Fast Multidimensional Signal Processing with Shearlab.jl

Héctor Andrade Loarca

TU Berlin, BMS

Fourier Transform.

In [1]: using PyPlot

```
In [2]: # Create and plot signal
    t=0:2/256:2;
    f=sin(2*pi*t)+2*(cos(6*pi*t))*2;
    plot(t,f)
    xlabel("t")
    ylabel("f(t)")
```


Out[2]: PyObject <matplotlib.text.Text object at 0x31ff4c550>

```
In [3]: # Compute fast fourier transform
@time F = fft(f);
```

0.511862 seconds (414.51 k allocations: 17.621 MB, 1.52% gc time)

/Users/hector/.julia/v0.5/Conda/deps/usr/lib/python2.7/site-packages/nump y/core/numeric.py:531: ComplexWarning: Casting complex values to real discards the imaginary part

return array(a, dtype, copy=False, order=order)

Out[4]: PyObject <matplotlib.text.Text object at 0x320064d90>

```
In [5]: plot(t,ifft(F))
    xlabel("t")
    ylabel("ifft(F)(t)")
```


Out[5]: PyObject <matplotlib.text.Text object at 0x31feaa990>

Wavelet Transform

```
In [6]: # using Shearlab
# Loard the Pkg
push!(LOAD_PATH,pwd()*"/../../Shearlab.jl/src")
import Shearlab
reload("Shearlab")
```

WARNING: replacing module Shearlab

The 2D wavelet transform

$$d_j^k[n] = \langle f, \psi_{j,n}^k \rangle$$

for scales $j \in \mathbb{Z}$, position $n \in \mathbb{Z}^2$ and orientation $k \in \{H, V, D\}$.

And wavelet atoms defined by scaling and translating three mother atoms $\{\psi^H, \psi^V, \psi^D\}$:

$$\psi_{j,n}^k(x) = \frac{1}{2^j} \psi^k \left(\frac{x - 2^j n}{2^j} \right)$$

Defined by tensor product of a 1-D wavelet function $\psi(t)$ and a 1-D scaling function $\phi(t)$

$$\psi^{H}(x) = \phi(x_1)\psi(x_2), \ \psi^{V}(x) = \psi(x_1)\phi(x_2) \text{ and } \psi^{D}(x) = \psi(x_1)\psi(x_2).$$

Translated into high-pass and low-pass filters

$$g[n] = \frac{1}{\sqrt{2}} \langle \psi(t/2), \phi(t-n) \rangle$$
 and $h[n] = \frac{1}{\sqrt{2}} \langle \phi(t/2), \phi(t-n) \rangle$.

1D

Compute the low pass signal $a \in \mathbb{R}^{N/2}$ and the high pass signal $d \in \mathbb{R}^{N/2}$ as

$$a = (f * h) \downarrow 2$$
 and $d = (f * g) \downarrow 2$

where the sub-sampling is defined as

$$(u \downarrow 2)[k] = u[2k].$$

where $g[n] = (-1)^{1-n}h[1-n]$.

When the filters are orthogonal transform the inverse will be

$$(a \uparrow 2) * \tilde{h} + (d \uparrow 2) * \tilde{g} = f$$

where $\tilde{h}[n] = h[-n]$ (computed modulo N) and $(u \uparrow 2)[2n] = u[n]$ and $(u \uparrow 2)[2n + 1] = 0$.

2D

One needs to perform filtering/downsampling in the different directions

$$\tilde{a}_{j-1} = (a_j *^H h) \downarrow^{2,H} \text{ and } \tilde{d}_{j-1} = (a_j *^H g) \downarrow^{2,H}.$$

Here, the operator $*^H$ and $\downarrow^{2,H}$ are defined by applying * and \downarrow^2 to each column of the matrix.

$$a_{j-1} = (\tilde{a}_j *^V h) \downarrow^{2,V} \text{ and } d_{j-1}^V = (\tilde{a}_j *^V g) \downarrow^{2,V},$$

$$d_{j-1}^H = (\tilde{d}_j *^V h) \downarrow^{2,V} \text{ and } d_{j-1}^D = (\tilde{d}_j *^V g) \downarrow^{2,V}.$$

In [7]: using Wavelets

In [8]: # Pick Daubechie filter and its mirror
h = Shearlab.filt_gen(WT.db2)

g = Shearlab.mirror(h)

Out[8]: 5-element Array{Float64,1}:

- -0.0
- -0.12941
- -0.224144
- 0.836516
- -0.482963

In [9]: # Read Data n = 1024;

The path of the image

name = "../../ShearLab.jl/data samples/lena.jpg";

f = Shearlab.load_image(name, n,n,1);

```
In [10]: #Rescale image in [0,1] summing the 3 arrays in the RGB format
    f = Shearlab.rescale(sum(f,3));
    # Reduce one dimension
    f = f[:,:,1];
    Shearlab.imageplot(f);
```



```
# Different scales
In [11]:
         Jmax = round(Int64, log2(n))-1;
         Jmin = 1;
         fW = copy(f);
         clf;
         figure(figsize=(10,10));
          for j=Jmax:-1:Jmin
             A = fW[1:2^{(j+1)},1:2^{(j+1)}];
             for d=1:2
                  Coarse = Shearlab.subsampling(Shearlab.cconvol(A,h,d),d);
                  Detail = Shearlab.subsampling(Shearlab.cconvol(A,g,d),d);
                  A = cat(d, Coarse, Detail);
             end
             fW[1:2^{(j+1)},1:2^{(j+1)}] = A;
             j1 = Jmax-j;
             if j1<4
                  Shearlab.imageplot(A[1:2^j,2^j+1:2^(j+1)], "Horizontal, j=j", 3,4,
                  Shearlab.imageplot(A[2^j+1:2^(j+1),1:2^j], "Vertical, j=$j", 3,4, j1
                  Shearlab.imageplot(A[2^j+1:2^(j+1),2^j+1:2^(j+1)], "Diagonal, j=$j",
             end
         end
```



```
In [12]: f1 = copy(fW);
         clf;
         figure(figsize=(10,10));
         for j=Jmin:Jmax
              A = f1[1:2^{(j+1)},1:2^{(j+1)}];
              for d=1:2
                  if d==1
                      Coarse = A[1:2^j,:];
                      Detail = A[2^j+1:2^(j+1),:];
                  else
                      Coarse = A[:,1:2^{j}];
                      Detail = A[:,2^j+1:2^(j+1)];
                  end
                  Coarse = Shearlab.cconvol(Shearlab.upsampling(Coarse,d),Shearlab.rev
                  Detail = Shearlab.cconvol(Shearlab.upsampling(Detail,d),Shearlab.rev
                  A = Coarse + Detail;
                  j1 = Jmax-j;
                  if j1>0 && j1<5
                      Shearlab.imageplot(A, "Partial reconstruction, j=$j", 2,2,j1);
                  end
             end
              f1[1:2^{(j+1)},1:2^{(j+1)}] = A;
         end
```

Partial reconstruction, j=8

Partial reconstruction, j=6

Partial reconstruction, j=7

Partial reconstruction, j=5


```
In [13]: # number of kept coefficients
         m = round(n^2/16);
         # compute the threshold T
         Jmin = 1;
         fW = Shearlab.perform_wavortho_transf(f,Jmin,+1, h);
         # select threshold
         v = sort(abs(fW[:]));
         if v[1]<v[n^2]
             v = Shearlab.reverse(v);
         end
         # inverse transform
         T = v[Int(m)];
         fWT = fW .* (abs(fW).>T);2
         # inverse
         fnlin = Shearlab.perform_wavortho_transf(fWT,Jmin,-1, h);
         # display
         clf;
         figure(figsize=(10,10));
         u1 = @sprintf("Original");
         u2 = @sprintf("Thresholding, SNR=%.3fdB", Shearlab.snr(f,fnlin));
         Shearlab.imageplot(Shearlab.clamp(f),u1, 1,2,1 );
         Shearlab.imageplot(Shearlab.clamp(fnlin),u2, 1,2,2 );
```

Original

Thresholding, SNR=36.322dB

Non-separable Shearlet Transform

$$DST_{j,k,m}^{2D}(f) = \left(\overline{\psi_{j,k}^{d}} * f_J\right) \left(2^J A_{2^j}^{-1} M_{c_j} m\right) \text{ for } j = 0, 1, \dots, J-1$$

with generating function

$$\hat{\psi}(\xi) = P(\xi_1/2, \xi_2/2) \widehat{\psi_1 \otimes \phi_1}(\xi)$$

where

$$\psi_{j,k}^d = S_{k/2^{j/2}}^d(p_j * W_j)$$

 $A_{2^{j}}$ is the parabolic scaling matrix given by

$$A_{2^j} = \begin{pmatrix} 2^j & 0\\ 0 & 2^{j/2} \end{pmatrix}$$

and the Shearing transform is given by

$$S_k = \begin{pmatrix} 1 & k \\ 0 & 1 \end{pmatrix}$$

The scaling and wavelet filters now in each scale are:

$$\hat{h}_j(\xi_1) = \prod_{k=0}^{j-1} \hat{h}(2^k \xi_1) , \, \hat{g}_j(\xi_1) = \hat{g}\left(\frac{2^j \xi_1}{2}\right) \hat{h}_{j-1}(\xi_1)$$

and the directional filter transform

$$p_j(\xi_1, \xi_2) = P(2^{J-j-1}\widehat{\xi_1}, 2^{J-j/2}\xi_2) \Longrightarrow p_j * W_j = p_j * g_{J-j} \otimes h_{J-j}$$

The digital shearing to mantain the domain grid will be

$$S_{k/2^{j/2}}(x) = \left(\left(x_{\uparrow 2^{j/2}} *_1 h_{j/2} \right) (S_k \cdot) *_1 \overline{h_{j/2}} \right)_{\downarrow 2^{j/2}}$$

for $j \in \{0, J - 1\}$ and $|k| \le \lceil 2^{j/2} \rceil$.

```
In [14]: # Read Data
n = 512;
# The path of the image
name = "../../../ShearLab.jl/data_samples/lena.jpg";
data_nopar = Shearlab.load_image(name, n);
data_par = Shearlab.load_image(name, n,n,1);
```

```
In [15]: # Reduce one dimension
    data_nopar = data_nopar[:,:,1];
    data_par = data_par[:,:,1]
    Shearlab.imageplot(data_nopar);
```


In [16]: Shearlab.imageplot(data_par);


```
In [17]: # Size of the images
         sizeX nopar = size(data nopar,1);
         sizeY nopar = size(data nopar,2);
         sizeX par = size(data par,1);
         sizeY_par = size(data_par,2);
In [18]: # Set the variables for the Shearlet trasform
         rows nopar = sizeX nopar;
         cols_nopar = sizeY_nopar;
         rows par = sizeX par;
         cols par = sizeY par;
         X_nopar = data_nopar;
         X par = data par;
In [19]: # No. of scales
         nScales = 4;
         shearLevels = ceil((1:nScales)/2)
         scalingFilter = Shearlab.filt gen("scaling shearlet");
```

Generation of Shearlet System

directionalFilter = Shearlab.filt gen("directional shearlet");

waveletFilter = Shearlab.mirror(scalingFilter);

scalingFilter2 = scalingFilter;

full = 0;

8.314009 seconds (154.89 k allocations: 5.024 GB, 45.95% gc time)

In [21]: using ArrayFire

2.425434 seconds (173.99 k allocations: 506.944 MB, 15.23% gc time)

In [26]: shearlet1 = Array(shearletSystem_nopar.shearlets[:,:,1]);
 Shearlab.imageplot(real(shearlet1));

In [29]: shearlet10 = Array(shearletSystem_nopar.shearlets[:,:,10]);
Shearlab.imageplot(real(shearlet10))


```
In [30]: shearlet17 = Array(shearletSystem_nopar.shearlets[:,:,49]);
Shearlab.imageplot(real(shearlet17))
```


Computation of shearlet coefficients

In [35]: Shearlab.imageplot(real(Array(coeffs_nopar[:,:,1])))

In [36]: Shearlab.imageplot(real(Array(coeffs_nopar[:,:,5])))

In [37]: Shearlab.imageplot(real(Array(coeffs_nopar[:,:,10])))

In [38]: Shearlab.imageplot(real(Array(coeffs_nopar[:,:,16])))

Reconstruction of the image with the shearlet system and coefficients

In [44]: # The recovery is very good Shearlab.imageplot(Array(Xrec_par));

Benchmarks with matlab version

· 2D version.

Benchmark	Matlab(seconds)	Julia no gpu(seconds)	Julia gpu (seconds)	Improvement rate no gpu	Improvement rate gpu
Shearlet System 256x256	1.06	0.61	0.31	1.73	3.42
Decoding 256x256	0.18	0.15	0.043	1.2	4.19
Reconstruction 256x256	0.18	0.12	0.018	1.5	8.57
Shearlet System 512x512	5.15	3.07	1.8	1.22	2.08
Decoding 512x512	0.96	0.87	0.09	1.10	10.66
Reconstruction 512x512	0.84	0.52	0.021	1.62	14.00

Benchmark	Matlab(seconds)	Julia no gpu(seconds)	Julia gpu (seconds)	Improvement rate no gpu	Improvement rate gpu
Shearlet System 1024x1024	35.84	15.65	2.44	2.29	14.68
Decoding 1024x1024	4.70	4.67	0.40	1.01	8.54
Reconstruction 1024x1024	4.72	4.48	0.037	1.05	127.56
Shearlet System 2048x2048	196.69	68.43	5.4	2.87	36.42
Decoding 2048x2048	108.19	32.50	5.88	3.33	18.39
Reconstruction 2048x2048	73.20	23.08	4.23	97.6	23.09

The benchmarks were made with 4 scales, in a Macbook pro with OSX 10.10.5, with 8GB memory, 2.7GHz Intel Core i5 processor and Graphic Card Intel Iris Graphics 6100 1536 MB.

· Benchmarks plots 2D.

Shearlet Recovery

Applications

Image Denoising

Let
$$f \in \ell^2(\mathbb{Z}^2)$$
 and

$$f_{\text{noisy}}(i,j) = f(i,j) + e(i,j)$$

with noise $e(i,j) \sim \mathcal{N}(0,\sigma^2)$.

Then

$$f_{\text{denoised}} = S^* T_{\delta} S(f_{\text{noisy}})$$

where S is sparsifying transform (analysis operator of the shearlet system) and T_δ is the hard thersholding operator

$$(T_{\delta}x)(n) = \begin{cases} x(n) \text{ if } |x(n)| \ge \delta \\ 0 \text{ else.} \end{cases}$$

```
In [45]: # settings
    sigma = 30;
    scales = 4;
    thresholdingFactor = 3;
```

```
In [46]: # Give noise to data
X_nopar = data_nopar;
Xnoisy_nopar = X_nopar + sigma*randn(size(X_nopar));
```

0.534048 seconds (533.75 k allocations: 606.016 MB, 30.88% gc time)

```
In [49]: # Reconstruction
Xrec_nopar = Shearlab.shearrec2D(coeffs_nopar, shearletSystem_nopar);
```

```
In [50]: # display
    clf;
    figure(figsize=(10,10));
    Shearlab.imageplot(Array(X_nopar), "Original", 1,2,1);
    Shearlab.imageplot(Array(Xnoisy_nopar), "Noised", 1,2,2);
```

Original

Noised


```
In [51]: elin = Shearlab.snr(Array(X_nopar),Array(Xrec_nopar));
    # display
    clf;
    figure(figsize=(10,10));
    Shearlab.imageplot(Array(X_nopar), "Original", 1,2,1);
    u = @sprintf("Denoised, SNR=%.3f", elin);
    Shearlab.imageplot(real(Array(Xrec_nopar)), u, 1,2,2);
```

Original

Denoised, SNR=27.405

Image inpainting

• Inpainting = optimization problem.

Let $x \in \ell^2(\mathbb{Z}^2)$ be a grayscale image partially occluded by a binary mask $\mathbf{M} \in \{0, 1\}^{\mathbb{Z} \times \mathbb{Z}}$, i.e. $v = \mathbf{M}x$

One can recover *x* (inpaint) using an sparsifying transformation with the inverse problem

$$y^* = \min_{x \in \mathbb{R}^{N \times N}} ||S(x)||_1 \text{ s.t. } y = \mathbf{M}x$$

By iterative thresholding algorithm

$$x_{n+1} = S^*(T_{\lambda_n}(S(x_n + \alpha_n(y - \mathbf{M}x_n))))$$

 λ_n decreases with the iteration number lineraly in $[\lambda_{min}, \lambda_{max}]$.

```
In [67]: function inpaint2D(imgMasked,mask,iterations,stopFactor,shearletsystem)
             coeffs = Shearlab.sheardec2D(imgMasked, shearletsystem);
             coeffsNormalized = zeros(size(coeffs))+im*zeros(size(coeffs));
             for i in 1:shearletsystem.nShearlets
                 coeffsNormalized[:,:,i] = coeffs[:,:,i]./shearletsystem.RMS[i];
             end
             delta = maximum(abs(coeffsNormalized[:]));
             lambda=(stopFactor)^(1/(iterations-1));
             imgInpainted = zeros(size(imgMasked));
             #iterative thresholding
             for it = 1:iterations
                 res = mask.*(imgMasked-imgInpainted);
                 coeffs = Shearlab.sheardec2D(imgInpainted+res,shearletsystem);
                 coeffsNormalized = zeros(size(coeffs))+im*zeros(size(coeffs));
                 for i in 1:shearletsystem.nShearlets
                      coeffsNormalized[:,:,i] = coeffs[:,:,i]./shearletsystem.RMS[i];
                 end
                 coeffs = coeffs.*(abs(coeffsNormalized).>delta);
                 imgInpainted = Shearlab.shearrec2D(coeffs, shearletsystem);
                 delta=delta*lambda;
             end
             imgInpainted
         end
```

WARNING: Method definition inpaint2D(Any, Any, Any, Any, Any) in module M ain at In[66]:2 overwritten at In[67]:2.

Out[67]: inpaint2D (generic function with 1 method)

```
In [68]: # Rename images
img_nopar = data_nopar
img_par = data_par;
```

```
In [69]: # Import two masks
    name = "../../../ShearLab.jl/data_samples/data_inpainting_2d/mask_rand.png";
    mask_rand = Shearlab.load_image(name, n);
    mask_rand = mask_rand[:,:,1];
    name = "../../../ShearLab.jl/data_samples/data_inpainting_2d/mask_squares.pr
    mask_squares = Shearlab.load_image(name, n);
    mask_squares = mask_squares[:,:,1];
```

```
In [70]: # Setting of data
         imgMasked rand nopar = img nopar.*mask rand;
         imgMasked rand par = AFArray(convert(Array{Float32},img par.*mask rand));
         imgMasked squares nopar = img nopar.*mask squares;
         imgMasked squares par = AFArray(convert(Array{Float32},img par.*mask_squares
         stopFactor = 0.005; # The highest coefficient times stopFactor
         sizeX = size(imgMasked_rand_par,1);
         sizeY = size(imgMasked_rand_par,2);
         nScales = 4;
         shearLevels = [1, 1, 2, 2];
In [71]:
         tic()
         imginpainted_rand50_nopar = inpaint2D(imgMasked_rand_nopar,mask_rand,50,stor
         toc()
         elapsed time: 158.482325353 seconds
Out[71]: 158.482325353
In [72]: clf;
         figure(figsize=(10,10));
         Shearlab.imageplot(img_nopar, "Original", 1,2,1);
```

Shearlab.imageplot(imgMasked rand nopar, "Masked random", 1,2,2);

Original

Masked random


```
In [73]: elin = Shearlab.snr(img_nopar,imginpainted_rand50_nopar);
# display
clf;
figure(figsize=(10,10));
Shearlab.imageplot(img_nopar, "Original", 1,2,1);
u = @sprintf("Inpainted random 50 iterations, SNR=%.3f", elin);
Shearlab.imageplot(real(imginpainted_rand50_nopar), u, 1,2,2);
```

Original

Inpainted random 50 iterations, SNR=24.423

In [74]: tic()
 imginpainted_squares50_nopar = inpaint2D(imgMasked_squares_nopar,mask_square
 toc()

elapsed time: 153.952855039 seconds

Out[74]: 153.952855039

```
In [75]: clf;
    figure(figsize=(10,10));
    Shearlab.imageplot(img_nopar, "Original", 1,2,1);
    Shearlab.imageplot(imgMasked_squares_nopar, "Masked squares", 1,2,2);
```

Original

Masked squares


```
In [76]: elin = Shearlab.snr(img_nopar,imginpainted_squares50_nopar);
# display
clf;
figure(figsize=(10,10));
Shearlab.imageplot(img_nopar, "Original", 1,2,1);
u = @sprintf("Inpainted squares 50 iterations, SNR=%.3f", elin);
Shearlab.imageplot(real(imginpainted_squares50_nopar), u, 1,2,2);
```

Original

Inpainted squares 50 iterations, SNR=28.182

In []: