NumPy Exercises Now that we've learned about NumPy let's test your knowledge. We'll start off with a few simple tasks, and then you'll be asked some more complicated questions. Import NumPy as np import numpy as np Create an array of 10 zeros arr=np.zeros(10) Out[4]: array([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.]) Create an array of 10 ones arr=np.ones(10) Out[5]: array([1., 1., 1., 1., 1., 1., 1., 1., 1.]) Create an array of 10 fives arr = [5] * 10print(arr) [5, 5, 5, 5, 5, 5, 5, 5, 5] Create an array of the integers from 10 to 50 a=np.arange(10, 51, 1)Out[7]: array([10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]) Create an array of all the even integers from 10 to 50 a=np.arange(10,51,2)Out[8]: array([10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50]) Create a 3x3 matrix with values ranging from 0 to 8 a=np.arange(9).reshape(3,3) a Out[9]: array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) Create a 3x3 identity matrix a=np.eye(3)Out[10]: array([[1., 0., 0.], U., I., U.] [0., 0., 1.]]) Use NumPy to generate a random number between 0 and 1 np.random.rand() Out[11]: 0.6453164976111466 Use NumPy to generate an array of 25 random numbers sampled from a standard normal distribution a=np.random.rand() а Out[12]: 0.8380726565473757 Create the following matrix: a=np.arange(0.01, 1.01, 0.01)Out[13]: array([0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.11, $0.12,\ 0.13,\ 0.14,\ 0.15,\ 0.16,\ 0.17,\ 0.18,\ 0.19,\ 0.2\ ,\ 0.21,\ 0.22,$ $0.23,\ 0.24,\ 0.25,\ 0.26,\ 0.27,\ 0.28,\ 0.29,\ 0.3\ ,\ 0.31,\ 0.32,\ 0.33,$ 0.34, 0.35, 0.36, 0.37, 0.38, 0.39, 0.4, 0.41, 0.42, 0.43, 0.44, 0.45, 0.46, 0.47, 0.48, 0.49, 0.5, 0.51, 0.52, 0.53, 0.54, 0.55, 0.56, 0.57, 0.58, 0.59, 0.6, 0.61, 0.62, 0.63, 0.64, 0.65, 0.66, 0.67, 0.68, 0.69, 0.7, 0.71, 0.72, 0.73, 0.74, 0.75, 0.76, 0.77, $0.78,\ 0.79,\ 0.8\ ,\ 0.81,\ 0.82,\ 0.83,\ 0.84,\ 0.85,\ 0.86,\ 0.87,\ 0.88,$ $0.89,\ 0.9$, $0.91,\ 0.92,\ 0.93,\ 0.94,\ 0.95,\ 0.96,\ 0.97,\ 0.98,\ 0.99,$ Create an array of 20 linearly spaced points between 0 and 1: array = np.linspace(0, 1, 20)print(array) $0.05263158 \ 0.10526316 \ 0.15789474 \ 0.21052632 \ 0.26315789$ 0.31578947 0.36842105 0.42105263 0.47368421 0.52631579 0.57894737 0.63157895 0.68421053 0.73684211 0.78947368 0.84210526 0.89473684 0.94736842 1. Numpy Indexing and Selection Now you will be given a few matrices, and be asked to replicate the resulting matrix outputs: mat = np.arange(1, 26).reshape(5, 5)

In [3]:

In [4]:

In [5]:

In [6]:

In [8]:

In [9]:

In [10]:

In [11]:

In [12]:

In [19]:

In [58]:

In [0]:

In [41]:

In [0]:

In [29]:

In [0]:

In [51]:

In [33]:

In [0]:

In [32]:

In [59]:

In [60]:

In [61]:

mat

Out[58]: array([[1, 2, 3, 4, 5],

Out[41]: array([[12, 13, 14, 15],

print(20)

20

X

Out[51]: array([[2],

6, 7, 8, 9, 10], [11, 12, 13, 14, 15], [16, 17, 18, 19, 20], [21, 22, 23, 24, 25]])

BE ABLE TO SEE THE OUTPUT ANY MORE

[17, 18, 19, 20], [22, 23, 24, 25]])

BE ABLE TO SEE THE OUTPUT ANY MORE

BE ABLE TO SEE THE OUTPUT ANY MORE

BE ABLE TO SEE THE OUTPUT ANY MORE

BE ABLE TO SEE THE OUTPUT ANY MORE

np.arange(16, 26).reshape(2, 5)

Get the sum of all the values in mat

Get the sum of all the columns in mat

column = np.sum(mat, axis=0)

Get the standard deviation of the values in mat

[21, 22, 23, 24, 25]])

x=np.array([2,7,12])# x=x.reshape(3,1,1)

> [7], [12]])

7], [12]])

np.arange(21, 26)

Out[33]: array([21, 22, 23, 24, 25])

Out[32]: array([[16, 17, 18, 19, 20],

sum = np.sum(mat)

print(sum)

np.std(mat)

print(column)

[55 60 65 70 75]

Out[60]: 7.211102550927978

Now do the following

np.array([[2],

np.array([[12, 13, 14, 15],

[17, 18, 19, 20], [22, 23, 24, 25]])

WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T

WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T

WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T

WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T

WRITE CODE HERE THAT REPRODUCES THE OUTPUT OF THE CELL BELOW # BE CAREFUL NOT TO RUN THE CELL BELOW, OTHERWISE YOU WON'T