Übungen zum Brückenkurs B SoSe 2024

Prof. Dr. J. Harz / S. Weber

Blatt 06 - 03. April, 2024

Die Aufgaben sind unterteilt in

∘ Verständnisaufgaben, □ Vertiefungsaufgaben, * schwierige Aufgaben

Aufgabe 1: Grenzwerte

Bestimmen Sie den Grenzwert der folgenden Funktionen.

a)
$$\circ \lim_{x\to 0} (x^5 + 2x^4 + 2x^3 + 2x^2 + x + 1)$$

b)
$$\circ \lim_{x \to \infty} \frac{1}{x}$$

c)
$$\circ \lim_{x \to \infty} \frac{2}{2+x}$$

$$d) \circ \lim_{x \to \infty} e^{-x}$$

e)
$$\circ \lim_{x \to 1} \frac{x}{1-x}$$

$$f) \circ \lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

g)
$$\square \lim_{x \to \infty} \frac{x^2 + 3x - 1}{2x - 5}$$

h)
$$\Box \lim_{x \to \infty} \frac{3x^2 + 3x - 1}{2x^2 + 4x - 5}$$

Aufgabe 2: Stetigkeit

Untersuchen Sie die Stetigkeit der folgenden Funktionen an den angegebenen Stellen.

a)
$$\circ f(x) = \begin{cases} 0 & \text{für } x < 0 \\ x & \text{für } x \ge 0 \end{cases}$$
, an der Stelle $x_0 = 0$

b)
$$\circ f(x) = \begin{cases} -2x+1 & \text{für } x < 1 \\ x^2+1 & \text{für } x \ge 1 \end{cases}$$
, an der Stelle $x_0 = 1$

c)
$$\Box f(x) = \begin{cases} \frac{x^2 - 4}{x - 2} & \text{für } x \neq 2\\ 4 & \text{für } x = 2 \end{cases}$$
, an der Stelle $x_0 = 2$

d)
$$\Box f(x) = \begin{cases} \frac{x^2 - 1}{x - 1} & \text{für } x \neq 1 \\ 0 & \text{für } x = 1 \end{cases}$$
, an der Stelle $x_0 = 1$

Aufgabe 3: Differenzierbarkeit

Geben Sie an, ob die folgenden Funktionen an der Stelle $x_0 = 0$ differenzierbar sind. Sind sie auch stetig differenzierbar?

a)
$$\circ f(x) = x^2 - 5x + 4$$

b)
$$\circ f(x) = |x|$$

c)
$$\Box f(x) = \sqrt{x}$$

d)
$$\Box f(x) = e^{-x^2}$$

e) *
$$f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) & \text{für } x \neq 0 \\ 0 & \text{für } x = 0 \end{cases}$$
, an der Stelle $x_0 = 0$

Aufgabe 4: Ableitungen

Bilden Sie die Ableitungen folgender Funktionen.

a)
$$\circ f(x) = x^2 + \sin(x)$$

b)
$$\circ f(x) = 3e^x + 4x^3$$

c)
$$\circ f(x) = \sin(x)\cos(x)$$

d)
$$\circ f(x) = \frac{1}{x^3 + 2x^2 + 4}$$

e)
$$\circ f(x) = \frac{x^4 + \sin(x)}{e^x + 2}$$

f)
$$\circ f(x) = \sin(\cos(x))$$

g)
$$\Box f(x) = \ln(x+1)$$

h)
$$\Box f(x) = (x^2 e^x)^2$$

i)
$$\Box f(x) = (2x)^{-\frac{3}{2}}$$

j)
$$\Box f(x) = \sqrt[3]{x}$$

$$k) \Box f(x) = 2^x$$

$$1) \ \Box \ f(x) = \log_3(2x^2)$$

m)
$$\Box f(x) = a\sin(bx+c) + d$$
, $a, b, c, d \in \mathbb{R}$

Aufgabe 5: Höhere Ableitungen

Bilden Sie die Ableitungen bis zur dritten Ordnung.

a)
$$\circ f(x) = e^{2x} + e^x + 1$$

b)
$$\Box f(x) = x^4 + 4x^3 + 6x^2 + 4x + 1$$

c)
$$\Box f(x) = (x+1)^4$$

Aufgabe 6: Partielle Ableitungen

Bilden Sie die partiellen Ableitungen jeweils nach den Variablen x und y.

a)
$$\circ f(x,y) = x^2 + y^3$$

b)
$$\Box f(x,y) = \sin(x+2y)$$

c)
$$\Box f(x,y) = e^x \ln(y)$$

d)
$$\Box f(x,y) = \cos(x)$$

$$e) * f(x) = x^y$$

Aufgabe 7: * Beweise der Ableitungsregeln

Beweisen Sie die mit Hilfe der vollständigen Induktion und der Produktregel, dass die Ableitung von $f(x) = x^n$ für natürliche Zahlen $n \in \mathbb{N}$ gegeben ist durch $f'(x) = nx^{n-1}$.

Aufgabe 8: Regeln von l'Hospital

Bestimmen Sie die Grenzwerte folgender Funktionen mit den Regeln von l'Hospital.

a)
$$\Box \lim_{x \to 0} \frac{\sin(x)}{x}$$

b)
$$\Box \lim_{x\to 0} \frac{e^x-1}{x}$$

c)
$$\Box \lim_{x \to \infty} \frac{e^x - 1}{x}$$

$$d) * \lim_{x \to \infty} x e^{-x}$$