Grundlagen der Programmierung (Vorlesung 8)

Ralf Möller, FH-Wedel

- Vorige Vorlesung
 - Motivation der Prädikatenlogik
 - Syntax der Prädikatenlogik
- Inhalt dieser Vorlesung
 - Semantik der Prädikatenlogik
 - Prädikatenlogische Entscheidungsprobleme

Struktur, passende Strukturen

Eine Struktur ist ein Paar $A = (U_A, I_A)$ wobei U_A eine beliebige aber nicht leere Menge ist, die die Grundmenge von A (oder der Grundbereich, der Individuenbereich, das Universum) genannt wird. Ferner ist I_A eine Abbildung, die

- jedem k-stelligen Prädikatensymbol P (das im Definitionsbereich von I_A liegt) ein k-stelliges Prädikat über U_A zuordnet,
- jedem k-stelligen Funktionssymbol f (das im Definitionsbereich von I_A liegt) eine k-stellige Funktion auf U_A zuordnet,
- jeder Variablen x (sofern I_A auf x definiert ist) ein Element der Grundmenge U_A zuordnet.

Sei F eine Formel und $A = (U_A, I_A)$ eine Struktur. A heißt zu F passend, falls I_A für alle in F vorkommenden Prädikatsymbole, Funktionssymbole und freien Variablen definiert ist.

Mit anderen Worten, der Definitionsbereich von I_A ist eine

 $I_A(x)$ einfach x^A .

Teilmenge von $\{P_i^k, f_i^k, x_i | i = 1, 2, 3, \dots \text{ und } k = 0, 1, 2, \dots\}$, und der Wertebereich von I_A ist eine Teilmenge aller Prädikate und Funktionen auf U_A , sowie der Elemente von U_A . Wir schreiben

abkürzend statt $I_A(P)$ einfach P^A , statt $I_A(f)$ einfach f^A und statt

Werte von Termen und Formeln in einer Struktur

Sei F eine Formel und A eine zu F passende Struktur. Für jeden Term t, den man aus den Bestandteilen von F bilden kann (also aus den Variablen und Funktionssymbolen), definieren wir nun den Wert von t in der Struktur A, den wir mit A(t) bezeichnen. Die Definition ist wieder induktiv.

- 1. Falls t eine Variable ist (also t = x), so ist $A(t) = x^A$.
- 2. Falls t die Form hat $t = f(t_1, ..., t_k)$ wobei $t_1, ..., t_k$ Terme und f ein k-stelliges Funktionssymbol ist, so ist $A(t) = f^A(A(t_1), ..., A(t_k))$.

Der Fall 2 schließt auch die Möglichkeit ein, daß f nullstellig ist, als t die Form hat t=a. In diesem Fall ist also $A(t)=a^A$.

Auf analoge Weise definieren wir (induktiv) den (Wahrheits-) Wert der Formeln F unter der Struktur A, wobei wir ebenfalls die Bezeichnung A(F) verwenden.

• Falls F die Form hat $F = P(t_1, \dots, t_k)$ mit den Termen t_1, \dots, t_k und k-stelligem Prädikatsymbol P, so ist

$$A(F) = \begin{cases} 1, \ falls \ (A(t_1), \dots, A(t_k)) \in P^A \\ 0, \ sonst \end{cases}$$

• Falls F die Form $F = \neg G$ hat, so ist

$$A(F) = \begin{cases} 1, & falls \ A(G) = 0 \\ 0, & sonst \end{cases}$$

• Falls F die Form $F = (G \land H)$ hat, so ist

$$A(F) = \begin{cases} 1, & falls \ A(G) = 1 \ und \ A(H) = 1 \\ 0, & sonst \end{cases}$$

• Falls F die Form $F = (G \lor H)$ hat, so ist

$$A(F) = \begin{cases} 1, \ falls \ A(G) = 1 \ oder \ A(H) = 1 \\ 0, \ sonst \end{cases}$$

• Falls F die Form $F = \forall xG$ hat, so ist

$$A(F) = \left\{ egin{array}{l} 1, \ falls \ f\"{u}r \ alle \ d \in U_A \ gilt: \ A_{[x/d]}(G) = 1 \ 0, \ sonst \end{array}
ight.$$

• Falls F die Form $F = \exists xG$ hat, so ist

$$A(F) = \left\{ egin{array}{l} 1, \ falls \ es \ ein \ d \in U_A \ gibt \ mit : \ A_{[x/d]}(G) = 1 \ 0, \ sonst \end{array}
ight.$$

Hierbei bedeutet $A_{[x/d]}$ diejenige Struktur A', die überall mit A identisch ist, bis auf die Definition von $x^{A'}$. Es sei nämlich $x^{A'}=d$, wobei $d\in U_A=U_{A'}$ — unabhängig davon, ob I_A auf x definiert ist oder nicht.

Beispiel

Es sei P ein zweistelliges Prädikatensymbol, Q ein einstelliges Prädikatensymbol, a eine Konstante, f ein einstelliges Funktionssymbol, und es seien x, y, z Variablen. Eine Struktur, die diesen Symbolen Werte zuordnet, ist gegeben durch $A = (U_A, I_A)$ mit $U_A = \{7, 8, 9\}$. Die Interpretationsfunktion I_A ist wie folgt definiert:

```
a^{A} = 7

x^{A} = 8

y^{A} = 9

Q^{A} = \{7, 9\}

P^{A} = \{(7, 8), (7, 9), (8, 9)\}

f^{A} = \{(7, 8), (8, 9), (9, 7)\}
```

Beispiel (2)

Zu bestimmen ist der Wahrheitswert der folgenden Formeln bezüglich A:

```
1. (Q(a) \square P(a, x)) \square (Q(f(a)) P(a, y))
```

- \square 2. $P(a, y) \square \square z P(z, a)$
- \Box 3. \Box z (Q(z) \Box P(a, z))

Modell, Gültigkeit, Erfüllbarkeit

Falls für eine Formel F und eine zu F passende Struktur A gilt A(F) = 1, so schreiben wir wieder $A \models F$.

Sprechweise: F gilt in A oder A ist Modell für F.

Falls jede zu F passende Struktur ein Modell für F ist, so schreiben wir $\models F$, andernfalls $\not\models F$.

Sprechweise: *F* ist (*allgemein*–)*gültig*).

Falls es mindestens ein Modell für die Formel F gibt, so heißt F erfüllbar, andernfalls unerfüllbar.

Aufgabe

G: Gültig E: Erfüllbar, aber nicht gültig U: Unerfüllbar

	G	Е	U
$\forall x P(a)$			
$\exists x (\neg P(x) \lor P(a))$			
$P(a) \to \exists x P(x)$			
$P(x) \to \exists x P(x)$			
$\forall x P(x) \to \exists x P(x)$			
$\forall x P(x) \land \neg \forall y P(y)$			
$\forall x (P(x,x) \to \exists x \forall y P(x,y))$			
$\forall x \forall y (x = y \to f(x) = f(y))$			
$\forall x \forall y (f(x) = f(y) \to x = y$			
$\exists x \exists y \exists z (f(x) = y \land f(x) = z \land y \neq z)$	-		_

Zusammenfassung, Kernpunkte

- Prädikatenlogik
 - Syntax, Formeln
 - Semantik, Belegung, Modell
 - Entscheidungsprobleme
 - Äquivalente Transformation von Formeln

Was kommt beim nächsten Mal?

- Logik und die systematische Entwicklung von Programmen
- Spezifikation und Programmverifikation