Homework 5

Part 1

1. P(Y)

Υ	P(Y)
-у	3/7
+y	4/7

 $P(X_1|Y)$

X_1	Υ	$P(X_1 Y)$
-1	-у	2/3
0	-у	1/3
1	-у	0
-1	+y	0
0	+y	1/2
1	+y	1/2

 $P(X_2|Y)$

X_2	Υ	$P(X_2 Y)$
-1	-у	0
0	-у	2/3
1	-у	1/3
-1	+y	1/2
0	+y	1/4
1	+y	1/4

2. $P(+y|X_1=+1,X_2=+1)=P(+y)*p(X_1=+1|+y)*P(X_2=+1|+y)=1/14$ $P(-y|X_1=+1,X_2=+1)=P(-y)*P(X_1=+1|-y)*P(X_2=+1|-y)=0$ Since $P(+y|X_1=+1,X_2=+1)>P(-y|X_1=+1,X_2=+1)$, We predict +y.

3. We have the equation $\frac{c(x)+k}{N+k|X|}$

$$P(X_1|Y)$$

X_1	Υ	$P(X_1 Y)$
-1	-у	1/2
0	-у	1/3
1	-у	1/6
-1	+y	1/7
0	+y	3/7
1	+y	3/7

$P(X_2|Y)$

X_2	Υ	P
-1	-у	1/6
0	-у	3/6
1	-у	2/6
-1	+y	3/7
0	+y	2/7
1	+y	2/7

4. $X_1=0\ and\ X_2=-1$ or $X_1=1\ and\ X_2=-1$, We can get the maximum of $P(X_1,X_2,Y+y)$

Part 2

1. As we can see ,the data is not linearly separable.

- 2. It will predict it as +y.
- 3. \circ For $X_3=1$, doesn't allow because it only add a bias term to the linear classifier but the data is not linearly separable.

- For $X_3 = |X_1|$, doesn't allow because for point (0, 1, 0), (0,-1, 0), w should be (a, 0, b) (a and b are some real number) to classify them to the same category, but in this case the classifier will also judge (0, 0, 0) to the same category, which is wrong.
- \circ For $X_3=|X_2|$, allow. Let w=(2,0,1), the decision boundary is $x_1=-\frac{1}{2}|x_2|$, which shows as below:

As we can see, this boundary perfectly separate the data.

- \circ For $X_3=X_1^2$, doesn't allow because for point (0, 1, 0), (0,-1,0), w should be (a, 0, b) (a and b are some real number) to classify them to the same category, but in this case the classifier will also judge (0, 0, 0) to the same category, which is wrong.
- \circ For $X_3=X_2^2$, allow because the decision boundary could be a parabola going leftwards. Just let w=(1,0,1), the decision boundary is $x_1=-x_2^2$, which is a parabola going leftwards and with original point on it, and it can perfectly separate the data.
- \circ For $X_3=X_1^2+X_2^2$, allow because its decision boundary could be a circle. We let w=(2,0,1), the decision boundary of the classifier is $2x_1+x_1^2+x_2^2=0$, which is also $(x_1+1)^2+x_2^2=1$. This circle can perfectly separate the data.

$\phi(x)$	Y(predicated)	w
(-1, 1, 0)	-у	(0, 0, 0)
(0, 0, 0)	-у	(0, 0, 0)
(-1, 0, 1)	-у	(0, 0, 0)
(0, 1, 1)	-у	(0, 1, 1)
(1, -1, 0)	-у	(1, 0, 1)
(0, -1, 1)	+y	(1, 0, 1)
(1, 0, 1)	+y	(1, 0, 1)

5.
$$(-1,+1,0): -1+0+0=-1=> -y$$
, correct

$$(0,0,0): 0+0+0=0 => -y$$
, correct

$$(-1,0,1): -1+0+1=0 => -y$$
, correct

$$(0,1,1): 0+0+1=1 => +y, correct$$

$$(1,-1,0): 1+0+0=1 => +y, correct$$

$$(0,-1,1): 0+0+1=1 => +y$$
, correct

$$(1,0,1): 1+0+1=2 => +y, correct$$

So it is able to linearly separate all of them.

Part 3

1. (0, 0) (1, 0) and (0,1)

The Euclidean distance is $\sqrt{0.5^2+0.5^2}=0.71$

Since (0, 0) is -y, (1, 0) and (0, 1) are +y, we predict oversell.

2.
$$score = -1*(0+1)+(-2)*1+2*1.52+1*1=2.5>0=>+y$$

3. The means:

$$m_1 = (-2/3, 1/3)$$

$$m_2 = (0,1)$$

$$m_3=(2/3,2/3)$$

The cluster is:

m2: (0, 1)

We predict m1 to -y and m2, m3 to +y.

For every points in the data, we calculate the Euclidean distances between them and the means, then we can find that :

data	nearest mean
(-1, 1)	m1
(0, 0)	m1
(-1, 0)	m1
(0, 1)	m2
(1, -1)	m3
(0, -1)	m3
(1, 0)	m3

So it is stable.