DISCIPLINE SPECIFIC CORE COURSE-18:

Evolutionary Biology Zoo-DSC-18

CREDIT DISTRIBUTION, ELIGIBILITY AND PRE-REQUISITES OF THE COURSE

Course title &	Credits	Credit distribution of the course			Eligibility	Pre-
Code		Lecture	Tutorial	Practical/ Practice	criteria	requisite of the course(if any)
Evolutionary Biology Zoo-DSC- 18	04	02	Nil	02	Passed Class XII with Biology/ Biotechnology	NIL

Learning Objectives

The learning objectives of this course are as follows:

- to understand evolutionary forces leading to the variations and diversification of species.
- to learn about deciphering evidences ranging from fossil records to molecular data and to establish phylogenetic relationships of species.
- to gain knowledge of the processes and patterns of biological evolution.
- to get acquainted with origin and evolution of man.
- to acquire problem solving and high order analytical skills by attempting numerical problems as well as performing simulation studies of various evolutionary forces in action.

Learning Outcomes

By studying this course, students will be able to:

- gain knowledge about the relationship of the evolution of various species and the environment they live in.
- apply knowledge gained, on populations in real time, while studying speciation, behaviour and susceptibility to diseases.
- better understand the study of variations, genetic drift to ensure that conservation efforts for small threatened populations are focused in right direction.
- predict the practical implication of various evolutionary forces acting on the human population in the field of human health, agriculture and wildlife conservation.
- use various software to generate interest towards the field of bioinformatics and coding used in programming language.

SYLLABUS OF DSC-18

UNIT-1 Historical Review of Evolutionary Concepts

2 hrs

Lamarckism, Darwinism, Neo-Darwinism

UNIT- 2: Beginning of Life

3 hrs

Chemogeny, RNA world, biogeny, origin of photosynthesis, endo-symbiotic theory

UNIT- 3: Evidences of Evolution

5 hrs

Palaeontological: geological time scale; phylogeny of horse;

Molecular: neutral theory of evolution, molecular clock, example of globin gene family, rRNA/Cyt c.

UNIT- 4: Raw Material for Evolution

3 hrs

Variations: Heritable variations and their role in evolution

Unit 5: Process of Evolution

6 hrs

Qualitative studies: Natural selection, types of natural selection, artificial selection, kin selection, adaptive resemblances, sexual selection, frequency dependent selection.

Quantitative studies: Natural selection (concept of fitness, selection coefficient), genetic drift (founder's effect, bottleneck phenomenon), migration and mutation (genetic load).

UNIT- 6: Product of Evolution

4 hrs

Speciation: micro-evolutionary changes (inter-population variations, clines, Ring species, races), species concept, isolating mechanisms.

UNIT- 7: Extinction 3 hrs

Mass extinctions (events, causes and effects), Detailed explanation of K-T extinction

UNIT-8: Origin and Evolution of Man

4 hrs

Unique hominin characteristics contrasted with primate characteristics, primate phylogeny from *Dryopithecus* leading to *Homo sapiens*, molecular evidences in evolution of modern human.

Practical (60 hrs)

(Laboratory periods: 15 classes of 4 hours each)

- 1. Study of fossils (types, forms and dating) from models/pictures.
- 2. Study of homology, analogy and homoplasy from suitable specimens.
- 3. Study different modes of speciation and Adaptive radiation/macroevolution by suitable examples.

- 4. Study of variations in a sample human population: (a) Continuous variation: Height/Weight in relation to age and sex (b) Discontinuous variation: Ability/Inability to taste Phenylthiocarbamide (PTC).
- 5. Study of Hardy-Weinberg Equilibrium: statement, assumptions, derivation of the equation and its verification by chi square analysis.
- 6. Demonstration of role of natural selection and genetic drift in changing allelic frequencies using simulation studies.
- 7. Construction of cladograms based on morphological characters.
- 8. Introduction and construction of Phylogenetic trees with the help of bioinformatics tools (Clustal X/W, Phylip, MLK/MP/NJ) and its interpretation.

Essential/recommended readings

- 1. Roberts, A. (2018) Evolution: the human story, Dorling, Kindersley Ltd.
- 2. Hall, B.K. and Hallgrimson, B. (2013). Evolution. V Edition, Jones and Barlett Publishers.
- 3. Campbell, N.A. and Reece J.B. (2011). Biology. IX Edition. Pearson, Benjamin, Cummings.
- 4. Barton N.H., Briggs D.E.G., Eisen J.A., Goldstein D.B. and Patel N.H., (2007) 1st Ed. Evolution, Cold Spring Harbor Laboratory Press.

Suggestive readings

- 1. Futuyma, Douglas and Mark, Kirkpatrick (2017) 3rd Ed. Evolutionary Biology, Oxford University Press.
- 2. Zimmer C. and Emlen D. J., (2013) 1stEd. Evolution: Making Sense of Life, Roberts & Co.
- 3. Pevsner, J. (2009). Bioinformatics and Functional Genomics. II Edition, Wiley Blackwell.
- 4. Ridley, M. (2004). Evolution. III Edition, Blackwell publishing.

NOTE: Examination scheme and mode shall be as prescribed by the Examination Branch, University of Delhi, from time to time.