Folha 11B – Séries Numéricas (parte II).

1. Estude a natureza de cada uma das seguintes séries numéricas (em caso de convergência, especifique se é absoluta ou simples):

(a)
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{2^{n+1}};$$

(b)
$$\sum_{n=0}^{+\infty} \frac{2 + \cos n}{3^n}$$
;

(a)
$$\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{2^{n+1}};$$
 (b) $\sum_{n=0}^{+\infty} \frac{2 + \cos n}{3^n};$ (c) $\sum_{n=0}^{+\infty} (-1)^{n+1} \left(\frac{n+2}{3n-1}\right)^n;$

(d)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{2^n n!}$$

(e)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{2n+1}$$
;

(d)
$$\sum_{n=1}^{+\infty} \frac{(-1)^n}{2^n n!}$$
; (e) $\sum_{n=1}^{+\infty} \frac{(-1)^n}{2n+1}$; (f) $\sum_{n=1}^{+\infty} \frac{\sin nx}{n^3}$ $(x \in \mathbb{R})$;

$$(g) \sum_{n=1}^{+\infty} \frac{3^n n!}{n^n}$$

(h)
$$\sum_{1}^{+\infty} (-1)^n \sin \frac{1}{n};$$

(g)
$$\sum_{n=1}^{+\infty} \frac{3^n n!}{n^n}$$
; (h) $\sum_{n=1}^{+\infty} (-1)^n \operatorname{sen} \frac{1}{n}$; (i) $\sum_{n=1}^{+\infty} (-1)^n \frac{n!}{(2n+1)!}$.

2. Sejam $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ séries convergentes de termos positivos.

Estude a natureza da série $\sum_{n=1}^{\infty} \frac{b_n}{1+a_n}$.

- 3. Estude a natureza das séries de termos positivos $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$, sabendo que $\lim_{n} \sqrt{n} \, a_n = 1 \text{ e que } b_n \ge a_n, \ \forall n \in \mathbb{N}.$
- 4. Estude a natureza da série de termos positivos $\sum_{n=1}^{\infty} \frac{a^n}{1+b^n}$ nos seguintes casos:

(a)
$$0 < a < b$$
;

(b)
$$0 < b \le a < 1$$
;

(c)
$$1 \le b \le a$$
.

- 5. Seja $\sum_{n=0}^{\infty} u_n$ uma série de termos positivos tal que $\lim_{n\to\infty} \frac{1}{n^2 u_n} = 3$.
 - (a) Conclua, justificando, que $\sum_{n=1}^{\infty} u_n$ é convergente.
 - (b) Considere a série $\sum_{n=1}^{\infty} w_n$ tal que $\sum_{n=1}^{\infty} w_n = \sum_{n=1}^{4} \frac{1}{n} + \sum_{n=5}^{\infty} u_n$.
 - i. Justifique que $\sum_{n=1}^{\infty} w_n$ e $\sum_{n=1}^{\infty} (u_n + w_n)$ são convergentes.
 - ii. Sendo $\sum_{n=5}^{\infty} u_n = 5$ e $\sum_{n=1}^{4} u_n = \frac{5}{4}$, determine a soma da série $\sum_{n=1}^{\infty} (u_n + w_n)$.