CLAIM AMENDMENTS

- 1. (Currently Amended) A refractive index coupling distributed feedback semiconductor laser comprising a phase-shift structure, wherein when viewed from an almost central portion in a light distributed feedback direction in a region in which diffraction gratings are formed located, an average coupling coefficient $\kappa 2$ of a diffraction grating on one end face side is smaller than an average coupling coefficient $\kappa 1$ of a diffraction grating on other end face side, and the coupling coefficient $\kappa 2$ exceeds 100 cm⁻¹.
- 2. (Currently Amended) A complex coupling distributed feedback semiconductor laser of a complex coupling type in which an absolute value of a real part of a coupling coefficient is at least four or more times an absolute value of an imaginary part of the coupling coefficient, comprising a phase-shift structure, wherein when viewed from an almost central portion in a light distributed feedback direction in a region in which diffraction gratings are formed located, an average coupling coefficient $\kappa 2$ of a diffraction grating on one end face side is smaller than an average coupling coefficient $\kappa 1$ of a diffraction grating on other end face side, and the coupling coefficient $\kappa 2$ exceeds 100 cm^{-1} .
- 3. (Currently Amended) A The distributed feedback semiconductor laser according to claim 1, wherein including a plurality of phase-shift structures is formed at almost symmetrical positions about a central portion in a light distributed feedback direction in a region in which diffraction gratings are formed located.
- 4. (Currently Amended) A The distributed feedback semiconductor laser according to claim 1, wherein a phase-shift structure is formed located at an almost central portion in a light distributed feedback direction in a region in which diffraction gratings are formed located.
- 5. (Currently Amended) \triangle The distributed feedback semiconductor laser according to claim 1, wherein, when a cycle of a diffraction grating is represented by Λ , a sum of phase-shift amounts given by all the phase-shift structures is almost $\Lambda/2$.
- 6. (Currently Amended) A The distributed feedback semiconductor laser according to claim 1, wherein when a cycle structure of the diffraction grating is viewed in a light distributed feedback direction, a value of (duty of a high refractive index portion)/(duty of a

In re Appln. of AOYAGI et al. Application No. Unassigned

low refractive index portion) in a region of having the coupling coefficient $\kappa 1$ is set to be larger than a the value in a region of having the coupling coefficient $\kappa 2$.

- 7. (Currently Amended) \bigstar The distributed feedback semiconductor laser according to claim 1, wherein, in a layer structure having a high refractive index $\bullet f$ in the diffraction grating, the number of high refractive index layers $\bullet f$ having the coupling coefficient $\kappa 1$ is $\bullet f$ larger than the number of high refractive index layers $\bullet f$ having the coupling coefficient $\kappa 2$.
- 8. (Currently Amended) \triangle The distributed feedback semiconductor laser according to claim 1, wherein the thickness of a layer of a low refractive index existing between a layer of a high refractive index in the diffraction grating and the an active layer is set to be of the laser has a thickness smaller in the region of having the coupling coefficient κ 1 than in the region of having the coupling coefficient κ 2.
- 9. (Currently Amended) \triangleq The distributed feedback semiconductor laser according to claim 1, wherein, when an equivalent refractive index acting when light is propagated through the region \rightleftharpoons having the coupling coefficient $\kappa 2$ is represented by n2, an equivalent refractive index acting when light is propagated through the region \rightleftharpoons having the coupling coefficient $\kappa 1$ is represented by n1, an average cycle of the diffraction grating in the region \rightleftharpoons having the coupling coefficient $\kappa 2$ is represented by $\Lambda 2$, and an average cycle of the diffraction grating in the region \rightleftharpoons having the coupling coefficient $\kappa 1$ is represented by $\Lambda 1$, n2• $\Lambda 2$ is almost equal to n1• $\Lambda 1$.