Exercise 11

Philipp Drebes

11.05.2023

Exercise 11.1

Let E_t be white noise with mean 0 and variance σ^2 . Regard the following three processes:

- i) $X_t = t + E_t$
- ii) $Y_t = X_t X_{t1}$
- iii) $Z_t = X_t t$
- a) Which of these three processes are stationary, and which are not? Why?

 $X_t = t + E_t$ is not constant, because there will be an upwards trend, as white noise will be added to the current time step.

 $Y_t = X_t - X_{t-1} = t + E_t - (t-1+E_{t-1}) = 1 + E_t - E_{t-1}$ is stationary, as 1 is a constant and E_t and E_{-1} are both white noise.

 $Z_t = X_t - t$ is stationary because $Z_t = X_t - t = t + E_t - t = E_t$ and E_t is white noise.

- b) Optional: Compute the theoretical autocorrelation of the processes Y_t and Z_t and the cross-correlation between the two.
- c) Simulate both Y_t and Z_t . To this end, assume that E_t follows a standard normal distribution $\mathcal{N}(0;1)$. Simulate time series of length n=200, and compare your empirical results to the theoretical ones of part b).

```
t.E <- ts(rnorm(201))
t.X <- (1:201) + t.E
t.Y <- diff(t.X)
t.Z <- t.E

acf(ts.intersect(t.Y, t.Z), ylim = c(-1, 1))</pre>
```


t.Y

t.Z & t.Y

t.Z

ccf(t.Y, t.Z)

t.Y & t.Z

