

Общероссийский математический портал

О. Е. Тихонов, Спектральная теория для пространств с базовой нормой, Констр. meop. функц. u функц. ahan., 1992, выпуск 8, 76–91

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 178.205.19.235

7 июня 2024 г., 16:30:56

- 8. Никольский С. М. Приолижение функций многих неременных и теоремы вложения. - М.: Наука. 1977. - 456 с.
- 9. Панасюк В. В., Саврук М. П., Назар чук З. П. Метод сингулярных интегральных уравнений в двумер ных задачах дибракции. Киев: Наукова пумка. 1984. 344 с.
- IO. Габдулхаев Б. Г. Приближенное решение много мерных сингулярных уравнений, І, П // Изв. вузов. Математика. I975. № 7. C.30 4I: I976. № I. C.30 4I.

О.Е. Тихонов

С БАЗОВОЙ НОРМОЙ

В работе продолжени исследования, начатие в [3]. В рамках некоммутативной спектральной теории Альфсена и Шульца [7],[8] для элементов пространства с базовой нормой (\mathcal{J}, \mathcal{K}), обладаю — щего точным следом, доказана единственность "спектрального раз — ложения" относительно следа (теорема 4.5). Предварительно исследовани свойства "проективных следов" из \mathcal{J} и интегралов по \mathcal{U}^+ — значной мере. В теореме 5.2 доказано свойство экстремальности спектральных мер в связи с выпуклыми функциями и на этой основе введен некоторый аналог пространств $\mathcal{L}_2(1 \le \rho < \infty)$.

Насколько возможно используются терминология и обозначения работ [7]. [8] и [3].

§ І. Обозначения и предварительные сведения

Пусть (\mathcal{U} , \mathcal{K}) — пространство с базовой нормой, т.е. \mathcal{U} . — вещественное упорядоченное нормированное пространство с порождающим конусом \mathcal{U}^+ и выделенной в нем базой \mathcal{K} , причем множество солу ($\mathcal{K}\mathcal{U}$ - \mathcal{K}) радиально компактно, а норма задается функциона — лом Минковского этого множества [6; гл. 2, § I]. Сопряженным к (\mathcal{U} , \mathcal{K}) является пространство с порядковой единицей (\mathcal{A} , \mathcal{E}) — упорядоченное банахово пространство, причем конус \mathcal{A}^+ положительных элементов двойственен к \mathcal{U}^+ , порядковая единица \mathcal{E} определяется условием $<\mathcal{E}, \rho>=1$ для любого $\rho\in\mathcal{K}$, а норма на \mathcal{A} удов —

летворяет соотношению $\|a\|=\inf\{\lambda>0\mid -\lambda e\leq a\leq \lambda e\}$ [6; гл. 2, § I]. Отметим, что $\|\rho\|=< e, \rho>$ для $\rho\in \mathcal{U}^+$, и стсида нетрудно получить, что для монотонно неубивающей сети $\{\rho_\alpha\}$ элементов \mathcal{U} , ограниченной сверху элементом $\rho\in \mathcal{U}$, эквивалентны условия:

(i)
$$\rho_{\alpha} \Rightarrow \rho$$
 в смысле нормы,
(ii) $\rho_{\alpha} \Rightarrow \rho$ в смысле слабой топологии,
(iii) $\langle e, \rho_{c} \rangle \Rightarrow \langle e, \rho \rangle$.

Кроме того, если пространство $\mathcal U$ банахово, то сходится любая монотонная ограниченная по норме сеть элементов $\mathcal U$ (см. [3; лемма]).

Под проектором на \mathcal{A} понимается динейное положительное сла60* непрерывное отображение $\mathcal{P}:\mathcal{A}\hookrightarrow\mathcal{A}$ такое, что $\mathcal{P}^2=\mathcal{P}$. Про ектор \mathcal{P} на \mathcal{A} называется гладким [7; § 1], если условие

$$\rho \in \mathcal{V}^+$$
, $\langle \alpha, \rho \rangle = 0$ mpm $\alpha \in \ker^+ P = \mathcal{H}^+ N \ker P$,

влечет

Проектор Q называется квазидополнением проектора P, если $\ker^+ P = im^+ Q$ и $im^+ P = \ker^+ Q$ [7; § I]. Проектор P на $\mathcal A$ называется P—проектором, если он по норме не превосходит I, гладкий и обладает гладким квазидополнением с нормой, не превос - кодящей I [7; § 2]. Гладкое квазидополнение к P—проектору P всегда единственно, является P—проектором и обозначается P. Через P обозначается множество всех P—проекторов. Соотношением $P \leq Q$, если $im P \leq im Q$, на P вводится отношение порядка. P—проекторы P и Q называются ортогональными, если $P \leq Q$ (обозначается: P1 Q) [7, § 4].

Грань F бази K називается виступающей, если $F = \{ \rho \in K \mid \langle \alpha, \rho \rangle = 0 \}$ для некоторого $\alpha \in \mathcal{A}^+$, грань називается проективной, если она имеет указанный вид с $\alpha = Pe$ для некоторого $\overline{P} \in \mathcal{P}$. Далее в этом параграфе будем предполагать, как и в [8; § 1], что каждая виступающая грань в K проективна. В [8; след ствие 1.2] показано, что при сделанном предположении множество \mathcal{P} является полной ортомодулярной решеткой.

 ρ -проекторы ρ и Q называются совместимими, если ρQ =

 $=\mathcal{QP}$ [7; § 5]. В [3] было введено понятие совместимости и би совместилости P -проектора P и элемента ρ из U. Будем говорить, что P совместил с ρ , если P совместим с ρ и с любым P -проектором, совместилым с ρ . Сдесь P - соправленный к P проектор на U.)

По аналогии с алгебрами Неймана элемент $ho \epsilon \mathcal{U}^+$ назовем точным, если $\langle a, \rho \rangle > 0$ при $a \in \mathcal{A}^+ \setminus \{0\}$. Элемент $\mathcal{C} \in \mathcal{K}$ называ – ется следом, если он совместим с любым P -проектором [8; § 1]. Для $\rho \in \mathcal{U}$ через ρ^+ и ρ^- обозначим элементи \mathcal{U}^+ , однозначно определнемые условиями $\rho = \rho^+ - \rho^-$ и $\|\rho\| = \|\rho^+\| + \|\rho^-\|$ [8; предл. 1.3]; сумму $\rho^+ + \rho^-$ обозначим через $|\rho|$.

Опишем основной результат работы [3]. Пусть (Л.К) - полное пространство с базовой нормой такое, что любая выступающая грань в K проективна, и C - точный след из K . Тогда для любого $\rho \in \mathcal{U}$ существует семейство $\{\mathcal{Q}_{\mathbf{a}}\}$ $\mathbf{a} \in \mathbb{R}$ бисовместимых с О P-проекторов, для которого выполнены условия:

a)
$$Q_{\lambda} = \bigwedge_{\alpha > \lambda} Q_{\alpha}$$
 нля любого $\lambda \in \mathbb{R}$,

B)
$$V_{A \in R} Q_{A+\infty} = I$$
, $A \in R Q_A = 0$,

B)
$$_{A \in \mathbb{R}} Q_{A = 0} = I$$
 , $_{A \in \mathbb{R}} Q_{A} = 0$, c) $< a, \rho > = \int A d < a, Q_{A}^{*} \tau >$ для любого $a \in A$.

В [3] исследовалось понятие несущего проектора P_{ρ} для $\rho \in \mathcal{U}^+$, который можно определить как наименьший среди P-проекторов P, удовлетворяющих условию $P^*\rho = \rho$. Доказано, в част ности, что P_{ρ} бисовместим с ρ [3; предл. 14]. Отметим также, что для $\rho \in \mathcal{U}^+$ и $P \in \mathcal{P}$ справедлива формула $P_{p_p^*} = (P_{\rho} V P') \Lambda P$ (ср. [8; формула (1.10)]), из которой следует для точного р формула $P_{p^*_{\phi}} = P$. Элементы ρ и θ из \mathcal{J}^+ будем называть орто-гональными (и обозначать ρ 16°), если P_{ϕ} 1 P_{ϕ} [3]. Ясно, что для точного $\rho \in \mathcal{J}^+$ и P -проекторов P и Q условия P_{ϕ}^* 1 Q_{ϕ}^* и $P \mid Q$ эквивалентны.

§ 2. \mathcal{O}^+ -значные меры и интегрирование

Пусть (\mathcal{U}, \mathcal{K}) — пространство с базовой нормой, (\mathcal{A}, \mathcal{E}) сопряженное к нему пространство с порядковой единицей. Через 🗶 = $= \{ X(E) \}$ будем в дальнейшем обозначать U^+ -значную аддитивную

функцию множеств, заданную на σ -алгебре ${\mathscr A}$ подмножеств неко торого множества $\mathcal Q$; для $a\in\mathcal H$ через $\langle a,X
angle$ будем обозначать соответствующую X R -значную функцию множеств, т.е.< a.X>(E)= $=(\alpha, X(E))>$ для $E \in \mathcal{A}$.

Предложение 2.1. Для 🗸 → значной адцитивной функции мно → жеств X , заданной на δ -алгебре $\mathcal A$, эквивалентны условия:

(i) X δ -аддитивна в смысле нормы,

(iii) < e, X > 6 —аддитивна на A .

Доказательство. Импликации $(i)\Rightarrow (ii)\Rightarrow (iii)$ тривиальны.

Пусть выполнено условие (iii), (E_{i}) - последовательность непересекающихся множеств из $\mathcal A$ и $\mathcal E=\overset{\widetilde{\mathcal U}}{\downarrow}\mathcal E_i$. Тогда $<\!e, X(\mathcal E)\!>=$ $=\sum_{i=1}^{\infty} \langle e, X(E_i) \rangle$. Из аддитивности X следует, что $\sum_{i=1}^{n} X(E_i) \leq$ $\leqslant X(E)$ для любого n , поэтому справедливость импликации (iti) \Rightarrow ⇒ (i) вытекает из свойств пространств с базовой нормой, отмеченных в начале § I.

Определение. Аддитивную функцию множеств. для которой выполнено одно из эквивалентных условий (i)-(iii) предложения 2.1. будем называть \mathcal{J}^{+} -значной мерой.

Ясно, что любая \mathcal{U}^+ -значная мера \mathbf{X} на борелевской \mathscr{O} -алгебре $\mathcal{B}(R)$ числовой прямой определяет на R неубывающую не - \mathcal{U}^+ -значную функцию $\mathcal{N}(A) = X((-\infty, A))$, причем прерывную справа $\lim_{\lambda \to -\infty} N(\lambda) = 0$ и $\lim_{\lambda \to +\infty} N(\lambda) = X(R)$. Обратная конструкция описывается в следующем предложении.

Предложение 2.2. Пусть (U , K) - полное пространство с базовой нормой и $N:\mathbb{R}\mapsto\mathcal{U}$ — неубывающая ограниченная непрерывная справа функция. Тогда существует единственная \mathcal{U}^{\star} -значная мера X на борелевской δ -алгебре $\mathcal{B}(\mathbb{R})$ такая, что $X((-\infty, \lambda)) =$ $=N(\lambda)$ - $\lim_{\mu\to-\infty}N(\mu)$ для любого $\lambda\in\mathbb{R}$.

Доказательство. Отметим прежде всего. что $\lim_{\Lambda \to -\infty} N(\Lambda)$ и $\lim_{\Lambda \to +\infty} N(\Lambda)$ существуют (см. § I). Не ограничивая

общности, будем считать, что $\lim_{\lambda\to -\infty} N(\lambda) = 0$. Для любого $a\in \mathcal{A}=\mathcal{V}^*$ вещественная непрерывная справа

функция $<\alpha$, $N(\Lambda)>$ на R обладает конечной полной вариацией и поэтому однозначно определяет вещественную меру m_a на $\mathcal{B}(R)$ такую, что $m_a((-\infty, \Lambda)) = <\alpha$, $N(\Lambda)>$ для любого $\Lambda \in R$. Нетрудно проверить, что соотношение

< α , $X(E)>=m_{\alpha}(E)$ для любого $\alpha\in\mathcal{A}$ корректно определяет δ —аддитивное в $\delta(\mathcal{A}^*,\mathcal{A})$ —топологии отображение $X:\mathcal{B}(R)\to\mathcal{A}^{*+}$. Остается убедиться, что $X(E)\in\mathcal{U}$ для

Пусть $\mathcal{Z} = \left\{ E \in \mathcal{B}(\mathcal{R}) \mid X(E) \in \mathcal{O} \right\}$. Ясно, что $(-\infty, \lambda) \in \mathcal{Z}$, поэтому $(\lambda, +\infty) \in \mathcal{Z}$ и $(\lambda, \mu) \in \mathcal{Z}$ для любых $\lambda, \mu \in \mathcal{R}$. Следовательно, любое множество вида $\bigcup_{i=0}^{\infty} (\lambda_i, \mu_i) \cup (\lambda_{n+i}, +\infty)$, где $-\infty < \lambda_o < \mu_o < \lambda_i$

 $<\mu_2<...<\mu_n<\lambda_{n+1}<+\infty$, принадлежит $\mathcal Z$. Совокупность таких множеств образует булеву алгебру, а из замкнутости $\mathcal U$ относительно операции перехода к пределу монотонной сети (см. § I) следует, что $\mathcal Z$ — монотонный класс, поэтому $\mathcal Z=\mathcal B(\mathcal R)$ (см., например,[I; утв. 14.4]).

Всюду в дальнейшем вещественные функции, заданные на измеримом пространстве, будем предполагать борелевскими.

<u>Предложение 2.3.</u> Пусть (\mathcal{U} , \mathcal{K}) — полное пространство с базовой нормой и X — \mathcal{U}^{\dagger} —значная мера на \mathscr{O} —алгебре \mathscr{A} подмножеств \mathcal{Q} , тогда для функции $\varphi\colon\!\mathcal{Q}\to\!\mathcal{R}$ эквивалентны условия:

(i) φ интегрируема по X ,

любого $E \in \mathcal{B}(R)$.

(ii) φ интегрируема по вещественной мере <aa, X> для любо- го $a \in \mathcal{A}$,

(iii) φ интегрируема по мере $\langle e, X \rangle$.

Доказательство. В некотором обсуждении нуждается лишь импликация (iii) \Rightarrow (i). Ее справед ивость следует из того, что из интегрируемости функции по вариация меры следует ее интегрируемость и по самой мере, а вариация меры X совпадает с мерой $\langle e, X \rangle$.

Замечание. Вдобавок к обычным свойствам интегралов по векторной мере отметим, что если $\mathcal G$ — интегрируемая по $\mathcal U^+$ значной мере X неотрицательная функция, то $\mathcal G$ $\mathcal A$ принадлежит $\mathcal U^+$.

Следующее утверждение устанавливает связь с конструкциями работы [2] и дает возможность применять далее результаты этой

работы. Его доказательство достаточно стандартно и может быть проведено аналогично доказательству [2; предл. 3.3].

<u>Предложение 2.4</u>. Пусть ($\mathcal U$, $\mathcal K$) — полное пространство с базовой нормой и $\rho \in \mathcal K$. Элемент $\mathscr G$ из $\mathcal U$ допускает представление вида

$$\mathscr{E} = \int \mathcal{G} \, dX \quad , \tag{*}$$

где $X - U^*$ -значная мера, $X(Q) = \rho$ и φ - интегрируемая по X функция тогда и только тогда, когда θ допускает представление вида

$$6 = \sum_{i \in I} \beta_i \alpha_i \beta_i \quad , \tag{33}$$

где $f_i \in K$, $\alpha_i \in \mathbb{R}^+$, $\Sigma \alpha_i = 1$, $\Sigma \alpha_i f_i = \rho$, $\beta_i \in \mathbb{R}$, $\Sigma \mid \beta_i \mid \alpha_i < \infty$, I конечно или счетно. Если функция $\mathcal{C}: \mathbb{R} \to \mathbb{R} \cup \{+\infty\}$ выпукла и δ допускает представления вида (*) и (***), то

$$\inf \int_{\mathcal{O}} \phi \circ \varphi \, d < e, \mathbb{X} > = \inf \sum_{i \in I} \varphi (\beta_i) \, d_i ,$$

где inf в левой части равенства берется по всем представлениям 6 вида (*), а в правой — по всем представлениям вида (**).

§ 3. Проективные следы

Всюду далее в этом и следующих параграфах будем предпола – гать, что (\mathcal{U} , \mathcal{K}) — полное пространство с базовой нормой такое, что любая выступающая грань в \mathcal{K} проективна, (\mathcal{A} , \mathcal{C}) — сопряженное к (\mathcal{U} , \mathcal{K}) пространство с порядковой единицей.

Предложение 3.І. Пусть P_{ρ} – несущий проектор для $\rho \in \mathcal{U}^{+}$ P и Q – совместимые с P_{ρ} P –проекторы. Тогда условие $P_{\rho}^{*} \leq Q^{*}\rho$ влечет $P \wedge P_{\rho} \leq Q \wedge P_{\rho}$.

Доказательство. Пусть $\alpha \in \ker^+(Q\Lambda P_\rho)$, тогда

$$0 \le \langle (P \Lambda P_{\rho}) \alpha, \rho \rangle = \langle \alpha, (P \Lambda P_{\rho})^{*} \rho \rangle =$$

$$= \langle \alpha, P^{*} p, \rho \rangle = \langle \alpha, P^{*} \rho \rangle \le$$

$$\leq \langle \alpha, Q^{*} \rho \rangle = \langle (Q \Lambda P_{\rho}) \alpha, \rho \rangle = 0 ,$$

откуда $<(P\Lambda P_{\rho})\alpha, \rho>=0$, и, согласно [3; предл. 2], $(P\Lambda P_{\rho})\alpha\epsilon$ ϵ im^+P_ρ . Но с другой стороны, $(P\Lambda P_\rho)\alpha = P_\rho P_\alpha \epsilon im^+P_\rho$ следовательно, $(P\Lambda P_\rho)\alpha = 0$. Таким образом, $\kappa \epsilon x^+(Q\Lambda P_\rho)$ с C лед ствие 3.2. Для точного элемента $\rho \in U^+$ и ρ -

проекторов P и Q условие $P \not = Q \not = P$ влечет $P \not = Q$

Предложение 3.3. Пля совместимых с $\rho \in \mathcal{U}^+$ ρ -проекторов ρ и Q эквивалентны условия:

(i) $P^*\rho \leq Q^*\rho$

то они совместимы и с P_{o} [3; предл. 14], поэтому импликация (i) \Rightarrow (ii) следует из предложения 3.1. Из [3; предл. 10] $\rho_{\Lambda}\rho_{\rho}$ и $Q \wedge P_{\rho}$ совместимы с ρ , поэтому условие $P \wedge P_{\rho} \leq Q \wedge P_{\rho}$ чет $(P \wedge P_{\rho}) = (Q \wedge P$ $=P^*\rho$ и, аналогично, $(Q\Lambda P_\rho)^*\rho=Q^*\rho$, откуда и следует импликация $(ii) \Rightarrow (i)$.

Следствие 3.4. Для точного элемента $\rho \in \mathcal{U}^+$ и совместимых с ρ ρ -проекторов ρ и ρ условия $\rho^*_{\rho} \leq \rho^*_{\rho}$ и $\rho \leqslant$ ↓ Q эквивалентны.

Следствие 3.5. Для точного элемента $\rho \in \mathcal{U}^+$ и совместимых с ρ ρ —проекторов ρ и ρ условия $\rho \circ \rho$ и $\rho_1 Q$ эквивалентны.

Далее будем предполагать фиксированным точный след 🛷 из К. Определение. Элементы \mathcal{J}^+ вида $\mathcal{P}^*_{\mathscr{T}}$ с $\mathcal{P} \in \mathscr{P}$ назовем проективными следами.

Множество ${\mathcal F}$ проективных следов с порядком, индуцированным из ${\mathcal U}$, обладает наименьшим элементом ${\mathcal O}$ и наибольшим ${\mathcal E}$. Снабдим \mathcal{T} операцией дополнения $\mathcal{P}_{\mathcal{C}}^{*} \hookrightarrow \mathcal{E} - \mathcal{P}_{\mathcal{C}}^{*}$. Из вышеизложенного получаем следующее утверждение.

T е о р е м а 3.6. Отображение $P \mapsto P^*$ задает изоморфизм полных ортомодулярных решеток ${\mathscr P}$ и ${\mathscr T}$

<u>Предложение 3.7.</u> ρ -проектор ρ совместим с ρ -проектором Q тогда и только тогда, когда P совместим с проективным следом

Доказательство. Пусть ho совместим с Q . Тог-P*Q*c+P'*Q*c=Q*P*c+Q*P'*c=

$$=Q^{*}(P^{*}c+P'^{*}c)=Q^{*}c$$

T.e. P COBMECTUM C $Q^*_{\mathcal{C}}$.

Пусть ho совместим с $\ensuremath{\mathscr{Q}}\xspace^{\star}$, тогда $\ensuremath{\mathscr{P}}$ совместим с несущим проектором Q^* c , равным Q . Отметим еще, что, учитывая [3; предл. 9], нетрудно проверить справедливость следующего утверждения.

Предложение 3.8. Монотонно неубывающая сеть $\{P_{\alpha}^{*}\mathcal{E}\}$ тивных следов сходится к проективному следу ($(P_{\alpha})^* \mathcal{E}$, монотонно невозрастающая сеть $\{P_{\alpha}^* \mathcal{E}\}$ сходится к $(P_{\alpha})^* \mathcal{E}$.

§ 4. Спектральные меры

Рассмотрим специальный класс \mathcal{J}^+ -значных мер - \mathcal{T} -значные меры. Отметим прежде всего, что если $\mathbb{Z} = \{ \mathcal{T}(E) \}$ — \mathcal{T} —знач ная мера на δ -алгебре $\mathcal A$ подмножеств $\mathcal Q$, то равенство $\mathcal T(\mathcal E)=$ $=P(E)^*\mathcal{E}$ корректно определяет функцию множеств P=P(E) на \mathcal{A} со значениями в ${\mathscr P}$. Приведем некоторые свойства ${\mathscr T}$ -значных мер и связанных с ними ${\mathscr P}$ -значных функций множеств, справедливость которых легко следует из результатов предыдущего параграфа. Пусть далее $T=\{T(E)\}$ — T —значная мера на θ —алгебре $extit{A}$ подмножеств Q , $P=\{P(E)\}$ — cootbetctbyющая ей $\mathcal P$ —значная функция мно жеств, E и E_z - множества из ${\mathcal A}$.

a). Ecan $E_1 \subset E_2$, to $P(E_1) \triangleleft P(E_2)$.

B). Ecan $E_1 \cap E_2 = \emptyset$, to $P(E_1) \mid P(E_2) \mid$

e).
$$P(\underset{z=1}{\bigcup} E_z) = \underset{z=1}{\bigvee} P(E_z)$$
.

$$f$$
). $\beta(\bigcap_{i=1}^{\infty} E_i) = \bigwedge_{i=1}^{\infty} \beta(E_i)$.

Если X — \mathcal{O}^+ —значная мера и $\mathcal{P} \in \mathcal{P}$, то для \mathcal{O}^+ —знач — ной меры $\left\{\mathcal{P}^* X(\mathcal{E})\right\}$ будем использовать обозначение $\mathcal{P}^* X$.

Предложение 4.І. Пусть $X - U^*$ —значная мера на G—алге—бре $\mathscr A$ подмножеств $\mathcal Q$, $\mathcal G:\mathcal Q \to \mathbb R$ — интегрируемая по X функ ция и для любого $E \in \mathcal{A}$ \mathcal{P} -проектор \mathcal{P} совместим с X(E) . Тогда P совместим с $\int \mathcal{G} dX$.

Доказательство. Так как $\mathcal{D}^*\chi(\mathcal{E}) + \mathcal{D}'^*\chi(\mathcal{E}) =$

=X(E) для любого $E \in \mathcal{A}$, то

$$\begin{array}{l}
P \stackrel{*}{\mathbf{Q}} \varphi dX + P' \stackrel{*}{\mathbf{X}} \varphi dX = \int \varphi dP^{*}X + \int \varphi dP' \stackrel{*}{\mathbf{X}} = \\
= \int \varphi d(P^{*}X + P'^{*}X) = \int \varphi dX, \\
Q
\end{array}$$

T.e. \mathcal{P} cobmection c $\int \mathcal{G} dX$.

Следствие 4.2. Пусть \mathbb{Z} — \mathcal{I} —значная мера на \mathcal{E} —алгебре \mathcal{H} подмножеств \mathcal{Q} , \mathcal{P} — соответствующая \mathcal{P} —значная функция множеств и $\mathcal{Q}:\mathcal{Q}\mapsto \mathcal{R}$ — интегрируемая по \mathbb{Z} функция. Тогда \mathcal{P} —проектор $\mathcal{P}(\mathcal{E})$ совместим с $\int \mathcal{Q} \, d\mathcal{I}$ для любото $\mathcal{E}\in\mathcal{H}$.

Предложение 4.3. Пусть $N: \mathbb{R} \hookrightarrow \mathcal{U}$ — неубивающая ограниченная непрерывная справа функция, X — ассоциированная с ней, согласно с предложением 2.2, \mathcal{U}^+ —значная мера на $\mathcal{B}(\mathbb{R})$.

а). Если $\mathcal P$ -проектор $\mathcal P$ совместим с $\mathcal N(\mathcal A)$ для любого $\mathcal A\in\mathcal R$, то $\mathcal P$ совместим с $\mathcal X(\mathcal E)$ для любого $\mathcal E\in\mathcal B(\mathcal R)$.

в). Если $\mathcal{N}(\mathcal{A})$ принадлежит \mathcal{F} для любого $\mathcal{A} \in \mathcal{R}$, то мера \mathcal{X} \mathcal{F} -значна.

с). Пусть в условиях пункта в) $\mathcal{M}(\mathcal{A}) = \mathcal{G}_{\mathcal{A}}^{*}\mathcal{C}$ с $\mathcal{G}_{\mathcal{A}} \in \mathcal{P}$, \mathcal{P} —соответствующая мере \mathcal{X} \mathcal{P} —значная функция множеств и $\mathcal{G}_{\mathcal{A}}$ совместим с элементом $\rho \in \mathcal{U}$ для любого $\mathcal{A} \in \mathcal{R}$. Тогда $\mathcal{P}(\mathcal{E})$ совместим с ρ для любого $\mathcal{E} \in \mathcal{B}(\mathcal{R})$.

Доказательство. а). Так как $\mathcal D$ совместим с $\mathcal N(\mathcal A)$ для любого $\mathcal A\in\mathcal R$, то

$$P^{*} \lim_{\lambda \to -\infty} N(\lambda) + P^{'*} \lim_{\lambda \to -\infty} N(\lambda) = \lim_{\lambda \to -\infty} (P^{*}N(\lambda) + P^{'*}N(\lambda)) = \lim_{\lambda \to -\infty} N(\lambda),$$

$$\lambda \to -\infty$$

т.е. \mathcal{P} совместим с $\lim_{\Lambda \to -\infty} \mathcal{N}(\lambda)$, и аналогично \mathcal{P} совместим с $\lim_{\Lambda \to +\infty} \mathcal{N}(\lambda)$. Пусть $\mathcal{Z} = \left\{ E \in \mathcal{B}(\mathcal{R}) \mid \mathcal{P} \text{ совместим с } \mathcal{X}(\mathcal{E}) \right\}$. Множества вида $\lim_{\epsilon \to 0} \left(\Lambda_{\epsilon} , \mu_{\epsilon} \right] \mathcal{U}(\Lambda_{n+1}, +\infty)$, где $-\infty \leq \Lambda_{\epsilon} < \mu_{\epsilon} < \Lambda_{\epsilon} < \mu_{\epsilon} <$

 $<\mu_2<...<\mu_n<\lambda_{n+1}<+\infty$ принадлежат $\mathscr E$, и $\mathscr E$ является монотонным классом, поэтому $\mathscr E=\mathscr B(\mathscr R)$.

в). Из предложения 3.8 следует, что $\lim_{\Lambda \to -\infty} N(\Lambda)$ и $\lim_{\Lambda \to +\infty} N(\Lambda)$ – элементы \mathcal{T} . Пусть теперь $\mathcal{Z} = \left\{ E \in \mathcal{B}(R) \mid X(E) \in \mathcal{T} \right\}$. Из [3; предл. II] и следствия 3.5 следует, что все множества вида $\int_{i=0}^{\pi} (\lambda_i, \mu_i] U(\lambda_{n+i}, +\infty)$ принадлежат \mathcal{L} , а из предложения 3.8 — что \mathcal{X} является монотонным классом, поэтому $\mathcal{L} = \mathcal{B}(R)$.

с). Пусть $\lim_{\lambda \to -\infty} \mathcal{N}(\lambda) = \mathcal{Q}_{-\infty}^* \mathcal{T}$ и $\lim_{\lambda \to +\infty} \mathcal{N}(\lambda) = \mathcal{Q}_{+\infty}^* \mathcal{T}$, где $\mathcal{Q}_{-\infty}$, $\mathcal{Q}_{+\infty} \in \mathcal{P}$. Из [3; предл. 9] следует, что $\mathcal{Q}_{-\infty}$ и $\mathcal{Q}_{+\infty}$ совместим с \mathcal{P} . Множества вида $\lim_{\lambda \to 0} \mathcal{N}(\lambda_{\lambda}, \mu_{\lambda}) \mathcal{V}(\lambda_{n+1}, +\infty)$ принадлежат \mathcal{L} и из [3; предл. 9] следует, что \mathcal{L} — монотонный класс, поэтому $\mathcal{L} = \mathcal{D}(\mathcal{R})$.

Предложение 4.4. Пусть $\mathbb{Z}-\mathcal{I}$ —значная мера на $\mathcal{B}(\mathcal{R})$, $\mathcal{T}(\mathcal{R})=\mathcal{C}$, \mathcal{P} —соответствующая \mathbb{Z} —эначная функция мно жеств и $\mathcal{G}:\mathcal{R}\mapsto\mathcal{R}$ — монотонно возрастающая интегрируемая по \mathbb{Z} функция. Тогда для любого борелевского множества \mathcal{E} \mathcal{P} —проектор $\mathcal{P}(\mathcal{E})$ бисовместим с $\int \mathcal{Q} \, d \mathbb{Z}$.

Доказате льство. Пусть $\int \varphi \, dT = \rho$, $\Lambda \in \mathbb{R}$, $\varphi(\Lambda) = \mu$ и $P((-\infty, \Lambda]) = Q_{\Lambda}$. Докажем, что Q_{Λ} бисовместим с ρ . Пусть $\alpha \in im^+Q_{\Lambda}$, тогда

$$\langle \alpha, \rho \rangle = \int_{R} \varphi \, d \langle \alpha', T \rangle = \int_{R} \varphi \, d \langle \varphi_{\lambda} \alpha, T \rangle =$$

$$= \int_{R} \varphi \, d \langle \alpha, \varphi_{\lambda}^{*} T \rangle = \int_{(-\infty, \lambda)} \varphi \, d \langle \alpha, \varphi_{\lambda}^{*} T \rangle \leq$$

$$\leq \int_{(-\infty, \lambda)} d \langle \alpha, \varphi_{\lambda}^{*} T \rangle = \int_{R} d \langle \alpha, \varphi_{\lambda}^{*} T \rangle =$$

$$= \int_{R} \varphi \, d \langle \alpha, T \rangle = \int_{R} \langle \alpha, T(R) \rangle = \int_{R} \langle \alpha, \tau \rangle.$$

Аналогично, < a, $\rho >> \mu < a$, e > при $a \in m^+ G_A > \{0\}$. Так как по следствию 4.2 G_A совместим с ρ , то из [3; теорема 2]

следует, что $\mathcal{Q}_{\mathcal{A}}$ бисовместим с ρ . Из предложения 3.7 и пункта а) предложения 4.3 теперь следует, что $\mathcal{P}(\mathcal{E})$ бисовместим с ρ пля любого $\mathcal{E} \in \mathcal{B}(\mathcal{R})$

Через $\mathcal J$ обозначим функцию $\mathcal J(\lambda)=\lambda$ для $\lambda\in \mathbb R$.

Теорема 4.5. Для любого $\rho \in \mathcal{U}$ существует единственная \mathcal{T} —значная мера \mathcal{T} на $\mathcal{B}(\mathcal{R})$ такая, что $\mathcal{T}(\mathcal{R}) = \mathcal{E}$ и $\rho = 0$

Доказательство. Существование такой меры следует из [3; теорема 4] и пунктав) предложения 4.3. Покажем ее единственность.

единственность. Пусть $\rho = \int_{\mathcal{R}} \gamma \, d\mathcal{T}$, где \mathcal{T} — некоторая \mathcal{T} —значная ме—

ра на $\mathcal{B}(\mathcal{R})$ такая, что $\mathcal{T}(\mathcal{R}) = \mathcal{C}$. Пусть $\mathcal{A} \in \mathcal{R}$ и $\mathcal{T}(\mathcal{C} - \infty)$, $\mathcal{A}]) = \mathcal{Q}_{\mathcal{A}}^{*}$ с $\mathcal{Q}_{\mathcal{A}} \in \mathcal{P}$. Как и при доказательстве предложения 4.4, показывается, что $\mathcal{Q}_{\mathcal{A}}$ — совместимый с \mathcal{P} —проектор такой, что $\mathcal{C}_{\mathcal{A}}$ $\mathcal{P} = \mathcal{A} \times \mathcal{A}$, $\mathcal{C} \times \mathcal{C} \times \mathcal{C}$ при $\mathcal{C}_{\mathcal{A}} \times \mathcal{C} \times \mathcal{C} \times \mathcal{C} \times \mathcal{C}$ при $\mathcal{C}_{\mathcal{A}} \times \mathcal{C} \times \mathcal{C} \times \mathcal{C} \times \mathcal{C} \times \mathcal{C}$ при $\mathcal{C}_{\mathcal{A}} \times \mathcal{C} \times \mathcal{C} \times \mathcal{C} \times \mathcal{C} \times \mathcal{C} \times \mathcal{C} \times \mathcal{C}$ при $\mathcal{C}_{\mathcal{A}} \times \mathcal{C} \times \mathcal{C$

Определение. Для $\rho \in \mathcal{O}$ через $\mathbb{T}^{(\rho)}$ обозначим единственную \mathcal{T} -значную меру на $\mathcal{B}(\mathcal{R})$ такую, что $\mathcal{T}^{(\rho)}(\mathcal{R}) = \mathcal{T}$ и $\rho = (\gamma d \mathcal{T}^{(\rho)})$.

Назовем $\mathbb{Z}^{(\rho)}$ спектральной мерой для ρ . Отметим, что если $\mathbb{P}^{\mathcal{G}}$ \mathcal{P} -значная функция множеств, соответствующая спектральной мере $\mathbb{Z}^{(\rho)}$ для $\rho \in \mathcal{U}$, то ρ -проектор $\mathbb{P}^{(\rho)}(E)$ бисовместим с ρ для любого $E \in \mathcal{B}(R)$.

<u>Предложение 4.6.</u> Для $\mathcal{P}_{\boldsymbol{\epsilon}}$ $\mathcal{P}_{\boldsymbol{\epsilon}}$ эквивалентны следующие услевия:

- (i) P централен, т.е. $P\alpha + P\alpha' = \alpha$ для любого $\alpha \in \mathcal{A}$ [7; § 5];
 - (іі) Д совместим с любым Д -проектором;
 - (iii) ρ совместим с любым $\rho \in \mathcal{O}$;
 - (iv) ρ совместим с любым проективным следом.

Доказательство. При определении совместимости P—проекторов в [7; § 5] сыло отмечено, что условия PQ = QP и $PQe+PQe=Qe(P,Q\in P)$ эквивалентны, откуда и следует импликация $(i) \Rightarrow (ii)$.

 $(ii) \Rightarrow (i)$. Если PQe + PQe = Qe для любого $Q \in \mathcal{P}$, -86 —

то $P(\sum_{i=1}^{n} \lambda_{i} Q_{i}e) + P'(\sum_{i=1}^{n} \lambda_{i} Q_{i} e) = \sum_{i=1}^{n} \lambda_{i} Q_{i} e$ для любых

 $\mathcal{Q}_{i}\in\mathcal{P}$ и $\mathcal{A}_{i}\in\mathcal{R}$. Как показано при доказательстве [8; предл. I.7], множество $\mathit{conv}\left\{\mathcal{Q}e \mid \mathcal{Q}\in\mathcal{P}\right\}$ слабо плотно в [\mathcal{O},e], по- этому $\mathit{lin}\left\{\mathcal{Q}e \mid \mathcal{Q}\in\mathcal{P}\right\}$ слабо плотно в \mathcal{A} , и из слабой непрерывности \mathcal{P} и \mathcal{P}' следует, что $\mathcal{P}\alpha+\mathcal{P}\alpha=\alpha$ для любого $\alpha\in\mathcal{A}$.

(ii) \Leftrightarrow (iii). Условие $Pa+P'a=\alpha$ для любого $a\in \mathcal{A}$ эквивалентно условию $\langle Pa+P'a, \rho \rangle = \langle \alpha, \rho \rangle$ для любых $a\in \mathcal{A}$ и $\rho\in \mathcal{O}$, но $\langle Pa+P'a, \rho \rangle = \langle \alpha, \rho^*\rho+\rho'^*\rho \rangle$, поэтому второе условие эквивалентно тому, что $P\rho+P'\rho=\rho$ для любого $\rho\in \mathcal{O}$.

Эквивалентность условий (ii) и (iv) следует из предложения 3.7.

Замечание. Эквивалентность условий (i), (ii), (ii), (iii), в предложении 4.6 доказана без предположения о существовании в K точного следа.

Предложение 4.7. Пусть $\rho \in K$, $\rho \in \mathcal{P}$ — соответствующая спектральной мере $\mathcal{P} = \mathcal{P}$ — значная функция множеств. Тогда ρ является следом в том и только в том случае, когда для любого $\mathcal{E} \in \mathcal{B}(\mathbb{R})$ ρ —проектор $\mathcal{P} = \mathcal{P}(\mathcal{E})$ централен.

Доказательство. Пусть ρ — след и $E \in \mathcal{B}(R)$. Так как любой ρ —проектор совместим с ρ , а $\rho^{(p)}(E)$ бисовместим с ρ , то $\rho^{(p)}(E)$ совместим с любым ρ —проектором и, согласно предложению 4.6, централен.

Если для любого $E \in \mathcal{B}(\mathcal{R})$ P-проектор P(E) централен, то, согласно предложению 4.6, любой P-проектор P совместим с P(E) и, согласно предложению 3.7, P совместим с P(E) и, согласно предложению 4.1, P совместим с $P = \int_{\mathcal{R}} \mathcal{A}(P(E))$ т.е. P- след.

§ 5. Функциональное исчисление и пространства типа 🛵

Рассмотрим далее некоторые элементы функционального исчисления (сравни [7; § 8]).

Определение. Пусть $\rho \in \mathcal{I}$, $\varphi : \mathcal{R} \to \mathcal{R}$ — интегрируемая по спектральной мере $\mathcal{I}^{(\rho)}$ функция. Через $\varphi(\rho)$ обозначим элемент \mathcal{I} , заданный равенством $\varphi(\rho) = \int_{\mathcal{R}} \varphi \ d \, \mathcal{I}^{(\rho)}$ через \mathcal{L} и \mathscr{R} обозначим функции $\mathcal{L}(\lambda) = 1$ и $\mathscr{R}(\lambda) = |\lambda|$ для $\lambda \in \mathcal{R}$.

Предложение 5.1. Пусть $\rho \in \mathcal{O}$, тогда:
a) $\iota(\rho) = \sigma$, $\sigma(\rho) = \rho$, $\varepsilon(\rho) = |\rho|$;
b) $(\sigma(\rho) + \rho(\rho)) = \sigma(\rho) + \rho(\rho)$, если функции $\sigma(\rho)$ и $\sigma(\rho)$ интегрируемы по $T^{(p)}$ и α . $\beta \in R$

c) если $\mathcal G$ интегрируема по $\mathcal T^{(p)}$ и $\mathcal G^{\geqslant 0}$, то $\mathcal G(p)\in\mathcal O^+;$ d) если $\mathcal K_{\mathcal K}$ – характеристическая функция борелевского подмножества $E \subset \mathbb{R}^{\ell}$, то $\mathcal{X}_{E}(\rho) = \mathcal{T}^{(p)}(E)$; е) если $\mathbb{T}^{\ell} = \mathcal{T}^{\ell}$ -значная мера на \mathcal{E}^{ℓ} -алгеоре \mathcal{A}^{ℓ} подмно-

жеств Q , T(Q) = r , $\rho = \int \varphi dT$, φ — борелевская функция на \mathbb{R} , то $arphi \cdot arphi$ интегрируема по \mathbb{Z} тогда и только тогда, когда $\mathcal C$ интегрируема по спектральной мере $\mathcal T^{(\mathcal P)}$ и случае интегрируемости $\mathcal{C}(\rho) = \{ \mathcal{C} \circ \mathcal{C} \mid \mathcal{C} \mid$

Доказательство. Утверждения пунктов a) - d) легко следуют из элементарных свойств интеграда и конструкции спектральной меры. Доказательство пункта е) проведем аналогично доказательству [7: лемма 8.4 и предл. 8.6].

Покажем прежде всего, что $\mathcal{T}(\varphi^{-1}(E)) = \mathcal{T}^{-(\rho)}(E)$ лля любого $E \in \mathcal{B}(\mathcal{R})$. Для $E = (-\infty, \mathcal{A})$ с $\mathcal{A} \in \mathcal{R}$ равенство $T(\varphi^{-1}(E)) = T^{(p)}(E)$ доказывается аналогично тому, как было проделано при доказательстве единственности в теореме 4.5. Следовательно, для любого $E \in \mathcal{B}(R)$ и любого $\alpha \in \mathcal{A}^+$ справедливо равенство $\langle \alpha, \mathcal{T}(\mathcal{G}^{-1}(E)) \rangle = \langle \alpha, \mathcal{T}(\mathcal{G}^{-1}(E)) \rangle = \mathcal{T}(\mathcal{G}^{-1}(E)) \rangle$. Из теоремы о замене переменных в интеграле Лебега следует тогда, The state of the учетом предложения 2.3 и доказывает пункт е).

Доказательство следующей теоремы вполне аналогично проведенным автором ранее доказательствам подобных утверждений в других ситуациях (см., например, [4; теорема I] и [5; теорема 2]). теорема позволяет получить ряд утверждений аналогично тому, проделано в [4] и [5]. В предложении 5.3 приводится одно из них, связанное с конструкцией пространств типа \mathcal{L}_{q} .

Теорема 5.2. Пусть 🗶 - 🗸 - значная мера на б -алгебре \mathscr{A} подмножеств \mathscr{Q} , $X(\mathscr{Q})=\mathscr{C}$, $\mathscr{G}\colon \mathscr{Q}\mapsto R$ — интегриру емая пс X функция, $\rho = \int \varphi dX$ и функция $\varphi : R \mapsto R$ выпукла. Тогла

$$\int \varphi \, d < e, T^{(p)} > \leq \int \varphi \circ \varphi \, d < e, X > . \tag{x}$$

Доказательство. Отметим, что из выпуклости φ и интегрируемости φ следует, что оба интеграла в (ж) корректно определены со значениями в $\mathcal{R} \cup \{+\infty\}$. Ясно, что при доказательстве можно считать $\int \varphi \circ \varphi \ d < e$, $\chi > < +\infty$.

а). Если функция φ линейна, то справедливость неравенства (\mathbf{x}) очевидна.

в). Пусть $\varphi = \mathcal{X}$. Обозначим, как обычно, $\mathcal{G}^+ = max\{\mathcal{G}, \mathcal{O}\}$, $\varphi = -min\{\mathcal{G}, \mathcal{O}\}$ и пусть $\rho_1 = \mathcal{G}^+ dX$, $\rho_2 = \mathcal{G}^- dX$. Тогия ρ_1 , $\rho_2 \in \mathcal{O}^+$, $\rho = \rho_1 - \rho_2$ и

$$\int_{Q} \varphi \cdot \varphi \, d \langle e, \mathbf{X} \rangle = \int_{Q} \varphi^{+} d \langle e, \mathbf{X} \rangle + \int_{Q} \varphi^{-} d \langle e, \mathbf{X} \rangle =$$

$$=\langle e, \rho_1 \rangle + \langle e, \rho_2 \rangle = \| \rho_1 \| + \| \rho_2 \| \geqslant \| \rho \| =$$

$$= \| \rho^{+} \| + \| \rho^{-} \| = \int_{\mathbb{R}} \varphi \, \alpha < e, \, \mathbb{Z}^{(p)} > .$$

C). Hyeth $\varphi(\Lambda) = |\lambda - \delta|$ and $\lambda \in \mathbb{R}$, the $\delta \in \mathbb{R}$. Torma $\int_{Q} \varphi \cdot \varphi \, d < e, \mathbf{X} > = \int_{Q} \mathscr{E} \cdot (\varphi - \delta) \, d < e, \mathbf{X} > \geqslant$ $\geq \langle e, \mathscr{E}(\int_{Q} (\varphi - \delta) \, d\mathbf{X}) \rangle = \langle e, \mathscr{E}(\rho - \delta v) \rangle = \int_{\mathbb{R}} \varphi \, dT^{(\rho)}.$

d). Из пунктов a) и c) следует справедливость неравенства (*) для функций вида

$$\varphi(\lambda) = \sum_{i=1}^{n} \xi_i |\lambda - \delta_i| + \eta A + \varepsilon ,$$

где δ_i , l , $\ell \in R$, $\delta_i \in R^+$. Отметим, что любую выпукдую кусочно—линейную функцию на R с конечным числом изломов можно представить в таком виде.

е). Любую выпуклую функцию arphi на R можно представить как поточечный предел возрастающей последовательности ($arphi_{R}$) вы—

пуклых кусочно-линейных функций с конечным числом изломов. Ис - пользуя пункт d) и теорему Леви о монотонной сходимости, полу - чаем

$$\int_{Q} \phi \cdot \varphi \, d \cdot e, X > = \lim_{n \to \infty} \int_{Q} \phi_n \cdot \varphi \, d \cdot e, X > \Rightarrow$$

$$\lim_{n \to \infty} \int_{R} \phi_n \, d \cdot e, T^{(p)} > = \int_{R} \phi \, d \cdot e, T^{(p)} > .$$

Теорема доказана. Отметим, что если $\int_{\mathbb{R}} \varphi d < e$, $\mathcal{T}^{(\rho)} > < +\infty$, то неравенство (ж) можно записать в виде $< e, \varphi(\rho) > < \int_{\Omega} \varphi \circ \varphi d < e, X >$. Пусть $1 < \rho < < \infty$, $L_{\rho}(\tau) = \{ \rho \in \mathcal{V} | \int_{\mathbb{R}} |\lambda|^{\rho} d < e, \mathcal{T}^{(\rho)} > < \infty \}$ и $\|\rho\|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\rho|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\rho|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\rho|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\rho|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\rho|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\rho|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\rho|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\rho|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} = \int_{\mathbb{R}} |\lambda|^{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} = \int_{\mathbb{R}} |\mu|_{\rho} d < e$, $\mathcal{T}^{(\rho)} > \int_{\mathbb{R}} |\mu|_{\rho} d$

Предложение 5.3. Для $i \leq \rho < \infty$ функция $\rho \mapsto \|\rho\|_{\rho}$ является нормой на $L_{\rho}(\mathcal{C})$, относительно которой пространство $L_{\rho}(\mathcal{C})$ банахово.

Литература

- І. Пар тасарати К. Введение в теорию вероятностей и теорию меры. М.: Мир, 1983. 243 с.
- 2. Тихонов 0. Е. Банаховы пространства, ассоциированные с пространством состояний, и функция информации // Конструк. теория функций и функц. анализ. Казань, 1990. Вып. 7. С. 67—90.
- 3. Т и х о н о в 0. Е. Спектральное разложение относительно следа в пространстве с базовой нормой // Изв. вузов. Матем. 1991. 161. 1.0.73 80.
- 4. Тихонов О.Е. Выпуклые функции и неравенства для следа // Конструк. теория функций и функц. анализ. Казань, 1987. Вып. 6. С. 77 82.
- 5. Тихонов О. Е. Неравенства для пространств в спектральной двойственности, связанные с выпуклыми функциями и следом. Казань, 1987. II с. Рукопись представлена Казан. унтом. Деп. в ВИНИТИ 20 мая 1987. \$3591 B87.

- 6. A 1 f s e n E. M. Compact convex sets and boundary in tegrals. Berlin-Heidelberg-New York: Springer-Verlag, 1971. 210 p.
- 7. A 1 f s e n E. M., S h u 1 t z F. W. Non-commutative spectral theory for affine function spaces on convex sets // Memoirs Amer. Math. Soc. 1976. V.6. No.172. XII, 120 p.
- 8. A 1 f s e n E. M., S h u 1 t z F. W. On non-commutative spectral theory and Jordan algebras // Proc. London Math.Soc.(3).-1979. V.38. P.497 516.

И.А. Шакиров

ОБ ОДНОМ ПОДХОДЕ К ИССЛЕДОВАНИЮ КВАДРАТУРНЫХ ФОРМУЛ НАИВЫСШЕЙ СТЕПЕНИ ТОЧНОСТИ

Рассмотрим квадратурную формулу (к.ф.) прямоугольников $\frac{1}{2\pi} \int_{0}^{\infty} x(s) ds \approx \frac{1}{N} \sum_{\kappa=1}^{N} x(s_{\kappa}) \quad (x = x(s) \in \widetilde{C})$ (I)

по семейству равномерно распределенных на отрезке [\mathcal{O} , $2\mathcal{R}$] узлов

$$S_{\kappa} = S_{\kappa}^{*} - 2\pi O/N \quad (S_{\kappa}^{*} = 2\pi \kappa/N, \kappa = \overline{I,N}, N \in \mathbb{N}), \quad (2)$$

зависящих от параметра θ , где $\theta \in [0,1]$, $\tilde{C} = \tilde{C}[0,2\pi]$ — множество непрерывных комплекснозначных 2π — периодических функций действительного аргумента. Варьируя θ в указанном промежутке (при фиксированном N), получаем всевозможные равноотстоящие узлы на периоде.

Обозначим через \mathcal{H}_n множество тригонометрических полиномов (т.п.) степени не внше N . Известно [1, с.162], [2, с.119], что к.ф. прямоугольников по N равноотстоящим узлам из отрезка [\mathcal{O} , $2\mathcal{R}$] точна для любого полинома $\mathcal{T}(s) \in \mathcal{H}_{N-1}$, а также для неко — торых подмножеств т.п. степени N при соответствующем выборе этих узлов. Здесь эти результаты несколько усилены в том смысле, что они являются следствиями одной общей теоремы, в которой установлена связь между точностью к.ф. прямоугольников для т.п. произвольной степени и расположением узлов квадратурной формулы на периоде [\mathcal{O} , $2\mathcal{R}$].