GABARITO – PROVA DEMO – TEORIA DA COMPUTAÇÃO

Discente: Maurício Vielmo Schmaedeck

Questão 1) Alternativa **(e)**, pois as linguagens reconhecidas por Máquinas de Turing são chamadas de Linguagens Recursivamente Enumeráveis (LRE).

Questão 2) Alternativa (d), pois:

- A afirmativa II está incorreta, visto que não basta construir uma Máquina de Turing [qualquer], é preciso construir uma Máquina de Turing que decida a linguagem.
- A afirmativa III está incorreta, já que uma linguagem decidível é sempre reconhecível, mas o contrário pode não ser verdadeiro (é possível ter uma linguagem que é reconhecível, mas não decidível).

Questão 3) Sim, é decidível. Uma máquina que resolveria esse problema pode ser descrita da seguinte maneira:

- 1. Selecionar um vértice de partida qualquer;
- 2. Marcar o vértice como visitado;
- 3. Percorrer a lista de arestas buscando todas as que se conectam a um vértice que já está marcado;
 - **3.1** Para cada aresta encontrada, marcar o vértice da outra extremidade;
- 4. Repetir o passo 3 até que nenhum vértice seja marcado;
- 5. Se todos os vértices estão marcados o grafo é conexo; caso contrário não.

Questão 4) A linguagem é decidível e a Máquina de Turing usada para decidir o problema é semelhante a usada no exercício anterior e pode ser descrita da seguinte forma:

1. Marcar o estado inicial;

9. Ir para o passo (3)

- **2.** Percorrer a lista de estados buscando todos os que possuem uma transição que se origina de um vértice que iá está marcado;
 - 2.1 Para cada estado encontrado, marcá-lo;
- 3. Repetir o passo 2 até que nenhum estado seja marcado;
- **4.** Se algum estado de aceitação está marcado rejeite; caso contrário aceite.

Questão 5) Uma Máquina de Turing que resolve o problema pode ser descrita da seguinte maneira:

Este programa assume que o cabeçote inicia na primeira posição (mais à esquerda) da fita, *esquerda()* desloca o cabeçote uma posição para a esquerda, *direita()* desloca o cabeçote uma posição para a direita, *apaga()* apaga a fita na posição atual do cabeçote e *aceite()* encerra o programa):

PROGRAMA COMENTÁRIOS

1.	Se a posição está em branco (final da entrada) 1.1 <i>aceite()</i>	# Caso especial para a entrada vazia (0)
2.	Marcar a posição atual	# Para facilitar a volta para essa posição
3.	direita()	# Manter o primeiro 1 na fita
4.	Se a posição está em branco (final da entrada)	# Se for verdade, o número é ímpar. Já temos um 1 na
	3.1 <i>aceite()</i>	fita, então basta encerrar.
5.	apaga()	# Apaga o elemento, mantendo somente um 1 na fita
6.	direita()	
7.	Se a posição está em branco (final da entrada)	# Se for verdade, o número é par (saída deve ser vazia).
	6.1 apaga()	# Apagar posição atual
	6.2 Enquanto a posição atual não estiver marcada	# Navegar até o primeiro 1 (posição marcada)
	6.2.1 esquerda()	
	6.3 <i>apaga()</i>	# Apagar o primeiro 1 (deixando a fita vazia)
	6.4 <i>aceite()</i>	# Encerrar o programa com a fita vazia
8.	apaga()	# Apagar posição atual, mantendo somente o primeiro 1

Voltar para o passo 3 (loop)