Math 237A HW 1

Zih-Yu Hsieh

September 28, 2025

ND (b)

Problem 1

Lazarsfeld Problem Set 1 (1):

Let k be an algebraically closed field, and let $M_{n\times n}=\mathbb{A}^{n^2}(k)$ be the affine space of all $n\times n$ n matrices with entries in k. Determine which of the following subsets of $M_{n\times n}$ are algebraic:

- (a) $\mathrm{SL}(n):=\{A\in M_{n\times n}|\det(A)=1\}.$ (b) $\mathrm{Diag}(n):=\{A\in M_{n\times n}\mid A \text{ can be diagonalized}\}.$
- (c) $\text{Nilp}(n) := \{ A \in M_{n \times n} | A \text{ is nilpotent} \}.$

Solution:

(a): Given $\det: M_{n \times n} \to k$, it is in fact a polynomial function in $k[x_{11},...,x_{nn}]$ (polynomial ring with all entries of $n \times n$ matrix as indeterminates). Which, if consider $\det -1 \in$ $k[x_{11},...,x_{nn}]$, for any $A\in M_{n\times n}$, we have $\det(A)-1=0 \iff A\in \mathrm{SL}(n)$. This shows that $SL(n) = Z(\det -1)$, the algebraic set corresponding to the polynomial $\det -1$.

(b):

(c): First, recall that for any matrix $A \in M_{n \times n}(k)$ (viewed as a linear operator on vector space k^n), its minimal polynomial $m_A(x) \in k[x]$ has $\deg(m_A) \leq n = \dim(k^n)$.

On the other hand, if A is nilpotent, that means $A^k = 0$ for some $k \in \mathbb{N}$. Hence, A is a matrix satisfying the polynomial $x^k \in k[x]$, showing that the minimal polynomial $m_A(x)$ divides x^k , or $m_{A(x)}=x^l$ for some $l\in\mathbb{N}$, and $l\leq n$ based on the previous conditions. Hence, for all $A\in\mathbb{N}$ Nilp(n), we have $A^n = 0$ (since A has minimal polynomial $m_A(x) = x^l$ with $l \le n$, so $A^n = n$ $A^{n-l}A^l = A^{n-1} \cdot 0 = 0$; conversely, if $A^n = 0$ by definition we have $A \in \text{Nilp}(n)$. Therefore, we conclude that $A \in \text{Nilp}(n) \iff A^n = 0$.

Now, let $X = \begin{pmatrix} x_{11} & x_{12} & \dots & x_{1n} \\ x_{21} & x_{22} & \dots & x_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{n1} & x_{n2} & \dots & x_{nn} \end{pmatrix}$ be the matrix of indeterminates, and consider the matrix $X^n = \begin{pmatrix} f_{11} & f_{12} & \dots & f_{1n} \\ f_{21} & f_{22} & \dots & f_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ f_{n1} & f_{n2} & \dots & f_{nn} \end{pmatrix}$ (where each $f_{ij} \in k[x_{11}, \dots, x_{nn}]$), we claim that $\mathrm{Nilp}(n) = Z\left(\left(f_{ij}\right)_{1 \leq i, j \leq n}\right)$, the algebraic set generated by all the entries of X^n .

For all $A \in M_{n \times n}$, plug X = A into the polynomials, we get that A^n has each entry $a_{ij} = f_{ij}(A)$ (where the variables are plugged in with entries of A), hence the previous statement states that $A \in \operatorname{Nilp}(n) \Longleftrightarrow A^n = 0 \Longleftrightarrow a_{ij} = f_{ij}(A) = 0$ for all $1 \le i, j \le n$. Therefore, the algebraic set $Z\left(\left(f_{(ij)_{1 \le i, j \le n}}\right)\right) = \operatorname{Nilp}(n)$ (since satisfying these equations is equivalent to the matrix being nilpotent).

D

Problem 2

Lazarsfeld Problem Set 1 (4):

Let $n \geq 2$, and let $f \in k[x_1, ..., x_n]$ be a non-constant polynomial over an algebraically closed field k. Show that $X = \{f = 0\} \subseteq \mathbb{A}^n$ is infinite. When $k = \mathbb{C}$, show that X is non-compact in the classical topology.

Solution: For $n\geq 2$, one can view $k[x_1,...,x_n]=R[x_n]$ (where $R=k[x_1,...,x_{n-1}]$, and R is not a field, since $n-1\geq 1$, so there are indeterminates used in R). Then, for all $(a_1,...,a_{n-1})\in \mathbb{A}^{n-1}$, one can consider $f(a_1,...,a_{n-1},x_n)\in k[x_n]$ (since plugging in $a_1,...,a_{n-1}$ for indeterminates $x_1,...,x_{n-1},f$ is left with only one indeterminate x_n), then because k is algebraically closed, $f(a_1,...,a_{n-1},x_n)\in k[x_n]$ has a solution, say $a_n\in k$. Then, $(a_1,...,a_{n-1},a_n)\in \mathbb{A}^n$ is a solution of $f(x_1,...,x_n)$.

Then, since k is algebraically closed (in particular infinite), then $\mathbb{A}^{n-1}=k^{n-1}$ (as set) is infinite. Hence, since for each $(a_1,...,a_{n-1})\in\mathbb{A}^{n-1}$, there exists $a_n\in k$ such that $(a_1,...,a_{n-1},a_n)\in X$ (being a solution to f), we conclude that X is infinite.

Now, when $k=\mathbb{C}$, to show that X is non-compact in classical topology, it suffices to show that it's not bounded (since in \mathbb{C}^n , with Heine-Borel Theorem it guarantees that X is compact iff it is closed and bounded). For all real number M>0, choose $a_1=\ldots=a_{n-1}=M\in\mathbb{C}$, since there exists $a_n\in\mathbb{C}$ such that $f(a_1,\ldots,a_{n-1},a_n)=0$, we have $(a_1,\ldots,a_{n-1},a_n)\in X$. Which, if consider its norm, we get:

$$\|(a_1,...,a_{n-1},a_n)\| = \sqrt{|a_1|^2 + ... + |a_{n-1}|^2 + |a_n|^2} = \sqrt{(n-1)\cdot M^2 + |a_n|^2} \geq M\sqrt{n-1} \geq M\sqrt{n-1}$$

(Note: The above requires $n \ge 2$, or $(n-1) \ge 1$).

Hence, for all M > 0, one can choose $(a_1, ..., a_{n-1}, a_n) \in X$, such that $\|(a_1, ..., a_{n-1}, a_n)\| \ge M$, showing that X is in fact not bounded, hence not compact in classical topology of \mathbb{C}^n .

Problem 3

Hartshorne Chapter 1 Exercise 1.1 (a),(b):

- (a) Let Y be the plane curve $y=x^2$ (i.e. Y is the zero set of the polynomial $f=y-x^2$). Show that A(Y) (or k[Y]) is isomorphic to a polynomial ring in one variable over k.
- (b) Let Z be the plane curve xy = 1. Show that A(Z) (or k[Z]) is not isomorphic to a polynomial ring in one variable over k.

Solution:

(a): Let ideal $a=(y-x^2)\subseteq k[x,y]$, then we have Y=Z(a) (the corresponding algebraic set of polynomial $y-x^2$, hence also corresponds to the ideal generated by it). Then, $I(Y)=I(Z(a))=\sqrt{a}$, so the coordinate ring $k[Y]=k[x,y]/\sqrt{a}$.

However, notice that $y-x^2$ is irreducible in k[x,y]: If consider k[x,y]=(k[x])[y] (with base ring k[x]), then $y-x^2$ has degree of y being 1, which is irreducible in (k[x])[y]. Hence, the ideal $a=(y-x^2)$ is in fact a prime ideal (since the generated element $y-x^2$ is irreducible, and k[x,y] is a UFD), then we get that $\sqrt{a}=a$ (since all prime ideal is its own radical).

Now, to prove that $k[x,y]/\sqrt{a}=k[x,y]/a\cong k[t]$ (where t is an indeterminate), consider a ring homomorphism $\varphi: k[x,y]\to k[t]$ by $\varphi(f(x,y))=f(t,t^2)$ for all $f(x,y)\in k[x,y]$. Since for all $f(t)\in k[t]$, consider $f(x)\in k[x]\subseteq k[x,y]$, then $\varphi(f(x))=f(t)$, showing φ is surjective, hence $k[t]\cong k[x,y]/\ker(\varphi)$.

Now, to show that $\ker(\varphi)=a$, first, for all $f(x,y)\in a$, there exists $g(x,y)\in k[x,y]$ such that $f(x,y)=(y-x^2)\cdot g(x,y)$, hence we have $\varphi(f(x,y))=\varphi((y-x^2)\cdot g(x,y))=(t^2-t^2)\cdot g(t,t^2)=0$, showing $f(x,y)\in\ker(\varphi)$, which proves $a\subseteq\ker(\varphi)$;

On the other hand, if $f(x,y) \in \ker(\varphi)$, then $\varphi(f(x,y)) = f(t,t^2) = 0$. So, for all $x \in k$, with $y = x^2$ we have $f(x,y) = f(x,x^2) = 0$, hence f(x,y) vanishes for all $(x,y) \in Y$. This shows that $f(x,y) \in I(Y) = \sqrt{a} = a$, hence $\ker(\varphi) \subseteq a$.

As a conclusion, we have $\ker(\varphi) = a$, hence $k[t] \cong k[x,y]/\ker(\varphi) = k[x,y]/a$, while k[x,y]/a = k[Y] the coordinate ring (due to the fact that $a = \sqrt{a}$). Hence, $k[Y] \cong k[t]$ (polynomial ring with single indeterminate).

(b): Given that Z is the plane curve xy=1, then Z is the algebraic set corresponding to the polynomial $xy-1 \in k[x,y]$. Let ideal b=(xy-1), we have Z=Z(a) (Note: the second Z in Z(a) represents the function of mapping ideal to its algebraic set, not the algebraic set Z itself). Which, we get that $I(Z)=I(Z(b))=\sqrt{b}$, so the corresponding coordinate ring $k[Z]=k[x,y]/\sqrt{b}$.

Now, again if interpreting k[x,y]=(k[x])[y], since xy-1 is a polynomial with degree of y being 1, it is irreducible in (k[x])[y], hence the ideal b=(xy-1) is in fact a prime ideal, which implies that $\sqrt{b}=b$. So, the coordinate ring $k[Z]=k[x,y]/\sqrt{b}=k[x,y]/b$.

Finally, we'll show that $k[Z] \ncong k[t]$ the polynomial ring in k with one indeterminate. Suppose the contrary that $k[Z] \cong k[t]$, then there exists a ring isomorphism $\psi: k[Z] = k[x,y]/b \to k[t]$. Then, if consider $\psi(\overline{x}), \psi(\overline{y}) \in k[t]$, since $\overline{x} \cdot \overline{y} = \overline{xy} = 1 \in k[Z]$ (due to the fact that $xy - 1 \equiv xy = 1$).

 $0 \bmod b, \text{ so } \overline{xy-1} = 0 \in k[Z] \text{), then we get that } \psi(\overline{x}) \cdot \psi(\overline{y}) = \psi(\overline{xy}) = \psi(1) = 1 \text{, hence both } \psi(\overline{x}), \psi(\overline{y}) \in k[t] \text{ are invertible. Yet, since group of units } (k[t])^\times = k^\times, \text{ this enforces } \psi(\overline{x}), \psi(\overline{y}) \in k^\times \text{ (nonzero constant polynomials), but this is a contradiction since } \psi \text{ is supposed to be surjective, while now } \psi\left(\overline{f(x,y)}\right) = f(\psi(\overline{x}), \psi(\overline{y})) \in k \text{ for all } \overline{f(x,y)} \in k[Z], \text{ showing that } \psi \text{ is not surjective. Hence, we conclude that } k[Z] \not\cong k[t].$

Problem 4

Hartshorne Chapter 1 Exercise 1.2:

The Twisted Cubic Curve. Let $Y \subseteq \mathbb{A}^3$ be the set $Y = \{(t, t^2, t^3) | t \in k\}$. Show that Y is an affine variety of dimension 1. Find generators for the ideal I(Y). Show that A(Y) (or k[Y]) is isomorphic to a polynomial ring in one variable over k. We say that Y is given by the parametric representation $x = t, y = t^2, z = t^3$.

Solution: First, given any $(x, y, z) \in \mathbb{A}^3$, there exists $t \in k$ such that $(x, y, z) = (t, t^2, t^3) \iff y = x^2$ and $z = x^3$:

For \Longrightarrow , if there exists $t \in k$ such that $(x,y,z) = (t,t^2,t^3)$, it's clear that $y=t^2=x^2$ and $z=t^3=x^3$, so the conditions are satisfied. Conversely (for \Longleftrightarrow), if $y=x^2$ and $z=x^3$, choose $t=x\in k$ we have $(x,y,z)=(x,x^2,x^3)=(t,t^2,t^3)$. Hence, the equivalence is shown. Which, it implies that given the ideal $a=(y-x^2,z-x^3)$, the algebraic set Z(a)=Y.

Now, our goal is to prove that $k[x, y, z]/a \cong k[t]$:

Consider the ring homomorphism $\varphi: k[x,y,z] \to k[t]$ by $\varphi(f(x,y,z)) = f(t,t^2,t^3)$. Since for all $f(t) \in k[t]$, one can consider $f(x) \in k[x] \subseteq k[x,y,z]$, which $\varphi(f(x)) = f(t)$, which shows that φ is surjective, and $k[x,y,z]/\ker(\varphi) \cong k[t]$. Which, we want to claim that $\ker(\varphi) = a$.

For one inclusion, we have the equations $\varphi(y-x^2)=(t^2-(t)^2=0$ and $\varphi(z-x^3)=t^3-(t)^3=0$, hence $y-x^2,z-x^3\in\ker(\varphi)$. With all generators of a containing in $\ker(\varphi)$, we have $a\subseteq\ker(\varphi)$.

The other inclusion can be obtained by certain ways of decomposing the polynomials in k[x, y, z]. For that, consider the following lemma:

Lemma

For any monomial $f(x,y,z) \in k[x,y,z]$, it can be decomposed into $f_1 \cdot (y-x^2) + f_2 \cdot (z-x^3) + f_3(x)$, where $f_3(x) \in k[x] \subseteq k[x,y,z]$.

Proof: Since all polynomials in k[x,y,z] are finite k-linear combinations of monomials, it suffices to prove the case for each monomial $x^my^nz^l\in k[x,y,z]$ (where $m,n,l\in\mathbb{N}$ are arbitrary).

Notice that it can be represents as the following form:

$$x^{m}y^{n}z^{l} = x^{m}(x^{2} + (y - x^{2}))^{n}(x^{3} + (z - x^{3}))^{l}$$

Which, by performing binomial expansion, we can rewrite $(x^2 + (y - x^2))^n$ as follow:

$$\left(x^2 + (y - x^2)\right)^n = \sum_{i=0}^n \binom{n}{i} (x^2)^i \cdot \left(y - x^2\right)^{n-i} = x^{2n} + (y - x^2) \left(\sum_{i=0}^{n-1} \binom{n}{i} (x^2)^{i(y-x^2)^{n-i}}\right)$$

Hence, $\left(x^2+(y-x^2)\right)^n=x^{2n}+(y-x^2)\cdot h_1$ for some $h_1\in k[x,y,z]$. Apply similar logic to the second term we also get $\left(x^3+(z-x^3)\right)^l=x^{3l}+(z-x^3)\cdot h_2$ for some $h_2\in k[x,y,z]$.

Then, expand out the product, we get:

$$\begin{split} x^m y^n z^l &= x^m \big(x^{2n} + (y-x^2) \cdot h_1 \big) \big(x^{3l} + (z-x^3) \cdot h_2 \big) \\ &= (y-x^2) \cdot x^m \cdot h_1 \big(x^{3l} + (z-x^3) \cdot h_2 \big) + x^{2n} \cdot x^m \big(x^{3l} + (z-x^3) \cdot h_2 \big) \\ &= (y-x^2) \cdot g_1 + (z-x^3) \cdot x^{2n+m} \cdot h_2 + x^{m+2n+3l} \\ &= (y-x^2) \cdot g_1 + (z-x^3) \cdot g_2 + g_3(x) \end{split}$$

Where $g_1, g_2 \in k[x, y, z]$ and $g_3(x) \in k[x]$ are chosen so the above equation is true.

Since each monomial can be expressed as some form of $(y-x^2)\cdot g_1+(z-x^3)\cdot g_2+g_3(x)$, then for any $f\in k[x,y,z]$, where $f=\sum_{i=1}^l a_i x^{m_i} y^{n_i} z^{l_i}$ for some fixed $a_i\in k$ and $m_i,n_i,l_i\in\mathbb{N}$, since each $x^{m_i}y^{n_i}z^{l_i}=(y-x^2)\cdot g_{1,i}+(z-x^3)\cdot g_{2,i}+g_{3,i}(x)$ based on the above derivation, f can ge brepresented as:

$$\begin{split} f &= \sum_{i=1}^n a_i \big(\big(y - x^2 \big) \cdot g_{1,i} + \big(z - x^3 \big) \cdot g_{2,i} + g_{3,i}(x) \big) \\ &= \big(y - x^2 \big) \sum_{i=1}^n a_i \cdot g_{1,i} + \big(z - x^3 \big) \sum_{i=1}^n a_i \cdot g_{2,i} + \sum_{i=1}^n a_i \cdot g_{3,i}(x) \end{split}$$

Hence, $f=\left(y-x^2\right)\cdot f_1+\left(z-x^3\right)\cdot f_2+f_3(x)$ for some $f_1,f_2\in k[x,y,z]$, and $f_3(x)\in k[x]$. \square

Now, based on the above lemma, for all $f \in \ker(\varphi)$ can be decomposed into $(y-x^2) \cdot f_1 + (z-x^3) \cdot f_2 + f_3(x)$ for some $f_1, f_2 \in k[x,y,z]$ and $f_3(x) \in k[x]$. Then, plugin to φ we get:

$$\begin{split} 0 &= \varphi(f) = \varphi\big(\big(y-x^2\big) \cdot f_1 + \big(z-x^3\big) \cdot f_2 + f_3(x)\big) \\ &= \varphi\big(y-x^2\big) \cdot \varphi(f_1) + \varphi\big(z-x^3\big) \cdot \varphi(f_2) + \varphi(f_3(x)) \\ &= f_3(t) \end{split}$$

Hence, with $f_3(t)=0\in k[t],$ $f_3(x)=0$, so $f=(y-x^2)\cdot f_1+(z-x^3)\cdot f_2$, showing $f\in a$. Therefore, we conclude that $\ker(\varphi)\subseteq a$.

With the two inclusions deduced, we get $a=\ker(\varphi)$, hence $k[t]\cong k[x,y,z]/\ker(\varphi)=k[x,y,z]/a$. Which, this proves that a is in fact a prime ideal (since k[t] is an integral domain), hence a is a radical. So, as a consequence, $I(Y)=I(Z(a))=\sqrt{a}=a$, which shows that Y is an affine variety (since the corresponding ideal I(Y)=a is prime, Y is an irreducible closed subset under Zariski Topology, by **Corollary 1.4** in Hartshorne).

The above conclusions show that Y is an affine variety, $I(Y) = a = (y - x^2, z - x^3)$ (so $\{y - x^2, z - x^3\}$ is a set of generators of I(Y)), and demonstrated that the coordinate ring $k[Y] = k[x, y, z]/a \cong k[t]$ (polynomial ring in one variable over k). Now, it's left to demonstrate the dimension of Y.

Based on **Proposition 1.7** in Hartshorne, given Y as an affine algebraic set, its dimension is the same as the Krull Dimension of its coordinate ring k[Y]. Since here $k[Y] \cong k[t]$, with k[t] being a PID, then (0) is a prime ideal, while any other nonzero prime ideal $P \subseteq k[t]$ is maximal. Hence, the dimension of k[t] is 1 (since the largest strict increasing chain of prime ideal is $(0) \subseteq P$ for nonzero prime ideal $P \subseteq k[t]$, due to the maximality of P). Hence, Y is in fact an algebraic variety of dimension 1, and this finishes all the proof.

D

Problem 5

Hartshorne Chapter 1 Exercise 1.4:

If we identify \mathbb{A}^2 with $\mathbb{A}^1 \times \mathbb{A}^1$ in the natural way, show that the Zariski topology on \mathbb{A}^2 is not the product topology of the Zariski topologies on the two copies of \mathbb{A}^1 .

Solution: For this we'll prove by contradiction. First, recall the following lemma from point set topology:

Lemma

Given a topological space X, and consider $X \times X$ under the product topology. Then, the diagonal $\Delta = \{(x,x) \in X \times X \mid x \in X\}$ is closed under product topology $\iff X$ is Hausdorff.

Proof:

 $\Longrightarrow: \text{First, suppose } \Delta \subseteq X \times X \text{ is closed, which means } (X \times X) \setminus \Delta \text{ is open in } X \times X \text{ under product topology. Hence, for all } (x,y) \in (X \times X) \setminus \Delta \text{ (with } x \neq y \text{), there exists open neighborhood } U_x, U_y \subseteq X \text{ of } x, y \text{ respectively, such that } (x,y) \in U_x \times U_y \subseteq (X \times X) \setminus \Delta. \text{ Then, for all } z \in U_x \text{ and } w \in U_y, \text{ since } (z,w) \in U_x \times U_y \subseteq (X \times X) \setminus \Delta, \text{ we have } z \neq w \text{, hence } U_x \cap U_y = \emptyset. \text{ Which, with } x,y \in X \text{ being arbitrary, } x \neq y, U_x \ni x \text{ and } U_y \ni y \text{ are open neighborhoods that're disjoint, hence } X \text{ is Hausdorff.}$

With this lemma in mind, suppose the contrary that the Zariski Topology on \mathbb{A}^2 is the same as the product topology of $\mathbb{A}^1 \times \mathbb{A}^1$ (with \mathbb{A}^1 equipped with its own Zariski Topology). Then, by the lemma above, the diagonal $\Delta = \{(x,x) \in \mathbb{A}^2 \mid x \in k\} \subseteq \mathbb{A}^2$ is closed in $\mathbb{A}^2 \iff \mathbb{A}^1$ is Hausdorff under Zariski Topology. Now, we can derive the following statements:

1. \mathbb{A}^1 is Hausdorff under Zariski Topology:

Notice that with the polynomial $y-x\in k[x,y]$, the corresponding algebraic set $Z(y-x)=\Delta$ (since $(x,y)\in \mathbb{A}^2$ satisfies y-x=0 iff y=x iff $(x,y)\in \Delta$). Hence, Δ itself is closed in \mathbb{A}^2 under Zariski Topology, so based on our assumption above, \mathbb{A}^1 is Hausdorff.

2. \mathbb{A}^1 has Zariski Topology = Finite Complement Topology:

Since k[x] is a PID (given that k is a field), then for any nonempty and proper algebraic set $Y\subseteq \mathbb{A}^1=k$, its corresponding ideal I(Y)=(f(x)) for some $f(x)\in k[x]$, hence $t\in Y$ iff f(t)=0, or t is a zero of f(x). Since f(x) only has finitely many roots, it follows that Y is finite. Conversely, given any nonempty finite subset $X\subsetneq \mathbb{A}^1$, let $f(x):=\prod_{a\in X}(x-a)$, we have X being the algebraic set corresponding to f(x) (since $a\in X$ iff f(a)=0). Hence, the closed set in \mathbb{A}^1 under Zariski Topology (beside \mathbb{A}^1 and \emptyset) are all finite subsets of \mathbb{A}^1 , showing that all open sets in \mathbb{A}^1 (besides \emptyset and \mathbb{A}^1 itself) are precisely the subsets with their complements being finite, hence the Zariski Topology on \mathbb{A}^1 is equivalent to the Finite Complement Topology.

3. \mathbb{A}^1 with Finite Complement Topology is Not Hausdorff:

Then, given $\mathbb{A}^1=k$ is infinite (due to the assumption that k is algebraically closed), the Finite Complement Topology on \mathbb{A}^1 is not Hausdorff: Suppose the contrary that it is Hausdorff, then for any $x,y\in\mathbb{A}^1$ with $x\neq y$, there exists open neighborhoods $U_x,U_y\subseteq\mathbb{A}^1$ containing x,y respectively, such that $U_x\cap U_y=\emptyset$. However, it implies that $U_y\subseteq\mathbb{A}^1\setminus U_x$, while $\mathbb{A}^1\setminus U_x$ is finite, hence U_y is finite. Yet, this implies that $\mathbb{A}^1\setminus U_y$ is infinite (since \mathbb{A}^1 is infinite, while U_y is finite), which reaches a contradiction (since U_y is open, which suppose to have finite complement). So, \mathbb{A}^1 cannot be Hausdorff.

However, this contradicts one of the previous conclusions that \mathbb{A}^1 is Hausdorff. Hence, the initial assumption must be false, showing that Zariski Topology on \mathbb{A}^2 is not the same as product topology of $\mathbb{A}^1 \times \mathbb{A}^1$ (with \mathbb{A}^1 equipped with its own Zariski Topology).

(I think Here we can conclude that \mathbb{A}^2 has Zariski Topology being the same as product topology of $\mathbb{A}^1 \times \mathbb{A}^1$ iff the base field k is finite, since this is the only case where the Finite Complement Topology, i.e. the Zariski Topology on \mathbb{A}^1 , is Hausdorff).

Problem 6

Hartshorne Chapter 1 Exercise 1.5:

Show that a k-algebra B is isomorphic to the affine coordinate ring of some algebraic set in \mathbb{A}^n for some n if and only if B is a finitely generated k-algebra with no nilpotent elements.

Solution:

 \implies : Suppose B is a k-algebra (here B can be assumed as a commutative algebra) that is isomorphic to the affine coordinate ring of some algebraic set in \mathbb{A}^n for some n.

Then, there exists an algebraic set $Y\subseteq \mathbb{A}^n$, such that $B\cong k[Y]$, where let $J=I(Y)\subseteq k[x_1,...,x_n]$ the corresponding ideal (which J is a radical), we have $k[Y]=k[x_1,...,x_n]/J$. This shows that B is a finitely generated k-algebra (since it's isomorphic to a quotient of the polynomial ring $k[x_1,...,x_n]$), and also B has no nilpotent elements (since J is a radical ideal, so for all $f\in k[x_1,...,x_n]$, if the quotient $\overline{f}\in k[Y]$ satisfies $\overline{f}^k=0$ for some $k\in\mathbb{N}$, then $f^k\in J$, hence $f\in J$ since J is a radical, or $\overline{f}=0$). This proves the forward implication.

Also, the assumption that B has no nilpotent elements implies that $\ker(\varphi) \subseteq k[x_1,...,x_n]$ is a radical (since for all $f \in k[x_1,...,x_n]$, if $f^k \in \ker(\varphi)$ for some $k \in \mathbb{N}$, we have $\varphi(f)^k = \varphi(f^k) = 0$, showing that $\varphi(f) \in B$ is nilpotent, or $\varphi(f) = 0$. Hence $f \in \ker(\varphi)$, therefore $\sqrt{\ker(\varphi)} = \ker(\varphi)$).

Then, if we take $Y=Z(\ker(\varphi))\subseteq \mathbb{A}^n$ as the algebraic set, since $\ker(\varphi)=I(Y)=I(Z(\ker(\varphi)))$ (due to $\ker(\varphi)$ being a radical), we have the coordinate ring $k[Y]=k[x_1,...,x_n]/\ker(\varphi)$, hence $B\cong k[x_1,...,x_n]/\ker(\varphi)=k[Y]$, so B is isomorphic to the affine coordinate ring of some algebraic set in \mathbb{A}^n (for some $n\in\mathbb{N}$). This proves the converse.