MATHS 15

Davids Zakrevskis Feedback exercises

FB1 Find the remainder r (between 0 and 8) that we get when we divide 7^{96} show your work.

I'll be using the method of successive squares

$$7^{96} \equiv r \pmod{9}$$

$7 \equiv 7 \pmod{9}$	By preposition 13.2
$7^2 \equiv 7^2 \pmod{9} = 4 \pmod{9}$	By preposition 13.4
$7^4 \equiv 4^2 \pmod{9} = 7 \pmod{9}$	By preposition 13.4
$7^8 \equiv 7^2 \pmod{9} = 4 \pmod{9}$	By preposition 13.4
$7^{16} \equiv 4^2 \pmod{9} = 7 \pmod{9}$	By preposition 13.4
$7^{32} \equiv 7^2 \pmod{9} = 4 \pmod{9}$	By preposition 13.4
$7^{64} \equiv 4^2 \pmod{9} = 7 \pmod{9}$	By preposition 13.4

$$7^{96} = 7^{64}7^{32}$$

$$7^{64} \equiv 7 \pmod{9}$$

$$7^{32} \equiv 4 \pmod{9}$$

$$7^{64} \cdot 7^{32} \equiv 4 \cdot 7 \pmod{9}$$
 By preposition 13.3
$$7^{96} \equiv 28 \pmod{9} = 1 \pmod{9}$$

$$7^{96} \equiv 1 \pmod{9}$$

Hence the remainder of $\frac{7^{96}}{9}$ is 1

(95)

FB2 Does the congruence equation $6x \equiv 7 \pmod{25}$ have a solution for x (notice that congruence only makes sense if $x \in \mathbb{Z}$ so you are looking for integer solutions)? If it does, find the solution. If it does not, prove that it does not.

Euclidean algorithm to find hcf(6,25)

25 + 6(-4) = 1 Final non-zero remainder in the Euclidean algorithm 6 + 1(-6) = 0 is the highest common factor, hence hcf(6,25)=1

1 | 7 therefore there is a solution

By preposition 10.3 there are such integers s,t that satisfy the inequality 1 = 6s + 25t.

Therefore 6s = 1 - 25t which also means $6s \equiv 1 \pmod{25}$.

I multiply the congruence by 7 and get $6 \cdot 7s \equiv 7 \pmod{25}$.

 $6x \equiv 7 \pmod{25}$ and $6 \cdot 7s \equiv 7 \pmod{25}$ hence x = 7s.

The integers s and t can be easily read from the first line of the Euclidean algorithm, s=-4 and t=1

Therefore $x = 7 \cdot -4 = -28$

Find the acute angle between the lines 3x + y = 5 and x - 2y = 4. FB3

The angle between lines is only dependent on arguments of x and y, constants added only shift the lines vertically.

I will write vectors as \vec{a} and use the $a_0i + a_1j + a_2k$ notation.

From 3x + y = 5 I get direction vector $\vec{a} = 3i + j$ From x - 2y = 4 I get direction vector $\vec{b} = i - 2j$

$$\cos\theta = \frac{\vec{a} \cdot \vec{b}}{|a||b|}$$

$$\vec{a} \cdot \vec{b} = (3 \cdot 1) + (1 \cdot -2) = 1$$
 $|\vec{a}| = \sqrt{3^2 + 1^2} = \sqrt{10}$ $|\vec{b}| = \sqrt{1^2 + (-2)^2} = \sqrt{5}$

$$\cos \theta = \frac{1}{\sqrt{10} \cdot \sqrt{5}} = \frac{1}{5\sqrt{2}}$$

$$\theta = \arccos\frac{1}{5\sqrt{2}} = \cos^{-1}\frac{1}{5\sqrt{2}}$$

If we plug in the expressions into a calculator we get $\theta \approx 81.87^{\circ}$

