Федеральное государственное автономное образовательное учреждение высшего образования

Санкт-Петербургский Политехнический университет Петра Великого Физико-Механический институт

Лабораторная 1

Выполнил студент гр. 5030102/20101:	Бугайцев М.В.	
Преподаватель:	Баженов А. Н.	
Работа принята:	Дата	

Содержание

1	Введение	2
2	Теоретическая часть	3
	2.1 Нормальное распределение $N(x,0,1)$	3
	2.2 Распределение Коши $C(x,0,1)$	3
	2.5 Статистические характеристики	3
3	Практическая часть	4
	3.1 Нормальное распределение	
	3.2 Распределение Коши	
	3.4 Распределение Пуассона	
4	Заключение	8

1 Введение

Задание 1

Для 4 распределений:

- ullet Нормальное распределение N(x,0,1)
- ullet Распределение Коши C(x,0,1)
- ullet Распределение Пуассона P(k,10)
- Равномерное распределение $U(x,-\sqrt{3},\sqrt{3})$

1. Гистограммы и плотности распределений

Сгенерировать выборки размером 10, 50 и 1000 элементов. Построить на одном рисунке гистограмму и график плотности распределения.

2. Статистические характеристики положения данных

Стенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных:

- ullet Среднее значение \bar{x}
- Медиана *medx*
- ullet Полусумма квартилей $z_Q = rac{z_{1/4} + z_{3/4}}{2}$

Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2$$

Представить полученные данные в виде таблиц.

2 Теоретическая часть

2.1 Нормальное распределение N(x, 0, 1)

Нормальное распределение, также известное как гауссово распределение, является непрерывным распределением, которое описывается своей плотностью вероятности:

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$$

2.2 Распределение Коши C(x, 0, 1)

Распределение Коши — это непрерывное распределение, которое имеет плотность вероятности:

$$f(x) = \frac{1}{\pi(1+x^2)}$$

2.3 Распределение Пуассона P(k, 10)

Плотность вероятности распределения Пуассона задается формулой:

$$P(k;\lambda) = \frac{\lambda^k e^{-\lambda}}{k!}$$

где $\lambda = 10$

2.4 Равномерное распределение $U(x, -\sqrt{3}, \sqrt{3})$

Равномерное распределение — это распределение, в котором все значения в заданном интервале имеют одинаковую вероятность. Плотность вероятности равномерного распределения задается следующим образом:

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{если } a \le x \le b\\ 0 & \text{иначе} \end{cases}$$

где $a=-\sqrt{3}$ и $b=\sqrt{3}$. В данном случае, равномерное распределение имеет фиксированную ширину интервала, и его среднее значение равно $\frac{a+b}{2}=0$, а дисперсия равна $\frac{(b-a)^2}{12}=1$.

2.5 Статистические характеристики

Для каждой выборки, сгенерированной из указанных распределений, будут вычислены следующие статистические характеристики положения данных:

- ullet Среднее значение (\bar{x}) сумма всех элементов выборки, деленная на их количество.
- \bullet Медиана (med_x) значение, делящее выборку на две равные части.
- Квартильный показатель (z_Q) , рассчитываемый по формуле:

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2}$$

где $z_{1/4}$ и $z_{3/4}$ — первый и третий квартиль выборки.

3 Практическая часть

3.1 Нормальное распределение

- (а) Гистограмма и график плотности при n=10
- (b) Гистограмма и график плотности при n=50

Рис. 1: Гистограммы и графики плотности для нормального распределения

Таблица 1: Результаты для нормального распределения

	E(meanx)	D(meanx)	E(medx)	D(medx)	$E(z_Q)$	$D(z_Q)$
Размер выборки: 10	0	$10 \cdot 10^{-2}$	0	$1 \cdot 10^{-1}$	0	$1 \cdot 10^{-1}$
Размер выборки: 100	0	$10 \cdot 10^{-3}$	0	$2 \cdot 10^{-2}$	0	$1 \cdot 10^{-2}$
Размер выборки: 1000	0	$1 \cdot 10^{-3}$	0	$2 \cdot 10^{-3}$	0	$1 \cdot 10^{-3}$

3.2 Распределение Коши

- (а) Гистограмма и график плотности при n=10
- (b) Гистограмма и график плотности при n=50

Рис. 2: Гистограммы и графики плотности для распределения Коши

Таблица 2: Результаты для распределения Коши

	E(meanx)	D(meanx)	E(medx)	D(medx)	$E(z_Q)$	$D(z_Q)$
Размер выборки: 10	0	$1 \cdot 10^{3}$	0	$3 \cdot 10^{-1}$	0	$8 \cdot 10^{-1}$
Размер выборки: 100	0	$10 \cdot 10^3$	0	$2 \cdot 10^{-2}$	0	$5 \cdot 10^{-2}$
Размер выборки: 1000	0	$9 \cdot 10^{3}$	0	$2 \cdot 10^{-3}$	0	$5 \cdot 10^{-3}$

3.3 Равномерное распределение

- (а) Гистограмма и график плотности при n=10
- (b) Гистограмма и график плотности при n=50

Рис. 3: Гистограммы и графики плотности для равномерного распределения

Таблица 3: Результаты для равномерного распределения

	E(meanx)	D(meanx)	E(medx)	D(medx)	$E(z_Q)$	$D(z_Q)$
Размер выборки: 10	0	$10 \cdot 10^{-2}$	0	$2 \cdot 10^{-1}$	0	$1 \cdot 10^{-1}$
Размер выборки: 100	0	$1 \cdot 10^{-2}$	0	$3 \cdot 10^{-2}$	0	$2 \cdot 10^{-2}$
Размер выборки: 1000	0	$10 \cdot 10^{-4}$	0	$3 \cdot 10^{-3}$	0	$2 \cdot 10^{-3}$

3.4 Распределение Пуассона

- (а) Гистограмма и график плотности при n=10
- (b) Гистограмма и график плотности при n=50

Рис. 4: Гистограммы и графики плотности для распределения Пуассона

Таблица 4: Результаты для распределения Пуассона

	E(meanx)	D(meanx)	E(medx)	D(medx)	$E(z_Q)$	$D(z_Q)$
Размер выборки: 10	10	$10 \cdot 10^{-1}$	9	1	9	1
Размер выборки: 100	10	$1 \cdot 10^{-1}$	10	$2 \cdot 10^{-1}$	10	$2 \cdot 10^{-1}$
Размер выборки: 1000	10	$10 \cdot 10^{-3}$	10	$4 \cdot 10^{-3}$	10	$2 \cdot 10^{-3}$

4 Заключение

В ходе работы были исследованы четыре распределения: нормальное, Коши, Пуассона и равномерное. Сгенерированы выборки размером 10, 50 и 1000 элементов для анализа их характеристик.

В первой части построены гистограммы и графики плотности, что позволило визуально оценить формы распределений. Во второй части вычислены математическое ошидание и дисперсию для среднего значения, медианы и полусуммаыквартилей для каждой выборки, а результаты представлены в таблицах.

Анализ показал следующее:

- **Нормальное распределение**: С увеличением размера выборки наблюдается уменьшение дисперсии для всех величин, а математическое ожидание стремится к теоретическому значению.
- **Распределение Коши**: Не имеет определённого математического ожидания и дисперсии для среднего, однако для медианы и полусуммы квартилей значения стремятся к теоретическим.
- Равномерное распределение: С увеличением размера выборки наблюдается снижение дисперсии, а математическое ожидание также стремится к теоретическому значению.
- Распределение Пуассона: С увеличением размера выборки уменьшается дисперсия для всех величин, а математическое ожидание приближается к теоретическому.