

Mahatma Gandhi Mission's College of Engineering and Technology Kamothe, Navi Mumbai

Branch: ALL Academic Year: 2020-21
Course Code: FEC 201 Course Name: Engineering Mathemat

Course Name: Engineering Mathematics II [Choice Based]

Assignment 3

Question	Questions	Module	Level*	PI	СО
No.					
Q1.	.Match the following	3	1	1.1.1	3
	(a) $\beta(p,q)$ 1) $\Gamma 1/2$				
	(a) $p(p,q)$ (b) $\frac{\Gamma m \Gamma n}{\Gamma m + n}$ $2) \int_0^\infty \frac{y^{p-1}}{(1+y)(p+q)} dy$				
	(c) $\sqrt{\pi}$ 3) β (m,n)				
	$(d)\frac{\pi}{\sin p\pi} \qquad \qquad 4) 0$				
	5) Г р Г 1-р				
Q2	Choose the correct alternative in each of the following:	3	1	1.1.1	3
	(a) The value of $\int_0^\infty \sqrt{y}e^{-y^3} dy$ is				
	$(i)\frac{\sqrt{\pi}}{2} \qquad \qquad (ii)\frac{\sqrt{\pi}}{3}$				
	(iii) $\sqrt{\pi}$ (iv) $\frac{\sqrt{\pi}}{6}$				
	(b) If $B(n,2) = 1/6$, and n is a positive integer, then the value of n is				
	(i)3 b) -2 c) 2 d) -3				
	(c) The value of $\int_0^\infty \frac{t^2}{1+t^4} dt$ is				
	$(i)\frac{\pi}{2\sqrt{2}} \qquad b)\frac{\sqrt{\pi}}{2}$				
	c) $\frac{\pi}{2}$ d) $\frac{\pi}{4}$				

Q3	State True or False	3	1		3
	1) The length of the curve $x = \frac{y^4}{4} + \frac{1}{8y^2}$ is $\frac{123}{32}$			1.1.1	
	2) The length of the curve given by $\theta = f(r)$ is				
	$S = \int_{\theta_1}^{\theta_2} \sqrt{r^2 + (\frac{dr}{d\theta})^2} d\theta$				
	3) The length of the curve given by $r = f(\theta)$ is				
	$S = \int_{r_1}^{r_2} \sqrt{1 + r^2 \left(\frac{d\theta}{dr}\right)^2} dr$				
Q4.	1. Show that $\int_{0}^{\infty} (x+1)^{2} e^{-x^{3}} dx = \frac{1}{3} \left[1 + \Gamma(\frac{1}{3}) + 2\Gamma(\frac{2}{3}) \right]$	3	2,3	1.1.1	3
	2. State and prove Duplication formula				
	$\int_{0}^{\pi/6} \sin^2 6\theta \cos^6 3\theta d\theta = \frac{7\pi}{384}$ 3. Show that				
Q5.	1.Assuming the validity of differentiation under integral sign prove that	3	2,3	1.1.1	3
	$\int_0^{\pi/2} \frac{\log\left(1 + \cos\alpha\cos x\right)}{\cos x} dx = \frac{\pi^2 - 4\alpha^2}{8}$			1.1.1	
	2. Evaluate $\int_0^\infty \frac{e^{-x}}{x} (1 - e^{-ax}) dx \ a > -1$				
	3. Show that $\int_0^\infty \frac{(tan^{-\frac{x}{a}} - tan^{-\frac{x}{b}})}{x} dx = \frac{\pi}{2} \log \left(\frac{b}{a}\right)$				
	where a>0,b>0				
	4. Evaluate $\int_0^{\frac{\pi}{2}} \frac{dx}{a+b\cos x}$, $a > 0$, $b > 0$.				
	And deduce that $\int_0^{\pi} \frac{dx}{(a+b\cos x)^2} = \frac{\pi b}{(a^2-b^2)^{3/2}}$				
	and $\int_0^{\pi} \frac{\cos x dx}{(a + b \cos x)^2} = -\frac{\pi b}{(a^2 - b^2)^{3/2}}$				

Q.6	1.Find total length of loop of curve	3	2,3		3
	$9y^2 = (x+7)(x+4)^2$			1.1.1	
	2. Show that the length of the parabola $y^2 = 4ax$ from the vertex to the end of the latus rectum is a $[\sqrt{2} + \log (1 + \sqrt{2})]$. Hence prove that length of the arc cut off by the line $3y = 8x$ is a $[\log 2 + \frac{15}{16}]$				
	3. Find the length of cardiode $r = a \cos \theta$ lying inside the circle $r = a(1 - \cos \theta)$				
	4. Find the total length of the curve 2 2 2 2				
	$x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$				
Q.7	Illustrate Rectification	3	4	1.1.1	3