Chapter 4: Combinational Logic Circuits

Dr. Aloke Kumar Saha

Professor

Department of CSE, UAP

Chapter 4 Objectives

- Selected areas covered in this chapter.
 - Converting logic expressions to sum-of-products expressions.
 - Boolean algebra and the Karnaugh map as tools to simplify and design logic circuits.
 - Operation of exclusive-OR & exclusive-NOR circuits.
 - Designing simple logic circuits without a truth table.

 A Sum-of-products (SOP) expression will appear as two or more AND terms ORed together.

1.
$$ABC + \overline{A}B\overline{C}$$

2.
$$AB + \overline{A}B\overline{C} + \overline{C}\overline{D} + D$$

3.
$$\overline{A}B + C\overline{D} + EF + GK + H\overline{L}$$

 The product-of-sums (POS) form consists of two or more OR terms (sums) ANDed together.

1.
$$(A + \overline{B} + C)(A + C)$$

2.
$$(A + \overline{B})(\overline{C} + D)F$$

3.
$$(A + C)(B + \overline{D})(\overline{B} + C)(A + \overline{D} + \overline{E})$$

4-2 Simplifying Logic Circuits

- The circuits shown provide the same output
 - Circuit (b) is clearly less complex.

Logic circuits can be simplified using Boolean algebra and Karnaugh mapping.

4-3 Algebraic Simplification

- Place the expression in SOP form by applying DeMorgan's theorems and multiplying terms.
- Check the SOP form for common factors.
 - Factoring where possible should eliminate one or more terms.

Simplify the logic circuit shown.

The first step is to determine the expression for the output: $z = ABC + A\overline{B} \cdot (\overline{A} \ \overline{C})$

Once the expression is determined, break down large inverter signs by DeMorgan's theorems & multiply out all terms.

$$z = ABC + A\overline{B}(\overline{A} + \overline{C})$$
 [theorem (17)]
= $ABC + A\overline{B}(A + C)$ [cancel double inversions]
= $ABC + A\overline{B}A + A\overline{B}C$ [multiply out]
= $ABC + A\overline{B} + A\overline{B}C$ [$A \cdot A = A$]

Simplify the logic circuit shown.

Factoring—the first & third terms above have **AC** in common, which can be factored out:

$$z = AC(B + \overline{B}) + A\overline{B}$$

Since
$$\mathbf{B} + \mathbf{B} = 1$$
, then...

$$z = AC(1) + A\overline{B}$$
$$= AC + A\overline{B}$$

Factor out **A**, which results in...

Simplifed logic circuit.

$$z = A(C + \overline{B})$$

- To solve any logic design problem:
 - Interpret the problem and set up its truth table.
 - Write the AND (product) term for each case where output = 1.
 - Combine the terms in SOP form.
 - Simplify the output expression if possible.
 - Implement the circuit for the final, simplified expression.

Circuit that produces a 1 output only for the A = 0, B = 1 condition.

Α	В	X
0	0	0
0	1	1
1	0	0
1	1	0

Each set of input conditions that is to produce a 1 output is implemented by a separate **AND** gate.

The **AND** outputs are **OR**ed to produce the final output.

Truth table for a 3-input circuit.

Design a logic circuit with three inputs, A, B, and C. Output to be HIGH only when a majority inputs are HIGH.

Design a logic circuit with three inputs, A, B, and C. Output to be HIGH only when a majority inputs are HIGH.

Simplified output expression:

$$x = ABC + ABC + ABC + ABC + ABC + ABC$$

Implementing the circuit after factoring:

$$x = BC + AC + AB$$

Since the expression is in SOP form, the circuit is a group of **AND** gates, working into a single **OR** gate,

4-5 Karnaugh Map Method

- A graphical method of simplifying logic equations or truth tables—also called a K map.
- Theoretically can be used for any number of input variables—practically limited to 5 or 6 variables.

The truth table values are placed in the K map. Shown here is a two-variable map.

Α	В	X
0	0	$1 \rightarrow \overline{A}\overline{B}$
0	1	0
1	0	0
1	1	1 → AB

$$\left\{ x = \overline{A}\overline{B} + AB \right\}$$

	В	В
Ā	1	0
А	0	1

4-5 Karnaugh Map Method

	$\bar{C}\bar{D}$	СD	CD	$C\overline{D}$
ĀB	0	1	0	0
ĀВ	0	1	0	0
АВ	0	1	1	0
ΑĒ	0	0	0	0

Adjacent K map square differ in only one variable both horizontally and vertically.

A SOP expression can be obtained by **OR**ing all squares that contain a 1.

Looping 1s in adjacent groups of 2, 4, or 8 will result in further simplification.

Looping groups of 2 (Pairs)

Groups of 4 (Quads)

Groups of 8 (Octets)

4-5 Karnaugh Map Method

- When the largest possible groups have been looped, only the common terms are placed in the final expression.
 - Looping may also be wrapped between top, bottom, and sides.

4-5 Karnaugh Map Method

- Complete K map simplification process:
 - Construct the K map, place 1s as indicated in the truth table.
 - Loop 1s that are not adjacent to any other 1s.
 - Loop 1s that are in pairs.
 - Loop 1s in octets even if they have already been looped.
 - Loop quads that have one or more 1s not already looped.
 - Loop any pairs necessary to include 1st not already looped.
 - Form the OR sum of terms generated by each loop.

When a variable appears in both complemented and uncomplemented form within a loop, that variable is eliminated from the expression.

Variables that are the same for all squares of the loop must appear in the final expression.

4-5 Algorithm for K-Map

- Step 1 Construct the K map and place 1s in those squares corresponding to the 1s in the truth table.
 Place 0s in the other squares.
- Step 2 Examine the map for adjacent 1s and loop those 1s that are not adjacent to any other 1s.
 These are called isolated 1s.
- Step 3 Next, look for those 1s that are adjacent to only one other 1. Loop any pair containing such a 1.
- Step 4 Loop any octet even if it contains some 1s that have already been looped.

4-5 Algorithm for K-Map

- Step 5 Loop any quad that contains one or more 1s that have not already been looped, making sure to use the minimum number of loops.
- Step 6 Loop any pairs necessary to include any 1s that have not yet been looped, making sure to use the minimum number of loops.
- Step 7 Form the OR sum of all the terms generated by each loop.

 The exclusive OR (XOR) produces a HIGH output whenever the two inputs are at opposite levels.

Exclusive **OR** circuit and truth table.

Output expression: $x = \overline{AB} + A\overline{B}$

This circuit produces a HIGH output whenever the two inputs are at opposite levels.

Traditional **XOR** gate symbol.

An **XOR** gate has only *two* inputs, combined so that $\mathbf{x} = \overline{\mathbf{A}}\mathbf{B} + \overline{\mathbf{A}}\overline{\mathbf{B}}$.

A shorthand way indicate the **XOR** output expression is: $\mathbf{x} = \mathbf{A} \oplus \mathbf{B}$.

...where the symbol \oplus represents the **XOR** gate operation.

Output is HIGH only when the two inputs are at different levels.

Quad XOR chips containing four XOR gates.

74LS86 Quad XOR (TTL family)

74C86 Quad XOR (CMOS family)

74HC86 Quad XOR (high-speed CMOS)

- The exclusive NOR (XOR) produces a HIGH output whenever the two inputs are at the same level.
 - XOR and XNOR outputs are opposite.

Exclusive NOR circuit and truth table.

Α	В	Х
0	0	1
0	1	0
1	0	0
1	1	1

Output expression: x = AB + AB

XNOR produces a HIGH output whenever the two inputs are at the same levels.

Traditional XNOR gate symbol.

An **XNOR** gate has only *two* inputs, combined so that $\mathbf{x} = \mathbf{AB} + \overline{\mathbf{AB}}$.

A shorthand way indicate the **XOR** output expression is: $\mathbf{x} = \overline{\mathbf{A} \oplus \mathbf{B}}$.

XNOR represents inverse of the **XOR** operation.

Output is HIGH only when the two inputs are at the same level.

Quad XNOR chips with four XNOR gates.

74LS266 Quad **XNOR** (TTL family)
74C266 Quad **XOR** (CMOS)
74HC266 Quad **XOR** (high-speed CMOS)

4-7 More Examples about this chapter

Example 1 Design a logic circuit whose output is HIGH only when a majority of inputs are HIGH.

Example 2 Design a logic circuit whose output is HIGH only when a majority of inputs are LOW.

Example 3 Design a logic circuit that follows the following requirements:

- a) Output X will equal A when B and C are the same.
- b) X will remain HIGH when B and C are different.

4-7 More Examples about this chapter

Example 4 A four-bit binary number is represented as DCBA, where D, C, B, and A represent the individual bits and A is equal to the LSB. Design a logic circuit that will produce a HIGH output whenever the binary number is greater than 0010 and less than 1010.

Example 5 A 4-bit binary number is represented as D C B A, where D, C, B and A represent the individual bits with A equal to the LSB. Design a logic circuit that will produce a HIGH output whenever (the binary number is greater than 0011 and less than 1011) or (all inputs are LOW) or (all inputs are HIGH).

4-7 More Examples about this chapter

Example 6 Design a logic circuit which has four inputs A, B, C, D and an output Y that is to be HIGH only when input A is HIGH at the same time that at least two other inputs are HIGH. Design the circuit.

Example 7 Implement the function F(A, B, C, D) = $\Sigma(0, 1, 2, 3, 6, 7, 9, 11, 14, 15)$ using K-map.

Example 8 Implement the function $F(A, B, C, D) = \sum (0, 2, 3, 4, 8, 9, 12, 13, 14, 15)$ using K-map.

•

Example 9 Simplify the following expression using K map Y=ABCD+A`B`CD+ABC`D`+ABC+ AB +CD+A

	A`B`	AB`	AB	A`B
C,D,		1	1	
CD,		1	1	
CD	1	1	1	1
C,D		1	1	

Final Result:

$$Y=A+CD$$

•

Example 10 Simplify the following expression using K map Y=A`B`C`D`+C`D+AB`C+D`

	A`B`	AB`	AB	A`B
C,D,	1	1	1	1
CD,	1	1	1	1
CD		1		
C,D	1	1	1	1

Final Result:

$$Y=D'+C'+AB'$$

4-8 Indexing

	A'B'	AB`	AB	A`B
C,D,	0	1	3	2
CD,	4	5	7	6
CD	12	13	15	14
C,D	8	9	11	10

4-8 Indexing

	A`B`	AB`	AB	A`B
C`	0	1	3	2
С	4	5	7	6