Дискретная математика. Коллоквиум весна 2017. Теоремы

Орлов Никита

9 марта 2017 г.

Содержание

Теорема 6								•		•		•	•			•	 •		•	•		•			2
Теорема 8		•				•															•				2
Теорема 9			•			•												•			•				2
Теорема 16			•			•												•			•				3
Теорема 24		•				•																			3
Теорема 25																									4

Теорема 6

Теорема. Всякое подмножество B счетного множества A конечно или счетно.

$$A = \{a_0, a_1, \dots, a_n, \dots\}$$

Будем вычеркивать из этой последовательности элементы, не лежащие в B. В итоге останется конечная либо счетная последовательность. [:||:]

Теорема. Любое бесконечное множество содержит счетное подмножество.

Доказательство. Для бесконечного множества A будем выделять счетное подмножество. Первый элемент $b_0 \in A$ выберем произвольно. Затем рассматриваем множество $A \setminus \{b_0\}$. Оно бесконечно, а значит мы можем выбрать новый элемент b_1 . Утверждается, что этот процесс мы можем проделать бесконечное количество раз: на каждом i шаге мы остаемся с множеством $A \setminus \{b_o \dots b_i\}$, которое бесконечно. [:||:]

Теорема 8

Теорема. Декартово произведение счетных множеств счетно.

Доказательство. Б.о.о. можно считать, что необходимо доказать счетность $\mathbb{N} \times \mathbb{N}$. Разобьем наше декартово произведение в объединение множеств вида $\{a_0\} \times \mathbb{N}$. Каждое такое множество счетно. В итоге декартово произведение разложилось в счетное объединение счетных множеств, а значит и само счетно. [:||:]

Теорема 9

Теорема. Множество бесконечных последовательностей нулей и единиц несчетно.

Доказательство. Предположим, что оно счетно, значит его можно пронумеровать. Тогда построим таблицу последовательностей.

$$a_{00}$$
 a_{01} a_{02} ... a_{10} a_{11} a_{12} ... $a_{20}a_{21}a_{22}$...

Теперь рассмотрим диагональную последовательность $a_{00}a_{11}a_{22}...$ и заменим в ней все биты на противоположные. Такая последовательность отличается от любой a_i в і-й позиции, значит этой последовательности нет в списке, получили противоречие. Значит это множество несчетно. Теперь докажем, что множество бесконечных последовательностей нулей и единиц равномощно отрезку [0;1], то есть имеет мощность континуум. Из курса анализа известно, что каждое число из [0;1] можно представить в виде бесконечной двоичной дроби. Делается это так: первый бит после запятой равен 0, если х лежит в левой половине отрезка [0,1] и равен 1,

если в правой. И так далее. Делим отрезок пополам и смотрим, куда попал х. Но это не совсем биекция. Такие последовательности как 0,1001111... и 0, 101000... соотвествуют одному и тому же числу. Чтобы исправить это, надо исключить последовательности, в которых начиная с некоторошо момента все цифры равны 1 (кроме 0.111111...). Но таких последовательностей счетное множество, так что их добавление не меняет мощность множества. [:||:]

Теорема 16

Теорема. Схема проверки связности графа на п вершинах полиномиального размера.

Доказательство. Пусть матрица A - матрица смежности графа с единицами на главной диагонали. Можно показать, что на пересечении строки i и столбца j матрицы A^k записано число путей длины k из вершины v_i в вершину v_j . Теперь рассмотрим матрицу A', которая отличается от матрицы A тем, что у нее стоят единицы на главной диагонали.

Заметим следующий факт: если между двумя вершинами есть путь длины меньше n-1, то есть и путь длины ровно n-1, достаточно добавить нужное количество петель. То есть надо рассмотреть матрицу $(A')^{n-1}$. Если в яйчеках нет нулей - граф связен, иначе нет. Теперь опишем схему.

На вход схема получает матрицу смежности A'. Схема последовательно вычисляет булевы степени этой матрицы $(A')^2, \ldots, (A')^{n-1}$. Затем схема вычисляет конъюнкцию всех ячеек матрицы $(A')^{n-1}$ и подает ее на выход.

Оценим размер схемы. Для булева умножения достаточно $n^2 \cdot O(n) = O(n^3)$ операций. Всего нам нужо (n-1) умножений, так что для вычисления матрицы $(A')^{n-1}$ достаточно $O(n^4)$ операций. Для последнего этапа - конъюнкции нужно $O(n^2)$ операций. Итого получается $O(n^4) + O(n^2) = O(n^4)$ операций.

[:|||:]

Теорема 24

Теорема. Непустое множество значений вычислимой функции является множеством значений всюду определенной вычислимой функции.

Доказательство. Пусть $S = f(\mathbb{N})$ – множество значений функции f. Так как S непусто, зафиксируем некоторое $a \in S$. Пусть U(p,x) – некоторая универсальная фукнция, p_0 – такое число, что $\forall x \ U(p_0,x) \equiv f(x)$. Пусть F(p,x,t) – отладочная функция для U.

Опишем фукнцию $g: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$:

$$g(x,t) = egin{cases} U(p_0,x), & F(p_0,x,t) = 1 \ a, & ext{иначе} \end{cases}$$

Функция g тотальна: если отладочная функция выдала 1, то универсальная функция тоже определена и остановится. Это следует из определения отладочной функции. Осталось показать, что множество всех значений $\{g(t,x):t\in\mathbb{N}\;x\in\mathbb{N}\}=S$. В одну сторону: если y=g(x,t),

то $y = a \in S$ или $y = U(p_0, x) = f(x) \in S$. В другую: пусть $y = f(x) = U(p_0, x)$. На паре (p, x) функция U определена, а значит $\exists t : F(p_0, x, t) = 1$, но тогда y = g(x, t).

Получили, что множество S представимо в виде множества значений некоторой тотальной функции от двух аргументов. Осталось перейти к функции одного аргумента, использовав некоторую вычислимую биекцию $h: \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. В итоге $S = (g \circ c)(\mathbb{N})$.

[:|||:]

Теорема 25

Пусть U(p,x) – универсальная функция. Рассмотрим множество H такое, что

$$H = \{x : U(x, x) \text{ определена}\}$$

Теорема. Mножество H перечислимо, но не разрешимо.

Доказательство.

 Π еречислимость. Множество H является областью определения вычислимой функции $x \mapsto U(x,x)$, а значит оно перечислимо.

Hеразрешимость. Предположим, что H разрешимо.

Определим функцию f следующим образом:

$$f(x) = \begin{cases} \uparrow, & x \in H \\ 1, & x \notin H \end{cases}$$

Пусть p – такое число, что $\forall x\ U(p,x)=f(x)$. Предположим, что $p\in H$. Тогда алгоритм вычисления f не остановится, а значит f(p)=U(p,p) не определено. По определению множества H это означает, что $p\notin H$.

Если же $p \notin H$, то алгориитм вычисления f даст 1, то есть 1 = f(p) = U(p, p). Следовательно $p \in H$.

Получили противоречие, а значит и множество H неразрешимо.	[: :]

Задача 7

Решение