

Федеральное государственное бюджетное образовательное учреждение высшего образования «НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

Кафедра прикладной математики
Практическое задание № 1
по дисциплине «СППМиНПО»

УСТОЙЧИВЫЕ МЕТОДЫ ОЦЕНИВАНИЯ ПАРАМЕТРОВ СТАТИСТИЧЕСКИХ МОДЕЛЕЙ

Бригада 1

КАСИМОВ ТИМУР

Группа ПММ-21

БАРИЕВ РОДИОН

Вариант 7в

ЧЕРНЕНКО ДАНИЛА

Преподаватели

лисицин д. в.

Новосибирск, 2022

1. Цель работы

Изучить методы робастного оценивания параметра сдвига распределений случайных величин.

2. Вариант

Распределение Хьюбера со значением параметра $\nu = 0.05$.

3. Содержание работы (уровень выполнения №2)

- 1. Разработать программу, которая реализует:
- 2. Провести проверку генератора чистого распределения путем сравнения выборочных характеристик с их теоретическими значениями на выборках большого объема (N порядка 10^5-10^7); как альтернативу можно использовать какие-либо критерии согласия, например, хи-квадрат, в том числе с использованием стороннего программного обеспечения.
- 3. Для выборок с разными видами распределений вычислить следующие оценки параметра сдвига:
 - среднее арифметическое;
 - выборочная медиана;
 - оценка максимального правдоподобия;
 - усеченное среднее с разными уровнями (как минимум три обязательных значения 0.05, 0.1, 0.15);
 - обобщенные радикальные оценки с разными значениями параметра (как минимум три обязательных значения 0.1, 0.5, 1).

Использовать выборки, имеющие слеудющие виды распределений:

- чистое распределение;
- засоренное распределение с симетричным засорением (равные сдвиги у чистого и засоряющего распределений, масштаб у засоряющего больше в 2-3 раза, чем у чистого);
- засоренное распределение с ассиметричным засорением (сдвиги у чистого и засоряющего распределений отличаются на 2-3 стандартных отклонения, масштаб у засоряющего распределения не меньше, чем у чистого).

При выборе параметров засорения ориентироваться на график чистой, засоряющей и засоренной плотностей. Рекомендуемый уровень засорения $\varepsilon=0.05-0.4$. Рекомендуемый объем выборки N=100-1000. Сравнить устойчивость оценок для распределений указанных видов (минимум по три выборки для каждого набор значений параметров) по их отклонению от истинного значения, сопоставить результаты сравнения со свойствами фукнций влияния оценок.

4. Ход работы

Стандартное распределение Хьюбера имеет плотность

$$f(x,\nu) = \frac{1-\nu}{\sqrt{2\pi}} \frac{\exp\{-\frac{x^2}{2}\}, |x| \le k}{\exp\{\frac{1}{2}k^2 - k|x|\}, |x| > k},$$

в нашем случае k=1.398, $\nu=0.05$.

- Для генерации данных использовался следующий алгоритм: 1. Вычислить константу $P=rac{2(1-v)}{k}f(k,v)$ один раз для каждого значения v.
 - 2. Сгенерировать псевдослучайное число r_1 , равномерно распределенное на интервале (0, 1). Если $r_1 \ge P$, перейти на шаг 3, иначе перейти на шаг 5.
 - 3. Сгенерировать стандартное нормальное псевдослучайное число x_1 .
 - 4. Если x_1 принадлежит интервалу [-k, k], то это искомое псевдослучайное число, иначе перейти на шаг 3.
 - 5. Сгенерировать псевдослучайное число r_2 , равномерно распределенное на интервале (0, 1). Вычислить $\chi_2 = k - \frac{\ln r_2}{\nu}$.
 - 6. Если $r_1 < \frac{r}{2}$ то x искомое псевдослучайное число, иначе искомым псевдослучайным числом является -x.

Для проверки генераторы использовалась выборка размером 10^7 элементов.

			•
Характеристика	Теоретически	ожидаемое	Полученное значение
	значение		
Дисперсия	1.41		1.36828
Коэффициент эксцесса	4.52		4.60256

График функции плотности имеет следующий вид:

Прочие статистические характеристики:

Среднее: 0.00026Медиана: 0.00023Ассиметрия: -0.00107

Максимальное значение: 11.49666Минимальное значение: -10.81895

• OMΠ: 0.00017

Усеченное среднее (0.05): 0.00032Усеченное среднее (0.1): 0.00038Усеченное среднее (0.15): 0.00037

Оценки параметра сдвига для разных распределений

Объем выборки во всех выборках 1000 элементов. Истинное значение параметра сдвига во всех распределениях 0.

Чистое распределение (heta=0, $\lambda=1$, arepsilon=0)

Номер выборки	1	2	3
Среднее арифметическое	-0.01702	-0.04922	-0.02416
Выборочная медиана	-0.01779	-0.05904	-0.03607
Дисперсия	1.31789	1.36590	1.33357
Ассиметрия	0.05445	-0.18584	-0.08010
Эксцесс	4.35242	4.55714	5.37652
Максимальное значение	5.24948	4.78132	4.53205
Минимальное значение	-5.59602	-5.08408	-5.76715
Оценка максимального правдоподобия	0.08743	0.06248	0.01076
Усеченное среднее (уровень 0.05)	-0.02414	-0.03673	-0.02978
Усеченное среднее (уровень 0.10)	-0.02496	-0.03619	-0.03183
Усеченное среднее (уровень 0.15)	-0.02079	-0.03298	-0.03022
Обобщенные радикальные оценки (параметр 0.1)	-0.02520	-0.03322	-0.03262
Обобщенные радикальные оценки (параметр 0.5)	-0.01999	-0.02738	-0.03420
Обобщенные радикальные оценки (параметр 1)	-0.00691	-0.02553	-0.02945

Распределение с симметричным засорением (heta=0, $\lambda=3$. 03, arepsilon=0. 15)

Номер выборки	1	2	3
Среднее арифметическое	-0.01924	-0.01217	-0.06131
Выборочная медиана	-0.00016	-0.01989	-0.01056
Дисперсия	2.58701	2.83885	2.96134
Ассиметрия	0.13041	-0.15220	-0.83855
Эксцесс	7.23873	7.27586	10.20051
Максимальное значение	10.66631	9.25153	7.11106
Минимальное значение	-7.21025	-8.88741	-13.74434
Оценка максимального правдоподобия	0.03174	-0.03341	-0.00368
Усеченное среднее (уровень 0.05)	-0.02147	-0.00253	-0.03016
Усеченное среднее (уровень 0.10)	-0.01677	-0.00657	-0.02489
Усеченное среднее (уровень 0.15)	-0.00914	-0.01633	-0.02150
Обобщенные радикальные оценки (параметр 0.1)	-0.00301	-0.02091	-0.01293
Обобщенные радикальные оценки (параметр 0.5)	0.00878	-0.03506	-0.00996
Обобщенные радикальные оценки (параметр 1)	0.01954	-0.04897	-0.01044

Распределение с асимметричным засорением (heta=1.5, $\lambda=3$, arepsilon=0.25)

Номер выборки	1	2	3
Среднее арифметическое	0.41527	0.39734	0.43892
Выборочная медиана	0.17690	0.15426	0.15784
Дисперсия	3.62617	4.28311	4.66174
Ассиметрия	1.06094	0.81454	0.91784
Эксцесс	6.20427	6.21311	7.84995
Максимальное значение	9.30508	12.27060	16.07702
Минимальное значение	-6.84261	-9.19362	-9.46030
Оценка максимального правдоподобия	0.22169	0.19876	0.17634
Усеченное среднее (уровень 0.05)	0.31104	0.31068	0.34990
Усеченное среднее (уровень 0.10)	0.25718	0.24184	0.27889
Усеченное среднее (уровень 0.15)	0.22876	0.20764	0.23385
Обобщенные радикальные оценки (параметр 0.1)	0.05126	0.00861	0.00583
Обобщенные радикальные оценки (параметр 0.5)	0.05523	0.02251	0.00069
Обобщенные радикальные оценки (параметр 1)	0.05986	0.03873	-0.00420

5. Выводы

Для выборок с чистым распределением все оценки дают примерно одинаковый результат, т.к. наблюдения распределены симметрично относительно параметра сдвига.

Для выборок с симметричным засорением все оценки так же показывают себя хорошо: «выбросы» справа и слева от параметра сдвига основного распределения компенсируют друг друга при оценке параметра сдвига (из графиков влияния оценок видно, что справа и слева от сдвига функции вклад от наблюдений равен по модулю, но противоположен по знаку)

Для выборок с несимметричным засорением хуже всех показали себя выборочное среднее и ОМП, наиболее точная оценка сдвига получена обобщенной радикальной оценкой. Этот результат объясняется тем, что «выбросы» сосредоточены правее параметра сдвига, а в этой области у разных оценок разные функции влияния: у среднего арифметического функция влияния имеет наибольшее значение, а у обобщенных радикальных оценок напротив – в области «выбросов» функция влияния наименьшая по модулю.

6. Текст программы

```
# influence.py
import math
import typing as t
import numpy as np
from scipy import integrate
from src.density import density
from src.derivatives import derivative for influence omp, deriva-
tive for influence rad
def influence omp(
    x: float,
    nu: float,
    k: float,
) -> float:
    v, err = integrate.quad(
        derivative for influence omp,
        -np.inf,
        np.inf,
        args=(
            nu,
            k,
        ),
    )
    return x / v if abs(x) <= k else k * math.copysign(1, <math>x) / v
```

```
def influence rad(
    x: float,
    nu: float,
    k: float,
    delta: float,
) -> float:
   v, err = integrate.quad(
        derivative for influence rad,
        -np.inf,
        np.inf,
        args=(
            k,
            delta,
        ),
   v *= (1 - nu) / (math.sqrt(2 * math.pi))
    if abs(x) <= k:
        return (math.exp(-delta * x * x / 2) * x) / v
    return (math.exp(delta * (0.5 * k * k - k * abs(x))) * k *
math.copysign(1, x)) / v
def influence function(
    data: t.List[float],
    n steps: int,
    nu: float,
    k: float,
):
    avg infl = []
    mediana infl = []
    avg005 infl = []
    avg010_infl = []
    avg015 infl = []
    OMP infl = []
    rad01 infl = []
    rad05_infl = []
    rad10 infl = []
    hd = []
    # start = min(data) - 1
    # h = (max(data) + min(data)) / n_steps
    start = -8 # min(testing data)-1.0
    # h = (max(testing_data) + 1.0 - (min(testing_data)-1.0)) / N2
    h = (13 - (-8)) / n steps
    for i in range(n_steps):
        y = start + i * h
        h d.append(y)
```

```
avg infl.append(y)
        mediana_infl.append(math.copysign(1, y) / (2 * density(0, nu=nu,
k=k)))
        tmp = 1 / (1 - 2 * 0.05) # a = 0.05; k = 1.65
        if y <= -1.65:
            tmp *= -1.65
        else:
            if y >= 1.65:
                tmp *= 1.65
            else:
                tmp *= y
        avg005 infl.append(tmp)
        tmp = 1 / (1 - 2 * 0.1) # a = 0.1; k = 1.28
        if y <= -1.28:
            tmp *= -1.28
        else:
            if y >= 1.28:
                tmp *= 1.28
            else:
                tmp *= y
        avg010 infl.append(tmp)
        tmp = 1 / (1 - 2 * 0.15) # a = 0.15; k = 1.04
        if y <= -1.04:
            tmp *= -1.04
        else:
            if y >= 1.04:
                tmp *= 1.04
            else:
                tmp *= y
        avg015 infl.append(tmp)
        OMP_infl.append(influence_omp(
            у,
            nu,
            k,
        ))
        rad01 infl.append(influence rad(y, nu, k, 0.1))
        rad05_infl.append(influence_rad(y, nu, k, 0.5))
        rad10 infl.append(influence rad(y, nu, k, 1))
    return (
        avg_infl,
        mediana infl,
        avg005_infl,
        avg010_infl,
```

```
avg015 infl,
        OMP infl,
        rad01_infl,
        rad05 infl,
        rad10 infl,
        h_d,
    )
# generators.py
import math
import random
import typing as t
from src.density import density, noisy density
from src.utils import calc p
def generate random value(
    *,
    k: float,
   p: float,
) -> float:
    r = random.uniform(0, 1)
    if r >= p:
        x = random.normalvariate(0, 1)
        while -k > x or x > k:
            x = random.normalvariate(0, 1)
        return x
    r2 = random.uniform(0, 1)
    x = k - math.log(r2) / k
    return x if r  else -x
def generate clean data(
    n: int,
    nu: float,
    k: float,
) -> t.Tuple[t.List[float], t.List[float]]:
    p = calc_p(
        nu=nu,
        k=k,
    clean data = sorted([generate random value(k=k, p=p) for in
range(n)])
    data density = [density(val, nu=nu, k=k) for val in clean data]
```

```
return (
        clean data,
        data_density,
    )
def generate_noise(
    n: int,
    nu: float,
    k: float,
    theta: float,
    lmdb: float,
) -> t.Tuple[t.List[float], t.List[float]]:
    p = calc p(
        nu=nu,
        k=k,
    )
    noise = sorted([theta + lmdb * generate_random_value(k=k, p=p) for _
in range(n)])
    noise density = [density((val - theta) / lmdb, nu=nu, k=k) / lmdb for
val in noise]
    return (
        noise,
        noise density,
    )
def generate_noisy_data(
    n: int,
    nu: float,
    k: float,
    noisy_nu: float,
    noisy_k: float,
    theta: float,
    lmdb: float,
    eps: float,
) -> t.Tuple[t.List[float], t.List[float]]:
    p = calc p(
        nu=nu,
        k=k,
    noisy_p = calc_p(
        nu=noisy_nu,
        k=noisy k,
    )
    noisy data = []
    for _ in range(n):
```

```
r = random.uniform(
            0,
            1,
        )
        if r <= 1 - eps:
            noisy_data.append(generate_random_value(k=k, p=p))
        else:
            noisy data.append(theta + lmdb * generate ran-
dom_value(k=noisy_k, p=noisy_p))
    noisy data.sort()
    noisy data density = [noisy density(val, nu=nu, k=k, eps=eps,
theta=theta, lmdb=lmdb) for val in noisy data]
    return (
        noisy_data,
        noisy data density,
# utils.py
import statistics
import typing as t
from pathlib import Path
from scipy import stats
from scipy.optimize import minimize
from src.const import Constants
from src.density import density
from src.losses import huber loss
def calc_p(
    *,
   nu: float,
    k: float,
) -> float:
    return 2 * (1 - nu) / k * density(k, nu=nu, k=k)
def describe_distribution(
    data: t.List[float],
    nu: t.Optional[float] = None,
    k: t.Optional[float] = None,
    eps: t.Optional[float] = None,
    noise mean: t.Optional[float] = None,
    noise variance: t.Optional[float] = None,
    *,
    out path: Path,
    with estimations: bool = False,
```

```
) -> None:
    mean = statistics.mean(data)
   with open(out path, 'w', encoding='utf-8') as out:
        out.write('Статистика,Значение\n')
        print(f'Среднее:
                            {mean:.5f}')
        out.write(f'Cреднее,{mean:.5f}\n')
        print(f'Meдиана: {statistics.median(data):.5f}')
        out.write(f'Медиана,{statistics.median(data):.5f}\n')
        print(f'Дисперсия: {statistics.variance(data, mean):.5f}')
        out.write(f'Дисперсия,{statistics.variance(data, mean):.5f}\n')
        print(f'Aсимметрия: {stats.skew(data):.5f}')
        out.write(f'Aсимметрия,{stats.skew(data):.5f}\n')
        print(f'Эксцесс:
                            {stats.kurtosis(data, fisher=False):.5f}')
        out.write(f'Эκcцесс,{stats.kurtosis(data, fisher=False):.5f}\n')
                            {max(data):.5f}')
        print(f'Maκc:
        out.write(f'Maκc,{max(data):.5f}\n')
        print(f'Мин:
                            {min(data):.5f}')
        out.write(f'Мин,{min(data):.5f}\n')
        for pc in Constants.proportion_cuts:
            print(f'Усеченное среднее (уровень усечения {pc}):
{stats.trim mean(data, pc):.5f}')
            out.write(f'Усеченное среднее (уровень усечения
{pc}),{stats.trim mean(data, pc):.5f}\n')
        print(f'OMΠ: {stats.norm.fit(data)[0]:.5f}')
        out.write(f'OMΠ,{stats.norm.fit(data)[0]:.5f}\n')
        if with estimations:
            for delta in Constants.deltas:
                m start = mean
                res = minimize(
                    huber loss,
                    m_start,
                    args=(
                        data,
                        nu,
                        k,
                        delta,
                        eps,
                        noise mean,
                        noise_variance,
                    ),
```

```
method='nelder-mead',
                     # options={'maxiter': 1},
                )
                cur_q = huber_loss(
                     res.x[0],
                     data,
                     nu,
                     k,
                     delta,
                     eps,
                     noise mean,
                     noise variance,
                )
                print(f'Обобщенная радикальная оценка (delta = {delta}, Q
= {cur_q}): {res.x[0]:.5f}')
                out.write(f'Обобщенная радикальная оценка (delta =
\{delta\}, Q = \{cur q\}, \{res.x[0]:.5f\}\n'\}
# density.py
import math
def density(
    x: float,
    nu: float,
    k: float,
) -> float:
    if abs(x) <= k:
        return (1 - nu) / (math.sqrt(2 * math.pi)) * math.exp(-x * x / 2)
    return (1 - nu) / (math.sqrt(2 * math.pi)) * math.exp(1 / 2 * k * k -
k * abs(x)
def noisy density(
    x: float,
    *,
    nu: float,
    k: float,
    eps: float,
    theta: float,
    lmdb: float,
) -> float:
    return (1 - eps) * density(x, nu=nu, k=k) + eps * density((x - theta)
/ lmdb, nu=nu, k=k) / lmdb
# losses.py
import typing as t
```

```
from src.density import density, noisy density
def huber loss(
    theta: float,
    data: t.List[float],
    nu: float,
    k: float,
    delta: float,
    eps: float,
    noise mean: float,
    noise variance: float,
) -> float:
    res q = 0
    if eps is None:
        for val in data:
            res q += -(1 / density(0, nu=nu, k=k) ** delta) * (den-
sity(val - theta, nu=nu, k=k) ** delta)
    else:
        for val in data:
            res q += -(1 / noisy_density(0, nu=nu, k=k, eps=eps,
theta=noise mean, lmdb=noise variance) ** delta) * (
                    noisy_density(val - theta, nu=nu, k=k, eps=eps,
theta=noise mean, lmdb=noise variance) ** delta)
    return res_q
# const.py
from pathlib import Path
CWD = Path( file ).parents[1]
class Constants:
    nu = 0.05
    k = 1.398
    noisy nu = 0.02
    noisy k = 1.717
    proportion_cuts = [
        0.05,
        0.1,
        0.15,
    deltas = [
        0.1,
        0.5,
        1,
    ]
```

```
n resamples = 3
    sym eps = 0.1
    asym eps = 0.25
# derivatives.py
import math
def derivative for influence omp(
    x: float,
    nu: float,
    k: float,
) -> float:
    if abs(x) \leftarrow k:
        return (1 - nu) / (math.sqrt(2 * math.pi)) * math.exp(-x * x / 2)
*(x * x)
    return (1 - nu) / (math.sqrt(2 * math.pi)) * math.exp(0.5 * k * k - k
* abs(x)) * (k * k)
def derivative_for_influence_rad(
    x: float,
    k: float,
    delta: float,
) -> float:
    if abs(x) <= k:
        return math.exp(-(delta + 1) * x * x / 2) * (x * x)
    return math.exp((delta + 1) * (0.5 * k * k - k * abs(x))) * (k * k)
```