Definition: NB(r, p) distribution

In a sequence of independent Bernoulli trials with success probability p,

if Y is the number of failures before the rth success,

then Y has the negative binomial distribution with parameters r and p,

i.e. $Y \sim NB(r, p)$.

Let q = 1 - p.

P(Y = k) = P(some string of k failures and r - 1 successes) P(success)

$$= \binom{k+r-1}{k} p^{r-1} q^k p$$

$$= \binom{k+r-1}{k} p^r q^k.$$

If $W \sim \text{Geo}(p)$ (counting failures before the first success), then

$$E[W] = \frac{q}{p}$$

$$E[W] = \frac{q}{p},$$

$$V[W] = \frac{q}{p^2}.$$

We can consider $Y \sim NB(r, p)$ as the sum of r iid Geo(p) RVs, so

$$Y = W_1 + \cdots W_r,$$

$$E[Y] = rE[W_1] = \frac{rq}{p},$$

$$V[Y] = rV[W_1] = \frac{rq}{p^2}.$$

Definition: NB2(μ ,r) distribution, i.e. mean parameterization of NB distribution

In the original NB(r, p) distribution,

$$P(Y = k) = {k+r-1 \choose k} p^r q^k, k = 0,1,2 \dots$$

Reparameterize by letting $\mu = E[Y] = \frac{rq}{p}$, so that $p = \frac{r}{r+\mu}$ and $q = \frac{\mu}{r+\mu}$, and we have

$$P(Y = k) = {\binom{k+r-1}{k}} \left(\frac{r}{r+\mu}\right)^r \left(\frac{\mu}{r+\mu}\right)^k.$$

We say that $Y \sim NB2(\mu, r)$

In this case, $V[Y] = \frac{rq}{p^2} = \frac{\mu}{p} = \frac{\mu(r+\mu)}{r} = \mu + \frac{\mu^2}{r}$.

Extension of NB2 distribution to $r \in \mathbb{R}^+$

Using the gamma function, we can allow for positive real values of r:

$$P(Y = k) = \frac{\Gamma(r+k)}{k!\Gamma(r)} \left(\frac{r}{r+\mu}\right)^r \left(\frac{\mu}{r+\mu}\right)^k, k = 0,1,2...$$

It may require proving that the expectation and variance are still the same for noninteger r.

Theorem: limit of NB2(μ , r) is Pois(μ)

As $r \to \infty$, the NB2(μ , r) distribution approaches the Pois(μ) distribution. Equivalently, the NB(r, p) distribution approaches the Pois($\frac{rq}{p}$) distribution.

<u>Proof</u>

For
$$k = 0,1,2,..., P(Y = k) = \frac{\Gamma(r+k)}{k!\Gamma(r)} \left(\frac{r}{r+\mu}\right)^r \left(\frac{\mu}{r+\mu}\right)^k$$

$$= \frac{\mu^k}{k!} \frac{\Gamma(r+k)}{\Gamma(r)(r+\mu)^k} \left(1 + \frac{\mu}{r}\right)^{-r} \text{ by algebraic rearrangement.}$$
Since $\frac{\Gamma(r+k)}{\Gamma(r)(r+\mu)^k} = \frac{(r+k-1)(r+k-2)...(r)\Gamma(r)}{(r+\mu)...(r+\mu)\Gamma(r)}$

$$= \left(\frac{r+k-1}{r+\mu}\right) \left(\frac{r+k-2}{r+\mu}\right) \cdots \left(\frac{r}{r+\mu}\right)$$

$$= \left(\frac{r}{r+\mu} + \frac{k-1}{r+\mu}\right) \left(\frac{r}{r+\mu} + \frac{k-1}{r+\mu}\right) \cdots \left(\frac{r}{r+\mu}\right).$$
we have $P(Y = k) = \frac{\mu^k}{k!} \left[\left(\frac{r}{r+\mu} + \frac{k-1}{r+\mu}\right) \left(\frac{r}{r+\mu} + \frac{k-1}{r+\mu}\right) \cdots \left(\frac{r}{r+\mu}\right)\right] \left(1 + \frac{\mu}{r}\right)^{-r}.$
Taking limits as $r \to \infty$,
$$P(Y = k) = \frac{\mu^k}{k!} \left[(1)(1) ...(1)\right] e^{-\mu} = \frac{e^{-\mu}\mu^k}{k!},$$
which is the Poisson(μ) PMF. \blacksquare

Definition: zero-inflated NB2(μ ,r) distribution

In a zero-inflated negative binomial model, we hypothesize that *Y* is generated:

- * by a zero process with probability ζ , and
- * by a negative binomial process with probability 1ζ .

If $f(\cdot)$ is the $NB2(\mu, r)$ PMF, then the $ZINB2(\mu, r, \zeta)$ PMF is given by $(\zeta + (1 - \zeta)f(0))$, k = 0

$$P(Y = k) = \begin{cases} \zeta + (1 - \zeta)f(0), & k = 0\\ (1 - \zeta)f(k), & k > 0 \end{cases}$$