1 Nondimensional equations

The nondimensional system of equations we solve is

$$\nabla \cdot \boldsymbol{u} = 0 \tag{1}$$

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \boldsymbol{\nabla} \boldsymbol{u} = -\boldsymbol{\nabla} \boldsymbol{\varpi} + T \hat{\boldsymbol{z}} + \operatorname{Re}_0^{-1} \boldsymbol{\nabla}^2 \boldsymbol{u}$$
 (2)

$$\partial_t T + \boldsymbol{u} \cdot \boldsymbol{\nabla} T + w \boldsymbol{\nabla}_{ad} = Pe_0^{-1} \boldsymbol{\nabla}^2 T' + \boldsymbol{\nabla} \cdot [k \boldsymbol{\nabla} \overline{T}] + Q$$
 (3)

These are just the Boussinesq equations of motion, with some slight tweaks:

- 1. There is a nonzero adiabatic temperature gradient, $\partial_z T_{\rm ad} = -\nabla_{\rm ad}$. We choose this sign convention ($\nabla_{\rm ad}$ and similarly $\nabla_{\rm rad}$ will be positive) to align better with the stellar structure community's intuition. $|\nabla T_0|$ and $\nabla_{\rm ad}$ may be much larger in magnitude than the convective fluctuations. The background temperature field T_0 does not enter into the momentum equation, as it is automatically canceled by a background ∇_{ϖ} .
- 2. Convection is driven by internal heating, Q. I've confirmed with some simple tests that $|u|^2 \approx Q$, and therefore the convective frequency is $f_{\text{conv}}^2 \approx Q$.
- 3. The control freefall Péclet number, Pe_0 , and the diffusivity associated with it, only acts on fluctuations, not on the $k_x = 0$ mode. For the $k_x = 0$ mode, we model the radiative flux as $F_{\rm rad} = -k\nabla \overline{T}$, where k is a nonconstant coefficient, k(z). k may be a larger or smaller diffusivity than Pe_0^{-1} , and its magnitude is set by $\int Q dz \approx -k\nabla \overline{T}$.

2 Model Setup

We will study a two-layer model in $z = [0, L_z]$ in which the conductivity, k(z) is a step function such that

$$k(z) = \begin{cases} k_b & z < 1\\ k_t & z \ge 1 \end{cases} \tag{4}$$

where subscript "t" refers to the top layer and "b" refers to the bottom. (These won't be true discontinuities, but will be smooth step-like functions achieved with erfs.)

There will be two important input parameters in this system:

1. The stiffness,

$$S = \frac{N_t^2}{f_{\text{conv}}^2},\tag{5}$$

which is the ratio of the buoyancy frequency (in the stable layer) to the square convective frequency.

2. \mathcal{P} , a parameter which determines what the magnitude of the *negative* convective flux would be in an adiabatic penetrative layer with $k=k_t$. We will define $\mathcal{P}=-F_{\rm conv,rz}/F_{\rm conv}$, and our expectation is that we get a lot of convective penetration when $\mathcal{P}\ll 1$ and none when $\mathcal{P}\gg 1$.

In addition to these parameters, the magnitude of the heating, Q and the vertical extent of the heating layer, δ_H , must be specified as they set $F_{\text{conv}} = Q\delta_H$. We will choose Q = 1 and $\delta_H = 0.2$ so that $F_{\text{conv}} = 0.2$; we will furthermore choose and $F_{\text{bot}} = \zeta F_{\text{conv}}$, where ζ is some arbitrary scalar that sets how much smaller k is in the cz than the RZ; we'll set $\zeta = 10^{-3}$ for now.

Under these choices, the system is determined by five equations,

1. At some point, the adiabatic gradient is equal to the radiative gradient,

$$k_{\rm ad} \nabla_{\rm ad} = F_{\rm tot}.$$
 (6)

2. at z = 0, the base of the CZ, the adiabatic temperature gradient is the radiative gradient, $\nabla_{\text{ad}} = \nabla_{\text{rad}}$, and carries F_{bot} ,

$$k_b \nabla_{\rm ad} = F_{\rm bot}$$
 (7)

3. The radiative gradient can carry the flux in the RZ,

$$k_t \nabla_{\text{rad,t}} = F_{\text{tot}}$$
 (8)

4. Assuming $\nabla T = -\nabla_{\text{ad}}$ everywhere, the convective flux in the top layer is $F_{\text{conv,t}} = F_{\text{conv}} - \Delta k \nabla_{\text{ad}}$, where $F_{\text{conv}} = Q \delta_H$ and $\Delta k = k_t - k_b$. Thus, definitionally,

$$\mathcal{P} = -\frac{F_{\text{conv,t}}}{F_{\text{conv}}} = \left(\frac{\Delta k \nabla_{\text{ad}}}{Q \delta_H} - 1\right). \tag{9}$$

5. Defining $f_{\rm conv}^2 \approx Q$ and $N^2 \approx -(\nabla_{\rm rad,t} - \nabla_{\rm ad})$, the stiffness gives

$$S = \frac{N^2}{f_{\text{conv}}^2} = \frac{-(\nabla_{\text{rad,t}} - \nabla_{\text{ad}})}{Q} = \frac{F_{\text{tot}}}{Q} (k_{\text{ad}}^{-1} - k_t^{-1})$$
 (10)

Solving this system of equations gives

$$k_t = \frac{\delta_H \mathcal{P}}{\mathcal{S}}, \qquad k_b = k_t \frac{\zeta}{1 + \zeta + \mathcal{P}}, \qquad k_{\text{ad}} = k_t \frac{1 + \zeta}{1 + \zeta + \mathcal{P}},$$
 (11)

$$\nabla_{\rm ad} = \frac{QS}{\mathcal{P}}(1+\zeta+\mathcal{P}), \qquad \nabla_{\rm rad} = \frac{QS}{\mathcal{P}}(1+\zeta).$$
 (12)

Just to be safe, I'm going to offset the internal heating from the bottom boundary. We wouldn't need to do this if we didn't have a bottom, impenetrable boundary condition with a viscous boundary layer. But, since $w \to 0$ at the bottom boundary, I don't want to inject heating into the domain somewhere where it must be carried by a superadiabatic temperature gradient (I explicitly don't want to study boundary-driven convection). So

$$Q(z) = \begin{cases} 0 & z < 0.1 \\ Q & 0.1 \le z < 0.1 + \delta_H, \\ 0 & \text{elsewhere} \end{cases}$$
 (13)

We then choose T_0 to satisfy

$$\partial_z T_0 = - \begin{cases} \nabla_{\text{ad}} & z \le 1\\ \nabla_{\text{rad}} & z > 1 \end{cases}$$
 (14)

(again, perhaps not perfectly this, but with smooth transitions). And we're off to the races.