Simple Linear Regression

Salary Data

Dependent variable: Salary (Y = a0 + a1*x1)Coefficient Std. Error <mark>t-ratio</mark> p-value 25792.2 (a0) 2273.05 11.35 const < 0.0001 **Years**Experience 9449.96 (a1) 378.755 24.95 < 0.0001 (x1)

Model 1: OLS, using observations 1-30

Mean dependent var	76003.00	S.D. dependent var	27414.43
Sum squared resid	9.38e+08	S.E. of regression	5788.315
R-squared	0.956957	Adjusted R-squared	0.955419
F(1, 28)	622.5072	P-value(F)	1.14e-20
Log-likelihood	-301.4412	Akaike criterion	606.8823
Schwarz criterion	609.6847	Hannan-Quinn	607.7788

Analyse : La variable indépendante YearsExperience est significative pour notre modèle car p-value<5% i.e YearsExperience est très corrolé au Salary(dependante)

Rappel sur les Hypothèses de la régression Linéaire :

- 1. Exogénéité 2.Homoscedasticite 3.Erreurs indépendantes 4.Normalite des erreurs
- 5. Non colinéarité des variables indépendantes