

Lycée pilote de sousse

Le 24/04/2025

Devoir de Contrôle Ng Mathématiques

Prof :Slah Saoudi Classes :2 Sc_{1,2} Durée : 1 heure

Exercice 1 (3 points)

Répondre par vrai ou faux . Aucune justification n'est demandée. $(0, \vec{\iota}, \vec{j})$ est R.O.N du plan.

- 1) Le vecteur $\vec{u} = 2\vec{i} + 4\vec{j}$ est un vecteur normal à la droite D: x + 2y 1 = 0.
- 2)L'ensemble (C) des points M(x, y) vérifiant $x^2 + y^2 + 2x + 6y + 1 = 0$ est un cercle de rayon r = 9.
- 3) Soit les points A(1,0) et B(0,2). L'ensemble Δ des points M(x,y) vérifiant $AM^2 BM^2 1 = 0$ est une droite perpendiculaire à (AB).

Exercice 2 (8 points)

Dans le plan rapporté à un repère orthonormé $(0, \vec{i}, \vec{j})$, on donne les points A(-1, -2), B(5, 0) et C(2, 1).

- 1)a-Vérifier qu'une équation cartésienne de (AB) est x 3y 5 = 0.
- b-Calculer la distance d = d(C, (AB)). En déduire l'aire S du triangle ABC.
- 2)a-Déterminer l'équation réduite de la droite D₁ passant par C et parallèle à (AB).
 - b-Déterminer l'équation réduite de la droite D_2 passant par C et perpendiculaire à (AB).
- 3) Soit la droite Δ : x + 4y + 3 = 0.

Montrer que les droites (AB) et Δ sont sécantes puis déterminer les coordonnées de leur point d'intersection I.

- 4) Soit (F) la famille des droites $D_m: (2m-1)x + (m+3)y 2m + 5 = 0$ où m est un réel quelconque.
- a-Justifier que les droites (AB) et Δ sont deux droites de la famille (F).
- b- En déduire que toutes les droites D_m concourantes en un point dont on précisera les coordonnées.

Exercice 3 (9 points)

Soit la fonction f définie sur \mathbb{R} par : $f(x) = (x-2)^2 - 1$. On désigne par (C_f) la courbe représentative de f dans un repère orthonormé (O, \vec{t}, \vec{j}) .

- 1) a-Déterminer la nature de (C_f) , son sommet S et son axe Δ de symétrie.
 - b-Déterminer les coordonnées des points d'intersection $de(C_f)$ avec les axes du repère .
 - c-Tracer (C_f) sur la feuille annexe.
- 2) Soit la fonction g définie sur \mathbb{R} par : $g(x) = x^2 + 4|x| + 1$.
 - a-Justifier que g est une fonction paire .
 - b-Exprimer g(x) en fonction de f(x) pour $x \in]-\infty,0]$.
- c-Tracer alors la courbe (C_g) sur la feuille annexe .
- 3) Soit x un réel de l'intervalle]1,3[.

On considère les points A(1,0), B(3,0) et M(x,f(x)) et on désigne par S(x) l'aire du triangle ABM.

- a- Montrer que S(x) = -f(x).
- b-Montrer que : S(x) est maximale équivaut à ABM est un triangle rectangle en M.

Nom et Prénom

=> M= S(2)-1) $\overrightarrow{MA} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$ et $\overrightarrow{MB} \begin{pmatrix} 4 \\ -2 \end{pmatrix}$ | aa'+bb'=01 × 1 + (-1)×1=0 => (MA) 1 (MB) ⇒ MAB rectargle en M.