

a) 1 onlyb) 2 onlyc) 1 and 2

a) 0b) 1c) 2

a) Yesb) No

a) Yesb) No

c) Can't sayd) None of these

d) None of the above

iterations in K-Means?

MACHINE LEARNING

Q1 to Q11 have only one correct answer. Choose the correct option to answer your question.	
i i	Movie Recommendation systems are an example of: Classification Clustering Regression Options: a) 2 Only b) 1 and 2 c) 1 and 3 d) 2 and 3
i i i	Sentiment Analysis is an example of: (i) Regression (ii) Classification (iii) Clustering (iv) Reinforcement Options: (a) 1 Only (b) 1 and 2 (c) 1 and 3 (d) 1, 2 and 4
3.	Can decision trees be used for performing clustering? a) True b) False
i	Which of the following is the most appropriate strategy for data cleaning before performing clustering analysis, given less than desirable number of data points: Capping and flooring of variables Removal of outliers

5. What is the minimum no. of variables/ features required to perform clustering?

6. For two runs of K-Mean clustering is it expected to get same clustering results?

7. Is it possible that Assignment of observations to clusters does not change between successive

MACHINE LEARNING

- 8. Which of the following can act as possible termination conditions in K-Means?
 - i) For a fixed number of iterations.
 - ii) Assignment of observations to clusters does not change between iterations. Except for cases witha bad local minimum.
 - iii) Centroids do not change between successive iterations.
 - iv) Terminate when RSS falls below a threshold. Options:
 - a) 1, 3 and 4b) 1, 2 and 3
 - c) 1, 2 and 4
 - d) All of the above
- 9. Which of the following algorithms is most sensitive to outliers?
 - a) K-means clustering algorithm
 - b) K-medians clustering algorithm
 - c) K-modes clustering algorithm
 - d) K-medoids clustering algorithm
- 10. How can Clustering (Unsupervised Learning) be used to improve the accuracy of Linear Regression model (Supervised Learning):
 - Creating different models for different cluster groups.
 - ii) Creating an input feature for cluster ids as an ordinal variable.
 - iii) Creating an input feature for cluster centroids as a continuous variable.
 - iv) Creating an input feature for cluster size as a continuous variable. Options:
 - a) 1 only
 - b) 2 only
 - c) 3 and 4
 - d) All of the above
- 11. What could be the possible reason(s) for producing two different dendrograms using agglomerative clustering algorithms for the same dataset?
 - a) Proximity function used
 - b) of data points used
 - c) of variables used
 - d) All of the above
- Q12 to Q14 are subjective answers type questions. Answers them in their own words briefly
 - 12. Is K sensitive to outliers?- Yes
 - 13. Why is K means better?
 - 1. Simple to use.
 - 2. Works better in larger dataset
 - Sensitive outliers and noise
 - 14. Is K means a deterministic algorithm?- No