Multimedia Data Formats

Sascha Wernegger

June 7, 2016

Compression

- ImageMagick
- JXRLIB

Feature Detectors

- vlfeat
 - SIFT
 - PHOW(DSIFT)
- opencv
 - SURF
 - ORB

Benchmark

VLBENCHMARK

Dataset

Oxford Buildings Dataset

- 5062 images
- compressed loss-less or with minimal loss in JPEG
- collected from Flickr by searching for particular Oxford landmarks
- manually annotated to generate ground truth for 11 different landmarks
- 5 gueries per landmark
- total of 55 queries

Random sampled subsets to limit compression and benchmark speed!

Estimate Compression Ratio

```
s: avg size = 391.659 bytes.

p: avg pixels = 765.969 pixel.

bpp: byte per pixel = 3.

r: avg raw size = p*bpp = 2297908.

e: estimated ratio = r/s = 5.867.
```

Estimated Compression
$$=$$
 (1)

Queries

The query consists of a reference image and 4 query sets:

- good A nice, clear picture of the object
 - ok More than 25% of the object is clearly visible.
- junk Junk Less than 25% of the object is visible, or there are very high levels of occlusion or distortion.

bad Object not present

now similarity

between these image is measured

Generic Local Feature Extractor

Local Feature Frames

- search image for interest points
- define a frame for that point(points, circles, elipses)

Descriptor

compute descriptor using the frame

So we got n frames and n descriptors

Retrieval System

Ranking

- calculate KNN for the every reference descriptor
- vote with descriptor distance for the image
- normalize
- sort images after voting

Recall Precision

Metrics for Measuring Classification Quality

	Gold Class 1	Gold Class 2
Observed Class 1	TP	FP
Observed Class 2	FN	TN

Mean Average Precision

average precision query 1 = (1.0 + 0.67 + 0.5 + 0.44 + 0.5)/5 = 0.62 average precision query 2 = (0.5 + 0.4 + 0.43)/3 = 0.44

mean average precision = (0.62 + 0.44)/2 = 0.53

Mean Average Precision add

How use the four query classes

- good and ok images are relevant
- junk will be ignored
- bad will count as wrong

Results

- plot of mAP over image file size
- plot query precision
- plot prc