EXAMENUL DE BACALAUREAT 2010 Proba scrisă la Fizică

Proba E - d): Filiera teoretică – profilul real, Filiera tehnologică – profilul tehnic și profilul resurse naturale și protectia mediului, Filiera vocațională - profilul militar

Sunt obligatorii toate subiectele din două arii tematice dintre cele patru prevăzute de programă, adică: A. MECANICĂ,
B. ELEMENTE DE TERMODINAMICĂ, C. PRODUCEREA ŞI UTILIZAREA CURENTULUI CONTINUU, D. OPTICĂ

Se acordă 10 puncte din oficiu.

Timpul efectiv de lucru este de 3 ore. B. ELEMENTE DE TERMODINAMICĂ

Varianta 8

Se consideră: numărul lui Avogadro $N_A = 6.02 \cdot 10^{23} \, \text{mol}^{-1}$, constanta gazelor ideale $R = 8.31 \frac{\text{J}}{\text{mol} \cdot \text{K}}$. Între parametrii

de stare ai gazului ideal într-o stare dată există relatia: $p \cdot V = vRT$.

I. Pentru itemii 1-5 scrieți pe foaia de răspuns litera corespunzătoare răspunsului corect.

1. Trei mase diferite m_1 , m_2 şi m_3 din acelaşi gaz ideal sunt supuse unor procese termodinamice reprezentate în coordonate p-T în figura alăturată. Volumele ocupate de gaze sunt egale $(V_1 = V_2 = V_3)$. Relația corectă dintre cele trei mase de gaz este:

a. $m_1 = m_2 = m_3$

b. $m_1 > m_2 > m_3$

c. $m_2 > m_3 > m_1$

d. $m_3 > m_2 > m_1$

(3p) 2. Simbolurile mărimilor fizice fiind cele utilizate în manualele de fizică, expresia densității unui gaz ideal

a. $\rho = \frac{\rho V}{\nu R}$

b. $\rho = \frac{p\mu}{RT}$ **c.** $\rho = \frac{RT}{p\mu}$

d. $\rho = \frac{m}{\prime\prime}RT$ (3p)

3. Energia internă a unui gaz ideal crește atunci când gazul este supus următorului proces termodinamic:

a. destindere adiabatică

b. destindere la presiune constantă

c. comprimare la presiune constantă

d. comprimare la temperatură constantă (3p)

4. Unitatea de măsură în S.I. a capacității calorice a unui corp este:

având masa molară μ , aflat la temperatura T și presiunea p este:

a. J·K⁻¹

b. $J \cdot mol^{-1} \cdot K^{-1}$

c. $J \cdot kq^{-1} \cdot K^{-1}$

d. J

5. O cantitate v = 4 mol de gaz ideal diatomic ($C_V = 2.5 \cdot R$), aflat la temperatura $T_1 = 600 \, \text{K}$, este răcit adiabatic până la temperatura $T_2 = 300 \,\mathrm{K}$. Lucrul mecanic efectuat de gaz este de aproximativ:

a. -30,5 kJ

b. -24.9 kJ

c. 24,9 kJ

d. 30,5 kJ

(3p)

(3p)

II. Rezolvați următoarea problemă:

(15 puncte)

Într-un cilindru orizontal prevăzut cu piston mobil este închisă o cantitate v = 0.5 mol de gaz ideal, ca în

figura alăturată. Gazul se află inițial la temperatura $t_1 = 7^{\circ}$ C și la presiunea $p = \frac{p_0}{2}$.

Pistonul are aria $S = 8,31 \text{ dm}^2$. Un sistem de blocare împiedică deplasarea pistonului în sensul comprimării gazului, dar permite deplasarea cu frecare neglijabilă în sensul măririi volumului. Presiunea atmosferică are valoarea $p_0 = 10^5 \, \text{Pa}$. Determinați:

a. lungimea "a" a porțiunii ocupate de gaz în starea inițială;

b. numărul de molecule din unitatea de volum în starea inițială;

c. temperatura T_2 până la care trebuie încălzit gazul astfel încât pistonul să înceapă să se deplaseze;

d. temperatura T_3 până la care trebuie încălzit gazul, astfel încât lungimea porțiunii ocupate de gaz să se dubleze. Cilindrul este suficient de lung.

III. Rezolvați următoarea problemă:

O cantitate $\nu = 1$ mol de gaz ideal monoatomic ($C_V = 1,5R$) este supusă procesului ciclic $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$, reprezentat în sistemul de coordonate V-T în figura alăturată. Temperatura gazului în starea 1 este $T_1 = 300 \,\mathrm{K}$. Considerați că In $2 \cong 0,69$.

a. Calculati energia internă a gazului în starea 1.

b. Determinați valoarea căldurii *primite* de gaz în timpul unui ciclu.

c. Calculati lucrul mecanic total schimbat de gaz cu mediul exterior în timpul unui ciclu.

d. Reprezentați procesul ciclic în sistemul de coordonate p-V.