CS208: Mathematical Foundations of CS

Fall 2018

Lecture 24: October 9

Lecturer: Samar Scribes: Aaditya Arora, Aditya Mantri

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

24.1 Approximating Sums

It is not always possible to find a closed-form expression for a sum. For Example

$$S = \sum_{i=1}^{N} \sqrt{x}$$

No closed form is known for S .So, for this we need to find approximation for S. We need to find closed-form upper and lower bounds for S.

Theorem 1 Let f: be an increasing function

$$S = \sum_{i=1}^{n} f(i)$$

and

$$I = \int_{1}^{n} f(x)dx$$

then

$$I + f(1) \le S \le I + f(n)$$

Similarly, if f is weakly decreasing, then

$$I + f(n) \le S \le I + f(1)$$

Example 1

$$S = \sum_{i=1}^{n} \sqrt{x}$$

$$I = \int_{1}^{n} \sqrt{x} dx$$

$$I = \frac{2}{3}(n^{\frac{3}{2}} - 1)$$

therefore,

$$\frac{2}{3}n^{\frac{3}{2}} + \frac{1}{3} \le S \le \frac{2}{3}n^{\frac{3}{2}} + \sqrt{n} - \frac{2}{3}$$

Lecture 24: October 9 24-2

24.1.1 Harmonic Numbers

The nth harmonic number is

 $H_n = \sum_{i=1}^n \frac{1}{i}$

or

$$H_n = \int_1^n \frac{1}{n} dx = \ln(n),$$

therefore,

$$ln(n) + \frac{1}{n} \le H_n \le ln(n) + 1$$

24.2 Products

We can convert any product into a sum by taking a logarithm.

 $P = \prod_{i=1}^{n} f(i)$

or

$$ln(P) = \sum_{i=1}^{n} ln(f(i))$$

Example 2

$$P = n!$$

$$ln(P) = \sum_{i=1}^{n} ln(i)$$

or

$$ln(P) = \int_{1} nln(i)di = nln(n) - n + 1$$

therefore,

$$nln(n) - n + 1 \le ln(P) \le nln(n) - n + 1 + ln(n)$$

and,

$$\frac{n^n}{en-1} \le P \le \frac{n^{n+1}}{en-1}$$

24.2.1 Stirling's Formula

Theorem 2 (Stirlings Formula). For all $n \ge 1$

$$n! = \sqrt{2\pi n} (\frac{n}{e})^n e^{\epsilon(n)}$$

where,

$$\frac{1}{12n+1} \le \epsilon(n) \le \frac{1}{12n}$$

Lecture 24: October 9 24-3

24.3 Floor and Ceil

In mathematics and computer science, the floor and ceiling functions map a real number to the greatest preceding or the least succeeding integer, respectively.

$$\lfloor x \rfloor = LargestInteger \leqslant x$$

$$\lceil x \rceil = LeastInteger \geqslant x$$

24.3.1 Properties

$$\lfloor -x \rfloor = \lceil x \rceil$$

$$\lfloor -x \rfloor = -\lceil x \rceil$$

$$n < x \iff n < \lceil x \rceil$$

$$x \leqslant n \iff \lceil x \rceil \leqslant n$$

$$n \leqslant x \iff x \leqslant \lceil x \rceil$$

$$x - 1 < \lfloor -x \rfloor \leqslant x \leqslant \lceil x \rceil < x + 1$$

Example 3

 $\left\lfloor \sqrt{\lfloor x \rfloor} \right\rfloor = \left\lfloor \sqrt{x} \right\rfloor$

Proof:

$$m = \lfloor \sqrt{\lfloor x \rfloor} \rfloor$$

$$m \le \lfloor \sqrt{\lfloor x \rfloor} \rfloor \le m + 1$$

$$m^2 \le \lfloor x \rfloor \le (m+1)^2$$

$$m^2 \le x \le (m+1)^2$$

$$m \le \sqrt{x} \le (m+1)$$

Example 4 Compute the following considering m as a perfect square

$$\sum_{k=0}^{m} \left\lfloor \sqrt{k} \right\rfloor$$

Lecture 24: October 9 24-4

Solution: Suppose that $n^2 \le k < (n+1)^2$, then $\left\lfloor \sqrt{k} \right\rfloor = n$. There are 2n+1 integers k in this interval, so if $m \le n^2+2n$, they contribute n(2n+1) to the total. Thus, if $n^2 \le m < (n+1)2$, following equation holds true.

$$\sum_{k=0}^{m} \left\lfloor \sqrt{k} \right\rfloor = \sum_{k=1}^{n-1} (2k^2 + k) + (m - n^2 + 1)n$$

Now since $m=n^2$ the above equation reduces to

$$\sum_{k=0}^{m} \lfloor \sqrt{k} \rfloor = \sum_{k=1}^{\sqrt{m}-1} (2k^2 + k) + \sqrt{m}$$

$$\sum_{k=0}^{m} \lfloor \sqrt{k} \rfloor = \frac{\sqrt{m}(\sqrt{m} - 1)(2\sqrt{m} - 1)}{3} + \frac{\sqrt{m}(\sqrt{m} - 1)}{2} + \sqrt{m}$$

Answer:

$$\frac{\sqrt{m}(\sqrt{m}-1)(2\sqrt{m}-1)}{3} + \frac{\sqrt{m}(\sqrt{m}-1)}{2} + \sqrt{m}$$

References

E. LEHMAN, F. T. LEIGHTON AND A. R. MEYER, Mathematics for Computer Science, 2013, Chapter 14