Лекция 13

Математическое ожидание и дисперсия случайного вектора

 $\exists \vec{\xi} = (\xi_1, \dots, \xi_n)$ - случайный вектор, $\forall 1 \leq i \leq n \ \xi_i$ - случайная величина

Def. Математическим ожиданием случайного вектора называется вектор с координатами из математических ожиданий его компонент: $E\vec{\xi} = (E\xi_1, \dots, E\xi_n)$

Def. Дисперсией (или матрицей ковариаций) случайного вектора называется матрица $D\vec{\xi} = E(\vec{\xi} - E\vec{\xi})^T \cdot (\vec{\xi} - E\vec{\xi})$, состоящая из элементов $d_{i,j} = (\xi_i, \xi_j)$. В частности $d_{i,i} = (\xi_i, \xi_i) = D\xi_i$

Функции от двух случайных величин

Th. Пусть ξ_1, ξ_2 - случайные величины с общем плотностью $f_{\xi_1,\xi_2}(x,y)$, и есть функция $g(x,y): \mathbb{R}^2 \to \mathbb{R}$. Тогда случайная величина $\eta = g(\xi_1,\xi_2)$ имеет функцию распределения $F_{\eta}(z) = \iint_{D_z} f(x,y) dx dy$, где $D_z = \{(x,y) \in \mathbb{R}^2 \mid g(x,y) < z\}$

$$F_{\eta} = p(\eta < z) = p(g(\xi_1, \xi_2) < z) = p((\xi_1, \xi_2) \in D_z) = \iint_{D_z} f(x, y) dx dy$$

Ex.~3aдача~o~acmpeчe. двое договорились встретится между 12:00 и 13:00. Случайная величина η - время ожидания. Найти функцию распределения

 ξ_1 - время прихода первого, ξ_2 - второго; $\xi_1,\xi_2\in U(0,1),$ они независимы, $\forall x,y\in[0,1]$ $f_{\xi_1}(x)=1,f_{\xi_2}(y)=1$

Поэтому
$$f_{\xi_1,\xi_2}(x,y) = f_{\xi_1}(x) f_{\xi_2}(y) = 1, (x,y) \in [0,1] \times [0,1]$$

$$\eta = |\xi_1 - \xi_2| \Longrightarrow D_z = \{(x, y) \in \mathbb{R}^2 \mid |x - y| < z\}
F_{\eta} = \iint_{D_z} f_{\xi_1, \xi_2}(x, y) dx dy = \iint_{D_z} dx dy = 1 - 2 \cdot \frac{1}{2} (1 - z)^2 = 2z - z^2, \ z \in \mathbb{R}^2$$

Th. $\exists \xi_1, \xi_2$ - независимые абсолютно непрерывные случайные величины с плотностями $f_{\xi_1}(x)$ и $f_{\xi_2}(y)$

Тогда плотность суммы $\xi_1+\xi_2$ равна $f_{\xi_1+\xi_2}(t)\int_{-\infty}^{\infty}\underbrace{f_{\xi_1}(x)f_{\xi_2}(t-x)}_{\text{т. н. свертка}}dx$

[0, 1]

Следствие: сумма двух независимых абсолютно непрерывных случайных величин также имеет абсолютно непрерывное распределение

Nota. Условие независимости существенно, контр-пример: $\xi_1; \xi_2 = -\xi_1,$ тогда $\xi_1 + \xi_2 \equiv 0$

Сумма стандартных распределений. Устойчивость относительно суммирования

Def. Если сумма двух независимых случайных величин одного типа распределения также будет этого же типа, то говорят, что распределение устойчиво относительно суммирования

 $Ex.\ 1.\ \xi\in B_{n,p};\eta\in B_{m,p}.$ Тогда ясно, что $\xi+\eta\in B_{n+m,p}$ (по определению биномиального распределения $B_{n,p}$ - число успехов из n испытаний, где p - вероятность успеха)

 $Ex.\ 2.\ \xi\in\Pi_{\lambda},\eta\in\Pi_{\mu},$ они независимы. Тогда $\xi+\eta\in\Pi_{\lambda+\mu}$

$$\xi + \eta = 0, 1, 2, 3, \dots \quad \exists k \geq 0. \text{ Тогда } p(\xi + \eta = k) = \sum_{i=0}^k P(\xi = i, \eta = k - i) = \sum_{i=0}^k P(\xi = i) P(\eta = k - i)$$

$$i) = \sum_{i=0}^k \frac{\lambda^i}{i!} e^{-\lambda} \frac{\mu^{k-i}}{(k-i)!} e^{-\mu} = e^{-\lambda - \mu} \sum_{i=0}^k \frac{\lambda^i \mu^{k-i}}{i!(k-i)!} = e^{-\lambda - \mu} \frac{1}{k!} \sum_{i=0}^k \frac{\lambda^i \mu^{k-i} k!}{i!(k-i)!} = e^{-\lambda - \mu} \frac{1}{k!} \sum_{i=0}^k \lambda^i \mu^{k-i} C_k^i = e^{-\lambda - \mu} \frac{(\lambda + \mu)^k}{k!} \Longrightarrow \xi + \eta \in \Pi_{\lambda + \mu}$$

 $Ex. \ 3. \ \xi, \eta \in N(0,1)$ и независимы. Тогда $\xi + \eta \in N(0,2)$

$$f_{\xi}(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}; f_{\eta}(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{y^2}{2}}$$
По формуле свертки $f_{\xi+\eta}(t) = \int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}} \frac{1}{\sqrt{2\pi}} e^{-\frac{(t-x)^2}{2}} = \frac{1}{2\pi} \int e^{-(x^2-tx+\frac{t^2}{2})} = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-(x^2-tx+\frac{t^2}{2})} dx = \frac{1}{2\pi} e^{-\frac{t^2}{4}} \int_{-\infty}^{\infty} e^{-(x-\frac{t}{2})^2} d(x-\frac{t}{2}) = \frac{1}{2\pi} e^{-\frac{t^2}{4}} \sqrt{\pi} = \frac{1}{\sqrt{2}\sqrt{2\pi}} e^{-\frac{t^2}{2(\sqrt{2})^2}} \Longrightarrow \xi + \eta \in N(0,2)$

Ex. 4. В общности для независимых $\xi \in N(a_1, \sigma_1^2), \eta \in N(a_2, \sigma_2^2)$ $\xi + \eta \in N(a_1 + a_2, \sigma_1^2 + \sigma_2^2)$

Ех. 5. Равномерное распределение неустойчиво относительно суммирования, контрпример: $\xi, \eta \in U(0,1)$ - независимы

$$\forall x,y\in [0,1]\ f_{\xi}(x)=1, f_{\eta}(y)=1\ \text{и}\ f_{\xi,\eta}(x,y)=1$$
 По первой теореме $F_{\xi,\eta}(x,y)=\iint_{D_z}f_{\xi,\eta}(x,y)dxdy=\iint_{D_z}dxdy=S_{D_z},$ где $D_z=\{(x,y)\mid x+y< z\}$

6)
$$1 < z \le 2$$

$$S_{D_z} = \begin{cases} 0, & z < 0 \\ \frac{z^2}{2}, & 0 \le z \le 2 \\ 1 - \frac{1}{2}(2 - z)^2 & 1 \le z \le 2 \\ 0, & z > 2 \end{cases}$$

$$S_{D_z} = egin{cases} 0, & z < 0 \ rac{z^2}{2}, & 0 \leq z \leq 2 \ 1 - rac{1}{2}(2-z)^2 & 1 \leq z \leq 2 \ 0, & z > 2 \end{cases}$$
 $f_{\xi+\eta}(z) = egin{cases} 0, & z < 0 \ z, & 0 \leq z \leq 2 \ 2-z & 1 \leq z \leq 2 \ 0, & z > 2 \end{cases}$ $extit{$\xi+\eta$ (z) = } \begin{cases} 0, & z < 0 \ 0, & z > 2 \end{cases}$

Nota. FUN FACT: сумма нескольких величин с равномерным распределением приближается к

нормальному распределению

Условное распределение

Def. Условным распределением случайной величины из системы случайных величин (ξ , η) называется ее распределение, найденное при условии, что другая случайная величина приняла определенное значение. Обозначается $\xi|\eta=y$

Def. A.: Условным математическим ожиданием (обозначается $E(\xi|\eta=y)$) называется математическим ожиданием случайной величины ξ при соответствующем условном распределении

І. Условное распределение в дискретной системе двух случайных величин

Пусть (ξ, η) задана законом распределения:

$\xi \setminus \eta$	y_1	y_2		y_m
x_1	p_{11}	p_{12}		p_{1m}
x_2	p_{21}	p_{22}		p_{2m}
:	:	:	٠	:
x_n	p_{n1}	p_{n2}		p_{nm}

Формула условной вероятности: $P(A|B) = \frac{P(AB)}{P(B)}$

Вероятности условных распределений считаем по формулам:

$$\xi | \eta = y_j : p_i = p(\xi = x_i | \eta = y_j) = \frac{p(\xi = x_i, \eta = y_j)}{p(\eta = y_j)} = \frac{p_{ij}}{q_j}$$

$$\eta | \xi = x_i : q_j = p(\eta = y_j | \xi = x_i) = \frac{p(\xi = x_i, \eta = y_j)}{p(\xi = x_i)} = \frac{p_{ij}}{p_i}$$

То есть вероятность в соответствующем столбце делим на

II. Условное распределение в непрерывной системе двух случайных величин

Пусть (ξ, η) задана плотностью $f_{\xi,\eta}(x,y)$ совместного распределения, тогда плотность условного распределения $\xi|_{\eta}=u$:

распределения
$$\xi|\eta=y$$
:
$$f(x|y) = \frac{f_{\xi,\eta}(x,y)}{\int_{\mathbb{R}} f_{\xi,\eta}(x,y) dx} = \frac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)}$$

 $\mathbf{Def.}$ Функция $f(x|y) = \frac{f_{\xi,\eta}(x,y)}{f_{\eta}(y)}$ называется условной плотностью

Def. Условное математические ожидание вычисляется по формуле $E(\xi|\eta=y)=\int_{-\infty}^{\infty}xf(x|y)dx$ Аналогично $E(\eta|\xi=x)=\int_{-\infty}^{\infty}yf(y|x)dy$

Nota. При фиксированном значении x f(y|x) зависит только от y, а $E(\eta|\xi=x) \in \mathbb{R}$. Если рассматривать x как переменную, то условное математическое ожидание $E(\eta|\xi=x)$ является функцией от x и называется функцией регрессии η на ξ . График такой функции называют линией регрессии

Nota. Так как значение x - значение случайной величины ξ , то условное матожидание $E(\eta|\xi=x)$ можно рассматривать как случайную величину