Clustering

Additional materials

Middlesex University Dubai; CST4050; Instructor: Ivan Reznikov

Unlabeled Data

Labeled Clusters

Types of clustering:

Centroid-based clustering

Main idea:

Minimize the squared distances of all points in the cluster to cluster centroids.

Most used method: k-Means

Centroid-based clustering

Step1a. Calculate distances

Step1b. Relocate centroids

Centroid-based clustering

Step2a. Calculate distances

StepNb. Relocate centroids

Density-based clustering

Main idea:

Clusters are defined based on identifying areas of higher density.

Most used method: DBSCAN

Density-based clustering

Model-based clustering

Main idea:

Clusters are defined based on how likely the objects included are likely to belong to the same distribution.

Most used method:

GMM – Gaussian Mixture Models

Types of clustering: Model-based

Main idea:

Clusters are developed based on distance between objects, as closer means more related.

Most used method:

AHC – Agglomerative hierarchical clustering

Advantages

	Centroid	Density	Model	Distance
performance and scaling				
can return probability of points				
belonging to cluster K				
overlapping clusters can be				
identified as several)		
can work with weird-shaped clusters				
can find clusters surrounded by				
other clusters				
can provide object ordering				
can return dendrogram				

Disadvantages

	Centroid	Density	Model	Distance
required K number of cluster			0	
sensitive to chosen inputs		0		
scaling problems with high dimensions				
strongly dependent on random				
varying sizes and densities problems				
exposed to noise and outliers			0	
fails if sparse data	i '	0		
requires a large amount of data				
needs to know the type of distribution				
can't regroup clusters if done wrong				