CYBER SECURITY DIVISION 2014 R&D SHOWCASE AND TECHNICAL WORKSHOP

Qualitative & Quantitative Evaluation of Static Code Analysis Tools

Indiana University-Purdue University Indianapolis Dr. James H. Hill (hillj@cs.iupui.edu)

December 16-18, 2014

Project Overview

- Static code analysis (SCA) is a methodology of detecting errors in program based on the review of code marked by the analyzer in areas where potential errors may occur
- SCA tools aid developers in quickly identifying errors through automation
 - memory leaks
 - dead code
 - code conformance
 - etc.

Existing Static Code Analysis Tools

Given the vast
 number of SCA
 tools, it can be hard
 identifying what
 SCA tools are best
 for the job!

It is also a costly & timeconsuming process evaluating the quality of each tool...

HP Fortify Source Code Analyzer	AdaControl	Pylint
Axivion Bauhaus Suite	Astrée	Parasoft C/C++test
IBM Rational AppScan Source Edition	cpplint	Klocwork Insight
Imagix 4D	Clang	SofCheck Inspector
MALPAS	PVS-Studio	CodeRush
CodeSonar	Cppcheck	Visual Studio Team System
Codelt.Right	Protecode	DMS Software Reengineering Toolkit
FxCop	FindBugs	Kalistick
Apparat	PMD	

Our objective is to evaluate the quality of static code analysis tool, and understand how to best apply them to a given piece of source code

Current Status

- Acquired and deployed three commercial SCA tools into the System Integration Lab at IUPUI
- Developed an extensible framework for automating the evaluation of SCA tools (SCATE)
- Exploring methodology and reporting features
 - Granularity
 - Aggregating multiple tools
 - Permutation heat map

Controls the required accuracy for the tool

Controls the required accuracy for the tool

CWE835_Infinite_Loop__do_01.c

```
10 void CWE835_Infinite_Loop__do_01_bad() {
     int i = 0;
11
12
13
    /* FLAW: Infinite Loop - do..while() with no break point */
14
    do
15
16
   printIntLine(i);
    i = (i + 1) % 256;
17
     } while(i >= 0);
18
19 }
```

Controls the required accuracy for the tool

CWE835_Infinite_Loop__do_01.c

```
10 void CWE835_Infinite_Loop__do_01_bad() {
     int i = 0;
11
12
13
     /* FLAW: Infinite Loop - do..while() with no break point */
14
     do 🚄
                                                                       Flaw
15
16
    printIntLine(i);
    i = (i + 1) % 256;
17
     } while(i >= 0);
18
19 }
```

Controls the required accuracy for the tool

CWE835_Infinite_Loop__do_01.c

```
10 void CWE835_Infinite_Loop__do_01_bad() {
     int i = 0;
11
12
13
     /* FLAW: Infinite Loop - do..while() with no break point */
14
     do 🚄
                                                                         Flaw
15
16
   printIntLine(i);
       i = (i + 1) % 256;
17
     \} while(i >= 0);
18
19 }
```

FILE

The tool can find the flaw anywhere in the file

FUNCTION

The tool can find the flaw anywhere in the function

LINE

The tool must find the flaw on line 14

Controls the required accuracy for the tool

Granularity	Detected Flaws
File	25,511
Function	3,565
Line	2,215

 Increasing granularity reduces the quality of a Tool

TP	FP
5,155	206,433

TP	FP
12,235	9,174

TP	FP
25,511	111,397

 Permutations use Data and/or Control flows to obscurify a Flaw to test SCA tools

 Permutations use Data and/or Control flows to obscurify a Flaw to test SCA tools

Permutation 01:

```
void bad (void)
{
   // FLAW: ...
}
```

Permutation 02:

```
void bad (void)
{
   if (1)
   {
      // FLAW: ...
   }
}
```

Permutation 03:

```
void bad (void)
{
   if (5==5)
   {
      // FLAW: ...
   }
}
```


CWE 415 (Double Free)

15: 50 % Flaws Found

16: 100% Flaws Found

CWE 415 (Double Free)

15: 50 % Flaws Found

16: 100% Flaws Found

Permutation 15:

```
void bad (void)
{
  switch(6)
  {
  case (6):
    // FLAW: ...
  break
  }
}
```

Permutation 16:

```
void bad (void)
{
  while (1)
  {
    // FLAW: ...
    break
  }
}
```


CWE 415 (Double Free)

15: 50 % Flaws Found

16: 100% Flaws Found

Permutation 15: Permutation 16:

 The type of permutation can affect a tool's quality

- SWAMP Integration
- Tool behavioral model
- Predict tool quality against source code
- Streamline analysis into a cloud-based testing as a service product

- SWAMP Integration
- Tool behavioral model
- Predict tool quality against source code
- Streamline analysis into a cloud-based testing as a service product

The SWAMP has multiple SCA tools integrated into their environment and can provide tool results

- SWAMP Integration
- Tool behavioral model
- Predict tool quality against source code
- Streamline analysis into a cloud-based testing as a service product

- SWAMP Integration
- Tool behavioral model
- Predict tool quality against source code
- Streamline analysis into a cloud-based testing as a service product

- SWAMP Integration
- Tool behavioral model
- Predict tool quality against source code
- Streamline analysis into a cloud-based testing as a service product

Questions