

3EE200

Techniques et dispositifs pour l'électronique analogique et numérique

Chapitre n° 4:
Fonctions Analogiques à Transistors

Amplification de Tension

Amplificateur de tension

Schéma équivalent

• Gain en tension à vide

$$A_{V0} = \frac{v_2}{v_1_{|i_2=0}}$$

• Impédance d'entrée

$$Z_{in} = \frac{V_1}{i_1}$$

• Impédance de sortie

$$Z_{\text{out}} = \frac{v_2}{i_2}_{|v_1=0}$$

Amplification de Tension

Influence de la source et de la charge

Source Générateur de tension Sortie d'un amplificateur de tension Amplificateur de tension

Charge
Résistance ou impédance
Entrée d'un amplificateur de tension

$$V_{S} = A_{0}. v_{e}. \frac{R_{L}}{R_{L} + Z_{S}} \rightarrow V_{S} = A_{0}. \frac{Z_{e}}{R_{g} + Z_{e}}. \frac{R_{L}}{R_{L} + Z_{S}}. e_{g}.$$

Linéarité

• Linéaire

- Quel est le gain en tension ?

Linéarité

- Non Linéaire (Problème d'alimentation)
 - Quelle est l'alimentation du circuit ?

Linéarité

- Non Linéaire (Problème de rapidité)
 - Que se passe-t-il si la fréquence augmente ?

Analyse

$$V_{in}(t) = V_{i0} + v_{in}(t)$$

$$V_{out}(t) = V_{o0} + v_{out}(t)$$

En courant continu:

$$\begin{aligned} V_{in}(t) &= V_{i0} \\ V_{out}(t) &= V_{o0} \end{aligned}$$

En courant alternatif:

$$\begin{aligned} V_{in}(t) &= v_{in}(t) \\ V_{out}(t) &= v_{out}(t) \end{aligned}$$

En régime fréquentiel:

$$V_{out}(f) = A(f).V_{in}(f)$$

En régime sinusoïdal:

$$v_{in}(t) = e_0.\sin(2\pi f_0 t)$$

$$v_{out}(t) = e_0 \cdot |A(f_0)| \sin(2\pi f_0 t + Arg(A(f_0)))$$

Expression des Courants

Courants dans le NMOS

· Régime bloqué

$$i_{DS} = 0$$

• Régime ohmique $V_{GS} \ge V_{Tn}$ et $V_{DS} \le V_{DSsat} = V_{GS}$ - V_{Tn}

$$i_{DS} = \mu_n \ C_{ox} \ \frac{W}{L} \left[(V_{GS} - V_{Tn}) \ V_{DS} \ - \frac{V_{DS}^2}{2} \right]$$

• Limite Régime ohmique-saturé $V_{GS} \ge V_{Tn}$ et $V_{DS} = V_{DSsat} = V_{GS}$ - V_{Tn}

$$i_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{Tn})^2 = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} V_{DSsat}^2$$

• Régime saturé $V_{GS} \ge V_{Tn}$ et $V_{DS} \ge V_{DSsat}$ = V_{GS} - V_{Tn}

$$i_{DS} = \frac{1}{2} \mu_n C_{ox} \frac{W}{L} (V_{GS} - V_{Tn})^2 (1 + \lambda [V_{DS} - V_{DSsat}])$$

Expression des Courants

Courants dans le PMOS

· Régime bloqué

$$i_{SD} = 0$$

• Régime ohmique $V_{SG} \ge |V_{Tp}|$ et $V_{SD} \le V_{SDsat} = V_{SG}$ - $|V_{Tp}|$

$$i_{SD} = \mu_p \quad C_{ox} \quad \frac{W}{L} \left[\left(V_{SG} - \left| V_{Tp} \right| \right) \quad V_{SD} \quad - \frac{V_{SD}^{2}}{2} \right]$$

• Limite Régime ohmique-saturé $V_{SG} \ge |V_{Tp}|$ et $V_{SD} = V_{SDsat} = V_{SG}$ - $|V_{Tp}|$

$$i_{SD} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (V_{SG} - |V_{Tp}|)^2$$

• Régime saturé $V_{SG} \ge |V_{Tp}|$ et $V_{SD} \ge V_{SDsat} = V_{SG}$ - $|V_{Tp}|$

$$i_{SD} = \frac{1}{2} \mu_p C_{ox} \frac{W}{L} (V_{SG} - |V_{Tp}|)^2 (1 + \lambda [V_{SD} - V_{SDsat}])$$

Montage Source Commune

NMOS; L = 2
$$\mu$$
m; W = 30 μ m; μ_n .C_{ox} = 120 μ A.V⁻²; V_{Tn0} = 1V; λ = 0.01V⁻¹; RD = 3,3 $k\Omega$; E = 5V

Montage Drain Commun

Capacités internes

Le MOSFET en HF

Si on néglige les effets du substrat

$$g_{m} = \frac{\partial I_{DS}}{\partial V_{GS}} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{Tn}) = \frac{2 I_{DS}}{(V_{GS} - V_{Tn})} \qquad r_{ds} = \frac{1}{\frac{\partial I_{DS}}{\partial V_{DS}}} = \frac{1}{\lambda I_{DS}} = \frac{V_{AF}}{I_{DS}}$$

$$r_{ds} = \frac{1}{\frac{\partial I_{DS}}{\partial V_{DS}}} = \frac{1}{\lambda I_{DS}} = \frac{V_{AF}}{I_{DS}}$$

D

drain

source

- En basses fréquences on néglige les condensateurs, considérés comme des circuits ouverts
- r_0 est fonction de la tension d'Early V_{AF} et est souvent considérée comme un circuit ouvert

Théorème de Miller

$$\frac{\mathsf{v}_1 - \mathsf{v}_2}{\mathsf{Z}} = \frac{\mathsf{v}_1}{\mathsf{Z}_1}$$

$$\mathsf{v}_4 (1 - \mathsf{A}) \quad \mathsf{v}_4$$

$$\frac{\mathbf{v_1}(1-\mathbf{A})}{\mathbf{Z}} = \frac{\mathbf{v_1}}{\mathbf{Z_1}}$$

$$\longrightarrow$$
 $Z_1 = \frac{Z}{(1-A)}$

$$\frac{\mathsf{v}_2-\mathsf{v}_1}{\mathsf{Z}}=\frac{\mathsf{v}_2}{\mathsf{Z}_2}$$

$$\frac{v_2\left(1-\frac{1}{A}\right)}{Z} = \frac{v_2}{Z_2}$$

$$Z_2 = \frac{Z}{\left(1 - \frac{1}{A}\right)}$$

Théorème de Miller

 Application aux effets capacitifs dans les amplificateurs de tension

Effet du substrat

Caractéristiques courant-tension

Canal N

Canal P

Symboles électriques

Canal N

Canal P

Si
$$V_P \le V_{GS} \le 0$$
 $I_D \ge 0$
On pose $V_{DSsat} = V_{GS} - V_P$

$$V_p = -2V \grave{a} - 8V$$

 I_{DSS} = qques mA

■ Régime ohmique : Si
$$V_{DS} \le V_{DSsat}$$

$$I_D = I_{DSS} \cdot \left[2 \left(1 - \frac{V_{GS}}{V_P} \right) \cdot \left| \frac{V_{DS}}{V_P} \right| - \left(\frac{V_{DS}}{V_P} \right)^2 \right]$$

Régime saturé : Si V_{DS} ≥ V_{DSsat}

$$I_{D} = I_{DSS} \left[1 - \frac{V_{GS}}{V_{P}} \right]^{2}$$

Remarques:

On néglige l'effet de modulation de largeur

$$g_{m} = \frac{\partial I_{D}}{\partial V_{GS}} = -2.\frac{I_{DSS}}{V_{P}} \left[1 - \frac{V_{GS}}{V_{P}} \right] = -2.\frac{I_{DSS}}{V_{P}} \sqrt{\frac{I_{D}}{I_{DSS}}}$$

 Régime ohmique : Le JFET est considéré comme une résistance R_{DS} fonction de la tension de commande V_{GS}

$$R_{DS}(V_{GS}) = \frac{1}{\frac{\partial I_{D}}{\partial V_{DS}|_{V_{DS}=0}}}$$

• Si
$$V_{GS} \rightarrow 0$$
, $R_{DS} \rightarrow R_{DSmin}$

$$\bullet$$
 Si $V_{GS} \rightarrow$ - $^{\infty}$, $R_{DS} \rightarrow ^{\infty}$

13. Le BJT

Coupe transversale d'un transistor de type "planar" réalisé par diffusion

transistor petits signaux

transistor de puissance

13.1 Symboles électriques du BJT

NPN PNP

13.2 Caractéristiques Courant-Tension

13.3 Modes de fonctionnement du BJT

Mode de fonctionnement	Polarisation de la Jonction BE	Polarisation de la Jonction BC	Relations
Mode Actif Direct	Directe	Inverse	$V_{BE} = 0.6 \text{ V}$ $I_{C} = \beta_{F} I_{B}$
Mode Bloqué	Inverse	Inverse	$I_C = I_B = I_E = 0$
Mode Saturé	Directe	Directe	$V_{CE} = 0 V$ $I_{C} < \beta_{F} I_{B}$
Mode Actif Inverse	Inverse	Directe	$V_{BC} = 0.6 \text{ V}$ $I_E = \beta_R I_B$

[•] $\beta_F \sim 50$ à 500

[•] $\beta_R \sim 1 \text{ à } 5$

13.3 Modes de fonctionnement du BJT

Mode de fonctionnement	Polarisation de la Jonction EB	Polarisation de la Jonction CB	Relations
Mode Actif Direct	Directe	Inverse	V _{EB} = 0,6 V I _C = β _F I _B
Mode Bloqué	Inverse	Inverse	$I_C = I_B = I_E = 0$
Mode Saturé	Directe	Directe	$V_{EC} = 0 V$ $I_C < \beta_{F}I_B$
Mode Actif Inverse	Inverse	Directe	$V_{CB} = 0.6 V$ $I_E = \beta_R I_B$

[■] β_F ~ 50 à 500

 $[\]blacksquare$ β_R ~ 1 à 5

13.4 Le BJT en courant alternatif

Schéma équivalent courant alternatif - Giacoletto

En BF : $C_{b'e}$ et $C_{b'c}$ considérées comme circuit ouvert

13.4 Le BJT en courant alternatif

Schéma équivalent courant alternatif - BF

13.5 Modèle paramètres hybrides

$$\begin{cases} v_1 = h_{11}.i_1 + h_{12}.v_2 \\ i_2 = h_{21}.i_1 + h_{22}.v_2 \end{cases}$$

Généralement h₁₂ nul

- h_{11} résistance d'entrée Ω
- h₂₁ gain en courant
- h_{22} conductance de sortie Ω^{-1}

13.5 Modèle paramètres hybrides

$$h_{\scriptscriptstyle 11} = \frac{V_{\scriptscriptstyle T}}{I_{\scriptscriptstyle B}} = \beta. \frac{V_{\scriptscriptstyle T}}{I_{\scriptscriptstyle C}}$$

$$h_{11} = \frac{V_T}{I_B} = \beta \cdot \frac{V_T}{I_C}$$
 $\frac{1}{h_{22}} = \frac{|V_{AF}|}{I_C} = \infty \text{ si } V_{AF} \infty$ $h_{21} = \beta$ $h_{12} = 0$

$$h_{21} = \beta$$

$$h_{12} = 0$$

On retrouve le schéma simplifié de Giacoletto en BF

14.1 Amplificateur Emetteur Commun à Résistance d'Emetteur

En courant continu:

$$I_{C0} = \frac{E - V_{CE0}}{R_C + R_E}$$

$$V_{B0} = V_{BE0} + R_E.I_{C0}$$

$$V_{B0} \approx E.\frac{R_2}{R_1 + R_2}$$

14.1 Amplificateur Emetteur Commun à Résistance d'Emetteur

$$V_{out} = -R_C \cdot \beta \ i_b \ (1)$$

En courant alternatif:
$$V_{out} = -R_C \cdot \beta i_b (1)$$
 $V_{in} = h_{11} i_b + (\beta + 1) i_b R_E (2)$

$$\rightarrow \frac{V_{out}}{V_{in}} = -\frac{\beta R_C}{h_{11} + (\beta + 1) \left(R_E / / \frac{1}{j\omega C_E}\right)} \rightarrow \frac{V_{out}}{V_{in}} = -\frac{V_{out}}{h_{11} + \frac{(\beta + 1) R_E}{1 + j\omega R_E C_E}}$$

- Si C_F = 0 (circuit ouvert):
- Si C_F = ∞ (court-circuit):

$$\frac{V_{out}}{V_{in}} = -\frac{\beta R_C}{h_{11} + (\beta + 1) R_E} \approx -\frac{R_C}{R_E} \qquad \frac{V_{out}}{V_{in}} = -\frac{\beta R_C}{h_{11}}$$

$$V_{be} \qquad V_{be} \qquad V_{be} \qquad V_{out}$$

$$V_{in} \qquad V_{out} \qquad V_{out}$$

$$V_{in} \qquad V_{in} \qquad V_{out}$$

14.1 Amplificateur Emetteur Commun à Résistance d'Emetteur

Si
$$V_{in} = 0$$
, $i_b = 0 \rightarrow Z_{out} = R_C$

Si C_E = 0 (circuit ouvert):

$$i_{in} = \frac{V_{in}}{R_1 //R_2} + \frac{V_n}{h_{11} + (\beta + 1) R_E}$$
 $i_{in} = \frac{V_{in}}{R_1 //R_2} + \frac{V_{in}}{h_{11}}$

$$Z_{in} = R_1 // R_2 // (h_{11} + (\beta + 1) R_E)$$
 $Z_{in} = R_1 // R_2 // h_{11}$

• Si $C_F = \infty$ (court-circuit):

$$i_{in} = \frac{V_{in}}{R_1 //R_2} + \frac{V_{in}}{h_{11}}$$

$$Z_{in} = R_1 // R_2 // h_{11}$$

14.2 Amplificateur Collecteur Commun ou Emetteur Suiveur

$$A_{vo} = \frac{v_{out}}{v_{in}} = \frac{\left(\beta + 1\right).i_{b}.\left(r_{ce} \, / / R_{C}\right)}{\left(R_{B} + h_{11}\right).i_{b} + \left(\beta + 1\right).i_{b}.\left(r_{ce} \, / / R_{C}\right)} = \frac{\left(\beta + 1\right).\left(r_{ce} \, / / R_{C}\right)}{\left(R_{B} + h_{11}\right) + \left(\beta + 1\right).\left(r_{ce} \, / / R_{C}\right)} \approx 1$$

Si on annule v_{in}:

$$v_{out} = -(R_B + h_{11}).i_b$$

$$i_{out} = -\beta.ib + \frac{v_{out}}{\left(R_B + h_{11}\right)//r_{ce}//R_E} = -\beta.\frac{v_{out}}{\left(R_B + h_{11}\right)} + \frac{v_{out}}{\left(R_B + h_{11}\right)//r_{ce}//R_E}$$

$$\left| Z_{\text{out}} = \frac{\left(R_{\text{B}} + h_{11} \right)}{\beta + 1} / / r_{\text{ce}} / / R_{\text{E}} \approx \frac{\left(R_{\text{B}} + h_{11} \right)}{\beta} \right|$$