Human Activity Recognition System using Semi-supervised Learning and Incremental Learning

Seol Jeon, Seong-Ho Ahn, and Dong-Hwa Jeong

Human Activity Recognition

Semi-supervised Learning

Semi-supervised learning use-case

Incremental Learning

Incremental Learning

Extremely Fast Decision Tree

If
$$G_t(X_a) - G_t(X_\emptyset) > \varepsilon$$
, $G_t(X_a) - G_t(X_{current}) > \varepsilon$

Replace I by an internal node that splits on Xa

Hoeffding Bound:

$$\epsilon = \sqrt{\frac{R^2 \ln(1/\delta)}{2n}} \tag{1}$$

Hoeffding AnyTime Tree makes a simple change to the current de facto standard for incremental tree learning. The current stateof- the-art Hoeffding Tree aims to only split at a node when it has identified the best possible split and then to never revisit that decision.

In contrast HATT aims to split as soon as a useful split is identified, and then to replace that split as soon as a better alternative is identified.

- Personal information issues may occur while passing through the server
- The time and storage space required increase when retraining
- Sensor data is difficult to label

- Personal information issues may occur while passing through the server (1)
- The time and storage space required increase when retraining (2)
- Sensor data is difficult to label (3)

- Personal information problem using Incremental Learning (1)
- ☐ Time and storage space problems using Incremental Learning (2)
- Labeling problem using Semi-supervise Learning (3)

- DATA SET: UCI-Human Activity Recognition Using Smartphones Data Set
- -activity 1 WALKING 2 WALKING_UPSTAIRS
- 3 WALKING_DOWNSTAIRS
- 4 SITTING
- **5 STANDING**
- **6 LAYING**
- -Constant Speed: 50 Hz using an accelerometer and a gyroscope
- -Using a Sliding window: 2.56 seconds
- Feature Selection: using the top 20 features with high importance as feature importance using random forest
- -To establish an environment similar to the actual use environment, the experiment was conducted by pretraining first, continuously adding new data, and performing SSL by LP on the added data
- **Experiment Environment**
- : Google colab and utilized the machine learning library scikit-learn

Framework Visualization

Table 1. Comparison of model test performance

Model	Accuracy	Precision	Recall	F1-score
DT	75.67%	75.89%	75.46%	75.43%
EFDT	84.73%	84.65%	84.31%	84.34%
LP+DT	80.32%	80.65%	79.63%	79.78%
LP+EFDT	83.17%	83.28%	82.46%	82.56%

Fig. 2. Computation time of our proposed model per trained samples

Table 2. Comparison of model training times

Model	Mean	Std
EFDT	0.0146s	0.0033s
LP+DT	0.0997s	$0.0227 \mathrm{s}$
LP+EFDT	0.0333s	0.0152s

The method of this study showed that it is a more useful method in actual use environments!

Conclusion

THANK YOU