### INEERENCE IN BYKESIYN NELMOKKS

CHAPTER 14.4-5

## Outline

- ♦ Exact inference by enumeration
- ♦ Approximate inference by stochastic simulation
- ♦ Approximate inference by Markov chain Monte Carlo

#### Inference tasks

Simple queries: compute posterior marginal  $\mathbf{P}(X_i|\mathbf{E}=\mathbf{e})$  e.g., P(NoGas|Gauge=empty,Lights=on,Starts=false)

Conjunctive queries:  $\mathbf{P}(X_i,X_j|\mathbf{E}=\mathbf{e}) = \mathbf{P}(X_i|\mathbf{E}=\mathbf{e})$ 

Optimal decisions: decision networks include utility information; probabilistic inference required for P(outcome|action,evidence)

Value of information: which evidence to seek next?

Sensitivity analysis: which probability values are most critical?

Explanation: why do I need a new starter motor?

#### Inference by enumeration

Slightly intelligent way to sum out variables from the joint without actually constructing its explicit representation



$$\mathbf{P}(B|j,m) = \mathbf{P}(B,j,m)/P(j,m)$$

$$= \alpha \mathbf{P}(B,j,m)$$

$$= \alpha \mathbf{P}(B,j,m)$$

$$= \alpha \sum_{e} \sum_{a} \mathbf{P}(B,e,a,j,m)$$

Simple query on the burglary network:

Rewrite full joint entries using product of CPT entries:

$$\mathbf{P}(B|j,m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B) P(e) \mathbf{P}(a|B,e) P(j|a) P(m|a) = \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e) P(j|a) P(m|a) = \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} \mathbf{P}(a|B,e) P(a|B,e) P(a|a) P(a|a) = \alpha \mathbf{P}(B) P(e) P(e) P(a|a) P($$

Recursive depth-first enumeration: O(n) space,  $O(d^n)$  time

#### Enumeration algorithm

```
where e_y is e extended with Y = y
else return \Sigma_y P(y \mid Pa(Y)) \times Enumerate-All(Rest(vars), e_y)
    then return P(y \mid Pa(Y)) \times \text{Enumerate-All}(\text{Rest}(vars), \mathbf{e})
                                                                 \Theta ni \emptyset suley sed \emptyset in \Theta
                                                                     Y \leftarrow \text{FIRST}(vars)
                                               if EMPTY?(vars) then return 1.0
                     function Enumerate-All(vars, e) returns a real number
                                                       return Normalize(\mathbf{Q}(X))
                                   \mathbf{Q}(x_i) \leftarrow \text{ENUMERATE-ALL}(\text{VARS}[bn], \mathbf{e})
                                                   extend e with value x_i for X
                                                          for each value x_i of X do
                                      \mathbf{Q}(X) a distribution over X, initially empty
                bn, a Bayesian network with variables \{X\} \cup \mathbf{E} \cup \mathbf{Y}
                                         e, observed values for variables E
                                                      inputs: X, the query variable
         function Enumeration-Ask(X, e, bn) returns a distribution over X
```



Enumeration is inefficient: repeated computation e.g., computes P(j|a)P(m|a) for each value of e

#### Inference by variable elimination

Variable elimination: carry out summations right-to-left, storing intermediate results (factors) to avoid recomputation

$$\mathbf{P}(B|j,m) = \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a) = \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a) = \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(j|a) P(m|a) = \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(a|B,e) P(a) P(a|a) P(a|a) = \alpha \mathbf{P}(B) \sum_{e} P(e) \sum_{a} P(a|B,e) P(a) P(a|a) P(a$$

## Variable elimination: Basic operations

Summing out a variable from a product of factors: move any constant factors outside the summation add up submatrices in pointwise product of remaining factors

$$\underline{X}f \times if \times \cdots \times \underline{I}f = Af \times \cdots \times \underline{I}+if \underline{X} = Af \times \cdots \times \underline{I}f = Af \times \cdots$$

X no bnaqab ton ob  $it,\ldots,it$  gnimussa

#### Variable elimination algorithm

```
function Elimination - Ask(X, e, bn) returns a distribution over X inputs: X, the query variable e, evidence specified as an event bn, a belief network specifying joint distribution \mathbf{P}(X_1,\ldots,X_n) for each var in vars of the form \mathbf{P}(X_1,\ldots,X_n) if var is a hidden variable then factors \mathbf{SUM}-Out(var, factors) if var is a hidden variable then factors \mathbf{SUM}-Out(var, factors) return Normalize(Pointwise-Product(factors))
```

#### Irrelevant variables



Consider the query P(JohnCalls|Burglary = true)

$$(p|m) J_m \overset{m}{\preceq} (p|\ell) J(\vartheta, \delta) J_n \overset{n}{\preceq} (\vartheta) J_n \overset{n}{\preceq} (\delta) J_n \overset{n}{\preceq}$$

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless  $Y \in Ancestors(\{X\} \cup \mathbf{E})$ 

Here, X = JohnCalls,  $\mathbf{E} = \{Burglary\}$ , and  $Ancestors(\{X\} \cup \mathbf{E}) = \{Alarm, Earthquake\}$  so MaryCalls is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)

#### Irrelevant variables contd.

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph

For P(JohnCalls|Alarm=true), both Burglary and Earthquake are irrelevant

Thm 2: Y is irrelevant if m-separated from X by  ${\bf E}$ 

### Complexity of exact inference

Singly connected networks (or polytrees):

- any two nodes are connected by at most one (undirected) path
- $(n^{\mbox{\tiny A}}b)O$  are noitenimila aldeirev fo teod aspace bne amit –

Multiply connected networks: — can reduce 3SAT to exact inference  $\Rightarrow$  MP-hard

– equivalent to counting 3SAT models  $\Rightarrow$  #P-complete



#### Inference by stochastic simulation

#### Basic idea:



- S noitudisting distribution S amples from a sampling distribution S Compute an approximate posterior probability  $\hat{P}$
- 3) Show this converges to the true probability  ${\mathbb P}$

#### :eniltuO

- Rejection sampling: reject samples disagreeing with evidence

- Sampling from an empty network

- Likelihood weighting: use evidence to weight samples
- Markov chain Monte Carlo (MCMC): sample from a stochastic process
   whose stationary distribution is the true posterior

## Sampling from an empty network

```
function PRIOR-SAMPLE (bn) returns an event sampled from bn inputs: bn, a belief network specifying joint distribution \mathbf{P}(X_1,\dots,X_n) \mathbf{x} \leftarrow \mathbf{a} \mathbf{n} event with n elements for i=1 to n do x_i \leftarrow \mathbf{a} \mathbf{n} to n do x_i \leftarrow \mathbf{a} \mathbf{n} random sample from \mathbf{P}(X_i \mid parents(X_i)) given the values of Parents(X_i) in \mathbf{x} return \mathbf{x}
```















#### Sampling from an empty network contd.

Probability that PRIORSAMPLE generates a particular event  $(nx \dots 1x)^{q} = \prod_{i=1}^{n} P(x_i) parents(X_i) = P(x_1 \dots x_n)$ 

i.e., the true prior probability

$$(t,t,t,t,t)$$
 $A = 455.0 = 6.0 \times 8.0 \times 8.0 \times 8.0 \times 8.0 = (t,t,t,t)$  $SqS$ . .3.3

Let  $N_{PS}(x_1\dots x_n)$  be the number of samples generated for event  $x_1,\dots,x_n$ 

Then we have

$$N/({}_{n}x, \dots, {}_{1}x)_{Sq}N \underset{\infty \leftarrow N}{\min} = ({}_{n}x, \dots, {}_{1}x)^{q} \underset{\infty \leftarrow N}{\min}$$

$$({}_{n}x, \dots, {}_{1}x)_{Sq}S =$$

That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: 
$$(x_1, \ldots, x_n) \approx (x_1, \ldots, x_n)$$

#### Rejection sampling

 $\mathbf{\Phi}(X|\mathbf{e})$  estimated from samples agreeing with  $\mathbf{e}$ 

return Normalize(N[X])

```
function Rejection-Sampling (X, e, bn, N) returns an estimate of P(X|e) local variables: N, a vector of counts over X, initially zero for j=1 to N do x \leftarrow Prior-Sample(bn) if x is consistent with e then x \leftarrow Prior-Sample(bn) if x = x \leftarrow Prior-Sample(bn) if x = x \leftarrow range of x = x \leftarrow range of
```

E.g., estimate P(Rain|Sprinkler=true) using 100 samples Sprinkler=true Of these, 8 have Rain=true and 19 have Rain=false.

$$\mathbf{\hat{A}}(Rain|Sprinkler = true) = \mathbf{Normalize}(\langle 8,19\rangle) = (\langle 91,8\rangle)\mathbf{\hat{A}}$$

Similar to a basic real-world empirical estimation procedure

### Analysis of rejection sampling

```
\mathbf{\hat{P}}(X|\mathbf{e}) = \alpha \mathbf{N}_{PS}(X,\mathbf{e}) (algorithm defn.) = \mathbf{N}_{PS}(X,\mathbf{e})/N_{PS}(\mathbf{e}) (normalized by N_{PS}(\mathbf{e})) \approx \mathbf{P}(X,\mathbf{e})/P(\mathbf{e}) (property of \mathrm{PRIORSAMPLE}) \approx \mathbf{P}(X,\mathbf{e})/P(\mathbf{e}) (defn. of conditional probability)
```

Hence rejection sampling returns consistent posterior estimates

Problem: hopelessly expensive if  $P(\mathbf{e})$  is small

 $P(\mathbf{e})$  drops off exponentially with number of evidence variables!

## Likelihood weighting

Idea: fix evidence variables, sample only nonevidence variables, and weight each sample by the likelihood it accords the evidence

m 'x unnaəl

```
else x_i \leftarrow a random sample from \mathbf{P}(X_i \mid parents(X_i))
                                  then w \leftarrow w \times P(X_i) = ix
                                                               \mathbf{e} ni \mathbf{i}x sulev \mathbf{e} sed \mathbf{i}X \mathbf{fi}
                                                                            ob n of I = i rof
                                                     \mathbf{I} 	o w ;stnəmələ n dtiw tnəvə ne 	o \mathbf{x}
              function Weighten-Sample (bn,e) returns an event and a weight
                                                              return Normalize(\mathbf{W}[X])
                                \mathbf{x} ni X to sulev shi si x shere x \mapsto (x]\mathbf{W} \to [x]\mathbf{W}
                                                   \mathbf{x}, w \leftarrow \text{Weighted-Sample}(bn)
                                                                            ob \mathbb{N} of \mathbf{I} = \mathbb{I} rol
           local variables: W, a vector of weighted counts over X, initially zero
function Likelihood-Weighting (X, e, bn, N) returns an estimate of P(X|e)
```



0.1 = w



0.1 = w



0.1 = w



 $1.0 \times 0.1 = w$ 



 $1.0 \times 0.1 = w$ 



 $1.0 \times 0.1 = w$ 



$$890.0 = 89.0 \times 1.0 \times 0.1 = w$$

### Likelihood weighting analysis

Sampling probability for Weightedsample is



posterior distribution ⇒ somewhere "in between" prior and Note: pays attention to evidence in ancestors only  $(({}_{i}Z)stnanq|_{i}z)q_{I=i}M = (\mathbf{a},\mathbf{z})_{SW}$ 

 $w(\mathbf{z}, \mathbf{e}) = \prod_{i=1}^{n} P(e_i|parents(E_i))$ Weight for a given sample Z, e is

Weighted sampling probability is

 $= P(\mathbf{z}, \mathbf{e})$  (by standard global semantics of network)  $= \prod_{i=1}^{l} P(z_i|parents(Z_i)) \prod_{i=i}^{m} P(e_i|parents(E_i))$  $(\mathbf{a}, \mathbf{z})w(\mathbf{a}, \mathbf{z}) \approx W \mathbf{z}$ 

because a few samples have nearly all the total weight but performance still degrades with many evidence variables Hence likelihood weighting returns consistent estimates

### Approximate inference using MCMC

"State" of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket Sample each variable in turn, keeping evidence fixed

```
function MCMC-Ask(X, e, bn, N) returns an estimate of P(X|e) local variables: N[X], a vector of counts over X, initially zero X, the nonevidence variables in Dn initialize X with random values for the variables in X for y = 1 to N do for each Z_i in X do sample the value of Z_i in X from P(Z_i|mb(Z_i)) sine X given the values of MB(Z_i) in X
```

Can also choose a variable to sample at random each time

 $\mathbf{x}$  ni X to sulev state x si x shew  $1 + [x]\mathbf{N} \rightarrow [x]\mathbf{N}$ 

return Normalize(N[X])

## The Markov chain

With Sprinkler = true, WetGrass = true, there are four states:



Wander about for a while, average what you see

## MCMC example contd.

Estimate  $\mathbf{P}(Rain|Sprinkler = true, WetGrass = true)$ 

Sample Cloudy or Rain given its Markov blanket, repeat. Count number of times Rain is true and false in the samples.

 $\mathbf{P}(Rain|Sprinkler = true, WetGrass = true)$   $= Normalize(\langle 31, 69 \rangle) = \langle 0.31, 0.69 \rangle$ 

Theorem: chain approaches stationary distribution: long-run fraction of time spent in each state is exactly proportional to its posterior probability

#### Markov blanket sampling



Markov blanket of Cloudy is Sprinkler and Rain is Markov blanket of Rain is

Probability given the Markov blanket is calculated as follows:  $P(x_i'|mb(X_i)) = P(x_i'|parents(X_i)) \prod_{Z_j \in Children(X_i)} P(z_j|parents(Z_j))$ 

Easily implemented in message-passing parallel systems, brains

Main computational problems:

1) Difficult to tell if convergence has been achieved 2) Can be wasteful if Markov blanket is large:

Cloudy, Sprinkler, and WetGrass

 $\operatorname{P}(X_i|mb(X_i))$  won't change much (law of large numbers)

### Summary

Exact inference by variable elimination:

- polytime on polytrees, NP-hard on general graphs
- space = time, very sensitive to topology

Approximate inference by LW, MCMC:

- LW does poorly when there is lots of (downstream) evidence
- LW, MCMC generally insensitive to topology
- Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables