

Proyecto de práctica profesional

Interferómetro de dos antenas

Louise Dauvin Gutiérrez

Febrero 2016

Objetivos

- Desarrollo de interferómetro de bajo costo para fines educativos
- Implementación de hardware y software del dispositivo
- Medir el diámetro angular de una fuente extendida a través del instrumento

Interferometría

-Interferencia constructiva y destructiva

Radiación electromagnética

- Ecuaciones de Maxwell: $\overline{E(t)} = \overline{E(\theta_0)}\cos(2\pi vt)$
- Potencia de la suma de señales $P(t) = \langle \overline{E_{total}(t)}^2 \rangle$

- Ecuaciones de Maxwell: $\overline{E(t)} = \overline{E(\theta_0)}\cos(2\pi vt)$
- Potencia de la suma de señales: $P(t) = \langle \overline{E_{total}(t)}^2 \rangle$
- Objeto extendido -> varias fuentes puntuales-> integración = FT de densidad de energía

Función de visibilidad

$$V = \frac{Pmax - Pmin}{Pmax + Pmin} = sinc\left(\pi \frac{B}{\lambda} \Theta\right)$$

$$\Theta \approx \frac{\sqrt{6}}{\pi} \frac{\lambda}{B} \sqrt{1 - V}$$

$$v_{sol} = \frac{\lambda/B}{t} = v_{sol\ max}\cos(dec)$$

Hardware

Esquema general

Hardware

LNB- Low Noise Block

- Oscilador local de 25MHz
- Evitar bias tee

Tomada de: http://members.inode.at/576265/rainradar.html

Hardware

Adaptador de impedancia

- Atenuación: 5.7 dBm

Hardware FPGA-B200

- Covertura de RF: 70 MHz 6 GHz
- Frecuencia de salida mínima: 34MHz, 50MHz
- Tasa de muestreo / Ancho de banda:

'O' - Overrun ~5M

'U' - Underrun ~7M

SoftwareGNU Radio

Librería para Python

- Open source
- Especializada en hardware para señales de radio
- GNU Radio Companion

Software

Adquisición de datos

Datos de FPGA B200 Rx USRP source

Sub-muestreo

FFT

 $|FFT|^2$

Promedio

Float

Integración

File sink [mW]

Log

Floats

Interfaz gráfica [dBm]

Software

Detalle de bloques

SoftwareParámetros

- Frecuencia central
- Ancho de banda
- Tasa de muestreo
- Ganancia
- FFT size
- FFT rate

Software

Análisis de datos

- -Datos binarios Little endian
- -python offline_proc_gui.py / python offline_proc.py

Montaje

Hardware - Setup

Resultados

Frecuencia central: 1.01GHz

Ancho de banda: 2MHz

Tasa de muestreo: 2Msamp/s

Ganancia: 38

FFT size: 1024 samp

FFT rate: 30 fft/s

Resultados

Medición 2

Pmax= 1.63 mW

Pmin: 1.58 mW

Periodo= $^{\lambda}/_{B}$: 237.54 s

Baseline calculada: 1.61 m

Visibilidad: 0.017

Diámetro del sol: 44.9 arcmin

Conclusiones

- Saltos por ajuste de ganancia en LNB
- Problema si el ajuste de ganancia no es el mismo para ambos LNBs
- Ancho de banda pequeño
- Tasa de muestreo elimina algunas muestras
- Temperatura FPGA

Pasos a seguir

- Diseñar circuito para generar LO a partir de cristales de cuarzo. Eliminar generador de funciones
- Determinar si el ajuste de ganancia es el mismo para ambos LNBs
- Programar un barrido en frecuencia para generar un ancho de banda mayor
- Determinar si es posible independizar el ancho de banda de los datos y la tasa de muestreo
- Guardar el tiempo en que se adquiere cada muestra

Proyecto de práctica profesional

Interferómetro de dos antenas

Louise Dauvin Gutiérrez

