

Departamento de Matemáticas 4º Académicas

Sistemas de ecuacione e inecuaciones

Nombre:	Fecha:

Tiempo: 50 minutos Tipo: B

Esta prueba tiene 4 ejercicios. La puntuación máxima es de 15. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima. Para la recuperación de pendientes de 3° se tendrán en cuenta los apartados: 1. 2.a y 4.a

Ejercicio:	1	2	3	4	Total
Puntos:	1	2	8	4	15

1. Resuelve por el método que quieras:

(1 punto)

$$\begin{vmatrix} \frac{x}{4} + \frac{y}{3} = 2\\ \frac{x}{8} - \frac{y}{3} = 1 \end{vmatrix}$$

Solución: $\{x: 8, y: 0\}$

- 2. La suma de los cuadrados de dos números positivos es 34. Sabiendo que uno es dos unidades mayor que el otro, se pide calcularlos de la siguiente forma:
 - (a) Traduce a lenguaje algebraico el enunciado anterior

(1 punto)

(b) Resuelve la expresión del apartado anterior, indicando cuántas soluciones tiene el problema

 $(1 \ punto)$

Solución:
$$2x^2 - 4x - 30 = 0 \rightarrow (-3, -5), (5, 3) \rightarrow 3 y 5$$

- 3. Resuelve las siguientes inecuaciones:
 - (a) $x^2 x 6 \ge 0$

(2 puntos)

Solución: [-2,3]

(b)
$$x^3 - 2x^2 - 3x < 0$$

(2 puntos)

Solución: $(-\infty, -1) \cup (0, 3)$

(c) $\frac{x^2 - x}{x + 1} \geqslant 0$ (2 puntos)

Solución: $(-1,0] \cup [1,\infty)$

(d) |2x - 12| > 2 (2 puntos)

Solución: $(-\infty, 5) \cup (7, \infty)$

- 4. Dos tiendas hacen fotocopias y encuadernan las fotocopias. En la primera, cobran 6€ por encuadernar y 6 céntimos por cada fotocopia. En la segunda cobran 9 céntimos por cada fotocopia y 4,20€ por encuadernar. ¿A partir de cuántas fotocopias nos interesa encuadernar en la segunda tienda?
 - (a) Traduce a lenguaje algebraico el enunciado anterior (2 puntos)

Solución: 6 + 6x > 4, 20 + 9x

(b) Resuelve la expresión del apartado anterior e indica cuáles son las $(2 \ puntos)$ soluciones

Solución: $(-\infty, 0.6) \rightarrow \text{nunca}$