Tyler Gillette

Spring 2021 MATH 76 Activity 11

CONVERGENCE TESTS

Strategies on alternating series

An infinite series $\sum_{k=M}^{\infty} a_k$ is an alternating series if it has the form

$$\bullet \ a_k = (-1)^k b_k$$

• or
$$a_k = (-1)^{k+1}b_k$$

• or
$$a_k = (-1)^{k-1}b_k$$

where b_k is positive. To decide the convergence use the Alternating series test.

- 1. If $\lim_{k\to\infty}b_k\neq 0$ then stop here and say that the series $\sum_{k=M}^{\infty}a_k$ diverges (Divergence Test.)
- 2. If $\lim_{k\to\infty}b_k=0$, then:
 - If b_{k+1} is ALWAYS smaller or equal than b_k meaning $b_{k+1} \leq b_k$. Use the fact that dividing by a larger number results in a smaller outcome, use your calculator to check when convenient, graph $f(k) = b_k$ and see whether it is decreasing on some half line interval $[M, \infty)$, etc.. If yes then the series $\sum_{k=M}^{\infty} a_k$ converges by the Alternating Series Test.
 - ullet Otherwise the Alternating Series Test is not applicable. Recheck if $\lim_{k o \infty} b_k = 0$.
- 3. In case the series $\sum_{k=M}^{\infty} a_k$ converges either
 - ullet it converges conditionally
 - or converges absolutely.

For that consider the NEW series $\sum_{k=M}^{\infty}|a_k|=\sum_{k=i}^{\infty}b_k$. Use ANY other applicable test to determine if $\sum_{k=M}^{\infty}b_k$ converges or diverges.

- (a) If $\sum_{k=M}^{\infty} b_k$ converges then the original series $\sum_{k=M}^{\infty} a_k$ converges absolutely.
- (b) If $\sum_{k=M}^{\infty} b_k$ diverges then the original series $\sum_{k=M}^{\infty} a_k$ converges conditionally (note

that you assumed that the series $\sum_{k=M}^{\infty} a_k$ converges.)

Determine whether the following alternating series converges or diverges.

1.
$$\sum_{k=2}^{\infty} \frac{(-1)^k}{k^2 - 1} \qquad \emptyset_{\chi}$$

1.
$$\sum_{k=2}^{\infty} \frac{(-1)^k}{k^2 - 1}$$

$$0_{\chi} = \frac{(-1)^k}{\kappa^2 - 1}$$

$$0_{\chi} = \frac{(-1)^k}{\kappa^2}$$

$$0_{\chi} = \frac{(-1)^k}{\kappa^2}$$

$$0_{\chi} = \frac{(-1)^k}{(k+1)^2}$$

$$0_{\chi+1} = \frac{(-1)^{k+1}}{(k+1)^2}$$

2.
$$\sum_{k=1}^{\infty} (-1)^k k e^{-k}$$

$$\alpha_k = (-1)^k k e^{-k}$$

$$b_k = \underbrace{k}_{e^k}$$

2.
$$\sum_{k=1}^{\infty} (-1)^k k e^{-k}$$

$$\alpha_k = (-1)^k k e^{-k}$$

$$b_k = \underbrace{k}_{e^k}$$

$$\lim_{k \to \infty} (-1)^k k e^{-k} = \emptyset$$

$$\lim_{k \to \infty} (-1)^k k e^{-k} = \emptyset$$

$$\lim_{k \to \infty} (-1)^k k e^{-k} = \emptyset$$

Seris Converges by the Alternating series test.

3.
$$\sum_{k=1}^{\infty} \frac{(-1)^{k+1}(k^2+4)}{2k^2+1}$$

$$\alpha_{k} = \frac{(-1)^{k+1}(k^2+4)}{2k^2+1}$$

$$\alpha_{k} = \frac{(-1)^{k+1}(k^2+4)}{2k^2+1}$$

$$\lim_{K=\infty} \frac{K}{2K^2} = \frac{1}{2}$$

lin = = = diverges based on the Alternating Series fest.

4.
$$\sum_{k=1}^{\infty} \frac{(-2)^{k+1}}{k^2}$$

$$= \underbrace{(-1)^{k+1}}_{2}$$

$$b_k = \frac{b^{k+1}}{k^2}$$

$$\lim_{K=0}^{\infty} \frac{2^{k+1}}{k^2} = \infty$$

 $\lim_{K=0}^{\infty} \frac{2^{k+1}}{k^2} = \infty \quad \text{diverges based on the Alternoting}$ $K=0 \quad \text{Series test.}$

The following series are all convergent (you can check by the Alternating Series Test). State whether the convergence is conditional or absolute.

1.
$$\sum_{k=1}^{\infty} \frac{(-1)^k}{\sqrt{k^4 + 1}}$$

$$\alpha_{K} = \frac{(-1)^k}{\sqrt{k^4 + 1}}$$

$$\omega_{K} = \frac{(-1)^{k+1} 10^k}{k!}$$

$$\omega_{K} = \frac{(-1)^{k+1} 10^k}{k!$$

 $Does\ the\ following\ infinite\ series\ converge\ {\bf absolutely},\ converge\ {\bf conditionally},\ or\ diverge?$

1.
$$\sum_{k=0}^{\infty} (-1)^k \frac{1}{\sqrt{k^2 + 1}}$$

$$\alpha_{\kappa} = (-1)^k \frac{1}{\sqrt{k^2 + 1}}$$

$$\beta_{\kappa} = \frac{1}{\sqrt{\kappa^2}}$$
2.
$$\sum_{k=0}^{\infty} (-1)^k \frac{k!}{\pi^k} \quad \beta_{\kappa} = \frac{\kappa!}{\pi^{\kappa}}$$

$$\sum_{k \to \infty}^{\infty} \frac{k!}{\pi^k} = \infty$$

$$\sum_{k \to \infty}^{\infty} (-1)^k \frac{k!}{\pi^k} \quad \beta_{\kappa} = \infty$$

100.99.98 = 2 Nwgv

Test	Series	Convergent if	Divergent if	Comments
Geometric series	$\sum_{k=M}^{\infty} ar^k, \ a \neq 0$	r < 1	$ r \ge 1$	$\sum_{k=M}^{\infty} ar^k = \frac{ar^M}{1-r},$ if $ r < 1$
Divergence test	$\sum_{k=M}^{\infty} x_k$	N/A	$\lim_{k \to \infty} x_k \neq 0$	Incon. if $\lim_{k \to \infty} x_k = 0$
Integral test	$\sum_{k=M}^{\infty} x_k, \ x_k = f(k)$ $f \text{ is continuous,}$ $positive,$ $decreasing$	$\int_{M}^{\infty} f(x)dx \text{ conv.}$	$\int_{M}^{\infty} f(x)dx \text{ div.}$	
p-series	$\sum_{k=M}^{\infty} \frac{a}{k^p}$	p > 1	$p \le 1$	
Ratio test	$\sum_{\substack{k=M\\ \infty}}^{\infty} x_k, \ x_k > 0$	$0 \le \lim_{k \to \infty} \frac{x_{k+1}}{x_k} < 1$	$\lim_{k \to \infty} \frac{x_{k+1}}{x_k} > 1$	Incon. if $\lim_{k \to \infty} \frac{x_{k+1}}{x_k} = 1$
Root test	$\sum_{k=M}^{\infty} x_k, \ x_k \ge 0$	$0 \le \lim_{k \to \infty} x_k^{1/k} < 1$	$\lim_{k \to \infty} x_k^{1/k} > 1$	Incon. if $\lim_{k \to \infty} x_k^{1/k} = 1$
Comparison	$\sum_{k=M}^{\infty} x_k, \ x_k > 0$	$0 < x_k \le y_k$ and $\sum_{k=M}^{\infty} y_k \text{ conv.}$	$0 < y_k \le x_k$ and $\sum_{k=M}^{\infty} y_k \text{ div.}$	$\sum_{k=M}^{\infty} x_k \text{ is given}$ you supply $\sum_{k=M}^{\infty} y_k$
Limit Comparison	$\sum_{k=M}^{\infty} x_k,$ $x_k > 0, y_k > 0$	$0 \le \lim_{k \to \infty} \frac{x_k}{y_k} < \infty$ and $\sum_{k \to \infty} y_k \text{ conv.}$	$\lim_{k \to \infty} \frac{x_k}{y_k} > 0$ $\left(\text{or } \lim_{k \to \infty} \frac{x_k}{y_k} = \infty \right)$ and $\sum_{k \to \infty} y_k \text{ div.}$	$\sum_{k=M}^{\infty} x_k \text{ is given}$ you supply $\sum_{k=0}^{\infty} y_k$
Altern. series test	$\sum_{k=0}^{\infty} (-1)^k x_k$	$\lim_{k \to \infty} x_k = 0$	$\lim_{k \to \infty} x_k \neq 0$	$\sum_{k=M}^{g_k} g_k$ Combined with
		$ and, 0 < x_{k+1} \le x_k $	$k{ o}\infty$	divergence test.
Absolute Conv.	$\sum_{\substack{k=M\\ \infty}}^{\infty} x_k$	$\sum_{\substack{k=M\\ \infty}}^{\infty} x_k \text{ conv.}$	N/A	
Conditional Conv.	$\sum_{k=M}^{\infty} x_k$	$\sum_{k=M}^{\infty} x_k \text{ conv.}$ and $\sum_{k=M}^{\infty} x_k \text{ div.}$	N/A	