

Toky v sieťach

Stanislav Palúch

Fakulta riadenia a informatiky, Žilinská univerzita

12. apríla 2011

Definícia

Sieťou nazveme neorientovane súvislý hranovo ohodnotený digraf $\overrightarrow{G} = (V, H, c)$, v ktorom ohodnotenie c(h) > 0 každej hrany $h \in H$ je celočíselné a predstavuje priepustnosť hrany h, a v ktorom existuje

- práve jeden vrchol z taký, že ideg(z) = 0 zdroj a
- práve jeden vrchol taký u, že odeg(u) = 0 ústie.

Značenie: Pre každý vrchol $v \in V$ digrafu $\overrightarrow{G} = (V, H, c)$ je

- \bullet $H^+(v)$ množina všetkých hrán z vrchola v vychádzajúcich a
- \bullet $H^-(v)$ množina všetkých hrán do vrchola v vchádzajúcich.

Definícia

Tokom v sieti $\overrightarrow{G} = (V, H, c)$ nazveme funkciu $\mathbf{y} : H \to \mathbb{R}$ definovanú na množine orientovaných hrán H, pre ktorú platí:

1.
$$\mathbf{y}(h) \ge 0$$
 pre všetky $h \in H$ (1)

2.
$$\mathbf{y}(h) \le c(h)$$
 pre všetky $h \in H$

(2)

3.
$$\sum_{h \in H^+(v)} \mathbf{y}(h) = \sum_{h \in H^-(v)} \mathbf{y}(h) \quad \text{pre všetky také } v \in V, \quad \text{že } v \neq u, \ v \neq z$$

(3)

4.
$$\sum_{h \in H^+(z)} \mathbf{y}(h) = \sum_{h \in H^-(u)} \mathbf{y}(h)$$
 (4)

Veľkosťou toku **y** nazveme číslo $F(\mathbf{y}) = \sum_{h \in H^+(z)} \mathbf{y}(h)$ (ktoré sa rovná $\sum_{h \in H^-(u)} \mathbf{y}(h)$).

Zväčšujúca cesta umožňuje zväčšiť tok

Platnosť Kirchhoffovho zákona 🛑 z definície toku

$$\sum_{h \in H^+(v)} \mathbf{y}(h) = \sum_{h \in H^-(v)} \mathbf{y}(h) \quad \text{pre všetky také } v \in V, \ \ \text{\'ze } v \neq u, \ v \neq z$$

$$\underbrace{\frac{\mathbf{y}'(h_1) = \mathbf{y}(h_1) + r}{h_1}}_{a)}\underbrace{\frac{\mathbf{y}'(h_2) = \mathbf{y}(h_2) + r}{h_2}}_{\underbrace{\mathbf{y}'(h_1) = \mathbf{y}(h_1) + r}_{h_1}}_{\underbrace{\mathbf{y}'(h_1) = \mathbf{y}(h_1) + r}_{h_2}}_{\underbrace{\mathbf{y}'(h_2) = \mathbf{y}(h_2) - r}_{h_2}}_{\underbrace{\mathbf{y}'(h_2) = \mathbf{y}(h_2) + r}_{h_2}}$$

$$\mathbf{y}'(h_1) = \mathbf{y}(h_1) - r \\
h_1 \\
c) \\
\mathbf{y}'(h_2) = \mathbf{y}(h_2) - r \\
h_2 \\
\mathbf{y}'(h_1) = \mathbf{y}(h_1) - r \\
h_1 \\
\mathbf{y}'(h_2) = \mathbf{y}(h_2) + r \\
\mathbf{y}'(h_2) = \mathbf{y}(h$$

Štyri možnosti orientácie hrán incidentných s vrcholom v na rezervnej poloceste.

a)
$$\mathbf{y}'(h_1)$$
 zväčší $\sum_{h\in H^-(v)}\mathbf{y}(h)$ o r , $\mathbf{y}'(h_2)$ zväčší $\sum_{h\in H^+(v)}\mathbf{y}(h)$ o r

b)
$$\mathbf{y}'(h_1)$$
 zväčší $\sum_{h \in H^-(v)} \mathbf{y}(h)$ o r , $\mathbf{y}'(h_2)$ zmenší $\sum_{h \in H^-(v)} \mathbf{y}(h)$ o r

c)
$$\mathbf{y}'(h_1)$$
 zmenší $\sum_{h \in H^+(v)} \mathbf{y}(h)$ o r , $\mathbf{y}'(h_2)$ zmenší $\sum_{h \in H^-(v)} \mathbf{y}(h)$ o r

d)
$$\mathbf{y}'(h_1)$$
 zmenší $\sum_{h \in H^+(v)} \mathbf{y}(h)$ o r , $\mathbf{y}'(h_2)$ zväčší $\sum_{h \in H^+(v)} \mathbf{y}(h)$ o r

Maximálny tok v sieti

Definícia

Hovoríme, že tok \mathbf{y} v sieti \overrightarrow{G} je \max imálny, ak má najväčšiu veľkosť zo všetkých možných tokov v sieti \overrightarrow{G} .

Orientovanú hranu $h \in H$ nazveme **nasýtenou**, ak $\mathbf{y}(h) = c(h)$.

Poznámka

- Tok v sieti je teda reálna funkcia $\mathbf{y}: H \to \mathbb{R}$ definovaná na množine všetkých hrán. Číslo $\mathbf{y}(h)$ je funkčná hodnota funkcie \mathbf{y} v jednom prvku h svojho definičného oboru (porovnaj \mathbf{y} a $\mathbf{y}(h)$ s dvojicou pojmov funkcia $\log a \log(2)$) a budeme ho volať **tok hranou** h.
- Tok \mathbf{y} v sieti \overrightarrow{G} je vlastne ďalšie hranové ohodnotenie, takže sieť \overrightarrow{G} s tokom \mathbf{y} môžeme považovať za digraf $\overrightarrow{G} = (V, H, c, \mathbf{y})$ s dvomi ohodnoteniami hrán.

Rezervná a zväčšujúca polocesta

Definícia

Nech $\overrightarrow{G} = (V, H, c, \mathbf{y})$ je sieť s tokom \mathbf{y} , nech $v, w \in V$.

Nech $\mu(v,w)$ je v-w polocesta, nech h je orientovaná hrana tejto polocesty.

Definujeme r(h) rezervu hrany v poloceste $\mu(v, w)$ nasledovne:

$$r(h) = \begin{cases} c(h) - \mathbf{y}(h) & \text{ak je hrana h použitá } v \ \mu(v, w) \\ v \text{ smere orientácie} \\ \mathbf{y}(h) & \text{ak je hrana h použitá } v \ \mu(v, w) \\ proti \text{ smeru orientácie} \end{cases}$$
 (5)

Rezerva polocesty $\mu(v, w)$ je minimum rezerv hrán tejto polocesty.

Hovoríme, že polocesta $\mu(v,w)$ je **rezervná polocesta** ak má kladnú rezervu.

Rezervná polocesta $\mu(z, u)$ zo zdroja do ústia sa nazýva **zväčšujúca** polocesta.

Fordova – Fulkersonova veta o maximálnom toku

Veta (Ford - Fulkerson)

Tok **y** v sieti $\overrightarrow{G} = (V, H, c)$ so zdrojom z a ústím u je maximálny práve vtedy, keď neexistuje z–u zväčšujúca polocesta.

Fordov-Fulkersonov algoritmus

Algoritmus

Fordov – Fulkersonov algoritmus na hľadanie maximálneho toku v sieti $\overrightarrow{G} = (V, H, c)$.

- Krok 1. Zvoľ v sieti začiatočný tok y, napríklad nulový tok.
- Krok 2. Nájdi v sieti \overrightarrow{G} s tokom y zväčšujúcu polocestu $\mu(z, u)$.
- **Krok 3.** Ak zväčšujúca polocesta neexistuje, tok **y** je maximálny. STOP.
- Krok 4. Ak zväčšujúca polocesta $\mu(z, u)$ existuje a má rezervu r, zmeň tok y nasledujúco:

$$\mathbf{y}(h) := \begin{cases} \mathbf{y}(h) & \text{ak h nelež\'i na ceste } \mu(z,u) \\ \mathbf{y}(h) + r & \text{ak h lež\'i na ceste } \mu(z,u) \text{ v smere svojej orient\'acie} \\ \mathbf{y}(h) - r & \text{ak h lež\'i na ceste } \mu(z,u) \text{ proti smeru svojej orient\'acie} \end{cases}$$

GOTO Krok 2.

Najlacnejší tok danej veľkosti

Definícia

Nech $\overrightarrow{G} = (V, H, c, d)$ je sieť, kde d(h) je ďalšie ocenenie hrany h predstavujúce cenu za jednotku toku na hrane h. Nech \mathbf{y} je tok v sieti \overrightarrow{G} . Cena toku \mathbf{y} je definovaná

$$D(\mathbf{y}) = \sum_{h \in H} d(h).\mathbf{y}(h)$$

Definícia

Najlacnejší tok danej veľkosti F je ten tok veľkosti F, ktorý má zo všetkých tokov veľkosti F najmenšiu cenu.

Poznámka

Analogicky možno definovať najdrahší tok danej veľkosti.

Poznámka

Veľmi častou praktickou úlohou je hľadanie najlacnejšieho maximálneho toku

Rezerva hrany v polocykle, rezervný polocyklus

Definícia

Nech $\overrightarrow{G} = (V, H, c, d)$ je sieť s tokom **y**, C polocyklus v sieti \overrightarrow{G} .

Rezerva r(h) orientovanej hrany h v polocykle C je

$$r(h) = \begin{cases} c(h) - \mathbf{y}(h) & \text{ak je hrana h použitá v polocykle C} \\ \mathbf{v} \text{ smere orientácie} \end{cases}$$
$$\mathbf{y}(h) & \text{ak je hrana h použitá v v polocykle C} \\ \mathbf{proti smeru orientácie} \end{cases}$$

Rezerva polocyklu C je minimum rezerv jeho hrán.

Polocyklus C nazveme rezervný polocyklus, ak jeho rezerva je kladná.

Cena d(C) **polocyklu** C je definovaná ako súčet cien hrán súhlasne orientovaných s polocyklom mínus súčet cien hrán s ním opačne orientovaných.

Veta

Tok **y** v sieti $\overrightarrow{G} = (V, H, c, d)$ je najlacnejším tokom svojej veľkosti práve vtedy, ak v sieti \overrightarrow{G} neexistuje rezervný polocyklus zápornej ceny.

Algoritmus na hľadanie najlacnejšieho toku

Algoritmus

Algoritmus na hľadanie najlacnejšieho toku danej veľkosti v sieti $\overrightarrow{G} = (V, H, c, d)$.

- Krok 1. Začni tokom \mathbf{y} v sieti $\overrightarrow{G} = (V, H, c, d)$ danej veľkosti.
- Krok 2. V sieti \overrightarrow{G} s tokom y nájdi rezervný polocyklus C so zápornou cenou a rezervou r,
- **Krok 3.** Ak rezervný polocyklus zápornej ceny neexistuje, tok **y** je najlacnejší zo všetkých tokov svojej veľkosti. STOP.
- Krok 4. Ak taký polocyklus C existuje, zmeň tok y nasledujúco:

$$\mathbf{y}(h) := \begin{cases} \mathbf{y}(h) & \text{ak } h \text{ nelež\'i na polocykle } C \\ \mathbf{y}(h) + r & \text{ak } h \text{ lež\'i na polocykle } C \text{ v smere svojej orient\'acie} \\ \mathbf{y}(h) - r & \text{ak } h \text{ lež\'i na polocykle } C \text{ proti smeru svojej orient\'acie} \end{cases}$$

GOTO Krok 2.

