Seonhye Yang (5y3420) Homework 3

Problem 1

· Given input array, A = [1, 2... n] (len(A) = n) and postive integer $k = 1 \le k \le n$. · Algorithm must find 1^{st} smallest, 2^{nd} smallest... and k^{th} smallest element.

Select (A[I...n], k):

choose pivot i from I...n

j = Partition (A[I...n], pivot = A[i])

if K = A[i]:

leturn pivot

else:

return select(j, k)

Problem a

Master method only works for the following type of recurrences.

$$T(n) = a T(n/b) + f(n)$$
 where $a \ge 1$ and $b > 1$

a. If $f(n)=O(n^c)$ where $c<\log_b a$, then $T(n)=O(n^{\log_b a})$ b. If $f(n)=O(n^c)$ where $c=\log_b a$, then $T(n)=O(n^c\log_b n)$ c. If $f(n)=\Omega(n^c)$ where $c>\log_b a$, then T(n)=O(f(n))

a.
$$T(n) = 4T(n/2) + n^2$$
 $a = 4$, $b = 2$, $c = 2$

We have a=4, b=2, and $f(n)=n^2$

- $n^{\log_b a}$ is n^9 and f(n) is therefore $\Theta(n^2)$.
- · So case b is applied here.

Thus, $T(n) = 4T(n/2) + n^2$ is $\Theta(n^2 \log (n))$

$$a=2$$
, $b=2$, $f(n) = log(n)$

Although a and b are satisified, for) must be a polynomial to use the masters theorem.

c. First, we know that c, T(n) = 0.2T(n/2)+n will not work with master's Theorem because a = 0.2 and according to the theorem, $a \ge 1$.

d.
$$T(n) = 8T(n/2) + 2^n$$

$$a = 8$$
, $b = 2$, $f(n) = 2^n$

Although a and b are satisfied, f(n) is an exponential function. F(n) must be a polynomial for the masters theorem to work.

Problem 3

Fibenacci Sequence Formula.

• $F_n = F_{n-1} + F_{n-2}$, where n > 1Fib(n)

memo[1...n] = [1,...,1] base case

for i=3 to n

memo[i] = memo[i-1] + memo[i-2]

TC = $\theta(n)$ $SC = \theta(n)$ Space needed for memo[1...n]

Modified Fibonacci Sequence:

Def Bottom Up Fib (n):
if
$$n = 0$$
 or $n = 1$:
return n

lets define some variables here

$$A = 0$$

 $B = 1$
for $i = 1$ in $n :$
 $A = B$
 $A = B$
 $B = A : B$
Setum B

In this bottom-up approach, we solved the subproblem only once. Therefore, the time complexity is O(n). We used 2 variables to track our intermediate results, our space complexity is O(n).

P[i] = price of inches piece of rod.

Two arrays to this problem:

- ① cut the rods into length of length[i]. Then add the profits of \$1 and check for the length[i].
- 2 Don't cut rod into length [i] and into i+1.

MaxPrice (n) = max (P[1] + MaxPrice (n-1) + P[2] + MaxPrice (n-2] + P[3]+ MaxPrice (n-3)...
P[n] + MaxPrice (n).

This is assuming we out the rod of length n into i indies. Then we add the max price of the sizes of rod n-i.

b. The base case is when it's O, MaxPrice (O). This is because length O of the rod doesn't have a price.