Classificação Homotópica de Fibrados Vetoriais

Luciano Luzzi Júnior *
Bacharelado em Matemática Industrial - UFPR
lucluzzi@hotmail.com

Prof. Llohann Dallagnol Sperança (Orientador)

Departamento de Matemática - UFPR

Isperanca@ufpr.br

Palavras-chave: Geometria, Fibrados Vetoriais, Classificação.

Resumo:

Nas áreas de geometria e topologia é bem conhecido que a estrutura de variedade diferenciável exerce grande importância para generalizar as ideias do cálculo para espaços mais gerais. Uma ferramenta que nos permite fazer isto é a estrutura de fibrado tangente, de forma simplificada, a cada ponto da variedade, um espaço com uma estrutura diferenciável, associamos um espaço vetorial chamado espaço tangente, assim podemos estender o conceito de vetores tangentes e também definir uma forma mais abstrata de diferencial. Esta estrutura, uma coleção de espaços vetoriais, cada um associado a um ponto da variedade M, unidos de forma que localmente tenha a forma $U \times \mathbb{R}^n$, onde U é um aberto de M, aparece com frequência no contexto de geometria/topologia, por exemplo no estudo de métricas e no estudo de formas diferenciais.

Com o intuito de generalizar a ideia de fibrado tangente introduzimos o conceito de fibrados vetoriais. Seja M um espaço topológico, formalmente um fibrado vetorial real de rank k sobre M é um espaço topológico E junto com uma aplicação contínua e sobrejetora $\pi: E \to M$ satisfazendo:

- 1. Para cada $p \in M$, o conjunto $E_p = \pi^{-1}(p) \subset E$ (chamado de fibra sobre p) tem a estrutura de espaço vetorial real de dimensão k.
- 2. Para cada $p \in M$, existe uma vizinhança U de p em M e um homeomorfismo $\Phi:\pi^{-1}(U) \to U \times \mathbb{R}^k$, tal que $\pi_1 \circ \Phi = \pi$, onde π_1 é a projeção na primeira coordenada. Além disso, para cada $q \in U$ a restrição de Φ a E_q é um isomorfismo linear entre E_q e $\{q\} \times \mathbb{R}^k \cong \mathbb{R}^k$.

O objetivo deste trabalho é, com ferramentas de topologia, apresentar uma classificação para todos os fibrados vetoriais uma vez que fixamos o espaço base M.

^{*}Bolsista PET-Matemática.

Referências:

HATCHER, A. Vector bundles and K-theory. No prelo. HUSEMOLLER, D. Fibre bundles. New York: Springer-Verlag, 1993. LEE, J. M. Introduction to smooth manifolds. New York: Springer, 2003.