Dependent Type Theory

Cameron Wong

98-317 Hype For Types

2020-04-16

Last Time

- Types depend on values
 - ('a, n) vec as the type of length-n lists
 - ullet n fin as the type of naturals less than n

Refinements

- Lift all values up to the type level
- Instead of complicated encodings like using \underline{succ} and \underline{fin} as type-level functions, just refer to values in types
- nth: ('a,n) vec -> $\{x: nat | x < n\}$ -> 'a

Refinements

Can also bind arguments, eg

```
• repeat: {n:int} \rightarrow {x:'a} \rightarrow {('a,n) vec}
```

Refinements

Advantages

- Very easy to understand
- Requires no fancy tricks like 'a fin

Onto Theory

Driving question:

What does it mean for a type to depend on a value?

Onto Theory

Driving question:

```
What is the type \{x:t \mid p(x)\}?
```

What is a refined type?

What is a refined type?

Types = Sets?

- $nat = \mathbb{N}$
- ullet int $=\mathbb{Z}$
- $\tau_1 \rightarrow \tau_2 =$ (set-theoretic function)
- au list $= \mathbb{N} o \overline{ au}$

- Refinements become very simple just use set comprehension!
 - $\{x:t \mid p(x)\} = \{x \in T \mid p(x)\}$

Advantages

- Very intuitive
- Can apply existing set theory research to type theory

Disadvantages

• Well...

```
datatype t = T of t \rightarrow bool
```

- Let S be the set representing the type t
- Certainly, $|S| = |S \rightarrow \mathtt{bool}|$

Cantor's Theorem

For any set A, $|A| < |\mathcal{P}(A)|$.

- ullet S o bool is equivalent to $\mathcal{P}(S)$
- Uh-oh...

Disadvantages

• It's unsound!

What is a refined type?

Recall: Curry-Howard Isomorphism

What is a refined type?

Curry-Howard Isomorphism

Types are propositions, programs are proofs

Types as propositions

Review

Algebraic types (+ functions) correspond to <u>propositional logic</u> (or zeroth-order logic):

- $P \wedge Q$ corresponds to $A \times B$
- $P \lor Q$ corresponds to A + B
- $P \Rightarrow Q$ corresponds to $A \rightarrow B$

Types as propositions

What about first-order logic?

- $\exists (x : \tau).p(x)$
- $\forall (x : \tau).p(x)$

For any $x : \tau$, p(x) is a proposition.

For any $x : \tau$, p(x) is a proposition type.

p is a function $au o exttt{type}$

How to prove $\exists (x : \tau).p(x)$?

Need:

- Some value $v:\tau$
- A proof of the proposition p(v)

Need:

- A value *v* : *τ*
- A proof program of the proposition type p(v)

Need:

- A value expression $v : \tau$
- A proof program expression of the proposition type p(v)

A pair of expressions is a tuple!

Dependent tuple: $\Sigma(x : \tau).p(x)$

$$\frac{\Gamma \vdash e_1 : \tau \qquad \Gamma \vdash e_2 : p(e_1)}{\Gamma \vdash \langle e_1, e_2 \rangle : \Sigma(x : \tau).p(x)}$$

$$\frac{\Gamma \vdash e : \Sigma(x : \tau).p(x)}{\Gamma \vdash \pi_1 e : \tau}$$

$$\frac{\Gamma \vdash e : \Sigma(x : \tau).p(x)}{\Gamma \vdash \pi_2 e : p(\pi_1 e)}$$

Observation:

If $p(x)= au_2$ is a constant function, then $\Sigma(x: au_1).p(x)$ is the same as $au_1 imes au_2$

Observation:

 $\tau_1 \times \tau_2$ is " τ_2 added τ_1 times"

Quantification

- $\Sigma(x:\tau).p(x)$ corresponds to $\exists (x:\tau).p(x)$
- corresponds to $\forall (x : \tau).p(x)$

What is a proof of $\forall (x : \tau).p(x)$?

Given a value $v : \tau$, produce a proof of the proposition p(v)

Given a value $v : \tau$, produce a proof expression of the proposition type p(v)

This is a function of type au o p(v)

Dependent function: $\Pi(x : \tau).p(x)$

$$\frac{\Gamma, x : \tau \vdash e : p(x)}{\Gamma \vdash \lambda(x : \tau).e : \Pi(x : \tau).p(x)}$$

$$\frac{\Gamma \vdash e_1 : \Pi(x : \tau).p(x) \qquad \Gamma \vdash e_2 : \tau}{\Gamma \vdash e_1 \ e_2 : p(e_1)}$$

Observation:

If $p(x) = \tau_2$, then $\Pi(x : \tau_1).p(x)$ is equivalent to $\tau_1 \to \tau_2$

Quantification

- $\Sigma(x:\tau).p(x)$ corresponds to $\exists (x:\tau).p(x)$
- $\Pi(x:\tau).p(x)$ corresponds to $\forall (x:\tau).p(x)$

Refinements

Back to refinements What is {x:t | p(x)}?

Refinements

- $\{x:t \mid p(x)\}\$ is $\Sigma(x:t).p(x)$
- $\{x:t\} \rightarrow p(x) \text{ is } \Pi(x:t).p(x)$

Refinements

Note that regular functions can be subsumed by Π -types! int \rightarrow int $\rightsquigarrow \Pi(_:int).(\lambda__:int)$

Next Question:

How to prove the proposition p(x)?

Next Question:

How to prove the proposition write a program of type p(x)?

Next Question:

How to prove the proposition write a program of type 3 < 5?

What is the definition of $<_{nat}$?

```
fun 0 < s(_) = true
    | _ < 0 = false
    | s(n) < s(m) = n < m</pre>
```

 $3 < 5 \leadsto 2 < 4 \leadsto 1 < 3 \leadsto 0 < 2 \leadsto \texttt{true}$

$$\underbrace{3 < 5}_{\text{bool}} \rightsquigarrow \underbrace{2 < 4}_{\text{bool}} \rightsquigarrow \underbrace{1 < 3}_{\text{bool}} \rightsquigarrow \underbrace{0 < 2}_{\text{bool}} \rightsquigarrow \underbrace{\text{true}}_{\text{bool}}$$

$$\underbrace{3 < 5}_{\text{type}} \leadsto \underbrace{2 < 4}_{\text{type}} \leadsto \underbrace{1 < 3}_{\text{type}} \leadsto \underbrace{0 < 2}_{\text{type}} \leadsto \underbrace{\top}_{\text{type}}$$

Curry-Howard

- The type unit (or 1) corresponds to the proposition ⊤ (true)
- The type void (or $\mathbf{0}$) corresponds to the proposition \perp (false)

The type 3 < 5 is equivalent to unit!

Refl: (3 < 5)

Refl = "true by definition"

 $(3, Refl) : \{x:int | x < 5\}$

For usability:

 $3 : \{x:int | x < 5\}$

Example

```
repeat : \Pi(n : \mathtt{nat}).\Pi(x : \alpha).\Sigma(I : (\alpha, n) \ \mathtt{vec}).

\Pi(m : \Sigma(m' : \mathtt{nat}).(m' < n)).(\mathtt{nth} \ I \ (\pi_1 m) = x)
```

Example

```
p has type m < 0 \rightsquigarrow \bot, so p : \mathbf{0}
```

```
fun repeat 0 x = ([], fn (m,p) => abort p)
  | repeat n x =
          (* xs : ('a, n-1) vec
          * p : {m:nat | m < n} -> nth xs m = x
          *)
        let val (xs, p) = repeat (n-1) x
        in _
        end
```

```
fun repeat 0 x = ([], fn (m,p) => abort p)
  | repeat n x =
          (* xs : ('a, n-1) vec
          * p : {m:nat | m < n} -> nth xs m = x
          *)
        let val (xs, p) = repeat (n-1) x
          (* _: {m:nat | m < n} -> (nth (x::xs) m = x) *)
        in (x::xs, _)
        end
```

```
fun repeat 0 \times = ([], fn (m,p) \Rightarrow abort p)
  | repeat n x =
      (* xs : ('a, n-1) vec
       * p : \{m: nat \mid m < n-1\} \rightarrow nth xs m = x
       *)
      let val (xs, p) = repeat (n-1) x
      (* By definition of <, [p : m < n] is also a
       * proof of m-1 < n-1
       *)
       in (x::xs, fn (0,p') => Refl
                                   (* (m-1,p') is
                                    * Sigma(x:nat).(x<n-1)
                                    *)
                     | (m,p') = p(m-1, p'))
      end
```