Zadání semestrálního projektu IEL 2015/16

Vypracujte protokol, který bude obsahovat postup výpočtu, výsledky, Vaše jméno a login. V závěru protokolu uveď te přehlednou tabulku s čísly úloh, Vašimi variantami zadání a výsledky (za chybějící tabulku bude BODOVÁ SRÁŽKA!!!).

Tento protokol se odevzdává ve formátu PDF a zdrojový soubor v TEXu (zabalený v zipu, pojmenovaný podle loginu, např. xnovak00.zip). Odevzdání zdrojového programu v TEXu není povinné, ale bude garantovi předmětu sloužit při případném rozhodování o korekci výsledného hodnocení.

Veškeré výpočty provádějte v obecném tvaru a číselné hodnoty dosaď te až do výsledných vzorců. Z vypracovaného projektu musí být zřejmý obecný postup výpočtu. Výsledky uvádějte na 4 platná desetinná místa. Dbejte na správný převod jednotek úhlů (radiány na stupně - pozor na kvadrant u komplexního čísla!!!).

Za protokol je možné získat max. 12 bodů v závislosti na věcné správnosti postupu výpočtu a estetických kvalitách protokolu (9 bodů za správné řešení a 3 body za zpracování). Protokol odevzdejte do 21. 12. 2015 prostřednictvím IS FIT (maximální velikost souboru je nastavena na 2MB). Projekty odevzdané po tomto termínu nebudou hodnoceny.

Důležité upozornění: Projekty do předmětu IEL má plně v kompetenci pouze a jedině dr. Václav Šátek (satek@fit.vutbr.cz). Neobtěžujte svými dotazy doc. Kunovského a doc. Růžičku.

 $\fbox{1}$ (2 body) Stanovte napětí U_{R3} a proud $I_{R3}.$ Použijte metodu postupného zjednodušování obvodu.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$	$R_6 [\Omega]$	$R_7 [\Omega]$	$R_8 [\Omega]$
A	80	350	650	410	130	360	750	310	190
В	95	650	730	340	330	410	830	340	220
С	100	450	810	190	220	220	720	260	180
D	105	420	980	330	280	310	710	240	200
Е	115	485	660	100	340	575	815	255	225
F	125	510	500	550	250	300	800	330	250
G	130	380	420	330	440	450	650	410	275
Н	135	680	600	260	310	575	870	355	265

 $\fbox{\bf 2}$ (1 bod) Stanovte napětí U_{R3} a proud $I_{R3}.$ Použijte metodu Théveninovy věty.

sk.	U [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
A	50	525	620	210	530	130
В	100	310	610	220	570	200
С	200	220	630	240	450	230
D	150	200	660	200	550	330
Е	250	335	625	245	600	180
F	130	350	600	195	650	280
G	180	315	615	180	460	300
Н	220	360	580	205	560	350

 $\fbox{\bf 3}$ (2 body) Stanovte napětí U_{R3} a proud $I_{R3}.$ Použijte metodu uzlových napětí ($U_A,\,U_B,\,U_C).$

sk.	U [V]	I_1 [A]	I_2 [A]	$R_1 [\Omega]$	$R_2 [\Omega]$	$R_3 [\Omega]$	$R_4 [\Omega]$	$R_5 [\Omega]$
A	120	0.9	0.7	530	490	650	390	320
В	150	0.7	0.8	490	450	610	340	340
С	110	0.85	0.75	440	310	560	200	300
D	115	0.6	0.9	500	380	480	370	285
Е	135	0.55	0.65	520	420	520	420	215
F	145	0.75	0.85	480	440	530	360	255
G	160	0.65	0.45	460	410	535	330	290
Н	130	0.95	0.50	470	390	580	280	205

$\boxed{\mathbf{4}} \ (\mathbf{2} \ \mathbf{body})$

Pro napájecí napětí platí: $u_1 = U_1 \cdot \sin(2\pi f t)$, $u_2 = U_2 \cdot \sin(2\pi f t)$. Ve vztahu pro napětí $u_{C_2} = U_{C_2} \cdot \sin(2\pi f t + \varphi_{C_2})$ určete $|U_{C_2}|$ a φ_{C_2} . Použijte metodu smyčkových proudů.

Pozn: Pomocné "směry šipek napájecích zdrojů platí pro speciální časový okamžik $(t=\frac{\pi}{2\omega}).$ "

sk.	U_1 [V]	U_2 [V]	$R_1 [\Omega]$	$R_2 [\Omega]$	L_1 [mH]	$L_2 [mH]$	$C_1 [\mu F]$	$C_2 [\mu F]$	f [Hz]
A	35	55	125	140	120	100	200	105	70
В	25	40	115	150	100	85	220	95	80
С	35	45	105	130	220	70	230	85	75
D	45	50	135	155	180	90	210	75	85
Е	50	30	145	135	130	60	100	65	90
F	20	35	120	100	170	80	150	90	65
G	55	50	130	125	140	60	160	80	60
Н	65	60	100	105	160	75	155	70	95

$\boxed{\mathbf{5}}$ (2 body)

Sestavte diferenciální rovnici popisující chování obvodu na obrázku, dále ji upravte dosazením hodnot parametrů. Vypočítejte analytické řešení $u_C = f(t)$. Proveď te kontrolu výpočtu dosazením do sestavené diferenciální rovnice.

sk.	U [V]	C [F]	$R [\Omega]$	$u_C(0)$ [V]
A	20	40	10	9
В	17	10	20	8
С	15	15	35	7
D	14	25	30	6
Е	12	30	45	5
F	9	35	15	4
G	7	45	25	3
Н	5	50	40	2

