데이터마이닝팀

4팀 오주원 이동기 김형석 이경미 최종혁

INDEX

1. 클러스터링

2. 추천 시스템

비지도학습

비지도학습

비지도학습은 **정답(Y) 없이 입력(X)의 내재적 특징을 찾아**내는 것이 목표 이중 **클러스터링(군집화)**은 대표적인 **비지도학습** 모델

클러스터링

클러스터링

비지도학습 모델의 종류 중 하나로 비슷한 특성을 갖는 데이터들끼리 같은 그룹으로 묶어가는 방식

클러스터링

클러스터링

비지도학습 모델의 종류 중 하나로 비슷한 특성을 갖는 데이터들끼리 같은 그룹으로 묶어가는 방식

군집화 시 데이터를 보다 **명확하게 이해**할 수 있고, 군집화 결과에 따라 **군집별로 적절한 전략**을 수립할 수도 있음

군집 타당성 지표 (Clustering Validity Measure)

군집화의 핵심 아이디어는 군집 내부의 분산은 최소화 시키고, 서로 다른 **군집 간의 분산은 최대화** 시키는 것

군집 타당성 지표 (Clustering Validity Measure)

External Measure

Internal Measure

Relative Measure

군집 타당성 지표의 종류는 위처럼 총 3가지가 존재함

군집 타당성 지표 (Clustering Validity Measure)

External Measure

Internal Measure

Relative Measure

External Measure

클러스터 개수 및 멤버가 정해져 있는 상황에서 평가하는 방식 새로운 알고리즘을 개발하거나 연구할 때 확인용으로 사용

군집 타당성 지표 (Clustering Validity Measure)

External Measure

Internal Measure

Relative Measure

Internal Measure

군집 내 분산(Intra-cluster variance)에 집중한 방식

군집 타당성 지표 (Clustering Validity Measure)

External Measure

Internal Measure

Relative Measure

Relative Measure

군집 내 분산과 **군집 간 분산 모두**에 집중한 방식 일반적으로 가장 많이 사용됨

Internal Measure

Elbow Method

적절한 클러스터 개수를 쉽게 확인할 수 있는 방식 WSS(Within Sum of Square)를 계산하여 군집의 타당성을 판단함

$$WSS = \sum_{i=1}^{K} \sum_{x_j \in C_i} ||X_j - C_i||^2$$

 $C_i:i$ 번째 클러스터의 중심

K: 클러스터 개수

j: i번째 클러스터의 데이터 포인트 수

군집 내 중심과 객체들 간의 거리를 제곱시켜 합한 값으로 **값이 작을수록** 군집화가 잘 됐다고 판단

Internal Measure

Elbow Method

적절한 클러스터 개수를 쉽게 확인할 수 있는 방식 WSS(Within Sum of Square)를 계산하여 군집의 타당성을 판단함

WSS값은 **클러스터 수와 반비례** 관계이므로, Elbow Method를 이용해 WSS 감소폭이 급격하게 줄어드는 지점을 찾아 **최적의 클러스터 수를 결정**

Internal Measure

Elbow Method

적절한 클러스터 개수를 쉽게 확인할 수 있는 방식 WSS(Within Sum of Square)를 계산하여 군집의 타당성을 판단함

WSS 길그러나 실제 데이터셋에서는 이므로,

식별할 수 있는 명확한 변곡점이 존재하지 않아

급감하는 지구잘 사용하지 않는 방법! 티 수를 결정

Relative Measure

Relative measure

군집 내 분산 및 군집 간 분산 모두 고려한 방식으로

Dunn Index와 Silhouette Index를 이용해 군집의 타당성을 판단

Dunn Index

Silhouette Index

Relative Measure

Dunn Index

클러스터 내 최대거리에 대한 클러스터 간 최소거리의 비율

값이 클수록 클러스터링이 잘 된 것으로 판단

$$I(C) = \frac{\min_{i \neq j} \{dc(C_i, C_j)\}}{\max_{1 \leq l \leq k} \{\Delta(C_l)\}}$$

 $C_n: n$ 번째 클러스터의 중심

 ΔC_n : n 번째 클러스터 내 거리

dc: 두 클러스터 중심 간의 거리

k: 클러스터 개수

Relative Measure

Dunn Index

클러스터 내 최대거리에 대한 클러스터 간 최소거리의 비율 **값이 클수록 클러스터링이 잘 된 것**으로 판단

이상치의 영향을 상쇄시키기 위해 min, max 대신 average를 사용하기도 함

 ΔC_n : n 번째 클러스터 내 거리

dc: 두 클러스터 중심 간의 거리

Relative Measure

Silhouette Index

각 데이터 포인트마다 군집 내외의 거리를 비교한 지표 이론적으로 -1과 1 사이 값을 가지며, 1에 가까울수록 클러스터링이 잘 된 것으로 판단

$$s(i) = \frac{b(i) - a(i)}{max\{a(i), b(i)\}}$$

a(i): 객체 i와 같은 군집 내 객체들 사이 평균 거리

b(i) : 객체 i와 다른 군집 객체들 사이 평균 거리의 최솟값

Relative Measure

Silhouette Index

각 데이터 포인트마다 **군집 내외의 거리**를 비교한 지표 이론적으로 -1과 1 사이 값을 가지며, **1에 가까울수록 클러스터링이 잘 된 것**으로 판단

모든 데이터 포인트마다 s(i) 값들을 계산한 뒤 평균을 구해 전체 Silhouette Score를 도출

Silhouette Index > 0.5: 잘 묶인 군집
Silhouette Index > 0.7: 정말 잘 묶인 군집
Silhouette Index < 0: 아예 다른 군집에 할당됨

Relative Measure

Silhouette Index

각 데이터 포인트마다 **군집 내외의 거리**를 비교한 지표 이론적으로 -1과 1 사이 값을 가지며, **1에 가까울수록 클러스터링이 잘 된 것**으로 판단

평균을 구해 최종 Silhouette Score를 도줄

그러나

단순히 전체 Silhouette Score가 높다고 해서

군집화가 잘 됐다고 판단할 수는 없음

Silhouette Index < 0: 아예 다른 군집에 할당됨

Relative Measure

Silhouette Index

각 데이터 포인트마다 **군집 내외의 거리**를 비교한 지표 이론적으로 -1과 1 사이 값을 가지며, **1에 가까울수록 클러스터링이 잘 된 것**으로 판단

특정 군집의 실루엣 계수가 높은 경우에도 전체 score가 높아질 수 있음

전체 실루엣 계수가 최댓값이 아니더라도 **개별 군집의 평균값의 편차가 크지 않은 경우**전체 군집화 성능이 좋다고 판단

왼쪽 예시의 경우 클러스터 수를 4로 결정!

클러스터링의 분류

비계층적 클러스터링 | K-means Clustering

K-means Clustering

데이터들의 <mark>평균 지점을 Centroid로</mark> 활용하는 클러스터링 방식 클러스터 수(K)를 미리 설정해줘야 하고, 평균 지점은 실제 좌표 값이 아닐 수 있음

$$C = arg \min_{C} \sum_{i=1}^{K} \sum_{x_j \in C_i} ||X_j - C_i||^2$$

 $C_i:i$ 번째 클러스터의 중심

C: 클러스터 중심 값들을 모아둔 벡터

K: 클러스터 개수

j: i번째 클러스터의 데이터 포인트 수

K-means Clustering 학습 과정

 1
 K 개의 Centroid를 랜덤하게 생성

 여기서 K = 2

K-means Clustering 학습 과정

② 관측치들(파란 점)을 가장 가까운 Centroid에 맞게 1차 군집(초록 박스)으로 할당함

K-means Clustering 학습 과정

③ 1차 군집의 관측치들을 기준으로 Centroid 업데이트

K-means Clustering 학습 과정

④ 관측치들을 수정된 Centroid에 맞게 2차 군집으로 할당

K-means Clustering 학습 과정

(5) 2차 군집의 관측치들을 기준으로 Centroid를 다시 업데이트 이러한 과정을 계속 반복 후 Centroid 및 군집에 변화가 없으면 학습을 종료

K-means Clustering 학습 과정

비계층적 클러스터링 | K-medoids Clustering

K-medoids Clustering

데이터들의 중앙값을 Centroid로 활용하는 클러스터링

K-means와는 달리 실제 포인트만을 Centroid로 활용

K-medoids Clustering 학습 과정

4

2, 3 단계를 반복하면서 더 이상 Centroid가 변하지 않거나 미리 정한 최대 반복 횟수에 도달하면 종료

거리 기반 클러스터링의 한계

거리 기반 클러스터링은

밀도의 차이나 특수한 형태를 반영하지 못하는 한계를 가짐

거리 기반 클러스터링의 한계

다음과 같은 데이터를 **군집**으로 묶는다면, 직관적으로 왼쪽 1개, 오른쪽 2개를 생각할 것임

거리 기반 클러스터링의 한계

밀도 기반 클러스터링은

데이터의 분포(뭉쳐있는 정도)를 고려하므로 직관에 부합하는 결과

거리 기반 클러스터링의 한계

밀도 기반의 대표적인 알고리즘인 DBSCAN에 대해 알아보자!

DBSCAN

DBSCAN

Density-Based Spatial Clustering of Application with Noise의 준말

서로 <mark>인접한 데이터들은 같은 클러스터</mark>일 것이라는 아이디어에서 착안 밀도가 높은 곳에 포함된 데이터에는 클러스터를 할당, 굉장히 낮다면 노이즈 취급

DBSCAN 용어 정리

ε-Neighborhood (of a point p)

$$N \in (p) = \{ q \in D \mid dist(p, q) \le \epsilon \}$$

P와의 거리가 ε보다 작은 점들

즉, p를 기준으로 반경 ε 내에 있는 모든 점들

DBSCAN 용어 정리

ε-Neighborhood (of a point p)

$$N \in (p) = \{ q \in D \mid dist(p, q) \le \epsilon \}$$

반경 내 점의 최소 개수인 **minPts**와 **점 p와의 거리**인 **엡실론(ε)**은 사용자가 지정

DBSCAN 용어 정리

Core Point

엡실론 반경 내에 minPts개 이상의 점이 존재하는 점

위 그림(a)의 경우 minPts가 6일 때 자기 자신 포함 6개 존재

DBSCAN 용어 정리

Border Point

엡실론 반경 내에 **minPts개 미만의 점이** 존재하는 점들 중, Core Point의 **엡실론 반경 내에 포함**되는 점

위 그림(b)의 경우 y는 minPts개 미만의 점을 가지지만, core point인 x의 반경 내에 존재

DBSCAN 용어 정리

Noise Point

Core도 아니고 Border도 아닌 점

위 그림(b)에서 z의 경우 minPts개 이하의 점을 가지고, 주변에 Core point도 없음

DBSCAN 용어 정리

Directly Density-reachable

밀도 관점에서 직접적으로 접근 가능 이를 위해서는 2가지 조건 모두 만족 필요

DBSCAN 용어 정리

Directly Density-reachable

Reachability

 $p \in N_{\epsilon}(q)$

p가 q의 ε-Neighborhood에 속해야 함

Core point condition

 $|N_{\epsilon}(q)| \ge minPts$

q의 ε-Neighborhood 개수는 minPts 이상이어야 함

두 가지 모두 만족할 때, **q가 Core point**이며 점 **p가 q로부터 <mark>직접적으로 밀도 접근</mark> 가능한 관계**에 있음

DBSCAN 용어 정리

Directly Density-reachable

Reachability

 $p \in N_{\epsilon}(q)$

p가 q의 ε-Neighborhood에 속해야 함

Core point condition

 $|N_{\epsilon}| \geq \gamma$ s

q의 ε-N' 개수는

하지만, DDR한 점들끼리만 한 군집으로 묶는 다면, 비교적 바깥쪽에 있는 점들을 놓치게 될 수 있음

(: 바깥 점은 core point condition을 만족하지 못 할 수도 있음)

DBSCAN 용어 정리

Directly-reachable

P가 q의 반경 밖에 있어도

그 사이의 점들을 D.D.R하게 연결 가능

= p가 q로부터 D.R함

점 p가 q로부터 **밀도 관점에서 접근 가능**

DBSCAN 용어 정리

Directly-connected

p가 o로부터 **D.R**하고 q도 o로부터 **D.R**함 =p가 q로부터 **D.C**함

점 p가 q로부터 **밀도 관점에서 연결되어 있음**

즉, <mark>같은 군집에 할당된 점들</mark>은 모두 Density-connected

DBSCAN 학습 과정

1. 임의의 데이터 포인트 선택

- 2. p로부터 Density-reachable한 포인트 탐색
 - i) p가 Core point면 클러스터에 할당
 - ii) p가 Border point면 다른 point 선택
 - 3. 모든 데이터 포인트가 탐색될 때까지 반복

DBSCAN

DBSCAN의 장점

1 특정한 모양의 클러스터를 찾아낼 수 있음

거리 기반 모델의 경우 유클리드 거리를 기반으로 해서 원형의 군집만 찾아내지만 DBSCAN은 제한 없음

② 군집에 **할당되지 않는 객체**도 허용함

다른 모델들은 모든 데이터를 군집에 할당하지만, DBSCAN은 이상치를 굳이 할당하지 않음

③ 클러스터링의 <mark>랜덤성</mark>이 작음

거리 기반 모델의 경우 초기값에 굉장히 민감

④ 클러스터 개수(K)를 지정하지 않아도 됨

DBSCAN의 한계점

적절한 엡실론과 minPts를 설정하는 것이 어려움 데이터셋 내에서 밀도가 제각각이라면 난이도는 더욱 올라감 이를 해결하기 위해 HDBSCAN 사용!

HDBSCAN(Hierarchical DBSCAN)

계층적 클러스터링

계층적 클러스터링 (Hierarchical Clustering)

계층이 존재하는 트리를 이용해서 개별 개체들을 **순차적으로** 묶어나가는 클러스터링 방식, 내포 관계 (nested cluster)가 생길 수 있음

계층적 클러스터링

계층적 클러스터링의 장점 ①

클러스터의 개수를 **사전에 정하지 않고** 학습이 가능함

계층적 클러스터링

계층적 클러스터링의 장점 ②

클러스터링 과정을 <mark>덴드로그램</mark>으로 시각화 가능

계층적 클러스터링

계층적 클러스터링은 **가장 가까운 객체나 집단을 순차적으로 병합**해나가는 방식 즉, <mark>거리</mark>가 계산되어 있어야 함

개체 간 거리 측정 방식 Affirnity

군집 간 거리 측정 방식 Linkage

계층적 클러스터링

Affinity (개체 간 거리 측정)

유클리드 (Euclidean) 거리

두 관측치 사이의 직선 최단 거리

계층적 클러스터링

Affinity (개체 간 거리 측정)

맨하탄 (Manhattan) 거리

두 점 사이를 직선으로 이동하지 않고, 각 좌표축의 방향으로만 이동할 경우 계산되는 거리

계층적 클러스터링

Affinity (개체 간 거리 측정)

마할라노비스 거리

주변 데이터의 맥락 (변수 간 공분산, 주변 데이터 분포 등)을 반영하여 계산되는 거리

계층적 클러스터링

Linkage (군집 간 거리 측정)

Single linkage (min)

서로 다른 군집의 **모든 데이터 간 거리 중 최소값**

계층적 클러스터링

Linkage (군집 간 거리 측정)

Complete linkage (max)

서로 다른 군집의 모든 데이터 간 거리 중 최대값

계층적 클러스터링

Linkage (군집 간 거리 측정)

Average linkage

서로 다른 군집의 **모든 데이터 간 거리들의 <mark>평균</mark>**

계층적 클러스터링

Linkage (군집 간 거리 측정)

Centroid linkage

서로 다른 군집의 중심점(Centroid) 간 거리

계층적 클러스터링

Linkage (군집 간 거리 측정)

• SSE before merge: $1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 + 1^2 = 8$

• SSE after merge: $4 \times 1.5^2 + 4 \times 3^2 = 45$

■ Ward distance: 45-8 = 37

Ward Method

병합했을 때 SSE가 적게 늘어날수록 더 유사한 군집

위 예시의 경우, 파란 군집과 주황 군집 간 거리는 45-8=37

계층적 클러스터링

Agglomerative Clustering의 과정

	Α	В	С	D
Α		20	7	2
В	20		10	25
С	7	10		3
D	2	25	3	

① 각 관측치 (또는 군집) 간의 거리를 모두 계산

주로 거리 행렬 (Distance Matrix) 사용

계층적 클러스터링

Agglomerative Clustering의 과정

	AD	В	С
AD			
В			
С			

② 계산된 거리가 가장 가까운 두 관측치(또는 군집)을 병합

계층적 클러스터링

Agglomerative Clustering의 과정

	AD	В	С
AD		20	3
В	20		10
С	3	10	

③ 병합 이후 Distance Matrix를 업데이트

이 경우는 single linkage 사용

계층적 클러스터링

Agglomerative Clustering의 과정

	AD	В
AD		20
В	20	

④ 클러스터가 1개만 남을 때까지(= 전체가 다 묶일 때까지) 위 과정 반복

계층적 클러스터링

Agglemerative Clustering의 고

4 클러스터가 1개만 남을 때까지(=전체가 다 묶일 때까지) 위 과정 반복

그 외 클러스터링

Centroid를 갱신할 때 데이터 분포를 활용하는 Mean Shifting Clustering 데이터의 확률 밀도가 더 높은 곳으로 중심을 이동

그 외 클러스터링

GMM (Gaussian Mixture Model)

데이터가 여러 다른 모양의 가우시안 분포로 결합되어 있다는 가정 하에 **개별 데이터를 동일한 분포로 묶어주는 GMM**

1 클러스터링

이 외에도 데이터를 더 낮은 차원으로 사영하여 (= 차원축소)

클러스터링을 진행하는 Spectral Clustering 등

다양한 클러스터링 방법이 존재

통일한 분포로 묶어주는 GMM(Gaussian Mixture Model)

2

추천 시스템

추천 시스템

추천 시스템

사용자에게 상품 혹은 서비스를 제안하는 소프트웨어 혹은 기술 ex) 다양한 콘텐츠 플랫폼에서 추천 시스템을 통한 개인 취향에 맞는 서비스 제공

현재 딥러닝, 강화학습과도 연계되며 개인화 추천시스템까지 계속해서 고도화되고 있음

추천 시스템

추천 시스템 알고리즘

Recommendation System

콘텐츠 기반 추천

Content-based Filtering

협업 필터링

Collaborative Filtering

Item-based

User-based Latent Factor-based

컨텐츠 기반 필터링 (Content-based Filtering)

컨텐츠 기반 필터링

사용자가 이전에 구매한 상품 중에서 좋아하는 상품들과 <mark>유사한 상품들을 추천</mark>하는 방법

<눈물의 여왕>을 재미있게 본 고객

같은 작가

메타데이터

장르, 작가, 배우, 줄거리 등 고객이 이미 소비한 <mark>컨텐츠를 설명</mark>하는 데이터

i

메타데이터를 활용해 고객이 소비한 상품의 특성을 분석하면,

유사한 특성을 지닌 상품을 추천 가능

컨텐츠 기반 필터링 (Content-based Filtering)

컨텐츠 기반 필터링 (Content-based Filtering)

Key Idea

- ① 아이템을 벡터 형태로 표현
- ② 벡터들 간의 <mark>유사도</mark>를 계산 = **추천의 근거!**

앞선 예시를 생각해 보면, 줄거리가 비슷한 드라마를 추천해주는 것이 가장 합리적

드라마의 줄거리와 같은 아이템을 어떻게 벡터로 나타낼 수 있을까?

컨텐츠 기반 필터링 | 벡터 표현

Bag of Words (BoW)

단어들의 순서를 고려하지 않고, **단어의 출현 빈도**에만 집중하는 텍스트 데이터의 수치화 표현 방법

- ① 각 단어에 고유한 정수 인덱스 부여
- ② 각 인덱스의 위치에 단어 토큰의 등장 횟수를 기록한 벡터 생성

Example

text data: "피셋의 학회장 김보근은 천사같고 피셋의 데마팀은 귀엽다."

vocabulary : {'피셋' : 0, '의' : 1, '학회장' : 2, '김보근' : 3, '은' : 4, '천사' : 5, '같고' : 6, '데마팀' : 7, '귀엽다' : 8} BoW vector : {2, 2, 1, 1, 2, 1, 1, 1}

컨텐츠 기반 필터링 | 벡터 표현

Example

Bag of Words (BoW)

단순 빈도 기반 방식의 단점

조사 '의'나 '은'처럼 크게 중요하지 않은 단어 (불용어)들이

자주 등장할 수밖에 없음

② 각 인덱스의 위치에 단어 토론의 등장 횟수를 기록한 벡터 생성

보 Xt data : "표정의 호불용어와 중요한 단어를 제대로 구분하기 위해 열등"

vacabulary : ('피셋' : 0, '의' : 1 이에 **가중치**를 주는 방법을 생각하게 됨 고' : 6, '데마팀' : 7, '귀엽다,' : 8}

컨텐츠 기반 필터링 | 벡터 표현

TF-IDF

다른 문서에서는 등장하지 않지만 **특정 문서에서만 자주 등장하는 단어**를 찾아 문서 내 단어의 가중치를 계산하는 방법

단어의 빈도수에 역 빈도수를 곱해주는 것

컨텐츠 기반 필터링 | 벡터 표현

TF-IDF

다른 문서에서는 등장하지 않지만 **특정 문서에서만 자주 등장하는 단어**를 찾아 문서 내 단어의 가중치를 계산하는 방법

단순히 모든 문서에서 많이 등장하는 단어에 페널티를 부여할 수 있고, 좀 더 정확하게 특정 문서를 대표하는 단어가 무엇인지 알 수 있음

컨텐츠 기반 필터링 | 벡터 표현

그러나, 이러한 TF-IDF 방법은 **아주 높은 차원**을 갖게 되고 **매우 sparse한 형태의 matrix**를 갖는 **한계**가 있음

예를 들면, 100개의 문서를 비교할 때 문서마다 새로운 단어가 1000개씩만 있어도 100*100,000 matrix가 생성됨

이를 보완하기 위해 Word2Vec과 같은 **추론 기반 임베딩**을 사용할 수 있음

자세한 내용은 자연어처리팀 2주차 클린업 참고!

컨텐츠 기반 필터링 | 유사도 함수

유클리디안 유사도

$$Fuclidean Similarity = \frac{1}{Euclidean \ distance + 1e - 5}$$

유클리드 거리에 역수를 취해준 값 거리가 가까울수록 유사한 것

컨텐츠 기반 필터링 | 유사도 함수

Example)

문서	내용			
0	0 먹고 싶은 사과			
1	먹고 싶은 바나나			
2	길고 노란 바나나 바나나			
3	저는 과일이 좋아요			

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서0	0	0	0	1	0	1	1	0	0
문서1	0	0	0	1	1	0	1	0	0
문서2	0	1	1	0	2	0	0	0	0
문서3	1	0	0	0	0	0	0	1	1

문서0과 문서1의 유클리디안 유사도 : $\frac{1}{\sqrt{1^2+1^2}+1e-5}$ = 0.707

컨텐츠 기반 필터링 | 유사도 함수

코사인 유사도

Cosine Similarity =
$$\frac{A \cdot B}{\|A\| \|B\|} = \frac{\sum_{i=1}^{n} A_i B_i}{\sqrt{\sum_{i=1}^{n} A_1^2} \sqrt{\sum_{i=1}^{n} B_i^2}}$$

코사인 유사도 : -1

코사인 유사도 : 0

코사인 유사도 : 1

두 벡터가 가리키는 **방향이 얼마나 유사한가**를 의미하는 값

컨텐츠 기반 필터링 | 유사도 함수

Example)

문서	내용			
0	먹고 싶은 사과			
1	먹고 싶은 바나나			
2	길고 노란 바나나 바나나			
3	저는 과일이 좋아요			

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서0	0	0	0	1	0	1	1	0	0
문서1	0	0	0	1	1	0	1	0	0
문서2	0	1	1	0	2	0	0	0	0
문서3	1	0	0	0	0	0	0	1	1

문서0과 문서1의 코사인 유사도 : $\frac{1+1}{\sqrt{1^2+1^2+1^2}+\sqrt{1^2+1^2+1^2}}$ = 0.6667

컨텐츠 기반 필터링 | 유사도함수

코사인 유사도의 장점

Example)

① 계산 과정에서

일이좋아요 sparse한 데이터에서

0*0) 조합이	사라짐		먹고	바나나		더 정획	한 유사5	좋아요
				1		1	1		
문서1				1	1		-1		
문서2	-1화 1	사이의	0=210		2	0 문	서의 길여	기가 다른	상황
무서3	· · · 로 정규호				0	(두 벡터	의 스케임	일 차이가	있는 상황

에서도 비교적 공정한 비교

문서0과 문서1의 코사인 유사도

$$\frac{1+1}{\sqrt{1^2+1^2+1^2}+\sqrt{1^2+1^2+1^2}} = 0.6667$$

컨텐츠 기반 필터링 | 유사도 함수

피어슨 유사도

$$Pearson \, Similarity = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

두 변수 간 선형 관계의 정도를 수량화하는 척도 얼마나 직선같은지를 나타냄

컨텐츠 기반 필터링 | 유사도 함수

피어슨 유사도

Pearson Similarity =
$$\frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

	과일이	길고	노란	먹고	바나나	사과	싶은	저는	좋아요
문서0	0	0	0	1	0	1	1	0	0
문서1	0	0	0	1	1	0	1	0	0
문서2	0	1	1	0	2	0	0	0	0
문서3	1	0_	0	0	0	0	00	1	1

문서0과 문서1의 피어슨 유사도를 계산해보면

$$\frac{1}{\sqrt{6\left(\frac{1}{3}\right)^2 + 3\left(\frac{2}{3}\right)^2} \cdot \sqrt{6\left(\frac{1}{3}\right)^2 + 3\left(\frac{2}{3}\right)^2}} = 0.5$$

컨텐츠 기반 필터링 | 유사도 함수

피어슨 유사도는 다음과 같은 코사인 유사도의 <mark>단점</mark>을 **보완**

유저 A가 모든 영화에 **평점 5점**을 주고, 유저 B는 모든 영화에 **평점 1점**을 준 상황 ({5,5,5,5,5}, {1,1,1,1,1})

두 유저의 취향은 완전 반대임에도 불구하고 코사인 유사도(=1)는 두 유저의 취향이 비슷하다고 <mark>잘못 판단</mark>을 내림

피어슨 유사도는 사용자의 평점값에서 평점의 평균값을 빼줌으로써 위의 문제를 어느 정도 <mark>해결</mark>

컨텐츠 기반 필터링 | 유사도 함수

자카드 유사도

$$Jaccard Similarity = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

합집합 대비 교집합의 비율로 두 집합 A와 B의 유사도를 계산하는 방법

컨텐츠 기반 필터링 | 유사도 함수

자카드 유사도

$$Jaccard Similarity = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}$$

자카드 유사도 역시 0*0 조합은 고려하지 않으므로 sparse한 데이터에서 사용하기 좋으며,

앞선 예시의 경우 $\frac{2}{3+3-2}$ = 0.5로 계산됨

컨텐츠 기반 필터링 (Content-based Filtering)

장점

- Cold-start

(서비스 초반 누적 데이터의 부족으로 제대로 된 추천이 어려운 문제)

- 현상에 크게 구애받지 않음

- 새로운 사용자에게는 추천이 불가능 추천시스템의 고질적인 문제
- 메타데이터로부터 주요 feature를 추출하기 어렵다는 한계 신규사용자 가입시 선호 아이템을

신규 사용자 가입 시 신호 아이템을 물어보는 방식을 사용해볼 수 있음

협업 필터링 (Collaborative Filtering)

협업 필터링

다른 사람의 구매 패턴이나 평점 등 사용자 행동양식(User Behavior)만을 기반으로 추천

사용자 기반 (User-based Collaborative Filtering)

아이템 기반 (Item-based Collaborative Filtering)

잠재 요인 기반 (Latent-factor Collaborative Filtering)

협업 필터링 (Collaborative Filtering)

협업 필터링

다른 사람의 구매 패턴이나 평점 등 사용자 행동양식(User Behavior)만을 기반으로 추천

	오펜하이머	아바타	듄: 파트2	서울의 봄	라라랜드
동기	5	4	4	3	1
형석	1	0	1	3	4
종혁	4	4	2	5	3
경미	4	2	3	2	2
주원	5	3	1	2	???

평점 행렬을 기반으로 추천을 수행

평점 행렬에 축적된 데이터를 기반으로, 아직 사용자가 평가하지 않은 아이템에 대한 평점을 예측

협업 필터링 | 사용자기반

사용자 기반 협업 필터링

사용자의 구매 패턴과 유사한 '사용자'를 찾아서 추천 리스트를 생성하는 방식

()	오펜하이머	아바타	듄: 파트2	서울의 봄	라라랜드
동기	5	4	4	3	1
형석	1	0	1	3	4
종혁	4	4	2	5	3
경미	4	2	3	2	2
주원	5	3	1	2	???

"당신과 비슷한 취향을 가진 고객들이 이 영화도 관람했습니다!"

협업 필터링 | 사용자 기반

	오펜하이머	아바타	듄: 파트2	서울의 봄	라라랜드	Pearson(i,주원)
동기	5	4	4	3	1	0.71713
형석	1	0	1	3	4	-0.27144
종혁	4	4	2	5	3	0.42656
경미	4	2	3	2	2	0.56061
주원	5	3	1	2	???	1.0

$$Pearson \, Similarity = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sqrt{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}}$$

협업 필터링 | 사용자 기반

	오펜하이머	아바타	듄: 파트2	서울의 봄	라라랜드	Pearson(i,주원)
동기	5	4	4	3	1	0.71713
형석	1	0	1	3	4	-0.27144
종혁	4	4	2	5	3	0.42656
경미	4	2	3	2	2	0.56061
주원	5	3	1	2	???	1.0

주원이와 가장 비슷한 Top-2 사용자는 동기와 경미임을 알 수 있음

동기와 경미가 높은 점수를 준 영화들을 주원이에게도 <mark>추천</mark>

협업 필터링 | 사용자기반

	Pearson(i,주원)
동기	0.71713
형석	-0.27144
종혁	0.42656
경미	0.56061
주원	1.0

주원이가 아직 관람하지 않은 <라라랜드>에 대한 평점도 **예측**해볼 수 있음

$$\frac{(0.717*1) + (-0.271*4) + (0.427*3) + (0.561*2)}{0.717 - 0.271 + 0.427 + 0.561} = 1.42$$

분석자의 주관에 따라 추천 여부 결정

Ex) 예측 평점이 3점이 넘었을 때만 추천을 해주자!

협업 필터링 | 아이템 기반

아이템 기반 협업 필터링

사용자들이 매긴 평점이 유사한 '상품'을 찾아서 추천 리스트를 생성하는 방식

	오펜하이머	아바타	듄: 파트2	서울의 봄	라라랜드
동기	5	4	4	3	1
형석	1	0	1	3	4
종혁	4	4	2	5	3
경미	4	2	3	2	2
주원	5	3	1	2	???

"그 영화를 관람한 고객들이 이 영화도 관람했습니다!"

협업 필터링 | 아이템 기반

	오펜하이머	아바타	듄: 파트2	서울의 봄	라라랜드
동기	5	4	4	3	1
형석	1	0	1	3	4
종혁	4	4	2	5	3
경미	4	2	3	2	2
주원	5	3	1	2	???
Pearson (오펜하이머,j)	1.0	0.9045	0.8944	0.0765	-0.8944

피어슨 유사도를 활용하여 <mark>유사도</mark> 계산

<오펜하이머>를 재밌게 본 사용자에게 <**아바타>**를 <mark>추천</mark>

협업 필터링ㅣ아이템 기빈

사용자 or 아이템 기반 협업 필터링의 한계

	오펜하이머	아버는	듄: 파트2	서울의 봄	라라랜드	
동기					1	
형석	1		1		4	
종혁	매우 직관적	적이고 합리적	으로 보이는	이 방법도	3	
경미	메모리나	시간 측면에	서는 매우 비	효율적임	2	
주원	5 사	용자와 아이턷	이 늘어날수	록 2	???	
Fearson (오 <u>텐</u> 하이머,j)	평점 행	렬의 크기는 기	기하급수적으	로 커짐 65	-0.8944	

피너는 유사도를 활용하여 유사도 계찬

<오펜하이머>를 재미있게 봤는데 <mark>잠재요인 협업 필터링으로 해결</mark> !다에게 <듄: 파트2>를 추천

협업 필터링 | 잠재 요인

잠재 요인 협업 필터링

평점 행렬을 **저차원의 행렬들로 분해**하는 방식 사용자와 아이템 간에 어떤 <mark>잠재 요소</mark>가 있다고 가정함

명확하게 정의 할 순 없지만, 사용자가 상황에 맞게 유추 가능함.

ex) 장르, 연기력, 스토리

협업 필터링 | 잠재요인

잠재 요인 협업 필터링

평점 행렬을 **저차원의 행렬들로 분해**하는 방식 사용자와 아이템 간에 어떤 <mark>잠재 요소</mark>가 있다고 가정함

사용자 - 아이템 행렬은 사용자 - 잠재요인 행렬과 잠재요인 - 아이템 행렬의 곱으로 표현

협업 필터링 | 잠재 요인

	킹스맨	노팅힐	다크 나이트	이터널 선샤인	미션 임파서블
동기	6	12	20	12	3
형석	12	10	6	8	10
종혁	14	7	9	4	13
경미	16	4	12	0	16

<사용자 : 영화 > 행렬

장르를 **잠재요인**으로 고려

(사용자 : 영화) = (사용자 : 장르) * (장르 : 영화) 로 분해

4X2 4X5 2X5

협업 필터링 | 잠재 요인

	Romance	Action
동기	3	0
형석	2	2
종혁	1	3
경미	0	4

	킹스맨	노팅힐	다크 나이트	이터널 선샤인	미션 임파서블
Romance	2	4	0	4	1
Action	4	1	3	0	4

특이값 분해를 통해 (사용자 : 장르), (장르 : 영화) 라는 2개의 행렬 생성

협업 필터링 | 잠재요인

특이값 분해를 통해 (사용자 : 장르), (장르 : 영화) 라는 2개의 행렬 생성

협업 필터링 | 잠재 요인

협업 필터링 | 잠재 요인 SVD 협업 필터링의 한계

1	Romance 현실	 Action 의 대부분의 ¹	 명점행 ⁱ	 렬은 대	- 부 분 의	 원소가	 · 비어있는	 - (결측치인)	<u>-</u>	
동기	동기 3 의소행렬 (Sparse Matrix)의 형태를 띰 I									
형석	2	2	27000	#7024 T		1000000	노팅힐	다크 나이트	이터널 선샤인	마션 임파서블
- - - 종혁	1	3 ^{사용자1}	아이템1 4.0	아이템2	아이템3	아이템4	아이템5		4	1
<u> </u>		사용자2	ó	5.0		3.0	1.0			4
경미		4 사용자3			3.0	4.0	4.0			
1		사용자4	5.0	2.0	1.0	2.0				
		따라서 SGI		등 결 <u>측</u> 는 최조				하도록		

평가 지표

1 Precision@K

추천한 아이템 K개 중에

실제 사용자가 관심있는 아이템의 비율

② Recall@K

사용자가 관심있는 모든 아이템 중에서 추천한 아이템 K개의 비율

평가 지표

3 MAP@K

Precision/Recall@K 와 달리 <mark>순서를 고려</mark>하여 관심을 더 가질만한 아이템을 상위에 추천했는지 여부를 반영한 지표

추천 시스템에서는 사용자가 **관심을 더 많이 가질만한 아이템을 상위에 추천**해주는 것이 중요함!

평가 지표

3 MAP@K

Recommendations	Precision@K's	AP@3		
[0, 0, 1]	[0, 0, 1/3]	(1/3)(1/3) = 0.11		
[0, 1, 1]	[0, 1/2, 2/3]	(1/3)(1/2 + 2/3) = 0.38		
[1, 1, 0]	[1/1, 2/2, 2/3]	(1/3)(1/1 + 2/2 + 2/3) = 0.89		
[1, 1, 1]	[1/1, 2/2, 3/3]	(1/3)(1/1 + 2/2 + 3/3) = 1		

4명의 사용자에게

3개씩 추천한 상황

$$MAP@3 = (0.11 + 0.38 + 0.89 + 1) * \frac{1}{4} = 0.595$$

MAP@K = AP@K의 평균

평가 지표

3 MAP@K

AP@K = Precision@K의 평균

Recommendations	Precision@K's	AP@3		
[0, 0, 1]	[0, 0, 1/3]	(1/3)(1/3) = 0.11		
[0, 1, 1]	[0, 1/2, 2/3]	(1/3)(1/2 + 2/3) = 0.38		
[1, 1, 0]	[1/1, 2/2, 2/3]	(1/3)(1/1 + 2/2 + 2/3) = 0.89		
[1, 1, 1]	[1/1, 2/2, 3/3]	(1/3)(1/1 + 2/2 + 3/3) = 1		

4명의 사용자에게

이때, 고객2와 고객3은 추천 일치 개수가 2개로 같음에도 높은 순위에 추천한 것을 맞혔을수록 점수가 더 높음을 확인!

평가 지표

4 NDCG@K

추천 순서에 가중치를 두어 평가하며, 추천 일치 여부 대신 <mark>관련성 (Relevance)</mark>을 활용

사용자가 특정 아이템과 얼마나 관련이 있는지를 나타내는 값 쉽게 말해 , **'중요도'**

이 값은 사용자가 직접 지정

평가 지표

4 NDCG@K

추천 순서에 가중치를 두어 평가하며, 추천 일치 여부 대신 <mark>관련성 (Relevance)</mark>을 활용

NDCG@K 값은 **CG**, **DCG**를 거쳐 차례대로 정의될 수 있음

CG

추천한 아이템의 Relavance 합계

 $CG_K = \sum_{i=1}^{K} rel_i$

DCG

CG에다 순서에 따른 할인을 도입

 $DCG_K = \sum_{i=1}^{K} \frac{rel_i}{\log_2(i+1)}$

NDCG

DCG를 IDCG로 정규화한 값

 $NDCG_K = \frac{DCG}{IDCG}$

최선의 추천을 했을 때 받는 DCG 값

[NDCG 계산 과정]

$$CG_3 = \sum_{i=1}^{K} rel_i = rel_1 + rel_2 + rel_3 = 3 + 2 + 1 = 6$$

$$DCG_3 = \sum_{i=1}^{K} \frac{rel_i}{log_2(i+1)} = \frac{3}{log_2(1+1)} + \frac{2}{log_2(2+1)} + \frac{1}{log_2(3+1)} = \frac{3}{1} + \frac{2}{1.58} + \frac{1}{2} = 4.78$$

$$IDCG_3 = \sum_{i=1}^{K} \frac{rel_i^{opt}}{log_2(i+1)} = \frac{3}{log_2(1+1)} + \frac{3}{log_2(2+1)} + \frac{2}{log_2(3+1)} = \frac{3}{1} + \frac{3}{1.58} + \frac{2}{2} = 5.89$$

$$NDCG_3 = \frac{DCG}{IDCG} = \frac{4.78}{5.89} = 0.81$$

⑤ MAE/RMSE

'평점 예측'에 대한 평가 방법 평균 절댓값 오차인 MAE와 오차 제곱의 평균의 제곱근인 RMSE를 사용

$$MAE = \frac{1}{|\hat{R}|} \sum_{\hat{r}_{ui} \in \hat{R}} |r_{ui} - \hat{r}_{ui}|$$

실제 비즈니스 관점에서는 참신성이나 클릭 증가율 등 다른 **다양한 지표들도 함께 고려된다**는 점 참고 !

화목한 르데마핌

THANK YOU

♡ 르데마핌 클린업 3주간 수고 많았습니다!!♡