Lecture No.8

Introduction To Statistics, Statistics And Probability

Dr. Shabbir Ahmad

Assistant Professor,
Department of Mathematics,
COMSATS University
Islamabad, Wah Campus

Measures of Moments

Raw Moments and Pure Moments

Relationship Between Pure and Raw

Moments

In this lecture

- What are Moments?
- Why Moments are Important?
- Types of Moments
- Moments about mean or central moments
- Raw moments
- Arbitrary origin moments
- Relationship among moments

Moments

A moment is a quantitative measure of the shape of a set of points.

OR

- Moments describe the distribution of data.
- Moments are used to describe the basic characteristics of the data from its frequency distribution like
 - measure of the central tendency is given by the first raw moment
 - measure of dispersion is given by the 2nd moment about mean
 - symmetry/ skewness of the curve is given by 3rd moment about mean
 - The peakendness or flatness of the distribution is given by 4th
 moment about mean.

Types of Moments

There are three types of moments

- 1. Moments about mean or central moments.
- 2. Raw moments.
- 3. Arbitrary origin moments.

1. Moments about mean or central moments

- Which obtained through Arithmetic mean \overline{X} .
- The general formula for finding moments about mean is:

For ungroup data:

$$m_r = \frac{\sum (X - \bar{X})^r}{n}$$

For group data:

$$m_r = \frac{\sum f(X - \bar{X})^r}{\sum f}$$

Where r = 1, 2, 3, 4

Steps

1. Calculate mean, i.e.,

$$\bar{X} = \frac{\sum f x}{\sum f}$$

2. Take deviation from mean, i.e.,

$$(X_{\mathsf{i}} - \bar{X})$$

3. Power '*r*', i.e.,

$$(X_i - \overline{X})^r$$

Where,

For first moment, r = 1

For 2^{nd} moment r=2

For 3^{rd} moment, r = 3

And for 4^{th} moment, r = 4

Example 1. Find first four moments about mean 3,6,2,1,7,5. Solution.

$$\bar{X} = \frac{\sum X}{n} = \frac{24}{6}$$

 $\overline{X} = 4$

X	$(X-\bar{X})$	$(X-\overline{X})^2$	$(X-\bar{X})^3$	$(X-\bar{X})^4$
3	-1	1	-1	1
6	2-	4	8	1 6
2	-2	4	-8	16
1	-3	9	-27	81
7	3	9	27	81
5	1	1	1	1
$\sum X = 24$	$\sum (X - \bar{X}) = 0$	$\sum (X - \bar{X})^2 = 28$	$\sum (X - \bar{X})^3 = 0$	$\sum (X - \bar{X})^4 = 196$

Now to find first four moments about mean:

$$m_1 = \frac{\sum (X - \overline{X})}{n} = \frac{0}{6}$$
$$m_1 = 0$$

$$m_2 = \frac{\sum (X - \bar{X})^2}{n} = \frac{28}{6}$$

$$m_2 = 4.67$$

$$m_3 = \frac{\sum (X - \bar{X})^3}{n} = \frac{0}{6}$$

$$m_3 = 0$$

$$m_4 = \frac{\sum (X - \bar{X})^4}{n} = \frac{196}{6}$$

$$m_4 = 32.67$$

2nd moment about mean is its variance also.

Moments about Mean (Grouped data) Example:

Calculate the first four moments about mean from the following frequency distribution:

Classes	110-119	120-129	130-139	140-149	150-159	160-169	170-179	180-189	190-199	200-209	210-219
f	1	4	17	28	25	18	13	6	5	2	1

Solution:

$$m_r = \frac{\sum f(X - \overline{X})^r}{\sum f}$$

Where r = 1,2,3,4

Calculations

For mean, i.e.,

$$\bar{X} = \frac{\sum fx}{\sum f}$$

$$\bar{X} =$$

$$\frac{18740}{120} = 156.667$$

Classes	x	f	fx
110 - 119	114.5	1	114.5
120 - 129	124.5	4	498
130 – 139	134.5	17	2286.5
140 – 149	144.5	28	4046
150 – 159	154.5	25	3862.5
160 – 169	164.5	18	2961
170 – 179	174.5	13	2268.5
180 – 189	184.5	6	1107
190 – 199	194.5	5	972.5
200 - 209	204.5	2	409
210 – 219	214.5	1	214.5
Total		120	18740

/	۲ ,									
X	f	$\int fx$	$X-\overline{X}$	$f(X-\overline{X})$	$(X-\overline{X})^2$	$f(X-\vec{X})^2$	$(X-\overline{X})^3$	$f(X-\overline{X})^3$	$(X-\overline{X})^4$	$f(X-\overline{X})^4$
114.5	1	114.5	-41.66666667	-41.66666667	1736.111111	1736.111111	-72337.96296	-72337.96296	3014081.79	3014081.79
124.5	4	498	-31.66666667	-126.6666667	1002.777778	4011.111111	-31754.62963	-127018.5185	1005563.272	4022253.09
134.5	17	2286.5	-21.66666667	-368.3333333	469.4444444	7980.555556	-10171.2963	-172912.037	220378.0864	3746427.47
144.5	28	4046	-11.66666667	-326.6666667	136.1111111	3811.111111	-1587.962963	-44462.96296	18526.23457	518734.568
154.5	25	3862.5	-1.666666667	-41.66666667	2.777777778	69.4444444	-4.62962963	-115.7407407	7.716049383	192.901235
164.5	18	2961	8.333333333	150	69.44444444	1250	578.7037037	10416.66667	4822.530864	86805.5556
174.5		2268.5	18.33333333	238.3333333	336.1111111	4369.444444	6162.037037	80106.48148	112970.679	1468618.83
184.5		1107	28.33333333	170	802.7777778	4816.666667	22745.37037	136472.2222	644452.1605	3866712.96
194.5		972.5	38.33333333	191.6666667	1469.444444	7347.222222	56328.7037	281643.5185	2159266.975	10796334.9
204.5		409	48.33333333	96.66666667	2336.111111	4672.222222	112912.037	225824.0741	5457415.123	10914830.2
214.5		214.5	58.33333333	58.33333333	3402.777778	3402.777778	198495.3704	198495.3704	11578896.6	11578896.6
	_		55.555555	55.555555	0.102	0.102	170175.2.1.1	17017313121	110.00111	110.001
\sum	120	18740		0		43466.6666	<u> </u>	516111 . 111		50013888.9

Now the four moments about mean are:

First moment: put *r=1*

$$m_1 = \frac{\sum f(X - \overline{X})^1}{\sum f}$$

$$m_1=\frac{0}{120}=0$$

 2^{nd} Moment: put r=2

$$m_2 = \frac{\sum f(X - \overline{X})^2}{\sum f}$$

$$m_2 = \frac{43466.66667}{120} = 362.222$$

2nd Moment about mean is also its Variance.

3rd Moment: put *r=3*

$$m_3 = \frac{\sum f(X - \overline{X})^3}{\sum f}$$

$$m_3 = \frac{516111.1111}{120}$$

$$m_3 = 4300.925926$$

4th Moment: put *r=4*

$$m_4 = \frac{\sum f(X - \overline{X})^4}{\sum f}$$

$$m_4 = \frac{50013888.9}{120}$$

$$m_4 = 416782.4$$

Example 2. Find first four moments about mean

classes	1-3	3-5	5-7	7-9
f	40	30	20	10

Solution.

$$\bar{X} = \frac{\sum fX}{\sum f} = \frac{400}{100}$$
$$\bar{X} = 4$$

class	f	X	fX	$f(X-\bar{X})$	$f(X-\bar{X})^2$	$f(X-\bar{X})^3$	$f(X-\bar{X})^4$
es							
1-3	40	2	80	-80	160	-320	640
3-5	30	4	120	0	0	0	0
5-7	20	6	120	40	80	160	320
7-9	10	8	80	40	160	640	2560
	$\sum f = 1$		$\sum fX = 4$	$\sum f(X -$	$\sum f(X -$	$\sum f(X -$	$\sum f(X -$
	00		00	\bar{X}) =0	$\bar{X})^2 = 400$	$\bar{X})^3 = 480$	$(\bar{X})^4 = 3520$

Now to find first four moments about mean is

$$m_1 = \frac{\sum f(X - \overline{X})}{\sum f} = \frac{0}{100}$$
$$m_1 = 0$$

$$m_2 = \frac{\sum f(X - \bar{X})^2}{\sum f} = \frac{400}{100}$$

$$m_2 = 4$$

$$m_3 = \frac{\sum f(X - \bar{X})^3}{\sum f} = \frac{480}{100}$$

$$m_3 = 4.8$$

$$m_4 = \frac{\sum f(X - \bar{X})^4}{\sum f} = \frac{3520}{100}$$

$$m_4 = 35.2$$

2. Raw moments

- Raw moments are obtained from origin or zero.
- The general formula for finding raw moments is:

For ungroup data

$$m_r' = \frac{\sum (X)^r}{n}$$

For group data

$$m_r' = \frac{\sum f(X)^r}{\sum f}$$

Example 1. Find first four raw moments, and convert into moments about mean 3,6,2,1,7,5. Solution.

X	X^2	X^3	X^4
3	9	27	81
6	36	216	1296
2	4	8	16
1	1	1	1
7	49	343	2401
5	25	125	625
$\sum X = 24$	$\sum X^2 = 124$	$\sum X^3 = 720$	$\sum X^4 = 4420$

Calculations:

First Raw Moment:

$$m_1' = \frac{\sum X}{n} = \frac{24}{6}$$
$$m_1' = 4$$

Second Raw Moment:

$$m_2' = \frac{\sum X^2}{n} = \frac{124}{6}$$
 $m_2' = 20.67$

Third Raw Moment:

$$m_3' = \frac{\sum X^3}{n} = \frac{720}{6}$$
 $m_3' = 120$

Fourth Raw Moment:

$$m_4' = \frac{\sum X^4}{n} = \frac{4420}{6}$$
 $m_4' = 736.67$

Convert raw moments into moments about mean

$$m_{1} = m'_{1} - m'_{1}$$

$$m_{1} = 4 - 4$$

$$m_{1} = 0$$

$$m_{2} = m'_{2} - (m'_{1})^{2}$$

$$m_{2} = 20.67 - 16$$

$$m_{2} = 4.67$$

$$m_{3} = m'_{3} - 3m'_{2}m'_{1} + 2(m'_{1})^{3}$$

$$m_{3} = 120 - 3(20.67)(4) + 2(4)$$

$$m_{3} = 0$$

$$m_{4} = m'_{4} - 4m'_{3}m'_{1} + 6m'_{2}(m'_{1})^{2} - 3(m'_{1})^{4}$$

$$m_{4} = 736.67 - 4(120)(4) + 6(20.67)(4)^{2} - 3(4)^{4}$$

$$m_{4} = 32.67$$

Example 2. Find Raw moments and convert into moments about mean

X	2	4	6	8
f	40	30	20	10

Solution:

X	f	fX	fX^2	fX^3	fX^4
2	40	80	160	320	640
4	30	120	480	1920	7680
6	20	120	720	4320	25920
8	10	80	640	5120	40960
	$\sum f = 100$	$\sum fX = 40$	$\sum f X^2 = 200$	$\sum f X^3 = 11680$	$\sum f X^4 = 7520$

Calculations:

First Raw Moment:

$$m_1' = \frac{\sum fX}{\sum f} = \frac{400}{100}$$
$$m_1' = \mathbf{4}$$

Second Raw Moment:

$$m_2' = \frac{\sum f X^2}{\sum f} = \frac{2000}{100}$$
 $m_2' = 20$

Third Raw Moment:

$$m_3' = \frac{\sum fX^3}{\sum f} = \frac{11680}{100}$$

$$m_3' = 116.8$$

Fourth Raw Moment:

$$m_4' = \frac{\sum fX^4}{\sum f} = \frac{75200}{100}$$

$$m_4'=752$$

Convert raw moments into moments about mean

$$m_{1} = m'_{1} - m'_{1}$$

$$m_{1} = 4 - 4$$

$$m_{1} = 0$$

$$m_{2} = m'_{2} - (m'_{1})^{2}$$

$$m_{2} = 20 - 16$$

$$m_{2} = 4$$

$$m_{3} = m'_{3} - 3m'_{2}m'_{1} + 2(m'_{1})^{3}$$

$$m_{3} = 116.8 - 3(20)(4) + 2(4)^{3}$$

$$m_{3} = 4.8$$

$$m_{4} = m'_{4} - 4m'_{3}m'_{1} + 6m'_{2}(m'_{1})^{2} - 3(m'_{1})^{4}$$

$$m_{4} = 752 - 4(116.8)(4) + 6(20)(4)^{2} - 3(4)^{4}$$

$$m_{4} = 35.2$$

3. Arbitrary origin moments

- Arbitrary origin moments are obtained from an assume value A
 (A is constant).
- The general formula for finding arbitrary moments is:

for ungroup data

$$m_r' = \frac{\sum (X - A)^r}{n}$$

for group data

$$m_r' = \frac{\sum f(X - A)^r}{\sum f}$$

Example 1. Find first four arbitrary moments where A=7, and convert into moments about mean 3,7,7,7,8,8,8,18.

Solution:

X	(X-A)	$(X-A)^2$	$(X-A)^3$	$(X-A)^4$
3	-4	16	-64	256
7	0	0	0	0
7	0	0	0	0
7	0	0	0	0
7	0	0	0	0
8	1	1	1	1
8	1	1	1	1
8	1	1	1	1
18	11	121	1331	14641
	$\sum (X -$	$\sum (X -$	$\sum (X -$	$\sum (X -$
	A) = 10	$A)^2 = 140$	$A)^3 = 1270$	$A)^4 = 14900$

Calculations:

First Arbitrary Moment:

$$m_1' = \frac{\sum (X - A)}{n} = \frac{10}{9}$$

$$m_1' = 1.11$$

Second Arbitrary Moment:

$$m_2' = \frac{\sum (X - A)^2}{n} = \frac{140}{9}$$

$$m_2' = 15.56$$

Third Arbitrary Moment:

$$m_3' = \frac{\sum (X - A)^3}{n} = \frac{1270}{9}$$

$$m_3' = 141.11$$

Fourth Arbitrary Moment:

$$m_4' = \frac{\sum (X - A)^4}{n} = \frac{14900}{9}$$

$$m_4' = 1655.56$$

Convert arbitrary moments into moments about mean

$$m_{1} = m'_{1} - m'_{1}$$

$$m_{1} = 1.11 - 1.11$$

$$m_{1} = 0$$

$$m_{2} = m'_{2} - (m'_{1})^{2}$$

$$m_{2} = 15.56 - 1.2321$$

$$m_{2} = 14.33$$

$$m_{3} = m'_{3} - 3m'_{2}m'_{1} + 2(m'_{1})^{3}$$

$$m_{3} = 141.11 - 3(15.56)(1.11) + 2(1.11)^{3}$$

$$m_{3} = 92.03$$

$$m_{4} = m'_{4} - 4m'_{3}m'_{1} + 6m'_{2}(m'_{1})^{2} - 3(m'_{1})^{4}$$

$$m_{4} = 1655.56 - 4(141.11)(1.11) + 6(15.56)(1.11)^{2} - 3(1.11)^{4}$$

$$m_{4} = 1139.51$$

Example 2. Find first four arbitrary moments, and convert into moments about mean, A=3

X	1	2	3	4
f	2	3	4	1

Solution:

X	f	(X - A)	$f(X-A)^{I}$	$f(X-A)^2$	$f(X-A)^3$	$f(X-A)^4$
1	2	-2	-4	8	-16	32
2	3	-1	-3	3	-3	3
3	4	0	0	0	0	0
4	1	1	1	1	1	1
	$\sum f = 10$		$\sum f(X - A) = -6$	$\sum f(X - A)^2 = 12$	$\sum f(X - A)^3 = -18$	$\sum f(X - A)^4 = 36$

Calculations:

First Arbitrary Moment:

$$m'_{1} = \frac{\sum f(X - A)}{\sum f} = \frac{-6}{10}$$
 $m'_{1} = -0.6$

Second Arbitrary Moment:

$$m'_{2} = \frac{\sum f(X - A)^{2}}{\sum f} = \frac{12}{10}$$
 $m'_{2} = 1.2$

Third Arbitrary Moment:

$$m_3' = \frac{\sum f(X - A)^3}{\sum f} = \frac{-18}{10}$$
 $m_3' = -1.8$

Fourth Arbitrary Moment:

$$m'_4 = \frac{\sum f(X - A)^4}{\sum f} = \frac{36}{10}$$
 $m'_4 = 3.6$

Convert arbitrary moments into moments about mean

$$m_{1} = m'_{1} - m'_{1}$$

$$m_{1} = -0.6 + 0.6$$

$$m_{1} = 0$$

$$m_{2} = m'_{2} - (m'_{1})^{2}$$

$$m_{2} = 1.2 - 0.36$$

$$m_{2} = 0.84$$

$$m_{3} = m'_{3} - 3m'_{2}m'_{1} + 2(m'_{1})^{3}$$

$$m_{3} = -1.8 - 3(1.2)(-0.6) + 2(-0.6)^{3}$$

$$m_{3} = -0.072$$

$$m_{4} = m'_{4} - 4m'_{3}m'_{1} + 6m'_{2}(m'_{1})^{2} - 3(m'_{1})^{4}$$

$$m_{4} = 3.6 - 4(-1.8)(-0.6) + 6(1.2)(-0.6)^{2} - 3(-0.6)^{4}$$

$$m_{4} = 1.48$$

ANY QUESTION