线性代数 (工科类) 期中考试

2019年11月2日

题 1. $(5\, \beta)$ 把矩阵 A 的第一行的 2 倍加到第二行,之后互换第一列和第二列,得到的矩阵 是 $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$ 。那么,矩阵 A 是什么?

解答 1. 倒回去
$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 \\ 4 & 3 \end{bmatrix} \rightarrow \begin{bmatrix} 2 & 1 \\ 0 & 1 \end{bmatrix} = A.$$

题 2. (5分) 试给出一个 2 阶上三角矩阵 U, 使得 U 不是对角阵, 且 $U^{-1}=U$ 。

解答 2.
$$U = \begin{bmatrix} 1 & 1 \\ 0 & -1 \end{bmatrix}$$
. 注: 满足这样条件的 U 只可能是 $\begin{bmatrix} 1 & a \\ 0 & -1 \end{bmatrix}$ 或 $\begin{bmatrix} -1 & a \\ 0 & 1 \end{bmatrix}$ $(a \neq 0)$.

题 3. (5 分) 假设 A_1, A_2, \ldots, A_4 是同阶可逆方阵, $C = A_1 A_2 A_3 A_4$ 是它们的乘积,试用 C^{-1} 和 A_1, A_2, A_4 表示 A_3^{-1} .

解答 3.
$$C^{-1} = A_4^{-1} A_3^{-1} A_2^{-1} A_1^{-1}$$
, 故 $A_3^{-1} = A_4 C^{-1} A_1 A_2$.

题 4. $(8\, \mathcal{G})$ 试写下两个非零的 $2\, \text{阶方阵}\, A, B$ 使得 $A^2=B^2=0$. 所有满足 $A^2=0$ 的 $2\, \text{阶方阵的全体是否是}\, M_2(\mathbb{R})$ 的线性子空间?若是请证明,若不是请说明原因。

解答 4.
$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$
, $B = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$. 记 $Nil = \{A \in M_2(\mathbb{R}) : A^2 = 0\}$. 因为 $A, B \in Nil$ 而 $A + B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ 是一个 2 阶置换阵 P ,其平方是 I_2 ,所以 $P \notin Nil$,由此可见, Nil 在加法运算下不封闭,故它不是 $M_2(\mathbb{R})$ 的子空间。注:满足 $A^2 = 0$ 的 2 阶方阵都形如 $\begin{bmatrix} a & b \\ c & -a \end{bmatrix}$,其中 $a^2 + bc = 0$.

題 5. $(8\, \, \, \, \, \, \,)$ 设 $A \in M_2(\mathbb{R})$, $\mathbf{b} \in \mathbb{R}^2$, 且线性方程组 $A\mathbf{x} = \mathbf{b}$ 有三组解 $\mathbf{x}_1 = \begin{bmatrix} 2 \\ 7 \end{bmatrix}$, $\mathbf{x}_2 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}$, $\mathbf{x}_3 = \begin{bmatrix} 4 \\ 8 \end{bmatrix}$, 试证明 $\mathbf{x}_4 = \begin{bmatrix} 5 \\ 26 \end{bmatrix}$ 也是该方程组的解。

解答 5. 因为 x_1 , x_2 , x_3 都是 Ax = b 的解,所以 $x_2 - x_1 = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$ 和 $x_3 - x_2 = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ 是齐 次线性方程组 Ax = 0 的解。方程组 Ax = 0 的解集 N(A) 是 \mathbb{R}^2 的线性子空间。既然 N(A) 包含 $x_2 - x_1$ 和 $x_3 - x_2$,那么 N(A) 必然包含这两个向量的所有线性组合。又因 $\begin{bmatrix} 1 \\ -3 \end{bmatrix}$ 与

 $\begin{bmatrix}1\\4\end{bmatrix}$ 不共线,故它们的所有线性组合是 \mathbb{R}^2 ,也就是说 $N(A)=\mathbb{R}^2$. 所以 $A\mathbf{x}=\mathbf{b}$ 的解集是 $\mathbf{x}_1+N(A)=\mathbf{x}_1+\mathbb{R}^2=\mathbb{R}^2$,特别的 \mathbf{x}_4 是该方程组的解。

其他方法:设 $A=(a_{ij})$, $\mathbf{b}=(b_1,b_2)$, 则线性方程组 $A\mathbf{x}=\mathbf{b}$ 等价于 $a_{11}x+a_{12}y=b_1$ 且 $a_{21}x+a_{22}y=b_2$. 这两个方程都是平面中的直线方程,除非系数 $(a_{11},a_{12})=(0,0)$ 或 $(a_{21},a_{22})=(0,0)$. 因为 $3=\frac{2+4}{2}$, 而 $4\neq\frac{7+8}{2}$, 所以题设中给出的三点不共线,也就是说没有一条直线会同时包含这三点。这说明 $a_{11}=a_{12}=a_{21}=a_{22}=0$, 即 A=0; 原方程组 $A\mathbf{x}=\mathbf{b}$ 又有解,所以必有 $\mathbf{b}=0$,所以任意向量都是 $0\mathbf{x}=\mathbf{0}$ 的解。

题 6. (8 分) 设 A 是 3×4 阶矩阵,A 的零空间 N(A) 是 $\{c_1 \begin{bmatrix} 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 1 \\ 0 \\ 4 \\ 1 \end{bmatrix} : c_1, c_2 \in \mathbb{R}\}.$ 求 rref(A).

解答 6. 记 $R = rref(A) = \begin{bmatrix} \gamma_1 & \gamma_2 & \gamma_3 & \gamma_4 \end{bmatrix}$, 其中 $\gamma_1, \gamma_2, \gamma_3, \gamma_4 \in \mathbb{R}^3$. 从 N(A) = N(R) 的表达形式可以看出, γ_2, γ_4 是 R 的自由列, γ_1, γ_3 是 R 的主元列,并且 $3\gamma_1 + \gamma_2 = 0$, $\gamma_1 + 4\gamma_3 + \gamma_4 = 0$. 所以 $\gamma_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$, $\gamma_3 = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$, $\gamma_2 = -3\gamma_1 = \begin{bmatrix} -3 \\ 0 \\ 0 \end{bmatrix}$, $\gamma_4 = -\gamma_1 - 4\gamma_3 = \begin{bmatrix} -1 \\ -4 \\ 0 \end{bmatrix}$. 合起来有 $R = \begin{bmatrix} 1 & -3 & 0 & -1 \\ 0 & 0 & 1 & -4 \\ 0 & 0 & 0 & 0 \end{bmatrix}$.

题 7. (10分) 求下面线性方程组的通解

$$\begin{cases} x_1 + x_2 + x_3 + x_4 & = 1 \\ 3x_1 + 2x_2 + x_3 + x_4 - 3x_5 & = 0 \\ 5x_1 + 4x_2 + 3x_3 + 3x_4 - x_5 & = 2 \end{cases}$$

解答7. 对增广矩阵作初等变换 $\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 3 & 2 & 1 & 1 & -3 & | & 0 \\ 5 & 4 & 3 & 3 & -1 & | & 2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & -1 & -2 & -2 & -3 & | & -3 \\ 0 & -1 & -2 & -2 & -3 & | & -3 \\ 0 & 0 & 0 & 0 & 2 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & 1 & 2 & 2 & 3 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & 1 & 2 & 2 & 3 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & 1 & 2 & 2 & 0 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -1 & -1 & 0 & | & -2 \\ 0 & 1 & 2 & 2 & 0 & | & 3 \\ 0 & 0 & 0 & 1 & | & 0 \end{bmatrix},$ 从行简化后的增广矩阵可以算出方程组的通解是

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & -1 & -2 & -2 & -3 & | & -3 \\ 0 & 0 & 0 & 0 & 2 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & 1 & 2 & 2 & 3 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & 1 & 2 & 2 & 0 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & | & 1 \\ 0 & 1 & 2 & 2 & 0 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 & | & -2 \\ 0 & 1 & 2 & 2 & 0 & | & 3 \\ 0 & 0 & 0 & 0 & 1 & | & 0 \end{bmatrix}$$

$$\begin{bmatrix} -2 \\ 3 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 1 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ -2 \\ 0 \\ 1 \\ 0 \end{bmatrix}.$$

題 8.
$$(20 \, \%)$$
 设 $A = \begin{bmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{bmatrix}$.

- 1. (6 分) 证明: A 可逆的充分必要条件是 a,b,c 两两不同。
- $2.(6 \circ A)$ 当 A 可逆时, 求 A 的 LU 分解。
- 3. $(8 \, \beta)$ 当 a = 1, b = 2, c = 3 时,求 A^{-1} .

解答 8. 1. 对 A 作两次行倍加变换得到 $\begin{bmatrix} 1 & 1 & 1 \\ 0 & b-a & c-a \\ 0 & b^2-a^2 & c^2-a^2 \end{bmatrix}$, 再作一次行倍加变换得到

$$U = egin{bmatrix} 1 & 1 & 1 \ 0 & b-a & c-a \ 0 & 0 & (c-a)(c-b) \end{bmatrix},$$

其中右下角的元素通过计算 $c^2-a^2-(c-a)(b+a)=(c-a)(c+a)-(c-a)(b+a)=(c-a)(c-b)$ 得来。因为初等行变换不影响矩阵是否可逆,所以 A 可逆当且仅当 U 可逆,而上三角阵 U 可逆当且仅当它的对角线元素 b-a, (c-a)(c-b) 都非零,也就是 a,b,c 两两不同。_

2. 把上面消元过程中用到的乘子放在合适的位置上就得到了 LU 分解中的 $L=egin{bmatrix}1&0&0\\a&1&0\\a^2&b+a&1\end{bmatrix}$ U 如上。

S. 当 (a,b,c)=(1,2,3) 时,可以用 Gauss-Jordan 方法计算 A 的逆矩阵如下

$$\begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 2 & 3 & 0 & 1 & 0 \\ 1 & 4 & 9 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 3 & 8 & -1 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 2 & -1 & 1 & 0 \\ 0 & 0 & 2 & 2 & -3 & 1 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 0 & 0 & \frac{3}{2} & -\frac{1}{2} \\ 0 & 1 & 0 & -3 & 4 & -1 \\ 0 & 0 & 2 & 2 & -3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 3 & -\frac{5}{2} & \frac{1}{2} \\ 0 & 1 & 0 & -3 & 4 & -1 \\ 0 & 0 & 1 & 1 & -\frac{3}{2} & \frac{1}{2} \end{bmatrix},$$

所以
$$A^{-1} = \begin{bmatrix} 3 & -\frac{5}{2} & \frac{1}{2} \\ -3 & 4 & -1 \\ 1 & -\frac{3}{2} & \frac{1}{2} \end{bmatrix}$$
.

题 9.
$$(6 \, \hat{\beta})$$
 设 $A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 4 & 8 \\ 3 & 6 & 12 \end{bmatrix}$.

1. (2分) 把 A 写成 $\alpha\beta^T$ 的形式,其中 α,β 均是列向量。

2. (4分) 计算 A²⁰¹⁹.

解答 9. 1.
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$$
.

2. it $\alpha = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, $\beta^T = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix}$, 则 $A = \alpha \beta^T$. 又因为 $\beta^T \alpha = \begin{bmatrix} 1 & 2 & 4 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = 1 + 4 + 12 = 17$, 所以 $A^{2019} = \alpha \beta^T \alpha \beta^T \cdots \alpha \beta^T = (\beta^T \alpha)^{2018} \alpha \beta^T = 17^{2018} A$.