Bayesian Ranking (1)

Figure 1: From idea to funding decision at the SNSF (prior to 2022)

Bayesian Ranking (2)

From idea to funding decision at the SNSF (prior to 2022):

ID	V1	V 2	V3	V4	V5	V6	V7	V8	V9	V10	V 11	Av
#1	С	AB	А	ВС	В	AB	AB	Α	AB	AB	В	4.55
#2	C	AB	Α	BC	COI	AB	AB	Α	AB	AB	В	4.6
#3	Α	Α								C	Α	4.73
#4	Α	AB								COI	Α	5.63
#5	С	С								С	BC	2.33

Bayesian Ranking (2)

From idea to funding decision at the SNSF (prior to 2022):

ID	V 1	V2	V3	V4	V5	V6	V7	V8	V9	V10	V 11	Av
#1	С	AB	А	ВС	В	AB	AB	Α	AB	AB	В	4.55
#2	C	AB	Α	BC	COI	AB	AB	Α	AB	AB	В	4.6
#3	Α	Α								C	Α	4.73
#4	Α	AB								COI	Α	5.63
#5	C	С								C	BC	2.33

We need a method that:

- ightarrow allows to split scientific evaluation and funding decision.
- \rightarrow defines the funding line and a lottery group in a consistent, transparent and reproducible way.

Bayesian Ranking (3)

- Let's assume that y_{ij} is the estimation of the quality of proposal i by voter j, $i \in \{1, ..., n\}$ and $j \in \{1, ..., m\}$.
- Bayesian Hierarchical Model (given some priors) for the panel votes:

$$y_{ij} \mid \theta_i, \lambda_{ij} \sim N(\bar{y} + \theta_i + \lambda_{ij}, \sigma^2)$$
 $\theta_i \sim N(0, \tau_{\theta}^2)$
 $\lambda_{ij} \sim N(\nu_j, \tau_{\lambda}^2).$

Model and extract the **distribution of the rank of the** θ_i to achieve the Bayesian Ranking.

Bayesian Ranking (4)

Figure 2: 28% accepted (100), 4% in lottery (12), 68% rejected (241)

Replication success in the presence of questionable research practices - a simulation study

F. Freuli, L. Held, R.Heyard, 2022 (osf.io/preprints/metaarxiv/s4b65)

Different levels of four types of QRP: cherry picking, questionable interim analysis, questionable inclusion of covariates, questionable subgroup analysis,

Replication success in the presence of questionable research practices - a simulation study

F. Freuli, L. Held, R.Heyard, 2022 (osf.io/preprints/metaarxiv/s4b65)

Different levels of four types of QRP: cherry picking, questionable interim analysis, questionable inclusion of covariates, questionable subgroup analysis,

