Enercoop

Prédire la demande en électricité.

Projet 9 - DA - Marc SELLAM - 01/2021

Sommaire:

Page 16

Conclusion.

Page 1	Mission.
Page 2	Les données fournies.
Page 4	Préparation des données.
Page 6	Correction des données de consommation mensuelles de l'effet température (dues au chauffage électrique).
Page 7	Désaisonnalisation de la consommation obtenue après correction, grâce aux moyennes mobiles.
Page 9	Prévision de la consommation (corrigée de l'effet température) sur un an, en utilisant la méthode de Holt Winters (lissage exponentiel).
Page 10	Prévision de la consommation (corrigée de l'effet température) sur un an, en utilisant la méthode SARIMA sur la série temporelle.
Page 15	Comparatif de tous les modèles.

Mission

- Enercoop est une société coopérative qui s'est développée grâce à la libéralisation du marché de l'électricité en France.
- La demande en électricité des utilisateurs varie au cours du temps et dépend de paramètres comme la météo (température, luminosité, etc.).
- Tout le challenge est de mettre en adéquation l'offre et la demande, en créant un model de prévision de la consommation électrique totale.

Les données fournies

- Téléchargement des données <u>mensuelles</u> de consommation totale d'électricité en <u>énergie</u> sur <u>https://www.rte-france.com/eco2mix/telecharger-les-indicateurs</u>.
 - Consommation totale ile de France en GWh, données mensuelles

(unité de mesure d'énergie qui correspond à la puissance d'un gigawatt actif pendant une heure)

- Données météo utilisées pour corriger les données de l'effet température téléchargées sur https://cegibat.grdf.fr/simulateur/calcul-dju.
 - Dju paris Montsouris, données mensuelles

(degré Jour Unifié est l'écart entre la température d'une journée donnée et un seuil de température établi à 18 °C)

Les données fournies

	Année	JAN	FÉV	MAR	AVR	MAI	JUN	JUI	AOÛ	SEP	ост	NOV	DÉC	Total
11	2020	339	249.6	268.6	81.4	65.7	20.6	0	0	0	0	0	0	1024.9
12	2019	404.9	268.3	233.1	168.5	117.9	24.4	0	1.7	26.7	133.7	282.6	327.3	1989
13	2018	303.4	432.6	314.3	119.7	55.9	8.1	0	3.3	34.3	122.4	282.5	325.9	2002.2
14	2017	467.9	278.4	206.1	182.6	75	9.4	1	6.8	62.6	99.4	282.6	369	2040.6
15	2016	364.4	321.6	321.1	212.1	88.1	27.5	5.7	3.2	11.7	176	285.6	390.8	2207.3
16	2015	392	365.7	275.5	141.1	91.5	15.8	6.9	6.1	71.9	176.9	195	248.1	1986.2
17	2014	324.4	281.9	223.9	135.5	100.2	19.1	8.3	19.3	16	92.3	222.6	368.2	1811.5
18	2013	429.2	402.2	376.6	209.5	158.4	43.6	0.6	5	41.5	105	303.9	349.5	2424.8
19	2012	336	435.9	201.9	230.3	83.3	35	12.4	2.4	58	154.6	296.2	345.9	2191.5
20	2011	392	304.8	243.1	77.6	43.4	31.4	15	11.9	23.2	127.6	226.6	312.7	1809
21	2010	499.2	371.4	294.5	165.3	140.9	22.6	0	11.1	52.3	172.2	310	512	2551.1
22	2009	486.8	365.7	293.2	135.1	82.2	39.8	3.1	0.9	26.9	149.6	224.7	411.8	2219.7
400 - 200 - 200 - 2014 2015 2016 2017 2018 2019 2020														

	Date	Conso_totale
19	2013-01	0
32	2013-02	0
45	2013-03	0
58	2013-04	0
71	2013-05	0
1176	2020-06	4397
1189	2020-07	4410
1202	2020-08	4301
1215	2020-09	4595
1228	2020-10	5605

Préparation des données

- Apres concaténation des données :
 - 6 années de données exploitables.
 - Similitude des 2 courbes.

Préparation des données

```
#data_tr = data_i de 2014 à 2018, annees 'd'entrainement'
data_tr = data_i.loc['2014':'2018'].copy()
#data_te = data_i de 2019, annee 'test'
data_te = data_i.loc['2019'].copy()
```

• 6 années :

les cinq premières pour l'entrainement

la sixième pour vérifier la qualité des prédictions.

	DJU	Conso_totale
Date		
2014-01-01	324.4	7612
2014-02-01	281.9	6749
2014-03-01	223.9	6509
2014-04-01	135.5	5396
2014-05-01	100.2	5279
2018-08-01	3.3	4387
2018-09-01	34.3	4694
2018-10-01	122.4	5535
2018-11-01	282.5	6758
2018-12-01	325.9	7248

	DJU	Conso_totale
Date		
2019-01-01	404.9	8093
2019-02-01	268.3	6637
2019-03-01	233.1	6471
2019-04-01	168.5	5487
2019-05-01	117.9	5266
2019-08-01	1.7	4193
2019-09-01	26.7	4535
2019-10-01	133.7	5549
2019-11-01	282.6	6726
2019-12-01	327.3	7197

Correction des données de consommation mensuelles de l'effet température (dues au chauffage électrique)

Désaisonnalisation de la consommation obtenue après correction, grâce aux moyennes mobiles.

Désaisonnalisation de la consommation obtenue après correction, grâce aux moyennes mobiles.

```
#desaisonalisation :
data_all['cons_nodjusea'] = data_all['cons_nodju'] - decomp_x.seasonal
data_all['cons_nodju'].plot(label='conso_sansdju',figsize=(16,4))
data_all['cons_nodjusea'].plot(label = 'désaisonalisé')
plt.legend()|
plt.ylabel("Consommation totale en GWh",fontsize=10)
plt.savefig("2_1.jpg",bbox_inches = "tight")

    Désaisonnalisation appliquée aux 6 années
```


Prévision de la consommation (corrigée de l'effet température) sur un an, en utilisant la méthode de Holt Winters (lissage exponentiel).

```
y = data tr[['cons nodju']].copy()
from statsmodels.tsa.api import ExponentialSmoothing
hw = ExponentialSmoothing(np.asarray(y), seasonal periods=12, trend='add', seasonal='add').fit()
hw pred = hw.forecast(12)
plt.figure(figsize=(18,5))
plt.plot(y.loc['2017':], label='Consommation totale')
plt.plot(pd.date range(y.index[len(y)-1], periods=12, freq='M'), hw pred, label='Prédiction')
plt.plot(data te['cons nodju'], label='Consommation effective')
plt.vlabel("Consommation totale en GWh", fontsize=12)
plt.legend()
plt.savefig("3 1.jpg",bbox inches ="tight")
plt.show()
                                                                                                                                 Consommation totale
                                                                                                                                 Prédiction
                                                                                                                                 Consommation effective
  4800
en GWh
Consommation totale
  4000
          2017-01
                        2017-05
                                       2017-09
                                                      2018-01
                                                                    2018-05
                                                                                   2018-09
                                                                                                  2019-01
                                                                                                                2019-05
                                                                                                                               2019-09
                                                                                                                                              2020-01
```

Vérification de stationnarités et différenciations

Sur les données de test :

Consommation non stationnaire (1)

Apres différenciation :

Consommation avec 1 décalage(2) : stationnaire.

Consommation avec 2 décalage(3) : stationnaire.

Consommation avec 12 décalage(4) : stationnaire.

```
adf_check(data_tr['cons_nodju'])

Test de Dickey_fuller Augmenté (adf)
ADF Test Statistic:-0.9735442358946739
p-value:0.762790741186066
#lags used:11
Number of observations used:48
Faible évidence contre l'hypothèse nulle
Echoue à rejetter l'hypothèse nulle
Les données ont une racine unitaire et sont donc non stationnaires
```

```
#data tr['First difference'] = data tr['cons nodju'] - data tr['cons nodju'].shift(1)
 adf check(data tr['First difference'].dropna())#perte 1ere valeur
                                                                                          (2)
 Test de Dickey fuller Augmenté (adf)
ADF Test Statistic:-4.428884196362779
p-value:0.00026377732851989177
#lags used:10
Number of observations used:48
Forte preuve contre l'hypothèse nulle
Rejette l'hypothèse nulle
Les données n'ont pas de racine unitaire et sont donc stationnaires
#data tr['Seconde difference'] = data tr['First difference'] - data tr['First difference'].shift(1)
adf_check(data_tr['Seconde difference'].dropna())
Test de Dickey fuller Augmenté (adf)
                                                                                          (3)
ADF Test Statistic: -3.4866647464447778
p-value:0.008336249553514858
#lags used:11
Number of observations used:46
Forte preuve contre l'hypothèse nulle
Reiette l'hypothèse nulle
Les données n'ont pas de racine unitaire et sont donc stationnaires
 #data tr['Seasonal difference'] = data tr['cons nodju'] - data tr['cons nodju'].shift(12)
 adf check(data tr['Seasonal difference'].dropna())
                                                                                          (4)
Test de Dickey fuller Augmenté (adf)
ADF Test Statistic:-6.3852231099343575
p-value:2.172594723587028e-08
#lags used:0
Number of observations used:47
Forte preuve contre l'hypothèse nulle
Rejette l'hypothèse nulle
Les données n'ont pas de racine unitaire et sont donc stationnaires
```

Acf et Pacf pour paramétrage manuel SARIMA

1 décalage pour paramétrage manuel (p,d,q) : (3,1,6)

12 décalages pour paramétrage manuel (P,D,Q) : (1,0,1)

Création d'un model SARIMA manuel:

```
from statsmodels.tsa.statespace.sarimax import SARIMAX
model1 = SARIMAX(np.asarray(data_tr['cons_nodju']), order=(3,1,6),seasonal_order = (1,0,1,12))
result1 = model1.fit()
print(result1.summary())
#sarimax_manuel
```

Test des résidus du modèle:

Création d'un model SARIMA automatisé:

```
train, test = np.array(data tr['cons nodju']), np.array(data te['cons nodju'])
for p in p values:
    for d in d values:
       for q in q values:
           der = (p,d,q)
           for P in P values:
               for D in D values:
                   for Q in Q values:
                       try:
                           model = SARIMAX(train, order = der , seasonal order=(P,D,Q,12))
                           model fit = model.fit()
                           pred y = model fit.forecast(12)
                           error = np.sqrt(mean squared error(test,pred y))
                           print('SARIMA%s RMSE = %.2f'% (der,error),P,D,Q)
                           if error < error min:</pre>
                               error min = error
                               ord = der
                               P \min = P
                               D \min = D
                               Q \min = Q
                       except:
                           print('erreur p d q :', der,P,D,Q, error)
print('valeurs trouvées :',ord,P min,D min,Q min,'RMSE:',error min)
valeurs trouvées: (0, 1, 0) -- 1 0 2 12
```

```
from statsmodels.tsa.statespace.sarimax import SARIMAX
model2 = SARIMAX(np.asarray(data_tr['cons_nodju']), order=ord,seasonal_order = (P_min,D_min,Q_min,12))
result2 = model2.fit()
print(result2.summary())
#sarimax auto
```

Test des résidus du modèle :

Prévisions des modèles SARIMA et consommation réelle

Comparatif de tous les modèles

hw_pred rmse : 111.16591931854059 sarima_man rmse : 134.73046088733287 sarima_auto rmse : 68.22214568127349 cons_nodjusea rmse : 187.14021867750367

La méthode SARIMA a fourni les prédictions les plus proches de la réalité, sous réserve d'une optimisation des autres modèles.