Power Distribution System for a CubeSat

Presented by :

Ansaf Niyaz | TRV19EE016 | Govind Murali | TRV19EE025 | Jijesh J. Kumar | TRV19EE029 | Naveen A.B. | TRV19EE038

GEC Barton Hill, Thiruvananthapuram

November 9, 2022

Guided by: Prof. Dinesh Gopinath

Contents

- 1. Objectives
- 2. Project Outline
- 3. Literature Review
- 4. System Architecture
- 5. Methodology
- 6. Requirements
- 7. Budget Estimate
- 8. Project Timeline

Objective

To design and implement a fully autonomous power generation, storage and distribution system for a CubeSat

Project Outline

CubeSat(1U):

- Dimensions- $10 \times 10 \times 10 \ cm^3$
- Weight-2 kg.

Figure 1: CubeSat 1U (Source: GIS Geography)

Project Outline (Contd.)

Electrical Power System (EPS):

- Harvests energy from the solar panels
- Manages power storage and distribution
- Protects circuits from damage
- Redundant architecture

Literature Review

Power Generation and Storage:

- Solar cells and batteries used for generation and storage of power respectively
- Batteries supply power during absence of solar energy
- Li-ion batteries are preferred to Ni-MH [1]

Power Conditioning:

- DC-DC converters are preferred to linear voltage regulators to reduce losses
- Peak power transfer is preferred to direct power transfer for solar output [2]
- Trickle charge [3] method is used to charge the batteries
- 5V and 3.3V DC-DC convertors outputs regulated voltage to their respective DC buses

Literature Review (Contd.)

Power Distribution:

- Distributed EPS scheme [4] is preferred to increase flexibility
- 5V and 3.3V DC-DC convertors outputs regulated voltage to their respective DC buses

Power Monitoring and Converter control:

- The microcontroller monitors the voltage levels and currents in the circuit and DC buses
- It is responsible for PWM generation, over-current protection and logging
- STM 32 microcontroller is selected due to it's low power usage and radiation tolerance.

System Architecture

Figure 2: CubeSat EPS Architecture

Methodology

- Identifying the power requirements
- Architecture design and topology selection
- Forming Specifications
- Design and simulation
- Procurement of components
- Fabrication and testing

Requirements

Equipments Requirements:

- SMD Soldering Station
- Oscilloscope
- Power Supply
- Function Generator

Software Requirements:

- MATLAB/Spice
- KiCad
- STM32 CubeIDE

Budget Estimate: Component cost

SI. No.	Item	Amount (Rs.)
1	STM32 NUCLEO Development Board	3000
2	SMD soldering station	9000
3	Li-ion Cell (x2)	1000
4	Regulated Multi-Output Power Supply	5000
5	Solar Panel	2000
6	Components	8000

Budget Estimate: Fabrication cost

SI. No.	Item	Amount (Rs.)
1	PCB Printing	3000
2	SMD soldering	990
3	Inductor Fabrication	1000

Project Timeline

Activity	October 3 rd & 4 th week	November 1 st & 2 nd week	November 3 rd & 4 th week
Literature			
Review			
Hardware			
Design			
Report			
Writing			

Project Timeline

Activity	Oct	Oct	Nov	Nov	Nov	Nov
Activity	3rd week	4th week	1st week	2nd week	3rd week	4th week
Literature Review						
Hardware Design						
Report Writing						
Component Procurement						
Fabrication						
Software Development						
Testing						

References I

- [1] Knap, Vaclav & Vestergaard, Lars & Stroe, Daniel-Ioan (2020)
 A Review of Battery Technology in CubeSats and Small Satellite Solutions *Energies, vol. 13*
- Comparison of Peak Power Tracking Based Electric Power System Architectures for CubeSats

A. Edpuganti, V. Khadkikar, H. Zeineldin, M. S. E. Moursi and M. Al Hosani (2021)

- IEEE Transactions on Industry Applications, vol. 57, no. 3, pp. 2758-2768, May-June 2021
- Review on the charging techniques of a Li-lon battery

 Third International Conference on Technological Advances in Electrical, Electronics and

 Computer Engineering (TAEECE), 2015, pp. 50-55

E. Ayoub and N. Karami

References II

[4] B. Hussein, A. M. Massoud and T. Khattab (2022) Centralized, Distributed, and Module-Integrated Electric Power System Schemes in CubeSats: Performance Assessment IEEE Access, vol. 10, pp. 55396-55407