# UNIVERSIDADE DE SÃO PAULO

#### Escola de Engenharia de São Carlos

SEL0621 - Projetos de Circuitos Integrados Digitais I Prof. Dr. João Pereira do Carmo

### Projeto 9

Davi Diório Mendes 7546989

Nivaldo Henrique Bondança 7143909



13 de outubro de 2014

# Lista de Figuras

| 1 | Prescaler 32/33                                | p. 5 |
|---|------------------------------------------------|------|
| 2 | Esquemático do circuito <i>prescaler</i> 32/33 | p. 6 |
| 3 | Layout do circuito prescaler 32/33             | p. 7 |
| 4 | Circuito utilizando o prescaler                | p. 7 |
| 5 | Circuito utilizando Prescalers e transistor.   | p. 8 |

## Lista de Tabelas

| 1 | Máximas frequência de operação. | <br>p. 8 |
|---|---------------------------------|----------|
| 2 | Máximas frequência de operação. | <br>p. 8 |
| 3 | Máximas frequência de operação. | <br>p. 9 |
| 4 | Máximas frequência de operação. | p. 9     |

# Códigos Fontes

#### Introdução

#### Resumo

Neste projeto iremos repetir algumas etapas feitas anteriormente e será mostrado como fazer, de forma automática, o *floor planning* e o *placement* das células.

#### Questões

**1.** Considere o circuito da **Figura 1** (circuito prescaler).



Figura 1: Prescaler 32/33

Desenhe o circuito completo do esquemático da **Figura 1** utilizando as células DF1, NAND23, NOR23 e NAND40. Como sinais de entrada ele deve ter o *clock* e *SM*; como sinal de saída, *saida32\_33* (divide o *clock* por 32 ou 33).

O esquemático do circuito *prescaler* está representado na **Figura 2**.

- **2.** Gere o símbolo para a célula e faça a verificação do esquemático e do símbolo. Certifique- se de que não haja erros ou mesmo *warnings*.
- **3.** Gere o *layout* do circuito a partir do *SDL* (utilize o *designviewpoint* e não o *schematic*) Para isto:
  - a. Coloque as células no layout;
  - b. Realize o autofloorplan (*Place & Route Autofp*);



Figura 2: Esquemático do circuito prescaler 32/33

- c. Recoloque as células dentro das linhas de floorplan (Place & Route AutoPlace Std-Cel);
- d. Apague as linhas que serviriam de guia para os *PADs* (as linhas mais externas);
- e. Selecione todo o esquemático para garantir que todas as ligações no *layout* apareçam. Caso não isto seja feito, no momento do *routing*, várias ligações deixam de ser realizadas;
- f. Para o *rounting*, desabilite a utilização de polisilício (não deixe de fazer isto, pois, caso contrário, o poli será incorretamente usado);
- g. Use o comando *routing* automático para fazer as ligações. Tome cuidado para que as linhas de *VDD* e *VSS* tenham 1,8µm de largura (use a opção *Route ARoutre NEt Classe*);
- h. Para as ligações que não foram feitas, utilize o comando *Route Aroute Region RIP* (neste caso algumas ligações são desfeitas e nova tentativa é realizada);
- i. Verifique que todas as ligação foram realizadas através do comando Route Routing Results - SOvrf.
- **4.** Verifique se as ligações foram bem feitas (principalmente dos sinais de *VDD* e *VSS*). Refaça aquelas que não estiverem boas. Coloque os *ports* no *layout*, conecte-os e coloque os *labels*.
  - **5.** Passe o *DRC* no circuito não deixando nenhum erro.

**6.** Faça o *LVS* entre o *layout* e o esquemático. Só devem ocorrer *warnings*. Inclua no relatório o *layout* feito e corrigido.

O layout do circuito está representado na Figura 3.



Figura 3: Layout do circuito prescaler 32/33

7. Considere o circuito da **Figura 4** (não tem função alguma, servindo apenas para ilustração). Desenhe o esquemático desse circuito utilizando a célula NAND23 e o prescaler anterior (faça as devidas checagens).



Figura 4: Circuito utilizando o prescaler.

- **8.** Gere o *layout* a partir do esquemático. Para isto não se esqueça de acrescentar ao símbolo do *prescaler* a propriedade *phy\_comp* e como seu valor a localização do *layout*.
- **9.** Termine as conexões, adicione *ports*, faça o *DRC* e o *LVS*. Inclua no relatório o *layout* feito.

O layout do circuito está representado na Figura ?? .

10. Modifique o circuito adicionando um transistor na saída como indicado na Figura 5.
Novamente gere o *layout*, adicione *ports*, faça o *DRC* e o *LVS*. Quais são os valores da saída quando o gate do transistor está "Alto" e quando está "Baixo". Inclua no relatório o *layout* feito.



Figura 5: Circuito utilizando Prescalers e transistor.

O novo layout do circuito está representado na Figura ?? .

11. Voltando ao circuito da **Figura 1**, extrair a partir do esquemático o *netlist* e determinar a máxima velocidade para os modelos típico e *worstspeed* (o circuito deve dividir o *clock* por 32, para SM = "0", ou por 33, para SM = "1"). Use o comando *measure*, compare as freqüências obtidas nos dois modelos e comente os resultados.

Analisando os resultados representados na Tabela 1, XXX

Tabela 1: Máximas frequência de operação.

| Modelo     | Frequência (GHz) |
|------------|------------------|
| Típico     | XXX              |
| worstspeed | XXX              |

**12.** A partir do *layout* do circuito da **Figura 1**, extrair o circuito para simulação com apenas capacitores. Determinar a máxima velocidade do circuito para o modelo típico e para o modelo *worstspeed*.

Os resultados estão representados na Tabela 2.

Tabela 2: Máximas frequência de operação.

| Modelo     | Frequência (GHz) |
|------------|------------------|
| Típico     | XXX              |
| worstspeed | XXX              |

**13.** Extrair agora o circuito para simulação com capacitores e resistores. Determinar a máxima velocidade do circuito para o modelo típico e para o modelo *worstspeed*.

Os resultados estão representados na **Tabela 3**.

Tabela 3: Máximas frequência de operação.

| Modelo     | Frequência (GHz) |
|------------|------------------|
| Típico     | XXX              |
| worstspeed | XXX              |

- **14.** A partir do *datasheet* dos blocos que compõe o *prescaler* estime o máximo *clock* que o circuito poderia suportar.
- 15. Monte uma tabela com os resultados obtidos nos exercícios 11, 12, 13 e 14. Compare e comente os resultados. Os resultados dos exercícios 11, 12, 13 e 14 estão representados na Tabela 4.

Após uma análise dos dados... XXX

Tabela 4: Máximas frequência de operação.

| Modelo           | Frequência (GHz) - Típico | Frequência (GHz) - worstspeed |
|------------------|---------------------------|-------------------------------|
| Esquemático (11) | XXX                       | XXX                           |
| C + CC (12)      | XXX                       | XXX                           |
| R + C + CC (13)  | XXX                       | XXX                           |
| datasheet        | XXX                       | XXX                           |

Obs. Endereço com informações sobre células /local/tools/dkit/ams\_3.70\_mgc/www/index.html (Standar Cell DataSheet - C35 - Core Cells).