83 for coin A P(head) =
$$\frac{22}{30}$$

P(tail) = $\frac{8}{30}$

FOR cain B

P(head) = $\frac{3}{10}$

P(tail) = $\frac{7}{10}$

P(c₁= HHHTHTHHHHT) | c₁ = A |

= $(\frac{22}{30})^{\frac{7}{3}} (\frac{8}{30})^{\frac{3}{30}} - (\frac{3}{30})^{\frac{7}{30}}$

P(c₁= HHHTHTHHHHT | c₁ = B |

P(c₁= HHHTHTHHHHT | c₁ = B |

P(c₁= HHHTHTHHHHT | c₂ = A |

= $(\frac{30}{30})^{\frac{7}{30}} (\frac{8}{30})^{\frac{7}{30}} - (\frac{9}{30})^{\frac{9}{30}}$

P(c₃= HHTHTHTTHT | c₃= A |

= $(\frac{22}{30})^{\frac{9}{30}} (\frac{8}{30})^{\frac{7}{30}} - (\frac{9}{30})^{\frac{9}{30}}$

Applying bays theorem on eq (1) (2) & (3) & 4 P(C1=A HHHTHTHHHT) $= \frac{(22)^{7}(8)^{3}}{(30)^{7}(8)^{3}}$ $= \frac{(22)^{7}(8)^{3}}{(30)^{7}(10)^{7}(10)^{3}}$ PCG2=A TTTHTHTTHT) $-\frac{(22)^{3}(8)^{7}}{(30)^{3}(30)^{7}}$ $= \frac{30}{30} \left(\frac{30}{30} \right) \left(\frac{3}{30} \right)^{\frac{7}{10}} \left(\frac{3}{30} \right)^{\frac{7}{10}} \left(\frac{3}{30} \right)^{\frac{7}{10}} \left(\frac{3}{10} \right)$ P(C3 = A | HHTHTHTTT) = $(22/10)^{4}$ $(8/30)^{6}$ $\left(\frac{22}{30}\right)^4 \left(\frac{8}{30}\right)^6 + \left(\frac{3}{10}\right)^4 \left(\frac{7}{30}\right)^6$