B.Sc. 3rd Semester (Honours) Examination, 2023-24 MATHEMATICS

Course ID: 32114 Course Code: SH-MTH-304/GE-3

Course Title : Algebra

[Syllabus - 2017]

Time: 2 Hours Full Marks: 40

The figures in the right margin indicate marks.

Candidates are required to answer in their own words as far as practicable.

Symbols and notations have their usual meaning.

UNIT-I

1. Answer any five from the following questions: $5\times2=10$

a) Find the values of $(-i)^{\frac{2}{3}}$.

b) Apply Descartes' rule of sign to examine the nature of the roots of the equation

$$x^6 + 4x^4 + 2x^2 + 4x + 1 = 0$$

- c) Construct an equivalence relation on the set $A = \{a, b, c\}$.
- d) Show that the function $f: R \to R$ defined by f(x) = |x| + x is neither injective nor surjective.
- e) For any non empty set S, prove that $S \times S$ is an equivalence in S.

- Show that W is a subspace of R⁴ defined by $W = \{(x, y, z, w) : x, y, w \in R, 3x + y + z + 2w = 0\}$
- g) Let λ be an eigen value of an idempotent matrix A. Show that λ is 1 or 0.
- h) Find the rank of the matrix A^2 , where

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}.$$

UNIT-II

- 2. Answer *any four* from the following questions: $4 \times 5 = 20$
 - a) If $\cos\alpha + \cos\beta + \cos\gamma = 0, \sin\alpha + \sin\beta + \sin\gamma = 0$ then prove that

(i)
$$sin(\alpha+\beta)+sin(\gamma+\beta)+sin(\gamma+\alpha) = 0$$

(ii)
$$\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin(\alpha + \beta + \gamma)$$
.
 $3+2=5$

- b) i) Show that $1!.3!.5!...(2n-1)! > (n!)^n$.
 - ii) Prove that number of primes is infinite. 3+2=5
- c) For what values of a the following system of equations is consistent? Solve in that case.

$$x-y+z=1$$

 $x + 2y + 4z = a$
 $x + 4y + 6z = a^2$

- d) Solve by Cardan's method $x^3 + 3x^2 3 = 0$.
- e) Use Cayley-Hamilton theorem to compute A²⁰²³ where

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

f) The matrix of $T: \mathbb{R}^3 \to \mathbb{R}^3$ relative to the order basis $\{0, 1, 1\}, (1, 0, 1), (1, 1, 0)\}$ is

$$\begin{pmatrix} 0 & 3 & 0 \\ 2 & 3 & -2 \\ 2 & -1 & 2 \end{pmatrix}$$
. Find the linear transformation

T. Find the matrix of T relative to the ordered basis $\{(2, 1, 1), (1, 2, 1), (1, 1, 2)\}$. 3+2

UNIT-III

3. Answer any one from the following questions:

$$1 \times 10 = 10$$

- a) i) Find the least positive residue in 2⁴¹ (mod
 23).
 - ii) A mapping $T: \mathbb{R}^3 \to \mathbb{R}^3$ is defined by

[Turn Over]

$$T(x, y, z) = (x + y + z, 2x + y + 2z, x + 2y + z), (x, y, z) \in \mathbb{R}^3$$

Show that T is a linear mapping. Find $K_{\mathfrak{C}_{1}}$ T and the dimension of ker T.

$$5+5=10$$

b) i) If
$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
, find all eigenvalues of

A and obtain the all eigenvectors corresponding to all eigenvalues.

- ii) If α, β, γ are the roots of the equation $x^3 + 3x^2 + 10 = 0$, then prove that $\alpha^4 + \beta^4 + \gamma^4 = 201$.
- iii) Show that $3x^5 4x^2 + 6 = 0$ has at least two imaginary roots. 5+3+2