Gráficas y Combinatoria Tarea V

Rubén Pérez Palacios Profesor: Dr. Octavio Arizmendi Echegaray

3 de noviembre de 2020

Problemas

1. Encuentra el número de particiones por pares con exactamente un cruce.

Haremos una recurrencia fijandos en el par de parejas que generan el cruce. Entonces sean p_1, p_2, p_3, p_4 tales que $p_1 \sim p_3$ y $p_2 \sim p_4$ entonces estos cuatro puntos nos dividen nuestro conjunto en 4 intervalos ahora eston no deben contener ningún cruce, digamos que la cantidad de puntos entre p_1 y p_2 son $2r_1$, ..., la cantidad de puntos entre p_4 y p_1 son $2r_4$, ahora entonces la cantidad de particiones tales que solo hay un cruce que es el de las parejas (p_1, p_3) y (p_2, p_4) son

$$C_{r_1}C_{r_2}C_{r_3}C_{r_4}$$
.

Ahora si recorremos sobre el tamaño de los bloques es decir sobr las r_i entonces obtenemos que la cantidad de particiones con un solo cruce de 2n puntos es

$$\sum_{2(r_1+r_2+r_3+r_4)=2n-4}\frac{n}{4}C_{r_1}C_{r_2}C_{r_3}C_{r_4}.$$

Ahora veamos las siguientes cuentas

$$\begin{split} \sum_{r_1+r_2+r_3+r_4=n-2} C_{r_1} C_{r_2} C_{r_3} C_{r_4} &= \sum_{k=0}^{n-2} \left(\sum_{r_1+r_2=k} \left(\sum_{r_3+r_4=n-2-k} C_{r_1} C_{r_2} C_{r_3} C_{r_4} \right) \right) \\ &= \sum_{k=0}^{n-2} \left(\sum_{r_1+r_2=k} C_{r_1} C_{r_2} C_{n-1-k} \right) \\ &= \sum_{k=0}^{n-2} C_{n-1-k} \left(\sum_{r_1+r_2=k} C_{r_1} C_{r_2} \right) \\ &= \sum_{k=0}^{n-2} C_{n-1-k} C_{k+1} \\ &= C_{n+1} - 2 C_0 C_n \end{split}$$

$$= C_{n+1} - 2C_n$$

por lo tanto concluimos que la cantidad de particiones por pares con exactamente un curce son

$$\frac{n\left(C_{n+1}-2C_n\right)}{4}.$$

- 2. Función $\varphi(n)$ de Euler.
 - a) Pruebe que si n es multiplicativa entonces también lo es la función

$$g(n) = \sum_{d|n} f(d).$$

Demostración. Sean $n, m \in \mathbb{N}$ tales que (n, m) = 1 luego si d|nm entonces existen $d = d_1d_2$ tales que $d_1|n$ y $d_2|m$ y por lo tanto $(d_1, d_2) = 1$. Por lo tanto

$$g(nm) = \sum_{d|nm} f(d)$$

$$= \sum_{d_1|n,d_2|m} f(d_1d_2)$$

$$= \sum_{d_1|n,d_2|m} f(d_1)f(d_2)$$

$$= \left(\sum_{d_1|n} f(d_1)\right) \left(\sum_{d_2|m} f(d_2)\right)$$

$$= g(n)g(m).$$

b) Muestre que

$$\sum_{d|n} \varphi(d) = n.$$

Demostración. Definamos el conjunto

$$S_d := \{ m \in \mathbb{Z} : 1 \le m \le n, (m, n) = d \}$$

Notese que si $d_1 \neq d_2$ entonces $S_{d_1} y S_{d_2}$ son disjuntos, ya que el máximo común divisor es único.

Luego si $m \in \mathbb{Z}$ por definición $\frac{m}{d} \leq \frac{n}{d}$, y por definición de máximo común divisor $\frac{m}{d}$ y $\frac{n}{d}$ son primos relativos ya que de no ser lo entonces d no sería el máximo común divisor. Luego por definición de φ tenemos

$$|S_d| = \varphi\left(\frac{n}{d}\right)$$

Por definición de S_d , para todo $1 \le m \le n$ se cumple que

$$\exists d: m \in S_d$$

Entonces

$$1, ..., n = \bigcup_{d|n} S_d$$

Por lo tanto

$$n = |\bigcup_{d|n} S_d| = \sum_{d|n} \varphi\left(\frac{n}{d}\right)$$

Ahora como $d \mid n$, entonces $\frac{n}{d} \mid n$, es decir el conjunto $\{\frac{n}{d} : n \mid n\}$ son todos los divisores de n. Por lo que concluimos que

$$n = \sum_{d|n} \varphi(d)$$

c) Muestre que $\varphi(n)$ es multiplicativa.

Demostración. Por inversión de Moebius y por el inciso anterior tenemos que

$$\varphi(n) = \sum_{d|n} \mu\left(\frac{n}{d}\right) d,$$

es decir $\varphi(n)$ es la combolución de Dirichlet de la funciones μ e identidad. Luego evaluando en nm donde (n,m)=1 obtenemos

$$\varphi(nm) = \sum d|nm\mu\left(\frac{nm}{d}\right)d,$$

ahora como (n,m)=1entonces para todo d|nmse cumple que $d=d_1d_2$ donde $d_1|n$ y $d_2|m,$ por lo tanto

$$\begin{split} \varphi(nm) &= \sum_{d_1|n,d_2|m} \mu\left(\frac{nm}{d_1d_2}\right) d_1d_2 \\ &= \sum_{d_1|n,d_2|m} \mu\left(\frac{n}{d_1}\right) d_1\mu\left(\frac{nm}{d_1d_2}\right) d_2 \\ &= \left(\sum_{d_1|n} \mu\left(\frac{n}{d_1}\right) d_1\right) \left(\sum_{d_2|m} \mu\left(\frac{nm}{d_1d_2}\right) d_2\right) \\ &= \varphi(n)\varphi(m). \end{split}$$

d) Encuentre la serie de Dirichlet de la función $\varphi(n)$ en término de la función zeta de Riemann ζ .

3

- 3. Encuentre la serie de Dirichlet de la siguientes funciones:
 - a) f(n) = n. Veamos lo siguiente

$$\zeta(s-1) = \sum_{n=1}^{\infty} \frac{1}{n^{s-1}} = \sum_{n=1}^{\infty} \frac{n}{n^s}.$$

b) $f(n) = n^{\alpha}$. Veamos lo siguiente

$$\zeta(s-\alpha) = \sum_{n=1}^{\infty} \frac{1}{n^{s-\alpha}} = \sum_{n=1}^{\infty} \frac{n^{\alpha}}{n^s}.$$

c) $f(n) = \log(n)$. Veamos lo siguiente

$$-\zeta'(s) = -\sum_{n=1}^{\infty} \frac{d}{ds} \frac{1}{n^s} = \sum_{n=1}^{\infty} \frac{\log(n)}{n^s}.$$

d) $f(n) = \sum_{d|n} d^q$. Fijemonos en la combolución de Dirichlet de las series de Dirichlet de $g(n) = n^q$ y h(n) = 1, entonces tenemos que f(n) = (g * h)(n),

por lo que concluimos que

$$\zeta(s)\zeta(s-q) = \sum_{n=1}^{\infty} \frac{\sum_{d|n} d^q}{n^s}.$$