

Bayesian P-Value for Entire Distribution

- Instead of using a summary statistic, one can compute "the probability of predicting a lower or equal value for each observed value"
- If the model is well calibrated, it captures all observations equally well, the probability should be the same for all observed values
 - The output should be a uniform distribution

Bayesian P-Value: Example

- Study the height of people in a population
- Fit the Bayesian model
 - Assume a normal distribution with unknown mean and variance
 - Collect observed data of heights (e.g., 100 people)
 - Specify a prior distribution for mean and variance
 - Combine observed data with prior to obtain a posterior distribution of mean and variance of population height
- Compute Bayesian p-value
 - From posterior distribution:
 - Generate new simulated datasets
 - For each dataset, compute mean height
 - Use test statistic T, as the difference between the mean of the replicated dataset and the observed mean
 - Compute Bayesian p-value: the proportion of replicated datasets where the test statistic is >= test statistic for observed data
 - A value close to 0.5 means the observed data is covered by the model
 - A value close to 0 or 1 indicates a poor fit

Bayesian vs Frequentist P-Value

- Frequentist p-value is the probability of getting observed data as or more extreme, assuming the null hypothesis is true
- Bayesian p-value is the probability that simulated data from the model (i.e., posterior predictive check) is as or more extreme than the observed data
- P-value measures inconsistency between observed data and:
 - A null hypothesis (frequentist approach)
 - Model (Bayesian approach)
- Does p-value incorporate uncertainty?
 - (Frequentist) No, it uses single point estimates
 - (Bayesian) Yes, it incorporates uncertainty of parameter estimates

- The Balance Between Simplicity and Accuracy
- Measures of Predictive Accuracy
- Regularizing priors
- Regularizing Priors
- Mixture Models

Occam's Razor

- "If you have equivalent explanations for the same phenomenon, you should choose the simpler one"
 - Quality of explanation ≈ accuracy
 - Simpler \approx number of model parameters
- Complexity vs accuracy
 - Increasing model complexity (e.g., number of model parameters) is accompanied by:
 - Increasing in-sample accuracy
 - Not necessarily out-of-sample accuracy
 - The complex model:
 - Did not "learn" from the data but just "memorize" it
 - Does a bad job generalizing to predict potentially observable data
- Ideally balance complexity and accuracy in a quantitative way

Overfitting and Underfitting

- A model is overfit when it has many parameters, fitting the training data well but unseen data poorly
 - Overfitting in terms of signal/noise:
 - Each dataset has "signal" and "noise"
 - We want the model to learn the signal
 - A model overfits when it learns the noise, obscuring the signal
- A model is underfit when it has few parameters, fitting the dataset poorly
 - An underfit model doesn't learn the signal well
 - E.g., a constant fits a dataset, only learning the mean

Bias-Variance Trade-Off

- A model has high bias when:
 - It has low ability to accommodate the data
 - I.e., underfitting
 - E.g., a polynomial of degree 0
- A model has high variance when:
 - It has high capacity and it is sensitive to details in the data, capturing noise
 - I.e., overfitting
 - E.g., a polynomial of degree 100
- Trade-off between bias and variance
 - Goal: balance simplicity and goodness of fit
 - Aim for a model that "fits the data right," avoiding overfitting or underfitting

- The Balance Between Simplicity and Accuracy
- Measures of Predictive Accuracy
- Regularizing priors
- Regularizing Priors
- Mixture Models

Accuracy Measures

- In-sample accuracy is measured on the data used to fit a model
- Out-of-sample accuracy is measured on data not used to fit a model
 - Aka "predictive accuracy"
- In-sample accuracy > out-of-sample accuracy
- There is a trade-off between how much data is used for training and for evaluating true accuracy

Information Criteria: Intuition

- **Information criteria** compare models in terms of fitting the data taking into account their complexity through a penalization term
 - ullet Out-of-sample accuracy pprox in-sample accuracy + a term penalizing model complexity
 - It's the VC equation

$$E_{out}[h] = E_{in}[h] + \Omega(\mathcal{H})$$

Model Parameters for Bayesian vs Non-Bayesian Set-Up

Maximum Likelihood Estimation (MLE)

- MLE finds the parameter values that make the observed data most probable (given a model)
 - Denoted by $\hat{\theta}_{MLE}$
 - It's a point not a distribution
- Procedure:
 - Given the data $x_1, x_2, ..., x_n$
 - ullet Assume it comes from a distribution with an unknown parameter heta
 - \bullet Pick the value of θ that makes the data most likely given a likelihood function

$$\begin{cases} L(\theta) = \log \Pr(x_1, x_2, ..., x_n | \theta) \\ \hat{\theta}_{MLE} = \operatorname{argmax}_{\theta} L(\theta) \end{cases}$$

- In Bayesian terms, MLE is equivalent to the mode of θ using flat priors
 - Aka MAP (maximum a posteriori)

Akaike Information Criterion (AIC)

AIC is defined as

$$AIC = -2\sum \mathsf{log}\,\mathsf{Pr}(y_i|\hat{ heta}_{\mathit{MLE}}) + 2\mathsf{num}_{\mathit{params}}$$

where:

- $\hat{\theta}_{MLE}$ is the maximum likelihood estimation of θ
- num_{params} is the number of parameters

• Interpretation:

- The first term (log likelihood) measures how well the model fits the data
- The second term penalizes complex models

Cons:

- Discard information about uncertainty of posterior estimation
- MLE assumes flat priors (vs informative and weakly informative priors)
- Number of parameters is not always a good measure of complexity
 - E.g., in hierarchical models the effective number of params is smaller

Bayesian Information Criteria

- Bayesian Information Criteria (BIC)
 - Like AIC, it assumes flat priors and uses MLE
 - It is not Bayesian
- Widely Applicable Information Criteria (WAIC)
 - Bayesian version of AIC
 - It has two terms:
 - One that measures how good the fit is
 - One that penalizes complex models
 - WAIC uses the posterior distribution to estimate both terms

Cross-Validation

- Cross-validation (CV)
 - Procedure
 - Partition data into K portions of equal size and similar statistics
 - Use K-1 partitions to train the model and test on remaining partition
 - Repeat for all K folds
 - Average the results
 - Pros
 - Simple and effective solution to use all data to compare models
- Leave-one-out cross-validation (LOO-CV)
 - Procedure:
 - The model is fit for all data, excluding one observation
 - The model's predictive accuracy is tested on the left out observation
 - Repeat the process for all observations
 - Average the results
 - Cons
 - It is very computationally expensive since one needs to refit the model
- How to adapt cross-validation to a Bayesian approach?
 - CV and LOO require multiple model fits and fitting a Bayesian model is very expensive
 - Yes! There is a way to approximate using a single fit to the data

ELPD with LOO-CV

- W Math alert
- We want to compute *ELPD_{LOO-CV}* where:
 - "Expected Log-Pointwise predictive Density" (ELPD)
 - It should be ELPPD and not ELPD!
 - "Leave-One-Out Cross-Validation" (LOO-CV) is used to compute it
- The definition of ELPD with LOO-CV is:

$$ELPD_{LOO-CV} = \sum_{i=1}^{n} \log \int p(y_i|\theta) p(\theta|y_{-i}) d\theta$$

where:

- Fit model using all the data without y_{-i}
- Predict with the model the unseen *y_i*
- Integrate on all the posterior values
- Repeat for all the points
- How to compute it efficiently?
 - Use "Pareto smooth importance sampling leave-one-out cross-validation"

Pointwise Predictive Density (PPD)

The pointwise predictive density for a given data point y_i is defined as
the posterior predictive probability, given the rest of the data

$$PPD \triangleq \Pr(y_i|data - \{i\}) = \int p(y_i|\theta)p(\theta|y_{-i})d\theta$$

- y_i: observed data point
- $p(y_i|\theta)$: likelihood given model parameters θ
- $p(\theta|y_{-i})$: posterior distribution of the model parameters given rest of data
- Integral: averages over posterior distribution, capturing parameter uncertainty
- Interpretation
 - PPD measures model's predictive ability for y_i when trained on data excluding y_i
 - Similar to cross-validation, using Bayesian parameter averaging over the model parameters

Expected Log Pointwise Predictive Density

The ELPD is the average over unseen points of the log PPD

$$ELPD \triangleq \sum_{i=1}^{n} \log \int p(y_i|\theta_{-i}) p(\theta_{-i}|y_{-i}) d\theta$$

Interpretation

- It can be used to determine which model generalizes better to new data
- ELPD measures the predictive accuracy of a Bayesian model on unseen data
- Train on y_{-i} , i.e., all data excluding y_i
- For each point y_i excluded from the training set, there is a new distribution of the params θ_{-i}
- Test on y_i

PSIS-LOO-CV

 Compute the Expected Log Pointwise Predictive Density (ELPD) using Leave-One-Out Cross-Validation (LOO-CV):

$$ELPD_{LOO-CV} \triangleq \sum_{i} \log \int p(y_{i}|\theta) p(\theta|y_{-i}) d\theta$$

- Problem: Need to train N models, one for every data point
- Solution:
 - Pareto-Smoothed Importance Sampling (PSIS) Leave-One-Out Cross-Validation (LOO-CV) estimates without refitting for every point
 - Importance sampling:
 - Use full dataset to approximate posterior distribution when one observation is left out
 - Re-weight posterior samples based on importance
 - Pareto-smoothing:
 - Stabilize importance weights, reducing extreme weights' impact
 - E.g., if an observation left out influences the posterior distribution
 - Provide diagnostics to assess reliability of importance weights

Evidence of Data Given a Model

- The Bayesian way to compare k models is to calculate the evidence of each model $\Pr(Y|M_k)$, i.e., the probability of observed data Y given each model M_k
 - Typically we ignore the evidence when we do parameter inference
- ullet Consider the Bayes theorem for the parameters heta and the data Y, given a model M_k

$$Pr(\theta|Y, M_k) = \frac{Pr(Y|\theta, M_k) Pr(\theta|M_k)}{Pr(Y|M_k)}$$

 \bullet We find the parameters θ that maximizes the ratio, independently of the probability of the evidence

$$\operatorname{argmax}_{\theta} \Pr(\theta|y, M_k) = \operatorname{argmax}_{\theta} \Pr(y|\theta, M_k) \Pr(\theta|M_k)$$

• Even if we need to choose the best model among $M_1, ..., M_k$ we can pick the one that maximizes

Bayes Factors

 The Bayes factors are defined as the ratio of the two marginal likelihoods under competing hypotheses

$$BF = \frac{\Pr(y|M_0)}{\Pr(y|M_1)}$$

where BF>1 means that the model 0 explains the data better than model $\mathbf{1}$

Bayes factor	Support
1-3	Anecdotal
3-10	Moderate
10-30	Strong
30-100	Very strong
>100	Extreme

- Intuition
 - Bayes factors are a quantitative tool that helps compare how likely two competing explanations (i.e., models) are, given the evidence you find
 - Bayes factors are like a scale that weigh how much evidence supports one

Assumption of Bayes Factors

- The assumption of Bayes factor is that the models have the same prior probability
- Otherwise we need to compute the "posterior odds" as "Bayes factors" x "prior odds"

$$\frac{\Pr(\textit{M}_0|\textit{y})}{\Pr(\textit{M}_1|\textit{y})} = \frac{\Pr(\textit{y}|\textit{M}_0)}{\Pr(\textit{y}|\textit{M}_1)} \frac{\Pr(\textit{M}_0)}{\Pr(\textit{M}_1)} = \mathsf{Bayes} \; \mathsf{factors} \times \mathsf{prior} \; \mathsf{odds}$$

Bayes Factors: Pros and Cons

• Looking at the definition of marginal likelihood (aka evidence):

$$p(y) = \int_{\theta} p(y|\theta)p(\theta)d\theta$$

• Making the dependency of the model M_k explicit

$$p(y|M_k) = \int_{\theta_k} p(y|\theta_k, M_k) p(\theta_k, M_k) d\theta_k$$

- Pros
 - Models with more parameters have a larger prior, so the Bayes factor has a built-in Occam's Razor
- Cons
 - The marginal likelihood needs to be computed numerically over a large dimensional space
 - The marginal likelihood depends on the value of the prior

ullet Changing the prior might not affect the inference of heta but have a direct effect on the marginal likelihood

Hierarchical Models: Candies in a Jar Examples

- Each classroom has a jar filled with candies, each different but coming from the same candy shop
- Kids in each classroom need to guess the number of candies in each jar
- Individual guesses
 - Think of each jar as its own little puzzle
 - E.g., guess based on how big the jar is, how filled it is
 - Each jar has certain "parameters"
- Group learning
 - Consider what you learn from other jars since they come from the same candy shop
 - E.g., the shop prefers to use a certain type of candies, or fills the jar up to a certain level
 - The jars have certain "hyper-parameters"
- Sharing info
- \bullet As you make more guesses, you start sharing what you have learned with $_{\rm SCIFNCE}$ your friends about each jar

Computing Bayes Factors as Hierarchical Models

- The computation of Bayes factors can be framed as a hierarchical model
 - The high-level parameter is an index assigned to each model and sampled from a categorical distribution
- We perform inference of the competing models at the same time, using a discrete variable jumping between models
 - The proportion we use to sample each model is proportional to $\Pr(M_k|y)$
- Then we compute the Bayes factors
- The models can be different in the prior, in the likelihood, or both

Common Problems When Computing Bayes Factors

- 1. If one model is better than the other, then we will spend more time sampling from it
 - Cons: under-sample one of the models
- Values of the parameters are updated, even when the parameters are not used to fit that model
 - E.g., when model 0 is chosen, the parameters in model 1 are updated, but they are only restricted by the prior
 - If the prior is too vague, the parameter values might be too far from previous accepted values and the step is rejected
 - TODO: ?
- Solutions to improve sampling
 - Force both models to be visited equally
 - Use "pseudo priors"

Using Sequential Monte Carlo to Compute Bayes Factors

• TODO

Bayes Factors and Information Criteria

- •
- If we take the log of Bayes factors, we turn ratio of marginal likelihood into a difference, which is similar to comparing differences in information criteria
- We can interpret each marginal likelihood as having:
 - a fitting term (i.e., how well the model fits the data)
 - penalizing term (i.g., averaging over the prior)
 - ullet more parameters o more diffused the prior o greater penalty

- •
- TODO

- The Balance Between Simplicity and Accuracy
- Measures of Predictive Accuracy
- Regularizing priors
- Regularizing Priors
- Mixture Models

- The Balance Between Simplicity and Accuracy
- Measures of Predictive Accuracy
- Regularizing priors
- Regularizing Priors
- Mixture Models

Priors and Regularization

- Using weakly/informative priors is a way of pushing a model to prevent overfitting and generalize well
- This is similar to the idea of "regularization"
- Regularization
 - Reduce information that a model can represent and reduce chances to capture noise instead of signal
 - E.g., penalize large values for the parameters in a model
 - E.g., ridge and Lasso regression applies regularization to least square method

Popular Regularization Methods in Bayesian Framework

- Ridge regression
 - Normal distribution for coefficients of linear model, pushing them toward zero
- Lasso regression
 - MAP of posterior using Laplace priors for coefficients
 - Because Laplace distribution looks like Gaussian with a sharp peak at zero, it provides "variable selection" since it induces sparsity of model

- The Balance Between Simplicity and Accuracy
- Measures of Predictive Accuracy
- Regularizing priors
- Regularizing Priors
- Mixture Models

Mixture Models

- Mixture models are models that assume that data comes from a mixture
 of distributions or where the solution can be approximated as a mix of
 simpler distributions
- Mixtures can model data from sub-populations
 - E.g., distribution of heights in adult human population, made of male and female
 - E.g., clustering of handwritten digits (e.g., 10 sub-populations)
- Mixture models as statistical trick to handle complex distributions
 - E.g., mix of Gaussians to describe an arbitrary distribution
 - E.g., multimodal, skewed distributions
 - The number of distributions depends on the accuracy of the approximation and the details of the data
 - E.g., Kernel density estimation (KDE) is a (non-Bayesian) non-parametric estimation technique
 - Place a Gaussian with a fixed variance on top of each data points
 - Use the sums of all the individual Gaussians to approximate the empirical distribution of the data

Finite Mixture Models

the PDF of the observed data is a weighted sum of the PDFs of K subgroups

$$p(y) = \sum_{i=1}^{K} w_i p(y|theta_i)$$

where:

- K is finite
- $w_i \in [0,1]$ (it's like the probability of component i)
- $\sum_i w_i = 1$
- $p(y|\theta_i)$ are simpler distributions (e.g., Gaussian or Poisson)

Conceptual Solution of a Mixture Model

- The assumption of a mixture model is that the data is generated by K
 underlying distributions / components
 - In other words, each data point is assumed to come from one of the components, but we don't know which
- The goal is to determine which component of the model k the data point x most likely belongs to
 - For each point x, assign probabilities of belonging to one of the K components Pr(k|x)
 - This is modeled as a random variable, which is called "latent variable" since it can't be observed
 - E.g., for two components (K = 2) we use a Bernoulli, using a Beta distribution as prior (since it is conjugate prior for Bernoulli)
 - E.g., for K outcomes we can use as prior
 - A Categorial distribution to generalize the Bernoulli
 - A Dirichlet distribution to generalize the Beta distribution
- One can estimate the likelihood of the observed data based on:
 - Parameters of the individual components
 - Probabilities that a given data point belongs to each component

Categorical Distribution

- Discrete distribution representing "rolling a K-sided unfair die" or "choosing a random card from a deck of cards"
 - It generalizes a Bernoulli distribution K=2
- It is parametrized with probabilities for each possible outcome $(p_1, p_2, ..., p_K)$, where p_i is the probability of outcome i

Dirichlet Distribution

- Defined in a simplex which is a generalization of a triangle in K-dimensions, where K vectors elements are in [0,1] and sum to 1
 - A 1d simplex is an interval
 - A 2d simplex is a triangle
 - A 3d simplex is a tetrahedron
 - . .
- Dirichlet distribution generalizes the Beta distribution
 - Beta models the probability of a single proportion (e.g., the probability of success in a Bernoulli trial)
 - Beta models 2 outcomes, one with probability p and the other with 1-p
 - It uses two parameters to describe its shape
- ullet The Dirichlet distribution models the probability of K outcomes
 - It represents the uncertainty over the proportions of different outcomes in a multinomial experiment

Dirichlet Distribution: Examples

- Bucket of colored balls
 - You have a bucket of colored balls, each ball comes in 3 colors
 - You want to figure out the probability of picking a ball of each color
 - You are uncertain about the probability and you model that uncertainty
- You want to divide a pie into 4 different slices
 - You want to model the size of the slices (making sure they split the entire pie), modeling the uncertainty

Re-Parametrization Using Marginalization

- Consider a mixture model that include latent variables representing the component from which each observation is drawn
- Performing posterior sampling on these models is inefficient for several reasons:
 - Discrete variables introduce discontinuities
 - Latent variable introduces dependencies
- A solution is "marginalization"
 - Removing the latent variable by integrating out from the model
 - The observations are directly modeled from a mixture distribution
 - This makes sampling more efficient
 - The problem is that the model becomes more complex mathematically
 - pymc has distributions (e.g., NormalMixture) where the latent variable is already marginalized

Non-Identifiability of Parameters

- Parameters in a model are "not identifiable" when one or more parameters cannot be uniquely determined
- In practice multiple model fits give different parameters corresponding to the same model
 - E.g., given a bimodal distribution sum of two Gaussians, solving the same model can switch the value of the means (aka "label switching problem")
 - E.g., variables with high-correlation in linear models
- Solutions
 - Arrange the means of the components to be in increasing order
 - E.g., in pymc add a "potential" to the likelihood (which doesn't depend on the data) so that a constraint is not violated
 - Use informative priors to guide a model towards a canonical representation

How to Choose K

- How to decide the number of components K in a finite mixture model?
- Solution
 - Start with a small number of components K
 - Increase K to improve the model-fit evaluation
 - Use model selection techniques to find best trade-off
 - E.g., using posterior-predictive checks, WAIC, LOO, or domain expertise

