Tema 5. Relación de equivalencia y clases de equivalencia

5.0. Contenido y documentación

- 5.0. Contenido y documentación
- 5.1. Relación de equivalencia
 - 5.1.1. Clases de equivalencia
 - 5.1.2. Particiones y conjunto cociente
- 5.2. Conjuntos equipotentes
 - 5.2.1. Conjuntos numerables
 - 5.2.2. Teorema de Cantor-Schroeder-Bernstein
- 5.3. Conjuntos no numerables

H5a RelacionesEquivalencia.pdf

H5b Cardinalidad.pdf

5.1. Relación de equivalencia

Definición. Dada una relación \sim en un conjunto X. Decimos que la relación es **reflexiva** si todo elemento está relacionado consigo mismo, es decir, $x \sim x, \forall x \in X$.

Definición. Dada una relación binaria \sim en un conjunto X. Decimos que \sim es una **relación de equivalencia** si cumple las propiedades reflexiva, simétrica y transitiva.

Definición. Dada una relación \sim en un conjunto X. Decimos que la relación es **simétrica** si la relación entre dos elementos cualesquiera es conmutativa, es decir, $\forall x,y \in X$, si $x \sim y$, entonces $y \sim x$.

Definición. Dada una relación \sim en un conjunto X. Decimos que la relación es **transitiva** si dados tres elementos de forma que el primero se relaciona con el segundo y el segundo con el tercero, entonces, el primero también se relaciona con el tercero, es decir, $\forall x,y,z\in X$ si $x\sim y\wedge y\sim z$, entonces $x\sim z$.

Ejemplo 1. Sea $n\in\mathbb{N}\setminus\{1\}$ y $x,y\in\mathbb{Z}$. Definimos una **congruencia** en \mathbb{Z} módulo n si n|(x-y), es decir, si x-y=kn, para algún $k\in\mathbb{Z}$. Escribimos la congruencia como $x\equiv y$ (n). La congruencia en \mathbb{Z} es una relación de equivalencia.

5.1.1. Clases de equivalencia

Definición. Sea (X,\sim) una relación de equivalencia y $x\in X$. Definimos la **clase de equivalencia** de x como el conjunto $\{y\in X: x\sim y\}$.

Notación. C_x , [x] o \bar{x} .

```
Ejemplo 2. \sim es la igualdad en \mathbb{R}: (\mathbb{R},=). Para todo x\in\mathbb{R} tenemos que [x]=\{y\in\mathbb{R}:x=y\}=\{x:x\in\mathbb{R}\}.
```

Ejemplo 3. \sim es la igualdad entre cuadrados en \mathbb{R} : $(\mathbb{R}, x^2 = y^2)$.

Para todo $x\in\mathbb{R}$ tenemos que $[x]=\{y\in\mathbb{R}:x^2=y^2\}=\{y\in\mathbb{R}:|x|=|y|\}=\{x,-x:x\in\mathbb{R}\}.$

Ejemplo 4. \sim es la congruencia en \mathbb{Z} módulo n: $(\mathbb{Z}, \equiv (n))$. Para todo $x\in\mathbb{Z}$ tenemos que $[x]=\{y\in\mathbb{Z}:y\equiv x\ (n)\}=\{y\in\mathbb{Z}:y=x+kn,k\in\mathbb{Z}\}=\{x+k\}$ $\dot{n}:x\in\mathbb{Z}\}.$

5.1.2. Particiones y conjunto cociente

Teorema. Sea \sim una relación de equivalencia en X y $x \in X$. Entonces, las clases de equivalencia [x] forman una partición. Es decir:

1.
$$X = \bigcup_{x \in X} [x]$$
, es decir, $orall y \in X, \exists x \in X : y \in [x]$

1.
$$X=\bigcup_{x\in X}[x]$$
, es decir, $\forall y\in X, \exists x\in X:y\in [x]$.
2. Si $[x]\neq [y]$, entonces $[x]\cap [y]=\emptyset$, es decir, si $[x]\cap [y]\neq \emptyset$, entonces $[x]=[y]$.

Demostración 1.

Sabemos que $\bigcup [x] \subset X$, ya que $[x] \subset X, \forall [x]$. Por otra parte, $\forall x \in X, x \in [x_i]$, para algún i.

Luego
$$X\subset\bigcup_{x\in X}^{x\in X}[x]$$
. Como la inclusión en ambos sentidos implica la igualdad, $X=\bigcup_{x\in X}[x]$. \Box

Demostración 2.

Suponemos que $\exists z \in X : z \in [x] \cap [y]$, de forma que $z \sim x \land z \sim y$. Por la propiedad de simetría, $x \sim z \land z \sim y$, y pode la propiedad transitiva $x \sim y$. Luego $x \in [y]$, de forma que $[x] \subset [y]$. Equivalentemente, a partir de $y \sim x$ llegamos a que $[y] \subset [x]$ y, como la inclusión en ambos sentidos implica la igualdad, [x] = [y]. \square

Definición. Sea \sim una relación de equivalencia en X. Definimos el **conjunto cociente** determinado por \sim como el conjunto de todas las clases de equivalencia respecto a \sim , es decir, $\{[x]:x\in X\}$. Notación. X/\sim .

Ejemplo 5. \sim es la igualdad en \mathbb{R} : $(\mathbb{R}, =)$.

Definimos el conjunto cociente como $X/\sim=\mathbb{R}/(=)=\{[x]:x\in\mathbb{R}\}=\{\{x\}:x\in\mathbb{R}\}.$

Ejemplo 6. \sim es la igualdad de cuadrados en \mathbb{R} : $(\mathbb{R},x^2=y^2)$. Definimos el conjunto cociente como $X/\sim=\mathbb{R}/(x^2=y^2)=\{[x]:x\in\mathbb{R}\}=\{\{x,-x\}:x\in\mathbb{R}\}$ $\mathbb{R}\setminus\{0\}$ \cup $\{0\}$.

Ejemplo 7. \sim es la congruencia \mathbb{Z} módulo n: $(\mathbb{Z}, \equiv (n))$.

Definimos el conjunto cociente como $X/\sim=\mathbb{Z}/(\equiv(n))=\{[x]:x\in\mathbb{Z}\}=\{\{x+\dot{n}\}:x\in\mathbb{Z}\}=\{(x+\dot{n}):x\in\mathbb{Z}\}$ $\{[0],[1],...,[n-1]\}.$

Teorema. Sea $\{X_i:i\in I\}$ una partición de una conjunto X. Entonces, podemos definir la relación de equivalencia \sim en X como $x\sim y$ si y solo si $\exists i \in I: x,y \in X_i$. De esta forma, cada X_i representa a una clase equivalencia.

Demostración.

Por definición de partición, $\forall x \in X, \exists i \in I: x \in X_i$, de forma que $[x] = \{y \in X: y \sim x\} = \{y \in X: y \in X\}$

$$X:\exists i\in I \ \mathrm{con}\ x,y\in X_i\}=\{y\in X:y\in X_i\}=X_i.$$
 Por tanto, $X/\sim=\{[x]:x\in X\}=\{X_i:i\in I\}.$ \square

Ejemplo 8. Dada una función f:X o Y se pide:

- 1. Demostrar que la relación $x_1 \sim x_2 \Leftrightarrow f(x_1) = f(x_2)$ es una relación de equivalencia.
- $\forall x \in X$ tenemos que f(x) = f(x), por lo que $x \sim x$. Luego, \sim es reflexiva.
- $orall x_1, x_2 \in X$ si $x_1 \sim x_2$, entonces $f(x_1) = f(x_2) \Leftrightarrow f(x_2) = f(x_1)$, por lo que $x_2 \sim x_1$. Luego, \sim es simétrica.
- $\forall x_1,x_2,x_3\in X$ si $x_1\sim x_2\wedge x_2\sim x_3$, entonces $f(x_1)=f(x_2)\wedge f(x_2)=f(x_3)\Rightarrow f(x_1)=f(x_3)$, por lo que $x_1\sim x_3$. Luego, \sim es transitiva.
- 2. Demostrar que cada una de sus clases de equivalencia es la imagen inversa de un $y \in Y$. Sea $x \in X$, definimos $[x] = \{x' \in X : x \sim x'\} = \{x' \in X : f(x) = f(x')\} = \{x' \in X : f(x') \in \{f(x)\}\} = f^{-1}(\{f(x)\})$. Sea $y = f(x) \in Y$, tenemos que $[x] = f^{-1}(y)$.
- 3. Establecer una biyección entre los conjuntos X/\sim e ${
 m Im}\ f.$

Sea $\varphi: X/\sim \to \operatorname{Im} f$ tal que $\varphi([x])=f(x)$. Comprobamos sus propiedades:

- $\forall [x_1], [x_2] \in X/\sim$ si $[x_1]=[x_2]$, entonces $x_1\sim x_2 \Leftrightarrow f(x_1)=f(x_2) \Leftrightarrow \varphi([x_1])=\varphi([x_2])$. Luego, φ está bien definida.
- $\forall [x_1], [x_2] \in X/\sim$ si $\varphi(x_1)=\varphi(x_2)$, entonces $f(x_1)=f(x_2) \Leftrightarrow x_1\sim x_2 \Leftrightarrow [x_1]=[x_2]$. Luego, φ es inyectiva.
- $\forall y \in \mathrm{Im}\ f, \exists x \in X : y = f(x) = \varphi([x])$, por lo que $\varphi([x]) \in \mathrm{Im}\ f$. Luego, $\mathrm{Im}\ f \subset \mathrm{Im}\ \varphi$. Como φ es inyectiva y sobreyectiva, φ es biyectiva.

Ejemplo 9. Sea $f:\{[0],[1],...,[n-1]\}\to\mathbb{Z}$ una función definida como f([m])=m. Determina si está bien definida.

Basta con ver que [0]=[n], pero f([0])=0 y f([n])=n, con $0\neq n$. Luego, f no está bien definida.

5.2. Conjuntos equipotentes

Definición. Dado un conjunto $X \neq \emptyset$. Decimos que X es **finito** si existe una biyección $f: X \to \{1,2,...,n\}$ con $n \in \mathbb{N}$. En caso contrario, decimos que X es **infinito**.

Definición. Dado un conjunto universal U y dos subconjuntos $X,Y\subset U$. Decimos que X e Y son **equipotentes** si existe una biyección $f:X\to Y$.

Definición. Dado un conjunto universal U y dos subconjunto $X,Y\subset U$. Definimos la **relación de equipotencia** entre X e Y como la relación de equivalencia en $\mathcal{P}(U)$ con $X\sim Y\Leftrightarrow \exists f:X\to Y$ biyectiva.

Demostración.

Demostramos que la relación de equipotencia es una relación de equivalencia comprobando sus propiedades:

- $\forall X \in \mathcal{P}(U)$ tenemos que $id: X \to X$ es biyectiva, por lo que $X \sim X$. Luego \sim es reflexiva.
- $-orall X,Y\in \mathcal{P}(U)$ si $X\sim Y$, entonces $\exists f:X o Y$ biyectiva $\Leftrightarrow\exists f^{-1}:Y o X$ también biyectiva, por lo que $Y\sim X$. Luego, \sim es simétrica.

-
$$orall X,Y,Z\in \mathcal{P}(U)$$
 si $X\sim Y\wedge Y\sim Z$, entonces $egin{cases} \exists f:X o Y\ \exists g:Y o Z \end{cases}$ biyectivas $\Rightarrow\exists (g\circ f):X o Z$

biyectiva, por lo que $X \sim Z$. Luego, \sim es transitiva.

Definición. Dado un conjunto universal U y un subconjunto $X \subset U$. Decimos que el **cardinal** de U es la clase de equivalencia de X en $\mathcal{P}(U)$ respecto a la relación de equipotencia.

Nota. Si dos conjuntos pertenecen a la misma clase de equivalencia, decimos que tienen el mismo cardinal.

Dado dos conjuntos X e Y, subconjuntos de un conjunto universal U podemos hacer las siguientes apreciaciones:

- 1. Si existe una función inyectiva $f:X\to Y$, entonces, el cardinal de X es menor o igual que el de Y, $|X|\le |Y|$.
- 2. Si existe una función inyectiva $f:X\to Y$ que no es sobreyectiva, entonces, el cardinal de X es menor que el de Y, |X|<|Y|.

Ejemplo 10. Dados los conjuntos \mathbb{N} y $\mathbb{N}\setminus\{1,2\}$, determinar si son equipotentes.

Basta con definir una función $f: \mathbb{N} \to \mathbb{N} \setminus \{1, 2\}$ tal que f(n) = n + 2 y comprobar sus propiedades:

- Si n=m, entonces f(n)=n+2 y f(m)=m+2, de forma que f(n)=f(m). Luego, f está bien definida.
- Si f(n)=f(m), entonces n+2=m+2, de forma que n=m. Luego, f es inyectiva.
- $\forall m \in \mathbb{N} \setminus \{1,2\}$ tenemos que m=f(n)=n+2, de forma que $n=m-2 \geq 1 \in \mathbb{N}$, por lo que $m \in \mathrm{Im}\ f$ y $\mathbb{N} \setminus \{1,2\} \subset \mathrm{Im}\ f$. Luego, f es sobreyectiva.

Como f es inyectiva y sobreyectiva, f es biyectiva y los conjuntos \mathbb{N} y $\mathbb{N}\setminus\{1,2\}$ son equipotentes.

Ejemplo 11. Dados los conjuntos \mathbb{N} y $2\mathbb{N}$, determinar si son equipotentes.

Basta con definir una función $f:\mathbb{N}\to 2\mathbb{N}$ tal que f(n)=n+2 y comprobar sus propiedades:

- Si n=m, entonces f(n)=2n y f(m)=2m, de forma que f(n)=f(m). Luego, f está bien definida.
- Si f(n)=f(m), entonces 2n=2m, de forma que n=m. Luego, f es inyectiva.
- $orall m\in 2\mathbb{N}$ tenemos que m=f(n)=2n, de forma que $n=rac{m}{2}\in\mathbb{N}$, por lo que $m\in \mathrm{Im}\ f$ y $2\mathbb{N}\subset \mathrm{Im}\ f$. Luego, f es sobreyectiva.

Como f es inyectiva y sobreyectiva, f es biyectiva y los conjuntos $\mathbb N$ y $2\mathbb N$ son equipotentes.

Ejemplo 12. Dados los conjuntos \mathbb{N} y \mathbb{Z} , determinar si son equipotentes

Basta con definir una función $f:\mathbb{N} o \mathbb{Z}$ tal que $f(n) = \begin{cases} rac{n}{2}, & n \in 2\mathbb{N} \\ -\left(rac{n-1}{2}
ight), & n \in 2\mathbb{N}-1 \end{cases}$ y comprobar sus propiedades.

- Si
$$n=m$$
, entonces $f(n)=\frac{n}{2}$ y $f(m)=\frac{m}{2}$; o $f(n)=-\left(\frac{n-1}{2}\right)$ y $f(m)=-\left(\frac{m-1}{2}\right)$, en

ambos casos, f(n)=f(m). Luego, f está bien definida.

- Si
$$f(n)=f(m)$$
, entonces $\dfrac{n}{2}=\dfrac{m}{2}$ o $-\left(\dfrac{n-1}{2}\right)=-\left(\dfrac{m-1}{2}\right)$, de forma que $n=m$. Si

tuviésemos que
$$rac{n}{2}=-\left(rac{m-1}{2}
ight)$$
, entonces $n=-m+1$. Como $n\in 2\mathbb{N}$, $n=-m+1\geq 1\Rightarrow$

 $m \leq 0$, y $m
ot\in 2\mathbb{N}-1$, por lo que ese caso no se puede dar. Luego f es inyectiva.

-
$$orall m\in\mathbb{Z}$$
 tenemos que $m=f(n)=rac{n}{2}$ o $m=f(n)=-\left(rac{n-1}{2}
ight)$, de forma que $n=2m\in2\mathbb{N}$ o

 $n=-2m-1\in 2\mathbb{N}-1$, ya que m<0, por lo que $m\in {
m Im}\ f$ y $\mathbb{Z}\subset {
m Im}\ f$. Luego, f es sobreyectiva.

Como fes inyectiva y sobreyectiva, f es biyectiva y los conjuntos \mathbb{N} y \mathbb{Z} son equipotentes.

5.2.1. Conjuntos numerables

Definición. Dado un conjunto $X \neq \emptyset$. Decimos que X es numerables si $X \sim \mathbb{N}$, es decir, si existe una biyección $f: X \to \mathbb{N}$.

Nota. Entonces $|X|=|\mathbb{N}|=\chi_0$.

Teorema. La cardinalidad de $\mathbb N$ es igual a la de $\mathbb N imes \mathbb N$, es decir, $|\mathbb N|=|\mathbb N imes \mathbb N|=\chi_0$.

Demostración.

Basta con definir la función $f:\mathbb{N} imes\mathbb{N} o\mathbb{N}$ tal que $f(n,m)=rac{(n+m-1)(n+m-2)}{2}+m$ y comprobar sus propiedades:

- Si
$$(n_1,m_1)=(n_2,m_2)$$
, entonces $f(n_1,m_1)=\dfrac{(n_1+m_1-1)(n_1+m_1-2)}{2}+m_1$ y $f(n_2,m_2)=\dfrac{(n_2+m_2-1)(n_2+m_2-2)}{2}+m_2$, de forma que $f(n_1,m_1)=f(n_2,m_2)$. Luego, f está bien definida.

- Si
$$f(n_1,m_1)=f(n_2,m_2)$$
, entonces $\dfrac{(n_1+m_1-1)(n_1+m_1-2)}{2}+m_1=\dfrac{(n_2+m_2-1)(n_2+m_2-2)}{2}+m_2$, por lo que $(n_1,m_2)=(n_2,m_2)$. Luego, f es inyectiva. - $\forall x\in\mathbb{N}, x=f(n,m)=\dfrac{(n+m-1)(n+m-2)}{2}+m$, por lo que $x\in\mathrm{Im}\ f$ y $\mathbb{N}\subset\mathrm{Im}\ f$.

Luego, f es sobreyectiva.

Como f es inyectiva y sobreyectiva, f es biyectiva y los conjuntos $\mathbb N$ y $\mathbb N \times \mathbb N$ son equipotentes. \square

Teorema. Sea X e Y dos conjuntos numerables. Entonces, los conjuntos $X \cup Y$ y $X \times Y$ también son numerables.

Teorema. Sea X un conjunto infinito. Entonces, X tiene un subconjunto numerable. Luego, $|X| \geq |\mathbb{N}| = \chi_0$.

Demostración.

Si X es infinito, entonces $X \neq \emptyset$ y, por tanto, $\exists x_1 \in X$ (Axioma de Elección). Como X es infinito, entonces $X \setminus \{x_1\} \neq \emptyset$ y, por tanto $\exists x_2 \in X$. Repitiendo este procedimiento, se demuestra por inducción que $\exists \{x_1, x_2, ...\}$ un conjunto infinito pero numerable contenido en X. \square

5.2.2. Teorema de Cantor-Schroeder-Bernstein

Lema. Sea X un conjunto y X_1 y X_2 dos subconjuntos tales que $X_2\subset X_1\subset X$. Si $X_2\sim X$, entonces $X_1\sim X$.

Demostración.

Como $X_2\sim X$, existe una función biyectiva $f:X\to X_2$. Si restringimos f a X_1 tenemos una función biyectiva $f_{|X_1}:X_1\to X_3$, con $X_3=f(X_1)\subset f(X)=X_2$.

Similarmente, restringimos f a X_2 , quedando $f_{|X_2}:X_2\to X_4$, con $X_4=f(X_2)\subset f(X_1)=X_3$. Así, nos queda que ... $\subset X_4\subset X_3\subset X_2\subset X_1\subset X$, de forma que $X\sim X_2\sim X_4\sim ...$ y $X_1\sim X_3\sim ...$.

A continuación, tenemos que $X\sim X_2$ y $X_1\sim X_3$, con $X_3\subset X_2\subset X_1\subset X$. Consideramos f restringida a $X\setminus X_1$, con lo que tenemos $f_{|X\setminus X_1}:X\setminus X_1\to X_2\setminus X_3$.

i) Como $f_{|X\setminus X_1}$ es una restricción de f y f es una función inyectiva, $f_{|X\setminus X_1}$ también lo es.

ii) $\forall y \in f(X \backslash X_1)$ tenemos que $\exists x \in X \backslash X_1$, es decir, $x \in X \land x \not\in X_1$, ta que $y \in f(x)$. De forma que $y \in f(X) = X_2 \land y \not\in f(X_1) = X_3$, por lo que $y \in X_2 \backslash X_3$ y $f(X \backslash X_1) \subset X_2 \backslash X_3$. Por otra parte, suponemos que $\forall y \in X_2 \backslash X_3, \exists x \in X: y = f_{|X \backslash X_1}(x)$. Si $x \in X_1$, entonces $y = f_{|X \backslash X_1}(x) \in f(X_1) = X_3$, lo que nos lleva a una contradicción, por lo que $X_2 \backslash X_3 \subset \operatorname{Im} f_{|X \backslash X_1}$. Luego, $f_{|X \backslash X_1}$ es sobreyectiva.

Como $f_{|X\setminus X_1}$ es inyectiva y sobreyectiva, $f_{|X\setminus X_1}$ es biyectiva, por lo que $X\setminus X_1\sim X_2\setminus X_3$.

Proseguimos considerando el conjunto $B=\bigcap_{n=1}^\infty X_n$ como la intersección de todos los conjuntos X_i ,

para así poder expresar los conjuntos X y X_1 como la unión de conjuntos disjuntos, es decir:

-
$$X = X_0 = B \cup (X_0 \backslash X_1) \cup (X_1 \backslash X_2) \cup$$

-
$$X_1 = B \cup (X_1 \backslash X_2) \cup (X_2 \backslash X_3) \cup$$

De esta forma, podemos establecer una función biyectiva f entre X_0 y X_1 , definida como f(x)=

$$egin{cases} x, & x\in B\cup (X_{2k-1}ackslash X_{2k}) \ f_{2k}(x), & x\in X_{2k}ackslash X_{2k+1}) \end{cases}$$
 , con $f_{2k}:X_{2k}ackslash X_{2k+1} o X_{2(k+1)}ackslash X_{2(k+1)+1}.$ Tenemos que

f(x)=x es biyectiva de forma trivial y $f(x)=f_{2k}(x)$ es biyectiva por lo demostrado anteriormente. Luego f es biyectiva y $X_1\sim X$. \square

Teorema de Cantor-Schroeder-Bernstein. Sean X e Y dos conjuntos infinitos, tales que existen dos funciones inyectivas $f:X\to Y$ y $g:Y\to X$. Entonces, existe una biyección $h:X\to Y$. Es decir, si $|X|\le |Y|$ y $|Y|\le |X|$, entonces |X|=|Y|.

Demostración.

Consideramos los subconjuntos $X_1\subset X$ e $Y_1\subset Y$, de forma que, aplicando la hipótesis del Teorema, tenemos que $X\sim Y_1$ y $Y\sim X_1$ suponemos que existe una función $g:Y\to X_1$.

A continuación, definimos el conjunto $X_2=g(Y_1)$, de forma que $X_2\subset g(Y)=X_1\subset X$, consiguiendo la primera hipótesis del Lema. Después, vemos que $X\sim Y_1\wedge Y_1\sim X_2$ y aplicando la propiedad tranistiva, llegamos a que $X\sim X_2$, consiguiendo la segunda hipótesis del Lema. Por tanto, concluimos que $X\sim X_1$.

Como tenemos que $X\sim X_1\wedge Y\sim X_1$, aplicamos nuevamente la propiedad transitiva y llegamos a que $X\sim Y$. \square

Ejemplo 13. Usamos el Teorema de C-S-B para demostrar que $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

- Consideramos la función identidad $id: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$, definida como id(n) = (n,n), trivialmente inyectiva. Luego, $|\mathbb{N}| \leq |\mathbb{N} \times \mathbb{N}|$.
- Definimos una función $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ tal que $f(n,m) = 2^n \cdot 3^m$, también trivialmente inyectiva. Luego, $|\mathbb{N} \times \mathbb{N}| \leq |\mathbb{N}|$.

Aplicando el Teorema de C-S-B tenemos que $|\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$.

Ejemplo 14. Usamos el Teorema de C-S-B para demostrar que $|\mathbb{Q}| = |\mathbb{N}|$.

- Consideramos la función identidad $id: \mathbb{N} \to \mathbb{Q}$, definida como id(n) = n, trivialmente inyectiva. Luego $|\mathbb{N}| \leq |\mathbb{Q}|$.

- Definimos la funciones $f:\mathbb{Z} imes\mathbb{N} o\mathbb{Q}$ tal que $f(n,m)=rac{n}{m}$, sobreyectiva trivialmente, y $g:\mathbb{Z} imes$ $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$, biyectiva en este caso. Luego, $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$. Aplicando el Teorema de C-S-B tenemos que $|\mathbb{Q}|=|\mathbb{N}\times\mathbb{N}|$ y, a partir del ejemplo 13, vemos que $|\mathbb{Q}| = |\mathbb{N}|.$

Proposición. Sean $a,b \in \mathbb{R}$ con a < b. Entonces, $\mathbb{R} \sim (a,b) \sim [a,b) \sim$ $[a,b]\sim [a,+\infty)\sim (-\infty,b]\sim$ Es decir, todos los intervalos de $\mathbb R$, excepto $[a,a]=\{a\}$, son equipotentes a $\mathbb R$.

Demostración.

Caso 1. Definimos una función lineal $f:[0,1] \to [a,b]$ como f(x)=a+(b-a)x, biyectiva trivialmente. Luego $[a,b] \sim [0,1]$, de forma que $[a,b] \sim [c,d]$ para todo $a,b,c,d \in \mathbb{R}$ con a < b y c <

Caso 2. Tomamos la función del Caso 1 restringida a (0,1), de forma que $f:(0,1)\to(a,b)$. Luego, $(a,b) \sim (0,1)$ y $(a,b) \sim (c,d)$ para todo $a,b,c,d \in \mathbb{R}$ con a < b y c < d.

Caso 3. Tomamos la función tangente $f:\left(-\frac{\pi}{2},\frac{\pi}{2}\right) \to \mathbb{R}$ como $f(x)=\operatorname{tg} x$, biyectiva por definición. Luego $\left(-\frac{\pi}{2},\frac{\pi}{2}\right) \sim \mathbb{R}$ y, en general $(a,b) \sim \mathbb{R}$ para todo $a,b \in \mathbb{R}$ con a < b. Caso 4. Definimos la función $f:[0,1) \to [a,\infty)$ como $f(x)=\frac{a}{1-x}$, biyectiva trivialmente. Luego

 $[0,1)\sim [a,\infty)$, para todo $a\in\mathbb{R}$.

Caso 5. Por una parte, tomamos la función identidad $id:[a,b] o (a-\varepsilon,b+\varepsilon)$ como f(x,y)=(x,y), inyectiva por definición. Luego $|[a,b]| \leq |(a-\varepsilon,b+\varepsilon)|$. Por otra parte, tomamos la función identidad $id:(a,b) \to [a,b]$ como f(x,y)=(x,y), inyectiva por definición. Luego $|(a,b)| \le |[a,b]|$. Aplicando el Teorema de C-S-B tenemos que $|(a,b)| = |[a,b]| = |\mathbb{R}|$.

5.3. Conjuntos no numerables

Teorema (**Diagonalización de Cantor**). El conjunto de los números reales, \mathbb{R} , no es numerable, es decir, $|\mathbb{R}| \geq \chi_0$.

Notación. $|\mathbb{R}| = \chi_1$.

Demostración.

Suponemos que (0,1) es numerable, es decir, $(0,1) \sim \mathbb{N}$, de forma que sus elementos se pueden ordenar como una sucesión infinita.

Suponemos los elementos de esta sucesión como aquellos de la forma $x_n=0, a_{n1}a_{n2}...$, con $a_{ij}\in$ $\{0,1,...,9\}.$

Ahora, construimos otro elemento $x=0,a_1a_2...$, de forma que $a_i
eq a_{ii}, \forall i$ y ponemos $a_n=$

$$egin{cases} 1,&a_{nn}
eq 1\ 0,&a_{nn}=1 \end{cases}$$
 . Así, x no pertenece a la sucesión que hemos creado, pero $x\in(0,1)$, llegando a una

contradicción, por lo que $(0,1) \not \sim \mathbb{N}$. Como sabemos que $\mathbb{R} \sim (0,1)$, concluimos que $|\mathbb{R}| \geq |\mathbb{N}|$. \square

Definición. Dados dos conjuntos A y B. Definimos el B^A como el conjunto de funciones que van de A a B, es decir, $\{f:A \rightarrow B\}$.

Ejemplo 15. $\{0,1\}^A=\{f:A\to\{0,1\}\}$ es el conjunto de funciones tales que $\forall a\in A$ se tiene que f(a)=0 o f(a)=1.

Lema. Sea A un conjunto. El cardinal del conjunto $\mathcal{P}(A)$ tiene el mismo cardinal que el conjunto de funciones $\{0,1\}^A$.

Demostración.

Tenemos que definir una función biyectiva entre los conjuntos $\mathcal{P}(A)$ y $\{0,1\}^A$. Para cada elemento

 $B\in\mathcal{P}(A)$ definimos la función característica χ_B como $\chi_B(x)=egin{cases} 1,&x\in B\ 0,&x
oting B \end{cases}$. Es evidente que

 $\chi_B\in\{0,1\}^A$, de forma que podemos considerar la función $\varphi:\mathcal{P}(A) o\{0,1\}^A$ definida como $\varphi(B)=\chi_B$.

- Si $\varphi(B)=\varphi(C)$ con $B,C\in\mathcal{P}(A)$, entonces $\chi_B=\chi_C$, de forma que $\forall x\in A$, si $\chi_B(x)=1$, entonces $\chi_C(x)=1$, es decir, si $x\in B$, entonces $x\in C$, por lo que B=C. Luego, φ es inyectiva.

- $\forall f \in \{0,1\}^A$ definimos un conjunto $B = \{x \in A : f(x) = 1\}$, de forma que $f = \chi_B = \varphi(B)$. Luego, φ es sobreyectiva.

Como φ es inyectiva y sobreyectiva, φ es biyectiva y $\mathcal{P}(A) \sim \{0,1\}^A$. \square

Teorema de Cantor. Sea U un conjunto universal y A un subconjunto de U. Entonces, $|A|<|\mathcal{P}(A)|$.

Demostración.

Tomamos la función identidad $id:A o \mathcal{P}(A)$ definida como $id(a)=\{a\}$, inyectiva de forma trivial. Luego, $|A|\leq |\mathcal{P}(A)|$.

Dada una función $f:A o\{0,1\}^A$, para cada $a\in A$ tenemos que $F_a=f(a)\in\{0,1\}^A$, es decir,

$$F_a:A o\{0,1\}^A$$
 con $F_a(x)\in\{0,1\}.$ Si definimos $F(a)=egin{cases} 0,&F_a(a)=1\ 1,&F_a(a)=1 \end{cases}.$ Por lo tanto, $F
eq F_a$

, de forma que $F
eq \operatorname{Im} f = f(A)$. Luego, f no es sobreyectiva y, por tanto, tampoco biyectiva. De forma que $|A|
eq |\mathcal{P}(A)|$.

Luego $|A|<|\stackrel{\scriptstyle f}{\cal P}(A)|$. \Box

Teorema. El cardinal del conjunto partes de \mathbb{N} , $\mathcal{P}(\mathbb{N})$, tiene el mismo cardinal que el conjunto de los números reales, \mathbb{R} .

Demostración.

Definimos una función $f:\{0,1\}^{\mathbb{N}} \to (0,1)$, de forma que $\forall n \in \mathbb{N}$ tenemos que $f(F_n) \in (0,1)$. Es decir, $F_i = 0, F_{i1}F_{i2}...$ Si $F_i \neq F_j$, entonces $\exists N \in \mathbb{N}: F_{iN} \neq F_{jN}$, de forma que $f(F_i) \neq f(F_j)$. Luego, f es inyectiva y $|\{0,1\}^{\mathbb{N}}| \leq |(0,1)|$, equivalentemente, $|\mathcal{P}(\mathbb{N})| \leq |\mathbb{R}|$.

Después, definimos otra función $g:\mathbb{R}\to\mathcal{P}(\mathbb{Q})$ tal que $f(x)=(-\infty,x)\cap\mathbb{Q}$. Si $x_1\neq x_2$, entonces $(-\infty,x_1)\cap\mathbb{Q}\neq(-\infty,x_2)\cap\mathbb{Q}$ trivialmente. Luego, g es inyectiva y $|\mathbb{R}|\leq |\mathcal{P}(\mathbb{Q})|$, equivalentemente, $|\mathbb{R}|<|\mathcal{P}(\mathbb{N})|$.

Por el Teorema de C-S-B, $|\mathcal{P}(\mathbb{N})|=|\mathbb{R}|$, $\mathcal{P}(\mathbb{N})\sim\mathbb{R}$. \square

Corolario. Sean A y B dos conjuntos cualesquiera tales que $A\sim B$. Entonces $\mathcal{P}(A)\sim\mathcal{P}(B)$. Es decir, si existe una función biyectiva $f:A\to B$, entonces existe una función biyectiva $g:\mathcal{P}(A)\to\mathcal{P}(B)$, tal que $\forall c\in\mathcal{P}(A)$ se tiene que g(c)=f(c).

Demostración.

- Si g(C)=g(D), con $C,D\in \mathcal{P}(A)$, entonces f(C)=f(D) y C=D. Luego, g es inyectiva.
- $\forall E \in \mathcal{P}(B)$ si $C=f^{-1}(E) \subset A$, entonces $C \in \mathcal{P}(A)$ y $g(C)=f(f^{-1}(E))=E$. Luego, es g es sobreyectiva.

Como g es inyectiva y sobreyectiva, es g es biyectiva. \square

Corolario.
$$\chi_0 < 2^{\chi_0} = \chi_1$$
 .

Hipótesis del continuo. No existe ningún conjunto A con cardinalidad mayor que los naturales y menor que los reales, es decir, $\chi_0 < |A| < \chi_1$.