2005. 12

3 学

2005 12

1	1
1. 2.	1
_	
2	9
1.	9
가.	9
	12
(1)	12
(2)	15
(3)	18
	21
2.	23
가.	23
	31
	34
3.	36
가.	
	41
•	45

4.				4	.7
	가. 가			4	17
	(1)				17
	(2)		(Lea	an burn engine)4	17
	(3)				18
				A	19
	(1)			A	19
	(2)			5	50
	(3)			5	51
				5	52
	(1)			5	52
	(2)	가		5	53
3				55	5
1.				5	5
1.	가.		DB	5	_
1.	가. ·		DB	•	55
1.			DB	5	55 56
1.		가	DB		55 56 56
1.	. (1)	가			55 56 56 57
1.	· (1) (2)	가			55 56 56 57 58
1.	(1) (2) (3)	가			55 56 56 57 58
1.	(1) (2) (3) (4)	가		5 5 5 5 5 6	55 56 56 57 58 50
1.	(1) (2) (3) (4)	가		5 5 5 5 6	55 56 56 57 58 60 61
1.	(1) (2) (3) (4) (5)	가		5 5 5 5 6 6	55 56 56 57 58 60 61 62 62
1.	(1) (2) (3) (4) (5)			5 5 5 5 6 6 6	55 56 56 57 58 60 61 62 62 62
1.	(1) (2) (3) (4) (5) (1) (2)			5 5 5 5 6 6 6 6	55 56 56 57 58 50 51 52 52 52 54

67	4
	1.
70	2.
75	

<	1-1>				4
<	2-1>				14
<	2-2>				16
<	2-3> L	JSA	вс	BATTERY	17
<	2-4>				19
<	2-5>				22
<	2-6>				28
<	2-7>				30
<	2-8>				33
<	2-9>				37
<	2-10>				38
<	2-11>				40
<	2-12>				43
<	2-13>		가		49
<	3-1>			DB	55
<	3-2>				
<	3-3>	가			59
<	3-4>				60
<	3-5>				61
<	3-6>	가			64
<	3-7>				
<	3-8>				

3
6
13
18
21
24
26
28
40
48
53
57
58
63
63
69

1.

가 . ·

. 46

가 100 ~ 200

2005 8 30 ' (Katrina)' 1,156

' (Rita)가 300

(tsunami)

· 가 ,

				가		
				가		
		가				
			,			
				•		
	100		0	.6 ,		
10 ~ 20cm					1	
1	I	,	가	2100		
90		1.4 ~ 5.8	,	8 ~ 88	3cm	
	1).					
				1992		
			(UN	FCCC)	1997	
		. 38	(311	. 000)	기 기	
	가 2012		90		5.2	
フ					J.=	•
		•				
	1		가			

< 1-1> (1)

가 2008

가 가 2005 7 "

・ 6 " . 가 가

> , 가 ,

· 가 .

.

2.

1

, 가 가

· ,

.

< 1-1> (2)

(Ozone), HC(), CO, NO ₂ , (Asbestos),		(PM),
CO ₂ ,	(Methane),	가	(CFCs)

가 가 가 가CO₂, Ar, Mig Fume gas PO₄, NO₂, Ti, Ni,EC, BC, NOx, SOx,NOx, SOx, 1 가 (10 km) (CO₂)가 74%, 가 (CFCs) 가 24%, (NOx) 1.9%, (CH)가 0.1%

.(2)

5

1

Mitsubishi

가

6,600

보여장에서 수리교환인 법과 공을 최수하는 RECYCLE 시 스템과 중 고부품의 공급시 스템을 구축한다.

RECYCLE RECYCLE (12)

지 및
Development

RECYCLE (12)

지 및
The Application (12)

The Appli 12 500 가 가 2005 2 1,500 51 (Shredder) 75 ~ 80% (Shredder) 가 . Toyota 가 2015 95% , 2005 95% 가 가 가

7

1

1.

가.

1873 Robert Davidson 가 가

20

가 . , ,

. 1990

, 1993

```
가
      G7
1998
                                     가
         (ZEV: Zero Emission Vehicle)
                       가
                                            10%
                                              2005
                              2005
                                    10%
                                            2018
18%
                   3
ΕU
             800 ~ 900
                                         , 2008
  1998 190g/km
                             140g/km
                     26%
                           , 2010
                                        가
           6%
  1990
         "(2002)
               . 2002 , 2003
                                      가
                     2005 1 1
                                         3,000
```

2005 27,000 · 7\\
2004 9 "
2005 4
.

Zero Emission

(Infrastructure) 가

가

.

Zero Emission

12 (1) 가 (MCU: Motor Control Unit) 가 가 가 가 가 가 가 가

< 2-1> (18)

"SantaFe"

가 30~240kWfh

가

(SRM: Switched Reluctance Motor)

가

< 2-1> (6)

, 應: SR РМ (%) 88 94 95 90 (%) 78 10% 79 80 90 (RPM) 4,000 15,000 9,000 4,000 COST RATIO 1.0 0.8 1.0 0.6 COST RATIO 1.0 3.0 2.0 4.0 (\$/kW) 6~10 8~12 10~15 10 鹿 鹿 鹿 麀 鹿 鹿 鹿 鹿 鹿

: PM : Permanent Magnet() SR : Switched Reluctance

(MCU)

(inverter)

(controller)

1 ~ 20kHz , 10kV A ~ 300kV A

, MCU 가 IPM

(Intelligent Power Module) .

(2)

가

(energy density, specific energy) 1

.

가

(power density, specific power)

가

 EV

(Lead-Acid Battery), (Ni-Cd

Battery), (Ni-MH Battery),

(Li-Ion Battery), (Li-Polymer Battery),

(Zn-Air Battery)가 .

(Na-S Battery), (Na-NiCl

Battery ₹ .

가

(Pure Electric

Vehicle) 가

Big 3 GM, Ford, Chrysler가

(PNGV: Partnership for Next

Generation Vehicle)

USABC(The U. S. Advanced Battery Consortium)

< 2-3>

USABC

(11)

Nickel , Lithium

< 2-2> (5)(7)(15)

		Ni-Cd	Ni-MH	Li-lon
Specific Energy (Wh/Kg)	35 ~ 40	50 ~ 60	50 ~ 80	120 ~ 150
Specific Power (W/Kg)	100 ~ 150	170	150 ~ 300	100 ~ 200
()	200 ~ 700	500 ~ 2,000	500 ~ 1,000	500
()	-20 ~ 60	-20 ~ 60	-20 ~ 60	-20 ~ 60
	PbO ₂ +Pb+2HSO ₄	2NiOOH+2HO+Cd	NiOOH+MH	Li1-xCoQ+LixC
	2PbSQ+2H ₂ O	Ni(OH):+Cd(OH):	Ni(OH}+M	LiCoQ+C
	가			
		가		
				1
				,
		(Cd)		/
				Co Mi, Mn 가

< 2-3> USABC BATTERY (5)

				(1994)	(2003)
80% DOD	30		(W/kg)	150	400
C/3			(Wh/L)	135	300
C/3			(Wh/kg)	80	200
			()	5	10
80% DOD		CYCLE	(cycle)	600	1,000
40kWh	1	가	(\$/kWh)	\$ 150	\$ 100
			(h)	6	3~6
				SOC 40% 15	80%

.

·

-

- 가가 .

< 2-2> (16)

-

- .

- / 가 .

(3)

가 . 1999 2000

200km

130km ,

가 .

가

, A/S ,

.

가 가

가 . <

2-4> .

< 2-4>

			(kw)	(km)	(km/h)		
EV1 ()		3	103	110/145	130	3-4	
Ranger			55	95	120	8	
EPIC			55	100	130		
PAV4L EV	Ni-MH		45	215	125	8	
HONDA EV	Ni-MH		49	210	130	8	
	Li-lon		62	200	120	8	
	Ni-MH		60	390	140		
KEV-V			60		160		
DEV5	Ni-MH		69	201	124		
	Ranger EPIC PAV4L EV HONDA EV	Ranger EPIC PAV4L EV Ni-MH HONDA EV Ni-MH Li-Ion Ni-MH KEV-V	Ranger EPIC PAV4L EV Ni-MH HONDA EV Ni-MH Li-lon Ni-MH	EV1 3 103 Ranger 55 EPIC 55 PAV4L EV Ni-MH 45 HONDA EV Ni-MH 49 Li-Ion 62 Ni-MH 60 KEV-V 60	EV1 () 3 103 110/145 Ranger 55 95 EPIC 55 100 PAV4L EV Ni-MH 45 215 HONDA EV Ni-MH 49 210 Li-lon 62 200 Ni-MH 60 390 KEV-V 60	EV1 () 3 103 110/145 130 Ranger 55 95 120 EPIC 55 100 130 PAV4L EV Ni-MH 45 215 125 HONDA EV Ni-MH 49 210 130 Li-Ion 62 200 120 Ni-MH 60 390 140 KEV-V 60 160	EV1 () 3 103 110/145 130 3-4 Ranger 55 95 120 8 EPIC 55 100 130 PAV4L EV Ni-MH 45 215 125 8 HONDA EV Ni-MH 49 210 130 8 Li-Ion 62 200 120 8 Ni-MH 60 390 140 KEV-V 60 160

```
2005 Tokyo Motor Show
       30
(Eliica)
                        , 4
                  370km/h 가
  290km
                                    2008
                                           200
 가
                가 3,000
     (Chosun.com, 2005. 07. 05).
                 가 가
                                 1/8
                 2009
       "R1"
NEC
                                          , 1
                         10
     200km
                      ( , 2005. 08. 16).
          1991
                     Sonata
        , 1997 CARB ZEV
                                         , 2000
                    2001. 7~2003. 6
     SantaFe
                    15
                  2003 ~ 2005 2
   5,
             3
                   가
2005 5 25
          "GEO EV1" 3
    , 가
                  3
                               250km
           120km .
```

DC

2005. 08. 08).

가

(SRM, BLDC

(in-wheel motor)

2-3> BRIDGESTONE IN-WHEEL MOTOR SYSTEM

가

.

Bridgestone, Kayaba, Akebono 3 가 2000

In-Wheel Motor

가 가

(axle),

(differential gear)

가

.

Argonne National Lab.

Delphi

(

2020

2-5>

.

"

< 2-5>

(19)

2000 2010 2020 (km) 180 250 300 240 300 400 300 350 500 5 120 70 20 10 120 20 260 160 0-50km/h 가 3.0 7.7 5.0 3.8 6.2 5.0 3.0 5.5 3.0 (%) 7.3 10.2 7.5 10.2 10.2 5.3 9.5 6.5 7.3 3.2 1.2 4.6 5.5 km) 0.9 1.5 3.0 1.5 3.0 LD (%) 0.5 1.0 3.0 2.0 4.0 8.0 2.5 6.0 15.0

.

20%

2005 1 1 3,000

2005 27,000 · 가

.

2004 9 "

" 2005 4 23

가 .

2.

가.

가 가

(ZEV: Zero Emission Vehicle) . 가

< 2-4> (HEV)

가

(HEV: Hybrid Electric

Vehicle)

가 . 가

HEV 1909 가

(PEV: Pure Electric Vehicle)

가 .

가 .

.

. HEV

Toyota Prius, Honda Insight, Civic

가 12~15km

40% 100% 20 ~ 30km

가 30%

가 .

50~90% 가

HEV (series type)

(parallel type) · (series-parallel type) 가

•

가

가

가

. Toyota

< 2-5> (20)

Honda Honda IMA (Integrated Motor Assist) System ,

< 2-6> TOYOTA HYBRID SYSTEM THS-II

44 180 198 94 建设管理器 是概是整大字框 취속에 보는 계문시에는 의 **刘三克 明报表 李中等达**, 치력 등 개발로 문합 된다. ማሳ ማመሳደችና ጀፍል ች 문학 모약을 구동시키었다. 이 공기를 받는데는 일본는 속관하다 가장한 관련으로 송하는 발생기를 거쳐 보려를 <u>'</u> 말씀이 있더라 구들이를 받아 교리를 맞았기도 권한 계등 又所書が名当代 又対 近立 工者予備者で、1000倍 इंडिन्फ्स्ट्रेट, xxx के छोटे । अनुस्त महत्त्रके उत्तरक 시계 강축, 제한 바다지를 전 4等4件計劃管理等4年 **物种色,用基金、用度平容中的**一种精神的 对称对应等 新门。 이보도 병원하여 학생기에 중위이 되도록 밖에 준다. 장면 서워 장다. 이야 때

(21)

< 2-6>

	10H	NDA	Т	ОУОТА
	2005 CIVIC	2004 INSIGHT	2004 PRIUS	2005 ALPHAD
	5	2 SEATER	5	7/8
	COMPACT CAR	PERSONAL CAR	MID.SEDAN	MINI VAN
	3Stage i-VTEC	LEANBURN VTEC	INZ-FXE	2AZ-FXE
(ka)	1,280 (MX)	850(CVT)	1,555(G)	2,385(G)
(kg)	1,260(MXB)	820(5MT)	1,535(S)	2,440(S)
()	1.339	0.995	1.496	2.362
()	4	3	4	4
(km/)	28.5 (MX)	32.0(CVT)	33.0(G)	17.2
[10 · 15]	31.0(MXB)	36.0(5MT)	35.5(S)	17.2
(kw[PS]/rpm)	70[95]/6,000	51[70]/5,700	57[77]/5,000	96[131]/5,600
MOTOR	15[20]/2,000	9.2[12.5]/2,000	50[68]/1,200	13[17]/1130~3000()
(kw[PS]/rpm)	15[20]/2,000	9.2[12.5]/2,000	1,540	18[24]/1910~2500()
MOTOR	BLDC	BLDC		
	Ni-MH	Ni-MH	Ni-MH	Ni-MH
SYSTEM	IMA	IMA	THS-II	THS-C
7L ()	2,362,500 (MX)	2.289.000(CVT)	2,625,000(G)	4,452,000(G)
가 ()	2,194,500 (MXB)	2,205,000(5MT)	2,268,000(S)	3,950,000(\$

: 1. TOYOTA HONDA

가 20% 3 **PNGV** (Partnership for Next Generation Vehicle) 10%가 10%, 9%, 3%, 5%, 4%, 3%, 3% 1% Esoro 가 Twintrack , 2002 " Lupo-Volkswagen 3L 100km 3L" Valeo Ricardo 42 V (i-Morgen) ZEV 가 가 . < 2-7> 가 1995 FGV-1, 1999 FGV-2 Elantra Verna HEV HEV, 2000

< 2-7>			(10)
	(:	100)
	80	70	70
1	10	20	20
	60	50	30
	90	90	60
	40	50	20
	40	50	50
	40	10	50
: 가	, 가	2002	

 HEV

.

2002 Click HEV 가 18km/l 가 12.1km/l 50% . Toyota 8 2010 30

1

.

30%

가

2003 43,435 2002 25.8% 7 . California

가 - 가가 .

Virginia, Florida Washington .

2000 가

88.6% . 2003 1,670 .

Toyota Honda

가 Prius Civic .

Wards ,

2008 4~5%

2009 , 가

가 , 가 가

. 2004 40

가 2005 9 68%

67 가 .

```
, 가 가
                                        1.92
             46%
                     2.80
               가
                     SUV
     가
     가
                        MWC
                                 3.75 (
            32%가
1
    )
   . 2006 1
                      3,400
            500
            가
                   33% 가
                          2004 20
                          160
2010 100
                    2013
                 1.7%
                           Toyota, Honda
              가
1997 Toyota Prius√l
                                  20
                                        10
          , 2004
                  Prius
```

20,000 가 6

< 2-8>

	TOYOTA	HONDA, NISSAN	U. S. A.	
2004	- Prius(compact) - Estima(mini Van)	- Insight(1.0L,) - Tino (,) - Mardh()	- ESX1~3 (1.5L,Chrysler)	- Twintrack(Swis,Esoro) - Avante(HMC) - Verna(HMC) - County (, HMC)
2005	- RX400h(SUV) - Highlander(SUV) - Harrier(SUV) - Kluger (SUV) - Alphad(mini Van)	- Civic(1.3L,) - Accord(3.0L,) - Acura (3.0L)	-Escape(SUV, Ford) -Sierra(Pickup, GM) -Chevy Silverado (Pickup, GM) -Allison (Bus, GM)	- Lupo3L(Volkswagen)
2006	- 450hGS (3.5L,V8) - Fine-X	- Altima(2.5L,)	- Dodge Ram(Pickup, GM) - Mercury Mariner (Pickup, Ford) - VUE(, GM)	- S3X(SUV, GM) - HR2(6.OL, race, car BMW) - X5(4.4L, SUV, BMW)
2007	- Sienna(mini Van) - Camry(2.4L)	- Tino (Van,) - Tribute ()	- Chevy Malibu(SUV, GM) - Chevy Tahoe(GM) - Dodge Durango	- Portico(miniVan HMC) - Touran(1.6L, Van, VW)
2008			(3.7L,SUV,Chrysler - Yukon(GM) - Fusion(3.0L,V6,Ford	- (HMC) - (HMC) - Cayenne(Porsche)
2009			 Lincoln(Ford) Mercury Milan(Ford) Chevy Silverado (Pickup, GM) 	- Bionic, S- class(Mercedes Benz)

:

SUV, Ford Escape 15.2km/l . GM 5.3I, 6 , 295 8 Sierra Silverado Toyota 2005 15,000 , Prius 2005 30 가 1,500cc 50% 가 2004 50 . 2006 350

가 가

가

(plug-in) q

•

가 가 . 가 30% 2

가 .

2 2 (2004 35~40) 가 가 .

12V 42V 120V , 가 가 가

가 .

가 .

가 .

5, 6 , 3

가 . 8 40%

```
36
  < 2-7 >.
  가
3.
가.
         Daimler-Chryslet
  1994
     NECAR 1(New Electric Car 1 )
                                             가 가
```

(Fuel Cell) , , 가 ,

. 가, ,

 $7 + \\ < 2-9 > \\ , \\ , \\ , \\ + \\ (oxidant) \quad H_2O \ + \\ +$

< 2-9>

(PAFC)	()	Platinum on PTFE/Carbon	200	가	
(AFC)	()	Platinum on Carbon	80		,
(MCFC)	Lithium or Potassium Carbonate()	Ni Ni	650	가 가	
(SOFC)	Yttria-stabilized zirconia()	Ni/Zirconia Cermet	1,000	가 가	
(PEMFC)	Dow Polymer	Platinum on Carbon	85 ~ 100		,
(DMFC)	Polymer Membrane	Pt-Ru or Pt/C	25 ~ 130		

- : 1. PAFC (Phosphoric Acid Fuel Cell)
 - 2. AFC (Alkaline Fuel Cell)
 - 3. MCFC (Molten Carbonate Fuel Cell)
 - 4. SOFC (Solid Oxide Fuel Cell)
 - 5, PEMFC (Proton Exchange Membrane Fuel Cell)
 - 6. DNFC (Direct Methanol Fuel cell)

		90%	6	
		1	0.55-0.75V	
0.8-1.2	A/cm²			
		(stack)		
			10	
		7	가 가	
	(PEMFC)			
가			가	
	•			
	((PEMFC)		
	(Oatha		(Anode)	
,	(Catho	ae)	•	
			가	
	< 2-10>		(23)	
		가		

가

가 , , (Fuel Reformer)

(Fuel Cell Stack),

0.7V

300 V , 400

30%

< 2-11> (23)

							MEA	
Ballard	0	0	0	0	0	0	0	0
Benz	0	0	0	0				
G.M.				0	0	0	0	0
Toyota				0	0	0	0	0
Allied Signal					0	0	0	0
Denora					0	0	0	0
Energy Partner					0	0		
Honda					0	0	0	0
Hpower					0	0	0	0
Ford/IFC					0	0	0	0
Mitsubishi					0	0		0
Nissan					0	0		0
Plug Powe					0	0	0	0
Simens					0	0	0	

1997 Benz A-class

NECAR-3

80%

(energy-to-road) 31% 24%

40%

•

- 2010 25%

- 2020 가

- 2030 10%

- 2010 가 \$1.5/kg (가 ,) .

- 2010 가 \$0.6/kg

```
, JHFCD(Japan Hydrogen & Fuel Cell
Demonstration)
- 2004
                        , 11
- 2010
                            , 2020
                        5
                                         5
          가
                            kW(40 가),
- 2010
                       120
           90
               kW
               2015
                              가
 SPG
                    가
        , BOC가
                             2002
            3
                      22,500Nm³/hr
                                   56%,
    44%
                                          가
              22,000Nm .
```

Daimler Chrysler, Ford, GM, Toyota

- Daimler-Chrysler 1994

NECAR1(New Electric Car)

2,3,4

NECAR5

- Daimler Chrysler DMFC(Direct Methanol Fuel Cell)

Ford 1998 Protocar ZEV , 1999 1
 P2000 . P2000 Taurus

< 2-12> (23)

				() 20kW	
Mazda	Cart	1997	(2x15m³)	20kW(5kW x4)	170km
Toyota	RV	1997			500km
Daimler-Benz		1999		25kW	400km
Renault		1996		70kW	500km
 Ballard		1997		30kW	170km
George-town U		1998		100kW	560km
GM	EV-1	1999		100kW	500km
FORD		1999		50kW	170km
 Virginia Tech		1999		70kW	110km

			60	
12	가	100	,	80mph
	90 . Ford			
Focus FO	CV			
- GM	1998	Opel	' GN	M Global
Alternati	ve Propulsion Center'	Global	Fuel Cell	Project
	Opel			
Zaf	ira compact van	98		
	. 2004		가	
	GM			
- 7	Γoyota			
	2			
FCHV	,		,	,
)	2 (California)		•
- FCHV-5	5 5,000psi	가		
90kW		ZEV		
•				
- Honda	1999 9		FCX V1	
. Cana	dad Ballard			
		•		
- Honda				. H-

- 199	0					
2002	9				:	,
2004 9					(FCHEV)	
C	alifornia					
. 2009 8						
- 200	5 3					
16 100km	/h			159k	m/h,	
300km						
	200	08				
2009 ~ 20	10				2011 ~ 201	5
- GM	2005	11	16	APEC	가	
GM						
-3(Hydrogen-3)					가 .	

5

100km/h 가 16 가

82

160km/h, 270km .

,

. 2003 8 22

" 10 " , 2012

가 가 .

가 .

가 .

4.

가. 가

(1) (3)

. 가

가 (三元觸媒:NOx, HC,

CO)가 .

HC

,

가 .

(2) (Lean burn engine)

가 14.7:1 ,

22 : 1

, 8kg-m

< 2-8> NOx (13)

, 가 3 NOx 12~13:1
...
NOx Lean NOx Lean burn NOx NOx 가 .
(3)

GDI (Gasoline Direct Injection:

< 2-13> 가

			가			Lean	burn			GDI		
(: 가)	14.7: 1		가	/		20 : 1 14.7: 1	가	/		40:1 14.7:1
	가			H2O, CO2 N2, O2 가		가	O ₂			+ EGR ,	NOx	,
			O ₂	-	ا	NOx		가				
(10	: 15)		-	5~10 %			25	5%			

) .

GDI

(1)

,

가 . 가

(Diesel engine)

가 , ,

Bosch Lucas 가 (EURO III & IV)

(Common Rail Direct Injection Engine) 가 NOx CO₂ 20%, CO 40%, HC 50%, PM (Particulate Material)60% 가 NOx NOx (3) (2) NOx 가 가 , PM NOx NOx가 PM

, - -

(3)

가 , 가

NOx 가 NOx 가 가 ,

HC, CO 가 PM SOF PM .

Sulfate가 PM 가 .

DPF(Diesel Particulate Filter)

PM PM 가

. PM 가

```
EGR(NOx
                             가
                   ),
                           NOx, PM 80%
     , NOx
(1)
      (Methanol: CH3OH)
                       가 ,
                             . 가 •
        가 가
          가
                                        1/2
          가
         가
                                  가
                              FFV(Flexible Fuel
  Vehicle ₹ . CO₂
                         가
```


가 가 1.5~1.8 가

기 가 (CNG: Compressed Natural Gas) 가 (LNG: Liquified Natural Gas)가 가 가 가

.

LNG CNG

. 가 -162C

(weathering)

1.

가. DB

(keyword)

가

.

Thomson Scientific

< 3-1>

DΒ

DB	
Web of Science	SCIE(Science Citation Index Expanded) - 6,000 SSCI(Social Science Citation Index) - 1,700 A & HCI(Arts & Humanities Citation Index) - 1,150 ,

< 3-2>

	TS = (hybrid same electric*) and TS = (vehicle? or car? or automo*)	273
	TS = (fuel* same cell?) and TS = (vehicle? or car?)	216
* :19	90 2005, : (article)	

Web of Science

, (title) (abstract), (keyword) . 1990 (2005 11 26) ,

.

•

(1)

90 가 가 90 가

- < 3-1> 1990 2005 5 . 2001

69%

< 3-1>

- 1990 1995 3% , 1996 2000 28%

(2) 가

(42.9%), (13.9%), (4.8%)

1 가

- < 3-2> 1990 2005 가 . 2005 6 가

< 3-2> 가

4 (1.5%)

(3)

가

.

IIT(Illinois Institute of Technology)가 14

Univ

Michigan (), Free Univ Brussels () Harbin

Inst Technol() 6 . 가

가

가

.

< 3-3> 가

가		
	IIT	14
	Univ Michigan	6
	Argonne Natl Lab	5
	Texas A & M Univ	5
	Ford Motor Co	4
	Ohio State Univ	4
	Univ Tennessee	4
	Univ Wisconsin	4
	GM Corp	3
	Univ Calif Berkeley	3
	Univ Delaware	3
	Univ Texas	3
	US DOE	3
	Virginia Polytech Inst &State Univ	3
	Free Univ Brussels	6
	Lund Univ	3
	Royal Inst Technol	3
	Univ Sheffield	4
	Univ Warwick	3
	Toyota Cent Res & Dev Labs Inc	3
	Harbin Inst Technol	6
	CSIRO Energy Technol	4
	Univ Hong Kong	3

(4)

84

Journal Of Power Sources 273 84 30.8% .

IEEE Transactions on Vehicular Technology 23 (8.4%), Proceedings of The Institution of Mechanical Engineers Part D-Journal of Automobile Engineering 11

< 3-4>

Journal of Power Sources		30.8 %
IEEE Transactions On Vehicular Technology		8.4 %
Proceedings of The Institution of Mechanical Engineers Part D-Journal of Automobile Engineering		4.0 %
IEEE Transactions On Industry Applications	10	3.7 %
IEEE Aerospace And Electronic Systems Magazine		2.9 %
IEEE Transactions On Magnetics		2.6 %
IEEE Transactions On Industrial Electronics	6	2.2 %
International Journal of Vehicle Design		2.2 %
Journal of The Electrochemical Society	6	2.2 %
Energy Conversion And Management		1.5 %
Environmental Science & Technology		1.5 %
Jsae Review		1.5 %
Proceedings of The Ieee		1.5 %
Energy		1.1 %
Energy Policy		1.1 %
IEEE Transactions On Energy Conversion		1.1 %
IEEE-Asme Transactions On Mechatronics		1.1 %
Microelectronics Reliability		1.1 %
Renewable Energy	3	1.1 %

(4.0%)

(5)

Web of Science

, 39.6% (108) . 33.7%

(92), , , 31.9%(87), 17.6%(48) .

< 3-5>

Energy & Fuels	108	39.6 %
Electrochemistry	92	33.7 %
Engineering, Electrical & Electronic	87	31.9 %
Transportation Science & Technology	48	17.6 %
Engineering, Mechanical	34	12.5 %
Telecommunications	23	8.4 %
Automation & Control Systems	13	4.8 %
Engineering, Multidisciplinary	11	4.0 %
Engineering, Aerospace	10	3.7 %
Environmental Sciences	10	3.7 %
Materials Science, Multidisciplinary	10	3.7 %
Physics, Applied	9	3.3 %
Mechanics	8	2.9 %
Instruments & Instrumentation	7	2.6 %
Materials Science, Coatings & Films	7	2.6 %
Engineering, Manufacturing	6	2.2 %
Environmental Studies	5	1.8 %
Metallurgy & Metallurgical Engineering	5	1.8 %

가 (1) 가 91 2005 216 2001 59% - 1990 1995 6% , 1996 2000 35% (2) 가 (29.2%), (8.8%), (7.4%), (7.4%)

90

- 1990 2005

가

가

2000

2

< 3-3>

< 3-4> 가

(3)

3 , ,

, 가 , , , ,

.

Univ London Imperial Coll Sci Technol & Med 7

,

(DOE), Argonne Natl Lab 6

가

< 3-6> 가

가		
	Haldor Topsoe AS	3
	Daimler Benz AG	3
	KFA Julich GmbH	4
	Penn State Univ	3
	Univ Calif Davis	3
	US EPA	3
	Princeton Univ	5
	Argonne Natl Lab	6
	US DOE	6
	Lund Univ	3
	Royal Inst Technol	3
	CSIC	4
	Univ London Imperial Coll Sci Technol & Med	7
	Univ Genoa	3
	CNR	4
	Indian Inst Sci	4
	Yamanashi Univ	5

< 3-7>

Journal of Power Sources	68	31.5 %
International Journal Of Hydrogen Energy	15	6.9 %
Journal of The Electrochemical Society	7	3.2 %
Applied Catalysis A-General	6	2.8 %
International Journal of Vehicle Design	5	2.3 %
Energy Policy	4	1.9 %
IEEE Transactions on Vehicular Technology	4	1.9 %
Solid State Ionics	4	1.9 %
Catalysis Today		1.4 %
IEEE Aerospace And Electronic Systems Magazine	3	1.4 %

(4)

Journal Of Power Sources 216 16 31.5% .

International Journal Of Hydrogen Energy 15 (6.9%), Journal of The Electrochemical Society 7 (3.2%)

(5)

< 3-8>

Energy & Fuels	101	46.8 %
Electrochemistry	85	39.4 %
Environmental Sciences	31	14.4 %
Chemistry, Physical	23	10.6 %
Physics, Atomic, Molecular & Chemical	17	7.9 %
Engineering, Chemical	16	7.4 %
Transportation Science & Technology	16	7.4 %
Engineering, Mechanical	14	6.5 %
Materials Science, Multidisciplinary	14	6.5 %
Engineering, Electrical & Electronic	12	5.6 %
Chemistry, Applied	7	3.2 %
Materials Science, Coatings & Films	7	3.2 %
Chemistry, Multidisciplinary	6	2.8 %
Engineering, Environmental	5	2.3 %
Environmental Studies	5	2.3 %

1.

가

,

.

가 , 가 .

.

. 10 가

·

GM Holden 2010

15% 5% 가 50%

. 2030

가 60% .

3

가 ,

,

가

가

< 4-1>

: Holden Advance Engineering

가

가 가

가

가

8

2.

가 . 1 가

5, 6

.

.

, 가 " . HEV, FCEV

. HEV, FCEV

, 가 가 .

가 J.D. Power Sonata가 1

30 1

가 가 가 Toyota 3 가 100 가 Toyota 가 3 . Prius 가 180 가 1 3 Toyota

가

2002

2010 19
4,000 (2) .
2002 2004 3
680 (7,100) ,
2003 2006 21 (2 6,000),
2001 2005 10 (2)

2001 2005 10 (2)

2004 50 , 2005 200 가

• • • •

.

2008

,

가 .

가

•

-

.

- 1. World " " 2005. 9. 28.
- 2. "自動車 環境·資源 問題"日本 自動車技術 Vol.46, No.7, p.16, 1992.
- 3. HORI MASA HIKO"環境 適合型 自動車"都市問題研究所,第 52 ,第10號, pp.103~118, 2000
- 4. 中野隆裕 "自動車と環境"自動車技術, Vol.54, No.8, pp.18~20, 2000
- 5. 吉田 仰"電氣 自動車" 日本 エネルギー 學會誌, 第76卷, 第 4號, pp.278~284, 1997.
- 6. YASUO MOROOKA "電氣自動車のモータ 技術"設計工學 Vol.37, No. 7, pp.324~329, 2000. 7.
- 7. 今井孝二 外 "電氣自動車パーワエレクトロニクス現狀と動向" 電學論 D, 116卷 3號, pp.233~244, 1996.
- 8. 岩瀬 修 "電氣 自動車の現狀と今後" 生産と電氣 pp.12~15, 1999. 12.
- 9. " LG

, 853 , pp.26 ~ 30, 2005. 10. 12.

10. " 2004 , , pp.650

- ~664, 2004. 12. 28.
- 11. " ,
 - , 2004. 11.
- 12. http://www.toyota.co.jp/en/environment/recycle/recyclevision/index.html
- 13. http://ka-tech.com/eng/tech-st5/take1/gasoline2.html
- 14. http://www.yusae.co.kr/yusae03/carinfo/whatisgdi.htm
- 15 .http://www.solite.co.kr/rd/rd.html
- 16. http://user.chollian.net/~pjs6271/battery/li/LiB/licompH.htm
- 17. http://www.bridgestone.co.jp/news/c_030904.html
- 18. http://www.hyundai-motor.com/index.html
- 19. http://www.autoenv.org/text/text.html
- 20. http://www.toyota.co.jp/jp/tech/environment/ths2/kakushu.html
- 21. http://www.toyota.co.jp/jp/tech/environment/ths2/system.html
- 22. http://www.carlist.com/autonews/2005_hybrids.html
- 23. http://nfcrc.kier.re.kr/apl_car.htm
- 25. http://nfcrc.kier.re.kr/main.htm

・ ()
・ ()
・ ()
・ ()
・ ()
・ ()
- ()
- ()
3.

BA508

2005 12 15 2005 12 20

206-9

130-742 : 3299-6114

: 1991 2 12 5-258