

동양미래대학교 인공지능소프트웨어학과

4차산업혁명 시대의 인공지능 "누구나 이해할 수 있는 인공지능"

Dongyang Mirae University Dept. Of Artificial Intelligence

동양미래대학교 인공지능소프트웨어학과

인공지능과 머신러닝

Dongyang Mirae University Dept. Of Artificial Intelligence

인공지능과 머신러닝, 딥러닝

인공지능이라는 용어가 나올 때마다 항상 함께 나오는 머신러닝과 딥러닝은 무엇이고 어떻게 다를까?

- 인공지능이 가장 큰 범주
 - 인간의 지능을 구현
- 머신러닝
 - 데이터를 기반으로 기계 스스로 학습하는 인 공지능의 한 분야
- 심층신경망인 딥러닝(deep learning)
 - 머신러닝의 여러 분야 중에서
 - 2010년 이후 현재의 인공지능 붐을 주도하고 있는 기술
 - 퍼셉트론으로 구성된 인공신경망
 - 여러 단계의 심층 학습을 통하여 스스로 학습 하는 기술
 - 현재의 chatGPT 등의 생성형 AI 분야

머신러닝의 정의와 이해

1959년 아서 사무엘(Arthur Samuel)이 머신러닝(machine learning)이라는 용어를 처음 사용해 대중 화시킴

- 사무엘의 머신러닝 정의
 - "머신러닝은 컴퓨터가 인간처럼 학습하고 행동하도록 하는 과학이며, 관찰 및 실제 단어의 상호작용 형태로 데이터와 정보를 제공함으로써 시간이 지남에 따라 자율적으로 학습을 향상시키는 과학이다."
- 일반적 기계학습 정의
 - 주어진 데이터를 기반으로 기계가 스스로 학습
 - 성능을 향상시키거나 최적의 해답을 찾기 위한 지능적 학습 방법
 - 컴퓨터가 스스로 학습을 할 수 있도록 해주는 인공지능의 한 형태
 - 명시적(explicit)으로 프로그래밍을 하지 않음
 - 데이터는 매우 중요
 - 더 많은 데이터가 유입되면 컴퓨터는 학습을 더 많이 수행
 - 시간이 흐르면서 스마트해져서 작업을 수행하는 능력과 정확도가 향상

개와 고양이 분류

사람에겐 너무 쉬운 일이나, 컴퓨터에게 개와 고양 이의 분류를 맡긴다면 어떨까?

- 전통적 프로그래밍 방식으로 해결
 - 개와 고양이 생김새의 특징을 세부적 코딩
 - 외모 특징 자체를 찾는 것도 어려운 문제
 - 이러한 전통적 방식의 코딩 결과는 좋지 않음
 - 명시적으로 프로그래밍(explicit programming)
 - 입력 데이터를 사용하고 프로그램을 실행하여 출력을 생성

머신러닝 방법

사람에겐 너무 쉬운 일이나, 컴퓨터에게 개와 고양 이의 분류를 맡긴다면 어떨까?

- 인간이 어린 시절 부모 도움의 학습으로 개와 고양이를 자연스럽게 분류하는 방법
 - 개와 고양이 사진에서 반복되는 패턴을 인지해 스스로 학습하는 방식
- 스스로 데이터를 반복적으로 학습하여 기술을 터득하는 방식
 - 입력 데이터와 정답이 있는 출력이 알고리즘에 공급되어 프로그램(모델)을 생성
 - 알고리즘이 데이터에서 학습을 해 자동으로 규칙을 공식화
 - 즉 머신러닝 모델을 통해 미래의 결과를 예측

머신러닝의 수행 과정 1/2

• 데이터 수집

- 수집된 데이터의 품질과 양에 따라
 - 예측 모델의 성능이 결정
- 머신러닝 과정에서 가장 중요한 단계

• 데이터 전처리

- 잘못된 값은 수정하는 데이터 정리 필요
 - 누락 값을 채우고
 - 이상 값을 수정하거나 제거
- 정규화(normalization) 과정도 필요
 - 데이터 특성마다 차이가 너무 크면
 - 머신러닝 모델에 따라 값을 비슷한 크기 로 조정
- 데이터 변환 작업이 필요
 - 모델의 계산에 적합한 자료구조로
 - 기초 자료로 새로운 자료를 생성

• 모델 학습

- 적절한 머신러닝 모델을 생성해 데이터로 학 습

• 성능 개선

- 학습된 모델의 성능을 시험하고 보다 좋은 결과를 도출

• 시각화

- 데이터와 머신러닝 과정 그리고 예측 결과를 보기 좋게 시각화하는 과정

머신러닝의 수행 과정 2/2

데이터와 특징

머신러닝은 데이터에 숨겨진 정보를 찾는 분야로 데이터가 무엇보다 중요

- 데이터 집합(data set)
 - 머신러닝의 데이터
- 중고 자동차 데이터 예
 - 엑셀의 테이블 형태 자료
 - 9개의 열
 - 제조사와 모델, 색상, 사용 기간, 배기량, 주행거리, 연료, 신차가격, 중고가격
 - 표본(sample)
 - 인스턴스(instance)
 - 데이터 포인터(data pointer)
 - 실제 중고 자동차 개 개의 자료인 행
 - 표본 수(# of samples)
 - 데이터 수인 행 수

표본 수 100

그림 6.28 ▶ 머신러닝에서 사용되는 전형적인 테이블 형태의 데이터

특징과 레이블

특이값이나 결측값은 머신러닝 성능에 영향을 미치므로 사전 처리가 필요

- 특이값(outlier) 또는 이상치
 - 정상적인 범주를 벗어난 값
- 결측값(missing value) 또는 결측치
 - 빠진 데이터 값
- 중고가격 예측 예
 - 특성(features) 또는 특성 벡터(features vector)
 - 예측값을 위한 속성인 제조사와 색상 등 8개
 - 예측값 또는 목표(target) 값
 - 마지막 열(정답)인 중고가격
 - 레이블(label)
 - 이미 아는 정답
 - 정답이 확보된 데이터를 레이블 데이터(labeled data)
- 특징과 목표값, 수학 집합으로 표시
 - 중고 자동차 데이터에서는 목표 값이 중고가격인 y₁ 하나인 경우

특징 표현이 차수가 높으면 여러 개로 표현

$$X = \{x_1, x_2, x_3, \dots, x_n\}, Y = \{y_1, y_2, y_3\}$$

그림 6.29 ▶ 데이터의 특성과 정답(레이블)

머신러닝 모델

주어진 문제를 해결하기 위해 데이터로 알고리즘을 학습시키면 바로 머신러닝 모델이 생성

- 머신러닝 모델
 - 내부의 알고리즘으로 특정 유형의 패턴을 인식
 - 문제를 해결
 - 훈련(학습) 과정을 통해
 - 데이터에 가장 적합한 매 개변수로 설정된 알고리즘 준비
 - 처음엔 몰랐던 매개 변수 값을
 - 스스로 학습을 통해 값을 결정
 - 정답이 붙은 학습 데이터 로 모델을 학습
 - 머신러닝 모델의 예측
 - 새로운 테스트 데이터에 대한 결과를 예측

학습된 머신러닝 최종 모델: f(x) = 학습(알고리즘 + 데이터) 그림 6.30 ▶ 머신러닝 모델

학습 데이터와 테스트 데이터 1/2

현재 머신러닝 모델이 제대로 학습되고 있는지를 판단하려면 훈련에 사용되지 않은 검증 데이터로 모델의 정확도(accuracy)나 손실함수(loss function)를 평가해 지속적으로 모델의 성능을 개선

- 데이터 분리
 - 학습(훈련) 데이터(training data)와 테스트(검사 또는 시험) 데이터(test data)로 나눔
- 학습 데이터
 - 다시 학습 데이터(training data)와 검증 데이터(validation data)로 나눌 수 있음
 - 학습에 사용되는 데이터
 - 참고서 연습문제 시험에 비유
 - 검증 데이터
 - 학습 향상을 점검하기 위한 데이터, 모의고사에 비유
- 테스트 데이터
 - 최종 모델 성능에 활용되는 데이터
 - 학습이 잘 되었는지 최종 검사에 사용, 수능 시험에 비유
- 지속적으로 모델의 성능을 개선에 필요한 기준 값(뒤에서 좀 더 자세히 설명됨)
 - 손실함수(loss function)
 - 현재 모델의 예측의 오류 정도를 나타내는 값으로 작을수록 좋은 함수 값
 - 정확도(accuracy)
 - 예측값과 정답의 일치하는 수준이라고 이해

학습 데이터와 테스트 데이터 2/2

동양미래대학교 인공지능소프트웨어학과

머신러닝과 딥러닝 비교

Dongyang Mirae University Dept. Of Artificial Intelligence

머신러닝과 딥러닝

- 기계학습이라고도 부르는 머신러닝(machine learning)
 - 주어진 데이터를 기반으로
 - 기계가 스스로 학습하여
 - 성능을 향상시키거나 최적의 해답을 찾기 위한 학습 지능 방법
- 딥러닝
 - 인공신경망 기반의 머신러닝

머신러닝과 딥러닝 비교 1/7

• 머신러닝

머신러닝과 딥러닝 비교 2/7

• 딥러닝

머신러닝과 딥러닝 비교 3/7

Machine Learning

머신러닝과 딥러닝 비교 4/7

• 머신러닝 (Machine Learning)

- 알고리즘을 이용해 데이터를 분석하고, 분석 을 통해 학습하며, 학습한 내용을 기반으로 판단이나 예측

• 딥러닝 (Deep Learning)

- 인공신경망에서 발전한 형태의 인공지능으 로, 인간 뇌의 뉴런과 유사 한 입력 계층, 은 닉 계층, 출력 계층을 활용해 데이터를 학습

그림 1-28 머신러닝과 딥러닝의 학습 차이

머신러닝과 딥러닝 비교 5/7

구분	기계 학습	딥 러닝
데이터 의존성	중소형 데이터 세트에서 탁월한 성능	큰 데이터 세트에서 뛰어난 성능
하드웨어 의존성	저가형 머신에서 작업 가능	GPU가 있는 강력한 기계가 필요 DL은 상당한 양의 행렬 곱셈을 수행
기능 공학	데이터를 나타내는 기능을 이해해야 함	데이터를 나타내는 최고의 기능을 이해할 필요가 없음
실행 시간	몇 분에서 몇 시간	최대 몇 주. 신경망은 상당한 수의 가중치 계산 필요

머신러닝과 딥러닝 비교 6/7

• 특징과 데이터가 많을수록 딥러닝에 적합

머신러닝과 딥러닝 비교 7/7

- 딥러닝 외 대부분의 머신러닝 알고리즘
 - 데이터의 양이 일정 수준을 넘어가면 더 이상 성능이 향상되지 않는 한계를 보임
- 딥러닝
 - 데이터가 많을수록 성능이 좋아지는 것이 특징
 - "얼마나 더 많은 양의 데이터를 확보하느냐"에 따라 인공지능 (딥러닝) 역량에 차이가 커짐

그림 3-12 딥러닝의 특징 2: 데이터의 양이 많아질수록 성능이 지속적으로 향상

동양미래대학교 인공지능소프트웨어학과

CPU GPU TPU

Dongyang Mirae University Dept. Of Artificial Intelligence

그래픽처리 장치 GPU의 인기

GPU란 용어는 1999년 엔비디아(Nvidia)에서 처음 사용

- 그래픽 처리 장치 GPU
 - Graphics Processing Unit
 - 그래픽 연산 처리를 하는 전용 프로세서

GPGPU

- General Purpose Graphic Processing Unit
 - 일반 CPU 프로세서를 돕는 보조프로세서(coprocessor)로서의 GPU
- 중앙 처리 장치(CPU)가 맡았던 응용 프로그램들의 계산에 GPU를 사용하는 기술
 - GPU 컴퓨팅이란 GPGPU를 연산에 참여
 - 고속의 병렬처리
 - 대량의 행렬과 벡터를 다루는 데 뛰어난 성능을 발휘
- 딥러닝의 심층신경망에서 빅데이터를 처리
 - 대량의 행렬과 벡터를 사용
 - GPU 사용이 매우 효과적
- 12개 GPU가 2,000개의 CPU와 비슷한 계산 능력

그래픽처리 장치 GPU의 병렬 처리

GPU란 용어는 1999년 엔비디아(Nvidia)에서 처음 사용

- GPU 병렬 처리 동영상
 - https://www.youtube.com/watch?v=-P28LKWTzrl

Tesla H100:

A100의 후속 모델로, 더욱 높은 성능과 효율성을 제공 64GB의 HBM3 메모리를 탑재하여 대용량 데이터를 더욱 빠르게 처리 AI 및 딥러닝 분야에서 널리 사용

CUDA

• GPU 업체인 NVIDIA의 GPU를 사용하기 위한 라이브러리 소프트웨어

- Compute Unified Device Architecture의 약자

구글의 TPU

• 구글은 2016년

- 텐서 처리 장치(Tensor Processing Unit)를 발표
- 텐서란 벡터·행렬을 의미
- TPU는 데이터 분석 및 딥러닝용 칩으로서 벡터·행렬연산의 병렬처리에 특화
- 텐서플로(TensorFlow)
 - TPU를 위한 소프트웨어

