Algebra relazionale

Esercizi

Lucia Ferrari

 ${\tt lucia 02.ferrari@edu.unife.it}$

Esercizio 1¹

Sia dato il seguente schema relazionale:

 $MOTO(\underline{targa}, cilindrata, marca, nazione, tasse)$ $PROPRIETARIO(\underline{nome}, targa).$

Esprimere in algebra relazionale le seguenti interrogazioni (usando le funzioni aggregate solo se necessario e senza usare l'operatore di divisione \div).

¹Crediti: Prof. Angelo Montanari, corso di Basi di Dati per la Laurea Triennale, Università di Udine.

Esempio

2. Determinare i nomi delle persone che possiedono solo moto giapponesi di almeno due marche diverse.

targa	cilindrata	marca	nazione	tasse
ABC123	1000	Yamaha	Giapponese	100
DEF456	750	Suzuki	Giapponese	80
GHI789	1200	Honda	Giapponese	120
JKL012	850	Ducati	Italiana	90
MNO345	1100	BMW	Tedesca	110
PQR678	650	Kawasaki	Giapponese	70
STU901	800	Aprilia	Italiana	85
VWX234	900	Yamaha	Giapponese	95

nome	targa
Mario Rossi	ABC123
Mario Rossi	DEF456
Paolo Verdi	GH1789
Roberto Neri	JKL012
Giuseppe Rossi	MNO345
Paolo Verdi	PQR678
Anna Grigi	VWX234
Giuseppe Rossi	STU901

Table 1: Tabella Moto

Table 2: Tabella Proprietario

3. Determinare le tasse che ogni proprietario deve pagare per le moto possedute (si assuma che una persona possa possedere più moto, ma che ogni moto sia posseduta da una sola persona).

4. Individuare la nazione (le nazioni, se più d'una soddisfa le condizioni) in cui è prodotto il maggior numero di moto fra quelle registrate nella base di dati (si assuma che l'attributo nazione di MOTO designi la nazione che produce la moto).

5. Determinare le persone che possiedono moto della cilindrata minima (fra le cilindrate presenti nella base di dati).

Sia dato il seguente schema relazionale:

 $FORNITORE(\underline{S\#}, fnome, status, citta') \\ COMPONENTE(\underline{C\#}, cnome, colore, peso, citta') \\ PROGETTO(\underline{P\#}, pnome, citta') \\ FORNISCE(S\#, C\#, P\#, quantita').$

Defininiamo originale un prodotto fornito da un solo fornitore.

Esprimere in algebra relazionale le seguenti interrogazioni, ricorrendo alle funzioni aggregate solo se necessario e senza usare l'operatore di divisione \div .

 $^{^2\}mathrm{Crediti}\colon \mathrm{Prof.}$ Angelo Montanari, corso di Basi di Dati per la Laurea Triennale, Università di Udine.

Un esempio di possibili tabelle

S#	fnome	status	città
S1	Fornitore1	Attivo	Roma
S2	Fornitore2	Inattivo	Milano
S3	Fornitore3	Attivo	Napoli
S4	Fornitore4	Inattivo	Firenze

Table 11: Tabella FORNITORE

C#	cnome	colore	peso	città
C1	Componente1	Rosso	10	Roma
C2	Componente2	Blu	20	Milano
C3	Componente3	Verde	30	Napoli
C4	Componente4	Giallo	40	Firenze
C5	Componente5	Giallo	10	Firenze
C6	Componente6	Nero	4	Roma

Table 12: Tabella COMPONENTE

P#	pnome	città
P1	Progetto1	Roma
P2	Progetto2	Milano
P3	Progetto3	Napoli
P4	Progetto4	Firenze

Table 13: Tabella PROGETTO

S#	C#	P#	quantità
S1	C1	P1	100
S2	C2	P1	200
S3	C2	P2	150
S3	C3	P3	50
S4	C4	P4	20
S3	C5	P1	50
S4	C6	P4	210
S3	C6	P1	10

Table 14: Tabella FORNISCE

1. Determinare i nomi dei fornitori che non forniscono alcun componente originale.

2. Determinare i nomi dei fornitori che forniscono solo componenti originali.

3. Determinare le coppie di nomi di fornitori che l'intersezione dei componenti da loro forniti sia vuota.

4. Determinare le città in cui risiedono almeno due fornitori con status maggiore o uguale a 100, escludendo le città cui non è assegnato alcun progetto.

5. Determinare i nomi dei fornitori che forniscono almeno un componente originale.

6. Per ogni città, si determinino il massimo e il minimo dei pesi dei componenti ad esse associati.

7. Si determinino le città cui sono associati due o più componenti, ma non più di un progetto.

8. Si determinino i componenti (una o più) di peso massimo e quelli (una o più) di peso minimo.

Sia dato il seguente schema relazionale che descrive il calendario di una manifestazione sportiva a squadre nazionali:

 $PALAZZETTO(\underline{nome}, citta', capienza),$ $INCONTRO(\underline{nome}_palazzetto, \underline{data}, \underline{ora}, squadra1, squadra2)$ $NAZIONALE(\underline{nazione}, continente, livello).$

Esprimere in algebra relazionale le seguenti interrogazioni (usando le funzioni aggregate solo se necessario e senza usare l'operatore di divisione \div).

³Crediti: Prof. Angelo Montanari, corso di Basi di Dati per la Laurea Triennale, Università di Udine.

Un esempio di possibili tabelle

nome	città	capienza
Palazzetto1	Roma	1000
Palazzetto2	Seul	2000
Palazzetto3	NY	1500
Palazzetto4	Londra	800

Table 15: Tabella PALAZZETTO

nome_palazzetto	data	ora	squadra1	squadra2
Palazzetto1	2023-06-10	20:00	Italia	Spagna
Palazzetto2	2023-06-12	18:30	Egitto	. Italia 📗
Palazzetto3	2023-06-15	21:00	Corea	India
Palazzetto4	2023-06-18	17:00	Egitto	India

Table 16: Tabella INCONTRO

	nazione	continente	livello
Ì	Italia	Europa	1
ı	Spagna	Europa	2
ı	India	Asia	1 1
	Corea	Asia	3
ı	Egitto	Africa	1

Table 17: Tabella NAZIONALE

1. Determinare i nomi dei palazzetti in cui non gioca nessuna nazionale asiatica.

2. Determinare la capienza complessiva dei palazzetti in cui si giocano partite di nazionali africane (ai fini della valutazione della capienza complessiva, si sommino le capienze associate a ciascuna gara, anche se più gare si svolgono nello stesso palazzetto).

3. Determinare la città (o le città) in cui si trova il palazzetto in cui la squadra olandese gioca il maggior numero di partite.

4. Determinare le squadre che incontrano solo squadre delle stesso livello.