Formulaire SysElec

Kenzi Antonin

13 novembre 2022

2

3

La quantification

unipolaire : $q = \frac{Dyn}{2^n}[V]$

bipolaire : $q = \frac{2Dyn}{2^n}[V]$

 $Code = \frac{U_i n}{q} [-]$ division entière

 $Xq = Code \cdot q[V]$

L'erreur de quanti. est bornée entre -q/2 et +q/2

Echantillonage

Si pleine gamme dynamique avec sinus :

$$SNRQ = 6.02N + 10.8 + 20log(\frac{V_{rms}}{2U_{ref}})$$

 $\Delta SNRQ = SNRQ1 - SNRQ2 = 10log(N_{OSR})$

Tension efficace du bruit de quantification :

$$\sigma_{nQ} = \frac{Vref}{2^{n-1} \cdot \sqrt{12}}$$

Densité spectrale de puissance :

$$S(f) = k_Q^2 = \frac{\sigma_{nQ^2}}{FS} = \frac{q^2}{12FS} [V^2/Hz]$$

Rapport signal sur bruit de quantification :

$$S(f) = 10log(\frac{\sigma_x^2}{\sigma_{nQ}^2}) = 20$$

Si surechantillonage ajout d'un filtre et d'un OSR

Tension mode commun : $U_{MC} = \frac{(U_{in+}) + (U_{in-})}{2}$

Mode Commun et Différentiel :

1. Commun: par rapport à la GND

2. Différentiel: entre deux potentiels

Schéma bloc

Formule Importantes pour les exercices : 4

Étage d'entrée :

Faire un tableau,
$$V_{RL} = AD \cdot U_{gMc}$$

$$SNRQ = 6.02N + 10.8 + 20log(\frac{V_{rms}}{2U_{ref}})$$

$$V_{rms} = \frac{\hat{U}_{RL}}{\sqrt{2}}$$

$$Pente = \frac{\Delta dB}{log_{10}(\frac{f_e}{2 \cdot f_c})}$$

$$\frac{Cas |Vin1| |Vin1| |Vout1| |Vout2|}{1 |0| |0| |Vin1| |Vin2|}$$

$$\frac{2 |x| |0| |y1.1| |y1.2|}{2 |x| |0| |x| |v3.1| |y3.2|}$$

$$\frac{3 |0| |x| |y3.1| |y3.2|}{4 |x| |x| |y4.1| |y4.2|}$$

$$(Vin(+) - Vin(-)) = \frac{VCC - Vref}{G}$$

$V_{outD} = Vout1 - Vout2$

Quantification

Code	Uin Idéal	Uin réel	DNL	INL
0	U_{0i}	U_{0r} _	$\smile (U_{1r} - U_{0r}) - q$	$(U_{0i}-U_{0r})$
1	U_{1i}	U_{1r} =	<u>/</u>	$(U_{1i}-U_{1r})$
2	U_{2i}	U_{2r} =		$(U_{2i}-U_{2r})$
3	U_{3i}	U_{3r} -	$ \qquad \qquad$	$(U_{3i}-U_{3r})$