PERIODIC TABLE OF ELEMENTS

Elements

- Science has come along way since Aristotle's theory of Air, Water, Fire, and Earth.
- Scientists have identified 90 naturally occurring elements, and created about 28 others.

The elements, alone or in combinations, make up our bodies, our world, our sun, and in fact, the entire universe.

Characteristics of Periodic table:

- The periodic table organizes the elements in a particular way. A great deal of information about an element can be gathered from its position in the period table.
- For example, you can predict with reasonably good accuracy the physical and chemical properties of the element. You can also predict what other elements a particular element will react with chemically.
- Understanding the organization and plan of the periodic table will help you obtain basic information about each of the 118 known elements.

Historical development:

1829: First successful attempt. But can not be generalized.

Dobereiner's Triads Atomic weight Atomic weight Atomic weight Element Element Element Li C1 6.9 Ca 40.1 35.5 23.0 Sr 87.6 Br 79.9 Na K 39.1 Ba 137.3 Ι 126.9

He also pointed out the atomic weight of Fe, Co, Ni are almost same.

1858: Pettenkofer pointed out – the atomic weights of chemically similar elements differ by an integral multiple of 8.

Table 1. Some milestones of discovery of the periodic table.

Contributor	Year	Contribution				
Dobereiner	1829	Classification of elements into triads [1]				
Kremers	1852					
Gladston	1853					
Cooke	1854					
Lenssen	1857	Development of rational classifications of elements and regularities in				
Pettenkofer	1858	their atomic weights [2-4]				
Dumas	1858					
Strecker	1859					
Hinrichs	1867					
Odling	1857, 1864	Table of 43 elements arranged in 13 groups [5]				
De Chancourtois	1862	Classification of elements (spiral around cylinder) with increase of their atomic weights [6]				
Meyer	1864, 1871	Arranging of similar elements in groups, periodicity of atomic volumes [7]				
Newlands	1865	Octaves' Law [8]				
Mendeleev	1869, 1871	Periodic table; prediction of new elements and their properties; changes/improvements of known atomic weights [9,10]				

Newland's law of octaves

sa (do)	re (re)	ga (mi)	ma (fa)	pa (so)	da (la)	ni (ti)
Н	Li	Be	В	С	N	0
F	Na	Mg	Al	Si	P	S
Cl	K	Ca	Cr	Tí	Mn	Fe
Co and Ni	Cu	Zn	Y	In	As	Se
Br	Rb	Sr	Ce and La	Zr	-	_

If the elements are arranged in order of increasing atomic weights, all the eighth elements have similar properties in most of the cases.

Mendeleev's periodic law and table

At that time

The properties of the elements are the periodic functions of Their atomic weight

опыть системы элементовь.

основаннюй на ихъ атомиким въсъ и химическомъ сводствъ

```
The table presented to the Russian
                                                  Chemical Society by Mendeleev
                                                                                      Cu = 63.4 Ap = 104 Hg = 200
                                                                        Be = 9.4 Mo = 24 2n = 65,2
In 1871, with known 63 elements
                                                                               Ca-40 Sr-87,6 Ba-137 Pb-207
                                                                                7 - 45 Ce - 92
                                                                               ?Er = 56 Lt = 94
                                                                               ?Y1 -60 Di -95
                                                                               ?In = 75 a Th = 118?
```

One century later, 1969: A one rouble coin with Mendeleev

Modern version of the Mendeleev's short periodic table:

**	1								
H									
1.01									
Li	Be	В	C	N	0	F			
6.94	9.01	10.8	12.0	14.0	16.0	19.0			
Na	Mg	A1	Si	P	S	C1			
23.0	24.3	27.0	28.1	31.0	32.1	35.5			
K	Ca		Ti	V	Cr	Mn	Fe	Co	Ni
39.1	40.1		47.9	50.9	52.0	54.9	55.9	58.9	59.7
Cu	Zn			As	Se	Br			
63.5	65.4			74.5	79	79.9			
Rb	Sr	Y	Zr	Nb	Mo		Ru	Rh	Pd
85.5	87.6	88.7	91.2	92.9	95.9		101	103	106
Ag	Cd	In	Sn	Sb	Te	I			
108	112	115	119	122	128	127			
Ce	Ba	La		Ta	W		Os	Ir	Pt
133	137	139		181	184		194	192	195
Au	Hg	Ti	Рb	Bi					
197	201	204	207	209					
			Th		U				
			232		238				

Groups Oxide: Hydride:	I R ₂ O RH	II RO RH,	III R,O, RH,	IV RO ₂ RH ₄	V R,O, RH,	VI RO, RH,	VII R ₂ O, RH	VIII RO ₄	
Periods	A B	A B	A B	A B	A B	A B	A B	Transition series	
1	H 1.008								
2	Li 6.939	Be 9.012	B 10.81	C 12.011	N 14.007	O 15.999	F 18.998		
3	Na 22.99	Mg 24.31	Al 26.98	Si 28.09	P 30.0974	S 32.06	Cl 35.453		
4 First		Ca 40.08	Sc 44.96	Ti 47.90	V 50.94	Cr 52.20	Mn 54.94	Fe Co Ni 55.85 58.93 58.71	
Second series		Zn 65.37	Ga 69.72	Ge 72.59	As 74.92	Se 78.96	Br 79.909		
5 First series Second series	85.47 Ag	Sr 87.62 Cd 112.40	Y 88.91 In 114.82	Zr 91.22 Sn 118.69	Nb 92.91 Sb 121.75	Mo 95.94 Te 127.60	Tc 99 I 126.90	Ru Rh Pd 101.07 102.91 106.4	
6 First series Second series	3 132.90 Au	Ba 137.34 Hg 200.59	La 138.91 Tl 204.37	Hf 178.49 Pb 207.19	Ta 180.95 Bi 208.98	W 183.85		Os Ir Pt 190.2 192.2 195.2	

In the modern form of the periodic table, atomic weight is replaced by atomic number, thanks to work of Mosley.

Things to know:

Periods and groups

How many types of periods?

Very short (H, He); Short (2nd and 3rd) Long (4th and 5th) Very long (6th and 7th)

Subgroups:

The elements in a particular subgroup are chemically similar while Except the valency, the similarity between A and B subgroup Elements in a particular group is lacking drastically.

For eg. Gr.IA: Li, Na, K, Rb, Cs, Fr differ drastically from the B subgroup coinage metals: CU, Ag, Au

Gr. A are more electronegative compared to Gr. B

Triad elements: In gr VIII, there are three triads. Fe, Co, Ni /// Ru, Rh, Pd /// Os, Ir, Pt

Atomic weight is close..

The 2nd and 3rd are called as platinum metals

Trivial names of elements:

- (i) Alkali metals:
- (ii) Alkaline earth metals: ...
- (iii) Chalcogens:
- (iv) Halogens:
- (v) Noble gases:
- (vi) Lanthanum series: ...
- (vii) Lanthanides or rare earth: ...
- (viii) Actinum series: ...
- (ix) Actinides: ...
- (x) Coinage metals: ...
- (xi) Platinum metals: ...
- (xii) Noble metals: ...
- (xiii)Transuranium metals:

Characteristics and classification of Mendeleev's periodic table:

- i) Systematic classification of the elements
- ii) Correction of atomic weights
- a) Atomic weight of Be corrected
- b) Atomic weight of Indium corrected
- iii) Prediction of missing elements: eka silicon (Ge), eka Boron (Sc), eka-Aluminium (Ga)...

Defects in Mendeleev's periodic table:

- (i) Reverse atomic weight in some cases (K-39, Ar-40); (I-127, Te-128); (Ni-58, Co-59); (Th-232, Pa-231)
- (ii) Triads in Group VIII
- (iii) Subgroup elements lacking in similarities
- (iv) Positions of isotopes
- (v) Positions of lanthanides and actinides
- (vi) Position of hydrogen as it also has similarities with Gr VIIB (halogen) elements etc.

Periodic table of the elements

^{*}Numbering system adopted by the International Union of Pure and Applied Chemistry (IUPAC).

Examples of different non-traditional forms of the periodic chart for the elements:

- (a) the spiral form due to Baumgauer,
- (b) the helical form due to Bilecki and
- (c) the 'dumb-bell' form due to Basset

Classification of the elements based on electronic configuration and chemical affinities

s-block; p-block; d-block; f-block

3d-series 4f-block

4d-series 5f-block

5d-series

Bohr's classification:

- i) Inert gas;
- ii) representative or normal elements;
- iii) Transition elements;
- iv) Inner transition elements

Goldschimdt's geochemical classification of elements based on chemical affinity:

Distribution of different elements in crust, mantle and core of the earth is governed by their chemical affinities.

- a) Siderophores: Iron loving elements.. Tend to be associated with iron.. Triads of group VIII
- b) Chalcophiles: Sulphide loving elements..Their ions are soft acids, according to HSAB theory.. Possess 18 electrons in the outer shell.. Cu, Zn, Cd, Hg, Pb, As, Sb
- c) Lithophiles: stone loving elements..These metal ions are tend to be associated with oxides. These ions are typically hard acids. Possess 8 electrons in the outer shell. Alkali metals, alkaline earth metals and early member of transition metals
- d) Atmophiles: Vapor loving elements..Such elements tend to remain in gaseous form.. N, O, inert gases

Cr is lithophilic in crust, but in oxygen deficient condition, it can be Chalcophile.

Fe is siderophilic in the core, but lithophilic in crust.

Classification of Zn, Cd, Hg?? d¹⁰ elements

Lu, Th, Lr ?? Transition or inner-transition?

Position of lighter actinides? Case of Th, Pa, U

5f and 6d are close to energy

Th, Pa, U placed in Gr. 4, 5 and 6, respectively by mistake as d-block element..

Seaborg corrected this and proposed this elements to be a member of new inner transition metal series.

As usual, Seaborg was criticized for this new hypothesis and warned not to publish this actinide hypothesis because it Would destroy his scientific career. He then said humorously- "I did not have any scientific reputation so I published this anyway."

This actinide hypothesis saved chemistry.

Periodic trends of atomic size or radius:

Why?

Effective nuclear charge:

$$Z^* = Z - screening const (S)$$

It is experienced by the outer most electron and the value of the principal quantum number (n) are important to determine The periodic trends of the sizes.

 $< r_{max} > ^a_0 (n^*)^2/Z^*.... a_0 = 53 pm (Bohr radius of H-atom)$

n* = effective principal quantum number for the valence shell electron

Z* = effective nuclear charge, can be obtained by Slater's rule

s and p-block element : $Z^* = 0.65 + 0.65n$ (n= no. of valence electron)

d- block element : $Z^* = 2.85 + 0.15n$ (n = no. of electrons in the (n-1)d orbital

For example:

$$\underbrace{Al^{13} ls^{2}}_{(n-2)} \underbrace{2s^{2} 2p^{6}}_{(n-1)} \underbrace{3s^{2} 3p^{1}}_{n}$$

Group	no. of electrons	Contribution of each electron to 'S' value	Contribution of a particular group
n	2	0.35	0.70
(n-1)	8	0.85	6.80
(n-1) (n-2)	2	1	2.00
			9.50

$$Z^* = Z - S$$

The greater the effective nuclear charge, the more strongly the outermost electrons are attracted to the nucleus and the smaller the atomic radius.

Q. Using Slater's rule calculate the effective nuclear charge on a 3p electron in aluminium and chlorine. Explain how these results relate to the atomic radii of the two atoms.

Slater's Rules

• **Step 1**: Write the electron configuration of the atom in the following form:

- **Step 2**: Identify the electron of interest, and ignore all electrons in higher groups (to the right in the list from Step 1). These do not shield electrons in lower groups
- Step 3: Slater's Rules is now broken into two cases:
 - o the shielding experienced by an s- or p- electron,
 - electrons within same group shield 0.35, except the 1s which shield 0.30
 - electrons within the n-1 group shield 0.85
 - electrons within the n-2 or lower groups shield 1.00
 - the shielding experienced by nd or nf valence electrons
 - electrons within same group shield 0.35
 - electrons within the lower groups shield 1.00

Q. Calculate the Shielding of 3d Electrons of Bromine Atoms?

								Effectiv	e Nucle	ear Cha	rges							
	Н																	He
Z	1																	2
1s	1.000																	1.688
	Li	Ве											В	С	N	0	F	Ne
Z	3	4											5	6	7	8	9	10
1s	2.691	3.685											4.680	5.673	6.665	7.658	8.650	9.642
2s	1.279	1.912											2.576	3.217	3.847	4.492	5.128	5.758
2р													2.421	3.136	3.834	4.453	5.100	5.758
	Na	Mg											Al	Si	Р	S	CI	Ar
Z	11	12											13	14	15	16	17	18
1s 1	10.626	11.609											12.591	13.575	14.558	15.541	16.524	17.508
2s	6.571	7.392											8.214	9.020	9.825	10.629	11.430	12.230
2р	6.802	7.826											8.963	9.945	10.961	11.977	12.993	14.008
3s	2.507	3.308											4.117	4.903	5.642	6.367	7.068	7.757
Зр													4.066	4.285	4.886	5.482	6.116	6.764
	K	Ca	Sc	Ti	٧	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Z	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
1s 1	18.490	19.473	20.457	21.441	22.426	23.414	24.396	25.381	26.367	27.353	28.339	29.325	30.309	31.294	32.278	33.262	34.247	35.232
2s ′	13.006	13.776	14.574	15.377	16.181	16.984	17.794	18.599	19.405	20.213	21.020	21.828	22.599	23.365	24.127	24.888	25.643	26.398
2p 1	15.027	16.041	17.055	18.065	19.073	20.075	21.084	22.089	23.092	24.095	25.097	26.098	27.091	28.082	29.074	30.065	31.056	32.047
3s	8.680	9.602	10.340	11.033	11.709	12.368	13.018	13.676	14.322	14.961	15.594	16.219	16.996	17.790	18.596	19.403	20.219	21.033
Зр	7.726	8.658	9.406	10.104	10.785	11.466	12.109	12.778	13.435	14.085	14.731	15.369	16.204	17.014	17.850	18.705	19.571	20.434
4s	3.495	4.398	4.632	4.817	4.981	5.133	5.283	5.434	5.576	5.711	5.842	5.965	7.067	8.044	8.944	9.758	10.553	11.316
3d			7.120	8.141	8.983	9.757	10.528	11.180	11.855	12.530	13.201	13.878	15.093	16.251	17.378	18.477	19.559	20.626
4p													6.222	6.780	7.449	8.287	9.028	9.338
	Rb	Sr	Υ	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	1.0	Xe
Z	37														30	10		Ve
	3/	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
1s 3										46 45.059	47	48	49	50	51	52	53	54
	36.208	37.191	38.176	39.159	40.142	41.126	42.109	43.092	44.076		47 46.042	48 47.026	49 48.010	50 48.992	51 49.974	52 50.957	53 51.939	54 52.922
2s 2	36.208 : 27.157 :	37.191 27.902	38.176 28.622	39.159 29.374	40.142 30.125	41.126 30.877	42.109 31.628	43.092 32.380	44.076 33.155	45.059	47 46.042 34.634	48 47.026 35.386	49 48.010 36.124	50 48.992 36.859	51 49.974 37.595	52 50.957 38.331	53 51.939 39.067	54 52.922 39.803
2s 2 2p 3	36.208 27.157 33.039	37.191 27.902 34.030	38.176 28.622 35.003	39.159 29.374 35.993	40.142 30.125 36.982	41.126 30.877 37.972	42.109 31.628 38.941	43.092 32.380 39.951	44.076 33.155 40.940	45.059 33.883	47 46.042 34.634 42.919	48 47.026 35.386 43.909	49 48.010 36.124 44.898	50 48.992 36.859 45.885	51 49.974 37.595 46.873	52 50.957 38.331 47.860	53 51.939 39.067 48.847	54 52.922 39.803 49.835
2s 2 2p 3 3s 2	36.208 27.157 33.039 21.843	37.191 27.902 34.030 22.664	38.176 28.622 35.003 23.552	39.159 29.374 35.993 24.362	40.142 30.125 36.982 25.172	41.126 30.877 37.972 25.982	42.109 31.628 38.941 26.792	43.092 32.380 39.951 27.601	44.076 33.155 40.940 28.439	45.059 33.883 41.930	47 46.042 34.634 42.919 30.031	48 47.026 35.386 43.909 30.841	49 48.010 36.124 44.898 31.631	50 48.992 36.859 45.885 32.420	51 49.974 37.595 46.873 33.209	52 50.957 38.331 47.860 33.998	53 51.939 39.067 48.847 34.787	54 52.922 39.803 49.835 35.576
2s 2 2p 3 3s 2 3p 2	36.208 : 27.157 : 33.039 : 21.843 : 21.303 :	37.191 27.902 34.030 22.664 22.168	38.176 28.622 35.003 23.552 23.093	39.159 29.374 35.993 24.362 23.846	40.142 30.125 36.982 25.172 24.616	41.126 30.877 37.972 25.982 25.474	42.109 31.628 38.941 26.792 26.384	43.092 32.380 39.951 27.601 27.221	44.076 33.155 40.940 28.439 28.154	45.059 33.883 41.930 29.221	47 46.042 34.634 42.919 30.031 29.809	48 47.026 35.386 43.909 30.841 30.692	49 48.010 36.124 44.898 31.631 31.521	50 48.992 36.859 45.885 32.420 32.353	51 49.974 37.595 46.873 33.209 33.184	52 50.957 38.331 47.860 33.998 34.009	53 51.939 39.067 48.847 34.787 34.841	54 52.922 39.803 49.835 35.576 35.668
2s 2 2p 3 3s 2 3p 2 4s 1	36.208 : 27.157 : 33.039 : 21.843 : 21.303 : 12.388 :	37.191 27.902 34.030 22.664 22.168 13.444	38.176 28.622 35.003 23.552 23.093 14.264	39.159 29.374 35.993 24.362 23.846 14.902	40.142 30.125 36.982 25.172 24.616 15.283	41.126 30.877 37.972 25.982 25.474 16.096	42.109 31.628 38.941 26.792 26.384 17.198	43.092 32.380 39.951 27.601 27.221 17.656	44.076 33.155 40.940 28.439 28.154 18.582	45.059 33.883 41.930 29.221 29.020	47 46.042 34.634 42.919 30.031 29.809 19.865	48 47.026 35.386 43.909 30.841 30.692 20.869	49 48.010 36.124 44.898 31.631 31.521 21.761	50 48.992 36.859 45.885 32.420 32.353 22.658	51 49.974 37.595 46.873 33.209 33.184 23.544	52 50.957 38.331 47.860 33.998 34.009 24.408	53 51.939 39.067 48.847 34.787 34.841 25.297	54 52.922 39.803 49.835 35.576 35.668 26.173
2s 2 2p 3 3s 2 3p 2 4s 1	36.208 27.157 33.039 21.843 21.303 12.388 21.679	37.191 27.902 34.030 22.664 22.168 13.444 22.726	38.176 28.622 35.003 23.552 23.093 14.264 25.397	39.159 29.374 35.993 24.362 23.846 14.902 25.567	40.142 30.125 36.982 25.172 24.616 15.283 26.247	41.126 30.877 37.972 25.982 25.474 16.096 27.228	42.109 31.628 38.941 26.792 26.384 17.198 28.353	43.092 32.380 39.951 27.601 27.221 17.656 29.359	44.076 33.155 40.940 28.439 28.154 18.582 30.405	45.059 33.883 41.930 29.221 29.020 18.986	47 46.042 34.634 42.919 30.031 29.809 19.865 32.540	48 47.026 35.386 43.909 30.841 30.692 20.869 33.607	49 48.010 36.124 44.898 31.631 31.521 21.761 34.678	50 48.992 36.859 45.885 32.420 32.353 22.658 35.742	51 49.974 37.595 46.873 33.209 33.184 23.544 36.800	52 50.957 38.331 47.860 33.998 34.009 24.408 37.839	53 51.939 39.067 48.847 34.787 34.841 25.297 38.901	54 52.922 39.803 49.835 35.576 35.668 26.173 39.947
2s 2 2p 3 3s 2 3p 2 4s 4 3d 2 4p 4	36.208 27.157 233.039 21.843 21.303 21.303 21.679 21.679 21.881	37.191 27.902 34.030 22.664 22.168 13.444 22.726 11.932	38.176 28.622 35.003 23.552 23.093 14.264 25.397 12.746	39.159 29.374 35.993 24.362 23.846 14.902 25.567 13.460	40.142 30.125 36.982 25.172 24.616 15.283 26.247 14.084	41.126 30.877 37.972 25.982 25.474 16.096 27.228 14.977	42.109 31.628 38.941 26.792 26.384 17.198 28.353 15.811	43.092 32.380 39.951 27.601 27.221 17.656 29.359 16.435	44.076 33.155 40.940 28.439 28.154 18.582 30.405 17.140	45.059 33.883 41.930 29.221 29.020 18.986 31.451	47 46.042 34.634 42.919 30.031 29.809 19.865 32.540 18.562	48 47.026 35.386 43.909 30.841 30.692 20.869 33.607 19.411	49 48.010 36.124 44.898 31.631 31.521 21.761 34.678 20.369	50 48.992 36.859 45.885 32.420 32.353 22.658 35.742 21.265	51 49.974 37.595 46.873 33.209 33.184 23.544 36.800 22.181	52 50.957 38.331 47.860 33.998 34.009 24.408 37.839 23.122	53 51.939 39.067 48.847 34.787 34.841 25.297 38.901 24.030	54 52.922 39.803 49.835 35.576 35.668 26.173 39.947 24.957
2s 2 2p 3 3s 2 3p 2 4s 4 3d 2 4p 4	36.208 27.157 233.039 21.843 21.303 21.303 21.679 21.679 21.881	37.191 27.902 34.030 22.664 22.168 13.444 22.726 11.932	38.176 28.622 35.003 23.552 23.093 14.264 25.397 12.746 6.256	39.159 29.374 35.993 24.362 23.846 14.902 25.567 13.460 6.446	40.142 30.125 36.982 25.172 24.616 15.283 26.247 14.084 5.921	41.126 30.877 37.972 25.982 25.474 16.096 27.228 14.977 6.106	42.109 31.628 38.941 26.792 26.384 17.198 28.353 15.811 7.227	43.092 32.380 39.951 27.601 27.221 17.656 29.359 16.435 6.485	44.076 33.155 40.940 28.439 28.154 18.582 30.405 17.140 6.640	45.059 33.883 41.930 29.221 29.020 18.986 31.451 17.723	47 46.042 34.634 42.919 30.031 29.809 19.865 32.540 18.562 6.756	48 47.026 35.386 43.909 30.841 30.692 20.869 33.607 19.411 8.192	49 48.010 36.124 44.898 31.631 31.521 21.761 34.678 20.369 9.512	50 48.992 36.859 45.885 32.420 32.353 22.658 35.742 21.265 10.629	51 49.974 37.595 46.873 33.209 33.184 23.544 36.800 22.181 11.617	52 50.957 38.331 47.860 33.998 34.009 24.408 37.839 23.122 12.538	53 51.939 39.067 48.847 34.787 34.841 25.297 38.901 24.030 13.404	54 52.922 39.803 49.835 35.576 35.668 26.173 39.947 24.957 14.218

https://en.wikipedia.org/wiki/Effective_nuclear_charge

		lock			p-b	e) for the valence electro		
	IA (1)	—————————————————————————————————————	IIIA (13)	IVA (14)	VA (15)	VIA (16)	VIIA (17)	VIIIA (18)
Period 2	Li 1.30	Be 1.95	B 2.60	C 3.25	N 3.90	O 4.55	F 5.20	Ne 5.85
Period 3	Na 2.20	Mg 2.85	A1 3.50	Si 4.15	P 4.80	S 5.45	Cl 6.10	Ar 6.75
Period 4	K 2.20	Ca 2.85	Ga 5.00	Ge 5.65	As 6.30	Se 6.95	Br 7.60	Kr 8.25

Scandide contraction: d-contraction

Ca \longrightarrow Ga (2.15 unit change in Z*)

So, the main reason of the d-block contraction is the poor shielding of the nuclear charge by the electrons in the d orbitals.

This d-block contraction may be compared to the Lanthanide Contraction which is also caused by the inadequate shielding of the nuclear charge by the electrons occupying f orbitals.

Scandide contraction

The d-block Contraction is also known as the Scandide Contraction.

The effect of the d- block contraction occurs on the period 4 elements due to the full d orbitals. This contraction thing affects the elements Gallium (Ga), Germanium (Ge), Arsenic (As), Selenium (Se), Bromine (Br), and Krypton (Kr) mainly.

Lanthanide contraction

Lanthanide contraction is the decrease in the size of atoms with the increasing atomic number in the lanthanide series.

It is a steady decrease in the atomic radius and the ionic radius of chemical elements in the lanthanide series. Further, this happens because of the filling of 4f orbitals with electrons before filling up the 5d orbital. Here, the 4f electrons show a poor shielding towards the nuclear charge, which in turn cause the 6s electrons to move towards the nucleus of the atom, resulting in a small radius.

The shielding effect of 4f is very smaller than d orbital as 4f
 Orbital is much diffuse in nature.

- The elements in which the additional electrons enters (n-2)f orbitals are called inner transition elements. The valence shell electronic configuration of these elements can be represented as $(n-2)f^{0-14}(n-1)d^{0-1}ns^2$.
- 4f inner transition metals are known as lanthanides because they come immediately after lanthanum and 5f inner transition metals are known as actinoids because they come immediately after actinium.

La (57)

1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶ 5d¹ 6s²

[Xe] - 54

1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 4d¹⁰ 5s² 5p⁶

The electronic configuration of Ln is

[Xe] 4f⁰ 5d¹ 6s² or [Xe] 4f⁰

Element name	Symbol	Z	Ln	Ln³+
Lanthanim	1.0	57	[Va]6a2Ed1	17-146 0
Lanthanum	La	57 58	[Xe]6s ² 5d ¹	[Xe]4f ⁰
Cerium	Ce		[Xe]4f ¹ 6s ² 5d ¹	[Xe]4f ¹
Praesodymium	Pr	59	[Xe]4f ³ 6s ²	$[Xe]4f^2$
Neodymium	Nd	60	[Xe]4f ⁴ 6s ²	[Xe]4f ³
Promethium	Pm	61	[Xe]4f ⁵ 6s ²	[Xe]4f ⁴
Samarium	Sm	62	[Xe]4f ⁶ 6s ²	[Xe]4f ⁵
Europium	Eu	63	[Xe]4f ⁷ 6s ²	[Xe]4f ⁶
Gadolinium	Eu	64	[Xe]4f ⁷ 6s ² 5d ¹	[Xe]4f ⁷
Terbium	ТЬ	65	[Xe] 4f ⁹ 6s ²	[Xe]4f ⁸
Dysprosium	Dy	66	[Xe] 4f ¹⁰ 6s ²	[Xe]4f ⁹
Holmium	Ho	67	[Xe] 4f ¹¹ 6s ²	[Xe]4f ¹⁰
Erbium	Er	68	[Xe] 4f ¹² 6s ²	[Xe]4f ¹¹
Thulium	Tm	69	[Xe] 4f ¹³ 6s ²	[Xe]4f ¹²
Ytterbium	Yb	70	[Xe] 4f ¹⁴ 6s ²	[Xe]4f ¹³
Lutetium	Lu	71	[Xe] 4f ¹⁴ 6s ² 5d ¹	[Xe]4f ¹⁴

Any f orbital containing 1 electron is unstable. So it transfers the electron to 5d and due to this the energy of 5d decreases and it becomes stable. Now when an another electron comes it is then added to 4f (cerium)

II Post Lanthanides -

i) Occurrence of elements as pairs – Due to similar size of 4d and 5d in a group, they have similar physical and chemical properties, they occur together in nature and their separation becomes very difficult.

Zr/Hf, Nb/Ta, Mo/W

ii) Densities – 5d elements have very high densities as down the group there is large increase in mass but no increase in volume.

III Occurrence of Yttrium along with heavier lanthanides -

yttrium has similar charge and size to Ho³⁺ & Er³⁺ hence it occurs with and separation is difficult.

3	IVB	5 VB	VIB	7 VIIB	VIIIB	VIIIB	10 VIIIB	11 IB	12 IIB
Sc Scandium	71 Titanium 47.847 24-0-2	Vanadium 50 1403 24-0-7	Cr Chromium 51,492 34,92	Mn Mn Marganeter Marganeter	Fe bron 55.845 74.847	Co Cobalt 58.533 24.62	28 Ni Nickel 36.492 34.407	Cu Copper \$1554 \$1541	Zn Zn Zinc A1.28 24.48
39 Y Yttrium 88 90584 2-8-9-2	Zr Zirconium 91224 24-8-8-2	Nb Nisbium 92,9937 24-8-01	Mo Mo Molybdonum 25.75 2-75	Tc Technetium (NO) 2-9-0-7	Ru Ruthernum 50187	Rh Rhodium 302.91 24-90-6-1	Pd Pattadium 304.42 24.9-9	Ag Server	Cd Cadmium 112.45
57-73 Lambandes	72 Hf Hafricam 178.47 24-8-37-8-2	Ta Ta Tantalum 100.0238 26.02302	74 W Tungsten 193 84 24-78-30-02	Re Rhanium 184.21 24-8-30-0-7	76 Os Osmium 1922 24 9 32 8-2	77 r Ir Iridium 192.22 3-9-32-5-2	Pt Pt Ptatinum risce 24-9-20-1	Au Gold INST	Hg
89-303 Actinides	Rf Rf Sutherfordum (247) 2+%-33-36-2	105 Db Distribution (2840) 14-32-32-12	Sg Sastory Calen 24-22-24-1	Bh Bh Bohrham (270)	HS	Mt Mt Meditioner turn (278) 3+8-32-32-5-3	Ds Oarmstadilium (280 24-9-33-3-2-1	Rg	Cn Coperation Cases 14-20-20-21

There is normal increase in size Sc to Y to La.

There is an appreciable increase in the atomic radii of europium and ytterbium in comparison to the preceding elements while no increase is observed for the corresponding trivalent ions.

The size increase in the ease of the free metals is attributed to the presence of dipositive ions giving only two valence electrons for metallic bonding instead of the three usually encountered for lanthanide metals.

The structures of these two metals also differ from the hexagonal, closely packed structure encountered for most of the lanthanide metals.

Europium and ytterbium might be expected to give only two valence electrons because of the stability of half-filled and filled/orbitals which would be achieved in these instances.

Compounds of europium(II) and ytterbium(II) are well characterized.

Journal of Chemical Education

https://pubs.acs.org/doi/pdf/10.1021/ed031p598

Actinide contraction

- The contraction is caused due to imperfect shielding of one 5f electron by another in the same shell.
- As we move along the actinide series, the nuclear charge and the number of 5f electrons increase one unit by each step.
- Due to imperfect shielding (shape of f orbitals are very much diffused) the effective nuclear charge increases which causes contraction in the size of electron cloud.
- In actinides contraction there are bigger jumps in contraction between the consecutive elements as compared to lanthanides.
- Lesser shielding of 5f electrons compared to 4f electrons.

Z	Name	Symbol	Electronic c	onfiguration [Xe] core	Metallic radius	Ionic radius M ³⁺ (pm)	
			An	An ³⁺	(pm)		
89	Actinium	Ac	$6d^{1}7s^{2}$	5f ⁰		112	
90	Thorium	Tc	$6d^27s^2$	$5f^1$	179	-	
91	Protactinium	Pa	$5f^26d^17s^2$	$5f^2$	163	104	
92	Uranium	U	$5f^36d^17s^2$	5f ³	156	103	
93	Neptunium	Np	$5f^46d^17s^2$	5f4	155	101	
94	Plutonium	Pu	$5f^67s^2$	5f ⁵	155	100	
95	Americium	Am	$5f^77s^2$	5f ⁶	159	98	
96	Curium	Cm	$5f^{7}6d^{1}7s^{2}$	$\mathbf{5f}^{7}$	173	97	
97	Berkelium	Bk	$5f^{9}7s^{2}$	5f ⁸	174	96	
99	Californium	Cf	$5f^{10}7s^2$	5f ⁹	170	95	
98	Einstenium	Es	$5f^{11}7s^2$	5f ¹⁰	186 ± 2	12	
100	Fermium	Fm	$5f^{12}7s^2$		186 ± 2	-	
101	Mendelevium	Md	$5f^{13}7s^2$	F(10)45	32	100	
102	SOUTH SECTION (RESERVED OF CHEEK A.	No	$5f^{14}7s^2$	The state of the s	-	2	
103	Lawrencium	Lr	$5f^{14}6d^17s^2$	5f ¹⁴		-	

Oxidation state

Name	Oxidation states
Actinium	+3
Thorium	+3, +4
Protactinium	+3, +4, +5
Uranium	+3, +4, +5, +6
Neptunium	+3, +4, +5, +6, +7
Plutonium	+3, +4, +5, +6, +7
Americium	+2, +3, +4, +5, +6
Curium	+3, +4
Berkelium	+3, +4
Californium	+2, +3
Einstenium	+2, +3
Fermium	+2, +3
Mendelevium	+2, +3
Nobelium	+2, +3
Lawrencium	+3

Ionic Radii of ions show a clear "Actinide Contraction"

Actinide 3+ or 4+ ions with similar radii to their Lanthanide counterparts show similarities in properties that depend upon ionic radius

