HW #1

Problem 1

Ryan St Pierre (ras7)

> restart

Helpful functions

- > with(inttrans):
- $u := t \to \text{Heaviside}(t)$:

>
$$PAR := (Za, Zb) \rightarrow simplify \left(\frac{Za \cdot Zb}{Za + Zb} \right)$$
:

- $\overline{\ \ \ }$ $SCS := X \rightarrow sort(collect(simplify(expand(numer(X)))/expand(denom(X))), s), s)$:
- $IL := (X, s, t) \rightarrow simplify(convert(invlaplace(convert(X, parfrac, s), s, t), expsincos))$:
- > $ILTS := (X, s, t) \rightarrow simplify(convert(invlaplace(X, s, t), expsincos))$:

Part A

$$eq1 := \left(L1 \cdot s + \frac{1}{C \cdot s}\right) \cdot II - \frac{1}{C \cdot s} \cdot I2 = V$$

$$eq1 := \left(L1 \cdot s + \frac{1}{C \cdot s}\right) II - \frac{I2}{C \cdot s} = V$$

$$(1)$$

$$Arr eq2 := \left(\frac{1}{C \cdot s} + R\right) \cdot I2 - \frac{1}{C \cdot s} \cdot I1 = -VI$$

$$eq2 := \left(\frac{1}{Cs} + R\right)I2 - \frac{II}{Cs} = -VI$$
 (2)

$$\Rightarrow eq3 := Vl = I2 \cdot L2 \cdot s$$

$$eq3 := V1 = I2 L2 s$$
 (3)

$$\triangleright$$
 solMesh := solve({eq1, eq2, eq3}, [I1, I2, V1])

> TFMesh :=
$$simplify \left(expand \left(\frac{rhs(solMesh[][3])}{V} \right) \right)$$

$$TFMesh := \frac{s L2}{C L1 L2 s^3 + C L1 R s^2 + (L1 + L2) s + R}$$
(5)

> vals :=
$$R = 2$$
, $C = \frac{1}{6}$, $L1 = 2$, $L2 = 3$

vals :=
$$R = 2$$
, $C = \frac{1}{6}$, $L1 = 2$, $L2 = 3$ (6)

> simplify(subs(vals, TFMesh))

$$\frac{9 s}{3 s^3 + 2 s^2 + 15 s + 6}$$
 (7)

Part B

>
$$eq1Node := \frac{Vs}{L1 \cdot s} = Vr \cdot \left(\frac{1}{L1 \cdot s} + C \cdot s + \frac{1}{R}\right) - \left(\frac{1}{R}\right) VI$$

 $eq1Node := \frac{Vs}{L1 \cdot s} = Vr \left(\frac{1}{L1 \cdot s} + C \cdot s + \frac{1}{R}\right) - \frac{VI}{R}$ (8)

>
$$eq2Node := \frac{(Vr - Vl)}{R} = \frac{Vl}{L2 \cdot s}$$

$$eq2Node := \frac{Vr - Vl}{R} = \frac{Vl}{L2 s}$$
 (9)

>
$$solNode := solve(\{eq1Node, eq2Node\}, [Vr, Vl])$$

 $solNode := \left[Vr = \frac{(L2 s + R) Vs}{C L1 L2 s^3 + C L1 R s^2 + L1 s + L2 s + R}, Vl \right]$ (10)

$$= \frac{L2 \ Vs \ s}{C \ L1 \ L2 \ s^{3} + C \ L1 \ R \ s^{2} + L1 \ s + L2 \ s + R} \ \bigg] \bigg]$$

> TFNode :=
$$simplify \left(expand \left(\frac{rhs(solNode[\][2\])}{Vs} \right) \right)$$

$$TFNode := \frac{s L2}{C L1 L2 s^3 + C L1 R s^2 + (L1 + L2) s + R}$$
(11)

> vals :=
$$R = 2$$
, $C = \frac{1}{6}$, $L1 = 2$, $L2 = 3$

$$vals := R = 2, C = \frac{1}{6}, LI = 2, L2 = 3$$
 (12)

> simplify(subs(vals, TFNode))

$$\frac{9 s}{3 s^3 + 2 s^2 + 15 s + 6} \tag{13}$$