Содержание

1	Введение	2
2	Описание задачи	2
3	Обзор существующих подходов 3.1 NED 3.2 Выявление событий с помощью LDA 3.3 Information nuggets	4
4	Полученные результаты	7
5	Заключение	7

1 Введение

В современном мире информация быстро устаревает, поэтому способы вовремя находить нужные данные — постоянный объект для исследований. Одним из направлений в этой области является извлечение данных из микроблоггинговых платформ.

Платформы микроблогов стали очень популярным способом размещения данных в Сети. В них можно найти сообщения пользователей практически на любую тему, начиная стихийными бедствиями и заканчивая рейтингами музыкальных исполнителей. Правильная обработка доступной информации — нетривиальная задача, которая имеет множество областей применения. Последние несколько лет эта тема активно исследуется во многих университетах мира.

Отслеживание сообщений о стихийных бедствиях в реальном времени поможет вовремя организовать спасательные операции и сохранить жизни людей[1]. Руководствуясь сообщениями пользователей микроблогов можно судить о популярности товаров и вовремя принимать экономически целесообразные решения. Можно делать предположения о рейтингах политических деятелей и эффективности рекламы на основании информации в микроблогах. Помимо перечисленных способов применения доступной информации в микроблоггинговых платформах можно привести множество других.

В данной работе в дальнейшем будет рассматриваться сервис микроблогов Твиттер¹. В нем помимо текстовой информации можно публиковать фото, видео и геотеги, что так же может быть использовано при анализе, но в этой работе не рассматривается. В доступном наборе данных можно проводить анализ разных сущностей, эта работа посвящена выявлению событий среди потоков информации. Поскольку трактовка событий в сообщениях микроблогов может быть субъективной, выделим несколько свойств, которыми характеризуется событие.

Событие в первую очередь должно быть чем-то аномальным на фоне остальных данных. Оно определяется резким изменением частотных характеристик некоторых слов в сообщениях. События в микроблогах носят взрывной характер, в течении нескольких часов частоты релевантных слов возрастают в десятки раз и так же быстро опускаются до нормального уровня. Примером события могут быть: стихийное бедствие, выход спорного законопроекта на резонансную тему, получение фильмом награды на кинофестивале.

Исторически подходы к описанной задаче менялись, в следующем разделе будет рассмотрена формальная постановка задачи и эволюция способов ее решения.

2 Описание задачи

Цель данной работы состоит из нескольких частей:

- исследовать существующие подходы по извлечению событий из сети Твиттер,
- исследовать возможность применения тематических моделей для решения описанной задачи,
- разработать метод для извлечения событий на основе иерархического процесса Дирихле,

¹http://www.twitter.com

• продемонстрировать работу алгоритма на реальных данных.

Объект изучения этой работы — алгоритм, который по входным данным строит множество событий. В качестве данных для задач подобного рода служит мультимножество документов (сообщений):

$$\Omega = \left\{ D_i \,|\, i \in \overline{1, n} \right\}. \tag{1}$$

Будем считать, что каждый документ имеет временную метку t. Документ D_i определяется как упорядоченный набор слов:

$$D_i = \left\{ w_j \mid j \in \overline{1, l_i} \right\},\tag{2}$$

при этом слова в документах принадлежат некоторому словарю V.

Событие — некоторая сущность, которая характеризуется временем возникновения и ключевыми словами. Оно вызывает резкий подъем частотных характеристик некоторых слов. Событием может быть футбольный матч и музыкальный концерт. В социальной сети Твиттер есть популярные темы, которые всегда содержат много сообщений. Например это сообщения с ключевыми словами iphone и ipad. Но такие сообщения нельзя считать событиями. Также событиями нельзя считать еженедельные пятничные сообщения о конце рабочей недели[2].

Особенности социальной сети Твиттер состоят в следующем:

- короткие сообщения (до 140 символов),
- наличие шума и ошибок,
- большая плотность сообщений.
- взрывной характер событий,

3 Обзор существующих подходов

3.1 NED

Исторически первым подходом к извлечению событий принято считать NED (New Event Detection)[3]. NED предназначен для того, чтобы находить первый документ на тему, которая не встречалась раньше. Следующие документы на эту тему уже не будут новыми и не будут помечены алгоритмом. Для того, чтобы отвечать на вопрос, является ли документ новым, необходимо указать способ как определять степень сходства двух документов.

Рис. 1: Документы, соответствующие двум разным темам. Новые документы помечены серым цветом.

Для этого в алгоритме NED используется техника Incremental TF-IDF (Term Frequency – Inverse Document Frequency). TF-IDF — базовый метод выяснять насколько отдельно взятые слова характеризуют весь документ, другими словами, насколько большой вес имеет слово w в документе d. Пусть f(d, w) — количество слов w

в документе d. Определим значение $df_t(w)$ как количество документов, поступивших не позднее времени t, в которых встречается слово w. Используя введенные величины, можно записать значение веса определенного слова w в документе d. В момент времени t имеем:

weight_t
$$(d, w) = \frac{1}{Z_t(d)} f(d, w) \cdot \log \frac{N_t}{df_t(w)},$$
 (3)

где N_t — общее количество документов, поступивших не позднее времени $t, Z_t(d)$ — нормализационное значение:

$$Z_t(d) = \sqrt{\sum_{w} \left[f(d, w) \cdot \log \frac{N_t}{df_t(w)} \right]^2}$$
 (4)

Теперь можно записать значение похожести двух документов, q и d:

$$sim_t(d, q) = \sum_{w} weight(w, d) \cdot weight(w, q).$$
(5)

Указанные формулы записаны в косинусной метрике, также могут быть использованы метрики Хеллингера, Кульбака-Лейблера и другие.

Для того, чтобы понять, является ли добавленный в момент времени t документ q новым, необходимо вычислить степень его похожести со всеми предыдущими документами. Пусть d^* — документ, максимально похожий на q:

$$d^* = \operatorname*{argmax}_{d} \operatorname{sim}_{t}(d, q). \tag{6}$$

Тогда значение

$$score_t(q) = 1 - sim_t(d^*, q)$$
(7)

может быть использовано для того, чтобы определить, является ли документ q новыми. Новыми будем считать все документы q, у которых значение $\mathrm{score}_t(q)$ больше, чем пороговое значение θ_s . В обратном случае считается что существует документ d^* , достаточно похожий на q и поэтому q не представляет собой сообщение на новую тему. Для того, чтобы определить подходящее значение θ_s , можно использовать размеченный корпус и посчитать значение $\mathrm{sim}_t(d,q)$ среди документов, соответствующих одному и разным событиям.

3.2 Выявление событий с помощью LDA

На следующем примере рассмотрим как тематические модели (Topic Models) могут быть использованы для задачи распознавания событий. Для этого опишем схему, по которой работает алгоритм, предложенный в [4]. Задача состоит в том, чтобы по данным к фотографиям Flickr² распознать все события на определенную тему, проходившие в конкретных городах. Фотографии содержат описания, которые можно считать документами. Основная задача может быть разбита на пять частей:

1. предобработка данных,

²http://flickr.com

- 2. извлечение города,
- 3. распознавание темы,
- 4. распознавание события,
- 5. оптимизация описания события.

В качестве предобработки, авторы предлагают выполнить следующее: удалить стоп-слова и html теги, провести стемминг слов³, перевести не английские слова на английский язык используя сервис Google Translate.

Так как задача упоминает отдельные города, необходимо научиться распознавать город по документу. Географические координаты были доступны авторам в 20% фотографий, из этих координат были выявлены города используя сервис Google Tables. Используя технику TF-IDF, в описаниях фотографий с известными городами были извлечены ключевые слова. По этим ключевым словам, появилась возможность назначить фотографиям без геотегов "ближайший"город с точки зрения похожести описаний. Для того чтобы определять похожесть документов, можно воспользоваться подходом, описанным в (3.1). В случаях, когда "ближайший"город выявить не удалось, авторами использовались следующие предположения: считалось что один и тот же автор не мог побывать в один день более чем в двух разных городах, и что путешествие из одного города в другой занимает как минимум два часа. Эти эвристики позволили улучшить классификатор, таким образом более 97% фотографий были привязаны к городу.

Далее необходимо для каждого города кластеризовать документы по темам и рассмотреть только те из них, которые даны в описании задачи. Для распознования тем была использована тематическая модель LDA (Latent Dirichlet Allocation)[5], для определения параметров которой применялось сэмплирование по Гиббсу[6]. LDA работает из предположения, что каждый документ d_i характеризуется случайным распределением над темами, в то время как каждая тема является мультиномиальным распределением над словами.

Оставшаяся часть — извлечение событий и их оптимизация. Для того чтобы алгоритм выявил событие, отвечающее теме k в день D, необходимо чтобы количество документов d_i по этой теме в день D превосходило некоторое пороговое значение θ . Оптимизация событий подразумевает под собой объединение событий на одну тему в последовательные дни и разделение событий в разных городах.

Авторы статьи тестировали алгоритм на трех разных вариантах условия задачи, в таблице 1 приведены результаты по каждому из них.

Данные	Точность	Полнота	F -мера
#1	80.98	19.25	31.10
#2	91.21	77.85	84.00
#3	90.76	81.91	86.11

Таблица 1: Точность, полнота и F-мера алгоритма при разных условиях задачи

По результатам можно видеть что в первом случае алгоритм справляется со своей задачей существенно хуже, чем в других. Авторы объясняют это тем, что в задаче #1

 $^{^3}$ стемминг (stemming) — удаление окончаний у слов для нормализации

необходимо было находить научные конференции, их ключевые слова нельзя ограничить конкретным набором слов, поэтому полнота алгоритма низкая. В задаче #2, #3 напротив удалось обозначить необходимые ключевые слова, о чем свидетельствуют результаты.

3.3 Information nuggets

Рассмотрим подход к извлечению событий, описанный в [1]. Авторы ставят перед собой задачу составить алгоритм описания событий в социальной сети Твиттер. Были использованы данные, полученные во время торнадо Joplin в 2011 году. Данные представляют из себя сообщения пользователей, содержащие хештег #joplin, собранные 22 мая 2011 года на протяжении нескольких часов, пока плотность сообщений не стала относительно низкой. Авторы ставили цель извлекать из потока сообщений так называемые золотые самородки информации — короткие и информативные сообщения, описывающие происходящие события. По этой причине подход назван information nuggets.

Авторы видели основную проблему в том, что даже при наличии большого количества сообщений об одном событии, ими трудно пользоваться, потому что они имеют разную природу. Например это может быть сообщение очевидца о происходящем стихийном бедствии или сообщение о перечислении правительством средств на восстановление разрушенных построек. Статья предлагает делить сообщения на пять разных категорий по степени информативности:

- *Персональное*: информация в сообщении может быть полезна только автору и его кругу общения. Она не является интересной для людей, которые не знают автора сообщения непосредственно.
- Информативное (напрямую): сообщение может быть полезно людям вне круга общения автора, и эта информация написана прямым участником или очевидцем событий.
- Информативное (косвенно): сообщение может быть полезно людям вне круга общения автора, при этом автор пишет о том, что он слышал по телевидению, радио или любому другому источнику информации.
- Информативное (напрямую или косвенно): сообщение может быть полезно людям вне круга общения автора, но невозможно ответить на вопрос как автор связан с происходящими событиями.
- *Другое*: сообщение или не на английском языке, или не может быть классифицировано.

В дальнейшем рассматриваются только сообщения с информативным типом, так как они наиболее вероятно содержат полезные сведения. Затем сообщения разбиваются на подтипы по направленности информации. Всего авторами использовалось 32 разных подтипа, среди которых:

• *Предостережения и советы*: документ содержит предупреждение о возможном опасном происшествии.

- Жертвы и разрушения: в тексте сообщается о потерях, вызванных стихийным бедствием.
- *Сбор средств*: сообщения описывают пожертвования денег и предметов пострадавшим от чрезвычайного происшествия.

Для того, чтобы классифицировать сообщения по типам и подтипам, в алгоритме используется наивный байесовский классификатор, который предварительно тренируется на размеченных данных. В классификаторе используется большое количество свойств, бинарных, скалярных и текстовых. В таблице 2 приведены результаты работы алгоритма на некоторых подтипах. Для тестирования использовались размеченные вручную сообщения.

Подтип	Точность	Полнота	F -мера
Предостережения и советы	0.618	0.598	0.605
Жертвы и разрушения	0.578	0.645	0.610
Сбор средств	0.546	0.632	0.585

Таблица 2: Результаты работы алгоритма information nuggets.

4 Полученные результаты

В качестве данных были использованы сообщения пользователей Twitter с 4 июня 2013 года по 31 июня 2013 года, содержащие в себе хэштег #texas. Всего корпус включает порядка 240 тысяч сообщений и 1.5 миллиона слов.

5 Заключение

Список литературы

- [1] Imran, Elbassuoni, Castillo, Diaz and Meier. Extracting Information Nuggets from Disaster-Related Messages in Social Media. 2013.
- [2] Xun Wang, Feida Zhu, Jing Jiang, Sujian Li. Real Time Event Detection in Twitter. 2011.
- [3] Thorsten Brants, Francine Chen, Ayman Farahat. A System for New Event Detection. 2003.
- [4] Konstantinos N. Vavliakis, Fani A. Tzima, and Pericles A. Mitkas. Event Detection via LDA for the MediaEval2012 SED Task. 2012.
- [5] David M. Blei, Andrew Y. Ng, Michael I. Jordan. Latent Dirichlet Allocation. 2003.
- [6] Tom Griffiths. Gibbs sampling in the generative model of Latent Dirichlet Allocation.