```
import warnings
import pandas as pd
import numpy as np
from sklearn.model selection import train test split
from sklearn.metrics import roc curve, auc, classification report
from sklearn.metrics import confusion matrix
from sklearn.svm import SVC
warnings.filterwarnings("ignore", category=FutureWarning)
np.seterr(divide='ignore', invalid='ignore')
import eli5
from eli5.sklearn import PermutationImportance
import tensorflow.python.util.deprecation as deprecation
deprecation. PRINT DEPRECATION WARNINGS = False
import matplotlib.pyplot as plt
from pdpbox import pdp
warnings.filterwarnings("ignore")
dt = pd.read csv("heart.csv")
desired width = 520
pd.set_option('display.width', desired_width)
np.set printoptions(linewidth=desired width)
pd.set option('display.max columns',25)
dt.columns = ['age', 'sex', 'chest_pain_type', 'resting_blood_pressure', 'cholesterc']
dt['sex'][dt['sex'] == 0] = 'female'
dt['sex'][dt['sex'] == 1] = 'male'
#print(len(dt.columns))
dt['chest pain type'][dt['chest pain type'] == 0] = 'typical angina'
dt['chest pain type'][dt['chest pain type'] == 1] = 'atypical angina'
dt['chest pain type'][dt['chest pain type'] == 2] = 'non-anginal pain'
dt['chest pain type'][dt['chest pain type'] == 3] = 'asymptomatic'
dt['fasting blood sugar'][dt['fasting blood sugar'] == 0] = 'lower than 120mg/ml'
dt['fasting blood sugar'][dt['fasting blood sugar'] == 1] = 'greater than 120mg/ml'
dt['rest_ecg'][dt['rest_ecg'] == 0] = 'normal'
dt['rest_ecg'][dt['rest_ecg'] == 1] = 'ST-T wave abnormality'
dt['rest_ecg'][dt['rest_ecg'] == 2] = 'left ventricular hypertrophy'
dt['exercise induced angina'][dt['exercise induced angina'] == 0] = 'no'
dt['exercise induced angina'][dt['exercise induced angina'] == 1] = 'yes'
```

```
dt['st_slope'][dt['st_slope'] == 0] = 'upsloping'
dt['st_slope'][dt['st_slope'] == 1] = 'flat'
dt['st_slope'][dt['st_slope'] == 2] = 'downsloping'

dt['thalassemia'][dt['thalassemia'] == 1] = 'normal'
dt['thalassemia'][dt['thalassemia'] == 2] = 'fixed defect'
dt['thalassemia'][dt['thalassemia'] == 3] = 'reversable defect'

dt['sex'] = dt['sex'].astype('object')
dt['chest_pain_type'] = dt['chest_pain_type'].astype('object')
dt['fasting_blood_sugar'] = dt['fasting_blood_sugar'].astype('object')
dt['rest_ecg'] = dt['rest_ecg'].astype('object')
dt['exercise_induced_angina'] = dt['exercise_induced_angina'].astype('object')
dt['st_slope'] = dt['st_slope'].astype('object')
dt['thalassemia'] = dt['thalassemia'].astype('object')
```

```
dt = pd.get_dummies(dt,prefix=['st_slope'],columns=['st_slope'])
dt = pd.get_dummies(dt, drop_first=True)
```

```
X_train, X_test, y_train, y_test = train_test_split(dt.drop('target', 1), dt['target
model = SVC(kernel='linear',gamma='scale',probability=True)
model.fit(X_train, y_train)
```

```
acc = model.score(X_test,y_test)*100
print("Accuracy = ",acc)

y_predict = model.predict(X_test)
y_pred_quant = model.predict_proba(X_test)[:, 1]
y_pred_bin = model.predict(X_test)

confusion_matrix = confusion_matrix(y_test, y_pred_bin)
total=sum(sum(confusion_matrix))

sensitivity = confusion_matrix[0,0]/(confusion_matrix[0,0]+confusion_matrix[1,0])
print('Sensitivity : ', sensitivity )

specificity = confusion_matrix[1,1]/(confusion_matrix[1,1]+confusion_matrix[0,1])
```

```
print('Specificity : ', specificity)
```

Accuracy = 87.95180722891565 Sensitivity : 0.8717948717948718 Specificity : 0.88636363636364

```
print("Higher the AUC, better the model is at predicting,","Score above 0.90 is cons
fpr, tpr, thresholds = roc_curve(y_test, y_pred_quant)
print(auc(fpr, tpr))
```

☐→ Higher the AUC, better the model is at predicting, Score above 0.90 is consider 0.9172494172494172

```
base_features = dt.columns.values.tolist()
base_features.remove('target')

feat_name = 'num_major_vessels'
pdp_dist = pdp.pdp_isolate(model=model, dataset=X_test, model_features=base_features

pdp.pdp_plot(pdp_dist, feat_name)
plt.show()
```

C→

```
findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans. findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans. findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans. findfont: Font family ['Arial'] not found. Falling back to DejaVu Sans.
```

PDP for feature "num major vessels"

Number of unique grid points: 5


```
feat_name = 'age'
pdp_dist = pdp.pdp_isolate(model=model, dataset=X_test, model_features=base_features

pdp.pdp_plot(pdp_dist, feat_name)
plt.show()
```

 \Box

PDP for feature "age"

Number of unique grid points: 10


```
feat_name = 'st_depression'
pdp_dist = pdp.pdp_isolate(model=model, dataset=X_test, model_features=base_features
```

```
pdp.pdp_plot(pdp_dist, feat_name)
plt.show()
```

С→

PDP for feature "st_depression"

Number of unique grid points: 8


```
perm = PermutationImportance(model, random_state=1).fit(X_test, y_test)
diag = eli5.explain_weights(perm, feature_names = X_test.columns.tolist())
#print(eli5.formatters.format_as_dataframe(diag))
diag
```

С→

Weight	Feature
0.0482 ± 0.0806	num_major_vessels
0.0386 ± 0.0415	chest_pain_type_typical angina
0.0265 ± 0.0180	thalassemia_fixed defect
0.0241 ± 0.0152	resting_blood_pressure
0.0193 ± 0.0447	st_depression
0.0169 ± 0.0246	thalassemia_reversable defect
0.0169 ± 0.0246	max_heart_rate_achieved
0.0145 ± 0.0180	st_slope_flat
0.0145 ± 0.0180	chest_pain_type_atypical angina
0.0120 ± 0.0000	thalassemia_normal
0.0072 ± 0.0193	age
0.0048 ± 0.0118	st_slope_upsloping
0.0048 ± 0.0118	exercise_induced_angina_yes
0.0048 ± 0.0193	st_slope_downsloping
0 ± 0.0000	chest_pain_type_non-anginal pain
0 ± 0.0000	fasting_blood_sugar_lower than 120mg/ml
0 ± 0.0000	rest_ecg_left ventricular hypertrophy
0 ± 0.0000	rest_ecg_normal
0 ± 0.0000	cholesterol
-0.0000 ± 0.0264	sex male

cr = classification_report(y_test,y_predict)
print(cr)

₽		precision	recall	f1-score	support
	0	0.87	0.87	0.87	39
	1	0.89	0.89	0.89	44
	accuracy			0.88	83
	macro avg	0.88	0.88	0.88	83
	weighted avg	0.88	0.88	0.88	83