Selection Sort

Introduction

Selection sort is an in-place sorting algorithm with complexity $O(n^2)$. Selection sort generally performs worse than insertion sort which is also a $O(n^2)$ in-place algorithm.

Selection sort outperforms divide-and-conquer algorithms on small arrays and is easy to implement. This makes it a good choice alongside insertion sort in hybrid approaches to sorting.

Correctness Proof

I will prove the correctness of my implementation by a loop invariant proof using the following invariant:

Loop Invariant: At the start of the ith iteration of the loop, the array A[0:i-1], which does not include A[i], contains the smallest i-1 numbers in final sorted order.

Initialization: At the start of the first loop the loop invariant states: "At the start of the first iteration of the loop, the array A[0:0], contains the smallest 0 numbers in final sorted order." Since this array is empty and an empty array is sorted by definition this step is proven.

Maintenance: Assume that the loop invariant holds at the start of the ith iteration. Then the array A[0:i-1] contains the smallest i-1 numbers in sorted order. In the body of the loop we add the next lowest number to the end of the sorted array resulting in the array A[0:i] containing the lowest i numbers in sorted order which is what we needed to show.

Termination: When the for loop terminates i = (n-1)+1 this means that A[0:n]=A is sorted. Since A is now sorted the algorithm is correct.

Run-time Analysis

CODE	COST	TIME
for(int i=0; i <n-1; i++)<="" td=""><td>c₁</td><td>$\sum_{i=0}^{n-1} 1 = n$</td></n-1;>	c ₁	$\sum_{i=0}^{n-1} 1 = n$
min = i	c ₂	$\sum_{i=0}^{n-2} 1 = n-1$
for(int j=i+1; j <n; j++)<="" td=""><td>c₃</td><td>$\sum_{i=0}^{n-2} \sum_{j=i+1}^n 1 = rac{n^2+n-2}{2}$</td></n;>	c ₃	$\sum_{i=0}^{n-2} \sum_{j=i+1}^n 1 = rac{n^2+n-2}{2}$
if(a[j] <a[min])< td=""><td>c_4</td><td>$\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \frac{n^2 - n}{2}$</td></a[min])<>	c_4	$\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \frac{n^2 - n}{2}$
min = j	c ₅	$\sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = rac{n^2 - n}{2}$
if(min != i)	c_6	$\sum_{i=0}^{n-2} 1 = n-1$
temp = a[i]	c ₇	$\sum_{i=0}^{n-2} 1 = n-1$
a[i] = a[temp]	c ₈	$\sum_{i=0}^{n-2} 1 = n-1$
a[temp] = a[i]	C ₉	$\sum_{i=0}^{n-2} 1 = n-1$

Multiplying COST x TIME and adding everything up we obtain the following:

$$c_{1}(n) + c_{2}(n-1) + c_{3}(\frac{n^{2}+n-2}{2}) + c_{4}(\frac{n^{2}-n}{2}) + c_{5}(\frac{n^{2}-n}{2}) + c_{6}(n-1) + c_{7}(n-1) + c_{8}(n-1) + c_{9}(n-1)$$

$$= n^{2}(c_{3} + c_{4} + c_{5}) + n(c_{1} + c_{2} + \frac{c_{3}}{2} + \frac{c_{4}}{2} + \frac{c_{5}}{2} + c_{6} + c_{7} + c_{8} + c_{9}) - (c_{2} + c_{3} + c_{6} + c_{7} + c_{8} + c_{9})$$

This polynomial can be represented by an² + bn - c where a, b and c are defined in terms of the cost c_i . This means that our implementation of Selection Sort runs in $O(n^2)$.