# Linear Algebra and Probability

The Extremely Abridged Version for Data Analytics

### Matrices and Vectors

Matrix: A rectangular array of numbers, e.g.,  $A \in \mathbb{R}^{m \times n}$ :

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix}$$

Vector: A matrix consisting of only one column (default) or one row, e.g.,  $x \in \mathbb{R}^n$ 

### Matrix Math

If  $A \in \mathbb{R}^{m \times n}$ ,  $B \in \mathbb{R}^{n \times p}$ , C = AB, then  $C \in \mathbb{R}^{m \times p}$ :

$$C_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj}$$

Special cases: Matrix-vector product, inner product of two vectors. e.g., with  $x, y \in \mathbb{R}^n$ :

$$x^Ty = \sum_{i=1}^n x_i y_i \in \mathbb{R}$$

Associative: (AB)C = A(BC)

Distributive: A(B+C) = AB + AC

Non-commutative:  $AB \neq BA$ 

# Operators and Properties

```
Transpose: A \in \mathbb{R}^{m \times n}, then A^T \in \mathbb{R}^{n \times m}: (A^T)_{ij} = A_{ji}

Properties:  (A^T)^T = A \\  (AB)^T = B^T A^T \\  (A+B)^T = A^T + B^T 
Trace: A \in \mathbb{R}^{n \times n}, then: tr(A) = \sum_{i=1}^n A_{ii}

Properties:  tr(A) = tr(A^T) \\  tr(A+B) = tr(A) + tr(B) \\  tr(\lambda A) = \lambda tr(A) 
If AB is a square matrix, tr(AB) = tr(BA)
```

# Special Matrices

Identity matrix:  $I = I_n \in \mathbb{R}^{n \times n}$ :

$$I_{ij} = \begin{cases} 1 & \text{i=j,} \\ 0 & \text{otherwise.} \end{cases}$$

 $\forall A \in \mathbb{R}^{m \times n}$ :  $AI_n = I_m A = A$ 

Diagonal matrix:  $D = diag(d_1, d_2, \dots, d_n)$ :

$$D_{ij} = egin{cases} d_i & ext{j=i}, \ 0 & ext{otherwise}. \end{cases}$$

Symmetric matrices:  $A \in \mathbb{R}^{n \times n}$  is symmetric if  $A = A^T$ .

Orthogonal matrices:  $U \in \mathbb{R}^{n \times n}$  is orthogonal if

 $UU^T = I = U^TU$ 

### Linear Independence and Rank

```
A set of vectors \{x_1, \ldots, x_n\} is linearly independent if \nexists \{\alpha_1, \ldots, \alpha_n\}: \sum_{i=1}^n \alpha_i x_i = 0
Rank: A \in \mathbb{R}^{m \times n}, then rank(A) is the maximum number of linearly independent columns (or equivalently, rows)
Properties: rank(A) \leq \min\{m, n\} rank(A) = rank(A^T) rank(AB) \leq \min\{rank(A), rank(B)\} rank(AB) \leq rank(A) + rank(B)
```

### Matrix Inversion

If  $A \in \mathbb{R}^{n \times n}$ , rank(A) = n, then the inverse of A, denoted  $A^{-1}$  is the matrix that:  $AA^{-1} = A^{-1}A = I$  Properties:

$$(A^{-1})^{-1} = A$$
  
 $(AB)^{-1} = B^{-1}A^{-1}$   
 $(A^{-1})^T = (A^T)^{-1}$ 

### Really Useful Things Matrix Operations Can Do!

- Rotate a vector
- Solve linear systems of equations

A linear system might be described by the following equations:

$$a_{11}X_1 + a_{12}X_2 + a_{13}X_3 = b_1$$

$$a_{21}X_1 + a_{22}X_2 + a_{23}X_3 = b_2$$

$$a_{31}X_1 + a_{32}X_2 + a_{33}X_3 = b_3$$

These equations could be written in matrix form as:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$

The matrix equation could be written as: Ax = b

rotation matrix
$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x\cos\theta & -y\sin\theta \\ x\sin\theta & +y\cos\theta \end{bmatrix}$$
NOTE: this is a 2 by 1 column vector, not a 2 by 2 matrix.

### Probability

Sample Space  $\Omega$ : Set of all possible outcomes

Event Space  $\mathcal{F}$ : A family of subsets of  $\Omega$ 

Probability Measure: Function  $P: \mathcal{F} \to \mathbb{R}$  with properties:

- 1  $P(A) \geq 0 \ (\forall A \in \mathcal{F})$
- $P(\Omega)=1$
- $A_i$ 's disjoint, then  $P(\bigcup_i A_i) = \sum_i P(A_i)$

For events *A*, *B*:

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

A, B independent if P(A|B) = P(A) or equivalently:  $P(A \cap B) = P(A)P(B)$ 



#### LIKELIHOOD

The probability of "B" being True, given "A" is True

#### PRIOR

The probability "A" being True. This is the knowledge.



#### POSTERIOR

The probability of "A" being True, given "B" is True

#### MARGINALIZATION

The probability "B" being True.

### Random Variables

A random variable X is a function  $X : \Omega \to \mathbb{R}$ 

Example: Number of heads in 20 tosses of a coin

Probabilities of events associated with random variables defined based on the original probability function. e.g.,

$$P(X = k) = P(\{\omega \in \Omega | X(\omega) = k\})$$

Cumulative Distribution Function (CDF)  $F_X : \mathbb{R} \to [0, 1]$ :

$$F_X(x) = P(X \le x)$$

Probability Mass Function (pmf): X discrete then

$$p_X(x) = P(X = x)$$

pmf is also known as, a discrete probability density function

#### CDF:

$$0 \le F_X(x) \le 1$$
  
  $F_X$  monotone increasing, with  $\lim_{x \to -\infty} F_X(x) = 0$ ,  $\lim_{x \to \infty} F_X(x) = 1$ 

#### pmf:

$$0 \le p_X(x) \le 1$$
  
$$\sum_{x \in A} p_X(x) = 1$$
  
$$\sum_{x \in A} p_X(x) = p_X(A)$$

### Common Random Variables

 $X \sim Bernoulli(p) \ (0 \le p \le 1)$ :

$$p_X(x) = \begin{cases} p & x=1, \\ 1-p & x=0. \end{cases}$$

 $X \sim Geometric(p) \ (0 \le p \le 1): \ p_X(x) = p(1-p)^{x-1} \ X \sim Uniform(a,b) \ (a < b):$ 

$$f_X(x) = \begin{cases} \frac{1}{b-a} & a \le x \le b, \\ 0 & \text{otherwise.} \end{cases}$$

 $X \sim Normal(\mu, \sigma^2)$ :

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(x-\mu)^2}$$

### Gaussian (aka Normal) Distribution



# Univariate Analysis – Continuous Variables

#### Distributions



Box and Whisker Plots & Quartiles



Outlier = larger than Q3 or smaller than Q1 by at least 1.5 times the inter-quartile range.

# Univariate Analysis – Categorical Variables

• Frequency Table, bar chart, pie chart

| Degree      | Frequency | Percentage |
|-------------|-----------|------------|
| High School | 2         | 5.0        |
| Bachelor's  | 7         | 17.5       |
| MBA         | 20        | 50.0       |
| Master's    | 3         | 7.5        |
| Law         | 4         | 10.0       |
| PhD         | 4         | 10.0       |
|             | 40        | 100 m      |





# Bivariate Analysis – Continuous & Categorical

Box and Whisker Plots



• Z-Test — is the difference in these statistically significant?

$$z = \frac{\left| \bar{x}_1 - \bar{x}_2 \right|}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Example: For the Marketing group of 900 people (n = 900), the mean score on the test was 9.78, with a std dev (s)= 4.05.

For the Research group of 1000 people (n= 1000), the mean score on the test was 15.10, with a std dev (s) = 4.28.

$$z = \frac{(9.78 - 15.10) - 0}{\sqrt{\frac{4.05^2}{900} + \frac{4.28^2}{1000}}} = \frac{-5.32}{\sqrt{\frac{16.40}{900} + \frac{18.32}{1000}}} = \frac{-5.32}{\sqrt{.018 + .018}} = \frac{-5.32}{.19} = -28$$

Look up z-score in a table, see if it falls below p=0.05, if it does, reject the null hypothesis, there is a statistical difference

# Set Theory

Abridged from the excellent resource at http://www.math.clemson.edu/~mjs/courses/misc/settheory.pdf

### What is a Set?

 A set is one of those fundamental mathematical ideas whose nature we understand without direct reference to other mathematical ideas.
 Quite simply,

A set is a collection of distinct objects.

# Subsets, Equality, and Size

• Two sets S and T are equal, written S = T, if S and T contain exactly the same elements.

 The cardinality of a set S is denoted |S| and is the number of elements in the set

### Intersections and Unions

• The intersection of two sets S and T, written S ∩T is the set of elements common to both S and T, i.e.,

• 
$$S \cap T = \{x : x \in S \text{ and } x \in T\}$$

• The union of two sets S and T, written S U T, is the set of elements that are in either S or T or both, i.e.,

•  $S \cup T = \{x : x \in S \text{ or } x \in T\}$ 

# Set Differences and Complements

 The difference between S and T, written S \ T, is the set of elements in S but not also in T:

•  $S \setminus T = \{x : x \in S \text{ and } x / \in T\}$ 

• Relative to a universe U, the complement of S, written S O, is the set of all elements of the universe not contained in S, i.e.,

•  $S' = \{x : x \in U \text{ and } x \notin S\}$