FGI-1 – Formale Grundlagen der Informatik I

Logik, Automaten und Formale Sprachen

Musterlösung 7: — Folgerung und Deduktion

Präsenzaufgabe 7.1

- 1. Beweisen Sie zwei der folgenden Behauptungen.
 - (a) $A \wedge B \wedge C \wedge D \wedge E \models A \vee B \vee C$
 - (b) $A \lor B \lor C \lor D \not\models A \land B \land C \land D$
 - (c) $(A \Rightarrow B) \Rightarrow C \models (A \Rightarrow B) \Rightarrow (A \Rightarrow C)$

Hinweis: Falls Sie Wahrheitstafeln benutzen, geben Sie an, wie Sie das Ergebnis ablesen. Nur die Wahrheitstafel reicht als Beweis nicht.

Lösung In der Musterlösung zeigen wir, wie man die Aufgabe ohne Wahrheitstafel lösen kann.

- (a) Sei \mathcal{A} eine Belegung, die die linke Seite wahr macht. Insbesondere gilt dann unter anderem $\mathcal{A}(A) = 1$, was bereits die Formel der rechten Seite wahr macht.
- (b) Die Belegung \mathcal{A} mit $\mathcal{A}(\mathsf{A}) = 1$ und $\mathcal{A}(\mathsf{B}) = 0$ (und sonst beliebig) macht die linke Formel wahr, die rechte hingegen falsch. Die Folgerbarkeitsbeziehung kann also nicht gelten.
- (c) Jede Belegung, die $(A \Rightarrow B) \Rightarrow C$ wahr macht, macht $(A \Rightarrow B)$ falsch oder C wahr.

Fall 1: Eine Belegung, die $(A \Rightarrow B)$ falsch macht, macht $(A \Rightarrow B) \Rightarrow (A \Rightarrow C)$ wahr.

Fall 2: Eine Belegung, die C wahr macht, macht auch $(A \Rightarrow C)$ wahr und damit auch $(A \Rightarrow B) \Rightarrow (A \Rightarrow C)$ wahr.

Zusammenfassung: Insgesamt macht also jede Belegung, die $(A \Rightarrow B) \Rightarrow C$ wahr macht, auch $(A \Rightarrow B) \Rightarrow (A \Rightarrow C)$ wahr. Lt. Def. 5.1 folgt damit $(A \Rightarrow B) \Rightarrow (A \Rightarrow C)$ aus $(A \Rightarrow B) \Rightarrow C$.

2. Beweisen Sie **Satz 5.10**: Sei $\mathbf{M} \subseteq \mathcal{L}_{AL}$ eine Formelmenge und $\mathsf{F} \in \mathcal{L}_{AL}$ eine Formel. F folgt genau dann aus \mathbf{M} , wenn $\mathbf{M} \cup \{\neg \mathsf{F}\}$ unerfüllbar ist. $(\mathbf{M} \models \mathsf{F} \text{ gdw. } \mathbf{M} \cup \{\neg \mathsf{F}\} \text{ unerfüllbar.})$

Lösung Im folgenden kommen drei Varianten, die zeigen sollen, dass es verschiedene Vorgehensweisen gibt, die alle gut sind.

Lösung 1: Der folgende Beweis zeigt die Aussage der Form "A genau dann, wenn B" als Ganzes.

Lt. Def. 5.1 folgt F genau dann aus \mathbf{M} , wenn jede Belegung, die alle Formeln aus \mathbf{M} wahr macht, auch F wahr macht. Damit folgt F genau dann aus \mathbf{M} , wenn jede Belegung, die alle Formeln aus \mathbf{M} wahr macht, $\neg \mathsf{F}$ falsch macht. Also folgt F genau dann aus \mathbf{M} , wenn jede Belegung eine Formel aus $\mathbf{M} \cup \{\neg \mathsf{F}\}$ falsch macht, $\mathbf{M} \cup \{\neg \mathsf{F}\}$ also unerfüllbar ist.

Lösung 2: Der folgende Beweis zeigt die Aussage der Form "A genau dann, wenn B", indem er "Wenn A dann, B" und "Wenn B dann, A" in zwei Teilbeweisen zeigt.

Teilbeweis 1: Wir nehmen an, dass F aus M folgt. Lt. Def. 5.1 macht jede Belegung, die alle Formeln aus M wahr macht, auch F wahr, und damit $\neg \mathsf{F}$ falsch. Also macht jede Belegung eine Formel aus $\mathsf{M} \cup \{\neg \mathsf{F}\}$ falsch, $\mathsf{M} \cup \{\neg \mathsf{F}\}$ ist also unerfüllbar.

Teilbeweis 2: Wir nehmen an, dass $\mathbf{M} \cup \{\neg \mathsf{F}\}$ unerfüllbar ist. Dann macht jede Belegung eine Formel aus $\mathbf{M} \cup \{\neg \mathsf{F}\}$ falsch, also macht jede Belegung, die alle Formeln aus \mathbf{M} wahr macht, $\neg \mathsf{F}$ falsch und damit F wahr. Also folgt lt. Def. 5.1 F aus \mathbf{M} .

Lösung 3: Der folgende Beweis zeigt die Aussage der Form "A genau dann, wenn B", indem er "Wenn A dann, B" und "Wenn nicht A dann, (auch) nicht B" in zwei Teilbeweisen zeigt.

Teilbeweis 1: s. Teilbeweis 1 der Lösung 2.

Teilbeweis 2: Wir nehmen an, dass F nicht aus M folgt. Lt. Def. 5.1 gibt es eine Belegung, die alle Formeln aus M wahr macht, und F falsch macht. Diese Belegung macht dann aber auch $\neg \mathsf{F}$ wahr und macht damit alle Formeln aus $\mathsf{M} \cup \{\neg \mathsf{F}\}$ wahr. Also ist $\mathsf{M} \cup \{\neg \mathsf{F}\}$ erfüllbar.

Präsenzaufgabe 7.2

1. Gegeben sei die Substitution sub₁, für die gilt:

$$\begin{aligned} & sub_1(A) = (C \wedge D), \\ & sub_1(B) = (A \Leftrightarrow B), \\ & sub_1(C) = A, \end{aligned}$$

für alle anderen Aussagensymbole A_i sei $sub_1(A_i) = A_i$.

Bestimmen Sie $sub_1(F)$ für $F = (A \lor \neg B) \Rightarrow (\neg A \Rightarrow B)$.

Lösung
$$sub_1(F) = ((C \land D) \lor \neg(A \Leftrightarrow B)) \Rightarrow (\neg(C \land D) \Rightarrow (A \Leftrightarrow B)).$$

Dass $sub_1(C) = A$ ist hier völlig egal, da in F das C nicht vorkommt. Nicht durch überflüssige Infos irritieren lassen!

2. Bestimmen Sie alle mit den Regeln MP und MT aus der Formelmenge \mathbf{M} ableitbaren Formeln.

$$\mathrm{Modus\ Ponens:\ } \mathsf{MP} = \frac{\mathsf{A}, \mathsf{A} \Rightarrow \mathsf{B}}{\mathsf{B}} \qquad \mathrm{Modus\ Tollens:\ } \mathsf{MT} = \frac{\neg \mathsf{B}, \mathsf{A} \Rightarrow \mathsf{B}}{\neg \mathsf{A}}$$

$$\mathbf{M} = \{\mathsf{B}, (\mathsf{B} \Rightarrow \mathsf{C}), ((\mathsf{B} \Rightarrow \mathsf{C}) \Rightarrow (\mathsf{E} \lor \neg \mathsf{D})), \neg \mathsf{C}\}\$$

Lösung

- Jede Substitution mit sub(A) = B und sub(B) = C resultiert in $sub(A \Rightarrow B) = B \Rightarrow C$. Da $B, B \Rightarrow C \in M$, ist sub(B) = C mit Modus Ponens aus M ableitbar.
- Jede Substitution mit $sub(A) = (B \Rightarrow C)$ und $sub(B) = (E \lor \neg D)$ resultiert in $sub(A \Rightarrow B) = (B \Rightarrow C) \Rightarrow (E \lor \neg D)$. Da $(B \Rightarrow C), (B \Rightarrow C) \Rightarrow (E \lor \neg D) \in \mathbf{M}$, ist $sub(B) = (E \lor \neg D)$ mit Modus Ponens aus \mathbf{M} ableitbar.
- Jede Substitution mit sub(A) = B und sub(B) = C resultiert in $sub(A \Rightarrow B) = B \Rightarrow C$ und $sub(\neg B) = \neg C$. Da $\neg C, B \Rightarrow C \in M$, ist $sub(\neg A) = \neg B$ mit Modus Tollens aus M ableitbar.

- Es gibt keine weiteren Möglichkeiten. sub(A ⇒ B) ist ja auf jeden Fall eine Formel mit Hauptjunktor ⇒ und es gibt in M nur die beiden bereits behandelten Formeln, die diesem Muster entsprechen. Hat man die Substitution bestimmt, welche (A ⇒ B) auf eine solche Formel abbildet, dann ist damit auch eindeutig festgelegt, worauf A bzw. ¬B abgebildet wird. Da die Formel ¬(E ∨ ¬D) nicht in M enthalten sind, gibt es keine weiteren Ableitungsmöglichkeiten.
- 3. Beweisen Sie: Sei $\mathcal{C} = (\mathcal{L}_{AL}, \mathcal{A}x, \mathcal{R})$ ein Kalkül der Aussagenlogik (Def. 6.9), $\mathbf{M} \subseteq \mathcal{L}_{AL}$, $\mathsf{F} \in \mathcal{L}_{AL}$ und sub_3 eine Substitution. Wenn F mit \mathcal{C} aus \mathbf{M} ableitbar ist, dann ist $\mathsf{sub}_3(\mathsf{F})$ mit \mathcal{C} aus $\mathsf{sub}_3(\mathbf{M})$ ableitbar, indem Sie aus der Ableitung von F mit \mathcal{C} aus \mathbf{M} eine Ableitung von $\mathsf{sub}_3(\mathsf{F})$ mit \mathcal{C} aus $\mathsf{sub}_3(\mathbf{M})$ konstruieren (und zeigen, dass die konstruierte Ableitung die Anforderungen der Def. 6.10 erfüllt). (Symbolisch: Wenn $\mathbf{M} \vdash_{\mathcal{C}} \mathsf{F}$, dann $\mathsf{sub}_3(\mathbf{M}) \vdash_{\mathcal{C}} \mathsf{sub}_3(\mathsf{F})$.)

Tipp: Sie dürfen hier Folgendes verwenden: Die Hintereinanderausführungen zweier Substitutionen ist wieder eine Substitution.

Praktischer Nutzen dieses Satzes: Man kann sich doppelte Arbeit sparen. Hat man einmal eine Ableitung (korrekt) erstellt, dann kann man sich die Arbeit für Varianten der Formel, die durch Substitution entstehen, sparen (insbesondere für den Fall $\mathbf{M} = \emptyset$ ist das sehr nützlich).

Lösung Es sei $\mathcal{C} = (\mathcal{L}_{AL}, \mathcal{A}x, \mathcal{R})$ ein Kalkül der Aussagenlogik, sub₃ eine Substitution, $\mathbf{M} \subseteq \mathcal{L}_{AL}$, $\mathsf{F} \in \mathcal{L}_{AL}$, so dass $\mathbf{M} \vdash_{\mathcal{C}} \mathsf{F}$. Dann gibt es eine Ableitung von F aus \mathbf{M} , also eine endliche Sequenz $\mathsf{F}_1, \ldots, \mathsf{F}_n$ von Formeln aus \mathcal{L}_{AL} gemäß Def. 6.10.

Wir betrachten nun die durch Anwendung von sub_3 daraus generierte Formelsequenz $sub_3(F_1), \ldots, sub_3(F_n)$ und stellen fest:

- (a) Da $F = F_n$ ist auch $sub_3(F) = sub_3(F_n)$.
- (b) Für jedes $k \in \{1, ..., n\}$ gilt: Ist $F_k \in M$, dann ist $sub_3(F_k) \in sub_3(M)$.
- (c) Für jedes $k \in \{1, ..., n\}$ gilt: Ist $\mathsf{F}_k = \mathsf{sub}(\mathsf{H})$, wobei sub eine Substitution und $\mathsf{H} \in \mathcal{A}x$ ist, dann ist $\mathsf{sub}_3(\mathsf{F}_k) = \mathsf{sub}_3(\mathsf{sub}(\mathsf{H}))$. Die Hintereinanderausführung der beiden Substitutionen ist wieder eine Substitution, also gibt es eine Substitution sub_{3*} , so dass $\mathsf{sub}_3(\mathsf{F}_k) = \mathsf{sub}_{3*}(\mathsf{H})$.
- (d) Für jedes $k \in \{1, \ldots, n\}$ gilt: ist $R \in \mathcal{R}$ und $\{\mathsf{F}_1, \ldots, \mathsf{F}_{\mathsf{k}-1}\} \vdash_R \mathsf{F}_\mathsf{k}$, dann gibt es Formeln $\mathsf{H}_1, \ldots, \mathsf{H}_\mathsf{j}, \mathsf{H} \in \mathcal{L}_{AL}$, so dass $R = \frac{\{\mathsf{H}_1, \ldots, \mathsf{H}_\mathsf{j}\}}{\mathsf{H}}$, und eine Substitution sub, so dass $\{\mathsf{sub}(\mathsf{H}_1), \ldots, \mathsf{sub}(\mathsf{H}_\mathsf{j})\} \subseteq \{\mathsf{F}_1, \ldots, \mathsf{F}_{\mathsf{k}-1}\}$ und $\mathsf{sub}(\mathsf{H}) = \mathsf{F}_\mathsf{k}$. Dann ist aber auch $\{\mathsf{sub}_3(\mathsf{sub}(\mathsf{H}_1)), \ldots, \mathsf{sub}_3(\mathsf{sub}(\mathsf{H}_\mathsf{j}))\} \subseteq \{\mathsf{sub}_3(\mathsf{F}_1), \ldots, \mathsf{sub}_3(\mathsf{F}_{\mathsf{k}-1})\}$ und $\mathsf{sub}_3(\mathsf{sub}(\mathsf{H})) = \mathsf{sub}_3(\mathsf{F}_\mathsf{k})$. Da die Hintereinanderausführung der beiden Substitutionen sub und sub_3 wieder eine Substitution ist, ist mit der Regel R dann auch $\mathsf{sub}_3(\mathsf{F}_\mathsf{k})$ aus $\{\mathsf{sub}_3(\mathsf{F}_1), \ldots, \mathsf{sub}_3(\mathsf{F}_{\mathsf{k}-1})\}$ ableitbar $(\{\mathsf{sub}_3(\mathsf{F}_1), \ldots, \mathsf{sub}_3(\mathsf{F}_{\mathsf{k}-1})\} \vdash_R \mathsf{sub}_3(\mathsf{F}_\mathsf{k})$.

Nach Def. 6.10 ist damit die Formelsequenz $sub_3(F_1), \ldots, sub_3(F_n)$ eine Ableitung bzgl. C für $sub_3(F)$

Übungsaufgabe 7.3

1. Beweisen Sie folgende Behauptungen:

von 6

```
(a) \ \{((\mathsf{A} \vee \mathsf{B}) \Rightarrow (\mathsf{C} \vee \mathsf{D})), ((\mathsf{A} \vee \neg \mathsf{C}) \Rightarrow (\mathsf{E} \wedge \mathsf{F}))\} \models ((\mathsf{A} \wedge \neg \mathsf{C}) \Rightarrow (\mathsf{D} \wedge \mathsf{F}))
```

(b)
$$\{((A \land B) \Rightarrow (C \lor D)), ((A \land \neg C) \Rightarrow (E \land F))\} \not\models ((A \land \neg C) \Rightarrow (D \land F))$$

Hinweis: Falls Sie Wahrheitstafeln benutzen, geben Sie an, wie Sie das Ergebnis ablesen. Nur die Wahrheitstafel reicht als Beweis nicht.

Lösung

(a) Sei \mathcal{A} eine Belegung, die alle Elemente von $\{((A \lor B) \Rightarrow (C \lor D)), ((A \lor \neg C) \Rightarrow (E \land F))\}$ wahr macht.

```
Fall 1: Ist \mathcal{A}((A \land \neg C)) = 0, dann ist \mathcal{A}(((A \land \neg C) \Rightarrow (D \land F))) = 1.
```

Fall 2: Es ist $\mathcal{A}((A \land \neg C)) = 1$. Damit muss dann $\mathcal{A}(A) = 1$ und $\mathcal{A}(\neg C) = 1$, also $\mathcal{A}(C) = 0$ (s. Def. 3.1).

Damit ist dann $\mathcal{A}((A \vee B)) = 1$ und $\mathcal{A}((A \vee \neg C)) = 1$ (s. Def. 3.1). Da nach Wahl von \mathcal{A} auch $\mathcal{A}(((A \vee B) \Rightarrow (C \vee D))) = 1$ und $\mathcal{A}(((A \vee \neg C) \Rightarrow (E \wedge F))) = 1$, sind auch $\mathcal{A}((C \vee D)) = 1$ und $\mathcal{A}((E \wedge F)) = 1$ (wieder Def. 3.1). Damit muss auch $\mathcal{A}(F) = 1$ und (wegen $\mathcal{A}(C) = 0$) $\mathcal{A}(D) = 1$ sein.

Damit ist dann aber $\mathcal{A}((\mathsf{D} \wedge \mathsf{F})) = 1$ und auch $\mathcal{A}(((\mathsf{A} \wedge \neg \mathsf{C}) \Rightarrow (\mathsf{D} \wedge \mathsf{F}))) = 1$.

Damit machen alle Belegungen, die alle Elemente von

$$\{((A \vee B) \Rightarrow (C \vee D)), ((A \vee \neg C) \Rightarrow (E \wedge F))\} \text{ wahr machen, auch } \{((A \wedge \neg C) \Rightarrow (D \wedge F)) \text{ wahr.}$$

(b) Wir suchen nach einer Belegung \mathcal{A} , die alle Elemente von $\{((A \land B) \Rightarrow (C \lor D)), ((A \land \neg C) \Rightarrow (E \land F))\}$ wahr und $((A \land \neg C) \Rightarrow (D \land F))$ falsch macht.

```
Ist \mathcal{A}(((A \land \neg C) \Rightarrow (D \land F))) = 0, dann ist \mathcal{A}((A \land \neg C)) = 1 und \mathcal{A}((D \land F)) = 0. Also ist \mathcal{A}(A) = 1 und \mathcal{A}(C) = 0. Da \mathcal{A}(((A \land \neg C) \Rightarrow (E \land F))) = 1, ist dann auch \mathcal{A}((E \land F)) = 1 und damit \mathcal{A}(E) = 1 und \mathcal{A}(F) = 1. Damit \mathcal{A}((D \land F)) = 0 gelten kann, muss nun \mathcal{A}(D) = 0 sein. Damit ergibt sich dann \mathcal{A}((C \lor D)) = 0 und um \mathcal{A}(((A \land B) \Rightarrow (C \lor D))) = 1 zu erreichen, muss \mathcal{A}((A \land B)) = 0 sein. Da \mathcal{A}(A) = 1, muss dafür \mathcal{A}(B) = 0. Die so konstruierte Belegung erfüllt in der Tat die Anforderungen aus der Aufgabenstellung.
```

2. Beweisen Sie: Sei $\mathbf{M} \subseteq \mathcal{L}_{AL}$ eine Formelmenge und seien $\mathsf{F}, \mathsf{G} \in \mathcal{L}_{AL}$ Formeln. Wenn G eine Tautologie ist, dann folgt F genau dann aus $\mathbf{M} \setminus \{\mathsf{G}\}$, wenn F aus $\mathbf{M} \cup \{\mathsf{G}\}$ folgt.

```
(\text{Wenn} \models \mathsf{G}, \text{ dann } \mathbf{M} \setminus \{\mathsf{G}\} \models \mathsf{F} \text{ gdw. } \mathbf{M} \cup \{\mathsf{G}\} \models \mathsf{F} .)
```

Das Hinzufügen einer Tautologie zu einer Formelmenge ergibt keine neuen Folgerungen, das Löschen reduziert nicht die Folgerungen.

Lösung Sei $\mathbf{M} \subseteq \mathcal{L}_{AL}$ eine Formelmenge und $\mathbf{G} \in \mathcal{L}_{AL}$ eine Tautologie.

Da $M \setminus \{G\} \subseteq M \subseteq M \cup \{G\}$, macht jede Belegung, die alle Elemente von $M \cup \{G\}$ wahr macht, auch alle Elemente von $M \setminus \{G\}$ wahr.

Sei \mathcal{A} eine Belegung, die alle Elemente von $\mathbf{M}\setminus \{\mathsf{G}\}$ wahr macht. Da G eine Tautologie ist, macht \mathcal{A} auch G wahr. Also macht \mathcal{A} auch alle Elemente von $\mathbf{M}\cup \{\mathsf{G}\}$ wahr.

Insgesamt ergibt sich, dass die Belegungen, die alle Elemente von $\mathbf{M} \cup \{\mathsf{G}\}$ wahr machen, genau dieselben Belegungen sind, die alle Elemente von $\mathbf{M} \setminus \{\mathsf{G}\}$ wahr machen.

3. Beweisen Sie: Es seien $F_1, F_2, G_1, G_2 \in \mathcal{L}_{AL}$ Formeln. Sind F_1 und F_2 äquivalent und auch G_1 und G_2 äquivalent, dann folgt G_1 aus F_1 genau dann, wenn G_2 aus F_2 folgt. (Wenn $F_1 \equiv F_2$ und $G_1 \equiv G_2$, dann $F_1 \models G_1$ gdw. $F_2 \models G_2$.)

Lösung

Es seien $F_1, F_2, G_1, G_2 \in \mathcal{L}_{AL}$ Formeln, so dass F_1 und F_2 äquivalent sind und auch G_1 und G_2 äquivalent sind.

Da F_1 und F_2 äquivalent sind sind alle Modelle von F_2 auch Modelle von F_1 . Da G_1 und G_2 äquivalent sind sind alle Modelle von G_1 auch Modelle von G_2 .

Folgt nun G_1 aus F_1 , dann sind alle Modelle von F_1 auch Modelle von G_1 . Daraus ergibt sich, dass alle Modelle von F_2 auch Modelle von G_2 sind.

Die Umkehrung gilt entsprechend.

Übungsaufgabe 7.4

1. Bestimmen Sie eine Substitution $\operatorname{\mathsf{sub}}_1$, so dass $\operatorname{\mathsf{sub}}_1(\mathsf{F}) = \mathsf{G}$ oder $\mathsf{F} = \operatorname{\mathsf{sub}}_1(\mathsf{G})$ mit: $\mathsf{F} = ((\mathsf{A} \land \neg \mathsf{B}) \Rightarrow \neg(\mathsf{C} \lor \mathsf{B})), \quad \mathsf{G} = ((\mathsf{C} \land \mathsf{D}) \Rightarrow \neg\mathsf{E}).$

von

6

Lösung Mit $sub_1(C) = A$ und $sub_1(D) = \neg B$ und $sub_1(E) = (C \lor B)$ ist $F = sub_1(G)$. Es gibt keine Substitution, die die andere Bedingung $sub_1(F) = G$ erfüllt, da die reichere Struktur von F nicht durch eine Substitution reduziert werden kann. Atomare Formeln können durch komplexe Formeln ersetzt werden, die Umkehrung geht aber nicht.

2. Prüfen Sie folgende Inferenzregeln auf Korrektheit.

(a)
$$R_a = \frac{B \Rightarrow A}{A}$$
 (b) $R_b = \frac{\neg A, \neg B}{A \Rightarrow B}$ (c) $R_c = \frac{A \lor \neg B, B \lor C}{A \lor C}$

Lösung Die folgende Wahrheitstafel zeigt die Wahrheitswertverläufe der in den ersten beiden Teilaufgaben genannten Formeln.

	(a)		(b)	(b)		(a)
						$(B \Rightarrow A)$
$\overline{\mathcal{A}_0}$	0	0	1	1	1 1 0 1	1
${\cal A}_1$	0	1	1	0	1	0
${\cal A}_2$	1	0	0	1	0	1
\mathcal{A}_3	1	1	0	0	1	1

In den jeweils markierten Spalten können wir ablesen:

- (a) Die Belegung A_0 macht $(B \Rightarrow A)$ wahr, aber sie macht A falsch. Damit folgt A nicht aus $(B \Rightarrow A)$, obwohl A mit R_a aus $(B \Rightarrow A)$ ableitbar ist. Also ist R_a nicht korrekt.
- (b) Jede Belegung, die $\neg A$ und $\neg B$ wahr macht, macht auch $(A \Rightarrow B)$ wahr, also folgt $(A \Rightarrow B)$ aus $\neg A$ und $\neg B$ und damit ist nach Satz 6.7 die Regel R_b korrekt.

- (c) Jede Belegung macht B oder ¬B falsch. Macht eine Belegung B falsch und B ∨ C wahr, dann macht sie C wahr und damit auch A ∨ C wahr. Macht eine Belegung ¬B falsch und A ∨ ¬B wahr, dann macht sie A wahr und damit auch A ∨ C wahr. Also macht jede Belegung, die A ∨ ¬B und B ∨ C wahr macht, auch A ∨ C wahr, also folgt A ∨ C aus A ∨ ¬B und B ∨ C und damit ist nach Satz 6.7 die Regel R_c korrekt.
- 3. Beweisen Sie: Sei $\mathcal{C} = (\mathcal{L}_{AL}, \mathcal{A}x, \mathcal{R})$ ein Kalkül der Aussagenlogik (Def. 6.9), $\mathbf{M}_1, \mathbf{M}_2 \subseteq \mathcal{L}_{AL}, \mathsf{F}, \mathsf{G} \in \mathcal{L}_{AL}$. Wenn F mit \mathcal{C} aus \mathbf{M}_1 ableitbar ist und G mit \mathcal{C} aus $\mathbf{M}_2 \cup \{\mathsf{F}\}$ ableitbar ist, dann ist G mit \mathcal{C} aus $\mathbf{M}_1 \cup \mathbf{M}_2$ ableitbar, indem Sie aus den Ableitungen von F mit \mathcal{C} aus \mathbf{M}_1 und von G mit \mathcal{C} aus $\mathbf{M}_2 \cup \{\mathsf{F}\}$ eine Ableitung von G mit \mathcal{C} aus $\mathbf{M}_1 \cup \mathbf{M}_2$ konstruieren (und zeigen, dass die konstruierte Ableitung die Anforderungen der Def. 6.10 erfüllt).

```
(Symbolisch: \mathbf{M}_1 \vdash_{\mathcal{C}} \mathsf{F} \text{ und } \mathbf{M}_2 \cup \{\mathsf{F}\} \vdash_{\mathcal{C}} \mathsf{G}, \text{ dann } \mathbf{M}_1 \cup \mathbf{M}_2 \vdash_{\mathcal{C}} \mathsf{G} ).
```

Praktischer Nutzen dieses Satzes: Man kann sich doppelte Arbeit sparen. Hat man einmal eine Ableitung (korrekt) erstellt, dann kann man die abgeleitete Formel in anderen Ableitungen als Annahme einsetzen (insbesondere für den Fall $\mathbf{M}_1 = \emptyset$ ist das sehr nützlich).

Lösung Es sei $\mathcal{C} = (\mathcal{L}_{AL}, \mathcal{A}x, \mathcal{R})$ ein Kalkül der Aussagenlogik, $\mathbf{M}_1, \mathbf{M}_2 \subseteq \mathcal{L}_{AL}, \mathsf{F}, \mathsf{G} \in \mathcal{L}_{AL}$, F mit \mathcal{C} aus \mathbf{M}_1 ableitbar ist und G mit \mathcal{C} aus $\mathbf{M}_2 \cup \{\mathsf{F}\}$ ableitbar.

Das heißt, es gibt eine Ableitung von F aus M_1 , also eine endliche Sequenz F_1, \ldots, F_n von Formeln aus \mathcal{L}_{AL} mit $F = F_n$ gemäß Def. 6.10, und eine Ableitung von G aus $M_2 \cup \{F\}$, also eine endliche Sequenz G_1, \ldots, G_m von Formeln aus \mathcal{L}_{AL} mit $G = G_m$ gemäß Def. 6.10.

Wir konstruieren eine Ableitung von G aus $\mathbf{M}_1 \cup \mathbf{M}_2$, indem wir die Sequenz F_1, \ldots, F_{n-1} der Sequenz G_1, \ldots, G_m voranstellen. Zu zeigen ist also, dass die Sequenz $F_1, \ldots, F_{n-1}, G_1, \ldots, G_m$ eine Ableitung von $G = G_m$ aus $\mathbf{M}_1 \cup \mathbf{M}_2$ ist. Dabei ist der einzige kritische Punkt, dass in G_1, \ldots, G_m auch F auftreten kann. Nehmen wir deshalb an, dass $G_i = F$. Da ja F_1, \ldots, F_n eine Ableitung von $F = F_n$ aus \mathbf{M}_1 ist, gilt, dass eine der folgenden drei Bedingungen erfüllt sein muss.

- (a) $\mathbf{F} \in \mathbf{M}_1$
- (b) $F = \mathsf{sub}(\mathsf{H})$ für $\mathsf{H} \in \mathcal{A}x$ und Substitution sub
- $\begin{array}{l} (\mathrm{c}) \ \ \mathsf{F} = \mathsf{sub}(\mathsf{H}) \ \mathrm{f\"{u}}\mathrm{r} \ \mathrm{eine} \ \mathrm{Regel} \ \mathit{R} = \frac{\{\mathsf{H}_1, \ldots, \mathsf{H}_j\}}{\mathsf{H}} \in \mathcal{R} \ \mathrm{und} \ \mathrm{eine} \ \mathrm{Substitution} \ \mathsf{sub}, \ \mathrm{so} \ \mathrm{dass} \\ \{\mathsf{sub}(\mathsf{H}_1), \ldots, \mathsf{sub}(\mathsf{H}_j)\} \subseteq \{\mathsf{F}_1, \ldots, \mathsf{F}_{k-1}\} \subseteq \{\mathsf{F}_1, \ldots, \mathsf{F}_{k-1}, \mathsf{G}_1, \ldots, \mathsf{G}_{i-1}\}. \end{array}$

Damit kann dann F auch in der Position G_i auftreten, ohne eine Bedingung von Def. 6.10 zu verletzen, und die Sequenz $F_1, \ldots, F_{n-1}, G_1, \ldots, G_m$ ist eine Ableitung von $G = G_m$ aus $\mathbf{M}_1 \cup \mathbf{M}_2$. Also ist G mit \mathcal{C} aus $\mathbf{M}_1 \cup \mathbf{M}_2$ ableitbar.