Christopher J Harris

502 Cinnaminson St Riverton, NJ 08077-1325 http://cjharris.tk/ cjharris@alumni.rutgers.edu

Goal

Return to the *industrial sector*, to create new products or improve existing ones, whether the target entity involves material, equipment, software, or humans.

Profile

Chemical Engineer with over 20 years of graduate research in the semiconductor realm seeking to redefine opportunity:

crystal growth	plasma chemistry	computer modeling
surface science	laser excitation	python language
chemical vapor deposition	optical characterization	statistical analysis
molecular beam epitaxy	electrochemical methods	process control
semiconductor devices	applied neuroscience	laboratory automation

Literature

Real-time Monitoring of Surface Processes by P-polarized Reflectance, J. of Vacuum Science & Technology: 1997, A15, 807.

Molecular Layer Epitaxy by Real-time Optical Process Monitoring, Applied Surface Science: 1997, 112, 38.

Boron Incorporation in Hydrogenated Amorphous Silicon Films Prepared by Chemical Vapor Deposition, J. of Noncrystalline Solids: 1987, 97, 1419.

Laser-induced Chemical Vapor Deposition of Hydrogenated Amorphous Silicon: Photovoltaic Devices and Material Properties, Solar Cells: 1987, 21, 177.

Experience

Engineering Consultant, LocalSolo Freelance: Vancouver, BC, Canada (1/18 to present) Provide technical resources to help organizations reach their full potential.

Substitute Teacher, Source4Teachers: Cherry Hill, NJ (12/13 to 2/15) Deal with special ed students with behavioral issues under the guidance of a child psychologist; present math, science, general curricula to individuals ranging from preschool through high school.

Research Assistant, Maine Chemistry Dept: Orono, ME (8/03 to 5/06) Apply cyclic voltammetry, an electrochemical measurement, to find: catalytic activity in gold compounds for methanol oxidation, and electrochemiluminescence (ecl) in a ruthenium compound for DNA analysis.

Research Assistant, NCSU Materials Science Dept: Raleigh, NC (5/96 to 5/99) Grow GaP heterostructure films on Si in a chemical beam epitaxy system, analyze plane polarized reflectance spectroscopy (PRS) / laser light scattering (LLS) in-situ optical signals, develop a radio frequency nitrogen plasma source for GaN film growth, and do a substrate temperature calibration based on reflectivity measurements.

Research Assistant, NCSU Materials Science Dept: Raleigh, NC (1/87 to 5/89) Design / build a microwave plasma chemical vapor deposition chamber, achieve a unique ellipsoidal plasma advantageous for film growth over typical spherical plasmas, and grow polycrystalline diamond films on Si.

Research Specialist, MIT Advanced Energy Materials Lab: Cambridge, MA (11/84 to 1/87) Use infrared laser to produce ceramic powders, amorphous Si films, and alumina-based crystals. Analyze transmitted / scattered optical signals from ceramic powder process, giving rise to a computer monitoring scheme. Set up interferometer to measure film thickness, providing a realtime signal, to calibrate growthrate. Develop process control loop for laser cavity tuning, leading to more reliable film properties. Collect in-situ stress measurements of growing films, through deflection of an optical laser, as sample curvature evolves. Optimize growth parameters of amorphous Si solar cells, and scale-up new chemistry of ceramic powders.

Education

MS Physical Chemistry	Rutgers: New Brunswick, NJ	Jan 2003
MS Material Science	North Carolina State: Raleigh, NC	unofficial
BS Chemical Engineering	Texas A&M: College Station, TX	May 1984
HS Diploma	Waltham High: Waltham, MA	Jun 1979

Honor

DECEMBER 10, 2014

Statement of Accomplishment

WITH DISTINCTION

CHRISTOPHER HARRIS

HAS SUCCESSFULLY COMPLETED GEORGIA INSTITUTE OF TECHNOLOGY'S ONLINE OFFERING OF

Computational Investing, Part I

This course covers computational aspects of investing, including: Company valuation, the Capital Assets Pricing Model, Efficient Markets Hypothesis, the role of information in pricing, historical data and its manipulation, portfolio performance assessment and optimization.

TUCKER BALCH, PH.D

ASSOCIATE PROFESSOR

COLLEGE OF COMPUTING

GEORGIA INSTITUTE OF TECHNOLOGY

NELSON BAKER, PH.D.

DEAN, PROFESSIONAL EDUCATION
GEORGIA INSTITUTE OF TECHNOLOGY

Mel Bel

PLEASE NOTE: THE ONLINE OFFERING OF THIS CLASS DOES NOT REFLECT THE ENTIRE CURRICULUM OFFERED TO STUDENTS ENROLLED AT GEORGIA INSTITUTE OF TECHNOLOGY. THIS STATEMENT DOES NOT AFFIRM THAT THIS STUDENT WAS ENROLLED AS A STUDENT AT GEORGIA INSTITUTE OF TECHNOLOGY IN ANY WAY. IT DOES NOT CONFER A GEORGIA INSTITUTE OF TECHNOLOGY GRADE; IT DOES NOT CONFER GEORGIA INSTITUTE OF TECHNOLOGY DEGREE; AND IT DOES NOT VERIFY THE IDENTITY OF THE STUDENT.

JULY 02, 2015

Statement of Accomplishment

CHRISTOPHER HARRIS

HAS SUCCESSFULLY COMPLETED THE ONLINE OFFERING OF

Computational Neuroscience

This advanced undergraduate course introduces a broad range of computational techniques for analyzing, modeling, and understanding the behavior of neurons and networks of neurons in the brain.

Majik P.N. Nao W UNIVERSITY of WASHINGTON

DR. RAJESH P. N. RAO
PROFESSOR
DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
UNIVERSITY OF WASHINGTON

W UNIVERSITY of WASHINGTON

DR. ADRIENNE FAIRHALL
ASSOCIATE PROFESSOR
DEPARTMENT OF PHYSIOLOGY AND BIOPHYSICS
UNIVERSITY OF WASHINGTON

THE ONLINE OFFERING NOTED ABOVE IS NOT A COURSE OFFERED BY THE UNIVERSITY OF WASHINGTON. THIS STATEMENT OF ACCOMPLISHMENT IS NOT ISSUED BY THE UNIVERSITY OF WASHINGTON AND DOES NOT CONFIRM OR IMPLY ENROLLMENT AT THE UNIVERSITY OF WASHINGTON. THE UNIVERSITY OF WASHINGTON AWARDS NO CREDIT FOR THE ABOVE OFFERING AND MAINTAINS NO RECORD OF THE OFFERING OR OF ANY STUDENT'S ENROLLMENT IN THE OFFERING.

MARCH 08, 2015

Statement of Accomplishment

WITH DISTINCTION

CHRISTOPHER HARRIS

HAS SUCCESSFULLY COMPLETED THE JOHNS HOPKINS UNIVERSITY'S OFFERING OF

The Data Scientist's Toolbox

Overview of the data, questions, & tools that data analysts & scientists work with. It is a conceptual introduction to the ideas behind turning data into knowledge as well as a practical introduction to tools like version control, markdown, git, GitHub, R. and RStudio.

Bun Calle

JEFFREY LEEK, PHD
DEPARTMENT OF BIOSTATISTICS, JOHNS HOPKINS
BLOOMBERG SCHOOL OF PUBLIC HEALTH

ROGER D. PENG, PHD

DEPARTMENT OF BIOSTATISTICS, JOHNS HOPKINS BLOOMBERG SCHOOL OF PUBLIC HEALTH

BRIAN CAFFO, PHD, MS
DEPARTMENT OF BIOSTATISTICS, JOHNS HOPKINS
BLOOMBERG SCHOOL OF PUBLIC HEALTH

MAY 07, 2015

Statement of Accomplishment

WITH DISTINCTION

CHRISTOPHER HARRIS

HAS SUCCESSFULLY COMPLETED

Programming for Everybody (Python)

The Programming for Everybody (#PR4E) course from the University of Michigan School of Information introduces students to the Python programming language and studies how Python can be used to do data analysis.

CHARLES SEVERANCE

CLINICAL ASSOCIATE PROFESSOR, SCHOOL OF INFORMATION

UNIVERSITY OF MICHIGAN

PLEASE NOTE: THE ONLINE OFFERING OF THIS CLASS DOES NOT REFLECT THE ENTIRE CURRICULUM OFFERED TO STUDENTS ENROLLED AT THE UNIVERSITY OF MICHIGAN. THIS STATEMENT DOES NOT AFFIRM THAT THIS STUDENT WAS ENROLLED AS A STUDENT AT THE UNIVERSITY OF MICHIGAN IN ANY WAY. IT DOES NOT CONFER A UNIVERSITY OF MICHIGAN GRADE; IT DOES NOT CONFER UNIVERSITY OF MICHIGAN DEGREE; AND IT DOES NOT VERIFY THE IDENTITY OF THE STUDENT.

MAY 19, 2015

Statement of Accomplishment

WITH DISTINCTION

CHRISTOPHER HARRIS

HAS SUCCESSFULLY COMPLETED AN ONLINE NON-CREDIT COURSE OFFERED BY DUKE UNIVERSITY.

Data Analysis and Statistical Inference

This course introduces students to core statistical concepts such as exploratory data analysis, statistical inference and modeling, and basic probability, as well as statistical computing.

DR. MINE ÇETINKAYA-RUNDEL
ASSISTANT PROFESSOR OF THE PRACTICE
STATISTICAL SCIENCE, DUKE UNIVERSITY