CS 577- Intro to Algorithms

Greed

Dieter van Melkebeek

October 6, 2020

Discrete multivariate optimization

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- ► Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

Consider components in some order.

Discrete multivariate optimization

- System consisting of *n* components.
- ▶ Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

- Consider components in some order.
- Locally optimize setting of component based on prior components and settings only.

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- ► Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

- Consider components in some order.
- Locally optimize setting of component based on prior components and settings only.

Correctness argument

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

- Consider components in some order.
- Locally optimize setting of component based on prior components and settings only.

Correctness argument

Greed stays ahead

Discrete multivariate optimization

- System consisting of *n* components.
- Each component can be in any of a finite number of states.
- ► Want to set the states of the components so as to optimize an certain objective under certain constraints.

Paradigm

- Consider components in some order.
- Locally optimize setting of component based on prior components and settings only.

Correctness argument

- Greed stays ahead
- Exchanges

Problem

Problem

Input: meetings $i \in [n]$ specified by start time $s_i \in \mathbb{R}$ and end time $e_i \in \mathbb{R}$.

Problem

Input: meetings $i \in [n]$ specified by start time $s_i \in \mathbb{R}$ and end time $e_i \in \mathbb{R}$.

Ouput: $S \subseteq [n]$ such that no distinct intervals $[s_i, e_i)$ for $i \in S$ overlap and |S| is maximized.

Problem

Input: meetings $i \in [n]$ specified by start time $s_i \in \mathbb{R}$ and end time $e_i \in \mathbb{R}$.

Ouput: $S \subseteq [n]$ such that no distinct intervals $[s_i, e_i)$ for $i \in S$ overlap and |S| is maximized.

Greedy algorithm

Problem

Input: meetings $i \in [n]$ specified by start time $s_i \in \mathbb{R}$ and end time $e_i \in \mathbb{R}$.

Ouput: $S \subseteq [n]$ such that no distinct intervals $[s_i, e_i)$ for $i \in S$ overlap and |S| is maximized.

Greedy algorithm

Local criterion

Problem

Input: meetings $i \in [n]$ specified by start time $s_i \in \mathbb{R}$ and end time $e_i \in \mathbb{R}$.

Ouput: $S \subseteq [n]$ such that no distinct intervals $[s_i, e_i)$ for $i \in S$ overlap and |S| is maximized.

Greedy algorithm

- Local criterion
- Order

Natural Interval Orders

Natural Interval Orders

- ► Shortest first
- Fewest conflicts first
- ► Earliest start time first
- Earliest end time first
- Latest start time first
- Latest end time first

Algorithm

Algorithm

Powerpoint presentation

Algorithm

Powerpoint presentation

Complexity analysis

- \triangleright $O(n \log n)$ time due to sorting.
- If meetings are given in sorted order: O(n) time and O(1) space for finding maximum value and producing schedule on-line.

Strategy

Design a quality measure for partial solutions such that:

Strategy

Design a quality measure for partial solutions such that:

► For every valid solution S and every point in time k, the quality measure of the greedy solution G up to k is at least as good as S up to k.

Strategy

Design a quality measure for partial solutions such that:

- ► For every valid solution S and every point in time k, the quality measure of the greedy solution G up to k is at least as good as S up to k.
- ► For a full solution, optimal quality measure implies optimal objective value.

Strategy

Design a quality measure for partial solutions such that:

- ► For every valid solution S and every point in time k, the quality measure of the greedy solution G up to k is at least as good as S up to k.
- For a full solution, optimal quality measure implies optimal objective value.

Quality measures for earliest end time first

Strategy

Design a quality measure for partial solutions such that:

- ► For every valid solution S and every point in time k, the quality measure of the greedy solution G up to k is at least as good as S up to k.
- ► For a full solution, optimal quality measure implies optimal objective value.

Quality measures for earliest end time first

Assume meetings numbered in greedy order.

Strategy

Design a quality measure for partial solutions such that:

- ► For every valid solution S and every point in time k, the quality measure of the greedy solution G up to k is at least as good as S up to k.
- For a full solution, optimal quality measure implies optimal objective value.

Quality measures for earliest end time first

Assume meetings numbered in greedy order.

▶ cardinality $|S \cap [k]|$

Strategy

Design a quality measure for partial solutions such that:

- ► For every valid solution S and every point in time k, the quality measure of the greedy solution G up to k is at least as good as S up to k.
- For a full solution, optimal quality measure implies optimal objective value.

Quality measures for earliest end time first

Assume meetings numbered in greedy order.

- ▶ cardinality $|S \cap [k]|$
- end time of the kth meeting in S

Claim $(\forall k \in \mathbb{N}) |G \cap [k]| \ge |S \cap [k]|$

Claim $(\forall k \in \mathbb{N}) |G \cap [k]| \ge |S \cap [k]|$

Proof: Induction on k

Claim

$$(\forall k \in \mathbb{N}) |G \cap [k]| \ge |S \cap [k]|$$

Proof: Induction on k

▶ Base case: k = 0

Claim

$$(\forall k \in \mathbb{N}) |G \cap [k]| \ge |S \cap [k]|$$

Proof: Induction on k

▶ Base case: k = 0

▶ Inductive step $< k \rightarrow k$ for $k \notin S$

Claim

$$(\forall k \in \mathbb{N}) |G \cap [k]| \ge |S \cap [k]|$$

Proof: Induction on k

- ▶ Base case: k = 0
- ▶ Inductive step $< k \rightarrow k$ for $k \notin S$
- ▶ Inductive step $< k \rightarrow k$ for $k \in S$

Cardinality as Quality Measure

Claim

$$(\forall k \in \mathbb{N}) |G \cap [k]| \ge |S \cap [k]|$$

Proof: Induction on k

- \triangleright Base case: k=0
- ▶ Inductive step $\langle k \rightarrow k \text{ for } k \notin S \rangle$
- ▶ Inductive step $< k \rightarrow k$ for $k \in S$ Let ℓ be meeting in S right before k ($\ell = 0$ if there is none).

$$|G \cap [k]| \ge 1 + |G \cap [\ell]|$$

 $\ge 1 + |S \cap [\ell]|$
 $= |S \cap [k]|$

[greedy criterion] $> 1 + |S \cap [\ell]|$ [induction hypothesis] [definition of ℓ]

Definition

$$e_S(k) = \left\{ egin{array}{ll} ext{end time of kth meeting in S} & ext{if it exists} \\ \infty & ext{otherwise for $k>0$} \\ -\infty & ext{for $k=0$} \end{array}
ight.$$

Definition

$$e_{S}(k) = \left\{ egin{array}{ll} \mbox{end time of kth meeting in S} & \mbox{if it exists} \ \infty & \mbox{otherwise for $k>0$} \ -\infty & \mbox{for $k=0$} \end{array}
ight.$$

Claim

$$(\forall k \in \mathbb{N}) e_G(k) \leq e_S(k)$$

Definition

$$e_S(k) = \left\{ egin{array}{ll} {
m end \ time \ of \ } k {
m th \ meeting \ in \ } S & {
m if \ it \ exists} \\ {
m \infty} & {
m otherwise \ for \ } k>0 \\ {
m -\infty} & {
m for \ } k=0 \end{array}
ight.$$

Claim

$$(\forall k \in \mathbb{N}) e_G(k) \leq e_S(k)$$

Proof: Induction on k

Definition

$$e_S(k) = \left\{ egin{array}{ll} ext{end time of kth meeting in S} & ext{if it exists} \\ \infty & ext{otherwise for $k>0$} \\ -\infty & ext{for $k=0$} \end{array}
ight.$$

Claim

$$(\forall k \in \mathbb{N}) e_G(k) \leq e_S(k)$$

Proof: Induction on k

▶ Base case: k = 0

Definition

$$e_S(k) = \left\{ egin{array}{ll} ext{end time of kth meeting in S} & ext{if it exists} \\ \infty & ext{otherwise for $k>0$} \\ -\infty & ext{for $k=0$} \end{array}
ight.$$

Claim

$$(\forall k \in \mathbb{N}) e_G(k) \leq e_S(k)$$

Proof: Induction on k

- ▶ Base case: k = 0
- ▶ Inductive step $k 1 \rightarrow k$

Definition

$$e_S(k) = \left\{ egin{array}{ll} {
m end \ time \ of \ } k {
m th \ meeting \ in \ } S & {
m if \ it \ exists} \\ {
m \infty} & {
m otherwise \ for \ } k > 0 \\ {
m -\infty} & {
m for \ } k = 0 \end{array}
ight.$$

Claim

$$(\forall k \in \mathbb{N}) e_G(k) \leq e_S(k)$$

Proof: Induction on k

- ▶ Base case: k = 0
- ▶ Inductive step $k 1 \rightarrow k$

Corollary

$$|G| \ge |S|$$

► Consider meetings ordered earliest start time first.

- ► Consider meetings ordered earliest start time first.
- ▶ $\mathsf{OPT}(k) \doteq \mathsf{OPT}(\{k, k+1, \dots, n\})$ for $1 \leq k \leq n+1$

- Consider meetings ordered earliest start time first.
- ▶ $\mathsf{OPT}(k) \doteq \mathsf{OPT}(\{k, k+1, \ldots, n\})$ for $1 \leq k \leq n+1$
- ▶ $\mathsf{OPT}(k) = \mathsf{max}(1 + \mathsf{OPT}(\mathsf{next}(k)), \mathsf{OPT}(k+1))$ where $\mathsf{next}(k) \doteq \mathsf{min}\{\ell : k < \ell \le n+1 \text{ and } s_\ell \ge e_k\}$

- Consider meetings ordered earliest start time first.
- ▶ $\mathsf{OPT}(k) \doteq \mathsf{OPT}(\{k, k+1, \ldots, n\})$ for $1 \leq k \leq n+1$
- ▶ $\mathsf{OPT}(k) = \mathsf{max}(1 + \mathsf{OPT}(\mathsf{next}(k)), \mathsf{OPT}(k+1))$ where $\mathsf{next}(k) \doteq \mathsf{min}\{\ell : k < \ell \le n+1 \text{ and } s_\ell \ge e_k\}$
- $\qquad \mathsf{OPT}(k) = \mathsf{max}(1 + \mathsf{OPT}(\mathsf{next}(k)),$

- Consider meetings ordered earliest start time first.
- ▶ $\mathsf{OPT}(k) \doteq \mathsf{OPT}(\{k, k+1, \ldots, n\})$ for $1 \leq k \leq n+1$
- ▶ $\mathsf{OPT}(k) = \mathsf{max}(1 + \mathsf{OPT}(\mathsf{next}(k)), \mathsf{OPT}(k+1))$ where $\mathsf{next}(k) \doteq \mathsf{min}\{\ell : k < \ell \le n+1 \text{ and } s_\ell \ge e_k\}$
- $\mathsf{OPT}(k) = \max(1 + \mathsf{OPT}(\mathsf{next}(k)), \\ 1 + \mathsf{OPT}(\mathsf{next}(k+1)),$

- Consider meetings ordered earliest start time first.
- ▶ $\mathsf{OPT}(k) \doteq \mathsf{OPT}(\{k, k+1, \dots, n\})$ for $1 \leq k \leq n+1$
- ▶ $\mathsf{OPT}(k) = \mathsf{max}(1 + \mathsf{OPT}(\mathsf{next}(k)), \mathsf{OPT}(k+1))$ where $\mathsf{next}(k) \doteq \mathsf{min}\{\ell : k < \ell \le n+1 \text{ and } s_\ell \ge e_k\}$
- $\mathsf{OPT}(k) = \max(1 + \mathsf{OPT}(\mathsf{next}(k)), \\ 1 + \mathsf{OPT}(\mathsf{next}(k+1)), \\ 1 + \mathsf{OPT}(\mathsf{next}(k+2)),$

- Consider meetings ordered earliest start time first.
- ▶ OPT(k) \doteq OPT $(\{k, k+1, ..., n\})$ for $1 \le k \le n+1$
- ▶ $\mathsf{OPT}(k) = \mathsf{max}(1 + \mathsf{OPT}(\mathsf{next}(k)), \mathsf{OPT}(k+1))$ where $\mathsf{next}(k) \doteq \mathsf{min}\{\ell : k < \ell \le n+1 \text{ and } s_\ell \ge e_k\}$
- $\mathsf{OPT}(k) = \max(1 + \mathsf{OPT}(\mathsf{next}(k)), \\ 1 + \mathsf{OPT}(\mathsf{next}(k+1)), \\ 1 + \mathsf{OPT}(\mathsf{next}(k+2)), \\ \dots)$

- Consider meetings ordered earliest start time first.
- ▶ OPT(k) \doteq OPT $(\{k, k+1, ..., n\})$ for $1 \le k \le n+1$
- ▶ $\mathsf{OPT}(k) = \mathsf{max}(1 + \mathsf{OPT}(\mathsf{next}(k)), \mathsf{OPT}(k+1))$ where $\mathsf{next}(k) \doteq \mathsf{min}\{\ell : k < \ell \le n+1 \text{ and } s_\ell \ge e_k\}$
- $\mathsf{OPT}(k) = \max(1 + \mathsf{OPT}(\mathsf{next}(k)), \\ 1 + \mathsf{OPT}(\mathsf{next}(k+1)), \\ 1 + \mathsf{OPT}(\mathsf{next}(k+2)), \\ \dots) \\ = 1 + \mathsf{OPT}(\mathsf{next}(k^*)) = \mathsf{OPT}(k^*) \\ \mathsf{where} \ k^* = \mathsf{arg} \min_{k \leq i \leq n} \mathsf{next}(i)$

- Consider meetings ordered earliest start time first.
- ▶ $\mathsf{OPT}(k) \doteq \mathsf{OPT}(\{k, k+1, \dots, n\})$ for $1 \leq k \leq n+1$
- ▶ $\mathsf{OPT}(k) = \mathsf{max}(1 + \mathsf{OPT}(\mathsf{next}(k)), \mathsf{OPT}(k+1))$ where $\mathsf{next}(k) \doteq \mathsf{min}\{\ell : k < \ell \le n+1 \text{ and } s_\ell \ge e_k\}$
- ► OPT(k) = max(1 + OPT(next(k)), 1 + OPT(next(k + 1)), 1 + OPT(next(k + 2)), ...) = 1 + OPT(next(k*)) = OPT(k*) where k* = arg min $_{k \le i \le n}$ next(i)
- \triangleright k^* is meeting with earliest deadline among $\{k, \ldots, n\}$.

- Consider meetings ordered earliest start time first.
- ▶ $\mathsf{OPT}(k) \doteq \mathsf{OPT}(\{k, k+1, \dots, n\})$ for $1 \leq k \leq n+1$
- ▶ $\mathsf{OPT}(k) = \mathsf{max}(1 + \mathsf{OPT}(\mathsf{next}(k)), \mathsf{OPT}(k+1))$ where $\mathsf{next}(k) \doteq \mathsf{min}\{\ell : k < \ell \le n+1 \text{ and } s_\ell \ge e_k\}$
- ► OPT(k) = max(1 + OPT(next(k)), 1 + OPT(next(k + 1)), 1 + OPT(next(k + 2)), ...) = 1 + OPT(next(k*)) = OPT(k*) where k* = arg min $_{k \le i \le n}$ next(i)
- \triangleright k^* is meeting with earliest deadline among $\{k, \ldots, n\}$.
- ightharpoonup Attend k^* .

- Consider meetings ordered earliest start time first.
- ▶ $\mathsf{OPT}(k) \doteq \mathsf{OPT}(\{k, k+1, \dots, n\})$ for $1 \leq k \leq n+1$
- ▶ $\mathsf{OPT}(k) = \mathsf{max}(1 + \mathsf{OPT}(\mathsf{next}(k)), \mathsf{OPT}(k+1))$ where $\mathsf{next}(k) \doteq \mathsf{min}\{\ell : k < \ell \le n+1 \text{ and } s_\ell \ge e_k\}$
- $\mathsf{OPT}(k) = \max(1 + \mathsf{OPT}(\mathsf{next}(k)), \\ 1 + \mathsf{OPT}(\mathsf{next}(k+1)), \\ 1 + \mathsf{OPT}(\mathsf{next}(k+2)), \\ \dots) \\ = 1 + \mathsf{OPT}(\mathsf{next}(k^*)) = \mathsf{OPT}(k^*) \\ \mathsf{where} \ k^* = \mathsf{arg} \min_{k < i < n} \mathsf{next}(i)$
- \triangleright k^* is meeting with earliest deadline among $\{k, \ldots, n\}$.
- ightharpoonup Attend k^* .
- ▶ Continue process with $k \leftarrow \text{next}(k^*)$.

DP vs Greed – moral

DP vs Greed - moral

Greedy algorithms never work!

Use dynamic programming instead!

What, never?

No, never!

What, never?

Well...hardly ever. 10

DP vs Greed - moral

Greedy algorithms never work!

Use dynamic programming instead!

What, never? No, never! What, *never*? Well. . . hardly ever.¹⁰

Dynamic programming works in many settings. Greed only works in very simple settings.

DP vs Greed - moral

Greedy algorithms never work!

Use dynamic programming instead!

What, never? No, never! What, *never*? Well...hardly ever.¹⁰

- Dynamic programming works in many settings. Greed only works in very simple settings.
- ▶ In very simple settings a greedy solution can sometimes be obtained by reasoning about a dynamic program.

Greedy algorithms never work!

Use dynamic programming instead!

What, never? No, never! What, *never*? Well...hardly ever.¹⁰

- Dynamic programming works in many settings. Greed only works in very simple settings.
- ▶ In very simple settings a greedy solution can sometimes be obtained by reasoning about a dynamic program.
- ► First develop a dynamic program. The consider whether it can be simplified into a greedy algorithm.

Problem

Problem

```
Input: items i \in [n] specified by weight w_i \in \mathbb{Z}^+ weight limit W \in \mathbb{Z}^+
```

Problem

```
Input: items i \in [n] specified by weight w_i \in \mathbb{Z}^+ weight limit W \in \mathbb{Z}^+
```

Ouput: $S \subseteq [n]$ such that

 $\sum_{i \in S} w_i \leq W$ and |S| is maximized.

Problem

```
Input: items i \in [n] specified by weight w_i \in \mathbb{Z}^+ weight limit W \in \mathbb{Z}^+
```

Ouput: $S \subseteq [n]$ such that $\sum_{i \in S} w_i \le W$ and |S| is maximized.

Greedy algorithm

Problem

```
Input: items i \in [n] specified by weight w_i \in \mathbb{Z}^+ weight limit W \in \mathbb{Z}^+

Ouput: S \subseteq [n] such that \sum_{i \in S} w_i \leq W and |S| is maximized.
```

Greedy algorithm

Local criterion

Problem

```
Input: items i \in [n] specified by weight w_i \in \mathbb{Z}^+ weight limit W \in \mathbb{Z}^+
Ouput: S \subseteq [n] such that \sum_{i \in S} w_i \leq W and |S| is maximized.
```

Greedy algorithm

- Local criterion
- Order