IPESUP 2022/2023

Kholle 1 filière MP* Jean-Louis CORNOU

Notations

Le symbole $\mathbb K$ désigne indifféremment le corps $\mathbb R$ ou le corps $\mathbb C$.

- 1. Démontrer que toute suite bornée de $\mathbb{K}^{\mathbb{N}}$ ne possédant qu'une seule valeur d'adhérence converge.
- 2. On considère une fonction $f: \mathbb{R}^+ \to \mathbb{R}^{+*}$ de classe C^1 telle que

$$\lim_{x \to +\infty} \frac{f'(x)}{f(x)} = -\infty$$

- (a) Montrer que la série $\sum_{k=n}^{+\infty} f(n)$ converge et donner un équivalent quand n tend vers $+\infty$ de $R_n = \sum_{k=n}^{+\infty} f(k)$.
- (b) En déduire un équivalent de $\sum_{p=n}^{+\infty} e^{-p^2}$ lorsque n tend vers $+\infty$.
- 3. Déterminer la nature de l'intégrale généralisée

$$\int_{2/\pi}^{+\infty} \ln \left(\cos \left(\frac{1}{t} \right) \right) dt$$

- 1. Énoncer et démontrer le théorème de sommation des relations de comparaison des séries numériques dans le cas de la relation de négligeabilité (les « petits o »).
- 2. Soit (a,b) un couple de réels tel que a < b et I le segment [a,b]. On considère une application continue $f:I \to I$ telle que

$$\forall (x, y) \in I^2, x \neq y, |f(x) - f(y)| < |x - y|$$

- (a) Montrer que f admet un unique point fixe. On le note α .
- (b) Soit $x_0 \in I$. On définit par récurrence la suite $(x_n)_{n \in \mathbb{N}}$ via $\forall n \in \mathbb{N}, x_{n+1} = f(x_n)$. Démontrer que cette suite converge vers α .
- (c) Chercher un contre exemple lorsque l'ensemble de départ de f n'est pas un segment.
- 3. Déterminer la nature de l'intégrale généralisée

$$\int_0^{+\infty} \frac{\sqrt{t} \sin(1/t^2)}{\ln(1+t)} dt$$

- 1. Démontrer qu'une intégrale absolument convergente est convergente.
- 2. Soit a et b deux réels strictement positifs. On définit par récurrence la suite $(u_n)_{n\in\mathbb{N}}$ via

$$u_0 = 1$$
 et $u_{n+1} = \left(\frac{n+a}{n+b}\right)u_n$

(a) Démontrer qu'il existe un réel $\lambda > 0$ tel que

$$u_n \sim_{n \to +\infty} \lambda n^{a-b}$$
.

- (b) En déduire la nature de la série $\sum u_n$ et calculer sa somme en cas de convergence.
- 3. Soit α un réel. Déterminer la nature de l'intégrale généralisée

$$\int_0^{+\infty} \frac{\sin(t)}{t^{\alpha}} dt$$

Exercices supplémentaires et plus corsés pour les gourmands :

- 1. (a) Soit G un sous-groupe de $(\mathbb{R},+)$. Montrer qu'il est soit dense, soit monogène.
 - (b) Démontrer que l'ensemble $\mathbb{N}-2\pi\mathbb{N}$ est dense dans \mathbb{R} (on rappelle que π est irrationnel).
 - (c) En déduire l'ensemble des valeurs d'adhérence de la suite $(u_n)_{n\in\mathbb{N}}$ définie par

$$\forall n \in \mathbb{N}, u_n = \sin(n)$$

2. On note ϕ l'indicatrice d'Euler, et $(u_n)_{n\geqslant 2}$ la suite définie par

$$\forall n \geqslant 2, u_n = \phi(n)/n$$

On admet que la somme $\sum_{p\in\mathcal{P}} 1/p$ des inverses des entiers premiers diverge.

- (a) Montrer que la suite $(u_n)_{n\geqslant 2}$ diverge.
- (b) Démontrer que l'ensemble des ses valeurs d'adhérence admet un maximum et minimum. Les déterminer.
- 3. Déterminer la nature de l'intégrale généralisée

$$\int_0^{+\infty} \frac{dx}{1 + x^4 \sin^2(x)}$$

