Module EA4 – Éléments d'Algorithmique

Dominique Poulalhon dominique.poulalhon@liafa.univ-paris-diderot.fr

Université Paris Diderot L2 Informatique, Math-Info et EIDD Année universitaire 2013-2014

ARBRE BINAIRE DE RECHERCHE (ABR)

en chaque nœud, l'étiquette est comprise entre

- les étiquettes du sous-arbre gauche (plus petites) et
- celles du sous-arbre droit (plus grandes)

EXEMPLE D'ABR

EXEMPLE D'ABR

ORDRE DANS UN ABR

```
def liste_triee(noeud) :
    res = []
    if noeud != None :
        res = liste_triee(gauche(noeud))
        res += [ etiquette(noeud) ]
        res += liste_triee(droit(noeud))
    return res
```

ORDRE DANS UN ABR

```
def liste_triee(noeud) :
    res = []
    if noeud != None :
      res = liste_triee(gauche(noeud))
      res += [ etiquette(noeud) ]
      res += liste_triee(droit(noeud))
    return res
```

Théorème

le parcours infixe d'un ABR à n nœuds produit la liste triée de ses éléments en temps $\Theta(n)$.


```
def recherche(noeud, x) : # version récursive
  if noeud == None : return None
  if etiquette(noeud) == x : return noeud
  if etiquette(noeud) > x : return recherche(gauche(noeud))
  return recherche(droit(noeud))
```

```
def recherche(noeud, x) : # version récursive
  if noeud == None : return None
  if etiquette(noeud) == x : return noeud
  if etiquette(noeud) > x : return recherche(gauche(noeud))
  return recherche(droit(noeud))
```

Théorème

recherche (r, x) effectue la recherche d'un élément x dans l'ABR de racine r en temps $\Theta(h)$ au pire, où h est la hauteur de l'ABR.

Cas particuliers : minimum/maximum

```
def minimum(noeud) : # version récursive
  if gauche(noeud) == None : return noeud
  return minimum(gauche(noeud))
```

CAS PARTICULIERS: MINIMUM/MAXIMUM

```
def minimum(noeud) : # version récursive
  if gauche(noeud) == None : return noeud
  return minimum(gauche(noeud))

def minimum(noeud) : # version itérative
  while gauche(noeud) != None :
    noeud = gauche(noeud)
  return noeud
```

CAS PARTICULIERS: MINIMUM/MAXIMUM

```
def minimum(noeud) : # version récursive
  if gauche(noeud) == None : return noeud
  return minimum(gauche(noeud))

def minimum(noeud) : # version itérative
  while gauche(noeud) != None :
    noeud = gauche(noeud)
  return noeud
```

Théorème

minimum(r) détermine le plus petit élément dans l'ABR de racine r en temps O(h), où h est la hauteur de l'ABR.

successeur(n)

étant donné un nœud n d'un ABR, d'étiquette e, déterminer le nœud de l'arbre ayant la plus petite étiquette supérieure à e.

si le nœud a un fils droit

si le nœud a un fils droit


```
def successeur(noeud) :
   if droit(noeud) != None :
     return minimum(droit(noeud))
   while pere(noeud) != None and est_fils_droit(noeud) :
     noeud = pere(noeud)
   return pere(noeud)
```

```
def successeur(noeud) :
   if droit(noeud) != None :
     return minimum(droit(noeud))
   while pere(noeud) != None and est_fils_droit(noeud) :
     noeud = pere(noeud)
   return pere(noeud)
```

Théorème

successeur (noeud) détermine le successeur d'un noeud d'un ABR en temps $\Theta(h)$ au pire, où h est la hauteur de l'ABR.

Insertion dans un ABR

Théorème

L'insertion d'un nouvel élément dans un ABR de hauteur h peut se faire en temps $\Theta(h)$ au pire.

SUPPRESSION DANS UN ABR

si le nœud à supprimer n'a pas d'enfant

SUPPRESSION DANS UN ABR

si le nœud à supprimer n'a pas d'enfant

si le nœud à supprimer n'a qu'un enfant

si le nœud à supprimer n'a qu'un enfant

si le nœud à supprimer n'a qu'un enfant

cas d'une feuille : suppression simple

cas d'un nœud à un seul fils : l'autre fils remonte d'un niveau

cas où le successeur est le fils droit : le fils droit remonte d'un niveau et adopte son frère

autres cas : le noeud est remplacé par son successeur, dont l'unique fils (droit) remonte d'un niveau

cas d'une feuille : suppression simple

cas d'un nœud à un seul fils : l'autre fils remonte d'un niveau

cas où le successeur est le fils droit : le fils droit remonte d'un niveau et adopte son frère

autres cas : le noeud est remplacé par son successeur, dont l'unique fils (droit) remonte d'un niveau

remarque : la même manipulation peut être faite avec le prédécesseur plutôt que le successeur

cas d'une feuille : suppression simple

cas d'un nœud à un seul fils : l'autre fils remonte d'un niveau

cas où le successeur est le fils droit : le fils droit remonte d'un niveau et adopte son frère

autres cas : le noeud est remplacé par son successeur, dont l'unique fils (droit) remonte d'un niveau

Théorème

la suppression d'un nœud d'un ABR de hauteur h se fait en temps $\Theta(h)$ au pire.

la hauteur h(A) d'un arbre binaire A à n nœuds vérifie : $\log n \leqslant h(A) \leqslant n-1$

la hauteur h(A) d'un arbre binaire A à n nœuds vérifie : $\log n \leqslant h(A) \leqslant n-1$

chaque arbre binaire à n nœuds admet un unique étiquetage par $\{1, \ldots, n\}$ respectant les contraintes d'un ABR

la hauteur h(A) d'un arbre binaire A à n nœuds vérifie : $\log n \leqslant h(A) \leqslant n-1$

chaque arbre binaire à n nœuds admet un unique étiquetage par $\{1, ..., n\}$ respectant les contraintes d'un ABR

Théorème (admis)

la hauteur moyenne d'un arbre binaire choisi uniformément parmi les arbres binaires à n nœuds est en $\Theta(\sqrt{n})$.

la hauteur h(A) d'un arbre binaire A à n nœuds vérifie : $\log n \leqslant h(A) \leqslant n-1$

chaque arbre binaire à n nœuds admet un unique étiquetage par $\{1, \ldots, n\}$ respectant les contraintes d'un ABR

Théorème (admis)

la hauteur moyenne d'un arbre binaire choisi uniformément parmi les arbres binaires à n nœuds est en $\Theta(\sqrt{n})$.

et pourtant...

Théorème

la hauteur moyenne d'un ABR construit par l'insertion des entiers 1, ..., n dans un ordre aléatoire est en $\Theta(\log n)$.