

Matrix Programming

Introduction

Copyright © Software Carpentry 2010
This work is licensed under the Creative Commons Attribution License
See http://software-carpentry.org/license.html for more information.

software carpentry

Studying patients with Babbage's Syndrome How effective are available treatments?

	Α	В	С
John	2.5	3.5	3.0
Mary	3.0	1.5	3.0
Zura	2.5	2.0	5.5

How similar are patients' responses?

Can we use similarity to recommend treatments?

Matrix Programming

Introduction

software carpentry

Answer these questions with matrix operations How to implement them in software?

Option 1: write loops

- Makes programs many times longer than the corresponding mathematics
- And it's hard code to debug...
- ...and tune

Matrix Programming

Introduction

software carpentry

Option 2: use libraries written in low-level, high-performance languages like Fortran and C

- Someone else has written, debugged, and tuned all the loops
- But the interface is...awkward

SUBROUTINE CAXPY(N,CA,CX,INCX,CY,INCY)

complex

constant
times vector
plus vector
number of
elements

Matrix Programming

Introduction

software carpentry

Option 3: use a high-level language like MATLAB Or a library like Python's NumPy

Present a data-parallel programming model

- Operate on entire arrays at once
- No loops!

Hide details of optimizations

- Particularly differences between machines

All provide basically the same features

Often wrappers around the same underlying libraries

Matrix Programming

Introduction

created by

Richard T. Guy

November 2010

Copyright © Software Carpentry 2010
This work is licensed under the Creative Commons Attribution License
See http://software-carpentry.org/license.html for more information.