

DS-UA 111 Data Science for Everyone

Week 15: Lecture 2

Classification

How can we use regression to predict qualitative variables instead of quantitative variables?

DS-UA 111 Data Science for Everyone

Week 15: Lecture 2
Classification

Adapted from Adhikari, DeNero, Wagner, Milner

Announcements

- ▶ Please check Week 15 agenda on NYU Classes
 - **►** Exam
 - ► Monday May 11
 - **▶** Gradescope
 - **▶** Project
 - ►Friday May 8

Review

Statistical Data Types not Computational Data Types

- We study data with different properties.
 We divide these properties into two types
 - **►** Numbers
 - ►We call it Quantitative Data
 - ► Categories
 - ►We call it Qualitative Data

Agenda

- Nearest
 Neighbors
- Training and Testing

References

- **▶**Classification
 - ► Chapter 17.3-17.5

Plotting Categories

- Remember that we use scatter-plots to visualize two quantitative variables.
 - ► Horizontal Coordinate
 - ► Vertical Coordinate
- We can incorporate a qualitative variable
 - **▶** Color

Regression

- Remember that we use regression to predict quantitative response variables from explanatory variables.
- If we pretend that the categories are quantitative data then we could try regression

Classification

- We use classification to predict qualitative response variables from explanatory variables.
- Based on the explanatory variables, we separate the data into two regions corresponding to the two categories

Classification

- We need to use the data to determine a boundary that separates the regions.
- We can compare determining the boundary in classification to fitting the line in regression

Nearest Neighbors

- ► Each record in the dataset has a label for the two categories.
- If we have an unlabeled record, then we can compare values for its explanatory variables to values of the explanatory variables for the labeled records.

Nearest Neighbors

- ➤ We determine the category of the unlabeled record from the categories of the nearest labeled records.
- If we predict categories for many unlabeled records then we can determine the boundary

Nearest Neighbors

- We determine the category of the unlabeled record from the categories of the nearest labeled records.
- If we predict categories for many unlabeled records then we can determine the boundary

Training and Testing

- Accuracy measures the number of correct predictions
- For evaluating the accuracy, we should randomly split the dataset into 80% training set and 20% testing set

Training and Testing

- We determine the boundary on the training set
- We calculate the accuracy on the testing set.
- We should contrast in-sample accuracy and out-of-sample accuracy

Summary

- NearestNeighbors
- Training and Testing

Goals

- Understand the nearest neighbors approach to classification into two categories.
- Randomly split a dataset into a training set and testing set

