Protein Structure

Bruno Álvarez Jan Izquierdo Jaume Jurado Marc Trujillo

PDB structures

We used psiblast to create a pssm of a protein of the family based on uniprot, and used the pssm to get a list of sequence structures from the pdb_seq database.

Subunit F1 alpha

_							
					2	соге	E
38	Sequences producing signif	icant alig	nments:		(E	its)	Value
	1vdz_A mol:protein lengt				8	37	0.0
	2qe7_F mol:protein lengt				7	77	0.0
	2qe7_E mol:protein lengt	h:462 ATP	synthase sub	unit beta	7	77	0.0
	2qe7_D mol:protein lengt	h:462 ATP	synthase sub	unit beta	7	77	0.0
	1kmh_B mol:protein lengt	h:498 ATPa	se beta subu	nit	7	60	0.0
	1fx0_B mol:protein lengt			A CHAIN	7	60	0.0
	1sky_E mol:protein lengt					'59	0.0
	2f43_B mol:protein lengt	h:479 ATP	synthase bet	a chain, mitoch	on 7	46	0.0
	1mab_B mol:protein lengt	h:479 PROT	EIN (F1-ATPA	SE BETA CHAIN)	7	46	0.0
	2v7q_F mol:protein lengt	h:482 ATP	SYNTHASE SUB	UNIT BETA	7	44	0.0
	2v7q_E mol:protein lengt				7	44	0.0
	2v7q_D mol:protein lengt	h:482 ATP	SYNTHASE SUB	UNIT BETA	7	44	0.0
	2jj2_M mol:protein lengt	h:482 ATP	SYNTHASE SUB	UNIT BETA	7	44	0.0
	2jj2_L mol:protein lengt	h:482 ATP	SYNTHASE SUB	UNIT BETA	7	44	0.0
	2jj2_K mol:protein lengt	h:482 ATP	SYNTHASE SUB	UNIT BETA	7	44	0.0
	2jj2 F mol:protein lengt			UNIT BETA		44	0.0
	2obm A mol:protein lengt				13	192	1e-55
	2obl A mol:protein lengt					192	1e-55
	2dpy_B mol:protein lengt					178	2e-49
	2dpy_A mol:protein lengt					178	2e-49
	3b2q_B mol:protein lengt					132	9e-33
	3b2q_A mol:protein lengt					132	9e-33
	2rkw_B mol:protein lengt					132	9e-33
	2rkw_A mol:protein lengt					132	9e-33
	2c61_B mol:protein lengt					131	1e-32
	2c61_A mol:protein lengt					131	1e-32
	1kmh_A mol:protein lengt					123	1e-29
	1fx0_A mol:protein lengt			HA CHAIN		123	1e-29
	1sky_B mol:protein lengt					120	1e-28
	2v7q_C mol:protein lengt					115	1e-26
	2v7q_B mol:protein lengt					115	1e-26
	2v7q_A mol:protein lengt					115	1e-26
	2ii2 J mol:protein lengt	h:510 ATP	SYNTHASE SUB	UNIT ALPHA HEAL	RT	115	1e-26

Subunit F1 beta

5 7 S	Sequences producing significant alignments:		Score (Bits)	E Valu
	2qe7 F mol:protein length:462 ATP synthase s	ubunit beta	833	0.0
	2ge7 E mol:protein length:462 ATP synthase s	ubunit beta	833	0.0
	2ge7 D mol:protein length:462 ATP synthase s	ubunit beta	833	0.0
	1sky E mol:protein length:473 F1-ATPASE		818	0.0
	2v7q F mol:protein length:482 ATP SYNTHASE S	UBUNIT BETA	795	0.0
	2v7q E mol:protein length:482 ATP SYNTHASE S	UBUNIT BETA	795	0.0
	2v7q D mol:protein length:482 ATP SYNTHASE S	UBUNIT BETA	795	0.0
	2jj2 M mol:protein length:482 ATP SYNTHASE S	UBUNIT BETA	795	0.0
	2jj2 L mol:protein length:482 ATP SYNTHASE S	UBUNIT BETA	795	0.0
	2jj2 K mol:protein length:482 ATP SYNTHASE S	UBUNIT BETA	795	0.0
	2jj2_F mol:protein length:482 ATP SYNTHASE S	UBUNIT BETA	795	0.6
	2jj2 E mol:protein length:482 ATP SYNTHASE S		795	0.6
	3b2g B mol:protein length:469 V-type ATP synt	hase beta chain	405	6e-1
	3b2q A mol:protein length:469 V-type ATP synt	hase beta chain	405	6e-1
	2rkw B mol:protein length:469 V-type ATP synt	hase beta chain	405	6e-1
	2rkw A mol:protein length:469 V-type ATP synt	hase beta chain	405	6e-1
	2c61 B mol:protein length:469 A-TYPE ATP SYNT		404	3e-1
	2c61 A mol:protein length:469 A-TYPE ATP SYNT	HASE NON-CATALYTIC	404	3e-1
	2dpy B mol:protein length:438 Flagellum-speci	fic ATP synthase	341	3e-1
	2dpy A mol:protein length:438 Flagellum-speci	fic ATP synthase	341	3e-1
	2obm_A mol:protein length:347 EscN		312	3e-1
	2obl_A mol:protein length:347 EscN		312	3e-10
	2qe7_C mol:protein length:502 ATP synthase su	bunit alpha	218	6e-6
	2qe7_B mol:protein length:502 ATP synthase su	bunit alpha	218	6e-6
	2qe7_A mol:protein length:502 ATP synthase su	bunit alpha	218	6e-6
	1sky_B mol:protein length:502 F1-ATPASE		212	1e-6
	2r9v_A mol:protein length:515 ATP synthase su	bunit alpha	212	2e-62
	1kmh A mol:protein length:507 ATPase alpha su	bunit	208	3e-6:

Structure superimposition

We superimpose the structures against the protein used as psiblast query and measure the RMSD

We used A3CS71 as a query and as the alignment base for F1 alpha subunit

We used AORL95 as a query and as the alignment base for F1 beta subunit

High variability region

Using Pymol and the superimposition alignment we identify that:

Subunit F1 alpha presents high variability at the beginning of the sequence

/1		11				31				51		61	66
MVA 1			.VVADGI 16	MKGAK	MYEVV	/RVGEL	.GLIGE	IIRLE	EGDKAV	IQVYI	EETAG	/RPGEF	VVGTG
0.11.5.2	NPTTSD 6												NL
MRI Z100	NPTTSD 106		LEKK- 116										NL
GSH Z100	KIRVGD	ALLGE	LIDGI 116	GRPME	SNIVE	PYLPE	ERSLY	'AEPPI	OPLL				
. 100	KIRVGD												
MAL	LPAV												RRY

Region conservation

We identify conserved regions in subunit F1 alpha using Pymol and the alignment, it can be seen that it presents 2 conserved regions, here is the first one

This is the first conserved region the blue region is from 1vdz_A and the yellow is from the other structures.

196	201	206 23	11 216	221	226 231	236
						GPFGSGK
1 136						
						FGGA
					166	171 FGGA
пкононы	Q L I		156 1			176
	R	(V-IDQPF	[LGVRAI]	GLLTCG	IGQRIGI-	FA
			156 1			176
						FA
1 146					176	
-TIABLUBE-	ÜK-1	H-IEHALI	TIGAKUTI	AHLE I AR	RGURMGL-	FA

Region conservation

Here we can see the alignment of the second conserved region of F1 alpha, the grey overlapping zone belongs to the non-matching aligned region of Ivdz_A depicted in the sequence alignment

This is the second conserved region the blue region belongs to 1vdz_A and the orange belongs to the other structures.

291 296 301 306 3			361 366 371
			A-YL-ASKLAEFYERAG
		266 271 27	
HEQNIAESKVALVYGQMNE-PPGARMRVGLT			FVQAGSEVSAL-LG-RMPSAVGYQP-TL-STEMGSLQERIT
. 226 231 236 241 246 25	51 256 261	266 271 27	6 281 286 291 296 301 306 311
	TALTMAEYFR	DVN-EQDVLLFIDNIFR	FVQAGSEVSAL-LG-RMPSAVGYQP-TL-STEMGSLQERIT
226 231 236 241 2			271 276 281 286 291 296 301 306
			YARAARDVGLA-S-GEPDVRGGFPPSVFSSLPKLLERAG
226 231 236 241 2	246 251 256	261 266	271 276 281 286 291 296 301 306 YARAARDVGLASGEPDVRGGFPPSV-F-SSLPKLLERAGPAF
DR-PALERMKAAFT	TATTIAEYFRDQ	GKNVLLMMDSVTR	YARAARDVGLASGEPDVRGGFPPSV-F-SSLPKLLERAGPAF
231 236 241 246 25	51 256 261	266 271 2	76 281 286 291 296 301 306 311
GRARSVVIAAPADV-SPLLRMQGAAY	YATRIAEDFRD	RGQHVLLIMDSLTR	YAMAQREIALA-IG-EPPATKGYPP-SV-FAKLPALVERAG

High variability region

Subunit F1 beta we can observe high variability at the beginning of the sequence

Superimposed structure (in red the most variable part)

Region conservation

Using Pymol and the alignment it can be seen that subunit F1 beta presents 2 conserved regions, here is the first one.

The first conserved region, 2jj2_E is represented in purple as the position of its conserved region differs slightly from the others, colored in yellow.

Region conservation

This is the second conserved region of F1 beta, the grey-colored regions at the end of the longer helix belong to non-matching aligned regions of structures 3b2q_B, 2rkw_B and 2c61_A

In this structure we can observe the blue region, that belongs to lsky_E and 2jj2_E, which have slightly different positions of conserved regions that the other structures, represented in orange.

Regions for protein function

Tight:

Synthesis

Gamma Alpha Beta

Lets ADP in and

prepares

The cycle perpetuates because of Gamma protein spinnings produced by proton gradient

We will analyze Alpha and Beta interactions with Gamma among other interactions

ATP binding and synthesis

- Open state
- Binds to GLU-195

- Loose state
- ARG-359: retains the ATP
 - ASP-362: retains ATP

ADP catalytic site (aDP)

- Mg: stabilizes protein during reaction
- LYS-165: stabilizes protein to catalyze reaction
- THR-166: stabilizes protein to catalyze reaction

Interaction: beta chain -ATP

LYS-175 binds through N GLY-174 and SER-177 and Mg stabilize the reaction and proteins

Interaction: alpha + beta

Glutamic acid of Alpha chain binds to Histidine with N and also interacts with the Beta chain

In this other case we observe a Leucine, Alanine and a Glutamine bond.

Interaction: alpha + beta

Serine + Isoleucine Bonding

Modeling the protein

Mutation: var_088542; position 207 (R>H)

We used blast to find a template, we will use 2jdi

Then we model our structure with modeller

We separate the chains into different fasta files to use only chain A to align it with our mutation, we obtain a good alignment quality.

```
Sequence format is Pearson
Sequence 1: P25705 553 aa
Sequence 2: TemplateA 487 aa
Start of Pairwise alignments
Aligning...

Sequences (1:2) Aligned. Score: 98
Guide tree file created: [mutation_template.dnd]

There are 1 groups
Start of Multiple Alignment
Aligning...

Group 1: Sequences: 2 Score:10394
Alignment Score 2849
```

Model Analysis: Models in pymol

After putting our models in pymol we quickly realize what is that part that we have that gave us a peak when puting the model in prosa

Model Analysis: Models in Pymol

To check for the differences between both models, we performed a superimposition to check if we can see the differences between the models

Superimposition: pink(mutation), green(template)

(Mutation)

Model Analysis: Hypothesis

This mutation changes arginine (R) to histidine (H), both positively charged. However, histidine's ring structure suggests potential issues with DNA binding to the alpha helix, potentially affecting protein folding.

$$H_2N$$
 H_2N
 H_2N
 H_3N
 H_2N
 H_3N
 H_3N

Energy profile: mutant model

Energy profile: wild

Energy profile wild model

Comparison of profiles

Mutant model

Wild model 1