Homework 3

ALECK ZHAO

September 23, 2016

1. A population consists of N individuals. Each individual has a certain number of friends. Suppose the count of individuals in the population with a given number of friends is as in the following table:

k	number in population with k friends
0	1
1	1
M	N-4
2M - 1	1
2M	1

where $M \geq 3$ is an unknown positive integer and $N \geq 7$. A sample if size 3 is drawn without replacement and the numbers of friends for the *i* sampled individual is denoted by X_i , for i = 1, 2, 3.

- (a) Let S denote the 3-tuple of elements X_1, X_2, X_3 that are drawn but written in increasing order. Write down a list of the 15 possible values S can take on.
- (b) Make a table giving the PMF of S.
- (c) Compute the PMF of $Y = X_1 + X_2 + X_3$. Note that Y is a function of S the set that is drawn.
- (d) Compute the PMF of $\bar{X} = (X_1 + X_2 + X_3)/3$ and use this to determine $E[\bar{X}]$.
- (e) Compute the population variance σ^2 . Compute $Var(\bar{X})$.
- (f) If we use \bar{X} to estimate M, what is the mean square error $E[(\bar{X}-M)^2]$?
- (g) Let T denote the sample median. Compute the PMF of T and determine E[T].
- (h) Find an expression for Var(T) and simplify it.
- (i) If we use T to estimate M, what is the mean squared error $E[(T-M)^2]$?
- (j) Suppose we will decide which estimator of M to use (sample mean or sample median) based on which has a smaller MSE. Define the *efficiency* of the sample median *relative* to the sample mean to be

eff =
$$\frac{E[(\bar{X} - M)^2]}{E[(T - M)^2]}$$
.

Show that this expression can be written as the product of two terms, one which is linear in N and the other which is a ratio of two quadratics in M.

- (k) Describe situations (for some integers M and N with $M \ge 3$ and $N \ge 7$) when the sample mean has a smaller MSE than the sample median. If N > 12, show that the sample median has a smaller MSE than the sample mean no matter what M is (as long as it is at least 3).
- 2. Complete the following:
 - (a) Show that if X_i are iid Bernoulli random variables with success probability p for some $p \in (0,1)$, then

$$\frac{1}{n} \sum_{i=1}^{n} X_i \to p$$

as $n \to \infty$.

- (b) In R, get an approximation to the expected value of the length of the longest run in n flips of a fair coin for $n = 10, 20, 30, \dots, 250$.
- (c) Plot the expected value in (a) vs n and try to fit a curve of the form $y = c \log n$ for some c to the data.
- (d) Use your fit in (c) to predict the expected value when n = 500. Then approximate the value you get using simulation and compare.
- (e) Now, consider a Monte-Carlo approximation of the variance of a random variable. Explain why the expression

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2$$

can be used to approximate $E[X^2]$, and thus why

$$\frac{1}{n} \sum_{i=1}^{n} X_i^2 - \left(\frac{1}{n} \sum_{i=1}^{n} X_i\right)^2 \approx E[X^2] - \mu^2 = \text{Var}(X).$$

(f) From the previous part, explain why, for large n, we can approximate Var(X) using the sample variance of the values X_1, \dots, X_n

$$\frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2.$$

- (g) Take X to be the length of the longest run in n trials. Estimate Var(X) for $n = 10, 20, 30, \dots, 250$, and plot Var(X) vs n.
- 3. Consider sampling with replacement using a sample of size n from a population of size N where each individual i has two attributes x_i, y_i . Let

$$\sigma_{xy} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu_x)(y_i - \mu_y)$$

denote the population covariance between x and y where μ_x and μ_y denote the population means. Let (X_i, Y_i) , $i = 1, \dots, n$ denote the (x, y) values for the individuals sampled.

Show that the sample covariance

$$s_{xy} = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})$$

is unbiased for σ_{xy} .

Chapter 7: Survey Sampling

- 45.
- 46.
- 48.

Chapter 4: Expected Values

102.