UNIVERSITETET I OSLO

Det matematisk-naturvitenskapelige fakultet

Deleksamen i: MAT1100 — Kalkulus

Fredag 14. oktober 2011 Eksamensdag:

15.00 - 17.00Tid for eksamen:

Oppgavesettet er på 5 sider.

Vedlegg: Svarark, formelsamling.

Tillatte hjelpemidler: Ingen.

Kontroller at oppgavesettet er komplett før du begynner å besvare spørsmålene.

Eksamen består av 20 spørsmål. De 10 første teller 2 poeng hver, de 10 siste teller 3 poeng hver. Det er bare ett riktig alternativ på hvert spørsmål. Dersom du svarer feil eller lar være å svare på et spørsmål, får du 0 poeng. Du blir altså ikke "straffet" for å gjette. Krysser du av mer enn ett alternativ på et spørsmål, får du 0 poeng. Svarene fører du inn på eget svarark.

Oppgave 1. (2 poeng) Det komplekse tallet z har polarkoordinater r=4, $\theta = \frac{3\pi}{4}$. Da er z lik:

- A) $-2 + 2i\sqrt{3}$
- B) $-2\sqrt{2} + 2i\sqrt{2}$
- C) $2\sqrt{2} 2i\sqrt{2}$
- D) $2\sqrt{3} 2i$
- E) $-2\sqrt{3} + 2i$

Oppgave 2. (2 poeng) Det komplekse tallet $z = \sqrt{3} - i$ har polarkoordinater:

- A) $r = 2, \theta = \frac{11\pi}{6}$ B) $r = 2, \theta = \frac{5\pi}{6}$ C) $r = \sqrt{2}, \theta = \frac{7\pi}{8}$ D) $r = 2, \theta = \frac{7\pi}{6}$ E) $r = \sqrt{2}, \theta = \frac{11\pi}{6}$

Oppgave 3. (2 poeng) Mengden $A = \{z \in \mathbb{C} \mid |z+i| < |z-1|\}$ består av alle punkter z = x + iy i det komplekse planet som ligger:

- A) over linjen y = x
- B) på den reelle aksen
- C) på den imaginære aksen
- D) under linjen y = x
- E) under linjen y = -x

(Fortsettes på side 2.)

Oppgave 4. (2 poeng) Grenseverdien $\lim_{n\to\infty} \frac{4n^3+3n+8}{2n^2+7n^3}$ er lik:

- A) 2
- B) 4
- $\stackrel{\circ}{C}) \frac{8}{7}$
- D) ∞
- E) $\frac{4}{7}$

Oppgave 5. (2 poeng) Den deriverte til $f(x) = \arctan(\cos x)$ er:

- A) $\frac{1}{1+\cos^2 x}$ B) $-\frac{\sin x}{\sqrt{1-\cos^2 x}}$ C) $-\frac{\sin x}{\cos^2(\cos x)}$ D) $-\frac{\sin x}{1+\cos^2 x}$ E) $\frac{1}{\sqrt{1-\cos^2 x}}$

Oppgave 6. (2 poeng) Den deriverte til $f(x) = \arcsin(x^3)$ er:

- A) $\frac{3x^2}{\sqrt{1-x^6}}$ B) $\frac{3x^2}{1+x^6}$ C) $3x^2 \arccos x^3$
- $D)\frac{1}{\sqrt{1-x^6}}$ $E) -\frac{3x^2}{\cos^2 x^3}$

Oppgave 7. (2 poeng) Grenseverdien $\lim_{x\to 0} \frac{\arctan 2x}{\sin x}$ er lik:

- A) 0
- B)1
- C) $-\frac{1}{2}$
- D) ∞
- E) 2

Oppgave 8. (2 poeng) Grenseverdien $\lim_{x\to 0} \frac{x^3}{x-\sin x}$ er lik:

- A) 2
- B) $\frac{1}{4}$
- C) 0
- D) $\frac{1}{3}$
- E) 6

Oppgave 9. (2 poeng) Den omvendte funksjonen til $f(x) = 3e^x + 2$ er:

- A) $\frac{1}{3} \ln(y-2)$ B) $\frac{1}{3e^2+2}$ C) $\frac{y-\ln 2}{\ln 3}$ D) $\ln \frac{y-2}{3}$

- E) $\frac{y-\ln 2}{3}$

(Fortsettes på side 3.)

Oppgave 10. (2 poeng) Alt du vet om den strengt voksende, kontinuerlige funksjonen $f: \mathbb{R} \to \mathbb{R}$ er at f(3) = 2 og f'(3) = -4. Hva kan du da si om den omvendte funksjonen g?

- A) $g'(3) = -\frac{1}{4}$ B) $g'(2) = -\frac{1}{4}$
- C) g'(-4) = -3
- D) g'(2) = -4
- E) g'(2) = 3

Oppgave 11. (3 poeng) Grenseverdien $\lim_{x\to\infty}(\sqrt{9x^2+x}-3x)$ er lik:

- A) 0
- B) $\frac{1}{6}$
- C) 9
- D) ∞
- E) $\frac{1}{3}$

Oppgave 12. (3 poeng) Kvadratrøttene til det komplekse tallet $2 + 2i\sqrt{3}$ er:

- A) $\pm(\sqrt{2}+i\sqrt{2})$
- B) $\pm (1 + i\sqrt{3})$
- C) $\pm(\sqrt{3} + i)$
- D) $\pm(\sqrt{3} i)$
- E) $\pm (-\sqrt{2} + i\sqrt{2})$

Oppgave 13. (3 poeng) Grenseverdien $\lim_{x\to 0} |x|^{\sin x}$ er lik:

- A) 0
- B) e
- C) 1
- D) ∞
- E) e^2

Oppgave 14. (3 poeng) Det reelle tredjegradspolynomet $P(z) = z^3 + az^2 +$ bz + c har -2 og -i som røtter. P(z) er lik:

- A) $z^3 + z^2 z + 2$
- B) $z^3 z^2 + 4z + 4$
- C) $z^3 z^2 + z 1$
- D) $z^3 + 3z^2 z$
- E) $z^3 + 2z^2 + z + 2$

Oppgave 15. (3 poeng) Den deriverte til funksjonen $f(x) = (2 + \cos x)^{e^x}$ er:

A)
$$\left(e^x \ln(2 + \cos x) - \frac{e^x \sin x}{2 + \cos x}\right) (2 + \cos x)^{e^x}$$

B)
$$(2 + \cos x)^{e^x - 1} e^x$$

C)
$$(2 + \cos x)^{e^x} (-\sin x)$$

C)
$$(2 + \cos x)^{e^x} (-\sin x)$$

D) $(2 + \cos x)^{e^x - 1} e^x - (2 + \cos x)^{e^x} \sin x$

E)
$$(2 + \cos x)^{e^x} \ln(2 + \cos x)$$

Oppgave 16. (3 poeng) $(1+i)^{12}$ er lik:

B)
$$(1+i)2^5$$

$$(C) -2^6$$

D)
$$2^5(1+i\sqrt{3})$$

E)
$$2^{5}(\sqrt{3}-i)$$

Oppgave 17. (3 poeng) I det reelle polynomet $P(x) = x^n + a_{n-1}x^{n-1} + a_{n-1}x^{n-1}$ $\cdots + a_1 x + a_0$ er n et partall og $a_0 < 0$. Da må:

- A) P(x) være konveks
- B) P(x) ha minst to reelle røtter
- C) P(x) være negativ for alle $x \in \mathbb{R}$
- D) P(x) ha to komplekse røtter
- E) P(x) være strengt voksende

Oppgave 18. (3 poeng) Funksjon $f:[0,1]\to\mathbb{R}$ er kontinuerlig i hele [0,1]og deriverbare i alle indre punkter $c \in (0,1)$. Hvis det eneste du ellers vet er at f(0) = -1 og $f'(c) \ge 1$ for alle $c \in (0,1)$, så kan du konkludere at:

- A) f er konveks
- B) f har et maksimumspunkt i (0,1)
- C) f' er avtagende
- D) f har nøyaktig ett nullpunkt
- E) f er konkav

Oppgave 19. (3 poeng) Figuren nedenfor viser parabelen $f(x) = 12 - x^2$ og et rektangel som ligger under funksjonsgrafen og over x-aksen. Hva er det største arealet et slikt rektangel kan ha?

C)
$$20\sqrt{3}$$

D)
$$24\sqrt{2}$$

Oppgave 20. (3 poeng) En sirkulær skive med radius 5 cm beveger seg langs en rett linje mot et punkt A. Figuren nedenfor viser situasjonen sett ovenfra. Når avstanden fra A til sentrum C i sirkelen er 13 cm, øker vinkelen v med 0.5 radianer i sekundet. Hvor fort nærmer sirkelen seg A i dette øyeblikket?

- A) 16.9 cm/s
- B) 15.6 cm/s
- C) 6 cm/s
- D) 14.4 cm/s
- E) 13 cm/s

SLUTT