

INTER-SYMBOL
INTERFERENCE DUE
TO BAND-LIMITED
CHANNELS

GENERATING FIRST AND SECOND PULSE WITH PERIOD = 2/B IN TIME DOMAIN

GENERATING FIRST AND SECOND PULSE WITH PERIOD = 2/B IN FREQUENCY DOMAIN

NRZ INPUT NULL TO NULL BANDWIDTH IS $1/T_b = 50 \text{KHZ}$

BAND-LIMITED CHANNEL WITH BANDWIDTH B = 100 KHZ.

In time domain

In frequency domain

FIRST AND SECOND SQUARE AFTER THE CHANNEL IN TIME AND FREQUENCY DOMAIN

SHOWING THE TWO PLOTS THE FIRST SQUARE PULSE BEFORE IT PASSES THROUGH THE CHANNEL, AND ONE AFTER IN TIME DOMAIN.

first and second square pulses after the channel in time 1.8 1.6 1.4 1.2 0.8 0.6 0.4 0.2 0.5 1.5 2 2.5 3.5 $\times 10^{-5}$

Before the channel

After the channel

RAISED COSINE: LIMITED IN FREQUENCY AND UNLIMITED IN TIME ($\beta = 1$).

GENERATING DELTA FOR SHIFTING THE SIGNAL

SHIFTING

OUTPUT FROM THE CHANNEL

GENERATING RANDOM BITS

AFTER PULSE SHAPER IN TIME AND FREQUENCY DOMAIN

OUTPUT FROM CHANNEL

COMPUTE BER

$$BER = 0.000000$$

ADDING AWGN $(N_o = 10)$

OUT OF DELTAS + AWGN CHANNEL

COMPUTE BER WITH AWGN

$$BER = 0.060168$$

$$AT N_0 = 10$$

$$BER = 0.438172$$

$$AT N_0 = 1000$$

INTER-SYMBOL
INTERFERENCE DUE
TO MULTI-PATH
CHANNELS

STEPS OF PROCESS

- I. Generate transmitted symbols(X).
- II. Generate channel coefficients (H).
- III. Add effect of AWGN channel (N).
- IV. Get Received signal Y=HX+N.
- V. Estimate transmitted signal.
- VI. Calculate BER vs Eb/No

GENERATE TRANSMITTED SYMBOLS

Result in MATLAB: For L=4000 :

· Generate random signal of 1's and -1's with length L.

GENERATE CHANNEL COEFFICIENTS

· Arrange H matrix as shown:

$$\underbrace{\begin{bmatrix} h_0 & & & & & \\ h_1 & h_0 & & & & \\ h_2 & h_1 & h_0 & & & \\ \vdots & & \ddots & h_1 & h_0 \\ h_{L-1} & h_{L-2} & h_{L-3} & \cdots & h_2 & h_1 & h_0 \end{bmatrix}}_{\dot{H}}$$

The next slide shows a part of result in MATLAB

	1
1	1
2	1
3	1
4	1
5	1
6	-1
7	1
8	-1
9	-1
10	1
11	1
12	1
13	-1
14	-1
15	-1
16	1
17	1
18	1
19	-1
20	1
21	-1
22	-1
23	-1
24	1

•

4000	1
------	---

	1	2	3	4	5	6	7	8	9	10	11	12	13	14
1	1.5288	0	0	0	0	0	0	0	0	0	0	0	0	0
2	0.8038	1.5288	0	0	0	0	0	0	0	0	0	0	0	0
3	0.7523	0.8038	1.5288	0	0	0	0	0	0	0	0	0	0	0
4	0.2557	0.7523	0.8038	1.5288	0	0	0	0	0	0	0	0	0	0
5	0.1994	0.2557	0.7523	0.8038	1.5288	0	0	0	0	0	0	0	0	0
6	0.2707	0.1994	0.2557	0.7523	0.8038	1.5288	0	0	0	0	0	0	0	0
7	0.1044	0.2707	0.1994	0.2557	0.7523	0.8038	1.5288	0	0	0	0	0	0	0
8	0.0426	0.1044	0.2707	0.1994	0.2557	0.7523	0.8038	1.5288	0	0	0	0	0	0
9	0.0261	0.0426	0.1044	0.2707	0.1994	0.2557	0.7523	0.8038	1.5288	0	0	0	0	0
10	0.0132	0.0261	0.0426	0.1044	0.2707	0.1994	0.2557	0.7523	0.8038	1.5288	0	0	0	0
11	0.0034	0.0132	0.0261	0.0426	0.1044	0.2707	0.1994	0.2557	0.7523	0.8038	1.5288	0	0	0
12	0.0037	0.0034	0.0132	0.0261	0.0426	0.1044	0.2707	0.1994	0.2557	0.7523	0.8038	1.5288	0	0
13	0.0027	0.0037	0.0034	0.0132	0.0261	0.0426	0.1044	0.2707	0.1994	0.2557	0.7523	0.8038	1.5288	0
14	0.0024	0.0027	0.0037	0.0034	0.0132	0.0261	0.0426	0.1044	0.2707	0.1994	0.2557	0.7523	0.8038	1.5288
15	0.0014	0.0024	0.0027	0.0037	0.0034	0.0132	0.0261	0.0426	0.1044	0.2707	0.1994	0.2557	0.7523	0.8038
16	0.0011	0.0014	0.0024	0.0027	0.0037	0.0034	0.0132	0.0261	0.0426	0.1044	0.2707	0.1994	0.2557	0.7523
17	6.7266e	0.0011	0.0014	0.0024	0.0027	0.0037	0.0034	0.0132	0.0261	0.0426	0.1044	0.2707	0.1994	0.2557
18	3.5935e	6.7266e	0.0011	0.0014	0.0024	0.0027	0.0037	0.0034	0.0132	0.0261	0.0426	0.1044	0.2707	0.1994
19	7.8799e	3.5935e	6.7266e	0.0011	0.0014	0.0024	0.0027	0.0037	0.0034	0.0132	0.0261	0.0426	0.1044	0.2707
20	1.5967e	7.8799e	3.5935e	6.7266e	0.0011	0.0014	0.0024	0.0027	0.0037	0.0034	0.0132	0.0261	0.0426	0.1044
21	7.5317e	1.5967e	7.8799e	3.5935e	6.7266e	0.0011	0.0014	0.0024	0.0027	0.0037	0.0034	0.0132	0.0261	0.0426
22	5.0013e	7.5317e	1.5967e	7.8799e	3.5935e	6.7266e	0.0011	0.0014	0.0024	0.0027	0.0037	0.0034	0.0132	0.0261
23	1.6571e	5.0013e	7.5317e	1.5967e	7.8799e	3.5935e	6.7266e	0.0011	0.0014	0.0024	0.0027	0.0037	0.0034	0.0132
24	1.3804e	1.6571e	5.0013e	7.5317e	1.5967e	7.8799e	3.5935e	6.7266e	0.0011	0.0014	0.0024	0.0027	0.0037	0.0034

ADD EFFECT OF AWGN CHANNEL

Generate random noise with zero mean

and one variance.

Result in MATLAB:

1	0.4117
2	-0.4186
3	0.6624
4	-0.4599
5	-0.5680
6	-0.1180
7	-0.4343
8	-1.3030
9	-0.1754
10	0.9302
11	-1.7471
12	0.1420
13	0.7690
14	-0.6486
15	-0.0481
16	-0.4305
17	-0.3492
18	1.1565
19	1.1871
20	1.2258
4000	0.4786

GET RECEIVED SIGNAL

· Calculate received signal by this equation

Y=HX+N.

Result in MATLAB:

	1
1	1.9405
2	1.9140
3	3.7473
4	2.8807
5	2.9720
6	0.6350
7	1.8730
8	-1.9076
9	-1.3683
10	1.4161
11	-0.3039
12	3.0271
13	0.6929
14	-2.1071
15	-2.5277
16	-0.1869
17	1.1623
18	3.6791
19	0.9743
20	2.7804
	:

:

4000 3.935

ESTIMATE TRANSMITTED SIGNAL

Result in MATLAB:

- Equalize channel effect by multiply the received signal by inverse of channel matrix.
- Make decision for each bit using threshold voltage equals (0) to get estimated (transmitted) signal

CALCULATE BER VS EB/NO

- Change value of Eb/No from -15 to 0.
- Calculate BER for each change.

Values of BER

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0.3715	0.3563	0.3325	0.3165	0.2970	0.2813	0.2618	0.2363	0.2105	0.1825	0.1630	0.1230	0.1028	0.0735	0.0498	0.0315

	1
1	1
2	1
3	1
4	1
5	1
6	-1
7	1
8	-1
9	-1
10	1
11	-1
12	1
13	-1
14	-1
15	-1
16	1
17	1
18	1
19	-1
20	1
21	-1
22	-1
23	-1
24	1

 Draw relation between BER and Eb/No.

 The value of BER decrease as Eb/No increase.

REPETITION CODE

STEPS OF PROCESS

- I. Generate information (transmitted) bits with length N.
- II. Repeat information bits L times.
- III. See effect of BSC channel.
- IV. Make decision for each bit to get received bits.
- V. Compute BER.
- VI. See effect of bit flipping probability on BER.

b → block length

c → coded length

GENERATE INFORMATION (TRANSMITTED) BITS

• Generate a sequence of bits which consists of 0's and 1's.

Result in MATLAB:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	1000
1	1	1	0	1	1	0	0	1	1	1	0	1	1	0	1	0	0	1

REPEAT INFORMATION BITS L TIMES

- Calculate coding rate of repetition code ($r=\frac{N}{c}$).
- Repeat each bit L times ($L=\frac{1}{r}$) to get sequence of samples.

Result in MATLAB:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	 4996	4997	4998	4999	5000
1	1	1	1	1	1	1	1	1	1	0	0	0	0	0	 1	1	1	1	1

SEE EFFECT OF BSC CHANNEL

- · Pass Sequence of sample through BSC channel .
- · generates the output sample sequence based on the Independent channel and parameter.

Result in MATLAB:

Channel effect:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	4999	5000
1	1	1	0	0	1	0	1	1	0	0	0	1	0	0	1	0	0

Output sample sequence:

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	4999	5000
1)	0	1	1	0	1	0	0	1	1	0	1	0	0	1	1	1

MAKE DECISION FOR EACH BIT TO GET RECEIVED BITS

Make decision for each L bits using threshold voltage equals (L/2) to get received bits.

Result in MATLAB:

Received bits

Compute BER for p=0.5

BER 0.4730

SEE EFFECT OF BIT FLIPPING PROBABILITY ON BER

- Change the channel parameter from 0 to 0.5.
- Calculate BER for each change.

Result in MATLAB:

- Draw relation between BER and P.
- BER increases as channel parameter increases because when p is large value, random numbers which equal or smaller than p are large so there are large number of ones XOR with signal so there is high effect of flipping on signal.

CONVOLUTIONAL CODE

STEPS OF PROCESS

- I. Generate input bits .
- II. Encode information bits based on a given Generator polynomial.
- III. See effect of BSC channel.
- IV. Decode received coded bits into estimated data bits by Viterbi algorithm.
- V. Compute BER.
- VI. See effect of bit flipping probability on BER.

GENERATE INPUT BITS

· Generate a sequence of bits which consists of 0's and 1's.

Result in MATLAB:

ENCODE INFORMATION BITS

- Pass input bits through m shift registers.
- Number of encoded bits $= m^*$ length of msg.

Result in MATLAB:

	1	2	3	4	5	6	7	8	9	10	11
1	1	1	1	1	1	0	0	1	0	1	0

11996	11997	11998	11999	12000
0	0	1	1	1

SEE EFFECT OF BSC CHANNEL

- Pass Sequence of sample through BSC channel.
- · generates the output sample sequence based on the Independent channel and parameter.

Result in MATLAB:

	1	2	3	4	5	6	7	8	9	10	11	12	11999	12000
1	0	1	1	1	0	0	1	0	1	1	1	1	1	1

DECODE RECEIVED CODED BITS INTO ESTIMATED DATA BITS

Decode received bits using vitdec function .

Result in MATLAB:

	1	2	3	4	5	6	7	8	9	10	11	12	 39
1	0	1	1	0	1	0	1	0	0	1	1	0	1

3999	4000
1	1

COMPUTE BER

Compute BER for p=0.5

BER

0.5053

SEE EFFECT OF BIT FLIPPING PROBABILITY ON BER

- Change the channel parameter from 0 to 0.5.
- Calculate BER for each change.

Result in MATLAB:

• BER increases as channel parameter increases because when p is large value, random numbers which equal or smaller than p are large so there are large number of ones XOR with signal so there is high effect of flipping on signal.

POLAR CODE

STEPS OF PROCESS

- I. Generate input bits .
- II. Encode information bits by polarization transformation.
- III. See effect of BSC channel.
- IV. Decode received coded bits into estimated data bits by Successive Cancellation.

GENERATE INPUT BITS

- N=2^n
- Message : m of length K bits
- Form a vector U of length N bits as follows:
 - Find N-K least reliable (worst) channels from reliability sequence
 - Set Ui for those N-K channels to zero (called frozen positions)
 - m:remaining K bits of U (called message positions)

Example on reliability sequence for N=16

Result in MATLAB:

1		2			3	4		5		6		7	8		9	9	10	N 4		1. % .
	0		1		1		1		1	0		1		1		1	1	ivies	sage	DITS
1	2		3		4	5		6	7	8		9	10	11		12	13	14	15	16
0	1	٥		٥	0		n	٥		1	٥	٥	1		1	1	1	1	1	1
U	,	U		U	U		U	U		I	U	U	ı		- 1	ı				

Input bits

ENCODER

Binary tree representation

Depth n

•
$$U1 = [X1 + X2 \ X2]$$

- $U2 = [X3 + X4 \ X4]$
- L = [U1 U2]
- L= [X1+X2+X3+X4 X2+X4 X3+X4 X4]

ENCODER

- • G_N : N*N matrix, Kronecker product of 2*2 kernel.
- •Binary tree representation
 - Depth n
 - $U^{(N)} = \bigcup * G_N$: evaluated on tree with u at bottom and $U^{(N)}$ at top

Result in MATLAB:

Generator Matrix

 $G_{2^n} = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	1	O	O	0	0	O	0	0	0	0	0	0	0	C	C	0
2	1	1	0	0	0	0	0	0	0	0	0	0	0	C	0	0
3	1	0	1	0	0	0	0	0	0	0	0	0	0	C	O	0
4	1	1	1	1	0	0	0	0	0	0	0	0	0	C	O	0
5	1	0	0	0	1	0	0	0	0	0	0	0	0	C	0	0
6	1	1	0	0	1	1	0	0	0	0	0	0	0	C	O	0
7	1	0	1	0	1	0	1	0	0	0	0	0	0	C	O	0
8	1	1	1	1	1	1	1	1	0	0	0	0	0	C	O	0
9	1	0	0	0	0	0	0	0	1	0	0	0	0	C	O	0
10	1	1	0	0	0	0	0	0	1	1	0	0	0	C	O	0
11	1	0	1	0	0	0	0	0	1	0	1	0	0	C	O	0
12	1	1	1	1	0	0	0	0	1	1	1	1	0	C	O	0
13	1	0	0	0	1	0	0	0	1	0	0	0	1	C	O	0
14	1	1	0	0	1	1	0	0	1	1	0	0	1	1	C	0
15	1	0	1	0	1	0	1	0	1	0	1	0	1	C) 1	0
16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Encoded bits

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
0	0	1	0	1	0	1	1	1	0	0	0	0	0	0	1

BSC CHANNEL

- take the sample sequence passing through the channel.
- generates the output sample sequence based on the Independent channel and parameter.

Result in MATLAB:

for p = 0.5:

Channel Effect

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0	0	0	1	0	1	1	1	1	1	1	0	0	0	1

Received bits

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
1	0	1	0	0	0	0	0	0	1	1	1	0	0	0	0