LOGO

Presentation Title

Author · 11. November 2017

Institute · University

Overview

- 1. Topological phases
- 2. 1D p-wave superconductor

Topological Phases

LOGO

Conducting edge channels \longleftrightarrow Non-trivial bandstructure

Topological Phases

LOGO

Conducting edge channels \longleftrightarrow Non-trivial bandstructure

QAHE bulk Hamiltonian
$$\widehat{\mathcal{H}}(\mathbf{k}) = \mathbf{g}(\mathbf{k}) \cdot \mathbf{\sigma}$$

$$\mathbf{g}(k_x, k_y) = (\sin k_x, \sin k_y, \cos k_x + \cos k_y - M)^\mathsf{T}$$

Topological Phases

LOGO

Conducting edge channels \longleftrightarrow Non-trivial bandstructure

QAHE bulk Hamiltonian
$$\widehat{\mathcal{H}}(\mathbf{k}) = \mathbf{g}(\mathbf{k}) \cdot \mathbf{\sigma}$$

$$g(k_x, k_y) = (\sin k_x, \sin k_y, \cos k_x + \cos k_y - M)^{\mathsf{T}}$$

$$M = 3$$

1D p-wave-SC

LOGO

$$\mathcal{H} = \sum_{i=1}^{n-1} \left[t c_i^\dagger c_{i+1}^{} + \Delta c_i^{} c_{i+1}^{} + \text{H.c.} \right] - \mu \sum_{i=1}^{n} c_i^\dagger c_i^{}$$

1D p-wave-SC

LOGO

$$\mathcal{H} = \sum_{i=1}^{n-1} \left[t c_i^\dagger c_{i+1}^{} + \Delta c_i^{} c_{i+1}^{} + \text{H.c.} \right] - \mu \sum_{i=1}^{n} c_i^\dagger c_i^{}$$

Majorana operators
$$\gamma_j = \frac{c_j + c_j^{\dagger}}{2}$$
 or $c_j - c_j^{\dagger}$

1D p-wave-SC

LOGO

$$\mathcal{H} = \sum_{i=1}^{n-1} \left[t c_i^{\dagger} c_{i+1} + \Delta c_i c_{i+1} + \text{H.c.} \right] - \mu \sum_{i=1}^{n} c_i^{\dagger} c_i$$

 $\widehat{\mathcal{H}}(k) = (2t\cos k - \mu)\tau_z - 2\Delta\sin k\,\tau_y$

Majorana operators
$$\gamma_j = \frac{c_j + c_j^{\dagger}}{2}$$

$$\gamma_j = \frac{c_j - c_j^{\dagger}}{2}$$

$$\gamma_j' = \frac{c_j - c_j^{\dagger}}{2i}$$

$$\boldsymbol{c}_{k}^{\dagger} = \left(c_{k}^{\dagger}, \ c_{-k} \right)$$