Dr. D. Sinden

CA-MATH-804: Numerical Analysis

Assignment Sheet 4. Due: February 23, 2022

Exercise 1 [5 Points]: Let $I_n(f) = \sum_{k=0}^n \alpha_k f(x_k)$ be a Lagrange quadrature formula on n+1 nodes. Compute the degree of exactness r for the formula

$$I_4(f) = \frac{1}{4} \left[f(-1) + 3f\left(-\frac{1}{3}\right) + 3f\left(\frac{1}{3}\right) + f(1) \right].$$

Exercise 2 [5 Points]: Let $I_w(f) = \int_0^1 w(x) f(x) dx$ with $w(x) = \sqrt{x}$ and let $Q(f) = \alpha f(x_1)$ be a quadrature formula approximating I_w . Find α and x_1 such that Q has maximum degree of exactness r.

Exercise 3 [5 Points]: Prove that $G^{k}(x_{j}) = hG(x_{j}, x_{k})$, where G is the Green's function for the problem

$$u'' = f \quad \text{in}(0,1), u(x) = 0 \quad \text{on}\{0,1\},$$

and G^k its corresponding discrete counterpart.

Exercise 4 [3+3 Points]: Consider the matrix $A_{\rm fd} = h^{-2} {\rm tridiag}(-1,2,-1)$ which appears in the finite difference discretization of the second derivative.

- a) Show that $A_{\rm fd}$ is symmetric and positive definite
- **b)** Show that $A_{\rm fd}$ is an M-Matrix, i.e. $a_{ij} \leq 0$ for $i \neq j$ and all the entries of its inverse are nonnegative.

Exercise 5 [3+3 Points]: Consider an equidistant grid with nodes x_i and gridwidth h and a real valued function f with sufficient smoothness. Using Taylor series expansion show that

a)
$$|f'(x_i) - D_i^- f(x_i)| = \frac{h}{2} |f''(\xi)| \text{ for some } \xi \in (x_{i-1}, x_i),$$

b)
$$|f''(x_i) - D_i^{\pm} f(x_i)| = \frac{h^2}{24} |f''''(\xi_1) + f''''(\xi_2)|$$
 for some $\xi_1 \in (x_{i-1}, x_i)$, $\xi_2 \in (x_i, x_{i+1})$.

Exercise 6 [4 Points]: Let $E_0(f)$ and $E_1(f)$ be the quadrature errors of the midpoint and the trapezoidal formula respectively. Prove that $E_1(f) \approx 2 \|E_0(f)\|$.

Exercise 7 [4 Points]: An alternative approach for the construction of the Lagrange interpolation polynomial Π_n involves directly enforcing the interpolation constraints on Π_n and then computing the coefficients a_i . This produces a system of simultaneous linear equations which can be written as the linear system Xa = y, where the coefficients of the matrix X are given by $X_{ij} = x_i^{j-1}$ where the points x_i are the interpolation points with $i = 0, \ldots n$. Prove that the matrix X is invertible if the nodes are distinct.