exemplo

Method Zieggler - Nichols (closed book TF)

- 1. Apply the Routh Hurwitz criterion
- 2. the ziegler-Nichols criterion needs that the system has a poir of complex poles in the imaginary oxis.

$$\frac{Y(S)}{R(S)} = \frac{K}{S^{7} + 7S^{3} + 15S^{2} + 25S + K}$$

obtain the P.I.D controller parameters by Zeigler-Nichols method.

4	1	15	K
3	7	25	
2	lan-1	bn-3	
1	Cn-1		
φ	du-1		

$$b_{n-1} = -\frac{(1.25 - 7.15)}{7}$$
 = 11,43
 $b_{n-3} = -\frac{(1.0 - 7.K)}{7}$ = K
 $c_{n-1} = -\frac{(7.K - 11, 43.25)}{11,943} = 25 - 0,61K$
 $d_{n-1} = -\frac{(11,43.0 - (25 - 0,61K).K)}{(25 - 0,61K)}$

Special auxe 1:

If a jirst column term in any Row is zero, but the remaining terms are not zero or there is no remaining term. The zero is replaced by a very small positive term E. And If the sign of the coefficient above E is the same as that below, it indicates that there are a pair of imaginary roots.

$$C_{N-1}=0$$
 $25-0,61$ $K=0$ D $K=40,8$
$11,43$ $S^{2}+40,8=0$
 $11,43$ $S^{2}=-40,8=0$
 $S^{2}=-3,56$
 $5=\pm \sqrt{-3,56}$ $z\pm \sqrt{3,56}$ $z\pm 1,89$ $z=0$