МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский физико-технический институт (государственный университет)

Кафедра молекулярной физики

ИЗУЧЕНИЕ РАВНОВЕСИЯ ДИССОЦИАЦИИ N_2O_4 В ГАЗОВОЙ ФАЗЕ СПЕКТРОФОТОМЕТРИЧЕСКИМ МЕТОДОМ

Лабораторная работа № 29 по курсу: Химическая термодинамика

ВВЕДЕНИЕ

Положение химического равновесия может быть с высокой точностью рассчитано на основании термодинамических функций участников процесса. Такие расчеты являются основой решения множества важных практических задач. С другой стороны, термодинамические функции реакций чаще всего получают именно из данных по химическим равновесиям, хотя есть и другие экспериментальные источники, например, калориметрия, спектроскопия, теплоемкость и др. Специалистам разных областей химии, биологии, физики и техники необходимо свободно решать как прямые, так и обратные задачи химических равновесий.

В настоящей работе предлагается познакомиться с этими методами на примере равновесия диссоциации

$$N_2O_4 \Leftrightarrow 2NO_2$$
 (1)

в газовой фазе. Это равновесие было одним из классических объектов исследования, начиная с 80-х годов XIX в., однако его более современный термодинамический анализ исходит из работы [1].

Для измерения степени диссоциации в данной работе используется интенсивное поглощение молекулами NO_2 света в видимой области спектра. Измерения проводят при разных температурах, получая температурную зависимость константы равновесия (1), которую анализируют в рамках имеющейся теории [2-4].

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ

Условие химического равновесия, как известно, записывается в форме равенства нулю изменения термодинамического потенциала системы в ходе реакции, т. е.

$$\Delta_r G_{T,p} = 0. (2)$$

Согласно определению

$$\Delta_r G_{T,p} = \Sigma (\partial G / \partial n_i)_{T,p} dn_i = \Sigma \mu_i dn_i, \qquad (3)$$

где n_i , — число молей i-го компонента системы 1 , а μ_i , — его химический потенциал, являющийся мерой влияния данного вещества на термодинамическое состояние системы. Уравнение (3) записано при условии постоянства концентраций всех компонентов системы, кроме i-го. Зависимость химического потенциала идеального газа от давления дается формулой

$$\mu_i = \mu_i^0 + RT \ln p_i \tag{4}$$

в которой μ_{i}^{0} , - стандартный химический потенциал i-го компонента при 1 атм.

Если исключительно для простоты записи последующих уравнений представить равновесие (1) в форме

$$B \Leftrightarrow 2A$$
, (la)

то на основании приведенных выше соотношений условие равновесия реакции (1a) можно записать в виде

$$2\mu_A^0 + RT \ln p_A^2 - \mu_B^0 - RT \ln p_B = 0,$$

и после несложного преобразования получим выражение

$$-RT\ln(p_A^2/p_B) = 2\mu_A^0 - \mu_B^0, (5)$$

в котором комбинация давлений газов в равновесной системе, стоящая в скобках, соответствует константе равновесия

$$K_p = p_A^2 / p_B. \tag{6}$$

Подставляя (6) в (5), получим выражение

$$-RT\ln K_{p} = 2G_{A}^{0} - G_{B}^{0} = \Delta_{r}G^{0}, \qquad (7)$$

являющееся условием химического равновесия. В нем скрыта размерность константы равновесия, которая связана с выбором стандартного состояния. Согласно [2] более корректно следует записать

$$\Delta_r G^0 = -RT \ln \left(K_p / K_p^0 \right), \tag{8}$$

причем в стандартном состоянии K^0_p в скобке равно единице в размерности этого состояния в соответствующей степени. Например, для газов в качестве стандартного состояния в большинстве случаев используют 1 атм, так что в рассматриваемом равновесии K_p и K^0_p выражены в атм.

Изменение термодинамического потенциала, в свою очередь, связано с изменениями энтальпии и энтропии в реакции соотношением:

$$\Delta_r G^0 = \Delta_r H^0 - T \Delta_r S^0. \tag{9}$$

Величина каждой из составляющих его функций зависит от температуры согласно приближенным уравнениям:

$$\Delta_r H_T^0 = \Delta_r H_{298}^0 + \Delta_r c_p \Delta T \,, \tag{10}$$

$$\Delta_r S_T^0 = \Delta_r S_{298}^0 + \Delta_r c_p \Delta \ln T \,, \tag{11}$$

в которых $\Delta_{\rm r}c_p$ представляет собой разность теплоёмкостей продуктов и исходных веществ, а приращение T и lnT отсчитываются от стандартной температуры 298,15 К. Для относительно узких температурных интервалов этими зависимостями можно пренебречь, что приводит к окончательным соотношениям:

$$\Delta_r G_T^0 = \Delta_r H_{298}^0 - T \Delta_r S_{298}^0, \tag{12}$$

$$RT \ln K_p = -\Delta_r G_T^0 = -\Delta_r H_{298}^0 + T\Delta_r S_{298}^0,$$
 (13)

которыми предлагается пользоваться в дальнейших расчетах. Более строгую, чем уравнение (13), температурную зависимость константы равновесия можно получить с учетом зависимости $\Delta_{\rm r} c_{\it p}({\rm T})$ и интегрирования уравнений для $\Delta_{\rm r} {\rm H}^0_{\rm T}$ и $\Delta_{\rm r} {\rm S}^0_{\rm T}$ [2, 3].

В практически более удобной записи выражения (6) для константы равновесия реакции (1) в форме (1а) используют степень диссоциации α . Предположим, что в замкнутую систему объемом V_0 введено n_0 молей газа A, так что суммарная концентрация обоих газов, выраженная в молях A и независящая от T, составляет

$$C_0 = n_0 / V_0, (14)$$

а их полное давление:

$$p_0 = RT \cdot C_0 \,. \tag{15}$$

Такое давление имела бы система при температуре Т в условиях полной диссоциации. В иных условиях парциальные давления газов будут определяться уравнением материального баланса:

$$p_0 = 2p_B + p_A, (16)$$

поскольку каждая молекула B содержит две молекулы A.

Если степень диссоциации определить как

$$\alpha = p_A / p_0 = (RT \cdot C_A) / (RT \cdot C_0) = C_A / C_0$$
 (17)

то с учетом (16) получим для давлений газов

$$p_A = \alpha \cdot p_0 \,, \tag{17a}$$

$$p_B = (1 - \alpha)p_0 / 2. \tag{176}$$

Полное давление равновесной системы будет функцией положения равновесия, т. е. $0 \le \alpha \le 1$, и составит

$$p = p_A + p_B = \alpha \cdot p_0 + (1 - \alpha)p_0 / 2 = (1 + \alpha)p_0 / 2, \tag{18}$$

достигая p_0 при полной диссоциации и $p_0/2$ — в ее отсутствие, когда в системе присутствует только B.

Подставляя (17а) и (176) в (6), получим выражение для константы равновесия диссоциации:

$$K_p = 2\alpha^2 p_0 (1 - \alpha). \tag{19}$$

Уравнения (15), (17) и (19) являются основой расчета K_p из экспериментальных данных.

МЕТОДИКА ИЗМЕРЕНИЙ

Концентрация или давление NO_2 в равновесной системе могут быть измерены непосредственно по поглощению света в интервале длин волн 400-600 нм, поскольку N_2O_4 в видимой области не поглощает. Для ориентации спектры поглощения газов согласно данным [6] приведены на рисунке 1.

Для измерений используют фотоэлектрические колориметры типов ФЭК-56М и КФК-2; с принципами их работы следует предварительно ознакомиться. В этих приборах длины волн, при которых производятся измерения, определяются выбором соответствующего светофильтра. Прибор характеризует поглощение света образцом двумя величинами — коэффициента пропускания E^2 , лежащего в пределах от 0 до 1 (в некоторых приборах — от 0 до 100%), или оптической плотности D, связанной с E соотношением

¹ Традиционно μ_i , относят к молекуле вещества, а затем, используя число Авогадро, переходят к мольным величинам. Наличие двух разных по размерности величин μ_i , в химической термодинамике не является, однако, необходимым, и в данном случае мы используем сразу химический потенциал в расчете на моль.

$$D = -\log_{10} E$$

и изменяющейся от 0 до ∞ . Оптическую плотность более удобно использовать в расчетах, поскольку она линейно связана с концентрацией поглощающего вещества, т. е. в данном случае

$$D_{\lambda} = \varepsilon_{\lambda} l \text{ [NO_2]}, \tag{20}$$

где l — оптическая длина ячейки (см), ϵ_{λ} — молярный коэффициент поглощения (л·моль⁻¹·см⁻¹). Уравнение (20) известно как закон Бугера-Ламберта-Бера. Измеряемая оптическая плотность обычно включает поглощение самого исследуемого объекта (газа, жидкости, раствора), а также поглощение или рассеяние света на стенках ячейки ΔD , которое следует вычесть из получаемого результата.

Экспериментальный стенд работы состоит из фотоэлектроколориметра, в кюветном отделении которого установлена запаянная стеклянная ячейка, содержащая NO_2 . Внешняя оболочка ячейки соединена с термостатом, что позволяет изменять и поддерживать температуру равновесной системы в ходе измерений. Предполагается, что студент знаком с устройством и работой термостата.

Работа состоит в измерении оптической плотности ячейки в 6-8 произвольных температурных точках, в каждой из которых температуру фиксируют, проверяют ее постоянство и проводят 2-3 измерения D, которые усредняют, вводя в них затем поправки на ΔD . Рекомендуемый интервал температур — от 20 до 85-90 °C. Для проверки обратимости реакции (1) целесообразно провести измерения оптической плотности при повышении, а затем при понижении температуры.

Измерения проводят с двумя светофильтрами, т.е. при разных длинах волн λ , получая для каждого из них функцию $D_{\lambda}(T)$. Используя величины ϵ_{λ} и l, ее преобразуют по уравнению (20) в функцию $[NO_2] = f(T)$, а затем — в зависимость давления NO_2 от температуры. Вид этой функции, очевидно, не должен зависеть от используемого светофильтра.

Окончательным результатом эксперимента является функция $\alpha(T)$, которую получают по формулам (15) и (17).

Все необходимые для указанных расчетов постоянные параметры системы (ΔD , ϵ_{λ} , l, C_0) приведены в таблице на экспериментальном стенде.

ПРЕДСТАВЛЕНИЕ И АНАЛИЗ РЕЗУЛЬТАТОВ

Константы диссоциации K_p вычисляют для всех исследованных значений температуры, используя уравнение (19). Результаты измерений и расчетов представляют в форме таблицы, в которой приводят Т (К), D_{λ} , концентрацию (моль/л) и давление (атм) NO_2 , p_0 , α , K_p , $\ln K_p$ и 1/T.

 $E = I/I_0$, где I_0 и I — интенсивности света до и после прохождения через образец соответственно.

Температурную зависимость константы равновесия представляют графически в соответствии с уравнением (13) в координатах $\ln K_n \div 1/T$.

Сопоставление полученных данных с приведенными в таблице 1 термодинамическими функциями веществ, участвующих в равновесии (1), может быть по рекомендации преподавателя или по выбору студентов выполнено разными способами:

- 1. Из графика $\ln K_p \div 1/\mathrm{T}$ находят величины $\Delta_{\rm r} {\rm H}^0_{\rm T}$ и $\Delta_{\rm r} {\rm S}^0_{\rm T}$, относящиеся к исследованному температурному интервалу. Их сопоставляют с рассчитанными по данным таблицы 1, и результаты этого сравнения представляют в виде таблицы. Оценка погрешности экспериментальных величин в этом случае необходима.
- 2. На график $\ln K_p \div 1/\mathrm{T}$ наносят прямую, полученную расчетом с использованием данных таблицы 1.
- 3. В таблицу итоговых результатов включают дополнительно столбец величин K_p , рассчитанных по уравнению (13) и данным таблицы 1 для всех или избранных значений температуры.

В ряде случаев рекомендуется решать всю задачу как обратную: используя данные таблицы 1 и соответствующие уравнения, рассчитать величины [NO₂] при всех исследованных температурах и построить графики D_{λ} от [NO₂], отвечающие уравнению (20) и имеющие наклон $\varepsilon_{\lambda} \cdot l$, что позволяет проверить стабильность всех параметров системы.

КОНТРОЛЬНЫЕ ВОПРОСЫ И ЗАДАНИЯ

- 1. Чему равна энергия связи N—N в молекуле N_2O_4 ?
- 2. Объясните, чем обусловлено явление обесцвечивания паров NO_2 при понижении температуры.
- 3. Используя собственные экспериментальные или приведенные в таблице 1 данные, рассчитайте величину $K_{\rm c}$ (размерность концентраций моль/л) для изучаемого равновесия при 298 К.
- 4. Предложите другие экспериментальные методы изучения положения равновесия (1). Какие еще реакции такого типа вы знаете? В чем различаются выражения для констант равновесия диссоциации H_2 (или D_2) и HD?
- 5. Что изменится в равновесной системе, если при T = const ввести в кювету 1 атм инертного газа?
- 6. Известно, что N_2O_4 и NO_2 растворимы во многих органических растворителях. Какие дополнительные данные необходимы, чтобы рассчитать константу равновесия (1) в растворе? Информация к размышлению в таблице 2.

СПИСОК ЛИТЕРАТУРЫ

- 1. Giague W.F., Kemp J.D. // J. Chem. Phys. 1938. V. 6. No. 1. —P. 40.
- 2. *Шляпинтох В.Я., Замараев К.И., Пурмаль А.П.* Химическая термодинамика: Учеб. пособие. МФТИ, 1975. §§41-43, 45-49, 52-56.
- 3. *Мельвин-Хьюз Э.А.* Физическая химия. Т. 2. М.: Ин. лит., 1962. —С. 859-895.
- 4. *Герасимов Я.И. и др.* Курс физической химии. Т. 1. М.: Химия, 1969. Гл. VIII, §§ 1-6, гл. IX, §§ 1, 2.
- 5. *Термодинамические* свойства индивидуальных веществ. Т. 1, кн. 2. М.: Наука, 1978. С. 217, 221.
- 6. Hall T.C., Blacet F.E. // J. Chem. Phys. 1952. V. 20. No. 11. —P. 1745.

ПРИЛОЖЕНИЕ

Таблица 1 Термодинамические функции газов *⁾ [5]

Вещество	$\Delta ext{H}_f^{~0}, \ extstyle Дж/моль}$	S^0 ,	с _р °, Дж/моль∙К
	дж/моль	Дж/моль·К	дж/моль•к
N_2O_4	11112	304,35	79,16
NO_2	34192	240,06	37,18

^{*)} Стандартное состояние: 1 атм, 298,15 К

Таблица 2 Диссоциация N_2O_4 в различных средах при 293,15 К [3]

Растворитель	$K_c \cdot 10^5$, моль/л	$\Delta H_c^{\ 0}$, кДж/моль
Газовая фаза	382	57,2
CS ₂	13,3	81,1
CCl ₄	8,0	78,8
CHCl ₃	5,5	88,7
$C_2H_5B\Gamma$	4,8	85,6
C_6H_6	2,2	92,7

Рис. 1. Спектры поглощения газообразных N_2O_4 (1) и NO_2 (2) при 298 К (по данным [6]).