Section 6.3

Orthogonal Projections

Idea Behind Orthogonal Projections

If x is not in a subspace W, then y in W is the closest to x if x - y is in W^{\perp} :

Reformulation: Every vector x can be decompsed uniquely as

$$x = x_W + x_{W^{\perp}}$$

where $x_W = y$ is the closest vector to x in W, and $x_{W^{\perp}} = x - y$ is in W^{\perp} .

Example: Let $u=\binom{3}{2}$ and let $L=\operatorname{Span}\{u\}$. Let $x=\binom{-6}{4}$. Then the closest point to x in L is $\operatorname{proj}_L(x)=\frac{x\cdot u}{u\cdot u}u$, so

$$x_L = \operatorname{proj}_L(x) = -\frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \qquad x_{L^\perp} = x - \operatorname{proj}_L(x) = \begin{pmatrix} -6 \\ 4 \end{pmatrix} + \frac{10}{13} \begin{pmatrix} 3 \\ 2 \end{pmatrix}.$$

Orthogonal Projections

Definition

Let W be a subspace of \mathbb{R}^n , and let $\{u_1, u_2, \dots, u_m\}$ be an *orthogonal* basis for W. The **orthogonal projection** of a vector x onto W is

$$\operatorname{proj}_{W}(x) \stackrel{\mathrm{def}}{=} \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i}.$$

Question: What is the difference between this and the formula for $[x]_{\mathcal{B}}$ from before?

Theorem

Let W be a subspace of \mathbf{R}^n , and let x be a vector in \mathbf{R}^n . Then $\operatorname{proj}_W(x)$ is the closest point to x in W. Therefore

$$x_W = \operatorname{proj}_W(x)$$
 $x_{W^{\perp}} = x - \operatorname{proj}_W(x).$

Why? Let $y = \text{proj}_W(x)$. We need to show that x - y is in W^{\perp} . In other words, $u_i \cdot (x - y) = 0$ for each i. Let's do u_1 :

$$u_1 \cdot (x - y) = u_1 \cdot \left(x - \sum_{i=1}^m \frac{x \cdot u_i}{u_i \cdot u_i} u_i \right) = u_1 \cdot x - \frac{x \cdot u_1}{u_1 \cdot u_1} (u_1 \cdot u_1) - 0 - \dots = 0.$$

Orthogonal Projections Easy example

What is the projection of $x = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$ onto the *xy*-plane?

Answer: The xy-plane is $W = \text{Span}\{e_1, e_2\}$, and $\{e_1, e_2\}$ is an orthogonal basis.

$$x_W = \operatorname{proj}_W \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} = \frac{x \cdot e_1}{e_1 \cdot e_1} e_1 + \frac{x \cdot e_2}{e_2 \cdot e_2} e_2 = \frac{1 \cdot 1}{1^2} e_1 + \frac{1 \cdot 2}{1^2} e_2 = \begin{pmatrix} 1 \\ 2 \\ 0 \end{pmatrix}.$$

So this is the same projection as before.

Orthogonal Projections

More complicated example

What is the projection of
$$x = \begin{pmatrix} -1.1 \\ 1.4 \\ 1.45 \end{pmatrix}$$
 onto $W = \text{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1.1 \\ -.2 \end{pmatrix} \right\}$?

Answer: The basis is orthogonal, so

$$x_{W} = \operatorname{proj}_{W} \begin{pmatrix} -1.1\\ 1.4\\ 1.45 \end{pmatrix} = \frac{x \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1} + \frac{x \cdot u_{2}}{u_{2} \cdot u_{2}} u_{2}$$

$$= \frac{(-1.1)(1)}{1^{2}} \begin{pmatrix} 1\\0\\0 \end{pmatrix} + \frac{(1.4)(1.1) + (1.45)(-.2)}{1.1^{2} + (-.2)^{2}} \begin{pmatrix} 0\\1.1\\-.2 \end{pmatrix}$$

This turns out to be equal to $u_2 - 1.1u_1$.

Orthogonal Projections Picture

Let W be a subspace of \mathbf{R}^n , and let $\{u_1, u_2, \dots, u_m\}$ be an orthogonal basis for W. Let $L_i = \operatorname{Span}\{u_i\}$. Then

$$\operatorname{proj}_{W}(x) = \sum_{i=1}^{m} \frac{x \cdot u_{i}}{u_{i} \cdot u_{i}} u_{i} = \sum_{i=1}^{m} \operatorname{proj}_{L_{i}}(x).$$

So the orthogonal projection is formed by adding orthogonal projections onto perpendicular lines.

First we restate the property we've been using all along.

Best Approximation Theorem

Let W be a subspace of \mathbf{R}^n , and let x be a vector in \mathbf{R}^n . Then $y = \operatorname{proj}_W(x)$ is the closest point in W to x, in the sense that

$$\operatorname{dist}(x, y') \ge \operatorname{dist}(x, y)$$
 for all y' in W .

We can think of orthogonal projection as a *transformation*:

$$\operatorname{proj}_W \colon \mathbf{R}^n \longrightarrow \mathbf{R}^n \qquad x \mapsto \operatorname{proj}_W(x).$$

Theorem

Let W be a subspace of \mathbb{R}^n .

- 1. $proj_W$ is a *linear* transformation.
- 2. For every x in W, we have $proj_W(x) = x$.
- 3. For every x in W^{\perp} , we have $\operatorname{proj}_{W}(x) = 0$.
- 4. The range of $proj_W$ is W.

Let W be a subspace of \mathbf{R}^n .

Poll -

Let A be the matrix for $proj_W$. What is/are the eigenvalue(s) of A?

 $\hbox{A. 0} \quad \hbox{B. 1} \quad \hbox{C. } -1 \quad \hbox{D. 0, 1} \quad \hbox{E. 1, } -1 \quad \hbox{F. 0, } -1 \quad \hbox{G. } -1, \ \hbox{0, 1}$

The 1-eigenspace is W.

The 0-eigenspace is W^{\perp} .

We have dim $W + \dim W^{\perp} = n$, so that gives n linearly independent eigenvectors already.

So the answer is D.

What is the matrix for $\operatorname{proj}_W \colon \mathbf{R}^3 \to \mathbf{R}^3$, where

$$W = \mathsf{Span}\left\{ \begin{pmatrix} 1\\0\\-1 \end{pmatrix}, \begin{pmatrix} 1\\1\\1 \end{pmatrix} \right\}?$$

Answer: Recall how to compute the matrix for a linear transformation:

$$A = \left(egin{array}{ccc} & & & & & & \\ \mathsf{proj}_W(e_1) & & \mathsf{proj}_W(e_2) & & \mathsf{proj}_W(e_3) \\ & & & & & \end{array} \right).$$

We compute:

$$\begin{aligned} \operatorname{proj}_W(\mathbf{e}_1) &= \frac{e_1 \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{e_1 \cdot u_2}{u_2 \cdot u_2} u_2 = \frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 5/6 \\ 1/3 \\ -1/6 \end{pmatrix} \\ \operatorname{proj}_W(\mathbf{e}_2) &= \frac{e_2 \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{e_2 \cdot u_2}{u_2 \cdot u_2} u_2 = 0 + \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 1/3 \\ 1/3 \\ 1/3 \end{pmatrix} \\ \operatorname{proj}_W(\mathbf{e}_3) &= \frac{e_3 \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{e_3 \cdot u_2}{u_2 \cdot u_2} u_2 = -\frac{1}{2} \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} + \frac{1}{3} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} -1/6 \\ 1/3 \\ 5/6 \end{pmatrix} \\ \end{aligned}$$
 Therefore $A = \begin{pmatrix} 5/6 & 1/3 & -1/6 \\ 1/3 & 1/3 & 1/3 \\ -1/6 & 1/3 & 5/6 \end{pmatrix}$.

Let W be an m-dimensional subspace of \mathbf{R}^n , let $\operatorname{proj}_W \colon \mathbf{R}^n \to W$ be the projection, and let A be the matrix for proj_L .

Fact 1: A is diagonalizable with eigenvalues 0 and 1; it is similar to the diagonal matrix with m ones and n-m zeros on the diagonal.

Why? Let v_1, v_2, \ldots, v_m be a basis for W, and let $v_{m+1}, v_{m+2}, \ldots, v_n$ be a basis for W^{\perp} . These are (linearly independent) eigenvectors with eigenvalues 1 and 0, respectively, and they form a basis for \mathbb{R}^n because there are n of them.

Example: If W is a plane in \mathbb{R}^3 , then A is similar to projection onto the xy-plane:

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

Fact 2: $A^2 = A$.

Why? Projecting twice is the same as projecting once:

$$\operatorname{proj}_W \circ \operatorname{proj}_W = \operatorname{proj}_W \implies A \cdot A = A.$$

Orthogonal Projections Minimum distance

What is the distance from e_1 to $W = \operatorname{Span} \left\{ \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$?

Answer: The closest point on W to e_1 is $\operatorname{proj}_W(e_1) = \begin{pmatrix} 5/6 \\ 1/3 \\ -1/6 \end{pmatrix}$.

The distance from e_1 to this point is

$$\begin{aligned} \mathsf{dist} \big(e_1, \mathsf{proj}_{\mathcal{W}} (e_1) \big) &= \| (e_1)_{\mathcal{W}^{\perp}} \| \\ &= \left\| \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} - \begin{pmatrix} 5/6 \\ 1/3 \\ -1/6 \end{pmatrix} \right\| \\ &= \left\| \begin{pmatrix} 1/6 \\ -1/3 \\ -1/6 \end{pmatrix} \right\| \\ &= \sqrt{(1/6)^2 + (-1/3)^2 + (-1/6)^2} \\ &= \frac{1}{\sqrt{6}}. \end{aligned}$$

