Advanced Microeconomics III

Francisco Poggi

Information about the course

- Lectures: Mondays and Tuesdays, 10:15 AM.
- Exercise session: with Chang Liu on Tuesdays, 12:00 PM.
- Office hours:
 - Mondays 1:30 PM in my office (310).
 - Send me an email in advance.
- Problem Sets:
 - Due on Mondays.
 - Hand in via email to Chang.
 - You can work in groups of up to 3 students. Only one submission is required per group (clearly indicating group members).
- Final exam: June 5th.

Course material

• Slides will be hosted on my website:

franciscopoggi.com/courses/microlll

- Main Textbook: "Microeconomic Theory" by Mas-Colell, Whinston, and Green, Oxford University Press, 1995 (MWG).
 - The course covers Ch. 13, Ch. 14, and Ch. 23 D-F.

 Also: "The Theory of Incentives: The Principal-Agent Model" by Laffont and Martimore, Princeton University Press, 2002.

Course plan

```
Week 1 (April 17) Adverse Selection (Akerlof)
Week 2 (April 24) Signaling (Spence)
Week 3 (May 1) Competitive Screening (Rothchild-Stiglitz)
Week 4 (May 8) Moral Hazard
Week 5 (May 15) Bayesian Implementation/Envelope Theorem
Week 6 (May 22) Auctions and efficient Mechanisms (3 lectures)
Week 7 (May 30) Revision week
```

Overview

- Introduction to Information Economics
- Akerlof's Market for Lemons
 - Setup
 - Competitive Equilibria
 - Equilibrium Multiplicity
 - A game-theoretic approach
 - Experimental Evidence
 - Information and Trade

Information economics

- What is "information"?
 - Informally: the ability to exclude some states of the world.
- What is "asymmetric information"?
- Asymmetric information is present in many economic relationships
 - Trade of used goods or novel goods
 - Labour markets
 - Financial markets
 - Provision of public goods
 - Insurance
 - Expert advise
- What is "economics of information"?
 - economics of markets with asymmetric information, i.e., welfare and distributional aspects of equilibria.

Overview

- Introduction to Information Economics
- Akerlof's Market for Lemons
 - Setup
 - Competitive Equilibria
 - Equilibrium Multiplicity
 - A game-theoretic approach
 - Experimental Evidence
 - Information and Trade

Akerlof's market for lemons

- QJE (1970).
- Around 40k citations.
- Nobel Prize (2001) with Spence and Stiglitz.

- Before QJE, the paper was rejected by 3 top journals.
 - AER: trivial.
 - JPE: wrong.
 - REStud: trivial.

Overview

- Introduction to Information Economics
- Akerlof's Market for Lemons
 - Setup
 - Competitive Equilibria
 - Equilibrium Multiplicity
 - A game-theoretic approach
 - Experimental Evidence
 - Information and Trade

Akerlof's market for lemons

- There is a continuum of sellers (measure N) and a continuum of buyers (measure larger than N).
- Each seller owns a "car" of quality $\theta \in [\underline{\theta}, \overline{\theta}]$, where $F(\theta)$ represents the proportion of sellers with quality below θ .
- Buyers and sellers have quasiliner preferences:
 - The payoff of a buyer who acquires a car of quality θ at price p:

$$\theta - p$$

• The payoff of a seller parting with a car of quality θ at price p is:

$$p-r(\theta)$$

• $r(\theta)$ can be thought of as an opportunity cost.

Efficient allocation

Let $\Theta \subset [\underline{\theta}, \overline{\theta}]$ be the set of car qualities that are traded.

Gains from trade
$$=\int_{\underline{ heta}}^{\overline{ heta}} 1_{\{ heta \in \Theta\}} \cdot [heta - r(heta)] \cdot extstyle N \; dF(heta)$$

- The efficient allocation Θ^* maximizes the gains from trade.
- Solution:

$$\theta \in \Theta^* \qquad \Leftrightarrow \qquad \theta > r(\theta)$$

$$\Theta^* = \{ \theta \in [\underline{\theta}, \overline{\theta}] : \theta \ge r(\theta) \}$$

Efficient allocation

Benchmark: symmetric information

- Suppose car quality is observable. There can be different prices for different qualities of cars.
- We denote $\hat{p}(\theta)$ the price function.
- In a **Competitive equilibrium**, $\hat{p}(\theta)$ is such that quantity demanded and supplied are equal for all car qualities.

$$\mbox{Demand for car of quality } \theta = \left\{ \begin{array}{ccc} 0 & \mbox{if} & p > \theta \\ [0,N'] & \mbox{if} & p = \theta \\ N' & \mbox{if} & p < \theta \end{array} \right.$$

Supply for car of quality
$$\theta = \begin{cases} N & \text{if} \quad p > r(\theta) \\ [0, N] & \text{if} \quad p = r(\theta) \\ 0 & \text{if} \quad p < r(\theta) \end{cases}$$

Benchmark: symmetric information

• For qualities $\theta \in \Theta^*$:

$$\theta > r(\theta)$$
 \Rightarrow $\hat{p}(\theta) = \theta$ and $\hat{Q}(\theta) = N$

• For qualities $\theta \notin \Theta^*$:

$$\theta < r(\theta)$$
 \Rightarrow $\hat{p}(\theta) \in (\theta, r(\theta)) \text{ and } \hat{Q}(\theta) = 0$

Observation

With symmetric information the competitive equilibrium is efficient.

Overview

- Introduction to Information Economics
- Akerlof's Market for Lemons
 - Setup
 - Competitive Equilibria
 - Equilibrium Multiplicity
 - A game-theoretic approach
 - Experimental Evidence
 - Information and Trade

Asymmetric information: competitive equilibrium

• Since car quality is **not observable** by the buyers, all car qualities should have the same price.

• A competitive equilibrium is a price \hat{p} and a set $\hat{\Theta}\subseteq [\underline{ heta}, \overline{ heta}]$ such that

$$\hat{\rho} = E[\theta | \theta \in \hat{\Theta}]$$

$$\hat{\Theta} = \{\theta : r(\theta) \le \hat{\rho}\}$$

• or $\hat{\Theta} = \emptyset$ and $\hat{p} \ge \max_{\theta \in [\theta, \bar{\theta}]} r(\theta)$.

Example

Assume $r(\theta) = \bar{r}$ and $F(\bar{r}) \in (0,1)$.

- Note that $\Theta^* = \{\theta \in [\underline{\theta}, \overline{\theta}] : \theta \geq \overline{r}\}.$
- Constructing equilibria with $\hat{p} \geq \bar{r}$:
 - Then, by equilibrium condition 2,

$$\hat{\Theta} = \{\theta \in [\underline{\theta}, \overline{\theta}] : r(\theta) \le \hat{p}\} = [\underline{\theta}, \overline{\theta}]$$

• By condition 1,

$$\hat{\rho} = E[\theta | \theta \in \hat{\Theta}] = E[\theta]$$

- Equilibrium candidate: $\hat{p} = E[\theta]$ and $\hat{\Theta} = [\underline{\theta}, \overline{\theta}]$.
- Equilibrium when $E[\theta] > \bar{r}$.
- This is inefficient.

Example

- Constructing equilibria with $\hat{p} < \bar{r}$:
 - By condition 2,

$$\Theta = \emptyset$$

- Our candidate is $\hat{p} = E[\theta]$ and $\hat{\Theta} = \emptyset$.
- Equilibrium when $E[\theta] < \bar{r}$. This is also inefficient.

Example

Adverse selection

- In the previous example:
 - Willingness to sell *r* is independent of the quality.
 - Either every or no seller wants to sell.
 - But the efficient allocation depends on the quality.

- Adverse selection occurs when $r(\theta)$ is increasing in θ .
 - For any price, only the relatively worse cars $(\theta \le r^{-1}(p))$ are going to be offered.
- Market may completely fail even when it is efficient that all cars are traded.

Possibility of market breakdown

Existence of CE with no market breakdown

Assumptions:

- 1. Negative Selection: r is strictly increasing.
- 2. No atoms: F is continuous.
- 3. No market breakdown: There exists a price such that $E[\theta|r(\theta) \le p] > p$.

Proposition

Assume 1-3. Then a competitive equilibrium with some trade exists.

Existence of CE with no market breakdown

Existence of CE with market breakdown

Assumptions:

3'. Market breakdown: $E[\theta|r(\theta) \le p] < p$ for all p.

Proposition

Assume 1, 2 and 3'. Then a competitive equilibrium with no trade exists. Moreover, no equilibrium with a positive mass of trade exists.

Parametric Examples

- Example 1: constant opportunity cost.
 - F uniform on [0,1].
 - $r(\theta) = \overline{r}$.
- For which \bar{r} is the CE efficient?

- Example 2: linear opportunity cost.
 - *F* uniform on [0,1].
 - $r(\theta) = \alpha \cdot \theta$.
- For which α is the CE efficient?

Overview

- 1 Introduction to Information Economics
- Akerlof's Market for Lemons
 - Setup
 - Competitive Equilibria
 - Equilibrium Multiplicity
 - A game-theoretic approach
 - Experimental Evidence
 - Information and Trade

Equilibrium multiplicity

Equilibrium multiplicity

- When there are multiple equilibria, these can be Pareto ranked:
 - Buyers make zero expected profits in all equilibria.
 - in 'higher' equilibria more sellers sell, and those who sell make higher profits.

• Are some of these equilibria more *likely* than others?

Overview

- 1 Introduction to Information Economics
- Akerlof's Market for Lemons
 - Setup
 - Competitive Equilibria
 - Equilibrium Multiplicity
 - A game-theoretic approach
 - Experimental Evidence
 - Information and Trade

Game-theoretic approach

- Same underlying structure with F and $r(\cdot)$ commonly known.
 - Three players: Buyer 1, Buyer 2, Seller.

- Timing is as follows:
 - Buyers offer prices p_1, p_2 simultaneously.
 - Nature chooses car quality θ according to F.
 - Seller decides whom to trade with, if anyone.

Pure-strategy subgame-perfect Nash equilibria

- We assume negative selection, no atoms, and no market breakdown.
- Let p^* be the highest competitive equilibrium price.
- Extra assumption: "genericity"

$$\exists \epsilon > 0$$
: for all $p \in (p^* - \epsilon, p^*)$ $E[\theta | r(\theta) \le p] > p$

Proposition

Assume Negative selection, no atoms, no market breakdown and genericity. Then in any SPNE, both buyers offer the price p^* .

Pure-strategy subgame-perfect Nash equilibria

- Seller's decision: in any SPNE the seller
 - sells at price $\max\{p_1, p_2\}$ if greater than $r(\theta)$
 - keeps the good if $\max\{p_1, p_2\} < r(\theta)$
- Each buyer's SPNE expected payoff is zero.
 - Proof by contradiction.
- Total Payoff of buyers:

$$F(r^{-1}(p))[E[\theta|r(\theta) < p] - p] = 0$$

- Thus, p must be a CE price or below $r(\underline{\theta})$.
- If $p < p^*$ there is a profitable deviation. Which one?

Overview

- 1 Introduction to Information Economics
- Akerlof's Market for Lemons
 - Setup
 - Competitive Equilibria
 - Equilibrium Multiplicity
 - A game-theoretic approach
 - Experimental Evidence
 - Information and Trade

Market with one buyer

- Variant: only one buyer and one seller.
 - In general, the equilibrium differs from the two-buyer case.

- However: under assumptions 'no atoms' and 'market breakdown' we have as before
 - equilibrium with no trade.
 - no equilibrium with trade.

- Ball, Bazerman, Carroll (1991): Laboratory Experiment of Akerlof's market with one buyer.
 - A firm (acquirer) is considering making an offer to buy another firm (target).
 - Acquirer is uncertain about the ultimate value of the firm.
 - Target's management has an accurate estimate of the value.
 - What final price offer should the acquirer make for the target?

- Experiment:
 - Subjects play the role of "acquirer".
 - Computer plays the role of "target".
 - Acquirer knows that, under old management, the market value of the target is uniform in [0, 100M].
 - Value under new management is 50% higher than under old management.
 - Target knows its value.
 - Acquirer makes a price offer. The target accepts or rejects.
 - subjects receive the realized profit as feedback.
 - subjects play 20 rounds.
 - subjects are rewarded in proportion to profits.
- What is the SPNE?

Fig. 1. Mean bids across trials for subjects in Experiment 1.

- Possible explanation: feedback too 'weak' to allow market unraveling.
 - Probability of positive profit at p > 0?

Overview

- 1 Introduction to Information Economics
- Akerlof's Market for Lemons
 - Setup
 - Competitive Equilibria
 - Equilibrium Multiplicity
 - A game-theoretic approach
 - Experimental Evidence
 - Information and Trade

Relationship between information and trade

- Buyer and Seller can potentially trade a good of uncertain quality.
- Good's quality is equally likely to be of three types: $\omega \in \{L, M, H\}$.
- Buyer's valuation:

$$b(\omega) = \begin{cases} 14 & \text{if } \omega = L \\ 28 & \text{if } \omega = M \\ 42 & \text{if } \omega = H \end{cases}$$

Seller's valuation:

$$s(\omega) = \begin{cases} 0 & \text{if } \omega = L \\ 20 & \text{if } \omega = M \\ 40 & \text{if } \omega = H \end{cases}$$

• Trade is always efficient.

Relationship between information and trade

• Case 1: Buyer and Seller are equally uninformed.

$$E[b(\omega)] = 28 > 20 = E[s(\omega)]$$

- Trade can take place for all qualities at any price between 20 and 28.
- Case 2: Seller partially uninformed: {{L}, {M,H}}
 - There is no price at which L, M, H are traded.

$$E[b(\omega)] = 28 < 30 = E[s(\omega)|\omega \in \{M, H\}]$$

• L can be traded at a price in [0, 14].

Relationship between information and trade

- Case 3: Seller is perfectly informed.
 - L and M can be traded at a price in [20, 21].

$$E[b|\omega \in \{L, M\}] = 21 > 20 = E[s|\omega = M]$$

- Example shows that the market can expand in the face of greater information asymmetry.
- Relationship between information asymmetry and trade might be nonmonotonic.