

Taller de Nivelación 2014 Matemáticas 11°

Germán Avendaño Ramírez, Lic. U.D., M.Sc. U.N.

No	ombre:	Curso:	_ Fecha:		
Números reales					
1.	a) Grafique el intervalo $(-5,3)$ y $(2,\infty)$	en la recta real			

- b) Exprese las desigualdades $x \leq 3$ y $-1 \leq x < 4$ en notación de intervalos c) Encuentre la distancia entre $-7 \ \mathrm{y}$ 9 sobre la recta real
- 2. Evalúe cada expresión

a)
$$(-3)^4$$
 b) -3^4

c)
$$\frac{5^{23}}{5^{24}}$$

d)
$$\left(\frac{3}{3}\right)^{-2}$$
 e) $16^{-3/4}$

$$e) 16^{-3/4}$$

- 3. Escriba cada número en notación científica
 - a) 186 000'000 000

- b) 0.0000003965
- 4. Simplifique cada expresión. Escriba su respuesta final sin exponentes negativos

a)
$$\sqrt{200} - \sqrt{32}$$

c)
$$\left(\frac{3x^{3/2}y^3}{x^2y^{-1/2}}\right)^{-2}$$
 e) $\frac{x^2}{x^2 - 4} - \frac{x+1}{x+2}$
d) $\frac{x^2 + 3x + 2}{x^2 - x - 2}$ f) $\frac{\frac{y}{x} - \frac{x}{y}}{\frac{1}{y} - \frac{1}{x}}$

e)
$$\frac{x^2}{x^2-4} - \frac{x+1}{x+2}$$

$$b) (3a^3b^3)(4ab^2)^2$$

d)
$$\frac{x^2 + 3x + 2}{x^2 - x - 2}$$

$$f) \frac{\frac{y}{x} - \frac{x}{y}}{\frac{1}{y} - \frac{1}{x}}$$

- 5. Racionalice el denominador y simplifique: $\frac{\sqrt{10}}{\sqrt{5}-2}$
- 6. Realice las operaciones indicadas y simplifique:

a)
$$3(x+6)+4(2x-5)$$

a)
$$3(x+6) + 4(2x-5)$$
 c) $(\sqrt{a} + \sqrt{b})(\sqrt{a} - \sqrt{b})$ e) $(x+2)^3$

e)
$$(x+2)^3$$

b)
$$(x+3)(4x-5)$$

d)
$$(2x+3)^2$$

7. Factorice completamente cada expresión

a)
$$4x^2 - 25$$

c)
$$x^3 - 3x^2 - 4x + 12$$

c)
$$x^3 - 3x^2 - 4x + 12$$
 e) $3x^{3/2} - 9x^{1/2} + 6x^{-1/2}$

b)
$$2x^2 + 5x - 12$$

d)
$$x^4 + 27x$$

$$f) x^3y - 4xy$$

8. Encuentre las soluciones reales:

a)
$$x + 5 = 14 - \frac{1}{2}x$$

c)
$$x^2 - x - 12 = 0$$

c)
$$x^2 - x - 12 = 0$$
 f) $x^4 - 3x^2 + 2 = 0$

a)
$$x + 5 = 14 - \frac{1}{2}x$$

b) $\frac{2x}{x+1} = \frac{2x-1}{x}$
c) $x^2 - x - 12 = 0$
d) $2x^2 + 4x + 1 = 0$
e) $\sqrt{3 - \sqrt{x+5}} = 2$

e)
$$\sqrt{3 - \sqrt{x + 5}} = 2$$

$$|g| 3|x-4| = 10$$

- 9. Mary condujo de Bogotá a Melgar a una rapidez promedio de 80 km/h. De regreso, ella condujo en promedio a 70 km/h. El tiempo total de viaje fue de $4\frac{2}{3}$ de hora. Encuentre la distancia entre las dos ciudades.
- 10. Una lote rectangular tiene 70 m más de largo que de ancho y su diagonal mide 130 m. Encuentre las dimensiones del lote.
- 11. Solucione cada inecuación. Escriba la respuesta usando la notación de intervalos y dibuje la solución en la recta real.

a)
$$-4 < 5 - 3x < 17$$

c)
$$|x-4| < 3$$

b)
$$x(x-1)(x+2) > 0$$

$$d) \ \frac{2x-3}{x+1} \le 1$$

12. Una botella de medicina debe ser guardada a una temperatura entre 5°C y 10°C. Qué rango correspondería si se toma la escala Fahrenheit? (Recuerde que la temperatura en Fahrenheit (F) y Celsius (C) satisface la relación $C = \frac{5}{9}(F - 32)$

Functiones

- 13. Sea $f(x) = x^2 4x$ y $g(x) = \sqrt{x+4}$, encuentre:
 - a) El dominio de f y el dominio de q
 - b) f(-2), f(0), f(4), g(0), g(8), g(-6)
 - c) f(x+2), g(x+2), f(2+h)

- d) La razón de cambio de g entre x=5 y x=21. (Recuerde que la razón de cambio entre los extremos x_1 y x_2 se define como $\frac{f(x_2) - f(x_1)}{x_2 - x_1}$
- e) f(g), g(f), f(g(12)), g(f(12))
- 14. Sea $f(x) = \begin{cases} 4 & \text{si} \quad x \le 2\\ x 1 & \text{si} \quad x > 0 \end{cases}$
 - a) Evalúe f(0), f(1), f(2), f(3) y f(4)
 - b) Haga la gráfica de f
- 15. Sea f la función cuadrática $f(x) = -2x^2 + 8x + 5$.
 - a) Exprese f en la forma estandar (La forma estandard de la función $f(x) = ax^2 +$ bx + c, es f(x) = a(x - h) + k, que se obtiene completando el cuadrado donde el vértice está dado por el punto (h, k)
 - b) Encuentre los valores máximo y mínimo de la función f
 - c) Haga la gráfica de f
 - d) Encuentre el intervalo en el cual f es creciente y el intervalo en el cual f es decreciente
 - e) ¿Cómo es la gráfica de la función $g(x) = -2x^2 + 8x + 10$ respecto de la función f?
 - f) ¿Cómo es la gráfica de la función $h(x) = -2(x+3)^2 + 8(x+3) + 5$ con respecto a la función f?
- 16. Sin usar dispositivos electrónicos, encuentre la correspondencia entre las ecuaciones siguientes y las gráficas que se dan. Explique las razones de su elección.
 - $f(x) = x^3 8x$
- $k(x) = 2^{-x} + 3$
- $s(x) = \frac{2x-3}{x^2+9}$

- $g(x) = -x^4 + 8x^2$ $h(x) = x^2 5$ $r(x) = \frac{2x + 3}{x^2 9}$

17. Una suma de $$25\,000$ es depositada en una cuenta que paga $5.4\,\%$ de interés compuesto por año.

- a) ¿Cuánto será el monto en la cuenta después de 3 años?
- b) ¿Cuándo la cuenta tendrá un saldo que ascienda a \$35 000?
- c) ¿En cuánto tiempo el depósito inicial se duplicará?

Sucesiones y progresiones

Para las secuencias dadas en 18-21

- a) Encuentre los cinco primeros términos para la sucesión dada.
- b) ¿Cuál es la diferencia común d?
- c) Grafique los términos que encuentre en a)

18.
$$a_n = 5 + 2(n-1)$$

20.
$$a_n = \frac{5}{2} - (n-1)$$

19.
$$a_n = 3 - 4(n-1)$$

21.
$$a_n = \frac{1}{2}(n-1)$$

22–25 Encuentre el $n-\acute{e}simo$ término de la progresión aritmética dado el primer término a_1 y la diferencia común d. ¿Cuál es el décimo término?

22.
$$a_1 = 3, d = 5$$

24.
$$a_1 = \frac{5}{2}, d = -\frac{1}{2}$$

23.
$$a_1 = -6, d = 3$$

25.
$$a_1 = \sqrt{3}, d = \sqrt{3}$$

26. Determine la diferencia común, el quinto término, el n-ésimo término y el centésimo término de las progresiones aritméticas

a) 1, 5, 9, 13, ...

c) $\frac{7}{6}$, $\frac{5}{3}$, $\frac{13}{6}$, $\frac{8}{3}$, ...

b) 11, 8, 5, 2, ...

- d) 15, 12.3, 9.6, 6.9, ...
- 27. El décimo término de una progresión aritmética es $\frac{55}{2}$, y, el segundo término es $\frac{7}{2}$. Encuentre el primer término.
- 28. El duodécimo término de una progresión aritmética es 32, y el quinto término es 18. Encuentre el vigésimo término.

29. Los postes de teléfono son puestos en pila, con 25 postes en el primer nivel, 24 en el segundo y así sucesivamente. Si hay 12 niveles, ¿cuántos postes de teléfono contiene la pila de postes?

30–33 Dado el n-ésimo término de la progresión.

- a) Encuentre los cinco primeros términos
- b) ¿Cuál es la razón común r?
- c) Grafique los términos que encuentre en a)

30.
$$a_n = 5(2)^{n-1}$$

32.
$$a_n = \frac{5}{2} \left(-\frac{1}{2}\right)^{n-1}$$

31.
$$a_n = 3(-4)^{n-1}$$

33.
$$a_n = 3^{n-1}$$

34–37 Determine si la sucesión es progresión geométrica. Si es, encuentre la razón común \boldsymbol{r}

$$34. 2, 6, 18, 36, \dots$$

$$36. e^2. e^4. e^6. e^8. \dots$$

37.
$$\frac{1}{2}$$
, $\frac{1}{4}$, $\frac{1}{6}$, $\frac{1}{8}$, ...

- 38. Las frecuencias de las notas musicales (medidas en ciclos por segundo) forman una progresión geométrica. El DO central tiene una frecuencia de 256, y el DO una octava arriba tiene una frecuencia de 512. Encuentre la frecuencia del DO dos octavas abajo del DO central.
- 39. Un cultivo de bacterias tiene inicialmente 5000 bacterias y su número aumenta 8% cada hora. ¿Cuántas bacterias hay al cabo de 5 horas? Encuentre una expresión que indique el número de bacterias que hay al cabo de n horas.

40. Sea la función
$$f(x) = \begin{cases} 3 & \text{si} & x < 0 \\ 2 & \text{si} & x = 0 \\ 3 - x \text{ si} & 0 < x < 2 \\ x \text{ si} & x \ge 2 \end{cases}$$

Límites

- a) Grafique la función f
- b) Evalúe

 $2) \ \lim_{x \rightarrow 0} f(x) \qquad 3) \ \lim_{x \rightarrow 1} f(x) \qquad 4) \ \lim_{x \rightarrow 2^-} f(x) \quad \ 5) \ \lim_{x \rightarrow 2^+} f(x)$

41. Evalúe los límites, si existen.

a)
$$\lim_{x \to 3} \frac{x^2 + 4x - 21}{x - 3}$$
 b) $\lim_{x \to -3} \frac{x^2 + 4x - 21}{x - 3}$ c) $\lim_{x \to 2} \frac{x^2 + 4}{x - 2}$

b)
$$\lim_{x \to -3} \frac{x^2 + 4x - 2x}{x - 3}$$

c)
$$\lim_{x \to 2} \frac{x^2 + 4}{x - 2}$$

Probabilidad

42. La administración Federal de Ferrocarriles proporcionó las cinco categorías principales de violaciones para el ferrocarril CSX para los años 1999-2003 en la tabla siguiente. Hubo un total de 1897 violaciones. La información estuvo contenida en el artículo Democrat and Chronicle, 29 de diciembre, 2004, titulado "Rail cop lacks a big stick".

(El uniformado no lleva "garrote").

	Categoría	Número
	Seguridad en vías	485
	Equipo de seguridad en trenes	324
	Horas de trabajo de empleados	323
•	Seguridad en furgones	289
	Locomotoras	248
	Todos los otros	228
	Total	1897