CHAPTER 3

AMINO ACIDS,
PEPTIDES, AND
PROTEINS

Glycine (Gly, G) Alanine (Ala, A)

Ball-and-stick models show the arrangement of atoms and bonds in space.

Stereochemically realistic formulas show the geometrical arrangement of bonds around atoms

Fischer projections

$$H_{2}$$
 C
 CH_{2}
 N^{+}
 C
 COO^{-}
 H_{2}
 H

Serine (Ser, S)

$$\begin{array}{c} \text{OH} \\ | \\ \text{CH}_2 \\ | \\ \text{+H}_3\text{N} \longrightarrow \text{C} \longrightarrow \text{COO}^- \\ | \\ \text{H} \\ \text{Serine} \end{array}$$

(Ser, S)

Threonine (Thr, T)

TABLE 3.1 Typical pK_a values of ionizable groups in proteins

Group	Acid	$\overline{}$	Base	Typical p $K_{ m a}^{\ *}$
Terminal α-carboxyl group	C O H		O - O	3.1
Aspartic acid Glutamic acid	C O H		O - O	4.1
Histidine	H N H		$-\sqrt{N}$ _N	6.0
Terminal α-amino group	+ H -N~H H		—N‰H H	8.0
Cysteine	_s´H	$\;\; \stackrel{\longleftarrow}{\longleftarrow} \;\;$	—s-	8.3
Tyrosine -	-(- 	-0-	10.9
Lysine	+ H -N~H H		—N, H	10.8
Arginine	H + N-H NC N-H	$\overline{\qquad}$	H N-C	12.5

 $^{^*\}mathrm{p}K_\mathrm{a}$ values depend on temperature, ionic strength, and the microenvironment of the ionizable group.

TABLE 3.2 Abbreviations for amino acids

Amino acid	Three-letter abbreviation	One-letter abbreviation	Amino acid	Three-letter abbreviation	One-letter abbreviation
Alanine	Ala	A	Methionine	Met	M
Arginine	Arg	R	Phenylalanine	Phe	F
Asparagine	Asn	N	Proline	Pro	Р
Aspartic Acid	Asp	D	Serine	Ser	S
Cysteine	Cys	С	Threonine	Thr	T
Glutamine	Gln	Q	Tryptophan	Trp	W
Glutamic Acid	Glu	E	Tyrosine	Tyr	Y
Glycine	Gly	G	Valine	Val	V
Histidine	His	Н	Asparagine or	Asx	В
Isoleucine	Ile	I	aspartic acid		
Leucine	Leu	L	Glutamine or	Glx	Z
Lysine	Lys	K	glutamic acid		

CHAPTER 3

3.3 WORKING WITH PROTEINS

■ 鹽析 Salting-out :硫酸銨沈澱

Ammonium sulfate precipitation

蛋白質分子表面的疏水性區域,都聚集許多水分子,當鹽類加入時,這些水分子被抽出,以便與鹽離子進行水合,暴露出來的疏水性區域互相結合,形成沈澱。 = hydrophobic

■ 透析(dialysis) : desalting and exchange buffer

MWCO: molecular weight cut-off

Principles of biochemistry, 3rd edition, Horton, Moran, Ochs, Rawn, Scrimgeour

Proteins move through the column at rates determined by their net charge at the pH being used. With cation exchangers, proteins with a more negative net charge move faster and elute earlier.

based upon molecular size

P. 87

Purification table 純化表

純化流程	總體積	總蛋白質量	總活性	比活性
Procedure or step	Fraction volume (ml)	Total protein (mg)	Activity (units)	Specific activity (units/mg)
 Crude cellular extract Precipitation with ammonium sulfate Ion-exchange chromatography Size-exclusion chromatography Affinity chromatography 	1,400 280 90 80 6	10,000 3,000 400 100 3	100,000 96,000 80,000 60,000 45,000	10 32 200 600 15,000

Note: All data represent the status of the sample *after* the designated procedure has been carried out. Activity and specific activity are defined on page 94.

1.0 unit of enzyme activity: transformation of 1.0 μ mol of substrate per min at designated assay conditions.

Specific activity: µmol/min/mg

The specific activity is a measure of enzyme purity

P. 91

Electrophoresis 電泳

- Polyacrylamide gel electrophoresis (PAGE)
 Separates molecules on
 - a polyacrylamide gel matrix when an electric field is applied
- SDS-PAGE. Sodium dodecyl sulfate (SDS) coats proteins with negative charges.
 Coated polypeptide chains then separate by molecular mass.

■影響泳動率的因素

Mobility (
$$\mu$$
) = $\frac{Z}{f}$

外加電流電壓 (current, voltage)

Net Charge (Z)

分子的等電點 Isoelectric point Friction (f)

分子量 分子形狀

Molecular weight, shape

■ SDS 在蛋白質表面均匀敷上一層負電

Native protein

Protein is denatured to linear form

Its surface covered with negatively charged SDS uniformly

Polar head

Non-polar tail

Sodium dodecyl sulfate (SDS)

Estimating the molecular weight of a protein

Isoelectric focusing

TABLE 3–6 The Isoelectric Points of Some Proteins

Protein	pl
Pepsin	<1.0
Egg albumin	4.6
Serum albumin	4.9
Urease	5.0
eta-Lactoglobulin	5.2
Hemoglobin	6.8
Myoglobin	7.0
Chymotrypsinogen	9.5
Cytochrome c	10.7
Lysozyme	11.0

Two-dimensional gel electrophoresis

Two-dimensional gel electrophoresis

Principles of biochemistry, 3rd edition, Horton, Moran, Ochs , Rawn, Scrimgeour