Yale

New Challenges to International Cooperation: Automation and Climate Change

Carlos Felipe Balcazar

MacMillan Center April, 2024

▶ Leaders, diplomats and other bureaucrats are key political actors.

- ▶ Leaders, diplomats and other bureaucrats are key political actors.
- ▶ Define, guide and execute domestic and int' policy.
 - Quality matters; incentives matter; independence matters.
 - ► Leaders type: hawks/doves. Showing resolve.
 - Bureaucrat types: career and appointees.

	First Stage		
	Queen	Queen	
FBM_{r-1}	239***	168**	
	[.01]	[.033]	
$Sister_{r-1}$.288***	
		[.009]	
Observations	3,586	3,586	
R^2	.302	.515	
Mean of DV	.160	.160	
Standard controls	Y	Y	
Flexible sibling controls		Y	

- ▶ Leaders, diplomats and other bureaucrats are key political actors.
- ▶ Define, guide and execute domestic and int' policy.
 - Quality matters; incentives matter; independence matters.
 - ▶ Leaders type: hawks/doves. Showing resolve.
 - Bureaucrat types: career and appointees.

Variables	In War (1)	In War (2)	In War (3)	In War (4)
Queen	.107**	.130**	.400**	.388**
	[.016]	[.011]	[.039]	[.022]
Observations	3,586	3,586	3,586	3,586
R^2	.439	.460	.399	.437
Mean of DV	.296	.296	.296	.296
Specification	OLS	OLS	IV	IV
Instruments			FBM_{r-1}	FBM _{r-1} , Sister _{r-}
Standard controls	Y	Y	Y	Y
Flexible sibling controls		Y		Y
Kleibergen-Paap F-statistic			9.25	10.32
Montiel-Pflueger effective				
F-statistic				10.37
Montiel-Pflueger 5% critical value				5.35

- ▶ Leaders, diplomats and other bureaucrats are key political actors.
- ▶ Define, guide and execute domestic and int' policy.
 - Quality matters; incentives matter; independence matters.
 - ► Leaders type: hawks/doves. Showing resolve.
 - Bureaucrat types: career and appointees.

- Leaders, diplomats and other bureaucrats are key political actors.
- ▶ Define, guide and execute domestic and int' policy.
 - Quality matters; incentives matter; independence matters.
 - ► Leaders type: hawks/doves. Showing resolve.
 - Bureaucrat types: career and appointees.

Dependent variable	First stage TURNOVER _{i,t} (13)	Reduced form MID ONSET _{i,t}	
		(14)	(15)
CAREER ENTER _{i,t-3}	0.309		0.007
	(0.020)		(0.003
	p = 0.000 0.090		p = 0.035 0.002
POLITICAL ENTER _{i,t-3}	(0.025)		(0.002
	p = 0.000		p = 0.622

- Leaders, diplomats and other bureaucrats are key political actors.
- ▶ Define, guide and execute domestic and int' policy.
 - Quality matters; incentives matter; independence matters.
 - ► Leaders type: hawks/doves. Showing resolve.
 - Bureaucrat types: career and appointees.

- Leaders, diplomats and other bureaucrats are key political actors.
- ▶ Define, guide and execute domestic and int' policy.
 - Quality matters; incentives matter; independence matters.
 - ► Leaders type: hawks/doves. Showing resolve.
 - Bureaucrat types: career and appointees.

- ▶ Leaders, diplomats and other bureaucrats are key political actors.
- ▶ Define, guide and execute domestic and int' policy.
 - Quality matters; incentives matter; independence matters.
 - ► Leaders type: hawks/doves. Showing resolve.
 - Bureaucrat types: career and appointees.
- ► Influence outcomes. (Other examples?)

$$C = \alpha + \beta Y + u,$$

$$Y \equiv C + I.$$

► Cowles Foundation: the regression model is derived from theory.

$$C = \frac{\alpha}{1-\beta} + \frac{\beta}{1-\beta}I + \frac{u}{1-\beta},$$

$$Y = \frac{\alpha}{1-\beta} + \frac{I}{1-\beta} + \frac{u}{1-\beta}.$$

▶ Cowles Foundation: the regression model is derived from theory.

$$C = \alpha + \beta Y + u,$$

$$Y \equiv C + I$$
.

- Cowles Foundation: the regression model is derived from theory.
- ► Selection of instrument should be guided by theory.
 - ▶ What is "exogenous" in the system? Why?
 - ► Different instruments ⇒ different implications. (LATE theorem.)
 - ▶ Who are the compliers? Are they theoretically relevant?

$$C = \alpha + \beta Y + u,$$

$$Y \equiv C + I$$
.

- Cowles Foundation: the regression model is derived from theory.
- Selection of instrument should be guided by theory.
 - ▶ What is "exogenous" in the system? Why?
 - ▶ Different instruments ⇒ different implications. (LATE theorem.)
 - ▶ Who are the compliers? Are they theoretically relevant?

- ► Choice of instrument matters theoretically.
 - ► How do the LATE assumptions relate to the theory?

- Choice of instrument matters theoretically.
 - ▶ How do the LATE assumptions relate to the theory?
- Are there scope conditions implied in LATE estimate?

- Choice of instrument matters theoretically.
 - ▶ How do the LATE assumptions relate to the theory?
- ▶ Are there scope conditions implied in LATE estimate?
- ▶ When are results generalizable and/or transportable?
 - Needs a parsimonious theory.

- ▶ Choice of instrument matters theoretically.
 - ▶ How do the LATE assumptions relate to the theory?
- ▶ Are there scope conditions implied in LATE estimate?
- ▶ When are results generalizable and/or transportable?
 - Needs a parsimonious theory.
- Recall commensurability!

$$Y = X\beta + Z\gamma + \varepsilon,$$

$$X = Z\Pi + V,$$

▶ How big unobserved confounding needs to be to kill results.

▶ How big unobserved confounding needs to be to kill results.

$$Y = X\beta + Z\gamma + \varepsilon,$$

$$X = Z\Pi + V,$$

- ▶ How big unobserved confounding needs to be to kill results.
- Plausibly exogeneity of instrument.

- ▶ How big unobserved confounding needs to be to kill results.
- ▶ Plausibly exogeneity of instrument.

$$Y = X\beta + Z\gamma + \varepsilon,$$

$$X = Z\Pi + V,$$

- ▶ How big unobserved confounding needs to be to kill results.
- ▶ Plausibly exogeneity of instrument.
- ▶ Instrument should be strong (statistically).
 - ▶ 10 is a rule of thumb under homoskedasticity.
 - ► Stock-Yogo critical values increase with complex design.
 - ▶ t-Ratio is an appropriate alternative; bootstrapping can help too.

- ▶ How big unobserved confounding needs to be to kill results.
- Plausibly exogeneity of instrument.
- ▶ Instrument should be strong (statistically).
 - ▶ 10 is a rule of thumb under homoskedasticity.
 - ► Stock-Yogo critical values increase with complex design.
 - ▶ t-Ratio is an appropriate alternative; bootstrapping can help too.

- ▶ How big unobserved confounding needs to be to kill results.
- Plausibly exogeneity of instrument.
- Instrument should be strong (statistically).
 - ▶ 10 is a rule of thumb under homoskedasticity.
 - Stock-Yogo critical values increase with complex design.
 - ▶ t-Ratio is an appropriate alternative; bootstrapping can help too.

Next class...

Presentations!