UNIVERSITÉ JOSEPH FOURIER, UFR IM²AG AGRÉGATION INTERNE, 2013-2014 28 OCTOBRE 2013 RÉDUCTION DES ENDOMORPHISMES

ÉNONCÉ

Ce problème fait suite au problème traité en classe lors du stage du 28/10/2013, problème relatif aux invariants de similitude et n'en est pas indépendant. Toutefois, les questions du problème du 28/10/2013 qui sont nécessaires à la solution de celui-ci sont reprises dans l'énoncé.

Dans ce qui suit K désigne un corps infini, et on note :

- Si I désigne un ensemble fini, $\mathbb{K}[(X_i)_{i\in I}]$ est l'anneau des polynômes en un nombre fini égal au cardinal de I d'indéterminées $(X_i)_{i\in I}$ indexées par l'ensemble $n \in N$.
- On fixe $n \in \mathbb{N}$, $n \geq 2$ et on désigne par $M_n(\mathbb{K})$ l'ensemble des matrices carrées de taille n à coefficients dans \mathbb{K} et par $GL_n(\mathbb{K}) \subset M_n(\mathbb{K})$ le groupe des matrices inversibles. I_n désigne la matrice identité.
- S_n est le groupe des permutations de n lettres et pour $\sigma \in S_n$ $\epsilon(\sigma)$ désigne la signature de σ . On note $\mathbb{K}[X_1,\ldots,X_n]^{S_n}$ l'ensemble des polynômes tels que $P(X_{\sigma(1)},\ldots,X_{\sigma(n)})=P(X_1,\ldots,X_n)$ pour tout $\sigma\in S_n$.
- On définit l'ensemble des polynômes matriciels comme $\mathbb{K}[M_n] := \mathbb{K}[(X_{ij})_{1 \leq i,j \leq n}].$
- Si S est un ensemble, on note S^I l'ensemble des applications $\alpha: I \to S$.
- Si $\alpha \in \mathbb{N}^I$ on note $X^{\alpha} = \prod_{i \in I} X_i^{\alpha(i)} \in \mathbb{K}[(X_i)_{i \in I}]$. Tout polynôme $P \in \mathbb{K}[(X_i)_{i \in I}]$ s'écrit de manière unique $P = \sum_{\alpha \in \mathbb{N}^I} a_{\alpha} X^{\alpha}$ où $a_{\alpha} \in \mathbb{K}$ et $a_{\alpha} \neq 0$ pour seulement un nombre fini de $\alpha \in \mathbb{N}^{I}$. On pose

$$\deg(P) = \max_{a_{\alpha} \neq 0} \sum_{i \in I} \alpha(i).$$

En particulier le degré du polynôme nul est $-\infty$.

- $\mathbb{K}[(X_i)_{i\in I}]_{\leq d}$ l'ensemble des polynômes en $(X_i)_{i\in I}$ de degré $\leq d$.
- Si $(x_i)_{i \in I} \in \mathbb{K}^I$ et $P = \sum_{\alpha \in \mathbb{N}^I} a_{\alpha} X^{\alpha}$, on pose

$$P((x_i)_{i \in I}) = \sum_{\alpha \in \mathbb{N}^I} a_\alpha \prod_{i \in I} x_i^{\alpha(i)} \in \mathbb{K}.$$

En particulier si $I = \{1, \ldots, n\}^2, P \in \mathbb{K}[M_n]$ un polynôme matriciel et A = $(a_{i,j})_{1 \le i,j \le n} \in M_n(\mathbb{K})$ on peut ainsi définir $P(A) \in \mathbb{K}$.

- VI - Polynômes matriciels invariants

(1) (a) Montrer que $K[X_1, \dots, X_n] = K[X_1, \dots, X_{n-1}][X_n]$.

- 2
- (b) Montrer que l'application définie sur $\mathbb{K}[(X_i)_{i\in I}]$ à valeurs dans l'ensemble $\mathbb{K}^{\mathbb{K}^I}$ des applications définies sur \mathbb{K}^I à valeurs dans \mathbb{K} envoyant P sur l'application $((x_i)_{i\in I}\in\mathbb{K}^I\mapsto P((x_i)_{i\in I})\in\mathbb{K})$ est injective. (Indication: on rappelle que \mathbb{K} est infini.)
- (c) En déduire que si $P \in \mathbb{K}[(X_i)_{i \in I}]$ vérifie:

$$\forall (x_i)_{i \in I} \in \mathbb{K}^I, \ P((x_i)_{i \in I}) = 0,$$

pour \mathbb{L} un surcorps de \mathbb{K} on a aussi:

$$\forall (x_i)_{i \in I} \in \mathbb{L}^I, \ P((x_i)_{i \in I}) = 0,$$

(d) Montrer que $P \in \mathbb{L}[(X_i)_{i \in I}]$ vérifie

$$\forall (x_i)_{i \in I} \in \mathbb{K}^I, \ P((x_i)_{i \in I}) = 0,$$

si et seulement si P=0 (Indication: on commencera par le cas où I est de cardinal 1).

- (2) Pour $P = X_{11}X_{12} \in \mathbb{K}[M_n]$ et $A \in M_n(\mathbb{K})$ calculer P(A).
- (3) On dit qu'un polynôme matriciel $P \in \mathbb{K}[M_n]$ est invariant (notation $P \in \mathbb{K}[M_n]^{GL_n}$) si et seulement si:

$$\forall A \in M_n(\mathbb{K}), \ \forall g \in GL_n(\mathbb{K}) \quad P(gAg^{-1}) = P(A).$$

(a) Montrer que

Tr =
$$\sum_{i=1}^{n} X_{ii}$$
 et det = $\sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{i=1}^{n} X_{i\sigma(i)}$

vérifient $\operatorname{Tr}, \det \in \mathbb{K}[M_n]^{GL_n}$.

(b) Montrer qu'il existe $c_0, c_1, \ldots, c_n \in \mathbb{K}[M_n]^{GL_n}$ avec $\deg(c_i) = i$ et $c_0 = 1$ tels que:

$$\forall A \in M_n(K) \det(A - XI_n) = (-1)^n \sum_{i=0}^n c_i(A) X^{n-i}.$$

Identifier c_1 et c_n .

- (c) Pour une matrice diagonale $D = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots \\ 0 & \dots & \dots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}$ calculer $c_i(D)$.
- (d) Montrer que l'application

$$\eta: \begin{pmatrix} \mathbb{K}[M_n]^{GL_N} \to \mathbb{K}[X_1, \dots, X_n]^{S_n} \\ P((X_{ij})_{1 \le i, j \le n}) \mapsto P(\begin{pmatrix} X_1 & 0 & \dots & 0 \\ 0 & X_2 & 0 & \dots \\ 0 & \dots & \dots & 0 \\ 0 & \dots & 0 & X_n \end{pmatrix})$$

est un morphisme d'anneaux surjectif.

(4) Soient $\lambda, \epsilon \in \mathbb{K}$.

(a) Supposons $\epsilon \neq 0$. Montrer que la matrice de Jordan :

$$J_{\lambda,\alpha} = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 1 & \lambda \end{pmatrix}$$

est semblable à la matrice :

$$J_{\lambda,\alpha}(\epsilon) = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ \epsilon & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & \epsilon & \lambda \end{pmatrix}$$

- (b) En déduire que pour $P \in \mathbb{K}[M_n]^{GL_n}$ on a pour tout $\epsilon \in \mathbb{K}$ $P(J_{\lambda,\alpha}(\epsilon)) = P(J_{\lambda,\alpha})$.
- (c) Montrer que si $A \in M_n(\mathbb{K})$ est trigonalisable de polynôme caractéristique $\prod_{i=1}^n (X \lambda_i)$ on a

$$P(A) = P\left(\begin{pmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots \\ 0 & \dots & \dots & 0 \\ 0 & \dots & 0 & \lambda_n \end{pmatrix}\right) = \eta(P)(\lambda_1, \dots, \lambda_n).$$

(5) (cf. Problème du 28/10/13, question II-1 (a,b,c)). À tout polynôme unitaire $\pi:=(X)=X^p-\sum_{k=0}^{p-1}a_kX^k$ de degré $p\geq 1$, on associe sa **matrice compagnon** définie par :

$$C_{\pi} = \begin{pmatrix} 0 & \cdots & 0 & a_0 \\ 1 & \ddots & \vdots & a_1 \\ \vdots & \ddots & 0 & \vdots \\ 0 & \cdots & 1 & a_{p-1} \end{pmatrix} \in M_p(\mathbb{K})$$

Pour p = 1, $\pi(X) = X - a_0$ et $C_{\pi} = (a_0)$. On se fixe un polynôme unitaire π de degré $p \ge 1$, $C = C_{\pi}$ est sa matrice compagnon et u est l'endomorphisme de \mathbb{K}^p de matrice C dans la base canonique $\mathcal{B} = (e_k)_{1 \le k \le p}$.

(a) Montrer que pour tout polynôme $Q \in \mathbb{K}[X]$, on a :

$$(Q(u) = 0 \text{ dans } \mathcal{L}(E)) \Leftrightarrow (Q(u)(e_1) = 0 \text{ dans } E)$$

- (b) Montrer que π est le polynôme minimal de u.
- (c) Montrer que π est le polynôme caractéristique de u puis que det $(u) = (-1)^{p+1} a_0$.

(6) On fixe $p \in \mathbb{N}$ et on considère l'application

$$\theta: \left(\begin{array}{ccc} \mathbb{K}[M_n]^{GL_N} & \to & \mathbb{K}[X_0, \dots, X_{p-1}] \\ \\ P((X_{ij})_{1 \le i, j \le n}) & \mapsto & P(\begin{pmatrix} 0 & \cdots & 0 & -X_0 \\ 1 & \ddots & \vdots & -X_1 \\ \vdots & \ddots & 0 & \vdots \\ 0 & \cdots & 1 & -X_{p-1} \end{pmatrix}) \right)$$

Montrer que θ est un morphisme d'anneaux surjectif.

(7) On considère pour $P \in \mathbb{K}[M_n]^{GL_n}$ le polynôme $Q \in \mathbb{K}[M_n]$ défini par:

$$Q = P - \theta(P)(c_n, c_{n-1}, \dots, c_1).$$

- (a) Montrer que $Q \in \mathbb{K}[M_n]^{GL_n}$.
- (b) Montrer que Q(C) = 0 si C est une matrice compagnon.
- (c) (cf. Problème III-6-(a,b,c).) Soient $\pi = X^n \sum_{k=0}^{n-1} a_k X^k \in \mathbb{K}[X]$ un polynôme unitaire de degré $n \geq 1$ et C_{π} sa matrice compagnon. En écrivant la décomposition de π en facteurs irréductibles, $\pi = \prod_{k=1}^{r} \pi_k^{\alpha_k}$, où les π_k sont irréductibles deux à deux distincts dans $\mathbb{K}[X]$ et les α_k des entiers non nuls, montrer que la matrice C_{π} est semblable à la matrice diagonale par blocs :

$$\begin{pmatrix} C_{\pi_1^{\alpha_1}} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & C_{\pi_r^{\alpha_r}} \end{pmatrix}$$

(d) Soit $\lambda \in \mathbb{K}$ et $\alpha \in \mathbb{N}^*$. Montrer que la matrice compagnon $C_{(X-\lambda)^{\alpha}}$ est semblable dans $M_{\alpha}(\mathbb{K})$ à la matrice de Jordan :

$$J_{\lambda,\alpha} = \begin{pmatrix} \lambda & 0 & \cdots & 0 \\ 1 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 1 & \lambda \end{pmatrix}$$

(e) On suppose $\pi \in \mathbb{K}[X]$ est un polynôme unitaire de degré $n \geq 1$ scindé sur \mathbb{K} , soit $\pi(X) = \prod_{k=1}^r (X - \lambda_k)^{\alpha_k}$ où les λ_k sont des scalaires deux à deux distincts et les α_k des entiers naturels non nuls. Montrer que la matrice compagnon C_{π} est semblable dans $M_n(\mathbb{K})$ à la

matrice de Jordan par blocs :

$$J = \begin{pmatrix} J_{\lambda_1,\alpha_1} & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_{\lambda_r,\alpha_r} \end{pmatrix}$$

- (f) Montrer que Q(T) = 0 si T est trigonalisable.
- (8) On suppose dans cette question seulement que \mathbb{K} est algébriquement clos. Montrer que Q = 0 et conclure que θ est un isomorphisme.
- (9) Soit $P \in \mathbb{K}[M_n]$.
 - (a) Soit $A \in M_n(K)$. Montrer que l'application $(\mathbb{K} \to \mathbb{K}, x \mapsto P(A xI_n))$ est polynomiale.
 - (b) Montrer que si P(g) = 0 pour $g \in GL_n(\mathbb{K})$, on a P(A) = 0 pour tout $A \in M_n(\mathbb{K})$. Déduire que P = 0.
 - (c) Soient $1 \leq i, j \leq n$. Pour $g \in GL_n(\mathbb{K})$, on note $(g^{-1})_{ij}$ le coefficient en position i, j de la matrice g^{-1} . Montrer que l'application $(GL_n(\mathbb{K}) \to \mathbb{K}, g \mapsto \det(g)(g^{-1})_{ij})$ est est la restriction à $GL_n(\mathbb{K})$ d'une application polynomiale associée à un polynôme matriciel $p_{ij} \in \mathbb{K}[M_n]$.
 - (d) Soit $P \in \mathbb{K}[M_n]$ et $A \in M_n(\mathbb{K})$. Montrer que l'application

$$(GL_n(\mathbb{K}) \to \mathbb{K}, g \mapsto \det(g)^{\deg(P)} P(gAg^{-1})$$

est la restriction à $GL_n(\mathbb{K})$ d'une application polynomiale associée à un polynôme matriciel.

(e) Soit \mathbb{L} un surcorps de \mathbb{K} . Montrer que si $P \in \mathbb{K}[M_n]^{GL_n}$ on a:

$$\forall A \in M_n(\mathbb{K}) \ \forall g \in GL_n(\mathbb{L}) \ P(gAg^{-1}) = P(A)$$

puis que

$$\forall A \in M_n(\mathbb{L}) \ \forall g \in GL_n(\mathbb{L}) \ P(gAg^{-1}) = P(A).$$

- (f) Soit $A \in M_n(\mathbb{K})$. Montrer qu'il existe un surcorps \mathbb{L} tel que A vue comme matrice à coefficients dans \mathbb{L} est trigonalisable sur \mathbb{L} et conclure que Q(A) = 0. En déduire que θ est un isomorphisme même si \mathbb{K} n'est pas algébriquement clos.
- (10) Montrer que η est un isomorphisme.