Question Number	Answer		Mark
17(a)	• Use of Young modulus = gradient (of either initial linear region of graph)	(1)	
	(MP1 accept ratios of co-ordinates up to strains of $(E_{28})0.0015$ or (E_2) 0.0014)		
	• See 3.2 to 3.3×10^{10} (Pa) Or 4.2 to 4.4×10^{10} (Pa)	(1)	
	• Comparison of the two values obtained i.e. use of E_{28}/E_2 Or $(E_{28}-E_2)/E_2$	(1)	
	• $E_{28}/E_2 = 1.30$ to 1.40 Or $(E_{28}-E_2)/E_2 = 0.30$ to 0.40	(1)	4
	(MP4 is conditional on candidates using the linear sections for both graphs in MP1)		
	Example of calculation $E_{28} = \frac{140 \times 10^{6} \text{ Pa}}{0.0032} = 4.38 \times 10^{10} \text{ Pa}$ $E_{2} = \frac{104 \times 10^{6} \text{ Pa}}{0.0032} = 3.25 \times 10^{10} \text{ Pa}$		
	$E_{28}/E_2 = \frac{4.38 \times 10^{10} \text{ Pa}}{3.25 \times 10^{10} \text{ Pa}} = 1.35$		
17(b)	• Use of counting squares or approximation of the area to a series of shapes from the 28-day graph	(1)	
	$ \frac{0.35 \times 10^6 - \text{area under } 28 - \text{day graph}}{0.35 \times 10^6} $	(1)	
	• Percentage reduction = 12.0 % to 15.0 %	(1)	3
	Example of calculation $\Delta E_{28} = (\frac{1}{2} \times 80 \times 10^6 \text{ Pa} \times 0.0019) + [\frac{1}{2}(80 + 128) \text{ Pa} \times 10^6 \times (0.0038 - 0.0019)] + (64 \times 0.0001 \times 4 \times 10^6 \text{ Pa}) = 299 \ 200 \text{ J m}^{-3}$		
	Percentage reduction = $\frac{350\ 000\ \text{J m}^{-3} - 299\ 200\ \text{J m}^{-3}}{350\ 000\ \text{J m}^{-3}} \times 100 = 14.5\ \%$		

	Total for question 17		10
	it could cause problems	(1)	3
	Or a change in the properties of the concrete after you've used		
	Or there's little change in the toughness		
	Or the elastic region is greater		
	There is a smaller plastic region		
	(Do not accept a greater Young modulus)	(1)	
	• The concrete is less flexible Or the concrete is stiffer	(1)	
17(c)	The breaking stress/force is greater	(1)	