Shusen Wang

Sarsa versus Q-Learning

- Sarsa is for training action-value function, $Q_{\pi}(s,a)$.
- TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.

Sarsa versus Q-Learning

• Sarsa is for training action-value function, $Q_{\pi}(s,a)$.

• TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.

• Q-learning is for training the optimal action-value function, $Q^*(s,a)$.

Sarsa versus Q-Learning

- Sarsa is for training action-value function, $Q_{\pi}(s, a)$.
- TD target: $y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1})$.

- Q-learning is for training the optimal action-value function, $Q^*(s,a)$.
- TD target: $y_t = r_t + \gamma \cdot \max_a Q^*(s_{t+1}, a)$.

Using One Reward

Using One Reward

Using One Reward

Using Multiple Rewards

Using Multiple Rewards

Identity: $U_t = R_t + \gamma \cdot U_{t+1}$.

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

$$= R_{t+1} + \gamma \cdot U_{t+2}$$

Identity:
$$U_t = R_t + \gamma \cdot (U_{t+1})$$

$$= R_{t+1} + \gamma \cdot U_{t+2}$$

Identity:
$$U_t = R_t + \gamma \cdot (R_{t+1} + \gamma \cdot U_{t+2}).$$

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

$$= R_{t+1} + \gamma \cdot U_{t+2}$$

Identity:
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot U_{t+2}$$
.

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

Identity:
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot U_{t+2}$$
.

Identity:
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot U_{t+3}$$
.

Identity:
$$U_t = R_t + \gamma \cdot U_{t+1}$$
.

Identity:
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot U_{t+2}$$
.

Identity:
$$U_t = R_t + \gamma \cdot R_{t+1} + \gamma^2 \cdot R_{t+2} + \gamma^3 \cdot U_{t+3}$$
.

Identity:
$$U_t = \sum_{i=0}^{m-1} \gamma^i \cdot R_{t+i} + \gamma^m \cdot U_{t+m}$$
.

Identity:
$$U_t = \sum_{i=0}^{m-1} \gamma^i \cdot R_{t+i} + \gamma^m \cdot U_{t+m}$$
.

• *m*-step TD target for **Sarsa**:

$$y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot Q_{\pi}(s_{t+m}, a_{t+m}).$$

Identity:
$$U_t = \sum_{i=0}^{m-1} \gamma^i \cdot R_{t+i} + \gamma^m \cdot U_{t+m}$$
.

• *m*-step TD target for **Sarsa**:

$$y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot Q_{\pi}(s_{t+m}, a_{t+m}).$$

One-step TD target for Sarsa:

$$y_t = r_t + \gamma \cdot Q_{\pi}(s_{t+1}, a_{t+1}).$$

Identity:
$$U_t = \sum_{i=0}^{m-1} \gamma^i \cdot R_{t+i} + \gamma^m \cdot U_{t+m}$$
.

• *m*-step TD target for **Q-learning**:

$$y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot \max_a Q^*(s_{t+m}, a).$$

Identity:
$$U_t = \sum_{i=0}^{m-1} \gamma^i \cdot R_{t+i} + \gamma^m \cdot U_{t+m}$$
.

• *m*-step TD target for **Q-learning**:

$$y_t = \sum_{i=0}^{m-1} \gamma^i \cdot r_{t+i} + \gamma^m \cdot \max_a Q^*(s_{t+m}, a).$$

One-step TD target for Q-learning:

$$y_t = r_t + \gamma \cdot \max_a Q^*(s_{t+1}, a).$$

One-Step versus Multi-Step

- One-step TD target uses only one reward: r_t .
- m-step TD target uses m rewards: $r_t, r_{t+1}, r_{t+2}, \cdots, r_{t+m-1}$.
- If m is suitably tuned, m-step target works better than one-step target [1].

Reference:

1. Hossel et al. Rainbow: combining improvements in deep reinforcement learning. In AAAI, 2018.

Thank you!