A Recursive Strategy for Symbolic Execution Expressed in Coq

Alyssa Byrnes

June 29, 2018

1 Data Types

- Object E to represent set of concrete states.
- \bullet Object of type n to represent nodes on the symbolic execution tree.
 - $get_s(n)$ returns s, the symbolic state.
 - get pc(n) returns π , the path constraint.
- Object of type \mathcal{E} to represent a symbolic execution tree made of objects of type n.
 - is $leaf(\mathcal{E}, n)$ returns true if n is a leaf in \mathcal{E} .
 - is $root(\mathcal{E}, n)$ returns true if n is the root in \mathcal{E} .
 - get_root(\mathcal{E}) returns object of type n that is the root of the tree.

Shorthand:

- $\bar{s}_{r,m} = \text{get s}(\text{get root}(\mathcal{E}_m))$
- $\pi_{r,m} = \text{get pc}(\text{get root}(\mathcal{E}_m))$
- $\bar{s}_{l,m} = \text{get } s(n_{l,m}), \text{ where } n_{l,m} \in \mathcal{E}_m.$
- $\pi_{l,m} = \text{get pc}(n_{l,m}), \text{ where } n_{l,m} \in \mathcal{E}_m.$

2 Circle Operations

These use the definitions defined in Arusoaie et al.'s paper [ALR13].

Definition 1 circle_op_1 = the set $\varphi \in [\![\beta]\!] \ \forall \ \varphi' \in [\![\beta']\!]$ of a given β' such that $[\varphi]_{\sim} \Rightarrow^S [\varphi']_{\sim}$ where $\beta \Rightarrow \beta'$.

Definition 2 circle_op_2 = the set $\varphi' \in [\![\beta']\!] \ \forall \ \varphi \in [\![\beta]\!]$ of a given β such that $[\varphi]_{\sim} \Rightarrow^S [\varphi']_{\sim}$ where $\beta \Rightarrow \beta'$.

circle_op_1 represents all concrete states that will take us down exactly one path in the symbolic execution tree. circle_op_2 represents all concrete output states of a given path in the symbolic execution tree.

3 Properties

For a given E, X = a sequence $\mathcal{E}_0, ..., \mathcal{E}_m$ such that $\forall \mathcal{E}_x, \exists n_{l,x} \text{ such that is_leaf}(\mathcal{E}_x, n_{l,x}) = true \to \text{the conjunction of the following:}$

- 1. $s_0 \in \text{circle op } 1(\bar{s}_{r,0}, \pi_{l,0})$
- 2. $E \cap \text{circle op } 2(\bar{s}_{l,m}, \pi_{l,m}) \neq \{\}$
- 3. for $j = \{0, ..., m-1\}$, circle op $2(\bar{s}_{l,j}, \pi_{l,j}) \subseteq \text{circle}$ op $1(\bar{s}_{r,j+1}, \pi_{l,j+1})$

4 Next Step

Currently, I am working on unifying the circle operation definitions and the tree representation.

References

[ALR13] Andrei Arusoaie, Dorel Lucanu, and Vlad Rusu. A generic framework for symbolic execution. In *International Conference on Software Language Engineering*, pages 281–301. Springer, 2013.