

Mark Blyth

Recent activities

- Emulation methods
- Discretisation methods
- Working on manuscripts
 - Numerical continuations paper
 - ► Word-count down to 6050+400
 - Emulators and discretisors abstract

Two separate-but-related goals:

1. Demonstrate the use of surrogate modelling

- 1. Demonstrate the use of surrogate modelling
 - Fancy [adaptive] filtering; removes noise but not signal

- 1. Demonstrate the use of surrogate modelling
 - Fancy [adaptive] filtering; removes noise but not signal
 - Useful for applying Fourier [wavelets?] to noisy signals

- 1. Demonstrate the use of surrogate modelling
 - Fancy [adaptive] filtering; removes noise but not signal
 - Useful for applying Fourier [wavelets?] to noisy signals
 - Can produce a statistically optimal noise removal, which traditional filtering does not

- 1. Demonstrate the use of surrogate modelling
 - Fancy [adaptive] filtering; removes noise but not signal
 - ► Useful for applying Fourier [wavelets?] to noisy signals
 - Can produce a statistically optimal noise removal, which traditional filtering does not
- 2. Discretise multiple-timescale signals

- 1. Demonstrate the use of surrogate modelling
 - Fancy [adaptive] filtering; removes noise but not signal
 - ► Useful for applying Fourier [wavelets?] to noisy signals
 - Can produce a statistically optimal noise removal, which traditional filtering does not
- 2. Discretise multiple-timescale signals
 - Fourier gives overly-high-dimensional discretisations on spiking signals

- 1. Demonstrate the use of surrogate modelling
 - Fancy [adaptive] filtering; removes noise but not signal
 - ► Useful for applying Fourier [wavelets?] to noisy signals
 - Can produce a statistically optimal noise removal, which traditional filtering does not
- 2. Discretise multiple-timescale signals
 - Fourier gives overly-high-dimensional discretisations on spiking signals
 - Demonstrate an alternative [lower-dimensional] method

- 1. Demonstrate the use of surrogate modelling
 - Fancy [adaptive] filtering; removes noise but not signal
 - ► Useful for applying Fourier [wavelets?] to noisy signals
 - Can produce a statistically optimal noise removal, which traditional filtering does not
- 2. Discretise multiple-timescale signals
 - Fourier gives overly-high-dimensional discretisations on spiking signals
 - Demonstrate an alternative [lower-dimensional] method
 - Use simple standard methods to do so

Surrogate modelling

This part is done, doesn't require much work

- Shows how to reconstruct a signal from noisy observations
 - Replace real signal with noise-free surrogate model
 - Surrogate model gives a nice clean, interpolable [no Nyquist cap] signal
 - Alternative to low-pass filter, that works on spiking signals
- Useful for applying Fourier to noisy signals
- ★ Tested methods: free-knot splines, Gaussian process regression

Part (1) let us use Fourier on noisy signals, but discretisation will be high-dimensional with neurons

Part (1) let us use Fourier on noisy signals, but discretisation will be high-dimensional with neurons

★ Collocation etc. requires an ODE model; inapplicable, even on surrogates

Find polynomials that solve ODEs at points on orbit

- ★ Collocation etc. requires an ODE model; inapplicable, even on surrogates
 - Find polynomials that solve ODEs at points on orbit
 - Tracks a point on an orbit; point on orbit + ODE model = full orbit

- - Find polynomials that solve ODEs at points on orbit
 - ► Tracks a point on an orbit; point on orbit + ODE model = full orbit
 - ▶ We need more need to track the full orbit without a model

- Collocation etc. requires an ODE model; inapplicable, even on surrogates
 - Find polynomials that solve ODEs at points on orbit
 - Tracks a point on an orbit; point on orbit + ODE model = full orbit
 - ▶ We need more need to track the full orbit without a model
- ✓ Discretisation is just some lower-dimensional representation of a signal

- ★ Collocation etc. requires an ODE model; inapplicable, even on surrogates
 - Find polynomials that solve ODEs at points on orbit
 - ► Tracks a point on an orbit; point on orbit + ODE model = full orbit
 - ▶ We need more need to track the full orbit without a model
- Discretisation is just some lower-dimensional representation of a signal
 - Eg. parameters of a regression model that reconstructs the signal

- ★ Collocation etc. requires an ODE model; inapplicable, even on surrogates
 - Find polynomials that solve ODEs at points on orbit
 - ► Tracks a point on an orbit; point on orbit + ODE model = full orbit
 - ► We need more need to track the full orbit without a model
- ✓ Discretisation is just some lower-dimensional representation of a signal
 - Eg. parameters of a regression model that reconstructs the signal
 - Complex method: coefficients of Bayesian periodic splines, or inducing points of sparse periodic GPR [previous work]

- ★ Collocation etc. requires an ODE model; inapplicable, even on surrogates
 - Find polynomials that solve ODEs at points on orbit
 - ► Tracks a point on an orbit; point on orbit + ODE model = full orbit
 - ► We need more need to track the full orbit *without* a model
- ✓ Discretisation is just some lower-dimensional representation of a signal
 - Eg. parameters of a regression model that reconstructs the signal
 - Complex method: coefficients of Bayesian periodic splines, or inducing points of sparse periodic GPR [previous work]
 - ► Simple method: coefficients of [non-Bayesian] periodic splines [new work]

- - Find polynomials that solve ODEs at points on orbit
 - ► Tracks a point on an orbit; point on orbit + ODE model = full orbit
 - ► We need more need to track the full orbit *without* a model
- ✓ Discretisation is just some lower-dimensional representation of a signal
 - Eg. parameters of a regression model that reconstructs the signal
 - Complex method: coefficients of Bayesian periodic splines, or inducing points of sparse periodic GPR [previous work]
 - ► Simple method: coefficients of [non-Bayesian] periodic splines [new work]

Simple non-parametric method for periodic signals

& Choose 'knot points' ξ_0, \ldots, ξ_n

- & Choose 'knot points' ξ_0, \ldots, ξ_n
- k Fit cubic polynomial between ξ_i , ξ_{i+1}

- & Choose 'knot points' ξ_0, \ldots, ξ_n
- $m{\&}$ Fit cubic polynomial between $\xi_i,\ \xi_{i+1}$
 - Periodic boundary conditions

- k Choose 'knot points' ξ_0, \ldots, ξ_n
- $m{\&}$ Fit cubic polynomial between $\xi_i,\ \xi_{i+1}$
 - Periodic boundary conditions
 - $ightharpoonup C^2$ smoothness across whole curve

- & Choose 'knot points' ξ_0, \ldots, ξ_n
- $m{\&}$ Fit cubic polynomial between $\xi_i,\ \xi_{i+1}$
 - Periodic boundary conditions
 - $ightharpoonup C^2$ smoothness across whole curve
 - Curve passes through knots

- k Choose 'knot points' ξ_0, \ldots, ξ_n
- $m{arkappa}$ Fit cubic polynomial between $\xi_i,\ \xi_{i+1}$
 - Periodic boundary conditions
 - $ightharpoonup C^2$ smoothness across whole curve
 - Curve passes through knots
- **K** BSpline formulation: $f(x) = \sum \beta_i b_i(x)$, b_i = i'th basis spline

- k Choose 'knot points' ξ_0, \ldots, ξ_n
- $m{arkappa}$ Fit cubic polynomial between $\xi_i,\ \xi_{i+1}$
 - Periodic boundary conditions
 - $ightharpoonup C^2$ smoothness across whole curve
 - Curve passes through knots
- **K** BSpline formulation: $f(x) = \sum \beta_i b_i(x)$, $b_i = i$ 'th basis spline
 - Basis splines depend only on knot locations

- & Choose 'knot points' ξ_0, \ldots, ξ_n
- $m{arkappa}$ Fit cubic polynomial between $\xi_i,\ \xi_{i+1}$
 - Periodic boundary conditions
 - $ightharpoonup C^2$ smoothness across whole curve
 - Curve passes through knots
- **K** BSpline formulation: $f(x) = \sum \beta_i b_i(x)$, $b_i = i$ 'th basis spline
 - ► Basis splines depend only on knot locations
 - Knots specify where splines should be flexible

- k Choose 'knot points' ξ_0, \ldots, ξ_n
- k Fit cubic polynomial between ξ_i , ξ_{i+1}
 - Periodic boundary conditions
 - $ightharpoonup C^2$ smoothness across whole curve
 - Curve passes through knots
- **K** BSpline formulation: $f(x) = \sum \beta_i b_i(x)$, $b_i = i$ 'th basis spline
 - ► Basis splines depend only on knot locations
 - Knots specify where splines should be flexible
- & To discretise, fit knots, b_i at the start; β_i become discretisation

1. Find the period

- 1. Find the period
 - lacktriangle Autocorrelation or nonlinear least squares F_0 estimation

- 1. Find the period
 - ightharpoonup Autocorrelation or nonlinear least squares F_0 estimation
 - Fourier?

- 1. Find the period
 - \blacktriangleright Autocorrelation or nonlinear least squares F_0 estimation
 - ► Fourier?
- 2. 'Stack' periods

- 1. Find the period
 - \blacktriangleright Autocorrelation or nonlinear least squares F_0 estimation
 - Fourier?
- 2. 'Stack' periods
 - $lackbox{ Re-label data } t_i$ s to phase $\phi_i = rac{t_i}{T} \mod 1$ or $\phi_i = t_i \mod T$

- 1. Find the period
 - \blacktriangleright Autocorrelation or nonlinear least squares F_0 estimation
 - ► Fourier?
- 2. 'Stack' periods
 - ▶ Re-label data t_i s to phase $\phi_i = \frac{t_i}{T} \mod 1$ or $\phi_i = t_i \mod T$
- Build splines model

- 1. Find the period
 - \blacktriangleright Autocorrelation or nonlinear least squares F_0 estimation
 - ► Fourier?
- 2. 'Stack' periods
 - ▶ Re-label data t_i s to phase $\phi_i = \frac{t_i}{T} \mod 1$ or $\phi_i = t_i \mod T$
- Build splines model
 - Discretisation = BSpline coefficients

Period stacking

Uses ACF to estimate frequency, then NLS to refine estimate

Period stacking

Uses ACF to estimate frequency, then NLS to refine estimate; removes period from continuation scheme

Challenge: determine knot points

- Challenge: determine knot points
 - lacktriangle Given a target 'smoothness' λ , we can find a knotset and LSQ BSpline curve

- Challenge: determine knot points
 - \triangleright Given a target 'smoothness' λ , we can find a knotset and LSQ BSpline curve
 - ▶ Standard method; optimizes loss $+\lambda \times$ total curvature

- Challenge: determine knot points
 - \triangleright Given a target 'smoothness' λ , we can find a knotset and LSQ BSpline curve
 - \blacktriangleright Standard method; optimizes loss $+\lambda \times$ total curvature
- Knot selection is still an unanswered problem

- Challenge: determine knot points
 - \triangleright Given a target 'smoothness' λ , we can find a knotset and LSQ BSpline curve
 - \blacktriangleright Standard method; optimizes loss $+\lambda \times$ total curvature
- Knot selection is still an unanswered problem
 - Smoothing splines approach 1: put a knot at every datapoint

- Challenge: determine knot points
 - ightharpoonup Given a target 'smoothness' λ , we can find a knotset and LSQ BSpline curve
 - \blacktriangleright Standard method; optimizes loss $+\lambda \times$ total curvature
- Knot selection is still an unanswered problem
 - Smoothing splines approach 1: put a knot at every datapoint
 - Smoothing splines approach 2: start off with few knots, keep adding more until we get target smoothness

- Challenge: determine knot points
 - ightharpoonup Given a target 'smoothness' λ , we can find a knotset and LSQ BSpline curve
 - \blacktriangleright Standard method; optimizes loss $+\lambda \times$ total curvature
- Knot selection is still an unanswered problem
 - Smoothing splines approach 1: put a knot at every datapoint
 - Smoothing splines approach 2: start off with few knots, keep adding more until we get target smoothness
 - Overparameterises neither of these give low-dimensional discretisation!

- Challenge: determine knot points
 - lacktriangle Given a target 'smoothness' λ , we can find a knotset and LSQ BSpline curve
 - \blacktriangleright Standard method; optimizes loss $+\lambda \times$ total curvature
- Knot selection is still an unanswered problem
 - Smoothing splines approach 1: put a knot at every datapoint
 - Smoothing splines approach 2: start off with few knots, keep adding more until we get target smoothness
 - Overparameterises neither of these give low-dimensional discretisation!
- Well-chosen knot points are needed for a low-dimensional discretisation

- Challenge: determine knot points
 - \blacktriangleright Given a target 'smoothness' λ , we can find a knotset and LSQ BSpline curve
 - \blacktriangleright Standard method; optimizes loss $+\lambda \times$ total curvature
- Knot selection is still an unanswered problem
 - Smoothing splines approach 1: put a knot at every datapoint
 - Smoothing splines approach 2: start off with few knots, keep adding more until we get target smoothness
 - Overparameterises neither of these give low-dimensional discretisation!
- Well-chosen knot points are needed for a low-dimensional discretisation
 - Hard to choose good knots a priori; method 2 is automated trial and error

- Challenge: determine knot points
 - \triangleright Given a target 'smoothness' λ , we can find a knotset and LSQ BSpline curve
 - \blacktriangleright Standard method; optimizes loss $+\lambda \times$ total curvature
- Knot selection is still an unanswered problem
 - Smoothing splines approach 1: put a knot at every datapoint
 - Smoothing splines approach 2: start off with few knots, keep adding more until we get target smoothness
 - Overparameterises neither of these give low-dimensional discretisation!
- Well-chosen knot points are needed for a low-dimensional discretisation
 - Hard to choose good knots a priori; method 2 is automated trial and error
 - Standard methods don't give a minimal knotset

- Challenge: determine knot points
 - \triangleright Given a target 'smoothness' λ , we can find a knotset and LSQ BSpline curve
 - \blacktriangleright Standard method; optimizes loss $+\lambda \times$ total curvature
- Knot selection is still an unanswered problem
 - Smoothing splines approach 1: put a knot at every datapoint
 - Smoothing splines approach 2: start off with few knots, keep adding more until we get target smoothness
 - Overparameterises neither of these give low-dimensional discretisation!
- Well-chosen knot points are needed for a low-dimensional discretisation
 - Hard to choose good knots a priori; method 2 is automated trial and error
 - Standard methods don't give a minimal knotset
 - Hard to optimise knotsets due to lots of local minima

- Challenge: determine knot points
 - \triangleright Given a target 'smoothness' λ , we can find a knotset and LSQ BSpline curve
 - \blacktriangleright Standard method; optimizes loss $+\lambda \times$ total curvature
- Knot selection is still an unanswered problem
 - Smoothing splines approach 1: put a knot at every datapoint
 - Smoothing splines approach 2: start off with few knots, keep adding more until we get target smoothness
 - Overparameterises neither of these give low-dimensional discretisation!
- Well-chosen knot points are needed for a low-dimensional discretisation
 - Hard to choose good knots a priori; method 2 is automated trial and error
 - Standard methods don't give a minimal knotset
 - Hard to optimise knotsets due to lots of local minima
- ✓ Turns out we can make a naive method, that works very well...

1. Choose the desired number of knots

- 1. Choose the desired number of knots
 - A mixture of intuition and experimentation

- 1. Choose the desired number of knots
 - A mixture of intuition and experimentation
 - Heuristic: put a knot either side of the signal 'turning points'

- 1. Choose the desired number of knots
 - A mixture of intuition and experimentation
 - Heuristic: put a knot either side of the signal 'turning points'
 - Fitzhugh-Nagumo: 4 turning points, so try 8 knots

- 1. Choose the desired number of knots
 - A mixture of intuition and experimentation
 - Heuristic: put a knot either side of the signal 'turning points'
 - Fitzhugh-Nagumo: 4 turning points, so try 8 knots
- Choose knots at random

- Choose the desired number of knots
 - A mixture of intuition and experimentation
 - Heuristic: put a knot either side of the signal 'turning points'
 - Fitzhugh-Nagumo: 4 turning points, so try 8 knots
- Choose knots at random
- 3. Numerically optimize the knot vector

- Choose the desired number of knots
 - A mixture of intuition and experimentation
 - Heuristic: put a knot either side of the signal 'turning points'
 - Fitzhugh-Nagumo: 4 turning points, so try 8 knots
- Choose knots at random
- 3. Numerically optimize the knot vector
- 4. Repeat steps 2,3 lots, and choose the best result

- Choose the desired number of knots
 - A mixture of intuition and experimentation
 - Heuristic: put a knot either side of the signal 'turning points'
 - Fitzhugh-Nagumo: 4 turning points, so try 8 knots
- 2. Choose knots at random
- 3. Numerically optimize the knot vector
- 4. Repeat steps 2,3 lots, and choose the best result
 - ► Helps overcome the local minima issue

This works surprisingly well:

- Few knots = model quick to fit, easier to optimise
- Nice result would be to analytically derive a LSQ fitting procedure

For comparison...

Bayesian automatically selects required number of knots

This works surprisingly well:

- Few knots = model quick to fit, easier to optimise
- W Nice result would be to analytically derive a LSQ fitting procedure

- Bayesian automatically selects required number of knots
 - No trial and error

This works surprisingly well:

- Few knots = model quick to fit, easier to optimise
- W Nice result would be to analytically derive a LSQ fitting procedure

- Bayesian automatically selects required number of knots
 - No trial and error
 - Takes human out the loop

This works surprisingly well:

- Few knots = model quick to fit, easier to optimise
- W Nice result would be to analytically derive a LSQ fitting procedure

- Bayesian automatically selects required number of knots
 - No trial and error
 - Takes human out the loop
- ✓ Bayesian automatically finds the best knots

This works surprisingly well:

- Few knots = model quick to fit, easier to optimise
- W Nice result would be to analytically derive a LSQ fitting procedure

- Bayesian automatically selects required number of knots
 - No trial and error
 - ► Takes human out the loop
- Bayesian automatically finds the best knots
- ₭ Bayesian could overcome the period estimation problem [see later]

This works surprisingly well:

- Few knots = model quick to fit, easier to optimise
- Nice result would be to analytically derive a LSQ fitting procedure

- ✓ Bayesian automatically selects required number of knots
 - No trial and error
 - ► Takes human out the loop
- ✓ Bayesian automatically finds the best knots
- Bayesian could overcome the period estimation problem [see later]
- This method gets good results much more simply

Optimizer fit

8 interior knots

Optimizer fit

Also works on more neuron-like data

Optimizer fit

Also works on more neuron-like data

Issue

- Inaccuracies in the period will add up to a big phase shift over time
- ₭ Bad period estimate can have disastrous results!

The period-estimation problem

The period-estimation problem

- Increasing the timescale separation 'squares up' the signal, but breaks F0 period estimation
- NLS F0 estimation also uses Fourier harmonics, so breaks on the same signals Fourier discretisation would break on [only tried one test-case!]
- Playing with the F0 estimation parameters / methods helps with this, but adds more mysterious hyperparameters
 - Bayesian methods also offer a way around this

Next steps

- Keep working on paper
- Compare reconstruction error for a given number of knots, for Fourier and splines
- Use discretisation in CBC
 - Treat knot positions as a fixed hyperparameter
 - ▶ BSpline coefficients become a signal discretisation
- Mini-review knot selection methods
 - Worth discussing the alternative methods in a paper