

OUTLINE

The ATLAS detector at the Large Hadron Collider (LHC)

Data volumes and rates

The Event Filtering (EF) online computing farm

Motivations and challenges

A Kubernetes journey

The departure

The adventure

The reward

Conclusions and outlook

A glimpse of the future

LHC ATLAS FILTERING COMPUTING FARM

ATLAS

- One of the four main particle detectors at the Large Hadron Collider (LHC)
 - 44 m length
 - 25 m height
- Collect data from proton collisions provided by the LHC
 - 40 MHz collision rate
 - I4 TeV proton-proton energy

FROM COLLISIONS TO STORAGE (NOW)

 Event rate
 40 MHz
 100 kHz
 3 kHz

 Data throughput
 300 GB/s
 8 GB/s

KUBECON + CLOUDNATIVECON NORTH AMERICA 2024

FROM COLLISIONS TO STORAGE (NOW AND **AFTER THE LHC UPGRADE: HIGH-LUMINOSITY LHC**)

Event rate

40 MHz

100 kHz (I MHz)

300 GB/s (5 TB/s)

8 GB/s (50 GB/s)

Event

Filtering

Storage

Farm

THE EVENT FILTER COMPUTING FARM

Size

- About ~2000 servers (~60k CPU cores) today
- Up to 5000 servers (~500k CPU cores) for the LHC upgrade

High number of processing applications

• Up to 65k for the LHC upgrade

High data volume, low latency

 The time budget to filter a single event is around one second

Readiness

- Strict control on the application startup/stop times
- Not a start-and-forget scenario

ORCHESTRATING THE EVENT FILTER COMPUTING FARM

In-house custom system

- Process control
- Scheduling
- Error detection and management
- Bare processes
 - No containers

Kubernetes

- Simplified operations and maintenance
- More dynamic scheduling
- Enhanced high availability and fault tolerance
- Exploit containerization

A KUBERNETES JOURNEY THE DEPARTURE

2018: THE KUBERNETES JOURNEY STARTS

PRELIMINARY TESTS

Total POD Startup Time

5 PODs per node (average)

Goal

- How fast can we start PODs?
- What about the scaling with the number of working nodes?

System Under Test

- Kubernetes version 1.5
- Single control plane node
- Up to 240 working nodes
- Average of **5 PODs per node**
 - Single pause container (pre-loaded)
- All running in **Virtual Machines**

2018:THE KUBERNETES JOURNEY STARTS

PRELIMINARY TESTS

2018: THE KUBERNETES JOURNEY STARTS

PRELIMINARY TESTS – QPS TO THE RESCUE

ComponentQPS Parameters (def. values)kube-controller-managerkube-api-qps (20)
kube-api-burst (30)kube-schedulerkube-api-qps (50)
kube-api-burst (100)

KUBECON + CLOUDNATIVECON NORTH AMERICA 2024

12

2018:THE KUBERNETES JOURNEY STARTS

PRELIMINARY TESTS – EXECUTIVE SUMMARY

General behaviour

- Linear scaling
- Reproducibility
- Performance improvements with QPS tuning

Performance

 POD startup rate too low

A KUBERNETES JOURNEY THE ADVENTURE

THE KUBERNETES JOURNEY CONTINUES

A LOT OF QUESTIONS TO ANSWER AND A STRATEGY

Systematic tests using the currently available computing farm at the ATLAS experimental site

THE KUBERNETES JOURNEY CONTINUES

TESTING SETUP

POD STARTUP/STOP TIMES

KUBE-API-QPS AND KUBE-API-BURST: SCANNING

10k PODs across 2000 worker nodes (HostNetwork, Deployment, kube-api-aps = kube-api-burst, K8s version 1.21)

Startup Time (s)	Scheduler (QPS)			
Controller Manager (QPS)		200	400	800
	200	52	52	52
	400	52		
	800	52	31	32
Stop Time (s)		Schedule	er (QPS)	
Time (s)		Schedule 200	e r (QPS) 400	800
Time (s)	200		,	800 115
	200 400	200	400	

KUBE-API-QPS AND KUBE-API-BURST: STARTUP PHASES ANALYSIS

Startup Time Scheduler QPS 400 - Controller Manager QPS 400 12000 10000 8000 # PODs 6000 4000 2000 10 15 25 30 Time (s) --- Created --- Scheduled --- Running --- Watched

LESSONS LEARNT

I. Some QPS tuning is needed in large clusters to improve POD startup and stop times

2. Scheduling time may be a bottleneck for large deployments

SCHEDULING MATTERS

KUBECON + CLOUDNATIVECON NORTH AMERICA 2024 20

SCHEDULING STRATEGIES - DEFAULT SCHEDULER PROFILE

KUBECON + CLOUDNATIVECON NORTH AMERICA 2024

SCHEDULING STRATEGIES – DEFAULT SCHEDULER PROFILE – STARTUP PHASES

KUBECON + CLOUDNATIVECON NORTH AMERICA 2024

DEPENDENCY ON THE NUMBER OF PODS

LESSONS LEARNT

- I. Some QPS tuning is needed in large clusters to improve POD startup and stop times
- 2. Scheduling time may be a bottleneck for large deployments
- 3. Scheduling strategies do impact the POD startup times

4. Global POD startup times seem to depend on the total number of PODs only

CUSTOM SCHEDULER PROFILE

no-scoring-scheduler

- Disable all the plug-ins in the preScore and score phases
- Optionally, tune the percentageOfNodesToScore

```
- schedulerName: no-scoring-scheduler
percentageOfNodesToScore: 5
plugins:
    preScore:
        disabled:
        - name: '*'
    score:
        disabled:
        - name: '*'
```

KUBECON + CLOUDNATIVECON NORTH AMERICA 2024 25

CUSTOM SCHEDULER PROFILE

■ Default scheduler ▲ Default scheduler + 5% scoring ● Custom scheduler + 5% scoring

Time to Start 26000 PODs					
	Default Scheduler	Custom Scheduler + 5% Scoring			
Deployment (Topological)	199 ± 3 s	122 ± 1 s			
Deployment	150 ± 1 s	47 ± I s			
(Multiple) DaemonSet	43 ± 2 s	44 ± 2 s			

Average POD Startup Rate					
	Default Scheduler	Custom Scheduler + 5% Scoring	Throughput Increase		
Deployment (Topological)	133 ± 1 Hz	226 ± 3 Hz	70%		
Deployment	167 ± 3 Hz	640 ± 20 Hz	280%		

WHAT ABOUT THE CONTROL PLANE HARDWARE?

Old Control Plane HW

- 4 servers
- 2 x Intel Xeon E5-2620 v3 6C/12T
- I Gbps connectivity

New Control Plane HW

- 4 servers
- 2 x AMD EPYC 7313 16C/32T
- 10 Gbps connectivity
- Same ETCD cluster

Average POD Startup Rate				
	Old HW	New HW	Throughput Increase	
Deployment (Topological)	226 ± 3 Hz	340 ± 4 Hz	50%	
Deployment	640 ± 20 Hz	740 ± 20 Hz	16%	
(Multiple) DaemonSet	630 ± 20 Hz	730 ± 20 Hz	16%	

WHAT ABOUT THE CONTROL PLANE HARDWARE? STARTUP PHASES

50

POD STARTUP (AND STOP) TIMES

WHAT ABOUT THE CNI?

General observation

• Startup and stop times higher than the HostNetwork case

Differences go away with the improved (new) HW

WHAT ABOUT THE CNI?

Deployment Cilium, Custom Scheduler + 5% Scoring, New HW 25000 20000 15000 0 10 20 30 40 50 60 Time (s)

--- Created --- Run --- Watched

LESSONS LEARNT

- I. Some QPS tuning is needed in large clusters to improve POD startup and stop times
- 2. Scheduling time may be a bottleneck for large deployments
- 3. Scheduling strategies do impact the POD startup times

- 4. Global POD startup times seem to depend on the total number of PODs only
- 5. Custom Scheduler profiles may greatly increase its throughput
- 6. Better HW for the control plane seems to improve the more scheduling-demanding scenarios

A KUBERNETES JOURNEY THE REWARD

THE END OF (THIS) JOURNEY

KUBECON + CLOUDNATIVECON NORTH AMERICA 2024

33

CONCLUSIONS & OUTLOOK

Today

A lot of experienced gained in operating a large Kubernetes cluster

Great performance improvements in terms of POD startup times

Very flexible scheduling

Enhanced monitoring and operability

Predictable behaviour across several Kubernetes releases

Tomorrow

Scale to even more PODs

• In the worst-case scenario, about 65k data filtering applications replicas have to be deployed

Evaluate node extended resources for simplified scheduling

Consider more containers per POD if POD startup times get too high

Exploit Kubernetes for different workloads

• Dynamically mix online filtering and "offline" simulation jobs

What about kwok?

 The computing farm is available for Kubernetes tests only for very short periods during the year

THANKS FOR YOUR FEEDBACK

BACK-UP SLIDES

KUBE-API-QPS AND KUBE-API-BURST: A NOTE ON SLI/SLO

Startup Time Histogram Scheduler QPS 400 - Controller Manager QPS 400 1000 Fulfils the <u>SLO</u> 900 800 Entries / 100 s 700 500 400 300 200 5 seconds 100 Time (s) Create to Watch

Startup Time Histogram

Scheduler QPS 400 - Controller Manager QPS 800

Create to Watch

CUSTOM SCHEDULER EFFECT

PLAIN DEPLOYMENT – NO CONSTRAINTS ON POD LOCATIONS

PODs / Worker Node

Default Node Scoring Threshold / Plain Deployment / Default Scheduler Profile

PODs / Worker Node

Default Node Scoring Threshold / Plain Deployment / <u>NoScore</u> <u>Scheduler Profile</u>

CUSTOM SCHEDULER PROFILE – STARTUP PHASES

CREATE-TO-WATCH DISTRIBUTION (FINAL)

Startup Time Histogram

KUBECON + CLOUDNATIVECON NORTH AMERICA 2024 44

SENDING "EVENTS" TO A SEPARATE ETCD INSTANCE

