

The ECCO Data Specification (ECCO) v4r4 User Guide

The "Estimating the Circulation and Climate of the Ocean" Team

3 June 2023

Documentation User Guide			
Reference:	ECCO_v4r4_user_guide.pdf		
Version:	ECCO 4.0 Document Revision: 4		
Date of issue:	3 June 2023		
Document type:	LATEX Document		
Book Captain:	Ian Fenty and Ou Wang		
Location:	Jet Propulsion Laboratory		
Approved on-line version:	https://podaac.jpl.nasa.gov/ECCO?tab=		
	mission-objectives\§ions=about\%2Bdata\		
	%2Bresources		
Development versions in:	www.google.com		
Please reference this document as	ECCO Science Team (2022), The ECCO Data Specification (ECCO) 4.0,		
	document revision 4, available from the ECCO Project Office, 2022,		
	pp123.		

Please reference this document as:

ECCO Science Team (2022), The ECCO Data Specification (ECCO) version 4.0, document revision 4, available from the ECCO Project Office, 2022, pp 123.

The ECCO Data Specification (ECCO) version 4 release 4

The Recommended GHRSST Data Specification (GDS)

GDS 2.0 Technical Specifications

Compiled by the GHRSST International Science Team 2010, reviewed by DAS-TAG 2011.

> Published by the International GHRSST Project Office Department of Meteorology, University of Reading, Reading United Kingdom

> Tel +44 (O) 118 3785579 Fax +44 (O) 118 3785576 E-mail: ghrsst-po@nceo.ac.uk

Document Approval Record

This document has been approved for release only when signed and dated signatures are present for the entities listed below. Documents may be digitally signed.

Role	Name	Representing Entity	Signature(s)	Date(s)
Book	Kenneth Casey	GHRSST Science	insert image	tbd
Captains	and Craig	Team		
	Donion			
GHRSST	Andrea	GHRSST Quality	insert image	tbd
Project	KaiserWeiss	Assurance and		
Office		Revision Control		
GHRSST	Edward M	Data Assembly and	insert image	tbd
GDS 2.0	Armstrong	Systems Technical		
Internal		Advisory Group		
Review		(DAS-TAG)		
Board				
GDS 2.0	Anne OĆarroll	ll GHRSST External	insert image	tbd
External		Review Board		
Review				
Board				
GHRSST	Jacob Hoyer	GHRSST Advisory	insert image	tbd
Advisory		Council		
Council				

Document History

Author	Version description	Version number	Date of Revi-
			sion
K Casey	edits based on external review and inputs from the GHRSST team	v2.006	27 Septem- ber 2010
A Kaiser-Weiss	Release version	v2.007	1 October 2010
Ed Armstrong	GDS2.0 reviewed by DAS-TAG 2011	v2 rev 4	6th Novem- ber 2011
Ed Armstrong	GDS2.0 release 5	v2 rev 5	9th October 2012

Document Change Record

Author	Reason for Change	Pages/paragraphs	Date of Revi-
		Changed	sion
E. Armstrong	Updates based on external review	Multiple	28 Sep 2011
	and DAS-TAG summary report to		
	GHRSST-12		
A Kaiser-Weiss	Links updated, minor typos removed	1-7, 37, 50, 104	29 Sep 2011
Ed Armstrong	Updated based on final DAS-TAG	CF comment attribute	6 Nov 2011
	mini review	added to all variable ex-	
		amples; full example,	
		L2P CDL revised; vari-	
		able l2p_flags clarified ;	
		SSES clarified as Sensor	
		Specific Error Statistic	
Ed Armstrong	g Minor updates	Minor changes and	9 October
		additions to metadata	2012
		attributes. Mostly ta-	
		ble 8.2. Other minor	
		changes.	

1 The GHRSST Science Team 2010/11

O Arino European Space Agency, Italy

E Armstrong NASA/JPL, USA

I Barton CSIRO Marine Research, Australia

H Beggs Bureau of Meteorology, Melbourne Australia

A Bingham NASA/JPL, USA K S Casey NOAA/NODC, USA

S Castro University of Colorado, USA

M Chin NASA/JPL, USA

G Corlett University of Leicester, UK P Cornillon University of Rhode Island, USA

C J Donlon (Chair) European Space Agency, The Netherlands

S Eastwood Met.no, Norway

2 Executive Summary

A new generation of integrated Sea Surface Temperature (SST) data products are being provided by the Group for High Resolution Sea Surface Temperature (GHRSST). L2 products are provided by a variety of data providers in a common format. L3 and L4 products combine, in near-real time, various SST data products from several different satellite sensors and in situ observations and maintain fine spatial and temporal resolution needed by SST inputs to a variety of ocean and atmosphere applications in the operational and scientific communities. Other GHRSST products provide diagnostic data sets and global multi-product ensemble analysis products. Retrospective reanalysis products are provided in a non real time critical offline manner. All GHRSST products have a standard format, include uncertainty estimates for each measurement, and are served to the international user community free of charge through a variety of data transport mechanisms and access points that are collectively referred to as the GHRSST Regional/Global Task Sharing (R/GTS) framework.

The GHRSST Data Specification (GDS) Version 2.0 is a technical specification of GHRSST products and services. It consists of a technical specification document (this volume) and a separate Interface Control Document (ICD). The GDS technical documents are supported by a User Manual and a complete description of the GHRSST ISO-19115-2 metadata model. GDS-2.0 represents a consensus opinion of the GHRSST international community on how to optimally combine satellite and in situ SST data streams within the R/GTS. The GDS also provides guidance on how data providers might implement SST processing chains that contribute to the R/GTS.

This document first provides an overview of GHRSST followed by detailed technical specifications of the adopted file naming specification and supporting definitions and conventions used throughout GHRSST and the technical specifications for all GHRSST Level 2P, Level 3, Level 4, and GHRSST Multi-Product Ensemble data products. In addition, the GDS 2.0 Technical Specification provides controlled code tables and best practices for identifying sources of SST and ancillary data that are used within GHRSST data files.

The GDS document has been developed for data providers who wish to produce any level of GHRSST data product and for all users wishing to fully understand GHRSST product conventions, GHRSST data file contents, GHRSST and Climate Forecast definitions for SST, and other useful information. For a complete discussion and access to data products and services see https://www.ghrsst.org, which is a central portal for all GHRSST activities.

3 Table of Contents

Contents

4 Figu	ıres in	this	docum	ent
--------	---------	------	-------	-----

List of Figures

List of Tables

5 Tables in this document

6 Applicable Documents

The following documents contain requirements and information applicable to this document and must be consulted together with this document.

- [AD-1] GDS 2.0 Interface control Document (ICD), Version 1.0, available from https://www.ghrsst.org/files/download.php\?m=documents\&f= 110626163621-GHRSSTGDS20ICDDraft03.doc
- [AD-2] GHRSST Userś Guide available from https://www.ghrsst.org/documents/q/category/userinteraction/ netCDF user manuals and tools available from http://www.unidata.ucar.edu/packages/netcdf/
- [AD-3] netCDF Climate and Forecast (CF) Metadata Conventions version 1.4 available from http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.4/cf-conventions-multi.html
- [AD-4] COARDS Conventions available from http://ferret.wrc.noaa.gov/noaa_coop/coop_cdf_profile.html
- [AD-5] UDUNITS-2 package available from http://www.unidata.ucar.edu/software/udunits/udunits2/udunits2.html

7 Reference Documents

The following documents can be consulted when using this document as they contain relevant information:

- [RD-1] GHRSST PP Data Product User manunal (GDS1.5) https://www.ghrsst.org/files/download.php\?m=documents\&f=GHRSST-PP-Product-UserGuide-v1.1.pdf.
- [RD-2] Donlon, C. J., I. Robinson, K. S Casey, J. Vazquez-Cuervo, E Armstrong, O. Arino, C. Gentemann, D. May, P. LeBorgne, J. Piolle, I. Barton, H Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A Harris, G. Wick, B. Emery, P. Minnett, R. Evans, D. Llewellyn-Jones, C. Mutlow, R. Reynolds, H. Kawamura and N. Rayner, 2007. The Global Ocean Data Assimilation Experiment (GODAE) high Resolution Sea Surface Temperature Pilot Project (GHRSST-PP). Bull. Am. Meteorol. Soc., Vol. 88, No. 8, pp. 1197-1213, (DOI:10.1175/BAMS-88-8-1197).
- [RD-3] Donlon, C. J., I. Robinson, K. S Casey, J. Vazquez-Cuervo, E Armstrong, O. Arino, C. Gentemann, D. May, P. LeBorgne, J. Piolle, I. Barton, H Beggs, D. J. S. Poulter, C. J. Merchant, A. Bingham, S. Heinz, A Harris, G. Wick, B. Emery, P. Minnett, R. Evans, D. Llewellyn-Jones, C. Mutlow, R. Reynolds, H. Kawamura and N. Rayner, 2009. The Global Ocean Data Assimilation Experiment (GODAE) high Resolution Sea Surface Temperature Pilot Project (GHRSST-PP). Oceanography, Vol. 22, No. 3
- [RD-4] Donlon, C. J., P. Minnett, C. Gentemann, T. J. Nightingale, I. J. Barton, B. Ward and, J. Murray, 2002. Towards Improved Validation of Satellite Sea Surface Skin Temperature Measurements for Climate Research, J. Climate, Vol. 15, No. 4, pp. 353-369.
- [RD-5] Donlon, C. J. and the GHRSST-PP Science Team, 2006. The GHRSST-PP User Requirement Document, available from the International GHRSST Project Office, https://www.ghrsst.org/files/download.php\?m=documents\&f=GHRSST-PP-URD-v1.7.pdf

8 Acryonyms and abbreviation list

AA Associate Administrator

ACDC Architecture Configuration and Design Constraints

ADD Architecture Definition Document

AE Ascent Element

AES Advanced Exploration Systems

AESB Aeronautics and Space Engineering Board
APMC Agency Program Management Council

ASAP Agency (Aeronautics) Safety Assessment Panel

BAA Broad Agency Announcement
CAD Computer-Aided Design
CCB Configuration Control Board

CCBD Configuration Control Board Directive
CDM Configuration and Data Management
CDMP Configuration and Data Management Plan

CHP Crew Health and Performance

CI Configuration Item

CLPS Commercial Lunar Payload Services

CLV Commercial Launch Vehicle CM Configuration Management

CMRD Configuration Management Receipt Desk

CMW Change Management Workflow
CPE Change Package Engineer
CPM Change Package Manager

CR Change Request

CSA Configuration Status Accounting

CSA Canadian Space Agency

CSCI Computer Software Configuration Item

CY Calendar Year

ConOps Concept of Operations

DAA Deputy Associate Administrator

DAC Design Analysis Cycle
DCR Design Certification Review

DE Descent Element

DIMA Distributed Integrated Modular Avionics

DM Data Management
DOF Degree of Freedom

DPMC Directorate Program Management Council

DQA Data Quality Assurance

DRD Data Requirements Description

DSN Deep Space Network

EAR Export Administration Requirements

ECLSS Environmental Control and Life Support System

ECM Exploration Command Module ECR Export Control Representative EGS Exploration Ground Systems ESA European Space Agency

ESD Exploration Systems Development

ET Event Tracker

EUS Exploration Upper Stage EVA Extra-Vehicular Activity

EVR Extra-Vehicular Robotics
FAQ Freqently Asked Question
FCA Functional Configuration Audit

FOD Flight Operations FW Forward Work

GAO Government Accountability Office
GDSS Gateway Docking System Specification

GEO Geostationary Earth Orbit

GN&C Guidance Navigation and Control GPCB Gateway Program Control Board

GSCB Gateway Systems Engineering and Integration Con...

GVCB Gateway Vehicle Integration Control Board

HALO Habitation and Logistics Outpost

HCB Human Landing Systems Control Board

HEO Human Exploration & Operations

HEOMD Human Exploration & Operations Mission Directorate

HHP Human Health & Performance
HLS Human Landing Systems
IAC Integrated Analysis Cycle
ICD Interface Control Document

ICE Integrated Collaborative Environment ICPS Interim Cryogenic Propulsion Stage

IDS Integrated Data System

9 Document Conventions

The following sub-sections describe the notation conventions and data storage types that are used throughout this GDS 2.0 Technical Specification. Implementation projects are expected to adhere to the nomenclature and style of the GDS 2.0 in their own documentation as much as possible to facilitate international coordination of documentation describing the data products and services within the GHRSST R/GTS framework [RD-2].

9.1 Use of text types

The following text types are used throughout this document:

Table 9.1: Definition of text styles used in the GDS

Text Type	Meaning	Example
Bold Courier font	Denotes a variable name	dt_analysis
Bold Courier font	Denotes a netCDF attribute name	gds_version_id
Arial	Denotes regular text.	This is normal text.

9.2 Use of colour in tables

The colours defined in Table 4-2 are used throughout the GDS.

Table 9.2: Definition of colour styles used in the GDS

Colour	Meaning	Example
Grey	Denotes a table column name	Variable
Blue	Denotes a mandatory item	analysed_sst
Violet	Denotes an item mandatory for only certain situations	dt_analysis
Yellow	Denotes an optional item	experimental_field
Green	Denotes grid dimensions	ni=1024
Pink	Denotes grid coordinates	float lat(nj, ni)

9.3 Definitions of storage types within the GDS 2.0

Computer storage types referred to in the GDS are defined in Table 4-3 and follow those used in netCDF.

Table 9.3: Storage type definitions used in the GDS

Name	Storage Type
byte	8 bit signed integer
short	16 bit signed integer
int (or long)	32 bit signed integer
float	32 bit floating point
double	64 bit floating point
string	Character string

10 Scope and Content of this Document

The GDS Technical Specification is written for those wishing to create or use any GHRSST product and requiring detailed technical information on their contents and specifications. It provides the technical specifications for all GHRSST data sets used within the GHRSST Regional/Global Task Sharing (R/GTS) Framework. An overview of GHRSST and the GDS presented followed by a detailed technical specification of the GHRSST file naming specification, supporting definitions and conventions. The technical specifications for all GHRSST Level 2P (L2P), Level 3 (L3), Level 4 (L4), and GHRSST Multi-Product Ensemble (GMPE) data products are then provided. The GDS also provides code tables and best practices for identifying sources of SST and ancillary data within GHRSST data files.

This document has been developed for data providers who wish to produce any level of GHRSST data product and for all users wishing to fully understand the file naming convention, GHRSST data file contents, GHRSST and Climate Forecast definitions for SST, and other useful information. Additional information describing GHRSST and its component international services is available at http://www.ghrsst.org and many relevant GHRSST web sites are listed on the last page of this document.

The GDS Technical Specification document forms a component document of the GDS 2.0 document set, which is shown schematically in Figure 5-1 below. Other documents from the GDS 2.0 document pack that are specified in the Applicable Documents section of this document shall be consulted when using this document.

Figure 1: Schematic overview of the GHRSST Data Specification Version 2.0 document pack.

11 Overview of GHRSST and the GDS 2.0

GHRSST [RD-2] is an international consortium representing commercial enterprises, academic institutions, research organizations, and operational agencies that collaborate to provide accurate, high resolution, and consistently formatted SST observations and analyses from space-based platforms. This section briefly provides information on the importance of SST, an overview and history of GHRSST, and context for understanding the GDS 2.0.

11.1 The Importance of SST

Sea Surface Temperature at the ocean-atmosphere interface is a fundamental variable for understanding, monitoring and predicting fluxes of heat, momentum and gas at a variety of scales that determine complex interactions between atmosphere and ocean. The ocean stores heat from the sun and redistributes it from the tropical regions to higher latitudes and to the less dense atmosphere regulating global weather and climate. Through the hydrological cycle the coupled system controls terrestrial life by redistributing fresh water over the land surface. From large ocean gyres and atmospheric circulation cells that fuel atmospheric depression systems, storms and hurricanes with their attendant wind waves and storm surges, to local scale phenomena such as the generation of sea breezes and convection clouds, SST at the ocean-atmosphere interface has a significant societal impact.

Accurate knowledge of global SST distribution and temporal variation at finer spatial resolution is needed as a key input to numerical weather prediction (NWP) and numerical ocean prediction (NOP) systems to constrain the modelled upper-ocean circulation and thermal structure at daily, seasonal, decadal and climatic time scales, for the exchange of energy between the ocean and atmosphere in coupled ocean-atmosphere models, and as boundary conditions for ocean forecasting models. Such models are widely used operationally for various applications including maritime safety, military operations, ecosystem assessments, fisheries support, and tourism.

In addition, well-defined and quantified error estimates of SST are also required for climate time series that can be analysed to reveal the role of the ocean in short and long term climate variability. A 30 year record of satellite SST observations is available now, that grows on a daily basis. SST climate data records that are used to provide the GCOS SST Essential Climate Variable (ECV) [RD7], [RD-11], [RD-12] are essential to monitoring and understanding climate variability, climate-ecosystem interactions such as coral reef health and sustainable fisheries management, and critical issues like sea level rise and changing sea ice patterns.

11.2 GHRSST History

In 1998, SST data production was considered a mature component of the observing system with demonstrated capability and data products. However, SST product availability was limited to a few data sets that were large, scientific in format and difficult to exchange in a near real time manner. Product accuracy was considered insufficient for the emerging NWP and NOP systems. Uncertainty estimates for SST products were unavailable with SST products complicating their application by the NWP and NOP data assimilation community. At the same time the number of applications requiring an accurate high resolution SST data stream was growing.

Considering these issues, the Global Ocean Data Assimilation Experiment (GODAE) [RD-10] defined the minimum data specification required for use in operational ocean models, stating that SST observations with global coverage, a spatial resolution of 10 km and an accuracy of <0.4 K need to be updated every six hours [RD-10].

Despite the network of SST observations from ships and buoys, the only way to achieve these demanding specifications was to make full use of space-based observations. An integrated and international approach was sought to improve satellite SST measurements, based on four principles:

- 1. Respond to user SST requirements through a consensus approach
- 2. Organize activities according to principles of shared responsibility and subsidiarity, handling matters with the lowest, smallest, or least centralized competent group possible

- 3. Develop complementarities between independent measurements from earth observation satellites and in situ sensors
- 4. Maximize synergy benefits of an integrated SST measurement system and end-to-end user service

These foundations enabled the international ocean remote sensing community, marine meteorologists, Space Agencies, and ocean modellers to combine their energies to meet the GODAE requirements by establishing the GODAE High Resolution Sea Surface Temperature Pilot Project (GHRSST-PP). GHRSST-PP established four main tasks relevant to the development of the SST observing system:

- 1. Improve SST data assembly/delivery
- 2. Test available SST data sources
- 3. Perform inter-comparison of SST products
- 4. Develop applications and data assimilation of SST to demonstrate the benefit of the improved observing system

GHRSST-PP successfully demonstrated that the requirements of GODAE could be met when significant amounts of GHRSST-PP data became available in 2006, and was instrumental in defining the shape and form of the modern-era SST measurement system and user service over the last 10 years [RD-2].

At the end of the GODAE period in 2009, the GHRSST-PP evolved into the Group for High Resolution SST (GHRSST). GHRSST built on the successes of the pilot project phase and continued a series of international workshops that were held during 2000-2009. These workshops established a set of user requirements for all GHRSST activities in five areas:

- 1. Scientific development and applications,
- 2. Operational agency requirements,
- 3. SST product specifications,
- 4. Programmatic organization of an international SST service,
- 5. Developing scientific techniques to improve products and exploit the observing system.

These requirements were critical to establishing the GHRSST framework and work plan, and formed an essential part of the GHRSST evolution. By establishing and documenting clear requirements in a consultative manner at the start of the project and through all stages of its development, GHRSST was able to develop confidently and purposefully to address the needs of the international SST user community

11.3 GHRSST Organization

Over the last decade, GHRSST established and now continues to provide an internationally distributed suite of user focused services in a sustained Regional/Global Task Sharing (R/GTS) framework [RD-2] that addresses international organizational challenges and recognizes the implementing institutional capacities, capabilities, and funding prospects. Long term stewardship, user support and help services, and standards-based data management and interoperability have been developed and are operated within the R/GTS on a daily basis.

GHRSST data flow from numerous Regional Data Assembly Centres (RDACs) to a Global Data Assembly Centre (GDAC) in near real time. Thirty days after observation, the data are transferred to a Long Term Stewardship and Reanalysis Facility (LTSRF). At present, RDACs from across Europe, Japan, Australia, and the United States contribute GHRSST data to the GDAC, operated by the NASA Jet Propulsion Laboratory, which in turn provides

Figure 2: Schematic of the GHRSST Regional/Global Task Sharing (R/GTS) framework.

the data to the LTSRF operated by the NOAA National Oceanographic Data Center. The GHRSST R/GTS is shown schematically below in ??.

Since large-scale GHRSST data production and dissemination commenced in 2006, the GHRSST GDAC and LT-SRF have combined to provide over 50,000 users more than 100 terabytes of GHRSST data. Over 28 terabytes of data are in NODCś LTSRF holdings with another approximately 10 Terabyte added each year. The detailed interactions of the R/GTS components are described in the GHRSST Interface Control Document [AD-1]. Each component of the R/GTS is independently managed and operated by different institutions and agencies. The R/GTS itself is coordinated by the international GHRSST Science Team, which receives guidance and advice from the GHRSST Advisory Council. A GHRSST Project Office coordinates the overall framework. A full discussion of GHRSST over the last 10 years is reported in [RD-2] and [RD-3].

11.4 Overview of the GDS 2.0

The GHRSST R/GTS was made possible through the establishment of a rigorous GHRSST Technical Data Specification (GDS), which instructed international satellite data providers on how to process satellite data streams, defined the format and content of the data and metadata, and documented the basic approaches to providing uncertainty estimates and auxiliary data sets. The GHRSST-PP established the first GDS (v1.6) [RD-1], which formed the basis of all GHRSST data production from 2005 through 2011. In 2010 the Version 2 of the GDS described in this document will go into operations following a phased implementation schedule.

All GHRSST products entering the R/GTS must strictly follow the common GDS when generating L2P, L3, L4, and GMPE data. As a result, users with common tools to read data from one RDAC can securely use data from any of the others as well as the GDAC and LTSRF without a need to re-code. Table 6-1 provides a summary of GDS 2.0 data products and their basic characteristics.

The remainder of this document provides the detailed specifications for GHRSST L2P, L3, L4, and GMPE products, their file naming convention, metadata requirements, and all necessary tables, conventions, and best practices for creating and using GHRSST data.

«««< HEAD «««< HEAD

12 GDS 2.0 Filenames and Supporting Conventions

Striving to achieve a flexible naming convention that maintains consistency across processing levels and better serves user needs, the GDS 2.0 uses a single form for all GHRSST data files. An overview of the format is presented below in Section 7.1 along with example filenames. Details on each of the filename convention components are provided in Sections 7.2 through 7.8.

In addition, a best practice has been established for creating character strings used to describe GHRSST SST products and sources of ancillary data. These strings, and associated numeric codes for the SST products, are used within some GHRSST data files but are not part of the filename convention itself. The best practice is described in Section 7.9.

12.1 1 Overview of Filename Convention and Example Filenames

The filenaming convention for the GDS 2.0 is shown below.

<Indicative Date><Indicative Time>-<RDAC>-<Processing Level>_GHRSST-<SST Type>- <Product String>-<Additional
Segregator>-v<GDS Version>-fv<File Version>.<File Type>

The variable components within braces ("<>") are summarized in Table 7-1 below and detailed in the **should not** be used in any GHRSST code or the <Additional Segregator> element. Example filenames are given later in this section. While no strict limit to filename length is mandated, RDACs are encouraged to keep the length to less than 240 characters to increase readability and usability.

Table 12.1: GDS 2.0 Filenaming convention components

Name	Definition	Description
<indicative date=""></indicative>	YYYYMMDD	The identifying date for this data set. See Section 7.2.
<indicative time=""></indicative>	HHMMSS	The identifying time for this data set. The time used is dependent on the <processing level=""> of the data set: L2P: start time of granule</processing>
		L3U: start time of granule
		 L3C and L3S: centre time of the collation window
		 L4 and GMPE: nominal time of analysis
		All times should be given in UTC. See Section 7.3.
<rdac></rdac>	The RDAC where the file was created	The Regional Data Assembly Centre (RDAC)code, listed in Section 7.4.
<processing level=""></processing>	The data processing level code (L2P, L3U, L3C, L3S, or L4)	The data processing level code, defined in Section 7.5.
<sst type=""></sst>	The type of SST data included in the file.	Conforms to the GHRSST definitions for SST, defined in Section 7.6
<product string=""></product>	A character string identifying the SST product set. The string is used uniquely within an RDAC but may be shared across RDACs.	The unique "name" within an RDAC of the product line. See Section 7.7 for the product string lists, one each for L2P, L3, L4, and GMPE products. See Section 7.7.
<additional segregator=""></additional>	Optional text to distinguish between files with the same <product string="">. Dashes are not allowed within this element.</product>	This text is used since the other filename components are sometimes insufficient to uniquely identify a file. For example, in L2P or L3U (un-collated) products this is often the original file name or processing algorithm. Note, underscores should be used, not dashes. For L4 files, this element should begin with the appropriate regional code as defined in Section 7.8. This component is optional but must be used in those cases were non-unique filenames would otherwise result.
<gds version=""></gds>	nn.n	Version number of the GDS used to process the file. For example, GDS 2.0 = "02.0".

<file version=""></file>	XX.X	Version number for the file, for example, "O1.0".
<file type=""></file>	netCDF data file suffix (nc) or ISO	Indicates this is a netCDF file containing data or its correspond-
	metadata file suffix (xml)	ing ISO-19115 metadata record in XML.

12.1.1 L2_GHRSST Filename Example

20070503132300-NAVO-L2P_GHRSST-SSTblend-AVHRR17_L-SST_s0123_e0135-v02.0-fv01.0.nc

The above file contains GHRSST L2P blended SST data for 03 May 2007, from AVHRR LAC data collected from the NOAA-17 platform. The granule begins at 13:23:00 hours. It is version 1.0 of the file and was produced by the NAVO RDAC in accordance with the GDS 2.0. The <Additional Segregator> text is "SST_sO123_e0135".

12.1.2 L3_GHRSST Filename Example

20070503110153-REMSS-L3C_GHRSST-SSTsubskin-TMI-tmi_20070503rt-v02.0-fv01.0.nc

The above file was produced by the REMSS RDAC and contains collated L3 sub-skin SST data from the TMI instrument for O3 May 2007. The collated file has a centre time of at 11:01:53 hours. It is version 1.0 of the file and was produced according to GDS 2.0 specifications. Its <Additional Segregator> text is "tmi_20070503rt".

12.1.3 L4_GHRSST Filename Example

20070503120000-UKMO-L4_GHRSST-SSTfnd-OSTIA-GLOB-v02.0-fv01.0.nc

The above file contains L4 foundation SST data produced at the UKMO RDAC using the OSTIA system. It is global coverage, contains data for O3 May 2007, was produced to GDS 2.0 specifications and is version 1.0 of the file. The nominal time of the OSTIA analysis is 12:00:00 hours.

12.2 < Indicative Date>

The identifying date for this data set, using the format YYYYMMDD, where YYYY is the four-digit year, MM is the two-digit month from 01 to 12, and DD is the two-digit day of month from 01 to 31. The date used should best represent the observation date for the dataset.

12.3 < Indicative Time>

The identifying time for this data set in UTC, using the format HHMMSS, where HH is the two-digit hour from 00 to 23, MM is the two-digit minute from 00 to 59, and SS is the two-digit second from 00 to 59. The time used is dependent on the <Processing Level> of the data set:

L2P: start time of granule L3U: start time of granule

L3C and L3S: centre time of the collation window

L4 and GMPE: nominal time of analysis

All times should be given in UTC and should be chosen to best represent the observation time for this dataset. Note: RDACs should ensure the applications they use to determine UTC properly account for leap seconds.

12.4 < RDAC>

Codes used for GHRSST Regional Data Assembly Centres (RDACs) are provided in the table below. New codes are assigned by the GHRSST Data And Systems Technical Advisory Group (DAS-TAG) and entered into the table upon agreement by the GDAC, LTSRF, and relevant RDACs.

Table 12.2: Regional Data Assembly Centre (RDAC) code table

RDAC Code	GHRSST RDAC Name
ABOM	Australian Bureau of Meteorology
CMC	Canadian Meteorological Centre
DMI	Danish Meteorological Institute
EUR	European RDAC
GOS	Gruppo di Oceanografia da Satellite
JPL	JPL Physical Oceanography Distributed Active Archive Center
JPL_OUROCEAN	JPL OurOcean Project
METNO	Norwegian Meteorological Institute
MYO	MyOcean
NAVO	Naval Oceanographic Office
NCDC	NOAA National Climatic Data Center
NEODAAS	NERC Observation Data Acquisition and Analysis Service
NOC	National Oceanography Centre, Southampton
NODC	NOAA National Oceanographic Data Center
OSDPD	NOAA Office of Satellite Data Processing and Distribution
OSISAF	EUMETSAT Ocean and Sea Ice Satellite Applications Facility
REMSS	Remote Sensing Systems, CA, USA
RSMAS	University of Miami, RSMAS
UKMO	UK Meteorological Office
UPA	United Kingdom Multi-Mission Processing and Archiving Facility
ESACCI	ESA SST Climate Change Initiative
JAXA	Japan Aerospace Exploration Agency
New codes	Please contact the GHRSST international Project Office if you require new codes to be included in future revisions of the GDS.

12.5 < Processing Level>

Satellite data processing level definitions can lead to ambiguous situations, especially regarding the distinction between L3 and L4 products. GHRSST identified the use of analysis procedures to fill gaps where no observations exist to resolve this ambiguity. Within GHRSST filenames, the <Processing Level> codes are shown below in Table 7-3. GHRSST currently establishes standards for L2P, L3U, L3C, L3S, and L4 (GHRSST Multi-Product Ensembles known as GMPE are a special kind of L4 product for which GHRSST also provides standards).

13 GDS 2.0 Data Product File Structure

13.1 Overview of the GDS 2.0 netCDF File Format

GDS 2.0 data files preferentially use the **netCDF-4 Classic** format. However, as netCDF-4 is a relatively new format and includes a significant number of new features that may not be well supported by existing user applications and tools, the GHRSST Science Team agreed to support both netCDF-3 and netCDF-4 format data files during a transition period. At the 11th GHRSST Science Team meeting, Lima Peru, 21-25th June 2010 it was agreed that the transition period would end in 2013 at which point (subject to positive developments in the user community using netCDF-4) the use of netCDF-3 format data products will cease within the GHRSST R/GTS framework. **NetCDF-3 data products shall be delivered to the GDAC with an accompanying MMR file records as described in Section 13**. While netCDF-3 can store the metadata, it is computationally expensive to extract it from externally-compressed netCDF-3 files. A major advantage to the use of NetCDF-4 format products from the producer's perspective is that no additional metadata records are required when using this format since the GDAC and LTSRF can easily extract it from the files without having to decompress the entire file.

These GDS 2.0 formatted data sets must comply with the Climate and Forecast (CF) Conventions, v1.4 [AD-3] or later because these conventions provide a practical standard for storing oceanographic data in a robust, easily-preserved for the long-term, and interoperable manner. The CF-compliant netCDF data format is flexible, self-describing, and has been adopted as a de facto standard for many operational and scientific oceanography systems. Both netCDF and CF are actively maintained including significant discussions and inputs from the oceanographic community (see http://cfpcmdi.llnl.gov/discussion/index_html). The CF convention generalizes and extends the Cooperative Ocean/Atmosphere Research Data Service (COARDS, [AD-4]) Convention but relaxes the COARDS constraints on dimension order and specifies methods for reducing the size of datasets. The purpose of the CF Conventions is to require conforming datasets to contain sufficient metadata so that they are self-describing, in the sense that each variable in the file has an associated description of what it represents, physical units if appropriate, and that each value can be located in space (relative to earthbased coordinates) and time. In addition to the CF Conventions, GDS 2.0 formatted files follow some of the recommendations of the Unidata Attribute Convention for Dataset Discovery (ACDD, [AD-7]).

In the context of netCDF, a variable refers to data stored in the file as a vector or as a multidimensional array. Each variable in a GHRSST netCDF file consists of a 2-dimensional [i \times j, 3-dimensional [i \times j, \times k, or 4-dimensional [i \times j, \times k, \times l] array of data. The dimensions of each variable must be explicitly declared in the dimension section.

Within the netCDF file, global attributes are used to hold information that applies to the whole file, such as the data set title. Each individual variable must also have its own attributes, referred to as variable attributes. These variable attributes define, for example, an offset, scale factor, units, a descriptive version of the variable name, and a fill value, which is used to indicate array elements that do not contain valid data. Where applicable, SI units should be used and described by a character string, which is compatible with the Unidata UDUNITS-2 package [AD-5].

All GHRSST GDS 2.0 files conform to this structure and share a common set of netCDF global attributes. These global attributes include those required by the CF Convention plus additional ones required by the GDS 2.0. The required set of global attributes is described in Section 8.2 and entities within the GHRSST R/GTS framework are free to add their own, as long as they do not contradict the GDS 2.0 and CF requirements.

Following the CF convention, each variable also has a set of variable attributes. The required variable attributes are described in Section 8.3. In a few cases, some of these variable attributes may not be relevant for certain variables or additional variable attributes may be required. In those cases, the variable descriptions in each of the L2P, L3, L4, and GMPE product specifications (Sections 9, 10, 11, and 12) will identify the differences and specify requirements for each product. As with the global attributes, entities within the GHRSST R/GTS framework are free to add their own variable attributes, as long as they do not contradict the GDS 2.0 and CF requirements.

While the exact volumes can vary, an average L2P file will use about 33 bytes per pixel, an L3 file 28 bytes per pixel, and an L4 file about 8 bytes per pixel. The data type encodings for each variable are fixed except for the experimental fields, which are flexible and can chosen by the producing RDAC.

13.2 GDS 2.0 netCDF Global Attributes

Table 8-1 below summarizes the global attributes that are mandatory for every GDS 2.0 netCDF data file. More details on the CF-mandated attributes (as indicated in the Source column) are available at: http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.4/cf-conventions.html#attribute-appendix and information on the ACDD recommendations is available at http://www.unidata.ucar.edu/software/netcdf-java/formats/DataDiscoveryAttConvention.html.

Table 13.1: Mandatory global attributes for GDS 2.0 netCDF data files

Global Attribute Name	Туре	Description	Source
acknowledgement	string	A place to acknowledge various types of support for the	ACDD
		project that produced this data.	
cdm_data_type	string	The data type, as derived from Unidata's Common Data Model Scientific Data types and understood by THREDDS. (This is a THREDDS "dataType", and is different from the CF NetCDF attribute 'featureType', which indicates a Discrete Sampling Geometry file in CF.)	ACDD
comment	string	Miscellaneous information about the data, not captured	CF, ACDD
Comment	301116	elsewhere. This attribute is defined in the CF Conventions.	CI,/\CDD
conventions	string	A text string identifying the netCDF conventions followed (e.g., CF-1.4, ACDD 1-3).	
creator_email	string	The email address of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.	ACDD
creator_name	string	The name of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.	ACDD
creator_url	string	The URL of the of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.	ACDD
date_created	string	The date on which this version of the data was created.	ACDD
easternmost_longitude	float	Decimal degrees east, range -180 to +180. This is equivalent to ACDD geospatial_lon_max.	podaac
geospatial_lat_resolution	float	Latitude Resolution in units matching geospatial_lat_units.	ACDD
geospatial_lat_units	string	Units of the latitudinal resolution. Typically "degrees_north"	ACDD
geospatial_lon_resolution	float	Longitude Resolution in units matching geospatial_lon_resolution	ACDD
geospatial_lon_units	string	Units of the longitudinal resolution. Typically "degrees_east"	ACDD
history	string	The name of the institution principally responsible for originating this data. This attribute is recommended by the CF convention.	CF, ACDD
id	string	An identifier for the data set, provided by and unique within its naming authority. The combination of the "naming authority" and the "id" should be globally unique, but the id can be globally unique by itself also. IDs can be URLs, URNs, DOIs, meaningful text strings, a local key, or any other unique string of characters. The id should not include white space characters.	ACDD
institutions	string	The name of the institution principally responsible for originating this data. This attribute is recommended by the CF convention.	CF, ACDD
keywords	string	GCMD Science Keyword(s)	ACDD
keywords_vocabulary	string	The unique name or identifier of the vocabulary from which keywords are taken. e.g., the NASA Global Change Master Directory (GCMD) Science Keywords.	ACDD
license	string	Provide the URL to a standard or specific license, enter "Freely Distributed" or "None", or describe any restrictions to data access and distribution in free text.	ACDD
Metadata_Conventions	string	A comma-separated list of the conventions that are followed by the dataset.	ACDD
metadata_link	string	Link to collection metadata record at archive	ACDD

Table 13.1: Mandatory global attributes for GDS 2.0 netCDF data files

naming_authority	string	The organization that provides the initial id (see above)	ACDD
		for the dataset. The naming authority should be uniquely	
		specified by this attribute via reverse-DNS naming con-	
		vention.	
netcdf_version_id	string	Version of netCDF libraries used to create this file. For example, "4.1.1"	GDS
northernmost_latitude	float	Decimal degrees north, range -90 to +90. This is equivalent to ACDD geospatial_lat_max.	GDS
processing_level	string	A textual description of the processing (or quality control) level of the data.	ACDD & GDS
product_version	string	The product version of this data file	GDS
project	string	The name of the project(s) principally responsible for originating this data.	ACDD
publisher_email	string	The email address of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.	ACDD
publisher_name	string	The name of the person (or other entity specified by the	ACDD
		publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.	
publisher_url	string	The URL of the person (or other entity specified by the	ACDD
		publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.	
references	string	Published or web-based references that describe the data	ACDD
		or methods used to produce it. Recommend URIs (such as	
		a URL or DOI) for papers or other references. This attribute is defined in the CF conventions.	
source	string	Method of production of the original data.	CF
sourthernmost_latitude	float	Decimal degrees north, range -90 to +90. This is equivalent to ACDD geospatial_lat_min.	GDS
spatial_resolution	string	A string describing the approximate resolution of the product.	GDS
standard_name_vocabulary	string	The name and version of the controlled vocabulary from which variable standard names are taken.	ACDD
start_time	string	Representative date and time of the end of the granule in the ISO 8601 compliant format of "yyyymmddThhmmssZ".	GDS
stop_time	string	Representative date and time of the end of the granule in the ISO 8601 compliant format of "yyyymmddThhmmssZ".	GDS
summary	string	A paragraph describing the dataset, analogous to an abstract for a paper.	ACDD
time_coverage_end	string	Identical to stop_time. Included for increased ACDD compliance.	ACDD
time_coverage_start	string	Identical to start_time. Included for increased ACDD compliance.	ACDD
title	string	A short phrase or sentence describing the dataset. In many discovery systems, the title will be displayed in the results list from a search, and therefore should be human readable and reasonable to display in a list of such names. This attribute is recommended by the NetCDF Users Guide (NUG) and the CF conventions.	CF, ACDD

Table 13.1: Mandatory global attributes for GDS 2.0 netCDF data files

uuid	string	A Universally Unique Identifier (UUID). Numerous, simple tools can be used to create a UUID, which is inserted as the value of this attribute. See http://en.wikipedia.org/wiki/Universally_Unique_Identifier for more information and tools.	GDS
westernmost_longitude	float	Decimal degrees east, range -180 to +180. This is equivalent to ACDD geospatial_lon_min.	GDS

13.3 GDS 2.0 netCDF Variable Attributes

Table 13.2: Table 8-2. Variable attributes for GDS 2.0 netCDF data files

Variable Attribute Name	Format	Description	Source
_FillValue	Must be the same as the variable type	A value used to indicate array elements containing no valid data. This value must be of the same type as the storage (packed) type; should be set as the minimum value for this type. Note that some netCDF readers are unable to cope with signed bytes and may, in these cases, report fill as 128. Some cases will be reported as unsigned bytes 0 to 255. Required for the majority of variables except mask and l2p_flags.	CF
units	string	Text description of the units, preferably S.I., and must be compatible with the Unidata UDUNITS-2 package [AD-5]. For a given variable (e.g. wind speed), these must be the same for each dataset. Required for the majority of variables except mask, quality_level, and l2p_flags.	CF, ACDD
scale_factor	Must be expressed in the unpacked data type	To be multiplied by the variable to recover the original value. Defined by the producing RDAC. Valid values within {value_min} and {valid_max} should be transformed by {scale_factor} and {add_offset}, otherwise skipped to avoid floating point errors.	CF
add_offset	Must be expressed in the unpacked data type	To be added to the variable after multiplying by the scale factor to recover the original value. If only one of {scale_factor} or {add_offset} is needed, then both should be included anyway to avoid ambiguity, with {scale_factor} defaulting to 1.0 and add_offset defaulting to 0.0. Defined by the producing RDAC.	CF
long_name valid_min	string Expressed in same data type as variable	A free-text descriptive variable name. Minimum valid value for this variable once they are packed (in storage type). The fill value should be outside this valid range. Note that some netCDF readers are unable to cope with signed bytes and may, in these cases, report valid min as 129. Some cases as unsigned bytes 0 to 255. Values outside of {valid_min} and {valid_max} will be treated as missing values. Required for all variables except variable time.	CF, ACDD CF
valid_max	Expressed in same data type as variable	Maximum valid value for this variable once they are packed (in storage type). The fill value should be outside this valid range. Note that some netCDF readers are unable to cope with signed bytes and may, in these cases, report valid min as 127. Required for all variables except variable time.	CF

Table 13.2: Table 8-2. Variable attributes for GDS 2.0 netCDF data files

standard_name	string	Where defined, a standard and unique description of a	CF, ACDD
		physical quantity. For the complete list of standard name	
		strings, see [AD-8]. {Do not} include this attribute if no	
		{standard_name} exists.	
comment	string	Miscellaneous information about the variable or the meth-	CF
		ods used to produce it.	
source	string	{For L2P and L3 files}: For a data variable with a single	CF
		source, use the GHRSST unique string listed in Table 7-10	
		if the source is a GHRSST SST product. For other sources,	
		following the best practice described in Section 7.9 to cre-	
		ate the character string.	
		If the data variable contains multiple sources, set this string	
		to be the relevant "sources of" variable name. For exam-	
		ple, if multiple wind speed sources are used, set {source =}	
		sources_of_wind_speed.	
		{For L4 and GMPE files}: follow the {source} convention	
		used for the global attribute of the same name, but pro-	
		vide in the commaseparated list only the sources relevant	
		to this variable.	
references	string	Published or web-based references that describe the data	CF
		or methods used to produce it. Note that while at least	
		one reference is required in the global attributes (See Table	
		8-1), references to this specific data variable may also be	
		given.	
axis	String	For use with coordinate variables only. The attribute 'axis'	CF
		may be attached to a coordinate variable and given one of	
		the values "X", "Y", "Z", or "T", which stand for a longitude,	
		latitude, vertical, or time axis respectively. See: http:	
		//cfpcmdi.llnl.gov/documents/cfconventions/1.	
a a station	Cti	4/cfconventions.html#coordinate-types	CE
positive	String	For use with a vertical coordinate variables only. May have	CF
		the value "up" or "down". For example, if an oceanographic	
		netCDF file encodes the depth of the surface as 0 and the depth of 1000 meters as 1000 then the axis would set	
		positive to "down". If a depth of 1000 meters was encoded	
		as -1000, then positive would be set to "up". See the sec-	
		tion on vertical-coordinate in [AD-3]	
coordinates	String	Identifies auxiliary coordinate variables, label variables,	CF
550 an accs	506	and alternate coordinate variables. See the section on	.
		coordinate-system in [AD3]. This attribute must be pro-	
		vided if the data are on a non-regular lat/lon grid (map pro-	
		jection or swath data).	
grid_mapping	String	Use this for data variables that are on a projected grid.	CF
0 - 11 0	0	The attribute takes a string value that is the name of an-	
		other variable in the file that provides the description of	
		the mapping via a collection of attached attributes. That	
		named variable is called a grid mapping variable and is of	
		arbitrary type since it contains no data. Its purpose is to act	
		as a container for the attributes that define the mapping.	
		See the section on mappings-andprojections in [AD-3]	
flag_mappings	String	Space-separated list of text descriptions associated in	CF
	_	strict order with conditions set by either flag_values or	
		flag_masks. Words within a phrase should be connected	
		with underscores.	

Table 13.2: Table 8-2. Variable attributes for GDS 2.0 netCDF data files

flag_values	Must be the same as the variable type	Comma-separated array of valid, mutually exclusive variable values (required when the bit field contains enumerated values; i.e., a "list" of conditions). Used primarily for {quality_level} and "{sources_of_xxx}" variables.	CF
flag_masks	Must be the same as the variable type	Comma-separated array of valid variable masks (required when the bit field contains independent Boolean conditions; i.e., a bit "mask"). Used primarily for {l2p_flags} variable. {Note: CF allows the use of both flag_masks and flag_values attributes in a single variable to create sets of masks that each have their own list of flag_values (see http://cfpcmdi.llnl.gov/documents/cfconventions/1.5/ch03s05.html#id2710752 for examples), but this practice is discouraged.}	CF
depth	String	Use this to indicate the depth for which the SST data are valid.	GDS
height	String	Use this to indicate the height for which the wind data are specified.	GDS
time_offset	Must be expressed in the unpacked data type	Difference in hours between an ancillary field such as {wind_speed} and the SST observation time	GDS

13.4 GDS 2.0 coordinate variable definitions

NetCDF coordinate variables provide scales for the space and time axes for the multidimensional data arrays, and must be included for all dimensions that can be identified as spatio-temporal axes. Coordinate arrays are used to geolocate data arrays on non-orthogonal grids, such as images in the original pixel/scan line space, or complicated map projections. Required attributes are units and _FillValue. Elements of the coordinate array need not be monotonically ordered. The data type can be any and scaling may be implemented if required. add_offset and scale_factor have to be adjusted according to the sensor resolution and the product spatial coverage. If the packed values can not stand on a short, float can be used instead (multiplying the size of these variables by two).

'time' is the reference time of the SST data array. The GDS 2.0 specifies that this reference time should be extracted or computed to the nearest second and then coded as continuous UTC time coordinates in seconds from 00:00:00 UTC January 1,1981 (which is the definition of the GHRSST origin time, chosen to approximate the start of useful AVHRR SST data record). Note that the use of UDUNITS in GHRSST implies that that calendar to be used is the default mixed Gregorian/Julian calendar.

The reference time used is dependent on the <Processing Level> of the data and is defined as follows:

- L2P: start time of granule;
- L3U: start time of granule;
- L3C and L3S: centre time of the collation window;
- L4 and GMPE: nominal time of the analysis

The coordinate variable 'time' is intended to minimize the size of the sst_dtime variable (e.g., see Section 9.4), which stores offsets from the reference time in seconds for each SST pixel. 'time' also facilitates aggregation of all files of a given dataset along the time axis with such tools as THREDDS and LAS.

x (columns) and y (lines) grid dimensions are referred either as 'lat' and 'lon' or as 'ni' and 'nj'. lon and lat must be used if data are mapped on a regular grid (some geostationary products). ni and nj are used if data are mapped on a non-regular grid (curvilinear coordinates) or following the sensor scanning pattern (scan line, swath). It is preferred that ni should be used for the across-track dimension and nj for the along-track dimension.

Coordinate vectors are used for data arrays located on orthogonal (but not necessarily regularly spaced) grids, such as a geographic (lat-lon) map projections. The only required attribute is units. The elements of a coordinate vector array should be in monotonically increasing or decreasing order. The data type can be any and scaling may be implemented if required.

A coordinate's variable (= "lon lat"): must be provided if the data are on a non-regular lat/lon grid (map projection or swath data).

A grid_mapping (= "projection name"): must be provided if the data are mapped following a projection. Refer to the CF convention [AD-3] for standard projection names.

13.4.1 Native datasets

Hoc est casus simplex. Multae L3, L4, et GMPE comoediae, necnon quaedam geostationaria L2P comoediae, in ordinaria lat/lon tabula praebentur. In huiusmodi projectione, solum duo coordinate sunt requisitae et vectorum formis servari possunt. Longitudines debent variare ab -180 ad +180, id est ab 180 gradibus Occidentem ad 180 gradibus Orientem. Latitudines debent variare ab -90 ad +90, id est ab 90 gradibus Meridiem ad 90 gradibus Septentrionem. Non debet esse _FillValue pro latitudine et longitudine, et omnes SST pixeles debent habere validum latitudinis et longitudinis valorem.

Recommendatur ut tempus dimensionem pro Level 3 et Level 4 data prodigia ut infinita specificetur. Nota quod tempus dimensio pro L2P data est stricta definita ut tempus=1 (infinita dimensio non permittitur). Hoc strictum definitum est quia L2P data sunt swath based et geospatial informatio potest mutare per consecutive tempus slabs.

In GHRSST L3 et L4 granulis, solum unum tempus dimensio (tempus=1) est, et variabilis tempus solum unum valorem habet (secunda post 1981), sed infinitum tempus dimensionem permittit netCDF instrumenta et utilitates facile concatenare (et exempli gratia, mediare) seriem de tempore consecutive GHRSST granulis. Sequens CDL exemplum dat:

```
netcdf example {
    dimensions:
    lat = 1801;
    lon = 3600;
    time = UNLIMITED; // (strictly set to 1 for L2P)
    variables:
    ...
}
```

Pro his casibus, dimensiones et coordinae variabiles debent uti pro regulari lat/lon tabula, ut in Tabula 8-3 monstratur. Nullae specificae variabiles attributi sunt requisitae pro aliis variabilibus (ut sea_surface_temperature, ut in exemplo dat in Tabula 8-3).

Table 13.3: Example CDL description of native dataset

```
netcdf native example
dimensions
i = 90
i_g = 90
i = 90
j_g = 90
k = 50
k_u = 50
k_l = 50
k_p1 = 51
tile = 13
time = 1
nv = 2
nb = 4
coordinates
   int32 i (i)
       i:axis = "X"
       i:long_name = "grid index in x for variables at tracer and 'v' locations"
       i:swap_dim = "XC"
       i:comment = "In the Arakawa C-grid system, tracer (e.g., THETA) and 'v' variables (e.g., VVEL) have the same x coordinate
on the model grid."
       i:coverage_content_type = "coordinate"
   int32 i_g (i_g)
       i_g:axis = "X"
       i_g:long_name = "grid index in x for variables at 'u' and 'g' locations"
       i_g:c_grid_axis_shift = "-0.5"
        i_g:swap_dim = "XG"
```

Table 13.3: Example CDL description of native dataset

```
i_g:comment = "In the Arakawa C-grid system, 'u' (e.g., UVEL) and 'g' variables (e.g., XG) have the same x coordinate on
the model grid."
       i_g:coverage_content_type = "coordinate"
   int32 j (j)
       j:axis = "Y"
       j:long_name = "grid index in y for variables at tracer and 'u' locations"
       j:swap_dim = "YC"
       j:comment = "In the Arakawa C-grid system, tracer (e.g., THETA) and 'u' variables (e.g., UVEL) have the same y coordinate
on the model grid."
       j:coverage_content_type = "coordinate"
   int32 j_g (j_g)
       j_g:axis = "Y"
       j_g:long_name = "grid index in y for variables at 'v' and 'g' locations"
       j_g:c_grid_axis_shift = "-0.5"
       j_g:swap_dim = "YG"
       i_g:comment = "In the Arakawa C-grid system, 'v' (e.g., VVEL) and 'g' variables (e.g., XG) have the same y coordinate."
       j_g:coverage_content_type = "coordinate"
   int32 k (k)
       k:axis = "Z"
       k:long_name = "grid index in z for tracer variables"
       k:swap_dim = "Z"
       k:coverage_content_type = "coordinate"
   int32 k_u (k_u)
       k_u:axis = "Z"
       k_u:c_grid_axis_shift = "0.5"
       k u:swap dim = "Zu"
       k_u:coverage_content_type = "coordinate"
       k_u:long_name = "grid index in z corresponding to the bottom face of tracer grid cells ('w' locations)"
       k_u:comment = "First index corresponds to the bottom surface of the uppermost tracer grid cell. The use of 'u' in the
variable name follows the MITgcm convention for ocean variables in which the upper (u) face of a tracer grid cell on the logical
grid corresponds to the bottom face of the grid cell on the physical grid."
    int32 k_l (k_l)
       k_l:axis = "Z'
       k_l:c_grid_axis_shift = "-0.5"
       k_l:swap_dim = "Zl"
       k_l:coverage_content_type = "coordinate"
       k_l:long_name = "grid index in z corresponding to the top face of tracer grid cells ('w' locations)"
       k_l:comment = "First index corresponds to the top surface of the uppermost tracer grid cell. The use of 'l' in the variable
name follows the MITgcm convention for ocean variables in which the lower (I) face of a tracer grid cell on the logical grid
corresponds to the top face of the grid cell on the physical grid."
   int32 k_p1 (k_p1)
       k_p1:axis = "Z"
       k_p1:long_name = "grid index in z for variables at 'w' locations"
       k_p1:c_grid_axis_shift = "[-0.5 0.5]"
       k_p1:swap_dim = "Zp1"
       k_p1:comment = "Includes top of uppermost model tracer cell (k_p1=0) and bottom of lowermost tracer cell (k_p1=51)."
       k_p1:coverage_content_type = "coordinate"
   int32 tile (tile)
       tile:long_name = "lat-lon-cap tile index"
       tile:comment = "The ECCO V4 horizontal model grid is divided into 13 tiles of 90x90 cells for convenience."
       tile:coverage_content_type = "coordinate"
   int32 time (time)
       time:long_name = "center time of averaging period"
       time:axis = "T"
       time:bounds = "time_bnds"
       time:coverage_content_type = "coordinate"
       time:standard_name = "time"
```

Table 13.3: Example CDL description of native dataset

```
time:units = "hours since 1992-01-01T12:00:00"
       time:calendar = "proleptic_gregorian"
   float32 XC (tile, j, i)
       XC:long_name = "longitude of tracer grid cell center"
       XC:units = "degrees_east"
       XC:coordinate = "YC XC"
       XC:bounds = "XC_bnds"
       XC:comment = "nonuniform grid spacing"
       XC:coverage_content_type = "coordinate"
       XC:standard_name = "longitude"
   float32 YC (tile, j, i)
       YC:long_name = "latitude of tracer grid cell center"
       YC:units = "degrees_north"
       YC:coordinate = "YC XC"
       YC:bounds = "YC_bnds"
       YC:comment = "nonuniform grid spacing"
       YC:coverage_content_type = "coordinate"
       YC:standard_name = "latitude"
   float32 XG (tile, j_g, i_g)
       XG:long_name = "longitude of 'southwest' corner of tracer grid cell"
       XG:units = "degrees_east"
       XG:coordinate = "YG XG"
       XG:comment = "Nonuniform grid spacing. Note: 'southwest' does not correspond to geographic orientation but is used
for convenience to describe the computational grid. See MITgcm dcoumentation for details."
       XG:coverage_content_type = "coordinate"
       XG:standard_name = "longitude"
   float32 YG (tile, j_g, i_g)
       YG:long_name = "latitude of 'southwest' corner of tracer grid cell"
       YG:units = "degrees_north"
       YG:coordinate = "YG XG"
       YG:comment = "Nonuniform grid spacing. Note: 'southwest' does not correspond to geographic orientation but is used
for convenience to describe the computational grid. See MITgcm dcoumentation for details."
       YG:coverage_content_type = "coordinate"
       YG:standard_name = "latitude"
   float32 Z(k)
       Z:long_name = "depth of tracer grid cell center"
       Z:units = "m"
       Z:positive = "up"
       Z:bounds = "Z_bnds"
       Z:comment = "Non-uniform vertical spacing."
       Z:coverage_content_type = "coordinate"
       Z:standard_name = "depth"
   float32 Zp1 (k_p1)
       Zp1:long_name = "depth of tracer grid cell interface"
       Zp1:units = "m"
       Zp1:positive = "up"
       Zp1:comment = "Contains one element more than the number of vertical layers. First element is Om, the depth of the
upper interface of the surface grid cell. Last element is the depth of the lower interface of the deepest grid cell."
       Zp1:coverage_content_type = "coordinate"
       Zp1:standard_name = "depth"
   float32 Zu (k_u)
       Zu:units = "m"
       Zu:positive = "up"
       Zu:coverage_content_type = "coordinate"
       Zu:standard_name = "depth"
       Zu:long_name = "depth of the bottom face of tracer grid cells"
```

Table 13.3: Example CDL description of native dataset

Zu:comment = "First element is -10m, the depth of the bottom face of the first tracer grid cell. Last element is the depth of the bottom face of the deepest grid cell. The use of 'u' in the variable name follows the MITgcm convention for ocean variables in which the upper (u) face of a tracer grid cell on the logical grid corresponds to the bottom face of the grid cell on the physical grid. In other words, the logical vertical grid of MITgcm ocean variables is inverted relative to the physical vertical grid."

```
float32 Zl (k_l)
Zl:units = "m"
Zl:positive = "up"
Zl:coverage_content_type = "coordinate"
Zl:standard_name = "depth"
Zl:long_name = "depth of the top face of tracer grid cells"
```

Zl:comment = "First element is Om, the depth of the top face of the first tracer grid cell (ocean surface). Last element is the depth of the top face of the deepest grid cell. The use of 'l' in the variable name follows the MITgcm convention for ocean variables in which the lower (l) face of a tracer grid cell on the logical grid corresponds to the top face of the grid cell on the physical grid. In other words, the logical vertical grid of MITgcm ocean variables is inverted relative to the physical vertical grid."

int32 time_bnds (time, nv)
 time_bnds:comment = "Start and end times of averaging period."
 time_bnds:coverage_content_type = "coordinate"
 time_bnds:long_name = "time bounds of averaging period"
float32 XC_bnds (tile, j, i, nb)

XC_bnds:comment = "Bounds array follows CF conventions. XC_bnds[i,j,0] = 'southwest' corner (j-1, i-1), XC_bnds[i,j,1] = 'southeast' corner (j-1, i+1), XC_bnds[i,j,2] = 'northeast' corner (j+1, i+1), XC_bnds[i,j,3] = 'northwest' corner (j+1, i-1). Note: 'southwest', 'southeast', northwest', and 'northeast' do not correspond to geographic orientation but are used for convenience to describe the computational grid. See MITgcm dcoumentation for details."

XC_bnds:coverage_content_type = "coordinate"

XC_bnds:long_name = "longitudes of tracer grid cell corners"

float32 YC_bnds (tile, j, i, nb)

YC_bnds:comment = "Bounds array follows CF conventions. YC_bnds[i,j,0] = 'southwest' corner (j-1, i-1), YC_bnds[i,j,1] = 'southeast' corner (j-1, i+1), YC_bnds[i,j,2] = 'northwest' corner (j+1, i-1). Note: 'southwest', 'southeast', 'northwest', and 'northeast' do not correspond to geographic orientation but are used for convenience to describe the computational grid. See MITgcm dcoumentation for details."

YC_bnds:coverage_content_type = "coordinate"
YC_bnds:long_name = "latitudes of tracer grid cell corners"

float32 Z_bnds (k, nv)

Z_bnds:comment = "One pair of depths for each vertical level."

Z_bnds:coverage_content_type = "coordinate"

Z_bnds:long_name = "depths of tracer grid cell upper and lower interfaces"

data variables

```
float32 ADVx_SLT (time, k, tile, j, i_g)

ADVx_SLT:_FillValue = "9.969209968386869e+36"

ADVx_SLT:long_name = "Lateral advective flux of salinity in the model +x direction"

ADVx_SLT:units = "1e-3 m3 s-1"

ADVx_SLT:mate = "ADVy_SLT"

ADVx_SLT:coverage_content_type = "modelResult"

ADVx_SLT:direction = ">O increases salinity (SALT)"
```

ADVx_SLT:comment = "Lateral advective flux of salinity (SALT) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVx_SLT(i_g,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand: see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
ADVx_SLT:coordinates = "Z time"

ADVx_SLT:valid_min = "-181830224.0"

ADVx_SLT:valid_max = "260411296.0"
```

Table 13.3: Example CDL description of native dataset

```
float32 DFxE_SLT (time, k, tile, j, i_g)

DFxE_SLT:_FillValue = "9.969209968386869e+36"

DFxE_SLT:long_name = "Lateral diffusive flux of salinity in the model +x direction"

DFxE_SLT:units = "1e-3 m3 s-1"

DFxE_SLT:mate = "DFyE_SLT"

DFxE_SLT:coverage_content_type = "modelResult"

DFxE_SLT:direction = ">O increases salinity (SALT)"
```

DFxE_SLT:comment = "Lateral diffusive flux of salinity (SALT) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFxE_SLT(i_g,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFxE_SLT:coordinates = "Z time"
DFxE_SLT:valid_min = "-125908.03125"
DFxE_SLT:valid_max = "192716.484375"
float32 ADVy_SLT (time, k, tile, j_g, i)
ADVy_SLT:_FillValue = "9.969209968386869e+36"
ADVy_SLT:long_name = "Lateral advective flux of salinity in the model +y direction"
ADVy_SLT:units = "1e-3 m3 s-1"
ADVy_SLT:mate = "ADVx_SLT"
ADVy_SLT:coverage_content_type = "modelResult"
ADVy_SLT:direction = ">O increases salinity (SALT)"
```

ADVy_SLT:comment = "Lateral advective flux of salinity (SALT) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVy_SLT(i,j_g,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
ADVy_SLT:coordinates = "Z time"

ADVy_SLT:valid_min = "-137905760.0"

ADVy_SLT:valid_max = "164271664.0"

float32 DFyE_SLT (time, k, tile, j_g, i)

DFyE_SLT:_FillValue = "9.969209968386869e+36"

DFyE_SLT:long_name = "Lateral diffusive flux of salinity in the model +y direction"

DFyE_SLT:units = "1e-3 m3 s-1"

DFyE_SLT:mate = "DFxE_SLT"

DFyE_SLT:coverage_content_type = "modelResult"

DFyE_SLT:direction = ">O increases salinity (SALT)"
```

DFyE_SLT:comment = "Lateral diffusive flux of salinity (SALT) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFyE_SLT(i,j_g,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFyE_SLT:coordinates = "Z time"
DFyE_SLT:valid_min = "-114959.2109375"
DFyE_SLT:valid_max = "154227.140625"
```

Table 13.3: Example CDL description of native dataset

```
float32 ADVr_SLT (time, k_l, tile, j, i)

ADVr_SLT:_FillValue = "9.969209968386869e+36"

ADVr_SLT:long_name = "Vertical advective flux of salinity"

ADVr_SLT:units = "1e-3 m3 s-1"

ADVr_SLT:coverage_content_type = "modelResult"

ADVr_SLT:direction = ">O decreases salinity (SALT)"
```

ADVr_SLT:comment = "Vertical advective flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +ADVr_SLT(i,j,k_l) corresponds to upward +z fluxes through the top 'w' face of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
ADVr_SLT:coordinates = "XC Zl YC time"

ADVr_SLT:valid_min = "-324149856.0"

ADVr_SLT:valid_max = "263294624.0"

float32 DFrE_SLT (time, k_l, tile, j, i)

DFrE_SLT:_FillValue = "9.969209968386869e+36"

DFrE_SLT:long_name = "Vertical diffusive flux of salinity (explicit term)"

DFrE_SLT:units = "1e-3 m3 s-1"

DFrE_SLT:coverage_content_type = "modelResult"

DFrE_SLT:direction = ">O decreases salinity (SALT)"
```

DFrE_SLT:comment = "The explicit term of the vertical diffusive flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. In the ECCO V4r4 model, an implicit scheme is used to calculate vertical diffusive tracer fluxes due to background diffusivity and the Kwz component of the GM-Redi tensor (vertical flux as a function of vertical gradient) while an explicit scheme is used to calculate the vertical diffusive fluxes from the Kwx and Kwy components of the GM-Redi tensor (vertical flux as a function of horizontal gradient). Both implicit and explicit components of vertical diffusive flux of salinity are provided. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +DFrE_SLT(i,j,k_l) corresponds to upward +z fluxes through the top 'w' face of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFrE_SLT:coordinates = "XC Zl YC time"

DFrE_SLT:valid_min = "-1074719.375"

DFrE_SLT:valid_max = "471215.75"

float32 DFrl_SLT (time, k_l, tile, j, i)

DFrl_SLT:_FillValue = "9.969209968386869e+36"

DFrl_SLT:long_name = "Vertical diffusive flux of salinity (implicit term)"

DFrl_SLT:units = "1e-3 m3 s-1"

DFrl_SLT:coverage_content_type = "modelResult"

DFrl_SLT:direction = ">O decreases salinity (SALT)"
```

DFrl_SLT:comment = "The implicit term of the vertical diffusive flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. In the ECCO V4r4 model, an implicit scheme is used to calculate vertical diffusive tracer fluxes due to background diffusivity and the Kwz component of the GM-Redi tensor (vertical flux as a function of vertical gradient) while an explicit scheme is used to calculate the vertical diffusive fluxes from the Kwx and Kwy components of the GM-Redi tensor (vertical flux as a function of horizontal gradient). Both implicit and explicit components of vertical diffusive flux of salinity are provided. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +DFrl_SLT(i,j,k_l) corresponds to upward +z fluxes through the top face 'w' of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFrl_SLT:coordinates = "XC Zl YC time"
DFrl_SLT:valid_min = "-30609048.0"
DFrl_SLT:valid_max = "3197643.0"
float32 oceSPtnd (time, k, tile, j, i)
```

Table 13.3: Example CDL description of native dataset

```
oceSPtnd:_FillValue = "9.969209968386869e+36" oceSPtnd:long_name = "Salt tendency due to the vertical transport of salt in high-salinity brine plumes" oceSPtnd:units = "g m-2 s-1" oceSPtnd:coverage_content_type = "modelResult" oceSPtnd:direction = ">O increases salinity (SALT)" oceSPtnd:comment = "Salt tendency due to the vertical transport of salt in high-salinity brine plumes. Note: units are grams of salt per square meter per second, not salinity per square meter per second." oceSPtnd:coordinates = "XC Z YC time" oceSPtnd:valid_min = "O.0" oceSPtnd:valid_max = "O.021119138225913O48"
```

13.4.2 Latlon datasets

Hoc est casus simplex. Multae L3, L4, et GMPE comoediae, necnon quaedam geostationaria L2P comoediae, in ordinaria lat/lon tabula praebentur. In huiusmodi projectione, solum duo coordinate sunt requisitae et vectorum formis servari possunt. Longitudines debent variare ab -180 ad +180, id est ab 180 gradibus Occidentem ad 180 gradibus Orientem. Latitudines debent variare ab -90 ad +90, id est ab 90 gradibus Meridiem ad 90 gradibus Septentrionem. Non debet esse _FillValue pro latitudine et longitudine, et omnes SST pixeles debent habere validum latitudinis et longitudinis valorem.

Recommendatur ut tempus dimensionem pro Level 3 et Level 4 data prodigia ut infinita specificetur. Nota quod tempus dimensio pro L2P data est stricta definita ut tempus=1 (infinita dimensio non permittitur). Hoc strictum definitum est quia L2P data sunt swath based et geospatial informatio potest mutare per consecutive tempus slabs.

In GHRSST L3 et L4 granulis, solum unum tempus dimensio (tempus=1) est, et variabilis tempus solum unum valorem habet (secunda post 1981), sed infinitum tempus dimensionem permittit netCDF instrumenta et utilitates facile concatenare (et exempli gratia, mediare) seriem de tempore consecutive GHRSST granulis. Sequens CDL exemplum dat:

```
netcdf example {
    dimensions:
    lat = 1801;
    lon = 3600;
    time = UNLIMITED; // (strictly set to 1 for L2P)
    variables:
    ...
}
```

Pro his casibus, dimensiones et coordinae variabiles debent uti pro regulari lat/lon tabula, ut in Tabula 8-3 monstratur. Nullae specificae variabiles attributi sunt requisitae pro aliis variabilibus (ut sea_surface_temperature, ut in exemplo dat in Tabula 8-3).

Table 13.4: Example CDL description of latlon dataset

```
netcdf latlon example
dimensions

time = 1
latitude = 360
longitude = 720
nv = 2

coordinates

int32 time (time)
    time:axis = "T"
    time:bounds = "time_bnds"
    time:coverage_content_type = "coordinate"
    time:long_name = "center time of averaging period"
    time:standard_name = "time"
    time:units = "hours since 1992-01-01T12:00:00"
```

Table 13.4: Example CDL description of latlon dataset

```
time:calendar = "proleptic_gregorian"
   float32 latitude (latitude)
       latitude:axis = "Y"
       latitude:bounds = "latitude_bnds"
       latitude:comment = "uniform grid spacing from -89.75 to 89.75 by 0.5"
       latitude:coverage_content_type = "coordinate"
       latitude:long_name = "latitude at grid cell center"
       latitude:standard_name = "latitude"
       latitude:units = "degrees_north"
   float32 longitude (longitude)
       longitude:axis = "X"
       longitude:bounds = "longitude_bnds"
       longitude:comment = "uniform grid spacing from -179.75 to 179.75 by 0.5"
       longitude:coverage_content_type = "coordinate"
       longitude:long_name = "longitude at grid cell center"
       longitude:standard_name = "longitude"
       longitude:units = "degrees_east"
   int32 time_bnds (time, nv)
       time_bnds:comment = "Start and end times of averaging period."
       time_bnds:coverage_content_type = "coordinate"
       time_bnds:long_name = "time bounds of averaging period"
   float32 latitude_bnds (latitude, nv)
       latitude_bnds:coverage_content_type = "coordinate"
       latitude_bnds:long_name = "latitude bounds grid cells"
   float32 longitude_bnds (longitude, nv)
       longitude_bnds:coverage_content_type = "coordinate"
       longitude_bnds:long_name = "longitude bounds grid cells"
data variables
   float32 EXFhl (time, latitude, longitude)
       EXFhl:_FillValue = "9.969209968386869e+36"
       EXFhl:coverage_content_type = "modelResult"
       EXFhl:direction = ">O increases potential temperature (THETA)"
       EXFhl:long_name = "Open ocean air-sea latent heat flux"
       EXFhl:standard_name = "surface_downward_latent_heat_flux"
       EXFhl:units = "W m-2"
       EXFhl:comment = "Air-sea latent heat flux per unit area of open water (not covered by sea-ice). Note: calculated from
the bulk formula following Large and Yeager (2004) NCAR/TN-460+STR."
       EXFhl:coordinates = "time"
       EXFhl:valid_min = "-1772.513671875"
       EXFhl:valid_max = "273.9528503417969"
   float32 EXFhs (time, latitude, longitude)
       EXFhs:_FillValue = "9.969209968386869e+36"
       EXFhs:coverage_content_type = "modelResult"
       EXFhs:direction = ">O increases potential temperature (THETA)"
       EXFhs:long_name = "Open ocean air-sea sensible heat flux"
       EXFhs:standard_name = "surface_downward_sensible_heat_flux"
       EXFhs:units = "W m-2"
       EXFhs:comment = "Air-sea sensible heat flux per unit area of open water (not covered by sea-ice). Note: calculated
from the bulk formula following Large and Yeager (2004) NCAR/TN-460+STR."
       EXFhs:coordinates = "time"
       EXFhs:valid_min = "-2478.766357421875"
       EXFhs:valid_max = "357.0105895996094"
   float32 EXFlwdn (time, latitude, longitude)
       EXFlwdn:_FillValue = "9.969209968386869e+36"
       EXFlwdn:coverage_content_type = "modelResult"
       EXFlwdn:direction = ">O increases potential temperature (THETA)"
       EXFlwdn:long_name = "Downward longwave radiative flux"
```

Table 13.4: Example CDL description of latlon dataset

```
EXFlwdn:standard_name = "surface_downwelling_longwave_flux_in_air"
       EXFlwdn:units = "W m-2"
       EXFlwdn:comment = "Downward longwave radiative flux. Note: sum of ERA-Interim downward longwave radiation
and the control adjustment from ocean state estimation."
       EXFlwdn:coordinates = "time"
       EXFlwdn:valid_min = "4.188045501708984"
       EXFlwdn:valid_max = "513.3919067382812"
   float32 EXFswdn (time, latitude, longitude)
       EXFswdn:_FillValue = "9.969209968386869e+36"
       EXFswdn:coverage_content_type = "modelResult"
       EXFswdn:direction = ">O increases potential temperature (THETA)"
       EXFswdn:long_name = "Downwelling shortwave radiative flux"
       EXFswdn:standard_name = "surface_downwelling_shortwave_flux_in_air"
       EXFswdn:units = "W m-2"
       EXFswdn:comment = "Downward shortwave radiative flux. Note: sum of ERA-Interim downward shortwave radiation
and the control adjustment from ocean state estimation."
       EXFswdn:coordinates = "time"
       EXFswdn:valid_min = "-224.63368225097656"
       EXFswdn:valid_max = "707.345947265625"
   float32 EXFqnet (time, latitude, longitude)
       EXFqnet:_FillValue = "9.969209968386869e+36"
       EXFqnet:coverage_content_type = "modelResult"
       EXFqnet:direction = ">O increases potential temperature (THETA)"
       EXFqnet:long_name = "Open ocean net air-sea heat flux"
       EXFqnet:units = "W m-2"
       EXFqnet:comment = "Net air-sea heat flux (turbulent and radiative) per unit area of open water (not covered by sea-ice).
Note: net upward heat flux over open water, calculated as EXFlwnet+EXFswnet-EXFlh-EXFhs."
       EXFgnet:coordinates = "time"
       EXFqnet:valid_min = "-687.8736572265625"
       EXFqnet:valid_max = "3408.977783203125"
   float32 oceQnet (time, latitude, longitude)
       oceQnet:_FillValue = "9.969209968386869e+36"
       oceQnet:coverage_content_type = "modelResult"
       oceQnet:direction = ">0 increases potential temperature (THETA)"
       oceQnet:long_name = "Net heat flux into the ocean surface"
       oceQnet:standard_name = "surface_downward_heat_flux_in_sea_water"
       oceQnet:units = "W m-2"
       oceQnet:comment = "Net heat flux into the ocean surface from all processes: air-sea turbulent and radiative fluxes and
turbulent and conductive fluxes between the ocean and sea-ice and snow. Note: oceQnet does not include the change in
ocean heat content due to changing ocean ocean mass (oceFWflx). Mass fluxes from evaporation, precipitation, and runoff
(EXFempmr) happen at the same temperature as the ocean surface temperature. Consequently, EmPmR does not change
ocean surface temperature. Conversely, mass fluxes due to sea-ice thickening/thinning and snow melt in the model are as-
sumed to happen at a fixed OC. Consequently, mass fluxes due to phase changes between seawater and sea-ice and snow
induce a heat flux when the ocean surface temperaure is not OC. The variable TFLUX does include the change in ocean heat
content due to changing ocean mass."
       oceQnet:coordinates = "time"
       oceQnet:valid_min = "-1708.8460693359375"
       oceQnet:valid_max = "675.3716430664062"
   float32 SlatmQnt (time, latitude, longitude)
       SlatmQnt:_FillValue = "9.969209968386869e+36"
       SlatmQnt:coverage_content_type = "modelResult"
       SlatmQnt:direction = ">O upward, decreases ocean temperature"
       SlatmQnt:long_name = "Net upward heat flux to the atmosphere"
       SlatmQnt:standard_name = "surface_upward_heat_flux_in_air"
       SlatmQnt:units = "W m-2"
```

Table 13.4: Example CDL description of latlon dataset

SlatmQnt:comment = "Net upward heat flux to the atmosphere across open water and sea-ice or snow surfaces. Note: nonzero SlatmQnt may not be associated with a change in ocean potential temperature due to sea-ice growth or melting. To calculate total ocean heat content changes use the variable TFLUX which also accounts for changing ocean mass (e.g. oce-FWflx)."

SlatmQnt:coordinates = "time"

float32 TFLUX (time, latitude, longitude)

SlatmQnt:valid_min = "-756.0607299804688" SlatmQnt:valid_max = "1704.7703857421875"

```
TFLUX:_FillValue = "9.969209968386869e+36"
       TFLUX:coverage_content_type = "modelResult"
       TFLUX:direction = ">O increases potential temperature (THETA)"
       TFLUX:long_name = "Rate of change of ocean heat content per m2 accounting for mass fluxes."
       TFLUX:units = "W m-2"
       TFLUX:comment = "The rate of change of ocean heat content due to heat fluxes across the liquid surface and the
addition or removal of mass. . Note: the global area integral of TFLUX and geothermal flux (geothermalFlux.bin) matches the
time-derivative of ocean heat content (J/s). Unlike oceQnet, TFLUX includes the contribution to the ocean heat content from
changing ocean mass (e.g. from oceFWflx)."
       TFLUX:coordinates = "time"
       TFLUX:valid_min = "-1713.51220703125"
       TFLUX:valid_max = "870.3130493164062"
   float32 EXFswnet (time, latitude, longitude)
       EXFswnet:_FillValue = "9.969209968386869e+36"
       EXFswnet:coverage_content_type = "modelResult"
       EXFswnet:direction = ">O increases potential temperature (THETA)"
       EXFswnet:long_name = "Open ocean net shortwave radiative flux"
       EXFswnet:standard_name = "surface_net_downward_shortwave_flux"
       EXFswnet:units = "W m-2"
       EXFswnet:comment = "Net shortwave radiative flux per unit area of open water (not covered by sea-ice). Note: net
shortwave radiation over open water calculated from downward shortwave flux (EXFswdn) and ocean surface albdeo."
       EXFswnet:coordinates = "time"
       EXFswnet:valid_min = "-655.6171264648438"
       EXFswnet:valid_max = "193.89297485351562"
   float32 EXFlwnet (time, latitude, longitude)
       EXFlwnet:_FillValue = "9.969209968386869e+36"
       EXFlwnet:coverage_content_type = "modelResult"
       EXFlwnet:direction = ">O increases potential temperature (THETA)"
       EXFlwnet:long_name = "Net open ocean longwave radiative flux"
       EXFlwnet:standard_name = "surface_net_downward_longwave_flux"
       EXFlwnet:units = "W m-2"
       EXFlwnet:comment = "Net longwave radiative flux per unit area of open water (not covered by sea-ice). Note: net
longwave radiation over open water calculated from downward longwave radiation (EXFlwdn) and upward longwave radiation
from ocean and sea-ice thermal emission (Stefan-Boltzman law)."
       EXFlwnet:coordinates = "time"
       EXFlwnet:valid_min = "-144.3661346435547"
       EXFlwnet:valid_max = "293.4114990234375"
   float32 oceQsw (time, latitude, longitude)
       oceQsw:_FillValue = "9.969209968386869e+36"
       oceQsw:coverage_content_type = "modelResult"
       oceQsw:direction = ">O increases potential temperature (THETA)"
       oceQsw:long_name = "Net shortwave radiative flux across the ocean surface"
       oceQsw:units = "W m-2"
       oceQsw:comment = "Net shortwave radiative flux across the ocean surface. Note: Shortwave radiation penetrates
below the surface grid cell."
       oceQsw:coordinates = "time"
       oceQsw:valid_min = "-134.39808654785156"
       oceQsw:valid_max = "655.6171264648438"
   float32 Slaaflux (time, latitude, longitude)
```

Table 13.4: Example CDL description of latlon dataset

```
Slaaflux:_FillValue = "9.969209968386869e+36"
Slaaflux:coverage_content_type = "modelResult"
Slaaflux:direction = ">O decrease potential temperature (THETA)"
Slaaflux:long_name = "Conservative ocean and sea-ice advective heat flux adjustment"
Slaaflux:units = "W m-2"
Slaaflux:comment = "Heat flux associated with the temperature difference between sea surface temperature and sea-ice (assume O degree C in the model). Note: heat flux needed to melt/freeze sea-ice at O degC to sea water at the ocean surface (at sea surface temperature), excluding the latent heat of fusion."
Slaaflux:coordinates = "time"
Slaaflux:valid_min = "-16.214622497558594"
Slaaflux:valid_max = "50.35451889038086"
```

13.4.3 1D datasets

Hoc est casus simplex. Multae L3, L4, et GMPE comoediae, necnon quaedam geostationaria L2P comoediae, in ordinaria lat/lon tabula praebentur. In huiusmodi projectione, solum duo coordinate sunt requisitae et vectorum formis servari possunt. Longitudines debent variare ab -180 ad +180, id est ab 180 gradibus Occidentem ad 180 gradibus Orientem. Latitudines debent variare ab -90 ad +90, id est ab 90 gradibus Meridiem ad 90 gradibus Septentrionem. Non debet esse _FillValue pro latitudine et longitudine, et omnes SST pixeles debent habere validum latitudinis et longitudinis valorem.

Recommendatur ut tempus dimensionem pro Level 3 et Level 4 data prodigia ut infinita specificetur. Nota quod tempus dimensio pro L2P data est stricta definita ut tempus=1 (infinita dimensio non permittitur). Hoc strictum definitum est quia L2P data sunt swath based et geospatial informatio potest mutare per consecutive tempus slabs.

In GHRSST L3 et L4 granulis, solum unum tempus dimensio (tempus=1) est, et variabilis tempus solum unum valorem habet (secunda post 1981), sed infinitum tempus dimensionem permittit netCDF instrumenta et utilitates facile concatenare (et exempli gratia, mediare) seriem de tempore consecutive GHRSST granulis. Sequens CDL exemplum dat:

```
netcdf example {
    dimensions:
    lat = 1801;
    lon = 3600;
    time = UNLIMITED; // (strictly set to 1 for L2P)
    variables:
    ...
}
```

Pro his casibus, dimensiones et coordinae variabiles debent uti pro regulari lat/lon tabula, ut in Tabula 8-3 monstratur. Nullae specificae variabiles attributi sunt requisitae pro aliis variabilibus (ut sea_surface_temperature, ut in exemplo dat in Tabula 8-3).

Table 13.5: Example CDL description of 1D dataset

```
netcdf 1D example
dimensions

time = 227904

coordinates

int32 time (time)
    time:axis = "T"
    time:comment = ""
    time:coverage_content_type = "coordinate"
    time:long_name = "snapshot time"
    time:standard_name = "time"
    time:units = "hours since 1992-01-01T12:00:00"
    time:calendar = "proleptic_gregorian"

data variables
```

Table 13.5: Example CDL description of 1D dataset

float64 Pa_global (time)

Pa_global:_FillValue = "9.969209968386869e+36"

Pa_global:coverage_content_type = "modelResult"

Pa_global:long_name = "Global mean atmospheric surface pressure over the ocean and sea-ice"

Pa_global:standard_name = "air_pressure_at_sea_level"

Pa_global:units = "N m-2"
Pa_global:valid_min = "100873.14755283327"

Pa_global:valid_max = "101257.45252296235"

Pa_global:coordinates = "time"

======

14 GDS 2.0 Filenames and Supporting Conventions

Striving to achieve a flexible naming convention that maintains consistency across processing levels and better serves user needs, the GDS 2.0 uses a single form for all GHRSST data files. An overview of the format is presented below in Section 7.1 along with example filenames. Details on each of the filename convention components are provided in Sections 7.2 through 7.8.

In addition, a best practice has been established for creating character strings used to describe GHRSST SST products and sources of ancillary data. These strings, and associated numeric codes for the SST products, are used within some GHRSST data files but are not part of the filename convention itself. The best practice is described in Section 7.9.

14.1 1 Overview of Filename Convention and Example Filenames

The filenaming convention for the GDS 2.0 is shown below.

<Indicative Date><Indicative Time>-<RDAC>-<Processing Level>_GHRSST-<SST Type>- <Product String>-<Additional Segregator>-v<GDS Version>-fv<File Version>.<File Type>

The variable components within braces ("<>") are summarized in Table 7-1 below and detailed in the **should not** be used in any GHRSST code or the <Additional Segregator> element. Example filenames are given later in this section. While no strict limit to filename length is mandated, RDACs are encouraged to keep the length to less than 240 characters to increase readability and usability.

Table 14.1: GDS 2.0 Filenaming convention components

Name	Definition	Description
<indicative date=""></indicative>	YYYYMMDD	The identifying date for this data set. See Section 7.2.
<indicative time=""></indicative>	HHMMSS	The identifying time for this data set. The time used is dependent on the <processing level=""> of the data set: L2P: start time of granule</processing>
		L3U: start time of granule
		 L3C and L3S: centre time of the collation window
		 L4 and GMPE: nominal time of analysis
		All times should be given in UTC. See Section 7.3.
<rdac></rdac>	The RDAC where the file was created	The Regional Data Assembly Centre (RDAC)code, listed in Section 7.4.
<processing level=""></processing>	The data processing level code (L2P, L3U, L3C, L3S, or L4)	The data processing level code, defined in Section 7.5.
<sst type=""></sst>	The type of SST data included in the file.	Conforms to the GHRSST definitions for SST, defined in Section 7.6
<product string=""></product>	A character string identifying the SST product set. The string is used uniquely within an RDAC but may be shared across RDACs.	The unique "name" within an RDAC of the product line. See Section 7.7 for the product string lists, one each for L2P, L3, L4, and GMPE products. See Section 7.7.
<additional segregator=""></additional>	Optional text to distinguish between files with the same <product string="">. Dashes are not allowed within this element.</product>	This text is used since the other filename components are sometimes insufficient to uniquely identify a file. For example, in L2P or L3U (un-collated) products this is often the original file name or processing algorithm. Note, underscores should be used, not dashes. For L4 files, this element should begin with the appropriate regional code as defined in Section 7.8. This component is optional but must be used in those cases were non-unique filenames would otherwise result.
<gds version=""></gds>	nn.n	Version number of the GDS used to process the file. For example, GDS 2.0 = "02.0".
<file version=""></file>	xx.x	Version number for the file, for example, "01.0".

<file type=""></file>	netCDF data file suffix (nc) or ISO	Indicates this is a netCDF file containing data or its correspond-
	metadata file suffix (xml)	ing ISO-19115 metadata record in XML.

14.1.1 L2_GHRSST Filename Example

20070503132300-NAVO-L2P_GHRSST-SSTblend-AVHRR17_L-SST_sO123_eO135-vO2.0-fvO1.0.nc

The above file contains GHRSST L2P blended SST data for O3 May 2007, from AVHRR LAC data collected from the NOAA-17 platform. The granule begins at 13:23:00 hours. It is version 1.0 of the file and was produced by the NAVO RDAC in accordance with the GDS 2.0. The <Additional Segregator> text is "SST_sO123_e0135".

14.1.2 L3_GHRSST Filename Example

20070503110153-REMSS-L3C_GHRSST-SSTsubskin-TMI-tmi_20070503rt-v02.0-fv01.0.nc

The above file was produced by the REMSS RDAC and contains collated L3 sub-skin SST data from the TMI instrument for O3 May 2007. The collated file has a centre time of at 11:01:53 hours. It is version 1.0 of the file and was produced according to GDS 2.0 specifications. Its <Additional Segregator> text is "tmi_20070503rt".

14.1.3 L4_GHRSST Filename Example

20070503120000-UKMO-L4_GHRSST-SSTfnd-OSTIA-GLOB-v02.0-fv01.0.nc

The above file contains L4 foundation SST data produced at the UKMO RDAC using the OSTIA system. It is global coverage, contains data for O3 May 2007, was produced to GDS 2.0 specifications and is version 1.0 of the file. The nominal time of the OSTIA analysis is 12:00:00 hours.

14.2 < Indicative Date>

The identifying date for this data set, using the format YYYYMMDD, where YYYY is the four-digit year, MM is the two-digit month from 01 to 12, and DD is the two-digit day of month from 01 to 31. The date used should best represent the observation date for the dataset.

14.3 <Indicative Time>

The identifying time for this data set in UTC, using the format HHMMSS, where HH is the two-digit hour from OO to 23, MM is the two-digit minute from OO to 59, and SS is the two-digit second from OO to 59. The time used is dependent on the <Processing Level> of the data set:

L2P: start time of granule L3U: start time of granule

L3C and L3S: centre time of the collation window

L4 and GMPE: nominal time of analysis

All times should be given in UTC and should be chosen to best represent the observation time for this dataset. Note: RDACs should ensure the applications they use to determine UTC proprerly account for leap seconds.

14.4 < RDAC>

Codes used for GHRSST Regional Data Assembly Centres (RDACs) are provided in the table below. New codes are assigned by the GHRSST Data And Systems Technical Advisory Group (DAS-TAG) and entered into the table upon agreement by the GDAC, LTSRF, and relevant RDACs.

14.5 <Processing Level>

Satellite data processing level definitions can lead to ambiguous situations, especially regarding the distinction between L3 and L4 products. GHRSST identified the use of analysis procedures to fill gaps where no observations exist to resolve this ambiguity. Within GHRSST filenames, the <Processing Level> codes are shown below in Table 7-3. GHRSST currently establishes standards

for L2P, L3U, L3C, L3S, and L4 (GHRSST Multi-Product Ensembles known as GMPE are a special kind of L4 product for which GHRSST also provides standards).

15 GDS 2.0 Data Product File Structure

15.1 Overview of the GDS 2.0 netCDF File Format

GDS 2.0 data files preferentially use the **netCDF-4 Classic** format. However, as netCDF-4 is a relatively new format and includes a significant number of new features that may not be well supported by existing user applications and tools, the GHRSST Science Team agreed to support both netCDF-3 and netCDF-4 format data files during a transition period. At the 11th GHRSST Science Team meeting, Lima Peru, 21-25th June 2010 it was agreed that the transition period would end in 2013 at which point (subject to positive developments in the user community using netCDF-4) the use of netCDF-3 format data products will cease within the GHRSST R/GTS framework. **NetCDF-3 data products shall be delivered to the GDAC with an accompanying MMR file records as described in Section 13.** While netCDF-3 can store the metadata, it is computationally expensive to extract it from externally-compressed netCDF-3 files. A major advantage to the use of NetCDF-4 format products from the producer's perspective is that no additional metadata records are required when using this format since the GDAC and LTSRF can easily extract it from the files without having to decompress the entire file.

These GDS 2.0 formatted data sets must comply with the Climate and Forecast (CF) Conventions, v1.4 [AD-3] or later because these conventions provide a practical standard for storing oceanographic data in a robust, easily-preserved for the long-term, and interoperable manner. The CF-compliant netCDF data format is flexible, self-describing, and has been adopted as a de facto standard for many operational and scientific oceanography systems. Both netCDF and CF are actively maintained including significant discussions and inputs from the oceanographic community (see http://cfpcmdi.llnl.gov/discussion/index_html). The CF convention generalizes and extends the Cooperative Ocean/Atmosphere Research Data Service (COARDS, [AD-4]) Convention but relaxes the COARDS constraints on dimension order and specifies methods for reducing the size of datasets. The purpose of the CF Conventions is to require conforming datasets to contain sufficient metadata so that they are self-describing, in the sense that each variable in the file has an associated description of what it represents, physical units if appropriate, and that each value can be located in space (relative to earthbased coordinates) and time. In addition to the CF Conventions, GDS 2.0 formatted files follow some of the recommendations of the Unidata Attribute Convention for Dataset Discovery (ACDD, [AD-7]).

In the context of netCDF, a variable refers to data stored in the file as a vector or as a multidimensional array. Each variable in a GHRSST netCDF file consists of a 2-dimensional [i \times j, 3-dimensional [i \times j, \times k, or 4-dimensional [i \times j, \times k, \times l] array of data. The dimensions of each variable must be explicitly declared in the dimension section.

Within the netCDF file, global attributes are used to hold information that applies to the whole file, such as the data set title. Each individual variable must also have its own attributes, referred to as variable attributes. These variable attributes define, for example, an offset, scale factor, units, a descriptive version of the variable name, and a fill value, which is used to indicate array elements that do not contain valid data. Where applicable, SI units should be used and described by a character string, which is compatible with the Unidata UDUNITS-2 package [AD-5].

All GHRSST GDS 2.0 files conform to this structure and share a common set of netCDF global attributes. These global attributes include those required by the CF Convention plus additional ones required by the GDS 2.0. The required set of global attributes is described in Section 8.2 and entities within the GHRSST R/GTS framework are free to add their own, as long as they do not contradict the GDS 2.0 and CF requirements.

Following the CF convention, each variable also has a set of variable attributes. The required variable attributes are described in Section 8.3. In a few cases, some of these variable attributes may not be relevant for certain variables or additional variable attributes may be required. In those cases, the variable descriptions in each of the L2P, L3, L4, and GMPE product specifications (Sections 9, 10, 11, and 12) will identify the differences and specify requirements for each product. As with the global attributes, entities within the GHRSST R/GTS framework are free to add their own variable attributes, as long as they do not contradict the GDS 2.0 and CF requirements.

While the exact volumes can vary, an average L2P file will use about 33 bytes per pixel, an L3 file 28 bytes per pixel, and an L4 file about 8 bytes per pixel. The data type encodings for each variable are fixed except for the experimental fields, which are flexible and can chosen by the producing RDAC.

15.2 GDS 2.0 netCDF Global Attributes

Table 8-1 below summarizes the global attributes that are mandatory for every GDS 2.0 netCDF data file. More details on the CF-mandated attributes (as indicated in the Source column) are available at: http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.4/cf-conventions.html#attribute-appendix and information on the ACDD recommendations is available at http://www.unidata.ucar.edu/software/netcdf-java/formats/DataDiscoveryAttConvention.html.

Table 15.1: Mandatory global attributes for GDS 2.0 netCDF data files

Global Attribute Name	Туре	Description	Source
acknowledgement	string	A place to acknowledge various types of support for the	ACDD
		project that produced this data.	
cdm_data_type	string	The data type, as derived from Unidata's Common Data Model Scientific Data types and understood by THREDDS. (This is a THREDDS "dataType", and is different from the CF NetCDF attribute 'featureType', which indicates a Discrete Sampling Geometry file in CF.)	ACDD
comment	string	Miscellaneous information about the data, not captured	CF, ACDD
Comment	301116	elsewhere. This attribute is defined in the CF Conventions.	CI,/\CDD
conventions	string	A text string identifying the netCDF conventions followed (e.g., CF-1.4, ACDD 1-3).	
creator_email	string	The email address of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.	ACDD
creator_name	string	The name of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.	ACDD
creator_url	string	The URL of the of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.	ACDD
date_created	string	The date on which this version of the data was created.	ACDD
easternmost_longitude	float	Decimal degrees east, range -180 to +180. This is equivalent to ACDD geospatial_lon_max.	podaac
geospatial_lat_resolution	float	Latitude Resolution in units matching geospatial_lat_units.	ACDD
geospatial_lat_units	string	Units of the latitudinal resolution. Typically "degrees_north"	ACDD
geospatial_lon_resolution	float	Longitude Resolution in units matching geospatial_lon_resolution	ACDD
geospatial_lon_units	string	Units of the longitudinal resolution. Typically "degrees_east"	ACDD
history	string	The name of the institution principally responsible for originating this data. This attribute is recommended by the CF convention.	CF, ACDD
id	string	An identifier for the data set, provided by and unique within its naming authority. The combination of the "naming authority" and the "id" should be globally unique, but the id can be globally unique by itself also. IDs can be URLs, URNs, DOIs, meaningful text strings, a local key, or any other unique string of characters. The id should not include white space characters.	ACDD
institutions	string	The name of the institution principally responsible for originating this data. This attribute is recommended by the CF convention.	CF, ACDD
keywords	string	GCMD Science Keyword(s)	ACDD
keywords_vocabulary	string	The unique name or identifier of the vocabulary from which keywords are taken. e.g., the NASA Global Change Master Directory (GCMD) Science Keywords.	ACDD
license	string	Provide the URL to a standard or specific license, enter "Freely Distributed" or "None", or describe any restrictions to data access and distribution in free text.	ACDD
Metadata_Conventions	string	A comma-separated list of the conventions that are followed by the dataset.	ACDD
metadata_link	string	Link to collection metadata record at archive	ACDD

Table 15.1: Mandatory global attributes for GDS 2.0 netCDF data files

naming_authority	string	The organization that provides the initial id (see above)	ACDD
naming_additionty	Stillig	for the dataset. The naming authority should be uniquely	ACDD
		specified by this attribute via reverse-DNS naming con-	
		vention.	
netcdf_version_id	string	Version of netCDF libraries used to create this file. For example, "4.1.1"	GDS
northernmost_latitude	float	Decimal degrees north, range -90 to +90. This is equivalent to ACDD geospatial_lat_max.	GDS
processing_level	string	A textual description of the processing (or quality control) level of the data.	ACDD & GDS
product_version	string	The product version of this data file	GDS
project	string	The name of the project(s) principally responsible for originating this data.	ACDD
publisher_email	string	The email address of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.	ACDD
publisher_name	string	The name of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.	ACDD
publisher_url	string	The URL of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.	ACDD
references	string	Published or web-based references that describe the data or methods used to produce it. Recommend URIs (such as a URL or DOI) for papers or other references. This attribute is defined in the CF conventions.	ACDD
source	string	Method of production of the original data.	CF
sourthernmost_latitude	float	Decimal degrees north, range -90 to +90. This is equivalent to ACDD geospatial_lat_min.	GDS
spatial_resolution	string	A string describing the approximate resolution of the product.	GDS
standard_name_vocabulary	string	The name and version of the controlled vocabulary from which variable standard names are taken.	ACDD
start_time	string	Representative date and time of the end of the granule in the ISO 8601 compliant format of "yyyymmddThhmmssZ".	GDS
stop_time	string	Representative date and time of the end of the granule in the ISO 8601 compliant format of "yyyymmddThhmmssZ".	GDS
summary	string	A paragraph describing the dataset, analogous to an abstract for a paper.	ACDD
time_coverage_end	string	Identical to stop_time. Included for increased ACDD compliance.	ACDD
time_coverage_start	string	Identical to start_time. Included for increased ACDD compliance.	ACDD
title	string	A short phrase or sentence describing the dataset. In many discovery systems, the title will be displayed in the results list from a search, and therefore should be human readable and reasonable to display in a list of such names. This attribute is recommended by the NetCDF Users Guide (NUG) and the CF conventions.	CF, ACDD

Table 15.1: Mandatory global attributes for GDS 2.0 netCDF data files

uuid	string	A Universally Unique Identifier (UUID). Numerous, simple tools can be used to create a UUID, which is inserted as the value of this attribute. See http://en.wikipedia.org/wiki/Universally_Unique_Identifier for more information and tools.	GDS
westernmost_longitude	float	Decimal degrees east, range -180 to +180. This is equivalent to ACDD geospatial_lon_min.	GDS

15.3 GDS 2.0 netCDF Variable Attributes

Table 15.2: Table 8-2. Variable attributes for GDS 2.0 netCDF data files

Variable Attribute Name	Format	Description	Source
_FillValue	Must be the same as the variable type	A value used to indicate array elements containing no valid data. This value must be of the same type as the storage (packed) type; should be set as the minimum value for this type. Note that some netCDF readers are unable to cope with signed bytes and may, in these cases, report fill as 128. Some cases will be reported as unsigned bytes 0 to 255. Required for the majority of variables except mask and l2p_flags.	CF
units	string	Text description of the units, preferably S.I., and must be compatible with the Unidata UDUNITS-2 package [AD-5]. For a given variable (e.g. wind speed), these must be the same for each dataset. Required for the majority of variables except mask, quality_level, and l2p_flags.	CF, ACDD
scale_factor	Must be expressed in the unpacked data type	To be multiplied by the variable to recover the original value. Defined by the producing RDAC. Valid values within {value_min} and {valid_max} should be transformed by {scale_factor} and {add_offset}, otherwise skipped to avoid floating point errors.	CF
add_offset	Must be expressed in the unpacked data type	To be added to the variable after multiplying by the scale factor to recover the original value. If only one of {scale_factor} or {add_offset} is needed, then both should be included anyway to avoid ambiguity, with {scale_factor} defaulting to 1.0 and add_offset defaulting to 0.0. Defined by the producing RDAC.	CF
long_name valid_min	string Expressed in same data type as variable	A free-text descriptive variable name. Minimum valid value for this variable once they are packed (in storage type). The fill value should be outside this valid range. Note that some netCDF readers are unable to cope with signed bytes and may, in these cases, report valid min as 129. Some cases as unsigned bytes 0 to 255. Values outside of {valid_min} and {valid_max} will be treated as missing values. Required for all variables except variable time.	CF, ACDD CF
valid_max	Expressed in same data type as variable	Maximum valid value for this variable once they are packed (in storage type). The fill value should be outside this valid range. Note that some netCDF readers are unable to cope with signed bytes and may, in these cases, report valid min as 127. Required for all variables except variable time.	CF

Table 15.2: Table 8-2. Variable attributes for GDS 2.0 netCDF data files

standard_name	string	Where defined, a standard and unique description of a	CF, ACDD
		physical quantity. For the complete list of standard name	
		strings, see [AD-8]. {Do not} include this attribute if no	
		{standard_name} exists.	
comment	string	Miscellaneous information about the variable or the meth-	CF
		ods used to produce it.	
source	string	{For L2P and L3 files}: For a data variable with a single	CF
		source, use the GHRSST unique string listed in Table 7-10	
		if the source is a GHRSST SST product. For other sources,	
		following the best practice described in Section 7.9 to cre-	
		ate the character string.	
		If the data variable contains multiple sources, set this string	
		to be the relevant "sources of" variable name. For exam-	
		ple, if multiple wind speed sources are used, set {source =}	
		sources_of_wind_speed.	
		{For L4 and GMPE files}: follow the {source} convention	
		used for the global attribute of the same name, but pro-	
		vide in the commaseparated list only the sources relevant	
		to this variable.	
references	string	Published or web-based references that describe the data	CF
		or methods used to produce it. Note that while at least	
		one reference is required in the global attributes (See Table	
		8-1), references to this specific data variable may also be	
		given.	
axis	String	For use with coordinate variables only. The attribute 'axis'	CF
		may be attached to a coordinate variable and given one of	
		the values "X", "Y", "Z", or "T", which stand for a longitude,	
		latitude, vertical, or time axis respectively. See: http:	
		//cfpcmdi.llnl.gov/documents/cfconventions/1.	
a a station	Cti	4/cfconventions.html#coordinate-types	CE
positive	String	For use with a vertical coordinate variables only. May have	CF
		the value "up" or "down". For example, if an oceanographic	
		netCDF file encodes the depth of the surface as 0 and the depth of 1000 meters as 1000 then the axis would set	
		positive to "down". If a depth of 1000 meters was encoded	
		as -1000, then positive would be set to "up". See the sec-	
		tion on vertical-coordinate in [AD-3]	
coordinates	String	Identifies auxiliary coordinate variables, label variables,	CF
COOTAINIACCS	Julia	and alternate coordinate variables. See the section on	Ç.
		coordinate-system in [AD3]. This attribute must be pro-	
		vided if the data are on a non-regular lat/lon grid (map pro-	
		jection or swath data).	
grid_mapping	String	Use this for data variables that are on a projected grid.	CF
8 -	Jun 18	The attribute takes a string value that is the name of an-	G.
		other variable in the file that provides the description of	
		the mapping via a collection of attached attributes. That	
		named variable is called a grid mapping variable and is of	
		arbitrary type since it contains no data. Its purpose is to act	
		as a container for the attributes that define the mapping.	
		See the section on mappings-andprojections in [AD-3]	
flag_mappings	String	Space-separated list of text descriptions associated in	CF
O	0	strict order with conditions set by either flag_values or	
		flag_masks. Words within a phrase should be connected	
		with underscores.	

Table 15.2: Table 8-2. Variable attributes for GDS 2.0 netCDF data files

flag_values	Must be the same as the variable type	Comma-separated array of valid, mutually exclusive variable values (required when the bit field contains enumerated values; i.e., a "list" of conditions). Used primarily for {quality_level} and "{sources_of_xxx}" variables.	CF
flag_masks	Must be the same as the variable type	Comma-separated array of valid variable masks (required when the bit field contains independent Boolean conditions; i.e., a bit "mask"). Used primarily for {l2p_flags} variable. {Note: CF allows the use of both flag_masks and flag_values attributes in a single variable to create sets of masks that each have their own list of flag_values (see http://cfpcmdi.llnl.gov/documents/cfconventions/1.5/ch03s05.html#id2710752 for examples), but this practice is discouraged.}	CF
depth	String	Use this to indicate the depth for which the SST data are valid.	GDS
height	String	Use this to indicate the height for which the wind data are specified.	GDS
time_offset	Must be expressed in the unpacked data type	Difference in hours between an ancillary field such as {wind_speed} and the SST observation time	GDS

15.4 GDS 2.0 coordinate variable definitions

NetCDF coordinate variables provide scales for the space and time axes for the multidimensional data arrays, and must be included for all dimensions that can be identified as spatio-temporal axes. Coordinate arrays are used to geolocate data arrays on non-orthogonal grids, such as images in the original pixel/scan line space, or complicated map projections. Required attributes are units and _FillValue. Elements of the coordinate array need not be monotonically ordered. The data type can be any and scaling may be implemented if required. add_offset and scale_factor have to be adjusted according to the sensor resolution and the product spatial coverage. If the packed values can not stand on a short, float can be used instead (multiplying the size of these variables by two).

'time' is the reference time of the SST data array. The GDS 2.0 specifies that this reference time should be extracted or computed to the nearest second and then coded as continuous UTC time coordinates in seconds from 00:00:00 UTC January 1,1981 (which is the definition of the GHRSST origin time, chosen to approximate the start of useful AVHRR SST data record). Note that the use of UDUNITS in GHRSST implies that that calendar to be used is the default mixed Gregorian/Julian calendar.

The reference time used is dependent on the <Processing Level> of the data and is defined as follows:

- L2P: start time of granule;
- L3U: start time of granule;
- L3C and L3S: centre time of the collation window:
- L4 and GMPE: nominal time of the analysis

The coordinate variable 'time' is intended to minimize the size of the sst_dtime variable (e.g., see Section 9.4), which stores offsets from the reference time in seconds for each SST pixel. 'time' also facilitates aggregation of all files of a given dataset along the time axis with such tools as THREDDS and LAS.

x (columns) and y (lines) grid dimensions are referred either as 'lat' and 'lon' or as 'ni' and 'nj'. lon and lat must be used if data are mapped on a regular grid (some geostationary products). ni and nj are used if data are mapped on a non-regular grid (curvilinear coordinates) or following the sensor scanning pattern (scan line, swath). It is preferred that ni should be used for the across-track dimension and nj for the along-track dimension.

Coordinate vectors are used for data arrays located on orthogonal (but not necessarily regularly spaced) grids, such as a geographic (lat-lon) map projections. The only required attribute is units. The elements of a coordinate vector array should be in monotonically increasing or decreasing order. The data type can be any and scaling may be implemented if required.

A coordinate's variable (= "lon lat"): must be provided if the data are on a non-regular lat/lon grid (map projection or swath data).

A grid_mapping (= "projection name"): must be provided if the data are mapped following a projection. Refer to the CF convention [AD-3] for standard projection names.

15.4.1 Native datasets

Hoc est casus simplex. Multae L3, L4, et GMPE comoediae, necnon quaedam geostationaria L2P comoediae, in ordinaria lat/lon tabula praebentur. In huiusmodi projectione, solum duo coordinate sunt requisitae et vectorum formis servari possunt. Longitudines debent variare ab -180 ad +180, id est ab 180 gradibus Occidentem ad 180 gradibus Orientem. Latitudines debent variare ab -90 ad +90, id est ab 90 gradibus Meridiem ad 90 gradibus Septentrionem. Non debet esse _FillValue pro latitudine et longitudine, et omnes SST pixeles debent habere validum latitudinis et longitudinis valorem.

Recommendatur ut tempus dimensionem pro Level 3 et Level 4 data prodigia ut infinita specificetur. Nota quod tempus dimensio pro L2P data est stricta definita ut tempus=1 (infinita dimensio non permittitur). Hoc strictum definitum est quia L2P data sunt swath based et geospatial informatio potest mutare per consecutive tempus slabs.

In GHRSST L3 et L4 granulis, solum unum tempus dimensio (tempus=1) est, et variabilis tempus solum unum valorem habet (secunda post 1981), sed infinitum tempus dimensionem permittit netCDF instrumenta et utilitates facile concatenare (et exempli gratia, mediare) seriem de tempore consecutive GHRSST granulis. Sequens CDL exemplum dat:

```
netcdf example {
    dimensions:
    lat = 1801 ;
    lon = 3600 ;
    time = UNLIMITED ; // (strictly set to 1 for L2P)
    variables:
    ...
}
```

Pro his casibus, dimensiones et coordinae variabiles debent uti pro regulari lat/lon tabula, ut in Tabula 8-3 monstratur. Nullae specificae variabiles attributi sunt requisitae pro aliis variabilibus (ut sea_surface_temperature, ut in exemplo dat in Tabula 8-3).

Table 15.3: Example CDL description of native dataset

```
netcdf native example
dimensions
i = 90
i_g = 90
i = 90
j_g = 90
k = 50
k_u = 50
k_l = 50
k_p1 = 51
tile = 13
time = 1
nv = 2
nb = 4
coordinates
   int32 i (i)
       i:axis = "X"
       i:long_name = "grid index in x for variables at tracer and 'v' locations"
       i:swap_dim = "XC"
       i:comment = "In the Arakawa C-grid system, tracer (e.g., THETA) and 'v' variables (e.g., VVEL) have the same x coordinate
on the model grid."
       i:coverage_content_type = "coordinate"
   int32 i_g (i_g)
       i_g:axis = "X"
       i_g:long_name = "grid index in x for variables at 'u' and 'g' locations"
       i_g:c_grid_axis_shift = "-0.5"
        i_g:swap_dim = "XG"
```

Table 15.3: Example CDL description of native dataset

```
i_g:comment = "In the Arakawa C-grid system, 'u' (e.g., UVEL) and 'g' variables (e.g., XG) have the same x coordinate on
the model grid."
       i_g:coverage_content_type = "coordinate"
   int32 j (j)
       j:axis = "Y"
       j:long_name = "grid index in y for variables at tracer and 'u' locations"
       j:swap_dim = "YC"
       j:comment = "In the Arakawa C-grid system, tracer (e.g., THETA) and 'u' variables (e.g., UVEL) have the same y coordinate
on the model grid."
       j:coverage_content_type = "coordinate"
   int32 j_g (j_g)
       j_g:axis = "Y"
       j_g:long_name = "grid index in y for variables at 'v' and 'g' locations"
       j_g:c_grid_axis_shift = "-0.5"
       j_g:swap_dim = "YG"
       i_g:comment = "In the Arakawa C-grid system, 'v' (e.g., VVEL) and 'g' variables (e.g., XG) have the same y coordinate."
       j_g:coverage_content_type = "coordinate"
   int32 k (k)
       k:axis = "Z"
       k:long_name = "grid index in z for tracer variables"
       k:swap_dim = "Z"
       k:coverage_content_type = "coordinate"
   int32 k_u (k_u)
       k_u:axis = "Z"
       k_u:c_grid_axis_shift = "0.5"
       k u:swap dim = "Zu"
       k_u:coverage_content_type = "coordinate"
       k_u:long_name = "grid index in z corresponding to the bottom face of tracer grid cells ('w' locations)"
       k_u:comment = "First index corresponds to the bottom surface of the uppermost tracer grid cell. The use of 'u' in the
variable name follows the MITgcm convention for ocean variables in which the upper (u) face of a tracer grid cell on the logical
grid corresponds to the bottom face of the grid cell on the physical grid."
    int32 k_l (k_l)
       k_l:axis = "Z'
       k_l:c_grid_axis_shift = "-0.5"
       k_l:swap_dim = "Zl"
       k_l:coverage_content_type = "coordinate"
       k_l:long_name = "grid index in z corresponding to the top face of tracer grid cells ('w' locations)"
       k_l:comment = "First index corresponds to the top surface of the uppermost tracer grid cell. The use of 'l' in the variable
name follows the MITgcm convention for ocean variables in which the lower (I) face of a tracer grid cell on the logical grid
corresponds to the top face of the grid cell on the physical grid."
   int32 k_p1 (k_p1)
       k_p1:axis = "Z"
       k_p1:long_name = "grid index in z for variables at 'w' locations"
       k_p1:c_grid_axis_shift = "[-0.5 0.5]"
       k_p1:swap_dim = "Zp1"
       k_p1:comment = "Includes top of uppermost model tracer cell (k_p1=0) and bottom of lowermost tracer cell (k_p1=51)."
       k_p1:coverage_content_type = "coordinate"
   int32 tile (tile)
       tile:long_name = "lat-lon-cap tile index"
       tile:comment = "The ECCO V4 horizontal model grid is divided into 13 tiles of 90x90 cells for convenience."
       tile:coverage_content_type = "coordinate"
   int32 time (time)
       time:long_name = "center time of averaging period"
       time:axis = "T"
       time:bounds = "time_bnds"
       time:coverage_content_type = "coordinate"
       time:standard_name = "time"
```

Table 15.3: Example CDL description of native dataset

```
time:units = "hours since 1992-01-01T12:00:00"
       time:calendar = "proleptic_gregorian"
   float32 XC (tile, j, i)
       XC:long_name = "longitude of tracer grid cell center"
       XC:units = "degrees_east"
       XC:coordinate = "YC XC"
       XC:bounds = "XC_bnds"
       XC:comment = "nonuniform grid spacing"
       XC:coverage_content_type = "coordinate"
       XC:standard_name = "longitude"
   float32 YC (tile, j, i)
       YC:long_name = "latitude of tracer grid cell center"
       YC:units = "degrees_north"
       YC:coordinate = "YC XC"
       YC:bounds = "YC_bnds"
       YC:comment = "nonuniform grid spacing"
       YC:coverage_content_type = "coordinate"
       YC:standard_name = "latitude"
   float32 XG (tile, j_g, i_g)
       XG:long_name = "longitude of 'southwest' corner of tracer grid cell"
       XG:units = "degrees_east"
       XG:coordinate = "YG XG"
       XG:comment = "Nonuniform grid spacing. Note: 'southwest' does not correspond to geographic orientation but is used
for convenience to describe the computational grid. See MITgcm dcoumentation for details."
       XG:coverage_content_type = "coordinate"
       XG:standard_name = "longitude"
   float32 YG (tile, j_g, i_g)
       YG:long_name = "latitude of 'southwest' corner of tracer grid cell"
       YG:units = "degrees_north"
       YG:coordinate = "YG XG"
       YG:comment = "Nonuniform grid spacing. Note: 'southwest' does not correspond to geographic orientation but is used
for convenience to describe the computational grid. See MITgcm dcoumentation for details."
       YG:coverage_content_type = "coordinate"
       YG:standard_name = "latitude"
   float32 Z(k)
       Z:long_name = "depth of tracer grid cell center"
       Z:units = "m"
       Z:positive = "up"
       Z:bounds = "Z_bnds"
       Z:comment = "Non-uniform vertical spacing."
       Z:coverage_content_type = "coordinate"
       Z:standard_name = "depth"
   float32 Zp1 (k_p1)
       Zp1:long_name = "depth of tracer grid cell interface"
       Zp1:units = "m"
       Zp1:positive = "up"
       Zp1:comment = "Contains one element more than the number of vertical layers. First element is Om, the depth of the
upper interface of the surface grid cell. Last element is the depth of the lower interface of the deepest grid cell."
       Zp1:coverage_content_type = "coordinate"
       Zp1:standard_name = "depth"
   float32 Zu (k_u)
       Zu:units = "m"
       Zu:positive = "up"
       Zu:coverage_content_type = "coordinate"
       Zu:standard_name = "depth"
       Zu:long_name = "depth of the bottom face of tracer grid cells"
```

Table 15.3: Example CDL description of native dataset

Zu:comment = "First element is -10m, the depth of the bottom face of the first tracer grid cell. Last element is the depth of the bottom face of the deepest grid cell. The use of 'u' in the variable name follows the MITgcm convention for ocean variables in which the upper (u) face of a tracer grid cell on the logical grid corresponds to the bottom face of the grid cell on the physical grid. In other words, the logical vertical grid of MITgcm ocean variables is inverted relative to the physical vertical grid."

float32 Zl (k_l)
Zl:units = "m"
Zl:positive = "up"
Zl:coverage_content_type = "coordinate"
Zl:standard_name = "depth"
Zl:long_name = "depth of the top face of tracer grid cells"

Zl:comment = "First element is Om, the depth of the top face of the first tracer grid cell (ocean surface). Last element is the depth of the top face of the deepest grid cell. The use of 'l' in the variable name follows the MITgcm convention for ocean variables in which the lower (l) face of a tracer grid cell on the logical grid corresponds to the top face of the grid cell on the physical grid. In other words, the logical vertical grid of MITgcm ocean variables is inverted relative to the physical vertical grid."

int32 time_bnds (time, nv)

time_bnds:comment = "Start and end times of averaging period."

time_bnds:coverage_content_type = "coordinate"

time_bnds:long_name = "time bounds of averaging period"

float32 XC_bnds (tile, j, i, nb)

XC_bnds:comment = "Bounds array follows CF conventions. XC_bnds[i,j,0] = 'southwest' corner (j-1, i-1), XC_bnds[i,j,1] = 'southeast' corner (j-1, i+1), XC_bnds[i,j,2] = 'northeast' corner (j+1, i+1), XC_bnds[i,j,3] = 'northwest' corner (j+1, i-1). Note: 'southwest', 'southeast', northwest', and 'northeast' do not correspond to geographic orientation but are used for convenience to describe the computational grid. See MITgcm dcoumentation for details."

XC_bnds:coverage_content_type = "coordinate"

XC_bnds:long_name = "longitudes of tracer grid cell corners"

float32 YC_bnds (tile, j, i, nb)

YC_bnds:comment = "Bounds array follows CF conventions. YC_bnds[i,j,0] = 'southwest' corner (j-1, i-1), YC_bnds[i,j,1] = 'southeast' corner (j-1, i+1), YC_bnds[i,j,2] = 'northwest' corner (j+1, i-1). Note: 'southwest', 'southeast', 'northwest', and 'northeast' do not correspond to geographic orientation but are used for convenience to describe the computational grid. See MITgcm dcoumentation for details."

YC_bnds:coverage_content_type = "coordinate"

YC_bnds:long_name = "latitudes of tracer grid cell corners"

float32 Z_bnds (k, nv)

Z_bnds:comment = "One pair of depths for each vertical level."

Z_bnds:coverage_content_type = "coordinate"

Z_bnds:long_name = "depths of tracer grid cell upper and lower interfaces"

data variables

```
float32 ADVx_SLT (time, k, tile, j, i_g)
   ADVx_SLT:_FillValue = "9.969209968386869e+36"
   ADVx_SLT:long_name = "Lateral advective flux of salinity in the model +x direction"
   ADVx_SLT:units = "1e-3 m3 s-1"
   ADVx_SLT:mate = "ADVy_SLT"
   ADVx_SLT:coverage_content_type = "modelResult"
   ADVx_SLT:direction = ">O increases salinity (SALT)"
```

ADVx_SLT:comment = "Lateral advective flux of salinity (SALT) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVx_SLT(i_g,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
ADVx_SLT:coordinates = "Z time"
ADVx_SLT:valid_min = "-181830224.0"
ADVx_SLT:valid_max = "260411296.0"
```

Table 15.3: Example CDL description of native dataset

```
float32 DFxE_SLT (time, k, tile, j, i_g)

DFxE_SLT:_FillValue = "9.969209968386869e+36"

DFxE_SLT:long_name = "Lateral diffusive flux of salinity in the model +x direction"

DFxE_SLT:units = "1e-3 m3 s-1"

DFxE_SLT:mate = "DFyE_SLT"

DFxE_SLT:coverage_content_type = "modelResult"

DFxE_SLT:direction = ">0 increases salinity (SALT)"
```

DFxE_SLT:comment = "Lateral diffusive flux of salinity (SALT) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFxE_SLT(i_g,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFxE_SLT:coordinates = "Z time"
DFxE_SLT:valid_min = "-125908.03125"
DFxE_SLT:valid_max = "192716.484375"

float32 ADVy_SLT (time, k, tile, j_g, i)
ADVy_SLT:_FillValue = "9.969209968386869e+36"
ADVy_SLT:long_name = "Lateral advective flux of salinity in the model +y direction"
ADVy_SLT:units = "1e-3 m3 s-1"
ADVy_SLT:mate = "ADVx_SLT"
ADVy_SLT:coverage_content_type = "modelResult"
ADVy_SLT:direction = ">O increases salinity (SALT)"
```

ADVy_SLT:comment = "Lateral advective flux of salinity (SALT) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVy_SLT(i,j_g,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
ADVy_SLT:coordinates = "Z time"

ADVy_SLT:valid_min = "-137905760.0"

ADVy_SLT:valid_max = "164271664.0"

float32 DFyE_SLT (time, k, tile, j_g, i)

DFyE_SLT:_FillValue = "9.969209968386869e+36"

DFyE_SLT:long_name = "Lateral diffusive flux of salinity in the model +y direction"

DFyE_SLT:units = "1e-3 m3 s-1"

DFyE_SLT:mate = "DFxE_SLT"

DFyE_SLT:coverage_content_type = "modelResult"

DFyE_SLT:direction = ">-0 increases salinity (SALT)"
```

DFyE_SLT:comment = "Lateral diffusive flux of salinity (SALT) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFyE_SLT(i,j_g,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFyE_SLT:coordinates = "Z time"
DFyE_SLT:valid_min = "-114959.2109375"
DFyE_SLT:valid_max = "154227.140625"
```

Table 15.3: Example CDL description of native dataset

```
float32 ADVr_SLT (time, k_l, tile, j, i)

ADVr_SLT:_FillValue = "9.969209968386869e+36"

ADVr_SLT:long_name = "Vertical advective flux of salinity"

ADVr_SLT:units = "1e-3 m3 s-1"

ADVr_SLT:coverage_content_type = "modelResult"

ADVr_SLT:direction = ">O decreases salinity (SALT)"
```

ADVr_SLT:comment = "Vertical advective flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +ADVr_SLT(i,j,k_l) corresponds to upward +z fluxes through the top 'w' face of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
ADVr_SLT:coordinates = "XC Zl YC time"

ADVr_SLT:valid_min = "-324149856.0"

ADVr_SLT:valid_max = "263294624.0"

float32 DFrE_SLT (time, k_l, tile, j, i)

DFrE_SLT:_FillValue = "9.969209968386869e+36"

DFrE_SLT:long_name = "Vertical diffusive flux of salinity (explicit term)"

DFrE_SLT:units = "1e-3 m3 s-1"

DFrE_SLT:coverage_content_type = "modelResult"

DFrE_SLT:direction = ">O decreases salinity (SALT)"
```

DFrE_SLT:comment = "The explicit term of the vertical diffusive flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. In the ECCO V4r4 model, an implicit scheme is used to calculate vertical diffusive tracer fluxes due to background diffusivity and the Kwz component of the GM-Redi tensor (vertical flux as a function of vertical gradient) while an explicit scheme is used to calculate the vertical diffusive fluxes from the Kwx and Kwy components of the GM-Redi tensor (vertical flux as a function of horizontal gradient). Both implicit and explicit components of vertical diffusive flux of salinity are provided. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +DFrE_SLT(i,j,k_l) corresponds to upward +z fluxes through the top 'w' face of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFrE_SLT:coordinates = "XC Zl YC time"

DFrE_SLT:valid_min = "-1074719.375"

DFrE_SLT:valid_max = "471215.75"

float32 DFrl_SLT (time, k_l, tile, j, i)

DFrl_SLT:_FillValue = "9.969209968386869e+36"

DFrl_SLT:long_name = "Vertical diffusive flux of salinity (implicit term)"

DFrl_SLT:units = "1e-3 m3 s-1"

DFrl_SLT:coverage_content_type = "modelResult"

DFrl_SLT:direction = ">O decreases salinity (SALT)"
```

DFrI_SLT:comment = "The implicit term of the vertical diffusive flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. In the ECCO V4r4 model, an implicit scheme is used to calculate vertical diffusive tracer fluxes due to background diffusivity and the Kwz component of the GM-Redi tensor (vertical flux as a function of vertical gradient) while an explicit scheme is used to calculate the vertical diffusive fluxes from the Kwx and Kwy components of the GM-Redi tensor (vertical flux as a function of horizontal gradient). Both implicit and explicit components of vertical diffusive flux of salinity are provided. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +DFrI_SLT(i,j,k_l) corresponds to upward +z fluxes through the top face 'w' of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFrl_SLT:coordinates = "XC Zl YC time"
DFrl_SLT:valid_min = "-30609048.0"
DFrl_SLT:valid_max = "3197643.0"
float32 oceSPtnd (time, k, tile, j, i)
```

Table 15.3: Example CDL description of native dataset

```
oceSPtnd:_FillValue = "9.969209968386869e+36" oceSPtnd:long_name = "Salt tendency due to the vertical transport of salt in high-salinity brine plumes" oceSPtnd:units = "g m-2 s-1" oceSPtnd:coverage_content_type = "modelResult" oceSPtnd:direction = ">O increases salinity (SALT)" oceSPtnd:comment = "Salt tendency due to the vertical transport of salt in high-salinity brine plumes. Note: units are grams of salt per square meter per second, not salinity per square meter per second." oceSPtnd:coordinates = "XC Z YC time" oceSPtnd:valid_min = "O.0" oceSPtnd:valid_max = "O.021119138225913O48"
```

15.4.2 Latlon datasets

Hoc est casus simplex. Multae L3, L4, et GMPE comoediae, necnon quaedam geostationaria L2P comoediae, in ordinaria lat/lon tabula praebentur. In huiusmodi projectione, solum duo coordinate sunt requisitae et vectorum formis servari possunt. Longitudines debent variare ab -180 ad +180, id est ab 180 gradibus Occidentem ad 180 gradibus Orientem. Latitudines debent variare ab -90 ad +90, id est ab 90 gradibus Meridiem ad 90 gradibus Septentrionem. Non debet esse _FillValue pro latitudine et longitudine, et omnes SST pixeles debent habere validum latitudinis et longitudinis valorem.

Recommendatur ut tempus dimensionem pro Level 3 et Level 4 data prodigia ut infinita specificetur. Nota quod tempus dimensio pro L2P data est stricta definita ut tempus=1 (infinita dimensio non permittitur). Hoc strictum definitum est quia L2P data sunt swath based et geospatial informatio potest mutare per consecutive tempus slabs.

In GHRSST L3 et L4 granulis, solum unum tempus dimensio (tempus=1) est, et variabilis tempus solum unum valorem habet (secunda post 1981), sed infinitum tempus dimensionem permittit netCDF instrumenta et utilitates facile concatenare (et exempli gratia, mediare) seriem de tempore consecutive GHRSST granulis. Sequens CDL exemplum dat:

```
netcdf example {
    dimensions:
    lat = 1801 ;
    lon = 3600 ;
    time = UNLIMITED ; // (strictly set to 1 for L2P)
    variables:
    ...
}
```

Pro his casibus, dimensiones et coordinae variabiles debent uti pro regulari lat/lon tabula, ut in Tabula 8-3 monstratur. Nullae specificae variabiles attributi sunt requisitae pro aliis variabilibus (ut sea_surface_temperature, ut in exemplo dat in Tabula 8-3).

Table 15.4: Example CDL description of latlon dataset

```
netcdf latlon example
dimensions

time = 1
latitude = 360
longitude = 720
nv = 2

coordinates

int32 time (time)
    time:axis = "T"
    time:bounds = "time_bnds"
    time:coverage_content_type = "coordinate"
    time:long_name = "center time of averaging period"
    time:standard_name = "time"
    time:units = "hours since 1992-01-01T12:00:00"
```

Table 15.4: Example CDL description of latlon dataset

```
time:calendar = "proleptic_gregorian"
   float32 latitude (latitude)
       latitude:axis = "Y"
       latitude:bounds = "latitude_bnds"
       latitude:comment = "uniform grid spacing from -89.75 to 89.75 by 0.5"
       latitude:coverage_content_type = "coordinate"
       latitude:long_name = "latitude at grid cell center"
       latitude:standard_name = "latitude"
       latitude:units = "degrees_north"
   float32 longitude (longitude)
       longitude:axis = "X"
       longitude:bounds = "longitude_bnds"
       longitude:comment = "uniform grid spacing from -179.75 to 179.75 by 0.5"
       longitude:coverage_content_type = "coordinate"
       longitude:long_name = "longitude at grid cell center"
       longitude:standard_name = "longitude"
       longitude:units = "degrees_east"
   int32 time_bnds (time, nv)
       time_bnds:comment = "Start and end times of averaging period."
       time_bnds:coverage_content_type = "coordinate"
       time_bnds:long_name = "time bounds of averaging period"
   float32 latitude_bnds (latitude, nv)
       latitude_bnds:coverage_content_type = "coordinate"
       latitude_bnds:long_name = "latitude bounds grid cells"
   float32 longitude_bnds (longitude, nv)
       longitude_bnds:coverage_content_type = "coordinate"
       longitude_bnds:long_name = "longitude bounds grid cells"
data variables
   float32 EXFhl (time, latitude, longitude)
       EXFhl:_FillValue = "9.969209968386869e+36"
       EXFhl:coverage_content_type = "modelResult"
       EXFhl:direction = ">O increases potential temperature (THETA)"
       EXFhl:long_name = "Open ocean air-sea latent heat flux"
       EXFhl:standard_name = "surface_downward_latent_heat_flux"
       EXFhl:units = "W m-2"
       EXFhl:comment = "Air-sea latent heat flux per unit area of open water (not covered by sea-ice). Note: calculated from
the bulk formula following Large and Yeager (2004) NCAR/TN-460+STR."
       EXFhl:coordinates = "time"
       EXFhl:valid_min = "-1772.513671875"
       EXFhl:valid_max = "273.9528503417969"
   float32 EXFhs (time, latitude, longitude)
       EXFhs:_FillValue = "9.969209968386869e+36"
       EXFhs:coverage_content_type = "modelResult"
       EXFhs:direction = ">O increases potential temperature (THETA)"
       EXFhs:long_name = "Open ocean air-sea sensible heat flux"
       EXFhs:standard_name = "surface_downward_sensible_heat_flux"
       EXFhs:units = "W m-2"
       EXFhs:comment = "Air-sea sensible heat flux per unit area of open water (not covered by sea-ice). Note: calculated
from the bulk formula following Large and Yeager (2004) NCAR/TN-460+STR."
       EXFhs:coordinates = "time"
       EXFhs:valid_min = "-2478.766357421875"
       EXFhs:valid_max = "357.0105895996094"
   float32 EXFlwdn (time, latitude, longitude)
       EXFlwdn:_FillValue = "9.969209968386869e+36"
       EXFlwdn:coverage_content_type = "modelResult"
       EXFlwdn:direction = ">O increases potential temperature (THETA)"
       EXFlwdn:long_name = "Downward longwave radiative flux"
```

Table 15.4: Example CDL description of latlon dataset

```
EXFlwdn:standard_name = "surface_downwelling_longwave_flux_in_air"
       EXFlwdn:units = "W m-2"
       EXFlwdn:comment = "Downward longwave radiative flux. Note: sum of ERA-Interim downward longwave radiation
and the control adjustment from ocean state estimation."
       EXFlwdn:coordinates = "time"
       EXFlwdn:valid_min = "4.188045501708984"
       EXFlwdn:valid_max = "513.3919067382812"
   float32 EXFswdn (time, latitude, longitude)
       EXFswdn:_FillValue = "9.969209968386869e+36"
       EXFswdn:coverage_content_type = "modelResult"
       EXFswdn:direction = ">O increases potential temperature (THETA)"
       EXFswdn:long_name = "Downwelling shortwave radiative flux"
       EXFswdn:standard_name = "surface_downwelling_shortwave_flux_in_air"
       EXFswdn:units = "W m-2"
       EXFswdn:comment = "Downward shortwave radiative flux. Note: sum of ERA-Interim downward shortwave radiation
and the control adjustment from ocean state estimation."
       EXFswdn:coordinates = "time"
       EXFswdn:valid_min = "-224.63368225097656"
       EXFswdn:valid_max = "707.345947265625"
   float32 EXFqnet (time, latitude, longitude)
       EXFqnet:_FillValue = "9.969209968386869e+36"
       EXFqnet:coverage_content_type = "modelResult"
       EXFqnet:direction = ">O increases potential temperature (THETA)"
       EXFqnet:long_name = "Open ocean net air-sea heat flux"
       EXFqnet:units = "W m-2"
       EXFqnet:comment = "Net air-sea heat flux (turbulent and radiative) per unit area of open water (not covered by sea-ice).
Note: net upward heat flux over open water, calculated as EXFlwnet+EXFswnet-EXFlh-EXFhs."
       EXFgnet:coordinates = "time"
       EXFqnet:valid_min = "-687.8736572265625"
       EXFqnet:valid_max = "3408.977783203125"
   float32 oceQnet (time, latitude, longitude)
       oceQnet:_FillValue = "9.969209968386869e+36"
       oceQnet:coverage_content_type = "modelResult"
       oceQnet:direction = ">0 increases potential temperature (THETA)"
       oceQnet:long_name = "Net heat flux into the ocean surface"
       oceQnet:standard_name = "surface_downward_heat_flux_in_sea_water"
       oceQnet:units = "W m-2"
       oceQnet:comment = "Net heat flux into the ocean surface from all processes: air-sea turbulent and radiative fluxes and
turbulent and conductive fluxes between the ocean and sea-ice and snow. Note: oceQnet does not include the change in
ocean heat content due to changing ocean ocean mass (oceFWflx). Mass fluxes from evaporation, precipitation, and runoff
(EXFempmr) happen at the same temperature as the ocean surface temperature. Consequently, EmPmR does not change
ocean surface temperature. Conversely, mass fluxes due to sea-ice thickening/thinning and snow melt in the model are as-
sumed to happen at a fixed OC. Consequently, mass fluxes due to phase changes between seawater and sea-ice and snow
induce a heat flux when the ocean surface temperaure is not OC. The variable TFLUX does include the change in ocean heat
content due to changing ocean mass."
       oceQnet:coordinates = "time"
       oceQnet:valid_min = "-1708.8460693359375"
       oceQnet:valid_max = "675.3716430664062"
   float32 SlatmQnt (time, latitude, longitude)
       SlatmQnt:_FillValue = "9.969209968386869e+36"
       SlatmQnt:coverage_content_type = "modelResult"
       SlatmQnt:direction = ">O upward, decreases ocean temperature"
       SlatmQnt:long_name = "Net upward heat flux to the atmosphere"
       SlatmQnt:standard_name = "surface_upward_heat_flux_in_air"
       SlatmQnt:units = "W m-2"
```

Table 15.4: Example CDL description of latlon dataset

SlatmQnt:comment = "Net upward heat flux to the atmosphere across open water and sea-ice or snow surfaces. Note: nonzero SlatmQnt may not be associated with a change in ocean potential temperature due to sea-ice growth or melting. To calculate total ocean heat content changes use the variable TFLUX which also accounts for changing ocean mass (e.g. oce-FWflx)."

SlatmQnt:coordinates = "time"

float32 TFLUX (time, latitude, longitude)

SlatmQnt:valid_min = "-756.0607299804688" SlatmQnt:valid_max = "1704.7703857421875"

```
TFLUX:_FillValue = "9.969209968386869e+36"
       TFLUX:coverage_content_type = "modelResult"
       TFLUX:direction = ">O increases potential temperature (THETA)"
       TFLUX:long_name = "Rate of change of ocean heat content per m2 accounting for mass fluxes."
       TFLUX:units = "W m-2"
       TFLUX:comment = "The rate of change of ocean heat content due to heat fluxes across the liquid surface and the
addition or removal of mass. . Note: the global area integral of TFLUX and geothermal flux (geothermalFlux.bin) matches the
time-derivative of ocean heat content (J/s). Unlike oceQnet, TFLUX includes the contribution to the ocean heat content from
changing ocean mass (e.g. from oceFWflx)."
       TFLUX:coordinates = "time"
       TFLUX:valid_min = "-1713.51220703125"
       TFLUX:valid_max = "870.3130493164062"
   float32 EXFswnet (time, latitude, longitude)
       EXFswnet:_FillValue = "9.969209968386869e+36"
       EXFswnet:coverage_content_type = "modelResult"
       EXFswnet:direction = ">O increases potential temperature (THETA)"
       EXFswnet:long_name = "Open ocean net shortwave radiative flux"
       EXFswnet:standard_name = "surface_net_downward_shortwave_flux"
       EXFswnet:units = "W m-2"
       EXFswnet:comment = "Net shortwave radiative flux per unit area of open water (not covered by sea-ice). Note: net
shortwave radiation over open water calculated from downward shortwave flux (EXFswdn) and ocean surface albdeo."
       EXFswnet:coordinates = "time"
       EXFswnet:valid_min = "-655.6171264648438"
       EXFswnet:valid_max = "193.89297485351562"
   float32 EXFlwnet (time, latitude, longitude)
       EXFlwnet:_FillValue = "9.969209968386869e+36"
       EXFlwnet:coverage_content_type = "modelResult"
       EXFlwnet:direction = ">O increases potential temperature (THETA)"
       EXFlwnet:long_name = "Net open ocean longwave radiative flux"
       EXFlwnet:standard_name = "surface_net_downward_longwave_flux"
       EXFlwnet:units = "W m-2"
       EXFlwnet:comment = "Net longwave radiative flux per unit area of open water (not covered by sea-ice). Note: net
longwave radiation over open water calculated from downward longwave radiation (EXFlwdn) and upward longwave radiation
from ocean and sea-ice thermal emission (Stefan-Boltzman law)."
       EXFlwnet:coordinates = "time"
       EXFlwnet:valid_min = "-144.3661346435547"
       EXFlwnet:valid_max = "293.4114990234375"
   float32 oceQsw (time, latitude, longitude)
       oceQsw:_FillValue = "9.969209968386869e+36"
       oceQsw:coverage_content_type = "modelResult"
       oceQsw:direction = ">O increases potential temperature (THETA)"
       oceQsw:long_name = "Net shortwave radiative flux across the ocean surface"
       oceQsw:units = "W m-2"
       oceQsw:comment = "Net shortwave radiative flux across the ocean surface. Note: Shortwave radiation penetrates
below the surface grid cell."
       oceQsw:coordinates = "time"
       oceQsw:valid_min = "-134.39808654785156"
       oceQsw:valid_max = "655.6171264648438"
   float32 Slaaflux (time, latitude, longitude)
```

Table 15.4: Example CDL description of latlon dataset

```
Slaaflux:_FillValue = "9.969209968386869e+36"
Slaaflux:coverage_content_type = "modelResult"
Slaaflux:direction = ">O decrease potential temperature (THETA)"
Slaaflux:long_name = "Conservative ocean and sea-ice advective heat flux adjustment"
Slaaflux:units = "W m-2"
Slaaflux:comment = "Heat flux associated with the temperature difference between sea surface temperature and sea-ice (assume O degree C in the model). Note: heat flux needed to melt/freeze sea-ice at O degC to sea water at the ocean surface (at sea surface temperature), excluding the latent heat of fusion."
Slaaflux:coordinates = "time"
Slaaflux:valid_min = "-16.214622497558594"
Slaaflux:valid_max = "50.35451889038086"
```

15.4.3 1D datasets

Hoc est casus simplex. Multae L3, L4, et GMPE comoediae, necnon quaedam geostationaria L2P comoediae, in ordinaria lat/lon tabula praebentur. In huiusmodi projectione, solum duo coordinate sunt requisitae et vectorum formis servari possunt. Longitudines debent variare ab -180 ad +180, id est ab 180 gradibus Occidentem ad 180 gradibus Orientem. Latitudines debent variare ab -90 ad +90, id est ab 90 gradibus Meridiem ad 90 gradibus Septentrionem. Non debet esse _FillValue pro latitudine et longitudine, et omnes SST pixeles debent habere validum latitudinis et longitudinis valorem.

Recommendatur ut tempus dimensionem pro Level 3 et Level 4 data prodigia ut infinita specificetur. Nota quod tempus dimensio pro L2P data est stricta definita ut tempus=1 (infinita dimensio non permittitur). Hoc strictum definitum est quia L2P data sunt swath based et geospatial informatio potest mutare per consecutive tempus slabs.

In GHRSST L3 et L4 granulis, solum unum tempus dimensio (tempus=1) est, et variabilis tempus solum unum valorem habet (secunda post 1981), sed infinitum tempus dimensionem permittit netCDF instrumenta et utilitates facile concatenare (et exempli gratia, mediare) seriem de tempore consecutive GHRSST granulis. Sequens CDL exemplum dat:

```
netcdf example {
    dimensions:
    lat = 1801;
    lon = 3600;
    time = UNLIMITED; // (strictly set to 1 for L2P)
    variables:
    ...
}
```

Pro his casibus, dimensiones et coordinae variabiles debent uti pro regulari lat/lon tabula, ut in Tabula 8-3 monstratur. Nullae specificae variabiles attributi sunt requisitae pro aliis variabilibus (ut sea_surface_temperature, ut in exemplo dat in Tabula 8-3).

Table 15.5: Example CDL description of 1D dataset

```
netcdf 1D example
dimensions

time = 227904

coordinates

int32 time (time)
    time:axis = "T"
    time:comment = ""
    time:coverage_content_type = "coordinate"
    time:long_name = "snapshot time"
    time:standard_name = "time"
    time:units = "hours since 1992-01-01T12:00:00"
    time:calendar = "proleptic_gregorian"

data variables
```

Table 15.5: Example CDL description of 1D dataset

float64 Pa_global (time)

Pa_global:_FillValue = "9.969209968386869e+36"

Pa_global:coverage_content_type = "modelResult"

Pa_global:long_name = "Global mean atmospheric surface pressure over the ocean and sea-ice"

Pa_global:standard_name = "air_pressure_at_sea_level"

Pa_global:units = "N m-2"
Pa_global:valid_min = "100873.14755283327"

Pa_global:valid_max = "101257.45252296235"

Pa_global:coordinates = "time"

>>>>> ojh ======

16 GDS 2.0 Filenames and Supporting Conventions

Striving to achieve a flexible naming convention that maintains consistency across processing levels and better serves user needs, the GDS 2.0 uses a single form for all GHRSST data files. An overview of the format is presented below in Section 7.1 along with example filenames. Details on each of the filename convention components are provided in Sections 7.2 through 7.8.

In addition, a best practice has been established for creating character strings used to describe GHRSST SST products and sources of ancillary data. These strings, and associated numeric codes for the SST products, are used within some GHRSST data files but are not part of the filename convention itself. The best practice is described in Section 7.9.

16.1 1 Overview of Filename Convention and Example Filenames

The filenaming convention for the GDS 2.0 is shown below.

<Indicative Date><Indicative Time>-<RDAC>-<Processing Level>_GHRSST-<SST Type>- <Product String>-<Additional Segregator>-v<GDS Version>-fv<File Version>.<File Type>

The variable components within braces ("<>") are summarized in Table 7-1 below and detailed in the **should not** be used in any GHRSST code or the <Additional Segregator> element. Example filenames are given later in this section. While no strict limit to filename length is mandated, RDACs are encouraged to keep the length to less than 240 characters to increase readability and usability.

Table 16.1: GDS 2.0 Filenaming convention components

Name	Definition	Description
<indicative date=""></indicative>	YYYYMMDD	The identifying date for this data set. See Section 7.2.
<indicative time=""></indicative>	HHMMSS	The identifying time for this data set. The time used is dependent on the <processing level=""> of the data set: L2P: start time of granule</processing>
		L3U: start time of granule
		 L3C and L3S: centre time of the collation window
		 L4 and GMPE: nominal time of analysis
		All times should be given in UTC. See Section 7.3.
<rdac></rdac>	The RDAC where the file was created	The Regional Data Assembly Centre (RDAC)code, listed in Section 7.4.
<processing level=""></processing>	The data processing level code (L2P, L3U, L3C, L3S, or L4)	The data processing level code, defined in Section 7.5.
<sst type=""></sst>	The type of SST data included in the file.	Conforms to the GHRSST definitions for SST, defined in Section 7.6
<product string=""></product>	A character string identifying the SST product set. The string is used uniquely within an RDAC but may be shared across RDACs.	The unique "name" within an RDAC of the product line. See Section 7.7 for the product string lists, one each for L2P, L3, L4, and GMPE products. See Section 7.7.
<additional segregator=""></additional>	Optional text to distinguish between files with the same <product string="">. Dashes are not allowed within this element.</product>	This text is used since the other filename components are sometimes insufficient to uniquely identify a file. For example, in L2P or L3U (un-collated) products this is often the original file name or processing algorithm. Note, underscores should be used, not dashes. For L4 files, this element should begin with the appropriate regional code as defined in Section 7.8. This component is optional but must be used in those cases were non-unique filenames would otherwise result.
<gds version=""></gds>	nn.n	Version number of the GDS used to process the file. For example, GDS 2.0 = "02.0".
<file version=""></file>	XX.X	Version number for the file, for example, "01.0".

<file type=""></file>	netCDF data file suffix (nc) or ISO	Indicates this is a netCDF file containing data or its correspond-
	metadata file suffix (xml)	ing ISO-19115 metadata record in XML.

16.1.1 L2_GHRSST Filename Example

20070503132300-NAVO-L2P_GHRSST-SSTblend-AVHRR17_L-SST_sO123_eO135-vO2.0-fvO1.0.nc

The above file contains GHRSST L2P blended SST data for 03 May 2007, from AVHRR LAC data collected from the NOAA-17 platform. The granule begins at 13:23:00 hours. It is version 1.0 of the file and was produced by the NAVO RDAC in accordance with the GDS 2.0. The <Additional Segregator> text is "SST_s0123_e0135".

16.1.2 L3_GHRSST Filename Example

20070503110153-REMSS-L3C_GHRSST-SSTsubskin-TMI-tmi_20070503rt-v02.0-fv01.0.nc

The above file was produced by the REMSS RDAC and contains collated L3 sub-skin SST data from the TMI instrument for O3 May 2007. The collated file has a centre time of at 11:01:53 hours. It is version 1.0 of the file and was produced according to GDS 2.0 specifications. Its <Additional Segregator> text is "tmi_20070503rt".

16.1.3 L4_GHRSST Filename Example

20070503120000-UKMO-L4_GHRSST-SSTfnd-OSTIA-GLOB-v02.0-fv01.0.nc

The above file contains L4 foundation SST data produced at the UKMO RDAC using the OSTIA system. It is global coverage, contains data for O3 May 2007, was produced to GDS 2.0 specifications and is version 1.0 of the file. The nominal time of the OSTIA analysis is 12:00:00 hours.

16.2 <Indicative Date>

The identifying date for this data set, using the format YYYYMMDD, where YYYY is the four-digit year, MM is the two-digit month from 01 to 12, and DD is the two-digit day of month from 01 to 31. The date used should best represent the observation date for the dataset.

16.3 <Indicative Time>

The identifying time for this data set in UTC, using the format HHMMSS, where HH is the two-digit hour from OO to 23, MM is the two-digit minute from OO to 59, and SS is the two-digit second from OO to 59. The time used is dependent on the <Processing Level> of the data set:

L2P: start time of granule L3U: start time of granule

L3C and L3S: centre time of the collation window

L4 and GMPE: nominal time of analysis

All times should be given in UTC and should be chosen to best represent the observation time for this dataset. Note: RDACs should ensure the applications they use to determine UTC proprerly account for leap seconds.

16.4 < RDAC>

Codes used for GHRSST Regional Data Assembly Centres (RDACs) are provided in the table below. New codes are assigned by the GHRSST Data And Systems Technical Advisory Group (DAS-TAG) and entered into the table upon agreement by the GDAC, LTSRF, and relevant RDACs.

16.5 <Processing Level>

Satellite data processing level definitions can lead to ambiguous situations, especially regarding the distinction between L3 and L4 products. GHRSST identified the use of analysis procedures to fill gaps where no observations exist to resolve this ambiguity. Within GHRSST filenames, the <Processing Level> codes are shown below in Table 7-3. GHRSST currently establishes standards

for L2P, L3U, L3C, L3S, and L4 (GHRSST Multi-Product Ensembles known as GMPE are a special kind of L4 product for which GHRSST also provides standards).

17 GDS 2.0 Data Product File Structure

17.1 Overview of the GDS 2.0 netCDF File Format

GDS 2.0 data files preferentially use the **netCDF-4 Classic** format. However, as netCDF-4 is a relatively new format and includes a significant number of new features that may not be well supported by existing user applications and tools, the GHRSST Science Team agreed to support both netCDF-3 and netCDF-4 format data files during a transition period. At the 11th GHRSST Science Team meeting, Lima Peru, 21-25th June 2010 it was agreed that the transition period would end in 2013 at which point (subject to positive developments in the user community using netCDF-4) the use of netCDF-3 format data products will cease within the GHRSST R/GTS framework. **NetCDF-3 data products shall be delivered to the GDAC with an accompanying MMR file records as described in Section 13.** While netCDF-3 can store the metadata, it is computationally expensive to extract it from externally-compressed netCDF-3 files. A major advantage to the use of NetCDF-4 format products from the producer's perspective is that no additional metadata records are required when using this format since the GDAC and LTSRF can easily extract it from the files without having to decompress the entire file.

These GDS 2.0 formatted data sets must comply with the Climate and Forecast (CF) Conventions, v1.4 [AD-3] or later because these conventions provide a practical standard for storing oceanographic data in a robust, easily-preserved for the long-term, and interoperable manner. The CF-compliant netCDF data format is flexible, self-describing, and has been adopted as a de facto standard for many operational and scientific oceanography systems. Both netCDF and CF are actively maintained including significant discussions and inputs from the oceanographic community (see http://cfpcmdi.llnl.gov/discussion/index_html). The CF convention generalizes and extends the Cooperative Ocean/Atmosphere Research Data Service (COARDS, [AD-4]) Convention but relaxes the COARDS constraints on dimension order and specifies methods for reducing the size of datasets. The purpose of the CF Conventions is to require conforming datasets to contain sufficient metadata so that they are self-describing, in the sense that each variable in the file has an associated description of what it represents, physical units if appropriate, and that each value can be located in space (relative to earthbased coordinates) and time. In addition to the CF Conventions, GDS 2.0 formatted files follow some of the recommendations of the Unidata Attribute Convention for Dataset Discovery (ACDD, [AD-7]).

In the context of netCDF, a variable refers to data stored in the file as a vector or as a multidimensional array. Each variable in a GHRSST netCDF file consists of a 2-dimensional [i \times j, 3-dimensional [i \times j, \times k, or 4-dimensional [i \times j, \times k, \times l] array of data. The dimensions of each variable must be explicitly declared in the dimension section.

Within the netCDF file, global attributes are used to hold information that applies to the whole file, such as the data set title. Each individual variable must also have its own attributes, referred to as variable attributes. These variable attributes define, for example, an offset, scale factor, units, a descriptive version of the variable name, and a fill value, which is used to indicate array elements that do not contain valid data. Where applicable, SI units should be used and described by a character string, which is compatible with the Unidata UDUNITS-2 package [AD-5].

All GHRSST GDS 2.0 files conform to this structure and share a common set of netCDF global attributes. These global attributes include those required by the CF Convention plus additional ones required by the GDS 2.0. The required set of global attributes is described in Section 8.2 and entities within the GHRSST R/GTS framework are free to add their own, as long as they do not contradict the GDS 2.0 and CF requirements.

Following the CF convention, each variable also has a set of variable attributes. The required variable attributes are described in Section 8.3. In a few cases, some of these variable attributes may not be relevant for certain variables or additional variable attributes may be required. In those cases, the variable descriptions in each of the L2P, L3, L4, and GMPE product specifications (Sections 9, 10, 11, and 12) will identify the differences and specify requirements for each product. As with the global attributes, entities within the GHRSST R/GTS framework are free to add their own variable attributes, as long as they do not contradict the GDS 2.0 and CF requirements.

While the exact volumes can vary, an average L2P file will use about 33 bytes per pixel, an L3 file 28 bytes per pixel, and an L4 file about 8 bytes per pixel. The data type encodings for each variable are fixed except for the experimental fields, which are flexible and can chosen by the producing RDAC.

17.2 GDS 2.0 netCDF Global Attributes

Table 8-1 below summarizes the global attributes that are mandatory for every GDS 2.0 netCDF data file. More details on the CF-mandated attributes (as indicated in the Source column) are available at: http://cf-pcmdi.llnl.gov/documents/cf-conventions/1.4/cf-conventions.html#attribute-appendix and information on the ACDD recommendations is available at http://www.unidata.ucar.edu/software/netcdf-java/formats/DataDiscoveryAttConvention.html.

Table 17.1: Mandatory global attributes for GDS 2.0 netCDF data files

Global Attribute Name	Type	Description	Source
acknowledgement	string	A place to acknowledge various types of support for the project that produced this data.	ACDD
cdm_data_type	string	The data type, as derived from Unidata's Common Data Model Scientific Data types and understood by THREDDS. (This is a THREDDS "dataType", and is different from the CF NetCDF attribute 'featureType', which indicates a Discrete Sampling Geometry file in CF.)	ACDD
comment	string	Miscellaneous information about the data, not captured elsewhere. This attribute is defined in the CF Conventions.	CF, ACDD
conventions	string	A text string identifying the netCDF conventions followed (e.g., CF-1.4, ACDD 1-3).	
creator_email	string	The email address of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.	ACDD
creator_name	string	The name of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.	ACDD
creator_url	string	The URL of the of the person (or other creator type specified by the creator_type attribute) principally responsible for creating this data.	ACDD
date_created	string	The date on which this version of the data was created.	ACDD
easternmost_longitude	float	Decimal degrees east, range -180 to +180. This is equivalent to ACDD geospatial_lon_max.	podaac
geospatial_lat_resolution	float	Latitude Resolution in units matching geospatial_lat_units.	ACDD
geospatial_lat_units	string	Units of the latitudinal resolution. Typically "degrees_north"	ACDD
geospatial_lon_resolution	float	Longitude Resolution in units matching geospa- tial_lon_resolution	ACDD
geospatial_lon_units	string	Units of the longitudinal resolution. Typically "degrees_east"	ACDD
history	string	The name of the institution principally responsible for originating this data. This attribute is recommended by the CF convention.	CF, ACDD
id	string	An identifier for the data set, provided by and unique within its naming authority. The combination of the "naming authority" and the "id" should be globally unique, but the id can be globally unique by itself also. IDs can be URLs, URNs, DOIs, meaningful text strings, a local key, or any other unique string of characters. The id should not include white space characters.	ACDD
institutions	string	The name of the institution principally responsible for originating this data. This attribute is recommended by the CF convention.	CF, ACDD
keywords	string	GCMD Science Keyword(s)	ACDD
keywords_vocabulary	string	The unique name or identifier of the vocabulary from which keywords are taken. e.g., the NASA Global Change Master Directory (GCMD) Science Keywords.	ACDD
license	string	Provide the URL to a standard or specific license, enter "Freely Distributed" or "None", or describe any restrictions to data access and distribution in free text.	ACDD
Metadata_Conventions	string	A comma-separated list of the conventions that are followed by the dataset.	ACDD
metadata_link	string	Link to collection metadata record at archive	ACDD

Table 17.1: Mandatory global attributes for GDS 2.0 netCDF data files

naming_authority	string	The organization that provides the initial id (see above)	ACDD
naming_additionty	Stillig	for the dataset. The naming authority should be uniquely	ACDD
		specified by this attribute via reverse-DNS naming con-	
		vention.	
netcdf_version_id	string	Version of netCDF libraries used to create this file. For example, "4.1.1"	GDS
northernmost_latitude	float	Decimal degrees north, range -90 to +90. This is equivalent to ACDD geospatial_lat_max.	GDS
processing_level	string	A textual description of the processing (or quality control) level of the data.	ACDD & GDS
product_version	string	The product version of this data file	GDS
project	string	The name of the project(s) principally responsible for originating this data.	ACDD
publisher_email	string	The email address of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.	ACDD
publisher_name	string	The name of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.	ACDD
publisher_url	string	The URL of the person (or other entity specified by the publisher_type attribute) responsible for publishing the data file or product to users, with its current metadata and format.	ACDD
references	string	Published or web-based references that describe the data or methods used to produce it. Recommend URIs (such as a URL or DOI) for papers or other references. This attribute is defined in the CF conventions.	ACDD
source	string	Method of production of the original data.	CF
sourthernmost_latitude	float	Decimal degrees north, range -90 to +90. This is equivalent to ACDD geospatial_lat_min.	GDS
spatial_resolution	string	A string describing the approximate resolution of the product.	GDS
standard_name_vocabulary	string	The name and version of the controlled vocabulary from which variable standard names are taken.	ACDD
start_time	string	Representative date and time of the end of the granule in the ISO 8601 compliant format of "yyyymmddThhmmssZ".	GDS
stop_time	string	Representative date and time of the end of the granule in the ISO 8601 compliant format of "yyyymmddThhmmssZ".	GDS
summary	string	A paragraph describing the dataset, analogous to an abstract for a paper.	ACDD
time_coverage_end	string	Identical to stop_time. Included for increased ACDD compliance.	ACDD
time_coverage_start	string	Identical to start_time. Included for increased ACDD compliance.	ACDD
title	string	A short phrase or sentence describing the dataset. In many discovery systems, the title will be displayed in the results list from a search, and therefore should be human readable and reasonable to display in a list of such names. This attribute is recommended by the NetCDF Users Guide (NUG) and the CF conventions.	CF, ACDD

Table 17.1: Mandatory global attributes for GDS 2.0 netCDF data files

uuid	string	A Universally Unique Identifier (UUID). Numer-	GDS
		ous, simple tools can be used to create a UUID,	
		which is inserted as the value of this attribute. See	
		http://en.wikipedia.org/wiki/Universally_Unique_Identifier	
		for more information and tools.	
westernmost_longitude	float	Decimal degrees east, range -180 to +180. This is equiva-	GDS
_		lent to ACDD geospatial_lon_min.	

17.3 GDS 2.0 netCDF Variable Attributes

Table 17.2: Table 8-2. Variable attributes for GDS 2.0 netCDF data files

Variable Attribute Name	Format	Description	Source
_FillValue	Must be the same as the variable type	A value used to indicate array elements containing no valid data. This value must be of the same type as the storage (packed) type; should be set as the minimum value for this type. Note that some netCDF readers are unable to cope with signed bytes and may, in these cases, report fill as 128. Some cases will be reported as unsigned bytes 0 to 255. Required for the majority of variables except mask and l2p_flags.	CF
units	string	Text description of the units, preferably S.I., and must be compatible with the Unidata UDUNITS-2 package [AD-5]. For a given variable (e.g. wind speed), these must be the same for each dataset. Required for the majority of variables except mask, quality_level, and l2p_flags.	CF, ACDD
scale_factor	Must be expressed in the unpacked data type	To be multiplied by the variable to recover the original value. Defined by the producing RDAC. Valid values within {value_min} and {valid_max} should be transformed by {scale_factor} and {add_offset}, otherwise skipped to avoid floating point errors.	CF
add_offset	Must be expressed in the unpacked data type	To be added to the variable after multiplying by the scale factor to recover the original value. If only one of {scale_factor} or {add_offset} is needed, then both should be included anyway to avoid ambiguity, with {scale_factor} defaulting to 1.0 and add_offset defaulting to 0.0. Defined by the producing RDAC.	CF
long_name valid_min	string Expressed in same data type as variable	A free-text descriptive variable name. Minimum valid value for this variable once they are packed (in storage type). The fill value should be outside this valid range. Note that some netCDF readers are unable to cope with signed bytes and may, in these cases, report valid min as 129. Some cases as unsigned bytes 0 to 255. Values outside of {valid_min} and {valid_max} will be treated as missing values. Required for all variables except variable time.	CF, ACDD CF
valid_max	Expressed in same data type as variable	Maximum valid value for this variable once they are packed (in storage type). The fill value should be outside this valid range. Note that some netCDF readers are unable to cope with signed bytes and may, in these cases, report valid min as 127. Required for all variables except variable time.	CF

Table 17.2: Table 8-2. Variable attributes for GDS 2.0 netCDF data files

standard_name	string	Where defined, a standard and unique description of a	CF, ACDD
		physical quantity. For the complete list of standard name	
		strings, see [AD-8]. {Do not} include this attribute if no	
		{standard_name} exists.	
comment	string	Miscellaneous information about the variable or the meth-	CF
		ods used to produce it.	
source	string	{For L2P and L3 files}: For a data variable with a single	CF
		source, use the GHRSST unique string listed in Table 7-10	
		if the source is a GHRSST SST product. For other sources,	
		following the best practice described in Section 7.9 to cre-	
		ate the character string.	
		If the data variable contains multiple sources, set this string	
		to be the relevant "sources of" variable name. For exam-	
		ple, if multiple wind speed sources are used, set {source =}	
		sources_of_wind_speed.	
		{For L4 and GMPE files}: follow the {source} convention	
		used for the global attribute of the same name, but pro-	
		vide in the commaseparated list only the sources relevant	
		to this variable.	
references	string	Published or web-based references that describe the data	CF
		or methods used to produce it. Note that while at least	
		one reference is required in the global attributes (See Table	
		8-1), references to this specific data variable may also be	
		given.	
axis	String	For use with coordinate variables only. The attribute 'axis'	CF
		may be attached to a coordinate variable and given one of	
		the values "X", "Y", "Z", or "T", which stand for a longitude,	
		latitude, vertical, or time axis respectively. See: http:	
		//cfpcmdi.llnl.gov/documents/cfconventions/1.	
a a station	Cti	4/cfconventions.html#coordinate-types	CE
positive	String	For use with a vertical coordinate variables only. May have	CF
		the value "up" or "down". For example, if an oceanographic	
		netCDF file encodes the depth of the surface as 0 and the depth of 1000 meters as 1000 then the axis would set	
		positive to "down". If a depth of 1000 meters was encoded	
		as -1000, then positive would be set to "up". See the sec-	
		tion on vertical-coordinate in [AD-3]	
coordinates	String	Identifies auxiliary coordinate variables, label variables,	CF
Coordinates	506	and alternate coordinate variables. See the section on	.
		coordinate-system in [AD3]. This attribute must be pro-	
		vided if the data are on a non-regular lat/lon grid (map pro-	
		jection or swath data).	
grid_mapping	String	Use this for data variables that are on a projected grid.	CF
0 - 11 0	0	The attribute takes a string value that is the name of an-	
		other variable in the file that provides the description of	
		the mapping via a collection of attached attributes. That	
		named variable is called a grid mapping variable and is of	
		arbitrary type since it contains no data. Its purpose is to act	
		as a container for the attributes that define the mapping.	
		See the section on mappings-andprojections in [AD-3]	
flag_mappings	String	Space-separated list of text descriptions associated in	CF
	_	strict order with conditions set by either flag_values or	
		flag_masks. Words within a phrase should be connected	
		with underscores.	

Table 17.2: Table 8-2. Variable attributes for GDS 2.0 netCDF data files

flag_values	Must be the same as the variable type	Comma-separated array of valid, mutually exclusive variable values (required when the bit field contains enumerated values; i.e., a "list" of conditions). Used primarily for {quality_level} and "{sources_of_xxx}" variables.	CF
flag_masks	Must be the same as the variable type	Comma-separated array of valid variable masks (required when the bit field contains independent Boolean conditions; i.e., a bit "mask"). Used primarily for {l2p_flags} variable. {Note: CF allows the use of both flag_masks and flag_values attributes in a single variable to create sets of masks that each have their own list of flag_values (see http://cfpcmdi.llnl.gov/documents/cfconventions/1.5/ch03s05.html#id2710752 for examples), but this practice is discouraged.}	CF
depth	String	Use this to indicate the depth for which the SST data are valid.	GDS
height	String	Use this to indicate the height for which the wind data are specified.	GDS
time_offset	Must be expressed in the unpacked data type	Difference in hours between an ancillary field such as {wind_speed} and the SST observation time	GDS

17.4 GDS 2.0 coordinate variable definitions

NetCDF coordinate variables provide scales for the space and time axes for the multidimensional data arrays, and must be included for all dimensions that can be identified as spatio-temporal axes. Coordinate arrays are used to geolocate data arrays on non-orthogonal grids, such as images in the original pixel/scan line space, or complicated map projections. Required attributes are units and _FillValue. Elements of the coordinate array need not be monotonically ordered. The data type can be any and scaling may be implemented if required. add_offset and scale_factor have to be adjusted according to the sensor resolution and the product spatial coverage. If the packed values can not stand on a short, float can be used instead (multiplying the size of these variables by two).

'time' is the reference time of the SST data array. The GDS 2.0 specifies that this reference time should be extracted or computed to the nearest second and then coded as continuous UTC time coordinates in seconds from 00:00:00 UTC January 1,1981 (which is the definition of the GHRSST origin time, chosen to approximate the start of useful AVHRR SST data record). Note that the use of UDUNITS in GHRSST implies that that calendar to be used is the default mixed Gregorian/Julian calendar.

The reference time used is dependent on the <Processing Level> of the data and is defined as follows:

- L2P: start time of granule;
- L3U: start time of granule;
- L3C and L3S: centre time of the collation window:
- L4 and GMPE: nominal time of the analysis

The coordinate variable 'time' is intended to minimize the size of the sst_dtime variable (e.g., see Section 9.4), which stores offsets from the reference time in seconds for each SST pixel. 'time' also facilitates aggregation of all files of a given dataset along the time axis with such tools as THREDDS and LAS.

x (columns) and y (lines) grid dimensions are referred either as 'lat' and 'lon' or as 'ni' and 'nj'. lon and lat must be used if data are mapped on a regular grid (some geostationary products). ni and nj are used if data are mapped on a non-regular grid (curvilinear coordinates) or following the sensor scanning pattern (scan line, swath). It is preferred that ni should be used for the across-track dimension and nj for the along-track dimension.

Coordinate vectors are used for data arrays located on orthogonal (but not necessarily regularly spaced) grids, such as a geographic (lat-lon) map projections. The only required attribute is units. The elements of a coordinate vector array should be in monotonically increasing or decreasing order. The data type can be any and scaling may be implemented if required.

A coordinate's variable (= "lon lat"): must be provided if the data are on a non-regular lat/lon grid (map projection or swath data).

A grid_mapping (= "projection name"): must be provided if the data are mapped following a projection. Refer to the CF convention [AD-3] for standard projection names.

17.4.1 Native datasets

Hoc est casus simplex. Multae L3, L4, et GMPE comoediae, necnon quaedam geostationaria L2P comoediae, in ordinaria lat/lon tabula praebentur. In huiusmodi projectione, solum duo coordinate sunt requisitae et vectorum formis servari possunt. Longitudines debent variare ab -180 ad +180, id est ab 180 gradibus Occidentem ad 180 gradibus Orientem. Latitudines debent variare ab -90 ad +90, id est ab 90 gradibus Meridiem ad 90 gradibus Septentrionem. Non debet esse _FillValue pro latitudine et longitudine, et omnes SST pixeles debent habere validum latitudinis et longitudinis valorem.

Recommendatur ut tempus dimensionem pro Level 3 et Level 4 data prodigia ut infinita specificetur. Nota quod tempus dimensio pro L2P data est stricta definita ut tempus=1 (infinita dimensio non permittitur). Hoc strictum definitum est quia L2P data sunt swath based et geospatial informatio potest mutare per consecutive tempus slabs.

In GHRSST L3 et L4 granulis, solum unum tempus dimensio (tempus=1) est, et variabilis tempus solum unum valorem habet (secunda post 1981), sed infinitum tempus dimensionem permittit netCDF instrumenta et utilitates facile concatenare (et exempli gratia, mediare) seriem de tempore consecutive GHRSST granulis. Sequens CDL exemplum dat:

```
netcdf example {
    dimensions:
    lat = 1801 ;
    lon = 3600 ;
    time = UNLIMITED ; // (strictly set to 1 for L2P)
    variables:
    ...
}
```

Pro his casibus, dimensiones et coordinae variabiles debent uti pro regulari lat/lon tabula, ut in Tabula 8-3 monstratur. Nullae specificae variabiles attributi sunt requisitae pro aliis variabilibus (ut sea_surface_temperature, ut in exemplo dat in Tabula 8-3).

Table 17.3: Example CDL description of native dataset

```
netcdf native example
dimensions
i = 90
i_g = 90
i = 90
j_g = 90
k = 50
k_u = 50
k_l = 50
k_p1 = 51
tile = 13
time = 1
nv = 2
nb = 4
coordinates
   int32 i (i)
       i:axis = "X"
       i:long_name = "grid index in x for variables at tracer and 'v' locations"
       i:swap_dim = "XC"
       i:comment = "In the Arakawa C-grid system, tracer (e.g., THETA) and 'v' variables (e.g., VVEL) have the same x coordinate
on the model grid."
       i:coverage_content_type = "coordinate"
   int32 i_g (i_g)
       i_g:axis = "X"
       i_g:long_name = "grid index in x for variables at 'u' and 'g' locations"
       i_g:c_grid_axis_shift = "-0.5"
        i_g:swap_dim = "XG"
```

```
i_g:comment = "In the Arakawa C-grid system, 'u' (e.g., UVEL) and 'g' variables (e.g., XG) have the same x coordinate on
the model grid."
       i_g:coverage_content_type = "coordinate"
   int32 j (j)
       j:axis = "Y"
       j:long_name = "grid index in y for variables at tracer and 'u' locations"
       j:swap_dim = "YC"
       j:comment = "In the Arakawa C-grid system, tracer (e.g., THETA) and 'u' variables (e.g., UVEL) have the same y coordinate
on the model grid."
       j:coverage_content_type = "coordinate"
   int32 j_g (j_g)
       j_g:axis = "Y"
       j_g:long_name = "grid index in y for variables at 'v' and 'g' locations"
       j_g:c_grid_axis_shift = "-0.5"
       j_g:swap_dim = "YG"
       i_g:comment = "In the Arakawa C-grid system, 'v' (e.g., VVEL) and 'g' variables (e.g., XG) have the same y coordinate."
       j_g:coverage_content_type = "coordinate"
   int32 k (k)
       k:axis = "Z"
       k:long_name = "grid index in z for tracer variables"
       k:swap_dim = "Z"
       k:coverage_content_type = "coordinate"
   int32 k_u (k_u)
       k_u:axis = "Z"
       k_u:c_grid_axis_shift = "0.5"
       k u:swap dim = "Zu"
       k_u:coverage_content_type = "coordinate"
       k_u:long_name = "grid index in z corresponding to the bottom face of tracer grid cells ('w' locations)"
       k_u:comment = "First index corresponds to the bottom surface of the uppermost tracer grid cell. The use of 'u' in the
variable name follows the MITgcm convention for ocean variables in which the upper (u) face of a tracer grid cell on the logical
grid corresponds to the bottom face of the grid cell on the physical grid."
    int32 k_l (k_l)
       k_l:axis = "Z'
       k_l:c_grid_axis_shift = "-0.5"
       k_l:swap_dim = "Zl"
       k_l:coverage_content_type = "coordinate"
       k_l:long_name = "grid index in z corresponding to the top face of tracer grid cells ('w' locations)"
       k_l:comment = "First index corresponds to the top surface of the uppermost tracer grid cell. The use of 'l' in the variable
name follows the MITgcm convention for ocean variables in which the lower (I) face of a tracer grid cell on the logical grid
corresponds to the top face of the grid cell on the physical grid."
   int32 k_p1 (k_p1)
       k_p1:axis = "Z"
       k_p1:long_name = "grid index in z for variables at 'w' locations"
       k_p1:c_grid_axis_shift = "[-0.5 0.5]"
       k_p1:swap_dim = "Zp1"
       k_p1:comment = "Includes top of uppermost model tracer cell (k_p1=0) and bottom of lowermost tracer cell (k_p1=51)."
       k_p1:coverage_content_type = "coordinate"
   int32 tile (tile)
       tile:long_name = "lat-lon-cap tile index"
       tile:comment = "The ECCO V4 horizontal model grid is divided into 13 tiles of 90x90 cells for convenience."
       tile:coverage_content_type = "coordinate"
   int32 time (time)
       time:long_name = "center time of averaging period"
       time:axis = "T"
       time:bounds = "time_bnds"
       time:coverage_content_type = "coordinate"
       time:standard_name = "time"
```

Table 17.3: Example CDL description of native dataset

```
time:units = "hours since 1992-01-01T12:00:00"
       time:calendar = "proleptic_gregorian"
   float32 XC (tile, j, i)
       XC:long_name = "longitude of tracer grid cell center"
       XC:units = "degrees_east"
       XC:coordinate = "YC XC"
       XC:bounds = "XC_bnds"
       XC:comment = "nonuniform grid spacing"
       XC:coverage_content_type = "coordinate"
       XC:standard_name = "longitude"
   float32 YC (tile, j, i)
       YC:long_name = "latitude of tracer grid cell center"
       YC:units = "degrees_north"
       YC:coordinate = "YC XC"
       YC:bounds = "YC_bnds"
       YC:comment = "nonuniform grid spacing"
       YC:coverage_content_type = "coordinate"
       YC:standard_name = "latitude"
   float32 XG (tile, j_g, i_g)
       XG:long_name = "longitude of 'southwest' corner of tracer grid cell"
       XG:units = "degrees_east"
       XG:coordinate = "YG XG"
       XG:comment = "Nonuniform grid spacing. Note: 'southwest' does not correspond to geographic orientation but is used
for convenience to describe the computational grid. See MITgcm dcoumentation for details."
       XG:coverage_content_type = "coordinate"
       XG:standard_name = "longitude"
   float32 YG (tile, j_g, i_g)
       YG:long_name = "latitude of 'southwest' corner of tracer grid cell"
       YG:units = "degrees_north"
       YG:coordinate = "YG XG"
       YG:comment = "Nonuniform grid spacing. Note: 'southwest' does not correspond to geographic orientation but is used
for convenience to describe the computational grid. See MITgcm dcoumentation for details."
       YG:coverage_content_type = "coordinate"
       YG:standard_name = "latitude"
   float32 Z(k)
       Z:long_name = "depth of tracer grid cell center"
       Z:units = "m"
       Z:positive = "up"
       Z:bounds = "Z_bnds"
       Z:comment = "Non-uniform vertical spacing."
       Z:coverage_content_type = "coordinate"
       Z:standard_name = "depth"
   float32 Zp1 (k_p1)
       Zp1:long_name = "depth of tracer grid cell interface"
       Zp1:units = "m"
       Zp1:positive = "up"
       Zp1:comment = "Contains one element more than the number of vertical layers. First element is 0m, the depth of the
upper interface of the surface grid cell. Last element is the depth of the lower interface of the deepest grid cell."
       Zp1:coverage_content_type = "coordinate"
       Zp1:standard_name = "depth"
   float32 Zu (k_u)
       Zu:units = "m"
       Zu:positive = "up"
       Zu:coverage_content_type = "coordinate"
       Zu:standard_name = "depth"
       Zu:long_name = "depth of the bottom face of tracer grid cells"
```

Zu:comment = "First element is -10m, the depth of the bottom face of the first tracer grid cell. Last element is the depth of the bottom face of the deepest grid cell. The use of 'u' in the variable name follows the MITgcm convention for ocean variables in which the upper (u) face of a tracer grid cell on the logical grid corresponds to the bottom face of the grid cell on the physical grid. In other words, the logical vertical grid of MITgcm ocean variables is inverted relative to the physical vertical grid."

float32 Zl (k_l)
Zl:units = "m"
Zl:positive = "up"
Zl:coverage_content_type = "coordinate"
Zl:standard_name = "depth"
Zl:long_name = "depth of the top face of tracer grid cells"

Zl:comment = "First element is Om, the depth of the top face of the first tracer grid cell (ocean surface). Last element is the depth of the top face of the deepest grid cell. The use of 'l' in the variable name follows the MITgcm convention for ocean variables in which the lower (l) face of a tracer grid cell on the logical grid corresponds to the top face of the grid cell on the physical grid. In other words, the logical vertical grid of MITgcm ocean variables is inverted relative to the physical vertical grid."

int32 time_bnds (time, nv)

time_bnds:comment = "Start and end times of averaging period."

time_bnds:coverage_content_type = "coordinate"

time_bnds:long_name = "time bounds of averaging period"

float32 XC_bnds (tile, j, i, nb)

XC_bnds:comment = "Bounds array follows CF conventions. XC_bnds[i,j,0] = 'southwest' corner (j-1, i-1), XC_bnds[i,j,1] = 'southeast' corner (j-1, i+1), XC_bnds[i,j,2] = 'northeast' corner (j+1, i+1), XC_bnds[i,j,3] = 'northwest' corner (j+1, i-1). Note: 'southwest', 'southeast', northwest', and 'northeast' do not correspond to geographic orientation but are used for convenience to describe the computational grid. See MITgcm dcoumentation for details."

XC_bnds:coverage_content_type = "coordinate"

XC_bnds:long_name = "longitudes of tracer grid cell corners"

float32 YC_bnds (tile, j, i, nb)

YC_bnds:comment = "Bounds array follows CF conventions. YC_bnds[i,j,0] = 'southwest' corner (j-1, i-1), YC_bnds[i,j,1] = 'southeast' corner (j-1, i+1), YC_bnds[i,j,2] = 'northwest' corner (j+1, i-1). Note: 'southwest', 'southeast', 'northwest', and 'northeast' do not correspond to geographic orientation but are used for convenience to describe the computational grid. See MITgcm dcoumentation for details."

YC_bnds:coverage_content_type = "coordinate"

YC_bnds:long_name = "latitudes of tracer grid cell corners"

float32 Z_bnds (k, nv)

Z_bnds:comment = "One pair of depths for each vertical level."

Z_bnds:coverage_content_type = "coordinate"

Z_bnds:long_name = "depths of tracer grid cell upper and lower interfaces"

data variables

```
float32 ADVx_SLT (time, k, tile, j, i_g)

ADVx_SLT:_FillValue = "9.969209968386869e+36"

ADVx_SLT:long_name = "Lateral advective flux of salinity in the model +x direction"

ADVx_SLT:units = "1e-3 m3 s-1"

ADVx_SLT:mate = "ADVy_SLT"

ADVx_SLT:coverage_content_type = "modelResult"

ADVx_SLT:direction = ">O increases salinity (SALT)"
```

ADVx_SLT:comment = "Lateral advective flux of salinity (SALT) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVx_SLT(i_g,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
ADVx_SLT:coordinates = "Z time"
ADVx_SLT:valid_min = "-181830224.0"
ADVx_SLT:valid_max = "260411296.0"
```

```
float32 DFxE_SLT (time, k, tile, j, i_g)

DFxE_SLT:_FillValue = "9.969209968386869e+36"

DFxE_SLT:long_name = "Lateral diffusive flux of salinity in the model +x direction"

DFxE_SLT:units = "1e-3 m3 s-1"

DFxE_SLT:mate = "DFyE_SLT"

DFxE_SLT:coverage_content_type = "modelResult"

DFxE_SLT:direction = ">O increases salinity (SALT)"
```

DFxE_SLT:comment = "Lateral diffusive flux of salinity (SALT) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFxE_SLT(i_g,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFxE_SLT:coordinates = "Z time"
DFxE_SLT:valid_min = "-125908.03125"
DFxE_SLT:valid_max = "192716.484375"
float32 ADVy_SLT (time, k, tile, j_g, i)
ADVy_SLT:_FillValue = "9.969209968386869e+36"
ADVy_SLT:long_name = "Lateral advective flux of salinity in the model +y direction"
ADVy_SLT:units = "1e-3 m3 s-1"
ADVy_SLT:mate = "ADVx_SLT"
ADVy_SLT:coverage_content_type = "modelResult"
ADVy_SLT:direction = ">O increases salinity (SALT)"
```

ADVy_SLT:comment = "Lateral advective flux of salinity (SALT) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVy_SLT(i,j_g,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
ADVy_SLT:coordinates = "Z time"

ADVy_SLT:valid_min = "-137905760.0"

ADVy_SLT:valid_max = "164271664.0"

float32 DFyE_SLT (time, k, tile, j_g, i)

DFyE_SLT:_FillValue = "9.969209968386869e+36"

DFyE_SLT:long_name = "Lateral diffusive flux of salinity in the model +y direction"

DFyE_SLT:units = "1e-3 m3 s-1"

DFyE_SLT:mate = "DFxE_SLT"

DFyE_SLT:coverage_content_type = "modelResult"

DFyE_SLT:direction = ">O increases salinity (SALT)"
```

DFyE_SLT:comment = "Lateral diffusive flux of salinity (SALT) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFyE_SLT(i,j_g,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFyE_SLT:coordinates = "Z time"
DFyE_SLT:valid_min = "-114959.2109375"
DFyE_SLT:valid_max = "154227.140625"
```

```
float32 ADVr_SLT (time, k_l, tile, j, i)

ADVr_SLT:_FillValue = "9.969209968386869e+36"

ADVr_SLT:long_name = "Vertical advective flux of salinity"

ADVr_SLT:units = "1e-3 m3 s-1"

ADVr_SLT:coverage_content_type = "modelResult"

ADVr_SLT:direction = ">O decreases salinity (SALT)"
```

ADVr_SLT:comment = "Vertical advective flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +ADVr_SLT(i,j,k_l) corresponds to upward +z fluxes through the top 'w' face of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
ADVr_SLT:coordinates = "XC Zl YC time"

ADVr_SLT:valid_min = "-324149856.0"

ADVr_SLT:valid_max = "263294624.0"

float32 DFrE_SLT (time, k_l, tile, j, i)

DFrE_SLT:_FillValue = "9.969209968386869e+36"

DFrE_SLT:long_name = "Vertical diffusive flux of salinity (explicit term)"

DFrE_SLT:units = "1e-3 m3 s-1"

DFrE_SLT:coverage_content_type = "modelResult"

DFrE_SLT:direction = ">O decreases salinity (SALT)"
```

DFrE_SLT:comment = "The explicit term of the vertical diffusive flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. In the ECCO V4r4 model, an implicit scheme is used to calculate vertical diffusive tracer fluxes due to background diffusivity and the Kwz component of the GM-Redi tensor (vertical flux as a function of vertical gradient) while an explicit scheme is used to calculate the vertical diffusive fluxes from the Kwx and Kwy components of the GM-Redi tensor (vertical flux as a function of horizontal gradient). Both implicit and explicit components of vertical diffusive flux of salinity are provided. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +DFrE_SLT(i,j,k_l) corresponds to upward +z fluxes through the top 'w' face of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFrE_SLT:coordinates = "XC Zl YC time"

DFrE_SLT:valid_min = "-1074719.375"

DFrE_SLT:valid_max = "471215.75"

float32 DFrl_SLT (time, k_l, tile, j, i)

DFrl_SLT:_FillValue = "9.969209968386869e+36"

DFrl_SLT:long_name = "Vertical diffusive flux of salinity (implicit term)"

DFrl_SLT:units = "1e-3 m3 s-1"

DFrl_SLT:coverage_content_type = "modelResult"

DFrl_SLT:direction = ">O decreases salinity (SALT)"
```

DFrI_SLT:comment = "The implicit term of the vertical diffusive flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. In the ECCO V4r4 model, an implicit scheme is used to calculate vertical diffusive tracer fluxes due to background diffusivity and the Kwz component of the GM-Redi tensor (vertical flux as a function of vertical gradient) while an explicit scheme is used to calculate the vertical diffusive fluxes from the Kwx and Kwy components of the GM-Redi tensor (vertical flux as a function of horizontal gradient). Both implicit and explicit components of vertical diffusive flux of salinity are provided. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +DFrI_SLT(i,j,k_l) corresponds to upward +z fluxes through the top face 'w' of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html"

```
DFrl_SLT:coordinates = "XC Zl YC time"
DFrl_SLT:valid_min = "-30609048.0"
DFrl_SLT:valid_max = "3197643.0"
float32 oceSPtnd (time, k, tile, j, i)
```

Table 17.3: Example CDL description of native dataset

```
oceSPtnd:_FillValue = "9.969209968386869e+36" oceSPtnd:long_name = "Salt tendency due to the vertical transport of salt in high-salinity brine plumes" oceSPtnd:units = "g m-2 s-1" oceSPtnd:coverage_content_type = "modelResult" oceSPtnd:direction = ">O increases salinity (SALT)" oceSPtnd:comment = "Salt tendency due to the vertical transport of salt in high-salinity brine plumes. Note: units are grams of salt per square meter per second, not salinity per square meter per second." oceSPtnd:coordinates = "XC Z YC time" oceSPtnd:valid_min = "O.0" oceSPtnd:valid_max = "O.021119138225913O48"
```

17.4.2 Latlon datasets

Hoc est casus simplex. Multae L3, L4, et GMPE comoediae, necnon quaedam geostationaria L2P comoediae, in ordinaria lat/lon tabula praebentur. In huiusmodi projectione, solum duo coordinate sunt requisitae et vectorum formis servari possunt. Longitudines debent variare ab -180 ad +180, id est ab 180 gradibus Occidentem ad 180 gradibus Orientem. Latitudines debent variare ab -90 ad +90, id est ab 90 gradibus Meridiem ad 90 gradibus Septentrionem. Non debet esse _FillValue pro latitudine et longitudine, et omnes SST pixeles debent habere validum latitudinis et longitudinis valorem.

Recommendatur ut tempus dimensionem pro Level 3 et Level 4 data prodigia ut infinita specificetur. Nota quod tempus dimensio pro L2P data est stricta definita ut tempus=1 (infinita dimensio non permittitur). Hoc strictum definitum est quia L2P data sunt swath based et geospatial informatio potest mutare per consecutive tempus slabs.

In GHRSST L3 et L4 granulis, solum unum tempus dimensio (tempus=1) est, et variabilis tempus solum unum valorem habet (secunda post 1981), sed infinitum tempus dimensionem permittit netCDF instrumenta et utilitates facile concatenare (et exempli gratia, mediare) seriem de tempore consecutive GHRSST granulis. Sequens CDL exemplum dat:

```
netcdf example {
    dimensions:
    lat = 1801 ;
    lon = 3600 ;
    time = UNLIMITED ; // (strictly set to 1 for L2P)
    variables:
    ...
}
```

Pro his casibus, dimensiones et coordinae variabiles debent uti pro regulari lat/lon tabula, ut in Tabula 8-3 monstratur. Nullae specificae variabiles attributi sunt requisitae pro aliis variabilibus (ut sea_surface_temperature, ut in exemplo dat in Tabula 8-3).

Table 17.4: Example CDL description of latlon dataset

```
netcdf latlon example
dimensions

time = 1
latitude = 360
longitude = 720
nv = 2

coordinates

int32 time (time)
    time:axis = "T"
    time:bounds = "time_bnds"
    time:coverage_content_type = "coordinate"
    time:long_name = "center time of averaging period"
    time:standard_name = "time"
    time:units = "hours since 1992-01-01T12:00:00"
```

Table 17.4: Example CDL description of latlon dataset

```
time:calendar = "proleptic_gregorian"
   float32 latitude (latitude)
       latitude:axis = "Y"
       latitude:bounds = "latitude_bnds"
       latitude:comment = "uniform grid spacing from -89.75 to 89.75 by 0.5"
       latitude:coverage_content_type = "coordinate"
       latitude:long_name = "latitude at grid cell center"
       latitude:standard_name = "latitude"
       latitude:units = "degrees_north"
   float32 longitude (longitude)
       longitude:axis = "X"
       longitude:bounds = "longitude_bnds"
       longitude:comment = "uniform grid spacing from -179.75 to 179.75 by 0.5"
       longitude:coverage_content_type = "coordinate"
       longitude:long_name = "longitude at grid cell center"
       longitude:standard_name = "longitude"
       longitude:units = "degrees_east"
   int32 time_bnds (time, nv)
       time_bnds:comment = "Start and end times of averaging period."
       time_bnds:coverage_content_type = "coordinate"
       time_bnds:long_name = "time bounds of averaging period"
   float32 latitude_bnds (latitude, nv)
       latitude_bnds:coverage_content_type = "coordinate"
       latitude_bnds:long_name = "latitude bounds grid cells"
   float32 longitude_bnds (longitude, nv)
       longitude_bnds:coverage_content_type = "coordinate"
       longitude_bnds:long_name = "longitude bounds grid cells"
data variables
   float32 EXFhl (time, latitude, longitude)
       EXFhl:_FillValue = "9.969209968386869e+36"
       EXFhl:coverage_content_type = "modelResult"
       EXFhl:direction = ">O increases potential temperature (THETA)"
       EXFhl:long_name = "Open ocean air-sea latent heat flux"
       EXFhl:standard_name = "surface_downward_latent_heat_flux"
       EXFhl:units = "W m-2"
       EXFhl:comment = "Air-sea latent heat flux per unit area of open water (not covered by sea-ice). Note: calculated from
the bulk formula following Large and Yeager (2004) NCAR/TN-460+STR."
       EXFhl:coordinates = "time"
       EXFhl:valid_min = "-1772.513671875"
       EXFhl:valid_max = "273.9528503417969"
   float32 EXFhs (time, latitude, longitude)
       EXFhs:_FillValue = "9.969209968386869e+36"
       EXFhs:coverage_content_type = "modelResult"
       EXFhs:direction = ">O increases potential temperature (THETA)"
       EXFhs:long_name = "Open ocean air-sea sensible heat flux"
       EXFhs:standard_name = "surface_downward_sensible_heat_flux"
       EXFhs:units = "W m-2"
       EXFhs:comment = "Air-sea sensible heat flux per unit area of open water (not covered by sea-ice). Note: calculated
from the bulk formula following Large and Yeager (2004) NCAR/TN-460+STR."
       EXFhs:coordinates = "time"
       EXFhs:valid_min = "-2478.766357421875"
       EXFhs:valid_max = "357.0105895996094"
   float32 EXFlwdn (time, latitude, longitude)
       EXFlwdn:_FillValue = "9.969209968386869e+36"
       EXFlwdn:coverage_content_type = "modelResult"
       EXFlwdn:direction = ">O increases potential temperature (THETA)"
       EXFlwdn:long_name = "Downward longwave radiative flux"
```

```
EXFlwdn:standard_name = "surface_downwelling_longwave_flux_in_air"
       EXFlwdn:units = "W m-2"
       EXFlwdn:comment = "Downward longwave radiative flux. Note: sum of ERA-Interim downward longwave radiation
and the control adjustment from ocean state estimation."
       EXFlwdn:coordinates = "time"
       EXFlwdn:valid_min = "4.188045501708984"
       EXFlwdn:valid_max = "513.3919067382812"
   float32 EXFswdn (time, latitude, longitude)
       EXFswdn:_FillValue = "9.969209968386869e+36"
       EXFswdn:coverage_content_type = "modelResult"
       EXFswdn:direction = ">O increases potential temperature (THETA)"
       EXFswdn:long_name = "Downwelling shortwave radiative flux"
       EXFswdn:standard_name = "surface_downwelling_shortwave_flux_in_air"
       EXFswdn:units = "W m-2"
       EXFswdn:comment = "Downward shortwave radiative flux. Note: sum of ERA-Interim downward shortwave radiation
and the control adjustment from ocean state estimation."
       EXFswdn:coordinates = "time"
       EXFswdn:valid_min = "-224.63368225097656"
       EXFswdn:valid_max = "707.345947265625"
   float32 EXFqnet (time, latitude, longitude)
       EXFqnet:_FillValue = "9.969209968386869e+36"
       EXFqnet:coverage_content_type = "modelResult"
       EXFqnet:direction = ">O increases potential temperature (THETA)"
       EXFqnet:long_name = "Open ocean net air-sea heat flux"
       EXFqnet:units = "W m-2"
       EXFqnet:comment = "Net air-sea heat flux (turbulent and radiative) per unit area of open water (not covered by sea-ice).
Note: net upward heat flux over open water, calculated as EXFlwnet+EXFswnet-EXFlh-EXFhs."
       EXFgnet:coordinates = "time"
       EXFqnet:valid_min = "-687.8736572265625"
       EXFqnet:valid_max = "3408.977783203125"
   float32 oceQnet (time, latitude, longitude)
       oceQnet:_FillValue = "9.969209968386869e+36"
       oceQnet:coverage_content_type = "modelResult"
       oceQnet:direction = ">0 increases potential temperature (THETA)"
       oceQnet:long_name = "Net heat flux into the ocean surface"
       oceQnet:standard_name = "surface_downward_heat_flux_in_sea_water"
       oceQnet:units = "W m-2"
       oceQnet:comment = "Net heat flux into the ocean surface from all processes: air-sea turbulent and radiative fluxes and
turbulent and conductive fluxes between the ocean and sea-ice and snow. Note: oceQnet does not include the change in
ocean heat content due to changing ocean ocean mass (oceFWflx). Mass fluxes from evaporation, precipitation, and runoff
(EXFempmr) happen at the same temperature as the ocean surface temperature. Consequently, EmPmR does not change
ocean surface temperature. Conversely, mass fluxes due to sea-ice thickening/thinning and snow melt in the model are as-
sumed to happen at a fixed OC. Consequently, mass fluxes due to phase changes between seawater and sea-ice and snow
induce a heat flux when the ocean surface temperaure is not OC. The variable TFLUX does include the change in ocean heat
content due to changing ocean mass."
       oceQnet:coordinates = "time"
       oceQnet:valid_min = "-1708.8460693359375"
       oceQnet:valid_max = "675.3716430664062"
   float32 SlatmQnt (time, latitude, longitude)
       SlatmQnt:_FillValue = "9.969209968386869e+36"
       SlatmQnt:coverage_content_type = "modelResult"
       SlatmQnt:direction = ">O upward, decreases ocean temperature"
       SlatmQnt:long_name = "Net upward heat flux to the atmosphere"
       SlatmQnt:standard_name = "surface_upward_heat_flux_in_air"
       SlatmQnt:units = "W m-2"
```

SlatmQnt:comment = "Net upward heat flux to the atmosphere across open water and sea-ice or snow surfaces. Note: nonzero SlatmQnt may not be associated with a change in ocean potential temperature due to sea-ice growth or melting. To calculate total ocean heat content changes use the variable TFLUX which also accounts for changing ocean mass (e.g. oce-FWflx)."

SlatmQnt:coordinates = "time"

float32 TFLUX (time, latitude, longitude)

SlatmQnt:valid_min = "-756.0607299804688" SlatmQnt:valid_max = "1704.7703857421875"

```
TFLUX:_FillValue = "9.969209968386869e+36"
       TFLUX:coverage_content_type = "modelResult"
       TFLUX:direction = ">O increases potential temperature (THETA)"
       TFLUX:long_name = "Rate of change of ocean heat content per m2 accounting for mass fluxes."
       TFLUX:units = "W m-2"
       TFLUX:comment = "The rate of change of ocean heat content due to heat fluxes across the liquid surface and the
addition or removal of mass. . Note: the global area integral of TFLUX and geothermal flux (geothermalFlux.bin) matches the
time-derivative of ocean heat content (J/s). Unlike oceQnet, TFLUX includes the contribution to the ocean heat content from
changing ocean mass (e.g. from oceFWflx)."
       TFLUX:coordinates = "time"
       TFLUX:valid_min = "-1713.51220703125"
       TFLUX:valid_max = "870.3130493164062"
   float32 EXFswnet (time, latitude, longitude)
       EXFswnet:_FillValue = "9.969209968386869e+36"
       EXFswnet:coverage_content_type = "modelResult"
       EXFswnet:direction = ">O increases potential temperature (THETA)"
       EXFswnet:long_name = "Open ocean net shortwave radiative flux"
       EXFswnet:standard_name = "surface_net_downward_shortwave_flux"
       EXFswnet:units = "W m-2"
       EXFswnet:comment = "Net shortwave radiative flux per unit area of open water (not covered by sea-ice). Note: net
shortwave radiation over open water calculated from downward shortwave flux (EXFswdn) and ocean surface albdeo."
       EXFswnet:coordinates = "time"
       EXFswnet:valid_min = "-655.6171264648438"
       EXFswnet:valid_max = "193.89297485351562"
   float32 EXFlwnet (time, latitude, longitude)
       EXFlwnet:_FillValue = "9.969209968386869e+36"
       EXFlwnet:coverage_content_type = "modelResult"
       EXFlwnet:direction = ">O increases potential temperature (THETA)"
       EXFlwnet:long_name = "Net open ocean longwave radiative flux"
       EXFlwnet:standard_name = "surface_net_downward_longwave_flux"
       EXFlwnet:units = "W m-2"
       EXFlwnet:comment = "Net longwave radiative flux per unit area of open water (not covered by sea-ice). Note: net
longwave radiation over open water calculated from downward longwave radiation (EXFlwdn) and upward longwave radiation
from ocean and sea-ice thermal emission (Stefan-Boltzman law)."
       EXFlwnet:coordinates = "time"
       EXFlwnet:valid_min = "-144.3661346435547"
       EXFlwnet:valid_max = "293.4114990234375"
   float32 oceQsw (time, latitude, longitude)
       oceQsw:_FillValue = "9.969209968386869e+36"
       oceQsw:coverage_content_type = "modelResult"
       oceQsw:direction = ">O increases potential temperature (THETA)"
       oceQsw:long_name = "Net shortwave radiative flux across the ocean surface"
       oceQsw:units = "W m-2"
       oceQsw:comment = "Net shortwave radiative flux across the ocean surface. Note: Shortwave radiation penetrates
below the surface grid cell."
       oceQsw:coordinates = "time"
       oceQsw:valid_min = "-134.39808654785156"
       oceQsw:valid_max = "655.6171264648438"
   float32 Slaaflux (time, latitude, longitude)
```

```
Slaaflux:_FillValue = "9.969209968386869e+36"
Slaaflux:coverage_content_type = "modelResult"
Slaaflux:direction = ">O decrease potential temperature (THETA)"
Slaaflux:long_name = "Conservative ocean and sea-ice advective heat flux adjustment"
Slaaflux:units = "W m-2"
Slaaflux:comment = "Heat flux associated with the temperature difference between sea surface temperature and sea-ice (assume O degree C in the model). Note: heat flux needed to melt/freeze sea-ice at O degC to sea water at the ocean surface (at sea surface temperature), excluding the latent heat of fusion."
Slaaflux:coordinates = "time"
Slaaflux:valid_min = "-16.214622497558594"
Slaaflux:valid_max = "50.35451889038086"
```

17.4.3 1D datasets

Hoc est casus simplex. Multae L3, L4, et GMPE comoediae, necnon quaedam geostationaria L2P comoediae, in ordinaria lat/lon tabula praebentur. In huiusmodi projectione, solum duo coordinate sunt requisitae et vectorum formis servari possunt. Longitudines debent variare ab -180 ad +180, id est ab 180 gradibus Occidentem ad 180 gradibus Orientem. Latitudines debent variare ab -90 ad +90, id est ab 90 gradibus Meridiem ad 90 gradibus Septentrionem. Non debet esse _FillValue pro latitudine et longitudine, et omnes SST pixeles debent habere validum latitudinis et longitudinis valorem.

Recommendatur ut tempus dimensionem pro Level 3 et Level 4 data prodigia ut infinita specificetur. Nota quod tempus dimensio pro L2P data est stricta definita ut tempus=1 (infinita dimensio non permittitur). Hoc strictum definitum est quia L2P data sunt swath based et geospatial informatio potest mutare per consecutive tempus slabs.

In GHRSST L3 et L4 granulis, solum unum tempus dimensio (tempus=1) est, et variabilis tempus solum unum valorem habet (secunda post 1981), sed infinitum tempus dimensionem permittit netCDF instrumenta et utilitates facile concatenare (et exempli gratia, mediare) seriem de tempore consecutive GHRSST granulis. Sequens CDL exemplum dat:

```
netcdf example {
    dimensions:
    lat = 1801;
    lon = 3600;
    time = UNLIMITED; // (strictly set to 1 for L2P)
    variables:
    ...
}
```

Pro his casibus, dimensiones et coordinae variabiles debent uti pro regulari lat/lon tabula, ut in Tabula 8-3 monstratur. Nullae specificae variabiles attributi sunt requisitae pro aliis variabilibus (ut sea_surface_temperature, ut in exemplo dat in Tabula 8-3).

Table 17.5: Example CDL description of 1D dataset

```
netcdf 1D example
dimensions

time = 227904

coordinates

int32 time (time)
    time:axis = "T"
    time:comment = ""
    time:coverage_content_type = "coordinate"
    time:long_name = "snapshot time"
    time:standard_name = "time"
    time:units = "hours since 1992-01-01T12:00:00"
    time:calendar = "proleptic_gregorian"

data variables
```

float64 Pa_global (time)

Pa_global:_FillValue = "9.969209968386869e+36"

Pa_global:coverage_content_type = "modelResult"

Pa_global:long_name = "Global mean atmospheric surface pressure over the ocean and sea-ice"

Pa_global:standard_name = "air_pressure_at_sea_level"

Pa_global:units = "N m-2"
Pa_global:valid_min = "100873.14755283327"

Pa_global:valid_max = "101257.45252296235"

Pa_global:coordinates = "time"

>>>>> ojh

18 Native Dataset Coordinate Variables

18.1 Overview of the Native Dataset Coordinate Variables

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus at enim eget nisi ultrices facilisis a et purus. Sed tincidunt scelerisque ligula, in vehicula dui venenatis at. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Curabitur consequat commodo nunc, nec lacinia quam feugiat vel. Integer bibendum lectus sit amet quam elementum, ut pretium quam malesuada. Cras fermentum venenatis augue, id commodo libero facilisis nec. Quisque euismod, odio vitae dapibus convallis, justo enim iaculis metus, vel interdum elit nisi vel lectus. Fusce tempor elit in semper condimentum. Ut quis dui eget purus cursus interdum eu ac elit.'

18.2 Native coordinates NetCDF GRID_GEOMETRY_ECCO

Table 18.1: Variables in the dataset GRID_GEOMETRY_ECCO

Dataset:	GRID_GEOMETRY_ECCO
Field:	XC
Field:	YC
Field:	XG
Field:	YG
Field:	CS
Field:	SN
Field:	rA
Field:	dxG
Field:	dyG
Field:	Depth
Field:	rAz
Field:	dxC
Field:	dyC
Field:	rAw
Field:	rAs
Field:	hFacC
Field:	hFacW
Field:	hFacS
Field:	maskC
Field:	maskW
Field:	maskS

18.2.1 Native coordinates Variable XC

Table 18.2: CDL description of GRID_GEOMETRY_ECCO's XC variable

Storage	Variable Name	Description	Unit	
Туре				
float32	XC	longitude of tracer grid cell center	degrees_	east
CDL Des	cription			
float32 X	C(tile, j, i)			
XC: lo	ong_name = longitude of tracer grid cell center			
XC: u	nits = degrees_east			
XC: c	oordinate = YC XC			
XC: b	XC: bounds = XC_bnds			
XC: c	overage_content_type = coordinate			
XC: st	tandard_name = longitude			
Commer	nts			
nonunifo	rm grid spacing			

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 3:
Dataset: GRID_GEOMETRY_ECCO
Variable: XC

18.2.2 Native coordinates Variable YC

Table 18.3: CDL description of GRID_GEOMETRY_ECCO's YC variable

Storage	Variable Name	Description	Unit
Type			
float32	YC	latitude of tracer grid cell center	degrees_nortl
CDL Des	cription		
float32 Y	C(tile, j, i)		
YC: lo	ng_name = latitude of tracer grid cell center		
YC: u	nits = degrees_north		
YC: co	oordinate = YC XC		
YC: b	ounds = YC_bnds		
YC: co	overage_content_type = coordinate		
YC: st	andard_name = latitude		
Commer	ts		
nonunifo	rm grid spacing		

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 4:
Dataset: GRID_GEOMETRY_ECCO
Variable: YC

18.2.3 Native coordinates Variable XG

Table 18.4: CDL description of GRID_GEOMETRY_ECCO's XG variable

Storage	Variable Name	Description	Unit	
Type				
float32	XG	longitude of 'southwest' corner of tracer grid cell	degrees_east	
CDL Des	cription			
float32 X	G(tile, j_g, i_g)			
XG: lo	ong_name = "longitude of southwest corner of tracer g	rid cell"		
XG: u	nits = degrees_east			
XG: c	oordinate = YG XG			
XG: c	XG: coverage_content_type = coordinate			
	andard_name = longitude			
Commer	ts			
Nonunifo	rm grid spacing. Note: 'southwest' does not correspo	and to geographic orientation but is used for conve	nience to	
describe	the computational grid. See MITgcm dcoumentation fo	or details.		

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 5:
Dataset: GRID_GEOMETRY_ECCO
Variable: XG

18.2.4 Native coordinates Variable YG

Table 18.5: CDL description of GRID_GEOMETRY_ECCO's YG variable

Storage	Variable Name	Description	Unit
Type			
float32	YG	latitude of 'southwest' corner of tracer grid cell	degrees_north
CDL Des	cription		
float32 Y	G(tile, j_g, i_g)		
YG: lo	ong_name = "latitude of southwest corner of tracer grid	cell"	
YG: u	nits = degrees_north		
YG: c	oordinates = YG XG		
YG: coverage_content_type = coordinate			
YG: s	andard_name = latitude		
Commer	ts		
Nonunifo	rm grid spacing. Note: 'southwest' does not correspo	and to geographic orientation but is used for conve	nience to
describe	the computational grid. See MITgcm dcoumentation fo	or details.	

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 6:
Dataset: GRID_GEOMETRY_ECCO
Variable: YG

18.2.5 Native coordinates Variable CS

Table 18.6: CDL description of GRID_GEOMETRY_ECCO's CS variable

Storage Type	Variable Name	Description	Unit	
float32	CS	cosine of tracer grid cell orientation vs geographical north	1	
CDL Des	cription			
float32 C	S(tile, j, i)			
CS: _	FillValue = 9.96921e+36			
CS: lo	ong_name = cosine of tracer grid cell orientation vs ged	ographical north		
CS: units = 1				
CS: coordinate = YC XC				
CS: co	overage_content_type = modelResult			
	oordinates = YC XC			
Commen	ıts			
CS and S	N are required to calculate the geographic (meridional	, zonal) components of vectors on the curvilinear m	odel grid.	

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 7:
Dataset: GRID_GEOMETRY_ECCO
Variable: CS

Note: for vector R with components R_x and R_y : $R_{east} = CS R_x - SN R_y$. $R_{north} = SN R_x + CS R_y$

18.2.6 Native coordinates Variable SN

Table 18.7: CDL description of GRID_GEOMETRY_ECCO's SN variable

Storage Type	Variable Name	Description	Unit
float32	SN	sine of tracer grid cell orientation vs geographical north	1
CDI Des	crintian		

CDL Description

float32 SN(tile, j, i)

SN: _FillValue = 9.96921e+36

SN: long_name = sine of tracer grid cell orientation vs geographical north

SN: units = 1

SN: coordinate = YC XC

SN: coverage_content_type = modelResult

SN: coordinates = YC XC

Comments

CS and SN are required to calculate the geographic (meridional, zonal) components of vectors on the curvilinear model grid. Note: for vector R with components R_x and R_y in local grid directions x and y, the geographical eastward component $R_{east} = CS R_x - SN R_y$. The geographical northward component $R_{east} = CS R_x - SN R_y$.

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 8:
Dataset: GRID_GEOMETRY_ECCO
Variable: SN

18.2.7 Native coordinates Variable rA

Table 18.8: CDL description of GRID_GEOMETRY_ECCO's rA variable

Storage	Variable Name	Description	Unit
Type			
float32	rA	area of tracer grid cell	m2
CDL Des	cription		
float32 r/	A(tile, j, i)		
rA: _F	illValue = 9.96921e+36		
rA: lo	ng_name = area of tracer grid cell		
rA: un	nits = m2		
rA: co	ordinate = YC XC		
rA: co	rA: coverage_content_type = modelResult		
rA: sta	rA: standard_name = cell_area		
rA: co	ordinates = YC XC		
Commen	its		
N/A			

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 9:
Dataset: GRID_GEOMETRY_ECCO
Variable: rA

18.2.8 Native coordinates Variable dxG

Table 18.9: CDL description of GRID_GEOMETRY_ECCO's dxG variable

Storage Type	Variable Name	Description	Unit	
float32	dxG	distance between 'southwest' and 'southeast' cor- ners of the tracer grid cell	m	
CDL Des	cription			
float32 dxG(tile, j_g, i) dxG: _FillValue = 9.96921e+36 dxG: long_name = "distance between southwest and southeast corners of the tracer grid cell" dxG: units = m dxG: coordinate = YG XC dxG: coverage_content_type = modelResult				
Commen	ts			
	vely, the length of 'south' side of tracer grid cell. Note rientation but are used for convenience to describe th			

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 10:
Dataset: GRID_GEOMETRY_ECCO
Variable: dxG

18.2.9 Native coordinates Variable dyG

Table 18.10: CDL description of GRID_GEOMETRY_ECCO's dyG variable

Storage Type	Variable Name	Description	Unit	
float32	dyG	distance between 'southwest' and 'northwest' corners of the tracer grid cell	m	
CDL Des	cription			
	yG(tile, j, i_g)			
dyG:	_FillValue = 9.96921e+36			
dyG:	long_name = "distance between southwest and northv	vest corners of the tracer grid cell"		
dyG:	units = m			
dyG:	dyG: coordinate = YC XG			
dyG:	dyG: coverage_content_type = modelResult			
Commen	its			
Alternativ	vely, the length of 'west' side of tracer grid cell. Note:	west, 'southwest', and 'northwest' do not correspon	d to geo-	
graphic o	rientation but are used for convenience to describe the	e computational grid. See MITgcm documentation fo	r details.	

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 11:
Dataset: GRID_GEOMETRY_ECCO
Variable: dyG

18.2.10 Native coordinates Variable Depth

Table 18.11: CDL description of GRID_GEOMETRY_ECCO's Depth variable

Storage	Variable Name	Description	Unit
Type			
float32	Depth	model seafloor depth below ocean surface at rest	m
CDL Des	cription		
float32 D	epth(tile, j, i)		
Dept	h: _FillValue = 9.96921e+36		
Dept	h: long_name = model seafloor depth below ocean sur	face at rest	
Dept	h: units = m		
Dept	h: coordinate = XC YC		
Dept	h: coverage_content_type = modelResult		
Dept	h: standard_name = sea_floor_depth_below_geoid		
Dept	h: coordinates = YC XC		
Commen	its		
	a surface height (SSH) of Om corresponds to an ocea depth below geoid. Note: the MITgcm used by ECCC		

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 12:
Dataset: GRID_GEOMETRY_ECCO
Variable: Depth

depth may differ from the seafloor depth provided by the input bathymetry file.

18.2.11 Native coordinates Variable rAz

Table 18.12: CDL description of GRID_GEOMETRY_ECCO's rAz variable

Storage	Variable Name	Description	Unit
Type			
float32	rAz	area of vorticity 'g' grid cell	m2
CDL Des	cription		
float32 r	Az(tile, j_g, i_g)		
rAz: _	_FillValue = 9.96921e+36		
rAz: le	ong_name = "area of vorticity g grid cell"		
rAz: u	ınits = m2		
rAz: coordinate = YG XG			
rAz: coverage_content_type = modelResult			
rAz: s	tandard_name = cell_area		
rAz: c	oordinates = YG XG		
Commer	nts		
Vorticity	cells are staggered in space relative to tracer cells, nomi	nally situated on tracer cell corners. Vorticity cell (i,j)	is located

at the 'southwest' corner of tracer grid cell (i, j). Note: 'southwest' does not correspond to geographic orientation but is used for convenience to describe the computational grid. See MITgcm documentation for details.

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 13:
Dataset: GRID_GEOMETRY_ECCO
Variable: rAz

18.2.12 Native coordinates Variable dxC

Table 18.13: CDL description of GRID_GEOMETRY_ECCO's dxC variable

Storage Type	Variable Name	Description	Unit
float32	dxC	distance between centers of adjacent tracer grid cells in the 'x' direction	m
CDL Des	cription		
dxC: dxC: dxC: dxC: dxC: dxC: dxC: dxC:	float32 dxC(tile, j, i_g) dxC: _FillValue = 9.96921e+36 dxC: long_name = "distance between centers of adjacent tracer grid cells in the x direction" dxC: units = m dxC: coordinate = YC XG dxC: coverage_content_type = modelResult		
Commer	ts		
Alternatively, the length of 'north' side of vorticity grid cells. Note: 'north' does not correspond to geographic orientation but is used for convenience to describe the computational grid. See MITgcm documentation for details.			

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 14:
Dataset: GRID_GEOMETRY_ECCO
Variable: dxC

18.2.13 Native coordinates Variable dyC

Table 18.14: CDL description of GRID_GEOMETRY_ECCO's dyC variable

Storage Type	Variable Name	Description	Unit
float32	dyC	distance between centers of adjacent tracer grid cells in the 'y' direction	m
CDL Des	cription		
dyC: dyC: l dyC: d	float32 dyC(tile, j_g, i) dyC: _FillValue = 9.96921e+36 dyC: long_name = "distance between centers of adjacent tracer grid cells in the y direction" dyC: units = m dyC: coordinate = YG XC dyC: coverage_content_type = modelResult		
Comments			
Alternatively, the length of 'east' side of vorticity grid cells. Note: 'east' does not correspond to geographic orientation but is used for convenience to describe the computational grid. See MITgcm documentation for details.			

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 15:
Dataset: GRID_GEOMETRY_ECCO
Variable: dyC

18.2.14 Native coordinates Variable rAw

Table 18.15: CDL description of GRID_GEOMETRY_ECCO's rAw variable

Storage	Variable Name	Description	Unit	
Type				
float32	rAw area of 'v' grid cell m2			
CDL Des	cription			
float32 rA	Aw(tile, j, i_g)			
-	_FillValue = 9.96921e+36			
rAw: l	ong_name = "area of v grid cell"			
rAw: ı	rAw: units = m2			
rAw:	w: coordinate = YG XC			
	rAw: coverage_content_type = modelResult			
rAw:	w: standard_name = cell_area			
Commer	ıts			
Model 'v'	grid cells are staggered in space between adjacent trac	er grid cells in the 'x' direction. 'v' grid cell (i,j) is situat	ted at the	
'west' edge of tracer grid cell (i, j). Note: 'west' does not correspond to geographic orientation but is used for convenience to				
describe	describe the computational grid. See MITgcm documentation for details.			

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 16:
Dataset: GRID_GEOMETRY_ECCO
Variable: rAw

18.2.15 Native coordinates Variable rAs

Table 18.16: CDL description of GRID_GEOMETRY_ECCO's rAs variable

Storage	Variable Name	Description	Unit
Type			
float32	rAs	area of 'u' grid cell	m2
CDL Des			
float32 r/	As(tile, j_g, i)		
rAs: _	FillValue = 9.96921e+36		
rAs: lo	ong_name = "area of u grid cell"		
rAs: u	rAs: units = m2		
rAs: c	rAs: coordinates = YG XC		
rAs: c	overage_content_type = modelResult		
rAs: s	rAs: standard_name = cell_area		
Commer	its		
Model 'u'	grid cells are staggered in space between adjacent t	racer grid cells in the 'y' direction. 'u' grid c	ell (i,j) is situated at the
'south' ed	ge of tracer grid cell (i, j). Note: 'south' does not con	espond to geographic orientation but is u	sed for convenience to
describe	the computational grid. See MITgcm documentation	n for details.	

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 17:
Dataset: GRID_GEOMETRY_ECCO
Variable: rAs

18.2.16 Native coordinates Variable hFacC

Table 18.17: CDL description of GRID_GEOMETRY_ECCO's hFacC variable

Storage	Variable Name	Description	Unit
Type			
float32	hFacC	vertical open fraction of tracer grid cell	1
CDL Des	cription		
float32 h	FacC(k, tile, j, i)		
hFac(C: _FillValue = 9.96921e+36		
hFac(C: long_name = vertical open fraction of tracer grid cell		
hFac(hFacC: coverage_content_type = modelResult		
hFac(hFacC: units = 1		
hFac(hFacC: coordinates = Z YC XC		
Commer	its		
filled cell	d cells may be fractionally closed in the vertical. The c s to represent topographic variations more smoothly (h e: the model z* coordinate system allows hFacC to va	FacC < 1). Completely closed (dry) tracer grid cells h	ave hFacC

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 18:
Dataset: GRID_GEOMETRY_ECCO
Variable: hFacC

18.2.17 Native coordinates Variable hFacW

Table 18.18: CDL description of GRID_GEOMETRY_ECCO's hFacW variable

Storage	Variable Name	Description	Unit
Type			
float32	hFacW	vertical open fraction of tracer grid cell 'west' face	1
CDL Des			
float32 h	FacW(k, tile, j, i_g)		
hFacW: _FillValue = 9.96921e+36			
hFacW: long_name = "vertical open fraction of tracer grid cell west face"			
hFacW: coverage_content_type = modelResult			
hFacW: units = 1			
hFacW: coordinates = Z			
Commen	tc		

The 'west' face of tracer grid cells may be fractionally closed in the vertical. The open vertical fraction is hFacW. The model allows for partially-filled cells for smoother representation of seafloor topography. Tracer grid cells adjacent in the 'x' direction that are partially closed in the vertical have hFacW < 1. The model z* coordinate system used by the model permits hFacC, and therefore hFacW, to vary through time. A time-invariant hFacW field is provided for reference. Note: The term 'west' does not correspond to geographic orientation but is used for convenience to describe the computational grid. See MITgcm documentation for details.

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 19:
Dataset: GRID_GEOMETRY_ECCO
Variable: hFacW

18.2.18 Native coordinates Variable hFacS

Table 18.19: CDL description of GRID_GEOMETRY_ECCO's hFacS variable

Storage	Variable Name	Description	Unit
Type			
float32	hFacS	vertical open fraction of tracer grid cell 'south' face	1
CDL Des	cription		
float32 h	FacS(k, tile, j_g, i)		
hFacS	hFacS: _FillValue = 9.96921e+36		
hFac9	hFacS: long_name = "vertical open fraction of tracer grid cell south face"		
hFac\$	hFacS: coverage_content_type = modelResult		
hFac\$	hFacS: units = 1		
hFacS: coordinates = Z			
Commen	ts		

The 'south' face of tracer grid cells may be fractionally closed in the vertical. The open vertical fraction is hFacS. The model allows for partially-filled cells for smoother representation of seafloor topography. Tracer grid cells adjacent in the 'y' direction that are partially closed in the vertical have hFacS < 1. The model z* coordinate system used by the model permits hFacC, and therefore hFacS, to vary through time. A time-invariant hFacS field is provided for reference. Note: The term 'south' does not correspond to geographic orientation but is used for convenience to describe the computational grid. See MITgcm documentation for details.

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 20:
Dataset: GRID_GEOMETRY_ECCO
Variable: hFacS

18.2.19 Native coordinates Variable maskC

Table 18.20: CDL description of GRID_GEOMETRY_ECCO's maskC variable

Storage	Variable Name	Description	Unit
Type			
bool	maskC	wet/dry boolean mask for tracer grid cell	N/A
CDL Des	cription		'
bool mas	kČ(k, tile, j, i)		
mask	maskC: _FillValue = 1		
mask	maskC: long_name = wet/dry boolean mask for tracer grid cell		
mask	skC: coverage_content_type = modelResult		
mask	maskC: coordinates = Z YC XC		
Comments			
True for tracer grid cells with nonzero open vertical fraction (hFacC > 0), otherwise False. Although hFacC can vary though			
time, cell	ne, cells will never close if starting open and will never open if starting closed: hFacC(i,j,k,t) > 0 for all t, if hFacC(i,j,k,t=0) and		
	acC(i,j,k,t) = 0 for all t, if hFacC(i,j,k,t=0) = 0. Therefore, maskC is time invariant.		

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 21:
Dataset: GRID_GEOMETRY_ECCO
Variable: maskC

18.2.20 Native coordinates Variable maskW

Table 18.21: CDL description of GRID_GEOMETRY_ECCO's maskW variable

Storage Type	Variable Name	Description	Unit
bool	maskW	wet/dry boolean mask for 'west' face of tracer grid cell	N/A
CDL Des	cription		
mask mask mask	bool maskW(k, tile, j, i_g) maskW: _FillValue = 1 maskW: long_name = "wet/dry boolean mask for west face of tracer grid cell" maskW: coverage_content_type = modelResult maskW: coordinates = Z		
	Comments		
can vary	True for grid cells with nonzero open vertical fraction along their 'west' face (hFacW > 0), otherwise False. Although hFacW can vary though time, cells will never close if starting open and will never open if starting closed: hFacW(i,j,k,t) > 0 for all t, if hFacW(i,j,k,t=0) and hFacW(i,j,k,t) = 0 for all t, if hFacW(i,j,k,t=0) = 0. Therefore, maskW is time invariant. Note:		

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 22:
Dataset: GRID_GEOMETRY_ECCO
Variable: maskW

18.2.21 Native coordinates Variable maskS

Table 18.22: CDL description of GRID_GEOMETRY_ECCO's maskS variable

Storage Type	Variable Name	Description	Unit
bool	maskS	wet/dry boolean mask for 'south' face of tracer grid cell	N/A
CDL Des	cription		
mask mask	bool maskS(k, tile, j_g, i) maskS: _FillValue = 1 maskS: long_name = "wet/dry boolean mask for south face of tracer grid cell"		
	maskS: coverage_content_type = modelResult maskS: coordinates = Z		
Commen	Comments		
True for grid cells with nonzero open vertical fraction along their 'south' face (hFacS > 0), otherwise False. Although hFacS can vary though time, cells will never close if starting open and will never open if starting closed: hFacS(i,j,k,t) > 0 for all t, if			

../images/plots/native_plots_coords/Geometry_Parameters_for_th

Figure 23:
Dataset: GRID_GEOMETRY_ECCO
Variable: maskS

hFacS(i,j,k,t=0) and hFacS(i,j,k,t) = 0 for all t, if hFacS(i,j,k,t=0) = 0. Therefore, maskS is time invariant. Note:

19 Native Dataset Groupings

19.1 Overview of the Native Dataset Groupings

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus at enim eget nisi ultrices facilisis a et purus. Sed tincidunt scelerisque ligula, in vehicula dui venenatis at. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Curabitur consequat commodo nunc, nec lacinia quam feugiat vel. Integer bibendum lectus sit amet quam elementum, ut pretium quam malesuada. Cras fermentum venenatis augue, id commodo libero facilisis nec. Quisque euismod, odio vitae dapibus convallis, justo enim iaculis metus, vel interdum elit nisi vel lectus. Fusce tempor elit in semper condimentum. Ut quis dui eget purus cursus interdum eu ac elit.'

19.2 Native NetCDF ATM_SURFACE_TEMP_HUM_WIND_PRES

Table 19.1: Variables in the dataset ATM_SURFACE_TEMP_HUM_WIND_PRES

Dataset:	ATM_SURFACE_TEMP_HUM_WIND_PRES
Field:	EXFatemp
Field:	EXFaqh
Field:	EXFuwind
Field:	EXFvwind
Field:	EXFwspee
Field:	EXFpress

19.2.1 Native Variable EXFaqh

ment from ocean state estimation.

Table 19.2: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFaqh variable

Storage	Variable Name	Description	Unit	
Type				
float32	EXFaqh	Atmosphere surface (2 m) specific humidity	kg kg-1	
CDL Des	cription			
float32 E	XFaqh(time, tile, j, i)			
EXFac	qh: _FillValue = 9.96921e+36			
EXFac	qh: long_name = Atmosphere surface (2 m) specific hu	midity		
EXFac	qh: units = kg kg: 1			
EXFac	EXFaqh: coverage_content_type = modelResult			
EXFac	EXFagh: standard_name = surface_specific_humidity			
EXFac	EXFagh: coordinates = time XC YC			
EXFac	EXFagh: valid_min = : 0.0014020215021446347			
EXFac	EXFaqh: valid_max = 0.03014513850212097			
Commen	nts			
Surface (2 m) specific humidity over open water. Note: sum of I	ERA-Interim surface specific humidity and the contr	ol adjust-	

../images/plots/native_plots/Atmosphere_Surface_Temperature_Hu

Figure 24:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFaqh

19.2.2 Native Variable EXFatemp

Table 19.3: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFatemp variable

Storage	Variable Name	Description	Unit		
Type					
float32	EXFatemp	Atmosphere surface (2 m) air temperature	degree_K		
CDL Des	cription				
float32 E	XFatemp(time, tile, j, i)				
EXFat	temp: _FillValue = 9.96921e+36				
EXFat	temp: long_name = Atmosphere surface (2 m) air temp	perature			
EXFat	temp: units = degree_K				
EXFat	temp: coverage_content_type = modelResult				
EXFat	temp: standard_name = air_temperature				
EXFat	temp: coordinates = time XC YC				
EXFat	temp: valid_min = 195.37054443359375				
EXFat	EXFatemp: valid_max = 312.8451232910156				
Commen	nts				
Surface (2 m) air temperature over open water. Note: sum of ER	A-Interim surface air temperature and the control ac	ljustment		
from oce	an state estimation.				

../images/plots/native_plots/Atmosphere_Surface_Temperature_Hu

Figure 25:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFatemp

19.2.3 Native Variable EXFpress

Table 19.4: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFpress variable

Storage	Variable Name	Description	Unit	
Type				
float32	EXFpress	Atmosphere surface pressure	N m-2	
CDL Des				
float32 E	XFpress(time, tile, j, i)			
EXFp	ress: _FillValue = 9.96921e+36			
EXFp	ress: long_name = Atmosphere surface pressure			
EXFp	ress: units = N m: 2			
EXFp	ress: coverage_content_type = modelResult			
EXFp	ress: standard_name = surface_air_pressure			
EXFp	ress: coordinates = time XC YC			
EXFp	ress: valid_min = 92044.171875			
EXFp	EXFpress: valid_max = 106314.7734375			
Commen	ts			
Atmospheric pressure field at sea level. Note: ERA-Interim atmospheric pressure, with air tides removed using a variety of				
methods	. Not adjusted by the ocean state estimation.			

../images/plots/native_plots/Atmosphere_Surface_Temperature_Hu

Figure 26:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFpress

19.2.4 Native Variable EXFuwind

to vector wind using bulk formulae.

Table 19.5: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFuwind variable

Storage Type	Variable Name	Description	Unit		
float32	EXFuwind	Wind speed at 10m in the model +x direction	m s-1		
CDL Des	cription				
float32 E	XFuwind(time, tile, j, i)				
EXFu	wind: _FillValue = 9.96921e+36				
EXFu	wind: long_name = Wind speed at 10m in the model +:	x direction			
EXFu	wind: units = m s: 1				
EXFu	wind: coverage_content_type = modelResult				
EXFu	wind: standard_name = x_wind				
EXFu	EXFuwind: coordinates = time XC YC				
EXFu	wind: valid_min = : 34.528900146484375				
EXFu	EXFuwind: valid_max = 29.92486572265625				
Commen	its				
	eed at 10m in the +x direction at the tracer cell on the r aux) not vector winds converted to wind stress using bu				

../images/plots/native_plots/Atmosphere_Surface_Temperature_Hu

Figure 27:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFuwind

19.2.5 Native Variable EXFvwind

Table 19.6: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFvwind variable

Storage	Variable Name	Description	Unit		
Type					
float32	EXFvwind	Wind speed at 10m in the model +y direction	m s-1		
CDL Des	cription				
	XFvwind(time, tile, j, i)				
EXFv	wind: _FillValue = 9.96921e+36				
EXFv	wind: long_name = Wind speed at 10m in the model +	y direction			
EXFv	wind: units = m s: 1				
EXFv	wind: coverage_content_type = modelResult				
EXFv	wind: standard_name = y_wind				
EXFv	wind: coordinates = time XC YC				
EXFv	EXFvwind: valid_min = : 27.9254093170166				
EXFv	EXFvwind: valid_max = 45.065101623535156				
Commer	nts				
(see EXFt	eed at 10m in the +y direction at the tracer cell on the r cauy) not vector winds converted to wind stress using bo wind using bulk formulae.				

../images/plots/native_plots/Atmosphere_Surface_Temperature_Hu

Figure 28:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFvwind

19.2.6 Native Variable EXFwspee

Table 19.7: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFwspee variable

Storage	Variable Name	Description	Unit		
Туре					
float32	EXFwspee	Wind speed	m s-1		
CDL Des	cription				
	XFwspee(time, tile, j, i)				
EXFw	/spee: _FillValue = 9.96921e+36				
EXFw	rspee: long_name = Wind speed				
EXFw	rspee: units = m s: 1				
EXFw	rspee: coverage_content_type = modelResult				
EXFw	rspee: standard_name = wind_speed				
EXFw	rspee: coordinates = time XC YC				
EXFw	EXFwspee: valid_min = 0.27271032333374023				
EXFw	EXFwspee: valid_max = 45.87086486816406				
Commen	its				
not adjus	nd speed magnitude (>= 0) over open water. Only used ted by the ocean state estimation and not necesarily wind are calculated from EXFtaux and EXFtauy using b	consistent with EXFuwind and EXFvwind because E	EXFuwind		

../images/plots/native_plots/Atmosphere_Surface_Temperature_Hu

Figure 29:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFwspee

19.3 Native NetCDF OCEAN_3D_MIXING_COEFFS

Table 19.8: Variables in the dataset OCEAN_3D_MIXING_COEFFS_ECCO

Dataset:	OCEAN_3D_MIXING_COEFFS_ECCO
Field:	DIFFKR
Field:	KAPGM
Field:	KAPREDI

19.3.1 Native Variable DIFFKR

Table 19.9: CDL description of OCEAN_3D_MIXING_COEFFS's DIFFKR variable

Storage	Variable Name	Description	Unit	
Type				
float32	DIFFKR	Vertical diffusivity	m2 s-1	
CDL Desc				
float32 D	IFFKR(k, tile, j, i)			
DIFF	KR: _FillValue = 9.96921e+36			
DIFF	KR: coverage_content_type = modelResult			
DIFF	KR: long_name = Vertical diffusivity			
DIFF	<r: 1<="" p="" s:="" units="m2"></r:>			
DIFF	KR: valid_min = 1e: 06			
DIFF	DIFFKR: valid_max = 0.0001854995			
DIFF	KR: coordinates = Z XC YC			
Commen	ıts			
Backgrou	nd vertical diffusion coefficient for temperature and sa	alinity. Total vertical diffusivity includes background o	diffusivity	
	ributions from the GGL90 vertical mixing and the Gent		s a model	
control va	ariable and has been optimized from a spatially-invaria	nt first-guess value of 1e-5 m2 s-1.		

../images/plots/native_plots/Ocean_3D_Gent-Mcwilliams_Redi_and

Figure 30:
Dataset: OCEAN_3D_MIXING_COEFFS
Variable: DIFFKR

19.3.2 Native Variable KAPGM

Table 19.10: CDL description of OCEAN_3D_MIXING_COEFFS's KAPGM variable

Storage	Variable Name	Description	Unit	
Type				
float32	KAPGM	Gent-McWilliams diffusivity	m2 s-1	
CDL Des	cription			
float32 K	APGM(k, tile, j, i)			
KAPG	iM: _FillValue = 9.96921e+36			
	iM: coverage_content_type = modelResult			
KAPG	iM: long_name = Gent: McWilliams diffusivity			
KAPG	iM: units = m2 s: 1			
KAPG	iM: valid_min = 100.0			
KAPC	iM: valid_max = 10000.0			
KAPG	KAPGM: coordinates = Z XC YC			
Commen				
Gent-McWilliams diffusivity coefficient as described in Gent and McWilliams (1990, JPO). Note: KAPGM is a model control				
variable a	ınd has been optimized from a spatially invariant first g	uess of 1e3 m2 s-1.		

../images/plots/native_plots/Ocean_3D_Gent-Mcwilliams_Redi_and

Figure 31:
Dataset: OCEAN_3D_MIXING_COEFFS
Variable: KAPGM

19.3.3 Native Variable KAPREDI

Table 19.11: CDL description of OCEAN_3D_MIXING_COEFFS's KAPREDI variable

Storage	Variable Name	Description	Unit	
Type				
float32	KAPREDI	Along-isopycnal diffusivity	m2 s-1	
CDL Des	•			
float32 K	APREDI(k, tile, j, i)			
KAPR	EDI: _FillValue = 9.96921e+36			
	EDI: coverage_content_type = modelResult			
KAPR	EDI: long_name = Along: isopycnal diffusivity			
KAPR	EDI: units = m2 s: 1			
KAPR	EDI: valid_min = 100.0			
KAPR	EDI: valid_max = 10000.0			
KAPR	KAPREDI: coordinates = Z XC YC			
Commen	· 			
Redi along-isopycnal diffusivity coefficient as described in Redi (1982, JPO). Note: KAPREDI is a model control variable and has				
been opt	imized from a spatially invariant first guess of 1e3 m2 s	-1.		

../images/plots/native_plots/Ocean_3D_Gent-Mcwilliams_Redi_and

Figure 32:
Dataset: OCEAN_3D_MIXING_COEFFS
Variable: KAPREDI

19.4 Native NetCDF OCEAN_3D_MOMENTUM_TEND

Table 19.12: Variables in the dataset OCEAN_3D_MOMENTUM_TEND

	Dataset:	OCEAN_3D_MOMENTUM_TEND
F	ield:	Um_dPHdx
F	ield:	Vm_dPHdy

19.4.1 Native Variable Um_dPHdx

Table 19.13: CDL description of OCEAN_3D_MOMENTUM_TEND's Um_dPHdx variable

Storage	Variable Name	Description	Unit	
Туре				
float32	Um_dPHdx	Momentum tendency in the model +x direction	m s-2	
CDL Des	cription			
float32 U	m_dPHdx(time, k, tile, j, i_g)			
Um_	dPHdx: _FillValue = 9.96921e+36			
Um_	dPHdx: long_name = Momentum tendency in the mo	del +x direction		
Um_	dPHdx: units = m s: 2			
Um_	dPHdx: mate = Vm_dPHdy			
Um_	dPHdx: coverage_content_type = modelResult			
Um_	Um_dPHdx: coordinates = time Z			
Um_	dPHdx: valid_min = : 0.0010651482734829187			
Um_	dPHdx: valid_max = 0.0011411579325795174			
Commen	ts			
	um tendency in the +x direction due to the hydrostation			
. Note: th	ne model +x direction does not necessarily correspond	I to the geographical east-west direction because th	e x and y	

../images/plots/native_plots/Ocean_Three-Dimensional_Momentum_

Figure 33:
Dataset: OCEAN_3D_MOMENTUM_TEND
Variable: Um_dPHdx

axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles.

19.4.2 Native Variable Vm_dPHdy

Table 19.14: CDL description of OCEAN_3D_MOMENTUM_TEND's Vm_dPHdy variable

Storage	Variable Name	Description	Unit		
Type					
float32	Vm_dPHdy	Momentum tendency in the model +y direction	m s-2		
CDL Des	cription				
float32 V	m_dPHdy(time, k, tile, j_g, i)				
Vm_c	dPHdy: _FillValue = 9.96921e+36				
Vm_c	dPHdy: long_name = Momentum tendency in the mod	lel +y direction			
Vm_c	dPHdy: units = m s: 2				
Vm_c	dPHdy: mate = Um_dPHdx				
Vm_c	Vm_dPHdy: coverage_content_type = modelResult				
Vm_c	Vm_dPHdy: coordinates = time Z				
Vm_c	Vm_dPHdy: valid_min = : 0.0015932790702208877				
	dPHdy: valid_max = 0.0008858146029524505				
Commer	nts				

Momentum tendency in the +y direction due to the hydrostatic pressure gradient at the 'v' face of the native model grid cell. Note: the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Ocean_Three-Dimensional_Momentum_

Figure 34:
Dataset: OCEAN_3D_MOMENTUM_TEND
Variable: Vm_dPHdy

19.5 Native NetCDF OCEAN_3D_SALINITY_FLUX

Table 19.15: Variables in the dataset OCEAN_3D_SALINITY_FLUX

Dataset:	OCEAN_3D_SALINITY_FLUX
Field:	ADVx_SLT
Field:	DFxE_SLT
Field:	ADVy_SLT
Field:	DFyE_SLT
Field:	ADVr_SLT
Field:	DFrE_SLT
Field:	DFrl_SLT
Field:	oceSPtnd

19.5.1 Native Variable ADVr_SLT

Table 19.16: CDL description of OCEAN_3D_SALINITY_FLUX's ADVr_SLT variable

Storage Type	Variable Name	Description	Unit
float32	ADVr_SLT	Vertical advective flux of salinity	1e-3 m3 s-1

CDL Description

float32 ADVr_SLT(time, k_l, tile, j, i)

ADVr_SLT: _FillValue = 9.96921e+36

ADVr_SLT: long_name = Vertical advective flux of salinity

ADVr_SLT: units = 1e: 3 m3 s: 1

ADVr_SLT: coverage_content_type = modelResult

ADVr_SLT: direction = >0 decreases salinity (SALT)

ADVr_SLT: coordinates = XC Zl YC time

ADVr_SLT: valid_min =: 324149856.0

ADVr_SLT: valid_max = 263294624.0

Comments

Vertical advective flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +ADVr_SLT(i,j,k_l) corresponds to upward +z fluxes through the top 'w' face of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html

../images/plots/native_plots/Ocean_Three-Dimensional_Salinity_

Figure 35:
Dataset: OCEAN_3D_SALINITY_FLUX
Variable: ADVr_SLT

19.5.2 Native Variable ADVx_SLT

Table 19.17: CDL description of OCEAN_3D_SALINITY_FLUX's ADVx_SLT variable

Storage Type	Variable Name	Description	Unit
float32	ADVx_SLT	Lateral advective flux of salinity in the model +x direction	1e-3 m3 s-1

CDL Description

float32 ADVx_SLT(time, k, tile, j, i_g)

ADVx_SLT: _FillValue = 9.96921e+36

ADVx_SLT: long_name = Lateral advective flux of salinity in the model +x direction

ADVx_SLT: units = 1e: 3 m3 s: 1 ADVx_SLT: mate = ADVy_SLT

ADVx_SLT: coverage_content_type = modelResult ADVx_SLT: direction = >O increases salinity (SALT)

ADVx_SLT: coordinates = Z time ADVx_SLT: valid_min = : 181830224.0 ADVx_SLT: valid_max = 260411296.0

Comments

Lateral advective flux of salinity (SALT) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVx_SLT(i_g,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html

../images/plots/native_plots/Ocean_Three-Dimensional_Salinity_

Figure 36:
Dataset: OCEAN_3D_SALINITY_FLUX
Variable: ADVx_SLT

19.5.3 Native Variable ADVy_SLT

Table 19.18: CDL description of OCEAN_3D_SALINITY_FLUX's ADVy_SLT variable

Storage Type	Variable Name	Description	Unit	
float32	ADVy_SLT	Lateral advective flux of salinity in the model +y	1e-3	
		direction	m3 s-1	
CDL Des				
float32 A	float32 AD $\dot{V}y$ _SLT(time, k, tile, j_g, i)			
ADV	/ SLT: FillValue = 9.96921e+36			

FillValue = 9.96921e+36

ADVy_SLT: long_name = Lateral advective flux of salinity in the model +y direction

ADVy_SLT: units = 1e: 3 m3 s: 1 ADVy_SLT: mate = ADVx_SLT

ADVy_SLT: coverage_content_type = modelResult ADVy_SLT: direction = >0 increases salinity (SALT)

ADVy_SLT: coordinates = Z time ADVy_SLT: valid_min = : 137905760.0 ADVy_SLT: valid_max = 164271664.0

Comments

Lateral advective flux of salinity (SALT) in the +y direction through the 'V' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVy_SLT(i,j_g,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear latlon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.' see https://cfconventions.org/Data/cfstandard-names/73/build/cf-standard-name-table.html

../images/plots/native_plots/Ocean_Three-Dimensional_Salinity_

Figure 37: Dataset: OCEAN_3D_SALINITY_FLUX Variable: ADVy_SLT

19.5.4 Native Variable DFrE_SLT

Table 19.19: CDL description of OCEAN_3D_SALINITY_FLUX's DFrE_SLT variable

Storage Type	Variable Name	Description	Unit
float32	DFrE_SLT	Vertical diffusive flux of salinity (explicit term)	1e-3 m3 s-1

CDL Description

float32 DFrE_SLT(time, k_l, tile, j, i)

DFrE_SLT: _FillValue = 9.96921e+36

DFrE_SLT: long_name = Vertical diffusive flux of salinity (explicit term)

DFrE_SLT: units = 1e: 3 m3 s: 1

DFrE_SLT: coverage_content_type = modelResult

DFrE_SLT: direction = >0 decreases salinity (SALT)

DFrE_SLT: coordinates = XC Zl YC time

DFrE_SLT: valid_min = : 1074719.375

DFrE_SLT: valid_max = 471215.75

Comments

The explicit term of the vertical diffusive flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. In the ECCO V4r4 model, an implicit scheme is used to calculate vertical diffusive tracer fluxes due to background diffusivity and the Kwz component of the GM-Redi tensor (vertical flux as a function of vertical gradient) while an explicit scheme is used to calculate the vertical diffusive fluxes from the Kwx and Kwy components of the GM-Redi tensor (vertical flux as a function of horizontal gradient). Both implicit and explicit components of vertical diffusive flux of salinity are provided. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +DFrE_SLT(i,j,k_l) corresponds to upward +z fluxes through the top 'w' face of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html

../images/plots/native_plots/Ocean_Three-Dimensional_Salinity_

Figure 38:
Dataset: OCEAN_3D_SALINITY_FLUX
Variable: DFrE_SLT

19.5.5 Native Variable DFrI_SLT

Table 19.20: CDL description of OCEAN_3D_SALINITY_FLUX's DFrI_SLT variable

Storage Type	Variable Name	Description	Unit
float32	DFrI_SLT	Vertical diffusive flux of salinity (implicit term)	1e-3 m3 s-1

CDL Description

float32 DFrl_SLT(time, k_l, tile, j, i)

DFrI_SLT: _FillValue = 9.96921e+36

DFrI_SLT: long_name = Vertical diffusive flux of salinity (implicit term)

DFrl_SLT: units = 1e: 3 m3 s: 1

DFrI_SLT: coverage_content_type = modelResult

DFrl_SLT: direction = >0 decreases salinity (SALT)

DFrl_SLT: coordinates = XC Zl YC time

DFrl_SLT: valid_min =: 30609048.0

DFrl_SLT: valid_max = 3197643.0

Comments

The implicit term of the vertical diffusive flux of salinity (SALT) in the +z direction through the top 'w' face of the tracer cell on the native model grid. In the ECCO V4r4 model, an implicit scheme is used to calculate vertical diffusive tracer fluxes due to background diffusivity and the Kwz component of the GM-Redi tensor (vertical flux as a function of vertical gradient) while an explicit scheme is used to calculate the vertical diffusive fluxes from the Kwx and Kwy components of the GM-Redi tensor (vertical flux as a function of horizontal gradient). Both implicit and explicit components of vertical diffusive flux of salinity are provided. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +DFrI_SLT(i,j,k_l) corresponds to upward +z fluxes through the top face 'w' of the tracer cell at (i,j,k). Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html

../images/plots/native_plots/Ocean_Three-Dimensional_Salinity_

Figure 39:
Dataset: OCEAN_3D_SALINITY_FLUX
Variable: DFrl_SLT

19.5.6 Native Variable DFxE_SLT

Table 19.21: CDL description of OCEAN_3D_SALINITY_FLUX's DFxE_SLT variable

Storage Type	Variable Name	Description	Unit	
float32	DFxE_SLT	Lateral diffusive flux of salinity in the model +x di-	1e-3	
		rection	m3 s-1	
CDL Des	cription			
float32 D	float32 DFxE_SLT(time, k, tile, i, i_g)			

oat32 DFXE_SLI(time, k, tile, j, i_g)

DFxE_SLT: _FillValue = 9.96921e+36

DFxE_SLT: long_name = Lateral diffusive flux of salinity in the model +x direction

DFxE_SLT: units = 1e: 3 m3 s: 1

DFxE_SLT: mate = DFyE_SLT

DFxE_SLT: coverage_content_type = modelResult

DFxE_SLT: direction = >0 increases salinity (SALT)

DFxE_SLT: coordinates = Z time

DFxE_SLT: valid_min = : 125908.03125

DFxE_SLT: valid_max = 192716.484375

Comments

Lateral diffusive flux of salinity (SALT) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFxE_SLT(i_g,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.' see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html

../images/plots/native_plots/Ocean_Three-Dimensional_Salinity_

Figure 40:
Dataset: OCEAN_3D_SALINITY_FLUX
Variable: DFxE_SLT

19.5.7 Native Variable DFyE_SLT

Table 19.22: CDL description of OCEAN_3D_SALINITY_FLUX's DFyE_SLT variable

Storage Type	Variable Name	Description	Unit
float32	DFyE_SLT	Lateral diffusive flux of salinity in the model +y di- rection	1e-3 m3 s-1
CDL Des	l cription	rection	111331

float32 DFyE_SLT(time, k, tile, j_g , i)

DFyE_SLT: _FillValue = 9.96921e+36

DFyE_SLT: long_name = Lateral diffusive flux of salinity in the model +y direction

DFyE_SLT: units = 1e: 3 m3 s: 1

DFyE_SLT: mate = DFxE_SLT

DFyE_SLT: coverage_content_type = modelResult

DFyE_SLT: direction = >0 increases salinity (SALT)

DFyE_SLT: coordinates = Z time

DFyE_SLT: valid_min = : 114959.2109375

DFyE_SLT: valid_max = 154227.140625

Comments

Lateral diffusive flux of salinity (SALT) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that $+DFyE_SLT(i,j_g,k)$ corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. Salinity defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.' see https://cfconventions.org/Data/cf-standard-names/73/build/cfstandard-name-table.html

../images/plots/native_plots/Ocean_Three-Dimensional_Salinity_

Figure 41: Dataset: OCEAN_3D_SALINITY_FLUX Variable: DFyE_SLT

19.5.8 Native Variable oceSPtnd

Table 19.23: CDL description of OCEAN_3D_SALINITY_FLUX's oceSPtnd variable

Storage	Variable Name	Description	Unit		
Type					
float32	oceSPtnd	Salt tendency due to the vertical transport of salt in high-salinity brine plumes	g m-2 s-1		
CDL Desc	cription				
float32 o	ceSPtnd(time, k, tile, j, i)				
oceSI	Ptnd: _FillValue = 9.96921e+36				
oceSI	Ptnd: long_name = Salt tendency due to the vertical tra	ansport of salt in high: salinity brine plumes			
oceSI	Ptnd: units = g m: 2 s: 1	, , ,			
	oceSPtnd: coverage_content_type = modelResult				
oceSI	oceSPtnd: direction = >0 increases salinity (SALT)				
oceSPtnd: coordinates = XC Z YC time					
oceSI	Ptnd: valid_min = 0.0				
	oceSPtnd: valid_max = 0.021119138225913048				
Commen	its				
Salt tendency due to the vertical transport of salt in high-salinity brine plumes. Note: units are grams of salt per square meter					
per secor	nd, not salinity per square meter per second.	•			

../images/plots/native_plots/Ocean_Three-Dimensional_Salinity_

Figure 42:
Dataset: OCEAN_3D_SALINITY_FLUX
Variable: oceSPtnd

19.6 Native NetCDF OCEAN_3D_TEMPERATURE_FLUX

Table 19.24: Variables in the dataset OCEAN_3D_TEMPERATURE_FLUX

Dataset:	OCEAN_3D_TEMPERATURE_FLUX
Field:	ADVx_TH
Field:	DFxE_TH
Field:	ADVy_TH
Field:	DFyE_TH
Field:	ADVr_TH
Field:	DFrE_TH
Field:	DFrl_TH

19.6.1 Native Variable ADVr_TH

ADVr_TH: valid_min = : 125094904.0 ADVr_TH: valid_max = 179459344.0

Table 19.25: CDL description of OCEAN_3D_TEMPERATURE_FLUX's ADVr_TH variable

Storage Type	Variable Name	Description	Unit		
float32	ADVr_TH	Vertical advective flux of potential temperature	degree_C		
			m3 s-1		
CDL Des	cription				
float32 A	float32 ADVr_TH(time, k_l, tile, j, i)				
ADVr_TH: _FillValue = 9.96921e+36					
ADVr	ADVr_TH: long_name = Vertical advective flux of potential temperature				
ADVr	_TH: units = degree_C m3 s: 1	·			
ADVr	ADVr_TH: coverage_content_type = modelResult				
ADVr	_TH: direction = >0 decreases potential temperature (1	HETA)			
	_TH: coordinates = XC YC time Zl				

Comments

Vertical advective flux of potential temperature (THETA) in the +z direction through the top 'w' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +ADVr_TH(i,j,k_l) corresponds to upward +z fluxes through the top 'w' face of the tracer cell at (i,j,k)

../images/plots/native_plots/Ocean_Three-Dimensional_Potential

Figure 43:
Dataset: OCEAN_3D_TEMPERATURE_FLUX
Variable: ADVr_TH

19.6.2 Native Variable ADVx_TH

Table 19.26: CDL description of OCEAN_3D_TEMPERATURE_FLUX's ADVx_TH variable

Storage Type	Variable Name	Description	Unit
float32	ADVx_TH	Lateral advective flux of potential temperature in the model +x direction	degree_C m3 s-1
CDL Des	cription		

float32 ADVx_TH(time, k, tile, j, i_g)

ADVx_TH: _FillValue = 9.96921e+36

ADVx_TH: long_name = Lateral advective flux of potential temperature in the model +x direction

ADVx_TH: units = degree_C m3 s: 1

ADVx_TH: mate = ADVy_TH

ADVx_TH: coverage_content_type = modelResult

ADVx_TH: direction = >0 increases potential temperature (THETA)

ADVx_TH: coordinates = time Z ADVx_TH: valid_min = : 38210700.0 ADVx_TH: valid_max = 38049636.0

Comments

Lateral advective flux of potential temperature (THETA) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVx_TH(i_g,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's lat-lon-cap (llc) curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Ocean_Three-Dimensional_Potential

Figure 44: Dataset: OCEAN_3D_TEMPERATURE_FLUX Variable: ADVx_TH

19.6.3 Native Variable ADVy_TH

ADVy_TH: valid_min = : 43909120.0 ADVy_TH: valid_max = 56347884.0

Table 19.27: CDL description of OCEAN_3D_TEMPERATURE_FLUX's ADVy_TH variable

Storage Type	Variable Name	Description	Unit	
float32	ADVy_TH	Lateral advective flux of potential temperature in	degree_C	
		the model +y direction	m3 s-1	
CDL Des	cription			
float32 ADVy_TH(time, k, tile, j_g, i)				
ADVy_TH: _FillValue = 9.96921e+36				
ADVy_TH: long_name = Lateral advective flux of potential temperature in the model +y direction				
ADVy_TH: units = degree_C m3 s: 1				
ADVy_TH: mate = ADVx_TH				
ADVy_TH: coverage_content_type = modelResult				
ADV	_TH: direction = >0 increases potential temperature (T	HETA)		
ADV	TH: coordinates = time Z			

Comments

Lateral advective flux of potential temperature (THETA) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVy_TH(i,j_g,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Ocean_Three-Dimensional_Potential

Figure 45:
Dataset: OCEAN_3D_TEMPERATURE_FLUX
Variable: ADVy_TH

19.6.4 Native Variable DFrE_TH

Table 19.28: CDL description of OCEAN_3D_TEMPERATURE_FLUX's DFrE_TH variable

Storage Type	Variable Name	Description	Unit
float32	DFrE_TH	Vertical diffusive flux of potential temperature (explicit term)	degree_C m3 s-1
CDL Des	cription		

float32 DFrE_TH(time, k_l, tile, j, i)

DFrE_TH: _FillValue = 9.96921e+36

DFrE_TH: long_name = Vertical diffusive flux of potential temperature (explicit term)

DFrE_TH: units = degree_C m3 s: 1

DFrE_TH: coverage_content_type = modelResult

DFrE_TH: direction = >0 decreases potential temperature (THETA)

DFrE_TH: coordinates = XC YC time Zl DFrE_TH: valid_min =: 2632379.75 DFrE_TH: valid_max = 2659875.25

Comments

The explicit term of the vertical diffusive flux of potential temperature (THETA) in the +z direction through the top 'w' face of the tracer cell on the native model grid. In the ECCO V4r4 model, an implicit scheme is used to calculate vertical diffusive tracer fluxes due to background diffusivity and the Kwz component of the GM-Redi tensor (vertical flux as a function of vertical gradient) while an explicit scheme is used to calculate the vertical diffusive fluxes from the Kwx and Kwy components of the GM-Redi tensor (vertical flux as a function of horizontal gradient). Both implicit and explicit components of vertical diffusive flux of potential temperature are provided. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +DFrE_TH(i,j,k_l) corresponds to upward +z fluxes through the top 'w' face of the tracer cell at (i,j,k).

../images/plots/native_plots/Ocean_Three-Dimensional_Potential

Figure 46: Dataset: OCEAN_3D_TEMPERATURE_FLUX Variable: DFrE_TH

19.6.5 Native Variable DFrI_TH

Table 19.29: CDL description of OCEAN_3D_TEMPERATURE_FLUX's DFrI_TH variable

Storage Type	Variable Name	Description	Unit
float32	DFrI_TH	Vertical diffusive flux of potential temperature (implicit term)	degree_C m3 s-1

CDL Description

float32 DFri_TH(time, k_l, tile, j, i)

DFrI_TH: _FillValue = 9.96921e+36

DFrI_TH: long_name = Vertical diffusive flux of potential temperature (implicit term)

DFrl_TH: units = degree_C m3 s: 1

DFrI_TH: coverage_content_type = modelResult

DFrI_TH: direction = >0 decreases potential temperature (THETA)

DFrI_TH: coordinates = XC YC time Zl DFrI_TH: valid_min = : 104210688.0 DFrI_TH: valid_max = 23574302.0

Comments

The implicit term of the vertical diffusive flux of potential temperature (THETA) in the +z direction through the top 'w' face of the tracer cell on the native model grid. In the ECCO V4r4 model, an implicit scheme is used to calculate vertical diffusive tracer fluxes due to background diffusivity and the Kwz component of the GM-Redi tensor (vertical flux as a function of vertical gradient) while an explicit scheme is used to calculate the vertical diffusive fluxes from the Kwx and Kwy components of the GM-Redi tensor (vertical flux as a function of horizontal gradient). Both implicit and explicit components of vertical diffusive flux of potential temperature are provided. Note: in the Arakawa-C grid, vertical flux quantities are staggered relative to the tracer cells with indexing such that +DFrI_TH(i,j,k_l) corresponds to upward +z fluxes through the top 'w' face of the tracer cell at (i,j,k)

../images/plots/native_plots/Ocean_Three-Dimensional_Potential

Figure 47:
Dataset: OCEAN_3D_TEMPERATURE_FLUX
Variable: DFrl_TH

19.6.6 Native Variable DFxE_TH

Table 19.30: CDL description of OCEAN_3D_TEMPERATURE_FLUX's DFxE_TH variable

Storage Type	Variable Name	Description	Unit
float32	DFxE_TH	Lateral diffusive flux of potential temperature in the model +x direction	degree_C m3 s-1
CDI Das	-ulustic u		

CDL Description

float32 DFxE_TH(time, k, tile, j, i_g)

DFxE_TH: _FillValue = 9.96921e+36

DFxE_TH: long_name = Lateral diffusive flux of potential temperature in the model +x direction

DFxE_TH: units = degree_C m3 s: 1

DFxE_TH: mate = DFyE_TH

DFxE_TH: coverage_content_type = modelResult

DFxE_TH: direction = >0 increases potential temperature (THETA)

DFxE_TH: coordinates = time Z DFxE_TH: valid_min = : 582494.125 DFxE_TH: valid_max = 698695.75

Comments

Lateral diffusive flux of potential temperature (THETA) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFxE_TH(i_g,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Ocean_Three-Dimensional_Potential

Figure 48:
Dataset: OCEAN_3D_TEMPERATURE_FLUX
Variable: DFxE_TH

19.6.7 Native Variable DFyE_TH

Table 19.31: CDL description of OCEAN_3D_TEMPERATURE_FLUX's DFyE_TH variable

Storage	Variable Name	Description	Unit		
Type					
float32	DFyE_TH	Lateral diffusive flux of potential temperature in	degree_C		
		the model +y direction.	m3 s-1		
CDL Des					
	FyE_TH(time, k, tile, j_g, i)				
DFyE	_TH: _FillValue = 9.96921e+36				
DFyE	DFyE_TH: long_name = Lateral diffusive flux of potential temperature in the model +y direction.				
DFyE_TH: units = degree_C m3 s: 1					
DFyE	DFyE_TH: mate = DFxE_TH				
DFyE	DFyE_TH: coverage_content_type = modelResult				
DFyE	DFyE_TH: direction = >0 increases potential temperature (THETA)				
DFyE	DFyE_TH: coordinates = time Z				
DFyE	FyE_TH: valid_min = : 421044.78125				
DFyE	_TH: valid_max = 1053781.25				

Comments

Lateral diffusive flux of potential temperature (THETA) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFyE_TH(i,j_g,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Ocean_Three-Dimensional_Potential

Figure 49:
Dataset: OCEAN_3D_TEMPERATURE_FLUX
Variable: DFyE_TH

19.7 Native NetCDF OCEAN_3D_VOLUME_FLUX

Table 19.32: Variables in the dataset OCEAN_3D_VOLUME_FLUX

Dataset:	OCEAN_3D_VOLUME_FLUX
Field:	UVELMASS
Field:	VVELMASS
Field:	WVELMASS

19.7.1 Native Variable UVELMASS

Table 19.33: CDL description of OCEAN_3D_VOLUME_FLUX's UVELMASS variable

Storage Type	Variable Name	Description	Unit
float32	UVELMASS	Horizontal velocity in the model +x direction per unit area of the grid cell 'u' face	m s-1

CDL Description

float32 UVELMASS(time, k, tile, j, i_g)

UVELMASS: _FillValue = 9.96921e+36

UVELMASS: long_name = "Horizontal velocity in the model +x direction per unit area of the grid cell u face"

UVELMASS: units = m s: 1

UVELMASS: mate = VVELMASS

UVELMASS: coverage_content_type = modelResult

UVELMASS: direction = >0 increases volume

UVELMASS: coordinates = Z time

UVELMASS: valid_min = : 2.115365505218506 UVELMASS: valid_max = 2.0377726554870605

Comments

Horizontal velocity in the model +x direction averaged over the area of the tracer grid cell 'u' face on the native model grid ('u' grid cell face area = drF dyG). Accounts for partial cells (hFacW < 1) and for time-varying grid cell thickness (z^* coordinate system). Volume flux in +x = UVELMASS drF dyG. Note: in the Arakawa-C grid, horizontal velocities are staggered relative to the tracer cells with indexing such that +UVELMASS(i,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k). +x UVELMASS can be used for volume flux calculations because it accounts for the grid cell thicknesses variations in the +x direction (hFacW) with time (z^* coordinate system). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the +x and +x axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. See VVELMASS and WVELMASS

../images/plots/native_plots/Ocean_Three-Dimensional_Volume_Fl

Figure 50:
Dataset: OCEAN_3D_VOLUME_FLUX
Variable: UVELMASS

19.7.2 Native Variable VVELMASS

Table 19.34: CDL description of OCEAN_3D_VOLUME_FLUX's VVELMASS variable

Storage Type	Variable Name	Description	Unit
float32	VVELMASS	Horizontal velocity in the model +y direction per unit area of the grid cell 'v' face	m s-1 m3 m-3

CDL Description

float32 VVELMASS(time, k, tile, j_g, i)

VVELMASS: _FillValue = 9.96921e+36

VVELMASS: long_name = "Horizontal velocity in the model +y direction per unit area of the grid cell v face"

VVELMASS: units = m s: 1 m3 m: 3

VVELMASS: mate = UVELMASS

VVELMASS: coverage_content_type = modelResult

VVELMASS: direction = >0 increases volume

VVELMASS: coordinates = Z time

VVELMASS: valid_min = : 1.7897182703018188 VVELMASS: valid_max = 1.9216758012771606

Comments

Horizontal velocity in the model +y direction averaged over the area of the tracer grid cell 'v' face on the native model grid ('v' grid cell face area = drF dxG). Accounts for partial cells (hFacS < 1) and for time-varying grid cell thickness (z^* coordinate system). Volume flux in +y = VVELMASS drF dxG. Note: in the Arakawa-C grid, horizontal velocities are staggered relative to the tracer cells with indexing such that +VVELMASS(i,j,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k). VVELMASS can be used for volume flux calculations because it accounts for grid cell thicknesses variations in the +y direction (hFacS) with time (z^* coordinate system). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. See UVELMASS and WVELMASS.

../images/plots/native_plots/Ocean_Three-Dimensional_Volume_Fl

Figure 51:
Dataset: OCEAN_3D_VOLUME_FLUX
Variable: VVELMASS

19.7.3 Native Variable WVELMASS

Table 19.35: CDL description of OCEAN_3D_VOLUME_FLUX's WVELMASS variable

Storage Type	Variable Name	Description	Unit
float32	WVELMASS	Grid cell face-averaged vertical velocity in the model +z direction.	m s-1

CDL Description

float32 WVELMASS(time, k_l, tile, j, i)

WVELMASS: _FillValue = 9.96921e+36

WVELMASS: long_name = Grid cell face: averaged vertical velocity in the model +z direction.

WVELMASS: units = m s: 1

WVELMASS: coverage_content_type = modelResult

WVELMASS: direction = >0 decreases volume

WVELMASS: standard_name = upward_sea_water_velocity

WVELMASS: coordinates = YC Zl time XC

WVELMASS: valid_min =: 0.0023150660563260317

WVELMASS: valid_max = 0.0016380994347855449

Comments

Vertical velocity in the +z direction at the top 'w' face of the tracer cell on the native model grid. Volume flux in +z = WVEL-MASS drA. Note: in the Arakawa-C grid, vertical velocities are staggered relative to the tracer cells with indexing such that +WVELMASS(i,j,k) corresponds to upward +z motion through the top 'w' face of the tracer cell at (i,j,k). Unlike UVELMASS and VVELMASS, WVELMASS is not scaled by a time-varying open water fraction because the open water fraction of the 'w' face is always 1, thus WVELMASS is identical to WVEL.

../images/plots/native_plots/Ocean_Three-Dimensional_Volume_Fl

Figure 52:
Dataset: OCEAN_3D_VOLUME_FLUX
Variable: WVELMASS

19.8 Native NetCDF OCEAN_AND_ICE_SURFACE_FW_FLUX

Table 19.36: Variables in the dataset OCEAN_AND_ICE_SURFACE_FW_FLUX

Dataset:	OCEAN_AND_ICE_SURFACE_FW_FLUX
Field:	EXFpreci
Field:	EXFevap
Field:	EXFroff
Field:	SIsnPrcp
Field:	EXFempmr
Field:	oceFWflx
Field:	SlatmFW
Field:	SFLUX
Field:	SlacSubl
Field:	SIrsSubl
Field:	SlfwThru

19.8.1 Native Variable EXFempmr

Table 19.37: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's EXFempmr variable

Storage Type	Variable Name	Description	Unit		
float32	EXFempmr	Open ocean net surface freshwater flux from precipitation, evaporation, and runoff	m s-1		
CDL Des	cription				
	XFempmr(time, tile, j, i)				
EXFe	mpmr: _FillValue = 9.96921e+36				
EXFe	mpmr: long_name = Open ocean net surface freshwate	er flux from precipitation			
evaporati	ion				
and runo	and runoff				
EXFe	EXFempmr: units = m s: 1				
EXFe	EXFempmr: coverage_content_type = modelResult				
EXFe	EXFempmr: direction = >0 increases salinity (SALT)				
EXFe	EXFempmr: coordinates = YC XC time				
	EXFempmr: valid_min = : 8.299433829961345e: 06				
	EXFempmr: valid_max = 5.400421514423215e: 07				
Commen	its				
Net surfa	ce freshwater flux from precipitation, evaporation, and	d runoff per unit area in open water (not covered by	sea-ice).		
Excludes	freshwater fluxes involving sea-ice and snow. Note: ca	lculated as EXFevap-EXFpreci-EXFroff.			

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 53:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: EXFempmr

19.8.2 Native Variable EXFevap

Table 19.38: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's EXFevap variable

Storage Type	Variable Name	Description	Unit	
float32	EXFevap	Open ocean evaporation rate	m s-1	
CDL Des	cription			
float32 E	XFevap(time, tile, j, i)			
EXFe	vap: _FillValue = 9.96921e+36			
EXFe	vap: long_name = Open ocean evaporation rate			
EXFe	vap: units = m s: 1			
EXFe	vap: coverage_content_type = modelResult			
EXFe	vap: direction = >0 increases salinity (SALT)			
EXFe	vap: standard_name = lwe_water_evaporation_rate			
EXFe	EXFevap: coordinates = YC XC time			
EXFe	vap: valid_min = : 1.0958113705328287e: 07			
EXFe	vap: valid_max = 7.090054623404285e: 07			
Commen	nts			
	ion rate per unit area of open water (not covered by sea er (2004) NCAR/TN-460+STR.	a-ice). Note: calculated using the bulk formula follow	ing Large	

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 54:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: EXFevap

19.8.3 Native Variable EXFpreci

Table 19.39: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's EXFpreci variable

Storage	Variable Name	Description	Unit		
Type					
float32	EXFpreci	Precipitation rate	m s-1		
CDL Des	cription				
float32 E	XFpreci(time, tile, j, i)				
EXFp	reci: _FillValue = 9.96921e+36				
EXFp	reci: long_name = Precipitation rate				
EXFp	reci: units = m s: 1				
EXFp	reci: coverage_content_type = modelResult				
EXFp	EXFpreci: direction = >0 increases salinity (SALT)				
EXFpreci: standard_name = lwe_precipitation_rate					
EXFp	EXFpreci: coordinates = YC XC time				
EXFp	reci: valid_min = : 1.4860395936011628e: 07				
EXFp	reci: valid_max = 8.317776519106701e: 06				
Commen	ts				
Precipitat	ion rate. Note: sum of ERA-Interim precipitation and t	ne control adjustment from ocean state estimation.			

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 55:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: EXFpreci

19.8.4 Native Variable EXFroff

Table 19.40: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's EXFroff variable

Storage	Variable Name	Description	Unit		
Type					
float32	EXFroff	River runoff	m s-1		
CDL Des	cription				
float32 E	XFroff(time, tile, j, i)				
EXFro	off: _FillValue = 9.96921e+36				
EXFro	off: long_name = River runoff				
EXFro	off: units = m s: 1				
EXFro	off: coverage_content_type = modelResult				
EXFro	off: direction = >0 increases salinity (SALT)				
EXFro	EXFroff: standard_name = surface_runoff_flux				
EXFro	EXFroff: coordinates = YC XC time				
EXFro	EXFroff: valid_min = 0.0				
EXFro	EXFroff: valid_max = 4.185612397122895e: O6				
Commer	its				
River run	off freshwater flux. Note: not adjusted by the optimiza	tion.			

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 56:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: EXFroff

19.8.5 Native Variable SFLUX

Table 19.41: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's SFLUX variable

Storage Type	Variable Name	Description	Unit
float32	SFLUX	Rate of change of total ocean salinity per m2 accounting for mass fluxes.	g m-2 s-1

CDL Description

float32 SFLUX(time, tile, j, i)

SFLUX: _FillValue = 9.96921e+36

SFLUX: long_name = Rate of change of total ocean salinity per m2 accounting for mass fluxes.

SFLUX: units = g m: 2 s: 1

SFLUX: coverage_content_type = modelResult

SFLUX: direction = >0 increases salinity (SALT)

SFLUX: coordinates = YC XC time

SFLUX: valid_min = : 0.07353577762842178 SFLUX: valid_max = 0.010607733391225338

Comments

The rate of change of total ocean salinity due to freshwater fluxes across the liquid surface and the addition or removal of mass. Note: the global area integral of SFLUX matches the time-derivative of total ocean salinity (psu s-1). Unlike oceFWflx, SFLUX includes the contribution to the total ocean salinity from changing ocean mass (e.g. from the addition or removal of freshwater in oceFWflx).

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 57:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: SFLUX

19.8.6 Native Variable SlacSubl

SlacSubl: valid_max = 8.154580427799374e: 05

Table 19.42: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's SlacSubl variable

Storage Type	Variable Name	Description	Unit
float32	SlacSubl	Freshwater flux to the atmosphere due to sublimation-deposition of snow or ice	kg m-2 s-1
CDL Des	cription		
float32 S	lacSubl(time, tile, j, i)		
SlacS	ubl: _FillValue = 9.96921e+36		
SlacS	ubl: long_name = Freshwater flux to the atmosphere d	ue to sublimation: deposition of snow or ice	
SlacS	ubl: units = kg m: 2 s: 1	·	
SlacS	ubl: coverage_content_type = modelResult		
SlacS	ubl: direction = >0 decreases snow or sea: ice thickness	s (HSNOW or HEFF)	
SlacS	ubl: standard_name = water_sublimation_flux		
SlacS	ubl: coordinates = YC XC time		
SlacS	ubl: valid_min = 0.0		

Comments

Freshwater flux to the atmosphere due to sublimation-deposition of snow or ice. Positive values imply sublimation from ice/snow to vapor, negative values imply deposition from atmospheric moisture

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 58:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: SlacSubl

19.8.7 Native Variable SlatmFW

Table 19.43: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's SlatmFW variable

Storage Type	Variable Name	Description	Unit
float32	SlatmFW	Net freshwater flux into the open ocean, sea-ice, and snow	kg m-2 s-1

CDL Description

float32 SlatmFW(time, tile, j, i)

SlatmFW: _FillValue = 9.96921e+36

SlatmFW: long_name = Net freshwater flux into the open ocean

sea: ice and snow

SlatmFW: units = kg m: 2 s: 1

SlatmFW: coverage_content_type = modelResult SlatmFW: direction = >0 decreases salinity (SALT)

SlatmFW: standard_name = surface_downward_water_flux

SlatmFW: coordinates = YC XC time

SlatmFW: valid_min = : 0.00043017856660299003 SlatmFW: valid_max = 0.008299433626234531

Comments

Net freshwater flux into the combined liquid ocean, sea-ice, and snow reservoirs from the atmosphere and runoff. Note: freshwater fluxes BETWEEN the liquid ocean and sea-ice or snow reservoirs do not contribute to SlatmFW. SlatmFW counts all fluxes to/from the atmosphere that change the TOTAL freshwater stored in the combined liquid ocean, sea-ice, and snow reservoirs.

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 59:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: SlatmFW

19.8.8 Native Variable SIfwThru

Table 19.44: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's SIfwThru variable

Storage Type	Variable Name	Description	Unit	
float32	SlfwThru	Precipitation through sea-ice	kg m-2 s-1	
CDL Des	cription			
float32 S	lfwThru(time, tile, j, i)			
SlfwT	'hru: _FillValue = 9.96921e+36			
SlfwT	hru: long_name = Precipitation through sea: ice			
SlfwT	hru: units = kg m: 2 s: 1			
SlfwT	hru: coverage_content_type = modelResult			
SlfwT	SlfwThru: direction = >0 increases ocean volume			
SlfwT	hru: coordinates = YC XC time			
SlfwT	hru: valid_min = : 1.695218452368863e: 05			
SlfwT	hru: valid_max = 0.0010632629273459315			
Commen	its			
Precipitation over sea-ice covered regions reaching ocean through sea-ice. Note: Precipitation over sea-ice covered regions				

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 60:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: SIfwThru

that directly reaches ocean through the sea-ice. It is not due to melt of sea-ice/snow.

19.8.9 Native Variable SIrsSubl

Table 19.45: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's SIrsSubl variable

Storage Type	Variable Name	Description	Unit
float32	SIrsSubl	Residual sublimation freshwater flux	kg m-2 s-1
CDL Des	cription		
	IrsSubl(time, tile, j, i) ubl: _FillValue = 9.96921e+36		

SIrsSubl: long_name = Residual sublimation freshwater flux

SirsSubl: units = kg m: 2 s: 1

SIrsSubl: coverage_content_type = modelResult SIrsSubl: direction = >0 decreases ocean volume

SIrsSubl: coordinates = YC XC time

SIrsSubl: valid_min = : 0.0001067528864950873 SIrsSubl: valid_max = 8.640533451398369e: 06

Comments

Residual freshwater flux by sublimation to remove water from or add water to ocean. When implied sublimation freshwater flux SlacSubl is larger than availabe sea-ice/snow, SIrsSubl is positive and water is removed from ocean. Note: freshwater flux by sublimation that is to remove water from the ocean when it is positive.

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 61: Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX Variable: SIrsSubl

19.8.10 Native Variable SIsnPrcp

Table 19.46: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's SIsnPrcp variable

Storage	Variable Name	Description	Unit	
Type				
float32	SlsnPrcp	Snow precipitation on sea-ice	kg m-2	
			s-1	
CDL Desc	cription			
float32 S	IsnPrcp(time, tile, j, i)			
SIsnP	rcp: _FillValue = 9.96921e+36			
SIsnP	rcp: long_name = Snow precipitation on sea: ice			
SIsnP	Prcp: units = kg m: 2 s: 1			
SIsnP	rcp: coverage_content_type = modelResult			
SlsnP	rcp: direction = >0 increases snow thickness (HSNOW	/)		
SIsnP	SIsnPrcp: standard_name = snowfall_flux			
SIsnP	rcp: coordinates = YC XC time			
SIsnP	rcp: valid_min = : 4.334669574745931e: 05			
SIsnP	SIsnPrcp: valid_max = 0.0009354020585305989			
Commen	its			
Snow pre	ecipitation rate over sea-ice, averaged over the entire i	model grid cell.		

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 62:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: SIsnPrcp

19.8.11 Native Variable oceFWflx

Table 19.47: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's oceFWflx variable

Storage Type	Variable Name	Description	Unit
float32	oceFWflx	Net freshwater flux into the ocean	kg m-2 s-1
CDL Des	cription		
float32 o	ceFWflx(time, tile, j, i)		
oceF\	Wflx: _FillValue = 9.96921e+36		
oceF\	Wflx: long_name = Net freshwater flux into the ocean		
oceF\	Wflx: units = kg m: 2 s: 1		
oceF\	Wflx: coverage_content_type = modelResult		
oceF\	Wflx: direction = >0 decreases salinity (SALT)		
oceF\	Wflx: standard_name = water_flux_into_sea_water		
oceF\	Wflx: coordinates = YC XC time		
oceF\	Wflx: valid_min = : 0.003914969973266125		
oceF\	Wflx: valid_max = 0.008299433626234531		
Commer	nts		

Net freshwater flux into the ocean including contributions from runoff, evaporation, precipitation, and mass exchange with sea-ice due to melting and freezing and snow melting. Note: oceFWflx does NOT include freshwater fluxes between the atmosphere and sea-ice and snow. The variable 'SlatmFW' accounts for freshwater fluxes out of the combined ocean+sea-ice+snow reservoir.

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 63:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: oceFWflx

19.9 Native NetCDF OCEAN_AND_ICE_SURFACE_HEAT_FLUX

Table 19.48: Variables in the dataset OCEAN_AND_ICE_SURFACE_HEAT_FLUX

Dataset:	OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Field:	EXFhl
Field:	EXFhs
Field:	EXFlwdn
Field:	EXFswdn
Field:	EXFqnet
Field:	oceQnet
Field:	SlatmQnt
Field:	TFLUX
Field:	EXFswnet
Field:	EXFlwnet
Field:	oceQsw
Field:	Slaaflux

19.9.1 Native Variable EXFhl

Table 19.49: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFhl variable

Storage	Variable Name	Description	Unit
Type			
float32	EXFhl	Open ocean air-sea latent heat flux	W m-2
CDL Desc			
float32 E	XFhl(time, tile, j, i)		
EXFh	l: _FillValue = 9.96921e+36		
EXFh	l: long_name = Open ocean air: sea latent heat flux		
EXFh	l: units = W m: 2		
EXFh	l: coverage_content_type = modelResult		
	l: direction = >0 increases potential temperature (THET		
EXFh	l: standard_name = surface_downward_latent_heat_fl	lux	
EXFhl: coordinates = XC time YC			
EXFh	l: valid_min = : 1772.513671875		
EXFh	l: valid_max = 273.9528503417969		
Commen	its		
Air-sea la	tent heat flux per unit area of open water (not covered	by sea-ice). Note: calculated from the bulk formula	following
Large and	Yeager (2004) NCAR/TN-460+STR.		

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 64:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFhl

19.9.2 Native Variable EXFhs

Table 19.50: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFhs variable

Storage	Variable Name	Description	Unit
Type			
float32	EXFhs	Open ocean air-sea sensible heat flux	W m-2
CDL Desc	cription		
float32 E	XFhs(time, tile, j, i)		
EXFh	s: _FillValue = 9.96921e+36		
EXFh	s: long_name = Open ocean air: sea sensible heat flux		
EXFh	s: units = W m: 2		
EXFh	s: coverage_content_type = modelResult		
EXFh	s: direction = >0 increases potential temperature (THE)	⁻ A)	
EXFh	s: standard_name = surface_downward_sensible_heat	:_flux	
EXFh	s: coordinates = XC time YC		
EXFh	s: valid_min = : 2478.766357421875		
EXFh	EXFhs: valid_max = 362.8300476074219		
	Comments		
	Air-sea sensible heat flux per unit area of open water (not covered by sea-ice). Note: calculated from the bulk formula following		
Large and	Large and Yeager (2004) NCAR/TN-460+STR.		

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 65:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFhs

19.9.3 Native Variable EXFlwdn

Table 19.51: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFlwdn variable

Storage	Variable Name	Description	Unit
Туре			
float32	EXFlwdn	Downward longwave radiative flux	W m-2
CDL Desc			
float32 E	XFlwdn(time, tile, j, i)		
EXFlv	vdn: _FillValue = 9.96921e+36		
EXFlv	vdn: long_name = Downward longwave radiative flux		
EXFlv	vdn: units = W m: 2		
EXFlv	vdn: coverage_content_type = modelResult		
EXFlv	EXFlwdn: direction = >0 increases potential temperature (THETA)		
EXFlv	vdn: standard_name = surface_downwelling_longwav	e_flux_in_air	
EXFlv	EXFlwdn: coordinates = XC time YC		
EXFlv	vdn: valid_min = 4.188045501708984		
EXFlv	EXFlwdn: valid_max = 513.3919067382812		
Commen	Comments		
Downward longwave radiative flux. Note: sum of ERA-Interim downward longwave radiation and the control adjustment from			ent from
ocean sta	ocean state estimation.		

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 66:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFlwdn

19.9.4 Native Variable EXFlwnet

emission (Stefan-Boltzman law).

Table 19.52: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFlwnet variable

Storage	Variable Name	Description	Unit
Type			
float32	EXFlwnet	Net open ocean longwave radiative flux	W m-2
CDL Des	cription		
float32 E	XFlwnet(time, tile, j, i)		
EXFlv	vnet: _FillValue = 9.96921e+36		
EXFlv	vnet: long_name = Net open ocean longwave radiative	flux	
EXFlv	vnet: units = W m: 2		
EXFlv	vnet: coverage_content_type = modelResult		
EXFlv	EXFlwnet: direction = >0 increases potential temperature (THETA)		
EXFlv	vnet: standard_name = surface_net_downward_longv	vave_flux	
EXFlv	EXFlwnet: coordinates = XC time YC		
EXFlv	vnet: valid_min = : 144.3661346435547		
EXFlv	EXFlwnet: valid_max = 293.4114990234375		
Comments			
Net longwave radiative flux per unit area of open water (not covered by sea-ice). Note: net longwave radiation over open water calculated from downward longwave radiation (EXFlwdn) and upward longwave radiation from ocean and sea-ice thermal			

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 67:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFlwnet

19.9.5 Native Variable EXFqnet

Table 19.53: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFqnet variable

Storage	Variable Name	Description	Unit
Type			
float32	EXFqnet	Open ocean net air-sea heat flux	W m-2
CDL Des	cription		
float32 E	XFqnet(time, tile, j, i)		
EXFq	net: _FillValue = 9.96921e+36		
EXFq	net: long_name = Open ocean net air: sea heat flux		
EXFq	net: units = W m: 2		
EXFq	net: coverage_content_type = modelResult		
EXFq	net: direction = >0 increases potential temperature (TH	ETA)	
EXFq	net: coordinates = XC time YC		
EXFq	net: valid_min = : 687.8736572265625		
EXFq	EXFqnet: valid_max = 3408.977783203125		
Commer	Comments		
Net air-se	Net air-sea heat flux (turbulent and radiative) per unit area of open water (not covered by sea-ice). Note: net upward heat flux		
over ope	over open water, calculated as EXFlwnet+EXFswnet-EXFlh-EXFhs.		

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 68:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFqnet

19.9.6 Native Variable EXFswdn

Table 19.54: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFswdn variable

Storage	Variable Name	Description	Unit
Type			
float32	EXFswdn	Downwelling shortwave radiative flux	W m-2
CDL Des	cription		
float32 E	XFswdn(time, tile, j, i)		
EXFs	wdn: _FillValue = 9.96921e+36		
EXFs	wdn: long_name = Downwelling shortwave radiative fl	XX	
EXFs	wdn: units = W m: 2		
EXFs	wdn: coverage_content_type = modelResult		
EXFs	EXFswdn: direction = >0 increases potential temperature (THETA)		
EXFs	wdn: standard_name = surface_downwelling_shortwa	ve_flux_in_air	
EXFs	EXFswdn: coordinates = XC time YC		
EXFs	wdn: valid_min = : 224.63368225097656		
EXFs	EXFswdn: valid_max = 707.345947265625		
Commer	Comments		
Downwa	Downward shortwave radiative flux. Note: sum of ERA-Interim downward shortwave radiation and the control adjustment		
from oce	from ocean state estimation.		

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 69:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFswdn

19.9.7 Native Variable EXFswnet

Table 19.55: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFswnet variable

Storage	Variable Name	Description	Unit
Type			
float32	EXFswnet	Open ocean net shortwave radiative flux	W m-2
CDL Des	cription		
float32 E	XFswnet(time, tile, j, i)		
EXFsv	wnet: _FillValue = 9.96921e+36		
EXFsv	wnet: long_name = Open ocean net shortwave radiativ	re flux	
EXFsv	wnet: units = W m: 2		
EXFsv	wnet: coverage_content_type = modelResult		
EXFsv	EXFswnet: direction = >0 increases potential temperature (THETA)		
EXFsv	wnet: standard_name = surface_net_downward_short	wave_flux	
EXFsv	EXFswnet: coordinates = XC time YC		
EXFsv	wnet: valid_min = : 655.6171264648438		
EXFsv	EXFswnet: valid_max = 194.184585571289O6		
Comments			
Net shortwave radiative flux per unit area of open water (not covered by sea-ice). Note: net shortwave radiation over open			
water cal	water calculated from downward shortwave flux (EXFswdn) and ocean surface albdeo.		

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 70:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFswnet

19.9.8 Native Variable Slaaflux

Table 19.56: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's Slaaflux variable

Storage Type	Variable Name	Description	Unit
float32	Slaaflux	Conservative ocean and sea-ice advective heat flux adjustment	W m-2

CDL Description

float32 Slaaflux(time, tile, j, i)

Slaaflux: _FillValue = 9.96921e+36

Slaaflux: long_name = Conservative ocean and sea: ice advective heat flux adjustment

Slaaflux: units = W m: 2

Slaaflux: coverage_content_type = modelResult

Slaaflux: direction = >0 decrease potential temperature (THETA)

Slaaflux: coordinates = XC time YC

Slaaflux: valid_min = : 16.214622497558594 Slaaflux: valid_max = 50.35451889038086

Comments

Heat flux associated with the temperature difference between sea surface temperature and sea-ice (assume O degree C in the model). Note: heat flux needed to melt/freeze sea-ice at O degC to sea water at the ocean surface (at sea surface temperature), excluding the latent heat of fusion.

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 71:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: Slaaflux

19.9.9 Native Variable SlatmQnt

Table 19.57: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's SlatmQnt variable

Storage	Variable Name	Description	Unit
Туре			
float32	SlatmQnt	Net upward heat flux to the atmosphere	W m-2
CDL Desc	cription		
float32 S	latmQnt(time, tile, j, i)		
Slatm	nQnt: _FillValue = 9.96921e+36		
Slatm	nQnt: long_name = Net upward heat flux to the atmosp	ohere	
Slatm	nQnt: units = W m: 2		
Slatm	nQnt: coverage_content_type = modelResult		
Slatm	nQnt: direction = >0 upward		
decreases	s ocean temperature		
Slatm	SlatmQnt: standard_name = surface_upward_heat_flux_in_air		
Slatm	nQnt: coordinates = XC time YC		
Slatm	nQnt: valid_min = : 756.0607299804688		
Slatm	SlatmQnt: valid_max = 1704.7703857421875		
Comments			
	Net upward heat flux to the atmosphere across open water and sea-ice or snow surfaces. Note: nonzero SlatmQnt may not		
be associ	be associated with a change in ocean potential temperature due to sea-ice growth or melting. To calculate total ocean heat		ean heat

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_F

Figure 72:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: SlatmQnt

content changes use the variable TFLUX which also accounts for changing ocean mass (e.g. oceFWflx).

19.9.10 Native Variable TFLUX

Table 19.58: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's TFLUX variable

Storage Type	Variable Name	Description	Unit
float32	TFLUX	Rate of change of ocean heat content per m2 accounting for mass fluxes.	W m-2

CDL Description

float32 TFLUX(time, tile, j, i)

TFLUX: _FillValue = 9.96921e+36

TFLUX: long_name = Rate of change of ocean heat content per m2 accounting for mass fluxes.

TFLUX: units = W m: 2

TFLUX: coverage_content_type = modelResult

TFLUX: direction = >0 increases potential temperature (THETA)

TFLUX: coordinates = XC time YC

TFLUX: valid_min = : 1713.51220703125

TFLUX: valid_max = 870.3130493164062

Comments

The rate of change of ocean heat content due to heat fluxes across the liquid surface and the addition or removal of mass. . Note: the global area integral of TFLUX and geothermal flux (geothermalFlux.bin) matches the time-derivative of ocean heat content (J/s). Unlike oceQnet, TFLUX includes the contribution to the ocean heat content from changing ocean mass (e.g. from oceFWflx).

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 73:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: TFLUX

19.9.11 Native Variable oceQnet

Table 19.59: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's oceQnet variable

Storage	Variable Name	Description	Unit
Type			
float32	oceQnet	Net heat flux into the ocean surface	W m-2
CDL Desc	cription		·
float32 o	ceQnet(time, tile, j, i)		
oceQ	net: _FillValue = 9.96921e+36		
oceQ	net: long_name = Net heat flux into the ocean surface		
oceQ	net: units = W m: 2		
oceQ	net: coverage_content_type = modelResult		
oceQ	oceQnet: direction = >0 increases potential temperature (THETA)		
oceQ	oceQnet: standard_name = surface_downward_heat_flux_in_sea_water		
oceQ	oceQnet: coordinates = XC time YC		
oceQ	oceQnet: valid_min = : 1708.8460693359375		
oceQ	net: valid_max = 675.3716430664062		

Comments

Net heat flux into the ocean surface from all processes: air-sea turbulent and radiative fluxes and turbulent and conductive fluxes between the ocean and sea-ice and snow. Note: oceQnet does not include the change in ocean heat content due to changing ocean ocean mass (oceFWflx). Mass fluxes from evaporation, precipitation, and runoff (EXFempmr) happen at the same temperature as the ocean surface temperature. Consequently, EmPmR does not change ocean surface temperature. Conversely, mass fluxes due to sea-ice thickening/thinning and snow melt in the model are assumed to happen at a fixed OC. Consequently, mass fluxes due to phase changes between seawater and sea-ice and snow induce a heat flux when the ocean surface temperature is not OC. The variable TFLUX does include the change in ocean heat content due to changing ocean mass.

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 74:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: oceQnet

19.9.12 Native Variable oceQsw

Table 19.60: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's oceQsw variable

Storage	Variable Name	Description	Unit
Type			
float32	oceQsw	Net shortwave radiative flux across the ocean sur-	W m-2
		face	
CDL Desc	cription		
float32 o	ceQsw(time, tile, j, i)		
oceQ	sw: _FillValue = 9.96921e+36		
oceQ	sw: long_name = Net shortwave radiative flux across th	ne ocean surface	
oceQ	sw: units = W m: 2		
oceQ	oceQsw: coverage_content_type = modelResult		
oceQ	sw: direction = >0 increases potential temperature (TH	ETA)	
	sw: coordinates = XC time YC		
oceQ	sw: valid_min = : 134.39808654785156		
	oceQsw: valid_max = 655.6171264648438		
	Comments		
Net short	Net shortwave radiative flux across the ocean surface. Note: Shortwave radiation penetrates below the surface grid cell.		

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 75:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: oceQsw

19.10 Native NetCDF OCEAN_AND_ICE_SURFACE_STRESS

Table 19.61: Variables in the dataset OCEAN_AND_ICE_SURFACE_STRESS

Dataset:	OCEAN_AND_ICE_SURFACE_STRESS
Field:	EXFtaux
Field:	EXFtauy
Field:	oceTAUX
Field:	oceTAUY

19.10.1 Native Variable EXFtaux

Table 19.62: CDL description of OCEAN_AND_ICE_SURFACE_STRESS's EXFtaux variable

Storage	Variable Name	Description	Unit
Type			
float32	EXFtaux	Wind stress in the model +x direction	N m-2
CDI D			

CDL Description

float32 EXFtaux(time, tile, j, i)

EXFtaux: _FillValue = 9.96921e+36

EXFtaux: long_name = Wind stress in the model +x direction

EXFtaux: units = N m: 2

EXFtaux: coverage_content_type = modelResult

EXFtaux: direction = > 0 increases horizontal velocity in the +x direction (UVEL)

EXFtaux: standard_name = surface_downward_x_stress

EXFtaux: coordinates = time YC XC

EXFtaux: valid_min = : 7.474303722381592 EXFtaux: valid_max = 3.7184090614318848

Comments

Wind stress in the +x direction at the tracer cell on the native model grid. Note: EXFtaux is the stress applied to the ice-free ocean surface and sea-ice covered surface. When sea-ice is present, the total stress applied to the ocean surface in the +x direction is NOT EXFtaux, but a combination of EXFtaux wind stress in the open water fraction and a stress from sea-ice in the ice-covered fraction (see oceTAUX). EXFtaux is the sum of ERA-Interim stress and the control adjustment from ocean state estimation.

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Stress/

Figure 76:
Dataset: OCEAN_AND_ICE_SURFACE_STRESS
Variable: EXFtaux

19.10.2 Native Variable EXFtauy

Table 19.63: CDL description of OCEAN_AND_ICE_SURFACE_STRESS's EXFtauy variable

Storage	Variable Name	Description	Unit
Туре			
float32	EXFtauy	Wind stress in the model +y direction	N m-2
CDL Desc	CDL Description		
	float32 EXFtauy(time, tile, j, i)		

EXFtauy: _FillValue = 9.96921e+36

EXFtauy: long_name = Wind stress in the model +y direction

EXFtauy: units = N m: 2

EXFtauy: coverage_content_type = modelResult

EXFtauy: direction = > 0 increases horizontal velocity in the +y direction (VVEL)

EXFtauy: standard_name = surface_downward_y_stress

EXFtauy: coordinates = time YC XC EXFtauy: valid_min = : 3.71972918510437 EXFtauy: valid_max = 3.7044837474823

Comments

Wind stress in the +y direction at the tracer cell on the native model grid. Note: EXFtauy is the stress applied to the ice-free ocean surface and sea-ice covered surface. When sea-ice is present, the total stress applied to the ocean surface in the +y direction is NOT EXFtauy, but a combination of EXFtauy wind stress in the open water fraction and a stress from sea-ice in the ice-covered fraction (see oceTAUY). EXFtaux is the sum of ERA-Interim stress and the control adjustment from ocean state estimation.

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Stress/

Figure 77:
Dataset: OCEAN_AND_ICE_SURFACE_STRESS
Variable: EXFtauy

19.10.3 Native Variable oceTAUX

Table 19.64: CDL description of OCEAN_AND_ICE_SURFACE_STRESS's oceTAUX variable

Storage	Variable Name	Description	Unit
Type			
float32	oceTAUX	Ocean surface stress in the model +x direction	N m-2
CDL Des	cription		
float32 o	ceTAUX(time, tile, j, i_g)		
oceT <i>A</i>	AUX: _FillValue = 9.96921e+36		
oceT/	AUX: long_name = Ocean surface stress in th	ne model +x direction	
oceT/	AUX: units = N m: 2		
oceT/	AUX: mate = oceTAUY		
oceT/	AUX:		
oceT/	AUX: direction = >0 increases horizontal velo	city in the +x direction (UVEL)	
oceT/	AUX: standard_name = downward_x_stress_	_at_sea_water_surface	
oceT/	AUX: coordinates = time		
oceT/	AUX: valid_min = : 2.2317698001861572		
oceT/	oceTAUX: valid_max = 1.9993581771850586		
Commer	ts		
Ocean su	rface stress due to wind and sea-ice in the +x	direction centered over the 'u' side of the the native model gr	id. Note: in
the Arelia	wa Carid wind strace acts on harizantal val	acities which are staggered relative to the tracer cells with ind	avina cuch

Ocean surface stress due to wind and sea-ice in the +x direction centered over the 'u' side of the the native model grid. Note: in the Arakawa-C grid, wind stress acts on horizontal velocities which are staggered relative to the tracer cells with indexing such that +oceTAUX(i_g,j) corresponds to +x momentum fluxes at 'u' edge of the tracer cell at (i,j,k=0). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Stress/

Figure 78:
Dataset: OCEAN_AND_ICE_SURFACE_STRESS
Variable: oceTAUX

19.10.4 Native Variable oceTAUY

Table 19.65: CDL description of OCEAN_AND_ICE_SURFACE_STRESS's oceTAUY variable

Storage	Variable Name	Description	Unit
Type			
float32	oceTAUY	Ocean surface stress in the model +y direction	N m-2
CDL Des	cription		
float32 o	ceTAUY(time, tile, j_g, i)		
oceT/	AUY: _FillValue = 9.96921e+36		
oceT/	AUY: long_name = Ocean surface stress in the n	nodel +y direction	
oceT/	AUY: units = N m: 2		
oceT/	AUY: mate = oceTAUX		
oceT/	AUY: coverage_content_type = modelResult		
oceT/	AUY: direction = >0 increases horizontal velocity	in the +y direction (VVEL)	
oceT/	AUY: standard_name = downward_y_stress_at_	_sea_water_surface	
oceT/	AUY: coordinates = time		
oceT/	AUY: valid_min = : 2.0606131553649902		
oceTA	oceTAUY: valid_max = 1.9999693632125854		
Commer			
		rection centered over the 'v' side of the the native model gr	
the Araka	wa-C grid, wind stress acts on horizontal veloci	ties which are staggered relative to the tracer cells with ind	exing such
that +oce	that +oceTALIY(i g i) corresponds to +y momentum fluxes at 'y' edge of the tracer cell at (i i k=0). Also, the model +y direction		

Ocean surface stress due to wind and sea-ice in the +y direction centered over the 'v' side of the the native model grid. Note: in the Arakawa-C grid, wind stress acts on horizontal velocities which are staggered relative to the tracer cells with indexing such that +oceTAUY(i_g,j) corresponds to +y momentum fluxes at 'v' edge of the tracer cell at (i,j,k=0). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (IIc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Ocean_and_Sea-Ice_Surface_Stress/

Figure 79:
Dataset: OCEAN_AND_ICE_SURFACE_STRESS
Variable: oceTAUY

19.11 Native NetCDF OCEAN_BOLUS_STREAMFUNCTION

Table 19.66: Variables in the dataset OCEAN_BOLUS_STREAMFUNCTION

Dataset:	OCEAN_BOLUS_STREAMFUNCTION
Field:	GM_PsiX
Field:	GM_PsiY

19.11.1 Native Variable GM_PsiX

Table 19.67: CDL description of OCEAN_BOLUS_STREAMFUNCTION's GM_PsiX variable

Storage	Variable Name	Description	Unit
Type			
float32	GM_PsiX	Gent-Mcwilliams bolus transport streamfunction in the model +x direction	m2 s-1
CDL Desc	cription		
float32 G	M_PsiX(time, k_l, tile, j, i_g)		
GM_I	PsiX: _FillValue = 9.96921e+36		
GM_I	PsiX: long_name = Gent: Mcwilliams bolus transport str	eamfunction in the model +x direction	
GM_I	GM_PsiX: units = m2 s: 1		
GM_I	 I_PsiX: mate = GM_PsiY		
GM_I	GM_PsiX: coverage_content_type = modelResult		
GM_I	PsiX: coordinates = Zl time		
GM_I	1_PsiX: valid_min = : 4.9964470863342285		
GM_F	GM_PsiX: valid_max = 4.963776111602783		
Commen	Comments		
Gent-Mc	Gent-Mcwilliams bolus transport streamfunction 'u' component. any comments welcome		

../images/plots/native_plots/Gent-McWilliams_Bolus_Transport_S

Figure 80:
Dataset: OCEAN_BOLUS_STREAMFUNCTION
Variable: GM_PsiX

19.11.2 Native Variable GM_PsiY

Table 19.68: CDL description of OCEAN_BOLUS_STREAMFUNCTION's GM_PsiY variable

Storage	Variable Name	Description	Unit
Type	CM D W		2 1
float32	GM_PsiY	Gent-Mcwilliams bolus transport streamfunction in the model +y direction	m2 s-1
CDL Des	cription		
float32 G	M_PsiY(time, k_l, tile, j_g, i)		
GM_I	PsiY: _FillValue = 9.96921e+36		
GM_I	PsiY: long_name = Gent: Mcwilliams bolus transport str	eamfunction in the model +y direction	
GM_I	GM PsiY: units = m2 s: 1		
GM_I	 PsiY: mate = GM_PsiX		
GM_I	GM_PsiY: coverage_content_type = modelResult		
GM_I	GM PsiY: coordinates = ZI time		
GM_I	PsiY: valid_min = : 5.0		
GM_I	GM_PsiY: valid_max = 4.949861526489258		
Commen	Comments		
Gent-Mc	ent-Mcwilliams bolus transport streamfunction 'v' component. any comments welcome		

../images/plots/native_plots/Gent-McWilliams_Bolus_Transport_S

Figure 81:
Dataset: OCEAN_BOLUS_STREAMFUNCTION
Variable: GM_PsiY

19.12 Native NetCDF OCEAN_BOLUS_VELOCITY

Table 19.69: Variables in the dataset OCEAN_BOLUS_VELOCITY

Dataset:	OCEAN_BOLUS_VELOCITY
Field:	UVELSTAR
Field:	VVELSTAR
Field:	WVELSTAR

19.12.1 Native Variable UVELSTAR

Table 19.70: CDL description of OCEAN_BOLUS_VELOCITY's UVELSTAR variable

Storage Type	Variable Name	Description	Unit
float32	UVELSTAR	Gent-McWilliams velocity in the model +x direction scaled by time-varying grid cell thickness	m s-1

CDL Description

float32 UVELSTAR(time, k, tile, j, i_g)

UVELSTAR: _FillValue = 9.96921e+36

UVELSTAR: long_name = Gent: McWilliams velocity in the model +x direction scaled by time: varying grid cell thickness

UVELSTAR: units = m s: 1 UVELSTAR: mate = VVELSTAR

UVELSTAR: coverage_content_type = modelResult

UVELSTAR: standard_name = sea_water_x_velocity_due_to_parameterized_mesoscale_eddies

UVELSTAR: coordinates = Z time

UVELSTAR: valid_min = : 0.7960150241851807 UVELSTAR: valid_max = 0.7762293219566345

Comments

Gent-McWilliams horizontal velocity in the +x direction at the 'u' face of the tracer cell on the native model grid. Note: UVEL-STAR is not a model diagnostic but is calculated offline: UVELSTAR = -d/dz GM_PsiX. In the Arakawa-C grid, horizontal velocities are staggered relative to the tracer cells with indexing such that +UVELSTAR(i_g,j,k) corresponds to +x tracer fluxes through the 'u' face of the tracer cell at (i,j,k). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. See EVELSTAR and NVELSTAR.

../images/plots/native_plots/Gent-McWilliams_Ocean_Bolus_Veloo

Figure 82:
Dataset: OCEAN_BOLUS_VELOCITY
Variable: UVELSTAR

19.12.2 Native Variable VVELSTAR

Table 19.71: CDL description of OCEAN_BOLUS_VELOCITY's VVELSTAR variable

Storage Type	Variable Name	Description	Unit
float32	VVELSTAR	Gent-McWilliams velocity in the model +y direction scaled by time-varying grid cell thickness	m s-1

CDL Description

float32 VVELSTAR(time, k, tile, j_g , i)

VVELSTAR: _FillValue = 9.96921e+36

VVELSTAR: long_name = Gent: McWilliams velocity in the model +y direction scaled by time: varying grid cell thickness

VVELSTAR: units = m s: 1 VVELSTAR: mate = UVELSTAR

VVELSTAR: coverage_content_type = modelResult

VVELSTAR: standard_name = sea_water_y_velocity_due_to_parameterized_mesoscale_eddies

VVELSTAR: coordinates = Z time

VVELSTAR: valid_min = : 0.8495296239852905 VVELSTAR: valid_max = 0.7200774550437927

Comments

Gent-McWilliams horizontal velocity in the +y direction at the 'v' face of the tracer cell on the native model grid. Note: VVEL-STAR is not a model diagnostic but is calculated offline: VVELSTAR = -d/dz GM_PsiY. In the Arakawa-C grid, horizontal velocities are staggered relative to the tracer cells with indexing such that +VVELSTAR(i,j_g,k) corresponds to +y tracer fluxes through the 'v' face of the tracer cell at (i,j,k). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. See EVELSTAR and NVELSTAR.

../images/plots/native_plots/Gent-McWilliams_Ocean_Bolus_Veloo

Figure 83:
Dataset: OCEAN_BOLUS_VELOCITY
Variable: VVELSTAR

19.12.3 Native Variable WVELSTAR

Table 19.72: CDL description of OCEAN_BOLUS_VELOCITY's WVELSTAR variable

Storage Type	Variable Name	Description	Unit
float32	WVELSTAR	Gent-McWilliams velocity in the model +z direction	m s-1

CDL Description

float32 WVELSTAR(time, k_l, tile, j, i)

WVELSTAR: _FillValue = 9.96921e+36

WVELSTAR: long_name = Gent: McWilliams velocity in the model +z direction

WVELSTAR: units = m s: 1

WVELSTAR: coverage_content_type = modelResult

WVELSTAR: direction = >0 decreases volume

WVELSTAR: standard_name = upward_sea_water_velocity_due_to_parameterized_mesoscale_eddies

WVELSTAR: coordinates = XC YC time Zl

WVELSTAR: valid_min = : 0.00037936007720418274 WVELSTAR: valid_max = 0.000465469085611403

Comments

Gent-McWilliams vertical bolus velocity in the +z direction at the top 'w' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, vertical velocities are staggered relative to the tracer cells with indexing such that +WVELSTAR(i,j,k_l) corresponds to upward +z motion through the top 'w' face of the tracer cell at (i,j,k).

../images/plots/native_plots/Gent-McWilliams_Ocean_Bolus_Veloc

Figure 84:
Dataset: OCEAN_BOLUS_VELOCITY
Variable: WVELSTAR

19.13 Native NetCDF OCEAN_BOTTOM_PRESSURE

Table 19.73: Variables in the dataset OCEAN_BOTTOM_PRESSURE

Dataset:	OCEAN_BOTTOM_PRESSURE
Field:	OBP
Field:	OBPGMAP
Field:	PHIBOT

19.13.1 Native Variable OBP

Table 19.74: CDL description of OCEAN_BOTTOM_PRESSURE's OBP variable

Storage Type	Variable Name	Description	Unit
float32	OBP	Ocean bottom pressure given as equivalent water thickness	m

CDL Description

float32 OBP(time, tile, j, i)

OBP: _FillValue = 9.96921e+36

OBP: long_name = Ocean bottom pressure given as equivalent water thickness

OBP: units = m

OBP: coverage_content_type = modelResult

OBP: coordinates = time XC YC

OBP: valid_min = : 2.544442892074585 OBP: valid_max = 72.1243667602539

Comments

OBP excludes the contribution from global mean atmospheric pressure and is therefore suitable for comparisons with GRACE data products. OBP is calculated as follows. First, we calculate ocean hydrostatic bottom pressure anomaly, PHIBOT, with PHIBOT = p_b/rhoConst - gH(t), where p_b = model ocean hydrostatic bottom pressure, rhoConst = reference density (1029 kg m-3), g is acceleration due to gravity (9.81 m s-2), and H(t) is model depth at time t. Then, OBP = PHIBOT/g + corrections for i) global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH) and ii) global mean atmospheric pressure variations. Use OBP for comparisons with ocean bottom pressure data products that have been corrected for global mean atmospheric pressure variations. GRACE data typically ARE corrected for global mean atmospheric pressure variations. In contrast, ocean bottom pressure gauge data typically ARE NOT corrected for global mean atmospheric pressure variations.

../images/plots/native_plots/Ocean_Bottom_Pressure/OBP.png

Figure 85:
Dataset: OCEAN_BOTTOM_PRESSURE
Variable: OBP

19.13.2 Native Variable OBPGMAP

Table 19.75: CDL description of OCEAN_BOTTOM_PRESSURE's OBPGMAP variable

Storage Type	Variable Name	Description	Unit
float32	OBPGMAP	Ocean bottom pressure given as equivalent water thickness, includes global mean atmospheric pressure	m

CDL Description

float32 OBPGMAP(time, tile, j, i)

OBPGMAP: _FillValue = 9.96921e+36

OBPGMAP: long_name = Ocean bottom pressure given as equivalent water thickness

includes global mean atmospheric pressure

OBPGMAP: units = m

OBPGMAP: coverage_content_type = modelResult

OBPGMAP: coordinates = time XC YC

OBPGMAP: valid_min = 7.395928859710693 OBPGMAP: valid_max = 82.14805603027344

Comments

OBPGMAP includes the contribution from global mean atmospheric pressure and is therefore suitable for comparisons with ocean bottom pressure gauge data products. OBPGMAP is calculated as follows. First, we calculate ocean hydrostatic bottom pressure anomaly, PHIBOT, with PHIBOT = p_b/rhoConst - gH(t), where p_b = model ocean hydrostatic bottom pressure, rhoConst = reference density (1029 kg m-3), g is acceleration due to gravity (9.81 m s-2), and H(t) is model depth at time t. Then, OBPGMAP= PHIBOT/g + corrections for global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH). Use OBPGMAP for comparisons with ocean bottom pressure data products that have NOT been corrected for global mean atmospheric pressure variations. GRACE data typically ARE corrected for global mean atmospheric pressure variations. In contrast, ocean bottom pressure gauge data typically ARE NOT corrected for global mean atmospheric pressure variations.

../images/plots/native_plots/Ocean_Bottom_Pressure/OBPGMAP.png

Figure 86:
Dataset: OCEAN_BOTTOM_PRESSURE
Variable: OBPGMAP

19.13.3 Native Variable PHIBOT

Table 19.76: CDL description of OCEAN_BOTTOM_PRESSURE's PHIBOT variable

Storage	Variable Name	Description	Unit
Type			
float32	PHIBOT	Ocean hydrostatic bottom pressure anomaly	m2 s-2
CDI Dec	evintian		

CDL Description

float32 PHIBOT(time, tile, j, i)

PHIBOT: _FillValue = 9.96921e+36

PHIBOT: long_name = Ocean hydrostatic bottom pressure anomaly

PHIBOT: units = m2 s: 2

PHIBOT: coverage_content_type = modelResult

PHIBOT: coordinates = time XC YC

PHIBOT: valid_min = 73.01050567626953 PHIBOT: valid_max = 805.7855224609375

Comments

PHIBOT = p_b / rhoConst - g H(t), where p_b = hydrostatic ocean bottom pressure, rhoConst = reference density (1029 kg m-3), g is acceleration due to gravity (9.81 m s-2), and H(t) is model depth at time t. Units: p:[kg m-1 s-2], rhoConst:[kg m-3], g:[m s-2], H(t):[m]. Note: includes atmospheric pressure loading. PHIBOT accounts for the model's time-varying grid cell thickness (z* coordinate system). PHIBOT is NOT corrected for global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH), and therefore should NOT be used for comparisons with ocean bottom pressure data. Instead, see OBPGMAP and OBP.

../images/plots/native_plots/Ocean_Bottom_Pressure/PHIBOT.png

Figure 87:
Dataset: OCEAN_BOTTOM_PRESSURE
Variable: PHIBOT

19.14 Native NetCDF OCEAN_DENS_STRAT_PRESS

Table 19.77: Variables in the dataset OCEAN_DENS_STRAT_PRESS

Dataset:	OCEAN_DENS_STRAT_PRESS
Field:	RHOAnoma
Field:	DRHODR
Field:	PHIHYD
Field:	PHIHYDcR

19.14.1 Native Variable DRHODR

Table 19.78: CDL description of OCEAN_DENS_STRAT_PRESS's DRHODR variable

Storage Type	Variable Name	Description	Unit
float32	DRHODR	Density stratification	kg m-3 m-1

CDL Description

float32 DRHODR(time, k_l, tile, j, i) DRHODR: _FillValue = 9.96921e+36

DRHODR: long_name = Density stratification

DRHODR: units = kg m: 3 m: 1

DRHODR: coverage_content_type = modelResult

DRHODR: coordinates = YC XC time Zl

DRHODR: valid_min = : 0.8687265515327454 DRHODR: valid_max = 0.011617615818977356

Comments

Density stratification: d(sigma) d z-1. Note: density computations are done with in-situ density. The vertical derivatives of in-situ density and locally-referenced potential density are identical. The equation of state is a modified UNESCO formula by Jackett and McDougall (1995), which uses the model variable potential temperature as input assuming a horizontally and temporally constant pressure of \$p_0=g ho_{0} z\$.

../images/plots/native_plots/Ocean_Density_Stratification_and_

Figure 88:
Dataset: OCEAN_DENS_STRAT_PRESS
Variable: DRHODR

19.14.2 Native Variable PHIHYD

Table 19.79: CDL description of OCEAN_DENS_STRAT_PRESS's PHIHYD variable

Storage	Variable Name	Description	Unit
Type			
float32	PHIHYD	Ocean hydrostatic pressure anomaly	m2 s-2
CDL Description			

float32 PHIHYD(time, k, tile, j, i)

PHIHYD: _FillValue = 9.96921e+36

PHIHYD: long_name = Ocean hydrostatic pressure anomaly

PHIHYD: units = m2 s: 2

PHIHYD: coverage_content_type = modelResult

PHIHYD: coordinates = YC Z XC time PHIHYD: valid_min = 74.71473693847656 PHIHYD: valid_max = 783.9188232421875

Comments

PHIHYD = p(k) / rhoConst - g z*(k,t), where p = hydrostatic ocean pressure at depth level k, rhoConst = reference density (1029 kg m-3), g is acceleration due to gravity (9.81 m s-2), and z*(k,t) is model depth at level k and time k. Units: p(k) p:[k,g m-1 s-2], rhoConst:[k,g m-3], p(k) p:[k,g m-1]. Note: includes atmospheric pressure loading. Quantity referred to in some contexts as hydrostatic pressure anomaly. PHIBOT accounts for the model's time-varying grid cell thickness (k, coordinate system). See PHIHYDcR for hydrostatic pressure potential anomaly calculated using time-invariant grid cell thicknesses. PHIHYD is NOT corrected for global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH).

../images/plots/native_plots/Ocean_Density_Stratification_and_

Figure 89:
Dataset: OCEAN_DENS_STRAT_PRESS
Variable: PHIHYD

19.14.3 Native Variable PHIHYDcR

Table 19.80: CDL description of OCEAN_DENS_STRAT_PRESS's PHIHYDCR variable

Storage Type	Variable Name	Description	Unit
float32	PHIHYDcR	Ocean hydrostatic pressure anomaly at constant depths	m2 s-2

CDL Description

float32 PHIHYDcR(time, k, tile, j, i)

PHIHYDcR: _FillValue = 9.96921e+36

PHIHYDcR: long_name = Ocean hydrostatic pressure anomaly at constant depths

PHIHYDcR: units = m2 s: 2

PHIHYDcR: coverage_content_type = modelResult

PHIHYDcR: coordinates = YC Z XC time PHIHYDcR: valid_min = 73.08939361572266 PHIHYDcR: valid_max = 784.4268188476562

Comments

PHIHYD = p(k) / rhoConst - gz(k,t), where p = hydrostatic ocean pressure at depth level k, rhoConst = reference density (1029 kg m-3), g is acceleration due to gravity (9.81 m s-2), and z(k,t) is fixed model depth at level k. Units: p:[kg m-1 s-2], rhoConst:[kg m-3], g:[m s-2], H(t):[m]. Note: includes atmospheric pressure loading. Quantity referred to in some contexts as hydrostatic pressure potential anomaly. PHIHYDCR is calculated with respect to the model's initial, time-invariant grid cell thicknesses. See PHIHYD for hydrostatic pressure anomaly calculated using model's time-variable grid cell thicknesses (z^* coordinate system). PHIHYDcR is is NOT corrected for global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH).

../images/plots/native_plots/Ocean_Density_Stratification_and_

Figure 90:
Dataset: OCEAN_DENS_STRAT_PRESS
Variable: PHIHYDcR

19.14.4 Native Variable RHOAnoma

Table 19.81: CDL description of OCEAN_DENS_STRAT_PRESS's RHOAnoma variable

Storage	Variable Name	Description	Unit	
Type				
float32	RHOAnoma	In-situ seawater density anomaly	kg m-3	
CDL Des	cription			
float32 R	HOAnoma(time, k, tile, j, i)			
RHO	Anoma: _FillValue = 9.96921e+36			
RHO	Anoma: long_name = In: situ seawater density anomaly	/		
RHO	Anoma: units = kg m: 3			
RHO	Anoma: coverage_content_type = modelResult			
RHO	RHOAnoma: coordinates = YC Z XC time			
RHO	RHOAnoma: valid_min = : 19.919862747192383			
RHOAnoma: valid_max = 25.540647506713867				
Comments				
In-situ se	In-situ seawater density anomaly relative to the reference density, rhoConst. rhoConst = 1029 kg m-3			

../images/plots/native_plots/Ocean_Density_Stratification_and_

Figure 91:
Dataset: OCEAN_DENS_STRAT_PRESS
Variable: RHOAnoma

19.15 Native NetCDF OCEAN_MIXED_LAYER_DEPTH

Table 19.82: Variables in the dataset OCEAN_MIXED_LAYER_DEPTH

Dataset:	OCEAN_MIXED_LAYER_DEPTH
Field:	MXLDEPTH

19.15.1 Native Variable MXLDEPTH

Table 19.83: CDL description of OCEAN_MIXED_LAYER_DEPTH's MXLDEPTH variable

Storage Type	Variable Name	Description	Unit	
float32	MXLDEPTH	Mixed-layer depth diagnosed using the temperature difference criterion of Kara et al., 2000	m	
CDL Description				
float32 MXLDEPTH(time, tile, j, i)				

MXLDEPTH: _FillValue = 9.96921e+36

MXLDEPTH: long_name = Mixed: layer depth diagnosed using the temperature difference criterion of Kara et al. 2000

MXLDEPTH: units = m

MXLDEPTH: coverage_content_type = modelResult

MXLDEPTH: standard_name = ocean_mixed_layer_thickness

MXLDEPTH: coordinates = time XC YC

MXLDEPTH: valid_min = 5.000001430511475

MXLDEPTH: valid_max = 5331.2001953125

Comments

Mixed-layer depth as determined by the depth where waters are first 0.8 degrees Celsius colder than the surface. See Kara et al. (JGR, 2000). . Note: the Kara et al. criterion may not be appropriate for some applications. If needed, mixed layer depth can be calculated using different criteria. See vertical density stratification (DRHODR) and density anomaly (RHOAnoma).

../images/plots/native_plots/Ocean_Mixed_Layer_Depth/MXLDEPTH.

Figure 92: Dataset: OCEAN_MIXED_LAYER_DEPTH Variable: MXLDEPTH

19.16 Native NetCDF OCEAN_TEMPERATURE_SALINITY

Table 19.84: Variables in the dataset OCEAN_TEMPERATURE_SALINITY

Dataset:	OCEAN_TEMPERATURE_SALINITY
Field:	THETA
Field:	SALT

19.16.1 Native Variable SALT

Table 19.85: CDL description of OCEAN_TEMPERATURE_SALINITY's SALT variable

Storage	Variable Name	Description	Unit	
Type				
float32	SALT	Salinity	1e-3	
CDL Des	cription			
float32 S	ALT(time, k, tile, j, i)			
SALT	: _FillValue = 9.96921e+36			
SALT	: long_name = Salinity			
SALT	: units = 1e: 3			
SALT	: coverage_content_type = modelResult			
SALT	: standard_name = sea_water_salinity			
SALT	: coordinates = YC Z XC time			
SALT	: valid_min = 16.73577880859375			
SALT	SALT: valid_max = 41.321231842O41O16			
Comments				
However	Defined using CF convention 'Sea water salinity is the salt content of sea water, often on the Practical Salinity Scale of 1978. However, the unqualified term 'salinity' is generic and does not necessarily imply any particular method of calculation. The units of salinity are dimensionless and the units attribute should normally be given as 1e-3 or 0.001 i.e. parts per thousand.'			

../images/plots/native_plots/Ocean_Temperature_and_Salinity/SA

Figure 93:
Dataset: OCEAN_TEMPERATURE_SALINITY
Variable: SALT

see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html

19.16.2 Native Variable THETA

Table 19.86: CDL description of OCEAN_TEMPERATURE_SALINITY's THETA variable

Storage	Variable Name	Description	Unit
Type			
float32	THETA	Potential temperature	degree_C
CDL Des	- I		
float32 T	HETA(time, k, tile, j, i)		
THET	A: _FillValue = 9.96921e+36		
THET	A: long_name = Potential temperature		
THET	A: units = degree_C		
THET	A: coverage_content_type = modelResult		
THET	A: standard_name = sea_water_potential_temperature	e	
THET	A: coordinates = YC Z XC time		
THET	THETA: valid_min = : 2.9179372787475586		
THET	THETA: valid_max = 36.42514O38O859375		
Comments			
	r potential temperature is the temperature a parcel of se		
	e equation of state is a modified UNESCO formula by temperature as input assuming a horizontally and tem		el variable

../images/plots/native_plots/Ocean_Temperature_and_Salinity/TF

Figure 94:
Dataset: OCEAN_TEMPERATURE_SALINITY
Variable: THETA

19.17 Native NetCDF OCEAN_VELOCITY

Table 19.87: Variables in the dataset OCEAN_VELOCITY

Dataset:	OCEAN_VELOCITY
Field:	UVEL
Field:	VVEL
Field:	WVEL

19.17.1 Native Variable UVEL

Table 19.88: CDL description of OCEAN_VELOCITY's UVEL variable

Storage	Variable Name	Description	Unit
Type			
float32	UVEL	Horizontal velocity in the model +x direction	m s-1
CDL Description			
float32 UVEL(time, k, tile, j, i_g)			

UVEL: _FillValue = 9.96921e+36

UVEL: long_name = Horizontal velocity in the model +x direction

UVEL: units = m s: 1 UVEL: mate = VVEL

UVEL: coverage_content_type = modelResult

UVEL: direction = >0 increases volume

UVEL: standard_name = sea_water_x_velocity

UVEL: coordinates = Z time

UVEL: valid_min =: 2.139253616333008 UVEL: valid_max = 2.038635015487671

Comments

Horizontal velocity in the +x direction at the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal velocities are staggered relative to the tracer cells with indexing such that +UVEL(i_g,j,k) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,i,k). Do NOT use UVEL for volume flux calculations because the model's grid cell thicknesses vary with time (z* coordinates); use UVELMASS instead. Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles. See EVEL and NVEL for zonal and meridional velocity.

../images/plots/native_plots/Ocean_Velocity/UVEL.png

Figure 95: **Dataset: OCEAN_VELOCITY** Variable: UVEL

19.17.2 Native Variable VVEL

Table 19.89: CDL description of OCEAN_VELOCITY's VVEL variable

Storage	Variable Name	Description	Unit	
Type				
float32	VVEL	Horizontal velocity in the model +y direction	m s-1	
CDI Des	CDI Description			

float32 VVEL(time, k, tile, j_g, i) VVEL: _FillValue = 9.96921e+36

VVEL: long_name = Horizontal velocity in the model +y direction

VVEL: units = m s: 1 VVEL: mate = UVEL

VVEL: coverage_content_type = modelResult

VVEL: direction = >0 increases volume

VVEL: standard_name = sea_water_y_velocity

VVEL: coordinates = Z time

VVEL: valid_min = : 1.7877743244171143 VVEL: valid_max = 1.9089667797088623

Comments

Horizontal velocity in the +y direction at the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal velocities are staggered relative to the tracer cells with indexing such that +VVEL(i,i_g,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,i,k). Do NOT use VVEL for volume flux calculations because the model's grid cell thicknesses vary with time (z* coordinates); use VVELMASS instead. Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles. See EVEL and NVEL for zonal and meridional velocity.

../images/plots/native_plots/Ocean_Velocity/VVEL.png

Figure 96: **Dataset: OCEAN_VELOCITY** Variable: VVEL

19.17.3 Native Variable WVEL

Table 19.90: CDL description of OCEAN_VELOCITY's WVEL variable

Storage	Variable Name	Description	Unit	
Type				
float32	WVEL	Vertical velocity	m s-1	
CDL Desc	cription			
float32 W	/VEL(time, k_l, tile, j, i)			
WVEI	_: _FillValue = 9.96921e+36			
WVEI	.: long_name = Vertical velocity			
WVEI	WVEL: units = m s: 1			
WVEI	WVEL: coverage_content_type = modelResult			
WVEI	WVEL: direction = >0 decreases volume			
WVEI	WVEL: standard_name = upward_sea_water_velocity			
WVEI	WVEL: coordinates = Zl YC time XC			
WVEI	.: valid_min = : 0.0023150660563260317			
WVEI	.: valid_max = 0.0016380994347855449			

Comments

Vertical velocity in the +z direction at the top 'w' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, vertical velocities are staggered relative to the tracer cells with indexing such that +WVEL(i,j,k_l) corresponds to upward +z motion through the top 'w' face of the tracer cell at (i,j,k). WVEL is identical to WVELMASS.

../images/plots/native_plots/Ocean_Velocity/WVEL.png

Figure 97:
Dataset: OCEAN_VELOCITY
Variable: WVEL

19.18 Native NetCDF SEA_ICE_CONC_THICKNESS

Table 19.91: Variables in the dataset SEA_ICE_CONC_THICKNESS

Dataset:	SEA_ICE_CONC_THICKNESS
Field:	Slarea
Field:	Slheff
Field:	Slhsnow
Field:	slceLoad

19.18.1 Native Variable Slarea

Table 19.92: CDL description of SEA_ICE_CONC_THICKNESS's Slarea variable

Storage Type	Variable Name	Description	Unit		
float32	Slarea	Sea-ice concentration	1		
	CDL Description				

float32 Slarea(time, tile, j, i)

Slarea: _FillValue = 9.96921e+36

Slarea: long_name = Sea: ice concentration

Slarea: units = 1

Slarea: coverage_content_type = modelResult Slarea: standard_name = sea_ice_area_fraction

Slarea: coordinates = time YC XC

Slarea: valid_min = 0.0

Slarea: valid_max = 0.9700000286102295

Comments

Fraction of ocean grid cell covered with sea-ice [O to 1]. CF Standard Name Table v73: 'Area fraction' is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Sea ice area fraction is area of the sea surface occupied by sea ice. It is also called 'sea ice concentration'. 'Sea ice' means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html. Defined using CF Standard Name Table v73: 'Area fraction' is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Sea ice area fraction is area of the sea surface occupied by sea ice. It is also called 'sea ice concentration'. 'Sea ice' means all ice floating in the sea which has formed from freezing sea water and precipitation, rather than by other processes such as calving of land ice to form icebergs. https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html

../images/plots/native_plots/Sea-Ice_and_Snow_Concentration_ar

Figure 98:
Dataset: SEA_ICE_CONC_THICKNESS
Variable: Slarea

19.18.2 Native Variable SIheff

Table 19.93: CDL description of SEA_ICE_CONC_THICKNESS's SIheff variable

Storage	Variable Name	Description	Unit	
Type				
float32	Slheff	Area-averaged sea-ice thickness	m	
CDL Des	cription			
float32 S	lheff(time, tile, j, i)			
Slhef	f: _FillValue = 9.96921e+36			
Slhef	f: long_name = Area: averaged sea: ice thickness			
Slhef	f: units = m			
Slhef	Slheff: coverage_content_type = modelResult			
Slheff: standard_name = sea_ice_thickness				
Slheff: coordinates = time YC XC				
Slhef	SIheff: valid_min = 0.0			
Slheff: valid_max = 9.000518798828125				
Commer	nts			
Sea-ice t	hickness averaged over the entire model grid cell, inclu	ding open water where sea-ice thickness is zero. I	Note: sea-ice	
thickness	over the ICE-COVERED fraction of the grid cell is SIho	eff/Slarea		

../images/plots/native_plots/Sea-Ice_and_Snow_Concentration_ar

Figure 99:
Dataset: SEA_ICE_CONC_THICKNESS
Variable: SIheff

19.18.3 Native Variable SIhsnow

Table 19.94: CDL description of SEA_ICE_CONC_THICKNESS's SIhsnow variable

Storage	Variable Name	Description	Unit	
Type				
float32	SIhsnow	Area-averaged snow thickness	m	
CDL Des	cription			
float32 S	lhsnow(time, tile, j, i)			
Slhsn	ow: _FillValue = 9.96921e+36			
Slhsn	ow: long_name = Area: averaged snow thickness			
Slhsn	ow: units = m			
Slhsn	SIhsnow: coverage_content_type = modelResult			
Slhsn	Slhsnow: standard_name = surface_snow_thickness			
Slhsn	SIhsnow: coordinates = time YC XC			
Slhsn	Slhsnow: valid_min = : 0.0004725505714304745			
Slhsn	Slhsnow: valid_max = 2.7013046741485596			
Commen	ts			
Snow thi	ckness averaged over the entire model grid cell, inclu	iding open water where snow thickness is zero. No	te: snow	
thickness	over the ICE-COVERED fraction of the grid cell is SIhs	now/Slarea		

../images/plots/native_plots/Sea-Ice_and_Snow_Concentration_ar

Figure 100:
Dataset: SEA_ICE_CONC_THICKNESS
Variable: SIhsnow

19.18.4 Native Variable sIceLoad

Table 19.95: CDL description of SEA_ICE_CONC_THICKNESS's siceLoad variable

Storage	Variable Name	Description	Unit	
Type				
float32	slceLoad	Average sea-ice and snow mass per unit area	kg m-2	
CDL Desc	ription		·	
float32 slo	ceLoad(time, tile, j, i)			
slceLo	oad: _FillValue = 9.96921e+36			
slceLo	ad: long_name = Average sea: ice and snow mass per	unit area		
slceLo	pad: units = kg m: 2			
slceLo	slceLoad: coverage_content_type = modelResult			
slceLo	slceLoad: standard_name = sea_ice_and_surface_snow_amount			
slceLo	ad: coordinates = time YC XC			
slceLo	slceLoad: valid_min = : 0.0015558383893221617			
slceLo	slceLoad: valid_max = 8729.935546875			
Comment				
	s of sea-ice and snow in a model grid cell averaged ove anomaly, FTAN, to calculate dynamic sea surface beigh			

Total mass of sea-ice and snow in a model grid cell averaged over model grid cell area. Note: slceLoad is used to correct model sea level anomaly, ETAN, to calculate dynamic sea surface height, SSH, and sea surface height without the inverted barometer (IB correction), SSHNOIBC. In the model, sea-ice is treated as floating above the sea level with ETAN tracing the location of the ocean-ice interface. Consequently, sea-ice growth in the model lowers ETAN and sea-ice melting raises ETAN. Dynamic sea surface height is obtained by correcting ETAN by the weight of ice and snow directly above following Archimedes' principle.

../images/plots/native_plots/Sea-Ice_and_Snow_Concentration_ar

Figure 101:
Dataset: SEA_ICE_CONC_THICKNESS
Variable: sIceLoad

19.19 Native NetCDF SEA_ICE_HORIZ_VOLUME_FLUX

Table 19.96: Variables in the dataset SEA_ICE_HORIZ_VOLUME_FLUX

Dataset:	SEA_ICE_HORIZ_VOLUME_FLUX
Field:	ADVxHEFF
Field:	ADVyHEFF
Field:	ADVxSNOW
Field:	ADVySNOW
Field:	DFxESNOW
Field:	DFyEHEFF
Field:	DFxEHEFF
Field:	DFyESNOW

19.19.1 Native Variable ADVxHEFF

Table 19.97: CDL description of SEA_ICE_HORIZ_VOLUME_FLUX's ADVxHEFF variable

Storage Type	Variable Name	Description	Unit
float32	ADVxHEFF	Lateral advective flux of sea-ice thickness in the model +x direction	m3 s-1

CDL Description

float32 ADVxHEFF(time, tile, j, i_g)

ADVxHEFF: _FillValue = 9.96921e+36

ADVxHEFF: long_name = Lateral advective flux of sea: ice thickness in the model +x direction

ADVxHEFF: units = m3 s: 1 ADVxHEFF: mate = ADVyHEFF

ADVxHEFF: coverage_content_type = modelResult

ADVxHEFF: direction = >0 increases mean sea: ice thickness (HEFF)

ADVxHEFF: coordinates = time ADVxHEFF: valid_min = : 151912.28125 ADVxHEFF: valid_max = 107688.7578125

Comments

Lateral advective flux of grid cell mean sea-ice thickness (HEFF) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVxHEFF(i_g,j) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k=0). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Sea-Ice_and_Snow_Horizontal_Volum

Figure 102:
Dataset: SEA_ICE_HORIZ_VOLUME_FLUX
Variable: ADVxHEFF

19.19.2 Native Variable ADVxSNOW

Table 19.98: CDL description of SEA_ICE_HORIZ_VOLUME_FLUX's ADVxSNOW variable

Storage Type	Variable Name	Description	Unit
float32	ADVxSNOW	Lateral advective flux of snow thickness in the model +x direction	m3 s-1

CDL Description

float32 ADVxSNOW(time, tile, j, i_g) ADVxSNOW: _FillValue = 9.96921e+36

ADVxSNOW: long_name = Lateral advective flux of snow thickness in the model +x direction

ADVxSNOW: units = m3 s: 1 ADVxSNOW: mate = ADVySNOW

ADVxSNOW: coverage_content_type = modelResult

ADVxSNOW: direction = >0 increases mean snow thickness (HSNOW)

ADVxSNOW: coordinates = time

ADVxSNOW: valid_min = : 38343.0234375 ADVxSNOW: valid_max = 20385.103515625

Comments

Lateral advective flux of grid cell mean snow thickness (HSNOW) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVxSNOW(i_g,j) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k=0). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Sea-Ice_and_Snow_Horizontal_Volum

Figure 103:
Dataset: SEA_ICE_HORIZ_VOLUME_FLUX
Variable: ADVxSNOW

19.19.3 Native Variable ADVyHEFF

Table 19.99: CDL description of SEA_ICE_HORIZ_VOLUME_FLUX's ADVyHEFF variable

Storage Type	Variable Name	Description	Unit
float32	ADVyHEFF	Lateral advective flux of sea-ice thickness in the model +y direction	m3 s-1

CDL Description

float32 ADVyHEFF(time, tile, j_g , i)

ADVyHEFF: _FillValue = 9.96921e+36

ADVyHEFF: long_name = Lateral advective flux of sea: ice thickness in the model +y direction

ADVyHEFF: units = m3 s: 1 ADVyHEFF: mate = ADVxHEFF

ADVyHEFF: coverage_content_type = modelResult

ADVyHEFF: direction = >0 increases mean sea: ice thickness (HEFF)

ADVyHEFF: coordinates = time

ADVyHEFF: valid_min = : 95350.6328125 ADVyHEFF: valid_max = 115755.4375

Comments

Lateral advective flux of grid cell mean sea-ice thickness (HEFF) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVyHEFF(i,j_g) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k=0). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Sea-Ice_and_Snow_Horizontal_Volum

Figure 104:
Dataset: SEA_ICE_HORIZ_VOLUME_FLUX
Variable: ADVyHEFF

19.19.4 Native Variable ADVySNOW

Table 19.100: CDL description of SEA_ICE_HORIZ_VOLUME_FLUX's ADVySNOW variable

Storage Type	Variable Name	Description	Unit
float32	ADVySNOW	Lateral advective flux of snow thickness in the model +y direction	m3 s-1

CDL Description

float32 ADVySNOW(time, tile, j_g, i) ADVySNOW: _FillValue = 9.96921e+36

ADVySNOW: long_name = Lateral advective flux of snow thickness in the model +y direction

ADVySNOW: units = m3 s: 1 ADVySNOW: mate = ADVxSNOW

ADVySNOW: coverage_content_type = modelResult

ADVySNOW: direction = >0 increases mean snow thickness (HSNOW)

ADVySNOW: coordinates = time

ADVySNOW: valid_min = : 30630.552734375 ADVySNOW: valid_max = 27252.87890625

Comments

Lateral advective flux of grid cell mean snow thickness (HSNOW) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +ADVySNOW(i,j_g) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k=0). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Sea-Ice_and_Snow_Horizontal_Volum

Figure 105:
Dataset: SEA_ICE_HORIZ_VOLUME_FLUX
Variable: ADVySNOW

19.19.5 Native Variable DFxEHEFF

Table 19.101: CDL description of SEA_ICE_HORIZ_VOLUME_FLUX's DFxEHEFF variable

Storage Type	Variable Name	Description	Unit
float32	DFxEHEFF	Lateral diffusive flux of sea-ice thickness in the model +x direction.	m3 s-1

CDL Description

float32 DFxEHEFF(time, tile, j, i_g)

DFxEHEFF: _FillValue = 9.96921e+36

DFxEHEFF: long_name = Lateral diffusive flux of sea: ice thickness in the model +x direction.

DFxEHEFF: units = m3 s: 1 DFxEHEFF: mate = DFyEHEFF

DFxEHEFF: coverage_content_type = modelResult

DFxEHEFF: direction = >0 increases mean sea: ice thickness (HEFF)

DFxEHEFF: coordinates = time

DFxEHEFF: valid_min = : 1444.172607421875 DFxEHEFF: valid_max = 2379.271240234375

Comments

Lateral diffusive flux of grid cell mean sea-ice thickness (HEFF) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFxEHEFF(i_g,j) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k=0). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Sea-Ice_and_Snow_Horizontal_Volum

Figure 106:
Dataset: SEA_ICE_HORIZ_VOLUME_FLUX
Variable: DFxEHEFF

19.19.6 Native Variable DFxESNOW

Table 19.102: CDL description of SEA_ICE_HORIZ_VOLUME_FLUX's DFxESNOW variable

Storage Type	Variable Name	Description	Unit
float32	DFxESNOW	Lateral diffusive flux of snow thickness in the model +x direction	m3 s-1

CDL Description

float32 DFxESNOW(time, tile, j, i_g)
DFxESNOW: _FillValue = 9.96921e+36

DFxESNOW: long_name = Lateral diffusive flux of snow thickness in the model +x direction

DFxESNOW: units = m3 s: 1 DFxESNOW: mate = DFyESNOW

DFxESNOW: coverage_content_type = modelResult

DFxESNOW: direction = >0 increases mean snow thickness (HSNOW)

DFxESNOW: coordinates = time

DFxESNOW: valid_min = : 448.1134948730469 DFxESNOW: valid_max = 440.94427490234375

Comments

Lateral diffusive flux of grid cell mean snow thickness (HSNOW) in the +x direction through the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFxESNOW(i_g,j) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k=0). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Sea-Ice_and_Snow_Horizontal_Volum

Figure 107:
Dataset: SEA_ICE_HORIZ_VOLUME_FLUX
Variable: DFxESNOW

19.19.7 Native Variable DFyEHEFF

Table 19.103: CDL description of SEA_ICE_HORIZ_VOLUME_FLUX's DFyEHEFF variable

Storage Type	Variable Name	Description	Unit
float32	DFyEHEFF	Lateral diffusive flux of sea-ice thickness in the model +y direction.	m3 s-1

CDL Description

float32 DFyEHEFF(time, tile, j_g, i)

DFyEHEFF: _FillValue = 9.96921e+36

DFyEHEFF: long_name = Lateral diffusive flux of sea: ice thickness in the model +y direction.

DFyEHEFF: units = m3 s: 1 DFyEHEFF: mate = DFxEHEFF

DFyEHEFF: coverage_content_type = modelResult

DFyEHEFF: direction = >0 increases mean sea: ice thickness (HEFF)

DFyEHEFF: coordinates = time

DFyEHEFF: valid_min = : 3078.810791015625 DFyEHEFF: valid_max = 1614.6512451171875

Comments

Lateral diffusive flux of grid cell mean sea-ice thickness (HEFF) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFyEHEFF(i,j_g) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k=0). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (Ilc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Sea-Ice_and_Snow_Horizontal_Volum

Figure 108:
Dataset: SEA_ICE_HORIZ_VOLUME_FLUX
Variable: DFyEHEFF

19.19.8 Native Variable DFyESNOW

Table 19.104: CDL description of SEA_ICE_HORIZ_VOLUME_FLUX's DFyESNOW variable

Storage Type	Variable Name	Description	Unit
float32	DFyESNOW	Lateral diffusive flux of snow thickness in the model +y direction	m3 s-1

CDL Description

float32 DFyESNOW(time, tile, j_g, i)

DFyESNOW: _FillValue = 9.96921e+36

DFyESNOW: long_name = Lateral diffusive flux of snow thickness in the model +y direction

DFyESNOW: units = m3 s: 1 DFyESNOW: mate = DFxESNOW

DFyESNOW: coverage_content_type = modelResult

DFyESNOW: direction = >0 increases mean snow thickness (HSNOW)

DFyESNOW: coordinates = time

DFyESNOW: valid_min = : 662.0200805664062 DFyESNOW: valid_max = 411.7032470703125

Comments

Lateral diffusive flux of grid cell mean snow thickness (HSNOW) in the +y direction through the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal flux quantities are staggered relative to the tracer cells with indexing such that +DFyESNOW(i,j_g,k) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k=0). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Sea-Ice_and_Snow_Horizontal_Volum

Figure 109:
Dataset: SEA_ICE_HORIZ_VOLUME_FLUX
Variable: DFyESNOW

19.20 Native NetCDF SEA_ICE_SALT_PLUME_FLUX

Table 19.105: Variables in the dataset SEA_ICE_SALT_PLUME_FLUX

Dataset:	SEA_ICE_SALT_PLUME_FLUX
Field:	oceSPflx
Field:	oceSPDep

19.20.1 Native Variable oceSPDep

Table 19.106: CDL description of SEA_ICE_SALT_PLUME_FLUX's oceSPDep variable

Storage	Variable Name	Description	Unit	
Type				
float32	oceSPDep	Salt plume depth	m	
CDL Des	cription			
float32 o	ceSPDep(time, tile, j, i)			
oceSl	PDep: _FillValue = 9.96921e+36			
oceSl	PDep: long_name = Salt plume depth			
oceSl	oceSPDep: units = m			
oceSl	oceSPDep: coverage_content_type = modelResult			
oceSl	oceSPDep: coordinates = time YC XC			
oceSl	oceSPDep: valid_min = 5.500708103179932			
oceSPDep: valid_max = 5530.31494140625				
Commen	its			
Depth of parameterized salt plumes formed due to brine rejection during sea-ice formation.				

../images/plots/native_plots/Sea-Ice_Salt_Plume_Fluxes/oceSPDe

Figure 110:
Dataset: SEA_ICE_SALT_PLUME_FLUX
Variable: oceSPDep

19.20.2 Native Variable oceSPflx

Table 19.107: CDL description of SEA_ICE_SALT_PLUME_FLUX's oceSPflx variable

Storage	Variable Name	Description	Unit		
Type					
float32	oceSPflx	Net salt flux into the ocean due to brine rejection	g m-2 s-1		
CDL Desc	cription				
float32 o	ceSPflx(time, tile, j, i)				
oceSl	Pflx: _FillValue = 9.96921e+36				
oceSl	Pflx: long_name = Net salt flux into the ocean due to b	rine rejection			
oceSl	Pflx: units = g m: 2 s: 1				
oceSl	Pflx: coverage_content_type = modelResult				
oceSI	Pflx: direction = >0 increases salinity (SALT)				
oceSl	oceSPflx: coordinates = time YC XC				
oceSI	Pflx: valid_min = 0.0				
oceSl	oceSPflx: valid_max = 0.058169759809970856				
Comments					
Net salt flux into the ocean due to brine rejection during sea-ice formation. Note: units are grams of salt per square meter per					
second, r	not salinity per square meter per second.				

../images/plots/native_plots/Sea-Ice_Salt_Plume_Fluxes/oceSPfl

Figure 111:
Dataset: SEA_ICE_SALT_PLUME_FLUX
Variable: oceSPflx

19.21 Native NetCDF SEA_ICE_VELOCITY

Table 19.108: Variables in the dataset SEA_ICE_VELOCITY

Dataset:	SEA_ICE_VELOCITY -
Field:	Sluice
Field:	Slvice

19.21.1 Native Variable Sluice

Table 19.109: CDL description of SEA_ICE_VELOCITY's Sluice variable

Storage	Variable Name	Description	Unit
Type			
float32	Sluice	Sea-ice velocity in the model +x direction	m s-1
CDI D			

CDL Description

float32 Sluice(time, tile, j, i_g)

Sluice: _FillValue = 9.96921e+36

Sluice: long_name = Sea: ice velocity in the model +x direction

Sluice: units = m s: 1 Sluice: mate = Slvice

Sluice: coverage_content_type = modelResult Sluice: standard_name = sea_ice_x_velocity

Sluice: coordinates = time

Sluice: valid_min = : 0.400000059604645 Sluice: valid_max = 0.400000059604645

Comments

Horizontal sea-ice velocity in the +x direction at the 'u' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal velocities are staggered relative to the tracer cells with indexing such that +Sluice(i_g,j) corresponds to +x fluxes through the 'u' face of the tracer cell at (i,j,k=0). Also, the model +x direction does not necessarily correspond to the geographical east-west direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Sea-Ice_Velocity/Sluice.png

Figure 112:
Dataset: SEA_ICE_VELOCITY
Variable: Sluice

19.21.2 Native Variable SIvice

Table 19.110: CDL description of SEA_ICE_VELOCITY's SIvice variable

Storage	Variable Name	Description	Unit
Type			
float32	Slvice	Sea-ice velocity in the model +y direction	m s-1
CDI Description			

CDL Description

float32 SIvice(time, tile, j_g, i)

SIvice: _FillValue = 9.96921e+36

Slvice: long_name = Sea: ice velocity in the model +y direction

Slvice: units = m s: 1 Slvice: mate = Sluice

Sivice: coverage_content_type = modelResult Sivice: standard_name = sea_ice_y_velocity

Slvice: coordinates = time

SIvice: valid_min = : 0.400000059604645 SIvice: valid_max = 0.400000059604645

Comments

Horizontal sea-ice velocity in the +y direction at the 'v' face of the tracer cell on the native model grid. Note: in the Arakawa-C grid, horizontal velocities are staggered relative to the tracer cells with indexing such that +SIvice(i,j_g) corresponds to +y fluxes through the 'v' face of the tracer cell at (i,j,k=0). Also, the model +y direction does not necessarily correspond to the geographical north-south direction because the x and y axes of the model's curvilinear lat-lon-cap (llc) grid have arbitrary orientations which vary within and across tiles.

../images/plots/native_plots/Sea-Ice_Velocity/SIvice.png

Figure 113:
Dataset: SEA_ICE_VELOCITY
Variable: SIvice

19.22 Native NetCDF SEA_SURFACE_HEIGHT

Table 19.111: Variables in the dataset SEA_SURFACE_HEIGHT

Dataset:	SEA_SURFACE_HEIGHT
Field:	SSH
Field:	SSHIBC
Field:	SSHNOIBC
Field:	ETAN

19.22.1 Native Variable ETAN

Table 19.112: CDL description of SEA_SURFACE_HEIGHT's ETAN variable

Storage	Variable Name	Description	Unit	
Type				
float32	ETAN	Model sea level anomaly	m	
CDL Des	CDL Description			
float32 E	float32 ETAN(time, tile, j, i)			
ETAN: _FillValue = 9.96921e+36				
ETAN: long_name = Model sea level anomaly				
FTAN	l: units = m			

ETAN: units = m

ETAN: coverage_content_type = modelResult

ETAN: coordinates = YC time XC

ETAN: valid_min = : 9.067964553833008 ETAN: valid_max = 2.1783087253570557

Comments

Model sea level anomaly WITHOUT corrections for global mean density (steric) changes, inverted barometer effect, or volume displacement due to submerged sea-ice and snow. Note: ETAN should NOT be used for comparisons with altimetry data products because ETAN is NOT corrected for (a) global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH) nor (b) sea level displacement due to submerged sea-ice and snow (see slceLoad). These corrections ARE made for the variables SSH and SSHNOIBC.

../images/plots/native_plots/Sea_Surface_Height/ETAN.png

Figure 114:
Dataset: SEA_SURFACE_HEIGHT
Variable: ETAN

19.22.2 Native Variable SSH

Table 19.113: CDL description of SEA_SURFACE_HEIGHT's SSH variable

Storage	Variable Name	Description	Unit		
Type					
float32	SSH	Dynamic sea surface height anomaly	m		
	CDL Description				
float32 SSH(time, tile, j, i)					
SSH:	SSH: _FillValue = 9.96921e+36				

SSH: long_name = Dynamic sea surface height anomaly

SSH: units = m

SSH: coverage_content_type = modelResult

SSH: standard_name = sea_surface_height_above_geoid

SSH: coordinates = YC time XC

SSH: valid_min = : 2.4861555099487305 SSH: valid_max = 2.2875382900238037

Comments

Dynamic sea surface height anomaly above the geoid, suitable for comparisons with altimetry sea surface height data products that apply the inverse barometer (IB) correction. Note: SSH is calculated by correcting model sea level anomaly ETAN for three effects: a) global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH), b) the inverted barometer (IB) effect (see SSHIBC) and c) sea level displacement due to sea-ice and snow pressure loading (see slceLoad). SSH can be compared with the similarly-named SSH variable in previous ECCO products that did not include atmospheric pressure loading (e.g., Version 4 Release 3). Use SSHNOIBC for comparisons with altimetry data products that do NOT apply the IB correction.

../images/plots/native_plots/Sea_Surface_Height/SSH.png

Figure 115:
Dataset: SEA_SURFACE_HEIGHT
Variable: SSH

19.22.3 Native Variable SSHIBC

Table 19.114: CDL description of SEA_SURFACE_HEIGHT's SSHIBC variable

Storage Type	Variable Name	Description	Unit
float32	SSHIBC	The inverted barometer (IB) correction to sea surface height due to atmospheric pressure loading	m

CDL Description

float32 SSHIBC(time, tile, j, i)

SSHIBC: _FillValue = 9.96921e+36

SSHIBC: long_name = The inverted barometer (IB) correction to sea surface height due to atmospheric pressure loading

SSHIBC: units = m

SSHIBC: coverage_content_type = modelResult

SSHIBC: coordinates = YC time XC

SSHIBC: valid_min = : 0.5228679180145264 SSHIBC: valid_max = 0.9044463634490967

Comments

Not an SSH itself, but a correction to model sea level anomaly (ETAN) required to account for the static part of sea surface displacement by atmosphere pressure loading: SSH = SSHNOIBC - SSHIBC. Note: Use SSH for model-data comparisons with altimetry data products that DO apply the IB correction and SSHNOIBC for comparisons with altimetry data products that do NOT apply the IB correction.

../images/plots/native_plots/Sea_Surface_Height/SSHIBC.png

Figure 116:
Dataset: SEA_SURFACE_HEIGHT
Variable: SSHIBC

19.22.4 Native Variable SSHNOIBC

Table 19.115: CDL description of SEA_SURFACE_HEIGHT's SSHNOIBC variable

Storage Type	Variable Name	Description	Unit
float32	SSHNOIBC	Sea surface height anomaly without the inverted barometer (IB) correction	m

CDL Description

float32 SSHNOIBC(time, tile, j, i)

SSHNOIBC: _FillValue = 9.96921e+36

SSHNOIBC: long_name = Sea surface height anomaly without the inverted barometer (IB) correction

SSHNOIBC: units = m

SSHNOIBC: coverage_content_type = modelResult

SSHNOIBC: coordinates = YC time XC SSHNOIBC: valid_min = : 2.45104718208313 SSHNOIBC: valid_max = 2.2390522956848145

Comments

Sea surface height anomaly above the geoid without the inverse barometer (IB) correction, suitable for comparisons with altimetry sea surface height data products that do NOT apply the inverse barometer (IB) correction. Note: SSHNOIBC is calculated by correcting model sea level anomaly ETAN for two effects: a) global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH), b) sea level displacement due to sea-ice and snow pressure loading (see slceLoad). In ECCO Version 4 Release 4 the model is forced with atmospheric pressure loading. SSHNOIBC does not correct for the static part of the effect of atmosphere pressure loading on sea surface height (the so-called inverse barometer (IB) correction). Use SSH for comparisons with altimetry data products that DO apply the IB correction.

../images/plots/native_plots/Sea_Surface_Height/SSHNOIBC.png

Figure 117:
Dataset: SEA_SURFACE_HEIGHT
Variable: SSHNOIBC

20 Latlon Dataset Coordinate Variables

20.1 Overview of the Latlon Dataset Coordinate Variables

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus at enim eget nisi ultrices facilisis a et purus. Sed tincidunt scelerisque ligula, in vehicula dui venenatis at. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Curabitur consequat commodo nunc, nec lacinia quam feugiat vel. Integer bibendum lectus sit amet quam elementum, ut pretium quam malesuada. Cras fermentum venenatis augue, id commodo libero facilisis nec. Quisque euismod, odio vitae dapibus convallis, justo enim iaculis metus, vel interdum elit nisi vel lectus. Fusce tempor elit in semper condimentum. Ut quis dui eget purus cursus interdum eu ac elit.'

20.2 Latlon coordinates NetCDF GRID_GEOMETRY_ECCO

Table 20.1: Variables in the dataset GRID_GEOMETRY_ECCO

Dataset:	GRID_GEOMETRY_ECCO
Field:	hFacC
Field:	maskC

20.2.1 Latlon coordinates Variable hFacC

Table 20.2: CDL description of GRID_GEOMETRY_ECCO's hFacC variable

Storage	Variable Name	Description	Unit		
Type					
float64	hFacC	vertical open fraction of grid cell	1		
CDL Des					
float64 h	FacC(Z, latitude, longitude)				
hFac(C: _FillValue = 9.969209968386869e+36				
hFac(C: coverage_content_type = modelResult				
hFac(: long_name = vertical open fraction of grid cell				
hFacC: units = 1					
Commer	Comments				
Grid cells may be fractionally closed in the vertical. The open vertical fraction is hFacC. The model allows for partially-filled					
cells to represent topographic variations more smoothly (hFacC < 1). Completely closed (dry) tracer grid cells have hFacC = 0.					
Note: the lat-lon gridded hFacC is spatially-averaged from the hFacC field on the lat-lon-cap (Ilc90) model native grid. The					
total oce	an volume of the ECCO V4r4 lat-lon gridded fields is wi	thin 0.05% of the total ocean volume of the native	grid fields.		

../images/plots/latlon_plots_coords/Geometry_Parameters_for_th

Figure 118:
Dataset: GRID_GEOMETRY_ECCO
Variable: hFacC

20.2.2 Latlon coordinates Variable maskC

Table 20.3: CDL description of GRID_GEOMETRY_ECCO's maskC variable

Storage	Variable Name	Description	Unit	
Type				
bool	maskC	wet/dry boolean mask for grid cell	N/A	
CDL Desc				
bool mas	kC(Z, latitude, longitude)			
mask	maskC: _FillValue = 1			
mask	maskC: coverage_content_type = modelResult			
maskC: long_name = wet/dry boolean mask for grid cell				
Comments				
True for grid cells with nonzero open vertical fraction (hFacC > 0), otherwise False.				

../images/plots/latlon_plots_coords/Geometry_Parameters_for_th

Figure 119:
Dataset: GRID_GEOMETRY_ECCO
Variable: maskC

21 Latlon Dataset Groupings

21.1 Overview of the latlon Dataset Groupings

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus at enim eget nisi ultrices facilisis a et purus. Sed tincidunt scelerisque ligula, in vehicula dui venenatis at. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Curabitur consequat commodo nunc, nec lacinia quam feugiat vel. Integer bibendum lectus sit amet quam elementum, ut pretium quam malesuada. Cras fermentum venenatis augue, id commodo libero facilisis nec. Quisque euismod, odio vitae dapibus convallis, justo enim iaculis metus, vel interdum elit nisi vel lectus. Fusce tempor elit in semper condimentum. Ut quis dui eget purus cursus interdum eu ac elit.'

21.2 Latlon NetCDF ATM_SURFACE_TEMP_HUM_WIND_PRES

Table 21.1: Variables in the dataset ATM_SURFACE_TEMP_HUM_WIND_PRES

Dataset:	ATM_SURFACE_TEMP_HUM_WIND_PRES
Field:	EXFatemp
Field:	EXFaqh
Field:	EXFewind
Field:	EXFnwind
Field:	EXFwspee
Field:	EXFpress

21.2.1 Latlon Variable EXFaqh

ment from ocean state estimation.

Table 21.2: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFaqh variable

Storage	Variable Name	Description	Unit		
Type	EVE I	A. 1 (2) (5 1 1 1)			
float32	EXFaqh	Atmosphere surface (2 m) specific humidity	kg kg-1		
CDL Des	cription				
float32 E	XFaqh(time, latitude, longitude)				
EXFac	qh: _FillValue = 9.96921e+36				
EXFac	qh: coverage_content_type = modelResult				
EXFac	qh: long_name = Atmosphere surface (2 m) specific hu	midity			
EXFac	EXFagh: standard_name = surface_specific_humidity				
EXFac	EXFagh: units = kg kg: 1				
EXFac	EXFaqh: coordinates = time				
EXFac	EXFagh: valid_min = : 0.0014020215021446347				
EXFac	qh: valid_max = 0.03014513850212097				
Commen	its				
Surface (2 m) specific humidity over open water. Note: sum of ERA-Interim surface specific humidity and the control adjust-					

../images/plots/latlon_plots/Atmosphere_Surface_Temperature_Hu

Figure 120:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFaqh

21.2.2 Latlon Variable EXFatemp

Table 21.3: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFatemp variable

Storage	Variable Name	Description	Unit	
Type				
float32	EXFatemp	Atmosphere surface (2 m) air temperature	degree_K	
CDL Des	cription			
float32 E	XFatemp(time, latitude, longitude)			
EXFa	temp: _FillValue = 9.96921e+36			
EXFa	temp: coverage_content_type = modelResult			
EXFa	temp: long_name = Atmosphere surface (2 m) air temp	perature		
	temp: standard_name = air_temperature			
EXFa	temp: units = degree_K			
	temp: coordinates = time			
EXFa	temp: valid_min = 195.37054443359375			
	EXFatemp: valid_max = 312.8451232910156			
Comments				
Surface (2 m) air temperature over open water. Note: sum of ERA-Interim surface air temperature and the control adjustment				
from ocean state estimation.				

../images/plots/latlon_plots/Atmosphere_Surface_Temperature_Hu

Figure 121:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFatemp

21.2.3 Latlon Variable EXFewind

Table 21.4: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFewind variable

Storage	Variable Name	Description	Unit
Type			
float32	EXFewind	Zonal (east-west) wind speed	m s-1
CDL Des	cription		
float32 E	XFewind(time, latitude, longitude)		
EXFe	wind: _FillValue = 9.96921e+36		
EXFe	wind: coverage_content_type = modelResult		
EXFe	wind: long_name = Zonal (east: west) wind speed		
EXFe	wind: standard_name = eastward_wind		
EXFe	wind: units = m s: 1		
EXFe	wind: coordinates = time		
EXFe	wind: valid_min = : 33.524742126464844		
EXFe	wind: valid_max = 39.48556900024414		
Commer	its		
ponents	st-west) component of ocean surface wind. Note: EXF of wind velocity (EXFuwind and EXFvwind) to tracer cerectors. ECCO V4r4 is forced with wind stress (see EXF	ell centers and then finding the zonal component of	the inter-

../images/plots/latlon_plots/Atmosphere_Surface_Temperature_Hu

Figure 122:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFewind

calculated by converting wind stress to vector wind using bulk formulae.

21.2.4 Latlon Variable EXFnwind

Table 21.5: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFnwind variable

Storage	Variable Name	Description	Unit
Type			
float32	EXFnwind	Meridional (north-south) wind speed	m s-1
CDL Des	cription		
float32 E	XFnwind(time, latitude, longitude)		
EXFn	wind: _FillValue = 9.96921e+36		
EXFn	wind: coverage_content_type = modelResult		
EXFn	wind: long_name = Meridional (north: south) wind spec	ed	
EXFn	wind: standard_name = northward_wind		
EXFn	wind: units = m s: 1		
EXFn	wind: coordinates = time		
EXFn	wind: valid_min = : 30.042686462402344		
EXFn	wind: valid_max = 33.95014190673828		
Commer	its		
Meridion	al (north-south) component of ocean surface wind. No	te: EXFnwind is calculated by interpolating the mod	eľs x and

Meridional (north-south) component of ocean surface wind. Note: EXFnwind is calculated by interpolating the model's x and y components of wind velocity (EXFuwind and EXFvwind) to tracer cell centers and then finding the meridional component of the interpolated vectors. ECCO V4r4 is forced with wind stress (see EXFtaux, EXFtauy), not vector winds + bulk formulae. EXFnwind is calculated by converting wind stress to vector wind using bulk formulae.

../images/plots/latlon_plots/Atmosphere_Surface_Temperature_Hu

Figure 123:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFnwind

21.2.5 Latlon Variable EXFpress

Table 21.6: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFpress variable

Storage	Variable Name	Description	Unit	
Type				
float32	EXFpress	Atmosphere surface pressure	N m-2	
CDL Des	cription			
float32 E	XFpress(time, latitude, longitude)			
EXFp	ress: _FillValue = 9.96921e+36			
EXFp	ress: coverage_content_type = modelResult			
EXFp	ress: long_name = Atmosphere surface pressure			
EXFp	ress: standard_name = surface_air_pressure			
EXFp	EXFpress: units = N m: 2			
EXFp	EXFpress: coordinates = time			
EXFp	ress: valid_min = 92090.3125			
EXFp	ress: valid_max = 106314.7734375			
Commer	its			
Atmospheric pressure field at sea level. Note: ERA-Interim atmospheric pressure, with air tides removed using a variety of methods. Not adjusted by the ocean state estimation.				

../images/plots/latlon_plots/Atmosphere_Surface_Temperature_Hu

Figure 124:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFpress

21.2.6 Latlon Variable EXFwspee

Table 21.7: CDL description of ATM_SURFACE_TEMP_HUM_WIND_PRES's EXFwspee variable

Storage Type	Variable Name	Description	Unit	
float32	EXFwspee	Wind speed	m s-1	
CDL Des	cription			
float32 E	XFwspee(time, latitude, longitude)			
EXFw	rspee: _FillValue = 9.96921e+36			
EXFw	rspee: coverage_content_type = modelResult			
EXFw	rspee: long_name = Wind speed			
EXFw	rspee: standard_name = wind_speed			
EXFw	EXFwspee: units = m s: 1			
EXFw	EXFwspee: coordinates = time			
EXFw	EXFwspee: valid_min = 0.27271032333374023			
EXFw	rspee: valid_max = 45.87086486816406			
Commen	its			
	nd speed magnitude (>= 0) over open water. Only used ted by the ocean state estimation and not necesarily			

and EXFvwind are calculated from EXFtaux and EXFtauy using bulk formulae. EXFwspee != sqrt(EXFuwind**2 + EXFvwind**2.

../images/plots/latlon_plots/Atmosphere_Surface_Temperature_Hu

Figure 125:
Dataset: ATM_SURFACE_TEMP_HUM_WIND_PRES
Variable: EXFwspee

21.3 Latlon NetCDF OCEAN_AND_ICE_SURFACE_FW_FLUX

Table 21.8: Variables in the dataset OCEAN_AND_ICE_SURFACE_FW_FLUX

Dataset:	OCEAN_AND_ICE_SURFACE_FW_FLUX
Field:	EXFpreci
Field:	EXFevap
Field:	EXFroff
Field:	SIsnPrcp
Field:	EXFempmr
Field:	oceFWflx
Field:	SlatmFW
Field:	SFLUX
Field:	SlacSubl
Field:	SIrsSubl
Field:	SlfwThru

21.3.1 Latlon Variable EXFempmr

Table 21.9: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's EXFempmr variable

Storage Type	Variable Name	Description	Unit		
float32	EXFempmr	Open ocean net surface freshwater flux from pre-	m s-1		
		cipitation, evaporation, and runoff			
CDL Desc	•				
	XFempmr(time, latitude, longitude)				
EXFe	mpmr: _FillValue = 9.96921e+36				
EXFe	mpmr: coverage_content_type = modelResult				
EXFe	mpmr: direction = >0 increases salinity (SALT)				
EXFe	mpmr: long_name = Open ocean net surface freshwate	er flux from precipitation			
evaporati	. • .				
and runo	ff				
EXFe	EXFempmr: units = m s: 1				
EXFe	EXFempmr: coordinates = time				
EXFe	mpmr: valid_min = : 8.299433829961345e: 06				
EXFe	mpmr: valid_max = 5.400421514423215e: 07				
Commen	ts				
Net surface freshwater flux from precipitation, evaporation, and runoff per unit area in open water (not covered by sea-ice).					
Excludes	freshwater fluxes involving sea-ice and snow. Note: ca	lculated as EXFevap-EXFpreci-EXFroff.			

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 126:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: EXFempmr

21.3.2 Latlon Variable EXFevap

Table 21.10: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's EXFevap variable

Storage Type	Variable Name	Description	Unit
float32	EXFevap	Open ocean evaporation rate	m s-1
CDL Des	cription		
float32 E	XFevap(time, latitude, longitude)		
EXFe	vap: _FillValue = 9.96921e+36		
EXFe	vap: coverage_content_type = modelResult		
EXFe	vap: direction = >0 increases salinity (SALT)		
EXFe	vap: long_name = Open ocean evaporation rate		
EXFe	vap: standard_name = lwe_water_evaporation_rate		
EXFe	vap: units = m s: 1		
EXFe	vap: coordinates = time		
EXFe	vap: valid_min = : 1.0958113705328287e: 07		
EXFe	vap: valid_max = 7.090054623404285e: 07		
Commer	nts		
	ion rate per unit area of open water (not covered by sea er (2004) NCAR/TN-460+STR.	a-ice). Note: calculated using the bulk formula follow	ing Large

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 127:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: EXFevap

21.3.3 Latlon Variable EXFpreci

Table 21.11: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's EXFpreci variable

Storage	Variable Name	Description	Unit	
Type				
float32	EXFpreci	Precipitation rate	m s-1	
CDL Des	cription			
float32 E	XFpreci(time, latitude, longitude)			
EXFp	reci: _FillValue = 9.96921e+36			
EXFp	reci: coverage_content_type = modelResult			
EXFp	reci: direction = >0 increases salinity (SALT)			
EXFp	EXFpreci: long_name = Precipitation rate			
EXFp	EXFpreci: standard_name = lwe_precipitation_rate			
EXFp	EXFpreci: units = m s: 1			
EXFp	reci: coordinates = time			
EXFp	reci: valid_min = : 1.4860395936011628e: 07			
EXFp	reci: valid_max = 8.317776519106701e: 06			
Commer	its			
Precipitat	ion rate. Note: sum of ERA-Interim precipitation and t	he control adjustment from ocean state estimation.		

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 128:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: EXFpreci

21.3.4 Latlon Variable EXFroff

Table 21.12: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's EXFroff variable

Storage	Variable Name	Description	Unit
Type			
float32	EXFroff	River runoff	m s-1
CDL Des			
float32 E	XFroff(time, latitude, longitude)		
EXFro	off: _FillValue = 9.96921e+36		
EXFro	off: coverage_content_type = modelResult		
EXFro	off: direction = >0 increases salinity (SALT)		
EXFro	off: long_name = River runoff		
EXFro	off: standard_name = surface_runoff_flux		
EXFro	EXFroff: units = m s: 1		
EXFro	EXFroff: coordinates = time		
EXFro	EXFroff: valid_min = 0.0		
EXFro	EXFroff: valid_max = 4.185612397122895e: 06		
Comments			
River run	off freshwater flux. Note: not adjusted by the optimiza	tion.	

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 129:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: EXFroff

21.3.5 Latlon Variable SFLUX

Table 21.13: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's SFLUX variable

Storage Type	Variable Name	Description	Unit
float32	SFLUX	Rate of change of total ocean salinity per m2 accounting for mass fluxes.	g m-2 s-1
CDID			

CDL Description

float32 SFLUX(time, latitude, longitude)

SFLUX: _FillValue = 9.96921e+36

SFLUX: coverage_content_type = modelResult

SFLUX: direction = >0 increases salinity (SALT)

SFLUX: long_name = Rate of change of total ocean salinity per m2 accounting for mass fluxes.

SFLUX: units = g m: 2 s: 1

SFLUX: coordinates = time

SFLUX: valid_min = : 0.06244903802871704

SFLUX: valid_max = 0.010570422746241093

Comments

The rate of change of total ocean salinity due to freshwater fluxes across the liquid surface and the addition or removal of mass. Note: the global area integral of SFLUX matches the time-derivative of total ocean salinity (psu s-1). Unlike oceFWflx, SFLUX includes the contribution to the total ocean salinity from changing ocean mass (e.g. from the addition or removal of freshwater in oceFWflx).

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 130:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: SFLUX

21.3.6 Latlon Variable SlacSubl

Table 21.14: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's SlacSubl variable

Storage Type	Variable Name	Description	Unit		
float32	SlacSubl	Freshwater flux to the atmosphere due to sublimation-deposition of snow or ice	kg m-2 s-1		
CDL Des	CDL Description				
float32 SlacSubl(time, latitude, longitude)					
SlacS	Subl: _FillValue = 9.96921e+36				
SlacS	SlacSubl: coverage_content_type = modelResult				
SlacSubl: direction = >0 decreases snow or sea: ice thickness (HSNOW or HEFF)					
SlacS	SlacSubl: long_name = Freshwater flux to the atmosphere due to sublimation: deposition of snow or ice				

SlacSubl: standard_name = water_sublimation_flux

SlacSubl: units = kg m: 2 s: 1 SlacSubl: coordinates = time SlacSubl: valid_min = 0.0

SlacSubl: valid_max = 7.735946564935148e: 05

Comments

Freshwater flux to the atmosphere due to sublimation-deposition of snow or ice. Positive values imply sublimation from ice/snow to vapor, negative values imply deposition from atmospheric moisture

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 131:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: SlacSubl

21.3.7 Latlon Variable SlatmFW

Table 21.15: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's SlatmFW variable

Storage Type	Variable Name	Description	Unit
float32	SlatmFW	Net freshwater flux into the open ocean, sea-ice, and snow	kg m-2 s-1

CDL Description

float32 SlatmFW(time, latitude, longitude)

SlatmFW: _FillValue = 9.96921e+36

SlatmFW: coverage_content_type = modelResult SlatmFW: direction = >0 decreases salinity (SALT)

SlatmFW: long_name = Net freshwater flux into the open ocean

sea: ice and snow

SlatmFW: standard_name = surface_downward_water_flux

SlatmFW: units = kg m: 2 s: 1 SlatmFW: coordinates = time

SlatmFW: valid_min = : 0.00043017856660299003 SlatmFW: valid_max = 0.008299433626234531

Comments

Net freshwater flux into the combined liquid ocean, sea-ice, and snow reservoirs from the atmosphere and runoff. Note: freshwater fluxes BETWEEN the liquid ocean and sea-ice or snow reservoirs do not contribute to SlatmFW. SlatmFW counts all fluxes to/from the atmosphere that change the TOTAL freshwater stored in the combined liquid ocean, sea-ice, and snow reservoirs.

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 132:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: SlatmFW

21.3.8 Latlon Variable SIfwThru

Table 21.16: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's SIfwThru variable

Storage Type	Variable Name	Description	Unit	
float32	SlfwThru	Precipitation through sea-ice	kg m-2 s-1	
CDL Desc	cription		•	
float32 S	lfwThru(time, latitude, longitude)			
SIfwT	hru: _FillValue = 9.96921e+36			
SlfwT	hru: coverage_content_type = modelResult			
SIfwT	hru: direction = >0 increases ocean volume			
SIfwT	hru: long_name = Precipitation through sea: ice			
SIfwT	SIfwThru: units = kg m: 2 s: 1			
SIfwT	SIfwThru: coordinates = time			
SIfwT	SIfwThru: valid_min = : 1.695218452368863e: 05			
SlfwT	SIfwThru: valid_max = 0.0010632629273459315			
Commen	its			
Precipitation over sea-ice covered regions reaching ocean through sea-ice. Note: Precipitation over sea-ice covered regions				

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 133:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: SIfwThru

that directly reaches ocean through the sea-ice. It is not due to melt of sea-ice/snow.

21.3.9 Latlon Variable SIrsSubl

Table 21.17: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's SIrsSubl variable

Storage Type	Variable Name	Description	Unit	
float32	SirsSubl	Residual sublimation freshwater flux	kg m-2 s-1	
CDL Description				

float32 SIrsSubl(time, latitude, longitude)

SIrsSubl: _FillValue = 9.96921e+36

SirsSubl: coverage_content_type = modelResult SirsSubl: direction = >0 decreases ocean volume

SIrsSubl: long_name = Residual sublimation freshwater flux

SIrsSubl: units = kg m: 2 s: 1 SIrsSubl: coordinates = time

SIrsSubl: valid_min = : 0.0001067528864950873 SIrsSubl: valid_max = 8.640533451398369e: 06

Comments

Residual freshwater flux by sublimation to remove water from or add water to ocean. When implied sublimation freshwater flux SlacSubl is larger than availabe sea-ice/snow, SIrsSubl is positive and water is removed from ocean. Note: freshwater flux by sublimation that is to remove water from the ocean when it is positive.

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 134:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: SIrsSubl

21.3.10 Latlon Variable SIsnPrcp

$Table\ 21.18:\ CDL\ description\ of\ OCEAN_AND_ICE_SURFACE_FW_FLUX's\ SIsnPrcp\ variable$

Storage Type	Variable Name	Description	Unit	
float32	SIsnPrcp	Snow precipitation on sea-ice	kg m-2 s-1	
CDL Desc	cription			
float32 S	IsnPrcp(time, latitude, longitude)			
SIsnP	rcp: _FillValue = 9.96921e+36			
SIsnP	rcp: coverage_content_type = modelResult			
SIsnP	rcp: direction = >0 increases snow thickness (HSNOW)			
SIsnP	SIsnPrcp: long_name = Snow precipitation on sea: ice			
SIsnP	SIsnPrcp: standard_name = snowfall_flux			
SIsnP	SIsnPrcp: units = kg m: 2 s: 1			
SIsnP	SIsnPrcp: coordinates = time			
SIsnP	SlsnPrcp: valid_min = : 4.334669574745931e: O5			
SIsnP	SlsnPrcp: valid_max = 0.0009354020585305989			
Commen	ts			
Snow pre	cipitation rate over sea-ice, averaged over the entire m	nodel grid cell.		

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 135:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: SIsnPrcp

21.3.11 Latlon Variable oceFWflx

Table 21.19: CDL description of OCEAN_AND_ICE_SURFACE_FW_FLUX's oceFWflx variable

Storage Type	Variable Name	Description	Unit
float32	oceFWflx	Net freshwater flux into the ocean	kg m-2 s-1
oceF\	cription ceFWflx(time, latitude, longitude) Wflx: _FillValue = 9.96921e+36 Wflx: coverage_content_type = modelResult Wflx: direction = >0 decreases salinity (SALT)		

oceFWflx: standard_name = water_flux_into_sea_water oceFWflx: units = kg m: 2 s: 1 oceFWflx: coordinates = time

oceFWflx: valid_min = : 0.0033125500194728374 oceFWflx: valid_max = 0.008299433626234531

oceFWflx: long_name = Net freshwater flux into the ocean

Comments

Net freshwater flux into the ocean including contributions from runoff, evaporation, precipitation, and mass exchange with sea-ice due to melting and freezing and snow melting. Note: oceFWflx does NOT include freshwater fluxes between the atmosphere and sea-ice and snow. The variable 'SlatmFW' accounts for freshwater fluxes out of the combined ocean+sea-ice+snow reservoir.

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Freshwa

Figure 136:
Dataset: OCEAN_AND_ICE_SURFACE_FW_FLUX
Variable: oceFWflx

21.4 Latlon NetCDF OCEAN_AND_ICE_SURFACE_HEAT_FLUX

Table 21.20: Variables in the dataset OCEAN_AND_ICE_SURFACE_HEAT_FLUX

Dataset:	OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Field:	EXFhl
Field:	EXFhs
Field:	EXFlwdn
Field:	EXFswdn
Field:	EXFqnet
Field:	oceQnet
Field:	SlatmQnt
Field:	TFLUX
Field:	EXFswnet
Field:	EXFlwnet
Field:	oceQsw
Field:	Slaaflux

21.4.1 Latlon Variable EXFhl

Table 21.21: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFhl variable

Storage	Variable Name	Description	Unit	
Туре				
float32	EXFhl	Open ocean air-sea latent heat flux	W m-2	
CDL Des	•			
float32 E	XFhl(time, latitude, longitude)			
EXFh	l: _FillValue = 9.96921e+36			
EXFh	l: coverage_content_type = modelResult			
EXFh	l: direction = >0 increases potential temperature (THET	(A)		
EXFh	l: long_name = Open ocean air: sea latent heat flux			
EXFh	EXFhl: standard_name = surface_downward_latent_heat_flux			
EXFh	EXFhl: units = W m: 2			
EXFh	EXFhl: coordinates = time			
EXFh	EXFhl: valid_min = : 1772.513671875			
EXFh	EXFhl: valid_max = 273.9528503417969			
Commen	its			
Air-sea latent heat flux per unit area of open water (not covered by sea-ice). Note: calculated from the bulk formula following Large and Yeager (2004) NCAR/TN-460+STR.				

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 137:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFhl

21.4.2 Latlon Variable EXFhs

Table 21.22: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFhs variable

Storage	Variable Name	Description	Unit	
Type				
float32	EXFhs	Open ocean air-sea sensible heat flux	W m-2	
CDL Des	cription			
float32 E	XFhs(time, latitude, longitude)			
EXFh	s: _FillValue = 9.96921e+36			
EXFh	s: coverage_content_type = modelResult			
EXFh	s: direction = >0 increases potential temperature (THE)	ГА)		
EXFh	s: long_name = Open ocean air: sea sensible heat flux			
EXFh	s: standard_name = surface_downward_sensible_heat	_flux		
EXFh	s: units = W m: 2			
EXFh	EXFhs: coordinates = time			
EXFh	EXFhs: valid_min = : 2478.766357421875			
EXFh	EXFhs: valid_max = 357.0105895996094			
Comments				
Air-sea sensible heat flux per unit area of open water (not covered by sea-ice). Note: calculated from the bulk formula following				
Large and	d Yeager (2004) NCAR/TN-460+STR.			

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 138:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFhs

21.4.3 Latlon Variable EXFlwdn

Table 21.23: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFlwdn variable

Storage	Variable Name	Description	Unit	
Type				
float32	EXFlwdn	Downward longwave radiative flux	W m-2	
CDL Des	cription			
float32 E	XFlwdn(time, latitude, longitude)			
EXFlv	vdn: _FillValue = 9.96921e+36			
EXFlv	vdn: coverage_content_type = modelResult			
EXFlv	vdn: direction = >0 increases potential temperature (TF	HETA)		
EXFlv	vdn: long_name = Downward longwave radiative flux			
EXFlv	vdn: standard_name = surface_downwelling_longwav	e_flux_in_air		
EXFlv	EXFlwdn: units = W m: 2			
EXFlv	EXFlwdn: coordinates = time			
EXFlv	EXFlwdn: valid_min = 4.188045501708984			
EXFlwdn: valid_max = 513.3919067382812				
Comments				
Downward longwave radiative flux. Note: sum of ERA-Interim downward longwave radiation and the control adjustment from				
ocean state estimation.				

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 139:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFlwdn

21.4.4 Latlon Variable EXFlwnet

Table 21.24: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFlwnet variable

Storage	Variable Name	Description	Unit	
Type				
float32	EXFlwnet	Net open ocean longwave radiative flux	W m-2	
CDL Des	cription			
float32 E	XFlwnet(time, latitude, longitude)			
EXFlv	vnet: _FillValue = 9.96921e+36			
	vnet: coverage_content_type = modelResult			
	vnet: direction = >0 increases potential temperature (T			
EXFlv	vnet: long_name = Net open ocean longwave radiative	flux		
EXFlv	vnet: standard_name = surface_net_downward_longv	vave_flux		
EXFlv	vnet: units = W m: 2			
EXFlv	vnet: coordinates = time			
EXFlv	EXFlwnet: valid_min = : 144.3661346435547			
EXFlv	EXFlwnet: valid_max = 293.4114990234375			
Commer	nts			
Net longwave radiative flux per unit area of open water (not covered by sea-ice). Note: net longwave radiation over open water calculated from downward longwave radiation (EXFlwdn) and upward longwave radiation from ocean and sea-ice thermal emission (Stefan-Boltzman law).				

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 140:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFlwnet

21.4.5 Latlon Variable EXFqnet

Table 21.25: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFqnet variable

Storage	Variable Name	Description	Unit	
Type				
float32	EXFqnet	Open ocean net air-sea heat flux	W m-2	
CDL Des	cription			
float32 E	XFqnet(time, latitude, longitude)			
EXFq	net: _FillValue = 9.96921e+36			
EXFq	net: coverage_content_type = modelResult			
EXFq	net: direction = >0 increases potential temperature (TH	ETA)		
EXFq	net: long_name = Open ocean net air: sea heat flux			
EXFq	EXFqnet: units = W m: 2			
EXFq	EXFgnet: coordinates = time			
EXFq	EXFgnet: valid_min = : 687.8736572265625			
EXFqnet: valid_max = 3408.977783203125				
Commer	its			
Net air-sea heat flux (turbulent and radiative) per unit area of open water (not covered by sea-ice). Note: net upward heat flux				
over ope	over open water, calculated as EXFlwnet+EXFswnet-EXFlh-EXFhs.			

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 141:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFqnet

21.4.6 Latlon Variable EXFswdn

Table 21.26: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFswdn variable

Storage	Variable Name	Description	Unit		
Type					
float32	EXFswdn	Downwelling shortwave radiative flux	W m-2		
CDL Desc	cription				
	XFswdn(time, latitude, longitude)				
EXFs	wdn: _FillValue = 9.96921e+36				
EXFsv	wdn: coverage_content_type = modelResult				
EXFsv	wdn: direction = >0 increases potential temperature (TF	HETA)			
	wdn: long_name = Downwelling shortwave radiative flu				
EXFsv	wdn: standard_name = surface_downwelling_shortwa	/e_flux_in_air			
EXFsv	wdn: units = W m: 2				
EXFsv	EXFswdn: coordinates = time				
EXFsv	wdn: valid_min = : 224.63368225097656				
EXFsv	wdn: valid_max = 707.345947265625				
	Comments				
Downwai	Downward shortwave radiative flux. Note: sum of ERA-Interim downward shortwave radiation and the control adjustment				
from oce	an state estimation.				

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 142:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFswdn

21.4.7 Latlon Variable EXFswnet

Table 21.27: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's EXFswnet variable

Storage	Variable Name	Description	Unit	
Type				
float32	EXFswnet	Open ocean net shortwave radiative flux	W m-2	
CDL Des	cription			
float32 E	XFswnet(time, latitude, longitude)			
EXFsv	wnet: _FillValue = 9.96921e+36			
EXFsv	wnet: coverage_content_type = modelResult			
EXFsv	wnet: direction = >0 increases potential temperature (T	HETA)		
EXFsv	wnet: long_name = Open ocean net shortwave radiativ	e flux		
EXFsv	wnet: standard_name = surface_net_downward_short	wave_flux		
EXFsv	wnet: units = W m: 2			
EXFsv	EXFswnet: coordinates = time			
EXFsv	wnet: valid_min = : 655.6171264648438			
EXFsv	EXFswnet: valid_max = 193.89297485351562			
Commen	ts			
	wave radiative flux per unit area of open water (not c culated from downward shortwave flux (EXFswdn) and		over open	

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 143:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: EXFswnet

21.4.8 Latlon Variable Slaaflux

Table 21.28: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's Slaaflux variable

Storage Type	Variable Name	Description	Unit
float32	Slaaflux	Conservative ocean and sea-ice advective heat flux adjustment	W m-2

CDL Description

float32 Slaaflux(time, latitude, longitude)

Slaaflux: _FillValue = 9.96921e+36

Slaaflux: coverage_content_type = modelResult

Slaaflux: direction = >0 decrease potential temperature (THETA)

Slaaflux: long_name = Conservative ocean and sea: ice advective heat flux adjustment

Slaaflux: units = W m: 2 Slaaflux: coordinates = time

Slaaflux: valid_min = : 16.214622497558594 Slaaflux: valid_max = 50.35451889038086

Comments

Heat flux associated with the temperature difference between sea surface temperature and sea-ice (assume O degree C in the model). Note: heat flux needed to melt/freeze sea-ice at O degC to sea water at the ocean surface (at sea surface temperature), excluding the latent heat of fusion.

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 144:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: Slaaflux

21.4.9 Latlon Variable SlatmQnt

Table 21.29: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's SlatmQnt variable

Storage Type	Variable Name	Description	Unit
float32	SlatmQnt	Net upward heat flux to the atmosphere	W m-2
CDL Des	cription		
float32 S	latmQnt(time, latitude, longitude)		
Slatm	nQnt: _FillValue = 9.96921e+36		
Slatm	nQnt: coverage_content_type = modelResult		
Slatm	nQnt: direction = >0 upward		
decrease	s ocean temperature		
Slatm	nQnt: long_name = Net upward heat flux to the atmos	ohere	
Slatm	nQnt: standard_name = surface_upward_heat_flux_in	_air	
Slatm	SlatmQnt: units = W m: 2		
Slatm	nQnt: coordinates = time		
Slatm	nQnt: valid_min = : 756.0607299804688		
Slatm	Qnt: valid_max = 1704.7703857421875		
Commen	ts		
Net upwa	ard heat flux to the atmosphere across open water and	sea-ice or snow surfaces. Note: nonzero SlatmQnt	may not
	ated with a change in ocean potential temperature du changes use the variable TFLUX which also accounts fo		ean heat

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 145:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: SlatmQnt

21.4.10 Latlon Variable TFLUX

Table 21.30: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's TFLUX variable

Storage Type	Variable Name	Description	Unit
float32	TFLUX	Rate of change of ocean heat content per m2 accounting for mass fluxes.	W m-2

CDL Description

float32 TFLUX(time, latitude, longitude)

TFLUX: _FillValue = 9.96921e+36

TFLUX: coverage_content_type = modelResult

TFLUX: direction = >0 increases potential temperature (THETA)

TFLUX: long_name = Rate of change of ocean heat content per m2 accounting for mass fluxes.

TFLUX: units = W m: 2

TFLUX: coordinates = time

TFLUX: valid_min = : 1713.51220703125 TFLUX: valid_max = 870.3130493164062

Comments

The rate of change of ocean heat content due to heat fluxes across the liquid surface and the addition or removal of mass. . Note: the global area integral of TFLUX and geothermal flux (geothermalFlux.bin) matches the time-derivative of ocean heat content (J/s). Unlike oceQnet, TFLUX includes the contribution to the ocean heat content from changing ocean mass (e.g. from oceFWflx).

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 146:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: TFLUX

21.4.11 Latlon Variable oceQnet

Table 21.31: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's oceQnet variable

Storage	Variable Name	Description	Unit
Type		-	
float32	oceQnet	Net heat flux into the ocean surface	W m-2
CDL Desc	cription		
float32 o	ceQnet(time, latitude, longitude)		
oceQ	net: _FillValue = 9.96921e+36		
oceQ	net: coverage_content_type = modelResult		
oceQ	net: direction = >0 increases potential temperature (TF	HETA)	
oceQ	net: long_name = Net heat flux into the ocean surface		
oceQ	oceQnet: standard_name = surface_downward_heat_flux_in_sea_water		
oceQ	oceQnet: units = W m: 2		
oceQ	oceQnet: coordinates = time		
oceQ	net: valid_min = : 1708.8460693359375		
oceQ	net: valid_max = 675.3716430664062		

Comments

Net heat flux into the ocean surface from all processes: air-sea turbulent and radiative fluxes and turbulent and conductive fluxes between the ocean and sea-ice and snow. Note: oceQnet does not include the change in ocean heat content due to changing ocean ocean mass (oceFWflx). Mass fluxes from evaporation, precipitation, and runoff (EXFempmr) happen at the same temperature as the ocean surface temperature. Consequently, EmPmR does not change ocean surface temperature. Conversely, mass fluxes due to sea-ice thickening/thinning and snow melt in the model are assumed to happen at a fixed OC. Consequently, mass fluxes due to phase changes between seawater and sea-ice and snow induce a heat flux when the ocean surface temperature is not OC. The variable TFLUX does include the change in ocean heat content due to changing ocean mass.

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 147:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: oceQnet

21.4.12 Latlon Variable oceQsw

Table 21.32: CDL description of OCEAN_AND_ICE_SURFACE_HEAT_FLUX's oceQsw variable

Storage	Variable Name	Description	Unit
Type			
float32	oceQsw	Net shortwave radiative flux across the ocean sur-	W m-2
		face	
CDL Des	cription		
float32 o	ceQsw(time, latitude, longitude)		
oceQ	sw: _FillValue = 9.96921e+36		
oceQ	sw: coverage_content_type = modelResult		
oceQ	sw: direction = >0 increases potential temperature (TH	ETA)	
oceQ	sw: long_name = Net shortwave radiative flux across th	ne ocean surface	
oceQ	sw: units = W m: 2		
oceQ	sw: coordinates = time		
oceQ	sw: valid_min = : 134.39808654785156		
oceQsw: valid_max = 655.6171264648438			
Commen	nts		
Net short	Net shortwave radiative flux across the ocean surface. Note: Shortwave radiation penetrates below the surface grid cell.		

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Heat_Fl

Figure 148:
Dataset: OCEAN_AND_ICE_SURFACE_HEAT_FLUX
Variable: oceQsw

21.5 Latlon NetCDF OCEAN_AND_ICE_SURFACE_STRESS

Table 21.33: Variables in the dataset OCEAN_AND_ICE_SURFACE_STRESS

Dataset:	OCEAN_AND_ICE_SURFACE_STRESS
Field:	EXFtaue
Field:	EXFtaun
Field:	oceTAUE
Field:	oceTAUN

21.5.1 Latlon Variable EXFtaue

Table 21.34: CDL description of OCEAN_AND_ICE_SURFACE_STRESS's EXFtaue variable

Storage Type	Variable Name	Description	Unit
float32	EXFtaue	Zonal (east-west) wind stress	N m-2

CDL Description

float32 EXFtaue(time, latitude, longitude)

EXFtaue: _FillValue = 9.96921e+36

EXFtaue: coverage_content_type = modelResult

EXFtaue: direction = >0 increases eastward velocity (EVEL) EXFtaue: long_name = Zonal (east: west) wind stress

EXFtaue: standard_name = surface_downward_eastward_stress

EXFtaue: units = N m: 2 EXFtaue: coordinates = time

EXFtaue: valid_min = : 3.1686902046203613 EXFtaue: valid_max = 3.284827709197998

Comments

Zonal (east-west) component of wind stress. Note: EXFtaue is the zonal wind stress applied to the ocean and sea-ice. When sea-ice is present, the total zonal stress applied to the ocean surface is NOT EXFtaue, but a combination of the wind stress in the open water fraction (EXFtaue) and a stress from sea-ice in the ice-covered fraction (see oceTAUE). EXFtaue is calculated by interpolating the model's x and y components of wind stress (EXFtaux and EXFtauy) to tracer cell centers and then finding the zonal component of the interpolated vectors. It is NOT recommended to use EXFtaue and EXFtaun for momentum budget calculations because interpolating EXFtaux and EXFtauy from the model grid to the lat-lon grid introduces errors. For momentum fluxes to the ocean surface see oceTAUx and oceTAUy.

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Stress/

Figure 149:
Dataset: OCEAN_AND_ICE_SURFACE_STRESS
Variable: EXFtaue

21.5.2 Latlon Variable EXFtaun

Table 21.35: CDL description of OCEAN_AND_ICE_SURFACE_STRESS's EXFtaun variable

Storage Type	Variable Name	Description	Unit
float32	EXFtaun	Meridional (north-south) wind stress	N m-2
CDID			

CDL Description

float32 EXFtaun(time, latitude, longitude)

EXFtaun: _FillValue = 9.96921e+36

EXFtaun: coverage_content_type = modelResult

EXFtaun: direction = >O increases northward velocity (NVEL) EXFtaun: long_name = Meridional (north: south) wind stress EXFtaun: standard_name = surface_downward_northward_stress

EXFtaun: units = N m: 2 EXFtaun: coordinates = time

EXFtaun: valid_min = : 4.111213207244873 EXFtaun: valid_max = 6.878159523010254

Comments

Meridional (north-south) component of wind stress. Note: EXFtaun is the stress applied to the ocean and sea-ice. When sea-ice is present, the total meridional stress applied to the ocean surface is NOT EXFtaun, but a combination of the wind stress in the open water fraction (EXFtaun) and a stress from sea-ice in the ice-covered fraction (see oceTAUN). EXFtaun is calculated by interpolating the model's x and y components of wind stress (EXFtaux and EXFtauy) to tracer cell centers and then determining the meridional component of the interpolated vectors. It is NOT recommended to use EXFtaue and EXFtaun for momentum budget calculations because interpolating EXFtaux and EXFtauy from the model grid to the lat-lon grid introduces errors. For momentum fluxes to the ocean surface see oceTAUx and oceTAUy.

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Stress/

Figure 150:
Dataset: OCEAN_AND_ICE_SURFACE_STRESS
Variable: EXFtaun

21.5.3 Latlon Variable oceTAUE

Table 21.36: CDL description of OCEAN_AND_ICE_SURFACE_STRESS's oceTAUE variable

Storage	Variable Name	Description	Unit	
Type				
float32	oceTAUE	Zonal (east-west) ocean surface stress	N m-2	
CDL Des	cription			
float32 o	ceTAUE(time, latitude, longitude)			
oceT/	AUE: _FillValue = 9.96921e+36			
oceT/	AUE: coverage_content_type = modelResult			
oceT/	AUE: direction = >0 increases eastward velocity (EVEL)			
oceT/	AUE: long_name = Zonal (east: west)	ess		
oceT/	AUE: standard_name = surface_downward_eastward_s	stress		
oceT/	AUE: units = N m: 2			
oceT/	oceTAUE: coordinates = time			
oceTA	oceTAUE: valid_min = : 2.058817148208618			
oceTA	AUE: valid_max = 2.000103712081909			
Commer	nts			
	st-west) component of ocean surface stress due to w			
the mod	el's x and y components of ocean surface stress (oceT/	AUX and oceTAUY) to tracer cell centers and then fi	nding the	
zonal cor	nponent of the interpolated vectors.			

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Stress/

Figure 151:
Dataset: OCEAN_AND_ICE_SURFACE_STRESS
Variable: oceTAUE

21.5.4 Latlon Variable oceTAUN

Table 21.37: CDL description of OCEAN_AND_ICE_SURFACE_STRESS's oceTAUN variable

Storage	Variable Name	Description	Unit
Type			
float32	oceTAUN	Meridional (north-south) ocean surface stress	N m-2
CDL Des	cription		
float32 o	ceTAUN(time, latitude, longitude)		
oceT/	AUN: _FillValue = 9.96921e+36		
oceT/	AUN: coverage_content_type = modelResult		
oceT/	AUN: direction = >0 increases northward velocity (NVEI	_)	
oceT/	AUN: long_name = Meridional (north: south) ocean sur	face stress	
oceT/	AUN:	_stress	
oceT/	AUN: units = N m: 2		
oceT/	AUN: coordinates = time		
oceT/	oceTAUN: valid_min = : 2.4036266803741455		
oceT/	AUN: valid_max = 2.019313097000122		
Commer	its		
	al (north-south) component of ocean surface stress du		
lating the	model's x and y components of ocean surface stress (oceTAUX and oceTAUY) to tracer cell centers and the	en finding
the meric	lional component of the interpolated vectors.		

../images/plots/latlon_plots/Ocean_and_Sea-Ice_Surface_Stress/

Figure 152:
Dataset: OCEAN_AND_ICE_SURFACE_STRESS
Variable: oceTAUN

21.6 Latlon NetCDF OCEAN_BOLUS_VELOCITY

Table 21.38: Variables in the dataset OCEAN_BOLUS_VELOCITY

Dataset:	OCEAN_BOLUS_VELOCITY
Field:	EVELSTAR
Field:	NVELSTAR
Field:	WVELSTAR

21.6.1 Latlon Variable EVELSTAR

Table 21.39: CDL description of OCEAN_BOLUS_VELOCITY's EVELSTAR variable

Storage Type	Variable Name	Description	Unit
float32	EVELSTAR	Gent-McWilliams zonal (east-west) bolus velocity	m s-1

CDL Description

float32 EVELSTAR(time, Z, latitude, longitude)

EVELSTAR: _FillValue = 9.96921e+36

EVELSTAR: coverage_content_type = modelResult

EVELSTAR: long_name = Gent: McWilliams zonal (east: west) bolus velocity

EVELSTAR: standard_name = eastward_sea_water_velocity_due_to_parameterized_mesoscale_eddies

EVELSTAR: units = m s: 1

EVELSTAR: coordinates = time Z

EVELSTAR: valid_min = : 0.5832233428955078 EVELSTAR: valid_max = 0.7810457944869995

Comments

Zonal (east-west) component of the Gent-McWilliams bolus ocean velocity. Note: EVELSTAR is calculated by interpolating the model's x and y components of GM bolus ocean velocity (UVELSTAR and VVELSTAR) to tracer cell centers and then finding the zonal components of the interpolated vectors. One should take care when interpreting bolus velocities interpolated from the ECCO native model grid because interpolating from the model grid to the lat-lon grid introduces errors. Some closed buget calculations require bolus velocity terms on the native model grid.

../images/plots/latlon_plots/Gent-McWilliams_Ocean_Bolus_Veloc

Figure 153:
Dataset: OCEAN_BOLUS_VELOCITY
Variable: EVELSTAR

21.6.2 Latlon Variable NVELSTAR

Table 21.40: CDL description of OCEAN_BOLUS_VELOCITY's NVELSTAR variable

Storage Type	Variable Name	Description	Unit
float32	NVELSTAR	Gent-McWilliams meridional (north-south) bolus velocity	m s-1

CDL Description

float32 NVELSTAR(time, Z, latitude, longitude)

NVELSTAR: _FillValue = 9.96921e+36

NVELSTAR: coverage_content_type = modelResult

NVELSTAR: long_name = Gent: McWilliams meridional (north: south) bolus velocity

NVELSTAR: standard_name = northward_sea_water_velocity_due_to_parameterized_mesoscale_eddies

NVELSTAR: units = m s: 1

NVELSTAR: coordinates = time Z

NVELSTAR: valid_min = : 0.6472858190536499 NVELSTAR: valid_max = 0.6751338243484497

Comments

Meridional (north-south) component of the Gent-McWilliams bolus ocean velocity. Note: NVELSTAR is calculated by interpolating the model's x and y components of GM bolus ocean velocity (UVELSTAR and VVELSTAR) to tracer cell centers and then finding the meridional components of the interpolated vectors. One should take care when interpreting bolus velocities interpolated from the ECCO native model grid because interpolating from the model grid to the lat-lon grid introduces errors. Some closed buget calculations require bolus velocity terms on the native model grid

../images/plots/latlon_plots/Gent-McWilliams_Ocean_Bolus_Veloc

Figure 154:
Dataset: OCEAN_BOLUS_VELOCITY
Variable: NVELSTAR

21.6.3 Latlon Variable WVELSTAR

Table 21.41: CDL description of OCEAN_BOLUS_VELOCITY's WVELSTAR variable

Storage	Variable Name	Description	Unit
Type			
float32	WVELSTAR	Gent-McWilliams vertical bolus velocity	m s-1
CDL Des	cription		
float32 V	/VELSTAR(time, Z, latitude, longitude)		
WVE	LSTAR: _FillValue = 9.96921e+36		
WVE	LSTAR: coverage_content_type = modelResult		
WVE	LSTAR: direction = >0 decreases volume		
WVE	LSTAR: long_name = Gent: McWilliams vertical bolus v	elocity	
WVE	LSTAR: standard_name = upward_sea_water_velocity_	_due_to_parameterized_mesoscale_eddies	
WVE	LSTAR: units = m s: 1		
WVE	LSTAR: coordinates = time Z		
WVE	LSTAR: valid_min = : 0.00037936007720418274		
WVE	WVELSTAR: valid_max = 0.0004019034677185118		
Comments			
	Vertical component of the Gent-McWilliams bolus ocean velocity. Note: in the Arakawa-C grid used in ECCO V4r4, vertical		
velocities	velocities are staggered relative to the tracer cell centers with values at the TOP and BOTTOM faces of each grid cell.		

../images/plots/latlon_plots/Gent-McWilliams_Ocean_Bolus_Veloc

Figure 155:
Dataset: OCEAN_BOLUS_VELOCITY
Variable: WVELSTAR

21.7 Latlon NetCDF OCEAN_BOTTOM_PRESSURE

Table 21.42: Variables in the dataset OCEAN_BOTTOM_PRESSURE

Dataset:	OCEAN_BOTTOM_PRESSURE
Field:	OBP
Field:	OBPGMAP

21.7.1 Latlon Variable OBP

Table 21.43: CDL description of OCEAN_BOTTOM_PRESSURE's OBP variable

Storage Type	Variable Name	Description	Unit
float32	OBP	Ocean bottom pressure given as equivalent water thickness	m

CDL Description

float32 OBP(time, latitude, longitude)

OBP: _FillValue = 9.96921e+36

OBP: coverage_content_type = modelResult

OBP: long_name = Ocean bottom pressure given as equivalent water thickness

OBP: units = m

OBP: coordinates = time

OBP: valid_min = : 2.544442892074585 OBP: valid_max = 72.1243667602539

Comments

OBP excludes the contribution from global mean atmospheric pressure and is therefore suitable for comparisons with GRACE data products. OBP is calculated as follows. First, we calculate ocean hydrostatic bottom pressure anomaly, PHIBOT, with PHIBOT = p_b/rhoConst - gH(t), where p_b = model ocean hydrostatic bottom pressure, rhoConst = reference density (1029 kg m-3), g is acceleration due to gravity (9.81 m s-2), and H(t) is model depth at time t. Then, OBP = PHIBOT/g + corrections for i) global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH) and ii) global mean atmospheric pressure variations. Use OBP for comparisons with ocean bottom pressure data products that have been corrected for global mean atmospheric pressure variations. GRACE data typically ARE corrected for global mean atmospheric pressure variations. In contrast, ocean bottom pressure gauge data typically ARE NOT corrected for global mean atmospheric pressure variations.

../images/plots/latlon_plots/Ocean_Bottom_Pressure/OBP.png

Figure 156:
Dataset: OCEAN_BOTTOM_PRESSURE
Variable: OBP

21.7.2 Latlon Variable OBPGMAP

Table 21.44: CDL description of OCEAN_BOTTOM_PRESSURE's OBPGMAP variable

Storage Type	Variable Name	Description	Unit
float32	OBPGMAP	Ocean bottom pressure given as equivalent water thickness, includes global mean atmospheric pressure	m

CDL Description

float32 OBPGMAP(time, latitude, longitude)

OBPGMAP: _FillValue = 9.96921e+36 OBPGMAP: coverage_content_type = modelResult

OBPGMAP: long_name = Ocean bottom pressure given as equivalent water thickness

includes global mean atmospheric pressure

OBPGMAP: units = m

OBPGMAP: coordinates = time

OBPGMAP: valid_min = 7.395928859710693 OBPGMAP: valid_max = 82.14805603027344

Comments

OBPGMAP includes the contribution from global mean atmospheric pressure and is therefore suitable for comparisons with ocean bottom pressure gauge data products. OBPGMAP is calculated as follows. First, we calculate ocean hydrostatic bottom pressure anomaly, PHIBOT, with PHIBOT = p_b/rhoConst - gH(t), where p_b = model ocean hydrostatic bottom pressure, rhoConst = reference density (1029 kg m-3), g is acceleration due to gravity (9.81 m s-2), and H(t) is model depth at time t. Then, OBPGMAP= PHIBOT/g + corrections for global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH). Use OBPGMAP for comparisons with ocean bottom pressure data products that have NOT been corrected for global mean atmospheric pressure variations. GRACE data typically ARE corrected for global mean atmospheric pressure variations. In contrast, ocean bottom pressure gauge data typically ARE NOT corrected for global mean atmospheric pressure variations.

../images/plots/latlon_plots/Ocean_Bottom_Pressure/OBPGMAP.png

Figure 157:
Dataset: OCEAN_BOTTOM_PRESSURE
Variable: OBPGMAP

21.8 Latlon NetCDF OCEAN_DENS_STRAT_PRESS

Table 21.45: Variables in the dataset OCEAN_DENS_STRAT_PRESS

Dataset:	OCEAN_DENS_STRAT_PRESS
Field:	RHOAnoma
Field:	DRHODR
Field:	PHIHYD

21.8.1 Latlon Variable DRHODR

Table 21.46: CDL description of OCEAN_DENS_STRAT_PRESS's DRHODR variable

Storage Type	Variable Name	Description	Unit
float32	DRHODR	Density stratification	kg m-3 m-1
CDI Description			

CDL Description

float32 DRHODR(time, Z, latitude, longitude) DRHODR: _FillValue = 9.96921e+36

DRHODR: coverage_content_type = modelResult DRHODR: long_name = Density stratification

DRHODR: units = kg m: 3 m: 1 DRHODR: coordinates = time Z

DRHODR: valid_min = : 0.8687265515327454 DRHODR: valid_max = 0.011617615818977356

Comments

Density stratification: d(sigma) d z-1. Note: density computations are done with in-situ density. The vertical derivatives of in-situ density and locally-referenced potential density are identical. The equation of state is a modified UNESCO formula by Jackett and McDougall (1995), which uses the model variable potential temperature as input assuming a horizontally and temporally constant pressure of \$p_0=g ho_{0} z\$.

../images/plots/latlon_plots/Ocean_Density_Stratification_and_

Figure 158:
Dataset: OCEAN_DENS_STRAT_PRESS
Variable: DRHODR

21.8.2 Latlon Variable PHIHYD

Table 21.47: CDL description of OCEAN_DENS_STRAT_PRESS's PHIHYD variable

Storage Type	Variable Name	Description	Unit
float32	PHIHYD	Ocean hydrostatic pressure anomaly	m2 s-2
CDLD	CDI D		

CDL Description

float32 PHIHYD(time, Z, latitude, longitude)

PHIHYD: _FillValue = 9.96921e+36

PHIHYD: coverage_content_type = modelResult

PHIHYD: long_name = Ocean hydrostatic pressure anomaly

PHIHYD: units = m2 s: 2

PHIHYD: coordinates = time Z

PHIHYD: valid_min = 74.71473693847656 PHIHYD: valid_max = 783.9188232421875

Comments

PHIHYD = p(k) / rhoConst - g z*(k,t), where p = hydrostatic ocean pressure at depth level k, rhoConst = reference density (1029 kg m-3), g is acceleration due to gravity (9.81 m s-2), and z*(k,t) is model depth at level k and time k. Units: p(k) p:[k,g m-1 s-2], rhoConst:[k,g m-3], p(k) p:[k,g m-1]. Note: includes atmospheric pressure loading. Quantity referred to in some contexts as hydrostatic pressure anomaly. PHIBOT accounts for the model's time-varying grid cell thickness (k, coordinate system). See PHIHYDcR for hydrostatic pressure potential anomaly calculated using time-invariant grid cell thicknesses. PHIHYD is NOT corrected for global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH).

../images/plots/latlon_plots/Ocean_Density_Stratification_and_

Figure 159:
Dataset: OCEAN_DENS_STRAT_PRESS
Variable: PHIHYD

21.8.3 Latlon Variable RHOAnoma

Table 21.48: CDL description of OCEAN_DENS_STRAT_PRESS's RHOAnoma variable

Storage	Variable Name	Description	Unit
Туре			
float32	RHOAnoma	In-situ seawater density anomaly	kg m-3
CDL Des	cription		
float32 R	HOAnoma(time, Z, latitude, longitude)		
RHO	Anoma: _FillValue = 9.96921e+36		
RHO	Anoma: coverage_content_type = modelResult		
RHO	Anoma: long_name = In: situ seawater density anomaly	/	
RHO	RHOAnoma: units = kg m: 3		
RHO	RHOAnoma: coordinates = time Z		
RHO	RHOAnoma: valid_min = : 19.919862747192383		
RHO	RHOAnoma: valid_max = 25.540647506713867		
Comments			
In-situ seawater density anomaly relative to the reference density, rhoConst. rhoConst = 1029 kg m-3			

../images/plots/latlon_plots/Ocean_Density_Stratification_and_

Figure 160:
Dataset: OCEAN_DENS_STRAT_PRESS
Variable: RHOAnoma

21.9 Latlon NetCDF OCEAN_MIXED_LAYER_DEPTH

Table 21.49: Variables in the dataset OCEAN_MIXED_LAYER_DEPTH

Dataset:	OCEAN_MIXED_LAYER_DEPTH
Field:	MXLDEPTH

21.9.1 Latlon Variable MXLDEPTH

Table 21.50: CDL description of OCEAN_MIXED_LAYER_DEPTH's MXLDEPTH variable

Storage Type	Variable Name	Description	Unit
float32	MXLDEPTH	Mixed-layer depth diagnosed using the temperature difference criterion of Kara et al., 2000	m
CDI Des	crintion		

CDL Description

float32 MXLDEPTH(time, latitude, longitude)

MXLDEPTH: _FillValue = 9.96921e+36

MXLDEPTH: coverage_content_type = modelResult

MXLDEPTH: long_name = Mixed: layer depth diagnosed using the temperature difference criterion of Kara et al. 2000

MXLDEPTH: standard_name = ocean_mixed_layer_thickness

MXLDEPTH: units = m

MXLDEPTH: coordinates = time

MXLDEPTH: valid_min = 5.000001430511475

MXLDEPTH: valid_max = 5331.2001953125

Comments

Mixed-layer depth as determined by the depth where waters are first 0.8 degrees Celsius colder than the surface. See Kara et al. (JGR, 2000). . Note: the Kara et al. criterion may not be appropriate for some applications. If needed, mixed layer depth can be calculated using different criteria. See vertical density stratification (DRHODR) and density anomaly (RHOAnoma).

../images/plots/latlon_plots/Ocean_Mixed_Layer_Depth/MXLDEPTH

Figure 161:
Dataset: OCEAN_MIXED_LAYER_DEPTH
Variable: MXLDEPTH

21.10 Latlon NetCDF OCEAN_TEMPERATURE_SALINITY

Table 21.51: Variables in the dataset OCEAN_TEMPERATURE_SALINITY

Dataset:	OCEAN_TEMPERATURE_SALINITY
Field:	THETA
Field:	SALT

21.10.1 Latlon Variable SALT

Table 21.52: CDL description of OCEAN_TEMPERATURE_SALINITY's SALT variable

Storage	Variable Name	Description	Unit	
Type				
float32	SALT	Salinity	1e-3	
CDL Des	cription			
float32 S	ALT(time, Z, latitude, longitude)			
SALT	:_FillValue = 9.96921e+36			
SALT	: coverage_content_type = modelResult			
SALT	: long_name = Salinity			
SALT	: standard_name = sea_water_salinity			
SALT	SALT: units = 1e: 3			
SALT	SALT: coordinates = time Z			
SALT	SALT: valid_min = 16.73577880859375			
SALT	SALT: valid_max = 41.321231842O41O16			
Commer	its			
However	using CF convention 'Sea water salinity is the salt cont , the unqualified term 'salinity' is generic and does not alinity are dimensionless and the units attribute shoul	t necessarily imply any particular method of calcula	tion. The	

../images/plots/latlon_plots/Ocean_Temperature_and_Salinity/SA

Figure 162:
Dataset: OCEAN_TEMPERATURE_SALINITY
Variable: SALT

see https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html

21.10.2 Latlon Variable THETA

Table 21.53: CDL description of OCEAN_TEMPERATURE_SALINITY's THETA variable

Storage	Variable Name	Description	Unit	
Type				
float32	THETA	Potential temperature	degree_C	
CDL Desc	cription			
float32 T	HETA(time, Z, latitude, longitude)			
THET	A: _FillValue = 9.96921e+36			
THET	A: coverage_content_type = modelResult			
THET	A: long_name = Potential temperature			
THET	A: standard_name = sea_water_potential_temperature	e		
THET	A: units = degree_C			
THET	A: coordinates = time Z			
THET	THETA: valid_min = : 2.9179372787475586			
THET	THETA: valid_max = 36.425140380859375			
Comments				
	r potential temperature is the temperature a parcel of se			
	e equation of state is a modified UNESCO formula by		el variable	
potential	temperature as input assuming a horizontally and tem	porally constant pressure of \$p_0=-g ho_{0} z\$.		

../images/plots/latlon_plots/Ocean_Temperature_and_Salinity/Th

Figure 163:
Dataset: OCEAN_TEMPERATURE_SALINITY
Variable: THETA

21.11 Latlon NetCDF OCEAN_VELOCITY

Table 21.54: Variables in the dataset OCEAN_VELOCITY

Dataset:	OCEAN_VELOCITY -
Field:	EVEL
Field:	NVEL
Field:	WVEL

21.11.1 Latlon Variable EVEL

Table 21.55: CDL description of OCEAN_VELOCITY's EVEL variable

Storage	Variable Name	Description	Unit
Type			
float32	EVEL	Zonal (east-west) velocity	m s-1
CDI Description			

float32 EVEL(time, Z, latitude, longitude)

EVEL: _FillValue = 9.96921e+36

EVEL: coverage_content_type = modelResult EVEL: long_name = Zonal (east: west) velocity

EVEL: standard_name = eastward_sea_water_velocity

EVEL: units = m s: 1

EVEL: coordinates = Z time

EVEL: valid_min = : 1.746832251548767 EVEL: valid_max = 1.948591947555542

Zonal (east-west) component of ocean velocity. Note: EVEL is calculated by interpolating the model's x and y components of ocean velocity (UVEL and VVEL)to tracer cell centers and then finding the zonal component of the interpolated vectors. It is not recommended to use EVEL and NVEL for volume budget calculations because interpolating UVEL and VVEL from the model grid to the lat-lon grid introduces errors. Perform volume budget calculations with UVELMASS and VVELMASS on the native model grid.

../images/plots/latlon_plots/Ocean_Velocity/EVEL.png

Figure 164: **Dataset: OCEAN_VELOCITY** Variable: EVEL

21.11.2 Latlon Variable NVEL

Table 21.56: CDL description of OCEAN_VELOCITY's NVEL variable

Storage Type	Variable Name	Description	Unit	
float32	NVEL	Meridional (north-south) velocity	m s-1	
CDI Des	CDI Description			

float32 NVEL(time, Z, latitude, longitude)

NVEL: _FillValue = 9.96921e+36

NVEL: coverage_content_type = modelResult NVEL: long_name = Meridional (north: south) velocity NVEL: standard_name = northward_sea_water_velocity

NVEL: units = m s: 1

NVEL: coordinates = Z time

NVEL: valid_min = : 1.25223696231842O4 NVEL: valid_max = 2.0500051975250244

Meridional (north-south) component of ocean velocity. Note: NVEL is calculated by interpolating the model's x and y components of ocean velocity (UVEL and VVEL) to tracer cell centers and then finding the meridional component of the interpolated vectors. It is not recommended to use EVEL and NVEL for volume budget calculations because interpolating UVEL and VVEL from the model grid to the lat-lon grid introduces errors. Perform volume budget calculations with UVELMASS and VVELMASS on the native model grid.

../images/plots/latlon_plots/Ocean_Velocity/NVEL.png

Figure 165: **Dataset: OCEAN_VELOCITY** Variable: NVEL

21.11.3 Latlon Variable WVEL

Table 21.57: CDL description of OCEAN_VELOCITY's WVEL variable

Storage	Variable Name	Description	Unit		
Type					
float32	WVEL	Vertical velocity	m s-1		
CDL Des					
float32 V	/VEL(time, Z, latitude, longitude)				
WVE	L: _FillValue = 9.96921e+36				
WVE	L: coverage_content_type = modelResult				
WVE	L: direction = >0 decreases volume				
WVE	L: long_name = Vertical velocity				
WVE	L: standard_name = upward_sea_water_velocity				
WVE	WVEL: units = m s: 1				
WVEL: coordinates = Z time					
WVE	WVEL: valid_min = : 0.0023150660563260317				
WVE	L: valid_max = 0.0016380994347855449				
Commen	ts				
	elocity in the +z direction at the top face of the grid of are staggered relative to the tracer cell centers with va				

../images/plots/latlon_plots/Ocean_Velocity/WVEL.png

Figure 166:
Dataset: OCEAN_VELOCITY
Variable: WVEL

21.12 Latlon NetCDF SEA_ICE_CONC_THICKNESS

Table 21.58: Variables in the dataset SEA_ICE_CONC_THICKNESS

Dataset:	SEA_ICE_CONC_THICKNESS
Field:	Slarea
Field:	Slheff
Field:	Slhsnow
Field:	slceLoad

21.12.1 Latlon Variable Slarea

Table 21.59: CDL description of SEA_ICE_CONC_THICKNESS's Slarea variable

Storage Type	Variable Name	Description	Unit	
float32	Slarea	Sea-ice concentration	1	
	CDL Description			

float32 Slarea(time, latitude, longitude)

Slarea: _FillValue = 9.96921e+36

Slarea: coverage_content_type = modelResult Slarea: long_name = Sea: ice concentration Slarea: standard_name = sea_ice_area_fraction

Slarea: units = 1

Slarea: coordinates = time Slarea: valid_min = 0.0

Slarea: valid_max = 0.9700000286102295

Comments

Fraction of ocean grid cell covered with sea-ice [O to 1]. CF Standard Name Table v73: 'Area fraction' is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Sea ice area fraction is area of the sea surface occupied by sea ice. It is also called 'sea ice concentration'. 'Sea ice' means all ice floating in the sea which has formed from freezing sea water, rather than by other processes such as calving of land ice to form icebergs. https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html. Defined using CF Standard Name Table v73: 'Area fraction' is the fraction of a grid cell's horizontal area that has some characteristic of interest. It is evaluated as the area of interest divided by the grid cell area. It may be expressed as a fraction, a percentage, or any other dimensionless representation of a fraction. Sea ice area fraction is area of the sea surface occupied by sea ice. It is also called 'sea ice concentration'. 'Sea ice' means all ice floating in the sea which has formed from freezing sea water and precipitation, rather than by other processes such as calving of land ice to form icebergs. https://cfconventions.org/Data/cf-standard-names/73/build/cf-standard-name-table.html

../images/plots/latlon_plots/Sea-Ice_and_Snow_Concentration_ar

Figure 167:
Dataset: SEA_ICE_CONC_THICKNESS
Variable: Slarea

21.12.2 Latlon Variable SIheff

Table 21.60: CDL description of SEA_ICE_CONC_THICKNESS's SIheff variable

Storage	Variable Name	Description	Unit		
Type					
float32	Slheff	Area-averaged sea-ice thickness	m		
CDL Desc					
float32 S	heff(time, latitude, longitude)				
Slhef	f: _FillValue = 9.96921e+36				
Slhef	f: coverage_content_type = modelResult				
Slhef	f: long_name = Area: averaged sea: ice thickness				
Slhef	f: standard_name = sea_ice_thickness				
Slhef	Slheff: units = m				
Slhef	Slheff: coordinates = time				
Slhef	SIheff: valid_min = 0.0				
Slhef	Slheff: valid_max = 9.000518798828125				
Commen	ts				
Sea-ice thickness averaged over the entire model grid cell, including open water where sea-ice thickness is zero. Note: sea-ice					
thickness	over the ICE-COVERED fraction of the grid cell is Sihe	ff/Slarea			

../images/plots/latlon_plots/Sea-Ice_and_Snow_Concentration_ar

Figure 168:
Dataset: SEA_ICE_CONC_THICKNESS
Variable: SIheff

21.12.3 Latlon Variable SIhsnow

Table 21.61: CDL description of SEA_ICE_CONC_THICKNESS's SIhsnow variable

Storage	Variable Name	Description	Unit		
Type					
float32	SIhsnow	Area-averaged snow thickness	m		
CDL Des	cription				
float32 S	lhsnow(time, latitude, longitude)				
Slhsn	ow: _FillValue = 9.96921e+36				
Slhsn	ow: coverage_content_type = modelResult				
Slhsn	ow: long_name = Area: averaged snow thickness				
Slhsn	ow: standard_name = surface_snow_thickness				
Slhsn	Slhsnow: units = m				
Slhsn	Slhsnow: coordinates = time				
Slhsn	SIhsnow: valid_min = : 0.0004725505714304745				
Slhsn	Slhsnow: valid_max = 2.5671639442443848				
Comments					
Snow thickness averaged over the entire model grid cell, including open water where snow thickness is zero. Note: snow thickness over the ICE-COVERED fraction of the grid cell is SIhsnow/Slarea					

../images/plots/latlon_plots/Sea-Ice_and_Snow_Concentration_ar

Figure 169:
Dataset: SEA_ICE_CONC_THICKNESS
Variable: SIhsnow

21.12.4 Latlon Variable sIceLoad

Table 21.62: CDL description of SEA_ICE_CONC_THICKNESS's sIceLoad variable

Storage	Variable Name	Description	Unit	
Type				
float32	slceLoad	Average sea-ice and snow mass per unit area	kg m-2	
CDL Des	cription			
float32 sl	ceLoad(time, latitude, longitude)			
slceLo	oad: _FillValue = 9.96921e+36			
slceLo	oad: coverage_content_type = modelResult			
slceLo	oad: long_name = Average sea: ice and snow mass per	unit area		
slceLo	oad: standard_name = sea_ice_and_surface_snow_an	nount		
slceLoad: units = kg m: 2				
slceLoad: coordinates = time				
slceLo	slceLoad: valid_min = : 0.0015558383893221617			
slceLoad: valid_max = 8729.935546875				
Comments				
Total mass of sea-ice and snow in a model grid cell averaged over model grid cell area. Note: slceLoad is used to correct model				
coal layed an amaly, ETAN, to calculate dynamic coalculates beight CCH, and coalculates beight without the invested barameter				

Total mass of sea-ice and snow in a model grid cell averaged over model grid cell area. Note: slceLoad is used to correct model sea level anomaly, ETAN, to calculate dynamic sea surface height, SSH, and sea surface height without the inverted barometer (IB correction), SSHNOIBC. In the model, sea-ice is treated as floating above the sea level with ETAN tracing the location of the ocean-ice interface. Consequently, sea-ice growth in the model lowers ETAN and sea-ice melting raises ETAN. Dynamic sea surface height is obtained by correcting ETAN by the weight of ice and snow directly above following Archimedes' principle.

../images/plots/latlon_plots/Sea-Ice_and_Snow_Concentration_ar

Figure 170:
Dataset: SEA_ICE_CONC_THICKNESS
Variable: slceLoad

21.13 Latlon NetCDF SEA_ICE_VELOCITY

Table 21.63: Variables in the dataset SEA_ICE_VELOCITY

Dataset:	SEA_ICE_VELOCITY -
Field:	Sleice
Field:	SInice

21.13.1 Latlon Variable Sleice

Table 21.64: CDL description of SEA_ICE_VELOCITY's Sleice variable

Storage	Variable Name	Description	Unit
Type			
float32	Sleice	Zonal (east-west) sea-ice velocity	m s-1
CDI Description			

CDL Description

float32 Sleice(time, latitude, longitude) Sleice: _FillValue = 9.96921e+36

Sleice: coverage_content_type = modelResult

Sleice: long_name = Zonal (east: west) sea: ice velocity Sleice: standard_name = eastward_sea_ice_velocity

Sleice: units = m s: 1 Sleice: coordinates = time

Sleice: valid_min = : 0.5656854510307312 Sleice: valid_max = 0.5656854510307312

Comments

Zonal (east-west) componet of sea-ice velocity. Note: mask with Slarea to remove nonzero values where ice is absent. Sleice is calculated by interpolating the model's x and y components of sea-ice velocity (Sluice and Slvice) to tracer cell centers and then finding the zonal component of the interpolated vectors. It is NOT recommended to use Sluice and Slvice for sea-ice volume budget calculations because interpolating Sluice and Slvice from the model grid to the lat-lon grid introduces errors. Perform sea-ice mass budget calculations with ADVxHEFF, ADVyHEFF, DFxHEFF, and DFyHEFF on the native model grid.

../images/plots/latlon_plots/Sea-Ice_Velocity/SIeice.png

Figure 171:
Dataset: SEA_ICE_VELOCITY
Variable: Sleice

21.13.2 Latlon Variable SInice

Table 21.65: CDL description of SEA_ICE_VELOCITY's SInice variable

Storage Type	Variable Name	Description	Unit
float32	SInice	Meridional (north-south) sea-ice velocity	m s-1
CDID			

CDL Description

float32 Sinice(time, latitude, longitude)

SInice: _FillValue = 9.96921e+36

Sinice: coverage_content_type = modelResult

SInice: long_name = Meridional (north: south) sea: ice velocity

SInice: standard_name = northward_sea_ice_velocity

SInice: units = m s: 1 SInice: coordinates = time

SInice: valid_min = : 0.5615208148956299 SInice: valid_max = 0.5656854510307312

Comments

Meridional (north-south) component of sea-ice velocity. Note: mask with Slarea to remove nonzero values where ice is absent. Sinice is calculated by interpolating the model's x and y components of sea-ice velocity (Sluice and Sivice) to tracer cell centers and then finding the meridional component of the interpolated vectors. It is NOT recommended to use Sluice and Sivice for sea-ice volume budget calculations because interpolating Sluice and Sivice from the model grid to the lat-lon grid introduces errors. Perform sea-ice mass budget calculations with ADVxHEFF, ADVyHEFF, DFxHEFF, and DFyHEFF on the native model grid.

../images/plots/latlon_plots/Sea-Ice_Velocity/SInice.png

Figure 172:
Dataset: SEA_ICE_VELOCITY
Variable: SInice

21.14 Latlon NetCDF SEA_SURFACE_HEIGHT

Table 21.66: Variables in the dataset SEA_SURFACE_HEIGHT

Dataset:	SEA_SURFACE_HEIGHT
Field:	SSH
Field:	SSHIBC
Field:	SSHNOIBC

21.14.1 Latlon Variable SSH

Table 21.67: CDL description of SEA_SURFACE_HEIGHT's SSH variable

Storage	Variable Name	Description	Unit
Type			
float32	SSH	Dynamic sea surface height anomaly	m
CDI Description			

CDL Description

float32 SSH(time, latitude, longitude)

SSH: _FillValue = 9.96921e+36

SSH: coverage_content_type = modelResult

SSH: long_name = Dynamic sea surface height anomaly

SSH: standard_name = sea_surface_height_above_geoid

SSH: units = m

SSH: coordinates = time

SSH: valid_min = : 2.4861555099487305 SSH: valid_max = 2.2875382900238037

Comments

Dynamic sea surface height anomaly above the geoid, suitable for comparisons with altimetry sea surface height data products that apply the inverse barometer (IB) correction. Note: SSH is calculated by correcting model sea level anomaly ETAN for three effects: a) global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH), b) the inverted barometer (IB) effect (see SSHIBC) and c) sea level displacement due to sea-ice and snow pressure loading (see slceLoad). SSH can be compared with the similarly-named SSH variable in previous ECCO products that did not include atmospheric pressure loading (e.g., Version 4 Release 3). Use SSHNOIBC for comparisons with altimetry data products that do NOT apply the IB correction.

../images/plots/latlon_plots/Sea_Surface_Height/SSH.png

Figure 173:
Dataset: SEA_SURFACE_HEIGHT
Variable: SSH

21.14.2 Latlon Variable SSHIBC

Table 21.68: CDL description of SEA_SURFACE_HEIGHT's SSHIBC variable

Storage Type	Variable Name	Description	Unit
float32	SSHIBC	The inverted barometer (IB) correction to sea surface height due to atmospheric pressure loading	m

CDL Description

float32 SSHIBC(time, latitude, longitude)

SSHIBC: _FillValue = 9.96921e+36

SSHIBC: coverage_content_type = modelResult

SSHIBC: long_name = The inverted barometer (IB) correction to sea surface height due to atmospheric pressure loading

SSHIBC: units = m

SSHIBC: coordinates = time

SSHIBC: valid_min = : 0.5228679180145264 SSHIBC: valid_max = 0.8955588340759277

Comments

Not an SSH itself, but a correction to model sea level anomaly (ETAN) required to account for the static part of sea surface displacement by atmosphere pressure loading: SSH = SSHNOIBC - SSHIBC. Note: Use SSH for model-data comparisons with altimetry data products that DO apply the IB correction and SSHNOIBC for comparisons with altimetry data products that do NOT apply the IB correction.

../images/plots/latlon_plots/Sea_Surface_Height/SSHIBC.png

Figure 174:
Dataset: SEA_SURFACE_HEIGHT
Variable: SSHIBC

21.14.3 Latlon Variable SSHNOIBC

Table 21.69: CDL description of SEA_SURFACE_HEIGHT's SSHNOIBC variable

Storage Type	Variable Name	Description	Unit
float32	SSHNOIBC	Sea surface height anomaly without the inverted barometer (IB) correction	m

CDL Description

float32 SSHNOIBC(time, latitude, longitude)

SSHNOIBC: _FillValue = 9.96921e+36

SSHNOIBC: coverage_content_type = modelResult

SSHNOIBC: long_name = Sea surface height anomaly without the inverted barometer (IB) correction

SSHNOIBC: units = m

SSHNOIBC: coordinates = time

SSHNOIBC: valid_min =: 2.45104718208313 SSHNOIBC: valid_max = 2.2390522956848145

Comments

Sea surface height anomaly above the geoid without the inverse barometer (IB) correction, suitable for comparisons with altimetry sea surface height data products that do NOT apply the inverse barometer (IB) correction. Note: SSHNOIBC is calculated by correcting model sea level anomaly ETAN for two effects: a) global mean steric sea level changes related to density changes in the Boussinesq volume-conserving model (Greatbatch correction, see sterGloH), b) sea level displacement due to sea-ice and snow pressure loading (see slceLoad). In ECCO Version 4 Release 4 the model is forced with atmospheric pressure loading. SSHNOIBC does not correct for the static part of the effect of atmosphere pressure loading on sea surface height (the so-called inverse barometer (IB) correction). Use SSH for comparisons with altimetry data products that DO apply the IB correction.

../images/plots/latlon_plots/Sea_Surface_Height/SSHNOIBC.png

Figure 175:
Dataset: SEA_SURFACE_HEIGHT
Variable: SSHNOIBC

22 1-D Dataset Groupings

22.1 Overview of the 1-D Dataset Groupings

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vivamus at enim eget nisi ultrices facilisis a et purus. Sed tincidunt scelerisque ligula, in vehicula dui venenatis at. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Curabitur consequat commodo nunc, nec lacinia quam feugiat vel. Integer bibendum lectus sit amet quam elementum, ut pretium quam malesuada. Cras fermentum venenatis augue, id commodo libero facilisis nec. Quisque euismod, odio vitae dapibus convallis, justo enim iaculis metus, vel interdum elit nisi vel lectus. Fusce tempor elit in semper condimentum. Ut quis dui eget purus cursus interdum eu ac elit.'

22.2 1D NetCDF GLOBAL_MEAN_ATM_SURFACE_PRES

Table 22.1: Variables in the dataset GLOBAL_MEAN_ATM_SURFACE_PRES

Dataset:	GLOBAL_MEAN_ATM_SURFACE_PRES
Field:	Pa_global

22.2.1 1D Variable Pa_global

Table 22.2: CDL description of GLOBAL_MEAN_ATM_SURFACE_PRES's Pa_global variable

Storage Type	Variable Name	Description	Unit	
float64	Pa_global	Global mean atmospheric surface pressure over the ocean and sea-ice	N m-2	
CDL Desc	cription			
float64 P	a_global(time)			
Pa_gl	obal: _FillValue = 9.969209968386869e+36			
Pa_gl	obal: coverage_content_type = modelResult			
Pa_gl	lobal: long_name = Global mean atmospheric surface p	pressure over the ocean and sea: ice		
Pa_gl	Pa_global: standard_name = air_pressure_at_sea_level			
Pa_gl	Pa_global: units = N m: 2			
Pa_gl	Pa_global: valid_min = 100873.14755283327			
Pa_gl	Pa_global: valid_max = 101257.45252296235			
Pa_gl	Pa_global: coordinates = time			
Commen	Comments			
N/A				

../images/plots/oneD_plots/Global_Mean_Atmospheric_Pressure/Pa

Figure 176:
Dataset: GLOBAL_MEAN_ATM_SURFACE_PRES
Variable: Pa_global

22.3 1D NetCDF GLOBAL_MEAN_SEA_LEVEL

Table 22.3: Variables in the dataset GLOBAL_MEAN_SEA_LEVEL

Dataset:	GLOBAL_MEAN_SEA_LEVEL
Field:	global_mean_barystatic_sea_level_anomaly
Field:	global_mean_sea_level_anomaly
Field:	global_mean_sterodynamic_sea_level_anomaly

22.3.1 1D Variable global_mean_barystatic_sea_level_anomaly

Table 22.4: CDL description of GLOBAL_MEAN_SEA_LEVEL's global_mean_barystatic_sea_level_anomaly variable

Storage	Variable Name	Description	Unit
Type			
float32	global_mean_barystatic_sea_level_anomaly	Global mean of barystatic sea level anomaly	m
CDL Des	cription		
	lobal_mean_barystatic_sea_level_anomaly(time)		
globa	.l_mean_barystatic_sea_level_anomaly:	.96921e+36	
	.l_mean_barystatic_sea_level_anomaly:		
globa	global_mean_barystatic_sea_level_anomaly: long_name = Global mean of barystatic sea level anomaly		
globa	global_mean_barystatic_sea_level_anomaly: standard_name =		
globa	global_mean_barystatic_sea_level_anomaly: units = m		
globa	global_mean_barystatic_sea_level_anomaly: valid_min = : 0.045110904		
globa	global_mean_barystatic_sea_level_anomaly: valid_max = 0.043493364		
globa	global_mean_barystatic_sea_level_anomaly: coordinates = time		

Comments

Global mean barystatic sea level anomaly due to changes in total ocean mass. Note: ECCOv4 uses a volume-conserving Boussinesq formulation of the MITgcm with a free-surface boundary condition with real freshwater flux forcing. Changes in ocean mass due to evaporation, precipitation, runoff, and sea-ice growth/melt are reflected in model sea level. However, as a consequence of the Boussinsq formulation, changes to seawater density due to net buoyancy fluxes (e.g., global mean surface heating/cooling) do not change model sea level anomaly (ETAN) via seawater expansion/contraction. Changes in global ocean density therefore induce a spurious change in model ocean bottom pressure (PHIBOT) via 'virtual mass fluxes'. The 'Greatbatch correction' is a time varying, globally-uniform correction to account for changes in global mean density in Boussinesq models. This correction is used to calculate dynamic sea surface height (SSH) and ocean bottom pressure (OBP). Importantly, there is no dynamical significance to the Greatbatch correction but it is required to account for steric changes in global sea level. See Greatbatch, 1994. J. of Geophys. Res. Oceans, doi.org/10.1029/94JCO0847

../images/plots/oneD_plots/Global_Mean_Sea_Level/global_mean_k

Figure 177:
Dataset: GLOBAL_MEAN_SEA_LEVEL
Variable: global_mean_barystatic_sea_level_anomaly

22.3.2 1D Variable global_mean_sea_level_anomaly

Table 22.5: CDL description of GLOBAL_MEAN_SEA_LEVEL's global_mean_sea_level_anomaly variable

Storage	Variable Name	Description	Unit
Type			
float32	global_mean_sea_level_anomaly	Global mean of dynamic SSH	m
CDL Desc	cription		
	obal_mean_sea_level_anomaly(time)		
	l_mean_sea_level_anomaly:		
	l_mean_sea_level_anomaly:		
	l_mean_sea_level_anomaly: long_name = Global mea	an of dynamic SSH	
	l_mean_sea_level_anomaly: standard_name =		
globa	l_mean_sea_level_anomaly: units = m		
globa	l_mean_sea_level_anomaly:	63	
globa	l_mean_sea_level_anomaly:	7	
globa	l_mean_sea_level_anomaly: coordinates = time		

Comments

Global mean of dynamic sea level anomaly, equivalent to global mean sea level change. Note: ECCOv4 uses a volume-conserving Boussinesq formulation of the MITgcm with a free-surface boundary condition with real freshwater flux forcing. Changes in ocean mass due to evaporation, precipitation, runoff, and sea-ice growth/melt are reflected in model sea level. However, as a consequence of the Boussinsq formulation, changes to seawater density due to net buoyancy fluxes (e.g., global mean surface heating/cooling) do not change model sea level anomaly (ETAN) via seawater expansion/contraction. Changes in global ocean density therefore induce a spurious change in model ocean bottom pressure (PHIBOT) via 'virtual mass fluxes'. The 'Greatbatch correction' is a time varying, globally-uniform correction to account for changes in global mean density in Boussinesq models. This correction is used to calculate dynamic sea surface height (SSH) and ocean bottom pressure (OBP). Importantly, there is no dynamical significance to the Greatbatch correction but it is required to account for steric changes in global sea level. See Greatbatch, 1994. J. of Geophys. Res. Oceans, doi.org/10.1029/94JC00847

../images/plots/oneD_plots/Global_Mean_Sea_Level/global_mean_s

Figure 178:
Dataset: GLOBAL_MEAN_SEA_LEVEL
Variable: global_mean_sea_level_anomaly

22.3.3 1D Variable global_mean_sterodynamic_sea_level_anomaly

Table 22.6: CDL description of GLOBAL_MEAN_SEA_LEVEL's global_mean_sterodynamic_sea_level_anomaly variable

Storage	Variable Name	Description	Unit
Type			
float64	global_mean_sterodynamic_sea_level_anomaly	Global mean of sterodynamic sea level anomaly	m
CDL Des			
	lobal_mean_sterodynamic_sea_level_anomaly(time)		
	l_mean_sterodynamic_sea_level_anomaly:		
globa	l_mean_sterodynamic_sea_level_anomaly:	_content_type = modelResult	
globa	l_mean_sterodynamic_sea_level_anomaly: long_nar	ne = Global mean of sterodynamic sea level anomaly	,
globa	l_mean_sterodynamic_sea_level_anomaly: standard	_name =	
globa	l_mean_sterodynamic_sea_level_anomaly: units = m		
globa	l_mean_sterodynamic_sea_level_anomaly:	n = : 0.017658796143049296	
globa	l_mean_sterodynamic_sea_level_anomaly:	x = 0.017642477223663407	
globa	l_mean_sterodynamic_sea_level_anomaly: coordinat	res = time	

Comments

Steric sea level anomaly associated with seawater expansion/contraction due to density changes. Note: ECCOv4 uses a volume-conserving Boussinesq formulation of the MITgcm with a free-surface boundary condition with real freshwater flux forcing. Changes in ocean mass due to evaporation, precipitation, runoff, and sea-ice growth/melt are reflected in model sea level. However, as a consequence of the Boussinsq formulation, changes to seawater density due to net buoyancy fluxes (e.g., global mean surface heating/cooling) do not change model sea level anomaly (ETAN) via seawater expansion/contraction. Changes in global ocean density therefore induce a spurious change in model ocean bottom pressure (PHIBOT) via 'virtual mass fluxes'. The 'Greatbatch correction' is a time varying, globally-uniform correction to account for changes in global mean density in Boussinesq models. This correction is used to calculate dynamic sea surface height (SSH) and ocean bottom pressure (OBP). Importantly, there is no dynamical significance to the Greatbatch correction but it is required to account for steric changes in global sea level. See Greatbatch, 1994. J. of Geophys. Res. Oceans, doi.org/10.1029/94JC00847

../images/plots/oneD_plots/Global_Mean_Sea_Level/global_mean_s

Figure 179:
Dataset: GLOBAL_MEAN_SEA_LEVEL
Variable: global_mean_sterodynamic_sea_level_anomaly

22.4 1D NetCDF SBO_CORE_PRODUCTS

Table 22.7: Variables in the dataset SBO_CORE_PRODUCTS

Dataset:	SBO_CORE_PRODUCTS
Field:	xoamc
Field:	yoamc
Field:	zoamc
Field:	xoamp
Field:	yoamp
Field:	zoamp
Field:	mass
Field:	xcom
Field:	ycom
Field:	zcom
Field:	sboarea
Field:	xoamc_si
Field:	yoamc_si
Field:	zoamc_si
Field:	mass_si
Field:	xoamp_fw
Field:	yoamp_fw
Field:	zoamp_fw
Field:	mass_fw
Field:	xcom_fw
Field:	ycom_fw
Field:	zcom_fw
Field:	mass_gc
Field:	xoamp_dsl
Field:	yoamp_dsl
Field:	zoamp_dsl

22.4.1 1D Variable mass

Table 22.8: CDL description of SBO_CORE_PRODUCTS's mass variable

Storage	Variable Name	Description	Unit
Type		-	
float64	mass	ocean mass	kg
CDL Des	cription		
float64 n	nass(time)		
mass	: _FillValue = 9.969209968386869e+36		
mass	: coverage_content_type = modelResult		
mass	: long_name = ocean mass		
	: units = kg		
	: valid_min = 1.3737507447512265e+21		
mass	: valid_max = 1.3737832079900274e+21		
	: coordinates = time		
Commen	its		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/mass.png

Figure 180:
Dataset: SBO_CORE_PRODUCTS
Variable: mass

22.4.2 1D Variable mass_fw

Table 22.9: CDL description of SBO_CORE_PRODUCTS's mass_fw variable

Storage	Variable Name	Description	Unit
Type			
float64	mass_fw	mass due to freshwater flux	kg
CDL Des	cription		
float64 n	nass_fw(time)		
mass	_fw: _FillValue = 9.969209968386869e+36		
mass	_fw: coverage_content_type = modelResult		
mass	_fw: long_name = mass due to freshwater flux		
mass	_fw: units = kg		
mass	_fw: valid_min = 3.7929380693921944e+16		
mass	_fw: valid_max = 7.0392619494226936e+16		
mass	_fw: coordinates = time		
Commen	its		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/mass_fw.png

Figure 181:
Dataset: SBO_CORE_PRODUCTS
Variable: mass_fw

22.4.3 1D Variable mass_gc

Table 22.10: CDL description of SBO_CORE_PRODUCTS's mass_gc variable

Storage	Variable Name	Description	Unit
Type			
float64	mass_gc	mass due to the Greatbatch correction	kg
CDL Desc	cription		
float64 m	nass_gc(time)		
mass	_gc: _FillValue = 9.969209968386869e+36		
mass	_gc: coverage_content_type = modelResult		
mass	_gc: long_name = mass due to the Greatbatch correcti	on	
mass	_gc: units = kg		
mass	_gc: valid_min = : 1.140148294309558e+19		
mass	_gc: valid_max = : 1.1388436906537843e+19		
mass	gc: coordinates = time		
Commen	ts		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/mass_gc.png

Figure 182:
Dataset: SBO_CORE_PRODUCTS
Variable: mass_gc

22.4.4 1D Variable mass_si

Table 22.11: CDL description of SBO_CORE_PRODUCTS's mass_si variable

Storage	Variable Name	Description	Unit
Type			
float64	mass_si	sea-ice mass	kg
CDL Des	cription		
	nass_si(time)		
	_si: _FillValue = 9.969209968386869e+36		
	_si: coverage_content_type = modelResult		
mass	_si: long_name = sea: ice mass		
mass	_si: units = kg		
mass	mass_si: valid_min = 1.5801085624300974e+16		
mass	_si: valid_max = 3.372421224523182e+16		
mass	_si: coordinates = time		
Commen	ts		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/mass_si.png

Figure 183:
Dataset: SBO_CORE_PRODUCTS
Variable: mass_si

22.4.5 1D Variable sboarea

Table 22.12: CDL description of SBO_CORE_PRODUCTS's sboarea variable

Storage	Variable Name	Description	Unit
Type			
float64	sboarea	surface area of oceans	m2
CDL Desc	cription		
float64 sl	ooarea(time)		
sboar	ea: _FillValue = 9.969209968386869e+36		
sboar	ea: coverage_content_type = modelResult		
sboar	ea: long_name = surface area of oceans		
sboar	ea: units = m2		
sboar	ea: valid_min = 358013861149443.5		
sboar	ea: valid_max = 358013861149443.5		
sboar	ea: coordinates = time		
Commen	ts		
Note: oce	ean surface area is constant but provided as time series	for convenience	

../images/plots/oneD_plots/SBO_Core_Products/sboarea.png

Figure 184:
Dataset: SBO_CORE_PRODUCTS
Variable: sboarea

22.4.6 1D Variable xcom

Table 22.13: CDL description of SBO_CORE_PRODUCTS's xcom variable

Storage	Variable Name	Description	Unit
Type			
float64	xcom	x-comp of center-of-mass of ocean	m
CDL Des	cription		
float64 x	com(time)		
xcom	: _FillValue = 9.969209968386869e+36		
xcom	: coverage_content_type = modelResult		
xcom	: long_name = x: comp of center: of: mass of ocean		
xcom	: units = m		
xcom	: valid_min = : 763730.0399730895		
xcom	: valid_max = : 763667.0104211655		
xcom	: coordinates = time		
Commen	ts		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/xcom.png

Figure 185:
Dataset: SBO_CORE_PRODUCTS
Variable: xcom

22.4.7 1D Variable xcom_fw

Table 22.14: CDL description of SBO_CORE_PRODUCTS's xcom_fw variable

Storage	Variable Name	Description	Unit
Type			
float64	xcom_fw	x-comp of center-of-mass of freshwater flux	m
CDL Des	cription		
float64 x	com_fw(time)		
xcom	_fw: _FillValue = 9.969209968386869e+36		
xcom	_fw: coverage_content_type = modelResult		
xcom	_fw: long_name = x: comp of center: of: mass of fresh	water flux	
xcom	_fw: units = m		
xcom	xcom_fw: valid_min = : 573864.6948562702		
xcom	_fw: valid_max = : 573864.6948562652		
xcom	_fw: coordinates = time		
Commen	its		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/xcom_fw.png

Figure 186:
Dataset: SBO_CORE_PRODUCTS
Variable: xcom_fw

22.4.8 1D Variable xoamc

Table 22.15: CDL description of SBO_CORE_PRODUCTS's xoamc variable

Storage	Variable Name	Description	Unit
Type			
float64	xoamc	x-comp of oceanic angular momentum due to	kg m2
		currents	s-1
CDL Desc	cription		
float64 x	oamc(time)		
xoam	ıc: _FillValue = 9.969209968386869e+36		
xoam	c: coverage_content_type = modelResult		
xoam	xoamc: long_name = x: comp of oceanic angular momentum due to currents		
xoam	xoamc: units = kg m2 s: 1		
xoam	xoamc: valid_min = : 3.783733447704127e+24		
xoam	ıc: valid_max = 2.555331552O45857e+24		
xoam	c: coordinates = time		
Commen	its		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/xoamc.png

Figure 187:
Dataset: SBO_CORE_PRODUCTS
Variable: xoamc

22.4.9 1D Variable xoamc_si

Table 22.16: CDL description of SBO_CORE_PRODUCTS's xoamc_si variable

Storage	Variable Name	Description	Unit
Type			
float64	xoamc_si	x-comp of oceanic angular momentum due to	kg m2
		sea-ice motion	s-1
CDL Desc	cription		
float64 x	oamc_si(time)		
xoam	c_si: _FillValue = 9.969209968386869e+36		
xoam	c_si: coverage_content_type = modelResult		
xoam	c_si: long_name = x: comp of oceanic angular momen	tum due to sea: ice motion	
xoam	c_si: units = kg m2 s: 1		
xoam	xoamc_si: valid_min = : 9.76342837969224e+21		
xoam	xoamc_si: valid_max = 1.3721188892065168e+22		
xoam	c_si: coordinates = time		
Commen	ts		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/xoamc_si.png

Figure 188:
Dataset: SBO_CORE_PRODUCTS
Variable: xoamc_si

22.4.10 1D Variable xoamp

Table 22.17: CDL description of SBO_CORE_PRODUCTS's xoamp variable

Storage	Variable Name	Description	Unit
Type			
float64	xoamp	x-comp of oceanic angular momentum due to	kg m2
		pressure	s-1
CDL Des	cription		
float64 x	oamp(time)		
xoam	p: _FillValue = 9.969209968386869e+36		
xoam	p: coverage_content_type = modelResult		
xoam	ip: long_name = x: comp of oceanic angular momentur	m due to pressure	
xoam	p: units = kg m2 s: 1	·	
xoam	p: valid_min = 1.3543642768158851e+29		
xoam	p: valid_max = 1.3546098666231897e+29		
	xoamp: coordinates = time		
Commen	<u> </u>		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/xoamp.png

Figure 189:
Dataset: SBO_CORE_PRODUCTS
Variable: xoamp

22.4.11 1D Variable xoamp_dsl

Table 22.18: CDL description of SBO_CORE_PRODUCTS's xoamp_dsl variable

Storage Type	Variable Name	Description	Unit
float64	xoamp_dsl	x-comp of oceanic angular momentum due to pressure based on dynamic (IB-corrected) sea level	kg m2 s-1
CDL Des	cription		
xoam xoam xoam level xoam xoam	pamp_dsl(time) p_dsl: _FillValue = 9.969209968386869e+36 p_dsl: _FillValue = 9.969209968386869e+36 p_dsl: coverage_content_type = modelResult p_dsl: long_name = x: comp of oceanic angular mom p_dsl: units = kg m2 s: 1 p_dsl: valid_min = 1.354440386439953e+29 p_dsl: valid_max = 1.3545518352698056e+29 p_dsl: coordinates = time	entum due to pressure based on dynamic (IB: corre	cted) sea
Commen	ts		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/xoamp_dsl.png

Figure 190:
Dataset: SBO_CORE_PRODUCTS
Variable: xoamp_dsl

22.4.12 1D Variable xoamp_fw

Table 22.19: CDL description of SBO_CORE_PRODUCTS's xoamp_fw variable

Storage	Variable Name	Description	Unit
Type			
float64	xoamp_fw	x-comp of oceanic angular momentum due to	kg m2
		freshwater flux	s-1
CDL Desc	cription		
float64 x	oamp_fw(time)		
xoam	p_fw: _FillValue = 9.969209968386869e+36		
xoam	p_fw: coverage_content_type = modelResult		
xoam	p_fw: long_name = x: comp of oceanic angular mome	ntum due to freshwater flux	
xoam	p_fw: units = kg m2 s: 1		
xoam	p_fw: valid_min = 1.805799644912138e+24		
xoam	p_fw: valid_max = 3.351358892803656e+24		
	oamp_fw: coordinates = time		
Commen	!		
= -	its		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/xoamp_fw.png

Figure 191:
Dataset: SBO_CORE_PRODUCTS
Variable: xoamp_fw

22.4.13 1D Variable ycom

Table 22.20: CDL description of SBO_CORE_PRODUCTS's ycom variable

Storage	Variable Name	Description	Unit
Type			
float64	ycom	y-comp of center-of-mass of ocean	m
CDL Des	cription		
	com(time)		
	: _FillValue = 9.969209968386869e+36		
	: coverage_content_type = modelResult		
ycom	: long_name = y: comp of center: of: mass of ocean		
ycom	: units = m		
ycom	ycom: valid_min = : 466387.24450374383		
ycom	: valid_max = : 466327.21844756586		
ycom	: coordinates = time		
Commen	ts		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/ycom.png

Figure 192:
Dataset: SBO_CORE_PRODUCTS
Variable: ycom

22.4.14 1D Variable ycom_fw

Table 22.21: CDL description of SBO_CORE_PRODUCTS's ycom_fw variable

Storage	Variable Name	Description	Unit
Type			
float64	ycom_fw	y-comp of center-of-mass of freshwater flux	m
CDL Desc	cription		
float64 y	com_fw(time)		
ycom	_fw: _FillValue = 9.969209968386869e+36		
	_fw: coverage_content_type = modelResult		
ycom	_fw: long_name = y: comp of center: of: mass of fresh	water flux	
ycom	_fw: units = m		
	_fw: valid_min = : 324750.41529212013		
ycom	_fw: valid_max = : 324750.4152921157		
ycom	ycom_fw: coordinates = time		
Commen	ts		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/ycom_fw.png

Figure 193:
Dataset: SBO_CORE_PRODUCTS
Variable: ycom_fw

22.4.15 1D Variable yoamc

Table 22.22: CDL description of SBO_CORE_PRODUCTS's yoamc variable

Storage Type	Variable Name	Description	Unit
float64	yoamc	y-comp of oceanic angular momentum due to currents	kg m2 s-1
CDL Desc	cription		
yoam yoam yoam yoam yoam yoam	CDL Description float64 yoamc(time) yoamc: _FillValue = 9.969209968386869e+36 yoamc: coverage_content_type = modelResult yoamc: long_name = y: comp of oceanic angular momentum due to currents yoamc: units = kg m2 s: 1 yoamc: valid_min = : 2.19249690136359e+24 yoamc: valid_max = 4.179441018940977e+24 yoamc: coordinates = time		
Commen	ts		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/yoamc.png

Figure 194:
Dataset: SBO_CORE_PRODUCTS
Variable: yoamc

22.4.16 1D Variable yoamc_si

Table 22.23: CDL description of SBO_CORE_PRODUCTS's yoamc_si variable

Storage	Variable Name	Description	Unit
Type float64	yoamc_si	y-comp of oceanic angular momentum due to	kg m2
	•	sea-ice motion	s-1
CDL Desc	cription		
float64 y	oamc_si(time)		
yoam	nc_si: _FillValue = 9.969209968386869e+36		
yoam	nc_si: coverage_content_type = modelResult		
yoam	nc_si: long_name = y: comp of oceanic angular momen	tum due to sea: ice motion	
yoam	nc_si: units = kg m2 s: 1		
yoam	nc_si: valid_min = : 1.176556337395274e+22		
yoam	nc_si: valid_max = 1.6107851446370722e+22		
,	amc_si: coordinates = time		
Commen	ıts		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/yoamc_si.png

Figure 195:
Dataset: SBO_CORE_PRODUCTS
Variable: yoamc_si

22.4.17 1D Variable yoamp

Table 22.24: CDL description of SBO_CORE_PRODUCTS's yoamp variable

Storage	Variable Name	Description	Unit
Type			
float64	yoamp	y-comp of oceanic angular momentum due to	kg m2
		pressure	s-1
CDL Desc	cription		
float64 y	oamp(time)		
yoam	p: _FillValue = 9.969209968386869e+36		
yoam	p: coverage_content_type = modelResult		
yoam	p: long_name = y: comp of oceanic angular momentu	m due to pressure	
yoam	p: units = kg m2 s: 1	·	
yoam	yoamp: valid_min = 1.0476388397938864e+29		
yoam	p: valid_max = 1.0478581623131764e+29		
,	pamp: coordinates = time		
Commen	te		
	is a second seco		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/yoamp.png

Figure 196:
Dataset: SBO_CORE_PRODUCTS
Variable: yoamp

22.4.18 1D Variable yoamp_dsl

Table 22.25: CDL description of SBO_CORE_PRODUCTS's yoamp_dsl variable

Storage Type	Variable Name	Description	Unit
float64	yoamp_dsl	y-comp of oceanic angular momentum due to pressure based on dynamic (IB-corrected) sea level	kg m2 s-1
CDL Desc	cription		
yoam yoam yoam level yoam yoam	oamp_dsl(time) p_dsl: _FillValue = 9.969209968386869e+36 p_dsl: _FillValue = 9.969209968386869e+36 p_dsl: coverage_content_type = modelResult p_dsl: long_name = y: comp of oceanic angular mom p_dsl: units = kg m2 s: 1 p_dsl: valid_min = 1.0476994334049981e+29 p_dsl: valid_max = 1.0478187262074598e+29 p_dsl: coordinates = time	entum due to pressure based on dynamic (IB: corre	cted) sea
Commen	ts		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/yoamp_dsl.png

Figure 197:
Dataset: SBO_CORE_PRODUCTS
Variable: yoamp_dsl

22.4.19 1D Variable yoamp_fw

Table 22.26: CDL description of SBO_CORE_PRODUCTS's yoamp_fw variable

Storage	Variable Name	Description	Unit
Type			
float64	yoamp_fw	y-comp of oceanic angular momentum due to	kg m2
		freshwater flux	s-1
CDL Desc			
float64 y	oamp_fw(time)		
yoam	p_fw: _FillValue = 9.969209968386869e+36		
yoam	ip_fw: coverage_content_type = modelResult		
yoam	np_fw: long_name = y: comp of oceanic angular mome	ntum due to freshwater flux	
yoam	p_fw: units = kg m2 s: 1		
yoam	p_fw: valid_min = 2.6255410225894626e+24		
yoam	p_fw: valid_max = 4.872705717529432e+24		
yoam	oamp_fw: coordinates = time		
Commen	its		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/yoamp_fw.png

Figure 198:
Dataset: SBO_CORE_PRODUCTS
Variable: yoamp_fw

22.4.20 1D Variable zcom

Table 22.27: CDL description of SBO_CORE_PRODUCTS's zcom variable

Storage	Variable Name	Description	Unit
Type			
float64	zcom	z-comp of center-of-mass of ocean	m
CDL Des	cription		
zcom zcom zcom zcom zcom	com(time) : _FillValue = 9.969209968386869e+36 : coverage_content_type = modelResult : long_name = z: comp of center: of: mass of ocean : units = m : valid_min = : 875420.3898804963		
	: valid_max = : 875350.3238026679 : coordinates = time ts		
N/A			

../images/plots/oneD_plots/SBO_Core_Products/zcom.png

Figure 199:
Dataset: SBO_CORE_PRODUCTS
Variable: zcom

22.4.21 1D Variable zcom_fw

Table 22.28: CDL description of SBO_CORE_PRODUCTS's zcom_fw variable

Storage	Variable Name	Description	Unit	
Type				
float64	zcom_fw	z-comp of center-of-mass of freshater flux	m	
CDL Desc	cription			
float64 z	com_fw(time)			
zcom	_fw: _FillValue = 9.969209968386869e+36			
	zcom_fw: coverage_content_type = modelResult			
zcom	zcom_fw: long_name = z: comp of center: of: mass of freshater flux			
zcom	zcom_fw: units = m			
zcom_fw: valid_min = : 648386.5781734617				
zcom	zcom_fw: valid_max = : 648386.5781734567			
zcom	com_fw: coordinates = time			
Commen	Comments			
N/A	'A			

../images/plots/oneD_plots/SBO_Core_Products/zcom_fw.png

Figure 200:
Dataset: SBO_CORE_PRODUCTS
Variable: zcom_fw

22.4.22 1D Variable zoamc

Table 22.29: CDL description of SBO_CORE_PRODUCTS's zoamc variable

Storage	Variable Name	Description	Unit	
Type				
float64	zoamc	z-comp of oceanic angular momentum due to	kg m2	
		currents	s-1	
CDL Desc				
float64 z	oamc(time)			
zoam	c: _FillValue = 9.969209968386869e+36			
zoam	zoamc: coverage_content_type = modelResult			
zoam	zoamc: long_name = z: comp of oceanic angular momentum due to currents			
zoam	zoamc: units = kg m2 s: 1			
zoam	coamc: valid_min = 7.331764457927521e+24			
zoam	mc: valid_max = 2.207264300276968e+25			
zoam	mc: coordinates = time			
Commen	Comments			
N/A				

../images/plots/oneD_plots/SBO_Core_Products/zoamc.png

Figure 201:
Dataset: SBO_CORE_PRODUCTS
Variable: zoamc

22.4.23 1D Variable zoamc_si

Table 22.30: CDL description of SBO_CORE_PRODUCTS's zoamc_si variable

Storage	Variable Name	Description	Unit	
Type				
float64	zoamc_si	z-comp of oceanic angular momentum due to	kg m2	
		sea-ice motion	s-1	
CDL Desc	cription			
float64 z	pamc_si(time)			
zoam	pamc_si: _FillValue = 9.969209968386869e+36			
zoam	zoamc_si: coverage_content_type = modelResult			
zoam	mc_si: long_name = z: comp of oceanic angular momentum due to sea: ice motion			
zoam	zoamc_si: units = kg m2 s: 1			
zoam	amc_si: valid_min = : 5.909426721868294e+21			
zoam	nc_si: valid_max = 5.930388258256482e+21			
zoam	nc_si: coordinates = time			
Commen	Comments			
N/A				

../images/plots/oneD_plots/SBO_Core_Products/zoamc_si.png

Figure 202:
Dataset: SBO_CORE_PRODUCTS
Variable: zoamc_si

22.4.24 1D Variable zoamp

Table 22.31: CDL description of SBO_CORE_PRODUCTS's zoamp variable

Storage	Variable Name	Description	Unit	
Type				
float64	zoamp	z-comp of oceanic angular momentum due to	kg m2	
		pressure	s-1	
CDL Desc	cription			
float64 z	oamp(time)			
zoam	p: _FillValue = 9.969209968386869e+36			
zoam	zoamp: coverage_content_type = modelResult			
zoam	pamp: long_name = z: comp of oceanic angular momentum due to pressure			
zoam	p: units = kg m2 s: 1	·		
zoam	zoamp: valid_min = 2.927645942668479e+30			
zoam	mp: valid_max = 2.9277200254389854e+30			
	np: coordinates = time			
Commen	Comments			
N/A				

../images/plots/oneD_plots/SBO_Core_Products/zoamp.png

Figure 203:
Dataset: SBO_CORE_PRODUCTS
Variable: zoamp

22.4.25 1D Variable zoamp_dsl

Table 22.32: CDL description of SBO_CORE_PRODUCTS's zoamp_dsl variable

Storage Type	Variable Name	Description	Unit	
float64	zoamp_dsl	z-comp of oceanic angular momentum due to pressure based on dynamic (IB-corrected) sea level	kg m2 s-1	
CDL Desc	cription			
float64 z	oamp_dsl(time)			
zoam	p_dsl: _FillValue = 9.969209968386869e+36			
zoam	p_dsl: coverage_content_type = modelResult			
zoam	pamp_dsl: long_name = z: comp of oceanic angular momentum due to pressure based on dynamic (IB: corrected) sea			
level				
zoam	zoamp_dsl: units = kg m2 s: 1			
zoam	zoamp_dsl: valid_min = 2.9276609546728614e+30			
zoam	amp_dsl: valid_max = 2.9277328440911863e+30			
zoam	mp_dsl: coordinates = time			
Commen	Comments			
N/A				

../images/plots/oneD_plots/SBO_Core_Products/zoamp_dsl.png

Figure 204:
Dataset: SBO_CORE_PRODUCTS
Variable: zoamp_dsl

22.4.26 1D Variable zoamp_fw

Table 22.33: CDL description of SBO_CORE_PRODUCTS's zoamp_fw variable

Storage Type	Variable Name	Description	Unit	
float64	zoamp_fw	z-comp of oceanic angular momentum due to freshwater flux	kg m2 s-1	
CDL Desc	cription			
float64 z	oamp_fw(time)			
zoam	p_fw: _FillValue = 9.969209968386869e+36			
	p_fw: coverage_content_type = modelResult			
	zoamp_fw: long_name = z: comp of oceanic angular momentum due to freshwater flux			
	zoamp_fw: units = kg m2 s: 1			
	zoamp_fw: valid_min = 7.774584605728723e+25			
	mp_fw: valid_max = 1.442874536478883e+26			
	mp_fw: coordinates = time			
	•			
	Comments			
N/A				

../images/plots/oneD_plots/SBO_Core_Products/zoamp_fw.png

Figure 205:
Dataset: SBO_CORE_PRODUCTS
Variable: zoamp_fw

23 ECCO Metadata Specification

23.1 Overview Description of the ECCO Metadata Model

The GHRSST data are global collections compiled by scientists and data production systems in many countries, so the ISO 19115-2 International Geographic Metadata Standard (extensions for imagery and gridded data) has been adopted as the standard for GDS 2.0 metadata. This standard provides a structured way to manage not just the data usage and granule-level discovery metadata provided by the CF metadata in the GHRSST netCDF files, but also collection-level discovery, data quality, lineage, and other information needed for long-term stewardship and necessary metadata management. The GHRSST GDAC and LTSRF work with individual RDACs to create and maintain the collection-level ISO record for each of their datasets (one collection level record for each product line). The collection level record will be combined by the GDAC with metadata embedded in the netCDF-4 files preferred by the GDS 2.0. In the event that an RDAC chooses to produce netCDF-3 files instead of netCDF-4, they must also create a separate XML metadata record for each granule (following the GDS 1.6 specification detail in [RD-1]). RDACs will assist with maintaining the collection portion of the ISO metadata record and will update it on an as-needed basis. This approach ensures that for every L2P, L3, L4, or GMPE granule that is generated, appropriate ISO metadata can be registered at the GHRSST Master Metadata Repository (MMR) system. Details of this approach are provided in Section 13.3 after a brief description of the heritage GDS 1.0 metadata approach.

23.2 Evolution from the GHRSST GDS 1.0 Metadata Model

The GDS 1.6 specification metadata model ([RD-1]) contained three distinct metadata records. The Data Set Descriptions (DSD) included metadata that provided an overall description of a GHRSST product, including discovery and distribution. These metadata changed infrequently and were termed collection level metadata. The File Records (FR) contained metadata that describe a single data file or granule (traditionally called granule metadata). Finally there was also granule metadata captured in the CF attributes of a netCDF3 file. Under the new GDS 2.0 initial GHRSST 2.0 Metadata Model, all three types of metadata are leveraged into a single ISO-compliant metadata file as shown in Figure 13-2. Future revisions of the GDS 2.0 will incorporate more of the ISO metadata capabilities.

23.3 The ISO 19115-2 Metadata Model

The ISO metadata model is made up of a set of containers (also referred to as classes or objects) that contain metadata elements or other objects that, in turn, contain other elements or objects (see Figure 13-1 and Table 13-1). The root element is MI_Metadata1 ¹. It contains twelve major classes that document various aspects of the resource (series or dataset) being described. The MD_DataIdentification object contains other major classes that also describe various aspects of the dataset.

Figure 206: ISO Metadata Objects and their sources

¹The ISO Standard for Geographic Data has two parts. ISO 19115 is the base standard. ISO 19115-2 includes 19115 and adds extensions for images and gridded data. We will use both parts in this model and refer to the standard used as 19115-2.

Table 23.1: Major ISO Objects. Objects in use in the GHRSST metadata model are shaded in gray.

ISO Object	Explanation
MI_Metadata	Root element that contains information about the metadata itself.
MI_AcquisitionInformation	Information about instruments, platforms, operations and other element of
	data acquisition.
MD_ContentInformation	Information about the physical parameters and other attributes contained
	in a resource.
MD_Distribution	Information about who makes a resource available and how to get it.
MD_DataQuality	Information about the quality and lineage of a resource.
MD_SpatialRepresentation	Information about the geospatial representation of a resource.
MD_ReferenceSystem	Information about the spatial and temporal reference systems used in the
	resource.
MD_MetadataExtensionInformation	Information about user specified extensions to the metadata standard used
	to describe the resource.
MD_ApplicationSchemaInformation	Information about the application schema used to build a dataset (not
	presently used for GHRSST metadata).
MD_PortrayalCatalogueReference	Information identifying portrayal catalogues used for the resource (not
	presently used for GHRSST metadata).
MD_MaintenanceInformation	Information about maintenance of the metadata and the resource it de-
	scribes.
MD_Constraints	Information about constraints on the use of the metadata and the resource
	it describes.
MD_DataIdentification	Information about constraints on the use of the metadata and the resource
	it describes.
MD_AggregateInformation	Information about groups that the resource belongs to.
MD_Keywords	Information about discipline, themes, locations, and times included in the
	resource.
MD_Format	Information about formats that the resource is available in.
MD_Usage	Information about how the resource has been used and identified limita-
	tions.
MD_BrowseGraphic	Information about graphical representations of the resource.

MI_Metadata objects can be aggregated into several kinds of series that include metadata describing particular elements of the series, termed dataset metadata, as well as metadata describing the entire series (i.e. series or collection metadata). Unlike the GDS 1.0 Metadata Model, the ISO-based GDS 2.0 model combines both collection level and granule level metadata into a single XML file. The initial approach will be to extract and translate granule metadata from netCDF-4 CF attributes in conjunction with collection level metadata from existing GDS 1.0 compliant DSD records. In the case of a data producer providing a netCDF-3 granule, an additional FR metadata record **must** still be provided (see GDS 1.6 for details on the format of the FR metadata records). The flow of metadata production is described below in two scenarios:

Existing GDS 1.0 GHRSST products

- 1. Generate ISO collection level metadata from existing GDS 1.0 DSD records
- 2. Generate ISO granule level metadata from CF attributes embedded in a GDS 2.0 specification netCDF4 granule
- 3. Combine 1 and 2 into a complete GDS 2.0 ISO 19115-2 record
- 4. If the granule is GDS 1.0 netCDF3 format the RDAC must provide a File Record

GDS 2.0 GHRSST products

- 1. Use existing ISO collection level metadata. RDACs will provide the initial metadata record from a template.
- 2. Generate ISO granule level metadata from CF attributes embedded in a GDS 2.0 specification netCDF4 granule
- 3. Combine 1 and 2 into a complete GDS 2.0 ISO 19115-2 record

In both cases, the GDAC has the primary role to create the ISO metadata records in steps 1-3. A RDAC can also choose to do steps 1-3, or maintain only the collection level portion.

A diagram of the production approach is shown in Figure 13-2. The root element for the combined file is DS_Series which includes dataset and series metadata. Dataset metadata will be constructed using metadata extracted from the netCDF-4 CF attributes (or a FR record if the file is in netCDF3 format). Series Metadata will be constructed with information from (initially) the DSD or the collection level portion of an existing GDS 2.0 specification ISO record.

Figure 207: Initial GHRSST Metadata Translation Approach to ISO record

To see the comprehensive details of the GHRSST GDS 2.0 metadata model refer to the GDS 2.0 Metadata Specification documents and example at the GDAC (http://ghrsst.jpl.nasa.gov).

24 GDS 2.0 Document Management Policy

The purpose of a GDS document management Policy is to establish the framework under which official records and documents of GHRSST are created and managed. It lists the responsibilities of key actors, and articulates the principles underpinning the processes outlined in the records and document management guidelines.

The **intent** of this Policy is to ensure that the GHRSST GPO, Science Team and actors working within GHRSST have the appropriate governance and supporting structure in place to enable them to manage their records and documents in a manner that is planned, controlled, monitored, recorded and audited, using an authorized system. This Policy states the key strategic and operational requirements for adequate recordkeeping and document management of the GDS to ensure that evidence, accountability and information about GHRSST activities are met.

The **scope** of this Policy is applicable to all people working in GHRSST and to all official records and documents, in any format and from any source. Examples include paper, electronic messages, digital documents and records, video, DVD, web-based content, plans, and maps. This Policy does not apply to public domain material.

24.1 GDS Document Management Definitions

Document:	Structured units of information recorded in any format and on any medium and managed as discrete units or objects. Some documents are records because they have participated in a business transaction, or were created to document such a transaction. Conversely, some documents are not records because they do not function as evidence of a business transaction.
Email:	The transmission of text messages and optional file attachments over a network.
ERDMS:	Electronic Records and Document Management System.
Records:	Information created, received, and maintained as evidence and information by an organization or person, in pursuance of legal obligations or in the transaction of business.
Records Management:	Field of management responsible for the efficient and systematic control of the creation, receipt, maintenance, use and disposition of records, including processes for capturing and maintaining evidence of and information about business activities and transactions in the form of records.

24.2 GDS Document Management Policy Statement

GDS records and documents created, received or used by GHRSST in the normal course of activities are the property of the GHRSST project, unless otherwise agreed. This includes reports compiled by external consultants commissioned by the GHRSST Project Office or Science Team.

GHRSST official records constitute its corporate memory, and as such are a vital asset for ongoing operations, and for providing evidence of activities and transactions. They assist the GPO and GHRSST Science Team in making better informed decisions and improving best practice by providing an accurate record of what has occurred before.

Thus GDS records are to be:

- · managed in a consistent and structured manner;
- managed in accordance with best practice guidelines and procedures;
- · stored in a secure manner.
- disposed of, or permanently archived appropriately;
- · captured and registered using an authorized recordkeeping system

GHRSST GDS documents are to be

- created by authorized officers and managed by the GPO
- · version controlled by authorized officers

24.3 GDS Document Management Policy Responsibility

The GHRSST Science Team is responsible for GDS Records Management and has delegated responsibility for records management to the GPO coordinator.

The Coordinator is accountable for providing assistance in the overall management of the GDS and documents, including:

- management of the GHRSST Document Management System (GHRSST Website document repository);
- · providing assistance on the implementation and interpretation of the GDS Document Management;
- maintaining and developing GHRSST GDS document Management policy and promulgating this across GHRSST as a whole;
- identifying retention and disposal requirements for GHRSST records;
- · providing training in GDS document management processes and the GHRSST website document repository

24.4 GHRSST GDS Recordkeeping and Document Management System

The GHRSST recordkeeping and document management system assists people working in GHRSST to capture records, protect their integrity and authenticity, provide access through time, dispose of records no longer required by GHRSST in the conduct of its activities, and ensure records of enduring value are retained. It also facilitates the creation, version control, and authority of official corporate documents.

The GHRSST recordkeeping and document management system is managed by the GPO which provides ongoing support, development and training, so that GHRSST community responsibilities are met.

The GHRSST authorized recordkeeping and document management system is the GHRSST Project Office Web site document library (http://www.ghrsst.org).

All GHRSST actors are to use http://www.ghrsst.org to ensure that:

- · GDS official records and documents are routinely captured and subjected to the relevant retention and disposal policy;
- access to records and documents is managed according to authorized access and appropriate retention times regardless
 of international location;
- records and documents are protected from unauthorized alteration or deletion;
- · documents are version controlled as required;
- there is one authoritative and primary source of information documenting GHRSST GDS decisions and actions.

All GHRSST actors who create, receive and keep records and documents as part of their GHRSST work, should do so in accordance with these policies, procedures and standards. GHRSST actors should not undertake disposal of records without the authority of the GPO – and only in accordance with authorized disposal schedules.

24.5 GDS Document location

- An approved and complete version of the GDS shall be stored on the GHRSST web site (http://www.ghrsst.org)
 under the documents -> GDS -> operational section of the web site. This version shall be the Operational version of the
 GDS
- 2. A development version of the GDS shall be stored on the GHRSST web site (http://www.ghrsst.org) under the documents -> GDS -> development section of the web site. This version shall be the development version of the GDS
- 3. An archive of all GDS documents shall be stored on the GHRSST web site (http://www.ghrsst.org) under the documents -> GDS -> archive section of the web site.
- 4. A single zip file containing all operational documents shall be available at the GHRSST web site

24.6 GDS Document Publication

- 1. The GHRSST Project Office is responsible for publication of GDS operational documents
- 2. A document BookCaptain is responsible for the publication of development GDS documents and shall inform the GHRSST project office when new documents have been published.

24.7 GDS Document formats

- 1. Operational GDS documents shall be stored as pdf documents.
- 2. Development GDS documents shall be stored as Microsoft word documents.
- 3. Both word and pdf documents shall be stored in the GDS archive.

24.8 GDS Document filing

1. Documents shall be numbered using the following nomenclature suffix to be appended at the end of a filename:

MM.mmm

where MM is the major revision e.g. 2 and mmm is a minor revision e.g. 019. for example, the following GDS filename is valid

GDS2.0_TechnicalSpecifications_revO2.001.doc

2. Following any change to a document, a new revision number shall be assigned to the document by the BookCaptain before publication.

24.9 Document retrieval

1. Free and open access to all GDS documents shall be provided by the GHRSST web page interface.

24.10 Document security

- 1. GDS documents stored within the GHRSST web page are backed up by the web hosting company every night.
- 2. An independent backup copy of all GDS documents shall be maintained by the GHRSST Project Office.

24.11 Retention and long term archive

1. GDS documents shall be retained in perpetuity within a stewardship facility.

24.12 Document workflow

- 1. Each GDS document shall be owned and administered by a document Book Captain.
- 2. A GDS BookCaptain is a central point of contact that is responsible for managing and maintaining the content of their GDS document
- 3. All revisions must be approved by a GDS document Book Captain.
- 4. All updates and revisions shall be entered into the Document change record.
- 5. A revised version of the GDS is the passed to the GPO coordinator for registration and document management (revision control).
- 6. A revised version of the GDS is the passed by the GPO to the GHRSST Data and Systems Technical Advisory Group (DAS-TAG) for review.
- 7. If required, the GPO may convene an external review Board to subject the revised GDS document to an independent peer review.
- 8. Proposed changes to the GDS, as provided by the DAS-TAG (and independent peer review if convened) are passed back to the Book Captains for implementation.
- 9. A final version of the GDS documents is passed back to the GPO.
- 10. A final version of the GDS is passed to the GHRSST Advisory council for approval.
- 11. The GPO publishes the GDS document on the GHRSST web site in the appropriate location of the GHRSST document library.

24.13 Document creation

- The GHRSST Project Office, in collaboration with the GHRSST Science Team is responsible for the creation of new GDS
 documents.
- 2. The GHRSST Project Office may delegate the responsibility to create new documents to a member of the GHRSST Science Team.

How to find out more about GHRSST:

A complete description of GHRSST together with all project documentation can be found at the following web spaces:

Main GHRSST portal GHRSST GDAC (rolling archive) GHRSST LTSRF (Archive) GHRSST HRDDS (diagnostics)

GHRSST MDB (validation)
GHRSST GMPE (L4 ensembles)

GHRSST data discovery GHRSST data visualisation (EU) GHRSST data visualisation (USA) https://www.ghrsst.org

http://ghrsst.jpl.nasa.gov http://ghrsst.nodc.noaa.gov

http://www.hrdds.net

http://www.ifremer.fr/matchupdb

http://ghrsst-pp.metoffice.com/pages/latest\
_analysis/sst_monitor/daily/ens/index.html
http://ghrsst.jpl.nasa.gov/data_search.html

http://www.naiad.fr

http://podaac-tools.jpl.nasa.gov/dataminer/

GHRSST International Project Office NCEO, Department of Meteorology, University of Reading, United Kingdom

Tel +44 (0) 118 3785579 Fax +44 (0) 118 3785576 E-mail: ghrsst-po@nceo.ac.uk

Table 12.3: GHRSST Processing Level Conventions and Codes

Level	<processing Level> Code</processing 	Description
Level O	LO	Unprocessed instrument and payload data at full resolution. GHRSST does not make recommendations regarding formats or content for data at this processing level.
Level 1A	L1A	Reconstructed unprocessed instrument data at full resolution, time referenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients and geo-referencing parameters, computed and appended, but not applied, to LO data. GHRSST does not make recommendations regarding formats of content for data at this processing level.
Level 1B	L1B	Level 1A data that have been processed to sensor units. GHRSST does not currently make recommendations regarding formats or content for L1B data.
Level 2	Preprocessed L2P	Geophysical variables derived from Level 1 source data at the same resolution and location as the Level 1 data, typically in a satellite projection with geographic information. These data form the fundamental basis for higher-level GHRSST products and require ancillary data and uncertainty estimates.
Level 3	L3U L3C L3S	Level 2 variables mapped on a defined grid with reduced requirements for ancillar data. Uncertainty estimates are still mandatory. Three types of L3 products are defined:
		 Un-collated (L3U): L2 data granules remapped to a space grid without combin ing any observations from overlapping orbits
		 Collated (L3C): observations combined from a single instrument into a space time grid
		 Super-collated (L3S): observations combined from multiple instruments into space-time grid.
		Note that L3 GHRSST products do not use analysis or interpolation procedures to fil gaps where no observations are available.
Level 4	L4	Data sets created from the analysis of lower level data that result in gridded, gap-free products. SST data generated from multiple sources of satellite data using optimal interpolation are an example of L4 GHRSST products. GMPE products are a type of L4 dataset.
Note that		
within GHRSST, all L2P files		
require a		
full set of extensive		
ancillary data such		
as wind		
speeds		
and times		
of obser- vation that		
are pro-		
vided as		
dynamic		
flagsthat		
users can		
manip- ulate to		
filter data		ECCO_v4r4_user_guide.pdf
according		Last saved: Tuesday 25 th February, 2025 11:46

ECCO_v4r4_user_guide.pdf Last saved: Tuesday 25th February, 2025 11:46

their

own qual-

Table 14.2: Regional Data Assembly Centre (RDAC) code table

RDAC Code	GHRSST RDAC Name
ABOM	Australian Bureau of Meteorology
CMC	Canadian Meteorological Centre
DMI	Danish Meteorological Institute
EUR	European RDAC
GOS	Gruppo di Oceanografia da Satellite
JPL	JPL Physical Oceanography Distributed Active Archive Center
JPL_OUROCEAN	JPL OurOcean Project
METNO	Norwegian Meteorological Institute
MYO	MyOcean
NAVO	Naval Oceanographic Office
NCDC	NOAA National Climatic Data Center
NEODAAS	NERC Observation Data Acquisition and Analysis Service
NOC	National Oceanography Centre, Southampton
NODC	NOAA National Oceanographic Data Center
OSDPD	NOAA Office of Satellite Data Processing and Distribution
OSISAF	EUMETSAT Ocean and Sea Ice Satellite Applications Facility
REMSS	Remote Sensing Systems, CA, USA
RSMAS	University of Miami, RSMAS
UKMO	UK Meteorological Office
UPA	United Kingdom Multi-Mission Processing and Archiving Facility
ESACCI	ESA SST Climate Change Initiative
JAXA	Japan Aerospace Exploration Agency
New codes	Please contact the GHRSST international Project Office if you require new codes to be in-
	cluded in future revisions of the GDS.

Table 14.3: GHRSST Processing Level Conventions and Codes

Level	<processing Level> Code</processing 	Description
Level O	LO	Unprocessed instrument and payload data at full resolution. GHRSST does not make recommendations regarding formats or content for data at this processing level.
Level 1A	L1A	Reconstructed unprocessed instrument data at full resolution, time referenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients and geo-referencing parameters, computed and appended, but not applied, to LO data. GHRSST does not make recommendations regarding formats or content for data at this processing level.
Level 1B	L1B	Level 1A data that have been processed to sensor units. GHRSST does not currently make recommendations regarding formats or content for L1B data.
Level 2	Preprocessed L2P	Geophysical variables derived from Level 1 source data at the same resolution and location as the Level 1 data, typically in a satellite projection with geographic information. These data form the fundamental basis for higher-level GHRSST products and require ancillary data and uncertainty estimates.
Level 3	L3U L3C L3S	Level 2 variables mapped on a defined grid with reduced requirements for ancillary data. Uncertainty estimates are still mandatory. Three types of L3 products are defined:
		 Un-collated (L3U): L2 data granules remapped to a space grid without combin- ing any observations from overlapping orbits
		 Collated (L3C): observations combined from a single instrument into a space- time grid
		 Super-collated (L3S): observations combined from multiple instruments into a space-time grid.
		Note that L3 GHRSST products do not use analysis or interpolation procedures to fill gaps where no observations are available.
Level 4	L4	Data sets created from the analysis of lower level data that result in gridded, gap-free products. SST data generated from multiple sources of satellite data using optimal interpolation are an example of L4 GHRSST products. GMPE products are a type of L4 dataset.
Note that		
within GHRSST, all L2P files		
require a full set of		
extensive ancillary data such		
as wind speeds		
and times of obser- vation that		
are pro- vided as dynamic		
flagsthat users can manip- ulate to		
filter data		ECCO ward wear guide = df
according		ECCO_v4r4_user_guide.pdf Last saved: Tuesday 25 th February, 2025 11:46

Last saved: Tuesday 25th February, 2025 11:46

their

own qual-

Table 16.2: Regional Data Assembly Centre (RDAC) code table

RDAC Code	GHRSST RDAC Name
ABOM	Australian Bureau of Meteorology
CMC	Canadian Meteorological Centre
DMI	Danish Meteorological Institute
EUR	European RDAC
GOS	Gruppo di Oceanografia da Satellite
JPL	JPL Physical Oceanography Distributed Active Archive Center
JPL_OUROCEAN	JPL OurOcean Project
METNO	Norwegian Meteorological Institute
MYO	MyOcean
NAVO	Naval Oceanographic Office
NCDC	NOAA National Climatic Data Center
NEODAAS	NERC Observation Data Acquisition and Analysis Service
NOC	National Oceanography Centre, Southampton
NODC	NOAA National Oceanographic Data Center
OSDPD	NOAA Office of Satellite Data Processing and Distribution
OSISAF	EUMETSAT Ocean and Sea Ice Satellite Applications Facility
REMSS	Remote Sensing Systems, CA, USA
RSMAS	University of Miami, RSMAS
UKMO	UK Meteorological Office
UPA	United Kingdom Multi-Mission Processing and Archiving Facility
ESACCI	ESA SST Climate Change Initiative
JAXA	Japan Aerospace Exploration Agency
New codes	Please contact the GHRSST international Project Office if you require new codes to be in-
	cluded in future revisions of the GDS.

Table 16.3: GHRSST Processing Level Conventions and Codes

Level	<processing Level> Code</processing 	Description
Level O	LO	Unprocessed instrument and payload data at full resolution. GHRSST does not make recommendations regarding formats or content for data at this processing level.
Level 1A	L1A	Reconstructed unprocessed instrument data at full resolution, time referenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients and geo-referencing parameters, computed and appended, but not applied, to LO data. GHRSST does not make recommendations regarding formats o content for data at this processing level.
Level 1B	L1B	Level 1A data that have been processed to sensor units. GHRSST does not currently make recommendations regarding formats or content for L1B data.
Level 2	Preprocessed L2P	Geophysical variables derived from Level 1 source data at the same resolution and location as the Level 1 data, typically in a satellite projection with geographic information. These data form the fundamental basis for higher-level GHRSST products and require ancillary data and uncertainty estimates.
Level 3	L3U L3C L3S	Level 2 variables mapped on a defined grid with reduced requirements for ancillary data. Uncertainty estimates are still mandatory. Three types of L3 products are defined:
		 Un-collated (L3U): L2 data granules remapped to a space grid without combining any observations from overlapping orbits
		 Collated (L3C): observations combined from a single instrument into a space time grid
		 Super-collated (L3S): observations combined from multiple instruments into space-time grid.
		Note that L3 GHRSST products do not use analysis or interpolation procedures to fi gaps where no observations are available.
Level 4	L4	Data sets created from the analysis of lower level data that result in gridded, gap-free products. SST data generated from multiple sources of satellite data using optimal interpolation are an example of L4 GHRSST products. GMPE products are a type of L4 dataset.
Note that within		
GHRSST, all L2P files		
require a		
full set of		
extensive		
ancillary		
data such		
as wind		
speeds and times		
of obser-		
vation that		
are pro-		
yided as		
dynamic flagsthat		
users can manip-		
ulate to		
filter data		ECCO_v4r4_user_guide.pdf
according		Last saved: Tuesday 25 th February, 2025 11:46

Last saved: Tuesday 25th February, 2025 11:46

their

own qual-