Week 6: Statistical tests for one variable

Phase 3

Key concepts

- Sometimes we want to test our estimated population (e.g. the mean) against a particular value (our null hypothesis).
- > This is usually called **one sample** statistical testing.
- Different data types and ASSUMPTIONS → a particular statistical test.
- Here (and in all phase III), we are going to concentrate on parametric tests, which assumes an underlying distribution to compute the p-values.

Key concepts

- Sometimes we want to test our estimated population (e.g. the mean) against a particular value (our null hypothesis).
- This is usually called one sample statistical testing.
- Different data types and ASSUMPTIONS → a particular statistical test.
- Here (and in all phase III), we are going to concentrate on parametric tests, which assumes an underlying distribution to compute the p-values.

Your dataset

Inferences based on the values of one variable, which represents an observed property of the population.

gender	education		age	ACT	SATV	SATQ
2		3	19	24	500	500
2	R 5	3	23	35	600	500
2		3	20	21	480	470
1	es (4	27	26	550	520
1		2	33	31	600	550
1	13	5	26	28	640	640
2		5	30	36	610	500
1	1 8	3	19	22	520	560
2		4	23	22	400	600
2		5	40	35	730	800

Your dataset

Inferences based on the values of one variable, which represents an observed property of the population.

	gender educa	ation a	ge AC	T :	SATV S	ATQ
	2	3	19	24	500	500
	2	3	23	35	600	500
e.g. is the average	2	3	20	21	480	470
ACT score of the	1	4	27	26	550	520
population greater	1	2	33	31	600	550
than 25?	1	5	26	28	640	640
	2	5	30	36	610	500
	1	3	19	22	520	560
	2	4	23	22	400	600
	2	5	40	35	730	800

Your dataset

Inferences based on the values of one variable, which represents an observed property of the population.

	gender educati	on a	age A	CT S	ATV S	ATQ
	2	3	19	24	500	500
	2	3	23	35	600	500
e.g. does a	2	3	20	21	480	470
population that takes	1	4	27	26	550	520
ACT exams differ in	1	2	33	31	600	550
the frequency of	1	5	26	28	640	640
education levels?	2	5	30	36	610	500
	1	3	19	22	520	560
	2	4	23	22	400	600
	2	5	40	35	730	800

Tests for a continuous variable

 \triangleright Here you'll probably want to test the estimation of the mean μ in a certain property/aspect of the population with respect to a hypothesized value (μ_0).

$$\mathbf{H_0}$$
: $\mu = \mu_0$
 $\mathbf{H_A}$: $\mu > \mu_0$ or $\mu < \mu_0$ (one-sided)
 $\mu \neq \mu_0$ (two-sided)

- \triangleright Example: "is the insula active ($\mu \neq 0$) during stressor-evoked tasks?"
- Depending on the scenario (+assumptions), you may run either a one sample z-test or t-test.

Assumptions:

- 1. <u>Independence</u>: Observations in your sample are not correlated with each other (e.g. in *cross-sectional* studies).
- 2. Known standard deviation. We know the standard deviation of the population.
- Normality. Our variable follows a gaussian distribution or sample sizes are big enough (thanks, Central Limit Theorem!)

- > Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$
- $\qquad \hbox{Test statistic: } z = \frac{< X > -\mu_0}{\sigma/\sqrt{N}}$
- Alternative Hypothesis $\mathbf{H_A}$ $\mu > \mu_0 \text{ (one-sided right tail)}$ $\mu < \mu_0 \text{ (one-sided left tail)}$ $\mu \neq \mu_0 \text{ (two-sided)}$

- > Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$
- > Test statistic: $z=\frac{< X> -\mu_0}{\sigma/\sqrt{N}}$ ~ Normal(0, 1)
- Alternative Hypothesis $\mathbf{H_A}$ $\mu > \mu_0 \text{ (one-sided right tail)}$ $\mu < \mu_0 \text{ (one-sided left tail)}$ $\mu \neq \mu_0 \text{ (two-sided)}$

- > Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$
- > Test statistic: $z = \frac{< X > -\mu_0}{\sigma/\sqrt{N}}$ ~ Normal(0, 1)
- Alternative Hypothesis $\mathbf{H_A}$ Rejection region for α $\mu > \mu_0 \text{ (one-sided right tail)} \longrightarrow z \ge z_{\alpha}$ $\mu < \mu_0 \text{ (one-sided left tail)} \longrightarrow z \le z_{\alpha}$ $\mu \neq \mu_0 \text{ (two-sided)} \longrightarrow |z| \ge |z_{\alpha/2}|$

> Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$

> Test statistic:
$$z = \frac{< X > -\mu_0}{\sigma/\sqrt{N}}$$

Alternative Hypothesis $\mathbf{H_A}$ Rejection region for α $\mu > \mu_0$ (one-sided right tail) \longrightarrow $z \ge z_{\alpha}$ qno $\mu < \mu_0$ (one-sided left tail) \longrightarrow $z \le z_{\alpha}$ $\mu \ne \mu_0$ (two-sided) \longrightarrow $|z| \ge |z_{\alpha/2}|$

 $qnorm(\alpha, lower.tail = FALSE)$

- > Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$
- > Test statistic: $z = \frac{< X > -\mu_0}{\sigma/\sqrt{N}}$

Alternative Hypothesis H_A Rejection region for α (in P-VALUES)

$$\mu > \mu_0$$
 (one-sided right tail) $\longrightarrow P(Z \ge z \mid H_0) \le \alpha$

$$\mu < \mu_0$$
 (one-sided left tail) \longrightarrow $z \le z_\alpha$

$$\mu \neq \mu_0 \text{ (two-sided)} \qquad \qquad |z| \geq |z_{\alpha/2}|$$

pnorm(z, lower.tail =FALSE)

> Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$

> Test statistic:
$$z = \frac{< X > -\mu_0}{\sigma/\sqrt{N}}$$

Alternative Hypothesis H_A Rejection region for α

$$\mu > \mu_0$$
 (one-sided right tail) \longrightarrow $z \ge z_\alpha$

$$\mu < \mu_0$$
 (one-sided left tail) \longrightarrow $z \le z_0$

$$\mu \neq \mu_0$$
 (two-sided) $|z| \geq |z_{\alpha/2}|$

 $qnorm(\alpha, lower.tail = TRUE)$

- > Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$
- > Test statistic: $z = \frac{< X > -\mu_0}{\sigma/\sqrt{N}}$

pnorm(z, lower.tail =TRUE)

Alternative Hypothesis H_A
Rejection region for α (in P-VALUES)

$$\mu > \mu_0$$
 (one-sided right tail) \longrightarrow $z \ge z_{\alpha}$

$$\mu < \mu_0$$
 (one-sided left tail) $\longrightarrow P(Z \le z \mid H_0) \le \alpha$

$$\mu \neq \mu_0 \text{ (two-sided)} \qquad \qquad |z| \geq |z_{\alpha/2}|$$

> Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$

> Test statistic:
$$z = \frac{< X > -\mu_0}{\sigma/\sqrt{N}}$$

Alternative Hypothesis H_A Rejection region for α

$$\mu > \mu_0$$
 (one-sided right tail) \longrightarrow $z \ge z_\alpha$

$$\mu < \mu_0$$
 (one-sided left tail) \longrightarrow $z \le z_\alpha$

$$\mu \neq \mu_0 \text{ (two-sided)} \qquad \qquad |z| \geq |z_{\alpha/2}|$$

$$qnorm(\alpha/2, lower.tail = TRUE)$$

 $qnorm(\alpha/2, lower.tail = FALSE)$

> Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$

> Test statistic:
$$z = \frac{< X > -\mu_0}{\sigma/\sqrt{N}}$$

Alternative Hypothesis H_A
Rejection region for α (in P-VALUES)

$$\mu > \mu_0$$
 (one-sided right tail) \longrightarrow $z \ge z_\alpha$

$$\mu < \mu_0$$
 (one-sided left tail) \longrightarrow $z \le z_{\alpha}$

$$\mu \neq \mu_0$$
 (two-sided)

$$\longrightarrow$$
 $P(Z \ge |z| | H_0) \le \alpha$

Practice example

The melting point of each of 16 samples of a certain brand of hydrogenated vegetable oil was determined, resulting in <X>=94.32. Assume that the distribution of melting point is normal with σ =1.20. Can we reject that the population melting point of hydrogenated vegetable oil, μ , is equal to 95 (i.e. our null hypothesis) at a α =0.01 significance level (Hint: $|z_{0.01/2}|\sim2.57$)?

Assumptions:

- 1. <u>Independence</u>: Observations in your sample are not correlated with each other (e.g. in *cross-sectional* studies).
- 2. <u>Unknown standard deviation</u>. We don't know the standard deviation of the population and thus, we use the estimated one, $\hat{\sigma}$, from our sample.
- 3. <u>Normality.</u> Our variable follows a gaussian distribution or sample sizes are big enough (thanks, Central Limit Theorem!)

- > Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$
- > Test statistic: $t = \frac{< X > -\mu_0}{\hat{\sigma}/\sqrt{N}}$
- Alternative Hypothesis $\mathbf{H_A}$ $\mu > \mu_0 \text{ (one-sided right tail)}$ $\mu < \mu_0 \text{ (one-sided left tail)}$ $\mu \neq \mu_0 \text{ (two-sided)}$

> Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$

> Test statistic:
$$t = \frac{< X > -\mu_0}{\hat{\sigma}/\sqrt{N}}$$
 ~ Student's t (df=N-1)

Alternative Hypothesis $\mathbf{H_A}$ $\mu > \mu_0 \text{ (one-sided right tail)}$ $\mu < \mu_0 \text{ (one-sided left tail)}$ $\mu \neq \mu_0 \text{ (two-sided)}$

> Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$

> Test statistic:
$$t = \frac{< X > -\mu_0}{\hat{\sigma}/\sqrt{N}}$$
 ~ Student's t (df=N-1)

 \rightarrow Null Hypothesis **H**₀: $\mu = \mu_0$

> Test statistic:
$$t = \frac{< X > -\mu_0}{\hat{\sigma}/\sqrt{N}}$$

 $t.test(X, mu = \mu_0, alternative="greater")$

Alternative Hypothesis
$$\mathbf{H}_{\mathbf{A}}$$

$$\mu > \mu_0 \text{ (one-sided right tail)}$$

$$\mu < \mu_0 \text{ (one-sided left tail)}$$

$$\mu \neq \mu_0 \text{ (two-sided)}$$

Rejection region for α (in P-VALUES)

$$P(T \ge t \mid H_0) \le \alpha$$

$$t \le t_{\alpha, N-1}$$

$$|t| \ge |t_{\alpha/2, N-1}|$$

 \rightarrow Null Hypothesis **H**₀: $\mu = \mu_0$

> Test statistic:
$$t = \frac{< X > -\mu_0}{\hat{\sigma}/\sqrt{N}}$$

 $t.test(X, mu = \mu_0, alternative="less")$

Alternative Hypothesis
$$\mathbf{H_A}$$

$$\mu > \mu_0 \text{ (one-sided right tail)}$$

$$\mu < \mu_0 \text{ (one-sided left tail)}$$

$$\mu \neq \mu_0 \text{ (two-sided)}$$

Rejection region for α (in P-VALUES)

$$t \ge t_{\alpha, N-1}$$

$$P(T \le t \mid H_0) \le \alpha$$

$$|t| \ge |t_{\alpha/2}|$$

> Null Hypothesis $\mathbf{H_0}$: $\mu = \mu_0$

> Test statistic:
$$t = \frac{< X > -\mu_0}{\hat{\sigma}/\sqrt{N}}$$

 $t.test(X, mu = \mu_0, alternative="two.sided")$

Alternative Hypothesis
$$\mathbf{H_A}$$

$$\mu > \mu_0 \text{ (one-sided right tail)}$$

$$\mu < \mu_0 \text{ (one-sided left tail)}$$

$$\mu \neq \mu_0 \text{ (two-sided)}$$

Rejection region for α (in P-VALUES)

$$t \ge t_{\alpha,N-1}$$

$$t \le t_{\alpha, N-1}$$

$$P(T \ge |\mathbf{t}| | \mathbf{H}_0) \le \alpha$$

Tests for a categorical variable

Here you'll probably want to test how likely the population proportions of i categories are with respect to some hypothesized values (p_i).

$$\mathbf{H_0}$$
: $\mathbf{p_i} = \mathbf{p_{i0}}$
 $\mathbf{H_A}$: $\mathbf{p_i} \neq \mathbf{p_{i0}}$

Example: You roll a dice *N* times. If the dice is fair, you should get more or less a similar proportion across all faces (1, 2, 3, 4, 5, 6).

Problem Depending on the scenario (+assumptions), you may run either a χ^2 test or a binomial test.

- It aims to test differences in observed proportions p_i with respect to some hypothesized p_{i0} across k categories.
- For this case (one variable), also known as a Pearson's χ^2 test or goodness-of-fit test.

- It aims to test differences in observed proportions p_i with respect to some hypothesized p_{i0} across k categories.
- For this case (one variable), also known as a Pearson's χ² test or goodness-of-fit test.

Assumptions:

- 1. <u>Independence</u>: Observations in your sample are not correlated with each other (e.g. in *cross-sectional* studies).
- Sufficiently large expected frequencies. Rule of thumb: at least 5 expected observations in each category.

> Null Hypothesis **H**₀: p_i=p_{i0}

$$ightharpoonup$$
 Test statistic: $\chi^2 = \sum_{i=1}^k \left[\frac{(n_i - E_i)^2}{E_i} \right]$

➤ Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$: $\mathbf{p}_{\mathbf{i}} \neq \mathbf{p}_{\mathbf{i}0}$ (In any category)

> Null Hypothesis **H**₀: p_i=p_{i0}

$$ightharpoonup$$
 Test statistic: $\chi^2 = \sum_{i=1}^k \left[\frac{(n_i - E_i)^2}{E_i} \right]$

 n_i = number of observations in category i E_i = $N \times p_{i0}$ = expected number under H_0

Alternative Hypothesis H_A:
 p_i ≠ p_{in} (In any category)

> Null Hypothesis **H**₀: p_i=p_{i0}

$$ightharpoonup$$
 Test statistic: $\chi^2 = \sum_{i=1}^{\kappa} \left[\frac{(n_i - E_i)^2}{E_i} \right]$

 n_i = number of observations in category i E_i = $N \times p_{i0}$ = expected number under H_0

Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$: Rejection region for α $p_i \neq p_{i0} \text{ (In any category)} \qquad \chi^2 \geq \chi^2_{\text{g.k-1}}$

 $qchisq(\alpha, df=k-1, lower.tail = FALSE)$

➤ Null Hypothesis H₀: p_i=p_{i0}

$$ightharpoonup$$
 Test statistic: $\chi^2 = \sum_{i=1}^{\kappa} \left[\frac{(n_i - E_i)^2}{E_i} \right]$

 n_i = number of observations in category i E_i = $N \times p_{i0}$ = expected number under H_0

0.25

Alternative Hypothesis H_A:

Rejection region for α

$$p_i \neq p_{i0}$$
 (In any category)

$$P(X \ge \chi^2) \le \alpha$$

$$pchisq(\chi^2, df=k-1, lower.tail = FALSE)$$

➤ Null Hypothesis H₀: p_i=p_{i0}

$$ightharpoonup$$
 Test statistic: $\chi^2 = \sum_{i=1}^k \left[\frac{(n_i - E_i)^2}{E_i} \right]$

 n_i = number of observations in category i E_i = $N \times p_{i0}$ = expected number under H_0

The χ^2 is always a one-sided test!!!

ightharpoonup Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$: Rejection region for α

$$p_i \neq p_{in}$$
 (In any category) $P(X \ge \chi^2) \le \alpha$

➤ Null Hypothesis H₀: p_i=p_{i0}

$$ightharpoonup$$
 Test statistic: $\chi^2 = \sum_{i=1}^k \left[\frac{(n_i - E_i)^2}{E_i} \right]$

 $chisq.test(X, p = p_{i0})$

 n_i = number of observations in category i E_i = $N \times p_{i0}$ = expected number under H_0

 \succ Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$: Rejection region for α

$$p_i \neq p_{i0}$$
 (In any category) $P(X \ge \chi^2) \le \alpha$

Practice example

A random sample of 150 recent donations at a certain blood bank reveals that 82 were type A blood. At a significance level α = 0.05, does this suggest that the actual percentage of type A donations differs from 40%, the percentage of the population having type A blood? (Hint: $\chi^2_{0.05.1} \sim 3.84$)

- \succ The χ^2 test works reasonably well when there are sufficiently large observations expected in each category.
- If our variable has only two categories (e.g. a coin) we could use the binomial test.
- <u>Example</u>: testing the fairness of a coin (equal proportion of heads and tails, 0.5) based on my observations.
- ightharpoonup Here probabilities are exact, so for small samples, it might be more powerful than the $χ^2$ test.
- It's a two-tailed test: we may test for greater, less, or unequal.

Assumptions:

- 1. <u>Independence</u>: Observations in your sample are not correlated with each other (e.g. in *cross-sectional* studies).
- 2. Only 2 categories. This test only works when your variable has 2 categories.

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $p=p_0$
- ightharpoonup (Exact) Probability of getting / outcomes: $P(X=l|\ p)=\binom{N}{l}p^l(1-p)^{N-l}$
- \rightarrow Alternative Hypothesis H_A :
 - $p > p_0$
 - $p < p_0$
 - $p \neq p_0$

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $p=p_0$
- ightharpoonup (Exact) Probability of getting / outcomes: $P(X=l|\ p)=\binom{N}{l}p^l(1-p)^{N-l}$
- \succ Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$: Rejection condition for α

$$\begin{aligned} \mathbf{p} &> \mathbf{p}_0 \\ \mathbf{p} &< \mathbf{p}_0 \\ \mathbf{p} &\neq \mathbf{p}_0 \end{aligned} \qquad \sum_{i=l}^N P(X=i|\ p=p_0) \leq \alpha$$

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $p=p_0$
- ightharpoonup (Exact) Probability of getting / outcomes: $P(X=l|\ p)=\binom{N}{l}p^l(1-p)^{N-l}$
- \triangleright Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$: Rejection condition for α

$$p > p_0$$

 $p < p_0$

 $p \neq p_0$

$$\sum_{i=1}^{N} P(X=i|\ p=p_0) \le \alpha$$

binom.test(I, N, p = p_0 , alternative = "less")

 $p \neq p_0$

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $p=p_0$
- ightharpoonup (Exact) Probability of getting \emph{I} outcomes: $P(X=l|\ p)=\binom{N}{l}p^l(1-p)^{N-l}$
- \succ Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$: Rejection condition for α

$$\begin{aligned} \mathbf{p} > \mathbf{p}_0 \\ \mathbf{p} < \mathbf{p}_0 \end{aligned} \qquad \sum_{i=0}^l P(X = i | p = p_0) \le \alpha$$

- \rightarrow Null Hypothesis $\mathbf{H_0}$: $p=p_0$
- ightharpoonup (Exact) Probability of getting / outcomes: $P(X=l|\ p)=\binom{N}{l}p^l(1-p)^{N-l}$
- \triangleright Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$: Rejection condition for α

$$p > p_0$$

$$p < p_0$$

$$p \neq p_0$$

$$\sum_{i=1}^{l} P(X=i|\ p=p_0) \le \alpha$$

$$binom.test(I, N, p = p_0, alternative = "greater")$$

- ➤ Null Hypothesis H₀: p=p₀
- ightharpoonup (Exact) Probability of getting I outcomes: $P(X=l|\ p)=\binom{N}{l}p^l(1-p)^{N-l}$
- \triangleright Alternative Hypothesis $\mathbf{H}_{\mathbf{A}}$: Rejection condition for α

$$p > p_0$$

$$p < p_0$$

$$p \neq p_0$$

binom.test(I, N, p = p_0 , alternative = "two.sided")

Recap

- Sometimes we may want to test one aspect of the population with respect to a particular value.
- This is usually done by just applying a statistical test to one of our variables in the data.
- > That variable will determine which appropriate statistical test to use.
- In the next few weeks, we will see tests that involve two (and even more) variables in our data.