

2	A Robot System for Paddy Field Planting in the Philippines
3	
4	A Thesis Proposal Presented to the Faculty of the
6	Department of Electronics and Communications Engineering
7	Gokongwei College of Engineering
8	De La Salle University
9	
10	In Partial Fulfillment of the
11	Requirements for the Degree of
12	Bachelor of Science in Computer Engineering
13	
14	by
15	ABE, Paul Vince A.
16	MIRIDA, Joanna Katherine U.
17	AMADO, Dan Paulo E.

June, 2016

ORAL DEFENSE RECOMMENDATION SHEET

This thesis proposal, entitled **A Robot System for Paddy Field Planting in the Philippines**, prepared and submitted by thesis group, ESG-04, composed of:

ABE, Paul Vince A.
MIRIDA, Joanna Katherine U.
AMADO, Dan Paulo E.

in partial fulfillment of the requirements for the degree of **Bachelor of Science in Computer Engineering** (**BS-CPE**) has been examined and is recommended for acceptance and approval for **ORAL DEFENSE**.

Dr. Francisco D. Baltasar
Adviser

June 6, 2016

THESIS PROPOSAL APPROVAL SHEET

This thesis proposal entitled A Robot System for Paddy Field Planting in the Philippines, prepared and submitted by:

ABE, Paul Vince A.
MIRIDA, Joanna Katherine U.
AMADO, Dan Paulo E.

with group number ESG-04 in partial fulfillment of the requirements for the degree of **Bachelor of Science in Computer Engineering** (**BS-CPE**) has been examined and is recommended for acceptance and approval.

PANEL OF EXAMINERS

Dr. Amado Z. Hernandez *Chair*

Dr. Jose Y. Alonzo

Member

Dr. Mariana X. Mercado

Member

Dr. Francisco D. Baltasar *Adviser*

Date: June 6, 2016

De La Salle Univ	ersity ersity

ACKNOWLEDGMENT

58

59

60

Write this prior to hard binding if you have submitted all requirements and are told by your adviser that you have passed.

	De	La	Salle	Un	iversity	Ţ
MANILA			oune		it v Clotte	,

61 ABSTRACT

- Keep your abstract short by giving the gist/nutshell of your thesis proposal.
- 63 *Index Terms*—PIC16F877A, soil moisture, greenhouse, automation.

TABLE OF CONTENTS

	efense Recommendation Sheet	ii
Thesis l	Proposal Approval Sheet	iii
Acknow	vledgment	v
Abstrac	t	vi
Table of	f Contents	vii
List of l	Figures	X
List of	Tables	xi
Abbrev	iations	xii
Notatio	n	xiii
Glossar	y	xiv
Listings		xv
Chapte		1
1.1	Background of the Study	2
1.2	Prior Studies	3
1.3	Problem Statement	4
1.4	Objectives	5
	1.4.1 General Objective(s)	5
	1.4.2 Specific Objectives	5
1.5	Significance of the Study	5
1.6	Assumptions, Scope and Delimitations	6
1.7	Description and Methodology	6
1.8	Overview	7
		0
Chapte	r 2 LITERATURE REVIEW	8

89	Referen	ices	12
90	Append	ix A ANSWERS TO QUESTIONS TO THIS THESIS PROPOSAL	13
91	A1	How important is the problem to practice?	14
92	A2	How will you know if the solution/s that you will achieve would be better	
93		than existing ones?	14
94		A2.1 How will you measure the improvement/s?	14
95		A2.1.1 What is/are your basis/bases for the improvement/s?	15
96		A2.1.2 Why did you choose that/those basis/bases?	15
97		A2.1.3 How significant are your measure/s of the improvement/s?	15
98	A3	What is the difference of the solution/s from existing ones?	16
99		A3.1 How is it different from previous and existing ones?	16
100	A4	What are the assumptions made (that are behind for your proposed solution	
101		to work)?	16
102		A4.1 Will your proposed solution/s be sensitive to these assumptions? .	17
103		A4.2 Can your proposed solution/s be applied to more general cases	
104		when some of the assumptions are eliminated? If so, how?	17
105	A5	What is the necessity of your approach / proposed solution/s?	17
106		A5.1 What will be the limits of applicability of your proposed solution/s?	18
107		A5.2 What will be the message of the proposed solution to technical	1.0
108		people? How about to non-technical managers and business men?	18
109	A6	How will you know if your proposed solution/s is/are correct?	18
110		A6.1 Will your results warrant the level of mathematics used (i.e., will	10
111	A 7	the end justify the means)?	19
112	A7	Is/are there an/_ alternative way/s to get to the same solution/s?	19
113		A7.1 Can you come up with illustrating examples, or even better, counter	10
114		examples to your proposed solution/s?	19
115		A7.2 Is there an approximation that can arrive at the essentially the same proposed solution/s more easily?	20
116 117	A8	If you were the examiner of your proposal, how would you present the	20
117	Ao	proposal in another way?	20
119		A8.1 What are the weaknesses of your proposal?	20
113		710.1 What are the weaknesses of your proposar.	20
120	Append	ix B USAGE EXAMPLES	22
121	B1	Equations	23
122	B2	Notations	25
123	В3	Abbreviation	31
124	B4	Glossary	33
125	B5	Figure	34
126	В6	Table	40

127	B7 Algorithm or Pseudocode Listing	44
128	B8 Program/Code Listing	46
129	B9 Referencing	48
130	B9.1 A subsection	49
131	B9.1.1 A sub-subsection	50
132	B10 Index	51
133	B11 Adding Relevant PDF Pages (e.g. Standards, Datasheets, Specification	
134	Sheets, Application Notes, etc.)	52
	A C DUDI ICATION LIGHTAND AWADD	
135	Appendix C PUBLICATION LIST AND AWARD	56
136	Appendix D VITA	58
130	Appendix D 111A	30
137	Index	59

	ISI	$\Gamma \cap$	F	FI	GI	IR	ES
					u	/IL	$-\mathbf{U}$

B.1	A quadrilateral image example	34
B.2	Figures on top of each other. See List. B.6 for the corresponding LaTeX code.	36
B.3	Four figures in each corner. See List. B.7 for the corresponding \LaTeX code	38

B.1	Feasible triples for highly variable grid	40
B.2	Calculation of $u = x^n$	44

ABBREVIATIONS

146	AC	Alternating Current	31
147	HTML	Hyper-text Markup Language	31
148	CSS	Cascading Style Sheet	
149	XML	eXtensible Markun Language	31

NOTATION

151	\mathcal{S}	a collection of distinct objects	33
	\mathcal{U}	the set containing everything	33
153	Ø	the set with no elements	33
154	$ \mathcal{S} $	the number of elements in the set S	33
155	h(t)	impulse response	23
156	x(t)	input signal represented in the time domain	23
157	y(t)	output signal represented in the time domain	23

Throughout this thesis proposal, mathematical notations conform to ISO 80000-2 standard, e.g. variable names are printed in italics, the only exception being acronyms like e.g. SNR, which are printed in regular font. Constants are also set in regular font like j. Functions are also set in regular font, e.g. in $\sin(\cdot)$. Commonly used notations are t, f, $j = \sqrt{-1}$, n and $\exp(\cdot)$, which refer to the time variable, frequency variable, imaginary unit, nth variable, and exponential function, respectively.

164 GLOSSARY

165

LISTINGS

166

167	B.1	Sample LATEX code for equations and notations usage	24
168	B.2	Sample LATEX code for notations usage	28
169	B.3	Sample LATEX code for abbreviations usage	32
170	B.4	Sample LATEX code for glossary and notations usage	33
171	B.5	Sample LATEX code for a single figure	35
172	B.6	Sample LATEX code for three figures on top of each other	37
173	B.7	Sample LATEX code for the four figures	39
174	B.8	Sample LATEX code for making typical table environment	42
175	B.9	Sample LATEX code for algorithm or pseudocode listing usage	45
176	B.10	Computing Fibonacci numbers	46
177		Sample LATEX code for program listing	47
178	B.12	Sample LATEX code for referencing sections	48
179	B.13	Sample LATEX code for referencing subsections	49
180	B.14	Sample LATEX code for referencing sub-subsections	50
181		Sample LATEX code for Index usage	51
182		Sample LATEX code for including PDF pages	52

Chapter 1

INTRODUCTION

Contents

1.1	Background of the Study	2.
1.2		
1.4	Thor Studies	
1.3	Problem Statement	4
1.4	Objectives	5
	1.4.1 General Objective(s)	5
	1.4.2 Specific Objectives	5
1.5	Significance of the Study	5
1.6	Assumptions, Scope and Delimitations	6
1.7	Description and Methodology	6
1.8	Overview	

1.1 Background of the Study

The Philippines is the worlds eighth-largest rice producer. Its arable land totals 5.4 million hectares. Rice area harvested has expanded from nearly 3.8 million hectares in 1995 to about 4.4 million hectares in 2010. However, the countrys rice area harvested is still very small compared with that of the other major rice-producing countries in Asia. Climate change, growing population, declining land area, high cost of inputs, and poor drainage and inadequate irrigation facilities are the major constraints to rice production in the Philippines. Some of these constraints are interrelated. Unabated conversion of some agricultural land to residential, commercial, and industrial land reduces the area devoted to rice production, which leads to a shortage in domestic supply (ricepedia.org). The Philippines is one of the largest producers of rice in the world, despite of having an inadequate rice area caused by several factors which led to inadequacy of domestic supply.

The Philippines imports about 10% of its annual consumption requirements. In 2010 and 2011, the country was the biggest rice importer. Its rice imports amounted to 2.38 million t in 2010, mostly coming from Vietnam and Thailand. (ricepedia.org). Despite of being one of the largest rice producers in the world, the Philippines still imports rice from their neighboring countries to make up for the shortage in its domestic supply.

For the Philippines to become self-sufficient in rice, it has to adopt existing technologies such as improved varieties and know-how to have yield increase by 13 t/ha. Better quality seed combined with good management, including new postharvest technologies, is the best way to improve rice yields and the quality of production (ricepedia.org). The utilization of new technology could help increase the production of rice in the country, increase our domestic supply, decrease the need to import rice, reduce the consumer cost, and increase

the profit gain of farmers.

1.2 Prior Studies

A resource entitled "A Robot System for Paddy Field Farming in Japan" is set to utilize a robot-operated farming technology guided from tillage to harvest in large-scale agriculture. In such application, it is seen that in the cultivation of rice, wheat and soybean (in Japan, as per the researchers' host country), there has been three types of robot in development. First, a robot tractor, followed by a rice transplanter, finally, combines harvester robots. Real-time Kinematic Global Positioning System (RTK-GPS) and Inertia Measurement Unit (IMU), or Global Positioning System (GPS) compass are utilized for navigation system. These robots have a Controller Area Network (CAN) bus that all sensors and computers can be connected and interfaced in common among other robots such as tractors, rice transplatners and combine harvesters. Hence, these could be officiated in autonomous operation in paddy fields as well as discussing in this paper the ability of moving across fields for effective operations and safe guidelines for robot systems.

Another is a resource entitled A Global Positioning System guided automated rice transplanter" that speaks about a new Global Positioning System (GPS) guided rice transplanter. This study is very coherent to the aforementioned research as this resource speaks more about the utilization of the GPS technology they used in implementing the three robots as tractor, rice transplanter and combine harvester. With these, such robot systems were GPS-guided with their respective position data and inertia measurement unit direction data. This new one (inherent to this resource) is guided with GPS position data with tilt correction during straight driving and guided with the data gathered from the IMU during

each robot's turning at the head land. An antenna prescribed to the GPS is set to 1.5 meters (as height) and 0.4 meters as its offset at the vehicle's front axle. The actuator control command and data communication protocols adhere through the controller area network (CAN) bus. Hence, steering and transmission systems are controlled through electrical actuators with respect to the location in a given field.

Lastly, a resource entitled Robot Farming System Using Multiple Tractors in Japan with the objective to develop a robot farming system using multiple robots. It discusses the application of multiple robots in Japan agriculture for rice, wheat, and soybean. The system that is discussed in this paper includes a rice planting robot, a seeding robot, a robot tractor, a combine robot harvester, and several tools attached on the robot tractor. The main objective of this paper is to help the farmers gain more profit thru farming. The paper focused on robot management system, low-cost system, robot farming safety, and real-time monitoring/documentation.

1.3 Problem Statement

The Philippines is rich in fertile lands suitable for agricultural development. However, due to the absence of advanced tools for farming, rice shortage is becoming a problem. Filipinos are importing rice from other countries such as Thailand and Vietnam in spite of the capability of the Philippine land to cultivate rice.

Philippine farmers are not equipped with tools that could compete with the advanced instruments used by foreign farmers. Most of the Philippine farmers rely on manual labor. Difficult tasks such as sowing the field are done by the farmers yet their salary is still below the minimum wage. The land may be rich and fertile for agriculture but the agricultural

sector, specifically the local farmers, are considered one of the poorest sector in the country. In turn, the rice fields are neglected. According to National Geographic, Some 25 to 30 percent of the terraces are abandoned and beginning to deteriorate, along with irrigation systems. Investors and laborers are avoiding the agricultural industry due to the absence of advanced systems used in planting rice.

1.4 Objectives

1.4.1 General Objective(s)

272 To ...;

265

266

267

268

269

270

271

273

279

280

281

1.4.2 Specific Objectives

- 274 1. To ...;
- 2. To ...;
- 276 3. To ...;
- 277 4. To ...;
- 278 5. To ...;

1.5 Significance of the Study

The implementation of this robot system for paddy field planting allows a decrease in production time of rice as it automates the planting of the crop. Furthermore, it would

lessen the manual labor provided by the local farmers. Instead of manually planting rice, local farmers would save time and effort as the robot system for paddy field planting would be utilized. The workload for the farmers would be decreased as the production is increased.

It is anticipated that the use of this system would increase the productivity of agricultural sector in the country. This technology can be used to aide local farmers in ensuring an increase in rice yield. It will not only benefit the agricultural area but also the economic status of the Philippines.

1.6 Assumptions, Scope and Delimitations

Bulletize your scope in one group, and then bulletize the delimitations in another. Bulletize your assumptions as well.

1.7 Description and Methodology

302 1.8 Overview

303

304

Provide here a brief summary and what the reader should expect from each succeeding chapter. Show how each chapter are connected with each other.

	De La Salle University	
305	Chapter 2	
306	LITERATURE REVIEW	
307	Contents	
308 309 310	2.1 Summary	

Cite and summarize here relevant and significant literature (dissertations, theses, journals, patents, notable conference papers) to prove that no one has done your work yet.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor.

Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

		2. Literature Review	
		De La Salle University	
358	2.1	Summary	
		11	

359 REFERENCES

360

361

362

363

[ISO, 2009] ISO (2009). 80000-2. Quantities and units—Part 2: Mathematical signs and symbols to be used in the natural sciences and technology.

[Oetiker et al., 2014] Oetiker, T., Partl, H., Hyna, I., and Schlegl, E. (2014). The Not So Short Introduction to $\LaTeX 2_{\varepsilon} Or \LaTeX 2_{\varepsilon} in 157$ minutes. n.a.

Produced: June 6, 2016, 17:01

Appendix A ANSWERS TO QUESTIONS TO THIS THESIS PROPOSAL

Contents

A 1	How important is the problem to practice?	14				
A2	y y					
	than existing ones?	14				
	A2.1 How will you measure the improvement/s?	14				
	A2.1.1 What is/are your basis/bases for the improvement/s?	15				
	A2.1.2 Why did you choose that/those basis/bases?	15				
	A2.1.3 How significant are your measure/s of the improvement/s?	15				
A3	What is the difference of the solution/s from existing ones?	16				
	A3.1 How is it different from previous and existing ones?	16				
A4	What are the assumptions made (that are behind for your proposed solution					
	to work)?	16				
	A4.1 Will your proposed solution/s be sensitive to these assumptions? .	17				
	A4.2 Can your proposed solution/s be applied to more general cases					
	when some of the assumptions are eliminated? If so, how?	17				
A5	What is the necessity of your approach / proposed solution/s?	17				
	A5.1 What will be the limits of applicability of your proposed solution/s?	18				
	A5.2 What will be the message of the proposed solution to technical					
	people? How about to non-technical managers and business men?	18				
A6	How will you know if your proposed solution/s is/are correct?	18				
	A6.1 Will your results warrant the level of mathematics used (i.e., will					
	the end justify the means)?	19				
A7	Is/are there an/_ alternative way/s to get to the same solution/s?	19				
	A7.1 Can you come up with illustrating examples, or even better, counter					
	examples to your proposed solution/s?	19				
	A7.2 Is there an approximation that can arrive at the essentially the same					
	proposed solution/s more easily?	20				
A8	If you were the examiner of your proposal, how would you present the					
	proposal in another way?	20				
	A8.1 What are the weaknesses of your proposal?	20				

A1 How important is the problem to practice?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A2 How will you know if the solution/s that you will achieve would be better than existing ones?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A2.1 How will you measure the improvement/s?

A2.1.1 What is/are your basis/bases for the improvement/s?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A2.1.2 Why did you choose that/those basis/bases?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A2.1.3 How significant are your measure/s of the improvement/s?

A3 What is the difference of the solution/s from existing ones?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A3.1 How is it different from previous and existing ones?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A4 What are the assumptions made (that are behind for your proposed solution to work)?

A4.1 Will your proposed solution/s be sensitive to these assumptions?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A4.2 Can your proposed solution/s be applied to more general cases when some of the assumptions are eliminated? If so, how?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A5 What is the necessity of your approach / proposed solution/s?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris.

Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A5.1 What will be the limits of applicability of your proposed solution/s?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A5.2 What will be the message of the proposed solution to technical people? How about to non-technical managers and business men?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A6 How will you know if your proposed solution/s is/are correct?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla

tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A6.1 Will your results warrant the level of mathematics used (i.e., will the end justify the means)?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A7 Is/are there an/_ alternative way/s to get to the same solution/s?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A7.1 Can you come up with illustrating examples, or even better, counter examples to your proposed solution/s?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor.

Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A7.2 Is there an approximation that can arrive at the essentially the same proposed solution/s more easily?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A8 If you were the examiner of your proposal, how would you present the proposal in another way?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

A8.1 What are the weaknesses of your proposal?

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor.

Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

	De La Salle University	
626 627	Appendix B USAGE EXAMPLES	
	22	

The user is expected to have a working knowledge of LATEX. A good introduction is in [Oetiker et al., 2014]. Its latest version can be accessed at http://www.ctan.org/tex-archive/info/lshort.

B1 Equations

The following examples show how to typeset equations in \LaTeX . This section also shows examples of the use of \gls commands in conjunction with the items that are in the notation.tex file. Please make sure that the entries in notation.tex are those that are referenced in the \LaTeX document files used by this Thesis Proposal. Please comment out unused notations and be careful with the commas and brackets in notation.tex.

In (B.1), the output signal $y\left(t\right)$ is the result of the convolution of the input signal $x\left(t\right)$ and the impulse response $h\left(t\right)$.

$$y(t) = h(t) * x(t) = \int_{-\infty}^{+\infty} h(t - \tau) x(\tau) d\tau$$
(B.1)

Other example equations are as follows.

$$\begin{bmatrix} \frac{V_1}{I_1} \end{bmatrix} = \begin{bmatrix} A & B \\ C & D \end{bmatrix} \begin{bmatrix} \frac{V_2}{I_2} \end{bmatrix}$$
 (B.2)

$$\frac{1}{2} < \left\lfloor \operatorname{mod}\left(\left\lfloor \frac{y}{17} \right\rfloor 2^{-17\lfloor x\rfloor - \operatorname{mod}(\lfloor y\rfloor, 17)}, 2\right) \right\rfloor, \tag{B.3}$$

$$|\zeta(x)^3 \zeta(x+iy)^4 \zeta(x+2iy)| = \exp \sum_{n,p} \frac{3+4\cos(ny\log p) + \cos(2ny\log p)}{np^{nx}} \ge 1$$
 (B.4)

The verbatim LATEX code of Sec. B1 is in List. B.1.

Listing B.1: Sample LATEX code for equations and notations usage

```
The following examples show how to typeset equations in \LaTeX.
2
3
   In~\eqref{eq:conv}, the output signal \gls{not:output_sigt} is the
        result of the convolution of the input signal \gls{not:input_sigt}
        and the impulse response \gls{not:ir}.
4
5
    \begin{eqnarray}
6
         y\left( t \right) = h\left( t \right) * x\left( t \right)=\int_{-\}
             infty}^{+\infty}h\left( t-\tau \right)x\left( \tau \right) \
       \label{eq:conv}
8
    \end{eqnarray}
    Other example equations are as follows.
10
11
12
    \begin{eqnarray}
       \left[ \dfrac{ V_{1} }{ I_{1} } \right] =
13
14
       \begin{bmatrix}
15
          A & B \\
16
          C & D
17
       \end{bmatrix}
18
       \label{left} $$ \left[ \dfrac{ V_{2} }{ I_{2} } \right] \right] $$ \left[ \dfrac{ V_{2} }{ I_{2} } \right] $$
19
       \label{eq:ABCD}
20
    \end{eqnarray}
21
22
    \begin{eqnarray}
23
   {1\over 2} < \left( \int_{\infty} \mathbf{y} \right) 
        right\rfloor 2^{-17 \lfloor x \rfloor - \mathrm{mod}(\lfloor y\
        rfloor, 17)},2\right)\right\rfloor,
24
   \end{eqnarray}
25
26
    \begin{eqnarray}
27
    | \text{zeta(x)^3} \text{zeta(x+iy)^4} \text{zeta(x+2iy)} | =
   \ensuremath{\mbox{ \ exp\sum_{n,p}\frac{3+4\cos(ny\log p) +\cos (2ny\log p)}{np^{nx}}\ge 1}
28
   \end{eqnarray}
```


B2 Notations

642

643

644

645

648

649

650

651

652

653

654

655

In order to use the standardized notation, the user is highly suggested to see the ISO 80000-2 standard [ISO, 2009]. The following were taken from <code>isomath-test.tex</code>.

Math alphabets

If there are other symbols in place of Greek letters in a math alphabet, it uses T1 or OT1 font encoding instead of OML.

$$\begin{array}{ll} \text{mathnormal} & A,B,\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,\alpha,\beta,\pi,\nu,\omega,v,w,0,1,9\\ \text{mathit} & A,B,\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,f\!f,f\!i,\beta,\ °,!,v,w,0,1,9\\ \text{mathrm} & A,B,\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,f\!f,f\!i,\beta,\ °,!,v,w,0,1,9\\ \text{mathbf} & \mathbf{A},\mathbf{B},\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,f\!f,f\!i,\beta,\ °,!,v,w,0,1,9\\ \text{mathsf} & A,B,\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,f\!f,f\!i,\beta,\ °,!,v,w,0,1,9\\ \text{mathtt} & A,B,\Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,\uparrow,\downarrow,\beta,\ °,!,v,w,0,1,9 \end{array}$$

New alphabets bold-italic, sans-serif-italic, and sans-serif-bold-italic.

```
mathbfit A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, v, w, o, 1, 9 mathsfit A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, v, w, o, 1, 9 mathsfbfit A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, v, w, o, 1, 9
```

Do the math alphabets match?

 $axlpha\omega axlpha\omega$ ax $lpha\omega$ $TC\Theta\Gamma TC\Theta\Gamma$

Vector symbols

Alphabetic symbols for vectors are boldface italic, $\lambda = e_1 \cdot a$, while numeric ones (e.g. the zero vector) are bold upright, a + 0 = a.

Matrix symbols

Symbols for matrices are boldface italic, too: $\Lambda = E \cdot A$.

¹However, matrix symbols are usually capital letters whereas vectors are small ones. Exceptions are physical quantities like the force vector F or the electrical field E.

656 Tensor symbols

657

658

Symbols for tensors are sans-serif bold italic,

$$\boldsymbol{\alpha} = \boldsymbol{e} \cdot \boldsymbol{a} \iff \alpha_{ijl} = e_{ijk} \cdot a_{kl}.$$

The permittivity tensor describes the coupling of electric field and displacement:

$$oldsymbol{D} = \epsilon_0 oldsymbol{\epsilon}_{\mathrm{r}} oldsymbol{E}$$

659 **Bold math version**

The "bold" math version is selected with the commands \boldmath or \mathversion{bold}

mathnormal $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, v, w, 0, 1, 9$

mathit $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, ff, fi, \beta, ^{\circ}, !, v, w, 0, 1, 9$

mathrm $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, ff, fi, \beta, ^{\circ}, !, v, w, 0, 1, 9$

mathbf $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, ff, fi, \beta, ^{\circ}, !, v, w, 0, 1, 9$

mathsf $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, ff, fi, \beta, ^{\circ}, !, v, w, 0, 1, 9$

mathtt A, B, Γ , Δ , Θ , Λ , Ξ , Π , Σ , Φ , Ψ , Ω , \uparrow , \downarrow , \mathfrak{B} , $^{\circ}$, !, v, w, 0, 1, 9

New alphabets bold-italic, sans-serif-italic, and sans-serif-bold-italic.

mathbfit $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, v, w, o, 1, 9$

mathsfit $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, \nu, w, 0, 1, 9$

mathsfbfit $A, B, \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Phi, \Psi, \Omega, \alpha, \beta, \pi, \nu, \omega, \nu, w, 0, 1, 9$

Do the math alphabets match?

 $ax\alpha\omega ax\alpha\omega ax\alpha\omega$ $TC\Theta\Gamma TC\Theta\Gamma TC\Theta\Gamma$

664 Vector symbols

661

663

665

666

667

668

669

671

672

Alphabetic symbols for vectors are boldface italic, $\lambda = e_1 \cdot a$, while numeric ones (e.g. the zero vector) are bold upright, a + 0 = a.

Matrix symbols

Symbols for matrices are boldface italic, too: $\Lambda = E \cdot A$.

Tensor symbols

Symbols for tensors are sans-serif bold italic,

$$lpha = e \cdot a \iff lpha_{ijl} = e_{ijk} \cdot a_{kl}.$$

The permittivity tensor describes the coupling of electric field and displacement:

$$D = \epsilon_0 \epsilon_r E$$

 $\overline{}^2$ However, matrix symbols are usually capital letters whereas vectors are small ones. Exceptions are physical quantities like the force vector F or the electrical field E.

The verbatim LaTeX code of Sec. B2 is in List. B.2.

Listing B.2: Sample LATEX code for notations usage

```
674
675
          % A teststring with Latin and Greek letters::
676
          \newcommand{\teststring}{%
677
          % capital Latin letters
678
       4
          % A,B,C,
       5
679
          А,В,
680
       6
          % capital Greek letters
681
          % \Gamma, \Delta, \Theta, \Lambda, \Xi, \Pi, \Sigma, \Upsilon, \Phi, \Psi,
          \Gamma,\Delta,\Theta,\Lambda,\Xi,\Pi,\Sigma,\Phi,\Psi,\Omega,
682
683
       9
          % small Greek letters
684
       10
          \alpha,\beta,\pi,\nu,\omega,
685
          \% small Latin letters:
       11
686
       12
          % compare \nu, \nu, \nu, and \nu
687
       13
688
      14
          % digits
689
      15
          0,1,9
690
      16
691
      17
692
      18
693
      19
          \subsection * { Math alphabets }
694
      20
695
      21
          If there are other symbols in place of Greek letters in a math
696
      22
          alphabet, it uses T1 or OT1 font encoding instead of OML.
697
      23
698
      24
          \begin{eqnarray*}
699
          \mbox{mathnormal} & & \teststring \\
          \mbox{mathit} & & \mathit{\teststring}\\
700
701
      27
          \mbox{mathrm} & & \mathrm{\teststring}\\
702
      28
          \mbox{mathsf} & & \mathsf{\teststring}\\
mbox{mathtt} & & \mathtt{\teststring}
703
      29
704
      30
705
      31
          \end{eqnarray*}
           New alphabets bold-italic, sans-serif-italic, and sans-serif-bold-
706
      32
707
               italic.
708
          \begin{eqnarray*}
709
      34
          \mbox{mathbfit}
                                & & \mathbfit{\teststring}\\
710
      35
          \mbox{mathsfit}
                                & & \mathsfit{\teststring}\\
      36
          \mbox{mathsfbfit} & & \mathsfbfit{\teststring}
711
712
      37
          \end{eqnarray*}
713
      38
714
      39
          Do the math alphabets match?
715
      40
716
       41
717
          \mathnormal {a x \alpha \omega}
718
      43
          \mathbfit
                        {a x \alpha \omega}
719
       44
          \mathsfbfit{a x \alpha \omega}
720
      45
          \quad
721
       46
          \mathsfbfit{T C \Theta \Gamma}
722
       47
           \mathbfit
                         {T C \Theta \Gamma}
          \mathnormal {T C \Theta \Gamma}
723
      48
724
      49
725
      50
726
      51
          \subsection *{ Vector symbols}
727
      52
```

De La Salle University

```
728
          Alphabetic symbols for vectors are boldface italic,
729
          730
      55
          while numeric ones (e.g. the zero vector) are bold upright,
          \vec{a} + \vec{0} = \vec{a}.
731
      56
732
      57
733
          \subsection * { Matrix symbols }
734
      59
      60
735
          Symbols for matrices are boldface italic, too: %
736
      61
          \footnote{However, matrix symbols are usually capital letters whereas
737
              vectors
738
          are small ones. Exceptions are physical quantities like the force
739
      63
          vector $\vec{F}$ or the electrical field $\vec{E}$.%
740
      64
741
      65
          $\matrixsym{\Lambda}=\matrixsym{E}\cdot\matrixsym{A}.$
742
743
      67
744
          \subsection*{Tensor symbols}
      68
745
      69
746
       70
          Symbols for tensors are sans-serif bold italic,
747
      71
748
      72
          \[
749
              \tensorsym{\alpha} = \tensorsym{e}\cdot\tensorsym{a}
      73
750
      74
              \quad \Longleftrightarrow \quad
751
      75
              \alpha_{ijl} = e_{ijk} \cdot a_{kl}.
          \]
752
      76
753
      77
754
      78
755
      79
          The permittivity tensor describes the coupling of electric field and
756
      80
          displacement: \[
          \label{lem:constraint} $$\operatorname{D}=\operatorname{O}\times _{0}\times _{0}\times _{0}. $$
757
      81
758
      82
759
      83
760
      84
761
      85
          \newpage
762
      86
          \subsection * { Bold math version }
763
      87
764
          The ''bold'' math version is selected with the commands
      88
765
      89
          \verb+\boldmath+ or \verb+\mathversion{bold}+
766
      90
767
      91
          {\boldmath
768
      92
              \begin{eqnarray*}
769
      93
              \mbox{mathnormal} & & \teststring \\
              \mbox{mathit} & & \mathit{\teststring}\\
770
      94
771
      95
              \mbox{mathrm} & & \mathrm{\teststring}\\
              \mbox{mathbf} & & \mathbf{\teststring}\\
mbox{mathsf} & & \mathsf{\teststring}\\
772
      96
773
      97
774
      98
              \mbox{mathtt} &
                               & \mathtt{\teststring}
775
      99
              \end{eqnarray*}
776
      100
               New alphabets bold-italic, sans-serif-italic, and sans-serif-bold-
777
                   italic.
778
      101
              \begin{eqnarray*}
                                     & \mathbfit{\teststring}\\
779
      102
              \mbox{mathbfit}
                                    &
      103
780
              \mbox{mathsfit}
                                    & & \mathsfit{\teststring}\\
781
      104
              \mbox{mathsfbfit} & & \mathsfbfit{\teststring}
782
      105
              \end{eqnarray*}
783
      106
784
      107
              Do the math alphabets match?
```

De La Salle University

```
785
      108
786
      109
             \mathnormal {a x \alpha \omega}
787
      110
                           {a x \alpha \omega}
788
      111
             \mathbfit
789
             \mathsfbfit{a x \alpha \omega}
      112
790
      113
             \quad
             \mathsfbfit{T C \Theta \Gamma}
791
      114
792
                           {T C \Theta \Gamma}
      115
             \mathbfit
793
      116
             \mathnormal {T C \Theta \Gamma}
794
      117
795
      118
796
      119
             \subsection*{Vector symbols}
797
      120
798
      121
             Alphabetic symbols for vectors are boldface italic,
799
      122
             \ \ \vec{\lambda} = \vec{e}_{1} \cdot\vec{a}$,
800
      123
             while numeric ones (e.g. the zero vector) are bold upright,
801
      124
             \ \ \vec{a} + \vec{0} = \vec{a}$.
802
      125
803
      126
804
      127
805
      128
806
      129
             \subsection *{Matrix symbols}
807
      130
808
      131
             Symbols for matrices are boldface italic, too: %
      132
809
             \footnote{However, matrix symbols are usually capital letters whereas
810
811
      133
             are small ones. Exceptions are physical quantities like the force
812
      134
             vector $\vec{F}$ or the electrical field $\vec{E}$.%
813
      135
814
      136
             $\matrixsym{\Lambda}=\matrixsym{E}\cdot\matrixsym{A}.$
815
      137
816
      138
817
      139
             \subsection*{Tensor symbols}
      140
818
819
      141
             Symbols for tensors are sans-serif bold italic,
820
      142
821
      143
             \[
                  \tensorsym{\alpha} = \tensorsym{e}\cdot\tensorsym{a}
822
      144
823
      145
                  \quad \Longleftrightarrow \quad
824
      146
                  \alpha_{ijl} = e_{ijk} \cdot a_{kl}.
825
      147
826
      148
827
      149
             The permittivity tensor describes the coupling of electric field and
      150
828
             displacement: \[
829
      151
             \c {D}=\ensuremath{\c D}=\ensuremath{\c C}\
      152
839
```


B3 Abbreviation

This section shows examples of the use of LaTeX commands in conjunction with the items that are in the abbreviation.tex and in the glossary.tex files. Please see List. B.3. To lessen the LaTeX compilation time, it is suggested that you use \acr{} only for the first occurrence of the word to be abbreviated.

Again please see List. B.3. Here is an example of first use: alternating current (ac). Next use: ac. Full: alternating current (ac). Here's an acronym referenced using \acr: hyper-text markup language (html). And here it is again: html. If you are used to the glossaries package, note the difference in using \gls: hyper-text markup language (html). And again (no difference): hyper-text markup language (html). Here are some more entries:

- extensible markup language (xml) and cascading style sheet (css).
- Next use: xml and css.
- Full form: extensible markup language (xml) and cascading style sheet (css).
- Reset again.
- Start with a capital. Hyper-text markup language (html).
- Next: Html. Full: Hyper-text markup language (html).
- Prefer capitals? Extensible markup language (XML). Next: XML. Full: extensible markup language (XML).
- Prefer small-caps? Cascading style sheet (CSS). Next: CSS. Full: cascading style sheet (CSS).
- Resetting all acronyms.
- Here are the acronyms again:
- Hyper-text markup language (HTML), extensible markup language (XML) and cascading style sheet (CSS).
- Next use: HTML, XML and CSS.
- Full form: Hyper-text markup language (HTML), extensible markup language (XML) and cascading style sheet (CSS).

862

• Provide your own link text: style sheet.

The verbatim LaTeX code of Sec. B3 is in List. B.3.

Listing B.3: Sample LATEX code for abbreviations usage

```
Again please see List.~\ref{lst:abbrv}. Here is an example of first use:
       \acr{ac}. Next use: \acr{ac}. Full: \gls{ac}. Here's an acronym
      referenced using \verb | \acr |: \acr{html}. And here it is again: \
      acr{html}. If you are used to the \texttt{glossaries} package, note
      difference): \gls{html}. Here are some more entries:
   \begin{itemize}
5
      \item \acr{xml} and \acr{css}.
7
      \item Next use: \acr{xml} and \acr{css}.
8
      \item Full form: \gls{xml} and \gls{css}.
9
10
      \item Reset again. \glsresetall{abbreviation}
11
12
      \item Start with a capital. \Acr{html}.
13
14
15
      \item Next: \Acr{html}. Full: \Gls{html}.
16
      \item Prefer capitals? \renewcommand{\acronymfont}[1]{\
17
         MakeTextUppercase{#1}} \Acr{xml}. Next: \acr{xml}. Full: \gls{xml}
18
      \item Prefer small-caps? \renewcommand {\acronymfont}[1] {\textsc{#1}}
19
         \Acr{css}. Next: \acr{css}. Full: \gls{css}.
20
21
      \item Resetting all acronyms.\glsresetall{abbreviation}
22
23
      \item Here are the acronyms again:
24
25
      \item \Acr{html}, \acr{xml} and \acr{css}.
26
      \item Next use: \Acr{html}, \acr{xml} and \acr{css}.
27
28
      \item Full form: \Gls{html}, \gls{xml} and \gls{css}.
29
      \item Provide your own link text: \glslink{[textbf]css}{style}
31
32
   \end{itemize}
```


B4 Glossary

This section shows examples of the use of \gls{} commands in conjunction with the items that are in the glossary.tex and notation.tex files. Note that entries in notation.tex are prefixed with "not: "label (see List. B.4).

Please make sure that the entries in notation.tex are those that are referenced in the LATEX document files used by this Thesis Proposal. Please comment out unused notations and be careful with the commas and brackets in notation.tex.

- Matrices are usually denoted by a bold capital letter, such as A. The matrix's (i, j)th element is usually denoted a_{ij} . Matrix I is the identity matrix.
- ullet A set, denoted as $\mathcal S$, is a collection of objects.
- ullet The universal set, denoted as ${\cal U}$, is the set of everything.
- The empty set, denoted as \emptyset , contains no elements.
- The cardinality of a set, denoted as |S|, is the number of elements in the set.

The verbatim LATEX code for the part of Sec. B4 is in List. B.4.

Listing B.4: Sample LATEX code for glossary and notations usage

```
\begin{itemize}
2
3
       \item \Glspl{matrix} are usually denoted by a bold capital letter,
           such as \mathbf{A}, The \left[ \mathbf{A}\right]. The \left[ \mathbf{A}\right], s \left( \mathbf{A}\right), the element is
           usually denoted a_{ij}. \Gls{matrix} $\mathbf{I}$ is the
           identity \gls{matrix}.
4
       \item A set, denoted as \gls{not:set}, is a collection of objects.
6
       \item The universal set, denoted as \gls{not:universalSet}, is the
           set of everything.
8
       \item The empty set, denoted as \gls{not:emptySet}, contains no
9
           elements.
10
       \item The cardinality of a set, denoted as \gls{not:cardinality}, is
11
           the number of elements in the set.
12
    \end{enumerate}
```

871 872

863

864

866

867

868

869

870

873

874

875 876

B5 Figure 877

878

879

This section shows several ways of placing figures. PDFLATEX compatible files are PDF, PNG, and JPG. Please see the figure subdirectory.

A quadrilateral image example.

Fig. B.1 is a gray box enclosed by a dark border. List. B.5 shows the corresponding LATEX code.

Listing B.5: Sample LATEX code for a single figure

```
begin{figure}[!htbp]

centering

includegraphics[width=0.5\textwidth]{example}

caption{A quadrilateral image example.}

label{fig:example}

end{figure}

cleardoublepage

Fig.~\ref{fig:example} is a gray box enclosed by a dark border. List.~\

ref{lst:onefig} shows the corresponding \LaTeX \ code.

end{figure}
```


(a) A sub-figure in the top row.

(b) A sub-figure in the middle row.

Listing B.6: Sample LATEX code for three figures on top of each other

```
\begin{figure}[!htbp]
   \centering
   \subbottom[A sub-figure in the top row.]{
   \includegraphics[width=0.35\textwidth]{example}
   \label{fig:top}
   \subbottom[A sub-figure in the middle row.]{
   \includegraphics[width=0.35\textwidth]{example}
10
   \label{fig:mid}
11
   \vertvfill
12
   \subbottom[A sub-figure in the bottom row.]{
13
14
   \includegraphics[width=0.35\textwidth]{example}
15
   \label{fig:botm}
16
17
   \caption{Figures on top of each other}
   \label{fig:tmb}
18
   \end{figure}
```


Loren jumu dake at anet, consecteur a figliosing dit. Us jurus cili, vesilus inu si, pheeret ae, anjiquieni, vilio, Sile. Conditudentu gravida mentioni in silenta parida propriatori prop

(a) A sub-figure in the upper-left corner.

(b) A sub-figure in the upper-right corner.

Loreni ipsum dobor sit amet, consecteture alipiscing elit. Ut purus elit, vestilionhun ut, phecrat ac, adipiscing vitae, felia. Cumbhur dictum gavatia mauris, but an elita el

(c) A sub-figure in the lower-left corner.

(d) A sub-figure in the lower-right corner

Fig. B.3 Four figures in each corner. See List. B.7 for the corresponding LATEX code.

Listing B.7: Sample LATEX code for the four figures

```
\begin{figure}[!htbp]
   \centering
   \subbottom[A sub-figure in the upper-left corner.]{
   \includegraphics[width=0.45\textwidth]{example}
   \label{fig:upprleft}
   \subbottom[A sub-figure in the upper-right corner.]{
   \includegraphics[width=0.45\textwidth]{example}
10
   \label{fig:uppright}
11
12
   \vfill
   \subbottom[A sub-figure in the lower-left corner.]{
13
   \includegraphics[width=0.45\textwidth]{example}
   \label{fig:lowerleft}
15
16
17
   \hfill
   \subbottom[A sub-figure in the lower-right corner]{
18
   \includegraphics[width=0.45\textwidth]{example}
19
20
   \label{fig:lowright}
21
   \verb|\caption{Four figures in each corner. See List.~\ref{lst:fourfigs} for
       the corresponding \LaTeX \ code.}
   \label{fig:fourfig}
  \end{figure}
```


883

B6 Table

This section shows an example of placing a table (a long one). Table B.1 are the triples.

TABLE B.1 FEASIBLE TRIPLES FOR HIGHLY VARIABLE GRID

Time (s)	Triple chosen	Other feasible triples
0	(1, 11, 13725)	(1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
2745	(1, 12, 10980)	(1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)
5490	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
8235	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
10980	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
13725	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
16470	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
19215	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
21960	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
24705	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
27450	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
30195	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
32940	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
35685	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
38430	(1, 13, 10980)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
41175	(1, 12, 13725)	(1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
43920	(1, 13, 10980)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
46665	(2, 2, 2745)	(2,3,0),(3,1,0)
49410	(2, 2, 2745)	(2,3,0),(3,1,0)
52155	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
54900	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
57645	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
60390	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
63135	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
65880	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
68625	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
71370	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
74115	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
76860	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
79605	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
82350	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
85095	(1, 12, 13725)	(1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
87840	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
90585	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
93330	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0) (2, 2, 2745), (2, 3, 0), (3, 1, 0)
96075	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
98820	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
101565	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0) (2, 2, 2745), (2, 3, 0), (3, 1, 0)
104310	(1, 13, 15725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
107055	(1, 13, 10470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
107033	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
112545	(1, 13, 13723)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
115290	(1, 12, 10470)	(1, 13, 13723), (2, 2, 2743), (2, 3, 0), (3, 1, 0) (2, 2, 2745), (2, 3, 0), (3, 1, 0)
118035	(1, 13, 10470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
120780	(1, 13, 15723)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
123525	(1, 13, 10470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0) (2, 2, 2745), (2, 3, 0), (3, 1, 0)
12323	(1, 13, 13/23)	(2, 2, 27+3), (2, 3, 0), (3, 1, 0) Continued on next page

Continued on next page

Continued from previous page

Time (s)	Triple chosen	Other feasible triples
126270	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
129015	(2, 2, 2745)	(2, 3, 0), (3, 1, 0)
131760	(2, 2, 2745)	(2,3,0),(3,1,0)
134505	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
137250	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
139995	(2, 2, 2745)	(2,3,0),(3,1,0)
142740	(2, 2, 2745)	(2,3,0),(3,1,0)
145485	(1, 12, 16470)	(1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 0)
148230	(2, 2, 2745)	(2,3,0),(3,1,0)
150975	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
153720	(1, 12, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
156465	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
159210	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
161955	(1, 13, 16470)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)
164700	(1, 13, 13725)	(2, 2, 2745), (2, 3, 0), (3, 1, 0)

884

List. B.8 shows the corresponding LATEX code.

Listing B.8: Sample LATEX code for making typical table environment

```
886
          \begin{center}
887
888
       2
          {\scriptsize
          \beta_{0.1\textwidth} p_{0.1\textwidth} p_{0.2\textwidth} p_{0.5\textwidth}
889
890
          \caption{Feasible triples for highly variable grid} \label{tab:triple_
891
              grid} \\
892
893
          \hline
          \hline
894
          \textbf{Time (s)} &
895
       7
896
       8
          \textbf{Triple chosen} &
897
          \textbf{Other feasible triples} \\
       9
898
      10
          \hline
899
      11
          \endfirsthead
          \multicolumn{3}{c}%
900
      12
901
          {\textit{Continued from previous page}} \\
      13
902
      14
          \hline
903
      15
          \hline
904
      16
          \textbf{Time (s)} &
905
      17
          \textbf{Triple chosen} &
906
      18
          \textbf{Other feasible triples} \\
907
      19
          \hline
908
      20
          \endhead
      21
909
          \hline
910
      22
          \multicolumn{3}{r}{\textit{Continued on next page}} \\
911
      23
          \endfoot
912
      24
          \hline
913
      25
          \endlastfoot
914
      26
          \hline
915
      27
          0 & (1, 11, 13725) & (1, 12, 10980), (1, 13, 8235), (2, 2, 0), (3, 1, 0)
916
      28
917
          2745 & (1, 12, 10980) & (1, 13, 8235), (2, 2, 0), (2, 3, 0), (3, 1, 0)
      29
918
919
          5490 & (1, 12, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
920
921
      31
          8235 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
922
923
      32
          10980 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
924
               0) \\
925
          13725 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1, 1)
               0) \\
926
          16470 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
927
      34
          19215 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
928
929
               0) \\
930
          21960 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
               0) \\
931
          24705 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
932
      37
               0) \\
933
          27450 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
934
      38
               0) \\
935
936
      39
          30195 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
          32940 \& (1, 13, 16470) \& (2, 2, 2745), (2, 3, 0), (3, 1, 0) \setminus
937
      40
938
          35685 \& (1, 13, 13725) \& (2, 2, 2745), (2, 3, 0), (3, 1, 0) \setminus
939
      42 | 38430 & (1, 13, 10980) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
```

De La Salle University

```
41175 & (1, 12, 13725) & (1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1,
940
941
           43920 & (1, 13, 10980) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
942
           46665 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
943
       45
944
           49410 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
       46
945
           52155 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3, 1,
946
                0) \\
           54900 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
947
       48
948
       49
           57645 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0)
949
       50
           60390 & (1, 12, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0)
                                                                               //
           63135 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0)
950
951
       52
           65880 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0)
           68625 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
952
       53
           71370 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
953
954
           74115 & (1, 12, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
955
           76860 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
           79605 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \
956
       57
           82350 & (1, 12, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
85095 & (1, 12, 13725) & (1, 13, 10980), (2, 2, 2745), (2, 3, 0), (3, 1,
957
       58
958
959
           87840 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
960
           90585 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
961
       61
962
           93330 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \
963
           96075 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
           98820 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
964
       64
           101565 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
965
       65
966
       66
           104310 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
           107055 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
109800 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
967
       67
968
       68
           112545 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3,
969
       69
               1, 0) \\
970
           115290 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
971
972
           118035 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
           120780 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \
973
           123525 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
126270 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3,
974
       73
975
976
               1, 0)
                     11
977
           129015 &
                     (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
           131760 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
978
979
           134505 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
       77
980
       78
           137250 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
981
           139995 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
           142740 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
982
       80
983
       81
           145485 & (1, 12, 16470) & (1, 13, 13725), (2, 2, 2745), (2, 3, 0), (3,
984
           148230 & (2, 2, 2745) & (2, 3, 0), (3, 1, 0) \\
150975 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
985
986
       83
           153720 & (1, 12, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
987
988
           156465 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
989
           159210 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
990
           161955 & (1, 13, 16470) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
           164700 & (1, 13, 13725) & (2, 2, 2745), (2, 3, 0), (3, 1, 0) \\
991
992
       89
           \end{tabularx}
993
       90
           \end{center}
994
```


B7 Algorithm or Pseudocode Listing

997 998 999 Table B.2 shows an example pseudocode. Note that if the pseudocode exceeds one page, it can mean that its implementation is not modular. List. B.9 shows the corresponding LATEX code.

Table B.2 Calculation of $y = x^n$

Input(s):

n : nth power; $n \in \mathbb{Z}^+$ x : base value; $x \in \mathbb{R}^+$

Output(s):

y: result; $y \in \mathbb{R}^+$

Require: $n \ge 0 \lor x \ne 0$

Ensure: $y = x^n$

- 1: $y \Leftarrow 1$
- 2: if n < 0 then
- 3: $X \Leftarrow 1/x$
- 4: $N \Leftarrow -n$
- 5: else
- 6: $X \Leftarrow x$
- 7: $N \Leftarrow n$
- 8: **end if**
- 9: while $N \neq 0$ do
- 10: **if** N is even **then**
- 11: $X \Leftarrow X \times X$ 12: $N \Leftarrow N/2$
- 13: **else** $\{N \text{ is odd}\}$
- 14: $y \Leftarrow y \times X$
- 15: $N \Leftarrow N 1$
- 16: **end if**
- 17: end while

Listing B.9: Sample LATEX code for algorithm or pseudocode listing usage

```
\begin{table}[!htbp]
  1
  2
                      \caption{Calculation of $y = x^n$}
  3
                      \label{tab:calcxn}
                      {\footnotesize
  4
                      \begin{tabular}{111}
  5
                      \hline
  7
                      \hline
                      {\bfseries Input(s):} & & \\
  8
  9
                      n & : & nth power; n \in \mathbb{Z}^{+}
10
                      x & : & base value; x \in \mathbb{R}^{+}
11
12
                      {\bfseries Output(s):} & & \\
                      y & : & result; y \in \mathbb{R}^{+}
13
14
                      \hline
15
                      \hline
16
17
                      \end{tabular}
18
19
                      \begin{algorithmic}[1]
20
                      {\normalfont} \{ \normalfont 
                                \REQUIRE $n \geq 0 \vee x \neq 0$
21
                                \ENSURE $y = x^n$
22
                               \STATE $y \Leftarrow 1$
23
                                \IF { n < 0 }
24
25
                                                     \STATE $X \Leftarrow 1 / x$
                                                     \STATE $N \Leftarrow -n$
26
27
                                \ELSE
28
                                                     \STATE $X \Leftarrow x$
29
                                                     \STATE $N \Leftarrow n$
                                \ENDIF
30
                                \WHILE{$N \neq 0$}
31
32
                                                     \IF{$N$ is even}
33
                                                                         \STATE $X \Leftarrow X \times X$
                                                                        \STATE $N \Leftarrow N / 2$
34
35
                                                     \ELSE[$N$ is odd]
36
                                                                         \STATE $y \Leftarrow y \times X$
37
                                                                         \STATE $N \Leftarrow N - 1$
38
                                                    \ENDIF
                                \ENDWHILE
39
40
41
                      \end{algorithmic}
            \end{table}
```


B8 Program/Code Listing

 List. B.10 is a program listing of a C code for computing Fibonacci numbers by calling the actual code. Please see the code subdirectory.

Listing B.10: Computing Fibonacci numbers in C (./code/fibo.c)

```
/* fibo.c -- It prints out the first N Fibonacci
2
                  numbers.
3
   #include <stdio.h>
7
   int main(void) {
8
        int n;
                       /* Number of fibonacci numbers we will print */
9
                       /* Index of fibonacci number to be printed next */
        int current; /* Value of the (i)th fibonacci number */
10
11
        int next; /* Value of the (i+1)th fibonacci number */
12
        int twoaway; /* Value of the (i+2)th fibonacci number */
13
        printf("HowumanyuFibonacciunumbersudouyouuwantutoucompute?u");
14
        scanf("%d", &n);
15
16
        if (n \le 0)
           printf("The\sqcupnumber\sqcupshould\sqcupbe\sqcuppositive.\setminusn");
17
18
        else {
          printf("\n\n\tI_\tuFibonacci(I)\n\t==========\n");
19
20
          next = current = 1;
21
          for (i=1; i<=n; i++) {
22
       printf("\t^d_{\sqcup}\t^d_{\sqcup}d\n", i, current);
       twoaway = current+next;
current = next;
23
24
               = twoaway;
25
       next
27
   }
28
29
30
   /* The output from a run of this program was:
31
32
   How many Fibonacci numbers do you want to compute? 9
33
34
           Fibonacci(I)
35
36
37
       2
             1
38
       3
             2
39
             3
       4
40
       5
             5
41
       6
             8
42
       7
             13
43
       8
            21
44
45
46
```


List. B.11 shows the corresponding LATEX code.

Listing B.11: Sample LaTeX code for program listing

List.~\ref{lst:fib_c} is a program listing of a C code for computing Fibonacci numbers by calling the actual code. Please see the \verb| code | subdirectory.

1004 B9 Referencing

Referencing chapters: This appendix is in Appendix B, which is about examples in using various LATEX commands.

Referencing sections: This section is Sec. B9, which shows how to refer to the locations of various labels that have been placed in the LaTeX files. List. B.12 shows the corresponding LaTeX code.

Listing B.12: Sample LaTeX code for referencing sections

Referencing sections: This section is Sec.~\ref{sec:ref}, which shows how to refer to the locations of various labels that have been placed in the \LaTeX \ files. List.~\ref{lst:refsec} shows the corresponding \LaTeX \ code.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

B9.1 A subsection 1019

1020

1021

Referencing subsections: This section is Sec. B9.1, which shows how to refer to a subsection. List. B.13 shows the corresponding LATEX code.

Listing B.13: Sample LATEX code for referencing subsections

Referencing subsections: This section is Sec.~\ref{sec:subsec}, which shows how to refer to a subsection. List. \(^\ref{\lst:refsub}\) shows the corresponding \LaTeX \ code.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. 1022 Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec 1023 1024 1025 1026 1027 1028 1029 1030

ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

B9.1.1 A sub-subsection

Referencing sub-subsections: This section is Sec. B9.1.1, which shows how to refer to a sub-subsection. List. B.14 shows the corresponding LaTeX code.

Listing B.14: Sample LATEX code for referencing sub-subsections

Referencing sub-subsections: This section is Sec. \ref{sec:subsubsec},
 which shows how to refer to a sub-subsection. List. \ref{lst:
 refsubsub} shows the corresponding \LaTeX \ code.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Etiam lobortis facilisis sem. Nullam nec mi et neque pharetra sollicitudin. Praesent imperdiet mi nec ante. Donec ullamcorper, felis non sodales commodo, lectus velit ultrices augue, a dignissim nibh lectus placerat pede. Vivamus nunc nunc, molestie ut, ultricies vel, semper in, velit. Ut porttitor. Praesent in sapien. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Duis fringilla tristique neque. Sed interdum libero ut metus. Pellentesque placerat. Nam rutrum augue a leo. Morbi sed elit sit amet ante lobortis sollicitudin. Praesent blandit blandit mauris. Praesent lectus tellus, aliquet aliquam, luctus a, egestas a, turpis. Mauris lacinia lorem sit amet ipsum. Nunc quis urna dictum turpis accumsan semper.

B10 Index

1043

1044

1045

1046

1047

1048

1049

1050

1051

For key words or topics that are expected (or the user would like) to appear in the Index, use index{key}, where key is an example keyword to appear in the Index. For example, Fredholm integral and Fourier operator of the following paragraph are in the Index.

If we make a very large matrix with complex exponentials in the rows (i.e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the Fredholm integral equation of the 2nd kind, namely the Fourier operator that defines the continuous Fourier transform.

List. B.15 is a program listing of the above-mentioned paragraph.

Listing B.15: Sample LATEX code for Index usage

If we make a very large matrix with complex exponentials in the rows (i. e., cosine real parts and sine imaginary parts), and increase the resolution without bound, we approach the kernel of the \index{ Fredholm integral} Fredholm integral equation of the 2nd kind, namely the \index{Fourier} Fourier operator that defines the continuous Fourier transform.

1054

1055 1056

B11 Adding Relevant PDF Pages (e.g. Standards, Datasheets, Specification Sheets, Application Notes, etc.)

Selected PDF pages can be added (see List. B.16), but note that the options must be tweaked. See the manual of pdfpages for other options.

Listing B.16: Sample LATEX code for including PDF pages

```
1 \includepdf[pages={8-10},%
2 offset=3.5mm -10mm,%
3 scale=0.73,%
4 frame]
5 {./reference/Xilinx2015-UltraScaleArchitectureOverview.pdf}
```


EXILINX.

UltraScale Architecture and Product Overview

Virtex UltraScale FPGA Feature Summary

Table 6: Virtex UltraScale FPGA Feature Summary

	VU065	VU080	VU095	VU125	VU160	VU190	VU440
Logic Cells	626,640	780,000	940,800	1,253,280	1,621,200	1,879,920	4,432,680
CLB Flip-Flops	716,160	891,424	1,075,200	1,432,320	1,852,800	2,148,480	5,065,920
CLB LUTs	358,080	445,712	537,600	716,160	926,400	1,074,240	2,532,960
Maximum Distributed RAM (Mb)	4.8	3.9	4.8	9.7	12.7	14.5	28.7
Block RAM/FIFO w/ECC (36Kb each)	1,260	1,421	1,728	2,520	3,276	3,780	2,520
Total Block RAM (Mb)	44.3	50.0	60.8	88.6	115.2	132.9	88.6
CMT (1 MMCM, 2 PLLs)	10	16	16	20	30	30	30
I/O DLLs	40	64	64	80	120	120	120
Fractional PLLs	5	8	8	10	15	15	0
Maximum HP I/Os ⁽¹⁾	468	780	780	780	650	650	1,404
Maximum HR I/Os ⁽²⁾	52	52	52	104	52	52	52
DSP Slices	600	672	768	1,200	1,560	1,800	2,880
System Monitor	1	1	1	2	3	3	3
PCIe Gen3 x8	2	4	4	4	5	6	6
150G Interlaken	3	6	6	6	8	9	0
100G Ethernet	3	4	4	6	9	9	3
GTH 16.3Gb/s Transceivers	20	32	32	40	52	60	48
GTY 30.5Gb/s Transceivers	20	32	32	40	52	60	0

- Notes:
 1. HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.
- 2. HR = High-range I/O with support for I/O voltage from 1.2V to 3.3V.

DS890 (v2.1) April 27, 2015 **Preliminary Product Specification** www.xilinx.com

EXILINX.

UltraScale Architecture and Product Overview

Virtex UltraScale Device-Package Combinations and Maximum I/Os

Table 7: Virtex UltraScale Device-Package Combinations and Maximum I/Os

	Package	VU065	VU080	VU095	VU125	VU160	VU190	VU440
Package ⁽¹⁾⁽²⁾⁽³⁾	Dimensions (mm)	HR, HP GTH, GTY						
FFVC1517	40x40	52, 468 20, 20	52, 468 20, 20	52, 468 20, 20				
FFVD1517	40x40		52, 286 32, 32	52, 286 32, 32				
FLVD1517	40x40				52, 286 40, 32			
FFVB1760	42.5x42.5		52, 650 32, 16	52, 650 32, 16				
FLVB1760	42.5x42.5				52, 650 36, 16			
FFVA2104	47.5x47.5		52, 780 28, 24	52, 780 28, 24				
FLVA2104	47.5x47.5				52, 780 28, 24			
FFVB2104	47.5x47.5		52, 650 32, 32	52, 650 32, 32				
FLVB2104	47.5x47.5				52, 650 40, 36			
FLGB2104	47.5x47.5					52, 650 40, 36	52, 650 40, 36	
FFVC2104	47.5x47.5			52, 364 32, 32				
FLVC2104	47.5x47.5				52, 364 40, 40			
FLGC2104	47.5x47.5					52, 364 52, 52	52, 364 52, 52	
FLGB2377	50x50							52, 1248 36, 0
FLGA2577	52.5x52.5						0, 448 60, 60	
FLGA2892	55x55							52, 1404 48, 0

- Go to Ordering Information for package designation details.
 All packages have 1.0mm ball pitch.
 Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale architecture-based devices with the same sequence. The footprint compatible devices within this family are outlined. See the UltraScale Architecture Product Selection Guide for details on inter-family migration.

DS890 (v2.1) April 27, 2015 **Preliminary Product Specification** www.xilinx.com

EXILINX.

UltraScale Architecture and Product Overview

Virtex UltraScale+ FPGA Feature Summary

Table 8: Virtex UltraScale+ FPGA Feature Summary

	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P
Logic Cells	689,640	1,051,010	1,379,280	2,068,920	2,147,040	2,862,720
CLB Flip-Flops	788,160	1,201,154	1,576,320	2,364,480	2,453,760	3,271,680
CLB LUTs	394,080	600,577	788,160	1,182,240	1,226,880	1,635,840
Max. Distributed RAM (Mb)	12.0	18.3	24.1	36.1	34.8	46.4
Block RAM/FIFO w/ECC (36Kb each)	720	1,024	1,440	2,160	2,016	2,688
Block RAM (Mb)	25.3	36.0	50.6	75.9	70.9	94.5
UltraRAM Blocks	320	470	640	960	1,152	1,536
UltraRAM (Mb)	90.0	132.2	180.0	270.0	324.0	432.0
CMTs (1 MMCM and 2 PLLs)	10	20	20	30	12	16
Max. HP I/O(1)	520	832	832	832	624	832
DSP Slices	2,280	3,474	4,560	6,840	8,928	11,904
System Monitor	1	2	2	3	3	4
GTY Transceivers 32.75Gb/s	40	80	80	120	96	128
PCIe Gen3 x16 and Gen4 x8	2	4	4	6	3	4
150G Interlaken	3	4	6	9	9	12
100G Ethernet w/RS-FEC	3	4	6	9	6	8

Virtex UltraScale+ Device-Package Combinations and Maximum I/Os

Table 9: Virtex UltraScale+ Device-Package Combinations and Maximum I/Os

Package (1)(2)(3)	Package	VU3P	VU5P	VU7P	VU9P	VU11P	VU13P
	Dimensions (mm)	HP, GTY	HP, GTY	HP, GTY	HP, GTY	HP, GTY	HP, GTY
FFVC1517	40x40	520, 40					
FLVF1924	45x45					624, 64	
FLVA2104	47.5x47.5		832, 52	832, 52	832, 52		
FHVA2104	52.5x52.5 ⁽⁴⁾						832, 52
FLVB2104	47.5x47.5		702, 76	702, 76	702, 76	624, 76	
FHVB2104	52.5x52.5 ⁽⁴⁾						702, 76
FLVC2104	47.5x47.5		416, 80	416, 80	416, 104	416, 96	
FHVC2104	52.5x52.5 ⁽⁴⁾						416, 104
FLVA2577	52.5x52.5				448, 120	448, 96	448, 128

- 1. Go to Ordering Information for package designation details.
- 2. All packages have 1.0mm ball pitch.
- Packages with the same last letter and number sequence, e.g., A2104, are footprint compatible with all other UltraScale devices with the same sequence. The footprint compatible devices within this family are outlined.
 These 52.5x52.5mm overhang packages have the same PCB ball footprint as the corresponding 47.5x47.5mm packages (i.e., the same last letter and number sequence) and are footprint compatible.

DS890 (v2.1) April 27, 2015 **Preliminary Product Specification** www.xilinx.com

10

^{1.} HP = High-performance I/O with support for I/O voltage from 1.0V to 1.8V.

SILEUM			11 -	. .	•
	De J	La Sa	lle	Univ	ersity
AMIL					J

Appendix C
PUBLICATION LIST AND AWARD

Journal

1063 1. ...

1064 2. ...

Conference

1066 1. ...

1065

1067 2. ...

1068	Others
1000	Ouicis

1069 1. ...

1070 2. ...

1071 Award

1072 1. ...

1073 2. ...

1075

Appendix D VITA

1076 1077 1078

1079

1080

Paul Vince A. Abe is pursuing a Bachelor's Degree in Computer Engineering at De La Salle University-Manila. His role in the group is the Core Researcher. Along with his extensive ability in correlating needed topics in specifying both the strengths and projected weaknesses of the project, he contributes mainly in creating the knowledge pool of the group.

1081

1082

1083

1084

Joanna Katherine U. Mirida is pursuing a Bachelor's Degree in Computer Engineering at De La Salle University-Manila. His role in the group is the Master Programmer. With his adept skills in computer programming, he functions as the brain of the project, as he provides the main idea along with its purpose it serves.

1085 1086

Engineering at De La Salle University-Manila. Her role in the group is to run quality checks. With her keen sight for details, she provides constructive criticisms as to where the group will set rooms for further improvements and necessary corrections from established ideas.

Dan Paulo E. Amado is pursuing a Bachelor's Degree in Computer

1087 1088 1089

	De La Salle University	
	INDEX	
1090 1091	Fourier operator, 51 Fredholm integral, 51	