index

January 25, 2022

1 Model Fit in Linear Regression - Lab

1.1 Introduction

In this lab, you'll learn how to evaluate your model results and you'll learn how to select the appropriate features using stepwise selection.

1.2 Objectives

You will be able to: * Use stepwise selection methods to determine the most important features for a model * Use recursive feature elimination to determine the most important features for a model

1.3 The Ames Housing Data once more

```
[1]: import pandas as pd
     import numpy as np
     ames = pd.read_csv('ames.csv')
     continuous = ['LotArea', '1stFlrSF', 'GrLivArea', 'SalePrice']
     categoricals = ['BldgType', 'KitchenQual', 'SaleType', 'MSZoning', 'Street',
                     'Neighborhood']
     ames_cont = ames[continuous]
     # log features
     log_names = [f'{column}_log' for column in ames_cont.columns]
     ames_log = np.log(ames_cont)
     ames_log.columns = log_names
     # normalize (subract mean and divide by std)
     def normalize(feature):
         return (feature - feature.mean()) / feature.std()
     ames_log_norm = ames_log.apply(normalize)
     # one hot encode categoricals
```

1.4 Perform stepwise selection

The function for stepwise selection is copied below. Use this provided function on your preprocessed Ames Housing data.

```
[2]: import statsmodels.api as sm
     def stepwise_selection(X, y,
                            initial_list=[],
                            threshold_in=0.01,
                            threshold_out = 0.05,
                            verbose=True):
         11 11 11
         Perform a forward-backward feature selection
         based on p-value from statsmodels.api.OLS
         Arguments:
             X - pandas.DataFrame with candidate features
             y - list-like with the target
             initial_list - list of features to start with (column names of X)
             threshold_in - include a feature if its p-value < threshold_in
             threshold out - exclude a feature if its p-value > threshold out
             verbose - whether to print the sequence of inclusions and exclusions
         Returns: list of selected features
         Always set threshold in < threshold out to avoid infinite looping.
         See https://en.wikipedia.org/wiki/Stepwise_regression for the details
         included = list(initial_list)
         while True:
             changed=False
             # forward step
             excluded = list(set(X.columns)-set(included))
             new_pval = pd.Series(index=excluded, dtype='float64')
             for new_column in excluded:
                 model = sm.OLS(y, sm.add constant(pd.
      →DataFrame(X[included+[new_column]]))).fit()
                 new_pval[new_column] = model.pvalues[new_column]
             best_pval = new_pval.min()
             if best_pval < threshold_in:</pre>
                 best_feature = new_pval.idxmin()
                 included.append(best_feature)
                 changed=True
                 if verbose:
```

```
print('Add {:30} with p-value {:.6}'.format(best_feature, __
⇔best_pval))
      # backward step
      model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()
      # use all coefs except intercept
      pvalues = model.pvalues.iloc[1:]
      worst pval = pvalues.max() # null if pvalues is empty
      if worst_pval > threshold_out:
           changed=True
          worst_feature = pvalues.idxmax()
           included.remove(worst_feature)
           if verbose:
               print('Drop {:30} with p-value {:.6}'.format(worst_feature, __
→worst_pval))
      if not changed:
          break
  return included
```

```
Add GrLivArea log
                                   with p-value 1.59847e-243
Add KitchenQual_TA
                                   with p-value 1.56401e-67
Add 1stFlrSF_log
                                   with p-value 7.00069e-48
Add KitchenQual_Fa
                                   with p-value 1.70471e-37
                                   with p-value 3.20105e-23
Add Neighborhood_OldTown
Add KitchenQual_Gd
                                   with p-value 4.12635e-21
                                   with p-value 9.05184e-17
Add Neighborhood_Edwards
Add Neighborhood_IDOTRR
                                   with p-value 1.10068e-18
Add LotArea_log
                                   with p-value 1.71728e-13
Add Neighborhood_NridgHt
                                   with p-value 7.05633e-12
Add BldgType_Duplex
                                   with p-value 4.30647e-11
                                   with p-value 2.25803e-09
Add Neighborhood NAmes
Add Neighborhood_SWISU
                                   with p-value 5.40743e-09
Add Neighborhood BrkSide
                                   with p-value 8.79638e-10
Add Neighborhood Sawyer
                                   with p-value 6.92011e-09
Add Neighborhood NoRidge
                                   with p-value 5.87105e-08
Add Neighborhood_Somerst
                                   with p-value 3.00722e-08
```

```
Add Neighborhood_StoneBr
                                         with p-value 6.58621e-10
        Neighborhood_MeadowV
                                         with p-value 2.26069e-05
    Add
    Add
         SaleType_New
                                         with p-value 0.000485363
    Add
         SaleType_WD
                                         with p-value 0.00253157
        Neighborhood_BrDale
                                         with p-value 0.00374541
    Add
    Add MSZoning RM
                                         with p-value 8.29694e-05
    Add MSZoning RL
                                         with p-value 0.00170469
                                         with p-value 0.00114668
    Add MSZoning_FV
    Add MSZoning RH
                                         with p-value 3.95797e-05
    Add Neighborhood_NWAmes
                                         with p-value 0.00346099
    Drop SaleType_WD
                                         with p-value 0.0554448
    Add Neighborhood_Mitchel
                                         with p-value 0.00994666
    Drop Neighborhood_Somerst
                                         with p-value 0.0500753
    Add Neighborhood_SawyerW
                                         with p-value 0.00427685
[6]: ['GrLivArea_log',
      'KitchenQual_TA',
      '1stFlrSF_log',
      'KitchenQual_Fa',
      'Neighborhood_OldTown',
      'KitchenQual_Gd',
      'Neighborhood_Edwards',
      'Neighborhood_IDOTRR',
      'LotArea_log',
      'Neighborhood_NridgHt',
      'BldgType_Duplex',
      'Neighborhood_NAmes',
      'Neighborhood SWISU',
      'Neighborhood_BrkSide',
      'Neighborhood Sawyer',
      'Neighborhood_NoRidge',
      'Neighborhood_StoneBr',
      'Neighborhood_MeadowV',
      'SaleType_New',
      'Neighborhood_BrDale',
      'MSZoning_RM',
      'MSZoning_RL',
      'MSZoning_FV',
      'MSZoning_RH',
      'Neighborhood_NWAmes',
      'Neighborhood_Mitchel',
      'Neighborhood_SawyerW']
```

1.4.1 Build the final model again in Statsmodels

```
[8]: # Your code here
# Import statsmodels.api as sm
import statsmodels.api as sm

outcome = preprocessed['SalePrice_log']
predictors = preprocessed[columns_to_pick]
predictors_with_intercept = sm.add_constant(predictors)

model = sm.OLS(outcome, predictors_with_intercept).fit()
print(model.summary())
```

OLS Regression Results

ULS Regression Results									
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Tue, 25 Jan	OLS Adj. lares F-st 2022 Prob 9:31 Log- 1460 AIC: 1432 BIC: 27	(F-statisti Likelihood:	0.835 0.832 269.0 0.00 -754.40 1565. 1713.					
	========		========	=======	========				
0.975]	coef	std err	t 	P> t	[0.025				
const	-0.2174	0.164	-1.323	0.186	-0.540				
0.105 GrLivArea_log 0.399	0.3694	0.015	24.477	0.000	0.340				
KitchenQual_TA-0.595	-0.7020	0.055	-12.859	0.000	-0.809				
1stFlrSF_log 0.174	0.1445	0.015	9.645	0.000	0.115				
KitchenQual_Fa -0.866	-1.0372	0.087	-11.864	0.000	-1.209				
Neighborhood_OldTown -0.738	-0.8625	0.063	-13.615	0.000	-0.987				
KitchenQual_Gd -0.304	-0.4021	0.050	-8.046	0.000	-0.500				
Neighborhood_Edwards -0.607	-0.7019	0.048	-14.530	0.000	-0.797				
Neighborhood_IDOTRR-0.668	-0.8583	0.097	-8.855	0.000	-1.048				

LotArea_log	0.1096	0.015	7.387	0.000	0.081	
0.139 Neighborhood_NridgHt 0.496	0.3854	0.057	6.809	0.000	0.274	
BldgType_Duplex	-0.4073	0.061	-6.678	0.000	-0.527	
Neighborhood_NAmes	-0.3763	0.038	-9.981	0.000	-0.450	
Neighborhood_SWISU-0.451	-0.6263	0.089	-7.020	0.000	-0.801	
Neighborhood_BrkSide -0.434	-0.5641	0.066	-8.493	0.000	-0.694	
Neighborhood_Sawyer -0.295	-0.4026	0.055	-7.342	0.000	-0.510	
Neighborhood_NoRidge 0.572	0.4347	0.070	6.221	0.000	0.298	
Neighborhood_StoneBr 0.624	0.4538	0.087	5.226	0.000	0.283	
Neighborhood_MeadowV -0.430	-0.6622	0.118	-5.592	0.000	-0.895	
SaleType_New 0.234	0.1483	0.044	3.388	0.001	0.062	
Neighborhood_BrDale -0.231	-0.4733	0.123	-3.839	0.000	-0.715	
MSZoning_RM 1.370	1.0820	0.147	7.363	0.000	0.794	
MSZoning_RL 1.298	0.9916	0.156	6.356	0.000	0.686	
MSZoning_FV 1.530	1.2052	0.165	7.284	0.000	0.881	
MSZoning_RH 1.222	0.8503	0.189	4.490	0.000	0.479	
Neighborhood_NWAmes -0.100	-0.2055	0.054	-3.837	0.000	-0.311	
Neighborhood_Mitchel -0.067	-0.1943	0.065	-3.004	0.003	-0.321	
Neighborhood_SawyerW -0.052	-0.1666	0.058	-2.862 	0.004	-0.281	
Omnibus:	295.		1.965			
<pre>Prob(Omnibus): Skew:</pre>	0.000 Jarque-Bera (JB): 1270.571 -0.903 Prob(JB): 1.26e-276					
Kurtosis:		198 Cond		========	48.7	

Notes

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
[9]: ### From internent
      results_as_html1 = model.summary().tables[0].as_html()
      pd.read_html(results_as_html1, header=0, index_col=0)[0]
 [9]:
                             SalePrice_log
                                                     R-squared:
                                                                     0.835
      Dep. Variable:
      Model:
                                       OLS
                                                Adj. R-squared:
                                                                     0.832
      Method:
                             Least Squares
                                                   F-statistic:
                                                                   269.000
      Date:
                         Tue, 25 Jan 2022
                                            Prob (F-statistic):
                                                                     0.000
                                  23:20:18
      Time:
                                                Log-Likelihood:
                                                                  -754.400
      No. Observations:
                                      1460
                                                            AIC:
                                                                  1565.000
      Df Residuals:
                                      1432
                                                            BIC:
                                                                  1713.000
      Df Model:
                                        27
                                                             {\tt NaN}
                                                                       NaN
      Covariance Type:
                                                             NaN
                                                                       NaN
                                 nonrobust
[10]: ### From internent
      results_as_html1 = model.summary().tables[1].as_html()
      pd.read_html(results_as_html1, header=0, index_col=0)[0]
[10]:
                                    std err
                                                   t P>|t|
                                                              Γ0.025
                                                                      0.975]
                               coef
                                       0.164
      const
                            -0.2174
                                              -1.323
                                                      0.186
                                                              -0.540
                                                                       0.105
      GrLivArea log
                                                      0.000
                             0.3694
                                       0.015
                                              24.477
                                                               0.340
                                                                       0.399
      KitchenQual_TA
                            -0.7020
                                       0.055 - 12.859
                                                      0.000
                                                             -0.809
                                                                     -0.595
      1stFlrSF_log
                                               9.645
                                                      0.000
                            0.1445
                                       0.015
                                                               0.115
                                                                       0.174
      KitchenQual Fa
                            -1.0372
                                       0.087 -11.864
                                                      0.000
                                                              -1.209
                                                                      -0.866
      Neighborhood_OldTown -0.8625
                                       0.063 -13.615
                                                      0.000
                                                              -0.987
                                                                      -0.738
      KitchenQual Gd
                                                      0.000
                            -0.4021
                                       0.050 - 8.046
                                                              -0.500
                                                                     -0.304
      Neighborhood_Edwards -0.7019
                                                      0.000
                                       0.048 -14.530
                                                              -0.797
                                                                      -0.607
      Neighborhood_IDOTRR
                                             -8.855
                                                      0.000
                                                              -1.048 -0.668
                           -0.8583
                                       0.097
      LotArea_log
                             0.1096
                                       0.015
                                               7.387
                                                      0.000
                                                               0.081
                                                                       0.139
      Neighborhood_NridgHt
                            0.3854
                                       0.057
                                               6.809
                                                      0.000
                                                               0.274
                                                                       0.496
      BldgType_Duplex
                            -0.4073
                                       0.061
                                             -6.678
                                                      0.000
                                                              -0.527
                                                                      -0.288
      Neighborhood_NAmes
                            -0.3763
                                       0.038
                                             -9.981
                                                      0.000
                                                              -0.450
                                                                      -0.302
      Neighborhood_SWISU
                            -0.6263
                                       0.089
                                             -7.020
                                                      0.000
                                                              -0.801
                                                                      -0.451
      Neighborhood BrkSide -0.5641
                                             -8.493
                                                      0.000
                                       0.066
                                                              -0.694 -0.434
      Neighborhood Sawyer
                                              -7.342
                            -0.4026
                                       0.055
                                                      0.000
                                                              -0.510
                                                                     -0.295
      Neighborhood NoRidge
                                               6.221
                                                      0.000
                            0.4347
                                       0.070
                                                               0.298
                                                                       0.572
      Neighborhood_StoneBr
                            0.4538
                                       0.087
                                               5.226
                                                      0.000
                                                               0.283
                                                                       0.624
      Neighborhood_MeadowV -0.6622
                                       0.118 -5.592
                                                      0.000
                                                              -0.895 -0.430
                                                      0.001
      SaleType New
                             0.1483
                                       0.044
                                               3.388
                                                               0.062
                                                                       0.234
      Neighborhood_BrDale
                           -0.4733
                                       0.123 -3.839
                                                      0.000
                                                             -0.715 -0.231
      MSZoning RM
                             1.0820
                                       0.147
                                               7.363
                                                      0.000
                                                               0.794
                                                                       1.370
      MSZoning_RL
                             0.9916
                                       0.156
                                               6.356
                                                      0.000
                                                               0.686
                                                                       1.298
      MSZoning_FV
                                               7.284
                                                      0.000
                                                               0.881
                             1.2052
                                       0.165
                                                                       1.530
      MSZoning_RH
                             0.8503
                                       0.189
                                               4.490
                                                      0.000
                                                               0.479
                                                                       1.222
      Neighborhood_NWAmes
                           -0.2055
                                       0.054
                                              -3.837
                                                      0.000
                                                              -0.311
                                                                      -0.100
```

-3.004

0.003

-0.321

-0.067

0.065

Neighborhood_Mitchel -0.1943

```
Neighborhood_SawyerW -0.1666 0.058 -2.862 0.004 -0.281 -0.052
```

```
[11]: ### From internent
results_as_html1 = model.summary().tables[2].as_html()
pd.read_html(results_as_html1, header=0, index_col=0)[0]
```

[11]: 295.535 Durbin-Watson: 1.965

Omnibus:

Prob(Omnibus): 0.000 Jarque-Bera (JB): 1.270571e+03 Skew: -0.903 Prob(JB): 1.260000e-276 Kurtosis: 7.198 Cond. No. 4.870000e+01

1.5 Use Feature ranking with recursive feature elimination

Use feature ranking to select the 5 most important features

```
from sklearn.feature_selection import RFE
from sklearn.linear_model import LinearRegression

linreg = LinearRegression()
selector = RFE(linreg, n_features_to_select=5)
selector = selector.fit(predictors, preprocessed['SalePrice_log'])
```

Fit the linear regression model again using the 5 selected columns

```
[15]: import statsmodels.api as sm

outcome = preprocessed['SalePrice_log']
   predictors = preprocessed[columns_to_pick_2]
   predictors_with_intercept = sm.add_constant(predictors)

model = sm.OLS(outcome, predictors_with_intercept).fit()
```

print(model.summary())

OLS Regression Results

Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:		OLS Adj ares F-s 2022 Pro 6:49 Log 1460 AIC 1454 BIC		.c):	0.239 0.237 91.55 6.73e-84 -1871.4 3755. 3786.
0.975]	coef	std err	t	P> t	[0.025
const	-2.2676	0.276	-8.208	0.000	-2.809
-1.726 Neighborhood_NoRidge	1.5319	0.139	11.026	0.000	1.259
1.804 MSZoning_RM 1.993	1.4386	0.283	5.092	0.000	0.884
MSZoning_RL 2.912	2.3678	0.277	8.533	0.000	1.823
MSZoning_FV 3.407	2.8248	0.297	9.519	0.000	2.243
MSZoning_RH 2.272	1.5811	0.352	4.490	0.000	0.890
Omnibus: Prob(Omnibus): Skew: Kurtosis:	47 0 0 4	1.976 79.387 5.77e-18 35.8			

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

[24]: # Your code here model.predict(predictors_with_intercept)

[24]: 0 0.10023 1 0.10023

```
2
        0.10023
3
        0.10023
        1.63211
1455
        0.10023
1456
        0.10023
1457
        0.10023
1458
        0.10023
        0.10023
1459
Length: 1460, dtype: float64
```

Now, predict \hat{y} using your model. You can use .predict() in scikit-learn.

```
[26]: ### From GitHub
y = preprocessed['SalePrice_log']
x = preprocessed[columns_to_pick_2]
linreg.fit(x,y)
y_pred = linreg.predict(variables)
y_pred
```

[26]: array([0.10023007, 0.10023007, 0.10023007, ..., 0.10023007, 0.10023007, 0.10023007])

Now, using the formulas of R-squared and adjusted R-squared below, and your Python/numpy knowledge, compute them and contrast them with the R-squared and adjusted R-squared in your statsmodels output using stepwise selection. Which of the two models would you prefer?

$$SS_{residual} = \sum (y - \hat{y})^2 \tag{1}$$

$$SS_{total} = \sum (y - \bar{y})^2 \tag{2}$$

$$R^2 = 1 - \frac{SS_{residual}}{SS_{total}} \tag{3}$$

$$R_{adj}^2 = 1 - (1 - R^2) \frac{n - 1}{n - p - 1} \tag{4} \label{eq:4}$$

```
[41]: # Your code here
y_real = np.array(preprocessed['SalePrice_log'])
y_mean = np.mean(y_real)

n = len(y_real)
p = len(columns_to_pick_2)
## From github p is preprocessed[selected_columns].shape[1] which
# gives the length of the list columns_to_pick_2
```

```
res = y_real - y_pred
res_mean = y_real - y_mean
SS_res = np.inner(res,res)
SS_tot = np.inner(res_mean,res_mean)

R2 = 1 - SS_res / SS_tot
R2_adj = 1 - (1 - R2)*(n-1) / (n-p-1)
R2_adj
# r_squared is 0.239434
# adjusted_r_squared is 0.236818
```

[41]: 0.2368187559863113

1.6 Level up (Optional)

- Perform variable selection using forward selection, using this resource: https://planspace.org/20150423-forward_selection_with_statsmodels/. Note that this time features are added based on the adjusted R-squared!
- Tweak the code in the stepwise_selection() function written above to just perform forward selection based on the p-value

1.7 Summary

Great! You practiced your feature selection skills by applying stepwise selection and recursive feature elimination to the Ames Housing dataset!