Retail Analytics: Price Optimization Model

Price Optimization Definition

- •Price optimization is identifying the optimal price point for any given product at any given location that will yield the highest profit.
- •The right pricing can make or break a business, and copying your competitors might mean starting a price war, but making a guess could leave you balking at abysmal sales numbers.
- •Hence, successful price optimization is a matter of a balance that can have a major impact on your sales, customer satisfaction, profit, and achievable growth goals.

Project Overview and Scope

- •This project focuses on predicting an optimal price for a product that will yield maximum profit by increasing the product's sales.
- •This prediction system will help the client to get a suggested price based on the selling cost of a product and the number of products sold.
- •The project will have a connection between the server where the sales data will be stored, and the model will fetch the data to predict the optimized price. The deployment will be using Streamlit.
- •We are building this tool to minimize time and manpower and provide as accurate and thorough results as possible

Project Goals

Objectives

- •To maximize the profitability and sales, A change in market demand for retail minimize the churning rate of customers to products may affect the optimized price. other vendors.
- •To identify the best price by understanding the market based on price optimization

Constraints

- Price optimization for a product family- Any changes in the pricing of one product, may pricing policy of each product in the retail trigger a chain reaction across a product family/ Hence, the pricing of product family becomes a daunting task.

CRISP-ML(Q) Methodology

Technical Stacks

Libraries

Numpy can be used to perform a wide variety of mathematical operations on arrays.

Pandas is a fast, powerful, flexible and easy to use open source data analysis and manipulation tool, built on top of the Python programming language.

Matplotlib is a comprehensive library for creating static, animated, and interactive visualizations in Python.

Deployment

Streamlit is an open-source python library for creating and sharing web apps for data science & machine learning projects.

Project Architecture

Data Understanding

Particulars	Description
UID	Unique ID for a Material
NAME	Name of the Material
ZONE	Name of the zone of Business
Brand	Brand of the material
MC	Material Category: Category of the material
Fdate	Month of Sale
NSU	Net Sale Unit: Total units sold in a month
NSV	Net Sale Value: Total sale value in a month
GST Value	GST Value: GST on the NSV
(NSV-GST)	Calculation only
Sales at Cost	Cost to company

Data Pre-Processing

Steps in Data Pre-processing:

Data Cleaning

Fill in missing values, smooth noisy data, identify or remove outliers, and resolve inconsistencies.

Data Integration

Integration of multiple databases, data cubes, files, or notes.

Data Transformation

Normalization (scaling to a specific range).

Data Reduction

Obtains reduced representation in volume but produces the same or similar analytical results

EDA Description

Measures of central tendency-

- Mean
- Median
- Mode

Measures of dispersion-

- Standard Deviation
- Variation

Third and Fourth Business Moment Decisions-

- Skewness
- Kurtosis

Exploratory Data Analysis

- •Sales is the least corresponding to the lowest price of a unit.
- •After certain threshold, higher selling price does not result in higher profit.

- •Optimize selling price of the product to maximize profit and sales.
- •Price elasticity ideally needs data on how customers react to price variation.
- •A demand curve helps analyze the maximum price at which demand is not impacted.
- •We will use existing data to draw demand curve to find range of potential sales price to optimize revenue or profit.
- •Based on the range, existing sales data will be used to predict or estimate the selling price.

Ordinary Least Squares regression (OLS):

- OLS is a common technique for estimating coefficients of linear regression equations which describe the relationship between one or more independent quantitative variables and a dependent variable (simple or multiple linear regression).
- The simple linear regression is a model with a single regressor (independent variable) x that has a relationship with a response (dependent or target) y that is a

$$y = \beta 0 + \beta 1 x + \epsilon$$

Where

β0: intercept

β1: slope (unknown constant)

ε: random error component

 This is a line where y is the dependent variable we want to predict, x is the independent variable, and β0 and β1 are the coefficients that we need to estimate.

Fig: Model Building Process

Quantity= $\beta_0+(\beta_1\times Unit Selling Price)$

Revenue=(Quantity ×Unit Selling Price)

Where,

Quantity is predicted using SLR

Unit selling price – range between minimum value at which company bought a single unit and maximum selling price from the past data.

At maximum revenue, the optimum price can be seen.

Price Optimization For Retail To Maximize Profit

```
In [76]: import psycopg2
         conn=psycopg2.connect(dbname='Price optimization',user='postgres',password='Bu6LYvqQw@123',host='127.0.0.1',port='5432')
         cur=conn.cursor()
         curs = conn.cursor()
         curs.execute("ROLLBACK")
         conn.commit()
         cur.execute('SELECT * FROM "project_price_optimization"')
In [77]: #cur.execute('SELECT * FROM dataoptimize ORDER BY zone, name, brand, mc')
         df = cur.fetchall()
In [78]: import pandas as pd
         import numpy as np
         import pickle
         import seaborn as sns
         import statsmodels.api as sm
         from statsmodels.formula.api import ols
         from scipy import stats
         import pylab
In [79]: df1 = pd.DataFrame(df)
```

```
In [80]: df1=df1.rename( {0 : 'UID'}, axis=1)
         df1=df1.rename({ 1 : 'NAME'},axis=1)
         df1=df1.rename({2 : 'ZONE'},axis=1)
         df1=df1.rename( {3: 'Brand'},axis=1)
         df1-df1.rename({4 : 'MC'},axis-1)
         df1-df1.rename( {5: 'Fdate'},axis-1)
         df1-df1.rename({6: 'quantity'},axis-1)
         df1-df1.rename({7:'NSV'},axis-1)
         df1=df1.rename({8: 'GST_Value'},axis=1)
         df1=df1.rename({9:'NSV-GST'},axis=1)
         df1=df1.rename({10: 'sales_at_cost'},axis=1)
         df1=df1.rename({11: 'SALES AT COST'},axis=1)
         df1=df1.rename({12:'MARGIN%'},axis=1)
         df1=df1.rename({13:'Gross Sales'},axis=1)
         df1=df1.rename({14:'GrossRGM(P-L)'},axis=1)
         df1=df1.rename({15: 'Gross_Margin%(Q/P*100)'},axis=1)
         df1=df1.rename({16:'MRP'},axis=1)
         df1=df1.rename({17:'price'},axis=1)
         df1=df1.rename({18:'DIS'},axis=1)
         df1=df1.rename({19:'DIS%'},axis=1)
         df1[['quantity','NSV', 'GST_Value', 'NSV-GST', 'sales_at_cost', 'SALES_AT_COST', 'MARGIN%', 'Gross_Sales', 'GrossRGM(P-L)', 'Gro
         df1.columns
Out[80]: Index([
                                     'UID',
                                                                'NAME'.
                                    'ZONE',
                                                               'Brand'.
                                      'MC'.
                                                               'Fdate'.
                                'quantity',
                                                                 'NSV',
                               'GST_Value',
                                                            'NSV-GST',
                          'sales_at _cost',
                                                       'SALES AT COST',
                                 'MARGIN%',
                                                        'Gross_Sales',
                           'GrossRGM(P-L)', 'Gross Margin%(Q/P*100)',
                                     'MRP'.
                                                               'price',
                                     'DIS',
                                                                'DIS%',
                                        20],
                dtype='object')
```

```
In [81]: # checking the Duplicated values present in the datasets

df1[df1.duplicated()]
data = df1.drop_duplicates()

In [82]: # Checking The null values present in th datasets
data.isnull().sum()
data = data.dropna()
data.shape

Out[82]: (37421, 21)

In [83]: # Take the Items Whose Profit margin is greater than 0.
data = data.loc[data['NARGIN%'] > 0,:]
data.shape

Out[83]: (30808, 21)

In [84]: top_10_items = data['NAME'].value_counts().head(10)
print(top_10_items)
```

```
In [93]: # For GH JUN DAL PREM 500g
       optimal_price = {}
In [94]: optimal_price['For GH TUR DAL PREM 500g'] = find_optimal_price(data_new)
       optimal price['For GH TUR DAL PREM 500g']
       Dep. Variable:
                                        R-squared:
                               quantity
                                                                   0.765
       Model:
                                   OLS Adj. R-squared:
                                                                   0.706
       Method:
                          Least Squares F-statistic:
                                                                   13.02
                        Tue, 07 Jun 2022 Prob (F-statistic):
                                                                  0.0226
       Date:
       Time:
                               01:42:21 Log-Likelihood:
                                                                  -50.667
       No. Observations:
                                        AIC:
                                                                   105.3
       Df Residuals:
                                        BIC:
                                                                   104.9
       Df Model:
       Covariance Type:
                              nonrobust
        ______
                                                         [0.025
                                                                  0.975]
                          7472.630
                                               0.012
                                                       1.17e+04
                                                                 5.32e+04
       Intercept 3.241e+04
                                      4.337
                            143.292
                                      -3.608
                                                0.023
                                                       -914.903
                                                                 -119.221
        price
                 -517.0619
        Omnibus:
                                        Durbin-Watson:
                                                                   2.409
       Prob(Omnibus):
                                        Jarque-Bera (JB):
                                                                   0.506
                                 0.257 Prob(JB):
       Skew:
                                                                   0.777
        Kurtosis:
                                  1.674 Cond. No.
                                                                    693.
```


Challenges

- Less data for certain products.
- •Dealing with missing values and outlier treatment.
- •Research on various prices optimization techniques and choosing the best fit.

Future Scope

Customer Behavior Analytics:

Obtain customer data and categorize customers into regular, semi-regular, and infrequent. Use analytics and machine learning models to understand the purchase behaviors of these users and adjust prices and discounts accordingly.

• Dynamic Pricing:

Pricing can further be optimized by regularly adjusting the selling price, which can reflect commodity cost changes, supplier incentives, response to consumer behavior, response to market conditions, etc.

