Building a margin error

Recall that the margin is the distance *between the two lines*, and we want to turn this margin into an error that we can minimize using gradient descent. We want a function that gives us a small error for the large margin case, and a large error for the small margin case. This is because we want to punish small margins, as our goal is to obtain a model that has as large a margin as possible.

We have our line with the two other boundary lines, and the margin is the distance between the two outside lines.

Our equation is a line:

• Wx+b=0

and the two dotted lines have equations:

- Wx+b=1
- Wx+b=-1

The margin is 2 divided by the norm of the vector W 2 / |W|

Remember that the norm of W is the square root of the sum of the squares of the components of the vector, which are W1 and W2.

For this error, let's find something that gives us

- A large value if the margin is small
- A small value if the margin is large

The norm of W (|W|) appears in the denominator. If we take the norm of W, that grows inversely proportional to the margin. To avoid dealing with square roots, let's take the norm of W squared, which is actually the sum of the squares of the components of the vector W. In this case, it's

 $w_1 ^2+w_2 ^2$. And as we've seen, since W appears here in the denominator, then a large margin gives us a small error and a small margin gives us a large error. That is exactly what we wanted.

To clarify things, here's an example.

Let's say W=(3,4) and our bias is 1. So our equation of the form $w_1x_1+w_2x_2+b=0$, is going to be $3x_1+4x_2+1=0$, and that's our main line. And the two companion lines, $3x_1+4x_2+1=1$, and $3x_1+4x_2+1=-1$. The error is $|W| \wedge 2$, which is $3 \wedge 2+4 \wedge 2$ and gives us an error of 25. The margin is 2 / |W|, and the |W| is the square root of 25 which is 5. So, the margin is 2/5 and the error is 25. Let's remember these two numbers: error:25 and margin:2/5.

Now, let's look at a very similar example

Instead of our previous weights, let's assume W=(6,8) and our bias is 2. Our line is going to have the equation: $6x_1+8x_2+2=0$. If you notice, that equation is the same as before except multiplied by 2. So, it gives us the same boundary line because when $3x_1+4x_2+1=0$, then $6x_1+8x_2+2=0$. But now our dotted lines are closer to each other. Before we had $3x_1+4x_2+1=1$. And now, we have the twice of that equals one, which means $3x_1+4x_2+1=1$ is actually 1/2, which means the line is much closer. It's actually half the distance as before, and the same thing happens with the line below.

Our error is a square of the norm of this vector, which is $6^2 + 8^2$ which is 100. And our distance is going to be 2 / |W|, which is 2/10. That is the same as 1/5, so this is smaller than the previous margin of 2/5. Two model examples give us the same boundary line, but one of them gives us a larger margin than the other one.

Summary

We have our large margin, our margin of 2/5 that gives us a small error of 25, and our small margin of 2/10, which is 1/5 gives us a larger error of 100.

That is the margin error. It's just $|W| \wedge 2$. This is the exact same error that is given by the regularization term in L2 regularization.

Quiz Question

Which of the following are true about SVM (There's more than one correct answer)

- Large margin = small error
- b. Large margin = large error
- c. Small margin = large error
- d. Small margin = small error