Asigment 1

Nixon Candiales

23. September 2022

Summary Statistics

Provide and discuss a table of simple summary statistics showing the mean, standard deviation, min, and max of hospital total revenues and uncompensated care over time.

Distribution Hospital Uncompensated Care Over Time

Distribution Hospital Total Revenue Over Time

Tabelle 1: Hospital Summary Statistics

	Un	comper	nsated	Care		Total I	Revenue	
year	Mean	Sd	Min	Max	Mean	Sd	Min	Max
2003	13.57	32.05	0	777.99	292.35	397.70	1.66	4722.76
2004	15.33	36.66	0	820.25	327.69	445.42	0.27	5525.73
2005	17.41	37.81	0	939.13	380.14	514.68	1.14	6398.55
2006	20.97	47.16	0	1074.62	433.73	558.58	1.33	6718.17
2007	23.56	51.28	0	1203.37	484.24	646.76	0.99	8577.05
2008	26.43	57.06	0	1361.81	513.43	655.58	0.97	7743.08
2009	27.44	46.42	0	583.98	552.80	718.35	0.89	9139.32
2010	29.89	72.41	0	2793.92	576.62	779.98	0.84	9857.53
2011	26.82	63.17	0	2059.70	480.04	776.84	-27.58	10572.29
2012	29.87	72.54	0	1882.62	505.10	830.36	0.85	11865.32
2013	31.93	72.63	0	1652.58	539.20	903.93	0.95	12751.71
2014	31.79	77.39	0	2024.85	577.45	980.59	1.09	13376.35
2015	29.83	74.67	0	2054.15	623.38	1048.30	1.05	14143.53
2016	31.14	80.95	0	2390.67	677.54	1157.37	-177.03	15618.75
2017	33.38	87.36	0	2733.60	727.36	1263.39	1.00	16863.43
2018	35.90	90.49	0	2606.35	782.42	1386.47	1.07	18677.25
2019	39.82	99.48	0	2648.26	855.33	1538.23	0.72	22000.93

Create a figure showing the mean hospital uncompensated care from 2000 to 2018. Show this trend separately by hospital ownership type (private not for profit and private for profit).

TWFE Specification

Using a simple DD identification strategy, estimate the effect of Medicaid expansion on hospital uncompensated care using a traditional two-way fixed effects (TWFE) estimation:

$$y_{it} = {}_{i} + {}_{t} + D_{it} + {}_{it}, (1)$$

where $D_{it}=1(E_i-t)$ in Equation 1 is an indicator set to 1 when a hospital is in a state that expanded as of year t or earlier, t denotes time fixed effects, t denotes hospital fixed effects, and t denotes the hospital's amount of uncompensated care in year t. Present four estimates from this estimation in a table: one based on the full sample (regardless of treatment timing); one when limiting to the 2014 treatment group (with never treated as the control group); one when limiting to the 2015 treatment group (with never treated as the control group); and one when limiting to the 2016 treatment group (with never treated as the control group). Briefly explain any differences.

Tabelle 2: Two Way Fixed Effects

	D	D14	D15	D16
Treatment	-28.363*** (1.893)	-31.518*** (2.185)	-12.173*** (1.848)	-12.153*** (1.550)
Num.Obs.	79557	69824	74768	77624
R2	0.699	0.708	0.690	0.691
R2 Adj.	0.675	0.684	0.666	0.667
AIC	817114.7	720035.7	772873.5	800104.3
BIC	871269.6	767580.1	823742.8	852930.5
RMSE	38.21	38.97	39.48	38.91
Std.Errors	by: pn	by: pn	by: pn	by: pn

+ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Event Study Specification

Estimate an "event study" version of the specification in part 3:

$$y_{it} = {}_{i} + {}_{t} + {}_{<1}D_{it} + {}_{>=0}D_{it} + {}_{it},$$

$$(2)$$

where $D_{it}=1(t\ E_i=)$ in Equation 2 is essentially an interaction between the treatment dummy and a relative time dummy. In this notation and context, denotes years relative to Medicaid expansion, so that =1 denotes the year before a state expanded Medicaid, =0 denotes the year of expansion, etc. Estimate with two different samples: one based on the full sample and one based only on those that expanded in 2014 (with never treated as the control group).

SA Specification

Sun and Abraham(SA) show that the coefficients in Equation @ref(eq:event) can be written as a non-conxvex average of all other group-time specific average treatment effects. They propose an interaction weighted specification:

$$y_{it} = {}_{i} + {}_{t} + {}_{e_{1}}(D_{it} \times 1(E_{i} = e))_{e_{i}} + {}_{it}.(\#eq\ iwevent)$$
 (3)

Re-estimate your event study using the SA specification in Equation @ref(eq:iwevent). Show your results for $_{e,}$ in a Table, focusing on states with $E_i=2014$, $E_i=2015$, and $E_i=2016$.

Present an event study graph based on the results in part 5. Hint: you can do this automatically in R with the fixest package (using the sunab syntax for interactions), or

with eventstudyinteract in Stata. These packages help to avoid mistakes compared to doing the tables/figures manually and also help to get the standard errors correct.

CS Specification

Callaway and Sant'Anna (CS) offer a non-parametric solution that effectively calculates a set of group-time specific differences, $ATT(g,t)=E[y_{it}(g)\,y_{it}()|G_i=g]$, where g reflects treatment timing and t denotes time. They show that under the standard DD assumptions of parallel trends and no anticipation, $ATT(g,t)=E[y_{it}\,y_{i,g1}|G_i=g]\,E[y_{it}\,y_{i,g1}|G_i=g]$, so that ATT(g,t) is directly estimable from sample analogs. CS also propose aggregations of ATT(g,t) to form an overall ATT or a time-specific ATT (e.g., ATTs for periods before/after treatment). With this framework in mind, provide an alternative event study using the CS estimator. Hint: check out the did package in R or the csdid package in Stata.

RR Specification

Rambachan and Roth (RR) show that traditional tests of parallel pre-trends may be underpowered, and they provide an alternative estimator that essentially bounds the treatment effects by the size of an assumed violation in parallel trends. One such bound RR propose is to limit the post-treatment violation of parallel trends to be no worse than some multiple of the pre-treatment violation of parallel trends. Assuming linear trends, such a violation is reflected by

$$(M) = \{ \ t \ 0, |(_{t+1} \ _t) \ (_{t \ t1})| \ M \times \max_{s < 0} |(_{s+1} \ _s) \ (_{s \ s1})| \} \, .$$

Using the HonestDiD package in R or Stata, present a sensitivity plot of your CS ATT estimates using $M=\{0,0.5,1,1.5,2\}$. Check out the GitHub repo here for some help in combining the HonestDiD package with CS estimates.

Discussion

Discuss your findings and compare estimates from different estimators (e.g., are your results sensitive to different specifications or estimators? Are your results sensitive to violation of parallel trends assumptions?).

Reflection

Reflect on this assignment. What did you find most challenging? What did you find most surprising?

Distribution Hospital Uncompensated Care Over Time

Mean of Hospital Uncompensated Care in Millions of Dollars by Ownership Type

Years

Effect of Medicaid Eaxpansion on Uncompensated

Care

Effect of Medicaid Eaxpansion on Uncompensated Care

time_to_treat

Effect of Medicaid Eaxpansion on Uncompensated

Care

Tabelle 3: Two Way Fixed Effects long format

	D	D14	D15	D16
Treatment	-28.363*** (1.893)	-31.518*** (2.185)	-12.173*** (1.848)	-12.153*** (1.550)
Num.Obs.	79557	69824	74768	77624
R2	0.699	0.708	0.690	0.691
R2 Adj. AIC	0.675 817114.7	0.684 720035.7	0.666 772873.5	0.667 800104.3
BIC	871269.6	767580.1	823742.8	852930.5
RMSE Std.Errors	38.21 by: pn	38.97 by: pn	39.48 by: pn	38.91 by: pn

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Tabelle 4: Event Study Common Treatment

	Model 1
$year = 2003 \times treated$	13.696***
	(2.841)
$year = 2004 \times treated$	14.798***
	(2.663)
$year = 2005 \times treated$	15.216***
	(2.756)
$year = 2006 \times treated$	16.779***
	(3.044)
$year = 2007 \times treated$	16.696***
	(3.159)
$year = 2008 \times treated$	14.246***
	(3.055)
$year = 2009 \times treated$	11.508***
	(2.403)
$year = 2010 \times treated$	10.283***
	(2.546)
$year = 2011 \times treated$	3.128**
	(0.988)
$year = 2012 \times treated$	1.217
	(0.765)
$year = 2014 \times treated$	-8.672***
	(0.860)
$year = 2015 \times treated$	-16.546***
	(1.262)
$year = 2016 \times treated$	-19.616***
	(1.373)
$year = 2017 \times treated$	-25.197***
	(1.654)
$year = 2018 \times treated$	-28.200***
2012 (7)	(1.804)
$year = 2019 \times treated$	-33.353***
	(2.156)
Num.Obs.	79557
AIC	804841.0
BIC	804998.9
RMSE	38.06
Std.Errors	by: pn
FE: pn	X
FE: year	X

Tabelle 5: Even Study Staggered

	Model 1
time_to_treat = -7 Œ treated	14.553***
	(2.611)
$time_to_treat = -6 \times treated$	12.287***
	(2.547)
$time_to_treat = -5 \times treated$	10.850***
	(2.542)
$time_to_treat = -4 \times treated$	5.346**
	(1.674)
$time_to_treat = -3 \times treated$	3.606***
	(0.842)
$time_to_treat = -2 \times treated$	1.750**
	(0.548)
$time_to_treat = 0 \times treated$	-9.201***
	(0.622)
$time_to_treat = 1 \times treated$	-18.916***
	(1.067)
$time_to_treat = 2 \times treated$	-23.692***
	(1.287)
$time_to_treat = 3 \times treated$	-28.244***
	(1.526)
$time_to_treat = 4 \times treated$	-30.934***
	(1.730)
$time_to_treat = 5 \times treated$	-35.122***
	(2.088)
Num.Obs.	79557
AIC	804661.4
BIC	804782.1
RMSE	38.02
Std.Errors	by: pn
FE: pn	X
FE: year	X

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Tabelle 6: SA especification

	Model 1
$time_to_treat = -7$	15.552***
	(2.563)
time to treat $=$ -6	14.639***
	(2.875)
time to treat $= -5$	12.228***
	(2.528)
$time_to_treat = -4$	7.590***
	(1.767)
$time_to_treat = -3$	3.401***
	(0.895)
$time_to_treat = -2$	1.638**
	(0.634)
$time_to_treat = 0$	-9.411***
	(0.723)
$time_to_treat = 1$	-18.360***
	(1.129)
${ m time_to_treat} = 2$	-22.200***
	(1.280)
$time_to_treat = 3$	-26.974***
	(1.528)
$time_to_treat = 4$	-29.782***
	(1.729)
$time_to_treat = 5$	-34.456***
	(2.107)
Num.Obs.	79557
AIC	804610.3
BIC	804731.0
RMSE	38.00
Std.Errors	by: pn
FE: pn	X
FE: year	X

⁺ p < 0.1, * p < 0.05, ** p < 0.01, *** p < 0.001

Tabelle 7: CS specification

1	
	Model 1
ATT(2014,2003)	5.619
ATT (001 4 000 4)	(2.375)
ATT(2014,2004)	5.711 (2.274)
ATT(2014,2005)	5.374
, , ,	(2.530)
ATT(2014,2006)	5.922
ATT(2014-2007)	(2.684) 3.030
ATT(2014,2007)	(2.449)
ATT(2014,2008)	1.638
	(2.699)
ATT(2014,2009)	-2.067
ATT(2014,2010)	(2.026) -3.365
A11(2014,2010)	(1.991)
ATT(2014,2011)	2.530
. — — ((1.087)
ATT(2014,2012)	0.090
ATT(2014,2013)	$(0.939) \\ 0.000$
ATT(2014,2014)	-11.446
,	(0.960)
ATT(2014,2015)	-20.250
ATT(2014,2016)	(1.319) -23.016
A11(2014,2010)	(1.438)
ATT(2014,2017)	-27.688
. — — ((1.633)
ATT(2014,2018)	-30.492
ATT(2014,2019)	(1.775) -35.639
111 1 (2011,2010)	(2.004)
ATT(2015,2003)	9.581
AFF (2017 2004)	(3.160)
ATT(2015,2004)	9.444 (3.557)
ATT(2015,2005)	(3.337) 8.175
, , ,	(3.349)
ATT(2015,2006)	5.645
ATT(2015,2007)	(3.583) 2.815
ATT (2015,2007)	(3.404)
ATT(2015,2008)	-0.399
APP (001 7 0000)	(3.676)
$\Lambda TT(2015, 2000)$	0.60E

ATT(2015,2009)

0.605

Tabelle 8: CS specification Event Study

ATT(-7) 2.333 (2.261) ATT(-6) 1.235 (2.336) ATT(-5) 0.653 (2.575) ATT(-4) -2.060 (1.549) ATT(-3) 2.769 (0.944) ATT(-2) 0.581 (0.680) ATT(-1) 0.000 ATT(0) -10.562 (0.753) ATT(1) -18.852 (1.103)
(2.261) ATT(-6) 1.235 (2.336) ATT(-5) 0.653 (2.575) ATT(-4) -2.060 (1.549) ATT(-3) 2.769 (0.944) ATT(-2) 0.581 (0.680) ATT(-1) 0.000 ATT(0) -10.562 (0.753) ATT(1) -18.852
(2.336) ATT(-5) (2.575) ATT(-4) (2.575) ATT(-4) (1.549) ATT(-3) (0.944) ATT(-2) (0.680) ATT(-1) (0.680) ATT(0) ATT(0) -10.562 (0.753) ATT(1) -18.852
ATT(-5) 0.653 (2.575) ATT(-4) -2.060 (1.549) ATT(-3) 2.769 (0.944) ATT(-2) 0.581 (0.680) ATT(-1) 0.000 ATT(0) -10.562 (0.753) ATT(1) -18.852
(2.575) ATT(-4) -2.060 (1.549) ATT(-3) 2.769 (0.944) ATT(-2) 0.581 (0.680) ATT(-1) 0.000 ATT(0) -10.562 (0.753) ATT(1) -18.852
ATT(-4) -2.060 (1.549) ATT(-3) 2.769 (0.944) ATT(-2) 0.581 (0.680) ATT(-1) 0.000 ATT(0) -10.562 (0.753) ATT(1) -18.852
(1.549) ATT(-3) 2.769 (0.944) ATT(-2) 0.581 (0.680) ATT(-1) 0.000 ATT(0) -10.562 (0.753) ATT(1) -18.852
ATT(-3) 2.769 (0.944) ATT(-2) 0.581 (0.680) ATT(-1) 0.000 ATT(0) -10.562 (0.753) ATT(1) -18.852
(0.944) ATT(-2) 0.581 (0.680) ATT(-1) 0.000 ATT(0) -10.562 (0.753) ATT(1) -18.852
ATT(-2) 0.581 (0.680) ATT(-1) 0.000 ATT(0) -10.562 (0.753) ATT(1) -18.852
(0.680) ATT(-1) 0.000 ATT(0) -10.562 (0.753) ATT(1) -18.852
ATT(-1) 0.000 ATT(0) -10.562 (0.753) ATT(1) -18.852
ATT(0) -10.562 (0.753) ATT(1) -18.852
(0.753) ATT(1) -18.852
ATT(1) -18.852
(1.103)
,
ATT(2) -22.281
(1.305)
ATT(3) -27.093
(1.558)
ATT(4) -29.855
(1.721)
ATT(5) -35.639
(2.108)
Num.Obs. 5815
Std.Errors by: pn_id
type dynamic
ngroup 4.000
ntime 17.000
control.group nevertreated
est.method dr