PIMBA: A Processing-in-Memory Acceleration for Post-Transformer Large Language Model Serving

Wonung Kim

Seongryong Oh Chang Hyun Park[§] Yubin Lee

Jiyong Jung

Divya Mahajan†

Yoonsung Kim

Aziz Huseynov

Jongse Park

Jinwoo Hwang

Woong Gyu Park

KAIST CASYS Lab

§ Uppsala University

† Georgia Institute of Technology

Large Language Models Are Pervasive

Modern LLM Trends

Knowledge

Environment Interaction

Planning /
Thinking

Modern LLM Trends

Modern LLM Trends: Large KV Cache

RAG Document

Input Prompt

Reasoning Step

Tool Use

Output Tokens

Large KV Cache!

Modern LLM Trends: Large KV Cache

RAG Document

Input Prompt

Reasoning Step

Tool Use

Output Tokens

Model	Context Length
Llama 4	10M
Grok 4	2M
Gemini 2.5	1M
Claude 4	1M

Modern LLMs now support up to 10M context length

Even with GQA, MoE, KV Cache dominates!

Modern LLM Trends: Large KV Cache

RAG Document

Model	Context Length
Llama 4	10M
Grok 4	21/1

Modern LLMs now support up to 10M

It has become inevitable to confront the KV cache memory bottleneck

Reasoning Step

Tool Use

Output Tokens

Even with GQA, MoE, KV Cache dominates!

Post-Transformer Models

- [1] Mamba: Linear-Time Sequence Modeling with Selective State Spaces
- [2] Retentive Network: A Successor to Transformer for Large Language Models
- [3] Gated Linear Attention Transformers with Hardware-Efficient Training
- [4] Nemotron-H: A Family of Accurate and Efficient Hybrid Mamba-Transformer Models
- [5] Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling
- [6] IBM Granite 4.0: hyper-efficient, high performance hybrid models for enterprise

We begin by analyzing how post-transformers operate to identify performance bottlenecks

But, unlike transformers, post-transformers exhibit diverse algorithmic forms

We identified a common operator shared across these algorithms, which we call it as,

State Update

State Update Operation

- Weight decay
- Outer product
- Output
 Update
- **4** GEMV

Characterizing Post-Transformers

State update operations dominate

- Due to lack of parameter reuse, state updates cannot be efficiently batched
- Unlike GEMM, they have low arithmetic intensity, thus memory-bound

Characterizing Post-Transformers

This memory bottleneck motivates us to develop PIMBA, which simultaneously leverages PIM and Quantization

- State update operations dominate
 - Due to lack of parameter reuse, state updates cannot be efficiently batched
 - Unlike GEMM, they have low arithmetic intensity, thus memory-bound

PIMBA Overview

Diverse operations needed!
We focus on optimizing area overhead

Access Interleaving

Access Interleaving

Access Interleaving

Access Interleaving

Access Interleaving

Access Interleaving

Access Interleaving

Access Interleaving

Quantization

Unlike dot-product operations, state update operations require both reads and writes

Access Interleaving

Quantization

This leads to underutilization of processing units during writes

Access Interleaving

Access Interleaving

Access Interleaving

Access Interleaving

Access Interleaving

Access Interleaving

Access Interleaving

Access Interleaving

Quantization

The processing units are now fully utilized, which in turn reduces the area overhead by half while maintaining the same throughput

Quantization Analysis

Access Interleaving

MX-based Processing Element

Access Interleaving

Quantization

• MX operations require only simple addition, multiplication, and logic operations

Experimental Methodology

Baselines

- o **GPU**: NVIDIA A100 GPUs
- GPU w/ Quantization (GPU+Q): A100 + 8-bit quantized state
- GPU w/ HBM-PIM (GPU+PIM): A100 + Samsung HBM-PIM

Models

- RetNet, GLA, HGRN2, Mamba2, Zamba2
- o small-scale (2.7B, 7B)
- o large-scale (70B)

Simulation

- GPU: extends AttAcc system simulator
- o PIM: extends cycle-accurate Ramulator2

Throughput Results

- PIMBA achieves 14.6× faster state update operations compared to GPU
- PIMBA delivers up to 4.1× higher decoding throughput compared to GPU

More Results on Paper

- Accuracy evaluation
- Performance improvements on attention-based transformers
- Decode phase latency breakdown
- Energy consumption
- RTL area and power overhead
- Comparison with existing PIM-based LLM serving system
- General adoption of PIMBA

Conclusion

PIMBA

An efficient PIM-based post-transformer acceleration solution

Contributions

- We conduct first comprehensive study of post-transformer LLMs
- We analyze unique characterizations of post-transformer LLMs
- We propose novel access interleaving strategy and quantization-based PIM

Access Interleaving Upper Bank Bottom Bank Bottom Bank

