Qi, Runyu

Email: runyuq2@illinois.edu
Phone: +1 (217) 979-3412
Website: http://me.sam7.xyz

EDUCATION

M.S. in Material Science and Engineering

Aug. 2023 - Dec. 2024

with Computational Science and Engineering Concentration

University of Illinois Urbana-Champaign, IL, United States

B.E. in Material Science and Engineering

Sept. 2019 - Jun. 2023

Tsinghua University, Beijing, China

RESEARCH EXPERIENCE

Computational and Experimental Analysis of Retrotransposons

Advisor: Dr. Yejing Ge (UT MDACC)

Jan. 2024 - Present

- Optimized scripts and developed automated pipelines for RNA-seq and ChIP-seq analysis of retrotransposons, including alignment, differential analysis, and visualization using HPC.
- Analyzed developmental biology and epigenetics using mouse skin models; conducted cell culture, inhibitor treatments, RNA extraction, and qPCR.

Deep Learning for Pathway Prediction and GPCRs MD Simulation

Advisor: Dr. Diwakar Shukla (UIUC)

Jan. 2024 - Present

- Conducted molecular dynamics (MD) simulations of G protein-coupled receptors (GPCRs) to study their structural dynamics and interactions.
- Implemented deep learning techniques, including neural networks, to predict biological pathways associated with GPCRs and analyze their molecular dynamics at the atomic level.

mRNA Cancer Vaccine and Cell Metabolic Labeling & Targeting

Advisor: Dr. Hua Wang (UIUC)

Sept. 2023 - Present

- Assisted in the in vitro experiment of stem cells and dendritic cells mRNA transfection, contributing to the development of mRNA-based cancer vaccines.
- Conducted experiments to optimize the labeling of immune cells and cancer cells with unnatural monosaccharides, enabling targeted metabolic labeling and tracking of cellular processes.

Surface-Enhanced Raman Spectroscopy and Electrochemical Detection of Energetic Materials *Advisor: Dr. Yunhan Ling (Tsinghua Univ.)* Feb. 2023 - Jun. 2023

- Developed sensors with Surface-Enhanced Raman Spectroscopy (SERS) and electrochemical detection capabilities through the preparation of nanogold SERS substrates, surface modifications, and performance characterization.
- Attained quantitative detection of methylene blue and perchlorate with remarkably low minimum quantification limits.
- Formulated a TNT molecularly imprinted polymer electrode and achieved detection with impressively low minimum detection limits.

^{*}See more on my homepage.

PRESENTATIONS

A Review on PDMS-based Electronic Skin and Self-healing Property

Advisor: Dr. Lilian Hsiao (NC State)

Jul. 2022 - Aug. 2022

• Conducted an extensive literature review on PDMS and electronic skins, analyzing over 10 research papers. Synthesized findings into an academic poster and delivered a successful video presentation.

AWARDS

The Tsinghua Univ. Technological Innovation Scholarship	2022
The second prize, 3^{rd} Virtual Simulation Creative Design Competition	2022
The first prize, 5 th Tsinghua Univ. 3D Printing Skills Competition	2021
The Tsinghua Univ. Excellent Art Scholarship	2021
The second prize , 4 th Tsinghua Univ. 3D Printing Skills Competition	2020
National third prize, 32 th Chinese Chemistry Olympiad	2018
National third prize, 27 th China National Biology Olympiad	2018

LEADERSHIP & SERVICE

Member, Tau Beta Pi - Illinois Alpha, UIUC	Apr. 2024
Captain, Student Network Service Work-study Team, Tsinghua Univ.	Mar. 2021 - Jun. 2023
President, Future Sci-tech Interests Club, Tsinghua Univ.	Sept. 2022 - Jun. 2023
Volunteer, Olympic and Paralympic Winter Games, Beijing	Feb. 2022 - Mar. 2022