Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem Examination May-2023

CS3ED04 Big Data Engineering

Programme: B.Tech. Branch/Specialisation: CSE All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of if

_	,	Qs) should be written in full instead of only a, b, c or d. Assume suitable day. Notations and symbols have their usual meaning.	ata
Q.1	i.	Data in bytes size is called Big Data.	1
		(a) Tera (b) Giga (c) Peta (d) Meta	
	ii.	In Big Data environments, Velocity refers-	1
		(a) Data can arrive at fast speed	
		(b) Enormous datasets can accumulate within very short periods of time	
		(c) Velocity of data translates into the amount of time it takes for the data to be processed	
		(d) All of these	
	iii.	Which is not a type of NoSql?	1
	:	(a) HBase (b) QBase (c) CouchDB (d) MongoDB	1
	iv.	Point out the correct statement- (a) MapReduce tries to place the data and the compute as close as possible	1
		(b) Map Task in MapReduce is performed using the Mapper() function	
		(c) Reduce Task in MapReduce is performed using the Map() function	
		(d) All of these	
	v.	ETL stands for-	1
		(a) Extract, Transfer and Load	
		(b) Extract, Transform and Load	
		(c) Extract, Time and Load	
		(d) Extract, Transform and Loss	
	vi.	are data processing units comprised of fact tables and dimensions from the data warehouse.	1
		(a) OLAP (b) Cubes (c) OLTP (d) None of these	
		P.T.	O.

[2]

	vii.	Which of the following statements about data streaming is true?	1
		(a) Stream data is always unstructured data	
		(b) Stream data often has a high velocity	
		(c) Stream elements cannot be stored on disk	
		(d) Stream data is always structured data	
	viii.	•	1
		Spark.	
		(a) MLlib (b) Spark Streaming	
		(c) GraphX (d) RDDs	
	ix.	Which of the following is finally produced by Hierarchical Clustering?	1
		(a) Final estimate of cluster centroids	
		(b) Tree showing how close things are to each other	
		(c) Assignment of each point to clusters	
		(d) All of these	
	х.	What do we use to define a block of code in Python language?	1
		(a) Key (b) Brackets	
		(c) Indentation (d) None of these	
Q.2	i	What is Big Data?	2
Q. <u>-</u> 2	ii.	Explain Binary search tree Algorithm with suitable example.	3
	iii.	Explain Hash Table and Hash Maps in details.	5
OR	iv.	What is Map Reducing Techniques? Explain advantages of it	5
OK	14.	what is map reducing recliniques. Explain advantages of it	
Q.3	i.	What is NoSQL?	2
	ii.	Explain in memory distributed processing using Apache spark in	8
		detail.	
OR	iii.	How Amazon S3 works? What are various storage classes provided by	8
		Amazon S3?	
Q.4	i.	What is Data Warehouse?	3
	ii.	Explain different types of ETL operations in data warehousing.	7
OR	iii.	Explain in detail Flume Workflow management for Hadoop using	7
		OOZIE Batch Processing on Cloud.	
Q.5	i.	What is Processing of real time data?	4
2.0	ii.	How real-time data pipelines are build using Apache Storm? Explain	6
		in detail.	-
OR	iii.	Explain in detail streaming data using Apache Flume?	6

		[3]	
Q.6	i. ii. iii.	Attempt any two: Explain in detail steps of implementing regression in Spark MLLib. Explain anyone clustering algorithm with example. Explain any one classification algorithm with example.	

[4]

[1]

Marking Scheme CS3ED04 [T]- Big Data Engineering

Q.1	i) ii)	C) Peta (D)All of the mentioned above.	1 1
	iii)	(B)QBase.	1
	iv)	(A) MapReduce tries to place the data and the compute as close as possible.	1
	v)	(B) Extract, Transform and Load.	1
	vi)	(B) Cubes.	1
	vii)	(B)Stream data often has a high velocity.	1
	viii) ix)	(A) MLlib (B) tree showing how close things are to each other.	1 1
	x)	(C)Indentation.	1
Q.2	i. ii. iii.	Definition – 2 mark Definition – 2 mark Example - 1 mark Explanation Hash Table -2.5 marks Explanation Hash Maps -2.5 marks	2 3 5
OR	iv.	Map Reducing Techniques-2 mark Advantages each(Minimum 3) -1 mark	5
Q.3	i. ii.	Definition – 2 mark Introduction -2 mark	2

		Application (1 each)-3 mark	
		Explanation spark- 3 marks	
OR	iii.	S3 work explanation -3 mark	8
		Various storage classs – 5mark(1 each)	
Q.4	i.	Definition - 3 mark	3
	ii.	Each Etl Operation (Minimum 7)- 1 mark	7
OR	iii.	Explanation of Flume workflow – 4 mark	7
		Explanation of OOZIE Batch Processing- 3 mark	
Q.5	i.	Explanation -3 mark	4
	ii.	Introduction- 2mark	6
		Application – 2 mark	
		Diagram – 2 mark	
OR	iii.	Introduction- 2mark	6
		Application – 2 mark	
		Diagram – 2 mark	
Q.6		Attempt Any two?	
₹.º	i.	Definition- 2 mark	5
		Explanation – 3 mark	
	ii.	Definition- 2 mark	5
		Explanation – 3 mark	
	iii.	Definition- 2 mark	5
		Explanation – 3 mark	
