

Contrôle continu de statique

Dispostif de pesée

Ce dispositif de pesée est constitué d'une structure rigide (caillebotis métallique) liée au support des capteurs (bâti tubulaire métallique)

4 capteurs de pesée identiques à appui central se trouvent sous ce tapis de pesée.

Les caractéristiques de ces capteurs sont données dans le tableau ci-dessous.

Poids, y compris emballage

- 2 kg

Applications

- Balances sur table, plateforme au sol, convoyage et applications médicales

Particularités

- Gamme étendue de capacités nominales de 30 kg jusqu'à 750 kg

Tableau 1 : caractéristiques des capteurs

Modélisation d'un capteur de pesée

- 1 : Bâti
- 2 : Biellette AB
- 3: Biellette CD
- 4 : Tapis de pesée

$$\overrightarrow{AB} = \overrightarrow{CD} = L \cdot \vec{x}$$
 $\overrightarrow{CA} = \overrightarrow{DB} = a \cdot \vec{y}$
 $\overrightarrow{KP} = \mathbf{X_{k}} \cdot \vec{x} \text{ et } \overrightarrow{AK} = \mathbf{Y_{k}} \cdot \vec{y}$

Le capteur est modélisé par une structure parallélogramme constituée de 4 barres qui sont liées par 4 liaisons élastiques en A, B, C, D

Pour que la mesure donnée par le capteur soit indépendante de la position du centre de gravité G de l'objet à peser, le comportement du capteur ne doit pas dépendre de la position de la droite d'action de

 $\overrightarrow{F_{tapis \rightarrow capteur}}$ = - Y_{tc} . \vec{y} donc de la position de P ($\overrightarrow{F_{tapis \rightarrow capteur}}$ s'applique au point P)

Première modélisation

Dans cette modélisation, seule la liaison pivot en A est considérée comme une liaison élastique (on a alors une composante de moment autour de Oz telle que $\overline{C_{eA}} = C_{eA}$. \overline{Z})

Les autres liaisons en B, C et D sont parfaites. Le système est considéré plan et le torseur de l'action de 1 sur 2 s'écrit :

$$\left\{\mathcal{T}_{A(1\rightarrow2)}\right\} = \left\{\frac{\overrightarrow{R}_{A(1\rightarrow2)}}{\overrightarrow{M}_{A(1\rightarrow2)}}\right\} = \left\{\frac{\overrightarrow{R}_{A(1\rightarrow2)}}{\overrightarrow{M}_{A(1\rightarrow2)}} = X_{A12}.\overrightarrow{x} + Y_{A12}.\overrightarrow{y}}{\overrightarrow{M}_{A(1\rightarrow2)}} = C_{eA}.\overrightarrow{z}\right\}_{(x,y,z)}$$

Questions

- 1) A partir du schéma cinématique page précédente, réaliser le graphe de liaisons du système faisant intervenir les solides 1, 2, 3 et 4 (préciser le nom, le centre et l'axe principal de chaque liaison)
- 2) Montrer que le torseur $\left\{\mathcal{T}_{tapis \to capteur}\right\}$ exprimé au point K s'écrit :

$$\left\{ \mathcal{T}_{\text{tapis} \rightarrow \text{capteur}} \right\} = \left\{ \begin{matrix} \overrightarrow{\boldsymbol{R}_{(t \rightarrow c)}} = -Y_{tc}.\overrightarrow{\boldsymbol{y}} \\ \overrightarrow{\boldsymbol{M}_{K_{(t \rightarrow c)}}} = M_{K}.\overrightarrow{\boldsymbol{z}} \end{matrix} \right\}_{(x,y,z)} \text{On exprimera } \boldsymbol{M}_{K} \text{ en fonction de } X_{K} \text{ et de } Y_{tc}$$

La technologie du capteur permet de mesurer C_{eA} . Il faut vérifier qu'il existe une relation telle que : $\|\overrightarrow{F_{tanus}} \rightarrow canteur \| = f(C_{eA})$ indépendante de M_K

- 3) Isoler { 3 }, faire le bilan des actions mécaniques qui lui sont appliquées, appliquer le principe fondamental de la statique (on précisera les conditions nécessaires) puis établir les équations d'équilibre de l'ensemble isolé
- 4) Isoler { 4 }, faire le bilan des actions mécaniques qui lui sont appliquées, appliquer le principe fondamental de la statique (on précisera les conditions nécessaires) puis établir les équations d'équilibre de l'ensemble isolé (on écrira les torseurs au point B)
- 5) Isoler { 2 }, faire le bilan des actions mécaniques qui lui sont appliquées, appliquer le principe fondamental de la statique (on précisera les conditions nécessaires) puis établir les équations d'équilibre de l'ensemble isolé(on écrira les torseurs au point A)
- 6) Etablir une relation entre $\|\overrightarrow{F_{tanis}}_{\to canteur}\|$ et C_{eA} indépendante de M_K

Deuxième modélisation

Le capteur d'effort est en réalité constitué de 4 zones rigides 1, 2, 3 et 4 reliéespar 4 zones déformables en A, B, C et D que l'on peut modéliser par quatre liaisons pivot élastiques . Le modèle d'étude plan est conservé et les 4 torseurs d'actions mécaniques, dans chacune des liaisons peuvent s'écrire :

Pour la liaison entre 1 et 2 :
$$\{\mathcal{T}_{A(1\rightarrow 2)}\}= A \{ \overrightarrow{R_{A(1\rightarrow 2)}} = X_{A12}.\overrightarrow{x} + Y_{A12}.\overrightarrow{y} \}_{(x,y,z)}$$

Pour la liaison entre 2 et 4 :
$$\{\mathcal{T}_{B(2\rightarrow 4)}\}=\begin{cases} \overrightarrow{R_{B(2\rightarrow 4)}}=X_{B24}.\overrightarrow{x}+Y_{B24}.\overrightarrow{y}\\ \overrightarrow{M_{B(2\rightarrow 4)}}=C_{eB}.\overrightarrow{z} \end{cases}$$

Pour la liaison entre 1 et 3 :
$$\{\mathcal{T}_{C(1 \to 3)}\}$$
 = $\left\{\overrightarrow{R_{C(1 \to 3)}} = X_{C13}.\overrightarrow{x} + Y_{C13}.\overrightarrow{y}\right\}_{(x,y,z)}$
Pour la liaison entre 3 et 4 : $\{\mathcal{T}_{D(3 \to 4)}\}$ = $\left\{\overrightarrow{R_{D(3 \to 4)}} = X_{D34}.\overrightarrow{x} + Y_{D34}.\overrightarrow{y}\right\}_{D(3 \to 4)}$

L'action mécanique du tapis de pesée sur le capteur est modélisée par le torseur :

$$\left\{\mathcal{T}_{\text{tapis}\rightarrow\text{capteur}}\right\} = \left\{\begin{matrix} \overrightarrow{\boldsymbol{R}_{(t\rightarrow c)}} = -Y_{tc}.\overrightarrow{\boldsymbol{y}}\\ \overrightarrow{\boldsymbol{M}_{K_{(t\rightarrow c)}}} = M_{K}.\overrightarrow{\boldsymbol{z}} \end{matrix}\right\}_{(x,y,z)}$$

Des jauges de déformation (qui sont constituées de fins fils résistants collés dans la zone déformable en A) permettent de mesurer la valeur de C_{eA} ce qui permet de déterminer $\|\overrightarrow{F_{tapis \to capteur}}\|$ Pour dimensionner le capteur, il est donc nécessaire de déterminer la relation entre $\|\overrightarrow{F_{tapis \to capteur}}\|$ et C_{eA} , cette modélisation étant beaucoup plus proche du capteur réel.

- 7) En comparant la valeur des déformations aux quatre coins du parallélogramme, que peut-on dire ?
- 8) On fait l'hypothèse que les couples élastiques sont proportionnels aux déformations élastiques en A, B, C et D . Quelle relation peut-on écrire entre C_{eA} , C_{eB} , C_{eC} et C_{eD} ?
- 9) Isoler à nouveau (3) , (4) et (2) puis en déduire la relation entre $\|\overrightarrow{F_{tapis \to capteur}}\|$ et C_{eA} Démontrer que $\|\overrightarrow{F_{tapis \to capteur}}\| = \frac{4C_{eA}}{L}$

Rappel:

Le torseur des actions transmissibles du solide i sur le solide j par la liaison entre i et j au point A sera noté :

$$\left\{\mathcal{T}_{A(i\rightarrow j)}\right\} = A \left\{ \begin{matrix} \overrightarrow{R_{A\,\iota\rightarrow j}} \\ \overrightarrow{M_{A\,\iota\rightarrow j}} \end{matrix} \right\} = A \left\{ \begin{matrix} \overrightarrow{R_{A\,\iota\rightarrow j}} &= X_{A\,ij}.\overrightarrow{x} + Y_{A\,ij}.\overrightarrow{y} + Z_{A\,ij}.\overrightarrow{z} \\ \overrightarrow{M_{A\,\iota\rightarrow j}} &= L_{A\,ij}.\overrightarrow{x} + M_{A\,ij}.\overrightarrow{y} + N_{A\,ij}.\overrightarrow{z} \end{matrix} \right\}_{(x,y,z)} = A \left\{ \begin{matrix} X_{A\,ij} & L_{A\,ij} \\ Y_{A\,ij} & M_{A\,ij} \\ Z_{A\,ij} & N_{A\,ij} \end{matrix} \right\}_{(x,y,z)}$$