Electric Vehicle (EE60082)

Lecture 11: BMS part1: Battery fundamentals

DR. SHIMULK. DAM

ASSISTANT PROFESSOR,
DEPARTMENT OF ELECTRICAL ENGINEERING,
INDIAN INSTITUTE OF TECHNOLOGY (IIT), KHARAGPUR.

Electromagnetic Interference (recap)

Electromagnetic Compatibility (EMC) (reca

EMI standards (recap)

- Conducted EMI standards
 - measurement done on the connecting cables
 - > Frequency range depends on products and standards to comply
 - ➤ 150 kHz to 30MHz (CISPR 32 and FCC 47)
- Radiated EMI standards
 - > measured in an anechoic or semi-anechoic chamber or at an open area test site (OATS).
 - frequency range depends on products and standards to comply
 - ➤30MHz to 6 GHz (CISPR 32)
 - ➤ 30MHz up to 40 GHz (FCC 47)

EMC compliance mark (recap)

Bureau of Indian Standards (BIS) mandates Compulsory Registration Scheme (CRS)

> BIS CRS Mark

R-xxxxxxx

- CE Mark (Europe)
- FCC Mark (USA)

CISPR 25 EMI test setup (recap)

CISPR 25 EMI test example (recap)

EMI Filter (recap)

EMI noise simulation (recap)

LISN model (recap)

EMI DM noise comparison (recap)

3-ph symmetric SVPWM

2-ph symmetric SVPWM

Module 3: Battery Management System (BMS)

Battery market

➤ Most popular battery?

Source: Avicenne Energy

Battery market

battery market vs. electric vehicle market

Electric Vehicle Global Market Report 2025

Battery market

> battery market vs. charging infrastructure market

Ni-Cd cell Ni-MH cell Li-ion cell

Basic terminology

Cell: the most basic element of a battery;

Block: a collection of cells wired directly in parallel;

Battery: a collection of cells or blocks wired in series;

Pack: a collection of batteries.

Cell, Battery and Pack

series connection increases voltage

parallel connection increases current

combinations
increase both
voltage &
current

Battery specs

- Voltage (Volts V)
- Voltage (Electromotive Force E) is a measure of energy per unit charge.
- Current I (Amperes A)
- A measure of the transfer of electric charge (coulombs per second).
- Power (Watts W)
- A function of both current and voltage: P (W) = E(V) x I (A)
- Capacity C (Ampere-hours Ah)
- A measure of total electrical charge(equivalent to coulombs).
- Energy (Watt-hours Wh)
- A function of both capacity and voltage: E (Wh) = E(V) x C (Ah)

Battery Parameters

Specification sheet reference

- ➤ Columbic: 3600 Coulombs = Amp-hours [Ah]
- > Energy: Watt-hours [Wh]
 - \rightarrow (Amp-hours)·(Volts) = (Watt-hours)

• Examples:

- 40 Ah Battery @ 5 A discharge.
 - Find time to total discharge:
- 4.2 V battery with 35 Ah.
 - Find energy capacity:

Charge and Energy Density

Gravimetric Charge Density (Ah/kg)

Volumetric Charge Density (Ah/L)

Gravimetric Energy Density (Wh/kg)

Volumetric Energy Density (Wh/L)

C-rate

- C-rate is unit of current (relative to battery charge capacity)
- > 1 C-rate = the current needed to discharge the battery fully in 1 hour

• Examples:

- 40 Ah Battery, 20 A discharge.
 - Find the C-rate of discharge
- 10 Ah, being discharged at C/2.
 - Find the time to discharge completely

Battery Chemistry

Galvanic cell

Battery Structure

- The primary elements of a cell are the Anode, cathode, separator, current collectors, electrolyte, and enclosure hardware.
- The anode (Negative Electrode) is the source of the oxidation reaction (during discharge).
- The cathode (Positive Electrode) is the source of the reduction reaction (during discharge).
- Both electrodes contain (together) the active materials for the electrochemical reaction.
- The separator is an insulating divider, which physically separates the electrodes (to prevent electrical shorting), and facilitates ion flow from one electrode to the other.
- The current collectors reside within each electrode, acting as a physical support for the electrode materials, and conduct electrons to and from the active materials, within the external electrical circuit.
- The electrolyte provides the ions necessary to support the electrochemical reaction.
- The enclosure hardware contains the electrodes, separator, current collectors and electrolyte, and both protects all components from the external environment, and users from the internal components, and isolates cells.

Charge Density

Can we calculate the gravimetric energy density of the battery?

1. One electron: -1.602*10⁻¹⁹C

2. One H-Atom mass: 1.667*10⁻²⁷kg

Periodic Table of Elements

1 1 1.01 3 Li 6.94 11 Na	2 Be 9.01 12 Mg	of the Elements 2005 13 14 15 16 17 15 16 17 18 9 10.81 12.01 14.01 15.99 19.00 13 14 15 16 17 18 19 19.00 13 14 15 16 17 18 19 19.00 10.81 12.01 14.01 15.99 19.00 13 14 15 16 17 17 18 19 19.00						18 2 He 4.00 10 Ne 20.18 18 Ar									
22.99	25.31	3	4	5	6	7	8	9	10	11	12	26.98	28.09	30.97	32.07	35.45	39.95
19	20	21	22	23	24	25 M/s	26	27	28 N:	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	51	Kr
39.10	40.08	44.96	47.87	50.94 41	52.00 42	54.94 4.3	55.85 44	58.93 45	58.69 46	63.55	65.41 48	69.72 49	72.64 50	74.92 51	78.96 52	79.90 53	83.80 54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pď	_	Cď	In	Sn	Sb	Te	T	Xe
85.47	87.62	88.91	∠I 91.22	92.91	95.94	(98)	101.07	102.91	106.42	Ag	112.41	114.82	118.71	121.76	127.60	126.90	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ва	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Ha	TI	Pb	Bi	Po	At	Rn
132.91	137.33	138.91	178.49	180.95	183.84	186.21	190.23	192.22	195.08	196.97	200.59	204.38	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111							
Fr	Ra	Ac	Rf	Db	Sq	Bh	Hs	Mt	Ds	Rg							
(223)	(226)	(227)	(261)	(262)	(266)	(264)	(270)	(268)	(281)	(272)							
				58	59	60	61	62	63	64	65	66	67	68	69	70	71
				_	Pr	Nď	Dm	_	Eu			66 Dv		_		3.71	
.23	Molecular		Ce	140.91	1 VU 144.24	Pm (145)	Sm 150.36	⊑U 151.97	Gd 157.25	1b	Dy 162.50	HO 164.93	Er 167.26	168.93	Yb 173.04	LU 174.97	
15	🗘 Re	searc	ch	90	91	92	93	94	95	96	97	98	99	100	108.93	102	103
1.4	Ins	stitut	е	Th	Pa	Ű	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	۱r
				232.04	231.04	238.03	(237)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(262)

Battery Density

Li + MnO₂
$$\rightarrow$$
 LiMnO₂ (discharge)
6,94 86,9

- 1. Generated charge Q: one electron (-1.602*10⁻¹⁹C)
- 2. Used mass M: (6.94+86.9)*1.667*10⁻²⁷kg
- 3. Charge Density: Q/M/3600=284Ah/kg
- 4. How to calculate energy density?

Battery OCV

Theoretical Open Circuit Voltage:

- Defined by positive and negative electrode active materials
- Calculated from standard potentials of each electrode

```
Example: Li + MnO₂ → LiMnO₂ (discharge reaction – Li primary cell)
```

```
Negative Electrode (oxydation) : Li \rightarrow Li<sup>+</sup> + 1 e<sup>-</sup> -3,04V/ENH Positive Electrode (reduction) : MnO<sub>2</sub> + Li<sup>+</sup> + e<sup>-</sup> \rightarrow LiMnO<sub>2</sub> 0,25V/ENH
```


$$V^{\text{theo}}_{\text{cell}} = 0.25 - (-3.04) = 3.29 \text{ V}$$

of TECHNOLOGY AND STREET OF THE STREET OF TH
योगः कर्मसु कौशलम्

	Reduction Half-Reaction		E° (V)	
Stronger	$F_2(g) + 2e^-$	\longrightarrow 2 F (aq)	2.87	Weaker
oxidizing	$H_2O_2(aq) + 2 H^+(aq) + 2 e^-$	\longrightarrow 2 H ₂ O(l)	1.78	reducing
agent	$MnO_4^-(aq) + 8 H^+(aq) + 5 e^-$	\longrightarrow Mn ²⁺ (aq) + 4 H ₂ O(l)	1.51	agent

Weaker agent

reducing agent

Anode Materials

Material	Theoretical Properties					
	Capacity, Ah/Kg	Voltage vs. H/H ⁺ , V	Specific Energy, WH/Kg			
Li	3860	3.05	11,800			
Mg	2200	2.37	5200			
Al	2980	1.67	5000			
Zn	820	0.76	620			
Metal Hydride	~300	0.85	~260			

Cathode Materials

Material	Theoretical Properties						
	Capacity, Ah/Kg	Voltage vs. Zn/Zn ⁺² , V	Voltage vs. Li/Li ⁺ , V	Cell Specific Energy, WH/Kg			
NiOOH	295	1.74		350			
AgO/Ag ₂ O	430	1.83/1.57		580			
O_2	3350	1.65	2.91*	1090 (Zn)/5200 (Li)			
S	1670		2.1	2450			
TiS ₂	240		2.15	490			
CoO ₂	295		3.7	1010			
CF	865		2.6	1840			

Battery Evolution

Power density

Battery power = battery terminal voltage x discharge current

> Power density = Maximum power per unit volume or weight

Unit of power density = W/kg or W/l

- Power density depends on
 - loss inside the battery
 - Maximum permissible temperature in battery
 - > Thermal management of battery pack

Battery Evolution

	Lead-	Acid	Nickel-Me	tal Hydride	Lithium-lon		
	SLI	Advanced	HEV	BEV	HEV	PHEV-BEV	
V	2.0	2.0	1.2	1.2	3.3-3.8	3.3-3.8	
Wh/l	60	7 5	100	250	150	200-400	
Wh/kg	25	40	50	100	90	120-200	
W/I	1200	600	2000 - 2500	500-800	3500-9000	800-2200	
W/kg	500	250	1000-1300	200-400	2000-4000	500-1200	

Energy Storage Technology

Important parameters:

- Energy density (volume); Specific Energy (weight)
- Power density; Specific power
- Cycle life, calendar life
- Safety
- Cost

Energy density comparison

Energy Sources	Energy Density (Wh/kg)
-----------------------	------------------------

Gasoline 12 500

Natural Gas 9350

Hydrogen 33 000

Coal 8200

NiMH Battery 50

Li-Ion Battery 120

Ultra-cap 3.3

Negative electrode: Pb (loses electrons when discharging)

Positive electrode: PbO₂ (gains electrons when discharging)

Electrolyte: H₂SO₄ (Sulfuric Acid)

Discharging

Negative Plate: $Pb + HSO_4^- \rightarrow PbSO_4 + H^+ + 2e^-$

Positive Plate: $PbO_2 + HSO_4^- + 3H^+ + 2e^- \rightarrow PbSO_4 + 2H_2O$

Overall: $PbO_2+Pb+2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$

Periodic Table of Elements

Question 1: What's the theoretical gravimetric charge density (Ah/kg)

Overall:

 $PbO_2+Pb+2H_2SO_4 \rightarrow 2PbSO_4 + 2H_2O$

Charge

2e-

Mass

239 207 196

Relative mass:

Other info:

Pb: 207

1. One electron: -1.602*10⁻¹⁹C

O:16

2. One hydrogen atom: 1.667*10⁻²⁷kg

S: 32

To transfer Q= $2*1.602*10^{-19}$ C charge, we need the mass M= $(239+207+196)*1.667*10^{-27}$ kg, yielding Q/M/3600=83Ah/kg

Question 2: What's the theoretical gravimetric energy density (Wh/kg)

Charge density of lead-acid battery is 83Ah/kg;

Energy density of lead-acid battery is 2.1V*83Ah/kg=174Wh/kg

Not competitive in terms of the terminal voltage.

Question 3: Charging?

Negative Plate (reduction): $PbSO_4 + H^+ + 2e^- \rightarrow Pb + HSO_4^-$

Positive Plate (oxidation): $PbSO_4 + 2H_2O \rightarrow PbO_2 + HSO_4^- + 3H^+ + 2e^-$

Overall: $2PbSO_4 + 2H_2O \rightarrow PbO_2 + Pb + 2H_2SO_4$

PbO₂: Positive Electrode

Pb: Negative Electrode:

*H*₂SO₄: Concentrated Electrolyte

$$PbO_2 + Pb + 2 H_2SO_4 \xrightarrow{discharge} 2 PbSO_4 + 2 H_2O$$

OCV: 2.1V

Water hydrolysis during charging

Oxidation reaction at the positive electrode

$$2H_2O <=> O_2 + 4H^+ + 4e^-$$

Reduction reaction at negative electrode

$$H^+ + e^- <=> \frac{1}{2} H_2$$

Gas release in Pb-acid battery

PbA batteries will generate gas when charging.

- 1. Gas will accumulate on the electrode surface and obstruct the chemical reactions;
- 2. High gas pressure will damage the electrode, separator and enclosure;
- 3. High gas pressure will need be released, yielding the loss of the water and slowed chemical reactions.

Thank you!