Respuestas de la Práctica 7

Tema: Estimación puntual

- 1) a) Rta: 8.1407 usando la media muestral
 - b) Rta: $\hat{\sigma} = 1.6595$ si se usa la varianza muestral y $\hat{\sigma} = 1.6285$ si se usa el estimador de máxima verosimilitud de la varianza.
- 2) Rta: la media muestral da 9.5 y la varianza muestral 0.736

- 3) a) $\hat{\theta} = 1 \bar{X}/2$ b) SI, es insesgado; c) $ECM(\hat{\Theta}) = \frac{1}{4n}V(T)$
- d) 0.6
- 4) a) Demuestre que \bar{X}^2 no es un estimador insesgado para μ^2 .

$$E(\widehat{\Theta}) = E(\overline{X}^2) = V(\overline{X}) + (E(\overline{X}))^2 = \frac{\sigma^2}{n} + \mu^2$$

Por lo tanto no es insesgado. Tiende a sobreestimar el valor de μ^2

- b) ¿Para qué valor de k el estimador $\bar{X}^2 kS^2$ es insesgado para μ^2 ? Rta: 1/n
- (5) a) $\hat{\Theta} = \frac{2\overline{X} 1}{1 \overline{Y}}$
- $\hat{\Theta} = -\frac{n}{\sum_{i=1}^{n} \ln(X_i)} 1$
- c) Rta: a) 3 y b) 3.11

- 6) a) $\hat{\lambda} = \overline{X} = \frac{\sum_{i=1}^{n} x_i}{N}$ b) $E(\hat{\lambda}) = \lambda$ $V(\hat{\lambda}) = \frac{\lambda}{N}$
 - c) Rta: es consistente porque cumple que la esperanza coincide con el parámetro y la varianza tiende a cero.
 - d) Rta. $\hat{\lambda} = 1.216$
- 7) a) El EMV de p es: $\hat{p} = \frac{1}{\overline{\mathbf{v}}}$
 - b) Hallar el EMV de la probabilidad que el mecanismo dure más de 6 días. P(Y>6)=?

$$P(Y > 6) = 1 - \hat{p} - (1 - \hat{p})^{1} \hat{p} - (1 - \hat{p})^{2} \hat{p} - (1 - \hat{p})^{3} \hat{p} - (1 - \hat{p})^{4} \hat{p} - (1 - \hat{p})^{5} \hat{p}$$

- c) Rta: $\hat{p}=1/\bar{X}=1/5.5=0.1818$; P(Y>6)=0.30
- 8) a) Rta: Los tres tienen esperanza u
 - b) Rta: $ECM(\mu_1) = V(\mu_1) = \frac{\sigma^2}{2}$ $ECM(\mu_2) = V(\mu_2) = \frac{n}{8(n-2)}\sigma^2$;

$$ECM(\mu_2) = V(\mu_2) = \frac{n}{8(n-2)}\sigma^2;$$

$$ECM(\mu_3) = V(\mu_3) = \frac{\sigma^2}{n}$$

La eficiencia relativa de $\hat{\mu}_3$ con respecto a $\hat{\mu}_1$ se calcula como

$$\frac{ECM(\mu_1)}{ECM(\mu_3)} = \frac{n}{2} \text{ para n>2 este cociente da >1, es decir, el ECM de } \hat{\mu}_3 \text{ es menor al de } \hat{\mu}_1 \text{y}$$
 por lo tanto, para n>2, $\hat{\mu}_3$ es más eficiente que $\hat{\mu}_1$.

La eficiencia relativa de $\hat{\mu}_3$ con respecto a $\hat{\mu}_2$ se calcula como

$$\frac{ECM(\mu_2)}{ECM(\mu_3)} = \frac{n^2}{8(n-2)}$$
 es >1 para n>=5

- c) Sólo $\hat{\mu}_3$ es consistente para μ
- 9) a) Calcule estimadores de θ por dos métodos distintos.

El estimador de θ por el método de momentos es $\hat{\theta} = 2\bar{X}$ que tiene esperanza θ y varianza $\frac{4\theta^2}{12n}$

El estimador de máxima verosimilitud es $\hat{\theta} = \max_{i} xi$

- b) Calcule sus valores para esta muestra. Rta: $\hat{\theta} = 16$; $\hat{\theta}_{EMV} = 17$
- c) ¿ Alguno es insesgado para θ? Rta: sólo el primero

10) a) Rta:
$$\hat{\mu} = 384.4$$
 $\hat{\sigma} = 18.86$

b) Rta: 415.42