1. 行列

第一回~第三回、第十三回の内容。

行列を求める

$$egin{pmatrix} L_1 \ L_2 \end{pmatrix} = egin{pmatrix} m_{11} & m_{12} \ m_{21} & m_{22} \end{pmatrix} egin{pmatrix} R_1 \ R_2 \end{pmatrix}$$

これを図式化すれば以下のようになる。

電源の除去

1-1' および 2-2' には仮想的に電源 V_1 および V_2 が接続されていると考える。

ここで行列の各成分を求めるためには、仮想的な電源を除去しなけらばならない。

その電源の除去について以下の二通りがある。

- 短絡: 電源部分を導線に置換する。つまり V=Z=0 とする。
- 解放:電源部分を断線する。つまり I=Y=0 とする。

こうして得られた行列の要素 m_{ij} それぞれについて、以下の名前を与える。

_	除去端	除去方法	法	方向		抵抗	<u> </u>	
	入力端(1-1')	短絡(1	V=0)	駆動点	$(1 \rightarrow 1')$	イン	\cdot ピーダンス($Z=$	V/I)
_	出力端 (2 -2′)	開放(1	f=0)	伝達(1	$_{-} ightarrow 2$)	アド	ミタンス($Y=I$	$\overline{(/V)}$
	除去端	-	除去方	· 法	要素	-	抵抗	
	入力端(1-1')	短絡()	V=0)	電圧 ($V_{ m /}$	$^{\prime}V$)	増幅率 ($2/1$)	
	出力端(2-2')	開放(」	I=0)	電流 (<i>I /</i>	\overline{I})	帰還率 (1/2)	

とくに「出力端短絡駆動点」抵抗を「入力」抵抗、「入力端開放駆動点」抵抗を「出力」抵抗という。

各行列の意味

相反条件 とは $V_1I_1=V_2I_2$ を満足するための条件のことである。

行列	定義	 <i>Z</i> 行列との変換 	相反条件	等価回路
Z	$egin{pmatrix} V_1 \ V_2 \end{pmatrix} = Zigg(egin{matrix} I_1 \ I_2 \end{pmatrix}$		$z_{12}=z_{21}$	$z_{12}=z_{21}$
Y	$egin{pmatrix} I_1 \ I_2 \end{pmatrix} = Yegin{pmatrix} V_1 \ V_2 \end{pmatrix}$	$ Z ^{-1}inom{z_{22} & -z_{12}}{-z_{21} & z_{11}}$	$y_{12}=y_{21}$	$-y_{12} = -y_{21}$ y_{10}
K	$egin{pmatrix} V_1 \ I_1 \end{pmatrix} = Kegin{pmatrix} V_2 \ -I_2 \end{pmatrix}$	$z_{21}^{-1}egin{pmatrix} z_{11} & Z \ 1 & z_{22} \end{pmatrix}$	K =1	
Н	$egin{pmatrix} V_1 \ I_2 \end{pmatrix} = Higg(egin{matrix} I_1 \ V_2 \end{pmatrix}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$h_{12}=-h_{21}$	$h_i = Z_{in}$ $h_{\tau}V_2 \uparrow \bigcirc \qquad \qquad \downarrow h_fI_1$ $h_o = Y_{out}$

行列の変換

Z 行列

$$egin{array}{c|cccc} Z & I_1(I_2=0) & I_2(I_1=0) \ \hline V_1 & z_{11} = & rac{V_1}{I_1} \Big|_{I_2=0} & z_{12} = & rac{V_1}{I_2} \Big|_{I_1=0} \ \hline V_2 & z_{21} = & rac{V_2}{I_1} \Big|_{I_2=0} & z_{22} = & rac{V_2}{I_2} \Big|_{I_1=0} \ \hline \end{array}$$

Y 行列

 $Y=Z^{-1}$ \updownarrow \flat

Y	$V_1(V_2=0)$	$V_2(V_1=0)$
I_1	$y_{11} = rac{I_1}{V_1}igg _{V_2=0} = rac{z_{22}}{ Z }$	$oxed{y_{12} = rac{I_1}{V_2}igg _{V_1 = 0}} = -rac{z_{12}}{ Z }$
I_2	$\left. y_{21} = rac{I_2}{V_1} ight _{V_2 = 0} = -rac{z_{21}}{ Z }$	$oxed{y_{22} = rac{I_2}{V_2}igg _{V_1 = 0}} = rac{z_{11}}{ Z }$

K 行列

K	$V_2(I_2=0)$ [Z の左側]	$-I_2(V_2=0)$ [Y の左側]
V_1	$igg A = rac{V_1}{V_2}igg _{I_2=0} = rac{V_1}{I_1} rac{I_1}{V_2}igg _{I_2=0} = rac{z_{11}}{z_{21}}$	$\left\ B = rac{V_1}{-I_2} ight _{V_2 = 0} = -rac{1}{y_{21}} = rac{ Z }{z_{12}}$
I_1	$\left\ C = rac{I_1}{V_2} ight _{I_2 = 0} = rac{1}{z_{21}}$	$oxed{D = rac{I_1}{-I_2}igg _{V_2 = 0}} = -rac{I_1}{V_1}rac{V_1}{I_2}igg _{V_2 = 0} = -rac{y_{11}}{y_{21}} = rac{z_{22}}{z_{21}}$

H 行列

H	$I_1(V_2=0)$ [Y の左側]	$V_2(I_1=0)$ [Z の右側]
V_1	$igg h_i = rac{V_1}{I_1}igg _{V_2=0} = rac{1}{y_{11}} = rac{ Z }{z_{22}}$	$igg h_r = rac{V_1}{V_2}igg _{I_1=0} = rac{V_1}{I_2} rac{I_2}{V_2}igg _{I_1=0} = rac{z_{12}}{z_{22}}$
I_2	$igg h_f = rac{I_2}{I_1}igg _{V_2=0} = rac{I_2}{V_1}rac{V_1}{I_1}igg _{V_2=0} = rac{y_{21}}{y_{11}} = -rac{z_{21}}{z_{22}}$	$igg _{h_o = rac{I_2}{V_2}}igg _{I_1 = 0} = rac{1}{z_{22}}$

等価回路の確認

Z 行列の等価回路

Z	$I_1(I_2=0)$	$I_2(I_1=0)$
V_1	$\left. z_{11} = rac{V_1}{I_1} ight _{I_2 = 0} = (z_{11} - z_{21}) + z_{21}$	$igg z_{12} = rac{V_1}{I_2} igg _{I_1 = 0}$
V_2	$z_{21} = rac{V_2}{I_1}igg _{I_2=0}$	$igg z_{22} = rac{V_2}{I_2} igg _{I_1 = 0} = (z_{22} - z_{12}) + z_{12}$

Y 行列の等価回路

Y	$V_1(V_2=0)$	$V_2(V_1=0)$
I_1	$oxed{y_{11} = rac{I_1}{V_1}igg _{V_2 = 0}} = (y_{11} + y_{21}) - y_{21}$	$y_{12} = rac{I_1}{V_2}igg _{V_1=0}$
$\overline{I_2}$	$oxed{y_{21} = rac{I_2}{V_1}igg _{V_2 = 0}}$	$egin{aligned} y_{22} = & rac{I_2}{V_2} igg _{V_1 = 0} = (y_{22} + y_{12}) - y_{12} \end{aligned}$

K 行列の等価回路

H 行列の等価回路

H 行列等価回路の 1-1' 側は テブナンの等価回路 、 2-2' 側は ノートンの等価回路 である。

トランス

相互インダクタンス M の 2 コイル $L_1=vn_1^2$, $L_2=vn_2^2$ よりなる トランス を考える。

ただしコイルの向きが違う場合は相互インダクタンスは - M となることに注意。

等価回路

$$egin{cases} v_1(t) = L_1rac{di_1(t)}{dt} + Mrac{di_2(t)}{dt} \ v_2(t) = L_2rac{di_2(t)}{dt} + Mrac{di_1(t)}{dt} \end{cases}$$

これを複素数表示すれば

$$egin{pmatrix} egin{pmatrix} V_1 \ V_2 \end{pmatrix} = egin{pmatrix} j\omega L_1 & j\omega M \ j\omega M & j\omega L_2 \end{pmatrix} egin{pmatrix} I_1 \ I_2 \end{pmatrix}$$

と書けることより Z 行列が求まるので、その等価回路を考えれば、以下のようになる。

密結合変成器

相互インダクタンスが $M=\sqrt{L_1L_2}=v(n_1n_2)$ である、磁束漏れのない変成器を **密結合変成器** という。

理想変成器

以下を満たす、電力を消費/蓄積しない変成器を理想変成器という。

$$\frac{V_2}{V_1} = -\frac{I_1}{I_2} = \frac{n_2}{n_1} \cdot \operatorname{sgn} M$$

$Y-\Delta$ 変換

Y型回路

Y型回路はZ行列の等価回路であるため

$$egin{cases} Z_1 = z_{11} - z_{21} \ Z_2 = z_{22} - z_{12} \ Z_3 = z_{12} = z_{21} \end{cases} \iff Z_Y = egin{pmatrix} Z_1 + Z_3 & Z_3 \ Z_3 & Z_2 + Z_3 \end{pmatrix}$$

その行列式は

$$|Z_Y| = (Z_1 + Z_3)(Z_2 + Z_3) - Z_3^2 = Z_1Z_2 + Z_2Z_3 + Z_3Z_1$$

ゆえに $Y=Z^{-1}$ より

$$Y_Y = rac{1}{Z_1Z_2 + Z_2Z_3 + Z_3Z_1} egin{pmatrix} Z_2 + Z_3 & -Z_3 \ -Z_3 & Z_1 + Z_3 \end{pmatrix}$$

△ 型回路

 Δ 型回路はY行列の等価回路であるため

$$egin{cases} Y_{12} = -y_{12} = -y_{21} \ Y_{23} = y_{22} - y_{12} \ Y_{31} = y_{11} - y_{21} \end{cases} \iff Y_{\Delta} = egin{pmatrix} Y_{31} + Y_{12} & -Y_{12} \ -Y_{12} & Y_{23} + Y_{12} \end{pmatrix}$$

その行列式は

$$|Y_{\Delta}| = (Y_{31} + Y_{12})(Y_{23} + Y_{12}) - (-Y_{12})^2 = Y_{12}Y_{23} + Y_{23}Y_{31} + Y_{31}Y_{12}$$

ゆえに $Z=Y^{-1}$ より

$$Z_{\Delta} = rac{1}{Y_{12}Y_{23} + Y_{23}Y_{31} + Y_{31}Y_{12}} egin{pmatrix} Y_{23} + Y_{12} & Y_{12} \ Y_{12} & Y_{31} + Y_{12} \end{pmatrix}$$

ただし以下に注意せよ。

$$\det(\lambda A) = \lambda^n \det A, \quad \det(\lambda A)^{-1} = (\lambda^n \det A)^{-1}$$

$Y - \Delta$ 変換表

 $Z_Y - Y_\Delta$ 変換から以下が導出できる

	$Y o \Delta$	$\Delta o Y$
Z o Z	$Z_{ij} = rac{Z_i Z_j + Z_j Z_k + Z_k Z_i}{Z_k}$	$Y_k = rac{Z_i Z_j}{Z_{ij} + Z_{jk} + Z_{ki}}$
Z o Y	$Y_{ij} = rac{Z_k}{Z_i Z_j + Z_j Z_k + Z_k Z_i}$	$Y_k = rac{Z_{ij} + Z_{jk} + Z_{ki}}{Z_i Z_j}$
Y o Z	$Z_{ij} = rac{Y_i + Y_j + Y_k}{Y_i Y_j}$	$Z_k = rac{Y_{ij}}{Y_{ij}Y_{jk} + Y_{jk}Y_{ki} + Y_{ki}Y_{ij}}$
$\overline{Y o Y}$	$Z_{ij} = rac{Y_i Y_j}{Y_i + Y_j + Y_k}$	$oxed{Y_k = rac{Y_{ij}Y_{jk} + Y_{jk}Y_{ki} + Y_{ki}Y_{ij}}{Y_{ij}}}$

三相交流

三相交流とは、以下の三つの電源により電力を供給する方式である。

$$E_a = E, \quad E_b = E e^{-jrac{2}{3}\pi}, \quad E_c = E e^{-jrac{4}{3}\pi}$$

この実現方法にはY型結線と Δ 型結線の二つがある。

