INHALTSVERZEICHNIS

ADDII DIIMOGVEDZEIGIINIG
ABBILDUNGSVERZEICHNIS

1.1 Einleitung

In diesem Praktikum geht es um die Einführung der Messwertaufnahme im Reglersynthese-Labor. Dabei wird neben dem Berechnen des RC-Glieds mit Messwiderstand auch eine Messwertaufnahme mittels Matlab Desktop Live betrachtet. Kennwerte einer Ladungskurve werden mit den Matlab Bordmitteln(Curve Fitter) errechnet und zum Schluss mit der Berechnung verglichen.

1.2 Vorbereitung

In der Vorbereitung soll nun eine mathematische Betrachtung für den Versuch errechnet werden:

$$u_c(t) + R \cdot (i_{rm}(t) + i_c(t)) - u_e(t) = 0$$
(1.1)

Nun ersetzen werden die Ströme in der Gleichung ersetzt:

$$u_c(t) + R \cdot \left(\frac{u_c(t)}{R_M} + \frac{du_c}{dt}C\right) = u_e(t)$$
(1.2)

Nun transformieren wir die Gleichung ??:

$$u_e(t) \circ - \bullet U_e(s) = U_c(s) \cdot \frac{R_M + R}{R_M} + RCs \cdot U_c(s)$$
 (1.3)

Nach weiterem Umformen ergibt sich dann eine Übertragungsfunktion von:

$$\frac{U_c(s)}{U_e(s)} = \frac{\frac{R_M}{R_M + R}}{1 + \frac{R_R R_M}{R_M + R} \cdot C \cdot s} = \frac{k_p}{1 + R_g C s}$$

$$\tag{1.4}$$

Zum Schluss soll nun noch die Sprungantwort berechnet werden. Dazu wird die Übertragungsfunktion invers transformiert und der Eingangssprung auf das System gegeben:

$$U_c(s) = \frac{1}{s} \cdot \frac{k_p}{1 + R_q C s} U_c(s) \bullet - \circ u_c(t) = \sigma(t) \cdot k_p (1 - e^{-\frac{t}{R_g C}})$$

$$\tag{1.5}$$

1.3 Durchführung

Nun wird das System im Labor aufgebaut und durch das Matlab Realtime Desktop System gemessen. Zunächst wird ein Offset-Ausgleich an den Eingängen des System gemacht. Im Anschluss wird ein RC-Glied wie in der Aufgabenstellung zu sehen angeschlossen. Zur Messung wird ein Sprung von 0V auf 5V und wieder auf 0V aufgenommen und dann untersucht. Die Betriebsmittel haben einen Wert von C = 1nF und $R = 390k\Omega$.

1.4 Beobachtung

Die Messung ergibt die Trace, die in Abbildung ?? zu sehen ist. Zu erkennen ist deutlich, dass ein $k_p < 1$ besteht, da die 5V, die maximal erreichbar wären, deutlich verfehlt werden.

Abbildung 1.1: Die Sprungantwort des Systems

Mittels des Tools "Curve Fitter"wird nun die Kurve mittels der in der Vorbereitung berechneten Formel angenähert. Das Tool gibt dann die Parameter aus, mit denen dann die Betriebsmittel rückwirkend berechnet werden können.

1.5 Auswertung

Aus dem Fitting kann ein Wert für $k_p = 0.718$ und für T = 0.2918s bestimmt werden. Aus der Vorbereitung kann nun ein Wert für den Eingangswiderstand R_M berechnet werden:

$$k_p = \frac{R_M}{R_M + R} R_M = \frac{-k_p \cdot R}{k_p - 1} = \frac{-0.718 \cdot 390k\Omega}{0.718 - 1} =$$
(1.6)

Nun kann auch mit der Zeitkonstante noch die Angabe des Kondensator von C=1nF überprüft werden:

$$T = \tag{1.7}$$

