IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

In re Application of:

Kyogo ITOH et al.

Serial No.: 10/781,659

Filed: February 20, 2004

Group Art Unit: 1642

Examiner: YAO, LEI

For: NOVEL TUMOR ANTIGEN PROTEIN SART-3 AND TUMOR ANTIGEN

PEPTIDES THEREOF

VERIFIED TRANSLATION OF PRIORITY DOCUMENT

The undersigned, of the below address, hereby certifies that he well knows both the English and Japanese languages, and that the attached is an accurate translation into the English language of the Certified Copy, filed for this application in the international phase of PCT/JP99/04622, under 35 U.S.C. Section 119 and/or 365, of:

Application No.

Country

Date Filed

10-242660

Japan

August 28, 1998

The undersigned declares further that all statements made herein of his own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment; or both, under Section 1001 of Title 18 of the United States Code and that such willful false statements may jeopardize the validity of the application or any patent issuing thereon.

Signed this 2nd day of July, 2007

Signature:

Minori SAITO

Address: c/o AOYAMA & PARTNERS,

IMP Building, 1-3-7, Shiromi, Chuo-ku, Osaka 540-0001 JAPAN

PATENT OFFICE

JAPANESE GOVERNMENT

This is to certify that the annexed is a true copy of the following application as filed with this Office.

Date of Application: August 28, 1998

Application Number: Patent Application No. 10-242660

Applicant: Kyogo ITOH

SUMITOMO PHARMACEUTICALS COMPANY, LIMITED

Commissioner,
Patent Office

(Seal)

Document Name:

Application for Patent

Docket No.:

132528

Addressee:

Commissioner, Patent Office

International Patent

Classification:

C12N 15/12

C07K 7/00

Title of the Invention:

NOVEL TUMOR ANTIGEN PROTEIN

SART-3 AND TUMOR ANTIGEN

PEPTIDES THEREOF

Number of Claims:

20

Inventor:

Address:

2-25-9, Keyaki-dai,

Kiyama-cho, Miyaki-gun,

Saga-ken

Name:

Kyogo ITOH

Inventor:

Address:

277-1, Oaza Ohashi,

Okawa-shi, Fukuoka-ken

Name:

Masanobu NAKAO

Applicant:

Identification No.:

596094371

Address:

2-25-9, Keyaki-dai,

Kiyama-cho, Miyaki-gun,

Saga-ken

Name:

Kyogo ITOH

Applicant:

Identification No.:

000183370

Name:

SUMITOMO PHARMACEUTICALS

COMPANY, LIMITED

Representative:

Masaaki YOKOTSUKA

Agent:

Identification No.:

100107629

Patent Attorney:

Name:

Toshio NAKAMURA

Phone No.:

06-466-5214

Payment of fees:

Prepayment Book No.:

Amount to be paid:

056546 ¥21,000

Attached documents:

Item:

Item:

Specification

Abstract

1 copy

1 copy

Registration No. of General Power:

9710701

Request for proof transmission:

Yes

Document name: Specification

Title of the invention: NOVEL TUMOR ANTIGEN PROTEIN SART-3 AND TUMOR ANTIGEN PEPTIDES THEREOF

What is claimed is:

- 1. A DNA encoding a protein having an amino acid sequence shown in SEQ ID NO: 1, or a protein variant having an amino acid sequence containing substitution, deletion, and/or addition of one or more amino acid residues of SEQ ID NO: 1, provided that the protein and the protein variant give rise to tumor antigen peptides that are capable of binding to an HLA antigen and being recognized by cytotoxic T lymphocytes.
- 2. A DNA consisting of a base sequence shown in SEQ ID NO: 2, or a DNA variant that hybridizes to the DNA under a stringent condition, provided that a protein produced and expressed by the DNA or the DNA variant gives rise to tumor antigen peptides that are capable of binding to an HLA antigen and being recognized by cytotoxic T lymphocytes.
- 3. An expression plasmid that contains the DNA of claim 1 or 2.
- 4. A transformant that is transformed with the expression plasmid of claim 3.
- 5. A process for producing a recombinant protein, which comprises culturing the transformant of claim 4, and recovering the expressed recombinant protein.
- 6. A tumor antigen protein that is produced by expressing the DNA of claim 1 or 2.
 - 7. A pharmaceutical composition that comprises as an

active ingredient the DNA of claim 1 or 2, or the protein of claim 6.

- 8. A pharmaceutical composition for treating or preventing tumors, which comprises as an active ingredient the DNA of claim 1 or 2, or the protein of claim 6.
- 9. A tumor antigen peptide that is a partial peptide derived from the protein of claim 6, and that is capable of binding to an HLA antigen and being recognized by cytotoxic T lymphocytes, or a derivative thereof having the functionally equivalent properties.
- 10. The tumor antigen peptide of claim 9 wherein the HLA antigen is HLA-A24 or HLA-A2, or a derivative thereof having the functionally equivalent properties.
- 11. The tumor antigen peptide of claim 10, which is selected from those sequences, each comprising all or part of an amino acid sequence shown in any one of SEQ ID NOs: 3-24, or a derivative thereof having the functionally equivalent properties.
- 12. The tumor antigen peptide of claim 11, which comprises all or part of an amino acid sequence shown in any one of SEQ ID NOs: 3-9, or a derivative thereof having the functionally equivalent properties.
- 13. The tumor antigen peptide derivative of claim 12, which comprises all or part of an amino acid sequence wherein the amino acid residue at position 2 and/or the C-terminus in the amino acid sequence shown in any one of SEQ ID NOs: 3-9 is substituted by another amino acid residue.

- 14. The tumor antigen peptide derivative of claim 13, which comprises all or part of the amino acid sequence shown in any one of SEQ ID NOs: 25-31.
- 15. A pharmaceutical composition for treating or preventing tumors, which comprises as an active ingredient at least one substance selected from the tumor antigen peptides and derivatives thereof according to any one of claims 9 to 14.
- 16. An antibody that specifically binds to any one of the tumor antigen protein of claim 6, and the tumor antigen peptide or the derivative thereof according to any one of claims 9 to 17.
- 17. An antigen-presenting cell wherein a complex between an HLA antigen and the tumor antigen peptide or the derivative thereof according to any one of claims 9 to 14 is presented on the surface of a cell having antigen-presenting ability, which cell is isolated from a tumor patient.
- 18. A pharmaceutical composition for treating tumors, which comprises as an active ingredient the antigen-presenting cell of claim 17.
- 19. A cytotoxic T lymphocyte that specifically recognizes a complex between an HLA antigen and the tumor antigen peptide or derivative thereof according to any one of claims 9 to 14.
- 20. A pharmaceutical composition for treating tumors, which comprises as an active ingredient the cytotoxic T lymphocyte of claim 19.

Detailed explanation of the invention:

[0001]

Technical field to which the invention pertains:

The present invention relates to a novel tumor antigen protein, and tumor antigen peptides thereof. More particularly, it relates to the novel tumor antigen protein and the gene thereof, tumor antigen peptides derived from the tumor antigen protein, and derivatives of their substances, as well as to medicaments, or prophylactics that utilize *in vivo* or *in vitro* such tumor antigen protein, genes, tumor antigen peptides, or derivatives thereof.

[0002]

Prior art:

It is known that immune system, particularly T cells, plays an important role in tumor elimination by a living body. Indeed, infiltration of lymphocytes exhibiting cytotoxic effects on tumor cells in human tumor foci has been observed (Arch. Surg., 126:200, 1990), and cytotoxic T lymphocytes (CTLs) recognizing autologous tumor cells have been isolated from melanomas without great difficulties (e.g., Immunol. Today, 8:385, 1987; J. Immunol., 138:989, 1987; and Int. J. Cancer, 52:52, 1992). In addition, the results of clinical treatment of melanomas by transfer of the CTLs also suggest the importance of T cells in tumor elimination (J. Natl. Cancer. Inst., 86:1159, 1994).

[0003]

Although it had long been unknown about target molecules for CTLs attacking autologous tumor cells, the recent

advance in immunology and molecular biology gradually began elucidating such target molecules. Specifically, it has been found that CTL, using the T cell receptors (TCRs), recognizes a complex between a peptide, called tumor antigen peptide, and a major histocompatibility complex class I antigen (MHC class I antigen, and in the case of human, referred to as HLA antigen), and thereby attacks autologous tumor cells.

[0004]

Tumor antigen peptides are generated by degradation of tumor antigen proteins, which are proteins specific for tumors, in cells with proteasomes, which proteins are intracellularly synthesized. The tumor antigen peptides thus generated bind to MHC class I antigens (HLA antigens) in endoplasmic reticulum to form complexes, and the complexes are transported to the cell surface to be presented as an antigen. A tumor-specific CTL recognizes the complex presented as an antigen, and exhibits anti-tumor effects through its cytotoxic action or production of lymphokines. As a consequence of elucidation of a series of the actions, it has become possible to treat tumors by using tumor antigen proteins or tumor antigen peptides as so-called cancer vaccines to enhance tumor-specific CTLs in the body of a tumor patient.

[0005]

As a tumor antigen protein, T. Boon et al. identified a protein named MAGE from human melanoma cells for the first time in 1991 (Science, 254:1643, 1991). Subsequently, several additional tumor antigen proteins have been identified

mainly from melanoma cells. Examples of melanoma antigens that have been identified are melanosomal proteins such as a melanocytic tissue-specific protein, gp100 (J. Exp. Med., 179:1005, 1994), MART-1 (Proc. Natl. Acad. Sci. USA, 91:3515, 1994), and tyrosinase (J. Exp. Med., 178:489, 1993); MEGErelated proteins that are expressed not only on melanomas but also on various cancer cells and normal testicular cells (J. Exp. Med., 179:921, 1994); β -catenin having a tumor-specific amino acid mutation (J. Exp. Med., 183:1185, 1996); and CDK4 (Science, 269:1281, 1995). Tumor antigen proteins other than those from melanomas have also been identified, including products of oncogenes such as HER2-neu (J. Exp. Med., 181:2109, 1995) and p53 (variant) (Proc. Natl. Acad. Sci. USA, 93:14704, 1996); tumor markers such as CEA (J. Natl. Cancer Inst., 87:982, 1995) and PSA (J. Natl. Cancer Inst., 89:293, 1997); and viral proteins such as HPV (J. Immunol., 154:5934, 1995) and EBV (Int. Immunol., 7:653, 1995). Detailed descriptions of these substances can be found in published reviews (e.g. Immunol. Today, 18:267, 1997; J. Exp. Med., 183:725, 1996; and Curr. Opin. Immunol., 8:628, 1996).

[0006]

In applications of a tumor antigen protein or a tumor antigen peptide to treatment or diagnosis of tumors, it is important to identify a tumor antigen that can be widely applied to squamous cell carcinomas such as esophageal and lung cancers that occur at a much higher incidence compared to melanomas. In this relation, the present inventors conducted

cloning of a gene encoding a novel tumor antigen protein from squamous cell carcinoma cells derived from esophageal cancer, and identified for the first time from the tumor cell other than melanomas several tumor antigen peptides that are bound to and presented on HLA antigens of which HLA types are HLA-A24 or HLA-A26 (*J. Exp. Med.*, 187:277, 1998; International Patent Publication WO 97/46676).

[0007]

When these tumor antigen peptides are clinically applied in practice, it may be desirable to use two or more different tumor antigen peptides rather than to use merely one peptide. That is to say, taking into consideration the facts that all cancer cells do not express an identical tumor antigen in common and that two or more different tumor antigen peptides are presented on a single cancer cell, a treatment using two or more different tumor antigen peptides is believed to be more effective. Indeed, in the case of melanoma, development of cocktail formulations comprising two or more peptides has been attempted, since a single peptide derived from a tumor antigen failed to exhibit adequate effects (Int. J. Cancer, 66:162, 1996; and Int. J. Cancer, 67:54, 1996). Under such circumstances, it is being required to identify novel tumor antigen proteins and tumor antigen peptides that can be widely applied to squamous cell carcinomas that occur at a higher incidence.

[8000]

Problem to be solved by the invention:

The present invention aims to provide the novel tumor antigen protein and tumor antigen peptides.

Particularly, it aims to provide the novel tumor antigen protein and gene thereof, tumor antigen peptides derived from the tumor antigen protein, and derivatives of their substances, as well as to provide medicaments, or prophylactics for tumors that utilize in vivo or in vitro such tumor antigen protein, genes, tumor antigen peptides, or derivatives thereof. The tumor antigen peptides of the present invention include a tumor antigen peptide that is bound to and presented on HLA-A24 that is the HLA antigen carried by about 60% of the Japanese people, and, therefore, it can be applied to many patients. Further, the tumor antigen peptides of the present invention may also be applied to squamous cell carcinomas or the like that is recognized most frequently as an etiologic cancer in human, and are expected to have utilities as novel anti-tumor medicaments. It is known that the squamous cell carcinoma on esophageal or lung cancer among the squamous cell carcinomas tends to relatively exhibit a resistance to the current chemotherapy and radiotherapy. In this respect, the development of the tumor antigen peptides of the present invention is desired.

[0009]

In order to obtain novel tumor antigen protein and tumor antigen peptides, the present inventors made the following attempts.

First of all, the present inventors prepared a cDNA library from esophageal cancer cell line KE-4 (FERM BP-5955),

and doubly transfected fibroblast cell line VA-13 (RIKEN CELL BANK, The Institute of Physical and Chemical Research) with a recombinant plasmid of the library and a recombinant plasmid containing cDNA of HLA-A2402 (one type of HLA-A24). resulting transfectants were treated with KE-4CTL (FERM BP-5954) that is directed to KE-4, and the amount of produced IFN-y was measured to determine whether or not KE-4CTL was activated. As a result of such extensive screening repeatedly conducted, the present inventors finally succeeded in cloning one gene encoding a tumor antigen protein. The inventors named the tumor antigen protein encoded by the gene "SART-3". Comparing the base sequence of SART-3 with known sequences revealed that said base sequence of SART-3 was a novel base sequence that is different from the KIAA0156 gene registered as Accession No. D63879 at GenBank database in terms of a single base, which function has not been demonstrated.

[0010]

Further, the present inventors identified tumor antigen peptide portions residing in the amino acid sequence of SART-3 that are bound to and presented on HLA-A24, and demonstrated that such peptides have activity as a tumor antigen peptide.

The present invention has been completed on the basis of the findings as described above.

[0011]

Thus, the present invention relates to:

(1) A DNA encoding a protein having an amino acid

sequence shown in SEQ ID NO: 1, or a protein variant having an amino acid sequence containing substitution, deletion, and/or addition of one or more amino acid residues of SEQ ID NO: 1, provided that the protein and the protein variant give rise to tumor antigen peptides that are capable of binding to an HLA antigen and being recognized by cytotoxic T lymphocytes;

- (2) A DNA consisting of a base sequence shown in SEQ ID NO: 2, or a DNA variant that hybridizes to the DNA under a stringent condition, provided that a protein produced and expressed by the DNA or the DNA variant gives rise to tumor antigen peptides that are capable of binding to an HLA antigen and being recognized by cytotoxic T lymphocytes;
- (3) An expression plasmid that contains the DNA of the above (1) or (2);
- (4) A transformant that is transformed with the expression plasmid of the above (3);
- (5) A process for producing a recombinant protein, which comprises culturing the transformant of the above (4), and recovering the expressed recombinant protein;
- (6) A tumor antigen protein that is produced by expressing the DNA of the above (1) or (2);
- (7) A pharmaceutical composition that comprises as an active ingredient the DNA of the above (1) or (2), or the protein of the above (6);
- (8) A pharmaceutical composition for treating or preventing tumors, which comprises as an active ingredient the DNA of the above (1) or (2), or the protein of the above (6);

- (9) A tumor antigen peptide that is a partial peptide derived from the protein of the above (6), and that is capable of binding to an HLA antigen and being recognized by cytotoxic T lymphocytes, or a derivative thereof having the functionally equivalent properties;
- (10) The tumor antigen peptide of the above (9) wherein the HLA antigen is HLA-A24 or HLA-A2, or a derivative thereof having the functionally equivalent properties;
- (11) The tumor antigen peptide of the above (10), which is selected from those sequences, each comprising all or part of an amino acid sequence shown in any one of SEQ ID NOs: 3-24, or a derivative thereof having the functionally equivalent properties;
- (12) The tumor antigen peptide of the above (11), which comprises all or part of an amino acid sequence shown in any one of SEQ ID NOs: 3-9, or a derivative thereof having the functionally equivalent properties;
- (13) The tumor antigen peptide derivative of the above (12), which comprises all or part of an amino acid sequence wherein the amino acid residue at position 2 and/or the C-terminus in the amino acid sequence shown in any one of SEQ ID NOs: 3-9 is substituted by another amino acid residue;
- (14) The tumor antigen peptide derivative of the above (13), which comprises all or part of the amino acid sequence shown in any one of SEQ ID NOs: 25-31;
- (15) A pharmaceutical composition for treating or preventing tumors, which comprises as an active ingredient at

least one substance selected from the tumor antigen peptides and derivatives thereof according to any one of the above (9) to (14);

- (16) An antibody that specifically binds to any one of the protein of the above (6), and the tumor antigen peptide or the derivative thereof according to any one of the above (9) to (14);
- (17) An antigen-presenting cell wherein a complex between an HLA antigen and the tumor antigen peptide or the derivative thereof according to any one of the above (9) to (14) is presented on the surface of a cell having antigen-presenting ability, which cell is isolated from a tumor patient;
- (18) A pharmaceutical composition for treating tumors, which comprises as an active ingredient the antigen-presenting cell of the above (17);
- (19) A cytotoxic T lymphocyte that specifically recognizes a complex between an HLA antigen and the tumor antigen peptide or derivative thereof according to any one of the above (9) to (14); and
- (20) A pharmaceutical composition for treating tumors, which comprises as an active ingredient the cytotoxic T lymphocyte of the above (19).

[0012]

Mode for carrying out the invention:

The DNAs of the present invention encode novel tumor antigen proteins, and specific examples of the DNAs include a DNA encoding SART-3 protein having an amino acid

sequence shown in SEQ ID NO: 1, or a protein variant having an amino acid sequence containing substitution, deletion, and/or addition of one or more amino acid residues of the amino acid sequence of SART-3, provided that the protein and the protein variant give rise to tumor antigen peptides that are capable of binding to an HLA antigen and being recognized by cytotoxic T lymphocytes; or a DNA of SART-3 consisting of a base sequence shown in SEQ ID NO: 2, or a DNA variant that hybridizes to the DNA of SART-3 under a stringent condition, provided that a protein produced and expressed by the DNA and the DNA variant gives rise to tumor antigen peptides that are capable of binding to an HLA antigen and being recognized by cytotoxic T lymphocytes. The DNA of the present invention is further described hereinafter following the order established above.

[0013]

1) DNA encoding SART-3

"A DNA encoding a protein having an amino acid sequence shown in SEQ ID NO: 1" and "a DNA consisting of a base sequence shown in SEQ ID NO: 2" among the DNAs described above refers to a DNA encoding tumor antigen protein SART-3 of the present invention. The DNA may be cloned in accordance with the process described in Examples hereinafter. Further, the cloning of the DNA may also be conducted by, for example, screening a cDNA library derived from cell lines such as esophageal cancer cell line KE-4 (FERM BP-5955) using an appropriate portion of the base sequence disclosed in GenBank Accession No. D63879 or shown in SEQ ID NO: 2 in the present

specification as a probe for hybridization or a PCR primer. It would be ready for those skilled in the art to achieve such cloning in accordance with Molecular Cloning 2nd Edt. Cold Spring Harbor Laboratory Press (1989), for example.

[0014]

2) DNA encoding a modified protein of SART-3 or allelic variant thereof

"DNA encoding a protein variant having an amino acid sequence containing substitution, deletion, and/or addition of one or more amino acid residues of the amino acid sequence of SART-3" among the DNAs described above refers to a DNA that encodes a so-called modified protein, which is artificially prepared, or proteins such as an allelic variant existing in a living body. The DNA encoding such protein variants may be prepared by diverse methods such as site-directed mutagenesis and PCR technique that are described in Molecular Cloning: A Laboratory Manual 2nd Edt. vols. 1-3, Cold Spring Harbor Laboratory Press (1989). The number of amino acid residues to be substituted, deleted and/or added should be in a range that enables the substitution, deletion, and/or addition in accordance with the well-known methods such as site-directed mutagenesis as shown above.

[0015]

3) DNA that hybridizes to the DNA of SART-3 under a stringent condition

"DNA variant that hybridizes to the DNA of SART-3 under a stringent condition" among the DNAs described above

refers to a DNA that hybridizes to human SART-3 cDNA consisting of the base sequence shown in SEQ ID NO: 2 under a stringent condition, including SART-3 DNAs from all of vertebrate such as rat and mouse.

[0016]

The term "stringent condition" refers to a condition such that a hybridization is conducted in a solution containing 6xSSC (20xSSC represents 333 mM Sodium citrate, 333 mM NaCl), 0.5% SDS and 50% formamide at 42°C, and then the hybridized products are washed in a solution of 0.1xSSC, 0.5%SDS at 68°C, or to conditions as described in Nakayama, et al., Bio-Jikken-Illustrated, vol. 2, "Idenshi-Kaiseki-No-Kiso (A Basis for Gene Analysis)", pp. 148-151, Shujunsha, 1995.

[0017]

The DNA variants are cloned by diverse processes such as hybridization to the DNA shown in SEQ ID NO: 2. Particular procedures for the processes such as production of cDNA library, hybridization, selection of positive colony, and determination of base sequence are well-known, and may be conducted consulting Molecular Cloning as shown above. Probes useful for the hybridization includes a DNA comprising a base sequence described in SEQ ID NO: 2.

[0018]

Among the DNAs as described above 1) to 3), a DNA having an ability to generate a tumor antigen peptide that is capable of binding to an HLA antigen and being recognized by CTLs, and that is derived from a protein produced by the

expression of the DNA via intracellular degradation, constitutes the DNA encoding tumor antigen protein of the present invention, namely, the DNA of the present invention. Particularly, the DNAs of the present invention may be those that generate such peptide fragment as a partial peptide consisting of a part of an amino acid sequence of a protein produced by the expression of said DNA, said peptide being capable of binding to an HLA antigen, and inducing production of cytotoxic actions and cytokines from CTLs specific for the complex between the peptide and the HLA antigen that bind to the complex presenting on the cell surface.

[0019]

Determination whether or not a candidate DNA may be a DNA encoding a tumor antigen protein may be achieved for example by the following method.

An expression plasmid containing a candidate DNA and an expression plasmid containing a DNA encoding an HLA antigen are doubly transfected into fibroblast VA-13 (RIKEN CELL BANK, The Institute of Physical and Chemical Research) or COS-7 (ATCC CRL 1651) derived from African green monkey kidney. The transfection may be achieved, for example, by the Lipofectin method using Lipofectamine reagent (GIBCO BRL). Subsequently, a tumor-responsive CTL that is restricted to the particular HLA antigen used is added to act on the transfectants, and then the amount of various cytokines (for example, IFN- γ) produced by said CTL in response to the transfectants may be measured. In this context, since SART-3 contains HLA-A24-restricted tumor

antigen peptide portions, HLA-A24 cDNA (Cancer Res., 55:4248-4252 (1995); Genbank Accession No. M64740) may be used as the above DNA encoding the HLA antigen, whereas those CTLs that are HLA-A24-restricted CTLs such as KE-4CTL (FERM BP-5954) may be used as the above CTL.

[0020]

The DNA of the present invention as described above can be used as an active ingredient in a medicament or a pharmaceutical composition. That is, in a pharmaceutical composition that comprises the DNA of the present invention as an active ingredient, administration of the DNA of the present invention to a tumor patient makes treatment or prevention of tumors possible.

[0021]

By administering a DNA of the present invention, the tumor antigen protein is highly expressed in antigen-presenting cells. Tumor antigen peptides bind to HLA antigen to form complexes, and the complexes are densely presented on the antigen-presenting cell surface. As a result, CTLs specific for tumors efficiently proliferate in the body. In this way, treatment or prevention of tumors is achieved. Administration and introduction of the DNA of the present invention into cells may be achieved using viral vectors or according to any one of other procedures (Nikkei-Science, April, 1994, pp. 20-45; Gekkan-Yakuji, 36(1), 23-48 (1994); Jikken-Igaku-Zokan, 12(15), 1994, and references cited therein).

[0022]

Examples of the methods using viral vectors include methods in which a DNA of the present invention is incorporated into a DNA or RNA virus such as retrovirus, adenovirus, adeno-associated virus, herpesvirus, vaccinia virus, poxvirus, poliovirus, or Sindbis virus, and introduced into cells. Among these methods, those using retrovirus, adenovirus, adeno-associated virus, or vaccinia virus are particularly preferred.

Other methods include those in which expression plasmids are directly injected intramuscularly (DNA vaccination), liposome method, Lipofectin method, microinjection, calcium phosphate method, and electroporation, and DNA vaccination and liposome method are particularly preferred.

[0023]

In order to allow a DNA of the present invention to act as a medicament in practice, there are an *in vivo* method in which DNA is directly introduced into the body, and an ex vivo method in which certain cells are removed from human, and after introducing DNA into said cells extracorporeally, the cells are reintroduced into the body (Nikkei-Science, April, 1994, pp. 20-45; Gekkan-Yakuji, 36(1), 23-48 (1994); Jikkenn-Igaku-Zokan, 12(15), 1994; and references cited therein). An *in vivo* method is more preferred.

[0024]

In case of *in vivo* methods, the DNA may be administered by any appropriate route depending on the disease

and symptoms to be treated. For example, it may be administered via intravenous, intraarterial, subcutaneous, intracutaneous, intramuscular route, or the like. In the case of in vivo methods, the compositions may be administered in various dosage forms such as solution, and are typically formulated, for example, in the form of injection containing a DNA of the present invention as an active ingredient, to which conventional carriers may also be added, if necessary. If a DNA of the present invention is included in liposomes or membrane-fused liposomes (such as Sendai virus (HVJ)-liposomes), the compositions may be in the form of liposome formulations such as suspension, frozen drug, centrifugally-concentrated frozen drug, or the like.

Although the amount of a DNA of the present invention in such formulations may vary depending on the disease to be treated, the age and the weight of the patient, and the like, it is typical to administer 0.0001mg-100 mg, preferably 0.001mg-10 mg, of a DNA of the present invention every several days to every several months.

[0025]

In the invention, the term "protein" refers to a protein encoded by the various DNAs of the present invention as described above, which has an ability as tumor antigen protein to give rise to tumor antigen peptides via intracellular degradation that are capable of binding to an HLA antigen and being recognized by CTLs. Specific examples of the proteins include SART-3 comprising an amino acid sequence shown in SEQ

ID NO: 1. The proteins of the present invention may be produced in large scale using the DNA of the present invention as described above.

[0026]

Production of tumor antigen proteins by expressing the DNA of the present invention may be achieved in accordance with many publications and references such as "Molecular Cloning" mentioned above. Particularly, an expression plasmid that replicates and functions in host cells is constructed by incorporating a DNA of the present invention into an appropriate expression vector (e.g., pSV-SPORT1, pCR3). Subsequently, the expression plasmid is introduced into appropriate host cells to obtain transformants. Examples of host cells include those of prokaryotes such as Escherichia coli, unicellular eukaryotes such as yeast, and cells derived from multicellular eukaryotes such as insects or animals. Gene transfer into host cells may be achieved by conventional methods such as calcium phosphate method, DEAE-dextran method, electric pulse method, Lipofectin method, or the like. Desired proteins are produced by culturing the transformants in appropriate medium. The tumor antigen proteins thus obtained may be isolated and purified according to standard biochemical procedures.

[0027]

The protein of the present invention as described above can also be used as an active ingredient in medicament or a pharmaceutical composition. That is, in a "pharmaceutical composition" that comprises the protein of the present

invention as an active ingredient, administration of the protein to a tumor patient makes treatment or prevention of tumors possible.

Pharmaceutical compositions comprising the tumor antigen protein of the present invention as an active ingredient may be administered together with an adjuvant in order to effectively establish the cellular immunity, or may be administered in a particulate dosage form. For such purpose, those adjuvants described in the literature (Clin. Microbiol. Rev., 7:277-289, 1994) are applicable. In addition, liposomal preparations, particulate preparations in which the ingredient is bound to beads having a diameter of several μm , or preparations in which the ingredient is attached to lipids are also possible. Administration may be achieved, for example, intradermally, hypodermically, or by intravenous injection. Although the amount of a tumor antigen protein of the present invention in such formulations may vary depending on the disease to be treated, the age and the weight of the patient, and the like, it is typical to administer 0.0001mg-1000 mg, preferably 0.001mg-1000 mg, more preferably 0.1mg-10mg of a tumor antigen protein of the present invention every several days to every several months.

[0028]

In the present invention, the term "tumor antigen peptide" refers to a partial peptide that consists of a part of the tumor antigen protein of the present invention and is capable of binding to an HLA antigen and being recognized by

CTL. Accordingly, any peptide falls within the scope of the tumor antigen peptide of the present invention, regardless of its length or its position in the amino acid sequence of the present protein, as long as the peptide consists of a part of the amino acid sequence of the present protein and a complex between said peptide and an HLA antigen is capable of being recognized by CTL. Such tumor antigen peptides of the present invention can be identified by synthesizing a candidate peptide which consists of a part of the tumor antigen protein of the present invention and conducting an assay for determining whether or not a complex between the candidate peptide and an HLA antigen is recognized by CTL, in other words, whether or not the candidate peptide has the activity as a tumor antigen peptide.

[0029]

In this connection, synthesis of peptides may be conducted according to a method usually used in peptide chemistry. Examples of such known methods are those described in the literatures including "Peptide Synthesis", Interscience, New York, 1966; "The Proteins", vol. 2, Academic Press Inc., New York, 1976; "Pepuchido-Gosei", Maruzen Co. Ltd., 1975; "Pepuchido-Gosei-no-Kiso-to-Jikkenn", Maruzen Co. Ltd., 1985; and "Iyakuhin-no-Kaihatu, Zoku, vol. 14, Peputido-Gosei", Hirokawa Shoten, 1991.

[0030]

Next, methods for identifying tumor antigen peptides of the present invention are further described below.

The respective sequence rules (motifs) of antigen peptides that are bound to and presented on the following HLA types have been known; HLA-A1, -A0201, -A0204, -A0205, -A0206, -A0207, -A11, -A24, -A31, -A6801, -B7, -B8, -B2705, -B37, -Cw0401, and -Cw0602 (see, e.g., Immunogenetics, 41:178, 1995). Regarding the motif for HLA-A24, for example, it is known that in the sequence of peptides consisting of 8 to 11 amino acids, the amino acid at position 2 is tyrosine, phenylalanine, methionine, or tryptophan, and the amino acid at the C-terminus is phenylalanine, leucine, isoleucine, tryptophan, or methionine (J. Immunol., 152:3913, 1994). Likewise, the motifs shown in the following Table 1 are known for HLA-A2 (Immunogenetics, 41:178, 1995; J. Immunol., 155:4749, 1995).

[0031]

[Table 1]

Type of HLA-A2	position from N-terminus	Amino acid at C- terminus
HLA-A0201	L, M	V, L
HLA-A0204	L	L
HLA-A0205	V, L, I, M	L
HLA-A0206	V, Q	V, L
HLA-A0207	L	L

(the peptides are 8-11 amino acids in length) [0032]

By analysis of antigen peptides bound to various HLA molecules, it has been shown that the length of the peptides is usually about 8 to 14 amino acids long, although antigen

peptides of 14 or more amino acids in length are also observed for HLA-DR, -DP, and -DQ (Immunogenetics, 41:178, 1995).

[0033]

It is easy to select peptide portions involved in such motifs from the amino acid sequence of the protein of the present invention. For example, such peptide portions involved in the above motif structures can be easily selected by inspecting the amino acid sequence of tumor antigen protein SART-3 (SEQ ID NO: 1). Tumor antigen peptides of the present invention can be identified by synthesizing candidate peptides thus selected according to the method described above and conducting an assay for determining whether or not a complex between the candidate peptide and an HLA antigen is recognized by CTL, in other words, whether or not a candidate peptide has an activity as a tumor antigen peptide.

[0034]

A specific example of method for identifying tumor antigen peptides of the present invention is a method described in J. Immunol., 154:2257,1995. Specifically, peripheral blood lymphocytes are isolated from a human who is positive for the type of an HLA antigen that is expected to present the candidate peptide, and are stimulated in vitro by adding the candidate peptide. If the candidate induces CTL that specifically recognizes the HLA-antigen-presenting cells pulsed with the candidate peptide, it is indicated that the particular candidate peptide may function as a tumor antigen peptide. In this connection, the presence or absence of CTL induction can

be detected, for example, by measuring the amount of various cytokines (for example, IFN-γ) produced by CTLs in response to the antigen peptide-presenting cells. Alternatively, a method in which the cytotoxicity of CTLs against antigen peptide-presenting cells labeled with ⁵¹Cr is measured (⁵¹Cr release assay, *Int. J. Cancer*, 58:317, 1994) may also be used for such detection.

Furthermore, the above detection can also be achieved as follows. An expression plasmid expressing a cDNA for the type of an HLA antigen that is expected to present the candidate peptide is incorporated into, for example, COS-7 cells (ATCC No. CRL1651) or VA-13 cells (RIKEN CELL BANK, The Institute of Physical and Chemical Research), and the resultant cells are pulsed with the candidate peptide. The cells are then reacted with the CTLs that are restricted to the type of the HLA antigen expected to present the candidate peptide as described above, and the amount of various cytokines (for example, IFN- γ) produced by said CTLs is measured (*J. Exp. Med.*, 187:277, 1998).

[0035]

In cases like HLA-A26 wherein a relevant peptide motif is not elucidated, tumor antigen peptides of the present invention can be identified, for example, according to the method described in WO 97/46676, which method is different from that in the above cases wherein the sequence rules (motifs) have been elucidated, provided that a CTL line recognizing a complex between the HLA-A26 and a tumor antigen peptide is available.

The methods for identifying tumor antigen peptides as described above may be hereinafter collectively referred to as "assay methods for tumor antigen peptides".

[0036]

As described above, it is known that the sequences of tumor antigen peptides that are bound to and presented on HLA-A24 obey a certain rule (motif), and in particular, the motif is that, in a sequence of a peptide consisting of 8 to 11 amino acids, the amino acid at position 2 is tyrosine, phenylalanine, methionine, or tryptophan, and the amino acid at the C-terminus is phenylalanine, leucine, isoleucine, tryptophan, or methionine (J. Immunol., 152:3913, 1994). Accordingly, HLA-A24-restricted tumor antigen peptides among the tumor antigen peptides of the present invention are exemplified by those tumor antigen peptides that are partial peptides involved in such motif structures or structures expected to be capable of binding to the HLA-A24-antigen in the amino acid sequence of SART-3 shown in SEQ ID NO: 1 and that are capable of binding to the HLA-24-antigen and being recognized by CTLs.

[0037]

For example, those tumor antigen peptides that each comprise all or part of the amino acid sequence shown in any one of SEQ ID NOs: 3-24 and that are capable of binding to an HLA-A24 antigen and being recognized by CTL are exemplified.

Specifically, the following tumor antigen peptides are given:

- 1) a peptide consisting of the amino acid sequence shown in any one of SEQ ID NOs: 3-24, and
- 2) a peptide comprising the amino acid sequence shown in any one of SEQ ID NOs: 3-24, and being longer than said amino acid sequence, or a peptide comprising a partial amino acid sequence of the sequence shown in any one of SEQ ID NOs: 3-24, said peptide being capable of binding to an HLA-24-antigen and being recognized by CTL. The peptide in the above 2) may be about 8-11 amino acids in length in view of the fact that they are bound and presented by an HLA-24-antigen.

[8800]

Suitable examples of HLA-A24-restricted tumor antigen peptides of the present invention include those tumor antigen peptides that each comprise all or part of the amino acid sequence shown in any one of SEQ ID NOs: 3-9 and that are capable of binding to an HLA-A24 antigen and being recognized by CTL. Specifically, the following tumor antigen peptides are given:

- 1) a peptide that consists of an amino acid sequence shown in any one of SEQ ID NOs: 3-9, and
- 2) a peptide that comprises an amino acid sequence shown in any one of SEQ ID NOs: 3-9 and that is longer than said amino acid sequence, or a peptide that comprises a partial amino acid sequence of the sequence shown in any one of SEQ ID NOs: 3-24,

said peptide being capable of binding to an HLA-A24 antigen and being recognized by CTL. The peptides in the above 2) may be

about 8-11 amino acids in length in view of the fact that they are bound to and presented on HLA-A24 antigens.

[0039]

In the present invention, the term "derivative having properties functionally equivalent to those of a tumor antigen peptide" (hereinafter may be simply referred to as tumor antigen peptide derivative) refers to an altered peptide, of which amino acid sequence contains alteration of one or more, preferably one to several, amino acid residues of an amino acid sequence of a tumor antigen peptide of the present invention, and which has the properties as a tumor antigen peptide, that are to be capable of binding to an HLA antigen and being recognized by CTL. Such tumor antigen peptide derivatives of the present invention may be identified by synthesizing altered peptides that contain alteration of a part of a tumor antigen peptide of the present invention in accordance with the above preparation of peptide, and by conducting the above assay for tumor antigen peptides.

[0040]

As described above, the sequence rules (motifs) for peptides that are bound to and presented on HLA types such as HLA-A1, -A0201, -A0204, -A0205, -A0206, -A0207, -A11, -A24, -A31, -A6801, -B7, -B8, -B2705, -B37, -Cw0401, and -Cw0602 have been elucidated. Consequently, tumor antigen peptide derivatives containing the alteration of the amino acids in a tumor antigen peptide of the present invention can be prepared on the basis of such motifs.

[0041]

For example, regarding the motif for antigen peptides that are bound to and presented on HLA-A24, it is known as described above that, in the sequence of a peptide consisting of 8 to 11 amino acids, the amino acid at position 2 is tyrosine, phenylalanine, methionine, or tryptophan, and the amino acid at the C-terminus is phenylalanine, leucine, isoleucine, tryptophan, or methionine (J. Immunol., 152:3913, 1994). Likewise, the motifs shown in the above Table 1 are known for HLA-A2. Accordingly, examples of tumor antigen peptide derivatives of the present invention include those peptide derivatives, in each of which one or more amino acid residues at any positions that may be allowed for substitution according to the motifs (for HLA-A24 and HLA-A2, position 2 and the C-terminus) are substituted by other amino acids. Preferred examples are those tumor antigen peptide derivatives, in each of which amino acid residues to be substituted are selected from those at said positions according to the above motifs.

[0042]

Examples of HLA-A24-restricted tumor antigen peptide derivatives include those peptide derivatives that each comprise all or part of an amino acid sequence in which one or more amino acid residues at positions that are allowed for substitution according to the above motifs, specifically, at position 2 and/or the C-terminus, of a peptide derived from the amino acid sequence of SART-3 having a binding motif for HLA-A24 are substituted by other amino acid residues. Preferred

examples are those tumor antigen peptide derivatives that each comprise all or part of an amino acid sequence in which the amino acid residues at position 2 and/or the C-terminus are substituted by the amino acid residues involved according to the above motifs.

[0043]

Examples are those tumor antigen peptide derivatives that each comprise all or part of an amino acid sequence in which the amino acid residues at position 2 and/or the C-terminus of an amino acid sequence shown in any one of SEQ ID NOs: 3 to 24 are substituted by other amino acid residues. Particularly, those tumor antigen peptide derivatives that each comprise all or part of an amino acid sequence in which the amino acid residues at position 2 and/or the C-terminus of an amino acid sequence shown in any one of SEQ ID NOs: 3 to 24 are substituted by tyrosine, phenylalanine, methionine, or tryptophan and/or the amino acid residue at the C-terminus is substituted by phenylalanine, leucine, isoleucine, tryptophan, or methionine are exemplified.

[0044]

Suitable examples of HLA-A24-restricted tumor antigen peptide derivatives of the present invention are those tumor antigen peptide derivatives that each comprise all or part of an amino acid sequence in which the amino acid residues at position 2 and/or the C-terminus of the amino acid sequence shown in any one of SEQ ID NOs: 3 to 9 are substituted by other amino acid residues. More preferred examples are those tumor

antigen peptide derivatives that each comprise all or part of an amino acid sequence in which the amino acid residue at position 2 of an amino acid sequence shown in any one of SEQ ID NOs: 3 to 9 is substituted by tyrosine, phenylalanine, methionine, or tryptophan and/or the amino acid residue at the C-terminus is substituted by phenylalanine, leucine, isoleucine, tryptophan, or methionine. Suitable examples of such tumor antigen peptide derivatives are shown in SEQ ID NOs: 25 to 31.

[0045]

A tumor antigen peptide or its derivative of the present invention can be used solely or together with other one or more of them as a pharmaceutical composition for treating or preventing tumors. Namely, the present invention provides a pharmaceutical composition for treatment or prevention for tumors, which comprises the tumor antigen peptides or derivatives thereof as an active ingredient. When the composition for treating or preventing tumors which comprises as an active ingredient a tumor antigen peptide or its derivative of the present invention is administered to a SART-3-positive patient, the tumor antigen peptide or derivative thereof is presented with an HLA antigen of antigen-presenting cells, and therefore, CTLs specific for the presented HLA antigen complex proliferate and destroy the tumor cells. As a result, the tumor of the patient may be treated or prevented. SART-3 is developed extensively on the squamous cell carcinoma such as esophageal cancer, and therefore, the

composition for treating or preventing tumors according to the present invention is advantageous in terms of wide applicability. The squamous cell carcinoma often exhibits a resistance to chemotherapy and radiotherapy, and, therefore, the composition for treating tumors of the present invention can also achieve an increased therapeutic effect by its combined use.

[0046]

The composition for treating or preventing tumors comprising as an active ingredient a tumor antigen peptide or its derivative of the present invention may be administered together with an adjuvant in order to effectively establish the cellular immunity, or may be administered in a particulate dosage form. For such purpose, those adjuvants described in the literature (Clin. Microbiol. Rev., 7:277-289, 1994) are applicable. In addition, liposomal preparations, particulate preparations in which the ingredient is bound to beads having a diameter of several μm , or preparations in which the ingredient is attached to lipids are also possible. Administration may be achieved, for example, intradermally, hypodermically, or by intravenous injection. Although the amount of a tumor antigen peptide or its derivative of the present invention in the formulation to be administered may be adjusted as appropriate depending on, for example, the disease to be treated, the age and the body weight of the particular patient, it is typical to administer 0.0001 mg to 1000 mg, preferably 0.001 mg to 1000 mg, and more preferably 0.1 mg to

10 mg every several days to every several months.

[0047]

The present invention also provides antibodies that specifically bind to a protein of the present invention. Such antibodies are easily prepared, for example, according to a method described in "Antibodies: A Laboratory Manual", Lane, H. D. et al. eds., Cold Spring Harbor Laboratory Press, New York, 1989. Specifically, antibodies that recognize a tumor antigen peptide or its derivative and antibodies that further neutralize its activity may easily be prepared using the tumor antigen peptide or derivative thereof to appropriately immunize an animal in the usual manner. Such antibodies may be used in affinity chromatography, immunological diagnosis, and the like. Immunological diagnosis may be selected as appropriate from immunoblotting, radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), a fluorescent or luminescent assay, and the like.

[0048]

A tumor antigen peptide, derivative thereof, tumor antigen protein, or gene therefor of the present invention may also be used *in vitro* for treatment of tumor patients as follows.

On usage of a tumor antigen peptide, derivative thereof, tumor antigen protein, or gene therefor in treatment of tumors, it is important to establish an administration method which can efficiently induce specific CTLs in the body of a patient. As one of the means therefor, the present invention provides an antigen-presenting cell in which a complex between

an HLA antigen and a tumor antigen peptide or its derivative of the present invention is presented on the surface of a cell having antigen-presenting ability isolated from a tumor patient, and also provides a pharmaceutical composition for treating tumors, which comprises said antigen-presenting cell as an active ingredient.

[0049]

In this context, the "cell having antigenpresenting ability" is not limited to a specific cell so long
as it is a cell expressing on its cell surface an HLA antigen
allowing a tumor antigen peptide or its derivative of the
present invention to be presented, and dendritic cells, which
are reported to have especially a high antigen-presenting
ability, are preferred.

In order to prepare antigen-presenting cells of the present invention, cells having an antigen-presenting ability are isolated from a tumor patient, and pulsed ex vivo with a tumor antigen peptide, a derivative thereof, or a tumor antigen protein of the present invention to present a complex between an HLA antigen and said tumor antigen peptide or derivative thereof (Cancer Immunol. Immunother., 46:82, 1998). Further, by introducing a gene encoding a tumor antigen peptide of the present invention into the antigen-presenting cells, a complex between an HLA antigen and the above peptide or its derivative may be prepared.

[0050]

A pharmaceutical composition for treating tumors

which comprises the above antigen-presenting cells as an active ingredient preferably contains physiological saline, phosphate buffered saline (PBS), medium, or the like to stably maintain the antigen-presenting cells. It may be administered, for example, intravenously, subcutaneously, or intradermally. By reintroducing such composition for treating tumors which comprises antigen-presenting cells as an active ingredient into the body of the patient, specific CTLs are efficiently induced in SART-3-positive patient so as to achieve treatment of the tumor. It should be undisputed that the HLA types need be compatible between the patient and the peptide used, such that an HLA-A24-restricted tumor antigen peptide or a derivative thereof must be used with an HLA-A24-positive tumor patient.

[0051]

In addition, in vitro use of a tumor antigen peptide, a derivative thereof, a tumor antigen protein, or a gene therefor according to the present invention in the following adoptive immunotherapy may be provided as another example of their use.

For melanomas, it has been observed that an adoptive immunotherapy wherein tumor-infiltrating T cells taken from the patient himself/herself are cultured ex vivo in large quantities, and then returned into the patient, achieves a therapeutic effect (J. Natl. Cancer. Inst., 86:1159, 1994). Likewise, in mouse melanoma, suppression of metastasis has been observed by in vitro stimulation of splenocytes with tumor antigen peptide TRP-2, thereby proliferating CTLs specific for

the tumor antigen peptide, and administering said CTLs into a melanoma-grafted mouse (*J. Exp. Med.*, 185:453, 1997). This resulted from *in vitro* proliferation of CTLs that specifically recognize the complex between an HLA antigen of antigenpresenting cells and the tumor antigen peptide. Accordingly, a method for treating tumors is believed to be useful, which comprises stimulating *in vitro* peripheral blood lymphocytes from a patient using a tumor antigen peptide, a derivative thereof, a tumor antigen protein, or a gene therefor according to the present invention to proliferate tumor-specific CTLs, and subsequently returning the CTLs into the patient.

[0052]

Thus, the present invention provides CTLs that specifically recognize a complex between the HLA antigen and the tumor antigen peptide or derivative thereof, and also provides a pharmaceutical composition for treating tumors which comprises said CTLs as an active ingredient. Such composition preferably contains physiological saline, phosphate buffered saline (PBS), medium, or the like to stably maintain CTLs. It may be administered, for example, intravenously, subcutaneously, or intradermally. By reintroducing the composition for treating tumors which comprises CTLs as an active ingredient into the body of the patient, the toxic effect of CTLs against the tumor cells is enhanced in SART-3-positive patient and thereby destroys the tumor cells to achieve treatment of the tumor.

[0053]

[Examples]

The present invention is further illustrated by the following examples, but is not limited by these examples in any respect.

[0054]

Reference 1

Establishment of Cytotoxic T Lymphocyte (CTL) Cell Line against

Esophageal Cancer Cell Line

According to the description of Nakao et al., Cancer Res., 55:4248-4252 (1995), CTL against esophageal cancer cell line KE-4, which belongs to squamous cell carcinomas when classified on the basis of tissue type, was established from peripheral blood mononuclear cells of a patient, named KE-4CTL, and used in the following experiments. Esophageal cancer cell lines KE-4 and KE-4CTL have been deposited at The National Institute of Bioscience and Human Technology (1-1-3 Higashi, Tsukuba, Ibaraki, Japan) under International Deposition Nos. FERM BP-5955 and FERM BP-5954, respectively, both on May 23, 1997. Further, typing of HLA class I molecules of KE-4 was conducted according to the above-mentioned description of Nakao et al., to find that they are HLA-A2402, -A2601, -B54, -B60, -Cw1, and -Cw3.

[0055]

Reference 2

Preparation of HLA-A2402 cDNA

According to the description of Nakao et al., Cancer Res., 55: 4248-4252 (1995), a recombinant plasmid was

prepared from KE-4 by incorporating cDNA for HLA-A2402 (Genbank Accession No.M64740) into an expression vector pCR3 (INVITROGEN).

[0056]

Reference 3

Preparation of cDNA Library derived from KE-4

Poly (A) * mRNA was prepared from KE-4 by isolation of total RNA fraction and purification on oligo (dT) column using mRNA Purification system (Pharmacia Biotech) according to the manufacturer's protocol. cDNAs having Not I adapter and Sca I adapter linked to each terminus were prepared from the mRNAs using SuperScript Plasmid System (GIBCO BRL) according to the manufacturer's protocol, and then ligated into the restriction sites Not I and Sal I of an expression vector, plasmid pSV-SPORT1 (GIBCO BRL), to yield recombinant plasmids. The recombinant plasmids were introduced into E. coli. ElectroMAX DH10B™ cells (GIBCO BRL) using electric pulses in Gene Pulser (Bio-Rad) under a condition of 25 μF and 2.5 kV. Transformants into which the recombinant plasmids had been introduced were selected in LB medium (1% bacto-trypton, 0.5% yeast extract, 0.5% NaCl, pH7.3) containing ampicillin (50 $\mu g/ml$).

[0057]

Example 1

Screening of Novel Tumor Antigen Protein Gene

The recombinant plasmid DNAs were recovered as follows, from pools of about 100 transformants described in

Reference 3. A hundred transformants were introduced and cultured in each well of 96-well U-bottomed microplate containing LB medium plus ampicillin (50 µg/ml). Part of the culture was then transferred to another 96-well U-bottomed microplate containing 0.25 ml of TYGPN medium per well (F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc.), and cultured at 37°C for 48 hours. The remaining cultures in LB medium on the microplate were stored in frozen. Preparation of recombinant plasmid DNAs from transformants cultured in TYGPN medium was achieved in the microplate by the alkaline lysis method (F.M. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, Inc.). The recombinant plasmid DNAs recovered by isopropanol precipitation were suspended in 50 µl of 10 mM Tris, 1 mM EDTA, pH 7.4, containing 20 ng/ml RNase.

[0058]

The recombinant plasmid for KE-4 cDNA and the recombinant plasmid for HLA-A2402 cDNA were doubly transfected into fibroblast cell line VA-13 cells (RIKEN CELL BANK, The Institute of Physical and Chemical Research; Ann. Med. Exp. Biol. Fenn., 44:242-254, 1966) using the Lipofectin method as follows. Specifically, seven thousands VA-13 cells were placed into each well of 96-well flat-bottomed microplate, and incubated for 2 days in 100 μ l of RPMI 1640 medium containing 10% FCS. Using Lipofectin reagent (GIBCO BRL), a 30 μ l portion of mixture 70 μ l consisting of 25 μ l of the recombinant plasmid for KE-4 cDNA corresponding to about 100 transformants, 10 μ l (200 ng) of the

recombinant plasmid for HLA-A2402 cDNA described in Reference 2, and 35 μ l of about 35-fold diluted Lipofectin reagent was added to VA-13 cells, and allowed to doubly transfect them. Transfectants were prepared in duplicate. After 5 hours, the transfectants were added with 200 μ l of culture medium containing 10% FCS, and further incubated at 37 °C for 72 hours. After removing the culture medium, 10,000 KE-4CTL cells were added to each well, and cultured at 37 °C for 24 hours in 100 μ l of culture medium containing 10% FCS and 25 U/ml IL-2. The culture medium was recovered, and the amount of IFN- γ in the culture was measured by ELISA as described below.

[0059]

Specifically, an anti-human IFN-y mouse monoclonal antibody was adsorbed on wells of 96-well microplate as a solid-phased antibody, and after blocking non-specific bindings with bovine serum albumin, the antibody was allowed to bind to IFN-y in the above-described sample. Anti-human IFN-y rabbit polyclonal antibody as a detection antibody was then allowed to bind, and after binding to an anti-rabbit immunoglobulin goat antibody labeled with alkaline phosphatase, para-nitrophenyl phosphate was reacted as a chromogenic substrate. After quenching the reaction by adding an equal volume of 1N NaOH, absorbance at 405 nm was measured. The absorbance was compared with that obtained with standard IFN-y to determine the amount of IFN-y in the sample.

[0060]

Regarding the groups in which high production of

IFN-y was observed, the corresponding frozen-stored pools of about 100 transformants containing recombinant plasmids for KE-4 cDNA were used in the following screening. Specifically, the pools of the transformants were plated on LB agar medium containing ampicillin (50 μ g/ml) to obtain colonies. hundreds colonies for each group were cultured as described above so that a single kind of transformant is included in each well, thereby preparing recombinant plasmid DNAs for KE-4 cDNA. Then, VA-13 cells were doubly transfected with the recombinant plasmid for KE-4 cDNA and the recombinant plasmid for HLA-A2402 cDNA, followed by co-cultivation with KE-4CTL, and IFN-Y produced due to KE-4CTL reaction was quantitatively determined as described above so as to select positive plasmids. In this manner, a single KE-4 cDNA recombinant plasmid clone was selected and named clone 13. Additional analysis revealed that clone 13 was incorporated with about 1.2 kb cDNA. Furthermore, similar procedures were repeated with clone 13 to determine the amount of IFN-y produced by KE-4CTL according to a similar method to that described above. The results are shown in Table 2.

[0061]

[Table 2]

	Amount of IFN-γ
Target cell	produced by KE-4CTL (pg/ml)
VA-13 + HLA-A2402	326
VA-13 + HLA-A2402 + clone 13	775

[0062]

When compared to VA-13 transfected with only

HLA-A2402, KE-4CTL reacted more strongly to VA-13 doubly transfected with HLA-A2402 and clone 13, and produced more IFN-γ. This result indicated that the protein encoded by clone 13 is a tumor antigen protein.

[0063]

Example 2

Cloning of Full-length cDNA clone encoding Tumor Antigen
Protein

In order to determine the length of the full-length cDNA gene incorporated in clone 13 obtained in Example 1, Northern Hybridization was conducted as described blow.

First of all, RNAs were prepared from esophageal cancer cell line KE-4 using RNAzol B (TEL-TEST, Inc.). Five µg of RNA was denatured in the presence of formamide and formaldehyde, electrophoresed on agarose, and then transferred and fixed onto Hybond-N+ Nylon membrane (Amersham). The inserted sequence region of clone 13 was labeled with 32P using Multiprime DNA labeling system (Amersham) to prepare a DNA probe. According to the known method (Nakayama et al., Bio-Jikken-Illustrated, vol. 2, "Idenshi-Kaiseki-No-Kiso (A Basis for Gene Analysis)", pp. 148-151, Shujunsha, 1995), this probe was allowed to hybridize to RNAs on the membranes, and subjected to autoradiography to detect mRNA for cDNA incorporated in clone 13, indicating that the mRNA was about 3.8 kb in full length. Then, the full-length cDNA clone containing clone 13 as prepared above was cloned. KE-4-derived cDNA Library described in Reference 3 was plated on LB agar medium containing ampicillin

(50ug/ml) to obtain colonies. The colonies were then transferred to and fixed on Hybond-N+ nylon membrane (Amersham) according to the manufacturer's protocol. DNA probe in which the insertion sequence of clone 13 was labeled with 32 P was employed for hybridization and autoradiography under similar conditions to those mentioned above in order to select colonies representing positive transformants. Recombinant plasmids were then recovered from the many colonies selected, treated with restriction enzymes Not I and Sal I, and then electrophoresed on agarose to determine the length of incorporated cDNAs. A recombinant plasmid incorporating cDNA of about 3.8 kb was selected, and named clone K. VA-13 Cells were then doubly transfected with the recombinant plasmid clone K incorporating cDNA for the tumor antigen protein gene and another recombinant plasmid containing cDNA for HLA-A2402 as described above, and the cells were used as target cells. The amount of IFN-y produced by the reaction of KE-4CTL was determined according to the method as described above. The results are shown in Table 3.

[0064]

[Table 3]

	Amount of IFN-y
Target cell	produced by KE-4CTL (pg/ml)
VA-13 + HLA-A2403	342
VA-13 + HLA-A2402 + clone K	627

[0065]

When compared to VA-13 transfected with only HLA-A2402, KE-4CTL reacted more strongly to VA-13 doubly

transfected with HLA-A2402 and clone K, and produced more IFN- γ . This result indicated that the protein encoded by clone K is a tumor antigen protein. The tumor antigen protein encoded by clone K is named SART-3 (squamous cell carcinoma antigens recognized by T cells - 3).

[0066]

Example 3

Determination of Base Sequence of Tumor Antigen Protein Gene

The base sequence of the DNA of tumor antigen protein SART-3 as obtained in Example 2 was determined using DyeDeoxy Terminator Cycle Sequencing kit (Perkin-Elmer). The base sequence thus determined is shown in SEQ ID NO: 2. The full-length of the cDNA was 3798 base pairs. The amino acid sequence (963 amino acids) encoded by the base sequence of SEQ ID NO: 2 is shown in SEQ ID NO: 1. Comparison of the base sequence shown in SEQ ID NO: 2 to known sequences using GenBank data base revealed that the base sequence of tumor antigen protein SART-3 has a novel base sequence that is different from gene KIAAO156 registered at GenBank under Accession No. D63879 in terms of a single base (at position 108 of KIAAO156), which function has not been demonstrated.

[0067]

Example 4

Selection of Candidate Peptides

There are certain rules (motifs) in the sequences of antigen peptides that should be bound and presented by HLA antigens. Regarding the motif for HLA-A24, it is known that

in the sequence of peptides consisting of 8 to 11 amino acids, the amino acid at position 2 is tyrosine, phenylalanine, methionine, or tryptophan, and the amino acid at the C-terminus is phenylalanine, tryptophan, leucine, isoleucine, or methionine (Immunogenetics, 41:178, 1995; J. Immunol., 152:3913, 1994; J. Immunol., 155:4307, 1994). According to the motifs, peptide portions consisting of 8 to 11 peptides having the above motifs were selected from the amino acid sequence of tumor antigen protein SART-3 shown in SEQ ID NO: 1. Those examples of the selected peptides are shown in SEQ ID NOs: 3-24. These peptides were synthesized at Biologica Co. by the Fmoc method.

[0068]

Then, 1.8x10⁴ VA-13 cells were transfected with a recombinant plasmid of HLA-A2402 cDNA by the Lipofectin method to express HLA-A2402 according to the literature (*J. Exp. Med.*, 187:277, 1998). To these cells, various peptides having a binding motif for HLA-A24 that had precedently synthesized were each added at 10 µM over two hours in order to pulse the cells. The cells were then cultured with 2x10⁴ KE-4CTLs for 18 hours, and the amount of IFN-y produced by KE-4CTL in the culture supernatant was determined by the ELISA method. The results of this determination are shown in Table 4, which performed on seven peptides, that is, a peptide "109-118" comprising the sequence from position 109 to position 118 (SEQ ID NO: 3), a peptide "172-181" comprising the sequence from position 172 to position 181 (SEQ ID NO: 4), a peptide "284-292" comprising the

sequence from position 284 to position 292 (SEQ ID NO: 5), a peptide "315-323" comprising the sequence from position 315 to position 323 (SEQ ID NO: 6), a peptide "416-425" comprising the sequence from position 416 to position 425 (SEQ ID NO: 7), a peptide "426-434" comprising the sequence from position 426 to position 434 (SEQ ID NO: 8), and a peptide "448-456" comprising the sequence from position 434 (SEQ ID NO: 8), and a peptide "448-456" comprising the sequence from position 448 to position 456 (SEQ ID NO: 9), in the amino acid sequence of tumor antigen protein SART-3.

[0069]

[Table 4]

Peptides	IFN-Y	in the	supernatant	(pg/ml)
"109-118"		928		
" 172-181"		830		
~ 284-292 ″		794		
" 315-323"		880		
~ 416-425 ″		731		
~ 426-434 ″		833		
~ 448-456"		754		
None	 	677		

[0070]

When compared to cells pulsed with no peptide, KE-4CTLs reacted more strongly to cells pulsed with the peptides, and produced more IFN- γ . This result indicated that the seven peptides function as tumor antigen peptides.

[0071]

Example 5

Synthesis of Tumor Antigen Peptides

The seven peptides described above were synthesized by the solid phase method as shown below. [0072]

(1) Synthesis of SART-3 "109-118" Val-Tyr-Asp-Tyr-Asp-Cys-His-Val-Asp-Leu (SEO ID NO: 3)

Fmoc-Leu-Alko Resin (0.55 mmol/g, 100-200 mesh) was used as a resin. Using 100 mg of this resin, the synthesis was started according to Schedule 1 described below to couple the following residues in order: Fmoc-Asp(OtBu)-OH, Fmoc-Val-OH, Fmoc-His(Boc)-OH, Fmoc-Cys(Trt)-OH, Fmoc-Asn-OH, Fmoc-Tyr(tBu)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Tyr(tBu)-OH, and Fmoc-Val-OH. After the coupling, the procedures were conducted up to Step 3 of Schedule 1 to obtain a peptide resin.

To this peptide resin, 2 ml of Reagent K (the solution of 5% phenol, 5% thioanisole, 5% $\rm H_2O$, and 2.5% ethanedithiol in TFA) was added and the mixture was allowed to react for 2.5 hours at room temperature. While cooling with ice, 10 ml of diethyl ether was added to the reaction, the mixture was stirred for 10 minutes, filtered, and washed with 10 ml of diethyl ether. To the filter cake, 10 ml of aqueous acetic acid was added, and the mixture was stirred for 30 minutes. The resin was then filtered, and washed with 4 ml of aqueous acetic acid. After lyophilizing the filtrate and the wash, the crude peptide obtained was dissolved in aqueous acetic acid, and injected into a reverse phase packing material, YMC-PACK ODS-A column (30 φ x 250 mm) that had been pre-equilibrated with 0.1% aqueous TFA.

The column was washed with 0.1% aqueous TFA, and elution at a flow rate of 7 ml/min was then conducted, while increasing the concentration of acetonitrile up to 25% over 180 minutes. The eluate was monitored by A 220 nm. The fractions containing the desired product were combined together and lyophilized to obtain 31.0 mg of Val-Tyr-Asp-Tyr-Asn-Cys-His-Val-Asp-Leu.

[007.4]

The peptide obtained, Val-Tyr-Asp-Tyr-Asn-Cys-His-Val-Asp-Leu, had a retention time of 19.3 minutes in an analysis using a reverse phase packing material, YMC-PACK ODS-AM column (4.6 φ x 250 mm) eluted with a linear gradient of acetonitrile concentration from 16 to 46% containing 0.1% TFA, and the results of amino acid analysis (Cys being not detected) and mass spectrometry of the product were consistent with the theoretical values.

[0075]

Amino Acid Analysis

Hydrolysis: 1% phenol/6N aqueous hydrochloric acid, 110°C, 8 hours;

Analysis method: the ninhydrin method;

* Reference amino acid; Theoretical values are indicated in parentheses:

Asx: 2.77 (3)

Val: 1.70 (2)

* Leu: 1.00 (1)

Tyr: 1.98 (2)

His: 0.91 (1)

Mass spectrum (FAB)

 $[M+H]^+$: 1241

[0076]

[Table 5]

Schedule 1

Ste	ps Duration (min) x the number of trea	tments
1.	(washing) DMF 1.2 ml	1 x 2
2.	(deprotection) 50% piperidine/DMF	12 x 1
3.	(washing) DMF 1.2 ml	1 x 7
4.	(coupling) each amino-protected amino	
aci	d (5 equivalents)/NMP solution 0.9 ml,	
DIC	(5 equivalents)/NMP solution 0.3 ml	30 x 1
5.	(washing) DMF 1.2 ml	1 x 2
6.	(coupling) each amino-protected amino	
aci	d (5 equivalents)/NMP solution 0.9 ml,	
DIC	(5 equivalents)/NMP solution 0.3 ml	30 x 1
7.	(washing) DMF 1.2 ml	1 x 4
	[0077]	

(2) Synthesis of SART-3 "172-181" Leu-Phe-Glu-Lys-Ala-Val-Lys-Asp-Tyr-Ile (SEO ID NO: 4)

According to a similar manner to that described in above (1), using 100 mg of Fmoc-Ile-Alko Resin (0.41mmol/g, 100-200mesh), Fmoc-Tyr(tBu)-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Lys(Boc)-OH, Fmoc-Clys(Boc)-OH, Fmoc-Clys(Boc)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Phe-OH, and Fmoc-Leu-OH were coupled in order, and the product was then deprotected. The crude peptide obtained was dissolved in aqueous acetic acid and

injected into a reverse phase packing material YMC-PACK ODS-A column (30 ϕ x 250 mm) that has been pre-equilibrated with 0.1% aqueous TFA. The column was washed with 0.1% aqueous TFA, and the elution at a flow rate of 7 ml/min was then conducted, while increasing the concentration of acetonitrile up to 30% over 300 minutes. The eluate was monitored by A 220 nm. The fractions containing the desired product were combined together and lyophilized to obtain 66.3 mg of Leu-Phe-Glu-Lys-Ala-Val-Lys-Asp-Tyr-Ile.

[0078]

The peptide obtained, Leu-Phe-Glu-Lys-Ala-Val-Lys-Asp-Tyr-Ile, had a retention time of 23.8 minutes in an analysis using a reverse phase packing material YMC-PACK ODS-AM column (4.6 ϕ x 250 mm) eluted with a linear gradient of acetonitrile concentration from 12 to 42% containing 0.1% TFA, and the results of amino acid analysis and mass spectrometry of the product were consistent with the theoretical values.

[0079]

Amino Acid Analysis

Hydrolysis: 1% phenol/6N aqueous hydrochloric acid, 110°C, 12 hours;

Analysis method: the ninhydrin method;

* Reference amino acid; Theoretical values are indicated in parentheses:

Asx: 0.94 (1)

Glx: 1.03 (1)

Ala: 1.00 (1)

Val: 0.88 (1)

Ile: 0.92 (1)

Leu: 1.00 (1)

Tyr: 0.96 (1)

Phe: 0.97 (1)

Lys: 1.45 (2)

Mass spectrum (FAB):

 $[M+H]^+$: 1225

[0080]

(3) Synthesis of SART-3 "284-292" Asn-Tyr-Asn-Lys-Ala-Leu-Gln-Gln-Leu (SEO ID NO: 5)

According to a similar manner to that described in above (1), using 100 mg of Fmoc-Leu-Alko Resin, Fmoc-Gln-OH, Fmoc-Gln-OH, Fmoc-Leu-OH, Fmoc-Ala-OH, Fmoc-Lys(Boc)-OH, Fmoc-Asn-OH, Fmoc-Tyr(tBu)-OH, and Fmoc-Asn-OH were coupled in order, and the product was then deprotected. The crude peptide obtained was dissolved in aqueous acetic acid and injected into a reverse phase packing material YMC-PACK ODS-A column (30 φ x 250 mm) that has been pre-equilibrated with 0.1% aqueous TFA. The column was washed with 0.1% aqueous TFA, and the elution at a flow rate of 7 ml/min was then conducted, while increasing the concentration of acetonitrile up to 30% over 300 minutes. The eluate was monitored by A 220 nm. The fractions containing the desired product were combined together and lyophilized to obtain 25.0 mg of Asn-Tyr-Asn-Lys-Ala-Leu-Gln-Gln-Leu.

[0081]

The peptide obtained, Asn-Tyr-Asn-Lys-Ala-Leu-

Gln-Gln-Leu, had a retention time of 19.0 minutes in an analysis using a reverse phase packing material YMC-PACK ODS-AM column (4.6 φ x 250 mm) eluted with a linear gradient of acetonitrile concentration from 12 to 42% containing 0.1% TFA, and the results of amino acid analysis and mass spectrometry of the product were consistent with the theoretical values.

[0082]

Amino Acid Analysis

Hydrolysis: 1% phenol/6N aqueous hydrochloric acid, 110°C, 12 hours;

Analysis method: the ninhydrin method;

* Reference amino acid; Theoretical values are indicated in parentheses:

Asx: 1.87 (2)

G1x: 2.03 (2)

Ala: 0.98 (1)

Leu: 2.00 (2)

Tyr: 0.99 (1)

Lys: 0.97 (1)

Mass spectrum (FAB):

[M+H]⁺: 1091

[0083]

(4) Synthesis of SART-3 "315-323" Ala-Tyr-Ile-Asp-Phe-Glu-Met-Lys-Ile (SEO ID NO: 6)

According to a similar manner to that described in above (1), using 100 mg of Fmoc-Ile-Alko Resin (0.62mmol/g, 100-200mesh), Fmoc-Lys(Boc)-OH, Fmoc-Met-OH, Fmoc-

Glu(OtBu)-OH, Fmoc-Phe-OH, Fmoc-Asp(OtBu)-OH, Fmoc-Ile-OH, Fmoc-Tyr(tBu)-OH, and Fmoc-Ala-OH were coupled in order, and the product was then deprotected. The crude peptide obtained was dissolved in aqueous acetic acid and injected into a reverse phase packing material YMC-PACK ODS-A column (30 ϕ x 250 mm) that has been pre-equilibrated with 0.1% aqueous TFA. The column was washed with 0.1% aqueous TFA, and the elution at a flow rate of 7 ml/min was then conducted, while increasing the concentration of acetonitrile up to 40% over 180 minutes. The eluate was monitored by A 220 nm. The fractions containing the desired product were combined together and lyophilized to obtain 15.4 mg of Ala-Tyr-Ile-Asp-Phe-Glu-Met-Lys-Ile.

[0084]

The peptide obtained, Ala-Tyr-Ile-Asp-Phe-Glu-Met-Lys-Ile, had a retention time of 19.6 minutes in an analysis using a reverse phase packing material YMC-PACK ODS-AM column (4.6 ϕ x 250 mm) eluted with a linear gradient of acetonitrile concentration from 21 to 51% containing 0.1% TFA, and the results of amino acid analysis (Met being not detected) and mass spectrometry of the product were consistent with the theoretical values.

[0085]

Amino Acid Analysis

Hydrolysis: 1% phenol/6N aqueous hydrochloric acid, 110°C, 12 hours;

Analysis method: the ninhydrin method;

* Reference amino acid; Theoretical values are indicated in

parentheses:

Asx: 0.91 (1)

Glx: 1.06 (1)

Ala: 1.06 (1)

Ile: 1.69 (2)

Tyr: 0.81 (1)

Phe: 1.00 (1)

Lys: 0.87 (1)

Mass spectrum (FAB):

 $[M+H]^+$: 1130

[0086]

(5) Synthesis of SART-3 *416-425" Asp-Tyr-Val-Glu-Ile-Trp-Gln-Ala-Tyr-Leu (SEO ID NO: 7)

According to a similar manner to that described in above (1), using 100 mg of Fmoc-Leu-Alko Resin, Fmoc-Tyr(tBu)-OH, Fmoc-Ala-OH, Fmoc-Gln-OH, Fmoc-Trp(Boc)-OH, Fmoc-Ile-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Val-OH, Fmoc-Tyr(tBu)-OH, and Fmoc-Asp(OtBu)-OH were coupled in order, and the product was then deprotected. The crude peptide obtained was dissolved in aqueous acetic acid and injected into a reverse phase packing material YMC-PACK ODS-A column (30 φ x 250 mm) that has been pre-equilibrated with 0.1% aqueous TFA. The column was washed with 0.1% aqueous TFA, and the elution at a flow rate of 7 ml/min was then conducted, while increasing the concentration of acetonitrile up to 35% over 180 minutes. The eluate was monitored by A 220 nm. The fractions containing the desired product were combined together and lyophilized to obtain 18.9

mg of Asp-Tyr-Val-Glu-Ile-Trp-Gln-Ala-Tyr-Leu.
[0087]

The peptide obtained, Asp-Tyr-Val-Glu-Ile-Trp-Gln-Ala-Tyr-Leu, had a retention time of 20.5 minutes in an analysis using a reverse phase packing material YMC-PACK ODS-AM column (4.6 ϕ x 250 mm) eluted with a linear gradient of acetonitrile concentration from 25 to 55% containing 0.1% TFA, and the results of amino acid analysis (Trp being not detected) and mass spectrometry of the product were consistent with the theoretical values.

[8800]

Amino Acid Analysis

Hydrolysis: 1% phenol/6N aqueous hydrochloric acid, 110°C, 10 hours;

Analysis method: the ninhydrin method;

* Reference amino acid; Theoretical values are indicated in parentheses:

Asx: 1.00 (1)

Glx: 2.09 (2)

Ala: 1.04 (1)

Val: 0.89 (1)

Ile: 0.86 (1)

* Leu: 1.00 (1)

Tyr: 1.95 (2)

Mass spectrum (FAB):

 $[M+H]^+$: 1300

[0089]

(6) Synthesis of SART-3 "426-434" Asp-Tyr-Leu-Arg-Arg-Val-Asp-Phe (SEO ID NO: 8)

According to a similar manner to that described in above (1), using 100 mg of Fmoc-Phe-Alko Resin (0.72mmol/g, 100-200mesh), Fmoc-Asp(OtBu)-OH, Fmoc-Val-OH, Fmoc-Arg(Pmc)-OH, Fmoc-Arg(Pmc)-OH, Fmoc-Leu-OH, Fmoc-Tyr(tBu)-OH, and Fmoc-Asp(OtBu)-OH were coupled in order, and the product was then deprotected. The crude peptide obtained was dissolved in aqueous acetic acid and injected into a reverse phase packing material YMC-PACK ODS-A column (30 ϕ x 250 mm) that has been pre-equilibrated with 0.1% aqueous TFA. The column was washed with 0.1% aqueous TFA, and the elution at a flow rate of 7 ml/min was then conducted, while increasing the concentration of acetonitrile up to 25% over 240 minutes. The eluate was monitored by A 220 nm. The fractions containing the desired product were combined together and lyophilized to obtain 34.0 mg of Asp-Tyr-Leu-Arg-Arg-Arg-Val-Asp-Phe.

100901

The peptide obtained, Asp-Tyr-Leu-Arg-Arg-Arg-Val-Asp-Phe, had a retention time of 20.1 minutes in an analysis using a reverse phase packing material YMC-PACK ODS-AM column (4.6 φ x 250 mm) eluted with a linear gradient of acetonitrile concentration from 12 to 42% containing 0.1% TFA, and the results of amino acid analysis and mass spectrometry of the product were consistent with the theoretical values.

[0091]

Amino Acid Analysis

Hydrolysis: 1% phenol/6N aqueous hydrochloric acid, 110°C, 12 hours;

Analysis method: the ninhydrin method;

* Reference amino acid; Theoretical values are indicated in parentheses:

Asx: 1.90 (2)

Val: 0.95 (1)

Leu: 1.00 (1)

Tyr: 1.00 (1)

Phe: 0.99 (1)

Arg: 2.93 (3)

Mass spectrum (FAB):

[M+H]⁺: 1239

[0092]

(7) Synthesis of SART-3 "448-456" Ala-Phe-Thr-Arg-Ala-Leu-Glu-Tyr-Leu (SEO ID NO: 9)

According to a similar manner to that described in above (1), using 100 mg of Fmoc-Leu-Alko Resin, Fmoc-Tyr(tBu)-OH, Fmoc-Glu(OtBu)-OH, Fmoc-Leu-OH, Fmoc-Ala-OH, Fmoc-Arg(Pmc)-OH, Fmoc-Thr(tBu)-OH, Fmoc-Phe-OH, and Fmoc-Ala-OH were coupled in order, and the product was then deprotected. The crude peptide obtained was dissolved in aqueous acetic acid and injected into a reverse phase packing material YMC-PACK ODS-A column (30 ϕ x 250 mm) that has been pre-equilibrated with 0.1% aqueous TFA. The column was washed with 0.1% aqueous TFA, and the elution at a flow rate of 7 ml/min was then conducted, while increasing the concentration of

acetonitrile up to 30% over 240 minutes. The eluate was monitored by A 220 nm. The fractions containing the desired product were combined together and lyophilized to obtain 22.8 mg of Ala-Phe-Thr-Arg-Ala-Leu-Glu-Tyr-Leu.

[0093]

The peptide obtained, Ala-Phe-Thr-Arg-Ala-Leu-Glu-Tyr-Leu, had a retention time of 18.1 minutes in an analysis using a reverse phase packing material YMC-PACK ODS-AM column (4.6 φ x 250 mm) eluted with a linear gradient of acetonitrile concentration from 20 to 50% containing 0.1% TFA, and the results of amino acid analysis and mass spectrometry of the product were consistent with the theoretical values.

[0094]

Amino Acid Analysis

Hydrolysis: 1% phenol/6N aqueous hydrochloric acid, 110°C, 12 hours;

Analysis method: the ninhydrin method;

* Reference amino acid; Theoretical values are indicated in parentheses:

Thr: 0.91 (1)

Glx: 1.03 (1)

Ala: 1.91 (2)

* Leu: 2.00 (2)

Tyr: 1.00 (1)

Phe: 0.97 (1)

Arg: 0.97 (1)

Mass spectrum (FAB):

 $[M+H]^+$: 1083

[0095]

Example 6

CTL induction from Peripheral Blood Lymphocytes by Tumor
Antigen Peptides and Derivatives thereof

The peptides "109-118" (SEQ ID NO: 3) and "315-323" (SEQ ID NO: 6) synthesized as shown in Example 5 were investigated for their ability to induce antigen-specific CTLs from peripheral blood lymphocytes.

Using the Ficoll method, lymphocytes were separated from peripheral blood of healthy donors who were heterozygous for A24 in the HLA-A locus (referred to as HD1 and HD2, respectively). The lymphocytes were placed into wells of a 24-well plate at 2x106 cells/well, and cultured in the lymphocyte medium. The above tumor antigen peptides were added to the culture medium at 10 μM to stimulate the peripheral blood lymphocytes. After one week, the above tumor antigen peptide was added to attain 10 μM together with about 2x105 cells of X-radiated (50 Gy) peripheral blood lymphocytes for the second stimulation. After additional one week, the third stimulation was conducted in a similar manner. Cultured lymphocytes were harvested one week after the third stimulation. Using as target cells (1x104 cells) MT-2, which is an HLA-A2402-positive leukemia T cell line expressing SART-3, and RPMI8402, which is an HLA-A2402-negative leukemia T cell line expressing SART-3, the amount of IFN-y in the culture medium produced by the above lymphocytes (8x104 cells) in response to the target cells

was measured in accordance with a similar ELISA method to that in Example 1. The results are shown in Table 6.

[0096]

[Table 6]

	IFN-y in Supernatant (pg/ml)				
	HD	1	HD2		
Antigen Peptides	MT-2	RPMI8402	MT-2	RPMI8402	
" 109-118"	1771	159	2078	28	
" 315-323"	2041	26	974	40	
None	552	154	413	69	

[0097]

Peripheral blood lymphocytes stimulated with "109-118" and "315-323" peptides reacted to MT-2 (HLA-A24-positive) but not to RPMI8402 (HLA-A24-negative), indicating that CTLs specific for tumor antigen peptide were induced in a HLA-A24-restricted manner.

Likewise, a similar experiment can be conducted using COS-7 cells (ATCC No. CRL1651) or VA-13 cells (RIKEN CELL BANK, The Institute of Physical and Chemical Research) into which an expression plasmid for HLA-A24 cDNA has been introduced and which have been pulsed with the above peptides, instead of MT-2 used in the present experiment (*J. Exp. Med.*, 187:277, 1998).

[0098]

SEQUENCE LISTING FREE TEXT

In the amino acid sequence shown in SEQ ID NO: 25, the second amino acid is phenylalanine, tyrosine, methionine,

or tryptophan, and the tenth amino acid is phenylalanine, leucine, isoleucine, tryptophan, or methionine.

[0099]

In the amino acid sequence shown in SEQ ID NO: 26, the second amino acid is phenylalanine, tyrosine, methionine, or tryptophan, and the tenth amino acid is phenylalanine, leucine, isoleucine, tryptophan, or methionine.

[0100]

In the amino acid sequence shown in SEQ ID NO: 27, the second amino acid is phenylalanine, tyrosine, methionine, or tryptophan, and the ninth amino acid is phenylalanine, leucine, isoleucine, tryptophan, or methionine.

[0101]

In the amino acid sequence shown in SEQ ID NO: 28, the second amino acid is phenylalanine, tyrosine, methionine, or tryptophan, and the ninth amino acid is phenylalanine, leucine, isoleucine, tryptophan, or methionine.

[0102]

In the amino acid sequence shown in SEQ ID NO: 29, the second amino acid is phenylalanine, tyrosine, methionine, or tryptophan, and the tenth amino acid is phenylalanine, leucine, isoleucine, tryptophan, or methionine.

[0103]

In the amino acid sequence shown in SEQ ID NO: 30, the second amino acid is phenylalanine, tyrosine, methionine, or tryptophan, and the ninth amino acid is phenylalanine, leucine, isoleucine, tryptophan, or methionine.

[0104]

In the amino acid sequence shown in SEQ ID NO: 31, the second amino acid is phenylalanine, tyrosine, methionine, or tryptophan, and the ninth amino acid is phenylalanine, leucine, isoleucine, tryptophan, or methionine.

[0105]

Effect of the invention:

According to the present invention, a novel tumor antigen protein and gene therefor, tumor antigen peptides derived from said tumor antigen protein, and derivatives thereof, as well as medicaments, or prophylactics for tumors using such tumor antigen protein, gene, tumor antigen peptides, or derivatives thereof *in vivo* or *in vitro*, can be provided.

[0106]

SEQUENCE LISTING

<110> ITOH, Kyogo; Sumitomo Pharmaceuticals Company, Limited <120> A Novel Tumor Antigen SART-3, and It's Tumor Antigen Peptides <130> 132528 <160>31[0107]<210>1 <211>963 <212> PRT <213> Homo sapiens <400>1Met Ala Thr Ala Ala Glu Thr Ser Ala Ser Glu Pro Glu Ala Glu Ser 10 15 Lys Ala Gly Pro Lys Ala Asp Gly Glu Glu Asp Glu Val Lys Ala Ala 25 30 20 Arg Thr Arg Arg Lys Val Leu Ser Arg Ala Val Ala Ala Ala Thr Tyr 40 45 35 Lys Thr Met Gly Pro Ala Trp Asp Gln Glu Glu Glu Gly Val Ser Glu 60 50 55 Ser Asp Gly Asp Glu Tyr Ala Met Ala Ser Ser Ala Glu Ser Ser Pro 75 80 65 70 Gly Glu Tyr Glu Trp Glu Tyr Asp Glu Glu Glu Glu Lys Asn Gln Leu 90 95 85 Glu Ile Glu Arg Leu Glu Glu Gln Leu Ser Ile Asn Val Tyr Asp Tyr 110 100 105 Asn Cys His Val Asp Leu Ile Arg Leu Leu Arg Leu Glu Gly Glu Leu

115	120)	125	
Thr Lys Val Arg N	/Iet Ala Arg Gl	n Lys Met Se	r Glu Ile Pl	ne Pro Leu
130	135		140	
Thr Glu Glu Leu	Trp Leu Glu T	rp Leu His A	sp Glu Ile S	er Met Ala
145	150	15	55	160
Gln Asp Gly Leu	Asp Arg Glu H	is Val Tyr As	p Leu Phe (dlu Lys Ala
	165	170		175
Val Lys Asp Tyr II	le Cys Pro Asn	Ile Trp Leu (Glu Tyr Gly	Gln Tyr
180		185	190	
Ser Val Gly Gly II	e Gly Gln Lys	Gly Gly Leu	Glu Lys Val	Arg Ser
195	200		205	
Val Phe Glu Arg A	da Leu Ser Sei	r Val Gly Leu	His Met T	nr Lys Gly
210	215		220	
Leu Ala Leu Trp (Glu Ala Tyr Arş	g Glu Phe Gl	u Ser Ala Il	e Val Glu
225	230	23	5	240
Ala Ala Arg Leu C	llu Lys Val His	Ser Leu Phe	e Arg Arg Gl	n Leu Ala
. 2	245	250		255
Ile Pro Leu Tyr As	sp Met Glu Ala	Thr Phe Ala	Glu Tyr Gl	u Glu Trp
260		265	27	70
Ser Glu Asp Pro II	le Pro Glu Ser	Val Ile Gln A	sn Tyr Asn	Lys Ala
275	280		285	
Leu Gln Gln Leu (Glu Lys Tyr Ly	s Pro Tyr Glu	ı Glu Ala L	eu Leu Gln
290	295		300	
Ala Glu Ala Pro A	rg Leu Ala Glu	Tyr Gln Ala	Tyr Ile Asp	Phe Glu
305	310	315		320
Met Lys Ile Gly As	sp Pro Ala Arg	Ile Gln Leu I	le Phe Glu	Arg Ala
32	25	330		335

Leu Val Glu A	sn Cys Leu Val	Pro Asp Let	u Trp Ile A	rg Tyr Se	r Gln
34	10	345		350	
Tyr Leu Asp A	rg Gln Leu Lys	Val Lys Asp	Leu Val L	eu Ser Va	al His
355		360	36	i5	
Asn Arg Ala Il	e Arg Asn Cys 1	Pro Trp Thr	Val Ala Le	u Trp Ser	r Arg
370	375		380		
Tyr Leu Leu A	la Met Glu Arg	His Gly Val	l Asp His G	ln Val Ile	e Ser
385	390		395		400
Val Thr Phe G	lu Lys Ala Leu	Asn Ala Gly	Phe Ile Gl	n Ala Th	r Asp
	405	410		415	;
Tyr Val Glu Ile	e Trp Gln Ala T	yr Leu Asp '	Tyr Leu Arş	g Arg Arg	; Val
42	0	425		430	
Asp Phe Lys G	ln Asp Ser Ser	Lys Glu Leu	ı Glu Glu I	eu Arg A	la Ala
435	4	440	44	5	
Phe Thr Arg A	la Leu Glu Tyr	Leu Lys Glr	ı Glu Val G	lu Glu A	rg Phe
450	455		460		
Asn Glu Ser G	ly Asp Pro Ser	Cys Val Ile I	Met Gln As	n Trp Ala	ı Arg
465	470		475		480
Ile Glu Ala Arg	; Leu Cys Asn A	asn Met Gln	Lys Ala Ar	g Glu Le	u Trp
	485	490		495	
Asp Ser Ile Me	t Thr Arg Gly A	asn Ala Lys '	Tyr Ala Asr	ı Met Trp) Leu
500	0	505		510	
Glu Tyr Tyr As	n Leu Glu Arg	Ala His Gly	Asp Thr G	ln His Cy	's Arg
515	5	20	525	5	
Lys Ala Leu Hi	s Arg Ala Val G	ln Cys Thr	Ser Asp Ty	r Pro Glu	His
530	535		540		
Val Cys Glu Va	l Leu Leu Thr I	Met Glu Arg	Thr Glu G	lly Ser Le	eu Glu

545	550		555		560
Asp Trp Asp	o Ile Ala Val Gl	n Lys Thr	Glu Thr Arg	Leu Ala Arg	g Val
	565		570	575	`
Asn Glu Gl	n Arg Met Lys	Ala Ala Gl	u Lys Glu Ala	a Ala Leu Va	al Gln
	580	585	•	590	
Gln Glu Glu	ı Glu Lys Ala (Glu Gln Ar	g Lys Arg Ala	a Arg Ala Gl	u Lys
595		600		605	
Lys Ala Leu	Lys Lys Lys L	ys Lys Ile	Arg Gly Pro (Glu Lys Arg	Gly
610	6	15	620		
Ala Asp Glu	ı Asp Asp Glu I	Lys Glu Tr	p Gly Asp As	p Glu Glu G	lu Gln
625	630		635		640
Pro Ser Lys	Arg Arg Arg V	al Glu Asr	Ser Ile Pro A	Ala Ala Gly (Glu
. The second	645		650	655	
Thr Gln Asr	n Val Glu Val A	la Ala Gly	Pro Ala Gly	Lys Cys Ala	Ala
	660	665		670	
Val Asp Val	Glu Pro Pro Se	er Lys Gln	Lys Glu Lys	Ala Ala Ser	Leu
675		680		685	
Lys Arg Asp	Met Pro Lys V	al Leu Hi	s Asp Ser Ser	Lys Asp Sea	r Ile
690	69	95	700		
Thr Val Phe	Val Ser Asn L	eu Pro Tyr	: Ser Met Gln	Glu Pro As	p Thr
705	710		715		720
Lys Leu Arg	Pro Leu Phe (dlu Ala Cy	s Gly Glu Va	l Val Gln Ile	Arg
	725		730	735	
Pro Ile Phe	Ser Asn Arg Gl	y Asp Phe	Arg Gly Tyr	Cys Tyr Val	Glu
	740	745		750	
Phe Lys Glu	Glu Lys Ser A	la Leu Glı	ı Ala Leu Glu	ı Met Asp Aı	cg Lys
755		760		765	

Ser Val Glu Gly	Arg Pro Met	Phe Val Se	er Pro Cys V	al Asp Lys Ser
770	775		780	
Lys Asn Pro Asp	Phe Lys Val	Phe Arg Ty	yr Ser Thr S	Ser Leu Glu Lys
785	790		795	800
His Lys Leu Phe	e Ile Ser Gly	Leu Pro Ph	e Ser Cys T	hr Lys Glu Glu
	805	810)	815
Leu Glu Glu Ile	Cys Lys Ala	His Gly Th	r Val Lys As	sp Leu Arg Leu
820		825		830
Val Thr Asn Arg	Ala Gly Lys	Pro Lys Gl	y Leu Ala T	yr Val Glu Tyr
835		840	84	15
Glu Asn Glu Ser	· Gln Ala Ser	Gln Ala Va	l Met Lys M	let Asp Gly Me
850	855		860	
Thr Ile Lys Glu	Asn Ile Ile L	ys Val Ala I	le Ser Asn F	Pro Pro Gln
865	870		875	880
Arg Lys Val Pro	Glu Lys Pro	Glu Thr Ar	g Lys Ala Pi	ro Gly Gly Pro
$\mathbb{R}^{n+\frac{1}{2}}(\mathbb{R}^{n+\frac{1}{2}}(\mathbb{R}^n)) = \mathbb{R}^{n+\frac{1}{2}}(\mathbb{R}^n)$	885	890)	895
Met Leu Leu Pro	o Gln Thr Ty	r Gly Ala A	rg Gly Lys (Gly Arg Thr Glr
900		905		910
Leu Ser Leu Leu	ı Pro Arg Ala	Leu Gln A	rg Pro Ser A	ala Ala Ala Pro
915		920	92	25
Gln Ala Glu Asn	Gly Pro Ala	Ala Ala Pro	o Ala Val Ala	a Ala Pro Ala
930	935		940	
Ala Thr Glu Ala	Pro Lys Met	Ser Asn Al	a Asp Phe A	la Lys Leu Phe
945	950		955	960
Leu Arg Lys				
963				
[0108]				

<210> 2					
<211> 3798					
<212> DNA					
<213> Homo sa	apiens				
<400> 2					
ccacgcgtcc g atg	g gcg act gcg gcc	gaa acc tcg gct	t tca gaa ccc ga	ıg	50
M	et Ala Thr Ala A	la Glu Thr Sei	. Ala Ser Glu F	'ro Glu	
		5	10		
gct gag tcc aag	gct ggg ccc aag g	ct gac gga gag	g gag gat gag g	tt	98
Ala Glu Ser Lys	s Ala Gly Pro Ly	s Ala Asp Gly	Glu Glu Asp G	lu Val	
15	20		25		
aag gcg gct agg	aca agg aga aag	gtg tta tcg cg	g gct gtg gcc gc	:t	146
Lys Ala Ala Arg	g Thr Arg Arg Ly	s Val Leu Ser	Arg Ala Val Ala	a Ala	
30	35	40		45	
gcg aca tac aag	acc atg ggg cca	gcg tgg gat cag	g cag gag gaa g	gc	194
Ala Thr Tyr Ly	s Thr Met Gly P	ro Ala Trp Asp	Gln Gln Glu G	lu Gly	
	50	55		60	
gtg agc gag agc	gat ggg gat gag	tac gcc atg gct	tcc tcc gcg gag	r S	242
Val Ser Glu Ser	Asp Gly Asp Gl	u Tyr Ala Met	Ala Ser Ser Al	a Glu	
65	3	70	75		
age tee eee ggg	gag tac gag tgg g	aa tat gac gaa	gag gag gag a	aa	290
Ser Ser Pro Gly	Glu Tyr Glu Tr	o Glu Tyr Asp	Glu Glu Glu G	lu Lys	
80	85	;	90		
aac cag ctg gag	att gag aga ctg g	gag gag cag ttg	g tet ate aac gto	2	338
Asn Gln Leu Gl	lu Ile Glu Arg Le	u Glu Glu Glr	ı Leu Ser Ile A	sn Val	
95	100		105		
tat gac tac aac	tgc cat gtg gac tt	g atc aga ctg c	tc agg ctg gaa		386

Tyr Asp Ty	r Asn Cys His Va	d Asp Leu Ile Arg Le	eu Leu Arg Leu Glu	
110	115	120	125	
ggg gag ct	t acc aag gtg agg	atg gcc cgc cag aag a	atg agt gaa atc	434
Gly Glu Le	eu Thr Lys Val Ar	g Met Ala Arg Gln I	ys Met Ser Glu Ile	
	130	135	140	
ttt ccc ttg a	act gaa gag ctc tg	g ctg gag tgg ctg cat	gac gag atc	482
Phe Pro Le	eu Thr Glu Glu L	eu Trp Leu Glu Trp	Leu His Asp Glu Ile	
	145	150	155	
agc atg gcc	cag gat ggc ctg g	gac aga gag cac gtg t	at gac ctc ttt	530
Ser Met Al	a Gln Asp Gly Le	eu Asp Arg Glu His V	Val Tyr Asp Leu Phe	
16	0	165	170	
gag aaa gc	c gtg aag gat tac	att tgt cct aac att tg	g cta gag tat	578
Glu Lys Al	a Val Lys Asp Tyr	· Ile Cys Pro Asn Ile	Trp Leu Glu Tyr	
175	180	185	5	
ggc cag tac	tca gtt ggt ggg a	tt ggt cag aaa ggt gg	c ctt gag aaa	626
Gly Gln Ty	r Ser Val Gly Gly	lle Gly Gln Lys Gly	Gly Leu Glu Lys	
190	195	200	205	
gtt cgc tcc	gtg ttt gaa agg gc	t etc teg tet gtt ggt t	ta cat atg	674
Val Arg Se	r Val Phe Glu Arg	g Ala Leu Ser Ser Va	l Gly Leu His Met	
	210	215	220	
acc aaa gga	a etc gec etc tgg ga	ag gct tac cga gag tt	t gaa agt gcg	722
Thr Lys Gl	y Leu Ala Leu Tr	p Glu Ala Tyr Arg G	lu Phe Glu Ser Ala	
	225	230	235	
att gtg gaa	gct gct cgg ctt ga	g aaa gtc cac agt ctt	ttc cgg cga	770
Ile Val Glu	Ala Ala Arg Leu	Glu Lys Val His Ser	Leu Phe Arg Arg	
240		245	250	
cag ttg gcg	atc cca ctc tat ga	t atg gag gcc aca ttt	gca gag tat	818

Gln Leu Ala	Ile Pro Leu Tyr Asp	o Met Glu Ala T	hr Phe Ala Glu Tyr	
255	260	26	55	
gaa gaa tgg t	tca gaa gac cca ata	cca gag tca gta a	att cag aac tat	866
Glu Glu Trp	Ser Glu Asp Pro Ile	e Pro Glu Ser Va	l Ile Gln Asn Tyr	
270	275	280	285	
aac aaa gca	cta cag cag ctg gag	aaa tat aaa ccc t	at gaa gaa gca	914
Asn Lys Ala	Leu Gln Gln Leu G	lu Lys Tyr Lys F	ro Tyr Glu Glu Ala	
	290	295	300	
ctg ttg cag go	ca gag gca cca agg c	tg gca gaa tat ca	aa gca tat atc	962
Leu Leu Gln	Ala Glu Ala Pro Ar	g Leu Ala Glu T	yr Gln Ala Tyr Ile	
	305	310	315	
gat ttt gag at	tg aaa att ggc gat co	et get ege att eag	ttg atc ttt	1010
Asp Phe Glu	Met Lys Ile Gly As	p Pro Ala Arg Ilo	e Gln Leu Ile Phe	
320	325	5	330	
gag ege gee e	tg gtc gag aac tgc ct	t gtc cca gac tta	tgg atc cgt	1058
Glu Arg Ala	Leu Val Glu Asn Cy	rs Leu Val Pro A	sp Leu Trp Ile Arg	
335	340	34	5	
tac agt cag ta	ac cta gat cga caa ct	g aaa gta aag ga	at ttg gtt tta	1106
Tyr Ser Gln	Tyr Leu Asp Arg Gl	n Leu Lys Val Ly	ys Asp Leu Val Leu	
350	355	360	365	
tct gta cat aa	.c cgc gct att aga aa	c tgc ccc tgg aca	gtt gcc tta	1154
Ser Val His A	Asn Arg Ala Ile Arg	Asn Cys Pro Trp	Thr Val Ala Leu	
	370	375	380	
tgg agt cgg ta	ac etc ttg gee atg ga	g aga cat gga gti	t gat cat caa	1202
Trp Ser Arg	Гуr Leu Leu Ala Me	et Glu Arg His G	ly Val Asp His Gln	
3	885	390	395	
gta att tct gta	a acc ttc gag aaa gc	t ttg aat gcc ggc	ttc atc cag	1250

	Val Ile Ser Val	Thr Phe Glu Ly	7s Ala Leu Asn Ala	Gly Phe Ile Gln	
	400	40	5	410	
	gcc act gat tat	gtg gag att tgg	cag gca tac ctt gat	tac ctg agg	. 1298
	Ala Thr Asp Ty	yr Val Glu Ile Ti	rp Gln Ala Tyr Leu	ı Asp Tyr Leu Arg	
	415	420	425		
	aga agg gtt gat	t ttc aaa caa gad	c tcc agt aaa gag ct	g gag gag ttg	1346
	Arg Arg Val As	sp Phe Lys Gln	Asp Ser Ser Lys G	lu Leu Glu Glu Leu	
	430	435	440	445	
	agg gcc gcc ttt	act cgt gcc ttg g	ag tat ctg aag cag	gag gtg gaa	1394
	Arg Ala Ala Ph	ie Thr Arg Ala I	eu Glu Tyr Leu L	ys Gln Glu Val Glu	
		450	455	460	
	gag cgt ttc aat	gag agt ggt gat	cca agc tgc gtg att	atg cag aac	1442
	Glu Arg Phe A	sn Glu Ser Gly	Asp Pro Ser Cys V	al Ile Met Gln Asn	÷
	40	65	470	475	
	tgg gct agg att	gag gct cga ctg	tgc aat aac atg cag	g aaa gct cgg	1490
	Trp Ala Arg Ile	Glu Ala Arg Le	eu Cys Asn Asn Me	et Gln Lys Ala Arg	
	480	48	5	490	
	gaa ete tgg gat	agc atc atg acc	aga gga aat gcc aa	ng tac gcc aac	1538
	Glu Leu Trp As	sp Ser Ile Met T	hr Arg Gly Asn Al	a Lys Tyr Ala Asn	
	495	500	50	5	
	atg tgg cta gag	tat tac aac ctg	gaa aga gct cat gg	t gac acc cag	1586
	Met Trp Leu G	lu Tyr Tyr Asn	Leu Glu Arg Ala H	lis Gly Asp Thr Gln	
	510	515	520	525	
	cac tgc cgg aag	gct ctg cac cgg	gcc gtc cag tgc acc	agt gac tac	1634
His Cys Arg Lys Ala Leu His Arg Ala Val Gln Cys Thr Ser Asp Tyr					
		530	535	540	
	cca gag cac gtc	tgc gaa gtg tta	ctc acc atg gag agg	g aca gaa ggt	1682

Pro Glu His Val Cys Glu Val Leu Leu Thr Met Glu Arg Thr Glu Gly					
	545		550	555	
tct tta	ı gaa gat tgg (gat ata gct gtt	cag aaa act g	gaa acc cga tta	1730
Ser L	eu Glu Asp Tı	rp Asp Ile Ala	Val Gln Lys T	Thr Glu Thr Arg Leu	
	560	565		570	
gct cg	t gtc aat gag	cag aga atg aa	g gct gca gag	aag gaa gca gcc	1778
Ala A	rg Val Asn Gl	u Gln Arg Met	Lys Ala Ala	Glu Lys Glu Ala Ala	
5′	75	580	ļ	585	
ctt gtg	g cag caa gaa	gaa gaa aag g	ct gaa caa cg	g aaa aga gct cgg	1826
Leu V	al Gln Gln Gl	u Glu Glu Lys	Ala Glu Gln	Arg Lys Arg Ala Arg	
590		595	600	605	
gct ga	g aag aaa gcg	tta aaa aag a	ag aaa aag a	tc aga ggc cca gag	1874
Ala G	lu Lys Lys Ala	a Leu Lys Lys	Lys Lys Lys l	le Arg Gly Pro Glu	
	610) .	615	620	
aag cg	gc gga gca gat	gag gac gat ga	ag aaa gag tg	g ggc gat gat gaa	1922
Lys Arg Gly Ala Asp Glu Asp Asp Glu Lys Glu Trp Gly Asp Asp Glu					· · · · · · · · · · · · · · · · · · ·
	625		630	635	
gaa ga	ag cag cct tcc	aaa cgc aga ag	g gtc gag aac	age ate eet gea	1970
Glu G	lu Gln Pro Se	r Lys Arg Arg	Arg Val Glu	Asn Ser Ile Pro Ala	
	640	645		650	
gct gg	a gaa aca caa	aat gta gaa gt	a gca gca ggg	g ccc gct ggg aaa	2018
Ala Gly Glu Thr Gln Asn Val Glu Val Ala Ala Gly Pro Ala Gly Lys					
65	55	660	ϵ	665	
tgt gct	gcc gta gat g	tg gag ccc cct t	tcg aag cag a	ag gag aag gca	2066
Cys Ala Ala Val Asp Val Glu Pro Pro Ser Lys Gln Lys Glu Lys Ala					
670		675	680	685	
gcc tcc	ctg aag agg g	gac atg ccc aag	gtg ctg cac g	ac agc agc aag	2114

	Ala Ser Leu Lys Arg As	sp Met Pro Lys Val	Leu His Asp Ser Ser Lys	
	690	695	700	
	gac agc atc acc gtc ttt g	tc agc aac ctg ccc t	ac agc atg cag gag	2162
	Asp Ser Ile Thr Val Phe	e Val Ser Asn Leu	Pro Tyr Ser Met Gln Glu	
	705	710	715	
	ccg gac acg aag ctc agg	cca ctc ttc gag gcc	tgt ggg gag gtg gtc	2210
	Pro Asp Thr Lys Leu Ai	rg Pro Leu Phe Glu	ı Ala Cys Gly Glu Val Val	
	720	725	730	
	cag atc cga ccc atc ttc a	gc aac cgt ggg gat 1	ttc cga ggt tac tgc	2258
	Gln Ile Arg Pro Ile Phe	Ser Asn Arg Gly A	sp Phe Arg Gly Tyr Cys	
	735	740	745	
	tac gtg gag ttt aaa gaa	gag aaa tca gcc ctt	cag gca ctg gag atg	2306
	Tyr Val Glu Phe Lys Gi	u Glu Lys Ser Ala	Leu Gln Ala Leu Glu Met	
	750 75	5	760 765	
	gac cgg aaa agt gta gaa	ggg agg cca atg tti	gtt tcc ccc tgt gtg	2354
Asp Arg Lys Ser Val Glu Gly Arg Pro Met Phe Val Ser Pro Cys Val				
	770	775	780	
	gat aag agc aaa aac ccc	gat ttt aag gtg ttc	agg tac agc act tcc	2402
	Asp Lys Ser Lys Asn Pr	o Asp Phe Lys Val	Phe Arg Tyr Ser Thr Ser	
	785	790	795	
	cta gag aaa cac aag ctg	ttc atc tca ggc ctg o	ect ttc tcc tgt act	2450
	Leu Glu Lys His Lys Le	u Phe Ile Ser Gly I	Leu Pro Phe Ser Cys Thr	
	800	805	810	
	aaa gag gaa cta gaa gaa	atc tgt aag gct cat	ggc acc gtg aag gac	2498
	Lys Glu Glu Leu Glu Gl	lu Ile Cys Lys Ala I	His Gly Thr Val Lys Asp	
	815	820	825	
	ctc agg ctg gtc acc aac ca	gg gct ggc aaa cca a	aag ggc ctg gcc tac	2546

Leu Arg Leu	Val Thr Asn Arg	g Ala Gly Lys	Pro Lys Gly Leu A	la Tyr
830	835		840	845
gtg gag tat g	aa aat gaa tcc ca	ng gcg tcg cag	gct gtg atg aag atg	g 2594
Val Glu Tyr (Glu Asn Glu Ser	Gln Ala Ser (Gln Ala Val Met Ly	rs Met
	850	855	86	60
gac ggc atg a	ct atc aaa gag aa	ac atc atc aaa	gtg gca atc agc aa	c 2642
Asp Gly Met	Thr Ile Lys Glu	Asn Ile Ile Ly	s Val Ala Ile Ser A	sn
	865	870	875	
cct cct cag ag	g aaa gtt cca gaş	g aag cca gag	acc agg aag gca cc	a 2690
Pro Pro Gln A	Arg Lys Val Pro	Glu Lys Pro G	lu Thr Arg Lys Al	a Pro
880		885	890	
ggt ggc ccc at	g ctt ttg ccg cag	aca tac gga go	og agg ggg aag gga	2738
Gly Gly Pro I	Met Leu Leu Pro	Gln Thr Tyr	Gly Ala Arg Gly L	ys Gly
895	900		905	
agg acg cag c	tg tct cta ctg cct	cgt gcc ctg ca	g cgc cca agt gct	2786
Arg Thr Gln	Leu Ser Leu Leu	ı Pro Arg Ala	Leu Gln Arg Pro S	er Ala
910	915		920	925
gca gct cct ca	g gct gag aac ggo	e eet gee geg g	ct cct gca gtt gcc	2834
Ala Ala Pro G	dln Ala Glu Asn	Gly Pro Ala A	la Ala Pro Ala Val	Ala
	930	935	940	•
gcc cca gca gc	c acc gag gca ccc	c aag atg tcc a	at gcc gat ttt gcc	2882
Ala Pro Ala A	la Thr Glu Ala I	Pro Lys Met S	er Asn Ala Asp Ph	e Ala
9	45	950	955	
aag ctg ttt ctg	g aga aag tgaacg	ggac gctgggag	gac aggaaatgcc	2930
Lys Leu Phe l	Leu Arg Lys			
960				
ttacttcact ctgs	gcccggc ggacctcc	ca ccacccagca	gtgcactggg gatgga	cagg 2990

cctggtgtgc tgcgtgctcg caaccacaga tggctcctcg gctttagaca gaaaggggaa	3050
ggggttetaa gteaagagee ttteagtget eeeteatatt gagggeagtg geagaaaagt	3110
gaccactetg caggetggge ccaggatgtg gtgteetgag atagttttgt atettaaaga	3170
ctgaggcaca gaagcgaaac gagaacacac tgtttttgag acacagttgt ccaaatgttt	3230
ctggccagct ccggcccctt tttgtatgac acttctcttc caccctgcac agcacatgtg	3290
cccgtcattc ttttaatttt aaaagatgaa atggcagatg ctagtaattc acagaatggc	3350
ctcttgtggg ggtgggtctg agggaagtca gctataaaac atttgctgga gttttgttca	3410
atggggetgt geatttttat attatgtgtt tgtaaatgae atgteagece ttgttteatg	3470
tttcctaaaa gcagaatatt tgcaacattt gttttgtata ggaattattt gtgccacctg	3530
ctgtggactg ttttctttgc ctagtgacta gtgacctgtg ttgtctaaac atgagtttca	3590
gecetttggt tttgtttaat accatgteaa atgeaaaett eaatteteee eatttagett	3650
tattaaactg acgttetett caaaacttet tgetgaatgg tactcagatg tgeatteaca	3710
tacagatgtg ttttgaagtg ggtgtacctt gctttaccta atagatgtgt aaatagaact	3770
tttgtaagtc aaaaaaaaa aaaaaaaa	3798

[0109]

<210> 3

<211> 10

<212> PRT

<213> Homo sapiens

<400> 3

Val Tyr Asp Tyr Asn Cys His Val Asp Leu

5

10

[0110]

<210>4

<211> 10

 $<\!\!212\!\!>\mathrm{PRT}$

<213> Homo sapiens

<400>4

Leu Phe Glu Lys Ala Val Lys Asp Tyr Ile

5

10

[0111]

<210>5

<211>9

<212> PRT

<213> Homo sapiens

<400> 5

Asn Tyr Asn Lys Ala Leu Gln Gln Leu

5

[0112]

<210>6

<211>9

<212> PRT

<213> Homo sapiens

<400>6

Ala Tyr Ile Asp Phe Glu Met Lys Ile

5

[0113]

< 210 > 7

<211> 10

<212> PRT

<213> Homo sapiens

<400> 7

Asp Tyr Val Glu Ile Trp Gln Ala Tyr Leu

[0114]

<210>8

<211>9

 $<\!\!212\!\!>\mathrm{PRT}$

<213> Homo sapiens

<400>8

Asp Tyr Leu Arg Arg Val Asp Phe

5

[0115]

<210>9

<211>9

<212> PRT

<213> Homo sapiens

<400>9

Ala Phe Thr Arg Ala Leu Glu Tyr Leu

5

[0116]

<210> 10

<211>9

<212> PRT

<213> Homo sapiens

<400> 10

Asp Tyr Asn Cys His Val Asp Leu Ile

5

[0117]

<210> 11

<211> 10

```
<212> PRT
<213> Homo sapiens
<400> 11
Ile Phe Pro Leu Thr Glu Glu Leu Trp Leu
                  5
                                    10
         [0118]
<210>12
<211>9
<212> PRT
<213> Homo sapiens
<400> 12
Asp Tyr Ile Cys Pro Asn Ile Trp Leu
                5
         [0119]
<210> 13
<211> 10
<212> PRT
<213> Homo sapiens
<400> 13
Glu Tyr Gly Gln Tyr Ser Val Gly Gly Ile
                 5
                                  10
         [0120]
<210> 14
<211>9
<212> PRT
```

<213> Homo sapiens

<400> 14

Ala Tyr Arg Glu Phe Glu Ser Ala Ile

5

[0121]

<210> 15

<211> 10

 $<\!\!2\,12\!\!>\mathrm{PRT}$

<213> Homo sapiens

<400> 15

Leu Phe Arg Arg Gln Leu Ala Ile Pro Leu

5

[0122]

<210> 16

<211> 10

<212> PRT

<213> Homo sapiens

<400> 16

Glu Tyr Glu Glu Trp Ser Glu Asp Pro Ile

5

10

10

[0123]

<210> 17

<211>9

<212> PRT

<213> Homo sapiens

<400> 17

Lys Tyr Lys Pro Tyr Glu Glu Ala Leu

5

[0124]

```
<210> 18
<211> 10
<212> PRT
<213> Homo sapiens
<400> 18
Arg Tyr Ser Gln Tyr Leu Asp Arg Gln Leu
                   5
                                     10
          [0125]
<210> 19
<211> 10
<\!\!212\!\!>\mathrm{PRT}
<213> Homo sapiens
<400> 19
Thr Phe Glu Lys Ala Leu Asn Ala Gly Phe
                                     10
         [0126]
<210> 20
<211> 10
<212> PRT
<213> Homo sapiens
<400> 20
Asp Phe Lys Gln Asp Ser Ser Lys Glu Leu
                  5
                                     10
         [0127]
<210> 21
<211> 10
```

<212> PRT

```
<213> Homo sapiens
<400>21
Asp Tyr Pro Glu His Val Cys Glu Val Leu
                  5
                                    10
         [0128]
<210> 22
<211> 10
<212> PRT
<213> Homo sapiens
<400> 22
Asp Phe Arg Gly Tyr Cys Tyr Val Glu Phe
                  5
                                   10
         [0129]
<210>23
<211>9
<212> PRT
<213> Homo sapiens
<400> 23
Glu Phe Lys Glu Glu Lys Ser Ala Leu
                 5
         [0130]
<210> 24
<211>9
<212> PRT
<213> Homo sapiens
<400> 24
```

Pro Phe Ser Cys Thr Lys Glu Glu Leu

[0131]

<210> 25

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<221> VARIANT

<222>2

<223> Xaa is Phe, Tyr, Met or Trp.

<220>

<221> VARIANT

<222> 10

<223> Xaa is Phe, Leu, Ile, Trp or Met.

<400> 25

Val Xaa Asp Tyr Asn Cys His Val Asp Xaa

5

10

[0132]

<210> 26

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<221> VARIANT

<222>2

<223> Xaa is Phe, Tyr, Met or Trp.

<220>

```
<221> VARIANT
```

<222> 10

<223> Xaa is Phe, Leu, Ile, Trp or Met.

<400> 26

Leu Xaa Glu Lys Ala Val Lys Asp Tyr Xaa

5

10

[0133]

<210> 27

<211>9

<212> PRT

<213> Artificial Sequence

<220>

<221> VARIANT

<222>2

<223> Xaa is Phe, Tyr, Met or Trp.

<220>

<221> VARIANT

<222>9

<223> Xaa is Phe, Leu, Ile, Trp or Met.

<400> 27

Asn Xaa Asn Lys Ala Leu Gln Gln Xaa

5

[0134]

<210>28

<211>9

<212> PRT

<213> Artificial Sequence

<220>

<221> VARIANT

<222>2

<223> Xaa is Phe, Tyr, Met or Trp.

<220>

<221> VARIANT

<222>9

<223> Xaa is Phe, Leu, Ile, Trp or Met.

<400> 28

Ala Xaa Ile Asp Phe Glu Met Lys Xaa

5

[0135]

<210>29

<211> 10

<212> PRT

<213> Artificial Sequence

<220>

<221> VARIANT

<222>2

<223> Xaa is Phe, Tyr, Met or Trp.

<220>

<221> VARIANT

<222> 10

<223> Xaa is Phe, Leu, Ile, Trp or Met.

<400>29

Asp Xaa Val Glu Ile Trp Gln Ala Tyr Xaa

```
[0136]
```

<210>30

<211>9

<212> PRT

<213> Artificial Sequence

<220>

<221> VARIANT

<222>2

<223> Xaa is Phe, Tyr, Met or Trp.

<220>

<221> VARIANT

<222>9

<223> Xaa is Phe, Leu, Ile, Trp or Met.

<400>30

Asp Xaa Leu Arg Arg Arg Val Asp Xaa

5

[0137]

<210>31

<211>9

<212> PRT

<213> Artificial Sequence

<220>

<221> VARIANT

<222>2

<223> Xaa is Phe, Tyr, Met or Trp.

<220>

<221> VARIANT

<222>9

 $<\!\!223\!\!>$ Xaa is Phe, Leu, Ile, Trp or Met.

<400>31

Ala Xaa Thr Arg Ala Leu Glu Tyr Xaa

5

Document name:

Abstract

Summary:

Object: To provide a novel tumor antigen protein and gene therefor, tumor antigen peptides derived from said tumor antigen protein or derivatives thereof as well as medicaments, or prophylactics for tumors using such tumor substances *in vitro* or in vitro.

Solution: A novel tumor antigen protein and gene therefor, tumor antigen peptides derived from said tumor antigen protein, and derivatives thereof, as well as medicaments, or prophylactics for tumors using such tumor antigen protein, gene, tumor antigen peptides, or derivatives thereof *in vivo* or *in vitro*.

Selected figure:

None