

BENIGN BY DESIGN 💅

Paige Bowling Long-Jing Hsu Yan Ying Tan Samuel Akingbade

INTRODUCTION

What could go wrong?

- The contents of the nucleus are very different for cancer cells
- Looking at cells, it can be determined if they are
 - M (Malignant): cancerous
 - B (Benign): non-cancerous

WHAT ARE WE MEASURING?

- The dataset features describing cell nuclei characteristics.
 - o Each instance represents a single breast mass sample.
- Categories:
 - Radius, Texture, Perimeter, Area, Smoothness, Compactness,
 Concavity, Concave points, Symmetry, and Fractal dimension
- Three measurements/features each:
 - Mean, Standard Error, and Worst

(Kaggle.com)

SIMPLE MODELS ARE A SCIENTISTS BEST FRIEND

Reliability **Accountability Interpretability Sustainability Executability** (Forbes 2021)

RESEARCH QUESTION

- How many features are necessary to accurately predict a patient's breast cancer diagnosis using simple ML models?
- Measurements of success:
 - High accuracy & Low false positive rate

Data Analysis

Bimodal Distribution

Data Analysis

Top-Correlated Features

Top 3 Features

Setup

- Split data set 80/20
- Tested 8 different ML models
 - Logistic Regression,
 SVM (Lin & RBF), KNN,
 Decision Tree, Random
 Forest, Gradient Boost,
 LightGBM
- Tested use of different features (of the 30 possible)

Preliminary Results

Models	Accuracy	ROC-AUC				
LogReg	0.956	0.994				
Random Forest	0.982	0.996				
RBF-SVM	0.965	0.995				

Representative Model

	ROC-AUC			Accuracy			
Models	3	10	AII	3	10	All	
LogReg	0.994	0.996	0.994	0.947	0.965	0.956	
Random Forest	0.984	0.994	0.996	0.939	0.965	0.982	
RBF-SVM	0.995	0.994	0.995	0.956	0.974	0.965	1

3 Parameters

10 Parameters

30 Parameters

	Model	ROC-AUC	Accuracy	TP	FP	FN	TN
0	LinSVM	0.995	0.947	41	5	1	67
1	RBF-SVM	0.995	0.956	39	2	3	70
2	LogReg	0.994	0.947	41	5	1	67
3	KNN	0.993	0.956	39	2	3	70
4	LightGBM	0.988	0.921	40	7	2	65
5	RandomForest	0.984	0.939	39	4	3	68
6	GradBoost	0.982	0.921	39	6	3	66
7	DecisionTree	0.854	0.860	35	9	7	63

	Model	ROC-AUC	Accuracy	TP	FP	FN	TN
0	LinSVM	0.996	0.965	40	2	2	70
1	LogReg	0.996	0.965	40	2	2	70
2	RBF-SVM	0.994	0.974	40	1	2	71
3	RandomForest	0.994	0.965	40	2	2	70
4	LightGBM	0.993	0.965	40	2	2	70
5	GradBoost	0.991	0.947	40	4	2	68
6	KNN	0.982	0.982	40	0	2	72
7	DecisionTree	0.941	0.939	40	5	2	67

	Model	ROC-AUC	Accuracy	TP	FP	FN	TN
0	LinSVM	0.997	0.965	40	2	2	70
1	RandomForest	0.996	0.982	40	0	2	72
2	RBF-SVM	0.995	0.965	40	2	2	70
3	LogReg	0.994	0.956	39	2	3	70
4	LightGBM	0.993	0.974	39	0	3	72
5	GradBoost	0.992	0.939	40	5	2	67
6	KNN	0.981	0.974	39	0	3	72
7	DecisionTree	0.930	0.930	39	5	3	67

CONCLUSION

What can we conclude? Future directions?

1

Simple models

- Easy-to-understand algorithms
- Choose the ones most linked to the result
- Avoid using similar features

2

You don't need 30 features to predict a diagnosis

- With only 3 of top features achieves
 >95% fidelity
- Using one feature from each category is approx. same as using all

3

Future improvements

- 1. Can combine (stack or blend) models
- 2. Find larger dataset with more diverse data (not interdependent measurements)

