Probabilistic Robotics Course

EKF SLAM [Application]

Dominik Schlegel

schlegel@diag.uniroma1.it

Department of Computer, Control and Management Engineering
Sapienza University of Rome

Outline

- Scenario
- Controls
- Observations
- Non-Linear Systems and Gaussian Noise
- Extended Kalman Filter SLAM

Scenario

Orazio moves on a 2D plane

- Is controlled by translational and rotational velocities
- Senses a set of uniquely distinguishable landmarks through a "2D landmark sensor"
- •The location of the landmarks in the world is **not** known

Approaching the problem

We want to develop a KF based algorithm to track the position of Orazio as it moves (localization) and, at the same time, the position of the observed landmarks (mapping).

The inputs of our algorithms will be

- velocity measurements
- landmark measurements

We have no prior knowledge of the map!

EFK SLAM

1. Predict: incorporate new control

$$\mu_{t|t-1} = \mathbf{f}(\mu_{t-1|t-1}, \mathbf{u}_{t-1})$$

$$\mathbf{A}_{t} = \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{x}} \Big|_{\mathbf{x} = \mu_{t-1|t-1}}$$

$$\mathbf{B}_{t} = \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{u}} \Big|_{\mathbf{u} = \mathbf{u}_{t-1}}$$

$$\Sigma_{t|t-1} = \mathbf{A}_{t} \Sigma_{t-1|t-1} \mathbf{A}_{t}^{T} + \mathbf{B}_{t} \Sigma_{u} \mathbf{B}_{t}^{T}$$

2. Correct: incorporate new measurement

$$\begin{split} \mathbf{C}_t &= \left. \frac{\partial \mathbf{h}(\mathbf{x})}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mu_{t|t-1}} \\ \mathbf{K}_t &= \left. \mathbf{\Sigma}_{t|t-1} \mathbf{C}_t^T \left(\mathbf{\Sigma}_z + \mathbf{C}_t \mathbf{\Sigma}_{t|t-1} \mathbf{C}_t^T \right)^{-1} \\ \mu_{t|t} &= \mu_{t|t-1} + \mathbf{K}_t \left(\mathbf{z}_t - \mathbf{h}(\mu_{t|t-1}) \right) \\ \mathbf{\Sigma}_{t|t} &= \left(\mathbf{I} - \mathbf{K}_t \mathbf{C}_t \right) \mathbf{\Sigma}_{t|t-1} & \text{innovation} \end{split}$$

3. Add: extend state with new landmarks

Domains: State Space

Robot:

Shoot:
$$\mathbf{X}_t^{[r]} = [\mathbf{R}_t | \mathbf{t}_t] \in SE(2) \longrightarrow \mathbf{x}_t^{[r]} = \begin{pmatrix} x_t \\ y_t \\ \theta_t \end{pmatrix} \in \Re^3$$

Landmarks:

$$\mathbf{x}_t^{[n]} = \begin{pmatrix} x_t^{[n]} \\ y_t^{[n]} \end{pmatrix} \in \Re^2$$

$$n=1,2,\cdots,N$$

Full state vector:

ector:
$$\begin{pmatrix} \mathbf{x}_t^{[r]} \\ \mathbf{x}_t^{[1]} \\ \mathbf{x}_t^{[2]} \\ \vdots \\ \mathbf{x}_t^{[N]} \end{pmatrix} \in \Re^{(3+2N)}$$

Domains: Cont. and Meas.

Controls: (same as in EKF Localization)

$$\mathbf{u}_t = \begin{pmatrix} u_t^{[1]} \\ u_t^{[2]} \end{pmatrix} \in \Re^2$$

Measurements:

$$\mathbf{z}_t^{[m]} = \begin{pmatrix} x_t^{[m]} \\ y_t^{[m]} \end{pmatrix} \in \Re^2$$

$$m=1..M$$

Transition Function

Measurement Function

Control Noise

We assume the control inputs are effected by a zero-mean Gaussian noise resulting from the sum of two aspects:

- •a constant noise σ_u
- velocity dependent terms whose standard deviation grows with the speed (i.d.)
 - •translational noise standard deviation: $\sigma_T = u_t^{[1]}$
 - •rotational noise standard deviation: $\sigma_R = u_t^{[2]}$

$$\mathbf{n}_{u,t} \sim \mathcal{N}(\mathbf{n}_{u,t}; \mathbf{0}, \underbrace{\begin{pmatrix} \sigma_u^2 + \sigma_T^2 & 0 \\ 0 & \sigma_u^2 + \sigma_R^2 \end{pmatrix}}_{\Sigma_u})$$

Measurement Noise

For each landmark we measure, we consider a Gaussian noise (in x and y):

$$\mathbf{n}_z \sim \mathcal{N}(\mathbf{n}_z; \mathbf{0}, \underbrace{\begin{pmatrix} \sigma_z^2 & 0 \\ 0 & \sigma_z^2 \end{pmatrix}})$$

We assume it is zero mean and constant with standard deviation σ_z .

Jacobian 1: State

$$\mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}) = \begin{pmatrix} x_{t-1} + u_{t-1}^{[1]} \cdot \cos(\theta_{t-1}) \\ y_{t-1} + u_{t-1}^{[1]} \cdot \sin(\theta_{t-1}) \\ \theta_{t-1} + u_{t-1}^{[2]} \\ \mathbf{x}_{t-1}^{[1]} \\ \mathbf{x}_{t-1}^{[2]} \\ \vdots \\ \mathbf{x}_{t-1}^{[N]} \end{pmatrix}$$

$$\mathbf{A}_{t} = \left. \frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}} \right|_{\mathbf{x} = \mu_{t-1|t-1}} = \left(\left. \frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}^{[r]}} \right. \left. \frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}^{[1]}} \right. \left. \frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}^{[2]}} \right. \dots \left. \left. \frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}^{[N]}} \right. \right)$$

$$\frac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}^{[r]}} = \begin{pmatrix}
1 & 0 & -u_{t-1}^{[1]} \cdot \sin(\theta_{t-1}) \\
0 & 1 & +u_{t-1}^{[1]} \cdot \cos(\theta_{t-1}) \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\vdots & \vdots & \vdots \\
0 & 0 & 0
\end{pmatrix}$$

$$rac{\partial \mathbf{f}(\cdot)}{\partial \mathbf{x}^{[2]}} = egin{bmatrix} 0 & 0 \ 0 & 0 \ dots & dots \ 1 & 0 \ 0 & 1 \ dots & dots \ 0 & 0 \ \end{pmatrix}$$

Jacobian 2: Controls

$$\mathbf{f}(\mathbf{x}_{t-1}, \mathbf{u}_{t-1}) = \begin{pmatrix} x_{t-1} + u_{t-1}^{[1]} \cdot \cos(\theta_{t-1}) \\ y_{t-1} + u_{t-1}^{[1]} \cdot \sin(\theta_{t-1}) \\ \theta_{t-1} + u_{t-1}^{[2]} \\ \mathbf{x}_{t-1}^{[1]} \\ \mathbf{x}_{t-1}^{[2]} \\ \vdots \\ \mathbf{x}_{t-1}^{[N]} \end{pmatrix}$$

$$\mathbf{B}_t = \left. \frac{\partial \mathbf{f}(\mathbf{x}, \mathbf{u})}{\partial \mathbf{u}} \right|_{\mathbf{u} = \mathbf{u}_{t-1}} = \left(\begin{array}{c} \cos(\theta_{t-1}) & 0 \\ \sin(\theta_{t-1}) & 0 \\ 0 & 1 \\ \hline 0 & 0 \\ \hline \vdots & \vdots \\ 0 & 0 \end{array} \right)$$
 pose block 1 landmark block 1 landmark block N

Jacobian 3: Measurements

For the measurement function, we need to derive w.r.t. all state variables (N+3)

Prediction of the nth landmark observation:

$$\mathbf{h}^{[n]}(\mathbf{x}_t) = \mathbf{R}_t^T (\mathbf{x}_t^{[n]} - \mathbf{t}_t)$$

The nth measurement Jacobian will have a block structure

$$\mathbf{C}_{t}^{[n]} = \left. \frac{\partial \mathbf{h}^{[n]}(\cdot)}{\partial \mathbf{x}} \right|_{x = \mu_{t|t-1}} = \left(\begin{array}{c} \frac{\partial \mathbf{h}^{[n]}}{\partial \mathbf{x}^{[r]}} & \mathbf{0} & \cdots & \frac{\partial \mathbf{h}^{[n]}}{\partial \mathbf{x}^{[n]}} & \cdots & \mathbf{0} \end{array} \right)$$
pose block

landmark block

Jacobian 3: Measurements

We need to calculate the derivatives only for the non zero blocks

$$\mathbf{h}^{[n]}(\mathbf{x}_t) = \mathbf{R}_t^T(\mathbf{x}_t^{[n]} - \mathbf{t}_t)$$

Data Association

The observation z_t will originate from a subset of landmarks in the state.

The order of these measurements does not necessarily match the order of the landmarks in the state.

Let j(m) be the index of the landmark that generates the mth measurement block.

Data Association

For now we assume to know the assignment j(m).

With this assignment we can build a prediction based on M measured landmarks, and its Jacobian!

$$\mathbf{h}(\mathbf{x}_t) = \left(egin{array}{c} \mathbf{h}^{[j(1)]} \\ \mathbf{h}^{[j(2)]} \\ \vdots \\ \mathbf{h}^{[j(M)]} \end{array}
ight) \qquad \mathbf{C}_t = rac{\partial \mathbf{h}}{\partial \mathbf{x}} = \left(egin{array}{c} rac{\partial \mathbf{h}^{[j(1)]}}{\partial \mathbf{x}} \\ rac{\partial \mathbf{h}^{[j(2)]}}{\partial \mathbf{x}} \\ \vdots \\ rac{\partial \mathbf{h}^{[j(M)]}}{\partial \mathbf{x}} \end{array}
ight)$$

ld: 1

Time: t

$$\mu_t = \left(\begin{array}{c} \mathbf{x}_t^{[r]} \end{array} \right)$$

Id: 7

Id: 9

$$\mathbf{x}_t^{[r]} = \left(\begin{array}{c} x_t \\ y_t \\ \theta_t \end{array}\right)$$

robot state

$$id_to_state_map = (-1 -1 ... -1)$$

 $state_to_id_map = (-1 -1 ... -1)$

Id: 1

Time: t+1

current state

$$\mu_{t+1} = \begin{pmatrix} \mathbf{x}_{t+1}^{[r]} \\ \mathbf{x}_{t+1}^{[7]} \end{pmatrix}$$

Id: 9

$$\mathbf{x}_t^{[7]} = \begin{pmatrix} x_t^{[7]} \\ y_t^{[7]} \end{pmatrix}$$

landmark state

Position 7

Id: 1

Time: t+2

current state

$$\mu_{t+2} = \begin{pmatrix} \mathbf{x}_{t+2}^{[r]} \\ \mathbf{x}_{t+2}^{[7]} \\ \mathbf{x}_{t+2}^{[9]} \end{pmatrix}$$

$$\mathbf{x}_{t+2}^{[9]}$$

$$\mathbf{y}_{t}^{[9]}$$

Position 9

 $id_{to_state_map} = \begin{pmatrix} -1 & \dots & 1 & -1 & 2 & \dots & -1 \\ state_{to_id_map} = \begin{pmatrix} 7 & 9 & -1 & \dots & -1 \end{pmatrix}$

ld: 1

Time: t+3 current state

$$\mu_{t+3} = \begin{pmatrix} \mathbf{x}_{t+3}^{[r]} \\ \mathbf{x}_{t+3}^{[7]} \\ \mathbf{x}_{t+3}^{[9]} \\ \mathbf{x}_{t+3}^{[1]} \end{pmatrix}$$


```
id_to_state_map = \begin{pmatrix} 3 & \dots & 1 & -1 & 2 & \dots & -1 \end{pmatrix}

state_to_id_map = \begin{pmatrix} 7 & 9 & 1 & \dots & -1 \end{pmatrix}
```

Updating the Map

Partition the sensed landmarks in two classes:

- Already known landmarks (part of the state)
 Use them to perform an EKF correction
- New landmarks

Add them to the state **after** the EKF correction

Hands On!

g2o Wrapper

Load your V-REP acquired dataset

```
[land, pose, transition, obs] = loadG2o('my_dataset.g2o');
```

This call returns an array of objects with the fields:

This time we don't know the landmarks!

```
pose =
  1x137 struct array containing the fields:
  id
    x
    y
    theta
```

```
obs =
  1x136 struct array containing the fields:
  pose_id
  observation
```