

Optimal Search Algorithm

Faculty of DS & AI Autumn semester, 2025

Trong-Nghia Nguyen

Content

- Optimal search
 - Definition
 - Greedy search
 - A* search
 - Properties of Heuristic Function

Content

- Optimal search
 - Definition
 - Greedy search
 - ∘ A* search
 - Properties of Heuristic Function

In practice problems

- We are often not only interested in finding a solution, but also whether the solution is optimal.
- Example:
 - Shortest path finding: consider the path cost...
 - o 8-puzzle: consider the minimum number of moves to reach the goal.

for In uninformed search and informed (heuristic) search, we have not yet considered path length or cost.

Graph Partition Problem:

 Given a graph, divide it into nnn equal-sized subsets such that the number of edges between subsets is minimized.

Graph Partition Problem:

- Given a graph, divide it into nnn equal-sized subsets such that the number of edges between subsets is minimized.
 - Each partition G(V,E)→{G1(V1,E1),G2(V2,E2)} is a
 state. A state can be represented by a binary array:
 - 0 -> vertex in group 1.
 - 1 -> vertex in group 2.
 - Example: we have state: u = [0100011011]
 - Group 1: {1,3,4,5,8}
 - Group 2: {2,6,7,9,10}
 - Evaluation function:
 - $F(u)=|V_1-V_2|+number$ of cross edges (connected edge)
 - $|V_1 V_2|$: balance term (equal partition).
 - Cross edges: edges between different groups.
 - The goal is to find u* with minimum F(u)
 - Optimal search = finding state u such that **f(u)** is **minimized**.

Compare with Heuristic search

Criteria	Heuristic Search	Optimal Search
Evaluation	Based on heuristic $h(n)$	Based on total cost $g(n) + h(n)$
Goal	Find a solution quickly	Find the best (optimal) solution
Optimal guarantee	× No	Yes (if conditions hold)
Example	Greedy Best-First Search	A*, Branch-and-bound search

Content

- Optimal search
 - Definition
 - Greedy search
 - ∘ A* search
 - Properties of Heuristic Function

Romania road map (textbook)

Arad -> Bucharest

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figure 3.16 Values of h_{SLD} —straight-line distances to Bucharest.

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Romania road map (textbook)

Arad -> Bucharest

h(u)

Arad	366	Mehadia	241
Bucharest	O	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figure 3.16 Values of h_{SLD} —straight-line distances to Bucharest.

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Romania road map (textbook)

Arad -> Bucharest

h(u)

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	⊘ ibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figure 3.16 Values of h_{SLD} —straight-line distances to Bucharest.

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Greedy search

Figure 3.16 Values of h_{SLD} —straight-line distances to Bucharest.

- select the node with the minimum value of h(u)
- hill-climbing search

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Greedy search

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figure 3.16 Values of h_{SLD} —straight-line distances to Bucharest.

Greedy search

Path cost for the solution = 140+99+211 = 450 miles

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figure 3.16 Values of h_{SLD} —straight-line distances to Bucharest.

Content

- Optimal search
 - Definition
 - Greedy search
 - A* search
 - o Properties of Heuristic Function

A* search

- select the node with the minimum value of

$$f(n) = g(n) + h(n)$$

f(n) = estimated cost of the cheapest solution through n

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Arad	(366)	Mehadia	241
Bucharest	V	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figure 3.16 Values of h_{SLD} —straight-line distances to Bucharest.

A* search

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figure 3.16 Values of h_{SLD} —straight-line distances to Bucharest.

A* search

- Dis. from Arad to Rimicu Vilcea: g(Rimicu) = 140 + 80 = 220
- h(Rimicu) = 193
- f(Rimicu) = 220+193 = 413

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	(193)
Fagaras	176	Sibiu	193 253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figure 3.16 Values of h_{SLD} —straight-line distances to Bucharest.

A* search

Path cost for the **optimal** solution = 140+80+97+101 = 418 miles

Figure 3.1 A simplified road map of part of Romania, with road distances in miles.

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Figure 3.16 Values of h_{SLD} —straight-line distances to Bucharest.

A* search for 8-puzzle

	2	8	ო
0+4	1	6	4
	7		5

$$f(n) = g(n) + h(n)$$

2	8	3
1	6	4
7		5

1	2	3
8		4
7	6	5

Initial State

A* search for 8-puzzle

1 2 3 8 4 7 6 5

Initial State

A* search for 8-puzzle

1 2 3 8 4 7 6 5

Initial State

A* search for 8-puzzle

1 2 3 8 4 7 6 5

Initial State

A* search for 8-puzzle

 1
 2
 3

 8
 4

 7
 6
 5

Initial State

A* search for 8-puzzle

 1
 2
 3

 8
 4

 7
 6
 5

Initial State

A* search for 8-puzzle

 1
 2
 3

 8
 4

 7
 6
 5

Initial State

A* search: Find the shortest path from A to Z using A*

- The value attached to each vertex is h(u).
- The value attached to each edge is the cost to change state k(u,v).
- Note: when g+h are the same, the smaller g is preferred.

Content

- Optimal search
 - Definition
 - Greedy search
 - A* search
 - Properties of Heuristic Function

Properties of Heuristic Function

- admissibility

$$h(n) \leq h(n)$$

- consistency (monotonicity)

$$h(n) \le c(n, a, n') + h(n')$$

- dominancy: h_2 dominates h_1

$$h_2(n) \ge h_1(n)$$
, for any node n

Optimality of A* algorithm

- A* is optimal if it uses an admissible(consistent) heuristic

As we mentioned earlier, A^* has the following properties: the tree-search version of A^* is optimal if h(n) is admissible,

Efficiency of A* algorithm

- A* with $h_2(n)$ is more efficient than A* with $h_1(n)$, if h_2 dominates h_1

Weighted A* search

A* search
$$f(n) = g(n) + h(n)$$
 $(W=1)$ Uniform-cost search $f(n) = g(n)$ $(W=0)$ $(W=0)$ Greedy search $f(n) = h(n)$ $(W=\infty)$ Weighted A* search $f(n) = g(n) + W \times h(n)$ $(1 < W < \infty)$

- inadmissible heuristic → risk of missing optimal solution

Weighted A* search

Figure 3.21 Two searches on the same grid: (a) an A^* search and (b) a weighted A^* search with weight W=2. The gray bars are obstacles, the purple line is the path from the green start to red goal, and the small dots are states that were reached by each search. On this particular problem, weighted A^* explores 7 times fewer states and finds a path that is 5% more costly.

Thank you!

You're now ready to explore the exciting world of AI!