Podcast Topic Segmentation

Group 9 Members: Matthew McMurry, Lizabeth Singh, Eunji Kim, Hongcen Tu, Yijiao Zuo & Yao Chen

Agenda

Introduction

Problem: Long-form audio/podcast discovery is rudimentary and specific

content hard to find

Solution: NLP-driven podcast analysis to facilitate search and discovery of

relevant discussions

Topic: 2022 Oscars recap podcasts analyzing

Objective: Find podcast segments from within larger corpus that relate to

specific topic and compare segments between podcasts

Approaches: Methods including Cosine Similarity, LDA and Sentiment Scoring

Literature Review

A Scalable Video Search Engine
Based on Audio Content
Indexing and Topic
Segmentation

Improving Automated
Segmentation of Radio Shows
with Audio Embeddings

Topic segmentation in ASR transcripts using bidirectional RNNS for change detection Identifying Introductions in Podcast Episodes from Automatically Generated Transcripts

Workflow Breakdown

Data Collection

Methodology and Validation Performance Measure

Segmentation

Segmentation performed via a custom function

Function takes keyword(s) as argument Checks whether word(s) appear in full corpus

If yes, returns a sorted list object of timestamps for each occurrence of keyword Multiple searches help define a segment e.g. "Chris Rock", "Will Smith", and "slap"

Segmented text is exported via a second custom function

Text boundaries for segment = first occurrence of keyword -15 words and last occurrence of keyword + 15 words

Function outputs txt file for each segment for analysis stage Produces very good rough approximation of segments, could be refined later

LDA(Latent Dirichlet Allocation)

Topic Extraction

```
(0, '0.013*"know" + 0.013*"go" + 0.013*"get" + 0.013*"chri"')
(1, '0.001*"know" + 0.001*"like" + 0.001*"chri" + 0.001*"got"')
(2, '0.024*"know" + 0.020*"like" + 0.015*"think" + 0.014*"go"')
(3, '0.063*"n" + 0.011*"energi" + 0.011*"twenti" + 0.011*"climat"')
(4, '0.074*"like" + 0.028*"know" + 0.023*"yeah" + 0.021*"think"')
(5, '0.019*"like" + 0.016*"right" + 0.014*"know" + 0.013*"rock"')
(6, '0.014*"know" + 0.013*"yeah" + 0.013*"got" + 0.011*"go"')
(7, '0.001*"n" + 0.001*"know" + 0.001*"like" + 0.001*"get"')
(8, '0.001*"n" + 0.001*"like" + 0.001*"know" + 0.001*"go"')
(9, '0.142*"n" + 0.015*"like" + 0.010*"one" + 0.008*"talk"')
```

Word Cloud

Coherence Score: 0.28181650732521046

Cosine Similarity

$$\cos(\theta) = \frac{\mathbf{A} \cdot \mathbf{B}}{\|\mathbf{A}\| \|\mathbf{B}\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_i^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

Vectorize using word embedding

Word2Vec:

Two layer neural network that takes a corpus as input and outputs a vector representation of the corpus

Cosine similarity result for the segmented podcasts

		۸	1	2	2	4	-	6	7		0	10	11	12	13	14	15	16	17	18	19
0		1	0.999742	0.999928	0.999871	0.999881	8.999927	0.999855	0.999887	0.99992	0.999789	0.999797	0.999779	0.999924	0.999931	0.999917	0.9999	8.999949	0.999911	0.9998	0.999622
1	0.99	9974	1	0.999744	0.999607	0.999679	0.999713	0.999625	0.999714	0.9997	8.999917	0.999876	0.999918	8.999717	0.99973	0.999758	0.99975	0.999695	0.999754	0.999	0.999802
2	0.99	9992	8.999744	1	0.999903	0.999872	0.99994	8.999916	8.999921	8.99992	0.999793	0.999828	0.999818	0.999961	8.999942	0.999951	0.9999	0.999926	0.999933	0.99988	0.999629
3	0.99		8.999687	0.999903		0.999845	0.999888	8,999886	0.999893	0.99988	0.999637	8,999721	8,999659	0.999937	8.999985	0.999912	0.999873	8,999912	0.999911	0.9998	0.999465
4	0.99		8.999679	0.999872	0.999845		0.999869	0.999808	0.999825	0.99982	8.99976	0.99969	0.999736	0.999855	8.999871	0.999864	0.999875	0.999874	0.999877	0.999848	0.999545
-	0.99		8,999713	8.99994	0.999888	8.999869		0.999882	0.999931	0.99989	8,999733	8.999789	0.999749	0.999963	8.999952	0.999968	0,999937	8,999961	0.999936	0.99993	0.999563
ů	8.99		0,999625	8.999916	0.999886	0.999808	0.999882		0.999891	8,9998	0.999689	8,999773	8,999752	0.999922	8.999882	8.999989	0.999836	8,999898	0.999874	0.99982	0.999564
•						0.999825	0.999931		1		0.999752				0.999923		0.999844			0.99984	0.999586
7	0.99		0.999714	0.999921	0.999893			0.999891		0.99991		0.999884	0.999766	0.999952		0.999928		0.99992	0.999875		0.99958
8	0.99		8.9997	0.999929	0.999883	0.999825	0.999895	0.99985	0.999913	1	0.999748	0.999777	0.999748	0.999939	0.999926	0.999911	0.99986	0.999927	0.99988	0.9998	
9	0.99		0.999917	0.999793	0.999637	0.99976	0.999734	0.999689	0.999752	0.99974		0.999894	0.999931	0.999748	0.999732	0.999764	0.99974	0.999733	0.999723	0.999668	0.999797
10	0.99	9979	0.999876	0.999828	0.99972	0.99969	0.999789	0.999773	0.999884	0.99977	0.999894		0.999891	0.99981	0.99978	0.99983	0.99977	0.999788	0.999781	0.999768	0.999771
11	8.99	9977	0.999918	0.999818	0.999659	0.999736	0.999749	0.999752	0.999766	0.99974	0.999931	0.999891		0.99977	0.999757	0.999784	0.999743	0.999747	0.999781	0.999686	0.999835
12	8.99	9992	0.999717	0.999961	0.999937	0.999855	0.999963	0.999922	0.999952	0.99993	0.999748	0.99981	0.99977	1	0.999959	0.999968	0.999908	0.999963	0.999938	0.99992	0.999606
13	0.99	993	0.99973	0.999942	0.999905	0.999871	0.999952	0.999882	0.999923	0.99992	0.999732	0.99978	0.999757	0.999959		0.999957	0.99994	0.999944	0.999957	0.999948	0.999588
14	8.99	9991	0.999758	0.999951	0.999912	0.999864	0.999968	0.999909	0.999928	0.9999	8.999764	0.99983	0.999784	0.999968	0.999957		0.999935	0.999957	0.999968	0.99994	0.999599
15	0.9	9999	0.99975	0.9999	0.999873	0.999875	0.999937	0.999836	0.999844	0.9998	0.99974	0.99977	0.999743	0.999908	0.99994	0.999935		0.999916	0.999935	0.99994	0.999548
16	0.99	9994	0.999695	0.999926	0.999912	0.999874	0.999961	0.999898	0.99992	0.99992		0.999788	0.999747	0.999964	0.999943	0.999957	0.999916		0.999931	0.9999	0.999603
17	0.99	9991	0.999754	0.999933	0.999911	0.999876	0.999936	0.999874	0.999875	0.9998		0.999781		0.999938	8.999957	0.999968	0.999935	0.999931		0.99994	0.999596
18	0.9	998	0.9997	0.999884	0.999871	0.999843	0.999938	0.999821	0.999844	0.9998	0.999663		0.999686	0.999927	0.999943	0.999945	0.999949	0.999916	0.999949	i	0.999519
19	0.99	9967	0.999802	0.999629	0.999465	0.999545	0.999562	0.999564	0.999586	0.9995	0.999797	0.999771	0.999835	0.999606	0.999588	0.999599	0.999548	0.999683	0.999596	0.99951	1

- Visually observed 5 podcasts (highlighted) have lower similarity score compared to all other podcasts
 [1, 9, 10, 11, 19]
- Limitation: All of the scores are high 0.99xxxx

Cosine Similarity

Grouping similar and dissimilar podcasts with a selected threshold

By comparing each podcast with the rest of podcast, we get the lists of comparably dissimilar podcasts (similarity score <0.99975)

By comparing each podcast with the rest of podcast, we get the lists of similar podcasts (similarity score >0.99995)

Ind(▲	Type	Size	
0	list		[1, 19]
1	list	15	[0, 2, 3, 4, 5, 6, 7, 8, 12, 13,]
2	list	2	[1, 19]
3	list		[1, 9, 10, 11, 19]
4	list		[1, 9, 10, 11, 19]
5	list	4	[1, 9, 11, 19]
6	list		[1, 9, 10, 11, 19]
7	list		[1, 9, 19]
8	list	4	[1, 9, 11, 19]
9	list	13	[3, 4, 5, 6, 7, 8, 12, 13, 14, 15,]
10	list		[3, 4, 6, 13, 15, 17, 18]
11	list	9	[3, 4, 5, 6, 8, 13, 15, 16, 18]
12	list		[1, 9, 19]
13	list		[1, 9, 10, 11, 19]
14	list		[1, 9, 19]
15	list		[1, 9, 10, 11, 19]
16	list	4	[1, 9, 11, 19]
17	list	4	[1, 9, 10, 19]
18	list		[1, 9, 10, 11, 19]
19	list	15	[0, 2, 3, 4, 5, 6, 7, 8, 12, 13,]

Dissimilar Podcasts: [1, 9, 10, 11, 19]

	Ind∈	Type	Size	
ı	0	list	1	[0]
ı	1	list	1	[1]
ı	2	list	2	[2, 12]
ı	3	list	1	[3]
ı	4	list	1	[4]
ı	5	list	4	[5, 12, 14, 16]
ı	6	list	1	[6]
ı	7	list	1	[7]
ı	8	list	1	[8]
ı	9	list	1	[9]
ı	10	list	1	[10]
ı	11	list	1	[11]
ı	12	list	6	[2, 5, 12, 13, 14, 16]
ı	13	list	4	[12, 13, 14, 17]
ı	14	list	6	[5, 12, 13, 14, 16, 17]
ı	15	list	1	[15]
	16	list	4	[5, 12, 14, 16]
	17	list	3	[13, 14, 17]
	18	list	1	[18]
	19	list	1	[19]

Similar Podcasts:

[2, 5, 12, 13, 14, 16] [5, 12, 13, 14, 16, 17]...

Similar podcasts

come high

hev

brought

- Oscar related words
 - Peopl", "realli", "right",
 "joke", "smith", "chri" "rock",
 "slap", "oscar"

m feel

boy

check first

Dissimilar podcasts

- Grammy, bitcoin, airbnb related words:
 - "One", "twenti", "grammi", "bit", "coin", "place", "climat", "stay"

CountVectorizer

Transformed text into vectors on the basis of frequency of each word that occurs in the entire text

ngram_range = (1,2)

Applied cos similarity to CountVectorizer result

	0	1	2		4		6		8	9	10	11	12	13	14	15	16	17	18	19
0	1	0.2227	0.3584	0.2772	0.2855	0.3823	0.2745	0.3149	0.3245	0.164	0.1604	0.1502	0.3552	0.4144	0.4175	0.3902	0.3013	0.4443	0.4117	0.07297
1	0.2227	1	0.2378	0.224	0.1377	0.3698	0.2251	0.179	0.2335	0.1615	0.1695	0.2108	0.3272	0.3225	0.3994	0.3814	0.2373	0.4027	0.4382	0.1134
2	0.3584	0.2378	1	0.344	0.3865	0.4772	0.3736	0.3432	0.4624	0.1922	0.2008	0.2305	0.5071	0.4638	0.555	0.4029	0.4874	0.4551	0.3813	0.09723
3	0.2772	0.224	0.344		0.2904	0.3937	0.3302	0.3241	0.3563	0.1513	0.2073	0.189	0.4205	0.4106	0.3804	0.3362	0.3571	0.3363	0.3044	0.1035
4	0.2855	0.1377	0.3865	0.2904		0.3484	0.2428	0.2727	0.382	0.1504	0.1313	0.1465	0.3922	0.3958	0.3733	0.28	0.324	0.318	0.2882	0.05665
5	0.3823	0.3698	0.4772	0.3937	0.3484		0.4228	0.429	0.4985	0.2873	0.2982	0.3017	0.6365	0.6048	0.6539	0.6259	0.5242	0.5926	0.6453	0.143
6	0.2745	0.2251	0.3736	0.3302	0.2428	0.4228		0.3813	0.3588	0.2077	0.2526	0.2844	0.4973	0.4572	0.4376	0.3097	0.4064	0.3565	0.3336	0.1198
7	0.3149	0.179	0.3432	0.3241	0.2727	0.429	0.3813		0.417	0.253	0.269	0.24	0.4568	0.4272	0.4181	0.3211	0.3935	0.3072	0.2852	0.1313
8	0.3245	0.2335	0.4624	0.3563	0.382	0.4985	0.3588	0.417	1	0.2624	0.2668	0.2333	0.5719	0.5253	0.5574	0.4777	0.4587	0.4765	0.4569	0.09893
9	0.164	0.1615	0.1922	0.1513	0.1504	0.2873	0.2077	0.253	0.2624	1	0.1898	0.1841	0.3149	0.2315	0.2806	0.1902	0.2409	0.2019	0.1941	0.1035
10	0.1604	0.1695	0.2008	0.2073	0.1313	0.2982	0.2526	0.269	0.2668	0.1898		0.2162	0.3301	0.3064	0.2944	0.2432	0.2388	0.2223	0.2214	0.1357
11	0.1502	0.2108	0.2305	0.189	0.1465	0.3017	0.2844	0.24	0.2333	0.1841	0.2162		0.3393	0.2658	0.3031	0.2002	0.2399	0.2584	0.2663	0.1185
12	0.3552	0.3272	0.5071	0.4205	0.3922	0.6365	0.4973	0.4568	0.5719	0.3149	0.3301	0.3393	1	0.6147	0.6416	0.4874	0.5384	0.5253	0.5651	0.1596
13	0.4144	0.3225	0.4638	0.4106	0.3958	0.6048	0.4572	0.4272	0.5253	0.2315	0.3064	0.2658	0.6147		0.63	0.6159	0.4791	0.5983	0.6579	0.1015
14	0.4175	0.3994	0.555	0.3804	0.3733	0.6539	0.4376	0.4181	0.5574	0.2806	0.2944	0.3031	0.6416	0.63		0.6293	0.543	0.6505	0.6627	0.1421
15	0.3902	0.3814	0.4029	0.3362	0.28	0.6259	0.3097	0.3211	0.4777	0.1902	0.2432	0.2002	0.4874	0.6159	0.6293		0.4847	0.7035	0.7703	0.05028
16	0.3013	0.2373	0.4874	0.3571	0.324	0.5242	0.4064	0.3935	0.4587	0.2409	0.2388	0.2399	0.5384	0.4791	0.543	0.4847		0.4209	0.3962	0.1056
17	0.4443	0.4027	0.4551	0.3363	0.318	0.5926	0.3565	0.3072	0.4765	0.2019	0.2223	0.2584	0.5253	0.5983	0.6505	0.7035	0.4209		0.7542	0.08399
18	0.4117	0.4382	0.3813	0.3044	0.2882	0.6453	0.3336	0.2852	0.4569	0.1941	0.2214	0.2663	0.5651	0.6579	0.6627	0.7703	0.3962	0.7542	1	0.07842
19	0.07297	0.1134	0.09721	0.1035	0.05665	0.143	0.1198	0.1313	0.09893	0.1035	0.1357	0.1185	0.1596	0.1015	0.1421	0.05028	0.1056	0.08399	0.07842	1

CountVectorizer

Sort 5 most dissimilar and most similar podcasts for each of them

1 — Airbnb;19 — Bitcoin;9,10,11 — Grammy;Rest of podcasts — Oscars related

K€♠		Typ	ре	Size				_	
0	Array	of	int64	(5,)	[19	11	10	9	1]
1	Array	of	int64	(5,)	[19	4	9	10	7]
2	Array	of	int64	(5,)	[19	9	10	11	1]
3	Array	of	int64	(5,)	[19	9	11	10	1]
4	Array	of	int64	(5,)	[19	10	1	11	9]
5	Array	of	int64	(5,)	[19	9	10	11	4]
6	Array	of	int64	(5,)	[19	9	1	4	10]
7	Array	of	int64	(5,)	[19	1	11		10]
8	Array	of	int64	(5,)	[19	11	1		10]
9	Array	of	int64	(5,)	[19	4		1	0]
10	Array	of	int64	(5,)	[4	19	0	1	9]
11	Array	of	int64	(5,)	[19	4	0		3]
12	Array	of	int64	(5,)	[19	9	1	10	11]
13	Array	of	int64	(5,)	[19		11	10	1]
14	Array	of	int64	(5,)	[19		10	11	4]
15	Array	of	int64	(5,)	[19	9	11	10	4]
16	Array	of	int64	(5,)	[19	1	10	11	9]
17	Array	of	int64	(5,)	[19		10	11	7]
18	Array	of	int64	(5,)	[19	9	10	11	7]
19	Array	of	int64	(5,)	[15	4	0	18	17]

		_			
K€♣		Typ	е	Size	
0	Array	of	int64	(5,)	[0 17 14 13 18]
1	Array	of	int64	(5,)	[1 18 17 14 15]
2	Array	of	int64	(5,)	[2 14 12 16 5]
3	Array	of	int64	(5,)	[3 12 13 5 14]
4	Array	of	int64	(5,)	[4 13 12 2 8]
5	Array	of	int64	(5,)	[5 14 18 12 15]
6	Array	of	int64	(5,)	[6 12 13 14 5]
7	Array	of	int64	(5,)	[7 12 5 13 14]
8	Array	of	int64	(5,)	[8 12 14 13 5]
9	Array	of	int64	(5,)	[9 12 5 14 8]
10	Array	of	int64	(5,)	[10 12 13 5 14]
11	Array	of	int64	(5,)	[11 12 14 5 6]
12	Array	of	int64	(5,)	[12 14 5 13 8]
13	Array	of	int64	(5,)	[13 18 14 15 12]
14	Array	of	int64	(5,)	[14 18 5 17 12]
15	Array	of	int64	(5,)	[15 18 17 14 5]
16	Array	of	int64	(5,)	[16 14 12 5 2]
17	Array	of	int64	(5,)	[17 18 15 14 13]
18	Array	of	int64	(5,)	[18 15 17 14 13]
19	Array	of	int64	(5,)	[19 12 5 14 10]

Most dissimilar podcasts 1,9,10,11,19

Tf-idf

A numerical statistic that is intended to reflect how important a word is to a document

The term frequency of a word in a document

The inverse document frequency of the word across a set of documents

ngram_range = (1,2)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
0	1	0.05775	0.136	0.07999	0.1049	0.1341	0.09109	0.1175	0.1062	0.05306	0.05528	0.04072	0.1327	0.1625	0.1631	0.1547	0.1084	0.1669	0.1691	0.02744
1	0.05775	1	0.07013	0.06577	0.03748	0.1153	0.06688	0.05493	0.06725	0.04354	0.04865	0.05704	0.1038	0.1086	0.1368	0.132	0.07251	0.1199	0.1561	0.0416
2	0.136	0.07013	1	0.1101	0.1362	0.1903	0.1355	0.1073	0.1826	0.05512	0.06168	0.06807	0.2093	0.2079	0.2393	0.206	0.1951	0.1992	0.1921	0.02818
3	0.07999	0.06577	0.1101		0.08333	0.1493	0.1071	0.09752	0.1124	0.03918	0.0578	0.047	0.1587	0.1619	0.1409	0.1412	0.1223	0.1201	0.1342	0.03327
4	0.1049	0.03748	0.1362	0.08333		0.1217	0.08403	0.07442	0.1218	0.03276	0.03089	0.03414	0.1353	0.1537	0.1375	0.1289	0.1147	0.1167	0.1245	0.01587
5	0.1341	0.1153	0.1903	0.1493	0.1217		0.163	0.1547	0.1923	0.09114	0.1081	0.09923	0.2758	0.28	0.2905	0.3117	0.209	0.2471	0.3303	0.05774
6	0.09109	0.06688	0.1355	0.1071	0.08403	0.163		0.1293	0.1314	0.06518	0.07725	0.08101	0.2012	0.2129	0.1812	0.1523	0.1439	0.1475	0.1652	0.04498
7	0.1175	0.05493	0.1073	0.09752	0.07442	0.1547	0.1293		0.1428	0.07624	0.08348	0.06062	0.169	0.1701	0.1625	0.1393	0.1314	0.1083	0.1245	0.04456
8	0.1062	0.06725	0.1826	0.1124	0.1218	0.1923	0.1314	0.1428	1	0.07829	0.08294	0.06528	0.2431	0.2335	0.2375	0.2305	0.1618	0.1884	0.2306	0.03775
9	0.05306	0.04354	0.05512	0.03918	0.03276	0.09114	0.06518	0.07624	0.07829	1	0.05129	0.05247	0.09822	0.08023	0.09265	0.07118	0.07112	0.06745	0.07429	0.03245
10	0.05528	0.04865	0.06168	0.0578	0.03089	0.1081	0.07725	0.08348	0.08294	0.05129		0.05824	0.1301	0.1234	0.1059	0.09727	0.0725	0.07666	0.09586	0.04856
11	0.04072	0.05704	0.06807	0.047	0.03414	0.09923	0.08101	0.06062	0.06528	0.05247	0.05824	1	0.1034	0.08566	0.09317	0.0693	0.06863	0.08025	0.1014	0.04262
12	0.1327	0.1038	0.2093	0.1587	0.1353	0.2758	0.2012	0.169	0.2431	0.09822	0.1301	0.1034	1	0.3088	0.295	0.2568	0.2228	0.226	0.3135	0.06494
13	0.1625	0.1086	0.2079	0.1619	0.1537	0.28	0.2129	0.1701	0.2335	0.08023	0.1234	0.08566	0.3088		0.3051	0.3472	0.2261	0.269	0.375	0.04393
14	0.1631	0.1368	0.2393	0.1409	0.1375	0.2905	0.1812	0.1625	0.2375	0.09265	0.1059	0.09317	0.295	0.3051		0.3413	0.2418	0.2874	0.357	0.05677
15	0.1547	0.132	0.206	0.1412	0.1289	0.3117	0.1523	0.1393	0.2305	0.07118	0.09727	0.0693	0.2568	0.3472	0.3413		0.2363	0.3487	0.475	0.02623
16	0.1084	0.07251	0.1951	0.1223	0.1147	0.209	0.1439	0.1314	0.1618	0.07112	0.0725	0.06863	0.2228	0.2261	0.2418	0.2363		0.1796	0.1956	0.04158
17	0.1669	0.1199	0.1992	0.1201	0.1167	0.2471	0.1475	0.1083	0.1884	0.06745	0.07666	0.08025	0.226	0.269	0.2874	0.3487	0.1796		0.3781	0.03451
18	0.1691	0.1561	0.1921	0.1342	0.1245	0.3303	0.1652	0.1245	0.2306	0.07429	0.09586	0.1014	0.3135	0.375	0.357	0.475	0.1956	0.3781	1	0.0389
19	0.02744	0.0416	0.02818	0.03327	0.01587	0.05774	0.04498	0.04456	0.03775	0.03245	0.04856	0.04262	0.06494	0.04393	0.05677	0.02623	0.04158	0.03451	0.0389	1

Tf-idf

Sort 5 most dissimilar and most similar podcasts for each of them

1 — Airbnb;19 — Bitcoin;9,10,11 — Grammy;Rest of podcasts — Oscars related

K€♣		Тур	ре	Size						
0	Array	of	int64	(5,)	[19	11	9	10	1]	
1	Array	of	int64	(5,)	[4	19		10	7]	
2	Array	of	int64	(5,)	19		10	11	1]	
3	Array	of	int64	(5,)	19		11	10	1]	
4	Array	of	int64	(5,)	19	10		11	1]	
5	Array	of	int64	(5,)	19		11	10	1]	
6	Array	of	int64	(5,)	19			10	11]	
7	Array	of	int64	(5,)	19	1	11		9]	
8	Array	of	int64	(5,)	19	11			10]	
9	Array	of	int64	(5,)	19			1	10]	
10	Array	of	int64	(5,)	[4	19			0]	
11	Array	of	int64	(5,)		0	19		9]	
12	Array	of	int64	(5,)	19		11		10]	
13	Array	of	int64	(5,)	19	9	11	1	10]	
14	Array	of	int64	(5,)	19		11	10	1]	
15	Array	of	int64	(5,)	19	11		10	4]	
16	Array	of	int64	(5,)	19	11		10	1]	
17	Array	of	int64	(5,)	19		10	11	7]	
18	Array	of	int64	(5,)	19		10	11	4]	
19	Arrav	of	int64	(5.)	4	15	0	2	91	

K€♣	Туре	Size	
0	Array of in	t64 (5,)	[0 18 17 14 13]
1	Array of in	t64 (5,)	[1 18 14 15 17]
2	Array of in	t64 (5,)	[2 14 12 13 15]
3	Array of in	t64 (5,)	[3 13 12 5 15]
4	Array of in	t64 (5,)	[4 13 14 2 12]
5	Array of in	t64 (5,)	[5 18 15 14 13]
6	Array of in	t64 (5,)	[6 13 12 14 18]
7	Array of in	t64 (5,)	[7 13 12 14 5]
8	Array of in	t64 (5,)	[8 12 14 13 18]
9	Array of in	t64 (5,)	[9 12 14 5 13]
10	Array of in	t64 (5,)	[10 12 13 5 14]
11	Array of in	t64 (5,)	[11 12 18 5 14]
12	Array of in	t64 (5,)	[12 18 13 14 5]
13	Array of in	t64 (5,)	[13 18 15 12 14]
14	Array of in	t64 (5,)	[14 18 15 13 12]
15	Array of in	t64 (5,)	[15 18 17 13 14]
16	Array of in	t64 (5,)	[16 14 15 13 12]
17	Array of in	t64 (5,)	[17 18 15 14 13]
18	Array of in	t64 (5,)	[18 15 17 13 14]
19	Array of in	t64 (5,)	[19 12 5 14 10]

Sentiment Scoring

Highest	Oscars (2022)
	0.639
Lowest	Bitcoin Podcast
	-0.538
Mean	0.242

titles	simple_sentiment
2022 Oscars Recap Excerpt	0.322034
AirBnB Podcast Excerpt	0.5
Between (Chris) Rock And A Hard Place Excerpt	-0.258065
Chris Rock Allowed Will Smith to Stay at Oscars Excerpt	0.153846
Chris Rock vs Will Smith Excerpt	-0.0909091
Chris Rock_s Response, Comics React and Josh Wolf Excerpt	0.521739
Ebro In The Morning - Talking Smack_ Conspiracy Theories Excerpt	0.322034
Ebro In The Morning - The Smack Heard Around The World Excerpt	0.47619
Episode 156_ The Will Smith and Chris Rock Fight Excerpt	0.142857
Grammys1 Excerpt	0.586207
Grammys2 Excerpt	0.0967742
Grammys3 Excerpt	-0.12
I AM ATHLETE _ Will Smith Slaps Chris Rock_ Was He Right or Wrong_ Excerpt	0.0172414
Jocko Evaluates Celebrities Slapping Each Other. Will Smith _ Chris Rock. Oscars. 1 Excerpt	0.261538
Live From Inside the Oscars_ The Will Smith-Chris Rock Slap Excerpt	0.464286
Oscars (2022) Excerpt	0.639098
Oscars Reactions, Apple Subscriptions, and The Team Behind Super Pumped_ The Battle for Uber Excerpt	0.285714
Podcast5 Excerpt	0.446809
Will Smith vs. Chris Rock NFL OT changes Excerpt	0.606557
Bitcoin Podcast Excerpt	-0.538462

Conclusion

THANK YOU!