Physics-informed Neural Networks

Marcin Kuta

Types of PDEs

$$au_{xx} + bu_{xy} + cu_{yy} + du_x + eu_y + fu + g = 0$$
 (1)

- $b^2 ac > 0$: hyperbolic
- $b^2 ac = 0$: parabolic
- $b^2 ac < 0$: elliptic
- Wave equation $u_{tt} = u_{xx}$
- Heat equation $u_t = u_{xx}$
- Laplace equation $u_{xx} + u_{yy} = 0$

Conditions

Initial conditions

Dirichlet

$$u(x,0) = h_1(x) \tag{2}$$

Neumann

$$\frac{\partial u}{\partial t}(x,0) = h_2(x) \tag{3}$$

Boundary conditions

Dirichlet (essential boundary conditions)

$$u(0,t) = u(L,t) = 0$$
 (4)

Neumann (natural boundary conditions)

$$\frac{\partial u}{\partial x}(0,t) = \frac{\partial u}{\partial x}(L,t) = 0 \tag{5}$$

periodic boundary conditions

$$u(0,t) = u(L,t) \tag{6}$$

$$\frac{\partial u}{\partial t}(0,t) = \frac{\partial u}{\partial t}(L,t) \tag{7}$$

Robin

$$\frac{\partial u}{\partial x}(L,t) = -\kappa u(L,t) \tag{8}$$

- mixed
- general

Solving PDEs with neural networks

Advantages:

- fully implicit method
- mesh-free
- no time step
- no stability problems

Disadvantages:

- does not generalize beyond domain (no extrapolation)
- no guarantee of unique solutions
- may converge to different solutions from different network initial values

Partial differential equations

$$u_t + \mathcal{N}_x[u] = 0, \qquad x \in \Omega, t \in [0, T]$$

$$u(x, 0) = h(x), \qquad x \in \Omega$$

$$u(x, t) = g(x, t), \qquad x \in \partial\Omega, t \in [0, T]$$

$$(10)$$

$$(11)$$

$$NN(x,t) = Z_1 \circ a \circ Z_{l-1} \circ a \dots a \circ Z_2 \circ a \circ Z_1(x,t)$$
 (12)

Physics-informed neural network

Loss function

$$\mathcal{L} = \lambda_{\text{PDE}} \mathcal{L}_{\text{PDE}} + \lambda_{\text{BC}} \mathcal{L}_{\text{BC}} + \lambda_{\text{IC}} \mathcal{L}_{\text{IC}}$$

Residual loss

$$\mathcal{L}_{\mathsf{PDE}} = rac{1}{N_r} \sum_{i=1}^{N_r} |\hat{u}_t(\mathsf{x}_i, t_i) + \mathcal{N}_{\mathsf{x}} \left[\hat{u}(\mathsf{x}_i, t_i)
ight]|^2$$

Boundary conditions loss

$$\mathcal{L}_{BC} = \frac{1}{N_{BC}} \sum_{i=1}^{N_{BC}} |\hat{u}(x_i, t_i) - g(x_i, t_i)|^2$$

Initial conditions loss

$$\mathcal{L}_{IC} = \frac{1}{N_{IC}} \sum_{i=1}^{N_{IC}} |\hat{u}(x_i, 0) - h(x_i, 0)|^2$$

Physics-informed neural network

Source: [2]

Soft and hard constraints

Soft constraints

$$\hat{u}(x,t) = NN(x,t) \tag{13}$$

Hard constraints

$$\hat{u}(x,t) = f(NN(x,t)) \tag{14}$$

- $\hat{u}(x,t) = \tanh(x) \cdot NN(x,t)$
- $\hat{u}(x,t) = g_1(x) + tg_2(x) + t^2NN(x,t)$

Loss function

$$\mathcal{L} = w_f \mathcal{L}_f + w_b \mathcal{L}_b \tag{15}$$

$$\mathcal{L}_f = \frac{1}{N_f} \sum_{\mathbf{x} \in \Omega} ||f(\mathbf{x}, \frac{\partial \hat{u}}{\partial \mathbf{x}_1}, ..., \frac{\partial \hat{u}}{\partial \mathbf{x}_d}, \frac{\partial^2 \hat{u}}{\partial \mathbf{x}_1^2}, ...)||_2^2$$
 (16)

$$\mathcal{L}_b = \frac{1}{N_b} \sum_{\mathbf{x} \in \partial \Omega} ||\mathcal{B}(\hat{u}, \mathbf{x})||_2^2 \tag{17}$$

Heat equation

$$\frac{\partial u}{\partial t} = \alpha \frac{\partial^2 u}{\partial x^2}, \ x \in [0, 1], \ t \in [0, 1]$$
 (18)

 $\alpha = 0.3$

Boundary conditions:

$$u(0,t) = u(1,t) = 0 (19)$$

Initial conditions:

$$u(x,0) = \sin(\pi x) \tag{20}$$

Exact solution:

$$u(x,t) = \sin(\pi x)e^{-\pi^2 \alpha t}$$
(21)

$$NN(x,t) = \hat{u}(x,t) \approx u(x,t)$$
 (22)

Definition of the problem

- domain
- PDE
- condition equations
- training data
- the architecture of the NN
- optimizer and initializer

Domain

```
import numpy as np
import deepxde as dde
geom = dde.geometry.Interval(0,1)
timedomain = dde.geometry.TimeDomain(0,1)
geomtime = dde.geometry.GeometryXTime(geom, timedomain)
def pde(x, y):
    dy_t = dde.grad.jacobian(y, x, i=0, j=1)
    dy_x = dde.grad.hessian(y, x, i=0, j=0)
    return dy_t - 0.3*dy_xx
```

Conditions and training data

```
bc = dde.icbc.DirichletBC(geomtime, lambda x: 0, \
                     lambda _, on_boundary: on_boundary)
ic = dde.icbc.IC(geomtime,
    lambda x:, np.sin(np.pi * x[:, 0:1]),
    lambda _, on_initial: on_initial,
data = dde.data.TimePDE(
    geomtime,
    pde,
    [bc, ic],
    num_domain = 4000,
    num_boundary = 2000,
    num_initial = 1000,
    num_test = 1000,
```

Network

```
layer_size = [2] + [32]*3 + [1]
activation = "tanh"
initializer = "Glorot normal"
net = dde.nn.FNN(layer_size, activation, initializer)
```

Model

```
net = dde.nn.FNN(layer_size, activation, initializer)
model = dde.Model(data, net)
optimizer = "adam"
model.compile("adam", lr=0.001)
losshistory, train_state = model.train(iterations=10000)
```

Results

References

- [1] Maziar Raissi, Paris Perdikaris, George Em Karniadakis Physics Informed Deep Learning (Part I): Data-driven Solutions of Nonlinear Partial Differential Equations
- [2] Lu Lu, Xuhui Meng, Zhiping Mao, George Em Karniadakis DeepXDE: A Deep Learning Library for Solving Differential Equations
- [3] http://github.com/lululxvi/deepxde