

EFFECT OF Zeg₂ SOURCE VARIA Pazeg-Pario, Piezoelectric P

Technical Report No. 1 10 the Office of Naval Research

> by W. B. Harrison

Contract N00014-76-C-0623 NR

December 1977

Reproduction in whole or in part is for any purpose of the United States

EFFECT OF Zron Source variations on PbZron-PbTig PIEZOELECTRIC PROPERTIES.

Technical Report No. 1 to the
Office of Naval Research

(14) TR-1 /

W. B./Harrison

Contract Nopp14-76-C-0623 NR 032-566

Dec 1977

12 41p.

Reproduction in whole or in part is permitted for any purpose of the United States Government

Honeywell Inc.
Ceramics Center
Defense Electronics Division
1885 Douglas Drive
Minneapolis, Minnesota 55422

Approved for public released
Distribution Unlimited

ABSTRACT

 ZrO_2 , as derived from three zircon source minerals and many process variations, was physically and chemically analyzed. The impact of the ZrO_2^{η} variations obtained was then evaluated in both dry and wet blended lead zirconate-lead titanate, high drive type piezoelectric compositions. Proper purification and blending of the ZrO_2^{η} is shown to yield PZ-PT material with uniform low and high drive piezoelectric behavior. Single precipitated ZrO_2^{η} and dry blending are shown to be highly variable processes.

1718	White Section
ie c	Buff Section
INANHOUNC!	0
USTIFUENTI	W/
J.t	in on sil
un	and the same
17	0
	ON JAWAII ADILITY PORCE
PISTRIBUTI	ON/AVAILABILITY CODES
eist ributi eis t.	AVAIL. and/or SPECIAL

TABLE OF CONTENTS

Section		Page
I	INTRODUCTION	1
II	EXPERIMENTAL PROCEDURE	2
	A. Derivation of ZrO ₂	2
	B. Characterization of ZrO ₂	6
	C. Wet Blended PZ-PT	6
	D. Dry Blended PZ-PT	7
Ш	RESULTS AND DISCUSSION	8
	A. Zircon Raw Material	8
	B. ZrO ₂ Materials	10
	C. Physical and Electrical Behavior of Wet Blended PZ-PT	15
	D. Physical and Electrical Behavior of Dry Blended PZ-PT	29
IV	SUMMARY AND CONCLUSIONS	34
v	ACKNOWLEDGEMENTS	35

LIST OF ILLUSTRATIONS

Figure		Page
1	Microstructure of PZ-PT compositions made from first precipitate ZrO ₂	18
2	Microstructure of PZ-PT compositions made from double precipitate and Harshaw ZrO ₂	21
3	Microstructure of PZ-PT made from Honeywell ZrO ₂ derived from TBZ	24

ETALLICE CONTRACTOR

LIST OF TABLES

Table		Page
1	ZrO ₂ materials produced	5
2	Chemical and particle size analysis of zircon sand	9
3	Percent loss in weight of zirconium oxide materials	10
4	Major impurities in calcining ZrO2	12
5	Particle size analysis of calcined ZrO2 in 1976	13
6	Bulk and pressed density of ZrO ₂ powders	15
7	Density and dielectric constant	16
8	Low drive piezoelectric properties at five days aging for wet blended batches	25
9	High drive piezoelectric properties after 100 days aging for wet blended batches	27
10	Aging rate of piezoelectric properties for wet blended batches	28
11	Density and dielectric constant of fired dry blended PZ-PT batches	30
12	Low drive piezoelectric properties at five days aging for dry blended PZ-PT batches	32
13	Percent aging rate of piezoelectric properties for dry blended PZ-PT batches	32
14	High drive piezoelectric properties of dry blended PZ-PT batches	33

I. INTRODUCTION

Most of the Navy's active and passive transducers contain lead zirconate-lead titanate (PZ-PT) ceramic elements. These materials have been used extensively in transducers because they are capable of operating at both low and high frequencies, high stress amplitudes, high powers and large bandwidths at high efficiencies. Where these properties are required, PZ-PT ceramics are the most cost-effective approach known. However, there are still certain limitations in the uniformity of performance, related primarily to the variability of the source of ZrO_2 used. This program was initiated to study the source of variability in ZrO_2 and its impact on the piezoelectric performance of a typical high drive projector type PZ-PT composition. The impact of ZrO_2 derived from various zircon sources, in both a dry and wet blend PZ-PT batching approach, was evaluated.

II. EXPERIMENTAL PROCEDURE

Honeywell's approach to this study was based on a well-established capability in producing piezoelectric ceramic materials for various Navy programs over the past 20 years. Zircon (ZrO · SiO₂) was obtained from a number of sources and processed into ZrO₂ by the standard commercial process used at the Harshaw Chemical Company* for piezoelectric grade ZrO₂. A second approach derived ZrO₂ from the standard Honeywell alkoxide process, which uses tetra-N-butyl zirconate (TNBZ) as a ZrO₂ source. The ZrO₂ produced by each of these processes was then fully chemically and physically characterized. The reactivity of each ZrO₂ in PZ-PT was evaluated and used to determine how these ZrO₂ variations impact the behavior and properties of PZ-PT. These processes are described in this section.

A. DERIVATION OF ZrO2

There are essentially two minerals from which ZrO_2 may be derived. The most abundant and commonly used material is zircon, a zirconium silicate $(\operatorname{ZrO}_2 \cdot \operatorname{SiO}_2)$. Commercial deposits of zircon are found in Florida and Georgia in this country and in extensive Australia, India and Africa deposits. A second mineral, baddelyite, is a naturally occurring ZrO_2 found in Brazil and Africa, and contains 10 to 20 percent impurities of SiO_2 , TiO_2 and $\operatorname{Fe}_2\operatorname{O}_3$. Both materials are found in secondary deposits of heavy beach sands. After grinding, the lighter free silica is washed away from the zircon or baddelyite, and much of the TiO_2 and $\operatorname{Fe}_2\operatorname{O}_3$ in the form of a slightly magnetic ilmenite is magnetically eliminated.

^{*}Harshaw Chemical Company, Division of Kewanee Oil Company Cleveland, Ohio 44106.

For this program, about 2000 pounds of zircon sand were obtained from each of three sources: the Florida Starke mine (Harshaw's mormal source), the Folkston mine in Georgia, and an Australian source. Sand from the Georgia and Australian sources was procured and chemically analyzed by Harshaw as part of their subcontracted effort on this program. Two lots from each source were obtained because the first was accidentally contaminated during early stages of processing. Harshaw submitted a five-pound sample of each of these six lots to Honeywell. The particle size distribution was determined by a sieve analysis, and the bulk density and color of each was noted. Since the Australian zircon was obtained in an uncalcined state, a portion of the second lot sample was calcined at 900°C and reevaluated. Harshaw then converted each source of zircon to zirconium oxide by their standard purification process outlined below:

(Zircon)

$$ZrO_2 \cdot SiO_2 + 4NaOH$$
(Typical) $\rightarrow Na_2SiO_3 + Na_2ZrO_3 + 2H_2O$ (1)

$$Na_{2}ZrO_{3} + 2HC1 \rightarrow ZrOC1_{2} + 2NaC1 + H_{2}O$$
 (2)

(Typical) First Precipitate*
$$ZrOCl_2 + 2NH_4OH + H_2O \rightarrow ZrO_2 \cdot X H_2O + 2 NH_4Cl + H_2O$$
 (3)

$$ZrO_{2} \cdot X H_{2}O + HC1 + H_{2}O \rightarrow 2 ZrO OHC1 + H_{2}O$$
 (4)

(Typical) Second Precipitate**
$$ZrOOHC1 + NaOH + H_2O \rightarrow ZrO_2 \cdot X H_2O + NaC1 + H_2O$$
 (5)

$$ZrO_2 \cdot X H_2O + Heat \rightarrow ZrO_2 + H_2O$$
 (6)

Zircon was reacted with a molten alkali, such as sodium hydroxide, to produce the products shown in equation (1). The water soluble sodium silicate was washed from the insoluble sodium zirconate, which was then reacted

^{*}Materials delivered to Honeywell from Harshaw.

with hydrochloric acid, according to equation (2), to form zirconium oxychloride. As shown in equation (3), this is next reacted with a hydroxide, such as ammonium hydroxide, to produce zirconium hydroxide or the first precipitate. This precipitate can be calcined to produce ZrO_2 , as in equation (6), or redisolved in an acid, equation (4), and reacted with another hydroxide, equation (5), to produce a second precipitate.

About 500 pounds of each first precipitate, second precipitate and normal calcine were delivered by Harshaw to Honeywell for further processing. About 10 pounds of each first and second precipitated $\rm ZrO_2 \cdot X H_2O$ materials were then calcined for eight hours in clean, dense MgO crucibles at 600, 900 or 1200°C. About four pounds of the calcined $\rm ZrO_2$ were then micronized in a micropulverizer through an 1/8 inch opening screen. Table 1 gives a breakdown of the various $\rm ZrO_2$ materials produced for this program.

A second method of generating five pound batches of $\rm ZrO_2$ was investigated at Honeywell where tetra-N-butyl zirconate (TNBZ)* was hydrolyzed to $\rm Zr$ (OH) $_4$ and then calcined for 12 hours at 500°C to produce $\rm ZrO_2$. In addition to a 100% $\rm ZrO_2$ product made by this process, four other mixtures of zirconium and titanium oxide were produced by blending titanium-N-butyl titanate (TNBT)** with the TNBZ to study the impact of titanium impurities in $\rm ZrO_2$. A five pound batch of each $\rm ZrO_2$ was made, in which 0.02, 0.08, 0.18 and 0.36% $\rm TiO_2$ was added.

The amount of water or other decomposition products associated with each material after the first or second precipitation, and all stages of calcination, were determined by measuring the weight loss on ignition after four hours at 900℃.

^{*}Obtained from Kay-Fries Chemical Inc., Montvale, NJ 07645, American distribution for Dynamit-Nobel.

^{**}Obtained from E.I. DuPont Photo Products, Electronic Materials Division, Wilmington, DE 19898

Table 1. ZrO₂ materials produced.

Type Material	ZrO ₂ Source	Calcination Temperature	Present State		Quantity ed/Micronize
Alkoxide ZrO2	TNBZ	500°C	ZrO ₂	5 lbs *	0
Alkoxide ZrO2	TNBZ/T	500°C	ZrO2 + 0.02% TiO2	5 lbs *	0
Alkoxide ZrO2	TNBZ/T	500°C	ZrO ₂ + 0.08% TiO ₂	5 lbs *	0
Alkoxide ZrO2	TNBZ/T	500°C	ZrO ₂ + 0. 18% TiO ₂	5 lbs *	0
Alkoxide ZrO2	TNBZ/T	500°C	ZrO ₂ + 0.36% TiO ₂	5 lbs *	0
First Precipitate	Australia	0 **	ZrO ₂ + X H ₂ O	758	
	Georgia	0 **	ZrO ₂ + X H ₂ O	722	
	Florida	0 **	ZrO ₂ + X H ₂ O	673	
	Australia	600	ZrO2	0.5	4 *
	Georgia	600		1.0	4 *
	Florida	600		0.5	4 *
	Australia	900		1.0	4 *
	Georgia	900		1.0	4 *
	Florida	900		1.0	4 *
	Australia	1200		0.3 *	4 *
	Georgia	1200		1.0 *	4 *
	Florida	1200	Vice surrous S	1.0 *	4 *
Second Precipitate	Australia	0 **	ZrO ₂ + X H ₂ O	477	
	Georgia	0 **	ZrO ₂ + X H ₂ O	460	
	Florida	0 **	ZrO ₂ + X H ₂ O	397	
	Australia	600	ZrO ₂	3	4 *
	Georgia	600		3	4 *
	Florida	600	end all distributions	5	5 *
	Australia	900		3	4 *
	Georgia	900		4	4 *
	Florida	900		4	4 *
	Australia	1200		3 *	4 *
	Georgia	1200		3 *	4 *
	Florida	1200	e de la constant	3 *	4 *
	Australia	Unknown **			400 *
	Georgia	Unknown **			395 *
	Florida	Unknown **	+		334 *

^{*} Material characterized and batched.

^{**} Material supplied from Harshaw subcontract.

B. CHARACTERIZATION OF ZrO2

Each of the ${\rm ZrO}_2$ materials with asterisks in Table 1 was characterized to determine as much as possible about the physical and chemical differences that result from the ${\rm ZrO}_2$ processing variables. The bulk density and pressed density (2900 psi) of each ${\rm ZrO}_2$ were determined by the standard volumetric and weight approach. The ultimate crystallite size associated with each material was determined from high magnification photos (to 30,000X) made with an electron transmission microscope. The particle or agglomerated size was also determined by the MSA centrifuge approach. The spectrographic approach was used to determine the chemical impurities associated with each type of ${\rm ZrO}_2$.

C. WET BLENDED PZ-PT

Each of the ZrO₂ lots in Table 1, except the first shipment and unpulverized materials, was used to prepare a six kilogram, high drive PZ-PT batch according to the compositional formula:

Pb.
$$94^{Sr}$$
. $06^{(Zr)}$. 53^{Ti} . 47^{O_3} + 0.005 wt. % Fe₂O₃.

The only variation in materials used was the ZrO₂. The LOI of each ZrO₂ was used to compensate for the Zr content. Each batch was (1) wet ball milled for two hours with an equal amount of water, (2) pan dried, (3) granulated, (4) calcined at 900℃ for five hours, (5) cooled and micropulverized, (6) wet blended with methocel and stearic acid, (7) spray dried, (8) pressed into 1 inch diameter by 0.2 inch thick disc at 6000 psi, (9) burned off in air at 830℃ for five hours and cooled, and (10) checked for unfired density. Twelve discs were fired in closed magneisum oxide saggers with 10 grams of PbZrO₃ to 1290℃ for two hours to a cone 13 at 6 o'clock. The density of the fired pieces was measured and each disc was ground to a thickness of 0.100 inch, electroded with silver paste, and fired at 750℃ in a Trent wire mesh belt furnace.

After cooling, the unpoled capacitance and electrical dissipation were measured and each disc was polarized at 6kV for 60 seconds at 140°C. The low field capacitance, electrical dissipation, resonant frequency, anti-resonant frequency, and resonant resistance were then measured at 1, 5, 15, 30 and 90 days. The high field capacitance and electrical dissipation were determined at 1000 hertz after 100 days of aging and after 60 seconds running at 5, 10 and 15 volts/mil. A minimum of 24 hours was allowed between each successive higher driving field.

A small, fired fragment of each batch was optically polished and etched in 5:1:1 solution at 95°C for 30 seconds. This solution contained five parts of saturated NH $_4$ Cl solution, one part H $_2$ O and one part concentrated H $_2$ SO $_4$. A typical area of each sample was photographed at magnification of 400X.

D. DRY BLENDED PZ-PT

Nine dry blended batches were prepared from the 600, 900 and 1200°C calcined double precipitated ZrO_2 produced from the three zircon sources. The same high drive composition used for the wet blended part of this program was used. Each raw material was dry blended for 10 minutes in a V-cone blender, starting with Fe_2O_3 and ZrO_2 . Then, TiO_2 , $SrCO_3$ and PbO were added and each blended another 10 minutes in the V-cone blender. The complete batch was emptied into a plastic bag and kneaded until a uniform color was obtained, and finally V-cone blended another 10 minutes. All batches were processed this way as uniformly as possible. The dry blended material was then calcined at 900°C for five hours, wet ball milled, spray dried and produced into test discs as discussed above. Thus, the only difference in these nine batches is the dry versus the wet blending approach used during the mixing of the oxides for this composition.

III. RESULTS AND DISCUSSION

This section discusses the characterization results obtained from the zircon sands and various ${\rm ZrO}_2$ materials derived from these sands. The impact of these ${\rm ZrO}_2$ variations on the physical and electrical behavior of a high drive piezoelectric composition is then analyzed.

A. ZIRCON RAW MATERIAL

The chemical and physical data obtained on the two samples each of Florida, Georgia and Australian zircon sand are reported in Table 2. Significant differences in the physical size of the zircon are apparent. The Australian zircon was coarsest, while the Georgia zircon had the finest grains. The Georgia zircon (2-2) also appeared to be slightly purer than the Florida (2-1) material; however, both domestic materials are substantially purer than the Australian zircon. Alumina and iron appear to be the most variable impurities. Heavy mineral (PbO and rare earth) impurities in the domestic zircon sands appear to be greater. The main mineral impurities in these materials appear to be ilmenite, rutile, kyanite, and possibly, monazite.

The dark Australian zircon sand used had not previously been calcined to burn off organic impurities; therefore, it contained an ignition loss of about 0.13 percent, opposed to 0.02 and 0.04 percent, respectively, for the previously calcined Florida and Georgia sands.

The sample of the Australian zircon calcined at 900°C for five hours had about the same particle size distribution as the uncalcined zircon. The bulk density of these materials varied from 2.69 to 2.89 gm/cc where the highest and lowest density were associated with the coarser and finer sand, respectively.

Table 2. Chemical and particle size analysis of zircon sand.

		Flor	ida	Geor	gia		Australia	
lates y	r feiir eani	Lot 1-1	Lot 2-1	Lot 1-2	Lot 2-2	Lot 1-3	Lot 2-3	Calcine Lo
	ZRO2	66. 60	65. 98	65.43	66, 58	65. 16	64.29	
	SiO ₂	32.29	32.26	31.77	31,96	31.91	31.54	Late beauti
	TiO ₂	0. 143	0.119	0.314	0.118	0.338	0, 202	a 12 3 44
	Fe ₂ O ₂	0.036	0.044	0. 054	0. 039	0.116	0. 092	
	Al ₂ O ₃	0.094	0.945	0.945	0.378	1.512	3.779	
	B ₂ O ₃	0.006	0.003	0. 006	0.003	0.006	0. 003	
	CaO	0. 070	0.070	0. 070	0.070	0. 028	0, 028	
	CR ₂ O ₃	ND	ND	ND	ND	ND	0,003	a second
Percent Present	Ca2O	ND	0. 001	ND	0.001	ND	ND	-1000
Present	La ₂ O ₃	ND	0. 059	0. 094	0.094	ND	ND	
	PbO	0.086	0. 054	0. 086	0, 054	0, 022	0.022	
	MgO	0. 083	0. 133	0. 133	0, 133	0. 083	0, 083	
	MnO	0.003	0. 001	0. 010	0, 001	0.006	0, 001	
		ND	ND	0. 001	ND	ND	ND	
	Ag ₂ O	0. 004	0. 001	0.009	0.001	0.009	0.009	
	V ₂ O ₅	0.004		0,009				
	L. O. 1.		0.016		0.044	0. 116	0. 142	
	Total	99.415	99. 586	98, 922	99.476	99.306	100. 194	
	>60		ND	ND	ND	0.68	0. 60	0. 52
	-60+100		0. 57	0. 54	0.46	67.12	67.85	67. 10
Mesh	-100+160		76.79	34.78	35, 82	31.53	30. 62	29.98
Size	-160+200		16.94	42.98	43.59	0. 67	0.93	2.05
	-200+325		5. 67	21.50	19.95	ND	ND	0.30
	< 325		0. 03	0.20	0. 18	ND	ND	0. 05
Color			Grey	Grey	Grey	Brown	Brown	Reddish Ta
Sp. Gr.	gm/cc		2.77	2,69	2, 68	2, 84	2, 83	2.89

NOTE: ND - Not Detected.

B. ZrO₂ MATERIALS

The first and second precipitates produced from each lot of zircon were received in a partially dried state ($ZrO_2 \cdot XH_2O$). Therefore, the loss in weight upon heating to 900°C was obtained for each of these and reported (Table 3), along with L.O.I. data for each of the 600, 900 and 1200°C calcined materials produced from the first and second precipitate material. The first precipitates were damp when received and contained between 30 and 50 percent water, while the drier second precipitated materials contained 10 to 22 percent water. The calcined material was apparently dry but contained between 0.05 to 1.0 percent of hydroscopic water. The amount of hydroscopic on residual water appears to relate to the final calcination temperature and storage conditions. For instance, the Honeywell ZrO_2 materials calcined at 500°C contained about 1.0 percent water opposed to about 0.4, 0.2 and 0.06 percent water for 600, 900 and 1200°C calcined Harshaw ZrO_2 .

Table 3. Percent loss in weight of zirconium oxide materials.

1010		Flor	ida	Geo	rgia	Aust	ralia	Honeywell
	100 AND 100 AND	Lot 1-1	Lot 2-1	Lot 1-2	Lot 2-2	Lot 1-3	Lot 2-3	500°C Calcined
	As Received	48.4	31.9	44.6	44.1	46.9	43.5	
First	600°C Calcine	100	0.34		0.40		0.44	
Precipitate	900°C Calcine		0.14		0.18		0.27	
	1200°C Calcine	23.00E	0.06		0. 04		0. 05	
	As Received		10.5	574	21.8		15.4	League Total
Second	600°C Calcine	Phin.	0. 22		0.26		0.39	
Precipitate	900°C Calcine		0, 18		0.16		0.16	
(4.00mg)	1200°C Calcine		0. 07		0.05		0.06	
	Harshaw Calcine		0, 55		0, 54		0. 60	
	Batch 2168							0.86
	Batch 2169				4.75			0. 99
	Batch 2170							0.89
	Batch 2171							0, 95
	Batch 2172				-			1.00

The 29 lots of ZrO_2 prepared were chemically analyzed and the primary impurities found were Ca, Si, Ti, Fe and Al. The impurity variations between these lots are shown in Table 4 as a function of zircon source (Australia, Florida and Georgia), calcination temperature (600, 900 and 1200°C) and stage of processing from Harshaw's standard process (first precipitate, second precipitate or normal calcine). The impact of Honeywell's pulverization process for the hardest calcine material (1200°C) is also shown along with the purity of five lots of ZrO_2 prepared from tetra-N-butyl zirconate (TBNZ).

The Georgia and Florida zircon sands appear to produce ZrO_2 with essentially about the same concentration and types of impurities; namely, calcium, silicon and titanium. The Australian zircon had about the same level of iron, aluminum and calcium, but about twice the amount of silica and titanium. The first shipment of single precipitate (600°C - first shipment), contaminated during processing at Harshaw, contained high amounts of sodium, calcium and silicon. This material was scrapped and not used further in this program. The ZrO_2 derived from TNBZ was contaminated with an unusually high amount of silicon, iron and aluminum (caused by an unusually bad lot of TNBZ), but was evaluated further.

The second precipitation technique used by Harshaw to produce their normal electronic grade of ZrO₂ is effective in lowering the level of calcium, silicon and titanium.

Table 5 gives the results for ultimate crystallite size and agglomerate size of the ZrO₂ produced by these processes. The electron transmission data (ETM) showed that the ultimate crystallite diameter of the ZrO₂ produced was in the 100Å range at 600°C, 400Å at 900°C and 3000Å (0.3 μm) at 1200°C calcination temperatures. In general, the ultimate crystallite diameter

Table 4. Major impurities in calcining ZrO_2 .

		Ca			Si			Ti			Fe			Al	
	Aus	F1	Ga	Aus	F1	Ga	Aus	F1	Ga	Aus	F1	Ga	Aus	·F1	Ga
First Precipitate		a													
600°C - First Ship.	0.040	0.010	0.025	0.030	0.030 >0.090	0.060	090.0	0.000 0.010 0.090	0.000	0.001	0.001	0.010	<0.001	0.006	<0,001
600°C - Pulverized	0.004	0.003	0.005	0.015	0.003	0.007	0.050	0.050 0.006	0.000	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001
900°C - Pulverized	0.004	0.007	0.008	0.025	0.015	0,015	0.075	0.075 0.030	0.035	0.001	0.004	0.010	0.001	<0.001	<0.001
1200°C - Pulverized	0.005	0.005	0.005	0.025	0.025	0.015	0.075	0.075 0.020	0.030	<0.001	<0.001	<0.001	0.002	<0.001	<0.001
1200°C	0.008	0,005	0.005	0.030	<0.015	0.015	0.070	0.070 0.020 0.015	0.015	0,006	<0,001	0.002	0.002	<0.001	<0.001
Second Precipitate															
600°C - Pulverized	<0.001	0.004	<0.001	0.006	0.010	<0.001	0.010	0.025 0.010	0.010	<0.001	0.004	0.005	<0.001	<0.001	<0.001
900°C - Pulverized	0.002	0.002	<0.001	0.004	<0.001	0.001	0.030	0.010	0.010	<0.001	0.002	<0.001	<0.001	<0.001	<0.001
1200°C - Pulverized	0.002	0.002	<0.001	0,002	<0.001	0.010	0,050	0.020	0,035	<0.001	<0.001	0.025	<0.001	<0.001	<0.001
1200°C	0,003	0.003	<0.001	0.010	0.005	0.003	090.0	0.020	0.020	0,001	<0.001	<0.001	0,001	<0,001	<0.001
Harshaw Calcine	0.003	0,003	0,002	0.010	0.002	0,001	0.020	0.020 0.006 0.004	0.004	0.005	0,004	0.004	<0.001	<0.001	<0.001
Honeywell			1.3Va												
2168			<0.001			0.020			0.050			0.025			0.007
2169			<0.001			0.030			090.0			0.020			900.0
2170			<0.001			090.0			0.200			0.025			0.009
2171			<0,001			0.030			0.080			0.030			0.010
2172			<0.001			0.020			0.000			0.000			0.008

U

Table 5. Particle size analysis of calcined ZrO_2 in 1976.

		Florida			Georgia			Australia		101	Honeywell	
	Ε. Τ. Μ.	E.T.M. Avg. Agg.	% <0.5µ	Ε. Τ. Μ. μ	E. T. M. Avg. Agg. μ Dia. μ	% <0.5µ	Ε.Τ.Μ. μ	E.T. M. Avg. Agg. μ Dia. μ	γ <0.5μ	Ε. Τ. Μ.	E. T. M. Avg. Agg. μ Dia. μ	% <0.5µ
First Precipitate												
600°C First Shipment		8.4/8.7	0	0,008	10,1	0	0.008	8.7	0			
600°C Pulverized	0,012	9.5	0	0.036	9.4	1,0	٥.012	7.6	•			
900°C Pulverized	0.040	10.1	0	0.020	9.7	0	0.020	7.9	0			
1200°C Pulverized	0.020	8.7	0	0.500	8,3	0	0.042	4.4	0			
1200°C Unpulverized	0,200	8.4	0	0.440	8.5	0	0,440	4.2	0			
Second Precipitate												
600°C Pulverized	0,010	1.4	16	0,018	17	21	0.016	2,1	18			61
900°C Pulverized	0.036	1.4	15	0.036	1.3	18	0.042	2.2	18			
1200°C Pulverized	•	1.6	7	0,340	1.4	6	0.040	2.5	7			
1200°C Unpulverized	0.280	1.2	19	0.300			0,300	•	•			
Harshaw Calcine	0.044	1.3	16	0.024	1,4	15	0,036	1.4	15			
Honeywell												
2168										0.008	2.1	=
2169										0.008	2.0	6
2170											2.8	8
2171										0.008	2.2	. 10
2172			31							0.008	2.6	9

obtained was independent of the zircon source and precipitation process. High amounts of impurities associated with the contaminated first shipment and TNBZ derived ZrO_2 may have been responsible for the extremely fine $80\mbox{\normalfont\AA}$ crystallites observed for these materials.

The average agglomerate diameter obtained by the MSA centrifuge approach showed a significant difference between the $\rm ZrO_2$ produced by the first and second stage precipitation processes. For instance, about 15 percent of the agglomerate particles from the second stage precipitated $\rm ZrO_2$ materials and the normal Harshaw calcined material were less than 0.5 μ m, whereas most of the first stage $\rm ZrO_2$ derived materials had agglomerated particles that were all larger than 0.5 μ m.

The impact of the small crystallites and agglomerated particles on the bulk and pressed density of ${\rm ZrO}_2$ is shown in Table 6. This data reveals that the agglomerated particle size has a pronounced impact on the bulk density of the powders. For instance, the double precipitated ${\rm ZrO}_2$ with consistantly smaller particles had a 0.3 to 0.6 gm/cc lower density than the single precipitated ${\rm ZrO}_2$ materials. The pressed ${\rm ZrO}_2$ powders, however, followed a relationship that was dependent upon the ultimate crystallite size. Note that both the 600° and 900°C calcined single and double precipitated ${\rm ZrO}_2$ materials, which had a crystallite size of 0.02 to 0.04 μ m, had pressed densities in the 1.5 to 1.6 gm/cc range although the average agglomerated particle size varied from about 9 to 2 μ m for the first and second precipitates, respectively.

Calcining at 1200°C did not produce the same phenomenon. Apparently, the higher impurities associated with the first precipitate either promoted crystallite growth or partially sintered the crystallites together. This also appeared to be true for the Honeywell-prepared ZrO_2 . It is apparent from the density results on the Harshaw calcined ZrO_2 that they calcine at about 900°C.

Table 6. Bulk and pressed density of ZrO, powders.

		Flo	rida	Georg	ia	Aust	ralia	Hone	ywell
		Bulk Density gm/cc	Pressed Density gm/cc	Bulk Density gm/cc	Pressed Density gm/cc	Bulk Density gm/cc	Pressed Density gm/cc	Bulk Density gm/cc	Pressec Density gm/cc
	600°C Pulverized	0.99	1.45	0.95	1.45	0.95	1.43		
First Precipitate	900°C Pulverized	1, 15	1.60	1.08	1.60	1.10	1.57		
	1200°C Pulverized	1.91	3, 01	1.78	3, 11	1. 68	3. 27		
	600°C Pulverized	0. 64	1.33	0.47	1.39	0. 57	1. 32		
Second Precipitate	900°C Pulverized	0.65	1.60	0. 51	1.58	0. 53	1.51		
	1200°C Pulverized	1.29	2.61	1.38	2.89	1.31	2.51		
	Harshaw Calcine	0.66	1.61	0. 66	1. 59	0. 67	1. 57		
	Batch 2168								1.88
	Batch 2169								1.85
	Batch 2170								1.79
	Batch 2171								1.81
	Batch 2172								1.78

C. PHYSICAL AND ELECTRICAL BEHAVIOR OF WET BLENDED PZ-PT

The impact of 26 ZrO₂ variations on a typical high drive piezoelectric lead zirconate-lead titanate compositions was determined by keeping all other compositional, processing and testing variations constant. These batches were prepared, processed and evaluated consecutively at the same times to minimize all other outside variations.

Table 7 gives unfired and fired density as well as the unpoled and poled dielectric constant results. The high unfired density (4.49 gm/cc) batches, containing the first precipitate type of $\rm ZrO_2$, correlated well with the coarser nature of the agglomerated $\rm ZrO_2$ material present in these batches. The more impure first precipitate and TNBZ $\rm ZrO_2$ batches had moderately lower unfired densities of about 4.2 gm/cc, while the second precipitate $\rm ZrO_2$

Table 7. Density and dielectric constant.

Se Sub (E)	F	Florida		0	Georgia		Αn	Australia		Но	Honeywell	
	Density Green Fired	Unpoled	Poled 6 5 Days	Density Green Fired	Unpoled	Poled 6 5 Days	Density Green Fired	Unpoled	Poled e 5 Days	Density Green Fired	Unpoled	Poled c 5 Days
First Precipitate	4 448			4 461			4 308					
600°C Pulverized	6.876	848.	915.	6.558	785.	858.	7,004	.062	886.			
900°C Pulverized	4.426 5.662	860.	904.	4, 454 6, 860	827.	785.	4,354 6.881	813.	901.			
1200°C Pulverized	4.380	.606	931.	4.059 7.502 1003.	1003.	1043.	4.254	908.	947.			
Second Precipitate												
600°C Pulverized	4.014	.866	1023.	4.002	1019.	1099.	3,987	1012.	1080.			
900°C Pulverized	4.105	1006.	1047.	4.036 1010.	1010.	1045.	3,972	991.	1050.			
1200°C Pulverized	4.071	.766	1071.	4.080 7.516	.366	1007.	4.052	988.	976.			
Harshaw Calcine	4.081	.066	1003.	4.061 1005.	002.	1090.	3,986	992.	1044.			
Honeywell:												
2168										4.256 7.409	933.	. \$66
2169										4.256	932.	956.
2170										4.247	925.	.666
2171	1	No.								4.247	932.	.616
2172										4.215	923.	979.

batched materials produced from smallest ZrO₂ agglomerates had the lowest unfired densities of 4.0 gm/cc. The fired densities also correlated well with the highest density material resulting from the lowest density pressed parts. Similarly, the unpoled and poled dielectric constants, in general, were highest for the highest fired density PZ-PT material. Higher calcination temperatures with the first precipitate ZrO₂ materials produced the highest densities and best piezoelectric properties in this group, but were still inferior to most of those in the double precipitate group.

The microstructure of the wet blended PZ-PT batches is shown in Figures 1, 2 and 3. Figure 1 shows the typical microstructure of those batches containing ${\rm ZrO}_2$ produced from the single precipitated material. The average grain size was 5 to 6 μ m except for the batch containing 600°C ${\rm ZrO}_2$ from Georgia zircon which was 9 μ m. The 4 to 6 μ m grain size of the PZ-PT batches produced from ${\rm ZrO}_2$ derived from double precipitated material and the standard Harshaw calcined material (AH, GH, FH) are shown in Figure 2. A more variable microstructure was obtained in the PZ-PT produced from ${\rm ZrO}_2$ derived from the more impure TNBZ material, in Figure 3. Thus, most of the minor microstructual differences noted in these materials are probably related to their density and impurity variations.

Table 8 gives the low drive piezoelectric properties obtained from the PZ-PT batches obtained with various lots of $\rm ZrO_2$. The radial coupling coefficient (kp), radial frequency constant (N_r) and mechanical quality (Q_m) are calculated from the resonant frequency data at the five day aging point. In general, the piezoelectric properties behaved in the fashion expected for the fired density present. The most significant variations in properties occurred with the PZ-PT batches produced from the first precipitate type of $\rm ZrO_2$, whereas, all lots containing $\rm ZrO_2$, which received the double precipitate process, produced essentially the same piezoelectric properties regardless of calcining temperature and zircon source. It was somewhat surprising that the 1200°C calcination temperatures did not deteriorate the properties of these batches.

AVERAGE GRAIN SIZE 6µ FSP-600

AVERAGE GRAIN SIZE 6µ FSP-900

AVERAGE GRAIN SIZE 6µ FSP-1200

Figure 1. Microstructure of PZ-PT compositions made from first precipitate ZrO₂. (Concluded)

AVERAGE GRAIN SIZE 9µ GSP-600

AVERAGE GRAIN SIZE 6μ GSP-900

AVERAGE GRAIN SIZE 5µ GSP-1200

Figure 1. Microstructure of PZ-PT compositions made from first precipitate ${\rm ZrO}_2$. (Continued)

AVERAGE GRAIN SIZE 6µ ASP-600

AVERAGE GRAIN SIZE 5µ ASP-900

AVERAGE GRAIN SIZE 6µ ASP-1200

Figure 1. Microstructure of PZ-PT compositions made from first precipitate ZrO_2 .

Figure 2. Microstructure of PZ-PT compositions made from double precipitate and Harshaw ${\rm ZrO}_2$.

Figure 2. Microstructure of PZ-PT compositions made from double precipitate and Harshaw ZrO_2 . (Continued)

Figure 2. Microstructure of PZ-PT compositions made from double precipitate and Harshaw $\rm ZrO_2$. (Concluded)

Figure 3. Microstructure of PZ-PT made from Honeywell ZrO₂ derived from TBZ.

Table 8. Low drive piezoelectric properties at five days aging for wet blended batches.

well	o m			To the second		6 9 h						0.446 88.47 1039.0	0.066 68	0.886 07	33 925.0	0.886 81
Honevwell	Z	15040	y.			2515			(3:16)			46 88.4	52 88.69	47 88.70	55 87.33	89.18
	ж					- Marie				diay is		0.4	0.452	0.447	0.455	0.429
	o m		614.0	662.0	832.0		851.0	858.0	849.0	826.0						
Australia	Z	ton	0.374 86.10 614.0	0.401 84.31 662.0	88.85		88,38	88,58	88,21	88.69						
	K		0.374	0.401	0.451		0.502	0.492	0,503	0.483						
	o m		534.0	659.0	186.0		825.0	883.0	846.0	0.668						
Georgia	N r		0,383 80,61	0,448 82.03	88.65		0.505 88.23	0.490 88.55	0.508 88.35	0.508 87.85						
	K		0,383	0,448	0.483		0,505	0.490	0.508	0,508						
	Q _m		723.0	0.099	0.806		883.0	872.0	802.0	878.0						
Florida	N r		83,33	0.450 83.98	87.43		0.486 88.84	88.70	88.11 802.0	99.88		10.7				
	Kp		0.436	0.450	0.432		0.486	0,491	0,505	0.484						
		First Precipitate	600°C - Pulverized	900°C - Pulverized	1200°C - Pulverized	Second Precipitate	600°C - Pulverized	900°C - Pulverized	1200°C - Pulverized	Harshaw Calcine	Honeywell:	2168	2169	2170	2171	2172

The batches prepared from the TNBZ derived ZrO₂ produced fairly high mechanical quality factors, apparently because of the finer ZrO₂ in these batches.

Table 9 gives the high drive properties obtained for these compositions based on the percent increase in capacitance from low to high driving field ($\%\Delta C/C$) and the measured percent electrical dissipation at 5, 10 and 15 kV/0.001 inch of thickness.

The percent change in capacitance and the percent electrical dissipation of batches made from various $\rm ZrO_2$ lots prepared from the second precipitate were reasonably consistent for each driving field. Changes of about 1.7, 4.0 and 10.5 percent for $\Delta C/C$ and 0.6, 1.4 and 3.1 percent for electrical dissipation were obtained for each driving field. Most of the batches produced from the $\rm ZrO_2$ derived from tetra-N-butyl zirconate and several of those made from $\rm ZrO_2$ produced from the single precipitate had similar high field properties. However, the physical and chemical variations associated with the $\rm ZrO_2$ lots from the first precipitates appeared to cause larger $\rm \Delta C/C$ and percent dissipations in the PZ-PT compositions where these materials were used.

The aging rate of the piezoelectric properties are given in Table 10 for the period between 10 and 100 days. Again, batches containing ZrO₂ made from the double precipitated materials had uniform aging behavior: -4.5 to -5.0 percent for dielectric constant, -2.0 to -2.5 percent for radial coupling coefficient, +0.9 to 1.3 percent for radial frequency constant and +20 to +30 percent for Qm. Batches containing ZrO₂ derived from TNBZ also fell within this range. As previously, batches containing ZrO₂ from the single precipitated material had a wider range in aging rates.

Table 9. High drive piezoelectric properties after 100 days aging for wet blended batches.

		Florida	æ				Georgia			Australia	
	CAP %4/% Dis. 5V/Mil	CAP %6/% Dis. 10V/Mil	77.	CAP %6/% Dis. 15V/Mil	1115	CAP % / % Dis. 5V/Mil	CAP % / % Dis. 10V/Mil	CAP %6/% Dis. 15V/Mil	CAP % /% Dis. 5V/Mil	CAP % /% Dis. 10V/Mil	CAP % /% Dis. 15V/Mil
First Precipitate	2.05	5,75		12,89		2.41	96.9	14.60	1.6	5,60	11.55
900°C Pulverized	2.32	90.9	n 0	12.94		2.34	6.05	14.29	2,52 0.8	6.47	13,34
1200°C Pulverized	1.94 0.5	4.08	1 1	9.34 2.6		1.86 0.7	4.19 1.3	10.84	1.74 0.5	4.25 1.3	8.84 2.6
Second Precipitate	00000				-						
600°C Pulverized	1.34 0.4	4.03	1.4	10.07 3.0		1.49 0.5	4.52 1.4	11.95 3.0	1.98 0.7	4.22 1.4	11,14 3,2
900°C Pulverized	1.52 0.6	3,69	1.3	10.47		1.93 0.7	4.73 1.6	11.93 3.4	1.73 0.6	4.33 1.5	10,59 3.2
1200°C Pulverized	1.96 0.7	4.04	1.3	10.57 3.0	190	1.77 0.6	3,75	10.16 3.0	1.66 0.6	3.67 1.4	10.32 3.1
Harshaw Calcine	1.69 0.6	3,99	1.3	9.75 2.9		1.91 0.7	4,32	11.12 3.3	1.72 0.7	3.97 1.4	10,66 3.2
Honeywell 2160	1.65 0.44	4,35	1.1	10.55 3.0	-		,				
2169	1.63 0.5	3,95	1.3	10.28 3.0							
2170	1.78 0.6	4.82	1.5	11.16 2.9							
2171	1.84 0.6	5,16	1.5	11.38							
2112	1.67 0.5	4.34	1.3	8,68 2,5							

Table 10. Aging rate of piezoelectric properties for wet blended batches.

		Florida	da			Georgia	gia			Australia	alia		
200	K_3^T	A _D	Z	o _m	$\kappa_3^{\rm T}$	М	4	o, E	$\kappa_3^{\rm T}$	ъф	Z	o,	
First Precipitate													
600°C - Pulverized	-3,38	-1.85 0.73	0.73	11.5	-3.29	-1.55 0.63	0.63	2.9	-2.85	-1.86 0.59	0.59	8.4	
900°C - Pulverized	-3.71	-3.71 -2.01 0.81	0.81	23.6	-4.33	-4.33 -1.58 0.73	0.73	8.6	-5.89	-2.01 0.61	0.61	9.1	
1200°C - Pulverized	-4.79	-4.79 -2.58	1.16	31.5	-5.18	-5.18 -2.09	1.24	25.7	-5.58	-2.23	1.05	37.4	
Second Precipitate													
600°C - Pulverized	-4.43	-4.43 -2.09	0.92	31.6	-5.07	-5.07 -2.39	1.16	33.0	-4.98	-2.63	1.27	33, 1	
900°C - Pulverized	-4.56	-4.56 -2.46	1.20	24.7	-5.14	-5.14 -2.48 1.26	1.26	25.7	-5.13	-5.13 -2.46	1.24	30.2	
1200°C - Pulverized	-5.04	-5.04 -2.39	1.15	25.9	-5.15	-5.15 -2.97 1.18	1.18	17.7	-4.85	-4.85 -2.62 1.12	1.12	26.3	
Harshaw Calcine	-4.44	-2.08	96.0	20.3	-4.66	-2.57	0.70	17.7	-3.98	-2.34	1.14	23.5	
Honeywell													
2168	-4.08	-2.27	1.00	19.3									
2169	-4.04	-4.04 -2.33	0.92	19.3									
2170	-4,35	-4.35 -2.25 0.94	0.94	24.3									
2171	-4.93	-4.93 -2.20	1.01	19.0									
2172	-4.04	-2.59	0.89	17.4									

D. PHYSICAL AND ELECTRICAL BEHAVIOR OF DRY BLENDED PZ-PT

This section discusses the results obtained on nine PZ-PT batches produced by the dry blending approach from the nine second precipitate ZrO₂ materials. The pressed and fired density, as well as unpoled and poled dielectric constant of each batch, are given in Table 11. The green density of samples prepared from PZ-PT batches with the 600°C calcined ZrO₂ group was about the same for the dry blended batches as those from wet blended batches. However, the 900°C and 1200°C calcined ZrO₂ groups generally produced PZ-PT batches whose pressed density was greater for the dry than the wet blended materials.

The fired density of all dry blended PZ-PT variations was always lower than the wet blended PZ-PT batches. The dry blended batches containing $\rm ZrO_2$ calcined at only 600°C were 7.0 to 7.3 gm/cc as opposed to 7.51 gm/cc for the wet blended batches. In five out of six instances, dry blended batches containing $\rm ZrO_2$ calcined at 900 or 1200°C produced PZ-PT whose densities were 7.38 to 7.47 gm/cc as opposed to 7.49 to 7.51 gm/cc for the wet blended batches.

The lower density dry blended batches also produced lower dielectric constants. The fact that five out of six batches, which used 600 to 900° C calcined ZrO_2 , contained lower dielectric constants after poling suggests that these batches were poorly blended during batching. Thus, wet milling after calcining the PZ-PT cannot be expected to correct a poor blending operation.

When dry blended batches were made from 1200°C calcined ZrO₂ the poled dielectric constant was also greater than in the upoled state. This may indicate that wet milling of the PZ-PT calcine containing dry blended 1200°C calcined ZrO₂ is less critical than where low calcined material is used. It is postulated that the thermal expansion accompanying the cubic to monoclinic

Density and dielectric constant of fired dry blended PZ-PT batches. Table 11.

		F	Florida		D	Georgia		Aust	Australia	
	Process	Density Green Fired	e Unpoled	e Poled 5 Days	Density Green Fired	e Poled Unpoled 5 Days	e Poled 5 Days	Density Green Fired	e Unpoled	e Poled 5 Days
Second Precipitate										
600°C Pulverized	Dry Blend	3,992 6,958	855.	835.	3,987	957.	922.	4.025 7.124	901.	827.
900°C Pulverized	Dry Blend	4.238	948.	932.	4.077	988.	978.	4.151 7.377	931.	936.
1200°C Pulverized	Dry Blend	4.528	919.	946.	4,266	822.	.678	4,184	913.	935.

 $\rm ZrO_2$ inversion at about 1000°C in the 1200°C calcined material makes these larger crystallites more friable and reactive.

Table 12 gives the low drive piezoelectric properties for the dry blended PZ-PT batches. The high variability and low properties obtained can be blamed on the poor density and mixing of the ZrO_2 in these batches. The mechanical quality (Qm) of dry blended PZ-PT is the only property that approached the wet blended PZ-PT batches.

Table 13 shows the aging behavior of the various piezoelectric properties for those batches made from dry blended PZ-PT. Again, the variations can be attributed to the variations in density and mixing and their associated impact on the completeness of polarization.

Table 14 gives the high field data obtained for the dry blended batches. The relative low electrical dissipation and percent change in capacitance as a function of driving field are relatable to the low density and low polarization state in these materials.

Based on the results obtained, it is clear that each of the three sources of zircon can be used to produce satisfactory $\rm ZrO_2$ for PZ-PT. The process used for deriving $\rm ZrO_2$ from these sources is critical. It is not clear why the two different precipitation processes are required to produce uniform, high purity $\rm ZrO_2$. A wide range of calcination temperatures can be used with double precipitated $\rm ZrO_2$ without influencing the performance of the $\rm ZrO_2$ in the high drive PZ-PT compositions evaluated. The calcination temperature used does appear to have a fairly strong dependence on how uniformly the $\rm ZrO_2$ is blended with the other batch materials.

The completeness of the blending process is very critical. Dry blending is a relatively poor way of obtaining good mixing of the PZ-PT batch, which can not be completely compensated for by the normal subsequent calcination and wet grinding operations. More effort on the dry blending approach is necessary before it can be relied upon to produce uniform PZ-PT batches.

Table 12. Low drive piezoelectric properties at five days aging for dry blended PZ-PT batches.

				The second secon					
1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A 1 A		Florida			Georgia			Australia	
	Кр	Nr	Qm	Кр	Nr	Qm	Kp	Nr	Qm
Second Precipitate									
600° Pulverized	0.421	83.45	781.0	0.395	87.45	884.0	0.386 85.79	85.79	758.0
900°C Pulverized	0,328	89.29	738.0	0.365	89.66	863.0	0.285	89.95	883.0
1200°C Pulverized	0.279	91.71	914.0	0.334	88.66	955.0	0.244 92.18	92.18	845.0

Table 13. Percent aging rate of piezoelectric properties for dry blended PZ-PT batches.

41		Flo	Florida			Georgia	gia			Aust	Australia	
	K3	K p	Nr Qm	Qm	κ_3^{T}	Kp	Nr Qm	Qm	K3	Kp	N r	Q _m
Second Precipitate												
600°C Pulverized	-4.11	-2.40	0.84	15.9	-4.61	-3.34	1.03	27.8	-4.11 -2.40 0.84 15.9 -4.61 -3.34 1.03 27.8 -4.04 2.62 1.16 28.2	2.62	1.16	28.2
900°C Pulverized	- 5.34	-5.34 -3.09 1.23	1.23	40.0	-5.19	40.0 -5.19 -3.04 1.22 37.8 -4.55	1.22	37.8	-4.55	4.55	1.13 35.9	35.9
1200°C Pulverized	-4.50 -3.24 0.92	-3.24	0.92	30.6	-3.21	30.6 -3.21 -4.82 0.73 19.2 -4.33	0.73	19.2	-4.33	4.13	0.97 35.4	35.4

Table 14. High drive piezoelectric properties of dry blended PZ-PT batches.

		Florida			Georgia			Australia	
	CAP %4/% Dis. 5 V/Mil	CAP %4/% Dis. CA	CAP %4/% Dis. 15 V/Mil	CAP %4/% Dis. 5 V/Mil	CAP % L/% Dis. 10 V/Mil	CAP % \(\) \(\) Dis. 15 V/MH	CAP % A/% Dis. 5 V/Mil	CAP %4/% Dis. 10 V/Mil	CAP %4/% Dis.
Second Precipitate									
600°C Pulverized 1.64 0.47 4.61 1.38 9.22 2.98 1.66 0.50 4.25 1.45 9.16 3.03 1.63 0.47 4.43 1.45	1.64 0.47	4.61	9.22 2.98	1.66 0.50	4.25	9.16 3.03	1.63 0.47	4,43	9.70 3.2
900°C Pulverized 1.50 0.58 4.42 1.52	1.50 0.58	4.42	3, 14	10.3 3.14 1.60 0.60 4.39 1.45 8.99 2.92 1.40 0.41 4.00 1.27	4, 39	8,99 2,92	1.40 0.41	4.00	7.72 2.52
1200°C Polverized 1.27 0.47 3.55 1.35	1.27 0.47	3,55 1.35	7.50 2.62	7.50 2.62 1.19 0.42 3.58 1.0 8.20 2.42 1.20 0.62 3.53 1.43	3.58	8.20 2.42	1,20 0,62	3.53	7.90 2.88

IV. SUMMARY AND CONCLUSIONS

The three sources of the mineral zircon ($\rm ZrO_2 \cdot \rm SiO_2$) obtained from concentrated Florida, Georgia and Australia sands varied significantly in their physical particle size and chemical impurities. However, in this current program we have shown that adequate chemical purification of each of these materials will yield $\rm ZrO_2$ of essentially the same ultimate particle size and purity. Such fully processed materials also yield PZ-PT with uniform piezoelectric properties at both low and high drive conditions. Materials which are not fully processed, such as $\rm ZrO_2$ derived from the calcination of first stage $\rm Zr$ (OH)₄ precipitate, proved to be very dependent upon the zircon source and calcination temperature. Such materials contained more silica, calcia and titania impurities, which appeared to act as a bonding media for bonding small (0.05 μ m) crystallites into large (10 μ m) agglomerates. Apparently, these large agglomerates prevented complete blending and densification of the compounded PZ-PT, which in turn caused extensive variability in its piezoelectric behavior.

It had been assumed that any dry blending variability obtained would be eliminated by the wet mixing/grinding approach performed after calcination of the PZ-PT. However, all nine of the dry blending compositions produced had fired densities of 6.96 to 7.47 gm/cc opposed to 7.49 to 7.52 gm/cc for the wet blended PZ-PT. The piezoelectric coupling coefficient was 13 to 51 percent lower than similar material produced by the wet blended process.

Thus, the dry blending approach is more difficult to control for producing uniform PZ-PT materials. Apparently, a more thorough mixing operation than the dry blending approach used in this effort is required. The slower aging behavior of the dry blending PZ-PT compositions appeared to be more dependent upon the lower coupling of these materials than on the blending approach.

V. ACKNOWLEDGEMENTS

The author gratefully acknowledges the encouragement and guidance provided by Dr. A.M. Diness of the Office of Naval Research and Dr. Bob Pohanka, Naval Research Laboratory, the technical monitors for this program. The author is very appreciative of the splendid cooperation of the Harshaw Chemical Company and Dr. C.A. Seabright, et al, whose subcontracted effort on this program provided the $\rm ZrO_2$ process variations. Also appreciated was the effort of Mr. Maurice Murphy, who provided most of the technical support for the program.

BASIC DISTRIBUTION LIST Technical and Summary Reports

Organization	No. of Copies		No. of Copies
Defense Documentation Center		Naval Air Development Center Code 302	
Cameron Station Alexandria, Virginia 2231	14 (12)	Warminster, Pennsylvania 18974 Attn: Mr. F.S. Williams	(1)
Office of Naval Research Department of the Navy		Naval Air Propulsion Test Center Trenton, New Jersey 08628	
Attn: Code 471	(1)	Attn: Library	(1)
Code 102	(1) (1)	Naval Construction Batallion	
Code 470	(1)	Civil Engineering Laboratory	
Couc 110	(1)	Port Hueneme, California 93043	(1)
Commanding Officer		1 01 0 11 de monto, Caraco ma coo 10	\-/
Office of Naval Research		Naval Electronics Laboratory	
Branch Office		Center	
495 Summer Street		San Diego, California 92152	
Boston, Massachusetts 02	2210 (1)	Attn: Electron Materials	
be-p 0 7 3 16% dize		Sciences Division	(1)
Commanding Officer			
Office of Naval Research		Naval Missile Center	
Branch Office		Materials Consultant	
536 South Clark Street	(1)	Code 3312-1	(1)
Chicago, Illinois 60605	(1)	Point Mugu, California 93041	(1)
Office of Naval Research		Commanding Officer	
San Francisco Area Office		Naval Surface Weapons Center	
760 Market Street, Room		White Oak Laboratory	
San Francisco, California		Silver Spring, Maryland 20910	
Attn: Dr. P. A. Miller	(1)	Attn: Library	(1)
		one will now by Annough and	
Naval Research Laborator	У	David W. Taylor Naval Ship	
Washington, D.C. 20390		R&D Center	
Atta Gada 6000	(1)	Materials Department	/11
Attn: Code 6000 Code 6100	(1)	Annapolis, Maryland 21402	(1)
Code 6100	(1) (1)	Naval Undersea Center	
Code 6400	(1)	San Diego, California 92132	
Code 2627	(1)	Attn: Library	(1)
O040 2021	-		

BASIC DISTRIBUTION LIST (Continued)

Technical and Summary Reports

Organization	No. of Copies	Organization	No. of Copies
Naval Underwater System Center		Army Research Office Box CM, Duke Station	
Newport, Rhode Island)2840 Attn: Library	(1)	Durham, North Carolina 27706 Attn: Metallurgy & Ceramics Div	r. (1)
Naval Weapons Center China Lake, California 93555 Attn: Library	(1)	Army Materials and Mechanics Research Center Watertown, Massachusetts 02172 Attn: Res. Programs Office	
Naval Postgraduate School Monterey, California 93940 Attn: Mechanical Engineering Dept.	(1)	(AMXMR-P) Air Force Office of Scientific Research	(1)
Naval Air Systems Command Washington, D. C. 20360		Bldg. 410 Bolling Air Force Base Washington, D.C. 20332 Attn: Chemical Science	
Attn: Code 52031 Code 52032 Code 320	(1) (1) (1)	Directorate Electronics and Solid State Sciences	(1)
Naval Sea System Command Washington, D.C. 20362 Attn: Code 035	(1)	Directorate Air Force Materials Lab (LA) Wright-Patterson AFB	(1)
Naval Facilities Engineering Command Alexandria, Virginia 22331 Attn: Code 03	(1)	Dayton, Ohio 45433 NASA Headquarters Washington, D.C. 20546 Attn: Code RRM	(1)
Scientific Advisor Commandant of the Marine Corps Washington, D.C. 20380 Attn: Code AX	(1)	NASA Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn: Library	(1)
Naval Ship Engineering Center Department of the Navy CTR BG # 2	H-SA	National Bureau of Standards Washington, D.C. 20234	(1)
3700 East-West Highway Prince Georges Plaza Hyattsville, Maryland 20782 Attn: Engineering Materials		Attn: Metallurgy Division Inorganic Materials Division	(1) (1)
and Services Office, Code 6101	(1)	`	

38 47241

BASIC DISTRIBUTION LIST (Concluded) Technical and Summary Reports

Organization	No. of Copies	Organization	No. of Copies
Defense Metals and Ceramics Information Center Battelle Memorial Institute 505 King Avenue Columbus, Ohio 43201	(1)	Brookhaven National Laboratory Technical Information Division Upton, Long Island New York 11973 Attn: Research Library	(1)
Director		Library	
Ordnance Research Laboratory		Building 50 Room 134 Lawrence Radiation Laboratory Berkeley, California	(1)
P.O. Box 30 State College, Pennsylvania 16801	(4)	in Caracina Fallo	rias V Siedi
16801	(1)		
Director Applied Physics Laboratory University of Washington 1013 Northeast Fortieth Stree Seattle, Washington 98105	et (1)		
Metals and Ceramics Division Oak Ridge National Laborator P. O. Box X			
Oak Ridge, Tennessee 37380	(1)		
Los Alamos Scientific Laboratory P. O. Box 1663 Los Alamos, New Mexico 875 Attn: Report Librarian	44 (1)		
Argonne National Laboratory Metallurgy Division P.O. Box 229			
Lemont, Illinois 60439	(1)	Panna strain de la compa	

SUPPLEMENTARY DISTRIBUTION LIST

Technical and Summary Reports

Organization	No. of Copies	Organization	No. of Copies
Dr. W.F. Adler Effects Technology Inc. 5383 Hollister Avenue P.O. Box 30400		Dr. Dean Buckner Piezo Products Division Gulton Industries P.O. Box 4300	
Santa Barbara, CA 92105	(1)	Fullerton, CA 92634	(1)
Dr. G. Bansal Battelle 505 King Avenue Columbus, OH 43201	(1)	Dr. Robert Callahan Channel Industries 839 Ward Drive Box 3680	
Professor Michael Bell		Santa Barbara, CA 93105	(1)
Yeshiva University Belfer Graduate School of Science	<i>,</i> ,,,	Professor L. E. Cross The Pennsylvania State University	
New York, NY 10033	(1)	Materials Research Lab. University Park, PA 16802	(1)
Dr. Don Berlincourt Channel Products 16722 Park Circle Dr. W. Chagrin Falls, OH 44022	(1)	Mr. N. Coda Vice President for Engineering Erie Technological Products West College Avenue	
Dr. J.V. Biggers Pennsylvania State Univ.		State College, PA 16801	(1)
Materials Research Lab. University Park, PA 16802	(1)	Dr. A.G. Evans Rockwell International P.O. Box 1085	
Mr. George Boyer Sensor Systems Program Office of Naval Research		1049 Camino Dos Rios Thousand Oaks, CA 91360	(1)
Code 222 Arlington, VA 22217	(1)	Mr. E. Fisher Ford Motor Company Dearborn, MI	(1)
Professor R. Bradt Ceramics Section Materials Sciences Dept. The Pennsylvania State University		Dr. P. Gielisse University of Rhode Island Kingston, RI 02881	(1)
University Park, PA 16802		Dr. M. E. Gulden International Harvester Co.	
Dr. R. Bratton Westinghouse Research Lab. Pittsburgh, PA 15235	(1)	Solar Division 2200 Pacific Highway San Diego, CA 92138	(1)

SUPPLEMENTARY DISTRIBUTION LIST (Continued) Technical and Summary Reports

1924 postali	No. of		No. of
Organization	Copies	Organization	Copies
Dr. Gene Haertling Motorola Corporation 3434 Vassar N. E. Albuquerque, NM 87107	(1)	Dr. P. Jorgensen Stanford Research Institute Poulter Laboratory Menlo Park, CA 94025	(1)
Dr. W.B. Harrison Honeywell Ceramics Center 1885 Douglas Drive Golden Valley, MN 55422	(1)	Dr. R. N. Katz Army Materials and Mechanics Research Center Watertown, MA 02171	(1)
Dr. D. P. H. Hasselman Virginia Polytechnic Inst. Dept. of Materials Sciences Blacksburg, VA	(1)	Dr. H. Kirchner Ceramic Finishing Company P.O. Box 498 State College, PA 16801	(1)
Mr. G. Hayes Naval Weapons Center China Lake, CA 93555 Professor A. H. Heuer	(1)	Dr. B. Koepke Honeywell, Inc. Corporate Research Center 500 Washington Avenue South Hopkins, MN 55343	(1)
Case Western Reserve University University Circle Cleveland, OH 44106 Dr. F. Robert Hill	(1)	Mr. Frank Koubek Naval Surface Weapons Center White Oak Laboratory Silver Spring, MD 20910	(1)
Marine Resources 755 Highway 17 & 92 Fern Park, FL 32730	(1)	E. Krafft Carborundum Company Niagara Falls, NY	(1)
Dr. R. Hoagland Battelle 505 King Avenue Columbus, OH 43201	(1)	Dr. F.F. Lange Rockwell International P.O. Box 1085 1049 Camino Dos Rios Thousand Oaks, CA 91360	(1)
Dr. Bernard Jaffe 232 Forbes Road Bedford, OH 44146 Dr. R. Jaffee Electric Power Research	(1)	Dr. J. Lankford Southwest Research Institute 8500 Culebra Road San Antonio, TX 78284	(1)
Institute Palo Alto, CA	(1)		

SUPPLEMENTARY DISTRIBUTION LIST (Continued) Technical and Summary Reports

Organization	No. of Copies	Organization	No. of Copies
Dr. R. Lapetina Edo Western Corporation 2645 South 300 West Salt Lake City, UT 84115	(1)	Dr. F. Markarian Naval Weapons Center China Lake, CA 93555	(1)
Mr. C. LeBlanc Naval Underwater Systems Center TD 121 Newport, RI 02840		Dr. Perry A. Miles Raytheon Company Research Division 28 Seyon Street Waltham, MA 02154 Dr. N. Perrone	(1)
Library Norton Company Industrial Ceramics Divisio Worcester, MA 01606	n (1)	Code 474 Office of Naval Research 800 N. Quincy Street Arlington, VA 22217	(1)
Dr. R. E. Loehman University of Florida Ceramics Division Gainesville, FL 32601	(1)	Dr. R. Pohanka Naval Research Laboratory Code 6130 Washington, DC 20375	,(1)
State University of New Yor College of Ceramics at Alfred University Attn: Library		Dr. Frank Recny General Electric Company Court Street Plant Building C	
Alfred, NY 14802	(1)	Box 1122 Syracuse, NY 13201	(1)
Dr. L. Hench Department of Metallurgy University of Florida Ceramics Division		Mr. R. Rice Naval Research Laboratory Code 6360	
Gainesville, FL 32603	(1)	Washington, D.C. 20375	(1)
Professor P.B. Macedo The Catholic University of America Washington, DC 20017		Dr. J. Ritter University of Massachusetts Dept. of Mechanical Engineering	
Dr. N. MacMillan		Amherst, MA 01002	(1)
Materials Research Lab. Pennsylvania State Univ. College Park, PA 16802	(1)	Dr. J. H. Rosolowski General Electric Company Research and Development Ctr	
		P.O. Box 8 Schenectady, NY 02301	(1)

SUPPLEMENTARY DISTRIBUTION LIST (Continued) Technical and Summary Reports

	No. of	volgalis icacaicas	No of
Organization	Copies	Organization	No. of Copies
Professor R. Roy Pennsylvania State Univ. Materials Research Lab. University Park, PA 16802 Dr. R. Ruh	(1)	Dr. T. Vasilos AVCO Corporation Research and Advanced Development Division 201 Lowell Street Wilmington, MA 01887	(1)
AFML Wright-Patterson AFB Dayton, OH 45433	(1)	Dr. Charles C. Walker Naval Sea Systems Command National Center No. 3	
Mr. J. Schuldies AiResearch Phoenix, AZ	(1)	2531 Jefferson Davis Highway Arlington, VA 20390	(1)
Dr. J. H. Simmons Catholic University of		Mr. J.D. Walton Engineering Experiment Station	
America Washington, DC 20064	(1)	Georgia Institute of Technology Atlanta, GA 30332	(1)
Dr. P. L. Smith Naval Research Laboratory Code 6361 Washington, DC 20375	(1)	Dr. Paul D. Wilcox Sandia Laboratories Division 2521 Albuquerque, NM 87115	(1) ,
Professor G. Sines University of California, Los Angeles Los Angeles, CA 90024	(1)	Dr. S. M. Widerhorn Inorganic Materials Division National Bureau of Standards	(1)
Dr. N. Tallan AFML Wright-Patterson AFB Dayton, OH 45433	(1)	Washington, DC 20234 The State University of New York at Alfred Material Sciences Division	(1)
Dr. R.W. Timme Naval Research Laboratory		Alfred, NY Dr. S.A. Bortz	(1)
Code 8275 Underwater Sound Reference Division P.O. Box 8337	-	IITRI 10 W. 35th Street Chicago, IL 60616	(1)
Orlando, FL 32806	(1)		

SUPPLEMENTARY DISTRIBUTION LIST (Continued)

Technical and Summary Reports

	No. of	array Edwillian and I	No. of
Organization	Copies	Organization	Copies
Mr. G. Schmitt		Major W. Simmons	
Air Force Materials Lab.		Air Force Office of	
Wright-Patterson AFB		Scientific Research	
Dayton, OH 45433	(1)	Building 410	
	Land Maria	Bolling Air Force Base	
Dr. D.A. Shockey		Washington, DC 20332	(1)
Stanford Research Institute			
Poulter Laboratory		Dr. P. Becher	
Menlo Park, CA 94025	(1)	Naval Research Laboratory	
		Code 6362	
Dr. W. G. D. Frederick		Washington, DC 20375	(1)
Air Force Materials Lab.			
Wright-Patterson AFB		Mr. L.B. Weckesser	
Dayton, OH 45433	(1)	Applied Physics Laboratory	
		Johns Hopkins Road	
Dr. P. Land		Laurel, MD 20810	(1)
Air Force Materials Lab.			
Wright-Patterson AFB		Mr. D. Richarson	
Dayton, OH 45433	(1)	AiResearch Manufacturing Co.	
		4023 36th Street	
Mr. K. Letson		P.O. Box 5217	
Redstone Arsenal		Phoenix, AZ 85010	(1)
Huntsville, AL 35809	(1)		
		Dr. H. E. Bennett	
Dr. S. Freiman		Naval Weapons Center	
Naval Research Laboratory		Code 3818	(1)
Code 6363	/41	China Lake, CA 93555	(1)
Washington, DC 20375	(1)	M- G D	
		Mr. G. Denman	
Director Materials Sciences		Air Force Materials Laborator Code LPJ	Ly
Defense Advanced Research		Wright-Patterson AFB	
		Dayton, OH 45433	(1)
Projects Agency 1400 Wilson Boulevard		Dayton, On 40400	1-/
	(1)	Dr. D. Godfrey	
Arlington, VA 22209	(1)	Admiralty Materials Laborato	rv
Dr. James Pappis		Polle, Dorset BH16 6JU	- 3
Raytheon Company		UNITED KINGDOM	(1)
Research Division			
28 Seyon Street			
Waltham, MA 02154	(1)		
mathan, mil value	1-1		

SUPPLEMENTARY DISTRIBUTION LIST (Continued)

Technical and Summary Reports

Organization	No. of Copies	Organization	No. of Copies
Dr. N. Corney Ministry of Defense The Adelphi John Adam Street London WC2N 6BB UNITED KINGDOM	(1)		
Dr. L. M. Gillin Aeronautical Research Laboratory P. O. Box 4331 Fisherman's Bend Melbourne, VIC 3001 AUSTRALIA	(1)		