

PATENT ABSTRACTS OF JAPAN

(11) Publication number : 11-172439

(43) Date of publication of application : 29.06.1999

(51) Int.CI.

C23C 16/34

C07F 7/02

H01L 21/318

(21) Application number : 10-281036

(71) Applicant : AIR PROD AND CHEM INC

(22) Date of filing : 02.10.1998

(72) Inventor : LAXMAN RAVI K

ROBERTS DAVID A

HOCHBERG ARTHUR

KENNETH

HOCKENHULL HERMAN

GENE

KAMINSKY FELICIA DIANE

(30) Priority

Priority number : 97 942996 Priority date : 02.10.1997 Priority country : US

(54) CHEMICAL VAPOR GROWTH OF SILICON NITRIDE FROM BIS (TERTIARY-BUTYLAMINO) SILANE

(57) Abstract:

PROBLEM TO BE SOLVED: To obtain a silicon nitride film in which Si-C bonding is evaded and small in contaminants of carbon, hydrogen and chlorine by using ammonia and a specified silane and allowing silicon nitride to low pressure vapor growth on a base material.

SOLUTION: The silane to be used is a compd. shown by $(t\text{-C}_4\text{H}_9\text{NH})_2\text{SiH}_2$. The temp. of a base material is regulated to the range of 500 to 800 C, the pressure is regulated to the range of 20 mTorr to 2 Torr (2.666 to 266.6 Pa), and the value of the molar number of ammonia/the molar number of silane is made higher than 2. Preferably, the base material is composed of silicon, the base material is an electronic device, or the base material is a flat panel display. Preferably, this is a low temp. chemical vapor growth method of silicon nitride in a reactive region, and in which the base material is heated at 500 to 800° C, the base material is held to a reduced pressure of 20 mTorr to 2 Torr (2.666 to 266.6 Pa), ammonia and silane

of (t-C₄₂H₉NH)2SiH₂; are introduced therein, and treatment is executed.

LEGAL STATUS

[Date of request for examination] 02.10.1998

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] 2962417

[Date of registration] 06.08.1999

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (J P)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平11-172439

(43)公開日 平成11年(1999)6月29日

(51)Int.Cl.⁶

識別記号

F I

C 2 3 C 16/34

C 2 3 C 16/34

C 0 7 F 7/02

C 0 7 F 7/02

H 0 1 L 21/318

H 0 1 L 21/318

Z

B

審査請求 有 請求項の数8 O L (全8頁)

(21)出願番号 特願平10-281036

(22)出願日 平成10年(1998)10月2日

(31)優先権主張番号 08/942996

(32)優先日 1997年10月2日

(33)優先権主張国 米国(US)

(71)出願人 591035368

エアー、プロダクツ、アンド、ケミカル
ス、インコーポレーテッド
AIR PRODUCTS AND CHEMICALS INCORPORATED
アメリカ合衆国、18195-1501、ペンシル
バニア州、アレンタウン、ハミルトン、ブ
ールパード、7201

(74)代理人 弁理士 石田 敏 (外4名)

最終頁に続く

(54)【発明の名称】 ビス(t-ブチルアミノ)シランからの窒化珪素の化学気相成長法

(57)【要約】

【課題】 半導体デバイスの製造において化学的に不活性な誘電体材料として有用な窒化珪素(Si_xN_y)皮膜の新しい製法を提供する。

【解決手段】 アンモニア及び(t-C₄H₉NH)₂SiH₂の化学式で表されるシランから低圧化学気相成長によって窒化珪素皮膜を形成する。

1

【特許請求の範囲】

【請求項1】 アンモニア及び($t-C_4H_9NH_2$)_nの化学式で表されるシランを使用して、基材上に窒化珪素の低圧化学気相成長を行う方法。

【請求項2】 上記基材の温度が500～800°Cの範囲である請求項1に記載の方法。

【請求項3】 圧力が20mTorr～2Torr(2.666～266.6Pa)の範囲である請求項1に記載の方法。

【請求項4】 上記アンモニアのモル数／上記シランのモル数の値が2よりも大きい請求項1に記載の方法。 10

【請求項5】 上記基材がシリコンである請求項1に記載の方法。

【請求項6】 上記基材が電子デバイスである請求項1に記載の方法。

【請求項7】 上記基材がフラットパネルディスプレイである請求項1に記載の方法。

【請求項8】 以下のa)～d)の工程を含む、反応領域内での窒化珪素の低温化学気相成長方法。

a) 基材を上記領域において500～800°Cの範囲の温度に加熱する工程。 20

b) 基材を上記領域において20mTorr～2Torr(2.666～266.6Pa)の範囲の減圧に維持する工程。

c) 上記領域にアンモニアと($t-C_4H_9NH_2$)_nの化学式で表されるシランを導入する工程。

d) 基材上に窒化珪素皮膜を成長させるのに十分なa)～c)の条件を維持する工程。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、窒化珪素の新しい有機珪素原料物質であるビス(t -ブチルアミノ)シランを使用する窒化珪素膜の低圧化学気相成長の分野を志向する。

【0002】

【従来の技術及び発明が解決しようとする課題】 半導体デバイスの製造において、窒化珪素(Si_xN_y)のような化学的に不活性な誘電体材料の薄いバッショーン層が必要である。窒化珪素の薄層は、拡散マスク、酸化遮断層、トレンチ絶縁体、高い絶縁破壊電圧の金属間誘電体材料及びバッショーン層として機能する。半導体デバイス製造において窒化珪素皮膜の多くの他の応用が他所で報告されている。「Semiconductor and Process Technology hand book」、Gary E. McGuire編集、ニュージャージー州Noyes Publication、(1998)、289～301ページ、ならびに「Silicon Processing for the VLSI ERA」、Wolf、Stanley、及びTalbert、Richard N、

カルフォルニア州サンセーブルーチLattice Press(1990)、20～22及び327～330ページを参照。

【0003】 今日の半導体産業における標準的な窒化珪素成長方法は、ジクロロシラン及びアンモニアを使用して、>750°Cのホットウォール反応器内で低圧化学気相成長法によって行われる。

【0004】 多数のシリコンウェハー上への窒化珪素の成長(堆積)は、多くの先駆物質を使用して行われる。ジクロロシランとアンモニアを使用する低圧化学気相成長(LPCVD)は、利用できる成長速度と均一性を得るために750°Cよりも高い成長温度を必要とする。より高い成長温度は典型的に、最良の皮膜特性を得るために採用される。これらの方法にはいくつかの欠点があり、それらのいくつかを以下に挙げる。

【0005】 i) 850°C未満での成長は、塩素と粒状の汚染物質で疊った不十分な膜をもたらす。

i ii) シランとジクロロシランは、自然発火性で毒性の圧縮ガスである。

i iii) ジクロロシランから作られた皮膜は、結果として低均一性皮膜の生成物をもたらす。

i v) ジクロロシランから作られた皮膜は、副生成物として作られる塩素と塩化アンモニウムのような汚染物質を含む。

【0006】 特開平6-132284号公報は、アンモニア又は窒素の存在下でのプラズマ促進化学気相成長及び熱化学気相成長によって、(R_1R_2N)_nSiH_{4-n}(ここで R_1 及び R_2 はH-、CH₃-、C₂H₅-、C₃H₇-、C₄H₉-、C₆H₅-)の一般式を持つ有機シランを使用する窒化珪素の成長を説明する。ここで説明される先駆物質は、第三アミンであり、本発明の場合のようなNH結合をしたものを持たない。成長実験は、400°C及び80～100Torr(10.67～13.33kPa)といった高い圧力のシングルウェハー反応器内で行った。これらの皮膜内のSi/Nの値は0.9(Si_{0.9}N_{0.1}、皮膜でのSi/Nの値は0.75)で、成長した皮膜に水素含有物を伴う。ブチル基はイソブチルの形である。

【0007】 Sorita他はJ. Electro. chem. Socの141巻12号(1994)3505～3511ページで、LPCVD法でジクロロシランとアンモニアを使用する窒化珪素の成長を説明する。この工程での主な生成物は、アミノクロロシラン、窒化珪素及び塩化アンモニウムである。塩化アンモニウムの形成は、Si-CIを含む先駆物質の主な欠点である。塩化アンモニウムの形成は、管の後部、配管内及びポンプ装置内での塩化アンモニウム粒子の形成及び堆積をもたらす。先駆物質に塩素を含む方法は、結果としてNH₃、CIが形成する。これらの工程は頻繁な洗浄を必要とし、結果として反応器に長い停止時間をもたらす。

50

3

【0008】B. A. Scott, J. M. Martin, L. M. Duart, D. B. Beach, T. N. Nguyen, R. D. Estes 及び R. G. SchadはChemtronics、1989、4巻、230～234ページで、250～400°Cの温度範囲のLPCVDによってシランとアンモニアを使用する窒化珪素の成長を報告する。シランは自然燃焼性ガスで、部分的な気相反応のために汚れのない窒化珪素成長の制御は難しい。

【0009】J. M. Grow, R. A. Levy, X. Fan 及び M. BhaskaranはMaterials Letter, 23, (1995) の187～193ページで、600°C～700°Cの温度範囲のLPCVD法でジt-ブチルシランとアンモニアを使用する窒化珪素の成長を説明している。成長した窒化珪素皮膜は炭素不純物(10原子%)で汚染されていた。これは主に、先駆物質中の直接のSi-C結合の存在による。

【0010】A. K. Hochberg 及び D. L. O'MearaはMat. Res. Soc. Symp. Proc. の204巻(1991)509～514ページで、LPCVDによって、アンモニアと一酸化窒素と共にジエチルシランを使用する窒化珪素とオキシ窒化珪素の成長を報告する。成長は650～700°Cの温度範囲で行われる。この成長は650°Cでの成長に限られ、より低い温度では成長速度は4Å/分未満まで低くなる。LPCVD法において、直接のSi-C炭素結合を含む先駆物質は結果として皮膜内に炭素汚染物質をもたらす。炭素を含まない成長のためにはNH₃、先駆物質の値が5より大きいことが要求される。アンモニアの濃度がより低いと、皮膜が炭素を含むことが分かっている。ジエチルシラン+アンモニアの方法は典型的に、ウェハーの均一性を改良するために蓋をしたポート又は温度勾配(temperature ramping)を必要とする。

【0011】米国特許第5,234,869号明細書及びR. G. Gordon 及び D. M. HoffmannはChem. Mater., 2巻(1990)482～484ページにおいて、テトラキス(ジメチルアミノ)シランのようなアミノシランで、含まれる炭素の量を減少させる他の試みを開示する。成長の温度は300～1000°Cの範囲で、圧力は1mTorr～10Torr(0.1333～1333Pa)の範囲である。直接のSi-N結合が存在してSi-C結合が存在しないことは、皮膜により低い炭素濃度を与えると考えられる。しかしながら、この種の先駆物質には3つの主な欠点がある。

【0012】1) それらがN-メチル基を含んでおり、このメチル基はCVD法の間に簡単にシリコン表面に移動して炭素で皮膜を汚染する。炭素の量を減少させるために、プロセスは高温(>700°C)及びアンモニア/

シランの高い値(>10)を必要とする。アンモニアの量が増加すると、反応体の減少のために成長速度は劇的に低下する。

2) それらはNH結合を含んでおらず、第二級シランを含んでいない。

3) より低温では成長速度と均一性が非常に乏しい(>5%)。

【0013】従来の技術は低温及び高い成長速度での、水素及び炭素の汚染物質が少ない窒化珪素皮膜の生産を試みた。しかしながら、従来の技術は1つの硅素先駆物質でこれら全ての目的を同時に達成することはできなかった。本発明は以下で説明するように、プラズマ成長の問題を避け、低温条件で操作を行い、Si-C結合を避けて結果として得られる皮膜の炭素汚染物質を減少させ、水素汚染物質を少量しか持たず、並びに塩素汚染物質を避け及び製造可能な回分炉(100以上のウェハー)において低圧(20mTorr～2Torr(2.666～266.6Pa))で効果的に作用する窒化珪素を形成する独自の先駆物質を使用して、従来の技術の問題を克服した。

【0014】

【課題を解決するための手段】本発明は、アンモニアと以下の式で表されるシランを使用して基材上に窒化珪素を低圧化学気相成長させる方法である。

(t-C, H, NH), SiH,

【0015】好ましくは基材の温度は約500～800°Cでの範囲である。好ましくは、圧力は約20mTorr～2Torr(2.666～266.6Pa)の範囲である。好ましくは、アンモニアのモル数/シランのモル数の値は約2よりも大きい。好ましくは、基材はシリコンである。好ましくは、基材は電子デバイスである。あるいは基材は、フラットパネルディスプレイである。

【0016】好ましい態様において本発明は、以下のa)～d)の工程を含む、反応領域での窒化珪素の低温化学気相成長法である。

a) 基材を加熱して上記領域で約500～800°Cの温度範囲にする工程。

b) 基材を上記領域で約20mTorr～2Torr(2.666～266.6Pa)の範囲の減圧に維持する工程。

c) 上記領域にアンモニア及び(t-C, H, NH), SiH_xの化学式で表されるシランを導入する工程。

d) 基材上に窒化珪素の皮膜をのに十分なa)～c)の条件を維持する工程。

【0017】

【発明の実施の形態】超大規模集積回路(VLSI)デバイスの製造において、非常に様々な「薄膜」を使用する。これらの成長(堆積)した薄膜は金属、半導体、又は絶縁体でよい。皮膜はLPCVDを使用して気相から熱的に成長又は堆積させることができる。VLSI技術

はマイクロプロセッサー及びランダムアクセスメモリデバイス製造の両方の様々な応用に、非常に薄い絶縁体を必要とする。二酸化珪素は成長させやすいこと及び SiO_2/Si 界面における優れた特性のために、誘電体材料として主に使用されてきた。窒化珪素は二酸化珪素を超える他の利点を持ち、これには $Si-N$ の不純物及びドーバントに対する拡散防止性、高い誘電破壊電圧、優れた機械的及び固有の不活性さが含まれる。

【0018】VLSI の製造では、多数の厳密な化学的、構造的、プロセス及び電気的な要求が満たされる必要がある。皮膜の純度、厚さ、均一性及び成長速度は、デバイス中のサブミクロン構造の製造を促進する厳密に制御されるパラメータの一部である。850°Cより低い温度で成長工程を行えれば、デバイスの製造及び性能において大きな利点となる。これらの温度の LPCVD 条件における窒化珪素成長用珪素原物質はシランとジクロロシランに限定される。安全で、信頼できる低温窒化珪素原物質には、フラットバネルディスプレイデバイス、他の電子及び非電子基材、又は化合物半導体デバイス製造のような他の技術での用途がある。

【0019】本発明は、優れた均一性で予想外の低温において窒化珪素を成長させるアミノシラン類としてのビス(t -ブチルアミノ)シランを志向する。

【0020】ビス(t -ブチルアミノ)シランは以下の化学式を持つ。

【0021】成長(堆積)した皮膜は優れた均一性を持ち、塩化アンモニウム及び塩素の汚染物質を含まない。ビス(t -ブチルアミノ)シランは明らかに、LPCVD によるジクロロシラン+アンモニアの方法よりも 250~300°C 低い温度で窒化珪素を成長(堆積)させ性質を持つ。 n -ブチルアミン及びテトラキス(ジメチルアミノ)シランのような配位子を含む類似のアミノシランは、LPCVD によってこのような低温では炭素を含まない皮膜を成長させ、皮膜の均一性はより劣っている。

【0022】ビス(t -ブチルアミノ)シランの顕著な利点は、ビス(t -ブチルアミノ)シランの t -ブチルアミン配位子の固有の特性に起因すると考えることができる。ビス(t -ブチルアミノ)シランの熱分解の際、

t -ブチルアミン配位子はイソブチレンとして簡単に取り除かれる。イソブチレンは非常に安定で良好な脱離基であり、このために成長の間に窒化珪素皮膜を汚染しない。ジアルキルアミノシランと比較して、 t -ブチルアミノ基は t -ブチルアミノ基中の窒素-水素結合(N-H)の存在のためにジアルキルアミンより塩基性である。N-H結合の存在は化学変化しやすい β -水素の移動を促進して、シアミノシランの形成及び t -ブチル基のイソブチレンとしての分裂を行わせることができる。

【0023】ビス(t -ブチルアミノ)シランの他の利点は以下に要約できる。

1) 40~45°C で 7.5 Torr (999.9 Pa) の蒸気圧を持ち、非自然発火性の揮発性安定液体である。

2) 先駆物質中に塩素を全く含まない。ジクロロシラン中の Si-C1 結合は、管の後部に成長する塩化アンモニウムの形成を導いて頻繁な洗浄を要求する。

3) 先駆物質は直接の Si-C 結合を含まず、結果として得られる窒化珪素皮膜はオージェ分光分析法で示されるように炭素を含まなかった。

4) t -ブチルアミノ配位子は良好な脱離基として振る舞い、熱分解中にイソブチレンを形成して容易に脱離する。このことは、一部はこの化合物が N-H 結合を持つことによると考えられる。この更なる利点は、成長した皮膜を汚染せずに全ての炭素をきれいに除去することを促進する。

5) ジクロロシランとアンモニアの方法に比較した場合、ビス(t -ブチルアミノ)シランは優れた均一性を提供する。これはおそらく、かさばる t -ブチルアミノ配位子の存在によるものだろう。これらの配位子の立体的な大きさは、基材表面での分子の可動性を高めることを促進して、結果としてより高い均一性をもたらす。

6) ジアミノ、ジメチルアミノの様な他のアミン類及び他のアルキルアミン類と比較して、これらの先駆物質を使用する成長温度は 250~300°C 低くてよい。

【0024】他の先駆物質の成長温度、先駆物質及び皮膜特性の比較を表1に示す。

【0025】

【表1】

表 1

先駆物質	蒸気圧	蒸着温度 (°C)	先駆物質および被膜の特性
$\text{SiH}_4 + \text{NH}_3$	周囲温度で 気体	200-400 プラズマ法	自然発火性ガス。気相反応。 より低温で珪素に豊む。被膜 が水素を含むことがある。
$\text{Cl}_2\text{SiH}_3 + \text{NH}_3$	周囲温度で 気体	>750	腐食性ガス。直接の Si-Cl結合。 塩素汚染。副生成物としての塩化アンモニウム。
$(\text{C}_2\text{H}_5)_2\text{SiH}_2 + \text{NH}_3$	20°Cで 100Torr (1330Pa)	650-725	低い均一性。直接の Si-C結合。 直接の Si-Cl結合。被膜中の > 2% の炭素不純物。保持 ポートおよび温度勾配が必要 なこともある。
$(t-\text{C}_4\text{H}_9)_2\text{SiH}_2 + \text{NH}_3$	20°Cで 20.5Torr (2733Pa)	600-700	直接の Si-C結合。 被膜中に炭素含む(10原子%)
$[(\text{CH}_3)_2\text{N}]_2\text{SiR} + \text{NH}_3$ R=HまたはCH ₃	25°Cで 16Torr (2133Pa)	700-1000	直接の Si-C結合。被膜中の炭 素成分が > 2% で、アンモニ ア/珪素源の値が大きいこと (30)が必要。 > 5% の不十分な均一性。
$(t-\text{C}_4\text{H}_9\text{NH})_2\text{SiH}_2$ (本発明)	45°Cで 7.5Torr (999.9Pa)	500-1000	Si-C結合がなく、炭素汚染が なく、均一性が良く、成長速 度が速い。
$(t-\text{C}_4\text{H}_9)_2\text{Si}(\text{NH}_2)_2 + \text{NH}_3$	39°Cで 2.1Torr (280.0Pa)	600-700	直接の Si-C結合。被膜の炭素 汚染。

【0026】ビス(t-ブチルアミノ)シラン化合物はまた上記のN-H結合特性のために、ジt-ブチルアミノ類似体(analog)よりも好ましく、及びビス(t-ブチルアミノ)シランは、モノ、トリ又はテトラキス(t-ブチルアミノ)類似体よりも好ましい。なぜならば、モノ類似体は不安定であり、トリ置換類似体はかなりの送出問題があり、テトラキス(t-ブチルアミノ)シラン類似体は蒸気圧がずっと低く及び1つの珪素原子に立体的にかさばる配位子があるため容易に合成することができずに商業的な使用には不適当なためである。

【0027】窒化珪素皮膜の形成するために、ビス(t-ブチルアミノ)シラン及びアンモニアを、高温(好ましくは500°C~800°Cだが、温度はこの範囲よりも低くても又は高くてもよい)の反応器管内で反応させることができる。反応は表面又はウエハー表面に非常に接近した所で起こり、薄い窒化珪素皮膜を成長させる。反応が気相で起こる場合(均一系反応)、窒化珪素のクラスターが形成される。これはシランとアンモニアの方法で一般的である。反応がウエハーの表面近くで起きている場合、結果として得られる皮膜は優れた特性を持つ。よってCVD操作において重要な必要条件の一つは、不均一系反応が気相反応よりも有利となる程度である。

【0028】CVDのプロセスはa) 気相プロセス、及びb) 表面反応プロセスにグループ分けできる。気相での現象は、気体が基材にぶつかるときの速度である。これは流れている気体バルク領域と基材表面を隔てる境界

層を気体が横切る速度によってモデル化される。このような輸送プロセスは気相の拡散によって起こり、それは気体の拡散率及び境界層を横切る濃度勾配に比例する。いくつかの表面プロセスは気体が高温表面に達したときに重要となることがあるが、一般に表面反応は、頻度因子、活性化エネルギー、及び温度の関数である速度で進む熱的に活性化される現象でモデル化できる。

【0029】表面反応速度は温度増加と共に増加する。所定の表面反応に対して、温度を十分に高め、反応体種が表面に達する速度を反応速度が超えるようにしてもよい。このような場合、反応体である気体が物質移動によって基材に供給される速度よりも早く反応が進むことはあり得ない。これは物質移動律速成長プロセスとして言及される。より低い温度では表面反応速度は低下し、ついには反応体濃度が表面反応プロセスで消費される速度を超える。このような状況では成長速度は反応速度律速である。このように通常高温では成長は物質移動律速である一方、より低温では表面反応速度律速である。実際の工程において成長条件がこれらの成長様式の1つから他方へと移り変わる温度は、反応の活性化エネルギー及び反応器内の気体流れ条件に依存している。このように1つの圧力条件又は温度条件から別のものへのプロセスの条件又は結果を推定することは難しい。

【0030】反応速度律速条件で実施する方法において、方法の温度は重要なバラメータである。つまり反応器全体での均一な成長(堆積)速度は、一定の反応速度を維持する条件を要求する。つまりこれは、全てのウエ

ハーフ面全体で一定の温度が存在すべきだということを意味する。他方そのような条件では、反応体の濃度は成長速度を限定しないので、反応体が表面に達する速度は重要ではない。従って、ウエハー表面の全ての位置に等しい反応体の流束を供給するように反応器を設計することはあまり重要なことではない。このような系は反応速度律速様式で操作するので、LPCVD反応器内にウエハーを直立させて非常に接近させて積み重ねることができるることを認識すべきである。この理由は、1 Torr 以下(133.3 Pa)であるLPCVD反応器の低圧条件下では、気体種の拡散率は大気圧のそれより1000倍大きくなり、そしてこれは反応体が拡散しなければならない距離である境界層は圧力の $1/2$ 乗よりも小さい値だけ厚くなるという事実によって部分的にのみ相殺されるためである。正味の効果は基材表面に向かう反応体及び基材表面から離れる副生成物の輸送の増加の程度よりも大きく、従って律速工程は表面反応である。

【0031】ビス(t-ブチルアミノ)シラン中のt-ブチル基の存在は、より低温のときでさえ他の方法と比較すると明らかに表面反応経路を補助し、従って成長した皮膜が優れた均一性を持つ。これらの皮膜は以下に示すようなLPCVDホットウォール反応器を使用して成長させた。

【0032】低圧化学気相成長(LPCVD)法は、20 mTorr~2 Torr(2.666~266.6 Pa)の圧力範囲で行うことができる化学反応を含む。化学気相成長(CVD)法は、与えられた温度、圧力及び反応体比率において以下の工程の順序で説明できる。

【0033】1) 反応体を反応室に導入する工程であって、反応体は必要ならば不活性ガスで希釈してもよい。

2) 反応体を基材に拡散させる工程。

3) 反応体を基材上に吸着させて、吸着した分子を表面移動させる工程。

4) 化学反応を表面で起こして、成長した皮膜を残して反応の気体副生成物を脱着する工程。反応は、例えば熱又は光子といったいくつかの手段によって始める。LPCVD法では熱エネルギーを使用する。

【0034】水平管ホットウォール反応器は、VLSIを製造するLPCVDに最も広く使用される。これらは、ポリ-Si、窒化珪素、ドーピングされない又はドーピングされた二酸化珪素皮膜の成長に使用される。これらの反応器は経済的で、高い処理能力を持ち、成長した皮膜が均一であり、及び大径ウエハー(6"~12"(15~30 cm))に適用できるので広く使用される。これらの主な不利な点は、微粒子汚染物質に影響を受けやすいこと及び成長速度が遅いことである。

【0035】垂直流等温LPCVD反応器も二酸化珪素の成長に使用できる。ここで反応器の形状はウエハー間の反応体減少効果を避けることができる。これらは温度勾配を要求せず、高い均一性の成長を行い、報告されて

いるところによると微粒子汚染物質を少量にできる。

【0036】反応器内を低圧条件にするために、ふさわしい減圧装置が必要である。本実験用の減圧装置は、回転羽式ポンプ/ルーツ送風機の組み合わせ及び様々なコールドトラップからなっていた。反応器圧力は容量マノメーターを絞り弁制御装置にフィードバックさせて制御する。反応器の装填物は、標準的な拡散ポート内の9 mm間隔の80個の直径100 mmシリコンウエハーからなる。ポートはそりに乗せて、ウエハーの中心が反応管中央の少し上になるようにする。このことは、ポート及びそりによって起る伝導性の制約を補うことによって、ウエハー表面の周りの均一な伝導性をもたらす。示されたデータでのウエハー装填物を横切る温度の均一性は、内部の多接点熱電対で計ると±1°Cであった。ウエハー装填物への成長の均一性は、温度勾配によって改良される。

【0037】我々の成長実験は水平管反応器で行ったが、この先駆物質での成長は垂直管反応器でも行われるだろう。先駆物質は装填扉に近い開口を通して供給する。アンモニアも炉の扉に近い入口から別に供給した。

【0038】ビス(t-ブチルアミノ)シラン先駆物質を使用してシリコンウエハー上に、実質的に純粋な薄い窒化珪素の皮膜を成長させる本発明の方法を実験的に証明した。ビス(t-ブチルアミノ)シランは、シラン及びジクロロシランよりも安全に扱える非自然発火性の揮発性液体である。成長工程は、ビス(t-ブチルアミノ)シランとアンモニアの蒸気を使用して、好ましくは500°C~800°Cの温度範囲において好ましくは20 mTorr~2 Torr(2.666~266.6 Pa)で行う。任意に窒素又はアルゴンのような不活性ガス希釈物を使用して希釈を行い、反応速度を調節することができる。供給するアンモニアのモル数/ビス(t-ブチルアミノ)シランのモル数の値は好ましくは2よりも大きい。

【0039】

【実施例】【例1】この方法はLPCVD条件(20 mTorr~2 Torr(2.666~266.6 Pa)の低圧力範囲)での、アンモニアとビス(t-ブチルアミノ)シランの反応を含む。先駆物質及びアンモニアを扉に配置したインジェクターを通して加熱した反応器(500~800°C)に導入する。反応体を減圧した反応室内のウエハー上に流す。アンモニア/珪素源の比の値を2~10の範囲に保つ。窒化珪素の連続皮膜をシリコンウエハー表面に成長させる。これらの皮膜は集積回路製造にふさわしい。典型的な実験は150 mmホットウォールLPCVD水平管反応器で行ったが、装置の形状は重要ではない。この方法は、75~100個のシリコンウエハーを石英の反応器に装填すること、系を減圧すること、ウエハーを成長が起こる所望の温度にすることを含む。この反応に要求されるエネルギーは単純な抵

11

12

抗加熱によって供給できる。しかしながら単純な抵抗加熱は設備があまり高価でなく、しばしばプラズマ反応器と関連する放射性皮膜損傷を避けるので有利である。

【0040】皮膜は赤外分光分析法及び屈折率で特性を調べられる。FT-IRスペクトルは、例えばジクロロシラン+アンモニアといった他の既知の窒化物先駆物質から成長した窒化珪素皮膜と一致している。中程度の吸収帯が 2100 cm^{-1} のSi-H伸張領域、及び強い吸収帯が 834 cm^{-1} のSi-N伸張領域にある。これらの皮膜の屈折率を 632.4 nm での偏光解析法で測定し、屈折率は $1.95\sim2.01$ の範囲であった。窒化*

10 【0042】

【表2】

表 2

先駆物質	化学式	分子量	蒸 气		原 料 供給量 scm ³	温 度 °C	压 力 mTorr (Pa)	NH ₃ /Si 原料	成 长 速 度 A/min	屈 折 率
			蒸気圧 Torr (Pa)	左の場合 の温度 °C						
ビス(ジメチルアミノ)シラン	H ₂ Si(N[CH ₃] ₂) ₂	118.25	>10 (>1333)	27	22.0 650	600(79.99) 600(79.99)	6.0	5.5	2.00	
トリ(ジメチルアミノ)シラン	HSi(N[CH ₃] ₂) ₃	161.32	8 (1067)	29	21.6 21.6 21.6	600(79.99) 600(79.99) 600(79.99)	6.0 6.0 6.0	0 12 22	1.75 1.89	
ビス(ジエチルアミノ)シラン	H ₂ Si(N[C ₂ H ₅] ₂) ₂	174.36	14 (1867)	65.4	48.3 38.6	550 600 500(66.66)	0	15 16	1.65 2.00	
ビス(t-ブチルアミノ)シラン	H ₂ Si(NHC ₄ H ₉) ₂	174.36	7.5 (999.9)	45	22.0 22.0 22.0	600 650 700	600(79.99) 600(79.99) 600(79.99)	6.0 6.0 6.0	14 58 124	1.96 1.95 1.96
ジ-t-ブチルジアミノシラン	(C ₄ H ₉) ₂ Si(NH ₂) ₂	174.36	2.1 (280.0)	39	21.0 18.6 26.0 21.0	600 650 650 700	600(79.99) 600(79.99) 600(79.99) 600(79.99)	6.3 7.1 5.1 6.3	12 43 57 130	1.87 1.93 1.94 1.99
トリス(エチルアミノ)エチルシラン	C ₂ H ₅ Si(NHC ₂ H ₅) ₃	189.38		54	11.0 11.0 23.0 11.0 23.0	600 650 650 700 700	600(79.99) 600(79.99) 600(79.99) 600(79.99) 600(79.99)	4.0 4.0 6.0 4.0 6.0	9 30 47 62 105	1.73 1.87 1.88 1.93 1.94
テトラキス(ジエチルアミノ)シラン	Si(N[CH ₃] ₂) ₄	204.39	7.3 (973.3)	51	34.3	600	500(66.66)	0	0	

【0043】ここでscm³は標準状態における流量(cm³/分)である。

【0044】このデータに基づいて、供給が簡単な先駆物質の蒸気圧、成長速度、成長した皮膜中の炭素不純物、成長温度、珪素と窒素の比、及び屈折率を他の先駆物質と比較するための基準として使用した。最も高い成長速度はN-H結合を持つ化学種つまり、ビス(t-ブチルアミノ)シラン、ジ-t-ブチルジアミノシラン、及びトリス(エチルアミノ)エチルシランを使用して得られた。これらの中で、成長した皮膜中に最も少量の炭素不純物を含む窒化珪素皮膜は、直接のSi-C結合を

持たない化学種すなわち、ビス(t-ブチルアミノ)シラン及びt-ブチルアミノシランダイマーを使用して得られた。最も均一な成長は、t-ブチル基を持つ化学種、すなわちビス(t-ブチルアミノ)シラン及びジ-t-ブチルジアミノシランを使用して得られた。この基準に照らして、ビス(t-ブチルアミノ)シランは予想外に優れた窒化珪素の先駆物質である。

【0045】本発明を好ましい態様に関して説明してきたが、本発明の全体の範囲は特許請求の範囲で確認るべきである。

フロントページの続き

(72)発明者 ラビ クマール ラックスマン
アメリカ合衆国, カリフォルニア 92024,
エンシニタス, アベニダ フローレス
1829

(72)発明者 デビッド アレン ロバーツ
アメリカ合衆国, カリフォルニア 92046,
エスコンディード, エルфин フォレス
ト ロード 20020

(72)発明者 アーサー ケネス ホップバーグ
アメリカ合衆国, カリフォルニア 92075,
サラナ ビーチ, サンタ クエタ 1037

(72)発明者 ハーマン ジーン ホッケンハル
アメリカ合衆国, カリフォルニア 92054,
オーシャンサイド, ヘリテージ ストリート 190

(72)発明者 フェリシア ダイアン カミンスキ
アメリカ合衆国, カリフォルニア 92024,
エンシニタス, ノース バルカン アベニュ
ナンバーエル 1353