Presenters: Samuel Pawel, Alexandra Strassmann Supervisor: Will Macnair

Types of Learning

Supervised

Unsupervised

Semi-supervised

Reinforcement

Self-supervised

Types of Learning

Supervised

Unsupervised

Semi-supervised

Reinforcement

Self-supervised

Supervised Learning

Training data

Test data

Supervised Learning

Goal:

Builds a function that can learn the mapping between the input and the output.

Pro:

Classes defined, simple to understand

Con:

Human-annotated labels, no complex tasks, cannot discover new patterns in dataset, wrong classification ...

→ the most common case

Types of Learning

Supervised

Unsupervised

Semi-supervised

Reinforcement

Self-supervised

Unsupervised Learning

Goal: Detects new patterns in a dataset with no pre-existing labels and solves the problem of high-dimensionality.

Pro: No human-annotated labels, new patterns

Con: Interpretation, changing patterns

Methods: Cluster Analysis, Principal Component Analysis (PCA), Autoencoders, ...

Unsupervised Learning

Cluster Analysis

https://towardsdatascience.com/unsupervised-machine-learning-clustering-analysis-d40f2b34ae7e

Principal Component Analysis

https://medium.com/machine-learning-bites/machine-learning-unsupervised-learning-principal-component-analysis-8f7a d311027e

→ Finding new patterns or grouping

→ Reduce dimensionality

Unsupervised Learning

 \rightarrow Reduce dimensionality

Unsupervised Learning: Dimensionality reduction

http://www.turingfinance.com/artificial-intelligence-and-statistic s-principal-component-analysis-and-self-organizing-maps/

Problematic:

- Too many features
- Too many dimensions
 - → overfitting

Curse of dimensionality

Solution:

Feature selection, feature extraction, ...

Types of Learning

Supervised

Unsupervised

Semi-supervised

Reinforcement

Self-supervised

Goal: Improves supervised learning by using a small amount of labeled data and a large amount of unlabeled data.

→ Gain valuable information from the unlabeled data

https://towardsdatascience.com/simple-explanation-of-semi-supervised-lear ning-and-pseudo-labeling-c2218e8c769b

Pro: Only few human-annotated labels, can improve model

accuracy

Con: Difficult to build model

Methods: Generative models, Low density separation, Graph-based

methods, ...

Unsupervised Semisupervised Supervised

Types of Learning

Supervised

Unsupervised

Semi-supervised

Reinforcement

Self-supervised

Reinforcement Learning

Reinforcement Learning

Goal: Find model that maximizes reward

Pro: Maximize performance

Con: Not efficient, expensive

Methods: Markov Decision Processes, Monte Carlo methods, ...

OK for games

NOT for real world

How do humans learn so quickly?

Types of Learning

Supervised

Unsupervised

Semi-supervised

Reinforcement

Self-supervised

Pretext tasks

Pre-train the model with prediction tasks

- Automatically created pseudo labels used as training target
- Pretrained weights

Knowledge transfer

Take the parameter of the pretrained model as starting weights in a downstream task

Downstream tasks

Fine tuning of the model (any supervised problem)

Goal: Pre-trains the model using

automatically generated

pseudo-labels from the input data.

Pro: No labels needed for pretext task,

complex tasks

Con: Difficult to find relevant pretext task

Unsupervised Self-supervised Supervised

Jing, L et al. 2019

Self-supervised Learning: Pretext tasks

General	Autoencoder	
Text	Future/masked word prediction	
Images	Rotation Colorization Inpainting Superresolution Context prediction	
Videos	Future/masked frame prediction	
Audio	Restoration	

Self-supervised Learning: Natural Language Processing (NLP)

INPUT This is [...] with masked [...] we want to [...].

ENCODER

Code

DECODER

OUTPUT This is a text with masked words and we want to predict them.

E.g. **BERT** is a technique for NLP pre-training developed by Google.

Self-supervised Learning: Rotation

Self-supervised Learning: Colorization

Self-supervised Learning: Relative position

Self-supervised Learning: Inpainting

Pathak et al. 2016

Self-supervised Learning: Result of context encoder

Figure 1: Qualitative illustration of the task. Given an image with a missing region (a), a human artist has no trouble inpainting it (b). Automatic inpainting using our *context encoder* trained with <u>L2</u> reconstruction loss is shown in (c), and using both <u>L2</u> and adversarial losses in (d).

Pathak et al. 2016

Self-supervised Learning: Result of context encoder

Figure 6: Semantic Inpainting using different methods on *held-out* images. Context Encoder with just L2 are well aligned, but not sharp. Using adversarial loss, results are sharp but not coherent. Joint loss alleviate the weaknesses of each of them. The last two columns are the results if we plug-in the best nearest neighbor (NN) patch in the masked region.

Pathak et al. 2016

Overview

Learning type	Human-annotated labels?	Goal
Unsupervised	No	Detects new patterns and reduces dimensionality
Supervised	Yes	Mapping between the input and the output
Semi-supervised	Small amount	Improves supervised learning by using small amount of labeled and large amount of unlabeled data
Reinforcement learning	-	Find model that maximizes reward
Self-supervised	Small amount for downstream task	Pre-trains a model using automatically generated pseudo labels from the input data, transfers pre-trained weights to a downstream task.

R Code

Discussion

Where can we apply semi-supervised or self-supervised learning?

Discussion

Where can we apply semi-supervised or self-supervised learning?

What pretext task for what purpose?

Useful links for Self-supervised Learning

Overview of existing papers

https://github.com/jason718/awesome-self-supervised-learning

Yann LeCun

https://www.youtube.com/watch?v=SaJL4SLfrcY

Other

https://www.fast.ai/2020/01/13/self_supervised/

