

UNISONIC TECHNOLOGIES CO., LTD

MMBT2222A

NPN SILICON TRANSISTOR

NPN GENERAL PURPOSE AMPLIFIER

■ FEATURES

* This device is for use as a medium power amplifier and switch requiring collector currents up to 600mA.

ORDERING INFORMATION

Ordering Number	Doolsono	Pin Assignment			Doolsins	
	Package	1	2	3	Packing	
MMBT2222AG-AE3-R	SOT-23	Е	В	С	Tape Reel	
MMBT2222AG-AL3-R	SOT-323	Е	В	С	Tape Reel	
MMBT2222AG-AN3-R	SOT-523	Е	В	С	Tape Reel	
MMBT2222AG-K03-1006-R	DFN-3(1×0.6)	В	E	С	Tape Reel	

Note: Pin Assignment: E: Emitter B: Base C: Collector

MARKING

SOT-23 / SOD-323 / SOD-523	DFN-3(1×0.6)
日 1P.G 日 日	• MG

www.unisonic.com.tw 1 of 6

■ ABSOLUTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified.)

PARAMETER		SYMBOL	RATINGS	UNIT	
Collector-Base Voltage		V_{CBO}	75	V	
Collector-Emitter Voltage		V_{CEO}	40	V	
Emitter-Base Voltage		V_{EBO}	6	V	
Collector Current		I _C	600	mA	
Collector Dissipation	SOT-23	Pc	350		
	SOT-323		200		
	SOT-523		150	mW	
	DFN-3(1×0.6)		300 (Note 1)		
Junction Temperature	nction Temperature		+150	°C	
Storage Temperature		T _{STG}	-55 ~ +150	°C	

Note: Absolute maximum ratings are the values beyond which the device will be damaged permanently.

Absolute maximum ratings are only stress ratings and it is not implied for functional device operation.

■ THERMAL DATA

PARAMETER		SYMBOL	RATINGS	UNIT
Junction to Ambient SOT-23 SOT-323 SOT-523 DFN-3(1×0.6)		357		
	SOT-323	Δ	625	°C/W
	SOT-523	θ_{JA}	833	
	DFN-3(1×0.6)		416 (Note)	

Note: Transistor mounted on an FR4 printed circuit board.

■ ELECTRICAL CHARACTERISTICS (Ta=25°C, unless otherwise specified.)

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
OFF CHARACTERISTICS						
Collector-Base Breakdown Voltage	BV_CBO	I _C =10μA, I _E =0 75				V
Collector-Emitter Breakdown Voltage	BV_CEO	I _C =10mA, I _B =0	40			V
Emitter-Base Breakdown Voltage	BV_{EBO}	$I_E = 10 \mu A, I_C = 0$	6			V
	I _{CBO}	V _{CB} =60V, I _E =0			0.01	μΑ
Collector Cutoff Current		V _{CB} =60V, I _E =0, Ta=150°C			10	μΑ
Emitter Cutoff Current	I_{EBO}	V_{EB} =3.0V, I_{C} =0			10	nA
Base Cutoff Current	I_{BL}	V_{CE} =60V, $V_{EB(OFF)}$ =3.0V			20	nA
Collector Cutoff Current	I_{CEX}	V_{CE} =60V, $V_{EB(OFF)}$ =3.0V			10	nA
ON CHARACTERISTICS						
		I _C =0.1mA, V _{CE} =10V	35			
		I _C =1.0mA, V _{CE} =10V	50			
		I _C =10mA, V _{CE} =10V	75			
DC Current Gain	h_{FE}	I _C =10mA, V _{CE} =10V, Ta= -55°C	35			
		I _C =150mA, V _{CE} =10V(Note)	100		300	
		I _C =150mA, V _{CE} =1.0V(Note)	50			
		I _C =500mA, V _{CE} =10V(Note)	40			
Collector-Emitter Saturation		I _C =150mA, I _B =15mA			0.3	V
Voltage(Note)	$V_{CE(SAT)}$	I _C =500mA, I _B =50mA			1.0	V
Base-Emitter Saturation	\/	I _C =150mA, I _B =15mA	0.6		1.2	V
Voltage(Note)	$V_{BE(SAT)}$	I _C =500mA, I _B =50mA			2.0	V
SMALL SIGNAL CHARACTERISTIC	S		_			
Real Part of Common-Emitter High Frequency Input Impedance	Re(hje)	I _C =20mA, V _{CB} =20V, f=300MHz			60	Ω
Transition Frequency	f⊤	I _C =20mA, V _{CE} =20V, f=100MHz	300			MHz
Output Capacitance	Cobo	V _{CB} =10V, I _E =0, f=100kHz			8.0	pF
Input Capacitance	Cibo	V _{EB} =0.5V, I _C =0, f=100kHz			25	pF
Collector Base Time Constant	rb'Cc	I _C =20mA, V _{CB} =20V, f=31.8MHz			150	pS
Noise Figure	NF	I _C =100μA, V _{CE} =10V, Rs=1.0kΩ f=1.0kHz		4.0	dB	
SWITCHING CHARACTERISTICS		•		•		
Delay Time	t_D	V _{CC} =30V, V _{BE(OFF)} =0.5V,			10	ns
Rise Time	t _R	I _C =150mA, I _{B1} =15mA			25	ns
Storage Time	ts	Vcc=30V, I _C =150mA			225	ns
Fall Time	t _F	I _{B1} = I _{B2} =15mA			60	ns

Note: Pulse test: Pulse Width $\leq 300 \mu s, \ Duty \ Cycle \leq 2.0\%$

■ TEST CIRCUITS

Fig 1. Saturated Turn-On Switching Time

Fig 2. Saturated Turn-Off Switching Time

■ TYPICAL CHARACTERISTICS

Base-Emitter on Voltage vs. Collector Current

Base-Emitter Saturation Voltage vs. Collector Current

Emitter Transition and Output Capacitance vs. Reverse Bias Voltage

■ TYPICAL CHARACTERISTICS(Cont.)

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.