Wykłady z Analizy III

Jakub Korsak 20 listopada 2019

1 Wykład (04.10.2019)

1.1 Przypomnienie

Rysunek 1: Przypomnienie

Niech $\alpha_1, \alpha_2, \ldots, \alpha_k \in \Lambda^1(M), v_1, v_2, \ldots, v_k \in T_pM$, to wtedy

$$\langle \alpha_1 \wedge \alpha_2 \wedge \dots \alpha_k, v_1, v_2, \dots, v_k \rangle = \begin{vmatrix} \begin{bmatrix} \alpha_1(v_1) & \dots & \alpha_k \\ \vdots & \ddots & \vdots \\ \alpha_1(v_k) & \dots & \alpha_k(v_k) \end{bmatrix} \end{vmatrix}.$$

Rysunek 2: Przypomnienie c.d.

$$\langle v|w\rangle = [v]^T [g_{ij}] \left[w\right].$$

$$A = A^1 \frac{\partial}{\partial x^1} + \dots + A^n \frac{\partial}{\partial x^n}.$$

$$A^{\sharp} = A^1 g_{11} dx^1 + \dots + A^n g_{nn} dx^n,$$

(gdy g_{ij} - diagonalna)

 $A^i g_{ij} dx^j$.

1.2 Jest sytuacja taka

Niech $A \in T_pM$, $A = A^1 \frac{\partial}{\partial x^1} + \ldots + A^k \frac{\partial}{\partial x^k}$, $B = T_pM$, $B = B^1 \frac{\partial}{\partial x^1} + \ldots + \frac{\partial}{\partial x^k}$ Jaka jest interpretacja geometryczna wielkości

 $\langle A^{\sharp}, B \rangle$, $(g_{ij}$ - diagonalna).

 $A^{\sharp} = A^{1}g_{11}dx^{1} + \ldots + A^{k}g_{kk}dx^{k}.$

$$\langle A^{\sharp}, B \rangle = \left\langle A^{1} g_{11} dx^{1} + \dots + A^{k} g_{kk} dx^{k}, B^{1} \frac{\partial}{\partial x^{1}} + \dots + B^{k} \frac{\partial}{\partial x^{k}} \right\rangle =$$

$$= g_{11} A^{1} B^{1} + \dots + g_{kk} A^{k} B^{k} = A \cdot B.$$

Czyli gdyby ||B|| = 1, to $\langle A^{\sharp}, B \rangle$ byłoby długością rzutu A na kierunek B. Niech dim M = 3, $\Lambda^2 M \ni A$,

$$A = A^{1}dx^{2} \wedge dx^{3} + A^{2}dx^{3} \wedge dx^{1} + A^{3}dx^{1} \wedge dx^{2}.$$

$$B = B^{1}\frac{\partial}{\partial x^{1}} + B^{2}\frac{\partial}{\partial x^{2}} + B^{3}\frac{\partial}{\partial x^{3}}, \quad C = C^{1}\frac{\partial}{\partial x^{1}} + \dots + C^{3}\frac{\partial}{\partial x^{3}} \in T_{p}M.$$

$$\begin{split} \langle A,B,C \rangle &= A^{1} \left\langle dx^{2} \wedge dx^{3},B,C \right\rangle + A^{2} \left\langle dx^{3} \wedge dx^{1},B,C \right\rangle + A^{3} \left\langle dx^{1} \wedge dx^{2},B,C \right\rangle = \\ &= A^{1} \begin{bmatrix} \left\langle dx^{2},B \right\rangle & \left\langle dx^{3},B \right\rangle \\ \left\langle dx^{2},C \right\rangle & \left\langle dx^{3},C \right\rangle \end{bmatrix} + A^{2} \begin{bmatrix} \left\langle dx^{3},B \right\rangle & \left\langle dx^{1},B \right\rangle \\ \left\langle dx^{3},C \right\rangle & \left\langle dx^{1},C \right\rangle \end{bmatrix} + A^{3} \begin{bmatrix} \left\langle dx^{1},B \right\rangle & \left\langle dx^{2},B \right\rangle \\ \left\langle dx^{2},C \right\rangle \end{bmatrix} = \\ &= A^{1} \begin{bmatrix} B^{2} & B^{3} \\ C^{2} & C^{3} \end{bmatrix} + A^{2} \begin{bmatrix} B^{3} & B^{1} \\ C^{3} & C^{1} \end{bmatrix} + A^{3} \begin{bmatrix} B^{1} & B^{2} \\ C^{1} & C^{2} \end{bmatrix} = \\ &= A^{1} \left(B^{2}C^{3} - B^{3}C^{2} \right) + A^{2} \left(B^{3}C^{1} - B^{1}C^{3} \right) + A^{3} \left(B^{1}C^{2} - B^{2}C^{1} \right) = \\ &= " = "A^{1}(B \times C)_{1} + A^{2}(B \times C)_{2} + A^{3}(B \times C)_{3}" = "A \cdot (B \times C) \\ &= \begin{bmatrix} A^{1} & A^{2} & A^{3} \\ B^{1} & B^{2} & B^{3} \\ C^{1} & C^{2} & C^{3} \end{bmatrix} \right]. \end{split}$$

(rys 3)

Rysunek 3: Się okazuje, że wychodzi z tego coś jak iloczyn wektorowy

1.3 Problem

 $\dim M = 3$, mamy

$$\Lambda^{1}M \ni F = F^{1}dx^{1} + F^{2}dx^{2} + F^{3}dx^{3}$$

oraz krzywą $S \le \mathbb{R}^3$ (np. spiralę) (rys 4). Chcemy znaleźć pracę związaną z przemieszczeniem z punktu A do B.

1. sparametryzujmy kształ
t $S,\,{\rm np}.$

$$S = \left\{ (x, y, z) \in \mathbb{R}^3, y = \sin(t), t \in [0, 4\pi] \right\}.$$

$$z = t$$

2. możemy na spirali wygenerować pole wektorów stycznych. Jeżeli
$$p = \begin{bmatrix} \cos(t) \\ \sin(t) \\ t \end{bmatrix}_{t=t}$$
, to

$$T_p M = \left\langle \begin{bmatrix} -\sin(t) \\ \cos(t) \\ 1 \end{bmatrix} \right\rangle \bigg|_{t=t_0}.$$

(rys 5)

3. Niech $T_pM\ni v=-\sin(t)\frac{\partial}{\partial x}+\cos(t)\frac{\partial}{\partial y}+\frac{\partial}{\partial z}$. (rys 6) Możemy policzyć np.

$$\int \langle F, v \rangle = \int_0^{4\pi} \left\langle F, -\sin(t) \frac{\partial}{\partial x} + \cos(t) \frac{\partial}{\partial y} + \frac{\partial}{\partial z} \right\rangle dt =$$

$$= \int_0^{4\pi} \left\langle F, \varphi_\star \left(\frac{\partial}{\partial t} \right) \right\rangle dt = \int_0^{4\pi} \left\langle \varphi^\star F, \frac{\partial}{\partial t} \right\rangle dt.$$

Rysunek 4: Mrówka (albo koralik) na spirali + jakieś pole wektorowe (grawitacyjne albo mocny wiatrak)

Rysunek 5: można jakoś to sparametryzować przez φ

Definicja 1. Niech M - rozmaitość, L - krzywa na M, $w \in \Lambda^1 M$, $\varphi : [a,b] \to M$ - parametryzacja krzywej L, czyli $L = \{ \varphi(t), t \in [a,b] \}.$

Całką z jednoformy po krzywej nazywamy wielkość (rys 7)

$$\int_{a}^{b} \left\langle \varphi^{\star} \omega, \frac{\partial}{\partial t} \right\rangle dt.$$

Rysunek 7: Cała sztuka polega na takim kolekcjonowaniu wektorków stycznych

Przykład 1. niech (rys 8)

$$C_1 = \left\{ (x, y) \in \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} t - 1 \\ 2t - 1 \end{bmatrix}, 1 \leqslant t \leqslant 2 \right\}$$

i

$$\omega = ydx = \left(y\frac{\partial}{\partial x}\right)^{\sharp}.$$

Wtedy mamy
$$\varphi(t) = \begin{bmatrix} t-1\\2t-1 \end{bmatrix}$$
, $\varphi^*\omega = \begin{vmatrix} x=t-1\\dx=dt \end{vmatrix} = (2t-1)dt$

$$\left\langle \varphi^* \omega, \frac{\partial}{\partial t} \right\rangle = \left\langle (2t - 1)dt, \frac{\partial}{\partial t} \right\rangle = 2t - 1$$

$$\int_{C_1} \omega = \int_1^2 \left\langle \varphi^* \omega, \frac{\partial}{\partial t} \right\rangle dt = \int_1^2 (2t - 1)dt = \left[t^2 - t \right]_1^2 = 2$$

 $C_2 = \left\{ (x, y) \in \mathbb{R}^2, \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 - u \\ 5 - 2u \end{bmatrix}, 1 \leqslant u \leqslant 2 \right\}, \varphi_1(u) = \begin{bmatrix} 2 - u \\ 5 - 2u \end{bmatrix}.$

$$\int_{C_2} \omega = \int_1^2 \left\langle \varphi_1^{\star} \omega, \frac{\partial}{\partial u} \right\rangle du,$$

 $ale \begin{array}{l} x=2-u \\ dx=-u \end{array} i \ mamy$

Ostatecznie

$$\varphi^*\omega = (5 - 2u)(-du) = (2u - 5)du.$$

$$\int_{C_2} \omega = \int_1^2 (2u - 5) du = \left[u^2 - 5u \right]_1^2 = -6 + 4 = -2.$$

Rysunek 8

2 Wykład (07.10.2019)

2.1 Ostatnio

Była rozmaitość M z wymiarem dim M=n, krzywą

$$L: \{[a,b] \ni t \to \varphi(t) \in \mathbb{R}^n\},$$

jednoforma $\omega \in \Lambda^1 M$ i zastanawialiśmy się jak obliczyć

$$\int_L \omega = \int_a^b \left\langle \varphi^\star \omega, \pm \frac{\partial}{\partial t} \right\rangle dt.$$

Wyszło nam dla $\omega = ydx$,

$$\int_{C_1} \omega = 2, \quad \int_{C_2} \omega = -2.$$

(rys 1)

Rysunek 9: W każdym momencie chcemy wiedzieć, w którą stronę chcemy iść. $L_1 + L_2 + L_3 = L$

Przykład 2. (rys 2)

Rysunek 10: $\dim M = 2$

$$\omega = A(x, y)dx + B(x, y)dy \in \Lambda^1 M.$$

Trzeba te krzywe sparametryzować:

$$L_1 = \{(x, b), a \le x \le c\}.$$

$$L_2 = \{(c, y), b \le y \le d\}.$$

$$L_3 = \{(x, d), a \le x \le c\}.$$

$$L_4 = \{(a, y), b \le y \le d\}.$$

$$\int_{L} \omega = \int_{L_{1}} \omega + \int_{L_{2}} \omega + \int_{L_{3}} \omega + \int_{L_{4}} \omega =$$

$$= \int_{a}^{c} \left\langle \varphi_{1}^{\star} \omega, \frac{\partial}{\partial x} \right\rangle dx + \int_{b}^{d} \left\langle \varphi_{2}^{\star} \omega, \frac{\partial}{\partial y} \right\rangle dy + \int_{a}^{c} \left\langle \varphi_{3}^{\star}, -\frac{\partial}{\partial x} \right\rangle dx + \int_{b}^{d} \left\langle \varphi_{4}^{\star} \omega, -\frac{\partial}{\partial y} \right\rangle =$$

$$= \int_{a}^{c} A(x, b) dx + \int_{b}^{d} B(c, y) dy + (-1) \cdot \int_{a}^{c} A(x, d) dx + (-1) \cdot \int_{b}^{d} B(a, y) dy.$$

(rys 3) dla dim $M = \mathbb{R}^1$. Niech $\varphi: T_pM \to T_pM$, $\varphi(v) = a \cdot v$ (φ - liniowe). a > 0 - nie zmienia orientacji (kierunku) a < 0 - zmienia kierunek wektora. (rys 4)

Rysunek 12: Różne orientacje na \mathbb{R}^2 , czy można to jakoś pogrupować?

Definicja 2. Niech B_1 , B_2 - bazy uporządkowane w V - przestrzeń wektorowa. Mówimy, że B_1 i B_2 należą do tej samej klasy orientacji, jeżeli wyznacznik odwzorowania liniowego z B_1 do B_2 jest większy od zera. Wybór klasy orientacji nazywamy zorientowaniem V.

Definicja 3. Orientacją standardową na \mathbb{R}^n nazywamy wybór zgodny z bazą standardową, tzn.

$$e_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \quad e_3 = \dots$$

Definicja 4. Niech M - rozmaitość zorientowana, $\dim M = n$ i $S = \{[a,b] \times [c,d] \ni (t_1,t_2) \rightarrow \varphi(t_1,t_2) \in M\}$ - powierzchnia sparametryzowana, $\Lambda^2 M \ni \omega$ - dwuforma. Wówczas

$$\int_{S} \omega \stackrel{def}{=} \int_{a}^{b} \int_{c}^{d} \left\langle \varphi^{*} \omega, \underbrace{\pm \frac{\partial}{\partial t_{1}}, \pm \frac{\partial}{\partial t_{2}}}_{zgodne\ z\ orientacja} \right\rangle dt_{1} dt_{2}.$$

Przykład 3. do 7:

weźmy $\omega = A(x,y)dx + B(x,y)dy$ i obliczmy $\int_P d\omega$.

$$d\omega = \frac{\partial A}{\partial y} dy \wedge dx + \frac{\partial B}{\partial x} dx \wedge dy = \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y}\right) dx \wedge dy,$$
$$P = \left\{ (x, y) \in \mathbb{R}^2 : a \leqslant x \leqslant b \\ c \leqslant y \leqslant d \right\}.$$

Wtedy mamy

$$\begin{split} \int \int_{P} d\omega &= \int \int_{[a,b] \times [c,d]} \left\langle d\omega, \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\rangle = \\ &= \int_{a}^{b} dx \int_{c}^{d} dy \left(\frac{\partial B}{\partial x} - \frac{\partial A}{\partial y} \right) = \int_{c}^{d} dy \int_{a}^{b} \frac{\partial B(x,y)}{\partial x} dx - \int_{a}^{b} dx \int_{c}^{d} dy \frac{\partial A}{\partial y} = \\ &= \int_{c}^{d} dy (B(b,y) - B(a,y)) - \left[\int_{a}^{b} dx \left(A(x,d) - A(x,c) \right) \right] = \\ &= \int_{a}^{b} A(x,c) dx + \int_{c}^{d} B(b,y) dy - \int_{a}^{c} A(x,d) dx - \int_{c}^{d} B(a,y) dy = \\ &= \int_{L_{1}} \omega + \int_{L_{2}} \omega + \int_{L_{2}} \omega + \int_{L_{3}} \omega. \end{split}$$

Czyli

$$\int \int_{P} d\omega = \int_{L} \omega,$$

to kiedyś będzie twierdzenie Stokesa

Przykład 4. $niech S = S_1 \cup S_1$, gdzie

$$S_1 = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 + z^2 = 1, z \ge 0\}, \quad S_2 = \{(x, y, z) \in \mathbb{R}^3, x^2 + y^2 \le 1, z = 0\},$$

 $\alpha \in \Lambda^2 M$.

$$\int_{S} \alpha = \int_{S_1} \alpha + \int_{S_2} \alpha.$$

Rysunek 13: Tak to wygląda

Definicja 5. Atlasem zorientowanym nazywamy taki zbiór otoczeń i map (U_1, φ_1) , że dla każdej pary $(U_i, \varphi_i), (U_j, \varphi_j)$ takiej, że $U_i \cap U_j \neq \phi$, odwzorowanie $\det (\varphi_j \circ \varphi_i^{-1})' > 0$.

Definicja 6. Rozmaitość składająca się z atlasu zorientowanego nazywamy orientowalną.

Definicja 7. Po wyborze orientacji, rozmaitość nazywamy zorientowaną.

3 Wykład (11.10.2019)

3.1 Przypomnienie

(rys 1) Dla $v \in T_pM$, jest

Rysunek 14: Przypomnienie

$$h_{\star}v = \frac{d}{dt}h(\sigma(t)) = h'(\sigma(t))\sigma'(t),$$

czyli $v = [\sigma] = \frac{d}{dt}\sigma(t),$

$$h_{\star}v = h'(\sigma(t)) v.$$
macierz kwadratowa

Przykład 5. Niech

$$\begin{split} S^2 &= \left\{ (x,y,z) \in \mathbb{R}^3, x^2 + y^2 + z^2 = 1 \right\}. \\ U_1^+ &= \left\{ (x,y,z) \in \mathbb{R}^3, x > 0 \right\} \cap S^2. \\ U_1^- &= \left\{ (x,y,z) \in \mathbb{R}^3, x < 0 \right\} \cap S^2. \\ U_2^+ &= \left\{ (x,y,z) \in \mathbb{R}^3, y > 0 \right\} \cap S^2. \\ U_2^- &= \left\{ (x,y,z) \in \mathbb{R}^3, y < 0 \right\} \cap S^2. \\ U_3^+ &= \left\{ (x,y,z) \in \mathbb{R}^3, z > 0 \right\} \cap S^2. \\ U_3^- &= \left\{ (x,y,z) \in \mathbb{R}^3, z < 0 \right\} \cap S^2. \end{split}$$

Te mapy przerzucają (rys 2) na np. (rys 3).

Rysunek 15: fig3-2

Rysunek 16: fig3-3

$$y = \sqrt{1 - x^2 - z^2}$$

$$z = z$$

$$(z, x) \to h(z, x) = \begin{bmatrix} z \\ \sqrt{1 - x^2 - z^2} \end{bmatrix}$$

$$(x > 0, z > 0).$$

$$h' = \begin{bmatrix} \frac{\partial}{\partial z} \left(\sqrt{1 - x^2 - z^2} \right) & \frac{\partial}{\partial x} \left(\sqrt{1 - x^2 - z^2} \right) \\ \frac{\partial}{\partial z} (z) & \frac{\partial}{\partial x} (z) \end{bmatrix} = \begin{bmatrix} \frac{-2z}{2\sqrt{1 - x^2 - z^2}} & \frac{-2x}{2\sqrt{1 - x^2 - z^2}} \\ 1 & 0 \end{bmatrix}.$$

$$\det h' = \frac{x}{\sqrt{1 - x^2 - z^2}} > 0, \quad \begin{array}{c} x > 0 \\ z > 0 \end{array}.$$

Przykład 6. Wstęga Moebiusa zbudowana z walca o wysokości 2L i promieniu R. (rys 4)

$$x(\theta, t) = \left(R - t\sin\left(\frac{\theta}{2}\right)\right)\sin\theta$$
$$y(\theta, t) = \left(R - t\sin\left(\frac{\theta}{2}\right)\right)\cos\theta$$
$$z(\theta, t) = \left(t\cos\frac{\theta}{2}\right).$$

To jeszcze nie jest bijekcja - potrzebna druga mapa. Mamy θ' i t'.

$$x'(\theta', t') = \left(R - t' \sin\left(\frac{\frac{\pi}{2} + \theta'}{2}\right)\right) \cos \theta'$$

$$y'(\theta', t') = -\left(R - t' \sin\left(\frac{\frac{\pi}{2} + \theta'}{2}\right)\right) \sin \theta'$$

$$z'(\theta', t') = t' \cos\left(\frac{\frac{\pi}{2} + \theta'}{2}\right).$$

Obszary wspólne: (rys 5)

$$W_1 = \left\{ 0 < \theta < \frac{\pi}{2} \right\} = \left\{ \frac{3}{2}\pi < \theta' < 2\pi \right\}$$
$$W_2 = \left\{ \frac{\pi}{2} < \theta < 2\pi \right\} = \left\{ 0 < \theta' < \frac{3}{2}\pi \right\}.$$

 $Dla W_1$

$$\begin{cases} \theta' &= \theta + \frac{3}{2}\pi \\ t' &= -t, \end{cases}$$

 $dla W_2$

$$\begin{cases} \theta' &= \theta - \frac{\pi}{2} \\ t' &= t. \end{cases}$$

$$\begin{split} \varphi_1'(\theta,t) &= \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \quad \varphi_2'(\theta,t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \\ \det \varphi_1' &< 0 \quad \det \varphi_2' > 0. \end{split}$$

Rysunek 17: Gdzie wyląduje biedronka idąc prosto po wstędze?

Rysunek 18: Obszary wspólne

3.2 Chcemy dojść do twierdzenia Stokesa na kostce w \mathbb{R}^n

1. Niech $I^n=[0,1]\times[0,1]\times\ldots\times[0.1]\in\mathbb{R}^n$ (np. rys 6) Wprowadźmy oznaczenia:

$$\begin{split} I^n_{(i,0)} &:= \left\{ \left(x^1, \dots, x^{i-1}, 0, x^{i+1}, \dots, x^n \right) \in \mathbb{R}^n, 0 \leqslant x^j \leqslant 1 \right\}. \\ I^n_{(i,1)} &:= \left\{ \left(x^1, \dots, x^{i-1}, 1, x^{i+1}, \dots, x^n \right) \in \mathbb{R}^n, 0 \leqslant x^j \leqslant 1 \right\}. \end{split}$$

(odpowiednio: ścianka tylna i przednia)

$$\partial I^2 \stackrel{\text{def}}{=} I^2_{(2,0)}" = "I^2_{(1,1)}" + " - I^2_{(2,1)}" + " - I^2_{(1,0)},$$

(tutaj przepis na dodawanie na rysunku 6)

ścianki takie zawsze będą przeciwnej orientacji.
 Zdefiniujmy "zbiór"

$$\partial I^n = \sum_{i=1}^n \sum_{\alpha=0,1} (-1)^{\alpha+i} I_{i,\alpha}^n,$$

Rysunek 19: fig3-6

który nazwiemy brzegiem zorientowanym kostki I^n .

Niech M - rozmaitość, dim $M=n,\,I^n\in M$. Niech $\omega\in\Lambda^{n-1}(M)$. Chcemy obliczyć $\int_{\partial I^n}\omega$. Dowolna n-1 forma z $\Lambda^{n-1}(M)$ ma postać

$$\omega = f_1(x^1, \dots, x^n) dx^2 \wedge \dots \wedge dx^n +$$

$$+ f_2(x^1, \dots, x^n) dx^1 \wedge dx^3 \wedge \dots \wedge dx^n + \dots +$$

$$+ f_i(x^1, \dots, x^n) dx^1 \wedge \dots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \dots \wedge dx^n + \dots +$$

$$+ f_n(x^1, \dots, x^n) dx^1 \wedge \dots \wedge dx^{n-1}.$$

Ponieważ $\int_{\partial I^n}\omega$ rozbije się na nskładników, wystarczy, że udowodnimy Tw. Stokesa dla

$$\omega = f(x^1, \dots, x^n) dx^1 \wedge \dots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \dots \wedge dx^n.$$

Obliczmy

$$\int_{\partial I^n} \omega = \sum_{j=1}^n \sum_{\alpha=0,1} (-1)^{j+\alpha} \int_{I^n(j,\alpha)} \left\langle f(x^1,\dots,x^n) dx^1 \wedge \dots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \dots \wedge dx^n, \frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^{j-1}}, \frac{\partial}{\partial x^{j+1}}, \dots, \frac{\partial}{\partial x^n} \right\rangle$$

$$dx^1 \dots dx^{j-1} dx^{j+1} \dots dx^n =$$

$$= \begin{cases} 0 & i \neq j \\ \sum_{j=1}^n \sum_{\alpha=0,1} (-1)^{j+\alpha} \int_{I^n_{j,\alpha}} f(x^1,\dots,x^n) dx^1 \dots dx^{j-1} dx^{j+1} \dots dx^n \end{cases}$$

$$wp.p.$$

4 Wykład (14.10.2019)

4.1 Końcówka dowodu (Stokesa na kostce)

Dowód. mamy definicję ścianki:

$$\partial I = \sum_{j=1}^{n} \sum_{\alpha=0,1} (-1)^{\alpha+j} I_{(j,\alpha)},$$

dla $I^n \subset \mathbb{R}^n, \ \omega \in \Lambda^{n-1}(M), \ \omega = f(x^1, \dots, x^n) = dx^1 \wedge \dots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \dots \wedge dx^n$. Wtedy dla $x = (x^1, \dots, x^n)$ i $d\tilde{x} = dx^1 \dots dx^{i-1} dx^{i+1} \dots dx^n$

$$\begin{split} &\int_{I(j,\alpha)} \left\langle f(x) d\tilde{x}, \frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^{j-1}}, \frac{\partial}{\partial x^{j+1}}, \dots, \frac{\partial}{\partial x^n} \right\rangle = \\ &= \begin{cases} 0 & j \neq i \\ \int_{I(i,\alpha)} f(x^1, \dots, x^{i-1}, \alpha, x^{i+1}, \dots x^n) d\tilde{x} = \int_0^1 dx^1 \dots \int_0^1 dx^{i-1} \int_0^1 dx^{i+1} \dots \int_0^1 dx^n f(x^1, \dots, x^{i-1}, \alpha, x^{i+1}, \dots, x^n) \stackrel{(\star)}{=} & wp.p. \end{cases} \\ &\stackrel{(\star)}{=} \int_0^1 dx^1 \dots \int_0^1 dx^n f(x^1, \dots, x^{i-1}, \alpha, x^{i+1}, \dots, x^n) = \int_{I^n} f(x^1, \dots, x^{i-1}, \alpha, x^{i+1}, \dots, x^n). \end{split}$$

Przechodzimy do sumy

$$\int_{\partial I} \omega = \sum_{j=1}^{n} \sum_{\alpha=0,1} (-1)^{\alpha+j} \int_{I(j,\alpha)} \omega =$$

$$= \sum_{\alpha=0,1} (-1)^{\alpha+i} \int_{I^n} f(x^1, \dots, x^{i-1}, \alpha, x^{j+1}, \dots, x^n) =$$

$$= (-1)^{i+0} \int_{I^n} f(x^1, \dots, x^{i-1}, 0, x^{i+1}, \dots, x^n) + (-1)^{i+1} \int_{I^n} f(x^1, \dots, x^{i-1}, 1, x^{i+1}, \dots, x^n).$$

$$d\omega = \frac{\partial f}{\partial x^i} dx^i \wedge dx^1 \wedge \dots \wedge dx^{i-1} \wedge dx^{i+1} \wedge \dots \wedge dx^n =$$

$$= (-1)^{i+1} \frac{\partial f}{\partial x^i} dx^1 \wedge \dots \wedge dx^{i-1} \wedge dx^i \wedge dx^{i+1} \wedge \dots \wedge dx^n.$$

Stąd

$$\begin{split} &(-1)^{i+1} \int_{I^n} \left\langle \frac{\partial f}{\partial x^1} dx^1, \dots, dx^n, \frac{\partial}{\partial x^1}, \dots, \frac{\partial}{\partial x^n} \right\rangle = (-1)^{i+1} \int_0^1 dx^1 \dots \int_0^1 dx^i \dots \int_0^1 dx^n \frac{\partial f}{\partial x^i}(x) = \\ &= (-1)^{i+1} \int_0^1 dx^1 \dots \int_0^1 dx^{i-1} \int_0^1 dx^{i+1} \dots \int_0^1 dx^n \\ & \cdot \left[f(x^1, \dots, x^{i-1}, 1, x^{i+1}, \dots, x^n) - f(x^1, \dots, x^{i-1}, 0, x^{i+1}, \dots, x^n) \right] \\ &= (-1)^{i+1} \int_0^1 dx^1 \dots \int_0^1 dx^i \dots \int_0^1 dx^n \cdot \\ & \cdot \left[f(x^1, \dots, x^{i-1}, 1, x^{i+1}, \dots, x^n) - f(x^1, \dots, x^{i-1}, 0, x^{i+1}, \dots, x^n) \right] = \\ &= (-1)^{i+1} \int_{I^n} \left[f(x^1, \dots, x^{i-1}, 1, x^{i+1}, \dots, x^n) - f(x^1, \dots, x^{i-1}, 0, x^{i+1}, \dots, x^n) \right]. \end{split}$$

LHS = RHS.

Uwaga: Większą kostkę (w sensie długości krawędzi) możemy zawsze podzielić na sumę zorientowanych wspólnie kostek I^n . Całki na tych ścianach kostek, które się stykają dadzą w efekcie zero.

Przykład 7. Niech $[a,b] \in \mathbb{R}^1$ if $f \in \Lambda^0([a,b])$. Wtedy twierdzenie Stokesa wygląda tak (xD):

$$\int_{\partial[a,b]} f = \int_{[a,b]} df = \int_a^b \left\langle \frac{\partial f}{\partial x} dx, \frac{\partial}{\partial x} \right\rangle dx = \int_a^b \frac{\partial f}{\partial x} dx = f(b) - f(a).$$

Przykład 8. Niech γ - krzywa na M, dim M = 3, $f \in \Lambda^0 M$.

$$\int_{\mathbb{R}^d} df = \int_{\partial \Omega} f = f(B) - f(A).$$

Przykład 9. dim M=2, niech $\alpha=xydx+x^2dy$. Policzmy $\int_{\partial S}\alpha$.

$$\int_{\partial S} \alpha = \int_{C_1} \alpha + \int_{C_2} \alpha + \int_{C_3} \alpha,$$

ale

$$\int_{C_1} \left\langle \varphi^* \alpha, \frac{\partial}{\partial x} \right\rangle = 0,$$

 φ - parametryzacja C_1 . Jeżeli weźmiemy sobie

$$\int_{C_3} \left\langle \varphi_3^{\star} \alpha, -\frac{\partial}{\partial y} \right\rangle = 0,$$

 φ_3 - parametryzacja C_3 .

$$C_2 = \left\{ \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, 0 \leqslant \theta \leqslant \frac{\pi}{2} \right\},\,$$

 $zatem \ \varphi_2^{\star}\alpha \ przy \ x = \cos\theta \implies dx = -\sin\theta d\theta, \ y = \sin\theta \implies dy = \cos\theta d\theta, \ mamy$

 $\varphi_2^{\star}\alpha = \cos\theta\sin\theta(-\sin\theta d\theta) + (\cos^2\theta)\cos\theta d\theta = \cos\theta(\cos^2\theta - \sin^2\theta)d\theta.$

$$\int_{\partial S} \alpha = \int_{0}^{\frac{\pi}{2}} d\theta \left\langle \cos \theta (\cos^2 \theta - \sin^2 \theta) d\theta, \frac{\partial}{\partial \theta} \right\rangle,$$

ale np. tw. Stokesa: $\int_{\partial S} \alpha = \int_{S} d\alpha$.

$$d\alpha = xdy \wedge dx + 2xdx \wedge dy = xdx \wedge dy.$$

$$\int_{\square}\left\langle xdx\wedge dy,\frac{\partial}{\partial x},\frac{\partial}{\partial y}\right\rangle = \int_{0}^{1}dx\int_{0}^{\sqrt{1-x^2}}x = \int_{0}^{1}dx\cdot x\sqrt{1-x^2} = \frac{2}{3}(1-x^2)^{\frac{3}{2}}\frac{(-1)}{2}\bigg|_{0}^{1} = \frac{1}{3}.$$

Przykład 10. Niech $\alpha = \frac{-y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy \in \Lambda^1(M), \ \partial K = \left\{ \begin{bmatrix} \cos \theta \\ \sin \theta \end{bmatrix}, 0 \leqslant \theta, 2\pi \right\}$

$$\int_{\partial K} \alpha = \int_0^{2\pi} \left\langle \varphi^{\star} \alpha, \frac{\partial}{\partial \theta} \right\rangle d\theta.$$

 $\varphi^{\star}\alpha = -\sin\theta(-\sin\theta)d\theta + \cos\theta\cos\theta d\theta = d\theta.$

Czyli mamy

$$\int_{\partial K}\alpha=\int_0^{2\pi}d\theta=2\pi.$$

Ale z drugiej strony dla

$$d\alpha = \left[\left(-\frac{1}{x^2 + y^2} + \frac{2y \cdot y}{(x^2 + y^2)^2} \right) dy \wedge dx + \left(\frac{1}{x^2 + y^2} - \frac{2x^2}{(x^2 + y^2)^2} \right) dx \wedge dy \right] = \left(\frac{2}{x^2 + y^2} - \frac{2}{x^2 + y^2} \right) dx \wedge dy = 0$$

wyjdzie, że twierdzenie Stokesa się złamało.

Wiemy, że

$$\int_{\gamma} df = \int_{\partial \gamma} f = f(B) - f(A).$$

Niech $\alpha = x^2 dx + xy dy + 2 dz$. α jest potencjalna, jeżeli

$$\underset{\eta \in \Lambda^0 M}{\exists} d\eta = \alpha \implies d(d\eta) = 0,$$

(rotacja gradientu równa zero)

$$\int_{\gamma} \alpha = \int_{\gamma} d\eta = \eta(B) - \eta(A).$$

Definicja 8. Niech M - rozmaitość, dim M = n,

$$i_v:T_pM\times\Lambda^kM\to\Lambda^{k-1}M$$

zdefiniowana następująco:

1.
$$i_v f = 0$$
, $je\dot{z}eli\ f \in \Lambda^0 M$

2.
$$i_v dx^i = v^i$$
, $je\dot{z}eli\ v = v^1 \frac{\partial}{\partial x^1} + \ldots + v^i \frac{\partial}{\partial x^i} + \ldots + v^n \frac{\partial}{\partial x^n}$

3.
$$i_v(\omega \wedge \theta) = i_v(\omega) \wedge \theta + (-1)^{st\omega} \omega \wedge i_v(\theta)$$
.

Operację i_v nazywamy iloczynem zewnętrznym i oznaczamy poprzez

$$i_v(\omega) \stackrel{ozn}{=} v(odwroconeL)\omega.$$

Obserwacja: $i_v(i_v\omega) = 0$ (w domu)

Przykład 11. Niech
$$v=x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}+z\frac{\partial}{\partial z},$$

$$\omega = dx \wedge dy + dz \wedge dx.$$

$$v(odwroconeL)\omega = \langle dx,v\rangle \wedge dy + (-1)^1 dx \, \langle dy,v\rangle + \langle dz,v\rangle \wedge dx + (-1)^1 dz \wedge \langle dx,v\rangle \, .$$

Przykład 12.

$$F = E^{x} dx \wedge dt + E^{y} dy \wedge dt + E^{z} dz \wedge dt + B^{x} dy \wedge dz + B^{y} dz \wedge dx + B^{z} dx \wedge dy.$$

$$j = e \frac{\partial}{\partial t} + ev^{x} \frac{\partial}{\partial x} + ev^{y} \frac{\partial}{\partial y} + ev^{z} \frac{\partial}{\partial z}.$$

$$j(odwroconeL)F = ?.$$

5 Wykład (18.10.2019)

Sprawdzić, że

$$j \lrcorner F = "e \cdot E + e(v \times B)".$$

Przykład 13. Niech $X = \dot{x}(t) \frac{\partial}{\partial x} + \dot{p}(t) \frac{\partial}{\partial p}, \ \omega = dx \wedge dp \in \Lambda^2(M),$

$$\Lambda^0 M \ni H = \frac{p^2}{2m} + \frac{1}{2}kx^2.$$

Niech M - rozmaitość, dim M=2. Co oznacza napis

$$x \lrcorner \omega = dH$$
?

$$\left\langle dx, x(t) \frac{\partial}{\partial x} + p(t) \frac{\partial}{\partial p} \right\rangle dp - \left\langle dp, \dot{x}(t) \frac{\partial}{\partial x} + \dot{p}(t) \frac{\partial}{\partial p} \right\rangle dx = dH,$$

a teraz coś takiego:

$$x(t)dp - p(t)dx = \frac{p^2}{m}dp + kx^2dx.$$

To wypluje na wyjściu równania ruchu

$$\frac{dx}{dt} = \frac{p}{m}, \quad \dot{p}(t) = -kx$$
$$m\frac{dx}{dt} = p, \quad \frac{dp}{dt} = -kx.$$

5.1 Rozmaitość z brzegiem

Obserwacja:

(rys 5-1) Niech $I = [0, 1[\subset \mathbb{R}, (\text{metryka } d(x, y) = |x - y|) \text{ czy } I \text{ jest otwarty w } \mathbb{R}? \text{ chyba nie.}$ Niech $I = [0, 1[\subset [0, 2], \text{ czy } I \text{ jest otwarty w } [0, 2]? \text{ chyba tak.}$

$$B(0,1) = \{x \in [0,2], d(0,x) < 1\} = [0,1[.$$

Definicja 9.

$$\mathbb{R}_{+}^{m} = \left\{ (x^{1}, \dots, x^{m-1}, x^{m}), \quad x^{1}, \dots, x^{m-1} \in \mathbb{R}, \quad x^{m} \ge 0 \right\},$$

$$\mathbb{R}_{0}^{m} = \left\{ (x^{1}, \dots, x^{m-1}, 0), \quad x^{1}, \dots, x^{m-1} \in \mathbb{R} \right\}.$$

Niech M - rozmaitość, jeżeli atlas rozmaitości M składa się z takich map φ_{α} , że

$$\varphi_{\alpha}(\mathcal{O}) \subset \mathbb{R}_{+}^{m},$$

 $(\mathcal{O} \text{ - otwarty } w \ M)$, gdzie $\varphi_{\alpha}(\mathcal{O})$ - otwarte $w \ \mathbb{R}^m_+$, to M nazywamy rozmaitością z brzegiem. Jeżeli $p \in M$ i $\varphi_{\alpha}(p) \in \mathbb{R}^m_0$, to mówimy, że p należy do brzegu M.

(brzeg rozmaitości M oznaczamy przez ∂M)

Pytanie 1. Co to jest różniczkowalność φ^{-1} , jeżeli dziedzina $\varphi^{-1} \in \mathbb{R}^m_+$, który nie jest otwarty w \mathbb{R}^m ?

Mówimy wówczas tak:

Definicja 10. Niech $U \subset \tilde{U}$, \tilde{U} - otwarty $w \mathbb{R}^m$, U - otwarty $w \mathbb{R}^m$. φ jest klasy \mathcal{C}^r na U, jeżeli istnieje $\tilde{\varphi}$ klasy \mathcal{C}^r na \tilde{U} i $\tilde{\varphi}|_{U} = \varphi$.

(rys 5-3)

Pytanie 2. Czym jest ∂S , jeżeli S - okrąg?

Odp.
$$\partial S = {\phi}$$
.

Jeszcze takie uzasadnienie: (rys 5-4)

sześcian
$$\overset{\partial}{\to}$$
boki sześcianu $\overset{\partial}{\to}$ rogi sześcianu,

kula
$$\stackrel{\partial}{\to}$$
 sfera $\stackrel{\partial}{\to}$ $\{\phi\}$.

Obserwacja:

Zbiór ∂M wraz z mapami $\varphi_{\alpha}|_{\partial M}$ i otoczeniami obciętymi do $\mathcal{O}|_{\partial M}$ jest rozmaitością o wymiarze m-1, jeżeli dim M=m.

Definicja 11. Niech $p \in \partial M$, $\langle f_1, \ldots, f_{m-1} \rangle$ - baza $T_p \partial M$, wybierzmy orientację na M (rys 5-5).

Niech σ - krzywa na M taka, że

$$\varphi_{\alpha}\sigma = (0, \dots, 0, t) \in \mathbb{R}_{+}^{m},$$

 $niech \ \overline{n} = [\sigma]$. Mówimy, że orientacją ∂M jest zgodna z orientacją M, jeżeli orientacją $(\overline{n}, f_1, \ldots, f_{m-1})$ jest zgodna z orientacją

(rys 5-6) Niech M - rozmaitość, $U\subset M$, dim $M=n,\,\omega\in\Lambda^kM,\,\varphi_1:U_1\to T$ - parametryzacja T oraz $\varphi_2:U_2\to T$ - parametryzacja T.Z własności funkcji φ_1 i φ_2 wiemy, że

$$\exists h : \mathbb{R}^n \supset U_2 \to U_1 \subset \mathbb{R}^n \implies \varphi_2 = \varphi_1 \circ h.$$

Wówczas

$$\int_T \omega = \int_{U_1} \varphi_1^\star \omega = \int_{U_2} h^\star \left(\varphi_1^\star \omega \right) \overset{?}{\underset{(\Delta)}{=}} \int_{U_2} (\varphi_1 \circ h)^\star \omega = \int_{U_2} \varphi_2^\star \omega.$$

 (Δ) - (rys 5-7)

$$\langle (kL)^*\omega, v \rangle = \langle \omega, (kL)_*v \rangle = \langle k^*\omega, L_*v \rangle = \langle L^*k^*\omega, v \rangle,$$

ale jeżeli $v = [\sigma(t)], v = \frac{d}{dt}\overline{\sigma}$ to

$$(kL)_{\star}v = \frac{d}{dt}\left(k\left(L\left(\overline{\sigma}(t)\right)\right)\right) = k'(L' \cdot \sigma'(t)) = k_{\star}L_{\star}v.$$

Wniosek: całka z formy po rozmaitości nie zależy od wyboru parametryzacji

Lemat Poincare

Mieliśmy $\omega = \frac{ydx}{x^2 + y^2} - \frac{xdy}{x^2 + y^2}$, wiemy, że $d\omega = 0$. **Pytanie:** czy istnieje η taka, że $\omega = d\eta$? Wówczas wiemy, że $d\omega = d(d\eta) = 0$. **Obserwacja:**

$$\eta = arctg \frac{x}{y}, \quad d\eta = \frac{1}{1 + (\frac{x}{y})^2} \frac{1}{y} dx - \frac{1}{1 + (\frac{x}{y})^2} \frac{x}{y^2} dy = \omega$$

Definicja 12. Niech $\mathcal{O} \subset \mathbb{R}^n$. Zbiór \mathcal{O} nazywamy ściągalnym, jeżeli istnieje $p \in \mathcal{O}$ i odwzorowanie h(p, x, t) takie, że

$$\forall \begin{array}{ll} h(p,x,0) = p \\ \forall x \in \mathcal{O} & h(p,x,1) = x \end{array}, \quad \forall \\ t \in [0,1] \\ h(p,x,t) \in \mathcal{O}, \quad h(p,x,t) \text{ - } ciagla.$$

Twierdzenie 1. (rys 6-1) (Lemat Poincare)

Niech

$$\begin{pmatrix} \mathcal{O} - zbi\acute{o}r \, \acute{s}ciqgalny \\ \dim \mathcal{O} = n \\ \omega \in \Lambda^{p-1}(\mathcal{O}) \\ d\omega = 0 \end{pmatrix} \implies \begin{pmatrix} \exists, d\eta = \omega \\ \eta \in \Lambda^{p-1}(\mathcal{O}) \end{pmatrix}.$$

Dowód. Załóżmy, że zbiór \mathcal{O} jest zbiorem gwiaździstym, czyli

$$\exists_{p \in \mathcal{O}} \quad \forall \\ pq_1 + xq_2 : q_1 + q_2 = 1, q_1, q_2 > 0$$
 (jest zawarty w \mathcal{O}).

Obserwacja: gdyby istniał operator $T: \Lambda^p(\mathcal{O}) \to \Lambda^{p-1}(\mathcal{O}), \quad p = 1, 2, \dots, n-1$, taki, że

$$Td + dT = id$$
,

to twierdzenie byloby prawdziwe. (bo dla $\omega \in \Lambda^p(\mathcal{O})$ mielibyśmy $Td(\omega) + d(T\omega) = \omega$).

Więc, gdy

$$d\omega = 0$$
.

to

$$d(T\omega) = \omega,$$

czyli przyjmując

$$\eta = T\omega$$
,

otrzymujemy

$$d(\eta_i) = \omega.$$

Łatwo sprawdzić, że operator

$$T_1(\omega) = \int_0^1 \left(t^{p-1} x \omega(tx) \right),$$

 $x=x^1\frac{\partial}{\partial x^1}+x^2\frac{\partial}{\partial x^2}+\ldots+x^n\frac{\partial}{\partial x^n}$ spełnia warunek Td+dT=id.

Przykład 14. $\omega \in \Lambda^1(M)$, dim M=3, $\omega=xdx+ydy+zdz$. Wówczas, gdy ($\overline{x}=x\frac{\partial}{\partial x}+y\frac{\partial}{\partial y}+z\frac{\partial}{\partial z}$) jest

$$T(\omega) = \int_0^1 t^{1-1} \left\langle \underbrace{(xt)dx + (yt)dy + (zt)dz}_{\omega(tx)}, \quad \overline{x} \right\rangle dt = \int_0^1 t^0 \left(tx^2 + ty^2 + tz^2 \right) dt = \frac{1}{2} \left(x^2 + y^2 + z^2 \right) = \eta.$$

Zauważamy, że $d\eta = \omega$ i działa (dla takiego radialnego pola wektorowego znaleźliśmy potencjał). (rys 6-2)

Przykład 15. $\omega = xdx \wedge dy + ydy \wedge dz + zdx \wedge dz$, $\omega \in \Lambda^2(M)$, dim M = 3. Co to jest $T\omega$?

$$T\omega = \int_0^1 t^{2-1} x \, dx \cdot dy + yt \, dy \cdot dz + zt \, dx \cdot dz \, dt =$$

$$= \int_0^1 t^1 \left(xtx \, dy - xty \, dx + yty \, dz - ytz \, dy + ztx \, dz - ztz \, dx \right) \, dt =$$

$$= \frac{1}{3} \left(x^2 \, dy - xy \, dx + y^2 \, dz - yz \, dy + zx \, dz - z^2 \, dx \right) = \eta$$

Niech

$$T\omega = \int_0^1 t^{p-1} x \, dx \, dx,$$

gdzie $x = x^1 \frac{\partial}{\partial x^1} + \ldots + x^n \frac{\partial}{\partial x^n}$. Chcemy pokazać, że

$$dT\omega + Td\omega = \omega,$$

gdzie

$$\omega(x) = \sum_{i_1, \dots, i_p} \omega_{i_1, \dots, i_p}(x^1, \dots, x^n) dx^{i_1} \wedge \dots \wedge dx^{i_p}.$$

$$\omega = \overset{\omega_{12}}{x} d^{i_1 = 1} \wedge d^{i_2 = 2} + \overset{\omega_{23}}{y} d^{i_1 = 2} \wedge d^{i_2 = 3} + \overset{\omega_{13}}{z} d^{i_1 = 1} \wedge d^{i_2 = 3}.$$

$$d\omega = \sum_{i_1, \dots, i_p} \sum_{j=1}^n \frac{\partial \omega(x^1, \dots, x^n)}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \dots \wedge dx^{i_p}.$$

Liczymy

$$Td_{p+1 \text{ forma}} = \int_0^1 t^{p+1-1} \left(x^1 \frac{\partial}{\partial x^1} + \ldots + x^n \frac{\partial}{\partial x^n} \right) \rfloor \frac{\partial \omega(tx^1, \ldots, tx^n)}{\partial x^j} dx^j \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_p} =$$

$$= \sum_{j=1}^n \int_0^1 t^p dt \frac{\partial \omega(tx^1, \ldots, tx^n)}{\partial x^j} x^j dx^{i_1} \wedge \ldots \wedge dx^{i_p} + \sum_{j=1}^n \sum_{\alpha=1}^p \int_0^1 t^p dt \frac{\partial \omega(tx^1, \ldots, tx^n)}{\partial x^j} x^{i_\alpha} dx^{i_1} \wedge \ldots \wedge dx^{i_p} (-1)^{\alpha}.$$

$$T\omega = \int_0^1 t^{p-1} \left(x^1 \frac{\partial}{\partial x^1} + \ldots + x^n \frac{\partial}{\partial x^n} \right) \sqcup \omega_{i_1,\ldots,i_p}(tx^1,\ldots,tx^n) dx^{i_1} \wedge \ldots \wedge dx^{i_p} =$$

$$= \sum_{k=1}^n \int_0^1 dt \quad t^{p-1} \omega_{i_1,\ldots,i_p}(tx^1,\ldots,tx^n) x^k dx^{i_1} \wedge \ldots \wedge dx^{i_p} (-1)^{k+1} =$$

$$= \sum_{k=1}^p \int_0^1 dt t^{p-1} \omega_{i_1,\ldots,i_p}(tx^1,\ldots,tx^n) dx^{i_1} \wedge \ldots \wedge dx^{i_p} + \sum_{k=1}^p \int_0^1 dt t^{p-1} \sum_{\alpha=1}^n \frac{\partial \omega_{i_1,\ldots,i_p}(tx^1,\ldots,tx^n)}{\partial x^\alpha} \cdot t \cdot x^{i_k} dx^\alpha \wedge dx^{i_1} \wedge \ldots \wedge dx^{i_p}.$$

Zatem dodajemy do siebie $Td\omega + dT\omega$ i wychodzi

$$Td\omega + dT\omega = \sum_{j=1}^{n} \int_{0}^{1} dt \cdot t^{p} \frac{\partial \omega_{i_{1}, \dots, i_{p}}(tx^{1}, \dots, tx^{n})}{\partial x^{j}} x^{j} dx^{i_{1}} \wedge \dots \wedge dx^{i_{p}} + \int_{0}^{1} dt p \cdot t^{p-1} \omega_{i_{1}, \dots, i_{p}}(tx^{1}, \dots, tx^{n}) dx^{i_{1}} \wedge \dots \wedge dx^{i_{p}} + \dots \wedge dx^{i_{p}} + \dots \wedge dx^{i_{p}} + \dots \wedge dx^{i_{p}} = 0$$

$$= \int_{0}^{1} dt \left(\frac{d}{dt} \left(t^{p} \omega(tx^{1}, \dots, tx^{n}) dx^{i_{1}} \wedge \dots \wedge dx^{i_{p}} \right) \right) = t^{p} \left(\omega(tx^{1}, \dots, tx^{n}) dx^{1} \wedge \dots \wedge dx^{p} \right) \Big|_{t=0}^{t=1} = \omega.$$

Definicja 13. Jeżeli $\alpha \in \Lambda^k(M)$ taka, że $d\alpha = 0$, to mówimy, że α jest domknięta. Jeżeli $\exists taka,$ że $d\eta = \alpha$, to mówimy, że α jest zupełna.

Przykład 16. $\mathbf{E} = -\nabla \varphi$, $\mathbf{B} = rot \mathbf{A}$, $\mathbf{B} = -\nabla f(x, y, z)$. $Dla\ \omega = \frac{ydx - xdy}{x^2 + y^2},\ jest\ d\omega = 0.\ Bylo,\ \dot{z}e\ \eta = artctg(\frac{x}{y}),\ d\eta = \omega.$ Problem leży w punkcie (0,0) bo nie należy do dziedziny.

Zastosowania twierdzenia Stokesa (przypomnienie)

$$\int_{M} d\alpha = \int_{\partial M} \alpha.$$

Dostaliśmy wektor $\begin{vmatrix} A^1 \\ A^2 \\ A^3 \end{vmatrix}$, który jest w koszmarnej bazie $A^1i_1 + A^2i_2 + A^3i_3$, ale można go zamienić na coś fajniejszego $A^1\frac{1}{\sqrt{g_{11}}}\frac{\partial}{\partial x} +$ $A^2\sqrt{g^{22}}\frac{\partial}{\partial g^2}+A^3\sqrt{g^{33}}\frac{\partial}{\partial g^2}$

Dla trójki wektorów v_1, v_2, v_3 , ich $|v_1, v_2, v_3|$ to objętość.

Paweł wprowadził taki napis

$$G(v_1, v_2, v_3) = \begin{bmatrix} \langle v_1 | v_1 \rangle & \langle v_1 | v_2 \rangle & \langle v_1 | v_3 \rangle \\ \langle v_2 | v_1 \rangle & \langle v_2 | v_2 \rangle & \langle v_2 | v_3 \rangle \\ \langle v_3 | v_1 \rangle & \langle v_3 | v_2 \rangle & \langle v_3 | v_3 \rangle \end{bmatrix}.$$

i zdefiniował objętość tak:

$$vol(v_1, v_2, v_3) = \sqrt{G(v_1, v_2, v_3)}.$$

$$A = \mathbf{v}_1 \cdot (\mathbf{v}_2 \times \mathbf{v}_3) = \begin{bmatrix} v_1^1 & v_1^2 & v_1^3 \\ & \dots & \\ & \dots & \end{bmatrix}.$$

Teraz

$$(\det A)^2 = (\det A)(\det A) = \det(A)\det(A^T) = \det(A^TA) = \begin{bmatrix} - & v_1 & - \\ - & v_2 & - \\ - & v_3 & - \end{bmatrix} \begin{bmatrix} v^1 & v^2 & v^3 \end{bmatrix} = G(v_1, v_2, v_3).$$

Definicja 14. Niech M - rozmaitość i γ krzywa na M.

$$\gamma = \{\gamma(t) \in M, t \in [a, b]\}.$$

W'owczas

$$\|\gamma\| \stackrel{def}{=} \int_{a}^{b} \left\| \frac{\partial}{\partial t} \right\| dt,$$

dla

$$||v|| = \sqrt{\langle v|v\rangle}.$$

Przykład 17. (rys 7-2) M takie, że dim M=2

$$\gamma = \left\{ \begin{bmatrix} x(t) \\ y(t) \end{bmatrix} \in M, t \in [a, b] \right\}, \quad g_{ij} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}.$$

$$\frac{\partial}{\partial t} = \begin{bmatrix} \dot{x}(t) \\ \dot{y}(t) \end{bmatrix}, \quad \left\| \frac{\partial}{\partial t} \right\| = \sqrt{\left\langle \frac{\partial}{\partial t} \middle| \frac{\partial}{\partial t} \right\rangle} = \sqrt{\left(\dot{x}(t) \right)^2 + \left(\dot{y}(t) \right)^2}.$$

$$\|\gamma\| = \int_a^b \sqrt{(x(t))^2 + (y(t))^2} dt.$$

dla zmiany parametryzacji na (rys 7-3) jest

$$\gamma = \int_{A}^{B} \left\| \frac{\partial}{\partial x} \right\| dx = \int_{x_0}^{x_1} \sqrt{1 + (f'(x))^2} dx.$$
$$\gamma = \left\{ \begin{bmatrix} x \\ f(x) \end{bmatrix} \in M, x_0 \leqslant x \leqslant x_1 \right\}.$$

$$\frac{\partial}{\partial x} = \begin{bmatrix} 1 \\ f'(x) \end{bmatrix}, \quad \left\| \frac{\partial}{\partial x} \right\| = \sqrt{\left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial x} \right\rangle}.$$

I zmiana na biegunowe (rys 7-4)

$$\gamma = \left\{ \begin{bmatrix} r(\varphi) \\ \varphi \end{bmatrix} \in M, \varphi_0 \leqslant \varphi \leqslant \varphi_1 \right\}.$$

$$\gamma = \int_A^B \left\| \frac{\partial}{\partial \varphi} \right\| d\varphi, \quad g_{ij} = \begin{bmatrix} 1 \\ r^2 \end{bmatrix}.$$

Wektorek styczny jest taki

$$\frac{\partial}{\partial \varphi} = \begin{bmatrix} \frac{\partial}{\partial \varphi} r(\varphi) \\ 1 \end{bmatrix}, \quad \left\langle \frac{\partial}{\partial \varphi} | \frac{\partial}{\partial \varphi} \right\rangle = \left(\begin{bmatrix} 1 & \\ & r^2 \end{bmatrix} \begin{bmatrix} r(\varphi) \\ 1 \end{bmatrix} \right)^T \begin{bmatrix} r'(\varphi) \\ 1 \end{bmatrix}.$$

Ale my wiemy, że $\langle v, w \rangle = g_{ij}v^iw^i$, dalej jest

$$\begin{bmatrix} \frac{\partial r(\varphi)}{\partial \varphi} & r^2 \end{bmatrix} \begin{bmatrix} \frac{\partial r(\varphi)}{\partial \varphi} \\ 1 \end{bmatrix} = r^2 + \left(\frac{\partial r(\varphi)}{\partial \varphi} \right)^2.$$

I w związku z tym możemy podać od razu

$$\|\gamma\| = \int_{\varphi_0}^{\varphi_1} \sqrt{r^2 + \left(\frac{\partial r}{\partial \varphi}\right)^2} d\varphi.$$

W powietrzu wisi **NIEZALEŻNOŚĆ OD WYBORU PARAMETRYZACJI**, ale to po przerwie. Niech $M = \mathbb{R}^3$,

$$D = \begin{cases} D^1(t^1, t^2) \\ D^2(t^1, t^2) \\ D^3(t^1, t^2) \end{cases} \quad a \leqslant t_1 \leqslant b, \quad c \leqslant t_2 \leqslant d$$
$$||D|| = \int vol\left(\frac{\partial}{\partial t^1}, \frac{\partial}{\partial t^2}\right) dt^1 dt^2.$$

Przykład 18. Niech

$$D = \left(\begin{bmatrix} x \\ y \\ f(x,y) \end{bmatrix}, \quad a \leqslant x \leqslant b, \quad c \leqslant y \leqslant d \right).$$

 $Liczymy\ vol(\frac{\partial}{\partial x}, \frac{\partial}{\partial y})$

$$\frac{\partial}{\partial x} = \begin{bmatrix} 1\\0\\\frac{\partial f}{\partial x} \end{bmatrix}, \quad \frac{\partial}{\partial y} = \begin{bmatrix} 0\\1\\\frac{\partial}{\partial y}f \end{bmatrix}.$$

$$vol(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}) = \sqrt{G\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right)} = \sqrt{\left\|\begin{bmatrix} \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial x} \right\rangle & \left\langle \frac{\partial}{\partial x}, \frac{\partial}{\partial y} \right\rangle \\ \left\langle \frac{\partial}{\partial y}, \frac{\partial}{\partial x} \right\rangle & \left\langle \frac{\partial}{\partial y}, \frac{\partial}{\partial y} \right\rangle\end{bmatrix}\right\|}.$$

$$G\left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}\right) = \left\|\begin{bmatrix} 1 + (f, x)^2 & (f, x)(f, y) \\ (f, x)(f, y) & 1 + (f, y)^2 \end{bmatrix}\right\| = (1 + (f, x)^2) \left(1 + (f, y)^2\right) - (f, x)^2(f, y)^2.$$

$$\|D\| = \int_a^b \int_c^d \sqrt{1 + (f_x)^2 + (f_y)^2} dx dy.$$

Wracamy do napisu

$$\int_{U} d\omega = \int_{\partial U} \omega.$$

Niech A - wektor w bazie ortonormalnej. Dla dim $M=3,\ g=\begin{bmatrix}g_{11}\\g_{22}\\g_{33}\end{bmatrix},$

$$A = A^{1} \sqrt{g^{11}} \frac{\partial}{\partial x^{1}} + A^{2} \sqrt{g^{22}} \frac{\partial}{\partial x^{2}} + A^{3} \sqrt{g^{33}} \frac{\partial}{\partial x^{3}}.$$

niech $\alpha = A^{\sharp} \in \Lambda^{1}(M)$, γ - krzywa na M.

$$\alpha = g_{11}A^{1}\sqrt{g^{11}}dx^{1} + g_{22}A^{2}\sqrt{g^{22}}dx^{2} + g_{33}A^{3}\sqrt{g^{33}}dx^{3}.$$

$$\int_{\gamma} \alpha = \int_{\gamma} A^{\sharp} = \int_{\gamma} \left\langle \varphi^{\star} \alpha, \frac{\partial}{\partial t} \right\rangle dt = \int_{\gamma} \left\langle \alpha, \varphi_{\star} \frac{\partial}{\partial t} \right\rangle dt = \int_{\gamma} \left\langle \alpha, \frac{\varphi_{\star} \frac{\partial}{\partial t}}{\left\| \varphi_{\star} \frac{\partial}{\partial t} \right\|} \right\rangle \left\| \varphi_{\star} \frac{\partial}{\partial t} \right\| dt.$$

Niech $v = v^1 \frac{\partial}{\partial x^1} + v^2 \frac{\partial}{\partial x^2} + v^3 \frac{\partial}{\partial x^3}$. **Pytanie:** czym jest $\langle \alpha, v \rangle$?

$$\langle \alpha, v \rangle = A^1 \sqrt{g^{11}} g_{11} v^1 + A^2 \sqrt{g^{22}} g_{22} v^2 + A^3 \sqrt{g^{33}} g_{33} v^3.$$

czyli mamy

$$\int_{\gamma} A^{\sharp} = \int_{\gamma} \mathbf{A} \cdot \underbrace{\mathbf{t}_{st} dL}_{dL}.$$

Znowu wracamy do Stokesa.

Niech $V \subset M$, dim M = 3, dim V = 3. Wtedy tw. Stokesa znaczy

$$\int_{V} d\omega = \int_{\partial V} \omega, \quad \omega \in \Lambda^{2}(M).$$

Niech $S \subset M$, dim M = 3, dim S = 2.

$$\int_{S} d\alpha = \int_{\partial S} \alpha, \quad \alpha \in \Lambda^{1}(M).$$

Pytanie 3. Niech $\alpha = A^{\sharp}$, czym jest $\int_{S} dA^{\sharp}$?

$$dA^{\sharp} = \underbrace{\left(\left(g_{33}A^{3}\sqrt{g^{33}}\right)_{,2} - \left(g_{22}A^{2}\sqrt{g^{22}}\right)_{,3}\right)}_{D_{1}}dx^{2} \wedge dx^{3} + \underbrace{\left(\left(g_{11}A^{1}\sqrt{g^{11}}\right)_{,3} - \left(g_{33}A^{3}\sqrt{g^{33}}\right)_{,1}\right)}_{D_{2}}dx^{3} \wedge dx^{1} + \underbrace{\left(\dots\right)}_{D_{3}}dx^{1} \wedge dx^{2}.$$

$$\int_{S} dA^{\sharp} = \int \left\langle D^{1}dx^{2} \wedge dx^{3}, \frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}\right\rangle + \left\langle D^{2}dx^{3} \wedge dx^{1}, \frac{\partial}{\partial x^{3}}, \frac{\partial}{\partial x^{1}}\right\rangle + \left\langle D^{3}dx^{1} \wedge dx^{2}, \frac{\partial}{\partial x^{1}}, \frac{\partial}{\partial x^{2}}\right\rangle.$$

$$\int \left\langle D^{1}dx^{2} \wedge dx^{3}, \frac{\frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}}{\left\|\frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}\right\|}\right\rangle \underbrace{\left\|\frac{\partial}{\partial x^{2}}, \frac{\partial}{\partial x^{3}}\right\|}_{J_{2}}dx^{2}dx^{3} + \dots.$$

Pamiętamy, czym była $rot(A) = \left(\star dA^{\sharp}\right)^{\flat} = \int \left(rot(A)\right) \mathbf{n} ds$

8.1 W ostatnim odcinku

$$\int_{\gamma} \alpha = \int_{\gamma} \vec{A} \cdot \underbrace{\vec{t}_{st} dL}_{d\vec{L}}.$$

$$dA^{\sharp} = \left(\underbrace{\overbrace{(.), -(.)}^{D_1}}_{O, -(.)} \right) dx^2 \wedge dx^3 + \dots$$

$$\int_{S} dA^{\sharp} = \int D^1 \left\langle dx^2 \wedge dx^3, \frac{\partial}{\partial x^2}, \frac{\partial}{\partial x^3} \right\rangle dx^2 dx^3 + \int D^2 dx^3 dx^1 + \int D^3 dx^1 dx^2.$$

Przypomnijmy sobie czym jest rotacja wektora (takiego fizycznego)

$$rot(\vec{A}) = \left(\star \left(d\vec{A}^{\sharp}\right)\right)^{\flat},$$

ale

$$\begin{split} \star (dx^2 \wedge dx^3) &= g^{22} g^{33} \sqrt{g} dx^1, \\ \star (dx^3 \wedge dx^1) &= g^{11} g^{33} \sqrt{g} dx^2, \\ \star (dx^1 \wedge dx^2) &= g^{11} g^{22} \sqrt{g} dx^3. \end{split}$$

Więc

$$\star dA^{\sharp} = D^{1}g^{22}g^{33}\sqrt{g}dx^{1} + D^{2}g^{33}g^{11}\sqrt{g}dx^{2} + D^{3}g^{11}g^{22}\sqrt{g}dx^{3}.$$

$$\begin{split} \left(\star dA^{\sharp} \right)^{\flat} &= D^{1} g^{11} g^{22} g^{33} \sqrt{g} \frac{\partial}{\partial x^{1}} + D^{2} g^{22} g^{33} g^{11} \sqrt{g} \frac{\partial}{\partial x^{2}} + D^{3} g^{33} g^{11} g^{22} \sqrt{g} \frac{\partial}{\partial x^{3}} = \\ &= D^{1} \sqrt{g^{22} g^{33}} \sqrt{g^{11}} \frac{\partial}{\partial x^{1}} + D^{2} \sqrt{g^{11} g^{33}} \sqrt{g^{22}} \frac{\partial}{\partial x^{2}} + D^{3} \sqrt{g^{11} g^{22}} \sqrt{g^{33}} \frac{\partial}{\partial x^{3}}. \end{split}$$

Czyli dla \vec{A} - wektor w bazie ortonormalnej jest

$$rot\vec{A} = \begin{bmatrix} D^1 \frac{1}{\sqrt{g_{22}g_{33}}} \\ D^2 \frac{1}{\sqrt{g_{11}g_{33}}} \\ D^3 \frac{1}{g_{11}g_{22}} \end{bmatrix}.$$

ale $rot(\vec{A}) \cdot \vec{n} = D^1 \frac{1}{g_{22}g_{33}}$, ale

$$(rot\vec{A} \cdot \vec{n}) \cdot d\vec{s} = D^1 \frac{1}{g_{22}g_{33}} \sqrt{g_{22}g_{33}} dx^2 dx^3,$$

zatem

$$\int_{S} dA^{\sharp} = \int_{S} (rot\vec{A}) \cdot \vec{n} ds.$$

Czyli teraz mamy tak

$$\begin{split} \int_{\gamma} A^{\sharp} &= \int_{\gamma} \vec{A} \cdot \vec{t}_{st} dL. \\ \int_{S} dA^{\sharp} &= \int_{\partial S} A^{\sharp}. \\ \int_{S} \left(rot \vec{A} \right) \cdot \vec{n} ds &= \int_{\partial S} \vec{A} \cdot \vec{t}_{st} dL. \end{split}$$

Przykład 19. dim $M=3, V\subset M, \dim V=3$

$$\int_{\partial V} \star A^{\sharp} = \int_{V} d \star A^{\sharp}.$$

Pytanie 4. czym jest $\int_{\partial V} \star A^{\sharp}$?

$$\star (dx^1)\sqrt{g}g^{11}dx^2 \wedge dx^3,$$

$$\star (dx^2)\sqrt{g}g^{22}dx^3 \wedge dx^1,$$

$$\star (dx^3)\sqrt{g}q^{33}dx^1 \wedge dx^2,$$

Odpowiedź:

$$\star A^{\sharp} = A^{1}g_{11}\sqrt{g^{11}}\sqrt{g}g^{11}dx^{2}\wedge dx^{3} + A^{2}g_{22}\sqrt{g^{22}}\sqrt{g}g^{22}dx^{3}\wedge dx^{1} + A^{3}g_{33}\sqrt{g^{33}}\sqrt{g}g^{33}dx^{1}\wedge dx^{2},$$

następuje cudowne skrócenie i jest

$$A^{1}\sqrt{g_{22}g_{33}}$$
 $dx^{2} \wedge dx^{3} + A^{2}\sqrt{g_{11}g_{33}}$ $dx^{3} \wedge dx^{1} + A^{3}\sqrt{g_{11}g_{22}}$ $dx^{1} \wedge dx^{2}$.

Całka z tego interesu:

$$\int_{\partial V} \star A^{\sharp} = \int A^{1} \sqrt{g_{22}g_{33}} \quad dx^{2} dx^{3} + \int A^{2} \sqrt{g_{11}g_{33}} \quad dx^{3} dx^{1} + \int A^{3} \sqrt{g_{11}g_{22}} \quad dx^{1} dx^{2},$$

ale

$$\vec{A} \cdot \vec{n} \cdot ds = A^1 \sqrt{g_{22}g_{33}} \quad dx^2 dx^3.$$

Czyli ostatecznie

$$\int_{\partial V} \star A^{\sharp} = \int_{\partial V} \vec{A} \cdot \vec{n} ds.$$

Pytanie 5. Jak wygląda $\int_V d \star A^{\sharp}$?

$$\int_{V}d\star A^{\sharp}=\int_{V}\left\langle \left(A^{1}\sqrt{g_{22}g_{33}}\right)_{,1}+\left(A^{2}\sqrt{g_{11}g_{33}}\right)_{,2}+\left(A^{3}\sqrt{g_{11}g_{22}}\right)_{,3},dx^{1}\wedge dx^{2}\wedge dx^{3},\frac{\partial}{\partial x^{1}},\frac{\partial}{\partial x^{2}},\frac{\partial}{\partial x^{3}}\right\rangle dx^{1}dx^{2}dx^{3}.$$

Dywergencja to było coś takiego:

$$div\vec{A} = \star d \left(\star A^{\sharp} \right),$$

wiemy, że

$$\star \left(dx^{1} \wedge dx^{2} \wedge dx^{3} \right) = \sqrt{g} g^{11} g^{22} g^{33} = \sqrt{g^{11} g^{22} g^{33}},$$

więc

$$div\vec{A}\sqrt{g_{11}g_{22}g_{33}} \quad dx^1dx^2dx^3 = div\vec{A} \quad dV.$$

Zatem ze zdania

$$\int_{\partial V} \star A^{\sharp} = \int_{V} d \star A^{\sharp}$$

wiemy, że

$$\int_{\partial V} \vec{A} \cdot \vec{n} ds = \int_{V} div \vec{A} \quad dV.$$

8.2 Analiza Zespolona

(podobno bardzo przyjemny dział analizy) (rys 8-2)

Można się zastanowić nad taką funkcją:

$$f: \mathbb{R} \to \mathbb{C},$$

$$f(t) = e^{iat}; \quad a > 0,$$

(kółko)

$$f(t) = e^{bt}e^{iat}; \quad a, b > 0.$$

(spiralka)

Definicja 15. Niech $\mathcal{O} \subset \mathbb{C}$, \mathcal{O} - otwarty. $f: \mathcal{O} \to \mathbb{C}$. Mówimy, że f jest holomorficzna na \mathcal{O} jeżeli \forall istnieje granica

$$\lim_{h\to 0} \frac{f(z+h) - f(z)}{h} \stackrel{def}{=} f'(z),$$

gdzie f'(z) jest funkcją ciągłą.

Uwaga: jeżeli nie zostanie to podkreślone, to wszystkie niezbędne struktury przenosimy z \mathbb{R}^2 .

Uwaga: dowolną funkcję z \mathbb{C} możemy zapisać jako $f(z) = P(x,y) + Q(x,y) \cdot i$, gdzie z = x + iy a $P(x,y) : \mathbb{R}^2 \to \mathbb{R}^1$, $Q(x,y) : \mathbb{R}^2 \to \mathbb{R}^1$

Przykład 20. $f(z) = \cos x + i \sin(xy), z = x + iy$

Pytanie 6. Co to znaczy różniczkowalność?

ma istnieć granica (dla $h \in \mathbb{R}$):

$$\lim_{h\to 0}\frac{f(z+h)-f(z)}{h}=\lim_{h\to 0}\frac{P(x+h,y)+iQ(x+h,y)-P(x,y)-iQ(x,y)}{h}=\frac{\partial P}{\partial x}+i\frac{\partial Q}{\partial x}.$$

Ale jeżeli np. h = it, to wtedy

$$\lim_{h\to 0}\frac{f(z+h)-f(z)}{h}=\lim_{t\to 0}\frac{P(x,y+t)-P(x,y)}{it}+i\frac{Q(x,y+t)-Q(x,y)}{it}=\frac{1}{i}\frac{\partial P}{\partial y}+\frac{\partial Q}{\partial y}=\frac{\partial Q}{\partial y}-i\frac{\partial P}{\partial y}.$$

Czyli jeżeli f - holomorficzna, to znaczy, że (wzory Cauchy-Riemanna)

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$
$$\frac{\partial Q}{\partial y} = -\frac{\partial P}{\partial x}.$$

Przykład 21. (jak mogła by wyglądać funkcja różniczkowalna?)

$$f(z) = \underbrace{x}_{P(x,y)} - i \underbrace{y}_{Q(x,y)}.$$

Czy f jest różniczkowalna?

$$\frac{\partial P}{\partial x}=1, \quad \frac{\partial P}{\partial y}=0, \quad \frac{\partial Q}{\partial x}=0, \quad \frac{\partial Q}{\partial y}=-1,$$

czyli coś nie gra, bo jak to ma nie być różniczkowalne

Przykład 22.

$$\alpha = Q(x, y)dx + P(x, y)dy,$$

gdzie P, Q są takie, że f(z) = P(x,y) + iQ(x,y) jest holomorficzna.

$$d\alpha = \frac{\partial Q}{\partial y} dy \wedge dx + \frac{\partial P}{\partial x} dx \wedge dy = \left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y}\right) dx \wedge dy = 0.$$

Pytanie 7. Niech f(z) = P(x,y) + iQ(x,y), f - holomorficzna. Co ciekawego można powiedzieć o zbiorach

$$P_c = \{(x, y) \in \mathbb{R}^2, \quad P(x, y) = c \in \mathbb{R}\}.$$

$$Q_d = \{(x, y) \in \mathbb{R}^2, \quad Q(x, y) = d \in \mathbb{R} \}.$$

9 Wykład (04.11.2019)

9.1 Refleksja

Czy to

$$\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$$
$$\frac{\partial P}{\partial y} = -\frac{\partial Q}{\partial x}$$

jest fajne?

Przykład 23. (fig 9-1)

$$\nabla P = \left[\frac{\partial P}{\partial x}, \frac{\partial P}{\partial y} \right],$$

$$\nabla Q = \left[\frac{\partial Q}{\partial x}, \frac{\partial Q}{\partial y} \right],$$

to możemy zrobić takie coś:

$$"\left(\nabla P\cdot\nabla Q\right)"=\frac{\partial P}{\partial x}\frac{\partial Q}{\partial x}+\frac{\partial P}{\partial y}\frac{\partial Q}{\partial y}=-\frac{\partial P}{\partial x}\frac{\partial P}{\partial y}+\frac{\partial P}{\partial y}\frac{\partial P}{\partial x}=0.$$

Twierdzenie 2. f - holomorficzna na $\mathcal{O} \subset \mathbb{C}$, \mathcal{O} - otwarty wtedy i tylko wtedy, $gdy\ f$ - spełnia warunek Cauchy-Riemanna.

 $Dow \acute{o}d. \implies było$

 \Leftarrow Zauważmy, że skoro P(x,y), Q(x,y) spełniają warunki Cauchy-Riemanna, to znaczy, że funkcja

$$F(x,y) = \begin{bmatrix} P(x,y) \\ Q(x,y) \end{bmatrix},$$

 $F:U\subset\mathbb{R}^2\to\mathbb{R}^2$ jest różniczkowalna na $U\subset\mathbb{R}^2,$ czyli dla $h=\begin{bmatrix}h_1\\h_2\end{bmatrix}$ jest

$$\underbrace{F(x+h_1,y+h_2)-F(x,y)}_{AB} = \begin{bmatrix} \frac{\partial P}{\partial x} & \frac{\partial P}{\partial y} \\ \frac{\partial Q}{\partial x} & \frac{\partial Q}{\partial y} \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + r(x,y,h),$$

 $\frac{r(x,y,h)}{\|h\|} \xrightarrow[h \to 0]{} 0.$ Czyli

$$\underbrace{\begin{bmatrix} P(x+h_1,y+h_2)-P(x,y)\\ Q(x+h_1,y+h_2)-Q(x,y) \end{bmatrix}}_{\Delta O} \overset{\text{C-R}}{=} \begin{bmatrix} \frac{\partial P}{\partial x} & -\frac{\partial Q}{\partial x}\\ \frac{\partial Q}{\partial x} & \frac{\partial P}{\partial x} \end{bmatrix} \begin{bmatrix} h_1\\ h_2 \end{bmatrix} + r(x,y,h),$$

zatem

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} h_1 \\ h_2 \end{bmatrix} + r(x,y,h).$$

to wygląda trochę jak obrót. Dalej

$$\begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix} = \begin{bmatrix} ah_1 - bh_2 \\ bh_1 + ah_2 \end{bmatrix} + r(x, y, h).$$

Ale

$$f(z+h) - f(z) = P(x+h_1, y+h_2) + iQ(x+h_1, y+h_2) - (P(x,y) + iQ(x,y)) =$$

$$= \Delta P + i\Delta Q = ah_1 - bh_2 + i(bh_1 + ah_2) + r =$$

$$= (a+ib)(h_1 + ih_2) + r,$$

zatem

$$\frac{f(z+h) - f(z)}{h} = a + ib + \frac{r}{h}.$$

A jak przejdzie się z h do 0, to $\frac{r}{h} \to 0$, więc

$$\lim_{h\to 0}\frac{f(z+h)-f(z)}{h}=f'(z)$$

Stwierdzenie 1. Niech $f: \mathcal{O} \subset \mathbb{C} \to U \subset \mathbb{C}$, f - holomorficzna na \mathcal{O} , a $g: U \to \mathbb{C}$ - holomorficzna na U. Wówczas $g \circ f$ - holomorficzna na \mathcal{O} .

 $Dow \acute{o}d.$

$$(g \circ f)' = g'(f)f' = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \cdot \begin{bmatrix} a_1 & -b_1 \\ b_1 & a_1 \end{bmatrix} = \begin{bmatrix} aa_1 - bb_1 & -ab_1 - a_1b \\ a_1b + ab_1 & -bb_1 + aa_1 \end{bmatrix} = \begin{bmatrix} aa_1 - bb_1 & -(a_1b + ab_1) \\ a_1b + ab_1 & aa_1 - bb_1 \end{bmatrix},$$

a tak wygląda macierz pochodnej f - holomorficznej (traktowanej jako funkcja z $\mathbb{R}^2 \to \mathbb{R}^2$)

9.2 Oznaczenia

(fig 9-3)

niech $M \subset \mathbb{R}^2$, $\langle dx, dy \rangle = T_p^* M$. Wprowadźmy

$$dz = dx + idy$$
$$d\overline{z} = dx - idy$$

Jeżeli $f(x,y): \mathbb{R}^2 \to \mathbb{R}^1$, to

$$df = \frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy = \frac{1}{2}\frac{\partial f}{\partial x}\left(dz + d\overline{z}\right) + \frac{1}{2i}\frac{\partial f}{\partial y}\left(dz - d\overline{z}\right) = \left(\frac{1}{2}\frac{\partial f}{\partial x} + \frac{1}{2i}\frac{\partial f}{\partial y}\right)dz + \underbrace{\left(\frac{1}{2}\frac{\partial f}{\partial x} - \frac{1}{2i}\frac{\partial f}{\partial y}\right)}_{\underline{\partial f}}d\overline{z}.$$

Obserwacja: niech f(z) = P(x, y) + iQ(x, y), wówczas

$$\begin{split} \frac{\partial f}{\partial x} &= \frac{\partial P}{\partial x} + i \frac{\partial Q}{\partial x} \\ \frac{\partial f}{\partial y} &= \frac{\partial P}{\partial y} + i \frac{\partial Q}{\partial y}. \end{split}$$

czyli

$$\begin{split} \frac{\partial f}{\partial \overline{z}} &= \frac{1}{2} \left(\frac{\partial f}{\partial x} - \frac{1}{i} \frac{\partial f}{\partial y} \right) = \\ &= \frac{1}{2} \left(\frac{\partial P}{\partial x} + i \frac{\partial Q}{\partial x} - \frac{1}{i} \left(\frac{\partial P}{\partial y} + i \frac{\partial Q}{\partial y} \right) \right) = \\ &= \frac{1}{2} \left(\left(\frac{\partial P}{\partial x} - \frac{\partial Q}{\partial y} \right) + i \left(\frac{\partial Q}{\partial x} + \frac{\partial P}{\partial y} \right) \right) \end{split}$$

Przykład 24. $f(z) = z^2 = z \cdot z$,

$$\frac{\partial f}{\partial z} = 2z, \quad \frac{\partial f}{\partial \overline{z}} = 0$$

 $a g(z) = |z|^2 = z \cdot \overline{z}$

$$\frac{\partial g}{\partial \overline{z}} = z \neq 0.$$

Czyli g - nie jest holomorficzna

Przykład 25. (fig 9-4)

Obliczmy całkę:

$$\int_{\partial K(0,r)} \frac{dz}{z} = \begin{vmatrix} z = re^{i\theta} \\ dz = rie^{i\theta}d\theta \end{vmatrix} = \int_0^{2\pi} \frac{rie^{i\theta}d\theta}{re^{i\theta}} = i \int_0^{2\pi} d\theta = 2\pi i.$$

Stwierdzenie 2. Jeżeli f - holomorficzna na \mathcal{O} i $\Omega \subset \mathcal{O}$, to

$$\int_{\partial\Omega}fdz=\int_{\Omega}d(fdz)=\int_{\Omega}\frac{\partial f}{\partial d\overline{z}}d\overline{z}\wedge dz=0.$$

Twierdzenie 3. (wzór Cauchy)

Niech $\Omega \subset \mathbb{C}$, $f : \overline{\Omega} \to \mathbb{C}$, niech $\xi \in \Omega$. Wówczas

$$f(\xi) = \frac{1}{2\pi i} \int_{\partial \Omega} \frac{f(z)}{z - \xi} dz + \int_{\Omega} \frac{1}{z - \xi} \frac{\partial f}{\partial \overline{z}} dz \wedge d\overline{z}.$$

Obserwacja: jeżeli f - holomorficzna na Ω , to

$$f(\xi) = \frac{1}{2\pi i} \int_{\partial\Omega} \frac{f(z)}{z - \xi} dz.$$

Wynik $\frac{1}{2\pi i} \int_{\partial K(0,r)} \frac{dz}{z} = 1$ otrzymamy dla $\xi = 0$ i f(z) = 1 (fig 9-5)

Dowód. niech

$$g(z) = \frac{f(z)}{z - \xi}.$$

(fig 9-6)

zatem wiemy, że

$$\int_{\partial\Omega_{\epsilon}}g(z)=\int_{\Omega}dg(z).$$

$$\int_{\partial\Omega}\frac{f(z)}{z-\xi}dz+\int_{\partial K(\xi,\epsilon)}\frac{f(z)}{z-\xi}dz=\int_{\Omega_{\epsilon}}\frac{1}{z-\xi}\frac{\partial f}{\partial\overline{z}}d\overline{z}\wedge dz.$$

Pytanie: co się dzieje, jak przejdziemy z $\epsilon \to 0$ Oznacza to, że chcemy zbadać zachowanie takiej całki

$$\int\!\!\int\limits_{\Omega_{\epsilon}} \frac{1}{z-\xi} \frac{\partial f}{\partial \overline{z}}$$

dla $z = \epsilon e^{i\theta} + \xi$, ale

$$\frac{1}{\epsilon e^{i\theta} + \xi - \xi} = \frac{e^{-i\theta}}{\epsilon},$$

a całka $\int\int\limits_{\Omega_\epsilon} d\overline{z}\wedge dz\approx\underbrace{\epsilon d\epsilon d\theta}_{\text{element powierzchni}}$. Oznacza, to że

$$\frac{1}{z-\xi}d\overline{z}\wedge dz \overset{\epsilon\to 0}{\approx} \frac{1}{\epsilon}\cdot \epsilon,$$

czyli w $\epsilon = 0$ nie wybuchnie!

Ale

$$\int_{\partial K(\xi,\epsilon)} \frac{f(z)}{z-\xi} dz = -\int_0^{2\pi} \frac{f(\xi + \epsilon e^{i\theta})}{\epsilon e^{i\theta}} \epsilon i e^{i\theta} d\theta = .$$

Trzeba wrzucić twierdzenie o wartości średniej

$$= if(c) \cdot \int_0^{2\pi} d\theta = 2\pi i f(c) \underset{\epsilon \to 0}{\longrightarrow} -2\pi i f(\xi),$$

gdzie $c \in \partial K(\xi, \epsilon)$.

Zatem

$$\int_{\partial\Omega}\frac{f(z)}{z-\xi}dz-\int_{\Omega}\frac{1}{z-\xi}\frac{\partial f}{\partial\overline{z}}d\overline{z}\wedge dz=2\pi i f(\xi).$$

Twierdzenie 4. (Liouville)

Jeżeli f - ograniczona i holomorficzna na całym \mathbb{C} , to f jest stała.

Obserwacja: a co z sinusem? $f(x) = \sin(x)$, ale trzeba zastanowić się nad $f(z) = \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$. Dla np. z = it,

$$\sin(it) = \frac{e^{-t} - e^t}{2i},$$

czyli oczywiście sinus ograniczony nie jest.

Twierdzenie 5. (Liouville)

Jeżeli f - holomorficzna i ograniczona na \mathbb{C} , to f - stała.

Dowód. Wiemy, że

$$\exists_{M>0} \quad \forall_{z\in\mathbb{C}} \quad |f(z)| < M.$$

Skoro f - holomorficzna, to znaczy, że dla $\xi \in \mathbb{C}$,

$$f(\xi) = \frac{1}{2\pi i} \int\limits_{\partial K(\xi,r)} \frac{f(z)}{z - \xi} dz.$$

(Wzór Cauchy)

Zauważmy, że skoro f - jak wyżej, to

$$f'(\xi) = \frac{1}{2\pi i} \int_{\partial K(\xi,r)} \frac{f(z)}{(z-\xi)^2} dz.$$

(Absolutnie nieoczywiste lol. Uzasadnienie później)

Wówczas możemy oszacować f'

$$|f'(\xi)| \leqslant \left|\frac{1}{2\pi i} \left|\max_{z \in \partial K(\xi,r)} \left|\frac{f(z)}{(z-\xi)^2}\right| \cdot |\text{długość okręgu } K(\xi,r)| = \frac{1}{2\pi} \cdot \frac{M}{\left|\left(\xi + re^{i\varphi} - \xi\right)^2\right|} \left|2\pi r\right| = \frac{1}{2\pi} \cdot \frac{M}{r^2} \\ 2\pi r = \frac{M}{r} \quad \overset{\forall}{>} 0.$$

Czyli

$$\bigvee_{r>0} |f'(\xi)| < \frac{M}{r} \underset{r \to \infty}{\longrightarrow} 0.$$

Zatem $|f'(\xi)| = 0$, czyli

$$f(z) = const.$$

Przykład 26. $f(z) = \sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$ jest holomorficzna na \mathbb{C} , ale nie jest na \mathbb{C} ograniczona (tylko dla $z \in \mathbb{R}$).

Wniosek: (Zasadnicze Twierdzenie Algebry)

Niech $w(z) = a_n z^n + a_{n-1} z^{n-1} + \ldots + a_0.$

Załóżmy, że

$$\bigvee_{z \in \mathbb{C}} w(z) \neq 0.$$

Oznacza to, że

$$f(z) = \frac{1}{w(z)}$$
 jest na $\mathbb C$ holomorficzna i ograniczona.

Jest więc stała. Co oznacza, że w(z) jest stała i sprzeczność. \square

(PS oznacza to, że $\exists_{z_0 \in \mathbb{C}}$, że $w(z_0) = 0$, czyli $w(z) = (z - z_0)w_1(z)$. Biorąc funkcję $f_1(z) = w_1(z) \dots$ pokażemy, że wielomian stopnia n nad \mathbb{C} ma n pierwiastków. \square)

10.1 Szeregi Laurenta

Przykład 27. Niech

$$f(z) = \frac{z+1}{z^2+1}.$$

Zauważmy, że

$$f(z) = \frac{z+1}{z^2+1} = \frac{1}{2} \frac{1-i}{z-i} + \frac{1}{2} \frac{1+i}{z+i}.$$

 $Je\dot{z}eli$

$$|z + 2i| < 3,$$

to

$$\frac{1}{z-i} = \frac{1}{z+2i-3i} = \frac{1}{-3i} \cdot \frac{1}{1-\frac{z+2i}{3i}} = -\frac{1}{3i} \sum_{n=0}^{\infty} \left(\frac{z+2i}{3i}\right)^n = -\sum_{n=0}^{\infty} \frac{1}{(3i)^{n+1}} (z+2i)^n.$$

 $Je\dot{z}eli |z+2i| > 1$, to

$$\frac{1}{z+1} = \frac{1}{z+2i-i} = \frac{1}{z+2i} \cdot \frac{1}{1-\frac{i}{z+2i}} = \frac{1}{z+2i} \cdot \sum_{n=0}^{\infty} \left(\frac{i}{z+2i}\right)^n = \sum_{n=0}^{\infty} \frac{(i)^n}{(z+2i)^{n+1}} = \sum_{n=1}^{\infty} \frac{(i)^{n-1}}{(z+2i)^n}.$$

Zatem

$$\frac{z+1}{z^2+1} = \frac{1+i}{2} \cdot \sum_{n=1}^{\infty} \frac{(i)^{n-1}}{(z+2i)^n} + \frac{i-1}{2} \sum_{n=0}^{\infty} \frac{1}{(3i)^n} (z+2i)^n = \sum_{n=-\infty}^{\infty} d_k (z+2i)^k,$$

gdzie

$$dk = \begin{cases} \frac{1+i}{2} \cdot (i)^{-k-1} & k < 0 \\ \frac{i-1}{2} \cdot \frac{1}{(3i)^k} & k \geqslant 0 \end{cases}.$$

Niech

$$R(2i, 1, 3) \stackrel{def}{=} \{ z \in \mathbb{C}, |z + 2i| < 3 \land |z + 2i| > 1 \}$$

- pierścień otwarty o środku 2i i promieniach 1 i 3.

Dla |z + 2i| < 1,

$$\frac{1}{z+i} = \frac{1}{z+2i-i} = -\frac{1}{i} \cdot \frac{1}{1-\frac{z+2i}{i}} = -\frac{1}{i} \cdot \sum_{n=0}^{\infty} \left(\frac{z+2i}{i}\right)^n = -\sum_{n=0}^{\infty} \frac{1}{(i)^{n+1}} \frac{(z+2i)^n}{1}.$$

Zatem dla $z \in R(-2i, 0, 1)$,

$$f(z) = \frac{z+1}{z^2+1} = \frac{1+i}{2} \cdot \sum_{n=0}^{\infty} \frac{1}{(i)^{n+1}} (z+2i)^n - \frac{1-i}{2} \cdot \sum_{n=0}^{\infty} \frac{1}{(3i)^{n+1}} \cdot (z+2i)^n = \sum_{k=0}^{\infty} d_k \left(z+2i\right)^k,$$

gdzie

$$d_k = -\frac{1+i}{2} \cdot \frac{1}{(i)^{n+1}} - \frac{1-i}{2} \cdot \frac{1}{(3i)^{n+1}}.$$

dla |z + 2i| > 3

$$\frac{1}{z-i} = \frac{1}{z+2i-3i} = \frac{1}{z+2i} \cdot \frac{1}{1-\frac{3i}{z+2i}} = \frac{1}{z+2i} \cdot \sum_{n=0}^{\infty} (3i)^n \cdot \frac{1}{(z+2i)^n} = \sum_{n=0}^{\infty} \frac{(3i)^n}{(z+2i)^{n+1}} = \sum_{n=1}^{\infty} \frac{(3i)^{n-1}}{(z+2i)^n}.$$

I wtedy dla $z \in R(-2i, 3, +\infty)$, jest

$$\frac{z+1}{z^2+1} = \frac{1+i}{2} \cdot \sum_{n=1}^{\infty} \frac{(i)^n}{(z+2i)^n} + \frac{1-i}{2} \cdot \sum_{n=1}^{\infty} \frac{(3i)^{n-1}}{(z+2i)^n} = \sum_{k=-1}^{-\infty} d_k (z+2i)^k.$$

Twierdzenie 6. (Laurent)

Niech f(z) - holomorficzna na pierścieniu $R(z_0, r_1, r_2)$,

$$R(z_0, r_1, r_2) := \{ z \in \mathbb{C}, |z - z_0| > r_1 \land |z - z_0| < r_2 \}.$$

 $W\'owczas \bigvee_{z \in R(z_0, r_1, r_2)}$

$$f(z) = \sum_{n=-\infty}^{+\infty} a_n (z - z_0)^n,$$

gdzie

$$a_n = \frac{1}{2\pi i} \oint_{\partial K(z_0, r)} \frac{f(\xi)}{(\xi - z_0)^{n+1}},$$

 $r_1 < r < r_2$

 $Dow \acute{o}d$. Zauważmy, że $\bigvee_{z \in R(z_0, r_1, r_2)}$ znajdziemy takie $r_1' > r_1$ i $r_2' < r_2$, że $z \in R(z_0, r_1', r_2')$. Ze wzoru Cauchy wiemy, że

$$f(z) = \frac{1}{2\pi i} \int_{\partial R(z_0, r_1', r_2')} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \left[\int_{\partial K(z_0, r_2')} \frac{f(\xi)}{\xi - z} d\xi - \int_{\partial K(z_0, r_1')} \frac{f(\xi)}{\xi - z} d\xi \right].$$

ale

$$\frac{1}{\xi - z} = \frac{1}{\xi - z_0 + z_0 - z},$$

a dla $\xi \in \partial K(z_0, r'_1)$ i $z \in K(z_0, r'_1)$

$$\left| \frac{z - z_0}{\xi - z_0} \right| < 1.$$

więc

$$\frac{1}{\xi-z_0+z_0-z} = \frac{1}{\xi-z_0} \cdot \frac{1}{1+\frac{z_0-z}{\xi-z_0}} = \frac{1}{\xi-z_0} \cdot \frac{1}{1-\frac{z-z_0}{\xi-z_0}} = \frac{1}{\xi-z_0} \cdot \sum_{n=0}^{\infty} \left(\frac{z-z_0}{\xi-z_0}\right)^n = \sum_{n=0}^{\infty} \frac{1}{(\xi-z_0)^{n+1}} \cdot (z-z_0)^n.$$

więc

$$\frac{1}{2\pi i} \int_{\partial K(z_0, r_1')} \frac{f(\xi)}{\xi - z} d\xi = \frac{1}{2\pi i} \sum_{n=0}^{\infty} \int_{\partial K(z_0, r_1')} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi (z - z_0)^n.$$

A dla $\xi \in \partial K(z_0,r_2')$ i ztakich, że $|z-z_0| > r_2',$ wiemy, że

$$\left| \frac{\xi - z_0}{z - z_0} \right| < 1$$

itd.

11 Wykład (15.11.2019)

$$f(z) = \frac{1}{2\pi i} \int_{\partial R(z_0, r_1', r_2')} \frac{f(\xi)}{\xi - z} dz = \frac{1}{2\pi i} \oint_{\partial K(z_0, r_2')} \frac{f(\xi)}{\xi - z} d\xi - \frac{1}{2\pi i} \oint_{\partial K(z_0, r_1')} \frac{f(\xi)}{\xi - z} d\xi.$$

1. Jeżeli $z \in K(z_0,r_2')$ i $\xi \in \partial K(z_0,r_2')$

$$\left| \frac{z - z_0}{\xi - z_0} \right| < 1.$$

$$\frac{1}{\xi - z} = \frac{1}{\xi - z_0 + z_0 - z} = \frac{1}{\xi - z_0} \cdot \frac{1}{1 + \frac{z_0 - z}{\xi - z_0}}$$

i wówczas

$$\frac{1}{2\pi i} \int_{\partial K(z_0, r_2')} \frac{f(\xi)}{\xi - z} = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad a_n = \frac{1}{2\pi i} \int_{\partial K(z_0, r_2')} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi.$$

2. Jeżeli $|z-z_0|>r_1',$ to mamy, że dla $\xi\in\partial K(z_0,r_1')$

$$\frac{1}{\xi - z} = \frac{1}{\xi - z_0 + z_0 - z} = \frac{1}{z_0 - z} \cdot \frac{1}{1 + \frac{\xi - z_0}{z - z}} = \frac{1}{z_0 - z} \cdot \frac{1}{1 - \frac{\xi - z_0}{z - z}} = \frac{1}{z_0 - z} \cdot \frac{1}{1 - \frac{\xi - z_0}{z - z}} = \frac{1}{z_0 - z} \cdot \frac{(\xi - z_0)^n}{1} \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^{n+1}} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^{n+1}} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi - z_0)^n \cdot \frac{1}{(z - z_0)^n} = -\sum_{n=0}^{\infty} (\xi$$

Zatem

$$-\frac{1}{2\pi i} \int_{\partial K(z_0, r_1')} \frac{f(\xi)}{\xi - z} d\xi = \sum_{n=1}^{\infty} \left(\frac{1}{2\pi i} \int_{\partial K(z_0, r_1')} f(\xi) (\xi - z_0)^{n-1} d\xi \right) \frac{1}{(z - z_0)^n} = \sum_{n=1}^{\infty} d_n \cdot \frac{1}{(z - z_0)^n},$$

$$d_n = \frac{1}{2\pi i} \int_{\partial K(z_0, r_1')} f(\xi) (\xi - z_0)^{n-1} d\xi,$$

czyli

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} d_n \cdot \frac{1}{(z - z_0)^n}$$

Obserwacja: Gdyby f była holomorficzna na pierścieniu $R(z_0, r_1, \infty)$, to jak wyglądało by rozwinięcie f(z)? Zauważmy, że

$$a_n = \frac{1}{2\pi i} \int_{\partial K(z_0, r_2')} \frac{f(\xi)}{(\xi - z_0)^{n+1}} = \frac{1}{2\pi i} \int_0^{2\pi} \frac{r_2' i e^{i\varphi} f(z_0 + r_2' e^{i\varphi}) d\varphi}{(r_2' e^{i\varphi})^{n+1}}.$$

Zatem

$$|a_n| \leqslant \left| \frac{1}{2\pi i} \right| \cdot \frac{1}{(r_2')^n} \cdot \max_{0 \leqslant \varphi \leqslant 2\pi} \left| f(z_0 + r_2' e^{i\varphi}) \right| \cdot 2\pi,$$

ale jeżeli f ograniczona poza kołem $K(z_0, r'_1)$, to znaczy, że

$$\bigvee_{r_2' > r_1'} \left| f(z_0 + r_2' e^{i\varphi}) \right| < M.$$

Czyli

$$|a_n| \leqslant \frac{1}{2\pi} \cdot 2\pi \cdot M \cdot \frac{1}{(r_2')^n} \underset{r_2' \to \infty}{\longrightarrow} 0,$$

więc

$$f(z) = \sum_{n=1}^{\infty} d_n \frac{1}{(z - z_0)^n}.$$

Obserwacja: Gdyby f była holomorficzna na $R(z_0, 0, r_2)$, to jak wyglądałoby rozwinięcie? Wiemy, że

$$d_n = \frac{1}{2\pi i} \int_{\partial K(z_0, r_1')} f(\xi)(\xi - z_0)^{n-1} d\xi = \frac{1}{2\pi i} \int_0^{2\pi} r_1' i e^{i\varphi} f(z_0 + r_1' e^{i\varphi}) (r_1' e^{i\varphi})^{n-1} d\varphi.$$

$$|d_n| \leqslant \left| \frac{1}{2\pi i} \right| \cdot r_1^n \cdot \max \left| f(z_0 + r_1' e^{i\varphi}) \right| \underset{\exists : |f(z)| < M, z \in K(z_0, r_1)}{|f(z_0 + r_1' e^{i\varphi})|} |2\pi|.$$

Czyli dla $z \in K(z_0, r_2), f$ - holomorficzna na $K(z_0, r_2)$

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n, \quad a_n = \frac{1}{2\pi i} \int_{\partial K(z_0, r_2')} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi.$$

Pytanie 8. Jak rozwinięcie ma się do rozwinięcia Taylora? Tzn. jak ma się a_n do $\frac{f^n(z_0)}{n!}$?

Koniec obserwacji, wracamy do dowodu

Pytanie 9. Czy wzory na a_n i d_n można uprościć?

Przypomnienie: jeżeli f - holomorficzna na Ω , to

$$\int_{\partial\Omega}f=0=\int_{\partial\Omega_1}f-\int_{\partial\Omega_2}f.$$

(minus przez orientację) Czyli

$$\int_{\partial\Omega_1}f=\int_{\partial\Omega_2}f.$$

Zauważmy, że f(z) - holomorficzne na $R(z_0, r_1, r_2)$, a funkcja $\frac{1}{(z-z_0)^n}$ - też jest holomorficzna na $R(z_0, r_1, r_2)$, to wtedy

$$\frac{f(z)}{(z-z_0)^{n+1}}$$

- też jest holomorficzna na $R(z_0, r_1, r_2)$, czyli

$$\int\limits_{\partial K(z_0,r_2')} \frac{f(\xi)}{(\xi-z_0)^{n+1}} d\xi = \int\limits_{\partial K(z_0,r)} \frac{f(\xi)}{(\xi-z_0)^{n+1}} d\xi \quad \mathop{\forall}\limits_{r_1 < r < r_2}.$$

To samo możemy powiedzieć o d_n

$$\int_{\partial K(z_0, r_1')} f(\xi)(z - z_0)^{n-1} d\xi = \int_{\partial K(z_0, r)} f(\xi)(\xi - z_0)^{n-1} d\xi, \quad \bigvee_{r_1 < r < r_2}.$$

Możemy zatem podać zwarta postać wzoru

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=1}^{\infty} d_n \frac{1}{(z - z_0)^n}.$$

O taką:

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n + \sum_{n=-1}^{\infty} d_{-n} (z - z_0)^n,$$

ale $d_n = \frac{1}{2\pi i} \int_{\partial K(z_0, r)} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi$.

Zatem

$$f(z) = \sum_{n = -\infty}^{\infty} c_n (z - z_0)^n, \quad c_n = \frac{1}{2\pi i} \int_{\partial K(z_0, r)} \frac{f(\xi)}{(\xi - z_0)^{n+1}} d\xi, \quad r_1 < r < r_2 \quad \Box$$

Twierdzenie 7. Niech C - krzywa na $\mathbb C$ (zamknięta lub nie) i niech f(z) - ciągła na C. Wówczas funkcja

$$\varphi(z) = \int_C \frac{f(\xi)}{(\xi - z)^p} d\xi$$

jest holomorficzna na $\mathbb{C} - C$ dla $p \in \mathbb{Z}$ i

$$\varphi'(z) = p \int_C \frac{f(\xi)}{(\xi - z)^{p+1}} d\xi.$$

Dowód. Niech $z_0 \in \mathbb{C}$ i $z_0 \notin C$. Chcemy pokazać, że

$$\frac{\varphi(z) - \varphi(z_0)}{z - z_0} = \varphi'(z_0) \underset{z \to z_0}{\longrightarrow} 0 \tag{*}$$

Zatem

$$(??) = \int_{C} \frac{d\xi f(\xi)}{(z - z_{0})} \left[\frac{1}{(\xi - z)^{p}} - \frac{1}{(z - z_{0})^{p}} \right] - p \int_{C} \frac{f(\xi)d\xi}{(\xi - z_{0})^{p+1}} = \int_{C} d\xi f(\xi) \left[\underbrace{\frac{1}{(\xi - z)^{p}} - \frac{1}{(\xi - z_{0})^{p}}}_{(\Delta)} - \frac{p}{(\xi - z_{0})^{p+1}} \right]$$

$$(\Delta\Delta)$$

Ale (Δ) - iloraz różnicowy funkcji

$$g(z) = \frac{1}{(\xi - z)^p}.$$

$$(\Delta) = \frac{g(z) - g(z_0)}{z - z_0}.$$

Wiemy, że g(z) - holomorficzna dla $z \notin C$, czyli

$$g'(z) = -\frac{p(-1)}{(\xi - z)^{p+1}},$$

czyli

$$(\Delta) = \frac{p}{(\xi - z)^{p+1}} + \text{ mała rzędu wyższego, niż } (z - z_0).$$

Zatem

$$\label{eq:continuous} \begin{split} (\ref{eq:continuous}) &= \int_C d\xi f(\xi) \left[\frac{p}{(\xi-z)^{p+1}} + \text{ mała rzędu wyższego niż } (z-z_0) - \frac{p}{(\xi-z)^{p+1}} \right]. \\ &|(\ref{eq:continuous})| \leqslant |\max_{\xi inC} f(\xi)| \, |\text{długość } C| \cdot |z-z_0| \underset{z \to z_0}{\longrightarrow} 0. \end{split}$$

Wniosek: dla krzywej zamkniętej wiemy, że

$$f(z) = \frac{1}{2\pi i} \int_{C} \frac{f(\xi)}{\xi - z} d\xi.$$

zatem

$$f'(z) = \frac{1}{2\pi i} \int_C \frac{f(\xi)}{(\xi - z)^2} d\xi.$$

Wiemy, że f'(z)- też jest holomorficzna (bo wzór na φ z p=2)

12 Wykład (18.11.2019)

Jeżeli f - holomorficzna na $R(z_0, 0, r_2)$, to

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

Mamy

$$a_n = \frac{1}{2\pi i} \int_{\partial K(z_0, r)} \frac{f(\xi)}{(\xi - z_0)^{n+1}}, \quad r_1 < r < r_2.$$

ale możemy zauważyć, że

$$a_n = \frac{f^{(n)}(z_0)}{n!}$$

Przykład 28. Policzyć

$$I = \int_{\partial K(i,1)} \frac{\cos(z)}{(1+z^2)^2} dz.$$

Zauważmy, że

$$\frac{\cos(z)}{(1+z^2)^2} = \frac{\cos(z)}{(1+iz)^2(1-iz)^2}.$$

Niech $f(z) = \frac{\cos(z)}{(1-iz)^2}$, f - holomorficzna na K(i,1). W związku z tym piszemy

$$I = \int_{\partial K(i,1)} \frac{f(z)}{(1+iz)^2} dz = \frac{1}{(i)^2} \int_{\partial K(i,1)} \frac{f(z)dz}{(z-i)^2} = (i)^2 \cdot 2\pi i |f'(z)|_{z=i}.$$

12.1 Przedłużenie analityczne (oho)

Mieliśmy np. $\sin(x)$ dla $x \in \mathbb{R}$ i pytanie skąd my wiemy, że $\sin(z) = \frac{1}{2i} \left(e^{iz} - e^{-iz} \right)$, dla $z \in \mathbb{C}$

Twierdzenie 8. Niech $\mathcal{O} \subset \mathbb{C}$, f - holomorficzna na \mathcal{O} , $z_n \in \mathcal{O}$ - ciąg z \mathcal{O} taki, że $z_n \xrightarrow[n \to \infty]{} z_0 \ \forall f(z_n) = 0$.

W'owczas

$$\exists_{r>0} \quad \forall_{z\in K(z_0,r)} \quad f(z)=0.$$

 $Dow \'od. \text{ przez sprzeczność } (\neg (p \implies q) \iff (p \land \neg q)).$

Załóżmy, że $\exists f(z) \neq 0$ i założenia twierdzenia są spełnione. Skoro f - holomorficzna na \mathcal{O} , to możemy zapisać, że

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(z_0)}{n!} (z - z_0)^n$$

i wiemy, że $f(z) \neq 0$, czyli $\exists k$ takie, że

$$\frac{f^{(k)}(z_0)}{k!} \neq 0. \tag{*}$$

Weźmy najmniejszy indeks, dla którego (??) jest prawdziwe. Oznaczmy ten indeks przez j. Oznacza to, że

$$f(z) = (z - z_0)^j \left(\frac{f^{(j)}(z_0)}{i!} + \frac{f^{(j+1)}(z_0)}{(j+1)!} (z - z_0) + \dots \right).$$

Czyli

$$f(z) = (z - z_0)^j g(z), \quad f(z) \neq 0,$$

czyli $g(z) \neq 0$. Skoro f - holomorficzna, to g(z) też jest holomorficzna na \mathcal{O} , czyli między innymi g(z) jest ciągła na \mathcal{O} . Ale wiemy, że $f(z_n) = 0$, czyli $g(z_n) = 0$ i g - ciągła na \mathcal{O} . Oznacza to, że

$$0 = g(z_n) \xrightarrow[z \to z_0]{} g(z_0) = 0$$

i sprzeczność, bo $g(z_n)$ jest ciągiem samych zer, a $g(z_0) \neq 0$, bo

$$\frac{f^{(j)}(z_j)}{j!} \neq 0.$$

Obserwacja: Weźmy funkcję

$$f(x) = x^2 \sin\left(\frac{1}{x}\right), \quad x \in \mathbb{R}.$$

Widzimy, że dla ciągu $a_n \to 0$,

$$f(a_n) \longrightarrow 0$$

 $i f(x) \neq 0, \quad x \neq a_n$

Rysunek 20: f(x)

Twierdzenie 9. Niech f(z), g(z) - holomorficzne na \mathcal{O} ,

$$\forall f(z_n) = g(z_n)$$

 $a\ ciag\ z_n \to z_0$. Wówczas

$$f(z) = g(z) \underset{z \in \mathcal{O}}{\forall}.$$

Dowód. Niech

$$h(z) = f(z) - g(z).$$

Wówczas $h(z_n)=0$ i $z_n\to z_0$. Skoro h(z) - holomorficzna, to znaczy, że

$$f(z) = \sum_{n=0}^{\infty} a_n (z - z_0)^n$$

$$g(z) = \sum_{n=0}^{\infty} b_n (z - z_0)^n$$

oraz

$$h(z) = \sum_{n=0}^{\infty} (a_n - b_n)(z - z_0)^n$$

i dowodzimy tak jak wcześniej.

Przykład 29.

$$f(z) = 1 + z + z^2 + z^3 + \dots, \quad |z| < 1$$

 $g(z) = 1 + \left(\frac{z+1}{2}\right) + \left(\frac{z+1}{2}\right)^2 + \dots \quad \left|\frac{z+1}{2}\right| < 1$

Definicja 16. Niech f - holomorficzna na U_1 i g - holomorficzna na U_2 i

$$\exists_{z_0} \in U_1 \cap U_2 \implies \exists r : K(z_0, r) \subset U_1 \cap U_2$$

oraz

$$\bigvee_{z \in U_1 \cap U_2} f(z) = g(z).$$

Rysunek 21: f i g

Mówimy wówczas, że f jest przedłużeniem holomorficznym (analitycznym funkcji g.

Przykład 30. Co się stanie jak będziemy przedłużać aż do kółka

$$ln(z) = (z-1) - \frac{1}{z}(z-1)^2 + \dots$$
$$ln(re^{i\varphi}) = ln(r) + ln\left(e^{i\varphi}\right) = ln(r) + i\varphi$$

12.1.1 Punkty osobliwe

Definicja 17. Punkt w którym f(z) nie jest holomorficzna nazywamy punktem osobliwym.

Definicja 18. Niech f(z) - taka, $\dot{z}e$

$$f(z) = \varphi(z) + \frac{B_1}{z - a} + \frac{B_2}{(z - a)^2} + \dots + \frac{B_N}{(z - a)^N}$$

 $i \varphi(z)$ - holomorficzna na \mathcal{O} i f(z) - holomorficzna na $\mathcal{O} - \{a\}$. O takiej funkcji powiemy, że ma w punkcie a biegun rzędu N.

Pytanie: czy f może nie być holomorficzna np. na krzywej $\gamma \subset \mathbb{C}$?

Odpowiedź: gdyby f nie była holomorficzna na $\gamma \subset \mathbb{C}$, to

$$g(z) = \frac{1}{f(z)} = 0, \quad \forall z \in \gamma,$$

a to oznacza, że $g(z) \equiv 0$ także dla $z \notin \gamma$.