Neural Networks, Data Augmentation, and Speech Recognition

Grayson Cordell Jesse Gailbreath Noah Norrod Jacob Swindell

Background

- Speech recognition through data augmentation
- Data Augmentation taking a set of data and changing it somehow
- 3,000 files into over 30,000
- Will augmentation make the network train better?

Sound Explained

- Sound is made by changes in air pressure
- Compression and rarefaction
- How fast this happens is called frequency, which determines pitch
- How extreme the compression and rarefaction is determines amplitude

Example drawing of a sound wave

Sound Processes Used

- Multiple processes used to augment the data set
- Pitch shift: altering frequency to make higher or lower sounds
- Background noise: gives slight distinction from original sound
- Reverb: the sound of a given room

Our Library

Our Dataset

All Augmentations (and Their Spectrograms)

- 1. Clipped
- 2. Pitch -200 cents
- 3. Pitch +200 cents
- 4. Random pitch 1 (-400 to +400 cents)
- 5. Random pitch 2 (-400 to +400 cents)
- 6. Random reverb 1
- 7. Random reverb 2
- 8. Dropout
- 9. Additive noise
- 10. Band stop filter

Developing the Spectrograms

```
[ ] def spectrogram(samples, sample_rate, stride_ms = 10.0,
                               window_ms = 20.0, max_freq = 8192, eps = 1e-14):
         stride size = int(0.001 * sample rate * stride ms)
         window size = int(0.001 * sample rate * window ms)
         # Extract strided windows
         truncate size = (len(samples) - window size) % stride size
         samples = samples[:len(samples) - truncate_size]
         nshape = (window_size, (len(samples) - window_size) // stride_size + 1)
         nstrides = (samples.strides[0], samples.strides[0] * stride_size)
         windows = np.lib.stride tricks.as strided(samples,
                                               shape = nshape, strides = nstrides)
         assert np.all(windows[:, 1] == samples[stride size:(stride size + window size)])
         # Window weighting, squared Fast Fourier Transform (fft), scaling
         weighting = np.hanning(window_size)[:, None]
         fft = np.fft.rfft(windows * weighting, axis=0)
         fft = np.absolute(fft)
         fft = fft**2
         scale = np.sum(weighting**2) * sample_rate
         fft[1:-1, :] *= (2.0 / scale)
         fft[(0, -1), :] /= scale
         # Prepare fft frequency list
         freqs = float(sample_rate) / window_size * np.arange(fft.shape[0])
         # Compute spectrogram feature
         ind = np.where(freqs <= max_freq)[0][-1] + 1
         specgram = np.log(fft[:ind, :] + eps)
         return specgram
[ ] def SpecSaver(name):
        spec=spectrogram(x2, sr2)
        librosa.display.specshow(spec)
        plt.savefig(name, bbox_inches='tight', transparent=True, pad_inches=0.0 )
    directory = r'/content/s21-team7-project/free-spoken-digit-dataset-master/free-spoken-digit-dataset-master/recordings
     for filename in os.listdir(directory):
      if filename.endswith(".wav"):
         d=os.path.join(directory, filename)
         Base=os.path.basename(filename)
         x2, sr2 =librosa.load(d, sr=None)
         newone = "sImage"+Base +".png"
         SpecSaver(newone)
```

 Our code for generating spectrograms and the folders in which they are stored

Model Architecture

Output	Shap	e		Param #
(None,	252,	252,	16)	1216
(None,	250,	250,	16)	2320
(None,	250,	250,	16)	64
(None,	125,	125,	16)	0
(None,	125,	125,	16)	0
(None,	125,	2000)	0
(None,	125,	50)		100050
(None,	50)			20200
(None,	10)			510
MODRED		****		
	(None,	(None, 252, (None, 250, (None, 250, (None, 125, (None, 125, (None, 125,	(None, 250, 250, (None, 250, 250, (None, 125, 125, (None, 125, 2000 (None, 125, 50) (None, 50)	(None, 252, 252, 16) (None, 250, 250, 16) (None, 250, 250, 16) (None, 125, 125, 16) (None, 125, 125, 16) (None, 125, 2000) (None, 125, 50) (None, 50)

Training the Network

• Original Results vs. Augmented Results

```
1 # now test the model against the unseen images from the original dataset
2 ods_history_test = model.evaluate(ods_test, verbose = 1)
3 print("Using only original samples:")
4 print("Accuracy: ", ods_history_test[1])
5 print("Loss: ", ods_history_test[0])
Using only original samples:
Accuracy: 0.8033333428753479
Loss: 0.6467224955558777
I # now let's test with unseen images from the augmented plus original dataset
I plusAugmented history test = model.evaluate(plusAugmented ds test, verbose = 1)
3 print("Using the augmented plus original samples:")
# print("Accuracy: ", plusAugmented history test[1])
5 print("loss: ", plusAugmented_history_test[0])
Using the augmented plus original samples:
Accuracy: 0.9619191884994587
Loss: 0.12183058261871338
```

• In this example, we got .80 accuracy with .64 loss against .96 accuracy with .12 loss

Thank You for Listening!

Grayson Cordell - Architecture Lead

Jesse Gailbreath - Code Lead

Noah Norrod - Documentation Lead

Jacob Swindell - Presentation Lead

We will now take any questions!