Thesis Progress Report #5

Christopher A. Wood

May 6, 2013

Agenda

- 1 Revisiting last week's questions
- 2 Algebraic Complexity of AES-like S-boxes
- 3 Boolean Function Constructions
- 4 Software Optimizations for S-Box
- 5 16-Bit Circuit for Multiplicative Inverse Calculation

Questions Answered

How many irreducible and primitive polynomials exist for extension fields $GF((2^n)^m)$?

$$(n,m)=(2,2)=18$$

$$(n,m)=(2,3)=180$$

$$(n,m)=(3,2)=504$$

$$(n,m) = (2,4) = 1800$$

$$(n,m) = (4,2) = 10800$$

...

Determining the algebraic complexity

- The AES S-box is a function $S(x) = L(x) \oplus b$, where L(x) is a linear function over GF(2).
- There are many ways to represent S(x) as a polynomial equation:
 - Lagrangian interpolation
 - Polynomial linearization
 - q-ary polynomial deduction

Lagrangian Interpolation

For any function $F: \mathbb{Z}_n \to \mathbb{Z}_n$ with input x_1, \dots, x_n and output y_1, \dots, y_n , we may find a polynomial representation P(x) as follows:

$$P(x) = \sum_{i=0}^{k-1} P_i(x),$$

where

$$P_i(x) = y_i \prod_{j=1, j \neq i}^k \frac{x - x_j}{x_i - x_j}$$

Let
$$F: GF(2^2) \to GF(2^2)$$
 be a function defined in $GF(2^2)/p(x) = x^2 + x + 1$ by the following map:

$$0 \rightarrow 1$$
 $1 \rightarrow \alpha$
 $\alpha \rightarrow \alpha + 1$
 $\alpha + 1 \rightarrow 0$

For Lagrangian interpolation, we need polynomials $f_z(x)$ with the property $f_z(x) = 1$ and $f_z(y) = 0$ if $y \neq z$.

Start by constructing the polynomial $g(x) = (x-1)(x-\alpha)(x-(\alpha+1))$. Note that if $x \in GF(2^2) \setminus \{0\}$, then g(x) = 0.

Therefore, we pick $f_0(x) = g(x)/g(0)$, where $g(0) = 1 \cdot \alpha \cdot (\alpha + 1) = 1$

Thus, $f_0(x) = g(x)$, which makes this very easy. Expanding out g(x) yields:

$$g(x) = (x-1)(x-\alpha)(x-(\alpha+1))$$

$$= (x^2 - x - x\alpha + \alpha)(x - (\alpha+1))$$

$$= x^3 - x^2 - x^2\alpha + x\alpha - x^2\alpha - x\alpha - x\alpha^2 - \alpha^2 + x^2 - x - x\alpha + \alpha = 1$$

after reduction with $p(x) = x^2 + x + 1$, of course.

We may find the other polynomials $f_1(x)$, $f_{\alpha}(x)$, $f_{\alpha+1}(x)$ by linear substitutions:

$$f_z(x) = f_0(x-z)$$

(A textbook informed me of this fact)

Now we can do interpolation as follows:

$$q(x) = F(0)f_0(x) + F(1)f_1(x) + F(\alpha)f_{\alpha}(x) + F(\alpha+1)f_{\alpha+1}(x)$$

= $x^2(\alpha+1) + 1$

A simple check...

$$q(\alpha) = (\alpha)^{2}(\alpha+1)+1 = \alpha^{3}+\alpha^{2}+1 = \alpha+1$$

$$q(1) = (1)^{2}(\alpha+1)+1 = \alpha$$

$$q(0) = (0)^{2}(\alpha+1)+1 = 1$$

$$q(\alpha+1) = (\alpha+1)^{2}(\alpha+1)+1 = \alpha^{3}+\alpha+\alpha^{2}=0$$

Lagrangian Lesson

The method is more symbolic than computational (at first glance), so perhaps there's a better way to estimate the complexity...

Polynomial Linearization

- Any linear function A over $GF(2^k)$ can be represented as a matrix multiplication
- Similarly, such functions can be represented by a linearized polynomial:

$$f(\alpha) = \sum_{i=0}^{k-1} \lambda_i \alpha^{2^i}$$

- Solve for λ_i by setting up and solving a system of linear equations
 - Select some α , compute $A(\alpha)$ and α^{2^i} for all $0 \le i \le k-1$
 - Solve for each λ_i using Gaussian elimination

Bounds on Algebraic Expression

The upper bound on the number of terms in an algebraic expression for affine-power functions

$$F(x) = A(P(x))$$

in $GF(2^n)$ is n+1

The forward AES S-box, $F(X) = L(x^{-1}) = L(x^{254})$, has 9 terms:

$$L(x) = \sum_{i=0}^{7} \lambda_i x^{2^i}$$

Increasing the Algebraic Complexity

- Affine-power-affine functions: $F(x) = A \circ P \circ A$
 - Increases algebraic complexity without affecting other cryptographic properties (strict avalanche, nonlinearity, differential uniformity, algebraic degree)
 - This increased the algeboraic complexity from 9 to 253
- Gray code augmentation: $F(x) = L \circ P \circ G$
 - A gray code is a binary numeral system where two successive values differ by a single bit
 - G is gray-code conversion from an element x ∈ GF(2ⁿ) to a corresponding gray-code
 - Conversion process: $y_i = x_{i+1} \oplus x_i$ and $y_n = x_n$
- Möbius transformation: $f(z) = \frac{az+b}{cz+d}$, where $a, b, c, d \in GF(2^k)$.

General Majorana-McFarland Construction

- Concatenate small affine functions to form higher-order functions
- (Hopefully) the result is an equally strong Boolean function
- All MM Boolean functions have an annihilator of degree (n-r+1), where r is the number of variables of affine functions which are used (concatenated) to construct the function
- As r decreases the annihilator degree increases, making algebraic attacks easier (it simplifies the equations)

Linear Codes

- A [n,k,d]-code (binary code) is a subspace of $\mathbb{F}_2^n = GF(2)^n$
 - n is the length, k is the rank, d is the minimum (Hamming) distance between each codeword in the subspace
- The vectors of a binary linear code are called the *codewords*
- As a subspace, there exists a basis B for the code, which is often represented as a generator matrix G
- Many codes of cryptographic interest: Hamming, Walsh-Hadamard, . . .

Candidate Codes

- Hamming Code: a special type of binary [n, k, 3] code
 - Mainly used for error detection/correction, but we can use it for resilient BF constructions
- Hadamard Code: a special type of binary $[2^k, k, 2^{k-1}]$ code

Construction Idea for t-resilient

- Let $f_1, \ldots, f_{2^{n-r}}$ be 2^{n-r} affine Boolean functions of length 2^r (i.e. the truth table has 2^r entries)
- Concatenating $f_1, \ldots, f_{2^{n-r}}$ yeilds a string of length 2^n
- Let $g(x_n,...,x_{r+1})$ be a nonlinear function and let $h(x_r,...,x_1)$ be a linear (affine) function, and let $f(x_n,...,x_1) = g(x_n,...,x_{r+1}) \oplus h(x_r,...,x_1)$

*Note: all Boolean functions are (t+1) degenerate, for reasons that are discussed in the paper :-)

Construction Idea for t-resilient

- Select a [n = u, k = m, d = t + 1] code and construct a $(2^m 1) \times m$ matrix with codewords from C s.t. $\{c_1 D_{i,1} \oplus \cdots \oplus c_m D_{i,m} : i \leq 1 \leq 2^m 1\} = C \setminus \{\bar{0}\}$. Let L(C) be a $(2^m 1) \times m$ matrix whose entries are u-variable functions defined by $L_{i,j}(x_1, \ldots, x_u)$
- Define an (p, m) S-box with component functions G_1, \ldots, G_m , and let L(C, k, l) be an $(l k + 1) \times m$ matrix whose i, jth entry is

$$G_j(y_1,\ldots,y_p)\oplus L_{k+i-1,j}(x_1,\ldots,x_u).$$

Construction Continued

If $l-k+1=2^r$ then $G \oplus L(C,k,l)$ is an (r+p+u,m) S-box:

$$F_j(z_1,\ldots,z_r,y_1,\ldots,y_p,x_1,\ldots,x_u) = G_j(y_1,\ldots,y_p) \oplus L_{k+i-1,j}(x_1,\ldots,x_u)$$

- Goal: Let m = 16, find other parameters that make the construction "work"
- Need to select good (p, 16) S-boxes G_1, \ldots, G_m and find a good [n, 16, t+1] code word

Software Optimizations for S-Box

- Extended Euclidean Algorithm Straightforward
- Binary Extended Euclidean Algorithm Optimized version of EEA for fields of characteristic 2
- Normal basis conversion with Fermat's Theorem Two matrix multiplications with some shifting and multiplying
- Almost Inverse Algorithm Compute $A^{-1}x^k \mod f(x)$ and then reduce by x^k
- Bitsliced implementation Carnright investigates this technique with his normal basis optimizations
- LUTs Not a goal, but always an option...

Software Optimizations for S-Box - Metrics

These can be captured with gprof for different platforms...

- Extended Euclidean Algorithm TODO
- Binary Extended Euclidean Algorithm TODO
- Normal basis conversion with Fermat's Theorem TODO
- Almost Inverse Algorithm TODO
- Bitsliced implementation TODO
- LUTs ;-)

Complexity of Finite Field Multipliers

- Claim: for small fields (e.g. $GF(2^k)$, $k \le 32$) the *arithmetic* procedures for software implementations **are not** affected by the field polynomial.
 - Advanced algorithms such as the "comb" multiplier target fields where single elements cannot fit within a single word
- This is not true for hardware...
 - If we're going for area optimized designs, we want serial modules, otherwise we want parallel modules
 - Some bases yield more efficient arithmetic operations than others
 - This leads us to Optimal Normal Bases

Inverse by Fermat's Theorem

By Fermat's Theorem, $\alpha^{-1} \equiv \alpha^{2^k-2}$

$$2^{m-2} = 2 + 2^2 + 2^3 + \dots + 2^{m-1}$$

This leads us to a simple square and multiply algorithm...

$$\alpha^{-1} = \alpha^2 \cdot \alpha^{2^2} \cdot \alpha^{2^3} \cdot \dots \cdot \alpha^{2^{m-1}}$$

In a normal basis the cycle complexity is $\mathcal{O}(k)$ for computing the successive powers of α , but the area complexity depends on the type of multiplier used (e.g. using a ONB Type II basis one can implement a parallel multiplier with 1.5 (k^2-k) XOR gates [1])

Inverse by Composite Field Computation

$$(bx+c)^{-1} = b(b^2B + bcA + c^2)^{-1}x + (c+bA)(b^2B + bcA + c^2)^{-1}$$

with $A = 1$ and $B = \lambda$

Inverse by Composite Field Computation (continued)

5-stage pipeline design

Optimal Pipeline Selection Strategy (for FPGAs)

Algorithm 1 Pipeline Optimization Strategy

- 1: $E_c = Throughput(Mbits/s)/Area$
- 2: Opt ← False
- 3: while Opt = False do
- 4: Remove the pipeline state that contributes the lowest frequency reduction
- 5: Reimplement and resynthesize the design
- 6: $E_n = Throughput(Mbits/s)/Area$
- 7: if $E_c > E_n$ then
- 8: Opt = True
- 9: end if
- 10: end while

Inverse by Composite Field Computation (continued)

The next step is to synthesize the design and gather hardware metrics.

- LUT count (FPGA captured with Xilinx tools)
- Register count (FPGA captured with Xilinx tools)
- Slice count (FPGA captured with Xilinx tools)
- Throughput in cycles/byte (FPGA captured with Xilinx tools)
- Power consumption (ASIC captured with Synopsys) :-)

References

1 Sunar, Berk, and Cetin Kaya Koc. "An efficient optimal normal basis type II multiplier." Computers, IEEE Transactions on 50.1 (2001): 83-87.

Action Items (perhaps overly ambitious...)

- Optimize Galois field software for more efficient calculation of polynomials and transformation matrices
- Finish composite field decomposition chapter
- Polynomial and normal basis conversion code and preparation for OSG execution
- Literature survey of S-box constructions and code for estimating algebraic complexity
- Complete the exhaustive list of all polynomials P(x), Q(y), and R(z) and the corresponding list of all transformation matrices (using OSG!)
- Hardware metrics of regular and non-pipelined 16-bit inverse of composite field inverse
- Implement Carnright's normal basis S-box
- (16, 16)-Boolean function code using the prescribed approach