Лабораторная работа №2

Задача о погоне

Гаглоев Олег

Contents

1	Цель работы	5
2	Задание	6
3	Теоретическое введение	7
4	Выполнение лабораторной работы	8
5	Выводы	12
Сп	исок литературы	13

List of Figures

4.1	рис1.																	8
4.2	рис2.																	9
4.3	код .																	10
4.4	рис4.																	11
4.5	рис5.																	11
4.6	рис5.																	11
47	рис6																	11

List of Tables

1 Цель работы

Вариант 38 Приведем один из примеров построения математических моделей для выбора правильной стратегии при решении задач поиска. Например, рассмотрим задачу преследования браконьеров береговой охраной. На море в тумане катер береговой охраны преследует лодку браконьеров. Через определенный промежуток времени туман рассеивается, и лодка обнаруживается на расстоянии 19 км от катера. Затем лодка снова скрывается в тумане и уходит прямолинейно в неизвестном направлении. Известно, что скорость катера в 5,1 раза больше скорости браконьерской лодки. Необходимо определить по какой траектории необходимо двигаться катеру, чтоб нагнать лодку.

2 Задание

- 1. Запишите уравнение, описывающее движение катера, с начальными условиями для двух случаев (в зависимости от расположения катера относительно лодки в начальный момент времени).
- 2. Постройте траекторию движения катера и лодки для двух случаев.
- 3. Найдите точку пересечения траектории катера и лодки

3 Теоретическое введение

Файл в приложении к Лабораторной работе №2

4 Выполнение лабораторной работы

Я не разобрался в julia, а так как баллы терять не хочется, попробовал написать на питоне, поэтому скорее всего баллов не получу Принимаем за t_0=0 , X_0=0 - место нахождения лодки браконьеров в момент обнаружения, X_0=k - место нахождения катера береговой охраны относительно лодки браконьеров в момент обнаружения лодки. Введем полярные координаты. Считаем, что полюс - это точка обнаружения лодки браконьеров x_0=0(⊠=x_0=0), а полярная ось г проходит через точку нахождения катера береговой охраны.

Figure 4.1: рис1

Чтобы найти расстояние x после которого катер начнет двигаться вокруг полюса, необходимо составить простое уравнение. Пусть через время t катер и лодка окажутся на одном расстоянии x от полюса. За это время лодка пройдет x, а катер k-x (или k+x, в зависимости от начального положения катера относительно полюса). Время, за которое они пройдут это расстояние, вычисляется как x/v или (x+k/v) (или (x-v)/v во втором случае). Так как время одно и то же, то эти величины одинаковы. Тогда неизвестное расстояние x

можно найти из следующего уравнения: x/v=(x+k)/v или (x-k)/v во втором случае Отсюда мы найдем два значения x1 и x2, задачу будем решать для двух случаев: x_1=k/n+1, при tetha=0 x_2=k/n-1, при tetha = -рі После того, как катер береговой охраны окажется на одном расстоянии от полюса, что и лодка, он должен сменить прямолинейную траекторию и начать двигаться вокруг полюса удаляясь от него со скоростью лодки v. Для этого скорость катера раскладываем на две составляющие: vr - радиальная скорость и vt- тангенциальная скорость. Радиальная скорость - это скорость, с которой катер удаляется от полюса V_r=dr/dt.Нам нужно, чтобы эта скорость была равна скорости лодки, поэтому полагаем v=dr/dt. Тангенциальная скорость – это линейная скорость вращения катера относительно полюса. Она равна произведению угловой скорости d tetha/dt на радиус r. vr=r*d tetha/dt

Figure 4.2: рис2

Используя теорему Пифагора получаем :v_t = sqrt (n^2 * v^2 - v^2) = v * sqrt(n^2-1). Теперь приравняем значения v_t и получаем: $r * d tetha/dt = v * sqrt(n^2-1)$ Решение исходной задачи сводится к решению системы из двух дифференциальных уравнений: v = dr/dt и $r * d tetha/dt = v * sqrt(n^2-1)$ Исключим из системы переменную t и получим следующее уравнение: $dr/d tetha = r/sqrt(n^2-1)$ Теперь имея два разных начальных условия , посмотрим на результаты выполнения программы Сами начальные условия:

```
{ tetha=0
{r_0= s/(n+1)
```

```
и
{ tetha=-π
{r 0= s/ (n-1)
```

```
🛵 main.py
      import numpy as np
      from scipy.integrate import odeint
      def f1(tetha, r): # уравнение для катера
          dr = r / sqrt(n ** 2 - 1)
      def f2(t):
      fi = 3 * pi / 4
      tetha = np.arange(0, 2 * pi, 0.001)
      r = odeint(f1, deltaR, tetha)
      deltaT = np.arange(0.1, 50)
      r1 = np.sqrt(deltaT**2 + f2(deltaT)**2)
      tetha1 = np.arctan(f2(deltaT) / deltaT)
      flag=0
          if round(tetha[i],2)==round(fi+pi,2):
              flag=i
      print("Theta:"_tetha[flag]_'r:'_r[flag][0])
```

Figure 4.3: код

Графики построить не удалось из за какой то ошибки. В итоге ни на джулии не написал полностью, ни на питоне Получившиеся решения: Для первого случая

Figure 4.4: рис4

```
main ×
C:\Users\Oleg\PycharmProjects\pythonProject5\venv\Scripts\python.exe
Theta: 5.505 r: 6.144650679630221
Process finished with exit code 0
```

Figure 4.5: рис5

Для второго случая:

```
fi = 3 * pi / 4

deltaR=s / (n - 1)

# решаем диф. уравнение для катера

tetha = np.arange(0, 2 * pi, 0.001)

r = odeint(f1, deltaR, tetha)
```

Figure 4.6: рис5

```
C:\Users\0leg\PycharmProjects\pythonProject5\venv\Scripts\
Theta: 5.505 r: 7.664042922732978

Process finished with exit code 0
```

Figure 4.7: рис6

5 Выводы

Я смоделировал ситуацию, описанную в задаче и нашел необходимые значения

Список литературы

Текст к лабораторной работе $N^{o}2$ в ТУИС https://esystem.rudn.ru/plugin-file.php/1971721/mod_resource/content/2/Лабораторная%20работа%20 N^{o} %201.pdf