20	004-2005 学年度	医第二学期数据结构 期	明末试题(A)
专	NK:	姓名:学号:	
	单项选择题(25 下列排序算法中,_	分) 、属于稳定排序,_	、属于不
	稳定排序(4分)		
	A. 起泡排序	B. Shell 排列	亨
	C. 插入排序	D. 堆排序	
2.	2. 一棵二叉搜索树中,节点 n 是节点 m 的祖先,则节点 n 的关锁字值与节点 m 的关键字值相比(3分)		
	A. 一定更大	B. 一定更久	/
	C. 一定相等	D. 不确定	
3.	对一个已经有序的整数列表,用下面哪种排序算法进行排序,性能最差?(3分)		
	A. 插入排序	B. 堆排序	
	C. 选择排序	D. 起泡排序	亨
4.	最大堆中编号为 A. 1 或 2 C. 3 或 4	的元素,可能是次大元(B. 2 或 3 D. 4 或 5	3分)
5.	节点数为 4 的 AVL A. 4 C. 6	树共有种可能的结构 B. 5 D. 7	(3分)

6.	使用最小堆实现求解单源最短路径的 Dijkstra 算法,其时间复杂		
	性为,	使用无序线性表实现,	时间复杂性为(2分)
	A. O(lo	gn)	B. $O(n^2)$
	C. O(n ²	logn)	D. O(n ³)
7.	. 一棵红黑树的根节点的阶(根节点到外部节点路径上黑色边的		
	目)为2,	则其节点数目(不包括	外部节点)最多为(3分
	A. 13		B. 14
	C. 15		D. 16
8.	. 将关键字 1、2、3、、2 ^k – 1 依次插入一棵空 AV L 树,『		
	的最终的	AVL 树,其根节点中的	关键字必为(4分)
	A. 1		B. $2^k - 1$
	$C^{2^{k-1}}$		D $2^{k-1} - 1$

二、 给出下面二叉树的先序、中序和后序遍历结果 (9分)

三、对下面的整数列表,利用快速排序算法整理为递增序列,写出算法运行过程中列表变化情况(不必给出每次元素交换情况,给出每个子列表划分后,列表的变化情况即可),选取首元素作为列表划分的枢轴(中央元)(8分)

44, 97, 76, 29, 13, 7, 50, 9, 20, 61, 33, 85

四、 Hash 表大小为 17, Hash 函数为 h(k) = k % 17, 采用线性探测 开地址法(闭散列法)解决冲突,即:若 Hash 表位置 h(k)已经被占据,则依次检测(h(k)+1)%17、(h(k)+2)%17、(h(k)+3)%17、...,即第 i 步检测 Hash 表位置(h(k)+i)%17,直至找到空位保存关键字k,或 Hash 表满失败。将下列关键字依次插入到空 Hash 表中,给出最终元素在 Hash 表中布局,指明插入过程中哪些关键字在哪些位置发生了冲突(12 分)

11、100、32、79、58、9、3、29、200、94、68、84

五、 给出下图的邻接链表的描述,并求出顶点 A 到其他所有顶点的最短路径(12分)

六、 在下面 5 阶 B-树中删除关键字 m,画出合并过程和最终结果 $(8\, \mathcal{G})$

七、 "交叉矩阵"是如下图所示的大小为 2n×2n(n 为正整数)的矩阵,其中非零元素的分布如图中"×"符号所示。设计一种映射模式,使用大小为 4n 的一维数组保存交叉矩阵,给出矩阵元素下标到数组位置的映射函数(6分)

八、 (有序) 树的先根遍历操作是: 首先访问根节点, 然后按顺序 依次对所有子树进行先根遍历。类似的, 后根遍历操作是: 首先 按顺序对所有子树进行后根遍历, 然后访问根节点。如果给出一 棵树的先根遍历次序和后根遍历次序, 是否能推断出唯一的树的 结构? 为什么? 如果能, 对先根次序 1、2、5、6、3、7、8、4 和 后根次序 5、6、2、7、8、3、4、1, 画出对应的树的结构(10 分)

九、 设计算法,对最大堆中指定的元素进行更新操作。完成函数 Update 来实现你的算法,并简要分析算法时间复杂性。其中,参数 heap 为保存最大堆的数组,参数 n 为堆中元素数目,堆占用 heap[1]—heap[n]的数组空间,参数 k 为指定的堆元素的编号,参数 x 为该元素的新值。(10 分)

void Update(int heap[], int n, int k, int x)