Real Analysis

Samuel Lindskog

May 23, 2024

Naturals and Integers

Axiom 1.1 (Principle of mathematical induction). Let P(n) be an property pertaining to a natural number n. Suppose that P(0) is true, and suppose that we have the implication that whenever P(n) is true, P(n+1) is true. Then P(n) is true for every natural number n.

Definition 1.1 (Peano Axioms). The Peano axioms include the principle of induction and definition of equality, I just included the ones that define the natural numbers under this definition.

- 1. 0 is a natural number.
- 2. If n is a natural number, than S(n) (e.g. n++) is a natural number.
- 3. For all n, if n is a natural number than $S(n) \neq 0$.
- 4. For all n, if S(n) = S(m), than n = m.

Definition 1.2 (Addition).

- 1. 0 + m = m
- 2. (n++)+m=(n+m)++

Lemma 1.1 (Cancellation). If a + b = a + c, then b = c.

Proof: Suppose 0 + b = 0 + c. Then b = c. By inductive hypothesis, $a + b = a + c \Rightarrow b = c$. It follows that:

$$(a++)+b = (a+b)++$$

 $(a+b)++=(a+c)++$

Lemma 1.2 (Commutivity of Addition). For all natural numbers a, b, we have a + b = b + a.

Proof: First, we prove $n + m + + = (n + m) + + \cdot \cdot 0 + m + + = (0 + m) + +$ and by inductive hypothesis $n + m + + = (n + m) + + \cdot$. It follows:

$$(n++)+m++=(n+m++)++$$

= $((n+m)++)++$
= $((n++)+m)++$

Next, we prove 0 + m = m + 0. 0 + 0 = 0 + 0, and by inductive hypothesis n + 0 = 0 + n. It follows:

$$(n++)+0 = (n+0)++$$

= $(0+n)++$
= $(0+n++)$

Lastly, we prove commutativity of addition. 0 + m = m + 0 and by inductive hypothesis n + m = m + n. It follows:

$$(n++) + m = (n+m) + +$$

= $(m+n) + +$
= $(m+n++)$

Definition 1.3 (Ordering of Natural Numbers). Let *n* and *m* be natural numbers. We say n is greater than or equal to m, and write $n \ge m$ or $m \ge n$ iff we have n = m + a for some natural number a. We say that n is strictly greater than m and write n > m or m < n iff $n \ge m$ and $n \neq m$.

Definition 1.4 (Strong Principle of Induction). Let m_0 be a natural number, and let P(m) be a property pertaining to an arbitrary natural number m. Suppose that for each $m \geq m_0$, we have the following implication: If P(m') is true for all natural numbers $m_0 \le m' < m$, then P(m) is also true. Then we can conclude that P(m) is true for all natural numbers $m \geq m_0$.

¹ $P(m_0)$ is true because for m_0 the hypothesis is vacuous.

Definition 1.5 (Multiplication).

1.
$$0 \times m = 0$$

2.
$$(n++) \times m = (n \times m) + m$$

Lemma 1.3 (Multiplication is Commutative). For any natural numbers a, b we have $a \times b = b \times a$.

Proof: $0 \times 0 = 0 \times 0$ and by inductive hypothesis $m \times 0 = 0 \times m$. It follows that:

$$(m++) \times 0 = (m \times 0) + 0$$
$$= (0 \times m) + 0$$
$$= 0 \times m$$

So $m \times 0 = 0 \times m$. Using this fact as a base case, by inductive hypothesis $n \times m = m \times n$. It follows that:

$$(n++) \times m = (n \times m) + m = (m \times n) + m$$

We see that $m \times n + + = (n + +) + (n + +) + ... + (n + +)$, with n + + being added to itself m times as a consequence of the definition of multiplication. It follows from the commutivity of addition that:

$$(n++) + (n++) + \ldots + (n++) = n+n+\ldots + n + (++) + (++) + \ldots + (++)$$

$$= (m \times n) + (m \times 1)$$

$$= (m \times n) + m$$

$$= (n \times m) + m$$

$$= (n++) \times m$$

Lemma 1.4 (Multiplication is Distributive). a(b+c) = ab + ac and (b+c)a = ba + ca

Proof: (b+c)a = ba + ca follows from the proof that a(b+c) =ab + ac and the commutativity of multiplication. a(b + 0) = ab + 0 =ab + a0, and by inductive hypothesis a(b + c) = ab + ac. It follows:

$$a(b+c++) = a((b+c)++)$$

$$= a(b+c)+a$$

$$= ab+ac+a$$

$$ab+a(c++) = ab+ac+a$$

Definition 1.6 (Euclidean Algorithm). Let n be a natural number, and let q be a positive number. Then there exists natural numbers m, rsuch that $0 \le r < q$ and n = mq + r.

Definition 1.7 (Exponentiation). Let m, n be natural numbers.

$$m^0 = 1$$
$$m^{n++} = m^n \times m$$

Definition 1.8 (Integers). An integer is an expression of the form a—b, with a, $b \in \mathbb{N}$. Two integers are considered to be equal, a—b =c—d iff a + d = c + b.3

Definition 1.9 (Sum and Product of Integers). The sum of two integers, a-b+c-d is defined:

$$(a-b) + (c-d) = (a+c)-(b+d)$$

The product of two integers, a— $b \times c$ —d is defined:

$$(a-b) \times (b-c) = (ac+bd)-(ad+bc)$$

Definition 1.10 (Negation of integers). If (a-b) is an integer, we define the negation -(a-b) to be the integer b-a.

² We can divide a natural number n by qto obtain a quotient m and a remainder

³ The symbol "—" is a meaningless placeholder. When subtraction is defined we will see that a-b = a - b.

Remark. We may identify the natural numbers with integers by setting $n \equiv n-0$;

Theorem 1.1 (Trichotomy of integers). Let *x* be an integer. Then exactly one of the following three statments is true: (a) x is zero; (b) xis equal to a positive natural number; or (c) x is the negation -n of a positive natural number n.4

Definition 1.11 (Subtraction). The subtraction x - y of two integers is defined:

$$x - y = x + (-y)$$

Remark. The integers form a commutative ring (adhere to familiar laws of algebra), and are well-defined. For more info see algebra notes.5

Definition 1.12 (Ordering of the Integers). Let *n* and *m* be integers. We say that *n* is greater than or equal to *m* iff n = m + a for some natural number a. We say that n is strictly greater than m iff $n \ge m$ and $n \neq m$.

Definition 1.13 (Rational Numbers). A rational number is an expression of the form a//b, where a and b are integers and $b \neq 0$; a//0is not considered to be a natural number. Two rational numbers are considered to be equal, a//b = c//d, iff ad = cb.

Definition 1.14 (Sum, Product, and Negation of Rational Numbers). If a//b and c//d are rational numbers, we define their sum:

$$(a//b) + (c//d) = (ad + bc)//(bd)$$

Their product:

$$(a//b) \times (c//d) = (ac)//(bd)$$

And the negation:

$$-(a//b) = (-a)//b$$

Remark. The set of rationals form a field, a stronger classification than a commutative ring. The rationals are also well defined.

Definition 1.15 (Reciprocal of Rationals). If x = a//b is a nonzero rational number, the we define the reciprocal x^{-1} of x to be the rational number:

$$x = a//b$$
$$x^{-1} = b//a$$

Definition 1.16 (Quotient of Rational Numbers). The quotient x/y of two rational numbers *x* and *y* provided that *y* is non-zero, is given by the formula:

$$x/y = x \times y^{-1}$$

 4 If n is a positive natural number, we call -n a negative integer.

⁵ By well defined we mean that equal inputs produce equal outputs.

Definition 1.17. A rational number x is said to be positive iff we have x = a/b for some positie integers a and b. It is said to be negative iff we have x = -y for some positive rational y.

Definition 1.18 (Trichotomy of Rationals). Let *x* be a rational number. Then exactly one of the following three statements is true: (a) x is equal to 0. (b) x is a positive rational number. (c) x is a negative rational number.

Definition 1.19 (Ordering of rationals). Let *x* and *y* be rational numbers. We say that x > y iff x - y is a positive rational number, and x < y iff x - y is a negative rational number. We write $x \ge y$ iff either x > y or x = y.

Definition 1.20 (Absolute Value). If *x* is a rational number, the absolute value |x| of x is defined as follows. If x is positive, then |x| = x. If x is negative, then |x| = -x. If x is zero, then |x| = 0.

Definition 1.21 (Distance). Let x and y be rational numbers. The quantity |x - y| is called the distance between x and y and is sometimes denoted d(x, y).

Definition 1.22 (Triangle Inequality for Rationals). If *a*, *b* are rational numbers, then:

$$|a+b| \le |a| + |b|$$

Proof: Suppose $a, b \in \mathbb{Q}$. If a, b are both positive or zero:

$$|a| + |b| = a + b = |a + b|$$

If *a*, *b* are both negative:

$$|a| + |b| = -a - b = |a + b|$$

Wlog we shall prove the case if a is negative and b is positive or zero. Suppose $e, g \ge 0$ and f, h > 0. Then we can represent $a = \frac{-e}{f}$ and $b = \frac{g}{h}$, so:

$$a + b = \frac{-eh + gf}{fh}$$
$$|a| + |b| = \frac{eh + gf}{fh}$$

In the case $a + b \ge 0$:

$$|a+b| = \frac{-eh + gf}{fh}$$

$$\leq \frac{-eh + gf}{fh} + \frac{2eh}{fh}$$

$$= \frac{eh + gf}{fh}$$

$$= |a| + |b|$$

In the case a + b < 0:

$$|a+b| = \frac{eh - gf}{fh}$$

$$\leq \frac{eh - gf}{fh} + \frac{2gf}{fh}$$

$$= \frac{eh + gf}{fh}$$

$$= |a| + |b|$$

so
$$|a + b| < |a| + |b|$$
.

Definition 1.23 (ϵ -closeness). Let $\epsilon > 0$ be a rational number, and let x, y be rational numbers. We say that y is ϵ -close to x iff we have $d(y, x) \le \epsilon$.

Corollary 1.1. Let $\epsilon, \delta > 0$. If x and y are $\epsilon - close$ and z and w are $\delta - close$, then xz and yw are $(\epsilon |z| + \delta |x| + \epsilon \delta)$ -close.

Proof: First, we can represent y=x+a with $|a|<\epsilon$, and w=z+b with $|b|<\delta$. It follows:

$$yw = (x+a)(z+b) = xz + bx + az + ab$$
$$d(xz, yw) = |bx + az + ab|$$
$$= |b||x| + |a||z| + |ab|$$
$$\le \delta|x| + \epsilon|z| + \delta\epsilon$$

Definition 1.24 (Exponentiation to a natural number). Let x be a rational number.

$$x^0 = 1$$
$$x^{n+1} = x^n \times x$$

Definition 1.25 (Exponentiation to a negative number). Let x be a non-zero rational number. Then for any negative integer -n, we define $x^{-n} = 1/x^n$.

Da Reals

Definition 1.26 (Sequences). Let m be an integer. A sequence $(a_n)_{n=m}^{\infty}$ of rational numbers is any function from the set $\{n \in \mathbb{Z} \mid n \geq m\}$ to \mathbb{Q} .

Definition 1.27 (Bounded Sequences). Let $M \ge 0$ be a rational. A finite sequence a_1, a_2, \ldots, a_n is bounded by M iff $|a_i| \le M$ for all $1 \le i \le n$. An infinite sequence $(a_n)_{n=1}^{\infty}$ is bounded by M iff $|a_i| \le M$ for all $i \ge 1$.

Proof: Suppose $(a_n)_{n=1}^k$ an arbitrary finite sequence. If k=1, then $|a_n| \leq |a_1|$ for all n. By induction hypothesis, the sequence $(a_n)_{n=1}^k$ is bounded, and therefore there exists M such that $|a_n| \leq M$ for all n. It follows from the properties of ordering that for all $n \leq k$, $|a_n| < M + |a_{k+1}|$ and $|a_{k+1}| < M + |a_{k+1}|$. Therefore $(a_n)_{n=1}^{k+1}$ is bounded.

Definition 1.28 (Cauchy Sequence). A sequence $(a_n)_{n=0}^{\infty}$ of rational numbers is said to be a cauchy sequence iff for every rational $\epsilon > 0$, there exists an $N \geq 0$ such that $d(a_i, a_k) \leq \epsilon$ for all $j, k \geq N$.

Lemma 1.6 (Cauchy Sequences are Bounded).

Proof: Suppose $(a_n)_{n=1}^{\infty}$ is Cauchy. Then, if $\epsilon \in \mathbb{Q}$ there exists $N \in \mathbb{N}$ such that $i, j \geq N$ implies that $|a_i - a_j| \leq \epsilon$. Because the sequence $(a_n)_{n=1}^N$ is finite, it is bounded by a number $\delta \in \mathbb{Q}$. Then $|a_N| \leq \delta$ and it follows that for all $i \geq N$,

$$|a_i - a_N| \le \epsilon$$

$$|a_i - a_N| + |a_N| \le \epsilon + \delta$$

$$|a_i| < \epsilon + \delta$$

But also $|a_n| \le \epsilon + \delta$ for all $n \le N$ so $|a_n| \le \epsilon + \delta$ for all n.

Definition 1.29 (Equivalent Sequences). Two sequences $(a_n)_{n=0}^{\infty}$ and $(b_n)_{n=0}^{\infty}$ are equivalent iff for each rational $\epsilon > 0$, there exists N such that $n \geq N$ implies $|a_n - b_n| \leq \epsilon.^6$

Definition 1.30 (Real Numbers). A real number is defined to be an object of the form $LIM_{n\to\infty}a_n$, where $(a_n)_{n=1}^{\infty}$ is a Cauchy sequence of rational numbers. Two real numbers $LIM_{n\to\infty}a_n$ and $LIM_{n\to\infty}b_n$ are said to be equal iff $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are equivalent Cauchy sequences.

Remark. Like with the definition of subtraction and rational numbers, $LIM_{n\to\infty}a_n$ is referred to as the formal limit of the sequence $(a_n)_{n=1}^{\infty}$.

Definition 1.31 (Addition of Reals). Let $x = \text{LIM}_{n \to \infty} a_n$ and $y = \text{LIM}_{n \to \infty} b_n$ be real numbers. Then we define the sum x + y to be $x + y = \text{LIM}_{n \to \infty} (a_n + b_n)$.

Lemma 1.7 (Sum of Cauchy Sequences is Cauchy). Let $x = \text{LIM}_{n \to \infty} a_n$ and $y = \text{LIM}_{n \to \infty} b_n$ be real numbers. Then x + y is also a real number.

Proof: Suppose a_n and b_n are Cauchy sequences. Then for all $\epsilon \in \mathbb{Q}$ there exists $N \in \mathbb{N}$ such that $i, j \geq N$ implies $|a_i - a_j| \leq \epsilon$, and for all $\delta \in \mathbb{Q}$ there exists $M \in \mathbb{N}$ such that $l, m \geq M$ implies

⁶ Symbolically, this means $\forall \epsilon \exists N \forall n (n \ge N \Rightarrow |a_n - b_n| \le \epsilon)$.

 $|b_l - b_m| \le \epsilon$. If follows that if $q, r \ge \max\{N, M\}$:

$$|(a_q + b_q) - (b_r + a_r)| = \left| a_q + b_q - \left(a_q + (-a_q + a_r) + b_q + (-b_q + b_r) \right) \right|$$

$$= |(a_q - a_r) + (b_q - b_r)|$$

$$\leq |a_q - a_r| + |b_q - b_r|$$

$$\leq \epsilon + \delta$$

Definition 1.32 (Multiplication of Reals). Let $x = \text{LIM}_{n\to\infty}a_n$ and $y = \text{LIM}_{n\to\infty}b_n$ be real numbers. Then we define the product xy to be $xy = \text{LIM}_{n\to\infty}a_nb_n$.

Remark. The rationals can be embedded into the reals by identifying each rational number q with the real number $LIM_{n\to\infty}q$.

Definition 1.33 (Sequences bounded away from zero). A sequence $(a_n)_{n=1}^{\infty}$ of rational numbers is said to be bounded away from zero iff there exists a rational number c > 0 such that $|a_n| > c$ for all $n \ge 1$.

Lemma 1.8. Let x be a non-zero real number. Then $x = \text{LIM}_{n \to \infty} a_n$ for some Cauchy sequence $(a_n)_{n=1}^{\infty}$ which is bounded away from zero.

Proof: If x is a non-zero real number, then $x = \text{LIM}_{n \to \infty} a_n$ for some Cauchy sequence $(a_n)_{n=1}^{\infty}$. Because $x \neq 0$, we know from the definition of equivalent sequences that $\exists \alpha \forall \beta \exists n (n \geq \beta \land |a_n| > \alpha).$ Because a_n is Cauchy, if we choose $\epsilon < \frac{\alpha}{2}$, then $\exists \delta(i, j \geq \delta \Rightarrow |a_i - a_j| \leq \epsilon)$. It follows $\exists k (k \geq \delta \land |a_k| > \alpha).$ If $l \geq \delta$, it follows:

$$|a_k| > \alpha$$

$$|a_l - a_k| \le \epsilon < \frac{\alpha}{2}$$

$$|a_l - a_k| \ne |a_k|$$

$$a_l = a_k + (a_l - a_k)$$

$$|a_l| > \frac{\alpha}{2}$$

The last line can be proven by cases whether $a_l - a_k$ or a_k are negative or positive. So for all $l \ge \delta$ we have $|a_l| > \frac{\alpha}{2}$. An equivalent sequence bounded away from zero can now be easily constructed.

Definition 1.34 (Reciprocals of Real Numbers). Let x be a non-zero real number. Let $(a_n)_{n=1}^{\infty}$ be a Cauchy sequence bounded away from zero such that $x = \text{LIM}_{n \to \infty} a_n$. Then we define the reciprocal x^{-1} by the formula $x^{-1} = \text{LIM}_{n \to \infty} a_n^{-1}$.

Definition 1.35 (Division of Reals). Division x/y of two real numbers x, y provided y is non-zero is given by the formula $x/y = x \times y^{-1}$.

⁷ This is the negation of the definition of two equivalent sequences, with $b_n = 0$.

⁸ This works because β is arbitrary.

Definition 1.36 (Positively Bounded Away From Zero). Let $(a_n)_{n=1}^{\infty}$ be a sequence of rationals. We say that this sequence is positively bounded away from zero iff we have a positive rational c > 0 such that $a_n > c$ for all $n \ge 1$. You can fill in the blank for what negatively bounded away from zero means I hope.

Definition 1.37 (Positive and Negative Real Numbers). A real number *x* is said to be positive or negative iff it can be written as $x = LIM_{n\to\infty}a_n$ for some Cauchy sequence $(a_n)_{n=1}^{\infty}$ which is positively or negatively bounded away from zero respectively.

Definition 1.38 (Absolute Value). Let *x* be a real number. We define the absolute value |x| of x to equal x if x is positive, -x when x is negative, and 0 when x is zero.

Definition 1.39 (Ordering of Real Numbers). Let x and y be real numbers. We say that x is greater than y iff x - y is a positive real number, and x is less that y iff x - y is a negative real number. We define $x \ge y$ iff x > y or x = y, and similarly define $x \le y$.

Lemma 1.9 (The Non-negative Reals are Closed). Let a_1, a_2, \ldots be a Cauchy sequence of non-negative rational numbers. Then LIM $_{n\to\infty}a_n$ is a non-negative real number.9

Proof: Suppose to the contrary that $LIM_{n\to\infty}a_n$ is a negative real number. Then there exists a Cauchy sequence b_n negatively bounded away from zero so that $LIM_{n\to\infty}a_n=LIM_{n\to\infty}b_n$. Therefore there exists a negative rational -c such that $b_n < -c$ for all n. It follows from the hypothesis that for all *n*

$$a_n > 0$$
$$-b_n > c$$
$$a_n - b_n > c$$

Because c is positive, $|a_n - b_n| > c$ for all n. Thus $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ are not equivalent.

Corollary 1.2. Let $(a_n)_{n=1}^{\infty}$ and $(b_n)_{n=1}^{\infty}$ be Cauchy sequences of rationals such that $a_n \ge b_n$ for all $n \ge 1$. Then $LIM_{n\to\infty}a_n \ge LIM_{n\to\infty}b_n$.

Proof: LIM_{$n\to\infty$} a_n – LIM_{$n\to\infty$} b_n = LIM_{$n\to\infty$} a_n – b_n . It follows from lemma 1.9 that because $a_n - b_n \ge 0$, LIM_{$n\to\infty$} $a_n - b_n$ is a nonnegative real number.

Lemma 1.10 (Archimedean Property). Let x and ϵ be any positive real numbers. Then there exists a positive integer M such that $M\epsilon$ > х.

Definition 1.40 (Upper Bound). Let E be a subset of \mathbb{R} , and let M be a real number. We say that M is an upper bound for E, iff we have $x \le M$ for every element x in E.

⁹ The title of the lemma builds on the fact that non-negative rationals are closed under addition.

Definition 1.41 (Least Upper Bound). Let E be a subset of \mathbb{R} , and let *M* be a real number. We say that *M* is a least upper bound for *E* iff:

- 1. *M* is an upper bound for *E*.
- 2. Any other upper bound M' for E must be larger than or equal to $M.^{10}$

Theorem 1.2 (Existence of Least Upper Bound). Let *E* be a nonempty subset of \mathbb{R} . If E has an upper bound, then it must have exactly one least upper bound.

10 Least upper bounds are unique.