Faculdade de Informática e Administração Paulista – "FIAP" CURSO SUPERIOR DE TECNOLOGIA EM BANCO DE DADOS

Turma 2º TBDA

André Vieira Santos Silva João Pedro dos Santos Kevin Fernandes Redling Maria Aparecida Mendes Loureiro Ralf Silva Nascimento

AM Arquiteturas Disruptivas e Big Data – 2º TBDA

Turma 2º TBDA

André Vieira Santos Silva João Pedro dos Santos Kevin Fernandes Redling Maria Aparecida Mendes Loureiro Ralf Silva Nascimento

AM Arquiteturas Disruptivas e Big Data – 2º TBDA

Trabalho apresentado à Faculdade de Informática e Administração Paulista – FIAP, Curso Superior de Tecnologia em Banco de Dados, para AM do 3º Semestre – Prof. Ricardo Rezende.

Sumário

1	Integrantes4
2	Descrição do Projeto5
3	Identificar um problema no projeto onde uma solução NoSQL seria o ideal
ра	ra resolver o problema. Apresentar o problema e quais os motivos que
inc	licam que <i>NoSQL</i> é a melhor alternativa para resolução do problema6
4	Definir qual o modelo de banco de dados NoSQL (Chave/Valor, Baseado em
Со	luna, Grafos) que será utilizado e qual o motivo que torna este modelo o ideal
ра	ra o caso7
5	Definir qual o SGBD que será utilizado (dentro do modelo escolhido) e qual
o r	notivo pela escolha deste SGBD8
6	Definir a arquitetura que será utilizada, descrevendo-a9
7	Referências10

1 Integrantes

SELECT					
RM	Nome do Integrante	E-mail			
73920	André Vieira Santos Silva	andrevieirass@gmail.com			
75312	João Pedro dos Santos	jpsdba@gmail.com			
73671	Kevin Fernandes Redling	redlingkevin@yahoo.com.br			
74305	Maria Aparecida Mendes Loureiro	cida_loureiro@bol.com.br			
74296	Ralf Silva Nascimento	ralf-silva@msn.com			

2 Descrição do Projeto

Criar dimensões para analisar os perfis dos consumidores de café frente à sazonalidade, identificar os diferentes tipos de harmonização do café com outros produtos, compreender a mudança lenta do consumidor, tendências e analisar o faturamento da empresa, construindo um ambiente de *BI* que municie os gestores com informações relevantes para a tomada de decisões.

3 Identificar um problema no projeto onde uma solução *NoSQL* seria o ideal para resolver o problema. Apresentar o problema e quais os motivos que indicam que *NoSQL* é a melhor alternativa para resolução do problema.

Foi encontrado no projeto a necessidade de tratar as análises de sentimentos da concorrência visando uma inteligência competitiva. A solução mais adequada para esta finalidade é o *NoSQL*, pois o banco relacional é menos performático.

Como argumentação será utilizado o *NoSQL* para solucionar diversos problemas relacionados à escalabilidade, performance, disponibilidade e proporcionar uma alternativa de alto armazenamento com velocidade e grande disponibilidade, a fim de eliminar certas regras e estruturas que norteiam o modelo relacional. O ganho de performance, flexibiliza os sistemas de banco de dados para as diversas características que são específicas da empresa.

4 Definir qual o modelo de banco de dados NoSQL (Chave/Valor, Baseado em Coluna, Grafos) que será utilizado e qual o motivo que torna este modelo o ideal para o caso.

O modelo de banco de dados escolhido foi o de Grafos.

Com a escolha do banco de dados de grafos, o projeto terá flexibilidade e performance para proporcionar análises de sentimentos dos clientes da concorrência com dados factíveis e consistentes, cenário em que um ambiente relacional seria menos eficiente se comparado ao *NoSQL*.

Com esse modelo de banco será possível a criação da inteligência competitiva, onde haverá uma análise sob os comentários referentes às empresas concorrentes em redes sociais, visando atingir a estratégia de vendas com dados por análises de sentimentos, com alta performance.

5 Definir qual o SGBD que será utilizado (dentro do modelo escolhido) e qual o motivo pela escolha deste SGBD.

O SGBD escolhido foi o Neo4J.

Com seu esquema flexível teremos o modelo de grafo de propriedade nativo, que realiza a captura de dados, uma vez que ocorre naturalmente, com ambos os nós e relacionamentos tendo propriedades.

Poderemos adicionar e remover propriedades "*on the fly*" de acordo com a evolução do modelo de dados, com restrições de esquema opcionais para flexibilidade.

Enquanto muitos bancos de dados *NoSQL* rejeitam o ACID (Atomicidade, Consistência, Isolamento e Durabilidade), a confiabilidade dos dados é uma consideração de projeto chave para o Neo4J.

O Neo4J permitirá dimensionar volume, leitura e escrita através de cada dimensão chave, tudo ao mesmo tempo proporcionando consultas extremamente rápidas, tempos de resposta consistentes e integridade de dados sólida, essencial para o desenvolvimento.

Integrações com outras tecnologias de banco de dados e ferramentas de análise municiarão o projeto com maior flexibilidade.

O Neo4J clustering fornecerá recursos de dimensionamento para leitura, permitindo espalhar seu gráfico na memória, ao mesmo tempo assegurando que cada instância é capaz de chegar a qualquer nó ou relacionamento usando a sua própria cópia local.

6 Definir a arquitetura que será utilizada, descrevendo-a.

Com base na calculadora disponível do site¹ do Neo4J foi feita a prospecção da estrutura a ser utilizada.

Abaixo segue as informações:

Calculation Input		
Numbers of nodes	3000000	
Number of relationships	4500000	
Property storage per node (bytes)	15 B	
Property storage per relantionship	31 B	
(bytes)		
Concurrent requests per second	1	
Number of servers	1	
Number of CPU cores per server	4	
Amount of RAM per server	4096 MB	

Calculation Results		
Recommended number of servers	1	
Recommended number of cores per	4	
server		
Recommended amount of RAM	12700 MB	
Recommended Java heap size	10800 MB	
Estimated size on disk	898 MB	
Current infrastructure fit factor	57 (100+ recommneded)	

Cluster com 5 máquinas conectadas ao mesmo servidor (ambiente acadêmico).

¹ http://Neo4J.com/developer/guide-sizing-and-hardware-calculator/#_hardware_sizing_calculator

7 Referências

http://Neo4J.com/product/

http://Neo4J.com/developer/guide-sizing-and-hardware-calculator/#_hardware_sizing_calculator