MATH 8510, Abstract Algebra I

Fall 2016

Exercises 3-1

Shuai Wei

Collaborator: Liu XiaoYuan

Exercise 1 (2.1.8). Let H and K be subgroups of a group G. Prove that $H \cup K \leq G$ if and only if $H \subseteq K$ or $K \subseteq H$.

Proof. (a) Assume $H \subseteq K$ or $K \subseteq H$.

Then for convenience, we can suppose $H \subseteq K$.

 $e_G \in H \subset H \cup K$. So $H \cup K$ is not empty.

 $\forall x, y \in H \cup K$, we have $x, y \in H$ or K.

Since $H \subseteq K$, we have $x, y \in K \subset H \cup K$.

K is a group, so $xy^{-1} \in K \subset H \cup K$.

Furthermore, since $H, K \leq G, H, K \subset G$ and then $H \cup K \subset G$.

Thus, $H \cup K \leq G$.

(b) Assume $H \cup K < G$.

 $\forall x \in H \subset H \cup K, y \in K \subset H \cup K,$

we have $xy^{-1} \in H \cup K \leq G$.

Then $xy^{-1} \in H$ or K. (1) If $xy^{-1} \in H$, since $x^{-1} \in H$, we have $x^{-1}xy^{-1} = y^{-1} \in H$. Then $(y^{-1})^{-1} = y \in H$. $y \in K$ is arbitrary, so $K \subseteq H$.

(2) If $xy^{-1} \in K$, since $y \in K$, we have $xy^{-1}y = x \in K$ $x \in H$ is arbitrary, so $H \subseteq K$.

Hence, $H \subseteq K$ or $K \subseteq H$.

Exercise 2 (2.2.8). Fix $i \in [n] = \{1, ..., n\}$ and set $G_i := \{\sigma \in S_n \mid \sigma(i) = i\}$. (In other words, G_i is the stabilizer of i in $G = S_n$.) Prove that $S_{n-1} \cong G_i \leq S_n$.

Proof.

(1) Since S_i is a stabilizer of i in S_n ,

 G_i consists of all of the permutations of $\{i, 1, 2, ..., i-1, i+1, ..., n\}$ with i

Namely, G_i is all the permutations of $\{1, 2, ..., i-1, i+1, ...n\}$.

So it is obvious that G_i is isomorphic to S_{n-1} .

(2) For any element in S_{n-1} , it is a permutation in S_n with n fixed, so $S_{n-1} \subset S_n$.

Besides, both of S_{n-1} and S_n are symmetric groups, which has same group operation, i.e, permutation composition.

So $S_{n-1} \leq S_n$.

(3) By the definition of G_i , we have $G_i \subset S_n$. Let e_{S_n} be the permutation which fixes 1, 2, ...n, then $e_{S_n} \in S_n$ and $e_{S_n} \in S_n$ G_i since it also fixes i.

So
$$G_i \neq \emptyset$$
. $\forall x,y \in G_i \subset S_n, xy^{-1} \in S_n$ since S_n is a group. $y^{-1} \in G_i$ since y^{-1} just the reverse order of the permutation y , which also keeps i fixed. So $xy^{-1}(i) = x(y^{-1}(i)) = x(i) = i$. Thus, $xy^{-1} \in G_i$. Hence $G_i \leq S_n$.

Exercise 3. In your free time, read the statements of the following exercises.