

2022 年软件设计师考试大纲

一、考试说明

1.考试目标

通过本考试的合格人员能根据软件开发项目管理和软件工程的要求,按照系统总体设计规格说明书进行软件设计,编写程序设计规格说明书等相应的文档,组织和指导程序员编写、调试程序,并对软件进行优化和集成测试,开发出符合系统总体设计要求的高质量软件;具有工程师的实际工作能力和业务水平。

2.考试要求

- (1)掌握计算机内的数据表示、算术和逻辑运算方法;
- (2)掌握相关的应用数学及离散数学基础知识;
- (3)掌握计算机体系结构以及各主要部件的性能和基本工作原理;
- (4)掌握操作系统、程序设计语言的基础知识, 了解编译程序的基本知识;
- (5)熟练掌握常用数据结构和常用算法;
- (6)熟悉数据库、网络和多媒体的基础知识;
- (7)掌握 C 程序设计语言,以及 C++、Java 中的一种程序设计语言;
- (8)熟悉软件工程、软件过程改进和软件开发项目管理的基础知识;
- (9)掌握软件设计的方法和技术;

(10)了解信息化、常用信息技术标准、安全性,以及有关法律、法规的基础知识;

(11)正确阅读和理解计算机领域的英文资料。

二、考试范围

考试科目 1: 计算机与软件工程知识

- 1. 计算机科学基础知识
- 1.1 数制及其转换
- 二进制、八进制、十进制和十六进制等常用数制及其相互转换
- 1.2 计算机内数据的表示

数的表示(补码表示,整数和实数的表示,精度和溢出)

非数值表示(字符和汉字表示,声音表示、图像表示)

1.3 算术运算和逻辑运算

计算机中的二进制数运算方法

逻辑代数的基本运算

1.4 其他数学基础知识

常用数值计算

排列组合,概率论应用,应用统计(数据的统计分析)

编码基础

命题逻辑、谓词逻辑、形式逻辑的基础知识

运筹基本方法

- 2. 计算机系统知识
- 2.1 计算机硬件基础知识
- 2.1.1 计算机系统的组成、体系结构分类及特性
- CPU、存储器的组成、性能和基本工作原理

常用 I/O 设备、通信设备的性能以及基本工作原理

I/O 接口的功能、类型和特性

CISC/RISC,流水线操作,多处理机,并行处理

2.1.2 存储系统

虚拟存储器基本工作原理,多级存储体系

RAID 类型和特性

2.1.3 可靠性与系统性能评测基础知识

诊断与容错

系统可靠性分析评价

计算机系统性能评测方法

2.2 计算机软件知识

2.2.1 数据结构与算法知识

数组

链表

队列、栈

树

图的定义、存储和基本操作

杂凑 (Hash 表)

常用的排序算法、查找算法、数值计算、字符串处理、数据压缩算法、递

归算法、图的相关算法

算法描述和分析

2.2.2 操作系统知识

操作系统的内核

处理机管理

存储管理

设备管理

文件管理

作业管理

网络操作系统和嵌入式操作系统基础知识

操作系统的配置

2.2.3 程序设计语言和语言处理程序知识

汇编、编译、解释系统的基础知识和基本工作原理

程序设计语言的基本成分(数据、运算、控制和传输),程序调用的实现

机制

各类程序设计语言的主要特点和适用情况

2.2.4 数据库知识

数据库模型(概念模式、外模式、内模式)

数据模型, ER 图, 规范化

数据操作

数据库语言

数据库管理系统的功能和特征

数据库的控制功能

数据仓库和分布式数据库基础知识

2.3 计算机网络知识

网络体系结构

传输介质,传输技术,传输方法,传输控制

常用网络设备和各类通信设备的特点

Client-Server 结构, Browser-Server 结构

LAN(拓扑,存取控制,组网,网间互连)

Internet 和 Intranet 基础知识以及应用

网络软件

网络管理,网络性能分析

2.4 多媒体基础知识

多媒体系统基础知识

简单图形的绘制,图像文件的处理方法

音频和视频信息的应用

多媒体应用开发过程

- 3. 系统开发和运行知识
- 3.1 软件工程知识

软件生存周期与软件生存周期模型

软件开发方法

软件开发项目管理

软件开发工具与软件开发环境

3.2 系统分析基础知识

系统分析的主要步骤

机构化分析方法

3.3 系统设计基础知识

概要设计与详细设计的基本任务

系统设计的基本原理

系统模块结构设计

结构化设计方法

面向数据结构的设计方法

系统详细设计

3.4 系统实施基础知识

系统实施的基本内容

程序设计方法

程序设计的基本模块

系统测试

系统转换

3.5 系统运行和维护基础知识

系统可维护性的概念

系统维护的类型

系统评价的概念和类型

3.6 软件质量管理基础知识

软件质量特性(ISO/IEC 9126 软件质量模型)

软件质量保证

软件复杂性的概念及度量方法 (McCabe 度量法)

软件评审(设计质量评审、程序质量评审)

软件容错技术

3.7 软件过程改进基础知识

软件能力成熟度模型 CMM

统一过程(UP)与极限编程(XP)的基本概念

4. 面向对象基础知识

面向对象的基本概念

面向对象分析与设计知识

分析模式与设计模式知识

面向对象程序设计知识

面向对象数据库、分布式对象基础知识

5. 信息安全知识

信息系统安全基础知识

信息系统安全管理

保障完整性与可用性的措施

加密与解密机制基础知识

风险管理(风险分析、风险类型、抗风险措施和内部控制)

- 计算机安全相关的法律、法规基础知识
- 6. 标准化、信息化和知识产权基础知识
- 6.1 标准化基础知识

标准化意识,标准化组织机构,标准的内容、分类、代号与编号规定,标

准制订过程

国际标准、国家标准、行业标准、企业标准

代码标准、文件格式标准、安全标准、互联网相关标准、软件开发规范和

文档标准、基于构件的软件标准

6.2 信息化基础知识

全球信息化趋势、国家信息化战略、企业信息化战略和策略

互联网相关的法律、法规

个人信息保护规则

远程教育、电子商务、电子政务等基础知识

企业信息资源管理基础知识

6.3 知识产权基础知识

保护知识产权有关的法律、法规

7. 计算机专业英语

具有工程师所要求的英语阅读水平

理解本领域的英语术语

考试科目 2:软件设计

- 1. 外部设计
- 1.1 理解系统需求说明

1.2 准备进行系统开发

选择开发方法、准备开发环境、制订开发计划

1.3 设计系统功能

选择系统结构

设计各子系统的功能和接口

设计安全性策略、需求和实现方法

制订详细的工作流和数据流

1.4 设计数据模型

设计 ER 模型及其他数据模型

1.5 编写外部设计文档

系统配置图、各子系统关系图

系统流程图、系统功能说明书

输入输出规格说明、数据规格说明、用户手册框架

设计系统测试要求

- 1.6 外部设计的评审
- 2. 内部设计

2.1 设计软件结构

按构件分解,确定构件功能、规格以及构件之间的接口

数据结构与算法设计

采用中间件和工具

- 2.2 设计输入输出
- 2.3 设计物理数据
- 2.4 构件的创建和重用

创建构件、重用构件

使用子程序库或类库

2.5 编写内部设计文档

构件划分图、构件间的接口、构件处理说明

屏幕界面设计文档、报表设计文档、文件设计文档、数据库设计文档

- 2.6 内部设计的评审
- 3.数据库应用分析与设计

设计关系模式

数据库语言(SQL)

数据库访问

- 4.程序设计
- 4.1 模块划分
- 4.2 编写程序设计文档
- 4.3 程序设计评审
- 5. 系统实施
- 5.1 配置计算机系统及环境
- 5.2 选择合适的程序设计语言
- 5.3 用 C 程序设计语言以及 C++、Java 中的任一种程序设计语言进行程序设计
- 5.4 系统测试

指导程序员进行模块测试,并进行验收

准备系统集成测试环境和测试工具

准备测试数据

写出测试报告

- 6. 软件工程应用
- 6.1 软件开发周期模型
- 6.2 需求分析

6.3 软件设计

软件设计的基本原则

软件设计方法

程序设计(结构化程序设计、面向对象程序设计)

- 6.4 软件测试的原则与方法
- 6.5 软件质量(软件质量特性、软件质量控制)
- 6.6 软件过程评估基本方法、软件能力成熟度评估基本方法
- 6.7 软件开发环境和开发工具
- 6.8 面向对象技术

面向构件技术

统一建模语言(UML)

软件过程改进模型和方法

6.9 网络环境软件技术