

Экология и эволюция

Игорь Мартынович Рузин

Доцент, в.н.с.

ivan4995@gmail.com

igor.rouzine@iephb.ru

Plan

- ; Что такое эпистаз?
- универсальная мера эпистаза
- Проблемы с обнаружением
- ; Метод 3 локусного обнаружения
- Применение к вирусу гриппа

Эпистаз

Общее определение

Эффект одной мутации зависит от аллели на другом локусе

Ех 1: взаимодействие генов

Ех 2: взаимодействие белков

Фенотип и генотип

Two-locus model of epistasis

log fitness

$$W_{00} = 0$$

$$W_{10} = -s_1$$

$$W_{01} = -s_2$$

$$W_{11} = -(s_1 + s_2)(1 - E)$$

E - dimensionless epistasis (degree of compensation)

Парный эпистаз: генетическое определение

неаддитивный фенотип (фитнесс)

Много локусов

$$\{K_i\}=0 \text{ or } 1$$

 Φ итнес $W\{K_i\}$

$$W = -\sum_{i=1}^{L} s_{i} K_{i} - \sum_{i< j}^{L} s_{ij} K_{i} K_{j}$$

$$s_{ij} = E_{ij}(s_i + s_j)T_{ij} \qquad s_i > 0$$

- ¡ Среднее число потомства Aexp(W) «разломанная палка»
- ; Случайная мутация
- ; Рекомбинации нет

$$T_{ij} = 0 \text{ or } 1$$

Матрица взаимодействий

 E_{ij}

Относительная величина эпистаза

$$W = -(s_1 + s_2)(1 - E_{12})$$

E = 0 and 1

Нет эпистаза и 100%

Меры эпистаза

Меры 2 локусной корреляции

$$D = f_{ij} - f_i f_j$$

Коэффициент Пирсона

$$r = D/\sqrt{f_i(1-f_i)f_j(1-f_j)}$$

«Универсальный след»

$$\text{UFE} = 1 - \frac{\log(f_{11}/f_{00})}{\log(f_{01}f_{10}/f_{00}^{2})}$$

Все они обнуляются если $f_{ij} = f_j f_i$

Вывод величины эпистаза через средние доли гаплотипов в приближении квазиравновесия

D

$$W_{00} = 0$$

$$W_{10} = -s_1$$

$$W_{01} = -s_2$$

$$W_{11} = -(s_1 + s_2)(1 - E)$$

$$S(W - W_{\text{pair}}) \approx S(W) - \beta W_{\text{pair}}$$

Вывод на доске

$$E = 1 - \frac{\log\left(\frac{f_{11}}{f_{00}}\right)}{\log\left(\frac{f_{10}f_{01}}{f_{00}^2}\right)}$$

$$f_{00} = \alpha e^{S(W)}$$

$$f_{10} = f_{00}e^{-\beta s_1}$$

$$f_{01} = f_{00}e^{-\beta s_2}$$

$$f_{11} = f_{00}e^{-\beta(1-E)(s_1+s_2)}$$

Примеры топологии сети

Общий подход для однородной топологии

$$W \equiv -s_0 f_0 L = -s_0 \sum_{i=1}^{i_{max}} k_i (i - 2Eb_i)$$

Фитнесс фиксирована

$$e^{S} = \prod_{i=1}^{i_{max}} C_{L_i}^{k_i} (n_i)^{k_i}$$

$$f = \frac{1}{L} \sum_{i} i k_{i} \ll 1$$

$$f_{11} = \frac{1}{L_{pair}} \sum_{i} k_{i} b_{i}$$

$$f_{10} = f_{01} = f - f_{11}$$

UFE =
$$1 - \frac{\log(f_{11}/f_{00})}{\log(f_{01}f_{10}/f_{00}^2)}$$
 $D_{11} = \frac{f_{11}}{f^2}, D_{10} = \frac{f_{10}}{f(1-f)},$

$$D_{11} = \frac{f_{11}}{f^2}, \ D_{10} = \frac{f_{10}}{f(1-f)}$$

Число комбинаций, максимум по k_i

Доля аллелей

Доли гаплотипов

Пример: изолированные пары

Домашнее задание!

UFE и топология сети

UFE =
$$1 - \frac{\log(f_{11}/f_{00})}{\log(f_{01}f_{10}/f_{00}^{2})}$$

— арки

—— двойные арки

____ они же, с неравной величиной

—— треугольники

цепь

—— бинарное дерево

Интервал где кластеры размером выше двух малочисленны:

UFE =
$$E$$
, E < E_{UFE}

$$E_{\mathit{UFE}} = \mathit{min}_{i>2} \left[\frac{i-2}{2(b_i-1)} \right] \leq 1/2$$

Доля аллелей и критическая точка

Один из кластеров дает нулевой вклад в фитнесс

$$E_c = \min_i [i/(2b_i)]$$

Проверка UFE на моделированных последовательностях

L = 300, $s_0 = 0.05$, N = 500, $\mu L = 0.5$, f(0) = 0.5

Выводы I

- Эпистаз это неаддитивность лог фитнесс по мутациям из за биологического взаимодействия локусов (фенотипа)
- Классифицируется одним безразмерным параметром, Е
- Вводится формально добавкой недиагонального члена в фитнес
- Приближение квазиравновесия работает неплохо
- UFE = Е при достаточном усреднении и изолированных взаимодействиях
- Более сложную топологию можно учесть

Иголка в стогу сена

Генетическое сцепление прячет эпистаз

Эпистаз затмевается генетическим сцеплением

Using a few measures together does not help at all

Причина: стохастическая родословная

Escape mutations from SARS-CoV-2, enrichment

Epistasis or linkage?

Hierarchical sequence-affinity landscapes shape the evolution of breadth in an antiinfluenza receptor binding site antibody. <u>Angela M Phillips Daniel P Maurer Caelan Brooks</u>, <u>Thomas Dupic</u>, <u>Aaron G Schmidt</u>, <u>Michael M Desai</u>

- ; Усреднить f_{ij} по многим независимым популяциям
- ¡ Парные корреляции (UFE, Pearson coeffcient)
- ${}_{\rm I}$ Для длинных геномов, L >> 1, слишком много популяций надо!
- Γ Проклятие размерности: Γ пар среди Γ возможных

Популярный метод: Квази-равновесие генетического сцепления (Кимура 1967)

- Популяция очень большая
- Есть сильная рекомбинация и эпистаз, в противоборстве
- ; Предположение: эффектов генсцепления нет совсем
- Пишем функцию распределения типа модели Изинга для частот гаплотипов и подогнать параметры к генетическим данным
- Проблемы: работает частично для далеких видов, слишком много параметров для подгонки
- Обзор: Neher RA, Shraiman BI. Statistical genetics and evolution of quantitative traits. Rev of Modern Physics. 2011; 83:1283-300

Трех-локусный метод

вблизи точки полной компенсации

Два шага

Усредним f_{ij} по 20-200 популяциям

Pair-wise association analysis
$$UFE_{ij} = 1 - \frac{\log(f_{11}/f_{00})}{\log(f_{01}f_{10}/f_{00}^{2})}$$

Для каждой пары, берем только геномы с 0 на одном из соседних локусов

Removing indirect links
$$UFE_{ij0} = \min \left[1 - \frac{\log(f_{110}/f_{000})}{\log(f_{010} f_{100}/f_{000}^2)} \right] \circ \circ \circ \circ$$

... и найти минимум по соседям

Усреднение f_{ij} по популяциям убирает большинство ложно-положительных корреляций

L=40, 200 популяций

100% успех!

Связность ъ 2: 4-локуса

Epistatic strength, E

Применение к нейроминидазе вируса гриппа A H1N1

РНК данные 2005-2010

2009: новый пандемический штамм с 20% разницей

Примерно равное количество каждого штамма

Структура нейроминидазы вируса гриппа

Выводы II

- След эпистаза затмевается корреляциями от эффектов генетического сцепления
- усреднение долей всех гаплотипов по 20-200 независимых популяций сильно уменьшает эти фальшивые связи
- ; Но оставшиеся все равно прячут эпистаз
- ¡ Новый трех-локусный метод, при простой топологии сети, может обнаружить эпистаз с высокой надежностью
- ¡ Он простой, общий, быстрый, и был успешно применен к штаммы пандемии гриппа 2009

Спасибо

