sec Classified activity move to dash with likelihood 0.86419
Elapsed Time: 0.2sec Classified activity move to dash with likelihood 0.86619
Elapsed Time: 0.2sec Classified activity move to dash with likelihood 0.95099

Forward Kinematics

Easier ways to solve the IK

problems

Just the Euclidean distance between two vectors!

$$f_{x,y}(\alpha,\beta) = \sqrt{(\sin(\alpha+\beta)l_2 + \sin(\alpha)l_1 - y)^2 + (\cos(\alpha+\beta)l_2 + \cos(\alpha)l_1 - x)^2}$$

Motivating Problem

Map Representations

Topological Map (Continuous Coordinates)

Grid Map (Discrete Coordinates)

K-d Tree Map (Quadtree)

Some Well-Known Representations

- Visibility Graphs
- Roadmap
- Cell Decomposition
- Potential Field

Visibility Graph Method

If there is a collision-free path between two points, then there is a polygonal path that bends only at the obstacles vertices.

A polygonal path is a piecewise linear curve:

Visibility Graph Method

Solid path: Visibility Graph motion planning solution Dotted Path: Voronoi Roadmap planning solution

Visibility Graph

- A visibility graph is a graph such that
 - Nodes: q_{init} , q_{goal} , or an obstacle vertex.
 - Edges: An edge exists between nodes u and v if the line segment between u and v is an obstacle edge or it does not intersect the obstacles.

Visibility Graph Example

```
Input: q<sub>init</sub>, q<sub>goal</sub>, polygonal obstacles
Output: visibility graph G

1: for every pair of nodes u,v
2: if segment(u,v) is an obstacle edge then
3: insert edge(u,v) into G;
4: else
5: for every obstacle edge e
6: if segment(u,v) intersects e
7: go to (1);
8: insert edge(u,v) into G.
```

Visibility Graph: Strengths/Weaknesses?

Road mapping Technique

Voronoi Diagram

- Introduced by computational geometry researchers.
- Generate paths that maximize clearance
- Applicable mostly to 2-D configuration spaces

Voronoi Road Mapping: Strengths / Weaknesses

Exact cell decomposition

Divides a space F precisely into sub-units

Approximate cell decomposition

- **F** is represented by a collection of non-overlapping cells whose union is contained in **F**.
- Cells usually have simple, regular shapes, e.g., rectangles, squares.
- Facilitates hierarchical space decomposition

Cell Decomposition

Not necessarily complete

(Complete: If a solution exists, it will eventually be found)

Quadtree Decomposition

Octree Decomposition

Cell Decomposition Path Planning Algorithm Outline

- Decompose the free space F into cells.
- Search for a sequence of mixed or free cells that connect the initial and goal positions.
- Further decompose the mixed.
- Repeat (2) and (3) until a sequence of free cells is found.

Cell Decomposition: Strengths/Weaknesses

Potential Fields

- Initially proposed for real-time collision avoidance [Khatib 1986].
- A potential field is a scalar function over the free space.
- To navigate, the robot applies a force proportional to the negated gradient of the potential field.
- A navigation function is an ideal potential field that
 - has global minimum at the goal
 - has no local minima
 - grows to infinity near obstacles
 - is smooth

How Does It Work?

Potential Fields: Strengths/Weaknesses

Sample random locations!

Remove points in forbidden areas Link each point to its K nearest neighbors

How to sample points?

- Uniformly randomly
- Sample more near places with few neighbors
- Bias samples to exist near obstacles
- Use human-provided waypoints
- Something better?

Rapidly-exploring Random Trees (RRT)

Rapidly-exploring Random Trees

```
Algorithm BuildRRT
Input: Initial configuration q_{init}, number of vertices in RRT K, incremental distance \Delta q)
Output: RRT graph G

G.init(q_{init})
for k = 1 to K
```

How can we make use of these representations? Search algorithms provide a way to find a path!

```
G.add_edge(q_{near}, q_{new})
return G
```

Rapidly-exploring Random Trees

Handling Non-holonomic agents:

- Need an approximation of dynamics (a simulator)
- x_{new} is one 'step' forward in time (one action ahead of x_{near})


```
GENERATE_RRT(x_{init}, K, \Delta t)

1 \mathcal{T}.init(x_{init});

2 for k = 1 to K do

3 x_{rand} \leftarrow RANDOM\_STATE();

4 x_{near} \leftarrow NEAREST\_NEIGHBOR(x_{rand}, \mathcal{T});

5 u \leftarrow SELECT\_INPUT(x_{rand}, x_{near});

6 x_{new} \leftarrow NEW\_STATE(x_{near}, u, \Delta t);

7 \mathcal{T}.add\_vertex(x_{new});

8 \mathcal{T}.add\_edge(x_{near}, x_{new}, u);

9 Return \mathcal{T}
```

The result is a tree, \mathcal{T} , rooted at x_{init} .

RRT: Limitations

- RRT fails to converge to optimal solutions
 - Early solutions end up constraining the search
- RRT* guarantees asymptotic optimality (convergence to optimal solutions)
- RRT and RRT* require the same (asymptotic) computational resources

RRT

RRT^*

RRT*: Changes to RRT

- ${f \cdot}$ Evaluate neighborhood around q_{new} instead of just picking $q_{nearest}$
 - Connect vertex from neighborhood that creates shortest path to q_{new} from q_{start}
- Re-wire network to optimize cost to get to q_new's neighbors
 - Compare costs:
 - 1) Shortest path from q_{start} to $q_{neighbor}$ via q_{new}
 - 2) Existing path from q_{start} to $q_{neighbor}$
 - If shortest path involves q_{new} , remove final edge of path #2 and add new edge between q_{new} and $q_{neighbor}$

RRT*

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*: Sample

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*: Find neighborhood

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*: Connect cheapest path

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*: Re-wire Graph

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*: Re-wire Graph

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*: Re-wire Graph

https://www.youtube.com/watch?v=JM7kmWE8Gtc

RRT*

State-of-the-art Work: RRT*

Informed RRT*

Optimal Sampling-based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic

Jonathan D. Gammell¹ Siddhartha S. Srinivasa² Timothy D. Barfoot¹

A-HRI: Open Problems

Dynamic Motion Planning

RRT* FND: A Novel RRT* Based Algorithm for Motion Planning in Dynamic Environments

Olzhas Adiyatov and H. Atakan Varol

Advanced Robotics and Mechatronics Systems Laboratory (ARMS) arms.nu.edu.kz (2016)

Human-Aware Motion Planning

Analyzing the Effects of Human-Aware Motion Planning on Close-Proximity Human-Robot Collaboration

Przemyslaw A. Lasota Julie A. Shah

Assistive Teleoperation

Anca Dragan Siddhartha Srinivasa Personal Robotics Lab, Carnegie Mellon

Assistive Teleoperation

Kinesthetic Teaching

Learning Collaborative Impedance-based Robot Behaviors

Leonel Rozo, Sylvain Calinon, Darwin Caldwell, Pablo Jimenez and Carme Torras

International AAAI Conference on Artificial Intelligence 2013

Kinesthetic Teaching

Active Learning

Preference-aware Human-Robot Collaboration

Collaborative Manipulation

Decision Support

Robot Decision Support

Next Time: Trajectory Optimization