ECE2-Semaine 5

06/10/2021

1 Cours

1.1 Espaces vectoriels

Espaces vectoriels : loi de composition interne /loi de composition externe, définition d'espace vectoriel, règles de calcul, exemples de référence \mathbb{R}^n , $\mathcal{M}_{n,p}(\mathbb{R})$, $\mathbb{R}[X]$, $\mathbb{R}_n[X]$, $\mathbb{R}^\mathbb{N}$, $\mathbb{R}^\mathbb{D}$ où D est une partie de \mathbb{R} . Combinaison linéaire.

Sous-espaces vectoriels: définition, caractérisation, un sous-espace vectoriel de E est un espace vectoriel et contient 0_E . Exemples de sous-espaces vectoriels des espaces vectoriels de référence. Sous-espace vectoriel engendré par une famille de vecteurs, notation Vect, définition d'une famille génératrice, manipulation de Vect.

1.2 Famille de vecteurs

Familles génératrices : définition; on ne change pas le caractère générateur d'une famille en changeant l'ordre des vecteurs, en ajoutant à cette famille des nouveaux vecteurs, en multipliant un des vecteurs par un scalaire non nul, retirant de la famille un vecteur qui s'écrit comme combinaison linéaire des autres.

Familles libres: définition de famille libre/liée, ex de familles liées: famille contenant le vecteur nul, contenant plusieurs fois le même vecteur etc..., ex de familles libres: famille d'un vecteur non nul, de deux vecteurs non colinéaires, famille de polynômes échelonnée; on ne change pas le caractère libre d'une famille en changeant l'ordre des vecteurs, en retirant un vecteur à la famille, un multipliant un vecteur par un scalaire non nul, en ajoutant un vecteur qui n'est pas combinaison linéaire des autres.

Bases: définition, coordonnées dans une base, base canonique des espaces vectoriels de référence.

1.3 Dimension d'un espace vectoriel

Dimension : définition : espaces vectoriels de dimension finie, dimension d'un espace vectoriel, dimension de \mathbb{R}^n , $\mathcal{M}_{n,p}(\mathbb{R})$, $\mathbb{R}_n[X]$.

2 Méthodes à maîtriser

- 1. Savoir montrer qu'un vecteur est/n'est pas combinaison linéaire de vecteurs donnés en résolvant un système.
- 2. Savoir montrer qu'un ensemble est un espace vectoriel ou un sous-espace vectoriel avec la caractérisation des sous-espaces vectoriels.
- 3. Savoir montrer qu'un ensemble est un sous-espace vectoriel en en déterminant une famille génératrice.
- 4. Savoir décrire un sous-espace vectoriel engendré par une famille de vecteurs à l'aide d'équations.
- 5. Savoir manipuler la notation Vect.
- 6. Savoir montrer qu'une famille est génératrice, libre / liée, est une base.
- 7. Savoir trouver une base d'un espace vectoriel donné.
- 8. Savoir déterminer les coordonnées d'un vecteur dans une base donnée.

3 Questions de cours

- Définitions : combinaison linéaire, sous-espace vectoriel, sous-espace vectoriel engendré par une famille finie de vecteurs, famille libre/liée, famille génératrice, base, coordonnées dans une base.
- Propositions : caractérisation des sous-espaces vectoriels, dimension des espaces vectoriels de référence.