Digitaltechnik: Logikschaltungen

Anwendung: Berechnung von Ausgangsvektoren aus Eingangsvektoren, damit:

- Steuerung von endlichen Automaten (Zustandsübergangssteuerung: Ampel, Waschmaschine)
- Mathematische Operationen
- Speichern und Übertragen von Daten
- Allgemeine Datenverarbeitung

Digitaltechnik: Basislogikschaltungen sind kombinierbar

Problem:

Wuchernde Schaltungen mit gewaltigen Anzahlen von Transistoren, welche eventuell unnötig sind...

→Zusammenfassen um zu reduzieren.

x1	x2	х3	x4	Y1	Y2
0	0	0	0	?	
0	0	0	1		
0	0	1	0		
0	0	1	1		
0	1	0	0		
0	1	0	1		
0	1	1	0		
0	1	1	1		
1	0	0	0		
1	0	0	1		
1	0	1	0		
1	0	1	1		
1	1	0	0		
1	1	0	1		
1	1	1	0		
1	1	1	1		

Boolsche Algebra: Rechengesetze

Rechengesetze	konjunktive Form	disjunktive Form	
Kommutativgesetz	A*B=B*A	A+B=B+A	
Assoziativgesetz	A*(B*C)=(A*B)*C	A+(B+C)=(A+B)+C	
Distributivgesetz	A*(B+C)=AB+AC	A+BC=(A+B)*(A+C)	
Spezialfall: Absorptions- gesetz	A*(A+B)=AA+AB = A	A+AB=(A+A)*(A+B) = A	
Komplementgesetz	A * A = 0	A + A = 1	
doppelte Negation	 A = A		
Operationen mit binären Werten	A * 0 = 0 A * 1 = A	A + 0 = A A + 1 = 1	
Gesetz nach De Morgan	 A * B = A + B	——————————————————————————————————————	

Anwendung:

Vereinfachung von Schaltungen durch Zusammenfassen: **Schaltungsminimierung**

Reduktion von Transistoren innerhalb der integrierten Schaltungen.

Geringere Transistorzahl, reduziert:

- Den Platzbedarf
- Den Materialaufwand und das Gewicht
- Den elektrischen Leistungsbedarf

→ Ziel: Optimierte, übersichtliche Schaltung.

Karnaugh - Veitch - Tafeln: Erstellen und Anwenden, Allgemein

Disjunktive Normalform

Konjunktive Normalform

Vollkonjunktionen

Volldisjunktionen

Aufbau der KV - Tafeln:

- Eingangssignale: Normal und negiert an den Rand schreiben, dürfen auch getauscht angeordnet sein.
- Für n Eingänge müssen 2^n Felder vorgesehen werden.
- Für n > 4 ist keine Ebene Darstellung mehr möglich. Dann werden die KV – Tafeln nebeneinander gelegt...
- Der 1 Wert ist der normale, nicht negierte, Wert der Variablen.

Anwendung:

Ist die **DNF** gesucht, so werden die Minterme mit den Feldwerten 1 betrachtet.

Die Variablen des 1 – Feldes werden "und" – verknüpft. Dies sind die Vollkonjunktionen. Sie werden mit "oder" – verbunden.

Funktionsgleichungen:

$$Y = (\overline{A} \cdot \overline{B}) \vee (\overline{A} \cdot B) \vee (A \cdot \overline{B}) \vee (A \cdot B)$$

Ist die **KNF** gesucht, so werden die Maxterme mit den Feldwerten 0 betrachtet.

Die Variablen des 0 – Feldes werden "oder" – verknüpft. Dies sind die Volldisjunktionen.

Sie werden mit "und" – verbunden.

$$Y = (A \lor B) \cdot (A \lor \overline{B}) \cdot \overline{(A \lor B)} \cdot \overline{(A \lor B)}$$

→ Beim Zusammenfassen werden hier Blöcke aus 1(DNF) oder 0(KNF) gebildet. Damit entfallen Eingänge. Später detailliert...

Karnaugh – Veitch – Tafeln erstellen: n=3 - Eingänge

Wahrheitstabelle:

Z.B. disjunktive Normalform: Alle Minterme, die eine 1 ergeben.

Ein Feld ist immer eine Zeile in der Wahrheitstabelle.

Aufbau der 3 - KV - Tafel:

- Analog n=2, und:
- Ungleiche Variablen müssen Schnittmengen bilden: A,B,C und nicht-A,-B,-C

Karnaugh – Veitch – Tafeln erstellen: n=4 - Eingänge

KV - Tafel:

Aufbau der 4 - KV - Tafel:

- Analog n=2, und:
- Ungleiche Variablen müssen Schnittmengen bilden: A,B,C,D und nicht-A,-B,-C,-D
- Die Variablen sind so am Rand zu verteilen, dass sich ungleiche Variablen nicht gegenseitig überschneiden und gleiche Variablennamen paarweise normal und negiert nebeneinander auftreten.
- n>=5 und mehr sind nicht mehr in der Ebene darstellbar: Überschneidungen... →2...m KV – Tafeln nebeneinander anordnen: Siehe Literatur...

KV-Diagramm für 4 Variable mit eingetragenen Vollkonjunktionen

Z.B. disjunktive Normalform: Alle Minterme, die eine 1 ergeben.

Ein Feld ist immer eine Zeile in der Wahrheitstabelle.

Karnaugh - Veitch - Tafeln: Anwenden, Allgemein

Optimierte DNF aus dem KV-Diagramm

- Es werden Blöcke mit Minterme, Feldwerte 1 gebildet.
- Alle im Block gemeinsam vorkommenden Variablen bilden durch UND verknüpft den Gleichungsterm.
- In der Funktionsgleichung sind alle Gleichungsterme disjunktiv durch ODER verknüpft.

Optimierte KNF aus dem KV-Diagramm

- Es werden Blöcke mit Maxterme, Feldwerte 0 gebildet.
- Alle Variablen, die im Block nicht vorkommen, bilden durch ODER verknüpft den ______ nicht vorkommen:
 Gleichungsterm.
- Alternativ können auch alle Variablen, die im Block vorkommen durch ODER verknüpft werden.
 Anschließend sind die Variablen dann noch zu negieren.
 Ergebnis sei: Y = 1
- In der Funktionsgleichung sind alle Gleichungsterme konjunktiv durch UND verknüpft.

Karnaugh - Veitch - Tafeln: Minimierung durch Blockbildung, allgemeine Regeln

Erstellen der Funktionsgleichung aus der KV - Tafel:

Regeln zur Blockbildung:

- Blöcke können nur horizontal, vertikal oder quadratisch auftreten.
- Eine Blockbildung kann nur für Minterme oder Maxterme gebildet werden.
- Die Anzahl der Felder im Block entspricht einer 2-er Potenz, also 2, 4, 8, 16.
- Blöcke sollten so groß als möglich sein. Sie dürfen und sollen sich überschneiden.
- Hat man sich für Vollkonjunktionen (1-Werte) entschieden, so werden die 0-Werte nicht mehr berücksichtigt. Und umgekehrt.
- Blöcke dürfen über benachbarte Kanten gehen: Überlappen.
- Alle Min/Maxterme müssen mindestens ein Mal zu einem Block gehören.

Ablesen der Funktionsgleichung für die DNF:

- Eingangszustände in denen 1 Werte bilden die Funktionsgleichung.
- Eingangszustände in denen 0 Werte stehen werden nicht berücksichtigt.
- Ändert sich ein Eingangszustand im gefundenen Block von normal auf negiert und der Ausgang bleibt gleich, so hat er keinen Einfluss. → weglassen

Karnaugh – Veitch – Tafeln: Minimierung durch Blockbildung, Beispiele mit n=2 - Eingängen

Wahrheitstabelle und vollständige DNF

$$\begin{array}{c|ccccc}
A & B & Y \\
\hline
0 & 0 & 0 & V \\
\hline
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 1
\end{array}$$

$$= \overline{A}B \vee A(\overline{B} \vee B)$$

$$= \overline{A}B \vee A$$

$$= (\overline{A} \vee A) \wedge (B \vee A)$$

$$= A \vee B$$

Blockbildung benachbarter Vollkonjunktionen

	Α	Α	- 7
В	1	1	Y = B ▼
Б			1-0

Funktionsgleichung in DNF:Die 1 – Werte bilden die Funktionsgleichung.

- A und nicht-A sind 1 haben also keinen Einfluss bilden immer Y=1. → weglassen
- Nur B ändert Y.

DNF: 2 unabhängige Blöcke bilden Y=1

DNF: 1 Block bildet Y=1

Karnaugh – Veitch – Tafeln: Minimierung durch Blockbildung, Beispiele mit n=3 - Eingängen

Beispiel 1: Als disjunktive Normalform (DNF)

Α	В	С	Y		
0	0	0	0	v 155 - 156 - 155 - 156	ı
0	0	1	0	Y = ABC v ABC v ABC v ABC	
0	1	0	0	$= A\overline{B}(\overline{C} \vee C) \vee AB(\overline{C} \vee C)$	i
0	1	1	0	= AB v AB	_
1	0	0	1		
1	0	1	1	= A(B vB) Ein Feld ist immer eine Zeile	!
1	1	0	1	in der Wahrheitstabelle.	
1	1	1	1		

 $\begin{array}{c|cccc}
A & \overline{A} \\
\hline
B & 1 & 1 \\
\hline
\overline{C} & C & \overline{C}
\end{array}$

Immer größtmögliche Blöcke bilden: Y=A

Beispiel 2: Als disjunktive Normalform (DNF)

Α	В	С	<u>Y</u>	
0	0	0	1	
0	0	1	0	$Y = \overline{A}\overline{B}\overline{C} \vee \overline{A}\overline{B}\overline{C} \vee A\overline{B}\overline{C} \vee A\overline{B}\overline{C}$
0	1	0	1	$=\overline{B}\overline{C}(\overline{A} \vee A) \vee \overline{C}(\overline{A}B \vee AB)$
0	1	1	0	
1	0	0	1	$= \overline{BC} \vee \overline{C} \Big[B(\overline{A} \vee A) \Big]$
1	0	1	0	$= \overline{BC} \vee B\overline{C} = \overline{C}(B \vee \overline{B})$
1	1	0	1	= BC VBC = C(BVB)
1	1	1	0	$=\overline{\mathbf{C}}$

$$Y = \overline{C}$$

Karnaugh – Veitch – Tafeln: Minimierung, DNF, KNF: Beispiele mit n=3 - Eingängen

Beispiel 3: Als disjunktive Normalform (DNF)

Beispiel 3: Als konjunktive Normalform (KNF)

$$Y = (\overline{\overline{A}} \vee \overline{\overline{C}}) \wedge (\overline{\overline{B}} \vee \overline{\overline{\overline{C}}}) = (A \vee C) \wedge (B \vee C)$$

$$Y = C v AB$$

Ergebnis sei: Y = 1 aus der KNF, dann die Eingänge zunächst auf 0 auslesen, danach nochmals negieren...

Somit: DNF und KNF haben dasselbe Ergebnis für: Y = 1

Karnaugh – Veitch – Tafeln: Minimierung durch Blockbildung, Beispiele mit n=4 - Eingängen

Beispiel 4,5,6: Als disjunktive Normalform (DNF)

Karnaugh – Veitch – Tafeln: Minimierung durch Blockbildung, Beispiele mit n=4 - Eingängen

Beispiel 7: Als disjunktive Normalform (DNF)

Minterme

$$Y = D \vee C\overline{B}$$

die minimierte DNF ist äquivalent zur KNF Maxterme

$$Y = (\overline{C} \vee \overline{D}) \wedge (\overline{B} \vee \overline{D}) = (C \vee D) \wedge (\overline{B} \vee D)$$

$$Y = D \vee C\overline{B}$$

Beispiel 7: Als konjunktive Normalform (KNF)

Somit: DNF und KNF haben dasselbe Ergebnis für: Y = 1