3BA2 Tutorial 1

k-NN

1. Three cases from a regression system for estimating blood-alcohol content and shown in the figure below. The input features are; Gender, Framesize (i.e. weight), Amount of alcohol in units, Meal (None, Snack, Full), Duration of drinking session.

N-1			N-3		N-55	
	Gender	Male	Gender	Female	Gender	Male
	Weight	70	Weight	60	FrameSize	75
	Amount	1	Amount	4	Amount	3
	Meal	snack	Meal	full	Meal	snack
	Duration	60	Duration	90	Duration	120
	BAC	0.2	BAC	0.8	BAC	0.7

- a. Propose a similarity metric for comparing cases such as these. You can assume that the range for; Weight is 50-150, Amount is 1-16, Duration is 20-300. The similarity metric should take account of the fact that Meal is an ordered feature.
- b. Use this metric to calculate the similarities between N-1 and N-3 and N-1 and N-55.
- 2. Two cases from a CBR system for estimating the price of secondhand motorcars are shown in the figure below.

CP 007	
Manufacturer Model Age Engine Size Fuel Mileage Bodywork	Ford Fiesta 5 1,000 Petrol 65,000 Excellent
Price	£3,100

CP 014					
Manufacturer Model Age Engine Size Fuel Mileage Bodywork	Citroen BX 6 1,800 Diesel 65,000 Good				
Price	£4,500				

- (i) Propose a similarity metric that might be used in a *k*-Nearest Neighbour case retrieval system for such a case base (i.e. using exhaustive search). Each case has 7 features, 4 symbolic features and 3 numeric.
- (ii) If the Bodywork feature is an ordered feature that has the possible values {Poor, Fair, Good, Excellent} how might the similarity metric be modified to accommodate this similarity information.
- (iii) How might this retrieval system be improved using feature weights?

3. Consider the following data set with three Boolean predictive attributes, W, X, Y and Boolean classification C.

W 	X	Υ	С
Т	Т	Т	Т
Τ	F	Τ	F
Τ	F	F	Τ
F	Τ	Τ	F
F	F	F	F

We now encounter a new example: W=F, X=F, Y=T.

(a) Using 3-Nearest Neighbor classifier, which class will be assigned to the example?