Data Streams

Internet Analytics (COM-308)

Prof. Matthias Grossglauser School of Computer and Communication Sciences

Overview

- Performance criteria:
 - Data volume
 - Computational cost
- We have paid some attention to this:
 - Examples: SGD vs "full" gradient descent; power method for PageRank
- But: assumption that we always have access to all the data!
 - Allows iterative algorithms
 - Many algorithms require "random access"
- Data streams:
 - Relax these assumptions in different ways
 - Tradeoff: compute simple quantities very efficiently

Motivating example (1)

- Internet backbone router
- Order of magnitude:
 - 100s of interfaces at 10s of Gbps
 - = several billion pkts/sec!
 - ...at expensive SRAM speeds!
- Traffic analysis app to detect DDoS attack:
 - What are the dominant flows?
 - How many different (unique) source IP addresses in a minute?

Motivating example (2)

- Implantable medical devices:
 - Resource-limited: memory, computation, energy
 - Rare/unpredictable read-outs
- Sensor reads:
 - Storing full trace may not be feasible
 - Extract key statistics & maintain over time

Data stream model

- Computing statistics with sub-linear memory
- Example:
 - n numbers: how many unique values (colors) k?

$$k = 4$$

- How to solve with $\theta(n \log n)$ memory?
 - Keep every value in some efficient data structure; compare & count
- How to solve with o(n) memory?
 - Cannot solve exactly
- Streaming algorithms: ∞ data, finite memory
 - Approximation
 - (Pseudo-)randomization

Estimates with sublinear memory

- Counting # of elements:
 - $O(\log n)$ space
- Maximum value:
 - **■** *0*(1) space
- Average value:
 - Sum / counter: $O(\log n)$ space
- Heavy hitters:
 - Most frequent values
 - Table of values so far has size $O(n \log n)$
- Number of distinct elements?
 - I.e., do not double-count multiple occurrences
 - Table of values so far: $O(n \log n)$

(1): Heavy hitters

- Find most frequent values in a stream
- Trivial solution: keep counters for every value, sort at the end
 - Cost: space $\Omega(m)$ (m: alphabet size)
- Threshold criterion θ :
 - Report every value a that has occurred $> \theta n$ times
- Case $\theta = 1/2$: majority (at most one value)
- Trick: pairwise annihilation of different observed values

May or may not be majority color → 2nd pass to re-tally

Heavy hitters: algorithm

- For $\theta < 1/2$, need larger "annihilation set" K
- Algorithm:
 - Annihilation set K contains (value, count) tuples
 - For every new sample x, update (or create) tuple in K
 - When $|K| \ge 1/\theta \rightarrow$ decrease all counts by 1, and delete those hitting 0
- Property:
 - At the end, K is a superset of values with frequency θn
 - Second pass needed to get actual counts
- Cost: $O(\log n/\theta)$ space, O(n) complexity

Heavy hitters: example ($\theta = 1/3$)

Heavy hitters: example ($\theta = 1/3$)

Heavy hitters: proof

Lemma:

• A value x that occurs at least θn times in the stream is in K at time n (with count ≥ 1)

Proof:

- Def: decrement action = dec all nonzero counters by one
- Each decrement action decreases the total count (sum of all counters) by at least $1/\theta$
- Therefore, at most θn decrement actions
- Each individual value x gets decremented by at most one for each decrement action \rightarrow at most θn decrements per x
- If x occurs more than θn times, its counter cannot be 0 at time n

(2) Counting distinct elements

$$k = 4$$

- Number of distinct elements?
 - Table of values seen: $O(n \log n)$
 - Hash table
 - Can we do better?
 - No if we need exact answer
- Approximation:
 - Many streaming algorithms trade off small loss in precision (approximation) with large gain in memory requirement

Approximate count-distinct

- Flajolet-Martin algorithm
- Intuition:
 - Hash function h(x):
 - Pseudorandom:
 - Random: $x \neq y \rightarrow h(x)$ and h(y) can be regarded as independent uniform random variables
 - Pseudo: $x = y \rightarrow h(x) = h(y)$
 - k distinct values $x_1, ..., x_k \rightarrow$ hashed values $h(x_1), ..., h(x_k)$

Count-distinct: single hash function

- Normalize H=1
- What is $y = E[\min_{i} h(x_i)]$?
 - k + 1 intervals $\to y = (k + 1)^{-1}$
- Now suppose we have n values $x_1, ..., x_n$, but not necessarily distinct
- What is $y = E[\min_{i} h(x_i)]$ now?
 - Still $y = (k + 1)^{-1}$, where k is # of distinct elements
- Therefore $\hat{k} = \frac{1}{\min\limits_{i} h(x_i)} 1$ is an estimator for # of distinct elements in x_1, \dots, x_n

Count-distinct: multiple hash functions

- Improving the estimate:
 - Obtain multiple independent estimates & average, by using multiple hash functions:
 - Assumption: $h_1(x)$ and $h_2(x)$ can be regarded as independent RVs

Flajolet-Martin algorithm

- Discretization of minimum estimator → compression
- Binary representation:
- Number of leading 0s (or trailing)
 - Example: 001010111100010101010 $\rightarrow z = 2$, ie, $x \in \{001000000 \dots, 0011111111\dots\}$
 - 4 3 2 1 0
- Maximum # of zeroes:

$$R = z(\min_{i} h(x_i)) = \max_{i} z(h(x_i))$$

• Estimate: $\hat{k} = 2^R/0.77351$

FM algorithm: implementation

- Combining $\{R_i\}$ into a single estimate for \hat{k} :
 - 2^R has power-law distribution \rightarrow median $\{2^{R_1}, ..., 2^{R_J}\}$ is better than average
 - (or average of medians over subgroups)

(3) Document similarity

- Given: Corpus of documents
- Efficient way to find pairwise similarity
- Applications:
 - Web crawling: eliminate copies or similar version of documents
 - Filter search results: only show sufficiently different docs
- Solutions:
 - Cosine similarity or similar: too costly for some applications

Document similarity: sketch

- How to compare two docs very efficiently?
- Approach 1: vector space model
 - Two docs are similar if vectors of word frequencies are similar
 - Drawback: bag-of-words approach loses all structure
- Approach 2: use more local structure → shingles (or n-grams)
 - *k*-shingle: ordered sequence of *k* consecutive words
 - "bag of shingles" large, sparse vocabulary
 - Example: "And now for something completely different" → 3-shingles: "and now for", "now for something", "for something completely",...

Document similarity: shingles

- Two documents characterized by their sets of shingles A and B
- Similarity: Jaccard index

$$-sim(A,B) = \frac{|A \cap B|}{|A \cup B|}$$

- Problem:
 - Vector-space representation: $|V|^k$ -sized vocabulary
 - Sparse representation: most shingles unique $\rightarrow \theta(n)$ space
- Solution:
 - Sketch: compressed version of vector of shingles

Document sketch

- Goal: compact representation of A, B to estimate sim(A, B)
- Hash function $h(.) \in [1, H]$: maps shingle to integer
 - Assume H is large enough (e.g., 2^{64}) to avoid collisions
- Def: sketch $s(A) = \min_{a \in A} h(a)$
- Lemma: $P(s(A) = s(B)) = \frac{|A \cap B|}{|A \cup B|}$
- Proof:
 - Hash function \rightarrow Each element x in $A \cup B$ has same prob. of being min
 - No collision assumption $\rightarrow P(s(A) = s(B))$ $= P(\text{random } x \in A \cup B \text{ is in } A \cap B)$ $= |A \cap B|/|A \cup B|$

Document sketch

- To reduce variance: multiple hash functions (e.g., 100-1000)
- $s(A) = (\min h_1(A), \min h_2(A), ..., \min h_I(A))$

$$\widehat{sim}(A,B) = \frac{|\{s:h_j(A)=h_j(B)\}|}{J}$$

- Unbiased
- Doc sketch comparison:
 - A few hundred integer comparison operations → very efficient

(4) Distances and nearest-neighbor

- So far: counts, set similarity
- Another general problem: high-dimensional data $x_i \in \mathbb{R}^d$, with d large
 - Examples: images; time series (financial, sensors,...)
- Euclidean distance $||x_i x_j||$
- Often, one needs nearest-neighbor queries:
 - For a given x, find x_i minimizing $||x_i x||$
 - Examples: find most similar images; find user with similar pref vector in recommender system
- Large d and n: very costly computation
- How can we bring down dimensionality?

Randomized dim reduction

- Johnson-Lindenstrauss Lemma:
 - Given: n points $x_i \in \mathbb{R}^d$, error tolerance $0 < \epsilon < 1$
 - There is a (linear) function $f: \mathbb{R}^d \to \mathbb{R}^{d'}$, such that

•
$$(1 - \epsilon) \|x_i - x_j\|^2 \le \|f(x_i) - f(x_j)\|^2 \le (1 + \epsilon) \|x_i - x_j\|^2$$

• for $d' > 8 \ln(n)/\epsilon^2$ — Does not depend on d

Very benign growth in n

- Numerical example:
 - n=1000 images of d=1m pixels each; suppose $\epsilon=0.2$
 - $d' \cong 1400$

Random projection

Techniques: project into a random low-dim subspace

random subspace (plus rescaling)

Random projection

- Intuition: why can we project into a space of dim d' independently of original dim d?
 - High dimension: almost everything is far away
 - When projecting into d' -dim random subspace:
 - For $||x_i x_j||$ small \rightarrow it stays small
 - For $||x_i x_j||$ large \rightarrow for distance to collapse, d' different dimensions would have to "miss" the difference
 - Probability of this happening drops very quickly with d'
 - ln(n) factor: price to pay for this to hold for n^2 different pairs

Dim reduction with random projections

- Very efficient way of maintaining distances between large collection of objects
- Version:
 - Random vectors (components restricted to {-1,+1})
- Example application:
 - Autonomous security camera taking pictures
 - Cannot transmit all pictures, but want to answer queries of the type "when did things look different?", or cluster similar scenes

Summary

"Big Data" challenges: volume and curse of dimensionality

- (1) Heavy-hitter
- (2) Flajolet-Martin sketch
- (3) Doc shingle sketch

References

- [A. Rajaraman, J. D. Ullman: Mining of Massive Datasets, 2012 (chapter 4)]
- [S. Muthukrishnan: Data Streams Algorithms and Applications, Foundations and Trends in Theoretical CS, 1:2, 2005]