19.1 习题

张志聪

2025年6月1日

19.1.1

(1)

因为 f 是简单函数,设 $f(\Omega) = \{c_1, c_2, \dots, c_N\}$,定义:

$$E_i := \{ x \in \Omega : f(x) = c_i \}, \quad 1 \le j \le N$$

这些集合两两不交,且 $\bigcup_{j=1}^{N} E_j = \Omega$ 。

同理,设 $g(\Omega) = \{d_1, d_2, \dots, d_M\}$,定义:

$$X_k := \{ x \in \Omega : g(x) = d_k \}, \quad 1 \le k \le M$$

这些集合也两两不交,且 $\bigcup_{k=1}^{M} X_k = \Omega$ 。

考虑集合:

$$W := \{W_{j,k} := E_j \cap X_k : 1 \le j \le N, \ 1 \le k \le M\}$$

由于交集运算, $W_{j,k}$ 两两不交,且它们的并集仍为 Ω ,因此 W 构成了 Ω 的一个有限划分。

对任意 $x \in \Omega$, 存在唯一的 j,k 使得 $x \in W_{i,k}$, 此时有:

$$(f+g)(x) = f(x) + g(x) = c_i + d_k$$

因为 $c_j + d_k$ 的可能取值至多为 $N \times M$ 个有限个数,所以 f + g 的取值是有限的。

因此, f+g 是简单函数。

(2)

特别地 cf 也是简单函数。此时 $cf(\Omega)=\{c\times c_1,c\times c_2,\cdots,c\times c_N\}$,满足简单函数的定义。

19.1.2

因为 f 是简单函数,设 $f(\Omega) = \{c_1, c_2, \cdots, c_N\}$,定义:

$$E_j := \{ x \in \Omega : f(x) = c_j \}, \quad 1 \le j \le N$$

这些集合两两不交,且 $\bigcup_{i=1}^{N} E_i = \Omega$.

因为 f 是可测函数,所以对任意 $1 \leq j \leq N$, $f^{-1}(c_j) = E_j$ 都是可测集合。

对于任意 $x \in \Omega$, 存在 E_j 使得 $x \in E_j$, 此时 $f(x) = c_j$, 又因为对

$$\sum_{i=1}^{N} c_i \chi_{E_i}(x)$$

当 $i \neq j$ 时,由特征函数的定义可知 $c_i \chi_{E_i} = 0$;

当 i=j 时,由特征函数的定义可知 $c_i\chi_{E_i}=c_j$; 所以

$$\sum_{i=1}^{N} c_i \chi_{E_i}(x) = c_j$$

综上可得

$$f(x) = \sum_{i=1}^{N} c_i \chi_{E_i}(x)$$

由 x 的任意性可知, $f = \sum_{i=1}^{N} c_i \chi_{E_i}$

19.1.3

设 $(f_n)_{n=1}^{\infty}$ 是函数序列, 其中 $f_n:\Omega\to\mathbb{R}$,

$$f_n(x) = \sup\{\frac{j}{2^n} : j \in \mathbb{Z}, \frac{j}{2^n} \le \min(f(x), 2^n)\}$$

接下来证明该序列是否满足所需的性质。

(1) 证明 $f_1(x) \ge 0$ 。

$$f_1(x) = \sup\{\frac{j}{2^1} : j \in \mathbb{Z}, \frac{j}{2^1} \le \min(f(x), 2^1)\}\$$
$$= \sup\{\frac{j}{2} : j \in \mathbb{Z}, \frac{j}{2} \le \min(f(x), 2)\}\$$

因为 f 是非负的, 所以 $min(f(x), 2) \ge 0$ 。

现在证明 $f_1(x) \ge 0$, 反证法, 假设 $f_1(x) < 0$, 即

$$f_1(x) = \sup\{\frac{j}{2} : j \in \mathbb{Z}, \frac{j}{2} \le \min(f(x), 2)\} < 0$$

当 j=0 时, $0\in\{\frac{j}{2}:j\in\mathbb{Z},\frac{j}{2}\leq min(f(x),2)\}$,这与上确界 $f_1(x)<0$ 矛盾,假设不成立。

(2) 证明 $(f_n)_{n=1}^{\infty}$ 序列是递增的,即 $f_n(x) \leq f_{n+1}(x)$ 。 我们有

$$f_n(x) = \sup\{\frac{j}{2^n} : j \in \mathbb{Z}, \frac{j}{2^n} \le \min(f(x), 2^n)\}$$
$$f_{n+1}(x) = \sup\{\frac{j}{2^{n+1}} : j \in \mathbb{Z}, \frac{j}{2^{n+1}} \le \min(f(x), 2^{n+1})\}$$

因为 $2^n < 2^{n+1}$, 所有

$$min(f(x), 2^n) \le min(f(x), 2^{n+1})$$

反证法,假设 $f_n(x) > f_{n+1}(x)$,即存在 $y \in \{\frac{j}{2^n}: j \in \mathbb{Z}, \frac{j}{2^n} \le min(f(x), 2^n)\}$ 使得

$$y > f_{n+1}(x)$$

y 可表示成 $\frac{j_0}{2^n}$ 的形式,即 $y = \frac{j_0}{2^n}$,于是我们有

$$\frac{j_0}{2^n} > f_{n+1}(x)$$

于是可得

$$\frac{j_0}{2^n} \le min(f(x), 2^n) \le min(f(x), 2^{n+1})$$

这表明 $\frac{j_0}{2^n} = \frac{2j_0}{2^{n+1}} \in \{\frac{j}{2^{n+1}}: j \in \mathbb{Z}, \frac{j}{2^{n+1}} \leq min(f(x), 2^{n+1})\}$,于是存在矛盾。

(3) 证明 $(f_n)_{n=1}^{\infty}$ 序列逐点收敛于 f。

对任意 $x_0 \in \Omega, \epsilon > 0$ 。我们有

$$\lim_{n\to\infty} 2^n = +\infty$$

因为 $f(x_0)$ 是定值, 所以存在 $N \ge 1$ 使得只要 $n \ge N$, 就有

$$2^n \geq f(x_0)$$

于是可得, 当 $n \ge N$ 时,

$$min(f(x_0), 2^n) = f(x_0)$$

存在 $k \in \mathbb{Z}$ 使得 $\frac{k}{2^n} \le f_n(x_0) < \frac{k+1}{2^n}$ (参考习题 5.5.2),又有

$$\frac{k}{2^n} \in \{\frac{j}{2^n} : j \in \mathbb{Z}, \frac{j}{2^n} \le \min(f(x_0), 2^n)\}$$
$$\frac{k+1}{2^n} > \min(f(x_0), 2^n) = f(x_0)$$

综上可得,存在 $n \ge N$ 使得

$$|f_n(x_0) - f(x_0)| < \frac{1}{2^n}$$

因为

$$\lim_{n \to \infty} \frac{1}{2^n} = 0$$

所以存在 $N' \ge N$, 使得

$$\frac{1}{2^n} < \epsilon$$

综上, 对任意 $x_0 \in \Omega, \epsilon > 0$, 存在 N', 使得只要 $n \ge N'$, 就有

$$|f_n(x_0) - f(x_0)| < \epsilon$$

所以 $(f_n)_{n=1}^{\infty}$ 序列逐点收敛于 f。