Fast Modular Exponentiation ($x^e \mod n$)

Berechne Binardarstellung des Exponenten e;

Berechne für jede Binarstelle des Exponenten ab der 2.:

$$((x^2 \cdot x^{e_{k-2}})^2 \dots)^2 \cdot x^{e_0} \mod n$$

```
Bsp: 5^{10} \mod 13

10 = (1010)_2

5^{10} \mod 13 = (5^2 \cdot 1)^2 \cdot 5)^2 \cdot 1 = (1^2 \cdot 5)^2 = 12
```

Euklid

$$r_0 - q_1 * r_1 = r_2$$
 $100 - 5 * 19 = 5$
 $r_1 - q_2 * r_2 = r_3$ $19 - 3 * 5 = 4$
... $5 - 1 * 4 = 1$
 $r_{k-1} - q_k * r_k = 0 \implies ggt(r_1, r_2) = r_k$ $4 - 4 * 1 = 0 \implies ggt(100, 19) = 1$

Ausrechnen des Inversen: (wenn ggt=1)

$$ggt = r_{k-2} - q_{k-1} * r_{k-1}$$

$$= r_{k-2} - q_{k-1} * (r_{k-3} - q_{k-2} * r_{k-2})$$

$$= a * r_0 + b * r_1 \rightarrow r_1^{-1} = b$$

$$1 = 5 - 1 * 4$$

$$= 5 - 1 * (19 - 3 * 5) = -19 + 4 * 5$$

$$= -19 + 4 * (100 - 5 * 19) = 4 * 100 - 21 * 19$$

$$19^{-1} = -21$$

Phi

Primfaktorzerlegung!

Keine Doppelten Primfaktoren p_i : $\varphi(n) = (p_1 - 1)(p_2 - 1) \dots$ z.B: $\varphi(15) = (3 - 1)(5 - 1) = 8$

Doppelte Primfaktoren: p_i : $\varphi(n) = n(\frac{p_1 - 1}{p_1})(\frac{p_2 - 1}{p_2})$ z.B: $\varphi(75) = 75 * (\frac{2}{3})(\frac{4}{5}) = 40$ $a^{\varphi(n)} \equiv 1 \pmod{n}$

Rechnen im Polynomring

Bitkette \Leftrightarrow Polynom, z.B. $1011 \rightarrow x^3 + x^1 + 1$

Wenn Koeffizienten (mod 2): $+ = - = \oplus$

Berechnen: Rest \equiv I mod Generatorpolynom)

Bsp: I= 110100, $G=x^3+x^1+1 = 1011$ 110100:1011=1111001
1011
01100

01110 1011

1011

 $\overline{0101} => 110100 \equiv 101 \mod 1011$

Chinesischer Restesatz

Lösung eines Systems $x \equiv a_1 \mod n_1 \dots x \equiv a_k \mod n_k$

- 1. Berechne $M = n_1 \cdot n_2 \dots n_k$
- 2. Berechne $t_i = m/n_i$ für alle n_i
- 3. Berechne $d_i = t_i^{-1} mod \ n_i$ für alle n_i Euklid
- 4. Ergebnis = $a_1 \cdot d_1 \cdot t_1 + \dots + a_k \cdot t_k \cdot d_k \pmod{M}$

Bsp:

```
x \equiv 6 \pmod{13} x \equiv 16 \pmod{19}

M = 13 \cdot 19 = 247

t_1 = \frac{247}{13} = 19 t_2 = \frac{247}{19} = 13

d_1 = 19^{-1} \equiv 11 \pmod{13} d_2 = 3 \pmod{19} Euklid

6 \cdot 19 \cdot 11 + 16 \cdot 13 \cdot 3 \equiv 149 \pmod{247}
```

Primitive Wurzel

ord(x): kleinstes n mit $x^n = 1$, ord(x) Produkt aus Primfaktoren von Gruppenordnung (p-1)

Anzahl Primitiver Wurzeln: $\varphi(p-1)$

Wähle Zufallszahl g und Teste für jeden Primfaktor q von p-1:

 $g^{\frac{p-1}{q}} \neq 1 mod p \Rightarrow$ Primitive Wurzel

Bsp: p = 31, p-1=2*3*5

Teste g=2: $2^6 = 2mod31$, $2^{15} = 1mod31 \Rightarrow$ keine Primitive Wurzel

Primzahltest (Miller-Rabin)

- 1. Zerlege p-1 = $2^k \cdot t // t$ ungerade
- 2. Für Zufallszahl a // Fehlerwahrscheinlichkeit: 1/4^{AnzahlZufallszahlen}
- 3. berechne $a^t \mod p$; wenn = 1 => prim
- 4. quadriere nun k-1 mal (mod p), nach jedem Quadrieren prüfen, ob =-1 => prim

DES:

m = 64 Bits; k = 56 Bits

Aus k werden 16 Rundenschlüssel k_i generiert:

Verschlüsseln:

Führe Anfangspermutation durch; Ablauf einer Runde i:

- 1. Halbiere die nachricht m in x und y: $m \rightarrow (x, y)$
- 2. Aus (x,y)berechne $(x \oplus f(k_i,y),y)$ mit $f(k_i,x) = P(S(E(x) \oplus k_i))$ S= Substitution (ersetzten des Blocks) P= Permutation (Umsortieren der Bits)

Entschlüsseln:

Führe Verschlüsseln in Umgekehrter Reihenfolge durch

AES:

m= 128 Bits; k= 128, 192 oder 256 Bits Rundenanzahl (N_r): Für k= 128: 10 k= 192: 12 k= 256: 14

Zustandsmatrix: 4x4 Matrix

Ablauf:

- 1. initialisiere Zustandsmatrix mit m
- 2. bilde $Zustandsmatrix \oplus k_0$
- 3. for i = 1 bis $i = N_R 1$
 - 1 S-Box: $x = x^{-1} \in F_{28}$
 - 2 Verschiebe die Zeilen der Matrix
 - 3 Durchmische die Spalten (Mix-Columns)
 - 4 bilde $Zustandsmatrix \oplus k_0$
- 4. S-Box
- 5. Verschiebe die Zeilen der Matrix
- 6. Durchmische die Spalten (MixColumns)

Modes of Operation:

Ist lml>r: Teile m in Blöcke und für jeden Block: (r= Blocklänge)

- ECB: Electronic Codebook Mode $c_i = E(m_i)$ (Blöcke einzeln Verschlüsseln)
 - Fehler: nur betroffener Block
- CBC: Cipher-Block Chaining Mode Wähle zufälliges Kryptogramm c_0 (Startwert, wird mitgeschickt) $c_i = E(m_i \oplus c_{i-1})$ (Verschlüssle Nachricht \oplus voriges Kryptogramm Fehler: betroffener Block und folgender
- CFB: Cipher Feedback Mode:

 $c_i = m_i \oplus msb_r(E(x_i))$ (nimm die vordersten r Bits aus E(x) und XORe) $x_{x_i+1} = lsb_{|x|-r}(x_i)||c_i$ (shifte c_i in x ein)

Fehler: Fehler in den Folgenden Blocklänge/r c's; zus. bei Bitfehlern => Bitfehler an gleicher Stelle

• OFB: Output Feedback Mode:

 $c_i = m_i \oplus msb_r(E(x_i))$ (siehe CFB)

 $x_{i+1} = E(x_i)$ (x als Pseudozufallsgenerator)

Fehler: verloren = alle Folgenden, Bitfehler = Bitfehler an gleicher Stelle

RSA

Schlüsselerzeugung

Wähle 2 große Primzahlen p und q; $n = p \cdot q$ Wähle e und berechne $d = e^{-1} \mod \varphi(n)$ Schlüssel: öffentlich (n,e), geheim (n,d)

Verschlüsselung

 $c = m^e(modn)$

Entschlüsselung

 $m = c^d (modn)$ (Hier mod p und mod q rechnen, anschließend Chin. Restesatz)

Attacken

- Faktorisieren von n $\hat{=}$ Berechnen von $\varphi(n)$ $\hat{=}$ Berechnen von d
- für |p-q| klein: teste x> \sqrt{n} ; wenn x^2-n ein quadrat ist: x $\pm \sqrt{x^2-n}$ sind die Primfaktoren
- "Common Modulus": wird eine Nachricht m an zwei Empfänger mit gleichem n und unterschiedlichem e gesendet kann ein dritter m ausrechnen; zudem kann der eine Empfänger den geheimen Schlüssel des anderen berechnen
- "Low-Encryption-Exponent": wird gleiche Nachricht m an 3 Empfänger mit e=3 gesendet kann $m^3 \pmod{n_1 n_2 n_3}$ berechnet werden (Chin. Restesatz); Da $m^3 < n_1 n_2 n_3$ ist $m = \sqrt[3]{m}$
- Small-Message-Space Attack: gibt es nur wenige, bekannte Nachrichten (z.B. "ja", "nein") können diese berechnet werden und durch Vergleich können abgefangene Kryptogramme entschlüsselt werden.
- Chosen-Ciphertext: um c zu entschlüsseln: wähle beliebiges r, lasse $r^e cmodn$ entschlüsseln => m' = rm => m= m' r^{-1}
- Angreifer fängt c ab und berechnet $x = r^e c$ und lässt Empfänger x signieren; (Signatur = x^d) => m = $r^{-1}x^d$
- Bleichenbachers 1-Million-Chosen-Ciphertext Attack

signatur

Signieren von m: $s = m^d$; signed message: (m,s)

Überprüfen von (m,s): prüfe ob $m = s^e$

Existentiell fälschbar: (f^e, f) mit f beliebig wird als signierte Nachricht anerkannt. (m_1, σ_1) $(m_2, \sigma_2) \Rightarrow$ z.B. $(m_1 m_2, \sigma_1 \sigma_2)$ oder $(m_1^{-1}, \sigma_1^{-1})$ werden als signierte Nachricht anerkannt.

OAEP

n=k+l: Falltürfunktion f (z.B. RSA): n-Bit \rightarrow n-Bit

Pseudozufallsgenerator G: k-Bit \rightarrow l-Bit

Hashfunktion h: l-Bit $\rightarrow k$ -Bit

Verschlüsseln von m (I-Bit)

- 1. Wähle r:Zufallszahl mit k-Bit
- 2. $x = (m \oplus G(r)) \parallel (r \oplus h(m \oplus G(r))$
- 3. c = f(x)

Entschlüsseln von c (n-Bits)

- 1. Zerlege c in a b, a=l-Bits, b=k-Bits
- 2. $r = b \oplus h(a)$
- 3. $m = a \oplus G(r)$

ElGamal

Schlüsselerzeugung

Wähle Primzahl p, so dass p-1 mit großem Primfaktor und suche primitive Wurzel g mod

wähle zufallszahl $x \in [0, p-1]$, berechne $y=g^x mod p$

privat: (p,g,x) öffentlich: (p,g,y)

Verschlüsselung

wähle
$$k \in [1, p-2]$$
 => c= (c_1, c_2) = -x= p-1-x $(g^k, y^k m (mod p))$ m= $c_1^{-x} c_2$

Signatur

wähle
$$k \in [1, p-2]$$
, $\gcd(k,p-1)=1$ den, k muss g berechne $r = g^k$, $s = k^{-1}(m-rx) \mod (p-1)$ Verifizieren p => Signatur(m,r,s)

Entschlüsselung

$$-x = p-1-x$$

 $m = c_1^{-x}c_2$

Wichtig: k muss immer neu gewählt werden, k muss gute Zufallszahl sein

Prüfe
$$r \in [1, p-1]$$
; Prüfe $g^m = y^r r^s$

DSA (Digital Signature Algorithm)

Schlüsselerzeugung

Wähle Primzahl p, so dass p-1 mit Primfaktor q(160Bit) und suche g mit ord(g)=q mod p, (Also: $g^{\frac{p-1}{q}} \neq 1$)

wähle zufallszahl $x \in [0, q-1]$, berechne $y=g^x mod p$

privat: (p,q,g,x) öffentlich: (p,q,g,y)

Signatur

Wähle $k \in [1, q-1]$ Berechne $r=g^k mod pmod q$, $s=k^{-1}(m+rx)modq \Rightarrow Signatur (m,r,s)$

Verifizieren

Prüfe $r, s \in [1, q-1]$ Berechne $t = s^{-1} \mod q$ Prüfe $((g^m y^r)^t \mod p) \mod q = r$

Hash

 $\{0,1\}^* \rightarrow \{0,1\}^n$ // Beliebige Bitketten -> Bitketten fester Länge Eigenschaften:

- 1. One-way function: Nicht umkehrbar
- 2. second pre-image resistance: Nicht möglich auf gegebene Nachricht& Hashwert andere Nachricht zu finden.
- 3. collision resistance: Nicht möglich zwei Nachrichten mit gleichem Hash zu finden => stärkste Bedingung

Merkle-Damgard

Kollisionsresistente Kompressionsfunktion: $0, 1^{n+r} - > 0, 1^n$

Padding: hänge 10...0 an, so dass |m|= vielfaches von r; Hashen:

- 1. teile m in Blöcke der Länge r
- 2. füge Block der Länge r in dem die ursprüngliche Länge von m steht
- 3. v_0 = (zufälliger) Startwert
- 4. $v_i = f(v_{i-i}||m_i)$
- 5. Hashwert ist letztes v

Birthday-Attack

Angriff gegen Kollisionsresitenz: Cachen von Hashwerten und testen auf Kollision

Kompression aus Blockchiffren

 $f_1: (x||y) \to E(y,x)$ // Spalte Wert in Key und Message und Verschlüssle => Gehashter wert

MAC

HMAC

 $HMAC(k,m) = h((k \oplus opad)||h((k \oplus ipad)||m))$

h: Hash nach Merkle-Damguard mit Kompressionsrate r (in Bytes);

k: Schlüssel mit Padding auf Länge r, ipad: r mal 0x36, opad: r mal 0x5C

CBC-MAC

Aus Blockchiffre: $c_0 = IV$, $c_i = E(k, m_i \oplus c_{i-1})$ => letztes c ist MAC

Pseudozufallsgenerator PRF

PRF(secret,seed)= HMAC(secret,A(1)||seed) || HMAC(secret,A(2)||seed) ... A(0)= seed, A(i) = HMAC(secret, A(i-1));

Protokolle

Diffie-Hellman Key Argreement

public Key: p (große Primzahl) g: Primitive Wurzel

- 1. A wählt $a \in [1,p-2]$, sendet $c=g^a \mod p$
- 2. B wählt b \in [1,p-2], sendet d= g^b mod p
- 3. A berechnet $k = d^a$, B berechnet $k = c^b$ => Schlüssel wurde ausgetauscht

Nicht alle Bits von k sind sicher => h(k) wird als Schlüssel verwendet;

Zusätzliche Authentification gegen Man-in-the-middle nötig.

Station-to-Station Protocol

public Key: p (große Primzahl) g: Primitive Wurzel; Signaturmechanismus nötig (Zugang zu öffentlichen Signaturschlüsseln notwendig)

- 1. A wählt $a \in [1,p-2]$, sendet $c=g^a \mod p$
- 2. B wählt b \in [1,p-2], berechnet k= g^{ab} mod p und s=Sign($g^a||g^b$)
- 3. B sendet $(g^b mod p, E_k(s))$
- 4. A berechnet $k=g^{ab} \mod p$, entschlüsselt E_k und prüft Signatur
- 5. Wenn gültig: A sendet $E_k(sign(g^b||g^a), B)$ prüft

SSL/TLS

SSL Komponenten: Handshake, Change Cipher Spec(Wechsel asymmetrisch->symmetrisch), Alert, Record Layer(Verschlüsselung)

Handshake: Server (optional auch Client) wird authentifiziert, Schlüssel für MAC und Verschlüsselung ausgetauscht

Header: Typ, Version, Länge; Trailer: MAC, Padding

Ablauf

- 1. ClientHello (vorhandene Algorithmen, zufallszahl, session_id wenn Sitzungsfort-führung)
- 2. ServerHello (evtl. neue Session_id, zufallszahl, Certifikate)
- 3. ClientKeyExchange (premaster_secret vom Client berechnet und mit ServerPKey verschlüsselt => zur Berechnung aller weiteren Schlüssel)
- 4. ChangeCypherSpec Client->Server, Finished (enthält MAC über alle bisherigen Nachrichten, ist verschlüsselt)
- 5. ChangeCypherSpec Server->Client, Finished "

Bei Sitzungsfortführung nur austausch von client_random und server_random, keine Authentifizierung;

=> premaster_secret wird wiederverwendet, keys mit den Zufallszahlen neu generiert