Acta Mathematica Sinica, English Series Sep., 201x, Vol. x, No. x, pp. 1–2 Published online: August 15, 201x DOI: 00000000000000000 Http://www.ActaMath.com

A Template for Journal

Firstname1 SURNAME1

Address E-mail:

Firstname2 SURNAME2

Address E-mail:

Abstract Please make sure NO reference number in your Abstract since it is misunderstood independent of full text.

Keywords Aaaa, bbbb, cccc

MR(2010) Subject Classification 05B05, 05B25, 20B25

1 Introduction

1.1 A Subsection

Please make sure that your paper contains correct reference sequence (please resort them according to its *alphabetical order* and make sure that each bibliographical item is labelled and that these items are recalled using the command \cite{...}, such as [2], and [1, 3–5])

All equations, theorems, definitions, lemmas, propositions, corollaries, examples, remarks etc. would be better to be numbered consecutively and unrepeatedly within each section. For example, Definition 2.1, Lemma 2.2, Theorem 2.3

Use \label and \ref or \eqref to automatically cross-reference sections, equations, theorems and theorem-like environments, tables, figures, etc.

Theorem 1.1 ([1]) The statements of theorems, lemmas, definitions, propositions, corollaries, conjectures, etc. are set in italics, by using

\begin{theorem/lemma/definition/proposition/corollary/conjecture} \end{theorem/lemma/definition/proposition/corollary/conjecture}.

Proof Observe that

$$AAAAAAAAA = BBBBBBBBBBBB + CCCCCCCCCC$$

$$= DDDDDDDDDDDDDD. \qquad (1.1)$$

Now apply induction on n to (1.1)...

Remark 1.2 Remarks, examples, problems, etc. are set in roman type.

Received x x, 201x, accepted x x, 201x Supported by ...(Grant No. ...)

1.2 Table

P(x)	i	(e(1), e(2), e(4))	(e(3), e(6), e(12), e(24))	T(E)
P_1				Ø
P_2	4		$(1,1,1,0) \to (0,0,0,1)$	2
P_3	2		$(1,1,1,0) \to (0,0,2,0)$	1
P_4	2	$(0,1,1) \to (1,2,0)$		1
P_5	2	$(0,1,1) \to (1,2,0)$	$(1,1,1,0) \to (0,0,0,1)$	1, 2
P_6	6	$(0,1,1) \to (1,2,0)$	$(1,1,1,0) \to (2,2,0,0)$	1
P_7	3	$(0,1,1) \to (1,0,1)$	$(1,1,1,0) \to (2,0,1,0)$	0
P_8	3	$(0,1,1) \to (2,1,0)$	$(1,1,1,0) \rightarrow (2,0,1,0) \rightarrow (3,1,0,0)$	0,1

Table 1 Aaa bbb ccc

1.3 Figure

Acknowledgements We thank the referees for their time and comments.

References

- $[1]\;$ Huppert, B., Blackburn, N.: Finite Groups II, Springer-Verlag, New York, 1982
- [2] Lorenzini, D., Tucker, T. J.: The equations and the method of Chabauty–Coleman. *Invent. Math.*, **148**, 1–46 (2002)
- [3] Test
- [4] Test
- [5] Test