CS2040 – Data Structures and Algorithms

Revision – Graphs

Putting It All Together ©

axgopala@comp.nus.edu.sg

Outline

Basics of Graphs

Graph Algorithms

- Bellman-Ford Algorithm
- Exam Tips ©

Graph is ...

Graph is ...

Set of vertices V

- Set of edges E
 - Edges may be undirected, directed, or bi-directed
 - Edges may have weights, no weights, or all have the same weight

Graph Terminologies

- Directed Acyclic Graph (DAG)
 - Directed graph that has no cycle
- Tree (bottom left)
 - Connected graph one unique path between any pair of vertices
- Bipartite Graph (bottom right)
 - Undirected graph where we can partition the vertices into two sets so that there are no edges between members of the same set

Graph Data Structures

- Adjacency Matrix
 - 2D array (AdjMatrix)
 - AdjMatrix[i][j] = 1 or weight of edge (in weighted graph), if there exist an edge i → j in G, otherwise 0
- Adjacency List
 - Array of V lists (AdjList) one element for each vertex
 - For each vertex i, AdjList[i] = list of i's neighbours
 - For weighted graph, stores pair (neighbour, weight), 1 if connected for unweighted graph
- Edge List
 - Array of E edges (EdgeList) one element for each edge
 - For each edge i, EdgeList[i] = integer triple {u, v, w(u, v)}
 - For unweighted graph, the weight can be stored as 0 (or 1), or simply store an (integer) pair

Space Complexity

Adjacency Matrix	O (V ²)
Adjacency List	O (V + E)
Edge List	O (E)

GRAPH TRAVERSAL

Breadth First Search (BFS)

```
for all v in V
  visited[v] ← 0
  p[v] ← -1
Q ← {s} // start from s
  visited[s] ← 1
```

Depth First Search (DFS) – Recursive Version

```
for all v in V visited[v] \leftarrow 0 p[v] \leftarrow -1 DFSrec(s) // start the recursive call from s
```

Some Applications of BFS and DFS ©

- 1. Reachability Test (BFS/DFS)
- 2. Find Shortest Path (BFS with O (V + E) for unweighted graphs)
- 3. Identifying/Counting Component(s) (DFSrec in O (V + E))
- 4. Topological Sort (Modified BFS/DFSrec 'post-order' in O (V + E))
- 5. Identifying/Counting Strongly Connected Component(s) (DFSrec 'post-order' in O (V + E))

MINIMUM SPANNING TREE

Definition

- Minimum Spanning Tree (MST) of connected undirected weighted graph G
 - MST of G is a ST of G with the minimum possible w(ST)

Algorithms

- Jarnik's/Prim's greedy algorithm
 - Uses PriorityQueue Data Structure
 - O(**E** log **V**)

- Kruskal's greedy algorithm
 - Uses Union-Find Data Structure
 - O(**E** log **V**)
- Both use the cut property of graphs

SINGLE SOURCE SHORTEST PATHS (SSSP)

Find $\delta(s, b)$ from source vertex s to each vertex b (in V) together with the corresponding shortest path

'Relaxation' Operation


```
relax(u, v, w(u,v))
 if D[v] > D[u] + w(u,v) // if SP can be shortened
   D[v] \leftarrow D[u] + w(u,v) // relax this edge
   p[v] 

u // remember/update the predecessor
   // if necessary, update some data structure
```


Bellman-Ford's Algorithm

```
initSSSP(s)
// Simple Bellman-Ford's algorithm runs in O(VE)
for i = 1 to |V|-1 // O(V) here
 for each edge (u, v) \in E // O(E) here
   relax(u, v, w(u,v)) // O(1) here
// At the end of Bellman-Ford's algorithm,
// D[v] = \delta(s, v) if no negative weight cycle exist
// Q: Why "relaxing all edges V-1 times" works?
```

SSSP – Algorithms

- General case: weighted graph
 - Use O(**VE**) Bellman Ford's algorithm
- Special case 1: Tree
 - Use O(V) BFS or DFS ☺
- Special case 2: unweighted graph
 - Use O(**V**+**E**) BFS ☺
- Special case 3: DAG
 - Use O(**V**+**E**) DFS to get the topological sort, then relax the vertices using this topological order
- Special case 4ab: graph has no negative weight/negative cycle
 - Use $O((V+E) \log V)$ original/ $O(E \log E)$ modified Dijkstra's, respectively

All-Pairs Shortest Paths (APSP)

Find the shortest paths between <u>any pair</u> of vertices in the given directed weighted graph

APSP Solutions with SSSP Algorithms

- On unweighted graph
 - Call BFS **V** times, once from each vertex
 - Time complexity: $O(V * (V+E)) = O(V^3)$ if $E = O(V^2)$
- On weighted graph, for simplicity, non (-ve) weighted graph
 - Call Bellman Ford's **V** times, once from each vertex
 - Time complexity: $O(V * VE) = O(V^4)$ if $E = O(V^2)$
 - Call Original/Modified Dijkstra's V times, once from each vertex
 - Time complexity: $O(V * (V+E) * log V)/O(V * E * log V) = O(V^3 log V)$ if $E = O(V^2)$
 - Floyd-Warshall's Algorithm
 - Time complexity: O(V3)

Minimax Problem

Finding the path that minimizes the maximum edge from vertex i to vertex j

Exam Tips ©

- Work through past papers and time yourself
- Group study and support each other
- Ask on Piazza/Email/drop by the office/etc.
- Start exam by reading all questions
- Start by answering the ones you know best!

Continuous Feedback