dualassign package

Stefan Rampertshammer

June 28, 2018

1 Summary

This package uses a fast and approximately optimal method to assign resources to tasks.

1.1 Included functions

- dual_assignment
- iterate_dual_process

1.2 Package requirements

- \bullet dplyr
- lpSolve

2 Use and examples

2.1 dual_assignment

Input and output is an object (ss) containing:

- ss\$tasks vector of length K showing the list of work to be done
- ss\$assigns vector of length J showing the list of potential assignments for each resource

- ss\$users vector of length I showing the resources to be assigned
- ss\$perform $I \times K$ matrix showing the performance by each resource on each task
- ss\$P $J \times K$ matrix showing the proportion of assignment j spent on task k
- ss\$demand vector of length K showing the required work to be done in each task
- ss\$otcost scalar showing the relative cost of overtime(backlog) cost to normal-time
- ss\$otperform vector of length K showing the rate at which over-time(backlog) gets done for each task
- ss\$solution vector of length I showing which assignment each user is given (Initially NULL)
- ss\$backlog vector of length K showing the amount of extra resources needed to complete each task (Initially NULL)
- ss\$istar together with ss\$jstar shows the assignment order (Initially NULL). (ss\$istar[n], ss\$jstar[n]) shows that on the n^{th} iteration of the algorithm, ss\$istar[n] is assigned to ss\$jstar[n]. Backlog resources are denoted by ss\$istar = 0
- ss\$jstar Initially NULL

2.2 iterate_dual_process

Input and output is an object (lpo) containing:

- lpo\$n vector showing I, J, K from dual_assignment function
- lpo\$obj objective function for dual linear program
- lpo\$rhs rhs of inequality constraint for dual linear program
- lpo\$mat matrix for inequality constraint in dual linear program

- lpo\$dir direction of inequality constraint
- lpo\$ass current assignments
- *lpo\$bl* curerent backlogs/overtime
- *lpo\$istar* most recent assignment
- lpo\$ jstar most recent assignment
- lpo\$cost scalar showing total running cost of assignment, initialized to 0
- *lpo*\$exit scalar showing exit conditions
- lpo\$count scalar showing number of assignments made so far, intialized to 0

2.3 Examples

2.4 Example 1

In this example we take a simple situation in which five identical resources must be assigned to three tasks. Each assignment is perfectly matched with the task, reflected by ss\$P being the identity matrix. The ability to perform each task is given by c(3,3,1) while backlogged work costs 150% of the regular work and is done at a lower rate c(2,2,0.4). The amount of work required to be completed is c(10,15,3).

```
library(dualassign)
ss=list(
  tasks=c(1,2,3),
  assigns=c(1,2,3),
  users=c(1,2,3,4,5),
  perform=matrix(c(rep(c(3,3,1),each=5)),nrow=5),
  P=diag(c(1,1,1)),
  demand=c(10,15,3),
  otcost=1.5,
  otperform=c(2,2,0.4),
  solution=NULL,
```

The solution vector shows how the resources are assigned: the first resource is assigned to task 3, the second to task 1 and so on.

The backlog vector shows how many additional backlog resources are required for each task. Here we see that a total of 11 extra resources are required, 6 of which are for task 2.

ss\$istar and ss\$jstar together show the order in which resources are assigned, with resource ss\$istar assigned to task ss\$jstar. First, resource 1 is assigned to task 3, then resource 2 is assigned to task 1. Once all the resources have been assigned, ss\$istar takes on the value of 0 showing that a backlog resource is assigned here.

3 Theory

The problem statement:

- $i \in I$ collection of resources to distribute to assignments $j \in J$
- $k \in K$ collection of tasks done by each assignment j in proportion p_{jk}
- *i* performs k at rate r_{ik} and can only be assigned to a single j at cost w_{ij}
- D_k is the required amount of task k to be completed.

• Any tasks not completed by I can be sent to a backlog who completes tasks at rate R_k but increased cost W_k . The backlog can take any amount of work.

If we set x_{ij} to be the assignment decision variable from resource i to task j, relax the integral constraint on x_{ij} from $x_{ij} \in \{0,1\} \to x_{ij} \in [0,1]$ then we can minimize the amount of resources used to meet demand by considering the linear program:

$$\min_{x} \sum_{i \in I} \sum_{j \in J} w_{ij} x_{ij} + \sum_{k \in K} W_k y_k \qquad \text{s.t.}$$

$$x_{ij} \ge 0 \qquad (i, j) \in I \times J$$

$$y_k \ge 0 \qquad k \in K$$

$$-\sum_{j \in J} x_{ij} \ge -1 \qquad i \in I$$

$$\sum_{i \in I} \sum_{j \in J} p_{jk} r_{ik} x_{ij} + R_k y_k \ge D_k \qquad k \in K$$

which has dual

$$\max_{\theta,\eta} \sum_{k \in K} D_k \eta_k - \sum_{i \in I} \theta_i \qquad \text{s.t.}$$

$$\theta_i \ge 0 \qquad \qquad i \in I$$

$$\eta_k \ge 0 \qquad \qquad k \in K$$

$$\sum_{k \in K} p_{jk} r_{ik} \eta_k - \theta_i \le w_{ij} \qquad \qquad (i,j) \in I \times J$$

$$R_k \eta_k \le W_k \qquad \qquad k \in K$$

The dual variables θ_i and η_k have the meaningful interpretations of θ_i being the value of duplicating resource i and η_k is proportional to the additional resources that an additional task k would cost.

The selection algorithm is as follows: Loop until all remaining demand is non-positive

1. run the dual LP with updated $\{D_k\}$, determine dual variables θ_i, η_k

- 2. find the maximal element of $\left\{\sum_{k\in K} p_{jk} r_{ik} \eta_k / w_{ij}, R_k \eta_k / W_k\right\}$,
 - if it is some $\sum_{k \in K} p_{jk} r_{ik} \eta_k / w_{ij}$ then assign i to j
 - \bullet if it is some $R_k\eta_k/W_k$ then assign a backlog resource to k
- 3. in the case a resource from I is assigned, remove that resource from the available pool.
- 4. calculate the work done by the assigned resource and deduct it from $(D_1, ..., D_K)$
- 5. update demand and list of remaining resources and go to 1.