

CERTIFIED COPY OF PRIORITY DOCUMENT

The Patent Office Concept House Cardiff Road Newport South Wales NP10 8QQ

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation & Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before reregistration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.

Signed

Dated 13 February 2001

THIS PAGE BLANK (USPTC)

P.03

FFECTIVE COPY

R-653

Marant 2

ARROPHED

Form 1/77

Patents Act 1977 (Rule 16)

THE PATENT OFFICE

18 FEB 2000

MARCONI I P

18FEB00 E\$14375-1 DOQ\$14 P01/7700 0.00-0003771.3

> The Patent Office Cardiff Road Newport Gwent NP9 1RH

Request for grant of a pai

an explanatory leaflet from the Patent Office to help you fill in this form)

Your reference 1.

P/62317/U18

Patent application number 2. (The Patent Office will fill in this part) 0003771.3

Full name, address and postcode of the or of 3. each applicant (underline all surnames) Patents ADP number (if you know it)

Marconi Communications Ltd. PO Box 53 **New Century Park** Coventry CV3 1HJ

75 192 00 001 UNITED KINGDOM

If the applicant is a corporate body, give the country/state of its incorporation

Title of the invention 4.

OPTICAL COMMUNICATION SYSTEM

Name of your agent (if you have one) 5.

> "Address for service" in the United Kingdom to which all correspondence should be sent (including the postcode)

Patents ADP number (if you know it)

GILLIAN COCKAYNE

MARCONI INTELLECTUAL PROPERTY WATERHOUSE LANE CHELMSFORD ESSEX CM1 2QX

1482714001

If you are declaring priority from one or more 6. earlier patent applications, give the country and the date of filing of the or of each of these earlier applications and (if you know it) the or each application number

Country

Priority application number

Date of filing

(if you know it)

(day / month / year)

If this application is divided or otherwise 7. derived from an earlier UK application, give the number and the filing date of the earlier application

Number of earlier application

Date of filing (day / month / year)

Is a statement of inventorship and of right 8. to grant of a patent required in support of

this request? (Answer 'Yes' if:

a) any applicant named in part 3 is not an inventor, or b) there is an inventor who is not named as an

applicant, or c) any named applicant is a corporate body See note (d))

YES

Job-500

18/02 '00 11:02 FAX +44 1245 275114

MARCONI I P

ats Form 1/77

Enter the number of sheets for any of the following items you are filing with this form. Do not count copies of the same document

THE PATENT OFFICE A	
1 8 FEB 2000	
RECEIVED BY FAX	

Continuation sheets of this form

(19) V Description

Claim(s)

Abstract

(6) 🗸 Drawing(s)

(0)

(1)

(0)

10. If you are also filing any of the following, state how many against each item.

Priority documents

Translations of priority documents (0)

Statement of inventorship and right (2)to grant of a patent (Patents Form 7/77)

Request for preliminary examination (1) and search (Patents Form 9/77)

Request for substantive examination (Patents Form 10/77)

Any other documents (please specify)

11. I/We request the grant of a patent on the basis of this application.

Signature

Date

GILLIAN COCKAYNE

12. Name and daytime telephone number of person to contact in the United Kingdom

T Norris Tel. 01245 275133

After an application for a patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977. You will be informed if it is necessary to prohibit or restrict your invention in this way. Furthermore, if you live in the United Kingdom, Section 23 of the Patents Act 1977 stops you from applying for a patent abroad without first getting written permission from the Patent Office unless an application has been filed at least 6 weeks beforehand in the United Kingdom for a patent for the same invention and either no direction prohibiting publication orcommunication has been given, or any such direction has been revoked.

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505. **Notes**
- Write your answers in capital letters using black ink or you may type them. a)
- If there is not enough space for all the relevant details on any part of this form. please continue on a separate b) sheet of paper and write "see continuation sheet" in the relevant part(s). Any continuation sheet should be c) attached to this form.
- If you have answered 'Yes' Patents Form 7/77 will need to be filed. d)
- Once you have filled in the form you must remember to sign and date it. e)
- For details of the fee and ways to pay please contact the Patent Office. Ŋ

Patents Form 1/77

Patents Act 1977

(Rule 15)

Form 7 THE PATENT OFFICE 18 FEB 2000 RECEIVED BY FAX

MARCONI I P

Statement of inventorship and of right to grant of a patent

The Patent Office Cardiff Road Newport Gwent NP9 1RH

COFFECTIVE COY				
1.	Your reference P/62317/U18			
2.	Patent application number (if you know it)	0003771.3		
3.	Full name of the or of each applicant	 		
	MARCONI COMMUNICATIONS LTD.			
4.	Title of the invention			
•	OPTICAL COMMUNICATION SYSTEM			
 State how the applicant(s) derived the right from the inventor(s) to be granted a patent BY VIRTUE OF SECTION 39(1) OF THE PATENTS ACT 1977 AND ASSIGNMENT DOCUMENT 				
6.	How many, if any, additional Patents Forms 7/17 are attached to this form? (see note (c))	0		
7.		I/We believe that the person(s) named over the page (and on any extra copies of this form) is/are the inventor(s) of the which the above patent application relates to. Signature Date		
8	Name and daytime telephone number of person to contact in the United Kingdom	T NORRIS Tel 01245 275133		

Notes

- If you need help to fill in this form or you have any questions, please contact the Patent Office on 0645 500505. a)
- Write your answers in capital letters using black ink or you may type them.
- If there is more than three inventors, please write the names and addresses of the other inventors on the back of another Patents b) c)
- When an application does not declare any priority, or declares priority from an earlier UK application, you must provide enough copies of this form so that the Patent Office can send one to each inventor who is not an applicant.
- Once you have filled in the form you must remember to sign and date it.

Job-500

2006/040

P.06 R-653

18/02 '00 11:03 FAX +44 1245 275114

MARCONI I P

THE PATENT OFFICE

18 FEB 2000

Enter the full names, addresses and pos des of the

inventors in the boxes and underline the surnames

Michael SHARRATT

Marconi Communications Ltd.

Technology Drive

Beeston

Nottingham NG9 1LA

United Kingdom

7836885001

Patents ADP number (if you know it)

Harry CLARINGBURN

Marconi Communications Ltd.

Technology Drive

Beeston

Nottingham NG9 1LA

United Kingdom

836901001

Patents ADP number (if you know it)

MARCONI I P

5

10

15

20

25

30

P62317U18; G11584

OPTICAL COMMUNICATION SYSTEM

The present invention is concerned with an optical communication system, in particular, but not exclusively, with an optical communication system including interconnected optical communication rings. The invention also relates to a method of operating such a communication system.

Conventional optical communication systems comprise nodes interconnected by optical fibre waveguides. Communication traffic is communicated between the nodes by sending optical radiation through the waveguides, the radiation being modulated by the communication traffic. Each node is operable to convert modulated radiation received thereat into corresponding electrical signals. Moreover, each node is further operable to convert electrical signals thereat into corresponding modulated optical radiation and emit the radiation into waveguides connected thereto. Electrical signals can be input and output from the nodes if required, for example to provide signals to clients connected to the nodes and to receive signals from the clients for transmission within the systems.

In the aforementioned conventional systems, the optical radiation propagating therein typically has a wavelength in the order of 1550 nm. This wavelength corresponds to a radiation frequency of around 200 THz and theoretically offers a maximum communication bandwidth in the order of 100 THz taking into consideration the Nyquist criterion, namely that carrier radiation must have a carrier frequency at least twice that of the highest frequency of a signal modulated onto the carrier radiation to circumvent aliasing and information loss. In practice, converting optical radiation into corresponding electrical signals at each node in the aforementioned conventional systems imposes a severe limitation on the communication bandwidth which can theoretically be provided by these systems. Such a limitation of bandwidth represents a serious problem.

Recently, there has been theoretical studies concerning optical soliton wave propagation within optical systems. Such soliton waves are capable of propagating over relatively long distances through optical waveguides whilst suffering negligible dispersion and loss. It is not practicable to exploit soliton wave propagation in conventional optical communication systems on account of frequent conversions between modulated optical radiation and corresponding electrical signals which occur in such systems; these conversions negate any potential benefits from exploiting soliton propagation.

5

20

25

30

P62317U18; G11584

The inventors have appreciated that it is highly desirable in an optical communication system to perform as much processing as possible within the optical domain to address the aforementioned problem and only convert between optical radiation and corresponding electrical signals when absolutely necessary for performing specialist functions, for example signal regeneration. Attempts so far in the prior art to provide an all-optical communication system have been frustrated by technical difficulties, particularly with regard to achieving all-optical reconfigurable radiation routing.

According to a first aspect of the present invention, there is provided an optical communication 10 system comprising first and second optical paths for guiding information-bearing optical radiation partitioned into wavebands, and interfacing means for selectively communicating radiation corresponding to one or more of the wavebands from the first path to the second path,

characterised in that: 15

- the interfacing means comprises waveband selective diverting means and waveband selective coupling means;
- (b) the diverting means is included in the first path and operable to divert radiation corresponding to the one or more of the wavebands from the first path to provide diverted radiation; and
- (c) the coupling means is operable to couple radiation of one or more wavebands present in the diverted radiation to the second path.

The invention provides the advantage that the system is capable of communicating a selected part of the information-bearing radiation from the first path to the second path through the interfacing means using optical components present in the interfacing means without needing to convert radiation within the system into a corresponding electrical signal.

Optical radiation is defined as electromagnetic radiation within a wavelength range from 560 nm to 2000 nm, although a wavelength of substantially 1550 nm is a preferred part of this range.

When implementing the system in practice, it is preferable that the diverting means includes:

P62317U18; G11584

- waveband selective filtering means for separating at least part of the information-bearing (a) radiation into spatially separated rays, each ray corresponding to radiation of an associated waveband; and
- liquid crystal attenuating means associated with each ray for selectively directing radiation (b) corresponding to the waveband of the ray, the directed radiation contributing to the 5 diverted radiation for the coupling means.

Such an implementation of the diverting means is convenient because the means can be purchased as a compact and cost effective unit from commercial suppliers, for example from specialist optical component suppliers in the USA.

10

20

25

30

Likewise, when constructing the system, it is beneficial that the coupling means includes:

- waveband selective filtering means for separating at least part of the diverted radiation into (a) spatially separated rays, each ray corresponding to radiation of an associated waveband; and
- liquid crystal attenuating means associated with each ray for selectively transmitting or 15 (b) diverting radiation corresponding to the waveband of the ray, thereby selectively providing radiation for output to the second path.

Such an implementation of the coupling means is straightforward to implement because the coupling means can be purchased as proprietary parts from commercial suppliers, for example from suppliers in the USA.

Advantageously, for avoiding radiation of identical wavebands being added together resulting in a conflict, the second path includes waveband selective attenuating means for attenuating radiation of wavebands propagating along the second path, the coupling means operable to add radiation to radiation transmitted through the attenuating means, the attenuating means operable to attenuate radiation of wavebands propagating along the second path coincident in wavelength with radiation added by the coupling means. Conveniently, when constructing the system in practice, it is convenient the implement the attenuating means such that it includes:

- (a) waveband selective filtering means for separating the radiation propagating along the second path into spatially separated rays, each ray corresponding to radiation of an associated waveband; and
- (b) liquid crystal attenuating means associated with each ray for selectively transmitting or diverting radiation corresponding to the waveband of the ray, thereby selectively providing

11:00

P62317U18; G11584

radiation for adding to that from the coupling means for further propagation along the second path.

In communication systems, some wavebands are more heavily loaded with communication traffic than other wavebands. Thus, to even traffic loading between wavebands, it is convenient to be able to shift communication traffic from one waveband to above in the system. Hence, the waveband selective coupling means preferably includes waveband switching means for transferring information conveyed on a first set of the wavebands of the diverted radiation to a second set of the wavebands in the diverted radiation output to the second path.

10

15

5

18-02-00

The waveband switching means is implementable in a number of component architectures. In a first architecture, the waveband switching means comprises waveband selecting means for isolating radiation of a selected waveband in the diverted radiation, detecting means for converting the isolated radiation into a corresponding electrical signal, and an optical radiation source modulatable by the signal and operable to generate radiation bearing the signal and at a waveband mutually different to the selected waveband, the generated radiation for output to the second path. The first architecture is convenient to implement because it uses readily available optical components.

20

25

30

In a second architecture, the waveband switching means comprises waveband selecting means for isolating radiation of a selected waveband in the diverted radiation, and an optical radiation source biased substantially at its lasing threshold, the source being operable to be stimulated by the isolated radiation such that stimulated radiation generated by the source is modulated by information carried by the isolated radiation, the stimulated radiation being at a waveband mutually different to the selected waveband, the stimulated radiation for output to the second path. The second architecture provides the benefit that it is an all-optical solution which does not require radiation to be converted to corresponding electrical signals, thereby not imposing bandwidth limitations associated with such optical to electrical signal conversion. It is preferable on this account that the diverting means and the coupling means operate on the information-bearing radiation in the optical domain to couple at least a part of the radiation from the first path to the second path without needing to convert any part of the radiation into a corresponding electrical signal.

10

15

20

25

30

P62317U18; G11584

Job-5UU

When the information-bearing radiation is communicated over relatively longer distances, for example in excess of 20 km, radiation degradation can occur which is correctable by regeneration. Thus, it is preferable that the coupling means incorporates regenerating means for regenerating the diverted radiation propagating therethrough, thereby reducing effects of radiation degradation associated with longer distance radiation propagation. In addition, regeneration in other parts of the system is also usefully performed, namely it is preferable that at least one of the paths incorporate regenerating means for regenerating the information bearing radiation propagating therethrough.

In the system, it is advantageous that the paths support bi-directional radiation propagation therealong to provide security should the path become defective in one of its propagation directions, and also to distribute communication traffic more uniformly within the system. Thus it is beneficial that the first and second paths of the system are operable to support bi-directional radiation propagation therealong, and the interfacing means is operable to couple radiation of one or more of the wavebands propagating in either direction along the first path to the second path for propagation in either direction therealong.

Conveniently, the system includes ring communication paths, for example a plurality of mutually interconnected ring paths. Preferably, the paths include one or more of linear paths and ring paths. Linear paths are defined as paths which are not folded back on themselves to form loops.

In some circumstances, it is advantageous to be able to redirect communication traffic associated with one or more selected wavebands from one direction along a path of the system to another direction therealong in order to distribute communication traffic load and also to achieve a shortest communication path from a transmitting node of the system to a receiving node thereof. Thus, it is beneficial that at least one of the paths of the system is operable to support bidirectional radiation propagation therealong, the at least one path including redirecting means for coupling radiation of one or more wavebands from a first direction of radiation propagation to a second direction of radiation propagation, the second direction being mutually oppositely directed to the first direction.

Conveniently, to assist to maintain radiation within the system at a workable amplitude, the diverting means preferably comprises at least one optical amplifier for amplifying the information-bearing radiation and a waveband selective channel control unit for generating the

P62317U18; G11584

Job-588

diverted radiation. Likewise, it is also advantageous that the coupling means comprises at least one optical amplifier for amplifying the diverted radiation and an associated waveband selective channel control unit for selectively transmitting radiation of one or more selected bands of the diverted radiation for output to the second path.

In a second aspect of the present invention, there is provided an interface for an optical communication system comprising first and second optical paths for guiding information-bearing optical radiation partitioned into wavebands, the interface operable to selectively communicate radiation corresponding to one or more of the wavebands from the first path to the second path,

characterised in that:

5

10

30

- the interface comprises waveband selective diverting means and waveband selective coupling means;
- the diverting means is included in the first path and operable to divert radiation (b) corresponding to the one or more of the wavebands from the first path to provide diverted 15 radiation; and
 - the coupling means is operable to couple radiation of one or more wavebands present in the (c) diverted radiation to the second path.
- In a third aspect of the present invention, there is provided a method of communicating 20 information-bearing radiation from a first path to a second path of a system according to the first aspect of the present invention, the method comprising the steps of:
 - propagating the information-bearing radiation along the first path to interfacing means of (a) the system;
- applying the radiation to diverting means of the interfacing means; (b) 25
 - selectively diverting radiation at the diverting means corresponding to one or more of the (c) wavebands in the information-bearing radiation to provide diverted radiation; and
 - coupling radiation of one or more wavebands of the diverted radiation through coupling (d) means to the second path.

Embodiments of the invention will now be described, by way of example only, with reference to the following diagrams in which:

5

10

15

20

25

30

18-02-00

18/02 '00 11:06 FAX +44 1245 275114

11:00

P62317U18; G11584

- Figure 1 is a schematic illustration of an optical communication system according to the invention comprising a plurality of mutually coupled bi-directional communication rings;
- Figure 2 is an illustration of a first type of optical interface of the system shown in Figure 1, the interface connecting between two bi-directional communication rings and providing E-W direction connections from one ring to another;
- Figure 3 is a schematic diagram of a channel control unit included within the optical interface illustrated in Figure 2;
- Figure 4 is an illustration of a second type of optical interface of the system shown in Figure 1, the connection providing connection between oppositely directed fibre loops of a bidirectional ring;
- Figure 5 is an illustration of a wavelength switching transponder in an interface connecting two communication rings of the system shown in Figure 1; and
- Figure 6 is an illustration of wavelength switching performed around channel control units of an interface of the system shown in Figure 1.

Referring now to Figure 1, an optical communication system according to the invention is indicated generally by 10. The system 10 comprises five interlinked bi-directional optical communication rings 20, 30, 40, 50, 60. The rings 20, 30, 40, 50, 60 are of diameters in a range of 10 km to 100 km and are operable to provide communication links at national and regional level. The rings 20, 30 include repeater nodes, for example a repeater node 65, represented by crosses around the rings 20, 30. Moreover, the ring 20 is connected through an interface 70 to the ring 30. Likewise, the ring 30 is connected through an interface 80 to the ring 40. The ring 40 is connected at first and second positions thereon through interfaces 90, 100 respectively to the ring 50. Likewise, the ring 50 is connected at third and fourth positions thereon through interfaces 110, 120 respectively to the ring 60. The interfaces 70 to 120 are similar and will be described in more detail later.

Each of the rings 20 to 60 comprises two parallel optical fibre waveguide loops, a first of which conveys optical radiation in a clockwise direction around the ring and a second of which conveys optical radiation therethrough in an anticlockwise direction around the ring. Two loops are included within each ring for ensuring that the ring can continue to function in an event of one of the loops becoming defective, for example suffering a fibre break. Moreover, the two loops 5

10

15

20

25

30

MARCONI I P

MARCONI

P62317U18; G11584

Job-500

enable traffic to be allocated between the loops to ensure that the system 10 is optimally loaded with communication traffic.

Communication traffic is modulated onto optical radiation which propagates through the system 10. Each fibre loop of the rings 20 to 60 is operable to carry modulated optical radiation, the radiation comprising 32 distinct modulated radiation components corresponding to respective 32 communication channels. Each channel is separated from its neighbouring channels by a wavelength difference of 0.8 nm; such a wavelength difference is equivalent to a channel frequency spacing of 100 GHz. Thus, each fibre conveys optical radiation nominally of 1550 nm wavelength comprising 32 channels spread over a wavelength range of substantially 25 nm.

Operation of the system 10 will now be described communicating communication traffic from a node A on the ring 20 to a node B on the ring 60; the system 10 is capable of communicating between other nodes therein, however nodes A, B are used here as an example. An electrical signal is received at the node A which converts it to corresponding optical radiation associated with one of the 32 channels. The radiation propagates from the node A through the repeater node 65 to the interface 70 and therefrom through the repeater nodes of the ring 30 to the interface 80. The radiation propagates from the interface 80 anticlockwise around the ring 40 to the interface 100. Next, the radiation propagates from the interface 100 around part of the ring 50 to the interface 120 through which it passes to the ring 60 and therearound to the node B. The node B receives the radiation and converts it into a corresponding electrical signal. Propagation of the radiation through the system 10 from node A to node B is performed purely optically.

In the process of propagating from the node A to the node B, the radiation passes through a number of repeaters and interfaces which, although providing optical amplification, result in the radiation becoming degraded by attenuation and dispersion. Where possible, the system 10 includes regenerators and also phase dispersion and equalisation correction units at its nodes. Such regeneration is preferable performed purely optically because conversion of the radiation to corresponding electrical signals for performing regeneration and then reconversion back to corresponding optical radiation is a bandwidth limiting constraint on the system 10. Likewise, the phase dispersion and equalisation corrections are also preferably performed purely optically. Where it is not possible to perform such regeneration and dispersion correction purely optically in the system 10, conversion to electrical signals and regeneration and dispersion correction in the electrical domain has to be performed.

2017/040

R-653

P62317U18; G11584

Referring now to Figure 2, there is shown a first type of optical interface included within the system 10, namely the interface 70 shown included within a dotted line 180. The ring 20 comprises a first clockwise fibre loop 210 through which radiation propagates in a direction from east (E) to west (W) through the interface 70. Moreover, the ring 20 comprises a second anticlockwise fibre loop 200 through which radiation propagates in a direction from west (W) to east (E) through the interface 70. East (E) and west (W) directions here are used to indicate propagation direction in the diagrams and are unrelated to actual East-West geographical directions.

10

5

Likewise, the ring 30 comprises a first clockwise fibre loop 220 through which radiation propagates in a direction west (W) to east (E) through the interface 70. Moreover, the ring further includes a second fibre loop 230 through which radiation propagates in a direction from east (E) to west (W) through the interface 70.

15

20

The interface 70 includes twelve channel control units (CCU) 250 to 360 and associated optical amplifiers 400 to 550 interconnected as shown in Figure 2. The interface 70 further comprises fibre couplers 600 to 680 for coupling radiation from one fibre to another; the couplers are fabricated using optical fibre fusion splicing techniques although alternative types of couplers are useable in substitution. On account of its complexity, the interface 70 is a relatively expensive item but provides great flexibility when selectively coupling optical radiation between the rings 20, 30. Where such flexibility is not required, the interface 70 can be simplified to reduce cost; such simplification will be described later.

25

Detailed interconnection of the couplers 600 to 680, the CCUs 250 to 360 and the optical amplifiers 400 to 550 will now be described with reference to Figure 2. The couplers 600 to 680 are mutually similar. Moreover, the amplifiers 400 to 550 are also mutually similar. Furthermore, the CCUs 250 to 360 are mutually similar.

30

The fibre 200 of the ring 20 from the westerly (W) direction is connected to an input port of the amplifier 400. The amplifier 400 includes an output port which is connected through an optical fibre to the coupler 600 and therethrough to an input port A of the CCU 250. The CCU 250 comprises an output port B which is connected through an optical fibre to the coupler 610 and 18-02-00 11:00 +44 1245 27 18/02 '00 11:08 FAX +44 1245 275114

5

10

15

20

30

MARCONI I P

P62317U18; G11584

Job-500

therethrough to an input port of the amplifier 410. The fibre 200 in an easterly (E) direction is connected to an output port of the amplifier 410.

Likewise, the fibre 210 of the ring 20 from the easterly (E) direction is connected to an input port of the amplifier 430. The amplifier 430 includes an output port which is connected through an optical fibre to the coupler 640 and therethrough to an input port A of the CCU 260. The CCU 260 comprises an output port B which is connected through an optical fibre to the coupler 630 and therethrough to an input port of the amplifier 420. The fibre 210 in a westerly (W) direction is connected to an output port of the amplifier 420.

Similarly, the fibre 220 of the ring 30 from the westerly (W) direction is connected to an input port of the amplifier 520. The amplifier 520 includes an output port which is connected through an optical fibre to the coupler 650 and therethrough to an input port A of the CCU 350. The CCU 350 comprises an output port B which is connected through an optical fibre to the coupler 660 and therethrough to an input port of the amplifier 530. The fibre 220 in an easterly (E) direction is connected to an output port of the amplifier 530.

Likewise, the fibre 230 of the ring 30 from the easterly (E) direction is connected to an input port of the amplifier 550. The amplifier 550 includes an output port which is connected through an optical fibre to the coupler 680 and therethrough to an input port A of the CCU 360. The CCU 360 comprises an output port B which is connected through an optical fibre to the coupler 670 and therethrough to an input port of the amplifier 540. The fibre 230 in a westerly (W) direction is connected to an output port of the amplifier 540.

The couplers 600 to 640 are connected to the couplers 650 to 680 through a series of connection chains, each chain comprising an optical amplifier and an associated CCU connected in series.

Connections from the ring 20 to the ring 30 will now be described. The coupler 600 includes first and second output ports. The first port of the coupler 600 is connected via an optical fibre through the amplifier 450 and then through the CCU 280 to a first input port of the coupler 660. Additionally, the second port of the coupler 600 is connected via an optical fibre through the amplifier 470 and through the CCU 300 to a first input port of the coupler 670. Moreover, the coupler 640 includes first and second output ports. The first port of the coupler 640 is connected via an optical fibre through the amplifier 490 and through the CCU 320 to a second input port of

· R-653

5

10

25

P62317U18; G11584

the coupler 670. Furthermore, the second port of the coupler 640 is connected via an optical fibre through the amplifier 500 and through the CCU 330 to a second input port of the coupler 660.

Next, connections from the ring 30 to the ring 20 will be described. The coupler 650 includes first and second output ports. The first port of the coupler 650 is connected via an optical fibre through the amplifier 440 and through the CCU 270 to a first input port of the coupler 630. Likewise, the second port of the coupler 650 is connected via an optical fibre through the amplifier 460 and then through the CCU 290 to a first input port of the coupler 610. Moreover, the coupler 680 includes first and second output ports. The first port of the coupler 680 is connected via an optical fibre through the amplifier 480 and then through the CCU 310 to a second input port of the coupler 630. Furthermore, the second port of the coupler 680 is connected via an optical fibre through the amplifier 510 and then through the CCU 340 to a second input port of the coupler 610.

Each CCU is capable of selectively attenuating radiation propagating therethrough corresponding 15 to one or more of the 32 channels. Moreover, applying selective attenuation at the CCUs 250, 260, 350, 360 has the effect of diverting optical radiation to the couplers 600, 640, 650, 680 respectively preceding the CCUs. Such diversion also enables radiation to be added for the diverted channels at the couplers 610, 630, 660, 670 following the CCUs 250, 260, 350, 360 respectively. 20

In operation, the interface 70 is capable of providing purely optical paths between the rings 20, 30, such paths not being limited in bandwidth compared to when optical to electrical to optical conversion is performed as in conventional optical communication systems. Moreover, the interface 70 is capable of coupling specific selected channels from the ring 20 and directing them in either direction around the ring 30. Furthermore, in a reciprocal manner, the interface 70 is capable of coupling specific selected channels from the ring 30 and directing them in either direction around the ring 20.

In the communication system 10, it is not always necessary that its nodes provide the full 30 connection functionality of the interface 70. When such extensive functionality is not required, the interface 70 can be simplified to reduce its complexity and cost by omitting some of the chains.

MARCONI I P

5

10

15

20

25

30

18-02-00 11:00

P62317U18; G11584

R-653

In the interface 70, regeneration and equalisation functions can be included within the aforementioned chains. It is preferable that such functions are performed optically if possible.

Optical equalization can be achieved using polarization dependent beam splitters and switched optical delay lines in a manner as described in a US patent no. US 5 859 939 which is incorporated herein by reference.

If it is not convenient to implement optical regeneration within the chains, electrical regeneration and equlisation can alternatively be employed therein although such regeneration and equalisation potentially imposes a bandwidth limitation on the system 10 and prevents the benefits, for example, from soliton propagation within the system 10 from being realised. Optical or electrical regeneration can, if required, be implemented in the repeater nodes around the rings 20, 30 in addition to, or in substitution for, regeneration within the interface 70.

In practice, commercially available optical amplifiers, CCUs and optical couplers can be connected together to construct the interface 70. For example, the optical amplifiers 400 to 550 are preferably proprietary units which incorporate optically-pumped erbium-doped superfluorescent optical fibres as active optical gain components. Likewise, the CCUs 250 to 360 are commercially available from vendors in the United States, for example CCUs are commercially available in units, each unit comprising a pair of CCUs. Each incorporates optical gratings, a matrix of liquid crystal apertures functioning as variable optical attenuators and free-space optical paths to achieve a compact construction and a low minimum insertion loss in the order of 6 dB from the CCU optical input port to the CCU optical output port when its attenuators are set to provide nominally zero attenuation. It is beneficial to the performance of the interface 70 to use such commercially available CCUs exhibiting low insertion losses in view of the number of CCUs employed within the interface 70; such low insertion loss CCUs reduce amplification requirements thereby improving system 10 signal-to-noise performance.

In order to further elucidate operation of the interface 70, the CCUs 250 to 360 will be described in further detail with reference to Figure 3. In Figure 3, there is shown an schematic representation of the CCU 250; the other CCUs 260 to 360 are similar in construction and performance to the CCU 250.

MARCONI I P

5

10

15

P62317U18; G11584

Job-500

The CCU 250 includes an optical input port A for receiving radiation, an optical output port B for outputting radiation, an auxiliary optical output C, an auxiliary optical input D, and an electrical input port E for receiving electrical control signals for controlling operation of the CCU 250; the port E is, for example, used for receiving electrical signals for controlling attenuation settings of the attenuators. The CCU 250 comprises within it a demultiplexer 800, a multiplexer 810 and a matrix 818 of 32 liquid crystal attenuators shown included within a dotted line 820; an attenuator 815 is an example of one attenuator within the matrix 818. The demultiplexer 800 includes 32 optical outputs which are directed to convey radiation to their corresponding liquid crystal attenuators in the matrix 818. Outputs from the attenuators are directed to optical inputs of the multiplexer 810 which recombines radiation transmitted through the attenuators to provide output radiation at the port B. When the attenuators are set to attenuate radiation incident thereupon, the radiation is diverted towards a multiplexer 830 which is operable to combine the diverted radiation and provide a corresponding radiation output at the port C. Likewise, the port D is connected to a demultiplexer 840 which is operable to guide radiation input at the port D to the attenuators for propagating onwards to the multiplexer 810 for subsequent output at the port B. In the interface 70, the ports C and D of the CCUs are not normally used although they can be employed in special circumstances, for example when performing a wavelength shift to switch traffic from one channel to another; such a shift will be described later.

The attenuators are electronically controllable to provide an attenuation through each attenuator 20 / in a range of 0.1 dB to 30 dB. The CCUs, supplied by a vendor based in the USA, incorporated within the interface 70 use free-space optics to obtain a minimum insertion loss of 6 dB. If the CCU where not constructed using such free-space optics, for example using more conventional fusion-spliced fibre optics, optical losses through the demultiplexer 800 and the multiplexer 810 would be around 7.5 dB and 4.5 dB respectively resulting in a total minimum insertion loss of 12 25 dB. Moreover, commercially available CCUs for use in the interface 70 would be considerably more expensive and bulky were they not to employ such a compact free-space optical architecture.

The demultiplexer 800 is operable to filter composite radiation input at the port A into separate 30 radiation components corresponding to each of the aforementioned 32 channels at 0.8 nm wavelength channel spacing. Thus, each attenuator can attenuate the radiation component corresponding thereto, thereby enabling each channel represented in radiation intput to the demultiplexer 800 to be selectively attenuated and diverted to the port C. In the interface 70,

P62317U18; G11584

attenuation of a radiation component corresponding to a particular channel in the CCU 250 results in its radiation being diverted through the coupler 600 to its associated first and second output ports. A similar characteristic pertains to the CCUs 260, 350, 360 connected in-line in the rings 20, 30.

5

10

15

20

25

30

The CCUs 250 to 360 are controlled by electrical instructions sent thereto from a management control unit (not shown) tasked with routing communication traffic within the system 10 in response to client demand. The interface 70 is therefore designed to be highly reconfigurable thereby enabling communication traffic of any channels propagating in one of the rings to be selectively coupled to another of the rings in potentially both ring directions, namely in both directions of radiation propagation within the rings.

Although the interface 70 is capable of providing interconnection between bi-directional rings, for example between the rings 20, 30, there often arises a requirement to switch a particular channel within a bi-directional ring from one direction to another, for example from a clockwise loop of the ring to an associated anti-clockwise loop thereof. In order to achieve such a selective switching function, a simplified version of the interface 70 can be included in the ring. Such a simplified version of the interface 70 is illustrated in Figure 4 and indicated generally by 900. The simplified interface 900 comprises four CCUs 910 to 940, six optical amplifiers 950 to 1000 and four fibre couplers 1010 to 1040. The CCUs 910 to 940 are each similar to the CCU 250.

Interconnection of the CCUs, amplifiers and fibre couplers of the simplified interface 900 will now be described. The amplifiers 950, 960, the CCU 910 and the couplers 1010, 1020 are connected inline in the second fibre loop of the ring 20. A fibre 200 of the second loop in a westerly (W) direction is connected to an optical input of the amplifier 950. An optical output of the amplifier 950 is connected through an optical fibre to the coupler 1010 and therethrough to an optical input port A of the CCU 910. An optical output port B of the CCU 910 is connected through an optical fibre to the coupler 1020 and therethrough to an optical input of the amplifier 960. An optical output of the amplifier 960 is connected to the fibre 200 directed in an easterly (E) direction.

In a similar manner, the amplifiers 990, 1000, the CCU 920 and the couplers 1030, 1040 are connected inline in the first fibre loop of the ring 20. A fibre 210 of the first loop in an easterly

(E) direction is connected to an optical input of the amplifier 1000. An output of the amplifier

2023/040

MARCONI I P

5

10

15

20

25

30

P62317U18; G11584

R-653

1000 is connected through an optical fibre to the coupler 1040 and therethrough to an optical input port A of the CCU 920. An optical output port B of the CCU 920 is connected through an optical fibre to the coupler 1030 and therethrough to an optical input of the amplifier 990. An optical output of the amplifier 990 is connected to the fibre 210 directed in a westerly (W) direction.

The amplifier 970 and its associated CCU 1030 are connected in series and are operable to provide a first chain selectively linking communication traffic from the second loop comprising the fibre 200 to the first loop comprising the fibre 210. Likewise, the amplifier 980 and its associated CCU 940 are operable to provide a second chain selectively linking communication traffic from the first loop to the second loop.

In operation, the simplified interface 900 can block, by virtue of the CCUs 910, 920, communication traffic associated with specific channels flowing within the loops and direct the traffic to a chain which can selectively transmit one or more of the channels depending upon instructions sent to the port E of its CCU. In general, the CCU 910 will be set to attenuate radiation of one or more channels which the CCU 930 is set to selectively transmit. Likewise, the CCU 920 will be set to attenuate radiation of one or more channels which the CCU 940 is set to selectively transmit. Thus, the interface 900 enables specific selected channels to be switched from propagating in one direction around the ring 20 to an opposite direction relative thereto. The interface enables the volume of communication traffic to be more equally distributed between the two loops of the ring 20, thereby enabling the system 10 to be more fully utilised. The interface 900 also provides optical amplification which assists to maintain optical radiation amplitude within the system 10.

When coupling communication traffic between rings in the system 10, and also when switching direction of selected channels within one or more rings of the system 10, it is frequently convenient to shift communication traffic from one channel to another along a particular loop or ring; this is often referred to as wavelength shifting. Wavelength shifting enables the channels of the system 10 to be fully utilised to carry communication traffic thereby assisting to optimise the traffic throughput capacity of the system 10.

Such wavelength shifting is preferably performed purely in the optical domain to avoid imposing bandwidth restrictions on the system 10; optical wavelength shifting can be achieved using 5

20

25

30

Job-500

optical heterodyne techniques in non-linear optical components capable of performing optical mixing. Alternatively, wavelength shifting can also be achieved by using optical radiation at a first frequency to pump a laser biased near its lasing threshold and tuned to output optical radiation at a second frequency, thereby enabling communication traffic modulated onto the radiation of the first frequency to be modulated onto radiation output from the laser at the second frequency; if the radiation of the first frequency corresponds to one channel of the system 10 and radiation of the second frequency to another channel, switching of traffic from one channel to another can be achieved.

Wavelength switching can also be performed by converting modulated radiation at a first 10 wavelength associated with a specific channel of the system 10 to a corresponding electrical signal and then using the electrical signal to amplitude modulate a laser to output radiation amplitude modulated by the electrical signal at a second wavelength associated with another specific channel of the system 10. Such wavelength switching is often found to be required when coupling communication traffic from one ring of the system 10 to another thereof. 15

Referring now to Figure 5, there is shown a wavelength switching transponder in an interface connecting two communication rings of the system 10. The interface is indicated generally by 1200 and comprises two CCUs 1210, 1220, four optical amplifiers 1230 to 1260, four optical couplers 1270 to 1300, a tunable filter and detector 1310, and a modulated tunable laser source 1320. Each of the two CCUs 1210, 1220 are similar to the CU 250 described earlier. The amplifiers 1230, 1240, the CCU 1210 and the couplers 1270, 1280 are connected into the second loop of the ring 20, the loop including the fibre 200. Likewise, the amplifiers 1250, 1260, the CCU 1220 and the couplers 1290, 1300 are connected into the first loop of the ring 30, the loop including the fibre 210. The tunable filter and detector 1310 and the source 1320 constitute a transponder shown within a dotted line 1330 which is connected to the couplers and operable to wavelength shift a selected channel from one of the loops and output at another wavelength back onto the same loop or an alternative loop.

Interconnection within the interface 1200 will now be described. The fibre 210 of the first loop of the ring 20 from a westerly (W) direction is connected to an optical input of the amplifier 1230. An optical output from amplifier 1230 is connected to the coupler 1270 and therethrough to an optical input port A of the CCU 1210. An optical output port B of the CCU 1210 is connected via an optical fibre to the coupler 1280 and therethrough to an optical input of the MARCONI I P

5

10

20

25

30

P62317U18; G11584

R-653

amplifier 1240. The fibre 200 in an easterly (E) direction of the second loop is connected to an optical output of the amplifier 1240.

Likewise, the fibre 210 of the first loop of the ring 30 from an easterly (E) direction is connected to an optical input of the amplifier 1260. An optical output from amplifier 1260 is connected to the coupler 1300 and therethrough to an optical input port A of the CCU 1220. An optical output port B of the CCU 1220 is connected via an optical fibre to the coupler 1290 and therethrough to an optical input of the amplifier 1250. The fibre 210 in a westerly (W) direction of the first loop of the ring 30 is connected to an optical output of the amplifier 1250.

An optical output of the coupler 1270 is connected through an optical fibre to a first optical input of the tunable filter and detector 1310. Similarly, an optical port of the coupler 1300 is connected through an optical fibre to a second optical input of the filter and detector 1310.

An optical input of the coupler 1290 is connected through an optical fibre to a first optical output of the laser source 1320. Similarly, an optical input port of the coupler 1280 is connected through an optical fibre to a second optical output of the laser source 1320.

The tunable filter and detector 1310 includes a coupler to combine radiation received at its first and second ports, and also a tunable filter and a detector. It is operable to receive radiation, filter out radiation corresponding to a channel to be shifted and to detect the filtered radiation to generate a corresponding demodulated electrical signal which is provided to the output P1. The source includes a tunable laser for generating output radiation modulated by an electrical signal applied at the electrical input P2 of the source 1320. When the laser source 1320 is tuned to operate at a frequency which is mutually different from the filter frequency of the of the filter and detector 1310, frequency shifting of traffic between channels is achieved when the electrical signal output at P1 is injected at the input P2.

The CCU 1210 is operable to attenuate one or more selected channels included in radiation propagating around the second loop of the ring 20. Such attenuation diverts the attenuated radiation to the coupler 1270 and onwards to the first input of the filter and detector 1310. When the filter and detector 1310 is tuned to the wavelength of a channel attenuated at the CCU 1210, radiation propagates through to the detector and gives rise to an electrical signal at the output P1. The signal from the output P1 is directed to the input P2 and is operable to modulate radiation

5

10

15

20

25

30

P62317U18; G11584

generated by the source 1320 which selectively outputs the modulated radiation at the first or second output depending upon instructions received from the management control unit (not shown). When the radiation is output at the second output of the laser source 1320, it propagates to the coupler 1280 and is coupled into the second loop to propagate further in an easterly (E) direction through the fibre 200 around the second loop of the ring 20. Conversely, when the radiation is output at the first output of the laser source 1320, it propagates to the coupler 1290 and passes therethrough to the amplifier 1250 and onwards in a westerly (W) direction along the fibre 210 of the first loop of the ring 30.

The CCU 1220 is also operable to selectively attenuate radiation corresponding to one or more selected channels propagating in the first loop of the ring 30 and direct the radiation through the coupler 1300 to the second input of the filter and detector 1310. The filter and detector 1310 are operable to isolate radiation components and detect them to generate a corresponding electrical signal at the output P1. The electrical signal, when directed to the source 1320, modulates the source 1320 to provide modulated radiation which is selectively directable to the ring 20 or to the ring 30.

The interface 1200 is thus capable of selectively shifting communication traffic from one channel to another. Moreover, it is further capable of receiving such traffic from either the ring 20 or the ring 30 and selectively outputting the traffic, when channel shifted, onto either the ring 20 or the ring 30. The interface is thus capable of performing flexible and reconfigurable frequency shifting and routing functions.

The transponder shown in Figure 5 included within the dotted line 1330 and indicated by 1332 can be included within the interface 70 illustrated in Figure 1 to provide a modified interface indicated generally by 1500 in Figure 6. Such a modified interface 1500 not only provides a high degree of reconfigurable channel connection control but also enable communication traffic to be switched between channels to ensure that the system 10 is operating optimally to circumvent grossly unequal distribution of traffic between available channels.

Within the interface 1500, each transponder 1332 is connected with its filter and detector 1310 inputs coupled to its associated CCU optical output port C, and its source 1320 outputs coupled to its associated CCU optical input port D. Although transponders 1332 are illustrated coupled to the CCUs 270, 330 only, more transponders can be incorporated into the interface 1500 if

MARCONI I P

5

10

15

P62317U18; G11584

necessary such that up to all the CCUs 270 to 340 have associated transponders 1332 capable of performing wavelength shifting of communication traffic directed therethrough.

It will be appreciated that modifications can be made to the system 10, and to the interfaces 70, 900, 1200, 1500 without departing from the scope of the invention. For example, although the system 10 is illustrated with a sending node A and a receiving node B, the system 10 can have a large number of sending and receiving nodes distributed generally therearound. The system 10 can be modified to include a combination of ring and linear communication paths interlinked by interfaces of a type included amongst the interfaces 70, 900, 1200, 1500 at various locations. Moreover, the interfaces 70, 900, 1200, 1500 can be simplified or made more complex as described above to suit particular system reconfiguration requirements. For example, the system 10 can be modified to include 100 bi-directional rings, each ring comprising 10 interfaces similar to the interface 900, the rings interconnected together through interfaces similar to the interface 1500. Furthermore, the system 10 can be modified to include optical fibre in its rings 20 to 60 capable of supporting soliton propagation so that greater communication distances can be served by the system without requiring additional regeneration and repeaters.

MARCONI I P

P62317U18; G11584

CLAIMS

1. An optical communication system comprising first and second optical paths for guiding information-bearing optical radiation partitioned into wavebands, and interfacing means for selectively communicating radiation corresponding to one or more of the wavebands from the first path to the second path,

characterised in that:

- (a) the interfacing means comprises waveband selective diverting means and waveband selective coupling means;
- (b) the diverting means is included in the first path and operable to divert radiation corresponding to the one or more of the wavebands from the first path to provide diverted radiation; and
- (c) the coupling means is operable to couple radiation of one or more wavebands present in the diverted radiation to the second path.
- 2. A system according to Claim 1 wherein the diverting means includes:
 - (a) waveband selective filtering means for separating at least part of the informationbearing radiation into spatially separated rays, each ray corresponding to radiation of an associated waveband; and
 - (b) liquid crystal attenuating means associated with each ray for selectively directing radiation corresponding to the waveband of the ray, the directed radiation contributing to the diverted radiation for the coupling means.
- 3. A system according to Claim 1 or 2 wherein the coupling means includes:
 - (a) waveband selective filtering means for separating at least part of the diverted radiation into spatially separated rays, each ray corresponding to radiation of an associated waveband; and
 - (b) liquid crystal attenuating means associated with each ray for selectively transmitting or diverting radiation corresponding to the waveband of the ray, thereby selectively providing radiation for output to the second path.

MARCONI I P

P62317U18; G11584

- 4. A system according to Claim 1, 2, or 3 wherein the second path includes waveband selective attenuating means for attenuating radiation of wavebands propagating along the second path, the coupling means operable to add radiation to radiation transmitted through the attenuating means, the attenuating means operable to attenuate radiation of wavebands propagating along the second path coincident in wavelength with radiation added by the coupling means.
- 5. A system according to Claim 4 wherein the attenuating means includes:
 - (a) waveband selective filtering means for separating the radiation propagating along the second path into spatially separated rays, each ray corresponding to radiation of an associated waveband; and
 - (b) liquid crystal attenuating means associated with each ray for selectively transmitting or diverting radiation corresponding to the waveband of the ray, thereby selectively providing radiation for adding to that from the coupling means for further propagation along the second path.
- 6. A system according to any one of Claims 1 to 5 wherein the waveband selective coupling means includes waveband switching means for transferring information conveyed on a first set of the wavebands of the diverted radiation to a second set of the wavebands in the diverted radiation output to the second path.
- 7. A system according to Claim 6 wherein the waveband switching means comprises waveband selecting means for isolating radiation of a selected waveband in the diverted radiation, detecting means for converting the isolated radiation into a corresponding electrical signal, and an optical radiation source modulatable by the signal and operable to generate radiation bearing the signal and at a waveband mutually different to the selected waveband, the generated radiation for output to the second path.
- 8. A system according to Claim 6 wherein the waveband switching means comprises waveband selecting means for isolating radiation of a selected waveband in the diverted radiation, and an optical radiation source biased substantially at its lasing threshold, the source being operable to be stimulated by the isolated radiation such that stimulated radiation generated by the source is modulated by information carried by the isolated radiation, the stimulated radiation being at a waveband mutually different to the selected waveband, the stimulated radiation for output to the second path.

18/02 '00 11:13 FAX +44 1245 275114

R-653

P62317U18; G11584

Job-500

- 9. A system according to any one of Claims 1 to 6 or Claim 8 wherein the diverting means, the attenuating means and the coupling means operate on the information-bearing radiation in the optical domain to couple at least a part of the radiation from the first path to the second path without needing to convert any part of the radiation into a corresponding electrical signal and back to corresponding optical raidation.
- 10. A system according to any one of Claims 1 to 9 wherein the coupling means incorporates regenerating means for regenerating the diverted radiation propagating therethrough.
- 11. A system according to any preceding claim wherein at least one of the paths incorporate regenerating means for regenerating the information bearing radiation propagating therethrough.
- 12. A system according to any preceding claim wherein the first and second paths are operable to support bi-directional radiation propagation therealong, and the interfacing means is operable to couple radiation of one or more of the wavebands propagating in either direction along the first path to the second path for propagation in either direction therealong.
- 13. A system according to any preceding claim wherein the paths include one or more of linear paths and ring paths.
- 14. A system according to any preceding claim wherein at least one of the paths is operable to support bi-directional radiation propagation therealong, the at least one path including redirecting means for coupling radiation of one or more wavebands from a first direction of radiation propagation to a second direction of radiation propagation along the at least path, the second direction being mutually oppositely directed to the first direction.
- 15. A system according to any preceding claim wherein the diverting means and the attenuating means each comprise at least one optical amplifier for amplifying the information-bearing radiation and a waveband selective channel control unit (CCU) for generating the diverted radiation.

P62317U18: G11584

- 16. A system according to any preceding claim wherein the coupling means comprises at least one optical amplifier for amplifying the diverted radiation and an associated waveband selective channel control unit (CCU) for selectively transmitting radiation of one or more selected bands of the diverted radiation for output to the second path.
- 17. A system according to any preceding claim operable to be reconfigurable with regard to the wavebands selected.
- 18. An interface for an optical communication system comprising first and second optical paths for guiding information-bearing optical radiation partitioned into wavebands, the interface operable to selectively communicate radiation corresponding to one or more of the wavebands from the first path to the second path,

characterised in that:

- (a) the interface comprises waveband selective diverting means and waveband selective coupling means;
- (b) the diverting means is included in the first path and operable to divert radiation corresponding to the one or more of the wavebands from the first path to provide diverted radiation; and
- (c) the coupling means is operable to couple radiation of one or more wavebands present in the diverted radiation to the second path.
- 19. An interface according to Claim 18 wherein the diverting means includes:
 - (a) waveband selective filtering means for separating at least part of the informationbearing radiation into spatially separated rays, each ray corresponding to radiation of an associated waveband; and
 - (b) liquid crystal attenuating means associated with each ray for selectively directing radiation corresponding to the waveband of the ray, the directed radiation contributing to the diverted radiation for the coupling means.
- 20. An interface according to Claim 18 or 19 wherein the coupling means includes:
 - (a) waveband selective filtering means for separating at least part of the diverted radiation into spatially separated rays, each ray corresponding to radiation of an associated waveband; and

18-02-00

P62317U18: G11584

- (b) liquid crystal attenuating means associated with each ray for selectively transmitting or diverting radiation corresponding to the waveband of the ray, thereby selectively providing radiation for output to the second path.
- 21. An interface according to Claim 18, 19 or 20 wherein the waveband selective coupling means includes waveband switching means for transferring information conveyed on a first set of the wavebands of the diverted radiation to a second set of the wavebands in the diverted radiation output to the second path.
- 22. An interface according to Claim 21 wherein the waveband switching means comprises waveband selecting means for isolating radiation of a selected waveband in the diverted radiation, detecting means for converting the isolated radiation into a corresponding electrical signal, and an optical radiation source modulatable by the signal and operable to generate radiation bearing the signal and at a waveband mutually different to the selected waveband, the generated radiation for output to the second path.
- 23. An interface according to Claim 21 wherein the waveband switching means comprises waveband selecting means for isolating radiation of a selected waveband in the diverted radiation, and an optical radiation source biased substantially at its lasing threshold, the source being operable to be stimulated by the isolated radiation such that stimulated radiation generated by the source is modulated by information carried by the isolated radiation, the stimulated radiation being at a waveband mutually different to the selected waveband, the stimulated radiation for output to the second path.
- 24. An interface according to any one of Claims 18 to 21 or Claim 23 wherein the diverting means and the coupling means operate on the information-bearing radiation in the optical domain to couple at least a part of the radiation from the first path to the second path without needing to convert any part of the radiation into a corresponding electrical signal and back to corresponding radiation.
- 25. An interface according to any one of Claims 18 to 24 wherein the coupling means incorporates regenerating means for regenerating the diverted radiation propagating therethrough.

P62317U18; G11584

Job-500

- 26. An interface according to any one of Claims 18 to 25 wherein the first and second paths are operable to support bi-directional radiation propagation therealong, and the interface is operable to couple radiation of one or more of the wavebands propagating in either direction along the first path to the second path for propagation in either direction therealong.
- 27. An interface according any one of Claims 18 to 26 wherein the diverting means comprises at least one optical amplifier for amplifying the information-bearing radiation and a waveband selective channel control unit for generating the diverted radiation.
- 28. An interface according to any one of Claims 18 to 27 wherein the coupling means comprises at least one optical amplifier for amplifying the diverted radiation and an associated waveband selective channel control unit for selectively transmitting radiation of one or more selected bands of the diverted radiation for output to the second path.
- 29. An interface according to any one of Claims 18 to 28 reconfigurable with respect to the wavebands selected.
- 30. An optical communication system substantially as hereinbefore described with reference one or more of Figures 1 to 6.
- 31. An interface substantially as hereinbefore described with reference to one or more of Figures 1 to 6.
- 32. A method of communicating information-bearing radiation from a first path to a second path of a system as claimed in Claim 1, the method comprising the steps of:
 - (a) propagating the information-bearing radiation along the first path to interfacing means of the system;
 - (b) applying the radiation to diverting means of the interfacing means;
 - (c) selectively diverting radiation at the diverting means corresponding to one or more of the wavebands in the information-bearing radiation to provide diverted radiation; and
 - (d) coupling radiation of one or more wavebands of the diverted radiation through coupling means to the second path.

2034/040

P62317U18; G11584

ABSTRACT

The invention provides an optical communication system (10) comprising a plurality of mutually interconnected bi-directional optical waveguide rings (20, 30, 40, 50, 60) in which radiation modulated with communication traffic propagates. The radiation is partitioned into 32 distinct wavebands. Interfaces (70, 80, 90, 100, 110, 120) are included in the system (10) where communication traffic propagating in the rings transfers from one ring to another. Each interface (70) is capable of providing an all-optical waveband reconfigurable communication link between the rings (20, 30, 40, 50, 60). At each interface (70), conversion of optical radiation to corresponding electrical signals is not required when transferring communication traffic from one ring to another, thereby providing the system (10) with a potentially larger communication bandwidth compared to conventional optical communication systems.

Figure 1 should accompany the abstract.

MARCONI I P

טטנ-מטָנ

THIS PAGE BLANK (USPTO)

THIS PAGE BLANK (USPTO)

UUC-a0L

THIS PAGE BLANK (USPTU,

THIS PAGE BLANK (USPTO)