FORMULA SHEET XI PHYSICS

Formula	Description	Unit
CHAI	PTER#2	
Magnitude of Position Vector $ \vec{r} = x \hat{\imath} + y \hat{\jmath} + z \hat{k} $ $ r = \sqrt{x^2 + y^2 + z^2} $ Magnitude of Rectangular Components $ A_x = A \cos \theta $ $ A_y = A \sin $ Magnitude and Direction of Resultant $ A = \sqrt{A_x^2 + A_y^2} $ $ \theta = Tan^{-1} \left(\frac{A_y}{A_x}\right) $	A _x = Horizontal Component A _y = Vertical Component A = Resultantant Vector	
Addition by Rectangular Components $F = \sqrt{F_1^2 + F_2^2 + 2F_1F_2 \cos \theta}$ Dot Product $\vec{A}.\vec{B} = A B \cos \theta$ Projection $\vec{A}.\vec{B} = AB_A$ 3D unit vectors $\hat{\imath}.\hat{\imath} = \hat{\jmath}.\hat{\jmath} = \hat{k}.\hat{k} = 1$ $\hat{\imath}.\hat{\jmath} = \hat{\jmath}.\hat{k} = \hat{k}.\hat{\imath} = 0$ General form If $\vec{A} = Ax\hat{\imath} + Ay\hat{\jmath} + Az\hat{k}$ $\vec{B} = Bx\hat{\imath} + By\hat{\jmath} + Bz\hat{k}$	B _A = Projection of B onto A	
$\vec{A}.\vec{B} = Ax Bx + Ay By + Az Bz$ If vectors are perpendicular the $\vec{A}.\vec{B} = 0$ Cross Product $\vec{C} = (\vec{A} \times \vec{B}) = A B Sin\theta$ For 3 D unit Vector $\hat{\imath} \times \hat{\imath} = \hat{\jmath} \times \hat{\jmath} = \hat{k} \times \hat{k} = 0$ $\hat{\imath} \times \hat{\jmath} = \hat{k}, \hat{\jmath} \times \hat{k} = \hat{\imath}$	C is perpendicular to both A and B	

General Form	1	
$\vec{A}\vec{X}\vec{B} = (A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}) \times (B_x \hat{\imath} + B_y \hat{\jmath} + B_z \hat{k})$		
$\mathbf{A} \times \mathbf{B} = \begin{vmatrix} \hat{\mathbf{i}} & \hat{\mathbf{j}} & \hat{k} \\ \mathbf{A_x} & \mathbf{A_y} & \mathbf{A_z} \\ \mathbf{B_x} & \mathbf{B_y} & \mathbf{B_z} \end{vmatrix}$		
Area of Parallelogram = $ \vec{A} \times \vec{B} $		
Area of Triangle $=\frac{1}{2} \times \vec{A} \times \vec{B} $		
СНА	PTER#3	
Equation of Motion	5 (A) (C) (C) (C) (C) (C) (C) (C) (C) (C) (C	
vf = vi + at	v _i = Initial Velocity	m/s
1100	v _f = Final Velocity	m/s
$S = vit + \frac{1}{2}at2$	a =Acceleration	m/s ²
2aS = vf2 - vi2	S= Distance	m
S = vt	t=Time	sec
Tension (Two bodies move vertically)	m ₁ = Mass of body moving downward	Kg
	m2 = Mass of body moving upward	Kg
$a = \frac{(m_1 - m_2)}{(m_1 + m_2)} g$	g = Gravitational acceleration	m/s ²
(m1 + m2)	a = acceleration of bodies	m/s ²
$T = \frac{2m_1 m_2}{(m_1 + m_2)} g$	T = Tension in String	N
Tension (One bodies vertically other	m ₁ = Mass of body moving Vertically	Kg
Horizontally)	m2 = Mass of body moving Horizontally	Kg
$a = \frac{m_1 g}{(m_1 + m_2)}$	g = Gravitational acceleration	m/s^2
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a = acceleration of bodies	m/s ²
$T = \frac{m_1 m_2 g}{(m_1 + m_2)}$	T = Tension in String	N
Inclined Plane	a = acceleration of bodies	m/s ²
$a = g \sin \theta$	g = Gravitational acceleration	m/s ²
$a = g \sin \theta - \frac{f}{m}$	m = Mass of body	Kg
$a = g \sin \theta - \frac{1}{m}$	Force of Friction = f	N
	Angle of Inclined Plane = θ	
Momentum and Force	m = Mass of body	Kg
$F = \frac{mV_f - mV_i}{t}$	v_i = Initial Velocity	m/s
$r = \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	v_f = Final Velocity	m/s
Law of Conservation of Momentum	t =Time	s
$m_1u_1 + m_2u_2 \ = \ m_1v_1 + m_2v_2$	u = velocity	m/s
	v = velocity	m/s

Final velocities after Elastic Collision		
$v_1 = \frac{(m_1 - m_2)}{(m_1 + m_2)} u_1 + \frac{2 m_2}{(m_1 + m_2)} u_2$ $v_2 = \frac{2 m_1}{(m_1 + m_2)} u_1 + \frac{(m_2 - m_2)}{(m_1 + m_2)} u_2$		
() ()		
CHA	APTER#4	
Projectile Motion	V _o = Initial Velocity	
Total Time of Flight	g = Gravitational acceleration	
$T = 2 \frac{V_o \sin \theta}{g}$		
Maximum Height		
$Y = \frac{Vo^2 Sin^2 \theta}{2g}$		
Horizontal Range		
$R = \frac{V_0^2}{2} \sin 2\theta$		
g		
Maximum horizontal range Vo ²		
$R_{max} = \frac{V_o^2}{g}$		
Centripetal Acceleration	r = radius oof circular path	-
$a_c = \frac{v^2}{r}$	f = frequency	m Hz
3000	T = Time period	s
$a_c = \frac{4r\pi^2}{T^2}$	1 Time period	
$ac = 4\pi^2 r f^2$		
Centripetal Force	F _c = Centripetal Force	N
$F_c = m a_c$	a _c = Centripetal Acceleration	m.s ²
$F_c = \frac{m v^2}{r}$	ac - Centificial Acceleration	III.s
CHA	APTER # 5	
Forque or Moment of Force	r = Radius	
$\vec{\tau} = \vec{r} \times \vec{F}$	$\tau = Torque$	m N.m
Angular Momentum	P = Linear momentum	N.s
$\vec{L} = \vec{r} \times \vec{P}$	v = velocity	m/s
L = m v r		

CH	APTER # 6	
Law of Gravitation	M _E = Mass of Earth	
$F = G \frac{m_1 m_2}{r^2}$	R _E = Radius of Earth	
	G = Gravitational Constant	
$g = \frac{GM_E}{R_E^2}$	h = Height from surface of Earth	
Variation of 'g' with Depth	x = Depth from surface of Earth	
$g' = \left(1 - \frac{x}{R_E}\right)g$		
Variation of "g" With Altitude		
$g' = \frac{GM_E}{(R_E + h)^2}$		
Elevator	F _w = Apparent weight	N
Elevator is at Rest	r _w - Apparent weight	18
$F_{w} = m g$		
Elevator is Ascending		
$F_w = mg + ma$		
Elevator is Descending		
$F_{w} = mg - ma$		
Artificial Gravity	f= frequency	Hz
$f = \frac{1}{2\pi} \sqrt{\frac{g}{r}}$	r = radius	m
2.7.1		
	APTER # 7	
Work $W = \vec{F} \cdot \vec{d}$	W = work	J
Potential Energy	P = Power	Watt
P.E = mgh	PE	J
Kinetic Energy	K.E	J
	f= Force of Friction	N
$K.E. = \frac{1}{2}mv2$	Same as Previous Descriptions	
Power $P = \frac{W}{t}$		
$P = \vec{F} \cdot \vec{v}$		
Work Energy Equation		
$\frac{1}{2} mv2 = mgh - f.h$		
СН	APTER # 8	
Frequency and Time Period	s Winds construct	Hz
$f = \frac{1}{T}$	f = frequency	S
$r = \overline{r}$	T = Time Period	

Acceleration of SHM $\alpha = -\frac{k}{m} x$ Time Period of Spring $T = 2\pi \sqrt{\frac{m}{K}}$ Time Period of Simple Pendulum $T = 2\pi \sqrt{\frac{l}{g}}$ Potential Energy $P.E = \frac{1}{2}Kx^2$ Kinetic Energy $K.E = \frac{1}{2}mv^2$ Total Energy $E = K.E + P.E$ $E = \frac{1}{2}Kx_o^2$	K = Spring constant l = Length of pendulum x = displacement x _o = Amplitude v = velocity	N/m m m m m/s
Stationary Waves Velocity of Transverse Wave in String $v = \sqrt{\frac{Mg}{\mu}} = \sqrt{\frac{Mgl}{m}}$ $v \lambda = v$ $v_1 = \frac{v}{2L}$ $v_n = n v_1$ $\lambda_n = \frac{2L}{n}$	υ = frequency λ = Wavelength μ = Linear Density L = Length of String υ_1 = Fundamental frequency (One loop) υ_n = n loop frequency n = number of loops	
Doppler's Effect Listener is moving towards the Source $v' = \left(\frac{v + v_L}{v}\right)v$ Listener is moving away $v'' = \left(\frac{v - v_L}{v}\right)v$ Source is moving towards $v' = \left(\frac{v}{v - v_S}\right)v$ Source is moving away $v' = \left(\frac{v}{v - v_S}\right)v$	$v = \text{Original Frequency}$ $v' = \text{Apparent Frequency}$ $v_S = \text{Velocity of Source}$ $v_L = \text{Velocity of Listener}$ $v = \text{Velocity of Sound}$	

Both moving towards each other		
$v' = \left(\frac{v + v_L}{v - v_S}\right) v$		
Both moving away from other $\mathbf{v'} = \left(\frac{v-v_L}{\mathbf{v}+v_S}\right)v$		
Newton's formula for speed of sound $v = \sqrt{\frac{\gamma P}{\rho}}$ $v = \sqrt{\frac{\gamma RT}{M}}$ Temperature and Speed of Sound $v_t = v_o \sqrt{\frac{T}{T_o}}$	v = Velocity of Sound P = Pressure γ = Ratio of specific heat ρ = Density R = Universal gas constant (8.314 J/mole/K) T = Temperature M = Molecular Mass v _o = Velocity of sound at 0°C (332 m/s) v _t = Velocity of sound at t° C T _o = 0° C = 273 K	m/s N/m² No unit Kg/m³ K
Beats $f_b = f_1 - f_2 $	f_b = Beat frequency f_i = First frequency f_2 = Second frequency	Hz
CHA	PTER # 9	
Young's Double Slit Fringe Spacing $\Delta \mathbf{x} = \frac{L\lambda}{d}$ Position of Bright Fringes $y_m = \frac{nL\lambda}{d}$ Dark Fringes $y_d = \left(m + \frac{1}{2}\right)\frac{L\lambda}{d}$	λ = Wavelength L = distance between slit and screen d = distance between slits Δx = Fringe Spacing y = Position of Fringe	m m m m
Michelson Interferometer $d = \frac{n\lambda}{2}$	$\lambda = \text{Wavelength}$ $n = \text{Number of fringes}$ $d = \text{Distance of moveable mirror}$	m m
Diffraction Grating Grating Element $d = \frac{\text{Length of grating in meters}}{\text{No. of lines}} = \frac{l}{\text{N}}$	d = grating element	m m

Grating Equation	λ = Wavelength	
$n\lambda = d \sin \theta$	n = order of maxima	
	θ = Angle of deviation	
Diffraction of X-Rays (Bragg's Equation)	m = order of maxima	
$m\lambda = 2 d \sin \theta$	d = distance between cleavage plane	m
	θ = Glancing Angle	
Newton's Rings	1 - W. 1 - 4	m
Radius of Bright Ring	Λ = Wavelength r_N = Radius of nth ring	m
(1)	N = number of rings	10000
$r_N = \sqrt{\left(N - \frac{1}{2}\right) \lambda R}$	R = Radius of curvature of planoconvex lens	m
Radius of Dark Ring		
$r_N = \sqrt{N\lambda R}$		
CHAP	PTER # 10	
Thin Lens Formula	f=Focal length	Same
$\frac{1}{f} = \frac{1}{p} + \frac{1}{a}$	p = Object distance	Units
1 1	q = Image distance	Cm or
Linear Magnification g	M = Linear Magnification	mm
$M = \frac{q}{p}$	d = Least Distance of Distant Vision	
Magnifying Glass	(25 cm = 250 mm)	
$1 + \frac{d}{f} = M$		
Compound Microscope	d = Least Distance of Distant Vision = d	Same
Magnifying Power	fo = Focal length of Objective	Units
$M = Mo \times Me$	fe = Focal length of Eye Piece	Cm or
q_{α} (d)	M = Magnifying Power	mm
$M = \frac{q_o}{p_o} \left(1 + \frac{d}{f_e} \right)$	L = Length of microscope po = Object distance from objective	
Length of Microscope	qo = Image distance from Objective	
$L = q_0 + f_e$	p _e = Object distance from Eye piece	
$u = q_0 + j_e$	q_e = Image distance from Eye piece	
Astronomical Telescope	fo = Focal length of Objective	Same
Magnification	fe = Focal length of Eye Piece	Units
$M = \frac{f_o}{f_o}$	L = Length of Telescope	Cm or
$M = \frac{f_e}{f_e}$		mm
Length of Telescope		
$L = f_o + f_e$		
Combination of Lens	fc = Combined Focal length	Same
1 1 1	f_l = Focal length of first lens	Units
$\frac{1}{f_c} = \frac{1}{f_1} + \frac{1}{f_2}$	f_2 = Focal length of Objective	Cm or
50, US, 371		mm