Chapter 1

1.1 - Population, Samples, and Statistics

Population

A set of all objects of interest in a statistical study

∃ Example

The GPA of all SJSU students

Sample

(i) Definition

Any subset of a population

: Example

The GPA of 4 random SJSU students

Variable

(i) Definition

Any characteristic whose value may change from one object to another in a statistical study

Note

Use uppercase letters to name variables and lowercase letters to represent actual values of the variables

: Example

$$x = 5.2(lb)$$

Discrete Variable

(i) Definition

A numerical variable where its set of possible values either is finite or can be listed in an infinite sequence (one in which there is a first number, second number, and so on)

:≡ Example

The number of pets in a household

Continuous Variable

(i) Continuous Definition

A numerical value where its possible values consist of an entire interval on the number line

:≡ Example

Hair length

Collecting Data

Data should be properly collected

Sampling Techniques

- Simple Random Sampling
- Stratified Sampling
- Cluster Sampling
- Convenience Sampling

Systematic Sampling

1.2 - Pictorial and Tabular Methods in Descriptive Statistics

Stem and Leaf Plots

Dot Plot

(i) Definition

An attractive summary of numerical data when the data set is reasonably small an there are relatively few distinct values

- Each observation is represented by a dot above the corresponding location on a number line for each occurrence
- Gives information about shape and various indicators

Distribution and Histogram for Discrete Data

i Frequency

The number of times that the value of a discrete variable occurs in the set

(i) Frequency Distribution

Lists data values along with their corresponding frequencies or counts

(i) Histogram

A bar graph based on the frequency distribution of data

1.3 - Measures of Location

(i) Categorical Data

1.4 - Measures of Variability

(i) Sample Variance

 $s^2 = rac{\sum_{i=1}^n (x_1 - x)^2}{n-1} = rac{s_x x}{n-1}$ where $S_x x$ is called the sum of squares

(i) Sample Standard Deviation

$$s=\sqrt{s^2}$$

Finding the Sample Standard Deviation Using the Definition

- Find the sample mean x
- Compute the deviations $(x_1 x)$
- Square the deviation $(x_1 x)^2$
- Add the squares of deviations $S_x x = \sum_{i=1}^n (x_1 x)^2$
- Divide the result by the sample size n 1
- Take the square root of the resulting number

(i) Shortcut Formula

see notes

(i) Population Variance

 $lpha^2 = rac{\sum (x_1 - \mu)^2}{N}$, where μ is the population mean and N is the size of the population

(i) Population Standard Deviation

$$\alpha = \sqrt{\alpha^2}$$

(i) Properties of Sample Variance

1. If
$$y_1=x_1+c,y_2=x_2+c,\ldots y_n=x_n+c,$$
 then $s^{2y=}s_x^2$

2. If
$$y_1=cx_1,\ldots y_n=cx_n$$
, then $s_y^2=c^2s_x^2, s_y=|c|s_x$
Where s_x^2 is the sample variance of the x's ad s_y^2 is the sample variance of the y's

Quartiles

 Divide an ordered data set (arranged in increasing order) into 4 groups with about 25 percent of the values in each group

- The second quartile Q_2 is the median of the data set
- The median of the lower half is Q_1 (lower fourth)
- The median of the upper half is Q_3 (upper fourth)
- Even observations average the two values at each quartile split
- Odd observations include median in both halves, the middle of each half becomes the fourth
- Interquartile Range (fourth spread)
 - IQR or f_s
 - $IQR = f_s = Q_3 Q_1$
- Five Number Summary
 - Q_1, Q_2, Q_3
 - Minimum value
 - Maximum Value
- Outliers
 - A mild outlier is if any observation is farther than 1.5f from the closest fourth
 - An extreme outlier is if any observation is farther than 3f from the nearest fourth

Box Plot

- 1. Draw a number line
- 2. Plot the quartiles
- 3. Draw a box next to the number line that has a line at the IQR
- 4. Plot min and max
- 5. Draw "whiskers" from min/max (excluding outliers, if any) to box
- 6. Draw an asterisks to represent outlier

Distribution Shape

- Rotate box plot 90 degrees clockwise if vertical
- Match to shape of histogram (excluding outliers on box plot)