IIT KANPUR

CS345A - AlgorithmsII

Assignment 1

Anjani Kumar 11101

Sumedh Masulkar 11736

0.1 Non Dominated Points

0.1.1 $\Theta(n \log n)$ algorithm for non-dominated points in a plane.

Overview of algorithm Given set of points P in a plane. Divide Step:

- 1. If there is only one point in a plane, the point itself is non-dominated set of points. Hence, return P.
- 2. If there are two points, if any point has both x and y co-ordinates both greater than that of other point, then return that point, else return P.
- 3. Else find the x-median of the points and divide the plane into left half plane and right half plane using the median. And now call the function for both the half planes.

Conquer Step:

Goal: Given the non-dominated points of the two half planes, merge the solution of smaller parts to get the solution of the bigger plane.

Assuming we have two sets of points P_1 and P_2 , where P_1 is the set of non-dominated points of the left plane, and P_2 is the set of non-dominated points of the right plane respectively.

The x-coordinate of all the points in right plane are obviously greater than x-coordinate of all the points in the left plane. Thus, we only need to eliminate points from P_1 that are dominated by points in P_2 .

Since x-coordinate of points in P_2 is always greater, we only need to look for the y-coordinates.

Let y be the point in P_2 with maximum y-coordinate. Then the dominated points in P_1 are all the points whose y-coordinates are less than y-coordinate of y.

Thus the solution of the plane will be $\{P_1 - \{\text{points in } P_1 \text{ with y-coordinate } < y \}\} \cup P_2$.

Pseudo-Code.

```
NonDominatedPts(set of points P){
        //Returns set of non-dominated points from P.
if |P|==1 then
  return P;
else if |P| = 2 then
   let p_1 and p_2 be the two points in P;
   if x_1 > x_2 and y_1 > y_2 then
    | return \{p_1\}; //p_1=(x_1,y_1), and p_2=(x_2,y_2)
   else if x_1 < x_2 and y_1 < y_2 then
       return \{p_2\};
   else
    | return P;
else
   p^* \leftarrow x\text{-median}(P);
    (L,R) \leftarrow \text{split}(P, p^*);
   P_1 \leftarrow \text{NonDominatedPts(L)};
   P_2 \leftarrow \text{NonDominatedPts(R)};
   P_1 \leftarrow P_1 sorted along y-axis;
   y \leftarrow \max y-coordinate in points of P_2;
   P_1 \leftarrow P_1 - {all points in P_1 whose y-coordinate \leq y};
  return (P_1 \cup P_2);
Algorithm 1: O(nlogn) algorithm to find Non Dominated Points
```

0.1.2 $\Theta(n \log h)$ algorithm for non-dominated points in a plane.

Explanation

Pseudo-Code.

```
NonDominatedPts(set of points P){
        //Returns set of non-dominated points from P.
if |P|==1 then
  return P;
else if |P| = 2 then
   let p_1 and p_2 be the two points in P;
   if x_1 > x_2 and y_1 > y_2 then
    | return \{p_1\}; //p_1=(x_1,y_1), and p_2=(x_2,y_2)
   else if x_1 < x_2 and y_1 < y_2 then
       return \{p_2\};
   else
    | return P;
else
   p^* \leftarrow x\text{-median}(P);
    (L,R) \leftarrow \text{split}(P, p^*);
   P_1 \leftarrow \text{NonDominatedPts(L)};
   P_2 \leftarrow \text{NonDominatedPts(R)};
   P_1 \leftarrow P_1 sorted along y-axis;
   y \leftarrow \max y-coordinate in points of P_2;
   P_1 \leftarrow P_1 - {all points in P_1 whose y-coordinate \leq y};
  return (P_1 \cup P_2);
Algorithm 2: O(nlogh) algorithm to find Non Dominated Points
```