Agenda

- 1. Cumulative probability distributions
- 2. Predicting educational attainment
- 3. Log cumulative odds link
- 4. Intercept-only ordered logit
- 5. Ordered logit with predictors
- 6. Estimating ordered logit in R

Cumulative probability distributions

Cumulative probability distributions

Norm(0, 1)

Cumulative distribution function (CDF)

Norm(0, 1)

Age and education

The problem Educational attainment is measured as categories, but those categories are ordered in an important way.
 The solution Treat education as a categorically-distributed variable, but constrain the probabilities to respect the order.

Age and education

$$E_i \sim \text{Categorical}(p_1, p_2, p_3)$$

Log cumulative odds

Log cumulative odds

Inverse logit

Parameter scale

Cumulative probability

Intercept-only ordered logit model

$$E_i \sim ext{Categorical}(\mathbf{p})$$
 $p_k = q_k - q_{k-1}$
 $\log ext{is the cumulative probability of category k}$
 $q_0 = 0; q_1 = 1$

Cumulative probability

Parameter scale

Ordered logit with predictors

$$E_i \sim ext{Categorical}(\mathbf{p})$$
 $p_k = q_k - q_{k-1}$
 $ext{logit}(q_k) = a_k - \phi_i$
 $\phi_i = eta H_i$
 $ext{}$
 $a_k \sim ext{Norm}(0, 1.5)$
 $eta \sim ext{Norm}(0, 2)$

