Universidade Federal de Pernambuco Departamento de Informática

2^a Chamada de Circuitos Digitais

1. a)	Converta os números 65,25, 35,125 para a binário e hexadecimal.	(1,0)
b)	Mostre que $X + X.Y = X+Y$	(1,0)
2. In	2. Implementar uma porta NAND de 3 entradas a partir de portas NAND de duas entradas.	
3. Implementar a função Σ m(0,3,5,9,10,11,12) usando:		
a)	o menor multiplexador possível sem lógica externa	(1,5)
b)	O menor decodificador possível.	(1,0)

- 4. Implementar a função Z:= ((T=0) \land (A<B)) v ((T=1) \land (A > B)) v((T=2) \land (A=B)). A e B são vetores que representam números binários de 4 bits + sinal. Números negativos usam aritmética complemento a 2. (2,0)
- 5. Implementar a função Z:=|A-B| . A e B são vetores de 4 bits + bit de sinal. A e B podem ser positivos ou negativos. Números negativos devem usar lógica complemento a 2. (2,5)