Boron Ion Beam Production for the Future CERN BIO-LEIR Facility

Joshua Stafford-Haworth jstaffor@cern.ch

Boron Ion Beam Production for the Future CERN BIO-LEIR Facility

Joshua Stafford-Haworth jstaffor@cern.ch

- Hadron therapy mostly conducted with protons
- lons offer different radiobiological properties
- Comprehensive study needed to evaluate different species
- Protons -> Neon
- Re-use LEIR synchrotron at CERN for light ion medical research facility.

- Hadron therapy mostly conducted with protons
- Ions offer differenteadio biedogical properties

Hamblow Emerapyon esieg (CLEIR)

- Hadron therapy mostly conducted with protons
- Ions offer different madio bie dogical properties

Hamblow Emerapyon esieg (CLEIR)

Hadron therapy mostly teoreticted with protons

· lons offer different properties

- Comprehensi different sevaluate
- Protons
- Re-use CERNefor light ion med.

 Others

AD Antiproton Decelerator

© CERN 2013

Protons

Carbon

proton/antiproton conversion

PS Proton Synchrotron

ed WAKefield Experiment ISOLDE Isotope Separator OnLine DEvice

Hamblow Emerapyon esieg (CLEIR)

Hadron therapy mostly teoreticted with protons

· lons offer different properties

- Comprehensi different servaluate
- Protons
- Re-use ion med

AD Antiproton Decelerator

ed WAKefield Experiment ISOLDE Isotope Separator OnLine DEvice

Protons

Hamblow Emerapyon resign (CIEIR)

Hate Early Emply Emply Emply Emply (the IR)

© CERN 2013

Hatel Early Emply Emply Emply Emply (the IR)

Light Ion Injectors

Light Ion Injectors

- New Linac?
- Cyclotron?
- Re-use heavy ion injector, Linac 3?
- A new source is needed that can deliver p->Ne
- Pantechnik Supernanogan currently used at CNAO, HIT, MedAustron.
- Permanent Magnet 14.5 GHz ECR capable of oven technique with gas mixing.

Boron Production

Boron Production

- JYFL (Jyväskylä) and FLNR (Dubna) have previously delivered Boron
- Both ECR sources, both much larger than Supernanogan, and not permanent magnet designs
- Verification required
- MIVOC technique with Supernanogan at Helmholtz-Zentrum, Berlin.

- MIVOC chamber
- Needle Valve
- Standard Valve
- RF waveguide
- Source plasma chamber

- MIVOC chamber
- Needle Valve
- Standard Valve
- RF waveguide
- Source plasma chamber

- MIVOC chamber
- Needle Valve
- Standard Valve
- RF waveguide
- Source plasma chamber

- MIVOC chamber
- Needle Valve
- Standard Valve
- RF waveguide
- Source plasma chamber

- MIVOC chamber
- Needle Valve
- Standard Valve
- RF waveguide
- Source plasma chamber

- MIVOC chamber
- Needle Valve
- Standard Valve
- RF waveguide
- Source plasma chamber

Atomic Formula	B ₁₀ H ₁₄
Melting Point	373 K
Boiling Point	486 K
Vapor Pressure	0.269 mbar
Phase at 300k	Crystalline

Atomic Formula	B ₁₀ H ₁₄
Melting Point	373 K
Boiling Point	486 K
Vapor Pressure	0.269 mbar
Phase at 300k	Crystalline

Boron

Atomic Formula	B ₁₀ H ₁₄
Melting Point	373 K
Boiling Point	486 K
Vapor Pressure	0.269 mbar
Phase at 300k	Crystalline

Distribution Favours ¹¹B³⁺

Success!

Success!

- Supernanogan can deliver Boron for medical research!
- M-carborane without support gas can deliver up to 50 μA of ¹¹B³⁺
- Decaborane, less successful. Pyrolysis makes a dirty source!

Boron Ion Beam Production for the Future CERN BIO-LEIR Facility

Joshua Stafford-Haworth jstaffor@cern.ch

Boron Ion Beam Production for the Future CERN BIO-LEIR Facility

Joshua Stafford-Haworth jstaffor@cern.ch

