ГЛАВА 3 ТЕХНИКО-ЭКОНОМИЧЕСКИЕ ПОКАЗАТЕЛИ СТРОИТЕЛЬСТВА СКВАЖИНЫ №9 ЛЕТЕШИНСКОГО НЕФТЯНОГО МЕСТОРОЖДЕНИЯ

Основным документом для составления сметной документации являются элементные сметные нормы скважин на нефть и газ. Сметными нормами учтены современные методы ведения строительства нефтяных скважин, достигнутый уровень техники, технологии и организации работ, новые прогрессивные материалы.

Сметная стоимость строительства скважины определена по расценкам сборников EPEP 85 (СНиП 1У-5-82) и в порядке, установленном Инструкцией "О составе, порядке разработки, согласования и утверждения проектно-сметной документации на строительство скважин на нефть и газ" (ВСН 39-96 Миннефтепром РБ).

Технический проект на строительство скважины и основные показатели работы бурового предприятия

Основными производственными сооружениями буровых предприятий являются скважины. Цикл строительства скважины включает следующие операции:

- 1) подготовительные работы к строительству скважины устройство подъездного пути, планировка площадки под скважину, сооружение трубопроводов (водо-, глино-, паро- и нефтепровода), силовой, световой, телефонной линий и т. п.;
- 2) строительство или передвижение буровой вышки и при вышечных сооружениях;
- 3) монтаж бурового и силового оборудования;
- 4) подготовительные работы к бурению скважины;
- 5) бурение скважины (проходка и крепление);
- 6) испытание скважины на приток нефти и газа;
- 7) демонтаж бурового и силового оборудования, вышки и при вышечных сооружениях.

Цикл сооружения скважины начинается с момента строительства вышки (рытья котлованов под фундаменты буровой) и завершается в эксплуатационном бурении испытанием скважин на промышленный приток нефти, а в разведочном — опробованием всех намеченных объектов.

Начало бурения скважины – момент первого спуска бурильного инструмента, а окончание его – момент окончания выброса инструмента на мостки после промывки скважины и испытания колонны на герметичность.

Учет затрат времени на буровые работы ведется по каждому из этапов строительства скважин и характеризуется балансом времени [15].

Баланс времени бурения показывает, насколько эффективно используется время, затраченное на все виды работ и простои.

Этот показатель дает возможность судить об организации процесса буровых работ в буровых бригадах и по конторе в целом,

Все время, затраченное на бурение и крепление скважины, принято подразделять по следующим видам работ.

Производительное время:

- 1) непосредственная работа долота на забое (бурение) с уютом времени на промывку и расширение ствола;
- 2) комплекс работ, включающих спуск, наращивание и подьем бурильной колонны и смену долота;
- 3) разобщение пластов (крепление скважин), т. е. спуск обсадных труб и их цементирование;
- 4) вспомогательные работы замер направления ствола скважины (азимутальный и зенитный углы), электро- и радиометрические замеры, сборка и разборка бурильных свечей, смена талевого каната, подготовка к эксплуатации, освоение скважины и.т.п.

Непроизводительное время:

- 1) простои;
- 2) ремонтные работы;
- 3) ликвидация аварий;
- 4) ликвидация осложнений.

Технический проект на строительство скважины. Строительство нефтяных и газовых скважин осуществляется по индивидуальным или групповым техническим проектам и сметам к ним, а бурение — по геолого-техническому наряду.

Технический проект — это технико-экономический документ, в котором охарактеризованы природные факторы и экономические условия района производства работ, обоснованы технические решения, определена стоимость строительства скважины (в смете к проекту) и установлены основные технико-экономические показатели.

К техническому проекту прилагаются геолого-технический наряд и профиль наклонно-натравленной скважины.

Геолого-технический наряд — основной документ буровой бригады. В вводной части его указываются: номер скважины, цель бурения, проектный горизонт, проектная глубина, азимут и отклонение (в случае бурения наклонной скважины), время (по норме) и скорость бурения, основные данные по оборудованию и инструменту.

Текст наряда состоит из двух частей: геологической и технической.

В геологической части указывается: стратиграфия и литологический разрез скважины, крепость пород, интервалы проходки с отбором керна и шлама, глубина замера кривизны, производства каротажа, конструкция скважины, а также интервалы глубин, на которых ожидаются осложнения (нефтегазо- и водопроявления, обвалы, поглощение раствора и т. д.).

В технической части в соответствии с проходимыми породами по интервалам указываются: данные по режиму бурения (скорость вращения ротора, нагрузка на долото, производительность насоса); типы и размеры долот; характеристики глинистого раствора с выделением интервалов химической обработки и утяжеления; характеристика цементного раствора; оснастка талей,

количество свечей, поднимаемых на различных скоростях лебедки, а также данные о расширении ствола.

Сводный сметный расчет стоимости строительства скважины №9 Летешинского нефтяного месторождения составлен в сметных нормах (таблица 3.1).

Таблица 3.1 – Сводный сметный расчет стоимости строительства скважины №9 Летешин-

ского нефтяного месторождения

№ п/п	Наименование работ и затрат	Стоимость, руб.
1	Подготовительные работы к строительству скважины	134546,4
2	Строительство и разборка вышки, привышечных сооружений, монтаж и демонтаж бурового оборудования	351481,6
3	Бурение и крепление скважины	3595709,9
4	Испытание скважины на продуктивность	147202,2
5	Промыслово-геофизические работы	220840
6	Дополнительные затраты при производстве работ в зимнее время	58431,05
7	Накладные расходы	-
8	Плановые накопления	-
9	Прочие работы и затраты	491967,8
	ИТОГО по главам 1-9	5000357,8
10	Авторский надзор 0,2% по итогам глав 1-9	9814,9
11	Проектные и изыскательские работы	178870,5
	ИТОГО по главам 1-11	5189043,32
12	Резерв средств на непредвиденные работы и затраты 5%	254811,2
	ВСЕГО по сводному сметному расчету	5443854,54

1. Общие затраты на строительство скважины по формуле:

$$C_{cm} = \sum C_i = 5443854,54 \text{ py6}.$$
 (3.1)

где C_i — стоимость работ и затрат по главам сводного сметного расчета с учетом переводного коэффициента, руб.

2. Сметная стоимость одного метра проходки:

$$C_{M.npoxod.} = \frac{C_{CM}}{L}, py6/1M.$$
 (3.2)

где L – проектная глубина скважины, м

$$C_{M.npoxod.} = \frac{C_{cM}}{L} = \frac{5443854,54}{3265} = 1667,33 py6/1m.$$

3. Сумма годовой амортизации учитывая, что по скважине амортизация будет начисляться линейным методом по формуле:

$$A_{coo} = \frac{C_{cm}}{15}, py6/coo, \tag{3.3}$$

$$A_{20\partial} = \frac{5443854,54}{15} = 365923,64 \, py6 / 200.$$

4. Определяем продолжительность бурения в станко-месяцах:

$$T_{cm-mec} = \frac{T_{\kappa.u\delta yp}}{30}$$
, ct.-mec. (3.4)

где: Т_{к.и бур} – продолжительность бурения и крепления, сут.

$$T_{cm-mec} = \frac{80.4}{30} = 2.68$$
 ct.-mec.

5. Определяем коммерческую скорость бурения

$$V_{\kappa} = \frac{L}{T_{cm-mec}}, \text{M/ct.-mec.}$$
 (3.5)

$$V_{\kappa} = \frac{3265}{2.68} = 1218,3 \,\text{M/ct.-mec.}$$

В результате бурения разведочной скважины №9 Летешинского нефтяного месторождения нефти планируется получить ожидаемый прирост запасов нефти категории C_1+C_2 по структуре – 49 тыс. т.

Основные технико-экономические показатели скважины №9 месторождения представлены в табл.3.2

Таблица 3.2 – Технико-экономические показатели строительства скважины №9 Летешинского нефтяного месторождения

ского нефтяного месторождения		
Наименование	Значение	
Номер района строительства скважины	29a	
Номера скважин, строящихся по данному про	9	
Месторождение (площадь)	Летешинское	
Расположение (суша, море)	суша	
Цель бурения	разведка	
Назначение скважины	разведочная	
Проектный горизонт	ланско-старооскольский	
Проектная глубина, м: по вертикали	3179	
по стволу	3265	
Число объектов испытания: в открытом ствол	4	
в колонне	1	
Вид скважины (вертикальн., н/направленная і	наклонно-направленная	
Тип профиля	3-х интервальный	
Азимут бурения (дирекционный угол), град.	(B)-82°31'(ДУ-92°49')	
Максимальный зенитный угол, град.	15,47	
Максимальная интенсивность изменения зени	1	
град/10м	1	
Глубина установки внутрискважинного обору	2500	
Глубина по вертикали кровли продуктивного	(B) -3015	
Проектное отклонение (от устья), м	(B) -592	
Допустимое отклонение ствола скважины ,м"		(B) -30
Категория скважины (по глубине)	II	
Металлоемкость конструкции, кг/м	84,21	
Способ бурения	роторно-турбинный	
Вид привода	дизельный	
Вид монтажа	повторный (агрегатный)	
Вид демонтажа	повторный (агрегатный)	
Тип буровой установки	Уралмаш 3Д-86	
Тип вышки	ВБ-53х320М	
Продолжительность цикла строительства скв	196,0	
в том числе:	, ,	,
строительно-монтажные работы по буровой установке		89,6
в том числе:	монтаж	67,5
	демонтаж	22,1
строительно-монтажные работы по установке		1,4
подготовительные работы к бурению	4,0	
бурение и крепление	80,4	
испытание в открытом стволе (ИП), сут.	8,8	
освоение в эксплуатационной колонне с АП-8	11,8	
Проектная скорость бурения, м/ст.мес.	1218,3	
Продолжительность бурения в станко-месяца	2,68	
Сводный сметный расчет, руб	5443854,54	
Стоимость 1 м проходки, руб		1667,33
Ожидаемый прирост запасов нефти категории	,	
структуре, тыс. т.	49	
		1