Formulario Estadística

Abel Doñate Muñoz

Contents

1	Cosas útiles	:
2	Intro	3
3	Tema 3	4
4	Estimación por intervalos	Ę
5	Contrastes de hipótesis	Ę
6	Modelo lineal normal	6

Tabla de distribuciones discretas

Modelo	p(X=k)	E[X]	Var[X]	$G_X(z)$
Bernoulli	$\begin{cases} p(X=1) = p \\ p(X=0) = 1 - p \end{cases}$		p(1-p)	(1-p)+pz
$\sim Be(p)$	p(X=0) = 1 - p	p	p(1-p)	(1-p)+pz
Binomial	$\binom{N}{k} p^i (1-p)^{N-k}$	Np	Np(1-p)	$((1-p)+pz)^N$
$\sim Bin(N,p)$	$\binom{k}{p}^{p}(1-p)$			
Uniforme	1	N+1	$N^2 - 1$	$1 \ z(z^N - 1)$
$\sim U(1,N)$	\overline{N}	2	12	\overline{N} $\overline{z-1}$
Poisson	$\frac{\lambda^k}{k!}e^{-\lambda}$	λ	λ	$e^{\lambda(z-1)}$
$\sim Po(\lambda)$	$\overline{k!}^c$			6 ' '
Geométrica	$p(1-p)^{k-1}$	1	1-p	pz
$\sim Geom(p)$	p(1 p)	p	p^2	1 - (1 - p)z
Binomial negativa	$\int 0 \qquad \qquad \text{si } k < r$	r	1-p	$\int pz \qquad \Big r \Big $
$\sim BinN(r,p)$	$\left\{ \left(\binom{k-1}{r-1} p^r (1-p)^{k-r} \text{si } k \ge r \right. \right.$	\bar{p}	$r \overline{p^2}$	$\left(\frac{1 - (1 - p)z}{1 - (1 - p)z} \right)$

Tabla de distribuciones continuas

Modelo	$f_X(x)$	E[X]	Var[X]	$G_X(z)$	
Uniforme	1	b+a	$(b-a)^2$.,, .,	
$\sim U(a,b)$			12	$1 \text{ en } t = 0, \frac{e^{ibt} - e^{iat}}{it(b-a)}$	
Exponencial	$\lambda = \lambda x$ $\lambda = 0$	1	1	λ	
$\sim Exp(\lambda)$	$\lambda e^{-\lambda x}, x \ge 0, \lambda > 0$	$\overline{\lambda}$	$\overline{\lambda^2}$	$\overline{\lambda - it}$	
Normal	$1 \frac{(x-\mu)^2}{2x^2}$.,	σ^2	$e^{i\mu t - \frac{\sigma^2 t^2}{2}}$	
$\sim N(\mu, \sigma^2)$	$\frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$	μ	0	e · 2	
Gamma	λ^{τ}	au	au	$\left(1-\frac{it}{2}\right)^{-\tau}$	
$\sim Gamma(\lambda, \tau)$	$\frac{\lambda^{\tau}}{\Gamma(\tau)} x^{\tau - 1} e^{-\lambda x}, x > 0, \lambda, \tau > 0$	$\overline{\lambda}$	$\overline{\lambda^2}$	$\left(1-\frac{1}{\lambda}\right)$	
Beta	$\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha)\Gamma(\beta)}x^{\alpha-1}(1-x)^{\beta-1}, x \in [0,1]$	<u>α</u>	$\alpha \beta$	Sin forma sencilla	
$\sim Beta(\alpha, \beta)$	$\Gamma(\alpha)\Gamma(\beta)$	$\overline{\alpha + \beta}$	$(\alpha + \beta)^2(\alpha + \beta + 1)$		
Weibull	$\frac{\alpha}{\beta} \left(\frac{x}{\beta} \right)^{\alpha - 1} e^{-(x/\beta)^{\alpha}}, x, \alpha, \beta > 0$	$\beta\Gamma\left(1+\frac{1}{2}\right)$	$\beta^2 \left[\Gamma(1 + \frac{2}{\alpha}) - \Gamma^2(1 + \frac{1}{\alpha}) \right]$	$\sum_{k \geq 0} \frac{(it)^k \beta^k}{k!} \Gamma(1 + \frac{k}{\alpha})$	
$\sim Weibull(\alpha, \beta)$	$\left(\frac{\overline{\beta}}{\beta}\right)^{-\epsilon}$	$\int_{\alpha}^{\beta} \left(\frac{1+\alpha}{\alpha} \right)$	$\begin{bmatrix} \rho & \begin{bmatrix} 1 & (1 + - \alpha) - 1 & (1 + - \alpha) \\ \alpha & \alpha \end{bmatrix} \end{bmatrix}$	$\sum_{k\geq 0} \frac{1}{k!} \left(1 + \frac{1}{\alpha}\right)$	
Cauchy	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	No definida	No definida	$e^{\theta it - \gamma t }$	
$\sim Cauchy(\theta, \gamma)$	$\frac{1}{\pi\gamma} \frac{1}{1 + (\frac{x-\theta}{\gamma})^2}, \gamma > 0$	100 delimaa	Tvo definida	C	
χ_p^2	$\frac{1}{\Gamma(p/2)2^{p/2}} x^{\frac{p}{2} - 1} e^{-\frac{x}{2}}, x > 0, p \in \mathbb{N} $ p		2p	$(1-2it)^{-\frac{p}{2}}$	
•		r	1	` ′	
Doble expon	$\frac{1}{2\gamma}e^{-\frac{ x-\mu }{\gamma}}, \gamma > 0$	μ	$2\gamma^2$	$e^{\mu it}$	
$\sim DobExp(\mu, \gamma)$			- /	$1 + \gamma^2 t^2$	
Lognormal	$\frac{1}{\sigma \sqrt{2\pi}} \frac{1}{x} e^{-\frac{(\ln x - \mu)^2}{2\sigma^2}}, x, \sigma > 0$	$e^{\mu + \frac{\sigma^2}{2}}$	$e^{2(\mu+\sigma^2)} - e^{2\mu+\sigma^2}$	Sin forma sencilla	
$\sim LogN(\mu, \sigma^2)$	$\sigma\sqrt{2\pi} x^{c}$ 25 $x, x, y > 0$				

1 Notación

 \tilde{X} representa un vector, mientras que \bar{X} representa la media.

Para los intervalos de confianza tomamos t_{β} como el t tal que tiene una probabilidad de β a la derecha.

2 Intro

Proposition. Sea \tilde{X} absolutamente continua con $f_{\tilde{X}}(x_1,\ldots,x_n)$. Sea $g:\mathbb{R}^n\to\mathbb{R}^n\in\mathcal{C}^1$ biyectiva. Si $g(\tilde{X})=\tilde{Y}$ encontramos $f_{\tilde{Y}}$ de la siguiente forma:

Sea $h := g^{-1}$:

$$f_{\tilde{Y}}(y_1,\ldots,y_n) = f_{\tilde{X}}(h(y_1,\ldots,y_n))|J_h(y_1,\ldots,y_n)|$$

Definition (Varianza, covarianza y correlación).

$$s_x^2 = \frac{1}{N} \sum_i (x_i - \overline{x}_N)^2$$

$$s_{xy} = \frac{1}{N} \sum_i (x_i - \overline{x}_N)(y_i - \overline{y}_N)$$

$$r_{xy} = \frac{s_{xy}}{s_x s_y}$$

Definition (Parámetros a estimar).

$$X \sim F \Rightarrow \theta = \Phi(F)$$

Definition (Estimador). X_1, \ldots, X_n

$$\hat{\theta} = T(X_1, \dots, X_n)$$

Definition (Función de distribución empírica).

$$F_n(x) = \frac{1}{n} \sum I_{(\infty,x]}(x_i)$$

Theorem. $X_1, \ldots, X_n, x \in \mathbb{R}$

1.
$$E(F_n(x)) = F(x)$$
, $Var(F_n(x)) = \frac{1}{n}F(x)(1-F(x))$

- 2. $F_n(x) \to F(x)$ casi seguro
- 3. $\frac{\sqrt{n}(F_n(x)-F(x))}{\sqrt{F(x)(1-F(x))}} \to N(0,1)$ en distribución
- 4. $\frac{\sum (x_i \mu)}{\sigma \sqrt{n}} = \frac{\sqrt{n}(\bar{X}_n \mu)}{\sigma} \to N(0, 1), \quad TCL$

Theorem (Glivenko-Cantelli). $\{X_n\}$ valid

$$\sup_{x \in \mathbb{R}} |F_n(x) - F(x)| \to 0$$

Theorem. Sean x_1, \ldots, x_n , $S^2 = \frac{1}{n-1} \sum (x_i - \overline{x})^2$ la varianza muestral

1.
$$\min_a \sum (x_i - a)^2 = \sum (x_i - \overline{x})$$

2.
$$(n-1)S^2 = \sum (x_i - \overline{x})^2 = \sum x_i^2 - n\overline{x}^2$$

Definition (Media muestral). $\overline{X} = \frac{1}{n} \sum X_i$

Definition (Varianza muestral). $S^2 = \frac{1}{n-1} \sum (X_i - \overline{X})^2$

Theorem. X con media μ y varianza σ^2

1.
$$E(\overline{X}) = \mu$$

2.
$$V(\overline{X}) = \frac{\sigma^2}{n}$$

3.
$$E(S^2) = \sigma^2$$

Proposition.

$$N(\mu_1, \sigma_1^2) + N(\mu_2, \sigma_2^2) = N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Theorem.

$$\psi_{\overline{X}}(t) = (\psi_X \left(\frac{t}{n}\right))^n$$

Definition (Distribución χ_k^2). Sea $X_i \sim N(0,1)$

$$\chi_k^2 = \sum X_i^2 = \Gamma\left(\frac{n}{2}, \frac{1}{2}\right)$$

Proposition. Sea $\tilde{X} \sim N_p(\tilde{\mu}, \Sigma)$

$$\tilde{Y} = A\tilde{X} \sim N_p(A\tilde{\mu}, A\Sigma A^t)$$

Proposition. Sea $\tilde{X} \sim N_p(\tilde{\mu}, \Sigma)$

$$(\tilde{X} - \tilde{\mu})^t \Sigma^{-1} (\tilde{X} - \tilde{\mu}) \sim \chi_p^2$$

Theorem (Fisher). $X_i \sim N(\mu, \sigma^2)$ valid entonces

$$\overline{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right), \quad \frac{(n-1)}{\sigma^2}S^2 \sim \chi_{n-1}^2 \quad \text{ indep}$$

Definition (t de Student). Sean $X \sim N(0,1), Y \sim \chi_r^2$ indep

$$T = \frac{X}{\sqrt{\frac{Y}{r}}} \sim t_r, \quad f_T(t) = \frac{\Gamma(\frac{r+1}{2})}{\sqrt{\pi r} \Gamma(\frac{r}{2})} \left(1 + \frac{t^2}{r}\right)^{-\frac{r+1}{2}}$$

$$Si \ r > 1 \Rightarrow E(T) = 0, \ si \ r > 2 \Rightarrow Var(T) = \frac{r}{r-1}$$

Proposition. Sean $X_i \sim N(\mu, \sigma)$ valid

$$\frac{\sqrt{n}(\overline{X} - \mu)}{S} \sim t_{n-1}$$

Definition (Distribución F). Sean $X \sim \chi_r^2, Y \sim \chi_s^2$ indep

$$F = \frac{X/r}{Y/s} \sim F_{r,s}, \quad f_F(t) = \frac{r\Gamma((r+s)/2)}{s\Gamma(r/2)\Gamma(s/2)} \frac{(xr/s)^{r/2-1}}{(1+xr/s)^{(r+s)/2}}$$

$$s > 2 \Rightarrow E(F) = \frac{s}{s-2}, \quad s > 4 \Rightarrow Var(F) = \frac{2s^2(r+s-2)}{r(s-2)^2(s-4)}$$

Proposition. $F^{-1} \sim F_{s,r}, \quad T^2 \sim F_{1,r}$

Sean $X_1, ..., X_n \sim N(\mu_1, \sigma_1), Y_1, ..., Y_m \sim N(\mu_2, \sigma_2)$ valid

$$\frac{S_X^2/\sigma_1^2}{S_Y^2/\sigma_2^2} \sim F_{n-1,m-1}$$

Definition (Localización y escala).

$$X = \mu + \sigma Z, \quad f(x|\mu, \sigma) = \frac{1}{\sigma} f\left(\frac{x - \mu}{\sigma}\right)$$

- $Z \sim f(x) \iff X = \mu + \sigma Z \sim f(x|\mu,\sigma)$
- $X \sim f(x|\mu,\sigma) \iff \frac{X-\mu}{\sigma} \sim f(x)$

Definition (Estimador plug-in).

$$F_n(x) = \frac{1}{n} \sum I_{(-\infty,x]}(X_i), \Rightarrow \hat{\theta}_n = \Phi(F_n)$$

Definition (Método de los momentos). Sea $\mu_k = E(X^k)$ y que existe una biyección

$$\mu_i = g_i(\theta_1, \dots, \theta_k) \iff \theta_i = h_i(\mu_1, \dots, \mu_k)$$

entonces $\hat{\theta}_i = h_i(m_1, \dots, m_k)$ con $m_j = \frac{1}{n} \sum X^j$

Definition (Estimador máximo verosímil).

$$l(\theta, \tilde{x}) = \ln L(\theta, \tilde{x}) = \ln f_{\tilde{x}}(\theta) \Rightarrow \hat{\theta} = \arg \max_{\theta} l(\theta, \tilde{x})$$

Theorem (Principio de invariancia). $\psi = \Psi(\theta)$ con Ψ biyectiva $\Rightarrow \hat{\psi}_{ML} = \Psi(\hat{\theta}_{ML})$.

Definition (Kullback-Leiber).

$$D_{K,L}(f||g) = \int_{S} \ln\left(\frac{f(x)}{g(x)}\right) f(x) dx \ge 0$$

$$E_{f}(\ln(f(X))) \ge E_{f}(\ln(g(X)))$$

Theorem (Bayes).

$$f_{X|Y=y}(x) = \frac{P(Y=y|X=x)f_X(x)}{P(Y=y)}$$

3 Tema 3

Definition. $T_n(X_1, ..., X_n)$ estadístico. Llamamos distribución de muestreo a la distribución de T_n y error estándar a la desviación estándar de T_n .

Definition (Sesgo). $B(\hat{\theta}) = E(\hat{\theta}) - \theta$

Definition (ECM). $ECM(\hat{\theta}) = E((\hat{\theta} - \theta)^2) = (B(\hat{\theta}))^2 + Var(\hat{\theta})$

Definition. Un estimador $W(\tilde{X})$ de θ_F es **inadmisible** si $\exists V(\tilde{X}) : ECM_F(W, \theta_F) \geq ECM_F(V, \theta_F) \ \forall F \in \mathcal{F}, \quad \exists F_0 : ECM_{F_0}(W, \theta_{F_0}) > ECM_{F_0}(V, \theta_{F_0}).$

Definition (Eficiencia relativa de W respecto V).

$$ER(\theta_F, W, V) = \frac{Var_F(V)}{Var_F(W)} = \frac{1/Var_F(W)}{1/Var_F(V)} = \frac{Precision(W)}{Precision(V)}$$

Theorem (Cramer-Rao). Sea $W(\tilde{X})$ un estimador insesgado para $\tau(\theta)$

$$Var(W(\tilde{X})) \ge \frac{\left(\frac{d\tau(\theta)}{d\theta}\right)^2}{E\left[\left(\frac{\partial}{\partial \theta}\log f(\tilde{X}|\theta)\right)^2\right]}$$

Definition (Información de Fisher).

$$I_{\tilde{x}}(\theta) = E_{\theta} \left[\left(\frac{\partial}{\partial \theta} \ln f_{\tilde{x}} \right)^{2} \right] = Var_{\theta} \left(\frac{\partial}{\partial \theta} \ln f_{\tilde{x}} \right)$$
$$I_{\tilde{x}}(\theta) = -E_{\theta} \left[\frac{\partial^{2}}{\partial \theta^{2}} \ln f_{\tilde{x}} \right]$$

Proposition. $I_{\tilde{x}}(\theta) = nI_{x_{\tilde{s}}}(\theta)$

Theorem (Alcanzar CR). $W(\tilde{X})$ estimador de $\tau(\theta)$ alcanza $CR \iff$

$$\frac{\partial}{\partial \theta} \ln f_{\tilde{x}} = a(\theta) (W(\tilde{X}) - \tau(\theta))$$

$$\iff f_{\tilde{x}}(\tilde{X}) = u(\tilde{X}) h(\theta) \exp(W(\tilde{X}) k(\theta))$$

Definition (Estadístico suficiente). $\frac{f(\tilde{x}|\theta)}{q(T(\tilde{x})|\theta)}$ no dep. de θ

Theorem (Factorización). $T(\tilde{X})$ suficiente \iff

$$f(\tilde{x};\theta) = g(T(\tilde{x});\theta)h(\tilde{x})$$

Definition (Estadístico suficiente minimal). T(X) suficiente es minimal \iff para cualquier otro S(X) suficiente, T(X) es función de S(X)

Theorem. $f(\tilde{x}|\theta)$ la verosimilitud. Si

$$\frac{f(\tilde{x}|\theta)}{f(\tilde{y}|\theta)} = g(\tilde{x}, \tilde{y}, \aleph) \iff T(\tilde{x}) = T(\tilde{y})$$

Entonces T(x) es suficiente minimal

Definition (Completitud). Si

$$E_{\theta}[g(T)] = 0 \ \forall \theta \Rightarrow P(g(T) = 0) = 1 \ \forall \theta$$

entonces decimos que T es completo

Proposition. suficiente completo \Rightarrow suficiente minimal (el recíproco no es cierto)

Theorem. X familia exponencial

$$f(x|\theta) = h(x)c(\theta) \exp(\sum g_j(\theta)t_j(x))$$

entonces el estadístico $T(\tilde{X}) = (T_1(\tilde{x}), \dots, T_k(\tilde{X}))$, donde $T_j(\tilde{X}) = \sum t_j(X_i)$ es suficiente completo

Theorem (Pitman-Koopman-Darmois). Si el soporte de las distribuciones no depende de θ $y \exists$ un estadístico suficiente, el modelo es de una familia exponencial.

Theorem (Rao-Blackwell). $T(\tilde{X})$ suficiente $W(\tilde{X})$ insesgado de $\tau(\theta)$. Definimos $W_T = E_{\theta}(W|T)$

- 1. W_T función únicamente de T(X)
- 2. $E_{\theta}(W_T) = \tau(\theta) \ \forall \theta$
- 3. $Var_{\theta}(W_T) \leq Var_{\theta}(W) \ \forall \theta$

Proposition. Si W es el mejor estimador insesgado de $t(\theta)$ y su varianza es finita, entonces W es único

Definition (Ruido blanco). Estadístico U tal que $E_{\theta}(U) = 0 \ \forall \theta$

Theorem. W estimador insesgado de $\tau(\theta) \ \forall \theta$. W $UMVUE \iff W$ incorrelado con todos los ruidos blancos.

Proposition. W insesgado de $\tau(\theta)$ UMVUE \iff es función del estadístico minimal suficiente T para θ y está incorrelado con los estimadores insesgados de θ que sean función del estadístico T minimal suficiente para θ

Theorem (Lehmann-Scheffé). $T(\tilde{X})$ suficiente y completo para θ , $W(\tilde{X})$ estimador insesgado cualquiera de $\tau(\theta)$, entonces

$$W_T(\tilde{X}) = E_{\theta}(W|T(\tilde{X}))$$

es UMVUE de $\tau(\theta)$. Si la variancia es finita $\forall \theta \Rightarrow W_T$ es único

Proposition. $T(\tilde{X})$ sufficiente y completo

1. W insesgado de $\tau(\theta)$ y función de T, entonces W es UMVUE

2. Cualquier función de T que tenga esperanza finita es el UMVUE de su esperanza.

Definition (Consistencia en probabilidad). La sucesión $\hat{\theta}_n = T(\tilde{X})$ es consistente si

 $\lim P(|\hat{\theta}_n - \theta| < \varepsilon) = 1 \iff \lim \hat{\theta}_n = \theta \text{ en probabilidad})$

Theorem. Si $\hat{\theta}_n$ verifica

- $\lim Var(\hat{\theta}_n) = 0 \ \forall \theta$
- $\lim B_{\theta}(\hat{\theta}_n; \theta) = 0 \ \forall \theta$

entonces $\hat{\theta}_n$ es consistente en media cuadrática y en probabilidad

Theorem. $\hat{\theta}_n$ consistente en probabilidad

- 1. $a_n \to 1$, $b_n \to 0 \Rightarrow (a_n \hat{\theta}_n + b_n)$ consistente
- 2. $g \ continua \Rightarrow g(\hat{\theta}_n) \ consistente \ para \ g(\theta)$
- 3. $\hat{\delta}_n$ estimadores consistentes para δ , $g(\theta, \delta)$ continua $\Rightarrow g(\hat{\theta}_n, \hat{\delta}_n)$ consistente para $g(\theta, \delta)$

Definition (Normalidad asintótica). $\hat{\theta}_n$ la presenta si $\exists v_n(\theta) \to 0$ no negativos tal que

$$\frac{(\hat{\theta}_n - \theta)}{\sqrt{v_n(\theta)}} \to_D N(0, 1) \Rightarrow \hat{\theta}_n \sim AN(\theta, v_n(\theta))$$

Definition (Eficiencia relativa asintótica). $T_n(\tilde{X}), S_n(\tilde{X})$ estimadores de θ asintoticamente normales varianza del orden 1/n

$$\sqrt{n}(T_n(\tilde{X}) - \theta) \to_D N(0, \sigma_T^2(\theta))$$

$$\sqrt{n}(S_n(\tilde{X}) - \theta) \to_D N(0, \sigma_S^2(\theta))$$

$$ARE(\theta, S_n, T_n) = \frac{\sigma_T^2(\theta)}{\sigma_S^2(\theta)}$$

Theorem (Slutzky). $X_n \to_D X, Y_n \to_P a$. Entonces

- 1. $X_n + Y_n \rightarrow_D X + a$
- 2. $X_n Y_n \to_D aX$
- 3. g(x,y) continua $\Rightarrow g(X_n, Y_n) \rightarrow_D g(x,y)$

Theorem (Método delta). $a_n \to \infty$

$$a_n(\hat{\theta}_n - \theta) \to_D N(0, \sigma^2(\theta)) \Rightarrow$$

$$\Rightarrow a_n(q(\hat{\theta}_n) - q(\theta)) \to_D N(0, (q'(\theta))^2 \sigma^2(\theta))$$

Estimador de momentos: $\hat{\theta}_n = \bar{x}_n, \theta = E[X] \Rightarrow a_n = \sqrt{n}, \sigma^2(\theta) = Var(X)$

Theorem. Si se verifican

- 1. Distinta $\theta \to distinta distribución (\theta identificable)$
- 2. $\{x: f(x|\theta) > 0\}$ es el mismo $\forall \theta$
- 3. $E_{\theta_0}(\log(\frac{f(X|\theta)}{f(X|\theta_0)}))$ existe $\forall \theta, \theta_0$
- 4. Θ es un abierto
- 5. $\frac{\partial f(x|\theta)}{\partial \theta}$ es continua en θ

entonces si 1, 2, y 3:

$$E_{\theta_0}\left[\log\left(\frac{L(\theta|X_n)}{L(\theta_0|X_n)}\right)\right] < 0, \lim P_{\theta_0}\left\{L(\theta_0|X_n) > L(\theta|X_n)\right\} = 1$$

Si además 4 y 5: $\frac{\partial}{\partial \theta} \log L(\theta|X_n) = 0$

Theorem. Si además $\exists \frac{\partial^3}{\partial \theta^3}$ acotada por K(x) tal que $E_{\theta}(K(X)) \leq k$, θ_n raíces del score: $\hat{\theta}_n \to_P \theta_0$, entonces

$$\sqrt{n}(\hat{\theta}_n - \theta_0) \to_D N(0, \frac{1}{I_X(\theta_0)}), \quad X \sim f(x; \theta_0)$$

Theorem. Los estimadores

$$O_n = -\frac{\partial^2 \log L(\theta|X_n)}{\partial \theta^2}|_{\theta = \hat{\theta}_n}, \quad E_n = I_{X_n}(\hat{\theta}_n)$$

divididos por n son estimadores consistentes de $I_X(\theta_0)$

4 Estimación por intervalos

Definition (Estimador por intervalos). $[L(\tilde{X}), U(\tilde{X})]$

Definition (Probabilidad de cobertura). $P_{\theta}(\theta \in [L(\tilde{X}), U(\tilde{X})])$

Definition (Coeficiente de cobertura (confianza)). $\inf_{\theta} P_{\theta}(\theta \in [L(\tilde{X}), U(\tilde{X})])$

Definition (Intervalo de confianza). $IC_{1-\alpha}(\theta)$

Proposition. $IC_{1-\alpha}$ de θ es $[L(X), U(X)] \Rightarrow IC_{1-\alpha}$ de $\tau(\theta)$ es $[\tau(L(X)), \tau(U(X))]$ si es creciente (al revés si decreciente)

Definition (Cantidad pivotal). $Q(\tilde{X}, \theta)$ es cantidad pivotal si f_Q no depende de θ .

e.g. $(\overline{x} - \mu)/\sigma$ en familias de localización y escala.

Proposition. Sea $A_{\alpha}: P(Q(\tilde{X}, \theta) \in A_{\alpha}) = 1 - \alpha$ entonces $C_{\alpha}(\tilde{x}) = \{\theta : Q(\tilde{x}, \theta) \in A_{\alpha}\}$ es conjunto de confianza $1 - \alpha$

Proposition. $X_1, ..., X_n \sim N(\mu, \sigma)$ $IC_{1-\alpha}(\mu) = [\overline{x}_n \mp z_{\alpha/2} \frac{\sigma}{\sqrt{n}}] \text{ si } \sigma \text{ conocida}$ $IC_{1-\alpha}(\mu) = [\overline{x}_n \mp t_{n-1,\alpha/2} \frac{S_n}{\sqrt{n}}] \text{ si } \sigma \text{ desconocida}$ $IC_{1-\alpha}(\sigma^2) = \left[\frac{(n-1)S_n^2}{\chi_{n-1,\alpha/2}^2}, \frac{(n-1)S_n^2}{\chi_{n-1,1-\alpha/2}^2}\right]$

Definition (Cant. pivotal asintótica). $Q_n(\tilde{X}_n, \theta) \to_D Q$ e.g.

$$Q_n = \frac{T(\tilde{X}_n) - E_{\theta}^A(T(\tilde{X}_n))}{\sqrt{V_{\theta}^A(T(\tilde{X}_n))}} \to_D N(0, 1)$$

Proposition. $\frac{\hat{\theta}_n - \theta}{\hat{se}(\hat{\theta}_n)} \to_D N(0,1) \Rightarrow [\hat{\theta}_n \mp z_{\alpha/2} \hat{se}(\hat{\theta}_n)]$ intervalo de confianza $(1 - \alpha)$ asintótico para θ

Definition (Intervalo EMV). $\left[\hat{\theta}_n \mp z_{\alpha/2} \sqrt{(\hat{I}_n(\theta))^{-1}}\right]$

$$Q_n^{EMV} = \frac{\hat{\theta}_n - \theta}{\sqrt{(I_n(\theta))^{-1}}} \rightarrow_D Z \sim N(0, 1)$$

Definition (Función score). $S_n = \frac{\partial}{\partial \theta} \log L$

$$Q_n^S = \frac{S_n}{\sqrt{I_n(\theta)}} \to_D Z \sim N(0, 1)$$

Definition (Precisión). Δ es la mitad del intervalo

5 Contrastes de hipótesis

Definition. H_0 hipótesis nula, H_1 hipótesis alternativa

Definition (Contraste de hipótesis). $\begin{cases} H_0 : F \in \mathcal{F}_0 \\ H_1 : F \in \mathcal{F}_1 \end{cases}$ es

Definition. R región crítica tal que D(R) = 1 (rechaza)

 $\alpha = P(error\ tipo\ I\) = P(X \in R|H_0\ cierta)\ (significación)$ $\eta = P(error\ tipo\ II) = P(X \notin R|H_0\ falsa)$

Definition (Potencia del test). $\beta = 1 - \eta$ probabilidad de decidir de forma acertada rechazar H_0

Definition (p-valor). *ínfimo de los* α para los cuales se rechazaría la hipótesis nula. Probabilidad de que, siendo H_0 cierta, se observe otra muestra que sea al menos tan poco favorable a la hipótesis nula como la que se ha observado.

Proposition. $p(\tilde{x}) = \sup_{\theta \in \Theta_0} P_{\theta}(T(\tilde{X}) \geq T(\tilde{x}))$

Definition (Función de potencia).

$$\beta(\theta) = P(X \in R) = \begin{cases} P(\textit{Error tipo I}) & \textit{si } \theta \in \Theta_1 \\ 1 - P(\textit{Error tipo II}) & \textit{si } \theta \in \Theta_2 \end{cases}$$

Definition (Nivel). $\sup \beta(\theta) \leq \alpha$

Theorem (Neyman-Pearson). $H_0: \theta = \theta_0 \ vs \ H_0: \theta = \theta_1$. Región crítica del contraste más potente de tamaño α :

$$R = \left\{ \tilde{x} : \frac{L(\theta_1; \tilde{x})}{L(\theta_0; \tilde{x})} \ge A_{\alpha} \right\}$$
$$p - valor = P\left(\frac{L(\theta_1; \tilde{X})}{L(\theta_0; \tilde{X})} \ge \frac{L(\theta_1; \tilde{x})}{L(\theta_0; \tilde{x})} \right)$$

Definition (Uniformemente más potente de tamaño α).

$$\beta(\theta) \leq \alpha \ \forall \theta \in \Theta_0, \quad \beta(\theta) \ m\'{a}ximo \ \forall \theta \in \Theta_1$$

Theorem (Neyman-Pearson). $H_0: \theta = \theta_0 \ vs \ H_0: \theta \in \Theta_1$. $Si \ R(\theta_1)$ (del teorema anterior) no depende de θ_1 , la prueba estadística de R es UMP de tamaño α .

Proposition.
$$X \sim N(\mu, \sigma^2), \begin{cases} H_0 : \mu = \mu_0 \\ H_1 : \mu > \mu_0 \end{cases}$$

$$R = \{x : \overline{x} \ge B\}, \ con \ B = \mu_0 + z_\alpha \frac{\sigma}{\sqrt{n}}$$

Theorem. $f(x;\theta) = c(\theta)h(x)e^{\eta(\theta)t(x)}$ con $\eta(\theta)$ creciente. El test de NP es UMP si $H_1: \theta > \theta_0$.

Definition (Razón de verosimilitudes).

$$\lambda = \lambda(x) = \frac{\max_{\theta \in \Theta_0} L(\theta; x)}{\max_{\theta \in \Theta} L(\theta; x)} \Rightarrow R = \{x : \lambda(x) \le A\}$$

Theorem.
$$\begin{cases} H_0: \theta \in \Theta_0 \\ H_1: \theta \in \Theta_1 \end{cases}$$

$$Q_n = -2\log(\lambda(X_n)) \to_n \chi_d^2, \quad d = \dim(\Theta) - \dim(\Theta_0)$$

bajo la hipótesis nula

Dos tests para
$$\begin{cases} H_0: \theta = \theta_0 \\ H_1: \theta \neq \theta_0 \end{cases}$$

Definition (Test del Score). $S_n(\theta; x_n) = \frac{\partial \log L}{\partial \theta}$

$$T_n^s(X_n) = \frac{S_n(\theta_0; X_n)^2}{I_n(\theta_0)}, \quad S_n(\theta_0; X_n) \approx N(0, I_n(\theta_0))$$

Rechaza H_0 si $T_n^S(x_n) > \chi_{1,\alpha}^2$

Definition (Test de Wald). $\hat{\theta}_n \approx N(\theta_0, (I_n(\theta_0))^{-1})$

$$W_n = (\hat{\theta}_n - \theta_0)^2 I_n(\theta_0) \approx_{en} H_0 \chi_1^2$$

Rechaza H_0 si $W_n^S(x_n) > \chi_{1,\alpha}^2$

6 Modelo lineal normal

Definition (Modelo teórico). $y_i|x_i \sim N(\beta_0 + \beta_1 x_{1i} + \cdots + \beta_{p-1i}, \sigma^2)$, $e_i = y_i - \hat{y}_i$, e_i, e_j son independientes $\forall i, j$.

Formulación matricial $Y = X\beta + \epsilon$:

$$Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \epsilon = \begin{pmatrix} \epsilon_1 \\ \vdots \\ \epsilon_n \end{pmatrix} X = \begin{pmatrix} 1 & x_{11} & \cdots & x_{p-11} \\ \vdots & & & \vdots \\ 1 & x_{1i} & \cdots & x_{p-1i} \end{pmatrix}$$

Theorem (Minimos cuadrados). $b = (X^T X)^{-1} X^T Y$

Propiedades: $\overline{e} = 0$ y pasa por $(\hat{x}_1, ..., \hat{x}_{p-1}, \hat{y})$

Proposition. Una variable explicativa

$$b_1 = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sum (x_i - \overline{x})^2}, \quad b_0 = \overline{y} - b_1 \overline{x}$$

Proposition. Con diferente varianza y V matriz diagonal de varianza:

$$b = (X^T V^{-1} X)^{-1} X^T V^{-1} Y$$

Definition (ANOVA decomposition). $SS_T = SS_R + SS_E$

$$SS_T = \sum (y_i - \overline{y})^2, SS_R = \sum (y_i - \hat{y}_i)^2, SS_E = \sum (\hat{y}_i - \overline{y})^2$$

$$s_E^2 = \frac{SS_E}{p-1}, \quad s_R^2 = \frac{SS_R}{n-p}, \quad F = \frac{s_E^2}{s_P^2}$$

$$\hat{\sigma}^2 = s_P^2$$

Definition (Coeficiente determinación).

$$R^2 = 100 \frac{SS_E}{SS_T} = 100(1 - \frac{SS_R}{SS_T}), R_{adj}^2 = 100(1 - \frac{s_R^2}{s_R^2})$$

Proposition. $b|X \sim N(\beta, \sigma^2(X^TX)^{-1})$

Proposition. Una variable $Cov(b_0, b_1|x) = \frac{-\sigma^2 \overline{x}}{\sum (x_i - \overline{x})^2}$

$$b_0|x \sim N(\beta_0, \frac{\sigma^2}{n} \frac{\sum x_i^2}{\sum (x_i - \overline{x})^2}), \quad b_1|x \sim N(\beta_1, \frac{\sigma^2}{\sum (x_i - \overline{x})^2})$$

Proposition.
$$s_R^2|X \sim \frac{\sigma^2}{n-p}\chi_{n-p}^2$$

Proposition. $Var(b_j|x) = s_{b_j}^2$, $t_j = b_j/s_{b_j}$

$$(b_j \mp t_{n-p}^{\alpha/2} s_{b_j}) \simeq (b_j \mp 2s_{b_j})$$

Si 0 en el intervalo, se puede quitar la variable del modelo

Definition. SS_{R0} suma sin las q variables a retirar

$$F = \frac{(SS_{R0} - SS_R)/q}{(SS_R)/(n-p)}, \quad \begin{cases} +F \Rightarrow no \ retirar \\ -F \Rightarrow retirar \end{cases}$$

Si se pueden retirar, $F \sim F_{q,n-p}$. $F = s_e^2/s_R^2$ para comparar vs el modelo nulo, $N(\overline{y}, \sigma^2)$.

Proposition. Intervalo de confianza $1 - \alpha$ de $E(y|x_0)$

$$\left(\hat{y}(x_0) \pm t_{n-p}^{\alpha/2} s_R \sqrt{\frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum (x_i - \overline{x})^2}}\right)$$

Proposition. Intervalo de predicción $1 - \alpha$ de $y(x_0)$

$$\left(\hat{y}(x_0) \pm t_{n-p}^{\alpha/2} s_R \sqrt{1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum (x_i - \overline{x})^2}}\right)$$

El intervalo de 95% podemos tener en cuenta $t_{n-p}^{0.25} \approx 2$

Para más de una variable, $\hat{y}(x_0) \sim N(E(y|x_0), \sigma^2 x_0'(X'X)^{-1}x_0)$ son respectivamente

$$\left(\hat{y}(x_0) \pm t_{n-p}^{\alpha/2} s_R \sqrt{x_0^T (X^T X)^{-1} x_0}\right)
\left(\hat{y}(x_0) \pm t_{n-p}^{\alpha/2} s_R \sqrt{1 + x_0^T (X^T X)^{-1} x_0}\right)$$

Tipos de errores:

- 1. Regular: $e_i = y_i \hat{y}_i$, $e = Y \hat{Y} \sim N(0, \sigma^2(I H))$ $H = X(X'X)^{-1}X'$ es la projection/hat matrix
- 2. Standarized: $e_i^s = e_i/s_{e_i}$. $(s_{e_i} \text{ aproxima se})$ Si el modelo es correcto, 95% deberían estar en (-2, 2).
- 3. $Deleted: e_i^{sd} = (y_i \hat{y}_{(i)})/s_{e_{(i)}}$. Como los standarized, pero para la *i*-ésima predicción se hace un modelo con todos los datos excepto el *i*. No hace "trampas".

Definition (Distance in X-space).

$$H = X(X^T X)^{-1} X^T$$
, $h_{ii} = \frac{1}{n} + \frac{(x_i - \bar{x})^2}{\sum (x_i - \bar{x})^2}$

If $h_{ii} > 3p/n$, the observation i is unusually far. (No indication by itself that model is wrong)

Definition (Degree of outlierness). $|e_i^s|$

Definition (Influence on the fitted model). Se mide con la distancia de Cook:

$$DC_i = \frac{(\hat{Y} - \hat{Y}_{(i)})'(\hat{Y} - \hat{Y}_{(i)})}{s_R^2 p} = (e_i^s)^2 \frac{h_{ii}}{1 - h_{ii}} \frac{1}{p}$$

o con $DFFIT_i = \hat{y}_i - \hat{y}_{(i)}$

Criterios para la selección de modelos:

- 1. Maximizar R_{adi}^2
- 2. Minimizar $C_p=\frac{SS_R}{s_R^2}+2p-n$ donde s_r^2 es la varianza residual del modelo con todas las variables.
- 3. Minimizar $AIC = Const + n \log(SS_R) + 2p$.
- 4. Minimizar $BIC = Const + n \log(SS_R) + p \log(n)$.

Tipos de cross validation:

Sirven para medir el rendimiento del modelo más "honestamente"

- 1. One-shot: Separar los datos en dos, uno para entrenar y el otro para medir. Barato pero poco fiable.
- 2. Leave-one-out: Para cada dato, predecirlo con un modelo entrenado con todos los otros datos. $PRESS = SS_R^{l.one.out} = \sum_i^n (e_i^d)^2$. Muy costoso, pero fiable.
- 3. Leave-p-out: Para cada subconjunto de p datos, predecirlo con un modelo entrenado con los otros. Aún más costoso y fiable.
- 4. k-fold: Separar en k grupos del mismo tamaño y predecir cada uno con un modelo entrenado con los otros. $SS_R^{kfold} = \sum_{i=1}^n (y_i \hat{y}_{(i)}^{kfold})^2$, $R_{kfold}^2 = 100(1 SS_R^{kfold}/SS_T)$. Es el bueno.

Si hay alguna categórica, con k posibles categorías, se añaden k-1 variables indicadoras (una es la baseline) y en el modelo se ponen estas indicadoras y el producto de las indicadoras por las variables continuas. Después se intenta simplificar el modelo con los estadísticos t y F.

7 Modelo de respuesta categórica

Queremos hacer un modelo para una variable binaria y que dependa de variables continuas x_i .

En nuestros datos, tenemos n_i experimentos con las explicatorias x_i , de los cuales y_i han sido si, y $n_i - y_i$ no.

Definition (Modelo teórico). $y_i|x_i \sim Bin(n_i, \pi(x_i))$

$$\pi(x_i) = \frac{e^{\beta_0 + \beta_1 x_{1i} + \dots + \beta_{p-1} x_{(p-1)i}}}{1 + e^{\beta_0 + \beta_1 x_{1i} + \dots + \beta_{p-1} x_{(p-1)i}}}$$

$$\log \frac{\pi(x_i)}{1 - \pi(x_i)} = \log Odds(x_i) = \beta_0 + \beta_1 x_{1i} + \dots + \beta_{p-1} x_{(p-1)i}$$

Se entrena minimizando el *Pearson statistic* (que da menos importancias a los cercanos a 0 o 1):

$$X^{2}(Y, \hat{Y}) = \sum_{i=1}^{n} \frac{(y_{i} - n_{i}\hat{\pi}(x_{i}))^{2}}{n_{i}\hat{\pi}(x_{i})(1 - \hat{\pi}(x_{i}))} = \sum_{i=1}^{n} (e_{i}^{P})^{2}$$

o la deviance ($\approx SS_R$ en modelos lineales): ResDev =

$$2\sum_{i=1}^{n} \left(y_i \log \frac{y_i}{n\hat{\pi}(x_i)} + (n_i - y_i) \log \frac{n_i - y_i}{n_i(1 - \hat{\pi}(x_i))} \right) = \sum_{i=1}^{n} \left(e_i^D \right)^2$$

Si el modelo es correcto, $ResDev \sim \chi^2_{n-p}$ y el 95% de los e_i^D deberían estar en (-2,2).

8 Miscelánea

Propiedades de la distribución Gamma Parametrización con scale θ

$$f(x) = \frac{1}{\Gamma(\alpha)\theta^{\alpha}} x^{\alpha-1} e^{-x/\theta}, \quad E(X) = \alpha\theta, \quad Var(X) = \alpha\theta^{2}$$

$$\Gamma(\alpha_{1}, \theta) + \Gamma(\alpha_{2}, \theta) \sim \Gamma(\alpha_{1} + \alpha_{2}, \theta), \quad c\Gamma(\alpha, \theta) \sim \Gamma(\alpha, c\theta)$$

$$X \sim \Gamma(\alpha, scale = \theta) \Rightarrow \frac{2}{\theta} X \sim \chi^{2}_{2\alpha}$$

Parametrización con rate β

$$\begin{split} f(x) &= \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x}, \quad E(X) &= \frac{\alpha}{\beta}, \quad Var(X) = \frac{\alpha}{\beta^2} \\ \Gamma(\alpha_1, \beta) + \Gamma(\alpha_2, \beta) &\sim \Gamma(\alpha_1 + \alpha_2, \beta), \quad c\Gamma(\alpha, \beta) \sim \Gamma(\alpha, \frac{\beta}{c}) \\ X &\sim \Gamma(\alpha, rate = \beta) \Rightarrow 2\beta X \sim \chi^2_{2\alpha} \end{split}$$

$$\sum_{0}^{\infty} nx^{n-1} = \frac{1}{(1-x)^2}$$

$$\Gamma(n) = (n-1)!, \quad B(a,b) = \int_{0}^{1} t^{a-1} (1-t)^{b-1} dt = \frac{\Gamma(a)\Gamma(b)}{\Gamma(a+b)}$$

$$aN(\mu, \sigma^2) + b \sim N(a\mu + b, (a\sigma)^2)$$

$$aN(\mu_1, \sigma_1^2) + bN(\mu_2, \sigma_2^2) = N(a\mu_1 + b\mu_2, (a\sigma_1)^2 + (b\sigma_2)^2)$$

$$X \sim Weibull(\alpha, \beta) \Rightarrow X^{\alpha}/\beta \sim Exp(1)$$