Stroke Therapy

Lynn Fan, Alice Jiang, Yunyao Zhu

11/05/2020

```
##rm(list=ls())
set.seed(10302020)
library(mgcv)
## Loading required package: nlme
## This is mgcv 1.8-31. For overview type 'help("mgcv-package")'.
library(lme4)
## Loading required package: Matrix
## Attaching package: 'lme4'
## The following object is masked from 'package:nlme':
##
##
       lmList
library(effects)
## Loading required package: carData
## lattice theme set by effectsTheme()
## See ?effectsTheme for details.
library(sjPlot)
## #refugeeswelcome
library(glmmTMB)
library(tidyverse)
## -- Attaching packages --
                                                                 ----- tidyverse 1.3.0 --
## v ggplot2 3.3.2 v purr 0.3.4
## v tibble 3.0.3 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr 1.3.1 v forcats 0.5.0
```

```
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::collapse() masks nlme::collapse()
## x tidyr::expand()
                     masks Matrix::expand()
## x dplyr::filter()
                     masks stats::filter()
## x dplyr::lag() masks stats::lag()
## x tidyr::pack() masks Matrix::pack()
## x tidyr::unpack()
                     masks Matrix::unpack()
library(ggpubr)
## Registered S3 methods overwritten by 'car':
    method
                                   from
##
    influence.merMod
                                   lme4
    cooks.distance.influence.merMod lme4
##
    dfbeta.influence.merMod
                                   lme4
##
    dfbetas.influence.merMod
                                   lme4
library(rstatix)
##
## Attaching package: 'rstatix'
## The following object is masked from 'package:stats':
##
##
      filter
## [1] 12960
               7
    amplitude replicate time montage paired.pulse lesional subjectID
## 1 0.7048035
                     1
                         1
                                1
                                              1
## 2 0.4856873
                     2
                                              1
                                  1
                        1
## 3 0.5845642
                     3
                                 1
                                             1
                                                      1
                                                                1
                    4 1
## 4 0.5323792
                                 1
                                             1
                                                      1
## 5 0.6295776
                    5 1
                                             1
                                  1
                                                      1
                                                                1
                    6 1
## 6 0.5810547
                                  1
                                              1
                                                      1
                                                                1
## [1] 12960
                7
      pct.change replicate time montage paired.pulse lesional subjectID
## 1 21.39689214
                        1
                             1
                                 1
                                                 1
## 2 -16.34416374
                        2
                             1
                                    1
                                                1
                                                         1
                                                                   1
## 3 0.68661914
                        3
                                                1
                                                         1
                           1
                                    1
                                                                   1
## 4 -8.30184960
                           1
                                                1
                                    1
                                                         1
                                                                   1
## 5
                        5
      8.43983048
                             1
                                     1
                                                 1
                                                         1
                                                                   1
## 6
      0.08213148
                                     1
table(unlist(x[,-1]==x2[,-1]))
##
## TRUE
## 77760
```

```
x$pct.change<-x2$pct.change
rm(x2)
x$condBySubject<-paste0(x$subject,x$montage,x$paired.pulse,x$lesional)
x$replicate<-factor(x$replicate)
x$time<-factor(x$time,levels=c(1:5), labels=c("baseline","post1","post2","post3","post4"))
x$montage<-factor(x$montage,levels=c(1:3), labels=c("anodal","bihemi","cathodal"))
x$paired.pulse<-factor(x$paired.pulse,levels=c(1,2,3), labels=c("single","inhibitory","excitory"))
x$lesional<-factor(x$lesional,levels=c(1:2), labels=c("lesional","nonlesional"))
x$subjectID<-factor(x$subjectID)
head(x)
                             time montage paired.pulse lesional subjectID
     amplitude replicate
## 1 0.7048035
                       1 baseline anodal
                                                 single lesional
## 2 0.4856873
                       2 baseline anodal
                                                 single lesional
                                                                         1
## 3 0.5845642
                       3 baseline anodal
                                                 single lesional
                                                                         1
## 4 0.5323792
                       4 baseline anodal
                                                 single lesional
                                                                         1
## 5 0.6295776
                       5 baseline anodal
                                                 single lesional
                                                                         1
## 6 0.5810547
                       6 baseline anodal
                                                 single lesional
                                                                         1
##
       pct.change condBySubject
## 1 21.39689214
                           1111
## 2 -16.34416374
                           1111
## 3
       0.68661914
                           1111
## 4 -8.30184960
                           1111
       8.43983048
## 5
                           1111
## 6
       0.08213148
                           1111
bl<-x[x$time=="baseline",]</pre>
## baseline mean amplitude by condtion:
bl.means<-tapply(bl\samplitude,bl\scondBySubject,mean)
summary(bl.means)
                                                       NA's
      Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
## 0.03237 0.43442 0.73307 0.85328 1.24316 2.66067
                                                          1
length(bl.means)
## [1] 324
length(unique(bl$condBySubject))
## [1] 324
x<-merge(x,bl.means,by.x="condBySubject",by.y=0,all.x=TRUE)
colnames(x)[colnames(x)=="y"]<-"BLmeanAmp"</pre>
head(x)
##
     condBySubject amplitude replicate
                                           time montage paired.pulse lesional
## 1
             10111 0.4995728
                                     1 baseline anodal
                                                               single lesional
## 2
             10111 0.5133057
                                     2 baseline anodal
                                                               single lesional
## 3
             10111 0.3581238
                                     3 baseline anodal
                                                               single lesional
## 4
             10111 0.6427002
                                     4 baseline anodal
                                                               single lesional
## 5
             10111 0.5168152
                                     5 baseline anodal
                                                               single lesional
             10111 0.6385803
                                     6 baseline anodal
## 6
                                                               single lesional
##
     subjectID pct.change BLmeanAmp
            10 -8.894222 0.5483437
## 1
```

summary(x\$amplitude)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 0.01755 0.35431 0.68832 0.88516 1.26598 9.31839 50
```

hist(x\$amplitude,nclass=50)

Histogram of x\$amplitude

summary(x\$pct.change)

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## -99.17 -36.59 -4.48 11.18 35.51 3101.73 50
```

hist(x\$pct.change,nclass=50)

Histogram of x\$pct.change


```
table(x$replicate,useNA="always")
##
##
     1
                        5
                             6
                                  7
                                       8 <NA>
table(x$time,useNA="always")
##
## baseline
                                                 <NA>
              post1
                      post2
                               post3
                                        post4
               2592
##
      2592
                       2592
                                2592
                                         2592
                                                    0
table(x$montage,useNA="always")
##
##
    anodal
             bihemi cathodal
                                <NA>
##
      4320
               4320
                       4320
table(x$paired.pulse,useNA="always")
##
##
                                        <NA>
      single inhibitory
                         excitory
##
        4320
                   4320
                             4320
table(x$lesional,useNA="always")
##
##
                                <NA>
     lesional nonlesional
##
         6480
                    6480
                                   0
```

```
table(x$subjectID,useNA="always")
##
##
                         5
                              6
                                  7
                                       8
                                            9
                                                10
                                                                   14
                                                                             16
               3
                                                     11
                                                          12
                                                              13
                                                                        15
        720
##
   720
##
    17
         18 <NA>
##
   720 720
               0
x$amplitude <- scale(x$amplitude)</pre>
Linear Mixed Models
library(lmerTest)
##
## Attaching package: 'lmerTest'
## The following object is masked from 'package:lme4':
##
##
      lmer
## The following object is masked from 'package:stats':
##
##
      step
#mV = BLmV + Time*Montage + (Time|SubjectID)
lmm <- lmer(amplitude ~ BLmeanAmp + time*montage + (time|subjectID), data=x)</pre>
## boundary (singular) fit: see ?isSingular
summary(lmm)
## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: amplitude ~ BLmeanAmp + time * montage + (time | subjectID)
##
     Data: x
##
## REML criterion at convergence: 26710.5
## Scaled residuals:
             1Q Median
##
      Min
                               30
## -4.9376 -0.5029 -0.1121 0.3678 17.9889
##
## Random effects:
##
                         Variance Std.Dev. Corr
   Groups
             Name
##
   subjectID (Intercept) 0.002921 0.05405
##
             timepost1
                         0.040813 0.20202 0.92
##
             timepost2
                         0.036480 0.19100 0.11 0.43
##
             timepost3
                         0.060996 0.24697 0.27 0.36 0.72
##
             timepost4
                         0.018932 0.13759 0.39 0.48 0.66 0.93
                         0.458577 0.67718
## Residual
## Number of obs: 12871, groups: subjectID, 18
##
```

```
## Fixed effects:
##
                             Estimate Std. Error
                                                         df t value Pr(>|t|)
                           -1.058e+00 2.839e-02 1.173e+02 -37.251 < 2e-16 ***
## (Intercept)
## BLmeanAmp
                            1.183e+00 1.270e-02 6.474e+03 93.114 < 2e-16 ***
## timepost1
                           -1.093e-02 5.770e-02 2.772e+01 -0.189 0.85119
## timepost2
                            5.083e-02 5.557e-02 2.877e+01
                                                             0.915 0.36797
## timepost3
                            1.104e-01 6.671e-02 2.413e+01
                                                             1.656 0.11076
## timepost4
                           -9.396e-02 4.597e-02 3.943e+01 -2.044 0.04767 *
## montagebihemi
                            4.978e-03 3.258e-02 1.279e+04
                                                             0.153 0.87858
## montagecathodal
                            5.313e-03 3.266e-02 1.279e+04
                                                             0.163 0.87077
                          1.264e-01 4.608e-02 1.279e+04
                                                             2.742 0.00611 **
## timepost1:montagebihemi
## timepost2:montagebihemi
                          1.005e-02 4.608e-02 1.279e+04
                                                             0.218 0.82728
## timepost3:montagebihemi
                           -6.564e-02 4.608e-02 1.279e+04 -1.424 0.15436
## timepost4:montagebihemi
                             1.454e-01 4.608e-02 1.279e+04
                                                             3.155 0.00161 **
## timepost1:montagecathodal 1.802e-01 4.619e-02 1.279e+04
                                                             3.902 9.59e-05 ***
## timepost2:montagecathodal 3.673e-02 4.619e-02 1.279e+04
                                                             0.795 0.42647
## timepost3:montagecathodal -1.597e-02 4.665e-02 1.280e+04 -0.342 0.73207
## timepost4:montagecathodal 1.140e-01 4.618e-02 1.279e+04
                                                             2.469 0.01356 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Correlation matrix not shown by default, as p = 16 > 12.
## Use print(x, correlation=TRUE) or
##
      vcov(x)
                     if you need it
## convergence code: 0
## boundary (singular) fit: see ?isSingular
```

Based on the p-values, baseline mV and montage are shown to be significant. Some interactions between levels of time and montage are also significant, but none of the main effects of time is significant.

Check LMM Assumptions

```
#Try with model_plot (argument for type can be varied)
plot_model(lmm, type='diag')

## [[1]]

## `geom_smooth()` using formula 'y ~ x'
```

Non-normality of residuals and outliers Dots should be plotted along the line


```
##
## [[2]]
## [[2]]$subjectID
## `geom_smooth()` using formula 'y ~ x'
```


[[3]]

Non-normality of residuals

Distribution should look like normal curve

[[4]]

$geom_smooth()$ using formula 'y ~ x'

Homoscedasticity (constant variance of residuals)

Amount and distance of points scattered above/below line is equal or randomly spread

From the plots above, all assumptions are satisfied except the fact that residuals are showing a slight downward trend as fitted values increase. We are looking forward to addressing it in the in-class discussion soon.

Non-parametric Repeated Measures ANOVA

```
x_post1 <- x %>%
  filter(time %in% c("baseline","post1"), lesional == "lesional", paired.pulse == "single")
x_post1 <- x_post1[complete.cases(x_post1), ]
x_post1$time <- factor(x_post1$time, levels=c("baseline","post1"))
#check if the data set is complete
#table(x_post1$time,x_post1$montage,x_post1$subjectID)</pre>
```

```
res.aov <- aov(pct.change ~ time*montage + Error(subjectID), data = x_post1)
get_anova_table(res.aov)</pre>
```

```
##
  aov(formula = pct.change ~ time * montage + Error(subjectID),
##
       data = x_post1)
##
## Grand Mean: 4.150957
##
## Stratum 1: subjectID
##
## Terms:
##
                    Residuals
## Sum of Squares
                    167661.7
## Deg. of Freedom
                           17
```

```
##
## Residual standard error: 99.30989
## Stratum 2: Within
##
## Terms:
##
                               montage time:montage Residuals
                        time
## Sum of Squares
                     14887.1
                               43969.2
                                          43969.2 1828717.3
## Deg. of Freedom
                          1
                                                  2
                                                          841
                                     2
##
## Residual standard error: 46.63106
## Estimated effects may be unbalanced
# comparisons for montage variable
x_post1 %>%
 pairwise_t_test(
   pct.change ~ montage, paired = TRUE,
   p.adjust.method = "bonferroni"
## # A tibble: 3 x 10
                                   n2 statistic
    .у.
            group1 group2
                             n1
                                                   df
                                                                 p.adj p.adj.signif
                                                           р
## * <chr>
            <chr> <chr> <int> <int>
                                           <dbl> <dbl>
                                                         <dbl>
                                                                 <dbl> <chr>
                             288
                                   288
                                           -3.76
                                                   287 2.09e-4 6.27e-4 ***
## 1 pct.ch~ anodal bihemi
## 2 pct.ch~ anodal catho~
                             288
                                   288
                                           -3.56
                                                   287 4.41e-4 1.00e-3 **
                                           1.48
## 3 pct.ch~ bihemi catho~
                                   288
                                                   287 1.39e-1 4.17e-1 ns
                             288
# comparisons for time variable
x_post1 %>%
 pairwise_t_test(
   pct.change ~ time, paired = TRUE,
   p.adjust.method = "bonferroni"
## # A tibble: 1 x 10
##
               group1 group2
                                 n1
                                        n2 statistic
                                                        df
                                                               p p.adj p.adj.signif
    . y .
                                               <dbl> <dbl> <dbl> <dbl> <chr>
## * <chr>
               <chr>
                       <chr> <int> <int>
## 1 pct.change baseli~ post1
                                 432
                                       432
                                               -2.52
                                                       431 0.012 0.012 *
```

In the pairwise test, both montage and time are shown to be significant.

Check Repeated Measures ANOVA Assumptions

```
x %>%
group_by(time) %>%
identify_outliers(pct.change)
```

Outliers

```
## # A tibble: 657 x 12
     time condBySubject amplitude[,1] replicate montage paired.pulse lesional
##
      <fct> <chr>
                                  <dbl> <fct>
                                                                        <fct>
                                                  <fct>
                                                           <fct>
##
   1 base~ 10232
                                2.34
                                        7
                                                  bihemi
                                                          excitory
                                                                        nonlesi~
   2 base~ 11132
                                2.61
                                        6
                                                  anodal
                                                          excitory
                                                                        nonlesi~
```

```
3 base~ 11232
                               2.20
                                                bihemi excitory
##
                                                                     nonlesi~
   4 base~ 11312
                                                cathod~ single
##
                               1.84
                                      2
                                                                     nonlesi~
   5 base~ 11332
##
                               1.90
                                      1
                                                cathod~ excitory
                                                                     nonlesi~
##
                               1.79
   6 base~ 11332
                                      4
                                                cathod~ excitory
                                                                     nonlesi~
## 7 base~ 11332
                               2.74
                                      6
                                                cathod~ excitory
                                                                     nonlesi~
                                                bihemi single
   8 base~ 1212
                               2.30
                                      8
                                                                     nonlesi~
##
## 9 base~ 12131
                              -0.00768 7
                                                anodal excitory
                                                                     lesional
## 10 base~ 1232
                               3.80
                                      8
                                                bihemi excitory
                                                                     nonlesi~
## # ... with 647 more rows, and 5 more variables: subjectID <fct>,
      pct.change <dbl>, BLmeanAmp <dbl>, is.outlier <lgl>, is.extreme <lgl>
```

There are quite a few extreme outliers in pct.change (e.g. a percent change of 617.4672). Thus, the assumption that there were no extreme outliers is violated.

```
x %>%
group_by(time) %>%
shapiro_test(pct.change)
```

Normality

```
## # A tibble: 5 x 4
##
    time
            variable statistic
##
    <fct>
             <chr>
                            <dbl>
                                    <dbl>
                            0.741 3.38e-53
## 1 baseline pct.change
## 2 post1 pct.change
                            0.774 6.98e-51
## 3 post2
             pct.change
                            0.466 2.39e-66
## 4 post3
                            0.809 8.25e-48
             pct.change
## 5 post4
             pct.change
                            0.654 2.64e-58
```

According to the Shapiro-Wilk's test, since the observed p-values for all categories in time are less than 0.05, we reject the null hypothesis that the data are normally distributed.

```
ggqqplot(x, "pct.change", facet.by = "time")

## Warning: Removed 50 rows containing non-finite values (stat_qq).

## Warning: Removed 50 rows containing non-finite values (stat_qq_line).

## Warning: Removed 50 rows containing non-finite values (stat_qq_line).
```


According to the QQ-plot, in all categories in time, the larger points deviate significantly from the reference line. Thus, we conclude that the normality assumption is violated.