

Identification of altered biochemical domains between pumpkin and tomatillo leaf metabolites

Use DATA: Pathway Enrichment data.csv

Goal: Identify significantly over represented biological pathways based on significant differences in leaf metabolites

Topics:

- 1. KEGG Database
- 2. MetaboAnalyst: Pathway enrichment analysis
- 3. MBrole: Over Representation Analysis
- 4. Hypergeometric test for enrichment

KEGG Pathway Visualization

Goals:

Use KEGG to:

- 1. Overview glutamate entry in KEGG (C00025)
- 2. Visualize a pathway of interest
- 3. Map metabolite of interest to pathway
- http://www.kegg.jp/dbget-bin/www_bget?C00025
- http://www.kegg.jp/kegg-bin/show_pathway?org_name=ath&mapno=00250
- Mapping example
 C00064 green, black
 C00025 green, black

ALANINE, ASPARTATE AND GLUTAMATE METABOLISM

Pathway over representation analysis (ORA)

Steps:

- 1. Use MBrole to conduct:
 - Pathway over representation analysis
 - url: http://csbg.cnb.csic.es/mbrole/

ORA:

- is used to evaluate whether a particular set of metabolites is represented more than expected by chance within a given compound list [doi: 10.1093/nar/gkq329].
- p-value is calculated using hypergeometric or Fisher's exact test

MBRole: Pathway Over Representation Analysis (ORA)

Goal: Identify an over represented pathway and visualize it in KEGG

http://www.genome.jp/kegg-bin/show_pathway?map01070+C06427+C00158+C00049+C00493+C00079+C00026+C00042+C00751+C00149+C00078+C00073+

Test for significance: Hypergeometric Test

Pathways (set: 72 background: 3358)

id	label	p-val	adjusted p-val	in bckgnd	in set	%
ath01100	Metabolic pathways	1.72E- 6	1.79E-5	1455	51	70.8

How to calculate statistics to determine network enrichment?

hit.num = 51 # number of significantly changed pathway metabolites set.num = 1455 # number of metabolites in pathway full = 3358 # all possible metabolites in organism q.size = 72 # number of significantly changed metabolites

phyper(hit.num-1, set.num, full-set.num, q.size, lower.tail=F) = 1.717553e-06

MetaboAnalyst: Pathway Enrichment Analysis (PEA)

Use MetaboAnalyst to conduct:

- Pathway enrichment Analysis
- url: http://www.metaboanalyst.ca/MetaboAnalyst/faces/UploadView.jsp

PEA:

- is an advanced form of over representation analysis (ORA) which takes into account pathway topology and is based on gene set enrichment analysis (GSEA) [doi:10.1093/bioinformatics/btq418]
- p-value is calculated using hypergeometric or Fisher's exact test

Questions:

1. What pathway is the most important based on ORA and topology?

Biochemical Enrichment Analysis

Biology

Informatics

Chemistry

KEGG Pathway Enrichment

Pathway Name	Total	Hits	p +	-log(p)	Holm p	FDR	Impact +	Details
Glutathione metabolism	26	9	8.3684E-6	11.691	7.2805E-4	5.3375E-4	0.16897	KEGG
Aminoacyl-tRNA biosynthesis	67	14	1.7588E-5	10.948	0.0015126	5.3375E-4	0.09302	KEGG
Alanine, aspartate and glutamate metabolism	22	8	1.8405E-5	10.903	0.0015645	5.3375E-4	0.86781	KEGG
Galactose metabolism	26	7	5.44E-4	7.5166	0.045696	0.011832	0.21886	KEGG

Biology

Informatics

PathViewR

Visualize changes in metabolites for a pathway/organism of interest

