Indian Statistical Institute

HW - 1: Analysis of Several Variables. Due date: 16/08/2022 Instructor: Jaydeb Sarkar

NOTE: (i) $B_r(a) = \{x \in \mathbb{R}^n : ||x - a|| < r\}$. (ii) $D_r(a) = B_r(a) \setminus \{a\}$. (iii) $S \subseteq \mathbb{R}^n$.

- (1) Prove that $|||x|| ||y||| \le ||x y|| \le ||x|| + ||y||$ for all $x, y \in \mathbb{R}^n$.
- (2) Compute the limit points of

(i)
$$B_r(a)$$
, (ii) $\{x \in \mathbb{R}^n : ||x|| = 1\}$, (iii) $\{(x,y) \in \mathbb{Q} \times \mathbb{Q} : x,y \in (0,1)\}$.

(3) Discuss the following limits:

(i)
$$\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$$
. (ii) $\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y)}{x^2+y}$. (iii) $\lim_{(x,y)\to(0,0)} \frac{x^2y^3}{x^4+y^6}$.

- (4) Let $g: \mathbb{R} \to \mathbb{R}$ be a continuous function. Define $f: \mathbb{R}^2 \to R$ by f(x,y) = g(xy). Is f continuous?
- (5) Which of the following functions on \mathbb{R}^2 can be defined continuously at (0,0)?

$$(i)f(x,y) = \begin{cases} \frac{x^2 - y^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

$$(ii)f(x,y) = \begin{cases} \frac{xy^2}{x^2 + y^6} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

- (6) Can the function $f(x,y) = \frac{xy}{|x|+|y|}$ be extended to a continuous function on \mathbb{R}^2 ?
- (7) Prove that $f: \mathbb{R}^2 \to \mathbb{R}$ is continuous, where

$$f(x,y) = \begin{cases} \frac{x^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{if } (x,y) = (0,0), \end{cases}$$

(8) Prove that $f: S \to \mathbb{R}^m$ is uniformly continuous if and only if $\Pi_i f$ (the *i*-th projection) is uniformly continuous for all $i = 1, \ldots, m$.