Zinguaggi Formali e Traduttori

2.3 Automi a stati finiti con ε-transizioni

- Sommario
- Esempio: costanti numeriche con segno
- Automi a stati finiti con **E-transizioni**
- ε-chiusura
- Esempio di calcolo della ε-chiusura
- Linguaggio riconosciuto da un ε-NFA
- NFA $\rightarrow \epsilon$ -NFA
- ε-NFA → DFA
- ε-NFA → DFA: costruzione per sottoinsiemi
- Esempio: costanti numeriche con segno
- Esempio: costruzione modulare di automi
- Esercizi
- Dimostrazioni

È proibito condividere e divulgare in qualsiasi forma i materiali didattici caricati sulla piattaforma e le lezioni svolte in videoconferenza: ogni azione che viola questa norma sarà denunciata agli organi di Ateneo e perseguita a termini di legge.

Sommario

Automi deterministici e non deterministici

Automi in cui ogni **transizione** corrisponde alla **lettura di un simbolo** nella stringa da riconoscere

$$\delta: Q{ imes}\Sigma o Q$$

$$\delta: Q{ imes}\Sigma o Q \qquad \qquad \delta: Q{ imes}\Sigma o \wp(Q)$$

Automi con E-transizioni

Automi che possono eseguire transizioni spontanee senza leggere alcun simbolo nella stringa da riconoscere

$$\delta: Q{ imes}(\Sigma \cup \{arepsilon\}) o \wp(Q)$$

In questa lezione

- 1. Introduciamo la classe degli automi con ε-transizioni
- 2. Dimostriamo che ogni linguaggio riconosciuto da un automa con ε-transizioni può essere riconosciuto anche da un automa deterministico
- 3. Usiamo le E-transizioni laddove conveniente, per esempio per rappresentare parti facoltative di una stringa da riconoscere o per costruire agevolmente automi complessi in maniera modulare

Segno obbligatorio

• quando l'automa è nello stato q_0 si aspetta di riconoscere un segno (+ o -)

Segno obbligatorio

• quando l'automa è nello stato q_0 si aspetta di riconoscere un segno (+ o -)

egno **facoltativo**

- quando l'automa è nello stato q_0 può riconoscere un segno oppure spostarsi **spontaneamente** in q_1 e avvicinarsi allo stato finale
- ullet abbiamo aggiunto **una transizione** da q_0 a q_1 invece di 10 **transizioni** da q_0 a q_2

Automi a stati finiti con **E-transizioni**

Definizione

Un automa a stati finiti con $\pmb{\varepsilon}$ -transizioni (detto anche $\pmb{\varepsilon}$ -NFA) è una quintupla $A=(Q,\Sigma,\delta,q_0,F)$ dove:

- ullet Q è un insieme **finito** di **stati**
- Σ è l'alfabeto riconosciuto dall'automa
- $\delta: Q \times (\Sigma \cup \{\varepsilon\}) \to \wp(Q)$ è la funzione di transizione (notare il dominio)
- $q_0 \in Q$ è lo stato iniziale
- ullet $F\subseteq Q$ è l'insieme di **stati finali**

Note

- $\delta(q,a)$ è l'insieme degli stati in cui l' ϵ -NFA può transire quando si trova nello stato q leggendo il simbolo a
- $\delta(q, \varepsilon)$ è l'insieme degli stati in cui l' ϵ -NFA può **transire spontaneamente** quando si trova nello stato q, senza leggere alcun simbolo

ε-chiusura

Intuizione

Per definire il linguaggio riconosciuto da un ϵ -NFA, è importante riuscire a determinare quali stati sono raggiungibili grazie alle ϵ -transizioni

Definizione

ECLOSE(q) è il più piccolo insieme di stati tale che:

- 1. $q \in \text{ECLOSE}(q)$
- 2. se $p \in \text{ECLOSE}(q)$, allora $\delta(p, \varepsilon) \subseteq \text{ECLOSE}(q)$

Generalizzazione della E-chiusura a insiemi di stati

Quando S è un insieme di stati, definiamo $extbf{ECLOSE}(S) = igcup_{q \in S} extbf{ECLOSE}(q)$

Esempio di calcolo della ε-chiusura

Esempio di calcolo della ε-chiusura

- ECLOSE $(q_1) = \{q_1, q_2, q_3, q_4, q_6\}$
- ECLOSE $(q_2) = \{q_2, q_3, q_6\}$
- ullet ECLOSE $(q_3)=\{q_3,q_6\}$
- ECLOSE $(q_4) = \{q_4\}$
- ECLOSE $(q_5) = \{q_5, q_7\}$
- ECLOSE $(q_6) = \{q_6\}$
- ECLOSE $(q_7) = \{q_7\}$

Linguaggio riconosciuto da un ε-NFA

Definizione

La funzione di transizione estesa dell' ϵ -NFA $A=(Q,\Sigma,\delta,q_0,F)$ è la funzione $\hat{\delta}:Q imes\Sigma^* o\wp(Q)$ definita per induzione sul suo secondo argomento come segue:

$$\hat{\delta}(q,arepsilon) = ext{ iny ECLOSE}(q) \qquad \qquad \hat{\delta}(q,wa) = \{r \in ext{ iny ECLOSE}(\delta(p,a)) \mid p \in \hat{\delta}(q,w)\}$$

Definizione

ll linguaggio riconosciuto (o accettato) dall' ϵ -NFA $A=(Q,\Sigma,\delta,q_0,F)$ è denotato da L(A) e definito come segue:

$$L(A) = \{w \in \Sigma^* \mid \hat{\delta}(q_0,w) \cap F
eq \emptyset \}$$

Nota

• L' ϵ -NFA riconosce una stringa w se **esiste** un percorso etichettato con w che lo porta dallo stato iniziale q_0 a uno dei suoi stati finali in F

$NFA \rightarrow \epsilon - NFA$

Teorema

Dato un NFA N, esiste un ϵ -NFA E tale che L(E)=L(N)

Dimostrazione

Basta osservare che un NFA è un caso particolare di ϵ -NFA in cui non ci sono ϵ -transizioni

Conseguenze

- ogni linguaggio regolare (cioè riconosciuto da un DFA) è riconosciuto da un ε-NFA
- il potere riconoscitivo degli **E**-NFA è almeno pari a quello dei DFA/NFA, che abbiamo già dimostrato essere equivalenti

ϵ -NFA \rightarrow DFA

Teorema

Dato un ϵ -NFA E, esiste un DFA D tale che L(D)=L(E)

Intuizione

- usiamo la costruzione per sottoinsiemi come nel caso NFA → DFA
- occorre fare attenzione agli stati raggiungibili da ε-transizioni
- possiamo usare la nozione di ε-chiusura!

Conseguenze

- ogni linguaggio riconosciuto da un ε-NFA è regolare
- combinando questo risultato e quello della slide 8, concludiamo che ϵ -NFA, NFA e DFA hanno lo stesso potere riconoscitivo

ε-NFA → DFA: costruzione per sottoinsiemi

Dato un ϵ -NFA $E=(Q_E,\Sigma,\delta_E,q_0,F_E)$ definiamo $D=(Q_D,\Sigma,\delta_D,\mathtt{ECLOSE}(q_0),F_D)$ dove

- $ullet \ Q_D = \wp(Q_E)$, ovvero Q_D è <mark>l'insieme dei sottoinsiemi di Q_E .</mark>
- ullet per ogni $S\subseteq Q_E$ e ogni $a\in \Sigma$ definiam $ullet \delta_D(S,a)=igcup_{a\in S}$ ECLOSE $(\delta_E(q,a))$
- $F_D = \{S \subseteq Q_E \mid S \cap F_E \neq \emptyset\}$

Se si dimostra l'equazione

$$\hat{\delta}_E(q_0,w) = \hat{\delta}_D(ext{ECLOSE}(q_0),w)$$

si può concludere che

$$egin{aligned} oldsymbol{w} \in L(E) &\iff \hat{\delta}_E(q_0,w) \cap F_E
eq \emptyset & ext{def. di } L(E) \ &\iff \hat{\delta}_D(ext{ECLOSE}(q_0),w) \cap F_E
eq \emptyset & ext{equazione qui sopra} \ &\iff \hat{\delta}_D(ext{ECLOSE}(q_0),w) \in F_D & ext{def. di } F_D \ &\iff oldsymbol{w} \in L(D) & ext{def. di } L(D) \end{aligned}$$

Dettagli nel libro di testo.

	+,-	0,1,,9
$ ightarrow \{q_0,q_1\}$	$\{q_1\}$	$\{q_2\}$
$\{q_1\}$	Ø	$\{q_2\}$
$*\{q_2\}$	Ø	$\{q_2\}$
Ø	Ø	Ø

Esempio: costruzione modulare di automi

Teorema

I linguaggi regolari sono **chiusi** rispetto all'operazione di **unione**, ovvero se L_1 ed L_2 sono regolari, allora anche $L_1 \cup L_2$ è regolare

Dimostrazione

Se L_1 ed L_2 sono regolari, allora esistono due automi a stati finiti A_1 e A_2 tali che $L_1=L(A_1)$ e $L_2=L(A_2)$. Supponiamo $A_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ e $A_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$.

Costruiamo $A = (Q_1 \cup Q_2 \cup \{q_0\}, \Sigma, \delta, q_0, F_1 \cup F_2)$ dove

$$\delta(q, lpha) = egin{cases} \{q_1, q_2\} & ext{se } q = q_0 ext{ e } lpha = arepsilon \ \delta_1(q, lpha) & ext{se } q \in Q_1 \ \delta_2(q, lpha) & ext{se } q \in Q_2 \ \emptyset & ext{altrimenti} \end{cases}$$

Abbiamo che $L(A) = L(A_1) \cup L(A_2)$

Esercizi

- 1. Definire un ϵ -NFA che riconosca le stringhe composte da 0 o più a, seguite da 0 o più b, seguite da 0 o più c.
- 2. Definire un ϵ -NFA che riconosca le stringhe formate da 01 ripetuto una o più volte, o da 010 ripetuto una o più volte.
- 3. Per l'ε-NFA rappresentato in forma tabellare qui sotto, calcolare l'ε-chiusura di ciascuno stato, descrivere sommariamente il linguaggio accettato e convertire l'automa in DFA.

	3	а	b	С
ightarrow p	Ø	$\{p\}$	$\{q\}$	$\{r\}$
$oldsymbol{q}$	{ <i>p</i> }	$\{q\}$	$\{r\}$	Ø
**	$\{q\}$	$\{r\}$	Ø	$\{p\}$

A. Per l'ε-NFA rappresentato in forma tabellare qui sotto, calcolare l'ε-chiusura di ciascuno stato, descrivere sommariamente il linguaggio accettato e convertire l'automa in DFA.

	ε	а	b	С
ightarrow p	$\{q,r\}$	Ø	$\{q\}$	$\{r\}$
$oldsymbol{q}$	Ø	$\{p\}$	$\{r\}$	$\{p,q\}$
**	Ø	Ø	Ø	Ø

Dimostrazioni

- 1. Dimostrare che per ogni DFA esiste un ε-NFA equivalente (cioè che riconosce lo stesso linguaggio) che ha esattamente **uno** stato finale
- 2. Dimostrare che i linguaggi regolari sono **chiusi** rispetto all'operazione di **concatenazione**. Suggerimento: se utile usare il risultato dimostrato nell'esercizio precedente