

Geophysics for Everyone

Electromagnetic

G. Hodges, Chief Geophysicist Fugro Airborne Surveys

Summary at the start

- •Electromagnetic (EM) is used to detect electrically conductive deposits and alteration, and to map geology by changes in electrical resistivity.
- •Resistivity is controlled by mineralogy (sulphides, oxides, clay minerals) and by porosity, saturation and salinity.
- •Explorers need to understand the electrical nature of the target, the host geology, and over-lying geology (e.g. overburden).
- •There is a HUGE range of EM systems to choose from!

Resistivity of Common Rocks

Conductivity = 1/Resistivity

(from Palacky, 1988)

Conductivity Resistivity

www.fuaro.com

MVT

Controls on Resistivity

Mineralogy

- conductivity of the minerals
- •connections: do they form a conductive pathway?
- •volume: thick, weakly conductive zones look like thin, strong conductive zones

(consider sensitivity footprint of system)

Water content

- •porosity / fracturing (pathways)
- saturation
- salinity

Alteration

- Chlorite, sericite decrease resistivity
- •Silicification, carbonate increases resistivity Conductivity depends as much on form and bulk as on conductivity of the mineral.

Worth repeating:

thick, weakly conductive formations look like thin, strongly conductive ones!

The Question Geophysicists Hate

HOW DEEP CAN IT SEE? (It depends....)

Depends on Penetration:

- Conductivity of ground
- Time or Frequency
- Strength of transmitter
- Sensitivity and noise in receiver

Depends on Detection: (All of the above, and..)

- Size of target
- Conductivity of target
- Geometry (system and target)
- Geological Noise

Conductive Minerals

Note: It is really hard to get resistivity information on minerals.

Conductors in Exploration

Targets:

Sulphides (Fe, Cu, Pb, Ni, Mo) (not Zn, Sb)

Best: massive mineralization

OK: veins

Maybe: disseminated (only if >10-20%)

Metal Oxides (mag,hem,lim)

depends on form

Kimberlite

Alteration zones

Geological Noise:

Graphite (often massive, extensive)

Clay Minerals – sediments or alteration products
shears, fractures, alteration horizons (porosity and minerals)

Lakes, swamps, overburden (sub-crop troughs)

Resistivity of Rocks

Graphitic

Clay-rich sedimentary

Carbonates

Sandstone (+/-water)

Metasediment (un altered)

Metavolcanic

Igneous (un altered*)

^{*} mafic and ultramafic rocks alter much faster – sometimes years.

EM Mapping in Exploration

Most igneous, crystalline rocks too resistive to separate Distinguish sedimentary from crystalline Maybe meta-sediments
Mapping sedimentary types

Requires sensitivity to high resistivity range, good calibration

Geological Noise:
Overburden thickness and type
Alluvial cover

Evaluating the EM Target

Before flying EM – need confidence that it will work.

- •How conductive (or resistive) wrt host geology?
 - •Conductive targets <u>much</u> easier to detect than resistive (even with same contrast)
 - Host geology conductivity varies also
- •Is it big enough to detect?

Best: previous geophysical measurements

OK: Measured rock properties

...Sigh: estimate or model from geological description

Evaluating the EM Target

What we need to know:

- Host rock type
- Overburden type and thickness and variability
 till, alluvium, calcrete, saprolite
- Target size: economic interest
- Depth range of (economic) interest
- Target mineralogy
 - alteration halo type, intensity and size
 - •TOTAL SULPHIDES!

The anomaly is caused by the total sulphides (not just the economic sulphides)!

Time Domain and Frequency Domain

How do you check the tone of a wine glass?

Time Domain

Time Domain:

High power pulse of energy
Earth continues to respond after pulse (off-time)
Data measured as many time channels (samples) during and after pulse.

Sampling Of Data For TDEM Surveys

Poor conductor has strong early response, decaying quickly (short Tau). (Look for these in early time channels.)

Good conductor has weaker early response, but decays more slowly, (long Tau). (Look for these in late time channels.)

Current Flow – Time-domain

Transmitter pulses...

... and currents start flowing, first shallow, then deeper and wider and weaker in later time.

(like a smoke ring)

Time Domain

2000

1000

n

B-Field gives stronger response from stronger conductors, and minimizes overburden and host.

EM Systems with coils measure rate of change of induced magnetic field (dB/dt). B-Field is measured or a calculated product to enhance strong conductor responses.

B-Field Example

Stronger conductor enhanced

B-Field: Measured or Calculated

Integrating B from dB/dt loses the constant of integration.

Measured —

- Better strong conductors
- Slower surveying
- Not in borehole or airborne

Calculated ---

Faster and cheaper

Frequency Domain

Frequency Domain:

Low power, continuous transmission on many frequencies. Earth response continuous, measured through transmitter. Data measured as in-phase and quadrature (out-of-phase) components for each frequency.

Frequency Domain Target Conductance

Current Flow – Frequency domain

Five transmitters always on...

... currents are continuously flowing, shallow at high frequency, deeper and wider at low frequency.

Most Sensitive Depth of Exploration

Time and Frequency Domain

for any system...

Depth depends on host resistivity

Frequency Domain, dB/dt or B-Field?

Feature	Freq	Time dB/dt	Time B-Field	
Weak Conductors	Best	OK	Poor	
Strong Conductors	Good	Better	Best	
Depth	Poor	Better	Best*	*Strong conductors only
Speed / Cost	Best	OK	Worst	
Multi-component	Yes	Yes	Yes*	*Three sensors
Borehole	No	Yes	No	
Airborne	Yes	Yes	Calc*	*Calculated from dB/dt

Sensitivity and Deposit types

Time and Frequency Domain: Key Points

Time Domain: High power pulse of energy, and then sample

Power, to great depth (+700m)
Pulse shape, off-time (for sampling)
Strong conductors

Strong conductors, deep targets: IOCG, VMS, Ni, Sask U

Frequency Domain: Low power on many frequencies.

High spatial resolution, Precision, near-surface (150m) High frequency for weak conductors/ high resistivity mapping

Weaker conductors, small targets: Gold, Diamonds, Env+Eng

	Moving Tx Centre Rx	Moving Tx Offset Rx	Fixed Tx Moving Rx
Small Tx	DIGHEM GEM2A IMPULSE RESOLVE	MAX-MIN Promis PEM,	
	AEROTEM SKYTEM SIROTEM	P-THEM TEMPEST	UTEM CSAMT PROTEM PEM SIROTEM
Large Tx	VTEM HELITEM	GEOTEM MEGATEM	INFINITEM FLAIRTEM
Distant Tx			VLF
Natural Tx			MT

Airborne Ground Freq Domain, Time Domain SIZE, SIZE = Importance

Airborne

The Airborne EM Gang

The Airborne EM Gang

Fixed-Wing Frequency Domain

Scarce
Low power, poor depth
Poor resolution (altitude)
Fast mapping, lower cost

1-2 types, ~1 systems

Fixed-wing Time Domain

High Power – good depth High speed, low cost Many sensors Lowest resolution Poor for terrain

4 types, ~7 systems

Helicopter Frequency Domain

Highest resolution
Maximum resistivity range
Best for mountains
Low power – poor penetration

5 types, ~15 systems

Helicopter Time Domain

High Power – good depth Good resolution Modest terrain Low conductivity range Plenty of choice!

>10 types, 50+ systems??

AEM Systems: Relative Footprints

Fixed-Wing EM System Geometry

Fixed-wing EM Systems

Frequency Domain EM

HELITEM Time Domain

§1,400 Amps §10,000 Times more powerful than RESOLVE

AEM Systems: power and precision

Some EM Choice Rules:

Where time-domain will be sensitive, use time-domain (for the depth)

Where the conductors are very small or weak, consider frequency

Where fixed-wing can fly, consider fixed-wing first.

Use helicopter where resolution, access are issues.

Consider ALL the options and consult with (unbiased) experts!

Ground: Small Transmitter Systems

HLEM (small) Systems

Promis, Iris Instruments

MaxMin system, Apex Parametrics

Large Loop: Time Domain

Discovery International Geophysics

Ground EM Types

Large Loop Time Domain

High Power
Great Depth + Borehole
Expensive / complex
Very interpretable

Small Frequency/Time Domain

Low cost / simple High resolution

Passive (receiver only)

Natural Source:

GREAT Depth
Conductive
Slow and Expensive

Man-made (VLF)

Cheap and fast Poor depth

Engineering / UXO

Low power
Low cost / fast
High Resolution
Near surface

The Borehole Mess!

§ UTEM - Borehole system, Lamontagne Geophysics

Borehole EM Characteristics

- Best geometric interpretation (of ANY EM).
- Complex 3D interpretation.
- Best sensitivity to small targets.
- Best depth of exploration (Rx is close to target)
- •Good conductance sensitivity range.
- •Off-hole detection distance depends on loop location, but is limited to $\frac{1}{2}$ of borehole length.

- •Need a borehole Bummer!
- Advanced stage projects.
- •Complex mixed conductors. (e.g. detecting targets under other conductors).
- •In-fill drilling.

MT and AMT Signal Sources

Planting MT Sensor

MT Characteristics

Natural Field (MT)

- No transmitter required
- Very deep penetration (dependent on recording time)
- Complex to operate
- Unreliable natural fields
- Not good for vertical conductors
- Poor resolution
- Insensitive to small conductors

Applications

- Deep Targets
- Conductive host rocks.
- Large targets
- Porphyrys!

- Vertical component ("Tipper")
- Magnetic field only (Poor resistivity)

VLF EM Characteristics

- Formerly an exploration mainstay
- Plagued by transmitter shut-down
 - Generally shallow
 - Shallow overburden
 - Low cost survey
 - Now generally 3-component

- Poor depth penetration
- Affected by overburden
- Directional sensitivity
- Unreliable sources

Key Points: EM

- •Detect electrically conductive deposits and alteration, and to map geology by changes in electrical resistivity.
- •Resistivity is controlled by mineralogy (sulphides, oxides, clay minerals) and by porosity, saturation and salinity.
- •Understand the electrical nature of the target, the host geology, and over-lying geology (e.g. overburden).
- •There is a HUGE range of EM systems to choose from!
- •Time domain is power and depth.
- •Frequency domain is high resistivity and resolution.
- •Ground sees deeper, higher resolution: airborne is faster
- •Helicopter is higher resolution, fixed wing is faster coverage

Thank You

