Московский государственный технический университет им. Н.Э. Баумана

Факультет «Информатика и системы управления»

Кафедра «Системы обработки информации и управления»

"Методы машинного обучения"

ЛАБОРАТОРНАЯ РАБОТА № 3. «Обработка пропусков в данных, кодирование категориальных признаков, масштабирование данных»

Студент группы ИУ5-21М	
Попков В.Е.	
Дата	
Подпись	

Москва

2019

Задание:

- 1. Выбрать набор данных (датасет), содержащий категориальные признаки и пропуски в данных. Для выполнения следующих пунктов можно использовать несколько различных наборов данных (один для обработки пропусков, другой для категориальных признаков и т.д.)
- 2. Для выбранного датасета (датасетов) на основе материалов лекции решить следующие задачи:
- обработку пропусков в данных;
- кодирование категориальных признаков;
- масштабирование данных.
- 1) Подключаем библиотеки

import numpy as np

import pandas as pd

import seaborn as sns

import matplotlib.pyplot as plt

%matplotlib inline

sns.set(style="ticks")

2) Подключаем БД

data = pd.read_csv('dc-wikia-data.csv', sep=",")

data.head()

C →	р	age_id	name	urlslug	ID	ALIGN	EYE	HAIR	SEX	GSM	ALIVE	APPEARANCES	FIRST APPEARANCE	YEAR
	0	1422	Batman (Bruce Wayne)	√wiki√Batman_(Bruce_Wayne)	Secret Identity	Good Characters	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	3093.0	1939, May	1939.0
	1	23387	Superman (Clark Kent)	∨wiki\/Superman_(Clark_Kent)	Secret Identity	Good Characters	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	2496.0	1986, October	1986.0
	2	1458	Green Lantern (Hal Jordan)	∖/wiki\/Green_Lantern_(Hal_Jordan)	Secret Identity	Good Characters	Brown Eyes	Brown Hair	Male Characters	NaN	Living Characters	1565.0	1959, October	1959.0
	3	1659	James Gordon (New Earth)	\/wiki\/James_Gordon_(New_Earth)	Public Identity	Good Characters	Brown Eyes	White Hair	Male Characters	NaN	Living Characters	1316.0	1987, February	1987.0
	4	1576	Richard Grayson (New Earth)	VwikiVRichard_Grayson_(New_Earth)	Secret Identity	Good Characters	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	1237.0	1940, April	1940.0

3) Собираем статистику по типу данных и количеству пустых ячеек: data.isnull().sum()

data.dtypes

page_id	0	page_id	int64
name	0	name	object
urlslug	0	urlslug	object
ID	2013	ID	object
ALIGN	601	ALIGN	object
EYE	3628	EYE	object
HAIR	2274	HAIR	object
SEX	125	SEX	object
GSM	6832	GSM	object
ALIVE	3	ALIVE	object
APPEARANCES	355	APPEARANCES	float64
FIRST APPEARANCE	69	FIRST APPEARANCE	object
YEAR	69	YEAR	float64
dtype: int64		dtyne: object	

dtype: int64 dtype: object

4) Обработка пропусков в данных

1.1. Простые стратегии - удаление или заполнение нулями

```
data_new_1 = data.dropna(axis=1, how='any')
(data.shape, data_new_1.shape)
((6896, 13), (6896, 3))
data_new_2 = data.dropna(axis=0, how='any')
(data.shape, data_new_2.shape)
((6896, 13), (38, 13))
```

 $data_new_3 = data.fillna(0)$

data_new_3.head()

#на данном итервале видна замена Nan значений GSM на 0

	page_id	name	urlslug	ID	ALIGN	EYE	HAIR	SEX	GSM	ALIVE	APPEARANCES	FIRST APPEARANCE	YEAR
0	1422	Batman (Bruce Wayne)	∨wiki√Batman_(Bruce_Wayne)	Secret Identity	Good Characters	Blue Eyes	Black Hair	Male Characters	0	Living Characters	3093.0	1939, May	1939.0
1	23387	Superman (Clark Kent)	\/wiki\/Superman_(Clark_Kent)	Secret Identity	Good Characters	Blue Eyes	Black Hair	Male Characters	0	Living Characters	2496.0	1986, October	1986.0
2	1458	Green Lantern (Hal Jordan)	VwikiVGreen_Lantern_(Hal_Jordan)	Secret Identity	Good Characters	Brown Eyes	Brown Hair	Male Characters	0	Living Characters	1565.0	1959, October	1959.0
3	1659	James Gordon (New Earth)	\/wiki\/James_Gordon_(New_Earth)	Public Identity	Good Characters	Brown Eyes	White Hair	Male Characters	0	Living Characters	1316.0	1987, February	1987.0
4	1576	Richard Grayson (New Earth)	VwikiVRichard_Grayson_(New_Earth)	Secret Identity	Good Characters	Blue Eyes	Black Hair	Male Characters	0	Living Characters	1237.0	1940, April	1940.0

1.2. "Внедрение значений" - импьютация (imputation)

1.2.1. Обработка пропусков в числовых данных

Выберем числовые колонки с пропущенными значениями

 $num_cols = []$

for col in data.columns:

Количество пустых значений

temp_null_count = data[data[col].isnull()].shape[0]

dt = str(data[col].dtype)

if temp_null_count>0 and (dt=='float64' or dt=='int64'):

num_cols.append(col)

print('Колонка {}. Тип данных {}. Количество пустых значений {}.'.format(col, dt, temp_null_count))

>> Колонка APPEARANCES. Тип данных float64. Количество пустых значений 355

Колонка YEAR. Тип данных float64. Количество пустых значений 69.

Фильтр по пустым значениям поля MasVnrArea

data[data['YEAR'].isnull()]

Сохраняем индексы

flt_index = data[data['YEAR'].isnull()].index

flt_index

>>

Int64Index([386,1400,1401,1832,1937,1938,2065,2066,2067,2230,2231,2232,241
3,2414,2841,2842,3104,3105,3431,3432,3433,3434,3435,3819,3820,3821,3822,38
23,3824,4320,4321,4322,4323,4826,4827,4828,4829,5525,5526,5527,5528,5529,5
530,5531,5532,5533,5534,5535,5536,5537,5538,6532,6533,6534,6535,6536,6537,6538,6539,6540,6887,6888,6889,6890,6891,6892,6893,6894,6895],dtype=int64)

#заменим значения в этих ячейках медианой по всей выборке

for rows in flt_index:

data.YEAR[rows]=data.YEAR.median()

#тогда повторный вызов фильтра индексов с пустыми значениями выдаст:

Int64Index([], dtype='int64')

1.2.2. Обработка пропусков в категориальных данных

```
# Выберем категориальные колонки с пропущенными значениями
# Цикл по колонкам датасета
cat\_cols = []
for col in data.columns:
  # Количество пустых значений
  temp_null_count = data[data[col].isnull()].shape[0]
  dt = str(data[col].dtype)
  if temp_null_count>0 and (dt=='object'):
   cat_cols.append(col)
   temp_perc = round((temp_null_count / data.shape[0]) * 100.0, 2)
   print('Колонка {}. Тип данных {}. Количество пустых значений {}, {}%.'.format(col, dt,
temp null count,temp perc))
>> Колонка ID. Тип данных object. Количество пустых значений 2013, 29.19%.
Колонка ALIGN. Тип данных object. Количество пустых значений 601, 8.72%.
Колонка ЕҮЕ. Тип данных object. Количество пустых значений 3628, 52.61%.
Колонка HAIR. Тип данных object. Количество пустых значений 2274, 32.98%.
Колонка SEX. Тип данных object. Количество пустых значений 125, 1.81%.
Колонка GSM. Тип данных object. Количество пустых значений 6832, 99.07%.
Колонка ALIVE. Тип данных object. Количество пустых значений 3, 0.04%.
Колонка FIRST APPEARANCE. Тип данных object. Количество пустых значений
69, 1.0%.
Обработаем значения ALIVE, заполнив пропуски наиболее часто встречамым значением:
MaxAlive = data.groupby('ALIVE').count()['page id']
data.ALIVE[data.ALIVE.isnull()] = MaxAlive[MaxAlive == MaxAlive.max()].index[0]
```

1.3 Преобразование категориальных признаков в числовые

#вручную задав параметры

data.ALIGN.replace({'Good Characters':'1','Bad Characters':'0'},inplace=True)
data.head()

	page_id	name	urlslug	ID	ALIGN	EYE	HAIR	SEX	GSM	ALIVE	APPEA
0	1422	Batman (Bruce Wayne)	VwikiVBatman_(Bruce_Wayne)	Secret Identity	1	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	23.
1	23387	Superman (Clark Kent)	VwikiVSuperman_(Clark_Kent)	Secret Identity	1	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	23.
2	1458	Green Lantern (Hal Jordan)	VwikiVGreen_Lantern_(Hal_Jordan)	Secret Identity	1	Brown Eyes	Brown Hair	Male Characters	NaN	Living Characters	23.
3	1659	James Gordon (New Earth)	\/wiki\/James_Gordon_(New_Earth)	Public Identity	1	Brown Eyes	White Hair	Male Characters	NaN	Living Characters	23.
4	1576	Richard Grayson (New Earth)	VwikiVRichard_Grayson_(New_Earth)	Secret Identity	1	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	23.
4											+

```
#Средствами LabelEncoder
```

```
from sklearn.preprocessing import LabelEncoder
label = LabelEncoder()
dicts = {}

data.ALIGN = label.fit_transform(data.ALIGN.astype(str))
```

label.fit(data.ALIGN.drop_duplicates()) #задаем список значений для кодирования

dicts['ALIGN'] = list(label.classes_)
data.ALIGN = label.transform(data.ALIGN) #заменяем значения из списка кодами
закодированных элементов
flt_index = data['ALIGN'].unique()
flt_index

>>array([1, 0, 2, 4, 3])

	page_id	name	urlslug	ID	ALIGN	EYE	HAIR	SEX	GSM	ALIVE	АРРЕА
0	1422	Batman (Bruce Wayne)	∖/wiki\/Batman_(Bruce_Wayne)	Secret Identity	1	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	23.
1	23387	Superman (Clark Kent)	\/wiki\/Superman_(Clark_Kent)	Secret Identity	1	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	23.
2	1458	Green Lantern (Hal Jordan)	VwikiVGreen_Lantern_(Hal_Jordan)	Secret Identity	1	Brown Eyes		Male Characters	NaN	Living Characters	23.
3	1659	James Gordon (New Earth)	\/wiki\/James_Gordon_(New_Earth)	Public Identity	1	Brown Eyes	White Hair	Male Characters	NaN	Living Characters	23.
4	1576	Richard Grayson (New Earth)	VwikiVRichard_Grayson_(New_Earth)	Secret Identity	1	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	23.
4											+

#Средствами pandas - one-hot

import pandas

cat columns = ['ID']

data processed

GN	EYE	HAIR	SEX	GSM	ALIVE	APPEARANCES	FIRST APPEARANCE	YEAR	IDIdentity Unknown	IDPublic Identity	IDSecret Identity
1	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	23.625134	1939, May	1992.0	0	0	1
1	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	23.625134	1986, October	1992.0	0	0	1
1	Brown Eyes	Brown Hair	Male Characters	NaN	Living Characters	23.625134	1959, October	1992.0	0	0	1
1	Brown Eyes	White Hair	Male Characters	NaN	Living Characters	23.625134	1987, February	1992.0	0	1	0
1	Blue Eyes	Black Hair	Male Characters	NaN	Living Characters	23.625134	1940, April	1992.0	0	0	1
1	Blue Eyes	Black Hair	Female Characters	NaN	Living Characters	23.625134	1941, December	1992.0	0	1	0
1	Blue Eyes	Blond Hair	Male Characters	NaN	Living Characters	23.625134	1941, November	1992.0	0	1	0

3. Масштабирование данных Термины "масштабирование" и "нормализация" часто используются как синонимы. Масштабирование предполагает изменение диапазона измерения величины, а нормализация - изменение распределения этой величины.

3.1 МіпМах масштабирование

from sklearn.preprocessing import MinMaxScaler, StandardScaler, Normalizer

```
sc1 = MinMaxScaler()
sc1_data = sc1.fit_transform(data[['YEAR']])
plt.hist(data['YEAR'], 50)
plt.show()
```


3.2. Масштабирование данных на основе Z-оценки - StandardScaler¶

```
sc2 = StandardScaler()
sc2_data = sc2.fit_transform(data[['YEAR']])
plt.hist(sc2_data, 50)
plt.show()
```


3.3 Нормализация данных - Normalizer

sc3 = Normalizer()

```
sc3_data = sc3.fit_transform(data[['YEAR']])
flt_index = data['YEAR'].unique()
flt_index
plt.hist(sc3_data, 50)
plt.show()
```

