## BI = Business Intelligence Master Data-Science Cours 7 - Visualisation

Ludovic DENOYER - ludovic.denoyer@lip6.fr Laure SOULIER -laure.soulier@lip6.fr

**UPMC** 

28 février 2017

Contexte et principe général

## Contexte - Rappel

Analyse descriptive des données : identifier/synthétiser les informations présentes mais cachées dans un gros volume de données



Lebart-Morineau-Piron, Statistique exploratoire multidimensionnelle

- Données : grand nombre de variables et d'individus
- Objectif : synthétiser les données par réduction de dimension pour
  - Identifier les variables les plus informatives
  - Identifier les relations entre variables (notion de corrélation)
  - Identifier les relations entre individus (notion de distance)

|      | MATH  | PHYS  | FRAN  | ANGL  |
|------|-------|-------|-------|-------|
| jean | 6.00  | 6.00  | 5.00  | 5.50  |
| alan | 8.00  | 8.00  | 8.00  | 8.00  |
| anni | 6.00  | 7.00  | 11.00 | 9.50  |
| moni | 14.50 | 14.50 | 15.50 | 15.00 |
| didi | 14.00 | 14.00 | 12.00 | 12.50 |
| andr | 11.00 | 10.00 | 5.50  | 7.00  |
| pier | 5.50  | 7.00  | 14.00 | 11.50 |
| brig | 13.00 | 12.50 | 8.50  | 9.50  |
| evel | 9.00  | 9.50  | 12.50 | 12.00 |











# Principe général

- Notations
  - $I_1, ..., I_i, ..., I_n$  individus et  $V_1, ..., V_j, ..., V_p$  variables
  - $X \in \mathbb{R}^{n \times p}$ : tableau de données
- Intuition : vers un changement de base
  - L'idée est de trouver le sous-espace  $F_S$  de rang S ( $S_{ip}$ ) tel que :
    - minimiser la perte d'information de la projection des  $x_{ij}$  sur  $F_S$ : min :  $\underset{argmin_{F_S}}{argmin_{F_S}} \sum_{i=1}^n ||x_i \bar{x}_i||^2$
    - chaque nouvel axe est une combinaison linéaires des axes originaux  $f_k = \sum_{i=1}^p \alpha_i V_i$
    - les nouveaux axes soient orthogonaux (axes non corrélés)







## Les différentes analyses factorielles

ACP : données quanti, continues, a priori corrélées entre elles AFC : tableau de contingence (croisement de variables quali)

ACM : données quali (extension à plusieurs variables)

AFCM : données quanti et quali

AFM : variables structurées en groupe

AFMH : variables structurées en hiérarchie

- Données
  - Variables continues et centrées
  - Variables réduites dans le cas de variables hétérogènes (ACP normée)

|      | MATH  | PHYS  | FRAN  | ANGL  |
|------|-------|-------|-------|-------|
| jean | 6.00  | 6.00  | 5.00  | 5.50  |
| alan | 8.00  | 8.00  | 8.00  | 8.00  |
| anni | 6.00  | 7.00  | 11.00 | 9.50  |
| moni | 14.50 | 14.50 | 15.50 | 15.00 |
| didi | 14.00 | 14.00 | 12.00 | 12.50 |
| andr | 11.00 | 10.00 | 5.50  | 7.00  |
| pier | 5.50  | 7.00  | 14.00 | 11.50 |
| brig | 13.00 | 12.50 | 8.50  | 9.50  |
| evel | 9.00  | 9.50  | 12.50 | 12.00 |

$$X = \begin{pmatrix} x_{1,1} & \dots & x_{1,p} \\ \dots & x_{i,j} & \dots \\ x_{n,1} & \dots & x_{n,p} \end{pmatrix} = \begin{pmatrix} x_1^T \\ \dots \\ x_i^T \\ \dots \\ x_n^T \end{pmatrix}$$

→ Nécessité de centrer les données, mais pas de réduire (variables homogènes : notes)

#### Objectifs

Effectuer un changement de base qui prend en compte les relations entre les variables et/ou les relations entre les individus.

Changement de base



- Notion de projection linéaire de  $x_i$ , sur  $f_i \in \mathcal{R}^d$ 
  - $f_i = M^T x_i$  où  $M \in \mathcal{R}^{p \times d}$  et  $M^T M = 1$

Changement de base



- Notion de projection linéaire de  $x_i$ , sur  $f_i \in \mathcal{R}^d$ 
  - $f_i = M^T x_i$  où  $M \in \mathcal{R}^{p \times d}$  et  $M^T M = 1$
  - si d = p, pas de réduction de dimension, pas de perte d'information :

$$f_i = M^T x_i \rightarrow M f_i = M M^T x_i \rightarrow x_i = M f_i$$

Changement de base



- Notion de projection linéaire de  $x_i$  sur  $f_i \in \mathcal{R}^d$ 
  - $f_i = M^T x_i$  où  $M \in \mathbb{R}^{p \times d}$  et  $M^T M = 1$
  - si d = p, pas de réduction de dimension, pas de perte d'information :
    - $f_i = M^T x_i \rightarrow M f_i = M M^T x_i \rightarrow x_i = M f_i$
  - si d < p, réduction de dimension,</li> reconstruction par approximation:

$$\hat{x}_i = Mf_i \text{ ou } \hat{x}_i = MM^Tx_i$$

• Changement de base



- Notion de projection linéaire de  $x_i$  sur  $f_i \in \mathcal{R}^d$ 
  - $f_i = M^T x_i$  où  $M \in \mathbb{R}^{p \times d}$  et  $M^T M = 1$
  - si d = p, pas de réduction de dimension, pas de perte d'information :
    - $f_i = M^T x_i \rightarrow M f_i = M M^T x_i \rightarrow x_i = M f_i$
  - si d < p, réduction de dimension, reconstruction par approximation :

$$\hat{x}_i = Mf_i \text{ ou } \hat{x}_i = MM^Tx_i$$

#### Objectif

Trouver M qui minimise l'erreur quadratique  $MSE(M) = \frac{1}{n} \sum_{i=1}^{n} ||x_i - \hat{x}_i||^2$ 

$$MSE(M) = \frac{1}{n} \sum_{i=1}^{n} ||x_i - \hat{x}_i||^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - MM^T x_i)(x_i - MM^T x_i,)$$

$$MSE(M) = \frac{1}{n} \sum_{i=1}^{n} ||x_i - \hat{x}_i||^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - MM^T x_i)(x_i - MM^T x_i,)$$
$$= \frac{1}{n} \sum_{i=1}^{n} (x_i^T x_i - 2x_i^T MM^T x_i + x_i^T MM^T MM^T x_i)$$

$$MSE(M) = \frac{1}{n} \sum_{i=1}^{n} ||x_{i} - \hat{x}_{i}||^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - MM^{T}x_{i})(x_{i} - MM^{T}x_{i},)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{T}x_{i} - 2x_{i}^{T}MM^{T}x_{i} + x_{i}^{T}MM^{T}MM^{T}x_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{T}x_{i} - \frac{1}{n} \sum_{i=1}^{n} x_{i}^{T}MM^{T}x_{i}$$

$$MSE(M) = \frac{1}{n} \sum_{i=1}^{n} ||x_{i} - \hat{x}_{i}||^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - MM^{T}x_{i})(x_{i} - MM^{T}x_{i},)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{T}x_{i} - 2x_{i}^{T}MM^{T}x_{i} + x_{i}^{T}MM^{T}MM^{T}x_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{T}x_{i} - \frac{1}{n} \sum_{i=1}^{n} x_{i}^{T}MM^{T}x_{i}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{T}x_{i} - \frac{1}{n} \sum_{i=1}^{n} M^{T}x_{i}x_{i}^{T}M$$

$$MSE(M) = \frac{1}{n} \sum_{i=1}^{n} ||x_{i} - \hat{x}_{i}||^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - MM^{T}x_{i})(x_{i} - MM^{T}x_{i},)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{T}x_{i} - 2x_{i}^{T}MM^{T}x_{i} + x_{i}^{T}MM^{T}MM^{T}x_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{T}x_{i} - \frac{1}{n} \sum_{i=1}^{n} x_{i}^{T}MM^{T}x_{i}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{T}x_{i} - \frac{1}{n} \sum_{i=1}^{n} M^{T}x_{i}x_{i}^{T}M$$

Quel est le lien avec les "relations" entre les variables?

Matrice de covariance  $\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$ Sur données centrées  $\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i)(x_i)^T = \frac{1}{n} X^T X$ 

$$MSE(M) = \frac{1}{n} \sum_{i=1}^{n} ||x_{i} - \hat{x}_{i}||^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - MM^{T}x_{i})(x_{i} - MM^{T}x_{i},)$$

$$= \frac{1}{n} \sum_{i=1}^{n} (x_{i}^{T}x_{i} - 2x_{i}^{T}MM^{T}x_{i} + x_{i}^{T}MM^{T}MM^{T}x_{i})$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{T}x_{i} - \frac{1}{n} \sum_{i=1}^{n} x_{i}^{T}MM^{T}x_{i}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{T}x_{i} - \frac{1}{n} \sum_{i=1}^{n} M^{T}x_{i}x_{i}^{T}M$$

#### Quel est le lien avec les "relations" entre les variables?

Matrice de covariance  $\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})(x_i - \bar{x})^T$ Sur données centrées  $\Sigma = \frac{1}{n} \sum_{i=1}^{n} (x_i)(x_i)^T = \frac{1}{n} X^T X$ 

#### Conséquence :

Minimiser  $MSE(M) \leftrightarrow maximiser$  la variance de des données par rapport à la projection M.

• Intuition : identifier le premier axe factoriel  $f_1$  tel que la variance  $Xf_1$  soit maximale. On appelle le vecteur  $c_1 = Xf_1$  une composante principale.

• Intuition : identifier le premier axe factoriel  $f_1$  tel que la variance  $Xf_1$  soit maximale. On appelle le vecteur  $c_1 = Xf_1$  une composante principale.

Soit  $M = f_1$ , le premier axe factoriel

$$MSE(M) = \frac{1}{n} \sum_{i=1}^{n} x_{i,}^{T} x_{i} - \frac{1}{n} \sum_{i=1}^{n} f_{1}^{T} x_{i} x_{i}^{T} f_{1}$$

$$\propto -f_{1}^{T} (\frac{1}{n} \sum_{i=1}^{n} (x_{i})(x_{i})^{T}) f_{1} = -f_{1}^{T} \Sigma f_{1}$$

• Intuition : identifier le premier axe factoriel  $f_1$  tel que la variance  $Xf_1$  soit maximale. On appelle le vecteur  $c_1 = Xf_1$  une composante principale.

Soit  $M = f_1$ , le premier axe factoriel

$$MSE(M) = \frac{1}{n} \sum_{i=1}^{n} x_{i,}^{T} x_{i} - \frac{1}{n} \sum_{i=1}^{n} f_{1}^{T} x_{i} x_{i}^{T} f_{1}$$

$$\propto -f_{1}^{T} (\frac{1}{n} \sum_{i=1}^{n} (x_{i})(x_{i})^{T}) f_{1} = -f_{1}^{T} \Sigma f_{1}$$

Problème d'optimisation sous contrainte :

$$min_{f_1}MSE(f_1) = -f_1^T \Sigma f_1 \text{ avec } f_1^T f_1 = 1$$

Problème d'optimisation sous contrainte :

$$\textit{min}_{\mathit{f}_{1}} \textit{MSE}(\mathit{f}_{1}) = -\mathit{f}_{1}^{\ T} \Sigma \mathit{f}_{1} \ \textit{avec} \ \mathit{f}_{1}^{\ T} \mathit{f}_{1} = 1$$

Problème d'optimisation sous contrainte :

$$min_{f_1}MSE(f_1) = -f_1^T \Sigma f_1 \text{ avec } f_1^T f_1 = 1$$

• Résolution par le langragien :

$$\mathcal{L}(f_1, \lambda_1) = -f_1^T \Sigma f_1 + \lambda_1 (f_1^T f_1 - 1)$$

$$\nabla_{f_1} \mathcal{L}(f_1, \lambda_1) = -2 \Sigma f_1 + 2 \lambda_1 f_1 \rightarrow \Sigma f_1 = \lambda_1 f_1 \rightarrow f_1^T \Sigma f_1 = \lambda_1$$

$$\nabla_{\lambda_1} \mathcal{L}(f_1, \lambda_1) = f_1^T f_1 - 1$$

Problème d'optimisation sous contrainte :

$$min_{f_1}MSE(f_1) = -f_1^T \Sigma f_1 \text{ avec } f_1^T f_1 = 1$$

• Résolution par le langragien :

$$\mathcal{L}(f_1, \lambda_1) = -f_1^T \Sigma f_1 + \lambda_1 (f_1^T f_1 - 1)$$

$$\nabla_{f_1} \mathcal{L}(f_1, \lambda_1) = -2\Sigma f_1 + 2\lambda_1 f_1 \rightarrow \Sigma f_1 = \lambda_1 f_1 \rightarrow f_1^T \Sigma f_1 = \lambda_1$$

$$\nabla_{\lambda_1} \mathcal{L}(f_1, \lambda_1) = f_1^T f_1 - 1$$

Rappel - Valeurs propres et vecteurs propres : Un vecteur propre X associé à une valeur propre  $\lambda$  doit vérifier la relation  $AX = \lambda X$ 

Problème d'optimisation sous contrainte :

$$min_{f_1}MSE(f_1) = -f_1^T \Sigma f_1 \text{ avec } f_1^T f_1 = 1$$

Résolution par le langragien :

$$\mathcal{L}(f_1, \lambda_1) = -f_1^T \Sigma f_1 + \lambda_1 (f_1^T f_1 - 1)$$

$$\nabla_{f_1} \mathcal{L}(f_1, \lambda_1) = -2\Sigma f_1 + 2\lambda_1 f_1 \rightarrow \Sigma f_1 = \lambda_1 f_1 \rightarrow f_1^T \Sigma f_1 = \lambda_1$$

$$\nabla_{\lambda_1} \mathcal{L}(f_1, \lambda_1) = f_1^T f_1 - 1$$

Rappel - Valeurs propres et vecteurs propres : Un vecteur propre X associé à une valeur propre  $\lambda$  doit vérifier la relation  $AX = \lambda X$ 

- Conclusion
  - $f_1$  et  $\lambda_1$  sont respectivement des vecteurs propres et valeurs propres
  - $MSE(f_1)$  peut aussi s'écrire ainsi :  $MSE(f_1) = -\lambda_1$ . Par conséquent, on cherche à maximiser la valeur propre
  - Le premier axe factoriel est issu du vecteur propre  $f_1$  associé à la plus grande valeur propre  $\lambda_1$  de la matrice de covariance  $\Sigma$

• Identification du deuxième axe factoriel f2

$$\begin{aligned} & \textit{min MSE}(f_2) = -f_2^T \Sigma f_2 \\ & \textit{tel quef}_2^T f_2 = 1 & \textit{et } f_2^T f_1 = 0 \end{aligned}$$

Ce qui revient à trouver la deuxième valeur propre  $\lambda_2$  et son vecteur propre  $f_2$  associé.

• Identification du deuxième axe factoriel fo

$$\begin{aligned} & \textit{min MSE}(f_2) = -f_2^T \Sigma f_2 \\ & \textit{tel quef}_2^T f_2 = 1 & \textit{et } f_2^T f_1 = 0 \end{aligned}$$

Ce qui revient à trouver la deuxième valeur propre  $\lambda_2$  et son vecteur propre  $f_2$  associé.

• Identification du troisième axe factoriel  $f_3$ ... Même principe... etc...

• Identification du deuxième axe factoriel f2

$$\begin{aligned} & \textit{min MSE}(f_2) = -f_2^T \Sigma f_2 \\ & \textit{tel quef}_2^T f_2 = 1 & \textit{et } f_2^T f_1 = 0 \end{aligned}$$

Ce qui revient à trouver la deuxième valeur propre  $\lambda_2$  et son vecteur propre  $f_2$  associé.

• Identification du troisième axe factoriel  $f_3$ ... Même principe... etc...

#### Reconstitution de la matrice X à partir des axes factoriels

On peut voir aussi le changement de base comme une décomposition en valeurs singulières de la matrice  $\mathsf{X}$  :

$$X = \sqrt{\lambda_1} \quad + \dots + \sqrt{\lambda_K} \quad v_K \quad u_K$$

# Analyse en Composantes Principales (ACP) Dans la pratique...

A partir de données X centrées (et éventuellement réduites)

- Estimer la matrice de covariance  $\Sigma = \frac{1}{n}X^TX$
- ullet Identifier les valeurs propres de  $\Sigma$
- Ordonner les k valeurs propres par ordre croissant afin de former la nouvelle base M
- Projeter les points pour obtenir les composantes : C = XM

# Analyse en Composantes Principales (ACP) Exemple illustratif

Données

|      | MATH  | PHYS  | FRAN  | ANGL  |
|------|-------|-------|-------|-------|
| jean | 6.00  | 6.00  | 5.00  | 5.50  |
| alan | 8.00  | 8.00  | 8.00  | 8.00  |
| anni | 6.00  | 7.00  | 11.00 | 9.50  |
| moni | 14.50 | 14.50 | 15.50 | 15.00 |
| didi | 14.00 | 14.00 | 12.00 | 12.50 |
| andr | 11.00 | 10.00 | 5.50  | 7.00  |
| pier | 5.50  | 7.00  | 14.00 | 11.50 |
| brig | 13.00 | 12.50 | 8.50  | 9.50  |
| evel | 9.00  | 9.50  | 12.50 | 12.00 |

→ Nécessité de centrer les données, mais pas de réduire (variables homogènes : notes)

Exemple illustratif

• Etape 1 : Matrice Variances-covariances dans l'espace des variables  $\Sigma = \frac{1}{2} X^T X$ 

|      | MATH  | PHYS | FRAN  | ANGL |
|------|-------|------|-------|------|
| MATH | 11.39 | 9.92 | 2.66  | 4.82 |
| PHYS | 9.92  | 8.94 | 4.12  | 5.48 |
| FRAN | 2.66  | 4.12 | 12.06 | 9.29 |
| ANGL | 4.82  | 5.48 | 9.29  | 7.91 |

#### Remarques

- Si les données sont centrées réduites, la variance de chaque variable est égale à 1.
- On peut aussi calculer la matrice variances-covariances dans l'espace des individus :  $\Sigma = \frac{1}{n}XX^T$

Exemple illustratif

• Etape 2 : Estimation des valeurs propres

| Facteur | $\lambda$ | inertie | cumul |
|---------|-----------|---------|-------|
| 1       | 28.23     | 0.70    | 0.70  |
| 2       | 12.03     | 0.30    | 1.00  |
| 3       | 0.03      | 0.00    | 1     |
| 4       | 0.01      | 0.00    | 1.00  |

Notion d'inertie L'inertie mesure le pourcentage de dispersion des points autour de l'axe factoriel.  $inertie_k = \frac{\lambda_k}{\sum_{l=1}^K \lambda_l}$ 

Exemple illustratif

• Etape 2 : Estimation des valeurs propres

| Facteur | $\lambda$ | inertie | cumul |
|---------|-----------|---------|-------|
| 1       | 28.23     | 0.70    | 0.70  |
| 2       | 12.03     | 0.30    | 1.00  |
| 3       | 0.03      | 0.00    | 1     |
| 4       | 0.01      | 0.00    | 1.00  |

Notion d'inertie L'inertie mesure le pourcentage de dispersion des points autour de l'axe factoriel.  $inertie_k = \frac{\lambda_k}{\sum_{l=1}^K \lambda_l}$ 

#### Remarques

Exemple illustratif

• Etape 2 : Estimation des valeurs propres

| Facteur | $\lambda$ | inertie | cumul |
|---------|-----------|---------|-------|
| 1       | 28.23     | 0.70    | 0.70  |
| 2       | 12.03     | 0.30    | 1.00  |
| 3       | 0.03      | 0.00    | 1     |
| 4       | 0.01      | 0.00    | 1.00  |

Notion d'inertie L'inertie mesure le pourcentage de dispersion des points autour de l'axe factoriel.  $inertie_k = \frac{\lambda_k}{\sum_{l=1}^K \lambda_l}$ 

### Remarques

• Les valeurs propres de  $\frac{1}{n}X^TX$  et de  $\frac{1}{n}XX^T$  sont égales  $\rightarrow$  Rechercher la meilleure représentation des individus équivaut à rechercher la meilleure représentation des variables

Exemple illustratif

• Etape 2 : Estimation des valeurs propres

| Facteur | $\lambda$ | inertie | cumul |
|---------|-----------|---------|-------|
| 1       | 28.23     | 0.70    | 0.70  |
| 2       | 12.03     | 0.30    | 1.00  |
| 3       | 0.03      | 0.00    | 1     |
| 4       | 0.01      | 0.00    | 1.00  |

Notion d'inertie L'inertie mesure le pourcentage de dispersion des points autour de l'axe factoriel.  $inertie_k = \frac{\lambda_k}{\sum_{l=1}^K \lambda_l}$ 

### Remarques

- Les valeurs propres de  $\frac{1}{n}X^TX$  et de  $\frac{1}{n}XX^T$  sont égales  $\rightarrow$  Rechercher la meilleure représentation des individus équivaut à rechercher la meilleure représentation des variables
- Critère de choix des axes principaux : inertie cumulée > 80%,  $\lambda_k > 1$  (règle de Kaiser), coude de la courbe (éboulis), ...

Exemple illustratif

- Etape 3 : Projection des individus et variables
  - Corrélation des variables avec les axes factoriels

|                              | Corréla                      | ations va                      | riables-f                      | acteurs                        |  |
|------------------------------|------------------------------|--------------------------------|--------------------------------|--------------------------------|--|
| FACTEURS                     | > F1                         | F2                             | F3                             | F4                             |  |
| MATH<br>PHYS<br>FRAN<br>ANGL | 0.81<br>0.90<br>0.75<br>0.91 | -0.58<br>-0.43<br>0.66<br>0.40 | 0.01<br>-0.03<br>-0.02<br>0.05 | -0.02<br>0.02<br>-0.01<br>0.01 |  |



Exemple illustratif

- Etape 3 : Projection des individus et variables
  - Projection des individus C = XM

|      | Coordo | nnées des | individus | ; con | tributions | ; cosinus | carrés |        |
|------|--------|-----------|-----------|-------|------------|-----------|--------|--------|
|      | POIDS  | FACT1     | FACT2     | CONTG | CONT1      | CONT2     | COSCA1 | COSCA2 |
| jean | 0.11   | -8.61     | -1.41     | 20.99 | 29.19      | 1.83      | 0.97   | 0.03   |
| alan | 0.11   | -3.88     | -0.50     | 4.22  | 5.92       | 0.23      | 0.98   | 0.02   |
| anni | 0.11   | -3.21     | 3.47      | 6.17  | 4.06       | 11.11     | 0.46   | 0.54   |
| moni | 0.11   | 9.85      | 0.60      | 26.86 | 38.19      | 0.33      | 1.00   | 0.00   |
| didi | 0.11   | 6.41      | -2.05     | 12.48 | 16.15      | 3.87      | 0.91   | 0.09   |
| andr | 0.11   | -3.03     | -4.92     | 9.22  | 3.62       | 22.37     | 0.28   | 0.72   |
| pier | 0.11   | -1.03     | 6.38      | 11.51 | 0.41       | 37.56     | 0.03   | 0.97   |
| brig | 0.11   | 1.95      | -4.20     | 5.93  | 1.50       | 16.29     | 0.18   | 0.82   |
| evel | 0.11   | 1.55      | 2.63      | 2.63  | 0.95       | 6.41      | 0.25   | 0.73   |



Exemple illustratif

- Etape 3 : Projection des individus et variables
  - Projection des individus C = XM

|      | Coordo | nnées des | individus | ; cont | ributions | ; cosinus | carrés |        |
|------|--------|-----------|-----------|--------|-----------|-----------|--------|--------|
|      | POIDS  | FACT1     | FACT2     | CONTG  | CONT1     | CONT2     | COSCA1 | COSCA2 |
| jean | 0.11   | -8.61     | -1.41     | 20.99  | 29.19     | 1.83      | 0.97   | 0.03   |
| alan | 0.11   | -3.88     | -0.50     | 4.22   | 5.92      | 0.23      | 0.98   | 0.02   |
| anni | 0.11   | -3.21     | 3.47      | 6.17   | 4.06      | 11.11     | 0.46   | 0.54   |
| moni | 0.11   | 9.85      | 0.60      | 26.86  | 38.19     | 0.33      | 1.00   | 0.00   |
| didi | 0.11   | 6.41      | -2.05     | 12.48  | 16.15     | 3.87      | 0.91   | 0.09   |
| andr | 0.11   | -3.03     | -4.92     | 9.22   | 3.62      | 22.37     | 0.28   | 0.72   |
| pier | 0.11   | -1.03     | 6.38      | 11.51  | 0.41      | 37.56     | 0.03   | 0.97   |
| brig | 0.11   | 1.95      | -4.20     | 5.93   | 1.50      | 16.29     | 0.18   | 0.82   |
| evel | 0.11   | 1.55      | 2.63      | 2.63   | 0.95      | 6.41      | 0.25   | 0.73   |



#### Remarques

• On peut mesure la contribution d'un point à l'inertie d'un nuage :

$$contrib_i = \frac{w_i \sum_{k=1}^K (c_i^k)^2}{\sum_{k=1}^K \lambda_k}$$
 (1)

Exemple illustratif

- Etape 3 : Projection des individus et variables (biplot)
  - Projection des individus et variables



Exemple illustratif

- Etape 3 : Projection des individus et variables (biplot)
  - Projection des individus et variables



Exemple illustratif

- Etape 3: Projection des individus et variables (biplot)
  - Projection des individus et variables



#### Interprétation

• Deux individus proches se ressemblent

Exemple illustratif

- Etape 3 : Projection des individus et variables (biplot)
  - Projection des individus et variables



- Deux individus proches se ressemblent
- Deux variables très corrélées positivement sont du même côté sur un axe

Exemple illustratif

- Etape 3 : Projection des individus et variables (biplot)
  - Projection des individus et variables



- Deux individus proches se ressemblent
- Deux variables très corrélées positivement sont du même côté sur un axe
- Un individu sera proche des variables pour lesquelles il a de fortes valeurs (et inversement)

#### Exemple illustratif

- Etape 3 : Projection des individus et variables (biplot)
  - Projection des individus et variables



- Deux individus proches se ressemblent
- Deux variables très corrélées positivement sont du même côté sur un axe
- Un individu sera proche des variables pour lesquelles il a de fortes valeurs (et inversement)
- Plus les valeurs d'un individu pour une variable sont fortes, plus il sera éloigné de l'origine de l'axe factoriel.

Exemple illustratif

#### Etudes des crimes aux USA





- Données
  - Deux variables qualitatives (tableau de contingence)

| Cheveux  | Brun | Châtain | Roux | Blond | Total |
|----------|------|---------|------|-------|-------|
| Marron   | 68   | 119     | 26   | 7     | 220   |
| Noisette | 15   | 54      | 14   | 10    | 93    |
| Vert     | 5    | 29      | 14   | 16    | 64    |
| Bleu     | 20   | 84      | 17   | 94    | 215   |
| Total    | 108  | 286     | 71   | 127   | 592   |

On note  $x_{ij}$  les éléments du tableau de contingence,  $x_{i.}$  le total d'une ligne i et  $x_{.j}$  le total d'une colonne j.

- Données
  - Deux variables qualitatives (tableau de contingence)

| Cheveux  | Brun | Châtain | Roux | Blond | Total |
|----------|------|---------|------|-------|-------|
| Marron   | 68   | 119     | 26   | 7     | 220   |
| Noisette | 15   | 54      | 14   | 10    | 93    |
| Vert     | 5    | 29      | 14   | 16    | 64    |
| Bleu     | 20   | 84      | 17   | 94    | 215   |
| Total    | 108  | 286     | 71   | 127   | 592   |

On note  $x_{ij}$  les éléments du tableau de contingence,  $x_{i.}$  le total d'une ligne i et  $x_{.i}$  le total d'une colonne j.

ullet Profils-lignes  $x_{ij}^{'}=rac{x_{ij}}{x_{i.}}$  et profils-colonnes  $x_{ij}^{''}=rac{x_{ij}}{x_{.j}}$ 

- Données
  - Deux variables qualitatives (tableau de contingence)

| Cheveux  | Brun | Châtain | Roux | Blond | Total |
|----------|------|---------|------|-------|-------|
| Marron   | 68   | 119     | 26   | 7     | 220   |
| Noisette | 15   | 54      | 14   | 10    | 93    |
| Vert     | 5    | 29      | 14   | 16    | 64    |
| Bleu     | 20   | 84      | 17   | 94    | 215   |
| Total    | 108  | 286     | 71   | 127   | 592   |

On note  $x_{ij}$  les éléments du tableau de contingence,  $x_{i.}$  le total d'une ligne i et  $x_{.i}$  le total d'une colonne j.

ullet Profils-lignes  $x_{ij}^{'}=rac{x_{ij}}{x_{i.}}$  et profils-colonnes  $x_{ij}^{''}=rac{x_{ij}}{x_{.j}}$ 

|              | Brun | Châtain | Roux | Blond | Total |
|--------------|------|---------|------|-------|-------|
| Marron       | 0,31 | 0,54    | 0,12 | 0,3   | 1     |
| Noisette     | 0,16 | 0,58    | 0,15 | 0,11  | 1     |
| Vert         | 0,8  | 0,45    | 0,22 | 0,25  | 1     |
| Bleu         | 0,9  | 0,39    | 0,8  | 0,44  | 1     |
| Profil moyen | 0,18 | 0,48    | 0,12 | 0,22  | 1     |

- Données
  - Deux variables qualitatives (tableau de contingence)

| Cheveux  | Brun | Châtain | Roux | Blond | Total |
|----------|------|---------|------|-------|-------|
| Marron   | 68   | 119     | 26   | 7     | 220   |
| Noisette | 15   | 54      | 14   | 10    | 93    |
| Vert     | 5    | 29      | 14   | 16    | 64    |
| Bleu     | 20   | 84      | 17   | 94    | 215   |
| Total    | 108  | 286     | 71   | 127   | 592   |

On note  $x_{ij}$  les éléments du tableau de contingence,  $x_{i.}$  le total d'une ligne i et  $x_{.j}$  le total d'une colonne j.

• Profils-lignes 
$$x_{ij}^{'}=rac{x_{ij}}{x_{i.}}$$
 et profils-colonnes  $x_{ij}^{''}=rac{x_{ij}}{x_{.j}}$ 

|              | Brun | Châtain | Roux | Blond | Total |
|--------------|------|---------|------|-------|-------|
| Marron       | 0,31 | 0,54    | 0,12 | 0,3   | 1     |
| Noisette     | 0,16 | 0,58    | 0,15 | 0,11  | 1     |
| Vert         | 0,8  | 0,45    | 0,22 | 0,25  | 1     |
| Bleu         | 0,9  | 0,39    | 0,8  | 0,44  | 1     |
| Profil moyen | 0,18 | 0,48    | 0,12 | 0,22  | 1     |

|          | Brun | Châtain | Roux | Blond | Profil moyen |
|----------|------|---------|------|-------|--------------|
| Marron   | 0,63 | 0,42    | 0,37 | 0,6   | 0,37         |
| Noisette | 0,14 | 0,19    | 0,2  | 0,8   | 0,16         |
| Vert     | 0,5  | 0,1     | 0,2  | 0,13  | 0,11         |
| Bleu     | 0,19 | 0,29    | 0,24 | 0,74  | 0,36         |
| Total    | 1    | 1       | 1    | 1     | 1            |

source : http://www.irisa.fr/dream/Seminaire/Tahiti/Tahiti04/transparents/emmanuel.pdf @ > 4 \( \) > 4 \( \) > 5 \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \( \) \

#### Objectif

- Analyser la liaison entre deux variables: la liaison entre deux variables est grande si les profils-lignes ou colonnes sont différents.
  - Quelles sont les lignes qui se ressemblent? sont différentes?
  - Existe-t-il des groupes homogènes entre les lignes? entre les colonnes?

- Objectif
  - Analyser la liaison entre deux variables: la liaison entre deux variables est grande si les profils-lignes ou colonnes sont différents.
    - Quelles sont les lignes qui se ressemblent? sont différentes?
    - Existe-t-il des groupes homogènes entre les lignes? entre les colonnes?

#### Principe général

Une AFC est l'équivalent d'une ACP sur les profils-lignes ou profils colonnes :

- Lignes et colonnes ont les mêmes rôles
- Analyse de la distance entre profils
- Inertie du nuage de points exprime l'indépendance entre les deux variables



- Données
  - p variables qualitatives (par exemple QCM)

| 1        | L   | ^   | ,<br> |  |  |
|----------|-----|-----|-------|--|--|
| individu | bac | âge | durée |  |  |
| 1        | C   | >19 | 3     |  |  |
| 2        | D   | <18 | 2     |  |  |
| •••      |     |     |       |  |  |

- Données
  - p variables qualitatives (par exemple QCM)

| individu | bac | âge | durée |
|----------|-----|-----|-------|
| 1        | C   | >19 | 3     |
| 2        | D   | <18 | 2     |
|          |     |     |       |

• Transformé en tableau de Burt ("Grand tableau de contingence")

|       | bacC | bacD | < 18 | 18ans | 19ans | > 19 | 2ans | 3ans | 4ans |
|-------|------|------|------|-------|-------|------|------|------|------|
| bacC  | 583  | 0    | 108  | 323   | 114   | 38   | 324  | 192  | 67   |
| bacD  | 0    | 214  | 25   | 97    | 68    | 24   | 76   | 82   | 56   |
| < 18  | 108  | 25   | 133  | 0     | 0     | 0    | 84   | 35   | 14   |
| 18ans | 323  | 97   | 0    | 420   | 0     | 0    | 224  | 137  | 59   |
| 19ans | 114  | 68   | 0    | 0     | 182   | 0    | 73   | 75   | 34   |
| > 19  | 38   | 24   | 0    | 0     | 0     | 62   | 19   | 27   | 16   |
| 2ans  | 324  | 76   | 84   | 224   | 73    | 19   | 400  | 0    | 0    |
| 3ans  | 192  | 82   | 35   | 137   | 75    | 27   | 0    | 274  | 0    |
| 4ans  | 67   | 56   | 14   | 59    | 34    | 16   | 0    | 0    | 123  |

#### Principe général

Une ACM est l'équivalent d'une AFC sur un tableau de Burt



### Références

- http://www.irisa.fr/dream/Seminaire/Tahiti/Tahiti04/transparents/ emmanuel/emmanuel.pdf
- https://moodle.insa-rouen.fr/pluginfile.php/1337/mod\_resource/ content/0/Parties\_1\_et\_3\_DM/pcabeamer.pdf
- https://www.math.univ-toulouse.fr/~baccini/zpedago/asdm.pdf