第六章集合与字典

- ·<u>集合及其表示</u>
- . 并查集与等价类
- · <u>字典</u>
- . 散列

集合及其表示

集合基本概念

- ·集合是成员(元素)的一个群集。集合中的成员可以是原子(单元素),也可以是集合。
- · 集合的成员必须互不相同。
- · 在算法与数据结构中所遇到的集合,其单元素通常是整数、字符、字符串或指针,且同一集合中所有成员具有相同的数据类型。
- 例: colour = { red, orange, yellow, green, black, blue, purple, white }

· 集合中的成员一般是无序的,但在表示它时,常写在一个序列里。

·常设定集合中的单元素具有线性有序关系,此关系可记作"<",表示"优先于"。

· 整数、字符和字符串都有一个自然线性顺序。指针也可依据其在序列中安排的位置给予一个线性顺序。

集合 (Set) 的抽象数据类型

```
virtual bool delMember (const T x) = 0;
virtual Set<T> intersectWith (Set<T>& R) = 0;
             //集合的交运算
virtual Set<T> unionWith (Set<T>& R) = 0;
             //集合的并运算
virtual Set<T> differenceFrom (Set<T>& R) = 0;
             //集合的差运算
virtual bool Contains (T x) = 0;
virtual bool subSet (Set<T>& R) = 0;
virtual bool operator == (Set < T > \& R) = 0;
            //判集合是否相等
```

}

用位向量实现集合抽象数据类型

- · 当集合是全集合 { 0, 1, 2, ..., n } 的一个子集, 且 n 是不大的整数时,可用位(0, 1)向量来实 现集合。
- · 当全集合是由有限个可枚举的成员组成时,可建立全集合成员与整数 0,1,2,...的一一对应 关系,用位向量来表示该集合的子集。
- · 一个二进位有两个取值1或0,分别表示在集合与不在集合。如果采用16位无符号短整数数组bitVector[]作为集合的存储,就要考虑如何求出元素 i 在bitVector数组中的相应位置。

集合的位向量(bit Vector)类的定义

```
#include <assert.h>
#include <iostream.h>
const int DefaultSize = 50;
template < class T>
class bitSet {
//用位向量来存储集合元素,集合元素的范围在()到
//setSize-1之间。数组采用16位无符号短整数实现
public:
  bitSet (int sz = DefaultSize);
                               //构造函数
  bitSet (const bitSet<T>& R);
                               //复制构造函数
  ~bitSet() { delete [ ]bitVector; }
                               //析构函数
  unsigned short getMember (const T x); //读取集合
  元素x
```

```
void putMember (const T x, unsigned short v); //
将值V送入集合元素X
void makeEmpty () {
                                //置空集合
   for (int i = 0; i < vectorSize; i++)
      bit Vector[i] = 0;
bool addMember (const T x);
                               //加入新成员X
bool delMember (const T x);
                               //删除老成员X
bitSet<T>& operator = (const bitSet<T>& R);
bitSet<T>& operator + (const bitSet<T>& R);
bitSet<T>& operator * (const bitSet<T>& R);
bitSet<T>& operator - (const bitSet<T>& R);
bool Contains (const T x);
```

```
bool subSet (bitSet<T>& R); //判this是否R的子集
  bool operator == (bitSet<T>& R);
                           //判集合this与R相等
  friend istream& operator >> (istream& in,
     bitSet<T>& R);
                      //输入
  friend ostream& operator << (ostream& out,
     bitSet<T>& R);
                           //输出
private:
  int setSize;
                    //集合大小
  int vectorSize;
                 //位数组大小
  unsigned short *bitVector;
                    //存储集合元素的位数组
```

使用示例

```
bitSet<int> s1, s2, s3, s4, s5; bool index, equal;
for (int k = 0; k < 10; k++) { //集合赋值
   s1.addMember (k);
   s2.addMember(k+7);
//s1: \{0, 1, 2, ..., 9\}, s2: \{7, 8, 9, ..., 16\}
   s3 = s1+s2; //求s1与s2的并 \{0, 1, ..., 16\}
   s4 = s1*s2; //求s1与s2的交 {7, 8, 9}
   s5 = s1-s2; //求s1与s2的差 \{0, 1, ..., 6\}
```

```
//s1: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
//s4: {7, 8, 9}
```

index = s1.subSet (s4); //判断s1是否为s4子集
cout << index << endl; //结果, index = 0

equal = (s1 == s2); //集合s1与s2比较相等 cout << equal << endl; //为0, 两集合不等

构造函数的实现

```
template < class T>
bitSet<T>::bitSet (int sz): setSize (sz) { //构造函数
                    //检查参数的合理性
  assert (setSize > 0);
  vectorSize = (setSize+15) >> 4; //存储数组大小
  bitVector = new unsigned short[vectorSize]; //>>
  配空间
  assert (bitVector != NULL);
          //检查存储分配是否成功
  for (int i = 0; i < vectorSize; i++)
     bit Vector[i] = 0;
                                //初始化
}
```

```
template < class T >
unsigned short bitSet < T > :: getMember (const T x) {
//读取集合元素x, x从0开始
int ad = x/16;
int id = x%16;
unsigned short elem = bitVector[ad];
return ((elem >> (15 - id)) %2);
};
```

```
template<class T>
void bitSet<T>:: putMember (const T x, unsigned
  short v) { //将值v送入集合元素X
   int ad = x/16;
   int id = x\%16;
    unsigned short elem = bitVector[ad];
    unsigned short temp = elem >> (15-id);
   elem = elem << (id+1);
   if (\text{temp}\%2==0 \&\& v ==1) \text{ temp} = \text{temp} +1;
   else if (\text{temp}\%2==1 \&\& v==0) \text{ temp} = \text{temp} -1;
   bitVector[ad] = (temp << (15-id)) | (elem >> (id+1));
};
```

```
template<class T>
bitSet<T>& bitSet<T>::
                            // 水集合this与R的并
operator + (const bitSet<T>& R) {
assert (vectorSize == R.vectorSize);
   bitSet temp (vectorSize);
for (int i = 0; i < vectorSize; i++)
     temp.bitVector[i] = bitVector[i] | R.bitVector[i];
return temp; //按位求"或", 由第三个集合返回
};
```

```
template <class T>
bitSet<T>& bitSet<T>::
                               //求集合this与R的交
operator * (const bitSet<T>& R) {
  assert (vectorSize == R.vectorSize);
  bitSet temp (setSize);
  for (int i = 0; i < vectorSize; i++)
     temp.bitVector[i] = bitVector[i] & R.bitVector[i];
  return temp; //按位求 "与", 由temp返回
};
```

```
template <class T>
bitSet<T>& bitSet<T>::
                             //求集合this与R的差
operator - (const bitSet<T>& R) {
  assert (vectorSize == R.vectorSize);
  bitSet temp (setSize);
  for (int i = 0; i < vectorSize; i++)
     temp.bitVector[i] = bitVector[i] & (~R.bitVector[i]);
  return temp;
                             //由第三个集合返回
```

集合的并	this	0	1	1	1	0	0	0	0	1	1 0
	R	0	0	1	0	0	1	0	1	0	1 0
	temp	0	1	1	1	0	1	0	1	1	1 0
集合的交	this	0	1	1	1	0	0	0	0	1	1 0
	R	0	0	1	0	0	1	0	1	0	1 0
	temp	0	0	1	0	0	0	0	0	0	1 0
集合的差	this	0	1	1	1	0	0	0	0	1	1 0
	R	0	0	1	0	0	1	0	1	0	1 0
	temp	0	1	0	1	0	0	0	0	1	0 0

```
template < class T>
bool bitSet<T>::subSet (bitSet<T>& R) {
//判this是否R的子集
   assert (setSize == R.setSize);
  for (int i = 0; i < vectorSize; i++) //按位判断
     if (bitVector[i] & (~R.bitVector[i])) return false;
  return true;
};
      this
        R
```

```
template <class T>
bool bitSet<T>::operator == (bitSet<T>& R) {
//判集合this与R相等
  if (vectorSize != R.vectorSize) return false;
  for (int i = 0; i < vectorSize; i++)
     if (bitVector[i] != R.bitVector[i])
       return false;
                          //对应位全部相等
   return true;
}
     this
```

用有序链表实现集合抽象数据类型

用带表头结点的有序链表表示集合

- · 用有序链表来表示集合时,链表中的每个结点表示集合的一个成员。
- · 各结点所表示的成员 $e_0, e_1, ..., e_n$ 在链表中按 升序排列,即 $e_0 < e_1 < ... < e_n$ 。
- · 集合成员可以无限增加。因此,用有序链表可以表示无穷全集合的子集。

集合的有序链表类的定义

```
template <class T>
struct SetNode {
                    //集合的结点类定义
  T data;
                    //每个成员的数据
  SetNode<T>*link; //链接指针
  SetNode(): link (NULL);
                              //构造函数
  SetNode (const T& x, SetNode<T> *next = NULL)
     : data (x), link (next);
                              //构造函数
 };
```

```
template < class T>
class LinkedSet {
                      //集合的类定义
 private:
    SetNode<T> *first, *last;
    //有序链表表头指针, 表尾指针
 public:
    LinkedSet () { first = last = new SetNode<T>; }
    LinkedSet (LinkedSet<T>& R); //复制构造函数
    ~LinkedSet() { makeEmpty(); delete first; }
    void makeEmpty();
                                 //置空集合
    bool addMember (const T& x);
    bool delMember (const T& x);
    LinkedSet<T>& operator = (LinkedSet<T>& R);
    LinkedSet<T>& operator + (LinkedSet<T>& R);
```

```
LinkedSet<T>& operator * (LinkedSet<T>& R);
LinkedSet<T>& operator - (LinkedSet<T>& R);
bool Contains (const T x); //判x是否集合的成员
bool operator == (LinkedSet<T>& R);
                      //判集合this与R相等
bool Min (T& x);
                 //返回集合最小元素的值
              //返回集合最大元素的值
bool Max (T& x);
bool subSet (LinkedSet<T >& R);
                 //判this是否R的子集
```

}•

表示集合的几个重载函数

template <class T>

LinkedSet<T>& LinkedSet<T>::
operator + (LinkedSet<T>& R) {
//求集合this与集合R的并

```
SetNode<T>*pb = R.first->link; //R扫描指针
SetNode<T> *pa = first->link; //this扫描指针
LinkedSet<T> temp;
                                    //创建空链表
SetNode<T>*p, *pc = temp.first; //结果存放指针
while (pa != NULL && pb != NULL) {
   if (pa->data == pb->data) { // 两集合共有
      pc \rightarrow link = new SetNode < T > (pa \rightarrow data);
      pa = pa \rightarrow link; pb = pb \rightarrow link;
   else if (pa->data < pb->data) { //this元素值小
      pc \rightarrow link = new SetNode < T > (pa \rightarrow data);
      pa = pa \rightarrow link;
```

```
else {
                    //R集合元素值小
     pc->link = new SetNode<T>(pb->data);
     pb = pb -  ink;
  pc = pc - \sinh;
                          //this集合未扫完
if (pa != NULL) p = pa;
else p = pb;
                          //或R集合未扫完
while (p != NULL) {
                          //向结果链逐个复制
  pc->link = new SetNode<T>(p->data);
  pc = pc \rightarrow link; p = p \rightarrow link;
pc->link = NULL; temp.last = pc;
                                     //链表收尾
return temp;
```

等价类与并查集

等价关系与等价类(Equivalence Class)

- · 在求解实际应用问题时常会遇到等价类问题。
- · 从数学上看,等价类是对象(或成员)的集合, 在此集合中所有对象应满足等价关系。
- · 若用符号 " \equiv " 表示集合上的等价关系,则对于该集合中的任意对象x, y, z,下列性质成立:
 - ◆ 自反性: $x \equiv x$ (即等于自身)。

· 因此,等价关系是集合上的一个自反、对称、 传递的关系。

· "相等"(=)就是一种等价关系,它满足上述的三个特性。

· 一个集合 S 中的所有对象可以通过等价关系划分为若干个互不相交的子集 S₁, S₂, S₃, ..., 它们的并就是 S。这些子集即为等价类。

确定等价类的方法

确定等价类的方法分两步走:

- 1. 读入并存储所有的等价对(i,j);
- 2. 标记和输出所有的等价类。

· 给定集合 $S = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$, 及如下等价对: 0 = 4, 3 = 1, 6 = 10, 8 = 9, 7 = 4, 6 = 8, 3 = 5, 2 = 11, 11 = 0

. 进行归并的过程为:

初始 $\{0\}$, $\{1\}$, $\{2\}$, $\{3\}$, $\{4\}$, $\{5\}$, $\{6\}$, $\{7\}$, $\{8\}$, $\{9\}$, $\{10\}$, $\{11\}$ $\mathbf{0} \equiv \mathbf{4} \{\mathbf{0},\mathbf{4}\}$, $\{1\}$, $\{2\}$, $\{3\}$, $\{5\}$, $\{6\}$, $\{7\}$, $\{8\}$, $\{9\}$, $\{10\}$, $\{11\}$ $\mathbf{3} \equiv \mathbf{1} \{\mathbf{0},\mathbf{4}\}$, $\{\mathbf{1},\mathbf{3}\}$, $\{2\}$, $\{5\}$, $\{6\}$, $\{7\}$, $\{8\}$, $\{9\}$, $\{10\}$, $\{11\}$ $\mathbf{6} \equiv \mathbf{10} \{\mathbf{0},\mathbf{4}\}$, $\{\mathbf{1},\mathbf{3}\}$, $\{2\}$, $\{5\}$, $\{\mathbf{6},\mathbf{10}\}$, $\{7\}$, $\{8\}$, $\{9\}$, $\{11\}$ $\mathbf{8} \equiv \mathbf{9} \{\mathbf{0},\mathbf{4}\}$, $\{\mathbf{1},\mathbf{3}\}$, $\{2\}$, $\{5\}$, $\{\mathbf{6},\mathbf{10}\}$, $\{7\}$, $\{\mathbf{8},\mathbf{9}\}$, $\{11\}$ $\mathbf{7} \equiv \mathbf{4} \{\mathbf{0},\mathbf{4},\mathbf{7}\}$, $\{\mathbf{1},\mathbf{3}\}$, $\{2\}$, $\{5\}$, $\{\mathbf{6},\mathbf{10}\}$, $\{\mathbf{8},\mathbf{9}\}$, $\{11\}$

$$\{0,4,7\},\{1,3\},\{2\},\{5\},\{6,10\},\{8,9\},\{11\}\}$$
 $6 \equiv 8 \quad \{0,4,7\},\{1,3\},\{2\},\{5\},\{6,8,9,10\},\{11\}\}$
 $3 \equiv 5 \quad \{0,4,7\},\{1,3,5\},\{2\},\{6,8,9,10\},\{11\}\}$
 $2 \equiv 11 \quad \{0,4,7\},\{1,3,5\},\{2,11\},\{6,8,9,10\}$
 $11 \equiv 0 \quad \{0,2,4,7,11\},\{1,3,5\},\{6,8,9,10\}$

并查集 (Union-Find Sets)

- · 并查集支持以下三种操作:
 - ◆ Union (Root1, Root2) //合并操作
 - ◆ Find (x) //查找操作
 - ◆ UFSets (s) //构造函数
- · 对于并查集来说,每个集合用一棵树表示。
- · 为此,采用树的双亲表示作为集合存储表示。 集合元素的编号从0到 n-1。其中 n 是最大元素个数。

- · 在双亲表示中,第 i 个数组元素下标代表包含集合元素 i 的树结点。根结点的双亲为 -k,表示集合中的元素个数为k。
- · 同一棵树上所有结点所代表的集合元素在 同一个子集合中。
- · 为此,需要有两个映射:
 - a) 集合元素到存放该元素名的树结点间的 对应;
 - b) 集合名到表示该集合的树的根结点间的 对应。

设 $S_1 = \{0, 6, 7, 8\}, S_2 = \{1, 4, 9\}, S_3 = \{2, 3, 5\}$

为简化讨论,忽略实际的集合名,仅用表示 集合的树的根来标识集合。

集合 S_1, S_2 和 S_3 的 双 亲 表 示

 初始时,用构造函数 UFSets(s) 构造一个森林, 每棵树只有一个结点,表示集合中各元素自成 一个子集合。

下标 0 1 2 3 4 5 6 7 8 9

parent -1 -1 -1 -1 -1 -1 -1 -1 -1

- 用 Find(i) 寻找集合元素 i 的根。如果有两个 集合元素 i 和 j, Find(i) == Find(j), 表明这两 个元素在同一个集合中,
- 如果两个集合元素 i 和 j 不在同一个集合中, 可用 Union(i, j) 将它们合并到一个集合中。

用双亲表示实现并查集的类定义

```
const int DefaultSize = 10;
class UFSets {
             //集合中的各个子集合互不相交
public:
  UFSets (int sz = DefaultSize);
                               //构造函数
  ~UFSets() { delete []parent; }
                               //析构函数
  UFSets& operator = (UFSets& R);
                                  //集合赋值
  void Union (int Root1, int Root2);
                               //子集合并
  int Find (int x);
                               //查找x的根
  void WeightedUnion (int Root1, int Root2);
     //改进例程:加权的合并算法
private:
```

```
//集合元素数组(双亲表示)
  int *parent;
  int size;
                    //集合元素的数目
};
UFSets::UFSets (int sz) {
//构造函数: SZ 是集合元素个数, 双亲数组的范围
//参parent[0]~parent[size-1]。
  size = sz;
                    //集合元素个数
  parent = new int[size]; //创建双亲数组
  for (int i = 0; i < size; i++) parent[i] = -1;
                    //每个自成单元素集合
```

. 并查集操作的算法

> 查找


```
int UFSets::Find (int x) {
//函数搜索并返回包含元素x的树的根。
if (parent[x] < 0) return x; //根的parent[]值小于0
else return (Find (parent[x]));
};
```

```
void UFSets::Union (int Root1, int Root2) {
//求两个不相交集合Root1与Root2的并
parent[Root1] += parent[Root2];
parent[Root2] = Root1;
//将Root2连接到Root1下面
};
```

Find 和 Union 操作性能不好。假设最初 n 个元素构成 n 棵树组成的森林, parent[i] = -1。做处理Union(n-2, n-1), ..., Union(1, 2), Union(0, 1)后,将产生退化的树。

- 执行一次Union操作所需时间是 O(1), n-1次
 Union操作所需时间是 O(n)。
- 若再执行Find(0), Find(1), ..., Find(n-1), 若被搜索的元素为 i, 完成 Find(i) 操作需要时间为O(i+1), 完成 n 次搜索需要的总时间将达到 n-1

 $\mathbf{O}(\sum_{i=0}^{n}(i+1))=\mathbf{O}(n^2)$

- 改进的方法
 - ◆ 按树的结点个数合并
 - ◆ 按树的高度合并
 - ◆ 压缩元素的路径长度

- · 按树结点个数合并
 - >结点个数多的树的根结点作根

- · 按树高度合并
 - > 高度高的树的根结点作根

压缩元素的路径长度

字典 (Dictionary)

- · 字典是一些元素的集合,每个元素有一个称作关键码(key)的域,不同元素的关键码 互不相同。
 - ✓ 文件 (File)
 - ✓ 表格 (Table)
- · 在讨论字典抽象数据类型时,把字典定义为 <名字-属性>对的集合。
- · 根据问题的不同,可以为名字和属性赋予不同的含义。

- 例如,在图书馆检索目录中,名字是书名, 属性是索书号及作者等信息;在计算机活动 文件表中,名字是文件名,属性是文件地址、 大小等信息。
 - 一般来说,有关字典的操作有如下几种:
 - 1. 确定一个指定的名字是否在字典中;
 - 2. 搜索出该名字的属性;
 - 3. 修改该名字的属性;
 - 4. 插入一个新的名字及其属性;
 - 5. 删除一个名字及其属性。

字典的抽象数据类型

```
const int DefaultSize = 26;
template < class Name, class Attribute>
class Dictionary {
//对象:一组<名字-属性>对,其中,名字是唯一的
public:
  Dictionary (int size = DefaultSize);
                                 //构造函数
  bool Member (Name name);
     //判name是否在字典中
  Attribute *Search (Name name);
     //在字典中搜索关键码与name 些配的表项
```

```
void Insert (Name name, Attribute attr);
//若name在字典中, 则修改相应<name, attr>对
//的attr项; 否则插入<name, attr>到字典中
void Remove (Name name);
//若name在字典中, 则在字典中删除相应的
//<name, attr>对
```

· 用文件记录(record)或表格的表项(entry) 来表示单个元素时,用:

}

(关键码key,记录或表项位置指针adr)构成搜索某一指定记录或表项的索引项。

字典的线性表描述

- · 字典可以保存在线性序列 (e₁,e₂,...) 中, 其中 e_i是字典中的元素, 其关键码从左到右依次 增大。为了适应这种描述方式, 可以定义有序顺序表和有序链表。
- 用有序链表来表示字典时,链表中的每个结点表示字典中的一个元素,各个结点按照结点中保存的数据值非递减链接,即e₁≤e₂≤...。因此,在一个有序链表中寻找一个指定元素时,一般不用搜索整个链表。

有序顺序表的类定义

```
#include <iostream.h>
#include "SeqList.h"
const int defaultSize = 50;
template <class K, class E>
class SortedList : public SeqList {
public:
  int Search (K k1) const;
                                         //搜索
   void Insert (const K k1, E& e1);
                                         //插入
   bool Remove (const K k1, E& e1);
                                         //删除
};
```

基于有序顺序表的顺序搜索算法

```
template < class K, class E>
int SortedList<K, E>::Search (K k1) const {
//顺序搜索关键码为k1的数据对象
  int n = last+1;
  for (int i = 1; i \le n; i++)
     if (data[i-1] == k1) return i;
                                   //成功
     else if (data[i-1] > k1) break;
  return 0; //顺序搜索失败, 返回失败信息
};
```

· 算法中的 "=="和 ">"都是重载函数,在定义 K时定义它们的实现。

有序顺序表顺序搜索的时间代价

- · 衡量一个搜索算法的时间效率的标准是: 在搜索过程中关键码平均比较次数, 也称为平均搜索长度ASL (Average Search Length), 通常它是字典中元素总数 n 的函数。
- · 设搜索第i个元素的概率为 p_i ,搜索到第i个元素所需比较次数为 c_i ,则搜索成功的平均搜索长度:

$$ASL_{succ} = \sum_{i=1}^{n} p_i \cdot c_i. \qquad \left(\sum_{i=1}^{n} p_i = 1\right)$$

· 在顺序搜索情形,搜索第 *i* (1≤*i*≤*n*) 个元素需要比较 *i* 次,假定按等概率搜索各元素:

$$ASL_{succ} = \sum_{i=1}^{n} p_i \times c_i = \frac{1}{n} \sum_{i=1}^{n} i = \frac{1}{n} \frac{(n+1)n}{2} = \frac{n+1}{2}$$

- · 这与一般顺序表情形相同。但搜索不成功时不需一直比较到表尾,只要发现下一个元素的值比给定值大,就可断定搜索不成功。
- · 设一个有 n 个表项的表,查找失败的位置有 n+1个,可以用判定树加以描述。搜索成功时停在内结点,搜索失败时停在外结点。

· 例如,有序顺序表 (10, 20, 30, 40, 50, 60) 的顺序搜索的分析(使用判定树)

- · 判定树是一种扩充二叉树。内结点代表顺序 表中已有的元素,外结点代表失败结点,它 表示在两个相邻已有元素值之间的值。
- · 假定表中所有失败位置的搜索概率相同,则 搜索不成功的平均搜索长度:

$$ASL_{unsucc} = \frac{1}{n+1} \left(\sum_{i=1}^{n} i + n \right)$$

· 时间代价为O(n)。为了加速搜索,在有序顺序表的情形,可以采用折半搜索,它也称二分搜索,时间代价可减小到O(log,n)。

基于有序顺序表的折半搜索

- · 设 n 个元素存放在一个有序顺序表中。
- · 折半搜索时, 先求位于搜索区间正中的元素的下标mid, 用其关键码与给定值 x 比较:
 - ◆ data[mid].key == x, 搜索成功;
 - data[mid].key > x, 把搜索区间缩小到表的<u>前半部分</u>,继续折半搜索;
 - ◆ data[mid].key < x, 把搜索区间缩小到表的后半部分,继续折半搜索。
- · 如果搜索区间已缩小到一个对象,仍未找到想要搜索的对象,则搜索失败。

搜索成功的例子

搜索失败的例子

```
template<class K, class E>
int SortedList<K, E>::BinarySearch
  (K k1, const int low, const int high) const {
//折半搜索的递归算法。用到E的重载操作"<"和">"
  int mid = 0;
                           //元素序号从()开始
  if (low <= high) {
     mid = (low + high) / 2;
     if (data[mid] < k1)
        mid = BinarySearch (k1, mid +1, high);
     else if (data[mid] > k1)
        mid = BinarySearch (k1, low, mid -1);
     else return mid;
  return 0;
```

```
template<class K, class E>
int SortedList <K, E>::BinarySearch (K k1) const {
//折半搜索的迭代算法。用到K的重载操作"<"和">"
  int high = n-1, low = 0, mid; //元素序号从0开始
  while (low <= high) {
     mid = (low + high) / 2;
     if (data[mid] < k1) low = mid+1;
                           //右缩搜索区间
     else if (data[mid] > k1) high = mid-1;
                           //左缩搜索区间
     else return mid;
                           //搜索成功
  return 0;
                           //搜索失败
```

· 分析有序顺序表(10,20,30,40,50,60)的折 半搜索算法性能的判定树:

· 判定树也是扩充二叉树, 搜索成功时检测指针 停留在树中某个内结点上。搜索不成功时检测 指针停留在某个外结点(失败结点)上。

折半搜索算法的性能分析

· 若设 $n=2^h-1$,则描述折半搜索的判定树是高度为h的满二叉树(加上失败结点高度为h+1)。

$$2^h = n+1, h = \log_2(n+1)$$

- · 第1层结点有1个,搜索第1层结点要比较1次; 第2层结点有2个,搜索第2层结点要比较2 次; ...,第 $i(1 \le i \le h)$ 层结点有 2^{i-1} 个,搜索第 i 层结点要比较 i 次, ...。
- · 假定每个结点的搜索概率相等,即 $p_i = 1/n$,则搜索成功的平均搜索长度为

$$ASL_{succ} = \frac{1}{n} (1 \times 2^{0} + 2 \times 2^{1} + 3 \times 2^{2} + \dots + h \times 2^{h-1})$$

可以用归纳法证明

$$1 \times 2^{0} + 2 \times 2^{1} + 3 \times 2^{2} + \dots + (h-1) \times 2^{h-2} + h \times 2^{h-1}$$
$$= (h-1) \times 2^{h} + 1$$

这样,由
$$2^h = n+1, h = \log_2(n+1)$$

$$ASL_{succ} = \frac{1}{n}((h-1)\times 2^{h}+1) = \frac{1}{n}((n+1)\log_{2}(n+1)-n)$$
$$= \frac{n+1}{\log_{2}(n+1)-1} \approx \log_{2}(n+1)-1$$

有序链表的类定义

```
#include <assert.h>
template < class K, class E>
struct ChainNode {
                            //链表结点类定义
  K key;
  E attr;
  ChainNode<K, E> *link;
  ChainNode(): link (NULL) { };
                                   //构造函数
  ChainNode (K k1, E& e1,
                                      //构造函数
      ChainNode<K,E> *next = NULL)
       : key (k1), attr (e1), link (next) { };
```

```
template < class K, class E>
class SortedChain {
                            //有序链表类定义
public:
  SortedChain () {
                            //构造函数
     first = new ChainNode<K, E>;
     assert (first != NULL);
  };
  ~SortedChain ();
                             //析构函数
  ChainNode<K, E> *Search (K k1);
                                           //搜索
  void Insert (const K k1, E& e1);
                                           //插入
  bool Remove (const K k1, E& e1);
                                           //删除
```

```
ChainNode<K, E> *Begin () { return first->link; }
                           //定位第一个
  ChainNode<K, E> *Next (ChainNode<K, E>
        *current) const { //定位下一个
     if (current != NULL) return current->link;
     else return NULL;
private:
  ChainNode<K, E>*first; //链表的头指针
}
```

搜索、插入与删除算法

```
template < class K, class E>
ChainNode<K, E> *SortedChain<T>::
Search (K k1) const {
  ChainNode<K, E > *p = first->link;
   while (p != NULL && p\rightarrowkey< k1)
     p = p \rightarrow link;
                           //重载:元素判小于
  if (p = NULL & p \rightarrow key = k1) return p;
                           //重载:元素判等于
   else return NULL;
}
```

```
template < class K, class E>
void SortedChain<K, E>::
Insert (const K k1, E& e1) {
  ChainNode<K, E> *p = first->link, *pre = first;
  ChainNode<K, E> *newNode;
  while (p != NULL && p\rightarrowkey<= k1)
               //重载:元素判小于等于
     { pre = p; p = p->link; } //寻找插入位置
  if (p != NULL & p -> key == k1) p -> attr = e1;
  else {
     newNode = new ChainNode<K, E>(k1,e1);
     if (newNode == NULL) {
```

```
cerr << "存储分配失败!" << endl;
exit (1);
}
newNode->link = p; pre->link = newNode;
}
```

```
template < class K, class E>
bool SortedChain<K, E>::Remove (const K k1, E& e1) {
  ChainNode<K, E> *p = first->link, *pre = first;
  while (p != NULL && p\rightarrowkey< k1)
    //寻找删除位置
  if (p != NULL && p\rightarrowkey== k1) {
           //重载:元素关键码判等于
     pre->link = p->link;
     e1 = p->attr;
     delete p;
     return true;
  else return false;
                              //未找到删除结点
```

散列表 (Hash Table)

- · 理想的搜索方法是可以不经过比较,一次直接从字典中得到要搜索的元素。
- · 如果在元素存储位置与其关键码之间建立一个确定的对应函数关系Hash(), 使得每个关键码与唯一的存储位置相对应:

Address = Hash(key)

· 在插入时依此函数计算存储位置并按此位置存放。 在搜索时对元素的关键码进行同样的计算,把求 得的函数值当做元素存储位置,然后按此位置搜 索。这就是散列方法。

- · 在散列方法中所用转换函数叫做散列函数(又叫哈希函数)。按此方法构造出来的表叫做散列表(又叫哈希表)。
- · 使用散列方法进行搜索不必进行多次关键码的比较,搜索速度比较快,可以直接到达或逼近具有此关键码的表项的实际存放地址。
- · 散列函数是一个压缩映象函数。关键码集合比散列表地址集合大得多。因此有可能经过散列函数的计算,把不同的关键码映射到同一个散列地址上,这就产生了冲突。

· 示例: 有一组表项, 其关键码分别是 12361, 07251, 03309, 30976

. 采用的散列函数是

$$hash(x) = x \% 73 + 13420$$

则有 hash(12361) = hash(07251) = hash(03309) = hash(30976) = 13444。

· 就是说,对不同的关键码,通过散列函数的计算,得到了同一散列地址。称这些产生冲突的散列地址相同的不同关键码为同义词。

- 由于关键码集合比地址集合大得多,冲突很难避免。所以对于散列方法,需要讨论以下两个问题:
 - 对于给定的一个关键码集合,选择一个计算简单且地址分布比较均匀的散列函数,避免或尽量减少冲突;
 - 设计解决冲突的方案。

散列函数

- 构造散列函数时的几点要求:
 - 散列函数应是简单的,能在较短的时间内计算出结果。
 - 散列函数的定义域必须包括需要存储的全部 关键码,如果散列表允许有 m 个地址时,其 值域必须在 0 到 m-1 之间。
 - 散列函数计算出来的地址应能均匀分布在整个地址空间中:若 key 是从关键码集合中随机抽取的一个关键码,散列函数应能以同等概率取0到 m-1 中的每一个值。

❶ 直接定址法

此类函数取关键码的某个线性函数值作为散列地址:

 $Hash(key) = a*key+b \{a, b为常数\}$

这类散列函数是一对一的映射,一般不会产生冲突。但它要求散列地址空间的大小与关键码集合的大小相同。

· 示例: 有一组关键码如下: {942148, 941269, 940527, 941630, 941805, 941558, 942047, 940001}。散列函数为

Hash(key) = key-940000

. 可以按计算出的地址存放记录。

2 数字分析法

设有n个d位数,每一位可能有r种不同的符号。这r种不同符号在各位上出现的频率不一定相同。根据散列表的大小,选取其中各种符号分布均匀的若干位作为散列地址。

· 计算各位数字中符号分布均匀度2k的公式:

$$\lambda_k = \sum_{i=1}^r (\alpha_i^k - n/r)^2$$

其中, α_i^k 表示第i个符号在第k位上出现的次数,n/r表示各种符号在n个数中均匀出现的期望值。

· 计算出的 λ_k 值越小,表明在该位 (第 k 位) 各种符号分布得越均匀。

- 9 4 2 1 4 8

- 9 4 1 5 5 8
- 9 4 2 0 4 7
- 9 4 0 0 0 1
- 1 2 3 4 5 6

- ①位, $\lambda_1 = 57.60$
- 9 4 1 2 6 9 ②位, $\lambda_2 = 57.60$
- 9 4 0 5 2 7 ③位, $\lambda_3 = 17.60$
- 9 4 1 6 3 0 4 1, $\lambda_4 = 5.60$
- 9 4 1 8 0 5 ⑤位, $\lambda_5 = 5.60$
 - ⑥位, $\lambda_6 = 5.60$

· 若散列表地址范围有 3 位数字, 取各关键码的 ④⑤⑥ 位做为记录的散列地址。

· 数字分析法仅适用于事先明确知道表中所有 关键码每一位数值的分布情况,它完全依赖 于关键码集合。如果换一个关键码集合,选 择哪几位要重新决定。

B 除留余数法

设散列表中允许地址数为m,取一个不大于m,但最接近于或等于m的质数p作为除数,用以下函数把关键码转换成散列地址:

$$hash (key) = key \% p \qquad p \le m$$

其中,"%"是整数除法取余的运算,要求这时的质数p不是接近2的幂。

· 示例: 有一个关键码 key = 962148, 散列表大小 m = 25, 即 HT[25]。取质数 p = 23。散列函数 hash(key) = key % p。则散列地址为 hash(962148) = 962148 % 23 = 12。

· 可按计算出的地址存放记录。注意,使用散列函数计算出的地址范围是 0 到 22, 而 23、 24 这几个地址实际上不能用散列函数计算出来,只能在处理冲突时达到这些地址。

4平方取中法

它首先计算构成关键码的标识符的内码的平方,然后按照散列表的大小取中间的若干位作为散列地址。

- · 设标识符可以用一个计算机字长的内码表示。 因为内码平方数的中间几位一般是由标识符 所有字符决定,所以对不同的标识符计算出 的散列地址大多不相同。
- · 在平方取中法中,一般取散列地址为8的某次幂。例如,若散列地址总数取为 $m = 8^r$,则对内码的平方数取中间的 r 位。

标识符	内码	内码平方	散列地址
\boldsymbol{A}	01	<u>01</u>	001
A1	0134	2 <u>042</u> 0	042
A9	0144	23420	342
B	02	<u>04</u>	004
DMAX	04150130	21526 <u>443</u> 617100	443
DMAX1	0415013034	526447 <u>352</u> 2151420	352
AMAX	01150130	1354 <u>236</u> 17100	236
AMAX1	0115013034	345424 <u>652</u> 2151420	652

标识符的八进制内码表示及其平方值和散列地址

5 折叠法

此方法把关键码自左到右分成位数相等的几部分,每一部分的位数应与散列表地址位数相同,只有最后一部分的位数可以短一些。 把这些部分的数据叠加起来,就可以得到具有该关键码的记录的散列地址。

- · 有两种叠加方法:
 - *移位法: 把各部分最后一位对齐相加;
 - *分界法:各部分不折断,沿各部分的分界 来回折叠,然后对齐相加。

· 示例: 设给定的关键码为 key = 23938587841, 若存储空间限定 3 位,则划分结果为每段 3 位。 上述关键码可划分为 4 段:

<u>239</u> <u>385</u> <u>878</u> <u>41</u>

· 叠加, 然后把超出地址位数的最高位删去, 仅 保留最低的3位, 做为可用的散列地址。

· 一般当关键码的位数很多,而且关键码每一位上数字的分布大致比较均匀时,可用这种方法得到散列地址。

. 假设地址空间为HT[400],利用以上函数计算,取其中3位,取值范围在0~999,可能超出地址空间范围,为此必须将0~999压缩到0~399。可将计算出的地址乘以一个压缩因于0.4,把计算出的地址压缩到允许范围。

(1)处理冲突的闭散列方法

因为任一种散列函数也不能避免产生冲突,因此选择好的解决冲突的方法十分重要。

线性探查法 (Linear Probing)

例1: 假设给出一组表项,它们的关键码为 Burke, Ekers, Broad, Blum, Attlee, Alton, Hecht, Ederly。采用的散列函数是: 取其第一个字母在字母表中的位置。

Hash(x) = ord(x) - ord(A')//ord()是求字符内码的函数 可得 Hash (Burke) = 1 Hash (Ekers) = 4 Hash (Broad) = 1 Hash (Blum) = 1 Hash (Attlee) = 0 Hash (Hecht) = 7 Hash (Alton) = 0 Hash (Ederly) = 4

· 设散列表 HT[26], m = 26。采用线性探查法处理冲突,则散列结果如图所示。

0	1	2	3	4
Attlee	Burke	Broad	Blum	Ekers
(1)	(1)	(2)	(3)	(1)
5	6	7	8	9
Alton	Ederly	Hecht		
(6)	(3)	(1)		

· 需要搜索或加入一个表项时,使用散列函数计算关键字 在表中的位置:

$$H_0 = hash (key)$$

· 一旦发生冲突,在表中顺次向后寻找下一个位置 H_i : $H_i = (H_{i-1} + 1) \% m$, i = 1, 2, ..., m-1

即用以下的线性探查序列在表中寻找下一个位置: $H_0+1, H_0+2, ..., m-1, 0, 1, 2, ..., H_0-1$

亦可写成如下的通项公式:

$$H_i = (H_0 + i) \% m, i = 1, 2, ..., m-1$$

例1中使用线性探查法对示例进行搜索时:

· 搜索成功的平均搜索长度为:

$$ASLsucc = \frac{1}{8} \sum_{i=1}^{8} Ci = \frac{1}{8} (1+1+2+3+1+6+3+1) = \frac{18}{8}.$$

· 搜索不成功的平均搜索长度为:

$$ASLunsucc = \frac{9+8+7+6+5+4+3+2+18}{26} = \frac{62}{26}.$$

• 例2: 已知散列表A[0..11],选取除留余数法设计散列函数H(K)= K mod 11,关键字集合为{10,20,15,17,21,6,8,25,40,35,27},采用线性探查法处理冲突,请将关键字填入下面的哈希表中,计算成功和失败时的平均查找长度ASL。

	0	1	2	3	4	5	6	7	8	9	10	11
			35	25	15	27	167	40	8	20	20	
			1	1	1	1	2	6	1	1	2	
失败	<i>t</i> 2	1	12	11	10	9	8	7	6	5	4	

例2中使用线性探查法对示例进行搜索时:

· 搜索成功的平均搜索长度为:

$$ASLsucc = \frac{1}{11} \sum_{i=1}^{11} Ci = \frac{1}{11} (8 * 1 + 2 + 2 + 6) = \frac{18}{11}.$$

· 搜索不成功的平均搜索长度为:

$$ASLunsucc = \frac{2+1+12+11+\ldots+4}{11} = \frac{75}{11}.$$

• 例3: 已知关键字集合为{47,7,29,11,16,92,22,8}。假设哈希函数 H(key)=key mod 11 (表长=11),采用线性探查法处理冲突,请将关键字填入下面的哈希表中,计算成功和失败时的ASL。

0 1 2 3 4 .	6 7 8 9 10

(2)处理冲突的开散列方法(链地址法)

· 开散列方法(链地址法)首先对关键码集合用某一个散列函数计算它们的存放位置。

· 若设散列表地址空间的位置从 0~m-1,则关键码集合中的所有关键码被划分为 m 个子集,具有相同地址的关键码归于同一子集。我们称同一子集中的关键码互为同义词。每一个子集称为一个桶。

·通常各个桶中的表项通过一个单链表链接起来,称之为同义词子表。

· 所有桶号相同的表项都链接在同一个同义词 子表中,各链表的表头结点组成一个向量。

· 向量的元素个数与桶数一致。桶号为i的同义词子表的表头结点是向量中第 i 个元素。

· 示例: 给出一组表项关键码 { Burke, Ekers, Broad, Blum, Attlee, Alton, Hecht, Ederly }。 散列函数为: *Hash* (x) = ord (x) - ord ('A')。

用散列函数Hash(x) = ord(x) - ord('A')计算可得:

$$Hash$$
 (Burke) = 1 $Hash$ (Ekers) = 4 $Hash$ (Broad) = 1 $Hash$ (Blum) = 1 $Hash$ (Attlee) = 0 $Hash$ (Hecht) = 7 $Hash$ (Alton) = 0 $Hash$ (Ederly) = 4

· 散列表为 HT[0..25], m = 26。

通常,每个桶中的同义词子表都很短,设有n个关键码通过某一个散列函数,存放到散列表中的 m 个桶中。那么每一个桶中的同义词子表的平均长度为 n/m。以搜索平均长度为 n/m 的同义词子表代替了搜索长度为 n 的顺序表,搜索速度快得多。