IN THE CLAIMS:

- 1. (Currently Amended) An intermediate network device for use within a computer net-
- work having a server configured to provide one or more data streams to a client, each
- stream having a corresponding bandwidth, the network device comprising:
- means for determining network traffic characteristics sufficient to identify a
- stream from the server to the client;
- a packet classification engine for snooping on Real Time Streaming Protocol
- 7 (RTSP) response messages for determining the bandwidth of the stream; and
- a resource reservation protocol (RSVP) transmitter proxy configured to reserve
- 9 resources within the computer network on behalf of the server for allocation to the
- 10 stream.
- 2.(original) The intermediate network device of claim 1 wherein the RSVP transmitter
- 2 proxy is configured to generate and send one or more RSVP Path messages on behalf of
- the server, the one or more RSVP Path messages containing the network traffic character-
- 4 istics and the bandwidth of the stream.
- 3. (original) The intermediate network device of claim 2 wherein the RSVP transmitter
- 2 proxy is configured to terminate RSVP Reservation (Resv) messages that are sent to the
- 3 server.
- 4. (original) The intermediate network device of claim 3 wherein the RSVP transmitter
- 2 proxy is configured to generate and send one or more RSVP Path Teardown (PathTear)
- messages on behalf of the server for releasing the reserved resources allocated to the
- 4 stream.
- 1 Claims 5-8 (Canceled).

- 9. (Previously Presented) The intermediate network device of claim 1 wherein the packet
- 2 classification engine is configured to extract the bandwidth of the stream from one or
- more messages whose contents are organized at least in part in accordance with the Ses-
- 4 sion Description Protocol (SDP) specification standard.
- 1 10. (original) The intermediate network device of claim 9 further comprising a session
- 2 manager configured to store the network traffic characteristics and bandwidth of the
- 3 stream.
- 1 11. (original) The intermediate network device of claim 10 wherein the stream has an
- 2 RTSP state and the session manager includes one or more state machine engines config-
- 3 ured to maintain the RTSP state of the stream.
- 1 12. (original) The intermediate network device of claim 2 wherein
- the client has a network layer address and a transport layer port for use in receiv-
- 3 ing the stream from the server,
- 4 the server has a network layer address and a transport layer port for use in sending
- 5 the stream to the client, and
- the network traffic characteristics include the client's network layer address and
- transport layer port and the server's network layer address and transport layer port.
- 1 13. (original) The intermediate network device of claim 12 wherein
- the stream uses a given transport layer protocol, and
- the network traffic characteristics include the given transport layer protocol.
- 14. (original) The intermediate network device of claim 13 wherein the RSVP Path mes-
- sages generated and sent by the RSVP transmitter proxy on behalf of the server include a
- session object containing the client's network layer address and transport layer port and
- the transport layer protocol associated with the stream.

- 15. (original) The intermediate network device of claim 14 wherein the RSVP Path mes-
- sage includes a sender template object containing the server's network layer address and
- 3 transport layer port associated with the stream.
- 1 16. (original) The intermediate network device of claim 15 wherein the RSVP Path mes-
- sage includes a sender Tspec object containing the bandwidth of the stream.
- 17. (Previously Presented)An intermediate network device for use within a computer net-
- work having a server configured to provide one or more data streams to a client, each
- 3 stream having a corresponding bandwidth, the intermediate network device comprising:
- 4 means for determining traffic characteristics sufficiently to identify a stream from
- 5 the server to the client;
- 6 means for determining the bandwidth of the stream;
- a resource reservation protocol (RSVP) transmitter proxy configured to reserve
- 8 resources within the computer network on behalf of the server for allocation to the stream
- and to generate and send one of more RSVP Path messages on behalf of the server, the
- one or more RSVP Path messages containing the network traffic characteristics and the
- bandwidth of the stream, and means for obtaining a differentiated services codepoint
- (DSCP) value that is based on the bandwidth of the stream.
- 18. (original) The intermediate network device of claim 17 wherein the RSVP transmitter
- 2 proxy is configured to load the DSCP into the RSVP Path message generated and sent on
- 3 behalf of the server.
- 19. (original) The intermediate network device of claim 18 wherein the RSVP Path mes-
- 2 sage includes a DCLASS object containing the DSCP.
- 20. (Previously Presented) A method for providing one or more data streams from a
- server to a client, each stream having a corresponding bandwidth, the method comprising:

3	receiving a message from a client to a server,
4	determining network traffic characteristics sufficient to identify a stream from the
5	server to the client;
6	determining the bandwidth of the stream; and
7	sending via a resource reservation protocol (RSVP) transmitter proxy, messages
8	to nodes along a data path from the server to the client to reserve resources within the
9	computer network on behalf of the server for allocation to the stream.
1	21. (Previously Presented) The method of claim 20 wherein the message from the client
2	is an RTSP Describe Request.
1	22. (Previously Presented) A method for operating a router, comprising:
2	receiving a message from a client, the message directed to a server, the client
3	message requesting that the server begin sending a traffic flow to the client;
4	receiving a response message from the server, the response message responding to
5	the message from the client;
6	transmitting, in response to the message, a resource reservation request message
7	(RSVP request message) to the client, the RSVP message establishing a path to the client;
8	receiving a RSVP reply message from the client, the RSVP reply message reserv-
9	ing resources for the requested traffic flow;
10	receiving a data message of the traffic flow from the server; and
11	transmitting the data message of the traffic flow with a resource reservation indi-
12	cia in the data message, the resource reservation indicia to direct the data message to
13	travel along the reserved resources.

termine if the message is from a client, and if the message requests that the server send a

reading a message received by the router from a computer network in order to de-

23. (Previously Presented) The method of claim 22, further comprising:

1

2

3

4

traffic flow to the client.

24. (Previously Presented) The method of claim 22, further comprising: 1 reading a message received by the router from the server in order to determine if 2 the message is a response to a client request for a traffic flow. 3 25. (Previously Presented) The method of claim 22, further comprising: 1 reading from messages received by the router parameters of a traffic flow, the 2 traffic flow requested by the client for the server to transmit to the client. 3 26. (Currently Amended) A method for operating a router, comprising: 1 receiving a first message from a client, from a computer network in order to de-2 termine if the first message is from the client, the first message directed to a server, the 3 first message requesting that the server begin sending a traffic flow to the client if the 4 first message requests that the server send the traffic flow to the client, the first message 5 directed to a server to request a traffic flow from the server to the client; 6 determining a sequence number of the first message; 7 reading a second message received by the router from the server in order to de-8 termine if the message is a response to the first message, and determining if the second 9 message is a response to the first message by checking a client request for a traffic flow, 10 the determining in response to discovering the a sequence number in the second message; 11 reading from the first message and the second message at least one parameter of 12 [[a]] the traffic flow, the traffic flow requested by the client for the server to transmit to 13 the client; 14 receiving a response message from the server, the response message responding to 15 the message from the client; 16 writing the at least one parameter into a resource reservation request message 17

(RSVP request message);

18

19	transmitting, in response to the second message, a resource reservation request
20	message (the RSVP request message [[+]] to the client, the RSVP message establishing
21	a path to the client;
22	receiving a RSVP reply message from the client, the RSVP reply message reserv
23	ing resources for the requested traffic flow;
24	receiving a data message of the traffic flow from the server; and
25	transmitting the data message of the traffic flow with a resource reservation indi-
26	cia in the data message, the resource reservation indicia to direct the data message to
27	travel along the reserved resources; and
28	writing the at least one parameter into the RSVP request message.
1	27. (Previously Presented) The method of claim 22, further comprising:
2	using a Resource reSerVation (RSVP) protocol to learn the contents of messages
3	received by the router.
	OO (D. 1 D. 4 D. Tl. 41 d.d.f.l.in. 22 footbox commissions)
1	28. (Previously Presented) The method of claim 22, further comprising:
2	connecting the router one hop away from the server;
3	receiving first messages by the router, the first messages originating from com-
4	puters connected to the Internet and directed to the server; and
5	receiving second messages by the router, the second messages originating from
6	the server and directed to clients connected to the Internet.
1	29. (Previously Presented) A router, comprising:
2	means for receiving a message from a client, the message directed to a server, the
3	client message requesting that the server begin sending a traffic flow to the client;
4	means for receiving a response message from the server, the response message
5	responding to the message from the client;

6	means for transmitting, in response to the message, a resource reservation request
7	message (RSVP request message) to the client, the RSVP message establishing a path to
8	the client;
9	means for receiving a RSVP reply message from the client, the RSVP reply mes-
10	sage reserving resources for the requested traffic flow;
11	means for receiving a data message of the traffic flow from the server; and
12	means for transmitting the data message of the traffic flow with a resource reser-
13	vation indicia in the data message, the resource reservation indicia to direct the data mes-
14	sage to travel along the reserved resources.

- 30. (Previously Presented) The router of claim 29, further comprising: 1
- means for reading a message received by the router from a computer network in 2 order to determine if the message is from a client, and if the message requests that the 3
- server send a traffic flow to the client. 4

1

- 31. (Previously Presented) The router of claim 29, further comprising:
- means for reading a message received by the router from the server in order to 2 determine if the message is a response to a client request for a traffic flow. 3
- 32. (Previously Presented) The router of claim 29, further comprising: 1
- means for reading from messages received by the router parameters of a traffic 2 flow, the traffic flow requested by the client for the server to transmit to the client. 3
 - 33. (Currently Amended) A router, comprising:
- means for receiving a first message from a client, from a computer network in or-2
- der to determine if the first message is from the client, the first message directed to a 3
- server, the first message requesting that the server begin sending a traffic flow to the cli-4
- ent if the first message requests that the server send the traffic flow to the client, the first 5
- message directed to a server to request a traffic flow from the server to the client;

7	means for determining a sequence number of the first message;
8	means for reading a second message received by the router from the server in or-
9	der to determine if the message is a response to the first message, and determining if the
10	second message is a response to the first message by checking a client request for a traf-
11	fie flow, the determining in response to discovering the a sequence number in the second
12	message;
13	means for reading from the first message and the second message at least one pa-
14	rameter of [[a]] the traffic flow, the traffic flow requested by the client for the server to
15	transmit to the client;
16	means for receiving a response message from the server, the response message re
17	sponding to the message from the client;
18	means for writing the at least one parameter into a resource reservation request
19	message (RSVP request message);
20	means for transmitting, in response to the message, a resource reservation reques
21	message (the RSVP request message [[]]] to the client, the RSVP message establishing a
22	path to the client;
23	means for receiving a RSVP reply message from the client, the RSVP reply mes-
24	sage reserving resources for the requested traffic flow;
25	means for receiving a data message of the traffic flow from the server; and
26	means for transmitting the data message of the traffic flow with a resource reser-
27	vation indicia in the data message, the resource reservation indicia to direct the data mes-
28	sage to travel along the reserved resources; and
29	- means for writing the at least one parameter into the RSVP request message.
1	34. (Previously Presented) The router of claim 22, further comprising:
2	means for using a Resource reSerVation (RSVP) protocol to learn the contents of
,	massages received by the router

35. (Previously Presented) The method of claim 29, further comprising:

- means for connecting the router one hop away from the server;
- means for receiving first messages by the router, the first messages originating
- from computers connected to the Internet and directed to the server; and
- 5 means for receiving second messages by the router, the second messages originat-
- 6 ing from the server and directed to clients connected to the Internet.

- Please add new claims 36 et al.
- 36. (New) A method for operating a router; comprising:
- receiving a first message from a client, the first message directed to a server to re-
- quest a traffic flow stream from the server to the client;
- receiving a second message from the server, and determining that the second mes-
- sage is a response to the first message;
- reading characteristics from the first message and the second message to identify
- the stream from the server to the client;
- snooping the second message to determine a bandwidth of the stream; and
- 9 reserving resources within a computer network on behalf of the server for alloca-
- tion to the stream.
- 1 37. (New) The method of claim 36, further comprising:
- determining a sequence number of the first message; and
- checking a sequence number in the second message to determine the second mes-
- sage is the response to the first message.
- 1 38. (New) The method of claim 36, further comprising:
- defining the first message as a Real Time Streaming Protocol (RTSP) request
- 3 message.
- 1 39. (New) The method of claim 36, further comprising:
- defining the second message as an RTSP response message.
- 1 40. (New) A router; comprising:
- means for receiving a first message from a client, the first message directed to a
- 3 server to request a traffic flow stream from the server to the client;

- 4 means for receiving a second message from the server, and determining that the
- second message is a response to the first message;
- 6 means for reading characteristics from the first message and the second message
- 7 to identify the stream from the server to the client;
- means for snooping the second message to determine a bandwidth of the stream;
- 9 and
- means for reserving resources within a computer network on behalf of the server
- for allocation to the stream.
- 1 41. (New) The router of claim 40, further comprising:
- means for determining a sequence number of the first message; and
- means for checking a sequence number in the second message to determine the
- second message is the response to the first message.
- 1 42. (New) The router of claim 40, further comprising:
- means for defining the first message as a Real Time Streaming Protocol (RTSP)
- 3 request message.
- 1 43. (New) The router of claim 40, further comprising:
- means for defining the second message as an RTSP response message.
- 1 44. (New) A router; comprising:
- a packet frame receiver to receive a first message from a client, the first message
- directed to a server to request a traffic flow stream from the server to the client;
- 4 the packet frame receiver further configured to receive a second message from the
- 5 server;
- a traffic scheduler configured to determine that the second message is a response
- to the first message, and to read characteristics from the first message and the second
- 8 message to identify the stream from the server to the client;

a packet classification engine for snooping the second message to determine a 9 bandwidth of the stream; and 10 a resource reservation protocol (RSVP) transmitter proxy configured to reserve 11 resources within a computer network on behalf of the server for allocation to the stream. 12 45. (New) The router of claim 44, further comprising: 1 the traffic scheduler further configured to determine a sequence number of the 2 first message, and to check a sequence number in the second message to determine the 3 second message is the response to the first message. 4 46. (New) The router of claim 44, further comprising: 1 the first message is further defined as a Real Time Streaming Protocol (RTSP) 2 request message. 3 47. (New) The router of claim 44, further comprising: 1 the second message is further defined as an RTSP response message. 2 48. (New) A computer readable media, comprising: 1 said computer readable media having instructions written thereon for execution by 2 a router for the method of, 3 receiving a first message from a client, the first message directed to a server to re-4 quest a traffic flow stream from the server to the client; 5

reserving resources within a computer network on behalf of the server for allocation to the stream.

snooping the second message to determine a bandwidth of the stream; and

6

7

8

9

10

11

12

sage is a response to the first message;

the stream from the server to the client;

receiving a second message from the server, and determining that the second mes-

reading characteristics from the first message and the second message to identify

1	49. (New) Electromagnetic signals propagating on a computer network, comprising:
2	said electromagnetic signals carrying instructions for executing on a router the
3	method of,
4	receiving a first message from a client, the first message directed to a server to re-
5	quest a traffic flow stream from the server to the client;
6	receiving a second message from the server, and determining that the second mes
7	sage is a response to the first message;
8	reading characteristics from the first message and the second message to identify
9	the stream from the server to the client;
10	snooping the second message to determine a bandwidth of the stream; and
11	reserving resources within a computer network on behalf of the server for alloca-
12	tion to the stream.