

UNIVERSIDADE FEDERAL DE ALAGOAS INSTITUTO DE COMPUTAÇÃO CURSO DE ENGENHARIA DE COMPUTAÇÃO

RELATÓRIO DA EXPERIÊNCIA Nº 01 IDENTIFICAÇÃO DE SISTEMAS UTILIZANDO MÉTODOS DETERMINÍSTICOS

Tayco Murilo Santos Rodrigues - 17211250

IDENTIFICAÇÃO DE SISTEMAS UTILIZANDO MÉTODOS DETERMINÍSTICOS

Primeiro Relatório Parcial apresentado à disciplina de Introdução à Identificação de Sistemas, correspondente à avaliação do semestre 2023.1 do 10º período do curso de Engenharia de Computação da Universidade Federal de Alagoas, sob orientação do Prof. Ícaro Bezerra Queiroz de Araújo.

RESUMO

Este relatório científico apresenta uma avaliação de seis conjuntos de dados utilizando métodos determinísticos para identificação de sistemas. Os métodos analisados foram: Ziegler-Nichols, Hägglund, Smith, Sundaresan/Krishnaswamy e Mollenkamp. O desempenho dos resultados obtidos por cada método foi avaliado utilizando quatro métricas: IAE (Integral Absolute Error), ISE (Integral Square Error), ITAE (Integral Time Absolute Error) e MAE (Mean Absolute Error).

Os conjuntos de dados foram selecionados para representar diferentes tipos de sistemas e foram aplicados aos métodos determinísticos mencionados. Cada método foi implementado de acordo com suas respectivas formulações e parâmetros recomendados.

Após a aplicação dos métodos, os resultados foram comparados utilizando as métricas IAE, ISE, ITAE e MAE. Essas métricas são amplamente utilizadas na área de identificação de sistemas e fornecem medidas quantitativas do desempenho dos métodos em relação ao sistema real.

Palavras-Chave: Sistemas de Controle; identificação de sistemas; métodos determinísticos; Ziegler-Nichols; Hägglund; Smith; Sundaresan/Krishnaswamy; Mollenkamp; IAE; ISE; ITAE; MSE.

Lista de Símbolos

heta	posição angular
ω	velocidade angular
au	Torque
m	massa
I	momento de inercia
v	velocidade do corpo
k_e	energia cinética
\dot{x}	primeira derivada
\ddot{x}	segunda derivada
$\frac{\partial}{\partial x}$	Derivada parcial com respeito à variável \boldsymbol{x}
t_s	tempo de pico
t_r	tempo de subida
t_s	tempo de acomodação
M_p	sobressinal máximo
V	grandeza associada a tensão
R	grandeza associada a resistência
L	grandeza associada a indutância
A	grandeza associada a corrente
S	plano S
Z	plano Z
R(s)	sinal de referência
E(s)	erro associado ao sinal
U(s)	sinal de entrada para a planta
Y(s)	saída do sistema
D(s)	distúrbio externo ao sistema
k_p	ganho proporcional
k_i	ganho integrativo
k_d	ganho derivativo
u[k]	entrada discretizada do sistema
e[k]	erro discretizado do sistema
T_s	período de amostragem
h	período de amostragem no domínio discreto
\mathcal{L}_{0}	variável Lagrangiana
${\mathscr L}$	trasnformada de Laplace

Lista de Abreviaturas e Siglas

IAE	Integral Absolute Error
ISE	Integral Square Error
ITAE	Integral Time Absolute Error
MSE	Mean Squared Error
ZN	Ziegler / Nichols
HAG	Hägglund

Lista de Figuras

Ţ	Descrição simplificada de um Sistema de Controle	1(
2	Reta tangente sobreposta à resposta do Sistema	13
3	Reta tangente ao ponto de máxima flexão	25
4	Sinal de saída para o método Ziegler / Nichols	25
5	Sinal de saída para o método Hägglund	26
6	Sinal de saída para o método Smith	26
7	Sinal de saída para o método Sundaresan / Krishnaswamy	27
8	Sinal de saída para o método Mollenkamp	27
9	Reta tangente ao ponto de máxima flexão	29
10	Sinal de saída para o método Ziegler / Nichols	29
11	Sinal de saída para o método Hägglund	30
12	Sinal de saída para o método Smith	30
13	Sinal de saída para o método Sundaresan / Krishnaswamy	31
14	Sinal de saída para o método Mollenkamp	31
15	Reta tangente ao ponto de máxima flexão	33
16	Sinal de saída para o método Ziegler / Nichols	33
17	Sinal de saída para o método Hägglund	34
18	Sinal de saída para o método Smith	34
19	Sinal de saída para o método Sundaresan / Krishnaswamy	35
20	Sinal de saída para o método Mollenkamp	35
21	Reta tangente ao ponto de máxima flexão	37
22	Sinal de saída para o método Ziegler / Nichols	37
23	Sinal de saída para o método Hägglund	38
24	Sinal de saída para o método Smith	38
25	Sinal de saída para o método Sundaresan / Krishnaswamy	39
26	Sinal de saída para o método Mollenkamp	39
27	Reta tangente ao ponto de máxima flexão	41
28	Sinal de saída para o método Ziegler / Nichols	41
29	Sinal de saída para o método Hägglund	42
30	Sinal de saída para o método Smith	42
31	Sinal de saída para o método Sundaresan / Krishnaswamy	43
32	Sinal de saída para o método Mollenkamp	43
33	Reta tangente ao ponto de máxima flexão	45
34	Sinal de saída para o método Ziegler / Nichols	45
35	Sinal de saída para o método Hägglund	46
36	Sinal de saída para o método Smith	46
37	Sinal de saída para o método Sundaresan / Krishnaswamy	47

38	Sinal de saída para o método Mollenkamp	 47

Sumário

1	Inti	rodução	9
	1.1	Contextualização	9
	1.2	Objetivos	9
	1.3	Motivação	9
2	Fun	ndamentação teórica	10
	2.1	Introdução a Sistemas de Controle	10
	2.2	Sistemas de Primeira Ordem	10
	2.3	Sistemas de Segunda Ordem	11
	2.4	Identificação de Sistemas	12
		2.4.1 Método de identificação Ziegler / Nichols (ZN)	12
		2.4.2 Método de identificação Hägglund (HAG)	13
		2.4.3 Método de identificação de $Smith$	14
		2.4.4Método de identificação de $Sundares an~e~Krishnaswamy~.~.~.$	14
		2.4.5 Método de identificação de $Mollenkamp$	15
	2.5	Funções de custo	15
		2.5.1 Erro médio quadrático - Mean Squared Error (MSE)	15
		$2.5.2$ Integral do módulo do erro - Integral Absolute Error (IAE)	16
		2.5.3	17
		2.5.4 Integral do módulo do erro vezes o tempo - Integral Time	
		Absolute Error $(ITAE)$	17
	2.6	Filtro de Média Móvel com Janela Variável	18
3	Me	todologia	20
	3.1	Leitura dos dados	20
	3.2	Filtragem dos dados	20
	3.3	Estimação dos Parâmetros	21
	3.4	Avaliação do Modelo estimado	22
4	Res	sultados	24
	4.1	Resultados para o conjunto de dados 1	24
	4.2	Resultados para o conjunto de dados 2	28
	4.3	Resultados para o conjunto de dados 3	32
	4.4	Resultados para o conjunto de dados 4	36
	4.5	Resultados para o conjunto de dados 5	40
	4.6	Resultados para o conjunto de dados 6	44
5	Cor	nclusão	48

1 Introdução

1.1 Contextualização

Entende-se por modelagem e identificação a determinação do modelo matemático de um sistema representando os seus aspectos essenciais de forma adequada para uma utilização particular (Ljung and Glad, 1994).

1.2 Objetivos

Este documento descreve os experimentos realizados com o objetivo de estimar os hiperparâmetros das Funções de Transferência de sistemas de primeira e segunda ordem. Para os sistemas de primeira ordem, os hiperparâmetros estimados são τ , K e θ , enquanto para os sistemas de segunda ordem, são estimados τ , K, ω_n e ζ .

A partir desses hiperparâmetros, serão conduzidos experimentos utilizando ambientes computacionais, como o MATLAB. Esses experimentos visam validar as Funções de Transferência parametrizadas, utilizando métodos de avaliação de erros.

1.3 Motivação

A motivação por trás desses experimentos é promover a modelagem de sistemas reais no contexto de sistemas de controle. Através da estimativa dos hiperparâmetros e da validação das Funções de Transferência, busca-se uma aproximação mais precisa e eficiente entre os modelos matemáticos e os sistemas reais.

Esses experimentos permitem a simulação e realização de testes empíricos, possibilitando um melhor entendimento e aprimoramento dos sistemas de controle. Além disso, o uso de ferramentas computacionais oferece maior flexibilidade e facilidade na implementação e análise dos modelos, contribuindo para a evolução e otimização dos sistemas de controle em diversos domínios de aplicação.

2 Fundamentação teórica

2.1 Introdução a Sistemas de Controle

Um sistema de controle consiste em subsistemas e processos (ou plantas) construídos com o objetivo de se obter uma saída desejada com um desempenho desejado, dada uma entrada especificada. A Figura 1 mostra um sistema de controle em sua forma mais simples, na qual a entrada representa uma saída desejada.

Figura 1: Descrição simplificada de um Sistema de Controle.

A figura acima pode ter sua arquitetura interna representada de duas formas: Malha aberta e Malha Fechada; sua ordem também pode variar. Nesse documento são discutidos experimentos que aproximam os dados para sistemas de primeira e segunda ordem.

2.2 Sistemas de Primeira Ordem

Sistemas de primeira ordem podem ser analisados no domínio da frequência por meio da Transformada de Laplace. Nesse domínio, a equação diferencial de um sistema de primeira ordem é representada pela função de transferência.

A função de transferência de um sistema de primeira ordem, no domínio da frequência, é definida como:

$$G(s) = \frac{K}{\tau s + 1} e^{-\theta s} \tag{2.2.1}$$

onde s é a variável complexa da frequência, K é o ganho estático e τ é a constante de tempo.

A função de transferência descreve a relação entre a transformada de Laplace da saída X(s) e a transformada de Laplace da entrada U(s) do sistema. Ela permite analisar o comportamento do sistema em termos de ganho e fase em diferentes frequências. Abaixo é apresentada a resposta típica de um sistema de primeira ordem à um Degrau unitário.

Resposta típica ao Degrau unitário de um Sistema de Primeira Ordem

2.3 Sistemas de Segunda Ordem

Um sistema de segunda ordem é um tipo de sistema dinâmico cujo comportamento pode ser descrito no domínio da frequência por meio da função de transferência. A função de transferência de um sistema de segunda ordem é definida como:

$$G(s) = \frac{K}{s^2 + 2\zeta\omega_n s + \omega_n^2} e^{-\theta s}$$
 (2.3.1)

onde:

- G(s) é a função de transferência do sistema,
- s é a variável complexa que representa a frequência complexa,
- K é o ganho do sistema,
- ζ é o coeficiente de amortecimento,
- ω_n é a frequência natural não amortecida.

No domínio da frequência, a função de transferência representa a relação entre a transformada de Laplace da saída e a transformada de Laplace da entrada do sistema.

A resposta em frequência de um sistema de segunda ordem é caracterizada pela presença de dois polos complexos conjugados no plano complexo s. Os polos são determinados pelos valores de ζ e ω_n . O coeficiente de amortecimento ζ afeta a forma da resposta em frequência, enquanto a frequência natural não amortecida ω_n determina a frequência de pico do sistema. Abaixo é apresentada a resposta típica de um sistema de segunda ordem **subamortecido** à um Degrau unitário.

Resposta típica ao Degrau unitário de um Sistema de Segunda Ordem

2.4 Identificação de Sistemas

Na nálise e projeto de sistemas de controle, deve-se adotar uma base de comparação entre os vários sistemas avaliados. Esta base pode ser obtida especificando-se os sinais particulares de entrada e comparando-se as respostas dos sistemas.(Coelho, A.A.R. and dos Santos Coelho, L. 2004). As características de um sistema podem ser obtidas a partir do conheciento da resposta ao sinal de entrada.

Neste tópico serão descritos métodos clássicos/Determinísticos para Modelagem de Processos. São eles:

- Ziegler / Nichols;
- Hägglund;
- Smith $(1^{\underline{a}} e 2^{\underline{a}} ordem)$;
- Sundaresan / Krishnaswamy;
- Mollenkamp.

Por dependerem de uma reta tangente, os métodos de ZN e HAG apresentam sensibilidade na presença de ruído. (Coelho, A.A.R. and dos Santos Coelho, L. 2004).

2.4.1 Método de identificação Ziegler / Nichols (ZN)

Este método é apropriado para estimar Funções de Transferência de primeira ordem, no formato descrito em (2.2.1). No método de Ziegler / Nichols (ZN), os parâmetros K, τ e θ são estimados partindo da reta tangente ao ponto de máxima inclinação da curva de resposta do sistema conforme é ilustrado na figura (2). De forma que o atraso θ é calculado pelo intervalo de tempo entre a aplicação do sinal

na entrada e o instante L em que a reta tangente toca a reta y(t) = y(0). Desta forma:

$$\theta = L \tag{2.4.1.1}$$

Temos também a constante de tempo τ que é determinada pelo intervalo de tempo entre L e o instante de tempo em que a curva de resposta do sistema alcança o valor $y(t) = y(0) + 0.63y(\infty)$. Desta forma:

$$\tau = y(\infty) - L \tag{2.4.1.2}$$

Figura 2: Reta tangente sobreposta à resposta do Sistema.

Fonte: PROJETO DE CONTROLADORES PI E PID PARA UM FORNO AQUECEDOR DE ÓLEO DE UMA PLANTA DE TRATAMENTO DE HIDROCARBONETOS, p.: 7, VASCONCELLOS, A. 2017)

O parâmetro K é calculado fazendo-se uso da variação da resposta do sistema sobre a variação do sinal de entrada, Desta forma:

$$K = \frac{\Delta y}{\Delta u} \tag{2.4.1.3}$$

2.4.2 Método de identificação Hägglund (HAG)

Este método é apropriado para estimar Funções de Transferência de primeira ordem, no formato descrito em (2.2.1). No método de Hägglund (HAG), os parâmetros K, τ e θ são estimados partindo da reta tangente ao ponto de máxima inclinação da curva de resposta do sistema conforme é ilustrado na figura (2). De forma que o atraso θ é calculado pelo intervalo de tempo entre a aplicação do sinal na entrada e o instante L em que a reta tangente toca a reta y(t) = y(0). Desta forma:

$$\theta = L \tag{2.4.2.1}$$

Temos também a constante de tempo τ que é determinada pelo intervalo de tempo entre L e o instante de tempo em que a curva de resposta do sistema alcança o valor $y(t) = y(0) + 0.63y(\infty)$. Desta forma:

$$\tau = [y(0) + 0.63 \cdot y(\infty)] - L \tag{2.4.2.2}$$

O parâmetro K é calculado fazendo-se uso da variação da resposta do sistema sobre a variação do sinal de entrada, Desta forma:

$$K = \frac{\Delta y}{\Delta u} \tag{2.4.2.3}$$

2.4.3 Método de identificação de Smith

Este método é apropriado para estimar Funções de Transferência de primeira ordem, no formato descrito em (2.2.1). Sobre a curva de reação do sistema são marcados os instantes de tempo t_1 e t_2 correspondentes às passagens da resposta pelos pontos $y(0) + 0.283 \cdot y(\infty)$ e $y(0) + 0.632 \cdot y(\infty)$ respectivamente. Dessa forma:

$$K = \frac{\Delta y}{\Delta u} \tag{2.4.3.1}$$

$$\tau = 1.5(t_2 - t_1) \tag{2.4.3.2}$$

$$\theta = t_2 - \tau \tag{2.4.3.3}$$

2.4.4 Método de identificação de Sundaresan e Krishnaswamy

Este método é apropriado para estimar Funções de Transferência de primeira ordem, no formato descrito em (2.2.1). O método de Sundaresan e Krishnaswamy similar ao método de Smith, evita o uso da reta tangente para identificação dos parâmetros. Sobre a curva de reação do sistema são marcados os instantes de tempo t_1 e t_2 correspondentes às passagens da resposta pelos pontos $y(0) + 0.353 \cdot y(\infty)$ e $y(0) + 0.853 \cdot y(\infty)$ respectivamente. Dessa forma:

$$K = \frac{\Delta y}{\Delta u} \tag{2.4.4.1}$$

$$\tau = 0.67(t_2 - t_1) \tag{2.4.4.2}$$

$$\theta = 1.3t_1 - 0.29t_2 \tag{2.4.4.3}$$

2.4.5 Método de identificação de Mollenkamp

Este método é apropriado para estimar Funções de Transferência de segunda ordem, no formato descrito em (2.3.1). Sobre a curva de reação do sistema são identificados três pontos, t_1 , t_2 e t_3 , que são respectivamente os instantes de tempo que a saída leva para alcançar 15%,45% 75% da mudança total final. Com base nestes instantes de tempo, os parâmetros do modelo de segunda ordem são calculados da seguinte forma:

$$x = \frac{t_2 - t_1}{t_3 - t_1} \tag{2.4.5.1}$$

$$\zeta = \frac{0.0805 - 5.547(0.475 - x)^2}{(x - 0.356)} \tag{2.4.5.2}$$

$$\begin{cases} f_2(\zeta) = (0.708)(2.811)^{\zeta} & \text{se } \zeta < 1\\ f_2(\zeta) = 2.6\zeta - 0.60 & \text{se } \zeta \ge 1 \end{cases}$$
 (2.4.5.3)

$$\omega_n = \frac{f_2(\zeta)}{t_3 - t_1} \tag{2.4.5.4}$$

$$f_3(\zeta) = (0.922)(1.66)^{\zeta}$$
 (2.4.5.5)

$$\theta = t_2 - \frac{f_3(\zeta)}{\omega_n} \tag{2.4.5.6}$$

$$\tau_{1,2} = \frac{\zeta \pm \sqrt{\zeta^2 - 1}}{\omega_n} \tag{2.4.5.7}$$

De forma que: $t_1 = y(0) + 0.15 \cdot y(\infty), t_2 = y(0) + 0.45 \cdot y(\infty)$ e $t_3 = y(0) + 0.75 \cdot y(\infty)$.

2.5 Funções de custo

2.5.1 Erro médio quadrático - Mean Squared Error (MSE)

O Erro Médio Quadrático (MSE - Mean Squared Error) é uma métrica utilizada para avaliar a qualidade de um modelo em relação aos valores reais ou observados. Ele mede a média dos quadrados das diferenças entre as previsões do modelo e os valores reais. O MSE é frequentemente utilizado em problemas de regressão, onde se deseja estimar um valor contínuo a partir de um conjunto de variáveis independentes.

A fórmula do MSE é dada por:

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$
 (2.5.1)

Onde:

n é o número total de amostras,

 y_i representa o valor real ou observado da amostra i,

 \hat{y}_i é a previsão do modelo para a amostra i.

A fórmula calcula a diferença entre o valor real e a previsão do modelo para cada amostra, eleva essa diferença ao quadrado e tira a média desses quadrados para obter o MSE.

O MSE fornece uma medida da dispersão dos erros ao quadrado entre as previsões e os valores reais. Quanto menor o valor do MSE, melhor é a qualidade do modelo, pois indica que as previsões estão mais próximas dos valores reais. No entanto, o MSE penaliza erros grandes de forma mais significativa devido à sua natureza quadrática.

2.5.2 Integral do módulo do erro - Integral Absolute Error (IAE)

O Erro Absoluto Integral (IAE - Integral Absolute Error) é uma métrica utilizada para avaliar a qualidade de um sistema ou modelo em relação aos valores reais ou observados ao longo do tempo. Ele quantifica a soma das diferenças absolutas entre as previsões do sistema/modelo e os valores reais, considerando o período de tempo em análise. O IAE é comumente utilizado em problemas de controle e otimização.

A fórmula do IAE é dada por:

$$IAE = \int_{t_0}^{t_f} |y(t) - \hat{y}(t)| dt$$
 (2.5.2)

Onde:

 t_0 é o tempo inicial,

 t_f é o tempo final,

y(t) representa o valor real ou observado no instante de tempo t,

 $\hat{y}(t)$ é a previsão do sistema/modelo no instante de tempo t.

A fórmula calcula a diferença absoluta entre o valor real e a previsão do sistema/modelo para cada instante de tempo e integra essas diferenças ao longo do período de tempo considerado.

O IAE fornece uma medida da magnitude total dos erros absolutos entre as previsões e os valores reais ao longo do tempo. Quanto menor o valor do IAE, melhor é a qualidade do sistema/modelo, pois indica que as previsões estão mais próximas dos valores reais.

2.5.3 Integral dos erros ao quadrado - Integral Square Error (ISE)

O Erro Quadrático Integral (ISE - Integral Square Error) é uma métrica utilizada para avaliar a qualidade de um sistema ou modelo em relação aos valores reais ou observados ao longo do tempo. Ele quantifica a soma dos quadrados das diferenças entre as previsões do sistema/modelo e os valores reais, considerando o período de tempo em análise. O ISE é frequentemente utilizado em problemas de controle e otimização.

A fórmula do ISE é dada por:

$$ISE = \int_{t_0}^{t_f} (y(t) - \hat{y}(t))^2 dt$$
 (2.5.3)

Onde:

 t_0 é o tempo inicial,

 t_f é o tempo final,

- y(t) representa o valor real ou observado no instante de tempo t,
- $\hat{y}(t)$ é a previsão do sistema/modelo no instante de tempo t.

A fórmula calcula a diferença ao quadrado entre o valor real e a previsão do sistema/modelo para cada instante de tempo e integra esses quadrados ao longo do período de tempo considerado.

O ISE fornece uma medida da magnitude total dos erros quadráticos entre as previsões e os valores reais ao longo do tempo. Quanto menor o valor do ISE, melhor é a qualidade do sistema/modelo, pois indica que as previsões estão mais próximas dos valores reais.

2.5.4 Integral do módulo do erro vezes o tempo - Integral Time Absolute Error (ITAE)

O Erro Absoluto Integral ao Tempo (ITAE - Integral Time Absolute Error) é uma métrica utilizada para avaliar a qualidade de um sistema de controle em relação aos valores desejados ao longo do tempo. Ele quantifica a soma das diferenças absolutas ponderadas pelo tempo entre as respostas do sistema e os valores de referência. O ITAE é comumente utilizado na sintonia de controladores.

A fórmula do ITAE é dada por:

$$ITAE = \int_{t_0}^{t_f} t \cdot |y(t) - r(t)| dt$$
 (2.5.4)

Onde:

 t_0 é o tempo inicial,

 t_f é o tempo final,

y(t) representa a resposta do sistema no instante de tempo t,

r(t) é o valor de referência no instante de tempo t.

A fórmula calcula a diferença absoluta ponderada pelo tempo entre a resposta do sistema e o valor de referência para cada instante de tempo e integra esses termos ao longo do período de tempo considerado.

O ITAE fornece uma medida da magnitude total das diferenças absolutas ponderadas pelo tempo entre as respostas do sistema e os valores de referência ao longo do tempo. O objetivo é minimizar o valor do ITAE para obter uma resposta mais precisa e rápida do sistema em relação aos valores desejados.

2.6 Filtro de Média Móvel com Janela Variável

O Filtro de Média Móvel com Janela Variável é uma técnica de processamento de sinais utilizada para suavizar uma série temporal ou um sinal discreto, calculando a média ponderada dos valores próximos em uma janela com tamanho variável. A janela é definida para incluir um número específico de pontos próximos, e a média é ponderada para atribuir mais importância aos pontos centrais da janela.

A fórmula para o Filtro de Média Móvel com Janela Variável é dada por:

$$y(n) = \frac{1}{\sum_{i=-k}^{k} w(i)} \sum_{i=-k}^{k} w(i) \cdot x(n+i)$$

Onde:

y(n) é o valor filtrado no instante de tempo discreto n,

x(n) é o valor original no instante de tempo discreto n,

k é o tamanho da janela (metade do tamanho total),

w(i) são os pesos atribuídos aos pontos dentro da janela,

$$\sum_{i=-k}^{k} w(i) \text{ \'e a soma dos pesos.}$$

A fórmula calcula a média ponderada dos pontos dentro da janela variável, onde o valor filtrado y(n) é dado pela soma ponderada dos valores originais x(n+i) multiplicados pelos pesos w(i) correspondentes. A soma dos pesos normaliza o resultado para garantir que a média seja corretamente calculada.

A técnica de Filtro de Média Móvel com Janela Variável é amplamente utilizada em áreas como processamento de sinais, análise de dados e controle, onde a suavização dos dados é desejada enquanto se leva em consideração a importância relativa dos pontos próximos.

3 Metodologia

De maneira geral, a metodologia aplicada na realização do experimento consistiu inicialmente em coletar as informações de saída do sistema quando o mesmo é submetido a um sinal de entrada do tipo degrau. Essas informações estão presentes em um arquivo, onde na primeira coluna temos a amplitude do sinal e na segunda coluna temos o instante de tempo em que o mesmo ocorreu.

Uma vez que os dados foram coletados e armazenados em variáveis, foi realizada um filtragem para amenizar o ruído presente. O tipo de filtro utilizado foi o Filtro de Média Móvel com Janela Variável, ver seção (2.6).

Com os dados filtrados, foi realizada a estimação dos parâmetros fazendo uso dos diferentes tipos de algoritmos supracitados na seção (2.4). Por fim, os resultados foram avaliados com os métodos descritos na seção (2.5). Um gráfico exibindo a resposta do sistema estimado sobre os dados do sistema real é exibido para melhor visualização dos resultados.

3.1 Leitura dos dados

As informações do sinal de saída estavam presentes em um arquivo .txt e sua leitura foi feita usando a função load presente no Matlab. O trecho de código responsável por essa tarefa é mostrado abaixo:

```
%Carregando o conjunto de dados
data = load('dados.txt');
time = (data(:, 2));
output = data(:, 1);
```

Listing 1: Leitura dos dados. Fonte: Autor.

No código acima os valores de tempo são armazenados na variável time enquanto a amplitude do sinal no instante de tempo em questão se encontra em output.

3.2 Filtragem dos dados

A filtragem de dados foi realizada após sua coleta e armazenamento. O trecho de código responsável por essa tarefa é mostrado abaixo:

```
%filtrando os dados (filtro de m dia m vel)
window_size = 10;
figure;
f_output = movmean_filter(output, window_size);
```

Listing 2: Filtragem do sinal. Fonte: Autor.

De forma que movmean-filter é uma função definida da seguinte forma:

```
function filtered_output = movmean_filter(output, window_size)
     % Verifica se o tamanho da janela
      if window_size < 1 || window_size > numel(output)
          error('O tamanho da janela e invalido!');
      end
     % Calcula a m dia m vel e preenche o vetor de sa da filtrado
     filtered_output = movmean(output, window_size);
     % Plota os dados de entrada e sa da filtrados
     plot(output, 'r', 'LineWidth', 0.5); % Dados de entrada
     hold on
      plot(filtered_output, 'b', 'LineWidth', 1); % Dados filtrados
     hold off
1.5
     % Configura o do grafico
      grid on
      legend('Dados de entrada', 'Dados filtrados');
18
     xlabel('Amostras');
19
     ylabel('Valor');
      title('Dados com e sem filtro (M dia M vel)');
21
 end
```

Listing 3: Função para filtragem do sinal. Fonte: Autor.

Ao fim da execução do código acima temos o sinal filtrado e um plot exibindo as duas curvas sobrepostas.

3.3 Estimação dos Parâmetros

Após a filtragem, os dados foram submetidos aos métodos presentes na seção (2.4). O trecho de código responsável por essa tarefa é mostrado abaixo:

```
% Aplicar a funcao fo_Smith em time e f_output
[K_smith, theta_smith, tau_smith] = fo_Smith(time, f_output);
num_smith = K_smith;
den_smith = [tau_smith, 1];
G_smith = tf(num_smith, den_smith, 'InputDelay', theta_smith);
```

Listing 4: Estimação dos Parâmetros. Fonte: Autor.

Similar ao método de *Smith* os outros métodos são aplicados ao(s) conjunto(s) de dados. O restante do código foi suprimido para evitar redundância. Abaixo são apresentados os códigos para o método de HAG. Para verificar a implementação dos outros métodos basta visitar o link presente no **Apêndice A: Repositório com as implementações**.

```
function [K, theta, tau] = fo_Hagglund(time, output)
      y0 = abs(output(1));
      y_final = abs(output(end));
      y_632 = y_0 + 0.632 * y_final;
      slope = diff(abs(output))./diff(time);
      max_slope = max(slope);
      max_slope_idx = find(slope >= max_slope , 1);
      yTangent = (time - time(max_slope_idx))*slope(max_slope_idx)+
         output(max_slope_idx);
      index_t1 = find(yTangent >= y0, 1);
      index_t2 = find(yTangent >= y_632, 1);
      t1 = time(index_t1);
      t2 = time(index_t2);
      K = y_final / 1;
13
      tau = t2 - t1;
      theta = t1;
      if theta < 0</pre>
          theta = 0;
      end
18
 end
```

Listing 5: Método de Hagglund. Fonte: Autor.

3.4 Avaliação do Modelo estimado

Por fim, a resposta ao degrau da Função de Transferência estimada é exibida para os diferentes métodos sobreposta à curva gerada com os dados presente do dataset, mais detalhes na seção (4). A reta tangente ao ponto de máxima flexão também é mostrada junto dos valores de interesse.

```
% Reta tangente ao ponto de m xima flex o
figure;
plot_tangent_line(time, abs(f_output));
disp('Metodo de Smith:');
% Resposta do sistema para G(S) aproximada
figure;
title(titles{4});
plot_result(time, f_output, G_array(4));
display_transfer_function(K_smith, tau_smith, tau_smith, theta_smith, 1);

% Avalia o da funcao estimada
benchmark(time, f_output, G_smith);
```

Listing 6: Avaliação dos Parâmetros. Fonte: Autor.

Similar ao método de *Smith* os outros métodos são submetidos as avaliações de erro. O restante do código foi suprimido para evitar redundância. Os códigos responsáveis por realizar os cálculos de erro são mostrados abaixo:

```
function mse(real_output, predicted_output)
   if numel(real_output) ~= numel(predicted_output)
        error('Input vectors must have the same size');
end
mse = sum((real_output - predicted_output).^2) / numel(
        real_output);
disp(['Mean Squared Error (MAE): ', num2str(mse)]);
end
```

Listing 7: MSE. Fonte: Autor.

```
function iae(real_output, predicted_output)
   if numel(real_output) ~= numel(predicted_output)
        error('Input vectors must have the same size');
end
   iae = sum(abs(real_output - predicted_output));
disp(['Integral Absolute Error (IAE): ', num2str(iae)]);
end
```

Listing 8: IAE. Fonte: Autor.

Listing 9: ISE. Fonte: Autor.

Listing 10: ITAE. Fonte: Autor.

4 Resultados

4.1 Resultados para o conjunto de dados 1

```
Metodo de Mollenkamp:

G(s) = 1.0002*e^(-0s)/(0.14342s + 1)(0.0024791s + 1)

Metodo de Sundaresan Krishnaswamy:

G(s) = 1*e^(-0s)/0.15s + 1

Metodo de Ziegler-Nichols:

G(s) = 1.0002*e^(-0.013816s)/0.11512s + 1

Metodo de Smith:

G(s) = 1*e^(-0.01s)/0.12s + 1

Metodo de Hagglund:

G(s) = 1.0002*e^(-0.013816s)/0.078287s + 1
```

Listing 11: Funções de Trasnferência C1. Fonte: Autor.

Tabela 1: Comparação dos Métodos

Método	Indicadores de Desempenho			
	MAE	IAE	ISE	ITAE
Método de Mollenkamp	0.0050054	9.1031	0.98105	1.6458
Método de Sundaresan	0.0051182	10.4256	1.0032	2.4979
Método de Ziegler-Nichols	0.0023612	6.0411	0.4628	1.0206
Método de Smith	0.0022693	6.2484	0.44478	1.1543
Método de Hagglund	0.00096341	3.8389	0.18883	0.78533

Figura 5: Sinal de saída para o método Hägglund

Figura 6: Sinal de saída para o método Smith

G(s) real
Saida para G(s) aproximada Fonte: Autor

Figura 7: Sinal de saída para o método Sundaresan / Krishnaswamy

Figura 8: Sinal de saída para o método Mollenkamp

4.2 Resultados para o conjunto de dados 2

```
Metodo de Mollenkamp:

G(s) = 2.0699*e^(-2.7044s)/(0.75233s + 1)(0.28487s + 1)

Metodo de Sundaresan Krishnaswamy:

G(s) = 2.07*e^(-3.08s)/0.62s + 1

Metodo de Ziegler-Nichols:

G(s) = 2.0699*e^(-3.4078s)/0.7829s + 1

Metodo de Smith:

G(s) = 2.07*e^(-3.02s)/0.62s + 1

Metodo de Hagglund:

G(s) = 2.0699*e^(-3.4078s)/0.5066s + 1
```

Listing 12: Funções de Trasnferência C2. Fonte: Autor.

Tabela 2: Comparação dos Métodos

Tabela 2. Comparação dos Metodos					
Método	Indicadores de Desempenho				
	MAE	IAE	ISE	ITAE	
Método de Mollenkamp	0.0069641	17.917	1.8176	116.3679	
Método de Sundaresan	0.0059731	15.7183	1.559	100.9037	
Método de Ziegler-Nichols	0.063008	34.6121	16.445	173.2494	
Método de Smith	0.0036036	13.2597	0.94053	92.3591	
Método de Hagglund	0.037397	25.9053	9.7606	137.9372	

Método de Sundaresan Krishnaswamy

O(3) mai
Sakio pira O(2) aproamacia

15

25

2 4 6 8 10

Fonte: Autor

Figura 13: Sinal de saída para o método Sundaresan / Krishnaswamy

Figura 14: Sinal de saída para o método Mollenkamp

4.3 Resultados para o conjunto de dados 3

```
Metodo de Mollenkamp:

G(s) = 1.0056*e^(-0.05897s)/(0.64058s + 1)(0.35842s + 1)

Metodo de Sundaresan Krishnaswamy:

G(s) = 1.01*e^(-0.51s)/0.43s + 1

Metodo de Ziegler-Nichols:

G(s) = 1.0056*e^(-0.27631s)/1.1053s + 1

Metodo de Smith:

G(s) = 1.01*e^(-0.39s)/0.62s + 1

Metodo de Hagglund:

G(s) = 1.0056*e^(-0.27631s)/0.73679s + 1
```

Listing 13: Funções de Trasnferência C3. Fonte: Autor.

Tabela 3: Comparação dos Métodos

Tabela 5. Comparagae des Metedes				
Método	Indicadores de Desempenho			
	MAE	IAE	ISE	ITAE
Método de Mollenkamp	0.00047987	2.4583	0.07198	5.137
Método de Sundaresan	0.0040106	6.349	0.60159	13.3186
Método de Ziegler-Nichols	0.020976	14.528	3.1464	28.836
Método de Smith	0.0051701	7.4688	0.77551	16.1484
Método de Hagglund	0.0064065	7.712	0.96097	16.6492

Figura 16: Sinal de saída para o método Ziegler / Nichols

Figura 17: Sinal de saída para o método Hägglund

G(s) real
Saida para G(s) aproximada

Figura 19: Sinal de saída para o método Sundaresan / Krishnaswamy

4.4 Resultados para o conjunto de dados 4

Listing 14: Funções de Trasnferência C4. Fonte: Autor.

Tabela 4: Comparação dos Métodos

Método	Indicadores de Desempenho				
	MAE	IAE	ISE	ITAE	
Método de Mollenkamp	0.0081132	20.9502	2.1175	86.4333	
Método de Sundaresan	0.0093409	20.8523	2.438	83.7522	
Método de Ziegler-Nichols	0.013147	25.8321	3.4315	104.2414	
Método de Smith	0.0065199	18.3707	1.7017	78.006	
Método de Hagglund	0.0059643	17.1491	1.5567	69.8835	

Figura 22: Sinal de saída para o método Ziegler / Nichols

Figura 23: Sinal de saída para o método Hägglund

Figura 24: Sinal de saída para o método Smith

Figura 25: Sinal de saída para o método Sundaresan / Krishnaswamy

4.5 Resultados para o conjunto de dados 5

```
Metodo de Mollenkamp:

G(s) = 0.67415*e^(-1.1434s)/(1.2879s + 1)(0.55992s + 1)

Metodo de Sundaresan Krishnaswamy:

G(s) = 0.67*e^(-1.98s)/0.37s + 1

Metodo de Ziegler-Nichols:

G(s) = 0.67415*e^(-1.796s)/0.9211s + 1

Metodo de Smith:

G(s) = 0.67*e^(-1.84s)/0.55s + 1

Metodo de Hagglund:

G(s) = 0.67415*e^(-1.796s)/0.5526s + 1
```

Listing 15: Funções de Trasnferência C5. Fonte: Autor.

Tabela 5: Comparação dos Métodos

Método	Indicadores de Desempenho				
	MAE	IAE	ISE	ITAE	
Método de Mollenkamp	0.0060683	9.5228	1.1226	29.3298	
Método de Sundaresan	0.0022922	5.6338	0.42406	17.0065	
Método de Ziegler-Nichols	0.0076122	10.3709	1.4083	32.7997	
Método de Smith	0.0027227	6.1647	0.5037	19.3652	
Método de Hagglund	0.0024346	6.046	0.4504	19.6876	

Figura 28: Sinal de saída para o método Ziegler / Nichols

4.6 Resultados para o conjunto de dados 6

```
Metodo de Mollenkamp:

G(s) = 0.0020198*e^(-4.1358s)/(0.22609s + 1)(0.06505s + 1)

Metodo de Sundaresan Krishnaswamy:

G(s) = 0*e^(-4.38s)/0.15s + 1

Metodo de Ziegler-Nichols:

G(s) = 0.0020198*e^(-4.3289s)/0.2118s + 1

Metodo de Smith:

G(s) = 0*e^(-4.3s)/0.21s + 1

Metodo de Hagglund:

G(s) = 0.0020198*e^(-4.3289s)/0.1381s + 1
```

Listing 16: Funções de Trasnferência C6. Fonte: Autor.

Tabela 6: Comparação dos Métodos

rasela o. Comparação dos Metodos						
Método	Indicadores de Desempenho					
	MAE	IAE	ISE	ITAE		
Método de Mollenkamp	2.0791×10^{-9}	0.060978	3.6114×10^{-6}	0.45861		
Método de Sundaresan	2.9172×10^{-6}	2.5421	0.0050672	25.7845		
Método de Ziegler-Nichols	8.9149×10^{-9}	0.087856	1.5485×10^{-5}	0.58436		
Método de Smith	2.9172×10^{-6}	2.5421	0.0050672	25.7845		
Método de Hagglund	5.8351×10^{-9}	0.077101	1.0136×10^{-5}	0.53356		

Figura 37: Sinal de saída para o método Sundaresan / Krishnaswamy

Figura 38: Sinal de saída para o método Mollenkamp

5 Conclusão

Em conclusão, este relatório científico investigou a identificação de sistemas utilizando métodos determinísticos, avaliando seis conjuntos de dados por meio dos métodos de Ziegler-Nichols, Hägglund, Smith, Sundaresan/Krishnaswamy e Mollenkamp. O desempenho dos resultados foi avaliado por meio de métricas importantes, incluindo o IAE (Integral of Absolute Error), ISE (Integral of Squared Error), ITAE (Integral of Time multiplied by Absolute Error) e MAE (Mean Absolute Error).

Os métodos determinísticos avaliados neste estudo forneceram uma compreensão aprofundada da identificação de sistemas e ofereceram resultados promissores em relação às métricas de desempenho. Através da análise dos conjuntos de dados, pudemos observar variações nos resultados obtidos por cada método, destacando a importância de selecionar o método mais adequado para cada tipo de sistema.

O método de Ziegler-Nichols mostrou-se eficiente em determinadas situações, apresentando resultados satisfatórios em termos de IAE, ISE, ITAE e MAE. Da mesma forma, os métodos de Hägglund, Smith, Sundaresan/Krishnaswamy e Mollenkamp também exibiram resultados promissores, cada um com suas próprias vantagens e considerações.

No entanto, é importante ressaltar que a escolha do método mais adequado deve ser baseada nas características específicas do sistema em análise. Além disso, a utilização de diferentes métricas de desempenho, como IAE, ISE, ITAE e MAE, permite uma avaliação abrangente do desempenho do sistema e a seleção do método mais apropriado para cada aplicação.

Referências

- [1] N. S. Nise, Control Systems Engineering,. John Wiley & Sons, 2007.
- [2] A. Coelho and L. dos Santos Coelho, *Identificação de sistemas dinâmicos linea*res. Editora da UFSC, 2004.
- [3] A. Vasconcellos, "Projeto de controladores pi e pid para um forno aquecedor de oleo de uma planta de tratamento de hidrocarbonetos," 2017. Monografia (Graduação em Engenharia de Controle e Automação) Universidade Federal do Rio de Janeiro.
- [4] A. V. Oppenheim, A. S. Willsky, and S. H. Nawab, Signals & Amp; Systems (2Nd Ed.). Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1996.

Apêndices

Apêndice A: Repositório com as implementações em MATLAB

 $\bf Ap \hat{\bf e}n dice~\bf B:$ Arquivos .pdf com as saídas do console do $\tt MATLAB$ para cada conjunto

de dados