

ΕΘΝΙΚΟ ΜΕΤΣΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ ΣΧΟΛΗ ΕΦΑΡΜΟΣΜΕΝΩΝ ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΙ ΦΥΣΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΤΟΜΕΑΣ ΜΑΘΗΜΑΤΙΚΩΝ

Εργασία Εργαστηρίου

Μάθημα: Αριθμητική Ανάλυση ΙΙ & Εργαστήριο

Διδάσκων: Κωνσταντίνος Χρυσαφίνος

Φοιτήτρια: Ελένη Στυλιανού, ge21708

Email: <u>elenistylianou03@live.com</u>

Ομάδα Εργαστηρίου: Α, Τρίτη 12:45-14:15

Ερώτημα 1

Η συνάρτηση που υλοποιεί μια άμεση μέθοδο Runge-Kutta, που αντιστοιχεί σε ταμπλό του Butcher με πίνακα Α και διανύσματα bhta και tau είναι η RKE, της οποίας ο κώδικας φαίνεται παρακάτω:

```
function [sol,t]=RKE(a,b,N,y0,f,A,tau,bhta)
 t=linspace(a,b,N+1);
 h=(b-a)/N;
  sol=zeros(N+1,1);
 sol(1)=y0;
  q=length(tau);
 for n=1:N
   tn=zeros(q,1);
   kn=zeros(q,1);
   for i=1:q
     tn(i)=t(n)+tau(i)*h;
     s1=0;
     for j=1:q
       s1=s1+h*A(i,j)*kn(j);
     kn(i)=f(tn(i),sol(n)+s1);
   end
   s2=0;
   for i=1:q
     s2=s2+h*bhta(i)*kn(i);
   end
   sol(n+1)=sol(n)+s2;
  end
end
```

Στο MATLAB υλοποιήθηκε ο παρακάτω κώδικας για την εφαρμογή της παραπάνω μεθόδου για N=10, 20, 40, 80. Για τις προαναφερθέντες τιμές του N υπολογίζονται το μέγιστο απόλυτο σφάλμα, καθώς και η πειραματική τάξη ακρίβειας. Τα σφάλματα αποθηκεύονται στο διάνυσμα «errs» και η πειραματική τάξη ακρίβειας στο διάνυσμα «rates».

```
clear; clc; a=0; b=2; y0=1; f=@(t,y) log(y^2+1)-9*t*exp(-(9/2)*t^2)-log(exp(-9*t^2)+1); yexact=@(t)exp(-9*t.^2/2); %Tableau Butcher A=[0\ 0\ 0\ 0;\ 1/3\ 0\ 0\ 0;\ -1/3\ 1\ 0\ 0;\ 1\ -1\ 1\ 0]; tau=[0;\ 1/3;\ 2/3;\ 1]; bhta=[1/8;\ 3/8;\ 3/8;\ 1/8]; Ns=[10,\ 20,\ 40,\ 80];
```

```
errs=zeros(length(Ns),1);
rates=zeros(length(Ns)-1,1);
for k=1:length(Ns)
  N=Ns(k);
  [Y, t]=RKE(a,b,N,y0,f,A,tau,bhta);
  yex=yexact(t);
  errs(k)=max(abs(Y(:)-yex(:)));
  subplot(2,2,k);
  plot(t,Y,'*',t,yex);
  title(["N=" num2str(N)]);
end
for i=1:length(Ns)-1
  rates(i)=log(errs(i)/errs(i+1))/log(Ns(i+1)/Ns(i));
end
errs
rates
```

Πιο κάτω παρουσιάζονται τα αποτελέσματα που εμφανίζονται στο Command Window κατά την εκτέλεση του πιο πάνω κώδικα.

```
errs =

1.0e-03 *

0.1457
0.0102
0.0006
0.0000

rates =

3.8429
3.9829
```

3.9945

Από αυτά τα αποτελέσματα παρατηρούμε πως για όλα τα N η προσέγγιση είναι πολύ κοντά στην πραγματική τιμή, αφού τα σφάλματα είναι πολύ μικρά. Επίσης, βλέπουμε πως η τάξη ακρίβειας τείνει στο 4 που είναι και η πραγματική τάξη ακρίβειας.

Τα γραφήματα που προέκυψαν:

Ερώτημα 2

Η έμμεση μέθοδος Runge-Kutta 4 σταδίων Gauss-Radau, που αντιστοιχεί στο πιο πάνω ταμπλό του Butcher, είναι η RKI (Runge-Kutta Implicit), της οποίας ο κώδικας σε MATLAB δίνεται παρακάτω:

```
function [y,t] = RKI(a,b,y0, N, A, bhta, tau ,f, Nfp)
    t = linspace(a,b,N+1);
    h = (b-a)/N;
    y = zeros(N+1,1);
    y(1) = y0;
    q = length(tau);
    for n=1:N
        tn = t(n) + h*tau;
        kn = zeros(q,1);
        g = @(x) f(tn,y(n)+s(x,A,h));
        kn = FPS(kn,g,Nfp);
        y(n+1) = y(n) + h*bhta*kn;
    end
end
```

Για την επίλυση του μη γραμμικού συστήματος για τον υπολογισμό των $k^{n,i}$, η παραπάνω μέθοδος RKI, χρησιμοποιεί τη μέθοδο σταθερού σημείου FPS που δίνεται από τον πιο κάτω κώδικα:

```
function x = FPS(x0, g, Nfp)
    n = length(x0);
    x = x0;

for i = 1:Nfp
    xold=x;
    for j = 1:n
        gx = g(xold);
        x(j) = gx(j);
    end
    end
end
```

Εφόσον $\mathbf{k}^{\mathrm{n,i}}$ = $\mathbf{f}(\mathbf{t}^{\mathrm{n,i}},\,\mathbf{y}^{\mathrm{n}}+\mathbf{s})$, όπου $s=h\sum_{j=1}^{q}a_{ij}k^{n,j}$, η μέθοδος σταθερού σημείου για συστήματα

δέχεται ως χ το διάνυσμα k^n και ως συνάρτηση g(x) τη συνάρτηση $f(t^n, y^n+s)$ και επιστρέφει την εκτιμώμενη προσέγγιση για δοσμένο αριθμό επαναλήψεων Nfp.

Για τον υπολογισμό του s χρησιμοποιείται η βοηθητική συνάρτηση:

```
function y = s(x, A, h)
  n = length(x);
  y = zeros(n, 1);
  for i = 1:n
    y(i) = h * A(i, :) * x;
  end
end
```

Στο MATLAB υλοποιήθηκε ο παρακάτω κώδικας για την εφαρμογή της παραπάνω μεθόδου για N=10, 20, 40, 80 και Nfp=2, 7. Για τις προαναφερθέντες τιμές του N και του Nfp υπολογίζονται το μέγιστο απόλυτο σφάλμα, καθώς και η πειραματική τάξη ακρίβειας. Τα σφάλματα αποθηκεύονται στο διάνυσμα «errs» και η πειραματική τάξη ακρίβειας στο διάνυσμα «rates».

```
clear; clc;
a=0;
b=2;
y0=1;
f=@(t,y) \log(y.^2+1)-9*t.*exp(-(9/2)*t.^2)-\log(exp(-9*t.^2)+1);
yexact=@(t)exp(-9*t.^2/2);
A=[5/12 -1/12; 3/4 1/4];
bhta=[3/4 1/4];
tau=[1/3; 1];
Ns=[10, 20, 40, 80];
Nfp=[27];
errs=zeros(length(Ns),1);
rates=zeros(length(Ns)-1,1);
for j=1:length(Nfp)
  figure;
  for k=1:length(Ns)
    N=Ns(k);
    [Y, t]= RKI(a,b,y0, N, A, bhta, tau ,f, Nfp(j));
    yex=yexact(t);
    errs(k,j)=max(abs(Y(:)-yex(:)));
    subplot(2,2,k);
    plot(t,Y,'*',t,yex);
    title(["N=" num2str(N) ",Nfp=" num2str(Nfp(j))]);
  end
  for i=1:length(Ns)-1
    rates(i,j)=log(errs(i,j)/errs(i+1,j))/log(Ns(i+1)/Ns(i));
  end
end
errs
rates
```

Πιο κάτω παρουσιάζονται τα αποτελέσματα που εμφανίζονται στο Command Window κατά την εκτέλεση του πιο πάνω κώδικα.

Από τα πιο πάνω αποτελέσματα παρατηρούμε ότι για j=1, δηλαδή για Nfp=2, τα σφάλματα είναι αρκετά μικρά, δηλαδή έχουμε καλή προσέγγιση με τη μέθοδο σταθερού σημείου ακόμη και για μικρό αριθμό επαναλήψεων. Επίσης, η πειραματική τάξη ακρίβειας πλησιάζει το 2 για όλα τα N=10,20,40 και 80. Για Nfp=7 (j=2), τα σφάλματα είναι ακόμη μικρότερα και η πειραματική τάξη ακρίβειας τείνει στο 3.

Γραφήματα που προέκυψαν:

Ερώτημα 3

Για την υλοποίηση της πολυβηματικής μεθόδου κατασκευάσαμε τον πιο κάτω κώδικα στο MATLAB:

```
function [y,t]=BDF2ex3(a,b,y0,N,f,Df,maxits)
 h=(b-a)/N; t=linspace(a,b,N+1);
 y=zeros(1,N+1); y(1)=y0;
 t(1)=a;
 t(2)=t(1)+h;
 x0=y(1);
 for i=1:maxits
   xnew = x0 - (x0-y(1) -h/2*(f(t(1),y(1))+f(t(2),x0)))/(1-h/2*Df(t(2),x0));
   x0=xnew;
  end
 v(2)=xnew;
 for n=1:N-1
  Y0=y(n);Y1=y(n+1);Y2=y(n+2);
  for k=1:maxits
    g=Y2-Y0-h/3*(f(t(n+2),Y2)+4*f(t(n+1),Y1)+f(t(n),Y0));
    Dg=1-h/3*Df(t(n+2),Y2);
    Y2=Y2-g/Dg;
  end
  y(n+2)=Y2;
  end
end
```

Στον παραπάνω κώδικα χρησιμοποιείται η έμμεση μέθοδος του τραπεζίου για τον υπολογισμό των κατάλληλων αρχικών συνθηκών.

Στη μέθοδο του τραπεζίου έχουμε ότι:

 \Rightarrow g'(x)=1-(h/2)(∂ f/ ∂ x)

```
Y_{n+1} = Y_n + (h/2) [f(t_n, Y_n) + f(t_{n+1}, Y_{n+1})]
Θέλουμε να βρούμε το Y_{n+1}. Επομένως θέτουμε x = Y_{n+1}
\Rightarrow x = Y_n + (h/2) [f(t_n, Y_n) + f(t_{n+1}, x)]
\Rightarrow x - Y_n + (h/2) [f(t_n, Y_n) + f(t_{n+1}, x)] = 0
\Rightarrow g(x) = x - Y_n + (h/2) [f(t_n, Y_n) + f(t_{n+1}, x)]
```

Συνεπώς, για την Newton-Raphson που υπολογίζει τις κατάλληλες αρχικές συνθήκες στη μέθοδο του τραπεζίου έχουμε:

$$x_{k+1} = x_k - \frac{g(x_k)}{g'(x_k)} = x_k - \frac{x_k - Y_n - \frac{h}{2} [f(t_n, Y_n) + f(t_{n+1}, x_k)]}{1 - \frac{h}{2} f_y(t_{n+1}, x_k)}$$

Για την BDF έχουμε:

$$y_{n+2} - y_n = h (1/3 f_{n+2} + 4/3 f_{n+1} + 1/3 f_n)$$

 $\Rightarrow y_{n+2} - y_n - h (1/3 f_{n+2} + 4/3 f_{n+1} + 1/3 f_n) = 0$

Θέτουμε x= y_{n+2}

```
\Rightarrow g(x)=x-y_n-h (1/3 f_{n+2}+4/3 f_{n+1}+1/3 f_n)
\Rightarrow g'(x)=1-h/3 f<sub>\(\frac{1}{2}\)</sub>(t<sub>n+2</sub>,x)
```

Επομένως, για την NR έχουμε

$$x_{k+1} = x_k - \frac{x_k - y_n - \frac{h}{3}[f(t_{n+2}, Y_2) + 4f(t_{n+1}, Y_1) + f(t_n, Y_0)]}{1 - \frac{h}{3}f_y(t_{n+2}, Y_2)}$$

Στο MATLAB υλοποιήθηκε ο παρακάτω κώδικας για την εφαρμογή της παραπάνω μεθόδου για N=20, 40, 80, 160. Για τις προαναφερθέντες τιμές του N υπολογίζονται το μέγιστο απόλυτο σφάλμα, καθώς και η πειραματική τάξη ακρίβειας. Τα σφάλματα αποθηκεύονται στο διάνυσμα «errs» και η πειραματική τάξη ακρίβειας στο διάνυσμα «rates».

```
clear; clc;
a=0;
b=2;
f=@(t,y) \log(y^2+1)-9*t*exp(-(9/2)*t^2)-\log(exp(-9*t^2)+1);
yexact=@(t)exp(-9*t.^2/2);
Df=@(t,y)(2*y)/(y^2+1);
y0=1;maxits=3;
Ns=[20, 40, 80, 160];
errsBDF2=zeros(length(Ns),1); ratesBDF2=zeros(length(Ns)-1,1);
for i=1:length(Ns)
 N=Ns(i);
 [yBDF2,t]=BDF2ex3(a,b,y0,N,f,Df,maxits);
 yex=yexact(t);
 errsBDF2(i)=max(abs(yex(:)-yBDF2(:)));
 subplot(2,2,i);
 plot(t,yBDF2,'*',t,yex);
 title(["N=" num2str(N)]);
end
for i=1:length(Ns)-1
 ratesBDF2(i)=log(errsBDF2(i)/errsBDF2(i+1))/log(Ns(i+1)/Ns(i));
end
errsBDF2
ratesBDF2
```

Πιο κάτω παρουσιάζονται τα αποτελέσματα που εμφανίζονται στο Command Window κατά την εκτέλεση του πιο πάνω κώδικα.

```
errsBDF2 =

0.0011
0.0001
0.0000
0.0000

ratesBDF2 =

4.0000
4.0038
4.0029
```

Παρατηρούμε ότι οι προσεγγίσεις ήταν αρκετά καλές, ακόμη και για μικρές διαμερίσεις. Η πειραματική τάξη ακρίβειας, όπως φαίνεται, είναι περίπου 4.

Γραφήματα που προέκυψαν:

Ερώτημα 4

Για την υλοποίηση του προβλήματος χρησιμοποιώντας την Runge-Kutta που αντιστοιχεί στο ταμπλό του Butcher του ερωτήματος 1, δημιουργούμε την συνάρτηση RKsys για την επίλυση συστημάτων με Runge-Kutta. Κώδικας:

```
function y= RKsys(a, b, y0, N, A, bhta, tau, f)
  h=(b-a)/N;
  d=length(y0);
  y=zeros(d, N+1);
  y(:, 1)=y0;

  q=length(bhta);
  kn=zeros(d,q);

  t = linspace(a, b, N+1);

  for n = 1:N
     for i = 1:q
        tni = t(n) + tau(i) * h;
        s = zeros(d, 1);
        for j = 1:i-1
            s = s + A(i, j) * kn(:, j);
        end
```

```
kn(:, i) = f(tni, y(:, n) + h * s);
    end
    y(:, n+1) = y(:,n)+h*kn*bhta;
  end
end
Στο MATLAB υλοποιήθηκε ο παρακάτω κώδικας για την εφαρμογή της παραπάνω μεθόδου [%(A)]
για h=[0.1, 0.01, 0.001]. Για τις προαναφερθέντες τιμές του h υπολογίζονται οι τιμές των y και t.
clear; clc;
a=0.0;
b=2.0;
y0=[1;1];
B=[999, 2024; -1002, -2025];
A=[0 0 0 0; 1/3 0 0 0; -1/3 1 0 0; 1 -1 1 0];
tau=[0; 1/3; 2/3; 1];
bhta=[1/8; 3/8; 3/8; 1/8];
f=@(t,y)B*y;
KNR=3;
h=[0.1, 0.01, 0.001];
for j=1:3
  %(A)
  N=(b-a)/h(j);
  t = linspace(a, b, N+1)
  yRK= RKsys(a, b, y0, N, A, bhta, tau, f)
  figure(1);
  subplot(2,2,j)
  plot(t, yRK);
  title(["h = "num2str(h(j))]);
  legend('y1','y2');
  %(Γ)
  [t,y] = trapezSys(a,b,h(j),y0,f,B,KNR);
  figure(2)
  subplot(2,2,j)
  plot(t,y);
  title(["h = "num2str(h(j))]);
  legend('y1','y2');
end
%(B)
h=0.0001;
[t,y]=trapezSys(a,b,h,y0,f,B,KNR);
figure(3)
plot(t,y);
legend('y1','y2');
```

Πιο κάτω παρουσιάζονται τα αποτελέσματα που εμφανίζονται στο Command Window κατά την εκτέλεση του πιο πάνω κώδικα.

(A) Για h=0.1

t =					yrk =					
Columns 1 through 5					1.0e+133 *					
0	0.1000	0.2000	0.3000	0.4000	Columns 1	through 5				
Columns 6	through 10				0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	-0.0000 0.0000	
0.5000	0.6000	0.7000	0.8000	0.9000	Columns 6	through 10	0			
Columns 11	through 15	i			-0.0000 0.0000	-0.0000	-0.0000	-0.0000	-0.0000	
1.0000	1.1000	1.2000	1.3000	1.4000				0.0000	0.0000	
Columns 16 through 20					Columns 11 through 15					
					-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	
1.5000	1.6000	1.7000	1.8000	1.9000	0.0000	0.0000	0.0000	0.0000	0.0000	
Column 21					Columns 16	through 2	20			
2.0000					-0.0000	-0.0000	-0.0000	-0.0000	-0.0000	
					0.0000	0.0000	0.0000	0.0000	0.0000	
					Column 21					
					-1.8039					
					1.8004					

Για h=0.01

t=				yRK=							
Columns 196 through 200					Columns 196 through 200						
1.9500	1.9600	1.9700	1.9800	1.9900	NaN NaN	NaN NaN	NaN NaN	NaN NaN	NaN NaN		
Column 201					Column 201						
2.0000					NaN NaN						

Για h=0.001

t=					yRK=						
Columns 1,996 through 2,000					Columns 1,996 through 2,000						
1.9950	1.9960	1.9970	1.9980	1.9990	0.0002	0.0002	0.0002	0.0002	0.0002		
					-0.0001	-0.0001	-0.0001	-0.0001	-0.0001		
Column 2,001					Column 2,001						
2.0000					0.0002						
				-0.0001							

Για h=0.01 και h=0.001 δίνονται ενδεικτικά τα τελευταία αποτελέσματα.

Γραφήματα που προέκυψαν:

Παρατηρούμε ότι οι τιμές του y ξεφεύγουν για h=0.1 και αυτό οφείλεται στο "μεγάλο" μέγεθος του h. Παρόμοιες τιμές λαμβάνουμε και για h=0.01. Ωστόσο, για h=0.001, το γράφημα φαίνεται να ακολουθεί μία «λογική» συνάρτηση.

(B) Για να λυθεί το πρόβλημα με την έμμεση μέθοδο του τραπεζίου, κατασκευάστηκε η συνάρτηση trapezSys, η οποία υλοποιεί τη μέθοδο του τραπεζίου για συστήματα. Για την επίλυση του μη γραμμικού συστήματος σε κάθε επανάληψη της μεθόδου του τραπεζίου χρησιμοποιήθηκε η μέθοδος Newton-Raphson για συστήματα, η οποία υλοποιήθηκε με τη συνάρτηση trapSysNR. Αν $F(t,f)=(f\ '\ _1\ ,f'\ _2\)=(999f_1+2024f_2,-1002f_1-2025f_2),$ σύμφωνα με το δοσμένο σύστημα, τότε για τη μέθοδο του τραπεζίου έχουμε $Yn+1=Yn+h/2\ (F_n+F_{n+1}),$ οπότε η συνάρτη G στη Newton-Raphson θα είναι η $G(x)=x-Y_n-h/2\ [F(tn,Yn)+F(tn+1,x)].$ Επομένως ο Ιακωβιανός πίνακας της G θα είναι $JG(x)=I-h/2\ JF(t_{n+1},x)$ και ο Ιακωβιανός πίνακας της F(t)=00 είναι F(t)=01 επομένως, σε κάθε επανάληψη της μεθόδου του τραπεζίου, η Newton-Raphson που θα υπολογίζει σε KNR βήματα την επόμενη προσέγγιση θα είναι η ακόλουθη:

$$x_{n+1}^{(0)} = x_n$$

$$x_{n+1}^{(k+1)} = x_{n+1}^{(k)} - \left[JG\left(x_{n+1}^{(k)}\right)\right]^{-1}G(x_{n+1}^{(k)})$$

Αν ο Ιακωβιανός πίνακας της G δεν ήταν πίνακας σταθερών και είχαμε και μεγαλύτερο σύστημα, για την αποφυγή υπολογισμού του αντιστρόφου σε κάθε βήμα θα υπολογίζαμε:

$$JG\left(x_{n+1}^{(k)}\right)x_{n+1}^{(k+1)} = JG\left(x_{n+1}^{(k)}\right)x_{n+1}^{(k)} - G(x_{n+1}^{(k)})$$

Κώδικας:

```
function [t,Y] = trapezSys(a,b,h,Y0,F,JF,KNR)
  N = (b-a)/h;
  t = linspace(a,b,N+1);
  Y = zeros(length(Y0),N+1);
  Y(:,1) = Y0;
  for i=1:N
  Y(:,i+1) = trapSysNR(t(i+1),Y(:,i),h,F,JF,KNR);
  end
end
function sol = trapSysNR(tnew ,Yold ,h,F,JF,KNR)
  x0 = Yold;
  told = tnew -h;
  G = @(x) x-x0-h/2*(F(told,x0)+F(tnew,x));
  for k=1:KNR
  JG = eye(length(Yold))-h/2*JF;
  sol = JG\setminus(JG*Yold - G(Yold));
  Yold = sol;
  end
end
```

Στο MATLAB υλοποιήθηκε κώδικας που φαίνεται στις προηγούμενες σελίδες [%(B)] για την εφαρμογή της παραπάνω μεθόδου για h=0.0001. Για τη συγκεκριμένη τιμή του h επιλύθηκε το σύστημα και πήραμε το ακόλουθο γράφημα το οποίο έχει μεγάλη ομοιότητα με το 3° γράφημα που προέκυψε στο ερώτημα (A) για h=0.001.

(Γ) Για τη λύση του συστήματος με την έμμεση μέθοδο του τραπεζίου για h=0.1, h=0.01 και h=0.001 χρησιμοποιήθηκε ο κώδικας που φαίνεται στις προηγούμενες σελίδες [%(Γ)] και πήραμε τα πιο κάτω γραφήματα:

Από τα παραπάνω γραφήματα παρατηρούμε ότι για h=0.001 δεν φαίνεται να διαφέρει η λύση από την πραγματική. Επίσης, για h=0.01 αρχικά οι λύσεις τις μεθόδου ταλαντώνονται και στη συνέχεια εξομαλύνονται και παίρνουν την συμπεριφορά της πραγματικής λύσης. Ενώ για h=0.1 οι λύσεις ταλαντώνονται διαρκώς και δεν μοιάζουν καθόλου με την πραγματική λύση.

Επομένως, από όλα τα παραπάνω συμπεραίνουμε πως η έμμεση μέθοδος του τραπεζίου είναι πιο αποτελεσματική για μικρές διαμερίσεις. Επίσης, από τα αποτελέσματα και τις γραφικές παραστάσεις παρατηρούμε πως η μέθοδος του τραπεζίου δίνει καλύτερα αποτελέσματα από την Runge-Kutta.

Ερώτημα 5

Για την υλοποίηση της άσκησης κατασκευάζουμε στη MATLAB την συνάρτηση FDM_Dirichlet, η οποία με βάση τα όρια του διαστήματος [a,b], τις συνοριακές συνθήκες u(a)=A και u(b)=B και τις συναρτήσεις r και f κατασκευάζει τον πίνακα M και το διάνυσμα F και λύνει το σύστημα My=F. Κώδικας:

```
function [U]= FDM_Dirichlet(a, b, A, B, r, f, N)
h=(b-a)/N;
x = linspace(a, b, N+1);
U=zeros(1, N+1);

U(1)=A;
U(N+1)=B;
```

```
a1=(-1/h^2)*ones(N-1,1);
  a2=(2/h^2)*ones(N-1,1)+r(x(2:N))';
  a3=(-1/h^2)*ones(N-1,1);
  M=spdiags([a1, a2, a3], [-1, 0, 1], N-1, N-1);
  condest(M)
  F = f(x(2:N))';
  F(1) = f(x(2)) + A / h^2;
  F(N-1) = f(x(N)) + B / h^2;
  Uint=M\F;
  U(2:N)=Uint';
end
Το δοσμένο πρόβλημα δεν είναι στη μορφή που το θέλουμε επομένως πολλαπλασιάζουμε και τα
2 μέλη της διαφορικής εξίσωσης με r=10^k:
    -10^{-k} u ''(x) + u(x) = [-10^{-k} (4x^2 - 2) + 1] \exp(-x^2 + 1), 0 < x < 1, u(0) = e, u(1) = 1
    \Rightarrow - u''(x) +10<sup>k</sup> u(x) = [- (4x<sup>2</sup>-2) +10<sup>k</sup>] exp(-x<sup>2</sup>+1), u(0) = e, u(1) = 1
Επομένως ορίζουμε r(x) = 10^k και f(x) = [-(4x^2 - 2) + r(x)] \exp(-x^2 + 1).
Στο MATLAB υλοποιούμε τον πιο κάτω κώδικα που κάνει χρήση της πιο πάνω συνάρτηση για την
υλοποίηση της άσκησης.
clear;clc;
a=0;
b = 1;
h = [0.1 \ 0.001];
k = [-2 -1 0 1 2];
A = \exp(1);
B = 1;
for m=1:length(h)
  Ns(m)=(b-a)/h(m);
end
uexact = @(x) exp(1-x.^2);
errs=zeros(length(Ns),length(k));
rates=zeros(length(Ns)-1, length(k));
figure;
for m=1:length(Ns)
  for j=1:length(k)
    r = @(x) 10.^(k(j));
    f = @(x) \exp((-x.^2)+1).*(-(4*x.^2-2)+r(x));
    disp(["Deiktis katastasis gia h=" h(m), "k=" num2str(k(j))]);
    U= FDM_Dirichlet(a, b, A, B, r, f, Ns(m));
    x=linspace(a, b, Ns(m) + 1);
    errs(m,j)=max(abs(uexact(x)-U));
    subplot(length(h), length(k), (m - 1) * length(k) + j)
```

plot(x,U,'*',x,uexact(x));

```
\label{eq:continuous_state} \begin{array}{l} \text{title(sprintf('h = \%.3f, k = \%d', h(m), k(j)));} \\ \text{end} \\ \text{end} \\ \text{for j=1:length(k)} \\ \text{for i=1:length(Ns)-1} \\ \text{rates(i,j)=log(errs(i,j)/errs(i+1,j))/log(Ns(i+1)/Ns(i));} \\ \text{end} \\ \text{end} \\ \text{errs} \\ \text{rates} \end{array}
```

Πιο κάτω παρουσιάζονται τα αποτελέσματα που εμφανίζονται στο Command Window κατά την εκτέλεση του πιο πάνω κώδικα.

```
ans =
  49.9488
  "Deiktis katastasi..." "0.1" "k=" "-1"
ans =
  49.4927
  "Deiktis katastasi..." "0.1" "k=" "0"
  45.3514
  "Deiktis katastasi..." "0.1" "k=" "1"
ans =
  24.7173
  "Deiktis katastasi..." "0.1" "k=" "2"
ans =
  "Deiktis katastasi..." "0.001" "k=" "-2"
ans =
  4.9948e+05
  "Deiktis katastasi..." "0.001" "k=" "-1"
ans =
  4.9484e+05
  "Deiktis katastasi..." "0.001" "k=" "0"
  4.5272e+05
```

```
"Deiktis katastasi..." "0.001" "k=" "1"

ans =
2.4209e+05

"Deiktis katastasi..." "0.001" "k=" "2"

ans =
3.9462e+04
```

Από τα παραπάνω αποτελέσματα του δείκτη κατάστασης βλέπουμε πως όσο μεγαλώνει το k για σταθερό h, τόσο μικραίνει ο δείκτης κατάστασης του πίνακα M. Επιπλέον, όσο μεγαλώνει η διάσταση του πίνακα M, δηλαδή μικραίνει το h, για σταθερό k, τόσο μεγαλώνει ο δείκτης κατάστασης.

```
errs =

1.0e-03 *

0.7246  0.7209  0.6866  0.5090  0.1657
0.0001  0.0001  0.0001  0.0000

rates =

1.9947  1.9946  1.9935  1.9960  1.9949
```

Από τα παραπάνω αποτελέσματα παρατηρούμε πως όσο μειώνεται ο δείκτης κατάστασης για σταθερή διάσταση του πίνακα μειώνονται και τα μέγιστα απόλυτα σφάλματα. Επίσης, από τις τιμές του διανύσματος "rates" βλέπουμε πως η πειραματική τάξη ακρίβειας τείνει στο 2.

Στην επόμενη σελίδα παρουσιάζονται τα διαγράμματα για όλες τις πιο πάνω περιπτώσεις που εξετάστηκαν.

