CMPUT 654 Fa 23: Theoretical Foundations of Machine Learning

Fall 2023

Lecture 3: September 12

Lecturer: Csaba Szepesvári Scribes: Shivam Garg

Note: Larger template courtesy of UC Berkeley EECS dept. (link to directory)

Disclaimer: These notes have <u>not</u> been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

3.1 Variance bound for binary classification with constant noise and threshold functions

Let $\mathcal{X} = [0,1], \mathcal{Y} = \{0,1\}, \mathcal{Z} = \mathcal{X} \times \mathcal{Y}$ and for $w \in [0,1]$ let $\ell_w : \mathcal{Z} \to \{0,1\}$ be defined by

$$\ell_w(x,y) = \mathbb{I}\{\mathbb{I}\{x \ge w\} \ne y\}.$$

Let

$$o_w(x,y) = \mathbb{I}\{x \notin [w - \varepsilon, w]\}.$$

Let P be a distribution over \mathcal{Z} . As usual, Pf stands for $\int f dP$. For some $w^* \in [0,1]$, we let P_{w^*} be a distribution over \mathcal{Z} such that if $(X,Y) \sim P_{w^*}$ then X is uniformly distributed over [0,1] and $\mathbb{P}(Y=1|X=x)=1-p$ if $x \geq w^*$ and $\mathbb{P}(Y=1|X=x)=p$ otherwise.

We consider functions of the form $g_{w,w^*} = \ell_w o_w - \ell_{w^*} (1 - \varepsilon)$. Note that from this choice, it follows that

$$P_{w^*}g_{w,w^*} \geq 0$$
.

Indeed, writing $P = P_{w^*}$ to minimize clutter, on the one hand we have

$$P\ell_{w^*} = p$$
,

and also

$$\min_{w \in [0,1]} P\ell_w o_w \geq \min_{w' \in [0,1]} \min_{w \in [0,1]} P\ell_w o_{w'} = \min_{w' \in [0,1]} P\ell_{w^*} o_{w'} = P\ell_{w^*} o_\varepsilon = p - p\varepsilon = p(1-\varepsilon) \,.$$

Hence,

$$Pg_{w,w^*} = P\ell_w o - (1-\varepsilon)P\ell_{w^*} \ge p(1-\varepsilon) - p(1-\varepsilon) = 0.$$

Our next goal is to find the "smallest possible" $c_0, c_1 \ge 0$ such that for any w, w^*, ε, p ,

$$P_{w^*}g_{w,w^*}^2 \le c_0^2 + c_1 P_{w^*}g_{w,w^*}$$
(3.1)

holds. In fact, we want to minimize first c_0 and keep c_1 bounded.

To minimize clutter, we let $P = P_{w^*}$, $o = o_w$, but these dependencies should still be kept in mind. First, algebra gives

$$Pg_{w,w^*}^2 = P\ell_w o - 2(1-\varepsilon)P\ell_w \ell_{w^*} o + (1-\varepsilon)^2 P\ell_{w^*}$$

= $P\ell_w o - 2(1-\varepsilon)P\ell_w \ell_{w^*} o + (1-\varepsilon)^2 p$.

Furthermore,

$$Pg = P\ell_w o - (1 - \varepsilon)P\ell_{w^*} = P\ell_w o - (1 - \varepsilon)p.$$

Hence, Eq. (3.1) is equivalent to

$$P\ell_w o - 2(1-\varepsilon)P\ell_w \ell_{w^*} o + (1-\varepsilon)^2 p \le c_0^2 + c_1(P\ell_w o - (1-\varepsilon)p)$$

which is equivalent to

$$c_1(1-\varepsilon)p + (1-\varepsilon)^2 p \le c_0^2 + (c_1-1)P\ell_w o + 2(1-\varepsilon)P\ell_w \ell_{w^*} o.$$
(3.2)

Now, we consider three cases based on the location of w^* relative to $w - \varepsilon$ and w and we will in each case lower bound the value of

$$A = (c_1 - 1)P\ell_w o + 2(1 - \varepsilon)P\ell_w \ell_{w^*} o,$$

while enforcing that

$$c_1 \ge 1. \tag{3.3}$$

Case 1: $w^* \leq w - \varepsilon$. In this case we have

$$P\ell_w o = (w - w^*)(1 - 2p) + p - \varepsilon(1 - p),$$

 $P\ell_w \ell_{w^*} o = w^*(1 - p) - wp + p.$

Then,

$$A = (c_1 - 1) \{ (w - w^*)(1 - 2p) + p - \varepsilon(1 - p) \} + 2(1 - \varepsilon) \{ w^*(1 - p) - wp + p \}.$$

The coefficient of w^* in the above expression is

$$\alpha = (c_1 - 1)(2p - 1) + 2(1 - \varepsilon)(1 - p).$$

If $\alpha \leq 0$, the value of A is minimized in w^* by choosing $w^* = w - \varepsilon$ and the minimum value is equal to

$$A' = (c_1 - 1) \{ \varepsilon (1 - 2p) + p - \varepsilon (1 - p) \} + 2(1 - \varepsilon) \{ (w - \varepsilon)(1 - p) - wp + p \}$$

= $(c_1 - 1)p(1 - \varepsilon) + 2(1 - \varepsilon) \{ (w(1 - 2p) - \varepsilon(1 - p) + p \}$
 $\geq (c_1 - 1)p(1 - \varepsilon) + 2(1 - \varepsilon) \{ p - \varepsilon(1 - p) \} =: A'',$

where the last inequality follows since $2(1-\varepsilon)w(1-2p) \ge 0$. Now, Eq. (3.2) will follow if $c_1(1-\varepsilon)p + (1-\varepsilon)^2p \le c_0^2 + A''$. Plugging in the definition of A'', we get that the latter inequality is equivalent to

$$\underline{c_1(1-\varepsilon)p} + (1-\varepsilon)^2 p \le c_0^2 + (\cancel{c_1}-1)p(1-\varepsilon) + 2(1-\varepsilon)\left\{p - \varepsilon(1-p)\right\}$$
$$= c_0^2 - p(1-\varepsilon) + 2(1-\varepsilon)p - 2(1-\varepsilon)\varepsilon(1-p).$$

Reordering gives

$$2(1-\varepsilon)\varepsilon(1-p) - \varepsilon p(1-\varepsilon) \le c_0^2$$

which gives

$$c_0^2 \ge (1 - \varepsilon)\varepsilon(2 - 3p). \tag{3.4}$$

Since the p < 1/2 by assumption, this constraint can be satisfied.

Finally, simple algebra shows that $\alpha \leq 0$ is equivalent to

$$c_1 \ge 1 + \frac{(1-\varepsilon)(1-p)}{\frac{1}{2}-p}$$
, (3.5)

where we used that p < 1/2.

Case 2: $w - \varepsilon < w^* \le w$. In this case we have

$$P\ell_w o = p(1 - \varepsilon),$$

 $P\ell_w \ell_{w^*} o = p(1 - \varepsilon).$

Then,

$$A = (c_1 - 1)p(1 - \varepsilon) + 2p(1 - \varepsilon)^2.$$
(3.6)

Now, Eq. (3.2) will follow if $c_1(1-\varepsilon)p + (1-\varepsilon)^2p \le c_0^2 + A$. Plugging in the definition of A, we get that the latter inequality is equivalent to

$$c_1(1-\varepsilon)\overline{p} + (1-\varepsilon)^2\overline{p} \le c_0^2 + (\varepsilon_1 - 1)p(1-\varepsilon) + 2p(1-\varepsilon)^2,$$

which gives

$$c_0^2 \ge \varepsilon p(1-\varepsilon) \,. \tag{3.7}$$

Case 3: $w < w^*$. In this case we have

$$P\ell_w o = (w - w^*)(2p - 1) + p(1 - \varepsilon),$$

 $P\ell_w \ell_{w^*} o = (w - w^*)p + p(1 - \varepsilon).$

Then,

$$A = (c_1 - 1) \{ (w - w^*)(2p - 1) + p(1 - \varepsilon) \} + 2(1 - \varepsilon) \{ (w - w^*)p + p(1 - \varepsilon) \}.$$

Note that here $w-w^* \leq 0$. The coefficient of $w-w^*$ in this expression is

$$\alpha = (c_1 - 1)(2p - 1) + 2(1 - \varepsilon)p.$$

When $\alpha \leq 0$, the value of A is minimized by choosing the largest possible value for $w-w^*$, which is zero. In this case the value of A is

$$A' = (c_1 - 1)p(1 - \varepsilon) + 2(1 - \varepsilon)^2 p$$
,

which is the value we got in the previous case (cf. Eq. (3.6)). As such, as long as Eq. (3.7) holds, Eq. (3.1) will be satisfied.

To guarantee that $\alpha \leq 0$, we need to have

$$(c_1-1)(2p-1)+2(1-\varepsilon)p<0$$
.

Thanks to 2p - 1 < 0, this holds if and only if

$$c_1 \ge 1 + \frac{(1-\varepsilon)p}{\frac{1}{2}-p} \,. \tag{3.8}$$

Thus, we derived the following:

Proposition 3.1. *Let* p < 1/2,

$$c_1 = 1 + \frac{(1-\varepsilon)(1-p)}{\frac{1}{2}-p}, \qquad c_0^2 = \varepsilon(1-\varepsilon)\max(2-3p,1).$$

Then, for any w, w^* it holds that

$$P_{w^*}g_{w,w^*}^2 \le c_0^2 + c_1 P_{w^*}g_{w,w^*}.$$

Proof. Algebra, together with Eqs. (3.5) and (3.8), Eqs. (3.4) and (3.7) gives the result.