Introduction to Software Verification – HW No. 6

Winter 2022-2023

TA in charge: Omer Rappoport

Please note that answers without an explanation will not be checked.

Question 1

Reminder: Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures over the same set of atomic propositions AP. We denote $M_1 \le M_2$ (and say that M_2 simulates M_1) if there exists a simulation relation $H \subseteq S_1 \times S_2$ such that for every initial state $s_1 \in I_1$ there is an initial state $s_2 \in I_2$ for which $(s_1, s_2) \in H$.

- a. <u>Prove/disprove</u>: the relation \leq is reflexive.
- b. Prove/disprove: the relation \leq is symmetric.
- c. <u>Prove/disprove</u>: the relation \leq is anti-symmetric.
- d. Prove/disprove: the relation \leq is transitive.

Question 2 (optional)

Let $M_1 = (S_1, I_1, R_1, L_1)$ and $M_2 = (S_2, I_2, R_2, L_2)$ be two Kripke structures over the same set of atomic propositions AP, with $S_1 = \{s_1\}$ and $S_2 = \{s_2\}$ (both structures have a single initial state).

<u>Prove</u>: if for every *CTL* formula φ , $M_1 \vDash \varphi \Leftrightarrow M_2 \vDash \varphi$, then $M_1 \equiv M_2$.

<u>Guidance</u>: show that the following relation $B \subseteq S_1 \times S_2$ is a bisimulation between M_1 and M_2 : $(t_1, t_2) \in B$ iff for every CTL formula φ , $t_1 \models \varphi \Leftrightarrow t_2 \models \varphi$.

Remark: This is the opposite direction of a theorem from lecture 12.

Good luck!