Principio di induzione #Analisi1

Principio di induzione

Si applica per dimostrare proprietà dei numeri naturali valida per tutti i numeri N Proprietà P(n) $n \in N$

- P(0) vera
- Supponendo che P(n) sia vera mostriamo che P(n+1) sia vera allora P(n) è vera ∀n∈N

Esempio: somma di Gauss

$${}^{n}\Sigma_{k=1} \text{ k} = [n(n+1)/2]$$
 $P(1) = {}^{1}\Sigma_{k=1} \text{ k} = 1 = [1(1+1)/2] = 1$
Supponiamo che P(n) sia vera => dimostriamo la validità di P(n+1)
 ${}^{n+1}\Sigma_{k=1} \text{ k} => n+1 + {}^{n}\Sigma_{k=1} \text{ k} = [(n+1)(n+2)/2]$

Caso particolare:
$$a = 1$$
 $b = q$ $(q \ne 1)$
 $1-q^{n}+1 = (1-q)^{n}\sum_{i=1} [q^{i}]^{a}$

Superiore / Inferiore

L'estremo superiore di $A \subseteq R$ è il minimo dei maggioranti di A L'estremo inferiore di $A \subseteq R$ è il massimo dei minoranti di A

Esercizio: