Lecture 31: Estimation - Part IV

Satyajit Thakor IIT Mandi

Recall - Interval estimation

- An interval estimate of a population parameter θ is an interval of the form $\hat{\theta}_L < \theta < \hat{\theta}_U$, where $\hat{\theta}_L$ and $\hat{\theta}_U$ depend on the value (e.g., $\hat{\theta}$) of the statistic $\hat{\Theta}$ for a particular sample and also on the distribution of the parameter $\hat{\Theta}$.
- ▶ If, for instance, we find $\hat{\theta}_L$ and $\hat{\theta}_U$ such that

$$P(\hat{\theta}_L < \theta < \hat{\theta}_U) = 1 - \alpha,$$
Tower Upper

for $0 < \alpha < 1$, then we have a probability of $1 - \alpha$ of selecting a random sample that will produce an interval containing θ .

- In this case, the interval $\hat{\theta}_L < \theta < \hat{\theta}_U$ is called $100(1 \alpha)$ percent confidence interval estimate of θ .
- Next we will try to find $100(1-\alpha)$ percent confidence interval estimate of a sample mean \bar{X} .

Recall - Interval estimation

- For an example of $100(1-\alpha)$ percent confidence interval estimate of a sample mean \bar{X} , assume that \bar{X} is normally distributed.
- ▶ Note that this is a very logical assumption for large n since the CLT suggests that the distribution of X can be well approximated by the normal distribution $\mathcal{N}(\mu, \sigma^2/n)$ (recall: Slides 4-5 of Lecture 26).
- ▶ Also, recall that if \bar{X} has the distribution $\mathcal{N}(\mu, \sigma^2/n)$ then $\bar{X} = \mu + (\sigma/\sqrt{n})Z$, where, $Z \sim \mathcal{N}(0,1)$ (recall: Slide 7 of $\oint(z) = P(Z \le z)$ $= \int_{Z} f(z) dz$ Lecture 25).

Z~N(0,1)

2

Now, denote $P(Z \leq z) = \Phi(z)$.

Recall - Interval estimation

- Let z_{α} be the value such that $\Phi(z_{\alpha}) = 1 \alpha$.
- ▶ For any give $0 < \alpha < 1$, we can find out z_{α} numerically (using the CDF table for standard normal).

$$P(|Z| < z_{\alpha/2}) = 1 - \alpha$$

► Proof:

$$P(|Z| \le 2d/2)$$

= $P(-Z_{d/2} \le Z \le Z_{d/2})$

$$=$$
 $\left[-\frac{\alpha}{2} - \frac{\alpha}{2}\right]$

$$= [-\alpha]$$

$$\Rightarrow \Phi(-z_{x/2}) = 1 - \Phi(z_{x/2}) = x/2.$$

For our sample mean example, we have $\bar{X} = \mu + (\sigma/\sqrt{n})Z$ where Z is a standard normal.

Then,
$$P(|z| \le 2a/2) = 1 - \alpha$$

 $\Rightarrow P(|z| \le 2a/2)$
 $= P(-2a/2 \le Z \le 2a/2)$
 $= P(-2a/2 \le \overline{X} - M \le 2a/2)$
 $= P(-2a/2 \le \overline{N} - M \le 2a/2)$
 $= P(-2a/2 \le \overline{N} \le X - M \le 2a/2 \le \overline{N} = 1 - \alpha$

- Based on the derivation we did in the last few slides, we define a $100(1-\alpha)$ percent confidence interval for μ as follows:
- If \bar{x} is the mean of a random sample of size n from a population with known variance σ^2 , a $100(1-\alpha)$ percent confidence interval for μ is given by

$$\frac{\bar{x} - z_{\alpha/2} \frac{\sigma}{\sqrt{n}} < \mu < \bar{x} + z_{\alpha/2} \frac{\sigma}{\sqrt{n}}}{\sqrt{n}} \hat{\mathcal{O}}_{\mathcal{U}}$$

where $z_{\alpha/2}$ is the value such that $\Phi(z_{\alpha/2}) = 1 - \alpha/2$.

- 1 Two-sided interval estimation.
- There are also one-sided estimates.

e.g., a parameter is "atleast" or "atmost" certain value with certain confidence. [02,0) (-0,00]

- ▶ Example: The average zinc concentration recovered from a sample of measurements taken in 36 different locations in a river is found to be 2.6 grams per milliliter. Find the 95% confidence intervals for the mean zinc concentration in the river. Assume that the population standard deviation is 0.3 gram per milliliter.
 - Let X be the r.V.: "zinc concentration."
- Given: Sample mean $\bar{x} = 2.6$ grams/ml $\sqrt{5x} = 0.3$ grams/ml.
- \(\frac{1}{x}\) is an estimate of MX.
- For 95.1. confidence interval $\alpha = 0.05$.

$$95 = 100(1-x)$$

Interval estimation

Then, recall that,
$$P(Z < Z\alpha/2) = 1 - \alpha/2$$
 $\Rightarrow \Phi(Z_0.025) = 1 - 0.025$
 $= 0.975$

By the OF table, $Z_0.025 = 1.96$.

- The 100 (1-2) /. confidence inferval of u is $\sqrt{\chi} - \frac{5}{2} \sqrt{2} \sqrt{n} < \mu < \sqrt{\chi} + \frac{7}{2} \sqrt{2} \sqrt{n}$ - Hence, 95% confidence inferval of M is $2.6 - (1.96) \cdot \frac{0.3}{\sqrt{3}6} < M_{\chi} < 2.6 + (1.96) \cdot \frac{0.3}{\sqrt{3}6}$ \Rightarrow 2.50 < M_{\times} < 2.69

Hypothesis testing

- That is, it is quite likely (type II error prob. is 0.2517) that we shall reject the new vaccine when, in fact, it is superior (50% effective) to what is now in use (compared to 25% effective).
- Now, let the particular alternative hypothesis be p = .7 > 1/4. Then,

► That is, t is extremely unlikely that the new vaccine would be rejected when it was 70% effective after a period of 2 years.

Hypothesis testing

- ► How to decrease the probability of type I and II errors?
- ▶ The probability of committing both types of error can be reduced by increasing the sample size.
- **a**