Semaine du 06 Janvier - Planche nº 1

Exercice no 1:

(Questions de cours):

- 1. Donnez la définition de Vect(A).
- 2. Montrer que Vect(A) est l'intersection de tous les sev de E contenant A.
- 3. Donner la définiton de somme directe de p sev.
- 4. Énoncer et démontrer la caractérisation de somme directe de p sev.

Exercice nº 2:

(Projecteurs) : Soient p et q deux projecteurs d'un \mathbb{C} -espace vectoriel E.

- 1. Montrer que (p + q) est un projecteur si et seulement si $(p \circ q = q \circ p = 0)$ si et seulement si $(\text{Im}(p) \subseteq \ker(q))$ et $\text{Im}(q) \subseteq \ker(p)$.
- 2. Dans le cas où p+q est un projecteur, déterminer $\ker(p+q)$ et $\operatorname{Im}(p+q)$.

Exercice nº 3:

(Espaces vectoriels) : Soient $n \in \mathbb{N}$ et $E = \mathbb{R}_n[X]$ l'espace vectoriel des polynômes réels de degré inférieur ou égal à n. Pour tout $i \in \{0, \dots, n\}$, on note $F_i = \{P \in E, \forall j \in \{0, \dots, n\} \setminus \{i\}, P(j) = 0\}$.

- 1. Montrer que les F_i sont des sous-espaces vectoriels de E.
- 2. Montrer que $E = F_0 \oplus F_1 \oplus \cdots \oplus F_n$.

Semaine du 06 Janvier - Planche nº 2

Exercice no 1:

(Questions de cours) : Démontrer les propositions suivante :

1. Étant donné E, F deux K-ev, et pour $i \in \{1, \ldots, s\}, A_i$ des sev de E,

Si
$$E = \bigoplus_{i=1}^{s} A_i$$
 et $u_i \in \mathcal{L}(A_i, F)$, alors $\exists ! u \in \mathcal{L}(E, F), u_{|A_i} = u_i$.

2. Si s est une symétrie alors s est une application linéaire et involutive .

Exercice nº 2:

(Espaces vectoriels) : Soit E un \mathbb{K} -espace vectoriel, F et G deux sous-espaces vectoriels de E. Montrer que $F \cup G$ est un sous-espace vectoriel de E si et seulement si $F \subseteq G$ ou $G \subseteq F$.

Exercice no 3:

(Espaces vectoriels et applications linéaires) : Soit E et F des \mathbb{K} -espaces vectoriels. On se donne $f \in \mathcal{L}(E,F)$, une famille $(E_i)_{1 \leq i \leq n}$ de sous-espaces vectoriels de E et une famille $(F_j)_{1 \leq j \leq p}$ de sous-espaces vectoriels de F.

- 1. Montrer que $f\left(\sum_{i=1}^n E_i\right) = \sum_{i=1}^n f(E_i)$.
- 2. Montrer que si f est injective et si la somme des E_i est directe alors la somme des $f(E_i)$ est directe.
- 3. Montrer $\sum_{j=1}^{p} f^{-1}(F_j) \subseteq f^{-1}\left(\sum_{j=1}^{p} F_j\right)$.
- 4. Montrer que cette inclusion peut être stricte. Donner une condition suffisante pour qu'il y ait égalité.

Semaine du 06 Janvier - Planche nº 3

Exercice no 1:

(Questions de cours) : Énoncer et démontrer la caractérisation des projecteurs.

Exercice nº 2:

(Applications linéaires et espaces vectoriels) : Soient E et F deux \mathbb{K} -espaces vectoriels. Soient A et B deux sous-espaces vectoriels de E et $f \in \mathcal{L}(E, F)$. Montrer que

$$f(A) \subseteq f(B) \iff A + \ker(f) \subseteq B + \ker(f)$$

Exercice no 3:

(Application linéaires et espaces vectoriels) : On désigne par E l'espace vectoriel des fonctions continues sur [0,1] et à valeurs dans \mathbb{R} . On considère $p \geq 1$ et a_1, \dots, a_p des réels appartenant à [0,1] deux à deux distincts. On pose enfin $F = \{f \in E, \forall k \in \{1,\dots,p\}, f(a_k) = 0\}$

- 1. Donner un exemple d'une fonction non-nulle appartenant à F.
- 2. Démontrer que F est un sous-espace vectoriel de E.
- 3. Montrer que l'application $\psi: f \in E \mapsto (f(a_1), \dots, f(a_p)) \in \mathbb{R}^p$ est linéaire et calculer $\ker(\psi)$.
- 4. On suppose dans cette question que p=4. On définit quatre fonctions g_1,g_2,g_3 et g_4 par :

$$\forall k \in \{1, \dots, 4\}, g_k(x) = \prod_{\substack{j=1 \ j \neq k}}^4 \frac{x - a_j}{a_k - a_j}$$

- a) Expliciter (sans les développer) les fonctions g_k et calculer $g_k(a_i)$ pour $(k,i) \in \{1,\ldots,4\}^2$.
- b) On pose $G = \text{Vect}(g_1, g_2, g_3, g_4)$. Démontrer que $E = F \oplus G$.