Script Análisis exploratorios

Introducción a la estadística inferencial

Simoneta Negrete Yankelevich

R.1

airpoll

ESTE EJEMPLO ES DE DATOS DE EVERITT 04 P. 17. CONSISTE EN INFORMA-CIÓN SOBRE CONTAMINACIÓN AMBIENTAL EN EU EN ZONAS METROPOLI-TANAS.

Llamo los datos (ojo que Everitt los tiene en formato dat, si están como txt, hay que llamarlos con read.table)

```
airpoll<-source("chap2airpoll.dat")$value
ap <- data.frame(airpoll)
write.csv(ap, "apdf.csv")
adf <- read.csv("airpoll.csv", header = T, sep = ";") #tabla con dato faltante
attach(airpoll)</pre>
```

```
## Rainfall Education Popden Nonwhite NOX SO2 Mortality ## akronOH 36 11.4 3243 8.8 15 59 921.9
```

## albanyNY	35	11.0	4281	3.5	10	39	997.9
## allenPA	44	9.8	4260	0.8	6	33	962.4
## atlantGA	47	11.1	3125	27.1	8	24	982.3
## baltimMD	43	9.6	6441	24.4	38	206	1071.0
## birmhmAL	53	10.2	3325	38.5	32	72	1030.0
## bostonMA	43	12.1	4679	3.5	32	62	934.7
## bridgeCT	45	10.6	2140	5.3	4	4	899.5
## bufaloNY	36	10.5	6582	8.1	12	37	1002.0
## cantonOH	36	10.7	4213	6.7	7	20	912.3
## chatagTN	52	9.6	2302	22.2	8	27	1018.0
## chicagIL	33	10.9	6122	16.3	63	278	1025.0
## cinnciOH	40	10.2	4101	13.0	26	146	970.5
## clevelOH	35	11.1	3042	14.7	21	64	986.0
## colombOH	37	11.9	4259	13.1	9	15	958.8
## dallasTX	35	11.8	1441	14.8	1	1	860.1
## daytonOH	36	11.4	4029	12.4	4	16	936.2
## denverCO	15	12.2	4824	4.7	8	28	871.8
## detrotMI	31	10.8	4834	15.8	35	124	959.2
## flintMI	30	10.8	3694	13.1	4	11	941.2
## ftwortTX	31	11.4	1844	11.5	1	1	891.7
## grndraMI	31	10.9	3226	5.1	3	10	871.3
## grnborNC	42	10.4	2269	22.7	3	5	971.1
## hartfdCT	43	11.5	2909	7.2	3	10	887.5
## houstnTX	46	11.4	2647	21.0	5	1	952.5
## indianIN	39	11.4	4412	15.6	7	33	968.7
## kansasMO	35	12.0	3262	12.6	4	4	919.7
## lancasPA	43	9.5	3214	2.9	7	32	844.1

##	losangCA	11	12.1	4700	7.8	319	130	861.8
##	louisvKY	30	9.9	4474	13.1	37	193	989.3
##	memphsTN	50	10.4	3497	36.7	18	34	1006.0
##	miamiFL	60	11.5	4657	13.5	1	1	861.4
##	milwauWI	30	11.1	2934	5.8	23	125	929.2
##	minnplMN	25	12.1	2095	2.0	11	26	857.6
##	nashvlTN	45	10.1	2082	21.0	14	78	961.0
##	newhvnCT	46	11.3	3327	8.8	3	8	923.2
##	neworlLA	54	9.7	3172	31.4	17	1	1113.0
##	newyrkNY	42	10.7	7462	11.3	26	108	994.6
##	philadPA	42	10.5	6092	17.5	32	161	1015.0
##	pittsbPA	36	10.6	3437	8.1	59	263	991.3
##	portldOR	37	12.0	3387	3.6	21	44	894.0
##	provdcRI	42	10.1	3508	2.2	4	18	938.5
##	readngPA	41	9.6	4843	2.7	11	89	946.2
##	${\tt richmdVA}$	44	11.0	3768	28.6	9	48	1026.0
##	rochtrNY	32	11.1	4355	5.0	4	18	874.3
##	stlousMO	34	9.7	5160	17.2	15	68	953.6
##	sandigCA	10	12.1	3033	5.9	66	20	839.7
##	sanfrnCA	18	12.2	4253	13.7	171	86	911.7
##	sanjosCA	13	12.2	2702	3.0	32	3	790.7
##	${\tt seatleWA}$	35	12.2	3626	5.7	7	20	899.3
##	springMA	45	11.1	1883	3.4	4	20	904.2
##	syracuNY	38	11.4	4923	3.8	5	25	950.7
##	toledoOH	31	10.7	3249	9.5	7	25	972.5
##	uticaNY	40	10.3	1671	2.5	2	11	912.2
##	washDC	41	12.3	5308	25.9	28	102	968.8

## wichtaKS	28	12.1	3665	7.5	2	1	823.8
## wilmtnDE	45	11.3	3152	12.1	11	42	1004.0
## worctrMA	45	11.1	3678	1.0	3	8	895.7
## yorkPA	42	9.0	9699	4.8	8	49	911.8
## youngsOH	38	10.7	3451	11.7	13	39	954.4

names(airpoll)

```
## [1] "Rainfall" "Education" "Popden" "Nonwhite" "NOX" "S02" ## [7] "Mortality"
```

Exploración Univariada

Comenzamos por ver el vector de medias y varianzas

#mean(airpoll) #sd(airpoll)^2

summary(airpoll)

##	Rainfall	Education	Popden	Nonwhite
##	Min. :10.00	Min. : 9.00	Min. :1441	Min. : 0.80
##	1st Qu.:32.75	1st Qu.:10.40	1st Qu.:3104	1st Qu.: 4.95
##	Median :38.00	Median :11.05	Median :3567	Median :10.40
##	Mean :37.37	Mean :10.97	Mean :3866	Mean :11.87
##	3rd Qu.:43.25	3rd Qu.:11.50	3rd Qu.:4520	3rd Qu.:15.65
##	Max. :60.00	Max. :12.30	Max. :9699	Max. :38.50
##	NOX	S02	Mortality	
##	Min. : 1.00	Min. : 1.00	Min. : 790	.7
##	1st Qu.: 4.00	1st Qu.: 11.00	1st Qu.: 898	. 4

```
Median: 9.00
                     Median : 30.00
                                        Median: 943.7
##
##
    Mean
          : 22.65
                      Mean
                             : 53.77
                                        Mean
                                                : 940.4
    3rd Qu.: 23.75
##
                      3rd Qu.: 69.00
                                        3rd Qu.: 983.2
           :319.00
                              :278.00
                                                :1113.0
##
    {\tt Max} .
                      {\tt Max.}
                                        Max.
```

summary(airpoll\$S02)

```
##
     Min. 1st Qu. Median
                              Mean 3rd Qu.
                                               Max.
##
      1.00
             11.00
                     30.00
                             53.77
                                      69.00
                                             278.00
```

vease la diferencia entre la media y la mediana para reconocer desviaciones, calculese el intervalo intercuartiles (3er-1er).

```
#windows()
boxplot(SO2, range=0, ylab="SO2") # en este caso, los "bigotes" del boxplot ubican el má
```



```
iqS02<-69-11
iqS02
```

[1] 58

Una buena regla de dedo para identificar datos atípicos es: que los puntos que caen mas allá del 3er+1.5(intercuartil) o mas bajo que 1er-1.5(intercuartil) son valores atípicos.

```
atipicossup<-69+(iqS02*1.5)
atipicossup</pre>
```

[1] 156

```
atipicosinf<-abs(11-(iqS02*1.5))
atipicosinf</pre>
```

[1] 76

```
hist(S02,lwd=2)
abline(v = 156, col = "blue")
```

Histogram of SO2

airpoll

##		Rainfall	Education	Popden	Nonwhite	NOX	S02	Mortality
##	akron0H	36	11.4	3243	8.8	15	59	921.9
##	albanyNY	35	11.0	4281	3.5	10	39	997.9
##	allenPA	44	9.8	4260	0.8	6	33	962.4

##	${\tt atlantGA}$	47	11.1	3125	27.1	8	24	982.3
##	baltimMD	43	9.6	6441	24.4	38	206	1071.0
##	birmhmAL	53	10.2	3325	38.5	32	72	1030.0
##	bostonMA	43	12.1	4679	3.5	32	62	934.7
##	bridgeCT	45	10.6	2140	5.3	4	4	899.5
##	bufaloNY	36	10.5	6582	8.1	12	37	1002.0
##	cantonOH	36	10.7	4213	6.7	7	20	912.3
##	chatagTN	52	9.6	2302	22.2	8	27	1018.0
##	chicagIL	33	10.9	6122	16.3	63	278	1025.0
##	cinnciOH	40	10.2	4101	13.0	26	146	970.5
##	clevelOH	35	11.1	3042	14.7	21	64	986.0
##	colombOH	37	11.9	4259	13.1	9	15	958.8
##	dallasTX	35	11.8	1441	14.8	1	1	860.1
##	${\tt daytonOH}$	36	11.4	4029	12.4	4	16	936.2
##	denverCO	15	12.2	4824	4.7	8	28	871.8
##	detrotMI	31	10.8	4834	15.8	35	124	959.2
##	flintMI	30	10.8	3694	13.1	4	11	941.2
##	ftwortTX	31	11.4	1844	11.5	1	1	891.7
##	grndraMI	31	10.9	3226	5.1	3	10	871.3
##	grnborNC	42	10.4	2269	22.7	3	5	971.1
##	hartfdCT	43	11.5	2909	7.2	3	10	887.5
##	houstnTX	46	11.4	2647	21.0	5	1	952.5
##	indianIN	39	11.4	4412	15.6	7	33	968.7
##	kansasM0	35	12.0	3262	12.6	4	4	919.7
##	lancasPA	43	9.5	3214	2.9	7	32	844.1
##	losangCA	11	12.1	4700	7.8	319	130	861.8
##	louisvKY	30	9.9	4474	13.1	37	193	989.3

##	memphsTN	50	10.4	3497	36.7	18	34	1006.0
##	miamiFL	60	11.5	4657	13.5	1	1	861.4
##	milwauWI	30	11.1	2934	5.8	23	125	929.2
##	minnplMN	25	12.1	2095	2.0	11	26	857.6
##	nashvlTN	45	10.1	2082	21.0	14	78	961.0
##	newhvnCT	46	11.3	3327	8.8	3	8	923.2
##	neworlLA	54	9.7	3172	31.4	17	1	1113.0
##	newyrkNY	42	10.7	7462	11.3	26	108	994.6
##	philadPA	42	10.5	6092	17.5	32	161	1015.0
##	pittsbPA	36	10.6	3437	8.1	59	263	991.3
##	portldOR	37	12.0	3387	3.6	21	44	894.0
##	provdcRI	42	10.1	3508	2.2	4	18	938.5
##	readngPA	41	9.6	4843	2.7	11	89	946.2
##	richmdVA	44	11.0	3768	28.6	9	48	1026.0
##	rochtrNY	32	11.1	4355	5.0	4	18	874.3
##	stlousMO	34	9.7	5160	17.2	15	68	953.6
##	sandigCA	10	12.1	3033	5.9	66	20	839.7
##	sanfrnCA	18	12.2	4253	13.7	171	86	911.7
##	sanjosCA	13	12.2	2702	3.0	32	3	790.7
##	seatleWA	35	12.2	3626	5.7	7	20	899.3
##	springMA	45	11.1	1883	3.4	4	20	904.2
##	syracuNY	38	11.4	4923	3.8	5	25	950.7
##	toledoOH	31	10.7	3249	9.5	7	25	972.5
##	uticaNY	40	10.3	1671	2.5	2	11	912.2
##	washDC	41	12.3	5308	25.9	28	102	968.8
##	wichtaKS	28	12.1	3665	7.5	2	1	823.8
##	wilmtnDE	45	11.3	3152	12.1	11	42	1004.0

```
## worctrMA
                           11.1
                                  3678
                                             1.0
                                                              895.7
                   45
                                                   3
                                                        8
## yorkPA
                            9.0
                                   9699
                                             4.8
                   42
                                                    8
                                                       49
                                                              911.8
## youngsOH
                           10.7
                                            11.7
                                                              954.4
                   38
                                   3451
                                                  13
                                                      39
```

¿Cuales son los valores atípicos para SO2? Ahora veamos lo que considera R como atípicos por default

```
par(mfrow=c(1,3))
boxplot(S02, range=0, ylab="S02")
boxplot(S02, ylab="S02")
boxplot(S02, range=1.5, ylab="S02")
```


Veamos las distribuciones de todas

```
par(mfrow=c(3,3))
hist(S02,lwd=2); abline(v = c(53.77, 30), col = c("blue", "red"))
hist(Rainfall,lwd=2)
hist(Education,lwd=2)
hist(Popden,lwd=2)
hist(Nonwhite,lwd=2)
hist(Nox,lwd=2)
hist(Mortality,lwd=2)
```


¿reconocen desviaciones negativas o positivas? Son normales?

800

900 1000 Mortality

```
par(mfrow=c(3,3))
qqnorm(S02, main="Q-Q plot S02"); qqline(S02, col = 2, lty = 2)
qqnorm(Rainfall, main="Q-Q plot Rainfall"); qqline(Rainfall, col = 2, lty = 2)
```

```
qqnorm(Education, main="Q-Q plot Education"); qqline(Education, col = 2, lty = 2)
qqnorm(Popden, main="Q-Q plot Popden"); qqline(Popden, col = 2, lty = 2)
qqnorm(Nonwhite, main="Q-Q plot Nonwhite"); qqline(Nonwhite, col = 2, lty = 2)
qqnorm(NOX, main="Q-Q plot NOX"); qqline(NOX, col = 2, lty = 2)
qqnorm(Mortality, main="Q-Q plot Mortality"); qqline(Mortality, col = 2, lty = 2)
```


Relaciones bivariadas

Veamos que relación hay entre las distintas variables. Aquí utilizo una función smoooth (regresión con pesos locales) que permite sugerir con los propios datos que tipo de relación pudieran tener.

veamos con mas detalle la relación SO2-mortalidad

```
nombres <-abbreviate(row.names(airpoll))
par(mfrow=c(1,1))
plot(S02,Mortality,lwd=2,type="n")
text(S02,Mortality,labels=nombres,lwd=2)</pre>
```


detach(airpoll)

C.1

R.2 valores faltantes

```
airpoldf <- read.table("datofalta.txt")
airpoldf</pre>
```

```
## Rainfall Education Popden Nonwhite NOX SO2 Mortality ## akronOH 35 10.4 3242 7.8 14 58 NA
```

## albanyNY	28	4.0	4274	-3.5	3	32	990.9
## allenPA	43	8.8	4259	-0.2	5	32	961.4
## atlantGA	40	4.1	3118	20.1	1	17	975.3
## baltimMD	42	8.6	6440	23.4	37	205	1070.0
## birmhmAL	46	3.2	3318	31.5	25	65	1023.0
## bostonMA	42	11.1	4678	2.5	31	61	933.7
## bridgeCT	38	3.6	2133	-1.7	-3	-3	892.5
## bufaloNY	35	9.5	6581	7.1	11	36	1001.0
## cantonOH	29	3.7	4206	-0.3	0	13	905.3
## chatagTN	51	8.6	2301	21.2	7	26	1017.0
## chicagIL	26	3.9	6115	9.3	56	271	1018.0
## cinnciOH	39	9.2	4100	12.0	25	145	969.5
## clevelOH	28	4.1	3035	7.7	14	57	979.0
## colombOH	36	10.9	4258	12.1	8	14	957.8
## dallasTX	28	4.8	1434	7.8	-6	-6	853.1
## daytonOH	35	10.4	4028	11.4	3	15	935.2
## denverCO	8	5.2	4817	-2.3	1	21	864.8
## detrotMI	30	9.8	4833	14.8	34	123	958.2
## flintMI	23	3.8	3687	6.1	-3	4	934.2
## ftwortTX	30	10.4	1843	10.5	0	0	890.7
## grndraMI	24	3.9	3219	-1.9	-4	3	864.3
## grnborNC	41	9.4	2268	21.7	2	4	970.1
## hartfdCT	36	4.5	2902	0.2	-4	3	880.5
## houstnTX	45	10.4	2646	20.0	4	0	951.5
## indianIN	32	4.4	4405	8.6	0	26	961.7
## kansasMO	34	11.0	3261	11.6	3	3	918.7
## lancasPA	36	2.5	3207	-4.1	0	25	837.1

##	losangCA	10	11.1	4699	6.8	318	129	860.8
##	louisvKY	23	2.9	4467	6.1	30	186	982.3
##	memphsTN	49	9.4	3496	35.7	17	33	1005.0
##	miamiFL	53	4.5	4650	6.5	-6	-6	854.4
##	milwauWI	29	10.1	2933	4.8	22	124	928.2
##	minnplMN	18	5.1	2088	-5.0	4	19	850.6
##	nashvlTN	44	9.1	2081	20.0	13	77	960.0
##	newhvnCT	39	4.3	3320	1.8	-4	1	916.2
##	neworlLA	53	8.7	3171	30.4	16	0	1112.0
##	newyrkNY	35	3.7	7455	4.3	19	101	987.6
##	philadPA	41	9.5	6091	16.5	31	160	1014.0
##	pittsbPA	29	3.6	3430	1.1	52	256	984.3
##	portldOR	36	11.0	3386	2.6	20	43	893.0
##	provdcRI	35	3.1	3501	-4.8	-3	11	931.5
##	${\tt readngPA}$	40	8.6	4842	1.7	10	88	945.2
##	${\tt richmdVA}$	37	4.0	3761	21.6	2	41	1019.0
##	rochtrNY	31	10.1	4354	4.0	3	17	873.3
##	stlousMO	27	2.7	5153	10.2	8	61	946.6
##	sandigCA	9	11.1	3032	4.9	65	19	838.7
##	sanfrnCA	11	5.2	4246	6.7	164	79	904.7
##	sanjosCA	12	11.2	2701	2.0	31	2	789.7
##	seatleWA	28	5.2	3619	-1.3	0	13	892.3
##	springMA	44	10.1	1882	2.4	3	19	903.2
##	syracuNY	31	4.4	4916	-3.2	-2	18	943.7
##	toledoOH	30	9.7	3248	8.5	6	24	971.5
##	uticaNY	33	3.3	1664	-4.5	-5	4	905.2
##	washDC	40	11.3	5307	24.9	27	101	967.8

```
## wichtaKS
                 21
                          5.1
                                3658
                                          0.5 -5 -6
                                                         816.8
## wilmtnDE
                 44
                         10.3
                                3151
                                         11.1 10
                                                  41
                                                         1003.0
## worctrMA
                 38
                          4.1
                                3671
                                         -6.0 -4
                                                   1
                                                         888.7
## yorkPA
                          8.0
                                9698
                                          3.8
                                                   48
                                                          910.8
                 41
                                                7
## youngsOH
                 31
                          3.7
                                3444
                                          4.7
                                                6
                                                  32
                                                          947.4
```

```
attach(airpoldf)
```

Lo mas fácil la media

```
summary(Mortality)
```

```
## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 789.7 892.4 943.7 936.6 977.1 1112.0 1
```

```
sum(is.na(Mortality))
```

[1] 1

Cual es el valor imputado? Cuales son los problemas asociados a esta imputación? regresión mortalidad y SO2

```
par(mfrow=c(1,1))
plot(S02,Mortality,lwd=2)
abline(v = 59, h = 940.2)
abline(v = 59, h = 921.9, col = "red")
```



```
##
## Call:
## lm(formula = Mortality ~ SO2)
##
## Residuals:
                         {\tt Median}
##
         Min
                    1 Q
                                        3Q
                                                 {\tt Max}
                         -7.796
   -126.625
              -38.213
                                            196.528
                                   35.582
##
## Coefficients:
                Estimate Std. Error t value Pr(>|t|)
##
```

regmort<-lm(Mortality~SO2)</pre>

summary(regmort)

```
## (Intercept) 915.4721 9.4932 96.435 < 2e-16 ***
## SO2
               ## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 57.47 on 57 degrees of freedom
    (1 observation deleted due to missingness)
##
## Multiple R-squared: 0.1872, Adjusted R-squared: 0.173
\mbox{\#\# F-statistic: }13.13 on 1 and 57 DF, p-value: 0.0006196
m \leftarrow (915.4720997 + (0.4266209*59))
par(mfrow=c(1,1))
plot(SO2,Mortality,lwd=2)
abline(v = 59, h = 940.2)
abline(v = 59, h = 921.9, col = "red")
```

abline(lm(Mortality~SO2))


```
##
## Residuals:
##
         Min
                    1Q
                          Median
                                        3Q
                                                 Max
## -0.136793 -0.030759 0.000398 0.029763 0.212163
##
## Coefficients:
               Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 6.749926  0.021463 314.487  < 2e-16 ***
## logS02
               0.026633 0.005928
                                    4.493 3.48e-05 ***
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
##
## Residual standard error: 0.05863 on 57 degrees of freedom
     (1 observation deleted due to missingness)
## Multiple R-squared: 0.2615, Adjusted R-squared: 0.2486
## F-statistic: 20.19 on 1 and 57 DF, p-value: 3.482e-05
par(mfrow=c(1,2))
plot(SO2, Mortality, lwd=2)
abline(regmort)
abline(v = 58, h = c(940.2161, 954.4211), col = "red")
plot(logS02,logM,lwd=2)
abline(lm(logM~logSO2))
abline(v = 58, h = 940.2161, col = "red")
```



```
plot(logS02,logM,lwd=2)
abline(lm(logM~logS02))
```


el valor de SO2 que corresponde al valor faltante de mortalidad es 58. Como hemos generado un modelo de logaritmos a ambos lados de la ecuación sacamos el log del (SO2+7)

[1] 4.174387

Usamos la función predict para predecir el valor correspondiente de Mortalidad

```
predict(loglog, list(logS02=4.174387))
```

1

6.861105

pero recordando que usamos logaritmos en el modelo, retrotransformamos con el antilog con base e (e elevado al numero que nos interesa retro transformar)

```
exp(6.861105)
```

[1] 954.4211

El valor predicho por regresión lineal es? Cuales son los problemas asociados a esta imputación?

fin