

Komunikasi via 10-86

Satelit Amatir Radio Indonesia

Yono Adisoemarta

YD0NXX / N5SNN

OSCAR

- Orbiting Satellite Carrying Amateur Radio
- OSCAR 1:
 - 12 Desember 1961
 - Hanya beacon
- OSCAR 3:
 - Ada transponder (repeater SSB)

Payload dari OSCAR

- CW: dari yang pertama sampai sekarang
- Telemetri: pengiriman data kondisi satelit
- Transponder: repeater untuk SSB
 - Inverting / non-inverting
 - Wide bandwidth (bisa beberapa paralel QSO sekaligus)
- FM: repeater mode cross band
- APRS: Automatic Packet Reporting System
- Camera

Beberapa Satelit Radio Amatir

- AO-07: Sudah pernah mati dan hidup kembali
 - Diluncurkan 1974, 1981 mati, dan 2002 hidup kembali
- AO-27: FM Repeater (no tone)
- FO-29: SSB FM
- NO-44: APRS
- SO-50 (Saudi Oscar): Voice FM
- AO-73: Data dan SSB
- NO-84 (PSAT): APRS
- AO-85 (Fox 1A): FM
- IO-86: APRS dan voice FM
- AO-92: DUV dan FM
- LO-93: Lunar Oscar satelit amatir di bulan
- QO-100: Geostationer diatas Eropa dan Timur Tengah
- PO-101: Dari Phillipina
- NO-104: APRS

LAPAN A2/ORARI Satelit Radio Amatir Indonesia

AMSAT-ID

Disain anak bangsa

- LAPAN: untuk kendaraan (vehicle) lanjutan disain A1 (TUBsat)
- ORARI: rekayasa muatan (payload design)
 harus bisa menggunakan HT (untuk portable ops)
- Diluncurkan: 28 September 2015
 - Roket PSLV dari India

Muatan Amatir:

- APRS (simplex, VHF)
- Voice (duplex, V/U mode)

Karakteristik

- LEO: Low Earth Orbit
- Inklinasi: ~6 deg
- Durasi: ~11 menit
- Interval: ~100 menit
- Coverage:
 - Seluruh Indonesia
- High power: 5 watt (terbesar)
 - Bisa monitor dengan HT saja

Lintasan IO-86

10 (Indonesia Oscar) - 86

- Muatan Radio Amatir di Satelit LAPAN A2/ORARI
 - APRS (Automatic Packet Reporting System)
 Digipeater
 - Komunikasi keyboard
 - Data cuaca (Weather Station)
 - Voice Repeater (UHF/VHF)

Down Link 435.880 Mhz

Up Link 145.880 Mhz + Tone

Komunikasi Voice

Komunikasi APRS

Teknik Operasi Satelit

- Beberapa komponen untuk menggunakan Satelit Amatir Radio:
 - 1. Peralatan:
 - Radio, Antena
 - laptop / HP
 - Voice recorder
 - 2. Sked: online atau offline
 - 3. Tracking

Radio dan Antena

- Karena karakteristik muatan satelit yang crossband, maka:
 - Perlu 2 antena (atau dual-band antenna)
 - Portable: Arrow / Elk / IOio
 - Mobile: SG-7500, SG-7900
 - Fix station: M2 (cross polarization)
 - Perlu radio yang dual-band (atau 2 buah radio single-band)
 - Perlu tracking (manual atau rotator)

Antena Portable

- Arrow:
 - Dual yagi (VHF dan UHF) cross-line
 - Perlu duplexer

Arrow II Satellite Antenna

Work a Satellite with an HT

Antena Portable (2)

- Moxon:
 - Dual yagi in-line

Antena Portable (3)

Yagi-Moxon:

- Dual-band in-line
- Tidak perlu duplexer
- Sangat mudah dibuat

Benny, YD0SPU, http://x.benny.id

Dalam milimeter

Antena Portable (4)

- CJU:
 - Single Band
 - Mudah dibuat

Antena Portable (5)

- 10io:
 - Dual yagi
 - in-line

Antena Rumah

- QFH (Quadrifillial Helix):
 - Single-band
 - Half- Spherical
- Yagi:
 - Sangat terarah
 - Perlu rotator

Radio

• HT:

- Kalau bisa yang dual-band full-duplex (bisa monitor downlink sewaktu TX)
- Atau gunakan 2 HT
 - Note: HT Cina sering memancarkan 3rd harmonic VHF yang menutup downlink di UHF
 - Kalau TX di UHF tidak masalah

Mobile:

Radio dual-band yang bisa full-duplex

Radio (2)

- Fix Station:
 - Radio multiband
 - Sebaiknya memiliki CAT control (untuk Doppler Compensation)
 - Bisa 2 buah radio yang single-band

Sked (Schedule)

Untuk mengetahui kapan satelit akan lewat diatas kita dan arahnya

Online & Komputer

- Online / Web:
 - Heavens Above

- N2YO
- NASA
- AMSAT-NA
- AMSAT-LU
- Komputer:
 - Orbitron free

- Nova for Windows \$60
- MacDoppler \$80-100
- <u>SatPC32</u> \$45-50
- GPREDICT Linux/Mac/ more free
- SimpleSat Look Down Windows
- SatPC32 Windows

Offline (SmartPhone)

- <u>PocketSat+ for Palm, Pocket PC</u> -\$25
- PocketSat3 'droid and iOS \$25
- GoSatWatch iOS devices \$10
- Satellite Explorer Pro iOS 6.1+

- AmsatDroid FREE
- <u>Heavens-Above</u> Android free
- <u>ISS Detector</u> Android free

Tracking

- Satelit akan bergerak dengan cepat diatas kita (umumnya 10 menit dari muncul diatas horison sampai terbenam kembali)
- Memerlukan keahlian untuk mengikuti pergerakan satelit sewaktu melakukan QSO
- Manual: menggunakan tangan untuk mengatur arah antena
- Otomatis: komputer yang mengontrol rotator

Contoh Tracking

 Gunakan kompas untuk mengatur arah

 Lingkaran terluar adalah horison

 Lingkaran tengah 30deg/ elevasi

Lingkaran dalam 60 degelevasi

Titik ditengah 90 deg

Doppler

- Pergeseran frekuensi karena perbedaan kecepatan dua benda
 - Bunyi kereta api yang berbeda saat mendekati dan menjauhi kita
- Efek Doppler kecil di 144 MHz tetapi besar di 440 MHz
 - TX bisa tetap di 145.880 MHz (FM capture effect)
 - RX harus bergeser +- 10 kHz dari nominal
 - mulai di 435.890 dan pelan-pelan turun ke 435.870

Tumbling

- Efek sisa dari peluncuran adalah satelit akan berguling (tumbling)
- Antena tidak selalu menghadap bumi
- Efeknya adalah polarisasi yang terus berubah, membuat fading (QSB)
- Harus selalu memuntir antena untuk mendapatkan sinyal terbaik

Prosedur QSO (Voice)

- Pastikan clock di komputer sudah akurat
- Tentukan jam passing
- Gambar di lantai track satelit
- Set radio pada:
 - TX: 145.880 MHz + Tone
 - Downlink: 435.880 MH +- Doppler
- Pastikan sudah bisa mendengar downlink
- Sewaktu sudah kosong tekan PTT dan sebut "This is <Callsign> via IO-86" (jangan pakai CQ CQ CQ)

Prosedur QSO (Voice) – 2

- Pencet PTT dan sebut callsign phonetically
- Untuk menjawab: "<callsign1> this is <callsign 2> your are 59 via <satelit> QSL?"
- Terakhir: "<callsign1> QSL, good luck"
- Ingat:
 - Waktu satelit itu terbatas, QSO dibuat sesingkat mungkin supaya banyak teman bisa melakukan QSO dalam passing ini
 - Banyak spurious, jangan putus asa
 - Sabar, jangan meniban komunikasi yang sedang berlangsung, biarkan komunikasi tsb selesai

Rangkuman QSO

- Atur arah antena
- AOS: atur freq nominal + 10 kHz
 qso
- AOS + 2 menit: Freq + 5 kHz– qso
- TCA: Freq nominal– qso
- TCA + 2 min : Frq 5 kHz
 qso
- LOS: freq 10 kHz– selesai

Akrobat Komunikasi Satelit

- Dalam waktu 10 menit
 - Penjejakan arah: AOS → TCA → LOS
 - Mengatur frekuensi: +10 kHz → nominal → 10
 kHz
 - Mengatur sikap (attitude) antena:
 - Vertikal ← → horizontal
 - Melakukan QSO
 - Panggil, jawab, selesai (jangan pakai CQ CQ CQ)
 - Mencatat setiap QSO

Terima Kasih Sesi Pertanyaan

Spesifikasi

LAPAN-A2/LAPAN-ORARI

Indonesian Microsatellite for Amateur Communication, Maritime Traffic monitoring and High Performance Surveillance System

Satellite Technical Specification

Dimension: 500X470X380 mm

Weight : 74 kg

Orbit : ~ 6 inclination (Equatorial)

Altitude : 630 KM

Power System:

- 4 GaAs Solar Array, 465X262 mm, 30 cells in series, Max 30W(EOS)
- 4 Lithium-ion Batteries, 15V nominal Voltage 6.1 Ah

Communication Data Handling:

- 2 TT&C UHF 1200 bps, FFSK modulation, 5W output
- S-Band payload Communications , 3.5 W RF Output
- OBDH 32 bit RISC Processor, 128/256 byte internal, 1 Mbyte RAM and 1 Mbyte Fash Memory External,

Attitude Control System

- 3 Wheel/Fibre Optic Laser Gyros in Orthogonal Axis 2 CCD Star Sensor, Magnetic Coil, 6 Single Solar
- Cell for Sun Sensor and 3 Axis magnetic Field sensor

Payload

- Camerra-1
 - Digital Space Camera 1000 mm Lens 2000X2000 Pixel
- Ground Resolution 3.5m, Swath 7 Km
- Camerra-2
 - Color CCD 1000mm Lens, 352X582 Pixel
 - Ground Resolution 5 m , Swath 3.5 Km

Satellite Structure and Sub System

Multi Missions Satellite System

- The LAPAN-A2/LAPAN-ORARI for cover entire Indonesia region. In this particular purposes, the satellite will be flown in Near Equatorial Orbit at ~ 6 deg with near circular orbit. This orbit makes satellite able to pass over the Indonesia 14 times/day.
- The LAPAN-A2/LAPAN-ORARI especially for support 3 (three) main missions:
 - Monitoring of Shipping Traffic from Space using Automatic Identification System (AIS-ASR100) because the coastal station - based system has a very important restriction. It is not suitable for monitoring the traffic on huge ocean areas.
 - Establish the communication among the Indonesian amateur radio communities (ORARI) using amateur radio frequency for disaster mitigation.
 - ➢ High performance surveillance system for monitoring earth surface of Indonesia archipelago. This surveillance system applied 2 (two) high resolution cameras with 3.5 and 5 m ground resolution

APRS

- Gunakan Path: YBSAT atau ARISS
- Single frequency: TX dan RX di 145.825 MHz

Apa itu APRS

- Automatic Packet Reporting System
- Pengiriman data melalui:
 - Radio
 - Cellular phone network (GSM, CDMA)
 - Internet
- Bentuk data yang dikirimkan:
 - Posisi
 - Informasi
 - Keyboard to keyboard messages
- Ciri khas:
 - One-to-many (tanpa tujuan tertentu)
 - Ringan (network load kecil)
 - Mudah dibuat
- Sejarah:
 - Ditemukan pada tahun 1984 oleh Bob Bruninga (WB4APR)
 - Menjadi populer di Amerika Serikat sejak 1995

Arah Data

- Dua arah
- Dari GPS, ke Encoder, ke Radio
- Dari radio ke decoder, ke GPS dan memunculkan icon stasiun amatir lain di layar GPS / Web Internet
 - Real Time

GPS dan APRS

- GPS
 - NMEA
 - Serial RS232, kecepatan 4800 bps
- Encoder ("tracker")
 - Audio
 - Data speed 1200 bps
- Radio
 - Frekuensi:
 - VHF: 144.390 MHz
 - UHF: 433.390 MHz
 - HF

Aplikasi APRS

- Penjejakan stasiun bergerak:
 - Penjejakan team SAR di gunung / pantai / sungai (contoh: banjir di Bengawan Solo - 2008)
 - Pergerakan sehari-hari
 - konvoi antar kota (Api Pattimura di Ambon 2007)
 - Penjejakan pelari maraton (rombongan sepeda ke Bali untuk UNFCCC 2010)
- Pengiriman posisi stasiun tetap
 - Pulau pulau terluar Indonesia
 - Rumah, club station, digipiter, dll

Aplikasi APRS

- Informasi Marabahaya
 - Tinggi air dibendungan (prediksi banjir untuk Jakarta)
 - Tinggi muka air laut (trigger warning kalau drop mendadak
 Tsunami)
 - Posisi gempa bumi
 - Longsor
- Informasi
 - Berita singkat tentang kemacetan dijalan
 - Telemetri data (battery voltage, CO₂ content, temperature, konsentrasi ion, dll)
 - Stasiun cuaca amatir (membantu BMG)

Api Partimura

Inspeksi Bengawan Solo

Informasi / Station Cuaca

Informasi / Station Cuaca

Lokasi Gempa Terkini

APRS Infrastucture

- Yang ada dibelakang layar
- iGate (Internet Gateway)
 - Memasukkan data ke Internet
- APRS-IS (Internet Server)
 - Database semua traffic
- Pancar-ulang digital (digi-peater)
 - Memperluas cakupan jaringan
 - Semakin tinggi, semakin luas → SATELIT!

APRS Infrastucture

APRS di Satelit

- Ada beberapa yang sudah tersedia
 - 1200 bps: PCSAT (NO-44), ISS, PSAT (NO-84), IO-86
 - 9600 bps: AO-51
- Kegunaan
 - Latih diri
 - Pantauan posisi dari daerah terpencil
 - Kondisi cuaca
 - Tinggi air-laut
 - Komunikasi marabahaya dari daerah terpencil
 - Posisi team SAR
 - Laporan tertulis dari team SAR

Contoh APRS via ISS

Pemasangan APRS di Pulau Terluar Indonesia

Hal yang perlu mendapat perhati

- Kemampuan dan Peralatan
 - Pelatihan oleh AMSAT-ID / ORARI
 - Kit APRS tracker dan antena yang murah buatan dalam negeri
- Penggunakan Frekuensi
 - Frekuensi yang bersih dari pemakai liar
 - Perlu penegakan hukum pemakaian frekuensi
- Cakupan satelit yang singkat
 - Sepuluh menit setiap passing, dan dengan interval setiap 100 menit
 - Cakupan dipersering dengan menambah satelit

Terima Kasih

Pertanyaan ?