Fine-Tuning없이 Multimodal Few-shot Visual Grounding에 효과적인 모델 아키텍처 연구

박은주(이화여자대학교) | 황영서(숙명여자대학교) | 김준섭(성균관대학교) | 양희재(성균관대학교)

ABSTRACT

This research presents a novel approach to Visual Grounding, addressing the challenge of handling new classes with minimal data. Traditional models often rely on extensive fine-tuning for new tasks, which is time-consuming and inefficient. To overcome this, we propose a few-shot learning architecture that eliminates the need for fine-tuning by incorporating a template-based multimodal prompt with learnable embeddings Additionally, our model integrates a fusion module and contrastive loss to enhance generalization across unseen classes. Our approach achieves 83.6% accuracy on the RefCOCOg dataset, demonstrating significant improvements in performance on novel classes.

METHOD Multimodal prompt Templates Learnable Embedding Multimoda 템플릿 별로 이미지와 텍스트의 상호작용을 바탕으로 학습 가능한 임베딩을 도입하여 Template 1 특정 클래스에 대한 고유한 표현을 학습 템플릿은 동일 클래스뿐만 아니라 다른 클래스에서 선택해 분별력 ↑ Templates Fusion Image-text, text-image 간의 상호 cross attention을 통해 특징 정교화 Contrastive learning 서로 다른 클래스 간의 차이를 극대화하기 위해 contrastive loss를 사용 본 연구는 Few-shot Visual Grounding 문제를 해결하기 위해 template 기반 Multimodal prompt 를 제안 $exp(sim(z_i, z_j)/\tau)$ $L(z_i,z_j) = -log \ \frac{exp(sim(z_i,z_j),\cdot,\cdot)}{\sum_{k=1}^{2N} 1_{[k \pm i]} exp(sim(z_i,z_j)/\tau)}$ 상호 Cross-attention을 통해 template 간 상호작용 강화 Contrastive Loss를 통해 클래스 간 차별성을 학습

RESULT

Comparison Accuracy

Methods	Backbone	Support set	Accuracy
TransVG	ResNet-101		67.02
TransVG	ResNet-50		66.56
TransVG++	ResNet-50		73.86
GroundVLP	Vin-VL		74.73
Dynamic MDETR	ResNet-50		69.43
Dynamic MDETR + FS-learnable embedding(ours)	ResNet-50	~	83.6

- 템플릿 기반 멀티모달 프롬프트와 학습 가능한 임베딩이 모델 성능에 미치는 영향 분석
- 제안된 모델은 83.6%의 정확도를 기록 하여 기존 모델 대비 17% 이상의 성능 향상
- 이는 템플릿 활용이 모델의 세밀한 객체 구별 능력을 크게 향상시켰음을 입증

Novel Data Performance

Methods	Backbone	Accuracy	AP
Ours	ResNet-50	0.30	0.53
Ours + Fu*	ResNet-50	0.39 (+0.09)	0.58 (+0.05)
Ours + Cl**	ResNet-50	0.38 (+0.08)	0.60 (+0.07)
Ours + Fu* + Cl**	ResNet-50	0. 39 (+0.09)	0.60 (+0.07)

*Fu: Fusion Module **Cl: Contrastive Loss

- Few-shot Visual Grounding에서 새로운 클래스를 다루는 모델의 성능을 평가
- Fusion Module과 Contrastive Loss 결합 시 정확도 0.39, AP 0.60으로 가장 높은 성능 기록
- 이는 템플릿 기반 학습과 Fu, CI 두가지 모듈이 새로운 클래스에서도 효과적임을 입증

Visualization

- 예측된 바운딩 박스 결과를 통해 제안된 모델이 텍스트 설명에 기반한 객체를 매우 정확히 식별할 수 있음을 확인
- 왼쪽 그림에서는 "a baked bun that is next to the cup"라는 텍스트에 대해 Prediction(빨간색)과 Ground Truth(초록색) 간의 차이가 거의 없는 정확한 바운딩 박스를 생성
- 오른쪽 그림은 "white color real sink not the reflected on the mirror"라는 복잡한 텍스트 설명을 기반으로, 실제 싱크대와 거울에 반사된 싱크대를 정확히 구분한 바운딩 박스를 보여준
- 이러한 결과는 제안된 모델이 텍스트와 시각적 정보를 효과적으로 통합하여 텍스트 기반 객체 식별 및 위치 예측에서 높은 성능을 입증했음을 시사

CONCLUSION

- · 본 연구는 Fine-Tuning 없이 Few-shot Visual Grounding을 가능하게 하는 멀티모달 아키텍처를 제안
- 템플릿 기반 멀티모달 프롬프트, Fusion Module, Contrastive Learning을 결합하여 RefCOCOg와 novel 데이터셋에서 높은 성능을 입증
- 제안된 모델은 템플릿 학습을 통해 시각적 세부 사항을 정교하게 파악하며, 새로운 클래스에 대한 일반화 성능을 크게 향상
- 제안된 접근법은 모델이 텍스트와 이미지 간의 복잡한 관계를 효과적으로 처리할 수 있도록 설계되어, 정밀한 추론과 응답을 가능하게 함
- 그러나 다양한 데이터셋에서의 범용성 검증과 템플릿 구조의 최적화 연구는 진행되지 않음
- 향후 연구에서는 템플릿 수와 구조를 다양화하고, 복잡한 시나리오에서도 높은 성능을 유지할 수 있도록 아키텍처를 확장할 예정

REFERENCE

- Shi, Fengyuan, et al. "Dynamic mdetr: A dynamic multimodal transformer decoder for visual grounding," IEEE
 Transactions on Pattern Analysis and Machine Intelligence., pp.1181-1198, Feb 2024.
- [2] Bulat, Adrian, Ricardo Guerrero, Brais Martínez and Georgios Tzimiropoulos. "FS-DETR: Few-Shot DEtection
 TRansformer with prompting and without re-training," IEEE/CVF International Conference on Computer Vision (ICCV),
 pp.11759-11768, Oct 2023.
- [3] Deng, Jiajun, et al. "Transvg: End-to-end visual grounding with transformers." Proceedings of the IEEE/CVF International Conference on Computer Vision. pp.1769-1779, 2021.