FernUNI Hagen Fernstudienzentrum Ffm Mathematik II für WiWi's (Kurs 0054) WS 2002/03 12 Integralrechnung.doc Mentorin: Stephanie Schraml

Integralrechnung

Die Integration ist die Umkehrung der Differentation.

Grundlagen

$$\left[\frac{x^{3}}{3}\right]_{a}^{b} = \frac{b^{3}}{3} - \frac{a^{3}}{3} = \int_{a}^{b} x^{2} dx$$

Stammfunktion-Integralfunktion

$$\frac{x^3}{3}$$
 heißt Stammfunktion F(x) von f(x). Es gilt F'(x) = f(x)

Jede Integralfunktion ist eine Stammfunktion.

Eine Stammfunktion ist aber nur dann eine Integralfunktion, wenn es einen Wert für die Untergrenze gibt, bei dem die Funktion Null wird.

Die Ableitung der Integralfunktion gibt den **Integrand** x²

Das Integralzeichen∫ steht für den Grenzwert einer Summe

dx kommt von **Delta** x, ist aber der Grenzwert von Δx und strebt gegen Null

$$\lim_{\Delta y = y' = \underline{dy}} \quad \text{Differential quotient} \quad \text{(Differenze nquotient:} \quad \underline{\Delta y})$$

$$\Delta x \rightarrow 0 \quad \Delta x \qquad dx \qquad \Delta x$$

Hauptsatz der Differential- und Integralrechnung (nicht in der Vorlesung behandelt)

Jede Integralfunktion einer stetigen Funktion ist differenzierbar.

Die Ableitung ist gleich dem Wert des Integranden an der oberen Grenze.

$$\frac{d}{dx} = \int_{a}^{x} f(t)dt = f(x)$$

FernUNI Hagen Fernstudienzentrum Ffm Mathematik II für WiWi's (Kurs 0054)

WS 2002/03 12 Integralrechnung.doc Mentorin: Stephanie Schraml

Verschiedene Integrale

Bestimmtes Integral

Zwischen welchen Punkten die Fläche berechnet werden soll.

$$\int_{-4}^{b} f(x)dx = F(b) - F(a)$$

$$\int_{-4}^{+5} 2xdx = 5^{2} + (-4)^{2}$$

$$\int_{-4}^{+5} 2x dx = 5^2 + (-4)^2$$

Beispiel Seite 66

Flächenintegral/inhalt

Von Schnittstelle zu Schnittstelle (x-Achse) einzeln berechnen. Beträge addieren. Obere und untere Schranke sind bekannt.

z.B.:
$$\int_{-4}^{-2} + \left| \int_{-2}^{-1} \right| + \int_{-1}^{3} + \left| \int_{3}^{4} \right| + \int_{4}^{5} = \int_{-4}^{-2} + \int_{-1}^{-2} + \int_{-1}^{3} + \int_{4}^{3} + \int_{4}^{5}$$

Satz S. 74

Flächenintegral

$$\int_{2}^{x} f(t) dt z.B.: \int t^{2} dt = \left[\frac{t^{3}}{3}\right]_{2}^{x} = \frac{x^{3}}{3} - \frac{8}{3}$$
 Dies ist eine Teilmenge der Stammfunktionen

Unbestimmtes Integral

Menge der Stammfunktionen: $\int f(x) dx = F(x) + c$

Kennzeichen: keine Grenzen

Dabei kann die Integrationskonstante c jede beliebige Zahl annehmen

Alle stetigen Funktionen sind unbestimmt integrierbar

Uneigentliches Integral

Die Fläche ist nur nach einer Seite hin begrenzt

$$\lim \int_{1}^{x} \frac{1}{\sqrt{t}} dt = \lim \left[2\sqrt{t} \right]_{1}^{x} = \lim 2\sqrt{x} - 2 = \infty$$

Beispiel S. 75

 $X \rightarrow \infty$

 $X \rightarrow \infty$

 $X \rightarrow \infty$

FernUNI Hagen Fernstudienzentrum Ffm Mathematik II für WiWi's (Kurs 0054) WS 2002/03 12 Integralrechnung.doc Mentorin: Stephanie Schraml

Rechenregeln

Konstanter Faktor Regel

Ein konstanter Faktor darf vor das Integral gezogen werden

$$\int a f(x) dx = a \int f(x) dx$$

Summenregel

Das Integral einer Summe von Funktionen ist gleich der Summe der Einzelintegrale

$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

Bei einer Summe von Integralen werden die Integralkonstanten meist zu einer Konstanten zusammengezogen.

Partielle Intgration

wird angewendet, wenn ein Produkt zweier Funktionen zu integrieren ist

$$\int f(x) * g'(x) dx = f(x)*g(x) - \int f'(x)*g(x) dx$$

Wähle dabei die Funktion als g'(x), die einfacher zu integrieren ist

Integration durch Substitution

Durch Variablensubstitution wird versucht eine zusammengesetzte Funktion so weit zu vereinfachen, daß sie auf bekannte Integrale zurückzuführen ist.

$$\int f(g(x)) dx$$
 speziell: $\int z^*z' dx \rightarrow \text{Ersetzte } g(x) = z \text{ und } dx = dz/g'(x) \rightarrow \int f(z) dz$