INTELLIGENT MODEL FOR OPTIMAL CONTROL OF TARGET WINDOWS AT END POINT IN OXYGEN STEELMAKING

by
DIVYESH DIXIT

TH MME/2001/M D642_i

Indian Institute of Technology Kanpur
February, 2001

OF TARGET WINDOWS AT END POINT IN OXYGEN STEELMAKING

A Thesis Submitted
In Partial Fulfillment of the Requirements
For the Degree of
MASTER OF TECHNOLOGY
By
DIVYESH DIXIT
(9910607)

To The
DEPARTMENT OF MATERIALS AND METALLURGICAL
ENGINEERING
IIT KANPUR
FEBRUARY 2001

I & MAY 2001 IMME

केन्द्रीय १स्तकालय

भा० भी। सं कानपुर अवाष्ति-क्र० A.1.33911

10 600 11.

Dedicated toGoddess SARASWATI, the source of all knowledge

25.3.2

CERTIFICATE

It is certified that the work contained in this thesis entitled INTELLIGENT MODEL FOR OPTIMAL CONTROL OF TARGET WINDOWS AT END POINT IN OXYGEN STEELMAKING has been carried out by Mr. Divyesh Dixit under my supervision and that this work has not been submitted elsewhere for the award of a degree.

Dr. Brahma Deo

Professor

Dept. of Materials and Metallurgical Engineering Indian Institute of Technology, Kanpur

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to Dr. Brahma Deo, for his guidance, support and

encouragement without which this modest work of mine would not have been possible.

His energetic charisma always inspired me to work hard. I am also indebted to him and

his wife for their parent like warmth and affection.

I would also like to thank Dr D.L.Carroll, Engineering Director, CU Aerospace,

Urbana, IL, USA for his genetic algorithm program and for the research papers that he

provided me without any delay. I would thank the steel plants for providing the valuable

data.

I am indebted to my parents, sisters and my maternal grandmother for their

blessings, support and affection.

I would also like to thank my friends Kapil, Ashish, Vivek, Priyanshu, Sudhakar

and others for their charming company.

Divyesh Dixit

IIT Kanpur

Feb 2001

CONTENTS

	List	List of Figures		
	List	t of Tables	XV	
	List	t of Symbols	xix	
	Abs	stract	xxi	
1	Intr	oduction	1	
2	Inte	elligent optimization and control models	3	
	2.1	Introduction	3	
	2.2	Genetic algorithms and micro-GA	3	
	2.3	Window formulation for end point control	5	
		2.3.1 Carbon Window	6	
		2.3.2 Temperature window	6	
		2.3.3 Phosphorus window	7	
		2.3.4 Manganese window	7	
		2.3.5 Dissolved oxygen window	8	
	2.4	Objective function for optimization	8	
3	The	Plant Data	11	
4	Line	ear prediction models	17	
	4.1	Development of prediction models for end point	17	
	4.2	Results of multiple linear regressions	17	
		4.2.1 Sample calculations	17	
	4.3	Results and discussion of end point prediction	29	
		4.3.1 End point carbon prediction	29	
		4.3.1.1 Comparison of linear and exponential		

			model for end point carbon prediction	30
		4.3.2	End point temperature prediction	31
		4.3.3	End point manganese prediction	31
		4.3.4	End point phosphorus prediction	31
		4.3.5	End point dissolved oxygen prediction	32
	4.4	Seque	ential linear regression models	32
		4.4.1	Comparison of sequential and static	
			linear prediction models	56
		4.4.1	Trends in coefficients in sequential linear prediction models	56
	4.5 Se	equentia	l linear prediction models for direct blow	5 7
	4.5.1	Predicti	ons from direct blow models	57
5	Resu	ılts of i	intelligent model	114
	5.1	Introd	uction	114
		5.2.1	NO raw dolomite and ore option	114
		5.2.2	Raw dolomite addition option	115
		5.2.3	Ore addition option	116
	5.3	Result	ts of intelligent model for different options	116
		5.3.1	Results of intelligent model on dataset D1	117
			5.3.1.1 Carbon window of dataset D1	118
			5.3.1.2 Temperature window of dataset D1	118
			5.3.1.3 Manganese window of dataset D1	118
			5.3.1.4 Phosphorus window of dataset D1	119
			5.3.1.5 Dissolved oxygen window of dataset D1	119
			5.3.1.6 Percent direct hits for dataset D1	119
		5.3.2	Results of intelligent model on dataset D2	119
			5.3.2.1 Carbon window of dataset D2	120
			5.3.2.2 Temperature window of dataset D2	120
			5.3.2.3 Manganese window of dataset D2	120
			5.3.2.4 Phosphorus window of dataset D2	121
			5.3.2.5 Dissolved oxygen window of dataset D2	121
			5.3.2.6 Percent direct hits for dataset D2	121

5	Con	clusions and Suggestions for further work	135
	6.1	Conclusions	135
	6.2	Suggestions for further work	136
	Bib	liography	137
	Anr	pendix 1-5	139

List of Figures

4.1	Deviation (actual-predicted) in carbon wt% versus actual carbon wt%	34
4.2	for dataset D3 using linear prediction equations from Tables 4.1-4.3 Predicted carbon versus actual carbon in wt% for dataset D1 using	35
4.2	linear prediction equations from Tables 4.1-4.3	33
4.3	Predicted carbon versus actual carbon in wt% for dataset D2 using linear prediction equations from Tables 4.1-4.3	36
4.4	Predicted carbon versus actual carbon in wt% for dataset D3 using linear prediction equations from Tables 4.1-4.3	37
4.5	Predicted carbon versus actual carbon in wt% for dataset D4 using linear prediction equations from Tables 4.1-4.3	38
4.6	Predicted versus actual carbon for dataset D1 using exponential models described in Tables 4.16-4.18	39
4.7	Predicted versus actual temperature for dataset D1 using linear prediction equations from Tables 4.4-4.6	40
4.8	Deviation (actual-predicted) versus heat number for dataset D2 using linear prediction equations from Tables 4.4-4.6	41
4.9	Deviation (actual-predicted) versus heat number for dataset D2 using linear prediction equations from Tables 4.4-4.6	42
4.10	Deviation (actual-predicted) versus heat number for dataset D4 using linear prediction equations from Tables 4.4-4.6	43
4.11	Predicted versus actual manganese for dataset D1 using linear prediction equations from Tables 4.7-4.9	44
4.12	Predicted versus actual manganese for dataset D2 using linear prediction equations from Tables 4.7-4.9	45

4.13	Predicted versus actual manganese for dataset D3 using linear	46
	prediction equations from Tables 4.7-4.9	
4.14	Predicted versus actual manganese for dataset D4 using linear	47
	prediction equations from Tables 4.7-4.9	
4.15	Predicted versus actual phosphorus for dataset D1 using linear	48
	prediction equations from Tables 4.10-4.12	
4.16	Predicted versus actual manganese for dataset D2 using linear	49
	prediction equations from Tables 4.10-4.12	
4.17	Predicted versus actual phosphorus for dataset D3 using linear	5 0
	prediction equations from Tables 4.10-4.12	
4.18	Predicted versus actual phosphorus for dataset D4 using linear	51
	prediction equations from Tables 4.10-4.12	
4.19	Predicted versus actual dissolved oxygen for dataset D1 using linear	52
	prediction equations from Tables 4.13-4.15	
4.20	Predicted versus actual dissolved oxygen for dataset D2 using linear	53
	prediction equations from Tables 4.13-4.15	
4.21	Predicted versus actual dissolved oxygen for dataset D3 using linear	54
	prediction equations from Tables 4.13-4.15	
4.22	Predicted versus actual dissolved oxygen for dataset D4 using linear	55
	prediction equations from Tables 4.13-4.15	
4.23	Predicted carbon versus actual carbon in wt% for dataset D2 using	65
	sequential linear prediction equations	
4.24	Predicted carbon versus actual carbon in wt% for dataset D3 using	66
	sequential linear prediction equations	
4.25	Predicted carbon versus actual carbon in wt% for dataset D4 using	67
	sequential linear prediction equations	

4.26	Deviation (actual-predicted) in temperature versus heat number for dataset D2 using sequential linear prediction equations	68
4.27	Deviation (actual-predicted) in temperature versus heat number for dataset D3 using sequential linear prediction equations	69
4.28	Deviation (actual-predicted) in temperature versus heat number for dataset D4 using sequential linear prediction equations	70
4.29	Predicted versus actual manganese for dataset D2 using sequential linear prediction equations	71
4.30	Predicted versus actual manganese for dataset D3 using sequential linear prediction equations	72
4.31	Predicted versus actual manganese for dataset D4 using sequential linear prediction equations	73
4.32	Predicted versus actual phosphorus for dataset D2 using sequential linear prediction equations	74
4.33	Predicted versus actual phosphorus for dataset D3 using sequential linear prediction equations	75
4.34	Predicted versus actual phosphorus for dataset D4 using sequential linear prediction equations	76
4.35	Predicted versus actual dissolved oxygen for dataset D2 using sequential linear prediction equations	77
4.36	Predicted versus actual dissolved oxygen for dataset D3 using sequential linear prediction equations	78
4.37	Predicted versus actual dissolved oxygen for dataset D4 using sequential linear prediction equations	79
4.38	Variation of coefficient of C1 in different runs versus mean heat index number in runs in the linear prediction equation for C2 (For group 1 in	80

which no	RDOL	O2 and	ORE2	is	added))
----------	------	--------	------	----	--------	---

- 4.39 Variation of coefficient of O22 in different runs versus mean heat 81 index number in runs in the linear prediction equation for C2 (For group 1 in which no RDOLO2 and ORE2 is added)
- 4.40 Variation of coefficient of SVOL in different runs versus mean heat 82 index number in runs in the linear prediction equation for C2 (For group 1 in which no RDOLO2 and ORE2 is added)
- 4.41 Variation of constant term in different runs versus mean heat index 83 number in runs in the linear prediction equation for C2 (For group 1 in which no RDOLO2 and ORE2 is added)
- 4.42 Variation of coefficient of T1 in different runs versus mean heat index 84 number in runs in the linear prediction equation for T2 (For group 1 in which no RDOLO2 and ORE2 is added)
- 4.43 Variation of coefficient of O22 in different runs versus mean heat 85 index number in runs in the linear prediction equation for T2 (For group 1 in which no RDOLO2 and ORE2 is added)
- 4.44 Variation of coefficient of HL2 in different runs versus mean heat 86 index number in runs in the linear prediction equation for T2 (For group 1 in which no RDOLO2 and ORE2 is added)
- 4.45 Variation of coefficient of HTR in different runs versus mean heat 87 index number in runs in the linear prediction equation for T2 (For group 1 in which no RDOLO2 and ORE2 is added)
- 4.46 Variation of constant term in different runs versus mean heat index 88 number in runs in the linear prediction equation for T2 (For group 1 in which no RDOLO2 and ORE2 is added)
- 4.47 Variation of coefficient of Mn0 in different runs versus mean heat 89

	index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)	
4.48	Variation of coefficient of T1 in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)	90
4.49	Variation of coefficient of C1 in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)	91
4.50	Variation of coefficient of O22 in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)	92
4.51	Variation of coefficient of HL2 in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)	93
4.52	Variation of coefficient of C2 in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)	94
4.53	Variation of coefficient of SVOL in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)	95
4.54	Variation of coefficient of HTR in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)	96
4.55	Variation of coefficient of BAS in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)	97
4.56	Variation of constant term in different runs versus mean heat index	98

	in which no RDOLO2 and ORE2 is added)	
4.57	Variation of coefficient of P0 in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)	99
4.58	Variation of coefficient of HL2 in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added	100
4.59	Variation of coefficient of T2 in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)	101
4.60	Variation of coefficient of C2 in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)	102
4.61	Variation of coefficient of Mn2 in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added	103
4.62	Variation of coefficient of SVOL in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)	104
4.63	Variation of coefficient of HTR in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)	105
4.64	Variation of constant term in different runs versus mean heat index number in runs in the linear prediction equation for C2 (For group 1 in which no RDOLO2 and ORE2 is added)	106
4.65	Variation of coefficient of HL2 in different runs versus mean heat	107

number in runs in the linear prediction equation for Mn2 (For group 1

	index number in runs in the linear prediction equation for Oact2 (For group 1 in which no RDOLO2 and ORE2 is added)	
4.66	Variation of coefficient of C2 in different runs versus mean heat index number in runs in the linear prediction equation for Oact2 (For group 1 in which no RDOLO2 and ORE2 is added)	108
4.67	Variation of constant term in different runs versus mean heat index number in runs in the linear prediction equation for Oact2 (For group 1 in which no RDOLO2 and ORE2 is added)	109
4.68	Prediction versus actual end point carbon using sequential linear prediction equations without sublance measurements (direct blow)	110
4.69	Prediction versus actual end point temperature using sequential linear prediction equations without sublance measurements (direct blow)	111
5.1	Carbon deviation (wt%) versus heat number for lowest cost option for dataset D1.Carbon window is also shown	123
5.2	Temperature deviation (degree) versus heat number for lowest cost option for dataset D1. Temperature window is also shown	124
5.3	Manganese deviation (wt%) versus heat number for lowest cost option for dataset D1. Manganese window (only upper ceiling) is also shown	125
5.4	Phosphorus deviation (wt%) versus heat number for lowest cost option for dataset D1. Phosphorus window (only upper ceiling) is also shown	126
5.5	Deviation in Dissolved oxygen deviation (ppm) versus heat number for lowest cost option for dataset D1. Oxygen window is also shown	127
5.6	Cost for lowest cost options versus heat number for dataset D1	128
5.7	Carbon deviation (wt%) versus heat number for lowest cost option for dataset D2. Carbon window is also shown Carbon deviation (wt%) versus heat number for lowest cost option for dataset D2. Carbon window is also shown	129

5.8	Temperature deviation (degree) versus heat number for lowest cost	130
	option for dataset D2. Temperature window is also shown	
5.9	Manganese deviation (wt%) versus heat number for lowest cost option	131
	for dataset D2. Manganese window (only upper ceiling) is also shown	
5.10	Phosphorus deviation (wt%) versus heat number for lowest cost option	132
	for dataset D2. Phosphorus window (only upper ceiling) is also shown	
5.11	Deviation in Dissolved oxygen deviation (ppm) versus heat number for	133
	lowest cost option for dataset D2. Oxygen window is also shown	
5 12	Cost for lowest cost antions versus heat number for dataset D2	13/

List of Tables

3.1	Summary of dataset D1	14
3.2	Summary of datasets D1 and D2	15
3.3	Summary of datasets D2 and D3	16
4.0	Summary of regression results on the dataset D1 of appendix 4	20
4.1	Summary of linear prediction model for C2 using dataset D1 (group1)	21
4.2	Summary of linear prediction model for C2 using dataset D1 (group2)	21
4.3	Summary of linear prediction model for C2 using dataset D1 (group3)	21
4.4	Summary of linear prediction model for T2 using dataset D1 (group1)	22
4.5	Summary of linear prediction model for T2 using dataset D1 (group2)	22
4.6	Summary of linear prediction model for T2 using dataset D1 (group3)	22
4.7	Summary of linear prediction model for Mn2 using dataset D1 (group1)	23
4.8	Summary of linear prediction model for Mn2 using dataset D1 (group2)	23
4.9	Summary of linear prediction model for Mn2 using dataset D1 (group3)	24
4.10	Summary of linear prediction model for P2 using dataset D1 (group1)	24
4.11	Summary of linear prediction model for P2 using dataset D1 (group2)	25
4.12	Summary of linear prediction model for P2 using dataset D1 (group3)*	25
4.13	Summary of linear prediction model for Oact2 using dataset D1 (group1)	25

4.14	Summary of linear prediction model for Oact2 using dataset D1 (group2)	26
4.15	Summary of linear prediction model for Oact2 using dataset D1 (group3)	26
4.16	Summary of exponential prediction model for C2 using dataset D1 (group1)	26
4.17	Summary of exponential prediction model for C2 using dataset D1 (group2)	27
4.18	Summary of exponential prediction model for C2 using dataset D1 (group3)	27
4.19	Deviation of predicted carbon (wt%) from actual carbon using linear prediction equations from Tables 4.1-4.3	33
4.20	Deviation of predicted temperature (⁰ K) from actual temperature using linear prediction equations from Tables 4.4-4.6	33
4.21	21Deviation of predicted manganese (wt%) from actual manganese using linear prediction equations from Tables 4.7-4.9	33
4.22	Deviation of predicted phosphorus (wt%) from actual phosphorus using linear prediction equations from Tables 4.10-4.12	33
4.23	Deviation of predicted dissolved oxygen (ppm) from actual dissolved oxygen using linear prediction equations from Tables 4.13-4.15	33
4.24	Heats included in each run	58
4.25	Coefficients of various terms in linear prediction equation for C2 for different runs (Group 1	58
4.26	Coefficients of various terms in linear prediction equation for T2 for different runs (Group 1)	58
4.27	Coefficients of various terms in linear prediction equation for Mn2 for	5 9

	different runs (Group 1)*	
4.28	Coefficients of various terms in linear prediction equation for P2 for different runs (Group 1)	59
4.29	Coefficients of various terms in linear prediction equation for Oact2 for different runs (Group 1)	59
4.30	Coefficients of various terms in linear prediction equation for C2 for different runs (Group 2)	60
4.31	Coefficients of various terms in linear prediction equation for T2 for different runs (Group 2)	60
4.32	Coefficients of various terms in linear prediction equation for Mn2 for different runs (Group 2)	60
4.33	Coefficients of various terms in linear prediction equation for P2 for different runs (Group 2)	61
4.34	Coefficients of various terms in linear prediction equation for Oact2 for different runs (Group 2)	61
4.35	Coefficients of various terms in linear prediction equation for C2 for different runs (Group 3)	61
4.36	Coefficients of various terms in linear prediction equation for T2 for different runs (Group 3)	62
4.37	Coefficients of various terms in linear prediction equation for Mn2 for different runs (Group 3)	62
4.38	Coefficients of various terms in linear prediction equation for P2 for different runs (Group 3)	62
4.39	Coefficients of various terms in linear prediction equation for Oact2	63

4.40	Deviation of predicted carbon (wt%) from actual carbon using linear	64
	prediction equations	
4.41	Deviation of predicted temperature (⁰ K) from actual temperature using	64
	linear prediction equations from Tables 4.4-4.6	
4.42	21Deviation of predicted manganese (wt%) from actual manganese	64
	using linear prediction equations from Tables 4.7-4.9	
4.43	Deviation of predicted phosphorus (wt%) from actual phosphorus	64
	using linear prediction equations from Tables 4.10-4.12	
4.44	Deviation of predicted dissolved oxygen (ppm) from actual dissolved	64
	oxygen using linear prediction equations from Tables 4.13-4.15	
4.45	Coefficients of various terms in sequential linear prediction models for	112
	end point carbon (direct blow)	
4.46	Coefficients of various terms in sequential linear prediction models for	113
	end point temperature (direct blow)	
5.1	Reporting of violation of constraints for each of the variable	122
5.2	Summary of prediction equations used for optimizing heats of dataset	122
	D1	
5.3	Summary of prediction equations used for optimizing heats of dataset	122
	D2	
A5.1	Optimization results for dataset D1	196
A5.2	Optimization results for dataset D2	218

List of symbols

Heat Number

Date Date of production

ChargeNo Charge Number

WBATH Weight of bath, Kg

GRY Weight of hot metal, Kg

GSCHROT Weight of scrap, Kg

C0 Wt % carbon in hot metal

Mn0 Wt % manganese in hot metal

P0 Wt % phosphorus in hot metal

Si0 Wt % silicon in hot metal

LNSLF Lance life

LIM1 Lime added during first part of blow, Kg

DOLO1 Dolomite added during first part of blow, Kg

ORE1 Ore added during first part of blow, Kg
RSL1 Return slag added before blowing, Kg

RDOLO1 Raw dolomite added during first part of blow, Kg

T1 Temperature at sublance measurement, ⁰K

C1 Wt% carbon in metal at sublance measurement

Mn1 Wt% manganese in metal at sublance measurement

P1 Wt% phosphorus in metal at sublance measurement

O21 Oxygen blown during first part of blow, m³
Oxygen blow during second part of blow, m³

LIM2 Lime added during second part of blow, Kg

DOLO2 Dolomite added during second part of blow, Kg

ORE2 Ore added during second part of blow, Kg

RSL2 Return slag added before second part of blow, Kg

RDOLO2 Raw dolomite added during second part of blow, Kg

HL2 Lance height during second part of blow, cm

T2	Metal temperature at the end of blow, ⁰ K
C2	Wt % carbon in metal at the end of blow
Mn2	Wt % manganese in metal at the end of blow
P2	Wt % phosphorus in metal at the end of blow
Oact2	Dissolved oxygen in metal at the end of blow, ppm
σ	Standard error of prediction
r	Correlation coefficient

ABSTRACT

Introduction of sublance technology in the early eighties to analyze carbon and temperature in an Oxygen steelmaking converter during the blow, approximately 3-4 minutes before the end of blow, proved to be an important step in the control of oxygen steel making processes.

Once we have sublance temperature and carbon, the next step is to develop some models, which will predict end point temperature and composition, given all the process parameters and variables. In the present work, based on industrial data, linear models are developed for the prediction of endpoint temperature, carbon, manganese, phosphorus and dissolved oxygen in metal. The variables were passed through a stepwise selection scheme to find sensible variables. From these linear models, we observed that Lance height, Oxygen blown, dolomite added, ore added, raw dolomite added, return slag added, lime added (all during second blow) are all important process variables which affect the end point temperature and composition of the metal.

The next problem is to decide these process variables in advance, keeping in view the target end point temperature and composition. It is not possible to exactly match the target so a window around the target is constructed with lower and upper bound on each of the values. Our objective is that the heat should lie inside the window and as close as possible to the target value. The cost incurred due to deviation from target is minimized. We considered two components of cost, the cost due to deviation from target and the cost due to violation of window. The cost due to latter is much severe. We used micro genetic algorithm to minimize the cost and decide the process variables. It was found that in more than 95% heats we could reach within a narrow range of target end point temperature and composition.

Chapter 1 Introduction

Oxygen steel making process, now known by several names such as BOP, BOF, LD etc. is one of the most dynamic processes of steel making in which oxidation of dissolved elements like carbon, silicon, phosphorous and manganese take place simultaneously while the dissolved oxygen content and temperature of the bath increase towards the end of blow. The BOF process, due to its high productivity and excellent quality, has become most popular process for steel making. It however suffers from the drawback that it is difficult to get a simultaneous hit of target carbon content, molten steel temperature, phosphorus content, manganese content and dissolved oxygen of the bath at the turndown.

Depending on the grade of steel, these variables are subjected to some quality constraints. Satisfying all the constraints simultaneously is not possible all the time. Therefore, we have to choose an optimum combination of the operating parameters so that the cost (or penalty) incurred is minimum. Genetic Algorithms (GA's) are natural choice in such complex multivariable optimization problems. Chapter 2 gives an introduction to genetic algorithms and micro GA and formulation of the optimization problem. For faster convergence micro GA is considered suitable.

The aim of this thesis is to develop prediction and optimization models for industrial end point control in 300 ton BOF. Several models are reported in literature for predicting end point variables, but in an earlier work [1], it was shown that in small range of operating variables, linear models do fairly well in predictions. In Appendix 1, a brief review of literature regarding models for predicting end point carbon is given. In chapter 4, development of linear models for the industrial data is discussed.

Results and discussions are described in chapters 4 and 5. Chapter 4 gives the results on linear models and their prediction while chapter 5 gives the results of intelligent optimization model and discusses them.

Chapter 2 Intelligent optimization and control models

2.1 Introduction

Artificial intelligence techniques, such as genetic algorithms (GA) and neural nets have been used for both optimization and control purposes in steelmaking[2-6]. In the present work GA is used in combination with end point prediction equation for optimal control of BOF operation. A brief introduction to GA's, including an advanced algorithm called Micro-GA is given first followed by the technique of window formulation for end point temperature, carbon, manganese, phosphorus and dissolved oxygen. In the last part of the chapter the objective function for minimization is defined.

2.2 Genetic algorithms and micro-GA

Genetic algorithms are search algorithms based on mechanics of natural selection and natural genetics. Considerable literature on GA's is now available[7]. GA's combine survival of the fittest among string structures with a structured yet randomized information exchange to form a search algorithm with some of the innovative flair of human search. In every generation a new set of artificial creatures (strings) is created using bits and pieces of fittest of the old; an occasional new part is tried for good measure. While randomized, genetic algorithms are no simple random walk. They efficiently exploit historical information to speculate on new search points with expected improved performance. Genetic algorithms are now finding more widespread application in business, scientific and engineering circles. Genetic algorithms are very powerful and robust in solving complex and multimodal problems.

Genetic algorithm is a population-based algorithm, i.e. it works with a set of points in the search space. We first encode points into finite length binary string then we recursively apply some operators until we are able to find the optimum. These operators

generally are selection, crossover and mutation, although there are some other operators found in GA literature. In GA's we work with some initial number of strings and this remains constant in most of GA's. This number is called the **population size**.

The aim of selection process is to favor fitter individuals. The fitness of a string can be suitably defined in a maximization or minimization problem. There are several selection schemes available, which include Roulette wheel selection and tournament selection. In Roulette wheel selection the probability of selection of a string is directly proportional to its fitness. After selection the selected strings are crossed over.

The aim of crossover is to synthesize a possibly better string from two good strings. There are many types of crossover, which include Single point crossover and Uniform crossover. Uniform cross over is used in a special kind of genetic algorithm called micro GA. In single point cross over a random crossover site is generated and two parts of the crossing strings are swapped. These new string generated are called children while original strings are called parents. There is some probability that parent will not be replaced by children. The probability of replacement of parents by children is called **crossover probability**.

In uniform crossover, bit-by-bit examination of strings is done and the corresponding bits are exchanged with some probability. The crossover probability here represents the probability of exchange of bits. A crossover probability of 0.5 represents very severe crossover in this case.

There is one operator, which is usually used to fine tune the optimum obtained. This is called mutation. In simplest kind of mutation called jump mutation we examine a single string bit by bit and change it with a certain small probability called mutation probability.

GA's are very computation intensive. The population size is large in case of normal GA's. Thus, sometimes GA's become slow in giving results. This can be very dangerous in critical application where time is very important. A new fast GA was developed by Krishnakumar[1], called micro GA. Micro GA uses a small population of 5 to 10 strings.

It uses uniform crossover and elitist selection scheme. In elitist selection scheme the maximum fitness string is always chosen. Micro GA is very successful in the case of non-stationary function, i.e. those functions that change with time and continuous optimization is needed. In case of process control of steel making we want to have fast results so we decided to use micro GA.

The GA driver was downloaded from the UIUC website. The program is written in Fortran. A description of the program is provided in Appendix 2. It was interfaced with programs using shell script and c programs to the data. We have created a package, which can be used to optimize a single heat also. The package is user friendly. The script of a session using the package is given in the Appendix 3.

2.3 Window formulation for end point control

A window defines the permitted upper and lower bounds for a given target or aim value. Lower and upper bounds are necessary because of stochastic nature as well as inherent variability of the BOF process. The objective is therefore to minimize the cost due to possible deviation from the aimed values for all parameters i.e., for temperature, carbon, phosphorus, manganese and dissolved oxygen at end point in a BOF. Depending upon the nature of variable, the cost arising due to deviations out of windows may be very high. These costs are also added to the original cost function. Thus our objective is to minimize total cost where

Total costs = Costs due to deviation from aim values + Costs due to deviation outside window

2.3.1 Carbon Window

Carbon window is formulated by allowing some predefined deviation from aim value. Care is taken that window's limit does not go beyond certain predefined minimum and maximum values. The minimum and maximum values are set because our regression equations were developed for a certain range of carbon only. The carbon window is given by

$$\Phi_{\rm c} \leq \xi_{\rm c} \leq \Psi_{\rm c}$$

where ξ_c is predicted carbon, Φ_c and Ψ_c are the lower and upper limits of window, respectively.

here
$$\Phi_{\rm c} = \begin{cases} c_{\rm aum} - \sigma_{\rm lc} & \text{if } \Phi_{\rm c} \geq 0.030 \\ 0.030 & \text{if } \Phi_{\rm c} < 0.030 \end{cases}$$

and
$$\Psi_{c} = \begin{cases} c_{aim} + \sigma_{uc} & \text{if } \Psi_{c} \ge 0.066 \\ 0.066 & \text{if } \Psi_{c} < 0.066 \end{cases}$$

where σ_{lc} and σ_{uc} are lower and upper limits of deviation allowed. In this case σ_{lc} and σ_{uc} are one and the same and they are set equal to the σ_c , which is the standard error for prediction of carbon.

2.3.2 Temperature window

Similar to carbon window, the temperature window is formulated as

$$\Phi_{\mathtt{T}} \leq \xi_{\mathtt{T}} \leq \Psi_{\mathtt{T}}$$

where, ξ_T is predicted temperature, Φ_T and Ψ_T are the lower and upper limits of window. Here, $\Phi_T = T_{aim} - \sigma_{lt}$ and $\Psi_T = T_{aim} + \sigma_{ut}$. σ_{lT} and σ_{uT} are the allowed upper and lower deviations allowed.

In our work, we have chosen $\sigma_{IT} = 5^{\circ} C$ and $\sigma_{uT} = 15^{\circ} C$ because higher temperature can be easily brought down by adding coolants (or by allowing the converter to idle) but when temperature is lower than target, reblowing may be needed else there will be problems at the casting station. This problem is however less acute when ladle furnace is available for temperature and composition adjustments at a later stage.

2.3.3 Phosphorus window

No lower limit is specified for phosphorus in this work. It is assumed a priori that any lower value than aimed is an advantage in terms of minimizing the adverse effects of phosphorus on ultimate steel quality. Phosphorus window is given by,

$$\xi_P \leq P_{aim}$$

where ξ_P is predicted phosphorus and P_{aim} is aim phosphorus.

2.3.4 Manganese window

Manganese window is formulated similar to phosphorus window and is given by,

$$\xi_{\rm Mn} \leq (Mn_{\rm aim} + 0.03)$$

where ξ_{Mn} is predicted manganese and Mn_{aim} is aim manganese. We allowed some deviation above aim value because manganese is not as harmful as phosphorus.

2.3.5 Dissolved oxygen window

Dissolved oxygen window is given by

$$\Phi_{[0]} \le \xi_{[0]} \le \Psi_{[0]}$$

where $\xi_{[O]}$ is predicted dissolved oxygen, $\Phi_{[O]}$ and $\Psi_{[O]}$ are the lower and upper limits of window respectively, Here $\Phi_{[O]} = [O]_{aim} - \sigma_{[O]}$ and $\Psi_{[O]} = [O]_{aim} + \sigma_{[O]}$, where $\sigma_{[O]}$ is the allowed deviation for dissolved oxygen window. We have used $\sigma_{[O]}$ as 162 ppm.

2.4 Objective function for optimization

There are two components of costs. The first component is due to deviation from aim values and the second component is due to violation of window limits. These costs are defined below.

-Costs for deviation for aim values

Temperature: 1 cost point for each degree Kelvin deviation from aim value. For example if our aim temperature is 1672 K and predicted temperature is 1666K cost will be (1672-1666) = 6 points.

Carbon, phosphorus, manganese, dissolved oxygen: 1 cost point for each one percent deviation from aim value. For example if aim carbon=0.040 and predicted carbon=0.042 then Cost= (0.042-0.040)*100/0.040 = 0.002*100/0.040 = 5 points.

-Costs for violation of windows:

Inside the window cost is zero. Outside the window the cost is decided on the basis of distance from the window boundary. These costs are 10 times higher than the inside costs as defined earlier. Thus, Carbon component of cost can be written as

$$F_{c} = \frac{\left\| \xi_{c} - C_{aim} \right\| * 100}{C_{aim}} + \frac{\left\langle \Phi_{c} - \xi_{c} \right\rangle * 1000}{C_{aim}} + \frac{\left\langle \xi_{c} - \Psi_{c} \right\rangle * 1000}{C_{aim}}$$

where $\|x\|$ represents the absolute value of x and <> is bracket operator function.

$$\langle x \rangle = \begin{cases} 0 & \text{if } x < 0 \\ x & \text{if } x \ge 0 \end{cases}$$

Similar equations can be written for other components of cost. These are:

-for temperature

$$F_{T} = \left\| \xi_{T} - T_{aim} \right\| + \left\langle \Phi_{T} - \xi_{T} \right\rangle * 10 + \left\langle \xi_{T} - \Psi_{T} \right\rangle * 10$$

-for phosphorus

$$F_{_{\!P}} = \frac{\left\| \xi_{_{\!P}} - P_{_{aim}} \right\| * 100}{P_{_{aim}}} + \frac{\left\langle \xi_{_{\!P}} - P_{_{aim}} \right\rangle * 1000}{P_{_{aim}}}$$

-for manganese

$$F_{Mn} = \frac{\left\| \xi_{Mn} - Mn_{aim} \right\| * 100}{Mn_{aim}} + \frac{\left\langle \xi_{Mn} - Mn_{aim} - 0.03 \right\rangle * 1000}{Mn_{aim}}$$

-and for oxygen

$$F_{[O]} = \frac{\left\| \xi_{[O]} - [O]_{a_{lim}} \right\| * 100}{\left[O \right]_{a_{lim}}} + \frac{\left\langle \Phi_{[O]} - \xi_{[O]} \right\rangle * 1000}{\left[O \right]_{a_{lim}}} + \frac{\left\langle \xi_{[O]} - \Psi_{[O]} \right\rangle * 1000}{\left[O \right]_{a_{lim}}}$$

The total cost (F_{total}) is obtained by adding all these costs and the objective of genetic algorithm is to minimize the total cost F_{total} .

$$F_{total} = F_C + F_T + F_P + F_{Mn} + F_{[O]}$$

Chapter 3

The Plant Data

The industrial data was acquired for a 300-ton converter. For this converter there are altogether 4 datasets comprising of 297, 200, 100 and 100 heats, respectively. These datasets are named as D1, D2, D3 and D4, respectively and are listed in the Appendix 4. The first dataset D1 contains all the information about the variables listed in the Table 3.0. This data set was used to develop the basic linear regression equations. The next data set D2 (containing 200 heats) was named as target dataset as it contained the targeted values of end point variables, carbon, temperature, manganese, dissolved oxygen and phosphorus. The next two datasets D3 and D4 (of 100 heats each) contained information about all the variables without any target values.

According to operational restrictions, ore ORE2 and raw dolomite RDOLO2 cannot be added together in the second part of blow. Due to this constraint we partitioned the datasets further into three parts. First group consists of heats in which the variables both Ore2 and Rdolo2 are zero. In second group of heats, Rdolo2 is nonzero while Ore2 is zero. In third group of heats, Ore2 is nonzero while Rdolo2 is zero. We partitioned the original dataset D1 of 297 heats into these three groups. As a result first group contained 110 heats, second contained 111 heats, and the third contained 60 heats. The remaining 16 heats were rejected as they violated the operational restrictions.

The plant data consisted several variables, which are explained in Table 3.1. Table 3.2-3.3 give the statistics of the data for the dataset D1, D2, D3 and D4, separately. Besides these original variables, certain variables, which are considered to be fundamental in the steel making process, were also tried in linear regression models. These variables are as follows:

(i) Hot Ratio (HTR): Hot ratio is defined as the ratio of weight of hotmetal to the weight of scrap. This affects both the temperature and composition of bath. For example; consider heat number 1739 of dataset D1

Hot metal weight=271900 Kg
Scrap weight=52000 Kg
Thus, hot ratio HTR =
$$\frac{271900}{52000}$$

= 5.229

(ii) Basicity (BAS): Slag consists of CaO, SiO_2 and other oxides. While CaO is basic in nature, SiO_2 is acidic in nature. The nature of slag has a profound effect on the refining process in steelmaking. In our calculations we have defined basicity as:

$$BAS = \frac{LIM1 + DOLO1}{WSiO_2}$$

where

$$WSiO_2 = GRY * \frac{Si0}{100} * \frac{60}{28}$$

For example; consider heat number 1739 of dataset D1

LIM1=lime added during first blow;11231 Kg; GRY=Weight of hot metal =271900 Kg; Si0=hot metal silicon=0.556 %;

$$WSiO_2 = 271900 * \frac{0.556}{100} * \frac{60}{28} = 3239.5 \text{ Kg}$$

Basicity
$$BAS = \frac{11231}{3239.5} = 3.4669$$

(iii) Slag Volume (SVOL): During the blow, oxygen is blown with supersonic jets at very high speed, so the metal droplets are thrown into the slag. These droplets travel through slag and react with it. Thus the amount of slag has a significant effect on the refining process. We assumed that slag volume is proportional to the slag mass, thus we used slag mass in regression models. Slag volume is defined as:

$SVOL = WSiO_2 + LIM1 + RSL1$

For example; consider heat number 1739 of dataset D1 $WSiO_2$ =3239.5 Kg; LIM1=11231 Kg; RSL1=3346 Kg Slag volume SVOL=3239.5+11231+3346=17816.5

Table 3.1 Variables defined in plant data

Variable	Full Name	Unit
HeatNo	Heat Number	
Date	Date of production	
ChargeNo	Charge Number	
WBATH	Weight of bath	Kg
GRY	Weight of hot metal	Kg
GSCHROT	Weight of scrap	Kg
C0	Wt % carbon in hot metal	Wt%
Mn0	Wt % manganese in hot metal	Wt%
P0	Wt % phosphorus in hot metal	Wt%
Si0	Wt % silicon in hot metal	Wt%
LNSLF	Lance life	Number of heats
LIM1	Lime added during first part of blow	Kg
DOLO1	Dolomite added during first part of blow	Kg
ORE1	Ore added during first part of blow	Kg
RSL1	Return slag added before blowing	Kg
RDOLO1	Raw dolomite added during first part of blow	Kg
T1	Temperature at sublance measurement	⁰ K
C1	Wt% carbon in metal at sublance measurement	Wt%
Mn1	Wt% manganese in metal at sublance measurement	Wt%
P1	Wt% phosphorus in metal at sublance measurement	Wt%
O21	Oxygen blown during first part of blow	Nm ³
O22	Oxygen blow during second part of blow	Nm ³
LIM2	Lime added during second part of blow	Kg
DOLO2	Dolomite added during second part of blow	Kg
ORE2	Ore added during second part of blow	Kg
RSL2	Return slag added before second part of blow	Kg
RDOLO2	Raw dolomite added during second part of blow	Kg
HL2	Lance height during second part of blow	Cm
T2	Metal temperature at the end of blow	⁰ K
C2	Wt % carbon in metal at the end of blow	Wt%
Mn2	Wt % manganese in metal at the end of blow	Wt%
P2	Wt % phosphorus in metal at the end of blow	Wt%
Oact2	Dissolved oxygen in metal at the end of blow	ppm

Table 3.2 Summary of datasets D1 and D2

Variable		D1			D2	
	Range	Mean	σ	Range	Mean	σ
Heat No.	1739-2545			2251-3331	IVICAII	0
Date	01SEP00-			23SEP00-		
	23SEP00			10OCT00		
Charge						
No.						
WBATH	262900-	320208	11652	292400-	319491	8864
	352700			336800		
GRY	250000-	289803	11656	250200-	288901	10596
	311600			308200		
GSCH-	35300-73400	53843	8204	34600-73400	54287	7395
ROT						
C0	4.2640-4.9900	4.6688	0.1047	4.2860-4.8650	4.6695	0.0917
Mn0	0.2970-0.4740	0.3886	0.0381	0.2990-0.4260	0.3739	0.0221
P0	0.0530-0.0660	0.0579	0.0023	0.0520-0.0640	0.0574	0.0021
Si0	0.2760-0.9670	0.4933	0.1258	0.1360-0.8160	0.4158	0.1079
LNSLF	1-225	69.78	50.34	0-201	95.180	56.2759
LIM1	8512-20041	14527	2814	8545-20035	13998	2628
DOLO1	0-0	0	0	0-0	0	0
ORE1	0-11947	4447	2516	0-8567	3433	2205
RSL1	0-6921	3654	911	2-7003	3630	950
RDOLO1	0-4523	630	723	0-2001	674	566.6
T1	1516-1665	1602.64	22.97	15225-1666	1606	24.07
C1	0.1120-0.7870	0.3367	0.1117	0.111-0.727	0.3409	0.1213
Mn1	0.1240-0.3990	0.2931	0.0428	0.156-0.387	0.2980	0.034
P1	0.0040-0.0510	0.0248	0.0083	0.006-0.059	0.0295	0.0089
O21	10398-14982	12971.6	800.7	10527-14104	12864	683
O22	1146-3582	1996.6	359.0	1243-3330	1993	370.8
LIM2	0-503	19.24	94.78	0-502	14.91	84.78
DOLO2	0-2003	86.17	394.11	0-0	0	0
ORE2	0-1401	181.31	336.70	0-15225	273.21	352.65
RSL2	0-2527	114.84	429.36	0-3258	130.89	480.15
RDOLO2	0-3969	376.84	642.24	0-2276	305	461.62
HL2	143-249	208.43	19.21	136-230	185	26.14
T2	1599-1708	1667.31	18.68	1618-1713	1668	18.08
C2	0.030-0.0840	0.0486	0.0083	0.03-0.087	0.0473	0.0088
Mn2	0.063-0.270	0.1563	0.0343	0.075-0.245	0.1620	0.0313
P2	0.004-0.028	0.0107	0.0034	0.004-0.023	0.0120	0.0038
Oact2	266-1371	735.53	239.68	288-1178	652.32	180.42

Table 3.3 Summary of datasets D3 and D4

Table 3.3 Summary of datasets D3 and D4						
Variable)3	,	I)4	
	Range	Mean	σ	Range	Mean	σ
Heat No.	3337-3685			3687-3971		
Date	10OCT00-			19OCT00-		
	19OCT00			24OCT00		
Charge						
No.						
WBATH	289500-331700	315965	8507	290100-336100	319766	6773.9
GRY	250000-307600	287929	11656	250100-297800	282915	9617.5
GSCH-	35800-68300	54475	8254	46700-7800	62187	8158.0
ROT						
C0	4.3340-4.891	4.6829	0.1107	4.574-4.856	4.7128	0.0593
Mn0	0.323-0.422	0.3753	0.0216	0.33-0.399	0.3696	0.0144
P0	0.015-0.083	0.0609	0.0040	0.051-0.064	0.058	0.0029
Si0	0.2460-0.815	0.4443	0.1038	0.315-0.66	0.4758	0.0645
LNSLF	0-242	166.42	58.80	0-225	49	47.11
LIM1	7166-20791	12770	2523	7202-16805	9324	1894.7
DOLO1	0-5994	683	1638	0-7938	3828	1680.9
ORE1	0-9159	3605	2479	200-8594	4487	1608.5
RSL1	0-4748	2916	1316	0-3481	874	707.58
RDOLO1	0-2008	483	531.8	0-3663	149	616.03
T1	1538-1679	1610	28.19	1536-1665	1613	24.31
C1	0.127-0.824	0.3813	0.1208	0.161-0.723	0.3916	0.1132
Mn1	0.184-0.378	0.2853	0.0398	0.148-0.329	0.2319	0.0473
P1	0.01-0.53	0.0262	0.0088	0.006-0.04	0.0214	0.0076
O21	10554-15400	12984	762.17	11102-14101	13102	464.28
O22	1348-3193	2068	359.84	1508-3496	2085	346.81
LIM2	0-2038	50.57	243.62	0-507	25.1	109.36
DOLO2	0-1992	20	198.2	0-0	0	0
ORE2	0-1049	249.7	363.46	0-4022	270.3	517.5
RSL2	0-3605	217	625.38	0-5014	523.28	1097.7
RDOLO2	0-2532	342	590	0-1261	185	336.04
HL2	169-246	215	15.69	138-249	196	15.51
T2	1624-1723	1670	19.4	1622-1714	1668	15.71
C2	0.032-0.105	0.0558	0.0141	0.03-0.109	0.0588	0.0142
Mn2	0.085-0.261	0.1565	0.0303	0.083-0.211	0.1421	0.0281
P2	0.005-0.031	0.0113	0.0039	0.004-0.018	0.0094	0.0026
Oact2	242-1522	590.64	265.71	240-940	453.92	112.21
						*

Chapter 4 Linear prediction models

4.1 Development of prediction models for end point

Linear prediction models for end point prediction were developed using Nag routines. These Nag routines are available as standard nag libraries, which can be called in Fortran programs. The routine G02EEF was used to select the significant variables from the list of all possible independent variables, which may affect the dependent variable. The routine G02BAF was used to generate the moments from the data. These moments are used by routine G02CGF to finally give the linear models.

Besides these linear models, exponential model of carbon, in which a linear prediction equation for capacity mass transfer is used, is also developed.

4.2Results of multiple linear regressions

The results of linear regression runs are summarized in Tables 4.1-4.15. Exponential regression models for carbon, in which a linear prediction equation for capacity mass transfer coefficient is used, are summarized in Tables 4.16-4.18. The dataset D1 consisting of 297 heats, which was partitioned into three groups, was used in these regression runs. The table 4.0 gives a summary of these regression runs.

4.2.1 Sample calculations

Sample calculations for the linear prediction models described in Tables 4.1-4.15, for a single heat are given below.

-Table 4.1: In Heat No. R1751, C1=0.239, O22=1802, SVOL=21978

Calculated C2=0.239*0.0421385+1802*-0.000013575+21978*0.000000442+0.050873

- -Table 4.2: In Heat No. R1739, C1=0.441, O22=2240, HL2=217, SVOL=17816

 Calculated C2 = 0.05006*0.441-0.0000219*2240+0.000114*217+0.000000689*17816+

 0.038

 = 0.0480 (Actual 0.043)
- -Table 4.3: In Heat No. R1752, C1=0.348, O22=1995, LIM2=0, ORE2=460, HL2=238 Calculated C2 = 0.060*0.348-0.00002847*1995+0.000008546*460+0.0001774*238 +0.04166 = 0.0519 (Actual 0.050)
- -Table 4.4: In Heat No. R1751, T1=1611, O22=1802, LIM2=0, HL2=213, HTR=6.672 Calculated T2 = 0.9608*1611+0.0438*1802-0.0117*0+0.0751*213+1.107*6.672+25.05 = 1675.20 (Actual 1685)
- -Table 4.5: In Heat No. R1739, T1=1561, O22=2240, LIM2=0, DOLO2=0, RSL2=0,RDOLO2=1516, HL2=217

 Calculated T2 = 0.8868*1561+0.03564*2240-0.00807*1516-0.0885*217+197.62

 = 1630.31 (Actual 1625)
- -Table 4.6: In Heat No. R1752, T1=1620, O22=1995, ORE2=460, RSL2=0, HL2=238,HTR=6.39
- Calculated T2 = 0.9033*1620+0.0434*1995-0.0156*460-0.171*238+2.16*6.39+169.405 = 1685.26 (Actual 1690)
- -Table 4.7: In Heat No. R1751, Mn0=0.372, T1=1611, C1=0.239, O22=1802, HL2=213, C2=0.04619(predicted), SVOL=21978, HTR=6.672, BAS=4.678

 Calculated Mn2 = 0.3005*0.372+0.00074*1611+0.172*0.239-0.0000368*1802
 +0.00013*213+1.287*0.04619-0.00000246*21978-0.00365*6.672
 +0.0039*4.678-1.163176

-Table 4.8: In Heat No. R1739, Mn0=0.352, T1=1561, C1=0.441, O22=2240, DOLO2=0, RDOLO2=1516, T2=1630.31(Calculated), C2=0.048(Calculated), SVOL=17816, BAS=3.4669

Calculate Mn2 = 0.3155*0.352+0.00133*1561+0.1899*0.441-0.0000306*2240-0.000019*1516-0.00029*1630.31+1.06*0.048-0.0000038*17816-0.00298*3.469-1.5542= 0.119 (Actual 0.105)

-Table 4.9: In Heat No. R1752, Mn0=0.381, T1=1620, C1=0.348, O22=1995, LIM2=0, DOLO2=0, ORE2=460, RSL2=0, T2=1685(Calculated), C2=0.0519(Calculated), SVOL=25717, BAS=4.34

Calculated Mn2 = 0.2877*0.381+0.00113*1620+0.1926*0.348-0.0000253*1995-0.0000275*460-0.000195*1685+1.134*0.0519-0.0000023*25717-0.0032*4.34-1.4234= 0.178 (Actual 0.184)

-Table 4.10: In Heat No. R1751 P0=0.0579, DOLO2=0, HL2=213, T2=1675(predicted), C2=0.04619(predicted), Mn2=0.143(predicted), SVOL=21978, HTR=6.671940

Calculated P2 = 0.263*0.0579+0-0.0000288*213+0.000043*1675-0.069*0.04619
+0.069*0.143-0.000000229*21978+0.00028*6.67194-0.075205
= 0.00943 (Actual 0.0100)

-Table 4.11: For example, in Heat No. R1739, P0=0.059, HL2=217, T2=1630.31 (Calculated), C2=0.048(Calculated), Mn2=0.119(Calculated), SVOL=17816 Calculated P2 = 0.3158*0.059-0.0000325*217+0.0000957*1630.31+0.0939*0.048+ 0.0507*0.119-0.000000445*17816-0.162815 = 0.00739 (Actual 0.007)

Table 4.0 Summary of regression results on the dataset D1 of appendix 1

Reference table	Linear Model description	Special constraints	Data set Location	Accuracy of prediction
Table 4.1	End point carbon control	Ore2=0	D1	σ=0.0053
1 4.1	End point carbon control	Rdolo2=0	Appendix 1	r=0.6540
Table 4.2	End point carbon control	Ore2=0	D1	σ=0.0069
1 4010 4.2	End point caroon control	Rdolo2≠0	Appendix 1	r=0.6138
Table 4.3	End point carbon control	Ore2≠0	D1	σ=0.0064
14010 1.5		Rdolo2=0	Appendix 1	r=0.6963
Table 4.4	End point temperature control	Ore2=0	D1	σ =6.4039
		Rdolo2=0	Appendix 1	r=0.9059
Table 4.5	End point temperature control	Ore2=0	D1	$\sigma = 8.4678$
		Rdolo2≠0	Appendix 1	r=0.9031
Table 4.6	End point temperature control	Ore2≠0	D1	σ =7.9845
		Rdolo2=0	Appendix 1	r= 0.9241
Table 4.7	Dissolved oxygen control	Ore2=0	D1	σ =189.1887
		Rdolo2=0	Appendix 1	r=0.6778
Table 4.8	Dissolved oxygen control	Ore2=0	D1	σ =142.1239
		Rdolo2≠0	Appendix 1	r=0.7720
Table 4.9	Dissolved oxygen control	Ore2≠0	D1	σ=134.7646
		Rdolo2=0	Appendix 1	r=0.7715
Table 4.10	End point manganese control	Ore2=0	D1	$\sigma = 0.0132$
		Rdolo2=0	Appendix 1	r=0.9292
Table 4.11	End point manganese control	Ore2=0	D1	σ=0.0130
		Rdolo2≠0	Appendix 1	r=0.9408
Table 4.12	End point manganese control	Ore2≠0	D1	$\sigma = 0.0143$
	1	Rdolo2=0	Appendix 1	r=0.8864
Table 4.13	End point phosphorus control	Ore2=0	D1	σ=0.0018
i		Rdolo2=0	Appendix 1	r=0.8182
Table 4.14	End point phosphorus control	Ore2=0	D1	σ=0.0023
		Rdolo2≠0	Appendix 1	r=0.8308
Table 4.15	End point phosphorus control	Ore2≠0	D1	$\sigma = 0.0021$
		Rdolo2=0	Appendix 1	r=0.7155
Table 4.16	Carbon mass transfer	Ore2=0	D1	
	coefficient near end point	Rdolo2=0	Appendix 1	
Table 4.17	Carbon mass transfer	Ore2=0	D1	
	coefficient near end point	Rdolo2≠0	Appendix 1	
Table 4.18	Carbon mass transfer	Ore2≠0	D1	
	coefficient near end point	Rdolo2=0	Appendix 1	

Table 4.1 Summary of linear prediction model for C2 using dataset D1 (group1)*

Dendent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
				coefficient
C2	T1,C1,O22,LIM2,	C1	0.042138504	
ORE2=0	DOLO2,RSL2,HL2,	O22	-0.000013575	σ=0.0053
RDOLO2=0	SVOL,HTR,BAS	SVOL	0.000000442	r=0.6540
		CONSTANT	0.050873	

^{*}Group 1 consists of heats for which RDOLO2=0 and ORE2=0

Table 4.2 Summary of linear prediction model for C2 using dataset D1 (group2)*

Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
				coefficient
C2	T1,C1,O22,LIM2,	C1	0.050060497	
ORE2=0	DOLO2,RSL2,	O22	-0.000021931	σ=0.0069
RDOLO2≠0	RDOLO2,HL2,	HL2	0.000114168	r=0.6138
	SVOL,HTR,BAS	SVOL	0.000000689	
		CONSTANT	0.038007	

^{*}Group 2 consists of heats for which RDOLO2≠0 and ORE2=0

Table 4.3 Summary of linear prediction model for C2 using dataset D1 (group3)*

14010 1.5 50	Table 4.5 Building of finear prediction model for ez using dataset D1 (groups)					
Dependent	Independent	Independent	Coefficients	Standard		
Variable,	Variables tried	Variables		deviation and		
Constraint		Selected		correlation		
				coefficient		
C2	T1,C1,O22,LIM2,	C1	0.060102077			
ORE2≠0	DOLO2,ORE2,	O22	-0.000028469	σ=0.0064		
RDOLO2=0	RSL2,HL2,	LIM2	-0.000023615	r=0.6963		
	SVOL,HTR,BAS	ORE2	0.000008546			
		HL2	0.000177401			
		CONSTANT	0.041659			

^{*}Group 3 consists of heats for which RDOLO2=0 and ORE2≠0

Table 4.4 Summary of linear prediction model for T2 using dataset D1 (group1)*

Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
				coefficient
T2	T1,C1,O22,LIM2,	T1	0.960814354	
ORE2=0	DOLO2,RSL2,HL2,	O22	0.043802837	σ=6.4039
RDOLO2=0	SVOL,HTR,BAS	LIM2	-0.011723530	r=0.9059
		HL2	0.075109580	
		HTR	1.107001549	
		CONSTANT	25.050055	

^{*}Group 1 consists of heats for which RDOLO2=0 and ORE2=0

Table 4.5 Summary of linear prediction model for T2 using dataset D1 (group2)*

	Independent			
Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
	1			coefficient
T2	T1,C1,O22,LIM2,	T1	0.886800372	
ORE2=0	DOLO2,RSL2,	O22	0.03564128	σ=8.4678
RDOLO2≠0	RDOLO2,HL2,	LIM2	-0.021140074	r=0.9031
	SVOL,HTR,BAS	DOLO2	-0.004277747	
		RSL2	-0.008669891	
		RDOLO2	-0.008073328	
		HL2	-0.088514272	
		CONSTANT	197.619990	

^{*}Group 2 consists of heats for which RDOLO2≠0 and ORE2=0

Table 4.6 Summary of linear prediction model for T2 using dataset D1 (group3)*

Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
				coefficient
T2	T1,C1,O22,LIM2,	T1	0.903288146	
ORE2≠0	DOLO2,ORE2,	O22	0.043384088	σ=7.9845
RDOLO2=0	RSL2,HL2,	ORE2	-0.015635069	r= 0.9241
	SVOL,HTR,BAS	RSL2	-0.006714139	
		HL2	-0.17097950	
		HTR	2.161500311	
		CONSTANT	169.405449	

^{*}Group 3 consists of heats for which RDOLO2=0 and ORE2≠0

Table 4.7 Summary of linear prediction model for Mn2 using dataset D1 (group1)*

Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
				coefficient
Mn2	Mn0,T1,C1,O22,	Mn0	0.300525655	
ORE2=0	LIM2,DOLO2,	T1	0.000741625	σ=0.0132
RDOLO2=0	RSL2,HL2,	C1	0.171760349	r=0.9292
	T2,C2,SVOL,HTR,	O22	-0.000036792	
	BAS	HL2	0.000130775	
		C2	1.287354594	
		SVOL	-0.000002459	
		HTR	-0.003649055	
		BAS	0.003902635	
		CONSTANT	-1.163176	

^{*}Group 1 consists of heats for which RDOLO2=0 and ORE2=0

Table 4.8 Summary of linear prediction model for Mn2 using dataset D1 (group2)*

Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
				coefficient
Mn2	Mn0,T1,C1,O22,	Mn0	0.315546534	
ORE2=0	LIM2,DOLO2,	T1	0.001328585	σ=0.0130
RDOLO2≠0	RSL2,RDOLO2,	C1	0.189916495	r=0.9408
	HL2,T2,C2,SVOL,	O22	-0.000030600	
	HTR,BAS	DOLO2	-0.000004419	
		RDOLO2	-0.000019065	
		T2	-0.000291708	
		C2	1.061411681	
		SVOL	-0.000003804	
		BAS	-0.002979311	
		CONSTANT	-1.554208	

^{*}Group 2 consists of heats for which RDOLO2≠0 and ORE2=0

Table 4.9 Summary of linear prediction model for Mn2 using dataset D1 (group3)*

Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
				coefficient
Mn2	Mn0,T1,C1,O22,	Mn0	0.287657475	
ORE2≠0	LIM2,DOLO2,	T1	0.001126155	$\sigma = 0.0143$
RDOLO2=0	ORE2,RSL2,	C1	0.192631598	r=0.8864
	HL2,T2,C2,SVOL,	O22	-0.000025336	
	HTR,BAS	LIM2	-0.000046660	
		DOLO2	-0.000008290	
		ORE2	-0.000027500	
		RSL2	-0.000005548	
		T2	-0.000194654	
		C2	1.134257008	
		SVOL	-0.000002313	
		BAS	-0.003202942	
		CONSTANT	-1.423426	

^{*}Group 3 consists of heats for which RDOLO2=0 and ORE2≠0

Table 4.10 Summary of linear prediction model for P2 using dataset D1 (group1)*

Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
				coefficient
P2	P0,T1,C1,O22,	P0	0.262965456	
ORE2=0	LIM2,DOLO2,	DOLO2	0.000001515	σ=0.0018
RDOLO2=0	RSL2,HL2,T2,	HL2	-0.000028851	r=0.8182
	C2,Mn2,SVOL,	T2	0.000043017	
	HTR,BAS	C2	-0.060858325	
		Mn2	0.069068364	
		SVOL	-0.000000229	
		HTR	0.000281388	
		CONSTANT	-0.075205	

^{*}Group 1 consists of heats for which RDOLO2=0 and ORE2=0

Table 4.11 Summary of linear prediction model for P2 using dataset D1 (group2)*

Dependent Variable, Constraint	Independent Variables tried	Independent Variables Selected	Coefficients	Standard deviation and correlation coefficient
P2 ORE2=0 RDOLO2≠0	P0,T1,C1,O22, LIM2,DOLO2, RSL2,RDOLO2, HL2,T2,C2,Mn2, SVOL,HTR,BAS	P0 HL2 T2 C2 Mn2 SVOL CONSTANT	0.315780703 -0.000032456 0.000095672 0.093936674 0.050712348 -0.000000445 -0.162815	σ=0.0023 r=0.8308

^{*}Group 2 consists of heats for which RDOLO2≠0 and ORE2=0

Table 4.12 Summary of linear prediction model for P2 using dataset D1 (group3)*

Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
				coefficient
P2	P0,T1,C1,O22,	P0	0.234064707	
ORE2≠0	LIM2,DOLO2,	ORE2	-0.000002757	σ=0.0021
RDOLO2=0	ORE2,RSL2,	HL2	-0.000042313	r=0.7155
	HL2,T2,C2,Mn2,	T2	0.000027988	
	SVOL,HTR,BAS	Mn2	0.047250703	
		SVOL	-0.000000361	
		CONSTANT	-0.038820	

^{*}Group 3 consists of heats for which RDOLO2=0 and ORE2≠0

Table 4.13 Summary of linear prediction model for Oact2 using dataset D1 (group1)*

1 4010 4.13 30	Table 4.13 Summary of finear prediction model for Gaetz using dataset D1 (group)					
Dependent	Independent	Independent	Coefficients	Standard		
Variable,	Variables tried	Variables		deviation and		
Constraint		Selected		correlation		
				coefficient		
Oact2	T1,C1,O22,LIM2,	LIM2	0.362841895			
ORE2=0	DOLO2,RSL2,HL2,	DOLO2	0.109714957	σ=189.1887		
RDOLO2=0	T2,C2,SVOL,HTR,	HL2	-3.807404690	r=0.6778		
	BAS	C2	-19791.21856			
		CONSTANT	2503.654180			

^{*}Group 1 consists of heats for which RDOLO2=0 and ORE2=0

Table 4.14 Summary of linear prediction model for Oact2 using dataset D1 (group2)*

Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
				coefficient
Oact2	T1,C1,O22,LIM2,	T1	-11.51006726	
ORE2=0	DOLO2,RSL2,	C1	-1181.147900	σ=142.1239
RDOLO2≠0	RDOLO2,HL2,	LIM2	0.352647390	r=0.7720
	T2,C2,SVOL,HTR,	RSL2	0.187922487	
	BAS	RDOLO2	0.082205909	
		T2	12.725908627	
		C2	-3546.561199	
		HTR	-24.49704435	
		CONSTANT	-1367.055692	

^{*}Group 2 consists of heats for which RDOLO2≠0 and ORE2=0

Table 4.15 Summary of linear prediction model for Oact2 using dataset D1 (group3)*

Table 1115 Ballimary of infoar production model for Gates asing datasets DT (Groups)					
Dependent	Independent	Independent	Coefficients	Standard	
Variable,	Variables tried	Variables		deviation and	
Constraint		Selected		correlation	
				coefficient	
Oact2	T1,C1,O22,LIM2,	LIM2	381741035		
ORE2≠0	DOLO2,ORE2,	ORE2	127769642	σ=134.7646	
RDOLO2=0	RSL2,HL2,T2,	HL2	-2.478146971	r=0.7715	
	C2,SVOL,HTR,	C2	-17065.111683		
	BAS	CONSTANT	2138.106569		

^{*}Group 3 consists of heats for which RDOLO2=0 and ORE2≠0

Table 4.16 Summary of exponential prediction model for C2 using dataset D1 (group1)*

Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables	Cocincionis	deviation and
1	variables tried			1
Constraint		Selected		correlation
				coefficient
k	T1,C1,O22,LIM2,	C1	0.014427903	
ORE2=0	DOLO2,RSL2,HL2,	O22	-0.000003647	σ=0.0011
RDOLO2=0	SVOL,HTR,BAS	SVOL	-0.000000067	r=0.7812
		CONSTANT	0.015946	

Table 4.17 Summary of exponential prediction model for C2 using dataset D1 (group2)*

Table 4.17 Summary of exponential prediction model for Cz using dataset D1 (groupz)				
Dependent	Independent	Independent	Coefficients	Standard
Variable,	Variables tried	Variables		deviation and
Constraint		Selected		correlation
				coefficient
k	T1,C1,O22,LIM2,	T1	-0.000008623	
ORE2=0	DOLO2,RSL2,	C1	0.010516247	σ=0.0010
RDOLO2≠0	RDOLO2,HL2,	O22	-0.000003611	r=0.7082
	SVOL,HTR,BAS	LIM2	-0.000000784	
		HL2	-0.000015054	
		SVOL	-0.000000091	
		HTR	0.000167811	
		CONSTANT	0.033548	

^{*}Group 2 consists of heats for which RDOLO2≠0 and ORE2=0

Table 4.18 Summary of exponential prediction model for C2 using dataset D1 (group3)*

Table 1.10 Balliniary of exponential prediction integer for 02 using dataset D1 (groups)					
Dependent	Independent	Independent	Coefficients	Standard	
Variable,	Variables tried	Variables		deviation and	
Constraint		Selected		correlation	
				coefficient	
k	T1,C1,O22,LIM2,	C1	0.013677933		
ORE2≠0	DOLO2,ORE2,	O22	-0.000002201	σ=0.0014	
RDOLO2=0	RSL2,HL2,	ORE2	-0.000001552	r=0.6943	
	SVOL,HTR,BAS	HL2	-0.000026113		
		CONSTANT	0.018160		

^{*}Group 3 consists of heats for which RDOLO2=0 and ORE2≠0

-Table 4.12: In Heat No. R1752, P0=0.060, ORE2=460, HL2=238, T2=1685(Calculated), Mn2=0.178(Calculated), SVOL=25717

Calculated P2 = 0.234*0.060-0.000002757*460-0.000042*238+0.000028*1685+
0.047*0.178-0.00000036*25717-0.03882
= 0.0102 (Actual 0.011)

-Table 4.13: In Heat No. R1751, LIM2=0, DOLO2=0, HL2=213, C2=0.04619(predicted)

Calculated Oact2 = 0.3628*0+0.1097*0-3.8074*213-19791*0.04619+2503.654

= 778.5 (Actual 886)

-Table 4.14: In Heat No. R1739, T1=1561, C1=0.441, LIM2=0, RSL2=0, RDOLO2=1516, T2=1630.31(Calculated), C2=0.048(Calculated), HTR=5.229 Calculated Oact2 = -11.51*1561-1181*0.441+0.0822*1516+12.726*1630.31-3546*0.048-24.497*5.229-1367 = 718 (Actual 618)

-Table 4.15: In Heat No. R1752, LIM2=0, ORE2=460, HL2=238, C2=0.0519(Calculated)

Calculated Oact2 = -0.12777*460-2.478*238-17065*0.0519+2138.1 = 603.89 (Actual 579)

-Table 4.16: In Heat No. R1751, C1=0.239, O22=1802, SVOL=21978
Calculated mass transfer coefficient k=0.0144279*0.239-0.000003647*1802-0.0000000067*21978+0.015946

k = 0.01135

time t=1802*60/750=144.16 sec, since flow rate of oxygen is 750 m³/min final carbon C2= C1*exp(-kt)

= 0.239*exp(-0.01135*144.16) = 0.0465 (Actual 0.040)

time t=1995*60.0/750.0=159.6 sec, since flow rate of oxygen is 750 m³/min

final carbon C2 = C1*exp(-kt)
=
$$0.348*exp(-0.0116*159.6)$$

= 0.0546 (Actual 0.050)

4.3Results and discussion of end point prediction

The linear prediction models, which are described in section 4.2, are used to predict the end point, given all the parameters of the blow.

4.3.1End point carbon prediction

When we plot error in carbon prediction versus actual carbon for the dataset D3, which is shown in Fig 4.1, we find that errors become higher, as the actual carbon wt% increases. We observed that errors become unacceptable above 0.060% actual carbon. This can be ascribed due to nonlinear nature of the process. In the dataset D1, almost all the heats were below 0.060% carbon, thus the linear equations developed are valid in that range

only. If we want to predict carbon in higher range, we should develop separate models with the help of adequate data. Thus we conclude that our predictions are valid in the range below 0.060% final carbon.

The actual versus predicted carbon graphs are given in Figs 4.2-4.5 for the four datasets. Table 4.19 gives the average and RMS deviations of predicted carbon from actual carbon for the heats below 0.060% final carbon.

It is observed from Table 4.19 we observe that as we proceed from D1 to D4, the error in prediction keeps on increasing. We can thus say that as we go along heats, the changes in converter and lance conditions are such that the effective equation for predicting carbon keeps on changing and a stationary linear model can not give good results over long time.

4.3.1.1 Comparison of linear and exponential model for end point carbon prediction

It was found in earlier work [1] that linear prediction models for carbon perform better than non-linear prediction models in a small range of operating variables. We also tried an exponential model for carbon in which a linear prediction equation for capacity mass transfer coefficient of carbon is developed. The summary of these exponential models for different group of heats of dataset D1 is given in Tables 4.16-4.18. The predicted carbon using exponential models versus actual carbon for the dataset D1 is shown in Fig 4.6. The predicted carbon using linear models versus actual carbon for the dataset D1 is shown in Fig 4.2. We see much less scattering in the Fig 4.2 than in Fig 4.6. Also, RMS error in prediction for exponential models on dataset D1 is 0.0063 wt%, while RMS error in prediction for linear models on dataset D1 is 0.0054%. Thus we see that even for the dataset used in present work the linear prediction models give better results than exponential models in this carbon range (where carbon is less than 0.060 wt%).

4.3.2 End point temperature prediction

Figure 4.7 shows actual versus predicted end point carbon for dataset D1. Table 4.20 lists the deviations of predicted temperature from actual temperature for the datasets D1, D2, D3 and D4. It is evident from Fig 4.7 that predictions of temperature for the dataset D1 are satisfactory. Also we see from Table 4.20 that the error in prediction in temperature keeps on increasing as we go from D1 to D4.When. Figures 4.8-4.10 show error in temperature prediction versus serial number of heat for datasets D1, D2 and D3, respectively. From these figures we observe that as the serial number increases, the actual temperature becomes lower and lower than the predicted temperature. This phenomenon can be attributed to refractory erosion. This can be corrected if we apply time series analysis to correct the periodic errors. Another solution is to incorporate the most recent heats only in the linear regression. We have tried the latter in the next section on sequential linear regression models.

4.3.3 End point manganese prediction

Plots of predicted versus actual manganese are shown in Figs 4.11-4.14. Table 4.21 lists the deviations of predicted manganese from actual manganese for the four datasets. It is evident from the Table 4.21 that error in prediction increases as we go from dataset D1 to dataset D4. This again confirms the conclusion that conditions of converter keep on changing with time and it is not possible to get good prediction using a single set of linear prediction equation for all heats. In Figs 4.13-4.14, for most of the heats predicted manganese is higher than the actual value. Thus, it can be said that changes in converter profile shifts the predictions in a particular direction and not randomly.

4.3.4 End point phosphorus prediction

Plots of predicted versus actual phosphorus are shown in Figs 4.15-4.18. Table 4.22 lists the deviations of predicted manganese from actual manganese for the four datasets. The same trend as observed in the case of carbon, temperature and manganese, is also observed with phosphorus. The error in prediction of phosphorus increases as we move

from D1 to D4. For dataset D3, most of heats have higher predicted phosphorus than actual phosphorus and in dataset D4, all the heats have higher predicted phosphorus than actual phosphorus. Thus, in phosphorus prediction also we see a gradual shift in error of prediction in one direction.

4.3.5 End point dissolved oxygen prediction

Plots of predicted versus actual dissolved oxygen are shown in Figs 4.19-4.22. Table 4.23 lists the deviations of predicted manganese from actual manganese for the four datasets. We see quite a lot of scatter even in prediction for the dataset D1. Also the error in prediction increases to unacceptable limits as we move from dataset D1 to dataset D4. In dataset D4, for all the heats the predicted dissolved oxygen is much higher than the actual value.

Thus, we see that in end point predictions, there is a gradual shift in error of prediction in one direction as we proceed from dataset D1 to dataset D4 (increasing campaign life). This gradual shift can be attributed to the changing converter and lance conditions. We can thus conclude that a single linear prediction model cannot give good predictions for a large number of heats and changing converter and lance conditions must be incorporated in the model as we proceed in time.

4.4 Sequential linear regression models

As we have seen in the previous section that converter conditions keep on changing continuously and the linear equation should be modified with these changing conditions for good end point predictions. An effective way is to keep on adding the data of new heats and deleting the data of oldest heats from the data file by which we develop regression equations. We did updating of the data file in the batches of 60. In doing these linear regressions, we did not consider LIME2, DOLO2 and RSL2 as variables, as these

Table 4.19 Deviation of predicted carbon (wt%) from actual carbon using linear prediction equations from Tables 4.1-4.3

Data set	D1	D2	D3	D4
Average deviation	0.004344	0.004839	0.005173	0.008606
RMS deviation	0.005393	0.006266	0.006341	0.010620

Table 4.20 Deviation of predicted temperature (⁰K) from actual temperature using linear prediction equations from Tables 4.4-4.6

Data set	D1	D2	D3	D4
Average deviation	5.68	7.53	7.08	11.64
RMS deviation	7.28	9.51	9.38	14.25

Table 4.21Deviation of predicted manganese (wt%) from actual manganese using linear prediction equations from Tables 4.7-4.9

F					
Data set	D1	D2	D3	D4	
Average deviation	0.01172	0.0151	0.0182	0.0404	
RMS deviation	0.01438	0.0196	0.0260	0.0492	

Table 4.22 Deviation of predicted phosphorus (wt%) from actual phosphorus using linear prediction equations from Tables 4.10-4.12

Data set	D1	D2	D3	D4
Average deviation	0.00157	0.00218	0.00349	0.00583
RMS deviation	0.001987	0.00280	0.00452	0.00646

Table 4.23 Deviation of predicted dissolved oxygen (ppm) from actual dissolved oxygen using linear prediction equations from Tables 4.13-4.15

Data set	D1	D2	D3	D4
Average deviation	154.37	238.25	201.83	368.56
RMS deviation	186.83	301.57	241.41	382.62

Fig 4.1 Deviation (actual-predicted) in carbon wt% versus actual carbon wt% for dataset D3 using linear prediction equations from Tables 4.1-4.3

Fig 4.2 Predicted carbon versus actual carbon in wt% for dataset D1 using linear prediction equations from Tables 4.1-4.3

Fig 4.3 Predicted carbon versus actual carbon in wt% for dataset D2 using linear prediction equations from Tables 4.1-4.3

Fig 4.4 Predicted carbon versus actual carbon in wt% for dataset D3 using linear prediction equations from Tables 4.1-4.3

Fig 4.5 Predicted carbon versus actual carbon in wt% for dataset D4 using linear prediction equations from Tables 4.1-4.3

Actual carbon (wt%)
Fig 4.6 Predicted versus actual carbon using exponential models described in Tables
4.16-4.18

Fig 4.7 Predicted versus actual temperature for dataset D1 using linear prediction equations from Tables 4.4-4.6

Fig 4.8 Deviation (actual-predicted) versus heat number for dataset D2 using linear prediction equations from Tables 4.4-4.6

Fig 4.9 Deviation (actual-predicted) versus heat number for dataset D2 using linear prediction equations from Tables 4.4-4.6

Fig 4.10 Deviation (actual-predicted) versus heat number for dataset D4 using linear prediction equations from Tables 4.4-4.6

Fig 4.11 Predicted versus actual manganese for dataset D1 using linear prediction equations from Tables 4.7-4.9

equations from Tables 4.7-4.9

Fig 4.14 Predicted versus actual manganese for dataset D4 using linear prediction equations from Tables 4.7-4.9

Actual phosphorus (wt%)
Fig 4.15 Predicted versus actual phosphorus for dataset D1 using linear prediction equations from Tables 4.10-4.12

Actual phosphorus(wt%)
Fig 4.16 Predicted versus actual phosphorus for dataset D2 using linear prediction equations from Tables 4.10-4.12

Actual Phosphorus(wt%)
Fig 4.17 Predicted versus actual phosphorus for dataset D3 using linear prediction equations from Tables 4.10-4.12

Fig 4.18 Predicted versus actual phosphorus for dataset D4 using linear prediction equations from Tables 4.10-4.12

Actual dissolved oxygen (ppm)
Fig 4.19 Predicted versus actual dissolved oxygen for dataset D1 using linear prediction equations from Tables 4.13-4.15

Actual dissolved oxygen(ppm)
Fig 4.20 Predicted versus actual dissolved oxygen for dataset D2 using linear prediction equations from Tables 4.13-4.15

Actual dissolved oxygen(ppm)

Fig 4.21 Predicted versus actual dissolved oxygen for dataset D3 using linear prediction equations from Tables 4.13-4.15

Fig 4.22 Predicted versus actual dissolved oxygen for dataset D4 using linear prediction equations from Tables 4.13-4.15

are zero for most of the heats in datasets D2, D3, D4. We used their old coefficient to incorporate them in linear prediction models. Table 4.18 gives the heats included in each run.

Coefficients of various terms obtained in these linear regression runs are presented in Tables 4.19-4.33. In these regression runs we included only those heats in which final carbon was less than 0.060 wt% and ORE2 and RDOLO2 were not added together. Average and RMS errors in prediction using these sequential linear prediction models for the different datasets are given in Tables 4.19 to 4.23.

4.4.1 Comparison of sequential and static linear prediction models

Static linear prediction model is the model in which the linear equation once developed is used for all heats whereas in sequential linear regression, we keep on updating the data file for regression and the equations keep on changing as we proceed in time. Tables 4.19-4.23 give the errors in prediction for different datasets using static linear prediction models. Tables 4.40-4.44 give the corresponding errors for sequential linear prediction models. We see an improvement in prediction for all the dataset, but still the errors in prediction for dataset D4 are quite high while D2 and D3 settle to almost comparable errors at quite lower values. Thus we can say either the sequential model in not able to incorporate very sudden changes in converter conditions or there are some errors in the data of dataset D4. The sequential model can not account for very steep changes in converter conditions, as total data points in the data file are 259 heats thus, coefficients of prediction equation represent the average converter condition over these 259 heats.

4.4.2 Trends in coefficients in sequential linear prediction models

Coefficients of various terms in different prediction equations for group 1 (ORE2=0, RDOLO2=0) are plotted in Figs 4.38-4.67. We find pattern in some of the plots. In some of the plots we observe linear or exponential aging of the coefficients (Figs 4.40, 4.42, 4.43, 4.45, 4.46, 4.47, 4.48, 4.49, 4.51, 4.53, 4.54, 4.55, 4.57, 4.60, 4.61, 4.63, 4.65,

4.67). But in some of the plots we see that coefficients vary drastically from run to run (Figs 4.38, 4.39, 4.41, 4.44, 4.62). By examining the datasets we see that range and average values of lance height vary appreciably from run to run. This can cause the unexpected changes in the coefficients of lance height. Due to interaction of other variables with lance height their coefficients can also show some unexpected patterns. In some plots (for example Figs 4.47, 4.48, 4.54, 4.57) we see a sudden break at last run (RUN#5 mean index=370) from previous trends. This suggests that there may be some errors in the dataset D4. Predictions for dataset were also not as good as predictions for D1,D2 and D3, further strengthening the chances of error in dataset D4.

4.5 Sequential linear prediction models for direct blow

Sublance measurements before a few minutes of the end of blow, lowers productivity by some amount, as oxygen flow has to be reduced during the sublance measurement. Also the cost of sublance is high. This gives motivation for direct blow heats in which we can achieve the target end point composition and temperature without any sublance measurement. We developed sequential linear prediction models for direct blow. Tables 4.45-4.46 give the coefficients of different variables obtained in these runs. We developed these equations for carbon and temperature only. We used those heats only for which actual end point carbon was less than 0.060%. A total of 593 heats were used in these models. Regression data file of 173 heats was used and it was updated after every 60 heats.

4.5.1 Predictions from direct blow models

Plot of actual versus predicted end point carbon is shown in Fig 6.68. RMS error of prediction for end point carbon is 0.006248%. Plot of actual versus predicted end point temperature is shown in Fig 6.69. RMS error of end point temperature prediction is 12.611 degrees Kelvin. Thus, we see that these error values are higher than the error in prediction models using sublance information, but these error values can be acceptable for certain grades of steel where composition and temperature control are not that crucial.

Table 4.24

Heats included in each run of sequential

Linear prediction models

Emedi prediction models						
RUN#	Heat# included	Index# of heats				
1	1739-2555	1-259				
2	1886-2854	61-319				
3	2015-3100	121-379				
4	2144-3397	181-439				
5	2458-3688	241-499				

Table 4.25 Coefficients of various terms in linear prediction equation for C2 for different runs (Group 1)*

			/		
VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
C1	3.7547e-02	4.3884e-02	3.9272e-02	3.2606e-02	3.9905e-02
O22	-1.284e-05	-1.335e-05	-1.289e-05	-1.242e-05	-1.418e-05
SVOL	3.3000e-07	4.0100e-07	3.2000e-07	3.3800e-07	5.4800e-07
CONSTANT	5.2936e-02	5.0269e-02	5.2450e-02	5.2164e-02	5.0222e-02

^{*}Group 1 consists of heats for which RDOLO2=0 and ORE2=0

Table 4.26 Coefficients of various terms⁺ in linear prediction equation for T2 for different runs (Group 1)^{*}

VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
T1	9.4154e-01	9.3108e-01	8.8440e-01	8.6104e-01	8.3777e-01
O22	4.2094e-02	4.1058e-02	4.1138e-02	3.9923e-02	3.8288e-02
HL2	6.6050e-02	1.0809e-01	7.6306e-02	1.1497e-01	8.6283e-02
HTR	9.8168e-01	1.9046e-01	2.3149e-01	1.5181e+00	3.0257e+00
CONSTANT	6.1880e+01	7.6057e+01	1.5600e+02	1.8235e+02	2.1992e+02

^{*}Group 1 consists of heats for which RDOLO2=0 and ORE2=0

⁺Coefficient of LIM2 = -0.011978433

Table 4.27 Coefficients of various terms in linear prediction equation for Mn2 for different runs (Group 1)*

VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
Mn0	2.9978e-01	2.1550e-01	1.4708e-01	8.7420e-02	1.3634e-01
T1	7.4701e-04	8.8240e-04	9.1087e-04	9.1927e-04	8.7872e-04
C1	1.7199e-01	1.9277e-01	1.8459e-01	1.9037e-01	2.0388e-01
O22	-3.747e-05	-3.248e-05	-2.761e-05	-2.865e-05	-3.466e-05
HL2	1.2797e-04	7.2790e-05	-1.173e-05	-1.139e-04	-1.698e-04
C2	1.2535e+00	1.2091e+00	1.7922e+00	1.7098e+00	1.4425e+00
SVOL	-2.523e-06	-2.690e-06	-2.920e-06	-2.913e-06	-3.700e-06
HTR	-3.680e-03	-5.065e-03	-6.632e-03	-7.113e-03	-6.009e-03
BAS	3.9826e-03	2.4921e-03	2.0752e-03	3.2387e-04	3.9166e-04
CONSTANT	-1.167e+00	-1.332e+00	-1.352e+00	-1.309e+00	-1.224e+00

^{*}Group 1 consists of heats for which RDOLO2=0 and ORE2=0

Table 4.28 Coefficients of various terms⁺ in linear prediction equation for P2 for different runs (Group 1)*

Tunio (Group 1)						
VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5	
P0	2.3330e-01	1.4727e-01	9.9392e-02	1.3506e-01	2.3855e-02	
HL2	-1.973e-05	-1.889e-05	1.6120e-06	2.2424e-05	2.2545e-05	
T2	5.0833e-05	3.5107e-05	3.1538e-05	3.7055e-05	1.0108e-05	
C2	-4.483e-02	-1.056e-01	-1.205e-01	-1.325e-01	-1.274e-01	
Mn2	6.3288e-02	7.7672e-02	9.0919e-02	9.2687e-02	1.0423e-01	
SVOL	-2.410e-07	-1.290e-07	-1.800e-07	-2.620e-07	-1.590e-07	
HTR	1.6742e-04	4.7225e-04	5.0958e-04	6.8651e-04	1.0596e-03	
CONSTANT	-8.730e-02	-6.010e-02	-5.604e-02	-7.003e-02	-2.430e-02	

^{*}Group 1 consists of heats for which RDOLO2=0 and ORE2=0

Table 4.29 Coefficients of various terms⁺ in linear prediction equation for Oact2 for different runs (Group 1)^{*}

VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
HL2	-2.787e+00	1.4274e+00	4.0442e+00	5.6453e+00	5.4662e+00
C2	-2.185e+04	-1.935e+04	-1.922e+04	-2.304e+04	-2.422e+04
CONSTANT	2.4004e+03	1.3533e+03	7.8701e+02	6.5441e+02	7.5457e+02

^{*}Group 1 consists of heats for which RDOLO2=0 and ORE2=0

⁺Coefficient of DOLO2 = 0.000001519

⁺Coefficient of LIM2 = 0.363741457, Coefficient of DOLO2 = 0.109627701

Table 4.30 Coefficients of various terms in linear prediction equation for C2 for different runs (Group 2)*

VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
C1	3.0486e-02	4.0233e-02	3.4390e-02	4.2803e-02	3.6468e-02
O22	-1.572e-05	-1.734e-05	-1.563e-05	-1.566e-05	-1.285e-05
HL2	2.7931e-05	3.3173e-05	3.7363e-05	3.2992e-05	6.5764e-05
SVOL	5.0000e-07	5.5200e-07	1.7300e-07	1.5100e-07	-2.300e-08
CONSTANT	5.2857e-02	5.0264e-02	5.5398e-02	5.3008e-02	4.8248e-02

^{*}Group 2 consists of heats for which RDOLO2≠0 and ORE2=0

Table 4.31 Coefficients of various terms⁺ in linear prediction equation for T2 for different runs (Group 2)^{*}

VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
T1	8.9813e-01	8.6499e-01	8.1230e-01	8.1937e-01	7.9788e-01
O22	3.3752e-02	3.2170e-02	3.2017e-02	3.1749e-02	3.2946e-02
RDOLO2	-8.931e-03	-8.946e-03	-8.234e-03	-7.958e-03	-1.111e-02
HL2	-3.372e-02	3.5311e-02	6.5534e-02	9.8450e-02	4.9649e-02
CONSTANT	1.7226e+02	2.1324e+02	2.9070e+02	2.7406e+02	3.1605e+02

^{*}Group 2 consists of heats for which RDOLO2≠0 and ORE2=0

Table 4.32 Coefficients of various terms⁺ in linear prediction equation for Mn2 for different runs (Group 2)*

VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
Mn0	3.1602e-01	2.3045e-01	2.5028e-01	3.1495e-01	2.3651e-01
T1	1.2301e-03	8.5427e-04	9.2976e-04	8.8884e-04	6.7657e-04
C1	2.0252e-01	1.6336e-01	1.6239e-01	1.2708e-01	1.6722e-01
O22	-3.503e-05	-3.721e-05	-2.931e-05	-2.512e-05	-4.275e-05
RDOLO2	-1.876e-05	-1.595e-05	-1.424e-05	-1.520e-05	-1.868e-05
T2	-2.234e-04	1.7363e-04	1.5941e-04	5.9517e-05	-9.859e-05
C2	1.1846e+00	1.3628e+00	1.6019e+00	1.4779e+00	4.3475e-01
SVOL	-3.771e-06	-4.069e-06	-4.022e-06	-4.371e-06	-8.210e-07
BAS	-2.496e-03	-2.756e-03	-1.293e-03	-1.976e-03	2.7317e-03
CONSTANT	-1.516e+00	-1.523e+00	-1.664e+00	-1.436e+00	-8.312e-01

^{*}Group 2 consists of heats for which RDOLO2≠0 and ORE2=0

⁺Coefficient of LIM2 = -0.022366848, Coefficient of DOLO2 = -0.005296942, Coefficient of RSL2 = -0.009144903

⁺Coefficient of DOLO2 = -0.000005231

Table 4.33 Coefficients of various terms in linear prediction equation for P2 for different

runs (Group 2)*

VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
P0	2.2453e-01	2.0559e-01	5.9080e-02	1.1727e-01	-2.344e-01
HL2	-3.057e-05	-2.240e-05	-8.175e-06	1.3528e-05	1.1758e-05
T2	8.8712e-05	7.3694e-05	6.1296e-05	5.3743e-05	2.0978e-05
C2	4.4940e-02	3.4248e-02	-5.893e-03	-1.367e-02	-8.718e-02
Mn2	4.4378e-02	5.5017e-02	6.7712e-02	7.5864e-02	1.0021e-01
SVOL	-3.760e-07	-2.980e-07	-3.400e-07	-3.360e-07	-9.200e-08
CONSTANT	-1.445e-01	-1.233e-01	-9.652e-02	-9.182e-02	-2.199e-02

^{*}Group 2 consists of heats for which RDOLO2≠0 and ORE2=0

Table 4.34 Coefficients of various terms in linear prediction equation for Oact2 for different runs (Group 2)*

VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
T1	-8.986e+00	-1.016e+01	-8.474e+00	-6.178e+00	-5.409e+00
C1	-9.646e+02	-1.031e+03	-7.874e+02	-4.705e+02	-5.895e+02
RDOLO2	8.3450e-02	1.2050e-01	1.0726e-01	9.0109e-02	8.3956e-02
T2	1.0365e+01	1.2136e+01	9.2947e+00	7.9808e+00	5.7674e+00
C2	-9.678e+03	-4.052e+03	-3.599e+03	-6.036e+03	-7.192e+03
HTR	-3.063e+01	-3.464e+01	-2.081e+01	-2.401e+01	-1.071e+01
CONSTANT	-1.218e+03	-2.569e+03	-7.653e+02	-2.204e+03	2.6989e+02

^{*}Group 2 consists of heats for which RDOLO2≠0 and ORE2=0

Table 4.35 Coefficients of various terms⁺ in linear prediction equation for C2 for different runs (Group 3)^{*}

VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
C1	4.6433e-02	4.5302e-02	4.6350e-02	4.9363e-02	4.2695e-02
O22	-1.962e-05	-1.559e-05	-1.557e-05	-1.253e-05	-1.163e-05
ORE2	5.8350e-06	3.3370e-06	2.8580e-06	5.2360e-06	1.2500e-07
HL2	1.5929e-04	6.4107e-05	4.4504e-05	2.8412e-05	6.3175e-05
CONSTANT	3.2933e-02	4.7801e-02	5.1027e-02	4.5188e-02	4.3186e-02

^{*}Group 3 consists of heats for which RDOLO2=0 and ORE2≠0

⁺Coefficient of LIM2 = 0.346866310, Coefficient of RSL2 = 0.161082357

⁺Coefficient of LIM2 = -0.000018092

Table 4.36 Coefficients of various terms⁺ in linear prediction equation for T2 for different runs (Group 3)*

VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
T1	9.4805e-01	8.5877e-01	8.8292e-01	8.9918e-01	8.5656e-01
O22	4.4258e-02	3.9606e-02	3.7683e-02	3.6983e-02	3.5667e-02
ORE2	-2.229e-02	-2.091e-02	-1.677e-02	-1.708e-02	-1.288e-02
HL2	-7.676e-02	6.1619e-02	1.0731e-01	1.1449e-01	3.5690e-02
HTR	1.9170e+00	1.1168e+00	4.3178e-01	7.3430e-01	4.9358e-01
CONSTANT	7.9490e+01	2.0617e+02	1.6356e+02	1.3564e+02	2.1774e+02

^{*}Group 3 consists of heats for which RDOLO2=0 and ORE2≠0

Table 4.37 Coefficients of various terms⁺ in linear prediction equation for Mn2 for different runs (Group 3)*

different falls (Group 5)					
VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
Mn0	2.4597e-01	2.2094e-01	2.1517e-01	3.2295e-01	7.2071e-02
T1	1.0135e-03	1.0879e-03	9.7712e-04	1.2038e-03	6.3331e-04
C1	1.9585e-01	2.2574e-01	2.2954e-01	2.0347e-01	2.4715e-01
O22	-2.831e-05	-3.032e-05	-3.766e-05	-2.322e-05	-5.743e-05
RDOLO2	-2.789e-05	-2.000e-05	-1.019e-05	-1.175e-05	-2.208e-05
T2	4.1075e-05	-2.801e-04	-1.045e-04	-2.647e-04	3.1814e-04
C2	1.7196e+00	1.0481e+00	1.2351e+00	1.3345e+00	-1.736e-01
SVOL	-3.023e-06	-3.090e-06	-3.298e-06	-3.489e-06	3.3500e-07
BAS	-5.209e-03	-1.035e-03	-1.156e-03	8.9613e-04	1.9298e-03
CONSTANT	-1.618e+00	-1.188e+00	-1.298e+00	-1.470e+00	-1.386e+00

^{*}Group 3 consists of heats for which RDOLO2=0 and ORE2≠0

Table 4.38 Coefficients of various terms in linear prediction equation for P2 for different runs (Group 3)*

		Tarro (Or	oup 3)		
VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
P0	2.4087e-01	2.2437e-01	-1.394e-02	1.0375e-01	-3.535e-02
ORE2	-1.941e-06	-1.052e-06	-4.600e-08	1.0680e-06	-5.900e-07
HL2	-4.304e-05	-2.721e-05	-2.094e-05	8.3500e-07	-4.234e-06
T2	4.2922e-05	5.6860e-05	7.0249e-05	6.3179e-05	3.4645e-05
Mn2	4.4620e-02	5.4115e-02	6.7243e-02	6.6679e-02	7.4568e-02
SVOL	-3.020e-07	-2.260e-07	-1.500e-07	-2.940e-07	-1.160e-07
CONSTANT	-6.562e-02	-9.540e-02	-1.095e-01	-1.057e-01	-5.277e-02

^{*}Group 3 consists of heats for which RDOLO2=0 and ORE2≠0

⁺Coefficient of RSL2 = -0.006884490

⁺Coefficient of LIM2=-0.000042552, Coefficient of DOLO2 = -0.000010484, Coefficient of RSL2 = -0.000003391

Table 4.39 Coefficients of various terms⁺ in linear prediction equation for Oact2 for different runs (Group 3)*

VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5
ORE2	-1.420e-01	-9.347e-02	-5.738e-02	-1.005e-01	-4.707e-02
HL2	-2.218e+00	2.2330e+00	2.9733e+00	4.1144e+00	1.9671e+00
C2	-1.962e+04	-1.894e+04	-1.520e+04	-1.552e+04	-1.456e+04
CONSTANT	2.1992e+03	1.1533e+03	8.1836e+02	6.6852e+02	9.5638e+02

^{*}Group 3 consists of heats for which RDOLO2=0 and ORE2≠0 +Coefficient of LIM2 = -0.435371697

Table 4.40 Deviation of predicted carbon (wt%) from actual carbon using sequential linear prediction equations

Data set	D2	D3	D4
Average deviation	0.00440	0.00519	0.00751
RMS deviation	0.00547	0.00638	0.00957

Table 4.41 Deviation of predicted temperature (⁰K) from actual temperature using sequential linear prediction equations

Data set	D2	D3	D4
Average deviation	6.23	7.54	8.30
RMS deviation	7.86	9.95	10.93

Table 4.42Deviation of predicted manganese (wt%) from actual manganese using sequential linear prediction equations

Data set	D2	D3	D4
Average deviation	0.01486	0.02004	0.04101
RMS deviation	0.01963	0.02816	0.04760

Table 4.43 Deviation of predicted phosphorus (wt%) from actual phosphorus using sequential linear prediction equations

Data set	D2	D3	D4
Average deviation	0.00203	0.00388	0.00496
RMS deviation	0.00269	0.00474	0.00559

Table 4.44 Deviation of predicted dissolved oxygen (ppm) from actual dissolved oxygen using sequential linear prediction equations

dissolved oxygen using sequential interaction equations					
Data set	D2	D3	D4		
Average deviation	211.43	229.54	236.51		
RMS deviation	264.09	236.51	264.78		

Fig 4.23 Predicted carbon versus actual carbon in wt% for dataset D2 using sequential linear prediction equations

Actual Carbon (ut%)
Fig 4.24 Predicted carbon versus actual carbon in wt% for dataset D3 using sequential linear prediction equations

Actual carbon (ut%)
Fig 4.25 Predicted carbon versus actual carbon in wt% for dataset D4 using sequential linear prediction equations

Fig 4.26 Deviation (actual-predicted) in temperature versus heat number for dataset D2 using sequential linear prediction equations

Fig 4.27 Deviation (actual-predicted) in temperature versus heat number for dataset D3 using sequential linear prediction equations

Fig 4.28 Deviation (actual-predicted) in temperature versus heat number for dataset D4 using sequential linear prediction equations

Actual Manganese (wt%)
Fig 4.29 Predicted versus actual manganese for dataset D2 using sequential linear prediction equations

Actual Manganese (wt%)
Fig 4.30 Predicted versus actual manganese for dataset D3 using sequential linear prediction equations

Actual manganese (wt%)
Fig 4.31 Predicted versus actual manganese for dataset D4 using sequential linear prediction equations

Fig 4.32 Predicted versus actual phosphorus for dataset D2 using sequential linear prediction equations

Actual Phosphorus(wt%)
Fig 4.33 Predicted versus actual phosphorus for dataset D3 using sequential linear prediction equations

Actual phosphorus (wt%)
Fig 4.34 Predicted versus actual phosphorus for dataset D4 using sequential linear prediction equations

Actual dissolved oxygen (ppm)

Fig 4.35 Predicted versus actual dissolved oxygen for dataset D2 using sequential linear prediction equations

Actual dissolved oxygen (ppm)
Fig 4.36 Predicted versus actual dissolved oxygen for dataset D3 using sequential linear prediction equations

Actual dissolved oxygen (ppm)

Fig 4.37 Predicted versus actual dissolved oxygen for dataset D4 using sequential linear prediction equations

Fig 4.38 Variation of coefficient of C1 in different runs versus mean heat index number in runs in the linear prediction equation for C2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.39 Variation of coefficient of O22 in different runs versus mean heat index number in runs in the linear prediction equation for C2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.40 Variation of coefficient of SVOL in different runs versus mean heat index number in runs in the linear prediction equation for C2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.41 Variation of constant term in different runs versus mean heat index number in runs in the linear prediction equation for C2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.42 Variation of coefficient of T1 in different runs versus mean heat index number in runs in the linear prediction equation for T2 (For group 1 in which no RDOLO2 and ORE2 is added)

84

Fig 4.43 Variation of coefficient of O22 in different runs versus mean heat index number in runs in the linear prediction equation for T2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.44 Variation of coefficient of HL2 in different runs versus mean heat index number in runs in the linear prediction equation for T2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.45 Variation of coefficient of HTR in different runs versus mean heat index number in runs in the linear prediction equation for T2 (For group 1 in which no RQOLO2 and ORE2 is added)

Fig 4.46 Variation of constant term in different runs versus mean heat index number in runs in the linear prediction equation for T2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.47 Variation of coefficient of Mn0 in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.48 Variation of coefficient of T1 in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.49 Variation of coefficient of C1 in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.50 Variation of coefficient of O22 in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.51 Variation of coefficient of HL2 in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.52 Variation of coefficient of C2 in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)

94

Fig 4.53 Variation of coefficient of SVOL in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.54 Variation of coefficient of HTR in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.55 Variation of coefficient of BAS in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.56 Variation of constant term in different runs versus mean heat index number in runs in the linear prediction equation for Mn2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.57 Variation of coefficient of P0 in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.58 Variation of coefficient of HL2 in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.59 Variation of coefficient of T2 in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.60 Variation of coefficient of C2 in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.61 Variation of coefficient of Mn2 in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.62 Variation of coefficient of SVOL in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.63 Variation of coefficient of HTR in different runs versus mean heat index number in runs in the linear prediction equation for P2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.64 Variation of constant term in different runs versus mean heat index number in runs in the linear prediction equation for C2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.65 Variation of coefficient of HL2 in different runs versus mean heat index number in runs in the linear prediction equation for Oact2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.66 Variation of coefficient of C2 in different runs versus mean heat index number in runs in the linear prediction equation for Oact2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.67 Variation of constant term in different runs versus mean heat index number in runs in the linear prediction equation for Oact2 (For group 1 in which no RDOLO2 and ORE2 is added)

Fig 4.68 Prediction versus actual end point carbon using sequential linear prediction equations without sublance measurements (direct blow)

Actual temperature (deg K)
Fig 4.69 Prediction versus actual end point temperature using sequential linear prediction equations without sublance measurements (direct blow)

ပိ	efficient of various terms in sequential linear prediction models for end point carbon (direct blow)	terms in seque	ential linear p	rediction mod	lels for end po	oint carbon (d	irect blow)
VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5	RUN#6	RUN#7
WBATH	8.6000e-08	8.6000e-08 3.1000e-08 6.3000e-08 3.5000e-08 -2.020e-07	6.3000e-08	3.5000e-08	-2.020e-07	-6.000e-09 -1.160e-07	-1.160e-07
GRY	2.8400e-07	2.8400e-07 3.6800e-07 1.9600e-07 3.4100e-07 6.7400e-07 5.2700e-07 5.0400e-07	1.9600e-07	3.4100e-07	6.7400e-07	5.2700e-07	5.0400e-07
8	1.7308e-02	1.7308e-02 1.8670e-02 2.3413e-02 2.1271e-02 2.4896e-02 1.8631e-02 1.8212e-02	2.3413e-02	2.1271e-02	2.4896e-02	1.8631e-02	1.8212e-02
Mn0	1.5699e-02	1.5699e-02 4.3443e-02 6.9163e-02 8.5847e-02 2.1168e-02 7.6526e-02 1.9938e-02	6.9163e-02	8.5847e-02	2.1168e-02	7.6526e-02	1.9938e-02
P0	-2.858e-01	-2.858e-01 -2.616e-01 -2.341e-01 -2.868e-01 2.1659e-01 -2.708e-01 5.2529e-01	-2.341e-01	-2.868e-01	2.1659e-01	-2.708e-01	5.2529e-01
Sio	1.5828e-02	1.5828e-02 1.9209e-02 2.1244e-02 1.3915e-02 1.3212e-02 9.0387e-03 -2.156e-03	2.1244e-02	1.3915e-02	1.3212e-02	9.0387e-03	-2.156e-03
HL2	2.1241e-05	2.1241e-05 1.6603e-05 -1.427e-05 1.3758e-05 5.7278e-05 5.7621e-05 -1.647e-06	-1.427e-05	1.3758e-05	5.7278e-05	5.7621e-05	-1.647e-06
HTR	-3.723e-04	-3.723e-04 -5.975e-04 1.6276e-03 1.9781e-04 -2.494e-03 -2.114e-03	1.6276e-03	1.9781e-04	-2.494e-03	-2.114e-03	-3.679e-03
ORE1+ORE2	-1.216e-06	-1.216e-06 -1.062e-06 -1.027e-06	-1.027e-06	-8.400e-07	-6.610e-07	-6.910e-07	-2.180e-07
RSL1+RSL2	9.9500e-07	9.9500e-07 1.1040e-06 -4.690e-07	-4.690e-07	-6.930e-07	-9.560e-07	-5.510e-07	-1.560e-07
RDOLO1+RDOLO2	7.0700e-07	7.0700e-07 3.8900e-07 -4.780e-07	-4.780e-07	3.8000e-07	1.7760e-06	1.2820e-06	1.1870e-06
021+022	-6.983e-06	-6.983e-06 -6.380e-06 -5.668e-06 -7.142e-06	-5.668e-06	-7.142e-06	-7.953e-06	-7.983e-06 -4.855e-06	-4.855e-06
CONSTANT	-3.625e-02	-3.625e-02 -7.222e-02 -7.877e-02	-7.877e-02	-7.851e-02	-1.011e-01	-8.544e-02 -9.013e-02	-9.013e-02

l	1able 4.46 Coefficient of various terms in sequential linear prediction models for end point temperature (direct blow)	nt of various t	erms in sequer	itial linear pre	diction models	s for end point	temperature (direct blow)
1	VARIABLE	RUN#1	RUN#2	RUN#3	RUN#4	RUN#5	RUN#6	RUN#7
	WBATH	-3.821e-05	6.1886e-05	1.9047e-04	1.1760e-04	3.0869e-04	2.6616e-04	2.7059e-04
	GSCHROT	-9.993e-04	-1.209e-03	-1.583e-03	-1.399e-03	-2.238e-03	-2.065e-03	-1.497e-03
	C0	7.2966e+01	9.9113e+01	7.9196e+01	9.2203e+01	9.0456e+01	1.0243e+02	9.7091e+01
1	Mn0	5.7163e+01	4.3136e+01	-3.120e+01	-4.409e+01	6.7197e+01	1.0601e+02	7.8285e+01
	Si0	1.4644e+01	-1.826e+01	-1.731e+01	4.5350e+01	5.9006e+01	1.0464e+02	9.5853e+01
اـــــــــــــــــــــــــــــــــــــ	LNSLF	-4.634e-02	-2.413e-02	4.4404e-02	1.8745e-02	2.8328e-02	2,6809e-03	-1.502e-02
1	HL2	1.5350e-01	1.7111e-01	1.0074e-01	6.3755e-02	3.5432e-02	3.9518e-02	1.7729e-01
1	HTR	4.8939e+00	2.0952e+00	-3.602e+00	-7.813e-01	-6.642e+00	-2.851e+00	2.5544e+00
	BAS	-5.601e+00	-6.948e+00	-3.971e+00	1.7784e+00	2.4727e+00	5.2906e+00	3.5254e+00
	LIM1+LIM2	-3.314e-04	1.4343e-03	6.6827e-04	-1.382e-03	-1.705e-03	-2.314e-03	-2.411e-03
1	ORE1+ORE2	-4.117e-03	-4.854e-03	-3.577e-03	-4.344e-03	-4.452e-03	-4.623e-03	-3.927e-03
	RSL1+RSL2	-9.577e-04	-2.795e-03	-2.885e-03	-3.152e-03	-1.999e-03	-1.269e-03	-2.110e-04
1	RDOLO1+RDOLO2	-3.407e-03	-3.476e-03	-3.830e-03	-5.459e-03	-6.474e-03	-5.867e-03	-3.954e-03
لــــــــــــــــــــــــــــــــــــــ	021+022	1.5527e-02	8.7018e-03	1.1084e-02	1.1685e-02	1.2653e-02	1.0458e-02	1.0521e-02
	CONSTANT	1.1317e+03	1.1163e+03	1.2163e+03	1.1357e+03	1.0987e+03	1.0153e+03 9 6745e+02	9 6745e+02

Chapter 5 Results of intelligent model

5.1 Introduction

We had earlier partitioned the dataset D1 into three groups based on the values of ORE2 and RDOLO2. First group contained heats in which neither ORE2 nor RDOLO2 were added. Second group contained heats containing RDOLO2 but no ORE2. Third group contained heats containing ORE2 but no RDOLO2. We have developed separate linear prediction equations for each group (Tables 4.1-4.15). When intelligent optimization model is applied to a particular heat, suitable linear prediction equations are inserted into the optimization model. Since linear prediction equations have been developed for three groups (as defined above) separately, the group to which the heat may belong should be known a priory. Thus, we can make any of the three assumptions about the group to which heat may belong and hence we can proceed with the optimization in three ways (or three options exist for the choice of control variables). Each option is to be evaluated in a separate optimization run.

5.2.1 NO raw dolomite and ore option

It is ideal if no coolant additions are needed during the end blow period (i.e. neither ORE2 nor RDOLO2 is added). This constitutes the first option and for optimization purposes the linear prediction equations for group 1 are inserted within model. Tables 4.1, 4.4, 4.7, 4.10 and 4.13 give prediction equations for group 1 for the dataset D1. From these tables we conclude that control variables for group 1 of heats are O22, LIM2, DOLO2 and HL2. These control variables are subjected to the following constraints, which must be respected during the end blow period.

Oxygen blown:

 $1100 \le O22 \le 3600$

(5.1)

Lime added:

 $0 \le LIM2 \le 500$

(5.2)

Dolomite added: $0 \le DOLO2 \le 2000$ (5.3)

Permissible lance height range

$$140 \le HL2 \le 250$$
 (5.4)

These limits for control variables are determined from operational practice at the plant.

5.2.2 Raw dolomite addition option

If assume that no ORE2 but some RDOLO2 may be added, the result of optimization constitutes the second option. In this case, we should insert the linear prediction equations developed for group 2 into the optimization model. Tables 4.2, 4.5, 4.8, 4.11 and 4.14 give prediction equations for group 2 for the dataset D1. From these tables we conclude that control variables for group 2 of heats are O22, LIM2, DOLO2, RSL2, RDOLO2 and HL2. These control variables are subjected to the following constraints, which must be respected during the end blow period.

Oxygen blown	$1100 \le O22 \le 3600$	(5.5)
Lime added	$0 \le \text{LIM}2 \le 500$	(5.6)
Dolomite added	$0 \le DOLO2 \le 2000$	(5.7)
Return slag added	$0 \le RSL2 \le 2500$	(5.8)
Raw dolomite added	$0 \le \text{RDOLO2} \le 4000$	(5.9)
Permissible lance height rang	e	
.	$140 \le HL2 \le 250$	(5.10)

As in the case of first option, these limits for control variables are determined from operational practice at the plant.

5.2.3 Ore addition option

If we assume that no RDOLO2 but some ORE2 may be added the result of optimization constitutes the third option. In this case, we should insert the linear prediction equations developed for group 3 into the optimization model. Tables 4.3, 4.6, 4.9, 4.12 and 4.15 give prediction equations for the dataset D1. From these tables, we conclude that control variables for group 3 of heats are O22, LIM2, DOLO2, ORE2, RSL2 and HL2. These control variables are subjected to the following constraints, which must be respected during the end blow period.

Oxygen blown	$1100 \le O22 \le 3600$	(5.11)		
Lime added	$0 \le LIM2 \le 500$	(5.12)		
Dolomited added	$0 \le DOLO2 \le 2000$	(5.13)		
Ore added	$0 \le ORE2 \le 1400$	(5.14)		
Return slag added	$0 \le \text{RSL2} \le 2500$	(5.15)		
Permissible lance height range				
	$140 \le HL2 \le 250$	(5.16)		

Like the other two options, these limits on control variables are determined from the operational practices at the plant.

5.3 Results of intelligent model for different options

The results of intelligent model on the dataset D1 are summarized in the Table A5.1 (presented in Appendix 5). For this dataset the aim values were taken to be the actual values. The table has four rows for each heat. First row gives the heat number, actual composition and actual values of process parameters. Second to fourth rows give the three options suggested by the intelligent model. Suggested process parameters and predicted composition values are given. Violations, if any, are also reported and the cost is also given. Violations are reported if the deviation from the window boundary exceeds certain limits, which are reported in Table 5.1. The results of intelligent model on the dataset D2, which contains aim values also, are summarized in the Table A5.2 (presented in Appendix 5). This table is similar to the Table A5.1 but it also contains a row for aim values for each heat.

5.3.1 Results of intelligent model on dataset D1

The dataset D1 did not contain any aim values thus we used actual values as aim values. Linear models developed for different groups in D1, as explained in Table 5.2, were used as control equations to predict carbon, temperature, manganese, phosphorus and dissolved oxygen. As discussed in chapter 4, the prediction equations are valid only if actual end point carbon is less than 0.06 wt%, so in each group we considered only those heats for which actual carbon was less than 0.06 wt%. The cost function, used was the same as described in chapter 2. The deviations from aim values (in this case actual values) are plotted in Figs 5.1-5.5. The costs for lowest cost options are given in Fig 5.6. It was found that in 17% cases only, the lowest cost option was the first option while in 39% cases the lowest cost option was the second option and in 44% cases the lowest cost option was the third option. It can be explained that in first option, there are only 4 controlling variables, while in second and third option; there are 6 controlling variables. Thus second and third options have more degrees of freedom in optimization than the first one and hence we usually get lower costs in second and third option than the first option.

5.3.1.1 Carbon window of dataset D1

Deviations of optimized predicted carbon from actual carbon are shown in Fig 5.1. Figure also shows the carbon window. Only for heat number 1801 the carbon window is violated by an amount greater than 0.0004%. For 127 heats the deviation is positive and for 146 heats the deviation is negative.

5.3.1.2 Temperature window of dataset D1

Deviations of optimized predicted temperature from actual temperature for lowest cost option are shown in Fig 5.2. Figure also shows the upper and lower limits of temperature window. Violations occur for heat numbers 1755, 2078, 2131, 2178, 2365, and 2499. For 196 heats the deviation is negative while the deviation is positive only for 77 heats. All the violations occur on the lower limit of window. This may be attributed to the fact that model actively uses various conditioners such as DOLO2, LIM2, etc to control the end point window while in current operating practice these conditioners are used sparingly. In 122 heats, suggested LIM2 is greater than 100 kg while in actual heats LIM2 exceeds 100 kg, only in 12 cases. For example in heat number 1739 suggested LIM2 is 400 Kg while in actual heat, there was no LIM2 added. Similar is the case with other additions. Thus, predicted temperature is lower in most of the cases but lies within the control window. In this way, costs arising due to other variables were reduced at the cost of temperature deviation from aim value within the window. Further it was found that for these heats, which violated the temperature window the difference between end point temperature and sublance temperature was higher than average heats. Due to high actual end point temperature relative to sublance temperature, predicted temperature fell short of actual temperature.

5.3.1.3 Manganese window of dataset D1

Deviations of optimized predicted manganese from actual manganese for lowest cost option are shown in Fig 5.3. Figure also shows the upper limit of manganese window. There is no lower limit on manganese window. All the deviations lie in the window and

there is no case of violation. Most of the times predicted manganese is below actual manganese. This is explained by the fact that in 225 heats, suggested O22 is greater than the actual O22 while in only 46 heats, suggested O22 is less than the actual O22.

5.3.1.4 Phosphorus window of dataset D1

Deviations of optimized predicted phosphorus from actual phosphorus for lowest cost option are shown in Fig 5.4. Figure also shows the upper limit of phosphorus deviation, which is 0 deviation line since upper limit of phosphorus is the actual phosphorus. Violation of window occurs only for one heat, number 2446.

5.3.1.5 Dissolved oxygen window of dataset D1

Deviations of optimized predicted dissolved oxygen from actual dissolved oxygen for lowest cost option are shown in Fig 5.5. Figure also shows the upper and lower limits of dissolved oxygen window. In none of the heats the violation from the window limit exceeds 10 ppm, so no violations are reported. The deviations are on the both sides of actual, just like the case with carbon window.

5.3.1.6 Percent direct hits for dataset D1

A direct hit is said to occur if all end point variables, i.e. carbon, temperature, phosphorus, manganese, dissolved oxygen don't violate their respective windows. In case of dataset D1, violations occur only in heat numbers 1755, 1801, 2078, 2131, 2178, 2365, 2446 and 2499. Thus we get 265 direct hits out of total 273 heats. Thus percent direct hits for dataset D1 is 97%. Based on this percent direct hits value we can conclude that our optimization model performs fairly well on the dataset D1.

5.3.2 Results of intelligent model on dataset D2

Sequential linear prediction models as explained in Table 5.3, were used as control equations to predict carbon, temperature, manganese, phosphorus and dissolved oxygen. As discussed in chapter 4, the prediction equations are valid only if actual end point carbon is less than 0.06 wt%, so in each group we considered only those heats for which actual carbon was less than 0.06 wt%. The cost function, used was the same as described in chapter 2. The deviations from aim values (in this case actual values) are plotted in Figs 5.7-5.11. The costs for lowest cost options are given in Fig 5.12.

5.3.2.1 Carbon window of dataset D2

Deviations of optimized predicted carbon from actual carbon are shown in Fig 5.7. Figure also shows the carbon window. For no heat carbon window is violated by an amount greater than 0.0004%. For 107 heats the deviation is positive and for 76 heats the deviation is negative. We observe a inclination towards positive deviation. This can be explained if we observe the aim values and actual values of manganese and phosphorus. These aim values are much higher than actual values. Thus to achieve higher manganese and phosphorus aim the model tries to cut down the oxygen blown and this causes a positive deviation in carbon.

5.3.2.2 Temperature window of dataset D2

Deviations of optimized predicted temperature from actual temperature for lowest cost option are shown in Fig 5.8. Figure also shows the upper and lower limits of temperature window. Violations occur for heat numbers 2858, 2866,2872 and 2887. For 109 heats the deviation is negative while the deviation is positive only for 74 heats and for positive deviation heats, the deviations are very small. All the violations occur on the lower limit of window. This inclination toward negative deviation in temperature has been explained in section 5.3.2.2.

5.3.2.3 Manganese window of dataset D2

Deviations of optimized predicted manganese from actual manganese for lowest cost option are shown in Fig 5.9. Figure also shows the upper limit of manganese window. There is no lower limit on manganese window. All the deviations lie in the window and there is no case of violation. Most of the times predicted manganese is below actual manganese. This is because aim manganese is quite higher than actual manganese in most of the heats.

5.3.2.4 Phosphorus window of dataset D2

Deviations of optimized predicted phosphorus from actual phosphorus for lowest cost option are shown in Fig 5.10. Figure also shows the upper limit of phosphorus deviation, which is 0 deviation line since upper limit of phosphorus is the actual phosphorus. Violation of window does not occur for any heat.

5.3.2.5 Dissolved oxygen window of dataset D2

Deviations of optimized predicted dissolved oxygen from actual dissolved oxygen for lowest cost option are shown in Fig 5.11. Figure also shows the upper and lower limits of dissolved oxygen window. In none of the heats the violation from the window limit exceeds 10 ppm, so no violations are reported.

5.3.2.6 Percent direct hits for dataset D2

A direct hit is said to occur if all end point variables, i.e. carbon, temperature, phosphorus, manganese, dissolved oxygen don't violate their respective windows. In case of dataset D2, violations occur only in heat numbers 2858, 2866,2872 and 2887. Thus we get 179 direct hits out of total 183 heats. Thus, percent direct hits for dataset D1 is 97.8%. Based on this percent direct hits value we can conclude that our optimization model performs fairly well on the dataset D2..

Table 5.1 Reporting of violation of constraints for each of the variable

Violation
limit
0.0004 %
$1^{0}C$
0.001 %
0.0001 %
10 ppm

Table 5.2 Summary of prediction equations used for optimizing heats of dataset D1

Table 5.2 Sammary o			o about for optimizing in	
Option	ORE2	RDOLO2	Dataset used	Prediction
				Equation
Option 1: No raw	NO	NO	Dataset D1, Group 1	Tables 4.1, 4.4,
dolomite and ore option			(Appendix 4)	4.7, 4.10,4.13
Option 2: Raw	NO	YES	Dataset D1, Group 2	Tables 4.2, 4.5,
dolomite addition			(Appendix 4)	4.8, 4.11,4.14
option				
Option 3: Ore addition	YES	NO	Dataset D1, Group 3	Tables 4.3, 4.6,
option			(Appendix 4)	4.9, 4.12,4.15

Table 5.3 Summary of prediction equations used for optimizing heats of dataset D2

Table 3:5 Bammary of production equations asserted of optimizing nears of dataset B2				
Option	ORE2	RDOLO2	Dataset used	Prediction Equation
Option 1: No raw	NO	NO	Dataset D2, Group 1	Tables 4.25, 4.26,
dolomite and ore			(Appendix 4)	4.27, 4.28,4.29
option			·	
Option 2: Raw	NO	YES	Dataset D2, Group 2	Tables 4.30, 4.31,
dolomite addition			(Appendix 4)	4.32, 4.33,4.34
option				
Option 3: Ore addition	YES	NO	Dataset D2, Group 3	Tables 4.35, 4.36,
option			(Appendix 4)	4.37, 4.38,4.39

Fig 5.1 Carbon deviation (wt%) versus heat number for lowest cost option for dataset D1.

Carbon window is also shown

123

Fig 5.2 Temperature deviation (degree) versus heat number for lowest cost option for dataset D1. Temperature window is also shown.

Fig 5.3 Manganese deviation (wt%) versus heat number for lowest cost option for dataset D1. Manganese window (only upper ceiling) is also shown.

Fig 5.4 Phosphorus deviation (wt%) versus heat number for lowest cost option for dataset D1. Phosphorus window (only upper ceiling) is also shown.

Fig 5.5 Deviation in Dissolved oxygen deviation (ppm) versus heat number for lowest cost option for dataset D1. Oxygen window is also shown.

Fig 5.7 Carbon deviation (wt%) versus heat number for lowest cost option for dataset D2.Carbon window is also shown

Fig 5.8 Temperature deviation (degree) versus heat number for lowest cost option for dataset D2. Temperature window is also shown

Fig 5.9 Manganese deviation (wt%) versus heat number for lowest cost option for dataset D2. Manganese window (only upper ceiling) is also shown

Fig 5.10 Phosphorus deviation (wt%) versus heat number for lowest cost option for dataset D2. Phosphorus window (only upper ceiling) is also shown

Fig 5.11 Deviation in Dissolved oxygen deviation (ppm) versus heat number for lowest cost option for dataset D2. Oxygen window is also shown

Chapter 6 Conclusions and Suggestion for Further work

6.1 Conclusions

- Linear prediction models are developed using dataset D1. These prediction
 models do fairly well on dataset D1 but when we applied them to datasets D2, D3
 and D4, the errors in end point prediction increases with increasing campaign life.
 Thus it is concluded that single set of linear prediction equation cannot give good
 results over a long range of time.
- 2. Sequential linear prediction models are developed using datasets D1-D4. In sequential linear prediction models the data file used for regression is updated every 60 heats. With sequential linear prediction models, the errors in end point prediction decreases. The coefficients of linear prediction models were plotted with campaign life. Regular patterns are found in some of the plots, while some of the plots have sudden variation of coefficients.
- 3. Sequential linear prediction models are developed for direct blow heats. Direct blow linear prediction models have errors higher than errors in sublance linear prediction models, but directblow models can be useful for some grades of steel where composition and temperature control is not that crucial.
- 4. Window around end point compositions are defined. Our aim is to prepare heats falling within window. An objective function is formulated based on this window formulation.
- 5. Micro genetic algorithm is applied to datasets D1 and D2 for deciding optimum process variables. In more than 97% of heats, we can reach within a narrow range of target temperature and composition for the dataset D1 and D2.

6.2 Suggestion for further work

- 1. We only used linear prediction models to predict end point composition and temperature. Non linear models can also be tried.
- 2. In sequential linear prediction models, we observed linear and exponential trends in some of the plots. This needs to be further explored so that there is no need to run regression all the time. Ideal case would be if we are able to predict the coefficients with increasing campaign life. Time series analysis can also be tried in this regard.
- 3. In our optimization function, we did not consider costs of operating variables themselves (for example the cost of blowing oxygen or adding ore). These costs can be added to objective function for a more realistic picture.

Bibliography

- [1] Chakravartula Gopi Krishna: Dynamic Models of BOF based on Sublance Measurements, M.Tech. Thesis (2000), Department of Materials and Metallurgical Engineering, IIT Kanpur
- [2] R. Rastogi, K.Deb, B.Deo and R.Boom: Genetic adaptive search model of hot metal desulphurization, Steel Research, Vol. 65(1994),pp 472-478.
- [3] A. Datta, M. Hareesh, P.K. Kalra, B. Deo and R. Boom: Adaptive neural net (ANN) models for desulphurization of hot metal and steel Part 1:Back propagation algorithm, Steel Research, Vol. 65(1994), pp 466-471.
- [4] B.Deo A.Gupta, B.V.S.Girish and A.K.Jena: Prediction of AE3 temperature of steel with artificial neural nets and genetic adaptive search, 37th Mechanical Working and Steel Processing Conference, Iron and Steel Society, Oct. 22-25, Hamilton, Ontario, 1995,pp 565-577.
- [5] H.Singh, N.V.Sridhar and B.Deo: Artificial neural nets for prediction of silicon content of blast furnace hot metal, Steel Research, Vol. 67(1996), pp 521-527
- [6] B.Deo, K.Deb, S.Jha, V. Sudhakar and N..V.Sridhar: Optimal operating conditions of the primary end of an integrated steel plant: genetic adaptive search versus classical techniques, ISIJ Int., Vol. 38(1998), pp 98-105.
- [7] D.E.Goldberg: Genetic Algorithms in Search, Optimization and Machine learning, Addison Wesley (1989), USA

- [8] K.Krishnakumar: Micro-genetic algorithms for stationary and non-stationary function optimization. SPIE Intelligent Control and Adaptive Systems, Vol.1196(1989), pp 289–296
- [9] P.A.Distin, G.D.Hallett and F.D.Richardson: J.Iron Steel Inst.(London), 1968, Vol.206,p.821
- [10] N.Bessho, S.Takeuchi, K. Nakanishi, T.Emi, S.Yamada and F.Sudo: Decarburization models and their application to the dynamic control of the basic oxygen processes., Mc. Master Symp. No. 9 on BOF end point determination, Ed. W. K. Lee May 81, Hamelton Canada, pp 11-17
- [11] S.M.Byun, B.D.You, M.S.Song, Y.K.Shin and S.D.Shin: The development of a sublance process model for BOF at POSCO, Personal communication
- [12] D.L.Caroll: Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers, Developments in Theroetical and Applied Mechanics, Vol XVIII(1996)

Appendix 1

Review of Models for End Point carbon and Temperature prediction using sublance data

2.1 Introduction

Sublance is used in oxygen steelmaking to take a sample and also determine instantaneously the steel composition 3-4 minutes before the end of blow. This analysis is used to determine the amount of oxygen to be blown in remaining part of the blow so as to arrive at a predefined carbon and temperature at the end. Thus, we are concerned with the modeling of trajectory of process during the last few minutes of converter operation. Metal sample is also taken at the end of blow to verify carbon, phosphorus, manganese, dissolved oxygen and temperature achieved. While the blow is in progress, adjustment of lance height can be done and judicious addition of iron ore, raw dolomite and solidified slag(return slag from converter) can be made to control the trajectory of carbon as well as temperature. Since the concentrations of carbon and oxygen are related to each other, carbon may also be predicted using the dissolved oxygen content and vice versa. Hence the models for prediction of end point carbon, temperature, phosphorus, manganese and oxygen from sublance data play an important role in determining the amount of oxygen to be blown during second blow period and thereby achieve the aim composition of steel. This chapter briefly reviews the models published in literature.

2.2.1 Model by Distin, Hallet and Richardson

Distin, Hallet and Richardson [9] have assumed in their study on the decarburization of liquid Fe-C alloys with O2 and CO-CO2 mixtures that the concentration of carbon at the surface becomes virtually zero at the instant of oxide formation. When the oxide appears on the surface, rate of decarburization can be written as

$$R_{c} = \frac{k_{c}A}{V}(n_{c}^{b})$$

where R_c is rate of decarburization(mol/sec), k_c is mass transfer coefficient of carbon(m/sec) n_c^b is concentration of carbon in bulk and A, V are the area and volume of droplet respectively in SI units. Above equation can be rewritten as

$$-\frac{d[\%C]}{dt} = \frac{k_c A}{V} [\%C]^b$$

where [%C} is carbon concentration in weight percent and superscript b denotes bulk. For spherical droplets

$$k_c = \frac{5D}{a}$$

where D is diffusivity of carbon, a is radius of droplet.

2.2.2 Model by Bessho et al.

Bessho et al. [10] have developed a dynamic model, based on exponential dependence of decarburization rate on carbon content. This model has been applied to estimate carbon content and temperature of Q-BOP heats after the sublance measurement. End point carbon content at any arbitrary time after the measurement by the sensor lance can be calculated, by the equation

$$C_{fa} = (C_{o} - C_{p}) ln \left[\frac{R}{1 - exp \frac{C_{o} - C_{SL}}{C_{p} - C_{o}} + Re xp \frac{C_{o}}{C_{p} - C_{o}}} \right]$$

where $R = \exp{\frac{\xi.\Delta O_2 - C_{SL}}{C_p - C_0}}$. Here ΔO_2 is the amount of oxygen blown after the measurement by sensor lance. C_{SL} is carbon content determined by sensor lance, C_0 is

critical carbon content below which decarburization does not substantially occur and is found to be 0.01% for Q-BOP. ξ is the theoretical maximum decarburization rate,. C_p is a parameter derived statistically based on operational variables. Bessho et al. used a semi empirical equation to estimate the temperature rise.

$$T_f = T_{SL} + P.\Delta O_2 + Q.\left[\frac{1}{C_f} - \frac{1}{C_{SL}}\right] + R$$

where T_f , C_f are the temperature and carbon content of the bath at blowing end respectively. T_{SL} , C_{SL} are the temperature and carbon content of the bath measured by sublance. ΔO_2 is amount of blowing after sublance measurement and P,Q,R are parameters which are calculated from multiple regression analysis by using actual operational data.

2.2.3 Model by Byun et al.

Byun et al. [11] employed a simplified form of exponential model and they also incorporated the effect of other operational variables on oxygen consumption by multiple linear regression. The final equation for amount of oxygen to blown to achieve the target carbon content at the end point is given by

$$\Delta O_{2,cal} = \frac{W_{st}}{\alpha\beta} \left[\beta(C_e - C_S) - \ln \left[\frac{1 - exp - \beta(C_e - C_S)}{1 - exp - \beta(C_S - C_e)} \right] + \sum_i \gamma_i (X_i - \overline{X}_i) + \gamma_0 \right]$$

where C_e is target end point carbon content, C_s is sublance carbon content, α is maximum theoretical decarburization rate, $\beta = \frac{1}{C_p - C_0}$ where C_p and C_0 are same as defined in section 2.2.2. W_{st} is weight of molten steel (kg). $\gamma_i =$ regression coefficient, $\gamma_0 =$ regression constant, $X_i =$ operational variables, $\overline{X}_i =$ standard operational variables. Temperature rise can be calculated by the equation

$$\Delta T = \epsilon_{\scriptscriptstyle 1} (C_{\scriptscriptstyle S} - C_{\scriptscriptstyle e}) + \epsilon_{\scriptscriptstyle 2} \, \frac{1}{C_{\scriptscriptstyle e} - C_{\scriptscriptstyle S}} + \epsilon_{\scriptscriptstyle 3} \Delta O_{\scriptscriptstyle 2} \, + \sum_{\scriptscriptstyle 1} \gamma_{\scriptscriptstyle 1} (X_{\scriptscriptstyle 1} - \overline{X}_{\scriptscriptstyle 1}) + \gamma_{\scriptscriptstyle 0}$$

where ε_1 is regression coefficient.

Appendix 2 ReadMe file of GA Program

Below is the text which is contained in ReadMe file of GA program. This is helpful in understanding and running the program.

D.L. Carroll's FORTRAN Genetic Algorithm Driver

This is version 1.7, last updated on 12/11/98.

Download from: http://www.staff.uiuc.edu/~carroll/ga.html

Copyright David L. Carroll; this code may not be reproduced for sale or for use in part of another code for sale without the express written permission of David L. Carroll.

This genetic algorithm (GA) driver is free for public use. My only request is that the user reference and/or acknowledge the use of this driver in any papers/reports/articles which have results obtained from the use of this driver. I would also appreciate a copy of such papers/articles/reports, or at least an e-mail message with the reference so I can get a copy. Thanks.

This program is a FORTRAN version of a genetic algorithm driver. This code initializes a random sample of individuals with different parameters to be optimized using the genetic algorithm approach, i.e. evolution via survival of the fittest. The selection scheme used is tournament selection with a shuffling technique for choosing random pairs for mating. The routine includes binary coding for the individuals, jump mutation, creep mutation, and the option for

single-point or uniform crossover. Niching (sharing) and an option for the number of children per pair of parents has been added. More recently, an option for the use of a micro-GA has been added.

For companies wishing to link this GA driver with an existing code, I am available for some consulting work. Regardless, I suggest altering this code as little as possible to make future updates easier to incorporate.

Any users new to the GA world are encouraged to read David Goldberg's "Genetic Algorithms in Search, Optimization and Machine Learning," Addison-Wesley, 1989.

```
The seven FORTRAN GA files are: ga170.f
ga.inp
ga2.inp (w/ different namelist identifier)
ga.out
ga.restart
params.f
ReadMe (this file!)
```

I have provided a sample subroutine "func", but ultimately the user must supply this subroutine "func" which should be your cost function. You should be able to run the code with the sample subroutine "func" and the provided ga.inp file and obtain the optimal function value of 1.0000 at generation 187 with the uniform crossover micro-GA enabled (this is 935 function evaluations). Note that because different computers may treat precision and truncation differently, I have seen cases where two computers using the same input produce different evolution histories (but still converge to the optimal).

I still recommend using the micro-GA technique (microga=1) with uniform crossover (iunifrm=1). However, if possible, I strongly suggest that you use values of nposibl of 2**n (2, 4, 8, 16, 32, 64, etc.). While my test function works fine for other values of nposibl, I have encountered problems where the uniform crossover micro-GA has difficulty with parameters having long bit strings and a non-2**n value of nposibl, e.g. nposibl=1000, will have 10 bits assigned (for this case I would suggest running nposibl=1024 rather than 1000); I am presently investigating possible fixes for this situation.

Updates:

Version 1.7 includes several improvements:

- (i) The coding and input files are cleaned up to provide identical output across a wider range of computers.
- (ii) The arrays have been rearranged to enable a more efficient caching of system memory. For cases with very large population sizes, run time improvements of as much as a factor of 4-6 were observed! For population sizes less than 1000 you will not see much change.
- (iii) A summary of the results has been added to the end of the output file.
- (iv) An alternate input file "ga2.inp" has been included. Some compilers require an '&' and a '/' in the namelist input file, rather than '\$' signs.
- (v) For those wishing to try ever harder test functions, the included function is now N-dimensional, where N is simply determined by the number of parameters specified (nparam).

Version 1.6.5 of the code allowed creep mutations to be implemented

with the micro-GA technique. (This version was never officially released.)

Version 1.6.4 of the code has a minor modification to the niching routine and another minor modification which would only affect a user having a single parameter with more than 2**30 possibilities (probably noone has used this large a number).

Version 1.6.3 of the code fixes a bug in the niching routine. Niching should now work much better than in previous versions. A few other minor changes have been made (not worth mentioning). The sample function has been changed to something a bit more challenging.

Version 1.6.2 of the code has had major restructuring in the form of converting all of the operators (crossover, mutation, etc.) into subroutines. The code logic should be a little more understandable now and it lends itself to more easily modifying parts of the code. The counter kountmx (see v1.6.1 comments below) was added to the namelist input. Otherwise, code performance should be the same.

Version 1.6.1 of the code has very minor modifications. If you are already successfully using the code, then you will not need this update.

- (i) Added a little documentation about changing format statements 1050, 1075, 1275, and 1500 when you change nparam or the total number of chromosomes (see below).
- (ii) I have commented out all of the lines of code dealing with cputime. The Macintosh specific SECNDS call was causing more questions than I had anticipated. However, other than commenting the lines out, I have left them in their location for reference in case the user wants a cputime added.

- (iii) I have included a sample output file.
- (iv) Added counter (kountmx) to control how frequently the restart file is written. This saves I/O time and wear and tear on storage device. Presently set to write every fifth generation.

Version 1.6 of the code has incorporated the ability to use a micro-GA approach; this significantly reduced the number of function evaluations to find the global maximum of my test function.

Version 1.5 of the code has added some more flexibility to your available options:

- (i) You now specify the minimum and maximum values of the parameters rather than the minimum and the increment.
- (ii) You now specify the number of possibilities you want for each parameter, not the number of bits. This modification has two features: first, the program automatically calculates the number of bits per parameter; second, you are no longer forced to have a number of possibilities equal to 2**n. While the code is more efficient when there 2**n possibilities per parameter, it will run quite well with a lesser number; e.g. a colleague has 25 specific airfoil families he wants to investigate, greater than 16, less than 32.
- (iii) You can now specify specific parameters for niching. Earlier versions of the code forced you to niche on all parameters. Now, the input array 'nichflg' permits you to choose the parameters for niching.
- (iv) You have an input flag to prevent the printing of specific jump. and creep mutation information
- (v) You now specify the maximum values of population size, number of parameters and number of chromosomes in an include file (params.f). This sets the maximum array sizes in the code. When running, the

code only uses the array size up to npopsiz and nparam (from ga.inp) and nchrome (computed internally from the nposibl input array).

The code is presently set for a maximum population size of 200, 30 chromosomes (binary bits) and 2 parameters. These values can be changed in params.f as appropriate for your problem. Correspondingly you will have to change a few 'write' and 'format' statements if you change nchrmax and/or nparmax. In particular, if you change nchrome and/or nparam, then you should change the 'format' statement numbers 1050, 1075, 1275, and 1500. For example, if you have a problem with 4 parameters and 16 chromosomes (bits), then you should change these format statements to be:

```
1050 format(1x,' # Binary Code',8x,'Param1 Param2 Param3',

+ 'Param4 Fitness')

1075 format(i3,1x,16i1,4(1x,f6.2),1x,f6.2)

1275 format(/' Average Values:',10x,4(1x,f6.2),1x,f6.2/)

1500 format(i5,3x,16i2)
```

The CPU time related lines of code reference a Macintosh specific time function (SECNDS). To avoid compiler errors with other computers, I have commented out these lines of code. If you wish to have cputime output, then you will have to change the time functions for the specific computer you are running on. Most modern Unix machines will recognize the 'etime' function; these lines are added to the code along with the variable 'tarray' and 'cpu...again, to avoid compiler errors with different computers, these lines of code are also commented out.

A common problem arises with the Microsoft PowerStation compiler, i.e., PowerStation does not recognize the abbreviation NML for NAMELIST. If you are using PowerStation, you will likely have to substitute NAMELIST for all instances of NML.

Please feel free to contact me with questions, comments, or errors (hopefully none of latter).

Enjoy!

David L. Carroll
University of Illinois
140 Mechanical Engineering Bldg.
1206 W. Green Street
Urbana, IL 61801

e-mail: carroll@uiuc.edu

Phone: 217-333-4741

fax: 217-244-6534

micro-GA Tip:

My favorite GA technique is still the micro-GA. At this point, I recommend using the micro-GA with uniform crossover and a small population size. The following inputs gave me excellent performance:

microga = 1 npopsiz = 5 maxgen = 100

iunifrm = 1

I have also gotten good performance with the single-point crossover (iunifrm=0), micro-GA.

If you decide to use the micro-GA, you will not need to worry about the population sizing or creep mutation tips below.

See the Krishnakumar reference below for more information about micro-GA's.

Population Sizing Tip:

I've had a lot of people ask me about population sizing, especially people who are attempting large problems where 100 individuals is probably not enough. The true authority on the subject is David Goldberg, but here is a crude population scaling law in my paper (based on Goldberg & Deb, 1992):

npopsiz = order $[(1/k)(2^{**k})]$ for binary coding

where 1 = nchrome and k is the average size of the schema of interest (effectively the average number of bits per parameter, i.e. approximately equal to nchrome/nparam, rounded to the nearest integer). I find that when I have uniform crossover and niching turned on (which I recommend doing), that this scaling law is usually overkill, i.e. you can most likely get by with populations at least twice as small.

Remember to make the parameter 'indmax' (in 'params.f') greater than or equal to 'npopsiz'.

Creep Mutation Probability Tip:

I generally like to have approximately the same number of creep mutations and jump mutations per generation. Using basic probabilistic arguments, it can be shown that you will get approximately the same number of creep and jump mutations when

pcreep = (nchrome/nparam) * pmutate

where pmutate (the jump mutation probability) is 1/npopsiz.

Suggested reading that I have found to be of use:

Goldberg, D. E., and Richardson, J., "Genetic Algorithms with Sharing for Multimodal Function Optimization," Genetic Algorithms and their Applications: Proceedings of the Second International Conference on Genetic Algorithms, 1987, pp. 41-49.

Goldberg, D. E., "Genetic Algorithms in Search, Optimization and Machine Learning," Addison-Wesley, 1989.

Goldberg, D. E., "A Note on Boltzmann Tournament Selection for Genetic Algorithms and Population-Oriented Simulated Annealing," in: Complex Systems, Vol. 4, Complex Systems Publications, Inc., 1990, pp. 445-460.

Goldberg, D. E., "Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking," in: Complex Systems, Vol. 5, Complex Systems Publications, Inc., 1991, pp. 139-167.

Goldberg, D. E., and Deb, K., "A Comparitive Analysis of Selection Schemes Used in Genetic Algorithms," in: Foundations of Genetic Algorithms, ed. by Rawlins, G.J.E., Morgan Kaufmann Publishers, San Mateo, CA, pp. 69-93, 1991.

Goldberg, D. E., Deb, K., and Clark, J. H., "Genetic Algorithms, Noise, and the Sizing of Populations," in: Complex Systems, Vol. 6, Complex Systems Pub., Inc., 1992, pp. 333-362.

Krishnakumar, K., "Micro-Genetic Algorithms for Stationary and Non-Stationary Function Optimization," SPIE: Intelligent Control and Adaptive Systems, Vol. 1196, Philadelphia, PA, 1989.

Syswerda, G., "Uniform Crossover in Genetic Algorithms," in: Proceedings of the Third International Conference on Genetic Algorithms, Schaffer, J. (Ed.), Morgan Kaufmann Publishers, Los Altos, CA, pp. 2-9, 1989.

If you are interested in my work (which may give some insights into how and why I coded some aspects of my GA), I can mail copies of three papers of mine.

G. Yang, L.E. Reinstein, S. Pai, Z. Xu, and D.L. Carroll, "A new genetic algorithm technique in optimization of permanent 125-I prostate implants,"

Medical Physics, Vol. 25, No. 12, 1998, pp. 2308-2315.

Carroll, D. L., "Chemical Laser Modeling with Genetic Algorithms," AIAA J., Vol. 34, 2, 1996, pp.338-346.

(A preprint version of this paper can now be downloaded in PDF format via my website:

http://www.staff.uiuc.edu/~carroll/gatips.html look for AIAA1996.pdf)

Carroll, D. L., "Genetic Algorithms and Optimizing Chemical Oxygen-Iodine Lasers," Developments in Theoretical and Applied Mechanics, Vol. XVIII, eds. H.B. Wilson, R.C. Batra, C.W. Bert, A.M.J. Davis, R.A. Schapery, D.S. Stewart, and F.F. Swinson, School of Engineering, The University of Alabama, 1996, pp.411-424.

(This paper can now be downloaded in PDF format via my website: http://www.staff.uiuc.edu/~carroll/gatips.html look for SECTAM18.pdf)

Disclaimer: this program is not guaranteed to be free of error (although it is believed to be free of error), therefore it should not be relied on for solving problems where an error could result in injury or loss. If this code is used for such solutions, it is entirely at the user's risk and the author disclaims all liability.

Appendix 3

Script of a session with the package

Script started on Sun Feb 18 00:19:40 2001 \$ ⇒ inst

/tmp/ccxTYckW.o: In function `main':

/tmp/ccxTYckW.o(.text+0xa): the `gets' function is dangerous and should not be used.

/tmp/ccTojbTU.o: In function `main':

/tmp/ccTojbTU.o(.text+0xa): the `gets' function is dangerous and should not be used.

/tmp/cc7jo8an.o: In function `main':

/tmp/cc7jo8an.o(.text+0xa): the `gets' function is dangerous and should not be used.

 $$ \Rightarrow work$

Give the hotmetal weight(Kgs): 271900

Give the scrap weight(Kgs): 52100

Give the hot metal manganese(wt%): 0.352

Give the hot metal phosphorus(wt%): 0.059

Give the hot metal silicon(wt%): 0.556

Give the lime added during first blow(Kgs): 11231

Give the dolomite added during first blow(Kgs): 0

Give the return slag added in first blow(Kgs): 3346

Give the temperature at sublance point (degree C): 1561

Give the carbon at sublance point(wt%): 0.441

Give aim temperature(degree C): 1625

Give aim carbon(wt%): 0.043

Give aim manganese(wt%): 0.105

Give aim phosphorus(wt%): 0.007

Give aim dissolved oxygen(ppm): 618

Suggested Operating Parameters

O22 lime2 dolo2 ore2 rslg2 rdl2 hlans2

predicted target

Carbon 0.047 0.043

Dissolved Oxygen 768 618

Temperature 1645 1625

Mangnese 0.1357 0.1050

0.0070 Phosphorus 0.0078

The heat lies outside the window

cost is 243

2351.0

0.0 1498.0 232.0

Suggested Operating Parameters

O22 lime2 dolo2 ore2 rslg2 rdl2 hlans2

0.0

Composition Report

0.0 2000.0

predicted target

0.043 Carbon 0.047

Dissolved Oxygen 646 618

Temperature 1625 1625

Mangnese 0.1034 0.1050

Phosphorus 0.0055 0.0070

The heat lies inside the window

######################################
Suggested Operating Parameters
O22 lime2 dolo2 ore2 rslg2 rdl2 hlans2
2231.0 270.0 0.0 943.0 1694.0 0.0 215.0
Composition Report
######################################
predicted target
#######################################
Carbon 0.044 0.043
Dissolved Oxygen 623 618
Temperature 1625 1625
Mangnese 0.0981 0.1050
Phosphorus 0.0070 0.0070
######################################
The heat lies inside the window
cost is 11
######################################
Suggested Operating Parameters
O22 lime2 dolo2 ore2 rslg2 rdl2 hlans2
2231.0 270.0 0.0 943.0 1694.0 0.0 215.0

Composition Report

predicted target

Carbon 0.044 0.043

Dissolved Oxygen 623 618

Temperature 1625 1625

Mangnese 0.0981 0.1050

Phosphorus 0.0070 0.0070

The heat lies inside the window

cost is 11

\$ exit

Script done on Sun Feb 18 00:24:40 2001

Composition Report

predicted target

Carbon 0.044 0.043

Dissolved Oxygen 623 618

Temperature 1625 1625

Mangnese 0.0981 0.1050

Phosphorus 0.0070 0.0070

The heat lies inside the window

cost is 11

\$ exit

Script done on Sun Feb 18 00:24:40 2001

Appendix 4 Data files

A4.1 Data set D1

Heatno Chargno	date 1	Wbath Gry Gschrot C_ry Mn_ry P_ry Si_ry Lnslf
Limer doimi Ord	er Kerdi i	
dolm2 Ore2 Rsl	32 Ka12 H.	lns2 T2 C2 Mn2 P2 Oact2
1739 20844 0:	1 09 00 29	36600 2/1900 32000 4.307 0.332
		0 1561 0.441 0.264 0.027 11151 2210
0 0 0	1516 23	17
		16500 292700 48600 4.633 0.371 0.000
		35 15/5 0.4/9 0.261 0.021 13000 2300
0 0 0	463 21	14
1741 11946 01	L 09 00 33	34000 292300 60200 4.691 0.402 0.00
17951 0 1194	17 3855 39	95 1600 0.283 0.255 0.014 13486 1781 0
0 0 0	729 22	21 1662 0.046 0.124 0.006 644
1743 11947 01	L 09 00 31	8600 274800 64900 4.910 0.399 0.058 0.833 137
14370 0 7923	3574 399	93 1594 0.351 0.235 0.032 13072 1861 0
0 0 0	512 21	2 1656 0.056 0.140 0.011 631
1744 20846 01	09 00 33	2800 292100 59600 4.741 0.384 0.059 0.622 7
14500 0 7173	3430 199	3 1627 0.225 0.308 0.026 13218 1475 0
0 0 0	1101 23	66 1654 0.060 0.209 0.013 352
1745 11948 01	09 00 31	8700 284600 56600 4.673 0.376 0.060 0.581 138
13884 0 6053		
0 0 0	343 21	
1751 11952 01	00 00 33	3600 296900 44500 4.651 0.372 0.056 0.507 142
15089 0 7793		7 1611 0.239 0.275 0.020 13359 1802 0
0 0 0	0 21	
1752 20849 01	0 21	5900 305500 47800 4.657 0.381 0.060 0.623 10
	. 09 00 33	6 1620 0.348 0.345 0.024 13631 1995 0
17708 0 6181 0 460 0		
0 460 0	0 23	8 1690 0.050 0.184 0.011 579 5900 295800 59500 4.631 0.381 0.059 0.545 13
17506 0 1778		
0 0 0	0 23	8 1703 0.042 0.152 0.005 321 1000 306800 35600 4.626 0.395 0.060 0.512 14
1756 20853 01	09 00 32	1000 306800 35600 4.626 0.333
	4032 149	4 162/ 0.256 0.277 0.020 20
0 0 0	0 23	5 1696 0.044 0.154 0.009 700 5 1696 0.044 0.154 0.009 700 143
	09 00 33	1300 305600 49000 4.756 0.550 0
16091 0 7103	3960 31	8 1598 0.347 0.287 0.030
1 0 0	0 22	5 1683 0.046 0.154 0.012 769 5 1683 0.046 0.154 0.012 769 145
1763 11955 01	09 00 32	5400 291700 64000 4.603 0.400 0.000
18655 0 6951	5062	0 1588 0.362 0.261 0.009 13377 2000
0 0 0	92 21	0 1657 0.065 0.145 0.006 602 0 705 0.344 0.054 0.418 20
1766 20859 01	09 00 31	AFAA 200100 52000 4.703 V.J
11992 0 4396	2958	0 1599 0.540 0.330 0.037 11012
^ ^		$\frac{1}{2}$
1767 11957 01	09 00 31	9000 294000 50900 4.536 0.382 0.037 0.337
14302 0 4001	3543	0 1625 0.286 0.299 0.025 13303 13303
1768 20860 02	09 00 31	4700 310700 41200 4.420 0.361 0.05/ 0.3/2
13181 0 1511	3085 60	7 1600 0.486 0.301 0.029 124,0
0 0 0		1 1670 0.053 0.193 0.013 451
- 5	JJ 2 2 J	-

```
1769 11958 02 09 00 328400 298700 59300 4.689 0.372 0.057 0.405 148
       0 2612 2961 0 1601 0.387 0.315 0.031 13593 2001 0
12143
      0 0 0 214 1677 0.048 0.179 0.016 744
1770 20861 02 09 00 322400 305100 48000 4.625 0.369 0.057 0.487
                                                           22
1771 11959 02 09 00 329800 296100 63700 4.741 0.384 0.057 0.643
16882 0 4114 4148 0 1616 0.208 0.287 0.025 14175 1510 0
0 0 0 220 1666 0.053 0.163 0.011 712
1777 11962 02 09 00 314600 283400 60200 4.689 0.378 0.056 0.569
13724 0 4392 3348 0 1597 0.427 0.264 0.031 13096 1929
           0 499 206 1656 0.059 0.160 0.013 513
2003
1778 20865 02 09 00 308000 289000 52900 4.638 0.368 0.058 0.586
                                                           26
13516 0 4097 5481 485 1599 0.539 0.217 0.044 12386 2079 0
0 0 1027 229 1688 0.042 0.156 0.017 959
1780 20866 02 09 00 331500 297800 53900 4.734 0.397 0.060 0.653
                                                           27
16065 0 8602 4995 0 1601 0.370 0.300 0.031 12995 1840 0 0 0 0 475 240 1658 0.049 0.178 0.012 500
1783 11965 02 09 00 321700 280300 66900 4.779 0.387 0.059 0.565
13435 0 6427 3789 0 1579 0.343 0.281 0.018 12817 1950 0
      0 0 500 210 1639 0.051 0.141 0.008 803
1924
1784 20868 02 09 00 320900 288800 53300 4.990 0.396 0.059 0.527
                                                           29
13591 0 8863 4571 359 1588 0.310 0.303 0.027 12363 1749 0
0 0 0 0 234 1648 0.049 0.172 0.011 585
1789 20872 02 09 00 331600 310100 49100 4.625 0.375 0.057 0.490
                                                            33
16564 0 2849 5071 1492 1615 0.217 0.252 0.014 13962 1689 0
0 0 0 0 240 1673 0.043 0.153 0.008 561
1790 20874 02 09 00 305000 296200 43900 4.593 0.387 0.059 0.534
16516 0 2493 3633 1085 1616 0.395 0.328 0.033 12512 1822 0
0 406 0 0 226 1674 0.066 0.204 0.014 447
1791 20873 02 09 00 331500 298100 62100 4.804 0.374 0.056 0.508
                                                            34
16199 0 2513 3559 1281 1622 0.295 0.276 0.020 13683 1718 0
0 218 0 49 239 1677 0.059 0.168 0.010 398
1792 20875 02 09 00 316800 303100 39100 4.647 0.388 0.057 0.525
15576 0 7464 3427 769 1605 0.440 0.309 0.026 12715 2018 0
0 0 0 0 233 1688 0.053 0.170 0.012 696
1793 20876 02 09 00 327700 295100 59800 4.625 0.381 0.056 0.476
                                                            37
0 0 0 0 244 1671 0.056 0.185 0.013 601
1794 20877 02 09 00 318700 301600 41600 4.546 0.367 0.057 0.418
                                                            38
12952 0 4213 3066 597 1622 0.335 0.312 0.031 12770 1638 0
0 0 810 239 1666 0.062 0.200 0.015 498
1795 11967 02 09 00 323900 292900 53700 4.529 0.352 0.057 0.324
       0 2117 5378 523 1600 0.423 0.310 0.029 13629 2287 0
10497
           0 0 228 1683 0.041 0.153 0.017 962
1796 20878 02 09 00 294000 273700 40500 4.599 0.366 0.057 0.388
1989
                                                            39
11202 0 6211 3828 417 1576 0.469 0.303 0.025 11008 2039 0
0 0 913 227 1639 0.064 0.174 0.012 568
1801 11973 03 09 00 327400 293100 58800 4.542 0.379 0.058 0.456
                                                            163
13616 . 0 0 3457 1132 1609 0.227 0.290 0.018 13774 2235 494
0 0 0 0 224 1688 0.048 0.144 0.010 1058
1803 11971 03 09 00 338200 294500 65500 4.558 0.364 0.056 0.367
11939 0 0 3039 842 1590 0.369 0.256 0.026 13738 2610 502
1267 0 0 0 220 1679 0.034 0.118 0.011 1165
1804 11972 03 09 00 335100 309000 46200 4.593 0.381 0.059 0.464
15004 0 3812 3776 1352 1626 0.148 0.227 0.011 14176 1750 498
              0 229 1684 0.044 0.143 0.009 983
         0
```

```
1806 11974 03 09 00 316600 308900 36700 4.587 0.375 0.058 0.488
16354 0 5008 4122 1504 1606 0.322 0.252 0.021 13266 2296 503
0 0 0 207 1687 0.045 0.130 0.009 875
1808 20883 03 09 00 325100 292500 56400 4.455 0.375 0.058 0.484
16643 0 0 3669 1338 1588 0.524 0.303 0.027 12978 2455 0
0 495 0 0 248 1664 0.053 0.177 0.010 721
1809 11975 03 09 00 328000 296500 58000 4.670 0.385 0.056 0.487
0 0 0 209 1668 0.052 0.139 0.011 916
1815 11978 03 09 00 324200 297100 54900 4.654 0.372 0.058 0.469
       0 2211 4422 1502 1614 0.226 0.252 0.022 14372 2000 0
0 0 0 215 1686 0.044 0.128 0.010 868
1827 20892 03 09 00 319600 298600 54900 4.635 0.360 0.057 0.505
                                                       55
14980 0 2316 3271 1113 1590 0.585 0.269 0.032 12690 2498
0 0 0 396 240 1676 0.067 0.167 0.013 792
1828 11985 03 09 00 295700 269600 47400 4.638 0.349 0.059 0.444
11172 0 6609 2804 314 1587 0.312 0.291 0.026 11636 1498 0
0 0 1200 187 1632 0.057 0.164 0.012 719
1830 11986 03 09 00 337200 296400 62800 4.843 0.339 0.056 0.370
0 387 0 0 208 1650 0.065 0.181 0.018 539
1832 11987 03 09 00 334300 309400 49500 4.776 0.344 0.058 0.499
                                                       177
17221 0 6704 4225 1396 1626 0.168 0.238 0.025 14050 1484
0 515 0 0 208 1670 0.047 0.141 0.012 735
1833 20895 03 09 00 327800 295700 53200 4.705 0.338 0.057 0.416
13719 0 3300 2984 1002 1638 0.262 0.264 0.027 13427 1899 0
     0 0 1436 249 1691 0.048 0.128 0.010 796
1834 11988 03 09 00 321500 290000 53500 4.785 0.326 0.057 0.474
0 187 0 1004 212 1680 0.054 0.151 0.013 916
1836 20896 03 09 00 323300 297800 47300 4.775 0.320 0.058 0.405
       0 6691 5144 1235 1584 0.438 0.267 0.029 12595 2138 0
14815
       0 33 247 1666 0.054 0.146 0.011 637
0 915
1837 11989 04 09 00 292700 267400 50600 4.654 0.327 0.058 0.411
                                                       179
10813 0 3999 2730 354 1561 0.549 0.228 0.028 11213 2350 0
0 951 104 0 190 1636 0.042 0.114 0.009 840
1838 11990 04 09 00 290700 273200 42000 4.632 0.328 0.058 0.496
                                                       180
14249  0 4303 3446 991 1594 0.323 0.245 0.028 12094 2358  0
0 0 0 189 1680 0.037 0.102 0.010 1224
1839 20898 04 09 00 320600 304100 38000 4.644 0.324 0.058 0.438
0 0 0 654 239 1683 0.055 0.161 0.013 633
1840 20899 04 09 00 322900 297900 47000 4.673 0.328 0.057 0.435
                                                        63
       0 3401 3270 1164 1610 0.420 0.280 0.014 12954 2079 0
0 0 1002 239 1683 0.055 0.153 0.012 607
1841 11991 04 09 00 330400 290800 66400 4.705 0.323 0.056 0.441
13880 0 891 3479 451 1597 0.490 0.289 0.027 13538 2133
   514 0 0 210 1659 0.058 0.169 0.011 555
1842 20900 04 09 00 326400 304300 47100 4.762 0.336 0.061 0.475
15703 0 5781 3443 1387 1639 0.279 0.294 0.032 13055 1794 0
0 0 554 1632 232 1665 0.063 0.172 0.012 623
1843 20901 04 09 00 329300 291100 62800 4.744 0.332 0.059 0.483
                                                        65
       0 2202 3282 1073 1627 0.364 0.299 0.026 13103 2075 0
   0 0 1962 232 1667 0.063 0.177 0.012 536
1844 11992 04 09 00 323600 290100 60500 4.632 0.314 0.061 0.366
                                                       182
15151 0 476 3664 634 1572 0.510 0.252 0.030 13895 2541 0
        0 0 214 1663 0.045 0.126 0.011 833
```

```
1845 11993 04 09 00 317500 308200 44500 4.436 0.303 0.057 0.337 183
11742 0 1406 2924 562 1605 0.277 0.245 0.025 13347 1798 0
0 0 0 0 210 1667 0.044 0.134 0.011 817
1846 11994 04 09 00 318500 298600 45600 4.586 0.320 0.057 0.421
1847 11995 04 09 00 321500 293400 48000 4.657 0.323 0.059 0.476
13525 0 5415 3350 340 1570 0.356 0.223 0.016 13045 2386 0
0 0 0 211 1663 0.046 0.099 0.009 1040
1848 11999 04 09 00 315400 290400 55900 4.660 0.324 0.061 0.526
                                                     189
14556 0 2482 3502 521 1599 0.297 0.246 0.022 13542 1847 0
0 0 0 0 211 1664 0.049 0.138 0.010 900
1851 11998 04 09 00 290000 278300 39100 4.497 0.309 0.063 0.370
0 0 0 521 197 1639 0.047 0.129 0.010 884
1852 12000 04 09 00 328300 297300 60100 4.574 0.318 0.060 0.380
11435 0 2317 2861 0 1593 0.313 0.257 0.019 13582 1785 0
0 0 194 217 1654 0.050 0.151 0.012 843
    12001 04 09 00 324900 297300 49500 4.744 0.311 0.057 0.424
1853
                                                     191
12951 0 8571 3252 0 1589 0.339 0.255 0.029 13062 2160 0
0 0 0 0 202 1674 0.042 0.118 0.011 1104
1854 20902 04 09 00 309700 284700 54400 4.363 0.324 0.057 0.389
                                                     67
1858 20904 04 09 00 314200 290200 58300 4.264 0.311 0.057 0.344
11255 0 0 2761 305 1564 0.586 0.258 0.032 12594 3000 0 1481 0 0 0 213 1686 0.038 0.090 0.010 1320
1859 12004 04 09 00 319800 297800 46900 4.414 0.297 0.056 0.328
10320 0 0 2569 0 1612 0.374 0.293 0.026 13181 2350 0
0 0 0 206 1691 0.040 0.152 0.014 1098
1862 20907 04 09 00 320400 295300 47100 4.776 0.338 0.058 0.455
                                                     72
14626  0 7921 3228 640 1575 0.373 0.255 0.022 12937 2319  0
2002 0 0 249 1668 0.048 0.125 0.009 982
1863 20906 04 09 00 337100 285200 55800 4.734 0.333 0.058 0.441
0 0 1412 237 1653 0.046 0.123 0.009 922
1996
1864 12006 04 09 00 321400 287400 55600 4.536 0.325 0.060 0.505
                                                     196
0 0 0 0 206 1669 0.045 0.134 0.011 923
1865 12007 04 09 00 320000 281600 61000 4.600 0.367 0.064 0.907
17197 0 6699 4207 0 1613 0.127 0.218 0.013 13486 1687 0
0 0 0 227 1660 0.053 0.116 0.008 922
1866 20908 04 09 00 333800 286100 73400 4.741 0.371 0.062 0.901
                                                    73
19999 0 5514 4495 0 1599 0.214 0.250 0.016 13829 2139 0
     0 0 0 232 1679 0.047 0.116 0.007 985
1994
1871 12010 05 09 00 316100 283200 63700 4.701 0.363 0.061 0.967
1876 20913 05 09 00 333300 300500 57700 4.849 0.325 0.057 0.522
16689 0 6601 3683 900 1598 0.337 0.250 0.014 13403 2098 0
0 0 701 233 1667 0.052 0.129 0.007 624
1879 12014 05 09 00 313900 286000 56900 4.721 0.331 0.057 0.458
                                                      3
16333 0 1004 3620 0 1617 0.260 0.262 0.022 13626 1900 0
    0 0 0 147 1679 0.044 0.135 0.010 1071
0
1881 20915 05 09 00 327600 293000 61700 4.670 0.338 0.058 0.517 80
15613 0 497 3409 628 1614 0.396 0.285 0.027 13647 1975 0
       0 1504 229 1665 0.063 0.168 0.012 499
```

```
1882 20916 05 09 00 262900 284200 57000 4.689 0.326 0.057 0.479
15387 0 1588 3341 465 1614 0.359 0.277 0.025 12939 1800 0
0 0 1499 224 1654 0.063 0.162 0.010 416
1883 12016 05 09 00 317800 295200 53500 4.670 0.336 0.057 0.496
                                                         5
13981 0 3104 3444 469 1622 0.112 0.209 0.012 13440 1706 0
0 0 0 149 1684 0.039 0.095 0.007 1355
1886 20919 05 09 00 328300 294700 63100 4.597 0.328 0.058 0.584
17427 0 2017 3933 985 1610 0.182 0.213 0.010 13839 1575 0
0 965 1373 0 229 1636 0.057 0.121 0.005 427
1888 20920 05 09 00 326100 295700 44100 4.568 0.321 0.058 0.543
                                                         85
       0 7011 3405 539 1628 0.155 0.217 0.011 13086 1433 0
15561
       641 0 232 1650 0.066 0.135 0.006 409
0 966
1889 12018 05 09 00 323700 294000 54700 4.660 0.386 0.060 0.724
                                                         7
16112 0 1619 3957 931 1636 0.370 0.293 0.047 13788 1905 0
      0 1378 152 1699 0.051 0.171 0.018 989
0 0
1890 20921 05 09 00 334900 294500 63600 4.718 0.379 0.060 0.841
0 578 0 0 233 1659 0.060 0.154 0.007 459
1891 12019 05 09 00 291400 251800 64300 4.795 0.368 0.061 0.821
                                                          8
15368
       0 6489 3800 0 1586 0.332 0.233 0.035 11588 1810 0
0 916 2095 0 143 1634 0.041 0.106 0.012 990
1894 20924 05 09 00 325500 284800 72000 4.734 0.334 0.060 0.843
                                                         89
0 594 284 0 229 1671 0.045 0.138 0.010 720
1896 20926 05 09 00 315800 280300 62200 4.731 0.334 0.059 0.714
15971 0 6231 3491 0 1607 0.382 0.270 0.022 12445 2096 0
2003
      0 0 551 224 1662 0.051 0.150 0.008 584
1897 12020 05 09 00 294300 260400 43600 4.615 0.312 0.059 0.892
1898 20927 05 09 00 328100 296900 53400 4.632 0.311 0.060 0.725
                                                         92
       0 7174 4115 334 1608 0.321 0.230 0.023 12919 2228
18407
       0 0 528 228 1667 0.051 0.126 0.007 607
2003
1900 20928 05 09 00 302400 271400 52800 4.619 0.314 0.059 0.546
                                                         93
10942  0 6318 3910  0 1551 0.612 0.230 0.021 11061 2592  0
      0 0 2518 216 1610 0.046 0.092 0.006 541
2001
1903 12023 05 09 00 323800 297400 43400 4.759 0.349 0.061 0.675
19989 0 6925 4899 991 1648 0.162 0.228 0.017 14065 1725 0
0 0 0 150 1706 0.044 0.118 0.009 1364
1905 20931 05 09 00 325200 295000 62300 4.666 0.402 0.059 0.602
                                                         96
       0 1999 4292 1456 1570 0.497 0.227 0.008 13599 2369 0
19058
2001 907 0 0 228 1647 0.060 0.123 0.004 364
1907 12025 05 09 00 320000 298000 50300 4.718 0.353 0.059 0.647
                                                         14
19997 0 2896 4915 1494 1632 0.251 0.294 0.038 14117 1955 0
             0 200 1708 0.042 0.144 0.014 1069
0 0 0
                                                         15
1908 12026 05 09 00 320200 300500 46400 4.786 0.422 0.062 0.591
19027 0 5513 4671 1426 1635 0.269 0.320 0.030 13539 1603 0
0 0 0 9 163 1690 0.055 0.203 0.015 678
1909 20932 05 09 00 329400 296300 61200 4.647 0.338 0.059 0.612
                                                         97
19947 0 1586 4483 1477 1652 0.201 0.228 0.015 13821 1547 0
0 995 815 124 229 1678 0.060 0.144 0.008 406
1910 12027 05 09 00 323300 296000 52800 4.760 0.406 0.060 0.665
19316  0 4593 4757 1139  1639 0.270 0.291 0.026 13605 1601  0
       0 258 164 1687 0.060 0.188 0.013 761
0 0
1912 12028 05 09 00 326700 299700 54600 4.600 0.344 0.061 0.641
                                                         17
18491 0 1798 4500 0 1612 0.393 0.266 0.038 13799 1806 0
         0 584 166 1673 0.058 0.171 0.015 628
```

```
1913 20934 06 09 00 324800 294100 51300 4.798 0.382 0.059 0.518
18723 0 6422 4182 1495 1619 0.250 0.253 0.019 12983 1735 0
0 0 999 225 1652 0.055 0.137 0.007 445
1914 12029 06 09 00 335600 311600 51800 4.789 0.403 0.059 0.499
       0 4995 4246 1564 1633 0.328 0.320 0.037 13904 1798 0
0 0 1026 174 1677 0.060 0.201 0.018 714
1915 12030 06 09 00 322900 291200 54900 4.760 0.396 0.058 0.507
                                                       19
15315 0 4789 3717 670 1602 0.393 0.336 0.038 13065 1986 0
0 0 0 184 1675 0.053 0.187 0.016 968
1917 12031 06 09 00 336100 310200 46800 4.699 0.381 0.058 0.613
       0 6222 4880 2510 1611 0.343 0.239 0.026 14005 2239 499
19491
      0 1135 174 1670 0.053 0.131 0.010 657
0 0
1918 20936 06 09 00 318900 289200 54200 4.721 0.427 0.059 0.507
13737 0 4805 3050 346 1620 0.382 0.341 0.026 12954 1711 0
0 0 0 0 223 1691 0.050 0.200 0.012 495
1919 12032 06 09 00 325300 296000 49400 4.715 0.354 0.058 0.552
18073 0 4088 4537 994 1639 0.236 0.255 0.026 13715 1849 498
0 0 1192 168 1689 0.046 0.130 0.010 1037
1923 12034 06 09 00 332900 309300 50000 4.702 0.434 0.059 0.533
       0 5299 4684 1001 1611 0.414 0.300 0.025 13445 2476 496
0 0 0 1248 177 1671 0.050 0.158 0.010 761
1924 20939 06 09 00 316000 292600 44700 4.638 0.364 0.059 0.576
0 0 0 558 213 1629 0.058 0.152 0.007 388
1926 20940 06 09 00 332200 296700 60000 4.753 0.376 0.059 0.574
       15754
0 849 0 0 221 1675 0.050 0.181 0.011 450
1927 12036 06 09 00 319100 292100 51500 4.786 0.391 0.060 0.644
0 0 131 173 1645 0.046 0.103 0.005 755
1929 12037 06 09 00 322300 283300 63900 4.711 0.445 0.060 0.574
                                                       26
16236
      0 482 174 1643 0.050 0.138 0.008 773
0 0
1931 12038 06 09 00 322700 280000 60700 4.718 0.391 0.060 0.726
                                                       27
15324 0 7041 3777 0 1603 0.313 0.289 0.035 12837 1963 0
0 0 0 112 173 1677 0.041 0.152 0.013 1057
1932 12039 06 09 00 331100 289800 67300 4.805 0.340 0.061 0.793
19261 0 7965 4651 0 1578 0.293 0.244 0.018 13543 1874 0
0 0 0 282 178 1647 0.042 0.109 0.008 982
1939 12044 06 09 00 327000 295400 54600 4.708 0.401 0.061 0.509
                                                       33
15071 0 7116 3679 701 1576 0.377 0.277 0.033 13114 2648
0 0 0 200 1666 0.042 0.130 0.010 953
1943 12045 06 09 00 323800 293800 55700 4.670 0.406 0.059 0.635
                                                       34
0 0 0 220 1669 0.038 0.124 0.008 976
1944 20948 06 09 00 319300 304800 40000 4.670 0.433 0.059 0.419
14577 0 6319 3270 1087 1617 0.274 0.338 0.035 12868 2056
0 0 0 217 1696 0.037 0.159 0.013 966
1945 12046 06 09 00 318200 294800 52400 4.558 0.386 0.059 0.470
                                                       35
13939 0 1200 3214 369 1590 0.464 0.348 0.029 12929 2826 0
0 0 0 640 199 1689 0.034 0.144 0.013 1226
1948 20950 06 09 00 318000 295000 41300 4.728 0.422 0.057 0.412
       0 5310 3058 1117 1619 0.291 0.337 0.038 12739 1822
      0 709 215 1688 0.044 0.173 0.014 778
1949 12048 06 09 00 324300 295300 51700 4.615 0.415 0.061 0.626
                                                       37
19409 0 4015 4480 926 1610 0.268 0.316 0.031 13931 1737 0
      0 336 174 1667 0.056 0.166 0.012 802
```

```
1953 12050 06 09 00 346700 309200 54300 4.577 0.410 0.059 0.494
12111 0 7307 3005 0 1575 0.360 0.269 0.033 13327 2084 0
0 0 17 182 1648 0.043 0.166 0.017 816
1955 12051 06 09 00 323500 288200 57200 4.702 0.434 0.058 0.456
                                                           40
12510  0 6785 3137  0 1583 0.303 0.312 0.025 12844 2086  0
    0 0 0 174 1650 0.043 0.160 0.011 817
1957 12052 07 09 00 318300 282400 57800 4.712 0.447 0.059 0.464
                                                           41
12550 0 7095 3100 0 1589 0.274 0.334 0.034 12864 1990 0
   0 0 0 187 1667 0.040 0.146 0.014 1135
1961 12054 07 09 00 335200 298300 57000 4.664 0.464 0.066 0.456
15478 0 3514 3689 1307 1621 0.176 0.313 0.030 14185 1763 496
    0 0 696 180 1671 0.041 0.154 0.014 1048
1963 12055 07 09 00 326500 296000 48900 4.721 0.415 0.061 0.391
                                                           44
13205 0 6789 3372 1061 1585 0.357 0.284 0.034 13092 2278 491
0 0 0 554 176 1650 0.039 0.127 0.014 1006
1968 12058 07 09 00 336100 308000 53600 4.705 0.439 0.058 0.497
19062 0 4707 4668 1492 1621 0.269 0.317 0.024 14698 1753 0
     0 0 393 224 1685 0.046 0.175 0.012 977
0
1970 12059 07 09 00 319700 294000 51100 4.676 0.432 0.060 0.415
                                                           3
       0 4393 3692 878 1599 0.284 0.324 0.028 13543 1961 0
    0 0 199 1680 0.052 0.162 0.012 939
1971 20961 07 09 00 321900 302100 40700 4.616 0.407 0.059 0.437
                                                           21
0 0 0 209 1691 0.052 0.193 0.016 655
1974 12061 07 09 00 322000 306700 40900 4.686 0.420 0.060 0.578
20012 0 6886 5079 1450 1627 0.169 0.253 0.018 14124 1420 0
    0 0 0 225 1679 0.051 0.147 0.010 932
0
    12062 07 09 00 321000 293000 48500 4.738 0.429 0.059 0.661
1976
20010 0 6902 4957 1124 1623 0.248 0.291 0.022 13871 1506 0
    0 0 535 219 1671 0.067 0.184 0.012 887
    20964 07 09 00 337800 310300 44100 4.654 0.443 0.057 0.279
                                                           24
1977
    9281
                                                           0
    0 722 217 1680 0.061 0.270 0.022 364
0
1978 12063 07 09 00 321600 297900 52300 4.673 0.413 0.058 0.390
                                                           7
15062 0 2200 3467 1278 1622 0.435 0.346 0.037 13869 1909 0
    0 0 397 200 1690 0.053 0.213 0.017 921
0
    20965 07 09 00 322500 295200 44500 4.705 0.435 0.061 0.409
1979
10405  0 6109 4844  0 1620 0.423 0.368 0.036 12566 2126  0
    0 0 0 204 1698 0.044 0.208 0.014 501
0
    12065 07 09 00 318100 295400 52500 4.686 0.431 0.057 0.427
                                                           9
1982
16421 0 3010 4147 1500 1611 0.301 0.318 0.032 13881 1717 0
    0 0 0 197 1671 0.056 0.201 0.015 672
1983 20967 07 09 00 317800 310000 37000 4.696 0.456 0.060 0.482
                                                           27
17842 0 6211 3992 1372 1631 0.340 0.331 0.029 13230 1724
0 0 0 1 207 1697 0.057 0.202 0.013 398
1984 12066 07 09 00 327400 296100 53300 4.795 0.410 0.057 0.544
19581 0 6005 4751 1343 1616 0.272 0.275 0.017 14198 1831
0 293 0 0 201 1681 0.046 0.155 0.008 737
1987 20969 07 09 00 333400 296200 61900 4.871 0.443 0.058 0.640
                                                            1
20041 0 5889 4476 843 1602 0.417 0.311 0.017 13533 2297 0
0 0 0 215 1672 0.060 0.176 0.008 452
1989 12069 07 09 00 264100 274900 42700 4.673 0.448 0.060 0.582
                                                           13
14426 0 8903 3236 2003 1516 0.787 0.250 0.011 10398 3418 0
    0 0 2196 168 1628 0.043 0.087 0.004 868
1991 20971 07 09 00 324200 295400 52200 4.689 0.423 0.059 0.518
                                                            3
16971 0 2983 3889 0 1637 0.334 0.344 0.032 13236 2046 0
   0 0 1543 211 1695 0.047 0.177 0.011 715
```

```
1993 12070 07 09 00 302000 269600 51700 4.625 0.402 0.056 0.389
10879 0 6739 2668 262 1537 0.499 0.255 0.016 11800 2502 0
0 0 0 187 1635 0.044 0.117 0.008 957
1996 20974 07 09 00 339000 309100 54300 4.686 0.408 0.055 0.383
                                                            6
15517 0 3003 3046 506 1635 0.321 0.338 0.036 13338 2030 0
0 870 1635 0 223 1676 0.061 0.198 0.012 529
1997 12072 07 09 00 323000 294100 55800 4.654 0.412 0.056 0.441
17113 0 1611 3194 0 1626 0.247 0.317 .0.030 14114 1695 0
0 0 0 0 202 1685 0.039 0.165 0.012 1077
1998 20975 07 09 00 325600 295000 52400 4.654 0.407 0.057 0.379
                                                            7
15321
       0 1511 3356 1315 1603 0.470 0.330 0.036 13413 2298 0
0 677 0 0 217 1672 0.057 0.186 0.012 416
2005 20979 08 09 00 324700 294200 55900 4.600 0.389 0.057 0.389
                                                           11
15466 0 2531 3393 80 1612 0.264 0.286 0.018 13363 1796 0
0 736 0 0 217 1659 0.053 0.163 0.007 420
2006 12076 08 09 00 328600 296000 56100 4.814 0.415 0.058 0.424
                                                           2.0
17826  0 6203 4354 1499 1594 0.163 0.241 0.013 14224 2348  0
0 0 0 0 207 1689 0.035 0.095 0.007 1371
2007 20980 08 09 00 323400 300300 44700 4.683 0.400 0.056 0.387
14780 0 6003 3271 1229 1621 0.179 0.262 0.016 12846 1723 0
0 795 0 0 218 1670 0.050 0.154 0.008 588
2008 12077 08 09 00 324100 294000 52700 4.730 0.400 0.056 0.488
                                                           21
18227 0 5191 4471 1485 1617 0.141 0.235 0.012 13942 1803
0 610 0 0 205 1669 0.037 0.120 0.007 1076
2009 20981 08 09 00 321800 296100 46000 4.734 0.403 0.059 0.548
                                                           13
19064 0 6569 4280 1492 1637 0.229 0.278 0.018 13191 1763 0
0 912 1590 0 217 1675 0.052 0.153 0.008 503
2011 20982 08 09 00 322100 294100 51300 4.676 0.420 0.058 0.371
0 825 1010 0 219 1677 0.044 0.163 0.011 734
2015 12080 08 09 00 330100 295100 59800 4.507 0.382 0.058 0.476
                                                           24
16304 0 0 1380 0 1602 0.464 0.321 0.051 13934 2324 0
0 846 211 0 202 1680 0.035 0.159 0.016 1224
2016 12081 08 09 00 325700 308200 40200 4.510 0.352 0.056 0.319
                                                           25
13716 0 3483 2183 1081 1601 0.252 0.267 0.024 13846 1855 0
0 0 0 199 1661 0.046 0.151 0.011 942
2017 20985 08 09 00 323700 293100 51800 4.616 0.408 0.063 0.484
                                                           17
15633 0 5006 3439 551 1593 0.508 0.332 0.025 12867 2703 0
0 954 547 0 224 1682 0.040 0.138 0.008 941
2019 20986 08 09 00 335600 299800 55100 4.699 0.403 0.058 0.528
                                                           18
16797 0 7514 3322 628 1582 0.493 0.352 0.022 12811 2553 0
0 935 580 0 229 1662 0.046 0.156 0.007 671
2021 20987 08 09 00 327700 295600 51700 4.786 0.390 0.056 0.334
                                                           19
13980 0 7117 3074 0 1608 0.255 0.331 0.022 12894 1714 0
0 973 306 0 225 1653 0.065 0.173 0.009 537
2023 20988 08 09 00 327900 292900 54500 4.689 0.402 0.061 0.542
15044 0 8282 3294 0 1577 0.323 0.288 0.016 12774 2361 0
0 0 0 226 1662 0.044 0.146 0.007 560
2025 20989 08 09 00 325700 295200 52900 4.775 0.401 0.056 0.331
                                                           21
12980 0 7425 4072 0 1596 0.253 0.301 0.018 12637 1962 0
0 0 0 226 1660 0.050 0.169 0.009 529
2026 20990 08 09 00 325200 293700 55400 4.667 0.410 0.059 0.483
                                                           22
15710 0 3010 4509 0 1620 0.351 0.341 0.027 13398 1811 0
0 115 0 0 225 1674 0.051 0.189 0.011 466
2028 20991 08 09 00 321000 304000 38100 4.763 0.407 0.057 0.388
                                                           23
16117 0 6593 3598 1179 1635 0.281 0.334 0.026 12936 1736 0
0 0 0 0 230 1694 0.060 0.205 0.014 493
```

```
2029 20993 08 09 00 327000 293500 52000 4.734 0.399 0.057 0.445
13077 0 7116 3563 313 1573 0.488 0.288 0.019 12459 2562 0
0 0 0 229 1664 0.055 0.156 0.008 523
2030 12086 08 09 00 332900 289700 71900 4.638 0.391 0.057 0.438
                                                      30
15533 0 997 3289 970 1559 0.479 0.281 0.022 13662 2779 0
0 0 0 220 1661 0.040 0.126 0.008 1068
2037 20998 08 09 00 334700 295100 58500 4.628 0.379 0.054 0.329
11019 0 2895 3641 0 1602 0.318 0.324 0.032 13067 1891 0
0 214 0 0 238 1663 0.048 0.196 0.014 519
2039 21000 08 09 00 327300 295200 47800 4.558 0.388 0.055 0.366
                                                      32
11579 0 4516 3273 0 1623 0.353 0.320 0.029 12763 1856 0
0 0 1039 234 1658 0.064 0.204 0.013 379
2043 21002 08 09 00 325500 292900 52000 4.696 0.395 0.055 0.364
                                                      34
2045 21003 08 09 00 328300 301700 56400 4.705 0.412 0.058 0.446
                                                      35
10443  0 7015 2575  0 1598 0.261 0.310 0.023 12422 2048  0
0 0 0 230 1674 0.037 0.145 0.011 737
2048 21005 09 09 00 319700 294100 43900 4.482 0.404 0.057 0.356
                                                      37
0 354 0 0 221 1676 0.044 0.174 0.011 728
2052 21007 09 09 00 326100 292200 48600 4.555 0.400 0.058 0.432
                                                      39
13179 0 4413 3075 0 1631 0.208 0.332 0.023 12995 1644
0 961 544 0 222 1666 0.052 0.170 0.009 524
2057 12097 09 09 00 329000 293800 59400 4.651 0.404 0.056 0.445
                                                      4.7
16253 0 512 3991 1256 1634 0.138 0.280 0.019 14541 1500 0
0 0 0 690 203 1671 0.049 0.172 0.011 794
2058 21010 09 09 00 327500 307000 43000 4.641 0.392 0.057 0.381
                                                      42
0 0 0 1359 228 1635 0.047 0.139 0.006 467
2059 12098 09 09 00 320300 295000 54900 4.574 0.396 0.061 0.442
                                                      42
16316 0 0 3973 1372 1610 0.185 0.262 0.021 14399 2053 0
0 0 0 200 1675 0.045 0.135 0.010 1023
2064 21012 09 09 00 305900 292100 35300 4.520 0.377 0.065 0.356
                                                      44
14012  0 4508 3055 1087 1594 0.512 0.295 0.027 11911 2250  0
0 0 0 1973 215 1660 0.033 0.134 0.010 802
2065 12102 09 09 00 323000 306800 41400 4.603 0.383 0.057 0.400
                                                      46
16291 0 4191 4018 1492 1613 0.270 0.275 0.021 13815 1697 0
0 0 0 202 1668 0.054 0.165 0.011 647
2067 12103 09 09 00 333000 291400 66600 4.727 0.418 0.058 0.696
                                                      47
19857 0 3106 4615 975 1626 0.160 0.284 0.029 14586 1537 0
0 0 0 0 214 1675 0.041 0.160 0.013 890
2069 21015 09 09 00 321500 292000 55300 4.708 0.403 0.057 0.738
                                                      47
0 0 0 224 1698 0.038 0.099 0.005 890
2072 12106 09 09 00 306100 270200 52500 4.744 0.421 0.057 0.556
                                                      50
2073 12107 09 09 00 327400 291600 58700 4.750 0.415 0.059 0.587
                                                      51
18591 0 1118 4542 1499 1665 0.146 0.341 0.036 14497 1207 0
0 0 529 203 1691 0.071 0.262 0.023 562
2075 21016 09 09 00 300300 254900 60200 4.708 0.417 0.058 0.622
                                                      48
      11971
      0 2337 213 1641 0.045 0.112 0.008 782
0 948
2078 21018 09 09 00 328100 288200 58900 4.779 0.433 0.057 0.500
                                                      50
15541 0 6202 3410 955 1604 0.369 0.330 0.024 13264 2371 0
0 882 0 0 230 1694 0.047 0.142 0.009 621
```

```
2079 12110 09 09 00 318800 292900 51300 4.580 0.420 0.057 0.487
16431 0 1695 3034 0 1602 0.415 0.330 0.039 13210 1709 0
0 311 0 0 197 1679 0.055 0.212 0.016 788
2081 21020 09 09 00 322500 289900 53000 4.776 0.435 0.058 0.597
                                                       52
16814 0 8235 3731 919 1613 0.278 0.306 0.019 13027 2041 0
0 763 0 0 215 1691 0.044 0.139 0.008 753
2083 12112 09 09 00 301800 270700 52500 4.638 0.450 0.063 0.531
                                                      56
13145 0 6490 3183 0 1584 0.420 0.323 0.018 11779 1999 0
0 0 1631 195 1637 0.059 0.163 0.010 669
2084 12113 09 09 00 327100 307900 41700 4.660 0.406 0.057 0.494
                                                      57
18985 0 6997 4623 0 1617 0.201 0.249 0.013 13996 1604 0
       0 0 209 1672 0.060 0.147 0.008 872
2085 21021 09 09 00 331500 290200 63000 4.772 0.443 0.060 0.838
                                                      28
20015 0 8739 4487 0 1571 0.331 0.268 0.009 13484 2328 0
0 0 0 222 1648 0.048 0.126 0.004 577
2086 12114 09 09 00 297800 250000 66100 4.833 0.437 0.059 0.752
                                                      58
2088 12115 09 09 00 324500 290700 58000 4.657 0.452 0.065 0.640
                                                      59
2089 21023 09 09 00 321800 288000 56500 4.619 0.442 0.059 0.470
                                                      30
14606  0 1932 3274 957 1633 0.289 0.365 0.031 13238 1668  0
0 916 0 47 213 1685 0.053 0.200 0.010 507
2090 21024 09 09 00 323600 300000 41500 4.529 0.432 0.057 0.465
                                                      31
0 958 0 0 212 1681 0.054 0.214 0.012 465
2092 12117 09 09 00 320700 288200 58300 4.674 0.455 0.062 0.527
0 519 0 0 209 1676 0.048 0.172 0.010 814
2093 21025 09 09 00 328200 291300 56400 4.706 0.442 0.060 0.570
                                                      32
15727 0 5795 3452 0 1631 0.329 0.367 0.037 12791 1899 0
0 966 0 1003 218 1673 0.047 0.194 0.010 401
2095 21026 09 09 00 326500 282100 61800 4.660 0.452 0.058 0.560
                                                      33
0 940 887 0 214 1661 0.049 0.194 0.010 504
2096 12119 10 09 00 325500 284000 59400 4.734 0.435 0.056 0.450
                                                      63
12729 0 5303 3152 0 1608 0.361 0.348 0.027 13082 1998
0 0 0 210 1676 0.050 0.195 0.015 897
2097 21027 10 09 00 321300 279800 60400 4.728 0.447 0.061 0.537
                                                      34
0 0 518 212 1682 0.038 0.180 0.010 664
2098 12120 10 09 00 310300 269200 56600 4.667 0.456 0.058 0.506
                                                      64
12475 0 6997 3083 326 1566 0.421 0.344 0.015 11831 2089 0
0 0 1003 201 1633 0.056 0.181 0.008 622
2102 12122 10 09 00 329800 284000 64700 4.705 0.461 0.056 0.551
                                                      66
13172  0 5903 3270  0 1595 0.408 0.381 0.020 13191 2260  0
    0 0 562 209 1661 0.046 0.174 0.011 843
2103 12123 10 09 00 301800 276100 44400 4.677 0.447 0.057 0.445
                                                      67
11828 0 7741 2886 320 1578 0.438 0.294 0.013 11698 2052 0
0 0 0 2006 196 1641 0.049 0.141 0.008 793
                                                      37
    21030 10 09 00 327300 281100 69400 4.778 0.451 0.056 0.643
2104
14989 0 4642 3308 0 1615 0.362 0.362 0.027 12490 2217 0 0 0 0 1298 215 1658 0.054 0.187 0.009 417
2106 12124 10 09 00 322800 280900 69100 4.711 0.432 0.056 0.528
                                                      68
13778 0 3793 3417 0 1581 0.316 0.308 0.020 13262 2565 0
0 0 0 210 1676 0.040 0.117 0.008 1169
```

```
2108 12125 10 09 00 329500 283100 72300 4.689 0.429 0.055 0.387
11886 0 1316 2939 0 1597 0.434 0.354 0.028 13423 2038 0
0 0 0 209 1672 0.049 0.220 0.017 858
2109 21033 10 09 00 319100 291100 57200 4.638 0.443 0.054 0.363
                                                      40
15000 0 899 0 3973 1618 0.329 0.297 0.035 13018 2268 0
0 626 0 0 234 1684 0.048 0.158 0.011 674
2113 21035 10 09 00 325200 304900 42400 4.692 0.430 0.055 0.327
16512 0 6081 1543 1997 1634 0.248 0.282 0.025 13145 1913 0
0 943 2521 0 212 1669 0.043 0.144 0.008 680
2114 12128 10 09 00 325900 283000 66300 4.759 0.433 0.054 0.347
                                                      72
11181 0 3598 2763 0 1586 0.249 0.311 0.016 13133 1900 0
0 0 0 0 204 1658 0.042 0.153 0.009 835
2116 12129 10 09 00 324900 289400 56600 4.744 0.462 0.055 0.344
                                                      73
11564 0 5810 2847 0 1588 0.341 0.355 0.020 13147 1886 0
0 0 0 2 203 1660 0.045 0.182 0.012 860
2120 12131 10 09 00 320800 282900 62500 4.737 0.451 0.054 0.354
2125 21042 10 09 00 324600 287400 52900 4.782 0.459 0.055 0.338
                                                      49
0 0 0 0 209 1661 0.040 0.164 0.008 1227
2126 12134 10 09 00 323100 282000 64600 4.618 0.434 0.055 0.317
                                                      78
10447 0 105 2604 0 1603 0.396 0.358 0.032 13218 1900
0 0 0 14 197 1673 0.045 0.217 0.020 889
2128 12135 10 09 00 324100 280000 70900 4.706 0.451 0.059 0.452
                                                      79
13121 0 2996 3208 0 1584 0.445 0.350 0.018 13355 2288 0
0 0 0 198 1671 0.048 0.186 0.011 1048
2129 21043 10 09 00 326200 290800 55200 4.660 0.474 0.058 0.368
                                                      50
0 0 865 209 1656 0.045 0.191 0.008 465
2130 12136 10 09 00 327700 296100 57700 4.714 0.454 0.064 0.493
                                                      80
16207 0 1377 3981 1489 1640 0.138 0.302 0.023 14982 1894 0
0 904 0 0 200 1686 0.047 0.147 0.010 1012
2131 21044 10 09 00 322300 283100 64700 4.689 0.439 0.057 0.416
                                                      51
13309 0 2191 3078 986 1584 0.318 0.306 0.018 13239 2608 0
0 689 0 0 208 1680 0.037 0.127 0.007 585
2132 12137 10 09 00 318400 295900 45800 4.660 0.437 0.055 0.355
                                                      81
0 0 0 194 1671 0.050 0.198 0.017 900
2133 21045 10 09 00 321600 282100 62200 4.766 0.457 0.059 0.419
14152 0 2192 3085 1136 1614 0.245 0.306 0.018 13100 1772 0
0 0 0 206 1666 0.050 0.176 0.010 426
2136 12139 10 09 00 315700 280000 57800 4.619 0.469 0.062 0.487
                                                      83
13164 0 2200 3234 0 1584 0.451 0.359 0.021 13026 2249 0
0 0 0 195 1662 0.054 0.206 0.015 719
2139 21048 10 09 00 323900 286900 53200 4.760 0.413 0.055 0.432
10319 0 6754 6253 0 1598 0.485 0.360 0.031 11990 2033 0
0 0 597 202 1657 0.058 0.225 0.014 355
2140 12141 10 09 00 324600 288700 57600 4.759 0.467 0.056 0.544
14974 0 5910 3630 0 1610 0.327 0.354 0.022 13630 1780 0
0 0 911 197 1670 0.041 0.183 0.011 799
    21049 10 09 00 319100 285900 52400 4.798 0.418 0.055 0.390
                                                      56
2141
9260 0 6408 6252 0 1621 0.345 0.393 0.039 11980 1737 0
    0 596 198 1666 0.059 0.243 0.016 355
2142 12142 10 09 00 315900 280100 59900 4.667 0.422 0.055 0.459
0 772 194 1666 0.054 0.201 0.015 830
```

```
2144 12143 10 09 00 313500 282400 53600 4.651 0.415 0.056 0.333
11414 0 1496 2879 511 1610 0.322 0.361 0.039 13149 1602 0
    0 0 920 207 1660 0.055 0.230 0.021 708
0
2145 21051 10 09 00 326100 287500 58200 4.718 0.399 0.055 0.436
                                                        58
9816 0 4955 5950 0 1609 0.416 0.383 0.034 12410 1887
0 0 109 200 1668 0.057 0.247 0.016 387
2147 21052 10 09 00 321900 280600 59200 4.782 0.436 0.058 0.516
0 0 546 198 1656 0.049 0.207 0.011 383
2149 21053 10 09 00 322300 275100 67200 4.849 0.412 0.057 0.594
       0 0 198 1666 0.060 0.238 0.011 365
2150 12146 10 09 00 298600 261500 53600 4.811 0.438 0.060 0.584
                                                        90
14505 0 6499 3566 2493 1608 0.304 0.334 0.018 12275 1763 0
0 512 0 798 184 1657 0.047 0.167 0.009 762
2151 21054 11 09 00 326600 282900 68900 4.741 0.432 0.062 0.536
19004 0 386 1196 1019 1621 0.478 0.376 0.031 13606 1852 0
0 955 1957 0 198 1669 0.069 0.215 0.011 369
2152 12147 11 09 00 323300 289500 49900 4.715 0.396 0.061 0.528
13605 0 7506 3387 392 1620 0.239 0.352 0.025 13186 1575 0
0 0 0 197 1669 0.050 0.208 0.015 781
2153 21055 11 09 00 327200 283400 70100 4.827 0.435 0.058 0.560
                                                        62
0 0 0 183 1660 0.054 0.161 0.007 480
2156 21056 11 09 00 300500 255300 62400 4.801 0.403 0.059 0.513
                                                        63
9325 0 3588 6291 0 1579 0.512 0.354 0.026 11097 2049 0
                                                        0
    0 1941 181 1634 0.046 0.173 0.011 482
0
2157 12150 11 09 00 317500 277100 65200 4.801 0.410 0.060 0.541
14365 0 6102 4080 432 1577 0.288 0.304 0.019 13009 2642 0
0 0 0 219 1673 0.036 0.117 0.009 1111
2159 12151 11 09 00 321700 283800 71700 4.670 0.427 0.058 0.573
20006 0 0 4882 1499 1600 0.405 0.324 0.022 14299 2184 0
0 0 0 195 1678 0.040 0.165 0.011 937
2160 21058 11 09 00 308400 282300 56700 4.670 0.393 0.062 0.441
                                                        65
16195 0 899 3577 1428 1590 0.546 0.297 0.027 12813 2424 0
0 0 0 475 190 1670 0.042 0.154 0.011 484
2161 21059 11 09 00 325300 296900 53900 4.670 0.398 0.059 0.489
17415 0 3706 3873 1489 1602 0.213 0.223 0.010 13249 1798 0
0 0 0 198 1657 0.042 0.127 0.007 503
2162 21060 11 09 00 312800 281400 61300 4.574 0.374 0.058 0.473
14171 0 0 3076 1142 1596 0.234 0.263 0.016 12785 1751 0
0 0 0 193 1651 0.045 0.145 0.007 480
2169 12154 11 09 00 283900 258200 50000 4.660 0.408 0.057 0.474
                                                        98
11821 0 7622 2932 418 1628 0.176 0.288 0.024 11315 1146 0
0 0 0 3969 173 1667 0.047 0.174 0.013 748
2173 21067 11 09 00 294100 265400 50400 4.571 0.388 0.058 0.580
11831 0 6183 2950 0 1542 0.436 0.276 0.015 10887 2448
0 0 0 1012 191 1617 0.042 0.091 0.005 647
2174 12156 11 09 00 316800 281200 61600 4.593 0.380 0.057 0.521
                                                       100
0 0 0 189 1670 0.037 0.128 0.012 1115
2175 21068 11 09 00 331700 297300 58500 4.603 0.383 0.057 0.411
                                                       75
13926 0 330 3092 789 1601 0.422 0.323 0.028 13621 2055
      0 0 210 1670 0.058 0.186 0.011 439
0
2176 12157 11 09 00 299400 274800 44000 4.510 0.376 0.057 0.368 101
10941 0 6006 2715 391 1545 0.401 0.230 0.013 11672 2518 0
       0 0 181 1630 0.043 0.105 0.007 945
```

```
2177 21069 11 09 00 325100 297000 48500 4.539 0.355 0.054 0.302
0 0 0 205 1680 0.044 0.202 0.017 645
2178 12158 11 09 00 300500 281000 55300 4.600 0.357 0.054 0.358
                                                        102
10711 0 1710 2683 0 1601 0.182 0.247 0.014 12794 2181 0
0 0 0 182 1674 0.040 0.098 0.007 1135
2182 21071 11 09 00 321300 296200 47800 4.520 0.418 0.058 0.503
15495 0 1082 3618 995 1608 0.353 0.308 0.027 13700 2278 0
0 0 0 501 202 1697 0.035 0.134 0.009 1059
2186 21075 12 09 00 322400 290000 59800 4.571 0.395 0.056 0.435
                                                         82
14532 0 0 3253 502 1587 0.458 0.313 0.026 13076 2294 0
0 0 0 206 1673 0.050 0.168 0.010 477
2193 21078 12 09 00 302500 280000 35900 4.404 0.384 0.058 0.646
                                                        85
12941 0 6863 1981 0 1581 0.536 0.259 0.041 11345 1981 0
0 930 2296 0 203 1636 0.061 0.150 0.014 563
2194 12165 12 09 00 302700 279900 43300 4.334 0.387 0.059 0.690
14086 0 1235 3424 0 1594 0.496 0.284 0.048 13084 2420 0
0 543 0 3001 185 1656 0.040 0.120 0.016 1026
2201 21082 13 09 00 352700 270000 51500 4.401 0.345 0.056 0.543
10909 0 797 2830 0 1610 0.309 0.263 0.032 12330 1742 0
0 0 993 2002 209 1650 0.043 0.139 0.014 952
2210 21089 13 09 00 322300 294400 51800 4.516 0.396 0.058 0.496
                                                         96
16831 0 1994 3731 1491 1637 0.157 0.249 0.015 13813 1427 0
0 899 0 0 215 1670 0.051 0.158 0.010 880
2213 21092 13 09 00 318300 281700 56300 4.510 0.386 0.059 0.345
0 0 0 224 1689 0.040 0.171 0.018 1003
2215 21094 13 09 00 299800 276000 44800 4.532 0.390 0.062 0.407
                                                        101
13673 0 3945 3081 846 1579 0.307 0.252 0.013 12208 1874 0
0 0 0 216 1653 0.048 0.127 0.007 825
2217 21096 13 09 00 309500 281400 52200 4.407 0.376 0.059 0.406
16203 0 0 3563 911 1611 0.403 0.286 0.031 13076 2243 0
      0 0 221 1686 0.040 0.149 0.012 918
0 330
2218 21097 13 09 00 307300 295100 44500 4.427 0.380 0.055 0.406
                                                        104
16004 0 0 3499 1442 1610 0.336 0.270 0.023 13296 2149 0
0 416 0 0 220 1700 0.037 0.119 0.009 1099
2219 21098 13 09 00 328700 293800 55700 4.670 0.398 0.059 0.409
17032 0 801 3761 1301 1628 0.268 0.269 0.017 14071 1723 0
0 528 0 0 230 1689 0.041 0.143 0.009 841
2220 21099 13 09 00 315200 293000 45400 4.471 0.363 0.056 0.323
                                                        106
13995 0 0 3067 1117 1626 0.231 0.274 0.032 13311 1675 0
0 406 0 0 223 1686 0.044 0.156 0.012 918
2223 21102 14 09 00 319300 292000 54700 4.651 0.373 0.055 0.335
0 0 0 805 225 1667 0.056 0.173 0.014 566
2229 21108 14 09 00 311000 275000 72900 4.497 0.385 0.058 0.594
12916 0 0 3073 0 1535 0.750 0.256 0.020 12058 3582 0
0 0 0 484 222 1666 0.033 0.103 0.008 1276
2285 21122 17 09 00 301100 277600 42900 4.439 0.401 0.059 0.503
11164 0 7332 3061 0 1560 0.464 0.277 0.024 11179 2223 0 0 1401 0 1165 215 1627 0.045 0.093 0.007 949
2287 21123 17 09 00 310900 278100 62800 4.488 0.360 0.055 0.369
                                                          9
12337 0 0 3059 0 1608 0.201 0.300 0.024 13303 1843 0
      0 728 223 1661 0.037 0.109 0.008 1129
0 919
2291 21125 17 09 00 325600 277000 69400 4.766 0.407 0.056 0.684
                                                         11
16525 0 7259 4106 0 1601 0.162 0.232 0.014 13138 1603 0
0 267 0 480 228 1641 0.047 0.115 0.006 859
```

```
2301 21130 17 09 00 318800 305200 39500 4.433 0.389 0.056 0.489
13041 0 4514 3572 0 1594 0.373 0.297 0.024 12819 1710 0 0 0 518 219 1660 0.050 0.172 0.011 718
2307 21133 17 09 00 324300 287100 57500 4.594 0.388 0.058 0.698
                                                   19
13151 0 5188 3116 0 1635 0.250 0.291 0.042 13202 1575 0
0 0 0 220 1688 0.042 0.160 0.016 1029
2329 21141 18 09 00 322600 306000 42100 4.568 0.358 0.062 0.453
16029 0 2814 0 4523 1609 0.400 0.247 0.046 13450 2335 0
0 864 0 0 229 1699 0.037 0.119 0.013 859
2333 21143 18 09 00 298000 276000 39900 4.520 0.332 0.057 0.330
                                                   30
10400 0 4943 6244 0 1596 0.143 0.224 0.017 11317 1399 249
0 890 1991 0 186 1628 0.042 0.103 0.007 687
2339 21145 18 09 00 318800 300900 39800 4.641 0.368 0.061 0.587
                                                   32
18440 0 4610 4104 1499 1620 0.275 0.250 0.031 13281 1910 0
0 0 0 206 1682 0.044 0.138 0.010 830
2341 21146 18 09 00 319600 303600 38100 4.385 0.347 0.058 0.449
                                                   33
15329 0 1875 3066 704 1632 0.176 0.237 0.029 12859 1307 0
0 0 0 0 203 1668 0.045 0.162 0.013 684
2343 21147 18 09 00 326200 278300 64900 4.792 0.381 0.060 0.653
                                                   34
17112 0 7507 3328 0 1607 0.370 0.286 0.035 12434 1872 0
0 0 0 199 1682 0.045 0.162 0.010 664
2349 21150 18 09 00 326800 274300 72200 4.705 0.376 0.058 0.507
                                                   37
0 0 0 672 201 1673 0.067 0.241 0.028 370
2351 21151 18 09 00 319300 298500 42600 4.670 0.383 0.058 0.494
0 0 1019 203 1671 0.044 0.181 0.013 538
0
2357 21154 18 09 00 325900 299500 46300 4.724 0.368 0.054 0.440
                                                   41
0 0 0 206 1675 0.049 0.180 0.012 578
    21156 19 09 00 312700 292200 47200 4.631 0.299 0.055 0.293
                                                   43
0
   0 0 0 208 1668 0.036 0.096 0.006 675
    21157 19 09 00 326700 284900 62100 4.603 0.346 0.055 0.363
2365
                                                   44
0 0 196 1662 0.030 0.063 0.005 1061
    21159 19 09 00 311600 275500 61900 4.571 0.350 0.055 0.308
                                                   46
2369
    0 0 3894 2 1571 0.400 0.299 0.029 12038 2096 0
    0 0 205 1654 0.039 0.166 0.012 613
                                                   49
    21162 19 09 00 308400 274700 53400 4.593 0.353 0.054 0.276
2375
    0
8636
                                                   52
    21165 19 09 00 317100 292100 51800 4.564 0.342 0.056 0.281
2381
    0 0 4622 0 1590 0.432 0.321 0.029 12258 2604 0
                                                   0
8512
    0 0 204 1706 0.034 0.135 0.011 859
0
    21167 19 09 00 317400 292100 47900 4.712 0.390 0.056 0.403
13064 0 4997 3078 491 1608 0.353 0.321 0.027 12431 2047 0
    0 0 199 1681 0.043 0.174 0.011 492
0
    21168 19 09 00 321300 295700 42200 4.689 0.394 0.056 0.390
2387
0 0 217 194 1669 0.054 0.177 0.011 430
    21170 19 09 00 302900 265300 52800 4.728 0.410 0.058 0.488
                                                   57
2392
    0 1521 188 1643 0.039 0.120 0.008 620
    21171 19 09 00 296400 272200 44200 4.545 0.367 0.056 0.440
2394
0 0 0 1649 187 1636 0.043 0.130 0.008 555
```

```
2399 21174 19 09 00 328100 292200 59100 4.696 0.417 0.056 0.419
12257 0 4299 3020 509 1610 0.400 0.395 0.033 13117 1992 0
0 0 0 646 201 1682 0.052 0.207 0.013 646
2400 21175 19 09 00 323200 291000 54400 4.647 0.406 0.055 0.321
10855 0 3552 2677 521 1615 0.257 0.353 0.034 12938 1621 0
0 473 0 0 199 1682 0.045 0.192 0.013 683
2405 21178 19 09 00 309700 272000 65400 4.772 0.432 0.060 0.579
18814 0 209 4330 991 1655 0.151 0.262 0.016 13664 1451 488
0 591 0 0 194 1705 0.039 0.142 0.008 762
2409 21180 20 09 00 327200 300000 53900 4.664 0.395 0.053 0.405
15949 0 1096 3509 1125 1576 0.357 0.287 0.020 13542 2154 0
0 0 0 200 1658 0.043 0.144 0.006 528
2422 21186 20 09 00 314300 296200 44900 4.628 0.358 0.054 0.402
                                                  73
17451 0 711 3866 491 1654 0.261 0.307 0.035 13809 1490 0
0 0 0 1799 192 1678 0.049 0.170 0.011 424
2430 21190 20 09 00 308800 296800 39000 4.673 0.380 0.057 0.318
                                                  77
0 899 0 0 189 1687 0.053 0.163 0.011 530
2432 21191 20 09 00 291700 256900 53600 4.772 0.376 0.056 0.450
                                                  78
0 896 0 29 183 1649 0.050 0.153 0.007 466
2438 21193 20 09 00 319600 294200 51300 4.750 0.375 0.055 0.500
                                                  80
0 0 0 0 200 1672 0.077 0.204 0.011 270
2440 21194 20 09 00 335300 298000 50000 4.791 0.361 0.056 0.480
                                                  81
2442 21195 20 09 00 322000 297700 48300 4.744 0.379 0.057 0.456
                                                  82
0 902 0 0 203 1678 0.058 0.168 0.009 418
2446 21197 20 09 00 324000 288100 57800 4.862 0.377 0.056 0.556
                                                  84
17042 0 7044 3759 829 1613 0.253 0.267 0.016 12834 2054 0
0 0 0 205 1685 0.051 0.150 0.008 491
2448 21198 20 09 00 324300 291500 54800 4.754 0.386 0.054 0.449
0 0 0 456 205 1659 0.054 0.184 0.009 444
2452 21200 20 09 00 330000 289200 64700 4.718 0.378 0.055 0.467
14391 0 4246 3259 357 1603 0.292 0.314 0.016 13220 1957 0
0 0 0 215 1677 0.042 0.164 0.008 540
2456 21202 20 09 00 320200 286100 58900 4.779 0.374 0.055 0.480
      0 0 0 4 208 1653 0.055 0.195 0.009 436
2458 21203 20 09 00 321900 289300 55500 4.798 0.383 0.054 0.420
                                                  90
11994 0 6152 5011 0 1595 0.415 0.313 0.020 12178 2059 0
0 0 0 99 209 1671 0.046 0.167 0.009 576
2460 21204 20 09 00 298400 261800 53400 4.821 0.378 0.053 0.361
0 1387 2899 195 1619 0.048 0.151 0.009 550
2466 21207 21 09 00 323800 288300 56900 4.744 0.380 0.056 0.416
0 0 0 525 211 1668 0.048 0.139 0.010 713
2468 21208 21 09 00 329000 295200 53500 4.766 0.371 0.054 0.398
                                                  95
      0 6854 3069 836 1619 0.233 0.280 0.018 13026 1612 0
13616
0 482 0 523 214 1660 0.048 0.158 0.009 661
2472 21210 21 09 00 298200 272300 41000 4.680 0.381 0.058 0.396
10044 0 8086 5505 0 1573 0.396 0.298 0.022 10887 2049 0
0 707 0 2493 199 1614 0.043 0.107 0.007 641
```

```
2484 21216 21 09 00 322300 293800 50000 4.686 0.369 0.056 0.482
14714 0 6576 3780 879 1638 0.181 0.310 0.017 12990 1406 0
0 911 2527 0 206 1666 0.044 0.174 0.009 628
2488 21218 21 09 00 327200 291700 57500 4.705 0.362 0.054 0.351
13449 0 2370 3064 1015 1638 0.216 0.327 0.024 13180 1441 0
0 0 0 208 1681 0.055 0.228 0.015 404
2490 21221 21 09 00 321500 296000 51500 4.718 0.387 0.061 0.333
                                                       108
13468 0 1386 3069 857 1592 0.473 0.348 0.026 13235 2800 0
0 0 0 0 209 1702 0.039 0.159 0.010 765
2492 21220 21 09 00 325000 297600 50900 4.708 0.372 0.056 0.373
13916 0 3665 3070 958 1590 0.466 0.253 0.022 13004 2337 0
0 0 0 206 1666 0.044 0.143 0.009 620
    21223 21 09 00 315200 293100 53700 4.452 0.390 0.057 0.401
2499
                                                       110
13547 0 1004 3092 0 1568 0.408 0.285 0.013 12644 2961 0
0 0 0 230 1682 0.040 0.103 0.006 1160
    21231 22 09 00 321600 296000 51000 4.587 0.365 0.058 0.390 118
2514
9532 0 3018 3796 0 1608 0.456 0.358 0.038 12501 2145 0
    0 1187 205 1669 0.050 0.200 0.020 709
    21232 22 09 00 322000 282700 63300 4.750 0.402 0.061 0.695
2516
                                                       119
2518 21233 22 09 00 300300 257200 58900 4.731 0.400 0.060 0.651
                                                       120
0 0 1781 3021 194 1637 0.047 0.135 0.009 758
2520 21234 22 09 00 330600 283900 64800 4.775 0.389 0.058 0.582
0 0 0 1297 208 1660 0.048 0.132 0.009 791
2522 21235 22 09 00 322200 291600 53000 4.820 0.390 0.056 0.482
                                                       122
17102  0 6785 3758 1496  1588 0.275 0.235 0.010 13300 1651  0
0 1010 1087 0 211 1646 0.050 0.115 0.006 568
2525 21236 22 09 00 291500 259800 66100 4.670 0.372 0.054 0.412
                                                       123
9104 0 2547 6650 0 1571 0.292 0.307 0.020 11590 1570 0
899 1951 0 192 1599 0.061 0.127 0.007 476
2527 21237 22 09 00 295900 271000 43700 4.702 0.372 0.055 0.341
9043 0 7221 6504 0 1557 0.429 0.311 0.018 10935 2075 0
0 0 141 195 1645 0.045 0.142 0.009 796
2530 21239 22 09 00 324200 293300 55800 4.814 0.392 0.056 0.461
15141 0 5710 3297 1287 1621 0.253 0.252 0.021 13019 1653 0
0 812 0 0 211 1661 0.053 0.141 0.009 519
2534 21241 22 09 00 324500 301800 42600 4.664 0.380 0.054 0.281
    0 4628 2501 1003 1603 0.400 0.289 0.029 12729 2647 501
0 0 0 203 1699 0.035 0.128 0.012 1290
2536 21242 23 09 00 296400 262800 55000 4.699 0.401 0.057 0.516
                                                       129
11595 0 5646 4658 0 1564 0.443 0.322 0.018 11107 2149 0
0 313 2443 0 189 1629 0.046 0.130 0.006 840
2545 21247 23 09 00 329100 285400 67900 4.843 0.410 0.058 0.673 134
16131 0 5592 4400 0 1584 0.437 0.312 0.022 12934 2385 0
0 421 0 144 200 1649 0.052 0.154 0.008 687
```

A4.2 Data set D2

Heatno Chargno date Wbath Gry Gschrot C_ry Mn_ry P_ry Si_ry Lnslf Limel dolm1 Orel Rslg1 Rdl1 T1 C1 Mn1 P1 O21 O22 lime2 dolm2 Ore2 Rslg2 Rdl2 Hlns2 T2 C2 Mn2 P2 Oact2

```
2551 21249 23 09 00 306200 273200 50200 4.616 0.392 0.059 0.513
11354 0 7051 2809 0 1582 0.447 0.334 0.027 11411 1870 0
0 865 2510 4 187 1633 0.048 0.156 0.009 589
2553 21250 23 09 00 318700 294800 50800 4.446 0.331 0.059 0.629
                                                      137
12043 0 1797 2953 0 1647 0.143 0.291 0.034 13688 1451 0
0 0 0 191 1695 0.047 0.164 0.015 756
2555 21251 23 09 00 320900 294400 48900 4.545 0.371 0.055 0.282
                                                      138
11557 0 3535 2827 0 1606 0.295 0.322 0.023 12950 1836 0
0 0 0 195 1679 0.043 0.180 0.012 686
2561 21254 23 09 00 321200 294400 52000 4.590 0.347 0.056 0.528
15180 0 2600 3331 0 1609 0.392 0.303 0.039 12985 1813 0
0 807 0 427 192 1661 0.050 0.153 0.010 564
2563 21255 23 09 00 320700 308200 34600 4.539 0.384 0.058 0.453
                                                      142
0 600 0 0 192 1662 0.053 0.174 0.009 445
2565 21256 23 09 00 332600 294200 61600 4.619 0.397 0.057 0.493
2571 21259 23 09 00 321800 293100 50400 4.642 0.383 0.057 0.452
15993 0 912 3529 1410 1655 0.217 0.307 0.040 13255 1741 0
0 758 0 0 189 1691 0.045 0.173 0.013 570
2573 21260 23 09 00 323300 294000 47400 4.650 0.344 0.056 0.376
14010 0 2915 3348 1106 1638 0.232 0.283 0.034 12792 1967 0
0 1006 0 0 190 1687 0.044 0.144 0.010 560
2581 21264 24 09 00 320700 296500 47000 4.667 0.368 0.055 0.367
                                                      151
0 0 0 190 1698 0.036 0.150 0.012 941
2583 21265 24 09 00 318800 293200 49500 4.606 0.340 0.053 0.255
9036 0 0 6122 313 1598 0.578 0.348 0.048 11999 3041 0
0 0 317 189 1711 0.038 0.168 0.015 906
2585 21266 24 09 00 329400 293300 56600 4.798 0.374 0.052 0.293
                                                      153
0 0 0 191 1695 0.035 0.206 0.015 685
2587 21267 24 09 00 319200 295900 45500 4.632 0.383 0.055 0.367
10411 0 5238 5627 0 1606 0.404 0.334 0.032 12175 2187 0 0 0 0 0 183 1684 0.046 0.181 0.015 612
2593 21270 24 09 00 320500 303300 48600 4.728 0.374 0.054 0.368
                                                      157
2603 21275 24 09 00 312700 288600 53200 4.760 0.378 0.058 0.410
14501 0 4665 3287 999 1598 0.405 0.304 0.024 12430 2491 0
0 0 0 181 1683 0.045 0.146 0.008 472
2605 21276 24 09 00 318700 286800 58500 4.766 0.392 0.057 0.433
                                                      163
15011 0 2980 3345 982 1613 0.396 0.339 0.031 12790 2264 0
0 0 779 0 182 1688 0.050 0.186 0.011 458
2607 21277 24 09 00 325100 293100 57500 4.714 0.391 0.057 0.459
15339 0 2317 3262 1020 1644 0.208 0.297 0.024 13730 1508 0
0 0 745 185 1679 0.064 0.195 0.013 427
2618 21281 24 09 00 315500 292500 50400 4.622 0.390 0.057 0.383
14850 0 1676 3258 1260 1583 0.696 0.322 0.034 12491 2546 0
0 1525 0 90 178 1646 0.087 0.200 0.013 288
2625 21284 25 09 00 320800 289500 54900 4.727 0.362 0.056 0.373
                                                      171
12771 0 2423 2 911 1645 0.296 0.311 0.028 12851 1797 0
0 4 0 0 179 1700 0.047 0.205 0.016 570
2629 21286 25 09 00 318600 306100 42100 4.606 0.367 0.057 0.360
16770 0 2705 3532 1443 1624 0.302 0.293 0.030 12997 1821 0
0 880 2039 0 179 1665 0.048 0.158 0.010 459
```

```
2633 21288 25 09 00 323900 292300 54600 4.632 0.391 0.055 0.355 175
15533 0 3074 3105 1155 1611 0.316 0.319 0.024 13387 1982 0
0 779 0 0 183 1675 0.042 0.149 0.008 517
2639 21291 25 09 00 336700 292700 65700 4.728 0.402 0.056 0.434
                                                    7
2640 21292 25 09 00 317600 291200 53400 4.702 0.391 0.057 0.405
12680 0 6525 5158 0 1574 0.556 0.308 0.031 11974 2640 0
0 735 0 0 147 1654 0.049 0.168 0.009 491
2642 21293 25 09 00 324800 291000 54100 4.625 0.359 0.060 0.341
                                                    3
11607 0 4724 2882 0 1597 0.399 0.294 0.051 12232 2343 0
0 0 0 148 1676 0.037 0.159 0.015 625
2645 21295 25 09 00 294200 266100 50500 4.670 0.353 0.057 0.294
                                                    5
0 0 536 136 1618 0.044 0.101 0.005 609
2657 21300 25 09 00 298100 256800 60000 4.674 0.372 0.057 0.419
                                                   10
9099 0 4672 6116 0 1572 0.209 0.230 0.015 11657 1968 0
                                                    0
997 0 1000 140 1633 0.035 0.075 0.005 735
2665 21304 25 09 00 324500 286400 60200 4.814 0.378 0.056 0.634
16349 0 5895 3576 0 1628 0.186 0.276 0.028 13197 1643 0
0 0 0 161 1677 0.041 0.161 0.011 675
2669 21306 25 09 00 324800 288800 57800 4.782 0.380 0.056 0.584
                                                   16
17386  0 5497 3901  0 1633 0.247 0.296 0.032 13092 1896  0
0 0 761 150 1682 0.039 0.158 0.011 655
2673 21309 26 09 00 322300 291500 54000 4.670 0.384 0.056 0.549
                                                   19
0 204 0 0 148 1677 0.047 0.207 0.014 445
2676 21310 26 09 00 322900 291700 52200 4.542 0.355 0.055 0.408
                                                   20
11699 0 4217 3079 0 1583 0.511 0.323 0.037 12247 1944 0
0 0 98 145 1646 0.071 0.233 0.017 300
2679 21312 26 09 00 322100 290500 56700 4.670 0.366 0.057 0.423
                                                   22
15010 0 3489 3285 809 1598 0.378 0.306 0.037 13101 2011 0
0 0 0 386 149 1666 0.046 0.172 0.012 456
2683 21314 26 09 00 322800 290500 60200 4.670 0.382 0.057 0.422
13960 0 893 3085 756 1619 0.359 0.358 0.043 13198 1847 0
0 612 0 0 153 1671 0.052 0.217 0.014 413
2684 21315 26 09 00 317600 299200 43600 4.670 0.373 0.056 0.528
0 0 0 153 1672 0.052 0.156 0.010 485
2689 21320 26 09 00 299800 278100 43600 4.555 0.362 0.058 0.363
                                                   30
0 0 2276 142 1626 0.034 0.100 0.007 649
2694 21323 26 09 00 330000 305200 47000 4.548 0.373 0.057 0.387
0 0 0 693 156 1679 0.041 0.186 0.015 491
2698 21325 26 09 00 321900 288200 56100 4.571 0.387 0.059 0.511
                                                   35
0 500 0 601 145 1671 0.038 0.145 0.011 530
2705 21328 26 09 00 321400 289300 53500 4.840 0.373 0.056 0.442
                                                   38
14034 0 4223 3171 1002 1628 0.349 0.294 0.034 12913 2019 502
0 0 526 145 1676 0.043 0.162 0.012 480
2711 21331 27 09 00 325900 289100 57300 4.727 0.377 0.056 0.410
                                                   41
0 0 0 1518 149 1643 0.042 0.119 0.007 525
2714 21332 27 09 00 329800 289100 62100 4.632 0.382 0.057 0.379
                                                   42
13306 0 0 3086 991 1631 0.446 0.337 0.059 13303 1913 0
0 945 1145 0 150 1670 0.065 0.214 0.021 323
```

```
2719 21334 27 09 00 322300 289900 55400 4.472 0.387 0.055 0.500
11177 0 2403 2757 0 1582 0.421 0.297 0.040 12625 2546 0
0 0 0 160 1669 0.039 0.147 0.012 625
2724 21337 27 09 00 329000 301600 47100 4.657 0.377 0.058 0.278
                                                          47
9554 0 5691 5026 0 1607 0.251 0.300 0.033 13205 1585 0
     0 485 148 1646 0.059 0.186 0.016 375
0
2726 21338 27 09 00 336800 287400 59100 4.593 0.366 0.059 0.385
                                                          48
0 0 0 152 1654 0.038 0.145 0.007 433
2728 21339 27 09 00 320200 290200 52400 4.689 0.364 0.057 0.260
                                                          49
     309
2730 21340 27 09 00 318700 286000 53300 4.658 0.384 0.061 0.527
                                                         50
2733 21341 27 09 00 322300 288300 57300 4.782 0.378 0.057 0.458
18019 0 802 4057 1492 1648 0.225 0.290 0.051 14104 1663 0
0 772 0 0 150 1685 0.046 0.169 0.018 493
2741 21345 27 09 00 319600 289200 53800 4.689 0.382 0.058 0.425
                                                          55
15030 0 1001 3207 1280 1639 0.189 0.328 0.037 13508 1553 0
0 0 701 146 1674 0.045 0.192 0.014 486
2743 21346 27 09 00 331100 289200 62200 4.811 0.392 0.057 0.521
                                                          56
17369 0 3756 3860 0 1666 0.111 0.287 0.026 13975 1267 0
0 0 0 1014 150 1685 0.045 0.191 0.015 567
2745 21347 27 09 00 325300 303500 41300 4.718 0.368 0.057 0.445
                                                          57
2749 21349 27 09 00 324400 289000 60900 4.718 0.398 0.062 0.523
                                                          59

      16502
      0
      2387
      3309
      0
      1623
      0.331
      0.334
      0.041
      13339
      2053
      0

      0
      0
      0
      454
      146
      1680
      0.044
      0.186
      0.012
      468

2751 21350 27 09 00 330600 303100 47000 4.728 0.365 0.054 0.400
                                                          60
0 0 0 149 1660 0.048 0.145 0.011 467
2753 21351 27 09 00 330000 287200 65400 4.760 0.402 0.060 0.512
                                                          61
16611 0 2216 3656 0 1627 0.243 0.324 0.032 13711 1729 0
0 496 0 7 161 1685 0.044 0.181 0.012 567
2755 21352 27 09 00 324900 289200 57200 4.708 0.387 0.059 0.461
                                                          62
15271 0 3209 3893 9 1632 0.198 0.321 0.031 13301 1769 0
0 748 0 0 160 1685 0.038 0.179 0.012 634
2756 21353 27 09 00 327800 286100 65900 4.615 0.379 0.059 0.452
14224 0 1949 3069 0 1614 0.280 0.349 0.045 13226 1883 0
0 829 0 0 175 1665 0.043 0.183 0.014 615
2757 21355 28 09 00 312300 301900 36900 4.641 0.374 0.056 0.431
                                                          65
14875 0 7219 3254 1000 1611 0.372 0.279 0.027 12152 1871 0
0 0 987 148 1668 0.060 0.165 0.011 470
2758 21354 28 09 00 328900 289200 60500 4.753 0.402 0.060 0.506
0 946 1682 0 155 1674 0.043 0.176 0.011 590
2759 21356 28 09 00 329300 287400 63800 4.683 0.399 0.059 0.519
                                                          66
14095 0 3685 3156 1006 1595 0.456 0.276 0.032 12779 2168 492
0 0 0 1014 157 1650 0.046 0.150 0.009 420
2764 21358 28 09 00 295400 259300 52600 4.702 0.389 0.057 0.385
                                                         177
10233 0 7404 5549 0 1552 0.481 0.329 0.023 10641 2348 0
0 0 1013 140 1632 0.044 0.130 0.007 553
2766 21359 28 09 00 296100 267400 44900 4.683 0.360 0.054 0.326
                                                         178
10696 0 5637 4921 504 1582 0.465 0.306 0.028 11032 1713 0
0 0 1105 181 1626 0.054 0.176 0.011 400
```

```
2777 21364 28 09 00 318400 287700 50100 4.666 0.382 0.059 0.399 71
14385 0 3321 3272 951 1631 0.230 0.293 0.031 13152 1655 0
0 0 1011 160 1665 0.049 0.165 0.012 542
2785 21368 28 09 00 302300 274300 46700 4.705 0.355 0.056 0.246
                                                         75
9308 0 5026 5775 1329 1567 0.384 0.264 0.025 11132 2114 0
                                                         0
    0 497 150 1638 0.041 0.135 0.010 638
0
2787 21369 28 09 00 326400 287400 61500 4.660 0.378 0.057 0.378
15075 0 2291 3351 1287 1589 0.355 0.302 0.033 13125 1807 0
0 925 0 0 161 1651 0.043 0.151 0.009 591
2790 21371 28 09 00 317300 286000 52500 4.689 0.402 0.057 0.328
11912 0 1803 3564 0 1615 0.455 0.330 0.042 12493 2271 0
0 542 0 0 157 1697 0.040 0.189 0.019 858
2796 21373 28 09 00 326400 286900 62800 4.638 0.393 0.058 0.197
11085 0 0 3284 638 1612 0.301 0.351 0.037 12996 2011 0
0 832 0 0 163 1675 0.040 0.179 0.012 842
2803 21376 28 09 00 327400 276700 68800 4.766 0.383 0.059 0.483
                                                         83
15530 0 2400 3275 1013 1628 0.218 0.312 0.034 13066 1450 0
0 909 1820 0 162 1650 0.043 0.176 0.011 463
2805 21377 29 09 00 317700 296100 43600 4.674 0.362 0.058 0.241
13127 0 4761 2797 671 1608 0.337 0.293 0.034 12327 1843 0
0 0 773 158 1666 0.050 0.174 0.014 476
2811 21380 29 09 00 322400 287000 58600 4.683 0.362 0.058 0.428
                                                         87
16136 0 2508 3594 1466 1602 0.356 0.320 0.031 12860 2226 0
0 953 244 0 159 1657 0.050 0.149 0.008 489
2813 21381 29 09 00 321400 285400 63700 4.744 0.367 0.058 0.453
17164 0 1988 3827 1504 1599 0.395 0.304 0.032 12997 2176 0
0 527 0 0 161 1667 0.047 0.150 0.009 521
2815 21382 29 09 00 298100 250200 66900 4.724 0.392 0.059 0.547
                                                         89
       0 6313 3074 1260 1559 0.654 0.220 0.022 10975 2680 0
0 0 0 1763 151 1632 0.042 0.113 0.007 729
2818 21383 29 09 00 322600 297800 47600 4.744 0.376 0.058 0.442
                                                         90
15787 0 5811 2414 1407 1599 0.355 0.278 0.025 13121 2736
0 0 0 165 1700 0.034 0.120 0.008 643
2828 21388 29 09 00 322400 284500 63200 4.740 0.395 0.060 0.485
0 750 0 513 159 1692 0.045 0.132 0.007 558
2832 21390 29 09 00 318300 285100 54800 4.708 0.400 0.061 0.372
0 504 0 0 140 1680 0.035 0.131 0.010 610
2834 21391 29 09 00 299700 258900 56000 4.699 0.394 0.062 0.387
                                                         98
0 0 702 145 1635 0.045 0.139 0.008 528
2836 21392 29 09 00 319400 302100 43800 4.715 0.390 0.060 0.432
18842 0 4009 4111 1495 1609 0.348 0.275 0.032 13305 2527 0
0 0 0 157 1691 0.043 0.128 0.009 693
2846 21396 29 09 00 329100 289000 69900 4.865 0.408 0.059 0.535
18404 0 3388 3825 1076 1578 0.463 0.292 0.026 13278 2576 0
0 889 1944 0 160 1652 0.048 0.140 0.006 457
2848 21397 29 09 00 300200 270200 44800 4.606 0.336 0.054 0.205
13337 · 0 7098 3015 785 1581 0.128 0.209 0.008 11708 2070 0
0 851 3258 0 148 1642 0.030 0.075 0.004 650
2854 21400 30 09 00 313300 285200 49500 4.526 0.299 0.055 0.136
10694 0 1322 5853 0 1621 0.141 0.251 0.026 12096 1657 0
0 0 0 161 1673 0.033 0.136 0.010 784
2856 21401 30 09 00 333400 300000 45100 4.766 0.366 0.055 0.283 108
12110 0 5483 2968 806 1591 0.477 0.292 0.031 12289 2315 0
0 0 0 450 157 1662 0.052 0.171 0.012 449
```

```
2858 21402 30 09 00 316500 288000 52400 4.638 0.361 0.057 0.299
12362 0 1015 3027 502 1610 0.286 0.312 0.040 12637 2101 0
0 0 0 152 1681 0.047 0.176 0.014 498
     21403 30 09 00 315600 283300 49800 4.705 0.366 0.055 0.312
2860
10506  0 2599 2982  5 1630 0.411 0.377 0.046 12020 1991
     0 0 153 1693 0.050 0.245 0.020 496
     21406 30 09 00 318900 282400 62600 4.497 0.344 0.057 0.271
2866
11883 0 1198 1497 2 1564 0.354 0.274 0.025 12422 2819 0
     0 0 158
                       1671 0.033 0.115 0.007 672
     21407 30 09 00 335300 289000 69500 4.785 0.398 0.061 0.816
                                                          114
2868
       0 7730 4351 0 1598 0.291 0.259 0.016 13482 2250 0
19423
       0 1499 164 1648 0.045 0.121 0.005 469
     21408 30 09 00 326000 289000 58900 4.644 0.374 0.059 0.423
13377 0 3103 3077 582 1598 0.359 0.300 0.029 12970 2238 0
       0 10 158 1674 0.039 0.165 0.011 550
     21409 30 09 00 324800 283900 64300 4.711 0.351 0.062 0.316
                                                          116
2872
11532 0 1687 2837 476 1591 0.322 0.311 0.025 12835 2296 0
     0 0 166 1678 0.043 0.164 0.011 544
0
     21410 30 09 00 321800 290900 53900 4.734 0.390 0.058 0.555
2874
       0 0 501 155 1660 0.045 0.156 0.008 424
     21416 30 09 00 323600 302200 46900 4.664 0.340 0.055 0.186
                                                          123
2887
     Λ
     0 156 1687 0.041 0.161 0.012 568
0
     21418 30 09 00 317400 28400C 55300 4.555 0.344 0.057 0.212
2891
       0 1108 3039 577 1593 0.384 0.284 0.040 12912 2258
     0 0 153 1680 0.036 0.149 0.011 585
     21419 30 09 00 326400 299700 49700 4.731 0.387 0.059 0.392
2893
15587 0 5999 2790 1210 1612 0.141 0.223 0.013 13690 1993 0
0 0 0 168 1669 0.038 0.118 0.006 494
     21420 30 09 00 325700 289100 60700 4.734 0.381 0.057 0.402
                                                          127
2895
14887 0 1117 3229 1024 1643 0.154 0.305 0.036 13879 1506
       0 3 155 1683 0.047 0.184 0.013 466
0 451
2897 21421 30 09 00 326500 284800 64200 4.727 0.369 0.055 0.296
                                                          128
13725 0 1116 3094 903 1619 0.168 0.267 0.024 13496 1616 0
0 0 0 154 1669 0.042 0.162 0.010 501
2899 21422 30 09 00 326700 302300 47100 4.676 0.350 0.055 0.260
12617 0 2806 3043 879 1620 0.214 0.276 0.033 13241 1690 0
      618 0 156 1668 0.040 0.153 0.011 533
0 621
2904 21424 30 09 00 297300 270100 44500 4.619 0.387 0.057 0.442
                                                          131
       0 8567 3077 608 1561 0.447 0.221 0.014 11208 2261
13112
0 347 1263 0 142 1622 0.040 0.101 0.004 533
2906 21425 01 10 00 312400 288000 48400 4.638 0.393 0.058 0.416
                                                          132
       0 1841 3945 1434 1618 0.255 0.322 0.028 13069 1670 0
       0 750 148 1667 0.046 0.161 0.009 460
     21429 01 10 00 323000 295100 48500 4.766 0.368 0.057 0.352
                                                          136
2914
12393 0 6195 3047 842 1618 0.238 0.310 0.031 12817 1847 0
       0 0 176 1675 0.049 0.185 0.013 603
     21434 01 10 00 317300 278700 69500 4.724 0.377 0.057 0.360
                                                           181
2923
14556 0 0 3202 1206 1585 0.447 0.316 0.040 12797 2356 0
     0 0 643 168 1660 0.048 0.168 0.010 467
0
     21435 01 10 00 324000 297700 54800 4.712 0.403 0.058 0.463
                                                            0
2925
        0 1029 3845 1498 1593 0.245 0.292 0.030 13976 2507
                       1684 0.045 0.119 0.007 741
     0 0 0 177
     21436 01 10 00 310100 289800 44400 4.466 0.376 0.057 0.373
13800 0 501 3477 0 1603 0.415 0.302 0.047 12996 1886 0
2931
        0 111 169 1672 0.039 0.183 0.023 757
```

```
2932 21437 01 10 00 323200 301200 44400 4.625 0.393 0.059 0.461
16006 0 6015 3509 0 1596 0.398 0.315 0.024 13007 1773 0
0 0 0 242 175 1655 0.060 0.193 0.012 516
2937 21439 01 10 00 331100 295200 60200 4.558 0.381 0.059 0.401
                                                    4
13006  0 1893 3074  0 1595 0.252 0.290 0.022 13381 1521  0
0 0 0 211 187 1643 0.055 0.177 0.012 562
2941 21441 01 10 00 295400 258700 62300 4.622 0.400 0.059 0.455
11817 0 5685 2681 426 1561 0.314 0.309 0.016 11530 1847 0
0 0 0 167 1628 0.044 0.156 0.008 687
    21442 01 10 00 322000 285500 62500 4.702 0.371 0.058 0.658
2943
16509 0 3721 4418 1509 1630 0.128 0.204 0.015 14045 1243 0
0 0 0 235 184 1662 0.045 0.124 0.008 709
2944 21443 01 10 00 326800 279600 71900 4.775 0.366 0.057 0.569
                                                    8
15985 0 1203 3526 0 1618 0.240 0.313 0.022 13504 1589 0
0 0 0 196 1655 0.054 0.203 0.012 516
2946 21444 02 10 00 323600 295700 50100 4.472 0.360 0.056 0.363
14682 0 779 3178 0 1602 0.240 0.289 0.022 13321 1935 0
0 0 0 185 1663 0.043 0.154 0.009 695
2948 21445 02 10 00 332300 295200 51900 4.574 0.420 0.059 0.714
                                                    10
0 0 0 189 1671 0.038 0.093 0.005 794
2952 21446 02 10 00 301700 282400 40100 4.459 0.373 0.058 0.479
                                                    11
0 1010 0 118 172 1642 0.040 0.121 0.012 852
2954 21447 02 10 00 313100 287000 49000 4.488 0.332 0.055 0.331
0 947 0 0 177 1657 0.041 0.137 0.012 790
2958 21449 02 10 00 322000 295800 47400 4.673 0.386 0.057 0.580
0 820 0 0 200 1693 0.048 0.165 0.016 694
2960 21450 02 10 00 316800 299900 47500 4.286 0.359 0.056 0.381
      0 0 200 1650 0.042 0.091 0.004 840
0 0
2965 21452 02 10 00 322500 296800 50900 4.561 0.377 0.063 0.555
18874 0 2047 3206 0 1612 0.147 0.252 0.011 13867 1983 0
0 0 0 217 1690 0.037 0.102 0.007 1120
2967 21453 02 10 00 318900 296400 46800 4.683 0.370 0.057 0.460
0 0 0 205 1679 0.048 0.159 0.009 725
0
2969 21454 02 10 00 317000 293000 49800 4.648 0.340 0.052 0.362
14474 0 2250 4034 1488 1615 0.175 0.272 0.041 13337 1661 0
0 0 0 0 207 1679 0.044 0.134 0.012 788
    21455 02 10 00 318900 292000 56600 4.395 0.335 0.055 0.479
                                                   189
2972
10761 0 1256 2674 0 1570 0.727 0.156 0.010 12542 2709 0
    0 0 1114 203 1652 0.082 0.099 0.006 342
0
    21456 02 10 00 321600 284800 61500 4.638 0.398 0.060 0.551
2973
15997 0 4435 3578 0 1613 0.161 0.269 0.015 13086 1313 0
0 0 0 192 1657 0.043 0.156 0.009 752
2975 21457 02 10 00 308300 293300 44600 4.382 0.307 0.054 0.171
9492 0 0 4148 0 1582 0.355 0.275 0.043 12005 1809 0
0 0 0 188 1654 0.046 0.167 0.020 904
2980 21459 02 10 00 327800 276600 72700 4.824 0.395 0.057 0.640
      17522
0 400 0 0 195 1677 0.046 0.184 0.012 714
2984 21461 02 10 00 320800 279600 62800 4.689 0.366 0.059 0.408
                                                   195
12995 0 2194 3077 0 1627 0.198 0.269 0.030 12917 1520 0
     0 0 189 1670 0.048 0.159 0.015 692
```

```
2986 21462 02 10 00 325700 295300 51200 4.718 0.379 0.060 0.563
17645 0 4017 3940 1489 1645 0.258 0.303 0.033 13214 1415 0
0 266 0 91 191 1678 0.052 0.198 0.015 592
2990 21464 03 10 00 323500 296200 51000 4.670 0.384 0.064 0.499 198
16877 0 4103 3704 1211 1597 0.479 0.299 0.025 12928 2142 0
0 608 0 0 198 1660 0.057 0.160 0.009 406
2994 21466 03 10 00 329500 296200 55900 4.638 0.374 0.063 0.480
14846 0 3904 3293 595 1603 0.406 0.309 0.036 12801 1848 0
0 0 0 198 1667 0.056 0.209 0.018 566
2996 21467 03 10 00 312200 257800 70700 4.750 0.381 0.057 0.566
12222 0 7826 2996 0 1553 0.511 0.302 0.022 11122 2260 0
0 0 0 545 192 1633 0.041 0.145 0.010 755
3004 21472 03 10 00 327200 292400 58300 4.670 0.369 0.056 0.445
                                                    17
16470 0 1004 3610 1445 1614 0.374 0.315 0.045 13389 1827 0
0 746 0 0 202 1666 0.057 0.200 0.019 489
3008 21474 03 10 00 317800 294300 47400 4.670 0.404 0.060 0.626
                                                     19
0 893 854 805 199 1708 0.049 0.177 0.014 872
3010 21475 03 10 00 323600 289900 53600 4.670 0.400 0.061 0.612
17617 0 6478 3915 2001 1594 0.490 0.296 0.024 12846 2231 0
0 0 0 1029 201 1662 0.055 0.168 0.010 523
3017 21478 03 10 00 318800 289700 50500 4.686 0.405 0.061 0.594
                                                    23
17732 0 8150 3919 820 1590 0.411 0.305 0.028 12867 2276 0
0 0 0 544 202 1675 0.043 0.140 0.010 1144
3019 21479 03 10 00 329700 290600 58800 4.670 0.394 0.057 0.465
                                                    24
0 0 0 0 206 1657 0.049 0.166 0.011 773
3021 21480 03 10 00 326100 293200 53200 4.670 0.394 0.057 0.465
                                                     25
0 0 0 407 205 1658 0.045 0.153 0.010 687
3027 21482 03 10 00 292400 258500 52500 4.670 0.370 0.057 0.402
9952 0 7304 5839 4 1541 0.436 0.259 0.013 11156 2233 0
0 0 189 1630 0.041 0.110 0.007 870
3028 21483 03 10 00 297500 265500 50400 4.670 0.365 0.056 0.401 28
3030 21484 03 10 00 325200 292000 55000 4.670 0.383 0.059 0.560
                                                     29
0 0 0 1012 204 1655 0.051 0.175 0.012 635
3032 21485 03 10 00 324700 289400 57100 4.670 0.385 0.059 0.497
12392 0 7458 3051 0 1585 0.509 0.285 0.026 12613 2052 0
0 0 0 204 1652 0.062 0.193 0.016 470
3034 21486 03 10 00 327600 290500 56300 4.670 0.351 0.054 0.392
                                                    31
0 0 108 204 1656 0.052 0.208 0.018 527
3035 21487 03 10 00 327600 284500 63900 4.670 0.358 0.054 0.397
0 0 0 215 1672 0.049 0.200 0.016 726
3039 21489 04 10 00 326000 302000 46900 4.670 0.395 0.057 0.430
14447 0 3484 3275 1192 1640 0.298 0.345 0.045 13600 1605 0
0 0 0 604 204 1687 0.059 0.219 0.020 617
3048 21494 04 10 00 317000 293500 46800 4.491 0.358 0.063 0.329
                                                     39
12050 0 1518 5458 541 1587 0.561 0.334 0.037 12385 2325 0 0 0 0 0 203 1668 0.067 0.229 0.018 540
3050 21495 04 10 00 322000 291700 49600 4.817 0.390 0.057 0.510 40
14889 0 6103 3291 1988 1627 0.493 0.325 0.043 12661 2070 0
0 0 1166 214 1665 0.083 0.211 0.020 411
```

```
3052 21496 04 10 00 325200 291200 57600 4.581 0.334 0.059 0.294
12123 0 1132 6522 433 1598 0.338 0.272 0.036 12730 2349 0
0 0 0 211 1673 0.040 0.142 0.013 953
3066 21502 04 10 00 312400 290300 44700 4.670 0.371 0.058 0.325
                                                              47
16056 0 3316 3305 1275 1597 0.374 0.284 0.036 12760 2156 0
0 989 0 0 207 1664 0.049 0.143 0.010 762
3067 21503 04 10 00 331500 290900 64100 4.670 0.383 0.056 0.416
                                                              48
17814 0 3545 3954 492 1621 0.287 0.295 0.033 13452 1830 0
0 579 0 0 217 1674 0.048 0.160 0.011 669
3071 21505 04 10 00 325600 290100 56900 4.670 0.359 0.057 0.340
                                                              50
21506 04 10 00 320800 288800 53100 4.670 0.385 0.058 0.420
                                                              51
16246 0 5468 3530 1478 1605 0.405 0.304 0.038 12934 2079 0
       0 487 212 1667 0.051 0.172 0.013 543
     21508 04 10 00 324500 289100 59600 4.670 0.389 0.057 0.419
                                                              53
15579 0 5319 3408 1354 1617 0.309 0.326 0.031 12975 1880
     0 0 1196 214 1660 0.058 0.191 0.014 689
3085 21512 04 10 00 332200 292200 59100 4.670 0.393 0.060 0.405
                                                              57
16164 0 2800 3559 1467 1632 0.190 0.268 0.028 13591 1553 0
       0 539 220 1669 0.043 0.166 0.012 560
     21514 05 10 00 326600 286700 63800 4.820 0.371 0.057 0.432
3090
                                                              59
17307 0 909 3828 1477 1586 0.459 0.284 0.026 13696 2503
0 0 0 0 220 1673 0.044 0.143 0.011 818
3093 21515 05 10 00 325500 287200 60600 4.744 0.372 0.059 0.463
                                                              60
        0 1306 5235 1492 1600 0.357 0.273 0.021 13499 2114 0
     0 0 0 217 1669 0.047 0.159 0.010 729
3100 21518 05 10 00 320400 286200 63500 4.843 0.426 0.060 0.523
19301 0 1668 5132 1500 1621 0.290 0.298 0.024 13942 2010 0
0 889 526 0 217 1678 0.049 0.145 0.009 662
3103 21520 05 10 00 323100 291300 58300 4.766 0.385 0.058 0.608
                                                              65
       0 4737 4972 1270 1634 0.236 0.256 0.021 13700 1898 0
       568 0 222 1672 0.050 0.128 0.009 823
0 889
3108 21521 05 10 00 312600 284800 54300 4.776 0.421 0.059 0.541
                                                              66
19199 0 2184 4787 1500 1599 0.449 0.306 0.021 13203 3330 0
       0 0 225 1713 0.040 0.109 0.008 777
0 906
3112 21522 05 10 00 326900 299600 57900 4.689 0.422 0.057 0.352
                                                              67
14795 0 2806 3531 945 1582 0.473 0.308 0.022 13468 3027 0
    0 0 0 225 1691 0.045 0.135 0.010 1178
3114 21523 05 10 00 311000 284000 54800 4.692 0.374 0.057 0.413
        0 3311 3050 609 1575 0.593 0.290 0.025 12509 2934 0
    0 0 515 226 1679 0.045 0.150 0.011 894
3122 21527 05 10 00 322400 293100 58300 4.708 0.384 0.056 0.454
                                                              72
14043 0 2798 3096 602 1611 0.384 0.320 0.026 13341 1935
0 0 0 545 221 1667 0.055 0.178 0.013 651
3124 21528 05 10 00 322200 301900 47900 4.744 0.380 0.057 0.370
                                                              73
        0 4860 3092 823 1604 0.407 0.326 0.025 13028 2327
     0 0 0 223 1690 0.043 0.163 0.013 807
     21529 05 10 00 320400 290000 58300 4.756 0.381 0.056 0.292
                                                              74
13397 · 0 1895 3096 1019 1593 0.467 0.314 0.032 13146 2241
    0 0 1218 224 1656 0.059 0.160 0.015 735
     21530 05 10 00 315300 293100 51700 4.724 0.380 0.057 0.406
                                                              75
15997 0 1818 3483 1443 1618 0.369 0.304 0.028 13628 2001
0 0 752 221 1691 0.044 0.154 0.011 753
     21531 06 10 00 324200 299700 52400 4.833 0.379 0.054 0.419
                                                              76
3130
16920 0 5101 3751 1495 1632 0.209 0.266 0.022 13875 1690 0
         0 1402 226 1683 0.050 0.142 0.010 825
```

```
3136 21534 06 10 00 323200 295800 51900 4.754 0.393 0.057 0.408
16886 0 6028 3756 1500 1580 0.361 0.260 0.017 13293 1924 0
0 0 496 226 1645 0.057 0.139 0.009 497
3141 21536 06 10 00 318400 285800 57000 4.689 0.396 0.060 0.415
                                                         81
11995 0 4946 2949 538 1581 0.418 0.304 0.020 12656 2629 0
0 0 0 216 1678 0.036 0.140 0.011 1155
     21537 06 10 00 318700 287100 54600 4.727 0.386 0.058 0.486
                                                         82
10519 0 5475 4059 0 1608 0.385 0.342 0.036 12580 2196 0
0 0 0 0 211 1690 0.037 0.178 0.019 1114
     21540 06 10 00 321200 296700 48400 4.728 0.376 0.059 0.402
                                                         85
11135 0 6242 4682 0 1602 0.355 0.340 0.029 12726 2271 0
0 0 0 0 211 1689 0.048 0.156 0.014 953
3152 21542 06 10 00 318300 289700 56000 4.698 0.368 0.055 0.295
                                                         87
12426 0 0 3001 854 1595 0.485 0.318 0.035 12937 2249 0
0 0 0 0 210 1674 0.046 0.175 0.017 748
3156 21544 06 10 00 321900 288400 62400 4.715 0.374 0.057 0.353
                                                         89
14023 0 0 3039 1115 1617 0.380 0.359 0.047 13557 1844
0 371 0 14 205 1674 0.053 0.209 0.021 582
3158 21545 06 10 00 320700 290700 57700 4.667 0.380 0.057 0.366
                                                         90
0 325 0 526 204 1667 0.057 0.210 0.015 688
3160 21546 06 10 00 321100 299100 50200 4.599 0.378 0.057 0.383
                                                         91
15119 0 324 3297 0 1633 0.375 0.360 0.037 13783 1850 0
0 0 523 206 1677 0.058 0.225 0.020 648
3161 21547 06 10 00 320500 296000 49900 4.747 0.399 0.059 0.501
                                                         92
16400 0 2510 3631 1484 1631 0.360 0.316 0.033 13562 1738 0
0 0 496 206 1677 0.068 0.200 0.017 540
3173 21551 07 10 00 309600 303000 41600 4.658 0.358 0.057 0.249
                                                         96
0 0 743 206 1680 0.047 0.188 0.018 852
3178 21553 07 10 00 324400 293000 61500 4.612 0.351 0.058 0.389
                                                         98
14104 0 0 3067 1052 1609 0.217 0.306 0.027 13751 1674
0 0 420 215 1668 0.042 0.154 0.012 891
3180 21554 07 10 00 311200 290800 48100 4.693 0.366 0.058 0.445
                                                         99
15249 0 4024 3353 1044 1626 0.233 0.273 0.020 13052 1308 0
      0 24 207 1668 0.065 0.183 0.012 647
3182 21555 07 10 00 319200 299100 50700 4.674 0.346 0.058 0.411
16049 0 3217 3508 1187 1617 0.215 0.275 0.024 13464 1388 0
0 0 92 214 1665 0.043 0.159 0.013 768
3184 21556 07 10 00 324500 297500 55000 4.545 0.312 0.057 0.256
10496 0 0 3075 545 1594 0.240 0.285 0.027 13011 1811 0
0 0 0 230 1668 0.048 0.148 0.013 855
3186 21557 07 10 00 318400 292800 54100 4.670 0.338 0.059 0.342
                                                         102
10660 0 0 3066 530 1589 0.482 0.300 0.027 12430 1823
0 0 535 214 1644 0.065 0.201 0.017 494
3200 21564 07 10 00 315600 299100 39600 4.600 0.328 0.058 0.281
11130 0 3766 2757 647 1596 0.426 0.302 0.023 12446 2068
0 0 0 207 1672 0.042 0.172 0.015 894
3202 21565 07 10 00 320400 290100 58400 4.673 0.338 0.055 0.267
10727 0 0 3327 574 1599 0.524 0.319 0.031 12525 2367 0
0 783 0 0 208 1667 0.051 0.177 0.016 624
3209 21568 07 10 00 318900 292300 53600 4.728 0.394 0.062 0.653
18522 0 3783 4249 1315 1631 0.275 0.276 0.035 13384 1681 495
0 0 1107 206 1669 0.046 0.149 0.013 749
3210 21569 07 10 00 321300 301100 45600 4.552 0.355 0.058 0.433
                                                         115
15254 0 3787 3312 855 1594 0.487 0.286 0.024 12965 2247 0
      0 304 207 1670 0.047 0.166 0.012 735
```

```
3216 21572 07 10 00 309900 297000 45600 4.680 0.342 0.057 0.454
13795 0 3786 3080 1500 1611 0.657 0.321 0.030 12473 2383 0
    0 0 1498 201 1670 0.062 0.192 0.016 505
3226 21577 08 10 00 297600 251100 73400 4.849 0.426 0.062 0.739
                                                          123
16675 0 810 3724 1502 1644 0.157 0.347 0.028 12734 1271 0
    0 0 502 196 1672 0.051 0.224 0.014 760
3232 21580 08 10 00 313600 289100 49200 4.673 0.359 0.057 0.434
                                                          126
16167 0 2019 3535 994 1662 0.153 0.253 0.028 13433 1246 499
    0 2079 449 203 1689 0.039 0.163 0.014 731
3234 21581 08 10 00 320200 290000 52200 4.731 0.365 0.057 0.416
                                                          127
15596 0 1509 3397 992 1651 0.232 0.275 0.032 13382 1561
0 0 0 1116 205 1691 0.043 0.169 0.013 637
3236 21582 08 10 00 319300 297900 46500 4.690 0.396 0.061 0.534
                                                          128
       0 3767 4358 1000 1648 0.266 0.281 0.031 13349 1799 498
       0 1534 206 1686 0.044 0.154 0.011 666
3242 21584 08 10 00 318300 298000 47200 4.683 0.368 0.058 0.407
                                                          130
0 0 0 0 203 1704 0.046 0.210 0.021 799
3247 21586 08 10 00 314600 286600 56000 4.641 0.366 0.052 0.333
12416 0 1003 3070 845 1592 0.466 0.304 0.017 12713 2664
    0 0 0 204 1683 0.045 0.139 0.009 897
0
3251 21588 08 10 00 317400 297800 46300 4.715 0.379 0.059 0.431
                                                          134
4 220 205 1674 0.055 0.157 0.013 506
3264 21593 08 10 00 322600 285500 60400 4.711 0.373 0.057 0.464
                                                          139
0 0 379 212 1677 0.043 0.199 0.019 880
3266 21594 08 10 00 325000 288200 55100 4.670 0.382 0.058 0.394
       0 3775 5117 308 1610 0.412 0.387 0.029 12636 1899
10718
0 0 0 603 210 1663 0.068 0.230 0.018 631
3269 21595 09 10 00 309400 297400 39100 4.414 0.328 0.059 0.251
                                                          141
10857 0 1281 6293 408 1596 0.194 0.269 0.030 12325 1937
0 572 0 0 205 1660 0.046 0.111 0.012 1120
3276 21598 09 10 00 307500 288300 45100 4.548 0.317 0.056 0.278
15123 0 0 3273 1299 1600 0.331 0.253 0.038 12810 2275 0
             0 207 1691 0.042 0.116 0.010 1129
    0 0
3278 21599 09 10 00 308700 287000 48000 4.500 0.328 0.058 0.234
                                                          145
       0 1103 3100 1129 1594 0.373 0.275 0.029 12547 2106 0
    0 0 210 1673 0.038 0.134 0.011 1007
3280 21600 09 10 00 317400 289000 56900 4.734 0.378 0.053 0.368
14719 0 2516 3288 1012 1601 0.494 0.318 0.027 12818 2109
    0 0 938 212 1659 0.063 0.206 0.017 483
0
    21601 09 10 00 317100 288000 57700 4.705 0.377 0.054 0.332
                                                          147
3282
       0 2905 3079 918 1604 0.395 0.330 0.037 12691 1982
    0 0 464 212 1672 0.054 0.178 0.015 658
    21605 09 10 00 314200 298900 42500 4.443 0.315 0.054 0.256
                                                          151
3289
10309 0 689 3083 484 1570 0.517 0.295 0.027 12078 2443 0
             98 210 1647 0.047 0.167 0.014 685
    21606 09 10 00 316800 287000 54800 4.571 0.331 0.055 0.343
3291
       0 1209 3077 830 1591 0.502 0.306 0.028 12477 2155
             99 214 1659 0.051 0.164 0.014 743
     0 0
    21608 09 10 00 318000 293100 58000 4.740 0.392 0.059 0.439
                                                          154
3295
16992 0 6189 3784 1494 1587 0.365 0.280 0.021 13063 2030 0
    0 0 597 214 1656 0.051 0.140 0.010 788
    21609 09 10 00 320400 286900 64900 4.746 0.384 0.058 0.360
                                                          155
14401 0 1503 3276 1169 1587 0.475 0.319 0.023 12881 2279 0
       0 1553 218 1651 0.042 0.141 0.010 768
```

3299 21610 09 10 00 319100 287900 58400 4.683 0.327 0.056 0.366 0 4004 3075 815 1579 0.458 0.287 0.025 12693 2013 0 0 886 214 1645 0.046 0.142 0.012 890 3301 21611 09 10 00 331600 297000 59900 4.612 0.392 0.058 0.387 157 0 0 214 1673 0.046 0.169 0.011 843 198 3306 21614 09 10 00 323000 295200 52800 4.602 0.376 0.058 0.412 160 0 0 214 1662 0.044 0.139 0.010 874 3309 21615 09 10 00 295700 250700 68600 4.727 0.377 0.059 0.451 161 0 806 0 0 200 1646 0.044 0.148 0.009 825 3311 21616 09 10 00 327500 287100 60600 4.766 0.363 0.053 0.287 162 11719 0 2405 2848 704 1626 0.161 0.300 0.024 13408 1469 0 0 211 1669 0.046 0.174 0.015 826 0 3317 21619 09 10 00 322400 287800 55100 4.670 0.366 0.056 0.289 165 10311 0 3878 7003 502 1589 0.337 0.335 0.019 12739 1741 0 0 0 209 1652 0.047 0.164 0.010 753 0 537 3321 21621 10 10 00 298900 253700 61300 4.786 0.394 0.060 0.389 10731 0 6072 3754 417 1586 0.238 0.317 0.014 11505 1830 0 1344 2073 200 1633 0.041 0.138 0.008 968 21622 10 10 00 297100 260500 57900 4.734 0.383 0.059 0.370 168 0 3939 4997 354 1593 0.147 0.259 0.011 11780 1653 0 0 1215 200 1645 0.041 0.135 0.008 915 3327 21624 10 10 00 318200 281100 67800 4.824 0.393 0.059 0.456 170 0 943 682 0 203 1661 0.051 0.163 0.009 714 3331 21627 10 10 00 311500 295800 46200 4.670 0.354 0.055 0.287 173 10349 0 1195 3647 0 1620 0.340 0.314 0.043 13201 2371 0 0 0 201 1710 0.030 0.124 0.015 1110

A4.3 Data set D3

Heatno Chargno date Wbath Gry Gschrot C_ry Mn_ry P_ry Si_ry Lnslf Limel dolm1 Orel Rslg1 Rdl1 T1 C1 Mn1 P1 O21 O22 lime2 dolm2 Ore2 Rslg2 Rdl2 Hlns2 T2 C2 Mn2 P2 Oact2 3337 21631 10 10 00 296500 276500 51100 4.552 0.367 0.058 0.419 0 0 1805 182 1626 0.045 0.117 0.009 891 21635 10 10 00 307100 294300 38000 4.436 0.332 0.058 0.246 181 0 0 3081 858 1584 0.555 0.267 0.042 12637 3193 14985 0 220 1711 0.032 0.117 0.012 1522 0 3352 21637 11 10 00 317900 295300 49200 4.427 0.338 0.058 0.256 183 11002 0 1020 2967 430 1567 0.383 0.246 0.025 13121 2210 0 0 0 211 1642 0.039 0.102 0.009 834 3355 21638 11 10 00 324000 299300 49500 4.577 0.353 0.059 0.377 0 2140 499 985 1584 0.490 0.293 0.031 13239 2337 0 939 1027 0 196 1655 0.051 0.155 0.014 700 3361 21640 11 10 00 316400 295500 54800 4.497 0.332 0.061 0.486 187 0 0 487 0 1587 0.377 0.246 0.032 13677 2617 0 0 213 1689 0.033 0.109 0.011 1106 0 3363 21641 11 10 00 314600 295000 46200 4.616 0.376 0.060 0.514 188 15917 0 1512 3626 1461 1627 0.298 0.307 0.040 13839 1988 0 0 0 195 1704 0.036 0.161 0.017 1103

```
3379 21647 12 10 00 307900 295500 41700 4.465 0.336 0.056 0.383
13589 0 984 3073 1033 1596 0.366 0.254 0.030 13053 2225 0
             0 205 1694 0.041 0.125 0.013 989
3386 21650 12 10 00 320600 294100 53900 4.571 0.369 0.056 0.362
                                                          197
12582 0 1680 3084 623 1593 0.355 0.304 0.018 13442 1951
0 0 0 0 213 1674 0.047 0.160 0.010 615
3391 21652 12 10 00 323200 290600 46500 4.414 0.354 0.058 0.546
                                                          199
15841 0 602 3479 775 1641 0.127 0.226 0.016 13854 1348 0
0 706 0 0 212 1672 0.039 0.133 0.009 767
3393 21653 12 10 00 289500 250700 64000 4.625 0.383 0.061 0.649
                                                          200
12339 0 5619 3066 0 1565 0.327 0.277 0.019 11459 1997 0
0 942 243 0 196 1630 0.044 0.112 0.007 882
3397 21655 12 10 00 316900 292300 51700 4.584 0.326 0.056 0.305
11005 0 1081 2707 552 1595 0.247 0.284 0.025 12953 1990 0
0 0 0 220 1669 0.038 0.134 0.012 1091
3399 21656 12 10 00 315700 303200 39400 4.686 0.353 0.057 0.300
                                                          203
11921 0 8242 2657 403 1564 0.372 0.239 0.014 12269 2488 0
    0 0 0 220 1668 0.037 0.102 0.008 1010
3403 21657 12 10 00 313600 291000 53100 4.465 0.323 0.054 0.271
                                                         204
11657 0 487 2840 361 1555 0.309 0.241 0.023 13118 2477 0
0 0 0 0 217 1661 0.034 0.085 0.010 1352
3404 21658 12 10 00 305800 292000 44500 4.549 0.370 0.056 0.365
13953 0 399 3060 925 1610 0.284 0.272 0.033 13174 2020 0
         0 344 205 1674 0.045 0.160 0.015 866
3407 21659 12 10 00 307300 283100 64800 4.648 0.388 0.061 0.326
                                                         206
11457 0 0 2837 598 1575 0.568 0.323 0.026 12618 2615 0
0 0 0 380 211 1647 0.050 0.171 0.013 685
3411 21661 12 10 00 322300 293200 61100 4.737 0.361 0.058 0.504
18004 0 0 3981 1504 1631 0.171 0.242 0.017 14118 1570
0 0 615 213 1674 0.058 0.151 0.012 697
3413 21662 12 10 00 312500 290000 51000 4.622 0.360 0.058 0.398
                                                          209
15002 0 0 3278 1276 1602 0.329 0.279 0.027 13342 1944 0
0 0 0 206 1674 0.047 0.158 0.013 641
3416 21663 12 10 00 303600 283900 47800 4.763 0.408 0.058 0.545
                                                         210
19997 0 6746 4525 1499 1593 0.324 0.274 0.016 12658 1844 0
0 576 0 1504 203 1649 0.054 0.124 0.006 857
3419 21665 12 10 00 320800 288100 63000 4.705 0.370 0.057 0.436
15940 0 0 3251 750 1631 0.324 0.326 0.027 13570 1771 2038
0 0 0 878 210 1677 0.048 0.201 0.016 821
3422 21666 13 10 00 321100 293000 59400 4.744 0.391 0.059 0.489
0 0 1181 211 1660 0.054 0.163 0.010 643
3426 21668 13 10 00 320000 290100 58400 4.577 0.376 0.059 0.500
       0 1793 3578 1462 1575 0.428 0.252 0.019 13302 2147 0
       0 0 229 1647 0.051 0.130 0.009 648
3428 21669 13 10 00 322200 294000 57400 4.631 0.415 0.061 0.420
                                                          216
13421 0 2385 3006 1000 1614 0.314 0.315 0.027 13050 1867 496
0 0 0 219 1671 0.049 0.188 0.014 849
3431 21671 13 10 00 297400 260800 56700 4.721 0.412 0.057 0.299
                                                         218
    0 1171 207 1629 0.064 0.145 0.010 451
0
3433 21672 13 10 00 317300 298900 41900 4.682 0.385 0.058 0.339
11363 0 6312 2590 996 1591 0.385 0.296 0.027 12271 2204 493
0 0 0 219 1675 0.047 0.168 0.014 968
3436 10001 13 10 00 320200 296400 52100 4.769 0.414 0.059 0.523
                                                          46
16289 0 5269 5065 0 1642 0.236 0.319 0.032 15400 1349 0
      0 0 191 1684 0.058 0.178 0.012 336
```

```
3438 10002 13 10 00 319400 289600 60800 4.619 0.404 0.058 0.440
11968 0 0 3951 0 1624 0.375 0.321 0.026 13449 1735 0
0 0 0 444 189 1672 0.066 0.205 0.011 242
3439 21674 13 10 00 319500 278400 66600 4.891 0.407 0.058 0.548
13046 0 5754 3566 0 1588 0.353 0.295 0.018 12559 2478 0
0 0 0 0 219 1681 0.034 0.111 0.009 1269
3441 10003 13 10 00 318000 307600 35800 4.583 0.401 0.059 0.382
                                                         48
14201 0 2736 3153 337 1641 0.324 0.302 0.020 13584 1688 1020
0 0 391 185 1683 0.088 0.198 0.012 260
3442 10004 13 10 00 318300 298200 43900 4.670 0.418 0.059 0.419
                                                         49
12362 0 1108 2185 998 1662 0.380 0.378 0.044 13330 1878 0
0 84 0 0 169 1694 0.062 0.195 0.013 336
3444 10005 13 10 00 311300 290400 47900 4.628 0.366 0.058 0.398
                                                         50
13491 0 2014 3442 1001 1630 0.382 0.301 0.031 13048 1841 504
0 0 0 1497 178 1674 0.062 0.156 0.009 378
3445 21675 13 10 00 293400 262500 53000 4.622 0.351 0.060 0.427
                                                        222
0
941 2299 0 204 1624 0.057 0.133 0.014 764
3446 10006 13 10 00 325900 294600 54600 4.818 0.422 0.060 0.538
                                                         51
14441 0 5814 3519 999 1626 0.418 0.350 0.029 13083 2107 0
0 0 1503 192 1673 0.081 0.173 0.009 309
3448 10007 13 10 00 309100 267300 68300 4.798 0.405 0.060 0.650
                                                         52
0 501 0 2175 183 1660 0.054 0.157 0.009 390
3451 10008 13 10 00 320000 288900 56500 4.619 0.364 0.083 0.425
                                                         53
3453 21678 13 10 00 321400 286900 63700 4.641 0.379 0.054 0.362
11069 0 2003 2708 0 1590 0.344 0.307 0.020 12876 2095
0 0 0 0 224 1661 0.046 0.161 0.010 916
3454 10010 13 10 00 323300 289900 57800 4.818 0.403 0.060 0.507
                                                         55
13529 0 8927 3302 0 1612 0.409 0.333 0.030 13013 2193 0
0 0 0 1058 197 1685 0.056 0.154 0.010 591
3456 10011 13 10 00 324000 285200 66600 4.670 0.395 0.060 0.427
                                                         56
12017 0 2429 2937 0 1611 0.467 0.351 0.034 12990 2104
0 927 1064 0 199 1674 0.074 0.190 0.013 472
3457 21679 13 10 00 315800 289000 55600 4.673 0.375 0.059 0.510
       0 1822 3271 366 1629 0.148 0.267 0.025 13380 1492 0
0 300 0 0 215 1670 0.041 0.137 0.013 957
3458 10012 13 10 00 318700 303300 40800 4.833 0.387 0.060 0.383
                                                         57
13423 0 5554 3323 1077 1647 0.463 0.330 0.034 13196 2065 0
0 495 0 0 209 1708 0.070 0.205 0.015 387
3460 10013 13 10 00 291400 250000 62900 4.763 0.396 0.065 0.512
                                                         58
11747 0 9159 2919 0 1573 0.440 0.198 0.038 10554 2213
0 917 1105 0 192 1635 0.063 0.127 0.011 716
3462 10014 13 10 00 318800 287000 60700 4.856 0.410 0.066 0.683
                                                         59
16347 0 4033 3990 704 1679 0.228 0.290 0.022 13465 1691 0
0 909 1420 0 209 1687 0.087 0.194 0.010 287
3464 10015 13 10 00 318900 287000 59100 4.699 0.403 0.061 0.415
       0 2218 3107 888 1614 0.428 0.354 0.032 13202 2380 0
0 0 0 215 1704 0.050 0.179 0.012 657
3465 21682 13 10 00 318900 288100 58900 4.760 0.376 0.062 0.470
15693 0 3711 3444 984 1605 0.285 0.288 0.019 13445 2034 0
0 0 0 217 1673 0.041 0.137 0.009 901
3477 10021 14 10 00 290900 257300 58600 4.868 0.367 0.051 0.347
11011 0 6310 7448 499 1555 0.357 0.244 0.010 11175 1988 0
       0 0 238 1638 0.052 0.109 0.005 533
0 497
```

```
3479 10022 14 10 00 299600 252400 65600 4.776 0.368 0.064 0.446
11083 0 8066 3513 0 1572 0.399 0.261 0.023 11531 2073 0
0 0 1701 240 1630 0.048 0.100 0.007 708
3484 21689 14 10 00 322900 302700 42800 4.680 0.372 0.062 0.395
                                                    236
13340 0 4493 3035 896 1622 0.333 0.285 0.041 13312 1960 0
0 0 0 230 1689 0.040 0.150 0.017 889
3485 10025 14 10 00 314100 287900 58400 4.724 0.401 0.061 0.424
12496  0 6527 3104 320 1600 0.392 0.287 0.021 12938 2172 0
0 0 968 246 1671 0.053 0.141 0.009 568
3493 21691 14 10 00 322000 287100 62100 4.760 0.366 0.060 0.321
                                                    238
13799 0 1020 3382 942 1613 0.269 0.275 0.028 13813 1737 0
0 0 0 0 207 1670 0.049 0.157 0.016 755
3495 21692 14 10 00 321600 289100 60100 4.670 0.395 0.064 0.469
                                                    239
13347 0 0 3079 741 1648 0.472 0.299 0.038 13893 1905 0
0 956 1651 0 206 1684 0.066 0.202 0.023 496
3503 21693 14 10 00 317900 284600 54300 4.750 0.395 0.063 0.489
                                                    240
11537 0 7949 2843 0 1607 0.232 0.274 0.027 12581 1583 0
0 234 0 0 204 1659 0.048 0.163 0.016 874
3506 10035 14 10 00 322700 285200 64400 4.616 0.370 0.062 0.366
                                                    132
11037 0 1205 2683 0 1597 0.436 0.323 0.027 13084 2205 0
0 0 0 601 245 1658 0.056 0.179 0.011 429
3507 21694 14 10 00 317000 276400 62200 4.849 0.393 0.060 0.553
                                                    241
12721 0 7975 3075 0 1619 0.270 0.262 0.035 12498 1469 0
0 657 0 0 206 1651 0.060 0.165 0.017 685
3508 10036 14 10 00 321600 296700 49500 4.593 0.353 0.062 0.341
                                                    133
9901 0 5514 2947 0 1584 0.423 0.296 0.030 12665 2250 0
0 0 268 243 1663 0.051 0.157 0.012 565
3509 21695 14 10 00 323700 277300 67400 4.833 0.373 0.059 0.551
3510 10037 14 10 00 321200 289900 54400 4.641 0.347 0.062 0.386
                                                    134
0 1 0 0 240 1660 0.052 0.165 0.011 480
3512 10038 14 10 00 311300 275500 67500 4.830 0.391 0.059 0.472
                                                    135
0 897 1061 0 235 1657 0.094 0.198 0.013 318
3517 10039 14 10 00 307100 287000 61100 4.722 0.386 0.064 0.486
                                                    136
0 902 494 0 229 1673 0.059 0.203 0.012 391
3520 10041 14 10 00 314800 288100 55900 4.728 0.370 0.068 0.489
                                                    138
14976 0 3703 3450 729 1611 0.407 0.277 0.026 13365 2577 0
0 0 0 237 1723 0.041 0.128 0.008 664
3525 10043 14 10 00 321100 284600 61000 4.798 0.355 0.059 0.448
3529 10046 15 10 00 316000 283000 58600 4.734 0.369 0.061 0.445
                                                    143
0 222 0 12 230 1673 0.053 0.167 0.008 396
3532 10047 15 10 00 324500 285000 61400 4.692 0.369 0.064 0.374 144
9325 0 2282 6695 0 1615 0.401 0.348 0.034 13196 2034 0
    0 0 227 1684 0.048 0.184 0.014 517
3534 10048 15 10 00 323900 300000 47500 4.709 0.338 0.066 0.287
10313 0 4881 5005 411 1609 0.351 0.310 0.024 13016 1988 0
0 395 0 0 227 1671 0.061 0.176 0.011 396
3536 10049 15 10 00 298200 260200 60200 4.721 0.354 0.062 0.293
                                                    146
11010 0 5239 2687 997 1542 0.450 0.231 0.010 11387 2294 0
       0 0 215 1629 0.054 0.117 0.005 388
0 52
```

```
3537 21703 15 10 00 313900 296300 43700 4.772 0.378 0.064 0.347
12623 0 4379 3069 887 1616 0.306 0.311 0.041 12567 1805 0
      0 0 203 1677 0.051 0.176 0.019 943
3538 10050 15 10 00 313100 287800 53500 4.670 0.351 0.060 0.262
                                                     147
      0 0 3103 1497 1604 0.429 0.276 0.024 13045 2172 0
12493
      0 712 221 1663 0.057 0.158 0.009 372
3540 10051 15 10 00 320900 300000 44800 4.718 0.395 0.063 0.402
                                                     148
14102 0 6412 3444 908 1613 0.282 0.257 0.013 13172 1802
    0 0 0 225 1660 0.063 0.168 0.008 321
3542 10052 15 10 00 321800 289400 62300 4.738 0.360 0.056 0.435
                                                     149
16491 0 316 4016 2008 1634 0.169 0.223 0.012 14016 1662
    0 0 0 224 1674 0.060 0.153 0.008 394
    10053 15 10 00 298900 267400 55000 4.574 0.387 0.064 0.403
3544
                                                     150
    0 215 1628 0.046 0.119 0.005 473
     89
3546 10054 15 10 00 317600 303200 39300 4.612 0.394 0.067 0.395
                                                     151
13527 0 5122 3309 1042 1608 0.436 0.319 0.023 12914 2329 0
    0 0 0 223 1693 0.057 0.184 0.011 386
3547 21704 15 10 00 294500 283800 38200 4.670 0.363 0.062 0.446
15994 0 99 3501 1454 1604 0.608 0.327 0.048 11846 2103
    0 0 0 194 1685 0.058 0.215 0.023 634
3558 21707 15 10 00 318400 301000 50200 4.817 0.389 0.072 0.548
                                                     130
      0 4947 4759 1502 1622 0.304 0.289 0.028 13601 1784 0
    0 0 1032 222 1679 0.084 0.167 0.013 725
3561 21708 15 10 00 320200 287200 54900 4.727 0.376 0.059 0.325
12911 0 0 3072 930 1616 0.677 0.358 0.053 12299 2380
   0 0 518 220 1685 0.068 0.261 0.031 529
3568 10063 15 10 00 317400 301400 42800 4.724 0.395 0.063 0.410
                                                     160
16674 0 2146 4063 350 1653 0.389 0.301 0.030 13715 1963
      0 0 230 1705 0.062 0.199 0.015 368
   329
3570 10064 15 10 00 315800 290100 52700 4.744 0.370 0.061 0.462
                                                     161
0 0 229 1686 0.053 0.161 0.010 332
3574 10066 15 10 00 311300 299400 39000 4.744 0.399 0.055 0.353
                                                     163
16042
      153 0 223 1692 0.048 0.164 0.010 416
   904
3591 10074 16 10 00 318800 287000 55700 4.766 0.381 0.060 0.359
                                                     171
    0 487 227 1678 0.060 0.179 0.011 384
3602 10079 16 10 00 322100 283000 64900 4.750 0.383 0.062 0.427
                                                    176
0 0 798 236 1685 0.054 0.187 0.011 411
3614 10085 16 10 00 323400 283700 61500 4.676 0.373 0.063 0.544
                                                     182
      12893
       0 0 229 1671 0.049 0.160 0.008 449
3616 10086 16 10 00 320600 285700 58100 4.750 0.391 0.064 0.570
                                                     183
0 229 1647 0.070 0.189 0.008 299
   904 3605
3620 10087 16 10 00 322500 279700 68100 4.795 0.369 0.060 0.492
                                                     184
11799 0 5728 2890 0 1567 0.375 0.281 0.014 12843 2814
      0 0 244 1669 0.045 0.143 0.008 544
    0
3624 10089 16 10 00 320800 286500 56300 4.779 0.366 0.064 0.411
                                                     186
12042  0 5455 2305  0 1624 0.351 0.319 0.021 12928 1966  0
      0 509 227 1669 0.060 0.196 0.011 395
3627 10091 17 10 00 319200 281900 65400 4.657 0.381 0.062 0.420
                                                     188
0 301 230 1653 0.047 0.151 0.008 418
```

```
3631 10095 17 10 00 321500 294100 51200 4.334 0.355 0.063 0.390
9243 3298 1503 498 0 1560 0.560 0.251 0.031 13477 3188 0 0 277 229 1681 0.036 0.114 0.009 737
3633 10097 17 10 00 318200 293500 48000 4.376 0.330 0.061 0.265
11744 0 293 2620 0 1594 0.501 0.292 0.028 13450 2340 0
       0 647 225 1663 0.049 0.154 0.009 440
3636 10099 17 10 00 312800 275800 63900 4.622 0.368 0.062 0.404
                                                            196
8634 3307 1187 533 0 1638 0.172 0.269 0.025 13466 1594 0
0 0 572 224 1668 0.051 0.164 0.011 415
3639 10101 17 10 00 316100 279600 65000 4.654 0.390 0.065 0.633
13449 4707 2009 955 0 1622 0.206 0.208 0.013 14021 1624 0
0 0 0 223 1669 0.077 0.139 0.008 359
3640 10102 17 10 00 313200 300700 45200 4.520 0.375 0.066 0.494
13726 4705 3029 513 0 1630 0.223 0.184 0.013 14121 1636 0
0 362 0 0 222 1667 0.072 0.133 0.008 299
3642 10103 17 10 00 318600 292800 51800 4.661 0.379 0.062 0.585
                                                            200
12217 4299 3592 939 0 1642 0.375 0.283 0.022 13310 1712 0
0 1049 2489 0 223 1661 0.105 0.172 0.010 266
3651 10107 18 10 00 318300 302900 42400 4.597 0.347 0.061 0.545
8991 3084 4291 500 0 1634 0.449 0.283 0.034 13196 2066 0
0 0 0 226 1688 0.076 0.187 0.016 341
3653 10108 18 10 00 325400 303200 45800 4.644 0.355 0.060 0.415
                                                            205
8637 3096 2750 498 0 1655 0.381 0.326 0.041 13338 1971 0 1992
0 0 2196 230 1671 0.078 0.182 0.016 330
3663 10113 18 10 00 316700 300200 44600 4.641 0.369 0.063 0.478
10807 5175 2878 519 0 1665 0.306 0.312 0.041 13672 1791 0
0 898 1963 0 210 1687 0.069 0.175 0.014 412
3667 10115 18 10 00 324400 290000 61800 4.750 0.366 0.065 0.815
16964 1113 4540 1873 354 1628 0.266 0.247 0.017 14056 1897 0
0 0 0 214 1680 0.056 0.146 0.008 380
3669 10116 18 10 00 321700 298900 52900 4.709 0.379 0.062 0.607
13248 5994 4911 468 0 1646 0.348 0.269 0.022 14021 1920 0
0 914 2314 0 213 1675 0.062 0.141 0.008 341
3671 10117 18 10 00 318300 291400 51500 4.747 0.380 0.062 0.614
                                                            214
12488 0 7588 3561 0 1612 0.414 0.264 0.019 12719 2189 0
0 0 0 239 211 1674 0.053 0.142 0.008 417
3673 10118 18 10 00 317400 286400 52300 4.756 0.371 0.069 0.597
10776 4921 7179 0 970 1626 0.445 0.232 0.025 12780 2307 0
       0 1196 211 1678 0.056 0.126 0.008 430
3675 10119 18 10 00 324300 294500 51200 4.760 0.377 0.063 0.643
12060 5196 5757 494 967 1661 0.421 0.237 0.020 13563 1987 0
0 0 1865 217 1700 0.088 0.142 0.009 316
3677 10120 18 10 00 312100 300600 45000 4.670 0.368 0.060 0.492
9268 4611 6493 0 980 1623 0.627 0.262 0.037 12620 2674 504
0 0 2532 201 1682 0.053 0.145 0.010 410
3679 10121 18 10 00 331700 291600 62900 4.766 0.361 0.063 0.516
                                                            218
11151 5989 4695 1063 0 1626 0.369 0.208 0.014 13987 2089 0
0 901 727 0 200 1670 0.087 0.131 0.007 342
3683 10123 18 10 00 318200 281700 63900 4.859 0.374 0.054 0.385
0 0 707 208 1688 0.049 0.121 0.010 557
3685 10124 19 10 00 323800 289800 58000 4.817 0.402 0.062 0.409
                                                            221
7700 4468 7691 997 0 1602 0.496 0.189 0.013 12985 2379 0
509 0 0 209 1681 0.049 0.114 0.008 557
```

A4.4 Data set D4

```
Heatno Chargno date Wbath Gry Gschrot C_ry Mn_ry P_ry Si_ry Lnslf
Lime1 dolm1 Ore1 Rslg1 Rdl1 T1 C1 Mn1 P1 O21 O22 lime2 dolm2 Ore2 Rslg2 Rdl2 Hlns2 T2 C2 Mn2 P2 Oact2
3687 10125 19 10 00 312200 289800 48100 4.647 0.368 0.060 0.428
        3 4978 3019 297 1623 0.259 0.280 0.021 13258 1789 0
12232
       0 0 203 1674 0.049 0.149 0.008 447
0 645
3688 10126 19 10 00 329700 297800 57600 4.673 0.375 0.062 0.424
                                                               223
8577 4436 4988 0 991 1607 0.378 0.279 0.023 13250 1909
     0 0 207 1663 0.050 0.151 0.009 399
603
3691 10127 19 10 00 316400 286900 56000 4.737 0.359 0.062 0.448
                                                               224
7562 4594 6328 1020 0 1599 0.560 0.185 0.018 12675 2284
           0 202 1670 0.062 0.122 0.008 433
704
3693 10128 19 10 00 319600 283600 64700 4.711 0.363 0.059 0.448
                                                               225
7323 4668 3709 974 0 1609 0.525 0.208 0.023 12841 2133
                                                                 0
     3 0 203 1657 0.074 0.150 0.009 346
3695 10129 19 10 00 318200 276800 66900 4.791 0.384 0.058 0.461
                                                                63
7288 4368 6095 1067 0 1614 0.269 0.197 0.017 12971 1940
                                                                 0
            0 203 1660 0.047 0.113 0.008 583
     0
3708 10136 19 10 00 318200 283200 60800 4.721 0.368 0.063 0.518
                                                                70
7759 4488 5912 546 0 1647 0.271 0.252 0.032 12986 1519 0
                                                                 0
           0 176 1673 0.053 0.162 0.013 380
901 759
3713 10138 19 10 00 320500 276300 67100 4.670 0.377 0.059 0.446
                                                                72
12941 4674 3640 510 0 1601 0.548 0.262 0.036 12454 2355
0 917 5014 0 173 1632 0.069 0.156 0.008 327
3715 10140 19 10 00 319900 272700 74500 4.670 0.375 0.057 0.483
                                                                74
7440 4405 4500 959 0 1577 0.556 0.168 0.019 12236 2644
                                                                 0
            0 175 1654 0.048 0.107 0.007 491
     0
     10144 19 10 00 322500 288400 54800 4.689 0.341 0.051 0.315
                                                                78
8161 4334 4017 0 0 1612 0.293 0.282 0.034 13025 1793 0
                                                                 0
     0 0 180 1672 0.047 0.165 0.012 492
3725 10145 19 10 00 320300 286400 57800 4.616 0.391 0.052 0.460
                                                                79
9479 4526 4220 539 0 1605 0.437 0.277 0.030 12871 1906
                                                                 0
         0 169 1656 0.072 0.187 0.011 290
                                                                80
3727 10146 19 10 00 317500 277000 64400 4.670 0.381 0.055 0.445
9086 4497 4296 517 0 1610 0.400 0.257 0.028 12746 1700
                                                                 0
         0 170 1655 0.070 0.174 0.011 309
    176
3729 10147 19 10 00 317900 288000 61700 4.715 0.371 0.054 0.443
                                                                81
10398 4593 3897 0 0 1609 0.467 0.248 0.025 13105 2164
     0 0 0 189 1672 0.078 0.173 0.013 294
3731 10148 19 10 00 320500 275500 70700 4.747 0.378 0.054 0.454
                                                                82
8152 3519 3405 492 0 1616 0.290 0.284 0.025 12952 1707
                                                                 0
     4 0 172 1660 0.060 0.177 0.011 335
     10149 19 10 00 326300 279600 72200 4.756 0.388 0.055 0.475
                                                                83
3733
12340 0 3124 509 0 1625 0.210 0.255 0.020 13716 1633 0
      0 1487 0 182 1671 0.045 0.149 0.008 449
3735 10150 20 10 00 326300 283800 66700 4.692 0.370 0.053 0.437
                                                                84
8371 4609 3705 581 0 1605 0.318 0.272 0.024 13391 1974
                                                                 0
          0 186 1675 0.046 0.149 0.010 503
    10151 20 10 00 326100 285600 63300 4.689 0.383 0.054 0.457
                                                                85
3737
9069 4994 3516 471 0 1633 0.361 0.293 0.029 13432 1736 0
                                                                 0
898 994 0 186 1665 0.076 0.189 0.012 348
3743 10153 20 10 00 319600 296100 49000 4.680 0.380 0.055 0.541
                                                                87
11164 5544 6295 535 0 1636 0.351 0.238 0.028 13422 1798 0
0 615 130 0 188 1667 0.073 0.164 0.010 299
```

```
3745 10154 20 10 00 320500 297000 48500 4.626 0.375 0.055 0.524
10509 5008 4487 531 0 1637 0.397 0.254 0.031 13604 1888 0
0 500 0 0 186 1671 0.088 0.182 0.012 240
3747 10155 20 10 00 320700 289400 51900 4.770 0.373 0.055 0.446
                                                             89
9188 4308 7313 546 0 1634 0.324 0.229 0.027 13076 1853 0
                                                             0
           0 185 1680 0.056 0.140 0.009 449
563 0
3749 10156 20 10 00 319800 290400 51700 4.667 0.373 0.059 0.385
                                                             90
8675 4313 5222 506 0 1624 0.427 0.305 0.035 12950 1888
895 88
           0 185 1673 0.063 0.179 0.012 360
3751 10157 20 10 00 321600 292700 49600 4.737 0.351 0.064 0.446
                                                             91
8568 4215 7123 504 0 1612 0.516 0.252 0.020 12474 2216 0
628 0 0 215 1672 0.073 0.155 0.011 388
3757 10160 20 10 00 314300 295000 51700 4.779 0.345 0.060 0.545
14439 7938 2986 517 0 1663 0.402 0.218 0.021 14101 2182 0
0 988 4715 0 213 1682 0.084 0.115 0.006 365
3759 10161 20 10 00 321300 287300 60000 4.705 0.345 0.060 0.660
11205 5809 5607 503 0 1614 0.523 0.255 0.018 12958 2659 0
0 527 0 0 218 1691 0.048 0.134 0.009 495
3763 10163 20 10 00 326600 297200 50700 4.782 0.354 0.053 0.448
                                                             97
8601 4129 6092 527 0 1644 0.344 0.265 0.029 12937 1725 0
907 100 0 216 1682 0.062 0.171 0.012 340
3765 10164 20 10 00 322000 292400 50000 4.695 0.332 0.054 0.354
                                                             98
7781 4243 8594 479 0 1630 0.493 0.223 0.021 12780 2064 0
0 0 1224 213 1686 0.079 0.147 0.010 387
3767 10165 20 10 00 323200 294400 50000 4.731 0.399 0.062 0.603
       1 7837 3481 0 1627 0.295 0.302 0.021 13108 1793 0
      0 0 213 1678 0.057 0.184 0.011 412
0 0
3769 10166 20 10 00 319400 294300 50000 4.651 0.357 0.063 0.502
14487 0 2509 0 3635 1645 0.370 0.290 0.026 13760 2164 507
0 894 2470 0 244 1686 0.073 0.156 0.009 361
3770 10167 20 10 00 317300 295200 50000 4.641 0.365 0.062 0.538
16805 0 4120 0 3663 1628 0.385 0.270 0.020 13345 2466 501
0 897 3443 0 249 1682 0.048 0.135 0.007 419
3773 10168 20 10 00 321000 293800 47000 4.747 0.381 0.061 0.584
15525 0 7608 0 2662 1594 0.241 0.225 0.011 13054 2767 501
              0 249 1694 0.045 0.111 0.005 634
0 502 0
3776 10169 20 10 00 336100 291400 61800 4.584 0.337 0.064 0.399
9020 4508 200 460 0 1582 0.531 0.289 0.021 13330 2575
        0 217 1653 0.058 0.164 0.009 374
0 520
3778 10170 20 10 00 316500 272500 75000 4.785 0.381 0.061 0.614
12694 5980 3291 993 0 1592 0.380 0.259 0.015 13259 2363 0
       0 0 208 1660 0.058 0.133 0.007 384
3780 10171 21 10 00 327900 291300 63500 4.680 0.385 0.064 0.602
9292 5238 6202 986 0 1585 0.520 0.160 0.017 13192 2487
0 41 0 216 1664 0.085 0.129 0.007 355
3782 10172 21 10 00 318300 290800 53200 4.574 0.372 0.062 0.507
8145 4576 6759 979 0 1581 0.599 0.167 0.019 12648 2665 0
0 2640 0 212 1655 0.059 0.106 0.006 462
3784 10173 21 10 00 317100 272700 72500 4.750 0.374 0.059 0.580
10517 0 5340 3143 0 1541 0.723 0.148 0.008 12216 3496 0
0 0 679 214 1660 0.043 0.083 0.007 780
3786 10174 21 10 00 317900 274500 72000 4.801 0.390 0.059 0.515
9928 0 5666 2439 0 1587 0.411 0.177 0.016 12797 2199
0 0 203 1663 0.043 0.109 0.009 622
3790 10176 21 10 00 323600 288400 57400 4.650 0.368 0.060 0.562
9218 4961 2390 517 0 1665 0.357 0.276 0.032 13730 1565 0
899 3159 0 202 1673 0.089 0.189 0.013 345
```

```
3792 10177 21 10 00 323200 286200 60800 4.721 0.372 0.058 0.496
8813 4591 4884 496 0 1624 0.412 0.237 0.030 13088 2034
                                                           0
               200 1674 0.059 0.160 0.011 389
     0 557
3794 10178 21 10 00 332000 289300 63600 4.673 0.372 0.060 0.508
                                                                 8
9094 4707 4898 983 0 1632 0.343 0.203 0.017 13507 1866
               207 1662 0.080 0.144 0.008 345
     0 765
    10179 21 10 00 322600 283800 60900 4.731 0.369 0.059 0.454
3796
                                                                 9
7711 4467 5058 495 0 1626 0.295 0.288 0.027 13129 1866
                                                                 0
               200 1678 0.060 0.183 0.013 442
     0 0
3797 10180 21 10 00 320100 281400 63100 4.734 0.374 0.061 0.446
                                                                10
7403 4480 4129 562 0 1605 0.494 0.227 0.028 12844 2421
                                                                 0
             198 1672 0.048 0.151 0.011 527
3799 10181 21 10 00 329900 287500 61100 4.708 0.362 0.059 0.413
                                                                11
7865 4512 4103 458 0 1620 0.398 0.309 0.026 13196 2137
                                                                 0
              202 1673 0.057 0.183 0.012 456
        640
3801 10182 21 10 00 319900 288100 56400 4.728 0.366 0.059 0.390
                                                                12
7727 4313 7346 968 0 1604 0.361 0.179 0.012 12712 2072 0
                                                                 0
     0
       0 203 1665 0.067 0.132 0.008 428
3803 10183 21 10 00 321100 279100 64500 4.664 0.374 0.060 0.369
                                                                13
7467 4452 3088 471
                   0 1592 0.424 0.310 0.024 13042 2148
                                                                 0
     0 0 203 1672 0.044 0.164 0.012 623
3809 10186 21 10 00 320300 277800 67200 4.693 0.383 0.059 0.526
                                                                16
8165 4446 4502 992 0 1598 0.499 0.202 0.025 12954 2223 0
                                                                0
            0 198 1672 0.071 0.147 0.010 440
     1
3811 10187 21 10 00 317800 279000 68800 4.734 0.368 0.060 0.533
                                                                17
7407 4528 4312 984 0 1626 0.453 0.195 0.021 13032 1921
                                                                 0
891 2829
            0 204 1651 0.063 0.124 0.008 435
3813 10188 21 10 00 314100 282800 58600 4.686 0.359 0.057 0.435
                                                                18
7890 4703 4293 994
                    0 1631 0.354 0.191 0.018 13191 1785
                                                                 0
            0 203 1660 0.071 0.133 0.008 379
3815 10189 21 10 00 317900 277900 66500 4.820 0.365 0.055 0.531
                                                                19
8128 4841 5996 976
                   0 1620 0.297 0.170 0.020 13134 1852
                                                                 Λ
0 119 0 197 1663 0.048 0.119 0.008 458
3818 10191 21 10 00 325200 294400 54900 4.708 0.368 0.059 0.511
                                                                2.1
7202 4309 6907 529 0 1621 0.376 0.228 0.036 12959 2044
     0 1001 202 1656 0.052 0.161 0.013 434
3824 10194 21 10 00 322200 287000 56400 4.737 0.377 0.059 0.419
                    0 1645 0.212 0.278 0.030 13513 1508
7792 4387 4026 584
                                                                0
        0 199 1682 0.056 0.183 0.015 413
0 990
3830 10197 21 10 00 313300 286000 53400 4.619 0.361 0.061 0.494
                                                                27
                     0 1665 0.284 0.329 0.040 13127 1657
                                                                0
8274 4420 2497 486
391 2984 0 194 1692 0.059 0.211 0.018 357
3834 10200 22 10 00 290100 250100 65000 4.766 0.387 0.059 0.572
                                                                30
8638 4206 7607 529 0 1571 0.546 0.156 0.013 11102 2377 0
                                                                0
4022 0 1261 186 1635 0.051 0.099 0.005 480
3835 10199 22 10 00 322900 281600 64800 4.692 0.361 0.060 0.453
                                                                29
8870 4397 3712 1022 0 1614 0.567 0.196 0.017 12941 2137 0
                                                                0
           0 201 1645 0.104 0.139 0.007 302
895
    2474
3838 10201 22 10 00 308500 279700 50000 4.779 0.352 0.056 0.415
                                                                31
                    0 1615 0.259 0.260 0.022 12560 1783
8729 4094 7091 558
              138 1657 0.044 0.125 0.009 586
     0
       790
    10202 22 10 00 322000 270400 76900 4.756 0.384 0.061 0.499
3841
                                                                0
8158 4937 3403 476 0 1591 0.641 0.193 0.017 12942 2593
              197 1670 0.063 0.114 0.008 512
     0 757
3842 10203 22 10 00 316900 285300 60800 4.686 0.356 0.059 0.418
                                                                33
8942 4667 5886 524 0 1611 0.409 0.164 0.012 12856 2027 0
                                                                 0
   0 789 194 1667 0.060 0.101 0.006 454
```

```
3844 10204 22 10 00 325100 282300 74600 4.654 0.381 0.058 0.472
8131 4951 3203 961 0 1577 0.440 0.162 0.016 13370 2372
                                                           0
                                                                 0
              195 1649 0.053 0.103 0.006 542
     0 694
    10205 22 10 00 315900 274500 67800 4.660 0.382 0.057 0.472
3846
                                                                35
              957 0 1572 0.407 0.149 0.012 12671 2492
7442 4413 5093
              185 1656 0.049 0.095 0.007 597
         0
3848 10206 22 10 00 320900 272600 72100 4.647 0.373 0.058 0.455
                                                                36
7909 2993 3611 534 1987 1569 0.370 0.166 0.016 12951 2491
                                                                 0
              188 1648 0.060 0.120 0.008 431
        0
3850 10207 22 10 00 321100 296700 47400 4.712 0.367 0.061 0.358
                                                                37
7936 4130 8490 980 0 1610 0.366 0.188 0.016 13086 1906
                                                                 0
              188 1667 0.058 0.120 0.008 500
       0
0 1481
3852 10208 22 10 00 322200 278000 68100 4.708 0.391 0.061 0.465
                                                                38
8009 4506 3301 972 0 1609 0.376 0.249 0.039 13194 1990
                                                                 0
         0 187 1657 0.049 0.156 0.012 456
0 1994
3856 10210 22 10 00 317300 278800 67700 4.683 0.393 0.058 0.491
                                                                40
7919 4529 4193 993 0 1607 0.434 0.178 0.014 13083 2083
          0 195 1658 0.064 0.107 0.007 521
3858 10211 22 10 00 318100 274700 70500 4.721 0.389 0.057 0.542
                                                                41
                     0 1596 0.438 0.179 0.016 12817 2195
8385 4597 5409 922
                                                                 0
903 1198
            0 186 1646 0.052 0.105 0.006 560
3860 10212 22 10 00 318800 270100 75700 4.702 0.385 0.058 0.574
                                                                42
8439 4758 2497 1025
                    0 1625 0.341 0.263 0.038 13049 1858
                                                                 0
           0 186 1659 0.045 0.148 0.012 497
499
     993
3863 10214 22 10 00 320000 282200 60900 4.728 0.336 0.057 0.429
                                                                44
8109 4313 6129 977 0 1589 0.435 0.166 0.016 13027 2245
                                                                 0
              184 1666 0.053 0.111 0.007 496
     1
          0
3866 10215 22 10 00 317800 275000 72500 4.647 0.386 0.060 0.505
                                                                45
8234 4576 3792 997 0 1586 0.454 0.169 0.012 12919 2246
                                                                 0
              183 1646 0.052 0.107 0.006 419
0 1494
        0
3868 10217 22 10 00 316200 288100 53900 4.574 0.385 0.057 0.545
                                                                47
8215 4435 2901 490 0 1634 0.385 0.248 0.032 13322 1792
                                                                 0
          0 182 1674 0.067 0.172 0.013 362
    10
0
3869 10216 22 10 00 327300 289700 62200 4.734 0.372 0.058 0.421
                                                                46
9366 4853 3000 996 0 1619 0.393 0.246 0.022 13843 2130
                                                                 0
       0 186 1679 0.061 0.154 0.010 427
     10218 22 10 00 322200 285500 61900 4.711 0.361 0.057 0.503
                                                                48
3873
8182 4451 3005 505 0 1645 0.394 0.243 0.028 13697 1843
                                                                 0
     0 609
              184 1688 0.075 0.166 0.013 376
     10219 22 10 00 320400 279100 65100 4.740 0.374 0.060 0.538
                                                                49
3876
8126 4505 3606 958 0 1628 0.363 0.224 0.029 13495 1905
                                                                 0
              182 1685 0.059 0.154 0.013 460
           0
     10220 22 10 00 322800 284600 62000 4.763 0.379 0.060 0.504
                                                                50
3877
8353 4402 3500 994 0 1633 0.246 0.245 0.022 13744 1922
                                                                 0
              184 1682 0.054 0.145 0.010 489
         0
     10222 22 10 00 320500 281700 58500 4.705 0.391 0.059 0.540
                                                                52
0
              181 1700 0.056 0.134 0.011 554
          98
     10223 23 10 00 319900 293500 49300 4.660 0.355 0.059 0.552
                                                                53
3883
                   0 1620 0.209 0.193 0.021 13702 2171
                                                                 0
9992 4913 5711 496
              183 1686 0.040 0.101 0.007 704
         0
     10224 23 10 00 319700 281800 65100 4.706 0.377 0.058 0.513
                                                                54
                     0 1659 0.336 0.267 0.030 14073 1861
                                                                 0
9495 5106 803 553
              180 1701 0.048 0.138 0.010 558
970
     0
         862
     10225 23 10 00 320600 292200 53200 4.673 0.384 0.061 0.428
                                                                55
9720 4747 3501 969 0 1640 0.438 0.306 0.033 13466 2039 0
    0 929 182 1690 0.063 0.185 0.015 388
```

```
3888 10227 23 10 00 316600 291500 53000 4.683 0.372 0.058 0.489
11041 5031 5397 991 0 1649 0.231 0.241 0.020 13635 1804 0
0 357 0 0 190 1700 0.047 0.138 0.010 554
3894 10228 23 10 00 309100 286800 46700 4.603 0.370 0.059 0.426
10015 4975 5341 496 0 1601 0.433 0.262 0.022 12950 2127 0
    0 0 0 195 1664 0.052 0.153 0.010 462
3897 10230 23 10 00 323000 292600 52900 4.632 0.347 0.057 0.421
                                                              3
8648 4283 4601 502 0 1650 0.222 0.255 0.025 13541 1575 0
                                                              0
0 0 893 203 1682 0.054 0.153 0.012 489
3899 10231 23 10 00 324000 275500 66800 4.744 0.356 0.057 0.435
9409 3374 4596 505 0 1620 0.246 0.256 0.018 13192 1571 0
0 0 212 1665 0.054 0.148 0.009 440
3901 10232 23 10 00 304900 250800 77100 4.709 0.384 0.060 0.620
                                                              5
10723 2052 5797 988 0 1536 0.430 0.231 0.010 11630 2640 0
        0 0 197 1629 0.039 0.105 0.005 540
     0
0
3903 10233 23 10 00 323300 282300 64600 4.689 0.369 0.060 0.492
                                                              6
9611 3769 3501 499 0 1634 0.281 0.315 0.029 13269 1704 0
                                                              0
0 0 469 202 1670 0.058 0.189 0.012 382
3905 10234 23 10 00 328400 287500 66200 4.689 0.361 0.060 0.444
                                                              7
9731 3139 3497 495 0 1627 0.311 0.323 0.028 13264 1795 0
0 0 651 204 1665 0.059 0.200 0.012 320
3907 10235 23 10 00 311300 266700 77800 4.842 0.372 0.057 0.574
9411 3990 3802 995 0 1613 0.586 0.180 0.014 12672 2389 0
                                                              0
       977 198 1666 0.081 0.119 0.007 376
3911 10237 23 10 00 315800 274100 68700 4.728 0.342 0.057 0.449
                                                             10
8599 3121 5001 1017 0 1593 0.567 0.162 0.009 12767 2389 0
0 0 766 202 1663 0.064 0.105 0.006 446
3913 10238 23 10 00 324500 280000 70500 4.747 0.347 0.058 0.429
                                                             11
8645 3245 4502 510 0 1605 0.382 0.263 0.016 13033 1896 0
0 0 254 201 1655 0.062 0.161 0.011 355
3917 10240 23 10 00 310900 276600 64100 4.705 0.367 0.055 0.474
                                                             13
8651 3979 4227 531 0 1628 0.357 0.201 0.018 12763 1796 0
0 0 549 192 1665 0.070 0.152 0.009 338
3919 10241 23 10 00 302200 250800 74200 4.801 0.374 0.055 0.505
10355 2164 3993 530 0 1615 0.211 0.247 0.018 12172 1683 0
0 0 741 188 1622 0.042 0.118 0.004 433
3920 10242 23 10 00 323900 284400 67100 4.820 0.367 0.056 0.431
10502 44 5711 986 0 1600 0.356 0.290 0.020 12951 2393 0
              0 200 1683 0.040 0.151 0.011 499
0 0 0
3922 10243 23 10 00 327300 283100 69600 4.750 0.360 0.057 0.457
                                                             16
9931 0 5607 2929 0 1573 0.632 0.182 0.008 12783 2990 0
0 996 0 201 1677 0.041 0.110 0.009 630
3926 10245 23 10 00 318500 277400 63100 4.850 0.369 0.055 0.411
7534 4869 4394 0 0 1627 0.192 0.248 0.018 13297 2158 503
0 0 197 1714 0.030 0.116 0.011 940
3927 10246 23 10 00 314000 276700 69200 4.856 0.330 0.052 0.501
7717 3824 4206 1526 0 1608 0.459 0.157 0.013 12748 2080 0
0 0 332 194 1680 0.049 0.103 0.008 509
3930 10248 23 10 00 311200 282500 62400 4.808 0.389 0.057 0.506
9012 3925 3793 1002 0 1623 0.599 0.212 0.018 12845 2366 0
0 4380 0 190 1675 0.089 0.147 0.010 360
3934 10250 24 10 00 322700 289900 60100 4.738 0.377 0.055 0.425
9453 4651 3489 827 0 1610 0.531 0.177 0.013 13453 2263 0
0 0 197 1683 0.109 0.143 0.011 311
3938 10252 24 10 00 319000 278400 68300 4.820 0.379 0.054 0.487
13226 0 2892 2763 0 1617 0.405 0.250 0.011 13529 2085 0
0 330
        0 0 201 1685 0.063 0.161 0.010 423
```

3949	10255 24	10 00 292700 253600 64900 4.833 0.367 0.054 0.389	28
12574	0 3800		
0	0 0	197 184 1641 0.041 0.116 0.004 554	
3950	10256 24	10 00 324300 278000 71900 4.775 0.377 0.054 0.476	29
13316	0 1995		
0	0 0	559 199 1658 0.047 0.153 0.006 479	
3952	10257 24	10 00 331400 288700 72700 4.625 0.341 0.054 0.432	30
10995	0 1496	3078 0 1581 0.319 0.283 0.023 13578 2106 0	
0	0 0	0 197 1656 0.043 0.155 0.008 465	
3960	10261 24	10 00 325700 288000 66700 4.718 0.359 0.055 0.319	34
8348	4661 1605	502 0 1581 0.422 0.213 0.011 13265 2689 0	0
0	0 0	186 1668 0.055 0.122 0.007 477	
3965	10263 24	10 00 315300 278100 65700 4.689 0.362 0.055 0.411	36
8597	4378 2003	477 0 1606 0.289 0.266 0.021 13567 2243 0	0
0	0 0	182 1682 0.041 0.138 0.010 664	
3967	10264 24	10 00 330900 291500 70400 4.702 0.372 0.055 0.439	37
8966	4078 3298	986 0 1594 0.429 0.173 0.015 13602 2334 0	0
0 20	59 0	193 1656 0.060 0.104 0.007 520	
3971	10266 24	10 00 322100 289300 59000 4.731 0.364 0.054 0.454	39
8096	4659 3603	983	0
0	0 0	189 1682 0.045 0.097 0.009 732	

Appendix 5 Listing of optimization results

Table A5.1 Optimization results for dataset D1

		1 12 40	501					results 10				·	PT-000-7-00-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	
Heat#	022	LIM2	DOL O2	ORE 2	RSL2	RDO LO2	HL2	C2	T2	Mn2	P2	Oact2	Violations	Cost
1739	2240	0	0	0	0	1516	217	0.043	1625	0.105	0.007	618		
OP#1	2283	400	0	0	0	0	250	0.0463	1645	0.135	0.0077	780	-TP	236.83
OP#2	2273	0	2000	0	0	1501	209	0.0464	1624	0.105	0.0061	639		12.57
OP#3	2271	219	0	876	1877	0	222	0.0452	1625	0.1011	0.007	621		10.36
1740	2339	0	0	0	0	463	214	0.046	1659	0.132	0.009	877		
OP#1	2559	365	0	0	0	0	223	0.046	1670	0.1356	0.0089	877		13.38
OP#2	2679	127	547	0	491	0	243	0.0461	1659	0.131	0.0079	878		1.03
OP#3	2351	0	0	881	66	0	195	0.0456	1660	0.1295	0.009	763		16.19
1741	1781	0	0	0	0	729	221	0.046	1662	0.124	0.006	644		
OP#1	2173	416	0	0	0	0	250	0.0453	1677	0.1324	0.0065	806	P	130.72
OP#2	2029	0	999	0	0	1032	216	0.0511	1657	0.1234	0.006	755		33.68
OP#3	2200	2	0	744	623	0	247	0.0462	1663	0.124	0.0048	642		1.17
1743	1861	0	0	0	0	512	212	0.056	1656	0.14	0.011	631		
OP#1	1779	1	2	0	0	0	224	0.0516	1656	0.1693	0.0093	630		28.92
OP#2	2097	0	1994	0	0	497	250	0.0539	1651	0.1535	0.008	631		18.21
OP#3	1975	16	1980	734	0	0	217	0.0509	1656	0.1399	0.0082	632		9.69
1744	1475	0	0	0	0	1101	236	0.06	1654	0.209	0.013	352		
OP#1	1100	0	0	0	0	0	250	0.0551	1661	0.2036	0.0116	462		48.72
OP#2	1259	0	1986	0	0	375	241	0.0642	1652	0.2089	0.013	352		8.77
OP#3	1100	352	0	38	7	0	250	0.0602	1654	0.2012	0.0122	352		4.26
1745	1703	0	0	0	0	343	212	0.045	1666	0.141	0.014	865		
OP#1	1968	0	0	0	0	0	196	0.045	1668	0.1432	0.0106	867		3.67
OP#2	2143	43	280	0	7	458	228	0.0451	1666	0.1411	0.0106	865		0.35
OP#3	1723	65	1998	99	0	0	197	0.0439	1664	0.1411	0.0126	863		4.56
1751	1802	0	0	0	0	0	213	0.04	1685	0.149	0.01	886		
OP#1	2075	421	192	0	0	0	250	0.0425	1685	0.1353	0.0087	885		15.58
OP#2	2351	0	1064	0	0	0	232	0.04	1685	0.1257	0.0089	945		22.45
OP#3	2012	0	166	220	2	0	222	0.04	1685	0.137	0.01	877		9.15
1752	1995	0	0	460	0	0	238	0.05	1690	0.184	0.011	579		
OP#1	1902	61	147	0	0	0	250	0.0511	1690	0.1714	0.0109	579		9.05
OP#2	2273	0	2000	0	0	0	245	0.0513	1685	0.1581	0.0108	680		39.1
OP#3	1894	146	0	62	0	0	250	0.0501	1685	0.1765	0.0107	600		12.9
1755	1789	0	0	0	0	0	238	0.042	1703	0.152	0.009	524		
OP#1	2036	0	0	0	0	0	250	0.0445	1704	0.1567	0.0102	672	P	171.17
OP#2	2038	0	2000	0	0	1001	249	0.051	1676	0.1416	0.009		CT-O-	398.68
OP#3	2349	0	0	1051	0	0	244	0.0417	1695	0.1225	0.006	688	-T	89.83
1756	1564	0	0	0	0	0	235	0.044	1696	0.154	0.009	700		
OP#1		498	0	0	0		250		1704	0.1439	0.0105	862	P	206:05
OP#2	2349	0	1251	0	0	954	250	0.0454	1689	0.1276	0.009	804	-T	62.38
OP#3	2058	62	0	538	237	0		0.0442	1696	0.1444	0.0087	697		7.07
1760	2186	0	1	0	0	0	225	0.046	1683	0.154	0.012	769		
OP#1	2209	30	999	0	0	0	248	0.046	1682	0.1476	0.011	770	******	4.9
OP#2	2332	0	25	0	0	0	222	0.0459	1678	0.1448	0.0106	870		24.13
OP#3	2224	0	29	23	0	0	250	0.0437	1680	0.154	0.0103	769		8.2

1767	1505	0	0	0	0	176	224	0.052	1671	0.400	0.045	700		
OP#1	1437	218	821	0	0	0	238	0.053	1671	0.193	0.015	720		
	1716	63	250	0	738	360	195	0.0518	1671	0.193	0.0128	718		2.14
OP#2 OP#3	1415	78	0	385	469	0	181	0.0518	1671	0.1932	0.0138	720		0.6
1768	2068	0	0	0	0	534	231	0.053	1670	0.1906	0.0138	721		1.65
OP#1	1843	ō	0	0	0	0	250	0.0546	1670	0.193 0.1978	0.013	451		10.10
OP#1	2195	0	2000	0	0	0	239	0.0544	1665	0.1976	0.0126	471		10.12
OP#2	2114	250	0	541	313	0	247	0.0532	1670	0.169	0.013	454		11.6
1769	2001	0	2002	0	0	0	214	0.048	1677	0.179	0.0103	453 744		13.47
OP#1	2038	44	999	0	0	0	249	0.0473	1676	0.173	0.018	744		3.01
OP#2	2195	0	373	0	0	0	236	0.0484	1673	0.1769	0.0132	745		3.01
OP#3	2090	0	4	22	0	0	236	0.0475	1676	0.1791	0.0135	740		2.21
1770	2117	0	0	0	0	1	233	0.054	1669	0.186	0.012	454		2.21
OP#1	1823	0	0	0	0	0	250	0.0542	1664	0.1806	0.0099	479		13.67
OP#2	1936	0	170	0	0	0	194	0.0548	1664	0.1748	0.012	585		41.29
OP#3	2278	31	0	973	0	0	250	0.0544	1666	0.145	0.0065	454		26.12
1771	1510	0	0	0	0	0	220	0.053	1666	0.163	0.011	712		20.12
OP#1	1525	127	497	0	0	0	237	0.05	1666	0.1632	0.0091	712		5.76
OP#2	1589	31	373	0	5	180	198	0.0535	1666	0.1627	0.0103	712		1.17
OP#3	1410	0	1496	0	0	0	216	0.0523	1663	0.1631	0.0106	710		4.22
1777	1929	0	2003	0	0	499	206	0.059	1656	0.16	0.013	513		
OP#1	1792	0	0	0	0	0	236	0.0536	1661	0.1899	0.0106	544		40.27
OP#2	1997	0	983	0	0	950	250	0.0583	1651	0.1747	0.0099	514		15.54
OP#3	1982	7	1249	957	98	0	214	0.0569	1656	0.1603	0.0091	512		3.99
1778	2079	0	0	0	0	1027	229	0.042	1688	0.156	0.017	959		
OP#1	2674	500	407	0	0	0	219	0.0473	1695	0.1559	0.0115	960		19.89
OP#2	2830	317	219	0	301	8	206	0.042	1688	0.156	0.0121	958		0.24
OP#3	2310	0	852	701	78	0	154	0.0416	1688	0.156	0.0128	957		1.21
1780	1840	0	0	0	0	475	240	0.049	1658	0.178	0.012	500		
OP#1	1723	2	0	0	0	0	245	0.0542	1663	0.1783	0.0098	498		16.45
OP#2	1726	0	2000	0	0	0	167	0.0551	1656	0.1749	0.0119	506		17.9
OP#3	1726	375	0	73	76	0	250	0.0509	1658	0.1656	0.0096	498		11.21
1783	1950	0	1924	0	0	500	210	0.051	1639	0.141	0.008	803		
OP#1	2073	498	0	0	0	0	250	0.0463	1651	0.1486	0.008	816		27.78
OP#2	2209	422	1261	0	93	47	250	0.0495	1639	0.141	0.0071	803		3.02
OP#3	2173	0	4	516	1720	0	236	0.0467	1639	0.1269	0.008	691		33.5
1784	1749	0	0	0	0	0	234	0.049	1648	0.172	0.011	585		
OP#1	1672	68	110	0	0	0	250	0.0507	1648	0.167	0.0092	585		6.41
OP#2	1726	0	2000	0	0	0	178	0.0508	1643	0.1584	0.0105	586		16.5
OP#3	1723	249	0	1	0	0		0.0494	1648	0.1556	0.0102	586		10.59
1789	1689	0	0	0	0	0	240	0.043	1673	0.153	0.008	561	*****	
OP#1	1958	139	0	0	0	0	250	0.0444	1687	0.138	0.008	723		59.36
OP#2	1955	0	2000	0	0	0	234	0.0499	1670	0.1382	800.0	711		55.21
OP#3	1726	374	0	349	0	0	250	0.0441	1669	0.1255	0.0066	579		28.13
1791	1718	0	0	218	0	49	239	0.059	1677	0.168	0.01	398		
OP#1	1471	0	. 0	0	0	0	250	0.0535	1672	0.1957	0.0106	493	P	115.37
OP#2	1850	0	1908	0	0	547	250	0.0566	1667	0.1707	0.01	559	T	103.48
OP#3	2004	0	0	1095	0	0	250	0.056	1672	0.1556	0.0065	422		23.56
1792	2018	0	0	0	0	0	233	0.053	1688	0.17	0.012	696		
OP#1	2195	250	307	0	0	0	250	0.0495	1688	0.1694	0.0114	696		7.18
OP#2	2349	0	0	0	0	231	236	0.0509	1682	0.1724	0.012	692	T	23.06
OP#3	2185	0	1470	123	27	0	238	0.0492	1688	0.1701	0.0113	693		7.7

			0	0	0	0	244	0.056	1671	0.405	0.040	004	———Т	
1793	1756	0	360	0	0	0	242	0.0516	1671	0.185	0.013	601		12.85
OP#1	1762	0	970	0	0	235	250	0.0518	1671 1667	0.1937	0.0121	600		7.33
OP#2	2021	0	1437	4	252	233	247	0.0548	1671	0.1876	0.0122	600		3.53
OP#3	1899	1	1989	0	0	0	228	0.0343	1683	0.1851	0.0123	599 962		3.33
1795	2287	0		0	0	0	223	0.041	1686	0.153	0.017	961		10.31
OP#1	2427	470	57	0	0	0	245	0.0437	1683	0.1542		964		2.18
OP#2	2664	308		140	76	0	183	0.0411	1683		0.0118			0.05
OP#3	2087	14	1365		0	0	224	0.041	1688	0.153	0.0143	962		0.03
1801	2235	494	0	0	0	- 6	250	0.0408			0.01	911	C	74.86
OP#1	2097	344	379		10	278	250	0.0408	1683 1683	0.1424	0.01	1022	C	45.33
OP#2	2332	0	29	526	0	0	202		1676	0.1314	0.01	895	CT	174.71
OP#3	1975	0	1971	536	0	0	220	0.0395	1679		0.011	1165	<u> </u>	174.71
1803	2610	502	1267	0						0.118	0.0102	1166		18.81
OP#1	2796	236	0	0	0	0	186	0.0361	1691	0.1179		1162		0.61
OP#2	2852	31	500	0	621	47	247	0.034	1679	0.1181	0.009	1020		15.16
OP#3	2378	0	156	705	0	0	180	0.0341	1677	0.1178	0.011	983		13.10
1804	1750	498	0	0	0	0	229	0.044	1684	0.143	0.009		P	110.16
OP#1	2036	500	0	0	0	0	250	0.0391	1697	0.1317	0.0097	959 983		22.28
OP#2	2195	293	774	0	22	680	250	0.0409	1680	0.1264	0.009			37.26
OP#3	1843	0	0	1054	0	0	192	0.0412	1683	0.123	0.009	825		37.20
1806	2296	503	0	0	0	0	207	0.045	1687	0.13	0.009	875		6.53
OP#1	2273	500	6	0	0	0	247	0.0441	1690	0.132	0.009	873		2.3
OP#2	2461	0	0	0	37	250	250	0.045	1685	0.1299	0.0089	873 787		14.57
OP#3	2158	11	1500	218	154	0	236	0.043	1687	0.13	0.009	721		14.57
1808	2455	0	0	495	0	0	248	0.053	1664	0.177	0.01			6.63
OP#1	2280	500	0	0	0	0	244	0.0523	1669	0.1777	0.01	721		15.4
OP#2	2349	51	25	0	613	547	213	0.0531	1660	0.1581	0.01	721		21.08
OP#3	2197	0	4	766	93	0	197	0.0521	1664	0.16	0.01	663		21.00
1809	2553	0	0	0	0	0	209	0.052	1668	0.139	0.011	916		22.81
OP#1	2525	125	27	0	0	0	187	0.0467	1666	0.1537	0.0109	916		36 64
OP#2	2662	0	0	0	0	497	234	0.045	1664	0.1497	0.0102	823 775		34.46
OP#3	2432	0	2000	608	0	0	205	0.0455	1663	0.1399	0.0106			34.40
1815	2000	0	0	0	0	0	215	0.044	1686	0.128	0.01	868 868		4.66
OP#1	2038	7	12	0	0	0	202	0.044	1686	0.1337	0.009			9.65
OP#2	2038	0	282	0	0	0	195	0.0445	1683	0.128	0.0095	917		10.02
OP#3	1982	5	561	34	0	0	233	0.0403	1685	0.1281	0.0088	866		10.02
1828	1498	0	0	0	0	1200	187	0.057	1632	0.164	0.012	719		11.72
OP#1	1396	5	10	0	0	0	197	0.0524	1632	0.1697	0.0112	720 720		7.41
OP#2	1843	250		0	863	372	249	0.053	1632	0.1636	0.0098			22.97
OP#3		0	10	372	2168	0					0.012	735		
1832	1484			515	0	0			1670		0.012			11.98
OP#1	1611	8		0	0	0			1681		0.009	735		0.23
OP#2		29	1300	0	252	313					0.011			0.83
OP#3			0	1	1591	0			1670		0.0092	796		0.00
1833			928		0	1436					0.01			303.79
OP#1					0	0			1707		0.0118			22.85
OP#2		_		0	0	2115					0.01			9.91
OP#3					1017	0					0.01			9.91
1834					0	1004					0.013			28.5
OP#1			_		0	C			_		0.0124			23.54
OP#2					623	C			-					32.73
OP#3					0	C	222	0.0476	1675	0.1513	0.0113	771		1 32.70

1836	2138	0	0	915	0	33	247	0.054	1666	0.146	0.011	627	Γ	
OP#1	2129	0	708	0	0	0	249	0.0504	1666	0.146	0.0092	637		
OP#2	2273	0	61	0	0	0	249	0.054	1661	0.146		636		6.95
OP#2	2080	0	235	56	0	0	243	0.0524	1662	0.13461	0.0082	676		18.95
1837	2350	0	0	951	104	0	190	0.042	1636	0.1461	0.0096	635		7.72
OP#1	2557	500	0	0	0	0	243	0.0463	1655		0.009	840		110.00
OP#1	2781	334	1415	0	528	806	236	0.0424	1636	0.1439	0.0092	843	-TP	119.98
OP#2	2632	24	0	899	2500	0	198	0.0424	1640	0.1141	0.007	840		1.11
1838	2358	0	ő	0	0	0	189	0.042	1680	0.1047	0.009	807		18.62
OP#1	2476	493	250	0	0	0	182	0.037	1680	0.102	0.01	1224		
OP#1	2696	0	0	0	667	8	243	0.037	1680	0.102	0.0092	1226		8.37
OP#2	2214	0	2	753	0	0	164	0.037	1680	0.102	0.0078	1118		8.78
1839	2245	0	0	0	0	654	239	0.055	1683	0.0992	0.01	1063		25.65
OP#1	1965	55	14	0	0	004	223	0.0527		0.161	0.013	633		
	2349	0	250	0	7	352	250	0.0527	1683	0.1698	0.0119	633		9.67
OP#2	1953	11	2000	346	81	0	215	0.0524	1683	0.1611	0.012	633		4.82
OP#3	2079	- '0	0	0	0	1002	239		1683	0.161	0.0117	633		1.65
1840	1958	0	39	0	0	0	234	0.055	1683	0.153	0.012	607		
OP#1	2332	0	1750	0	0	106	250	0.051 0.0505	1682	0.1727	0.0114	608		20.97
OP#2		0	1312	457	88				1678	0.1582	0.0113	634		21.17
OP#3	2175	0	0	514	0	0	240	0.0515	1683	0.1531	0.0101	607		6.53
1841	2133 1794	60	0	0	0	0	210 226	0.058	1659	0.169	0.011	555		
OP#1		48	827	0	130	493	248	0.0561	1659	0.1924	0.0109	556		17.49
OP#2	2153 1960	0	027	844	34	493	198	0.0575	1659	0.1691	0.0106	555		1.03
OP#3	2541	0	0	044	0		214	0.0576	1659	0.169	0.0107	556		0.95
1844	2662	1	0	0	0	0	202	0.045	1663	0.126	0.011	833		40.07
OP#1 OP#2	2346	0	0	0	310	0	160	0.0455	1673 1658	0.1284	0.0096	833		12.67
OP#2	2344	0	248	168	0	0	211	0.0449	1663	0.1223	0.011	823		8.93
1845	1798	0	0	0	0	0	210	0.0444	1667	0.126	0.0109	835 817		1.8
OP#1	1914	15	0	0	0	0	216	0.044	1675	0.1341	0.0103	815		9.02
OP#1	2190	0	1427	0	626	0	250	0.044	1665	0.1341	0.0098	817		8.03 1.78
OP#2	2002	0	8	103	1818	0	235	0.0439	1667	0.1302	0.0098	794		6.31
1846	2124	0	0	0	0	0	211	0.0439	1680	0.1302	0.009	1011		0.31
OP#1	2351	500	8	0	0	0	243	0.0424	1682	0.1282	0.009	921		13.15
OP#1	2664	250	500	0	362	0	250	0.0424	1676	0.1212	0.009	1011		19.08
OP#2	2334	0	1013	838	0	0	202	0.04	1680	0.1212	0.009	848		41.44
1847	2386	0	0	000	0	- 0	211	0.046	1663	0.099	0.009	1040		41.77
OP#1	2471	291	1376	0	0	0	238	0.0411	1663	0.099	0.0086	1040		10.67
OP#1	2547	0	0	0	46	0	250	0.0422	1658	0.0953	0.0063	952		25.26
OP#2	2263	0	845	174		0	222	0.0395	1658	0.0986	0.009	892		37.32
1848		0	043	1/4	0	0	211	0.0333	1664	0.138	0.01	900		07.02
OP#1	1847 1921	458	653	0	0	0	241	0.0467	1664	0.138	0.0097	899		4.77
OP#1	2163	63	000	0	623	0	250	0.0487	1664	0.1346	0.0094	891		4.31
OP#2	1924	03	98	564	023	0	208	0.0465	1664	0.1278	0.0034	758		30
1851	2087	0	0	0	0	521	197	0.047	1639	0.129	0.01	884		
OP#1	2341	500	0	0	0	0	244	0.0455	1652	0.1291	0.01	856		19.11
OP#1	2525	161	63	0	1219	27	248	0.0448	1639	0.1292	0.0097	885		4.97
OP#3	2293		2	1217	1249	0	182	0.0469	1639	0.1019	0.01	730		39.45
1852	1785	0	0	0	0	194	217	0.0405	1654	0.151	0.012	843		
OP#1	1752	0	700	0	0	0	209	0.0477	1654	0.1511	0.0118	841		5.37
OP#1	2070	125	700	0	613	0	250	0.0483	1654	0.1498	0.011	843		4.13
OP#2	1723	0	0	958	013	0	166	0.0491	1650	0.1329	0.012	767		26.45
UF#3	1/23	<u> </u>		900	U	U	1001	0.0431	,000	0.1020	3.0,2	1		

1050	2160	0	0	0	0	G	202	0.040	1071					
1853	2327	423	1998	0	0	0	248	0.042	1674	0.118	0.011	1104		
OP#1	2508	0	0	0	545	0	250	0.0419	1674	0.1181	0.0106	1102		0.4
OP#2		0	352	131	5	0	207	0.0415	1669	0.1136	0.008	994		19.46
OP#3	2163	0	0	0	0	605	234	0.0383	1674	0.1179	0.011	955		22.83
1854	3303	384	0	0	0	003	140	0.033	1677	0.091	0.012	1336		
OP#1	3600	23	0	0	467	55		0.039	1683	0.0939	0.0097	1337	C	50.09
OP#2	3600	0	1945	731	0	0	211	0.03	1676	0.0912	0.0084	1174		22.53
OP#3	2979	- 0	1481	0	0	0	141	0.03	1674	0.091	0.0114	1183		23.91
1858	3000	469	0	0	0	0	213	0.038	1686	0.09	0.01	1320		
OP#1	3339	0	0	0	39	106	160	0.0374	1686	0.0997	0.01	1325		13.58
OP#2	3453	0	1666	701	0		249	0.0312	1684	0.09	0.0086	1158		31.86
OP#3	3004	0	0	701	0	0	183	0.0298	1681	0.0834	0.01	1086	0-	111.25
1859	2350	500	1697	0	0	0	206	0.04	1691	0.152	0.014	1098		
OP#1	2234 2664	0	0	0	1400		243 250	0.0429	1691	0.1499	0.0139	1096		9
OP#2		0	1001	245	626	0		0.0372	1688	0.1461	0.0125	1092		14.69
OP#3	2143	0	2002	0	020	0	195	0.0398	1691	0.1422	0.014	944		21.1
1862	2319	370	1369	0	0	0	249	0.048	1668	0.125	0.009	982		
OP#1	2381	0	0	0	37	0	249	0.0434	1664	0.1174	0.009	980		19.84
OP#2	2557	0	1501	23			250	0.0434	1663	0.1045	0.0066	927		36.5
OP#3	2251	0			0	0	233	0.0415	1663	0.1084	0.009	849		48.65
1863	1884	500	1996 0	0	0	1412	237	0.046	1653	0.123	0.009	922		
OP#1	1723		0	0		1007	250	0.0431	1666	0.1451	0.0095	881	P	95.8
OP#2	1985	125			618	1627	250	0.0443	1653	0.123	0.0084	920		4.17
OP#3	1882	0	0	1051	1874	0	198	0.0438	1654	0.111	0.0089	766		31.99
1864	1799	0	0	0	- 0	0	206	0.045	1669	0.134	0.011	923		
OP#1	1696	125	0	0	0 340	0 653	195	0.0446	1669	0.1374	0.0107	924		3.58
OP#2	2031	94	313	175	1127		250	0.0449	1669	0.134	0.0104	922		0.28
OP#3	1882	0	0	1/3	0	0	239	0.0441	1669	0.1341	0.0109	772		18.57
1865	1687 1489	438	22	0	0	0	209	0.033	1660 1656	0.116	0.008	922		24.04
OP#1			500	0	655	575				0.1287	0.008	921		24.91
OP#2	1870	78	2000	656			250	0.0504	1660	0.116	0.0068	922		4.9
OP#3	1410	70	1994		0	0	190	0.0466	1655 1679	0.1076	0.008	758		47.48
1866	2139 2156	375	1374	0	0	0	232 247	0.047	1674	0.116 0.1065	0.007	985 981		40.00
OP#1	2205			0	0	0		0.0439	1674	0.1065	0.007			19.86
OP#2	2036	0	0	0	0	0	227 248	0.047	1668	0.097	0.0055	1018 831	-T	24.75 101.82
OP#3 1871	1864	0	0	0	0	0	181	0.043	1661	0.1139	0.005	891	-1	101.02
OP#1	2016	407	0	0	0	0	232	0.043	1676	0.102	0.0048	893		18
		281	1752	0	37	0	195	0.0478	1661	0.1012	0.0040	891		11.99
OP#2	1921			854	76	0	193	0.0478	1661	0.099	0.005	814		11.85
OP#3	1762	6	0			701		0.043	1667	0.099	0.003	624		11.00
1876	2098	429		0	0		233	0.032	1672	0.129	0.007	783		45.32
OP#1	2114	438	1750		0	0		0.0469	1662	0.1346	0.007	679		15.81
OP#2	2156	0	1750	0	0	0	249	0.0524	1663	0.1274	0.0009	623		8.06
OP#3	2036	0	0	643	0	0	231		1679	0.128	0.007	1071		0.00
1879 OD#4	1900	0	0	0	0	0	147	0.044	1682	0.1351	0.0098	1071		4.13
OP#1	2012	344	0	0	1540	0	177	0.0446	1677	0.1331	0.0098	1072		3.09
OP#2	2227	3	1005	0 0 0 0	1549	0	229		1675	0.1333	0.009	909		32.15
OP#3	1706	0	1005	851	0	0	154	0.0433		0.1197	0.007	1355		JZ. 1J
1883	1706	0	0	0	0	0	149	0.039	1684	0.095	0.007	1193	P	188.23
OP#1	2273	500	0	0	0	0	216	0.0338	1700 1681	0.0948	0.0069	1193		23.35
OP#2	2300	0	0	0 0.70	821	1001	250	0.0359		0.0949	0.0009	987		220.29
OP#3	2036	0	1947	879	626	0	195	0.0325	1684	0.0734	0.007	301	0-1	220.23

1886	1575	0	0	965	1373	0	229	0.057	1636	0.124	0.005	407	T	
OP#1	1317	167	0	0	0	0	250	0.0517	1652	0.121	0.005	427		
OP#2	1415	0	2000	0	0	1498	243	0.0611	1634	0.1313	0.0068	588	P	449.56
OP#3	1405	65	0	1141	626	0	215	0.059	1636	0.1211	0.0046	468		19.33
1889	1905	0	0	0	0	1378	152	0.051	1699	0.121	0.005	429		3.89
OP#1	1965	42	57	0	0	0	140	0.0507	1699	0.1745	0.018 0.0145	989		0.70
OP#2	2515	163	18	0	995	653	245	0.0463	1699	0.1713	0.0145	989		2.73
OP#3	1709	0	2000	526	274	0	140	0.0446	1699	0.177	0.0128	988		9.45
1890	1798	0	0	578	0	0	233	0.06	1659	0.177	0.0149	963		19.25
OP#1	1452	0	0	0	0	0	250	0.0552	1658	0.1622	0.007	459		45.00
OP#2	1647	0	1730	0	0	0	236	0.0622	1654	0.1514	0.007	460		15.02
OP#3	1603	0	749	302	0	0	250	0.0584	1654	0.1541	0.007	536		27.12
1891	1810	0	0	916	2095	0	143	0.041	1634	0.106	0.0066	483		13.25
OP#1	2036	464	0	0	0	Ō	160	0.0477	1649	0.1292	0.0012	990		
OP#2	2109	500	874	0	899	1279	143	0.041	1634	0.106	0.0069	1120	C	99.29
OP#3	1625	127	2000	435	2422	0	140	0.0409	1634	0.106	0.0106	991		0.4
1894	1925	0	0	594	284	0	229	0.045	1671	0.138	0.0108	989		0.37
OP#1	1990	67	0	0	0	0	223	0.0485	1678	0.138	0.0082	720		44.44
OP#2	1999	0	1750	0	0	0	195	0.0499	1670	0.1379	0.0082	719 730		14.44
OP#2	1999	49	0	370	218	0	228	0.0463	1671	0.1379	0.0086			13.2
1896	2096	0	2003	0	0	551	224	0.051	1662	0.1361		718		3.22
OP#1	2036	496	0	0	0	0	250	0.0498	1676	0.1562	0.008	584		4 4 7 00
OP#1	2104	1	1711	0	0	1267	248	0.0557	1658	0.1366	0.0088	746	P	147.02
OP#2	2065	68	0	691	1210	0	230	0.0509	1662	0.1300	800.0	584		21.97
1897	1670	00	0	0	0	0	150	0.0309	1638		0.008	585		7.17
OP#1	1799	16	0	0	0	0	140	0.0422	1640	0.063	0.007	1141		0.7
OP#1	2231	97	1022	0	1405	59	250	0.0422	1638		0.0051	1141		9.7
OP#2	1596	4	1625	382	932	0	174	0.0401	1637	0.0631	0.0011	1140		9.09
	2228	0	2003	0	0	528	228	0.051	1667	0.063	0.007	1006		27.18
1898 OP#1	1943	126	0	0	0	0	250	0.051	1679	0.120	0.007	607		40.50
OP#1	2021	4	1900	0	- 0	250	243	0.0562	1664		0.007	608		18:53
	1906	63	839	323	626	230	242	0.0509	1666	0.1254	0.007			13.83
OP#3	2592	0	2001			2518	216	0.0309	1610	0.1261		605		1.7
1900 OP#1	2877	147	0	0	0	2310	250	0.046	1664	0.1224	0.006	541	-TP	793.62
	2366	184	1937	0	29	2628	155	0.0469	1610	0.1224		703 541	-1	
OP#2	2542	345	63	1037	2500	0	221	0.0469	1621	0.0919	0.0059	541		1.99
OP#3									1706					11.15
1903	1725	500	0	0	0	0	150	0.044	1721	0.118	0.009	1364 1203	P	140.00
OP#1	2222	500 114	0	0	0 2065	35	179 250	0.0404	1706	0.1068	0.0099	1306		140.09
OP#2	2515									0.1121	0.0083	1007	0-	189.62
OP#3	1687	0	970	1065	78		142	0.0377	1705 1647	0.1121	0.009	364		109.02
1905	2369	0	2001	907	0	0	228	0.06					CMnP	980.21
OP#1	2349	5	0	0	0	1001	250	0.0519	1660	0.156	0.0072	525	-T	137.48
OP#2	2302	0	1783	0	0	1001	250	0.0597	1634	0.1239	0.0038	420	-	
OP#3	2349	16	1496	958	0	0	250	0.0568	1642	0.123	0.0037			25.97
1907	1955	0	0	0	0	0	200	0.042	1708	0.144	0.014	1069		14.70
OP#1	2178	494	2000	0	0	0	249	0.0447	1708	0.1322	0.0111	1069		14.72
OP#2	2317	0	0	0	584	0	195	0.042	1705	0.1245	0.01	1067		16.66
OP#3	1845	0	31	0	2	0	181	0.0363	1705	0.1439	0.0114	1070		16.17
1828	1498	0	0	0	0	1200	187	0.057	1632	0.164	0.012	719		44.70
OP#1	1396	5	10	0	0	0	197	0.0524	1632	0.1697	0.0112	720		11.72
OP#2	1843	250	194	0	863	372	249	0.053	1632	0.1636	0.0098	720		7.41
OP#3	1669	0	10	372	2168	0	206	0.0526	1632	0.1494	0.012	682		22.97

		0	0	995	815	124	229	0.06	1678	0.144	0.008	406		
1909	1547	154	0	0	0.0	0	250	0.0538	1693	0.144	0.0102	543	CMn	447.47
OP#1	1332	51	2000	0	0	1994	250	0.0603	1673	0.1037	0.008	521	Civiti	35.55
OP#2	1635	19	2000	844	1139	0	246	0.059	1678	0.1441	0.0058	407		1.92
OP#3	1586	0	0	0	0	258	164	0.06	1687	0.188	0.0038	761		1.02
1910	1601	- 0	244	Ö	ol	0	180	0.0547	1684	0.1883	0.013	762		11.89
OP#1	1476	282	125	o	396	117	248	0.057	1687	0.1881	0.0118	761		5.04
OP#2	1928	0	2000	99	0	0	188	0.0536	1687	0.1899	0.013	745		13.91
OP#3	1352	- 0	0	0	0	584	166	0.058	1673	0.171	0.015	628		
1912	1806 1723	$\frac{3}{1}$	686	Ö	0	0	221	0.056	1672	0.1717	0.0112	629		4:95
OP#1	1862	78	6	ō	188	0	195	0.0578	1673	0.1705	0.0122	628		0.79
OP#2	1772	- 0	585	185	132	0	219	0.0553	1673	0.171	0.0108	629		4.87
OP#3	1735	0	0	0	0	999	225	0.055	1652	0.137	0.007	445		
1913	1508	250	0	0	0	0	250	0.0525	1669	0.1772	0.0095	603	TMnP-	543.15
OP#1	1647	0	1906	0	0	2002	234	0.0591	1647	0.1335	0.0065	477		22.29
OP#2 OP#3	1647	144	0	1006	1249	0	228	0.0554	1653	0.1371	0.0059	443		1.81
1914	1798	0	0	0	0	1026	174	0.06	1677	0.201	0.018	714		
OP#1	1413	33	504	0	0	0	197	0.056	1677	0.2099	0.0149	713		11.28
OP#1	1980	235	516	0	838	344	250	0.0559	1677	0.2011	0.0131	714		6.96
OP#2	1405	11	999	356	938	0	175	0.0552	1677	0.2013	0.0145	713		8.69
1915	1986	0	0	0	0	0	184	0.053	1675	0.187	0.016	968		
OP#1	2004	497	2000	0	0	0	248	0.05	1671	0.1795	0.0136	969		13.96
OP#1	2349	0	0	0	1083	0	250	0.05	1670	0.1688	0.0106	884		28.56
OP#2	1726	0	0	0	0	0	172	0.0467	1673	0.1869	0.0151	916		19.02
1917	2239	499	0	0	0	1135	174	0.053	1670	0.131	0.01	657		
OP#1	1831	141	4	0	0	0	223	0.053	1676	0.1596	0.0088	656		27.57
OP#2	2200	31	1840	0	37	626	233	0.0531	1670	0.1309	0.0067	658		0.6
OP#3	2041	3	1500	450	1559	0	234	0.0495	1670	0.1311	0.0063	656		7
1918	1711	0	0	0	0	0	223	0.05	1691	0.2	0.012	495		
OP#1	1936	0	0	0	0	0	250	0.0495	1691	0.206	0.014	572	P	185.67
OP#2	2258	0	1279	0	0	2002	250	0.0499	1671	0.1692	0.012	657	T	218.87
OP#3	2195	93	0	687	0	0	250	0.0502	1686	0.1871	0.0114	539		20.71
1919	1849	498	0	0	0	1192	168	0.046	1689	0.13	0.01	1037		40.00
OP#1	1968	500	0	0	0	0	229	0.0456	1704	0.1496	0.01	910		43.69
OP#2	2310	63	250	0	1373	997	250	0.0457	1689	0.1302	0.0082	1036		0.99 17.86
OP#3	1638	2	999	1081	604	0		0.0432	1689	0.13	0.0098	914		17.00
1923	2476	496	0	0	0	1248		0.05	1671	0.158	0.01	761	P	131.85
OP#1	2129		0	0	0	0		0.0513	1686	0.1855	0.0109	719		0.25
OP#2			1892	0	762	512		0.0499	1671	0.158	0.0092	762 760		1.55
OP#3		2	1500	738	1327		178				0.01	388		1.55
1924			0	0							0.007	518	CP	197.21
OP#1		2	0				250				0.008	471	0	31.64
OP#2		0	1666	0							0.007	386		13.18
OP#3	1706	125	23	783							0.007	450		
1926	1806	0									0.0116	556		93.34
OP#1	1706	15									0.0110	545		45.25
OP#2	1867	C	2000									450		7.2
OP#3	1628	437					250					755		
1927	2421	C			_		_		_			757		14.42
OP#	2535	180					237							14.76
OP#2	2 2273	3 (506				187							11.33
OP#3	3 2332	2 (0	701	C		218	0.0451	1641	0.0337	1 0.000	1,00	J	

1929	2076	0	0	0	0	482	174	0.05	1643	0.420	0.000		
OP#1	2063	294	8	0	0	0	235	0.0477	1643	0.138	800.0	773	
OP#1	2122	0	874	0	0	0	221	0.05	1642	0.1532	0.008	773	 15.73
OP#2	2114	0	29	394	0	0	238	0.0475	1642	0.1379	0.0072	773	 0.95
1931	1963	0	0	0	0	112	173	0.041	1677	0.138	0.008	687	 17.09
OP#1	2141	500	2000	0	0	0	249	0.0454	1677	0.152	0.013	1057	
OP#1	2332	63	49	0	743	0	195	0.041	1677	0.1483	0.012	1059	 13.26
OP#2	1892	0	0	271	0	0	167	0.0386	1677	0.1413 0.151	0.0108	1058	 7.26
1932	1874	0	0	0	0	282	178	0.042	1647	0.109	0.013	1032	 9.67
OP#1	2117	500	1674	0	ō	0	250	0.0472	1652	0.109	0.008	982	
OP#1	2038	123	528	0	618	0	140	0.0472	1647		0.0061	982	 21.81
OP#2	1823	0	0	0	418	0	195	0.042	1647	0.0853 0.1072	0.0051	982	 26.19
1939	2648	ō	ō	0	0	0	200	0.042	1666	0.1072	0.008	939	 6.23
OP#1	2476	445	203	0	0	0	233	0.0429	1666	0.1299	0.01	953	
OP#2	2349	0	0	0	134	0	188	0.042	1661	0.1299	0.0089	952	 2.23
OP#3	2312	ŏ	ō	290	0	0	221	0.0402	1663	0.1289		931	 8.51
1943	2472	0	0	0	0	0	220	0.038	1669		0.01	868	 17.7
OP#1	2420	500	272	0	0	0	240	0.038	1669	0.124	0.008	976	
	2508	2	1044	0	0	0	204	0.0381	1667	0.124	0.0079	976	 9.79
OP#2 OP#3	2344	64	63	405	0	0	234	0.0379	1665	0.1131	0.008	995	 12.7
	2056	0	00	0	0	0	217	0.0379	1696	0.1181	0.008	835	 24.91
1944 OP#1	2207	484	123	0	0	0	238	0.037	1696	0.159	0.013	966	
OP#1	2508	15	999	0	12	0	229	0.037	1696	0.159 0.152	0.0125	964	 12.52
	2117	0	8	257	469	0	208	0.037	1696		0.0127	970	 4.94
OP#3	2826	0	0	0	0	640	199	0.037	1689	0.1587	0.013	959	 1.84
1945	2950	500	1443	0	0	040	221	0.0393	1699	0.144	0.013	1226	 04.04
OP#1	2899	0	0	0	626	0	195	0.0338	1688	0.1309	0.0128	1225	 34.61
OP#2	2508	0	47	349	196	0	181	0.0332	1689	0.1323	0.0119	1129	 17.43
OP#3	1822	0	0	0	0	709	215	0.0332	1688	0.1403	0.013	1078	 17.32
1948 OP#1	2026	37	0	0	0	0	226	0.0443	1694	0.173	0.014	778 779	 6.74
OP#1	2224	0	1369	0	0	125	233	0.0443	1685	0.173	0.0129	779	
OP#2	1946	62	907	18	494	0	234	0.0439	1688	0.1728	0.0129	782	 3.09 0.83
1949	1737	02	0	0	0	336	174	0.0439	1667	0.1726	0.0129	802	 0.63
OP#1	1652	37	1509	0	0	0	223	0.052	1667	0.1668	0.012	803	 7.74
OP#1	1982	86	1309	0	584	0	250	0.0557	1667	0.1583	0.012	802	 5.2
OP#2	1440	3	999	101	0	0	186	0.0506	1665	0.1563	0.0087	800	 11.86
						17		0.0300	1648	0.166		816	 11.00
1953 OP#1	2084 1936	0 17	0 1877	0	0	- 17	182 250	0.043	1648	0.1615	0.017	816	 14.12
OP#1	2048	118	295	0	78	0	168	0.0479	1648	0.156	0.0125	816	 6.19
	1823			5	37			0.0434	1648	0.1563	0.0118	818	 7.04
OP#3		187	0			0	205 174		1650	0.1563	0.0132	817	 7.04
1955	2086 1990	102	0	0	0	0		0.043	1654	0.1601	0.0104	817	 8.32
OP#1		102	0	0	0 7		220	0.0448		0.1601	0.0104	817	 2.37
OP#2	2038	116	999	0		0	195		1650 1650	0.138	0.0109	803	 11.53
OP#3	1985	63	63	428	547	0	211	0.043			0.011	1135	 11.00
1957	1990	0	0	0	0	0	187	0.04	1667	0.146	0.014	1135	 0.48
OP#1	2261	415	498	0	0	0	206	0.0399	1667			1057	 12.26
OP#2	2349	0	4	0	357	121	219	0.0379	1667	0.1462	0.011		
OP#3	1916	0	446	301	0	0	166	0.0356	1665	0.1461	0.014	1081	 17.51
1961	1763	496	0	0	0	696	180	0.041	1671	0.154	0.014	1048	 21.42
OP#1	1980	391	0	0	0	0	206	0.0412	1686	0.1631	0.0139	1046	 0.19
OP#2	2231	390	1155	0	621	426	244	0.041	1671	0.154	0.0118	1048	 9.32
OP#3	1608	0	282	768	745	0	156	0.0407	1671	0.1539	0.014	959	 9.52

1002	2278	491	0	0	0	554	176	0.039	1650	0.407				
1963	2266	315	2	0	0	0	197	0.0436	1665	0.127	0.014	1006	*	
OP#1	2478	372	436	0	645	907	213	0.039	1650	0.1487	0.0117	1006		43.86
OP#2 OP#3	1865	100	567	760	1249	0	140	0.039	1651	0.127	0.009	1006		0.09
1968	1753	0	0	0	0	393	224	0.046	1685	0.127 0.175	0.0128	991		2.5
OP#1	1933	492	1054	0	0	0	229	0.0479	1685	0.173	0.012	977		
OP#1	2036	0	0	0	1210	0	180	0.046	1681	0.1729	0.012	978		5.42
OP#3	1682	0	502	70	0	0	193	0.0448	1685	0.1732	0.0112	977		9.51
1970	1961	0	0	0	0	0	199	0.052	1680	0.162	0.012	887 939		12.99
OP#1	2041	0	616	0	0	0	238	0.0446	1675	0.1636	0.012	782	C	77.00
OP#2	2295	0	0	0	32	0	250	0.0452	1675	0.1508	0.012	914		77.09
OP#3	1960	0	248	0	0	0	236	0.0448	1671	0.162	0.0119	789	CT	27.68
1971	1715	0	0	0	0	0	209	0.052	1691	0.193	0.016	655		95.64
OP#1	1550	3	405	0	0	0	250	0.0476	1691	0.1929	0.0148	655		8.69
OP#2	1887	0	1298	0	0	98	250	0.0493	1686	0.202	0.0157	655		14.56
OP#3	1728	0	0	526	0	0	224	0.0505	1691	0.1923	0.0138	655		3.62
1974	1420	0	0	0	0	0	225	0.051	1679	0.147	0.01	932		5.02
OP#1	1647	355	2	0	0	0	195	0.0484	1679	0.1481	0.01	932		6.07
OP#2	2014	0	156	0	1153	59	249	0.0506	1679	0.1469	0.008	932		0.82
OP#3	1410	13	999	465	10	0	176	0.0466	1679	0.147	0.01	843		18.82
1978	1909	0	0	0	0	397	200	0.053	1690	0.213	0.017	921		
OP#1	1958	313	1488	0	0	0	218	0.0519	1688	0.213	0.017	923		4.01
OP#2	2466	0	0	0	1562	0	250	0.0487	1688	0.1995	0.0142	915		16.8
OP#3	1779	0	375	0	547	0	178	0.0487	1690	0.2129	0.017	865		14.21
1979	2126	0	0	0	0	0	204	0.044	1698	0.208	0.014	501		
OP#1	2078	0	0	0	0	0	250	0.0484	1699	0.2078	0.0159	594	P	164.13
OP#2	2349	0	762	0	0	2440	250	0.0485	1673	0.1776	0.014	642	-T	279.74
OP#3	2293	312	0	688	0	0	250	0.0447	1693	0.183	0.0126	549		28.16
1982	1717	0	0	0	0	0	197	0.056	1671	0.201	0.015	672		
OP#1	1567	0	1421	0	0	0	249	0.0526	1666	0.2013	0.0134	671		10.94
OP#2	1872	0	12	0	78	0	245	0.056	1671	0.1875	0.0115	672		7.24
OP#3	1726	0	0	0	32	0	236	0.0525	1671	0.1898	0.0119	658		14.06
1983	1724	0	0	0	0	1	207	0.057	1697	0.202	0.013	398		
OP#1	1723	0	0	0	0	0	250	0.0529	1696	0.2088	0.0141	505	P	126.06
OP#2	2036	0	1265	0	0	809	250	0.0562	1682	0.1948	0.013	532	-T	148.31
OP#3	2034	0	0	911	0	0	250	0.0563	1692	0.1922	0.0095	441		21.82
1984	1831	0	0	293	0	0	201	0.046	1681	0.155	0.008	737		
OP#1	2117	500	0	0	0	0	250	0.0459	1690	0.1526	0.0082	825	P	47.36
OP#2	2078	0	1490	0	0	0	236	0.0521	1677	0.1471	0.008	738		22.75
OP#3	2038	0	0	175	540	0	247	0.0453	1681	0.1491	0.0076	731		6.26
1987	2297	0	0	0	0	0	215	0.06	1672	0.176	0.008	452		
OP#1	1938	2	0	0	0	0	250	0.0548	1673	0.1931	0.0096	469	P	225.22
OP#2	2249	0	1937	0	0	110	250	0.0578	1667	0.1653	0.008	604		48.23
OP#3	2187	0	0	765	0	0	250	0.0553	1667	0.1684	0.0064	476		22.56
1989	3418	0	0	0	0	2196	168	0.043	1628	0.087	0.004	868		
OP#1	3600	500	0	0	0	0	250	0.0445	1659	0.1295	0.008	853	-TMnP	1383.6
OP#2	3522	20	133	0	306	1748	248	0.043	1628	0.0871	0.0029	868		0.34
OP#3	3500	0	532	1369	2493	0	225	0.0409	1628	0.087	0.004	707		23.43
1991	2046	0	0	0	0	1543	211	0.047	1695	0.177	0.011	715		
OP#1	2114	500	0	0	0	0	250	0.0469	1710	0.1909	0.013	805	P	220.16
OP#2	2429	65	2000	0	78		250	0.0466	1691	0.155	0.011	774		25.25
OP#3	2102	2	31	701	1239	0	219	0.0467	1695	0.177	0.0109	708		1.81

	2 = 20			0	0		407							
1993	2502	0	111	0	0	0	187	0.044	1635	0.117	0.008	957		
OP#1	2632	395		0	313	0	223	0.0432	1635	0.1321	0.0079	956		14.95
OP#2	2779	0	0	887	0	0	250	0.0415	1635	0.117	0.006	941		7.57
OP#3	2625	0	0	007	0	0	209	0.0416	1633	0.1055	0.008	797		33.69
1997	1695	497	127	0	0	0	202 197	0.039	1685	0.165	0.012	1077		
OP#1	2021	117	749	0	1259	0		0.0441	1691	0.1651	0.0117	1076		18.76
OP#2	2195	52	125	794	171	0	183	0.039	1685	0.1562	0.0115	1079		5.6
OP#3	1682	0	123	677	0	0	140 217	0.039	1685	0.1481	0.012	1004		17.08
1998	2298	0	0	0//	0	0	250	0.057	1672	0.186	0.012	416		
OP#1	1882 2224	0	2000	0	0	94	250	0.0544	1673	0.2148	0.0128	474	P	101.99
OP#2		125	387	530	0	0	249	0.0558	1667	0.1883	0.012	513		31.76
OP#3	2036 1796	0	0	736	0	0	217	0.0577 0.053	1667	0.1859	0.0104	421		7.45
2005	1645	4	0	730	0	0	250	0.053	1659	0.163	0.007	420		
OP#1	1875	- 0	1877	0	0	2002	250	0.0491	1670	0.1829	0.0107	582	P	595.27
OP#2	1801	181	0	943	0	0	247	0.0533	1648	0.1326	0.007	581	-T	132.5
OP#3	2348	0	0	0	0	0	207	0.035	1658	0.1435	0.007	417		15.15
2006	2544	476	186	0	0	0	209	0.035	1689	0.095	0.007	1371		
OP#1	2664	4/0	0	0	0	0	250	0.0342	1684	0.0949	0.007	1224		18.63
OP#2	2195	0	1517	0	0	0	227		1684	0.0738	0.0043	1276		38.73
OP#3	1723	0	1317	795	0	0	218	0.0292	1677	0.0822	0.007	1077	CT-O-	251.02
2007		226	0	0	0	0	250	0.05	1670	0.154	0.008	588		
OP#1	1679 1980	0	1734	0	0	1376	250	0.0447	1680	0.1666	0.0105	749	P	372.18
OP#2	1818	8	8	854	450	0	238	0.0462	1665	0.1327	800.0	737	*******	51.71
OP#3	1803	0	0	610	0	0	205	0.037	1670	0.1443	0.008	583		7.49
2008	1970	500	0	010	0	0	250	0.037	1669	0.12	0.007	1076		74.00
OP#1	2043	377	1672	0	628	0	168	0.0415	1684	0.1335	0.0071	913	P	71.82
OP#2 OP#3	1789	25	0	714	1249	0	182	0.0372	1669	0.1141	0.0069	1076		5.47
2009	1763	0	0	912	1590	0	217	0.057	1669 1675	0.1052	0.007	955	******	23.6
OP#1	1594	308	0	0	0	0	250	0.0507	1690	0.1826	0.008	503 659	P	440.00
OP#1	1882	0	1891	0	0	2002	250	0.0552	1670	0.1626	0.0078			442.08
OP#2	1804	78	0	906	1503	0	240	0.0525	1675	0.1403	0.0078	584 501		35.55 2.41
2011	2273	0	0	825	1010	0	219	0.0323	1677	0.163	0.0007	734		2.41
OP#1	2427	500	0	020	0	0	250	0.0441	1692	0.1827	0.011	860	P	226.73
OP#2	2561	0	248	0	0	2002	249	0.0444	1672	0.148	0.011	806		24.79
OP#3	2329	66	10	1161	626	0	194	0.0441	1676	0.1538	0.011	731		7.04
2015	2324	0	0	846	211	0	202	0.035	1680	0.159	0.016	1224		7.04
OP#1	2754	500	0	0	0	0	140	0.0422	1695	0.1429	0.0129	1317	C	107.4
OP#2	2754	86	8	0	2209	0	174	0.035	1680	0.1507	0.0123	1226		5.53
OP#3	2195	0	2	1	2295	0	157	0.0349	1680	0.1589	0.0152	1153		6.19
2016	1855	0	0	0	0	0	199	0.046	1661	0.151	0.0132	942		
OP#1	1755	440	622	0	0	0	233	0.0456	1661	0.151	0.0109	941		0.91
OP#2	2148	0	0	0	1249	0	250	0.0445	1661	0.1408	0.009	934		10.88
OP#3	1726	0	0	701	716	0	177	0.0451	1661	0.1277	0.0109	841		28.24
2017	2703	0	0	954	547	0	224	0.04	1682	0.138	0.008	941		
OP#1	2779	500	0	0	0	0	250	0.0443	1697	0.1607	0.0121	856	P	557.9
OP#2	3143	1	1118	0	0	2264	250	0.0383	1677	0.0951	0.008	952		41.42
OP#3	2899	0	0	1358	1105	0	209	0.0383	1682	0.1173	0.008	792		34.98
2019	2553	0	0	935	580	0	229	0.046	1662	0.156	0.007	671		
OP#1	2578	500	0	933	0	0	250	0.047	1677	0.1559	0.009	802	P	325.93
OP#2	2664	78	2000	0	0	485	250	0.049	1659	0.1326	0.007	717		31.18
OP#3	2586	0	2000	801	1251	465	234	0.046	1661	0.1331	0.0069	670		15.38
<u> Οι π</u> υ	2000	<u> </u>	U	001	1201	<u> </u>	204	0.070	10011	300.1	0.0001			

	0261	0	0	0	0	0	226	0.044	1660	0.440	0.00=1	5001		
2023	2361	93	0	0	0	0	250	0.044	1662	0.146	0.007	560		
OP#1	2244		1761	0	0	207		0.0436	1662	0.1331	0.0082	722	P	210.29
OP#2	2192	0		788	0		249	0.0495	1643	0.1278	0.007	718	T	213.82
OP#3	2454	0	0			0	249	0.0421	1657	0.1073	0.0063	702		61.01
2025	1962	0	0	0	0	0	226	0.05	1660	0.169	0.009	529		
OP#1	1750	0			0	0	250	0.0462	1660	0.169	0.0098	637	P	113.18
OP#2	1928	0	1439	0	0	0	250	0.0501	1653	0.155	0.009	690	-T	61.78
OP#3	1938	2	0	606	0	0	250	0.0512	1655	0.1439	0.0082	567		29.69
2026	1811	0	0	115	0	0	225	0.051	1674	0.189	0.011	466		
OP#1	1838	0	0	0	0	0	250	0.051	1687	0.1961	0.0123	543	P	147.66
OP#2	2031	0	1500	0	0	1126	250	0.0556	1669	0.1722	0.011	577		46.86
OP#3	1814	336	0	413	0	0	250	0.0511	1674	0.1753	0.01	466		7.74
2028	1736	0	0	0	0	0	230	0.06	1694	0.205	0.014	493		
OP#1	1493	0	0	0	0	0	250	0.0523	1689	0.2061	0.0134	517	C	63.8
OP#2	1892	0	874	0	0	8	250	0.0544	1689	0.1994	0.014	589		36.37
OP#3	1682	0	0	302	0	0	250	0.0576	1689	0.2028	0.0119	497		10.89
2029	2562	0	0	0	0	0	229	0.055	1664	0.156	0.008	523		
OP#1	2234	0	0	0	0	0	250	0.0497	1659	0.1715	0.0099	568	P	270.75
OP#2	2505	0	1480	0	0	676	247	0.0491	1648	0.1416	0.008	669	-T	171.84
OP#3	2571	0	0	784	0	0	250	0.0488	1659	0.1426	0.0079	585		36.57
2030	2779	0	0	0	0	0	220	0.04	1661	0.126	0.008	1068		
OP#1	2820	500	248	0	0	0	212	0.0423	1661	0.1258	0.0078	1068		5.88
OP#2	2916	0	0	0	271	0	238	0.04	1661	0.1013	0.0057	1067		20.21
OP#3	2762	0	2	1	626	0	249	0.036	1659	0.1132	0.008	907		36.9
2037	1891	0	0	214	0	0	238	0.048	1663	0.196	0.014	519		
OP#1	1584	0	0	0	0	0	250	0.0502	1658	0.1935	0.011	559		18.45
OP#2	1647	0	498	0	0	0	188	0.0508	1658	0.1923	0.0139	617		31.32
OP#3	1811	344	0	327	0	0	250	0.0482	1658	0.1563	0.0101	522		26.3
2043	1995	0	0	0	0	0	232	0.048	1658	0.157	0.008	602		
OP#1	1801	171	0	0	0	0	250	0.043	1659	0.1575	0.0096	764	P	239.59
OP#2	2036	0	1752	0	0	892	250	0.0442	1648	0.1358	0.008	758	-T	109.57
OP#3	2036	0	55	935	0	0	242	0.0481	1655	0.1317	0.008	598		20:21
2045	2048	0	0	0	0	0	230	0.037	1674	0.145	0.011	737		
OP#1	2117	0	0	0	0	0	250	0.0402	1678	0.1526	0.011	757		20.36
OP#2	2310	0	1562	0	0	532	236	0.0383	1665	0.1443	0.011	899	-T	73.57
OP#3	2170	250	0	350	0	0	250	0.037	1670	0.1371	0.0107	747		10.43
2048	1702	0	0	354	0	0	221	0.044	1676	0.174	0.011	728		
OP#1	1696	500	0	0	0	0	250	0.0436	1678	0.1741	0.012	871	P	116.28
OP#2	2009	4	999	0	0	1251	250	0.044	1671	0.1514	0.011	789		26.31
OP#3	1875	49	0	701	780	0	223	0.0441		0.1487	0.0108	725		15.25
2052	1644	0	0	961	544	0	222	0.052	1666	0.17	0.009	524		
OP#1	1489	180	0	0	0	0	250	0.0478	1681	0.1923	0.0129	671	P	491.9
OP#2	1977	0		0		3003	247	0.0463	1661	0.131	0.0089	685		71.61
OP#3	1892	ō	-	896	2309	0	248	0.052	1666	0.157	0.009	523		8.17
2057	1500	0		0	0	690	203	0.049	1671	0.172	0.011			
OP#1	1315	309	. 0	0	0	0	224	0.049	1671	0.1857	0.0109	793		8.48
OP#2	1608	245	1	ō		274		0.0497	1671	0.1719	0.011	794		1.56
OP#3	1344	0		677	469	0	174	0.0483	1671	0.1588	0.011	795		10.1
2058	1786			0	0	1359		0.047	1635	0.139	0.006			
OP#1	1537	250		Ö	Ö	0		0.0512	1659	0.1817	0.0105		TMnP-	1037.1
OP#2	1765			0		2753		0.0538		0.1227	0.006			28.01
OP#3		414			1	0				0 1179	0.006	467		24.61
C1 #3	1101	717		1		<u> </u>								

0050	2053	0	0	0	0	0	200	0.045	1075	0.405				
2059	1970	463	59	0	0	0	216	0.043	1675	0.135	0.01	1023		
OP#1	2131	0	0	0	623	0	250	0.0421	1675	0.138	0.0099	1022		8.74
OP#2	1882	0	0	350	0	0	217	0.0407	1674	0.134	0.0092	1010		3.32
OP#3	2250	0	0	0	0	1973	215	0.0407	1674	0.1301	0.01	861		29.67
2064	3097	500	0	0	0	0	250	0.0389	1660	0.134	0.01	802		
OP#1	2857	266	2000	0	156	2510	196	0.0369	1714	0.136	0.0134	963	CTP-	841.51
OP#2	2613	390	0	881	2500	0	206	0.0367	1660	0.0982	0.01	801		38.01
OP#3	1697	0	0	0	0	0	202	0.0529	1675	0.1028	0.01	805		39.88
2065	1559	0	0	0	0	0	221	0.0512	1668	0.165	0.011	647		
OP#1	1870	54	626	0	115	51	242		1668	0.1728	0.0108	648		10.12
OP#2	1726	0	192	1	1134	0	244	0.0539	1668	0.1649	0.0101	647		0.24
OP#3	1537	0	0	0	0	0	214	0.052	1668	0.1651	0.0104	645		3.98
2067	1772	500	637	0	0	0	249		1675	0.16	0.013	890		
OP#1	1726	226	1750	0	156	0	140	0.0463	1683	0.1538	0.0086	891		24.52
OP#2	1452	125	0	10	315	0	195	0.044	1675	0.1426	0.0098	891		18.36
OP#3	2423	0	0	0	0	0	224	0.0417	1675	0.154	0.0102	895		5.9
2069		414	0	0	0	0		0.038	1698	0.099	0.005	890		
OP#1	2710	0	610	0	0	0	250	0.0364	1698	0.0928	0.005	981		20.95
OP#2	2505	0	751	230	0	0	245	0.0421	1679	0.0998	0.0046	1052	-T	190.55
OP#3	2491	0	731	230	0		250	0.0316	1685	0.0933	0.005	950	-T	121.23
2072	1900	500	0	0	0	1397	194	0.051	1625	0.134	0.007	825		
OP#1	1958		500	0	1095	0 0 0 0	250	0.0464	1640	0.1523	0.0077	815	P	137.41
OP#2	2085	0		1070	1571	946	247	0.05	1625	0.1341	0.0052	824		2.27
OP#3	1990	0	0	948		0	202	0.049	1625	0.1201	0.007	665		33.73
2075	2558		0		0	2337	213	0.045	1641	0.112	0.008	782		
OP#1	2974	498 161	1398	0	15	2983	250	0.0406	1689	0.1508	0.0104	929	-TMnP	825.64
OP#2	2798 2637	37	2000	1400	2500	2963	250 195	0.044	1641 1646	0.1121	0.006	782		2.42
OP#3	2371	0	2000	882	2300	0	230	0.0436	1694	0.112	0.0074	717		16.65
2078	2537	155	0	002	0	0	250	0.0417	1700	0.142	0.009	621	P	220.42
OP#1	2344	0	890	0	0	1501	236	0.0417	1667	0.1608	0.0106	782 782		230.12
OP#2		0	282	699	0	0	250	0.0472	1687			737	-T	
OP#3	2586 1709	0	202	311	0	0	197	0.0405	1679	0.1419	0.008		-T	56.73
2079	2041	48	2000		0	0	250	0.0506	1678	0.1899	0.0143	788 787		19.31
OP#1	2349	0	2000	0	350	0	249	0.0512	1677	0.1771	0.0143	788		25.44
OP#2 OP#3	1892	0	0	0	0	0	206	0.0312	1676	0.1771	0.0137	787		22.43
2081	2041	0	0	763	0	0	215	0.044	1691	0.139	0.0137	753		22.43
OP#1	2505	375	0	703	0	0	250	0.0393	1705	0.1408	0.0095	910	P	233.55
OP#1	2349	0	4	0	0	1533	250	0.0393	1677	0.1408	0.0093	913	-T	132.17
OP#2	2329	0	557	594	0	0	247	0.0437	1688	0.1312	0.0077	751		10.47
2083	1999	0	0	0	0	1631	195	0.059	1637	0.163	0.0077	669		10.47
2063 OP#1	1972	500	0	0	0	0	250	0.0504	1652	0.194	0.0126	736	CMnP	376.89
OP#1	2173		500	0	467	1756	250	0.0533	1635	0.163	0.0120	668		12.24
OP#2	2068	125	0	1367	1229	0	201	0.0554	1637	0.1595	0.01	520		30.82
2084	1604	0	- 0	511	0		209	0.0554	1672	0.1333	0.008	872		
OP#1	1535		0		0	0	250	0.0504	1667	0.1634	0.0084	736	CP	172.68
OP#1	1916	500 0	0	0	626	215	250	0.0531	1671	0.1472	0.0074	809		20.21
OP#2	1489	0	1949	597	020	0	195	0.051	1668	0.1352	0.008	708	C	91.35
2085	2328	0	1949	0	- 0	0	222	0.048	1648	0.126	0.004	577		
OP#1	2349	250	0	0	0	0	250	0.0461	1658	0.1226	0.0049	731	P	256.71
OP#1	2087		936	0	0		224	0.0549	1641	0.1224	0.004	740	-T	74.2
OP#2		2		573	0	- 0	250	0.0349	1643	0.1182	0.0039	633		21.71
05#3	2219	0	0	3/3	U		200	0.0-770	1070	0,021	3.3000			

Facci	2102	0	0	0	01	325	199	0.055	1624	0.115	0.000	040		
2086	2019	500	0	0	0	0	250	0.0475	1629	0.115	0.006	818		
OP#1	2163	81	282	0	149	966	250	0.0514	1624	0.145	0.0061	794	CP	107.69
OP#2	2060	01	250	963	105	0	212	0.0486	1624	0.115	0.0035	818		6.68
OP#3	1689	0	0	0	0	0	212	0.05	1677	0.1149	0.0059	661		31.72
2088	1804	498	498	ō	0	0	235	0.0523	1677	0.203	0.013	809		44.0
OP#1	2038	187	968	ő	398	16	196	0.0512	1677	0.172	0.0127	809		11.6
OP#2	1726	0	0	0	623	0	209	0.0483	1678	0.172	0.0125	808		17.81
OP#3	1668	- 0	0	916	0	47	213	0.053	1685	0.1882	0.013	795		12.96
2089	1721	6	ō	0	Ö	0	250	0.0489	1694	0.2126	0.0143	507 587	P	473.13
OP#1	2036	0	1095	0	0	3484	250	0.0507	1663	0.2120	0.0143	646		244.07
OP#2	2082	0	59	1015	435	0	247	0.0522	1685	0.182	0.01	505	-T	11.1
OP#3	2070	0	0	958	0	0	212	0.054	1681	0.102	0.012	465		
2090	1804	0	0	0	o	0	250	0.0535	1682	0.2152	0.012	493	P	168.64
OP#1	2349	0	1109	ő	o	1466	250	0.0505	1674	0.178	0.0139	613	-T	82.9
OP#2	2048	156	0	519	0	0	250	0.0544	1681	0.2006	0.012	465	-,	6.99
OP#3	1748	0	0	519	0	0	209	0.048	1676	0.172	0.01	814		0.55
2092	2273	499	Ö	0	0	0	250	0.0454	1689	0.1719	0.0112	834	P	136.01
OP#1	2395	87	2000	0	156	16	250	0.0484	1676	0.1561	0.01	815		10.42
OP#2 OP#3	2114	0	0	389	313	0	241	0.0476	1676	0.1681	0.01	679		19.9
	1899	0	0	966	0	1003	218	0.047	1673	0.194	0.01	401		10.0
2093	1657	110	0	0	0	0	250	0.0523	1688	0.2173	0.014	557	P	481.26
OP#1	2036	- 10	1689	0	0	3152	248	0.0538	1662	0.1575	0.014	563	-T	145.86
OP#2	1735	500	250	643	540	0 0	248	0.0497	1673	0.1778	0.01	402		14.41
OP#3	1758	0	0	940	887	0	214	0.049	1661	0.194	0.01	504		
2095 OP#1	1625	0	0	0	0	0	250	0.0478	1676	0.1954	0.0119	605	P	232.08
OP#1	1723	0	14	0	0	2264	250	0.0548	1654	0.1696	0.01	659	-T	79.24
OP#2	1611	344	125	513	156	0	243	0.049	1661	0.1709	0.01	503		12.13
2096	1998	0	0	0	0	ő	210	0.05	1676	0.195	0.015	897		
OP#1	1980	267	929	0	0	0	228	0.0474	1676	0.195	0.0141	896		5.36
OP#1	2295	63	0	0	701	0	250	0.0471	1676	0.1942	0.0131	895		6.55
OP#3	1843	0	1048	11	154	0	205	0.0473	1676	0.1951	0.015	821		13.93
2097	2295	0	0	Ö	0	518	212	0.038	1682	0.18	0.01	664		
OP#1	2505	124	ő	Ö	0	0	250	0.0395	1696	0.1645	0.0128	815	P	329.24
OP#2	2505	0	1750	0	0	2264	250	0.0414	1660	0.1359	0.01	826	-T	253.56
OP#3	2466	250	0	821	ŏ	0	250	0.038	1678	0.144	0.01	670		24.97
2098	2089	230	0	0	0	1003	201	0.056	1633	0.181	800.0	622		
OP#1	1919	408	ō	ō	ŏ	0	250	0.0507	1633	0.1888	0.0101	696	P	293.64
OP#1	2205	0	1453	0	20	798	250	0.052	1630	0.1578	0.008	622		23.04
OP#3	2246	0	0	1315	364	0		0.0513		0.1413	0.008	576		37.73
2102	2260	0	0	0	0	562	209	0.046		0.174	0.011	843		
OP#1	2297	500	0	0	ő	0		0.0456		0.1859	0.0112	830	P	39.29
OP#2	2319	125	172	Ö	279	1067	218	0.0461	1661	0.1732	0.011	844		1.61
OP#2	2202	1 1	0	788	1090	0	202	0.046		0.171	0.011	751		12.76
2103	2052	0	0	0	0	2006	196	0.049	1641	0.141	0.008	793		
OP#1	2324	500	0	0	0	0	250	0.0454	1663	0.1746	0.0112	834	TMnP-	
OP#2	2508	281	186	0	37	2002	250	0.0454	1641	0.1409	0.0078	794		7.44
OP#3	2459	0	0	1226	2500	0	219	0.0473	1642	0.1363	0.008	631		27.66
2104	2217	0	0	0	0	1298	215	0.054	1658	0.187	0.009	417		
OP#1	1684	66	0	0	0	1230	250	0.0531	1673		0.0121	526	P	404.78
OP#1	2009	00	1906	0	0	2252	249				0.009	541		46.65
OP#2	1892	240	1900	706	1092	0			1658		0.009	416		1.5

2106	2565	0	0	0	0	0	210	0.04	1676	0.447				
OP#1	2662	500	0	0	0	0	223	0.0371	1676	0.117	0.008	1169		
OP#1	2740	0	0	0	2	0	241	0.0353	1676	0.1244	0.008	1103	**	19.41
OP#2	2525	0	1699	300	0	0	235	0.033	1671	0.1169 0.107	0.0076	1166		12.15
2108	2038	0	0	0	0	0	209	0.049	1672	0.107	0.008	954	0-	95.15
OP#1	2068	123	2000	0	0	0	248	0.0487	1672	0.2069	0.017	858		
OP#2	2349	0	0	0	848	0	250	0.0486	1668	0.2009	0.0155	860		7.27
OP#3	1882	0	0	11	0	0	188	0.0476	1670	0.2071	0.013 0.0164	858		14.77
2109	2268	0	0	626	0	0	234	0.048	1684	0.158	0.0164	858		10.98
OP#1	2249	304	0	0	0	0	250	0.0418	1699	0.1951	0.0113	674 834	C M=D	244.20
OP#2	2349	0	565	0	0	1865	250	0.0434	1677	0.1594	0.0133	832	C-MnP	344.36
OP#3	2173	0	1470	1035	0	0	216	0.0467	1683	0.158	0.0102	673	-T	65.53
2113	1913	0	0	943	2521	0	212	0.043	1669	0.144	0.008	680		3.71
OP#1	1858	500	0	0	0	0	250	0.045	1697	0.197	0.0133	842	-TMnP	1052.26
OP#2	2156	0	2000	0	0	3058	243	0.0448	1669	0.1273	0.008	685	-11/11/11	16.79
OP#3	1884	266	2	1165	2500	0	205	0.043	1673	0.1338	0.008	646		17.43
2114	1900	0	0	0	0	0	204	0.042	1658	0.153	0.009	835		17.45
OP#1	2202	500	0	0	0	0	250	0.0386	1663	0.153	0.0091	970		36.38
OP#2	2156	0	1492	0	0	0	243	0.042	1653	0.1498	0.0089	867		10.91
OP#3	2224	0	0	536	0	0	243	0.041	1658	0.1338	0.009	768		23.21
2116	1886	0	0	0	0	2	203	0.045	1660	0.182	0.012	860	~	20.21
OP#1	2046	244	29	0	0	0	223	0.0448	1660	0.1853	0.012	860		2.31
OP#2	2224	110	61	0	149	12	239	0.045	1660	0.182	0.0117	860		0.05
OP#3	2117	0	0	438	310	0	221	0.0448	1660	0.1682	0.0119	769		18.5
2120	2438	0	0	0	0	0	219	0.037	1685	0.132	0.009	1092		
OP#1	2674	489	12	0	0	0	249	0.0324	1685	0.1323	0.009	1093		12.76
OP#2	2725	0	0	0	0	0	250	0.0307	1680	0.125	0.0088	1229		40.38
OP#3	2505	15	1992	167	0	0	250	0.0309	1676	0.1103	0.009	965	-T	93.35
2125	1800	0	0	0	0	0	209	0.04	1661	0.164	0.008	1227		
OP#1	2334	500	0	0	0	0	245	0.0347	1674	0 1379	0.0093	1065	P	221.87
OP#2	2341	43	8	0	1244	250	250	0.0364	1656	0.141	0.008	1175		32.16
OP#3	2195	0	1752	931	1256	0	196	0.0335	1657	0.0949	0.008	962	0-	169.25
2126	1900	0	0	0	0	14	197	0.045	1673	0.217	0.02	889		
OP#1	2078	500	143	0	0	0	237	0.046	1673	0 2064	0.0139	889		7.11
OP#2	2307	1	33	0	799	0	241	0.0451	1673	0.2036	0.0147	888		6.45
OP#3	1941	0	0	0	623	0	196	0.045	1673	0.2035	0.0168	885		7.07
2128	2288	0	0	0	0	0	198	0.048	1671	0.186	0.011	1048		
OP#1	2583	500	0	0	0	0	249	0.043	1677	0.174	0.0114	886	P	78.24
OP#2	2742	0	250	0	1012	8	250	0.0418	1668	0.1629	0.011	1048		28.32
OP#3	2339	0	2000	1033	0		170	0.0408	1665	0 1343	0.011	889	C	92.26
2129	2141	0	0	0	0	865	209	0.045	1656	0.191	0.008	465		
OP#1	1928	0	0	0	0	0	250	0.0468	1666	0.1987	0.0129	626	P	663.2
OP#2	2163	0	1881	0	0	2847	250	0.0482	1635	0.1442	0.008	623	T	245.35
OP#3	2280	312	0	1325	83	0	247	0.0451	1656	0.139	0.0073	467		28.09
2130	1894	0	0	904	0	0	200	0.047	1686	0.147	0.01	1012		
OP#1	1862	499	0	0	0	0	250	0.0417	1701	0.1753	0.0133	907	P	381.21
OP#2	2209	171	500	0	134	2502	250	0.0411	1681	0.1256	0.01	1011		32
OP#3	1882	0	1791	989	1415	0	196	0.0396	1685	0.1295	0.01	850	C	66.08
2131	2608	0	0	689	0	0	208	0.037	1680	0.127	0.007	585		45.470
OP#1	2383	0	0	0	0	0	250	0.0403	1675	0.1531	0.0096	755	P	454.73
OP#2	2146	0	1863	0	0	2002	210	0.0439	1636	0.1188	0.0066	748	- <u>T</u>	487.34
OP#3	2644	3	0	959	0	0	250	0.038	1667	0.1125	0.0064	747		138.7

2400	1827	0	0	0	0	0	104	0.05						
2132	1838	260	262	0	0	0	194 205	0.05	1671	0.198	0.017	900		
OP#1	2290	0	250	0	1305	78		0.0479	1671	0.198	0.0145	899		4.4
OP#2	1581	0	326	526	220	0	250 144	0.0451	1671	0.1982	0.0133	899	*******	10.15
OP#3	1772	0	0_0	0	0	0	206	0.0477	1671	0.1979	0.0167	901		4.79
2133	1569	Ö	0	0	0	0	250	0.05 0.0486	1666	0.176	0.01	426		
OP#1 OP#2	1723	Ō	1746	0	0	1959	250		1668	0.2074	0.013	589	MnP	370.47
OP#2	2041	125	0	1343	0	0	250	0.0546 0.0512	1645	0.1694	0.01	555	-T	225.43
2136	2249	0	0	0	0	0	195	0.0512	1662	0.1493	0.0071	426		21.65
OP#1	2075	87	1120	0	0	0	248	0.0502	1662	0.206	0.015	719		
OP#2	2297	0	0	0	27	0	250	0.0521	1661	0.2031	0.015	719		9.55
OP#3	2036	0	884	34	0	0	223	0.0507	1662 1660	0.1972	0.0139	718		8.15
2139	2033	0	0	0	0	597	202	0.058	1657	0.1975	0.015	717		12.29
OP#1	1608	0	0	0	0	0	250	0.058	1656	0.225	0.014	355		
OP#2	1850	0	1894	0	0	0	223	0.0604	1653	0.2257 0.2236	0.0124	404		15.64
OP#3	1662	436	0	55	0	0	250	0.058	1653	0.2236	0.0139	354		9.18
2140	1780	0	0	0	0	911	197	0.038	1670		0.0126	355		10
OP#1	2158	500	ō	0	Ö	0	250	0.0451	1685	0.183	0.011	799		44.07
OP#2	2253	250	2000	0	164	4	230	0.0464	1670	0.1837	0.0111	841	P	41.07
OP#3	2073	125	0	179	1894	0	228	0.0413	1670	0.1818	0.011	800		13.97
2141	1737	0	ō	0	0	596	198	0.059	1666	0.243	0.011	797		8.15
OP#1	1225	ō	ō	0	0	0	250	0.0567	1661	0.2357	0.016	355		32.98
OP#2	1533	0	1793	Ö	0	0	238	0.0612	1661	0.2428	0.0158	430		
OP#3	1449	344	0	196	ō	. 0	250	0.059	1662	0.2202	0.0134	355 355		8.77 13.1
2142	1775	0	ō	0	0	772	194	0.054	1666	0.201	0.0134	830		13.1
OP#1	1567	31	1503	0	ő	0	223	0.0506	1666	0.2031	0.013	830		7.4
OP#2	1958	34	0	0	1092	59	249	0.0515	1666	0.201	0.0124	830		4.63
OP#3	1567	0	Ō	79	938	0	188	0.049	1666	0.198	0.0124	826		11.5
2144	1602	ō	Ō	0	0	920	207	0.055	1660	0.23	0.021	708		11.0
OP#1	1364	ō	1875	Ō	ō	0_0	250	0.0531	1656	0.2246	0.0164	706		9.73
OP#2	1723	0	0	Ō	1210	0	226	0.0534	1656	0.2188	0.0148	708		11.56
OP#3	1335	60	0	10	103	0	188	0.055	1660	0.217	0.0171	709		5.84
2145	1887	0	0	0	0	109	200	0.057	1668	0.247	0.016	387		
OP#1	1550	ō	Ō	O	ō	0	250	0.0555	1663	0.2195	0.0125	453		35.68
OP#2	1647	ō	217	0	o	0	218	0.0603	1663	0.2349	0.0159	450		32.36
OP#3	2060	109	0	881	0	0	250	0.0573	1666	0.1882	0.0099	386		26.23
2147	1891	0	0	0	0	546	198	0.049	1656	0.207	0.011	383		
OP#1	1723	ō	Ō	ō	Ö	0	250	0.0522	1658	0.2098	0.0127	519	P	203.23
OP#2	2036	ő	1503	ő	ő	1627	247	0.0538	1644	0.179	0.011	540	-T	146.12
OP#3	1972	500	0	827	ō	0	250	0.0492	1651	0.1621	0.0094	383		26.87
2149	1526	0	ō	0	ō	ō	198	0.06	1666	0.238	0.011	365		
OP#1	1347	ō	Ō	ō	ō	ō	250	0.0534	1661	0.2138	0.0123	495	CP	199.37
OP#2	1645	ō	678	ō	ō	2072	250	0.0584	1648	0.1837	0.011	517	-T	210.46
OP#3	1916	ō	0	1162	ō	0	250	0.0589	1661	0.1791	0.0087	364		31.64
2150	1763	ő	ō	512	Ö	798	184	0.047	1657	0.167	0.009	762		
OP#1	1909	500	ŏ	0	Ö	0	250	0.0472	1672	0.1834	0.0116	799	P	315.2
OP#2	2192	376	1773	ő	20	1345	247	0.0481	1653	0.1519	0.009	762		15.92
OP#3	1950	0	1501	1392	1329	0	172	0.0468	1657	0.1315	0.009	735		25.24
2152	1575	0	0	0	0	0	197	0.05	1669	0.208	0.015	781		
OP#1	1467	172	1425	Ö	0	0	250	0.05	1669	0.1866	0.0144	781		10.36
OP#2	1716	147	22	0	557	0	207	0.0499	1669	0.1925	0.0148	782		7.72
OP#3	1388	29	0	527	0	0	167	0.05	1669	0.1815	0.0149	793		14.7
<u> </u>	10001			UE!				3.531						

OP#8 2469 0 0 0 0 0 0 0 0 0								1 4 2 2							
OP#1 1503 199 0	2153					<u> </u>					0.161	0.007	480		
CP#2 1723	OP#1										0.1924	0.0106		MnP	593 54
OPHS 1730 6 0 879 1105 0 245 0.0548 1860 0.1609 0.007 482	OP#2	1								1655	0.1426				
Test	OP#3										0.1609	0.007			
PF#1 2038 375	2156				 					1634	0.173				
OP#2 2087 66 1994 0 15 1498 194 0.0527 1633 0.1664 0.0103 497 22.46 0.008 1637 0.0481 1638 0.0163 0.0103 483 11.72 17.72 2642 0 0 0 0 0 0 219 0.036 1673 0.117 0.009 1111 11.72 0.009 1111 0.006 1111 0.006 1111 0.006 0.008 1673 0.117 0.009 1111 0.006 0.008 0.008 1673 0.117 0.009 1111 0.006 0.008 0.008 0.008 0.008 0.008 0.008 0.0076 1140 1.9.98 0.008 0.008 0.008 0.008 0.008 0.0076 1140 1.9.98 0.008	OP#1									1650	0.1955			CTP	153 79
OP#3 1990 500 0 216 1777 0 243 0.0489 1634 0.1639 0.0109 483 11.72	OP#2									1633	0.1664				
1975 2642 0 0 0 0 0 219 0.036 1673 0.117 0.009 1111											0.1639	0.0109			
OP#I 2625 488 1032 0 0 0 250 0.0369 1673 0.1114 0.0066 1111												0.009			
OP#2 2566 0 0 0 0 0 246 0.036 1668 0.1023 0.0076 1140											0.1114	0.0086			7.42
OP#8 2469 0 0 0 0 0 0 0 0 0											0.1023	0.0076	1140		19.98
1989 2184 0 0 0 0 0 1989 0.04 1678 0.165 0.011 937												0.0089	977		
OP#2 2434 73 2000 0 315 0 140 0.0404 1678 0.1283 0.0992 937 23.4 OP#3 2058 84 0 4 166 0 195 0.0401 1678 0.157 0.0106 939 5.2 2160 2424 0 0 0 0 0 475 190 0.042 1678 0.154 0.011 484 OP##1 2522 207 0 0 0 250 0.0431 1685 0.1819 0.0122 646 C-P-P 247.18 OP#2 2556 500 0 0 0 0 198 0.042 1665 0.1439 0.011 647 77.1.5 OP#3 1726 250 0 0 0 0 0 0 0 0 250 0.0481 1657 0.127 0.007 666 137.12												0.011	937		
OP#2 2434 73 2000												0.0088	936		34.78
2150 2424 0 0 0 0 0 475 190 0.042 1670 0.154 0.011 484											0.1283	0.0092	937		
OP#1 2522 207 0 0 0 250 0.0496 1685 0.1819 0.0122 646 C−−P- 247.18 OP#2 2576 1 2000 0 0 899 218 0.0492 1665 0.1459 0.011 647 — 71.15 OP#3 2256 500 0 413 0 0 250 0.0483 1665 0.1506 0.0096 484 — 71.15 OP#1 1880 15 0 0 0 0 250 0.0421 1657 0.127 0.007 503 OP#1 178 0 2000 0 0 250 0.0482 1655 0.1193 0.007 666 — — 237.07 OP#2 1718 0 200 0 0 250 0.0482 1655 0.1193 0.007 480 — — 237.07 2162 1751 0 0 0 1451 229 0.0081<												0.0106	939		5.2
OP#2 2576 1 2000 0 0 809 218 0.0492 1665 0.1459 0.011 647 — 71.15 OP#3 2256 500 0 413 0 0 250 0.0463 1665 0.1506 0.0096 484 — 17.51 2161 1798 0 0 0 0 0 188 0.042 1657 0.127 0.007 503 — 237.07 OP#1 1880 15 0 0 0 0 250 0.0451 1677 0.1444 0.0082 664 — 237.07 OP#2 1718 0 2000 0 0 1157 185 0.0489 1645 0.1193 0.007 666 — 137.12 OP#3 1726 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0											0.154	0.011	484		
OP#S 2256 500 0 413 0 0 250 0.0463 1655 0.1506 0.0996 484 — 17.51 2161 1798 0 0 0 0 198 0.042 1657 0.127 0.007 503 — 70.007 OP#1 1880 15 0 0 0 0 250 0.0451 1671 0.1444 0.0082 664 — P. 237.07 OP#2 1718 0 2000 0 1157 185 0.0489 1645 0.1133 0.007 666 — — 237.07 OP#2 1726 250 0 524 0 0 250 0.0482 1652 0.1251 0.0063 533 — 26.97 2162 1751 0 0 0 0 250 0.0482 1655 0.1541 0.007 480 — — 297.11 OP#3 1822 1723 0 1546 0 0 <t></t>	OP#1		207								0.1819	0.0122	646	CP	247.18
The color The	OP#2			2000							0.1459	0.011	647		71.15
OP#1 1880 15 0 0 0 250 0.0451 1671 0.1444 0.0082 664 —P- 237.07 237.07 OP#2 1718 0 2000 0 0 1157 185 0.0489 1845 0.1193 0.007 666 -T- 137.12 OP#3 1726 250 0 524 0 0 250 0.0482 1655 0.1251 0.0063 533 — 26.97 2162 1751 0 0 0 0 193 0.0451 1651 0.1485 0.007 480 — OP#1 1723 0 1546 0 0 1451 229 0.0519 1636 0.1281 0.007 626 -T- 175.56 OP#3 1882 125 0 885 0 0.250 0.0511 1666 0.1281 0.007 426 -T- 175.56 OP#3 1882 125 0 885 0	OP#3		500		413					1665	0.1506	0.0096	484		17.51
OP#Z 1718 0 2000 0 0 1157 185 0.0489 1645 0.1193 0.007 666 -T— 137.12 OP#3 1726 250 0 524 0 0 250 0.0482 1852 0.1251 0.0063 533 — 26.97 2162 1751 0 0 0 0 0 193 0.045 1655 0.145 0.007 480 — 26.97 169 1771 0 0 0 0 0 0.050 0.0462 1658 0.1551 0.0063 533 — 29.71 OP#2 1723 0 1546 0 0 1451 229 0.0519 1636 0.1281 0.007 626 -T— 175.56 OP#3 1882 125 0 885 0 0 250 0.0511 1646 0.1239 0.0044 466 — 748 — <td>2161</td> <td>1798</td> <td></td> <td>0</td> <td>0</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>0.127</td> <td>0.007</td> <td>503</td> <td></td> <td></td>	2161	1798		0	0						0.127	0.007	503		
OP#S 1726 250 0 524 0 0 250 0.0482 1652 0.1251 0.0063 533 — 26.97 2162 1751 0 0 0 0 0 193 0.045 1651 0.145 0.007 480 — — OP#1 1723 1 0 0 0 250 0.0462 1658 0.1551 0.007 480 — — OP#3 1882 125 0 885 0 0 250 0.0511 1636 0.1281 0.0064 486 — — 175.56 OP#1 1388 220 0 0 0 237 0.0471 1667 0.174 0.013 748 — — OP#2 1823 70 1498 0 183 985 247 0.0471 1667 0.1739 0.013 750 — — OP#3 1679 0 514 47 2356 0	OP#1	1880	15		0						0.1444	0.0082	664	P	237.07
2162 1751 0	OP#2	1718		2000			1157			1645	0.1193	0.007	666	-T	137.12
OP#I 1723 11 0 0 0 0 250 0.0462 1658 0.1551 0.0087 641 —P- 297.11 OP#2 1723 0 1546 0 0 1451 229 0.0519 1636 0.1281 0.007 626 —T- 175.56 OP#3 1882 125 0 885 0 0 250 0.0511 1646 0.1239 0.0064 486 — 34.27 2169 1146 0 0 0 0 3969 173 0.0471 1667 0.174 0.013 748 — — OP#1 1388 220 0 0 0 237 0.0471 1667 0.1738 0.0122 748 — 0.18 OP#2 1823 70 1498 0 183 985 247 0.047 1667 0.1739 0.013 750 — 1.69 2173 </td <td>OP#3</td> <td>1726</td> <td>250</td> <td>0</td> <td>524</td> <td>0</td> <td>0</td> <td></td> <td></td> <td>1652</td> <td>0.1251</td> <td>0.0063</td> <td>533</td> <td></td> <td>26.97</td>	OP#3	1726	250	0	524	0	0			1652	0.1251	0.0063	533		26.97
OP#2 1723 0 1546 0 0 1451 229 0.0519 1636 0.1281 0.007 626 -T	2162	1751	0	0	0	0	0		0.045	1651	0.145	0.007	480		
OP#3 1882 125 0 885 0 0 250 0.0511 1646 0.1239 0.0064 486 34.27 2169 1146 0 0 0 0 3969 173 0.047 1667 0.174 0.013 748	OP#1	1723	11		0	0			0.0462	1658	0.1551	0.0087	641	P	297.11
1146	OP#2	1723	0	1546	0		1451				0.1281	0.007	626	-T	175.56
OP#1 1388 220 0 0 0 237 0.0471 1671 0.1937 0.0128 748	OP#3	1882	125	0	885						0.1239	0.0064	486		34.27
OP#2 1823 70 1498 0 183 985 247 0.047 1667 0.1738 0.0122 748	2169	1146	0		0	0	3969					0.013	748		
OP#3 1679 0 514 47 2356 0 236 0.0467 1667 0.1739 0.013 750	OP#1	1388	220	0	0	0					0.1937	0.0128	748		15.61
2173 2448 0 0 0 1012 191 0.042 1617 0.091 0.005 647	OP#2	1823	70	1498	0		985					0.0122	748		0.18
OP#1 2459 344 0 0 0 250 0.0439 1635 0.1209 0.0062 809 -T-P- 346.59 OP#2 2324 0 2000 0 0 1216 181 0.042 1614 0.091 0.0045 725 15.55 OP#3 2586 65 4 799 1874 0 249 0.0437 1618 0.089 0.005 648 15.55 2174 1986 0 0 0 0 189 0.037 1670 0.128 0.012 1115 OP#1 2271 330 0 0 0 185 0.0407 1677 0.1281 0.0096 1114 17.04 OP#2 2341 125 242 0 794 231 197 0.037 1670 0.1281 0.0096 1114 17.04 OP#3 1887 0 <td>OP#3</td> <td>1679</td> <td>0</td> <td>514</td> <td>47</td> <td>2356</td> <td></td> <td></td> <td>0.0467</td> <td></td> <td></td> <td>0.013</td> <td>750</td> <td></td> <td>1.69</td>	OP#3	1679	0	514	47	2356			0.0467			0.013	750		1.69
OP#2 2324 0 2000 0 0 1216 181 0.042 1614 0.091 0.0045 725 ————————————————————————————————————	2173	2448	0	0	0	0	1012								
OP#3 2586 65 4 799 1874 0 249 0.0437 1618 0.089 0.005 648	OP#1	2459	344	0	0	0				1635	0.1209	0.0062		-TP	346.59
2174 1986 0 0 0 0 189 0.037 1670 0.128 0.012 1115	OP#2	2324	0	2000	0	0	1216	181	0.042	1614	0.091	0.0045	725		15.55
OP#1 2271 330 0 0 0 185 0.0407 1677 0.1281 0.0096 1114	OP#3	2586	65	4	799	1874	0		0.0437						7.63
OP#2 2341 125 242 0 794 231 197 0.037 1670 0.1277 0.0094 1114	2174	1986	0	0	0	0	0	189	0.037						
OP#3 1887 O 1011 328 469 O 166 0.0367 1670 0.128 0.012 1058	OP#1	2271	330	0	0	0	0				0.1281	0.0096			
OP#3 1887 O 1011 328 469 O 166 0.0367 1670 0.128 0.012 1058		2341	125	242	0	794	231			1670					0.42
2175 2055 0 0 0 0 210 0.058 1670 0.186 0.011 439	OP#3	1887			328	469	0								6.15
OP#1 1814 O O O O 0 0 0.0527 1667 0.1995 0.0118 509		2055	0			0	0								
OP#2 2192 0 1478 0 0 575 250 0.0531 1662 0.1702 0.011 597 -T 86.4 OP#3 2131 0 0 723 0 0 250 0.0569 1665 0.1751 0.0097 455 17 2176 2518 0 0 0 0 181 0.043 1630 0.105 0.007 945 20.5 OP#1 2429 488 6 0 0 0 239 0.0418 1635 0.1182 0.007 944 20.5 OP#2 2566 17 180 0 586 106 250 0.0413 1630 0.105 0.0052 945 20.5 OP#3 2381 0 0 1221 78 0 191 0.0423 1630 0.0856 0.007 787 38.96						0	0	250	0.0527						107.03
OP#3 2131 0 0 723 0 0 250 0.0569 1665 0.1751 0.0097 455						0	575	250	0.0531	1662			597	-T	86.4
2176 2518 0 0 0 0 181 0.043 1630 0.105 0.007 945						0	0	250	0.0569	1665		0.0097			17
OP#1 2429 488 6 0 0 0 239 0.0418 1635 0.1182 0.007 944						0	0	181	0.043	1630					
OP#2 2566 17 180 0 586 106 250 0.0413 1630 0.105 0.0052 945 4.1 OP#3 2381 0 0 1221 78 0 191 0.0423 1630 0.0856 0.007 787 38.96 2177 2383 0 0 0 0 205 0.044 1680 0.202 0.017 645 0.007							0	239	0.0418	1635					20.5
OP#3 2381 0 0 1221 78 0 191 0.0423 1630 0.0856 0.007 787							106		0.0413	1630	0.105				4.1
2177 2383 0 0 0 0 0 205 0.044 1680 0.202 0.017 645									0.0423	1630	0.0856	0.007	787		38.96
OP#1 2256 78 311 0 0 0 250 0.0491 1680 0.1865 0.0125 643 19.47 OP#2 2351 0 498 0 0 0 195 0.0455 1676 0.183 0.0147 687 23.84 OP#2 2351 0 498 0 0 0 195 0.0455 1676 0.183 0.0147 687 23.84 18.38 19.47 19.4									0.044	1680	0.202				
OP#2 2351 0 498 0 0 0 195 0.0455 1676 0.183 0.0147 687 23.84										1680	0.1865	0.0125	643		19.47
19 20 0 100 0										1676	0.183		687		23.84
	OP#3	2354	250	0	88	78				1680	0.1695	0.0123	645		18.28

_											_			
2178	2181	0	0	0	0	0	182	0.04	1674	0.098	0.007	1135		
OP#1	2273	500	0	0	0	0	250	0.0346	1681	0.1189	0.0081	1049	P	205.41
OP#2	2349	0	61	0	15	1372	250	0.0349	1668	0.0984	0.007	1078	-T	39.8
OP#3	2212	12	2000	1126	310	0	195	0.0336	1669	0.0726	0.007	934		100.03
2182	2278	0	0	0	0	501	202	0.035	1697	0.134	0.009	1059		
OP#1	2791	500	0	0	0	0	250	0.0377	1712	0.1357	0.0102	987	P	164
OP#2	2977	102	1990	0	5	172	250	0.0343	1695	0.1204	0.009	1062		13.91
OP#3	2566	0	0	833	0	0	214	0.0349	1697	0.1299	0.009	906		17.83
2186	2294	0	0	0	0	0	206	0.05	1673	0.168	0.01	477		
OP#1	2349	0	0	0	0	0	250	0.0473	1677	0.1713	0.0101	615		46.56
OP#2	2332	0	1627	0	0	0	246	0.052	1659	0.1645	0.0097	639	-T	140.33
OP#3	2346	0	0	301	0	0	250	0.0493	1668	0.1646	0.0099	638		45.15
2194	2420	0	0	543	0	3001	185	0.04	1656	0.12	0.016	1026		
OP#1	2395	500	0	0	0	0	140	0.0488	1673	0.15	0.0125	1186	CT	191.24
OP#2	2850	328	436	0	1449	2002	217	0.04	1656	0.1195	0.0074	1027		0.59
OP#3	2273	63	1629	1137	2500	0	141	0.04	1663	0.12	0.0103	937		15.89
2201	1742	0	0	0	993	2002	209	0.043	1650	0.139	0.014	952		
OP#1	1721	16	0	0	0	0	160	0.048	1665	0.1599	0.0123	950		41.78
OP#2	2271	63	1251	0	1882	1482	243	0.043	1650	0.1389	0.0084	949		0.62
OP#3	1413	250	1846	367	2422	0	142	0.0424	1650	0.1389	0.0139	920		4.82
2210	1427	0	0	899	0	0	215	0.051	1670	0.158	0.01	880		
OP#1	1550	500	0	0	0	0	250	0.0469	1685	0.1749	0.0107	805	P	114.01
OP#2	1801	16	544	0	1339	997	240	0.0501	1670	0.1588	0.0097	879		2.44
OP#3	1435	0	127	985	1014	0	177	0.0501	1670	0.1538	0.01	719		23.78
2213	1950	0	0	0	0	0	224	0.04	1689	0.171	0.018	1003		
OP#1	2447	457	0	0	0	0	223	0.0413	1697	0.171	0.0139	1003		11.3
OP#2	2608	39	4	0	608	246	250	0.04	1689	0.1717	0.0147	1002		0.57
OP#3	2019	0	495	521	0	0	156	0.04	1688	0.171	0.0165	1003		0.9
2215	1874	Ö	0	0	ō	ő	216	0.048	1653	0.127	0.007	825		
OP#1	2178	499	ō	Ö	ō	0	250	0.0427	1657	0.1379	0.0094	888	P	381.54
OP#2	2420	0	1955	o	0	680	250	0.042	1648	0.1034	0.007	826		35.97
	2346	ō	563	917	332	0	243	0.0443	1653	0.1009	0.007	663		48.22
	2243	ō	0	330	0	ő	221	0.04	1686	0.149	0.012	918		
OP#1	2503	389	0	0	Ö	0	226	0.0437	1701	0.159	0.0117	920		31.09
OP#2	2503	250	999	Ö	20	375	189	0.0402	1686	0.1398	0.012	918		6.65
OP#3	2273	0	237	142	1557	0	212	0.04	1686	0.1491	0.0118	912		0.79
	2149	o	0	416	0	0	220	0.037	1700	0.119	0.009	1099		
	2798	500	0	0	ol	0	250	0.0368	1715	0.1257	0.0091	1005		36.94
	2830	96	160	0	37	133	250	0.0365	1700	0.119	0.0087	1099		1.37
	2337	0	547	744	0	0	192	0.0357	1695	0.1191	0.009	957		21.81
	1723	0	0	528	0	0	230	0.041	1689	0.143	0.009	841		
	2190	500	0	0	0	0	250	0.0428	1704	0.1661	0.0114	887	P	307.38
	2322	0	645	0	0	2002	238	0.0438	1684	0.1197	0.009	890		33.74
	2195	ő	010	701	1249	0	222	0.0407	1689	0.1363	0.0089	805		10.14
	1675	0	0	406	0	- 6	223	0.044	1686	0.156	0.012	918		
	1840	377	0	0	0	0	223	0.0441	1687	0.1661	0.0119	919		8.17
	2156	0	407	0	645	121	250	0.044	1686	0.1561	0.0116	917		0.23
	1723	4	88	747	5	121	176	0.044	1685	0.1471	0.012	854		13.83
	2322	0	0	0	0	805	225	0.056	1667	0.173	0.014	566		
	2012	0	0	0	0	003	243	0.0512	1667	0.1924	0.0114	564		20.07
	2146			0	0	20	250	0.0554	1662	0.1829	0.0117	588		15.68
	2139	0	373 248	378	0	0	240	0.0543	1665	0.173	0.0109	568		5.61

2229	3582	0	0	0	0	101	222	0.022	4000	0.400	0.000	1 4070		
OP#1	3600	500	0	0	0	484	193	0.033 0.0422		0.103	0.008			
OP#2	3580	0	0	0	626	43	193	0.0422		0.1196	0.0086	1115	CP	257.85
OP#2	3331	- 0	1892	1243	98	0	155			0.103	0.008	1162		12.64
2285	2223	0	1092	1401		1165		0.03		0.0793	0.008	1083	0-	75.62
OP#1	2820	500	0		0		215	0.045	1627	0.093	0.007	949		
				0		0	250	0.0398	1668	0.1227	0.0088	946	-TP	591.36
OP#2	2740	0	0	0	1056	2565	248	0.0413	1627	0.093	0.0043	937		9.62
OP#3	2593	0	1439	1243	2500	700	197	0.0413	1635	0.0892	0.007	786		38.23
2287	1843	0	0	919	0	728	223	0.037	1661	0.109	0.008	1129		
OP#1	2117	500	0	0	0	0	250	0.0384	1681	0.1388	0.0088	974	-TP	210.74
OP#2	2349	0	1001	0	1386	997	248	0.037	1661	0.1097	0.0066	1128		0.77
OP#3	1972	0	1394	1269	1520	0	157	0.0363	1660	0.0842	0.008	968		40.15
2291	1603	0	0	267	0	480	228	0.047	1641	0.115	0.006	859		
OP#1	1726	500	0	0	0	0	250	0.0452	1656	0.1423	0.0061	839	P	64.42
OP#2	1611	173	72	0	132	1709	168	0.047	1641	0.115	0.0057	859		0.16
OP#3	1567	37	63	1223	386	0	173	0.0471	1641	0.1139	0.006	736		15.48
2301	1710	0	0	0	0	518	219	0.05	1660	0.172	0.011	718		
OP#1	1836	375	256	0	0	0	250	0.0504	1660	0.169	0.0103	718		2.64
OP#2	2195	280	248	0	88	0	245	0.0502	1660	0.1704	0.0103	718		1.31
OP#3	1875	15	0	821	442	0	184	0.05	1660	0.1569	0.011	718		8.85
2307	1575	0	0	0	0	0	220	0.042	1688	0.16	0.016	1029		
OP#1	1997	360	0	0	0	0	196	0.0434	1699	0.1601	0.0126	1029		14.89
OP#2	2337	0	743	0	1251	958	250	0.042	1687	0.16	0.0117	1029		1.13
OP#3	1608	0	1891	703	586	0	140	0.0417	1688	0.16	0.0143	989		4.54
2329	2335	0	0	864	0	0	229	0.037	1699	0.119	0.013	859		
OP#1	2691	0	0	0	0	0	226	0.0396	1714	0.1357	0.013	860		36.03
OP#2	2901	0	1593	0	0	610	250	0.036	1694	0.1207	0.0118	943		18.79
OP#3	2622	0	1439	651	626	0	228	0.0371	1699	0.119	0.0106	857		0.49
2333	1399	249	0	890	1991	0	186	0.042	1628	0.103	0.007	687		
OP#1	1459	500	0	0	0	0	250	0.0453	1643	0.132	0.0073	836	P	114.62
OP#2	1569	400	2000	0	0	1146	165	0.0424	1628	0.1029	0.0065	727		6.9
OP#3	1581	204	0	506	2500	0	223	0.0443	1632	0.0922	0.007	687		20.16
2339	1910	0	0	0	0	0	206	0.044	1682	0.138	0.01	830		
OP#1	2019	297	0	0	0	0	225	0.0467	1692	0.138	0.0099	831		-13
OP#2	2219	296	1664	0	7	0	202	0.0443	1682	0.1329	0.01	830		4.44
OP#3	1838	26	352	435	924	0	198	0.0441	1682	0.1381	0.01	830		0.38
2341	1307	0	0	0	0	0	203	0.045	1668	0.162	0.013	684		
OP#1	1369	0	0	0	0	0	222	0.0491	1679	0.1626	0.0114	686		20.39
OP#2	1589	469	2000	0	0	133	163	0.0453	1668	0.1619	0.0127	682		1.4
OP#3	1120	469	0	19	978	0		0.0453	1668	0.1525	0.0124	683		6.55
2343	1872	0	0	0	0	0	199	0.045	1682	0.162	0.01	664		
OP#1	2183	149	0	0	0	0	250	0.0476	1686	0.162	0.0098	664		10.26
OP#2	2332	0	999	0	0	282	249	0.0506	1677	0.1489	0.01	782		43.05
OP#3	2239	105	0	350	0	0	250	0.045	1679	0.1498	0.009	666		10.64
2351	1950	0	0	0	0	1019	203	0.044	1671	0.181	0.013	538		
OP#1	2031	125	0	0	0	0	250	0.0495	1686	0.1832	0.0126	617		48.99
OP#2	2207	0	2000	0	0	540	236	0.0509	1670	0.1803	0.013	552		19.37
OP#3	1755	500	. 0	88	352	0	236	0.0478	1671	0.1801	0.0129	535		9.77
2357	1607	0	0	0	0	0	206	0.049	1675	0.18	0.012	578		
OP#1	1515	10	2	0	0	0	250	0.0495	1682	0.1802	0.0105	577		8.67
OP#2	1726	0		0	0	0	232	0.0529	1675	0.1777	0.0113	578		9.69
OP#3	1491	250	0	19	396	0	243	0.0503	1675	0.1728	0.0108	579		6.93
<u> </u>	<u> </u>													

2362	2329	0	0	T . 0		T	1 200	0.000	1 4000			т	·	
OP#1	2351	- 0	0			<u> </u>		0.036			0.006	675		
					0	0	250	0.0375			0.0058	811		31.12
OP#2	2097	0	1064	0	0	0	212	0.0409	1642	0.0922	0.006	837		276.48
OP#3	2781	0	0	1073	0	0	250	0.0321	1663	0.0376	0.0029	834		100.64
2365	3000	0	0	0	0	0	196	0.03	1662	0.063	0.005	1061		
OP#1	2710	0	936	0	0	0	250	0.03	1644	0.0468	0.0028	1061	-T	169.83
OP#2	2508	0	2	0	0	0	236	0.0318	1629	0.0305	-0.0006	1223	-T	384.87
OP#3	2349	1	0	0	0	0	247	0.0301	1627	0.0422	0.0047	1013	-T	368.81
2369	2096	0	0	0	0	0	205	0.039	1654	0.166	0.012	613		
OP#1	2231	0	0	0	0	0	250	0.0443	1656	0.1501	0.0087	675		35.22
OP#2	2112	0	33	0	0	0	206	0.0459	1648	0.1477	0.0104	775	-T	74.85
OP#3	2195	375	0	44	0	0	250	0.0391	1650	0.1193	0.0096	703		47.14
2375	1691	0	0	0	0	703	200	0.045	1654	0.19	0.013	439		
OP#1	1481	0	0	0	0	0	250	0.0503	1657	0.1893	0.0108	556		41.55
OP#2	1540	0	2000	0	0	63	191	0.0519	1650	0.1852	0.013	502		36.3
OP#3	1689	500	0	513	0	0	250	0.0482	1653	0.1409	0.0089	439		34.21
2381	2604	0	0	0	0	0	204	0.034	1706	0.135	0.011	859		
OP#1	2935	30	45	0	0	0	250	0.0358	1706	0.1255	0.0104	859		12.44
OP#2	2960	0	1157	0	0	0	250	0.0335	1686	0.1252	0.0109	1021	-T	197.23
OP#3	3087	0	0	701	0	0	250	0.0301	1698	0.1049	0.0089	916	-T	77.94
2385	2047	0	0	0	0	0	199	0.043	1681	0.174	0.011	492		
OP#1	2095	0	0	0	0	0	250	0.0456	1687	0.1735	0.0115	650	P	94.37
OP#2	2168	0	1654	0	0	751	241	0.0485	1666	0.1632	0.011	655	-T	164.06
OP#3	2312	250	0	1050	0	0	250	0.0445	1676	0.1329	0.0073	530		39.56
2387	2020	0	0	0	0	217	194	0.054	1669	0.177	0.011	430		
OP#1	1902	0	0	0	0	0	250	0.0511	1669	0.1906	0.0119	541	P	124.38
OP#2	2305	0	1908	0	0	324	250	0.0499	1663	0.17	0.011	592		64.16
OP#3	2087	57	0	697	0	0	250	0.0567	1664	0.1769	0.0101	439		12.32
2392	2069	0	0	0	0	1521	188	0.039	1643	0.12	0.008	620		
OP#1	2307	250	0	0	0	0	250	0.0442	1658	0.1447	0.0085	768	P	135.54
OP#2	2378	0	2000	0	0	966	209	0.0421	1642	0.1201	0.0073	782		35:57
OP#3	2112	482	0	541	0	0	236	0.0398	1643	0.1185	0.008	621		3.52
2394	1870	0	0	0	0	1649	187	0.043	1636	0.13	0.008	555		
OP#1	1870	336	0	0	0	0	250	0.0484	1654	0.1601	0.0092	717	-TP	264.05
OP#2	1882	0	2000	0	0	2002	181	0.0475	1632	0.1267	0.008	555		16.96
OP#3	1889	429	18	706	1994	0	226	0.045	1636	0.1174	0.0076	556		14.58
2399	1992	0	0	0	0	646	201	0.052	1682	0.207	0.013	646		
OP#1	1999	148	0	0	0	0	250	0.0485	1682	0.2026	0.013	646		8.94
OP#2	2332	0	749	0	0	751	250	0.0478	1677	0.1828	0.013	743		39.74
OP#3	2043	0	626	508	0	0		0.0513	1677	0.1911	0.013	648		14.34
2400	1621	0	0	473	Ō	Ō	199	0.045	1682	0.192	0.013	683		
OP#1	1738	22	123	0	. 0	0	250	0.045	1677	0.1908	0.0128	683		5.37
OP#2	2107	0	358	0	0	500	250	0.0439	1677	0.1749	0.013	839		38.96
OP#3	1904	125	0	88	Ō	0	250	0.0451	1678	0.1762	0.0129	691		13.21
2405	1451	488	0	591	ō	0	194	0.039	1705	0.142	0.008	762		
OP#1	2036	500	0	0	ō	ō	250	0.0413	1722	0.1723	0.0119	915	-TP	575.15
OP#2	2251	0	1869	0	ō	2776	250	0.043	1693	0.1138	0.008	924	-T	133.75
OP#3	2034	82	174	920	508	0	227	0.039	1705	0.142	0.0079	761		0.26
2409	2154	0	0	0	0	0	200	0.043	1658	0.144	0.006	528		
OP#1	2349	11	0		0	0	250	0.0438	1667	0.1376	0.0066	689	P	143.13
OP#1	2007	- 11		0	0	500	192	0.049	1641	0.1276	0.006	690	-T	189.34
OP#2	2224	125			0	000	250	0.0443	1653	0.1194	0.0059	668		51.58
UP#3	2224	120	<u> </u>	1 202				U.U 17U						

2422	1490	0	0			4700	1400	0.040	1070			· · · · · · · · · · · · · · · · · · ·	7	·
			 		0	1799		0.049	1678		0.011	424		
OP#1	1335	250	0	0	0	0		0.0543	1696	0.2133	0.0126	568	-TMnP	335 91
OP#2	1530	0	2000	0	0	2502	192	0.0559	1673	0.1625	0.011	425		23.63
OP#3	1234	499	16	714	936	0	209	0.0536	1678	0.17	0.0094	424		9.58
2430	1917	0	0	899	0	0	189	0.053	1687	0.163	0.011	530		
OP#1	1958	1	0	0	0	0	250	0.0505	1701	0.193	0.0124	552	P	169.51
OP#2	2075	0	2000	0	0	184	236	0.0547	1683	0.1632	0.0109	539		8.62
OP#3	1884	125	516	268	511	0	249	0.0532	1687	0.1629	0.0091	532		0.75
2432	2097	0	0	896	0	29	183	0.05	1649	0.153	0.007	466		
OP#1	2192	140	0	0	0	0	250	0.0496	1662	0.1734	0.0095	621	P	413.47
OP#2	2332	0	2000	0	0	837	250	0.0525	1644	0.1371	0.007	591		46.87
OP#3	2275	106	0	883	134	0	246	0.0535	1649	0.1397	0.0069	463	~~~~~	16.41
2442	1898	0	0	902	0	0	203	0.058	1678	0.168	0.009	418		
OP#1	1723	0	0	0	0	0	250	0.0527	1682	0.1843	0.0102	508	P	182.86
OP#2	2009	4	1732	0	0	289	250	0.0567	1673	0.1585	0.009	574		50.34
OP#3	1809	23	340	502	0	0	250	0.058	1673	0.168	0.008	456		14.21
2446	2054	0	0	0	0	0	205	0.051	1685	0.15	0.008	491		
OP#1	1955	0	0	0	0	0	250	0.0457	1685	0.151	0.0083	647	P	78.67
OP#2	1875	16	1816	0	10	270	244	0.0541	1663	0.1506	0.008	646	-T	231.3
OP#3	2222	0	0	810	0	0	249	0.0447	1678	0.1237	0.0056	655	-T	89.91
2448	1950	0	0	0	0	456	205	0.054	1659	0.184	0.009	444		
OP#1	1826	0	0	0	0	0	250	0.0512	1664	0.184	0.0097	538	P	113.92
OP#2	2012	0	1500	0	0	375	250	0.0556	1654	0.1689	0.009	554		41.28
OP#3	1848	169	0	432	0	0	250	0.0559	1654	0.1699	0.0089	444		16.19
2452	1957	0	0	0	0	0	215	0.042	1677	0.164	0.008	540		
OP#1	2153	3	0	0	0	0	250	0.043	1683	0.1509	0.0088	701	P	147.41
OP#2	2034	0	1869	0	0	817	233	0.0488	1656	0.1398	0.008	702	-T	237.02
OP#3	2293	109	0	751	0	0	250	0.0421	1672	0.1218	0.0065	662		53.61
2456	1768	0	0	0	0	4	208	0.055	1653	0.195	0.009	436		
OP#1	1584	0	0	0	0	0	250	0.0504	1653	0.1778	0.0094	555	P	94.36
OP#2	1723	0	362	0	0	1067	250	0.0568	1643	0.1652	0.009	570	-T	109.94
OP#3	1843	125	0	742	0	0	250	0.0551	1648	0.1524	0.008	436		26.95
2458	2059	0	0	0	0	99	209	0.046	1671	0.167	0.009	576		
OP#1	2285	250	0	0	0	0	250	0.046	1679	0.1647	0.0096	732	P	100.08
OP#2	2339	0	354	0	0	1001	248	0.0493	1664	0.151	0.0089	738	-T	73.88
OP#3	2195	250	0	437	0	0	250	0.0463	1667	0.1515	0.0088	577		14.07
2460	2113	0	0	0	1387	2899	195	0.048	1619	0.151	0.009	550		- 425
OP#1	2034	500	0	0	0	0	250	0.052	1654	0.1927	0.0102	705	-TMnP	517.62
OP#2	1960	480	1984	0	357	2307	144	0.0484	1619	0.151	0.0086	550		0.99
OP#3	1926	457	0		2500		197	0.0481	1631	0.1407	0.009	549		19.14
2466	1931	0	0	0	0	525	211	0.048	1668	0.139	0.01	713		
OP#1	2251	321	0	0	0	0	250	0.0431	1681	0.1575	0.01	816		50.56
OP#2	2241	0	1955	0	0	246	250	0.0475	1663	0.1519	0.0097	713		15.29
OP#3	2019	15	999	850	0	0	202	0.0476	1664	0.1391	0.0098	711	******	4.72
2468	1612	0	0	482	0	523	214	0.048	1660	0.158	0.009	661		
OP#1	1718	492	0	0	0	0	250	0.0459	1675	0.1713	0.01	823	P	166.89
OP#2	1877	219	2000	0	0	782	248	0.0501	1659	0.157	0.009	661		6.88
OP#3	1577	188	145	1185	506	0	177	0.0479	1660	0.1355	0.009	660		14.75
2472	2049	0	0	707	0	2493	199	0.043	1614	0.107	0.007	641		
OP#1	2349	313	0	0	0	0	250	0.0436	1662	0.1371	0.0089	803	-TP	704.59
OP#2	2038	422	2000	0	32	2456	154	0.043	1614	0.107	0.0064	641		0.14
OP#3	1931	439	4	1251	2500	0	182	0.0431	1621	0.0943	0.007	624		21.65
	· · · · · · · · · · · · · · · · · · ·	····												

2484	1406	0	0	911	2527	0	206	0.044	1666	0.174	0.000	620		
OP#1	1432	500	0	0	0	0	250	0.0486	1681	0.174	0.009			
OP#2	1752	10	1935	0	93	2002	240	0.0509			0.0109	772	P	259.62
OP#3	1530	383	516	311	2500	0	233	0.0309	1666	0.1442	0.009	627		32.91
2488	1441	0	0	311	2300	0	208	0.0439	1667	0.139	0.009	625		22.55
OP#1	1205	0	0	0	0	0	250	0.0519	1681	0.228	0.015	404		
OP#2	1379	0	436	0	0	0	242	0.0519	1676 1676	0.2121	0.0125	525		47.55
OP#3	1682	160	0	896	0	0	250	0.055		0.2175	0.015	520		45.67
2490	2800	0	0		0	0	209	0.039	1676 1702	0.1654	0.0087	405		32.47
OP#1	2935	414	0	0	0	0	250	0.0392	1704	0.159	0.01	765		040.00
OP#2	2974	0	1376	0	0	1130	249	0.0392	1678	0.1483	0.0121	926	P	240.32
OP#3	2974	0	0	591	0	0				0.1147	0.01	927	-T	262.73
2492	2337	0	0	0	0	0	250 206	0.0348	1697	0.1259	0.01	849		48.58
OP#1	2447	379	0	0	0	0		0.044	1666	0.143	0.009	620		005.40
OP#1	2513	0	2000	0	0	536	250 248		1681	0.1634	0.0103	782	P	205.49
OP#2	2224	321	2000	701	0	0	222	0.0479	1662 1666	0.143	0.009	668		20.16
2499	2961	0	0	701	0	0	230	0.0441	1682	0.103	0.009	623		6.3
OP#1	3082	500	0	0	0	0	250	0.0347	1686	0.103	0.0074	1160		255.51
OP#1	3065	1	370	0	39	246	250	0.0347	1671	0.1049	0.0074	1047 1149	P -T	
OP#2	2974	0	1939	701	0	0	230	0.033	1676	0.0667	0.006	996		100.82
2514		0				1187	205	0.0265	1669	0.0667	0.00	709	C	137.59
OP#1	2145 1816	126	0	0	0	0	211	0.0524	1670	0.2006	0.02	709		6.6
OP#1	2278	250	395	0	447	375	248	0.0524	1669	0.2000	0.0149	708		0.31
OP#2	1767	194	133	96	1014	0	197	0.0301	1669	0.1999	0.0149	711		0.55
2516	1953	0	0	0		1405	206	0.0499	1659	0.152	0.0100	796		0.55
OP#1	2114	500	0	0	0	0	250	0.0466	1674	0.1658	0.0107	811	P	95.3
OP#1	2310	156	1500	0	186	1064	235	0.0466	1659	0.1464	0.0107	796		5.08
OP#2	2214	0	0	714	2036	0	219	0.0452	1659	0.1469	0.01	734		13.14
2518	2309	0	0	7 14	1781	3021	194	0.0432	1637	0.135	0.009	758		13.14
OP#1	2877	500	0	0	0	0	250	0.0438	1696	0.165	0.0119	866	-TP	855.78
OP#2	2613	8	1636	0	1439	2940	220	0.047	1637	0.1348	0.0083	758		0.28
OP#3	2515	118	1124	1356	2500	0	195	0.047	1652	0.135	0.0089	635		31.27
2520	2038	0	0	0	0	1297	208	0.048	1660	0.132	0.009	791		
OP#1	2173	486	0	0	0	0	250	0.0427	1670	0.1462	0.009	883		43.13
OP#2	2229	0	1185	0	0	1044	250	0.0462	1655	0.1338	0.0083	802		11.62
OP#3	2163	0	274	835	352	0	218	0.0442	1660	0.132	0.009	737		14.91
2522	1651	0	0	1010	1087	0	211	0.05	1646	0.115	0.006	568		
OP#1	2007	230	0	0	0	0	250	0.0458	1661	0.1401	0.0067	729	P	195.21
OP#1	1999	0	2000	0	0	630	226	0.0502	1643	0.115	0.0047	684		23.29
OP#2	2019	32	203	736	626	000		0.0501	1645	0.1151	0.0047	565		1.31
2527	2075	0	203	0	020	141	195	0.045	1645	0.142	0.009	796		
OP#1	2285	147	856	0	0	0	250	0.0457	1645	0.1365	0.0085	795		5.53
	2253	0	0.00	0	149	0	195	0.0444	1640	0.1327	0.0082	796		12.76
OP#2	2322	0	47	431	39	0	222	0.0444	1645	0.1027	0.009	775		18.56
OP#3 2530	1653	0	0	812	0	0	211	0.053	1661	0.141	0.009	519		
OP#1	1647	250	0	012		0	250	0.0486	1676	0.1837	0.0107	681	MnP	371.79
		250	1793	0		2010	250	0.0527	1656	0.1437	0.0079	600		22.98
OP#2	1877	78	751	1293	623	2010	209	0.0531	1661	0.141	0.0073	519		0.43
OP#3	1757	501	751	1293		0	203	0.035	1699	0.128	0.012	1290		
2534	2647 2952	500	0	0		0	233	0.0339	1714	0.1345	0.012	1128		37.31
OP#1		0				747	241	0.03	1694	0.1344	0.0119	1128		36.49
OP#2	2974	0		865		177		0.0301	1694	0.1125	0.012	1098	0-	69.6
OP#3	2557		1300	1 000	1 1000			3.3001					· · · · · · · · · · · · · · · · · · ·	

2536	2149	. 0	0	313	2443	0	189	0.046	1629	0.13	0.006	840		
OP#1	2239	500	0	0	0	0	250	0.0476	1644	0.156	0.0081	791	P	398.92
OP#2	2451	67	1517	0	1100	626	231	0.046	1629	0.1296	0.0059	840		0.34
OP#3	2449	0	500	1184	2287	0	210	0.0459	1629	0.1051	0.006	683		39.83
2545	2385	0	0	421	0	144	200	0.052	1649	0.154	0.008	687		
OP#1	2271	500	0	0	0	0	250	0.0494	1664	0.1619	0.0081	756	P	51.82
OP#2	2229	218	1374	0	64	238	223	0.0534	1649	0.1541	0.0079	687		2.94
OP#3	2122	0	0	898	567	0	202	0.051	1649	0.1482	0.008	652		10.72

Table A5.2 Optimization results for dataset D2

				~				results i	or data	iset D2				
Heat#	022	LIM2	DOL O2	ORE 2	RSL2	RDO LO2	HL2	C2	T2	Mn2	P2	Oact2	Violations	Cost
2551	1870	0	0	865	2510	4	187	0.048	1633	0.156	0.009	589		
AIM	0	0	0	0	0	0	0	0.048	1633	0.13	0.014	589		
OP#1	1882	10	0	0	0	0	192	0.0512	1649	0.1793	0.0123	750	Mn	240.87
OP#2	2178	0	1609	0	0	2475	236	0.0474	1628	0.1317	0.0075	590		7.66
OP#3	2007	250	1918	824	1657	0	206	0.0474	1633	0.1301	0.0088	586		1.82
2553	1451	0	0	0	0	0	191	0.047	1695	0.164	0.015	756		
AIM	0	0	0	0	0	0	0	0.047	1695	0.41	0.096	756		
OP#1	1410	14	498	0	0	0	247	0.0465	1694	0.1671	0.0133	757		61.66
OP#2	1413	0	61	0	0	0	140	0.0484	1694	0.1936	0.0184	757		56.79
OP#3	1393	52	0	23	152	0	223	0.047	1695	0.195	0.0147	757		52.71
2555	1836	0	0	0	0	0	195	0.043	1679	0.18	0.012	686		
AIM	0	0	0	0	0	0	0	0.043	1679	0.21	0.014	686		
OP#1	1958	0	0	0	0	0	250	0.0442	1679	0.1718	0.0119	738		28.75
OP#2	1960	1	37	0	0	0	195	0.0446	1674	0.1695	0.0139	801		44.75
OP#3	2038	218	0	110	469	0	250	0.0432	1679	0.1475	0.0104	687		30.4
2561	1813	0	0	807	0	427	192	0.05	1661	0.153	0.01	564		
AIM	0	0	0	0	0	0	0	0.05	1661	0.21	0.014	564		
OP#1	1528	183	6	0	0	0	250	0.0552	1661	0.1927	0.0107	564		18.76
OP#2	1630	0	127	0	626	0	147	0.0542	1661	0.1941	0.0138	564		16.04
OP#3	1432	236	0	12	171	0	217	0.0534	1661	0.1936	0.0118	566		14.94
2563	1811	0	0	600	0	0	192	0.053	1662	0.174	0.009	445		
AIM	0	0	0	0	0	0	0	0.053	1662	0.2	0.016	445		
OP#1	1379	0	0	0	0	0	250	0.0564	1662	0.2035	0.0126	471		14.09
OP#2	1662	30	362	0	225	313	172	0.0536	1662	0.1999	0.0142	445		1.12
OP#3	1413	348	0	138	506	0	232	0.0544	1662	0.1964	0.0119	446		4.73
2571	1741	0	0	758	0	0	189	0.045	1691	0.173	0.013	570		
AIM	0	0	0	0	0	0	0	0.045	1691	1.46	0.012	570		
OP#1	1418	16	0	0	0	0	250	0.0503	1702	0.208	0.0141	612	P	288.37
OP#2	1726	0	2000	0	0	1251	250	0.0505	1687	0.1752	0.012	621		113 44
OP#3	1870	234	0	765	2307	0	241	0.0449	1691	0.1537	0.0089	572		90.02
2573	1967	0	0	1006	0	0	190	0.044	1687	0.144	0.01	560		
AIM	0	0	0	0	0	0	0	0.044	1687	1.46	0.012	560		
OP#1	1471	0	0	0	0	0	250	0.0493	1689	0.1893	0.0127	627	P	173.49
OP#2	1804	0	2000	0	0	254	250	0.0484	1683	0.1685	0.012	646		117.8
OP#3	2029	216	33	1139	626	0	234	0.0439	1686	0.1256	0.0076	563		92.68
2581	2659	0	0	0	0	0	190	0.036	1698	0.15	0.012	941		
AIM	0	0	0	0	0	0	0	0.036	1698	0.39	0.076	941		
OP#1		374	0	0	0		249	0.0413		0.1468	0.011	941		79.92
OP#2	2662	0	751	0	0	0	140	0.0363	1698	0.1412	0.0149	1007		72.1
OP#3	2586	44	0	406	1012	0	214	0.036	1698	0.1397	0.011	942		64.43
2583	3041	0	0	0	0	317	189	0.038	1711	0.168	0.015	906		
AIM	0	0	0	0	0	0	0	0.038	1711	0.39	0.076	906		
OP#1	2943	124	694	0	0	0	248	0.0424	1711	0.1611	0.0135	904		70.47
OP#2	3172	0	8	0	0	0	250	0.036	1706	0.1474	0.013	1018		84.81
OP#3	3092	9	0	0	1877	0	245	0.038	1711	0.1596	0.0121	907		59.27
2585	1921	0	0	0	0	0	191	0.035	1695	0.206	0.015	685		
AIM	0	0	0	0	0	0	0	0.035	1695	0.39	0.076	685		

OP#1	2234	0	0	0	0	0	250	0.0403	1708	0.1599	0.0114	824	T	107.81
OP#2	2082	0	1875	0	0	0		0.0419	1688	0.1592	0.0139	847	-T	135
OP#3	2192	500	0	402	709	0	249	0.035	1695	0.1181	0.0077	686		69.99
2587	2187	0	0	0	0	0	183	0.046	1684	0.181	0.015	612		03.33
AIM	0	0	0	0	0	0	0	0.046	1684	0.39	0.076	612		
OP#1	2036	0	0	0	0	0	250	0.048	1683	0.1806	0.0121	654		66.45
OP#2	2195	0	248	0	0	0	250	0.0468	1679	0.1843	0.0126	711		75.81
OP#3	2038	297	0	55	76	0	247	0.046	1684	0.1803	0.0117	612		53.85
2603	2491	0	0	0	0	0	181	0.045	1683	0.146	0.008	472		
AIM	0	0	0	0	0	0	0	0.045	1683	0.2	0.016	472		
OP#1	2016	0	0	0	0	0	250	0.049	1673	0.1792	0.0115	634	-T	111.71
OP#2	1877	0	0	0	0	0	170	0.0506	1665	0.1826	0.0138	634	-T	202.57
OP#3	2178	250	0	182	0	0	250	0.0454	1678	0.1522	0.0099	620		61.05
2605	2264	0	0	0	779	0	182	0.05	1688	0.186	0.011	458		
AIM	0	0	0	0	0	0	0	0.05	1688	0.2	0.016	458		
OP#1	1928	0	0	0	0	0	250	0.05	1683	0.1975	0.0126	612		39.74
OP#2	1818	0	2	0	0	0	192	0.0522	1676	0.2028	0.0146	619	-T	125.21
OP#3	1921	204	0	41	0	0	250	0.05	1683	0.1887	0.0116	569		34.89
2625	1797	0	0	4	0	0	179	0.047	1700	0.205	0.016	570		
AIM	0	0	0	0	0	0	0	0.047	1700	0.21	0.011	570		
OP#1	1711	125	0	0	0	0	250	0.0471	1703	0.2128	0.016	721	P	485.41
OP#2	2036	0	1672	0	0	3730	250	0.0444	1668	0.1413	0.011	721	-T	369.64
OP#3	2271	31	751	1109	907	0	243	0.0467	1700	0.1645	0.011	572	******	23.65
2629	1821	0	0	880	2039	0	179	0.048	1665	0.158	0.01	459	*****	
AIM	0	0	0	0	0	0	0	0.048	1665	0.31	0.013	459		
OP#1	1437	0	0	0	0	0	250	0.0533	1675	0.1975	0.0121	539		75.03
OP#2	1572	134	1630	0	39	0	203	0.0544	1665	0.1846	0.0119	459		53.78
OP#3	1305	500	0	36	975	0	238	0.0504	1665	0.1644	0.0098	459		52.1
2633	1982	0	0	779	0	0	183	0.042	1675	0.149	0.008	517		
AIM	0	0	0	0	0	0	0	0.042	1675	0.31	0.013	517		
OP#1	1899	0	2	0	0	0	250	0.0473	1680	0.1837	0.0114	670		88.64
OP#2	1838	0	1011	0	0	0	172	0.0488	1670	0.1724	0.0128	674		95.94
OP#3	2009	500	4	567	0	0	250	0.0423	1674	0.1208	0.0067	517		62.56
2639	2150	0	0	460	0	123	189	0.041	1673	0.118	0.006	546		
AIM	0	0	0	0	0	0	0	0.041	1673	0.61	0.019	546		
OP#1	1892	0	0	0	0	0	250	0.0456	1665	0.1624	0.0094	708	-T	151.54
OP#2	1723	0	1251	0	0	0	140	0.0483	1652	0.1565	0.0116	707	-T	307-16
OP#3	2349	149	0	798	0	0	250	0.041	1668	0.1022	0.0054	662		109.5
2640	2640	0	0	735	0	0	147	0.049	1654	0.168	0.009	491		
AIM	0	0	0	0	0	0		0.049	1654	0.81	0.019	491		
OP#1	2090	0	0	0	0	0		0.0537	1654	0.1913	0.0108	530		94.31
OP#2	2043	0	121	0	0			0.0522	1649	0.1884	0.013	522		94.43
OP#3	2114	437	8	29	313	0		0.049	1654	0.1664	0.0096	493		79.96
2642	2343	0	0	0	0	0		0.037	1676	0.159	0.015	625		
AIM	0	0	0	0	0	0		0.037	1676	0.81	0.019	625		15/00
OP#1	2349	0	0	0	0			0.0432	1686	0.1605	0.0126	759	C	154.26
OP#2	2207	0	936	0	0			0.0429	1671	0.1618	0.0155	787		126.71
OP#3	2896	250	0	1263	1261	0		0.0373	1676	0.0892	0.0065	624		89.96
2645	2593	0	0	0	0			0.044	1618	0.101	0.005	609		
AIM	The second second second	0	0	0	1			0.044	1618	0.13	0.014	609		04.50
OP#1	2224	0					250	0.0476		0.1269	0.0058	663		24.52
OP#2	2273	0	14	0	0	0	164	0.0445	1613	0.102	0.0066	751		51.11

OP#3	2351	2	0	101	0	0	250	0.049	1618	0.1081	0.0063	668	1	27.05
2657	1968	0	0	997	0	1000	140	0.035	1633	0.075	0.005	735		37.95
AIM	0	0	0	0	0	0	0	0.035	1633	0.13	0.003	735		
OP#1	2036	31	0	0	Ō	0	250	0.0404	1648	0.117	0.0069	832		57.69
OP#2	1960	31	2000	0	34	0	167	0.0419	1633	0.1075	0.0082	861		54.05
OP#3	1726	312	0	26	389	0	236	0.0409	1633	0.1073	0.0075	734		34.43
2665	1643	0	0	0	0	0	161	0.041	1677	0.161	0.011	675		34.43
AIM	0	0	0	0	0	0	0	0.041	1677	0.14	0.013	675		
OP#1	1674	0	0	0	0	ō	250	0.0463	1686	0.161	0.0097	692		39.83
OP#2	1836	0	2000	0	Ö	434	144	0.0456	1677	0.14	0.0118	805		30.52
OP#3	1726	301	0	90	1503	0	248	0.0423	1677	0.1398	0.008	676		3.48
2669	1896	0	0	0	0	761	150	0.039	1682	0.158	0.011	655		0.vc
AIM	0	0	0	0	0	0	0	0.039	1682	0.14	0.013	655		
OP#1	1897	250	0	0	0	0	240	0.0461	1697	0.1647	0.0105	816	C	121.27
OP#2	1999	47	2000	0	0	809	160	0.0459	1682	0.14	0.0113	791		38.53
OP#3	1765	418	0	197	1557	0	237	0.0411	1682	0.1398	0.0082	657		5.93
2673	2194	0	0	204	0	0	148	0.047	1677	0.207	0.014	445		
AIM	0	0	0	0	0	0	0	0.047	1677	0.26	0.013	445		
OP#1	1980	0	0	0	0	0	250	0.0523	1679	0.1906	0.0113	562		66.33
OP#2	1980	0	248	0	0	0	241	0.0539	1672	0.195	0.0115	553		68.94
OP#3	1889	500	0	166	0	0	250	0.0488	1673	0.1731	0.0094	445		41.25
2679	2011	0	0	0	0	386	149	0.046	1666	0.172	0.012	456		
AIM	0	0	0	0	0	0	0	0.046	1666	0.26	0.013	456		
OP#1	1774	0	0	0	0	0	250	0.0513	1663	0.1824	0.0106	584		72.63
OP#2	1723	0	0	0	0	0	168	0.0525	1660	0.1799	0.0129	598	-T	92.58
OP#3	1892	499	0	349	0	0	250	0.0462	1661	0.1358	0.0077	471		56.55
2683	1847	0	0	612	0	0	153	0.052	1671	0.217	0.014	413		
AIM	0	0	0	0	0	0	0	0.052	1671	0.26	0.016	413		
OP#1	1393	0	0	0	0	0	250	0.055	1666	0.2213	0.0134	502		47.02
OP#2	1432	0	45	0	0	0	250	0.0581	1666	0.2279	0.0138	445		36.94
OP#3	1728	339	0	450	0	0	250	0.052	1671	0.1821	0.0104	413		30.19
2684	2201	0	0	0	0	0	153	0.052	1672	0.156	0.01	485		
AIM	0	0	0	0	0	0	0	0.052	1672	0.41	0.016	485		
OP#1	1816	0	0	0	0	0	250	0.0545	1667	0.1816	0.0098	512		71.12
OP#2	1982	0	4	0	0	0	244	0.0545	1667	0.1738	0.0093	525		75.79
OP#3	2043	195	0	389	0	0	250	0.052	1671	0.1584	0.0076	484		62.57
2689	2393	0	0	0	0	2276	142	0.034	1626	0.1	0.007	649		
AIM	0	0	0	0	0	0	0	0.034	1626	0.13	0.014	649		
OP#1	2060	375	0	0	0	0	245	0.0478	1641	0.1438	0.0085	810	C	340.13
OP#2	2381	374		0	76		142	0.0409	1635	0.1171	0.0094	811		63.78
OP#3	1760	500	0	371	797		188	0.0404	1626	0.1119	0.0088	720		43.6
2694	1895	0	0	0	0	693	156	0.041	1679	0.186	0.015	491		
AIM	0	0	0	0	0	0	0	0.041	1679	0.19	0.016	491		
OP#1	1645	31	0	0	0	0	250	0.0497	1694	0.2038	0.0145	630	C	153.82
OP#2	1809	1	2000	0	0	817	170	0.0479	1679	0.1895	0.0158	586		36.36
OP#3	1586	495	47	82	1933	0	247	0.0473	1679	0.1874	0.0122	496		17.32
2698	1862	0	0	500	0	601	145	0.038	1671	0.145	0.011	530		
AIM	0	0	0	0	0	0	0	0.038	1671	0.19	0.016	530		
OP#1	1723	0	0	0			250	0.0476	1686	0.1841	0.0127	664	C	181.49
OP#2	1801	29	2000	0	0	622	140	0.0468	1671	0.1694	0.0148	692	C	113.74
OP#3	1726	500	0	365	1212	0	245	0.0437	1671	0.1519	0.0097	529		35.14
2705	2019	502	0	0	0	526	145	0.043	1676	0.162	0.012	480		

i....

AIM	0	0	0	. 0	0	0	0	0.043	1676	0.04	0.040	100		7
OP#1	1770	1	0	0	0	0	250	0.0499	1691	0.21	0.016	480		10/ 17
OP#2	1765	3	2000	0	0	246	149	0.0499	1676	0.1951	0.0133	614		101.47
OP#3	1650	495	0	66	1405	240	250	0.0499	1676	0.1931	0.0156	562		40.25
2711	1796	0	0	0	0	1518	149	0.048	1643	0.1621	0.011	478		25.49
AIM	0	0	0	0	0	0	0	0.042	1643	0.119	0.007	525		
OP#1	1410	50	0	0	0	0	250	0.042	1658	0.1891	0.016	525		400.77
OP#2	1550	142	2000	0	0	993	141	0.0489	1643	0.1622	0.0114	629	C	128.77
OP#3	1266	500	0	7	1522	0	233	0.0489	1643	0.1622		611		55.74
2719	2546	0	0	0	0	0	160	0.039	1669	0.1631	0.0102	527		36.47
AIM	0	0	0	0	0	0	0	0.039	1669	0.147	0.076	625 625		
OP#1	2344	0	0	0	0	0	250	0.0443	1672	0.1551	0.0102	736		91
OP#2	2266	0	8	0	0	0	232	0.0451	1662	0.1672	0.0102	787	-T	125.23
OP#3	2662	312	0	876	0	0	247	0.0391	1669	0.1154	0.0069	625	-1	68.54
2724	1585	0	0	0	0	485	148	0.059	1646	0.186	0.0009	375		00.54
AIM	0	0	Ö	ō	0	0	0	0.059	1646	0.23	0.021	375		
OP#1	1100	Ö	0	Ö	0	0	250	0.0536	1644	0.2041	0.0125	532		65.07
OP#2	1100	1	110	0	0	0	249	0.0584	1644	0.2187	0.0129	375		8.35
OP#3	1151	186	0	181	ö	0	249	0.0594	1643	0.1993	0.0118	376		17.02
2726	1817	0	0	0	ő	0	152	0.038	1654	0.145	0.007	433		17.02
AIM	0	0	öl	o	ol	0	0	0.038	1654	0.23	0.021	433		
OP#1	1166	0	0	ō	ō	0	250	0.0507	1650	0.189	0.0116	595	C	288.82
OP#2	1361	0	2000	0	ō	31	140	0.0499	1650	0.1721	0.0141	595	C	228.18
OP#3	1730	500	2	939	0	0	250	0.0438	1654	0.1082	0.0065	434		68.94
2728	2064	0	0	309	0	ō	144	0.041	1683	0.138	0.01	642		
AIM	0	0	0	0	0	0	0	0.041	1683	0.23	0.021	642		
OP#1	2016	0	0	0	0	0	250	0.0412	1682	0.1566	0.012	803		58.8
OP#2	1723	0	0	0	0	0	140	0.0446	1669	0.1767	0.0164	801	-T	160.91
OP#3	1928	312	0	47	0	0	250	0.041	1679	0.1467	0.0114	697		49.19
2730	1626	0	0	534	250	0	140	0.042	1664	0.162	0.017	502		
AIM	0	0	0	0	0	0	0	0.042	1664	0.46	0.021	502		
OP#1	1489	0	0	0	0	0	250	0.0476	1674	0.1801	0.0129	664		123.83
OP#2	1491	0	1996	0	0	94	143	0.0488	1664	0.1875	0.0161	617		98.42
OP#3	1933	430	0	924	1488	0	250	0.042	1664	0.1247	0.008	502		72.95
2733	1663	0	0	772	0	0	150	0.046	1685	0.169	0.018	493		
AIM	0	0	0	0	0	0	0	0.046	1685	0.46	0.016	493		
OP#1	1410	0	0	0	0	0	250	0.0515	1694	0.2039	0.0126	579		98.74
OP#2	1491	1	2000	0	0	231	149	0.0529	1685	0.1858	0.0145	574		91.09
OP#3	1369	500	0	417	2	0	231	0.0467	1685	0.1586	0.0092	494		67.24
2741	1553	0	0	0	0	701	146	0.045	1674	0.192	0.014	486		
AIM	0	0	0	0	0	0	0	0.045	1674	0.46	0.016	486		
OP#1	1296	0	0	0	0	0	250	0.0503	1681	0.2012	0.0131	605		99.93
OP#2	1344	0	1994	0	2	20	142	0.0519	1674	0.1959	0.0159	558		87.75
OP#3	1413	500	0	391	699	0	243	0.0459	1674	0.1544	0.0096	486		68.54
2743	1267	0	0	0	0	1014	150	0.045	1685	0.191	0.015	567		
AIM	0	0	0	0	0	0	0	0.045	1685	0.14	0.013	567		254.04
OP#1	1232	278	0	0	0	0	249	0.0494	1700	0.2044	0.0131	729	MnP	354.61
OP#2	1567	0	1984	0	0	2749	188	0.0491	1680	0.1402	0.0109	729		43.23
OP#3	1176	438	1828	723	389	0	209	0.0446	1685	0.14	0.0089	567		1
2745	1681	0	0	512	0	0	155	0.052	1696	0.173	0.014	609		
AIM	0	0	0	0	0	0	0	0.052	1696	0.14	0.013	609		
OP#1	1804	0	0	0	0	0	227	0.0467	1705	0.17	0.0126	747		63.75

OP#2	1921	0	1986	0	0	110	250	0:0407	1 4004	0.4004	0.0445	T 00:	т —	
OP#3	1928	0	1361	1063	0	0	222	0:0487 0.0483	1691	0.1694	0.0118	634		36.63
2749	2053	0	0	0	0	454	146	0.0463	1694		0.0085	609		9.32
AIM	0	0	0	0	0	454	0	0.044	1680 1680	0.186	0.012	468		
OP#1	1845	0	0	0	0	0	250	0.0493	1689	0.18	0.014	468		
OP#2	1875	0	1998	0	0	145	187	0.0493	1675	0.1911	0.0132	627		60.97
OP#3	1804	500	0	397	0	0	250	0.0302	1679	0.1802	0.0139	620		51.8
2751	2366	0	0	0	0	0	149	0.048	1660	0.158	0.0099	468		17.71
AIM	0	0	0	0	0	0	0	0.048	1660	0.145	0.011	467		
OP#1	1992	0	0	0	0	0	250	0.048	1652	0.2 0.1588	0.016	467		04.44
OP#2	2026	0	0	0	0	0	230	0.0492	1648	0.1569	0.0087	629	-T	91.11
OP#3	2038	250	0	89	0	0	250	0.048	1655	0.1309	0.0082	628 582	-T	137.7
2753	1729	0	0	496	0	7	161	0.044	1685	0.1433	0.0082	567		56.81
AIM	0	0	0	0	0	0	0	0.044	1685	0.14	0.012	567		
OP#1	1958	0	0	0	0	0	250	0.0447	1697	0.1712	0.013	728	Ma	72.42
OP#2	1880	0	1593	0	0	12	249	0.0494	1680	0.1712	0.012	729	Mn	72.43 66.63
OP#3	2002	242	0	701	0	0	250	0.0445	1684	0.1383	0.0081	567		3.18
2755	1769	0	0	748	0	0	160	0.038	1685	0.179	0.0001	634		3.10
AIM	0	0	0	0	0	0	0	0.038	1685	0.14	0.012	634		
OP#1	1902	0	0	0	0	0	250	0.0432	1700	0.1643	0.012	759		66.09
OP#2	1880	0	2000	0	0	497	173	0.0452	1681	0.1501	0.013	794		63.45
OP#3	1726	445	0	182	623	0	247	0.0406	1685	0.1396	0.0095	635		7.77
2756	1883	0	0	829	0 0	0	175	0.043	1665	0.183	0.014	615		
AIM	0	0	0	0	0	0	0	0.043	1665	0.14	0.013	615		
OP#1	1884	0	0	0	0	0	224	0.0459	1680	0.17	0.012	774		68.34
OP#2	2034	o	2000	Ö	0	915	199	0.045	1665	0.14	0.0111	774		30.51
OP#3	1740	437	579	74	1405	0	243	0.043	1665	0.14	0.0096	615		0.14
2757	1871	0	0	0	0	987	148	0.06	1668	0.165	0.011	470		
AIM	0	0	0	0	0	0	0	0.06	1668	0.41	0.016	470		
OP#1	1420	0	0	0	0	0	250	0.0556	1663	0.1995	0.0118	490		67.85
OP#2	1643	0	0	0	51	0	183	0.0539	1668	0.2009	0.014	470		61.19
OP#3	1513	3	0	5	310	0	248	0.06	1668	0.2161	0.0121	470		47.5
2758	1617	0	0	946	1682	0	155	0.043	1674	0.176	0.011	590		
AIM	0	0	0	0	0	0	0	0.043	1674	0.14	0.013	590		
OP#1	1530	249	0	0	0	0	246	0.0482	1691	0.1954	0.0134	752	-TMnP	327.87
OP#2	1723	0	2000	0	0	2432	140	0.0471	1669	0.1409	0.0126	726		38.18
OP#3	1474	449	749	773	626	0	209	0.0429	1674	0.1402	0.0096	588		0.67
2759	2168	492	0	0	0	1014	157	0.046	1650	0.15	0.009	420		
AIM	0	0	0	0	0	0	0	0.046	1650	0.41	0.016	420		
OP#1	1911	1		0	0	0	250	0.0523	1665	0.1979	0.0122	562	C	135.41
OP#2	1806	0	1996	0	0	0	154	0.0529	1650	0.1968	0.0139	461		76.83
OP#3	2092	500	0	824	909	0	238	0.0467	1650	0.1427	0.0078	420		66.93
2764	2348	0	0	0	0	1013	140	0.044	1632	0.13	0.007	553		
AIM	0	0	0	0	0	0	0	0.044	1632	0.13	0.014	553		
OP#1	2165	0	0	0	0	0	250	0.0491	1636	0.16	0.0086	631		52.35
OP#2	2346	0	2000	0	0	0	169	0.0443	1629	0.13	0.0087	676		26.05
OP#3	2117	456	0	15	357	0	250	0.0454	1632	0.1298	0.0078	553		3.4
2766	1713	0	0	0	0	1105	181	0.054	1626	0.176	0.011	400		
AIM	0	0	0	0	0	0	0	0 054	1626	0.13	0.014	400		
OP#1	1647	7	2	0	0	0		0.055	1642	0.1962	0.011	560	Mn	394.24
OP#2	1880	0	1689	0		1998	236	0.0528	1622	0.146	0.0066	400		18.75
OP#3	1772	314	1875	900	941	0	216	0.0537	1626	0.13	0.0067	401		0.85

				,	· · · · · · · · · · · · · · · · · · ·	γ	,	,						
2777	1655	0	0	0		1011	160	0.049	1665		0.012	542		
AIM	0	0	0	0		0	0	0.049	1665		0.016	542		
OP#1	1102	0	2	0		0	243	0.0541	1666		0.0136	542		18.28
OP#2	1369	125	1750	0		70	141	0.0524	1665	0.1989	0.0158	542		7.57
OP#3	1105	453	0	4	467	0	223	0.0493	1665	0.1836	0.0126	540		9.44
2785	2114	0	0	0	0	497	150	0.041	1638	0.135	0.01	638		
AIM	0	0	0	0	0	0	0	0.041	1638	0.13	0.014	638		
OP#1	2065	0	0	0	0	0	250	0.0463	1646	0.1511	0.009	692		46.16
OP#2	2060	0	1875	0	0	0	173	0.0453	1633	0.13	0.0093	642		15.74
OP#3	1726	499	0	0	0	0	222	0.0432	1636	0.1206	0.0089	641		15.53
2787	1807	0	0	925	0	0	161	0.043	1651	0.151	0.009	591		
AIM	0	0	0	0	0	0	0	0.043	1651	0.31	0.013	591		
OP#1	1933	0	0	0	0	0	250	0.0483	1660	0.1708	0.0099	649		76.41
OP#2	1882	0	1992	0	0	0	188	0.0497	1646	0.1505	0.0097	597		73.1
OP#3	1721	500	0	129	0	0	229	0.0438	1651	0.128	0.0083	595		61.75
2790	2271	0	0	542	0	0	157	0.04	1697	0.189	0.019	858		
AIM	0	0	0	0	0	0	0	0.04	1697	0.16	0.014	858		
OP#1	2698	500	0	0	0	0	250	0.0412	1712	0.1802	0.0143	986	P	70.14
OP#2	2710	0	1754	0	0	497	249	0.0398	1692	0.165	0.0134	858		8.45
OP#3	2615	2	311	710	1171	0	207	0.0398	1697	0.1601	0.0125	857		0.6
2796	2011	0	0	832	0	0	163	0.04	1675	0.179	0.012	842		
AIM	0	0	0	0	0	0	0	0.04	1675	0.16	0.014	842		
OP#1	2261	500	0	0	0	0	250	0.0404	1690	0.1851	0.0141	1004	P	58.57
OP#2	2195	31	2000	0	37	0	222	0.0415	1675	0.1583	0.0134	842		4.95
OP#3	1726	280	0	70	154	0	198	0.0399	1675	0.1508	0.0136	845		6.34
2803	1450	0	0	909	1820	0	162	0.043	1650	0.176	0.011	463		
AIM	0	0	0	0	0	0	0	0.043	1650	0.21	0.014	463		
OP#1	1183	0	0	0	0	0	250	0.0531	1665	0.2079	0.0124	544	C	168.21
OP#2	1520	0	2000	0	0	2248	140	0.0504	1650	0.1418	0.0113	625	C	95.55
OP#3	1217	498	0	301	1447	0	233	0.049	1650	0.1582	0.0093	461		39.28
2805	1843	0	0	0	0	773	158	0.05	1666	0.174	0.014	476	******	
AIM	0	0	0	0	0	0	0	0.05	1666	0.21	0.014	476		
OP#1	1471	0	0	0	0	0	250	0.0525	1661	0.2086	0.0135	558		27.94
OP#2	1569	0	76	0	0	0	236	0.0538	1661	0.1948	0.0132	495		23.8
OP#3	1493	244	2	11	7	0	247	0.0543	1664	0.1779	0.0118	478		26.58
2811	2226	0	0	953	244	0	159	0.05	1657	0.149	0.008	489		
AIM	0	0	0	0	0	0	0	0.05	1657	0.21	0.014	489		
OP#1	1437	0	0	0	0	0	250	0.0552	1652	0.1969	0.0107	497		23.29
OP#2	1432	0		0	0	0	152	0.0566	1654	0.1888	0.0132	489		26.34
OP#3	1569	247	0	1	154	0	248	0.0537	1657	0.1698	0.0096	487		26.96
2813	2176	0	0	527	0		161	0.047	1667	0.15	0.009	521		
AIM	0		0	0	0	0	0	0.047	1667	0.21	0.014	521		20.07
OP#1	1818		0	0	0		250		1665	0.1832	0.0102	562		33.97
OP#2	1882	0	311	0	0		236	0.0538	1662	0.1668	0.0097	604		55.63
OP#3	1882	422	0	86	0	0	250	0.047	1666	0.1418	0.0081	526		34.31
2815	2680	0	. 0	0	0	1763	151	0.042	1632	0.113	0.007	729		
AIM	0		0	0	0	0	0	0.042	1632	0.13	0.014	729		050.40
OP#1	2828	36	0	0	0		176	0.0473	1664	0.1601	0.0117	890	-T	256.46
OP#2	2674	94		0		2002	141	0.044	1632	0.1288	0.01	729		5.64
OP#3		373		881	418	0	161	0.042	1632	0.1299	0.0102	730		0.3
2818	2736	0		0		0	165	0.034	1700	0.12	0.008	643		
AIM	0	0	0	0	0	0	0	0.034	1700	0.21	0.011	643		

OP#1	2508	0	0	0	0	0	250	0.041	1696	0.137	0.0103	·808	C	140
OP#2	2410	0	2000	0	0	0	195	0.0418	1673	0.1295	0.0107	811		373.53
OP#3	2510	373	2	131	0	0	250	0.034	1696	0.1094	0.0087	796		75.41
2828	1680	0	0	750	0	513	159	0.045	1692	0.132	0.007	558		10.11
AIM	0	0	0	0	0	0	0	0.045	1692	0.21	0.011	558		
OP#1	1503	7	0	0	0	0	250	0.0468	1692	0.1851	0.0126	683	P	184.05
OP#2	1674	0	1977	0	0	665	250	0.0496	1679	0.161	0.011	720	-T	159.48
OP#3	1413	375	0	41	0	0	250	0.0454	1687	0.165	0.0108	585		31.87
2832	1917	0	0	504	0	0	140	0.035	1680	0.131	0.01	610		
AIM	0	0	0	0	0	0	0	0.035	1680	0.21	0.011	610		
OP#1	1843	0	0	0	0	0	250	0.0426	1693	0.1719	0.0131	773	CP	339.96
OP#2	1882	0	2000	0	0	755	250	0.0457	1671	0.1479	0.011	772	CT	240.83
OP#3	1564	500	0	86	46	0	247	0.0414	1680	0.1435	0.0108	609		50.46
2834	2113	0	0	0	0	702	145	0.045	1635	0.139	0.008	528		
AIM	0	0	0	0	0	0	0	0.045	1635	0.13	0.014	528		
OP#1	2036	0	0	0	0	0	243	0.0474	1648	0.1698	0.0115	689	Mn	154.77
OP#2	2192	0	2000	0	0	997	216	0.045	1631	0.131	0.0091	684		33.91
OP#3	2068	301	4	702	230	0	234	0.0469	1635	0.1299	0.0088	529		4.56
2836	2527	0	0	0	0	0	157	0.043	1691	0.128	0.009	693		
AIM	0	0	0	0	0	0	0	0.043	1691	0.91	0.012	693		
OP#1	2165	18	10	0	0	0	249	0.0467	1691	0.1576	0.0106	694		91.45
OP#2	2278	0	483	0	0	0	168	0.0452	1686	0.1378	0.0119	814		112.5
OP#3	2295	135	8	454	0	0	243	0.043	1691	0.1237	0.0078	694		86.61
2846	2576	0	0	889	1944	0	160	0.048	1652	0.14	0.006	457		
AIM	0	0	0	0	O¦	0	0	0.048	1652	0.21	0.014	457		
OP#1	1985	0	0	0	0	0	250	0.0533	1652	0.1807	0.0091	540		43.33
OP#2	1882	0	53	0	0	0	167	0.0548	1647	0.1685	0.0101	570		63.63
OP#3	1906	500	0	73	0	0	250	0.0482	1647	0.1395	0.0069	470		42.23
2848	2070	0	0	851	3258	0	148	0.03	1642	0.075	0.004	650		
AIM	0	0	0	0	0	0	0	0.03	1642	0.13	0.014	650		
OP#1	1770	0	0	0	0	0	250	0.0408	1647	0.132	0.0074	812	C	251.81
OP#2	1784	0	2000	0	0	0	143	0.0415	1637	0.0773	0.0072	833	CO-	296.46
OP#3	1743	500	0	174	293	0	250	. 0.0365	1642	0.0341	0.003	687		103.5
2854	1657	0	0	0	0	0	161	0.033	1673	0.136	0.01	784		
AIM	0	0	0	0	0	0	0	0.033	1673	0.19	0.016	784		
OP#1	1880	0	0	0	0	0	140	0.0383	1679	0.1412	0.0117	811		52.16
OP#2	1765	50	452	0	64	0	140	0.0396	1673	0.1236	0.0111	784		54.88
OP#3	1782	125	4	1	1562	0	140	0.0331	1673	0.1077	0.0102	784		43.82
2856	2315	0	0	0	0	450	157	0.052	1662	0.171	0.012	449		
AIM	0	0	0	0		0		0.052	1662	0.41	0.016	449		88.34
OP#1	2029	0	0	0		0	140	0.0509	1657	0.1856	0.0135	568 449		59.11
OP#2	2038	0	1155	0		0	250	0.0517	1658	0.1874	0.0116	498		65.17
OP#3	1726	33	0	38		0	156	0.052	1657	0.2081				00.17
2858	-	0	0	0		0	152	0.047	1681	0.176	0.014	498 498		
AIM	0	0		0		0	0	0.047	1681	0.41	0.0129	660	-T	231.95
OP#1	1767	0		0		0	140	0.0461	1664	0.1723	0.0129	652	-T	160.57
OP#2	1723	0		0		0	250	0.0497	1670		0.0127	660	-T	141.38
OP#3	1728			4		0		0.0407	1673	0.1604	0.0129	496		171.00
2860		0		0		0		0.05	1693	0.245 0.19	0.02	496		
AIM			_	1		0		0.05	1693 1692		0.0165	656	P	81.88
OP#1						0		0.0494	1692	0.2129	0.0155	542		30.89
OP#2	2078	0	2000	0	0	0	250	0.0475	1000	0.2123	0.0100	U-14_	l	

OP#3	2002	104	1312	809	0	0	216	0.0499	1688	0.19	0.013	570		20.29
2866	2819	0	0	0	0	0	158	0.033	1671	0.115	0.007	672		
AIM	0	0	0	0	0	0	0	0.033	1671	0.2	0.016	672		
OP#1	2867	0	0	0	0	0	140	0.0336	1666	0.1025	0.0088	904		194.14
OP#2	2315	0	194	0	0	0	181	0.0387	1646	0.1201	0.0091	834	-T	307.33
OP#3	2593	125	0	44	0	0	140	0.0303	1665	0.096	0.01	834	-T	103.43
2868	2250	0	0	0	0	1499	164	0.045	1648	0.121	0.005	469		
AIM	0	0	0	0	0	0	0	0.045	1648	0.2	0.016	469		
OP#1	1821	0	0	0	0	0	140	0.0503	1655	0.1424	0.0083	580		70.88
OP#2	1767	0	1992	0	0	0	140	0.0519	1647	0.1336	0.008	522		61.08
OP#3	1276	329	2	4	0	0	154	0.045	1643	0.1451	0.0089	501		39.18
2870	2238	0	0	0	0	10	158	0.039	1674	0.165	0.011	550		
AIM	0	0	0	0	0	0	0	0.039	1674	0.2	0.016	550		
OP#1	2258	0	0	0	0	0	140	0.0435	1673	0.1535	0.0119	711		65.42
OP#2	2217	0	1439	0	0	0	250	0.0451	1668	0.156	0.0106	712		82.82
OP#3	1960	196	0	16	0	0	140	0.039	1670	0.1549	0.013	640		43.16
2872	2296	0	0	0	0	0	166	0.043	1678	0.164	0.011	544		
AIM	0	0	0	0	0	0	0	0.043	1678	0.2	0.016	544		
OP#1	2036	0	0	0	0	0	140	0.0438	1657	0.1549	0.012	706	-T	236.45
OP#2	1867	0	14	0	0		245	0.048	1658	0.1702	0.0123	706	-T	225.35
OP#3	1990	328	0	1	0	0	174	0.0366	1667	0.1336	0.0121	706	-T	150.12
2874	2201	0	0	0	0	501	155	0.045	1660	0.156	0.008	424		
AIM	0	0	0	0	0	0	0	0.045	1660	0.2	0.016	424		
OP#1	1855	0	0	0	0	0	140	0.0503	1656	0.1667	0.0113	580		68.97
OP#2	1726	0	182	0	0		141	0.0518	1655	0.1817	0.0126	506		48.55
OP#3	1569	187	2	10	0	0	140	0.0454	1655	0.174	0.0123	523		42.3
2887	2606	0	0	0	0	0	156	0.041	1687	0.161	0.012	568		
AIM	0	0	0	0	0	0	0	0.041	1687	0.26	0.016	568		225.00
OP#1	2410	0	0	0	0	0	140	0.0425	1668	0.1464	0.0118	731	- <u>T</u>	235.96
OP#2	2300	0	8	0	0	0	250	0.044	1668	0.1555	0.0106	730 730	-T	236.12
OP#3	2349	232	0	0	0	0	160	0.0359	1678	0.1348		585	-1	135.92
2891	2258	0	0	0	0	0	153	0.036	1680 1680	0.149	0.011	585		
AIM	0 0 0 0 0	0	0	0	0	0	140	0.036	1675	0.1558	0.0125	752		100.08
OP#1	2427	0	1255	0	0	0	250	0.0414	1669	0.1394	0.0099	747	-T	167.18
OP#2	2341 2351	0 117	0	179	0	0	140	0.0426	1678	0.1341	0.0033	716		72.96
OP#3	1993	0	0	0	0	0	168	0.038	1669	0.1341	0.006	494		72.00
2893	1993	0	0	0	0	0	0	0.038	1669	0.26	0.016	494		
AIM OP#1	1613	0	0	0	0	0	140	0.0433	1659	0.1394	0.0106	715	-TO-	280.19
			1435	0			166	0.0433	1659	0.1334	0.0105	656	-T	148.92
OP#2	1667	483	1435	25	0		141	0.0316	1664	0.1425	0.0103	656		115.03
OP#3	1471 1506	403	0	451	0		155	0.0310	1683	0.184	0.013	466		
2895		0	0	0	0	0	0	0.047	1683	0.26	0.016	466		
AIM OD#1	1310	0	0	0	0	0	140	0.0478	1676	0.1899	0.0138	628	-T	94.84
OP#1	1310	0	336	0	0	0	140	0.0507	1678	0.2048	0.0158	569		56.38
OP#2	1256	72	2	15	0	0	175	0.047	1678	0.1897	0.0136	621		65.35
OP#3	1139	0	0	0	0	0	154	0.047	1669	0.162	0.01	501		
2897	1616	0	0	0	0	0	134	0.042	1669	0.102	0.016	501		
AIM	1410	0		0	0	0	143	0.0463	1658	0.175	0.0119	662	-T	149.7
OP#1	1410	0		0	0	0	154	0.048	1664	0.1773	0.013	651		81.39
OP#2	1405			96	0	0	140	0.048	1664	0.1588	0.012	645		72.64
OP#3					618	0	156	0.042	1668	0.153	0.012	533		
2899	1690	0	0	621	ן סוסן	U	100	0.04	1000	0.100	V.0 1 L	300		

AIM	0	0	0	0	0	0	0	0.04	1660	0.00	0.040	500	Τ	
OP#1	1633	0	0	0		0	140	0.04	1668 1668					
OP#2	1650	 0	1713	0	2	0	140	0.0445	1663	0.1646 0.1641	0.0128	686		77.64
OP#3	1259	375	0	0	0	0	140	0.0443	1663	0.1606	0.0128 0.0125	533		52.65
2906	1670	0,0	0	0	0	750	148	0.0401	1667	0.160	0.0125	544 460		45.36
AIM	0	0	0	0	0	0	0	0.046	1667	0.101	0.009	460		
OP#1	1540	0	0	0	0	0	140	0.0499	1662	0.1746	0.0124	587		74.00
OP#2	1423	0	248	0	0	0	140	0.0529	1662	0.1740	0.0124	478		74.03
OP#3	1335	93	0	81	0	0	140	0.0323	1662	0.1774	0.0133	545		50.9 55.26
2914	1847	0	0	0	0	0	176	0.049	1675	0.1774	0.0128	603		33.20
AIM	0	0	0	0	0	0	0	0.049	1675	0.165	0.013	603		
OP#1	1801	0	0	0	0	0	140	0.0438	1673	0.1606	0.0128	706		30.47
OP#2	1821	0	1918	ō	0	4	250	0.0463	1670	0.1705	0.0126	612		18.63
OP#3	1427	139	1752	142	Ö	0	230	0.049	1670	0.16	0.0106	664		15.07
2923	2356	0	0	0	ō	643	168	0.048	1660	0.168	0.01	467		10.07
AIM	0	ō	ō	0	ol	0	0	0.048	1660	0.21	0.014	467		
OP#1	2126	0	Ö	0	o	0	140	0.0495	1655	0.1776	0.0116	596		51.1
OP#2	1975	0	35	0	Ö	0	210	0.052	1655	0.1754	0.0111	599		57:89
OP#3	2038	0	0	349	o	ō	159	0.0476	1655	0.1695	0.0115	573		47.81
2925	2507	0	0	0	o	0	177	0.045	1684	0.119	0.007	741		
AIM	0	0	0	0	0	0	0	0.045	1684	0.21	0.014	741		
OP#1	2297	0	0	0	0		226	0.04	1679	0.1198	0.0077	902		80.62
OP#2	2192	0	0	0	0		250	0.0437	1671	0.1243	0.0073	898	-T	163.23
OP#3	2195	0	0	105	o		229	0.0397	1679	0.1114	0.0073	903		85.4
2931	1886	0	0	0	0	111	169	0.039	1672	0.183	0.023	757		
AIM	0	0	0	0	0	0	0	0.039	1672	0.21	0.014	757		
OP#1	2403	156	29	0	0	0	140	0.0443	1682	0.1578	0.0129	757		48.13
OP#2	2349	156	0	0	547	0	145	0.0419	1672	0.1643	0.013	751		29.88
OP#3	2398	2	0	0	2500	0	154	0.0391	1677	0.1557	0.0126	757		31.36
2932	1773	0	0	0	0	242	175	0.06	1655	0.193	0.012	516		
AIM	0	0	0	0	0	0	0	0.06	1655	0.21	0.014	516		
OP#1	1474	0	0	0	0	0	242	0.0571	1650	0.1946	0.0113	594		32.35
OP#2	1804	127	31	0	286	0	250	0.0557	1655	0.1853	0.0106	516		18.97
OP#3	1305	16	6	8	0	0	230	0.06	1650	0.21	0.0117	523		6.44
2937	1521	0	0	0	0	211	187	0.055	1643	0.177	0.012	562		
AIM	0	0	0	0	0	0	0	0.055	1643	0.21	0.014	562		
OP#1	1217	0	0	0	0	0	240	0.0526	1638	0.185	0.0103	679		42.56
OP#2	1413	93	198	0	115	0	250	0.0545	1643	0.1842	0.0107	562		13.26
OP#3	1110	21	0	4	0	0	210	0.055	1638	0.1895	0.0113	571		16.12
2941	1847	0	0	0	0		167	0.044	1628	0.156	0.008	687		
AIM	0	0	0	0	0	0	0	0.044	1628	0.13	0.014	687		
OP#1	2012	0	0	0	0	0	140	0.044	1628	0.1347	0.0087	701		5.74
OP#2	1997	0	1124	0	0	227	191	0.044	1626	0.13	0.008	688		1.73
OP#3	1882	97	373	212	762	0	192	0.0439	1628	0.1301	0.0082	688		0.28
2943	1243	0	0	0	0	235	184	0.045	1662	0.124	0.008	709		
AIM	0	0	0	0	0	0	0	0.045	1662	0.26	0.013	709		47.40
OP#1	1325	188	170	0	0	0	141	0.0482	1662	0.156	0.0104	709		47.18
OP#2	1555	368	1222	. 0	152	0	140	0.0469	1662	0.1509	0.0104	709		46.18
OP#3	1254	95	0	0	1562	0	198	0.045	1662	0.149	0.0092	701		44.03
2944	1589	0	0	0		0	196	0.054	1655	0.203	0.012	516		
AIM	0	0	0	0		0	0	0.054	1655	0.26	0.013	516		37.08
OP#1	1256	0	0	0	0	0	140	0.0532	1650	0.1845	0.0112	523		37.08

CP#3 1100	OP#2	1254	3	51	1 0	204		1 4 40		T / = = =	T				~
See 1935 O O O O O 185 0.043 1663 0.154 0.009 685 See Control Co							0	140	0.0555		0.1923	0.0129			28.79
CP#1 1919 0 0 0 0 0 0 0 0 0										+					32.97
CP#2 1892															
CPPEZ 1892															
CPF81 1665 38															51.26
2948 2190 0															46.59
AIM															44.15
CP#1 2388 0															
CP#2															
CPP#3															
AIM															
Checological Property Chec															
OP#1 2192 428															
OP#2 2329 366 150 0 1395 497 157 0.04 1642 0.1303 0.0088 852 0.267															
OP#3															
2954 2008															
AIM															27.04
OP#1 2102 250 328 0 0 0 141 0.046 1657 0.1563 0.0119 791 44.47															
OP#2 2280 187 57 0 780 12 168 0.0412 1657 0.1519 0.0112 790															44.47
OP#3 2227 9															
2958 1307															
AIM															45.55
OP#1 1254 94 0 0 0 0 202 0.0506 1698 0.1902 0.013 697 10.72															
OP#2 1596 81 1022 0 863 98 168 0.0488 1693 0.1805 0.013 694 6.38 OP#3 1237 0 0 1 1408 0 202 0.048 1693 0.1844 0.0121 695															10.72
OP#3 1237 0 0 1 1408 0 202 0.048 1693 0.1844 0.0121 695 3.12 2960 2308 0 0 0 0 0 0.042 1650 0.091 0.004 840 ————————————————————————————————————															
2960 2308 0 0 0 0 0 0 0 0 0															
AIM															
OP#1 1960 0 0 0 0 237 0.042 1645 0.1143 0.0065 879 — 49.36 OP#2 2117 0 0 0 0 250 0.0416 1648 0.1174 0.0066 840 — 41.04 OP#3 1968 0 0 0 389 0 216 0.042 1650 0.1145 0.0073 840 — 39.89 2965 1983 0 0 0 0 0 0 0 0.037 1690 0.102 0.007 1120 — AIM 0 0 0 0 0 0 0.037 1690 0.1072 0.0078 1120 — OP#1 2185 364 135 0 0 224 0.037 1690 0.1072 0.0078 1120 — OP#3 2082 9 2 0 589 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>															
OP#2 2117 0 0 0 0 250 0.0416 1648 0.1174 0.0066 840															49.36
OP#3 1968 0 0 0 389 0 216 0.042 1650 0.1145 0.0073 840															
2965 1983 0 0 0 0 0 0 217 0.037 1690 0.102 0.007 1120						389									
AIM 0 0 0 0 0 0 0.037 1690 0.19 0.013 1120															
OP#1 2185 364 135 0 0 0 246 0.0378 1690 0.1072 0.0078 1120			0		0	0	0								
OP#3 2082 9 2 0 589 0 237 0.037 1690 0.0973 0.0079 977		2185	364	135	0	0	0	246							45.86
2967 1270 0 0 0 0 205 0.048 1679 0.159 0.009 725	OP#2	2349	4	0	0	108	0	224	0.037	1690	0.1022	0.0084	1075		50.32
AIM 0 0 0 0 0 0.048 1679 0.19 0.013 725	OP#3	2082	9	2	0	589	0	237	0.037	1690	0.0973	0.0079	977		61.64
OP#1 1354 0 0 0 0 213 0.0482 1679 0.1706 0.0114 725	2967	1270	0	0	0	0	0	205	0.048	1679	0.159	0.009	725		
OP#2 1586 217 2 0 259 0 194 0.0481 1679 0.1747 0.0122 725 8.14 OP#3 1293 0 0 0 604 0 223 0.049 1679 0.172 0.0109 724 11.69 2969 1661 0 0 0 0 207 0.044 1679 0.134 0.012 788 AIM 0 0 0 0 0 0 0.044 1679 0.134 0.012 788 OP#1 1726 0 0 0 0 0.044 1679 0.19 0.013 788	AIM	0	0	0	0	0	0	0	0.048	1679	0.19	0.013	725		
OP#3 1293 0 0 604 0 223 0.049 1679 0.172 0.0109 724	OP#1	1354	0	0	0	0	0	213	0.0482	1679	0.1706	0.0114	725		10.72
2969 1661 0 0 0 0 207 0.044 1679 0.134 0.012 788	OP#2	1586	217	2	0	259	0	194	0.0481	1679	0.1747	0.0122	725		8.14
AIM 0 0 0 0 0 0.044 1679 0.19 0.013 788	OP#3	1293	0	0	0	604	0	223	0.049	1679	0.172	0.0109	724		11.69
AIM 0 0 0 0 0 0.044 1679 0.19 0.013 788	2969	1661	0	0	0	0	0	207	0.044	1679	0.134	0.012	788		
OP#1 1726 0 0 0 0 206 0.0432 1674 0.1411 0.0089 811 35.37 OP#2 1806 0 0 0 2 0 197 0.044 1675 0.1448 0.0097 787 27.66 OP#3 1726 0 0 222 0.044 1676 0.1316 0.0077 791 34.22 2973 1313 0 0 0 0 192 0.043 1657 0.156 0.009 752 AIM 0 0 0 0 0 0.043 1657 0.156 0.013 752 OP#1 1459 70 280 0 0 177 0.0471 1657 0.1568 0.0104 752 27.01 OP#2 1586 241 14 0 215 0 140 0.0465	AIM	0	0	0	0	0	0	0	0.044	1679	0.19	0.013	788		
OP#2 1806 0 0 0 2 0 197 0.044 1675 0.1448 0.0097 787 27.66 OP#3 1726 0 0 270 0 0 222 0.044 1676 0.1316 0.0077 791 34.22 2973 1313 0 0 0 0 192 0.043 1657 0.156 0.009 752 AIM 0 0 0 0 0 0.043 1657 0.19 0.013 752 OP#1 1459 70 280 0 0 0 177 0.0471 1657 0.1568 0.0104 752 27.01 OP#2 1586 241 14 0 215 0 140 0.0465 1657 0.1582 0.0114 752 24.99		1726	0	0	0	0	0	206	0.0432	1674				·	35.37
OP#3 1726 0 0 270 0 0 222 0.044 1676 0.1316 0.0077 791 34.22 2973 1313 0 0 0 0 192 0.043 1657 0.156 0.009 752 AIM 0 0 0 0 0 0 0.043 1657 0.19 0.013 752 OP#1 1459 70 280 0 0 0 177 0.0471 1657 0.1568 0.0104 752 27.01 OP#2 1586 241 14 0 215 0 140 0.0465 1657 0.1582 0.0114 752 24.99					0	2	0	197							27.66
2973 1313 0 0 0 0 0 192 0.043 1657 0.156 0.009 752			0	0	270			222							34.22
AIM 0 0 0 0 0 0 0.043 1657 0.19 0.013 752 27.01 OP#1 1459 70 280 0 0 0 177 0.0471 1657 0.1568 0.0104 752 27.01 OP#2 1586 241 14 0 215 0 140 0.0465 1657 0.1582 0.0114 752 24.99			0	0	0	0	0	192							
OP#1 1459 70 280 0 0 0 177 0.0471 1657 0.1568 0.0104 752 27.01 OP#2 1586 241 14 0 215 0 140 0.0465 1657 0.1582 0.0114 752 24.99			0	0	0	0	0	0	0.043						
OP#2 1586 241 14 0 215 0 140 0.0465 1657 0.1582 0.0114 752 24.99		1459	70	280	0	0	0	177							27.01
	OP#2		241	14	0	215	0								24.99
OP#3 1489 1 0 0 1552 0 198 0.0446 1657 0.1473 0.0097 751 26.25			1	0	0	1552	0	198	0.0446	1657	0.1473	0.0097	751		26.25

			·											
2975	1809	0	0		0	0	188	0.046	1654	0.167	0.02	904	·	
AIM	0	0	0	0	0	0	0	0.046	1654	0.23	0.016			
OP#1	1904	86	594	0	0	0	246	0.0463	1654	0.1593	0.0109	904		31.5
OP#2	2327	5	0	0	1229	0	250	0.0406	1654	0.1286	0.0081	868		59.76
OP#3	2129	3	0	0	2495	0	240	0.046	1654	0.1381	0.0084	816		49.73
2980	1582	0	0	400	0	0	195	0.046	1677	0.184	0.012	714		
AIM	0	0	0	0	0	0	0	0.046	1677	0.23	0.016	714		
OP#1	1748	161	47	0	0	0	144	0.0469	1677	0.1666	0.0111	715		29.72
OP#2	1801	6	1032	0	95	0	140	0.0466	1677	0.1613	0.0118	714		31.34
OP#3	1555	30	0	3	645	0	200	0.046	1677	0.1651	0.0105	714		28.39
2984	1520	0	0	0	0	0	189	0.048	1670	0.159	0.015	692		
AIM	0	0	0	0	0	0	0	0.048	1670	0.14	0.013	692		
OP#1	1689	0	0	0	0	0	145	0.0438	1677	0.1699	0.013	712		39.69
OP#2	1748	0	1998	0	0	1122	250	0.0464	1665	0.1522	0.0103	692		17.03
OP#3	1662	55	1687	762	467	0	243	0.048	1670	0.1401	0.0088	692		0.11
2986	1415	0	0	266	0	91	191	0.052	1678	0.198	0.015	592		
AIM	0	0	0	0	ő	0	0	0.052	1678	0.14	0.013	592		
OP#1	1784	344	ō	Ö	0	0	140	0.0479	1693	0.1761	0.0136	752	MnP	169.29
OP#2	1784	0	2000	0	öl	1998	250	0.0519	1674	0.1481	0.0092	593		10.3
OP#3	1765	63	1857	1306	765	0	250	0.0512	1678	0.14	0.0072	592		1.57
2990	2142	0	0	608	0	0	198	0.057	1660	0.16	0.009	406		1.07
AIM	0	0	0	0	0	0	0	0.057	1660	0.2	0.016	406		
OP#1	1845	0	0	0	0	0	140	0.0562	1655	0.1901	0.0133	466		26.45
OP#2	1806	0	12	0	0	0	171	0.057	1659	0.1948	0.0138	406		3.97
OP#3	1569	61	592	156	0	0	195	0.057	1655	0.1348	0.0131	469		20.54
2994	1848	0	0	0	0	0	198	0.056	1667	0.209	0.018	566		20.07
AIM	0	0	0	- 6	0	0	0	0.056	1667	0.203	0.016	566		
OP#1	1647	0	0	0	0	0	230	0.0546	1662	0.1985	0.0126	625		18.64
OP#2	1882	31	235	0	27	0	250	0.054	1667	0.1906	0.0129	566		8.35
OP#3	1608	0	22	174	0	0	220	0.0558	1662	0.1300	0.0131	571		5.97
2996	2260	0	0	0	0	545	192	0.041	1633	0.145	0.01	755		
AIM	0	0	0	0	0	0	0	0.041	1633	0.13	0.014	755		
OP#1	2720	132	2	0	0	- 6	140	0.0437	1648	0.1352	0.0088	755		25.68
OP#2	2559	285	751	0	59	0	142	0.0413	1633	0.1299	0.0086	755		0.82
OP#2	2613	80	111	78	2500	0	187	0.0413	1640	0.1233	0.0084	752		7.53
3004	1827	0	- 111	746	2300	0	202	0.057	1666	0.13	0.0004	489		7.00
AIM	1027	0	0	740	0	0	0	0.057	1666	0.18	0.014	489		
	1611	0	0	0	0	0	140	0.0544	1661	0.1948	0.0126	502		20.38
OP#1	1713	0	989	0	0	414	250	0.0565	1664	0.1948	0.0120	489		4.07
OP#2					0			0.0564	1661	0.1827	0.0104	512		10.74
OP#3	1342	125	2000	174 893	854	0 805	199	0.0364	1708	0.1804	0.014	872		10.17
3008	1831	0	0			0	199	0.049	1708	0.177	0.014	872		
AIM	0	475	0	0	0				1708	0.41	0.0158	871		55.43
OP#1	1880	475	829	0	0	0	152	0.0497		0.1894	0.0129	872		54.2
OP#2	2143	67	68	0	1559	0	245	0.049	1708		0.0129	782		64.85
OP#3	1821	0	0	3	2187	0	250	0.049	1708	0.1886		523		
3010	2231	0	0	0	0	1029	201	0.055	1662	0.168	0.01			
AIM	0	0	0		0	0	0	0.055	1662	0.18	0.014	523		1.91
OP#1	2031	0	6		0	0		0.0548	1662	0.1828	0.0119	523		1.33
OP#2	2090	65			83	0		0.055	1662	0.1778	0.0109	523		
OP#3	1765			163	0	0		0.055	1660	0.18	0.011	524		2.15
3017	2276	0	0			544		0.043	1675	0.14	0.01	1144		
AIM	0	0	0	0	0	0	0	0.043	1675	0.18	0.014	1144		

00#4	0254	E00	4500				0.40		T	T			·	
OP#1	2351	500	1500	0		0	249	0.0471	1675		0.0114	1144		25.87
OP#2	2740	0	0	0	1251	0	250	0.0416	1674	0.1244	0.0077	1001		47.64
OP#3	2820	0	0	4	2500	0	250	0.0385	1688	0.1142	0.0079	982		74.06
3019	1740	0	0	0	0	0	206	0.049	1657	0.166	0.011	773		
AIM	1427	2		0	0	0	0	0.049	1657	0.21	0.014	773		
OP#1	1437		88	0	0	0	250	0.049	1656	0.1637	0.0088	773		23.59
OP#2	1726	232	141	0	108	0	243	0.049	1657	0.1504	0.0082	773		28.41
OP#3	1508	0	0	0	858	0	245	0.049	1657	0.15	0.0079	772		28.96
3021	1717	0	0	0	0	407	205	0.045	1658	0.153	0.01	687		
AIM	0	0	0	0	0	0	0	0.045	1658	0.21	0.014	687		
OP#1	1892	12	51	0	0	0	143	0.0455	1658	0.1574	0.0115	687		26.32
OP#2	1884	157	29	0	0	0	157	0.045	1658	0.1726	0.0126	687		17.91
OP#3	1726	108	0	22	948	0	195	0.045	1658	0.165	0.0111	687		21.46
3027	2233	0	0	0	0	0	189	0.041	1630	0.11	0.007	870		
AIM	0	0	0	0	0	0	0	0.041	1630	0.13	0.014	870		
OP#1	2273	147	65	0	0	0	247	0.0463	1630	0.129	0.0061	871		13.81
OP#2	2544	16	0	0	611	0	224	0.0411	1630	0.1083	0.0055	870		16.88
OP#3	2522	0	0	0	2490	0	199	0.041	1630	0.1097	0.0065	821		21.26
3028	2126	0	0	0	0	0	189	0.045	1630	0.124	0.007	737		
AIM	0	0	0	0	0	0	0	0.045	1630	0.13	0.014	737		
OP#1	2239	124	121	0	0	0	144	0.0455	1630	0.1299	0.0084	736		1.45
OP#2	2351	124	1062	0	384	0	250	0.0441	1630	0.1205	0.0057	737		9.48
OP#3	2185	8	375	5	2187	0	197	0.045	1630	0.1299	0.0076	737		0.23
3030	1442	0	0	0	0	1012	204	0.051	1655	0.175	0.012	635		
AIM	0	0	0	0	0	0	0	0.051	1655	0.18	0.014	635		
OP#1	1256	250	0	0	0	0	140	0.0522	1659	0.1816	0.0122	635		7.53
OP#2	1410	336	125	0	855	375	140	0.052	1655	0.1796	0.0121	635		2.19
OP#3	1212	11	156	5	2500	0	203	0.051	1656	0.18	0.0108	635		1.04
3034	1641	0	0	0	0	108	204	0.052	1656	0.208	0.018	527		
AIM	0	0	0	0	0	0	0	0.052	1656	0.23	0.016	527		
OP#1	1410	0	0	0	0	0	166	0.052	1651	0.1914	0.0123	584		32.97
OP#2	1528	161	192	0	20	0	188	0.052	1656	0.1995	0.0132	527		13.3
OP#3	1278	31	0	0	0	0	168	0.0521	1655	0.2025	0.0133	527		13.63
3035	1515	0	0	0	0	0	215	0.049	1672	0.2	0.016	726		
AIM	0	0	0	0	0	0	0	0.049	1672	0.23	0.016	726		40.00
OP#1	1325	0	29	0	0	0	222	0.049	1667	0.1966	0.0123	725		19.26
OP#2	1579	124	0	0	271	0	240	0.049	1672	0.199	0.0132	726		13.49
OP#3	1479	13	0	0	921	0	227	0.049	1672	0.1849	0.0118	726		19.68
3039	1605	0	0	0	0	604	204	0.059	1687	0.219	0.02	617		
AIM	0	0	0	0	0	0	0	0.059	1687	0.2	0.016	617		22.64
OP#1	1337	0	4	0	0	0	212	0.0537	1682	0.2194	0.0151	617		23.61
OP#2	1716	0	0	0	0	997	250	0.0521	1687	0.2038	0.014	616		13.77
OP#3	1361	44	2000	174	59	0	250	0.0559	1687	0.2002	0.0125	617		5.4
3052	2349	0	0	0	0	0	211	0.04	1673	0.142	0.013	953		
AIM	0	0	0	0	0	0	0	0.04	1673	0.41	0.016	953		74.00
OP#1	2381	398	530	0	0	0	140	0.0415	1673	0.1336	0.0112	952		71.32
OP#2	2508	373	498	0	56	51	250	0.04	1673	0.1207	0.0084	955		70.89
OP#3	2361	7	2	5	2500	C	216	0.04	1674	0.1231	0.0092	874		79.05
3066	2156	0	0	989	0	Ü	207	0.049	1664	0.143	0.01	762		
AIM	0	0	0	0	0	0	0	0.049	1664	0.46	0.016	762		62.70
OP#1	1958	156	198	0		0	197	0.0491	1664	0.1683	0.0116	763		63.76
OP#2	2185	31	16	0	982	0	250	0.0475	1664	0.1509	0.0092	762		70.25

					1 -									
OP#3	2002	10	0		2151	0		0.049	1664		0.0093			65.74
3067	1830	0	0	579	0	0	217	0.048	1674		0.011			
AIM	0	0	0	0	0	0	0	0.048	1674	0.21	0.014	669		
OP#1	1569	7	22	0	0	0	218	0.0517	1674	0.1918	0.0113	669		16.49
OP#2	1762	62	16	0	154	16	140	0.0493	1674	0.1705	0.0122	669		21.66
OP#3	1728	5	0	330	508	0	206	0.0481	1674	0.163	0.0097	670		22.66
3071	1929	0	0	0	0	0	214	0.052	1675	0.234	0.018	570		
AIM	0	0	0	0	0	0	0	0.052	1675	0.21	0.014	570		
OP#1	1569	0	0	0	0	0	230	0.0508	1670	0.2038	0.0133	699		32.87
OP#2	1726	0	498	0	0	0	250	0.0514	1672	0.2039	0.0139	579		8.62
OP#3	1454	125	0	0	0	0	223	0.0523	1670	0.2038	0.0135	605		14.72
3073	2079	0	0	0	0	487	212	0.051	1667	0.172	0.013	543		
AIM	0	0	0	0	0	0	0	0.051	1667	0.21	0.014	543		
OP#1	1882	0	0	0	0	0	140	0.0519	1664	0.1845	0.0127	549	~~~~	18.13
OP#2	1884	8	0	0	10	0	144	0.051	1667	0.1832	0.0134	543		12.88
OP#3	1726	0	0	254	0	0	170	0.051	1664	0.1888	0.0125	543		13.11
3077	1880	0	0	이	0	1196	214	0.058	1660	0.191	0.014	689		
AIM	0	0	0	0	0	0	0	0.058	1660	0.21	0.014	689		
OP#1	1320	70	493	0	0	0	222	0.0549	1660	0.2098	0.0131	688		5.75
OP#2	1684	290	6	0	921	0	250	0.0537	1660	0.1925	0.0111	689		15.77
OP#3	1271	0	0	0	858	0	250	0.058	1660	0.2082	0.0114	613		11.99
3085	1553	0	0	0	0	539	220	0.043	1669	0.166	0.012	560		
AIM	0	0	0	0	0	0	0	0.043	1669	0.19	0.013	560		
OP#1	1442	0	0	0	0	0	164	0.0483	1673	0.1834	0.013	653		37.09
OP#2	1501	0	1496	0	0	250	161	0.0495	1669	0.1738	0.013	560		23.93
OP#3	1200	249	63	59	0	0	150	0.043	1669	0.1706	0.013	560		11.11
3090	2503	0	0	0	0	0	220	0.044	1673	0.143	0.011	818		
AIM	0	0	0	0	0	0	0	0.044	1673	0.31	0.013	818		
OP#1	2576	316	16	0	0	0	161	0.0456	1673	0.1482	0.0098	818		55.31
OP#2	2544	19	55	0	17	0	195	0.0442	1673	0.133	0.0091	818		57.61
OP#3	2486	23	0	0	1840	0	228	0.044	1673	0.1376	0.0084	818		55.76
3093	2114	0	0	0	0	0	217	0.047	1669	0.159	0.01	729		
AIM	0	0	0	0	0	0	0	0.047	1669	0.31	0.013	729		
OP#1	2114	182	20	0	0	0	164	0.0479	1669	0.1525	0.0099	729		52.77
OP#2	2117	73	14	0	0	0	153	0.047	1669	0.1426	0.0103	729		54.07
OP#3	1919	62	0	0	897	0	223	0.0472	1669	0.1488	0.009	730		52.63
3100	2010	0	0	889	526	0	217	0.049	1678	0.145	0.009	662		
AIM	0	0	0	0	0	0	0	0.049	1678	0.31	0.013	662		
OP#1	1836	129	563	0	0	0	175	0.049	1678	0.1782	0.0116	661		42.64
OP#2	1882	123	22	0	147		221	0.049	1678	0.169	0.0098	662		45.53
OP#3	1569	8	2	42	0	0	202	0.049	1677	0.1714	0.0106	668		46.82
3103	1898	0	0	889	568	0	222	0.05	1672	0.128	0.009	823	******	
AIM	0	0	0	0	0	0	0	0.05	1672	0.31	0.013	823		
OP#1	1391	373	170	0	0	0	223	0.053	1672	0.1847	0.0108	825		46.67
OP#2	1816	0	0	0	2248	0	250	0.0495	1672	0.1601	0.0081	823		49.51
OP#3	1410	0	0	0	2380	0	250	0.0511	1672	0.1617	0.0085	784		54.87
3108	3330	0	0	906	0	0	225	0.04	1713	0.109	0.008	777		
AIM	0	0	0	0	0	0	0	0.04	1713	1.31	0.012	777		
OP#1	3089	0	63	0	0	0	181	0.039	1712	0.1298	0.0091	777		93.39
OP#2	3133	0	256	0	0	0	250	0.0359	1705	0.1202	0.0081	939	-T	160.79
OP#3	2820	0	0	21	0	0	230	0.0382	1708	0.1236	0.0091	920		118.12
3112		0	0		0	0	225	0.045	1691	0.135	0.01	1178		
	. ~~~ .	-												

OP#1 1863	AIM	0	0	0	0	0	0	0	0.045	4604	0.0	0.040	1 4470	T	
OP#2 3155 61											0.2				
OP#3 2977 O O O 1535 O 250 0.0377 1691 0.1242 0.0086 988 C—O 113.5 1314 2934 O O O O O 0.045 1679 0.15 0.011 894 O O O O O O O O O							<u> </u>						+		30.69
STITE															
Name														CO-	113.24
OP#1 2779 219 8 0 0 0 0 225 0.046 1679 0.172 0.0123 894 16.1															
OP#2 3053 12 0 0 540 0 250 0.0407 1679 0.1511 0.0113 864 37.4 OP#3 2869 0 0 3 1786 0 250 0.048 1679 0.1555 0.01 877 24. AIM 0 0 0 0 545 221 0.055 1667 0.178 0.013 651 AIM 0 0 0 0 0 0.055 1667 0.178 0.016 651 OP#1 1914 187 0 0 621 16 250 0.0515 1667 0.200 0.016 651 7.5 OP#3 1591 70 123 445 0 0 243 0.0515 1667 0.2001 0.0132 650 7.5 OP#3 1591 70 123 445 0 0 223 </td <td></td> <td>10.15</td>															10.15
OP#3 2869 O O O O 545 250 0.045 1679 0.155 0.01 877 24.															
3122 1935															
AIM O O O O O O O O O															24.4
OP#1															
OP#2															
OP#3 1591 70 123 445 0 0 243 0.0549 1667 0.2001 0.0122 650 0.6															
3124 2327 0 0 0 0 0 223 0.043 1690 0.163 0.013 807															
AIM 0 0 0 0 0 0 0 0 0															0.67
OP#1 2444 105 280 0 0 0 192 0.043 1690 0.1622 0.013 806 19.14 OP#2 2583 0 0 0 306 0 250 0.0417 1690 0.1653 0.0129 797 21.74 OP#3 2327 23 0 0 540 0 220 0.043 1690 0.1611 0.0118 808 19.74 3126 2241 0 0 0 0 0 0 0 0 0															
OP#2 2583 O O O 306 O 250 0.0417 1690 0.1653 0.0129 797															10.14
OP#3 2327 23 0 0 540 0 220 0.043 1690 0.1611 0.0118 808 19.77															
3126 2241 0 0 0 0 0 1218 224 0.059 1656 0.16 0.015 735															
AIM 0 0 0 0 0 0.059 1656 0.23 0.013 735 — OP#1 1826 446 0 0 0 0 0.0531 1651 0.213 0.0141 738 C—P- 119.62 OP#2 2038 0 0 0 1562 0 250 0.0521 1652 0.1926 0.0125 683 — 38.91 OP#3 1569 0 0 0 310 0 250 0.0594 1656 0.2189 0.0128 659 — 15.85 3128 2001 0 0 0 752 221 0.044 1691 0.23 0.013 753 — — OP#1 2351 436 475 0 0 0 147 0.0437 1691 0.169 0.0123 753 — 27.26 OP#2 2351 97 6 0 284															
OP#1 1826 446 0 0 0 0 0.0531 1651 0.213 0.0141 738 C—P- 119.62 OP#2 2038 0 0 0 1562 0 250 0.0521 1652 0.1926 0.0125 683 38.91 OP#3 1569 0 0 0 310 0 250 0.0594 1656 0.2189 0.0128 659 — 15.85 3128 2001 0 0 0 0 0 0.044 1691 0.154 0.011 753 — AIM 0 0 0 0 0 0.044 1691 0.154 0.011 753 — OP#1 2351 436 475 0 0 0 147 0.0437 1691 0.169 0.0123 753 — 27.28 OP#2 2351 97 6 0 284 0 237															
OP#2 2038 0 0 1562 0 250 0.0521 1652 0.1926 0.0125 683 38.91 OP#3 1569 0 0 0 310 0 250 0.0594 1656 0.2189 0.0128 659 — 15.85 3128 2001 0 0 0 0 752 221 0.044 1691 0.154 0.011 753 — AIM 0 0 0 0 0 0 0.044 1691 0.154 0.011 753 — OP#1 2351 436 475 0 0 0 147 0.0437 1691 0.169 0.0123 753 — 27.28 OP#2 2351 97 6 0 284 0 237 0.044 1691 0.1695 0.0123 753 — 27.28 OP#3 2031 79 4 12 464 <td></td> <td>CP-</td> <td>119.62</td>														CP-	119.62
OP#3 1569 0 0 0 310 0 250 0.0594 1656 0.2189 0.0128 659 — 15.85 3128 2001 0 0 0 0 752 221 0.044 1691 0.154 0.011 753 — AIM 0 0 0 0 0 0.044 1691 0.169 0.013 753 — OP#1 2351 436 475 0 0 0 147 0.0437 1691 0.169 0.0129 753 — 27.28 OP#2 2351 97 6 0 284 0 237 0.044 1691 0.1695 0.0129 753 — 27.28 OP#3 2031 79 4 12 464 0 219 0.0449 1691 0.1695 0.0119 752 — 29.86 3130 1690 0 0 0 0															
3128 2001 0 0 0 752 221 0.044 1691 0.154 0.011 753 — AIM 0 0 0 0 0 0.044 1691 0.23 0.013 753 — OP#1 2351 436 475 0 0 0 147 0.0437 1691 0.169 0.0129 753 — 27.28 OP#2 2351 97 6 0 284 0 237 0.044 1691 0.1702 0.0123 753 — 27.28 OP#3 2031 79 4 12 464 0 219 0.0449 1691 0.1665 0.0119 752 — 29.88 3130 1690 0 0 0 1402 226 0.05 1683 0.142 0.01 825 — — 0 0 0 0 0.05 1683 0.23 0.013															
AIM 0 0 0 0 0 0.044 1691 0.23 0.013 753 — OP#1 2351 436 475 0 0 0 147 0.0437 1691 0.169 0.0129 753 — 27.28 OP#2 2351 97 6 0 284 0 237 0.044 1691 0.1702 0.0123 753 — 26.11 OP#3 2031 79 4 12 464 0 219 0.0449 1691 0.1665 0.0119 752 — 29.88 3130 1690 0 0 0 0 0 0 0.0449 1691 0.1665 0.0119 752 — 29.88 3130 1690 0 0 0 0 0.05 1683 0.142 0.01 825 — — — — — 0.018 825 — — — <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>10.00</td></t<>															10.00
OP#1 2351 436 475 0 0 0 147 0.0437 1691 0.169 0.0129 753 —— 27.28 OP#2 2351 97 6 0 284 0 237 0.044 1691 0.1702 0.0123 753 —— 26.11 OP#3 2031 79 4 12 464 0 219 0.0449 1691 0.1665 0.0119 752 —— 29.88 3130 1690 0 0 0 0 1402 226 0.05 1683 0.142 0.01 825 —— 29.88 AIM 0 0 0 0 0 0 0.05 1683 0.23 0.013 825 —— 26.91 OP#1 1469 2 248 0 0 0 0.35 1683 0.23 0.013 825 —— 26.91 OP#2 1958 0 0 0 1361 0 250															
OP#2 2351 97 6 0 284 0 237 0.044 1691 0.1702 0.0123 753 — 26.11 OP#3 2031 79 4 12 464 0 219 0.0449 1691 0.1665 0.0119 752 — 29.88 3130 1690 0 0 0 0 0 0 0.0492 1679 0.1811 0.01 825 — — 0 0 0 0 0 0.05 1683 0.23 0.013 825 — — 0 0 0 0 0 0.045 1683 0.23 0.013 825 — — 0 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>27.28</td></t<>															27.28
OP#3 2031 79 4 12 464 0 219 0.0449 1691 0.1665 0.0119 752 — 29.88 3130 1690 0 0 0 0 1402 226 0.05 1683 0.142 0.01 825 — <td></td>															
3130 1690 0 0 0 1402 226 0.05 1683 0.142 0.01 825 — AIM 0 0 0 0 0 0.05 1683 0.23 0.013 825 — OP#1 1469 2 248 0 0 0 236 0.0492 1679 0.1811 0.0123 824 — 26.91 OP#2 1958 0 0 0 1361 0 250 0.0454 1683 0.164 0.0107 820 — 38.55 OP#3 1423 0 0 1 633 0 250 0.0497 1683 0.1715 0.0108 806 — 28.36 3136 1924 0 0 0 0 496 226 0.057 1645 0.139 0.009 497 — AIM 0 0 0 0 0 0 0.057 1645 0.23 0.013 497 — — 0 0 0							0								
AIM 0 0 0 0 0 0.05 1683 0.23 0.013 825							1402								
OP#1 1469 2 248 0 0 0 236 0.0492 1679 0.1811 0.0123 824 — 26.91 OP#2 1958 0 0 0 1361 0 250 0.0454 1683 0.164 0.0107 820 — 38.55 OP#3 1423 0 0 1 633 0 250 0.0497 1683 0.1715 0.0108 806 — 28.36 3136 1924 0 0 0 0 496 226 0.057 1645 0.139 0.009 497 — AIM 0 0 0 0 0 0 0 0 0.057 1645 0.23 0.013 497 — OP#1 1750 0 0 0 0 0 0 0.0515 1640 0.162 0.0089 501 — 49.1 OP#2 1726 0 <						0		0		1683					
OP#2 1958 0 0 1361 0 250 0.0454 1683 0.164 0.0107 820		1469	2	248		0	0	236	0.0492	1679					26.91
OP#3 1423 0 0 1 633 0 250 0.0497 1683 0.1715 0.0108 806 — 28.36 3136 1924 0 0 0 0 496 226 0.057 1645 0.139 0.009 497 — <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>1361</td> <td>0</td> <td>250</td> <td>0.0454</td> <td>1683</td> <td>0.164</td> <td>0.0107</td> <td></td> <td></td> <td>38.55</td>					0	1361	0	250	0.0454	1683	0.164	0.0107			38.55
3136 1924 0 0 0 496 226 0.057 1645 0.139 0.009 497 ————————————————————————————————————		1423	0	0	1	633	0	250	0.0497	1683	0.1715	0.0108	806		28.36
AIM 0 0 0 0 0 0.057 1645 0.23 0.013 497	3136	1924	0	0	0	0	496	226	0.057	1645	0.139	0.009	497		
OP#2 1726 0 958 0 0 0 250 0.0542 1641 0.1533 0.0075 497		0	0	0	0	0	0	0	0.057	1645	0.23	0.013	497		
OP#3 1550 1 0 21 0 0 195 0.0524 1640 0.1637 0.0084 600	OP#1	1750	0	0	0	0	0	174	0.0515	1640	0.162	0.0089	501		49.1
3141 2629 0 0 0 0 0 216 0.036 1678 0.14 0.011 1155	OP#2	1726	0	958	0	0	0	250	0.0542	1641	0.1533	0.0075	497		42.64
AIM 0 0 0 0 0 0 0 0 0 0.036 1678 0.46 0.021 1155 OP#1 2781 484 1763 0 0 0 183 0.0386 1678 0.1397 0.0133 1154 76.95	OP#3	1550	1	0	21	0	0	195	0.0524	1640	0.1637	0.0084	600		62.8
OP#1 2781 484 1763 0 0 0 183 0.0386 1678 0.1397 0.0133 1154 76.95	3141	2629	0	0	0	0	0	216	0.036	1678	0.14	0.011			
	AIM	0	0	0	0	0	0	0						******	
	_	2781	484	1763	0	0									76.95
	OP#2	3009	70	0	0	885	0		0.0351	1678	0.1324	0.0106	1041		83.59
OP#3 2979 1 10 316 2498 0 250 0.036 1678 0.1099 0.0071 995 90.28			1	10	316	2498	0	250							90.28
3142 2196 0 0 0 0 0 211 0.037 1690 0.178 0.019 1114			0	0	0	0	0	211	0.037						
AIM 0 0 0 0 0 0 0 0 0 0 0 0.037 1690 0.39 0.076 1114			0	0	0	0									
OP#1 2498 499 1795 0 0 0 182 0.041 1690 0.1645 0.0156 1114 68.65			499	1795	0	0	0	182	0.041						68.65
OP#2 2979 125 0 0 1740 0 250 0.0345 1690 0.1526 0.0126 1103 68.8						1740	0	250	0.0345						68.8
OP#3 2740 62 0 279 2500 0 250 0.037 1694 0.1341 0.0099 956 83.63					279	2500									83.63
3148 2271 0 0 0 0 0 0 211 0.048 1689 0.156 0.014 953						0	0	211							
AIM 0 0 0 0 0 0 0 0 0 0 0 0.048 1689 0.39 0.076 953				0	0	0	0	0							
OP#1 2207 0 14 0 0 0 249 0.0438 1684 0.1579 0.0123 953 73.23				14	0	0	0	249	0.0438	1684	0.1579	0.0123	953		73.23

							~							
OP#2	2495	1	0	0	0	0		0.0411	1688		0.0127	· 796		90.51
OP#3	2153	0	4	0	2	0		0.0451	1689		0.0113	876		72.97
3152	2249	0	0	0	0	0		0.046	1674	0.175	0.017	748		
AIM	0	0	0	0	0	0		0.046	1674	0.61	0.019	748		
OP#1	2410	417	500	0	0	0	158	0.046	1674	0.1883	0.0144	749		69.46
OP#2	2464	125	4	0	467	59	250	0.0459	1674	0.1793	0.0133	748		70.85
OP#3	2268	187	4	171	1249	0	243	0.0461	1674	0.1688	0.011	748		72.77
3156	1844	0	0	371	0	14	205	0.053	1674	0.209	0.021	582	*****	
AIM	0	٠ 0	0	0	0	0	0	0.053	1674	0.2	0.016	582		
OP#1	1916	240	628	0	0	0	143	0.0488	1674	0.2059	0.0153	583		11.03
OP#2	1882	9	471	0	362	102	250	0.0517	1674	0.2	0.0141	582		2.44
OP#3	1545	30	872	29	0	0	197	0.0529	1672	0.2004	0.0137	585		2.81
3158	1549	0	0	325	0	526	204	0.057	1667	0.21	0.015	688		
AIM	0	0	0	0	0	0	0	0.057	1667	0.2	0.016	688		*****
OP#1	1486	500	0	0	0	0	176	0.0517	1673	0.2273	0.0163	687	P	49.25
OP#2	1721	78	23	0	1153	1423	250	0.052	1667	0.2003	0.0139	688		8.97
OP#3	1371	1	1875	282	2463	0	250	0.0563	1667	0.2002	0.0123	688		1.33
3160	1850	0	0	0	0	523	206	0.058	1677	0.225	0.02	648		
AIM	0	0	0	0	0	0	0	0.058	1677	0.2	0.016	648		
OP#1	1630	423	117	0	0	0	176	0.0528	1677	0.2207	0.016	650		19.59
OP#2	1880	65	0	0	936	942	250	0.0519	1676	0.2	0.0137	643		12.42
OP#3	1410	84	2000	235	1004	0	250	0.0567	1677	0.2004	0.0127	649		2.56
3173	1933	0	0	0	0	743	206	0.047	1680	0.188	0.018	852		
AIM	0	0	0	0	0	0	0	0.047	1680	0.2	0.016	852	*******	
OP#1	2038	24	240	0	0	0	229	0.0467	1680	0.1849	0.0155	850		8.37
OP#2	2505	0	0	0	1388	0	250	0.042	1680	0.1782	0.0145	837		23.45
OP#3	2141	0	0	0	1874	0	250	0.0474	1680	0.1803	0.0124	841		12.21
3178	1674	0	0	0	0	420	215	0.042	1668	0.154	0.012	891	•	
AIM	0	0	0	0	.0	0	0	0.042	1668	0.2	0.016	891		
OP#1	1909	218	1904	0	0	0	157	0.0426	1668	0.1507	0.0129	891		26.22
OP#2	2124	303	131	0	645	0	239	0.042	1668	0.1393	0.0097	891		30.38
OP#3	1882	26	0	0	2226	0	244	0.0422	1668	0.1263	0.0074	891		37.3
3182	1388	0	0	. 0	0	92	214	0.043	1665	0.159	0.013	768		
AIM	0	0	0	0	0	0	0	0.043	1665	0.2	0.016	768		
OP#1	1709	289	1730	0	0	0	141	0.046	1665	0.1542	0.0126	769		29.95
OP#2	1943	425	80	0	374	0	182	0.0431	1665	0.1412	0.0092	768		29.59
OP#3	1728	6	0	0	2295	0	204	0.0431	1665	0.1316	0.0079	768		34.44
3184	1811	0	0	0	0	0	230	0.048	1668	0.148	0.013	855		
AIM	0	0	0	0	0	0	0	0.048	1668	0.2	0.016	855		
OP#1	1882	0	0	0		0		0.0425	1663	0.145	0.0106	957		60.57
OP#2	2192	63	0	0	303	0		0.0414	1668	0.1339	0.0107	850		47.61
OP#3	1726	0	0	0	0	0		0.0464	1665	0.1424	0.0088	856		35.1
3200	2068	0	0	0	0	0	207	0.042	1672	0.172	0.015	894		
AIM	0	0	0	0	0	0		0.042	1672	0.2	0.016	894		
OP#1	2212	359	22	0	0	0		0.0457	1672	0.1643	0.0133	895		26.82
OP#2		125	0	0	1249	12		0.0417	1672	0.1578	0.0125	854		26.35
OP#3		0		0	2500	0		0.0461	1672	0.1581	0.0102	860		34.73
3202		0		783	0	0	208	0.051	1667	0.177	0.016	624		
AIM	-	0		0	0	0		0.051	1667	0.2	0.016	624		
OP#1		363				0		0.0505	1667	0.2158	0.0159	622		9.17
OP#2		1	250	0		152		0.0509	1667	0.2001	0.0148	624		0.41
OP#3		246	0	1	1171	0	232	0.0512	1667	0.2	0.0131	623		0.59

S209 1681 495															
	3209	1681	495	0	0	0	1107	206	0.046	1669	0.149	0.013	749	·	
DP#2 1960 468 467 0 968 0 191 0 0.46 1669 0.162 0.0095 749 22.92 32.10 2247 0 0 0 0 0 0 245 0.0522 1669 0.177 0.0097 750 29.43 32.10 2247 0 0 0 0 0 0 0 0 0	AIM	0	0	0	0	0	0	0	0.046	1669	0.21	0.016	749		
CP#2 1960 468 467 0 968 0 191 0.046 1669 0.162 0.0095 749 22.92	OP#1	1594	500	1744	0	0	0	142	0.0513	1670	0.1839	0.0142	749		25.16
CP#3 1435 6	OP#2	1960	468	467	0	968	0	191	0.046	1669	0.162	0.0095			
S210 2247 0	OP#3	1435	6	0	4	2500	0	245	0.0522	1669	0.177	0.0097	750		
CP#1 2366 484 903 0 0 0 147 0.0479 1670 0.1625 0.0129 736 22.8	3210	2247	0	0	0	0	304	207	0.047	1670	0.166	0.012			
CP#2 2449 80		0	0	0	0	0	0	0	0.047	1670	0.21	0.016	735		
DP#3 2175 99	OP#1	2366	484	903	0	0	0	147	0.0479	1670	0.1665	0.0129	736		22.8
S228 1271 0	OP#2	2449		14	0	919	0	250	0.0469	1670	0.1629	0.0107	735		22.71
AIM	OP#3		99	0	1	1562	0	234	0.0484	1670	0.1646	0.01	736		24.67
CP#1 1193 181 1183 0	3226	1271	0	0	0	0	502	196	0.051	1672	0.224	0.014	760		
CP#2			0		0	0	0	0	0.051	1672	0.41	0.016	760		
CP#3 1244 3				1183	0	0		188	0.051	1672	0.2087	0.0151	762		49.45
Sample S	OP#2	1501	493	0	0	594	258	250	0.0509	1672	0.1939	0.0121	760		52.91
Name	OP#3		3	6	372		0	249	0.051	1672	0.1824	0.0105	760		55.61
OP#1 1750 500 0 0 0 141 0.0431 1704 0.1787 0.0136 712 —P- 243.56 OP#2 2038 90 1984 0 743 1060 169 0.039 1689 0.145 0.011 730 —86.76 3234 1561 496 0 0 0 1116 205 0.043 1691 0.169 0.013 637 —— AIM 0 0 0 0 0 0.043 1691 0.91 0.012 637 — AIM 0 0 0 0 0.043 1691 0.91 0.014 644 —P- 2261.16 OP#31 726 83 1005 524 1251 0 181 0.043 1691 0.1577 0.0119 637 —82.76 OP#31 7726 83 1005 524 1251 0 181 0.043 168	3232	1246	499	0	0	2079	449	203	0.039	1689	0.163	0.014	731		
OP#2 2038 90 1984 0 743 1060 169 0.039 1689 0.145 0.011 731	AIM	0	0	0	0	0	0	0	0.039	1689	0.91	0.012	731		
OP#3 1804 313 0 1312 2366 0 240 0.0388 1689 0.1262 0.0084 730 — 86.76 3234 1561 496 0 0 0 1.043 1691 0.169 0.013 637 — AIM 0 0 0 0 0 0.043 1691 0.91 0.012 637 — OP#1 1985 315 0 0 0 0 0.043 1691 0.914 644 — P 261.16 OP#3 1726 83 1005 524 1251 0 181 0.043 1691 0.1565 0.012 637 — 82.76 AIM 0 0 0 0 1534 206 0.044 1686 0.152 0.012 666 — — - 0.014 1872 0.012 666 — — - 0.044 1886 <td>OP#1</td> <td>1750</td> <td>500</td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>141</td> <td>0.0431</td> <td>1704</td> <td>0.1787</td> <td>0.0136</td> <td>712</td> <td>P</td> <td>243.56</td>	OP#1	1750	500		0	0	0	141	0.0431	1704	0.1787	0.0136	712	P	243.56
3234 1561 496 0 0 0 1116 205 0.043 1691 0.169 0.013 637	OP#2	2038	90	1984	0	743	1060	169	0.039	1689	0.145	0.011	731		84.1
AIM	OP#3	1804	313	0	1312	2366	0	240	0.0388	1689	0.1262	0.0084	730		86.76
OP#1 1985 315 0 0 0 0 140 0.0429 1706 0.1819 0.014 644 —P- 261.16 OP#2 2048 7 1978 0 29 1138 212 0.043 1691 0.1577 0.0119 637 —82.76 OP#3 1726 83 1005 524 1251 0 181 0.043 1691 0.1565 0.012 637 —83.17 3236 1799 498 0 0 0 1534 206 0.044 1686 0.154 0.011 666 ————————————————————————————————————	3234	1561	496	0	0	0	1116	205	0.043	1691	0.169	0.013	637		
OP#2 2048 7 1978 0 29 1138 212 0.043 1691 0.1577 0.0119 637 — 82.76 OP#3 1726 83 1005 524 1251 0 181 0.043 1691 0.1565 0.012 637 — 83.17 3236 1799 498 0 0 0 1534 206 0.044 1686 0.154 0.011 666 — AIM 0 0 0 0 0 0.044 1686 0.152 0.012 666 — OP#1 1972 500 0 0 0 0.044 1686 0.91 0.012 659 —P- 155.9 OP#3 1990 110 2 1386 1500 0 216 0.044 1686 0.152 0.0099 666 —83.32 3242 2226 0 0 0 0 0 <	AlM	0	0	0	0	0	0	0	0.043	1691	0.91	0.012	637	~	
OP#3 1726 83 1005 524 1251 0 181 0.043 1691 0.1565 0.012 637 83.17 3236 1799 498 0 0 0 1534 206 0.044 1686 0.154 0.011 666 AIM 0 0 0 0 0 0 0 0 0.044 1686 0.91 0.012 666 OP#1 1972 500 0 0 0 0 142 0.044 1686 0.91 0.012 666 OP#2 2043 108 880 0 303 1314 181 0.044 1686 0.1522 0.0099 666 83.32 OP#3 1990 110 2 1386 1500 0 216 0.044 1686 0.1522 0.0099 666 84.57 3242 2226 0 0 0 0 0 0 0.046 1704 0.21 0.021 799 OP#1 2537 444 250 0 0 0 182 0.0474 1704 0.198 0.0158 801 OP#2 2813 193 0 0 616 0 250 0.0427 1704 0.186 0.0144 798 OP#3 2679 8 0 526 1650 0 240 0.046 1683 0.139 0.009 897 AIM 0 0 0 0 0 0 0 0.045 1683 0.139 0.009 897 AIM 0 0 0 0 0 0 0 0.045 1683 0.139 0.009 897 AIM 0 0 0 0 0 0 0 0.045 1683 0.156 0.0129 898 AIM 0 0 0 0 0 0 0 0.045 1683 0.156 0.013 799 AIM 0 0 0 0 0 0 0 0.045 1683 0.154 0.0119 897 OP#1 2434 23 117 0 0 0 236 0.045 1683 0.1543 0.0119 897 OP#2 2828 250 0 0 244 0 250 0.035 1683 0.1543 0.0119 897 OP#3 2486 3 4 7 1249 0 250 0.045 1683 0.1543 0.0119 897 AIM 0 0 0 0 0 0 0 0.045 1683 0.164 0.011 875 OP#3 2195 0 497 0 0 0 0.055 1674 0.141 0.016 506 OP#1 2258 0 143 0 0 0 147 0.046 1680 0.184 0.013 505 OP#2 2258 0 143 0 0 0 0 0.055 1674 0.141 0.012 506 OP#3 2195 0 497 0 0 0 250 0.052 1673 0.183 0.013 505 OP#3 2195 0 497 0 0 0 0 0.0	OP#1	1985	315	0	0	0	0	140	0.0429	1706	0.1819	0.014	644	P	261.16
3236 1799 498 0 0 0 1534 206 0.044 1686 0.154 0.011 666	OP#2	2048	7	1978	0	29	1138	212	0.043	1691	0.1577	0.0119	637		82.76
AIM 0 0 0 0 0 0 0 0 0	OP#3	1726	83	1005	524	1251	0	181	0.043	1691	0.1565	0.012	637		83.17
OP#1 1972 500 0 0 0 142 0.046 1701 0.1743 0.0127 659 —P- 155.9 OP#2 2043 108 880 0 303 1314 181 0.044 1686 0.1522 0.0099 666 —83.32 OP#3 1990 110 2 1386 1500 0 216 0.044 1686 0.1431 0.0092 665 —84.57 3242 2226 0 0 0 0 0 0.046 1704 0.21 0.021 799 —— AIM 0 0 0 0 0 0.046 1704 0.41 0.016 799 — OP#1 2537 444 250 0 0 182 0.0474 1704 0.186 0.0144 798 — 61.87 OP#2 2813 193 0 0 616 0 250 0.0427	3236	1799	498	0	0	0	1534	206	0.044	1686	0.154	0.011	666		
OP#2 2043 108 880 0 303 1314 181 0.044 1686 0.1522 0.0099 666 83.32 OP#3 1990 110 2 1386 1500 0 216 0.044 1686 0.1431 0.0092 665 — 84.57 3242 2226 0 0 0 0 0 0.046 1704 0.21 0.021 799 — AIM 0 0 0 0 0 0.046 1704 0.21 0.021 799 — OP#1 2537 444 250 0 0 182 0.0474 1704 0.188 0.0158 801 55.02 OP#2 2813 193 0 0 616 0 250 0.0427 1704 0.186 0.0144 798 — 61.87 OP#3 2679 8 0 526 1650 0 240 <	AIM	0	0		0	0	0	0	0.044	1686	0.91	0.012	666		
OP#3 1990 110 2 1386 1500 0 216 0.044 1686 0.1431 0.0092 665 — 84.57 3242 2226 0 0 0 0 0 0 0.046 1704 0.21 0.021 799 — AIM 0 0 0 0 0 0.0466 1704 0.41 0.016 799 — OP#1 2537 444 250 0 0 0 182 0.0474 1704 0.186 0.0158 801 — 55.02 OP#2 2813 193 0 0 616 0 250 0.0427 1704 0.186 0.0144 798 — 61.87 OP#3 2664 0 0 0 0.045 1683 0.139 0.009 897 — AIM 0 0 0 0 0.045 1683 0.166 0.0129 898 —			500		0					1701	0.1743	0.0127	659	P	155.9
3242 2226 0 0 0 0 203 0.046 1704 0.21 0.021 799 — AIM 0 0 0 0 0 0 0 0.046 1704 0.41 0.016 799 — OP#1 2537 444 250 0 0 0 182 0.0474 1704 0.186 0.0158 801 — 55.02 OP#2 2813 193 0 6616 0 250 0.0427 1704 0.186 0.0144 798 — 61.87 OP#3 2679 8 0 526 1650 0 240 0.046 1704 0.186 0.013 799 — 57.13 3247 2664 0 0 0 0 0.045 1683 0.139 0.009 897 — OP#1 2434 23 117 0 0 236 0.045	OP#2		108	880	0		1314		0.044	1686	0.1522	0.0099	666		83.32
AIM 0 0 0 0 0 0.046 1704 0.41 0.016 799					1386										84.57
OP#1 2537 444 250 0 0 0 182 0.0474 1704 0.198 0.0158 801 — 55.02 OP#2 2813 193 0 0 616 0 250 0.0427 1704 0.186 0.0144 798 — 61.87 OP#3 2679 8 0 526 1650 0 240 0.046 1704 0.1762 0.013 799 — 57.13 3247 2664 0 0 0 0 0 0 0.045 1683 0.139 0.009 897 — AIM 0 0 0 0 0 0.045 1683 0.1765 0.0129 898 — 57.13 OP#1 2434 23 117 0 0 0.236 0.045 1683 0.1765 0.0129 898 — 57.13 OP#2 2828 250 0 0<		2226			0		0								
OP#2 2813 193 0 0 616 0 250 0.0427 1704 0.186 0.0144 798							0								
OP#3 2679 8 0 526 1650 0 240 0.046 1704 0.1762 0.013 799 — 57.13 3247 2664 0 0 0 0 0 0.045 1683 0.139 0.009 897 — AIM 0 0 0 0 0 0.045 1683 0.41 0.016 897 — OP#1 2434 23 117 0 0 0.236 0.045 1683 0.1765 0.0129 898 — 57.13 OP#2 2828 250 0 0 244 0 250 0.0396 1683 0.1543 0.0119 897 — 74.4 OP#3 2486 3 4 7 1249 0 250 0.045 1683 0.16 0.011 875 — 63.6 3251 2335 0 0 0 0 0.055				250			0								
3247 2664 0 0 0 0 0 0.045 1683 0.139 0.009 897				0			0								61.87
AIM 0 0 0 0 0 0.045 1683 0.41 0.016 897 —— OP#1 2434 23 117 0 0 0 236 0.045 1683 0.1765 0.0129 898 —— 57.13 OP#2 2828 250 0 0 244 0 250 0.0396 1683 0.164 0.0119 897 —— 74.4 OP#3 2486 3 4 7 1249 0 250 0.045 1683 0.16 0.011 875 —— 63.6 3251 2335 0 0 0 4 220 205 0.055 1674 0.157 0.013 506 —— AIM 0 0 0 0 0.055 1674 0.41 0.016 506 —— OP#2 2195 0 497 0 0 0 0.550 0.052 <					526										57.13
OP#1 2434 23 117 0 0 0 236 0.045 1683 0.1765 0.0129 898		2664													
OP#2 2828 250 0 0 244 0 250 0.0396 1683 0.1543 0.0119 897							0								
OP#3 2486 3 4 7 1249 0 250 0.045 1683 0.16 0.011 875															
3251 2335 0 0 0 4 220 205 0.055 1674 0.157 0.013 506															
AIM 0 0 0 0 0 0 0.055 1674 0.41 0.016 506						1249									63.6
OP#1 2258 0 143 0 0 0 167 0.0506 1673 0.1834 0.013 505															
OP#2 2195 0 497 0 0 0 250 0.052 1670 0.1844 0.012 517															
OP#3 2117 0 0 12 0 0 147 0.0486 1669 0.1867 0.0132 516	OP#1	2258	0												
3264 1736 0 0 0 379 212 0.043 1677 0.199 0.019 880	OP#2	2195	0	497		0	0	250							
AIM 0 0 0 0 0 0 0.043 1677 0.46 0.021 880	OP#3	2117	0	0											72.9
OP#1 2016 481 1896 0 0 0 142 0.0451 1677 0.1818 0.0157 878		1736					379	212							
OP#2 2293 462 174 0 740 31 245 0.043 1677 0.1739 0.0127 880 62.24 OP#3 2339 3 0 876 2500 0 250 0.043 1678 0.1432 0.0092 856 72.78 3269 1937 0 0 572 0 0 205 0.046 1660 0.111 0.012 1120	AIM	0	0	0											
OP#3 2339 3 0 876 2500 0 250 0.043 1678 0.1432 0.0092 856 72.78 3269 1937 0 0 572 0 0 205 0.046 1660 0.111 0.012 1120	OP#1	2016	481		0										
3269 1937 0 0 572 0 0 205 0.046 1660 0.111 0.012 1120	OP#2														
3269 1937 0 0 572 0 0 205 0.046 1660 0.111 0.012 1120	OP#3	2339	3	0	876	2500		250							72.78
AIM 0 0 0 0 0 0 0 0 0 0 0.046 1660 0.46 0.021 1120	3269	1937	0	0	572										
	AIM	0	0	0	0	0	0	0	0.046	1660	0.46	0.021	1120		

OP#1	1738	2	1466	0	0	0	250	0.0437	1660	0.1225	0.0112	1420	 70.00
OP#2	2273	8	1400	0	1769	0	250	0.0391	1660	0.1223	0.0075	1120 974	 78.66
OP#3	2029	0	0	21	2500	0	250	0.0396	1662	0.1103	0.0073	958	 104.01
3276	2275	0	0	0	2300	0	207	0.0390	1691	0.097	0.0049	1129	108.95
AIM	0	0	0	0	0	0	0	0.042	1691	0.110	0.016	1129	*****
OP#1	2383	0	1112	0	0	0	250	0.0412	1690	0.1358	0.010	1129	 70.24
OP#2	2818	0	0	0	655	0	250	0.0356	1691	0.1087	0.0087	977	 102.26
OP#3	2508	0	0	5	1339	0	250	0.0385	1691	0.1047	0.0037	976	 96.4
3278	2106	0	0	0	0	0	210	0.038	1673	0.134	0.0073	1007	 90.4
AIM	0	0	0	0	0	0	0	0.038	1673	0.134	0.011	1007	
OP#1	2385	493	1161	0	0	0	180	0.0423	1673	0.1516	0.0129	1007	 74.6
OP#2	2745	271	0	0	1171	0	250	0.0379	1673	0.1203	0.009	1005	 71.15
OP#3	2747	49	6	786	2500	0	250	0.038	1673	0.0928	0.0055	917	 86.91
3282	1982	0	0	0	0	464	212	0.054	1672	0.178	0.015	658	 00.31
AIM	0	Ö	öl	0	0	0	- 0	0.054	1672	0.41	0.016	658	
OP#1	1938	ő	196	0	0	0	194	0.0487	1670	0.1968	0.0139	656	 63.72
OP#2	2068	106	14	0	169	27	250	0.0491	1672	0.1897	0.0135	658	 62.79
OP#3	1726	0	0	19	0		212	0.052	1669	0.1988	0.0133	658	 57.97
3289	2443	ő	0	0	0	98	210	0.047	1647	0.167	0.014	685	
AIM	0	0	0	0	Ö	0	0	0.047	1647	0.21	0.014	685	
OP#1	2351	500	530	0	0	0	140	0.0473	1648	0.161	0.0121	685	 24.47
OP#2	2381	58	45	0	921	0	226	0.047	1647	0.1581	0.0111	685	 24.87
OP#3	2100	278	0	3	1562	0	242	0.0481	1647	0.1566	0.0087	686	 27.92
3291	2155	0	ō	ō	0	99	214	0.051	1659	0.164	0.014	743	
AIM	0	Ö	0	Ö	ō	0	0	0.051	1659	0.21	0.014	743	
OP#1	2048	352	344	o	0	ō	192	0.0514	1659	0.1983	0.0139	741	 6.74
OP#2	2312	35	23	0	1486	0	250	0.0489	1659	0.176	0.012	743	 20.26
OP#3	2029	0	0	0	2153	0	250	0.0538	1659	0.1871	0.011	743	 16.5
3295	2030	0	0	0	0	597	214	0.051	1656	0.14	0.01	788	
AIM	0	0	0	0	0	0	0	0.051	1656	0.21	0.014	788	
OP#1	1809	0	18	0	0	0	242	0.051	1654	0.1682	0.0099	788	 22.33
OP#2	2173	0	0	0	1080	0	250	0.0474	1656	0.1429	0.0078	788	 39.12
OP#3	1794	0	0	0	780	0	250	0.0511	1656	0.1559	0.0078	784	 26.56
3297	2279	0	0	0	0	1553	218	0.042	1651	0.141	0.01	768	
AIM	0	0	0	0	0	0	0	0.042	1651	0.21	0.014	768	
OP#1	2351	498	1277	0	0	0	140	0.0472	1662	0.1823	0.0139	768	 36.52
OP#2	2434	437	47	0	623	27	140	0.0424	1651	0.1558	0.0105	768	 26.72
OP#3	2351	18	0	23	2500	0	222	0.0461	1661	0.1564	0.0093	769	 45.8
3299	2013	0	0	0	0	886	214	0.046	1645	0.142	0.012	890	
AIM	0	0	0	0	0	0		0.046	1645	0.21	0.014	890	
OP#1	1992	449	1183	0	0	0		0.0508	1645	0.178	0.0127	889	 25.69
OP#2	2429	62	201	0	2187	4		0.0458	1645	0.1408	0.0085	890	 33.44
OP#3	2009	0	0	0	2500	0	250	0.0521	1645	0.1599	0.008	769	 50.84
3301	2171	0	0	198	0	0	214	0,046	1673	0.169	0.011	843	
AIM	0	0	0	0	0	0	0	0.046	1673	0.14	0.013	843	 ******
OP#1	2390	500	452	0	0	0	162	0.0433	1674	0.1698	0.013	841	 28.6
OP#2	2544	0	123	0	0	1674	250	0.042	1671	0.14	0.0104	843	 10.33
OP#3	2290	9	1969	304	1562	0	250	0.0459	1673	0.14	0.0087	842	 0.31
3306	2238	0	0	501	0	0	214	0.044	1662	0.139	0.01	874	
AIM	0	0	0	0	0	0	0	0.044	1662	0.21	0.016	874	
OP#1	2381	385	18	0	0	0		0.044	1662	0.1472	0.01	873	 30.14
OP#2	2544	0	0	0	1007	0	250	0.0424	1662	0.1413	0.0096	870	 36.8

OP#3	2356	0	0	22	1874	0	247	0.0445	1662	0.1381	0.0078	875	T	35.58
3309	1710	0	0	806	0		200		1646	0.148	0.009	825		
AIM	0	0	0	0	0	0	0	0.044	1646	0.13	0.014	825		
OP#1	2056	500	753	0	0	0	146	0.0424	1655	0.16	0.0116	827		36.33
OP#2	2195	56	1875	0	941	661	249	0.043	1646	0.13	0.0086	826		2.44
OP#3	1994	92	96	552	2500	0	250	0.044	1647	0.13	0.0063	821		1.65
3311	1469	0	0	0	0	0	211	0.046	1669	0.174	0.015	826		
AIM	0	0	0	0	0	0	0	0.046	1669	0.21	0.016	826		
OP#1	1381	18	47	0	0	0	226	0.0462	1669	0.1893	0.0134	825		10.41
OP#2	1738	188	0	0	1134	0	250	0.0459	1669	0.1796	0.0132	825		14.75
OP#3	1449	16	0	0	1865	0	242	0.0464	1669	0.1656	0.0107	825		22.19
3317	1741	0	0	537	0	0	209	0.047	1652	0.164	0.01	753		
AIM	0	0	0	0	0	0	0	0.047	1652	0.41	0.016	753		
OP#1	1916	154	1361	0	0	0	165	0.0471	1652	0.1631	0.0123	755		60.73
OP#2	2051	124	61	0	797	4	234	0.047	1652	0.1539	0.0098	753		62.54
OP#3	1840	103	0	129	1249	0	236	0.047	1653	0.1471	0.0079	753		64.82
3321	1830	0	0	0	1344	2073	200	0.041	1633	0.138	0.008	968		
AIM	0	0	0	0	0	0	0	0.041	1633	0.13	0.014	968		
OP#1	2026	500	1969	0	0	0	141	0.041	1648	0.1455	0.0125	967		26.74
OP#2	2195	500	1249	0	1483	4	236	0.041	1633	0.13	0.0081	968		0.47
OP#3	1806	121	0	0	2500	0	250	0.0429	1643	0.13	0.0062	857		26.4
3323	1653	0	0	0	0	1215	200	0.041	1645	0.135	0.008	915		
AIM	0	0	0	0	0	0	0	0.041	1645	0.13	0.014	915		
OP#1	1804	467	1548	0	0	0	140	0.0405	1645	0.1342	0.0108	915		4.74
OP#2	1948	174	282	0	1107	74	214	0.041	1645	0.13	0.0088	915		0.13
OP#3	1726	0	0	0	2500	. 0	247	0.042	1646	0.1186	0.0056	915		12.5
3327	1938	0	0	943	682	0	203	0.051	1661	0.163	0.009	714		
AIM	0	0	0	0	0	0	0	0.051	1661	0.23	0.013	714		
OP#1	1848	383	0	0	0	0	195	0.0521	1661	0.1986	0.0122	713		16.94
OP#2	2019	76	0	0	1171	0	243	0.051	1661	0.1757	0.0104	714		23.71
OP#3	1726	125	0	33	1562	0	250	0.052	1661	0.176	0.0095	715		25.79