Definition	Definition
Increasing Sequence of Sets	Decreasing Sequence of Sets
Advanced Probability	Advanced Probability
Theorem	DEFINITION
De Morgan Laws	Fields and σ -Fields
Advanced Probability	Advanced Probability
DEFINITION	Definition
Simple Function	Canonical Representation of Simple Function
Advanced Probability	Advanced Probability
LEMMA	DEFINITION
Monotone Approximation	Splitting Measurable Functions
Advanced Probability	Advanced Probability
DEFINITION	Proposition
Integral of Simple Functions	Integral for two functions $f \leq g$
Advanced Probability	Advanced Probability

Let $A_1, A_2,$ be subsets of Ω . If $A_1 \supset A_2 \supset$ and $\bigcap_{n=1}^{\infty} = A, A_n$ is said to form a decreasing sequence of sets with limit A.	Let A_1, A_2, \ldots be subsets of Ω . If $A_1 \subset A_2 \subset \ldots$ and $\bigcup_{n=1}^{\infty} = A, A_n$ is said to form an increasing sequence of sets with limit A.
Let Ω be a set. A collection $\mathcal F$ of subsets of Ω is called a field if it is closed under complementation and finite union: • $\Omega \in \mathcal F$ • for each $A \in \mathcal F$, $A^C \in \mathcal F$, • for all $A_1, A_2 \in \mathcal F$, $A_1 \cup A_2 \in \mathcal F$ From this, it follows that $\mathcal F$ is closed under finite intersection: $\bigcap_{i=1}^n A_i = \left(\bigcup_{i=1}^n A_i^c\right)^c \in \mathcal F$ A field is called a σ -field if it also satisfies the condition that for every sequence $\{A_k\}_{k=1}^\infty \in \mathcal F$, we have that $\bigcup_{k=1}^\infty A_k \in \mathcal F$	Let A_1, A_2, \ldots be subsets of Ω . We have $(\cup_n A_n)^c = \cap_n A_n^c$ and $(\cap_n A_n)^c = \cup_n A_n^c$
Let f be a simple function whose distinct values are a_1, \ldots, a_n and let $A_i = \{\omega : f(\omega) = a_i\}$. Then $f = \sum_{i=1}^n a_i \mathbb{I}_{A_i}$ is called the canonical representation of f .	A measurable function that takes at most finitely many values is called a simple function.
Let f be a real-valued function. The positive part f^+ of f is defined as $f^+(\omega) = \max\{f(\omega), 0\}$. The negative part f^- of f is $f^-(\omega) = -\min\{f(\omega), 0\}$. We have $f = f^+ - f^-$.	Let f be a nonnegative measurable extended real-valued function from Ω . Then there exists a sequence $\{f_n\}_{n=1}^{\infty}$ of nonnegative finite simple functions such that $f_n \leq f$ for all n and $\lim_{n\to\infty} f_n(\omega) = f(\omega) \forall \omega$.
If $f \leq g$ and both are nonnegative and simple, then $\int f d\mu \leq \int g d\mu.$	Let $f: \Omega \to \overline{\mathbb{R}}^{+0}$ be a simple function with canonical representation $f(\omega) = \sum_{i=1}^{n} \mathbb{I}_{A_i}(\omega)$. The integral of f with respect to μ is defined to be $\sum_{i=1}^{n} a_i \mu(A_i)$. The integral is denoted variously as $\int f d\mu$, $\int f(\omega) \mu(d\omega)$ or $\int f(\omega) d\mu(\omega)$.

DEFINITION	DEFINITION
Integrable Function	Integral for General Nonnegative Functions
Advanced Probability	Advanced Probability
Definition	DEFINITION
Integral of General Measurable Functions	Integration over a set
Advanced Probability	Advanced Probability
Proposition	DEFINITION
Monotonicity of Integral	Almost sure / almost everywhere
Advanced Probability	Advanced Probability
Theorem	Theorem
${f Additivity}$	Change of Variable
Advanced Probability	Advanced Probability
Theorem	DEFINITION
Relationship to Riemann Integral	Expectation and Variance of Random Variables
Advanced Probability	Advanced Probability

For nonnegative measurable f , we define the integral of f with respect to μ by $\int f d\mu = \sup_{\text{nonnegative finite simple } g \leq f} \int g d\mu$	We say that f is integrable with respect to μ if $\int f d\mu$ is finite.
If $A \in \mathcal{F}$, we define $\int_A f d\mu = \int \mathbb{I}_A f d\mu.$	Let f be measurable. If either f^+ or f^- is integrable with respect to μ , we define the integral of f with respect to μ to be $\int f^+ d\mu - \int f^- d\mu,$ otherwise the integral does not exist.
Suppose that some statement about elements of Ω holds for all $\omega \in A^C$, where $\mu\left(A\right)=0$. Then we say that the statement holds almost everywhere, denotes as $a.e.$ [μ]. If P is a probability, then almost everywhere is often replaced by almost surely, denoted $a.s.$ [P].	If $f \leq g$ and both integrals are defined, then $\int f d\mu \leq \int g d\mu.$
Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and let (S, \mathcal{A}) be a measurable space. Let $f: \Omega \mapsto S$ be a measurable function. Let ν be the measure induced on (S, \mathcal{A}) by f from μ . Let $g: S \mapsto \mathbb{R}$ be A/\mathcal{B}^1 measurable. Then $\int g d\nu = \int g(f) d\mu,$ if either integral exists.	$\int \left(f+g\right)d\mu = \int fd\mu + \int gd\mu,$ whenever at least two of them are finite.
If P is a probability and X is a random variable, then $\int XdP$ is called the mean of X , expected value of X , or expectation of X , and denoted by $\mathbb{E}(X)$. If $\mathbb{E} = \mu$ is finite, then the variance of X is $\operatorname{Var}(X) = \mathbb{E}\left[\left(X - \mu\right)^2\right]$	Let f be a continuous function on a closed bounded interval $[a,b]$. Let μ be Lebesgue measure. Then the Riemann integral $\int_a^b f(x)dx$ equals $\int_{[a,b]}^a fd\mu$.