

MACHINE LEARNING Regression & Classification

Classification: Insurance Claims

A dataset comprises **56,993 observations**, with the dependent variable being the claim status, which is categorized as o (denied) and 1 (approved).

Out of all the claims received, only 1.46% were approved, which reflects the reality of the business case. However, this makes the data extremely imbalanced, requiring careful consideration.

Key features:

Numeric: reward, revenue, person_age, customer_score, trip_length, support_interactions

Categorical: product_id, entity_type, channel, agent_id, location, person_gender

Insurance Claims: Data Overview

Length of trip is right-skewed (max 4856 days vs 75th percentile: 53 days)

The probability of a claim with a higher reward being accepted is 0.03 much higher than that of claims with lower rewards

Three dominant entities received higher claim approval 99ede4e4 - f94f3b95 - 3db4b215

Entity type B has a significantly higher approval claim rate

Categorical features by claim status

The majority of approval cases are based in Singapore, which could indicate that the insurance company is located in Singapore or that the majority of their clients are from Singapore. Followed by the United States, Canada, and the United Kingdom.

Annual insurance product received the highest claim approval, including TravelShield Annual Pro, SecurePlan Annual Lite, Tripguard Annual Pro

Key Findings

Annual Policies

Represent 2.3 % of all insurances (1,309 out of 56,993)

Predominantly sold in Singapore (1,115 cases, 85 % of annuals)

Agent Concentration

Three agents handle nearly all long-haul plans (agent 5, 13, 14)

Entity

Type B has more positive approves than type A

Product-Level Approval Rates

The annual insurance product received the highest claim approval, with Travel Shield Annual Pro at an 11.7% approval rate

Modelling Approach

Raw data Encode categoricals Holdout set Features Engineer one-hot (dummy) encoding, drop = False both train & final test set Stratified Split **Features Selection** Statistical test & wrapper method Model selection Train/Test split Pipeline Construction **Final Prediction** Select features - mutual information SMOTE - StandardScaler -SVM-Holdout Evaluation Hyperparameter Tuning Threshold Optimization RandomizedSearchCV with a 3-fold StratifiedKFold.

Model comparison

	balanced_acc	precision	recall	f1
svm_model	0.757	0.063	0.659	0.115
lr_model	0.701	0.084	0.479	0.143
knn_model	0.644	0.041	0.443	0.075
xgboost_model	0.593	0.062	0.240	0.099
rf_model	0.527	0.054	0.072	0.062

Table 1: Model comparison

Why SVM?

Final result with hold-out set

Hold-out metrics @threshold=0.24

Balanced-Accuracy: 0.741

Precision: 0.068

Recall: 0.605

F1 Score: 0.122

- Best recall for the minority class
- Effective in high-dimensional space
- Robust to overfitting with RBF kernel

Final insurance claim prediction

5513 - non-approved claim status

820 - approved claim status

Features important

- Entity 99ede4e4 category drives the most variance in claim outcomes, echoing our earlier observation that certain underwriting entities (like those in Singapore) dominate approval rates
- Reward ranks second, confirming that higher-value incentives correlate strongly with claim approvals.
- Among product IDs, TripGuard Annual Pro and TravelShield Core appear in the top four
- Agent id is also highly important, reinforcing that a handful of agents (e.g., Agent 5, 13, 14) handle most high-approval policies

A dataset comprises 156,454 observations, with the dependent variable being the apartment price (target_z).

Right-skewed target, price of apartment, according to certain attributes reflective of most of the housing are relatively priced on the low-end, while a small number of luxury or very well-located apartments push the average price higher.

Selected Key Features:

Numeric: 'market_volatility' 'dim_m2' 'estimated_maintenance_cost' 'n_poi', 'infrastructure_quality' 'dist_centre' 'dist_rest' 'dist_clinic', 'floor_max' 'dist_sch' 'dist_uni' 'year_built' (binned)

Categorical: 'obj_type', 'n_rooms', 'own_type', 'build_mat', 'has_park', 'has_balcony', 'has_lift', 'has_sec', 'has_store', 'loc_code', 'green_space_ratio' 'src_month' (binned)

Analysis of Numerical Variables

Most of the variables (including price) are right skewed, indicating that log transformation needed

Only a few variables have positive correlation with target → limited predictive power to the target

Correlation of Numerical Variables

Numerical variables are then selected based on their pearson correlation in target

Threshold of o.o1 to avoid

Analysis of Categorical Variables

ANOVA; Features & Target

Crammer's V: Multicolinearity of Features

No multicolinearity detected All of the categorical features are statistically significant

Data Preprocessing: Treatment of Variables during Data Transformation

Imputation on Missing Value ONLY BASED on Train Set Then applied on Validation and Test set

- For numerical; Median Imputation
- For Categorical: Mode Imputation

Categorical: OneHotEncoding

has_sec_no	has_sec_yes	has_store_no	has_store_yes	loc_code_0ab06839	loc_code_143768f7	loc_code_378f340c
0.0	1.0	1.0	0.0	0.0	0.0	0.0
1.0	0.0	1.0	0.0	0.0	0.0	0.0
1.0	0.0	0.0	1.0	0.0	0.0	0.0
1.0	0.0	1.0	0.0	0.0	0.0	0.0
1.0	0.0	0.0	1.0	1.0	0.0	0.0

Numerical: Log Transformation to Normalise Distribution

Numerical: Scaling

- For OLS, Ridge, Lasso, Elastic Net: StandardScaler()
- For KNN: MinMaxScaler()
- For XGBoost: No need:)

Data Preprocessing: Features Engineering

Binning of Year and Month

Year:

- pre-1950 (old)
- 1950-2000 (somehow new)
- post-2000 (new building)

Month:

- Q_I
- Q₂
- Q3
- Q₄

Binned quarterly to avoid seasonality

Building Regression ML Pipeline

Generate prediction *

Choose Model and refit into holdout set

Choose RSME

Model Selection

Model	RMSE	MAE	R2
Linear	96661.140	69894.471	0.951
Ridge	96634.278	69880.721	0.951
Lasso	96851.456	70230.531	0.951
 ElasticNet	298921.540	186211.389	0.530
KNN	220261.851	146305.666	0.745
XGBoost	95670.119	68788.042	0.952

XGBoost achieved the lowest validation RMSE among all tested model

Features Importance

- Apartment prices are most strongly influenced by fluctuations or uncertainty in the market
- Geographic location is a strong predictor of apartment prices.
- Newer buildings seem to carry pricing weight
- Sum of room drives the prices up (assuming 1 room means studio)

Prediction on apartment price heavily influenced by macroeconomic, locational factors, and consumer preference dominate valuation signals

THANK YOU!!!