

Methods of Artificial Intelligence

2. Local Search Algorithms Nohayr Muhammad Winter Term 2022/2023 November 11th, 2022

Last time...

- Solving problems by searching
- Search problems
- (Classical) Search algorithms
- Searching in complex environments
- Local search main ideas

Today...

- Hill-Climbing
- Simulated Annealing
- Local Beam Search
- Genetic Algorithms

State-space Landscape and Hill-Climbing

What is the simplest form of local search?

Gradient Ascent Revisited

- Suppose, we want to maximize real function f(x) (objective function)
- we can do so by starting from random point and following ascent direction (gradient ascent algorithm)

It's a little more complicated

Actually, it's much more complicated

Flexible Linked Axes for Multivariate Data Visualization

Hill-Climbing

- Hill-Climbing can be regarded as a discrete state-space version of gradient ascent
- In each step, we select neighbor with highest value

https://www.mathworks.com/matlabcentral/fileexchange/74015-hill-climbing-algorithm-a-simple-implementation

Discrete State Spaces

- We will often consider finite state spaces here
- Problem: state space is usually exponentially large

Continuous vs. Discrete Spaces

Continuous Space

ε-neighborhood

- Infinite number of neighbors
- Gradient gives direction of steepest ascent

Discrete Space

Discrete neighborhood

- Often finite number of neighbors
- Best neighbor can be difficult to find (enumeration)

Hill-Climbing Algorithm

```
current ← select random initial state
do

neighbor ← neighbor of current with highest value
if value(neighbor) ≤ value(current)
    return current
    current←neighbor
until termination condition is met
```


Hill-Climbing: Termination Conditions

```
current ← select random initial state
do

neighbor ← neighbor of current with highest value
if value(neighbor) ≤ value(current)
    return current
    current←neighbor
until termination condition is met
```

- termination condition can bound the maximum number of search steps or search time
- algorithm may end up in non-global local maximum or plateaux

Solving local search problems: Hill Climbing

- 1. Define state space
- 2. Define neighborhood
- 3. Define objective function (minimize f(x) by maximizing -f(x))
- 4. Apply hill climbing algorithm

Recall: 8-Queens Problem

- 1. State-Space: board configurations with one queen per column (tuple (8,3,7,4,2,5,1,6) corresponds to board configuration above).
- Neighborhood: configurations that can be obtained by moving a single queen to another field in the same column. (hence, every state has 8 * 7 = 56 neighbours)

 Objective Function: number of pairs of queens that can attack each other directly or indirectly (maximize negative objective function)

- Queen in column 1 can directly attack queen in column 2
- Queen in column 1 can indirectly attack queen in column 3
- State has value 17
- Numbers show values of neighbors

Local Optima

- Hill Climbing goes from left state with value -17 to right state with value -1 (queen 4 attacks queen 7) in only 5 steps
- However, right state is only locally optimal

A smaller neighborhood

 Neighborhood: configurations that can be obtained by moving a single queen down by one field (toroidal board)

(hence, every state has 8 neighbors)

Tradeoff

Small Neighborhood

- Faster exploration of neighbord
- Greater risk of getting stuck in local optimum

Large Neighborhood

- Slower exploration of neighborhood
- Smaller risk of getting stuck in local optimum

Variants of Hill-Climbing

- Hill-Climbing in its basic form can perform poorly because there is a high risk of ending up in non-global local maxima
- There exist several variants that can alleviate the problem

Stochastic Hill-Climbing

```
current ← select random initial state
do

neighbor ← random neighbor of current with higher value
if neighbor = null
    return current
    current←neighbor
until termination condition is met
```

- Instead of selecting neighbor with maximum value, we select random neighbor that improves value
- Probability of selection can increase with value
- Compromise between random search and Hill-Climbing

Other Variants

- First-choice Hill-climbing: in neighbor selection step, pick first neighbor that improves objective function (also useful if neighborhood is too large to enumerate all neighbors)
- Random-restart (or parallel) Hill-Climbing: perform n independent Hill-climbing searchs starting from randomly generated initial states (as n goes to infinity, probability of finding global optimum goes to 1)

Simulated Annealing

Downhill Moves

- Hill-climbing never makes downhill moves
- However, downhill moves can be necessary to find global optimum

Simulated Annealing Intuition

- Initially: large probability for downhill moves (exploration)
- As search progresses: probability decreases (intensification)
- This process is modeled by means of a temperature variable that decreases (thus simulated annealing)

Simulated Annealing

```
current \leftarrow select random initial state
for t = 1 to \infty
  T \leftarrow schedule(t)
  if T = 0
    return current
  next \leftarrow randomly selected neighbor of current
  \Delta E \leftarrow value(next) - value(current)
  if \Delta E > 0
    current \leftarrow next
  else
    current \leftarrownext only with probability \exp(\Delta E/T)
```


Cooling Schedule

- schedule(t) controls temperature decrease
- Some simple scheduling schemes:
 - Stepwise Linear: start with arbitrary T and decrease T by a constant c in each step
 - Delayed Stepwise Linear: start with arbitrary T and decrease T by a constant c every k-th step
- A slow cooling schedule increases probability of finding a highquality solution but increases runtime

Neighbor Selection

- In each step, Simulated Annealing picks random neighbor
 - If neighbor improves objective, neighbor replaces current state
 - Otherwise, it replaces current state only with probability exp(ΔE/T),
 where ΔE = value(next) value(current)

Neighbor Selection: ΔΕ

- ightharpoonup is always non-positive in else-branch
- Hence, $0 \le \exp(\Delta E/T) \le \exp(0) = 1$

- For example, for T=1, we have
 - $\Delta E = 0 : \exp(0/1) = \exp(0) = 1$
 - $\Delta E = -1 : \exp(-1/1) = 1/e = 0.37$
 - $\Delta E = -2 : \exp(-2/1) = 1/e^2 = 0.14$

Neighbor Selection: Temperature

- As temperatue T decreases, probability decreases faster
- For example, assume ΔE = -2

•
$$T= \infty : \exp(-2/\infty) = \exp(0) = 1$$

- T=100: exp(-2/100) = 0.98
- T=10: exp(-2/10) = 0.81
- T=1: exp(-2/1) = 0.13
- T=0.1: exp(-2/0.1) = 0.002

Implementing Neighbor Selection

- Naive implementation
 - Enumerate all neighbors and pick randomly
 - Runtime O(|Neighborhood|)
 - Reasonable when selection probability depends on value of state
 - Wasteful for uniform selection
- Uniform implementation
 - Create random neighbor
 - Runtime O(1)

Example: 8-Queens Problem

Q[1]	Q[2]	Q[3]	Q[4]	Q[5]	Q[6]	Q[7]	Q[8]
8	3	7	4	2	5	1	6

- State-Space: board configurations with one queen per column
- Sampling
 - 1. Create random number q from {1,...,8} (select queen)
 - 2. Create random number from {1,...,8}\{Q[q]} (select new position)

Example Makespan Problem

J1	J2	J3	J4	J5	J6	J 7	J8	J9	J10
M1	M2	M2	M1	M2	M3	M2	M3	M1	M1

- State Space: assignment of machines from {M1, M2, M3} to jobs
- Sampling
 - 1. Create random number j from {1,...,10} (select job)
 - 2. Create random number from {1,...,3}\{M[j]} (select new machine)

Example: Facility Location Problem

L1	L2	L3	C1	C2	C 3	C4	C5	C6
0	0	1	1	2	3	2	1	3

- State Space: assignment of booleans to facility locations and facility locations to cities.
- Sampling
 - 1. Create random number p from {1,...,9} (select position to change)
 - 2. Do
 - If $1 \le p \le 3$: switch boolean state
 - Else: Create random number from {1,...,3}\{A[p]} (select new location)

Local Beam Search

Local Beam Search Intuition

Instead of following a single line through the state space,
 Local Beam Search follows multiple lines (a beam)

 In each step, we select the k best states from the set of all neighbors of all k current states

Local Beam Search

```
k_current ← select k random states
do

neighbors ← all neighbors of all current states
k_best_neighbors ← best k states from neighbors
if no state from k_best_neighbor improves
current value
    return k_current
k_current ← k_best_neighbors
until termination condition is met
```

Termination conditions can be chosen as before

Local Beam Search vs Parallel Hill-Climbing

 Parallel Hill-Climbing: in each iteration, select best neighbor for each of the k states independently

Local Beam Search: in each iteration, select the k best neighbors of all current states

Stochastic Beam Search

- Local Beam Search can concentrate on a small region of the search space too early
- Stochastic Beam Search alleviates this problem by using randomized selection similar to Stochastic Hill-Climbing

```
k_current ← select k random states
do

neighbors ← all neighbors of all current states
k_best_neighbors ← k 'random' states from neighbors
if no neighbor improves current value
    return k_current
k_current ← k_best_neighbors
until termination condition is met
```


Random Selection

```
k_current ← select k random states
do

neighbors ← all neighbors of all current states
k_best_neighbors ← k 'random' states from neighbors
if no neighbor improves current value
    return best state from k_current
k_current ← k_best_neighbors
until termination condition is met
```

- Again, random selection is usually not completely random
- probability of selecting a state should increase with its value
- In this way, we balance diversity (exploration) and intensification

Genetic Algorithms

Genetic Algorithms: Motivation

- Local Beam Search bears some resemblance to natural selection:
 - Neighbors (offspring) of states (organisms) populate next generation
 - Likelihood of survival depends on value (fitness)
- Genetic Algorithms extend this analogy
 - In each step, selected individuals reproduce
 - Selection probability increases with fitness (value)
 - There is a small probability of mutation
 - Offspring usually replaces other individuals (that die)

Apply Genetic Algorithms to a Problem

Steps for applying genetic algorithms to a problem:

- 1. Define a suitable representation
- 2. Define an evaluation function (fitness function)
- 3. (Sometimes: Define special reproduction and mutation rules.)

Population (States)

- Genetic Algorithms work on a population of individuals
- Each individual is a state represented as a chromose (e.g. string)
 over a set of genes (e.g. set of characters)
- For 8-Queens problem, we could use string consisting of 8 digits from {1,...8}, where i-th digit is row position of i-th queen

83742516

31645372

Fitness (Objective Function)

- Fitness corresponds to objective function
- For 8-Queens problem, we can reuse our old value function
- In order to get a non-negative fitness function, we could count the number of pairs of queens that cannot attack each other

(28 – number of attacks between pairs)

Fitness -1 or 27 (28–1)

Fitness -6 or 22 (28-6)

Reproduction (Recombination)

- Reproduction: choose a random crossover point in chromosome
- Create offspring by crossing parents at this point (1-point crossover)

Mutation

- With small probability, mutation of offspring occurs
- E.g. replace one gene in chromosome randomly

837 45372

837 41372

Fitness-proportionate Selection

We often want to select chromosomes based on their fitness

 C_1 : 10

 C_2 : 30

 C_3 : 20

 C_4 : 25

 C_5 : 15

Fitness-Proportionate (Reproduction)

С	Value	Probability
1	10	0.1
2	30	0.3
3	20	0.2
4	25	0.25
5	15	0.15
Sum	100	1

Fitness-Antiproportionate (Removal)

С	Value	Probability
1	1/10	0,34
2	1/30	0,12
3	1/20	0,17
4	1/25	0,14
5	1/15	0,23
Sum	0.29	1

A Simple Genetic Algorithm

```
population \leftarrow create k chromosomes at random
repeat
  for i = 1 to k do
    x \leftarrow select random chromosome based on fitness
    y \leftarrow select random chromosome based on fitness
    child \leftarrowreproduce(x, y)
    if (random() < 0.05)
      child \leftarrow mutate(child)
    add child to population
    remove random chromosome based on fitness
until some chromosome is fit enough, or time limit is reached
return the best chromosome in population
```


6

0

3

3

4

5

3

0

6

Example: Traveling Salesman Problem

- TSP: find cyclic route that starts from node 0, visits each node exactly once and minimizes the overall edge cost
- Define
 - Genes
 - Chromosomes
 - Fitness (value) of individuals
 - Mutation operation
- Does crossover operation make sense?

3

0

4

0

Solution: Representation

- Genes {1, 2, 3, 4}
- Chromosomes are strings of length 4, where i-th gene (letter)
 represents the node that is visited at time i (first node is fixed to be

Solution: Fitness

Fitness is 35 (rough upper bound on max. cost) minus the cost of getting from i-th to (i+1)-th node and from fithth node back to first node

1234

- Cost from 0 to 1: 3
- Cost from 1 to 2: 6
- Cost from 2 to 3: 3
- Cost from 3 to 4: 7
- Cost from 4 to 0: 6
- Overall cost: 25
- Fitness: 35-25 = 10

Solution: Mutation

- Mutation operation switches two genes at random
- E.g. switch first and third gene

Solution: Problem with Reproduction

Naive reproduction yields invalid solutions

Reproduction of Permutations

- If chromosomes correspond to permutations, naive crossover reproduction can yield invalid solutions
- the problem can be fixed by
 - Changing the representation
 - Designing an additional repair operation that is applied after recombination
 - Using special crossover techniques for permutations

Uniform-Order Crossover

- Uniform-Order Crossover
 - Select two parents at random
 - Create random binary template
 - Child 1 is created by using genes of parent 1 at 1-positions. Fill gaps with the remaining elements according to the order given by parent 2
 - Child 2 is created by switching the roles of parent 1 and parent 2

Solution: Problem with Reproduction

Variants

- Genetic Algorithms can be configured by different
 - Selection operators
 - Reproduction operators
 - Mutation operators
- Hybrid Genetic Algorithms combine genetic algorithms with other search techniques
 - Memetic Algorithms apply a (fast) local search algorithm to each newly created individual to make it locally optimal
 - Hill-Climbing is well suited for this purpose because it is fast

Further Readings

The presented slides are manily Dr. Tobias Thelen slides

Lecture is mainly based on:

Russell, S., Norvig, P. Artificial Intelligence - A modern approach. Pearson Education: 2010.

More details on presented (and similar algorithms) can be found in:

Burke, E. K., & Kendall, G. Search methodologies - Introductory Tutorials in Optimization and Decision Support Techniques. Springer US: 2014.