Introduction to 인공 신경망

역전파 알고리즘 Backpropagation

안녕하세요 신박AI입니다

이번 영상에서는 역전파에 대해 함께 배워보도록 하겠습니다

역전파 알고리즘은 신경망 알고리즘의 꽃이라 불리울 정도로

중요한 위치를 차지하고 있습니다.

오늘 이 역전파 알고리즘을 예제와 더불어

스텝 바이 스텝으로 설명드리고자 하오니

저랑 같이 차근차근 살펴보시도록 하겠습니다

이 채널은 여러분의 관심과 사랑이 필요합니다

'좋아요'와 '구독'버튼은 강의 준비에 큰 힘이 됩니다!

Chapter 1 역전파 알고리즘의 등장배경

역전파 알고리즘을 배우기 전에 먼저

역전파 알고리즘의 배경에 대해 먼저 말씀드리고자 합니다

1960년대부터 1980년대 초까지, 인공 신경망 연구는 초기에는

단일 퍼셉트론(Perceptron)과 같은 얕은 신경망에 초점을 맞추고 있었습니다

다층 퍼셉트론과 같은 깊은 신경망의 학습은

역전파 알고리즘이 개발되기 전까지는 해결하기 어려운 문제였습니다

1986년에 와서야 비로소, David E. Rumelhart, Geoffrey E. Hinton,

https://www.psychologicalscience.org/observer/david-rumelhart

David Rumelhart 수리심리학자

https://www.frontiersofknowledgeawards-fbbva.es/galardonados/geoffrey-hinton-2/

Geoffrey Hinton 실험심리학자 컴퓨터과학자

https://www.ccs.neu.edu/home/rjw/

Ronald J. Williams 등의 연구진이 역전파 알고리즘을 발표하였습니다

https://www.psychologicalscience.org/observer/david-rumelhart

David Rumelhart 수리심리학자

https://www.frontiersofknowledgeawards-fbbva.es/galardonados/geoffrey-hinton-2/

Geoffrey Hinton 실험심리학자 컴퓨터과학자

https://www.ccs.neu.edu/home/rjw/

역전파 알고리즘으로 인해, 다층 퍼셉트론을 비롯한 깊은 신경망의 학습이 가능해졌으며

https://www.psychologicalscience.org/observer/david-rumelhart

David Rumelhart 수리심리학자

https://www.frontiersofknowledgeawards-fbbva.es/galardonados/geoffrey-hinton-2/

Geoffrey Hinton 실험심리학자 컴퓨터과학자

https://www.ccs.neu.edu/home/rjw/

역전파 알고리즘은 현재까지도 딥러닝에서 가장 널리 사용되는 학습 알 고리즘 중 하나입니다

https://www.psychologicalscience.org/observer/david-rumelhart

David Rumelhart 수리심리학자

https://www.frontiersofknowledgeawards-fbbva.es/galardonados/geoffrey-hinton-2/

Geoffrey Hinton 실험심리학자 컴퓨터과학자

https://www.ccs.neu.edu/home/rjw/

역전파 알고리즘의 필요성에 대해 느껴보기 위해,

다음과 같은 신경망을 예로 들어 말씀드려보겠습니다

다음과 같은 신경망을 예로 들어 말씀드려보겠습니다

데이터셋중에 MNIST라는 데이터셋이 있습니다

MNIST database. (2023, May 24). In *Wikipedia*. https://en.wikipedia.org/wiki/MNIST_database

이 데이터셋은 70000개의 숫자 손글씨 이미지로 이루어져 있고

한 이미지는 784개의 데이터포인트 (=28x28)로 구성되어 있습니다

이 손글씨 데이터를 학습하여 숫자를 인식하는 신경망 모델을 만든다고 할때

입력층의 뉴런은 784개,

그리고 은닉층은 하나 100개의 뉴런을 가정하고

그리고 출력층은 10개의 뉴런으로 이루어진 단순한 다층신경망을 구성

해본다고 합시다

연결가중치 개수:
 784x100 + 100x10 = 79,400

- 연결가중치 개수:
 784x100 + 100x10 = 79,400
- 편향 개수: 100+10 = 110

- 연결가중치 개수:
 784x100 + 100x10 = 79,400
- · 편향 개수: 100+10 = 110
- 한 개의 이미지 손실계산: 79,400번의 연산량 (가중치만 고려)

- 연결가중치 개수:
 784x100 + 100x10 = 79,400
- 편향 개수: 100+10 = 110
- 한 개의 이미지 손실계산: 79,400번의 연산량 (가중치만 고려)
- 한 개의 파라미터를 업데이트 하기 위해서는: 4,764,000,000(=79,400x60,000)

- 연결가중치 개수:
 784x100 + 100x10 = 79,400
- 편향 개수: 100+10 = 110
- 한 개의 이미지 손실계산: 79,400번의 연산량 (가중치만 고려)
- 한 개의 파라미터를 업데이트 하기 위해서는: 4,764,000,000(=79,400x60,000)
- 모든 파라미터들에 대해 각각 연산하여야 하므로 4,767,000,000 x 79,511(=79,400+110+1) = 378,790,404,000,000

무려 380조번의 연산을 그것도 한번 기울기 업데이트 하기 위해 해야합 니다

- 연결가중치 개수:
 784x100 + 100x10 = 79,400
- 편향 개수:

- 한 개의 이미지 손실계산: 79,400번의 연산량 (가중치만 고려)
- 한 개의 파라미터를 업데이트 하기 위해서는: 4,764,000,000(=79,400x60,000)
- 모든 파라미터들에 대해 각각 연산하여야 하므로 4,767,000,000 x 79,511(=79,400+110+1) = 378,790,404,000,000

CPU 처리속도가 초당 8억5천만번 이라 생각했을 때, (i7-8750H기준)

- 연결가중치 개수:
 784x100 + 100x10 = 79,400
- 편향 개수:

- 한 개의 이미지 손실계산: 79,400번의 연산량 (가중치만 고려)
- 한 개의 파라미터를 업데이트 하기 위해서는: 4,764,000,000(=79,400x60,000)
- 모든 파라미터들에 대해 각각 연산하여야 하므로 4,767,000,000 x 79,511(=79,400+110+1) = 378,790,404,000,000
- 378,790,404,000,000 / 850,000,000 = 445,635초 = 123시간

3층 신경망의 가중치 한번 바꾸는데 123시간이 걸립니다

- 연결가중치 개수:
 784x100 + 100x10 = 79,400
- 편향 개수:

- 한 개의 이미지 손실계산: 79,400번의 연산량 (가중치만 고려)
- 한 개의 파라미터를 업데이트 하기 위해서는: 4,764,000,000(=79,400x60,000)
- 모든 파라미터들에 대해 각각 연산하여야 하므로 4,767,000,000 x 79,511(=79,400+110+1) = 378,790,404,000,000
- 378,790,404,000,000 / 850,000,000 = 445,635초 = 123시간

최적의 가중치를 찿는데 수백 수천의 반복이 필요할텐데

- 연결가중치 개수:
 784x100 + 100x10 = 79,400
- 편향 개수:

- 한 개의 이미지 손실계산: 79,400번의 연산량 (가중치만 고려)
- 한 개의 파라미터를 업데이트 하기 위해서는: 4,764,000,000(=79,400x60,000)
- 모든 파라미터들에 대해 각각 연산하여야 하므로 4,767,000,000 x 79,511(=79,400+110+1) = 378,790,404,000,000
- 378,790,404,000,000 / 850,000,000 = 445,635초 = 123시간

이래서야 신경망으로 무엇을 할 수가 있었겠습니까?

- 연결가중치 개수:
 784x100 + 100x10 = 79,400
- 편향 개수:

- 한 개의 이미지 손실계산: 79,400번의 연산량 (가중치만 고려)
- 한 개의 파라미터를 업데이트 하기 위해서는: 4,764,000,000(=79,400x60,000)
- 모든 파라미터들에 대해 각각 연산하여야 하므로 4,767,000,000 x 79,511(=79,400+110+1) = 378,790,404,000,000
- 378,790,404,000,000 / 850,000,000 = 445,635초 = 123시간

결국 오늘 배울 역전파 알고리즘이 개발되지 않았다면,

- 연결가중치 개수:
 784x100 + 100x10 = 79,400
- 편향 개수:

- 한 개의 이미지 손실계산: 79,400번의 연산량 (가중치만 고려)
- 한 개의 파라미터를 업데이트 하기 위해서는: 4,764,000,000(=79,400x60,000)
- 모든 파라미터들에 대해 각각 연산하여야 하므로 4,767,000,000 x 79,511(=79,400+110+1) = 378,790,404,000,000
- 378,790,404,000,000 / 850,000,000 = 445,635초 = 123시간

오늘날 딥러닝과 인공지능의 시대는 결코 올 수 없었을 것입니다

- 연결가중치 개수:
 784x100 + 100x10 = 79,400
- 편향 개수: 100+10 = 110
- 한 개의 이미지 손실계산: 79,400번의 연산량 (가중치만 고려)
- 한 개의 파라미터를 업데이트 하기 위해서는: 4,764,000,000(=79,400x60,000)
- 모든 파라미터들에 대해 각각 연산하여야 하므로 4,767,000,000 x 79,511(=79,400+110+1) = 378,790,404,000,000
- 378,790,404,000,000 / 850,000,000 = 445,635초 = 123시간

Chapter 2 역전파backpropagation

자 그럼 본격적으로 역전파 알고리즘에 대해 알아보도록 하겠습니다

역전파 알고리즘의 핵심을 알기 위해 최대한 간단한 다층 신경망을 가정해 보겠습니다

이렇게 입력층에 두개의 뉴런

은닉층에 두개의 뉴런

출력층에 한 개의 뉴런이 있는

간단한 다층 신경망을 가정해봅시다

그리고 활성화 함수는 시그모이드 함수로 하고

손실함수는 MSE로 하도록 하겠습니다

그리고 처음에는 모든 가중치를 랜덤하게 배치하고

학습률을 0.1로 가정해본다면

이제 모든 준비가 완료되었습니다

역전파를 이용한 신경망 학습은 크게 3단계로 나누어 볼수가 있습니다

1단계: feedforward 순전파

2단계: 손실계산

3단계: backpropagation 역전파

1단계부터 3단계를 반복해서 최적의 파라미터를 찿아가는 과정을

1단계: feedforward 순전파

2단계: 손실계산

3단계: backpropagation 역전파

학습 (training)이라 부르기도 하고 최적화 (Optimization)과정 이라고 부르기도 합니다

1단계: feedforward 순전파

2단계: 손실계산

3단계: backpropagation 역전파

1단계: feedforward 순전파는 간단합니다

만약 입력값이 다음과 같이 주어진다면

연결가중치와의 곱을 합하여 은닉층 노드에 넣습니다

$$z_1 = x_1 w_1 + x_2 w_3 = 0.5 \times 0.7 + 0.3 \times 0.4 = 0.47$$

연결가중치와의 곱을 합하여 은닉층 노드에 넣습니다

$$z_1 = x_1 w_1 + x_2 w_3 = 0.5 \times 0.7 + 0.3 \times 0.4 = 0.47$$

$$z_2 = x_1 w_2 + x_2 w_4 = 0.5 \times 0.3 + 0.3 \times 0.6 = 0.33$$

그 다음은 은닉층 노드의 활성화 함수 차례입니다

$$z_1 = x_1 w_1 + x_2 w_3 = 0.5 \times 0.7 + 0.3 \times 0.4 = 0.47$$

$$h_1 = sigmoid(z_1) = 0.615$$

$$z_2 = x_1 w_2 + x_2 w_4 = 0.5 \times 0.3 + 0.3 \times 0.6 = 0.33$$

 $h_2 = sigmoid(z_2) = \mathbf{0.582}$

그 다음은 연결가중치와의 곱을 합하여 출력층 뉴런에 넣습니다

마지막으로 출력층의 시그모이드 함수로 최종 출력값을 구합니다

그러면 1단계 순전파 feedforwad는 완료되었습니다

그 다음은 2단계 손실계산 단계입니다

손실계산은 MSE를 쓰기로 했기 때문에

이 공식에 대입하면 되겠습니다

출력층 뉴런이 1개이기 때문에

n을 1로 바꾸면 공식이 아주 간단해집니다

그러면 출력값 0.645를 MSE에 대입하고

실제값을 1이라고 가정하면,

오차 C는 0.126이 나왔습니다

자 그럼 마지막 3단계, 역전파 단계입니다

$$C = 0.126$$

우선 역전파로 가중치 w5를 업데이트 해보도록 하겠습니다

우리는 다른 영상에서 경사하강법의 가중치 업데이트 공식에 대해 살펴 본 바가 있습니다

경사하강법을 이용한 가중치 학습법:

새 연결강도 = 현 연결강도 + 현 ╣ 🔍 오차 x 학습률

w5의 경우에는 다음과 같은 편미분값으로 바꿀수 있습니다

경사하강법을 이용한 가중치 학습법:

새 연결강도 = 현 연결강도 + 현 입력
$$\frac{\partial U}{\partial W}$$
 및 학습률

그러므로 w5를 업데이트 하기 위해서는 다음 미분값을 구해야 합니다

그런데 ∂C 을 바로 구할 수 없기 때문에 약간의 트릭을 사용합니다

 ∂w_5

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

이것은 체인를 (연쇄법칙)이라 불리는 법칙입니다

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

Chain rule

체인물은 역전파 알고리즘의 핵심입니다

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

우리가 어떤 두 변수의 미분값을 구하려 하나 그 관계를 모를 때,

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

각각 아는 미분값들로 연쇄적으로 확장시켜 나가면

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

각각 아는 미분값들로 연쇄적으로 확장시켜 나가면

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

어려운 문제도 부분들을 해결하면 전체를 해결할 수도 있습니다

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

왜냐하면 이렇게 각각의 변수들이 사라지면 결국 구하고자 하는 관계만 남기 때문입니다

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial \delta_1} \cdot \frac{\partial \delta_1}{\partial Z_3} \cdot \frac{\partial Z_3}{\partial w_5}$$

체인물의 수학적 증명은 상당히 어려울수 있지만,

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

체인물을 개념적으로 이해하는 것은 어렵지 않습니다

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

예를들어 다음과 같은 문제를 가정해봅시다

치타는 사자보다 2배 빠르고 사자는 곰보다 2배 빠르고 곰은 사람보다 1.5배 빠르다고 할때, 치타는 사람보다 몇배 빠르나?

그러면 치타는 사람보다 6배 빠르다고 생각할 수 있습니다

치타는 사자보다 2배 빠르고 사자는 곰보다 2배 빠르고 곰은 사람보다 1.5배 빠르다고 할때, 치타는 사람보다 몇배 빠르나? 직관적으로 2x2x1.5 = 6배

이것이 체인물의 개념입니다

$$\frac{d \lambda | F|}{d \lambda | F|} = \frac{d \lambda | F|}{d \lambda | A|} \cdot \frac{d \lambda | A|}{d A} \cdot \frac{d A|}{d \lambda | F|}$$

$$6 = 2 \times 2 \times 1.5$$

치타는 사자보다 2배 빠르고 사자는 곰보다 2배 빠르고 곰은 사람보다 1.5배 빠르다고 할때, 치타는 사람보다 몇배 빠르나? 직관적으로 2x2x1.5 = 6배

이러한 체인물의 특성을 사용하여 우리는 가중치 w5와 손실간의 변화량을 부분들로 나누어 계산 할 수가 있습니다

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

이것이 역전파 알고리즘의 핵심입니다

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

그래서 부분들을 각각 구해보도록 하겠습니다

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

우선 $\frac{\partial C}{\partial o_1}$ 을 구해보겠습니다

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

다음과 같은 손실함수는 우리의 경우에는

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

이렇게 표현할 수 있고

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

이 식을 01에 대해 미분하면 다음과 같이 됩니다

o_1 의 값은 0.645였기 때문에..

실제 값을 넣어 계산하면

 $\frac{\partial C}{\partial o_1}$ 은 -0.71이 됩니다

$$\frac{\partial C}{\partial w_5} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

$$O_{1} = sigmoid(z_{3}) = 0.645$$

$$C = \frac{1}{n} \sum_{i}^{n} (y_{i} - \hat{y}_{i})^{2}$$

$$C = (y - o_{1})^{2}$$

$$\frac{\partial C}{\partial o_{1}} = -2(y - o_{1})^{2-1}$$

$$\frac{\partial C}{\partial o_{1}} = -2(1 - 0.645)$$

$$= -0.71$$

이제 다음은 $\frac{\partial o_1}{\partial z_3}$ 을 구할 차례입니다

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

좀 전에 순전파 할때 다음과 같은 시그모이드 함수를 사용하였습니다

$$\frac{\partial C}{\partial w_5} = -0.71 \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

시그모이드 함수의 수학공식은 다음과 같습니다

$$S(x) = \frac{1}{1 + e^{-x}}$$

 $o_1 = sigmoid(z_3) = 0.645$

우리의 경우처럼 O와 Z 으로 표현해보면

$$S(x) = \frac{1}{1 + e^{-x}}$$

 $o_1 = sigmoid(z_3) = 0.645$

이렇게 변수를 바꾸어 쓸수 있습니다

$$S(x) = \frac{1}{1 + e^{-x}}$$

$$O(z) = \frac{1}{1 + e^{-z}}$$

$$o_1 = sigmoid(z_3) = 0.645$$

여기서 z에 관한 시그모이드의 미분함수를 구해보면

$$S(x) = \frac{1}{1 + e^{-x}}$$

$$O(z) = \frac{1}{1 + e^{-z}}$$

$$o_1 = sigmoid(z_3) = 0.645$$

여기서 z에 관한 시그모이드의 미분함수를 구해보면

$$S(x) = \frac{1}{1 + e^{-x}}$$

$$O(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial O}{\partial z} = \frac{\partial}{\partial z} \left(\frac{1}{1 + e^{-z}} \right)$$

$$o_1 = sigmoid(z_3) = 0.645$$

복잡한 미분과정은 과감히 생략..하겠습니다만

$$S(x) = \frac{1}{1 + e^{-x}}$$

$$O(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial O}{\partial z} = \frac{\partial}{\partial z} \left(\frac{1}{1 + e^{-z}} \right)$$

$$o_1 = sigmoid(z_3) = 0.645$$

시그모이드 미분함수는 다음과 같이 간단하게 표현할 수 있습니다

$$S(x) = \frac{1}{1 + e^{-x}}$$

$$O(z) = \frac{1}{1 + e^{-x}}$$

$$o_1 = sigmoid(z_3) = 0.645$$

$$\frac{\partial O}{\partial z} = \frac{\partial}{\partial z} \left(\frac{1}{1 + e^{-z}} \right) = O(z)(1 - O(z))$$

그러면 O_1 의 값이 0.645였기 때문에..

$$S(x) = \frac{1}{1 + e^{-x}}$$

$$o_1 = sigmoid(z_3) = 0.645$$

$$O(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial O}{\partial z} = \frac{\partial}{\partial z} \left(\frac{1}{1 + e^{-z}} \right) = O(z)(1 - O(z))$$

간단하게 z에 대한 시그모이드 미분값을 구할 수가 있습니다

$$S(x) = \frac{1}{1 + e^{-x}}$$

$$O(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial O}{\partial z} = \frac{\partial}{\partial z} \left(\frac{1}{1 + e^{-z}} \right) = O(z)(1 - O(z))$$

간단하게 z에 대한 시그모이드 미분값을 구할 수가 있습니다

$$S(x) = \frac{1}{1 + e^{-x}}$$

$$O(z) = \frac{1}{1 + e^{-z}}$$

$$\frac{\partial O}{\partial z} = \frac{\partial}{\partial z} \left(\frac{1}{1 + e^{-z}} \right) = 0.645(1 - 0.645) = 0.229$$

이제 그 미분값을 다시 역전파 공식에 대입하면

$$\frac{\partial C}{\partial w_5} = -0.71 \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

$$0.645(1 - 0.645) = 0.229$$

이제 그 미분값을 다시 역전파 공식에 대입하면

$$\frac{\partial C}{\partial w_5} = -0.71 \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_5}$$

$$0.645(1 - 0.645) = 0.229$$

두번째 항까지 구할 수 있습니다

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot \frac{\partial z_3}{\partial w_5}$$

이제 세번째 항인 $\frac{\partial z_3}{\partial w_5}$ 을 구해보도록 하겠습니다

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot \frac{\partial z_3}{\partial w_5}$$

이제 세번째 항 $\frac{\partial z_3}{\partial w_5}$ 은 간단합니다

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot \frac{\partial z_3}{\partial w_5}$$

 $z_3 = h_1 w_5 + h_2 w_6$ 이었기 때문에..

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot \frac{\partial z_3}{\partial w_5}$$

z_3 를 w_5 에 대하여 편미분하면 바로 h_1 이 됩니다

h_1 은 순전파에서 계산한 바 대로 0.615가 됩니다

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot \frac{\partial z_3}{\partial w_5}$$

$$\frac{\partial z_3}{\partial w_5} = h_1 y_5 + \frac{h_2 w_5}{h_2 w_5}$$
$$= h_1 = 0.615$$

이 값을 이제 넣기만 하면

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot \frac{\partial z_3}{\partial w_5}$$

$$\frac{\partial z_3}{\partial w_5} = h_1 y_5 + \frac{h_2 w_6}{h_2 w_5}$$
$$= h_1 = 0.615$$

이 값을 이제 넣기만 하면

$$z_3 = h_1 w_5 + h_2 w_6$$

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot 0.615$$

$$\frac{\partial Z_3}{\partial w_5} = h_1 w_5 + \frac{h_2 w_6}{h_2 w_5}$$
$$= h_1 = 0.615$$

$\frac{\partial C}{\partial w_5}$ 을 구할 수가 있습니다

$$\frac{\partial C}{\partial w_5} = -0.71 \cdot 0.229 \cdot 0.615 = -0.1$$

그러면 경사하강법의 가중치 업데이트 공식에 의해서..

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot 0.615 = -0.1$$

그러면 경사하강법의 가중치 업데이트 공식에 의해서..

경사하강법을 이용한 가중치 학습법:
$$\frac{\partial C}{\partial C}$$
 사 연결강도 = 현 연결강도 + 현 $\frac{\partial C}{\partial W_5}$ $\frac{\partial C}{\partial W_5}$ $\frac{\partial C}{\partial W_5}$ = $-0.71 \cdot 0.229 \cdot 0.615 = -0.1$

기울기를 이렇게 입력할 수 있고..

경사하강법을 이용한 가중치 학습법:
$$^{0.5}$$

 새 연결강도 = 현 연결강도 + 한 대 $^{0.5}$ $^$

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot 0.615 = -0.1$$

현 연결강도는 0.55이므로..

경사하강법을
$$w_1 = 0.7$$
 z_1 h_1 $w_5 = 0.55$ $w_2 = 0.3$ $w_4 = 0.4$ $w_5 = 0.45$ $w_6 = 0.45$

$$\frac{\partial C}{\partial w_5} = -0.71 \cdot 0.229 \cdot 0.615 = -0.1$$

현 연결강도에 0.55를 넣고

경사하강법을 이용한 가중치 학습법:
$$=0.55$$

 새 연결강도 = $=0.55$ $=0.55$ $=0.55$ $=0.45$ $=0.45$ $=0.45$ $=0.45$ $=0.45$

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot 0.615 = -0.1$$

학습률을 0.1로 하기로 했으니 그대로 넣도록 하겠습니다

학습률=0.1

새 연결강도 =
$$0.55 + 0.45$$
 $w_6 = 0.45$

$$\frac{\partial c}{\partial w_5} = -0.71 \cdot 0.229 \cdot 0.615 = -0.1$$

그러면 새 연결강도는 0.56가 됩니다

경사하강법을 이용한 가중치 학습법:
$$^{0.5}$$
 $^{0.5}$ $^{0.5$

$$\frac{\partial C}{\partial w_5} = -0.71 \cdot 0.229 \cdot 0.615 = -0.1$$

그러면 w_5 를 이렇게 업데이트 해줄 수 있습니다

그러면 w_5 를 이렇게 업데이트 해줄 수 있습니다

이제는 w_6 의 차례입니다

$$\frac{\partial C}{\partial w_6}$$

이제는 w_6 도 체인룰로 인해서 마찬가지입니다!

$$\frac{\partial C}{\partial w_6} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial w_6}$$

이제는 w_6 도 체인룰로 인해서 마찬가지입니다!

$$\frac{\partial C}{\partial w_6} = \begin{bmatrix} \frac{\partial C}{\partial o_1} & \frac{\partial o_1}{\partial z_3} \\ \frac{\partial C}{\partial w_6} & \frac{\partial O_1}{\partial w_6} \end{bmatrix} \cdot \frac{\partial Z_3}{\partial w_6}$$
 이 부분은 앞서 계산 한 값과 동일합니다

그래서 이렇게 값을 넣고..

$$\frac{\partial c}{\partial w_6} = -0.71 \cdot 0.229 \cdot \frac{\partial z_3}{\partial w_6}$$

세번째 항은 마찬가지로 h_2 가 되는 것을 알수 있습니다

세번째 항은 마찬가지로 h_2 가 되는 것을 알수 있습니다

 $= h_2 = 0.582$

그러면 $\frac{\partial C}{\partial w_6}$ 는 -0.095가 됩니다

$$\frac{\partial c}{\partial w_6} = -0.71 \cdot 0.229 \cdot 0.582 = -0.095$$

그러면 경사하강법의 가중치 업데이트 공식에 의해서..

경사하강법을 이용한 가중치 학습법:

w_6 은 0.4595로 업데이트 되었습니다!

경사하강법을 이용한 가중치 학습법:

자 그렇다면 2층은 가중치 업데이트가 완료되었습니다

이제 1층으로 내려가 봅시다

이제는 w_1 도 체인물로 인해서 마찬가지입니다!

이제는 w_1 도 체인룰로 인해서 마찬가지입니다!

이제는 w_1 는 다음과 같이 늘여 쓸수 있고..

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial h_1} \cdot \frac{\partial h_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_1}$$

왜냐하면, 이렇게 다른 값들이 체인룰로 사라지면 결국 같은것 입니다

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial h_1} \cdot \frac{\partial h_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_1}$$

이 부분은 이미 앞서 계산한 값과 동일합니다

$$\frac{\partial C}{\partial w_1} = \begin{bmatrix} \frac{\partial C}{\partial o_1} & \frac{\partial o_1}{\partial z_3} & \frac{\partial z_3}{\partial h_1} & \frac{\partial h_1}{\partial z_1} & \frac{\partial z_1}{\partial w_1} \end{bmatrix}$$

이 부분은 이미 앞서 계산한 값과 동일합니다

$$\frac{\partial C}{\partial w_1} = \begin{bmatrix} \frac{\partial C}{\partial o_1} & \frac{\partial o_1}{\partial z_3} \\ \frac{\partial C}{\partial o_1} & \frac{\partial C}{\partial z_3} \end{bmatrix} \cdot \frac{\partial Z_3}{\partial h_1} \cdot \frac{\partial h_1}{\partial z_1} \cdot \frac{\partial Z_1}{\partial w_1}$$

$$-0.71 \cdot 0.229$$

그리고 $\frac{\partial z_3}{\partial h_1}$ 이 부분은,

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial h_1} \cdot \frac{\partial h_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_1}$$

$$-0.71 \cdot 0.229$$

이미 우리가 본 바와 마찬가지로..

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \left[\frac{\partial z_3}{\partial h_1} \right] \cdot \frac{\partial h_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_1}$$

$$-0.71 \cdot 0.229$$

이미 우리가 본 바와 마찬가지로..

이미 계산된 값인 w_5 를 재사용하면 됩니다

그리고 $\frac{\partial h_1}{\partial z_1}$ 값은 시그모이드의 미분값이므로..

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial h_1} \begin{bmatrix} \frac{\partial h_1}{\partial z_1} \\ \frac{\partial z_1}{\partial w_1} \end{bmatrix} \cdot \frac{\partial z_1}{\partial w_1}$$

$$-0.71 \cdot 0.229 \quad 0.55$$

이미 순전파때 계산한 h_1 값을 재사용하여 계산하면 됩니다

마지막으로, $\frac{\partial z_1}{\partial w_1}$ 은 다음과 같이 계산할 수 있습니다

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial h_1} \cdot \frac{\partial h_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_1}$$

$$-0.71 \cdot 0.229 \quad 0.55 \quad 0.237$$

순전파때, Z_1 을 다음과 같이 계산할수 있었습니다

$$\frac{\partial C}{\partial w_1} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial h_1} \cdot \frac{\partial h_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_1}$$

$$-0.71 \cdot 0.229 \quad 0.55 \quad 0.237$$

그러므로 이와 같이 편미분하게 될 경우,

결국 마지막 항은 입력값 x_1 이 됩니다

그 값을 넣어 $\frac{\partial C}{\partial w_1}$ 을 계산하면..

$\frac{\partial C}{\partial w_1}$ 은 -0.0106이 됨을 확인할 수 있습니다!

$$\frac{\partial C}{\partial w_1} = -0.0106$$

그렇다면 남은 것은 가중치 업데이트..

$$\frac{\partial C}{\partial w_4}$$
 = -0.0106 새연결강도 = $0.7 + 0.0106$ 차 x 0.1

그렇다면 남은 것은 가중치 업데이트..

$$\frac{\partial C}{\partial w_1} = -0.0106$$
 새연결강도 = 0.7 + 0.0106 × 0.1 = 0.7010

W_1 은 0.7010가 되었습니다

 $* w_1 = 0.7010$

$$\frac{\partial C}{\partial w_1} = -0.0106$$
 새연결강도 = 0.7 + 0.0106차 x 0.1 = 0.7010

이와같은 방식으로 $\frac{\partial C}{\partial w_2}$, $\frac{\partial C}{\partial w_3}$, $\frac{\partial C}{\partial w_4}$ 도 마저 구할 수 있습니다

 $* W_1 = 0.7010$

$$\frac{\partial C}{\partial w_2} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial z_2} \cdot \frac{\partial h_2}{\partial w_2} = -0.009$$

$$-0.71 \cdot 0.229 \quad \underset{=0.45}{\overset{w_6}{\underset{=0.243}{}}} \stackrel{h_2(1-h_2)}{\underset{=0.5}{}} \stackrel{x_1}{\underset{=0.5}{}}$$

이와같은 방식으로 $\frac{\partial C}{\partial w_2}$, $\frac{\partial C}{\partial w_3}$, $\frac{\partial C}{\partial w_4}$ 도 마저 구할 수 있습니다

 $* W_1 = 0.7010$

$$\frac{\partial C}{\partial w_3} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial h_1} \cdot \frac{\partial h_1}{\partial z_1} \cdot \frac{\partial z_1}{\partial w_3} = -0.011$$

$$-0.71 \cdot 0.229 \quad \underset{=0.55}{\overset{w_5}{=0.55}} \quad \underset{=0.237}{\overset{h_1(1-h_1)}{=0.5}} \quad \underset{=0.5}{\overset{x_2}{=0.5}}$$

이와같은 방식으로 $\frac{\partial C}{\partial w_2}$, $\frac{\partial C}{\partial w_3}$, $\frac{\partial C}{\partial w_4}$ 도 마저 구할 수 있습니다

 $* W_1 = 0.7010$

$$\frac{\partial C}{\partial w_4} = \frac{\partial C}{\partial o_1} \cdot \frac{\partial o_1}{\partial z_3} \cdot \frac{\partial z_3}{\partial h_2} \cdot \frac{\partial h_2}{\partial z_2} \cdot \frac{\partial h_2}{\partial w_4} = -0.005$$

$$\begin{array}{c} -0.71 \cdot 0.229 & w_6 & h_2(1 - h_2) & x_1 \\ = 0.45 & = 0.243 & = 0.3 \end{array}$$

그에 따라 각각의 가중치를 업데이트 할 수 있습니다

$$* W_1 = 0.7010$$

$$* W_2 = 0.3009$$

$$* W_3 = 0.4011$$

$$* W_4 = 0.6005$$

$$\frac{\partial C}{\partial w_2} = -0.009 \qquad \frac{\partial C}{\partial w_3} = -0.011 \qquad \frac{\partial C}{\partial w_4} = -0.005$$

자 그럼 역전파 알고리즘을 통해서

신경망의 오차가 줄어들었는지 한번 확인해보도록 하겠습니다

다시 같은 입력을 넣어보겠습니다

연결가중치와의 곱을 합하여 은닉층 노드에 넣습니다

$$z_1 = x_1 w_1 + x_2 w_3 = 0.5 \times 0.7010 + 0.3 \times 0.4011 = 0.4708$$

연결가중치와의 곱을 합하여 은닉층 노드에 넣습니다

$$z_1 = x_1 w_1 + x_2 w_3 = 0.5 \times 0.7010 + 0.3 \times 0.4011 = 0.4708$$

$$z_2 = x_1 w_2 + x_2 w_4 = 0.5 \times 0.3009 + 0.3 \times 0.6005 = 0.3306$$

그 다음은 은닉층 노드의 활성화 함수 차례입니다

$$z_2 = x_1 w_2 + x_2 w_4 = 0.5 \times 0.3009 + 0.3 \times 0.6005 = 0.3306$$

 $h_2 = sigmoid(z_2) = 0.5819$

그 다음은 연결가중치와의 곱을 합하여 출력층 뉴런에 넣습니다

마지막으로 출력층의 시그모이드 함수로 최종 출력값을 구합니다

그러면 1단계 순전파 feedforwad는 완료되었습니다

그리고 마지막 단계인 손실함수까지 고려하면..

그러면 출력값 0.645를 MSE에 대입하고

실제값을 1이라고 가정하면,

오차 C는 0.1245가 나왔습니다

이전 오차인 0.126에 비해서 오차가 줄어들었음을 확인할 수 있습니다

이후로는 똑같은 방식으로 순전파 → 손실계산 → 역전파를 반복하여

오차가 최소가 되는 지점에 도달하면 학습을 멈추면 되겠습니다

여기까지가 오늘 영상인 역전파 알고리즘에 관한 소개입니다

역전파 알고리즘 핵심이 편미분과 체인률인 만큼

비록 많은 수학식과 숫자들이 나와서 복잡하게 느껴지실 수도 있지만

역전파 알고리즘이 크게 세가지 스텝이 있고

가중치 변화는 체인물을 통해서 이루어진다는 것을 기억하시면 좋을 것 같습니다

다음 시간에는 오늘까지 배운 것들을 바탕으로,

입력뉴런 2개, 은닉뉴런 2개, 출력뉴런 1개인

다층신경망 구현을 실습해보는 시간을 갖도록 하겠습니다

이론적으로 배운 사실들을 실제 코드로 짜보면서

경사하강법과 역전파 알고리즘에 대한 이해가 깊어질 수 있는

시간이 되리라 기대합니다

오늘 긴 시간 시청해 주셔서..

감사합니다!

이 영상은 여러분의 관심과 사랑으로 제작됩니다 사용하실때는 출처 '신박AI'를 밝혀주세요

Copyright © 2024 by 신박AI

All rights reserved

본 문서(PDF)에 포함된 모든 내용과 자료는 저작권법에 의해 보호받고 있으며, 신박AI에 의해 제작되었습니다.

본 자료는 오직 개인적 학습 목적과 교육 기관 내에서의 교육용으로만 무료로 제공됩니다.

이를 위해, 사용자는 자료 내용의 출처를 명확히 밝히고,

원본 내용을 변경하지 않는 조건 하에 본 자료를 사용할 수 있습니다.

상업적 사용, 수정, 재배포, 또는 이 자료를 기반으로 한 2차적 저작물 생성은 엄격히 금지됩니다.

또한, 본 자료를 다른 유튜브 채널이나 어떠한 온라인 플랫폼에서도 무단으로 사용하는 것은 허용되지 않습니다.

본 자료의 어떠한 부분도 상업적 목적으로 사용하거나 다른 매체에 재배포하기 위해서는 신박AI의 명시적인 서면 동의가 필요합니다. 위의 조건들을 위반할 경우, 저작권법에 따른 법적 조치가 취해질 수 있음을 알려드립니다.

본 고지 사항에 동의하지 않는 경우, 본 문서의 사용을 즉시 중단해 주시기 바랍니다.

