Weekly Presentation Week 40

Martin Blaszczyk Edward Källstedt Albin Martinsson Måns Norell

Luleå University of Technology

September 22, 2020

Overview

- Status update
 - Overall timetable
 - September planning
- 2 Hardware
 - New toys
- Machine vision
 - Flows
 - Line following algorithm
- Movable base
 - Arrowhead

Overall timetable

Sep	Oct	Nov	Dec
Concept generation	Evaluation	Evaluation	
Theory	Prototyping	Evaluation	Finishing up
Simulation	Evaluation	Evaluation	
Prototyping	Final Design	Evaluation	

Time plan for September

Subproject	Week 1	Week 2	Week 3	Week 4
Arrowhead	Reading	Setup	API	Prototyping
Movable base	Reading	Modeling	Simulation	Implementation
Arm and grip	Reading	Kinematics	Simulation	Prototyping
Object detection	Reading	Testing	Prototyping	Evaluation

New toys!

- NVIDIA Jetson Nano
- Cameras
- Dynamixel Smart motors
- Screws, cables and other goodies

NVIDIA Jetson Nano

- Runs Ubuntu
- Two camera ports (CSI)
- More powerful GPU than RPi

Cameras

- Compatible with NVIDIA and RPi
- Small package
- 8 megapixels
- Video:
 - ▶ 1080p @ 30 fps
 - ▶ 720p @ 60fps

Dynamixel Smart Motors

- Connects in series
- Angle and wheel mode
- Feedback

Hardware

Object detection

- Line detection now works
- Testing cameras and real time performance on NVIDIA
- Will be using two cameras.
 - Front facing
 - Downwards facing

Machine vision

OpenCV

Line following algorithm

• https://www.youtube.com/watch?v=TdtPIdipSBY

Line following algorithm - Procedure

- HSV mask to select color space
- Crop image into horizontal slice
- Calculate image moment on slice to extract centroid
- Calculate angle between robot base and line

Line following algorithm - Optimization

- Only search adjacent to previous line position
- Implement CUDA support

CV - What's next?

- Implement QR code functionality
- Finalize API consumed by other parts of the system
- Clean up code and implement proper configuration capabilities

Movable Base

What has been done

- Mathematical model
- Controller selection
- Some simulations (more work needs to be done)

Mathematical Model

Actuators:

- The motors of the left and right track (v_L, v_R)
- Parameters to Control:
 - The angle to a coloured line (θ)

Figure: Model of base

Mathematical Model

Given the v_L , v_R and θ we can calculate

•
$$\overline{v} = ||v|| * (-\cos\theta * \hat{i} + \sin\theta * \hat{j})$$

•
$$\overline{L} = \int \overline{v}$$

$$\bullet \ \dot{\theta} = \frac{v_R - v_L}{2r}$$

Controller Choice

The robot will use two PD controllers for the line following

Controller Choice

The robot will use two PD controllers for the line following

- Simple P controller is not smooth enough
- PID is more likely to overshoot

Simulations

Motor Speed

Figure: Angle from line

Figure: Motor speed for left and right motor

Simulations

To be done

- Import real values from the motors and base for applicable simulations
- Insert boundaries for control signals

Arrowhead

Questions?