1

Matrix theory Assignment 17

K R Sai Pranav

Abstract—This document contains the concept of natural isomorphism

Download all python codes from

https://github.com/saipranavkr/EE5609/codes

and latex-tikz codes from

https://github.com/saipranavkr/EE5609

1 Problem

Let n be a positive integer and F a field. Let **W** be the set of all vectors $(x_1, ..., x_n)$ in F^n such that $x_1 + ... + x_n = 0$. Show that the dual space **W*** of **W** can be 'naturally' identified with the linear functionals

$$f(x_1,\ldots,x_n)=c_1x_1+\ldots c_nx_n$$

on \mathbf{F}^n which satisfy $c_1 + \ldots + c_n = 0$

2 Pictorial Representation

Fig. 0: **W** of dimension n-1, is the null space of **F**, where (a_1, \ldots, a_{n-1}) are basis vectors for **W**

Fig. 0: Mapping from $\mathbf{W} \xrightarrow{P} \mathbf{F_N}^*$, where $P(c_1, \ldots, c_n) = f_{c_1, \ldots, c_n}, f_{c_1, \ldots, c_n}(x_1, \ldots, x_n) = c_1 x_1 + \ldots c_n x_n$

Fig. 0: Mapping from $\mathbf{F_N}^* \xrightarrow{Q} \mathbf{W}^*$, where $f_{c_1,\dots,c_n}(x_1,\dots,x_n) = c_1x_1 + \dots c_nx_n$ is the linear functional with $c_1 + \dots + c_n = 0$

3 Solution

Given	$x_1 + \ldots + x_n = 0$ $(x_1, \ldots, x_n) \in \mathbf{W}$ F is a field \mathbf{W}^* is dual space of \mathbf{W}
To prove	$\mathbf{W} \to \mathbf{W}^*$ is a natural isomorphism $f(x_1, \dots, x_n) = c_1 x_1 + \dots c_n x_n$ which satisfy $c_1 + \dots + c_n = 0$
Proof	Let $\alpha_i = \epsilon_1 - \epsilon_{i+1}$ $i \in \{1, \dots, n-1\}$
	$\sum_{i=1}^{n-1} c_i \alpha_i = 0$ $\implies \left(\sum_{i=1}^{n-1} c_i\right) \epsilon_1 - \sum_{i=1}^{n-1} c_i \epsilon_{i+1} = 0$ $(\alpha_1, \dots, \alpha_{n-1}) \text{ are linearly}$ independent and form a basis for W
	$\mathbf{W} \xrightarrow{P} (\mathbf{F}^n)^* \xrightarrow{Q} \mathbf{W}^*$ The function P is defined as $P(c_1, \dots, c_n) = f_{c_1, \dots, c_n}; \text{ where,}$ $f_{c_1, \dots, c_n}(x_1, \dots, x_n) = c_1 x_1 + \dots c_n x_n$
	Let $Q \circ P(c_1, \dots, c_n) = 0$; $(c_1, \dots, c_n) \in \mathbf{W}$ $Q(f_{c_1, \dots, c_n}) = 0 \implies f_{c_1, \dots, c_n \mid \mathbf{W}} = 0$ $\implies f_{c_1, \dots, c_n}(x_1, \dots, x_n) = 0$
	$f_{c_1,\dots,c_n}(\alpha_i) = 0; i = 1,\dots,n-1$ $\implies c_1 = c_i; i = 2,\dots,n$ $\implies \sum_{i=2}^n c_i = (n-1)c_1$
	since $(c_1,, c_n) \in \mathbf{W}$ $\sum_{i=1}^n c_i = 0$ $\implies c_1 = 0$ $\implies c_i = 0 ; i = 1,, n$
	Hence, $f_{c_1,,c_n}$ is a zero function. Thus the mapping $\mathbf{W} \to \mathbf{W}^*$ is a natural isomorphism