

Applications to Integral Equations

4.1. Integral equations

Definition. An integral equation is an equation in which an unknown function appears under integral sign.

The most general type of linear integral equation is of the form

$$F(t) = G(t) + \lambda \int_a^b K(t, u) F(u) du, \qquad ...(1)$$

where the upper limit may be either variable or fixed. The function G (t) and K (t, u) are known functions, while F(t) is to be determined. The function K(t, u) is called the kernel of the integral

If a and b are constants, the equation is known as Fredholm integral equation. If a is a constant while b = t, it is called a Volterra integral equation.

4.2. Some important results to be committed to memory

(i) Convolution (or Falting).

Definition. The convolution of F (t) and G (t) is denoted and defined as

$$F * G = \int_0^t F(x) G(t-x) dx$$
 or $F * G = \int_0^t F(t-x) G(x) dx$.

(ii) Convolution theorem or convolution property.

If L {F (t)} = f(s) and L {G (t)} = g(s), then
$$L^{-1} \{f(s)g(s)\} = \int_{0}^{t} F(x) G(t-x) dx = F \cdot G$$

 $L^{-1} \{f(s) g(s)\} = \int_0^t F(t-x) G(x) dx = F * G.$ $L \{F * G\} = f(s) g(s) = L \{F(t)\} \times L \{G(t)\}.$ or

Moreover.

i.e.,
$$L\left\{\int_{0}^{t} F(x) G(t-x) dx\right\} = L\left\{\int_{0}^{t} F(t-x) G(x) dx\right\} = f(s) g(s).$$

(iii) Volterra Integral equation of first and second kinds.

 $G(t) = \lambda \int_{a}^{t} K(t, u) F(u) du$ A linear integral equation of the form

is known as Volterra integral equation of first kind.

 $F(t) = G(t) + \lambda \int_{-\infty}^{t} K(t, u) F(u) du$ Again, a linear integral equation of the form

is known as Volterra integral equation of second kind.

(iv) Integral equation of convolution type.

Definition. The integral equation
$$y(t) = f(t) + \int_0^t K(t-x) y(x) dx,$$

in which the Kernel K (t-x) is a function of the difference t-x only, is known as integral equation of the convolution type.

4.1

https://t.me/UPSC_Prelims

https://t.me/UPSC_Mains

https://t.me/UPSC_Mains

4.2

Applications to Integral Equations

Note. Using the definition of convolution, we may re-write the above integral equation as y(t) = f(t) + K(t) * y(t).

4.3. Application of Laplace transform in solving Volterra integral equation with convolution type kernel. Working rule

(f) Consider the Volterra integral equation of the first kind

$$G(t) = \lambda \int_0^t K(t-u) \ F(u) du. \qquad \text{or} \qquad G(t) = \lambda \ K(t) * F(t). \qquad \dots (1)$$
 Let $L(G(t)) = g(s)$, $L(F(t)) = f(s)$ and $L(K(t)) = k(s) \dots (2)$ Applying the Laplace transform of both sides of (1), we get
$$L(G(t)) = \lambda L(K(t) * F(t))$$

The second control of the second control of

$$\mathbf{L}^{-1}\{f(s)\} = \mathbf{L}^{-1}\left\{\frac{g(s)}{\lambda k(s)}\right\} \qquad \qquad \text{or} \qquad \qquad \mathbf{F}\left(t\right) = \mathbf{L}^{-1}\left\{\frac{g\left(s\right)}{\lambda k\left(s\right)}\right\}.$$

(ii) Consider the Volterra integral equation of the second kind

$$F(t) = G(t) + \lambda \int_{0}^{t} K(t - u) F(u) du.$$
or
$$F(t) = G(t) + \lambda K(t) * F(t). \qquad ...(1)$$
Let $L \{G(t)\} = g(s), \quad L \{F(t)\} = f(s) \quad \text{and} \quad L \{K(t)\} = k(s). \dots (2)$
Applying the Laplace transform of both sides of (1), we get
$$L \{F(t)\} = L \{G(t)\} + \lambda L \{K(t) * F(t)\}$$
or
$$L \{F(t)\} = L \{G(t)\} + \lambda L \{K(t)\} \times L \{F(t)\}, \text{ using the convolution theorem}$$
or
$$f(s) = g(s) + \lambda k(s) f(s) \quad \text{or} \quad [1 - \lambda k(s)] f(s) = g(s)$$
or
$$f(s) = g(s)[1 - \lambda k(s)]. \quad ...(3)$$

 $f(s) = g(s)/[1 - \lambda k(s)].$ Applying the inverse Laplace transform of both sides of (3), we get $F(t) = L^{-1} \{g(s)/[1 - \lambda k(s)]\}.$

4.4. Abel's Integral equation.

Definition. An integral equation of the form
$$\int_0^t \frac{F(u)}{(t-u)^{\alpha}} du = G(t)$$

is known as Abel's integral equation, where F (t) is unknown function, G (t) is a known function and α is a constant such that $0 < \alpha < 1$.

4.5. Integro-differential equation

Definition. It is an equation in which various derivatives of unknown function F(t) can also be present.

For example,
$$F'(t) = F(t) + G(t) + \int_0^t K(t-u) F(u) du$$

is an integro-differential equation, where F(t) is unknown function and G(t) and K(t-u) are known functions. The solution of such equation subject to given initial conditions can be easily obtained.

4.6. Solved examples based on integral equations

Ex.1. Solve the integral equation
$$F(t) = I + \int_0^t F(u) \sin(t-u) du$$
 and verify your solution.

[Osmania 2010; Kanpur 1995]

https://t.me/UPSC_Prelims

https://t.me/UPSC_Mains

https://t.me/UPSC_Mains

Applications to Integral Equations

4.3

... (1)

 $F(t) = 1 + \int_0^t F(u) \sin(t-u) du.$ Sol. Given

Using the definition of convolution, (1) can be written as

$$F(t) = 1 + F(t) + \sin t$$
. ... (2)

Let L $\{F(t)\} = f(s)$ Applying the Laplace transform of (2), we get

$$L \{F(t)\} = L \{1\} + L \{F(t) * \sin t\}$$

$$L \{F(t)\} = L \{1\} + L \{F(t) * \sin t\}$$

$$L \{F(t)\} = (1/s) + L \{F(t)\} \times L \{\sin t\}, \text{ by the convolution theorem}$$

or
$$f(s) = \frac{1}{s} + f(s) \times \frac{1}{s^2 + 1}$$
 or $\left(1 - \frac{1}{s^2 + 1}\right) f(s) = \frac{1}{s}$

 $f(s) = (s^2 + 1)/s^3 = 1/s + 1/s^3.$ Applying the inverse Laplace transform of both sides of (3), we get

$$L^{-1} \{f(s)\} = L^{-1} \left\{ \frac{1}{s} \right\} + L^{-1} \left\{ \frac{1}{s^3} \right\} \qquad \text{or} \qquad F(t) = 1 + \frac{t^2}{2!} = 1 + \frac{t^2}{2} \,. \qquad \dots (4)$$

Verification of solution (4): We wish to show that (4) satisfies the given integral equation (1). From (4), $F(u) = 1 + u^2/2$

$$\therefore \text{ R.H.S. of (1)} = 1 + \int_0^t (1+u^2/2) \sin(t-u) du$$

$$= 1 + \left[(1+u^2/2) \cos(t-u) \right]_0^t - \int_0^t u \cos(t-u) du, \text{ integrating by parts}$$

$$= 1 + 1 + \frac{t^2}{2} - \cos t - \left\{ \left[-u \sin(t-u) \right]_0^t - \int_0^t 1 \cdot \left\{ -\sin(t-u) \right\} du \right\}$$

$$= 2 + \frac{t^2}{2} - \cos t - \int_0^t \sin(t-u) du.$$

$$= 2 + \frac{t^2}{2} - \cos t - \left[\cos(t-u) \right]_0^t = 2 + \frac{t^2}{2} - \cos t - (1-\cos t)$$

$$= 1 + t^2/2 = F(t), \text{ using (4)}$$

$$= \text{L.H.S. of (4)}$$

Hence (4) is solution of given integral equation (1).

Ex.2. Solve by the method of Laplace transform:
$$3 \sin 2x = y(x) + \int_0^x (x-t)y(t)dt$$
.

[Nagpur 2005; Lucknow 1994]

Sol. Note carefully that in the present problem we have x in place of t and t in place of u. So we shall make the corresponding changes in the usual solution and standard results.

Using the definition of convolution, the given equation can be written as

$$y(x) = 3 \sin 2x - y(x) + x$$
. ... (1)

Let L $\{y(x)\} = f(s)$. Applying the Laplace transformation of both sides of (1), we have $L\{y(x)\} = 3 L\{\sin 2x\} - L\{y(x) * x\}$ $f(s) = 3 \times \{2/(s^2 + 2^2)\} - L\{y(x)\} \times L\{x\}$

or
$$f(s) = \frac{6}{s^2 + 4} - \frac{f(s)}{s^2}$$
 or $f(s) = \frac{6s^2}{(s^2 + 1)(s^2 + 4)}$

4.4

https://t.me/UPSC_Mains

... (2)

Applications to Integral Equations

Taking inverse Laplace transform of both sides of (2), we get $y(x) = 2 \{ \sin t - (\sin 2t)/2 \} = 2 \sin t - \sin 2t.$

Ex.3. Solve the integral equation $F(t) = t + 2 \int_0^t F(u) \cos(t - u) du$ [Kanpur 94]

 $f(s) = 2\{1/(s^2+1) - 1/(s^2+4)\}$

 $F(t) = t + 2 \int_0^t F(u) \cos(t - u) du.$... (1)

Using the definition of convolution, (1) can be re-written as ... (2)

 $F(t) = t + 2 F(t) + \cos t$. Let L {F (t)} = f(s). Applying the Laplace transform of (1), we have L {F (t)} = L {t} + 2 L {F (t) * cos t} L {F (t)} = (1/s²) + 2 L {F (t)} × L {cos t}, by the convolution theorem

 $f(s)\left[1-\frac{2s}{s^2+1}\right]=\frac{1}{s^2}$ $f(s) = \frac{1}{s^2} + 2 f(s) \times \frac{s}{s^2 + 1}$

 $f(s) = \frac{s^2 + 1}{s^2(s-1)^2} = \frac{A}{s} + \frac{B}{s^2} + \frac{C}{s-1} + \frac{D}{(s-1)^2}.$... (3)

 $B = \lim_{s \to 0} \frac{s^2 + 1}{(s - 1)^2} = \frac{0 + 1}{(0 - 1)^2} = 1.$ Multiply both sides of (3) by s^2 and let $s \to 0$; then

Multiply both siders of (3) by $(s-1)^2$ and let $s \to 1$; then $D = \lim_{s \to 1} \frac{s^2 + 1}{s^2} = \frac{1+1}{1} = 2$.

 $f(s) = \frac{s^2 + 1}{s^2(s-1)^2} = \frac{A}{s} + \frac{1}{s^2} + \frac{C}{s-1} + \frac{2}{(s-1)^2}$ Then, from (3),

Multiplying both sides of (4) by $s^2 (s-1)^2$, we have $s^2+1=As (s-1)^2+(s-1)^2+C s^2 (s-1)+2s^2$, $s^2+1=As (s^2-2s+1)+(s^2-2s+1)+C (s^3-s^2)+2s^2$ (5)

Equating coefficients of s³ and s on both sides of (5), we get

A+C=0 A - 2 = 0C = -2.

 $f(s) = \frac{2}{s} + \frac{1}{s^2} - \frac{2}{s-1} + \frac{2}{(s-1)^2}.$ (3) and $(4) \Rightarrow$ Then, ... (6)

Taking inverse Laplace transform of both sides of (6), we get

 $F(t) = 2 + t - 2e^{t}L^{-1}\{1/s\} + 2e^{t}L^{-1}\{1/s^{2}\}$, using first shifting theorem

 $F(t) = 2 + t - 2e^{t} + 2e^{t}t = 2 + t - 2e^{t}(1 - t)$ OT

Ex.4. Solve the integral equation: $F(t) = t^2 + \int_0^t F(u) \sin(t-u) du$

 $F(t) = t^2 + \int_0^t F(u) \sin(t - u) du$ Sol. Given

https://t.me/UPSC_Prelims

https://t.me/UPSC Mains

https://t.me/UPSC_Mains

Applications to Integral Equations 4.5 $F(t) = t^2 + F(t) * \sin t$, using definition of convolution ... (1) Let L $\{F(t)\} = f(s)$. Taking the Laplace transform of (1), we get $L \{F(t) = L\{t^2\} + L\{F(t) \cdot \sin t\}$ $f(s) = (2/s^2) + L\{F(t) \cdot \sin t\}, \text{ by the convolution theorem}$ $f(s) = \frac{2}{s^3} + f(s) \times \frac{1}{s^2 + 1}$ $f(s)\left[1-\frac{1}{1+s^2}\right]=\frac{2}{s^3}$ $f(s) = \frac{2(1+s^2)}{s^5} = \frac{2}{s^5} + \frac{2}{s^3}.$ $F(t) = 2 \times (t^2/2!) + 2 \times (t^4/4!) = t^2 + (t^4/12)$ Ex.5. Solve the following integral equations: (a) $F(t) = e^{-t} - 2 \int_0^t F(u) \cos(t - u) du$ [S.V. Univ. (A.P.) 1997] (b) $e^{-x} = y(x) + 2 \int_{0}^{x} \cos(x-t) y(t)dt$. $F(t) = e^{-t} - 2 \int_0^t F(u) \cos(t - u) du.$ Sol. (a) Given $F(t) = e^t - 2 F(t) * \cos t$, using definition of convolution. ... (1) Let $L\{F(t)\} = f(s)$. Taking the Laplace transform of both sides of (1), we get $L\{F(t)\} = L\{e^{-t}\} - 2L\{F(t) + \cos t\}$ $f(s) = 1/(s+1) - 2 L \{F(t)\} \times L \{\cos t\}$, by the convolution theorem $f(s) = \frac{1}{s+1} - 2f(s) \times \frac{s}{s^2+1}$ $f(s)\left(1 + \frac{2s}{s^2 + 1}\right) = \frac{1}{s + 1}$ $\frac{(s+1)^2}{s^2+1}f(s) = \frac{1}{s+1}$ $f(s) = \frac{s^2 + 1}{(s+1)^3}$ $F(t) = L^{-1} \left\{ \frac{s^2 + 1}{(s+1)^3} \right\} = L^{-1} \left\{ \frac{[(s+1) - 1]^2 + 1}{(s+1)^3} \right\}$ Inverting, $= e^{-t} L^{-1} \left\{ \frac{(s-1)^2 + 1}{s^3} \right\}, \text{ by first shifting theorem}$ $= e^{-t} L^{-1} \left\{ \frac{s^2 - 2s + 2}{s^3} \right\} = e^{-t} L^{-1} \left\{ \frac{1}{s} - \frac{2}{s^2} + \frac{2}{s^3} \right\}$ $=e^{-t}[1-2\times(t/1!)+2\times(t^2/2!)]=e^{-t}(1-2t+t^2)=e^{-t}(1-t)^2.$ (b) Here replace t by x and u by t in part (a) Also replace F(t) by y(x)Ex.6. Solve the integral equation $F(t) = a \sin t - 2 \int_0^t F(u) \cos (t - u) du$,

https://t.me/UPSC_Prelims

https://t.me/UPSC_Mains

[Ravishanker 2004]

```
https://t.me/UPSC_Prelims
```

https://t.me/UPSC_Mains

4.6 Applications to Integral Equations $F(t) = a \sin t - 2 \int_0^t F(u) \cos(t - u) du$ Sol Given $F(t) = a \sin t - 2 F(t) * \cos t$, by definition of convolution ... (1) Let L $\{F(t)\} = f(s)$. Taking the Laplace transform of both sides of (1), we get L $\{F(t)\} = a L \{\sin t\} - 2 L \{F(t)\} + \cos t\}$ $f(s) = a/(1+s^2) - 2 L \{F(t)\} \times L \{\cos t\}, \text{ by the convolution theorem}$ $f(s) = \frac{a}{1+s^2} - 2f(s) \times \frac{s}{s^2+1}$ $f(s)\left[1+\frac{2s}{s^2+1}\right]=\frac{a}{1+s^2}$ $\frac{(s+1)^2}{s^2+1}f(s) = \frac{a}{1+s^2}$ $f(s) = \frac{a}{(s+1)^2}.$ Inverting, $L^{-1} \{f(s)\} = a L^{-1} \{1/(s+1)^2 = a e^{-t} L^{-1} \{1/s^2\}$, using first shifting theorem $F(t) = a e^{-t} \times (t/1!) = at e^{-t}$. or Ex.7. Solve the integral equation $t = \int_0^t e^{t-u} F(u) du$. Sol. Re-writing the given intergral equation, we get $t = e^t \cdot F(t)$, by definition of convolution. ... (1) Let L $\{F(t)\} = f(s)$. Taking Laplace transform of both sides of (1), we get L $\{t\} = L \{e' \circ F(t)\}$ or L $\{t\} = L \{e'\} \times L \{F(t)\}$, using the convolution theorem $\frac{1}{r^2} = \frac{1}{r-1} f(s)$ $f(s) = \frac{s-1}{s^2} = \frac{1}{s} - \frac{1}{s^2}$ Inverting, $L^{-1} \{f(s)\} = L^{-1}\{1/s\} - L^{-1}\{1/s^2\}$ $\int_{0}^{t} \mathbf{F}(u) \; \mathbf{F}(t-u) \, du = 16 \sin 4t.$ Ex.8. Solve the integral equation [Kanpur 1995, S.V. Univ. (A.P.) 1997] Sol. Re-writing the given integral equation, we have $F(t) * F(t) = 16 \sin 4t$, by definition of convolution ... (1) Let L $\{F(t)\} = f(s)$. Taking Laplace transform of both sides of (1), we get $L\{F(t) \cdot F(t)\} = 16L\{\sin 4t\}$ $L\{F(t)\} \times L\{F(t)\} = 16L\{\sin 4t\}$, using the convolution theorem $f(s) \times f(s) = 16\left(\frac{4}{s^2 + 4^2}\right)$ $f(s) = \pm \frac{8}{(s^2 + 4^2)^{1/2}}$ Inverting, $L^{-1} \{f(s)\} = \pm 8 L^{-1} \{1/(s^2 + 4^2)^{1/2}\} = \pm 8 J_0(4t)$, as $L \{J_0(at)\} = 1/(s^2 + a^2)^{1/2}$ Ex.9. Solve $\sin t = \int_0^t J_0(t-u) F(u) du$. Sol. Re-writing the given integral equation, we have $\sin t = J_0(t) * F(t)$, by definition of convolution. ... (1) Let L $\{F(t)\} = f(s)$. Taking the Laplace transform of both sides of (1), we get $L \{ \sin t \} = L \{ J_0(t) * F(t) \}$ $1/(1+s^2) = L\{J_0(t)\} \times L\{F(t)\}$, using the convolution theorem or

https://t.me/UPSC_Prelims

https://t.me/UPSC_Mains