© Laurent Garcin MP Dumont d'Urville

Devoir à la maison n°01

- Le devoir devra être rédigé sur des copies doubles.
- Les copies ne devront comporter ni rature, ni renvoi, ni trace d'effaceur.
- Toute copie ne satisfaisant pas à ces exigences devra être intégralement récrite.

Problème 1 – D'après Petites Mines 2001

Les parties 2 et 3 sont liées mais la partie 1 est indépendante du reste du problème.

Partie I -

Soit $p \in \mathbb{N}^*$ et $A \in \mathcal{M}_p(\mathbb{R})$ telle que $A^2 \neq 0$ et $A^3 = 0$. On note I la matrice identité de $\mathcal{M}_p(\mathbb{R})$. Pour tout $t \in \mathbb{R}$, on pose $E(t) = I + tA + \frac{t^2}{2}A^2$.

- **I.1** Vérifier que pour tout $(s, t) \in \mathbb{R}^2$, E(s + t) = E(s)E(t).
- **I.2** En déduire que $E(t)^n = E(nt)$ pour tout $t \in \mathbb{R}$ et tout $n \in \mathbb{N}$.
- **I.3** Montrer que E(t) est inversible pour tout $t \in \mathbb{R}$ et déterminer son inverse.
- **I.4** Montrer que la famille (I, A, A²) est une famille libre de $\mathcal{M}_p(\mathbb{R})$.
- **I.5** En déduire que l'application $E: t \in \mathbb{R} \mapsto E(t)$ est injective.
- **I.6** Dans cette question, p = 3 et $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Expliciter la matrice E(t) pour tout $t \in \mathbb{R}$ sous la forme d'un tableau matriciel.

Partie II -

On note $\mathcal{B}_0 = (e_1, e_2)$ la base canonique de \mathbb{R}^2 . Soit la matrice $A = \begin{pmatrix} 4 & -6 \\ 1 & -1 \end{pmatrix}$ de $\mathcal{M}_2(\mathbb{R})$. On note f l'endomorphisme de \mathbb{R}^2 canoniquement associé à A.

- II.1 Montrer que $F = Ker(f 2 Id_{\mathbb{R}^2})$ et $G = Ker(f Id_{\mathbb{R}^2})$ sont deux droites vectorielles supplémentaires dans \mathbb{R}^2 . Préciser un vecteur directeur u de F et un vecteur directeur v de G.
- **II.2** Sans calculs, déterminer la matrice de l'endomorphisme f dans la base $\mathcal{B} = (u, v)$.
- **II.3** En déduire qu'il existe une matrice P inversible et une matrice D diagonale dans $\mathcal{M}_2(\mathbb{R})$ telles que $A = PDP^{-1}$. Expliciter P, D et P^{-1} .
- **II.4** Expliciter D^n pour tout $n \in \mathbb{N}$. Démontrer que $A^n = PD^nP^{-1}$ pour tout $n \in \mathbb{N}$. En déduire l'expression de A^n pour tout $n \in \mathbb{N}$ sous forme d'un tableau matriciel.

Partie III -

On reprend les notations de la partie 2.

III.1 En utilisant l'inégalité de Taylor-Lagrange, montrer que pour tout réel t,

$$e^t = \lim_{n \to +\infty} \sum_{k=0}^{n} \frac{t^k}{k!}$$

III.2 Pour tout $t \in \mathbb{R}$ et tout $n \in \mathbb{N}$, on pose $E_n(t) = \sum_{k=0}^n \frac{t^k}{k!} A^k$. On écrira cette matrice sous la forme

$$\left(\begin{array}{cc} a_n(t) & b_n(t) \\ c_n(t) & d_n(t) \end{array}\right).$$

Expliciter sous forme de sommes les coefficients $a_n(t)$, $b_n(t)$, $c_n(t)$ et $d_n(t)$ pour tout $t \in \mathbb{R}$.

III.3 Pour tout $t \in \mathbb{R}$, on pose

$$a(t) = \lim_{n \to +\infty} a_n(t) \qquad b(t) = \lim_{n \to +\infty} b_n(t) \qquad c(t) = \lim_{n \to +\infty} c_n(t) \qquad d(t) = \lim_{n \to +\infty} d_n(t)$$

et
$$E(t) = \begin{pmatrix} a(t) & b(t) \\ c(t) & d(t) \end{pmatrix}$$
. Expliciter $a(t)$, $b(t)$, $c(t)$ et $d(t)$ pour tout $t \in \mathbb{R}$.

III.4 Montrer qu'il existe des matrices Q et R de $\mathcal{M}_2(\mathbb{R})$ telles que

$$\forall t \in \mathbb{R}, \ \mathrm{E}(t) = e^{2t}\mathrm{Q} + e^{t}\mathrm{R}$$

et expliciter Q et R.

- III.5 Calculer les matrices Q^2 , R^2 , QR et RQ. Que peut-on dire des endomorphismes q et r canoniquement associés à Q et R? On précisera sa réponse à l'aide des droites F et G de la question II.1.
- III.6 En déduire que

$$\forall (s,t) \in \mathbb{R}^2, \ \mathrm{E}(s+t) = \mathrm{E}(s)\mathrm{E}(t)$$

Que dire de $E(t)^n$ pour $t \in \mathbb{R}$ et $n \in \mathbb{N}$? Que dire de l'inversibilité de E(t) et de son éventuel inverse pour $t \in \mathbb{R}$?

L'application E : $t \in \mathbb{R} \mapsto E(t)$ est-elle injective?

© Laurent Garcin MP Dumont d'Urville

Problème 2 – Résolution d'une équation différentielle

Partie I – Résolution de deux équations différentielles simples

On considère les équations différentielles

$$z'' + 4z = 0 \tag{E_1}$$

$$z'' - 4z = 0 \tag{E_2}$$

- **I.1** Déterminer les solutions à valeurs réelles de l'équation différentielle (E₁).
- I.2 Déterminer les solutions à valeurs réelles de l'équation différentielle (E2).
- **I.3** Montrer que l'ensemble des solutions de (E₂) peut en fait s'écrire

$$\{t \mapsto \lambda \operatorname{ch}(2t) + \mu \operatorname{sh}(2t), \ (\lambda, \mu) \in \mathbb{R}^2\}$$

Partie II - Résolution d'une seconde équation différentielle par changement de variable

On considère l'équation différentielle

$$(1 - x^2)y'' - xy' + 4y = 0 (F)$$

- **II.4** Soit f une fonction deux fois dérivable sur]-1,1[. On pose $g=f\circ \cos$. Montrer que g est deux fois dérivable sur l'intervalle $]0,\pi[$.
- **II.5** Montrer que f est solution de (F) sur]-1,1[si et seulement si g est solution sur $]0,\pi[$ d'une équation différentielle du second ordre à coefficients constants à déterminer.
- **II.6** En déduire que les solutions de (F) sur]-1,1[sont les fonctions

$$x \in]-1,1[\mapsto \lambda(2x^2-1) + 2\mu x\sqrt{1-x^2}$$

avec $(\lambda, \mu) \in \mathbb{R}^2$.

Partie III - La fonction argument cosinus hyperbolique

- III.7 Montrer que la fonction ch induit une bijection de \mathbb{R}_+ sur $[1, +\infty[$. On notera argch la bijection réciproque de cette bijection induite.
- **III.8** Montrer que pour tout $x \in [1, +\infty[$, shoargch $(x) = \sqrt{x^2 1}$.
- III.9 Justifier que la fonction argch est dérivable sur $]1,+\infty[$ et déterminer une expression de sa dérivée.
- **III.10** Montrer que pour tout $\theta \in \mathbb{R}$, $\operatorname{ch}(2\theta) = 2\operatorname{ch}^2(\theta) 1$ et $\operatorname{sh}(2\theta) = 2\operatorname{ch}(\theta)\operatorname{sh}(\theta)$.
- III.11 En déduire pour $x \in [1, +\infty[$ des expressions de ch $(2 \operatorname{argch}(x))$ et sh $(2 \operatorname{argch}(x))$ ne faisant pas intervenir la fonction argch.

Partie IV - Un problème de raccord

IV.12 En considérant cette fois-ci une fonction f deux fois dérivable sur $]1, +\infty[$ et en posant $g = f \circ ch$, montrer que les solutions de l'équation différentielle (F) sur $]1, +\infty[$ sont les fonctions

$$x \in]1, +\infty[\mapsto \lambda(2x^2 - 1) + 2\mu x\sqrt{x^2 - 1}$$

avec $(\lambda, \mu) \in \mathbb{R}^2$.

- **IV.13** En déduire les solutions de l'équation différentielle (F) sur $]-\infty,-1[$.
- **IV.14** Déterminer les solutions de (F) sur \mathbb{R} .