

SEQUENCE LISTING

<110> Chen, Jingcai
Kuei, Chester
Liu, Changlu
Lovenberg, Timothy W.
Sillard, Rannar W.
Sutton, Steven W.

<120> RELAXIN3-GPCR 135 COMPLEXES AND THEIR PRODUCTION AND USE

<130> PRD2045NP-US

<150> US 60/451,702
<151> 2003-03-04

<160> 28

<170> PatentIn version 3.2

<210> 1
<211> 40
<212> DNA
<213> Primer

<400> 1
acagctcgag gccaccatgc agatggccga tgcagccacg 40

<210> 2
<211> 39
<212> DNA
<213> Primer

<400> 2
acatcatcta gatcagtagg cagagctgct gggcagcag 39

<210> 3
<211> 45
<212> DNA
<213> Primer

<400> 3
acgatactcg aggccaccat gcaggtggct tctgcaaccc ccgcg 45

<210> 4
<211> 41
<212> DNA
<213> Primer

<400> 4
actagatcta gatcagtagg cagagctact agggagcagg t 41

<210> 5
<211> 47
<212> DNA
<213> Primer

<400> 5
acgatactcg aggccaccat gcccuaagcg cacctgagca tgcaagt 47

<210> 6
<211> 41
<212> DNA
<213> Primer

<400> 6		
acgatatcta gatcagtagg cagagctgct agggagaagg t		41
<210> 7		
<211> 45		
<212> DNA		
<213> Primer		
<400> 7		
acgatactcg aggccaccat gcaagtggct tctgcaacca ccgca		45
<210> 8		
<211> 1410		
<212> DNA		
<213> Homo sapiens		
<400> 8		
atgcagatgg ccgatgcagc cacgatgcc accatgaata aggcaaggcagg cggggacaag 60		
ctagcagaac tcttcagtct ggtccggac cttctggagg cggccaacac gagtggtaac 120		
gcgtcgctgc agcttccgga cttgtggtgg gagctggggc tggagttgcc ggacggcgcg 180		
ccgcccaggac atccccccggg cagcggcggg gcagagagcg cggacacaga ggcccgggtg 240		
cggttctca tcagcgttgt gtactgggtg gtgtgcgcc tgggttgcc gggcaacctg 300		
ctggttctct acctgatgaa gagcatgcag ggctggcgca agtcctctat caacctcttc 360		
gtcaccaacc tggcgctgac ggactttcag tttgtgctca ccctgccctt ctggcggtg 420		
gagaacgctc ttgacttcaa atggcccttc ggcaaggcca tgtgtaagat cgtgtccatg 480		
gtgacgtcca tgaacatgta cgccagcgtg ttcttcctca ctgccatgag tgtgacgcgc 540		
taccattcgg tggcctcggc tctgaagagc caccggaccc gaggacacgg ccggggcgac 600		
tgctcgccggc ggagcctggg ggacagctgc tgcttctcgg ccaaggcgct gtgtgtgtgg 660		
atctgggctt tggccgcgt ggcctcgctg cccagtgccca ttttctccac cacggtaag 720		
gtgatgggcg aggagctgtg cctggtgctg ttccggaca agttgctggg cccgcacagg 780		
cagttctggc tggccctcta ccactcgac aaggtgctgc tgggcttcgt gctgccgtg 840		
ggcatcatta tcttgtgcta cctgctgctg gtgcgcttca tcgcccaccc cccgcggcg 900		
gggaccaaag gagggccgc ggtagccga ggacgcccga ccggagccag ccccgagaga 960		
ctgtcgaagg tcaccaaata agtgaccatc gttgtcctgt ctttcttcct gtgtggctg 1020		
cccaaccagg cgctcaccac ctggagcatc ctcatcaagt tcaacgcgtt gcccttcagc 1080		
caggagtatt tcctgtgcca ggtatacgcg ttccctgtga gcgtgtgcct agcgactcc 1140		
aacagctgcc tcaacccgt cctctactgc ctcgtgcgcc gcgagttccg caaggcgctc 1200		
aagagcctgc tgtggcgcat cgcgtctcct tcgatcacca gcatgcgccc ttccaccgcc 1260		
actaccaagc cggagcacga ggtatcagggg ctgcaggccc cggccggcc ccacgcggcc 1320		
gcggagccgg acctgctcta ctacccacct ggcgtcgtgg tctacagcgg gggcgctac 1380		
gacctgctgc ccagcagctc tgcctactga		1410

<210> 9
<211> 1419
<212> DNA
<213> Mouse

<400> 9
atgcaggtgg cttctgcaac ccccgcggcc accgtgagga aagcagctgc gggtgatgag 60
ctctcagaat tcttcgctct gaccccagac ttgcttggaaag tggccaacgc cagcggcaat 120
gcgtcgctgc agcttcagga tctgtgggtgg gagctggggc tagagttgcc agacggtgcg 180
gcgcctgggc atccctccggg tggcggcggg gcagagagca cagacactga ggccagggtta 240
cggatcctca tcagcgcgtt ttactgggtg gtttgtcccc tggactggc cggcaacctg 300
ctggttctct acctgatgaa gagcaagcaa ggctggcgca aatcctccat caacctctt 360
gtcactaacc tggcactgac tgactttcag ttcgtgctca ctctgcccc ttgggctgtg 420
gagaacgcac tagacttcaa gtggcccttc ggcaaggcca tgtgtaagat cgtgtccatg 480
gtgacatcca tgaacatgta cgccagcgtc ttcttcctca ctgctatgag cgtggcgcc 540
taccactcgg tggcctcgcc tctcaagagc catcgaccc gagggcgtgg ccgtggcgac 600
tgctcgccgc agagctttag gggagactgc tggttttcag ccaagggtct gtgtgggttg 660
atctgggctt cggctgcgtt ggcctcgctg cccaatgcca tttttccac caccatcagg 720
gtgttgggtg aggagctctg cctcatgcac tttccagaca agctactggg ctgggacagg 780
cagttctggc tgggtttgtt ccacctgcag aaggtgctgc tggcttcct gctgccgtt 840
agcatcatca gtctgtgtta cctgttgctt gtgcgttca tctccgaccg tcgcgtagtt 900
gggacaacag atgcagttagg agcagcagca gcgcctgggg gaggccttag tacagccagc 960
gctaggagac gctccaaggt caccaagtcg gtgaccatcg tcgtcccttc cttttccctg 1020
tgttggctgc ccaaccaggc gcttaccacc tggagcatcc tcatcaagtt caacgccgtg 1080
cccttcagcc aggagtactt tcagtgcctt gtgtacgcgt tcccagttag cgtgtgcctg 1140
gcfgcactcca acagctgcct caacccgatc ctctactgct tagtgcgccg cgagttccgc 1200
aaggcgttca agaacctgct gtggcggata gcctcgccct cgctcaccaa catgcgccct 1260
ttcaccgcctt ccaccaagcc agaacctgaa gatcacgggc tgcaggccct ggcgccctt 1320
aatgctgctg ccgaacctga cctgatctac tatccacccg gtgtgggtgt ctacagcggg 1380
ggtcgctacg acctgctccc tagtagctct gcctactga 1419

<210> 10
<211> 1431
<212> DNA
<213> Rat

<400> 10
atgccccaaag cgcacctgag catgcaagtgc gcttctgcaa ccaccgcagc ccccatgagt 60
aaggcagctg cggtgtatga gctctccggaa ttcttcggcc tcatccaga cttgtggag 120
gttgccaaaca ggagcagcaa tgcgtcgctg cagttcagg acttgtggtg ggagctgggg 180
ctggagttgc ccgacggtgc ggcgcctggg catccccgg gcagcggtgg ggcagagagc 240

gcggacacag	aggccagggt	acggatcctc	atcagcgccg	tttactgggt	ggtttgtgcc	300
ctgggactgg	ctggcaacct	gctggttctc	tacctgatga	agagcaaaca	gggctggcgc	360
aaatcctcca	ttaacctctt	tgtcaactaac	ctggcgctga	ctgactttca	gttttgctc	420
actctgcctt	tctggcggt	ggagaacgca	ctagattca	agtggccctt	tggcaaggcc	480
atgtgttaaga	tcgttatctat	ggtgacatcc	atgaacatgt	atgccagcgt	cttcttctc	540
actgctatga	gtgtggcgcg	ctaccactcg	gtggcctcag	ctctcaagag	ccatcgacc	600
cgcggcatg	gccgtggcga	ctgctcgcc	cagagcttg	gggagagctg	ctgtttctca	660
gccaagggtgc	tgtgtggatt	gatctggct	tctgcccga	tagctcgct	gcccaatgtc	720
atttttctta	ccaccatcaa	tgtgttggc	gaggagctgt	gcctcatgca	cttccggac	780
aagctcctgg	gttgggaccg	gcagttctgg	ctgggtttgt	accacctgca	gaaggtgctg	840
ctgggcttcc	tgctgccct	gagcatcatc	agtttgtgtt	acctgttgct	cgtgcgttc	900
atctccgacc	gccgcgtagt	ggggacaacg	gatggagcaa	cagcgcctgg	ggggagcctg	960
agtacagccg	gcgctcgag	acgctccaag	gtcaccaagt	cggtgaccat	cgtagtcctt	1020
tccttcttct	tatgttgct	gcccaaccaa	gcgctcacca	cctggagcat	cctcatcaag	1080
ttcaacgttag	tgcccttcag	tcaggagtagc	tttcagtgcc	aagtgtacgc	gttcccagtc	1140
agcgtgtgcc	tggcacactc	caacagctgc	ctcaaccccc	tcctctactg	cttagtgcc	1200
cgcgagttcc	gcaaggcgct	caagaacctg	ctgtggcgta	tagcatgcc	ttcgctcacc	1260
agcatgcgcc	cttcaccgc	caccaccaag	ccagaacctg	aagatcacgg	gctgcaggcc	1320
ctggcgccac	ttaatgctac	tgcagagcct	gacctgatct	actatccacc	cggtgtggtg	1380
gtctacagcg	gaggtcgcta	cgaccttctc	cctagcagct	ctgcctactg	a	1431

<210> 11
<211> 1410
<212> DNA
<213> Rat

<400> 11	atgcaagtgg	cttctgcaac	caccgcagcc	cccatgagta	aggcagctgc	gggtgatgag	60
	ctctccggat	tcttcggcct	gatcccagac	ttgctggagg	ttgccaacag	gagcagcaat	120
	gcgtcgctgc	agcttcagga	cttgtggtgg	gagctggggc	tggagttgcc	cgacggtgcg	180
	gcgcctgggc	atccccggg	cagcgggtgg	gcagagagcg	cggacacaga	ggccagggtta	240
	cggatcctca	tcagcgcgt	ttactgggtg	gtttgtgcc	tggactggc	tggcaacctg	300
	ctggttctct	acctgatgaa	gagcaaacag	ggctggcgca	aatcctccat	taacctctt	360
	gtcactaacc	tggcgctgac	tgactttcag	tttgtgctca	ctctgcctt	ctggcggtg	420
	gagaacgcac	tagatttcaa	gtggcccttt	ggcaaggcca	tgtgttaagat	cgtatctatg	480
	gtgacatcca	tgaacatgta	tgccagcgct	ttctttctca	ctgctatgag	tgtggcgcc	540
	taccactcg	tggcctcagc	tctcaagagc	catcgaccc	gcgggcatgg	ccgtggcgac	600
	tgctgcggcc	agagcttggg	ggagagctgc	tgtttctcag	ccaaggtgct	gtgtggattg	660

atctgggctt	ctgccgcgt	agcttcgctg	cccaatgtca	tttttctac	caccatcaat	720
gtgttggcg	aggagctgtg	cctcatgcac	tttccggaca	agctcctggg	ttgggaccgg	780
cagttctggc	tgggttgta	ccacctgcag	aaggtgctgc	tgggcttcct	gctgccgctg	840
agcatcatca	gttttgtta	cctgttgctc	gtgcgcttca	tctccgaccg	ccgcgttagt	900
gggacaacgg	atggagcaac	agcgcctggg	gggagcctga	gtacagccgg	cgctcggaga	960
cgctccaagg	tcaccaagtc	ggtgaccatc	gtagtcctt	ctttcttctt	atgttggctg	1020
cccaaccaag	cgctcaccac	ctggagcatc	ctcatcaagt	tcaacgtagt	gcccttcagt	1080
caggagtact	ttcagtgcca	agtgtacgcg	ttcccagtca	gcgtgtgcct	ggcacactcc	1140
aacagctgcc	tcaacccat	cctctactgc	ttagtgcgcc	gcgagttccg	caaggcgctc	1200
aagaacctgc	tgtggcgtat	agcatcgct	tcgctcacca	gcatgcgccc	ttcaccgccc	1260
accaccaagc	cagaacctga	agatcacggg	ctgcaggccc	tggcccaact	taatgctact	1320
gcagagcctg	acctgatcta	ctatccaccc	ggtgtggtgg	tctacagccg	aggtcgctac	1380
gacttctcc	ctagcagctc	tgcctactga				1410

<210> 12
 <211> 469
 <212> PRT
 <213> Homo sapiens

<400> 12

Met Gln Met Ala Asp Ala Ala Thr Ile Ala Thr Met Asn Lys Ala Ala
1 5 10 15

Gly Gly Asp Lys Leu Ala Glu Leu Phe Ser Leu Val Pro Asp Leu Leu
20 25 30

Glu Ala Ala Asn Thr Ser Gly Asn Ala Ser Leu Gln Leu Pro Asp Leu
35 40 45

Trp Trp Glu Leu Gly Leu Pro Asp Gly Ala Pro Pro Gly His
50 55 60

Pro Pro Gly Ser Gly Ala Glu Ser Ala Asp Thr Glu Ala Arg Val
65 70 75 80

Arg Ile Leu Ile Ser Val Val Tyr Trp Val Val Cys Ala Leu Gly Leu
85 90 95

Ala Gly Asn Leu Leu Val Leu Tyr Leu Met Lys Ser Met Gln Gly Trp
100 105 110

Arg Lys Ser Ser Ile Asn Leu Phe Val Thr Asn Leu Ala Leu Thr Asp
115 120 125

Phe Gln Phe Val Leu Thr Leu Pro Phe Trp Ala Val Glu Asn Ala Leu
130 135 140

Asp Phe Lys Trp Pro Phe Gly Lys Ala Met Cys Lys Ile Val Ser Met
145 150 155 160

Val Thr Ser Met Asn Met Tyr Ala Ser Val Phe Phe Leu Thr Ala Met
165 170 175

Ser Val Thr Arg Tyr His Ser Val Ala Ser Ala Leu Lys Ser His Arg
180 185 190

Thr Arg Gly His Gly Arg Gly Asp Cys Cys Gly Arg Ser Leu Gly Asp
195 200 205

Ser Cys Cys Phe Ser Ala Lys Ala Leu Cys Val Trp Ile Trp Ala Leu
210 215 220

Ala Ala Leu Ala Ser Leu Pro Ser Ala Ile Phe Ser Thr Thr Val Lys
225 230 235 240

Val Met Gly Glu Glu Leu Cys Leu Val Arg Phe Pro Asp Lys Leu Leu
245 250 255

Gly Arg Asp Arg Gln Phe Trp Leu Gly Leu Tyr His Ser Gln Lys Val
260 265 270

Leu Leu Gly Phe Val Leu Pro Leu Gly Ile Ile Ile Leu Cys Tyr Leu
275 280 285

Leu Leu Val Arg Phe Ile Ala Asp Arg Arg Ala Ala Gly Thr Lys Gly
290 295 300

Gly Ala Ala Val Ala Gly Gly Arg Pro Thr Gly Ala Ser Ala Arg Arg
305 310 315 320

Leu Ser Lys Val Thr Lys Ser Val Thr Ile Val Val Leu Ser Phe Phe
325 330 335

Leu Cys Trp Leu Pro Asn Gln Ala Leu Thr Thr Trp Ser Ile Leu Ile
340 345 350

Lys Phe Asn Ala Val Pro Phe Ser Gln Glu Tyr Phe Leu Cys Gln Val
355 360 365

Tyr Ala Phe Pro Val Ser Val Cys Leu Ala His Ser Asn Ser Cys Leu
370 375 380

Asn Pro Val Leu Tyr Cys Leu Val Arg Arg Glu Phe Arg Lys Ala Leu
385 390 395 400

Lys Ser Leu Leu Arg Arg Ile Ala Ser Pro Ser Ile Thr Ser Met Arg
405 410 415

Pro Phe Thr Ala Thr Thr Lys Pro Glu His Glu Asp Gln Gly Leu Gln
420 425 430

Ala Pro Ala Pro Pro His Ala Ala Ala Glu Pro Asp Leu Leu Tyr Tyr
435 440 445

Pro Pro Gly Val Val Val Tyr Ser Gly Gly Arg Tyr Asp Leu Leu Pro
450 455 460

Ser Ser Ser Ala Tyr
465

<210> 13
<211> 472
<212> PRT
<213> Mouse

<400> 13

Met Gln Val Ala Ser Ala Thr Pro Ala Ala Thr Val Arg Lys Ala Ala
1 5 10 15

Ala Gly Asp Glu Leu Ser Glu Phe Phe Ala Leu Thr Pro Asp Leu Leu
20 25 30

Glu Val Ala Asn Ala Ser Gly Asn Ala Ser Leu Gln Leu Gln Asp Leu
35 40 45

Trp Trp Glu Leu Gly Leu Glu Leu Pro Asp Gly Ala Ala Pro Gly His
50 55 60

Pro Pro Gly Gly Gly Ala Glu Ser Thr Asp Thr Glu Ala Arg Val
65 70 75 80

Arg Ile Leu Ile Ser Ala Val Tyr Trp Val Val Cys Ala Leu Gly Leu
85 90 95

Ala Gly Asn Leu Leu Val Leu Tyr Leu Met Lys Ser Lys Gln Gly Trp
100 105 110

Arg Lys Ser Ser Ile Asn Leu Phe Val Thr Asn Leu Ala Leu Thr Asp
115 120 125

Phe Gln Phe Val Leu Thr Leu Pro Phe Trp Ala Val Glu Asn Ala Leu
130 135 140

Asp Phe Lys Trp Pro Phe Gly Lys Ala Met Cys Lys Ile Val Ser Met
145 150 155 160

Val Thr Ser Met Asn Met Tyr Ala Ser Val Phe Phe Leu Thr Ala Met
165 170 175

Ser Val Ala Arg Tyr His Ser Val Ala Ser Ala Leu Lys Ser His Arg
180 185 190

Thr Arg Gly Arg Gly Arg Gly Asp Cys Cys Gly Gln Ser Leu Arg Glu
195 200 205

Ser Cys Cys Phe Ser Ala Lys Val Leu Cys Gly Leu Ile Trp Ala Ser
210 215 220

Ala Ala Leu Ala Ser Leu Pro Asn Ala Ile Phe Ser Thr Thr Ile Arg
225 230 235 240

Val Leu Gly Glu Glu Leu Cys Leu Met His Phe Pro Asp Lys Leu Leu
245 250 255

Gly Trp Asp Arg Gln Phe Trp Leu Gly Leu Tyr His Leu Gln Lys Val
260 265 270

Leu Leu Gly Phe Leu Leu Pro Leu Ser Ile Ile Ser Leu Cys Tyr Leu
275 280 285

Leu Leu Val Arg Phe Ile Ser Asp Arg Arg Val Val Gly Thr Thr Asp
290 295 300

Ala Val Gly Ala Ala Ala Ala Pro Gly Gly Leu Ser Thr Ala Ser
305 310 315 320

Ala Arg Arg Arg Ser Lys Val Thr Lys Ser Val Thr Ile Val Val Leu
325 330 335

Ser Phe Phe Leu Cys Trp Leu Pro Asn Gln Ala Leu Thr Thr Trp Ser
340 345 350

Ile Leu Ile Lys Phe Asn Ala Val Pro Phe Ser Gln Glu Tyr Phe Gln
355 360 365

Cys Gln Val Tyr Ala Phe Pro Val Ser Val Cys Leu Ala His Ser Asn
370 375 380

Ser Cys Leu Asn Pro Ile Leu Tyr Cys Leu Val Arg Arg Glu Phe Arg
385 390 395 400

Lys Ala Leu Lys Asn Leu Leu Trp Arg Ile Ala Ser Pro Ser Leu Thr
405 410 415

Asn Met Arg Pro Phe Thr Ala Thr Thr Lys Pro Glu Pro Glu Asp His
420 425 430

Gly Leu Gln Ala Leu Ala Pro Leu Asn Ala Ala Glu Pro Asp Leu
435 440 445

Ile Tyr Tyr Pro Pro Gly Val Val Val Tyr Ser Gly Gly Arg Tyr Asp
450 455 460

Leu Leu Pro Ser Ser Ser Ala Tyr
465 470

<210> 14
<211> 476
<212> PRT
<213> Rat

<400> 14

Met Pro Lys Ala His Leu Ser Met Gln Val Ala Ser Ala Thr Thr Ala
1 5 10 15

Ala Pro Met Ser Lys Ala Ala Ala Gly Asp Glu Leu Ser Gly Phe Phe
20 25 30

Gly Leu Ile Pro Asp Leu Leu Glu Val Ala Asn Arg Ser Ser Asn Ala
35 40 45

Ser Leu Gln Leu Gln Asp Leu Trp Trp Glu Leu Gly Leu Glu Leu Pro
50 55 60

Asp Gly Ala Ala Pro Gly His Pro Pro Gly Ser Gly Gly Ala Glu Ser
65 70 75 80

Ala Asp Thr Glu Ala Arg Val Arg Ile Leu Ile Ser Ala Val Tyr Trp
85 90 95

Val Val Cys Ala Leu Gly Leu Ala Gly Asn Leu Leu Val Leu Tyr Leu
100 105 110

Met Lys Ser Lys Gln Gly Arg Arg Lys Ser Ser Ile Asn Leu Phe Val
115 120 125

Thr Asn Leu Ala Leu Thr Asp Phe Gln Phe Val Leu Thr Leu Pro Phe
130 135 140

Trp Ala Val Glu Asn Ala Leu Asp Phe Lys Trp Pro Phe Gly Lys Ala
145 150 155 160

Met Cys Lys Ile Val Ser Met Val Thr Ser Met Asn Met Tyr Ala Ser
165 170 175

Val Phe Phe Leu Thr Ala Met Ser Val Ala Arg Tyr His Ser Val Ala
180 185 190

Ser Ala Leu Lys Ser His Arg Thr Arg Gly His Gly Arg Gly Asp Cys
195 200 205

Cys Gly Gln Ser Leu Gly Glu Ser Cys Cys Phe Ser Ala Lys Val Leu
210 215 220

Cys Gly Leu Ile Trp Ala Ser Ala Ala Ser Leu Pro Asn Val
Page 9

225 230 235 240

Ile Phe Ser Thr Thr Ile Asn Val Leu Gly Glu Glu Leu Cys Leu Met
245 250 255

His Phe Pro Asp Lys Leu Leu Gly Trp Asp Arg Gln Phe Trp Leu Gly
260 265 270

Leu Tyr His Leu Gln Lys Val Leu Leu Gly Phe Leu Leu Pro Leu Ser
275 280 285

Ile Ile Ser Leu Cys Tyr Leu Leu Leu Val Arg Phe Ile Ser Asp Arg
290 295 300

Arg Val Val Gly Thr Thr Asp Gly Ala Thr Ala Pro Gly Gly Ser Leu
305 310 315 320

Ser Thr Ala Gly Ala Arg Arg Arg Ser Lys Val Thr Lys Ser Val Thr
325 330 335

Ile Val Val Leu Ser Phe Phe Leu Cys Trp Leu Pro Asn Gln Ala Leu
340 345 350

Thr Thr Trp Ser Ile Leu Ile Lys Phe Asn Val Val Pro Phe Ser Gln
355 360 365

Glu Tyr Phe Gln Cys Gln Val Tyr Ala Phe Pro Val Ser Val Cys Leu
370 375 380

Ala His Ser Asn Ser Cys Leu Asn Pro Ile Leu Tyr Cys Leu Val Arg
385 390 395 400

Arg Glu Phe Arg Lys Ala Leu Lys Asn Leu Leu Trp Arg Ile Ala Ser
405 410 415

Pro Ser Leu Thr Ser Met Arg Pro Phe Thr Ala Thr Thr Lys Pro Glu
420 425 430

Pro Glu Asp His Gly Leu Gln Ala Leu Ala Pro Leu Asn Ala Thr Ala
435 440 445

Glu Pro Asp Leu Ile Tyr Tyr Pro Pro Gly Val Val Val Tyr Ser Gly
450 455 460

Gly Arg Tyr Asp Leu Leu Pro Ser Ser Ser Ala Tyr
465 470 475

<210> 15
<211> 469
<212> PRT
<213> Rat

<400> 15

Met Gln Val Ala Ser Ala Thr Thr Ala Ala Pro Met Ser Lys Ala Ala
1 5 10 15

Ala Gly Asp Glu Leu Ser Gly Phe Phe Gly Leu Ile Pro Asp Leu Leu
20 25 30

Glu Val Ala Asn Arg Ser Ser Asn Ala Ser Leu Gln Leu Gln Asp Leu
35 40 45

Trp Trp Glu Leu Gly Leu Glu Leu Pro Asp Gly Ala Ala Pro Gly His
50 55 60

Pro Pro Gly Ser Gly Gly Ala Glu Ser Ala Asp Thr Glu Ala Arg Val
65 70 75 80

Arg Ile Leu Ile Ser Ala Val Tyr Trp Val Val Cys Ala Leu Gly Leu
85 90 95

Ala Gly Asn Leu Leu Val Leu Tyr Leu Met Lys Ser Lys Gln Gly Trp
100 105 110

Arg Lys Ser Ser Ile Asn Leu Phe Val Thr Asn Leu Ala Leu Thr Asp
115 120 125

Phe Gln Phe Val Leu Thr Leu Pro Phe Trp Ala Val Glu Asn Ala Leu
130 135 140

Asp Phe Lys Trp Pro Phe Gly Lys Ala Met Cys Lys Ile Val Ser Met
145 150 155 160

Val Thr Ser Met Asn Met Tyr Ala Ser Val Phe Phe Leu Thr Ala Met
165 170 175

Ser Val Ala Arg Tyr His Ser Val Ala Ser Ala Leu Lys Ser His Arg
180 185 190

Thr Arg Gly His Gly Arg Gly Asp Cys Cys Gly Gln Ser Leu Gly Glu
195 200 205

Ser Cys Cys Phe Ser Ala Lys Val Leu Cys Gly Leu Ile Trp Ala Ser
210 215 220

Ala Ala Ile Ala Ser Leu Pro Asn Val Ile Phe Ser Thr Thr Ile Asn
225 230 235 240

Val Leu Gly Glu Glu Leu Cys Leu Met His Phe Pro Asp Lys Leu Leu
245 250 255

Gly Trp Asp Arg Gln Phe Trp Leu Gly Leu Tyr His Leu Gln Lys Val
260 265 270

Leu Leu Gly Phe Leu Leu Pro Leu Ser Ile Ile Ser Leu Cys Tyr Leu
275 280 285

Leu Leu Val Arg Phe Ile Ser Asp Arg Arg Val Val Gly Thr Thr Asp
290 295 300

Gly Ala Thr Ala Pro Gly Gly Ser Leu Ser Thr Ala Gly Ala Arg Arg
305 310 315 320

Arg Ser Lys Val Thr Lys Ser Val Thr Ile Val Val Leu Ser Phe Phe
325 330 335

Leu Cys Trp Leu Pro Asn Gln Ala Leu Thr Thr Trp Ser Ile Leu Ile
340 345 350

Lys Phe Asn Val Val Pro Phe Ser Gln Glu Tyr Phe Gln Cys Gln Val
355 360 365

Tyr Ala Phe Pro Val Ser Val Cys Leu Ala His Ser Asn Ser Cys Leu
370 375 380

Asn Pro Ile Leu Tyr Cys Leu Val Arg Arg Glu Phe Arg Lys Ala Leu
385 390 395 400

Lys Asn Leu Leu Trp Arg Ile Ala Ser Pro Ser Leu Thr Ser Met Arg
405 410 415

Pro Phe Thr Ala Thr Thr Lys Pro Glu Pro Glu Asp His Gly Leu Gln
420 425 430

Ala Leu Ala Pro Leu Asn Ala Thr Ala Glu Pro Asp Leu Ile Tyr Tyr
435 440 445

Pro Pro Gly Val Val Val Tyr Ser Gly Gly Arg Tyr Asp Leu Leu Pro
450 455 460

Ser Ser Ser Ala Tyr
465

<210> 16
<211> 17
<212> PRT
<213> Porcine
<400> 16

Asp Val Leu Ala Gly Leu Ser Ser Asn Lys Trp Gly Ser Lys Ser Glu
1 5 10 15

Ile

<210> 17
<211> 19

<212> PRT
 <213> Porcine
 <400> 17
 Arg Ala Ser Pro Tyr Gly Val Lys Leu Gly Arg Glu Phe Ile Arg Ala
 1 5 10 15
 Val Ile Phe

<210> 18
 <211> 45
 <212> DNA
 <213> Primer
 <400> 18
 acgatcgctcg acgccaccat ggccaggtac atgctgctgc tgctc 45

<210> 19
 <211> 41
 <212> DNA
 <213> Primer
 <400> 19
 acgataaagc ttcttagcaaa ggctactgat ttcacttttg c 41

<210> 20
 <211> 52
 <212> DNA
 <213> Primer
 <400> 20
 acgatagaat tcgatgacga cgataagcgg gcagcgccctt acggggtcag gc 52

<210> 21
 <211> 44
 <212> DNA
 <213> Primer
 <400> 21
 actataggat cccttagcaaa ggctactgat ttcacttttg ctac 44

<210> 22
 <211> 102
 <212> DNA
 <213> Oligo Nucleotide
 <400> 22
 ctgcaggccg ccatgctgac cgca gctt gctgagctgtg ccctgctgct ggcactgcct 60
 gccacgcgag gagactacaa ggacgacgat gacaaggaat tc 102

<210> 23
 <211> 40
 <212> DNA
 <213> Primer
 <400> 23
 acgatactgc aggccgccat gctgaccgca gcgttgctga 40

<210> 24
<211> 45
<212> DNA
<213> Primer

<400> 24
cagccaggac atctcgtcgg cccccgaagaa ccccaggggt tcctt 45

<210> 25
<211> 46
<212> DNA
<213> Primer

<400> 25
ggttcttcgg ggccgacgag atgtcctggc tggccttcc agcagc 46

<210> 26
<211> 44
<212> DNA
<213> Primer

<400> 26
actataggat cccttagcaaa ggctactgat ttcaacttttg ctac 44

<210> 27
<211> 44
<212> DNA
<213> Primer

<400> 27
gactagaagc ttgccaccat ggagctgagg ccctggttgc tatg 44

<210> 28
<211> 40
<212> DNA
<213> Primer

<400> 28
gacgatagcg gccgcagtgg gctcatcaga gggcgctctg 40