Aurinkokunnan fysiikka

Harjoitus 2/2, kevät 2016.

- 1. Oletetaan vetyatomi kovaksi palloksi, jonka säde on 5.3×10^{-11} m (Bohrin säde) ja massa 1.67×10^{-27} kg. Rakennetaan palloista säännöllinen, ääretön kuutiohila. Mikä on tällaisen väliaineen tiheys? Vertaa tulosta kaikkien jättiläisplaneettojen tiheyksiin ja arvioi planeettojen säteet mikäli ne koostuisivat tällaisesta väliaineesta.
- 2. Laske Rochen rajan etäisyys kaikille planeetoille ja katso kiertääkö yhtään kuuta Rochen rajan sisäpuolella. Entä miten jättiläisplaneettojen renkaat sijaitsevat Rochen rajaan verrattuna?
- 3. Etsi kirjallisuudesta arvot kaikkien planeettojen Bondin albedoille ja mitatuille pintalämpötiloille. Johda tasapainoyhtälöt sekä nopeasti että hitaasti pyörivän planeetan pintalämpötilalle lähtien Stefanin-Boltzmannin laista

$$L = 4\pi R_{\odot}^2 \sigma T_{\odot}^4 \,, \tag{1}$$

missä L on Auringon säteilemä vuo, R_{\odot} on Auringon säde, σ on Stefanin-Boltzmannin vakio ja T_{\odot} on Auringon pintalämpötila. Laske ennusteet kaikkien planeettojen pintalämpötiloille ja vertaa mitattuihin arvoihin. Mistä mahdolliset poikkeamat teorian ja mittausten välillä johtuvat?

- 4. Maa ja Venus ovat monessa suhteessa "kaksosplaneettoja". Esimerkiksi Maan massa $M_E \simeq 6.0 \times 10^{24} \, \mathrm{kg}$ ja säde $R_E \simeq 6.4 \times 10^6 \, \mathrm{m}$ kun taas Venuksen massa $M_V \simeq 4.9 \times 10^{24} \, \mathrm{kg}$ ja säde $R_V \simeq 6.1 \times 10^6 \, \mathrm{m}$. Kuitenkin niillä on hyvin erilaiset kaasukehät. Kaasun paine planeetan pinnalla on Maassa $P_{0,E} \simeq 1.01 \times 10^5 \, \mathrm{kg} \, \mathrm{m}^{-1} \, \mathrm{s}^{-2}$ ja Venuksessa $P_{0,V} \simeq 9.2 \times 10^6 \, \mathrm{kg} \, \mathrm{m}^{-1} \, \mathrm{s}^{-2}$
 - a) Käyttäen edellä annettuja massoja, säteitä ja ilmanpaineita pinnalla, laske molemmille planeetoille niiden kaasukehien massa (i) kilogrammoissa ja (ii) suhteellisena osuutena planeetan massasta.
 - b) Maan merien keskimääräinen syvyys on noin 4 kilometriä ja ne kattavat noin 70% Maan pintaalasta. Meriveden tiheys on noin $1025\,\mathrm{kg}\,\mathrm{m}^{-3}$. Laske Maan merien massa (i) kilogrammoissa ja (ii) suhteellisena osuutena Maan massasta.
 - c) Oletetaan että Maan meret höyrystyisivät. Laske kaasukehän paine Maan pinnalla.
- 5. Maan sisäosista vapautuvan geotermisen lämpövuon tiheys $F_{\rm geo} \simeq 0.09\,{\rm W\,m^{-2}}$.
 - a) Ilman Auringon lämpövaikutusta Maan pinta kylmenisi ennen pitkää lämpötilaan $T_{\rm geo}$ siten että se emittoisi täsmälleen $F_{\rm geo}$ mustan kappaleen säteilynä. Laske $T_{\rm geo}$.
 - b) Päästäkseen eroon Auringon säteilystä absorboimastaan lämmöstä, Maa säteilee kuten musta kappale jonka lämpötila $T_{\rm eq} \simeq 255\,{\rm K}$. Vertaa geotermistä vuontiheyttä tehoon jolla jokainen Maan pinnan neliömetri säteilee.
 - c) Miljardeja vuosia sitten geoterminen vuontiheys on saattanut olla kertaluokkaa suurempi kuin nykyään. Arvioi kuinka paljon lämpimämpi Maan pinnan on täytynyt olla päästäkseen eroon tästä ylimääräisestä lämmöstä.
- 6. Uraanin isotoopin 238 U hajotessa lyijyn isotoopiksi 206 Pb vapautuu 51.7 MeV = 8.28×10⁻¹² kg m² s⁻² energiaa ydintä kohti. 238 U:n puoliintumisaika $\tau_0 \simeq 4.6 \times 10^9$ vuotta.
 - a) Yhden 238 U-atomin massa on noin 238 kertainen suhteessa vetyatomiin, jonka massa $m_{\rm H} \simeq 1.67 \times 10^{-27}$ kg. Laske kokonaisenergia joka vapautuu kun 1 kilogramma 238 U:ta hajoaa kokonaan 206 Pb:ksi.
 - b) Oletetaan että sinulla on 1 kilogramma puhdasta uraani 238:aa ajanhetkellä t_0 . Johda kaava sille kuinka monta 238 U-ydintä on jäljellä hetkellä t.

- c) Käyttäen hyväksi b)-kohdan tulosta, laske teho joka vapautuu kun 1 kilogramma puhdasta uraani $^{238}\mathrm{U}$:ta hajoaa.
- d) Oletetaan että Maan geoterminen lämpö on peräisin ainoastaan uraanin hajoamisesta. Kuinka paljon uraania tarvitaan jotta se selittää nykyisen lämpövuon tiheyden $F_{\rm geo}$?