TAEP

Traffic Analysis and Experimentation in a Production Network

Marcel Neuhausler, Michael Jensen AT&T Foundry, Palo Alto

© 2018 AT&T Intellectual Property. All rights reserved. AT&T and the AT&T logo are trademarks of AT&T Intellectual Property.

TAEP

A/B Experiments in Production

"By combining the power of software with the scientific rigor of controlled experiments, your company can create a learning lab. The returns you reap in cost savings, new revenue, and improved user experience can be huge. If you want to gain a competitive advantage, your firm should build an experimentation capability and master the science of conducting online tests."

https://hbr.org/2017/09/the-surprising-power-of-online-experiments

A/B Experiments in a Production Network

A/B testing on Network Traffic is harder than for UI/UX due to:

- Speed and amount of network traffic
- Missing control APIs to setup and run an experiments in an automated way
- Missing "Big Data" solutions
- Missing insights which are needed to define A, the base line
- Harder to limited impact of a failed experiment
- Missing Network Protocols

Ingredients

Keep it simple, Cabling

Barefoot Wedge 100BF-32X

1 straight through path 2 traffic-divert options

Ingredients

Keep it simple, P4, Forward

ingress port	action	egress port
0	set_egr	4
4	set_egr	0

Ingredients

Keep it simple, P4, Divert

ingress port	ip address	prefix length	action	egress port
0	192.168.1.12	32	set_egr	8
0	192.169.1.0	24	set_egr	16

Ingredients

Keep it simple, Controller

Ingredients

Keep it simple, Analytics Stack

Open-Source Projects:

- Timeseries Stack from InfluxData
- Dashboard by Grafana

Experiment:

- Written in Python
- Metrics pushed by Kapacitor
- Talks to Controller via REST API

Everything runs on the Barefoot Switch

Reinforcement Learning

Do some advanced experiments

Goal:

Balance traffic between two links in a 0.3:0.7 ratio using a Reinforcement Learning Agent

Setup:

- Provide a set of pre-defined divert rules to the agent as action-space
- Agent explores different combinations of divert rules based on action- and state-space
- Agent calculates reward based on link measurements

http://ai.berkeley.edu/lecture_slides.html

Reinforcement Learning

Some Lab Results

Heavy Hitter Detection

Do some advanced experiments

Goal:

Automatically divert traffic of "heaviest" flow

Setup:

- Divert traffic of a subnet (test traffic) through 8-12
- During a predefined time window count packets of each flow in that test traffic (count-min sketch)
- Resolve flow with most packets
- Divert packets for heaviest flow during the next time window through 16-20

Heavy Hitter Detection

Some Lab Results

Lessons Learned

(Preliminary) Lessons Learned from running TAEP in a live network:

- It works, no packets got hurt during our 4 months of live tests
- Barefoot/Tofino ASIC offers a fast and stable runtime for P4 programs
- It's hard, confronted with a new set of challenging but interesting problems
- How to control a P4 program running at high-speed in the data-plane with a massively slower control plane
- How to split your application logic (example HHD) across data-plane (P4) and control-plane
- It's fun, watching the Reinforcement Learning Algorithm trying to do its magic on production traffic

Traffic Analysis and Experimentation Platform

Questions

https://github.com/att-innovate/taep

TAEP

Traffic Analysis and Experimentation Platform

Barefoot Wedge 100BF-32X

1 straight through path 2 traffic-divert options

Divert areas of interest Example: Traffic from or to specific sub-net 2. Heavy Hitter Detection

Divert test traffic through 8-12 Find heaviest flow Divert heaviest flow through 16-20 3. Reinforcement Learning

Use Reinforcement Learning Agent Balance test traffic at a 0.3:0.7 ratio between 8-12 and 16-20 4. Chaos Engineering

Drop certain traffic Modify certain traffic Add latency to certain traffic

