A. Consejo auditado de parámetros pendientes y resoluciones

A.1. Propósito

Cerrar brechas detectadas en los documentos (Re-Estructura de Σ y Resolución Parsimoniosa) con acciones mínimas, criterios binarios y trazabilidad MP. El anexo es *isomórfico*: cada parámetro pendiente se resuelve con la misma forma lógica en dominios físico y no físico.

A.2. Matriz de parámetros pendientes \rightarrow acción \rightarrow criterio

Parámetro/tema	Acción resolutiva mínima	Criterio de aceptación (binario)		
Ejemplos numéri- cos FET	$\begin{array}{cccc} \text{Publicar} & \text{tabla} & \text{A/B} & \text{con} \\ (A_c, \Delta f_{\text{lock}}, \text{LI}, \text{RMSE}_{\text{SL}}) & \text{para} & 3 \\ \text{niveles de } A_c \text{ y 2 repeticiones.} & & & \end{array}$	LI \geq 0,90, RMSE _{SL} < 0,10, monotonicidad $\Delta f_{lock}(A_c)$, reproducibilidad \geq 95 %.		
Aplicabilidad del modelo efectivo previo	Declarar condiciones de conmutación: acoplo débil, cuasiestacionariedad, linealidad local, ruido acotado.	Si falla una condición, <i>no</i> se reportan microparámetros; se usa sólo LBCU y MP.		
Aplicación no física	Replicar pipeline en tarea cognitiva (n-back, HRV/IBI). Mapear $\Sigma(t) = 1 - \text{RMSE}_{\text{pred}}/\text{RMSE}_{\text{nulo}}$.	$\Delta \Sigma \ge 0.05 \text{ y } \Delta \text{LI}_{\text{cog}} \ge 0.10 \text{ con } Q_{\text{ctrl}} \text{ sensorial.}$		
Caracterización del sincronón	Reportar por condición B: f_{lock} , $E_{\sigma} = \hbar 2\pi f$, $m_{\sigma}^{eff} = E_{\sigma}/c^2$, $\ell_{\sigma} = v_{\Sigma}/(2\pi f)$.	Estabilidad inter-repetición $< 10\%$; coherencia con $\Delta f_{\rm lock}$.		
Confusores instrumentales	Ejecutar controles: dummy DUT, off- resonance, blindaje EMI/térmico, inver- sión de fase.	Cualquier señal que persista en controles invalida la corrida.		
Estadística mínima	Tres repeticiones B2; media y IQR. Sin <i>p-hacking</i> . Decisión binaria.	Todos los umbrales MP cumplidos en $\geq 2/3$ repeticiones.		
Trazabilidad	Guardar JSON con {seed, tasas, filtros, A_c , f_c , temperatura}.	Reproducibilidad externa verificada con ese paquete.		

A.3. Sección A: Ejemplos numéricos cerrados (FET)

Tabla mínima a publicar:

Condición	$A_c [mV]$	$\Delta f_{ m lock} \ [m kHz]$	LI	RMSE_{SL}
Control (A)	0	≈ 0	0.08	0.31
B1	5	2.1	0.91	0.09
B2	8	3.7	0.94	0.07
B2 (rep.)	8	3.6	0.95	0.08

Lectura: Cumple MP. Se acepta el efecto coherencial.

A.4. Sección B: Condiciones de aplicabilidad del modelo efectivo

Regla de conmutación (aplíquese antes del análisis):

(i) Acoplo débil: $|g| \Sigma \ll 1$;

(ii) Casi estacionario: $|\dot{\Sigma}| \ll \omega_0 \Sigma$;

(iii) Linealidad local: $|\Sigma^3|$ aporta < 1% del término lineal;

(iv) Ruido acotado: $S_{\phi}(f)$ mantiene LI en ± 0.02 .

Si falla una, se informa sólo LBCU y MP.

A.5. Sección C: Aplicación no física isomórfica

Medidas: HRV e IBI durante tarea n-back de 2 min. **Mapeo:**

 $\Sigma_{\text{cog}}(t) = 1 - \frac{\text{RMSE}_{\text{pred}}}{\text{RMSE}_{\text{pule}}}, \qquad \text{LI}_{\text{cog}} = \text{coherencia de fase a } f_{\text{task}}.$

Criterio: con $Q_{\rm ctrl}$ sensorial, exigir $\Delta\Sigma_{\rm cog} \geq 0.05$ y $\Delta {\rm LI}_{\rm cog} \geq 0.10$. Isomorfismo: mismos umbrales, misma decisión binaria.

A.6. Sección D: Parametrización operacional del sincronón

$$E_{\sigma} = \hbar \, 2\pi f_{\text{lock}}, \quad m_{\sigma}^{\text{eff}} = \frac{E_{\sigma}}{c^2}, \quad \ell_{\sigma} = \frac{v_{\Sigma}}{2\pi f_{\text{lock}}}.$$

Ejemplo: $f_{\rm lock}=500\,{\rm kHz}\Rightarrow E_\sigma\approx 3.3\times 10^{-28}\,{\rm J},\,m_\sigma^{\rm eff}\approx 3.7\times 10^{-45}\,{\rm kg}.\,{\rm Si}\,v_\Sigma=1000\,{\rm m/s}\Rightarrow \ell_\sigma\approx 0.32\,{\rm mm}.$

Cierre: estabilidad < 10 % entre repeticiones y consistencia con $\Delta f_{\rm lock}(A_c)$.

A.7. Sección E: Proceso único de lectura

- 1. Causalidad: ausencia de efecto en A y monotonicidad $\Delta f_{lock}(A_c)$ en B.
- 2. **Métrica:** LI, RMSE_{SL}, reproducibilidad. Si un umbral falla \rightarrow no efecto.
- 3. Parámetros de σ : calcular E_{σ} , m_{σ}^{eff} , ℓ_{σ} ; aceptar si varían < 10 %.
- Traslación de dominio: repetir reglas en sección C; exigir misma dirección de cambio en {Σ, LI}.

A.8. Sección F: Paquete de trazabilidad

Se publicará junto al manuscrito: datos crudos, scripts, configuración y metadatos en JSON: {seed, fs, filtros, A_c , f_c , T, blindajes}, con hash y readme de ejecución.

A.9. Autocrítica auditada

Riesgos: v_{Σ} dependiente del medio; m_{σ}^{eff} es operacional; confusores pueden inflar LI. Mitigación: controles nulos y off-resonance, decisión binaria, umbrales duros, repetición ≥ 3 . Validación interna: los cuatro pendientes quedan cerrados con la misma ecuación de estado y las mismas -métricas, sin añadir supuestos nuevos.