黃 翊 宏 省工制月 01357101 2, (a) $\lceil \frac{x}{2} \rceil = 2$, |x 2 + 1 = 3 *11,3,5,7,9,11,13,15 (b) in worst case, a dozen brown & {1,15}.{3,13}.{5,11}.{7,9} 2 black , 12+2=14x N個鴿子, 4個籠子。(廣義) $\lceil \frac{4}{4} \rceil = 2 , |X4+| = \frac{5}{8}$ 3, (a) $C_{1}^{10} + C_{3}^{10} + C_{5}^{10} + C_{7}^{10} + C_{9}^{10}$ (b) $C_{2}^{100} - C_{1}^{100} - C_{2}^{100} - C_{2}^{100}$ =10+120+252+120+10=5/2* $= 2^{100} - 100 - 4950 - 1$ $= 2^{100} - 5051$ (d)(a) 100~999, 4的倍數 100~999 1 7的倍數 min : 100 min: 105 max: 996 max: 994 996 = 100 + (n-1) 4 = 96 + 4n, h = 225 9,= 105 an= 105+ (n-1)7 900-225 = 675 = 98+7n 994 = 98+7n, n=128 (e) 100~9993的倍數 (b) min: 102, max: 999 (999-100)+1 = 450% 999 = 102 + (n-1)3 = 99 + 3n, n=300100~999」12的倍數 (C) min:108, max=996 996 = 108+ (n-1)12 = 96+12n, n=75 111.222. 999 1×9=9* 675-300+75 = 450*

4,
$$(f)$$
 900 - $450 = 450$ (g) 300 - $75 = 225$ (g) 300 - $75 = 243$ (g) 38 \times 29 = 243 (g) 455 (g) 29 29 20 (g) 45 (g) 6. (g) 7. (g) 8. (g) 8. (g) 8. (g) 8. (g) 8. (g) 8. (g) 9. (g) 9.

(b)
$$a_1 = 1$$
, $a_2 = 2$
(c) $a_1 = 1$ $a_5 = 8$
 $a_2 = 2$ $a_6 = 13$
 $a_3 = 3$ $a_7 = 21$
 $a_{14} = 5$ $a_8 = 34$
8.
(a) $a_n = 2a_{n-1}$, $n \ge 1$, $a_0 = 3$
let $a_n = r^n$ $a_1 = 2 \times 3 = 6$
 $r^n = 2r^{n-1}$, $r = 2$ $3 = a_1 \times 2^n + 0$, $a_1 = 3$
 $a_1 = 2 \times 3 = 6$
 $r^n = 2r^{n-1}$, $r = 2$ $3 = a_1 \times 2^n + 0$, $a_1 = 3$
 $a_1 = 2 \times 3 = 6$
 $a_1 = 2 \times 3 = 6$

8. (c)
$$a_{n} = \frac{1}{4}a_{n-2}$$
, $n \ge 2$, $a_{0} = 1$, $a_{1} = 0$

let $r^{n} = a_{n}$
 $r^{n} = \frac{1}{4}r^{n-2}$, $r^{2} = \frac{1}{4}$, $r = \pm \frac{1}{2}$
 $0 = \frac{1}{2}a_{1} - \frac{1}{2}a_{2}$
 $a_{n} = a_{1}(\frac{1}{2})^{n} + a_{2}(-\frac{1}{2})^{n}$
 $= a_{1} = \frac{1}{2}x(\frac{1}{2})^{n} + \frac{1}{2}(-\frac{1}{2})^{n}$
 $= (\frac{1}{2})^{n+1} - (-\frac{1}{2})^{n+1}$
 $= (\frac{1}{2})^{n+1} - (-\frac{1}{2})^{n+1}$
 $= (\frac{1}{2})^{n+1} - (-\frac{1}{2})^{n+1}$
 $= \frac{1}{2} + a_{2} - a_{2} = 0$
 $= \frac{1}{2} + a_{2} - a_{2} = \frac{1}{2}$

(d) $a_{n} = 6a_{n-1} - 8a_{n-2}$, $n \ge 2$, $a_{0} = 4$, $a_{1} = 10$

let $r^{n} = a_{n}$
 $r^{n} = 6r^{n-1} - 8r^{n-2}$
 $r^{2} = 6r - 8$, $r^{2} - 6r + 8 = (r - 4)(r - 2) = 0$, $r = 4 - 2$
 $a_{n} = a_{1}4^{n} + a_{2}2^{n}$
 $a_{1}4^{n} + a_{2}2^{n}$
 $a_{2}4^{n} + a_{3}2^{n} = 0$
 $a_{1}4^{n} + a_{2}2^{n}$
 $a_{2}4^{n} + a_{3}2^{n} = 0$
 $a_{1}4^{n} + a_{2}2^{n}$
 $a_{2}4^{n} + a_{3}2^{n} = 0$
 $a_{1}4^{n} + a_{3}4^{n} = 0$
 $a_$

8.

(e)
$$\Omega_{n} = -3\alpha_{n-1} - 3\alpha_{n-2} - \alpha_{n-3}$$
, $\alpha_{0} = 5$, $\alpha_{1} = -9$, $\alpha_{2} = 15$

let $\alpha_{n} = r^{n}$
 $r^{n} = -3r^{n-1} - 3r^{n-2} - r^{n-3}$
 $r^{3} = -3r^{2} - 3r - 1$, $r^{3} + 3r^{2} + 3r + 1 = (r+1)^{3}$, $r = -1$
 $\alpha_{n} = \alpha_{1}(-1)^{n} + \alpha_{2}n(-1)^{n} + \alpha_{3}n^{2}(-1)^{n}$
 $S = \alpha_{1}$, $-9 = -5 - \alpha_{2} - \alpha_{3}$
 $4 = \alpha_{2} + \alpha_{3}$
 $15 = 5 + 2\alpha_{2} + 4\alpha_{3}$
 $10 = 2\alpha_{2} + 4\alpha_{3}$
 $10 =$

(b)
$$\Omega_{N} = -2n^{2} - 8n - |2 + \alpha | 2^{N}$$
, $\Omega_{1} = 4$
 $\Omega_{1} = -2 - 8 - |2 + 2\alpha$
 $= -22 + 2\alpha$
 $-22 + 2\alpha = 4$
 $2\alpha = 26$, $\alpha = |3$
 $\Rightarrow \Omega_{N} = -2h^{2} - 8n - |2 + |3 \times 2^{N}$
[0, $\chi_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 2|$
where χ_{1} , $i = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$ is a nonhegative integer.
(a) $\chi_{1} \ge 1$
let $y_{1} = \chi_{1} - 1$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 20$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 20$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 20$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 20$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{1} + \chi_{2} + \chi_{3} + \chi_{4} + \chi_{5} = 10$
 $y_{$

|0,
$$x_1 + x_2 + x_3 + x_4 + x_5 = 2$$
|

where x_i , $i = 1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$ is a nonhegative integer,

(d) $0 \le x_1 \le 3$, $1 \le x_2 < 4$, $x_3 \ge 15$

1.) $x_1 \ge 1$, $x_3 \ge 15$

let $y_1 = x_1 - 1$, $y_3 = x_3 - 15$

let $y_1 = x_1 - 1$, $y_3 = x_3 - 15$
 $x_1 + x_2 + y_3 + x_4 + x_5 = 5$
 $x_1 + x_2 + y_3 + x_4 + x_5 = 5$
 $x_1 + x_2 + y_3 + x_4 + x_5 = 5$
 $x_1 + x_2 + y_3 + x_4 + x_5 = 1$

H₅ = C₅ = $\frac{9 \times 8 \times 1 \times 1}{4 \times 3 \times 1} = 126$

H₁ = C₁ = 5

3.) $x_2 \ge 4$, $x_3 \ge 15$

4.) $x_1 \ge 4$, $x_2 \ge 4$, $x_3 \ge 15$

let $x_2 = x_2 - 4$, $x_3 = x_3 - 15$
 $x_1 + x_2 + y_3 + x_4 + x_5 = 2$

H₂ = C₂ = 15,

11.

(a) $a_1 = 2a_{n-1} + 3^n$, find all solution.

let $a_1 = r^n$, $r^n = 2r^{n-1}$, $r = 2 \Rightarrow a_n^{(n)} = 0.2^n$

Suppose $a_1 = 2a_n^{(n)} + 3^n = 2a_n^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 2a_n^{(n)} + 3^n = 3a_n^{(n)} = 3x_3^n = 3^{n+1}$
 $a_2 = 2a_1^{(n)} + 3^n = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 2a_1^{(n)} + 3^n = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_2 = 2a_1^{(n)} + 3^n = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 2a_1^{(n)} + 3^n = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 2a_1^{(n)} + 3^n = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_2 = 2a_1^{(n)} + 3^n = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3^{n+1} = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3^{n+1} = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3^{n+1} = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3^{n+1} = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3^{n+1} = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3^{n+1} = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3^{n+1} = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3^{n+1} = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3^{n+1} = 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3a_1^{(n)} = 3x_3^n = 3^{n+1}$
 $a_1 = 3a_1^{(n)} + 3a_1^{(n)} = 3x_3^n = 3^{n+1}$

$$C = 2C3^{-1} + | => \Omega_{n} = \underline{\alpha} 2^{n} + 3^{n+1} \times C = \frac{2C+3}{3}$$
(b) $\Omega_{h} = \alpha 2^{n} + 3^{n+1}$, $\Omega_{1} = 5$

$$5 = 2\alpha + 9$$

$$-4 = 2d, \alpha = -2 \times 2^{n} + 3^{n+1}$$

$$= -2^{n+1} + 3^{n+1} \times 2^{n} \times 3^{n+1}$$