中间表示: 活性分析

编译原理 华保健 bjhua@ustc.edu.cn

进行活性分析的动机

- 在代码生成的讨论中,我们曾假设目标机器有无限多个(虚拟)寄存器可用
 - 简化了代码生成的算法
 - 对物理机器是个坏消息
 - 机器只有有限多个寄存器
 - 必须把无限多个虚拟寄存器分配到有限个寄存器中
- 这是寄存器分配优化的任务
 - 需要进行活性分析

- 示例

考虑这段三地址码:

$$a = 1$$

$$b = a + 2$$

$$c = b + 3$$

return c

有三个变量a, b, c.

假设目标机器上只有 一个物理寄存器: r.

是否可能把三个变量 a, b, c同时放到寄 存器r中?

示例

考虑这段三地址码:

计算在给定的程序 点,哪些变量是"活 跃"的

活跃信息给出了活跃区间的概念.

活跃区间互不相交, 所以三个变量可<mark>交替</mark> 使用同一个寄存器。

示例

考虑这段三地址码:

寄存器分配:

$$a => r$$

$$b => r$$

$$c => r$$

代码重写:

$$r = 1$$

$$r = r + 2$$

$$r = r + 3$$

return r

数据流方程

对任何一条语句:

```
[d: s]
```

$1: \mathbf{x} = \mathbf{y} + \mathbf{z}$

$$2: z = z + x$$

给出两个集合:

```
gen[d: s] = {x | 变量x在语句s中被使用}
kill[d: s] = {x | 变量x在语句s中被定义}
```

数据流方程

■ 基本块内的后向数据流方程:

$$out[s_i] = in[s_{i+1}]$$

 $in[s] = gen[s] U (out[s] - kill[s])$

// 示例1: a = 1 int b = a + 2 out c = b + 3

return c

// 示例2:

$$a = 1$$

$$b = a + 2$$

$$c = b + 3$$

return a + c

一般的数据流方程

■ 方程:

```
out[s] = U_{p \in succ[s]} in[p]
in[s] = gen[s] \cup (out[s]-kill[s])
```

- 同样可给出不动点算法
 - 从初始的空集{}出发
 - 循环到没有集合变化为止

$$out[s] = \bigcup_{p \in succ[s]} in[p]$$

 $in[s] = gen[s] \cup (out[s]-kill[s])$

示例

Final	live	out

	in/out	in/out	in/out	in/out in/out	
1	{} {}	{} {}	{} {a}		
2	{} {}	{a} {}	{a} {b,c}	•••	
3	{} {}	{b,c} {}	{b,c}{b}	•••	
4	{} {}	{b} {}	{b}{a,c}	•••	
5	{} {}	{a} {a}	{a}{a,c}	•••	
6	{} {}	{c} {}	{c} {}	•••	

语句的遍历顺序: 1, 2, 3, 4, 5, 6

node	1	2	3	4	5	6
def	{a}	{b}	{c}	{a}	{}	{}
use	{}	{a}	{b, c}	{b}	{a, N}	{c}

干扰图

Final live_out

干扰图是一个无向图G=(V, E):

- 1. 对每个变量构造无向图G中一个节点;
- 2. 若变量x,y同时活跃,在x、y间连一条无向边。

