CSI2110 Data Structures and Algorithms

Algorithms

An algorithm is a step-by-step procedure for solving a problem in a finite amount of time.

Analyze an algorithm = determine its efficiency

Analyze an algorithm

Analyze an algorithm = determine its efficiency

Efficiency ?

- Execution time ...
- Memory ...
- Quality of the result
- Simplicity

Running Time

The running time depends on the input size

It also depends on the input data:
Different inputs can have different

running times

Running time

Analysis of Algorithms

- Running Time
- Upper Bounds
- · Lower Bounds
- Examples
- Mathematical facts

Average Case vs. Worst Case Running Time of an algorithm

- · Finding the average case can be very difficult
- Knowing the worst-case time complexity can be important. We focus on the worst case running time.
 - Easier to analyze
 - Crucial to applications such as games and robotics

Measuring the Running Time

- How should we measure the running time of an algorithm?
- · Approach 1: Experimental Study
 - Write a program which implement the algorithm
 - Run the program with all possible input sets of data of various size and contents
 - Use a method (system.currentTimeMillis()) to measure exact running time

Measuring the Running Time

Approach 1: Experimental Study

· The measurement of the experiment can

be like this...

Beyond Experimental Studies

- Experimental studies have several limitations:
 - need to implement
 - limited set of inputs
 - hardware and software environments.

Theoretical Analysis

- · We need a general methodology which:
 - is independent of implementation.
 - · Uses a high-level description of the algorithm
 - takes into account all possible inputs.
 - · Characterizes running time as a function of the input size.
 - is independent of the hardware and software environment.

Analysis of Algorithms

 Primitive Operations: Low-level computations independent from the programming language can be identified in pseudocode.

Examples:

- calling a method and returning from a method
- arithmetic operations (e.g. addition)
- comparing two numbers, etc.
- By inspecting the pseudo-code, we can count the number of primitive operations executed by an algorithm.

Pseudo-code

- Mixture of natural language and high-level programming concept
 - to tell the general idea behind the data structure or algorithm implementation
- The pseudo-code is an description of algorithm which is
 - more structured than ordinary prose, but
 - less definite than programming languages

Pseudo-code

- Expressions: use standard mathematical symbols to describe Boolean and numerical expressions
 - use ← for allocations ("=" en Java)
 - use = for equal relation ("==" en Java)
- Method declaration
 - Algorithm nom(param1, param2)

Pseudo-code

- Programming element:
 - decision: if.. Then.. [else..]
 - Loop while: while...do
 - Loop repeat: repeat ... until..
 - Loop for: for.. Do
 - Vector index: A[i]
- · methods:
 - call: object method (args)
 - return: return value

Example:

Find the maximum element of a vector (array) Algorithm array Max(A, n):

input: A vector A containing n entries output: the maxim element of A

```
currentMax \leftarrow A[0]
for i \leftarrow 1 to n-1 do
if currentMax \leftarrow A[i] then
currentMax \leftarrow A[i]
return currentMax
```


currentMax \leftarrow A[0] for i \leftarrow 1 to n -1 do if currentMax \leftarrow A[i] then currentMax \leftarrow A[i]

currentMax
$$\leftarrow$$
 A[0]
for i \leftarrow 1 to n -1 do
if currentMax \leftarrow A[i] then
currentMax \leftarrow A[i]

$$\begin{array}{c} \text{currentMax} \leftarrow A[0] \\ \textbf{for } i \leftarrow 1 \textbf{ to } n - 1 \textbf{ do} \\ \textbf{if } \text{currentMax} \leftarrow A[i] \textbf{ then} \\ \text{currentMax} \leftarrow A[i] \end{array}$$

What are the primitive operations to count


```
currentMax \leftarrow A[0]

for i \leftarrow 1 to n -1 do

if currentMax \leftarrow A[i] then

currentMax \leftarrow A[i]
```

5	7	8	10	11	12	14	16	17	20

In the best case?

15	1	12	3	9	7	6	4	2	11
----	---	----	---	---	---	---	---	---	----

Summarizing:

Worst Case: n-1 comparisons n assignments Best Case: n-1 comparisons 1 assignment

Another Example

Looking for the rank of an element in A (size of A is size A)

Upper Bound

The "Big-Oh" Notation:

- given functions f(n) and g(n), we say that

$$f(n)$$
 is $O(g(n))$

if and only if there are positive constants c and n_0 such that

2**n**

prove that $f(n) \le c g(n)$ for some $n \ge n_0$

An Example

$$f(n) = 60n^2 + 5n + 1$$

$$g(n) = n^2$$

prove that $f(n) \le c n^2$

$$60n^2 + 5n^2 + n^2$$

for
$$n \ge 1$$

$$c = 66$$
 $n_0 = 1$

$$f(n) \leq c n^2 \quad \forall n \geq n_0$$

On the other hand...

 n^2 is not O(n) because there is no c and n_0 such that: $n^2 \le cn$ for $n \ge n_0$

(no matter how large a c is chosen there is an n big enough that $n^2 > c n$)

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) ... remember !!$$

© The McGraw-Hill Companies, Inc. all rights reserved.

$$O(1) < O(\log n) < O(n) < O(n \log n) < O(n^2) < O(n^3) < O(2^n) ... remember !!$$

n =	2	16	256	1024
log log n	0	2	3	3.32
log n	1	4	8	10
n	2	16	256	1024
n log n	2	64	448	10 200
n^2	4	256	65 500	$1.05 * 10^6$
n^3	8	4 100	16 800 800	$1.07 * 10^9$
2 ⁿ	4	35 500	$11.7*10^6$	$1.80*10^{308}$

Asymptotic Notation (cont.)

- Note: Even though it is correct to say
- "7n 3 is $O(n^3)$ ",
- a better statement is
- "7n 3 is O(n)", that is,
- · one should make the approximation as tight as possible

Theorem:

If
$$g(n)$$
 is $O(f(n))$, then for any constant $c > 0$

$$g(n)$$
 is also $O(c f(n))$

Theorem:

$$O(f(n) + g(n)) = O(\max(f(n), g(n)))$$

Ex 1:

$$2n^3 + 3n^2 = O(max(2n^3, 3n^2))$$

= $O(2n^3) = O(n^3)$

Ex 2:

$$n^2 + 3 \log n - 7 = O(\max(n^2, 3 \log n - 7))$$

= $O(n^2)$

Simple Big Oh Rule:

Drop lower order terms and constant factors

$$7n-3$$
 is $O(n)$

$$8n^2\log n + 5n^2 + n$$
 is $O(n^2\log n)$

$$12n^3 + 5000n^2 + 2n^4$$
 is $O(n^4)$

Other Big Oh Rules:

- ·Use the smallest possible class of functions
 - -Say "2n is O(n)" instead of "2n is $O(n^2)$ "

·Use the simplest expression of the class

-Say "3
$$n$$
 + 5 is $O(n)$ " instead of "3 n + 5 is $O(3n)$ "

Asymptotic Notation (terminology)

Special classes of algorithms:

constant: O(1)

logarithmic: O(log n)

linear: O(n)

quadratic: $O(n^2)$

cubic: $O(n^3)$

polynomial: $O(n^k)$, $k \ge 1$

exponential: $O(a^n)$, n > 1

Asymptotic Analysis and execution time

- Use the Big-O notation
 - to indicate the number of primitive operations executed according to the entry size
- For example, we say that algorithm arrayMax has an execution time O(n)
- While comparing the asymptotic execution times
 - O(log n) is better than O(n)
 - O(n) is better than $O(n^2)$
 - $\log n << n^{-2} << n << n \log n << n^2 << n^3 << 2^n$

Asymptotic Analysis and execution time

- Use the Big-O notation
 - to indicate the number of primitive operations executed according to the entry size
- For example, we say that algorithm arrayMax has an execution time O(n)
- While comparing the asymptotic execution times
 - O(log n) is better than O(n)
 - O(n) is better than $O(n^2)$
 - $\log n << n << n \log n << n^2 << n^3 << 2^n$

Example of Asymptotic Analysis

An algorithm for computing prefix averages

The *i*-th prefix average of an array X is average of the first (i + 1) elements of X

$$A[i] = X[0] + X[1] + ... + X[i]$$

Example of Asymptotic Analysis

Algorithm prefixAverages1(X, n)

```
Input array X of n integers

Output array A of prefix averages of X #operations
```

```
A \leftarrow new array of n integers

for i \leftarrow 0 to n-1 do

s \leftarrow X[0]

for j \leftarrow 1 to i do

s \leftarrow s + X[j]

A[i] \leftarrow s / (i+1)

n

return A
```

- The running time of prefixAverages1 is
 O(1 + 2 + ...+ n)
- The sum of the first n integers is n(n+1)/2
 - There is a simple visual proof of this fact
- Thus, algorithm prefixAverages1 runs in $O(n^2)$ time

Another Example

A better algorithm for computing prefix averages:

Algorithm prefixAverages2(X):

Input: An *n*-element array X of numbers.

Output: An n -element array A of numbers such that A[i] is the average of elements X[0], ..., X[i].

```
Let X be an array of n numbers. # operations s \leftarrow 0 1

for i \leftarrow 0 to n do n s \leftarrow s + X[i] n A[i] \leftarrow s/(i+1) n to n 1

return array A 1
```

Lower Bound

... is big omega ... $f(n) \text{ is } \Omega(g(n))$ if there exist c > 0 and $n_0 > 0$ such that $f(n) \ge c \cdot g(n) \quad \text{for all } n \ge n_0$

(thus, f(n) is $\Omega(g(n))$ iff g(n) is O(f(n)))

Tight Bound

... is big theta ...
$$g(n) \text{ is } \Theta(f(n))$$

$$<==>$$

$$\text{if } g(n) \in O(f(n))$$

$$AND$$

$$f(n) \in O(g(n))$$

is an element of (set membership)

An Example

We have seen that

$$f(n) = 60n^2 + 5n + 1$$
 is $O(n^2)$

but
$$60n^2+5n+1\geq 60n^2$$
 for $n\geq 1$ So: with $c=60$ and $n_0=1$
$$f(n)\geq c \bullet n^2 \quad \text{for all } n\geq 1 \quad f(n) \text{ is } \Omega \text{ } (n^2)$$

Therefore:

Intuition for Asymptotic Notation

Big-Oh

- f(n) is O(g(n)) if f(n) is asymptotically less than or equal to g(n)

big-Omega

- f(n) is $\Omega(g(n))$ if f(n) is asymptotically greater than or equal to g(n)

big-Theta

- f(n) is $\Theta(g(n))$ if f(n) is asymptotically equal to g(n)

Math You Need to Review

Logarithms and Exponents

properties of logarithms:

$$log_b(xy) = log_bx + log_by$$

$$log_b(x/y) = log_bx - log_by$$

$$log_bx^a = alog_bx$$

$$log_ba = log_xa/log_xb$$

properties of exponentials:

$$a^{(b+c)} = a^b a^c$$

$$a^{bc} = (a^b)^c$$

$$a^b / a^c = a^{(b-c)}$$

$$b = a^{\log_a b}$$

$$b^c = a^{c*\log_a b}$$

More Math to Review

- Floor: $\lfloor x \rfloor =$ the largest integer $\leq x$ $\lfloor 2.3 \rfloor = 2$
- Ceiling: $\lceil x \rceil$ = the smallest integer $\geq x$ $\lceil 2.3 \rceil$ = 3
- Summations:
 - General definition:

$$\sum_{i=s}^{t} f(i) = f(s) + f(s+1) + f(s+2) + ... + f(t)$$

- where f is a function, s is the starting index, and t is the ending index

More Math to Review

Arithmetic Progression: f(i) = i a

$$S = \sum_{i=0}^{n} id = 0 + d + 2d + ... + nd$$

$$= nd+(n-1)d+(n-2)d + ... + 0$$

$$2S = nd + nd + nd + ... + nd$$

$$= (n+1) nd$$

$$S = d/2 n(n+1)$$
Analysis of Algorithms
$$For d=1, S = 1/2 n(n+1)$$

More Math to Review

- Geometric Sum: f(i) = aⁱ
- The geometric progressions have an exponential growth

$$S = \sum_{i=0}^{n} r^{i} = 1 + r + r^{2} + ... + r^{n}$$

$$rS = r + r^{2} + ... + r^{n} + r^{n+1}$$

$$rS - S = (r-1)S = r^{n+1} - 1$$

$$S = (r^{n+1}-1)/(r-1)$$
If $r=2$, $S = (2^{n+1}-1)$

"Dear Andy: How have you been?
Your mother and I are fine. We miss you.
Please sign off your computer and come
downstairs for something to eat. Love, Dad."