NAME: VEDANT JADHAV

REG: 21BCE2796

Assignment 3

Penguin Classification Analysis

Problem Statement:

The Penguin Classification Analysis problem involves predicting the species of a penguin based on various physical characteristics. The dataset includes information about the body mass, culmen length, culmen depth, flipper length, and sex of different penguin species. The problem is typically approached as a classification problem, where the target variable is the penguin species, and the features are the physical characteristics of the penguins. Accurate classification of penguin species can also help researchers understand the effects of climate change and other environmental factors on penguin populations. The problem can also be useful for conservation efforts, as it can help identify and protect endangered penguin species.

Attribute Information:

- Species: penguin species (Chinstrap, Adélie, or Gentoo)
- Island: island name (Dream, Torgersen, or Biscoe) in Antarctica
- culmen_length_mm: culmen length (mm)
- culmen_depth_mm: culmen depth (mm)
- flipper_length_mm: flipper length (mm)
- body_mass_g: body mass (g)
- Sex: penguin sex

What is culmen?

The upper margin of the beak or bill is referred to as the culmen and the measurement is taken using calipers with one jaw at the tip of the upper mandible and the other at base of the skull or the first feathers depending on the standard chosen.

Perform the below Tasks to complete the Assignment:-

Clustering the data and performing classification algorithms

- 1. Download the dataset: Dataset
- 2. Load the dataset into the tool.
- 3. Perform Below Visualizations.
- Univariate Analysis

- Bi- Variate Analysis
- Multi-Variate Analysis
 - 1. Perform descriptive statistics on the dataset.
 - 2. Check for Missing values and deal with them.
 - 3. Find the outliers and replace them outliers 7.Check the correlation of independent variables with the target
 - 4. Check for Categorical columns and perform encoding.
 - 5. Split the data into dependent and independent variables.
 - 6. Scaling the data
 - 7. Split the data into training and testing 12.check the training and testing data shape.

```
import pandas as pd
# Load the dataset
df = pd.read csv('/content/penguins size.csv')
df.head()
                      culmen length mm culmen depth mm
  species
              island
flipper_length_mm
O Adelie Torgersen
                                   39.1
                                                     18.7
181.0
1 Adelie Torgersen
                                   39.5
                                                     17.4
186.0
  Adelie Torgersen
                                   40.3
                                                     18.0
195.0
3 Adelie Torgersen
                                    NaN
                                                      NaN
NaN
                                   36.7
                                                     19.3
4 Adelie Torgersen
193.0
   body_mass_g
                   sex
0
        3750.0
                  MALE
1
        3800.0
                FEMALE
2
        3250.0
                FEMALE
3
           NaN
                   NaN
4
        3450.0
                FEMALE
```

Perform Visualizations:

a. Univariate Analysis:

```
import matplotlib.pyplot as plt
import seaborn as sns
```

```
# Example for culmen_length_mm
sns.histplot(df['culmen_length_mm'], kde=True)
plt.xlabel('Culmen Length (mm)')
plt.ylabel('Count')
plt.title('Distribution of Culmen Length')
plt.show()
```

Distribution of Culmen Length

b. Bi-Variate Analysis:

```
# Example: Culmen Length vs. Culmen Depth
sns.scatterplot(x='culmen_length_mm', y='culmen_depth_mm', data=df)
plt.xlabel('Culmen Length (mm)')
plt.ylabel('Culmen Depth (mm)')
plt.title('Culmen Length vs. Culmen Depth')
plt.show()
```

Culmen Length vs. Culmen Depth

c. Multi-Variate Analysis:

Example: Pairplot
sns.pairplot(df)
plt.show()

Descriptive Statistics:

<pre>df.describe()</pre>							
cul body mass		culmen_depth_mm	flipper_length_mm				
count 342.000000	342.000000	342.000000	342.000000				
mean 4201.75438	43.921930 6	17.151170	200.915205				
std 801.954536	5.459584	1.974793	14.061714				
min	32.100000	13.100000	172.000000				

2700.000000			
25%	39.225000	15.600000	190.000000
3550.000000			
50%	44.450000	17.300000	197.000000
4050.000000			
75%	48.500000	18.700000	213.000000
4750.000000			
max	59.600000	21.500000	231.000000
6300.000000			

Check for Missing Values:

```
df.isnull().sum()
# Handle missing values if necessary
                       0
species
                       0
island
culmen length mm
                       2
culmen depth mm
                       2
flipper length mm
                       2
                       2
body mass g
                      10
sex
dtype: int64
```

Find and Replace Outliers:

```
from scipy import stats

# Example: Z-score for 'culmen_length_mm'
z_scores = stats.zscore(df['culmen_length_mm'])
outliers = (z_scores > 3) | (z_scores < -3)

# Replace outliers with a suitable strategy (e.g., mean or median)
df.loc[outliers, 'culmen_length_mm'] = df['culmen_length_mm'].median()</pre>
```

Check Correlation:

0.656181				
culmen_depth_mm	-0.235053		1.000000	-
0.583851				
flipper_length_mm	0.656181		-0.583851	
1.000000				
body_mass_g	0.595110		-0.471916	
$0.87\overline{1202}$				
sex_FEMALE	-0.323210		-0.355333	-
$0.2\overline{44215}$				
sex MALE	0.348378		0.368696	
$0.2\overline{5}1283$				
	body_mass_g	sex_FEMALE	sex_MALE	
culmen_length_mm	0.595110	-0.323210	0.348378	
culmen_depth_mm	-0.471916	-0.355333	0.368696	
flipper_length_mm	0.871202	-0.244215	0.251283	
body_mass_g	1.000000	-0.409315	0.422023	
sex_FEMALE	-0.409315	1.000000	-0.938024	
sex_MALE	0.422023	-0.938024	1.000000	
_				

Categorical Encoding:

```
df = pd.get_dummies(df, columns=['sex'], drop_first=True)
df.head()
              island culmen_length_mm culmen_depth_mm
  species
flipper_length_mm \
O Adelie Torgersen
                                  39.1
                                                    18.7
181.0
1 Adelie Torgersen
                                  39.5
                                                    17.4
186.0
2 Adelie Torgersen
                                  40.3
                                                    18.0
195.0
3 Adelie Torgersen
                                   NaN
                                                     NaN
NaN
4 Adelie Torgersen
                                  36.7
                                                    19.3
193.0
                            sex MALE
   body_mass_g
                sex FEMALE
0
        3750.0
                         0
                                   1
1
        3800.0
                         1
                                   0
2
                         1
                                   0
        3250.0
3
           NaN
                         0
                                   0
4
        3450.0
```

Split Data:

```
X = df.drop('species', axis=1)
y = df['species']
```

Scaling Data:

```
# Drop the 'Island' column before scaling
X = df.drop(['species', 'island'], axis=1)

# Scale the numeric features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
```

Split into Training and Testing Data:

```
from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state=42)
```

Check Data Shape:

```
print("X_train shape:", X_train.shape)
print("X_test shape:", X_test.shape)

X_train shape: (275, 6)
X_test shape: (69, 6)
```