Cluster Innovation Centre, University of Delhi, Delhi-110007

Examination : End Semester Examination - May 2022

Name of the Course : B.Tech (Information Technology and Mathematical

Innovations)

Name of the Paper

: Instructing computing devices: Operating Systems

Paper Code

: 32861402

Semester

: IV

Duration

: 2 Hours and 30 Minutes

Maximum Marks

: 50

Instructions:

This question paper contains six questions, out of which any four are to be attempted. Each question carries equal marks.

- 1. Explain the Dual-Mode operation of an operating system. Mention the objectives and functions of Real-Time Embedded systems.
- What is a semaphore? List the types of semaphores and Show that, if the wait() and signal() semaphore operations are not executed atomically, then mutual exclusion may be violated.
- 3. Define Thread. Write the differences between user-level and kernel-level threads. Give the benefits of multithreading. What resources are used when a thread is created?
- 4. Draw the Gantt chart; find the average waiting time for the following algorithms: FCFS, Preemptive Priority and Non-preemptive priority

Process	Arrival Time(ms)	Burst time(ms)	Priority
P1	0	8	3
P2.	2	6	1
P3	2	1	2
P4	1	9	2

5. Consider the following snapshot of a system with four processes P0, P1, P2, P3 and four resources A, B, C and D

Process	Max	Allocation	Available
	ABCD	ABCD	ABCD
P0	0210	0 1 1 0	1520
P1	1652	1 2 3 1	
P2	2366	1 3 6 5	
P3	0652	0632	

Using Banker's algorithm, answer the following questions: How many instances of resources A, B, C, D are there? What is the content of Need matrix? Is the system in a safe state? If it is, find the safe sequence.

6. Describe the necessary conditions to hold deadlock situation. Explain how to recover from deadlock.