# CS 4700: Foundations of Artificial Intelligence

Perceptrons and Logistic Regression



Instructor: Kevin Ellis

These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.

All CS188 materials are available at http://ai.berkeley.edu.

#### **Announcements**

Homework 5 out today:

Due 4/25

First problem is based on today's lecture

- Most common approaches:
  - Supervised learning
  - Unsupervised learning
  - Reinforcement learning

- Most common approaches:
  - Supervised learning (CS 4780)
  - Unsupervised learning (CS 4786)
  - Reinforcement learning (CS4789)

- Most common approaches:
  - Supervised learning
  - Unsupervised learning
  - Reinforcement learning

- Most common approaches:
  - Supervised learning
  - Unsupervised learning
  - Reinforcement learning ✓ Chapter 22

- Most common approaches:
  - Supervised learning
  - Unsupervised learning
  - Reinforcement learning ✓ Chapter 22 (and Chapter 17)

- Most common approaches:
  - Supervised learning
  - Unsupervised learning
  - Reinforcement learning ✓ Chapter 22 (and Chapter 17)

- Most common approaches:
  - Supervised learning ("Learning from examples")
  - Unsupervised learning
  - Reinforcement learning ✓ Chapter 22 (and Chapter 17)

- Most common approaches:
  - Supervised learning Chapter 19
  - Unsupervised learning
  - Reinforcement learning ✓ Chapter 22 (and Chapter 17)

## **Linear Classifiers**



#### Feature Vectors

f(x)Hello, **SPAM** Do you want free printr or cartriges? Why pay more FROM\_FRIEND : 0 when you can get them ABSOLUTELY FREE! Just PIXEL-7,12 : 1 PIXEL-7,13 : 0 ... NUM\_LOOPS : 1

# Some (Simplified) Biology

Very loose inspiration: human neurons



#### **Linear Classifiers**

- Inputs are feature values
- Each feature has a weight
- Sum is the activation



$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x)$$

- If the activation is:
  - Positive, output +1
  - Negative, output -1



#### Linear Classifiers: Bias term

$$activation_w(x) = \sum_i w_i \cdot f_i(x) = w \cdot f(x) + bias$$

Activation: Linear function

w: Slope of linear function

bias: intercept of linear function

Trick: Add an extra feature which is always 1. Weight on that feature = bias. Algorithms ignore the concept of "bias" and only have to think about weight w

#### Weights

- Binary case: compare features to a weight vector
- Learning: figure out the weight vector from examples

```
# free : 4
YOUR_NAME :-1
MISSPELLED : 1
FROM_FRIEND :-3
...

w
f(x_1)
# free : 2
YOUR_NAME : 0
MISSPELLED : 2
FROM_FRIEND : 0
...
```

Dot product  $w \cdot f$  positive means the positive class

$$(x_2)$$
 # free : 0 YOUR\_NAME : 1 MISSPELLED : 1 FROM\_FRIEND : 1

## **Decision Rules**



### **Binary Decision Rule**

- In the space of feature vectors
  - Examples are points
  - Any weight vector is a hyperplane
  - One side corresponds to Y=+1
  - Other corresponds to Y=-1

w

BIAS : -3
free : 4
money : 2





# Weight Updates



## Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
  - Classify with current weights

• If correct (i.e., y=y\*), no change!

• If wrong: adjust the weight vector





#### Learning: Binary Perceptron

- Start with weights = 0
- For each training instance:
  - Classify with current weights

$$y = \begin{cases} +1 & \text{if } w \cdot f(x) \ge 0 \\ -1 & \text{if } w \cdot f(x) < 0 \end{cases}$$

- If correct (i.e., y=y\*), no change!
- If wrong: adjust the weight vector by adding or subtracting the feature vector. Subtract if y\* is -1.

$$w = w + y^* \cdot f$$



# Examples: Perceptron

#### Separable Case



#### Multiclass Decision Rule

- If we have multiple classes:
  - A weight vector for each class:

$$w_y$$

Score (activation) of a class y:

$$w_y \cdot f(x)$$

Prediction highest score wins

$$y = \underset{y}{\operatorname{arg\,max}} \ w_y \cdot f(x)$$







## Learning: Multiclass Perceptron

- Start with all weights = 0
- Pick up training examples one by one
- Predict with current weights

$$y = \arg \max_{y} w_{y} \cdot f(x)$$

- If correct, no change!
- If wrong: lower score of wrong answer, raise score of right answer

$$w_y = w_y - f(x)$$
$$w_{y^*} = w_{y^*} + f(x)$$



#### Example: Multiclass Perceptron

"win the vote"

"win the election"

"win the game"

#### $w_{SPORTS}$

BIAS : 1
win : 0
game : 0
vote : 0
the : 0

#### $w_{POLITICS}$

BIAS : 0
win : 0
game : 0
vote : 0
the : 0

#### $w_{TECH}$

BIAS : 0
win : 0
game : 0
vote : 0
the : 0

## **Properties of Perceptrons**

- Separability: true if some parameters get the training set perfectly correct
- Convergence: if the training is separable, perceptron will eventually converge (binary case)
- Mistake Bound: the maximum number of mistakes (binary case) related to the margin or degree of separability

$$\mathsf{mistakes} < \frac{k}{\delta^2}$$

#### Separable



Non-Separable



### Problems with the Perceptron

- Noise: if the data isn't separable, weights might thrash
  - Averaging weight vectors over time can help (averaged perceptron)





- Mediocre generalization:
  - finds a "barely" separating solution









- Overtraining: test / held-out accuracy usually rises, then falls
  - Overtraining is a kind of overfitting

# Improving the Perceptron



## Non-Separable Case: Deterministic Decision



### Non-Separable Case: Probabilistic Decision



### How to get probabilistic decisions?

- Perceptron scoring:  $z = w \cdot f(x)$
- If  $z = w \cdot f(x)$  very positive  $\rightarrow$  want probability going to 1
- If  $z = w \cdot f(x)$  very negative  $\rightarrow$  want probability going to 0

Sigmoid function

$$\phi(z) = \frac{1}{1 + e^{-z}}$$



How much features align with weights

#### Best w?

• Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

$$P(y^{(i)} = +1|x^{(i)}; w) = \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

$$P(y^{(i)} = -1|x^{(i)}; w) = 1 - \frac{1}{1 + e^{-w \cdot f(x^{(i)})}}$$

#### = Logistic Regression

#### Where does this come from?

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$



These misclassified points decrease what we are maximizing

Yikes, even worse!





A bit better



Perfectly classifies, but can it be improved?



SMOOTH function: Smoothly prefers pushing examples out farther



Getting better...



SMOOTH function: Smoothly prefers pushing examples out farther



Perfect!



SMOOTH function: Smoothly prefers pushing examples out farther

#### Separable Case: Deterministic Decision – Many Options





#### Separable Case: Probabilistic Decision – Clear Preference





#### Multiclass Logistic Regression

#### Recall Perceptron:

- ullet A weight vector for each class:  $w_y$
- Score (activation) of a class y:  $w_y \cdot f(x)$
- Prediction highest score wins  $y = \arg\max_{y} w_y \cdot f(x)$



How to make the scores into probabilities?

$$z_1,z_2,z_3 \to \underbrace{\frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}},\frac{e^{z_2}}{e^{z_1}+e^{z_2}+e^{z_3}},\frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}}_{\text{original activations}},\underbrace{\frac{e^{z_1}}{e^{z_1}+e^{z_2}+e^{z_3}},\frac{e^{z_3}}{e^{z_1}+e^{z_2}+e^{z_3}}}_{\text{softmax activations}}$$

#### Best w?

• Maximum likelihood estimation:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$

with: 
$$P(y^{(i)}|x^{(i)};w) = \frac{e^{w_{y^{(i)}} \cdot f(x^{(i)})}}{\sum_{y} e^{w_{y} \cdot f(x^{(i)})}}$$

= Multi-Class Logistic Regression

#### **Next Lecture**

#### Optimization

• i.e., how do we solve:

$$\max_{w} \ ll(w) = \max_{w} \ \sum_{i} \log P(y^{(i)}|x^{(i)};w)$$



<u>Source</u>



#### Reminder

Homework 5 out today:

Due 4/25

First problem is based on today's lecture