

Aircraft Power Network

David Meissner, Application Engineer

Key Messages

- Design and Analyze Electrical and Power Systems
- Develop and Implement Logic and Controls
- Perform Verification and Validation

- Intro / Overview
- Aircraft Power Network
- Physical Modeling
- Modeling Electrical and Power Systems
- Summary / Additional Resources

Aircraft Power NetworkSystem for Analysis

- Half-aircraft model
 - One generator
 - AC bus with loads
 - TRU (Transformer-Rectifier Unit)
 - DC bus with loads and battery
- Breakers open and close during flight cycle

Aircraft Power Network

- Intro / Overview
- Aircraft Power Network
- Physical Modeling
- Modeling Electrical and Power Systems
- Summary / Additional Resources

What is the Most Expensive Project Stage to Find Errors In?

Traditional Development Process

Model-Based Design

Model-Based Design

System and Component Level Design

Requirements Traceability

- Intro / Overview
- Aircraft Power Network
- Physical Modeling
- Modeling Electrical and Power Systems
- Summary / Additional Resources

- Overview of Aircraft Power Network Model
- Model Based Design
- Requirements Traceability
- Transformer Rectifier Unit
- Logic and Controls
- SimElectronics vs SimPowerSystems

Transformer Rectifier Unit

- Overview of Aircraft Power Network Model
- Model Based Design
- Requirements Traceability
- Transformer Rectifier Unit
- Logic and Controls
- SimElectronics vs SimPowerSystems

Logic and Controls

- Synchronizing Breaker
- Voltage Regulator

- Overview of Aircraft Power Network Model
- Model Based Design
- Requirements Traceability
- Transformer Rectifier Unit
- Logic and Controls
- SimElectronics vs SimPowerSystems

SimElectronics or SimPowerSystems?

SimElectronics

Simultaneous nonlinear equations solution
SPICE level switching device models
Include switching losses
Include parasitic current effects
Include temperature effects
Higher fidelity simulation

SimPowerSystems

Piecewise linear systems solution

Multiphase bridges and pulse generators

Detailed and average voltage models

Transient and harmonic analysis

Faster simulation

>> se dcdcbuckconverter

>> sps_dcdcbuckconverter

SimElectronics or SimPowerSystems?

SimElectronics or SimPowerSystems?

>> edit compare_powersupply

Summary

- Design and Analyze Electrical and Power Systems
- Develop and Implement Logic and Controls
- Perform Verification and Validation

Additional Resources

- Videos and Webinars
 - Aircraft Power Network (4:58)
 - Automatic Report Generation for Aircraft Power Network (2:30)
 - Running Parallel Simulations of Aircraft Flight Cycles (5:00)
 - Aircraft Power Network Development with MBD (46:41)

Example: <u>Aircraft Power Network on MATLAB Central</u>

Documentation: (<u>SimElectronics</u>) (<u>SimPowerSystems</u>)

Tutorials: <u>Build and Simulate a Simple Circuit</u>

Training: <u>Physical Modeling: Electrical Power Systems</u>

Consulting: <u>Proven Solutions from MathWorks Consulting</u>

Support

