Міністерство освіти і науки України Управління освіти і науки Рівненської обласної державної адміністрації Навчально-методичний центр професійно-технічної освіти у Рівненській області Державний професійно-технічний навчальний заклад "Сарненський професійний аграрний ліцей"

Розробка уроку з математики на тему "Критичні точки функції. Точки екстремуму" $(10\ \kappa nac)$

Підготувала
Гриневич Тетяна Олександрівна, викладач математики
ДПТНЗ "Сарненський професійний аграрний ліцей"

Критичні точки функції. Точки екстремуму.

Методична розробка уроку

Жодна інша наука не навчає так ясно розуміти гармонію природи, як математика...

П. Карус

Будь - яка наука досягає вершин лише тоді, коли вона користується математикою

К. Маркс

Дидактична мета: сприяти формуванню поняття критичних точок функції, точок екстремуму, екстремумів функції, засвоєнню необхідної й достатньої умови екстремуму, алгоритму знаходження екстремумів функції.

Розвиваюча мета: сприяти розвитку творчих здібностей учнів, логічного мислення, вміння аналізувати і синтезувати наукові ідеї; розвивати пам'ять, увагу, спостережливість, уміння обґрунтовувати і доводити справедливість свого твердження, виконувати узагальнення і систематизацію отриманих знань;

Виховна мета: сприяти вихованню старанності, цілеспрямованості, наполегливості у досягненні поставленої мети, математичної грамотності і культури мовлення, тактовності.

Тип уроку: засвоєння нових знань і вмінь

Обладнання: комп'ютер, мультимедійний проектор, роздатковий матеріал, презентація "Критичні точки функції. Точки екстремуму", картки для проведення гри "Математичне лото".

ХІД УРОКУ

- І. ОРГАНІЗАЦІЯ КЛАСУ.
- ІІ. АКТУАЛІЗАЦІЯ ОПОРНИХ ЗНАНЬ УЧНІВ.

Усний рахунок:

1. Знайти похідну:

1)
$$x^{2} + x^{7}$$
; 6) $4x^{2}$;
2) 2x; 7) $\cos x - 3 \sin x$;
3) $\sin x - 2$; 8) $\frac{3}{4}$;
4) $3\cos x$; 9) $\cos 2x$;
5) x^{-3} ; 9) $\cos 2x$;
10) -6 .

- y = 8 7x; y = 82. Зростає чи спадає функція: y = 5x - 2; y = 3 + 4x;
- 3. Вкажіть проміжки зростання і спадання функції: Як можна знайти проміжки зростання і спадання

функції, якщо вона задана формулою?

Повторюємо ознаки зростання і спадання функції.

Проблемна ситуація:

На проміжках $(-\infty; a]$ і $[b; +\infty)$ функція зростає, похідна має знак "+", на [a;b] спадає, похідна "-", а чим цікаві точки a і b, чим вони особливі.

ІІІ. МОТИВАЦІЯ НАВЧАЛЬНОЇ ДІЯЛЬНОСТІ

Ви вивчили одне із фундаментальних понять алгебри і початків аналізу – навчилися знаходити проміжки монотонності функції. І, напевно похідну, даєте собі запитання "А навіщо?". Саме за допомогою похідної розв'язують задачі з фізики, економіки, геометрії, програмування. Викликає інтерес поняття точок, в яких похідна не додатна і не від'ємна.

Саме ці точки зацікавили багатьох вчених і зараз успішно допомагають людству в різних сферах діяльності. Зокрема, в екології, медицині, геології, економіці та ін. (слайд 4 "Дослідження функції і прикладні науки")

Оголошую тему і мету уроку: "Критичні точки функції. Точки екстремуму". Сьогодні ми познайомимось саме з такими точками і поняттями, які пов'язані з ними.

Демонструється презентація з коментуванням вчителя

IV. СПРИЙМАННЯ І УСВІДОМЛЕННЯ ПОНЯТТЯ ТОЧОК ЕКСТРЕМУМУ ТА ЕКСТРЕМУМУ ФУНКЦІЇ.

Користуючись малюнком знаходимо точки, особливі для графіка функції.

Означення Внутрішні точки області визначення функції, в яких похідна дорівнює нулю або не існує, називають критичними точками функції.

При дослідженні поведінки функції в деякій точці зручно користуватися поняттям околу. **(слайд 7)**

Околом точки x_{θ} називається будь-який проміжок, для якого x_{θ} є внутрішньою точкою. Наприклад, інтервали (2; 5), (2,5; 3,5), (2,9; 3,1) — околи точки 3.

Розглянемо графік функції, зображений на рис. 2. (Використовується метод евристичної бесіди)

В якій точці функція набуває найбільшого (найменшого) значення. Порівнюємо із значенням в інших точках.

Як видно із рисунка, існує такий окіл точки x = a, що найбільше значення функція y = f(x) в цьому околі набуває в точці x = a. Точку x = a називають точкою максимуму цієї функції.

Аналогічно точку x = b називають точкою мінімуму функції у = f(x), оскільки значення функції в цій точці найменше порівняно зі значеннями функції в деякому околі точки b.

Означення. Точка a із області визначення функції f(x) називається точкою максимуму цієї функції, якщо існує такий окіл точки a, що для всіх $x \neq a$ із цього околу виконується нерівність f(x) < f(a). (Рис. 2).

Означення. Точка b із області визначення функції f(x) називається точкою мінімуму цієї функції, якщо існує такий окіл точки b, що для всіх $x \neq b$ із цього околу виконується нерівність f(x) < f(b). (Рис. 3). (Слайд b, 9).

Означення. Точки максимуму і точки мінімуму називають точками екстремуму функції, а значення функції в цих точках називають екстремумами функції (максимум і мінімум функції) (лат. **ekstremum** – край, кінець)

Точки максимуму позначають $oldsymbol{\mathcal{X}_{max}}$, а точки мінімуму — $oldsymbol{\mathcal{X}_{min}}$.

Значення функції в цих точках, тобто максимуми і мінімуми функції, позначаються: y_{max} і y_{min} .

Виконання вправ усно (слайд 10). (Робота в групах : I ряд – пит. 1, II ряд – пит. 2, III ряд – пит. 3).

- 1. Бліц-опитування на слух, виконується дуже швидко. Можна проводити як змагання між командами (робота в групах).
- 1. Для функцій, графіки яких зображено на рисунках 41, α—г знайдіть:
- 1) точки максимуму функції
- 2) точки мінімуму функції;
- 3) екстремуми функції.

Відповідь: 1) a) $x_{max} = -3$, $x_{min} = 0$, $x_{max} = 3$; б) $x_{max} = -8$, $x_{min} = -6$; $x_{max} = -3$; $x_{min} = -1$; $x_{max} = 5$; в) $x_{min} = -1$; $x_{max} = 1$; г) $x_{min} = -2$; $x_{max} = -1$; $x_{min} = 0$; $x_{max} = 1$; $x_{min} = 2$;

2) a)
$$y_{max} = 4$$
; $y_{min} = 0$; б) $y_{max} = 5$; $y_{max} = 7$; $y_{min} = 0$; в) $y_{min} = -1$; $y_{max} = 1$; г) $y_{min} = -3$; $y_{min} = 0$; $y_{max} = 2$.

V. СПРИЙМАННЯ І УСВІДОМЛЕННЯ НЕОБХІДНОЇ УМОВИ

ЕКСТРЕМУМУ. (Слайд 11)

Розглянемо функцію y = f(x), яка визначена в деякому околі точки x_o і має похідну в цій точці.

Теорема Ферма. Якщо x_o — точка екстремуму диференційованої функції y = f(x), то $f'(x_o) = 0$.

Це твердження називають теоремою Ферма на честь

П'єра Ферма (1601—1665) — французького математика.

Теорема Ферма має наочний геометричний зміст:

в точці екстремуму дотична паралельна осі абсцис, і тому її кутовий коефіцієнт $f'(x_o)$ дорівнює нулю

Чи завжди критичні точки є точками екстремуму?

Розглянемо функції $y = x^2$ та $y = x^3$. Наприклад, функція $f(x) = x^2$ має в точці $x_o = 0$ мінімум, її похідна f'(0) = 0.

Проте точка x = 0 не є точкою екстремуму, оскільки функція $f(x) = x^3$ зростає на всій числовій осі.

Отже, для того, щоб точка була точкою екстремуму недостатньо, щоб вона була критичною.

VI. Сприймання і усвідомлення достатньої ознаки екстремуму функції (слайд 13).

Сформулюємо достатні умови того, що критична точка ϵ точкою екстремуму, тобто умови, при

виконанні яких критична точка є точкою максимуму або мінімуму функції.

Якщо похідна ліворуч критичної точки додатна, а праворуч — від'ємна, тобто при переході через цю точку похідна змінює знак з "+" на "-", то ця критична точка є точкою максимуму (рис.1).

Дійсно, в цьому випадку ліворуч стаціонарної точки функція зростає, а праворуч — спадає, отже, дана точка є точкою максимуму.

Якщо похідна ліворуч стаціонарної точки від'ємна, а праворуч — додатна, тобто при переході через стаціонарну точку похідна змінює знак з "—" на "+", то ця стаціонарна точка є точкою мінімуму (рис.2).

Якщо при переході через стаціонарну точку похідна не змінює знак, тобто ліворуч і праворуч від стаціонарної точки похідна додатна або від'ємна, то ця точка не ϵ точкою екстремуму.

Складемо алгоритм знаходження екстремумів функції. (Слайд 14)

- 1. Знайти область визначення.
- 2. Знайти критичні точки функції.
- 3. Визначити, які з них ϵ точками екстремуму.
- 4. Обчислити значення функції в точках екстремуму.

VII. ОСМИСЛЕННЯ НАБУТИХ ЗНАНЬ.

1. Розв'язування вправ. (Слайд 15)

Приклад 1. Знайдіть екстремуми функції $f(x) = x^4 - 4x^3$.

Розв'язування

Область визначення функції — R.

Знайдемо похідну: $f'(x) = (x^4 - 4x^3) = 4x^3 - 12x^2 = 4x^2(x-3)$.

Знайдемо стаціонарні точки: f'(x) = 0, $4x^2(x-3) = 0$, x = 0 або x = 3.

Наносимо стаціонарні точки на координатну пряму та визначаємо знак похідної на кожному інтервалі.

x=3 — точка мінімуму, бо при переході через цю точку похідна змінює знак з "—" на "+": $x_{min}=3$.

Точка x=0 не ε точкою екстремуму, бо похідна не зміню ε знак при переході через цю точку.

Отже,
$$y_{min} = f(3) = 3^4 - 4 \cdot 3^3 = -27.$$

Відповідь:
$$y_{min} = f(3) = -27$$
.

2. Гра «Математичне лото» (Робота в парах) (Слайд 16 - 23).

5

Знайдіть похідну

1.
$$5x^2$$

2.
$$7 + 9x$$

3. Визначте проміжки, на яких похідна має знак «--»

X	(-∞;-7)	- 7	(-7;- 3)	-3	(-3;5)	5	(5;+∞)
у	7	3		-1	1	2	

$$(-7; -3);$$
 $(-7; -3)U(5; +\infty)$

4. Назвіть точки мінімуму функції, якщо дані про її похідну наведені в таблиці

X	(-∞;-1)	_ 1	(-1;5)	5	(5;9)	9	(9;+∞)
y'	+	0	1-Y	0	+	0	_

$$x = 9;$$
 $x = 5$

5. Визначте проміжки зростання функції, використовуючи дані про похідну

$$(-\infty; -9) \text{ U } (-1; 3)$$

 $(-9; -1) \text{ U } (-1; 3)$

6. Назвіть точки максимуму функції, якщо дані про її похідну наведені в таблиці

X	(-∞;-4)	-4	(-4;5)	2	(2;8)	8	(8;+∞)
	, ,		\ //		())		,

y'	_	0	+	0	_	0	+

 $\underline{\mathbf{x}=2}$; $\mathbf{x}=8$

7. Задано графік похідної $f'(x_0)$, x_0 — точка екстремуму. Яка це точка - максимуму чи мінімуму?

Точка максимуму; Точка

Точка мінімуму

8. Як поводить себе функція?

- a). y = 5 4x
- 6). y = 3x + 6

a).Спада ϵ ;

 δ). Зростає

Якщо відповіді правильні, то учень складе слово "П'єр Ферма" і отримує 11 балів. За кожну неправильну відповідь знімається 1 бал.

VIII. ПІДВЕДЕННЯ ПІДСУМКІВ УРОКУ.

Перевіряються результати гри.

ІХ. ПОВІДОМЛЕННЯ ДОМАШНЬОГО ЗАВДАННЯ.

- 1. §10, №355(а), 359(б) (Слайд 24)
- 2. Підготувати історичну довідку про П'єра Ферма.