DIP HW7

翁正朗 PB22000246

5月26日

1

- 1. 请说明是否能用变长变码法压缩一幅已直方图均衡化的具有2ⁿ级灰度的图?
- 2. 这样的图像中包含像素间冗余吗?

解:

1. 不能显著压缩

理想情况下,直方图均衡化后每个灰度级的概率分布为均匀分布,即 $p_i=rac{1}{2^n}, i=\{0,1,\ldots,2^n-1\}$

此时,信息熵 $H=-\sum_i p_i \log p_i=n(\mathrm{bit})$ 。采用等长n比特编码和最优变长编码的平均编码长度都是n比特,采用变长编码无法压缩。

考虑到由于灰度级离散,实际直方图均衡化后灰度级PDF不完全为均匀分布,即 $p_i \approx \frac{1}{2^n}, i = \{0,1,\dots,2^n-1\}$

此时,信息熵 $H = -\sum_i p_i \log p_i \approx n(\mathrm{bit})$ 。采用变长编码无法显著压缩图像

2. 不包含典型的像素间冗余,原因包括:

- 1. 均衡化对冗余的消除:
 - 直方图均衡化通过灰度级重新分配,破坏了原始的空间相关性
 - 像素值趋向于统计独立 (理想情况下)

2. 灰度级特性:

- 2ⁿ级灰度保证了无量化冗余
- 均衡化后相邻像素的灰度值差异增大,降低了预测编码效率

3. 特殊情况说明:

- 若原图存在结构性纹理(如周期性图案),可能残留少量空间冗余
- 但严格意义上的直方图均衡化会最大限度消除这类冗余

若需进一步压缩此类图像, 应考虑:

1. 有损压缩:如JPEG的DCT变换

2. 空间域方法: 基于边缘/纹理特征的编码

3. 深度学习: Autoencoder等非线性变换方法

(注:实际应用中,因均衡化不完全理想,可能仍存在微量冗余,但理论分析通常按理想情况处理)

2

- 1. 对一个具有3个符号的信源,有多少唯一的Huffman码?
- 2. 构造这些码

解:

设信源有3个符号A, B, C,不妨设P(A) < P(B) < P(C)

显然首先将A, B作为左右子树合成新节点。

接下来分两种情况:

- 1. $P(A) + P(B) \ge P(C)$
 - 。则 C作为根节点左子树,合成节点作为右子树,如图1
 - *A*, *B*, *C*编码为10, 11, 0
- 2. $P(A) + P(B) \le P(C)$
 - 。则C作为根节点右子树,合成节点作为左子树,如图2
 - \circ A, B, C编码为00, 01, 1

已知符号a,e,i,o,u,?的出现概率分别是0.2, 0.3, 0.1, 0.2, 0.1, 0.1, 对0.23355进行解码,解码长度为6。

解:进行算术编码解码:

Symbol	Step 0 (初始)	Step 1 (e)	Step 2 (a)	Step 3 (i)	Step 4 (i)	Step 5 (?)	Step 6 (a)
?	1.0	0.5	0.26	0.2360	0.2336	0.2336	
u	0.9	0.47	0.254	0.2354	0.23354	0.233594	
0	0.8	0.44	0.248	0.2348	0.23348	0.233588	
i	0.6	0.38	0.236	0.2336	0.23336	0.233576	
е	0.5	0.32	0.230	0.2330	0.23330	0.233570	
a	0.2	0.26	0.212	0.2312	0.23312	0.233552	
	0.0	0.2	0.2	0.230	0.2330	0.23354	

其中每个符号右边的分割值为该符号对应区间的上限

解码结果为: eaii?a