M=E(X)

Functions of Random Variables and Their Expected Values

Similar to the univariate case, we can also find the **expected value (average or mean)** of functions of multiple random variables.

Expected value of a function of two random variables (Bivariate Expectations)

Suppose g(x,y) is a real-valued function. If X and Y are random variables with joint pmf of $p_{X,Y}(x,y)$ or pdf of $f_{X,Y}(x,y)$, then E[g(X,Y)] denotes the expected value of g(X,Y) and is computed as

Notation
$$E[g(X,Y)] = \sum_{all \ x} \sum_{all \ y} [g(x, y) \times p_{X,Y}(x,y)]$$
; if X and Y are DISCRETE

Recall: $E[g(X,Y)] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \times f_{X,Y}(x,y) \, dx \, dy$; if X and Y are CONTINUOUS

Recall: $E[X] = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x,y) \times f_{X,Y}(x,y) \, dx \, dy$; if X and Y are CONTINUOUS

Ex 1: The input (X) and output (Y) of a system subject to random perturbations are described probabilistically by the joint pmf given in the table below:

		Output (Y)				
		1	2	3	4	5
Input (X)	1	7/71	2/71	8/71	5/71	4/71
	2	4/71	2/71	5/71	5/71	9/71
	3	2/71	4/71	8/71	5/71	1/71

(a) Compute the expected value of absolute difference between input and output of the system.

Here,
$$g(x,y) = |x-y|$$
. Find $E(|x-y|)$

$$E(|x-y|) = \sum_{\alpha | |x-y|} \sum_{\alpha$$

(b) Compute the E(XY). Here,
$$g(x,y) = xy$$
.

$$E(xy) = \sum_{\alpha | | x} \sum_{\alpha | | y} xy | \alpha(x,y)$$

$$= (1 \times 1 \times \frac{1}{11}) + (1 \times 2 \times \frac{2}{11}) + \dots + (3 \times 5 \times \frac{1}{11})$$

$$= \frac{428}{71} = 6.025$$

(c) Compute the expected value of ratio between input and output. Here,
$$g(X,Y) = \frac{x}{y}$$

$$E(\frac{x}{y}) = \frac{2}{2} \frac{2}{3} \frac{x}{y} p(x,y) p(1,2)$$

$$= (\frac{1}{1} \times \frac{1}{1}) + (\frac{1}{2} \times \frac{2}{1}) + \dots + (\frac{3}{5} \times \frac{1}{1}) = \frac{0.795775}{1}$$

(d) Compute the E[(X-1)/Y]. Here,
$$g(X,Y) = \frac{X-1}{Y}$$

$$E\left(\frac{X-1}{Y}\right) = \sum_{\text{align}} \sum_{\text{wity}} \left(\frac{X-1}{Y}\right) p(x,y) p(2,1)$$

$$= \left(\frac{1-1}{Y}\right) \times \frac{7}{71} + \left(\frac{2-1}{Y}\right) \times \frac{4}{71} + \cdots + \left(\frac{3-1}{5}\right) \times \frac{1}{71}$$

$$= 25.95 = 0.365493$$
Ex 2: Consider the following function.

$$f_{X,Y}(x,y) = \begin{cases} \frac{5}{3}(1+x^2y) ; & 0 < y \le x \end{cases} \le 1$$
0; Elsewhere

(a) Compute E(XY).

Here,
$$g(x,y) = xy$$
.

$$E(xy) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x,y) dxdy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \frac{5}{3} (1+x^2y) dy dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy \frac{5}{3} (1+x^2y) dy dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} xy f(x,y) dxdy$$

(b) Compute the expected value of ratio between Y and X.
$$g(x_3y) = x$$

$$E(x) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{y}{2} f(x_3y) dx dy$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{y}{2} f(x_3y) dx dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \frac{y}{2} f(x_3y) dx dx$$