F(MT)	REC	F(WHILE)
DEC(MT)	DECI	DEC(WHILE)
ENU(MT)	ENUM	ENU(WHILE)
funciones		
Turing-computables	TREC	T-WHILE
totales		
predicados	PRED(TREC)	PRED(T-WHILE)
Turing-decidibles		
predicados	PRED(REC)	PRED(WHILE)
Turing-enumerables		

$$(1, j-1)+1$$

$$j-1)+2$$
 s
 $j-1)+3$ s
 $Codi(s_1))+4$ s

si
$$s = X_i := X_j$$

si $s = X_i := X_j + 1$
si $s = X_i := X_j - 1$
si $s = while X_i \neq 0 do s_1 od$

 $si \quad s = X_i := 0$

$$CODI: WHILE \rightarrow N$$

$$CODI(Q) = \sigma_1^3(n, p - max\{n, k\}, Codi(s))$$
donde $k = max\{m \in \Sigma_d^+ \mid X_m \propto s\}$

	$X_i := 0$	si	tipo(z) = 0
	$X_i:=X_j$	si	tipo(z) = 1
decodi(z) =	$X_i := X_j + 1$	si	tipo(z) = 2
	$X_i := X_j - 1$	si	tipo(z) = 3
	while $X_i \neq 0$ do $DeCodi(j-1)$ od	si	tipo(z) = 4

Definición 12.9: Función decodificación de códigos (DeCodi)

Definimos la función decodificación de codigos, notada DeCodi, como:

 $DeCodi: N \rightarrow Cod\ While$

DeCodi(z) =

decodi(degod(z+1,1)); decodi(degod(z+1,2)); ...; decodi(degod(z+1,l(z)))

Definición 12.10: Función decodificación de programas (DECODI)

Definimos la función decodificación de programas, notada DECODI, como:

 $DECODI: \mathbb{N} \rightarrow WHILE$

 $DECODI(z) = (\sigma_{3,1}^{1}(z), \sigma_{3,2}^{1}(z) + max\{\sigma_{3,1}^{1}(z), k\}, DeCodi(\sigma_{3,3}^{1}(z))\}$

donde $k = max\{ m \in \Sigma_d^+ \mid X_m \prec DeCodi(\sigma_{3,3}^1(z)) \}$

Definición 12.11: Función universal (U)

Sea F un conjunto numerable de funciones de \mathbb{N}^n en \mathbb{N} .

Diremos que la función $U[F]: \mathbb{N}^{n+1} \to \mathbb{N}$ es universal para la clase F sii:

 $\exists h: \mathbb{N} \to F \text{ indexación de } F \mid U[F](i, \underline{x}) = h(i)(\underline{x}) \quad \forall i \in \mathbb{N} \land \forall \underline{x} \in \mathbb{N}^n$

Notas: $h(i) \in F$

Cuando escogemos una indexación concreta h para U[F], decimos que U[F] es la función universal para F bajo la indexación h.

Definición 12.13: Programa universal (U)

$$U(z, \underline{x})$$

 $m := god(\underline{x});$

m := Simular(z, m);

 $X_1 := degod(m, 1)$

(* simula el programa z con la memoria m *)

(* obtiene de la memoria la salida de z *)

(* inicializa m, la variable de la memoria *)

```
Definición 12.14: Programa Simular
Simular(z, m)
       z := z + 1;
                                                (* sumamos uno ya que al codificar restamos uno *)
        while l(z) \neq 0 do
                                                (* mientras haya sentencias pendientes *)
                s := degod(z, 1);
                                                        (* obtengo el número de la primera sentencia *)
                if tipo(s) \leq 3 then
                                                        (* si es una asignación *)
                        m := Ejecutar(s, m);
                                                                (* ejecutarla *)
                       z := Reducir(z);
                                                                (* y eliminar la sentencia de z *)
                else
                                                        (* si es una sentencia while *)
                        if degod(m, extr(s, 1)) \neq 0 do (* si la variable de control no es nula *)
                               z := A\tilde{n}adir(z, extr(s, 2))
                                                                      (* añade a z el cuerpo del bucle *)
                        else
                                                                (* si la variable de control es nula *)
                               z := Reducir(z)
                                                                        (* eliminar la sentencia de z *)
               fi
        od;
```

Definición 12.15: Función reemplazar (reem)

Definimos la función reemplazar, notada reem, como:

 $reem: \mathbb{N}^3 \to \mathbb{N}$

$$reem(z,k,x) =$$

```
\begin{cases} god(degod(z,1), ..., degod(z,l(z)), 0, ..., 0, x) & \text{si } k > l(z) \land l(z) > 0 \\ god(0, ..., 0, x) & \text{si } k > l(z) \land l(z) = 0 \\ z & \text{si } k = 0 \\ god(degod(z,1), ..., degod(z,k-1), x, degod(z,k+1), ..., degod(z,l(z))) \end{cases}
```

si $k \le l(z) \land k \ne 0$

```
Definición 12.16: Programa Ejecutar
Eiecutar(s, m)
      if tipo(s) = 0 then
             m := reem(m, extr(s, 1), 0)
      fi;
      if tipo(s) = 1 then
             m := reem(m, extr(s, 1), degod(m, extr(s, 2)))
      fi;
      if tipo(s) = 2 then
             m := reem(m, extr(s, 1), degod(m, extr(s, 2))+1)
      if tipo(s) = 3 then
             m := reem(m, extr(s, 1), degod(m, extr(s, 2))-1)
      fi;
      X_1 := m
```

Definición 12.17: Programa Reducir

Reducir(z)

if l(z) < 2 then z := 0

else z := god(degod(z,2), degod(z,3), ..., degod(z,l(z)))

fi;

 $X_1 := z$

Definición 12.18: Programa Añadir

 $A\tilde{n}adir(z,s)$ $X_1 := god(degod(s, 1), ..., degod(s, l(s)), degod(z, 1), ..., degod(z, l(z)))$

problema	predicado	función	
resoluble	decidible	$\in TREC$	
parcialmente resoluble	enumerable	$\in REC$	
no resoluble	no decidible	∉ TREC	
totalmente no resoluble	no enumerable	∉ REC	