Supplementary : data analysis methods

April 1, 2024

Contents

1	Quality control															
2	Cell 2.1 2.2 2.3	Scatter plots	3 3 6 7													
3	Data integration 8															
	3.1	Linear optimal transport	8													
		3.1.1 Scatter plots	8													
		3.1.2 Correlation plots	12													
	3.2	Supervised optimal transport	13													
4	HSO	C score	14													
5	Tra	Trajectory inference														
	5.1	Trajectory in PCA space	14 14													
0	m ·															
6		jectory analysis	15 15													
	6.1	Erythroid branch														
		6.1.1 Pseudotime	15													
		6.1.2 Volcanos	16													
			19													
	<i>c</i> o	6.1.4 X plots	19													
	6.2	MKP branch	19													
		6.2.1 Pseudotime	19													
		6.2.2 Volcanos	27													
		6.2.3 Heatmap	28													
	0.0	6.2.4 X plots	29													
	6.3	Basophil branch	36													
		6.3.1 Pseudotime	36													
		6.3.2 Volcanos	36													
		6.3.3 Heatmap	39													
	0.1	6.3.4 X plots	39													
	6.4	Neutrophil branch	46													
		6.4.1 Pseudotime	46													
		6.4.2 Volcanos	46													

		6.4.3	Heat	map																										4
		6.4.4	X pl	ots																										4
	6.5	Mono	cyte b	rancl	ı.																									5
		6.5.1		ıdotir																										5
		6.5.2	Volc	anos																										5
		6.5.3	Heat	map																										5
		6.5.4	X pl	ots																										5
	6.6	Myelo																												6
		6.6.1		ıdotir																										6
		6.6.2	Volc	anos																										6
		6.6.3	Heat	map																										6
		6.6.4	X pl	ots																										6
7	Ear	ly pop	ulatio	ons																										7
	7.1	Top m	narker	s fror	n li	$in\epsilon$	eag	ge	tr	ac	in	g																		7
	7.2	Early	popul	ation	s c	las	si	fic	at	ioı	n 1	bу	b	ac	k	pr	op	ag	at	ir	ıg	la	ab	el	\mathbf{S}					7
		7.2.1	UM	AP.																										7
		7.2.2		anos																										7
	7.3	Early	popul	ation	s cl	as	sif	ica	ati	on	u	si	ng	k	nc	w	n l	in	ea	ıge	e t	ra	aci	in	g	m	ar	·k-	-	
		ers .																												8
		7.3.1	UM	AP.																										8
		7.3.2		anos																										8

1 Quality control

Figure 1: Supplementary: a. Gating strategy used for FACS sorting on human bone marrow cells. b. Quality control for RNA samples. Violin plots show the number of non-zero genes and total counts per cell for indifivudla samples (top for sorted samples, bottom for timepoints samples). c,d,e. Quality control for ATAC samples: TSS by unique fragments, fragment size distribution, doublet scores

2 Cell type annotation

2.1 Scatter plots

Figure 2: Supplementary: Time points (days) and sorted assays (CD) annotation $\,$

Figure 3: Supplementary: Leiden identity simple annotation

Figure 4: Supplementary: Leiden identity annotation

2.2 Bar plots

Figure 5: Supplementary: Leiden identity simple annotation

Figure 6: Supplementary: Leiden identity simple annotation

Figure 7: Supplementary: Leiden identity annotation

2.3 Correlation plots

Figure 8: Correlation between cell type averages (obtained using top PCs)

3 Data integration

3.1 Linear optimal transport

3.1.1 Scatter plots

Figure 9: Assays in RNA days PCA subspace

Figure 10: Assays in RNA days PCA subspace, after alignment with linear optimal transport $\,$

Figure 11: Assays in RNA days PCA subspace obtained using the intersection of expressed genes, after alignment with linear optimal transport.

Figure 12: Assays in RNA days PCA subspace obtained using the union of variable genes, after alignment with linear optimal transport.

Figure 13: Assays in RNA days PCA subspace obtained using the intersection of variable genes, after alignment with linear optimal transport.

3.1.2 Correlation plots

Figure 14: Correlation between assays' cell type averages (obtained using top PCs of assays, each in their own PCA subspace)

Figure 15: Correlation between assays' cell type averages (obtained using top PCs of assays in RNA days PCA subspace)

Figure 16: Correlation between assays' cell type averages (obtained using top PCs of assays in RNA days PCA subspace, after alignment with linear optimal transport)

3.2 Supervised optimal transport

Grouping of categories to go from full to simple annotation

- 'Early-ERP', 'Erythroblast', 'CD34+ ERP' = 'Erythroid'
- 'Platelet', 'CD34+ MKP' = 'MKP'
- 'Pre-Dendritic', 'Dendritic Cell' = 'Dendritic'
- 'CD34+ CLP', 'CD34+ pre-B', 'Pro-B', 'Plasma Cell', 'NK cells', 'Naive T-cell', 'CD8 T-cell' = 'Lymphoid'
- 'CD34+ Mixed-Lineage', 'CD34+ HSC', 'CD34+ CMP', 'CD34+ Gran', 'Eosinophil', 'Stromal Cells' = 'Mixed-Lineage'
- change unlikely 'Erythroid' annotation (outlier, mixed cluster) for late ATAC days (day 7 and 12) to 'Mixed-Lineage'

Figure 17: Supplementary: supervision of OT cost matrix

4 HSC score

Figure 18: Supplementary: hematopoeitic stem cell score

5 Trajectory inference

5.1 Trajectory in PCA space

Figure 19: Supplementary: Trajectory visualized in PCA space

6 Trajectory analysis

6.1 Erythroid branch

6.1.1 Pseudotime

Figure 20: Supplementary: Erythroid branch pseudotime

6.1.2 Volcanos

Figure 21: Supplementary: Erythroid branch marker detection with Spearman correlation. The volcano plot is colored by -log10 adjusted p-values

Figure 22: Supplementary: Erythroid branch marker detection with Spearman correlation and MAGIC imputed matrices for gene score and RNA expression. The volcano plot is colored by $-\log 10$ adjusted p-values

6.1.3 Heatmap

Figure 23: Supplementary: Heatmap of top negative and positive correlations against pseudotime, grouping all RNA and chromVAR assays

- 6.1.4 X plots
- 6.2 MKP branch
- 6.2.1 Pseudotime

Figure 24: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays

Figure 25: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score

Figure 26: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays

Figure 27: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays, with MAGIC smoothing for gene score and RNA expression $\frac{1}{2}$

Figure 28: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score, with MAGIC smoothing for gene score and RNA expression

Figure 29: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays with MAGIC smoothing for gene score and RNA expression

Figure 30: Supplementary: MKP branch pseudotime

6.2.2 Volcanos

Figure 31: Supplementary: Erythroid branch marker detection with Spearman correlation. The volcano plot is colored by $-\log 10$ adjusted p-values

Figure 32: Supplementary: Erythroid branch marker detection with Spearman correlation and MAGIC imputed matrices for gene score and RNA expression. The volcano plot is colored by -log10 adjusted p-values

6.2.3 Heatmap

Figure 33: Supplementary: Heatmap of top negative and positive correlations against pseudotime, grouping all RNA and chromVAR assays

6.2.4 X plots

Figure 34: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays

Figure 35: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score

Figure 36: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays

Figure 37: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays, with MAGIC smoothing for gene score and RNA expression $\,$

Figure 38: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score, with MAGIC smoothing for gene score and RNA expression

Figure 39: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays with MAGIC smoothing for gene score and RNA expression

6.3 Basophil branch

6.3.1 Pseudotime

Figure 40: Supplementary: MKP branch pseudotime

6.3.2 Volcanos

Figure 41: Supplementary: Erythroid branch marker detection with Spearman correlation. The volcano plot is colored by -log10 adjusted p-values

Figure 42: Supplementary: Erythroid branch marker detection with Spearman correlation and MAGIC imputed matrices for gene score and RNA expression. The volcano plot is colored by $-\log 10$ adjusted p-values

6.3.3 Heatmap

Figure 43: Supplementary: Heatmap of top negative and positive correlations against pseudotime, grouping all RNA and chromVAR assays

6.3.4 X plots

Figure 44: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays

Figure 45: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score

Figure 46: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays

Figure 47: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays, with MAGIC smoothing for gene score and RNA expression $\frac{1}{2}$

Figure 48: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score, with MAGIC smoothing for gene score and RNA expression

Figure 49: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays with MAGIC smoothing for gene score and RNA expression

6.4 Neutrophil branch

6.4.1 Pseudotime

Figure 50: Supplementary: MKP branch pseudotime

6.4.2 Volcanos

Figure 51: Supplementary: Erythroid branch marker detection with Spearman correlation. The volcano plot is colored by $-\log 10$ adjusted p-values

Figure 52: Supplementary: Erythroid branch marker detection with Spearman correlation and MAGIC imputed matrices for gene score and RNA expression. The volcano plot is colored by $-\log 10$ adjusted p-values

6.4.3 Heatmap

Figure 53: Supplementary: Heatmap of top negative and positive correlations against pseudotime, grouping all RNA and chromVAR assays

6.4.4 X plots

Figure 54: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays

Figure 55: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score

Figure 56: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays

Figure 57: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays, with MAGIC smoothing for gene score and RNA expression $\frac{1}{2}$

Figure 58: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score, with MAGIC smoothing for gene score and RNA expression

Figure 59: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays with MAGIC smoothing for gene score and RNA expression

6.5 Monocyte branch

6.5.1 Pseudotime

Figure 60: Supplementary: MKP branch pseudotime

6.5.2 Volcanos

Figure 61: Supplementary: Erythroid branch marker detection with Spearman correlation. The volcano plot is colored by $-\log 10$ adjusted p-values

Figure 62: Supplementary: Erythroid branch marker detection with Spearman correlation and MAGIC imputed matrices for gene score and RNA expression. The volcano plot is colored by $-\log 10$ adjusted p-values

6.5.3 Heatmap

Figure 63: Supplementary: Heatmap of top negative and positive correlations against pseudotime, grouping all RNA and chromVAR assays

6.5.4 X plots

Figure 64: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays

Figure 65: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score

Figure 66: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays

Figure 67: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays, with MAGIC smoothing for gene score and RNA expression

Figure 68: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score, with MAGIC smoothing for gene score and RNA expression

Figure 69: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays with MAGIC smoothing for gene score and RNA expression

6.6 Myeloid DC branch

6.6.1 Pseudotime

Figure 70: Supplementary: MKP branch pseudotime

6.6.2 Volcanos

Figure 71: Supplementary: Erythroid branch marker detection with Spearman correlation. The volcano plot is colored by -log10 adjusted p-values

Figure 72: Supplementary: Erythroid branch marker detection with Spearman correlation and MAGIC imputed matrices for gene score and RNA expression. The volcano plot is colored by $-\log 10$ adjusted p-values

6.6.3 Heatmap

Figure 73: Supplementary: Heatmap of top negative and positive correlations against pseudotime, grouping all RNA and chromVAR assays

6.6.4 X plots

Figure 74: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays

Figure 75: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score

Figure 76: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays

Figure 77: Supplementary: X-plot showing Spearman correlations against pseudotime, for all pairs of assays, with MAGIC smoothing for gene score and RNA expression

Figure 78: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping sorted and timepoints assays for RNA and gene score, with MAGIC smoothing for gene score and RNA expression

Figure 79: Supplementary: X-plot showing Spearman correlations against pseudotime, grouping all RNA and chromVAR assays with MAGIC smoothing for gene score and RNA expression

7 Early populations

7.1 Top markers from lineage tracing

Figure 80: Supplementary: Marker genes previously identified by lineage tracing distinguish early monocyte populations: dendritic-like and neutrophil-like

7.2 Early populations classification by backpropagating labels

7.2.1 UMAP

Figure 81: Supplementary: UMAP showing inferred dendritic-like and neutrophil-like early monocyte populations

Figure 82: Supplementary: UMAP showing inferred dendritic-like and neutrophil-like early monocyte populations, split into "early" and "late" halves of pseudotime.

7.2.2 Volcanos

Figure 83: Supplementary: Volcano plots of Wilcoxon test between inferred dendritic-like and neutrophil-like early monocyte populations, for "early" and "late" halves of pseudotime. Motifs and RNA expression show TFs only while RNA expression all shows all genes

Figure 84: Supplementary: Volcano plots of Wilcoxon test between inferred dendritic-like and neutrophil-like early monocyte populations, for "early" and "late" halves of pseudotime, grouping assays. Motifs and RNA expression show TFs only while RNA expression all shows all genes

7.3 Early populations classification using known lineage tracing markers

7.3.1 UMAP

Figure 85: Supplementary: UMAP showing inferred dendritic-like and neutrophil-like early monocyte populations

Figure 86: Supplementary: UMAP showing inferred dendritic-like and neutrophil-like early monocyte populations, split into "early" and "late" halves of pseudotime.

7.3.2 Volcanos

Figure 87: Supplementary: Volcano plots of Wilcoxon test between inferred dendritic-like and neutrophil-like early monocyte populations, for "early" and "late" halves of pseudotime. Motifs and RNA expression show TFs only while RNA expression all shows all genes