4

5

6

7

8

9

CLAIMS

1. A method of producing an aqueous paint composition comprising:

placing a first premixed aqueous composition in a receiving reservoir, the first aqueous composition selected from a group of premixed aqueous compositions consisting of a pigment composition, a dispersant thickening agent, a high resin content binder, and a low resin content binder; and

placing a second premixed aqueous composition in the receiving reservoir, the second aqueous composition selected from the group of premixed aqueous compositions, the second aqueous composition being a different one of the group of premixed aqueous compositions than the first aqueous composition.

- 1 2. The method of claim 1, further comprising the step of mixing the aqueous paint 2 composition.
- The method of claim 2, further comprising the step of selling the aqueous paint
 composition to a consumer.
- 1 4. The method of claim 3, wherein the steps of placing the first premixed aqueous
- 2 composition in the receiving reservoir, placing the second premixed aqueous composition
- 3 in the receiving reservoir, mixing the aqueous paint composition, and selling the aqueous
- 4 paint composition to a consumer are all performed in the same location.

The method of claim 1, wherein the first premixed aqueous paint composition is the pigment composition.

Docket No. ROWL-9955

- 1 6. The method of claim 5, wherein the pigment composition comprises titanium
- 2 dioxide.
- 1 7. The method of claim 6, wherein the pigment composition comprises titanium
- 2 dioxide in the range of 40 to 50 percent, the percentage being based on weight of the
- 3 pigment composition.
- 1 8. The method of claim 7, wherein the pigment composition further comprises water
- 2 of about 25 percent, a mixture of clay and silica of about 15 percent, a viscosity
- 3 controlling agent of about 10 percent, and a combination of dispersant and thickener in an
- 4 amount of less than 5 percent, said percentages being based on weight of the pigment
- 5 composition.
- 1 9. The method of claim 5, wherein the second premixed aqueous paint composition
- 2 is the dispersant thickening agent.
- 1 10. The method of claim 9, wherein the dispersant thickening agent comprises water
- 2 in an amount of about 93 percent, a phosphate-based dispersant in an amount of less than
- 3 1 percent, a cellulosic thickener in an amount of about 1 percent, and a coalescent in an
- 4 amount of 4 to 5 percent.
- 1 11. The method of claim 4, wherein the second premixed aqueous paint composition
- 2 is the high resin content binder.
- 1 12. The method of claim 11, wherein the high resin content binder comprises resin in
- 2 an amount of about 80 percent.

- 1 13. The method of claim 12, wherein the high resin content binder further comprises
- water at about 15 percent and a coalescent at about 2 percent.
- 1 14. The method of claim 5, wherein the second premixed aqueous paint composition
- 2 is the low resin content binder.
- 1 15. The method of claim 14, wherein the low resin content binder comprises about 50
- 2 percent resin.
 - 16. The method of claim 15, wherein the low resin content binder further comprises about 28 percent water, about 7 percent flattening agent, about 11 percent limestone, and about 3.5 percent calcined clay.

Docket No. ROWL-9955

	1
1	17. A method of producing an aqueous paint composition, comprising:
2	mixing a first aqueous composition, the first aqueous composition selected from a
3	group of aqueous compositions consisting of a pigment composition, a dispersant
4	thickening agent, a high resin content binder, and a low resin content binder;
5	mixing a second aqueous composition, the second aqueous composition selected
6	from the group of aqueous compositions, the second aqueous composition being a
7	different one of the group of premixed aqueous compositions than the first aqueous
8	composition;
9	storing the first aqueous composition in a first supply reservoir;
10	storing the second aqueous composition in a second supply reservoir;
11	supplying the first aqueous composition from the first supply reservoir to a
12	receiving reservoir; and
13	supplying the second aqueous composition from the second supply reservoir to
14	the receiving reservoir.
1	18. The method of claim 17, wherein the step of storing the first aqueous composition
2	comprises storing the first aqueous composition for at least one day, and wherein the step
3	of storing the second aqueous composition comprises storing the second aqueous
4	composition for at least one day.
1	19. The method of claim 17, wherein the step of storing the first aqueous composition
2	comprises storing the first aqueous composition for at least one week, and wherein the
3	step of storing the second aqueous composition comprises storing the second aqueous
4	composition for at least one week.
1	20. The method of claim 17, further comprising the steps of:

30

2	mixing a third aqueous composition, the third aqueous composition selected from
3	the group of aqueous compositions, the third aqueous composition being a different one
4	of the group of premixed aqueous compositions than the first aqueous composition or the
5	second aqueous composition;
6	mixing a fourth aqueous composition, the fourth aqueous composition selected
7	from the group of aqueous compositions, the fourth aqueous composition being a
8	different one of the group of premixed aqueous compositions than the first aqueous
9	composition, the second aqueous composition, or the third aqueous composition;
10	storing the third aqueous composition in a third supply reservoir; and
11	storing the fourth aqueous composition in a fourth supply reservoir.
1	21. The method of claim 20, wherein the first premixed aqueous paint composition is
2	the pigment composition.
1	22. The method of claim 21, wherein the second premixed aqueous paint composition
2	is the dispersant thickening agent.
٠	
1	23. The method of claim 22, further comprising the step of supplying the third
2	aqueous composition from the third supply reservoir to the receiving reservoir.
1	24. The method of claim 23, further comprising the step of supplying the fourth
2	aqueous composition from the fourth supply reservoir to the receiving reservoir.
1	25. The method of claim 24, wherein the pigment composition comprises titanium
2	dioxide in the range of 40 to 50 percent, water of about 25 percent, a mixture of clay and
3	silica of about 15 percent, a viscosity controlling agent of about 10 percent, and a

- 5 percentages being based on weight of the pigment composition.
- 1 26. The method of claim 25, wherein the dispersant thickening agent comprises water
- 2 in an amount of about 93 percent, a phosphate-based dispersant in an amount of less than
- 3 1 percent, a cellulosic thickener in an amount of about 1 percent, and a coalescent in an
- 4 amount of 4 to 5 percent.
- 1 27. The method of claim 26, wherein the high resin content binder comprises resin in
- an amount of about 80 percent, water at about 15 percent and a coalescent at about 2
- 3 percent.
- 1 28. The method of claim 27, wherein the low resin content binder comprises about 50
- 2 percent resin, about 28 percent water, about 7 percent flattening agent, about 11 percent
- 3 limestone, and about 3.5 percent calcined clay.
- 1 29. The method of claim 17, further comprising the step of mixing the aqueous paint
- 2 composition.
- 1 30. The method of claim 29, further comprising the step of selling the aqueous paint
- 2 composition to a consumer.
- 1 31. The method of claim 30, wherein the steps of storing the first aqueous
- 2 composition, storing the second aqueous composition, supplying the first aqueous
- 3 composition, supplying the second aqueous composition, mixing the aqueous paint
- 4 composition, and selling the aqueous paint composition to a consumer are all performed
- 5 in the same location.

1	32. An apparatus comprising:
2	a first supply reservoir containing a first premixed composition selected from a
3	group of compositions consisting of a pigment composition, a dispersant thickening
4	agent, a high resin content binder, and a low resin content binder;
5	a second supply reservoir containing a second premixed composition selected
6	from the group of compositions, wherein the second premixed composition is a different
7	one of the group of compositions than the first premixed composition;
8	a first valve fluidly connected to the first supply reservoir;
9	a second valve fluidly connected to the second supply reservoir;
10	an actuator system connected the first valve and the second valve;
11	a receiving reservoir fluidly connected to the first valve and the second valve;
12	a measuring system that measures a first flow amount of the first premixed
13	composition supplied from the first supply reservoir to the receiving reservoir and that
14	measures a second flow amount of the second premixed composition supplied from the
15	second supply reservoir to the receiving reservoir; and
16	a control system connected to the measuring system;
17	wherein the measuring system emits a first amount signal that represents the first
18	flow amount and wherein the measuring system emits a second amount signal that
19	represents the second flow amount, the control system receiving the first amount signal
20	and the second amount signal;
21	wherein the control system emits a first close signal to the actuator system when
22	the first amount signal indicates that the first flow amount equals a first predetermined
23	amount, thereby prompting the actuator system to close the first valve; and
24	wherein the control system emits a second close signal to the actuator system
25	when the second amount signal indicates that the second flow amount equals a second
26	predetermined amount, thereby prompting the actuator system to close the second valve.

1	33. The apparatus of claim 32, wherein the actuator system comprises a first actuator
2	connected to the first valve and a second actuator connected to the second valve.
1	34. The apparatus of claim 32, further comprising:
2	a third supply reservoir containing a third premixed composition selected from the
3	group of compositions, wherein the third premixed composition is a different one of the
4	group of compositions than the first premixed composition or the second premixed
5	composition;
6	a third valve fluidly connected to the third supply reservoir and the receiving
7	reservoir, the third valve being connected to the actuator system;
8	wherein the measuring system measures a third flow amount of the third premixed
9	composition supplied from the third supply reservoir to the receiving reservoir;
10	wherein the measuring system emits a third amount signal that represents the third
11	flow amount;
12	wherein the control system receives the third amount signal; and
13	wherein the control system emits a third close signal to the actuator system when
14	the third amount signal indicates that the third flow amount equals a third predetermined
15	amount, thereby prompting the actuator system to close the third valve.
1	35. The apparatus of claim 34, further comprising:
2	a fourth supply reservoir containing a fourth premixed composition selected from
3	the group of compositions, wherein the fourth premixed composition is a different one of
4	the group of compositions than the first premixed composition, the second premixed
5	composition, or the third premixed composition;
6	a fourth valve fluidly connected to the fourth supply reservoir and the receiving
7	reservoir, the fourth valve being connected to the actuator system;

8		wherein the measuring system measures a fourth flow amount of the fourth
9	premix	ted composition supplied from the fourth supply reservoir to the receiving
10	reservo	pir;
11		wherein the measuring system emits a fourth amount signal that represents the
12	fourth	flow amount;
13		wherein the control system receives the fourth amount signal; and
14		wherein the control system emits a fourth close signal to the actuator system where
15	the fou	orth amount signal indicates that the fourth flow amount equals a fourth
16	predete	ermined amount, thereby prompting the actuator system to close the fourth valve.
1	36.	The apparatus of claim 32, further comprising:
2		a first pump fluidly connected to the first supply reservoir and the first valve; and
3		a second pump fluidly connected to the second supply reservoir and the second
4	valve.	
1	37.	The apparatus of claim 32, wherein the receiving reservoir is a paint bucket.
1	38.	The apparatus of claim 32,
2		wherein the measuring system measures weight;
3		wherein the first flow amount is a weight amount; and
4		wherein the second flow amount is a weight amount.
1	39.	The apparatus of claim/38, wherein the measuring system measures a weight of
2	the rec	eiving reservoir.
1	40.	The apparatus of claim 32, wherein the control system comprises:
2		a programmable logic control; and
		1

- a user interface connected to the programmable logic control.
- 1 41. The apparatus of claim 40, wherein the user interface prompts a user to input
- 2 desired paint characteristics and the programmable logic control uses the desired paint
- 3 characteristics to determine the first prodetermined amount and the second predetermined
- 4 amount that will produce a paint with the desired paint characteristics.

A method of producing an aqueous paint composition comprising the steps of:
storing a first premixed composition in a first supply reservoir, the first premixed
composition selected from a group of compositions consisting of a pigment composition,
a dispersant thickening agent, a high resin content binder, and a low resin content binder;
storing a second premixed composition in a second supply reservoir, the second
premixed composition selected from the group of compositions, wherein the second
premixed composition is a different one of the group of compositions than the first
premixed composition;
determining a first predetermined amount of the first premixed composition;
determining a second predetermined amount of the second premixed composition;
supplying the first premixed composition from the first supply reservoir to a
receiving reservoir;
supplying the second premixed composition from the second supply reservoir to
the receiving reservoir;
measuring a first flow amount of the first premixed composition supplied from the
first supply reservoir to the receiving reservoir;
measuring a second flow amount of the second premixed composition supplied
from the second supply reservoir to the receiving reservoir;
ceasing supply of the first premixed composition from the first supply reservoir to
the receiving reservoir when the first flow amount equals the first predetermined amount;
and
ceasing supply of the second premixed composition from the second supply
reservoir to the receiving reservoir when the second flow amount equals the second

predetermined amount.

1	43. The method of claim 42,
2	wherein the step of ceasing supply of the first premixed composition comprises
3	closing a first valve that is fluidly connected to the first supply reservoir and that is
4	fluidly connected to the receiving reservoir; and
5	wherein the step of ceasing supply of the second premixed composition comprises
6	closing a second valve that is fluidly connected to the second supply reservoir and that is
7	fluidly connected to the receiving reservoir.
1	44. The method of claim 42, further comprising the steps of:
2	storing a third premixed composition in a third supply reservoir, the third
3	premixed composition selected from the group of compositions, wherein the third
4	premixed composition is a different one of the group of compositions than the first
5	premixed composition or the second premixed composition;
6	determining a third predetermined amount of the third premixed composition;
7	supplying the third premixed composition from the third supply reservoir to the
8	receiving reservoir;
9	measuring a third flow amount of the third premixed composition supplied from
10	the third supply reservoir to the receiving reservoir; and
11	ceasing supply of the third premixed composition from the third supply reservoir
12	to the receiving reservoir when the third flow amount equals the third predetermined
13	amount.
	1
1	45. The method of claim 44, further comprising the steps of:
2	storing a fourth premixed composition in a fourth supply reservoir, the fourth
3	premixed composition selected from the group of compositions, wherein the fourth
4	premixed composition is a different one of the group of compositions than the first

5	premixed composition, the second premixed composition, or the third premixed
6	composition;
7	determining a fourth predetermined amount of the fourth premixed composition;
8	supplying the fourth premixed composition from the fourth supply reservoir to the
9	receiving reservoir;
10	measuring a fourth flow amount of the fourth premixed composition supplied
11	from the fourth supply reservoir to the receiving reservoir; and
12	ceasing supply of the fourth premixed composition from the fourth supply
13	reservoir to the receiving reservoir when the fourth flow amount equals the fourth
14	predetermined amount.
1	46. The method of claim 42,
2	wherein the step of supplying the first premixed composition comprises pumping
3	the first premixed composition; and
4	wherein the step of supplying the second premixed composition comprises
5	pumping the second premixed composition.
1	47. The method of claim 42, wherein the steps of supplying the first premixed
2	composition and ceasing supply of the first premixed composition are completed before
3	the steps of supplying the second premixed composition and ceasing supply of the second
4	premixed composition have begun.
1	48. The method of claim 47,
2	wherein the step of measuring the first flow amount comprises measuring a
3	weight of the receiving reservoir; and
4	wherein the step of measuring the second flow amount comprises measuring a
5	weight of the receiving reservoir.

2

3

1	49. The apparatus of claim 48,	
2	wherein the step of measuring the first flow amount comprises recalibrating a	
3	scale before measuring the weight of the receiving reservoir; and	
4	wherein the step of measuring the second flow amount comprises recalibrating	the
5	scale before measuring the weight of the receiving reservoir.	
6	50. The apparatus of claim 42,	
7	wherein the step of determining a first predetermined amount comprises	
8	calculating the first predetermined amount using desired paint characteristics that have	
9	been input into a user interface by a user;	
10	wherein the step of determining a second predetermined amount comprises	
11	calculating the second predetermined amount using the desired paint characteristics; an	d
12	wherein the first predetermined amount and the second predetermined amount a	ıre
13	calculated so that the method will produce a paint composition having the desired	
14	characteristics.	
1	51. The method of claim 50, wherein the desired characteristics comprise a desired	

sheen, a desired color type, a desired quality, a desired quantity, and whether the paint

composition will be for interior or exterior use.

1	52. A method of producing a desired paint composition, the method comprising the
12	steps of:
1/3/	providing an apparatus for producing a paint composition;
4	prompting a user to input into the apparatus a selection of either interior or
5	exterior paint;
6	prompting a user to input into the apparatus a desired sheen;
7	prompting a user to input into the apparatus a desired color type; and
8	automatically producing the desired paint composition, the step of automatically
9	producing the desired paint composition being performed by the apparatus, the paint
10	composition having the desired sheen and the desired paint composition further being
11	well-suited for the desired color type and for either interior or exterior use as desired.
1	53. The method of claim 52, further comprising the step of prompting a user to input
2	into the apparatus a desired quality, wherein the paint composition has the desired
3	quality.
1	54. The method of claim 53, wherein the step of automatically producing the desired
2	paint composition comprises:
3	placing a first aqueous composition in a requiving reservoir, the first aqueous
4	composition selected from a group of premixed aqueous compositions consisting of a
5	pigment composition, a dispersant thickening agent, a high resin content binder, and a
6	low resin content binder; and
7	placing a second aqueous composition in the receiving reservoir, the second
8	aqueous composition selected from the group of premixed aqueous compositions, the
9	second aqueous composition being a different one of the group of premixed aqueous

compositions than the first aqueous composition.

10

- 1 56. The program product $\oint f$ claim 55, wherein the signal bearing media comprises
- 2 transmission media.
- 1 57. The program product of claim 55, wherein the signal bearing media comprises
- 2 recordable media.
- 1 58. The program product of claim 55, wherein the control program prompts the user
- 2 to select the desired sheen from a plurality of sheens, the plurality of sheens comprising
- 3 flat, low sheen, egg shell semi gloss, and high gloss if the user selects interior use, and
- 4 the plurality of sheens comprising flat, low sheen, satin, semi gloss, and high gloss if the
- 5 user selects exterior use
- 1 59. The program product of claim 58, wherein the control program prompts the user
- 2 to select the desired color type from a plurality of color types, the plurality of color types
- 3 comprising white, pastel, tinting, deep tone, and neutral.

- 2 to select the desired quality from a plurality of qualities, the plurality of qualities
- 3 comprising retail, professional and economy.