ERE102- Reglerteknik D Tentalösningar

Av Johan Sjöblom sjoblomj88@gmail.com Version: 1.0, Augusti 2014

Please feel free to spread the document to anyone that wants it, and please improve the solutions if you can. All of the document, as well as the LATEX code, is public domain.

Note! These solutions are not from the department giving the course, and they have not been checked for errors. The answers might not be explicit enough to give full points.

1 Tenta 2014-04-24

1.1 1a

$$\ddot{y}(t) + \dot{y}(t) = u(t-1)$$

Notera att uppgiften säger att u är insignal, och alltså inte ett steg! Laplacea med hjälp av β_{L8} ($\ddot{y}(t)$), β_{L7} ($\dot{y}(t)$) och β_{L4} (u(t-1)):

$$s^{2}Y(s) + sY(s) = e^{-1 \cdot s}U(s)$$
$$Y(s)(s^{2} + s) = U(s)e^{-s}$$

Överföringsfunktionen blir:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{e^{-s}}{s^2 + s}$$

Detta är inte ett trevligt problem; tidsförskjutningen (alltså u(t-1) i den givna ekvationen) ger upphov till e^{-s} , vilket gör det hela besvärligt att arbeta med. Vi struntar tillsvidare i tidsförskjutningen, och kompenserar för det i efterhand. Om vi alltså istället för att räkna på den givna ekvationen tittar på följande,

Under vilka omständigheter kan vi strunta i tidsförskjutningen?

$$\ddot{y}(t) + \dot{y}(t) = u(t)$$

så får vi på samma sätt som ovan:

$$s^{2}Y(s) + sY(s) = U(s)$$
$$Y(s)(s^{2} + s) = U(s)$$

Överföringsfunktionen, (nu kallad $G_{ny}(s)$, då det ju inte är samma som vi tidigare hade) blir:

$$G_{\text{ny}}(s) = \frac{Y(s)}{U(s)} = \frac{1}{s^2 + s}$$

Vi vill bestämma systemets stegsvar, det vill säga y(t) då insignalen är ett steg. Det får vi genom att invers-Laplacea Y(s). Ett steg i Laplacedomänen innebär att insignalen $U(s) = \frac{1}{s}$. Vi har $G_{ny}(s)$ och U(s), och vill ha ut Y(s). Detta ger:

$$G_{\text{ny}}(s) = \frac{Y(s)}{U(s)} \Longleftrightarrow Y(s) = G_{\text{ny}}(s)U(s) = \frac{1}{s^2 + s} \cdot \frac{1}{s} = \frac{1}{s^2(s+1)}$$

För att lösa detta använder vi oss av partialbråksuppdelning (se sektion 7).

$$Y(s) = \frac{1}{s^2(s+1)} = \frac{A}{s^2} + \frac{B}{s} + \frac{C}{s+1} \iff$$

$$1 = A(s+1) + Bs(s+1) + Cs^2 \iff$$

$$1 = As + A + Bs^2 + Bs + Cs^2$$

Vi skiljer på gradtalen:

$$s^{2}: B+C=0$$

 $s^{1}: A+B=0$
 $s^{0}: A=1$

Detta kan lösas på flera sätt, till exempel genom att sätta upp på matrisform:

$$\begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 1 & 1 & 0 & | & 0 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{-\rho_1 + \rho_2} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -1 \\ 0 & 1 & 1 & | & 0 \end{bmatrix} \xrightarrow{-\rho_2 + \rho_3} \begin{bmatrix} 1 & 0 & 0 & | & 1 \\ 0 & 1 & 0 & | & -1 \\ 0 & 0 & 1 & | & 1 \end{bmatrix}$$

Vi får alltså:

$$\begin{cases} A = 1 \\ B = -1 \\ C = 1 \end{cases}$$

Stoppar vi in värdena i Y(s) så får vi:

$$Y(s) = G_{ny}(s)U(s) = \frac{1}{s^2(s+1)} = \frac{A}{s^2} + \frac{B}{s} + \frac{C}{s+1} = \frac{1}{s^2} - \frac{1}{s} + \frac{1}{s+1}$$

Detta kan vi enkelt invers-Laplacea med hjälp av β_{L20} $(\frac{1}{s^2})$, β_{L18} $(\frac{1}{s})$ och β_{L21} $(\frac{1}{s+1})$.

$$y(t) = t^{1} - 1 + e^{-1 \cdot t} = t - 1 + e^{-t}, \qquad t \ge 0 \quad (y(t) = 0, t < 0)$$

Detta har vi alltså löst då vi struntat i den tidsfördröjning som fanns med i ursprungsproblemet (det vill säga vi har förbisett att differentialekvationen innehöll termen u(t-1) och istället räknat på u(t)). Då fördröjningen är 1 tidsenhet, så ersätter vi t i resultatet med t-1:

$$y(t) = (t-1) - 1 + e^{-(t-1)} = t - 2 + e^{-t+1}, t \ge 1 (y(t) = 0, t < 1)$$

1.2 1b

I det allmänna fallet så gäller

$$\dot{x}(t) = Ax(t) + Bu(t)$$
$$y(t) = Cx(t) + Du(t)$$

och i vårt fall så har vi

$$\dot{x}(t) = \begin{bmatrix} -4 & -3 \\ 1 & 0 \end{bmatrix} x(t) + \begin{bmatrix} 1 \\ 0 \end{bmatrix} u(t)$$
$$y(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} x(t)$$

Polerna kan vi räkna ut med $det(\lambda I - A) = 0$.

Referens till det?

$$\det(\lambda I - A) = 0 \iff$$

$$0 = \det\left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} -4 & -3 \\ 1 & 0 \end{bmatrix}\right) = \det\left(\begin{bmatrix} \lambda + 4 & 3 \\ -1 & \lambda \end{bmatrix}\right) =$$

$$(\lambda + 4)\lambda - 3(-1) = \lambda^2 + 4\lambda + 3 = 0$$

$$\lambda = -\frac{4}{2} \pm \sqrt{\left(\frac{4}{2}\right)^2 - 3}$$

$$\lambda = -2 \pm 1$$

$$\lambda_1 = -3, \quad \lambda_2 = -1$$

Referens till polavstånd vs. hastighet på systemet?

Ökat avstånd till origo ger snabbare system. Den långsamma polen är alltså $\lambda_2 = -1$. Detta innebär att vi vill placera den långsamma polen λ_2 i den snabba polen λ_1 . Alltså sätter vi att $\lambda_1 = \lambda_2 = -3$. Den karakteristiska ekvationen blir då $(\lambda + 3)^2 = \lambda^2 + 6\lambda + 9$. Vi räknar nu

Referens till detta?

$$\begin{split} \det(\lambda I - (A - BL)) &= \det\left(\begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} - \begin{bmatrix} -4 & -3 \\ 1 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} l_1 & l_2 \end{bmatrix}\right) = \\ \det\left(\begin{bmatrix} \lambda + 4 & 3 \\ -1 & \lambda \end{bmatrix} + \begin{bmatrix} l_1 & l_2 \\ 0 & 0 \end{bmatrix}\right) &= \det\left(\begin{bmatrix} \lambda + 4 + l_1 & 3 + l_2 \\ -1 & \lambda \end{bmatrix}\right) = \\ &\qquad (\lambda + 4 + l_1)\lambda - (3 + l_2)(-1) = \\ &\qquad \lambda^2 + 4\lambda + l_1\lambda + 3 + l_2 = \lambda^2 + (4 + l_1)\lambda + (3 + l_2) \end{split}$$

Detta är lika med den karakteristiska ekvationen, varifrån vi kan identifiera värden på l_1 och l_2 :

$$\lambda^2 + (4+l_1)\lambda + (3+l_2) =$$

$$\lambda^2 + 6\lambda + 9$$

$$\left\{ \begin{array}{l} 4+l_1=6\\ 3+l_2=9 \end{array} \right. \iff \left\{ \begin{array}{l} l_1=2\\ l_2=6 \end{array} \right.$$

1.3 1d

Från bifogat formelblad till tesen:

$$LP \to HP$$
: $s \to \frac{\omega_c}{s}$.

På något sätt så ser vi att när vi utgår från första ordningens Butterworthfilter, så har vi

Hur ser vi detta?

$$|H(i\omega)|^2 = \frac{1}{1 + (\frac{\omega}{\omega_c})^{2n}}$$

Nu har vi

Hur?

$$H(s) = \frac{1}{1 + \underbrace{s}_{s \to \frac{\omega_c}{s}}} \to \frac{1}{1 + \frac{\omega_c}{s}} = \frac{s}{\omega_c + s}$$

Från bifogat formelblad till tesen så har vi att Tustin-diskretisering innebär:

$$s \to \frac{2}{h} \frac{1-z^{-1}}{1+z^{-1}} = \frac{2}{h} \frac{1-\frac{1}{z}}{1+\frac{1}{z}} = \frac{2}{h} \frac{z-1}{z+1}$$

Om vi Tustin-diskretiserar H(s) så får vi:

$$H(z) = \frac{\frac{2}{h} \frac{z-1}{z+1}}{\omega_c + \frac{2}{h} \frac{z-1}{z+1}} = \frac{2(z-1)}{\omega_c h(z+1) + 2(z-1)} = \frac{z-1}{z-1 + \frac{1}{2}\omega_c h(z+1)}$$

På något sätt så ser vi att $\omega_c = 2\pi \cdot 500$ Hz. Vi ljuger oss också till att h är angivet i sekunder, och att $h = 10^4$ Hz $\Rightarrow (10^4)^{-1}$. Sätter vi in det så får vi:

Hur gick det till?

$$H(z) = \frac{z - 1}{z - 1 + \frac{1}{2}2\pi500 \cdot (10^4)^{-1}(z+1)} = \frac{z - 1}{z - 1 + 0.05\pi(z+1)} = \frac{z - 1}{(0.05\pi + 1)z + 0.05\pi - 1} = \frac{\frac{1}{(0.05\pi + 1)}(z-1)}{z + \frac{0.05\pi - 1}{(0.05\pi + 1)}} \approx \frac{0.86(z-1)}{z - 0.73}$$

2 Tenta 2013-12-16

2.1 1a

Ett insignal-utsignal-stabilt system har sina poler strikt i vänster halvplan. Vi vill alltså hitta polerna och kontrollera vart de ligger, för att avgöra om systemen är stabila eller inte. Polerna hittar vi genom att sätta nämnarna i ekvationerna till 0, och sedan lösa ut s.

$$G_1(s) = \frac{s-3}{s^2 + 2s + 6}$$

Sätt nämnaren till 0 och lös:

$$s^{2} + 2s + 6 = 0$$

$$s = -\frac{2}{2} \pm \sqrt{\left(\frac{2}{2}\right)^{2} - 6}$$

$$s = -1 \pm \sqrt{-5}$$

$$s_{1} = -1 + 5i, \qquad s_{2} = -1 - 5i$$

Vi ser att båda polerna har imaginära delar, men det spelar ingen roll. Det viktiga är att båda ligger i vänster halvplan, vilket de ju gör. $G_1(s)$ är alltså stabilt.

$$G_2(s) = \frac{s+3}{s^2+2s} = \frac{s+3}{s(s+2)}$$

Polerna får vi alltså av s(s+2) = 0. Vi ser omedelbart att $s_1 = -2$ och $s_2 = 0$. Polen s_1 ligger i vänster halvplan, men s_2 ligger på 0, och alltså inte strikt i vänster halvplan. $G_2(s)$ är alltså inte stabilt.

Facit pratar om att det ej är stabilt då det innehåller en integrator. Borde vi resonera om det istället?

2.2 1b

Vi ska bestämma överföringsfunktionen från θ_i till θ_0 . Gyroåterkopplingen subtraherar $\theta_0 Ks$ från insignalen, men givet i uppgiften är att K = 0, vilket alltså gör att gyroåterkopplingen faller bort. Blockdiagrammet reduceras till följande:

För att gå vidare behöver vi reducera blockdiagrammet ytterligare. Vi börjar fokusera på den inre återkopplingen (markerad i figuren ovan). Vi kan behandla boxen med -1 på två olika sätt.

Alternativ ett: Multiplicera in den i boxen med $\frac{1}{1+2s}$ varpå vi får följande:

Standardformen för att rita en enkel positiv återkoppling är:

Överföringsfunktionen för ett sådant system är som bekant

$$\frac{y}{r} = \frac{F(s)}{1 - F(s)G(s)}$$

Om vi tittar på den inre återkopplingen, som vi nyss markerade, och ritar om den på standardformen får vi:

Sätter vi upp överföringsfunktionen för delsystemet så får vi

$$\frac{o}{i} = 0.4 \frac{-\frac{1}{1+2s}}{1 - (-\frac{1}{1+2s})0.5}$$

Vi kan förenkla systemet genom att börja med att förlänga med 1+2s:

$$\frac{o}{i} = -0.4 \frac{\frac{1}{1+2s}}{1 + \frac{1}{1+2s}0.5} = -0.4 \frac{1+2s}{1+2s} \cdot \frac{\frac{1}{1+2s}}{1 + \frac{1}{1+2s}0.5} = \\ -0.4 \frac{\frac{1}{1+2s}(1+2s)}{(1+2s) + \frac{1}{1+2s}0.5(1+2s)} = -0.4 \frac{1}{(1+2s) + 0.5} = -\frac{0.4}{2s + 1.5}$$

Vi kan nu ersätta den inre återkopplingen med en låda med den inre återkopplingens överföringsfunktion:

På precis samma sätt som ovan kan vi nu förenkla systemet genom att sätta upp dess överföringsfunktion.

$$\frac{\theta_0}{\theta_i} = 0.7 \frac{\frac{1}{s^2 + 0.3s + 1}}{1 - \frac{1}{s^2 + 0.3s + 1}(-\frac{0.4}{2s + 1.5})}$$

Vi förlänger med $(s^2 + 0.3s + 1)(2s + 1.5)$:

$$\frac{\theta_0}{\theta_i} = 0.7 \frac{(s^2 + 0.3s + 1)(2s + 1.5)}{(s^2 + 0.3s + 1)(2s + 1.5)} \cdot \frac{\frac{1}{s^2 + 0.3s + 1}}{1 + \frac{1}{s^2 + 0.3s + 1} \cdot \frac{0.4}{2s + 1.5}} = 0.7 \frac{\frac{1}{s^2 + 0.3s + 1}(s^2 + 0.3s + 1)(2s + 1.5)}{(s^2 + 0.3s + 1)(2s + 1.5) + \frac{1}{s^2 + 0.3s + 1} \cdot \frac{0.4}{2s + 1.5}(s^2 + 0.3s + 1)(2s + 1.5)} = 0.7 \frac{2s + 1.5}{(s^2 + 0.3s + 1)(2s + 1.5) + 0.4} = 0.7 \frac{2(s + 0.75)}{2((s^2 + 0.3s + 1)(s + 0.75) + 0.2)} = \frac{0.7(s + 0.75)}{s^3 + 1.05s^2 + 1.225s + 0.95}$$

 $\begin{array}{c|c} \text{På blockschemaform:} \\ \hline \theta_i & \hline \\ \hline s^3 + 1.05s^2 + 1.225s + 0.95 \\ \hline \end{array}$

Fördelen med denna lösningsmetod är att vi mekaniskt arbetar med det givna blockschemat. Nackdelen är att vi har ett positivt återkopplat system (det vill säga, signalerna till alla summeringspunkterna i systemet adderas), vilket inte är att föredra om man ska realisera systemet, eftersom en störning då kommer förstärkas i systemet istället för att klinga ut. I vårt fall så gör dock boxen med -1 i den inre återkopplingen att signalen kommer vara negativ och därmed bete sig på samma sätt som ett negativt återkopplat system.

Stämmer antagandet om att det är kasst med positivt återkopplat system?

Alternativ 2: Det lösningsförslag som presenteras i facit har fördelen att vi har ett negativt återkopplat system (det vill säga, signalerna till alla summeringspunkterna i systemet subtraheras). Vi kan flytta boxen -1 fram över delningspunkten, och få följande blockdiagram:

I den övre summeringspunkten så adderar vi en negerad signal, vilket är samma sak som att subtrahera signalen. Vi kan alltså ersätta additionstecknet med ett subtraktionstecken, och ta bort boxen med -1. På samma sätt gör vi i den inre återkopplingen; den återkopplande signalen kommer vara negerad, och vi kan därför ersätta additionstecknet i den undre summeringspunkten med ett subtraktionstecken:

Standardformen för att rita en enkel negativ återkoppling är:

Överföringsfunktionen för ett sådant system är som bekant

$$\frac{y}{r} = \frac{F(s)}{1 + F(s)G(s)}$$

Om vi tittar på den inre återkopplingen, och ritar om den på standardformen får vi:

Sätter vi upp överföringsfunktionen för delsystemet så får vi

$$\frac{o}{i} = 0.4 \frac{\frac{1}{1+2s}}{1 + \frac{1}{1+2s}0.5}$$

Vi kan förenkla systemet genom att börja med att förlänga med 1 + 2s:

$$\frac{o}{i} = 0.4 \frac{\frac{1}{1+2s}}{1 + \frac{1}{1+2s}0.5} = 0.4 \frac{1+2s}{1+2s} \cdot \frac{\frac{1}{1+2s}}{1 + \frac{1}{1+2s}0.5} = 0.4 \frac{\frac{1}{1+2s}(1+2s)}{(1+2s) + \frac{1}{1+2s}0.5(1+2s)} = 0.4 \frac{1}{(1+2s) + 0.5} = \frac{0.4}{2s + 1.5}$$

Vi kan nu ersätta den inre återkopplingen med en låda med den inre återkopplingens överföringsfunktion:

På precis samma sätt som ovan kan vi nu förenkla systemet genom att sätta upp dess överföringsfunktion.

$$\frac{\theta_0}{\theta_i} = 0.7 \frac{\frac{1}{s^2 + 0.3s + 1}}{1 + \frac{1}{s^2 + 0.3s + 1} \cdot \frac{0.4}{2s + 1.5}}$$

Vi förlänger med $(s^2 + 0.3s + 1)(2s + 1.5)$:

$$\frac{\theta_0}{\theta_i} = 0.7 \frac{(s^2 + 0.3s + 1)(2s + 1.5)}{(s^2 + 0.3s + 1)(2s + 1.5)} \cdot \frac{\frac{1}{s^2 + 0.3s + 1}}{1 + \frac{1}{s^2 + 0.3s + 1}} \cdot \frac{0.4}{2s + 1.5} = 0.7 \frac{\frac{1}{s^2 + 0.3s + 1}(s^2 + 0.3s + 1)(2s + 1.5)}{(s^2 + 0.3s + 1)(2s + 1.5) + \frac{1}{s^2 + 0.3s + 1} \cdot \frac{0.4}{2s + 1.5}(s^2 + 0.3s + 1)(2s + 1.5)} = 0.7 \frac{2s + 1.5}{(s^2 + 0.3s + 1)(2s + 1.5) + 0.4} = 0.7 \frac{2(s + 0.75)}{2((s^2 + 0.3s + 1)(s + 0.75) + 0.2)} = \frac{0.7(s + 0.75)}{s^3 + 1.05s^2 + 1.225s + 0.95}$$

$$\underbrace{\begin{array}{c} \text{På blockschemaform:} \\ \theta_i \\ \hline \\ s^3 + 1.05s^2 + 1.225s + 0.95 \end{array}}_{} \underbrace{\begin{array}{c} \theta_0 \\ \\ \theta_0 \\ \hline \end{array}}_{}$$

Samma svar erhålls alltså oavsett angreppssätt.

2.3 3a

Som framgår av differentialekvationen och texten så har vi två funktioner som beror av tiden: u(t) och N(t). Vi har också konstanter: J, R, K_T och K_E . Uppgiften är att räkna ut den konstanta spänningen u_0 för det konstanta varvtalet N_0 , det vill säga ersätta de variabla funktionerna N(t) och u(t) med konstanterna N_0 respektive u_0 , och sedan bryta ut u_0 .

$$J\frac{dN_0}{dt} + K_G N_0^2 = \frac{K_T}{R}(u_0 - K_E N_0)$$

Den första termen, $\frac{dN_0}{dt}$, deriverar en konstant med avseende på tiden. En derivata av en konstant är noll, varpå den termen faller bort. Vi får:

$$0 + K_G N_0^2 = \frac{K_T}{R} u_0 - \frac{K_T}{R} K_E N_0$$
$$u_0 = \frac{K_G N_0^2 R}{K_T} + K_E N_0$$

2.4 3b

Se sektion 6 för bakgrund till linjärisering. Vi börjar med att kalla differentialekvationen för g och flyttar över alla termer till samma sida.

$$g(u,N) = \underbrace{J\frac{dN(t)}{dt}}_{\text{Term 1}} + \underbrace{K_GN(t)^2}_{\text{Term 2}} + \underbrace{\frac{K_TK_E}{R}N(t)}_{\text{Term 3}} - \underbrace{\frac{K_T}{R}u(t)}_{\text{Term 4}}$$

Linjärisera!

$$g(u, N) \approx \frac{\partial g}{\partial u}\Big|_{u_0, N_0} (u - u_0) + \frac{\partial g}{\partial N}\Big|_{u_0, N_0} (N - N_0)$$

När vi först partialderiverar med avseende på u kommer alla termer som inte innehåller u (Term 1, Term 2 och Term 3) betraktas som konstanter. Derivatan av en konstant är som bekant noll, vilket gör att alla termer ej innehållande u då försvinner.

$$\frac{\partial g}{\partial u} = \frac{K_T}{R}$$

På samma sätt gäller att när vi partialderiverar med avseende på N, så kommer Term 4 som inte innehåller N att bli 0. Vi får:

$$\frac{\partial g}{\partial N} = J\frac{d}{dt} + 2K_GN + \frac{K_TK_E}{R}$$

Term 1 innehåller en derivering av N(t) med avseende på t, men när vi nu partialderiverar g, så gör vi det med avseende på N. Tidsderiveringen blir alltså kvar, men inte funktionen N.

Vi linjäriserar enligt uppgiften i arbetspunkten (u_0, N_0) , vilket innebär att vi stoppar in värdet u_0 i funktionen u och stoppar in N_0 i funktionen N. Med lite slappt språkbruk kan vi säga att vi "ersätter" u med u_0 och N med N_0 . Det är detta som avses med beteckningarna $\frac{\partial g}{\partial u}\Big|_{N_0}$ respektive $\frac{\partial g}{\partial N}\Big|_{N_0}$.

är detta som avses med beteckningarna $\frac{\partial g}{\partial u}\Big|_{u_0,N_0}$ respektive $\frac{\partial g}{\partial N}\Big|_{u_0,N_0}$. I $\frac{\partial g}{\partial N}$ ersätter vi alltså N med N_0 . Något u finns inte i varken $\frac{\partial g}{\partial u}$ eller $\frac{\partial g}{\partial N}$, och något N finns inte i $\frac{\partial g}{\partial u}$. För exempel på när vi har kvar termer att ersätta, se det första exemplet i Matematikrepetitionshäftet kaptiel 5.1.

$$g(u,N) \approx \frac{\partial g}{\partial u}\bigg|_{u_0,N_0} (u-u_0) + \frac{\partial g}{\partial N}\bigg|_{u_0,N_0} (N-N_0) = -\frac{K_T}{R}(u-u_0) + \left(J\frac{d}{dt} + 2K_GN_0 + \frac{K_TK_E}{R}\right)(N-N_0)$$

Vi sätter $\Delta N = N - N_0$ och $\Delta u = u - u_0$:

$$\begin{split} &\frac{-K_T}{R}\Delta u(t) + J\frac{d\Delta N(t)}{dt} + 2K_GN_0\Delta N(t) + \frac{K_TK_E}{R}\Delta N(t) = 0 \Longleftrightarrow \\ &\frac{K_T}{R}\Delta u(t) = J\frac{d\Delta N(t)}{dt} + \left(2K_GN_0 + \frac{K_TK_E}{R}\right)\Delta N(t) \end{split}$$

$2.5 \quad 3c$

Vad gör vi här egentligen?

$$\frac{\Delta N(s)}{\Delta u(s)} = \frac{\frac{K_T}{R}}{Js + 2K_GN_0 + \frac{K_TK_E}{R}} = \frac{K_T}{RJs + 2K_GN_0R + K_TK_E}$$

Vartifrån kommer den formen?

Vi vill ha uttrycket på formen $\frac{K}{1+sT}$. Tidskonstanten som det frågas efter är T. Det gäller för oss att algebraiskt arbeta om uttrycket så att vi får det på önskad form.

$$\frac{K_T}{RJs + 2K_GN_0R + K_TK_E} = \frac{\frac{1}{2K_GN_0R + K_TK_E}}{\frac{1}{2K_GN_0R + K_TK_E}} \frac{K_T}{RJs + 2K_GN_0R + K_TK_E} = \frac{\frac{K_T}{2K_GN_0R + K_TK_E}}{\frac{RJ}{2K_GN_0R + K_TK_E}} = \frac{K}{Ts + 1}$$

Vi kan nu avläsa T.

$$T = \frac{RJ}{2K_G N_0 R + K_T K_E} = \frac{J}{2K_G N_0 + \frac{K_T K_E}{R}}$$

Varvtalet, N_0 , står i nämnaren, det vill säga T minskar med ökat varvtal.

3 Tenta 2013-08-22

3.1 1a

Notera att uppgiften säger att u är insignal, och alltså inte ett steg! Laplacea med hjälp av β_{L8} ($\ddot{y}(t)$), β_{L7} ($\dot{y}(t)$) och β_{L4} (u(t-2)):

$$\ddot{y}(t) + 3\dot{y}(t) + 2y(t) = 3u(t - 2)$$

$$s^{2}Y(s) + 3sY(s) + 2Y(s) = 3e^{-2s}U(s)$$

$$Y(s)(s^{2} + 3s + 2) = 3e^{-2s}U(s)$$

$$G(s) = \frac{Y(s)}{U(s)} = \frac{3e^{-2s}}{s^{2} + 3s + 2} = \frac{3e^{-2s}}{(s + 1)(s + 2)}$$

Vi ersätter s med $i\omega$ (det vill säga går över från Laplacedomänen till Fourierdomänen). Från Eulers samband på $\beta_{\rm sid~62}$ ser vi att $e^{-i\theta}=\cos\theta-i\sin\theta$.

$$G(i\omega) = \frac{3e^{-2i\omega}}{(i\omega+1)(i\omega+2)} = \frac{3(\cos(-2\omega) - i\sin(-2\omega))}{(i\omega+1)(i\omega+2)}$$

På $\beta_{\rm sid~339}$ regel 7 under 'Continuous Systems' ser vi att med en insignal som är $\sin(\omega t)$, så blir {TODO UTSIGNAL ELLER VADDÅ} $|G(i\omega)|\sin(\omega t + \arg\{G(i\omega)\})$.

Är det utsignalen som blir såhär?

Hur vi räknar ut $|G(i\omega)|$ framgår av $\beta_{\text{sid }61}$: $|z| = \sqrt{(\text{Re}\{z\})^2 + (\text{Im}\{z\})^2}$. Hur vi räknar ut $\arg\{G(i\omega)\}$ framgår av $\beta_{\text{sid }62}$: $\arg\{z\} = \arctan\frac{\text{Im}\{z\}}{\text{Re}\{z\}}$.

Vi börjar med att räkna ut $|G(i\omega)|$. På β_{sid} 61 finns några användbara räkneregler för absolutbelopp: $|z_1z_2|=|z_1|\cdot|z_2|$ och $\left|\frac{z_1}{z_2}\right|=\frac{|z_1|}{|z_2|}$.

$$|G(i\omega)| = \left| \frac{3(\cos(-2\omega) + (-1)i\sin(-2\omega))}{(i\omega + 1)(i\omega + 2)} \right| = \frac{|3| \cdot |(\cos(-2\omega) + (-1)i\sin(-2\omega))|}{|(i\omega + 1)| \cdot |(i\omega + 2)|} = \frac{3\sqrt{\cos^2(-2\omega) + (-1)^2\sin^2(-2\omega)}}{\sqrt{\omega^2 + 1^2}\sqrt{\omega^2 + 2^2}} = \frac{3}{\sqrt{\omega^2 + 1}\sqrt{\omega^2 + 4}}$$

I det sista steget så nyttjar vi trigonometriska ettan ($\beta_{\text{sid }127}$: $\sin^2 \alpha + \cos^2 \alpha = 1$).

Vi räknar nu ut $\arg\{G(i\omega)\}$. På $\beta_{\mathrm{sid}\ 62}$ finns några användbara räkneregler för argument: $\arg\{z_1z_2\} = \arg\{z_1\} + \arg\{z_2\}$ och $\arg\{\frac{z_1}{z_2}\} = \arg\{z_1\} - \arg\{z_2\}$.

$$\arg\{G(i\omega)\} = \arg\left\{\frac{3(\cos(-2\omega) - i\sin(-2\omega))}{(i\omega + 1)(i\omega + 2)}\right\} =$$

$$\arg\{3(\cos(-2\omega) - i\sin(-2\omega))\} - \arg\{(i\omega + 1)(i\omega + 2)\} =$$

$$\arg\{3\cos(-2\omega) - 3i\sin(-2\omega)\} - (\arg\{i\omega + 1\} + \arg\{i\omega + 2\}) =$$

$$\arctan\left(\frac{-3\sin(-2\omega)}{3\cos(-2\omega)}\right) - (\arctan\frac{\omega}{1} + \arctan\frac{\omega}{2}) =$$

$$\arctan\left(\frac{-\sin(-2\omega)}{\cos(-2\omega)}\right) - \arctan\omega - \arctan\frac{\omega}{2}$$

Vi gör två saker med termen $\arctan\left(\frac{-\sin(-2\omega)}{\cos(-2\omega)}\right)$. Enligt $\beta_{\rm sid~131}$ så gäller $\arctan(-x)=-\arctan(x),$ så vi flyttar ut minustecknet. Vi ser också att $\frac{\sin\alpha}{\cos\alpha}=\tan\alpha$ (definitionen på $\beta_{\rm sid~125}$). Vi får då $-\arctan(\tan(-2\omega))$. Då $\arctan x$ är invers av $\tan x,$ så tar dessa ut varandra. Vi får $-\arctan(\tan(-2\omega))=-(-2\omega)=2\omega.$ Alltså:

 $\arctan(\tan(x))=x$ gäller bara i intervallet $x\in(-\frac{\pi}{2},\frac{\pi}{2})$. Varför får vi använda det?

$$\arg\{G(i\omega)\} = 2\omega - \arctan \omega - \arctan \frac{\omega}{2}$$

Vi kan nu skriva upp det hela på önskad form:

$$|G(i\omega)|\sin(\omega t + \arg\{G(i\omega)\}) = \frac{3}{\sqrt{\omega^2 + 1}\sqrt{\omega^2 + 4}}\sin(\omega t + 2\omega - \arctan\omega - \arctan\frac{\omega}{2})$$

Stämmer inte helt med facit! Han har minustecken framför 2ω !

Varför gäller detta enbart när det är strikt stabilt? Nämn det som nödvändigt kriterium!

Kommentera begreppet "stora t".

4 Block diagrams

Introduktionsvideo på enkel nivå: http://www.youtube.com/watch?v=Wj_vfeuksUM

5 State Space

Introduktionsvideo som förklarar lite varför det är gött och lite om hur det fungerar:

https://www.youtube.com/watch?v = -k2a5d-X1Gc

6 Linjärisering

Att linjärisera betyder att vi gör en linjär approximering av en funktion på en viss punkt. Om vi till exempel har ett krångligt system, så kan vi förenkla arbetet genom att lägga en tangent på en punkt vi är extra intresserade av, och räkna på tangenten istället, då tangenten är lik systemet i just den punkten.

Linjäriseringsuppgifter är ju kul att få på tentan, särskilt när det kommer till flervariabelsuppgifter, vilket kanske 5% av datastudenter behärskar. Fördelen med den här typen av uppgifter är att de är rätt lätta poäng. Hur man räknar står beskrivet i Matematikrepetitionshäftet från kursen, se kapitel 5.

7 Partialbråksuppdelning

Partialbråksuppdelning är kanske inte något man jobbar med varje dag, så det är rostigt för många. Det är dock ganska lätt. Partialbråksuppdelning används flitigt både i kurserna Reglerteknik och Transformer, Signaler och System, så om det sitter löst så är det bara att bita i det sura äpplet och lära sig. Nedan följer en lite utvidgad förklaring från Matematikrepetionshäftet kaptiel 3.

Vi antar att vi har en rationell funktion (det vill säga en kvot av två polynom) $\frac{B(s)}{A(s)}$ där B(s) har lägre gradtal än A(s) och där nämnaren A(s) är faktoriserad så långt som det går i reella faktorer enligt tabellen nedan.

Faktor i nämnaren
$$(A(s))$$
 Ger upphov till partialbråk
$$s-\alpha \qquad \qquad \frac{A_1}{s-\alpha} \qquad \qquad \frac{A_1}{s-\alpha} \qquad \qquad \frac{A_2}{(s-\alpha)^n} \qquad \qquad \frac{A_1}{s-\alpha} + \frac{A_2}{(s-\alpha)^2} + \dots + \frac{A_n}{(s-\alpha)^n} \qquad \qquad \frac{B_1s+C_1}{s^2+as+b} \qquad \qquad \frac{B_1s+C_1}{s^2+as+b} + \frac{B_2s+C_2}{(s^2+as+b)^2} + \dots + \frac{B_ns+C_n}{(s^2+as+b)^n}$$

I $\beta_{\rm sid~120}$ står detta kort nämnt, så man behöver inte memorera det utantill. Sätter man samtliga partialbråk på gemensam nämnare så får man ett ekvationssystem med entydig lösning. Exempel:

$$\frac{2s^2+s-3}{(s+1)^2(s+2)} = \frac{A_1}{s+1} + \frac{A_2}{(s+1)^2} + \frac{A_3}{s+2}$$
(1)
$$(s+1)^2(s+2)\frac{2s^2+s-3}{(s+1)^2(s+2)} = (s+1)^2(s+2)\left(\frac{A_1}{s+1} + \frac{A_2}{(s+1)^2} + \frac{A_3}{s+2}\right)$$
(2)

$$2s^{2} + s - 3 = A_{1}(s+1)(s+2) + A_{2}(s+2) + A_{3}(s+1)^{2}$$
(3)

$$2s^{2} + s - 3 = s^{2}A_{1} + 3sA_{1} + 2A_{1} + A_{2}s + 2A_{2} + A_{3}s^{2} + 2sA_{3} + A_{3}$$
 (4)

$$2s^{2} + s - 3 = (A_{1} + A_{3})s^{2} + (3A_{1} + A_{2} + 2A_{3})s + (2A_{1} + 2A_{2} + A_{3})$$
 (5)

Vi utgår från problemet i vänsterledet i (1), och partialbråksuppdelar det enligt tabellen, varpå högerledet i (1) erhålls. I steg (2) så multiplicerar vi båda sidor av ekvationen med nämnaren i vänsterledet i (1). Vi förenklar det hela i steg (3) och (4). I (5) så "klumpar vi ihop" alla koefficienter till de olika gradtalen av s. Vi kan nu identifiera koefficienterna:

$$s^{2}: A_{1} + A_{3} = 2$$

 $s^{1}: 3A_{1} + A_{2} + 2A_{3} = 1$
 $s^{0}: 2A_{1} + 2A_{2} + A_{3} = -3$

Uttryckt lite slarvigt, om vi betraktar (5) så ser vi att koefficienterna till s^2 är A_1+A_3 i högerledet, och detta är lika med 2 i vänsterledet. Koefficienterna till $s^1=s$ är $3A_1+A_2+2A_3$ i högerledet och 1 i vänsterledet. Koefficenterna till $s^0=1$ är $2A_1+2A_2+A_3$ i högerledet och -3 i vänsterledet. Vi har nu tre ekvationer och tre obekanta variabler som vi vill lösa ut. Detta kan man göra på lite olika sätt. Jag löser det med matriser, men tycker du att det verkar krångligt så använd för all del ditt sätt att lösa det.

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 3 & 1 & 2 & 1 \\ 2 & 2 & 1 & -3 \end{bmatrix} \xrightarrow{-3\rho_1 + \rho_2} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & -5 \\ 2 & 2 & 1 & -3 \end{bmatrix} \xrightarrow{-2\rho_1 + \rho_3}$$

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & -5 \\ 0 & 2 & -1 & -7 \end{bmatrix} \xrightarrow{-2\rho_2 + \rho_3} \begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & -1 & -5 \\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{\rho_3 + \rho_2}$$

$$\begin{bmatrix} 1 & 0 & 1 & 2 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \end{bmatrix} \xrightarrow{-\rho_3 + \rho_1} \begin{bmatrix} 1 & 0 & 0 & -1 \\ 0 & 1 & 0 & -2 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Vi får alltså:

$$\begin{cases} A_1 = -1 \\ A_2 = -2 \\ A_3 = 3 \end{cases}$$

Sätter vi in de här värdena i (1) så får vi:

$$\frac{2s^2+s-3}{(s+1)^2(s+2)} = \frac{A_1}{s+1} + \frac{A_2}{(s+1)^2} + \frac{A_3}{s+2} = \frac{-1}{s+1} + \frac{-2}{(s+1)^2} + \frac{3}{s+2} = -\frac{1}{s+1} - 2\frac{1}{(s+1)^2} + 3\frac{1}{s+2}$$

Här ser vi värdet av att partialbråksuppdela. Om uppgiften var att vi skulle invers-Laplacea ursprungsuttrycket, så hade vi ju inte haft någon snäll transform i våra tabeller som vi kunnat vända oss till. På den partialbråksuppdelade formen är det däremot lätt.

$$\mathcal{L}^{-1}\left\{\frac{2s^2+s-3}{(s+1)^2(s+2)}\right\} = \mathcal{L}^{-1}\left\{-\underbrace{\frac{1}{s+1}}_{\beta_{\rm L21}} - 2\underbrace{\frac{1}{(s+1)^2}}_{\beta_{\rm L22}} + 3\underbrace{\frac{1}{s+2}}_{\beta_{\rm L21}}\right\} = -e^{-t} - 2te^{-t} + 3e^{-2t}, \quad \text{för } t \ge 0$$