FÍSICA CALOR Y ONDAS CON PYTHON

Profesor: Alberto Patiño Vanegas

TEMA: Oscilaciones libres en un sistema masa resorte con amortiguamiento.

Considere un sistema masa-resorte como el mostrado en la figura 1, donde la fuerza de fricción se puede controlar con un carril de aire. La constante de elasticidad del resorte es k y el objeto tiene masa m. La fuerza elástica cumple con la ley de Hooke y la fuerza de fricción entre las superficies del objeto y el carril es proporcional a la velocidad, donde b es la constante de proporcionalidad (Constante de amortiguamiento). Se desea estudiar la posición x del punto p, donde está unida la masa al resorte respecto a la posición de equilibrio. Se considera que en la posición de equilibrio el resorte no está deformado y así la posición del punto p0 es p0. El sistema se pone a oscilar de tal forma que en p0, se coloca el punto en la posición p0 y se le imprime una velocidad p0.

Figura 1. Sistema masa-resorte

TAREA: Escriba un programa en Python que ayude a un usuario a analizar las oscilaciones de las variables físicas en el sistema-masa resorte con amortiguamiento $(b \neq 0)$.

ENTRADA DE USUARIO:

- Parámetros del sistema: k, b y m
- Condiciones iniciales: $x_0 y v_0$
- Intervalo de tiempo de observación de las oscilaciones: t_i y t_f .
- Paso de la discretización del tiempo: Δt

SALIDA PROGRAMA:

- 1. Los valores de:
 - Las raíces de la ecuación característica.
 - La frecuencia angular natural del sistema.
 - \circ El valor del factor $\alpha = \frac{b}{2m}$
 - La energía total entregada al sistema para hacerlo oscilar.
- 2. Un mensaje que diga si la oscilación es:
 - o Sobre-amortiguada
 - Críticamente amortiguada
 - o Sub-amortiguada
- 3. Una gráfica en función del tiempo en el intervalo especificado por el usuario de:
 - La posición x(t), la velocidad v(t) y la aceleración a(t).
 - La energía cinética $E_c(t)$ y la energía potencial U(t).