HNCO

0.14

Generated by Doxygen 1.8.17

1 Namespace Index	1
1.1 Namespace List	1
2 Hierarchical Index	3
2.1 Class Hierarchy	3
3 Class Index	7
3.1 Class List	7
4 File Index	13
4.1 File List	13
5 Namespace Documentation	19
5.1 hnco Namespace Reference	19
5.1.1 Detailed Description	23
5.1.2 Typedef Documentation	23
5.1.2.1 bit_t	24
5.1.2.2 sparse_bit_matrix_t	24
5.1.2.3 sparse_bit_vector_t	24
5.1.2.4 transvection_sequence_t	24
5.1.3 Function Documentation	25
5.1.3.1 bm_add_columns()	25
5.1.3.2 bm_add_rows()	25
5.1.3.3 bm_identity() [1/2]	25
5.1.3.4 bm_identity() [2/2]	26
5.1.3.5 bm_invert()	26
5.1.3.6 bm_multiply()	27
5.1.3.7 bm_rank()	27
5.1.3.8 bm_row_echelon_form()	
5.1.3.9 bm_solve()	27
5.1.3.10 bm_solve_upper_triangular()	28
5.1.3.11 bv_from_vector_bool()	29
5.1.3.12 bv_to_vector_bool()	29
5.1.3.13 is_in_range() [1/2]	29
5.1.3.14 is_in_range() [2/2]	30
5.1.3.15 perm_identity()	30
5.1.3.16 perm_random()	31
5.1.3.17 sbm_multiply()	31
5.1.3.18 ts_is_valid() [1/2]	31
5.1.3.19 ts_is_valid() [2/2]	31
5.1.3.20 ts_multiply() [1/2]	33
5.1.3.21 ts_multiply() [2/2]	33
5.1.3.22 ts_random()	34
5.1.3.23 ts_random_commuting()	34
5.1.5.25 IS_tationit_continuting()	J4

5.1.3.24 ts_random_disjoint()	35
5.1.3.25 ts_random_non_commuting()	36
5.1.3.26 ts_random_unique_destination()	36
5.1.3.27 ts_random_unique_source()	37
5.2 hnco::algorithm Namespace Reference	37
5.2.1 Detailed Description	40
5.3 hnco::algorithm::bm_pbil Namespace Reference	40
5.3.1 Detailed Description	40
5.4 hnco::algorithm::fast_efficient_p3 Namespace Reference	40
5.4.1 Detailed Description	40
5.5 hnco::algorithm::hea Namespace Reference	41
5.5.1 Detailed Description	41
5.6 hnco::exception Namespace Reference	41
5.6.1 Detailed Description	41
5.7 hnco::function Namespace Reference	42
5.7.1 Detailed Description	43
5.7.2 Function Documentation	44
5.7.2.1 compute_walsh_transform()	44
5.8 hnco::function::controller Namespace Reference	44
5.8.1 Detailed Description	45
5.9 hnco::function::modifier Namespace Reference	45
5.9.1 Detailed Description	45
5.10 hnco::function::real Namespace Reference	45
5.10.1 Detailed Description	46
5.11 hnco::neighborhood Namespace Reference	46
5.11.1 Detailed Description	46
5.12 hnco::random Namespace Reference	46
5.12.1 Detailed Description	46
	4-
6 Class Documentation	47 47
6.1 AbstractLabs Class Reference	
•	
6.2 AbstractMaxSat Class Reference	
6.2.1 Detailed Description	
6.2.2 Member Function Documentation	
6.2.2.1 load()	
6.2.3 Member Data Documentation	
6.2.3.1 _expression	
6.3 AdditiveGaussianNoise Class Reference	
6.3.1 Detailed Description	
6.4 AffineMap Class Reference	
6.4.1 Detailed Description	52

6.4.2 Member Function Documentation	52
6.4.2.1 is_surjective()	52
6.4.2.2 random()	52
6.5 Algorithm Class Reference	53
6.5.1 Detailed Description	55
6.5.2 Member Function Documentation	55
6.5.2.1 finalize()	55
6.5.2.2 init()	56
6.5.2.3 set_solution()	56
6.5.2.4 update_solution()	56
6.5.3 Member Data Documentation	56
6.5.3.1 _functions	57
6.6 BernoulliProcess Class Reference	57
6.6.1 Detailed Description	58
6.6.2 Constructor & Destructor Documentation	58
6.6.2.1 BernoulliProcess() [1/2]	58
6.6.2.2 BernoulliProcess() [2/2]	59
6.6.3 Member Function Documentation	59
6.6.3.1 set_allow_stay()	59
6.6.3.2 set_probability()	59
6.7 BiasedCrossover Class Reference	60
6.7.1 Detailed Description	60
6.7.2 Member Function Documentation	60
6.7.2.1 breed()	60
6.8 BitHerding Class Reference	61
6.8.1 Detailed Description	62
6.8.2 Member Enumeration Documentation	62
6.8.2.1 anonymous enum	62
6.9 BitMoment Struct Reference	63
6.9.1 Detailed Description	64
6.10 BmPbil Class Reference	64
6.10.1 Detailed Description	66
6.10.2 Member Enumeration Documentation	67
6.10.2.1 anonymous enum	67
6.10.2.2 anonymous enum	67
6.10.3 Member Function Documentation	67
6.10.3.1 set_selection_size()	68
6.11 Cache Class Reference	68
6.11.1 Detailed Description	69
6.11.2 Constructor & Destructor Documentation	69
6.11.2.1 Cache()	69
6.11.3 Member Function Documentation	70

6.11.3.1 provides_incremental_evaluation()	70
6.12 CallCounter Class Reference	70
6.12.1 Detailed Description	72
6.13 CompactGa Class Reference	72
6.13.1 Detailed Description	73
6.14 CompleteSearch Class Reference	73
6.14.1 Detailed Description	74
6.15 Controller Class Reference	74
6.15.1 Detailed Description	75
6.15.2 Member Function Documentation	75
6.15.2.1 provides_incremental_evaluation()	75
6.16 Crossover Class Reference	76
6.16.1 Detailed Description	76
6.16.2 Member Function Documentation	76
6.16.2.1 breed()	76
6.17 DeceptiveJump Class Reference	77
6.17.1 Detailed Description	78
6.17.2 Member Function Documentation	78
6.17.2.1 get_maximum()	78
6.17.2.2 has_known_maximum()	78
6.18 Decorator Class Reference	79
6.18.1 Detailed Description	79
6.19 DyadicRealRepresentation Class Reference	80
6.19.1 Detailed Description	80
6.19.2 Constructor & Destructor Documentation	81
6.19.2.1 DyadicRealRepresentation()	81
6.20 EqualProducts Class Reference	81
6.20.1 Detailed Description	82
6.20.2 Member Function Documentation	83
6.20.2.1 generate()	83
6.20.2.2 random()	83
6.21 Error Class Reference	83
6.21.1 Detailed Description	84
6.22 ProgressTracker::Event Struct Reference	84
6.22.1 Detailed Description	85
6.23 Exception Class Reference	85
6.23.1 Detailed Description	85
6.24 Factorization Class Reference	86
6.24.1 Detailed Description	87
6.24.2 Constructor & Destructor Documentation	87
6.24.2.1 Factorization()	87
6.24.3 Member Function Documentation	88

6.24.3.1 load()	88
6.25 FirstAscentHillClimbing Class Reference	88
6.25.1 Detailed Description	89
6.26 FourPeaks Class Reference	90
6.26.1 Detailed Description	91
6.26.2 Member Function Documentation	91
6.26.2.1 get_maximum()	91
6.26.2.2 has_known_maximum()	92
6.27 Function Class Reference	92
6.27.1 Detailed Description	94
6.27.2 Member Function Documentation	94
6.27.2.1 get_maximum()	94
6.27.2.2 incremental_eval()	95
6.27.2.3 provides_incremental_evaluation()	95
6.27.2.4 safe_eval()	95
6.28 FunctionFactory Class Reference	96
6.28.1 Detailed Description	96
6.29 FunctionMapComposition Class Reference	97
6.29.1 Detailed Description	98
6.29.2 Constructor & Destructor Documentation	98
6.29.2.1 FunctionMapComposition()	98
6.29.3 Member Function Documentation	98
6.29.3.1 get_maximum()	98
6.29.3.2 has_known_maximum()	99
6.30 FunctionPlugin Class Reference	99
6.30.1 Detailed Description	100
6.30.2 Constructor & Destructor Documentation	100
6.30.2.1 FunctionPlugin()	100
6.31 GeneticAlgorithm Class Reference	101
6.31.1 Detailed Description	102
6.31.2 Constructor & Destructor Documentation	102
6.31.2.1 GeneticAlgorithm()	102
6.31.3 Member Function Documentation	103
6.31.3.1 set_allow_stay()	103
6.32 HammingBall Class Reference	103
6.32.1 Detailed Description	104
6.32.2 Constructor & Destructor Documentation	104
6.32.2.1 HammingBall()	104
6.33 HammingSphere Class Reference	105
6.33.1 Detailed Description	106
6.33.2 Constructor & Destructor Documentation	106
6.33.2.1 HammingSphere()	106

6.34 HammingSphereIterator Class Reference
6.34.1 Detailed Description
6.34.2 Constructor & Destructor Documentation
6.34.2.1 HammingSphereIterator()
6.35 Hboa Class Reference
6.35.1 Detailed Description
6.36 Hea< Moment, Herding > Class Template Reference
6.36.1 Detailed Description
6.36.2 Member Enumeration Documentation
6.36.2.1 anonymous enum
6.36.3 Constructor & Destructor Documentation
6.36.3.1 Hea()
6.36.4 Member Function Documentation
6.36.4.1 set_reset_period()
6.36.4.2 set_selection_size()
6.37 Hiff Class Reference
6.37.1 Detailed Description
6.37.2 Member Function Documentation
6.37.2.1 get_maximum()
6.37.2.2 has_known_maximum()
6.38 HncoEvaluator Class Reference
6.38.1 Detailed Description
6.39 Human Class Reference
6.39.1 Detailed Description
6.40 Hypercubelterator Class Reference
6.40.1 Detailed Description
6.41 Implementation Struct Reference
6.41.1 Detailed Description
6.42 Injection Class Reference
6.42.1 Detailed Description
6.42.2 Constructor & Destructor Documentation
6.42.2.1 Injection()
6.43 IterativeAlgorithm Class Reference
6.43.1 Detailed Description
6.43.2 Constructor & Destructor Documentation
6.43.2.1 IterativeAlgorithm()
6.43.3 Member Function Documentation
6.43.3.1 maximize()
6.43.3.2 set_num_iterations()
6.44 Iterator Class Reference
6.44.1 Detailed Description
6.45 Jump Class Reference

6.45.1 Detailed Description	 125
6.45.2 Member Function Documentation	 126
6.45.2.1 get_maximum()	 126
6.45.2.2 has_known_maximum()	 126
6.46 Labs Class Reference	 127
6.46.1 Detailed Description	 127
6.47 LabsMeritFactor Class Reference	 128
6.47.1 Detailed Description	 128
6.48 LastEvaluation Class Reference	 129
6.48.1 Detailed Description	 129
6.49 LeadingOnes Class Reference	 129
6.49.1 Detailed Description	 130
6.49.2 Member Function Documentation	 130
6.49.2.1 get_maximum()	 130
6.49.2.2 has_known_maximum()	 131
6.50 LinearFunction Class Reference	 131
6.50.1 Detailed Description	 132
6.50.2 Member Function Documentation	 133
6.50.2.1 generate()	 133
6.50.2.2 has_known_maximum()	 133
6.50.2.3 provides_incremental_evaluation()	 133
6.50.2.4 random()	 133
6.51 LinearMap Class Reference	 134
6.51.1 Detailed Description	 135
6.51.2 Member Function Documentation	 135
6.51.2.1 is_surjective()	 135
6.51.2.2 random()	 135
6.52 LocalMaximum Class Reference	 136
6.52.1 Detailed Description	 137
6.53 LogContext Class Reference	 137
6.53.1 Detailed Description	 137
6.54 LongPath Class Reference	 138
6.54.1 Detailed Description	 139
6.54.2 Member Function Documentation	 139
6.54.2.1 get_maximum()	 139
6.54.2.2 has_known_maximum()	 140
6.55 Ltga Class Reference	 140
6.55.1 Detailed Description	
6.56 Map Class Reference	 142
6.56.1 Detailed Description	 143
6.56.2 Member Function Documentation	 143
6.56.2.1 is_surjective()	 143

6.57 MapComposition Class Reference	43
6.57.1 Detailed Description	44
6.57.2 Constructor & Destructor Documentation	44
6.57.2.1 MapComposition()	44
6.57.3 Member Function Documentation	45
6.57.3.1 is_surjective()	45
6.58 MaximumReached Class Reference	45
6.58.1 Detailed Description	46
6.59 MaxNae3Sat Class Reference	46
6.59.1 Detailed Description	47
6.59.2 Member Function Documentation	47
6.59.2.1 load()	47
6.60 MaxSat Class Reference	47
6.60.1 Detailed Description	48
6.60.2 Member Function Documentation	48
6.60.2.1 random() [1/2]	49
6.60.2.2 random() [2/2]	49
6.61 Mimic Class Reference	49
6.61.1 Detailed Description	51
6.62 Mmas Class Reference	52
6.62.1 Detailed Description	53
6.63 Model Class Reference	53
6.63.1 Detailed Description	54
6.64 ModelParameters Class Reference	54
6.64.1 Detailed Description	55
6.64.2 Member Function Documentation	55
6.64.2.1 add()	55
6.64.2.2 average()	55
6.64.2.3 init()	56
6.64.2.4 update()	56
6.64.3 Member Data Documentation	56
6.64.3.1 _weight	56
6.65 Modifier Class Reference	57
6.65.1 Detailed Description	57
6.66 MuCommaLambdaEa Class Reference	58
6.66.1 Detailed Description	59
6.66.2 Constructor & Destructor Documentation	59
6.66.2.1 MuCommaLambdaEa()	59
6.66.3 Member Function Documentation	30
6.66.3.1 set_allow_stay()	30
6.67 MultiBitFlip Class Reference	30
6.67.1 Detailed Description	នា

6.67.2 Constructor & Destructor Documentation
6.67.2.1 MultiBitFlip()
6.67.3 Member Function Documentation
6.67.3.1 bernoulli_trials()
6.67.3.2 reservoir_sampling()
6.68 MuPlusLambdaEa Class Reference
6.68.1 Detailed Description
6.68.2 Constructor & Destructor Documentation
6.68.2.1 MuPlusLambdaEa()
6.68.3 Member Function Documentation
6.68.3.1 set_allow_stay()
6.69 NearestNeighborlsingModel1 Class Reference
6.69.1 Detailed Description
6.69.2 Member Function Documentation
6.69.2.1 eval()
6.69.2.2 generate()
6.69.2.3 provides_incremental_evaluation()
6.69.2.4 random()
6.70 NearestNeighborlsingModel2 Class Reference
6.70.1 Detailed Description
6.70.2 Member Function Documentation
6.70.2.1 eval()
6.70.2.2 generate()
6.70.2.3 provides_incremental_evaluation()
6.70.2.4 random()
6.71 Needle Class Reference
6.71.1 Detailed Description
6.71.2 Member Function Documentation
6.71.2.1 get_maximum()
6.71.2.2 has_known_maximum()
6.72 Negation Class Reference
6.72.1 Detailed Description
6.72.2 Member Function Documentation
6.72.2.1 provides_incremental_evaluation()
6.73 Neighborhood Class Reference
6.73.1 Detailed Description
6.73.2 Constructor & Destructor Documentation
6.73.2.1 Neighborhood()
6.73.3 Member Function Documentation
6.73.3.1 map()
6.73.3.2 mutate()
6.74 NeighborhoodIterator Class Reference

6.74.1 Detailed Description
6.74.2 Constructor & Destructor Documentation
6.74.2.1 NeighborhoodIterator()
6.75 NkLandscape Class Reference
6.75.1 Detailed Description
6.75.2 Member Function Documentation
6.75.2.1 generate()
6.75.2.2 random()
6.75.2.3 random_structure()
6.76 NpsPbil Class Reference
6.76.1 Detailed Description
6.77 OnBudgetFunction Class Reference
6.77.1 Detailed Description
6.77.2 Member Function Documentation
6.77.2.1 eval()
6.77.2.2 incremental_eval()
6.77.2.3 update()
6.78 OneMax Class Reference
6.78.1 Detailed Description
6.78.2 Member Function Documentation
6.78.2.1 get_maximum()
6.78.2.2 has_known_maximum()
6.78.2.3 provides_incremental_evaluation()
6.79 OnePlusLambdaCommaLambdaGa Class Reference
6.79.1 Detailed Description
6.79.2 Constructor & Destructor Documentation
6.79.2.1 OnePlusLambdaCommaLambdaGa()
6.80 OnePlusOneEa Class Reference
6.80.1 Detailed Description
6.80.2 Constructor & Destructor Documentation
6.80.2.1 OnePlusOneEa()
6.80.3 Member Function Documentation
6.80.3.1 set_allow_stay()
6.80.3.2 set_num_iterations()
6.81 Options Class Reference
6.81.1 Detailed Description
6.81.2 Member Data Documentation
6.81.2.1 _path
6.82 ParameterLessPopulationPyramid Class Reference
6.82.1 Detailed Description
6.83 ParsedModifier Class Reference
6.83.1 Detailed Description

6.83.2 Constructor & Destructor Documentation
6.83.2.1 ParsedModifier()
6.84 ParsedRealMultivariateFunction Class Reference
6.84.1 Detailed Description
6.84.2 Constructor & Destructor Documentation
6.84.2.1 ParsedRealMultivariateFunction()
6.85 Partition Class Reference
6.85.1 Detailed Description
6.85.2 Member Function Documentation
6.85.2.1 generate()
6.85.2.2 random()
6.86 Pbil Class Reference
6.86.1 Detailed Description
6.87 Permutation Class Reference
6.87.1 Detailed Description
6.87.2 Member Function Documentation
6.87.2.1 is_surjective()
6.88 Plateau Class Reference
6.88.1 Detailed Description
6.88.2 Member Function Documentation
6.88.2.1 get_maximum()
6.88.2.2 has_known_maximum()
6.89 PointValueException Class Reference
6.89.1 Detailed Description
6.90 Population Class Reference
6.90.1 Detailed Description
6.90.2 Member Function Documentation
6.90.2.1 comma_selection() [1/2]
6.90.2.2 comma_selection() [2/2]
6.90.2.3 get_best_bv() [1/4]
6.90.2.4 get_best_bv() [2/4]
6.90.2.5 get_best_bv() [3/4]
6.90.2.6 get_best_bv() [4/4]
6.90.2.7 get_best_value() [1/2] 23.
6.90.2.8 get_best_value() [2/2]
6.90.2.9 get_worst_bv() [1/2]
6.90.2.10 get_worst_bv() [2/2] 23
6.90.2.11 plus_selection() [1/2]
6.90.2.12 plus_selection() [2/2]
6.90.3 Member Data Documentation
6.90.3.1 _compare_index_value
6.90.3.2 lookup

6.91 PriorNoise Class Reference
6.91.1 Detailed Description
6.91.2 Member Function Documentation
6.91.2.1 get_maximum()
6.91.2.2 has_known_maximum()
6.91.2.3 provides_incremental_evaluation()
6.92 ProgressTracker Class Reference
6.92.1 Detailed Description
6.92.2 Member Function Documentation
6.92.2.1 get_last_improvement()
6.93 ProgressTrackerContext Class Reference
6.93.1 Detailed Description
6.94 Projection Class Reference
6.94.1 Detailed Description
6.94.2 Constructor & Destructor Documentation
6.94.2.1 Projection()
6.94.3 Member Function Documentation
6.94.3.1 is_surjective()
6.95 PvAlgorithm Class Reference
6.95.1 Detailed Description
6.96 Qubo Class Reference
6.96.1 Detailed Description
6.96.2 Member Function Documentation
6.96.2.1 load()
6.96.3 Member Data Documentation
6.96.3.1 _q
6.97 Random Struct Reference
6.97.1 Detailed Description
6.98 RandomLocalSearch Class Reference
6.98.1 Detailed Description
6.98.2 Member Function Documentation
6.98.2.1 set_patience()
6.99 RandomSearch Class Reference
6.99.1 Detailed Description
6.100 RandomWalk Class Reference
6.100.1 Detailed Description
6.101 RealMultivariateFunction Class Reference
6.101.1 Detailed Description
6.102 RealMultivariateFunctionAdapter Class Reference
6.102.1 Detailed Description
6.102.2 Constructor & Destructor Documentation
6 102 2 1 RealMultivariateFunctionAdapter()

6.103 RealRepresentation Class Reference
6.103.1 Detailed Description
6.104 Restart Class Reference
6.104.1 Detailed Description
6.105 Ridge Class Reference
6.105.1 Detailed Description
6.105.2 Member Function Documentation
6.105.2.1 get_maximum()
6.105.2.2 has_known_maximum()
6.106 SimulatedAnnealing Class Reference
6.106.1 Detailed Description
6.106.2 Member Function Documentation
6.106.2.1 init_beta()
6.107 SingleBitFlip Class Reference
6.107.1 Detailed Description
6.108 SingleBitFlipIterator Class Reference
6.108.1 Detailed Description
6.108.2 Constructor & Destructor Documentation
6.108.2.1 SingleBitFlipIterator()
6.109 SinusSummationCancellation Class Reference
6.109.1 Detailed Description
6.110 SixPeaks Class Reference
6.110.1 Detailed Description
6.110.2 Member Function Documentation
6.110.2.1 get_maximum()
6.110.2.2 has_known_maximum()
6.111 SpinHerding Class Reference
6.111.1 Detailed Description
6.111.2 Member Enumeration Documentation
6.111.2.1 anonymous enum
6.111.3 Constructor & Destructor Documentation
6.111.3.1 SpinHerding()
6.111.4 Member Function Documentation
6.111.4.1 q_variation()
6.112 SpinMoment Struct Reference
6.112.1 Detailed Description
6.112.2 Member Data Documentation
6.112.2.1 _second
6.113 SteepestAscentHillClimbing Class Reference
6.113.1 Detailed Description
6.114 StopOnMaximum Class Reference
6 114 1 Detailed Description 273

6.114.2 Constructor & Destructor Documentation
6.114.2.1 StopOnMaximum()
6.114.3 Member Function Documentation
6.114.3.1 eval()
6.114.3.2 incremental_eval()
6.114.3.3 update()
6.115 StopOnTarget Class Reference
6.115.1 Detailed Description
6.115.2 Constructor & Destructor Documentation
6.115.2.1 StopOnTarget()
6.115.3 Member Function Documentation
6.115.3.1 eval()
6.115.3.2 incremental_eval()
6.115.3.3 update()
6.116 StopWatch Class Reference
6.116.1 Detailed Description
6.117 SummationCancellation Class Reference
6.117.1 Detailed Description
6.117.2 Constructor & Destructor Documentation
6.117.2.1 SummationCancellation()
6.117.3 Member Function Documentation
6.117.3.1 has_known_maximum()
6.118 TargetReached Class Reference
6.118.1 Detailed Description
6.119 TournamentSelection Class Reference
6.119.1 Detailed Description
6.119.2 Member Function Documentation
6.119.2.1 select()
6.120 Translation Class Reference
6.120.1 Detailed Description
6.120.2 Member Function Documentation
6.120.2.1 is_surjective()
6.121 Transvection Struct Reference
6.121.1 Detailed Description
6.121.2 Member Function Documentation
6.121.2.1 is_valid()
6.121.2.2 multiply() [1/2]
6.121.2.3 multiply() [2/2]
6.121.2.4 multiply_right()
6.121.2.5 random()
6.121.2.6 random_non_commuting()
6.122 Trap Class Reference

6.122.1 Detailed Description
6.122.2 Constructor & Destructor Documentation
6.122.2.1 Trap()
6.122.3 Member Function Documentation
6.122.3.1 get_maximum()
6.122.3.2 has_known_maximum()
6.123 TsAffineMap Class Reference
6.123.1 Detailed Description
6.123.2 Member Enumeration Documentation
6.123.2.1 SamplingMode
6.123.3 Member Function Documentation
6.123.3.1 is_surjective()
6.123.3.2 random()
6.124 Umda Class Reference
6.124.1 Detailed Description
6.125 UniformCrossover Class Reference
6.125.1 Detailed Description
6.125.2 Member Function Documentation
6.125.2.1 breed()
6.126 WalshExpansion Class Reference
6.126.1 Detailed Description
6.126.2 Member Function Documentation
6.126.2.1 generate()
6.126.2.2 random()
6.127 WalshExpansion1 Class Reference
6.127.1 Detailed Description
6.127.2 Member Function Documentation
6.127.2.1 generate()
6.127.2.2 has_known_maximum()
6.127.2.3 provides_incremental_evaluation()
6.127.2.4 random()
6.128 WalshExpansion2 Class Reference
6.128.1 Detailed Description
6.128.2 Member Function Documentation
6.128.2.1 generate()
6.128.2.2 generate_ising1_long_range()
6.128.2.3 generate_ising1_long_range_periodic()
6.128.2.4 random()
6.128.3 Member Data Documentation
6.128.3.1 _quadratic
6.129 WalshTerm Struct Reference
6.129.1 Detailed Description

6.129.2 Member Data Documentation	307
6.129.2.1 feature	307
7 File Documentation	309
7.1 tests/test-bv-from-stream.cc File Reference	309
7.1.1 Detailed Description	309
7.2 tests/test-transvection-is-involution.cc File Reference	310
7.2.1 Detailed Description	310
7.3 tests/test-ts-random-commuting-is-involution.cc File Reference	310
7.3.1 Detailed Description	311
7.4 tests/test-ts-random-commuting.cc File Reference	311
7.4.1 Detailed Description	312
7.5 tests/test-ts-random-disjoint-is-involution.cc File Reference	312
7.5.1 Detailed Description	313
7.6 tests/test-ts-random-disjoint.cc File Reference	313
7.6.1 Detailed Description	314
7.7 tests/test-ts-random-non-commuting.cc File Reference	314
7.7.1 Detailed Description	315
7.8 tests/test-ts-random-unique-destination-is-involution.cc File Reference	315
7.8.1 Detailed Description	316
7.9 tests/test-ts-random-unique-source-is-involution.cc File Reference	316
7.9.1 Detailed Description	317
Index	319

Namespace Index

1.1 Namespace List

Here is a list of all documented namespaces with brief descriptions:

hnco	
Top-level HNCO namespace	19
hnco::algorithm	
Algorithms	37
hnco::algorithm::bm_pbil	
Boltzmann machine PBIL	40
hnco::algorithm::fast_efficient_p3	
Algorithms from the FastEfficientP3 library	40
hnco::algorithm::hea	
Herding evolutionary algorithm	41
hnco::exception	
Exceptions	41
hnco::function	
Functions defined on bit vectors	42
hnco::function::controller	
Controllers	44
hnco::function::modifier	
Modifiers	45
hnco::function::real	
Real multivariate functions	45
hnco::neighborhood	
Neighborhoods for local search	46
hnco::random	
Pseudo random numbers	46

2 Namespace Index

Hierarchical Index

2.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

Algorithm
CompleteSearch
Hboa
Ltga
ParameterLessPopulationPyramid
IterativeAlgorithm
BmPbil
FirstAscentHillClimbing
GeneticAlgorithm
Hea< Moment, Herding >
Human
Mimic
MuCommaLambdaEa
MuPlusLambdaEa
OnePlusLambdaCommaLambdaGa189
PvAlgorithm
CompactGa
Mmas
NpsPbil
Pbil
Umda
RandomLocalSearch
RandomSearch
RandomWalk
Restart
SimulatedAnnealing
SteepestAscentHillClimbing
OnePlusOneEa
BitHerding
BitMoment
Crossover
BiasedCrossover
UniformCrossover
Evaluator
Evaluator

4 Hierarchical Index

HncoEvaluator				 		 		 				 	. 115
ProgressTracker::Event			 	 		 	 	 	 				84
Exception			 				85						
Error				 		 		 				 	. 83
LastEvaluation				 		 		 				 	. 129
PointValueException				 		 		 				 	. 227
LocalMaximum			 	 	 	 		 					. 136
MaximumReached			 	 	 	 		 					. 145
TargetReached			 	 	 	 		 					. 281
Function			 				92						
AbstractLabs				 		 		 				 	. 47
Labs													
LabsMeritFactor													
AbstractMaxSat													
MaxNae3Sat													_
MaxNacoodt													
DeceptiveJump													
Decorator													
Controller													
Cache													
CallCounter													
OnBudgetFunction .													
ProgressTracker													
· ·													
StopOnMaximum StopOnTarget													
Modifier													
AdditiveGaussianNoise													
FunctionMapComposition													
Negation													
PriorNoise													
EqualProducts													
Factorization													
FourPeaks													
FunctionPlugin													
Hiff													
Jump													
LeadingOnes													
LinearFunction													
LongPath													
NearestNeighborlsingModel1 .													
NearestNeighborlsingModel2 .													
Needle				 		 		 				 	. 172
NkLandscape				 		 		 				 	. 180
OneMax				 		 		 				 	. 186
Partition				 		 		 				 	. 220
Plateau				 		 		 				 	. 225
Qubo				 		 		 				 	. 244
RealMultivariateFunctionAdapter	٠.			 		 		 				 	. 253
Ridge													
SixPeaks													
SummationCancellation				 		 		 				 	. 279
SinusSummationCancellation	١.		 	 		 		 					. 263
Trap				 		 		 				 	. 289
WalshExpansion				 		 		 				 	. 297
WalshExpansion1													
WalshExpansion2				 		 		 				 	. 302

2.1 Class Hierarchy 5

FunctionFactory	
Implementation	_
Hypercubelterator	
NeighborhoodIterator	
HammingSphereIterator	
SingleBitFlipIterator	
LogContext	137
ProgressTrackerContext	240
Map	142
AffineMap	51
Injection	119
LinearMap	
MapComposition	
Permutation	
Projection	
Translation	
TsAffineMap	
Model	
ModelParameters	
MultiBitFlip	
BernoulliProcess	
HammingBall	
HammingSphere	
SingleBitFlip	
Options	
Population	
TournamentSelection	
Random	
RealMultivariateFunction	
ParsedRealMultivariateFunction	
RealRepresentation	
·	
DyadicRealRepresentation	
SpinHerding	
SpinMoment	
Transvection	
WalshTerm	

6 Hierarchical Index

Class Index

3.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

AbstractLabs
Abstract class for low autocorrelation binary sequences
AbstractMaxSat
Abstract class for MaxSat-like functions
AdditiveGaussianNoise
Additive Gaussian Noise
AffineMap
Affine map
Algorithm
Abstract search algorithm
Bernoulli Process Bernoulli process
BiasedCrossover
Biased crossover
BitHerding
Herding with bit features
BitMoment
Moment for bit features
BmPbil
Boltzmann machine PBIL
Cache
Cache
CallCounter
Call counter
CompactGa
Compact genetic algorithm
CompleteSearch
Complete search
Controller
Function controller
Crossover
Crossover
DeceptiveJump
Deceptive jump
Decorator
Function decorator

8 Class Index

DyadicRe	ealRepresentation	
	,	80
EqualPro		
Error	Equal products	81
LIIOI	Error	83
Progress	Tracker::Event	
	Event	84
Exception		
To the size of	•	85
Factoriza		86
FirstAsce	entHillClimbing	50
		88
FourPeak	KS	
	Four Peaks	90
Function		
Eupotion		92
Function	•	96
Function	MapComposition	50
		97
Function		
	1 5	99
GeneticA		04
Hamming		01
Παιπιπη		03
Hamming		
	Hamming sphere	05
Hamming	SphereIterator	
1.05	Hamming sphere neighborhood iterator	06
Hboa	Hierarchical Bayesian Optimization Algorithm	08
Hea< Mo	oment, Herding >	50
		10
Hiff		
	Hierarchical if and only if	14
HncoEva		
Human	Evaluator for HNCO functions	15
пинан	Human	16
Hypercuk		10
71		17
Impleme		
	Implementation	18
Injection	lui antinu	40
IterativeA	Injection	19
iterativer	Iterative search	20
Iterator		
	Iterator over bit vectors	23
Jump		
م مام د	Jump	25
Labs	Low autocorrelation binary sequences	27
LabsMeri	·	_1
	Low autocorrelation binary sequences merit factor	28

3.1 Class List

LastEvaluation	
	129
LeadingOnes	400
Leading ones	129
	131
LinearMap	
Linear map	134
LocalMaximum	
	136
LogContext Log context	137
LongPath	137
	138
Ltga	
· · · · · · · · · · · · · · · · · · ·	140
Map	
Map	142
	143
MaximumReached	
Maximum reached	145
MaxNae3Sat	
Max not-all-equal 3SAT	146
MaxSat	
MAX-SAT	147
Mimic Mutual information maximizing input clustering	149
Mmas	140
Max-min ant system	152
Model	
Model of a Boltzmann machine	153
ModelParameters Parameters	4 = .
Parameters of a Boltzmann machine	154
Function modifier	157
MuCommaLambdaEa	
(mu, lambda) EA	158
MultiBitFlip	
Multi bit flip	160
MuPlusLambdaEa (mu+lambda) EA	161
NearestNeighborIsingModel1	102
Nearest neighbor Ising model in one dimension	165
NearestNeighborlsingModel2	
Nearest neighbor Ising model in two dimensions	168
Needle	
Needle in a haystack	172
Negation Neg	17/
Neighborhood	17-
Neighborhood	176
NeighborhoodIterator	
Neighborhood iterator	179
NkLandscape	٠ - ١
NK landscape	180
NpsPbil Population-based incremental learning with negative and positive selection	181
r opuration based more mental real tiling with negative and positive selection	102

10 Class Index

OnBudge	etFunction	
	CallCounter with a limited number of evaluations	184
OneMax		
OnoPluel	OneMax	186
	(1+(lambda, lambda)) genetic algorithm	189
OnePlus(191
Options		
Paramete	erLessPopulationPyramid	193
ParsedM	,	216
D 1D		217
ParsedRe	ealMultivariateFunction Parsed real multivariate function	218
Partition		
Pbil	Partition	220
	Population-based incremental learning	222
Permutat		224
Plateau		224
PointValu	Plateau	225
	Point-value exception	227
Populatio		228
PriorNois) O E
Progress		235
	ProgressTracker	237
riogiess		240
Projection		
DuAlgorit	-,	241
PvAlgorit		243
Qubo	Trobability vosior digoritim	- 10
Dandon	Quadratic unconstrained binary optimization	244
Random	Random numbers	246
Randoml	LocalSearch Random local search	247
Random	Search	247
Random\		249
riandonn		250
RealMult	variateFunction	
		252
RealMulti	variateFunctionAdapter Real multivariate function adapter	253
RealRep	resentation	
Destrict	Real representation	254
Restart	Restart	255
Ridge	Ridge	257

3.1 Class List

SimulatedAnnealing
Simulated annealing
SingleBitFlip
One bit neighborhood
SingleBitFlipIterator
Single bit flip neighborhood iterator
SinusSummationCancellation
Summation cancellation with sinus
SixPeaks
Six Peaks
SpinHerding
Herding with spin variables
SpinMoment
Moment for spin variables
SteepestAscentHillClimbing
Steepest ascent hill climbing
StopOnMaximum
Stop on maximum
StopOnTarget
Stop on target
StopWatch
Stop watch
SummationCancellation
Summation cancellation
TargetReached
Target reached
TournamentSelection
Population with tournament selection
Translation
Translation
Transvection
Transvection
Trap
Trap
TsAffineMap
Transvection sequence affine map
Umda
Univariate marginal distribution algorithm
UniformCrossover
Uniform crossover
WalshExpansion
Walsh expansion
WalshExpansion1
Walsh expansion of degree 1
WalshExpansion2
Walsh expansion of degree 2
WalshTerm
Walsh transform term

12 Class Index

File Index

4.1 File List

Here is a list of all documented files with brief descriptions:

app/ffgen-options.cc	??
app/ffgen-options.hh	??
app/ ffgen.cc	??
app/hnco-options.cc	??
app/hnco-options.hh	??
app/hnco.cc	??
app/make-algorithm.cc	??
	??
app/make-function.cc	??
	??
	??
artic at 9 and a second	??
~~pp/ ~pg •	??
	??
	??
	??
	??
	??
	??
	??
·· ·· ·· · · · · · · · · · · · · · · ·	??
	??
	??
	??
	??
	??
	??
The state of the s	??
	??
	??
	??
	??
	??
	??
lib/hnco/algorithms/algorithm.cc	22

14 File Index

lib/hnco/algorithms/algorithm.hh
lib/hnco/algorithms/all.hh
lib/hnco/algorithms/complete-search.cc
lib/hnco/algorithms/complete-search.hh
lib/hnco/algorithms/human.cc
lib/hnco/algorithms/human.hh
lib/hnco/algorithms/iterative-algorithm.cc
lib/hnco/algorithms/iterative-algorithm.hh
lib/hnco/algorithms/log-context.hh
lib/hnco/algorithms/matrix.hh??
lib/hnco/algorithms/mimic.cc
lib/hnco/algorithms/mimic.hh
lib/hnco/algorithms/population.cc
lib/hnco/algorithms/population.hh
lib/hnco/algorithms/random-search.cc
lib/hnco/algorithms/random-search.hh
lib/hnco/algorithms/solution.hh??
lib/hnco/algorithms/bm-pbil/bm-pbil.cc
lib/hnco/algorithms/bm-pbil/bm-pbil.hh
lib/hnco/algorithms/bm-pbil/model.cc
lib/hnco/algorithms/bm-pbil/model.hh??
lib/hnco/algorithms/decorators/all.hh
lib/hnco/algorithms/decorators/restart.cc
lib/hnco/algorithms/decorators/restart.hh??
lib/hnco/algorithms/ea/all.hh
lib/hnco/algorithms/ea/crossover.cc
lib/hnco/algorithms/ea/crossover.hh
lib/hnco/algorithms/ea/genetic-algorithm.cc ??
lib/hnco/algorithms/ea/genetic-algorithm.hh??
lib/hnco/algorithms/ea/ mu-comma-lambda-ea.cc
lib/hnco/algorithms/ea/mu-comma-lambda-ea.hh
lib/hnco/algorithms/ea/ mu-plus-lambda-ea.cc
lib/hnco/algorithms/ea/ mu-plus-lambda-ea.hh
lib/hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.cc
$lib/hnco/algorithms/ea/ \textbf{one-plus-lambda-comma-lambda-ga.hh} \ \dots \ \dots \ \dots \ \ \ref{eq:comma-lambda-ga.hh} \ \dots \ \dots \ \dots \ \ \ref{eq:comma-lambda-ga.hh} \ \dots \ \dots \ \dots \ \ \ref{eq:comma-lambda-ga.hh} \ \dots \ \dots \ \ \ref{eq:comma-lambda-ga.hh}$
lib/hnco/algorithms/ea/one-plus-one-ea.hh
lib/hnco/algorithms/ea/tournament-selection.cc
lib/hnco/algorithms/ea/tournament-selection.hh??
lib/hnco/algorithms/fast-efficient-p3/ all.hh
lib/hnco/algorithms/fast-efficient-p3/ hboa.cc
lib/hnco/algorithms/fast-efficient-p3/ hboa.hh
lib/hnco/algorithms/fast-efficient-p3/hnco-evaluator.hh
lib/hnco/algorithms/fast-efficient-p3/implementation.hh
lib/hnco/algorithms/fast-efficient-p3/ltga.cc
lib/hnco/algorithms/fast-efficient-p3/ltga.hh
lib/hnco/algorithms/fast-efficient-p3/ p3.cc
lib/hnco/algorithms/fast-efficient-p3/ p3.hh
lib/hnco/algorithms/hea/all.hh??
lib/hnco/algorithms/hea/bit-herding.cc
lib/hnco/algorithms/hea/bit-herding.hh
lib/hnco/algorithms/hea/bit-moment.cc??
lib/hnco/algorithms/hea/bit-moment.hh
lib/hnco/algorithms/hea/hea.hh
lib/hnco/algorithms/hea/spin-herding.cc
·
lib/hnco/algorithms/hea/spin-herding.hh??
lib/hnco/algorithms/hea/spin-herding.hh ?? lib/hnco/algorithms/hea/spin-moment.cc ??
lib/hnco/algorithms/hea/spin-herding.hh??

4.1 File List

lib/hnco/algorithms/ls/first-ascent-hill-climbing.cc
lib/hnco/algorithms/ls/first-ascent-hill-climbing.hh
lib/hnco/algorithms/ls/random-local-search.cc
lib/hnco/algorithms/ls/random-local-search.hh
lib/hnco/algorithms/ls/random-walk.cc
lib/hnco/algorithms/ls/random-walk.hh
lib/hnco/algorithms/ls/simulated-annealing.cc
lib/hnco/algorithms/ls/simulated-annealing.hh
lib/hnco/algorithms/ls/steepest-ascent-hill-climbing.cc
lib/hnco/algorithms/ls/steepest-ascent-hill-climbing.hh
lib/hnco/algorithms/pv/all.hh
lib/hnco/algorithms/pv/compact-ga.cc
lib/hnco/algorithms/pv/compact-ga.hh
lib/hnco/algorithms/pv/mmas.cc
lib/hnco/algorithms/pv/mmas.hh
lib/hnco/algorithms/pv/ nps-pbil.cc
lib/hnco/algorithms/pv/ nps-pbil.hh
lib/hnco/algorithms/pv/ pbil.cc
lib/hnco/algorithms/pv/ pbil.hh
lib/hnco/algorithms/pv/probability-vector.cc
lib/hnco/algorithms/pv/probability-vector.hh??
lib/hnco/algorithms/pv/pv-algorithm.cc
lib/hnco/algorithms/pv/pv-algorithm.hh
lib/hnco/algorithms/pv/ umda.cc
lib/hnco/algorithms/pv/ umda.hh
lib/hnco/functions/all.hh??
lib/hnco/functions/cancellation.cc
lib/hnco/functions/cancellation.hh
lib/hnco/functions/decorator.hh
lib/hnco/functions/equal-products.cc
lib/hnco/functions/equal-products.hh
lib/hnco/functions/factorization.cc
lib/hnco/functions/factorization.hh
lib/hnco/functions/four-peaks.cc
lib/hnco/functions/four-peaks.hh
lib/hnco/functions/function.cc
lib/hnco/functions/function.hh
lib/hnco/functions/jump.cc
lib/hnco/functions/jump.hh
lib/hnco/functions/labs.cc
lib/hnco/functions/labs.hh
lib/hnco/functions/linear-function.cc
lib/hnco/functions/linear-function.hh
lib/hnco/functions/long-path.cc
lib/hnco/functions/long-path.hh??
lib/hnco/functions/max-sat.cc
lib/hnco/functions/max-sat.hh
lib/hnco/functions/ nk-landscape.cc
lib/hnco/functions/ nk-landscape.hh
lib/hnco/functions/partition.cc
lib/hnco/functions/partition.hh
lib/hnco/functions/plugin.cc
lib/hnco/functions/ plugin.hh
lib/hnco/functions/qubo.cc
lib/hnco/functions/qubo.hh
lib/hnco/functions/theory.cc
lib/hnco/functions/theory.hh
lib/hnco/functions/trap.cc
•

16 File Index

lib/hnco/functions/trap.hh
lib/hnco/functions/walsh-term.hh
lib/hnco/functions/controllers/all.hh
lib/hnco/functions/controllers/controller.cc
lib/hnco/functions/controllers/controller.hh
lib/hnco/functions/ising/all.hh
lib/hnco/functions/ising/nearest-neighbor-ising-model-1.cc
lib/hnco/functions/ising/nearest-neighbor-ising-model-1.hh
lib/hnco/functions/ising/nearest-neighbor-ising-model-2.cc
lib/hnco/functions/ising/nearest-neighbor-ising-model-2.hh
lib/hnco/functions/modifiers/all.hh
lib/hnco/functions/modifiers/modifier.cc
lib/hnco/functions/modifiers/modifier.hh
lib/hnco/functions/modifiers/parsed-modifier.cc
lib/hnco/functions/modifiers/parsed-modifier.hh
lib/hnco/functions/modifiers/ prior-noise.cc
lib/hnco/functions/modifiers/ prior-noise.hh
lib/hnco/functions/real/all.hh ??
lib/hnco/functions/real/real-multivariate-function-adapter.cc
lib/hnco/functions/real/real-multivariate-function-adapter.hh
lib/hnco/functions/real/real-multivariate-function.cc
lib/hnco/functions/real/real-multivariate-function.hh
lib/hnco/functions/real/real-representation.cc
lib/hnco/functions/real/real-representation.hh
lib/hnco/functions/walsh/ all.hh
lib/hnco/functions/walsh-expansion-1.cc
lib/hnco/functions/walsh-expansion-1.hh
lib/hnco/functions/walsh-expansion-2.cc
lib/hnco/functions/walsh-expansion-2.hh
lib/hnco/functions/walsh-expansion.cc
lib/hnco/functions/walsh-expansion.hh
lib/hnco/neighborhoods/neighborhood-iterator.cc
lib/hnco/neighborhoods/neighborhood-iterator.hh
lib/hnco/neighborhoods/neighborhood.cc
lib/hnco/neighborhoods/neighborhood.hh
tests/test-bm-add-rows.cc
tests/test-bm-identity.cc
tests/test-bm-invert.cc
tests/test-bm-multiply.cc
tests/test-bm-rank.cc
tests/test-bm-row-column-rank.cc
tests/test-bm-solve.cc
tests/test-bm-swap-rows.cc
tests/test-bv-from-stream.cc
tests/test-bv-random.cc
tests/test-bv-to-size-type.cc
tests/test-complete-search-deceptive-jump.cc ??
tests/test-complete-search-factorization.cc ??
tests/test-complete-search-four-peaks.cc ??
tests/test-complete-search-hiff.cc ??
tests/test-complete-search-jump.cc ??
tests/test-complete-search-leading-ones.cc ??
tests/test-complete-search-linear-function.cc ??
tests/test-complete-search-long-path.cc ??
tests/test-complete-search-max-sat.cc ??
tests/test-complete-search-needle.cc ??
tests/test-complete-search-one-max.cc ??
tests/test-complete-search-plateau.cc

4.1 File List

tests/test-complete-search-ridge.cc	??
tests/test-complete-search-six-peaks.cc	??
tests/test-complete-search-trap.cc	??
tests/test-complete-search-walsh-expansion-1.cc	??
tests/test-first-ascent-hill-climbing-local.cc	??
tests/test-first-ascent-hill-climbing.cc	??
tests/test-hamming-sphere-iterator.cc	??
tests/test-hamming-sphere.cc	??
tests/test-hypercube-iterator.cc	??
tests/test-incremental-linear-function-bernoulli-process.cc	??
tests/test-incremental-negation.cc	??
tests/test-incremental-nn-ising-1.cc	??
tests/test-incremental-nn-ising-2.cc	??
tests/test-incremental-one-max-bernoulli-process.cc	??
tests/test-incremental-one-max-hamming-ball.cc	??
tests/test-incremental-one-max-hamming-sphere.cc	??
tests/test-incremental-one-max-single-bit-flip.cc	??
tests/test-incremental-walsh-expansion-1-bernoulli-process.cc	??
tests/test-injection-projection.cc	??
tests/test-one-plus-one-ea-one-max.cc	??
tests/test-sbm-multiply.cc	??
tests/test-serialize-affine-map.cc	??
tests/test-serialize-equal-products.cc	??
tests/test-serialize-linear-function.cc	??
tests/test-serialize-linear-map.cc	??
tests/test-serialize-map-composition.cc	??
tests/test-serialize-max-sat.cc	??
tests/test-serialize-nk-landscape.cc	??
tests/test-serialize-nn-ising-1.cc	??
tests/test-serialize-nn-ising-2.cc	??
tests/test-serialize-partition.cc	??
tests/test-serialize-permutation.cc	??
tests/test-serialize-translation.cc	??
tests/test-serialize-ts-affine-map.cc	??
tests/test-serialize-walsh-expansion-1.cc	??
tests/test-serialize-walsh-expansion-2.cc	??
tests/test-serialize-walsh-expansion.cc	??
tests/test-single-bit-flip-iterator.cc	??
tests/test-steepest-ascent-hill-climbing-local.cc	??
tests/test-steepest-ascent-hill-climbing.cc	??
tests/test-translation.cc	??
tests/test-transvection-is-involution.cc	310
tests/test-ts-multiply.cc	??
• •	310
	311
	312
•	313
·	314
	315
	316
tests/test-walsh-transform.cc	??

18 File Index

Chapter 5

Namespace Documentation

5.1 hnco Namespace Reference

top-level HNCO namespace

Namespaces

· algorithm

Algorithms.

• exception

Exceptions.

function

Functions defined on bit vectors.

· neighborhood

Neighborhoods for local search.

• random

Pseudo random numbers.

Classes

class AffineMap

Affine map.

· class Hypercubelterator

Hypercube iterator.

class Injection

Injection.

· class Iterator

Iterator over bit vectors

class LinearMap

Linear map.

class Map

Мар

• class MapComposition

Map composition.

· class Permutation

Permutation.

· class Projection

Projection.

class StopWatch

Stop watch.

· class Translation

Translation.

struct Transvection

Transvection.

class TsAffineMap

Transvection sequence affine map.

Functions

```
template < class T >
```

T square (T x)

Generic square function.

double logistic (double x)

Logistic function (sigmoid)

• template<typename Iter >

std::string join (Iter begin, Iter end, std::string const &separator)

Convert to string and join elements of a container (from SO)

Types and functions related to bit matrices

```
typedef std::vector< bit_vector_t > bit_matrix_t
```

Bit matrix.

• void bm_display (const bit_matrix_t &M, std::ostream &stream)

Display bit matrix.

bool bm_is_valid (const bit_matrix_t &M)

Check whether a bit matrix is valid.

• int bm_num_rows (const bit_matrix_t &M)

Number of rows.

int bm_num_columns (const bit_matrix_t &M)

Number of columns.

bool bm_is_square (const bit_matrix_t &M)

Check whether the matrix is a square matrix.

bool bm_is_identity (const bit_matrix_t &M)

Check whether the matrix is the identity matrix.

bool bm_is_upper_triangular (const bit_matrix_t &M)

Check whether the matrix is upper triangular.

void bm resize (bit matrix t &M, int num rows, int num columns)

Resize a bit matrix.

void bm_resize (bit_matrix_t &M, int num_rows)

Resize a bit matrix and make it a square matrix.

void bm_clear (bit_matrix_t &M)

Clear bit matrix.

void bm_identity (bit_matrix_t &M)

```
Set the matrix to the identity matrix.

    void bm_identity (bit_matrix_t &M, int n)

      Set the matrix to the identity matrix.

    void bm_random (bit_matrix_t &M)

      Sample a random bit matrix.

    void bm_swap_rows (bit_matrix_t &M, int i, int j)

      Swap two rows.

    void bm_add_rows (bit_matrix_t &M, int i, int j)

      Add two rows.

    void bm_add_columns (bit_matrix_t &M, int src, int dest)

     Add two columns.

    void bm_row_echelon_form (bit_matrix_t &A)

      Compute a row echelon form of a matrix.
int bm_rank (const bit_matrix_t &A)
      Compute the rank of a matrix.

    bool bm_solve (bit_matrix_t &A, bit_vector_t &b)

      Solve a linear system.

    bool bm_solve_upper_triangular (bit_matrix_t &A, bit_vector_t &b)

      Solve a linear system in upper triangular form.

    bool bm_invert (bit_matrix_t &M, bit_matrix_t &N)

      Invert a bit matrix.

    void bm_multiply (const bit_matrix_t &M, const bit_vector_t &x, bit_vector_t &y)

     Multiply a bit matrix and a bit vector.
```

Types and functions related to bit

Transpose.

```
typedef char bit_t

Bit.
bit_t bit_flip (bit_t b)

Flip bit.
bit_t bit_random (double p)

Sample a random bit.
```

Types and functions related to bit vectors

```
typedef std::vector< bit_t > bit_vector_t

Bit vector.
void bv_display (const bit_vector_t &v, std::ostream &stream)

Display bit vector.
bool bv_is_valid (const bit_vector_t &x)

Check whether the bit vector is valid.
bool bv_is_zero (const bit_vector_t &x)

Check whether the bit vector is zero.
int bv_hamming_weight (const bit_vector_t &x)

Hamming weight.
int bv_hamming_weight (const std::vector< bool > &x)

Hamming weight.
```

void bm_transpose (const bit_matrix_t &M, bit_matrix_t &N)

 int bv_hamming_distance (const bit_vector_t &x, const bit_vector_t &y) Hamming distance between two bit vectors. bit_t bv_dot_product (const bit_vector_t &x, const bit_vector_t &y) Dot product. bit_t bv_dot_product (const bit_vector_t &x, const std::vector< bool > &y) Dot product. void bv_clear (bit_vector_t &x) Clear bit vector. void by flip (bit vector t &x, int i) Flip a single bit. void by flip (bit vector t &x, const bit vector t &mask) Flip many bits. void bv_random (bit_vector_t &x) Sample a random bit vector. void bv_random (bit_vector_t &x, int k) Sample a random bit vector with given Hamming weight. void bv_add (const bit_vector_t &src, bit_vector_t &dest) Add two bit vectors. void bv_add (const bit_vector_t &x, const bit_vector_t &y, bit_vector_t &dest) Add two bit vectors. void by to vector bool (const bit vector t &x, std::vector < bool > &y) Convert a bit vector to a bool vector. void by from vector bool (bit vector t &x, const std::vector < bool > &y) Convert a bool vector to a bit vector. std::size_t bv_to_size_type (const bit_vector_t &x) Convert a bit vector to a size t. void bv_from_size_type (bit_vector_t &x, std::size_t index) Convert a size_t to a bit vector. void bv_from_string (bit_vector_t &x, const std::string &str)

Types and functions related to permutations

typedef std::vector< int > permutation t

Read a bit vector from a string.

Read a bit vector from a stream.

Permutation type

bool perm_is_valid (const permutation_t &permutation)

void by from stream (bit vector t &x, std::istream &stream)

Check that a vector represents a permutation.

void perm_identity (permutation_t &s)

Identity permutation.

void perm_random (permutation_t &s)

Sample a random permutation.

Types and functions related to sparse bit matrices

typedef std::vector< sparse_bit_vector_t > sparse_bit_matrix_t

Sparse bit matrix.

void sbm_display (const sparse_bit_matrix_t &sbm, std::ostream &stream)

Display sparse bit matrix.

void bm_to_sbm (const bit_matrix_t &bm, sparse_bit_matrix_t &sbm)

Convert a bit matrix to a sparse bit matrix.

void sbm_multiply (const sparse_bit_matrix_t &M, const bit_vector_t &x, bit_vector_t &y)

Multiply a sparse bit matrix and a bit vector.

Types and functions related to sparse bit vectors

typedef std::vector< int > sparse_bit_vector_t

Sparse bit vector.

void bv_flip (bit_vector_t &x, const sparse_bit_vector_t &sbv)

Flip many bits.

void sbv_display (const sparse_bit_vector_t &v, std::ostream &stream)

Display sparse bit vector.

void bv_to_sbv (const bit_vector_t &bv, sparse_bit_vector_t &sbv)

Convert a bit vector to a sparse bit vector.

Types and functions related to transvections

 $\bullet \ \ type def \ std:: vector < Transvection > transvection_sequence_t$

Transvection sequence.

bool transvections_commute (const Transvection &a, const Transvection &b)

Check whether two transvections commute.

bool transvections are disjoint (const Transvection &a, const Transvection &b)

Check whether two transvections are disjoint.

bool ts_is_valid (const transvection_sequence_t &ts)

Check validity.

• bool ts_is_valid (const transvection_sequence_t &ts, int n)

Check validity.

• void ts_display (const transvection_sequence_t &ts, std::ostream &stream)

Display a transvection sequence.

void ts_random (transvection_sequence_t &ts, int n, int t)

Sample a random transvection sequence.

• void ts_random_commuting (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of commuting transvections.

• void ts_random_unique_source (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of transvections with unique source.

void ts_random_unique_destination (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of transvections with unique destination.

void ts random disjoint (transvection sequence t &ts, int n, int t)

Sample a random sequence of disjoint transvections.

• void ts_random_non_commuting (transvection_sequence_t &ts, int n, int t)

Sample a random sequence of non commuting transvections.

void ts_multiply (const transvection_sequence_t &ts, bit_vector_t &x)

Multiply a vector by a transvection sequence from the left.

void ts_multiply (const transvection_sequence_t &ts, bit_matrix_t &M)

Multiply a matrix by a transvection sequence from the left.

5.1.1 Detailed Description

top-level HNCO namespace

5.1.2 Typedef Documentation

5.1.2.1 bit_t

typedef char bit_t

Bit.

A single bit is represented by a char.

Definition at line 49 of file bit-vector.hh.

5.1.2.2 sparse_bit_matrix_t

```
typedef std::vector<sparse_bit_vector_t> sparse_bit_matrix_t
```

Sparse bit matrix.

A sparse bit matrix is represented as an array of sparse bit vectors. It knows its number of row, not its number of columns.

Definition at line 45 of file sparse-bit-matrix.hh.

5.1.2.3 sparse_bit_vector_t

```
typedef std::vector<int> sparse_bit_vector_t
```

Sparse bit vector.

A sparse bit vector is represented as an array containing the indices of its non-zero components. The indices must be sorted in ascending order.

A sparse bit vector does not know the dimension of the space it belongs to.

Definition at line 47 of file sparse-bit-vector.hh.

5.1.2.4 transvection_sequence_t

```
typedef std::vector<Transvection> transvection_sequence_t
```

Transvection sequence.

The general linear group of a linear space of dimension n over the finite field F_2 is the group of invertible n by n bit matrices.

Any invertible bit matrix can be expressed as a finite product of transvections.

Finite transvection sequences can then represent all invertible bit matrices.

Definition at line 167 of file transvection.hh.

5.1.3 Function Documentation

5.1.3.1 bm_add_columns()

Add two columns.

Column src is added to column dest.

Parameters

М	Bit matrix
src	Source column
dest	Destination column

Warning

M is modified by the function.

Definition at line 150 of file bit-matrix.cc.

5.1.3.2 bm_add_rows()

Add two rows.

Row i is added to row j.

Definition at line 141 of file bit-matrix.cc.

5.1.3.3 bm_identity() [1/2]

```
void bm_identity ( \label{eq:bit_matrix_t & $M$} \ )
```

Set the matrix to the identity matrix.

Precondition

```
bm_is_square(M)
```

Definition at line 56 of file bit-matrix.cc.

5.1.3.4 bm_identity() [2/2]

Set the matrix to the identity matrix.

Parameters

М	Bit matrix
n	Dimension

Definition at line 67 of file bit-matrix.cc.

5.1.3.5 bm_invert()

```
bool bm_invert ( \label{eq:bit_matrix_t & M, bit_matrix_t & N}  bit_matrix_t & N )
```

Invert a bit matrix.

Parameters

М	input matrix
Ν	inverse matrix

Precondition

```
bm_is_square(M)
bm_is_square(N)
```

Returns

true if M is invertible

Warning

M is modified by the function. Provided that M is invertible, after returning from the function, M is the identity matrix and N is the computed inverse matrix.

Definition at line 268 of file bit-matrix.cc.

5.1.3.6 bm_multiply()

Multiply a bit matrix and a bit vector.

The result is y = Mx.

Definition at line 312 of file bit-matrix.cc.

5.1.3.7 bm_rank()

Compute the rank of a matrix.

Precondition

A must be in row echelon form.

Definition at line 196 of file bit-matrix.cc.

5.1.3.8 bm_row_echelon_form()

```
void bm_row_echelon_form (
          bit_matrix_t & A )
```

Compute a row echelon form of a matrix.

Warning

A is modified by the function.

Definition at line 165 of file bit-matrix.cc.

5.1.3.9 bm_solve()

Solve a linear system.

Solve the linear equation Ax = b.

Parameters

Α	Matrix
b	Right hand side

Precondition

```
bm_is_square(A)
bm_num_rows(A) == b.size()
```

Returns

true if the system has a unique solution

Warning

Both A and b are modified by the function. Provided that A is invertible, after returning from the function, A is the identity matrix and b is the unique solution to the linear equation.

Definition at line 214 of file bit-matrix.cc.

5.1.3.10 bm_solve_upper_triangular()

Solve a linear system in upper triangular form.

Solve the linear equation Ax = b.

Parameters

Α	Upper triangular matrix
b	Right hand side

Precondition

```
bm_is_square(A)
bm_num_rows(A) == b.size()
bm_is_upper_triangular(A)
```

Returns

true if the system has a unique solution

Warning

Both A and b are modified by the function. Provided that A is invertible, after returning from the function, A is the identity matrix and b is the unique solution to the linear equation.

Definition at line 247 of file bit-matrix.cc.

5.1.3.11 bv_from_vector_bool()

Convert a bool vector to a bit vector.

Warning

Vectors must be of the same size.

Definition at line 155 of file bit-vector.cc.

5.1.3.12 bv_to_vector_bool()

Convert a bit vector to a bool vector.

Warning

Vectors must be of the same size.

Definition at line 142 of file bit-vector.cc.

5.1.3.13 is_in_range() [1/2]

Check whether an index is in a given range.

Parameters

i	Index
а	Lower bound
b	Upper bound

Returns

```
true if i \ge a and i < b
```

Definition at line 162 of file bit-vector.hh.

5.1.3.14 is_in_range() [2/2]

Check whether an index is in a given range.

The lower bound is implicit and is equal to 0.

Parameters

i	Index
n	Upper bound

Returns

```
true if i \ge 0 and i < n
```

Definition at line 152 of file bit-vector.hh.

5.1.3.15 perm_identity()

Identity permutation.

Warning

This function does not set the size of the permutation.

Definition at line 46 of file permutation.hh.

5.1.3.16 perm_random()

Sample a random permutation.

Warning

This function does not set the size of the permutation.

Definition at line 56 of file permutation.hh.

5.1.3.17 sbm_multiply()

Multiply a sparse bit matrix and a bit vector.

The result is y = Mx.

Definition at line 47 of file sparse-bit-matrix.cc.

5.1.3.18 ts_is_valid() [1/2]

```
bool ts_is_valid ( {\tt const\ transvection\_sequence\_t\ \&\ ts\ )}
```

Check validity.

Parameters

ts Transvection sequence

Definition at line 158 of file transvection.cc.

5.1.3.19 ts_is_valid() [2/2]

```
bool ts_is_valid (  \mbox{const transvection\_sequence\_t \& } ts, \\ \mbox{int } n \mbox{ )}
```

Check validity.

Parameters

ts	Transvection sequence
n	Dimension

Definition at line 164 of file transvection.cc.

5.1.3.20 ts_multiply() [1/2]

```
void ts_multiply ( {\tt const\ transvection\_sequence\_t\ \&\ ts,} {\tt bit\_matrix\_t\ \&\ M\ )}
```

Multiply a matrix by a transvection sequence from the left.

Parameters

ts	Transvection sequence
М	Bit matrix

Precondition

```
ts_is_valid(ts)
ts_is_valid(ts, bm_num_rows(M))
```

Warning

This function modifies the given bit vector.

Definition at line 374 of file transvection.cc.

5.1.3.21 ts_multiply() [2/2]

```
void ts_multiply (  \mbox{const transvection\_sequence\_t \& } ts, \\ \mbox{bit\_vector\_t \& } x \mbox{ )}
```

Multiply a vector by a transvection sequence from the left.

Parameters

	ts	Transvection sequence
ĺ	Х	Bit vector

Precondition

```
ts_is_valid(ts)
ts_is_valid(ts, x.size())
```

Warning

This function modifies the given bit vector.

Definition at line 364 of file transvection.cc.

5.1.3.22 ts_random()

Sample a random transvection sequence.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
t >= 0
```

Definition at line 180 of file transvection.cc.

5.1.3.23 ts_random_commuting()

Sample a random sequence of commuting transvections.

This function ensures that all transvections in the sequence commute.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
```

t >= 0

Warning

```
If t > floor(n / 2) then t is set to floor(n / 2).
```

If t = floor(n / 2) then the space and time complexity of $ts_random_commuting$ is quadratic in the dimension t.

Definition at line 191 of file transvection.cc.

5.1.3.24 ts_random_disjoint()

Sample a random sequence of disjoint transvections.

Two transvections au_{ij} and au_{kl} are said to be disjoint if the pairs {i,j} and {k,l} are disjoint.

If 2t > n then the sequence length is set to the largest t such that 2t <= n.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

n > 1

t >= 0

Definition at line 319 of file transvection.cc.

5.1.3.25 ts_random_non_commuting()

Sample a random sequence of non commuting transvections.

This function ensures that two consecutive transvections do not commute.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

```
n > 1
```

t >= 0

Definition at line 349 of file transvection.cc.

5.1.3.26 ts_random_unique_destination()

Sample a random sequence of transvections with unique destination.

A transvection sequence with unique destination is such that, for each source, there is a unique destination.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

n > 1

t >= 0

Definition at line 286 of file transvection.cc.

5.1.3.27 ts_random_unique_source()

Sample a random sequence of transvections with unique source.

A transvection sequence with unique source is such that, for each destination, there is a unique source.

Parameters

ts	Transvection sequence
n	Dimension
t	Length of the sequence

Precondition

n > 1

t >= 0

Definition at line 253 of file transvection.cc.

5.2 hnco::algorithm Namespace Reference

Algorithms.

Namespaces

• bm_pbil

Boltzmann machine PBIL.

• fast_efficient_p3

Algorithms from the FastEfficientP3 library.

• hea

Herding evolutionary algorithm.

Classes

class Algorithm

Abstract search algorithm.

· class BiasedCrossover

Biased crossover.

class CompactGa

Compact genetic algorithm.

· class CompleteSearch

Complete search.

· class Crossover

Crossover.

class FirstAscentHillClimbing

First ascent hill climbing.

· class GeneticAlgorithm

Genetic algorithm.

class Human

Human.

· class IterativeAlgorithm

Iterative search.

class LogContext

Log context.

· class Mimic

Mutual information maximizing input clustering.

class Mmas

Max-min ant system.

· class MuCommaLambdaEa

(mu, lambda) EA.

· class MuPlusLambdaEa

(mu+lambda) EA.

class NpsPbil

Population-based incremental learning with negative and positive selection.

• class OnePlusLambdaCommaLambdaGa

(1+(lambda, lambda)) genetic algorithm.

• class OnePlusOneEa

(1+1) EA.

class Pbil

Population-based incremental learning.

class Population

Population.

· class ProgressTrackerContext

 $Log\ context\ for\ Progress Tracker.$

class PvAlgorithm

Probability vector algorithm.

• class RandomLocalSearch

Random local search.

• class RandomSearch

Random search.

class RandomWalk

Random walk.

class Restart

Restart.

· class SimulatedAnnealing

Simulated annealing.

class SteepestAscentHillClimbing

Steepest ascent hill climbing.

· class TournamentSelection

Population with tournament selection.

• class Umda

Univariate marginal distribution algorithm.

· class UniformCrossover

Uniform crossover.

Typedefs

```
    typedef std::pair< bit_vector_t, double > point_value_t
    Type to represent point value pairs.
```

Functions

```
    template < class T >
        bool matrix_is_symmetric (const std::vector < std::vector < T > > &A)
            Check for symmetric matrix.
    template < class T >
            bool matrix_is_strictly_lower_triangular (const std::vector < std::vector < T > > &A)
            Check for strictly lower triangular matrix.
    template < class T >
            bool matrix_has_diagonal (const std::vector < std::vector < T > > &A, T x)
            Check for diagonal elements.
    template < class T >
            bool matrix_has_range (const std::vector < std::vector < T > > &A, T inf, T sup)
            Check for element range.
    template < class T >
            bool matrix_has_dominant_diagonal (const std::vector < std::vector < td>> &A)
            Check for element range.
```

Type and functions related to probability vectors

```
    typedef std::vector< double > pv_t

      Probability vector type.

    double pv_entropy (const pv_t &pv)

      Entropy of a probability vector.

    void pv_sample (const pv_t &pv, bit_vector_t &x)

      Sample a bit vector.

    void pv_uniform (pv_t &pv)

      Probability vector of the uniform distribution.

    void pv_init (pv_t &pv)

      Initialize.

    void pv_add (pv_t &pv, const bit_vector_t &x)

      Accumulate a bit vector.

    void pv_add (pv_t &pv, const bit_vector_t &x, double weight)

      Accumulate a bit vector.

    void pv_average (pv_t &pv, int count)

      Average.

    void pv_update (pv_t &pv, double rate, const bit_vector_t &x)

      Update a probability vector toward a bit vector.

    void pv_update (pv_t &pv, double rate, const std::vector< double > &x)
```

Update a probability vector toward a probability vector.

Bound the components of a probability vector.

void pv_update (pv_t &pv, double rate, const std::vector< double > &x, const std::vector< double > &y)

5.2.1 Detailed Description

Algorithms.

5.3 hnco::algorithm::bm_pbil Namespace Reference

Boltzmann machine PBIL.

Classes

· class BmPbil

Boltzmann machine PBIL.

· class Model

Model of a Boltzmann machine.

· class ModelParameters

Parameters of a Boltzmann machine.

5.3.1 Detailed Description

Boltzmann machine PBIL.

5.4 hnco::algorithm::fast_efficient_p3 Namespace Reference

Algorithms from the FastEfficientP3 library.

Classes

• class Hboa

Hierarchical Bayesian Optimization Algorithm.

· class HncoEvaluator

Evaluator for HNCO functions.

• struct Implementation

Implementation.

· class Ltga

Linkage Tree Genetic Algorithm.

• class ParameterLessPopulationPyramid

Parameter-less Population Pyramid.

5.4.1 Detailed Description

Algorithms from the FastEfficientP3 library.

5.5 hnco::algorithm::hea Namespace Reference

Herding evolutionary algorithm.

Classes

· class BitHerding

Herding with bit features.

struct BitMoment

Moment for bit features.

· class Hea

Herding evolutionary algorithm.

class SpinHerding

Herding with spin variables.

struct SpinMoment

Moment for spin variables.

5.5.1 Detailed Description

Herding evolutionary algorithm.

5.6 hnco::exception Namespace Reference

Exceptions.

Classes

· class Error

Error.

class Exception

Basic exception.

class LastEvaluation

Last evaluation.

· class LocalMaximum

Local maximum.

class MaximumReached

Maximum reached.

• class PointValueException

Point-value exception.

class TargetReached

target reached

5.6.1 Detailed Description

Exceptions.

5.7 hnco::function Namespace Reference

Functions defined on bit vectors.

Namespaces

· controller

Controllers.

· modifier

Modifiers.

real

Real multivariate functions.

Classes

· class AbstractLabs

Abstract class for low autocorrelation binary sequences.

· class AbstractMaxSat

Abstract class for MaxSat-like functions.

· class DeceptiveJump

Deceptive jump.

class Decorator

Function decorator.

class EqualProducts

Equal products.

· class Factorization

Factorization.

class FourPeaks

Four Peaks.

class Function

Function.

• class FunctionPlugin

Function plugin.

class Hiff

Hierarchical if and only if.

· class Jump

Jump.

class Labs

Low autocorrelation binary sequences.

· class LabsMeritFactor

Low autocorrelation binary sequences merit factor.

class LeadingOnes

Leading ones.

class LinearFunction

Linear function.

class LongPath

Long path.

class MaxNae3Sat

Max not-all-equal 3SAT.

· class MaxSat

MAX-SAT.

· class NearestNeighborIsingModel1

Nearest neighbor Ising model in one dimension.

• class NearestNeighborIsingModel2

Nearest neighbor Ising model in two dimensions.

· class Needle

Needle in a haystack.

class NkLandscape

NK landscape.

class OneMax

OneMax.

· class Partition

Partition.

class Plateau

Plateau.

· class Qubo

Quadratic unconstrained binary optimization.

· class Ridge

Ridge.

class SinusSummationCancellation

Summation cancellation with sinus.

class SixPeaks

Six Peaks.

• class SummationCancellation

Summation cancellation.

class Trap

Trap.

class WalshExpansion

Walsh expansion.

class WalshExpansion1

Walsh expansion of degree 1.

• class WalshExpansion2

Walsh expansion of degree 2.

struct WalshTerm

Walsh transform term.

Functions

- void compute_walsh_transform (function::Function *function, std::vector< function::WalshTerm > &terms)

 Compute the Walsh transform of the function.
- bool bv_is_locally_maximal (const bit_vector_t &bv, Function &fn, hnco::neighborhood::NeighborhoodIterator &it)

Check whether a bit vector is locally maximal.

bool by is globally maximal (const bit vector t &bv, Function &fn)

Check whether a bit vector is globally maximal.

5.7.1 Detailed Description

Functions defined on bit vectors.

5.7.2 Function Documentation

5.7.2.1 compute_walsh_transform()

Compute the Walsh transform of the function.

Let f be a fitness function defined on the hypercube $\{0,1\}^n$. Then it can be expressed as $\sum_u c_u \chi_u$ where $c_u = \langle f, \chi_u \rangle$, $\langle f, g \rangle = \frac{1}{2^n} \sum_x f(x) g(x)$, $\chi_u(x) = (-1)^{x \cdot u}$, and $x \cdot u = \sum_i x_i u_i$ (mod 2). In the respective sums, we have x and u in the hypercube and i in $\{1, \ldots, n\}$.

We have dropped the normalizing constant 2^n since we are mostly interested in ratios $|c_u/c_{\max}|$, where c_{\max} is the coefficient with the largest amplitude.

Parameters

terms | Vector of non zero terms of the Walsh transform

Warning

The time complexity is exponential in the dimension n. The computation is done with two nested loops over the hypercube. It requires 2^n function evaluations and 2^{2n} dot products and additions.

The size of the Walsh transform is potentially exponential in the dimension n. For example, if n = 10 then the number of terms is at most 1024.

Definition at line 31 of file function.cc.

5.8 hnco::function::controller Namespace Reference

Controllers.

Classes

· class Cache

Cache.

· class CallCounter

Call counter.

· class Controller

Function controller.

· class OnBudgetFunction

CallCounter with a limited number of evaluations.

class ProgressTracker

ProgressTracker.

• class StopOnMaximum

Stop on maximum.

class StopOnTarget

Stop on target.

Functions

std::ostream & operator<< (std::ostream &stream, const ProgressTracker::Event &event)
 Insert formatted output.

5.8.1 Detailed Description

Controllers.

5.9 hnco::function::modifier Namespace Reference

Modifiers.

Classes

· class AdditiveGaussianNoise

Additive Gaussian Noise.

class FunctionMapComposition

Composition of a function and a map.

· class Modifier

Function modifier.

class Negation

Negation.

· class ParsedModifier

Parsed modifier.

• class PriorNoise

Prior noise.

5.9.1 Detailed Description

Modifiers.

5.10 hnco::function::real Namespace Reference

Real multivariate functions.

Classes

• class DyadicRealRepresentation

Dyadic real representation.

• class ParsedRealMultivariateFunction

Parsed real multivariate function.

· class RealMultivariateFunction

Real multivariate function.

· class RealMultivariateFunctionAdapter

Real multivariate function adapter.

• class RealRepresentation

Real representation.

5.10.1 Detailed Description

Real multivariate functions.

5.11 hnco::neighborhood Namespace Reference

Neighborhoods for local search.

Classes

· class BernoulliProcess

Bernoulli process.

class HammingBall

Hamming ball.

· class HammingSphere

Hamming sphere.

· class HammingSphereIterator

Hamming sphere neighborhood iterator.

class MultiBitFlip

Multi bit flip.

· class Neighborhood

Neighborhood.

· class NeighborhoodIterator

Neighborhood iterator.

class SingleBitFlip

One bit neighborhood.

• class SingleBitFlipIterator

Single bit flip neighborhood iterator.

5.11.1 Detailed Description

Neighborhoods for local search.

There are two unrelated kinds of neighborhoods, those for random local search and those for exhaustive local search.

5.12 hnco::random Namespace Reference

Pseudo random numbers.

Classes

struct Random

Random numbers.

5.12.1 Detailed Description

Pseudo random numbers.

Chapter 6

Class Documentation

6.1 AbstractLabs Class Reference

Abstract class for low autocorrelation binary sequences.

#include <hnco/functions/labs.hh>

Inheritance diagram for AbstractLabs:

Public Member Functions

• AbstractLabs (int n)

Constructor.

• int get_bv_size ()

Get bit vector size.

double compute_autocorrelation (const bit_vector_t &)

Compute autocorrelation.

48 Class Documentation

Protected Attributes

std::vector< int > _sequence
 Binary sequence written using 1 and -1.

6.1.1 Detailed Description

Abstract class for low autocorrelation binary sequences.

Definition at line 32 of file labs.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/labs.hh
- lib/hnco/functions/labs.cc

6.2 AbstractMaxSat Class Reference

Abstract class for MaxSat-like functions.

#include <hnco/functions/max-sat.hh>

Inheritance diagram for AbstractMaxSat:

Public Member Functions

AbstractMaxSat ()

Default constructor.

• int get_bv_size ()

Get bit vector size.

void display (std::ostream &stream)

Display the expression.

• virtual void load (std::istream &stream)

Load an instance.

· virtual void save (std::ostream &stream)

Save an instance.

Protected Attributes

- std::vector< std::vector< int > > _expression
 Expression.
- int _num_variables

Number of variables.

6.2.1 Detailed Description

Abstract class for MaxSat-like functions.

Definition at line 35 of file max-sat.hh.

6.2.2 Member Function Documentation

6.2.2.1 load()

Load an instance.

Exceptions

Error

Reimplemented in MaxNae3Sat.

Definition at line 61 of file max-sat.cc.

6.2.3 Member Data Documentation

6.2.3.1 _expression

```
std::vector<std::vector<int> > _expression [protected]
```

Expression.

An expression is represented by a vector of clauses. A clause is represented by a vector of literals. A literal is represented by a non null integer; if the integer is positive then the literal is a variable; if it is negative then it is the logical negation of a variable.

Definition at line 47 of file max-sat.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/max-sat.hh
- lib/hnco/functions/max-sat.cc

50 Class Documentation

6.3 AdditiveGaussianNoise Class Reference

Additive Gaussian Noise.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for AdditiveGaussianNoise:

Public Member Functions

- AdditiveGaussianNoise (Function *function, double stddev)
 Constructor.
- double eval (const bit_vector_t &)

Evaluate a bit vector.

Information about the function

• int get_bv_size ()

Get bit vector size.

Private Attributes

std::normal_distribution < double > _dist
 Normal distribution.

Additional Inherited Members

6.3.1 Detailed Description

Additive Gaussian Noise.

Definition at line 170 of file modifier.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

6.4 AffineMap Class Reference

Affine map.

#include <hnco/map.hh>

Inheritance diagram for AffineMap:

Public Member Functions

• void random (int rows, int cols, bool surjective)

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output)

Мар

• int get_input_size ()

Get input size.

int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

52 Class Documentation

Private Member Functions

```
    template < class Archive > void save (Archive & ar, const unsigned int version) const Save.
    template < class Archive > void load (Archive & ar, const unsigned int version) Load.
```

Private Attributes

```
    bit_matrix_t _bm
        Bit matrix.
    bit_vector_t _bv
        Translation vector
```

Friends

· class boost::serialization::access

6.4.1 Detailed Description

Affine map.

An affine map f from F_2^m to F_2^n is defined by f(x) = Ax + b, where A is an n x m bit matrix and b is an n-dimensional bit vector.

Definition at line 264 of file map.hh.

6.4.2 Member Function Documentation

```
6.4.2.1 is_surjective()
```

```
bool is_surjective ( ) [virtual]

Check for surjective map.

Returns

true if rank(_bm) == bm_num_rows(_bm)

Reimplemented from Map.
```

Definition at line 136 of file map.cc.

6.4.2.2 random()

```
void random (
          int rows,
          int cols,
          bool surjective )
```

Random instance.

Parameters

rows	Number of rows
cols	Number of columns
surjective	Flag to ensure a surjective map

Exceptions

Definition at line 99 of file map.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/map.hh
- lib/hnco/map.cc

6.5 Algorithm Class Reference

Abstract search algorithm.

#include <hnco/algorithms/algorithm.hh>

Inheritance diagram for Algorithm:

54 Class Documentation

Public Member Functions

```
• Algorithm (int n)
```

Constructor.

virtual ∼Algorithm ()

Destructor.

Optimization

· virtual void init ()

Initialization.

• virtual void maximize ()=0

Maximize.

• virtual void finalize ()

Finalize.

Getters

• int get_bv_size ()

Get bit vector size.

• const point_value_t & get_solution ()

Get the solution.

Setters

void set_function (function::Function *function)

Set the function.

void set functions (const std::vector< function::Function * > functions)

Set functions.

void set_stream (std::ostream *stream)

Set the output stream.

• void set_log_context (LogContext *log_context)

Set the log context.

Protected Member Functions

Managing solution

• void random_solution ()

Random solution.

• void set_solution (const bit_vector_t &x, double value)

Set solution.

void set_solution (const bit_vector_t &x)

Set solution.

• void update_solution (const bit_vector_t &x, double value)

Update solution (strict)

void update_solution (const point_value_t &pv)

Update solution (strict)

void update_solution (const bit_vector_t &x)

Update solution (strict).

Protected Attributes

```
• function::Function * _function Function.
```

• std::vector< function::Function * >_functions

Functions.

• point_value_t _solution

Solution.

LogContext * _log_context = nullptr

Log context.

Parameters

• std::ostream * _stream = &std::cout Output stream.

6.5.1 Detailed Description

Abstract search algorithm.

All algorithms maximize some given function, sometimes called a fitness function or an objective function.

Definition at line 41 of file algorithm.hh.

6.5.2 Member Function Documentation

6.5.2.1 finalize()

```
virtual void finalize ( ) [inline], [virtual]
```

Finalize.

Does nothing.

It is usually overridden by algorithms which do not keep _solution up-to-date. In case _function throws a Last Evaluation exception, the algorithm might leave _solution in an undefined state. This can be fixed in this member function.

Reimplemented in OnePlusOneEa, RandomLocalSearch, Hboa, ParameterLessPopulationPyramid, and Ltga.

Definition at line 141 of file algorithm.hh.

6.5.2.2 init()

```
virtual void init ( ) [inline], [virtual]
```

Initialization.

Does nothing.

It is usually overridden by classes derived from IterativeAlgorithm.

Reimplemented in Hea < Moment, Herding >, BmPbil, Mimic, OnePlusLambdaCommaLambdaGa, GeneticAlgorithm, SimulatedAnnealing, MuCommaLambdaEa, MuPlusLambdaEa, OnePlusOneEa, RandomLocalSearch, NpsPbil, RandomWalk, Pbil, Mmas, CompactGa, Umda, Hboa, ParameterLessPopulationPyramid, SteepestAscentHillClimbing, Ltga, Restart, FirstAscentHillClimbing, Human, and RandomSearch.

Definition at line 126 of file algorithm.hh.

6.5.2.3 set_solution()

Set solution.

Warning

Evaluates the function once.

Definition at line 47 of file algorithm.cc.

6.5.2.4 update_solution()

Update solution (strict).

Warning

Evaluates the function once.

Definition at line 71 of file algorithm.cc.

6.5.3 Member Data Documentation

6.5.3.1 _functions

std::vector<function::Function *> _functions [protected]

Functions.

Each thread has its own function.

Definition at line 52 of file algorithm.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/algorithm.hh
- · lib/hnco/algorithms/algorithm.cc

6.6 BernoulliProcess Class Reference

Bernoulli process.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for BernoulliProcess:

Public Member Functions

• BernoulliProcess (int n)

Constructor.

• BernoulliProcess (int n, double p)

Constructor.

void set_probability (double p)

Set probability.

Private Member Functions

```
    void sample_bits ()
        Sample bits.
    void bernoulli_process ()
        Bernoulli process.
```

Private Attributes

```
    std::bernoulli_distribution _bernoulli_dist
        Bernoulli distribution (biased coin)
    std::binomial_distribution
    binomial_distribution.
    bool _reservoir_sampling = false
        Reservoir sampling.
```

Parameters

```
    bool _allow_stay = false
        Allow stay.
    void set_allow_stay (bool x)
        Set the flag _allow_stay.
```

Additional Inherited Members

6.6.1 Detailed Description

Bernoulli process.

Each component of the origin bit vector is flipped with some fixed probability. If no component has been flipped at the end, the process is started all over again. Thus the number of flipped bits follows a pseudo binomial law.

Definition at line 220 of file neighborhood.hh.

6.6.2 Constructor & Destructor Documentation

6.6.2.1 BernoulliProcess() [1/2]

```
BernoulliProcess (
    int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

The Bernoulli probability is set to 1 / n.

Definition at line 255 of file neighborhood.hh.

6.6.2.2 BernoulliProcess() [2/2]

```
BernoulliProcess (  \mbox{int } n, \\ \mbox{double } p \mbox{ ) } \mbox{ [inline]}
```

Constructor.

Parameters

n	Size of bit vectors
р	Bernoulli probability

Definition at line 265 of file neighborhood.hh.

6.6.3 Member Function Documentation

6.6.3.1 set_allow_stay()

```
void set_allow_stay (
          bool x ) [inline]
```

Set the flag _allow_stay.

In case no mutation occurs allow the current bit vector to stay unchanged.

Definition at line 292 of file neighborhood.hh.

6.6.3.2 set_probability()

```
void set_probability ( \label{eq:condition} \mbox{double } p \mbox{ ) } \mbox{ [inline]}
```

Set probability.

Sets _reservoir_sampling to true if E(X) < sqrt(n), where X is a random variable with a binomial distribution B(n, p), that is if np < sqrt(n) or p < 1 / sqrt(n).

Definition at line 276 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

6.7 BiasedCrossover Class Reference

Biased crossover.

#include <hnco/algorithms/ea/crossover.hh>

Inheritance diagram for BiasedCrossover:

Public Member Functions

• BiasedCrossover ()

Constructor.

void breed (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)
 Breed.

 void set_bias (double b) Set bias.

Private Attributes

 std::bernoulli_distribution _bernoulli_dist Bernoulli distribution.

6.7.1 Detailed Description

Biased crossover.

Definition at line 75 of file crossover.hh.

6.7.2 Member Function Documentation

6.7.2.1 breed()

Breed.

Each offspring's bit is copied from second parent with a fixed probability (the crossover bias), from first parent otherwise.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implements Crossover.

Definition at line 45 of file crossover.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/crossover.hh
- lib/hnco/algorithms/ea/crossover.cc

6.8 BitHerding Class Reference

Herding with bit features.

#include <hnco/algorithms/hea/bit-herding.hh>

Public Types

enum { DYNAMICS_MINIMIZE_NORM, DYNAMICS_MAXIMIZE_INNER_PRODUCT }

Public Member Functions

• BitHerding (int n)

Constructor.

• void init ()

Initialization.

void sample (const BitMoment &target, bit_vector_t &x)

Sample a bit vector.

double error (const BitMoment &target)

Compute the error.

Getters

const BitMoment & get_delta ()
 Get delta.

Setters

void set_randomize_bit_order (bool x)

Randomize bit order.

void set_dynamics (int x)

Set the dynamics.

void set_weight (double x)

Set the weight of second order moments.

Protected Member Functions

void compute_delta (const BitMoment &target)

Compute delta.

void sample_minimize_norm (const BitMoment &target, bit_vector_t &x)

Sample a bit vector.

void sample_maximize_inner_product (const BitMoment &target, bit_vector_t &x)

Sample a bit vector.

Protected Attributes

· BitMoment _count

Counter moment.

· BitMoment _delta

Delta moment.

• permutation_t _permutation

Permutation.

• std::uniform_int_distribution< int > _choose_bit

Choose bit.

int _time

Time.

Parameters

• bool randomize bit order = false

Randomize bit order.

• int _dynamics = DYNAMICS_MINIMIZE_NORM

Dynamics.

double _weight = 1

Weight of second order moments.

6.8.1 Detailed Description

Herding with bit features.

Definition at line 38 of file bit-herding.hh.

6.8.2 Member Enumeration Documentation

6.8.2.1 anonymous enum

anonymous enum

Enumerator

DYNAMICS_MINIMIZE_NORM	Dynamics defined as minimization of a norm.	
DYNAMICS_MAXIMIZE_INNER_PRODUCT	Dynamics defined as maximization of an inner product.	
	Generated by	Dovve

Definition at line 83 of file bit-herding.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/hea/bit-herding.hh
- lib/hnco/algorithms/hea/bit-herding.cc

6.9 BitMoment Struct Reference

Moment for bit features.

```
#include <hnco/algorithms/hea/bit-moment.hh>
```

Public Member Functions

• BitMoment (int n)

Constructor.

· void uniform ()

Set the moment to that of the uniform distribution.

· void init ()

Initialize.

void add (const bit_vector_t &x)

Accumulate a bit vector.

· void average (int count)

Compute average.

• void update (const BitMoment &p, double rate)

Update moment.

void bound (double margin)

Bound moment.

· double distance (const BitMoment &p) const

Distance.

• double norm_2 () const

Compute the norm 2.

• double diameter () const

Compute the diameter.

• size_t size () const

Size.

· void display (std::ostream &stream)

Display.

Public Attributes

std::vector< std::vector< double >> _moment

Moment.

• double _weight = 1

Weight of second order moments.

6.9.1 Detailed Description

Moment for bit features.

Definition at line 38 of file bit-moment.hh.

The documentation for this struct was generated from the following files:

- lib/hnco/algorithms/hea/bit-moment.hh
- lib/hnco/algorithms/hea/bit-moment.cc

6.10 BmPbil Class Reference

Boltzmann machine PBIL.

#include <hnco/algorithms/bm-pbil/bm-pbil.hh>

Inheritance diagram for BmPbil:

Public Types

- enum { SAMPLING_ASYNCHRONOUS, SAMPLING_ASYNCHRONOUS_FULL_SCAN, SAMPLING_SYNCHRONOUS }
- enum { RESET_NO_RESET, RESET_ITERATION, RESET_BIT_VECTOR }

Public Member Functions

• BmPbil (int n, int population_size)

Constructor.

• void init ()

Initialization.

Setters for parameters

void set_selection_size (int x)

Set the selection size.

• void set_learning_rate (double x)

Set the learning rate.

void set_num_gs_steps (int x)

Set the number of gibbs sampler steps.

void set_num_gs_cycles (int x)

Set the number of gibbs sampler cycles.

• void set_negative_positive_selection (bool x)

Set negative and positive selection.

void set_sampling (int x)

Set the sampling mode.

• void set_mc_reset_strategy (int x)

Set the MC reset strategy.

Setters for logging

• void set_log_norm_infinite (bool x)

Log infinite norm of the model parameters.

void set_log_norm_l1 (bool x)

Log 1-norm of the model parameters.

Private Member Functions

· void iterate ()

Single iteration.

void set_something_to_log ()

Set flag for something to log.

• void log ()

Log.

void sample (bit_vector_t &x)

Sample a bit vector.

• void sample_asynchronous ()

Asynchronous sampling.

• void sample_asynchronous_full_scan ()

Asynchronous sampling with full scan.

• void sample_synchronous ()

Synchronous sampling.

Private Attributes

• Population _population

Population.

· Model _model

Model.

ModelParameters _parameters_all

Parameters averaged over all individuals.

• ModelParameters_parameters_best

Parameters averaged over selected individuals.

· ModelParameters parameters worst

Parameters averaged over negatively selected individuals.

• std::uniform_int_distribution< int > _choose_bit

Uniform distribution on bit_vector_t components.

permutation_t _permutation

Permutation.

Parameters

• int selection size = 1

Selection size (number of selected individuals in the population)

double <u>learning_rate</u> = 1e-3

Learning rate.

int _num_gs_steps = 100

Number of gibbs sampler steps.

int _num_gs_cycles = 1

Number of gibbs sampler cycles.

bool _negative_positive_selection = false

Negative and positive selection.

int _sampling = SAMPLING_ASYNCHRONOUS

Sampling mode.

• int _mc_reset_strategy = RESET_NO_RESET

MC reset strategy.

Logging

• bool <u>log_norm_infinite</u> = false

Log infinite norm of the model parameters.

bool _log_norm_l1 = false

Log 1-norm of the model parameters.

Additional Inherited Members

6.10.1 Detailed Description

Boltzmann machine PBIL.

The BM model is slightly different from the one given in the reference below. More precisely, 0/1 variables are mapped to -1/+1 variables as in Walsh analysis.

Reference:

Arnaud Berny. 2002. Boltzmann machine for population-based incremental learning. In ECAI 2002. IOS Press, Lyon.

Definition at line 48 of file bm-pbil.hh.

6.10.2 Member Enumeration Documentation

6.10.2.1 anonymous enum

anonymous enum

Enumerator

SAMPLING_ASYNCHRONOUS	Asynchronous sampling.	
	A single component of the internal state is random selected then updated by Gibbs sampling. This step repeated _num_gs_steps times.	-
SAMPLING_ASYNCHRONOUS_FULL_SCAN	Asynchronous sampling with full scan.	
	To sample a new bit vector, a random permutation i and all components of the internal state are updat Gibbs sampling in the order defined by the permuta	ed by
SAMPLING_SYNCHRONOUS	Synchronous sampling.	
	The full internal state is updated in one step from probability vector made of the very marginal probaused in Gibbs sampling.	

Definition at line 53 of file bm-pbil.hh.

6.10.2.2 anonymous enum

anonymous enum

Enumerator

RESET_NO_RESET	No reset.
RESET_ITERATION	Reset MC at the beginning of each iteration.
RESET_BIT_VECTOR	Reset MC before sampling each bit vector.

Definition at line 81 of file bm-pbil.hh.

6.10.3 Member Function Documentation

6.10.3.1 set_selection_size()

```
void set_selection_size (
          int x ) [inline]
```

Set the selection size.

The selection size is the number of selected individuals in the population.

Definition at line 209 of file bm-pbil.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/bm-pbil/bm-pbil.hh
- lib/hnco/algorithms/bm-pbil/bm-pbil.cc

6.11 Cache Class Reference

Cache.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for Cache:

6.11 Cache Class Reference 69

Public Member Functions

Get lookup ratio.

```
    Cache (Function *function)
        Constructor.
    bool provides_incremental_evaluation ()
        Check whether the function provides incremental evaluation.
    double get_lookup_ratio ()
```

Evaluation

double eval (const bit_vector_t &)
 Evaluate a bit vector.

Private Attributes

```
    std::unordered_map< std::vector< bool >, double > _cache
        Cache.
    std::vector< bool > _key
        Key.
    int _num_evaluations
        Evaluation counter.
    int _num_lookups
        Lookup counter.
```

Additional Inherited Members

6.11.1 Detailed Description

Cache.

This is a naive approach, in particular with respect to time complexity. Moreover, there is no control on the size of the database.

There is no default hash function for std::vector<char> hence the need to first copy a bit_vector_t into a std ::vector
bool>, for which such a function exists, before inserting it or checking its existence in the map.

Definition at line 363 of file controller.hh.

6.11.2 Constructor & Destructor Documentation

6.11.2.1 Cache()

```
Cache (
    Function * function ) [inline]
```

Constructor.

Parameters

Definition at line 382 of file controller.hh.

6.11.3 Member Function Documentation

6.11.3.1 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented from Controller.

Definition at line 391 of file controller.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

6.12 CallCounter Class Reference

Call counter.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for CallCounter:

Public Member Functions

• CallCounter (Function *function)

Constructor.

• int get_num_calls ()

Get the number of calls.

Evaluation

• double eval (const bit_vector_t &)

Evaluate a bit vector.

double incremental_eval (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped
 — bits)

Incremental evaluation.

void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Protected Attributes

• int _num_calls

Number of calls.

6.12.1 Detailed Description

Call counter.

Definition at line 174 of file controller.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

6.13 CompactGa Class Reference

Compact genetic algorithm.

#include <hnco/algorithms/pv/compact-ga.hh>

Inheritance diagram for CompactGa:

Public Member Functions

• CompactGa (int n)

Constructor.

• void init ()

Initialization.

Setters

• void set_learning_rate (double x) Set the learning rate.

Protected Member Functions

• void iterate ()

Single iteration.

Protected Attributes

std::vector < bit_vector_t > _candidates
 Candidates.

Parameters

• double _learning_rate = 1e-3 Learning rate.

6.13.1 Detailed Description

Compact genetic algorithm.

Reference:

Georges R. Harik, Fernando G. Lobo, and David E. Goldberg. 1999. The Compact Genetic Algorithm. IEEE Trans. on Evolutionary Computation 3, 4 (November 1999), 287–297.

Definition at line 43 of file compact-ga.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/compact-ga.hh
- lib/hnco/algorithms/pv/compact-ga.cc

6.14 CompleteSearch Class Reference

Complete search.

#include <hnco/algorithms/complete-search.hh>

Inheritance diagram for CompleteSearch:

Public Member Functions

• CompleteSearch (int n)

Constructor.

• void maximize ()

Maximize.

Additional Inherited Members

6.14.1 Detailed Description

Complete search.

Definition at line 34 of file complete-search.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/complete-search.hh
- lib/hnco/algorithms/complete-search.cc

6.15 Controller Class Reference

Function controller.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for Controller:

Public Member Functions

• Controller (Function *function)

Constructor.

Information about the function

```
int get_bv_size ()
```

Get bit vector size.

• double get_maximum ()

Get the global maximum.

• bool has_known_maximum ()

Check for a known maximum.

• bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Evaluation

double safe_eval (const bit_vector_t &x)
 Safely evaluate a bit vector.

Additional Inherited Members

6.15.1 Detailed Description

Function controller.

Definition at line 40 of file controller.hh.

6.15.2 Member Function Documentation

6.15.2.1 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true if the decorated function does

Reimplemented from Function.

Reimplemented in Cache.

Definition at line 65 of file controller.hh.

The documentation for this class was generated from the following file:

lib/hnco/functions/controllers/controller.hh

6.16 Crossover Class Reference

Crossover.

#include <hnco/algorithms/ea/crossover.hh>

Inheritance diagram for Crossover:

Public Member Functions

- virtual \sim Crossover ()
 - Destructor.
- virtual void breed (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)=0
 Breed.

6.16.1 Detailed Description

Crossover.

Definition at line 35 of file crossover.hh.

6.16.2 Member Function Documentation

6.16.2.1 breed()

Breed.

The offspring is the crossover of two parents.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implemented in BiasedCrossover, and UniformCrossover.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/ea/crossover.hh

6.17 DeceptiveJump Class Reference

Deceptive jump.

#include <hnco/functions/jump.hh>

Inheritance diagram for DeceptiveJump:

Public Member Functions

• DeceptiveJump (int bv_size, int gap)

Constructor.

• int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

6.17.1 Detailed Description

Deceptive jump.

This is a jump function with a deceptive gap as defined in "Analyzing evolutionary algorithms" by Thomas Jansen, where it is called Jump_k. Algorithms in the neighborhood of the maximizer (which is the all one bit vector) are taken away from it.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 85 of file jump.hh.

6.17.2 Member Function Documentation

6.17.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

```
_bv_size + _gap
```

Reimplemented from Function.

Definition at line 111 of file jump.hh.

6.17.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 107 of file jump.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/jump.hh
- lib/hnco/functions/jump.cc

6.18 Decorator Class Reference

Function decorator.

#include <hnco/functions/decorator.hh>

Inheritance diagram for Decorator:

Public Member Functions

Decorator (Function *function)

Constructor.

Display

void display (std::ostream &stream)

Display.

void describe (const bit_vector_t &x, std::ostream &stream)

Describe a bit vector.

Protected Attributes

• Function * _function

Decorated function.

6.18.1 Detailed Description

Function decorator.

Definition at line 33 of file decorator.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/decorator.hh

6.19 DyadicRealRepresentation Class Reference

Dyadic real representation.

#include <hnco/functions/real/real-representation.hh>

Inheritance diagram for DyadicRealRepresentation:

Public Member Functions

- DyadicRealRepresentation (double lower_bound, double upper_bound, int num_bits)
 Constructor.
- int size ()

Size of the representation.

• double convert (hnco::bit_vector_t::const_iterator first, hnco::bit_vector_t::const_iterator last)

Convert a bit vector range into a double.

Private Member Functions

double affine_transformation (double x)
 Affine transformation.

Private Attributes

- std::vector< double > _lengths
 Lengths of dyadic intervals.
- double _lower_bound

Lower bound of the search interval.

• double _length

Length of the search interval.

6.19.1 Detailed Description

Dyadic real representation.

Definition at line 52 of file real-representation.hh.

6.19.2 Constructor & Destructor Documentation

6.19.2.1 DyadicRealRepresentation()

Constructor.

Parameters

lower_bound	Lower bound of the search interval
upper_bound	Upper bound of the search interval
num_bits	Number of bits per real

Definition at line 31 of file real-representation.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/real/real-representation.hh
- · lib/hnco/functions/real/real-representation.cc

6.20 EqualProducts Class Reference

Equal products.

```
#include <hnco/functions/equal-products.hh>
```

Inheritance diagram for EqualProducts:

Public Member Functions

```
• EqualProducts ()
```

Constructor.

• int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

Instance generators

```
    template < class Generator >
        void generate (int n, Generator generator)
        Instance generator.
```

void random (int n)

Random instance.

Private Member Functions

template < class Archive >
 void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector< double > _numbers
 Numbers.

Friends

· class boost::serialization::access

6.20.1 Detailed Description

Equal products.

Partition a finite set of positive numbers into two subsets such that the product of numbers in the first subset is the closest to the product of numbers in the second subset. This is equivalent to the partition problem applied to the logarithms of the given numbers.

The function computes the negation of the distance between the product of numbers corresponding to ones in the bit vector and the product of those corresponding to zeros. The negation is a consequence of the fact that algorithms in HNCO maximize rather than minimize a function.

Reference:

S. Baluja and S. Davies. 1997. Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space. Technical Report CMU- CS-97-107. Carnegie-Mellon University.

Definition at line 61 of file equal-products.hh.

6.21 Error Class Reference 83

6.20.2 Member Function Documentation

6.20.2.1 generate()

```
void generate (  \mbox{int } n, \\ \mbox{Generator } generator \mbox{)} \mbox{ [inline]}
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Number generator

Definition at line 94 of file equal-products.hh.

6.20.2.2 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the uniform distribution on [0,1).

Parameters

```
n Size of bit vector
```

Definition at line 109 of file equal-products.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/equal-products.hh
- lib/hnco/functions/equal-products.cc

6.21 Error Class Reference

Error.

#include <hnco/exception.hh>

Inheritance diagram for Error:

Public Member Functions

• Error ()

Constructor.

Error (const std::string &s)

Constructor.

virtual ~Error ()

Destructor.

• virtual const char * what () const

Get message.

Protected Attributes

• std::string _what Message.

6.21.1 Detailed Description

Error.

Definition at line 84 of file exception.hh.

The documentation for this class was generated from the following file:

· lib/hnco/exception.hh

6.22 ProgressTracker::Event Struct Reference

Event.

#include <hnco/functions/controllers/controller.hh>

Public Attributes

• int num_evaluations

Number of evaluations.

· double value

Value.

6.22.1 Detailed Description

Event.

Definition at line 223 of file controller.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/functions/controllers/controller.hh

6.23 Exception Class Reference

Basic exception.

#include <hnco/exception.hh>

Inheritance diagram for Exception:

6.23.1 Detailed Description

Basic exception.

Definition at line 36 of file exception.hh.

The documentation for this class was generated from the following file:

lib/hnco/exception.hh

6.24 Factorization Class Reference

Factorization.

#include <hnco/functions/factorization.hh>

Inheritance diagram for Factorization:

Public Member Functions

• Factorization ()

Constructor.

Factorization (const std::string number)

Constructor.

• \sim Factorization ()

Destructor.

• void load (std::istream &stream)

Load an instance.

• int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

· void display (std::ostream &stream)

Display

void describe (const bit_vector_t &x, std::ostream &stream)

Describe a bit vector.

Private Member Functions

• void init ()

Init GMP data structures.

• void clear ()

Clear GMP data structures.

void set_number (const std::string number)

Set number.

void convert (const bit_vector_t &x)

Convert a bit vector into two numbers.

Private Attributes

```
    mpz_t _number
```

Number to factorize.

mpz_t _first_factor

First factor.

• mpz_t _second_factor

Second factor.

mpz_t _product

Product.

• std::string _first_factor_string

First factor in binary form.

std::string _second_factor_string

Secon factor in binary form.

• size_t _number_size

Number size in bits.

size_t _first_factor_size

First factor size in bits.

• size_t _second_factor_size

Second factor size in bits.

• int _bv_size

Bit vector size.

6.24.1 Detailed Description

Factorization.

Reference:

Torbjörn Granlund and the GMP development team. 2012. GNU MP: The GNU Multiple Precision Arithmetic Library (5.0.5 ed.).

```
http://gmplib.org/.
```

Definition at line 28 of file factorization.hh.

6.24.2 Constructor & Destructor Documentation

6.24.2.1 Factorization()

Constructor.

Parameters

number Number to factorize written in decimal form	n
--	---

Definition at line 82 of file factorization.hh.

6.24.3 Member Function Documentation

6.24.3.1 load()

Load an instance.

Warning

The file is a text file which contains exactly one natural number written in base 10 without any space.

Exceptions

Error

Definition at line 37 of file factorization.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/factorization.hh
- lib/hnco/functions/factorization.cc

6.25 FirstAscentHillClimbing Class Reference

First ascent hill climbing.

#include <hnco/algorithms/ls/first-ascent-hill-climbing.hh>

Inheritance diagram for FirstAscentHillClimbing:

Public Member Functions

- FirstAscentHillClimbing (int n, neighborhood::NeighborhoodIterator *neighborhood)
 - Constructor.
- void init ()

Initialization.

- void init (const bit_vector_t &x)
 - Explicit initialization.
- void init (const bit_vector_t &x, double value)

Explicit initialization.

Protected Member Functions

• void iterate ()

Single iteration.

Protected Attributes

 neighborhood::NeighborhoodIterator * _neighborhood Neighborhood.

6.25.1 Detailed Description

First ascent hill climbing.

Definition at line 35 of file first-ascent-hill-climbing.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ls/first-ascent-hill-climbing.hh
- lib/hnco/algorithms/ls/first-ascent-hill-climbing.cc

6.26 FourPeaks Class Reference

Four Peaks.

#include <hnco/functions/four-peaks.hh>

Inheritance diagram for FourPeaks:

Public Member Functions

• FourPeaks (int bv_size, int threshold)

Constructor.

• int get_bv_size ()

Get bit vector size.

• double eval (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

· int _threshold

Threshold.

• int _maximum

Maximum.

6.26.1 Detailed Description

Four Peaks.

It is defined by

```
f(x) = \max\{head(x, 1) + tail(x, 0)\} + R(x)
```

where:

- head(x, 1) is the length of the longest prefix of x made of ones;
- tail(x, 0) is the length of the longest suffix of x made of zeros;
- R(x) is the reward;
- R(x) = n if (head(x, 1) > t and tail(x, 0) > t);
- R(x) = 0 otherwise;
- the threshold t is a parameter of the function.

This function has four maxima, of which exactly two are global ones.

For example, if n = 6 and t = 1:

- f(111111) = 6 (local maximum)
- f(1111110) = 5
- f(111100) = 10 (global maximum)

Reference:

S. Baluja and R. Caruana. 1995. Removing the genetics from the standard genetic algorithm. In Proceedings of the 12th Annual Conference on Machine Learning. 38–46.

Definition at line 60 of file four-peaks.hh.

6.26.2 Member Function Documentation

6.26.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

```
2 * _bv_size - _threshold - 1
```

Reimplemented from Function.

Definition at line 91 of file four-peaks.hh.

6.26.2.2	has	known	maximum	()

bool has_known_maximum () [inline], [virtual]

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 87 of file four-peaks.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/four-peaks.hh
- lib/hnco/functions/four-peaks.cc

6.27 Function Class Reference

Function.

#include <hnco/functions/function.hh>

Inheritance diagram for Function:

Public Member Functions

• virtual ~Function ()

Destructor.

Information about the function

• virtual int get_bv_size ()=0

Get bit vector size.

• virtual double get_maximum ()

Get the global maximum.

virtual bool has_known_maximum ()

Check for a known maximum.

virtual bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Evaluation

• virtual double eval (const bit_vector_t &)=0

Evaluate a bit vector.

virtual double incremental_eval (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped_bits)

Incremental evaluation.

virtual double safe_eval (const bit_vector_t &x)

Safely evaluate a bit vector.

virtual void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Display

virtual void display (std::ostream &stream)

Display

virtual void describe (const bit_vector_t &x, std::ostream &stream)

Describe a bit vector.

6.27.1 Detailed Description

Function.

Definition at line 43 of file function.hh.

6.27.2 Member Function Documentation

6.27.2.1 get_maximum()

```
virtual double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Exceptions

Error

Reimplemented in Plateau, Ridge, Hiff, SixPeaks, Needle, FunctionMapComposition, WalshExpansion1, LeadingOnes, LinearFunction, DeceptiveJump, LongPath, FourPeaks, SummationCancellation, Trap, PriorNoise, Jump, OneMax, and Controller.

Definition at line 59 of file function.hh.

6.27.2.2 incremental eval()

Incremental evaluation.

Exceptions

Error

Reimplemented in OnBudgetFunction, ProgressTracker, CallCounter, StopOnTarget, StopOnMaximum, Negation, NearestNeighborIsingModel2, NearestNeighborIsingModel1, WalshExpansion1, LinearFunction, and OneMax.

Definition at line 85 of file function.hh.

6.27.2.3 provides_incremental_evaluation()

```
virtual bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented in Cache, NearestNeighborlsingModel2, NearestNeighborlsingModel1, WalshExpansion1, LinearFunction, Negation, PriorNoise, OneMax, and Controller.

Definition at line 69 of file function.hh.

6.27.2.4 safe_eval()

Safely evaluate a bit vector.

Must be thread-safe, that is must avoid throwing exceptions and updating global states (e.g. maximum) in function decorators.

Reimplemented in Controller.

Definition at line 95 of file function.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/function.hh

6.28 FunctionFactory Class Reference

Function factory.

#include </home/arnaud/projets/hnco/src/hnco/app/make-function.hh>

Public Member Functions

hnco::function::Function * make_function (Options & options)

Make a function.

hnco::function::Function * make_function_controller (hnco::function::Function *function, const Options &options)

Make a function controller.

hnco::Map * get map ()

Get map.

hnco::function::controller::Cache * get_cache ()

Get cache.

hnco::function::controller::ProgressTracker * get_tracker ()

Get tracker.

Private Member Functions

• hnco::function::Function * make_function_modifier (hnco::function::Function *function, Options &options)

Make a function modifier.

Private Attributes

• hnco::Map * _map = 0

Мар

• hnco::function::controller::Cache * _cache = 0

Cache

hnco::function::controller::ProgressTracker * _tracker = 0

Tracker.

6.28.1 Detailed Description

Function factory.

Definition at line 30 of file make-function.hh.

The documentation for this class was generated from the following files:

- · app/make-function.hh
- · app/make-function.cc

6.29 FunctionMapComposition Class Reference

Composition of a function and a map.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for FunctionMapComposition:

Public Member Functions

- FunctionMapComposition (Function *function, Map *map)
 - Constructor.
- double eval (const bit_vector_t &)

Evaluate a bit vector.

Information about the function

- int get_bv_size ()
 - Get bit vector size.
- double get_maximum ()
 - Get the global maximum.
- bool has_known_maximum ()

Check for a known maximum.

Display

void describe (const bit_vector_t &x, std::ostream &stream)
 Describe a bit vector.

Private Attributes

```
Map * _map

Map.
bit_vector_t _bv

Image of bit vectors under the map.
```

Additional Inherited Members

6.29.1 Detailed Description

Composition of a function and a map.

Definition at line 100 of file modifier.hh.

6.29.2 Constructor & Destructor Documentation

6.29.2.1 FunctionMapComposition()

```
\label{eq:functionMapComposition} Function * function, \\ & \quad \text{Map * map }) \quad [inline]
```

Constructor.

Precondition

```
map->get_output_size() == function->get_bv_size()
```

Exceptions

Error

Definition at line 115 of file modifier.hh.

6.29.3 Member Function Documentation

6.29.3.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Exceptions

Error

Reimplemented from Function.

Definition at line 135 of file modifier.hh.

6.29.3.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true if the function has a known maximum and the map is bijective.

Reimplemented from Function.

Definition at line 145 of file modifier.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

6.30 FunctionPlugin Class Reference

Function plugin.

#include <hnco/functions/plugin.hh>

Inheritance diagram for FunctionPlugin:

Public Member Functions

• FunctionPlugin (int bv_size, std::string path, std::string name)

Constructor.

• ∼FunctionPlugin ()

Destructor.

• int get_bv_size ()

Get bit vector size.

• double eval (const bit_vector_t &)

Evaluate a bit vector.

Private Types

typedef double(* extern_function_t) (const bit_t *, size_t)
 Type of an extern function.

Private Attributes

• int _bv_size

Bit vector size.

void * _handle

Handle returned by dlopen.

• extern_function_t _extern_function

Extern function.

6.30.1 Detailed Description

Function plugin.

Definition at line 34 of file plugin.hh.

6.30.2 Constructor & Destructor Documentation

6.30.2.1 FunctionPlugin()

Constructor.

Parameters

bv_size	Size of bit vectors
path	Path to a shared library
name	Name of a function of the shared library

Definition at line 33 of file plugin.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/plugin.hh
- lib/hnco/functions/plugin.cc

6.31 Genetic Algorithm Class Reference

Genetic algorithm.

#include <hnco/algorithms/ea/genetic-algorithm.hh>

Inheritance diagram for GeneticAlgorithm:

Public Member Functions

• GeneticAlgorithm (int n, int mu)

Constructor.

· void init ()

Initialization.

Setters

• void set_mutation_probability (double x)

Set the mutation probability.

• void set_crossover_probability (double x)

Set the crossover probability.

void set_tournament_size (int x)

Set the tournament size.

void set_allow_stay (bool x)

Set the flag _allow_stay.

Private Member Functions

• void iterate ()
Single iteration.

Private Attributes

• TournamentSelection _parents

Parents.

• TournamentSelection _offsprings

Offsprings.

neighborhood::BernoulliProcess _mutation

Mutation operator.

· std::bernoulli distribution do crossover

Do crossover.

• UniformCrossover _crossover

Uniform crossover.

Parameters

```
· double mutation probability
```

Mutation probability.

• double _crossover_probability = 0.5

Crossover probability.

• int _tournament_size = 10

Tournament size.

• bool _allow_stay = false

Allow stay.

Additional Inherited Members

6.31.1 Detailed Description

Genetic algorithm.

- · Tournament selection for reproduction
- · Uniform crossover
- Mutation
- (mu, mu) selection (offspring population replaces parent population)

Reference:

J. H. Holland. 1975. Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor. Definition at line 51 of file genetic-algorithm.hh.

6.31.2 Constructor & Destructor Documentation

6.31.2.1 GeneticAlgorithm()

Constructor.

Parameters

n	Size of bit vectors
mu	Population size

Definition at line 97 of file genetic-algorithm.hh.

6.31.3 Member Function Documentation

6.31.3.1 set_allow_stay()

```
void set_allow_stay ( bool \ x \ ) \quad [inline]
```

Set the flag _allow_stay.

In case no mutation occurs allow the current bit vector to stay unchanged.

Definition at line 125 of file genetic-algorithm.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ea/genetic-algorithm.hh
- lib/hnco/algorithms/ea/genetic-algorithm.cc

6.32 HammingBall Class Reference

Hamming ball.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for HammingBall:

Public Member Functions

HammingBall (int n, int r)
 Constructor.

Private Member Functions

void sample_bits ()
Sample bits.

Private Attributes

std::uniform_int_distribution < int > _choose_k
 Choose the distance to the center.

Additional Inherited Members

6.32.1 Detailed Description

Hamming ball.

Choose k uniformly on [1..r], where r is the radius of the ball, choose k bits uniformly among n and flip them.

Definition at line 304 of file neighborhood.hh.

6.32.2 Constructor & Destructor Documentation

6.32.2.1 HammingBall()

```
HammingBall (  \qquad \qquad \text{int } n, \\ \qquad \qquad \text{int } r \text{ ) } \quad [\text{inline}]
```

Constructor.

Parameters

n	Size of bit vectors
r	Radius of the ball

Definition at line 320 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

6.33 HammingSphere Class Reference

Hamming sphere.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for HammingSphere:

Public Member Functions

- HammingSphere (int n, int r)
 - Constructor.
- void set_radius (int r)

Set radius.

Private Member Functions

void sample_bits ()
 Sample bits.

Private Attributes

• int _radius

Radius of the sphere.

Additional Inherited Members

6.33.1 Detailed Description

Hamming sphere.

Uniformly choose r bits among n and flip them, where r is the radius of the sphere.

Definition at line 337 of file neighborhood.hh.

6.33.2 Constructor & Destructor Documentation

6.33.2.1 HammingSphere()

```
\label{eq:hammingSphere} \begin{array}{ccc} \text{ int } n, \\ & \text{ int } r \text{ ) } & \text{ [inline]} \end{array}
```

Constructor.

Parameters

n	Size of bit vectors
r	Radius of the sphere

Definition at line 353 of file neighborhood.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

6.34 HammingSpherelterator Class Reference

Hamming sphere neighborhood iterator.

#include <hnco/neighborhoods/neighborhood-iterator.hh>

Inheritance diagram for HammingSphereIterator:

Public Member Functions

HammingSphereIterator (int n, int r)

Constructor.

· bool has_next ()

Has next bit vector.

const bit_vector_t & next ()

Next bit vector.

Private Attributes

bit_vector_t _mask

Mutation mask.

· int radius

Radius of the ball.

· int _index

Index of the next bit to shift to the right.

· int weight

Partial Hamming weight.

Additional Inherited Members

6.34.1 Detailed Description

Hamming sphere neighborhood iterator.

This iterator enumerates mutation masks with hamming weight equal to the given radius. Suppose that _mask has a first (from left to right) sequence of ones of length _weight and ending at _index:

Then the next mask is obtained by moving to the left the first _weight - 1 ones and moving to the right the last one.

Definition at line 91 of file neighborhood-iterator.hh.

6.34.2 Constructor & Destructor Documentation

6.34.2.1 HammingSphereIterator()

```
\label{eq:hammingSphereIterator} \begin{array}{ccc} \text{HammingSphereIterator (} \\ & \text{int } n, \\ & \text{int } r \text{ )} & \text{[inline]} \end{array}
```

Constructor.

Parameters

n	Size of bit vectors
r	Radius of Hamming Ball

Definition at line 113 of file neighborhood-iterator.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

6.35 Hboa Class Reference

Hierarchical Bayesian Optimization Algorithm.

```
#include <hnco/algorithms/fast-efficient-p3/hboa.hh>
```

Inheritance diagram for Hboa:

6.35 Hboa Class Reference 109

Public Member Functions

• Hboa (int n)

Constructor.

· void init ()

Initialization.

• void maximize ()

Maximize.

· void finalize ()

Finalize.

• void set_population_size (int n)

Set population size.

Private Attributes

• std::unique_ptr< Implementation > _pimpl

Pointer to implementation.

• int _population_size = 10

Population size.

Additional Inherited Members

6.35.1 Detailed Description

Hierarchical Bayesian Optimization Algorithm.

Implementation of the Hierarchical Bayesian Optimization Algorithm and helper classes based on the publication: Pelikan, M. and Goldberg, D. (2006). Hierarchical bayesian optimization algorithm. In Scalable Optimization via Probabilistic Modeling, volume 33 of Studies in Computational Intelligence, pages 63–90. Springer Berlin Heidelberg.

Author: Brian W. Goldman

Integrated into HNCO by Arnaud Berny

Definition at line 48 of file hboa.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/fast-efficient-p3/hboa.hh
- lib/hnco/algorithms/fast-efficient-p3/hboa.cc

6.36 Hea < Moment, Herding > Class Template Reference

Herding evolutionary algorithm.

#include <hnco/algorithms/hea/hea.hh>

Inheritance diagram for Hea< Moment, Herding >:

Public Types

enum {
 LOG_ERROR, LOG_DTU, LOG_DELTA, LOG_SELECTION,
 LOG_MOMENT_MATRIX, LAST_LOG }

typedef std::bitset < LAST_LOG > log_flags_t

Type for log flags.

Public Member Functions

• Hea (int n, int population_size)

Constructor.

• void init ()

Initialization.

Setters

void set_herding (Herding *x)

Set the herding algorithm.

void set_margin (double x)

Set the moment margin.

void set_selection_size (int x)

Set the selection size.

void set_reset_period (int x)

Set the reset period.

void set_learning_rate (double x)

Set the learning rate.

void set_bound_moment (bool x)

Set the bound moment after update.

void set_weight (double weight)

Set weight.

void set_log_flags (const log_flags_t &lf)

Set log flags.

Private Member Functions

• void iterate ()

Single iteration.

• void log ()

Log.

Private Attributes

Moment _target

Moment.

• Moment _selection

Moment of selected individuals.

Moment _uniform

Uniform moment.

• algorithm::Population _population

Population.

· Herding * _herding

Herding.

Logging

• double _error_cache

Error cache.

· double dtu cache

Distance to uniform cache.

• double _delta_cache

Delta cache.

• double _selection_cache

Selection distance cache.

• log_flags_t _log_flags

Log flags.

Parameters

• double _margin

Moment margin.

• int _selection_size = 1

Selection size.

• int _reset_period = 0

Reset period.

• double _learning_rate = 1e-4

Learning rate.

• bool _bound_moment = false

Bound moment after update.

Additional Inherited Members

6.36.1 Detailed Description

 $\label{lem:class} \begin{tabular}{ll} template < class Moment, class Herding > \\ class hnco::algorithm::hea::Hea < Moment, Herding > \\ \end{tabular}$

Herding evolutionary algorithm.

Reference:

Arnaud Berny. 2015. Herding Evolutionary Algorithm. In Proceedings of the Companion Publication of the 2015 Annual Conference on Genetic and Evolutionary Computation (GECCO Companion '15). ACM, New York, NY, USA, 1355–1356.

Definition at line 50 of file hea.hh.

6.36.2 Member Enumeration Documentation

6.36.2.1 anonymous enum

anonymous enum

Enumerator

LOG_ERROR	Log error.
LOG_DTU	Log distance to uniform.
LOG_DELTA	Log delta (moment increment)
LOG_SELECTION	Log the distance between the target and the selection moment.
LOG_MOMENT_MATRIX	Log the moment matrix.

Definition at line 55 of file hea.hh.

6.36.3 Constructor & Destructor Documentation

6.36.3.1 Hea()

```
Hea (
            int n,
            int population_size ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
population_size	Population size

_margin is initialized to 1 / n.

Definition at line 214 of file hea.hh.

6.36.4 Member Function Documentation

6.36.4.1 set_reset_period()

```
void set_reset_period (
          int x ) [inline]
```

Set the reset period.

Parameters

 $x \le 0$ means no reset.

Definition at line 258 of file hea.hh.

6.36.4.2 set selection size()

```
void set_selection_size (
          int x ) [inline]
```

Set the selection size.

The selection size is the number of selected individuals in the population.

Definition at line 250 of file hea.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/hea/hea.hh

6.37 Hiff Class Reference

Hierarchical if and only if.

#include <hnco/functions/theory.hh>

Inheritance diagram for Hiff:

Public Member Functions

• Hiff (int bv_size)

Constructor.

• int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

bool has_known_maximum ()

Check for a known maximum.

double get_maximum ()

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

int _depth

Tree depth.

6.37.1 Detailed Description

Hierarchical if and only if.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 170 of file theory.hh.

6.37.2 Member Function Documentation

6.37.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

```
(i + 1) * 2^i where 2^i = bv_size
```

Reimplemented from Function.

Definition at line 196 of file theory.hh.

6.37.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 192 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/theory.hh
- lib/hnco/functions/theory.cc

6.38 HncoEvaluator Class Reference

Evaluator for HNCO functions.

#include <hnco/algorithms/fast-efficient-p3/hnco-evaluator.hh>
Inheritance diagram for HncoEvaluator:

Public Member Functions

• HncoEvaluator (hnco::function::Function *function)

Constructor.

float evaluate (const std::vector< bool > &x)

Evaluate a bit vector.

Private Attributes

• hnco::function::Function * _function HNCO function.

hnco::bit_vector_t _bv

Argument of HNCO function.

6.38.1 Detailed Description

Evaluator for HNCO functions.

Definition at line 36 of file hnco-evaluator.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/fast-efficient-p3/hnco-evaluator.hh

6.39 Human Class Reference

Human.

#include <hnco/algorithms/human.hh>

Inheritance diagram for Human:

Public Member Functions

• Human (int n)

Constructor.

· void init ()

Initialization.

Protected Member Functions

• void iterate ()

Single iteration.

Private Member Functions

void parse_bit_vector ()
 Parse bit vector.

Private Attributes

bit_vector_t _candidate
 Candidate.

Additional Inherited Members

6.39.1 Detailed Description

Human.

Definition at line 31 of file human.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/human.hh
- lib/hnco/algorithms/human.cc

6.40 Hypercubelterator Class Reference

Hypercube iterator.

#include <hnco/iterator.hh>

Inheritance diagram for Hypercubelterator:

Public Member Functions

Hypercubelterator (int n)

Constructor.

· bool has next ()

Has next bit vector.

const bit_vector_t & next ()

Next bit vector.

Additional Inherited Members

6.40.1 Detailed Description

Hypercube iterator.

Implemented as a simple binary adder.

Definition at line 69 of file iterator.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/iterator.hh
- · lib/hnco/iterator.cc

6.41 Implementation Struct Reference

Implementation.

```
#include <hnco/algorithms/fast-efficient-p3/implementation.hh>
```

Public Attributes

• Configuration configuration

Configuration.

• std::shared_ptr< HncoEvaluator > evaluator

Evaluator.

 $\bullet \quad \mathsf{std} :: \mathsf{shared_ptr} < \mathsf{Middle_Layer} > \mathsf{middle_layer} \\$

Middle layer.

6.41.1 Detailed Description

Implementation.

Definition at line 37 of file implementation.hh.

The documentation for this struct was generated from the following file:

· lib/hnco/algorithms/fast-efficient-p3/implementation.hh

6.42 Injection Class Reference

Injection.

#include <hnco/map.hh>

Inheritance diagram for Injection:

Public Member Functions

Injection (const std::vector< int > &bit_positions, int output_size)

Constructor.

void map (const bit_vector_t &input, bit_vector_t &output)

Мар

int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

Private Attributes

• std::vector< int > _bit_positions

Bit positions.

· int _output_size

Output size.

6.42.1 Detailed Description

Injection.

An injection copies the bits of input x to given positions of output y.

Let
$$I = \{i_1, i_2, \dots, i_m\}$$
 be a subset of $\{1, 2, \dots, n\}$.

An injection f from F_2^m to F_2^n , where $n \ge m$, is defined by f(x) = y, where, for all $j \in \{1, 2, \dots, m\}$, $y_{i_j} = x_j$.

If f is a projection and g is an injection with the same bit positions then their composition $f \circ g$ is the identity.

Definition at line 403 of file map.hh.

6.42.2 Constructor & Destructor Documentation

6.42.2.1 Injection()

Constructor.

The input size of the map is given by the size of bit_positions.

Parameters

bit_positions	Bit positions in the output to where input bits are copied
output_size	Output size

Precondition

```
output_size >= bit_positions.size()
```

Definition at line 144 of file map.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/map.hh
- · lib/hnco/map.cc

6.43 IterativeAlgorithm Class Reference

Iterative search.

#include <hnco/algorithms/iterative-algorithm.hh>

Inheritance diagram for IterativeAlgorithm:

Public Member Functions

• IterativeAlgorithm (int n)

Constructor.

Optimization

• void maximize ()

Maximize.

Setters

void set_num_iterations (int x)
 Set the number of iterations.

Protected Member Functions

```
    virtual void iterate ()=0
        Single iteration.
    virtual void log ()
        Log.
```

Protected Attributes

```
    int _iteration
        Current iteration.
    bool _something_to_log
        Something to log.
```

Parameters

```
• int _num_iterations = 0 
Number of iterations.
```

6.43.1 Detailed Description

Iterative search.

Definition at line 32 of file iterative-algorithm.hh.

6.43.2 Constructor & Destructor Documentation

6.43.2.1 IterativeAlgorithm()

```
IterativeAlgorithm (
                int n ) [inline]
Constructor.
Parameters
```

```
n Size of bit vectors
```

Definition at line 62 of file iterative-algorithm.hh.

6.43.3 Member Function Documentation

6.43.3.1 maximize()

```
void maximize ( ) [virtual]
```

Maximize.

Inside the loop:

- call iterate()
- call log()

Warning

If an exception such as LocalMaximum is thrown by iterate(), log() will not be called. However, hnco reports the maximum at the end of the search.

Implements Algorithm.

Definition at line 28 of file iterative-algorithm.cc.

6.43.3.2 set_num_iterations()

Set the number of iterations.

Parameters

x Number of iterations

 $x \le 0$ means indefinite

Definition at line 92 of file iterative-algorithm.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/iterative-algorithm.hh
- · lib/hnco/algorithms/iterative-algorithm.cc

6.44 Iterator Class Reference

Iterator over bit vectors

```
#include <hnco/iterator.hh>
```

Inheritance diagram for Iterator:

Public Member Functions

• Iterator (int n)

Constructor.

virtual ∼lterator ()

Destructor.

· virtual void init ()

Initialization.

• virtual bool has_next ()=0

Has next bit vector.

• virtual const bit_vector_t & next ()=0

Next bit vector.

Protected Attributes

bit_vector_t _current

Current bit vector.

• bool <u>_initial_state</u> = true

Flag for initial state.

6.44.1 Detailed Description

Iterator over bit vectors

Definition at line 34 of file iterator.hh.

The documentation for this class was generated from the following file:

· lib/hnco/iterator.hh

6.45 Jump Class Reference

Jump.

#include <hnco/functions/jump.hh>

Inheritance diagram for Jump:

Public Member Functions

- Jump (int bv_size, int gap)
 - Constructor.
- int get_bv_size ()
 - Get bit vector size.
- double eval (const bit_vector_t &)
 - Evaluate a bit vector.
- bool has_known_maximum ()
 - Check for a known maximum.
- double get_maximum ()
 - Get the global maximum.

Private Attributes

- int _bv_size
 - Bit vector size.
- int _gap
 - Gap.

6.45.1 Detailed Description

Jump.

Reference:

H. Mühlenbein and T. Mahnig. 2001. Evolutionary Algorithms: From Recombination to Search Distributions. In Theoretical Aspects of Evolutionary Computing, Leila Kallel, Bart Naudts, and Alex Rogers (Eds.). Springer Berlin Heidelberg, 135–174.

Definition at line 41 of file jump.hh.

6.45.2 Member Function Documentation

6.45.2.1 get_maximum() double get_maximum () [inline], [virtual] Get the global maximum. Returns _bv_size Reimplemented from Function. Definition at line 67 of file jump.hh. 6.45.2.2 has_known_maximum() bool has_known_maximum () [inline], [virtual] Check for a known maximum. Returns true Reimplemented from Function.

· lib/hnco/functions/jump.hh

The documentation for this class was generated from the following files:

Definition at line 63 of file jump.hh.

· lib/hnco/functions/jump.cc

6.46 Labs Class Reference 127

6.46 Labs Class Reference

Low autocorrelation binary sequences.

#include <hnco/functions/labs.hh>

Inheritance diagram for Labs:

Public Member Functions

• Labs (int n)

Constructor.

double eval (const bit_vector_t &)

Evaluate a bit vector.

Additional Inherited Members

6.46.1 Detailed Description

Low autocorrelation binary sequences.

Reference:

S Mertens. 1996. Exhaustive search for low-autocorrelation binary sequences. Journal of Physics A: Mathematical and General 29, 18 (1996), L473.

http://stacks.iop.org/0305-4470/29/i=18/a=005

Definition at line 65 of file labs.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/labs.hh
- lib/hnco/functions/labs.cc

6.47 LabsMeritFactor Class Reference

Low autocorrelation binary sequences merit factor.

#include <hnco/functions/labs.hh>

Inheritance diagram for LabsMeritFactor:

Public Member Functions

- LabsMeritFactor (int n)
 - Constructor.
- double eval (const bit_vector_t &)

Evaluate a bit vector.

Additional Inherited Members

6.47.1 Detailed Description

Low autocorrelation binary sequences merit factor.

Reference:

S Mertens. 1996. Exhaustive search for low-autocorrelation binary sequences. Journal of Physics A: Mathematical and General 29, 18 (1996), L473.

http://stacks.iop.org/0305-4470/29/i=18/a=005

Definition at line 90 of file labs.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/labs.hh
- lib/hnco/functions/labs.cc

6.48 LastEvaluation Class Reference

Last evaluation.

#include <hnco/exception.hh>

Inheritance diagram for LastEvaluation:

6.48.1 Detailed Description

Last evaluation.

Definition at line 80 of file exception.hh.

The documentation for this class was generated from the following file:

• lib/hnco/exception.hh

6.49 LeadingOnes Class Reference

Leading ones.

#include <hnco/functions/theory.hh>

Inheritance diagram for LeadingOnes:

Public Member Functions

```
    LeadingOnes (int bv_size)
```

Constructor.

• int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum ()

Check for a known maximum.

double get_maximum ()

Get the global maximum.

Private Attributes

· int _bv_size

Bit vector size.

6.49.1 Detailed Description

Leading ones.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 98 of file theory.hh.

6.49.2 Member Function Documentation

6.49.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 122 of file theory.hh.

6.49.2.2 has_known_maximum()

bool has_known_maximum () [inline], [virtual]

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 118 of file theory.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/theory.hh
- lib/hnco/functions/theory.cc

6.50 LinearFunction Class Reference

Linear function.

#include <hnco/functions/linear-function.hh>

Inheritance diagram for LinearFunction:

Public Member Functions

LinearFunction ()

Constructor.

Instance generators

template < class Generator >
 void generate (int n, Generator generator)
 Instance generator.

• void random (int n)

Random instance.

Evaluation

double eval (const bit_vector_t &)

Evaluate a bit vector.

double incremental_eval (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped_bits)
 Incremental evaluation.

Information about the function

• int get_bv_size ()

Get bit vector size.

double get_maximum ()

Get the global maximum.

bool has_known_maximum ()

Check for a known maximum.

• bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Private Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector< double > _weights
 Weights.

Friends

· class boost::serialization::access

6.50.1 Detailed Description

Linear function.

Definition at line 40 of file linear-function.hh.

6.50.2 Member Function Documentation

6.50.2.1 generate()

Instance generator.

Parameters

n	Size of bit vectors
generator	Weight generator

Definition at line 72 of file linear-function.hh.

6.50.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 119 of file linear-function.hh.

6.50.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 124 of file linear-function.hh.

6.50.2.4 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

n Size of bit vectors

Definition at line 86 of file linear-function.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/linear-function.hh
- · lib/hnco/functions/linear-function.cc

6.51 LinearMap Class Reference

Linear map.

#include <hnco/map.hh>

Inheritance diagram for LinearMap:

Public Member Functions

• void random (int rows, int cols, bool surjective)

Random instance.

• void map (const bit_vector_t &input, bit_vector_t &output)

Мар

• int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

Private Member Functions

```
    template < class Archive > void save (Archive & ar, const unsigned int version) const Save.
    template < class Archive > void load (Archive & ar, const unsigned int version)
    Load.
```

Private Attributes

bit_matrix_t _bm Bit matrix.

Friends

· class boost::serialization::access

6.51.1 Detailed Description

Linear map.

A linear map f from ${\cal F}_2^m$ to ${\cal F}_2^n$ is defined by f(x)=Ax, where A is an n x m bit matrix.

Definition at line 200 of file map.hh.

6.51.2 Member Function Documentation

6.51.2.1 is_surjective()

```
bool is_surjective ( ) [virtual]
Check for surjective map.

Returns
    true if rank(_bm) == bm_num_rows(_bm)
```

Reimplemented from Map.

Definition at line 90 of file map.cc.

6.51.2.2 random()

```
void random (
          int rows,
          int cols,
          bool surjective )
```

Random instance.

Parameters

rows	Number of rows
cols	Number of columns
surjective	Flag to ensure a surjective map

Exceptions

Definition at line 61 of file map.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/map.hh
- lib/hnco/map.cc

6.52 LocalMaximum Class Reference

Local maximum.

#include <hnco/exception.hh>

Inheritance diagram for LocalMaximum:

Public Member Functions

LocalMaximum (const algorithm::point_value_t &pv)

 Const.

Additional Inherited Members

6.52.1 Detailed Description

Local maximum.

Definition at line 71 of file exception.hh.

The documentation for this class was generated from the following file:

· lib/hnco/exception.hh

6.53 LogContext Class Reference

Log context.

#include <hnco/algorithms/log-context.hh>

Inheritance diagram for LogContext:

Public Member Functions

virtual std::string get_context ()=0
 Get context.

6.53.1 Detailed Description

Log context.

A log context gives an algorithm more information about what is going on during optimization than what can be gained through its function. In particular, its function may not be a function controller. Information is provided through a log context in the form of a string.

Definition at line 39 of file log-context.hh.

The documentation for this class was generated from the following file:

lib/hnco/algorithms/log-context.hh

6.54 LongPath Class Reference

Long path.

#include <hnco/functions/long-path.hh>

Inheritance diagram for LongPath:

Public Member Functions

- LongPath (int bv_size, int prefix_length)
 - Constructor.
- double eval (const bit_vector_t &)

Evaluate a bit vector.

Information about the function

- int get_bv_size ()
 - Get bit vector size.
- bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

- int _bv_size
 - Bit vector size.
- · int _prefix_length

Prefix length.

6.54.1 Detailed Description

Long path.

Long paths have been introduced by Jeffrey Horn, David E. Goldberg, and Kalyanmoy Deb. Here we mostly follow the definition given by Thomas Jansen (see references below).

As an example, here is the 2-long path of dimension 4:

- 0000
- 0001
- 0011
- 0111
- 1111
- 1101
- 1100

The fitness is increasing along the path. The fitness on the complementary of the path is defined as a linear function pointing to the beginning of the path.

To help with the detection of maximum, we have dropped the constant n^2 whose sole purpose was to make the function non negative.

References:

Jeffrey Horn, David E. Goldberg, and Kalyanmoy Deb, "Long Path Problems", PPSN III, 1994.

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 62 of file long-path.hh.

6.54.2 Member Function Documentation

6.54.2.1 get_maximum()

```
double get_maximum ( ) [virtual]
```

Get the global maximum.

Let n be the bit vector size and k the prefix length which must divide n. Then the maximum is $k2^{n/k} - k + 1$.

Exceptions

Error

Reimplemented from Function.

Definition at line 62 of file long-path.cc.

6.54.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [virtual]
```

Check for a known maximum.

Let n be the bit vector size and k the prefix length which must divide n.

We have to check that the maximum can be represented exactly as a double, that is, it must be lower or equal to 2^{53} . We are a little bit more conservative with the following test.

If $\log_2(k) + n/k \le 53$ then returns true else returns false.

Reimplemented from Function.

Definition at line 52 of file long-path.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/long-path.hh
- · lib/hnco/functions/long-path.cc

6.55 Ltga Class Reference

Linkage Tree Genetic Algorithm.

```
#include <hnco/algorithms/fast-efficient-p3/ltga.hh>
```

Inheritance diagram for Ltga:

Public Member Functions

• Ltga (int n)

Constructor.

• void init ()

Initialization.

• void maximize ()

Maximize.

· void finalize ()

Finalize.

void set_population_size (int n)

Set population size.

Private Attributes

• std::unique_ptr< Implementation > _pimpl

Pointer to implementation.

• int _population_size = 10

Population size.

Additional Inherited Members

6.55.1 Detailed Description

Linkage Tree Genetic Algorithm.

Implementation of the Linkage Tree Genetic Algorithm Designed to match the variant in the paper: "Hierarchical problem solving with the linkage tree genetic algorithm" by D. Thierens and P. A. N. Bosman

Author: Brian W. Goldman

Integrated into HNCO by Arnaud Berny

Definition at line 46 of file Itga.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/fast-efficient-p3/ltga.hh
- lib/hnco/algorithms/fast-efficient-p3/ltga.cc

6.56 Map Class Reference

Мар

#include <hnco/map.hh>

Inheritance diagram for Map:

Public Member Functions

virtual ∼Map ()

Destructor.

virtual void map (const bit_vector_t &input, bit_vector_t &output)=0
 Map

• virtual int get_input_size ()=0

Get input size.

• virtual int get_output_size ()=0

Get output size.

• virtual bool is_surjective ()

Check for surjective map.

• virtual void display (std::ostream &stream)

Display.

6.56.1 Detailed Description

Мар

Definition at line 40 of file map.hh.

6.56.2 Member Function Documentation

6.56.2.1 is_surjective()

```
virtual bool is_surjective ( ) [inline], [virtual]
```

Check for surjective map.

Returns

false

Reimplemented in TsAffineMap, Projection, Injection, MapComposition, AffineMap, LinearMap, Permutation, and Translation.

Definition at line 60 of file map.hh.

The documentation for this class was generated from the following file:

· lib/hnco/map.hh

6.57 MapComposition Class Reference

Map composition.

#include <hnco/map.hh>

Inheritance diagram for MapComposition:

Public Member Functions

```
• MapComposition ()
```

Default constructor.

MapComposition (Map *outer, Map *inner)

Constructor.

void map (const bit_vector_t &input, bit_vector_t &output)

Мар

• int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

Private Attributes

```
Map * _outer
```

Outer map.

• Map * _inner

Inner map.

bit_vector_t _bv

Temporary bit vector.

6.57.1 Detailed Description

Map composition.

The resulting composition f is defined for all bit vector x by f(x) = outer(inner(x)).

Definition at line 334 of file map.hh.

6.57.2 Constructor & Destructor Documentation

6.57.2.1 MapComposition()

Constructor.

Parameters

outer	outer map
inner	inner map

Precondition

```
outer->get_input_size() == inner->get_output_size()
```

Definition at line 358 of file map.hh.

6.57.3 Member Function Documentation

6.57.3.1 is_surjective()

```
bool is_surjective ( ) [inline], [virtual]
```

Check for surjective map.

Returns

true if both maps are surjective

Reimplemented from Map.

Definition at line 382 of file map.hh.

The documentation for this class was generated from the following file:

· lib/hnco/map.hh

6.58 MaximumReached Class Reference

Maximum reached.

```
#include <hnco/exception.hh>
```

Inheritance diagram for MaximumReached:

Public Member Functions

MaximumReached (const algorithm::point_value_t &pv)
 Constructor.

Additional Inherited Members

6.58.1 Detailed Description

Maximum reached.

Definition at line 53 of file exception.hh.

The documentation for this class was generated from the following file:

· lib/hnco/exception.hh

6.59 MaxNae3Sat Class Reference

Max not-all-equal 3SAT.

#include <hnco/functions/max-sat.hh>

Inheritance diagram for MaxNae3Sat:

Public Member Functions

MaxNae3Sat ()

Default constructor.

void load (std::istream &stream)

Load an instance.

double eval (const bit_vector_t &)

Evaluate a bit vector.

6.60 MaxSat Class Reference 147

Additional Inherited Members

6.59.1 Detailed Description

Max not-all-equal 3SAT.

Reference:

Christos M. Papadimitriou. 1994. Computational complexity. Addison-Wesley, Reading, Massachusetts.

Definition at line 125 of file max-sat.hh.

6.59.2 Member Function Documentation

6.59.2.1 load()

Load an instance.

Exceptions

Error

Reimplemented from AbstractMaxSat.

Definition at line 282 of file max-sat.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/max-sat.hh
- lib/hnco/functions/max-sat.cc

6.60 MaxSat Class Reference

MAX-SAT.

#include <hnco/functions/max-sat.hh>

Inheritance diagram for MaxSat:

Public Member Functions

· MaxSat ()

Default constructor.

• void random (int n, int k, int c)

Random instance.

• void random (const bit_vector_t &solution, int k, int c)

Random instance with satisfiable expression.

double eval (const bit_vector_t &)

Evaluate a bit vector.

Additional Inherited Members

6.60.1 Detailed Description

MAX-SAT.

Reference:

Christos M. Papadimitriou. 1994. Computational complexity. Addison-Wesley, Reading, Massachusetts.

Definition at line 81 of file max-sat.hh.

6.60.2 Member Function Documentation

6.61 Mimic Class Reference 149

6.60.2.1 random() [1/2]

Random instance with satisfiable expression.

Warning

Since the expression is satisfiable, the maximum of the function is equal to the number of clauses in the expression. However, this information is lost in the save and load cycle as the archive format only manages the expression itself.

Parameters

solution	Solution
k	Number of literals per clause
С	Number of clauses

Definition at line 218 of file max-sat.cc.

6.60.2.2 random() [2/2]

```
\begin{array}{c} \text{void random (} \\ & \text{int } n, \\ & \text{int } k, \\ & \text{int } c \text{ )} \end{array}
```

Random instance.

Parameters

n	Size of bit vectors
k	Number of literals per clause
С	Number of clauses

Definition at line 190 of file max-sat.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/max-sat.hh
- lib/hnco/functions/max-sat.cc

6.61 Mimic Class Reference

Mutual information maximizing input clustering.

#include <hnco/algorithms/mimic.hh>

Inheritance diagram for Mimic:

Public Member Functions

- Mimic (int n, int population_size)
 - Constructor.
- void init ()

Initialization.

Setters

void set_selection_size (int x)
 Set the selection size.

Protected Member Functions

• void iterate ()

Single iteration.

void sample (bit_vector_t &bv)

Sample a bit vector.

void compute_conditional_entropy (int index)

Compute conditional entropy.

void update_model ()

Update model.

6.61 Mimic Class Reference 151

Protected Attributes

• Population _population

Population.

· permutation_t _permutation

Permutation.

std::array< pv_t, 2 > _parameters

Model parameters.

pv_t _mean

Mean of selected bit vectors.

std::vector< double > _entropies

Conditional entropies.

std::array< std::array< int, 2 >, 2 > _table

Contingency table.

• double _lower_bound

Lower bound of probability.

double _upper_bound

Upper bound of probability.

Parameters

• int _selection_size Selection size.

6.61.1 Detailed Description

Mutual information maximizing input clustering.

This implementation differs from the algorithm described in the reference below in that it constrains all probabilities (marginal and conditional) to stay away from the values 0 and 1 by a fixed margin equal to 1 / n, as usually done in algorithms such as Pbil or Umda.

Reference:

Jeremy S. De Bonet and Charles L. Isbell and Jr. and Paul Viola, MIMIC: Finding Optima by Estimating Probability Densities, in Advances in Neural Information Processing Systems, 1996, MIT Press.

Definition at line 52 of file mimic.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/mimic.hh
- · lib/hnco/algorithms/mimic.cc

6.62 Mmas Class Reference

Max-min ant system.

#include <hnco/algorithms/pv/mmas.hh>

Inheritance diagram for Mmas:

Public Member Functions

- Mmas (int n)
 - Constructor.
- void init ()

Initialization.

Setters

- void set_compare (std::function< bool(double, double)> x)
 Set the binary operator for comparing evaluations.
- void set_learning_rate (double x) Set the learning rate.

Protected Member Functions

• void iterate ()

Single iteration.

6.63 Model Class Reference 153

Protected Attributes

· bit vector t x

Candidate solution.

Parameters

```
    std::function < bool(double, double) > _compare = std::greater_equal < double > ()
    Binary operator for comparing evaluations.
```

• double <u>learning_rate</u> = 1e-3 *Learning rate*.

6.62.1 Detailed Description

Max-min ant system.

Reference:

Thomas Stützle and Holger H. Hoos. 2000. MAX–MIN Ant System. Future Generation Computer Systems 16, 8 (2000), 889–914.

Definition at line 42 of file mmas.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/mmas.hh
- · lib/hnco/algorithms/pv/mmas.cc

6.63 Model Class Reference

Model of a Boltzmann machine.

#include <hnco/algorithms/bm-pbil/model.hh>

Public Member Functions

```
• Model (int n)
```

Constructor.

· void init ()

Initialize.

void reset_mc ()

Reset Markov chain.

· void gibbs sampler (int i)

A Gibbs sampler cycle.

void gibbs_sampler_synchronous ()

A synchronous Gibbs sampler.

· const bit_vector_t & get_state ()

Get the state of the Gibbs sampler.

void update (const ModelParameters &p, const ModelParameters &q, double rate)

Update parameters in the direction of p and away from q.

• double norm_infinite ()

Infinite norm of the parameters.

• double norm_l1 ()

I1 norm of the parameters

Private Attributes

• ModelParameters _model_parameters

Model parameters.

bit_vector_t _state

State of the Gibbs sampler.

pv_t _pv

Probability vector for synchronous Gibbs sampling.

6.63.1 Detailed Description

Model of a Boltzmann machine.

Definition at line 102 of file model.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/bm-pbil/model.hh
- lib/hnco/algorithms/bm-pbil/model.cc

6.64 ModelParameters Class Reference

Parameters of a Boltzmann machine.

```
#include <hnco/algorithms/bm-pbil/model.hh>
```

Public Member Functions

• ModelParameters (int n)

Constructor.

• void init ()

Initialize.

void add (const bit_vector_t &x)

Add a bit vector.

• void average (int count)

Compute averages.

• void update (const ModelParameters &p, const ModelParameters &q, double rate)

Update parameters in the direction of p and away from q.

• double norm infinite ()

Infinite norm of the parameters.

• double norm_I1 ()

I1 norm of the parameters

Private Attributes

```
    std::vector< std::vector< double >> _weight
```

Weights.

std::vector< double > _bias

Bias.

Friends

· class Model

6.64.1 Detailed Description

Parameters of a Boltzmann machine.

Definition at line 36 of file model.hh.

6.64.2 Member Function Documentation

6.64.2.1 add()

Add a bit vector.

Only the upper triangular part of _weight is updated with the equation:

```
w_{ij} = w_{ij} + (-1)^{x_i + x_j}
```

where i < j.

Definition at line 47 of file model.cc.

6.64.2.2 average()

```
void average (
          int count )
```

Compute averages.

Only the upper triangular part of _weight is averaged.

Definition at line 72 of file model.cc.

6.64.2.3 init()

```
void init ( )
```

Initialize.

All entries of weight are set to 0.

Definition at line 38 of file model.cc.

6.64.2.4 update()

Update parameters in the direction of p and away from q.

First, the upper triangular part of _weight is updated.

Second, _weight is made symmetrical.

Postcondition

_weight is symmetrical.

Definition at line 84 of file model.cc.

6.64.3 Member Data Documentation

6.64.3.1 _weight

```
std::vector<std::vector<double> > _weight [private]
```

Weights.

_weight is a full square matrix of order n, where n is the dimension of the search space.

Definition at line 43 of file model.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/bm-pbil/model.hh
- lib/hnco/algorithms/bm-pbil/model.cc

6.65 Modifier Class Reference

Function modifier.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for Modifier:

Public Member Functions

• Modifier (Function *function)

Constructor.

Additional Inherited Members

6.65.1 Detailed Description

Function modifier.

Definition at line 39 of file modifier.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/modifiers/modifier.hh

6.66 MuCommaLambdaEa Class Reference

(mu, lambda) EA.

#include <hnco/algorithms/ea/mu-comma-lambda-ea.hh>

Inheritance diagram for MuCommaLambdaEa:

Public Member Functions

• MuCommaLambdaEa (int n, int mu, int lambda)

Constructor.

• void init ()

Initialization.

Setters

• void set_mutation_probability (double x)

Set the mutation probability.

void set_allow_stay (bool x)

Set the flag _allow_stay.

Private Member Functions

• void iterate ()

Single iteration.

Private Attributes

Population _parents

Parents.

• Population _offsprings

Offsprings.

• neighborhood::BernoulliProcess _mutation

Mutation operator.

std::uniform_int_distribution < int > _select_parent
 Select parent.

Parameters

• double _mutation_probability

Mutation probability.

 bool <u>allow_stay</u> = false
 Allow stay.

Additional Inherited Members

6.66.1 Detailed Description

(mu, lambda) EA.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 41 of file mu-comma-lambda-ea.hh.

6.66.2 Constructor & Destructor Documentation

6.66.2.1 MuCommaLambdaEa()

```
MuCommaLambdaEa (
    int n,
    int mu,
    int lambda ) [inline]
```

Constructor.

Parameters

n	Size of bit vectors
mu	Parent population size
lambda	Offspring population size

Definition at line 79 of file mu-comma-lambda-ea.hh.

6.66.3 Member Function Documentation

6.66.3.1 set_allow_stay()

```
void set_allow_stay ( bool \ x \ ) \quad [inline]
```

Set the flag _allow_stay.

In case no mutation occurs allow the current bit vector to stay unchanged.

Definition at line 102 of file mu-comma-lambda-ea.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ea/mu-comma-lambda-ea.hh
- lib/hnco/algorithms/ea/mu-comma-lambda-ea.cc

6.67 MultiBitFlip Class Reference

Multi bit flip.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for MultiBitFlip:

Public Member Functions

• MultiBitFlip (int n)

Constructor.

Protected Member Functions

void bernoulli_trials (int k)

Sample a given number of bits using Bernoulli trials.

void reservoir_sampling (int k)

Sample a given number of bits using resevoir sampling.

Additional Inherited Members

6.67.1 Detailed Description

Multi bit flip.

Definition at line 183 of file neighborhood.hh.

6.67.2 Constructor & Destructor Documentation

6.67.2.1 MultiBitFlip()

```
\label{eq:multiBitFlip} \mbox{MultiBitFlip (} & \mbox{int } n \mbox{ ) [inline]}
```

Constructor.

Parameters

```
n Size of bit vectors
```

Definition at line 206 of file neighborhood.hh.

6.67.3 Member Function Documentation

6.67.3.1 bernoulli_trials()

```
void bernoulli_trials ( \quad \text{int } k \text{ ) } \quad [\text{protected}]
```

Sample a given number of bits using Bernoulli trials.

Parameters

k Number of bits to sample

Definition at line 34 of file neighborhood.cc.

6.67.3.2 reservoir_sampling()

Sample a given number of bits using resevoir sampling.

Parameters

k Number of bits to sample

Definition at line 52 of file neighborhood.cc.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood.hh
- lib/hnco/neighborhoods/neighborhood.cc

6.68 MuPlusLambdaEa Class Reference

(mu+lambda) EA.

#include <hnco/algorithms/ea/mu-plus-lambda-ea.hh>

Inheritance diagram for MuPlusLambdaEa:

Public Member Functions

• MuPlusLambdaEa (int n, int mu, int lambda)

Constructor.

· void init ()

Initialization.

Setters

```
• void set_mutation_probability (double x)
```

Set the mutation probability.

void set_allow_stay (bool x)

Set the flag _allow_stay.

Private Member Functions

· void iterate ()

Single iteration.

Private Attributes

• Population _parents

Parents.

• Population _offsprings

Offsprings.

• neighborhood::BernoulliProcess _mutation

Mutation operator.

 $\bullet \quad \mathsf{std} :: \mathsf{uniform_int_distribution} < \mathsf{int} > _\mathsf{select_parent}$

Select parent.

Parameters

· double mutation probability

Mutation probability.

bool <u>_allow_stay</u> = false

Allow stay.

Additional Inherited Members

6.68.1 Detailed Description

(mu+lambda) EA.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 40 of file mu-plus-lambda-ea.hh.

6.68.2 Constructor & Destructor Documentation

6.68.2.1 MuPlusLambdaEa()

Constructor.

Parameters

n	Size of bit vectors
mu	Parent population size
lambda	Offspring population size

Definition at line 78 of file mu-plus-lambda-ea.hh.

6.68.3 Member Function Documentation

6.68.3.1 set_allow_stay()

```
void set_allow_stay (
          bool x ) [inline]
```

Set the flag _allow_stay.

In case no mutation occurs allow the current bit vector to stay unchanged.

Definition at line 101 of file mu-plus-lambda-ea.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ea/mu-plus-lambda-ea.hh
- lib/hnco/algorithms/ea/mu-plus-lambda-ea.cc

6.69 NearestNeighborlsingModel1 Class Reference

Nearest neighbor Ising model in one dimension.

#include <hnco/functions/ising/nearest-neighbor-ising-model-1.hh>

Inheritance diagram for NearestNeighborlsingModel1:

Public Member Functions

• NearestNeighborIsingModel1 ()

Constructor.

void set_periodic_boundary_conditions (bool x)

Set periodic boundary conditions.

void display (std::ostream &stream)

Display.

Instance generators

template < class CouplingGen, class FieldGen >
 void generate (int n, CouplingGen coupling_gen, FieldGen field_gen)
 Instance generator.

• void random (int n)

Random instance.

Evaluation

• double eval (const bit_vector_t &)

Evaluate a bit vector.

double incremental_eval (const bit_vector_t &x, double v, const sparse_bit_vector_t &flipped_bits)
 Incremental evaluation.

Information about the function

• int get_bv_size ()

Get bit vector size.

bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const

Save.

• template < class Archive >

void load (Archive &ar, const unsigned int version)

Load.

• void resize (int n)

Resize data structures.

Private Attributes

std::vector< double > _coupling

Coupling with nearest neighbor to the right.

std::vector< double > _field

External field.

bit_vector_t _flipped_bits

Flipped bits.

• bool _periodic_boundary_conditions = false

Periodic boundary conditions.

Friends

· class boost::serialization::access

6.69.1 Detailed Description

Nearest neighbor Ising model in one dimension.

Its expression is of the form

$$f(x) = \sum_{i} J_{i,i+1}(1 - 2x_i)(1 - 2x_{i+1}) + \sum_{i} h_i(1 - 2x_i)$$

or equivalently

$$f(x) = \sum_{i} J_{i,i+1}(-1)^{x_i + x_{i+1}} + \sum_{i} h_i(-1)^{x_i}$$

where $J_{i,i+1}$ is the interaction between adjacent sites i and i+1 and h_i is the external magnetic field interacting with site i.

In the case of periodic boundary conditions, the sum i+1 is mod n.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

It should be noted that such an Ising model can be represented by a Walsh expansion of degree 2, that is WalshExpansion2.

Reference: https://en.wikipedia.org/wiki/Ising_model

Definition at line 65 of file nearest-neighbor-ising-model-1.hh.

6.69.2 Member Function Documentation

6.69.2.1 eval()

```
double eval ( {\tt const\ bit\_vector\_t\ \&\ s\ )} \quad [{\tt virtual}]
```

Evaluate a bit vector.

Complexity: O(n)

Implements Function.

Definition at line 44 of file nearest-neighbor-ising-model-1.cc.

6.69.2.2 generate()

```
void generate (
          int n,
          CouplingGen coupling_gen,
          FieldGen field_gen ) [inline]
```

Instance generator.

Parameters

n	Size of bit vectors
coupling_gen	Coupling generator
field_gen	External field generator

Definition at line 126 of file nearest-neighbor-ising-model-1.hh.

6.69.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 176 of file nearest-neighbor-ising-model-1.hh.

6.69.2.4 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

```
n Size of bit vector
```

Definition at line 142 of file nearest-neighbor-ising-model-1.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/ising/nearest-neighbor-ising-model-1.hh
- lib/hnco/functions/ising/nearest-neighbor-ising-model-1.cc

6.70 NearestNeighborlsingModel2 Class Reference

Nearest neighbor Ising model in two dimensions.

#include <hnco/functions/ising/nearest-neighbor-ising-model-2.hh>

Inheritance diagram for NearestNeighborIsingModel2:

Public Member Functions

· NearestNeighborIsingModel2 ()

Constructor.

void set_periodic_boundary_conditions (bool x)

Set periodic boundary conditions.

· void display (std::ostream &stream)

Display.

Instance generators

- template < class CouplingGen, class FieldGen >
 void generate (int num_rows, int num_columns, CouplingGen coupling_gen, FieldGen field_gen)
 Instance generator.
- void random (int num_rows, int num_columns)
 Random instance.

Evaluation

- double eval (const bit vector t &)
 - Evaluate a bit vector.
- double incremental_eval (const bit_vector_t &x, double v, const sparse_bit_vector_t &flipped_bits)
 Incremental evaluation.

Information about the function

- int get_bv_size ()
 - Get bit vector size.
- bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Private Member Functions

- template < class Archive >
 void save (Archive & ar, const unsigned int version) const
 Save.
- template < class Archive > void load (Archive & ar, const unsigned int version)

Load.

· void resize (int num rows, int num columns)

Resize data structures.

Private Attributes

- std::vector< std::vector< double >> _coupling_right
 - Coupling with nearest neighbor to the right.
- std::vector< std::vector< double >> _coupling_below

Coupling with nearest neighbor below.

- std::vector< std::vector< double >> _field
 - External field.
- bit_vector_t _flipped_bits

Flipped bits.

• bool _periodic_boundary_conditions = false

Periodic boundary conditions.

Friends

· class boost::serialization::access

6.70.1 Detailed Description

Nearest neighbor Ising model in two dimensions.

We are considering a rectangular lattice in which each site has (at most) four neighbors (left, right, above, below).

The expression of the function is of the form

$$f(x) = \sum_{(i,j)} J_{ij}(1-2x_i)(1-2x_j) + \sum_i h_i(1-2x_i)$$

or equivalently

$$f(x) = \sum_{(i,j)} J_{ij}(-1)^{x_i + x_j} + \sum_i h_i(-1)^{x_i}$$

where the first sum is over adjacent sites (i, j), J_{ij} is the interaction between adjacent sites i and j, and h_i is the external magnetic field interacting with site i.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

It should be noted that such an Ising model can be represented by a Walsh expansion of degree 2, that is WalshExpansion2.

Reference: https://en.wikipedia.org/wiki/Ising_model

Definition at line 67 of file nearest-neighbor-ising-model-2.hh.

6.70.2 Member Function Documentation

6.70.2.1 eval()

```
double eval (
                      const bit_vector_t & s ) [virtual]
```

Evaluate a bit vector.

Complexity: O(n)

Implements Function.

Definition at line 47 of file nearest-neighbor-ising-model-2.cc.

6.70.2.2 generate()

```
void generate (
          int num_rows,
          int num_columns,
          CouplingGen coupling_gen,
          FieldGen field_gen ) [inline]
```

Instance generator.

Parameters

num_rows	Number of rows
num_columns	Number of columns
coupling_gen	Coupling generator
field_gen	External field generator

Definition at line 134 of file nearest-neighbor-ising-model-2.hh.

6.70.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 194 of file nearest-neighbor-ising-model-2.hh.

6.70.2.4 random()

```
void random (
                int num_rows,
                int num_columns ) [inline]
```

Random instance.

The weights are sampled from the normal distribution.

Parameters

num_rows	Number of rows
num_columns	Number of columns

Definition at line 154 of file nearest-neighbor-ising-model-2.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/ising/nearest-neighbor-ising-model-2.hh
- lib/hnco/functions/ising/nearest-neighbor-ising-model-2.cc

6.71 Needle Class Reference

Needle in a haystack.

#include <hnco/functions/theory.hh>

Inheritance diagram for Needle:

Public Member Functions

Needle (int bv_size)

 ${\it Constructor.}$

• int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

6.71.1 Detailed Description

Needle in a haystack.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 134 of file theory.hh.

6.71 Needle Class Reference 173

6.71.2 Member Function Documentation

6.71.2.1 get_maximum() double get_maximum () [inline], [virtual] Get the global maximum. Returns 1 Reimplemented from Function. Definition at line 158 of file theory.hh. 6.71.2.2 has_known_maximum() bool has_known_maximum () [inline], [virtual] Check for a known maximum. Returns true Reimplemented from Function.

· lib/hnco/functions/theory.hh

The documentation for this class was generated from the following files:

Definition at line 154 of file theory.hh.

• lib/hnco/functions/theory.cc

6.72 Negation Class Reference

Negation.

#include <hnco/functions/modifiers/modifier.hh>

Inheritance diagram for Negation:

Public Member Functions

• Negation (Function *function)

Constructor.

Information about the function

• int get_bv_size ()

Get bit vector size.

• bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Evaluation

double eval (const bit_vector_t &)

Evaluate a bit vector.

double incremental_eval (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped
 — bits)

Incremental evaluation.

Additional Inherited Members

6.72.1 Detailed Description

Negati	n	
INGUALI	UH	

Use cases:

- for algorithms which minimize rather than maximize a function
- · for functions one wishes to minimize
- · when minimization is needed inside an algorithm

Definition at line 60 of file modifier.hh.

6.72.2 Member Function Documentation

6.72.2.1 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 79 of file modifier.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/modifier.hh
- lib/hnco/functions/modifiers/modifier.cc

6.73 Neighborhood Class Reference

Neighborhood.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for Neighborhood:

Public Member Functions

• Neighborhood (int n)

Constructor.

virtual ~Neighborhood ()

Destructor.

virtual void set_origin (const bit_vector_t &x)

Set the origin.

• virtual const bit_vector_t & get_origin ()

Get the origin.

virtual const bit_vector_t & get_candidate ()

Get the candidate bit vector.

virtual const sparse_bit_vector_t & get_flipped_bits ()

Get flipped bits.

• virtual void propose ()

Propose a candidate bit vector.

• virtual void keep ()

Keep the candidate bit vector.

· virtual void forget ()

Forget the candidate bit vector.

virtual void mutate (bit_vector_t &bv)

Mutate.

virtual void map (const bit_vector_t &input, bit_vector_t &output)

Мар.

Protected Member Functions

virtual void sample_bits ()=0
 Sample bits.

Protected Attributes

```
· bit_vector_t _origin
```

Origin of the neighborhood.

• bit_vector_t _candidate

candidate bit vector

 $\bullet \quad \mathsf{std}{::}\mathsf{uniform_int_distribution}{<} \ \mathsf{int} > \underline{\mathsf{index_dist}} \\$

Index distribution.

• sparse_bit_vector_t _flipped_bits

Flipped bits.

6.73.1 Detailed Description

Neighborhood.

A neighborhood maintains two points, _origin and _candidate. They are initialized in the same state by set_origin. A Neighborhood class must implement the member function sample_bits which samples the bits to flip in _origin to get a _candidate. The following member functions take care of the modifications:

```
· propose: flip _candidate
```

- · keep: flip _origin
- · forget flip _candidate

After keep or forget, _origin and _candidate are in the same state again.

A Neighborhood class can also behave as a mutation operator through the member functions mutate and map.

Definition at line 61 of file neighborhood.hh.

6.73.2 Constructor & Destructor Documentation

6.73.2.1 Neighborhood()

```
Neighborhood ( \label{eq:neighborhood} \text{ int } n \text{ ) } \quad [\text{inline}]
```

Constructor.

Parameters

```
n Size of bit vectors
```

Definition at line 86 of file neighborhood.hh.

6.73.3 Member Function Documentation

6.73.3.1 map()

Мар.

The output bit vector is a mutated version of the input bit vector.

Parameters

input	Input bit vector
output	Output bit vector

Definition at line 148 of file neighborhood.hh.

6.73.3.2 mutate()

```
virtual void mutate (
                bit_vector_t & bv ) [inline], [virtual]
```

Mutate.

In-place mutation of the bit vector.

Parameters

Definition at line 134 of file neighborhood.hh.

The documentation for this class was generated from the following file:

• lib/hnco/neighborhoods/neighborhood.hh

6.74 NeighborhoodIterator Class Reference

Neighborhood iterator.

#include <hnco/neighborhoods/neighborhood-iterator.hh>

Inheritance diagram for NeighborhoodIterator:

Public Member Functions

• NeighborhoodIterator (int n)

Constructor.

virtual void set_origin (const bit_vector_t &x)
 Set origin.

Additional Inherited Members

6.74.1 Detailed Description

Neighborhood iterator.

Definition at line 35 of file neighborhood-iterator.hh.

6.74.2 Constructor & Destructor Documentation

6.74.2.1 NeighborhoodIterator()

```
NeighborhoodIterator ( int \ n \ ) \quad [inline]
```

Constructor.

Parameters

n Size of bit vectors

Definition at line 44 of file neighborhood-iterator.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

6.75 NkLandscape Class Reference

NK landscape.

#include <hnco/functions/nk-landscape.hh>

Inheritance diagram for NkLandscape:

Public Member Functions

• NkLandscape ()

Default constructor.

• int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

· void display (std::ostream &stream)

Display.

Instance generators

template < class Generator >
 void generate (int n, int k, Generator generator)
 Instance generator.

• void random (int n, int k)

Random instance.

Private Member Functions

```
    template < class Archive > void serialize (Archive & ar, const unsigned int version)
    Serialize.
```

• void random_structure (int n, int k)

Random structue.

Private Attributes

```
    std::vector < std::vector < int > > _neighbors
    Bit neighbors.
```

std::vector< std::vector< double >> _partial_functions
 Partial functions.

Friends

· class boost::serialization::access

6.75.1 Detailed Description

NK landscape.

Reference:

S. A. Kauffman. 1993. The origins of order: self-organisation and selection in evolution. Oxford University Press.

Definition at line 47 of file nk-landscape.hh.

6.75.2 Member Function Documentation

6.75.2.1 generate()

Instance generator.

Parameters

n	Size of bit vector
k	Number of neighbors of each bit
generator	Generator for partial function values

Definition at line 92 of file nk-landscape.hh.

6.75.2.2 random()

Random instance.

Partial function values are sampled from the normal distribution.

Parameters

```
n Size of bit vector
```

Definition at line 109 of file nk-landscape.hh.

6.75.2.3 random_structure()

```
void random_structure (
          int n,
          int k) [private]
```

Random structue.

Parameters

r	,	Size of bit vector
k	,	Number of neighbors of each bit

Definition at line 32 of file nk-landscape.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/nk-landscape.hh
- · lib/hnco/functions/nk-landscape.cc

6.76 NpsPbil Class Reference

Population-based incremental learning with negative and positive selection.

```
#include <hnco/algorithms/pv/nps-pbil.hh>
```

Inheritance diagram for NpsPbil:

Public Member Functions

- NpsPbil (int n, int population_size)
 Constructor.
- void init ()

 Initialization.

Setters

- void set_selection_size (int x)
 - Set the selection size.
- void set_learning_rate (double x) Set the learning rate.

Protected Member Functions

• void iterate ()

Single iteration.

Protected Attributes

- pv_t _mean_best

Mean of best individuals.

pv_t _mean_worst

Mean of worst individuals.

Parameters

int _selection_size = 1
 Selection size.
 double _learning_rate = 1e-3
 Learning rate.

6.76.1 Detailed Description

Population-based incremental learning with negative and positive selection.

Reference:

Arnaud Berny. 2001. Extending selection learning toward fixed-length d-ary strings. In Artificial Evolution (Lecture Notes in Computer Science), P. Collet and others (Eds.). Springer, Le Creusot.

Definition at line 42 of file nps-pbil.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/nps-pbil.hh
- lib/hnco/algorithms/pv/nps-pbil.cc

6.77 OnBudgetFunction Class Reference

CallCounter with a limited number of evaluations.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for OnBudgetFunction:

Public Member Functions

• OnBudgetFunction (Function *function, int budget)

Constructor.

Evaluation

double eval (const bit_vector_t &)

Evaluate a bit vector.

double incremental_eval (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped
bits)

Incremental evaluation.

void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Private Attributes

· int budget

Budget.

Additional Inherited Members

6.77.1 Detailed Description

CallCounter with a limited number of evaluations.

Definition at line 318 of file controller.hh.

6.77.2 Member Function Documentation

6.77.2.1 eval()

Evaluate a bit vector.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 122 of file controller.cc.

6.77.2.2 incremental_eval()

Incremental evaluation.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 133 of file controller.cc.

6.77.2.3 update()

Update after a safe evaluation.

Exceptions

LastEvaluation

Reimplemented from CallCounter.

Definition at line 144 of file controller.cc.

The documentation for this class was generated from the following files:

- lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

6.78 OneMax Class Reference

OneMax.

#include <hnco/functions/theory.hh>

Inheritance diagram for OneMax:

Public Member Functions

OneMax (int bv_size)
 Constructor.

Information about the function

- int get_bv_size ()
 - Get bit vector size.
- double get_maximum ()

Get the global maximum.

- bool has_known_maximum ()
 - Check for a known maximum.
- bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Evaluation

- double eval (const bit_vector_t &)
 - Evaluate a bit vector.
- double incremental_eval (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped_bits)

 Incremental evaluation.

Private Attributes

int _bv_size

Bit vector size.

6.78.1 Detailed Description

OneMax.

References:

Heinz Mühlenbein, "How genetic algorithms really work: I. mutation and hillclimbing", in Proc. 2nd Int. Conf. on Parallel Problem Solving from Nature, 1992

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 41 of file theory.hh.

6.78.2 Member Function Documentation

6.78.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

```
_bv_size
```

Reimplemented from Function.

Definition at line 62 of file theory.hh.

6.78.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 66 of file theory.hh.

6.78.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 71 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/theory.hh
- lib/hnco/functions/theory.cc

6.79 OnePlusLambdaCommaLambdaGa Class Reference

(1+(lambda, lambda)) genetic algorithm.

#include <hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.hh>

Inheritance diagram for OnePlusLambdaCommaLambdaGa:

Public Member Functions

• OnePlusLambdaCommaLambdaGa (int n, int lambda)

Constructor.

• void init ()

Initialization.

Setters

• void set_mutation_probability (double x)

Set the mutation probability.

• void set_crossover_bias (double x)

Set the crossover bias.

Private Member Functions

• void iterate ()

Single iteration.

Private Attributes

Population _offsprings

Offsprings.

• std::binomial_distribution< int > _radius_dist

Radius distribution.

• neighborhood::HammingSphere _mutation

Mutation operator.

bit_vector_t _parent

Parent.

• BiasedCrossover _crossover

Biased crossover.

Parameters

double _mutation_probability
 Mutation probability.

• double _crossover_bias

Crossover bias.

Additional Inherited Members

6.79.1 Detailed Description

(1+(lambda, lambda)) genetic algorithm.

Reference:

Benjamin Doerr, Carola Doerr, and Franziska Ebel. 2015. From black-box complexity to designing new genetic algorithms. Theoretical Computer Science 567 (2015), 87–104.

Definition at line 49 of file one-plus-lambda-comma-lambda-ga.hh.

6.79.2 Constructor & Destructor Documentation

6.79.2.1 OnePlusLambdaCommaLambdaGa()

Constructor.

By default, _mutation_probability is set to lambda / n and _crossover_bias to 1 / lambda.

Parameters

n	Size of bit vectors
lambda	Offspring population size

Definition at line 92 of file one-plus-lambda-comma-lambda-ga.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.hh
- lib/hnco/algorithms/ea/one-plus-lambda-comma-lambda-ga.cc

6.80 OnePlusOneEa Class Reference

(1+1) EA.

#include <hnco/algorithms/ea/one-plus-one-ea.hh>

Inheritance diagram for OnePlusOneEa:

Public Member Functions

• OnePlusOneEa (int n)

Constructor.

• void init ()

Initialization.

· void maximize ()

Maximize.

· void finalize ()

Finalize.

Setters

• void set_num_iterations (int x)

Set the number of iterations.

void set_mutation_probability (double x)

Set the mutation probability.

void set_allow_stay (bool x)

Set the flag _allow_stay.

void set_incremental_evaluation (bool x)

Set incremental evaluation.

Private Attributes

• neighborhood::BernoulliProcess _neighborhood

Neighborhood.

• RandomLocalSearch _rls

Random local search.

Parameters

```
• int _num_iterations = 0
```

Number of iterations.

· double _mutation_probability

Mutation probability.

• bool <u>_allow_stay</u> = false

Allow stay.

• bool _incremental_evaluation = false

Incremental evaluation.

Additional Inherited Members

6.80.1 Detailed Description

```
(1+1) EA.
```

(1+1) EA is implemented as a RandomLocalSearch with a BernoulliProcess neighborhood and infinite patience. Thus the class OnePlusOneEa is derived from Algorithm instead of IterativeAlgorithm.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 45 of file one-plus-one-ea.hh.

6.80.2 Constructor & Destructor Documentation

6.80.2.1 OnePlusOneEa()

```
OnePlusOneEa (
          int n ) [inline]
```

Constructor.

Parameters

```
n Size of bit vectors
```

_mutation_probability is initialized to 1 / n.

Definition at line 80 of file one-plus-one-ea.hh.

6.80.3 Member Function Documentation

6.80.3.1 set_allow_stay()

```
void set_allow_stay ( bool \ x \ ) \quad [inline]
```

Set the flag _allow_stay.

In case no mutation occurs allow the current bit vector to stay unchanged.

Definition at line 127 of file one-plus-one-ea.hh.

6.80.3.2 set_num_iterations()

```
void set_num_iterations ( int \ x \ ) \ [inline]
```

Set the number of iterations.

Parameters

```
x Number of iterations
```

 $x \le 0$ means indefinite

Definition at line 117 of file one-plus-one-ea.hh.

The documentation for this class was generated from the following file:

· lib/hnco/algorithms/ea/one-plus-one-ea.hh

6.81 Options Class Reference

Command line options.

#include </home/arnaud/projets/hnco/src/hnco/app/ffgen-options.hh>

Public Member Functions

• Options (int argc, char *argv[])

Constructor.

• int get_bv_size () const

Get bv_size.

void set_bv_size (int x)

Set by size.

• bool set_bv_size () const

Get set-flag for bv_size.

• double get_coupling_constant () const

Get coupling_constant.

void set_coupling_constant (double x)

Set coupling_constant.

bool set_coupling_constant () const

Get set-flag for coupling constant.

• double get_ep_upper_bound () const

Get ep_upper_bound.

void set_ep_upper_bound (double x)

Set ep_upper_bound.

• bool set_ep_upper_bound () const

Get set-flag for ep_upper_bound.

• double get_field_constant () const

Get field_constant.

void set_field_constant (double x)

Set field constant.

· bool set field constant () const

Get set-flag for field_constant.

int get_function () const

Get function.

void set function (int x)

Set function.

• bool set_function () const

Get set-flag for function.

int get_ms_num_clauses () const

Get ms_num_clauses.

void set_ms_num_clauses (int x)

Set ms_num_clauses.

bool set_ms_num_clauses () const

Get set-flag for ms_num_clauses.

• int get_ms_num_literals_per_clause () const

Get ms_num_literals_per_clause.

void set_ms_num_literals_per_clause (int x)

Set ms_num_literals_per_clause.

• bool set_ms_num_literals_per_clause () const

Get set-flag for ms_num_literals_per_clause.

int get_nk_k () const

Get nk_k.

void set nk k (int x)

Set nk_k.

bool set_nk_k () const

Get set-flag for nk_k.

• int get_nn1_generator () const

Get nn1_generator.

void set_nn1_generator (int x)

Set nn1_generator.

bool set_nn1_generator () const

Get set-flag for nn1_generator.

• int get_nn2_generator () const

Get nn2 generator.

void set_nn2_generator (int x)

Set nn2 generator.

• bool set_nn2_generator () const

Get set-flag for nn2_generator.

• int get_nn2_num_columns () const

Get nn2_num_columns.

void set_nn2_num_columns (int x)

Set nn2_num_columns.

• bool set_nn2_num_columns () const

Get set-flag for nn2_num_columns.

int get_nn2_num_rows () const

Get nn2_num_rows.

void set_nn2_num_rows (int x)

Set nn2 num rows.

bool set_nn2_num_rows () const

Get set-flag for nn2_num_rows.

int get_part_upper_bound () const

Get part_upper_bound.

void set_part_upper_bound (int x)

Set part_upper_bound.

• bool set_part_upper_bound () const

Get set-flag for part_upper_bound.

• std::string get_path () const

Get path.

void set_path (std::string x)

Set path.

• bool set_path () const

Get set-flag for path.

• int get_seed () const

Get seed.

void set_seed (int x)

Set seed.

• bool set_seed () const

Get set-flag for seed.

• double get_stddev () const

Get stddev.

void set_stddev (double x)

Set stddev.

• bool set_stddev () const

Get set-flag for stddev.

int get_walsh2_generator () const

Get walsh2_generator.

void set_walsh2_generator (int x)

Set walsh2_generator.

· bool set walsh2 generator () const

Get set-flag for walsh2_generator.

double get_walsh2_ising_alpha () const

Get walsh2_ising_alpha.

void set_walsh2_ising_alpha (double x)

Set walsh2_ising_alpha.

· bool set_walsh2_ising_alpha () const

Get set-flag for walsh2_ising_alpha.

· int get walsh num features () const

Get walsh_num_features.

void set_walsh_num_features (int x)

Set walsh_num_features.

bool set_walsh_num_features () const

Get set-flag for walsh_num_features.

bool with_ms_planted_solution () const

Get ms planted solution.

void set_ms_planted_solution ()

Set ms_planted_solution.

· bool with_periodic_boundary_conditions () const

Get periodic_boundary_conditions.

· void set_periodic_boundary_conditions ()

Set periodic_boundary_conditions.

Options (int argc, char *argv[])

Constructor.

• int get_algorithm () const

Get algorithm.

void set_algorithm (int x)

Set algorithm.

• bool set_algorithm () const

Get set-flag for algorithm.

• int get_bm_mc_reset_strategy () const

Get bm_mc_reset_strategy.

void set_bm_mc_reset_strategy (int x)

Set bm_mc_reset_strategy.

bool set_bm_mc_reset_strategy () const

Get set-flag for bm_mc_reset_strategy.

· int get_bm_num_gs_cycles () const

Get bm_num_gs_cycles.

void set_bm_num_gs_cycles (int x)

Set bm_num_gs_cycles.

• bool set_bm_num_gs_cycles () const

Get set-flag for bm_num_gs_cycles.

• int get_bm_num_gs_steps () const

Get bm_num_gs_steps.

void set_bm_num_gs_steps (int x)

Set bm_num_gs_steps.

· bool set bm num gs steps () const

Get set-flag for bm_num_gs_steps.

int get_bm_sampling () const

Get bm_sampling.

void set_bm_sampling (int x)

Set bm_sampling.

• bool set_bm_sampling () const

Get set-flag for bm_sampling.

int get_budget () const

Get budget.

void set_budget (int x)

Set budget.

• bool set_budget () const

Get set-flag for budget.

• int get_bv_size () const

Get bv_size.

void set_bv_size (int x)

Set bv_size.

• bool set_bv_size () const

Get set-flag for bv_size.

• std::string get_description_path () const

Get description_path.

void set_description_path (std::string x)

Set description_path.

· bool set_description_path () const

Get set-flag for description path.

• int get_ea_lambda () const

Get ea_lambda.

void set_ea_lambda (int x)

Set ea_lambda.

• bool set_ea_lambda () const

Get set-flag for ea_lambda.

• int get_ea_mu () const

Get ea_mu.

void set_ea_mu (int x)

Set ea_mu.

• bool set_ea_mu () const

Get set-flag for ea_mu.

std::string get_expression () const

Get expression.

• void set_expression (std::string x)

Set expression.

bool set_expression () const

Get set-flag for expression.

• std::string get_fn_name () const

Get fn_name.

void set_fn_name (std::string x)

Set fn name.

• bool set_fn_name () const

Get set-flag for fn_name.

• int get_fn_num_traps () const

Get fn_num_traps.

void set_fn_num_traps (int x)

Set fn_num_traps.

bool set_fn_num_traps () const

Get set-flag for fn_num_traps.

• int get_fn_prefix_length () const

Get fn_prefix_length.

void set_fn_prefix_length (int x)

Set fn_prefix_length.

• bool set_fn_prefix_length () const

Get set-flag for fn_prefix_length.

• int get_fn_threshold () const

Get fn_threshold.

void set_fn_threshold (int x)

Set fn_threshold.

• bool set_fn_threshold () const

Get set-flag for fn_threshold.

• int get_function () const

Get function.

void set_function (int x)

Set function.

• bool set_function () const

Get set-flag for function.

• double get_ga_crossover_bias () const

Get ga_crossover_bias.

void set_ga_crossover_bias (double x)

Set ga_crossover_bias.

bool set_ga_crossover_bias () const

Get set-flag for ga_crossover_bias.

double get_ga_crossover_probability () const

Get ga_crossover_probability.

• void set_ga_crossover_probability (double x)

Set ga_crossover_probability.

bool set_ga_crossover_probability () const

Get set-flag for ga_crossover_probability.

• int get_ga_tournament_size () const

Get ga_tournament_size.

void set_ga_tournament_size (int x)

Set ga_tournament_size.

bool set_ga_tournament_size () const

Get set-flag for ga_tournament_size.

• int get_hea_bit_herding () const

Get hea_bit_herding.

void set_hea_bit_herding (int x)

Set hea_bit_herding.

bool set_hea_bit_herding () const

Get set-flag for hea_bit_herding.

• int get_hea_num_seq_updates () const

Get hea_num_seq_updates.

void set_hea_num_seq_updates (int x)

Set hea_num_seq_updates.

· bool set hea num seq updates () const

Get set-flag for hea_num_seq_updates.

• int get_hea_reset_period () const

Get hea_reset_period.

void set_hea_reset_period (int x)

Set hea_reset_period.

· bool set hea reset period () const

Get set-flag for hea_reset_period.

int get_hea_sampling_method () const

Get hea_sampling_method.

void set hea sampling method (int x)

Set hea_sampling_method.

bool set_hea_sampling_method () const

Get set-flag for hea sampling method.

• double get_hea_weight () const

Get hea_weight.

• void set_hea_weight (double x)

Set hea_weight.

• bool set_hea_weight () const

Get set-flag for hea_weight.

• double get_learning_rate () const

Get learning_rate.

void set_learning_rate (double x)

Set learning_rate.

• bool set_learning_rate () const

Get set-flag for learning rate.

• int get_map () const

Get map.

void set_map (int x)

Set map.

• bool set_map () const

Get set-flag for map.

int get_map_input_size () const

Get map_input_size.

void set_map_input_size (int x)

Set map_input_size.

bool set_map_input_size () const

Get set-flag for map_input_size.

• std::string get_map_path () const

Get map_path.

void set_map_path (std::string x)

Set map_path.

bool set_map_path () const

Get set-flag for map_path.

• int get_map_ts_length () const

Get map_ts_length.

void set_map_ts_length (int x)

Set map ts length.

• bool set_map_ts_length () const

Get set-flag for map_ts_length.

int get_map_ts_sampling_mode () const

Get map_ts_sampling_mode.

void set_map_ts_sampling_mode (int x)

Set map_ts_sampling_mode.

bool set_map_ts_sampling_mode () const

Get set-flag for map_ts_sampling_mode.

double get_mutation_probability () const

Get mutation_probability.

void set_mutation_probability (double x)

Set mutation_probability.

· bool set mutation probability () const

Get set-flag for mutation_probability.

• int get_neighborhood () const

Get neighborhood.

void set_neighborhood (int x)

Set neighborhood.

bool set_neighborhood () const

Get set-flag for neighborhood.

int get_neighborhood_iterator () const

Get neighborhood_iterator.

void set_neighborhood_iterator (int x)

Set neighborhood_iterator.

• bool set_neighborhood_iterator () const

Get set-flag for neighborhood_iterator.

· double get_noise_stddev () const

Get noise_stddev.

void set_noise_stddev (double x)

Set noise_stddev.

• bool set_noise_stddev () const

Get set-flag for noise_stddev.

• int get_num_iterations () const

Get num_iterations.

void set_num_iterations (int x)

Set num_iterations.

bool set_num_iterations () const

Get set-flag for num_iterations.

• int get_num_threads () const

Get num_threads.

void set_num_threads (int x)

Set num_threads.

bool set_num_threads () const

Get set-flag for num_threads.

• std::string get_path () const

Get path.

void set_path (std::string x)

Set path.

• bool set_path () const

Get set-flag for path.

• double get_pn_mutation_probability () const

Get pn_mutation_probability.

void set_pn_mutation_probability (double x)

Set pn_mutation_probability.

· bool set pn mutation probability () const

Get set-flag for pn_mutation_probability.

int get_pn_neighborhood () const

Get pn_neighborhood.

void set_pn_neighborhood (int x)

Set pn_neighborhood.

· bool set pn neighborhood () const

Get set-flag for pn_neighborhood.

• int get_pn_radius () const

Get pn_radius.

void set_pn_radius (int x)

Set pn radius.

• bool set_pn_radius () const

Get set-flag for pn radius.

• int get_population_size () const

Get population_size.

void set_population_size (int x)

Set population_size.

• bool set_population_size () const

Get set-flag for population_size.

• int get_pv_log_num_components () const

Get pv_log_num_components.

void set_pv_log_num_components (int x)

Set pv_log_num_components.

· bool set_pv_log_num_components () const

Get set-flag for pv_log_num_components.

• int get_radius () const

Get radius.

void set_radius (int x)

Set radius.

bool set_radius () const

Get set-flag for radius.

· std::string get real expression () const

Get real_expression.

void set_real_expression (std::string x)

Set real_expression.

• bool set_real_expression () const

Get set-flag for real expression.

• double get_real_lower_bound () const

Get real_lower_bound.

void set_real_lower_bound (double x)

Set real_lower_bound.

bool set_real_lower_bound () const

Get set-flag for real_lower_bound.

• int get_real_num_bits () const

Get real_num_bits.

void set_real_num_bits (int x)

Set real num bits.

• bool set_real_num_bits () const

Get set-flag for real_num_bits.

• double get_real_upper_bound () const

Get real_upper_bound.

void set_real_upper_bound (double x)

Set real_upper_bound.

bool set_real_upper_bound () const

Get set-flag for real_upper_bound.

std::string get_results_path () const

Get results_path.

void set_results_path (std::string x)

Set results_path.

· bool set_results_path () const

Get set-flag for results_path.

• int get_rls_patience () const

Get rls_patience.

void set_rls_patience (int x)

Set rls_patience.

bool set_rls_patience () const

Get set-flag for rls_patience.

double get_sa_beta_ratio () const

Get sa_beta_ratio.

void set_sa_beta_ratio (double x)

Set sa beta ratio.

• bool set_sa_beta_ratio () const

Get set-flag for sa_beta_ratio.

double get_sa_initial_acceptance_probability () const

Get sa_initial_acceptance_probability.

void set_sa_initial_acceptance_probability (double x)

Set sa_initial_acceptance_probability.

· bool set_sa_initial_acceptance_probability () const

Get set-flag for sa_initial_acceptance_probability.

int get_sa_num_transitions () const

Get sa_num_transitions.

• void set_sa_num_transitions (int x)

Set sa_num_transitions.

• bool set_sa_num_transitions () const

Get set-flag for sa_num_transitions.

• int get_sa_num_trials () const

Get sa_num_trials.

void set_sa_num_trials (int x)

Set sa_num_trials.

bool set_sa_num_trials () const

Get set-flag for sa_num_trials.

• unsigned get_seed () const

Get seed.

void set_seed (unsigned x)

Set seed.

· bool set_seed () const

Get set-flag for seed.

• int get_selection_size () const

Get selection_size.

void set_selection_size (int x)

Set selection_size.

· bool set selection size () const

Get set-flag for selection_size.

• std::string get_solution_path () const

```
Get solution_path.

    void set_solution_path (std::string x)

     Set solution_path.
· bool set solution path () const
      Get set-flag for solution_path.

    double get_target () const

      Get target.

    void set_target (double x)

      Set target.
• bool set_target () const
      Get set-flag for target.
· bool with_additive_gaussian_noise () const
      Get additive_gaussian_noise.
• void set_additive_gaussian_noise ()
      Set additive_gaussian_noise.

    bool with_allow_stay () const

      Get allow_stay.
void set_allow_stay ()
     Set allow_stay.

    bool with_bm_log_norm_infinite () const

      Get bm_log_norm_infinite.

    void set_bm_log_norm_infinite ()

      Set bm log norm infinite.

    bool with_bm_log_norm_l1 () const

      Get bm_log_norm_l1.
void set_bm_log_norm_l1 ()
      Set bm_log_norm_l1.

    bool with_bm_negative_positive_selection () const

      Get bm_negative_positive_selection.

    void set_bm_negative_positive_selection ()

      Set bm_negative_positive_selection.
· bool with cache () const
      Get cache.
· void set_cache ()
      Set cache.
• bool with_cache_budget () const
      Get cache_budget.

    void set_cache_budget ()

      Set cache_budget.

    bool with_concrete_solution () const

      Get concrete_solution.

    void set_concrete_solution ()

      Set concrete_solution.

    bool with_fn_display () const

      Get fn display.

    void set_fn_display ()

     Set fn display.
• bool with_fn_get_bv_size () const
      Get fn_get_bv_size.
void set_fn_get_bv_size ()
      Set fn_get_bv_size.
```

· bool with_fn_get_maximum () const Get fn_get_maximum. void set_fn_get_maximum () Set fn_get_maximum. bool with_fn_has_known_maximum () const Get fn_has_known_maximum. void set_fn_has_known_maximum () Set fn_has_known_maximum. bool with_fn_provides_incremental_evaluation () const Get fn_provides_incremental_evaluation. · void set fn provides incremental evaluation () Set fn_provides_incremental_evaluation. bool with_fn_walsh_transform () const Get fn_walsh_transform. void set_fn_walsh_transform () Set fn_walsh_transform. bool with_hea_bound_moment () const Get hea bound moment. void set_hea_bound_moment () Set hea_bound_moment. • bool with_hea_log_delta () const Get hea_log_delta. void set_hea_log_delta () Set hea_log_delta. bool with_hea_log_dtu () const Get hea_log_dtu. void set_hea_log_dtu () Set hea log dtu. bool with_hea_log_error () const Get hea_log_error. void set_hea_log_error () Set hea_log_error. • bool with_hea_log_moment_matrix () const Get hea_log_moment_matrix. void set_hea_log_moment_matrix () Set hea_log_moment_matrix. · bool with hea log selection () const Get hea_log_selection. void set_hea_log_selection () Set hea_log_selection. · bool with hea randomize bit order () const Get hea_randomize_bit_order. void set_hea_randomize_bit_order () Set hea_randomize_bit_order. · bool with incremental evaluation () const Get incremental_evaluation. void set_incremental_evaluation () Set incremental_evaluation. · bool with load solution () const Get load_solution.

void set_load_solution ()

Set load_solution.

bool with_log_improvement () const

Get log_improvement.

void set_log_improvement ()

Set log_improvement.

bool with_map_display () const

Get map_display.

void set_map_display ()

Set map_display.

bool with_map_random () const

Get map random.

void set_map_random ()

Set map_random.

• bool with_map_surjective () const

Get map_surjective.

void set_map_surjective ()

Set map_surjective.

• bool with_mmas_strict () const

Get mmas_strict.

void set_mmas_strict ()

Set mmas_strict.

· bool with_negation () const

Get negation.

void set_negation ()

Set negation.

• bool with_parsed_modifier () const

Get parsed_modifier.

void set_parsed_modifier ()

Set parsed_modifier.

• bool with_pn_allow_stay () const

Get pn_allow_stay.

void set_pn_allow_stay ()

Set pn_allow_stay.

bool with_print_defaults () const

 $Get\ print_defaults.$

• void set_print_defaults ()

Set print_defaults.

• bool with_print_description () const

Get print_description.

void set_print_description ()

Set print_description.

• bool with_print_header () const

Get print_header.

void set_print_header ()

Set print header.

• bool with_print_results () const

Get print_results.

void set_print_results ()

Set print_results.

bool with_print_solution () const

Get print_solution.

```
    void set_print_solution ()

     Set print_solution.
• bool with_prior_noise () const
      Get prior_noise.
void set_prior_noise ()
     Set prior_noise.
• bool with_pv_log_entropy () const
     Get pv_log_entropy.
void set_pv_log_entropy ()
     Set pv_log_entropy.
bool with_pv_log_pv () const
     Get pv_log_pv.
void set_pv_log_pv ()
     Set pv_log_pv.

    bool with_restart () const

     Get restart.

    void set_restart ()

     Set restart.
• bool with_rls_strict () const
     Get rls_strict.
void set_rls_strict ()
     Set rls_strict.
· bool with_rw_log_value () const
     Get rw_log_value.

    void set_rw_log_value ()

     Set rw_log_value.

    bool with_save_description () const

     Get save_description.
void set_save_description ()
     Set save_description.
• bool with_save_results () const
     Get save_results.
• void set_save_results ()
     Set save_results.
• bool with_save_solution () const
     Get save_solution.

    void set save solution ()

     Set save_solution.

    bool with_stop_on_maximum () const

     Get stop_on_maximum.

    void set_stop_on_maximum ()

     Set stop_on_maximum.

    bool with_stop_on_target () const

     Get stop_on_target.
void set_stop_on_target ()
     Set stop_on_target.
Options (int argc, char *argv[])
     Constructor.

    int get_input_size () const

     Get input_size.
```

void set_input_size (int x)

Set input_size.

• bool set_input_size () const

Get set-flag for input_size.

• int get_map () const

Get map.

void set_map (int x)

Set map.

• bool set_map () const

Get set-flag for map.

• int get_output_size () const

Get output_size.

void set_output_size (int x)

Set output_size.

• bool set_output_size () const

Get set-flag for output_size.

• std::string get_path () const

Get path.

void set_path (std::string x)

Set path.

• bool set_path () const

Get set-flag for path.

• int get_seed () const

Get seed.

void set_seed (int x)

Set seed.

• bool set seed () const

Get set-flag for seed.

• int get_ts_length () const

Get ts_length.

void set_ts_length (int x)

Set ts_length.

• bool set_ts_length () const

Get set-flag for ts_length.

• int get_ts_sampling_mode () const

Get ts_sampling_mode.

void set_ts_sampling_mode (int x)

Set ts_sampling_mode.

• bool set_ts_sampling_mode () const

Get set-flag for ts_sampling_mode.

• bool with_surjective () const

Get surjective.

• void set_surjective ()

Set surjective.

Private Member Functions

 void print_help (std::ostream &stream) const Print help message.

 void print_version (std::ostream &stream) const Print version.

 void print_help (std::ostream &stream) const Print help message.

• void print_help_real (std::ostream &stream) const Print help message for section real.

• void print_help_pn (std::ostream &stream) const

Print help message for section pn.

void print_help_map (std::ostream &stream) const

Print help message for section map.

void print_help_ls (std::ostream &stream) const
 Print help message for section ls.

• void print_help_sa (std::ostream &stream) const

Print help message for section sa.

· void print_help_ea (std::ostream &stream) const

Print help message for section ea.

• void print_help_eda (std::ostream &stream) const Print help message for section eda.

• void print_help_hea (std::ostream &stream) const Print help message for section hea.

• void print_help_bm (std::ostream &stream) const

Print help message for section bm.

 void print_version (std::ostream &stream) const Print version.

 void print_help (std::ostream &stream) const Print help message.

 void print_version (std::ostream &stream) const Print version.

Private Attributes

std::string _exec_name

Name of the executable.

· std::string _version

Name Version.

int _bv_size

Size of bit vectors.

- bool opt bv size
- double _coupling_constant

Coupling constant.

- · bool opt coupling constant
- double _ep_upper_bound

Upper bound of numbers.

- bool_opt_ep_upper_bound
- double _field_constant

Field constant.

- · bool_opt_field_constant
- int _function

Type of function.

- · bool opt function
- int _ms_num_clauses

Number of clauses.

- bool <u>opt_ms_num_clauses</u>
- int _ms_num_literals_per_clause

Number of literals per clause.

- bool <u>opt_ms_num_literals_per_clause</u>
- int _nk_k

Each bit is connected to k other bits.

- bool _opt_nk_k
- int _nn1_generator

Type of NearestNeighborlsingModel1 generator.

- bool opt_nn1_generator
- · int _nn2_generator

Type of NearestNeighborlsingModel2 generator.

- bool <u>opt_nn2_generator</u>
- int _nn2_num_columns

Number of columns.

- bool <u>opt_nn2_num_columns</u>
- int _nn2_num_rows

Number of rows.

- bool <u>opt_nn2_num_rows</u>
- int _part_upper_bound

Upper bound of numbers.

- bool _opt_part_upper_bound
- std::string _path

Path (relative or absolute) of a function file.

- bool _opt_path
- int _seed

Seed for the random number generator.

- bool _opt_seed
- double <u>stddev</u>

Standard deviation.

- · bool_opt_stddev
- int _walsh2_generator

Type of WalshExpansion2 generator.

- · bool _opt_walsh2_generator
- double _walsh2_ising_alpha

Dyson-Ising: exponential decay parameter for long range interactions.

- bool opt walsh2 ising alpha
- int _walsh_num_features

Number of features.

- bool <u>opt_walsh_num_features</u>
- bool _ms_planted_solution

Generate an instance with a planted solution.

bool _periodic_boundary_conditions

Periodic boundary conditions.

int _algorithm

Type of algorithm.

- bool opt_algorithm
- int _bm_mc_reset_strategy

Markov chain reset strategy.

- bool_opt_bm_mc_reset_strategy
- int _bm_num_gs_cycles

Number of Gibbs sampler cycles per bit vector.

- bool <u>opt_bm_num_gs_cycles</u>
- int _bm_num_gs_steps

Number of Gibbs sampler steps per bit vector.

- bool _opt_bm_num_gs_steps
- · int _bm_sampling

Sampling mode for the Boltzmann machine.

- bool <u>opt_bm_sampling</u>
- · int _budget

Number of allowed function evaluations (<= 0 means indefinite)

- · bool opt budget
- · std::string _description_path

Path of the description file.

- bool _opt_description_path
- int _ea_lambda

Offspring population size.

- bool opt ea lambda
- · int _ea_mu

Parent population size.

- · bool_opt_ea_mu
- std::string _expression

Expression of the variable x.

- bool _opt_expression
- std::string _fn_name

Name of the function in the dynamic library.

- bool _opt_fn_name
- int _fn_num_traps

Number of traps.

- bool _opt_fn_num_traps
- int _fn_prefix_length

Prefix length for long path.

- bool <u>opt_fn_prefix_length</u>
- · int _fn_threshold

Threshold (in bits) for Jump, Four Peaks, and Six Peaks.

- bool _opt_fn_threshold
- double _ga_crossover_bias

Crossover bias.

- bool _opt_ga_crossover_bias
- double _ga_crossover_probability

Crossover probability.

- bool <u>opt_ga_crossover_probability</u>
- int _ga_tournament_size

Tournament size.

- bool opt ga tournament size
- · int hea bit herding

Type of bit herding.

· bool_opt_hea_bit_herding

• int _hea_num_seq_updates

Number of sequential updates per sample.

- bool <u>opt_hea_num_seq_updates</u>
- · int _hea_reset_period

Reset period (<= 0 means no reset)

- · bool _opt_hea_reset_period
- · int _hea_sampling_method

Sampling method for spin features.

- bool _opt_hea_sampling_method
- double _hea_weight

Weight of second moments.

- · bool opt hea weight
- double _learning_rate

Learning rate.

- bool _opt_learning_rate
- · int map

Type of map.

- bool _opt_map
- int _map_input_size

Input size of linear and affine maps.

- bool _opt_map_input_size
- std::string _map_path

Path of a map file.

- · bool opt map path
- · int _map_ts_length

Transvection sequence length.

- bool _opt_map_ts_length
- int _map_ts_sampling_mode

Transvection sequence sampling mode.

- · bool_opt_map_ts_sampling_mode
- · double _mutation_probability

Expected number of flipped bits (bv_size times mutation probability)

- · bool opt mutation probability
- int _neighborhood

Type of neighborhood.

- bool _opt_neighborhood
- · int _neighborhood_iterator

Type of neighborhood iterator.

- bool <u>opt_neighborhood_iterator</u>
- · double _noise_stddev

Noise standard deviation.

- bool _opt_noise_stddev
- int _num_iterations

Number of iterations (<= 0 means indefinite)

- · bool _opt_num_iterations
- · int _num_threads

Number of threads.

- bool _opt_num_threads
- double _pn_mutation_probability

Expected number of flipped bits (bv_size times mutation probability)

- bool _opt_pn_mutation_probability
- int _pn_neighborhood

Type of neighborhood.

- bool _opt_pn_neighborhood
- · int _pn_radius

Radius of Hamming ball or sphere.

- bool <u>opt_pn_radius</u>
- · int _population_size

Population size.

- bool _opt_population_size
- · int pv log num components

Number of probability vector components to log.

- bool_opt_pv_log_num_components
- · int radius

Radius of Hamming ball or sphere.

- bool opt radius
- std::string _real_expression

Expression.

- bool opt_real_expression
- · double _real_lower_bound

Lower bound.

- · bool _opt_real_lower_bound
- · int real num bits

Number of bits in the dyadic representation of a real number.

- bool_opt_real_num_bits
- double _real_upper_bound

upper bound

- bool _opt_real_upper_bound
- std::string _results_path

Path of the results file.

- bool _opt_results_path
- int _rls_patience

Number of consecutive rejected moves before throwing LocalMaximum (<= 0 means infinite)

- bool opt_rls_patience
- double _sa_beta_ratio

Ratio for beta or inverse temperature.

- bool opt_sa_beta_ratio
- · double _sa_initial_acceptance_probability

Initial acceptance probability.

- bool _opt_sa_initial_acceptance_probability
- int _sa_num_transitions

Number of accepted transitions before annealing.

- bool opt sa num transitions
- int _sa_num_trials

Number of trials to estimate initial inverse temperature.

- bool _opt_sa_num_trials
- unsigned <u>seed</u>

Seed for the random number generator.

int _selection_size

Selection size (number of selected individuals)

- bool _opt_selection_size
- · std::string solution path

Path of the solution file.

· bool _opt_solution_path

double _target

Target.

- bool opt target
- · bool additive gaussian noise

Additive Gaussian noise.

· bool_allow_stay

In case no mutation occurs allow the current bit vector to stay unchanged (Bernoulli process)

· bool bm log norm infinite

Log infinite norm of the parameters.

• bool _bm_log_norm_l1

Log L1 norm of the parameters.

• bool _bm_negative_positive_selection

Negative and positive selection.

· bool _cache

Cache function evaluations.

· bool _cache_budget

Set cache on budget.

bool _concrete_solution

At the end, print or save the solution in the domain of the concrete function.

bool _fn_display

Display the function and exit.

bool _fn_get_bv_size

Print the size of bit vectors.

bool _fn_get_maximum

If the maximum is known then print it and exit with status 0 else exit with status 1.

• bool_fn_has_known_maximum

Does the function have a known maximum?

bool _fn_provides_incremental_evaluation

Does the function provide incremental evaluation?

· bool fn walsh transform

Compute the Walsh transform of the function.

· bool hea bound moment

Bound moment after update.

• bool _hea_log_delta

Log norm 2 of delta (in moment space)

• bool _hea_log_dtu

Log distance to uniform.

· bool _hea_log_error

Log error (moment discrepancy)

bool _hea_log_moment_matrix

Log moment matrix.

• bool _hea_log_selection

Log the distance between the target and the selection moment.

bool _hea_randomize_bit_order

Randomize bit order.

· bool _incremental_evaluation

Incremental evaluation.

bool _load_solution

Load a solution from a file.

bool _log_improvement

Log improvement.

· bool _map_display

Display the map.

bool _map_random

Sample a random map.

· bool _map_surjective

Ensure that the sampled linear or affine map is surjective.

· bool _mmas_strict

Strict (>) max-min ant system.

bool _negation

Negation (hence minimization) of the function.

· bool parsed modifier

Parsed modifier.

bool _pn_allow_stay

In case no mutation occurs allow the current bit vector to stay unchanged (Bernoulli process)

bool _print_defaults

Print the default parameters and exit.

bool _print_description

Print a description of the solution.

· bool _print_header

At the beginning, print the header.

bool _print_results

Print results.

• bool _print_solution

Print the solution.

bool _prior_noise

Prior noise.

bool _pv_log_entropy

Log entropy of probability vector.

bool _pv_log_pv

Log probability vector.

bool <u>restart</u>

Restart any algorithm an indefinite number of times.

· bool _rls_strict

Strict (>) random local search.

bool _rw_log_value

Log bit vector value during random walk.

bool _save_description

At the end, save a description of the solution in a file.

bool _save_results

At the end, save results in a file.

bool _save_solution

At the end, save the solution in a file.

bool _stop_on_maximum

Stop on maximum.

· bool _stop_on_target

Stop on target.

· int _input_size

Input bit vector size.

- · bool opt input size
- · int _output_size

Output bit vector size.

- bool_opt_output_size
- int _ts_length

Transvection sequence length.

- bool <u>opt_ts_length</u>
- int _ts_sampling_mode

Transvection sequence sampling mode.

- bool opt_ts_sampling_mode
- · bool _surjective

Ensure that the sampled linear or affine map is surjective.

Friends

- std::ostream & operator<< (std::ostream &, const Options &)

 Print a header containing the parameter values.
- std::ostream & operator<< (std::ostream &, const Options &)

Print a header containing the parameter values.

std::ostream & operator<< (std::ostream &, const Options &)

Print a header containing the parameter values.

6.81.1 Detailed Description

Command line options.

Definition at line 8 of file ffgen-options.hh.

6.81.2 Member Data Documentation

6.81.2.1 _path

```
std::string _path [private]
```

Path (relative or absolute) of a function file.

Path (relative or absolute) of a map file.

Path of a function file.

Definition at line 69 of file ffgen-options.hh.

The documentation for this class was generated from the following files:

- · app/ffgen-options.hh
- · app/hnco-options.hh
- · app/mapgen-options.hh
- · app/ffgen-options.cc
- app/hnco-options.cc
- app/mapgen-options.cc

6.82 ParameterLessPopulationPyramid Class Reference

Parameter-less Population Pyramid.

#include <hnco/algorithms/fast-efficient-p3/p3.hh>

Inheritance diagram for ParameterLessPopulationPyramid:

Public Member Functions

ParameterLessPopulationPyramid (int n)

Constructor.

• void init ()

Initialization.

• void maximize ()

Maximize.

· void finalize ()

Finalize.

Private Attributes

std::unique_ptr< Implementation > _pimpl
 Pointer to implementation.

Additional Inherited Members

6.82.1 Detailed Description

Parameter-less Population Pyramid.

Implemention of the Parameter-less Population Pyramid (P3 for short).

Author: Brian W. Goldman

Reference:

"Fast and Efficient Black Box Optimization using the Parameter-less Population Pyramid" by B. W. Goldman and W. F. Punch

Integrated into HNCO by Arnaud Berny

Definition at line 51 of file p3.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/fast-efficient-p3/p3.hh
- lib/hnco/algorithms/fast-efficient-p3/p3.cc

6.83 ParsedModifier Class Reference

Parsed modifier.

#include <hnco/functions/modifiers/parsed-modifier.hh>

Inheritance diagram for ParsedModifier:

Public Member Functions

ParsedModifier (Function *function, std::string expression)
 Constructor.

Information about the function

• int get_bv_size ()

Get bit vector size.

Evaluation

double eval (const bit_vector_t &)
 Evaluate a bit vector.

Private Attributes

• FunctionParser _fparser

Function parser.

• double _values [1]

Array of values.

Additional Inherited Members

6.83.1 Detailed Description

Parsed modifier.

Let f be the original function. Then the modified function is equivalent to $g \circ f$, where g is a real function defined by an expression g(x) provided as a string.

Definition at line 40 of file parsed-modifier.hh.

6.83.2 Constructor & Destructor Documentation

6.83.2.1 ParsedModifier()

Constructor.

Parameters

function	Decorated function
expression	Expression to parse

Definition at line 31 of file parsed-modifier.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/modifiers/parsed-modifier.hh
- · lib/hnco/functions/modifiers/parsed-modifier.cc

6.84 ParsedRealMultivariateFunction Class Reference

Parsed real multivariate function.

#include <hnco/functions/real/real-multivariate-function.hh>

Inheritance diagram for ParsedRealMultivariateFunction:

Public Member Functions

• ParsedRealMultivariateFunction (std::string expression)

Constructor.

• int get dimension ()

Get the dimension of vectors.

double eval (const std::vector< double > x)

Evaluate a real vector.

Private Attributes

• FunctionParser _fparser

Function parser.

• int _num_variables = 0

Number of variables.

6.84.1 Detailed Description

Parsed real multivariate function.

Definition at line 52 of file real-multivariate-function.hh.

6.84.2 Constructor & Destructor Documentation

6.84.2.1 ParsedRealMultivariateFunction()

Constructor.

Parameters

expression	Expression to parse

Definition at line 34 of file real-multivariate-function.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/real/real-multivariate-function.hh
- lib/hnco/functions/real/real-multivariate-function.cc

6.85 Partition Class Reference

Partition.

#include <hnco/functions/partition.hh>

Inheritance diagram for Partition:

Public Member Functions

• Partition ()

Constructor.

• int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

Instance generators

template < class Generator > void generate (int n, Generator generator)

Instance generator.

void random (int n, int upper_bound)

Random instance.

Display

• void display (std::ostream &stream)

Display

void describe (const bit_vector_t &x, std::ostream &stream)

Describe a bit vector.

Private Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector < int > _numbers
 Multiset of positive integers.

Friends

· class boost::serialization::access

6.85.1 Detailed Description

Partition.

Partition a finite multiset of positive integers into two subsets such that the sum of numbers in the first subset is the closest to the sum of numbers in the second subset.

The function computes the negation of the distance between the sum of numbers corresponding to ones in the bit vector and the sum of those corresponding to zeros. The negation is a consequence of the fact that algorithms in HNCO maximize rather than minimize a function.

Definition at line 53 of file partition.hh.

6.85.2 Member Function Documentation

6.85.2.1 generate()

```
void generate (  \mbox{int } n, \\ \mbox{Generator } generator ) \mbox{ [inline]}
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Number generator

Definition at line 86 of file partition.hh.

6.85.2.2 random()

```
void random (
          int n,
          int upper_bound ) [inline]
```

Random instance.

The numbers are sampled from the uniform distribution on [1..upper_bound].

Parameters

n	Size of bit vector
upper_bound	Upper bound of positive integers

Definition at line 102 of file partition.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/partition.hh
- · lib/hnco/functions/partition.cc

6.86 Pbil Class Reference

Population-based incremental learning.

```
#include <hnco/algorithms/pv/pbil.hh>
```

Inheritance diagram for Pbil:

6.86 Pbil Class Reference 223

Public Member Functions

Pbil (int n, int population_size)

void init ()

Initialization.

Constructor.

Setters

• void set_selection_size (int x)

Set the selection size.

void set_learning_rate (double x)

Set the learning rate.

Protected Member Functions

· void iterate ()

Single iteration.

Protected Attributes

Population _population

Population.

pv_t _mean

Mean of selected bit vectors.

Parameters

• int _selection_size = 1

Selection size.

• double <u>learning_rate</u> = 1e-3 *Learning rate*.

6.86.1 Detailed Description

Population-based incremental learning.

Reference:

S. Baluja and R. Caruana. 1995. Removing the genetics from the standard genetic algorithm. In Proceedings of the 12th Annual Conference on Machine Learning. 38–46.

Definition at line 41 of file pbil.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/pv/pbil.hh
- lib/hnco/algorithms/pv/pbil.cc

6.87 Permutation Class Reference

Permutation.

```
#include <hnco/map.hh>
```

Inheritance diagram for Permutation:

Public Member Functions

```
• void random (int n)
```

Random instance.

• void map (const bit_vector_t &input, bit_vector_t &output)

Мар

• int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

Private Member Functions

```
    template < class Archive >
        void save (Archive & ar, const unsigned int version) const
        Save
```

```
    template < class Archive > void load (Archive & ar, const unsigned int version)
    Load.
```

Private Attributes

permutation_t _permutation
 Permutation.

Friends

· class boost::serialization::access

6.87.1 Detailed Description

Permutation.

A permutation is a linear map f from F_2^n to itself defined by f(x) = y, where $y_i = x_{\sigma_i}$ and σ is a permutation of 0, 1, ..., n - 1.

Definition at line 139 of file map.hh.

6.87.2 Member Function Documentation

6.87.2.1 is_surjective()

```
bool is_surjective ( ) [inline], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 190 of file map.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/map.hh
- lib/hnco/map.cc

6.88 Plateau Class Reference

Plateau.

#include <hnco/functions/theory.hh>

Inheritance diagram for Plateau:

Public Member Functions

```
• Plateau (int bv_size)
```

Constructor.

• int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum ()

Check for a known maximum.

double get_maximum ()

Get the global maximum.

Private Attributes

· int _bv_size

Bit vector size.

6.88.1 Detailed Description

Plateau.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 244 of file theory.hh.

6.88.2 Member Function Documentation

6.88.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

```
_bv_size + 2
```

Reimplemented from Function.

Definition at line 268 of file theory.hh.

6.88.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 264 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/theory.hh
- lib/hnco/functions/theory.cc

6.89 PointValueException Class Reference

Point-value exception.

#include <hnco/exception.hh>

Inheritance diagram for PointValueException:

Public Member Functions

- PointValueException (const algorithm::point_value_t &pv)
- const algorithm::point_value_t & get_point_value () const Get point-value.

Protected Attributes

algorithm::point_value_t _pv
 Point-value.

6.89.1 Detailed Description

Point-value exception.

Definition at line 39 of file exception.hh.

The documentation for this class was generated from the following file:

• lib/hnco/exception.hh

6.90 Population Class Reference

Population.

#include <hnco/algorithms/population.hh>

Inheritance diagram for Population:

Public Types

typedef std::pair< int, double > index_value_t
 Index-value type.

Public Member Functions

Population (int population_size, int n)

Constructor.

· int size () const

Size.

• void random ()

Initialize the population with random bit vectors.

Get bit vectors for non const populations

```
    bit_vector_t & get_bv (int i)
```

Get a bit vector.

bit_vector_t & get_best_bv ()

Get best bit vector.

• bit_vector_t & get_best_bv (int i)

Get best bit vector.

• bit_vector_t & get_worst_bv (int i)

Get worst bit vector.

Get bit vectors for const populations

• const bit_vector_t & get_bv (int i) const

Get a bit vector.

• const bit_vector_t & get_best_bv () const

Get best bit vector.

• const bit_vector_t & get_best_bv (int i) const

Get best bit vector.

const bit_vector_t & get_worst_bv (int i) const

Get worst bit vector.

Get sorted values

double get_best_value (int i) const

Get best value.

· double get_best_value () const

Get best value.

Evaluation and sorting

void eval (function::Function *function)

Evaluate the population.

void eval (const std::vector< function::Function * > &functions)

Parallel evaluation of the population.

• void sort ()

Sort the lookup table.

void partial_sort (int selection_size)

Partially sort the lookup table.

void shuffle ()

Shuffle the lookup table.

Selection

void plus_selection (const Population &offsprings)

Plus selection.

void plus_selection (Population &offsprings)

Plus selection.

void comma_selection (const Population &offsprings)

Comma selection.

void comma_selection (Population &offsprings)

Comma selection.

Protected Attributes

```
    std::vector< bit_vector_t > _bvs
        Bit vectors.
    std::vector< index_value_t > _lookup
        Lookup table.
    std::function< bool(const index_value_t &, const index_value_t &)> _compare_index_value
        Binary operator for comparing index-value pairs.
```

6.90.1 Detailed Description

Population.

Definition at line 36 of file population.hh.

6.90.2 Member Function Documentation

6.90.2.1 comma_selection() [1/2]

Comma selection.

Implemented with a copy.

Precondition

Offspring population must be partially sorted.

Warning

The function does not break ties randomly (workaround: shuffle offsprings).

Definition at line 112 of file population.cc.

6.90.2.2 comma_selection() [2/2]

Comma selection.

Implemented with a swap. Should be faster than comma_selection with a copy.

Precondition

Offspring population must be partially sorted.

Warning

The function does not break ties randomly (workaround: shuffle offsprings). Modifies its argument.

Definition at line 126 of file population.cc.

6.90.2.3 get_best_bv() [1/4]

```
bit_vector_t& get_best_bv ( ) [inline]
```

Get best bit vector.

Precondition

The population must be sorted.

Definition at line 85 of file population.hh.

6.90.2.4 get_best_bv() [2/4]

```
const bit_vector_t& get_best_bv ( ) const [inline]
```

Get best bit vector.

Precondition

The population must be sorted.

Definition at line 117 of file population.hh.

6.90.2.5 get_best_bv() [3/4]

Get best bit vector.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 93 of file population.hh.

6.90.2.6 get_best_bv() [4/4]

Get best bit vector.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 125 of file population.hh.

6.90.2.7 get_best_value() [1/2]

```
double get_best_value ( ) const [inline]
```

Get best value.

Precondition

The population must be sorted.

Definition at line 154 of file population.hh.

6.90.2.8 get_best_value() [2/2]

```
double get_best_value ( \quad \text{int $i$ ) const [inline]}
```

Get best value.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 148 of file population.hh.

6.90.2.9 get_worst_bv() [1/2]

Get worst bit vector.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 101 of file population.hh.

6.90.2.10 get_worst_bv() [2/2]

Get worst bit vector.

Parameters

i Index in the sorted population

Precondition

The population must be sorted.

Definition at line 133 of file population.hh.

6.90.2.11 plus_selection() [1/2]

Plus selection.

Implemented with a copy.

Precondition

Both populations must be completely sorted.

Warning

The function does not break ties randomly (workaround: shuffle parents and offsprings).

Definition at line 74 of file population.cc.

6.90.2.12 plus_selection() [2/2]

Plus selection.

Implemented with a swap. Should be faster than plus_selection with a copy.

Precondition

Both populations must be completely sorted.

Warning

The function does not break ties randomly (workaround: shuffle parents and offsprings).

Modifies its argument.

Definition at line 93 of file population.cc.

6.90.3 Member Data Documentation

6.90.3.1 _compare_index_value

std::function<bool(const index_value_t&, const index_value_t&)> _compare_index_value [protected]

Initial value:

```
[](const index_value_t& a, const index_value_t& b) { return a.second > b.second; }
```

Binary operator for comparing index-value pairs.

Definition at line 57 of file population.hh.

6.90.3.2 _lookup

```
std::vector<index_value_t> _lookup [protected]
```

Lookup table.

Let p be of type std::pair<int, double>. Then p.first is the bv index in the unsorted population whereas p.second is the bv value.

Definition at line 54 of file population.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/population.hh
- · lib/hnco/algorithms/population.cc

6.91 PriorNoise Class Reference

Prior noise.

#include <hnco/functions/modifiers/prior-noise.hh>

Inheritance diagram for PriorNoise:

Public Member Functions

PriorNoise (Function *fn, neighborhood::Neighborhood *nh)
 Constructor.

Information about the function

```
• int get_bv_size ()
```

Get bit vector size.

double get_maximum ()

Get the global maximum.

bool has known maximum ()

Check for a known maximum.

• bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Evaluation

double eval (const bit_vector_t &)
 Evaluate a bit vector.

Private Attributes

• neighborhood::Neighborhood * _neighborhood

Neighborhood.

bit_vector_t _noisy_bv

Noisy bit vector.

Additional Inherited Members

6.91.1 Detailed Description

Prior noise.

Definition at line 37 of file prior-noise.hh.

6.91.2 Member Function Documentation

6.91.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Delegation is questionable here.

Reimplemented from Function.

Definition at line 69 of file prior-noise.hh.

6.91.2.2 has_known_maximum()

bool has_known_maximum () [inline], [virtual]

Check for a known maximum.

Delegation is questionable here.

Reimplemented from Function.

Definition at line 75 of file prior-noise.hh.

6.91.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

false

Reimplemented from Function.

Definition at line 79 of file prior-noise.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/modifiers/prior-noise.hh
- lib/hnco/functions/modifiers/prior-noise.cc

6.92 ProgressTracker Class Reference

ProgressTracker.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for ProgressTracker:

Classes

struct Event

Event.

Public Member Functions

• ProgressTracker (Function *function)

Constructor.

Evaluation

double eval (const bit_vector_t &)

Evaluate a bit vector.

double incremental_eval (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped
 — bits)

Incremental evaluation.

• void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Get information

• const Event & get_last_improvement ()

Get evaluation time.

```
Get the last improvement.double get_evaluation_time ()
```

Setters

- void set_log_improvement (bool x)
 Log improvement.
- void set_stream (std::ostream *x)
 Output stream.

Protected Member Functions

void update_last_improvement (double value)
 Update last improvement.

Protected Attributes

• Event _last_improvement

Last improvement.

StopWatch _stop_watch

Stop watch.

Parameters

```
    bool _log_improvement = false
        Log improvement.
    std::ostream * _stream = &std::cout
        Output stream.
```

6.92.1 Detailed Description

ProgressTracker.

A ProgressTracker is a CallCounter which keeps track the last improvement, that is its value and the number of evaluations needed to reach it.

Definition at line 217 of file controller.hh.

6.92.2 Member Function Documentation

6.92.2.1 get_last_improvement()

```
const Event& get_last_improvement ( ) [inline]
```

Get the last improvement.

Warning

If _last_improvement.num_evaluations is zero then _function has never been called. The Event returned by get_last_improvement has therefore no meaning.

Definition at line 291 of file controller.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

6.93 ProgressTrackerContext Class Reference

Log context for ProgressTracker.

```
#include <hnco/algorithms/log-context.hh>
```

Inheritance diagram for ProgressTrackerContext:

Public Member Functions

- ProgressTrackerContext (hnco::function::controller::ProgressTracker *pt)
 - Constructor.
- std::string get_context ()

Get context.

Private Attributes

hnco::function::controller::ProgressTracker * _pt

Progress tracker.

6.93.1 Detailed Description

Log context for ProgressTracker.

Definition at line 48 of file log-context.hh.

The documentation for this class was generated from the following file:

• lib/hnco/algorithms/log-context.hh

6.94 Projection Class Reference

Projection.

```
#include <hnco/map.hh>
```

Inheritance diagram for Projection:

Public Member Functions

```
    Projection (const std::vector< int > &bit_positions, int input_size)
```

Constructor.

void map (const bit_vector_t &input, bit_vector_t &output)

Мар

• int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

Private Attributes

• std::vector< int > _bit_positions

Bit positions.

• int _input_size

Input size.

6.94.1 Detailed Description

Projection.

The projection y of a bit vector x is x where we have dropped a given set of components.

```
Let I = \{i_1, i_2, \dots, i_m\} be a subset of \{1, 2, \dots, n\}.
```

A projection f from F_2^n to F_2^m , where $n \geq m$, is defined by f(x) = y, where, for all $j \in \{1, 2, \dots, m\}$, $y_j = x_{i_j}$.

If f is a projection and g is an injection with the same bit positions then their composition $f \circ g$ is the identity.

Definition at line 459 of file map.hh.

6.94.2 Constructor & Destructor Documentation

6.94.2.1 Projection()

Constructor.

The output size of the map is given by the size of bit_positions.

Parameters

bit_positions	Bit positions in the input from where output bits are copied	
input_size	Input size	

Precondition

```
input_size >= bit_positions.size()
```

Definition at line 164 of file map.cc.

6.94.3 Member Function Documentation

6.94.3.1 is_surjective()

```
bool is_surjective ( ) [inline], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 497 of file map.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/map.hh
- · lib/hnco/map.cc

6.95 PvAlgorithm Class Reference

Probability vector algorithm.

#include <hnco/algorithms/pv/pv-algorithm.hh>

Inheritance diagram for PvAlgorithm:

Public Member Functions

• PvAlgorithm (int n)

Constructor.

Setters for logging

void set_log_entropy (bool x)

Log entropy.

void set_log_num_components (int x)

Set the number of probability vector components to log.

void set_log_pv (bool x)

Log probability vector.

Protected Member Functions

void set_something_to_log ()
 Set flag for something to log.
 void log ()

Log.

Protected Attributes

pv_t _pv

Probability vector.

• double _lower_bound

Lower bound of probability.

double _upper_bound

Upper bound of probability.

Logging

• bool <u>log_entropy</u> = false

Log entropy.

• bool <u>log_pv</u> = false

Log probability vector.

• int _log_num_components = 5

Number of probability vector components to log.

6.95.1 Detailed Description

Probability vector algorithm.

Definition at line 35 of file pv-algorithm.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/pv-algorithm.hh
- lib/hnco/algorithms/pv/pv-algorithm.cc

6.96 Qubo Class Reference

Quadratic unconstrained binary optimization.

#include <hnco/functions/qubo.hh>

Inheritance diagram for Qubo:

6.96 Qubo Class Reference 245

Public Member Functions

• Qubo ()

Constructor.

void load (std::istream &stream)

Load an instance.

• int get by size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

Private Attributes

```
    std::vector< std::vector< double >> _q
    Matrix.
```

6.96.1 Detailed Description

Quadratic unconstrained binary optimization.

Its expression is of the form $f(x) = \sum_i Q_{ii} x_i + \sum_{i < j} Q_{ij} x_i x_j = x^T Q x$, where Q is an n x n upper-triangular matrix.

Qubo is the problem addressed by qbsolv. Here is its description as given on github:

Qbsolv, a decomposing solver, finds a minimum value of a large quadratic unconstrained binary optimization (Q← UBO) problem by splitting it into pieces solved either via a D-Wave system or a classical tabu solver.

There are some differences between WalshExpansion2 and Qubo:

- WalshExpansion2 maps 0/1 variables into -1/1 variables whereas Qubo directly deals with binary variables.
- Hence, there is a separate linear part in WalshExpansion2 whereas the linear part in Qubo stems from the diagonal elements of the given matrix.

qbsolv aims at minimizing quadratic functions whereas hnco algorithms aim at maximizing them. Hence Qubo::load negates all elements so that maximizing the resulting function is equivalent to minimizing the original Qubo.

References:

Michael Booth, Steven P. Reinhardt, and Aidan Roy. 2017. Partitioning Optimization Problems for Hybrid Classical/Quantum Execution. Technical Report. D-Wave.

```
https://github.com/dwavesystems/qbsolv
http://people.brunel.ac.uk/~mastjjb/jeb/orlib/bqpinfo.html
```

Definition at line 74 of file qubo.hh.

6.96.2 Member Function Documentation

6.96.2.1 load()

Load an instance.

Exceptions

Error

Definition at line 35 of file qubo.cc.

6.96.3 Member Data Documentation

6.96.3.1 _q

std::vector<std::vector<double> > _q [private]

Matrix.

n x n upper triangular matrix.

Definition at line 83 of file qubo.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/qubo.hh
- · lib/hnco/functions/qubo.cc

6.97 Random Struct Reference

Random numbers.

#include <hnco/random.hh>

Static Public Member Functions

• static double uniform ()

Next uniformly distributed sample.

• static double normal ()

Next normally distributed sample.

• static bool bernoulli ()

Next random bit.

Static Public Attributes

• static std::mt19937 generator

Mersenne Twister 19937 generator.

6.97.1 Detailed Description

Random numbers.

Definition at line 33 of file random.hh.

The documentation for this struct was generated from the following files:

- · lib/hnco/random.hh
- · lib/hnco/random.cc

6.98 RandomLocalSearch Class Reference

Random local search.

#include <hnco/algorithms/ls/random-local-search.hh>

Inheritance diagram for RandomLocalSearch:

Public Member Functions

• RandomLocalSearch (int n, neighborhood::Neighborhood *neighborhood)

Constructor.

· void init ()

Initialization.

void init (const bit_vector_t &x)

Explicit initialization.

void init (const bit_vector_t &x, double value)

Explicit initialization.

· void finalize ()

Finalize.

Setters

- void set_compare (std::function< bool(double, double)> x)
 - Set the binary operator for comparing evaluations.
- void set_patience (int x)

Set patience.

• void set_incremental_evaluation (bool x)

Set incremental evaluation.

Protected Member Functions

```
• void iterate ()
```

Single iteration.

• void iterate_full ()

Single iteration with full evaluation.

• void iterate_incremental ()

Single iteration with incremental evaluation.

Protected Attributes

```
\bullet \quad neighborhood :: Neighborhood * \_neighborhood
```

Neighborhood.

· int _num_failures

Number of failure.

Parameters

- std::function< bool(double, double)> _compare = std::greater_equal<double>()
 Binary operator for comparing evaluations.
- int _patience = 50

Patience.

• bool _incremental_evaluation = false

Incremental evaluation.

6.98.1 Detailed Description

Random local search.

Definition at line 39 of file random-local-search.hh.

6.98.2 Member Function Documentation

6.98.2.1 set_patience()

```
void set_patience (
          int x ) [inline]
```

Set patience.

Number of consecutive rejected moves before throwing a LocalMaximum exception

Parameters

x Patience

If $x \le 0$ then patience is considered infinite, meaning that the algorithm will never throw any LocalMaximum exception.

Definition at line 110 of file random-local-search.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/ls/random-local-search.hh
- lib/hnco/algorithms/ls/random-local-search.cc

6.99 RandomSearch Class Reference

Random search.

#include <hnco/algorithms/random-search.hh>

Inheritance diagram for RandomSearch:

Public Member Functions

- RandomSearch (int n)
 - Constructor.
- void init ()

Initialization.

Protected Member Functions

· void iterate ()

Single iteration.

Private Attributes

bit_vector_t _candidate
 Candidate.

Additional Inherited Members

6.99.1 Detailed Description

Random search.

Definition at line 31 of file random-search.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/random-search.hh
- lib/hnco/algorithms/random-search.cc

6.100 RandomWalk Class Reference

Random walk.

#include <hnco/algorithms/ls/random-walk.hh>

Inheritance diagram for RandomWalk:

Public Member Functions

```
    RandomWalk (int n, neighborhood::Neighborhood *neighborhood)
```

Constructor.

· void init ()

Initialization.

void init (const bit vector t &x)

Explicit initialization.

void init (const bit_vector_t &x, double value)

Explicit initialization.

· void log ()

Log.

Setters

void set_incremental_evaluation (bool x)

Set incremental evaluation.

void set_log_value ()
 Set log.

Protected Member Functions

• void iterate ()

Single iteration.

· void iterate_full ()

Single iteration with full evaluation.

void iterate_incremental ()

Single iteration with incremental evaluation.

Protected Attributes

neighborhood::Neighborhood * _neighborhood

Neighborhood.

· double _value

Value of the last visited bit vector.

Parameters

 bool _incremental_evaluation = false Incremental evaluation.

6.100.1 Detailed Description

Random walk.

The algorithm simply performs a random walk on the graph implicitly given by the neighborhood. At each iteration, the chosen neighbor does not depend on its evaluation. However optimization takes place as in random search, that is the best visited bit vector is remembered.

Definition at line 42 of file random-walk.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ls/random-walk.hh
- lib/hnco/algorithms/ls/random-walk.cc

6.101 RealMultivariateFunction Class Reference

Real multivariate function.

#include <hnco/functions/real/real-multivariate-function.hh>

Inheritance diagram for RealMultivariateFunction:

Public Member Functions

• virtual ~RealMultivariateFunction ()

Destructor.

• virtual int get_dimension ()=0

Get the dimension of vectors.

virtual double eval (const std::vector< double > x)=0

Evaluate a real vector.

6.101.1 Detailed Description

Real multivariate function.

Definition at line 35 of file real-multivariate-function.hh.

The documentation for this class was generated from the following file:

• lib/hnco/functions/real/real-multivariate-function.hh

6.102 RealMultivariateFunctionAdapter Class Reference

Real multivariate function adapter.

#include <hnco/functions/real/real-multivariate-function-adapter.hh>

Inheritance diagram for RealMultivariateFunctionAdapter:

Public Member Functions

RealMultivariateFunctionAdapter (RealRepresentation *rep, RealMultivariateFunction *fn)
 Constructor.

Information about the function

• int get_bv_size ()

Get bit vector size.

Evaluation

double eval (const bit_vector_t &x)
 Evaluate a bit vector.

Display

void describe (const bit_vector_t &x, std::ostream &stream)
 Describe a bit vector.

Private Member Functions

void convert (const bit_vector_t &x)

Convert a bit vector.

Private Attributes

```
• RealRepresentation * _representation
```

Real representation.

RealMultivariateFunction * _function

Real multivariate function.

std::vector< double > _rv

Real vector.

6.102.1 Detailed Description

Real multivariate function adapter.

Definition at line 37 of file real-multivariate-function-adapter.hh.

6.102.2 Constructor & Destructor Documentation

6.102.2.1 RealMultivariateFunctionAdapter()

Constructor.

Parameters

rep	Real representation	
fn	Real multivariate function	

Definition at line 59 of file real-multivariate-function-adapter.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/real/real-multivariate-function-adapter.hh
- lib/hnco/functions/real/real-multivariate-function-adapter.cc

6.103 RealRepresentation Class Reference

Real representation.

#include <hnco/functions/real/real-representation.hh>

Inheritance diagram for RealRepresentation:

Public Member Functions

- virtual ∼RealRepresentation ()
 - Destructor.
- virtual int size ()=0

Size of the representation.

• virtual double convert (hnco::bit_vector_t::const_iterator first, hnco::bit_vector_t::const_iterator last)=0

Convert a bit vector range into a double.

6.103.1 Detailed Description

Real representation.

Definition at line 35 of file real-representation.hh.

The documentation for this class was generated from the following file:

· lib/hnco/functions/real/real-representation.hh

6.104 Restart Class Reference

Restart.

#include <hnco/algorithms/decorators/restart.hh>

Inheritance diagram for Restart:

Public Member Functions

- Restart (int n, Algorithm *algorithm)
 - Constructor.
- void init ()

Initialization.

Private Member Functions

• void iterate ()

Optimize.

Private Attributes

Algorithm * _algorithm
 Algorithm.

Additional Inherited Members

6.104.1 Detailed Description

Restart.

Restart an Algorithm an indefinite number of times. Should be used in conjonction with OnBudgetFunction or StopOnMaximum.

Definition at line 38 of file restart.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/decorators/restart.hh
- lib/hnco/algorithms/decorators/restart.cc

6.105 Ridge Class Reference

Ridge.

#include <hnco/functions/theory.hh>

Inheritance diagram for Ridge:

Public Member Functions

• Ridge (int bv_size)

Constructor.

• int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

6.105.1 Detailed Description

Ridge.

Reference:

Thomas Jansen, Analyzing Evolutionary Algorithms. Springer, 2013.

Definition at line 208 of file theory.hh.

6.105.2 Member Function Documentation

6.105.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

2 * _bv_size

Reimplemented from Function.

Definition at line 232 of file theory.hh.

6.105.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 228 of file theory.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/theory.hh
- lib/hnco/functions/theory.cc

6.106 SimulatedAnnealing Class Reference

Simulated annealing.

#include <hnco/algorithms/ls/simulated-annealing.hh>

Inheritance diagram for SimulatedAnnealing:

Public Member Functions

• SimulatedAnnealing (int n, neighborhood::Neighborhood *neighborhood)

Constructor.

• void init ()

Initialization.

Setters

• void set_num_transitions (int x)

Set the number of accepted transitions before annealing.

• void set_num_trials (int x)

Set the Number of trials.

void set_initial_acceptance_probability (double x)

Set the initial acceptance probability.

• void set_beta_ratio (double x)

Set ratio for beta.

Private Member Functions

· void init_beta ()

Initialize beta.

· void iterate ()

Single iteration.

Private Attributes

 $\bullet \quad neighborhood {::} Neighborhood * _neighborhood\\$

Neighborhood.

• double _beta

Inverse temperature.

· double _current_value

Current value.

· int _transitions

Number of accepted transitions.

Parameters

• int num transitions = 50

Number of accepted transitions before annealing.

• int _num_trials = 100

Number of trials.

• double _initial_acceptance_probability = 0.6

Initial acceptance probability.

double _beta_ratio = 1.2

Ratio for beta.

Additional Inherited Members

6.106.1 Detailed Description

Simulated annealing.

Reference:

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (May 1983), 671–680.

Definition at line 44 of file simulated-annealing.hh.

6.106.2 Member Function Documentation

6.106.2.1 init_beta()

```
void init_beta ( ) [private]
```

Initialize beta.

Requires (2 * _num_trials) evaluations. This should be taken into account when using OnBudgetFunction.

Definition at line 34 of file simulated-annealing.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ls/simulated-annealing.hh
- lib/hnco/algorithms/ls/simulated-annealing.cc

6.107 SingleBitFlip Class Reference

One bit neighborhood.

#include <hnco/neighborhoods/neighborhood.hh>

Inheritance diagram for SingleBitFlip:

Public Member Functions

• SingleBitFlip (int n)

Constructor.

Private Member Functions

void sample_bits ()
 Sample bits.

Additional Inherited Members

6.107.1 Detailed Description

One bit neighborhood.

Definition at line 160 of file neighborhood.hh.

The documentation for this class was generated from the following file:

• lib/hnco/neighborhoods/neighborhood.hh

6.108 SingleBitFlipIterator Class Reference

Single bit flip neighborhood iterator.

#include <hnco/neighborhoods/neighborhood-iterator.hh>

Inheritance diagram for SingleBitFlipIterator:

Public Member Functions

• SingleBitFlipIterator (int n)

Constructor.

• bool has_next ()

Has next bit vector.

· const bit_vector_t & next ()

Next bit vector.

Private Attributes

size_t _index

Index of the last flipped bit.

Additional Inherited Members

6.108.1 Detailed Description

Single bit flip neighborhood iterator.

Definition at line 53 of file neighborhood-iterator.hh.

6.108.2 Constructor & Destructor Documentation

6.108.2.1 SingleBitFlipIterator()

```
SingleBitFlipIterator (
                int n ) [inline]
Constructor.
```

Parameters

n Size of bit vectors

Definition at line 65 of file neighborhood-iterator.hh.

The documentation for this class was generated from the following files:

- lib/hnco/neighborhoods/neighborhood-iterator.hh
- lib/hnco/neighborhoods/neighborhood-iterator.cc

6.109 SinusSummationCancellation Class Reference

Summation cancellation with sinus.

```
#include <hnco/functions/cancellation.hh>
```

Inheritance diagram for SinusSummationCancellation:

Public Member Functions

• SinusSummationCancellation (int n)

Constructor.

double eval (const bit_vector_t &x)

Evaluate a bit vector.

Additional Inherited Members

6.109.1 Detailed Description

Summation cancellation with sinus.

Reference:

M. Sebag and M. Schoenauer. 1997. A society of hill-climbers. In Proc. IEEE Int. Conf. on Evolutionary Computation. Indianapolis, 319–324.

Definition at line 104 of file cancellation.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/cancellation.hh
- · lib/hnco/functions/cancellation.cc

6.110 SixPeaks Class Reference

Six Peaks.

#include <hnco/functions/four-peaks.hh>

Inheritance diagram for SixPeaks:

Public Member Functions

· SixPeaks (int by size, int threshold)

Constructor.

int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

· int threshold

Threshold.

• int _maximum

Maximum.

6.110.1 Detailed Description

Six Peaks.

It is defined by

 $f(x) = max\{head(x, 0) + tail(x, 1) + head(x, 1) + tail(x, 0)\} + R(x)$

where:

- head(x, 0) is the length of the longest prefix of x made of zeros;
- head(x, 1) is the length of the longest prefix of x made of ones;
- tail(x, 0) is the length of the longest suffix of x made of zeros;
- tail(x, 1) is the length of the longest suffix of x made of ones;
- R(x) is the reward;
- R(x) = n if (head(x, 0) > t and tail(x, 1) > t) or (head(x, 1) > t and tail(x, 0) > t);
- R(x) = 0 otherwise;
- the threshold t is a parameter of the function.

This function has six maxima, of which exactly four are global ones.

For example, if n = 6 and t = 1:

- f(111111) = 6 (local maximum)
- f(1111110) = 5
- f(111100) = 10 (global maximum)

Reference:

J. S. De Bonet, C. L. Isbell, and P. Viola. 1996. MIMIC: finding optima by estimating probability densities. In Advances in Neural Information Processing Systems. Vol. 9. MIT Press, Denver.

Definition at line 128 of file four-peaks.hh.

6.110.2 Member Function Documentation

6.110.2.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

```
2 * _bv_size - _threshold - 1
```

Reimplemented from Function.

Definition at line 159 of file four-peaks.hh.

6.110.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 155 of file four-peaks.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/four-peaks.hh
- lib/hnco/functions/four-peaks.cc

6.111 SpinHerding Class Reference

Herding with spin variables.

```
#include <hnco/algorithms/hea/spin-herding.hh>
```

Public Types

enum { SAMPLE_GREEDY, SAMPLE_RLS, SAMPLE_DLS, LAST_SAMPLE }

Public Member Functions

• SpinHerding (int n)

Constructor.

· void init ()

Initialization.

void sample (const SpinMoment &target, bit_vector_t &x)

Sample a bit vector.

• double error (const SpinMoment &target)

Compute the error.

Getters

const SpinMoment & get_delta ()
 Get delta.

Setters

void set_randomize_bit_order (bool x)

Randomize bit order.

void set_sampling_method (int x)

Set the sampling method.

void set_num_seq_updates (int x)

Set the number of sequential updates per sample.

• void set_weight (double x)

Set the weight of second order moments.

Protected Member Functions

void compute_delta (const SpinMoment &target)

Compute delta.

void sample_greedy (bit_vector_t &x)

Sample by means of a greedy algorithm.

• double q_derivative (const bit_vector_t &x, int i)

Derivative of q.

• double q_variation (const bit_vector_t &x, int i)

Variation of q.

void sample_rls (bit_vector_t &x)

Sample by means of random local search.

void sample_dls (bit_vector_t &x)

Sample by means of deterministic local search.

Protected Attributes

SpinMoment _delta

Delta moment.

SpinMoment _count

Counter moment.

• permutation_t _permutation

Permutation.

• std::uniform_int_distribution< int > _choose_bit

Choose bit.

• int _time

Time.

Parameters

• bool <u>_randomize_bit_order</u> = false

Randomize bit order.

int _sampling_method = SAMPLE_GREEDY

Sampling method.

• int _num_seq_updates

Number of sequential updates per sample.

• double _weight = 1

Weight of second order moments.

6.111.1 Detailed Description

Herding with spin variables.

By spin variables, we mean variables taking values 1 or -1, instead of 0 or 1 in the case of binary variables.

Definition at line 37 of file spin-herding.hh.

6.111.2 Member Enumeration Documentation

6.111.2.1 anonymous enum

anonymous enum

Enumerator

SAMPLE_GREEDY	Greedy algorithm.
SAMPLE_RLS	Random local search.
SAMPLE_DLS	Deterministic local search.

Definition at line 97 of file spin-herding.hh.

6.111.3 Constructor & Destructor Documentation

6.111.3.1 SpinHerding()

Constructor.

Parameters

```
n Size of bit vectors
```

_num_seq_updates is initialized to n.

Definition at line 116 of file spin-herding.hh.

6.111.4 Member Function Documentation

6.111.4.1 q_variation()

Variation of q.

Up to a positive multiplicative constant. Only the sign of the variation matters to local search.

Definition at line 162 of file spin-herding.cc.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/hea/spin-herding.hh
- lib/hnco/algorithms/hea/spin-herding.cc

6.112 SpinMoment Struct Reference

Moment for spin variables.

#include <hnco/algorithms/hea/spin-moment.hh>

Public Member Functions

• SpinMoment (int n)

Constructor.

· void uniform ()

Set the moment to that of the uniform distribution.

• void init ()

Initialize accumulators.

void add (const bit_vector_t &x)

Update accumulators.

· void average (int count)

Compute average.

• void update (const SpinMoment &p, double rate)

Update moment.

· void bound (double margin)

Bound moment.

• double distance (const SpinMoment &p) const

Distance.

• double norm_2 () const

Compute the norm 2.

• double diameter () const

Compute the diameter.

• size_t size () const

Size.

· void display (std::ostream &stream)

Display.

Public Attributes

• std::vector< double > _first

First moment.

std::vector< std::vector< double >> _second

Second moment.

• double _weight = 1

Weight of second order moments.

6.112.1 Detailed Description

Moment for spin variables.

Definition at line 38 of file spin-moment.hh.

6.112.2 Member Data Documentation

6.112.2.1 _second

std::vector<std::vector<double> > _second

Second moment.

This is a lower triangular matrix with only zeros on the diagonal. Only entries $_$ second[i][j] with j < i are considered.

Definition at line 50 of file spin-moment.hh.

The documentation for this struct was generated from the following files:

- · lib/hnco/algorithms/hea/spin-moment.hh
- lib/hnco/algorithms/hea/spin-moment.cc

6.113 SteepestAscentHillClimbing Class Reference

Steepest ascent hill climbing.

#include <hnco/algorithms/ls/steepest-ascent-hill-climbing.hh>

Inheritance diagram for SteepestAscentHillClimbing:

Public Member Functions

- SteepestAscentHillClimbing (int n, neighborhood::Neighborhood)terator *neighborhood)
 - Constructor.
- void init ()

Initialization.

- void init (const bit_vector_t &x)
 - Explicit initialization.
- void init (const bit_vector_t &x, double value)

Explicit initialization.

Protected Member Functions

• void iterate ()

Single iteration.

Protected Attributes

std::vector < bit_vector_t > _candidates
 Potential candidate.

 neighborhood::NeighborhoodIterator * _neighborhood Neighborhood.

6.113.1 Detailed Description

Steepest ascent hill climbing.

Definition at line 39 of file steepest-ascent-hill-climbing.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ls/steepest-ascent-hill-climbing.hh
- lib/hnco/algorithms/ls/steepest-ascent-hill-climbing.cc

6.114 StopOnMaximum Class Reference

Stop on maximum.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for StopOnMaximum:

Public Member Functions

• StopOnMaximum (Function *function)

Constructor.

Evaluation

• double eval (const bit vector t &)

Evaluate a bit vector.

double incremental_eval (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped
 bits)

Incremental evaluation.

void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Additional Inherited Members

6.114.1 Detailed Description

Stop on maximum.

The member function eval throws an exception MaximumReached when its argument maximizes the decorated function.

Warning

The maximum is detected using the equality operator hence the result should be taken with care in case of non integer (floating point) function values.

Definition at line 91 of file controller.hh.

6.114.2 Constructor & Destructor Documentation

6.114.2.1 StopOnMaximum()

```
\label{thm:condition} \mbox{StopOnMaximum (} \\ \mbox{Function} \ * \ \mbox{function} \ ) \quad \mbox{[inline]}
```

Constructor.

Parameters

function Decorated function

Precondition

```
function->has_known_maximum()
```

Definition at line 99 of file controller.hh.

6.114.3 Member Function Documentation

6.114.3.1 eval()

Evaluate a bit vector.

Exceptions

MaximumReached

Implements Function.

Definition at line 32 of file controller.cc.

6.114.3.2 incremental_eval()

Incremental evaluation.

Exceptions

MaximumReached

Reimplemented from Function.

Definition at line 44 of file controller.cc.

6.114.3.3 update()

Update after a safe evaluation.

Exceptions

MaximumReached

Reimplemented from Function.

Definition at line 56 of file controller.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

6.115 StopOnTarget Class Reference

Stop on target.

#include <hnco/functions/controllers/controller.hh>

Inheritance diagram for StopOnTarget:

Public Member Functions

• StopOnTarget (Function *function, double target)

Constructor.

Evaluation

double eval (const bit_vector_t &)

Evaluate a bit vector.

double incremental_eval (const bit_vector_t &x, double value, const hnco::sparse_bit_vector_t &flipped
bits)

Incremental evaluation.

void update (const bit_vector_t &x, double value)

Update after a safe evaluation.

Private Attributes

double _target
 Target.

Additional Inherited Members

6.115.1 Detailed Description

Stop on target.

The member function eval throws an exception TargetReached when the value of its decorated function reaches a given target.

Warning

The target is detected using the greater or equal operator hence the result should be taken with care in case of non integer (floating point) function values.

Definition at line 135 of file controller.hh.

6.115.2 Constructor & Destructor Documentation

6.115.2.1 StopOnTarget()

Constructor.

Parameters

function	Decorated function	
target	Target	

Definition at line 148 of file controller.hh.

6.115.3 Member Function Documentation

6.115.3.1 eval()

Evaluate a bit vector.

Exceptions

TargetReached

Implements Function.

Definition at line 67 of file controller.cc.

6.115.3.2 incremental_eval()

Incremental evaluation.

Exceptions

TargetReached

Reimplemented from Function.

Definition at line 77 of file controller.cc.

6.115.3.3 update()

Update after a safe evaluation.

Exceptions

TargetReached

Reimplemented from Function.

Definition at line 87 of file controller.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/controllers/controller.hh
- lib/hnco/functions/controllers/controller.cc

6.116 StopWatch Class Reference

Stop watch.

```
#include <hnco/stop-watch.hh>
```

Public Member Functions

```
• void start ()
```

Start.

• void stop ()

Stop.

• double get_total_time ()

Get total time.

Private Attributes

```
• double _total_time = 0
```

Total time.

clock_t _start

Start time.

6.116.1 Detailed Description

Stop watch.

Definition at line 31 of file stop-watch.hh.

The documentation for this class was generated from the following file:

· lib/hnco/stop-watch.hh

6.117 SummationCancellation Class Reference

Summation cancellation.

#include <hnco/functions/cancellation.hh>

Inheritance diagram for SummationCancellation:

Public Member Functions

• SummationCancellation (int n)

Constructor.

int get_bv_size ()

Get bit vector size.

• double eval (const bit_vector_t &x)

Evaluate a bit vector.

• bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Protected Member Functions

void convert (const bit_vector_t &x)
 Convert a bit vector into a real vector.

Protected Attributes

```
    int _bv_size
        Bit vector size.
    std::vector< double > _buffer
        Buffer.
```

6.117.1 Detailed Description

Summation cancellation.

Encoding of a signed integer:

- · bit 0: sign
- bits 1 to 8: two's complement representation

Reference:

S. Baluja and S. Davies. 1997. Using optimal dependency-trees for combinatorial optimization: learning the structure of the search space. Technical Report CMU- CS-97-107. Carnegie-Mellon University.

Definition at line 48 of file cancellation.hh.

6.117.2 Constructor & Destructor Documentation

6.117.2.1 SummationCancellation()

```
SummationCancellation (
          int n ) [inline]
```

Constructor.

The bit vector size n must be a multiple of 9. The size of _buffer is then n / 9.

Parameters

n Size of the bit vector

Definition at line 71 of file cancellation.hh.

6.117.3 Member Function Documentation

6.117.3.1 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 87 of file cancellation.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/cancellation.hh
- · lib/hnco/functions/cancellation.cc

6.118 TargetReached Class Reference

target reached

#include <hnco/exception.hh>

Inheritance diagram for TargetReached:

Public Member Functions

TargetReached (const algorithm::point_value_t &pv)
 Constructor.

Additional Inherited Members

6.118.1 Detailed Description

target reached

Definition at line 62 of file exception.hh.

The documentation for this class was generated from the following file:

· lib/hnco/exception.hh

6.119 TournamentSelection Class Reference

Population with tournament selection.

#include <hnco/algorithms/ea/tournament-selection.hh>

Inheritance diagram for TournamentSelection:

Public Member Functions

- TournamentSelection (int population_size, int n)
 - Constructor.
- const bit_vector_t & select ()

Selection.

Setters

void set_tournament_size (int x)
 Set the tournament size.

Private Attributes

std::uniform_int_distribution < int > _choose_individual
 Random index.

Parameters

• int _tournament_size = 10 Tournament size.

Additional Inherited Members

6.119.1 Detailed Description

Population with tournament selection.

Definition at line 34 of file tournament-selection.hh.

6.119.2 Member Function Documentation

6.119.2.1 select()

```
const bit_vector_t & select ( )
```

Selection.

The selection only requires that the population be evaluated, not necessarily sorted.

Precondition

The population must be evaluated.

Definition at line 33 of file tournament-selection.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/tournament-selection.hh
- lib/hnco/algorithms/ea/tournament-selection.cc

6.120 Translation Class Reference

Translation.

```
#include <hnco/map.hh>
```

Inheritance diagram for Translation:

Public Member Functions

```
• void random (int n)
```

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output)

Мар

• int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

void set_bv (const bit_vector_t &bv)

Set the translation vector.

Private Member Functions

```
    template < class Archive > void save (Archive & ar, const unsigned int version) const Save.
```

```
    template < class Archive > void load (Archive & ar, const unsigned int version)
    Load.
```

Private Attributes

· bit_vector_t _bv

Translation vector

Friends

· class boost::serialization::access

6.120.1 Detailed Description

Translation.

A translation is an affine map f from F_2y^n to itself defined by f(x)=x+b, where b is an n-dimensional bit vector.

Definition at line 74 of file map.hh.

6.120.2 Member Function Documentation

6.120.2.1 is_surjective()

```
bool is_surjective ( ) [inline], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 125 of file map.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/map.hh
- lib/hnco/map.cc

6.121 Transvection Struct Reference

Transvection.

#include <hnco/transvection.hh>

Public Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const

• template < class Archive >

void load (Archive &ar, const unsigned int version)

Load.

• bool is_valid () const

Check validity.

bool is_valid (int n) const

Check validity.

· void display (std::ostream &stream) const

Display transvection.

• void random (int n)

Sample a random transvection.

· void random non commuting (int n, const Transvection &a)

Sample a random transvection.

void multiply (bit_vector_t &x) const

Multiply a bit vector from the left.

• void multiply (bit_matrix_t &M) const

Multiply a bit matrix from the left.

void multiply_right (bit_matrix_t &M) const

Multiply a bit matrix from the right.

Public Attributes

• int row_index

Row index.

• int column_index

Column index.

6.121.1 Detailed Description

Transvection.

We only consider transvections defined by matrices $\tau_{ij} = I_n + B_{ij}$, where I_n is the $n \times n$ identity matrix and B_{ij} is the matrix whose (i,j) entry is 1 and other entries are zero. Such a matrix is also sometimes called a shear matrix.

Transvections generate invertible matrices over the finite field F_2 .

Definition at line 53 of file transvection.hh.

6.121.2 Member Function Documentation

6.121.2.1 is_valid()

```
bool is_valid ( \quad \quad \text{int } n \text{ ) const}
```

Check validity.

Parameters

Definition at line 46 of file transvection.cc.

6.121.2.2 multiply() [1/2]

```
void multiply (
          bit_matrix_t & M ) const
```

Multiply a bit matrix from the left.

Parameters

```
M Bit matrix
```

Precondition

```
is_valid()
is_valid(bm_num_rows(M))
```

Warning

This function modifies the given bit vector.

Definition at line 115 of file transvection.cc.

6.121.2.3 multiply() [2/2]

```
void multiply (
          bit_vector_t & x ) const
```

Multiply a bit vector from the left.

Parameters

Precondition

```
is_valid()
```

is_valid(x.size())

Warning

This function modifies the given bit vector.

Definition at line 103 of file transvection.cc.

6.121.2.4 multiply_right()

```
void multiply_right (
          bit_matrix_t & M ) const
```

Multiply a bit matrix from the right.

Parameters

```
M Bit matrix
```

Precondition

```
is_valid()
is_valid(bm_num_rows(M))
```

Warning

This function modifies the given bit vector.

Definition at line 125 of file transvection.cc.

6.121.2.5 random()

```
void random ( \quad \text{int } n \ )
```

Sample a random transvection.

Parameters

Precondition

n > 1

Definition at line 59 of file transvection.cc.

6.121.2.6 random_non_commuting()

```
void random_non_commuting (  \qquad \qquad \text{int } n, \\  \qquad \qquad \text{const Transvection \& } a \text{ )}
```

Sample a random transvection.

This member function ensures that the sampled transvection does not commute with some given one.

Parameters

n	Dimension
а	Given transvection

Precondition

n > 1

Definition at line 75 of file transvection.cc.

The documentation for this struct was generated from the following files:

- · lib/hnco/transvection.hh
- lib/hnco/transvection.cc

6.122 Trap Class Reference

Trap.

```
#include <hnco/functions/trap.hh>
```

Inheritance diagram for Trap:

Public Member Functions

```
• Trap (int bv_size, int num_traps)
```

Constructor.

• int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

• bool has_known_maximum ()

Check for a known maximum.

• double get_maximum ()

Get the global maximum.

Private Attributes

• int _bv_size

Bit vector size.

• int _num_traps

Number of traps.

int _trap_size

Trap size.

6.122.1 Detailed Description

Trap.

Reference:

Kalyanmoy Deb and David E. Goldberg. 1993. Analyzing Deception in Trap Functions. In Foundations of Genetic Algorithms 2, L. Darrell Whitley (Ed.). Morgan Kaufmann, San Mateo, CA, 93–108.

Definition at line 43 of file trap.hh.

6.122.2 Constructor & Destructor Documentation

6.122.2.1 Trap()

Constructor.

Parameters

bv_size	Bit vector size
num_traps	Number of traps

Warning

bv_size must be a multiple of num_traps

Definition at line 64 of file trap.hh.

6.122.3 Member Function Documentation

6.122.3.1 get_maximum()

```
double get_maximum ( ) [inline], [virtual]
```

Get the global maximum.

Returns

_bv_size

Reimplemented from Function.

Definition at line 88 of file trap.hh.

6.122.3.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 84 of file trap.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/trap.hh
- lib/hnco/functions/trap.cc

6.123 TsAffineMap Class Reference

Transvection sequence affine map.

```
#include <hnco/map.hh>
```

Inheritance diagram for TsAffineMap:

Public Types

enum SamplingMode {
 Unconstrained, CommutingTransvections, UniqueSource, UniqueDestination,
 DisjointTransvections, NonCommutingTransvections }

Sampling mode.

Public Member Functions

• void random (int n, int t, SamplingMode mode)

Random instance.

void map (const bit_vector_t &input, bit_vector_t &output)

Мар

int get_input_size ()

Get input size.

• int get_output_size ()

Get output size.

• bool is_surjective ()

Check for surjective map.

void display (std::ostream &stream)

Display.

Private Member Functions

template < class Archive > void save (Archive & ar, const unsigned int version) const Save.

template < class Archive > void load (Archive & ar, const unsigned int version)
 Load.

Private Attributes

• transvection_sequence_t _ts

Transvection sequence

bit_vector_t _bv

Translation vector

Friends

· class boost::serialization::access

6.123.1 Detailed Description

Transvection sequence affine map.

An affine map f from F_2^m to F_2^n is defined by f(x) = Ax + b, where A is an n x m bit matrix and b is an n-dimensional bit vector.

In TsAffineMap, A is a finite product of transvections represented by a transvection_sequence_t.

Definition at line 511 of file map.hh.

6.123.2 Member Enumeration Documentation

6.123.2.1 SamplingMode

enum SamplingMode

Sampling mode.

Enumerator

Unconstrained	Unconstrained.
CommutingTransvections	Commuting transvections.
UniqueSource	Transvection sequence with unique source
UniqueDestination	Transvection sequence with unique destination
DisjointTransvections	Disjoint transvections.
NonCommutingTransvections	Non commuting transvections.

Definition at line 548 of file map.hh.

6.123.3 Member Function Documentation

6.123.3.1 is_surjective()

```
bool is_surjective ( ) [inline], [virtual]
```

Check for surjective map.

Returns

true

Reimplemented from Map.

Definition at line 591 of file map.hh.

6.123.3.2 random()

Random instance.

Parameters

n	Dimension
t	Length of sequence of transvections
mode	Sampling mode

Definition at line 185 of file map.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/map.hh
- lib/hnco/map.cc

6.124 Umda Class Reference

Univariate marginal distribution algorithm.

#include <hnco/algorithms/pv/umda.hh>

Inheritance diagram for Umda:

Public Member Functions

- Umda (int n, int population_size)

 Constructor.
- void init ()

 Initialization.

Setters

• void set_selection_size (int x)

Set the selection size.

Protected Member Functions

• void iterate ()

Single iteration.

Protected Attributes

• Population _population Population.

Parameters

• int _selection_size = 1 Selection size.

6.124.1 Detailed Description

Univariate marginal distribution algorithm.

Reference:

H. Mühlenbein. 1997. The equation for response to selection and its use for prediction. Evolutionary Computation 5, 3 (1997), 303–346.

Definition at line 41 of file umda.hh.

The documentation for this class was generated from the following files:

- lib/hnco/algorithms/pv/umda.hh
- · lib/hnco/algorithms/pv/umda.cc

6.125 UniformCrossover Class Reference

Uniform crossover.

#include <hnco/algorithms/ea/crossover.hh>

Inheritance diagram for UniformCrossover:

Public Member Functions

void breed (const bit_vector_t &parent1, const bit_vector_t &parent2, bit_vector_t &offspring)
 Breed.

6.125.1 Detailed Description

Uniform crossover.

Definition at line 56 of file crossover.hh.

6.125.2 Member Function Documentation

6.125.2.1 breed()

Breed.

The offspring is the uniform crossover of two parents.

Parameters

parent1	First parent
parent2	Second parent
offspring	Offspring

Implements Crossover.

Definition at line 30 of file crossover.cc.

The documentation for this class was generated from the following files:

- · lib/hnco/algorithms/ea/crossover.hh
- lib/hnco/algorithms/ea/crossover.cc

6.126 WalshExpansion Class Reference

Walsh expansion.

#include <hnco/functions/walsh/walsh-expansion.hh>

Inheritance diagram for WalshExpansion:

Public Member Functions

• WalshExpansion ()

Constructor.

int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

void display (std::ostream &stream)

Display.

void set_terms (const std::vector< function::WalshTerm > terms)

Set terms

Instance generators

template < class Generator > void generate (int n, int num_features, Generator generator)

Instance generator.

• void random (int n, int num_features)

Random instance.

Private Member Functions

template < class Archive >
 void serialize (Archive & ar, const unsigned int version)
 Save.

Private Attributes

std::vector< function::WalshTerm > _terms
 Terms.

Friends

· class boost::serialization::access

6.126.1 Detailed Description

Walsh expansion.

Its expression is of the form

$$f(x) = \sum_{u} a_u (-1)^{x \cdot u}$$

where the sum is over a subset of $\{0,1\}^n$ and $x \cdot u = \sum_i x_i u_i$ is mod 2. The real numbers a_u are the coefficients of the expansion and the bit vectors u are its feature vectors.

Definition at line 53 of file walsh-expansion.hh.

6.126.2 Member Function Documentation

6.126.2.1 generate()

```
void generate (
          int n,
          int num_features,
          Generator generator ) [inline]
```

Instance generator.

Parameters

n Size of bit vectors	
num_features	Number of feature vectors
generator	Coefficient generator

Definition at line 87 of file walsh-expansion.hh.

6.126.2.2 random()

```
void random (
          int n,
          int num_features ) [inline]
```

Random instance.

The coefficients are sampled from the normal distribution.

Parameters

n	Size of bit vector
num_features	Number of feature vectors

Definition at line 113 of file walsh-expansion.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/walsh/walsh-expansion.hh
- lib/hnco/functions/walsh/walsh-expansion.cc

6.127 WalshExpansion1 Class Reference

Walsh expansion of degree 1.

#include <hnco/functions/walsh/walsh-expansion-1.hh>

Inheritance diagram for WalshExpansion1:

Public Member Functions

• WalshExpansion1 ()

Constructor.

Instance generators

template < class Generator > void generate (int n, Generator generator)

Instance generator.

void random (int n)

Random instance.

Evaluation

• double eval (const bit_vector_t &)

Evaluate a bit vector.

• double incremental_eval (const bit_vector_t &x, double v, const hnco::sparse_bit_vector_t &flipped_bits)

Incremental evaluation.

Information about the function

• int get_bv_size ()

Get bit vector size.

• double get_maximum ()

Get the global maximum.

bool has_known_maximum ()

Check for a known maximum.

bool provides_incremental_evaluation ()

Check whether the function provides incremental evaluation.

Private Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)
 Serialize.

Private Attributes

std::vector< double > _linear
 Linear part.

Friends

· class boost::serialization::access

6.127.1 Detailed Description

Walsh expansion of degree 1.

Its expression is of the form

$$f(x) = \sum_{i} a_i (1 - 2x_i)$$

or equivalently

$$f(x) = \sum_{i} a_i (-1)^{x_i}$$

Definition at line 50 of file walsh-expansion-1.hh.

6.127.2 Member Function Documentation

6.127.2.1 generate()

```
void generate (  \mbox{int } n, \\ \mbox{Generator } generator \mbox{)} \mbox{ [inline]}
```

Instance generator.

Parameters

n	Size of bit vectors
generator	Weight generator

Definition at line 83 of file walsh-expansion-1.hh.

6.127.2.2 has_known_maximum()

```
bool has_known_maximum ( ) [inline], [virtual]
```

Check for a known maximum.

Returns

true

Reimplemented from Function.

Definition at line 130 of file walsh-expansion-1.hh.

6.127.2.3 provides_incremental_evaluation()

```
bool provides_incremental_evaluation ( ) [inline], [virtual]
```

Check whether the function provides incremental evaluation.

Returns

true

Reimplemented from Function.

Definition at line 135 of file walsh-expansion-1.hh.

6.127.2.4 random()

Random instance.

The weights are sampled from the normal distribution.

Parameters

```
n Size of bit vectors
```

Definition at line 97 of file walsh-expansion-1.hh.

The documentation for this class was generated from the following files:

- lib/hnco/functions/walsh/walsh-expansion-1.hh
- · lib/hnco/functions/walsh/walsh-expansion-1.cc

6.128 WalshExpansion2 Class Reference

Walsh expansion of degree 2.

#include <hnco/functions/walsh/walsh-expansion-2.hh>

Inheritance diagram for WalshExpansion2:

Public Member Functions

• WalshExpansion2 ()

Constructor.

int get_bv_size ()

Get bit vector size.

double eval (const bit_vector_t &)

Evaluate a bit vector.

Instance generators

template < class LinearGen , class QuadraticGen > void generate (int n, LinearGen linear_gen, QuadraticGen quadratic_gen)

Instance generators.

void random (int n)

Instance generator.

• void generate_ising1_long_range (int n, double alpha)

Generate one dimensional Ising model with long range interactions.

• void generate_ising1_long_range_periodic (int n, double alpha)

Generate one dimensional Ising model with long range interactions and periodic boundary conditions.

Private Member Functions

template < class Archive >
 void serialize (Archive & ar, const unsigned int version)
 Serialize.

• void resize (int n)

Resize data structures.

Private Attributes

• std::vector< double > _linear

Linear part.

std::vector< std::vector< double >> _quadratic

Quadratic part.

Friends

· class boost::serialization::access

6.128.1 Detailed Description

Walsh expansion of degree 2.

Its expression is of the form

$$f(x) = \sum_{i} a_i (1 - 2x_i) + \sum_{i < j} a_{ij} (1 - 2x_i) (1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{i} a_i (-1)^{x_i} + \sum_{i < j} a_{ij} (-1)^{x_i + x_j}$$

Definition at line 50 of file walsh-expansion-2.hh.

6.128.2 Member Function Documentation

6.128.2.1 generate()

```
void generate (
          int n,
          LinearGen linear_gen,
          QuadraticGen quadratic_gen ) [inline]
```

Instance generators.

Parameters

n	Size of bit vectors
linear_gen	Generator for the linear part
quadratic_gen	Generator for the quadratic part

Definition at line 95 of file walsh-expansion-2.hh.

6.128.2.2 generate_ising1_long_range()

Generate one dimensional Ising model with long range interactions.

Similar to a Dyson-Ising model except for the finite, instead of infinite, linear chain of spins.

Its expression is of the form

$$f(x) = \sum_{ij} J(d_{ij})(1 - 2x_i)(1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{ij} J(d_{ij})(-1)^{x_i + x_j}$$

where $J(d_{ij})$ is the interaction between sites i and j, $d_{ij}=|i-j|$, and $J(n)=n^{-\alpha}$.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

Parameters

n	Size of bit vectors
alpha	Exponential decay parameter

Definition at line 82 of file walsh-expansion-2.cc.

6.128.2.3 generate_ising1_long_range_periodic()

Generate one dimensional Ising model with long range interactions and periodic boundary conditions.

Similar to a Dyson-Ising model except for the finite, instead of infinite, linear chain of spins.

Its expression is of the form

$$f(x) = \sum_{i,j} J(d_{ij})(1 - 2x_i)(1 - 2x_j)$$

or equivalently

$$f(x) = \sum_{ij} J(d_{ij})(-1)^{x_i + x_j}$$

where $J(d_{ij})$ is the interaction between sites i and j, $d_{ij} = \min\{|i-j|, n-|i-j|\}$, and $J(n) = n^{-\alpha}$.

Since we are maximizing f or minimizing -f, the expression of f is compatible with what can be found in physics textbooks.

Parameters

n	Size of bit vectors
alpha	Exponential decay parameter

Definition at line 103 of file walsh-expansion-2.cc.

6.128.2.4 random()

```
void random ( \quad \text{int } n \text{ ) } \quad [\text{inline}]
```

Instance generator.

The weights are sampled from the normal distribution.

Parameters

```
n Size of bit vector
```

Definition at line 117 of file walsh-expansion-2.hh.

6.128.3 Member Data Documentation

6.128.3.1 _quadratic

```
std::vector<std::vector<double> > _quadratic [private]
```

Quadratic part.

Represented as a lower triangular matrix (without its diagonal).

Definition at line 73 of file walsh-expansion-2.hh.

The documentation for this class was generated from the following files:

- · lib/hnco/functions/walsh/walsh-expansion-2.hh
- lib/hnco/functions/walsh/walsh-expansion-2.cc

6.129 WalshTerm Struct Reference

Walsh transform term.

```
#include <hnco/functions/walsh-term.hh>
```

Public Member Functions

template < class Archive > void serialize (Archive & ar, const unsigned int version)
 Serialize.

Public Attributes

• std::vector< bool > feature

Feature.

· double coefficient

Coefficient.

6.129.1 Detailed Description

Walsh transform term.

Definition at line 35 of file walsh-term.hh.

6.129.2 Member Data Documentation

6.129.2.1 feature

std::vector<bool> feature

Feature.

Implemented with a vector bool instead of a bit_vector_t to reduce the memory consumption.

Definition at line 42 of file walsh-term.hh.

The documentation for this struct was generated from the following file:

• lib/hnco/functions/walsh-term.hh

308 Class Documentation

Chapter 7

File Documentation

7.1 tests/test-bv-from-stream.cc File Reference

```
#include <chrono>
#include <iostream>
#include <iterator>
#include <fstream>
#include "hnco/bit-vector.hh"
#include "hnco/random.hh"
Include dependency graph for test-bv-from-stream.cc:
```


Functions

- bool check ()
- int main (int argc, char *argv[])

7.1.1 Detailed Description

Check bv_from_stream.

7.2 tests/test-transvection-is-involution.cc File Reference

```
#include <chrono>
#include <iostream>
#include <iterator>
#include "hnco/transvection.hh"
```

Include dependency graph for test-transvection-is-involution.cc:

Functions

- bool check_involution ()
- int main (int argc, char *argv[])

7.2.1 Detailed Description

Check Transvection::random.

Check that the Transvection sampled by Transvection::random is an involution.

7.3 tests/test-ts-random-commuting-is-involution.cc File Reference

```
#include <chrono>
#include <iostream>
#include <iterator>
```

#include "hnco/transvection.hh"

Include dependency graph for test-ts-random-commuting-is-involution.cc:

Functions

- bool check_involution ()
- int main (int argc, char *argv[])

7.3.1 Detailed Description

Check ts_random_commuting.

Check that the transvection_sequence_t sampled by ts_random_commuting is an involution.

7.4 tests/test-ts-random-commuting.cc File Reference

```
#include <chrono>
#include <iostream>
#include <iterator>
#include "hnco/transvection.hh"
```

Include dependency graph for test-ts-random-commuting.cc:

Functions

- bool check_ts (const transvection_sequence_t &ts)
- · bool check ()
- int main (int argc, char *argv[])

7.4.1 Detailed Description

Check ts_random_commuting.

Check that all transvections in the sequence are pairwise commuting.

7.5 tests/test-ts-random-disjoint-is-involution.cc File Reference

```
#include <chrono>
#include <iostream>
#include <iterator>
#include "hnco/transvection.hh"
```

Include dependency graph for test-ts-random-disjoint-is-involution.cc:

Functions

- bool check_involution ()
- int main (int argc, char *argv[])

7.5.1 Detailed Description

Check ts_random_disjoint.

Check that the transvection_sequence_t sampled by ts_random_disjoint is an involution.

7.6 tests/test-ts-random-disjoint.cc File Reference

```
#include <chrono>
#include <iostream>
#include <iterator>
#include "hnco/transvection.hh"
```

Include dependency graph for test-ts-random-disjoint.cc:

Functions

- bool check_ts (const transvection_sequence_t &ts)
- · bool check ()
- int main (int argc, char *argv[])

7.6.1 Detailed Description

Check ts_random_disjoint.

Check that all transvections in the sequence are pairwise disjoint.

7.7 tests/test-ts-random-non-commuting.cc File Reference

```
#include <chrono>
#include <iostream>
#include <iterator>
#include "hnco/transvection.hh"
```

Include dependency graph for test-ts-random-non-commuting.cc:

Functions

- bool **check_ts** (const transvection_sequence_t &ts)
- bool check ()
- int main (int argc, char *argv[])

7.7.1 Detailed Description

Check ts_random_non_commuting.

Check that all consecutive transvections in the sequence do not commute.

7.8 tests/test-ts-random-unique-destination-is-involution.cc File Reference

```
#include <chrono>
#include <iostream>
#include <iterator>
```

#include "hnco/transvection.hh"

Include dependency graph for test-ts-random-unique-destination-is-involution.cc:

Functions

- bool check_involution ()
- int main (int argc, char *argv[])

7.8.1 Detailed Description

Check ts_random_unique_destination.

Check that the transvection_sequence_t sampled by ts_random_unique_destination is an involution.

7.9 tests/test-ts-random-unique-source-is-involution.cc File Reference

```
#include <chrono>
#include <iostream>
#include <iterator>
#include "hnco/transvection.hh"
```

Include dependency graph for test-ts-random-unique-source-is-involution.cc:

Functions

- bool check_involution ()
- int main (int argc, char *argv[])

7.9.1 Detailed Description

Check ts_random_unique_source.

Check that the transvection_sequence_t sampled by ts_random_unique_source is an involution.

Index

_compare_index_value	DYNAMICS_MINIMIZE_NORM, 62
Population, 234	BitMoment, 63
_expression	bm_add_columns
AbstractMaxSat, 49	hnco, 25
_functions	bm_add_rows
Algorithm, 56	hnco, 25
lookup	bm_identity
Population, 235	hnco, 25
_path	bm_invert
Options, 215	hnco, 26
_q	bm_multiply
Qubo, 246	hnco, 26
_quadratic	bm_rank
WalshExpansion2, 306	hnco, 27
_second	bm_row_echelon_form
SpinMoment, 270	hnco, 27
_weight	bm_solve
ModelParameters, 156	hnco, 27
	bm_solve_upper_triangular
AbstractLabs, 47	hnco, 28
AbstractMaxSat, 48	BmPbil, 64
_expression, 49	RESET_BIT_VECTOR, 67
load, 49	RESET_ITERATION, 67
add	RESET_NO_RESET, 67
ModelParameters, 155	SAMPLING_ASYNCHRONOUS, 67
AdditiveGaussianNoise, 50	SAMPLING_ASYNCHRONOUS_FULL_SCAN, 67
AffineMap, 51	SAMPLING_SYNCHRONOUS, 67
is_surjective, 52	set_selection_size, 67
random, 52	breed
Algorithm, 53	BiasedCrossover, 60
_functions, 56	Crossover, 76
finalize, 55	UniformCrossover, 297
init, 55	bv_from_vector_bool
set_solution, 56	hnco, 29
update_solution, 56	bv_to_vector_bool
average	hnco, 29
ModelParameters, 155	
	Cache, 68
bernoulli_trials	Cache, 69
MultiBitFlip, 161	provides_incremental_evaluation, 70
BernoulliProcess, 57	CallCounter, 70
BernoulliProcess, 58, 59	comma_selection
set_allow_stay, 59	Population, 230
set_probability, 59	CommutingTransvections
BiasedCrossover, 60	TsAffineMap, 293
breed, 60	CompactGa, 72
bit_t	CompleteSearch, 73
hnco, 23	compute_walsh_transform
BitHerding, 61	hnco::function, 44
DYNAMICS_MAXIMIZE_INNER_PRODUCT, 62	Controller, 74

provides_incremental_evaluation, 75 Crossover, 76	Partition, 221 WalshExpansion, 299
breed, 76	WalshExpansion1, 301
2.656, 7.6	WalshExpansion2, 304
DeceptiveJump, 77	generate_ising1_long_range
get_maximum, 78	WalshExpansion2, 304
has_known_maximum, 78	generate_ising1_long_range_periodic
Decorator, 79	WalshExpansion2, 305
DisjointTransvections	GeneticAlgorithm, 101
TsAffineMap, 293	GeneticAlgorithm, 102
DyadicRealRepresentation, 80	set_allow_stay, 103
DyadicRealRepresentation, 81	get_best_bv
DYNAMICS_MAXIMIZE_INNER_PRODUCT	Population, 231, 232
BitHerding, 62	get_best_value
DYNAMICS_MINIMIZE_NORM	Population, 232
BitHerding, 62	get_last_improvement
	ProgressTracker, 239
EqualProducts, 81	get_maximum
generate, 83	DeceptiveJump, 78
random, 83	FourPeaks, 91
Error, 83	Function, 94
eval	FunctionMapComposition, 98
NearestNeighborlsingModel1, 167	Hiff, 115
NearestNeighborlsingModel2, 170	Jump, 126
OnBudgetFunction, 185	LeadingOnes, 130
StopOnMaximum, 274	LongPath, 139
StopOnTarget, 277	Needle, 173
Exception, 85	OneMax, 188
	Plateau, 226
Factorization, 86	PriorNoise, 236
Factorization, 87	Ridge, 258
load, 88	SixPeaks, 266
feature	Trap, 291
WalshTerm, 307	get_worst_bv
finalize	Population, 233
Algorithm, 55	Herening Pall 100
FirstAscentHillClimbing, 88	HammingBall, 103
FourPeaks, 90	HammingBall, 104
get_maximum, 91	HammingSphere, 105
has_known_maximum, 91	HammingSphere, 106
Function, 92	HammingSphereIterator, 106
get_maximum, 94	HammingSphereIterator, 108
incremental_eval, 95	has_known_maximum DeceptiveJump, 78
provides_incremental_evaluation, 95	FourPeaks, 91
safe_eval, 95	FunctionMapComposition, 99
FunctionFactory, 96	Hiff, 115
FunctionMapComposition, 97	Jump, 126
FunctionMapComposition, 98	LeadingOnes, 130
get_maximum, 98	LinearFunction, 133
has_known_maximum, 99	LongPath, 140
FunctionPlugin, 99	Needle, 173
FunctionPlugin, 100	OneMax, 188
generate	Plateau, 226
EqualProducts, 83	PriorNoise, 236
LinearFunction, 133	Ridge, 258
NearestNeighborlsingModel1, 167	SixPeaks, 266
NearestNeighborlsingModel2, 170	SummationCancellation, 281
NkLandscape, 181	Trap, 291
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·

WalshExpansion1, 301	Hypercubelterator, 117
Hboa, 108	Implementation 119
Hea	Implementation, 118
Hea< Moment, Herding >, 112	incremental_eval Function, 95
Hea < Moment, Herding >, 110	OnBudgetFunction, 185
Hea, 112	StopOnMaximum, 274
LOG_DELTA, 112	StopOnTarget, 277
LOG_DTU, 112	init
LOG_ERROR, 112	Algorithm, 55
LOG_MOMENT_MATRIX, 112	ModelParameters, 155
LOG_SELECTION, 112	init beta
set_reset_period, 113	SimulatedAnnealing, 260
set_selection_size, 113	Injection, 119
Hiff, 114	Injection, 120
get_maximum, 115	is_in_range
has_known_maximum, 115	hnco, 29, 30
hnco, 19	is_surjective
bit_t, 23	AffineMap, 52
bm_add_columns, 25	LinearMap, 135
bm_add_rows, 25	Map, 143
bm_identity, 25	MapComposition, 145
bm_invert, 26	Permutation, 225
bm_multiply, 26	Projection, 242
bm_rank, 27	Translation, 285
bm_row_echelon_form, 27	TsAffineMap, 293
bm_solve, 27	is valid
bm_solve_upper_triangular, 28	Transvection, 286
bv_from_vector_bool, 29	IterativeAlgorithm, 120
bv_to_vector_bool, 29	IterativeAlgorithm, 122
is_in_range, 29, 30	maximize, 122
perm_identity, 30	set_num_iterations, 123
perm_random, 30	Iterator, 123
sbm_multiply, 31	
sparse_bit_matrix_t, 24	Jump, 125
sparse_bit_vector_t, 24 transvection sequence t, 24	get_maximum, 126
transvection_sequence_t, 24 ts_is_valid, 31	has_known_maximum, 126
ts_multiply, 33 ts_random, 34	Labs, 127
ts_random_commuting, 34	LabsMeritFactor, 128
ts_random_communing, 34	LastEvaluation, 129
ts random non commuting, 35	LeadingOnes, 129
ts random unique destination, 36	get_maximum, 130
ts random unique source, 36	has_known_maximum, 130
hnco::algorithm, 37	LinearFunction, 131
hnco::algorithm::bm_pbil, 40	generate, 133
hnco::algorithm::fast_efficient_p3, 40	has_known_maximum, 133
hnco::algorithm::hea, 41	provides_incremental_evaluation, 133
hnco::exception, 41	random, 133
hnco::function, 42	LinearMap, 134
compute_walsh_transform, 44	is_surjective, 135
hnco::function::controller, 44	random, 135
hnco::function::modifier, 45	load AbetraetMaySat 40
hnco::function::real, 45	AbstractMaxSat, 49 Factorization, 88
hnco::neighborhood, 46	MaxNae3Sat, 147
hnco::random, 46	Qubo, 245
HncoEvaluator, 115	LocalMaximum, 136
Human, 116	LOG_DELTA
numan, mo	LOQ_DELIN

Hea< Moment, Herding >, 112	provides_incremental_evaluation, 167
LOG_DTU	random, 167
Hea< Moment, Herding >, 112	NearestNeighborlsingModel2, 168
LOG_ERROR	eval, 170
Hea< Moment, Herding >, 112	generate, 170
LOG_MOMENT_MATRIX	provides_incremental_evaluation, 171
Hea< Moment, Herding >, 112	random, 171
LOG SELECTION	Needle, 172
Hea< Moment, Herding >, 112	get_maximum, 173
LogContext, 137	has_known_maximum, 173
LongPath, 138	Negation, 174
get_maximum, 139	provides_incremental_evaluation, 175
has_known_maximum, 140	Neighborhood, 176
	_
Ltga, 140	map, 178
Map, 142	mutate, 178
	Neighborhood, 177
is_surjective, 143	NeighborhoodIterator, 179
map	NeighborhoodIterator, 179
Neighborhood, 178	NkLandscape, 180
MapComposition, 143	generate, 181
is_surjective, 145	random, 182
MapComposition, 144	random_structure, 182
maximize	NonCommutingTransvections
IterativeAlgorithm, 122	TsAffineMap, 293
MaximumReached, 145	NpsPbil, 182
MaxNae3Sat, 146	
load, 147	OnBudgetFunction, 184
MaxSat, 147	eval, 185
random, 148, 149	incremental_eval, 185
Mimic, 149	update, 186
Mmas, 152	OneMax, 186
Model, 153	
	get_maximum, 188
ModelParameters, 154	has_known_maximum, 188
_weight, 156	provides_incremental_evaluation, 188
add, 155	OnePlusLambdaCommaLambdaGa, 189
average, 155	OnePlusLambdaCommaLambdaGa, 190
init, 155	OnePlusOneEa, 191
update, 156	OnePlusOneEa, 192
Modifier, 157	set_allow_stay, 193
MuCommaLambdaEa, 158	set_num_iterations, 193
MuCommaLambdaEa, 159	Options, 193
set_allow_stay, 160	_path, 215
MultiBitFlip, 160	
bernoulli_trials, 161	ParameterLessPopulationPyramid, 216
MultiBitFlip, 161	ParsedModifier, 217
reservoir_sampling, 162	ParsedModifier, 218
multiply	ParsedRealMultivariateFunction, 218
Transvection, 287	ParsedRealMultivariateFunction, 219
multiply_right	Partition, 220
	generate, 221
Transvection, 288	random, 221
MuPlusLambdaEa, 162	
MuPlusLambdaEa, 164	Pbil, 222
set_allow_stay, 164	perm_identity
mutate	hnco, 30
Neighborhood, 178	perm_random
	hnco, 30
NearestNeighborIsingModel1, 165	Permutation, 224
eval, 167	is_surjective, 225
generate, 167	Plateau, 225

get_maximum, 226	random_non_commuting
has_known_maximum, 226	Transvection, 288
plus_selection	random structure
Population, 233, 234	NkLandscape, 182
PointValueException, 227	RandomLocalSearch, 247
Population, 228	set_patience, 248
_compare_index_value, 234	RandomSearch, 249
_lookup, 235	RandomWalk, 250
comma_selection, 230	RealMultivariateFunction, 252
get_best_bv, 231, 232	RealMultivariateFunctionAdapter, 253
get best value, 232	RealMultivariateFunctionAdapter, 254
get_worst_bv, 233	RealRepresentation, 254
plus_selection, 233, 234	reservoir_sampling
PriorNoise, 235	MultiBitFlip, 162
get_maximum, 236	RESET_BIT_VECTOR
has_known_maximum, 236	BmPbil, 67
provides_incremental_evaluation, 237	RESET ITERATION
ProgressTracker, 237	BmPbil, 67
get last improvement, 239	RESET_NO_RESET
ProgressTracker::Event, 84	BmPbil, 67
ProgressTrackerContext, 240	Restart, 255
Projection, 241	Ridge, 257
is_surjective, 242	get_maximum, 258
Projection, 242	has_known_maximum, 258
provides_incremental_evaluation	
Cache, 70	safe_eval
Controller, 75	Function, 95
Function, 95	SAMPLE_DLS
LinearFunction, 133	SpinHerding, 268
NearestNeighborlsingModel1, 167	SAMPLE_GREEDY
NearestNeighborlsingModel2, 171	SpinHerding, 268
Negation, 175	SAMPLE_RLS
OneMax, 188	SpinHerding, 268
PriorNoise, 237	SAMPLING_ASYNCHRONOUS
WalshExpansion1, 302	BmPbil, 67
PvAlgorithm, 243	SAMPLING_ASYNCHRONOUS_FULL_SCAN
T Wilgoriann, 2 to	BmPbil, 67
q_variation	SAMPLING_SYNCHRONOUS
SpinHerding, 269	BmPbil, 67
Qubo, 244	SamplingMode
_q, 246	TsAffineMap, 293
load, 245	sbm_multiply
,	hnco, 31
Random, 246	select
random	TournamentSelection, 283
AffineMap, 52	set_allow_stay
EqualProducts, 83	BernoulliProcess, 59
LinearFunction, 133	GeneticAlgorithm, 103
LinearMap, 135	MuCommaLambdaEa, 160
MaxSat, 148, 149	MuPlusLambdaEa, 164
NearestNeighborlsingModel1, 167	OnePlusOneEa, 193
NearestNeighborlsingModel2, 171	set_num_iterations
NkLandscape, 182	IterativeAlgorithm, 123
Partition, 221	OnePlusOneEa, 193
Transvection, 288	set_patience
TsAffineMap, 294	RandomLocalSearch, 248
WalshExpansion, 299	set_probability
WalshExpansion1, 302	BernoulliProcess, 59
WalshExpansion2, 306	set_reset_period

Hea< Moment, Herding >, 113	is_valid, 286
set_selection_size	multiply, 287
BmPbil, 67	multiply_right, 288
Hea< Moment, Herding >, 113	random, 288
set_solution	random_non_commuting, 288
Algorithm, 56	transvection_sequence_t
SimulatedAnnealing, 259	hnco, 24
init_beta, 260	Trap, 289
SingleBitFlip, 261	get_maximum, 291
SingleBitFlipIterator, 262	has_known_maximum, 291
SingleBitFlipIterator, 263	Trap, 290
SinusSummationCancellation, 263	ts_is_valid
SixPeaks, 264	hnco, 31
get_maximum, 266 has_known_maximum, 266	ts_multiply
sparse_bit_matrix_t	hnco, 33 ts random
hnco, 24	hnco, 34
sparse_bit_vector_t	ts_random_commuting
hnco, 24	hnco, 34
SpinHerding, 266	ts random disjoint
q_variation, 269	hnco, 35
SAMPLE_DLS, 268	ts random non commuting
SAMPLE GREEDY, 268	hnco, 35
SAMPLE_RLS, 268	ts_random_unique_destination
SpinHerding, 269	hnco, 36
SpinMoment, 269	ts_random_unique_source
_second, 270	hnco, 36
SteepestAscentHillClimbing, 271	TsAffineMap, 292
StopOnMaximum, 272	CommutingTransvections, 293
eval, 274	DisjointTransvections, 293
incremental_eval, 274	is_surjective, 293
StopOnMaximum, 273	NonCommutingTransvections, 293
update, 274	random, 294
StopOnTarget, 275	SamplingMode, 293
eval, 277	Unconstrained, 293
incremental_eval, 277	UniqueDestination, 293
StopOnTarget, 276	UniqueSource, 293
update, 277	
StopWatch, 278	Umda, 294
SummationCancellation, 279	Unconstrained
has_known_maximum, 281	TsAffineMap, 293
SummationCancellation, 280	UniformCrossover, 296
Towast December 1 004	breed, 297
TargetReached, 281	UniqueDestination
tests/test-bv-from-stream.cc, 309	TsAffineMap, 293
tests/test-transvection-is-involution.cc, 310 tests/test-ts-random-commuting-is-involution.cc, 310	UniqueSource
tests/test-ts-random-commuting-is-involution.cc, 310	TsAffineMap, 293
tests/test-ts-random-confinding.cc, 311 tests/test-ts-random-disjoint-is-involution.cc, 312	update
tests/test-ts-random-disjoint.cc, 313	ModelParameters, 156
tests/test-ts-random-non-commuting.cc, 314	OnBudgetFunction, 186
tests/test-ts-random-unique-destination-is-involution.cc,	StopOnMaximum, 274
315	StopOnTarget, 277
tests/test-ts-random-unique-source-is-involution.cc, 316	update_solution
TournamentSelection, 282	Algorithm, 56
select, 283	WalshExpansion, 297
Translation, 284	generate, 299
is_surjective, 285	random, 299
Transvection, 285	WalshExpansion1, 299

```
generate, 301
has_known_maximum, 301
provides_incremental_evaluation, 302
random, 302
WalshExpansion2, 302
_quadratic, 306
generate, 304
generate_ising1_long_range, 304
generate_ising1_long_range_periodic, 305
random, 306
WalshTerm, 306
feature, 307
```