IT/PC/B/T/411

Machine Learning

Deep Learning Basics

Lecture 05: Convolution

Dr. Pawan Kumar Singh

Department of Information Technology Jadavpur University

pawankrsingh.cse@gmail.com

+91-6291555693

Convolutional neural networks

• Strong empirical application performance

 Convolutional networks: neural networks that use convolution in place of general matrix multiplication in at least one of their layers

$$h = \sigma(W^T x + b)$$

for a specific kind of weight matrix W

Convolution

Convolution: math formula

• Given functions u(t) and w(t), their convolution is a function s(t)

$$s(t) = \int u(a)w(t-a)da$$

Written as

$$s = (u * w)$$
 or $s(t) = (u * w)(t)$

Convolution: discrete version

• Given array u_t and w_t , their convolution is a function s_t

$$s_t = 2 u_a w_{t-1}$$

$$a = -\infty a$$

Written as

$$s = (u * w)$$
 or $s_t = (u * w)_t$

• When u_t or w_t is not defined, assumed to be 0

Illustration 1: boundary case

Illustration 1 as matrix multiplication

Illustration 2: two dimensional case

Advantage: sparse interaction

Fully connected layer, $m \times n$ edges

Advantage: sparse interaction

Convolutional layer, $\leq m \times k$ edges

Advantage: sparse interaction

Multiple convolutional layers: larger receptive field

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Advantage: parameter sharing

The same kernel are used repeatedly. E.g., the black edge is the same weight in the kernel.

Figure from *Deep Learning,* by Goodfellow, Bengio, and Courville

Advantage: equivariant representations

Equivariant: transforming the input = transforming the output

- Example: input is an image, transformation is shifting
- Convolution(shift(input)) = shift(Convolution(input))

 Useful when care only about the existence of a pattern, rather than the location

Pooling

Terminology

Complex layer terminology Next layer Convolutional Layer Pooling stage Detector stage: Nonlinearity e.g., rectified linear Convolution stage: Affine transform Input to layer

Simple layer terminology Next layer Pooling layer Detector layer: Nonlinearity e.g., rectified linear Convolution layer: Affine transform Input to layers

Figure from Deep Learning, by Goodfellow, Bengio, and Courville

Pooling

Summarizing the input (i.e., output the max of the input)

Figure from *Deep Learning*, by Goodfellow, Bengio, and Courville

Advantage

Induce invariance

Figure from *Deep Learning,* by Goodfellow, Bengio, and Courville

Motivation from neuroscience

 David Hubel and Torsten Wiesel studied early visual system in human brain (V1 or primary visual cortex), and won Nobel prize for this

- V1 properties
 - 2D spatial arrangement
 - Simple cells: inspire convolution layers
 - Complex cells: inspire pooling layers

Variants of convolution and pooling

Multiple dimensional convolution

- Input and kernel can be 3D
 - E.g., images have (width, height, RBG channels)
- Multiple kernels lead to multiple feature maps (also called channels)

Mini-batch of images have 4D: (image_id, width, height, RBG channels)

• Stride

Figure from *Deep Learning*, by Goodfellow, Bengio, and Courville

• Others:

- Tiled convolution
- Channel specific convolution
- •

Variants of pooling

Stride and padding

Figure from *Deep Learning*, by Goodfellow, Bengio, and Courville

Variants of pooling

- Max pooling $y = \max\{x_1, x_2, \dots, x_k\}$
- Average pooling $y = \text{mean}\{x_1, x_2, ..., x_k\}$

Others like max-out