数学实验第三次实验报告

计 76 张翔 2017011568

2020年3月21日

1 实验目的

- 1) 学会用 MATLAB 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;
- 2) 通过实例学习用线性代数方程组解决简化的实际问题。

2 计算题

2.1 Ch5-P1 误差

2.1.1 理论计算

题目要求计算形如 $\mathbf{A}\mathbf{x}=\mathbf{b}$ 形式的线性方程组的解,由于 \mathbf{b} 为矩阵 \mathbf{A} 的行和,显然有 $x=\begin{bmatrix}1&1&\cdots&1\end{bmatrix}^{\mathrm{T}}$ 。

2.1.2 主要算法

Vandermonde 矩阵可以使用 vand 命令生成,并使用 fliplr 将其左右翻转成题目中要求的形式;而 Hilbert 矩阵可以使用 hilb 命令生成。构造完矩阵后可以计算行和,并计算最终方程的解。矩阵条件数可使用 cond 命令计算。

而扰动 A 或者 b 造成的误差上限可以由下面的式子来估算

$$\frac{\frac{||\delta \mathbf{x}||}{||\mathbf{x}||} \le Cond(\mathbf{A}) \cdot \frac{||\delta \mathbf{b}||}{||\mathbf{b}||}}{\frac{||\delta \mathbf{x}||}{||\mathbf{x}||}} \le \frac{Cond(\mathbf{A})}{1 - Cond(\mathbf{A}) \cdot \frac{||\delta \mathbf{A}||}{||\mathbf{A}||}} \cdot \frac{||\delta \mathbf{A}||}{||\mathbf{A}||}$$

2.1.3 Matlab 程序

```
% MathExp 5, P1
n_list = [5, 7, 9, 11];
eps_list = [1e-10, 1e-8, 1e-6];

res_len = length(n_list) * length(eps_list);
original_sol_list = cell(1,length(n_list));
cond_number_list = cell(1,length(n_list));
error_list = cell(1,res_len);
error_est = cell(1,res_len);
perturb_sol_list = cell(1,res_len);
```

```
11
  for i = 1:length(n_list)
12
      n = n_list(i);
14
      x = 1:0.1:1+0.1*(n-1);
15
      %% construct vandermonde and hilbert matrix
16
      A1 = fliplr(vander(x));
17
      A2 = hilb(n);
18
      %% Calc row sum
       b1 = sum(A1, 2);
21
      b2 = sum(A2, 2);
22
23
       fprintf("%d-order matrix\n", n);
      %% obtain original solution
      x1 = A1 \setminus b1;
      x2 = A2 \setminus b2;
       original_sol_list(i) = {[x1; x2]};
      %% calc condition number
       a1_cond = cond(A1);
32
       a2_cond = cond(A2);
33
       cond_number_list(i) = {[a1_cond; a2_cond]};
34
35
      %% pertubate
36
       for j = 1:length(eps_list)
           eps = eps_list(j);
           idx = (i - 1) * length(eps_list) + j;
           A1_pert = A1;
40
           A1_pert(n, n) = A1_pert(n, n) + eps;
41
           A2_pert = A2;
           A2_pert(n, n) = A2_pert(n, n) + eps;
           b1_pert = b1;
           b1_pert(n) = b1_pert(n) + eps;
45
           b2_pert = b2;
46
           b2_pert(n) = b2_pert(n) + eps;
47
           %% estimate err by cond number
           a1_relative_perturb = norm(A1_pert - A1) / norm(A1);
           a2_relative_perturb = norm(A2_pert - A2) / norm(A2);
           a1_perturb_err_est = a1_cond * a1_relative_perturb / ...
52
               (1 - a1_cond * a1_relative_perturb);
           a2_perturb_err_est = a2_cond * a2_relative_perturb / ...
54
               (1 - a2_cond * a2_relative_perturb);
```

```
56
           b1_relative_perturb = norm(b1_pert - b1) / norm(b1);
           b2_relative_perturb = norm(b2_pert - b2) / norm(b2);
           b1_perturb_err_est = a1_cond * b1_relative_perturb;
           b2_perturb_err_est = a2_cond * b2_relative_perturb;
60
           error_est(idx) = {[a1_perturb_err_est; a2_perturb_err_est;...
               b1_perturb_err_est; b2_perturb_err_est]};
62
           real_sol = ones([n 1]);
           a1_p_sol = A1_pert \setminus b1;
           a2_p_sol = A2_pert \setminus b2;
66
           b1_p_sol = A1 \setminus b1_pert;
67
           b2_p_sol = A2 \setminus b2_pert;
68
           perturb_sol_list(idx) = {[a1_p_sol; a2_p_sol; b1_p_sol; b2_p_sol
              ]};
           a1_p_err = norm(a1_p_sol - real_sol) / norm(real_sol);
72
           a2_p_err = norm(a2_p_sol - real_sol) / norm(real_sol);
73
           b1_p_err = norm(b1_p_sol - real_sol) / norm(real_sol);
           b2_p_err = norm(b2_p_sol - real_sol) / norm(real_sol);
76
           error_list(idx) = {[a1_p_err; a2_p_err; b1_p_err; b2_p_err]};
77
       end
78
  end
```

2.1.4 计算结果及分析

使用 Matlab 自带左乘计算解时, $n \le 9$ 时得到的结果为元素均为 1.0000 的向量,说明程序是正确的。n=11 时结果如下

表 1: n = 11 时方程的解

$\mathbf{A_1}\mathbf{x} = \mathbf{b_1}$	1.0000	1.0000	1.0001	0.9999	1.0002	0.9999	1.0001	1.0000	1.0000	1.0000	1.0000
$\mathbf{A_2x} = \mathbf{b_2}$	1.0000	1.0000	1.0000	1.0002	0.9988	1.0042	0.9909	1.0125	0.9896	1.0048	0.9990

可以看到数值解与理论解相比,出现了比较明显的偏差,且 $A_2x = b_2$ 的偏差更大。 计算得到不同 n 下矩阵的条件数如下:

表 2: 不同 n 值下, 两个矩阵的条件数

		4 1 -11 1 / 1 4 1		
\overline{n}	5	7	9	11
$Cond(\mathbf{A_1})$	3.5740×10^{5}	8.7385×10^{7}	2.2739×10^{10}	6.5185×10^{12}
$Cond(\mathbf{A_2})$	4.7661×10^{5}	4.7537×10^{8}	4.9315×10^{11}	5.2202×10^{14}

可以看出,当 n 增加时,Hilbert 矩阵的条件数相比 Vandermonde 矩阵增长更快,当 n=11 时已 经相差近 100 倍。

表 3: 扰动 $\epsilon = 10^{-10}$ 时的解

						7074		. 4114					
	n = 5	扰动 A	1.0000	1.0000	1.0000	1.0000	1.0000						
	n-5	扰动 b	1.0000	1.0000	1.0000	1.0000	1.0000						
	n = 7	扰动 A	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000				
$A_1 = b_1$	n-1	扰动 b	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000				
$A_1 - b_1$	n = 9	扰动 A	1.0000	1.0000	1.0000	1.0001	0.9999	1.0000	1.0000	1.0000	1.0000		
	n = 9	扰动 b	1.0000	1.0000	1.0000	0.9999	1.0001	1.0000	1.0000	1.0000	1.0000		
	n = 11	扰动 A	1.0000	1.0000	0.9999	1.0003	0.9997	1.0003	0.9998	1.0001	1.0000	1.0000	1.0000
	n - 11	扰动 b	1.0000	0.9999	1.0003	0.9995	1.0006	0.9995	1.0003	0.9999	1.0000	1.0000	1.0000
	~ _ F	扰动 A	1.0000	1.0000	1.0000	1.0000	1.0000						
	n=5	扰动 b	1.0000	1.0000	1.0000	1.0000	1.0000						
	n = 7	扰动 A	1.0000	1.0001	0.9995	1.0020	0.9962	1.0033	0.9989				
$\mathbf{A_2x} = \mathbf{b_2}$	n-1	扰动 b	1.0000	0.9999	1.0005	0.9980	1.0038	0.9967	1.0011				
$\mathbf{A_2}\mathbf{x} = \mathbf{b_2}$	n = 9	扰动 A	1.0000	1.0012	0.9785	1.1577	0.4085	2.2304	-0.4355	1.8789	0.7803		
	n = 9	扰动 b	1.0000	0.9984	1.0276	0.7978	1.7581	-0.5768	2.8397	-0.1263	1.2816		
	n = 11	扰动 A	1.0000	1.0006	0.9842	1.1832	-0.1219	5.0390	-7.9759	13.4567	-9.5106	5.9310	0.0138
	n = 11	扰动 b	1.0004	0.9575	2.1484	-12.2720	82.2967	-291.6847	651.4417	-901.6909	762.6726	-356.3390	72.4698

表 4: 扰动 $\epsilon = 10^{-8}$ 时的解

						- JI	3.74	1 H	* / * /				
	n = 5	扰动 A	1.0000	1.0000	1.0000	1.0000	1.0000						
	n = 3	扰动 b	1.0000	1.0000	1.0000	1.0000	1.0000						
	n = 7	扰动 A	0.9999	1.0002	0.9995	1.0005	0.9997	1.0001	1.0000				
1 A - b	n-1	扰动 b	1.0001	0.9998	1.0005	0.9995	1.0003	0.9999	1.0000				
$A_1 = b_1$	n = 9	扰动 A	0.9998	1.0015	0.9961	1.0060	0.9944	1.0034	0.9987	1.0003	1.0000		
	n = 9	扰动 b	1.0002	0.9985	1.0039	0.9940	1.0056	0.9966	1.0013	0.9997	1.0000		
	n = 11	扰动 A	0.9991	1.0066	0.9787	1.0404	0.9499	1.0424	0.9752	1.0099	0.9974	1.0004	1.0000
	n = 11	扰动 b	1.0009	0.9933	1.0214	0.9593	1.0505	0.9573	1.0250	0.9900	1.0026	0.9996	1.0000
	n = 5	扰动 A	1.0000	1.0001	0.9994	1.0009	0.9996						
	n = 3	扰动 b	1.0000	0.9999	1.0006	0.9991	1.0004						
	n - 7	扰动 A	0.9999	1.0045	0.9546	1.1816	0.6594	1.2997	0.9001				
$\mathbf{A_2x} = \mathbf{b_2}$	n = 7	扰动 b	1.0001	0.9950	1.0505	0.7982	1.3784	0.6670	1.1110				
$\mathbf{A_2}\mathbf{x} = \mathbf{b_2}$	n = 9	扰动 A	0.9999	1.0054	0.9055	1.6933	-1.6000	6.4079	-5.3093	4.8628	0.0343		
	n = 9	扰动 b	1.0022	0.8425	3.7567	-19.2162	76.8106	-156.6860	184.9670	-111.6329	29.1582		
	11	扰动 A	1.0000	1.0006	0.9839	1.1857	-0.1374	5.0949	-8.1001	13.6291	-9.6560	5.9992	0.0001
	n = 11	扰动 b	1.0387	-3.2531	115.8461	-1326.2215	8130.7850	-29267.8817	65046.0690	-90269.3222	76169.2854	-35733.3781	7148.0712

表 5: 扰动 $\epsilon = 10^{-6}$ 时的解

							1717-791 C -	TO H1	ロリ四十				
	n = 5	扰动 A	0.9993	1.0025	0.9967	1.0019	0.9996						
	n = 5	扰动 b	1.0007	0.9975	1.0033	0.9981	1.0004						
	n = 7	扰动 A	0.9950	1.0245	0.9503	1.0536	0.9676	1.0104	0.9986				
$A_1 = b_1$	n = 1	扰动 b	1.0050	0.9755	1.0497	0.9464	1.0324	0.9896	1.0014				
$A_1 = b_1$	n = 9	扰动 A	0.9758	1.1481	0.6062	1.5958	0.4389	1.3367	0.8743	1.0267	0.9975		
	n = 9	扰动 b	1.0243	0.8516	1.3948	0.4027	1.5624	0.6625	1.1260	0.9732	1.0025		
	n = 11	扰动 A	0.9079	1.6621	-1.1314	5.0464	-4.0176	5.2467	-1.4845	1.9922	0.7411	1.0398	0.9973
	n = 11	扰动 b	1.0924	0.3360	3.1373	-3.0577	6.0316	-3.2585	3.4914	0.0050	1.2596	0.9600	1.0028
	n = 5	扰动 A	0.9994	1.0121	0.9457	1.0845	0.9578						
	n = 5	扰动 b	1.0006	0.9874	1.0567	0.9118	1.0441						
	n = 7	扰动 A	0.9990	1.0417	0.5830	2.6679	-2.1273	3.7520	0.0827				
A 1	n = i	扰动 b	1.0120	0.4955	6.0450	-19.1802	38.8378	-32.2973	12.0991				
$A_2x = b_2$	n = 9	扰动 A	0.9999	1.0056	0.9021	1.7177	-1.6914	6.5980	-5.5310	4.9986	0.0004		
	n = 9	扰动 b	1.2188	-14.7528	276.6748	-2020.6156	7582.0584	-15767.6016	18397.7021	-11262.2871	2816.8218		
	n = 11	扰动 A	1.0000	1.0006	0.9839	1.1857	-0.1376	5.0955	-8.1014	13.6308	-9.6575	5.9999	0.0000
	n = 11	扰动 b	4.8659	-424.3116	11485.6151	-132721.1736	812979.6095	-2926887.5706	6504508.7718	-9027032.4101	7616830.5350	-3573437.2706	714708.2093

上述解的实际误差与用条件数估计的误差如下(注意扰动 A 时用条件数估计误差时,要求 $||\mathbf{A}^{-1}|| \cdot ||\delta \mathbf{A}|| \le 1$,部分情况下该条件不满足,则使用 $Cond(\mathbf{A}) \cdot \frac{||\delta \mathbf{A}||}{||\mathbf{A}||}$ 来估计上界,这部分在表中用加粗字体表示):

表 6: 扰动后解的误差

→ - 4日		40-4-75	$\epsilon =$	10^{-10}	$\epsilon =$	10^{-8}	$\epsilon =$	10^{-6}		
方程	n	扰动项	实际误差	估计误差	实际误差	估计误差	实际误差	估计误差		
	5	A	2.0748E-07	4.2477E-06	2.0749E-05	4.2495E-04	2.0740E-03	4.4361E-02		
	5	b	2.0749E-07	2.0003E-06	2.0749E-05	2.0003E-04	2.0749E-03	2.0003E-02		
	7	A	3.1950E-06	2.9153E-04	3.1931E-04	3.0020E-02	3.1887E-02	2.9145E+00		
1 . v - b	1	b	3.1918E-06	1.3691E-04	3.1931E-04	1.3690E-02	3.1932E-02	1.3690E+00		
$\mathbf{A_1}\mathbf{x} = \mathbf{b_1}$	9	0	0	A	3.3382E-05	1.3353E-02	3.3038E-03	1.3177E+00	3.2952E-01	1.3177E + 02
		b	3.2978E-05	6.8070E-03	3.3030E-03	6.8079E-01	3.3034E-01	6.8079E+01		
	11	A	1.7457E-04	7.8800E-01	2.5527E-02	4.4052E + 01	2.5548E+00	4.4052E + 03		
		b	3.2208E-04	2.4875E-01	2.5701E-02	2.4864E+01	2.5620E+00	2.4864E+03		
	5	A	5.1182E-06	3.0415E-05	5.1160E-04	3.0507E-03	4.9020E-02	4.3708E-01		
	J	b	5.1182E-06	1.5187E-05	5.1182E-04	1.5187E-03	5.1182E-02	1.5187E-01		
	7	A	2.1009E-03	2.9465E-02	1.8931E-01	2.8621E+00	1.7383E+00	2.8621E + 02		
$\mathbf{A_2}\mathbf{x} = \mathbf{b_2}$	'	b	2.1032E-03	1.2389E-02	2.1032E-01	1.2389E+00	2.1032E+01	1.2389E+02		
$ A_2A - B_2 $	9	A	7.2805E-01	2.8574E + 01	3.1999E+00	2.8574E + 03	3.3124E+00	2.8574E + 05		
	Э	b	9.3304E-01	1.1116E+01	9.3304E+01	1.1116E+03	9.3304E+03	1.1116E+05		
	11	A	5.9475E+00	2.9412E+04	6.0298E+00	2.9412E+06	6.0306E+00	2.9412E+08		
	11	b	4.3099E+02	1.0505E+04	4.3100E+04	1.0505E+06	4.3100E+06	1.0505E+08		

从上述表格可以看出,表中所有有效的误差中,实际误差不超过估计误差,因此使用条件数能够正确地估计误差的上界。

当 n 相同时,Hilbert 矩阵的病态程度要高于 Vandermonde 矩阵(从条件数及解的误差均能看出)。 当 n=5,7 时,二矩阵病态程度有限,可以看出实际误差与扰动 ϵ 有比较好的线性关系,这与误差的理论上界关系式是吻合的。

n=9,11 时,二矩阵均呈现较强的病态性,且 Hilbert 矩阵病态性要远强于 Vandermonde 矩阵,使得其解几乎不可用。此时,扰动 ${\bf b}$ 相比扰动 ${\bf A}$,对解的影响更大。

2.1.5 结论

- 1. 使用条件数可以方便地刻画矩阵的病态性, 当条件数过大时, 矩阵病态性强, 微小的扰动对解会带来较大影响;
- 2. Hilbert 矩阵与 Vandermonde 矩阵在 n 较大时均有较强的病态性,且相同维度的情况下,前者病态性更强;
- 3. 使用条件数估计出的解在扰动下的误差是实际误差的上界,它可能比实际误差大得多,但在不同 扰动下,它的数量级变化与实际误差是相同的,从而可以反映实际误差的变化情况。

2.2 Ch5-P3 迭代法

2.2.1 主要算法

题目要求使用 Jacobi 和 Gauss-Seidel 方法迭代求解线性方程组 $\mathbf{A}\mathbf{x} = \mathbf{b}$ 。这两种算法的主要思路是分解系数矩阵为 $\mathbf{A} = \mathbf{D} - \mathbf{L} - \mathbf{U}$,分别为 \mathbf{A} 的对角、下三角、上三角 (不含对角) 元素。上述两种迭代方法可以写成

$$\mathbf{x}^{(k+1)} = \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U})\mathbf{x}^{(k)} + \mathbf{D}^{-1}\mathbf{b}$$
$$\mathbf{x}^{(k+1)} = \mathbf{D}^{-1}(\mathbf{L}\mathbf{x}^{(k+1)} + \mathbf{U}\mathbf{x}^{(k)}) + \mathbf{D}^{-1}\mathbf{b}$$

使用迭代法的通用形式 $\mathbf{x}^{(k+1)} = \mathbf{B}\mathbf{x}^{(k)} + \mathbf{f}$, 上述方法中有

$$\mathbf{B}_J = \mathbf{D}^{-1}(\mathbf{L} + \mathbf{U}), \ \mathbf{f}_J = \mathbf{D}^{-1}\mathbf{b}$$
 $\mathbf{B}_{G-S} = (\mathbf{D} - \mathbf{L})^{-1}\mathbf{U}, \ \mathbf{f}_{G-S} = (\mathbf{D} - \mathbf{L})^{-1}\mathbf{b}$

注意到题给矩阵 A 是严格对角占优的,因此在上述两种迭代方法中一定收敛。

2.2.2 Matlab 程序

如下,我实现了一个迭代法的通用框架,通过 get_iter_params 函数可以方便地增加更多的迭代方法。迭代函数可以设置迭代次数上限,当超出上限而误差没有缩小到指定范围内时,说明算法不收敛。

```
%% construct matrix
  n = 20;
  A = sparse(1:n, 1:n, 3, n, n);
  A1 = sparse(1:n-1, 2:n, -1/2, n, n);
  A2 = sparse(1:n-2, 3:n, -1/4, n, n);
  A = A + A1 + A2 + A1' + A2';
  %% initial vals
  b = ones(n, 1);
  |\% b = [1: n];
  x0 = zeros(n, 1);
  \% x0 = ones(n, 1);
  % x0 = [1: n]';
  err = 1e-7;
  [x_1, k_1] = iter_solve(A, b, x0, err, 'jacobi', 1000);
  [x_2, k_2] = iter_solve(A, b, x0, err, 'gauss_seidel', 1000);
  x_3 = A \setminus b;
18
19
  %% common iterative method
  function [x, k] = iter_solve(A, b, x0, err, method, max_step)
      x = x0; k = 0;
       [B, f] = get_iter_params(A, b, method);
23
      while 1
24
           k = k + 1;
25
           x_tmp = B * x + f;
           cur_err = norm(x_tmp - x);
           x = x_tp;
           if cur_err < err</pre>
               break:
30
           elseif k >= max_step
31
               error('Failed to converge, final err: %f', cur_err)
           end
       end
34
35 end
```

```
36
   %% get parameter for iterative method
   function [B, f] = get_iter_params(A, b, method)
       D = diag(diag(A));
39
       L = -tril(A, -1);
40
       U = -triu(A, 1);
41
       switch method
42
            case 'jacobi'
43
                 B = D \setminus (L + U);
                 f = D \setminus b;
            case 'gauss_seidel'
46
                 B = (D - L) \setminus U;
47
                 f = (D - L) \setminus b;
48
            otherwise
49
                 error('Unsupported iter method: %s', method)
        end
51
   end
52
```

2.2.3 计算结果及分析

不同情况下的迭代次数 程序中使用 Matlab 的左除运算来验证迭代法程序的正确性,容易得到,在给定误差下,使用迭代法和 Matlab 自带的运算得到的结果是相同的。

分别取 **b** 为全 0 向量、全 1 向量、顺序向量 $(1, 2, \cdots, 20)^T$,取初值 **x**₀ 为全 0 向量、全 1 向量、顺序向量 $(1, 2, \cdots, 20)^T$,在迭代误差设定为 10^{-7} 的情况下,可以得到如下结果

迭代次数	$\mathbf{x_0} = \text{zeros}(20, 1)$	$\mathbf{x_0} = \mathrm{ones}(20, 1)$	$\mathbf{x_0} = [1:20]$	$\mathbf{x_0} = 1000 \times \text{ones}(20, 1)$
$\mathbf{b} = zeros(20, 1)$	1	25	28	35
$\mathbf{b} = \text{ones}(20, 1)$	25	24	28	35
$\mathbf{b} = [1:20]$	28	28	27	35

表 7: Jacobi 方法的迭代次数

表 8: Gauss-Seidel 方法的迭代次数

迭代次数	$\mathbf{x_0} = \text{zeros}(20, 1)$	$\mathbf{x_0} = \text{ones}(20, 1)$	$\mathbf{x_0} = [1:20]$	$\mathbf{x_0} = 1000 \times \text{ones}(20, 1)$
$\mathbf{b} = zeros(20, 1)$	1	16	19	22
$\mathbf{b} = \text{ones}(20, 1)$	16	16	19	22
$\mathbf{b} = [1:20]$	19	18	18	22

收敛过程如下 $(\mathbf{x_0} = \mathbf{b} = \text{ones}(20, 1)$ 的情况, 其他情况类似, 故略去)

很显然,最后的结果是收敛的,这符合理论基础,即对角占优矩阵使用 Jacobi 迭代或 Gauss-Seidel 迭代应均能收敛。并且,从上面的图表可以看出,其他条件相同时,Gauss-Seidel 迭代的收敛速度要快于 Jacobi 迭代;给定初始值距离最终解越近,迭代次数越少。

迭代次数与对角占优的关系 固定迭代误差上限为 10^{-5} ,右端向量 **b** = ones(20, 1) 与初始值 $\mathbf{x_0}$ = zeros(20, 1), 改变 **A** 矩阵对角线元素,使其为原来的 n 倍,使用 Jacobi 迭代算法,可以得到下列结果

图 2: Jacobi 算法下, 迭代次数相对于 n 的变化图线

初始时,矩阵 A 使用 Jacobi 方法需要 17 次迭代,随着 n 的增大,迭代次数单调减少,在 $n \ge 40$

时,稳定在4次。由此可以看出,当系数矩阵 **A** 的对角元优势越大时,使用迭代法求解的速度越快,迭代次数越少。当对角元增大到一定程度后,迭代次数趋于一个较小的稳定值。

2.2.4 结论

- 1. 对角占优矩阵使用 Jacobi 与 Gauss-Seidel 迭代法均能收敛;
- 2. 相同条件下, Jacobi 方法收敛比 Gauss-Seidel 方法慢;
- 3. 给定初始值越接近最终解, 迭代次数越少;
- 4. 对角占优矩阵的对角元优势越强,使用迭代法求解速度越快,且迭代次数趋于一个较小的稳定值。

3 应用题

3.1 Ch5-P9 种群

3.1.1 问题分析与模型建立

根据题意,来年年龄为k的种群数量 \tilde{x}_k 与当年的种群数量有如下关系

$$\begin{cases} \widetilde{x}_1 = \sum_{k=1}^n b_k x_k \\ \widetilde{x}_{k+1} = s_k x_k - h_k, \ k = 1, 2, \dots, n-1 \end{cases}$$

其中 h_k 代表收获量, s_k 为一年的自然生存率, b_k 为出生率。记 $\mathbf{x}=(x_1,x_2,\cdots,x_n)^\mathrm{T},\mathbf{h}=(0,h_1,\cdots,h_{n-1})^\mathrm{T}$,可以列出如下线性方程组

$$Sx - h = x$$

其中系数矩阵 S 为

$$\mathbf{S} = \begin{bmatrix} b_1 & b_2 & \cdots & \cdots & b_n \\ s_1 & 0 & \cdots & \cdots & 0 \\ 0 & s_2 & & \vdots \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & 0 & s_{n-1} & 0 \end{bmatrix}$$

值得注意的是,题目在 n=5 时给出了 h_5 ,我认为这是不妥当的,因为加入 h_5 约束后上述方程组可能成为矛盾方程,此时只能求它的最小二乘解。

3.1.2 算法设计

上述方程可以化为

$$(S - I)x = h = Ax$$

求解时,可以使用 cond 计算系数 $\bf A$ 的条件数,判断问题的病态性。解 $\bf x$ 可以使用 Matlab 自带的左除直接求得。

3.1.3 Matlab 程序

3.1.4 计算结果与分析

矩阵 A 的条件数为 87.19, 说明问题具有一定的病态性。

当 $h_1 \sim h_5$ 为 500, 400, 200, 100, 100 时, 计算可得

```
\mathbf{x} = (8481.0, 2892.4, 1335.4, 601.3, 140.5)^{\mathrm{T}} \approx (8481, 2892, 1335, 601, 141)^{\mathrm{T}}
```

误差 $||\mathbf{A}\mathbf{x} - \mathbf{h}|| = 1.4 \times 10^{-12}$,注意到 $x_5 > h_5$,说明如果将 h_5 约束加入原方程组确实会产生矛盾,但满足 $x_5 \ge h_5$ 说明最年长种群的数量是满足收获需求的,具有实际意义。

当 $h_1 \sim h_5$ 均为 500 时,直接求解可得

```
\mathbf{x} = (10981.0, 3892.4, 1835.4, 601.3, -259.4)^{\mathrm{T}}
```

误差 $||\mathbf{A}\mathbf{x} - \mathbf{h}|| = 1.1 \times 10^{-12}$,说明解在数学上是合法的。但此时 $x_5 < 0$,不符合实际意义。因此 在题给条件下,是不可能达到 $h_1 \sim h_5$ 均为 500 这一目标的。

由于该种群为人工饲养,可以通过人工控制的方法改变生存率(提高生活环境质量)、出生率(人工培育),从而达到最终的收获量目标。例如将自然生存率改为 $\mathbf{s} = (0.4, 0.5, 0.8, 0.8)^{\mathrm{T}}$,可以得到如下解

```
\mathbf{x} = (14687.5, 5375.0, 2187.5, 1250.0, 500.0)^{\mathrm{T}} \approx (14688, 5375, 2188, 1250, 500)^{\mathrm{T}}
```

误差 $||\mathbf{A}\mathbf{x} - \mathbf{h}|| = 5.4 \times 10^{-13}$ 。此时 $x_5 \ge h_5$,满足最年长种群的收获需求。

从上面也可以看出,对于系数矩阵或右端项的微小扰动,对结果有较大影响,也验证了通过条件数 判断的问题的病态性。

3.1.5 结论

题给的种群繁殖模型对出生量、生存率等参数较为敏感,如果要达到题中的高收获量的目标,可以通过提升生存率来实现。

4 收获与建议

通过本次实验,我对线性方程组的求解方法有了更深刻的理解,并通过 Matlab 编程加以实践,巩固了所学知识。一个小建议是修改本章第 9 题种群数量的表述(如是否应该对第 5 年收获量进行约束),增加模型的合理性。