A、B 班 9-26,27,29 作业分析

9-26 作业: 习题二: 27.28.29.31.32.34

27 很多同学将式子化成 (2*E-A**)*BA*=8*E*, 先求 *A**, 再求(2*E-A**)⁻¹, 再求 *A*⁻¹解出 *B*, 也可以如下:

解: 易知 |A|=-2,A 可逆且有 $AA^*=|A|E=-2E$. 对 $A^*BA=2BA-8E$ 左乘 A,右乘 A^{-1} 得

*AA***BAA*⁻¹=2*ABAA*⁻¹-8*AA*⁻¹, 即-2*B*=2*AB*-8*E*, 进一步有(*A*+*E*)*B*=4*E*,

于是
$$B = (A+E)^{-1}4E = 4(A+E)^{-1} = 4 \begin{pmatrix} 2 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}^{-1} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -4 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

28(1) 有些同学使用了 A^{-1} 得到(A-E) BA^{-1} =E,从而有(A-E) $^{-1}$ = BA^{-1} ,有错,如 A=B=O 时没有 A^{-1} ,可如下证明:解:(1) 由 A+B=AB 得到 (A-E)(B-E)=E,故 A-E 可逆,逆矩阵为 B-E.

(2) 由(1)可得 A-E=(B-E)⁻¹, 故

$$A = E + (B - E)^{-1} = E + \begin{pmatrix} 0 & -3 & 0 \\ 2 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}^{-1} = E + \begin{pmatrix} 0 & 1/2 & 0 \\ -1/3 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1/2 & 0 \\ -1/3 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}.$$

也可用: A(B-E)=B, 故 $A=B(B-E)^{-1}$ 计算 A, 计算要复杂一些.

29 有些同学先算出 $(4E-A)^{T}(4E-A) = \begin{pmatrix} 11 & 6 & -1 \\ 6 & 20 & -4 \\ -1 & -4 & 1 \end{pmatrix}$,再计算行列式得到 36,计算复杂了,可如下解:

解:
$$(A,E) = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ -1 & 2 & 0 & 0 & 1 & 0 \\ 1 & 4 & 3 & 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1/2 & 1/2 & 0 \\ 0 & 0 & 3 & -1 & -2/3 & 1/3 \end{pmatrix}$$
, 故 $A^{-1} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 1/2 & 1/2 & 0 & 0 \\ -1 & -2/3 & 1/3 \end{pmatrix}$.

最后有:
$$|(4E-A)^{T}(4E-A)| = |(4E-A)^{T}| \times |4E-A| = |4E-A|^{2} = \begin{vmatrix} 3 & 0 & 0 \\ 1 & 2 & 0 \\ -1 & -4 & 1 \end{vmatrix} = 6^{2} = 36$$

34 有很多同学先求 $B=A^{-1}CA^{-1}$, 再求 B^{-1} , 再求 B^* , 可更简单地计算, 如下:

解:由 ABA=C 可得 |A||B||A|=|C|=1,而 |A|=-4,故 |B|=1/16,且 $B=A^{-1}CA^{-1}$,

$$\overset{\text{dd}}{\mathbb{D}} B^{-1} = AC^{-1}A = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 3 \\ 0 & 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 3 \\ 0 & 1 & -1 \end{pmatrix} = \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & 1 \\ 1 & 0 & 4 \end{pmatrix}, \quad \overset{\text{\mathbb{D}}}{\mathbb{D}} B^* = \left| B \right| B^{-1} = \frac{1}{16} \begin{pmatrix} 1 & -1 & 1 \\ 2 & 3 & 1 \\ 1 & 0 & 4 \end{pmatrix}$$

其余一些作业:

- 31(1)(2)用行变换(A,E)→(E,A⁻¹)求得 A⁻¹.
- 32(1)用行变换 $(A,B) \rightarrow (E,A^{-1}B)$ 求得 $X=A^{-1}B$,或行变换求 A^{-1} 再求 $X=A^{-1}B$.

(2)用列变换
$$\begin{pmatrix} A \\ B \end{pmatrix}$$
 $\rightarrow \begin{pmatrix} E \\ BA^{-1} \end{pmatrix}$ 求得 $X=BA^{-1}$,或行变换解 $A^{\mathsf{T}}X^{\mathsf{T}}=B^{\mathsf{T}}$ 求 X^{T} 得到 X ,或行变换求 A^{-1} 再求 $X=BA^{-1}$.

9-27 作业: 习题二: 45,46,47,48,50,51,52

45 该题有两种解法,如下:

解(常规): 设 $\beta=x_1\alpha_1+x_2\alpha_2+x_3\alpha_3$,对应方程组 $\begin{cases} x_1=2, \\ 2x_1+2x_2=2, \end{cases}$,解得: $x_1=2, x_2=-1, x_3=1$,故 $\beta=2\alpha_1-\alpha_2+\alpha_3$.

解法二: 易知 β =(2,2,6)=2(1,0,0)+(0,2,0)+2(0,0,3)=2(α_1 - α_2)+(α_2 - α_3)+2 α_3 =2 α_1 - α_2 + α_3 .

46 该题有 3 种解法,如下:

解: $\alpha_1,\alpha_2,\alpha_3$ 线性无关 \Leftrightarrow $|A| = \begin{pmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{pmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & t \end{vmatrix} = t - 5 \neq 0$. 故 t = 5 线性相关, $t \neq 5$ 线性无关.

t=5 时设 α_3 = $x_1\alpha_1$ + $x_2\alpha_2$,解对应方程组 $\begin{cases} x_1+x_2=1, \\ x_1+2x_2=3, \end{cases}$ 得 x_1 =-1, x_2 =2,即有组合关系 α_3 =- α_1 +2 α_2 .

 $A = (\alpha_1^{\mathsf{T}}, \alpha_2^{\mathsf{T}}, \alpha_3^{\mathsf{T}}) = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 3 & t \end{pmatrix} \xrightarrow{r_2 - r_1} \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 2 & t - 1 \end{pmatrix} \xrightarrow{r_1 - r_2} \begin{pmatrix} 1 & 0 & -1 \\ 0 & 1 & 2 \\ 0 & 0 & t - 5 \end{pmatrix}.$ 解法二(用到向量组相关性与矩阵秩的关系):

故 t=5 时 $\mathbf{r}(A)=2<3$, $\alpha_1^{\mathsf{T}},\alpha_2^{\mathsf{T}},\alpha_3^{\mathsf{T}}$ 线性相关,即 $\alpha_1,\alpha_2,\alpha_3$ 线性相关, $t\neq 5$ 时 $\mathbf{r}(A)=3$, $\alpha_1,\alpha_2,\alpha_3$ 线性无关 从上可知 t=5 时, $\alpha_3=-\alpha_1+2\alpha_2$.

解法三: 设 $k_1\alpha_1+k_2\alpha_2+k_3\alpha_3=\theta$,对应方程组 $\begin{cases} k_1+k_2+k_3=0,\\ k_1+2k_2+3k_3=0,\\ k_1+3k_2+tk_3=0, \end{cases}$ 化简后得 $\begin{cases} k_1=k_3,\\ k_2=-2k_3,\\ 5k_3=tk_3, \end{cases}$

当 $t \neq 5$ 时,有 $k_1 = k_2 = k_3 = 0$, $\alpha_1, \alpha_2, \alpha_3$ 线性无关.

当 t=5 时,有非零解,取 $k_3=1$,得 $k_1=1,k_2=-2,k_3=1$,于是 $\alpha_1-2\alpha_2+\alpha_3=\theta$, $\alpha_1,\alpha_2,\alpha_3$ 线性相关,且有 $\alpha_3=-\alpha_1+2\alpha_2$.

47 有同学将 α_i 、 β_i 看成 3 维列向量后用行列式 $|\beta_1,\beta_2,\beta_3|=|\alpha_1,\alpha_2,\alpha_3||P|$ 判断,向量不一定是 3 维的,这样有错,可如下: 解: $k_1\beta_1+k_2\beta_2+k_3\beta_3=\theta$, 即 $k_1(p\alpha_1+\alpha_2+\alpha_3)+k_2(\alpha_1+t\alpha_2+2t\alpha_3)+k_3(\alpha_1+\alpha_2+\alpha_3)=\theta$,

重新整理得 $(pk_1+k_2+k_3)\alpha_1+(k_1+tk_2+k_3)\alpha_2+(k_1+2tk_2+k_3)\alpha_3=\theta$,

因为 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,故系数全为零,即 $\begin{cases} pk_1+k_2+k_3=0,\\ k_1+tk_2+k_3=0,\\ k_1+2tx_2+k_3=0. \end{cases}$

故 β_1,β_2,β_3 线性相关⇔方程组有非零解⇔系数矩阵 $\begin{vmatrix} p & 1 & 1 \\ 1 & t & 1 \\ 1 & 2t & 1 \end{vmatrix} = -t(p-1) = 0$

于是当 t=0 或 p=1 时, β_1,β_2,β_3 线性相关;当 $t\neq 0$ 且 $p\neq 1$ 时, β_1,β_2,β_3 线性无关。解法二:不妨考虑列向量,因为 $\alpha_1,\alpha_2,\alpha_3$ 线性无关,故有 $(\beta_1,\beta_2,\beta_3)$ $\begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = (\alpha_1,\alpha_2,\alpha_3) \begin{pmatrix} p & 1 & 1 \\ 1 & t & 1 \\ 1 & 2t & 1 \end{pmatrix} \begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = (\alpha_1,\alpha_2,\alpha_3) \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix} = \theta.$

考虑方程组 $\begin{pmatrix} p & 1 & 1 \\ 1 & t & 1 \\ 1 & 2t & 1 \end{pmatrix}\begin{pmatrix} k_1 \\ k_2 \\ k_3 \end{pmatrix} = \theta$. 当系数行列式 $D = \begin{vmatrix} p & 1 & 1 \\ 1 & t & 1 \\ 1 & 2t & 1 \end{vmatrix} = -t(p-1) = 0$ 时方程组有非零解, β_1,β_2,β_3 线性相关;

当 $D=-t(p-1)\neq 0$ 时,方程组只有零解, β_1,β_2,β_3 线性无关.

解法三: 设 $k_1\beta_1+k_2\beta_2+k_3\beta_3=\theta$,代入 $\beta_1=p\alpha_1+\alpha_2+\alpha_3$, $\beta_2=\alpha_1+t\alpha_2+2t\alpha_3$, $\beta_3=\alpha_1+\alpha_2+\alpha_3$,

经整理得 $(pk_1+k_2+k_3)\alpha_1+(k_1+tk_2+k_3)\alpha_2+(k_1+2tk_2+k_3)\alpha_3=\theta$,

对应方程组
$$\begin{cases} pk_1 + k_2 + k_3 = 0, \\ k_1 + tk_2 + k_3 = 0, \\ k_1 + 2tk_2 + k_3 = 0, \end{cases}$$
 化简后得
$$\begin{cases} (p-1)tk_1 = 0 \\ k_2 = -(p-1)k_1, \\ k_3 = -k_1. \end{cases}$$

当 $(p-1)t\neq 0$ 时,有 $k_1=k_2=k_3=0$, β_1,β_2,β_3 线性无关.

当(p-1)t=0 时,有非零解,取 k_1 =1,得 k_1 =1, k_2 =1-p, k_3 =-1,于是 β_1 +(1-p) β_2 - β_3 = θ , β_1 , β_2 , β_3 线性相关 .

- 51 有同学直接由条件得到 γ 可由 $\alpha_1,...,\alpha_s,\beta$ 唯一线性表示,缺少步骤,可如下证明:
- 证: $\alpha_1,...,\alpha_s$ 线性无关且 β 不能由 $\alpha_1,...,\alpha_s$ 表示,故 $\alpha_1,...,\alpha_s,\beta$ 线性无关,又因为 $\alpha_1,...,\alpha_s$, β , γ 线性相关, 故 γ 可由 $\alpha_1,...,\alpha_s$, β 唯一线性表示. 同理 β 可由 $\alpha_1,...,\alpha_s$, γ 唯一线性表示. 两向量组可相互表示, 故等价

- 52 有些同学证明有错,可如下证明:
- 证:若有一个向量 α_i 可由 $\beta,\alpha_1,\alpha_2,\dots,\alpha_{i-1}$ 线性表示,即

$$\alpha_j = k\beta + k_1\alpha_1 + k_2\alpha_2 + \dots + k_{j-1}\alpha_{j-1}$$
,则 $k \neq 0$,否则 $\alpha_1, \alpha_2, \dots, \alpha_j$ 线性相关,

从而 $\alpha_1,\alpha_2,\dots,\alpha_s$ 线性相关,矛盾. 故有

$$\beta = -\frac{k_1}{k}\alpha_1 - \frac{k_2}{k}\alpha_2 - \dots - \frac{k_{j-1}}{k}\alpha_{j-1} + \frac{1}{k}\alpha_j = \lambda_1\alpha_1 + \dots + \lambda_j\alpha_j, \lambda_j = \frac{1}{k} \neq 0.$$
 (1)

假设 α_r 可由 $\beta, \alpha_1, \alpha_2, \dots, \alpha_{r-1}$ 线性表示, r > j, 则有

$$\beta = \mu_1 \alpha_1 + \dots + \mu_r \alpha_r + \dots + \mu_r \alpha_r, \mu_r \neq 0.$$
 (2)

(2)-(1)得到

$$(\mu_1 - \lambda_1)\alpha_1 + \dots + (\mu_j - \lambda_j)\alpha_j + \dots + \mu_r\alpha_r, \mu_r \neq 0.$$

于是 $\alpha_1,\alpha_2,\cdots,\alpha_n$ 线性相关,矛盾. 故最多有一个向量可由其前面的向量表示

其余一些作业:

- 48 设 $A=(\alpha_1,\alpha_2,...,\alpha_n)$,则有 $D=|A^TA|=|A|^2\neq 0\Leftrightarrow |A|\neq 0\Leftrightarrow A$ 列 $\alpha_1,\alpha_2,...,\alpha_n$ 线性无关.
- 50 添加 β 后向量个数>维数,故相关,而 $\alpha_1,\alpha_2,...,\alpha_n$ 线性无关,故 β 可由 $\alpha_1,\alpha_2,...,\alpha_n$ 唯一表示.

9-29 作业: 习题二: 49,53(3),54,55,56,57,58,59,60

49 该题有两种证法,如下:

证: $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times n}$, AB = E, 故有 $n = r(E) = r(AB) \le r(B) \le n$, 即 r(B) = n, 等于 B 的列数,于是 B 的列向量无关. 证法二: 设 $B = (\beta_1, \beta_2, \dots, \beta_n)$,则 $k_1\beta_1 + k_2\beta_2 + \dots + k_n\beta_n = B\xi = \theta$,其中 $\xi = (k_1, k_2, \dots, k_n)^T$.

 $B\xi=\theta$ 两边左乘 A 得 $\xi=E\xi=AB\xi=\theta$,即 $k_1=k_2=...=k_n=0$,于是 $\beta_1,\beta_2,...,\beta_n$ 线性无关,即 B 的列向量线性无关

53(3) 有同学用初等列变换来做,能得到秩,但是很难求极大无关组,应该用行变换,如下:

解:
$$(\alpha_1,\alpha_2,\alpha_3,\alpha_4) = \begin{pmatrix} 1 & 3 & 5 & 2 \\ 3 & 5 & 7 & 2 \\ -1 & -3 & -5 & -2 \\ 2 & -1 & -4 & -3 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 3 & 5 & 2 \\ 0 & -4 & -8 & -4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
 故 $r\{\alpha_1,\alpha_2,\alpha_3,\alpha_4\}=2$, α_1,α_2 为一个极大无关组.

54 有同学只化简 $(\alpha_1,\alpha_2,\alpha_3,\alpha_4,\alpha_5)$ 到行梯形,那样无法得到其余向量的线性表达式,要化到行简化梯形,可如下:

$$\widetilde{\mathbb{R}}: (\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}, \alpha_{5}) = \begin{pmatrix}
1 & 1 & 1 & 4 & -3 \\
1 & -1 & 3 & -2 & -1 \\
2 & 1 & 3 & 5 & -5 \\
3 & 1 & 5 & 6 & -7
\end{pmatrix} \xrightarrow{r} \begin{pmatrix}
1 & 1 & 1 & 4 & -3 \\
0 & -2 & 2 & -6 & 2 \\
0 & -1 & 1 & -3 & 1 \\
0 & -2 & 2 & -6 & 2
\end{pmatrix} \xrightarrow{r} \begin{pmatrix}
1 & 0 & 2 & 1 & -2 \\
0 & 1 & -1 & 3 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{pmatrix},$$

故 $\{\alpha_1,\alpha_2\}$ 为一个极大无关组,且有 $\alpha_3=2\alpha_1-\alpha_2$, $\alpha_4=\alpha_1+3\alpha_2$, $\alpha_5=-2\alpha_1-\alpha_2$

55 一般同学求解步骤是计算 $\{\alpha_1,\alpha_2,\alpha_3\}$ 的秩为 2,再计算 $\{\beta_1,\beta_2,\beta_3\}$ 的秩等于 2 得到 a=3b,再利用 β_3 可被表示求出 a、b. 其中的第 1 步和第 3 步可以合并,见如下:

$$\mathbb{X}_{(\beta_{1},\beta_{2},\beta_{3})} = \begin{pmatrix} 0 & a & 5 \\ 1 & 2 & 1 \\ -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & -1 & 0 \\ 0 & 3 & 1 \\ 0 & 0 & 5 - a/3 \end{pmatrix}, \quad \mathbb{E}_{r\{\beta_{1},\beta_{2},\beta_{3}\}=r\{\alpha_{1},\alpha_{2},\alpha_{3}\}=2}, \quad \text{故 } a=15.$$

56 该题有两种解法,如下:

$$\widehat{\mathbb{H}}: \ |\alpha_{1}, \alpha_{2}, \alpha_{3}| = \begin{vmatrix} 1 & 1 & 1 \\ 0 & 1 & -1 \\ 2 & 3 & a+2 \end{vmatrix} = a+1, \ |\beta_{1}, \beta_{2}, \beta_{3}| = \begin{vmatrix} 1 & 2 & 2 \\ 2 & 1 & 1 \\ a+3 & a+6 & a+4 \end{vmatrix} = 6 \neq 0.$$

- (1) 当 $a \neq -1$ 时, $r\{\alpha_1,\alpha_2,\alpha_3\}=r\{\beta_1,\beta_2,\beta_3\}=3=维数,可相互表示,故等价$
- (2) 当 a=-1 时, $r\{\alpha_1,\alpha_2,\alpha_3\}<3=r\{\beta_1,\beta_2,\beta_3\}$,秩不同,不等价.

解法二:
$$(\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3) = \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -1 & 2 & 1 & 1 \\ 2 & 3 & a+2 & a+3 & a+6 & a+4 \end{pmatrix} \xrightarrow{r} \begin{pmatrix} 1 & 1 & 1 & 1 & 2 & 2 \\ 0 & 1 & -1 & 2 & 1 & 1 \\ 0 & 0 & a+1 & a-1 & a+1 & a-1 \end{pmatrix}.$$

- (1) 当 a=-1 时,从行梯形阵可知 β_1 不能由 α_1 , α_2 , α_3 表示,故 A, B 不等价.
- (2) 当 $a\neq -1$ 时, α_1 , α_2 , α_3 为向量组{ α_1 , α_2 , α_3 , β_1 , β_2 , β_3 }的一个极大无关组,而 $|\beta_1$, β_2 , $\beta_3|=6\neq 0$, 故 β_1 , β_2 , β_3 也为向量组 $\{\alpha_1, \alpha_2, \alpha_3, \beta_1, \beta_2, \beta_3\}$ 的一个极大无关组,故 A, B 等价

57 该题有 4 种证法,可如下:

证:由题目条件知 $\beta_1,\beta_2,...,\beta_n$ 可由 $\alpha_1,\alpha_2,...,\alpha_n$ 线性表示,并且有 $\alpha_1=\beta_1$, $\alpha_2=\beta_2-\beta_1$,..., $\alpha_n=\beta_n-\beta_{n-1}$,故 $\alpha_1,\alpha_2,...,\alpha_n$ 和 $\beta_1,\beta_2,...,\beta_n$ 可相互表示,两组向量等价,从而有相同的秩.

证法二: 不妨考虑列向量.令
$$P = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ & & 1 \end{pmatrix}$$
,则有 $(\beta_1,\beta_2,...,\beta_n) = (\alpha_1,\alpha_2,...,\alpha_n)P$,而 $|P| = 1 \neq 0$,故 P 可逆,两边右乘 P^1 得:

 $(\beta_1,\beta_2,...,\beta_n)$ P^{-1} = $(\alpha_1,\alpha_2,...,\alpha_n)$, $\alpha_1,\alpha_2,...,\alpha_n$ 和 $\beta_1,\beta_2,...,\beta_n$ 可相互表示,两组向量等价,从而有相同的秩.

证法三: 不妨考虑列向量. 令
$$P = \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & \cdots & 1 \\ & & \ddots & \vdots \\ & & & 1 \end{pmatrix}$$
, $B = (\beta_1, \beta_2, \dots, \beta_n)$, $A = (\alpha_1, \alpha_2, \dots, \alpha_n)$, 则有 $B = AP$. 因为 $P = 1 \neq 0$,故 P 可逆,故 $P = 1 \neq 0$,故 $P = 1 \neq 0$,这 $P = 1 \neq 0$,就 P

证法四:不妨考虑列向量.
$$(\beta_1,\beta_2,\cdots,\beta_n)=(\alpha_1,\alpha_1+\alpha_2,\cdots,\alpha_1+\alpha_2+\cdots+\alpha_n)$$
 $\xrightarrow{c_1-c_{i_1},i=n,n-1,\cdots,2}$ $\xrightarrow{\alpha_1,\alpha_2,\cdots,\alpha_n}$ 列变换不改变矩阵的秩,故 $\mathbf{r}(\beta_1,\beta_2,\ldots,\beta_n)=\mathbf{r}(\alpha_1,\alpha_2,\ldots,\alpha_n)$,即 $\mathbf{r}\{\beta_1,\beta_2,\ldots,\beta_n\}=\mathbf{r}\{\alpha_1,\alpha_2,\ldots,\alpha_n\}$.

- 58 有同学由秩相等直接得到 β 可由 $\alpha_1,\alpha_2,...,\alpha_r$ 表示,缺少步骤,可如下:
- 证:不妨设 $\alpha_1,\alpha_2,...,\alpha_k$ 为向量组 $\alpha_1,\alpha_2,...,\alpha_r$ 的极大无关组,

因为 $r\{\alpha_1,\alpha_2,...,\alpha_r\}=r\{\alpha_1,\alpha_2,...,\alpha_r,\beta\}=k$,故 $\alpha_1,\alpha_2,...,\alpha_k$ 也是向量组 $\alpha_1,\alpha_2,...,\alpha_r,\beta$ 的极大无关组,

故 β 可由 $\alpha_1,\alpha_2,...,\alpha_k$ 线性表示,从而 $\alpha_1,\alpha_2,...,\alpha_r$ 与 $\alpha_1,\alpha_2,...,\alpha_r$,可相互表示,于是两向量组等价.

证法二:不妨设 $\alpha_1,\alpha_2,...,\alpha_k$ 为向量组 $\alpha_1,\alpha_2,...,\alpha_r$ 的极大无关组,

因为 $r\{\alpha_1,\alpha_2,...,\alpha_r\}=r\{\alpha_1,\alpha_2,...,\alpha_r,\beta\}=k$,故 $\alpha_1,\alpha_2,...,\alpha_k$ 也是向量组 $\alpha_1,\alpha_2,...,\alpha_r,\beta$ 的极大无关组, 于是 $\alpha_1,\alpha_2,...,\alpha_k$ 与 $\alpha_1,\alpha_2,...,\alpha_r$ 和 $\alpha_1,\alpha_2,...,\alpha_r,\beta$ 都等价,故 $\alpha_1,\alpha_2,...,\alpha_r$ 与 $\alpha_1,\alpha_2,...,\alpha_r,\beta$ 等价.

59 该题有两种证法,可如下:

证: $\alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_t$ 可表示 α_1,\ldots,α_s ,故 $r_1=r\{\alpha_1,\ldots,\alpha_s\}\leq r\{\alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_t\}=r_3$,同理 $r_2\leq r_3$,于是 $\max\{r_1,r_2\}\leq r_3$.设 $\alpha_1,\ldots,\alpha_{r_1}$ 和 $\beta_1,\ldots,\beta_{r_2}$ 分别为 α_1,\ldots,α_s 和 β_1,\ldots,β_t 的极大无关组,则 $\alpha_1,\ldots,\alpha_{r_1},\beta_1,\ldots,\beta_{r_2}$ 可表示 $\alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_t$,故 $r_3=r\{\alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_t\}\leq r\{\alpha_1,\ldots,\alpha_{r_1},\beta_1,\ldots,\beta_{r_2}\}\leq$ 向量个数 r_1+r_2 .

证法二:不妨考虑列向量. 设 $A=(\alpha_1,\ldots,\alpha_s),B=(\beta_1,\ldots,\beta_t),(A,B)=(\alpha_1,\ldots,\alpha_s,\beta_1,\ldots,\beta_t),$ 则 $\mathbf{r}(A)=r_1,\mathbf{r}(B)=r_2,\mathbf{r}(A,B)=r_3.$ 显然 A 的列秩 \leq (A,B)的列秩,故 r_1 = $\mathbf{r}(A)\leq\mathbf{r}(A,B)$ = r_3 .同理 $r_2\leq r_3$,故 $\max\{r_1,r_2\}\leq r_3$.

同样地行秩有
$$r(A,B) \le r \begin{pmatrix} A & B \\ O & B \end{pmatrix}$$
,故 $r_3 = r(A,B) \le r \begin{pmatrix} A & B \\ O & B \end{pmatrix} = r \begin{pmatrix} E & E \\ O & E \end{pmatrix} \begin{pmatrix} A & O \\ O & B \end{pmatrix} = r \begin{pmatrix} A & O \\ O & B \end{pmatrix} = r(A) + r(B) = r_1 + r_2$:

60 有同学证明过程有错,也有同学没有做,可如下:

证:因为A组能由B组线性表示,故B的极大无关组也是 $\{A,B\}$ 的极大无关组,于是 $\mathbf{r}(A,B)=\mathbf{r}(B)$.

又 r(A)=r(B)=r(A,B),故 A 组的极大无关组也是 $\{A,B\}$ 的极大无关组,故 B 组也能由 A 组表示,于是 A 与 B 等价. 证法二:不妨设向量为列向量.因为向量组 A 与向量组 B 的秩相等,设为 r,并设 $\alpha_1,\alpha_2,\ldots,\alpha_r$ 为 A 组的一个极大无 关组, $\beta_1,\beta_2,...,\beta_r$ 为 B 组的一个极大无关组.

又因为 A 组能由 B 组线性表示,故 $\beta_1,\beta_2,\ldots,\beta_r$ 可表示 $\alpha_1,\alpha_2,\ldots,\alpha_r$,于是有 $(\alpha_1,\alpha_2,\ldots,\alpha_r)=(\beta_1,\beta_2,\ldots,\beta_r)P$,其 中P为r阶矩阵,且有 $r=r(\alpha_1,\alpha_2,\ldots,\alpha_r)=r((\beta_1,\beta_2,\ldots,\beta_r)P)\leqslant r(P)\leqslant r$,故r(P)=r,即P满秩,于是P可逆, 有 $(\beta_1,\beta_2,...,\beta_r)=(\alpha_1,\alpha_2,...,\alpha_r)P^{-1}$. 即两个极大无关组可相互表示,则等价,于是 A 组和 B 组等价.