CS660: Intro to Database Systems

Class 10: Log-Structured-Merge Trees

Instructor: Manos Athanassoulis

https://bu-disc.github.io/CS660/

Reads vs Writes: The two extremes

Assume **no index** – what is the **best way to physical store** our data?

Case 1: I have a static datasets and I only receive reads

how to read?

Case 2: I only receive new updates, which I never try to read

How to bridge the two?

What to do with many sorted files?

Merge them!

LSM-tree

The Log-Structured Merge-Tree (LSM-Tree)

1996

Patrick O'Neil¹, Edward Cheng² Dieter Gawlick³, Elizabeth O'Neil¹ To be published: Acta Informatica

Patrick O'Neil UMass Boston

LSM-tree O'Neil *et al.*

☑ good random writes

array of discs

why?

RAID, striping

X LSM not explicitly needed

LSM-tree O'Neil et al. how many IOPS?

10KRPM

max seek time 1.5ms 100 disks

10KRPM: 10K rev in 60s

60/10000=6ms per rev

avg. rot. delay: 3ms (6ms/2)

avg. seek time: 0.75ms (1.5ms/2)

1 I/O / 3.75ms: 267 IOPS

100 disks: 26,700 IOPS

so, arrays of disks were enough!

1980s

1996

a decade

array of discs

× worse sequential access

X bad random writes

commodity hardware

LSM-tree O'Neil *et al.*

We set up a Bigtable cluster with N tablet servers to measure the performance and scalability of Bigtable as N is varied. The tablet servers were configured to use 1 GB of memory and to write to a GFS cell consisting of 1786 machines with two 400 GB IDE hard drives each.

1980s

1996

2006

a decade

LSM-tree O'Neil *et al.*

LSM-tree O'Neil *et al.*

LSM-tree O'Neil *et al.*

LSM-tree

NoSQL

RocksDB

time-series

LSM-tree

NoSQL

time-series

How does LSM-tree compare with prior approaches?

Compare and contrast data structures.

What to use when?

Data Structure	Lookup cost	Insertion cost
Sorted array		
Log		
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

Compare and contrast data structures.

What to use when?

Data Structure	Lookup cost	Insertion cost
Sorted array		
Log		
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

Sorted Array

Measure Performance in I/Os

n entries

B entries fit into a disk block

Array spans
$$\mathbf{N} = \frac{n}{B}$$
 disk blocks

Lookup method & cost?

Binary search: $O(\log_2(N))$ I/Os

Insertion cost?

Push entries: O(N/2) I/Os

Buffer
James
Sara

Array size	Pointer
	1

Block 1	Block 2	 Block N
Anne	Bob	Yulia
Arnold	Corrie	Zack
Barbara	Doug	Zelda

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N))$	O(N/2)
Log		
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N))$	O(N/2)
Log		
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

Log (append-only array)

n entries

B entries fit into a disk block

Array spans
$$\mathbf{N} = \frac{n}{B}$$
 disk blocks

Array size Pointer

Block 1	Block 2	 Block N
Doug	Yulia	Anne
Zelda	Zack	Bob
Arnold	Barbara	Corrie

Lookup method & cost?

Scan: O(N)

Insertion cost?

Append: $O\left(\frac{1}{R}\right)$

	Lookup cost	Insertion cost
Sorted array	$O(log_2(N))$	O(N/2)
Log	O(N)	O(1/B)
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	$O(log_2(N))$	O(N/2)
Log	O(N)	O(1/B)
B-tree		
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

B-tree

Lookup method & cost?

Tree search: $O(\log_B(N))$

Insertion method & cost?

Tree search & append: $O(\log_B(N))$

Results Catalogue

	Lookup cost	Insertion cost
Sorted array	$O(\log_2(N))$	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(\log_B(N))$
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

B-trees

"It could be said that the world's information is at our fingertips because of B-trees"

Goetz Graefe Microsoft, HP Fellow, now Google ACM Software System Award

B-trees are no longer sufficient

Cheaper storage

Workloads more insert-intensive

We need **better insert-performance**

Results Catalogue

Goal to combine

sub-constant insertion cost logarithmic lookup cost

	Lookup cost	Insertion cost
Sorted array	$O(log_2(N))$	O(N/2)
Log	O(N)	O(1/B)
B-tree	O(log _B (N))	$O(log_B(N))$
Basic LSM-tree		
Leveled LSM-tree		
Tiered LSM-tree		

Design principle #1:

Design principle #1:

Design principle #1:

Design principle #1:

Design principle #1:

optimize for insertions by buffering

Design principle #2:

optimize for lookups by sort-merging arrays

Design principle #1: optimize for insertions by buffering

Levels have exponentially increasing capacities.

How many levels?

 $\log_2(N)$

Basic LSM-tree – Lookup cost

Lookup method?
How?
Lookup cost?

Search youngest to oldest. Binary search.

 $O(\log_2(N))$ $O(\log_2(N))$ $O(\log_2(N)^2)$

Basic LSM-tree — Insertion cost

How many times is each entry copied?

What is the price of each copy?

Total insert cost?

 $O(\log_2(N))$, once per level

O(1/B), amortized

 $O((1/B) \cdot \log_2(N))$

Results Catalogue

	Lookup cost	Insertion cost
Sorted array	$O(log_2(N))$	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(\log_2(N)^2)$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree		
Tiered LSM-tree		

Results Catalogue

Better insert cost and worse lookup cost compared with B-trees

	Lookup cost	Insertion cost
Sorted array	$O(log_2(N))$	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(\log_2(N)^2)$	$O(1/B \cdot log_2(N))$
Leveled LSM-tree		
Tiered LSM-tree		

Results Catalogue

Better insert cost and worse lookup cost compared with B-trees Can we improve the lookup cost?

	Lookup cost	Insertion cost
Sorted array	$O(log_2(N))$	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(\log_2(N)^2)$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree		
Tiered LSM-tree		

Declining Main Memory Cost

Declining Main Memory Cost

Store a fence pointer for every block in main memory

Block 1	Block 2	Block 3	•••
1	10	15	•••
3	11	16	
6	13	18	•••

	Lookup cost	Insertion cost
Sorted array	O(log ₂ (N))	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(\log_2(N)^2)$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	O(log ₂ (N))	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(\log_2(N)^2)$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(\log_2(N)^2)$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(\log_2(N)^2)$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree		
Tiered LSM-tree		

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(\log_2(N)^2)$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree		
Tiered LSM-tree		

Lookup cost	Insertion cost
O(1)	O(N/2)
O(N)	O(1/B)
$O(log_B(N))$	$O(log_B(N))$
$O(\log_2(N)^2)$	$O(1/B \cdot \log_2(N))$
	O(1) O(N) O(log _B (N))

Lookup cost	Insertion cost
O(1)	O(N/2)
O(N)	O(1/B)
$O(log_B(N))$	$O(log_B(N))$
$O(log_2(N))$	$O(1/B \cdot \log_2(N))$
	O(1) O(N) O(log _B (N))

Quick sanity check:

 $N = 2^{32}$ suppose

and

 $B = 2^{10}$

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(\log_2(N))$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree		
Tiered LSM-tree		

Quick sanity check:

suppose $N = 2^{32}$

and

 $B = 2^{10}$

	Lookup cost	Insertion cost
Sorted array	O(1)	O(2 ³¹)
Log	O(2 ³²)	O(2 ⁻¹⁰)
B-tree	O(4)	O(4)
Basic LSM-tree	O(32)	O(2 ⁻¹⁰ · 32)
Leveled LSM-tree		
Tiered LSM-tree		

Up until now we always create levels by merging two files!

Lookup cost depends on number of levels How to reduce it?

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost depends on number of levels How to reduce it?

E.g. size ratio of 4

Lookup cost?

 $O(\log_T(N))$

Insertion cost?

$$O\left(\frac{T}{B} \cdot \log_T(N)\right)$$

Lookup cost?
$$O(\log_T(N))$$

Insertion cost?

O
$$\left(\frac{T}{B} \cdot \log_T(N)\right)$$

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N?

Lookup cost becomes:

Insert cost becomes:

The LSM-tree becomes a sorted array!

Here we were merging eagerly.

What about merging lazily?

Insertion cost

Basic

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(log_2(N))$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree	$O(log_T(N))$	$O(T/B \cdot log_T(N))$
Tiered LSM-tree		

Reduce the number of levels by increasing the size ratio. Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

Tiered LSM-tree

Reduce the number of levels by increasing the size ratio.

Do not merge within a level.

E.g. size ratio of 4

Tiered LSM-tree

Lookup cost?

$$O(T \cdot \log_T(N))$$

Insertion cost?

$$O\left(\frac{1}{B} \cdot \log_T(N)\right)$$

Tiered LSM-tree

Insertion cost?

$$O\left(\frac{1}{B} \cdot \log_T(N)\right)$$

What happens as we increase the size ratio T?

What happens when size ratio T is set to be N?

Lookup cost becomes:

O(N)

Insert cost becomes:

O(1/B)

The tiered LSM-tree becomes a log!

Insertion cost

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(log_2(N))$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree	$O(log_T(N))$	$O(T/B \cdot log_T(N))$
Tiered LSM-tree	$O(T \cdot log_T(N))$	$O(1/B \cdot log_T(N))$

Quick sanity check:

suppose

 $N = 2^{32}$

and

 $B = 2^{10}$

and

 $T = 2^2$

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(\log_2(N))$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree	$O(log_T(N))$	$O(T/B \cdot log_T(N))$
Tiered LSM-tree	$O(T \cdot log_T(N))$	$O(1/B \cdot log_T(N))$

Quick sanity check:

suppose

 $N = 2^{32}$

and

 $B = 2^{10}$

and

 $T = 2^2$

	Lookup cost	Insertion cost
Sorted array	2 ⁰ =1	2 ³¹ =2B
Log	2 ³² =4B	2 ⁻¹⁰ =0.001
B-tree	2 ² =4	2 ² =4
Basic LSM-tree	2 ⁵ =32	2 ⁻⁵ =0.031
Leveled LSM-tree	24=16	2-4=0.063
Tiered LSM-tree	2 ⁶ =64	2 ⁻⁶ =0.016

Quick sanity check:

suppose

 $N = 2^{32}$

and

 $B = 2^{10}$

and

T = 10

	Lookup cost	Insertion cost
Sorted array	2 ⁰ =1	2 ³¹ =2B
Log	2 ³² =4B	2 ⁻¹⁰ =0.001
B-tree	2 ² =4	2 ² =4
Basic LSM-tree	2 ⁵ =32	2 ⁻⁵ =0.031
Leveled LSM-tree	$\log_{10}(2^{32})=9.6$	$10 \cdot 2^{-10} \cdot \log_{10}(2^{32}) = 0.09$
Tiered LSM-tree	$10 \cdot \log_{10}(2^{32}) = 96$	$2^{-10} \cdot \log_{10}(2^{32}) = 0.009$

How to avoid them?

An **oracle** that helps us to skip them!

Bloom filters

Answer **set-membership** queries

Small size, typically stored in memory

May return false positives

Bloom filters

k hash functions

 $h_1(\blacksquare)$

 $h_2(\blacksquare)$

 $h_3(\blacksquare)$

an array of m bits

Bloom filters – insert v_1

Bloom filters – insert v_2

Bloom filters – query v_3

Bloom filters – query v_4

an array of m bits

false positive rate: $f = e^{-\frac{m}{n} \cdot (ln(2))^2}$

sanity check: for $\frac{m}{n} = 10$, f = 0.00819

after inserting n elements

 \rightarrow we have m/n bits per key

Augmenting the LSM design with Bloom filters

Augmenting the LSM design with Bloom filters

Empty Queries: only FPs

Non-Empty Queries: FPs and one I/O

performance & cost trade-offs

bigger filters → fewer false positives memory space vs. read cost

Empty Queries

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(log_2(N))$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree	$O(f \cdot log_T(N))$	$O(T/B \cdot log_T(N))$
Tiered LSM-tree	$O(f \cdot T \cdot log_T(N))$	$O(1/B \cdot log_T(N))$

Quick sanity check:

Empty Queries

suppose

 $N = 2^{32}$

and

 $B = 2^{10}$

and

T = 10 and m/n = 10

	Lookup cost	Insertion cost
Sorted array	2 ⁰ =1	2 ³¹ =2B
Log	2 ³² =4B	2 ⁻¹⁰ =0.001
B-tree	2 ² =4	2 ² =4
Basic LSM-tree	2 ⁵ =32	2 ⁻⁵ =0.031
Leveled LSM-tree	$f \cdot \log_{10}(2^{32}) = 0.079$	$10 \cdot 2^{-10} \cdot \log_{10}(2^{32}) = 0.09$
Tiered LSM-tree	$f \cdot 10 \cdot \log_{10}(2^{32}) = 0.79$	$2^{-10} \cdot \log_{10}(2^{32}) = 0.009$

Non-Empty Queries

	Lookup cost	Insertion cost
Sorted array	O(1)	O(N/2)
Log	O(N)	O(1/B)
B-tree	$O(log_B(N))$	$O(log_B(N))$
Basic LSM-tree	$O(log_2(N))$	$O(1/B \cdot \log_2(N))$
Leveled LSM-tree	$O(1 + f \cdot log_T(N))$	$O(T/B \cdot log_T(N))$
Tiered LSM-tree	$O(1 + f \cdot T \cdot \log_{T}(N))$	$O(1/B \cdot log_T(N))$

Quick sanity check:

Non-Empty Queries

suppose

 $N = 2^{32}$

and

 $B = 2^{10}$

and

T = 10 and m/n = 10

	Lookup cost	Insertion cost
Sorted array	2 ⁰ =1	2 ³¹ =2B
Log	2 ³² =4B	2 ⁻¹⁰ =0.001
B-tree	2 ² =4	2 ² =4
Basic LSM-tree	2 ⁵ =32	2 ⁻⁵ =0.031
Leveled LSM-tree	$1 + f \cdot \log_{10}(2^{32}) = 1.079$	$10 \cdot 2^{-10} \cdot \log_{10}(2^{32}) = 0.09$
Tiered LSM-tree	$1 + f \cdot 10 \cdot \log_{10}(2^{32}) = 1.79$	$2^{-10} \cdot \log_{10}(2^{32}) = 0.009$

Bloom Filters

Insertion cost

Conclusions

Write-optimized

Highly tunable

Backbone of many modern systems

Trade-off between lookup and insert cost (tiering/leveling, size ratio)

Trade main memory for lookup cost (fence pointers, Bloom filters)

Thank you!