PVSYST V6.88 | 17/04/22 | Page 1/5

Stand alone system: Simulation parameters

Project: IUBOffGrid

Geographical Site IUB, Dhaka, Bangladesh Country Bangladesh

Situation Latitude 23.82° N Longitude 90.43° E Time defined as Legal Time Time zone UT+6 Altitude 4 m

Albedo 0.20

Meteo data: IUB, Dhaka, Bangladesh Meteonorm 7.2 (1981-2010), Sat=100% - Synthetic

Simulation variant : New simulation variant

Simulation date 17/04/22 20h22

Simulation parameters System type Stand alone system with batteries

Collector Plane Orientation Tilt 30° Azimuth 0°

Models used Transposition Perez Diffuse Perez, Meteonorm

User's needs: Daily household consumers Constant over the year

average 0.6 kWh/Day

PV Array Characteristics

PV module Si-mono Model TDB125X125-36-P 100W

Original PVsyst database Manufacturer Sun Earth Solar Power Co Ltd

Number of PV modules In series 2 modules In parallel 1 strings
Total number of PV modules Nb. modules 2 Unit Nom. Power 100 Wp

Array global power Nominal (STC) **200 Wp** At operating cond. 179 Wp (50°C)

Array operating characteristics (50°C) U mpp 34 V I mpp 5.3 A

Total area Module area 1.3 m² Cell area 1.1 m²

System Parameter System type Stand alone system

Battery Model Sun power VL OPzS 12-130

Manufacturer Hoppecke

Battery Pack Characteristics Nb. of units 2 in series

Voltage 24 V Nominal Capacity 101 Ah

Discharging min. SOC 20.0 % Stored energy 1.9 kWh

Temperature Fixed (20°C)

Controller Model Universal direct controller

Technology Series Temp coeff. -5.0 mV/°C/elem.

Battery Management control Threshold commands as SOC calculation

Charging SOC = 0.92 / 0.75 i.e. approx. 27.2 / 25.1 V

Discharging SOC = 0.20 / 0.45 i.e. approx. 23.3 / 24.4 V

PV Array loss factors

 $\label{eq:const} Thermal \ Loss \ factor \qquad \qquad Uc \ (const) \quad 20.0 \ W/m^2K \qquad \qquad Uv \ (wind) \quad 0.0 \ W/m^2K \ / \ m/s$

Wiring Ohmic Loss Global array res. 108 mOhm Loss Fraction 1.5 % at STC Serie Diode Loss Voltage Drop 0.7 V Loss Fraction 1.8 % at STC

Module Quality Loss Fraction 1.5 %

Module Mismatch Losses Loss Fraction 2.5 % (fixed voltage)

Strings Mismatch loss Loss Fraction 0.10 %

Incidence effect, ASHRAE parametrization IAM = 1 - bo (1/cos i - 1) bo Param. 0.05

PVSYST V6.88 | 17/04/22 | Page 2/5

Stand alone system: Detailed User's needs

Project: IUBOffGrid

Simulation variant: New simulation variant

Main system parametersSystem typeStand alone system with batteriesPV Field Orientationtilt30°azimuth0°PV modulesModelTDB125X125-36-P 100WPnom100 WpPV ArrayNb. of modules2Pnom total200 Wp

Battery Model Sun power VL OPzS 12-130 Lead-acid, vented, tubular

Battery Pack Nb. of units 2 Voltage / Capacity User's needs Daily household consumers Constant over the year Global 228 kWh/year

Daily household consumers, Constant over the year, average = 0.6 kWh/day

Annual values

	Number	Power	Use	Energy
Lamps (LED or fluo)	4	25 W/lamp	3 h/day	300 Wh/day
TV / PC / Mobile	1	100 W/app	2 h/day	200 Wh/day
Domestic appliances	1	100 W/app	1 h/day	100 Wh/day
Stand-by consumers			24 h/day	24 Wh/day

Total daily energy 624 Wh/day

PVSYST V6.88 17/04/22 Page 3/5

Stand alone system: Main results

Project: **IUBOffGrid**

Simulation variant: **New simulation variant**

Main system parameters System type Stand alone system with batteries **PV Field Orientation** azimuth tilt PV modules Model TDB125X125-36-P 100W Pnom 100 Wp

PV Array Nb. of modules Pnom total 200 Wp **Battery** Model Sun power VL OPzS 12-130 Lead-acid, vented, tubular

Battery Pack Nb. of units 24 V / 101 Ah Voltage / Capacity User's needs Daily household consumers Constant over the year Global 228 kWh/year

Main simulation results

Available Energy 249.3 kWh/year Specific prod. 1247 kWh/kWp/year System Production Used Energy 209.5 kWh/year Excess (unused) 17.3 kWh/year

Performance Ratio PR Solar Fraction SF 53.13 % 91.99 % Loss of Load Time Fraction 11.2 % Missing Energy 18.2 kWh/year Battery ageing (State of Wear) Cycles SOW 94.5% Static SOW 90.0% Battery lifetime 10.0 years

Performance Ratio PR and Solar Fraction SF

New simulation variant Balances and main results

	GlobHor	GlobEff	E_Avail	EUnused	E_Miss	E_User	E_Load	SolFrac
	kWh/m²	kWh/m²	kWh	kWh	kWh	kWh	kWh	
January	130.1	173.6	22.89	1.876	0.000	19.34	19.34	1.000
February	137.3	165.0	21.81	3.082	0.000	17.47	17.47	1.000
March	173.2	186.3	24.53	2.898	0.000	19.34	19.34	1.000
April	179.6	170.3	22.40	1.886	0.000	18.72	18.72	1.000
May	180.4	157.3	20.29	0.312	0.802	18.54	19.34	0.959
June	148.2	125.6	15.93	0.000	5.397	13.32	18.72	0.712
July	153.1	130.0	16.52	0.000	4.660	14.68	19.34	0.759
August	147.2	133.3	16.91	0.000	3.693	15.65	19.34	0.809
September	144.0	144.6	18.67	1.266	2.683	16.04	18.72	0.857
October	141.3	159.4	20.52	0.408	1.003	18.34	19.34	0.948
November	139.5	185.2	24.33	1.767	0.000	18.72	18.72	1.000
December	131.4	185.8	24.55	3.809	0.000	19.34	19.34	1.000
Year	1805.3	1916.2	249.35	17.304	18.238	209.52	227.76	0.920

Legends: GlobHor GlobEff Horizontal global irradiation

Effective Global, corr. for IAM and shadings

E_Avail Available Solar Energy **EUnused** Unused energy (battery full) E Miss E User

E_Load SolFrac Solar fraction (EUsed / ELoad)

Missing energy Energy supplied to the user Energy need of the user (Load) PVSYST V6.88 | 17/04/22 | Page 4/5

Stand alone system: Special graphs

Project: IUBOffGrid

Simulation variant: New simulation variant

Main system parametersSystem typeStand alone system with batteriesPV Field Orientationtilt30°azimuth0°PV modulesModelTDB125X125-36-P 100WPnom100 WpPV ArrayNb. of modules2Pnom total200 Wp

Battery Model Sun power VL OPzS 12-130 Lead-acid, vented, tubular

Battery Pack Nb. of units 2 Voltage / Capacity User's needs Daily household consumers Constant over the year Global 228 kWh/year

Daily Input/Output diagram

PVsyst TRIAL

PVSYST V6.88 | 17/04/22 | Page 5/5

Stand alone system: Loss diagram

Project: IUBOffGrid

Simulation variant: New simulation variant

Main system parametersSystem typeStand alone system with batteriesPV Field Orientationtilt30°azimuth0°PV modulesModelTDB125X125-36-P 100WPnom100 WpPV ArrayNb. of modules2Pnom total200 Wp

Battery Model Sun power VL OPzS 12-130 Lead-acid, vented, tubular

Battery Pack Nb. of units 2 Voltage / Capacity 24 V / 101 Ah
User's needs Daily household consumers Constant over the year Global 228 kWh/year

Loss diagram over the whole year

