CS11-737 Multilingual NLP

Text-to-Speech Synthesis

Lei Li

https://lileicc.github.io/course/11737mnlp23fa/

Carnegie Mellon University

Language Technologies Institute

Text-to-Speech Synthesis (TTS)

produce speech waveform from text input

Inverse problem of ASR

TTS Pipeline

TTS technologies

TTS Pipeline — Text Analysis

- Transform text into linguistic features:
 - text normalization:
 - ▶ 1989 -> nineteen eighty nine
 - ▶ Jan. 24 -> January twenty-fourth
 - homograph disambiguation:
 - do you live (/l ih v/) near a zoo with live (/l ay v/) animals?
 - Grapheme-to-phoneme conversion
 - speech -> s p iy ch
 - ToBI (Tones and Break Indices)
 - Phrase/word/syllable segmentation
 - Part-of-speech tagging

Text to Phoneme

Acoustic Model

- Transform a sequence of phonemes intro audio features
- Mel-scale Frequency Cepstral Coefficients (MFCC)
 - Tactron uses 80 channel MFCC, 50ms per frame, 12.5ms frame shifting.

Tacotron2

RNN based approach

Vocoder

 Transform acoustic features (mel-spectrogram) to speech waveform signals

Vocoder — WaveNet

autoregressive model with dilated causal convolution

WaveNet

End-to-end TTS

FastSpeech/FastSpeech2/2s

- Generate mel-spectrogram in parallel
- use variance adaptor to predict duration, pitch, energy
- FastSpeech2s: generating wave directly

(b) Variance adaptor

FastSpeech2/2s

.. Predictor ⊕

Energy **Energy Predictor** Pitch Pitch Predictor Duration **Duration Predictor** the amplitude of STFT for each frame, discrete to 256 and map to embedding

predicts F₀ of each phoneme, map to 256 values in log-scale and embedding vector

predicts num. of mel frames of each phoneme

Montreal forced alignment (MFA) tool to construct groudtruth

(b) Variance adaptor length reg

FastSpeech2s

Training FastSpeech2s

use loss from Parallel WaveGAN

Code Example

see python notebook

Summary

- Text preprocessing for TTS
- Acoustic model to generate acoustic features for each frame
- Vocoder to generate waveform
- FastSpeech2s: end-to-end tts

Language in 10

Code Walkthrough

• https://github.com/ming024/FastSpeech2