General Formulation for LDA

- Fisher's LD maximizes between-class scatter while minimizing within-class scatter.
- LDA assumes Gaussian distribution and identical covariance matrices for groups.
 - The general formulation of LDA is equivalent to Fisher's LD for two groups.

Mathematical Formulation

- Let $X_i = (X_{i1}, X_{i2}, ... X_{ip})'$ denote the p-dimensional vector of obs.
- Let π_k denote the overall or *prior* probability that a randomly chosen observation comes from the k-th class.
- Let $f_k(\mathbf{X}) := P(\mathbf{X}|Y=k)$ denote the *density function* of \mathbf{X} for an observation that comes from the k-th class.
- Then Bayes rule states that

$$P(Y = k | \mathbf{X} = \mathbf{x}) = \frac{\pi_k f_k(\mathbf{x})}{\sum_{\ell=1}^K \pi_\ell f_\ell(\mathbf{x})}$$

• $p_k(\mathbf{x}) := P(Y = k | \mathbf{X} = \mathbf{x})$ is the so-called *posterior* probability that an observation $\mathbf{X} = \mathbf{x}$ belong to the k-th class, **given** the predictor value for that observation.

Bayes classifier

- A Bayes classifier is a rule that assigns an observation \mathbf{x} to the class with largest $p_k(\mathbf{x})$.
- ullet The problem is that it is difficult to estimate f_k .
- Three classifiers are suggested to approximates the Bayes classifier with different estimates of f_k :
 - linear discriminant analysis (LDA)
 - quadratic discriminant analysis (QDA)
 - naive Bayes

LDA

- Assumption: $\mathbf{x}_i \sim N_p(\boldsymbol{\mu}_k, \boldsymbol{\Sigma})$ if \mathbf{x}_i belongs to the kth class, where $\boldsymbol{\mu}_k$ is class-specific mean and $\boldsymbol{\Sigma}$ is a covariance matrix that is common for all K classes.
- \bullet LDA classifier assigns an observation $\mathbf{X}=\mathbf{x}$ to the class for which

$$\delta_k(\mathbf{x}) = \mathbf{x}^\top \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k - \frac{1}{2} \boldsymbol{\mu}_k^\top \mathbf{\Sigma}^{-1} \boldsymbol{\mu}_k + \log \pi_k$$

is largest.

ullet μ_k and Σ will be replaced by their sample estimates.

Example

- Left panel: Ellipses that contain the 95% of the probability for each of the three classes.
- Right panel: 20 observations were generated from each class, and the corresponding LDA decision boundaries are indicated using solid black lines.
- The dashed lines indicates the Bayes classifier (when the truth is known).

Example: Default Dataset

- We want to predict whether or not an individual will default on the basis of credit card balance and student status.
- LDA is fitted to 1000 training samples.

^	default [‡]	student [‡]	balance [‡]	income [‡]
1	No	No	729.52650	44361.625
2	No	Yes	817.18041	12106.135
3	No	No	1073.54916	31767.139
4	No	No	529.25060	35704.494
5	No	No	785.65588	38463.496
6	No	Yes	919.58853	7491.559
7	No	No	825.51333	24905.227
8	No	Yes	808.66750	17600.451
9	No	No	1161.05785	37468.529
10	No	No	0.00000	29275.268
11	No	Yes	0.00000	21871.073
12	No	Yes	1220.58375	13268.562

```
require(ISLR2)
data("Default")

default.lda = lda(default ~ student + balance + income,
data=Default)
default.lda

Call:
lda(default ~ student + balance + income, data = Default)
```

Prior probabilities of groups:

No Yes

0.9667 0.0333

Group means:

studentYes balance income

No 0.2914037 803.9438 33566.17

Yes 0.3813814 1747.8217 32089.15

Coefficients of linear discriminants:

LD1

studentYes -1.746631e-01

balance 2.243541e-03

income 3.367310e-06

Confusion Matrix

The confusion matrix can be obtained as

table(Default\$default, predict(default.lda)\$class)

No Yes

No 9645 22

Yes 254 79

		True default status		
		No	Yes	Total
Predicted	No	9644	252	9896
$default\ status$	Yes	23	81	104
	Total	9667	333	10000

The Problem

- Suppose a useless classifier that always predicts that an individual will not default.
- The resulting error rate is 3.33% a very small error but useless result
- Note that of the 333 individuals who defaulted, LDA missed 252 (or 75.7%).

The Problem

- Sensitivity is the percentage of true defaulters that are identified. (24.3%)
- Specificity is the percentage of non-defaulters that are correctly identified. (99.8%)
- Why does LDA do such a poor job of classifying the customers who default?
- It's because LDA is trying to approximate the Bayes classifier which has the lowest *total* error rate out of all classifiers.
 - Some misclassifications will result from incorrectly assigning a customer who does not default to the default class;
 - Others will result from incorrectly assigning a customer who defaults to the non-default class.

Revisiting the Bayes Classifier

 $Pr(\text{default} = \text{Yes}|\mathbf{X} = \mathbf{x}) > 0.5 \rightarrow \mathbf{x} \text{ is classified as the "default" class}$

- x-axis varies the threshold from 0 to 0.5 in the Bayes classifier.
- The black solid line displays the overall error rate.
- The blue dashed line represents the fraction of defaulting customers that are incorrectly classified
- the orange dotted line indicates the fraction of errors among the non-defaulting customers

Measures of Errors

		True class		
		– or Null	+ or Non-null	Total
Predicted	– or Null	True Neg. (TN)	False Neg. (FN)	N*
class	+ or Non-null	False Pos. (FP)	True Pos. (TP)	P^*
	Total	N	P	

Name	Definition	Synonyms
False Pos. rate	FP/N	Type I error, 1—Specificity
True Pos. rate	TP/P	1—Type II error, power, sensitivity, recall
Pos. Pred. value	TP/P^*	Precision, 1—false discovery proportion
Neg. Pred. value	TN/N*	

• The ROC (receiver operating characteristics) curve is a popular graphic for simultaneously displaying the two types of errors for all possible thresholds.

ROC

An ideal ROC curve will hug the top left corner, so the larger the area under the (ROC) curve (AUC) the better the classifier.

ROC Curve

Quadratic Discriminant Analysis (QDA)

- ullet Assumption: ${f X} \sim N_p(oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)$ (Gaussianity, unequal covariance)
- ullet QDA classifier assigns an observation $\mathbf{X} = \mathbf{x}$ to the class for which

$$\delta_k(\mathbf{x}) = -\frac{1}{2}\mathbf{x}^\top \boldsymbol{\Sigma}_k^{-1} \mathbf{x} + \mathbf{x}^\top \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k - \frac{1}{2}\boldsymbol{\mu}_k^\top \boldsymbol{\Sigma}_k^{-1} \boldsymbol{\mu}_k - \frac{1}{2}\log|\boldsymbol{\Sigma}_k| + \log\pi_k$$
 is largest.

 All population parameters are replaced by their sample estimates.

Example

- Left: The Bayes (purple dashed), LDA (black dotted), and QDA (green solid) decision boundaries for a two-class problem with $\Sigma_1 = \Sigma_2$.
- Same as in the left except that $\Sigma_1 \neq \Sigma_2$.

QDA in R

```
default.qda = qda(default ~ student + balance + income,
data=Default)
Call:
qda(default ~ student + balance + income, data = Default)
Prior probabilities of groups:
   No
         Yes
0.9667 0.0333
Group means:
   studentYes balance income
No 0.2914037 803.9438 33566.17
Yes 0.3813814 1747.8217 32089.15
```

Naive Bayes Classifier

$$P(Y = k | \mathbf{X} = \mathbf{x}) = \frac{\pi_k \times f_{k1}(x_1) \times f_{k2}(x_2) \times \dots \times f_{kp}(x_p)}{\sum_{\ell=1}^K \pi_\ell \times f_{\ell1}(x_1) \times f_{\ell2}(x_2) \times \dots \times f_{\ell p}(x_p)}$$

for k = 1, ..., K.

- Each f_{kj} can be any distribution (not necessarily normally distributed).
- It introduces some bias due to independence assumption, but reduces variance.
- It often performs well in practice.
- Use the package naivebayes: naive_bayes