Simulations de Monte Carlo pour l'évaluation d'options exotiques

IND8123 – Projet

Romain MRAD, Mateo VILLAIN, Thomas RICHER

MVR Technologies

April 23, 2025

1. Introduction

Contexte Définitions Problématique

- Présentation du programme Options Modèle
- 3. Résultats
 Prix des options
 Intervalles de confiance
- 4. Conclusion

1. Introduction

Contexte

Définitions Problématique

- 2. Présentation du programme Options Modèle
- 3. Résultats
 Prix des options
 Intervalles de confiance
- 4. Conclusion

Contexte

Le Hedge Fund systématique MVR Technologies cherche à bien évaluer certaines options exotiques d'achat pour ses différentes stratégies de gestion des risques.

1. Introduction

Contexte

Définitions

Problématique

- Présentation du programme Options Modèle
- 3. Résultats
 Prix des options
 Intervalles de confiance
- 4. Conclusion

Simulation de Monte Carlo

Une **méthode algorithmique** visant à calculer une valeur numérique approchée en utilisant des **procédés aléatoires**.

Simulation de Monte Carlo

Une **méthode algorithmique** visant à calculer une valeur numérique approchée en utilisant des **procédés aléatoires**.

Principales applications:

• Mathématiques : calcul d'intégrales (dimensions d>1)

Simulation de Monte Carlo

Une **méthode** algorithmique visant à calculer une valeur numérique approchée en utilisant des **procédés** aléatoires.

Principales applications :

- Mathématiques : calcul d'intégrales (dimensions d > 1)
- Physique de particules : estimation de la forme d'un signal

Simulation de Monte Carlo

Une **méthode** algorithmique visant à calculer une valeur numérique approchée en utilisant des **procédés** aléatoires.

Principales applications:

- Mathématiques : calcul d'intégrales (dimensions d > 1)
- Physique de particules : estimation de la forme d'un signal
- Finance : simulation de la trajectoire d'un cours financier

Simulation de Monte Carlo

Une **méthode** algorithmique visant à calculer une valeur numérique approchée en utilisant des **procédés** aléatoires.

Principales applications:

- Mathématiques : calcul d'intégrales (dimensions d > 1)
- Physique de particules : estimation de la forme d'un signal
- Finance : simulation de la trajectoire d'un cours financier

Option exotique

- Un produit dérivé qui présente des caractéristiques plus complexes que les produits classiques
- Souvent échangé sur des marchés OTC

1. Introduction

Problématique

2. Présentation du programme

Modèle

Prix des options

4 Conclusion

Problématique

Comment évaluer certaines options exotiques avec des simulations de Monte-Carlo?

1. Introduction

Contexte Définitions Problématique

2. Présentation du programme Options

Modèle

3. Résultats
Prix des options
Intervalles de confiance

4. Conclusion

Options évaluées

MVR Technologies cherche à évaluer les options d'achat suivantes :

- Vanilla
- Asian arithmetic average price
- Asian geometric agerage price
- Up-and-In barrier option
- Up-and-Out barrier option
- Lookback

Option Vanilla

- Option d'achat européenne (référence)
- Cashflow

$$CF_T = \max\{S_T - K , 0\}$$

• Cas d'usage : spéculation sur la hausse d'un titre

Option asiatique moyenne arithmétique

- ullet Option d'achat basée sur une moyenne arithmétique des prix de l'action entre 0 et T
- Cashflow

$$CF_T = \max\left\{\frac{1}{T} \int_0^T S_t dt - K , 0\right\}$$

• Cas d'usage : se couvrir contre les variations de prix à court terme

Option asiatique moyenne géométrique

- ullet Option d'achat basée sur une moyenne géométrique des prix de l'action entre 0 et T
- Cashflow

$$CF_T = \max \left\{ \exp \left[\frac{1}{T} \int_0^T \ln(S_t) dt \right] - K, 0 \right\}$$

• Cas d'usage : modélisation mathématique et produits structurés

Option Up-and-In (knock-in barrier)

- ullet Option d'achat qui devient active si le prix de l'action dépasse une barrière H entre 0 et T
- Cashflow

$$CF_T = \max\{S_T - K, 0\} \mathbb{1}_{\sup_{0 \le t \le T} S_t \ge H}$$

• Cas d'usage : protection conditionnelle contre un risque extrême

Option Up-and-Out (knock-out barrier)

- \bullet Option d'achat qui devient inactive si le prix de l'action dépasse une barrière H entre 0 et T
- Cashflow

$$CF_T = \max \{S_T - K, 0\} \mathbb{1}_{\sup_{0 \le t \le T} S_t \le H}$$

• Cas d'usage : réduction de la prime avec une barrière désactivante

Option Lookback

- Option d'achat permettant à la personne de choisir le strike K comme la meilleure valeur prise par le prix de l'action entre 0 et T
- Cashflow

$$\max \left\{ S_T - \min_{0 \le t < T} S_t , 0 \right\}$$

• Cas d'usage : maximiser le gain dans un marché volatil

1. Introduction

Contexte
Définitions
Problématique

2. Présentation du programme

Options

Modèle

3. Résultats
Prix des options

4. Conclusion

Modèle – GBM

Pour évaluer ses options, MVR Technologies utilise le mouvement brownien géométrique pour modéliser les prix de l'action

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

Modèle – GBM

Pour évaluer ses options, MVR Technologies utilise le mouvement brownien géométrique pour modéliser les prix de l'action

$$dS_t = \mu S_t dt + \sigma S_t dW_t$$

On peut donc simuler le prix de l'action à un temps t en utilisant la solution forte de l'équation différentielle stochastique ci-dessus

$$S_T = S_0 \exp\left[\left(r - \frac{1}{2}\sigma^2\right)T + \sigma\sqrt{T}Z\right]$$

avec $Z \sim \mathcal{N}(0,1)$ et $\underline{\mu = r}$

• On sait que la valeur actuelle d'une option correspond à l'espérance du cashflow actualisée

$$C = e^{-rT} \mathbb{E}[CF_T]$$

• On sait que la valeur actuelle d'une option correspond à l'espérance du cashflow actualisée

$$C = e^{-rT} \mathbb{E}[CF_T]$$

Pour mettre en œuvre une évaluation de ses différentes options d'achat, MVR
 Technologies va donc simuler plusieurs trajectoires pour le prix de l'action étudiée

• On sait que la valeur actuelle d'une option correspond à l'espérance du cashflow actualisée

$$C = e^{-rT} \mathbb{E}[CF_T]$$

- Pour mettre en œuvre une évaluation de ses différentes options d'achat, MVR
 Technologies va donc simuler plusieurs trajectoires pour le prix de l'action étudiée
- ullet Pour chaque prix simulé $S_T^{(i)}$, on calcule le prix de l'option $C^{(i)}$

• On sait que la valeur actuelle d'une option correspond à l'espérance du cashflow actualisée

$$C = e^{-rT} \mathbb{E}[CF_T]$$

- Pour mettre en œuvre une évaluation de ses différentes options d'achat, MVR
 Technologies va donc simuler plusieurs trajectoires pour le prix de l'action étudiée
- ullet Pour chaque prix simulé $S_T^{(i)}$, on calcule le prix de l'option $C^{(i)}$
- Enfin, on a par le Théorème Centrale Limite

$$\bar{C}_n = \frac{1}{n} \sum_{i=1}^n C^{(i)} \xrightarrow[n \to \infty]{} \mathcal{N}\left(C, \frac{\sigma_c^2}{n}\right)$$

• On sait que la valeur actuelle d'une option correspond à l'espérance du cashflow actualisée

$$C = e^{-rT} \mathbb{E}[CF_T]$$

- Pour mettre en œuvre une évaluation de ses différentes options d'achat, MVR
 Technologies va donc simuler plusieurs trajectoires pour le prix de l'action étudiée
- ullet Pour chaque prix simulé $S_T^{(i)}$, on calcule le prix de l'option $C^{(i)}$
- Enfin, on a par le Théorème Centrale Limite

$$\bar{C}_n = \frac{1}{n} \sum_{i=1}^n C^{(i)} \xrightarrow[n \to \infty]{} \mathcal{N}\left(C, \frac{\sigma_c^2}{n}\right)$$

On peut aussi générer un intervalle de confiance

$$I_{95\%} = \left[\bar{C}_n - 1.96 \sqrt{\frac{\sigma_C^2}{n}}, \ \bar{C}_n + 1.96 \sqrt{\frac{\sigma_C^2}{n}} \right]$$

Modèle – Méthodes de simulations

On utilise différentes méthodes de simulation :

- Simulation naïve
- Simulation avec variables antithétiques

Modèle – Simulation naïve – Exemple du titre AAPL

Modèle – Simulation antithétique – Exemple du titre AAPL

Modèle – Diagramme UML

1. Introduction Contexte

Problématique

- Présentation du programme Options Modèle
- 3. Résultats
 Prix des options
 Intervalles de confiance
- 4. Conclusion

Résultats – Prix des options – Exemple du titre AAPL

Option	Simulation naïve	Simulation antithétique
Vanilla	7.127	5.77
Asian arithmetic average	2.045	1.554
Asian geometric average	1.899	1.447
Up-and-In	1.045	0.534
Up-and-Out	6.082	5.236
Lookback	24.818	24.441

1. Introduction
Contexte
Définitions

Problématique

 Présentation du programme Options Modèle

3. Résultats

Prix des options Intervalles de confiance

4. Conclusion

Résultats – Intervalles de confiance – Exemple du titre AAPL

Option	Simulation naïve	Simulation antithétique
Vanilla	[7.01, 7.24]	[5.67, 5.87]
Asian arithmetic average	[2.00, 2.09]	[1.52, 1.59]
Asian geometric average	[1.86, 1.94]	[1.41, 1.48]
Up-and-In	[0.98, 1.11]	[0.48, 0.58]
Up-and-Out	[5.99, 6.18]	[5.15, 5.32]
Lookback	[24.66, 24.98]	[24.30, 24.59]

Résultats – Intervalles de confiance – Exemple du titre AAP

1. Introduction

Contexte Définitions Problématique

- 2. Présentation du programme Options Modèle
- 3. Résultats
 Prix des options
 Intervalles de confiance
- 4. Conclusion

Conclusion

Merci