

Inspiring Excellence

Course Code: CSE251

Course Title: Electronic Devices and Circuits

Semester: Spring-2023

STUDENT NAME ID

Md. Mahir Faisal	21301371
Tajwar Al Haque Robin	21101312
Mansura Akhter	21201329
Anika Islam	21101298

Experiment Number: 01

Experiment Name: Study of Op-Amp: Comparator, Inverting, Amplifier,

Non-Inverting Amplifier

Group No: 03

Section: 12

Date of performance: 31/01/2023 **Date of Submission:** 06/ 02/ 2023

Submitted by: Md. Mahir Faisal, ID: 21301371

1. Data Sheet:

2. Graph display in Oscilloscope:

Task - 01

Task - 02

Task - 03

3.Test your understanding:

Answer the following questions:

- 1. You are given an Op-Amp comparator with $v_1 = 4V(p p)$, sine wave and $v_2 = V_REF = -1 V$. Draw the waveform of v_1 , v_2 and vo in the same graph with proper labels.
- 2. You are given an inverting amplifier with $v_I = 4 \text{ V (p-p)}$, $R_1 = 1 \text{ k}\Omega$, $R_{2} = 2.2 \text{ k}\Omega$. Draw the waveform of v_I and vo in the same graph with proper labels.
- 3. You are given a non-inverting amplifier with $v_I = 4 \text{ V (p-p)}$, $R_1 = 1 \text{ k}\Omega$, $R_2 = 2.2 \text{ k}\Omega$. Draw the waveform of v_I and vo in the same graph with proper labels.

1.

2 No Solution

2.

Given that,

$$V_{IN} = 4v (P-P);$$

 $R_1 = 1k52;$
 $R_2 = 2.12 k52$
 $R_2 = -\frac{R_2}{R_1} \times V_1 = -\frac{2.2}{1} \times 4$
 $V_{OUT} = -\frac{R_2}{R_1} \times V_1 = -\frac{2.2}{1} \times 4$
 $V_{OUT} = -\frac{R_2}{R_1} \times V_1 = -\frac{2.8 \times 8}{1} \times (P-P)$

3 No Solution

3 No Solution

3.

Given that,

$$V_{IN} = 4 V (P-P)$$
;
 $R_1 = 1 k_{52}$;
 $R_2 = 2.2 k_{52}$
 $V_0 = (1 + \frac{R_2}{R_1}) \times V_{IN} = (1 + \frac{2.2}{1}) \times 4 V$
 $= 12.8 V (P-P)$

Discussion

Here, we have done three experiments with operational amplifiers. In our first experiment, an op-Amp served as the comparator. There, we first used +8V and -8V to bias the operational amplifier. After that, we connect the inverting input of the op-Amp with 0.5v. We took this voltage from the DC power supply and the non-inverting input from the function generator 2v (p-p) sine wave.

In our second experiment, we have seen, op-Amp as an inverting amplifier. Here, we grounded the function generator's inverting and non-inverting terminals at a voltage of 2 volts peak to peak. Here, output voltage is in 180 phase with the input voltage.

In our 3rd experiment, we have seen an op-amp as a non-inverting amplifier. Here, we connected the non-inverting terminal to the 2v voltage source and we grounded the inverting terminal. The op-amp raises the input voltage, but the output voltage is in phase with the input voltage.