

Grundzüge der Informatik 1

Vorlesung 22 - flipped classroom

Aufgabe 1

Aufgabe 2

- Sei G ein gerichteter, gewichteter Graph ohne negative Kreise. Entwickeln Sie einen Algorithmus mit Laufzeit O(|V|²+|V| |E|), der für jeden Knoten v aus V die Entfernung zu dem Knoten u aus V bestimmt, der die geringste Entfernung zu v hat (der nächste Nachbar von v)
- Entwickeln Sie dazu zunächst eine Rekursion für die Entfernung zum Knoten mit geringster Entfernung, der über einen Weg mit maximal i Kanten erreicht werden kann

Aufgabe 2

- Sei G ein gerichteter, gewichteter Graph ohne negative Kreise. Entwickeln Sie einen Algorithmus mit Laufzeit O(|V|²+|V| |E|), der für jeden Knoten v aus V die Entfernung zu dem Knoten u aus V bestimmt, der die geringste Entfernung zu v hat (der nächste Nachbar von v)
- Entwickeln Sie dazu zunächst eine Rekursion für die Entfernung zum Knoten mit geringster Entfernung, der über einen Weg mit maximal i Kanten erreicht werden kann

Rekursion

- i>0: $Opt(i,v) = min_{(v,u) \in E} \{Opt(i-1,v), w(v,u) + Opt(i-1,u)\}$
- i=0: Opt(0,v)= 0

Aufgabe 3

- Sei G ein gerichteter, gewichteter Graph ohne negative Kreise. Entwickeln Sie einen Algorithmus mit Laufzeit O(|V|²+|V| |E|), der für jeden Knoten v aus V die Entfernung zu dem Knoten u aus V bestimmt, der die geringste Entfernung zu v hat (der nächste Nachbar von v)
- Gehen Sie dann ähnlich wie bei den Optimierungen des Bellman-Ford Algorithmus vor, um einen Algorithmus mit der gewünschten Laufzeit zu erhalten

NächsterNachbar(G)

- 1. d = new array [1..|V|]
- 2. for each $v \in V$ do d[v] = 0
- 3. **for** i=1 **to** |V|-1 **do**
- 4. for each $v \in V$ do
- 5. for each $(v,u) \in Adj[v]$ do
- 6. **if** w(v,u)+d[u]< d[v] **then** d[v]=w(v,u)+d[u]
- 7. **return** d

Aufgabe 4

Führen Sie den Floyd-Warshall-Algorithmus auf unten stehendem Graph aus.
Transformieren Sie den Graph dazu zunächst in die Adjazenzmatrixdarstellung.

Aufgabe 4

Führen Sie den Floyd-Warshall-Algorithmus auf unten stehendem Graph aus.
Transformieren Sie den Graph dazu zunächst in die Adjazenzmatrixdarstellung.

 $D_{(0)}$

0	4	4	2
-3	0	-3	∞
∞	∞	0	∞
-1	5	-2	0

Aufgabe 4

Führen Sie den Floyd-Warshall-Algorithmus auf unten stehendem Graph aus.
Transformieren Sie den Graph dazu zunächst in die Adjazenzmatrixdarstellung.

 $D^{(1)}$

0	4	4	2
-3	0	-3	-1
∞	∞	0	∞
-1	3	-2	0

Aufgabe 4

Führen Sie den Floyd-Warshall-Algorithmus auf unten stehendem Graph aus.
Transformieren Sie den Graph dazu zunächst in die Adjazenzmatrixdarstellung.

 $D^{(2)}$

0	4	1	2
-3	0	-3	-1
∞	∞	0	∞
-1	3	-2	0

Aufgabe 4

Führen Sie den Floyd-Warshall-Algorithmus auf unten stehendem Graph aus.
Transformieren Sie den Graph dazu zunächst in die Adjazenzmatrixdarstellung.

D(3)

0	4	1	2
-3	0	-3	-1
∞	∞	0	∞
-1	3	-2	0

Aufgabe 4

Führen Sie den Floyd-Warshall-Algorithmus auf unten stehendem Graph aus.
Transformieren Sie den Graph dazu zunächst in die Adjazenzmatrixdarstellung.

 $D^{(4)}$

0	4	0	2
-3	0	-3	-1
∞	∞	0	∞
-1	3	-2	0

