Molecular
Methods in
Ecology and
Evolution
2025



Understand the evolutionary and ecological drivers of population divergence and speciation

### Geographic modes of speciation



**Allopatric:** (allo = other) New species formed from geographically isolated populations



**Peripatric:** (peri = near) New species formed from a small isolated population at the edge of a larger population



**Sympatric:** (sym = same) New species formed from within the range of the ancestral population



**Parapatric:** (para = beside) New species formed from a continuously distributed population

Understand the evolutionary and ecological drivers of population divergence and speciation



Geographical / Allopatric

divergence

Isthmus of Panama

Ecological / sympatric divergence



Scincid lizards

Understand the evolutionary and ecological drivers of population divergence and speciation

A special case of parapatric speciation: Greenish warbler (Phylloscopus trochilloides)





Fig. 4 The breeding range of greenish warblers (*Phylloscopus trochiloides*) in Asia. Subspecies designations according to Ticehurst (1938) are shown with different colors: *viridanus* in blue, *ludlowi* in green, *trochiloides* in yellow, *obscuratus* in orange, *plumbeitarsus* in red, and *nitidus* (outside of the main ring) in purple. Photos show the difference in wing bars between *viridanus* (upper left, with a single wing bar), and *plumbeitarsus* (upper right, with two wing bars).

Understand the evolutionary and ecological drivers of population divergence and speciation

Patterns of genomic and phenotypic variation show strong differentiation between the mayor two forms, but gradual / stepwise variation through the chain of populations to the south.

### Migratory routes





Understand the evolutionary and ecological drivers of population divergence and speciation





The speciation process is dynamic, bidirectional and continuous.



# The goal:

To give you an insight to how biologists use specific techniques and tools to tackle ecological and evolutionary questions

To gain experience on some of these approaches, and the application of the scientific method to real-world systems.



- Marker gene amplification and sequencing
- Restriction site Associated DNA sequencing (RADseq)



- Phylogenetic reconstruction
- Population genetics
- Population structure analyses
- Genomic-scale analyses of natural selection
- ....

## Project 1.

A mysterious frog



## Project 2.

Hylid frogs







## Project 3.

Cichlids



Brawand et al., 2014

## Project 4.

European eel







## Schedule

| Time          | Monday Sept 29  | Tuesday Sept 30  | Wednesday Oct 1st | Thursday Oct 2nd            | Friday Oct 3rd |
|---------------|-----------------|------------------|-------------------|-----------------------------|----------------|
| 08:00 - 08:45 | DNA extraction  | PCR              | Sequencing prep   | Lecture                     |                |
| 09:00 - 09:45 |                 | Gel preparation  |                   | IS                          |                |
| 10:15 - 11:00 | Lecture         | Lecture          | Lecture           | Lecture                     |                |
| 11:15 - 12:00 | IS              | IS               | IS                | NS                          |                |
| 12:15 - 13:00 |                 |                  |                   | DEE Seminar                 |                |
| 13:15 - 14:00 | TP Introduction | Electrophoresis  |                   | Lecture                     |                |
| 14:15 - 15:00 | DNA extraction  |                  |                   | LF                          | Lecture        |
| 15:15 - 16:00 | Quantification  | Lecture          | ]                 | Introduction & Installation | NS             |
| 16:15 - 17:00 | Dilution        | IS               |                   |                             |                |
| 17:15 - 18:00 |                 | PCR purification |                   |                             |                |

Project 1.

| Time          | Monday Oct 6th                                     | Tuesday Oct 7th                           | Wednesday Oct 8th   | Thursday Oct 9th          | Friday Oct 10th |
|---------------|----------------------------------------------------|-------------------------------------------|---------------------|---------------------------|-----------------|
| 08:00 - 08:45 | Project 1                                          | last comments project 2 & start Project 3 | last comments       | Project 4.                |                 |
| 09:00 - 09:45 | Phylogeny- Sanger                                  |                                           | project 3.          | &                         |                 |
| 10:15 - 11:00 | Lecture                                            |                                           | & start Project 4   | Final questions           |                 |
| 11:15 - 12:00 | LF                                                 |                                           |                     | i mat questions           |                 |
| 12:15 - 13:00 |                                                    |                                           |                     | DEE Seminar               |                 |
| 13:15 - 14:00 |                                                    | Project 3.                                |                     | DEL Serrimar              |                 |
| 14:15 - 15:00 | Project 2<br>Cryptic speciation in<br>hylid frogs. | Genomic analyses of                       | curious case of the | Personal Research<br>Work |                 |
| 15:15 - 16:00 |                                                    |                                           |                     |                           |                 |
| 16:15 - 17:00 |                                                    |                                           |                     |                           |                 |
| 17:15 - 18:00 |                                                    |                                           | Luropean Let        |                           |                 |

| Wet-Lab<br>Experiment | POL 203 and 205 |  |  |
|-----------------------|-----------------|--|--|
| Lecture               | POL334          |  |  |
| Computer<br>Analyses  | POL 204.2       |  |  |

Project 2. Project 3. Project 4.

# The report

#### General introduction

### Wet lab / Project 1

- methods
- results & Discuss

### Computer lab:

### Project 1 & 2.

- Intro
- methods
- results
- discussion
- conclusion
- references

### Project 3.

- Intro
- methods
- results
- discussion
- conclusion
- references

#### Project 4.

- Intro
- methods
- results
- discussion
- conclusion
- references

#### **General Discussion**

max 5 pages per project (including text and figures)

max **25 pages** in total (including text, figures and references)

**DEADLINE: 27 / 10 / 25** 

# Report grading

Molecular Methods in Ecology and Evolution - 2025

Using molecular approaches to understand the drivers of population divergence and speciation.



Prof. Ian R. Sanders, Dr. Luca Fumagalli, Prof. Nicolas Salamin

Teaching assistants: Dr. Soon-Jae Lee, Dr. Angélica Pulido, Dr. Anna Hewett, Dr. Jaime Gonzalez, Dr Ricardo Arraiano, Marion Nyamari, Kenneth Kim.



See "Advice on preparing your report" section in your manual, these guidelines are there to help you write your report, but they will also be the basis of the marking scheme used to grade your reports.

### https://github.com/Angelica-Pulido/MMEE-2025/



### https://github.com/Angelica-Pulido/MMEE-2025/



