Learning of Hierarchical Temporal Structures for Guided Improvisation

Apprentissage des structures temporelles hiérarchiques pour l'improvisation guidée

Sommaire

- 1. Données utilisées
- 2. Description de la recherche
- 3. Résultats obtenus
- 4. Validation des résultats
- 5. Conclusion

Données utilisées

Données utilisées

Description de la recherche

Modélisation de structure temporelle hiérarchique

Grammar 2 Rhythm changes phrase structure grammar

- 1: $RhythmChanges \rightarrow A_1 \ A \ B \ A$
- 2: $A_1 \rightarrow \tau_{\text{I}} \ \tau \ \sigma \ \tau$
- 3: $A_2 \rightarrow \tau_{\text{T}} \ \tau \ \sigma \ \omega$
- 4: $A \rightarrow A_1 \mid A_2$
- 5: $B \rightarrow \delta_{\text{III}} \ \delta_{\text{VI}} \ \delta_{\text{II}} \ \delta_{\text{V}}$
- 6: τ_{I} , τ , σ , ω , δ_{III} , δ_{VI} , δ_{II} , δ_{V} are sets of harmonic functions which depend on the corpus.

Apprentissage d'une grammaire hors-contexte

$$J(a,b) = \log \frac{\operatorname{count}(a \ b) N}{\operatorname{count}(a) \operatorname{count}(b)} ,$$

Résout les problèmes de fréquence d'apparition des symboles

$$\tilde{J}(a,b) = \frac{1}{l(a) + l(b)} \log \frac{\operatorname{count}(a \, b) N}{\operatorname{count}(a) \operatorname{count}(b)}$$
.

Résout les problèmes d'accords qui ont la même fonction tonale

$$\Psi(a,b) = \frac{1}{K} \sum_{u,v} (J(u,a) - J(u,b))^2 + (J(a,v) - J(b,v))^2 \le \xi ,$$

Algorithme:

Algorithm 1 Grammar induction from a corpus of scenarios

Input: Corpus of scenarios.

Output: Set of rewrite rules.

- 1: Repeat
- 2: Find a and b such that $\tilde{J}(a,b) = \max_{x,y} \tilde{J}(x,y)$.
- 3: Create the rewrite rule $X_{ab} \rightarrow a \ b$.
- 4: $l(X_{ab}) \leftarrow l(a) + l(b)$.
- 5: Replace all occurrences of a b with X_{ab} in the corpus.
- 6: **if** \exists a symbol Y such that $l(Y) = l(X_{ab})$ and $\Psi(Y, X_{ab}) < \xi$ **then** \triangleright If several symbols y respect these conditions, we take Y such that $\Psi(Y, X_{ab}) = \min_{y} \Psi(y, X_{ab})$.
- 7: Create the rewrite rule $Y \rightarrow X_{ab}$.
- 8: Replace all occurrences of X_{ab} with Y in the corpus.
- 9: end if

Processus de génération d'improvisation

1. <u>Étape d'anticipation</u>: recherche des évènements avec un **futur commun** par rapport à la position actuelle en faisant à la cohérence des **évènements passés.**

$$j \in \text{Future}(t)$$
 and $j-1 \in \text{Past}(i)$.

2. <u>Étape de navigation</u>: recherche des évènements avec un **contexte commun** à la position tout en se conformant au **scénario**.

$$\Lambda_j = S_t$$
 and $j - 1 \in \operatorname{Past}(i)$.

Structure à plusieurs niveaux

Étiquette avec 3 valeurs. Et donc les opérations avec les ensembles deviennent.

Figure 6. Example of a multi-level scenario and a multi-level memory.

Memory

Contents

Résultats obtenus

Arbre de dérivation

RhythmChanges

Figure 3. Diagram for the derivation of the rhythm changes on the tune Celerity from the Omnibook. Each chord lasts two beats. $A \to A_2$ and $A \to A_1$ denote the use of Rule 4 from Grammar 2.

Validation des résultats

Mise en place de questionnaire

Conclusion