KNES 289W The Cybernetic Human

University of Maryland, Spring 2018
Tim Kiemel

Lecture 2, January 29

Human Movement I: Muscles & Skeleton

Note: Updated to reflect the material we had time to cover

Reminders & Notes

Before schedule adjustment period ends, contact us about any potential scheduling conflicts, including during finals week (May 12–18)

This week:

- First Discussion on Wednesday, January 31
- Lecture on Friday, February 2
- Quiz 1 becomes available at noon Saturday, February 3 (due Thursday, February 8)

Last Time

Intro to KNES 289W

- Cybernetics and kinesiology
- Interactions among systems → movement
- Four topics
 - Human movement
 - Prostheses and exoskeletons
 - Human-machine interactions
 - Superhero kinesiology
- Overview of syllabus

Interactions of Human Systems

Maximum Sprinting Speed

Stance and Swing Phases

Stance phase

- support body weight
- accelerate body forward in late stance

Swing phase

- swing leg forward
- extend knee
- arrest motion of the knee

Muscle-tendon unit: What it is

Introduction to Kinematics

Kinematics: the **description** of movement

Introduction to Kinematics

Introduction to Kinematics

Fast movements

⇒ fast changes in MTU lengths

Force-Velocity Relationship of Muscle

Does Sprinting Present a Paradox?

Fast movements \Rightarrow fast changes in MTU lengths Muscle quickly shortens \Rightarrow produces weak force

Muscle-tendon unit: What it does

Muscle-tendon unit: What it does

Muscle & tendon: input-output system:

History of neural command & length up to present time

Force at present time

Input-Output Systems

Muscle & tendon:

History of neural command & length up to present time

Force at present time

Bank account:

History of deposits & withdrawals up to present time

Account balance at present time

Muscle-tendon unit: What it does

Muscle approximation: static input-output system:

Activation, length and velocity at present time

Muscle force at present time

Muscle-tendon compliance

Muscle-tendon unit is *compliant*:

External force ⇒ change in length

Muscle-Tendon Compliance

Compliance:

- External force ⇒ change in length
- Good: "bend but don't break"

Muscle-Tendon Compliance

Compliance: External force ⇒ change in length

Compliant:

Not compliant:

Mimicking Muscle-Tendon Compliance

Optimal Feedback Control for Anthropomorphic Manipulators

D. Mitrovic, S. Nagashima, S. Klanke, T. Matsubara, S. Vijayakumar

Does Sprinting Present a Paradox?

Fast movements \Rightarrow fast changes in MTU lengths Muscle quickly shortens \Rightarrow produces weak force

Does Sprinting Present a Paradox?

Fast movements \Rightarrow fast changes in MTU lengths Muscle quickly shortens \Rightarrow produces weak force

So how do we run fast?

Factor 1:

- Force-velocity relationship describes muscle
- Does not describe the muscle-tendon unit

Factor 1: Tendon Length

Factor 1: Tendon Length

Relatively long

- Compared to muscle fibers
- Stretches as muscle force increases
- Reduces changes in muscle length

Factor 1: Tendon Length

Review

• What does muscle do from the cybernetic perspective as an input-output system?

What does it mean that muscle and tendons are compliant? What are the implications?

• How does changes in the length of the Achilles tendon affect sprinting speed?

Next Time:

Human Movement I: Muscles & Skeleton