Owneroccupied dwellings and imputed rent with Hedonic Regression

Asadh 13-14, 2081

Dr. Anil Shrestha

Undersecretary (Account)
Financial Administration Section

National Statistics Office

Owner-occupied Dwelling

What is Owner-occupied dwellings?

Housing units owned and lived in by the occupant.

Treatment in the SNA

- Not directly included in GDP as it is not considered as part of the market activity.
- Instead, SNA utilizes estimated rental value (imputed rent) that the owner would have to pay if they were to rent a similar property in the market.
- As per SNA, the imputed rent is recorded in both consumption and production of housing services.

Hedonic Regression for imputed rent

What is Hedonic Regression?

It's a technique to estimate prices of an asset/a product/a service based on its underlying characteristics using an OLS model.

Basic Hedonic regression model

$$P_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i3} + \ldots + \beta_k X_{ik} + \epsilon_i$$

Explanation of Terms:

- P_i : The dependent variable, which is the price or rent of the property.
- β_0 : The intercept term, representing the baseline price or rent when all other characteristics are zero.
- $\beta_1, \beta_2, \dots, \beta_k$: The coefficients that measure the contribution of each characteristic to the price or rent. These are the parameters estimated by the regression.
- $X_{i1}, X_{i2}, \ldots, X_{ik}$: The independent variables representing the characteristics of the property (e.g., size, location, number of bedrooms, age).
- ϵ_i : The error term, capturing the variation in price or rent that is not explained by the model.

Example 1:

For a simplified model, consider three characteristics: solar, city, and garden. The Hedonic regression model would look like this:

$$P_i = \beta_0 + \beta_1(solar_i) + \beta_2(city_i) + \beta_1(garden_i) + \varepsilon_i$$

This equation suggests that the price or rent of a property is determined by whether it has solar, its location (city or rural), and has a garden, with each characteristic contributing a specific amount to the overall price or rent.

Example housing price data

	house_no	price	solar	city	garden
1	1	70000	1	1	0
2	2	60000	0	1	0
3	3	100000	0	0	1
4	4	100000	0	0	1
5	5	50000	0	0	0

All the data, example codes, and do files are provided in https://s.anilz.net/training

Coefficient and its interpretation

. reg price solar city garden

5	=	er of obs	Numbe	MS	df		SS	Source
	=	1)	F(3,					
	=	> F	7 Prob	706666667	3		2.1200e+09	Model
1.0000	=	uared	R-squ	0	1		0	Residual
1.0000	=	R-squared	- Adj R					
0	=	MSE	Root	530000000	4		2.1200e+09	Total
interval]	nf.	[95% cor	P> t	t	err.	Std.	Coefficient	price
		,		•			10000	solar
	•	,		•			10000	city
	•						50000	garden
							50000	cons

What if price for the house no 4 changed to 120,000

	house_no	price	solar	city	garden
1	1	70000	1	1	0
2	2	60000	0	1	0
3	3	100000	0	0	1
4	4	120000	0	0	1
5	5	50000	0	0	0

. reg price solar city garden

Source	SS	df	MS	Number of obs	=	5
Model	3.2000e+09	3	1.0667e+09	F(3, 1) Prob > F	=	1 7170
Residual	200000000	1	200000000	A PART OF THE RESERVE	=	
Total	3.4000e+09	4	850000000	Adj R-squared Root MSE	=	
price	Coefficient	Std. err.	t	P> t [95% c	onf.	interval]
solar	10000	20000	100000000000000000000000000000000000000	0.705 -244124	.1	264124.1
city	10000	20000	0.50	0.705 -244124	.1	264124.1
garden	60000	17320.51	3.46	0.179 -160077	.9	280077.9
_cons	50000	14142.14	3.54	0.175 -129692	.9	229692.9

Designing Hedonic pricing model

1. Variables selection

- Potential variables are identified based on recent literatures, theories, availability of data.
- Visualizing dependent and independent variables to identify a relationship between them.

Let's use (KIELMC.dta) dataset from the following paper:

Wooldridge Source: K.A. Kiel and K.T. McClain (1995), "House Prices During Siting Decision Stages: The Case of an Incinerator from Rumor Through Operation," Journal of Environmental Economics and Management 28, 241-255.

• From KIELMC.dta, we consider the following variables

year: 1978 or 1981 (initial discussion and rumors in 1978, actual construction began in 1981)

age: age of house

price: house price

rooms: number of rooms in the house

area: square footage of house

land: square footage lot

baths: number of bathrooms

dist: distance from house to incinerator (in feet).

price ~ area

price ~ area

17

price ~ land

6/27/20

18

- If a variable has extreme values, it could distort the OLS estimates.
- In such a case, it is better to
 - drop those extreme values.
 - scale down those extreme values.
 - convert the variable in logarithmic form.
 - use quantile regression models instead of OLS.

log(price) ~ log(land)

6/27/20

20

Why we take log?

Generally, we take log of variables with exponential growths such as stock prices, GDP, wages etc.

Why we take log?

- To linearize the exponential growth.
- Coefficients represent percentage changes.
- Easier to calculate elasticities.

price ~ baths

price ~ age

price ~ year

price ~ dist

log(price) ~ log(dist)

price ~ rooms

2. Handling non-linear relationship

- OLS assumes that outcome Y and predictor X hold a linear relationship.
- If this assumption is invalid, OLS will be a poor fit to data.
- Adding a quadratic term to the regression may help.

Examples of non-linear relationships:

- CO₂ emission ~ GDP per capita (EKC hypothesis)
- Car price ~ life of the car
- Worker productivity ~ worker's age

Linear vs quadratic model to fit non-linear data

price ~ age

price ~ age

3. Interpreting regression estimates

. reg lprice rooms larea lland baths age agesq y81 ldist

Source	SS	df	MS	Number o		
Model	48.1475892	8	6.01844866	F(8, 312) Prob > F) = =	
Residual	13.2913961	312	.042600629			
				- Adj R-sq		
Total	61.4389853	320	.191996829			.2064
lprice	Coefficient	Std. err.	t	P> t [9	95% conf.	interval]
rooms	.0456153	.0174171	2.62	0.009 .	0113455	.079885
larea	.3554203	.052142	6.82	0.000	. 252826	.4580147
lland	.0664187	.0204743	3.24	0.001 .	0261336	.1067039
baths	.1074252	.0277303	3.87	0.000 .	0528633	.1619872
age	0070673	.0013569	-5.21	0.000	0097372	0043975
agesq	.0000307	8.45e-06	3.64	0.000 .	0000141	.0000474
y81	.3897487	.0239645	16.26	0.000 .	3425962	.4369012
ldist	0091126	.0329457	-0.28	0.782	0739365	.0557112
_cons	7.443987	.4524415	16.45	0.000 6	.553765	8.33421

Source	SS	df	MS	Numbe	er of obs	_=	321
				F(8,	312)	=	141.28
Model	48.1475892	8	6.01844866	Prob	> F	=	0.0000
Residual	13.2913961	312	.042600629	R-squ	ıared	=	0.7837
				Adj F	≀-squared	=	0.7781
Total	61.4389853	320	.191996829	Root	MSE	=	.2064
lprice	Coefficient	Std. err.	t	P> t	[95% cor	nf.	interval]
rooms	.0456153	.0174171	2.62	0.009	.011345	5	.079885
larea	.3554203	.052142	6.82	0.000	. 252820	5	.4580147
lland	.0664187	.0204743	3.24	0.001	.0261330	5	.1067039
baths	.1074252	.0277303	3.87	0.000	.052863	3	.1619872
age	0070673	.0013569	-5.21	0.000	0097372	2	0043975
agesq	.0000307	8.45e-06	3.64	0.000	.0000143	L	.0000474
y81	.3897487	.0239645	16.26	0.000	.3425962	2	.4369012
ldist	0091126	.0329457	-0.28	0.782	073936	5	.0557112
_cons	7.443987	.4524415	16.45	0.000	6.55376	5	8.33421

Significance of the model:

The F-statistic with a p-value less than 1% indicates that the model is statistically significant at the 1% level. This means the joint estimates of the coefficients are statistically not equal to zero.

Source	SS	df	MS	Number of obs	=	321
				F(8, 312)	=	141.28
Model	48.1475892	8	6.01844866	Prob > F	_=_	0.0000
Residual	13.2913961	312	.042600629	R-squared	_=_	0.7837
				Adj R-squared	=	0.7781
Total	61.4389853	320	.191996829	Root MSE	=	. 2064

lprice	Coefficient	Std. err.	t	P> t	[95% conf.	interval]
rooms	.0456153	.0174171	2.62	0.009	.0113455	.079885
larea	.3554203	.052142	6.82	0.000	.252826	.4580147
lland	.0664187	.0204743	3.24	0.001	.0261336	.1067039
baths	.1074252	.0277303	3.87	0.000	.0528633	.1619872
age	0070673	.0013569	-5.21	0.000	0097372	0043975
agesq	.0000307	8.45e-06	3.64	0.000	.0000141	.0000474
y81	.3897487	.0239645	16.26	0.000	.3425962	.4369012
ldist	0091126	.0329457	-0.28	0.782	0739365	.0557112
_cons	7.443987	.4524415	16.45	0.000	6.553765	8.33421

Model fit:

Independent variables explains 78% of the variation in the log prices.

Source	SS	df	MS	Numl	ber of obs	=	321
				F(8	, 312)	=	141.28
Model	48.1475892	8	6.01844866	i Prol	b > F	=	0.0000
Residual	13.2913961	312	.042600629) R-s	quared	=	0.7837
				Adj	R-squared_	_=	0.7781
Total	61.4389853	320	.191996829	Roo	t MSE	=	. 2064
lprice	Coefficient	Std. err.	t	P> t	[95% con	ıf.	interval]
rooms	.0456153	.0174171	2.62	0.009	.0113455	5	.079885
larea	.3554203	.052142	6.82	0.000	.252826	,	.4580147
lland	.0664187	.0204743	3.24	0.001	.0261336	,	.1067039
baths	.1074252	.0277303	3.87	0.000	.0528633	}	.1619872
age	0070673	.0013569	-5.21	0.000	0097372	2	0043975
agesq	.0000307	8.45e-06	3.64	0.000	.0000141	L	.0000474
y81	.3897487	.0239645	16.26	0.000	.3425962	<u> </u>	.4369012
ldist	0091126	.0329457	-0.28	0.782	0739365	•	.0557112
_cons	7.443987	.4524415	16.45	0.000	6.553765	•	8.33421

Root Mean Squared Error (RMSE):

The Root MSE measures the standard deviation of the residuals. Lower values indicate better fit.

Source	SS	df	MS	Numb	per of obs	= 321
				- F(8 ₁	, 312)	= 141.28
Model	48.1475892	8	6.01844866	5 Prob) > F	= 0.0000
Residual	13.2913961	312	.042600629	9 R-so	quared	= 0.7837
				- Adj	R-squared	= 0.7781
Total	61.4389853	320	.191996829	Root	t MSE	2064
·						
lprice	Coefficient	Std. err.	t	P> t	[95% conf	. interval]
rooms	.0456153	.0174171	2.62	0.009	.0113455	.079885
larea	.3554203	.052142	6.82	0.000	.252826	.4580147
lland	.0664187	.0204743	3.24	0.001	.0261336	.1067039
baths	.1074252	.0277303	3.87	0.000	.0528633	.1619872
age	0070673	.0013569	-5.21	0.000	0097372	0043975
agesq	.0000307	8.45e-06	3.64	0.000	.0000141	.0000474
y81	.3897487	.0239645	16.26	0.000	.3425962	.4369012
ldist	0091126	.0329457	-0.28	0.782	0739365	.0557112
cons	7.443987	.4524415	16.45	0.000	6.553765	8.33421

Coefficient interpretation:

- For each additional room, price increases by 0.046 (4.6%).
- 1% increase in area is associated with a 0.36% increase in price.
- agesq +ve coefficient suggests a non-linear relationship between price and age.

. reg lprice rooms larea lland baths age agesq y81 ldist

Source	SS	d† MS		Number of obs	=	321
				F(8, 312)	=	141.28
Model	48.1475892	8	6.01844866	Prob > F	=	0.0000
Residual	13.2913961	312	.042600629	R-squared	=	0.7837
				· Adj R-squared	=	0.7781
Total	61.4389853	320	.191996829	Root MSE	=	. 2064
lprice	Coefficient	Std. err.	t	P> t [95% d	onf.	interval]
	7					
rooms	.0456153	.0174171	2.62	0.009 .01134	55	.079885
larea	.3554203	.052142	6.82	0.000 .2528	26	.4580147
11and	.0664187	.0204743	3.24	0.001 .02613	36	.1067039
baths	.1074252	.0277303	3.87	0.000 .05286	33	.1619872
age	0070673	.0013569	-5.21	0.00000973	72	0043975
agesq	.0000307	8.45e-06	3.64	0.000 .00001	41	.0000474
y81	.3897487	.0239645	16.26	0.000 .34259	62	.4369012
ldist	0091126	.0329457	-0.28	0.78207393	65	.0557112
_cons	7.443987	.4524415	16.45	0.000 6.5537	65	8.33421

Coefficient interpretation:

- The coefficient of 0.3897 for the dummy variable y81 suggests that, on average, houses are priced 38.97% higher compared to house prices in 1978.
- All the coefficient estimates are statistically significant at 1% except for *ldist*.

c----- |

4. Model estimate visualization

In a well-fitted model, the predicted values and the actual values of the dependent variable should closely align along a 45degree line (i.e. x=y).

In a residual plot, residuals should not exhibit any pattern and should randomly scattered around y=0 line.

A well-fitted model should have a normally distributed residuals.

Formal test of residual normality

*Shapiro-Wilk test is generally preferred for smaller samples (n < 2000). swilk res

Shapiro-Wilk W test for normal data

Variable	0bs	W	V	z	Prob>z
res	321	0.93993	13.590	6.145	0.00000

*Shapiro-Francia test, which is an alternative to Shapiro-Wilk, often used for larger samples. sfrancia res

Shapiro-Francia W' test for normal data

Variable	Obs	W'	٧'	Z	Prob>z	
res	321	0.93390	16.181	5.935	0.00001	

However, in real world, it is challenging to obtain residuals that are normally distributed because including all the relevant factors that influence the dependent variable might not be possible.

5. The problem of multicollinearity

. cor lprice rooms larea lland baths age agesq y81 ldist (obs=321)

	lprice	rooms	larea	lland	baths	age	agesq	y81	ldist
lprice	1.0000								
rooms	0.4933	1.0000							
larea	0.6558	0.5606	1.0000						
lland	0.4765	0.3993	0.3877	1.0000					
baths	0.6746	0.6038	0.7093	0.4949	1.0000				
age	-0.4013	-0.0512	-0.0988	-0.3265	-0.3569	1.0000			
agesq	-0.1858	0.1651	0.0843	-0.1100	-0.0938	0.9159	1.0000		
y81	0.5108	0.0058	0.1528	-0.0256	0.0471	-0.1104	-0.1147	1.0000	
ldist	0.3463	0.3113	0.2168	0.6314	0.3875	-0.3561	-0.1565	-0.0387	1.0000

According to the above correlation matrix, it is better to drop **baths** and **ldist** from the model specification.

We should not use independent variables that are highly correlated to each other as this can lead to a multicollinearity problem, which can result in biased and unreliable estimates.

6. The imputed house prices

```
* imputed housing price
reg lprice rooms larea lland baths age agesq y81 ldist
* Predict fitted values
capture noisily drop fitted y price predicted
predict fitted y, xb
gen price predicted = exp(fitted y)
twoway (scatter price price predicted) (line price price), title(
"Actual vs. Imputed House Price") legend(off) ///
   xtitle(Predicted) ytitle(Actual)
```


Quantile Regression as an alternative to Hedonic Pricing

Benefits of quantile regression

- Varying effects on different quantiles: OLS calculates conditional means only. QR shows how relationships change across different quantiles.
- Outlier Influence: Mitigates the influence of outliers. Useful for skewed or heavy-tailed data
- **Non-Normal Errors:** OLS assumes normally distributed errors. Quantile regression does not.

Quantile regression (q=0.5)

RMSE = 0.2072

Quantile regression (q=0.1)

Quantile regression (q=0.9)

6/27/2024

Thank You