

SSC MAINS (MATH) MOCK TEST - 4 (SOLUTION)

- 1. (D) Total no. of marbles kept in 50th box = sum of factors fo 50 = 1 + 2 + 5 + 10 + 25 + 50
- 2. (C) Let x be the required number
- and a be its first part so, (x - a) will be its second part Now, A.T.Q,

$$0.8a = 0.6(x - a) + 3$$

or,
$$0.8a + 0.6a = 0.6x + 3$$

or,
$$1.4a = 0.6x + 3$$

$$\Rightarrow a = \frac{0.6x + 3}{1.4}$$
 (i)

$$0.9a + 6 = 0.8(x - a)$$

or,
$$0.9a + 0.8a = 0.8 x - 6$$

or,
$$1.7a = 0.8x - 6$$

$$\Rightarrow a = \frac{0.8x - 6}{1.7}$$
 -----(ii)

from (i) & (ii),

$$\frac{0.6x+3}{1.4} = \frac{0.8x-6}{1.7}$$

$$\Rightarrow$$
 1.02 x + 5.1 = 1.12 x - 8.4

$$\Rightarrow 0.1x = 13.5$$

$$\Rightarrow x = \frac{13.5}{0.1} = 135$$

Alternative method

$$\frac{4}{5}a = \frac{3}{5}(x-a) + 3$$

$$\Rightarrow \left(\frac{4}{5} + \frac{3}{5}\right)a = \frac{3}{5}a + 3 - (i)$$

also
$$\frac{9}{10}a + 6 = \frac{4}{5}(x - a)$$

$$\Rightarrow \left(\frac{9}{10} + \frac{4}{5}\right)a = \frac{4}{5}x - 6 \quad \dots (ii)$$

from (i) & (ii), we get,

$$\left(\frac{3}{5}x+3\right)\times\left(\frac{9+8}{10}\right) = \left(\frac{4}{5}x-6\right)\times\left(\frac{4+3}{5}\right)$$

or,
$$\frac{51}{50}x + \frac{51}{10} = \frac{28}{25}x - \frac{42}{5}$$

or,
$$\left(\frac{56}{50} - \frac{51}{50}\right)x = \frac{51}{10} + \frac{42}{5}$$

$$\Rightarrow X = \frac{135}{10} \times \frac{50}{5}$$

$$x = 135$$

3. (A) Let the two digit number be 10y + x where

$$\therefore 10x + y - 10y - x = 63$$

$$\Rightarrow$$
 $9x - 9y = 63$

$$\Rightarrow x - y = 7$$

$$x = 7, 8, 9 \text{ and } y = 0, 1, 2$$

 \Rightarrow possible values of x are 7,8,9

4. (A) For every $n \ge 4$;

n! will be divisible by 8

⇒ remainder will be zero

[because for $n \ge 4$, 8 will be a factor of n!] So, remainder of 1! + 2! + 3! + 4! + + 100! wil be equal to the remainder of 1! + 2! + 3!

$$1! + 2! + 3! = 1 + 2 + 3 = 9$$

and
$$\frac{9}{8}$$
; R = 1

5. (D) H.C.F. = x and L.C.M. = y

$$\Rightarrow A \times B = X \times Y$$

So,
$$A^3 + B^3 = (A + B)^3 - 3AB(A + B)$$

= $(x + y)^3 - 3xy(x + y)$
= $x^3 + y^3 + 3xy(x + y) - 3xy(x + y)$
= $x^3 + y^3$

6. (A)
$$(x)^{\frac{1}{2}} = (y)^{\frac{1}{3}} \Rightarrow (x)^{\frac{1}{1/3}} = (y)^{\frac{1}{1/2}} \Rightarrow (x)^3 = (y)^2$$

7. (C) Required average age of 2 persons

$$= \frac{30 + 34 + (8 \times 3)}{2} = 44 \text{ yrs.}$$

8. (*) Required average age just before the birth of the youngest member

$$= \frac{(10 \times 20) - (10 \times 10)}{10 - 1}$$

$$=\frac{100}{9}=11.11$$
 yrs.

9.(C) Weight of first member = x kgWeight of second member = (x + 2)

Weight of fifth member = (x + 8) kg

10. (A) Average speed = Total distance covered

$$= \frac{(6+8+40)km}{(15+15+15)min}$$

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

=	54 km	54 km
	45 min	$= \frac{45}{60} \text{ hr.}$

= 72 km/hr.

- 11. (C) Age of the captain
 - $= (11 \times 30) \{(5 \times 29) + (5 \times 27)\}$
 - = (330 280) yrs.
 - = 50 yrs.
- 12.(B) $(2m + 4b) \times 10 = (4m + 5b) \times 6$
 - \Rightarrow 20m + 40b = 24m + 30b
 - \Rightarrow 4m = 10b \Rightarrow 2m = 5b
 - So, $5b = 2 \times 40$

$$\Rightarrow b = \frac{2 \times 40}{5} = 16$$

- ∴ Required ratio = 40 : 16 = 5 : 2
- 13.(B) In case I.

Let the number of shirts of brand B be x. Let the cost of a shirt of brand B be $^{\circ}$ 1

 $\therefore \text{ Original cost} = 4 \times 2 + x = (8 + x)$ In case II.

$$4x + 2x = (8 + x) \times \frac{140}{100} = (8 + x) \frac{7}{5}$$

- \Rightarrow 20 + 10x = 56 + 7x
- $\Rightarrow 10x 7x = 56 20 = 36$
- \Rightarrow 3x = 36 \Rightarrow x = 12
- \therefore Required ratio = 4:12 = 1:3
- 14.(C) Half the sum = 18
 - ⇒ total sum = 36
 - \Rightarrow Nos. will be 6, 12 and 18

So, ratio of squares = 6^2 : 12^2 : 18^2

- = 36 : 144 : 324
- 15. (B) A.T.Q,

$$\frac{A}{6} = \frac{J}{4} = \frac{2}{5}R$$

- \Rightarrow A : J : R
 - $= 6 : 4 : \frac{5}{2}$
 - = 12 : 8 : 5
- ⇒ Apoorva's share

$$= \frac{12}{(12+8+5)} \times 2250$$

- = Rs. 1080
- 16. (A) S.P. at 20% profit = Rs. 9/litre

$$\Rightarrow$$
 Cost of mixture = $\frac{9}{120} \times 100$ = Rs. 7.5/litre

Now, let the ratio of milk and water in the mixture = x:y

$$\Rightarrow \frac{(10 \times x) + (0 \times y)}{x + y} = 7.5$$

$$\Rightarrow$$
 10x = 7.5 (x + y)

$$\Rightarrow$$
 2.5 $x = 7.5 y$

$$\Rightarrow x = 3y$$

$$\Rightarrow x: y = 3:1$$

- 17.(D) Ratio of equivalent capitals of A, B and C for 1 month
 - $= (40500 \times 6 + 45000 \times 6): (45000 \times 12)$
 - : (60000×6+45000×6)
 - $= (405+450): (450 \times 2): (600 + 450)$
 - = 855 : 900 : 1050
 - = 171 : 180 : 210
 - = 57 : 60 : 70

Sum the ratios = 57 + 60 + 70 = 187

Required difference = $\frac{70-57}{187}$ = 56100

$$= \frac{13}{187} \times 56100 = 3900$$

18. (A) Let the cost price of 1 orange = Re. 1.

∴ C.P. of 1 banana = Rs.
$$\frac{3}{4}$$

and C.P. of 1 apple = Rs. $\frac{3}{2}$

New prices:

1 orange = Re. 1.1

1 banana
$$\equiv \frac{3}{4} \times \frac{110}{100} = \text{Rs. } 0.825$$

1 apple
$$=\frac{3}{2} \times \frac{110}{100} = \text{Rs. } 1.65$$

- ∴ Original price of (4 bananas + 2 apples + 3 oranges)
- = Rs. (3 + 3 + 3) = Rs. 9

New price of (4 banana + 2 apples + 3 oranges)

- $= Rs. (4 \times 0.825 + 2 \times 1.65 + 3 \times 1.1)$
- = Rs. (3.3 + 3.3 + 3.3) = 9.9
- .. Percentage increase

$$= \frac{9.9 - 9}{9} \times 100 = 10\%$$

- 19. (A) Let the no. be x
 - ⇒ % change

$$= \frac{original\ result-changed\ result}{original\ result} \times 100\%$$

$$=\frac{5x-\frac{x}{5}}{5x}\times100\%$$

$$= \frac{25x - x}{25x} \times 100\%$$

$$=\frac{24x}{25x} \times 100\% = 96\%$$

An ISO 9001: 2008 Certified Company

'œS at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

- 20. (C) 20% decrease in price
 - ⇒ 25% increase in consumption

(when expenditure is constant)

⇒ increased amount of sugar = 25% of 20kg

$$= 5 \text{ kg}$$

- ⇒ Total amount now of sugar = (20 + 5) kg
 - = 25 kg
- 21. (C) Votes got by Rahul Gandhi

= (100-10)% of
$$\frac{4}{5}$$
 of total voters

= 90% of
$$\frac{4}{5}$$
 of total voters

$$= \frac{9}{10} \times \frac{4}{5} \text{ of total voters}$$

$$= \frac{18}{25}$$
 of total voters

= 216 voters ----- (i)

Now, Votes got by Varun Gandhi

= (100-20)% of
$$\left(1 - \frac{4}{5}\right)th$$
 of the total voters

= 80% of
$$\frac{1}{5}th$$
 of total voters

$$= \frac{4}{5} \times \frac{1}{5} \text{ of total voters}$$

$$= \frac{4}{25}$$
 of total voters

$$=\frac{216}{18} \times 4 = 48 \text{ voters}$$

So, total no. of votes polled = (216 + 48) votes = 264 votes

- 22. (C) 10% reduction in price
 - ⇒ 11.11% increase in quantity (when expenditure is constant)

A.T.Q,

11.11% of original amount of wheat = 50 gm

⇒ Original amount (ie.100%) of wheat

$$= (50 \times 9) \text{ gm}$$

 $= 450 \, gm$

23. (A) C.P. of each book sold by publisher

$$= \frac{^{1}70,000}{2000 - 400}$$

S.P. of each book sold by publisher

So, % gain =
$$\frac{52.5 - 43.75}{43.75} \times 100\%$$

- (∵ S.P. > C.P.)
 - = 20% gain
- 24.(C) If the C.P. of wrist watch be x then C.P. of wall clock = (390 - x)

So,
$$\frac{x \times 10}{100} + \frac{(390 - x) \times 15}{100} = 51.50$$

- 10x + 5850 15x = 5150
- 5x = 5850 5150 = 700

$$\Rightarrow x = \frac{700}{5} = 140$$

- C.P. of wall clock = 390 140 = 250
- Required difference = 250 140 = 110

25.(A)

$$\therefore$$
 (40 – 20)% = Re1

- So, $120\% = \frac{1}{20} \times 120 = 6$
- 26. (B) Required Marked price

$$= 210 \times \frac{120}{100} \times \frac{100}{(100 - 12.5)}$$
$$= 210 \times \frac{120}{87.5}$$

- 27. (D) Let the C.P. = x
 - So, S.P. in 1st case = 1.05x
 - now, C.P. in 2nd case = 0.95x
 - S.P. in 2nd case = 1.05x 2and
 - Now, A.T.Q. $0.95x \times 1.1 = 1.05x 2$

or,
$$1.045x = 1.05x - 2$$

$$\Rightarrow$$
 1.05 x - 1.045 x = 2

$$\Rightarrow$$
 0.005 $x = 2$

$$\Rightarrow x = \frac{2}{0.005} = 400$$

28.(C) Discount on $36000 = \frac{3600 \times 7}{100} = 2520$

Discount on first
$$20,000 = \frac{20000 \times 8}{100}$$

Discount on next
$$10,000 = \frac{10,000 \times 5}{100}$$

Discount on remaining . 6,000

- Required percent = $\frac{420 \times 100}{6000}$ = 7%
- 29. (B) Net discount given by A

$$=\left(5+25-\frac{5\times25}{100}\right)\% = 28.75\%$$

& Net discount given by B

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

 $= \left(16 + 12 - \frac{16 \times 12}{100}\right)\% = 26.08\%$

- ⇒ A is giving more discount
- ⇒ it is more profitable to purchase the fan from A.

30.(C) Single equivalent discount = $\left(p+q-\frac{pq}{100}\right)\%$

- 31. (A) Required ratio = (15× 22) : (11 × 25) = 330 : 275 = 6 : 5
- 32. (D) Let Rs. x = quaterly payment given, r = 16% per annum So, rate of interest per quarter

$$=\frac{16}{4}=4\%$$
 per quarter

Also,

No. of quarters in 2 years = 4×2 = 8 quarters

So, $8x + (7 + 6 + 4 + 3 + 2 + 1) \times 4\%$ of x = 2280

or,
$$8x + \left(\frac{7 \times 8}{2}\right) \times 4\%$$
 of $x = 2280$

$$\left[\because 1 + 2 + 3 + ... + n = \frac{n(n+1)}{2} \right]$$

or, 8x + 112% of x = 2280or, 800% of x + 112% of x = 2280 $\Rightarrow 912\%$ of x = 2280

So,
$$x = \frac{2280 \times 100}{912} = ₹ 250$$

Direct Method:-

Quarterly Payment

$$= \frac{100 \times 2280}{100 \times 8 + \frac{4 \times 8 \times 7}{2}}$$

$$= \frac{100 \times 2280 \times 2}{1600 + 224} = 250$$

33. (D) Let x be the required annual payment. So, also, r = 10% p.a. and t = 3 years

$$\begin{bmatrix}
1 & \xrightarrow{+10\%} & 1.1 \\
\text{So, } (1 + 1.1 + 1.21)x = 3310 \times (1.1)^3 \\
\text{or,} & 3.31x = 3310 \times 1.331
\end{bmatrix}$$

$$X = \frac{3310 \times 1.331}{3.31}$$
$$= Rs. 1331$$

Direct Method:-

Annual payment =
$$\frac{3310}{\left(\frac{10}{11} + \frac{100}{121} + \frac{1000}{1331}\right)}$$
$$= \frac{3310 \times 1331}{121}$$

$$= \frac{1}{(1210 + 1100 + 1000)}$$

$$= 1331$$

34.(C) A = P
$$\left(1 + \frac{R}{100}\right)^T$$

$$\Rightarrow 3 = 1 \left(1 + \frac{R}{100} \right)^3$$

On squaring both sides,

$$9 = 1 \left(1 + \frac{R}{100}\right)^6$$

35. (A) Cash price of refrigerator

$$= 1500 + \left(1020 \times \frac{10}{11}\right) + \left(1003 + \frac{100}{121}\right) + \left(990 \times \frac{1000}{1331}\right)$$

$$= 1500 + \left\{ \frac{(10200 \times 121) + (100300 \times 11) + 990000)}{1331} \right\}$$

$$= 1500 + \left(\frac{1234200 + 1103300 + 990000}{1331}\right)$$

$$= 1500 + \frac{3327500}{1331}$$

Alternative Method:-

Cash price of refrigerator

$$= 1500 + \frac{1020}{1.1} + \frac{1003}{(1.1)^2} + \frac{990}{(1.1)^3}$$

$$= 1500 + \frac{1020}{1.1} + \frac{1003}{1.21} + \frac{990}{1.331}$$

36. (D) When B works normally then days taken by B to complete the work

$$= \frac{20 \times 12}{20 - 12} \text{ days}$$
$$= 30 \text{ days}$$

Now, If B does the work only half a day daily

- ⇒ B will take twice the total days to momplete the whole work alone
- ⇒ Now No. of days taken by B

$$= (30 \times 2)$$
 days

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

Now days taken by (A + B) together to do the

whole work =
$$\frac{20 \times 60}{20 + 60}$$
 = 15 days

- 37.(A) Let time taken by B in completing the work = x day
 - \therefore Time taken by A (x 10) days

$$\therefore \frac{1}{x} + \frac{1}{x - 10} = \frac{1}{12}$$

$$\Rightarrow \frac{x-10+x}{x(x-10)} = \frac{1}{12}$$

$$\Rightarrow 24x - 120 = x^2 - 10x$$

$$\Rightarrow x^2 - 34x + 120 = 0$$

$$\Rightarrow x^2 - 30x - 4x + 120 = 0$$

$$\Rightarrow x(x-30) - 4(x-30) = 0$$

$$\Rightarrow$$
 $(x-4)(x-30)=0$

- \Rightarrow x 30 because x \neq 4
- 38. (C) Let days taken by A to do the whole work = x days
 - So, days taken by B to do the whole work = (x 5) days
 - and, days taken by C to do the whole work = (x 9) days

Now, ATQ,

- Days taken by (A + B) together to do the whole work
- = Days taken by C alone to do the whole work

$$\Rightarrow \frac{x(x-5)}{x+(x-5)} = x-9$$

or,
$$x^2 - 5x = (x - 9)(2x - 5)$$

or,
$$x^2 - 5x = 2x^2 - 5x - 18x + 45$$

or,
$$x^2 - 18x + 45 = 0$$

or,
$$x^2 - 15x - 3x + 45 = 0$$

or,
$$x(x-15) - 3(x-15) = 0$$

or,
$$(x-3)(x-15) = 0 \Rightarrow x = 3 \text{ or } 15$$

- but x = 3 is not possible as x 5 or x 9 will become negative.
- So, x = 15 days
- 39.(B) Time $\alpha \frac{1}{\text{cross-sectional area of the pipe}}$

Time
$$\alpha \frac{1}{\frac{\pi}{4}d^2}$$

Time
$$\alpha \frac{1}{d^2}$$

$$\therefore \quad \frac{t_2}{t_1} = \frac{(\mathsf{d}_1)^2}{(\mathsf{d}_2)_2}$$

So,
$$t_2 = t_1 \left(\frac{d_1}{d_2}\right)^2$$

 $t_1 = 40 \text{ minutes}, d_1 = d, d_2 = 2d$

$$\therefore t_2 = 40 \left(\frac{d}{2d}\right)^2$$

$$t_2 = 40 \left(\frac{1}{2}\right)^2$$

 $t_2 = 10 \text{ minutes}$

- \Rightarrow time taken by a pipe of diameter 2d for doing the same job = 10 minutes
- 40.(C) Let the capacity of the tank be *x* gallons. Quantity of water filled in the tank in 1 minute when all the pipes A, B and C are
 - opened simultaneously = $\frac{x}{20} + \frac{x}{24} 3$
 - According to the question, $\frac{x}{20} + \frac{x}{24} 3 = \frac{x}{15}$

$$\Rightarrow \frac{x}{20} + \frac{x}{24} - \frac{x}{15} = 3$$

$$\Rightarrow \frac{6x + 5x - 8x}{120} = 3$$

$$\Rightarrow$$
 3x = 3 × 120

$$\Rightarrow$$
 $x = \frac{3 \times 120}{3} = 120$ gallons

- 41. (B) Let speed of car = x km/hr.
 - Here, Distance covered by the car in 27 minutes = Distance covered by the sound in (28 minutes 30 seconds – 27 minutes)

$$\Rightarrow x \text{ km/hr} \times \left(\frac{27}{60}\right) \text{hr}.$$

$$= \left(330 \times \frac{18}{5} \text{km/hr}\right) \times \left(\frac{1.5}{60} \text{hr}\right)$$

$$\Rightarrow x = 330 \times \frac{18}{5} \times \frac{1.5}{60} \times \frac{60}{27} = 66$$

- \Rightarrow Speed of car = 66 km/hr.
- 42. (D) In the race between Sonu and Monu.

 Distance travelled by Sonu and Monu
 in same time = 600 mtr. & (600 60)mtr
 - = 600 mtr. & 540 mtr.
 - ⇒ In the same time,

 Patio of distance travelled by
 - Ratio of distance travelled by Sonu & Monu = 10: 9

Similarly,

In the same time,

Ratio of distance travelled by Monu &

= 300 . 47

So,

In the same time,

Ratio of distance travelled by Sonu,

Monu & Bablu

ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

 $= 10 \times 20 : 9 \times 20 : 9 \times 19$ 200: 180:171

- ⇒ When Sonu travels 200 m, Bablu will travel 171 m
- So, When Sonu travels 400 m, Bablu will travel 342 m
- ⇒ In 400 m race between Sonu & Bablu, Required No. of metres by which Sonu will win the race

= 400 m - 342 m= 58 m

43. (A) Let x = length of the faster train (in mtr.)

So, 36 seconds = $\frac{x+10}{(40-20)kmph}$

- \Rightarrow $x = 36 \text{ second} \times 20 \times \frac{5}{18} \text{ m/sec}$ = 200 mtr.
- 44. (A) Speed of boat in still water = $\frac{S_{down} + S_{up}}{2}$

 $=\frac{x+y}{2}=0.5(x+y)$

45.(C) Expression

= 4 + 44 + 444 +..... to *n* terms

= 4 (1 + 11 + 111 + to n terms)

 $=\frac{4}{9}$ (9 + 99 + 999 + to *n* terms)

 $=\frac{4}{9}[(10-1)+(100-1)+(1000-1)+\dots$ to n

termsl

 $=\frac{4}{9}[(10+10^2+10^3+......to n terms) - n]$

 $=\frac{4}{9}[10(1+10+10^2+.....to n terms)-n]$

 $=\frac{40}{9}\left(\frac{10^n-1}{9}\right)-\frac{4}{9}$ n

 $[\because 1 + 10 + 10^2 + \dots to n \text{ terms} = \frac{10^n - 1}{9}]$

 $=\frac{40}{81}(10^{n}-1)-\frac{4}{9}n$

46. (B) $180 = 2 \times 2 \times 3 \times 3 \times 5$

 $a^3b = abc$

 $\Rightarrow a^2 = bc$

 $a^3b = abc = 180 = 1^2 \times 180 \times 1$

- \Rightarrow 1³ ×180
- \Rightarrow c = 1

47. (C) a + b + c = 0

 \Rightarrow b + c = -a

On squaring both sides, we get

 $(b+c)^2=a^2$

 \Rightarrow $b^2 + c^2 = 2bc = a^2$

 $\Rightarrow a^2 + b^2 + c^2 + 2bc = 2a^2$

 $\Rightarrow a^2 + b^2 + c^2 = 2a^2 - 2bc$

 $= 2 (a^2 - bc)$

 $\therefore \frac{a^2 + b^2 + c^2}{a^2 - bc} = \frac{2(a^2 - bc)}{a^2 - bc} = 2$

48. (D) $(a-1)\sqrt{2}+3=b\sqrt{2}+a$

 $\Rightarrow a = 3 : a - 1 = b$

- \Rightarrow 3 1: $b \Rightarrow b = 2$
- $\therefore a + b = 3 + 2 = 5$
- 49.(B) OP = 2

 $OQ = \frac{3}{2}$

 $\therefore PQ = \sqrt{OP^2 + OQ^2}$

 $=\sqrt{2^2+\left(\frac{3}{2}\right)^2}$

 $=\sqrt{4+\frac{4}{9}}$

 $=\sqrt{\frac{16+9}{4}} = \sqrt{\frac{25}{4}} = \frac{5}{2} = 2.5$ cm

50.(A)

Putting x = 0 in 9x - 12y = 108,

we get, y = -9

Putting y = 0 in 9x - 12y = 108,

we get, x = 12

 \therefore OA = 12, OB = 9

 \therefore AB = $\sqrt{OA^2 + OB^2}$

 $=\sqrt{12^2+9^2}$

- $=\sqrt{144+81}$
- $=\sqrt{225}$

15 units

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

51.(A)
$$\left(x + \frac{1}{x}\right)^2 = 3$$

$$\Rightarrow X + \frac{1}{X} = \sqrt{3}$$

On cubing both sides.

$$x^3 + \frac{1}{x^3} + 3 \left(x + \frac{1}{x}\right) = 3\sqrt{3}$$

$$\Rightarrow X^3 + \frac{1}{X^3} = 3\sqrt{3} - 3\sqrt{3} = 0$$

$$\Rightarrow x^6 + 1 = 0$$

52. (A)
$$\frac{\sqrt{7}}{\sqrt{16+6\sqrt{7}}-\sqrt{16-6\sqrt{7}}}$$

$$= \frac{\sqrt{7}}{\sqrt{9+7+2\times 3\times \sqrt{7}} - \sqrt{9+7-2\times 3\times \sqrt{7}}}$$

$$= \frac{\sqrt{7}}{\sqrt{(3)^2 + (\sqrt{7})^2 + 2 \times 3 \times \sqrt{7}} - \sqrt{(3)^2 + (\sqrt{7})^2 - 2 \times 3 \times \sqrt{7}}}$$

$$= \frac{\sqrt{7}}{\sqrt{(3+\sqrt{7})^2} - \sqrt{(3-\sqrt{7})^2}}$$

$$=\frac{\sqrt{7}}{\sqrt{(3+\sqrt{7})}-\sqrt{(3-\sqrt{7})}}=\frac{\sqrt{7}}{2\sqrt{7}}=\frac{1}{2}$$

53. (B)
$$\frac{2x^2 + 3xy + 2y^2}{2x^2 - 3xy + 2y^2} = \frac{2(x^2 + y^2 + 2xy) - xy}{2(x^2 + y^2 - 2xy) + xy}$$

$$= \frac{2(x+y)^2 - xy}{2(x-y)^2 + xy} = \frac{2 \times (6)^2 - 1}{2 \times (4\sqrt{2})^2 + 1} = \frac{2 \times 36 - 1}{2 \times 32 + 1}$$

$$=\frac{71}{65}$$

$$\therefore x = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} \text{ and } xy = 1 \Rightarrow y = \frac{1}{x} = \frac{\sqrt{2} - 1}{\sqrt{2} + 1}$$
$$\Rightarrow x + y = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} + \frac{\sqrt{2} - 1}{\sqrt{2} + 1} = 6$$
and $x - y = \frac{\sqrt{2} + 1}{\sqrt{2} - 1} - \frac{\sqrt{2} - 1}{\sqrt{2} + 1} = 4\sqrt{2}$

$$\int \sqrt{2-1} \sqrt{2+1}$$
54. (D) $\frac{x}{2a} = \frac{2b}{a+b}$

Apply C & D,

$$\frac{x+2a}{x-2a} = \frac{a+3b}{b-a}$$
 (1)

Again,

$$\frac{x}{2b} = \frac{2a}{a+b}$$

Apply C & D,

$$\frac{x+2b}{x-2b} = \frac{3a+b}{a-b} \qquad \dots (2)$$

Now,

$$\frac{x+2a}{x+2b} + \frac{x+2b}{x-2b} = \frac{a+3b}{-(a-b)} + \frac{3a+b}{a-b}$$
$$= \frac{-a-3b+3a+b}{a-b}$$
$$= \frac{2a-2b}{a-b} = 2$$

55. (C)
$$\left(\frac{1}{\cos\theta} + \frac{1}{\cot\theta}\right) \left(\frac{1}{\cos\theta} - \frac{1}{\cot\theta}\right)$$

$$= \left(\frac{1}{\cos\theta} + \frac{\sin\theta}{\cos\theta}\right) \left(\frac{1}{\cos\theta} - \frac{\sin\theta}{\cos\theta}\right)$$

$$= \left(\frac{1+\sin\theta}{\cos\theta}\right)\left(\frac{1-\sin\theta}{\cos\theta}\right)$$

$$= \frac{1-\sin^2\theta}{\cos^2\theta} = \frac{\cos^2\theta}{\cos^2\theta} = 1$$

56. (C)
$$\frac{9}{\csc^2\theta} + 4\cos^2\theta + \frac{5}{1 + \tan^2\theta}$$

$$= 9\sin^2\theta + 4\cos^2\theta + \frac{5}{\sec^2\theta}$$

$$= 5\sin^2\theta + 4\sin^2\theta + 4\cos^2\theta + 5\cos^2\theta$$

$$= 5(\sin^2\theta + \cos^2\theta) + 4(\sin^2\theta + \cos^2\theta)$$

$$= (5 \times 1) + (4 \times 1)$$

$$= 5 + 4$$

here, h = height of tower AB

$$\tan\theta = \frac{h}{a} - \dots (i)$$

$$\tan(90^{\circ}-\theta) = \frac{h}{h}$$

$$\Rightarrow \tan \theta = \frac{b}{h}$$
(ii)

from (i) and (ii),

$$\frac{h}{a} = \frac{b}{a} \implies h = \sqrt{ab}$$

58.(A) CD = h metre, AB = 2h metre

$$OB = OD = \frac{x}{2}$$
 metre

From ∆OCD,

$$\tan \theta = \frac{h}{\frac{x}{2}} = \frac{2h}{x}$$
 (i)

From ∆OAB,

$$\tan (90^{\circ} - \theta) = \frac{AB}{BO}$$

$$\Rightarrow$$
 cot $\theta = \frac{2h}{\frac{x}{2}} = \frac{4h}{x}$ (ii)

Multiplying both equations,

$$\tan \theta \cdot \cot \theta = \frac{2h}{x} \times \frac{4h}{x}$$

$$\Rightarrow x^2 = 8h^2$$

$$\Rightarrow h = \frac{x}{2\sqrt{2}}$$
 meter

59. (C) $\tan 2\theta$. $\tan 3\theta = 1$

$$\Rightarrow$$
 tan 3 $\theta = \frac{1}{\tan 2\theta} = \cot 2\theta$

$$\Rightarrow$$
 tan 3 θ = tan (90° - 2 θ)

$$\Rightarrow$$
 3 θ = 90° - 2 θ \Rightarrow 5 θ = 90°

$$\Rightarrow$$
 A = 18°

$$\therefore 2\cos^2 \frac{5\theta}{2} - 1 = 2\cos^2 45^\circ - 1$$

$$=2\times\frac{1}{2}-1=0$$

60.(B)
$$\sin 17^\circ = \frac{x}{y}$$

$$\cos 17^{\circ} = \sqrt{1 - \sin^2 17^{\circ}}$$

$$= \sqrt{1 - \frac{x^2}{y^2}} = \sqrt{\frac{y^2 - x^2}{y^2}}$$

$$= \sqrt{\frac{y^2 - x^2}{v^2}}$$

$$\therefore \quad \sec 17^\circ = \frac{y}{\sqrt{y^2 - x^2}}$$

$$\sin 73^\circ = \sin (90^\circ - 17^\circ) = \cos 17^\circ$$

$$= \frac{y}{\sqrt{y^2 - x^2}} - \frac{\sqrt{y^2 - x^2}}{y}$$

$$= \frac{y^2 - y^2 + x^2}{y\sqrt{y^2 - x^2}} = \frac{x^2}{y\sqrt{y^2 - x^2}}$$

61.(B)

$$XZ - YZ = 2$$
 (i) $\Rightarrow XY^2 + YZ^2 = XZ^2$

$$\Rightarrow XY^2 + YZ^2 = XZ^2$$

$$\Rightarrow (2\sqrt{6})^2 = XZ^2 - YZ^2$$

$$\Rightarrow$$
 24 = (XZ - YZ) (XZ+YZ)

$$2 \times Z = 14 \Rightarrow XZ = 7 \therefore YZ = 7 - 2 = 5$$

$$\therefore \quad \sec X = \frac{7}{2\sqrt{6}}$$

$$\tan X = \frac{5}{2\sqrt{6}}$$

$$\therefore \sec X + \tan X = \frac{7}{2\sqrt{6}} + \frac{5}{2\sqrt{6}} = \frac{12}{2\sqrt{6}} = \sqrt{6}$$

62. (A) Angles of triangle

$$\Rightarrow (a-d)^{\circ}$$
, a° , $(a+d)^{\circ}$

$$a - d + a + a + d = 180^{\circ}$$

$$\Rightarrow$$
 3a = 180° \Rightarrow a = 60°

$$\therefore \frac{a-d}{a+d} = \frac{60}{\pi} = \frac{60}{180} = \frac{1}{3}$$

$$\Rightarrow \frac{60-d}{60+d} = \frac{1}{3}$$

$$\Rightarrow$$
 180 - 3d = 60 + d

$$\Rightarrow$$
 4d = 120° \Rightarrow d = 30°

$$a - d = 60^{\circ} - 30^{\circ} = 30^{\circ}$$

 $a = 60^{\circ}$

$$a + d = 60^{\circ} + 30^{\circ} = 90^{\circ}$$

So, Angles of triangle are 30°,60° and 90°

⇒
$$\tan 60^\circ = \frac{AB}{OA}$$

⇒ AB = OA $\tan 60^\circ$
= $200 \times \sqrt{3}$ m
So, speed of the ballon
= $\frac{\text{distance}}{\text{time}}$
= $\frac{AB}{\text{time to reach from A to B}}$

$$= \frac{200\sqrt{3}m}{\frac{1.5}{60}} = 3.87 \text{ m/sec.}$$

64. (C)

Here,

 $AB \rightarrow height of the house$ & $CD \rightarrow height of the window$ So, ATQ,

$$\angle ADB = 90^{\circ}$$

Also,

here, line AD makes as angle θ ° with the vertical line DE.

$$\Rightarrow \angle ADE = \theta^{\circ} \text{ also, } \Rightarrow \angle BDC = 90^{\circ} - \theta$$

In $\triangle BCD$,

$$\tan(90^{\circ}-\theta) = \frac{BC}{CD} = \frac{d}{CD} \text{ or, } \cot\theta = \frac{d}{CD}$$

$$\Rightarrow CD = \frac{d}{\cot \theta} = d \tan \theta$$

also,

In $\triangle ADE$,

$$\tan \theta = \frac{AE}{DE} = \frac{d}{DE} \implies DE = \frac{d}{\tan \theta} = d \cot \theta$$

So, the height of the house,

$$AB = CD + DE$$

$$= d(\tan \theta + \cot \theta)$$

$$= C\left(\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta}\right) = C\left(\frac{1}{\cos\theta \times \sin\theta}\right)$$

= $d \sec \theta \csc \theta$

65. (A)

Let ABC is a \triangle and a, b & c are the lengths of BC, CA & AB respectively.

: $\sin A : \sin B : \sin C = 1 : 1 : \sqrt{2}$

By sine formula:

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

 \Rightarrow a:b = sin A:sin B & b:c = sin B:sin C

$$\Rightarrow$$
 a:b:c=1:1: $\sqrt{2}$

Let
$$a = x$$
, $b = x \& c = \sqrt{2} x$
ATQ,

$$C^{2}: (a^{2} + b^{2}) = (\sqrt{2}x)^{2}: (x^{2} + x^{2})$$

= $2x^{2}: 2x^{2}$
= 1:1

66.(B) In Δ s ACD and ABC.

$$\angle$$
 CDA = \angle CAB = 90°

·· / C is common.

∴ ∆ACD ⊔ ∆ABC

$$\therefore \frac{\Delta ACD}{\Delta ACD} = \frac{AC^2}{BC^2}$$

$$\Rightarrow \frac{10}{40} = \frac{9^2}{BC^2}$$

$$\rightarrow$$
 BC² = 4 × 9²

:. BC =
$$2 \times 9 = 18 \text{ cm}$$

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

67.(B)

O D =
$$\sqrt{15^2 - 12^2}$$

= $\sqrt{225 - 144}$
= $\sqrt{81} = 9$
O D = $\sqrt{13^2 - 12^2}$
= $\sqrt{169 - 144} = \sqrt{25} = 5$
 \therefore OO' = 9 + 5 = 14 cm

68. (B)

DE
$$\square$$
BC
 \angle ADE = \angle ABC
 \angle AED = \angle ACB

$$\therefore$$
 \triangle ADE \sqcup \triangle ABC

$$\therefore \quad \frac{\Box BDEC}{\Delta ADE} = \frac{1}{1}$$

$$\Rightarrow \frac{\Box BDEC}{\Delta ADE} + 1 = 1 + 1$$

$$\Rightarrow \frac{\Delta ABC}{\Delta ADE} = 2 = \frac{AB^2}{AD^2}$$

$$\Rightarrow \frac{AB}{AD} = \sqrt{2}$$

$$\Rightarrow \frac{AB}{AD} - 1 = \sqrt{2} - 1$$

$$\Rightarrow \frac{BD}{AD} = \sqrt{2} - 1$$

$$\Rightarrow \frac{AD}{BD} = \frac{1}{\sqrt{2-1}}$$

AD: BD = 1:
$$\frac{1}{\sqrt{2-1}}$$

69.(B) XZ = r + 9 & YZ = r + 2

$$\therefore XY^{2} = XZ^{2} + ZY^{2}$$

$$\Rightarrow 17^{2} = (r+9)^{2} + (r+2)^{2}$$

$$\Rightarrow 289 = r^{2} + 18r + 18 + r^{2} + 4r + 4$$

$$\Rightarrow 2r^{2} + 22r + 85 - 289 = 0$$

$$\Rightarrow 2r^{2} + 22r - 204 = 0$$

$$\Rightarrow r^{2} + 11r - 102 = 0$$

$$\Rightarrow r^{2} + 17r - 6r - 102 = 0$$

$$\Rightarrow r(r+17) - 6(r+17) = 0$$

$$\Rightarrow r = 6 \text{ cm}$$

70.(A)

Length of transverse trangent

$$= \sqrt{XY^2 - (r_1 + r_2)^2}$$

$$\Rightarrow$$
 8 = $\sqrt{XY^2 - 9^2}$

$$\Rightarrow$$
 64 = XY² - 81

$$\Rightarrow XY^2 = 64 + 81 = 145$$

$$\Rightarrow$$
 XY = $\sqrt{145}$

71. (C) ∴ AB is diameter

$$\Rightarrow$$
 \angle ADB = 90° also DO \perp AB at 'O', the centre of the circle.

∴
$$\triangle$$
 ADO \cong \triangle BDO (by SAS cong. Rule)

$$\Rightarrow$$
 AD = DB (by CPCT)

$$\therefore$$
 $\angle DAB = \angle ABD = 45^{\circ}$

But
$$\angle ACD = \angle ABD$$
 (angles in the same segment of a circle)

$$= 45^{\circ}$$

72. (A) $\angle CAD = \angle CBD$ (Angles iin the same segment of a circle) = 60°

Now
$$\angle BAD = \angle BAC + \angle CAD$$

= $30^{\circ} + 60^{\circ} = 90^{\circ}$

Now
$$\angle BAD + \angle BCD = 180^{\circ}$$

$$(:: □ ABCD \text{ is cyclic})$$

⇒ 90° + ∠BCD = 180°

$$\Rightarrow \angle BCD = 180^{\circ} - 90^{\circ} = 90^{\circ}$$

=
$$3 \times (\frac{1}{3} \text{ of circumference of a circle}) +$$

$$= 3 \times \frac{1}{3} \times 2\pi + 3 \times 2$$

$$= 2\pi + 6$$

74. (A) ... DC | AB (given)

 $\Rightarrow \Delta AOB \sim \Delta COD$ (by AA similarity)

$$\Rightarrow \frac{ar(\Delta AOB)}{ar(\Delta COD)} = \frac{AB^2}{DC^2}$$

$$= \frac{(3DC)^2}{DC^2} = \frac{9DC^2}{DC^2} = \frac{9}{1}$$

75. (B) In the given figure, $\triangle ABC$ is a right angle triangle, where $\angle B = 90^{\circ}$

AE, BD and CF are the 3 medians Now, AB = 12 cm, BC = 9 cm & AC = 15 cm

$$BD = \frac{1}{2}AC \Rightarrow BD^2 = \frac{1}{4}AC^2$$

$$\Rightarrow AE^2 + CF^2 = \frac{5}{4}AC^2$$

also.

$$\Rightarrow BD^2 + AE^2 + CF^2 = \left(\frac{1}{4} + \frac{5}{4}\right)AC^2$$

$$=\frac{6}{4}AC^2 = \frac{6}{4} \times 225 = 337.5 \text{ cm}$$

76. (A) Let x unit be the side of the square.

its diagonal = $\sqrt{2} x$ unit

 A_1 : Area of the square = x^2 sq. unit

 A_2 : Area of the equilateral Δ described on the diagonal of the square.

$$= \frac{\sqrt{3}}{4} \times (\sqrt{2}x)^2 \text{ sq.unit}$$

$$= \frac{\sqrt{3}}{4} \times 2x^2 \text{ sq. unit}$$

$$\Rightarrow \frac{A_2}{A_1} = \frac{\frac{\sqrt{3}}{2}x^2}{x^2} = \frac{\sqrt{3}}{2}$$

$$\Rightarrow A_2 : A_1 = \sqrt{3} : 2$$

 $\Rightarrow A_2: A_1 = \sqrt{3} : 2$ 77. (A) $d_m:$ diameter of the moon $d_e:$ diameter of the earth

Case I,
$$\cdot \cdot \cdot d_m = \frac{1}{4} d_e$$

Let *r* unit be the radius of the earth.

then,
$$d_m = \frac{1}{4} 2r = \frac{r}{2}$$
 unit

 R_m : radius of the moon = $\frac{2}{2} = \frac{r}{4}$ unit

$$\frac{V_e}{V_m} = \frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi \left(\frac{r}{4}\right)^3} = 64:1$$

78. (B) Perimeter = 2(I + b)

$$P = 2(I + w)$$

$$\frac{P}{2} - w = I$$

its area =
$$I \times b$$

$$K = \left(\frac{P}{2} - W\right) \times W$$

$$\Rightarrow$$
 2 $k = PW - 2W^2$

$$2w^2 - Pw + 2k = 0$$

79. (C) Volume of the ice-cream in cylindrical

container =
$$\pi r^2 h = \frac{22}{7} \times 6 \times 6 \times 15$$
 cm³

Let r cm be the radius of the cone, its height = 4r cm

Volume of 1 cone with hemispherical top

$$= \frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$$

$$=\frac{1}{3}\pi r^2 \times 4r + \frac{2}{3}\pi r^3$$

$$=\frac{4}{3}\pi r^3 + \frac{2}{3}\pi r^3$$

$$=\frac{6}{3}\pi r^3 = 2\pi r^3$$

V. of 10 such cones = $10 \times 2\pi r^3$ cm³ ATQ,

$$\frac{22}{7} \times 6 \times 6 \times 15 = 10 \times 2\pi r^3$$

$$\frac{22}{7} \times 6 \times 6 \times 15 = 10 \times 2 \times \frac{22}{7} \times r^3$$

$$\Rightarrow r^3 = \frac{6 \times 6 \times 15}{10 \times 2} = \frac{6 \times 6 \times 6}{2 \times 2 \times 2}$$

$$\Rightarrow r = \frac{6}{3}$$
 cm = 3 cm

80. (*) figure is not gettiva matched with the question asked.

An ISO 9001: 2008 Certified Company

Centres at: ★ MUKHERJEE NAGAR ★ MUNIRKA ★ UTTAM NAGAR ★ DILSHAD GARDEN ★ ROHINI ★ BADARPUR BORDER

81. (A) Area of rectangular field = $\frac{1000}{\frac{1}{4}}$ m² = 4000 m²

∴ breadth = 50 m

.. Length =
$$\frac{4000}{50}$$
 = 80 m
New length of field = (80+20) m = 100 m
New area = 100 × 50 = 5000sq. m

$$\therefore$$
 Required exenditure = $\cdot \left(5000 \times \frac{1}{4}\right) = \cdot 1250$

82. (C) Increase in water level

$$= \frac{\text{Volume of sphere}}{\text{Area of base of cylinder}}$$

$$= \frac{4}{3\pi^2}\pi^2 = \frac{4}{3}r = \frac{4}{3} \times 3.5 = \frac{14}{3}$$
 cm.

.. Required water level

$$=7-\frac{14}{3}=\frac{7}{3}$$
 cm

83. (A) Curved surface of cylinder = 2π rh Case II

Radius =
$$\frac{1}{2}$$
r : height = 6h

Curved surface =
$$2\pi \times \frac{1}{3} \text{ r } \times 6\text{h} = (2\pi \text{ rh}) \times 2$$

: Increase will be twice.

84. (A) BO = 4 units: OC = 3 units & \angle BOC = 90°

:. BC =
$$\sqrt{4^2 + 3^2}$$
 = 5 units

$$\therefore$$
 BC² = 25 sq. units

85.(A)
$$\frac{2}{3} \pi r^3 = 19404$$

$$\Rightarrow \frac{2}{3} \times \frac{22}{7} \times r^3 = 19404$$

$$\Rightarrow r^3 = \frac{19404 \times 3 \times 7}{2 \times 22} = 9261$$

$$\Rightarrow r = \sqrt[3]{21 \times 21 \times 21} = 21 \text{cm}$$

 \therefore Total surface area = $3 \pi r^2$

$$= 3 \times \frac{22}{7} \times 21 \times 21 = 4158 \text{ sq. cm}$$

86.(C)

BD = Diagonal = 16cm

Area of square =
$$\frac{1}{2} \times BD^2$$

$$=\frac{1}{2}\times16\times16=128$$
 sq. cm.

87. (A) Let 'r' be the radius of the semi-circle and 'x' be the side of the inscribed square.

In ∆OQR,

$$r^2 = x^2 + \left(\frac{x}{2}\right)^2$$

$$r^2 = \frac{5}{4}x^2$$

$$\Rightarrow X^2 = \frac{4}{5}r^2$$

 \therefore Area of the square = $\frac{4r^2}{5}$ sq. unit

Again, let 'y' be side of the square inscribed in the circle of same radius.

 $y \qquad \because 2r = \sqrt{2}y$ $\Rightarrow y = \frac{2r}{\sqrt{2}}$

Area of the square = y^2

$$= \left(\frac{2r}{\sqrt{2}}\right)^2 \text{ sq. unit}$$
$$= 2r^2 \text{ sq. unit}$$

Required ratio
$$= \frac{4r^2}{5} : 2r^2$$
$$= 2r^2 \left[\frac{2}{5} : 1 \right]$$
$$= 2r^2 [2 : 5]$$

An ISO 9001: 2008 Certified Company

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

88. (A)

Area of the minor segment

= sector area OABO - area of ΔOAB

$$= \frac{3.14 \times 10 \times 10 \times 90^{\circ}}{360^{\circ}} - \frac{1}{2} \times 10 \times 10$$

$$=\frac{314}{4}-50 = 78.5-50 = 28.5 \text{ cm}^2$$

Area of the major segment

= area of circle - area of minor segment

$$= 3.14 \times 10 \times 10 - 28.5$$

$$= 314 - 28.5 = 288.5 \text{ cm}^2$$

$$\therefore Required difference = 285.5 - 28.5$$
$$= 257 cm^2$$

89. (C)

44 m

Total area of the square field $= (44 \times 44) \text{m}^2 = 1936 \text{m}^2$

At the rate of Re. 1 per sq. mtr; the total cost would be Rs. 1936,

but the total cost = Rs. 3536

$$= Rs. 1600$$

- ⇒ Rs. 1600 would be the extra cost on the flower bed and as the extra cost on the flower bed is Rs. 1 per sq. mtr.
- \Rightarrow Area of flower bed = 1600 sq. mtr.
- ⇒ Side of flower bed = $\sqrt{1600}$ m²

So, width of the gravel path $=\frac{44-40}{2}$

= 2 metre

90. (B)

☐ ABCD is a trapezium.

Draw CE | DA intersecting AB at E.

$$\Rightarrow \square$$
 ABCE is a | |gm.

$$\Rightarrow$$
 DA = CE = 26 cm.

In ΛBCE

$$S = \frac{17 + 25 + 26}{2} = \frac{68}{2} = 34$$

$$ar(\Delta BCE) = \sqrt{34(34-17)(34-25)(34-26)} cm^{2}$$

$$= \sqrt{34 \times 17 \times 9 \times 8}$$

$$= \sqrt{2 \times 17 \times 17 \times 3 \times 3 \times 2 \times 2 \times 2}$$

$$= 2 \times 2 \times 3 \times 17$$

$$= 204 \text{ cm}$$

$$\Rightarrow \frac{1}{2} \times BE \times height = 204$$

or,
$$\frac{1}{2} \times 17 \times CM = 204$$

$$\Rightarrow$$
 CM = $\frac{204 \times 2}{17}$ = 24 cm

ar(Trap. ABCD) =
$$\frac{1}{2}$$
 × (60 + 77) × 24

$$=\frac{1}{2} \times 137 \times 24$$

- 91.(C) Required number of persons = 450 + 250 + 150 + 75 + 50 + 25 = 1000
- 92.(B) Required answer = 250+150 = 400
- 93.(C) Required ratio = 250 : 75 = 10 : 3

94.(B) Age group 15 - 20
$$\Rightarrow \frac{450}{500} = \frac{9}{10}$$

- 95.(D) Required percentage = $\frac{25}{500} \times 100 = 5\%$
- 96. (D) Expenditure on clothing & miscellaneous = (20 + 30)% of 25000 = 12500

97. (C) Total expenditure =
$$\frac{15000}{(10 + 20)} \times 100$$

$$\Rightarrow 54^{\circ} = \frac{54}{3.6}\% = 15\%$$

and among the options the two items having difference of 15% (and hence 54°) are miscellanouns and Food

99. (B) Required % age =
$$\frac{15-10}{15} \times 100\%$$

$$=\frac{1}{3}\times100\%=33.33\%$$

100. (D)
$$90^\circ = \frac{90}{3.6}\% = 25\%$$

and among the options the two items making central angle of 90°, together, are travelling and eutertainment.

Centres at: ★MUKHERJEE NAGAR ★MUNIRKA ★UTTAM NAGAR★ DILSHAD GARDEN ★ROHINI★BADARPUR BORDER

SSC MAINS (MATHS) MOCK TEST - 4 (ANSWER SHEET)

1.	(D)	21.	(C)	41	. (B)	61.	(B)	81.	(A)
2.	(C)	22.	(C)	42		62.	(A)	82.	(C)
3.		22. 23.	(C) (A)	43		63.	(A)	83.	(A)
l	(A)			44		64.	(C)	84.	(A)
4.	(A)	24.	(C)	45	` '	65.	(C)	85.	(A)
5.	(D)	25.	(A)	46		66.		86.	(C)
6.	(A)	26.	(B)				(B)	87.	(A)
7.	(C)	27.	(D)	47	` '	67.	(B)	88.	1 1
8.	(*)	28.	(C)	48	` '	68.	(B)		(A)
9.	(C)	29.	(B)	49		69.	(B)	89.	(C)
10.	(A)	30.	(C)	50	1 1	70.	(A)	90.	(B)
11.	(C)	31.	(A)	51	• • •	71.	(C)	91.	(C)
12.	(B)	32.	(D)	52		72.	(A)	92.	(B)
13.	(B)	33.	(D)	53		73.	(A)	93.	(C)
14.	(C)	34.	(C)	54		74.	(A)	94.	(B)
15.	(B)	35.	(A)	55	. (C)	75.	(B)	95.	(D)
16.	(A)	36.	(Ď)	56	. (C)	76.	(A)	96.	(D)
17.	(D)	37.	(A)	57	. (A)	77.	(A)	97.	(C)
18.	(A)	38.	(C)	58	. (A)	78.	(B)	98.	(D)
19.	(A)	39.	(B)	59		79.	(B)	99.	
20.	(C)	40.	(C)	60		80.	(*)	100). (D)