

Design and Analysis of Algorithm (CS 412) Instructor: Dr. Ayesha Enayet

Date: 25th January 2024 CS 6th

	CS 6 ···	
SIS ID:	Name:	

Identify whether each of the following statement is true or false. Justify your answer. 1. $f(n)=o(g(n))$ if and only if $g(n)=\omega(f(n))$ (T/F) True, $g(n)$ is a set of all functions with growth greater than $f(n)$; it implies that $f(n)$ is a set of all functions with growth smaller than $g(n)$.
 2. o(g(n)) ∩ ω(g(n)) is the empty set. (T/F) True, disjoint sets: o(g(n)) is a set of all functions with growth smaller than g(n) and ω(g(n)) is set of all functions with growth greater than g(n). 3. 2n²+O(n)=O(n²) (T/F)
True, n^2 is the highest degree term of the polynomial (dominating term), and O(n) is a set of function with linear growth; hence max($2n^2$,O(n)) is O(n^2)
Is $\frac{n}{2}$ = $\omega(n)$? if yes, give values for c and n_o . If no, justify with the help of a formal definition of Little-Omega notation.
By definition $\frac{n}{2}$ = $\omega(n)$ iff for all constants c>0 $\frac{n}{2}$ > c .n, but for all c<1/2, the condition does not hold.
Given that, c1. $2n^2 <= 2n^2 + 2n + 2 <= c2 \cdot 2n^2$, find out the values of c1 and c2.
The condition holds for c1=1 and c2=2 for n_0 =2 c1<=3<=c2 is also a possible solution for n_0 =1