Física I - 2016/2017

Home ► My courses ► MIEIC ► EIC0010-1617

Primeiro teste

Student: Fábio Daniel Reis Gaspar

Quiz version: 1.5 Date: 2017-03-31 Grader: Jaime Villate

Grade: 16.75

1

Not answered

points: 0 (Max 1)

Um camião transporta uma caixa retangular homogénea, com 60 cm de largura na base e 140 cm de altura. Quando o camião acelera, numa estrada horizontal, existe suficiente atrito entre a superfície do camião e a caixa evitando que a caixa derrape sobre a superfície, mas a aceleração não pode ser maior do que um valor máximo, para evitar que a caixa rode. Determine esse valor máximo da aceleração do camião.

- **A**. 7.35 m/s²
- **B**. 5.88 m/s²
- **C**. 4.20 m/s²
- **D**. 6.53 m/s²
- **E**. 3.92 m/s²

The correct answer is: C.

2

Correct

points: 1 (Max 1)

Em 1610 Galileu Galilei descobriu 4 luas à volta de Júpiter. Uma delas, Ganímedes, tem um movimento orbital aproximadamente circular uniforme, com raio de 1070.4×10³ km e período de 7.15 dias. Calcule o módulo da aceleração de Ganímedes.

- **A**. 0.712 m/s²
- **B**. 0.983 m/s²
- C. 0.111 m/s²
- **D**. 0.282 m/s²

Γŀ	ne correct answer is: C .
	ma partícula desloca-se ao longo duma calha circular com aceleração angular a
	umentar em função do tempo, de acordo com a expressão α =4 t (unidades SI). No stante t =0, a partícula encontra-se em repouso na posição em que o ângulo θ é igual
	0. Calcule o valor do ângulo, em radianos, em <i>t</i> =2.5 s.
	A . 10.42 √
	B . 31.25
	C . 5.21
	D . 64.58
	E . 26.04
TL	ne correct answer is: A .
ır	ne correct answer is: A.
	m piloto de corridas de aviões, com 95 kg, executa um loop vertical de 500 m de raio,
	om velocidade constante em módulo. Sabendo que a força vertical exercida no piloto ela base do assento do avião é igual a 2328 N, no ponto mais baixo do loop, calcule a
	esma força no ponto mais alto do loop.
	A . 233 N
	B . 1397 N
	C. 932 N
	E. 2328 N
Γŀ	ne correct answer is: D .

5

3

4

Correct

points: 1 (Max 1

Correct

points: 1 (Max 1

Correct

points: 1 (Max 1)

A velocidade dum avião em relação ao ar é 750 km/h, na direção norte. Nesse instante a velocidade do vento é de 80 km/h, em direção este. Calcule o valor da velocidade do avião em relação à terra.

- **A**. 670 km/h
- B. 754 km/h

 ✓
- **C**. 846 km/h

\mathbf{r}	030	km/h
U.	030	KIII/II

■ E. 654 km/h

The correct answer is: B.

6

Correct

points: 1 (Max 1)

Se T representa unidades de tempo, L unidades de comprimento e M unidades de massa, as unidades de força são:

The correct answer is: A.

7

Correct

points: 1 (Max 1)

Quando o módulo de $\vec{a}+\vec{b}$ é igual ao módulo de $\vec{a}-\vec{b}$, o que é possível concluir sobre os vetores \vec{a} e \vec{b} ?

$$\bullet$$
 A. $\vec{a} \cdot \vec{b} = 0$

$$\bigcirc$$
 B. $\vec{a} \cdot \vec{b} = a b$

$$\mathbf{D} \cdot \vec{b} = 0$$

$$\odot$$
 E. $\vec{a}=\vec{b}$

The correct answer is: A.

8

Correct

points: 1 (Max 1)

Uma sonda espacial envia para a Terra sinais de raio, que viajam no espaço à velocidade da luz (3×10 m/s). Sabendo que as ondas emitidas pela sonda demoram 21.7 minutos em chegar à Terra, a que distância da Terra está a sonda espacial?

■ E. 3.9×10⁸ km

The correct answer is: E.

9

Correct

points: 1 (Max 1)

Um rapaz carrega uma mochila cheia de livros pendurada às costas. Considerando as forças seguintes:

- 1. Peso da mochila e dos livros, na vertical.
- 2. Força de contacto entre a mochila e as costas do rapaz, na horizontal.
- 3. Tensão nas fitas da mochila, com componentes horizontal e vertical.

Quais dessas forças atuam sobre o rapaz?

- A. 1 e 2
- B. 2 e 3√
- **C**. 1 e 3
- **D**. 1
- E. 1, 2 e 3

The correct answer is: **B**.

10

Correct

points: 1 (Max 1)

O momento de inércia dum disco homogéneo de 6 cm de raio é $5.2 \times 10^{-3} \text{ kg} \cdot \text{m}^2$. Determine o valor da força tangencial que deve ser aplicada na periferia do disco, para produzir uma aceleração angular de -6 rad/s².

- **A**. 1.04 N
- **B**. 2.08 N
- **C**. 0.35 N
- D. 0.52 N
- E. 0.21 N

The correct answer is: **D**.

11

Correct

points: 1 (Max 1)

A força resultante sobre um objeto de massa 2 kg é $\vec{F}=6\,\hat{\imath}+8\,t\,\hat{\jmath}$ (SI) no intervalo 0<t<2 segundos e nula em t>2 segundos. Sabendo que a velocidade do objeto em t=0 era $4\,\hat{\imath}$ m/s, calcule a velocidade em t=11 s.

• **A.**
$$10.0\,\hat{\imath} + 8.0\,\hat{\jmath} \checkmark$$

$$\quad \ \, 0.37.0\,\hat{\imath} + 242.0\,\hat{\jmath}$$

- \circ **c**. 16.0 \hat{i} + 16.0 \hat{j}
- \bigcirc D. $37.0\,\hat{i} + 44.0\,\hat{j}$
- \odot E. $10.0\,\hat{i} + 8.0\,\hat{j}$

The correct answer is: A. E.

12

Correct

points: 1 (Max 1)

A velocidade dum objeto é 3600 mm/s. Qual é o valor dessa velocidade em km/h?

- **A**. 100
- **B**. 1
- **C**. 1.296×10⁴
- **D**. 1×10³
- E. 12.96√

The correct answer is: E.

13

Correct

points: 1 (Max 1)

Um corpo rígido pode rodar à volta de dois eixos fixos paralelos entre si. Quando o corpo roda à volta do eixo 1, o seu momento de inércia é I_1 e quando roda à volta do eixo 2, o seu momento de inércia é I_2 . Sabendo que o centro de massa do corpo encontra-se a 4 cm do eixo 1 e a 2 cm do eixo 2, qual das seguintes afirmações é verdadeira?

- \bigcirc **A**. I_1 é menor que I_2 .
- \bigcirc **B**. I_1 e I_2 são iguais.
- C. I₁ é maior que I₂.
- igcup D. Se o corpo for homogéneo I_1 e I_2 serão iguais.
- E. A relação entre I₁ e I₂ depende da massa.

The correct answer is: **C**.

14

Correct

points: 1 (Max 1)

A projeção x da aceleração duma partícula aumenta em função do tempo, de acordo com a expressão a_x =3 t (unidades SI). No instante t=0 a projeção x da velocidade é nula e a componente da posição é x=6 m. Determine a projeção x da posição em t=8 s.

- **A**. 786.0 m
- B. 262.0 m√

- **C**. 655.0 m
- E. 131.0 m

D. 1624.4 m

The correct answer is: B.

15

Not answered

points: 0 (Max 1)

No sistema da figura, a barra permanece sempre horizontal. Determine a velocidade da barra num instante em que a velocidade do carrinho é 30 m/s, para a esquerda, e a velocidade do cilindro é 10 m/s, para cima.

- **A**. 6 m/s
- **B**. 5 m/s
- **C**. 8 m/s
- **D**. 10 m/s
- E. 4 m/s

The correct answer is: **B**.

16

Correct

points: 1 (Max 1)

A aceleração tangencial dum objeto verifica a expressão a_t =4 s^3 (unidades SI), em que s é a posição na trajetória. Se o objeto parte do repouso em s=1 m, determine o valor absoluto da sua velocidade em s=2 m.

- **A**. 4.15 m/s
- B. 5.48 m/s ✓
- **C**. 8.0 m/s
- **D**. 6.74 m/s
- **E**. 2.83 m/s

The correct answer is: **B**.

17

Correct

points: 1 (Max 1)

Um ciclista demora 33 s a percorrer 300 m, numa pista reta e horizontal, com velocidade uniforme. Sabendo que o raio das rodas da bicicleta é 27.2 cm e admitindo que as rodas não deslizam sobre a pista, determine o valor da velocidade angular das rodas.

- **B**. 27.9 rad/s
- **C**. 22.3 rad/s
- **D**. 44.6 rad/s
- E. 33.4 rad/s

The correct answer is: E.

18

Correct

points: 1 (Max 1)

O vetor velocidade dum objeto, em função do tempo, é: $\vec{v}=4~{\rm e}^{-2~t}~\hat{\imath}+5~t~\hat{\jmath}$ (unidades SI). Determine o vetor deslocamento entre *t*=1 e *t*=2.

- **A** $0.23\,\hat{\imath} + 7.5\,\hat{\jmath}$
- \odot B. $2.0\,\hat{i} + 10.0\,\hat{j}$
- \circ **c**. $-0.27 \hat{\imath} + 2.5 \hat{\jmath}$
- \circ **D**. $-0.037\,\hat{\imath} + 10.0\,\hat{\jmath}$
- \odot E. $1.7\,\hat{i} + 2.5\,\hat{j}$

The correct answer is: A.

19

Incorrect

points: -0.25 (Max 1) A roda da frente duma bicicleta tem 30 cm de raio e desloca-se, sem deslizar, numa estrada plana e horizontal. Num instante o valor da velocidade do ponto A, que está à mesma altura do centro da roda mas sobre a superfície do pneu, é 16 m/s. Determine o valor da velocidade do centro da roda, C, nesse mesmo instante.

The correct answer is: C.

20

Correct

points: 1 (Max 1)

A força \vec{F} , com módulo de 30 N, faz acelerar os dois blocos na figura, sobre uma mesa horizontal, sem que o bloco de cima deslize em relação ao outro bloco. As forças de atrito nas rodas podem ser desprezadas. Calcule o módulo da força de atrito entre os dois blocos.

- A. 8 N
- B. 5 N

 ✓
- **C**. 6 N
- D. 9 N
- **E**. 7 N

The correct answer is: **B**.

You are logged in as Fábio Daniel Reis Gaspar (Log out) EIC0010-1617