ZHANG XIAOXUAN 10710452

Task1:

Use a weather forecast website, and utilize the psychrometric chart and the formula we went through in the class to determine the absoloute humidity, the wet-bulb temperature and the mass of water vapour in the air in ClassRoom A (Aula A) of Piacenza campus in the moment that you are solving this exercise (provide the inputs that you utilized) Umidità: Relative humidity, Pressione atmosferica: Air total pressure (1 hPa: 0.1 kPa), Temperatura effettiva: temperature to be utilized.

ANSWER:

			o <mark>oggi in F</mark> , 03 Dicen					
	13:00 14:00 16:00 18:00 20:00 21:00 22:00							
	LightCloud	LightCloud	PartlyCloud	LightCloud	Sun	Sun	Sun	
Temperatura effettiva	9°C	10°C	8°C	6°C	4°C	2°C	2°C	
Temperatura percepita	7°C	10°C	6°C	4°C	2°C	0°C	0°C	
Precipitazioni	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	0 mm	
Umidità	67 %	65 %	69 %	70 %	75 %	83 %	87 %	
Pressione atmosferica	1025 hPa	1025 hPa	1025 hPa	1026 hPa	1027 hPa	1027 hPa	1028 hPa	

The time is 18:23 now, we can see form the chart that:

Relative humidity: $\phi = 70\%$

Air total pressure: P = 1026hPa = 102.6kPa

Temperature: T = 6°C

We can see from above chart that:

(1) The absolute humidity
$$\omega = 0.004 \frac{\kappa g_{vapour}}{\kappa g_{dryAir}}$$

(2) The wet-bulb temperature $T_{wb} = 4 \,^{\circ}C$

(3)
$$\omega = 0.622 \frac{P_v}{P_a} = 0.622 \frac{P_v}{P - P_v} = 0.004 \frac{Kg_{vapour}}{kg_{dryAir}}$$
; $P = 102.6kPa$
So, $P_v = 0.66kPa$
 $m = \frac{PV}{R_{sp.}T}$; $R_{sp.} = \frac{R_{global}}{M_{gas}} \longrightarrow We$ can find it in Tables $R_v = 0.4615$
 $m_v = \frac{0.66 \times V_{Aula\ A}}{0.4615 \times (273 + 6)} = 0.005V_{Aula\ A} = 0.005 \times (15 \times 6 \times 6) = 2.7kg$

Task 2:

Utilize the same methodology we went through in the class and determine the sensible and latent load corresponding to internal gains, the ventilation, and the infiltration in a house with a *good* construction quality and with the same geometry as that of the example which is located in Brindisi, Italy.

ANSWER:

BRINDISI, Italy WMO#: 163200

	Lat	40.65N	Long:	17.95E	Elev:	10	StdP	101.2		Time Zone:	1.00 (EU	W)	Period	86-10	WBAN:	99999	
	Annual He	ating and H	fumidificat	tion Design C	onditions												1
	Coldest	Heatin	Humidification DP/MC								Coldest month WS/MCDB			MCWS/PCWD		1	
	Month				99.6%			99%		0.4%		1%		to 99.6% DB			
		99.6%	99%	DP	HR	MCDB	DP	HR	MCDB	WS	MCDB	WS	MCDB	MCWS	PCWD	J	
	(0)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)		
(1)	2	2.9	4.1	-5.1	2.5	7.2	-3.0	3.0	7.4	13.4	10.2	12.4	10.6	3.4	250		(1)
	Annual Co	oolina. Dehu	midificati	on, and Entha	alov Design	Condition	\$										
	Annual Cooling, Dehumidification, and Enthalpy Design Conditions													J			
	Hottest	Hottest		Cooling DB/MCWB							Evaporation	MCWS/PCWD			1		
	Month	Month		.4%		%	2			4%		%		!%	to 0.4		
	MOTILI	DB Range	DB	MCWB	DB	MCWB	DB	MCWB	WB	MCDB	WB	MCDB	WB	MCDB	MCWS	PCWD	i
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(P)	
(2)	8	7.1	32.8	23.6	31.1	24.3	29.9	24.3	27.2	29.7	26.3	29.0	25.6	28.3	4.2	180	(2)
	Dehumidification DP/MCDB and HR									Enthalpy/MCDB						Hours	l
		0.4% 1%					2%					1% 2%			8 to 4 &		
	DP	HR	MCDB	DP	HR	MCDB	DP	HR	MCDB	Enth	MCDB	Enth	MCDB	Enth	MCDB	12.8/20.6	i
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(i)	(j)	(k)	(1)	(m)	(n)	(0)	(p)	
(3)	26.3	21.8	29.2	25.4	20.7	28.5	24.7	19.7	27.9	86.0	30.1	82.2	29.1	78.5	28.3	1236	(3)
	Extreme Annual Design Conditions																
	Extreme Annual WS			Extreme				n-Year Return Period V									
	411 0 411 441			Max WB	Min	ean	Standard		n=5 Min	years Max	n=10 Min	years	n=20 Min	years	n=50 Min	years Max	
	1%	2.5%	5%			Max	Min	Max				Max		Max			i
	(a)	(b)	(c)	(d)	(0)	(1)	(g)	(h)	(1)	(1)	(k)	(1)	(m)	(n)	(0)	(p)	
(4)	11.3	9.9	8.7	31.4	0.4	37.3	1.4	3.0	-0.6	39.4	-1.4	41.1	-2.2	42.8	-3.2	44.9	(4)

$$\Delta T_{cooling} = 31.1 - 24 = 7.1 \,^{\circ}C$$

$$\Delta T_{\text{heating}} = 20 - 4.1 = 15.9 \,^{\circ}C$$

$$H_{building} = 2.5m$$

$$A_{roof} = 200m^2\,$$

$$A_{wall} = 144m^2\,$$

Two occupants

One bedroom

Internal gains:

$$\dot{Q}_{ig_{sensible}} = 136 + 2.2 \, \times A_{cf} + 22 \, N_{oc} = 136 + 2.2 \times 200 + 22 \times 2 = 620 \, W$$

$$\dot{Q}_{ig_{latent}} = 20 + 0.22 \times A_{cf} + 12 \, N_{oc} = 20 + 0.22 \times 200 + 12 \times 2 = 88 \, W$$

Infiltration:

Table 3 Unit Leakage Areas

Construction	Description	A_{ul} , cm ² /m ²
Tight	Construction supervised by air-sealing specialist	0.7
Good	Carefully sealed construction by knowledgeable builder	1.4
Average	Typical current production housing	2.8
Leaky	Typical pre-1970 houses	5.6
Very leaky	Old houses in original condition	10.4

$$A_{es} = A_{wall} + A_{roof}$$

= 200 + 144 = 344 m^2

$$A_L = A_{es} \times A_{ul}$$

= 344 × 1.4 = 481.6 cm²

<i>Н</i> , т			ting Do peratu		Cooling Design Tempe <mark>r</mark> ature, °C					
	-40	-30	-20	-10	0	10	30	35	40	
2.5	0.10	0.095	0.086	0.077	0.069	0.060	0.031	0.035	0.040	
3	0.11	0.10	0.093	0.083	0.072	0.061	0.032	0.038	0.043	
4	0.14	0.12	0.11	0.093	0.079	0.065	0.034	0.042	0.049	
5	0.16	0.14	0.12	0.10	0.086	0.069	0.036	0.046	0.055	
6	0.18	0.16	0.14	0.11	0.093	0.072	0.039	0.050	0.061	
7	0.20	0.17	0.15	0.12	0.10	0.075	0.041	0.051	0.068	
8	0.22	0.19	0.16	0.14	0.11	0.079	0.043	0.058	0.074	

$$IDF_{heating} = 0.065 \frac{L}{s. cm^{2}}$$

$$IDF_{cooling} = 0.032 \frac{L}{s. cm^{2}}$$

$$Q_{infiltration_{heating}} = A_{L} \times IDF_{heating}$$

$$= 481.6 \times 0.065$$

$$= 31.30 \frac{L}{s}$$

$$Q_{infiltration_{cooling}} = A_{L} \times IDF_{cooling}$$

$$= 481.6 \times 0.032$$

$$= 15.41 \frac{L}{s}$$

Ventilation:

$$Q_v = 0.05 A_{cf} + 3.5 (N_{br} + 1) = 0.05 \times 200 + 3.5 \times 2 = 17 \frac{L}{s}$$

$$Q_{inf-ventilation_{heating}} = Q_{infiltration_{heating}} + Q_v = 31.30 + 17 = 48.30 \frac{L}{s}$$

$$Q_{inf-ventilation_{cooling}} = Q_{infiltration_{cooling}} + Q_v = 15.41 + 17 = 32.41 \frac{L}{s}$$

$$C_{sensible} = 1.23$$
, $C_{latent} = 3010$

$$\dot{Q}_{inf-ventilation_{cooling}_{sensible}} = C_{sensible} Q_{inf-ventilation_{cooling}} \Delta T_{Cooling}$$
$$= 1.23 \times 32.41 \times 7.1 = 283.04W$$

$$\dot{Q}_{inf-ventilation_{heatingg_{sensible}}} = C_{sensible} Q_{infiltration_{heating}} \Delta T_{heating}$$
$$= 1.23 \times 48.30 \times 15.9 = 944.60 W$$

$$\Delta \omega = \omega_{out} - \omega_{in} = 0.0132 - 0.0093 = 0.0039 \frac{kg_{water}}{kg_{DryAir}}$$

$$\dot{Q}_{inf-ventilation_{cooling}latent} = C_{latent} Q_{inf-ventilation_{cooling}} \Delta \omega_{Cooling}$$

$$= 3010 \times 32.41 \times 0.0039 = 380.46 W$$