CS301 Assignment 1

Ataollah Hosseinzadeh Fard (ID: 28610)

23 October 2022

1 Problem 1

1.1 Part a)

Solved by Master Theorem. $a=2\geq 1, b=2>1, f(n)$ asymptotically positive. $n^{\log_2 2}$ so that $f(n)=\Omega(n^{1+\epsilon})$ which $\epsilon>1$ and $\epsilon=2$ Therefore by the master theorem $T(n)=\Theta(n^3)$

1.2 Part b)

Solved by Master Theorem. $a=7\geq 1, b=2>1, f(n)$ asymptotically positive. $n^{\log_2 7}$ so that $f(n)=O(n^{\log_2 7-\epsilon})$ which $\epsilon>1$ and $\epsilon=2$ Therefore by the master theorem $T(n)=\Theta(n^{\log_2 7})$

1.3 Part c)

Solved by Master Theorem. $a=2\geq 1, b=4>1, f(n)$ asymptotically positive. $n^{\log_4 2}$ so that $f(n)=\Theta(n^{1-\epsilon})$ which $\epsilon>1$ Therefore by the master theorem $T(n)=\Theta(\sqrt{n}\lg n)$

1.4 Part d)

Solved by Iteration Method.

```
\begin{array}{lll} i=1: T(n)=T(n-1)+n & -> & T(n-1)=T(n-2)+n-1 \\ i=2: T(n)=T(n-2)+2n-1 & -> & T(n-2)=T(n-3)+n-2 \\ i=3: T(n)=T(n-3)+3n-3 & -> & T(n-3)=T(n-4)+n-4 \\ i=4: T(n)=T(n-4)+4n-6 & -> & \dots \\ \\ \vdots & \vdots & \vdots & \vdots \\ i=k: T(n)=T(n-k)+kn-\frac{k\times(k-1)}{2} \\ base: n-k=1 & -> & T(n)=T(1)+(n-1)\times n-\frac{(n-1)\times(n-2)}{2} \\ T(n)=T(1)+n^2)-n-\frac{n^2}{2}+\frac{3n}{2} & -> & T(n)=\Theta(n^2) \end{array}
```

2 Problem 2

2.1 Part a)

2.1.1 i)

2.1.2 ii)

2.2 Part b)

2.2.1 i)

CPU: Intel(R) Core(TM) i7-10700K CPU @ 3.80GHz 3.79 GHz

RAM 32GB OS: Windows 10 21H1 19043.2130

Algorithm	m = n = 5	m = n = 10	m = n = 15	m = n = 20	m = n = 25
Naive	0.00398	0.05785	44.42287	Too Long	Too Long
Memorization	0.00398	0.00411	0.00401	0.00510	0.00498

2.2.2 ii)

Worst case input-time graph of Recursive Algorithm

Worst case input-time graph of Memorization Algorithm

2.2.3 iii)

2.3 Part c)

2.3.1 i)

Algorithm	m = n = 5	m = n = 10	m = n = 15	m = n = 20	m = n = 25
Naive μ	0.004387	0.006628	0.211047	Too Long	Too Long
Naive σ	0.000784	0.002101	0.174624	-	-
Memo μ	0.004050	0.004153	0.004284	0.004361	0.004406
Memo σ	0.000696	0.000692	0.000647	0.000765	0.000865

2.3.2 ii)

Average case input-time graph of Recursive Algorithm

Average case input-time graph of Memorization Algorithm

2.3.3 iii)

as the graphs indicate and also prior analysis, naive algorithm has a exponential growth but memorization algorithm has growth of log-linear type.