

S.Y.B.E. (Electronics Engineering) Sem. – IV: EN 402

Digital Circuits & Fundamentals of Microprocessors

P. Pages: 4

Time : Three Hours Max. Marks : 80

- Notes: 1. All questions carry marks as indicated.
 - 2. Due credit will be given to neatness and adequate dimensions.
 - 3. Assume suitable data wherever necessary.
 - 4. Illustrate your answers wherever necessary with the help of neat sketches.
- **1.** a) What is K-map? What are the limitations of K-map? Simplify the following logic function using K-map.
 - i) $F(A,B,C,D) = \Sigma m(0,2,3,5,9,11,13,15) + d(8,10)$
 - ii) $F(w,x,y,z) = wxyz + wx\overline{y}z + \overline{w}xy + w\overline{y} + \overline{w}$
 - b) Design a combinational circuit that will **8** accept BCD at its input terminals and generate Excess-3 code at its output terminals.

OR

GUG/W/14-2613

1

P.T.O

a) What is full subtractor? Design full 8 subtractor using suitable logic gates. b) A combinational circuit accept 4-bits at its 8 input terminal and will generate the signal for the prime numbers. Design the circuit. **3.** a) Design a 2-bit magnitude comparator. 8 b) What is parity generator? Design Even 8 parity generator and checker. **OR 4.** a) Design a priority Encoder with D₃ having 8 highest priority followed by D₂, D₀, D₁. b) Implement the following logic function using 8 suitable MUX. $f(A,B,C,D) = \Sigma m(0,1,3,5,6,9,11,14).$ **5.** a) Convert SR flip-flop to D flip-flop. 8 b) Design a 3-bit binary down counter. 8 **OR 6.** a) What is the race around condition in JK flip-8 flop? How will you overcome it? Explain its working with suitable logic diagram.

	•	xplain the operation ift register.	on of the bi-direction	onal 8
7.	, —	xplain addressing n iitable example.	nodes of μp 8085 v	with 8
		raw and explain to COV B, M.	the timing diagram	n of 8
OR				
8.	3. a) Explain in detail status flags of μp 80			8
	b) Ε	8		
	1	SPHL	2) PCHL	
	3)	DAD B	4) XTHL	
9.	a) What are interrupts in μp 8085 ? Explain hardware and software interrupts in detail.			
	•	-	n pin diagram heral Interface IC 82	
OR				
GUG/W/14-2613 3				P.T.O

b) Write a program to generate a continuous 12 square wave with the period of $500\,\mu s$. Assume the system clock period of 325ns, using port A of 8255 PPI. Assume port addresses as – 20H, 21H, 22H, 23H.
