

jc525 U.S. PTO
01/15/00

jc688 U.S. PTO
09/483820
01/15/00

TO THE COMMISSIONER OF PATENTS AND TRADEMARKS:

Transmitted herewith for filing is the original application
of Thomas C. Pegues, Jr. and Eugene L. Hood for SATELLITE DISH
MOUNTING ARM.

Enclosed are:

1. 7 sheets of drawings.
2. 13 pages of Specification and Claims.
3. Declaration and Power of Attorney.
4. Verified Statement by Inventor Claiming Small Entity Status.
5. Return postcard to show receipt by Patent and Trademark Office.

The filing fee has been calculated as shown below:

FOR:	<u>NO. FILED</u>	<u>NO. EXTRA</u>	<u>SMALL ENTITY</u>	
			<u>RATE</u>	<u>Fee</u>
BASIC FEE			\$385	
TOTAL CL.	4-20	X 0	x11=	\$
INDEP CL.	2-3	X 0	x41=	\$
MULTIPLE DEPENDENT CLAIM		X 0	+135=	\$
			TOTAL	\$385

TOTAL FILING FEE \$385.00

A check in the amount of \$385.00 to cover the filing fee
is enclosed.

DATE: 13 JAN 00

Frank A. Lukasik

Frank A. Lukasik
Attorney of Record
Reg. No. 22440
1250 West Marion Avenue #142
Punta Gorda, FL 33950
(941) 637 1970

Commissioner of Patents and Trademarks
Washington, DC 20231

VERIFIED STATEMENT BY INVENTOR CLAIMING SMALL ENTITY STATUS,
37 C.F.R. 1.9 (f) and 1.27 (b)

Sir:

As a below named inventor, I hereby declare that I qualify as an independent inventor as defined in 37 C.F.R.R. 1.9 (c) for purposes of paying reduced fees under section 41 (2) and (b) of Title 35, United States Code, to the Patent and Trademark Office with regard to the invention entitled **SATELLITE DISH MOUNTING ARM** described in the Provisional Application filed herewith.

I have not assigned, granted, conveyed, or licensed and am under no obligation under contract or law to assign, grant, convey, or license, any rights in the invention to any person who could not be classified as an independent inventor under 37 C.F.R. 1.9 (c) if that person had made the invention, or to any concern which would not qualify as a small business concern under 37 C.F.R. 1.9 (d) or a nonprofit organization under 37 C.F.R. 1.9(e).

I acknowledge the duty to file, in this application or patent, notification of any change in status resulting in loss of entitlement to small entity status prior to paying, or at the time of paying the earliest of the issue fee or any maintenance fee due after the date on which status as a small entity is no longer appropriate. (37 CFR 1.28 (b))

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under section 1001 of Title 18 of

the United States Code, and that such willful false statements may jeopardize the validity of the application, any patent issuing thereon, or any patent to which this verified statement is directed.

Thomas C. Pegues, Jr.

Eugene L. Hood

Names of Inventors

Thomas C. Pegues, Jr.

Eugene L. Hood

Signatures of Inventors

1/15/00

Date

SATELLITE DISH MOUNTING ARM

RELATED APPLICATION

This application is a Continuation-In-Part of provisional application Serial No. 60/116,277, Filed January 19, 1999.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates generally to satellite dishes, and more specifically, the invention relates to a self supporting cantilever support arm which gets the satellite dish above the roof line without attaching the dish directly to the roof, fascia, or soffit.

2. Background of the Invention.

In an emerging technology, which is known as Direct Broadcast Satellite (DBS), small, dish-shaped antennas are used to receive television signals, which are broadcast by satellites in geosynchronous orbits.

Various mounts for mounting small, dish-shaped antennas or other antennas on horizontal surfaces or on sloped roofs are exemplified in prior art patents including U.S. Patent No. 4,510,502 to Hovland et al which discloses a dish antenna mounting structure including an upright mast for supporting the dish antenna. The mast has an upper end for attachment to the dish and a lower end for anchoring to a rigid type

structure. The structure also has a bent strut having a lower end for anchoring to a rigid-type structure and an upper end for attachment to the mast.

U.S. Patent no. 5,334,990 to Robinson discloses a portable satellite dish antenna system comprising a dish-shaped member having an inner surface that includes a central flat area and a plurality of annular parabolically-shaped segments concentric with the central circular flat area for providing a plurality of focal points over the inner surface of the dish-shaped member.

U.S. Patent No. 5,617,680 to Beatty discloses a satellite dish mounting structure having an elevated bridge portion for supporting a mounting foot of the satellite dish. The bridge portion is integrally connected to and supported by two narrow leg positions which in turn are integrally connected to and supported by two narrow foot portions. The bridge portion is elevated from two top portions by the leg portions in order to clear the uneven surface of the roof or wall of the house.

U.S. Patent no. 5,647,567 to Pugh, Jr. et al discloses an antenna mounting bracket that reinforces the eaves of a building roof. The bracket has a telescoping support having a rigid tubular form. The telescoping support has a back plate on one end that is secured to the sidewall of the building adjacent to the eave of the building. The telescoping support is braced by a brace.

U.S. Patent no. 5,829,724 to Duncan discloses a primary strut, which is tubular, and has a straight, upper portion, a straight intermediate portion, and a straight, lower portion. The upper portion is bent at a juncture between the upper and intermediate portions and at a lower juncture between the intermediate and lower portions.

It is important that a satellite dish, whatever the size, have an unobstructed view of the sky in the direction of the location of a broadcasting satellite. To achieve this unobstructed southern exposure, the manufacturer's mounting recommendations for these small satellite dish systems are limited to three choices: strapped to a chimney; mounted on top of a pitched roof; or positioned adjacent to the southern wall of a building. Another method of mounting the satellite dish is mounting the dish to the eave of the building. Unfortunately, a problem arises due to the inherent structural weakness of a typical household eave. Even the manufacturer's of the small dish antenna specifically advise users to avoid mounting on the eave of a house because of the eave's lack of rigidity.

A need has arisen, to which this invention is addressed, for an antenna-mounting structure that can be readily adapted for mounting an antenna, such as a small, dish-shaped antenna, to a vertical wall.

The instant invention is designed to overcome the problems and difficulties with prior art dish antenna mountings which are obviated by the present invention.

SUMMARY OF THE INVENTION

The instant invention, is a self supporting cantilever support arm which gets the satellite dish above the roof line without attaching the dish directly to the roof, fascia, or soffit, thus eliminating pathways for water penetration into the roof system. The arm consists of a square receiver tube having a wall mount plate affixed to one end, three screw nuts mounted on one side of the arm, two for holding set screws and the third for mounting a ground screw. The locations of the holes in the foot plate make it possible to mount the wall mount plate on all types of structure walls such as concrete block, frame with various veneers, etc. At the wall mount plate end of the the receiver tube, a bolt is provided to attach a ground wire for the dish.

A telescope tube, having a dish assembly foot plate, is fit into the receiver tube and the required length is set. The dish assembly foot plate has slotted holes to accommodate all major brands of satellite dishes. At the front bottom of the telescope tube, a hole is provided for routing the dish hookup co-axial cable through the arm assembly.

With the mounting of the instant invention, a greater versatility in choosing dish mounting locations is provided.

The arm adjusts to an overhang with or without a gutter. The arm is made of heavy gauge steel with all stainless hardware and is completely assembled ready for installation. It is universal and will accept all major brands of satellite dishes and mounts to solid concrete, concrete block, brick, stone or framed wall with suitable veneer.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1. is a front perspective view of the invention installed under an eave.

Fig. 2. is a top perspective view of the cantilevered, telescoping satellite dish mounting arm in accordance with the invention.

Fig. 3. is a top, front, perspective view, of the receiver tube in accordance with the invention.

Fig. 4. is a front view of the receiver tube and the telescope tube, partially in section,

Fig. 5 is a right side view of the receiver arm in accordance with the invention.

Fig. 6 is a bottom view of the receiver arm in accordance with the invention.

Fig. 7 is a top view of the receiver arm in accordance with the invention.

Fig. 8 is a top perspective view of the telescoping dish

mount assembly, partly in section.

Fig. 9 is a bottom view of the telescope tube showing the co-axial cable routing hole.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Referring now to the drawings wherein like numerals designate like and corresponding parts throughout the several views, in Fig. 1 the wall mounted cantilevered telescoping arm 10, which supports small TV satellite dishes 11 and other small data receiver dishes mounts to a suitable structure walls 12 of concrete block, frame with various veneers, etc. The arm 10 will hold dish assemblies 11 to soffit, fascia, or any other part of a roof structure, without bracing. The arm 10 locates the dish assembly 11 above the roof line. The arm 10 eliminates the use of a pole mounting, and will adjust to clear the eave 13 or irregular jogs in walls.

The arm 10 is universal and will fit all major brands of dish assemblies; RCA Types, SONY, Hughes, Panasonic, etc. The arm 10 consists of the following: the fixed receiver 14 with wall mounting plate 15, and the telescoping dish mount assembly 16. The fixed receiver 14, with wall mounting plate 15, consists of a steel, square receiver tube 18 which is attached plumb to a generally square foot plate 15. Square, threaded nuts 30 are welded to a side of the receiver 14. At the plate 15 end of receiver tube 18, a bolt 22 is threaded into threaded

nut 30 to attach a ground wire for the dish 11.

As shown in Fig. 6, a round hole 23 is formed for routing dish 11 hookup co-axial cable through the arm 10 assembly.

At the front of receiver tube 18, bottom and right sides, are two each, respectively, set/adjusting screws 24 for adjusting the length of telescope tube 17. The two sets of screws 24, reach into receiver tube 10 to press against the telescope tube 18 to provide a firm contact between the receiver tube 18 and the telescope tube 17 to prevent any play between the two parts and the firm contact between the walls of the two parts provides greater strength to resist wind forces.

As shown in Fig. 2, the telescoping dish mount assembly 16 consists of a square, steel, telescope tube 17 which is attached plumb to the center of a generally hour glass shaped steel plate 25. The plate 25 is for attaching the satellite dish assembly 11 at the foot 19 with bolts 40, washers 41 and nuts 42 as shown in Fig. 8. Slotted holes 26 are formed at the top end and bottom end of plate 25 to accommodate the different hole locations in the existing dish antennas.

The foot plate 15 is mounted to the exterior structure wall 12. The holes 20, 21 in the mounting plate 15 are for mounting to concrete block, brick veneer, and the like. The attachment would be with concrete screws or anchor sleeves with anchor bolts. A spirit level is used to level the foot plate 15. It is important to assure that the self supporting

cantilevered telescoping arm 10 is both level with respect to the top or bottom edge of the foot plate 25 and plumb with respect to the face of the foot plate 25 in order to permit the precise tuning and pointing of the dish 11 according to instructions printed on the dish 11.

As shown in Fig. 4, the telescope tube 17 is inserted into the receiver tube 18 and adjusted to the desired unit length. The set/adjustment screws 24 are then tightened to push the telescope tube 17 firmly to the top and left side of the receiver tube 18. Jamb nuts 31 are tightened to assure that adjusting screws 24 are firmly set. The slotted holes 26 at the top and bottom of the foot plate 25 will accommodate all major brands of satellite dishes. The co-axial cable is then fed through the hole 32, through the telescope tube 17, through the receiver tube 18 and out through hole 23 in the receiver tube 18. A ground wire for the dish 11 may then be attached to bolt 22.

Thus it will be appreciated that the present invention provides a novel telescoping satellite dish mount that may be used whenever a satellite dish is mounted. It is contemplated that other embodiments and/or modifications may be made in the present invention without departure from inventive concepts manifested by the disclosed embodiments. It is expressly intended, therefore, that the foregoing description is illustrative only of preferred embodiments, not limiting, and

that the true spirit and scope of the invention be determined by reference to the appended claims.

What is claimed is:

1. A self supporting cantilever support apparatus for mounting a satellite dish antenna to a building having a sidewall, the apparatus consisting of:

a fixed, steel, square, receiver tube having a first end and a second end and a right side and a bottom side, said tube having a square foot plate affixed to said first end, said square foot plate having a top end and a bottom end, said receiver tube having a square thread nut affixed on said right side near said first end, two square threaded nuts affixed to said right side near said second end, and two square threaded nuts affixed on said bottom side near said second end, and a round hole formed in said bottom side near said first end,

a square, steel, telescope tube having a bottom, a first end and a second end, said telescope tube having a generally hour glass shaped plate affixed to said first end and a hole ^{hour} formed in said bottom near said first end, said glass shaped plate having a top end and a bottom end, said telescope tube being inserted and adjustably mounted within said receiver tube, said telescope tube being adapted to support said dish antenna, and

JCP
J. H. H.

set screws screwed into said two square threaded nuts affixed on said right side of said receiver tube and set screws screwed into said two square threaded nuts affixed on said bottom

side of said receiver tube, near said second end, each of said set screws having a jamb nut mounted thereon for locking said set screws in a selected position.

2. A self supporting cantilever support apparatus of claim 1 wherein said hour glass shaped plate is formed with two horizontal slotted holes at said top end and two angled slotted holes formed at said bottom end.

3. A self supporting cantilever support apparatus of claim 1 wherein said square foot plate is formed with three mounting holes formed in said top end and three mounting holes formed in said bottom end.

4. A self supporting cantilever support apparatus for mounting a satellite dish antenna to a building having a sidewall, the apparatus consisting of:

a fixed, steel, square, receiver tube having a first end and a second end and a right side and a bottom side, said tube having a square foot plate affixed to said first end, said square foot plate having a top end formed with three mounting holes and a bottom end formed with three mounting holes, said receiver tube having a square thread nut affixed on said right side near said first end, two square threaded nuts affixed to said right side near said second end, and two square threaded nuts affixed on said bottom side near said second end, and a round hole formed in said bottom side near said first end,

a square, steel, telescope tube having a bottom, a first end and a second end, said telescope tube having a generally hour glass shaped plate affixed to said first end and a hole formed in said bottom near said first end, said glass shaped plate having a top end formed with two horizontal slotted holes and a bottom end formed with two angled slotted holes, said telescope tube being inserted and adjustably mounted within said receiver tube, said telescope tube being adapted to support said dish antenna, and

set screws screwed into said two square threaded nuts affixed on said right side of said receiver tube and set screws screwed into said two square threaded nuts affixed on said bottom side of said receiver tube, near said second end, each of said set screws having a jamb nut mounted thereon for locking said set screws in a selected position.

ABSTRACT OF THE INVENTION

The invention is directed to a self supporting cantilever support apparatus for mounting a satellite dish antenna to a building having a sidewall. The apparatus consists of a square, steel receiver tube having a foot plate mounted on one end and a square, steel telescope tube inserted and adjustably mounted within the receiver tube. The satellite dish is screwed onto the hour glass shaped plate affixed to the telescope tube.

*xel
ff*
Slotted holes formed in the hour glass shaped plate to accommodate the many different types of satellite dishes. The co-axial cable is threaded through a hole in the telescope tube, through the two tubes and out through a hole formed in the bottom of the receiver tube.

Fig. 1.

Fig 2.

Fig 3.

© 1973 U.S. Patent and Trademark Office

Fig 4.

Fig. 5. A schematic diagram showing a horizontal line with two vertical branches. The left branch has a wavy line labeled '18' at its top. The right branch has a wavy line labeled '15' at its top. There are three rectangular boxes with circles inside them, arranged vertically along the line. The middle box is connected to the line by a horizontal line with a small square symbol at its junction.

Fig. 5.

Fig. 6. A schematic diagram showing a horizontal line with two vertical branches. The left branch has a wavy line labeled '18' at its top. The right branch has a wavy line labeled '15' at its top. There are three rectangular boxes with circles inside them, arranged vertically along the line. The middle box is connected to the line by a horizontal line with a small square symbol at its junction. A fourth rectangular box with a circle inside is located on the right branch, positioned between the third box and the wavy line.

Fig. 6.

Fig. 7. A schematic diagram showing a horizontal line with two vertical branches. The left branch has a wavy line labeled '18' at its top. The right branch has a wavy line labeled '15' at its top. There are three rectangular boxes with circles inside them, arranged vertically along the line. The middle box is connected to the line by a horizontal line with a small square symbol at its junction. A fourth rectangular box with a circle inside is located on the right branch, positioned between the third box and the wavy line.

Fig. 7.

Fig. 8.

Fig 9.

**DECLARATION IN CO-PENDING APPLICATION
CONTAINING ADDITIONAL SUBJECT MATTER**

As a below named inventor, I hereby declare that:

My residence, post office address, and citizenship are as stated below;

I believe that I am the original, first, joint inventor of the subject matter which is claimed and for which a patent is sought on the invention entitled:

SATELLITE DISH MOUNTING ARM,

which is described and claimed in the attached specification; that this application in part discloses and claims subject matter disclosed in my earlier filed pending Patent Application, **Serial No. 60/116,277, filed January 19, 1999.**

I have reviewed and understand the contents of the above identified specification, including the claims; that I acknowledge my duty to disclose information of which I am aware which is material to the examination of this application as defined in 37 C.F.R. 1.56 and that all statements made are of my knowledge are true and that all statements made on information and belief are believed to be true and that I am warned that willful false statements and the like are punishable by fine or imprisonment, or both (18 U.S.C. 1001) and may jeopardize the validity of the application or any patent issuing thereon;

that as to the subject matter of this application which is common to said earlier application, I do not know and do not believe that the same was ever known or used in the United States of America before my invention thereof or patented or described in any printed publication in any country before my invention thereof, or more than one year prior to said earlier application, or in public use or on sale in the United States of America more than one year prior to said earlier application; that the common subject matter has not been patented or made the subject of an inventor's certificate issued before the date of said earlier application in any country foreign to the United States of America on an application filed by me or my legal representatives or assigns more than twelve months prior to said earlier application; and as to applications for patents or inventor's certificate on the common subject matter filed in any country foreign to the United States of America, prior to said earlier application by me or my legal representatives or assigns. no such applications have been filed, or as to the subject matter of this application which is not common to said earlier application,

I do not know and do not believe that the invention was ever known or used in the United States of America before my invention thereof;

I acknowledge the duty to disclose material information as defined in 37 C.F.R. 1.56(a) which occurred between the filing date of the prior application and the national or PCT international filing date of the Continuation-In-Part application;

I do not know and do not believe that the invention was ever patented or described in any printed publication in any country before my invention thereof or more than one year prior to this application;

I do not know and do not believe that the invention was in public use or on sale in the United States of America more than one year prior to this application;

that said non-common subject matter has not been patented or made the subject of an inventor's certificate issued before the date of this application in any country foreign to the United States of America on an application filed by me or my legal representatives or assigns more than twelve months prior to this application; and

as to applications for patents or inventor's certificate on the invention filed in any country foreign to the United States of America prior to this application by me or my legal representatives or assigns, no such applications have been filed.

POWER OF ATTORNEY: As named inventor, I hereby appoint the following attorney to prosecute this application and transact all business in the Patent and Trademark Office in connection therewith:

Frank A. Lukasik, Registration No. 22,440

Send correspondence to:

Frank A. Lukasik, 1250 West Marion Avenue, Apartment #142,
Punta Gorda, FL 33950.

Direct telephone calls to: Frank A. Lukasik, (941) 637-1970.

Full name of first inventor:

Thomas C. Pegues, Jr.

Inventor's Signature:

Date:

Thomas C. Pegues Jr.
Residence: 234 SW 44th Terrace
Cape Coral, FL 33914

1/15/00

Citizenship: U.S.A.

Post Office Address: 234 SW 44th Terrace
Cape Coral, FL 33914

Full name of second inventor;

Eugene L. Hood

Inventor's Signature;

1/15/00

Date:

Residence; 229 SW 44th Terrace
Cape Coral, FL 33914

Citizenship: U.S.A.

Post Office Address: 229 SW 44TH Terrace
Cape Coral, FL 33914