# Lesson 1

## Simple Log Functions

Non-Calculator

b. If  $z = \log_3(x)$ , find the following in terms of z.

i. 2x

ii.  $\log_x(27)$ 

13. If  $\log_4(p)=x$  and  $\log_4(q)=y$ , show that  $\log_4\left(\frac{64q^2}{p^3\sqrt{q}}\right)=3-3x+\frac{3y}{2}$ .

17. The graph shown has the rule  $g(x) = \log_e(x-h) + k$ , where h and k are constants.



- a. State the value of h.
- b. Show that  $k = -\log_e(2)$ .
- c. Hence, rewrite the rule in the form  $g(x) = \log_e \left( \frac{x-h}{c} \right)$  , where c is a constant.

### 1 3 marks, 4.5 minutes

[Question 7 from VCE Mathematical Methods (CAS) Examination 1, 2012]

Solve the equation  $2\log_e(x+2) - \log_e(x) = \log_e(2x+1)$ , where x > 0, for x.

#### Calculator

- 13. WE14 The diameter of a tree trunk increases according to the formula  $D=A\times 10^{0.04t}$ , where  $D\,\mathrm{cm}$  is the diameter of the trunk t years after it is first measured and  $A\,\mathrm{cm}$  is the diameter of the trunk when it is first measured.
  - a. Write an equation for D in terms of t if the trunk had a diameter of  $20\,\mathrm{cm}$  when it was first measured.
  - b. When will the diameter be  $25\,\mathrm{cm}$ ?
  - c. After how many years will the diameter be greater than  $30\,\mathrm{cm}$ ?

### Deriving 'e'

#### Non-Calculator

b. 
$$g(x) = e^{x^3 + 3x - 2}$$

с. 
$$h(x)=3e^{4x^2-7x}$$

$${\rm d.}\ y = -5e^{1-2x-3x^2}$$

- 16. Determine the derivative of the function  $f(x)=rac{e^{3x}+2}{e^x}$  and hence find:
  - a. f'(1) in exact form

b. 
$$\{x: f'(x) = 0\}$$

#### Calculator

- 15. The mass, m g, of a radioactive isotope remaining in a sample t hours after observations began is given by the rule  $m(t) = ae^{-kt}$ . Initially there are 4 grams of the isotope. After 6 hours, the mass of the isotope has decreased to 2.8 g.
  - a. Evaluate the values of a and k. Give your answers correct to 3 decimal places where necessary.
  - b. Calculate the rate of decay of the isotope as a function of  $oldsymbol{t}$ .
  - c. Calculate the rate of decay after 6 hours. Give your answer correct to 2 decimal places.



#### 2 8 marks, 12 minutes

[Question 3 a-c from Section 2 VCE Mathematical Methods (CAS) Examination 2, 2014, illustrations redrawn]

In a controlled experiment, Juan took some medicine at 8 pm. The concentration of medicine in his blood was then measured at regular intervals. The concentration of medicine in Juan's blood is modelled by the function  $c(t) = \frac{5}{2} te^{-\frac{3t}{2}}$ ,  $t \ge 0$ , where c is the concentration of medicine in his blood, in milligrams per litre, t hours after 8 pm. Part of the graph of the function c is shown below.



(a) What was the maximum value of the concentration of medicine in Juan's blood, in milligrams per litre, correct to two decimal places?

1 mark (1.5 min)

### Deriving In(x)

### 3 1 mark, 1.5 minutes

[Question 14 from VCE Mathematical Methods Examination 1, 2001]

Determine the derivative of  $\log_e(2x)$  with respect to x.

6. Differentiate the following with respect to x.

a. 
$$y = \log_e \left(3x^4\right)$$

b. 
$$y = \log_e(x^2 + 3)$$

c. 
$$y = \log_e(x^2 + 4x)$$

15. If  $y=\log_e(x+5)$ , determine the equation of the tangent to the curve at the point where x=e-5.

20. The graph of the function  $y = \log_e(x^2 + 1)$  is shown.



- a. Differentiate the function with respect to  $\boldsymbol{x}.$
- b. Points A and B lie on the curve with x values of 2 and -2 respectively. Show that the point of intersection, T, of the tangents at A and B lies on the y-axis.

# **Deriving Trigonometric Functions**

1. WE10 Determine the derivative of each of the following functions.

a. 
$$y = \sin(8x)$$

b. 
$$y = \sin(-6x)$$

2. Differentiate each of the following.

a. 
$$y=\cos(3x)$$

b. 
$$y = \cos(-2x)$$

c. 
$$y = \sin(e^x)$$

5. Determine the derivative of each of the following.

a. 
$$y = \cos(x^2 - 4x + 3)$$

b. 
$$y = \sin(10 - 5x + x^2)$$