Question 1:

Solution 1. Our data is the number of people drown per year (y) in Finland 1980 - 2013(x) and we build a linear model with Gaussian noise as following:

$$y_i = \beta_0 + \beta_1(x_i - \mu_X) + \epsilon_i, i = 1, \dots, n$$

Here n = 34 and $\mu_X = \frac{1}{n} \sum_{i=1}^{n} x_i = 1996.5$, and

$$\epsilon_i \stackrel{iid}{\sim} N(0, \tau) \qquad (\tau \text{ represents precession})$$

We compare results with three different setups:

- 1. assume flat prior on β_0 and β_1 ($\beta_0 \sim dflat()$ and $\beta_1 \sim dflat()$);
- 2. assume weak normal prior on β_0 and β_1 , i.e., $\beta_0 \sim N(0,.0001)$ and $\beta_1 \sim N(0,.0001)$ (here .0001 represents precision)
- 3. assume a hierarchical structure, namely, $\beta_0 \sim N(\mu_0, \tau_0)$, $\beta_1 \sim N(\mu_1, \tau_1)$ and we assume $\mu_0 \sim dflat()$, $\sigma_0 \sim unif(.001, 1000)$, $\mu_1 \sim dflat()$ and $\sigma_0 \sim unif(.001, 1000)$ (we use winBUGS language here and σ_0 , σ_1 represents the standard deviation, in correspondence to the precision τ_0 and τ_1).

Our winBUGS model setup is as following:

```
#HW5 Question 1
#Model
model{
  for (i in 1:n){
  y[i] ~ dnorm(mu[i], tau)
  mu[i] <- beta0 + beta1*(x[i] - meanX)
#posterior prediction for year 2016
yp ~ dnorm(mup, tau)
mup <- beta0 + beta1*(2016 - meanX)
#Priors
sig ~ dunif(.001, 1000)
tau <- 1/pow(sig, 2)
#flat prior
#beta0 ~ dflat()
#beta1 ~ dflat()
#weak normal prior
#beta0 ~ dnorm(0, .0001)
#beta1 ~ dnorm(0, .0001)
#hierarchical
beta0 ~ dnorm(mu0, tau0)
beta1 ~ dnorm(mu1, tau1)
mu0 ~ dflat()
mu1 ~ dflat()
sig0 ~ dunif(.001, 1000)
sig1 ~ dunif(.001, 1000)
tau0 <- 1/pow(sig0, 2)
tau1 <- 1/pow(sig1, 2)
```

We burn the first 10,000 iterations and then update model for further 10,000 times, then we get the following results: For flat prior, our estimate and DIC is:

Node statis	tics							
node	mean	sd	MC error	2.5%	median	97.5%	start	sample
beta0	220.9	5.105	0.05429	210.8	221.0	231.0	10001	10000
beta1	-3.284	0.522	0.005419	-4.311	-3.287	-2.251	10001	10000
yp	156.7	32.27	0.3032	93.32	156.7	219.6	10001	10000
DIC								
Dbar = p	ost.mear	of -2log	L; Dhat = -	2LogL	at post.m	ean of s	tochasti	cnodes
	Dba	Dbar		pD		DIC		
У	325	.399	322.493	2	.906	328.	306	
total	325	.399	322.493	2	.906	328.	306	

For weak normal prior, our estimate and DIC is:

Node statis	tics								
node	mean	sd	MC error	2.5%	median	97.5%	start	sample	
beta0	220.4	5.14	0.05053	210.2	220.4	230.5	10001	10000	
beta1	-3.282	0.522	0.005359	-4.305	-3.29	-2.253	10001	10000	
yp	156.4	32.24	0.3491	93.22	156.5	220.6	10001	10000	
DIC									
Dbar = p	ost.mear	of -2log	gL; Dhat = -	2LogL	at post.m	ean of s	tochasti	c nodes	
	Dba	Dbar		Į.	pD		DIC		
У	325.442		322.535		2.907	328.349			
total	325.442		322.535		2.907		328.349		

For hierarchical model, our estimate and DIC is:

node	mean	sd	MC error	2.5%	median	97.5%	start	sample
beta0	221.1	5.108	0.04956	211.0	221.0	231.0	10001	10000
beta1	-3.285	0.5259	0.00522	-4.321	-3.279	-2.253	10001	10000
yp	157.0	32.34	0.3072	92.81	156.8	221.2	10001	10000
DIC								
Dbar = p	ost.mear	of -2log	L; Dhat = -	2LogL a	at post.m	ean of s	tochastic	nodes
	Dbar		Dhat	р	D	DIC		
у	325	.420	322.493	2	.927	328.347		
total	325	420	322 403	2	027	328	2/17	

As we can see that all results are very close. Particularly from the DIC it suggests each of the above model is not necessarily superior than the other. So if we do want to pick one as our final model, we could use the most parsimonious one, and here definitely we do not need to bother with using hierarchical model.

Now for part (i):

Since the estimate of β_1 is negative, we conclude that the number of people drown per year is declining. The following R code plot the histogram of β_1 (slope). The data is extracted from the coda generated in winBUGS.

```
#HW 5
#the csv file from the coda generated in winBUGS
data <- read.csv("C:\\akira\\data\\coda_flat_prior.csv", header = TRUE)</pre>
data1 <- read.csv("C:\\akira\\data\\coda_normal_prior.csv", header = TRUE)</pre>
data2 <- read.csv("C:\\akira\\data\\coda_hierarchical.csv", header = TRUE)</pre>
#head(data)
library(ggplot2)
library(gridExtra)
#histogram of the slope beta1
#flat prior
p_beta1 <- ggplot(data = data, aes(x = beta1, y = ..density..)) +</pre>
  geom_histogram(binwidth = 0.1, color = "black", fill = "blue") +
  geom_vline(aes(xintercept=mean(beta1)),
             color="red", linetype="dashed", size=1) +
 geom_density(alpha=.5, fill="black") +
 labs(title=expression(paste(beta[1],
    " : assume flat prior")), x = expression(beta[1]))
#normal weak prior
p1_beta1 <- ggplot(data = data1, aes(x = beta1, y = ..density..)) +
  geom_histogram(binwidth = 0.1, color = "black", fill = "blue") +
  geom_vline(aes(xintercept=mean(beta1)),
             color="red", linetype="dashed", size=1) +
  geom_density(alpha=.5, fill="black") +
  labs(title=expression(paste(beta[1],
  ": assume weak normal prior")), x = expression(beta[1]))
#hierarchical model
p2_beta1 <- ggplot(data = data2, aes(x = beta1, y = ..density..)) +
  geom_histogram(binwidth = 0.1, color = "black", fill = "blue") +
  geom_vline(aes(xintercept=mean(beta1)),
             color="red", linetype="dashed", size=1) +
 geom_density(alpha=.5, fill="black") +
 labs(title=expression(paste(beta[1],
    ": assume hierarchical model")), x = expression(beta[1]))
grid.arrange(p_beta1, p1_beta1, p2_beta1, nrow = 2)
```


The histogram further supported our conclusion, since not only the point estimate of β_1 , but also the whole distribution of β_1 lies on the negative values.

For part (ii):

We can read from the point estimate above that, for all three different approaches, the predicted number of people drown in 2016 is about 156 to 157.

For part (iii):

The following R code plot the histogram of the posterior predictive distribution of y_p for the year of 2016:

```
geom_histogram(binwidth = 10, color = "black", fill = "blue") +
  geom_vline(aes(xintercept=mean(yp)),
             color="red", linetype="dashed", size=1) +
 geom_density(alpha=.5, fill="black") +
 labs(title = expression(paste(y[p],
      " 2016: weak normal prior")),
       x = expression(y[p]))
#hierarchical model
p2_yp <- ggplot(data = data2, aes(x = yp, y = ..density..)) +
  geom_histogram(binwidth = 10, color = "black", fill = "blue") +
  geom_vline(aes(xintercept=mean(yp)),
             color="red", linetype="dashed", size=1) +
 geom_density(alpha=.5, fill="black") +
 labs(title = expression(paste(y[p],
      " 2016: hierarchical model")),
      x = expression(y[p]))
grid.arrange(p_yp, p1_yp, p2_yp, nrow = 2)
```


