112-1 期末考 解析

一、單選題: (25 小題, 每題 4 分, 共 100 分)

)如圖,已知 $\triangle ABC$ 為正三角形, $P \cdot Q \cdot R$ 是三邊的中點,則 $\overrightarrow{PR} =$

 $(A) \overrightarrow{PA}$ (B) \overrightarrow{BQ} (C) \overrightarrow{BC} (D) \overrightarrow{CQ}

【龍騰自命題】

解答

解析 向量要「大小相等,方向相同」才相等

)若 $\overrightarrow{a} = (2,0)$, $\overrightarrow{b} = (-2,2)$,則 \overrightarrow{a} 與 \overrightarrow{b} 的夾角 θ 為 (A)銳角 (B)鈍角 (C)直角 (D)平角

【隨堂卷】

由圖知, $\frac{1}{a}$ 與 $\frac{1}{b}$ 的夾角 θ 為鈍角

) 與 $\overrightarrow{a} = (12,5)$ 同方向的單位向量為 $(A)\left(-\frac{12}{13}, -\frac{5}{13}\right)$ (B)(12,5) $(C)\left(\frac{12}{13}, \frac{5}{13}\right)$ $(D)\left(\frac{5}{13}, \frac{12}{13}\right)$

【隨堂卷】

解答C

解析] $|\overrightarrow{a}| = \sqrt{12^2 + 5^2} = 13$,與 $\overrightarrow{a} = (12,5)$ 同方向的單位向量為 $\frac{\overrightarrow{a}}{|\overrightarrow{a}|} = \frac{(12,5)}{13} = \left(\frac{12}{13}, \frac{5}{13}\right)$

4. ()已知坐標平面上兩點 $A(9,4) \cdot B(5,3)$,則 $\overrightarrow{AB} =$ (A)(3,-2) (B)(4,1) (C)(-3,2) (D)(-4,-1)

【隨堂卷】

解答 D

 $\overrightarrow{AB} = (5,3) - (9,4) = (-4,-1)$

) 點 P(5,-2) 到圓 $C: x^2 + y^2 + 2x + 6y - 2 = 0$ 的切線段長為 (A) $\sqrt{10}$ (B) $\sqrt{17}$ (C) 4 (D) 5

【隨堂卷】

解答 D

解析 切線段長為 $\sqrt{5^2 + (-2)^2 + 2 \times 5 + 6 \times (-2) - 2} = \sqrt{25 + 4 + 10 - 12 - 2} = \sqrt{25} = 5$

)若圓 $C: x^2 + y^2 - 8x + 6y = 0$,則圓C之直徑為何? (A)6 (B)8 (C)10 (D)12

【110數(B)歷屆試題】

解答

 \mathbf{C}

$$\Rightarrow (x^2 - 8x + 4^2) + (y^2 + 6y + 3^2) = 4^2 + 3^2$$

$$\Rightarrow$$
 $(x-4)^2 + (y+3)^2 = 25 = 5^2$

得圓C半徑為 $5 \Rightarrow$ 直徑= $2 \times 5 = 10$

〔另解〕

圓一般式 $x^2 + y^2 + dx + ey + f = 0$

其半徑 =
$$\frac{1}{2}\sqrt{d^2 + e^2 - 4f}$$

... 此題直徑 =
$$2 \times \frac{1}{2} \times \sqrt{(-8)^2 + 6^2 - 4 \times 0} = \sqrt{100} = 10$$

)設兩向量 $\overrightarrow{a} = (x-1,1)$ 、 $\overrightarrow{b} = (x+2,2)$ 。若滿足內積 $\overrightarrow{a} \cdot \overrightarrow{b} = 6$ 之x有兩解 α 、 β ,則 $\alpha + \beta =$ **7.** ((A)-1 (B)0 (C)1 (D)2

得 $(x-1,1)\cdot(x+2,2)=6$ \Rightarrow $(x-1)(x+2)+1\times2=6$ \Rightarrow $x^2+x-6=0$ $\Rightarrow (x+3)(x-2) = 0 \qquad \therefore \quad x = -3 \not\equiv 2$

故可設 $\alpha = -3$, $\beta = 2$,則 $\alpha + \beta = -3 + 2 = -1$

) 設 $|\vec{a}| = 5$ 、 $|\vec{b}| = 6$, \vec{a} 與 \vec{b} 的夾角為 30° ,則 $\vec{a} \cdot \vec{b} =$ 8. (

(A) $-15\sqrt{3}$ (B) 15 (C) $15\sqrt{2}$ (D) $15\sqrt{3}$

【學習卷】

解答D

解析] $\overrightarrow{a} \cdot \overrightarrow{b} = |\overrightarrow{a}| |\overrightarrow{b}| \cos \theta = 5 \times 6 \times \cos 30^{\circ} = 5 \times 6 \times \frac{\sqrt{3}}{2} = 15\sqrt{3}$

) $\stackrel{\text{#}}{=} \overrightarrow{AB} = \overrightarrow{a} - \overrightarrow{c}$ $\stackrel{\text{$\rightarrow$}}{=} \overrightarrow{BC} = 2 \overrightarrow{a} - \overrightarrow{b}$ $\stackrel{\text{$\rightarrow$}}{=} \overrightarrow{CD} = -\overrightarrow{b} + \overrightarrow{c}$ $\stackrel{\text{$\rightarrow$}}{=} \overrightarrow{DE} = \overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ $\stackrel{\text{$\rightarrow$}}{=} \overrightarrow{DE} = \overrightarrow{D$ 9. ($(A)_{3} \overrightarrow{a} - \overrightarrow{b} - \overrightarrow{c}$ $(B)_{a+2} \overrightarrow{c}$ $(C)_{2} \overrightarrow{a} - \overrightarrow{b} - 3 \overrightarrow{c}$ $(D)_{-4} \overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}$

【龍騰自命題】

解答 D

解析 $\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DE}$ $=(\overrightarrow{a}-\overrightarrow{c})+(2\overrightarrow{a}-\overrightarrow{b})+(-\overrightarrow{b}+\overrightarrow{c})+(\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c})$

> $=4\overline{a}-\overline{b}+\overline{c}$ $\overrightarrow{EA} = -\overrightarrow{AE} = -4\overrightarrow{a} + \overrightarrow{b} - \overrightarrow{c}$

10. ()若A(-4,8)、B(-2,6)、C(2,3)為平行四邊形ABCD的三個頂點,求 $|\overrightarrow{AC} + \overrightarrow{BD}|$ = (A)7 (B)8 (C)9 (D)10

【龍騰自命題】

 \therefore ABCD 為平行四邊形,設 D(x,y)

 $\therefore \overrightarrow{AB} = \overrightarrow{DC} \Rightarrow (-2 - (-4), 6 - 8) = (2 - x, 3 - y) \Rightarrow (x, y) = (0, 5)$

 $\overrightarrow{AC} + \overrightarrow{BD} = (2,3) - (-4,8) + (0,5) - (-2,6) = (8,-6)$

 $|\overrightarrow{AC} + \overrightarrow{BD}| = \sqrt{8^2 + (-6)^2} = 10$

) 以 A(2,1) 、 B(4,-5) 為直徑端點的圓方程式為 $x^2 + y^2 + dx + ey + f = 0$,則 d + e + f =11. (

(A)5 (B)1 (C)0 (D)2

【super 講義-綜合評量】

解析

圓心M(x, y)為A(2,1)、B(4,-5)的中點,

 $\exists \prod M(x, y) = \left(\frac{2+4}{2}, \frac{1+(-5)}{2}\right) = (3, -2)$

半徑 $r = \overline{MA} = \sqrt{(3-2)^2 + (-2-1)^2} = \sqrt{10}$

由圓的標準式知:

圓方程式為 $(x-3)^2 + (y+2)^2 = (\sqrt{10})^2$ \Rightarrow $x^2 - 6x + 9 + y^2 + 4y + 4 = 10$

 $x^2 + y^2 - 6x + 4y + 3 = 0$

d + e + f = -6 + 4 + 3 = 1

)一邊長為a之正方形與一圓有相同周長,設圓面積為A,則下列何者正確? (A) $A = \frac{4a^2}{\pi^2}$ (B) $A = \frac{a^2}{\pi}$ (C) $A = a^2$ (D) **12.** (

 $A = \frac{4a^2}{\pi}$

【101 數(A)歷屆試題】

 \therefore 正方形周長=圓周長 \Rightarrow $4a=2\pi r$ \Rightarrow $r=\frac{2a}{\pi}$

 $\therefore \quad \boxed{\blacksquare \overrightarrow{a} = \pi r^2 = \pi \left(\frac{2a}{\pi}\right)^2 = \frac{4a^2}{\pi}}$

13. ()以原點為圓心,則通過二直線3x+2y=4與2x+3y=1交點的圓方程式為 (A) $x^2+y^2=5$ (B) $x^2+y^2=8$ (C) $x^2+y^2=6$ (D) $x^2 + y^2 = 9$

【課本自我評量】

解答 A

解析

$$\begin{cases} 3x + 2y = 4 \cdot \dots \cdot \text{ } \\ 2x + 3y = 1 \cdot \dots \cdot \text{ } \end{cases}$$

① ×2、② ×3 得
$$\begin{cases} 6x+4y=8\\ 6x+9y=3 \end{cases}$$

計算得
$$5y = -5$$
 ,得 $\begin{cases} y = -1 \\ x = 2 \end{cases}$,即 $(x, y) = (2, -1)$

半徑
$$r = \sqrt{(2-0)^2 + (-1-0)^2} = \sqrt{5}$$
 , 圓心(0,0)

由圓的標準式得 $(x-0)^2+(y-0)^2=(\sqrt{5})^2$,計算得 $x^2+y^2=5$

)已知直線 L: 2x-y+3=0,且圓 $C: (x-2)^2+(y+3)^2=20$,若 P 為圓 C 上任一點,則 P 點到直線 L 之最大距離 = **14.** ((A) $2\sqrt{5}$ (B) $4\sqrt{5}$ (C) $6\sqrt{5}$ (D) $8\sqrt{5}$

【龍騰自命題】

解析

圓心 M(2,-3), 半徑 $r=\sqrt{20}=2\sqrt{5}$

故 P 點至直線 L 的最大距離 = $d+r=2\sqrt{5}+2\sqrt{5}=4\sqrt{5}$

)已知圓 $C: x^2+y^2-16=0$,直線 L: 3x+4y-5=0,設圓 C 與直線 L 相交於 $P \cdot Q$ 兩點,則弦 \overline{PQ} 之長為 (A) $2\sqrt{15}$ **15.** ((B) $3\sqrt{2}$ (C) $4\sqrt{3}$ (D) $6\sqrt{2}$

【龍騰自命題】

解析

$$x^2 + y^2 - 16 = 0 \implies x^2 + y^2 = 16 = 4^2$$
, $\text{M}(0,0)$, $r = 4$
$$d(M,L) = \frac{|0+0-5|}{\sqrt{3^2+4^2}} = \frac{|-5|}{5} = 1$$

$$\sqrt{3^2 + 4^2} \qquad 5$$

$$\therefore \overline{PQ} = 2\sqrt{r^2 - d^2} = 2 \times \sqrt{4^2 - 1^2} = 2\sqrt{15}$$

)下圖為某餐廳的價目表,今日每份餐點價格均為價目表價格的九折。若恂恂今日在此餐廳點了橙汁雞丁飯後想再點 **16.** (第二份餐點,且兩份餐點的總花費不超過200元,則她的第二份餐點最多有幾種選擇?

> 香清香 吻 蕃鳳酥和蔬 紅 橙 白 海 茄梨炸風菜脆蛋排燒海炸 蒸烤燒汁酒鲜烤 仔 炒炒骨 肉鮮雞魚魚腩丁蜊魚腳 生 飯飯飯飯飯飯飯飯飯飯麵麵飯 60 70 70 80 80 90 90 100 100 110 120 120 140 150 元元元元元元元元元元元元元元元

(A)5 (B)7 (C)9 (D)11

【104 會考歷屆試題】

解答 解析

設第二份餐點的價格為x元,則

 $(120+x) \times 0.9 \le 200 \implies 108+0.9x \le 200$

 \Rightarrow $0.9x \le 92$ \Rightarrow $x \le 102.2\cdots$

:. 恂恂的第二份餐點可以點 100 元含 100 元以下的共 9 種

17. ()若 $\alpha \cdot \beta$ 為方程式 $2x^2 + 4x - 5 = 0$ 的兩根,則 $\alpha^2 + \beta^2 = (A)20 (B) - 1 (C)1 (D)9$ 解答

層稱
$$\alpha + \beta = -\frac{4}{2} = -2$$

爾根積 $\alpha \beta = \frac{-5}{2}$ $\Rightarrow (\alpha + \beta)^2 = (-2)^2$
 $\Rightarrow \alpha^2 + 2\alpha\beta + \beta^2 = 4 \Rightarrow \alpha^2 + 2 \times (\frac{-5}{2}) + \beta^2 = 4 \Rightarrow \alpha^2 + \beta^2 = 9$

18. () 設 $\alpha \cdot \beta$ 為 $x^2 + 6x + 1 = 0$ 之兩根,則下列敘述何者正確? (A) $\alpha > 0$ (B) $\beta > 0$ (C) $\alpha + \beta > 0$ (D) $\alpha \times \beta > 0$

【龍騰自命題】

解答 D

解析
$$\alpha + \beta = \frac{-6}{1} = -6 < 0$$
 , $\alpha\beta = \frac{1}{1} = 1 > 0$ \Rightarrow $\alpha < 0$, $\beta < 0$

19. () 不等式 $\frac{19-4x}{3} \ge 3x$ 的解為 (A) $x \le -\frac{19}{13}$ (B) $x \ge \frac{19}{13}$ (C) $x \le \frac{19}{13}$ (D) $x \ge -\frac{19}{13}$

【龍騰自命題,進階卷】

解答 (

I解析 原式 \Rightarrow $19-4x \ge 9x <math>\Rightarrow$ $13x \le 19 \Rightarrow x \le \frac{19}{13}$

20. ()某甲以年利率10% 複利向銀行借款十萬元,則3年後需歸還銀行本利和共多少元?(複利計息公式: 若 A 為本利和, P 為本金,r 為利率,n 為期數,則 $A=P(1+r)^n$) (A)131100 (B)133100 (C)131300 (D)11330

【super 講義-綜合評量】

解答B

解析
$$A = 100000 \times (1 + 10\%)^3 = 100000 \times (\frac{11}{10})^3 = 133100$$
 (元)

21. () 一等差級數和為318, 首項為-12, 公差為7, 則此級數共有 (A)11項 (B)12項 (C)13項 (D)14項

【學習卷】

解答B

解析 由公式 $S_n = \frac{n}{2} [2a_1 + (n-1)d]$

得
$$318 = \frac{n}{2} [2 \times (-12) + (n-1) \times 7] \implies 636 = n \times (7n-31)$$

⇒ $7n^2 - 31n - 636 = 0 \implies (7n+53)(n-12) = 0$
⇒ $n = 12$ 或 $-\frac{53}{7}$ (不合) ∴ 此級數共有 12 項

22. () 設一等差級數首項為5,公差為7,和為365,則此級數共有幾項? (A)10 (B)7 (C)9 (D)11

【super 講義-綜合評量】

解答A

解析 由 $S_n = \frac{n}{2} \left[2a_1 + (n-1)d \right] \Rightarrow 365 = \frac{n}{2} \left[2 \times 5 + (n-1) \times 7 \right]$ $\Rightarrow 730 = n \times (7n+3) \Rightarrow 7n^2 + 3n - 730 = 0$ $\Rightarrow (7n+73)(n-10) = 0 \Rightarrow n = 10$ 或 $-\frac{73}{7}$ (不合) ∴ 比級數共有 10 項

23. ()若首項為 a ,公比為 0.1 的等比級數,其前 4 項的和為 111.1 ,則 a=(A)999(B)99(C)1000(D)100

【龍騰自命題,進階卷】

解答 D

解析 $r = 0.1 = \frac{1}{10}$, $S_4 = 111.1 = \frac{1111}{10}$

$$S_4 = \frac{a[1 - (\frac{1}{10})^4]}{1 - \frac{1}{10}} = \frac{1111}{10} \implies \frac{10}{9}a \times \frac{9999}{10000} = \frac{1111}{10} \implies \frac{1}{1000}a = \frac{1}{10} \implies a = 100$$

24. ()若一圓與直線 x = 4 相切於點 (4,6),且與直線 y = 2 相切於點 (8,2),則此圓的方程式為何? $(A)(x-8)^2 + (y-6)^2 = 16$ $(B)(x-6)^2 + (y-8)^2 = 9$ $(C)(x-4)^2 + (y-2)^2 = 25$ $(D)(x-2)^2 + (y-4)^2 = 36$

【104 數(A)歷屆試題】

解答 A

解析

由圖可知圓心為(8,6),且r=4

∴ 圓方程式為
$$(x-8)^2 + (y-6)^2 = 4^2$$

$$\exists \Box (x-8)^2 + (y-6)^2 = 16$$

25. () 設
$$\overrightarrow{a}$$
、 \overrightarrow{b} 為兩非零向量,若 $2\overrightarrow{a}+t\overrightarrow{b}$ 垂直 \overrightarrow{b} ,試求 t 值為 (A) $\frac{2\overrightarrow{a}\cdot\overrightarrow{b}}{\left|\overrightarrow{b}\right|^2}$ (B) $\frac{-2\overrightarrow{a}\cdot\overrightarrow{b}}{\left|\overrightarrow{b}\right|^2}$ (C) $\frac{-2\overrightarrow{a}\cdot\overrightarrow{b}}{\left|\overrightarrow{a}\right|^2}$ (D) $\frac{2\overrightarrow{a}\cdot\overrightarrow{b}}{\left|\overrightarrow{a}\right|^2}$

A)
$$\frac{2\overrightarrow{a}\cdot\overrightarrow{b}}{\left|\overrightarrow{b}\right|^2}$$
 (B) $\frac{-2\overrightarrow{a}\cdot}{\left|\overrightarrow{b}\right|^2}$

$$(C) \frac{-2\overrightarrow{a} \cdot \overrightarrow{b}}{\left|\overrightarrow{a}\right|^2}$$

$$(D) \frac{2 \overrightarrow{a} \cdot \overrightarrow{b}}{\left| \overrightarrow{a} \right|^2}$$

【super 講義-綜合評量】

解答B 解析

兩向量互相垂直,內積為零

$$\therefore \quad \left(2\overrightarrow{a} + t\overrightarrow{b}\right) \perp \overrightarrow{b} \quad \Rightarrow \quad \left(2\overrightarrow{a} + t\overrightarrow{b}\right) \cdot \overrightarrow{b} = 0$$

$$\Rightarrow 2\overrightarrow{a} \cdot \overrightarrow{b} + t |\overrightarrow{b}|^2 = 0 \Rightarrow t |\overrightarrow{b}|^2 = -2\overrightarrow{a} \cdot \overrightarrow{b}$$

$$\therefore t = \frac{-2\overrightarrow{a} \cdot \overrightarrow{b}}{\left|\overrightarrow{b}\right|^2}$$