Activité: chronophotographie

Une chronophotographie est un procédé qui consiste à prendre en photo un mouvement à intervalle réguliers.

On peut ensuite étudier la superposition de ces photographies pour déterminer la trajectoire et la vitesse d'un objet donné.

Chronophotographie

- 1. Sur le document distribué :
 - · Choisir une partie du corps qui soit visible à chaque instant.
 - Suivre la position de cette partie, en la marquant de croix sur la photo.
 - Numéroter les points obtenus dans l'ordre.
- 2. Donner la liste des coordonnées obtenues dans le repère $(0; \vec{i}, \vec{j})$:

3. On va maintenant calculer la vitesse avec des vecteurs : si il y a t temps entre chaque photo, pour calculer la vitesse à la n-ième photo, on doit calculer $\frac{1}{t} \times \overline{P_n P_{n+1}}$.

Placer ainsi sur le document la vitesse correspondant à chaque point (sauf le dernier).

Chute libre

Sur le schéma ci-dessous, on a représenté la trajectoire d'un objet en chute libre : il y a 2 secondes d'intervalle entre chaque positions.

- 1. Quelle est la direction du mouvement de l'objet ici?
- 2. Lire les coordonnées de chaque point dans le repère $(0; \vec{i}, \vec{j})$:

 $P_0(\ ;\)\ P_1(\ ;\)\ P_2(\ ;\)\ P_3(\ ;\)\ P_4(\ ;\)\ P_5(\ ;\)$

3. Pour calculer la vitesse $\overrightarrow{v_t}$ au temps t, on utilise la formule $\overrightarrow{v_t} = \frac{1}{t} \overrightarrow{P_{t+1} P_t}$ Placer alors $\overrightarrow{v_0}$, $\overrightarrow{v_1}$, $\overrightarrow{v_2}$ et $\overrightarrow{v_3}$ sur le repère.

4. Calculer les vecteurs variations de vitesse $\Delta \overrightarrow{v_0} = \overrightarrow{v_1} - \overrightarrow{v_0}$ et $\Delta \overrightarrow{v_2} = \overrightarrow{v_3} - \overrightarrow{v_2}$. Que remarque-t'on?