QUIZ Z

SOLUTIONS

for t <-1

for -1 = t < 0

$$x(t) * h(t) = \int_{0}^{t+1} (-2) dT$$

$$= \left[-2t\right]_{0}^{t+1}$$

$$\approx -2t-2$$

for 0 < t < 1

$$x(t) * h(t) = \int_{0}^{t} 2 dT * \int_{1}^{t} (+2) dT$$

$$= [2T]_{0}^{t} + [-2T]_{1}^{t}$$

$$= 2t + (-2 - [-2t])$$

$$= 4t - 2$$

for 15 £ < 2

$$\times (t) * h(t) = \int_{t-1}^{t} Z' dT$$

$$= [2T7'_{t-1}]$$

$$= 2 - [2t - 27]$$

$$= 4 - 2t$$

for t>Z

final result

$$x(t) * h(t) = \begin{cases} -2t-2 & -1 \le t < 0 \\ 4t-2 & 0 \le t \le 1 \\ 4-2t & 1 \le t < 2 \\ 0 & \text{otherwise} \end{cases}$$

PROBLEM I

PROBLEM 2

$$x(t) * h(t) = \int_{-\infty}^{\infty} x(t) h(t-t) dT$$

Let $\lambda = b - T$ so that $T = t - \lambda$ and $d\lambda = -dT$. Using this change of variable, we have

$$y(t) = x(t) * h(t)$$

$$= \int_{-\infty}^{\infty} x(\tau) h(t-\tau) d\tau$$

$$= \int_{-\infty}^{\infty} x(\tau) \frac{1}{2} \left[u(t-\tau) - u(t-\tau-1) \right] d\tau$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} x(\tau) \left[u(t-\tau) - u(t-\tau-1) \right] d\tau$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} x(\tau) \left[u(t-\tau) - u(t-1-\tau) \right] d\tau$$

$$= \frac{1}{2} \int_{-\infty}^{\infty} x(\tau) \left[u(t-\tau) - u(t-1-\tau) \right] d\tau$$

$$= \frac{1}{2} \int_{-\infty}^{t} x(\tau) d\tau$$

$$= \frac{1}{2} \int_{t-1}^{t} x(\tau) d\tau$$

We can also equivalently write: $y(t) = \frac{1}{2} \int_0^1 x(t-7) \, dT.$ Since through the change of variable $\lambda = t-7$, we obtain $y(t) = \frac{1}{2} \int_{t-1}^4 x(\lambda) \, d\lambda$

PROBLEM 5

PART A

- (i) A LTI system is memoryless if its impulse response h(t) satisfies h(t) = 0 for all $t \neq 0$.

 In this case, h(t) $\neq 0$ for $t \geq 0$ (e.g., at t = 1) so the system has memory.
- (ii) A LTI system is causal if its impulse response hit) satisfies hit)=0 for all t<0.

 In this case, hit)=0 for all t<0.

 Therefore, the system is cousal

PART B

A LTI system is BIBO stable if and only if its impulse response h(t) satisfies $\int_{-\infty}^{\infty} |h(t)| dt < \infty$. For $\alpha = 0$, we have $\int_{-\infty}^{\infty} |h(t)| dt = \int_{-\infty}^{\infty} |e^{\alpha}u(t)| dt = \int_{-\infty}^{\infty} |u(t)| dt = \int_{0}^{\infty} dt = [t]|_{0}^{\infty} = \infty$ For $\alpha \neq 0$, we have $\int_{-\infty}^{\infty} |h(t)| dt = \int_{-\infty}^{\infty} |e^{-\alpha t}u(t)| dt$ $= \int_{-\infty}^{\infty} |e^{-\alpha t}| u(t) dt$ $= \int_{0}^{\infty} e^{-\alpha t} dt$ $= \left[-\frac{1}{\alpha}e^{-\alpha t}\right]_{0}^{\infty} \alpha \neq 0$

The above integral is only finite if $\alpha > 0$, which yields $\int_{-\infty}^{\infty} (h(t)) dt = \left[0 - \left(-\frac{1}{\alpha}(1)\right)\right] = \frac{1}{\alpha}.$

Therefore, the system is BIBN stable if $\alpha > 0$.

(a)
$$y(t) = x(t) + x(t) * h_1(t) + x(t) * h_2(t) * h_3(t)$$

$$= x(t) * \delta(t) + x(t) * h_1(t) + x(t) * h_2(t) * h_3(t)$$

$$= x(t) * \left[\delta(t) + h_1(t) + h_2(t) * h_3(t) \right]$$

$$h(t) = \delta(t) + h_1(t) + h_2(t) * h_3(t)$$

$$= S(f) + Q(f+1) + Q(f)$$

$$= Q(f) + Q(f+1) + Q(f) \times Q(f)$$
(P) $P(f) \approx Q(f) + Q(f+1) + Q(f) \times Q(f)$

PROBLEM 6

The systems H_1 and H_2 are inverses if $h_1(t) * h_2(t) = f(t)$.

$$h_{1}(t) \neq h_{2}(t) = \int_{-\infty}^{\infty} h_{1}(T) h_{2}(t-T) dT$$

$$= \int_{-\infty}^{\infty} \frac{1}{2} \delta(T+1) 2 \delta(t-T-1) dT$$

$$= \int_{-\infty}^{\infty} \delta(T+1) \delta(t-T-1) dT$$

$$= \delta(t-[-1]-1)$$

$$= \delta(t)$$

Therefore, the system are inverses.