

Description

The VST08N014 uses **Super Trench** technology that is uniquely optimized to provide the most efficient high frequency switching performance. Both conduction and switching power losses are minimized due to an extremely low combination of $R_{\text{DS(ON)}}$ and Q_g . This device is ideal for high-frequency switching and synchronous rectification.

General Features

- $V_{DS} = 85V, I_D = 350A$ $R_{DS(ON)} < 1.85 m\Omega @ V_{GS} = 10V$
- Excellent gate charge x R_{DS(on)} product
- Very low on-resistance R_{DS(on)}
- 175 °C operating temperature
- Pb-free lead plating
- 100% UIS tested

Application

- DC/DC Converter
- Ideal for high-frequency switching and synchronous rectification

TO-247

Schematic Diagram

Package Marking and Ordering Information

Device Marking	Device	Device Package	Reel Size	Tape width	Quantity
VST08N014-T7	VST08N014	TO-247	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	85	V	
Gate-Source Voltage	V _G s	±20	V	
Drain Current-Continuous	I _D	350	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	280	А	
Pulsed Drain Current	I _{DM}	1400	А	
Maximum Power Dissipation	P _D	520	W	
Derating factor		3.47	W/°C	
Single pulse avalanche energy (Note 5)	E _{AS}	3800	mJ	
Operating Junction and Storage Temperature Range	T.I.Tstg	-55 To 175	$^{\circ}$ C	

Thermal Characteristic

Thermal Resistance,Junction-to-Case ^(Note 2)	R ₀ JC	0.29	°C/W
---	-------------------	------	------

Electrical Characteristics (T_C=25 ℃ unless otherwise noted)

Parameter Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250µA	85	90	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =85V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	V _{GS} =±20V,V _{DS} =0V	-	-	±100	nA
On Characteristics (Note 3)						
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS}=V_{GS}$, $I_{D}=250\mu A$	3	3.8	5	V
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =10V, I _D =175A	-	1.4	1.85	mΩ
Forward Transconductance	I Transconductance g _{FS} V _{DS} =10V,I _D =175A		-	150	-	S
Dynamic Characteristics (Note4)	<u> </u>		•			
Input Capacitance	C _{lss}	14 401414 014	-	19500	-	PF
Output Capacitance	C _{oss}	V_{DS} =40V, V_{GS} =0V, F=1.0MHz	-	2990	-	PF
Reverse Transfer Capacitance	C _{rss}	F=1.UMHZ	-	200	-	PF
Switching Characteristics (Note 4)						
Turn-on Delay Time	t _{d(on)}		-	35	-	nS
Turn-on Rise Time	t _r	V_{DD} =40 V , I_{D} =100 A	-	98	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{G} =1.8 Ω	-	110	-	nS
Turn-Off Fall Time	t _f		-	45	-	nS
Total Gate Charge	Qg	\/ -40\/ L -400A	-	324		nC
Gate-Source Charge	Q _{gs}	V_{DS} =40V, I_{D} =100A, V_{GS} =10V	-	123		nC
Gate-Drain Charge	Q _{gd}	V _{GS} -10V	-	88		nC
Drain-Source Diode Characteristics						
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _F = 175A	-		1.2	V
Diode Forward Current (Note 2)	Is		-	-	350	Α
Reverse Recovery Time	t _{rr}	$T_J = 25^{\circ}C, I_F = I_S$	-	155		nS
Reverse Recovery Charge	Qrr	$di/dt = 100A/\mu s^{(Note3)}$	-	436		nC

Notes:

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature.
- 2. Surface Mounted on FR4 Board, t ≤ 10 sec.
- 3. Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2%.
- 4. Guaranteed by design, not subject to production
- 5. EAS condition : Tj=25 $^{\circ}\!\!\mathrm{C}$,V $_{DD}$ =42.5V,V $_{G}$ =10V,L=1mH,Rg=25 Ω

Test Circuit

1) E_{AS} test Circuit

2) Gate charge test Circuit

3) Switch Time Test Circuit

Figure 1 Output Characteristics

Figure 2 Transfer Characteristics

Figure 3 Rdson- Drain Current

Figure 4 Rdson-JunctionTemperature

Figure 5 Gate Charge

Figure 6 Source- Drain Diode Forward

Figure 7 Capacitance vs Vds

Figure 9 Power De-rating

Figure 8 Safe Operation Area

Figure 10 Current De-rating

Figure 11 Normalized Maximum Transient Thermal Impedance