

Spike Train Analysis III: unitary events and higher-order correlations

Dr. Junji Ito (j.ito@fz-juelich.de)

Institute of Neuroscience and Medicine (INM-6) and Institute for Advanced Simulation (IAS-6), Jülich Research Centre, Jülich, Germany

9th Latin American School on Computational Neuroscience (LASCON 2024) NeuroMat, University of Sao Paulo, Sao Paulo, Brazil | January 24, 2024

Recap | correlation analysis

Recap | correlation analysis

Motivation | drawbacks of correlation analysis

- Correlations identified by the CCH is "averaged over time".
- But, neurons may change dynamically their correlation in time.
- Need for methods for time-resolved correlation analysis
 - Joint peri-stimulus time histogram (JPSTH)
 Aertsen et al. (1989) J Neurophysiol 61(5):900–917
 Vaadia et al. (1995) Nature 373:515--518
 - Unitary event analysis

Riehle et al. (1997) *Science* **278**:1950-1953 Kilavic et al. (2009) *J Neurosci* 28(40):12653-63

Outline

- Unitary event (UE) analysis
 - methods
 - application
- Higher-order correlation
 - massively parallel spike trains
 - pairwise correlation-based approach
 - complexity distribution

Methods | basic idea

- Bin the time axis, to represent parallel spike trains as binary processes
- Select a joint-spike 0-1 pattern across neurons (e.g., 0101000)

- Count the empirical number of occurrences: $n_{\rm emp}$
- Compute an expected number of occurrences: $n_{\rm exp}$
- Derive a null-distribution of occurrence count (conditioned by $n_{\rm exp}$), to test the significance of $n_{\rm emp}$
- If significant: unitary events

Methods | formulation in a pairwise case

- Simultaneously recorded spike trains of unit 1 and unit 2
- Focus on the activity within a time window $T_{\rm w}$
- Discretise the time window T_w into b bins of width h: $b = T_w/h$
- Count the number n_{emp}
 of coincident spikes, i.e.,
 the number of bins
 occupied by spikes of
 both unit 1 and 2

Methods | derivation of n_{exp}

- Count the number n_1 of spikes of unit 1
- Probability p_1 of unit 1 firing in a bin: $p_1 = n_1/b$ (Poissonity assumption)
 - Also, $p_2 = n_2/b$
- Probability p_{12} of unit 1 and 2 firing together in a bin: $p_{12} = p_1p_2$ (independency assumption)
- Expected number n_{exp} of coincident spikes:

$$n_{\rm exp} = p_{12}b = n_1 n_2 h / T_w$$

Methods | derivation of null-distribution

- Null-distribution of coincidence count
 - If the spike trains are independent Poisson processes, the spike coincidences should also be a Poisson process
 - \rightarrow null-distribution: **Poisson distribution** with mean $n_{\rm exp}$
- Derive the p-value jp of $n_{\rm emp}$ from this null-distribution
- For visualization: express the p-value jp as **surprise** *S*:

$$S(jp) = \log_{10} \frac{1-jp}{jp}$$

Methods | time-resolved analysis

- Experimental data are typically recordings across multiple trials.
- General interest: how activity changes over time within a trial (non-stationarity in trial-time), whereas assuming stationarity across trials
- Approach
 - accumulate statistics (such as $n_{\rm emp}$ and $n_{\rm exp}$) across trials, within a certain (short) time interval defined on trial-time: analysis time window
 - systematically shift the position of the time window along trial-time: **sliding time window analysis**

JÜLICH FORSCHUNGSZENTRUM

Methods | time-resolved analysis

- Consider a time window of width $T_{\rm w}$, starting at the beginning of trial
- For each trial, compute $n_{\rm emp}$ and $n_{\rm exp}$ from the data within the window, and sum them up over the trials
- Derive the p-value from the summed $n_{
 m emp}$ and $n_{
 m exp}$
- Shift the window position by a fixed time amount (window step $\leq T_{\rm w}$), and perform the same analysis
- Repeat this until the window reaches the end of trial

Outline

- Unitary event (UE) analysis
 - methods
 - application
- Higher-order correlation
 - massively parallel spike trains
 - pairwise correlation-based approach
 - complexity distribution

glied in der Helmholtz-Gemeinsc

Application | expectation-related synchrony

- Two macaque monkeys were trained for a delayed reaching task
 - The duration of the delay was selected from four possible durations: 600, 900, 1200, and 1500 ms, and varied randomly from trial to trial.

- Spiking activity of the primary motor cortex was recorded during the performance of the task.
- Spike trains of simultaneously recorded single units were analysed for excess synchrony beyond chance coincidence, using the UE analysis.

lied in der Helmholtz-Gemein

Application | expectation-related synchrony

- Spike trains of a simultaneously recorded pair of single units, for 36 trials with the longest delay
- No strong modulations of firing rates in relation to the expectation

Application | expectation-related synchrony

- Spike trains of a simultaneously recorded pair of single units, for 36 trials with the longest delay
- No strong modulations of firing rates in relation to the expectation
- Marked rises in the coincidence rate at the timings of the expectation

Statistical Significance

ES2

ES1

600

0.01

0.5 0.99

ES3

h. Ib

RS

1500 Time (ms)

lied in der Helmholtz-Gemeinsc

Application | expectation-related synchrony

- Spike trains of a simultaneously recorded pair of single units, for 36 trials with the longest delay
- No strong modulations of firing rates in relation to the expectation
- Marked rises in the coincidence rate at the timings of the expectation
- Thus, spike synchronization and rate modulation are differentially involved in motor cortical function.

Riehle et al. (1997) Science

ied in der Helmholtz-Gemeinsc

Application | expectation-related synchrony

- Comparison between two populations of unit pairs recorded in the 1st and 2nd half of consecutive recording sessions
 - Monkeys were more trained for the task in the 2nd half.
- Here $n_{\rm emp}$ and $n_{\rm exp}$ were summed over pairs of units, and the surprise was derived from those summed counts (**population UE analysis**)
- Generally lower firing rate in the 2nd half
- Stronger expectationrelated spike synchrony in the 2nd half

Kilavik et al. (2009) J NeuroSci

Unitary event analysis | summary

- Unitary event analysis allows for time-resolved investigation of event-related excess spike synchrony beyond chance level.
 - Important parameters
 - **bin size** h: allowed coincidence width
 - analysis window size $T_{\rm w}$: should be small enough such that the Poissonity assumption is valid, but also large enough to contain enough samples for the statistics
- Application to spike trains from the primary motor cortex revealed expectation-related excess spike synchrony.
 - The spike synchrony is modulated differently from the firing rates of single units.
 - Temporal locking of the synchrony to expected events is build over training.

"Recipe" for unitary event analysis

Unitary Event computation

- 1. Align trials, decide on width of analysis window.
- 2. Decide on allowed coincidence width.
- 3. Perform a sliding window analysis. In each window:
 - a. Detect and count coincidences.
 - b. Calculate expected number of coincidences.
 - c. Evaluate significance of detected coincidences.
 - d. If significant, the window contains Unitary Events.
- 4. Explore behavioral relevance of UE epochs.

Outline

- Unitary event (UE) analysis
 - methods
 - application
- Higher-order correlation
 - massively parallel spike trains
 - pairwise correlation-based approach
 - complexity distribution

Massively parallel spike trains

Collaboration with A. Riehle and T. Brochier, INT, CNRS-AMU, Marseille

CCH-based approach | methods

Berger et al. (2007) Neural Computing

- Utah array recording from macaque motor cortex
- Spike train of the multi unit activity (MUA) on each electrode
- Cross-correlation histogram for all pairs of MUAs
- Identify significant pairs

glied in der Helmholtz-Gemeinsc

CCH-based approach | clique grouping

- Number: electrode ID
- Line: significant correlation between the respective MUAs
- Electrodes form a lot of cliques (fully-connected subsets)
- Cluster the cliques (size > 2) that overlap with at least 1 MUA
 - → four distinct groups of mutually correlated MUAs

Berger et al. (2007) Neural Comput

litglied in der Helmholtz-Gemeinscha

CCH-based approach | clique grouping

- Members of a cluster also cluster in cortical space.
- Spatial scale of the clusters are very similar to stimulus orientation domains in the visual cortex.
- Correlated pairs decrease with cortical distance, but increase again at an intermediate distance, also similar to the "patchy" connectivity in the visual cortex.

Berger et al. (2007) Neural Comput

Outline

- Unitary event (UE) analysis
 - methods
 - application
- Higher-order correlation
 - massively parallel spike trains
 - pairwise correlation-based approach
 - complexity distribution

Higher-order correlation

 Same number of neurons, same number of spikes, but different order of correlation

Neurons

Time

- Analysis of only pairwise correlations cannot fully capture higher-order correlations (HOCs).
 - → need for methods for detecting and analysing HOCs in massively parallel spike train data

Higher-order correlation | challenges

- UE analysis is, in principle, capable of detecting excess spike synchrony among more than 2 units
- However, in practice, scaling the UE analysis up to a large number N of neurons leads to...
 - combinatorial explosion of the number of patterns to be considered
 - e.g., for N = 100, $2^{100} \sim 10^{30}$ patterns
 - massive multiple testing problem
 - 10^{30} significant tests at a 5% significance level produce $\sim 5 \times 10^{28}$ false positives
 - Bonferroni correction (divide the p-value by the number of tests) makes the test too conservative

Population histogram

Simplest approach: population spike time histogram, or population histogram

- N Poisson spike trains with synchrony introduced only to n units (correlated data)
- Independent control data generated by spike randomization surrogate
- Population histogram can easily detect this type of HOC

Grün et al. (2008) *Lecture Notes in Computer Science* Louis et al. (2010) *Neural Networks*

Complexity distribution

 Complexity: the number of units firing in a bin (i.e., the height of each entry in the population histogram)

- Distribution of the complexity values ξ obtained from the correlated data does not exhibit a pronounced peak at n.
- But the difference from the complexity distribution of the independent data clearly shows a "bump" at around n.

Grün et al. (2008) *Lecture Notes in Computer Science* Louis et al. (2010) *Neural Networks*

Compound Poisson process (CPP)

- Carrier process: a Poisson process with an "amplitude" a_j at each event time t_j , drawn from an **amplitude distribution** f_A
 - Carrier event at t_i is copied as spikes of a_i units
 - **Temporal jitter** of $\pm s$ ms is introduced to the a_i spikes

Complexity distribution | application to CPP

Complexity distributions computed with varied bin sizes w

Complexity distribution | jitter and group size

• Trace of the "bump" shows a kink at (g, 2s)

Complexity distribution | summary

- Simple measure, easy to compute
- Use surrogates for generating control data sets
- Take the difference from the control data to highlight the excess synchrony by HOCs as a "bump".
- Examine the distributions with various analysis bin size to estimate the group size and the temporal jitter of coincidences
- Drawback: the identity of the units participating in the group cannot be uniquely determined.