Устройства

Виды устройств и их взаимодействие с ОС и программами пользователя. DMA.

Драйверы

Конфигурирование шин

Конфигурирование PCI

Формат адресного пространства PCI

Конфигурирование USB

Descriptor Length = 12h	Descriptor Type = 01h Device
USB Specification, Which comply	
Class	Subclass
Protocol	Max Packet Size
Vendor ID	
Device ID	
Device Release Number	
Manafacturer	Product
String Index	String Index
Serial Number	Number of
String Index	configurations

PnP конфигурирование

PnP управление устройствами

Работа драйверов с прерываниями

- IPC-INTERRUPT
- HW-INTERRUPT
- PAGING
- APC

DPC функции

Синхронизация с обработчиками прерываний

```
KIRQL KeAcquireInterruptSpinLock(
    _Inout_ PKINTERRUPT Interrupt
);
```

```
BOOLEAN KeSynchronizeExecution(
  [in, out] PKINTERRUPT Interrupt,
  [in] PKSYNCHRONIZE_ROUTINE SynchronizeRoutine,
  [in, optional] __drv_aliasesMem PVOID SynchronizeContext
);
```

Unix

- Символьные
- Блочные
- Пространство ядра
- Пространство пользователя

Символьные

- foo_read()
- foo_write()

Блочные

- Буферная память
- strategy routine
- асинхронность

Пространство пользователя

- Один процесс
- Приватное виртуальное пространство
- Полноценное управление исполнением
- Закрытый исходный код

Пространство пользователя vgalib

Пространство ядра

- Несколько процессов
- Общие ресурсы
- Прерывания и поочередное опращивание
- kmalloc()

Windows

Windows

Hardware interfaces (buses, I/O devices, interrupts, interval timers, DMA, memory cache control, etc.)

Windows

- User-mode drivers
- Kernel-mode drivers

Design Goals for Kernel-Mode Drivers

- Портируемость
- Конфигурируется для различных аппаратных и программных платформ.
- Вытеснения и прерывания
- Multiprocessor-safe
- Object-based
- Packet-driven I/O
- asynchronous I/O

WHQL

WHQL

Windows Hardware Quality Labs

Storage drivers

блочные устройства разных уровней

- низкого уровня покрывает физическое устройство (ssd,scsi cd)
- высокого уровня покрывает том(несколько дисков)

Filesystem drivers

- FSR (File System Recognizer)
- FSD (File System Driver)

Networks drivers

- Socket Driver
- Network Protocol
- Network Miniport
- Network Intermediate
- Network Filtering Drivers

Адресное пространство ввода/вывода

PIO

РІО с блокированием

PIO с ожиданием прерывания

DMA

DMA burst

Bus mastering DMA

- Любое устройству может захватить шины
- Самостоятельно выставляет на шину сигналы адреса и управления
- Доступ ЦП к шине при этом кратковременно блокируется
- Нет контроллера DMA

Contiguous DMA

- Выделяется один буфер в оперативной памяти.
- Физический адрес этого буфера записывается в регистр устройства.
- Контроллер устройства инициирует DMA трансфер.
- После того, как буфер полностью заполнен, контроллер устройства инициирует прерывание
- Драйвер операционной системы обрабатывает прерывание, и передает полученные данные из буфера, далее по стеку устройств операционной системы.

Scatter/Gather DMA

- 1.Выделение подряд идущей физической памяти в ядре операционной системы и промежуточное копирование всех данных туда/оттуда bounce buffer.
- 2. Разбиение операции на подоперации по границам элементов *SGL*, с прерыванием в конце каждой операции..
- 3.Поддержка *SGL* самим устройством

Scatter (Receive)

Gather (Send)

Memory