1. Model Registry – Technical Specification

Purpose

Central repository to register, version, and manage all AI/ML and SLM models used in **Quarlets**, including Molecular Transformers, GNNs, property predictors, and text-based SLMs for chemistry/NLP tasks.

It ensures **traceability**, **reproducibility**, **governance**, and **compliance** across the model lifecycle (development \rightarrow staging \rightarrow production \rightarrow deprecation).

Core Technologies

- Backend: FastAPI (Python 3.11)
- Metadata Store: PostgreSQL (recommended for relational, schema-based metadata with JSON support for flexible fields)
- Model Artifacts Storage: AWS S3 / MinIO
- Model Versioning: MLflow / Hugging Face Hub integration
- Authentication: OAuth2 + API key per model
- **Monitoring:** Prometheus + Grafana (model status, performance metrics)

***** Model Metadata Schema

Below is a detailed list of **metadata fields** you should store per model in the registry:

Category	Field	Descriptio n	Data Type	Example
Identity	model_i	Unique UUID for model	UUID	d34e5b71-3f1d-4d19-9f0f-1b5 b7e1a3eaf
	model_n ame	Descriptive model name	VARCHAR(1 50)	molecular-transformer-v1
	display _name	Friendly name shown in marketplac e	VARCHAR(2 00)	Molecular Transformer for Reaction Prediction
Versioning	version	Semantic version (major.min or.patch)	VARCHAR(2 0)	1.0.3
	parent_ model_i d	Optional – base model from which this was derived	UUID (nullable)	
	source_ repo	Source repository or model hub link	VARCHAR(2 55)	https://huggingface.co/quar lets/moltransformer
Model Type & Category	model_t ype	Core type (Transform er / GNN / SLM / Regression / Ensemble)	VARCHAR(5 0)	Transformer

	domain	Application area	VARCHAR(5 0)	Retrosynthesis
	tags	Comma-se parated keywords	TEXT	reaction, synthesis, transformer
Artifact Details	artifac t_path	S3/MinIO path for model weights	VARCHAR(2 55)	s3://quarlets-models/transf ormer/v1/model.pt
	model_f ormat	Serializatio n format	VARCHAR(5 0)	PyTorch, ONNX, TensorFlow
	input_s chema	Expected input format (JSON)	JSONB	<pre>{"type":"SMILES","shape":"s tring"}</pre>
	output_ schema	Output data structure	JSONB	<pre>{"type":"reaction_predictio n","format":"JSON"}</pre>
	depende ncies	Required libraries & versions	JSONB	{"rdkit":"2024.03","torch": "2.3.0"}
Training Details	dataset _name	Training dataset used	VARCHAR(1 50)	USPT0-50k
	dataset _versio n	Dataset version	VARCHAR(5 0)	v2.1
	trainin g_param eters	Hyperpara meters	JSONB	{"lr":0.0001,"batch_size":3 2}
	framewo rk	ML framework	VARCHAR(5 0)	PyTorch

	hardwar e_used	GPU/CPU details	VARCHAR(1 00)	A100-40GB
Performanc e Metrics	metrics	Evaluation results	JSONB	{"accuracy":0.92,"f1_score":0.89}
	benchma rk_data set	Dataset used for benchmark testing	VARCHAR(1 50)	ChEMBL-Bench
Lifecycle & Governance	status	Model lifecycle stage	ENUM(deve lopment, staging, production, deprecated)	production
	created _by	User who registered the model	VARCHAR(1 00)	ramesh.naidu@quarlets.ai
	created _at	Timestamp	TIMESTAMP	2025-10-07T12:34:00Z
	last_up dated_a t	Timestamp	TIMESTAMP	
	reviewe r	Reviewer/A pprover	VARCHAR(1 00)	qa-team@quarlets.ai
	approva l_notes	Comments from reviewer	TEXT	Validated for FDA submission use.
Security & Integrity	checksu m	SHA256 checksum of model file	CHAR(64)	7c222fb2927d828af22f592134e 8932480637c0d

	encrypt ion_sta tus	Boolean if encrypted	BOOLEAN	true
	signed_ by	Digital signature identity	VARCHAR(1 00)	quarlets-signing-service
	access_ policy_ id	Reference to policy in MCP Server	UUID	
Runtime Details	inferen ce_endp oint	URL for deployed model	VARCHAR(2 55)	https://api.quarlets.ai/inf erence/moltransformer-v1
	resourc e_requi rements	CPU/GPU/ memory requiremen ts	JSONB	{"gpu":1,"memory":"16GB"}
Audit & Logs	last_ac cessed	Timestamp of last usage	TIMESTAMP	
	access_ count	Total number of inference calls	INTEGER	4502
	usage_s tats	Aggregate usage metrics	JSONB	{"calls_last_7_days":502,"a vg_latency":0.34}
Env	Env_typ e	This model is used for Dev/staggi ng/producti on	text	

Database Design Choice

PostgreSQL is the best fit because:

- Strong ACID guarantees and schema enforcement for model metadata.
- JSONB columns allow flexible storage for evolving metadata like hyperparameters and metrics.
- Supports advanced indexing (GIN) for JSON fields and text search (for tags and model names).
- Integrates easily with MLflow and FastAPI.
- Can scale horizontally via read replicas or **Citus** extension.

Optional secondary systems:

- **Redis** for caching frequently requested metadata (latest models, popular tags).
- **Elasticsearch** for advanced search and filtering by tags, metrics, or domains.

APIs (unchanged + internally extended)

- POST /models/register → Register new model with metadata + upload file to S3.
- GET /models/{id} → Fetch model details, metadata, metrics.
- GET /models/latest?type=gnn → Fetch latest active version by type.
- POST /models/promote/{id} → Move model from staging → production (with policy link).
- GET /models/list → Paginated list by type, tags, or status.
- GET /models/search?q=transformer&domain=synthesis → Metadata-based search.
- GET /models/metrics/{id} → Retrieve current metrics snapshot.

Infra / Deployment

- Containerized via Docker, deployed on Kubernetes (EKS / AKS).
- Persistent Volume for PostgreSQL (AWS RDS preferred for managed setup).
- S3 bucket for model artifacts with IAM-based access.
- **GPU model serving** via Triton Inference Server integration.

Security

- Role-based Access Control (RBAC): Model Owner / Reviewer / Consumer
- AES-256 encryption for model weights
- SHA256 checksum validation on upload
- Audit trails for every update or promotion event
- Integration with MCP Server for fine-grained access policies