ENGR 132 Exam Practice Repetition Structures – While Loops & For Loops

Problems

Practice 1.

For each task described below determine the most appropriate repetitive structure.

- A. You are designing a user-defined function that can calculate the factorial value of a given number (factorial value of a number N = 1 * 2 * 3 * ... * N
- B. You are determining a solution for your project that requires you to continually ask the user to enter a random number until the user enters a number between 1 and 5.
- C. You are designing a system that will record the data from every sensor in the aircraft.
- D. A manufacturing process requires you to keep the thermostat control within a specified temperature range.
- E. Design a validation process that will iterate through a calculation until a certain level of accuracy is reached.

Practice 2.

Consider the following MATLAB code:

```
function prob4(a)
if a == 151
   for x = 3:-1:1
      z = a*x;
    end
elseif a == 150
   x = 53;
   y = 98;
   while y < 100
       x = x + 1;
       y = y + 1;
       z = x + 1;
    end
else
    for y = 2:2:10
       z = z*y;
    end
end
fprintf('z = %.0f', z);
```

What is displayed in the Command Window after executing each of the following function calls?

```
A. >> prob4(151);
B. >> prob4(150);
C. >> prob4(152);
Solution
```

Practice 3.

Consider the following flowchart:

To help you test your flowchart, your friend Kono gives you two test cases: $\mathbf{x} = 12$ and $\mathbf{x} = 20$. In addition to these two test cases, come up with two additional test cases (use integers) that test different aspects of the flowchart **that have not been considered by the two test cases already** provided. For each test case, state the purpose of the test case and give the final value of the variable **out**.

	Test Case	Purpose of Test Case	Value of out
1	x = 12		out =
2	x = 20		out =
3	x =		out =
4	x =		out =

Practice 4.

Replace the for...end portion of the code (shown in bold) presented below with a single vector operation statement.

```
x = [2 4 6 8 10];
y = [3 6 9 12 15];
for k = 1:1:5
    z(k) = (y(k)*x(k))^2;
end
fprintf('%.0f\n', z)
```

Solution

Practice 5.

A MATLAB program uses the following loop to iteratively perform a simple calculation.

```
count = 0;
x = 1;
while x<15
     count = count + 1;
     x = x*2;
end
fprintf('The value of x is %.0f after %.0f iterations.',x,count)</pre>
```

What values of x and count will be displayed by the fprintf statement?

- A. x = _____
- B. count = _____

Practice 6.

What output will appear in the MATLAB Command Window when the following code is executed?

```
counter = 36;
while counter >= 28
    counter = counter - 2;
end
fprintf ('The value of the counter is %.0f.\n', counter)
```

Solution

Practice 7.

What output will appear in the MATLAB Command Window when the following code is executed?

```
input_vector = [4 4 9 6];
sum_value = 0;
% fprintf('counter, sum_value\n')
for counter = input_vector
    sum_value = sum_value + counter;
end
fprintf('%.0f, %.0f\n', counter, sum_value)
```

Solution

Practice 8.

For each type of problem shown below, determine if a **while** loop or a **for** loop is the **most** appropriate repetitive structure. Circle the correct type of loop on the answer sheet.

- A. Finding the square root of a given integer to a specific accuracy level.
- B. Finding the first two hundred numbers of a series.
- C. Recording the data from every fourth sensor along an assembly line.

Practice 9.

Consider the MATLAB code below:

```
my_result = 0;
for m = 1:3:10000
    my_result = my_result + m;
end
```

- A. Learn what this code does by tracking the variables through only 4 iterations of the for loop.
- B. Replace the MATLAB code above with one line of code that will produce the same result for my_result.

Answer Sheet section for this problem

A.	Iteration	m	my_result
	0		
	1		
	2		
	3		
	4		
B.			

Solution

Practice 10.

Consider the MATLAB code below:

What are the values of a, b, c, and d after the following code is executed?

Practice 11.

The input() statement in MATLAB is used to request input from users. For example:

```
entered_Value = input('Enter a value such that 1 <= value <= 100')</pre>
```

prompts users to enter a value and stores the value entered in the variable entered_Value. However, users can enter any value they want and MATLAB has no way of stopping them.

Add code before and/or after the line above to force users to enter values only between 1 and 100. Your code should repeat until the entered value is within the required range, and it should provide a useful warning message each time the input is invalid. Comment your code where clarification is required.

Solution

Practice 12.

You have been provided with the flowchart for a user-defined function that calculates the average of a vector. The function is named myAvg. It accepts the variable vector as input and returns the scalar value average as output.

Translate this flowchart to MATLAB code.

Solutions

Practice Solution 1

- A. for loop
- B. while loop
- C. for loop
- D. while loop
- E. while loop

Practice Solution 2

```
A. z = 151
```

- B. z = 56
- C. Undefined function or variable 'z'.

Practice Solution 3

	Test Case	Purpose of Test Case	Value of out
1	x = 12	This test case returns false to the first and second decisions of the flowchart, so its value is increased by 12.	out = 27
2	x = 20	This test case returns true to the first decision, but false to the next decision and does not enter the while loop and never changes its value.	out = 20
3/4	x > 25	Test cases of these values will return true to the first decision and the next decision will enter the while loop.	out = 25, 24, 23, or 22 (Based on initial x)
3/4	5 <= x < 10	Test cases of these values will return a false to the first decision, a true to the second decision, but false to the third decision and will not enter the while loop. They will not change their value.	out = 5, 6, 7, 8, or 9 (Same as initial x)
3/4	x < 5	Test cases of these values will return a false to the first decision, a true to the second and third decisions and enter the while loop.	out = 5, 6, or 7 (Based on initial x)

Practice Solution 4

```
x = [2 4 6 8 10];
y = [3 6 9 12 15];
z = (y.*x).^2
fprintf('%.0f\n', z)
```

Practice Solution 5

```
The value of x is 16 after 4 iterations.  \\  or \\  x = 16 \\  Count = 4
```

Practice Solution 6

Answer: The value of the counter is 26.

Practice Solution 7

counter	sum_value
6	23

Practice Solution 8

- A. while
- B. for
- C. for

Practice Solution 9

A.	Iteration	m	my_result
	0		0
	1	1	1
	2	4	5
	3	7	15
	4	10	22
B.	my_result=sum([1:3:10000])		

Practice Solution 10

- a. 2
- b. **1**
- c. **1**
- d. 2

Practice Solution 11

```
entered_Value = input('Enter a value such that 1<= value <= 100: ');
end</pre>
```

Practice Solution 12

```
function average = myAvg(vector)

% Initialize vector_sum to 0
vector_sum = 0;

% Iterate through vector
for count = 1:1:length(vector)
    vector_sum = vector_sum + vector(count);
end

% Calculate the average
average = vector_sum/count;
```