

2019 级

《大数据存储与管理》课程

课程报告

姓	名.	陈昱夫
学	号 _	U201990056
班	号_	CS1903 班
日	期	2022.04.18

目 录

-,	、摘要1				
二、	选题背景与意义2				
三、	、总体设计2				
	3. 1	Bloom	Filter 基本思想	2	
	3. 2 数据结构设计				
		3.2.1	多维布鲁姆过滤器 MDBF	4	
		3.2.2	联合多维布鲁姆过滤器结构(CMDBF)	5	
	3. 3	操作流	程	7	
四、	理说	公分析		8	
五、	1、实验测试10				
六、	结语	ī :	1	1	
参考	文献	₹	1	1	
附录	Ļ 	•••••	1	2	

一、摘要

Bloom Filter 是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。Bloom Filter 的这种高效是有一定代价的: 在判断一个元素是否属于某个集合时,有可能会把不属于这个集合的元素误认为属于这个集合(false positive)。因此,Bloom Filter 不适合那些"零错误"的应用场合。而在能容忍低错误率的应用场合下,Bloom Filter 通过极少的错误换取了存储空间的极大。

本文分析了现有多维布鲁姆过滤器查询算法(MDBF)工作原理,提出了一种改进的两步表示和查询的联合多 维布鲁姆过滤器(CMDBF)查询算法。CMDBF 新增一个用于表示元素整体的联合布鲁姆过滤器 CBF, CMDBF 中元素表示和查找分两步进行。将 MDBF 的各属性的表示和查询作为第一步,第二步联合元素所有属性域,利用 CBF 完成元素整体的表示和查询确认。理论分析和仿真实验结果表明, CMDBF 能够支持多维集合元素的简洁表示和查询,相比 MDBF 查询误判率降低明显。

二、选题背景与意义

Bloom filter (布隆过滤器)是 Howard Bloom 在 1970 年提出的二进制向量 数据结构,具有良好的空间和时间效率,用于检测某元素是否为集合的成员。

Bloom Filter 是一种空间效率很高的随机数据结构,它利用位数组很简洁地表示一个集合,并能判断一个元素是否属于这个集合。它是一个判断元素是否存在集合的快速的概率算法。Bloom Filter 有可能会出现错误判断,但不会漏掉判断。也就是 Bloom Filter 判断元素不在集合,那肯定不在。如果判断元素存在集合中,有一定的概率判断错误。因此,Bloom Filter 不适合那些"零错误的应用场合"。而在能容忍低错误率的应用场合下,Bloom Filter 比其他常见的算法(如 hash 折半查找)极大节省了空间。

它的优点是空间效率和查询时间都远远超过一般的算法,通过极少的错误换取了存储空间的极大节省,而缺点是有一定的误识别率和删除困难。尤其当要存储的信息为多维时,靠简单的多维 bloom filter 的叠加会让 false positive 的概率大大提升。

通过本课题的研究,分析一个可以减少 false positive 的概率的结构设计。

三、总体设计

3.1 Bloom Filter 基本思想

3.1.1 BloomFilter 原理:

当一个元素被加入集合时,通过 k 个散列函数将这个元素映像成一个位数组中的 k 个点,把它们置为 1 。检索时,我们只要看看这些点是不是都是 1 就(大约)知道集合中有没有它了,如果这些点有任何一个 0 ,则被检元素一定不在;如果都是 1 ,则被检元素很可能在。

图 3-1 BloomFliter 原理图

如上图所示,我们定义了一个 16 位的二进制向量, 3 个 hash 函数,这个 3 个函数 hash 的结果为 0 或者 1,该结果存放的位置为 $0^{\sim}15$ 之间,将 hash 的结果的位置映像到二进制向量的 index,并保存结果.

对于输入数据 input1,得到的的结果存在于 0,8,14,结果全部为 1,那么说明 input1 可能存在于指定的集合。

对于 input2, 得到的结果存在于 0, 4, 10, 有一个是 0, 那么说明 input2 一定不存在于指定的集合。

3.1.2 Bloom Filter 的性能分析

分析 Bloom Filter 的性能问题即 False Positive 的比率 f 的问题, 探讨何时 f 才能最小。

初始状态时,如图 2,二进制数组的 m 位均为 0,此时进行一次 Hash,则某一位为 0 的概率是 $\frac{m-1}{m}$ (只有 1 位为 1,且假设 Hash 函数计算结果在每一位的概率均等),因此,对 n 个元素进行 k 次 Hash,则某一位为 0 的概率 p 为:

$$p = (1 - \frac{1}{m})^{nk}$$

对上式做变换,并利用利用自然指数极限的代换,有:

$$p = (1 - \frac{1}{m})^{nk} = (1 - \frac{1}{m})^{m \cdot \frac{nk}{m}} \approx e^{-\frac{nk}{m}}$$

一个 False Positive 发生,即一个不在集合的数却被判定在集合中的概率,是在集合中任选 k 个数,其结果均为 1 的概率,该概率即为 False Positive 的比率 f,计算如下:

$$f = (1 - p)^k \approx \left(1 - e^{-\frac{nk}{n}}\right)^k = e^{k\ln\left(1 - e^{-\frac{nk}{m}}\right)}$$
$$= e^{-k \cdot \frac{m}{nk}\ln e^{-\frac{nk}{m}}\ln\left(1 - e^{-\frac{nk}{m}}\right)} = e^{-\frac{m}{n}\ln\left(p\right)\ln\left(1 - p\right)}$$

上式中,e *为单调递增函数,因此当其指数最小时,取最小值,也即 $\ln(p)\ln(1-p)$ 取最大值,此时有 $p=\frac{1}{2}$,即 $e^{-\frac{nk}{m}}=\frac{1}{2}$, $k=\frac{m}{n}ln2\approx 0.7\frac{m}{n}$,此时给出的 f 为:

$$f = (\frac{1}{2})^k \approx 0.6185^{\frac{m}{n}}$$

3.1.3 Bloom Filter 的不足

通过上面的分析,我们可以看到 Bloom Filter 高效的查找与优越的性能,但是也能看到几个明显的问题。

(1) 无法删除集合中的元素

Bloom Filter 在插入元素时,对于 Hash 计算结果处已经被标记为1的位是不做操作的,所以在删除时就会出现问题,如果直接将该元素经过 Hash 计算后的位置置为 0,则会牵动到其他元素。

(2) Hash 函数的选择会影响到算法的结果

根据前面的错误率计算,当哈希函数个数 $k = \ln 2 \times \frac{m}{n}$ 时错误率最小,在实际的应用中,只有 n 是固定的,我们要综合考虑 m 和 k 的选择问题以及哈希函数的设计问题。

3.2 数据结构设计

3.2.1 多维布鲁姆过滤器 MDBF

针对多维元素的表示和查询问题,目前存在一种 MDBF 的方案。该方案采用和元素维数相同的多个标准布鲁姆过滤器组成,直接将多维元素的表示和查询分解为单属性值子集合的表示查询,元素的维数有多 少,就采用多少个标准的布鲁姆过滤器分别表示 各自对应的属性。进行元素查询时,通过判断多 维元素的各个属性值是否都在相应的标准布鲁 姆过滤器中来判断元素是否属于集合。如下图 3 所示。

图 3 MDBF 结构

对于 $\{n, m, k, L\}$ 的 MDBF,判断元素是否从属集 合,需要判断所有的属性值是否在对应的属性字集 合,多维布鲁姆过滤器误判率为

$$f^{\text{MDBF}}\left(m,k,n,L\right) = \prod_{i=1}^{L} f^{\text{BF}}\left(m,k,n\right) = \left(f^{\text{BF}}\left(m,k,n\right)\right)^{L}$$

多维布鲁姆过滤器查询时间为 $O(k \times L)$, 所需空 间为 $O(m \times L)$ 。

通过一个二维元素表示和查询的例字来分析 现有 MDBF 误判率情况。经过分析指出 MDBF 算 法在元素表示和查询时的缺陷,进而给出改进的 CMDBF 查询算法。

例 2 多维布鲁姆过滤器查询算法实例。设二 维元素为 $x=\{A1,A2\}$,其中 A1 和 A2 是 2 个不同的属 性。使用 MDBF 需要 2 个标准布鲁姆过滤器 BF1、 BF2 用来分别表示属性 A1 和属性 A2。单属性域的布 鲁姆过滤器向量都取 m=8 bit。每次映射和查找的散 列函数的个数为 2 个,2 个属性值映射的散列函数取 一致,简单定义这 2 个散列函数为: $h1(x)=x \mod 8$ 和 $h2(x)=(2x+3) \mod 8$ 。其中数据集合是 $\{(9,7),(11,9)\}$,需要查询的元素是 $\{(11,15)$ 。 表示集合之前,2 个向量都需要初始化。元素 $\{(9,7)\}$ 插入后,第一维布鲁姆过滤器向量 BF1[1]和 BF1[5] 置位,第二维布鲁姆过滤器向量 BF2[7]和 BF2[1]置 位,两向量状态分别如图 4 第 2 行所示。那么元素 $\{(11,9)\}$ 插入后的向量状态如图 4 第 3 行所示。

查询(11,15)是否在集合中。首先检查 11 是否在 第一个属性集合中,11 对应的 2 个散列地址 3、1, 发现 BF1[3],BF1[1]都已置位,说明 11 在属性 A1 集合中。然后检查 15 的 2 个散列地址,发现 BF2[7], BF2[1]也已经置位,说明 15 也在属性 A2 的集合中, 得出(11,15)在集合中的错误结论。

文献[17]提出了 MDBF 算法,并认为"MDBF 出 现误判的情况是每维都出现误判断时,元素才会被误 判断"。通过上面的实例分析发现:实际上,MDBF 算法在任何一维误判断时都会导致元素的误判断。如 例 2 所示,两维元素(11,15)进行查询判断时,第二维 15 却不在第二维字集中,但是使用 BF2 误判断 15 在该字集中,此时就出现了两维元素由于一维的误判而 导致元素整体的误判。成为 MDBF 的缺陷。

上述结果的产生,是因为 MDBF 使用每个单独 的 BF 来表示元素的每个单独的属性值,没有相应 的结构将各属性值合成的元素表达出来。MDBF 分 割了各个属性值属于元素一体的特点,仅通过单独 判断元素的各个属性值是否在对应的字集合来进 行元素的从属判断,不可避免发生例 2 的情况,将 不属于集合的元素(11,15)误判为属于集合,因此有 必要对 MDBF 进行改进。

3.2.2 联合多维布鲁姆过滤器结构(CMDBF)

考虑到如果能将各个属性合为一体的特性在布鲁 姆过滤器中表示出来,得到元素的整体信息必然可以 减少由于单维属性误判而导致的元素整体误判的可能性。由此提出改进的联合多维布鲁姆过滤器(CMDBF, combine multidimensional Bloom filters)。CMDBF 由 两部分过滤器组成,第一部分是用标准布鲁姆过滤器 表示的各属性字集,采用和 MDBF 一样的机制;第二 部分是一个联合布鲁姆过滤器 CBF(combine blooms filter),用来表示各个属性值的联合。这里存在如何将 元素表示到 CBF 的问题,如果 MDBF 每次映射散列地址范围一致,那么可以直接用不同属性域的对应散 列映射地址进行异或运算,通过2次散列运算获得元 素在 CBF 中的位置,将 CBF 对应位置置位,完成元 素到CBF 的表示。下面用一个例字来解释算法思路, 如图 5 所示,其中, 中为异或运算。

图 5 CMDBF 算法实例

图 5

例 3 用 CMDBF 表示的二维集合 {(9,7), (11,9)}, 查询(11,15)是否在集合 中。 表示集合之前,3 个向量都需要初始化。2 个 元素插入后,BF1 和 BF2 状 态和例 2 中的 MDBF 完 全相同。所不同的是,改进的多维布鲁姆过滤器中, 加了一个联合过滤器 CBF, 元素(9,7)在 CBF 的 映射地址可由单属性 9,7 在 BF1 和 BF2 中的地址直 接计算,如 addr1=1 ⊕ 7=6(这里的 1 是属性 "9"在 BF1 中的地址, 7 是属性 "7" 在 BF1 中的地址, addr1 是由 2 个属性 "9", "7" 共同决定), addr2=5⊕1=4。 因此将 CBF[6]和 CBF[4]置位,完成元素(9,7)的插 入。同理完成元素(11,9)到 CMDBF 的表示, 状态如 图 5 第 3 行所示。

查询(11,15)是否是集合的元素。在 MDBF 的基础 上,还需要进行元素整体 是否在 CBF 的检查,元素 (11,15)在 CBF 中的 2 个映射地址分为 addr1=3⊕7=4, addr2=1⊕1=0。虽然 CBF[4]=1,但是 CBF[0]=0,得 出元素(11,15) 不在集合中的正确结论。 虽然 CMDBF 算法只在 MDBF 算法上增加了一 个用于表 示各属性联合的 CBF 过滤器, 但元素在 CBF 的映射位置由所有的属性值共同决定, 有效解决由于 单属性的误判断而造成元素整体误判断的可能。

设多维元素 $x=\{A1,A2,\dots,AL\}$,使用布鲁姆过滤 器,虽然对于每维属性值, 可能需要选择不同的散 列函数,但是仍然可以设计每维属性使用相同的散 列函 数个数 ki=k(1≤i≤L),每个属性维数使用相同 的长度的过滤器向量 mi=m(1≤i≤L)。那么每个属 性的散列映射地址为

$$attrj_addri = Hash[i](x.A_j) \in \{0,1,\dots,m-1\}$$
$$(1 \le j \le L, 1 \le i \le k)$$

和 MDBF 一样, attrj_addri {0, 1, ···, m-1} 就是属性 j 的第 i 个散列地址。这 就为每维属性值的联合提供 了方便,可以通过这些映射地址的运算完成元素的 多属性联合表示,可定义联合布鲁姆过滤器 CBF 的散列函数为

$$\operatorname{Hash} i(x) = \operatorname{attr1}_{-\operatorname{addr}} i \oplus \operatorname{attr2}_{-\operatorname{addr}} i \oplus \cdots \oplus \operatorname{attrL}_{-\operatorname{addr}} i = \operatorname{addr} i \left(1 \le i \le k\right)$$

addri(1≤i≤k)是元素在 CBF 中的第 i 个映射地 址,由各个属性值的映射 地址通过异或运算得来, 由多个属性联合确定。可以表现元素各属性值一体 的 特性,而且异或函数也是常用的散列处理函数。 由 attrj addri 易得 addri, 这样定义的 CBF 向量长度 仍然是 m。

CMDBF 在 MDBF 基础上增加一个联合的布鲁 姆过滤器 CBF, 而新增的 CBF 又由元素的所有属 性值确定,这样元素整体就可以通过 2 次散列运算 表示出来,完成元素的表示和查找,如图 6 所示。

图 6 CMDBF 算法原理

3.3 操作流程

```
Algorithml AddE1ement (Object E1ement)
Input: An object element with multi-attribute
Output: void
int Addr[k], CAddr[k]
For(i=0;i < Element.adttr Length;<math>i++)
   BF = GetBF(i)
                               //获得该维对应的过滤器
   Hash = GetHash(i)
                               //获得第i维属性对应的k个Hash函数
   For(j=0; j < k; j++)
       Addr[/]=Hash/(Element attr[/))/得到单维布鲁姆过滤器地址
                               //将对应过滤器置位
       BF[Addr[j]]=1
       CAddr[j]=CAddr[j]^Addr[j]//计算CBF的散列地址
   End For
End For
For(j=1, j < k+1; j++)
                               //将CBF布鲁姆过滤器置位
   CBF[CAddr[j]]=1
End For
```

元素插入

```
Algorithm2 MembershipQuery(Object Element)
Input: An object element with multi-attribute
Output: If element is a member of Set A, response true, else response false
int Addr[k], CAddr[k]
For(i=0; i<Element.attr Length; i++)
                                 //获得该维对应的过滤器
   BF = GetBF(i)
                                 //获得第i维属性对应的k个hash函数
   Hash=GetHash(i)
   For(j=0;j< k;j++)
       Addr[j]=hash[(Element.attr[j])//得到单维布鲁姆过滤器地址
                                 //判断是否置位
       If(BF[Addr[i]]==0)
           Return false
       End if
       CAddr[i]=CAddr[i]/Addr[i]//计算CBF的哈希地址
   End For
End For
For(j=1; j< k+1; j++)
   If( CBF[CAddr[i]]==0)
                                 //判断是否置位
       Return false
   End If
End For
Return true
```

元素查询

四、理论分析

定理 1 CMDBF 算法的查询误判率小于 MDBF 算法。 证明 对于{n, m, k, L}的 CMDBF, 判断元素是 否从属集合, 需要第一轮 MDBF 的 L 个布鲁姆过滤 器和第二轮联合布鲁姆过滤器对应位置都已置位。 第二轮联合布鲁姆过滤器 CBF 的误判率可以 直接计算为

$$f^{\text{CBF}}(m,k,n) = (1-p)^k = \exp(k\ln(1-e^{-kn/m}))$$
$$= f^{\text{BF}}(m,k,n)$$

则 CMDBF 的误判率为

$$\begin{split} f^{\text{CMDBF}}\left(m,k,n,L\right) &= f^{\text{MDBF}}\left(m,k,n,L\right) f^{\text{CBF}}\left(m,k,n\right) \\ &= \left(f^{\text{BF}}\left(m,k,n\right)\right)^{L+1} \end{split}$$

由于 0 < f BF (m, k, n) < 1,由式(3)和式(7)显然有 f CMDB < f MDBF 。 推广到 更一般的情况,当进行元素到 CBF 的 表示时,如采用其他 attrj_addri 到 addri 的转换 方法,此时 CBF 的长度可能并不是 m,设为 m1, 由式(2)知,0 < f CBF (m1, k, n) < 1,式(7)仍然可以得 出 f CMDB < f MDBF 的结论。 虽然 CMDBF 采用多于 MDBF 一个 m bit 长度 的向量空间为代价,但是能够将元素属性值表达

成 一个整体,可以得到比 MDBF 更低的查询误判率, 在第 4 节的实验分析中,将得出这种空间消耗对整个算法的性能影响并不大。

五、实验测试

由于能力有限,只是根据上述的算法流程写了个能满足上述 3.2.2 中例二的基本 CMDBF 结构。附录附上源代码。

六、结语

本文首先通过对普通的多维 Bloom Filter(MDBF) 的流程分析,指出其存在的问题。

接着针对 Bloom Filter 存在的问题进行改进,提出了通过增加一个 CBF 来记录多维信息间的联系,来解决问题。

综上所述,本文中改进的 CMDBF 尽管增加了一点存储信息的空间开销,但却减少了 false positive 的概率。

参考文献

- [1] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh, and G. Varghese, "Beyond Bloom Filters: From Approximate Membership Checks to Approximate State Machines," Proc. ACM SIGCOMM, 2006.
- [2] Y. Zhu and H. Jiang, "False Rate Analysis of Bloom Filter Replicas in Distributed Systems," Proc. Int'l Conf. Parallel Processing (ICPP '06), pp. 255-262, 2006.
- [3] S. Dharmapurikar, P. Krishnamurthy, and D.E. Taylor, "Longest Prefix Matching Using Bloom Filters," Proc. ACM SIGCOMM, pp. 201-212, 2003.
- [4] L. Fan, P. Cao, J. Almeida, and A. Broder, "Summary Cache: A Scalable Wide-Area Web Cache Sharing Protocol," IEEE/ACM Trans. Networking, vol. 8, no. 3, pp. 281-293, June 2000.
- [5] B. Xiao and Y. Hua, "Using Parallel Bloom Filters for Multi-Attribute Representation on Network Services," IEEE Trans. Parallel and Distributed Systems, vol. 21, no. 1, pp. 20-32, Jan. 2010.
- [6] Y. Hua, Y. Zhu, H. Jiang, D. Feng, and L. Tian, "Scalable and Adaptive Metadata Management in Ultra Large-scale File Systems," Proc. 28th Int'l Conf. Distributed Computing Systems (ICDCS '08), pp. 403-410, 2008.
- [7] D. Guo, J. Wu, H. Chen, and X. Luo, "Theory and Network Application of Dynamic Bloom Filters," Proc. IEEE INFOCOM, 2006.
- [8] 联合多维布鲁姆过滤器查询算法 谢鲲 1,4,秦拯 2,文吉刚 1,张大方 2,谢高岗 3

附录

CMDBF 程序:

```
//BF.h
#pragma once
#include <vector>
using namespace std;
                   //filter length
const int k = 8;
vector<int>Addr(k);
vector<int> CAddr(k);
class BloomFilter {
private:
     vector<int>BF;
public:
     BloomFilter();
     void setValue(int pos);
     int getValue(int pos);
};
BloomFilter::BloomFilter(){}
void BloomFilter::setValue(int pos) {
     BF[pos] = 1;
}
int BloomFilter::getValue(int pos) {
    return BF[pos];
//CMDBF.h
#pragma once
#include "BF.h"
#include <iostream>
class Mutiple Dimensions BloomFilter {
public:
     BloomFilter MDBF[2];
     Mutiple Dimensions BloomFilter(int dimensions);
     BloomFilter GetBF(int i);
};
Mutiple_Dimensions_BloomFilter::Mutiple_Dimensions_BloomFilter(int dimensions) {
     for (int i = 0; i < dimensions; i++) {
         MDBF[i] = BloomFilter();
}
BloomFilter Mutiple_Dimensions_BloomFilter::GetBF(int i) {
     return MDBF[i];
```

```
//query.h
#pragma once
#include "BF.h"
#include "CMDBF.h"
#include "hashkernel.h"
#include <iostream>
       query index(vector<int>
                                              Mutiple Dimensions BloomFilter*
                                                                                    CMDBF,
bool
                                   element,
BloomFilter* CBF);
bool
       query index(vector<int>
                                   element,
                                              Mutiple Dimensions BloomFilter*
                                                                                    CMDBF,
BloomFilter* CBF) {
    for (int i = 0; i < 2; i++) {
         BloomFilter BF = CMDBF->GetBF(i);
                                     //简易测试为2个哈希函数
         for (int j = 0; j < x; j++) {
              switch (j) {
              case 0:
                   Addr[j] = hash 1(element[i]);
                   break;
              case 1:
                   Addr[j] = hash 1(element[i]);
                   break;
              }
              if(BF.getValue(Addr[j]) == 0)
                   return false;
              CAddr[j] = CAddr[j] \wedge Addr[j];
    for (int j = 0; j < x; j++) {
                                //k?
         if (CBF->getValue(CAddr[j]) == 0)
              return false;
    return true;
//insert.h
#pragma once
#include "BF.h"
#include "CMDBF.h"
#include "hashkernel.h"
#include <iostream>
int insert(vector<int> element, Mutiple Dimensions BloomFilter* CMDBF, BloomFilter* CBF);
int insert(vector<int> element, Mutiple Dimensions BloomFilter* CMDBF, BloomFilter* CBF) {
    for (int i = 0; i < 2; i++) {
                                     //简易测试为2个哈希函数
         for (int j = 0; j < x; j++) {
              switch (j) {
              case 0:
                   Addr[j] = hash 1(element[i]);
                   break;
              case 1:
```

```
Addr[j] = hash 1(element[i]);
                  break;
              (CMDBF->GetBF(i)).setValue(Addr[j]);
              CAddr[j] = CAddr[j] ^ Addr[j];
     }
    for (int j = 0; j < x; j++) {
         CBF->setValue(CAddr[j]);
    return 0;
//hashkernel.h
#pragma once
const int x = 2;
                  //num of hash function
//如何根据循环计数器 i,来对应调用 hashi
int hash_1(int val) {
    return val % 8;
int hash 2(int val) {
    return (val * 2 + 3) % 8;
```

```
//main.cpp
#pragma once
#include "BF.h"
#include "CMDBF.h"
#include "hashkernel.h"
#include "insert.h"
#include "query.h"
#include <iostream>
int main() {
    bool test = true;
    cout << test << endl:
    vector<int> element;
                            //维数
    Mutiple Dimensions BloomFilter* CMDBF = new Mutiple Dimensions BloomFilter(2);
    BloomFilter* CBF = new BloomFilter();
                                              //异或过滤器
    for (int j = 0; j < 2; j++) {
         int i = 0;
         while (i<2) {
              int temp = 0;
              cin >> temp;
              element.push_back(temp);
              i++;
         element.clear();
```