Patent Claims

We Claim:

5 1. A compound of the formula I

$$R^4$$
 X
 OR^1
 R^3 - $(CH_2)_n$ - A - $(CH_2)_m$ - B
 R^5

in which

15

25

A and B are each, independently of one another, O, S, NH, NR⁷, CO, CONH, NHCO or a direct bond,

10 X is alkylene having 1 to 2 carbon atoms which is unsubstituted or monosubstituted by R⁴ or R⁵, or a direct bond,

 R^1 is H, Z or -(CH₂)₀-Ar,

 R^2 is H, R^7 or -C(O)Z,

 R^3 is NHR⁶, -NR⁶-C(=NR⁶)-NHR⁶, -C(=NR⁶)-NHR⁶, -NR⁶-C(=NR⁹)-NHR⁶, Het¹or -C(=NR⁹)-NHR⁶,

R⁴ and R⁵ are each, independently of one another, H, oxo, R⁷,
-(CH₂)_o-Ar, -C(O)-(CH₂)_o-Ar, -C(O)-(CH₂)_o-Het,

Het, NHR⁶, NHAr, NH-Het, CONH-R⁷, CONH-(CH₂)_o-Ar,

CONH-(CH₂) $_{o}$ -Het, OR⁷, OAr, OR⁶ or O-Het,

20 R^6 is H, -C(O)R⁷, -C(O)-Ar, -C(O)-Het, R⁷, COOR⁷, COO-(CH₂)_o-Ar, COO-(CH₂)_o-Het, SO₂-Ar, SO₂R⁷ or SO₂-Het,

R⁷ is alkyl having 1 to 10 carbon atoms or cycloalkyl having 3 to 10 carbon atoms,

R⁸ is Hal, NO₂, CN, Z, -(CH₂)₀-Ar, COOR¹, OR¹, CF₃, OCF₃, SO₂R¹, NHR¹, N(R¹)₂, NH-C(O)R¹, NHCOOR¹, COOH, COOZ or C(O)R¹,

R⁹ is CN or NO₂,

Z is alkyl having 1 to 6 carbon atoms,

Ar is aryl which is unsubstituted or monosubstituted or polysubstituted by R⁸,

Hal is F, Cl, Br or I,

Het is a saturated, partially or fully unsaturated monocyclic or bicyclic heterocyclic radical having 5 to 10 ring members, where 1 or 2 N and/or 1 or 2 S or O atoms may be present and the heterocyclic radical may be monosubstituted or disubstituted by R⁸,

Het¹ is a monocyclic or bicyclic heterocyclic radical having 5 to 10 ring members and 1 to 4 N atoms each of which may be unsubstituted or monosubstituted or disubstituted by Hal, R⁷, OR⁷, CN, NHZ, oxo or NO₂,

n is 0, 1 or 2,

m is 0, 1, 2, 3, 4, 5 or 6, and

o is 0, 1 or 2,

and physiologically acceptable salts and solvates thereof.

- 2. An enantiomer of a compound according to Claim 1.
- 3. A compound according to Claim 1, wherein X is a direct bond.

20

5

10

- 4. A compound according to Claim 1, wherein
 - B is O,

R⁴ is R⁷, (CH₂)_o-Ar or Het,

o is 0 or 1,

25 R^5 is H, and

R⁷ is alkyl having 1 to 10 carbon atoms or cycloalkyl having 3 to 10 carbon atoms.

5. A compound according to Claim 1, selected from,

30

a) 3-phenyl-3-{6-[3-(pyridin-2-ylamino)propoxy]-1H-indol-3-yl} propionic acid;

- b) 3-phenyl-3-[6-(pyridin-2-ylamidocarboxymethoxy)indol-3-yl] propionic acid;
- c) 3-phenyl-3-[6-(benzimidazol-2-ylamidocarboxymethoxy)indol-3-yl] propionic acid;
- 5 d) 3-phenyl-3-[6-(imidazol-2-ylamidocarboxymethoxy)indol-3-yl] propionic acid;
 - e) 3-{6-[3-(4,5-dihydro-1H-imidazol-2-ylamino)propoxy]-1H-indol-3-yl}-3-phenylpropionic acid;
 - f) 3-phenyl -3-[6-[3-(guanidinopropoxy]indol-3-yl}propionic acid;
- g) 3-(benzo[1,2,5]thiadiazol-5-yl)-3-{6-[2-(6-methylamino-pyridin-2-yl)-ethyloxy]-indol-3-yl}-propionic acid; and physiologically acceptable salts and solvates thereof.
- 6. A process for the preparation of a compound according to Claim 1 andits salts and solvates, wherein
 - a) a compound of the formula I is liberated from one of its functional derivatives by treatment with a solvolyzing or hydrogenolyzing agent,

or

- b) a radical R¹, R², R³, R⁴, R⁵ and/or R⁶ is converted into another radical R¹, R², R³, R⁴, R⁵ and/or R⁶, by
 - i) converting an amino group into a guanidino group by reaction with an amidating agent,
- 25 ii) saponifying an ester,
 - iii) alkylating or acylating an amino group,
 - iv) converting a cyano group into an amidino group, and/or a base or acid of the formula I is converted into one of its salts.
- A therapeutic active ingredient comprising a compound according to
 Claim 1 and physiologically acceptable salts or solvates thereof.

- 8. An integrin inhibitor comprising a compound according to Claim 1 and physiologically acceptable salts or solvates thereof.
- A pharmaceutical preparation, comprising at least one compound according to Claim 1 and/or physiologically acceptable salts or solvates thereof.
- 10. A process for the preparation of a medicament comprising admixing a compound of according to Claim 1 and/or physiologically acceptable salts or solvates thereof with at least one solid, liquid, or semi-liquid excipient or auxiliary or optionally, one or more other active ingredient.
- A method of treating thromboses, cardiac infarction, coronary heart diseases, arteriosclerosis, inflammations, rheumatic arthritis, macular degenerative disease, diabetic retinopathy, a tumour by inhibition of metastasis, a tumour by initiation of apoptosis, tumour induced angiogenesis disease, osteoporosis, and/or infections and restenosis after angioplasty comprising administering to a patient in need thereof a compound according to Claim 1 and/or physiologically acceptable salts or solvates thereof.

12. Compounds of the formula IIa

5

10

25

$$R^{4}$$
 X
 OR^{10}
 R^{5}
 R^{2}

in which R^2 , R^4 and R^5 are as defined in Claim 1, R^1 is H, Z or -(CH₂)₀-Ar, R^2 is H, R^7 or -C(O)Z, R^4 and R^5 are each, independently of one another, H, oxo, R^7 , -(CH₂)_o-Ar, -C(O)-(CH₂)_o-Ar, -C(O)-(CH₂)_o-R⁷, -C(O)-(CH₂)_o-Het, Het, NHR⁶, NHAr, NH-Het, CONH-R⁷, CONH-(CH₂)_o-Ar, CONH-(CH₂)_o-Het, OR⁷, OAr, OR⁶ or O-Het,

5 R^6 is H, -C(O)R⁷, -C(O)-Ar, -C(O)-Het, R⁷, COOR⁷, COO-(CH₂)_o-Ar, COO-(CH₂)_o-Het, SO₂-Ar, SO₂R⁷ or SO₂-Het,

R⁷ is alkyl having 1 to 10 carbon atoms or cycloalkyl having 3 to 10 carbon atoms,

R⁸ is Hal, NO₂, CN, Z, -(CH₂)_o-Ar, COOR¹, OR¹, CF₃, OCF₃, SO₂R¹, NHR¹, N(R¹)₂, NH-C(O)R¹, NHCOOR¹, COOH, COOZ or C(O)R¹,

Het is a saturated, partially or fully unsaturated monocyclic or bicyclic heterocyclic radical having 5 to 10 ring members, where 1 or 2 N and/or 1 or 2 S or O atoms may be present and the heterocyclic radical may be monosubstituted or disubstituted by R⁸,

15 Z is alkyl having 1 to 6 carbon atoms,

Ar is aryl which is unsubstituted or monosubstituted or polysubstituted by R⁸,

Hal is F, Cl, Br or I,

X is a bond, and

20 R¹⁰ and R¹¹ are each, independently of one another, a hydroxylprotecting group or H.

13. Compounds of the formula X

25 in which

30

10

A is O, S, NH, NR⁷, CO, CONH, NHCO or a direct bond,

 R^1 is H, Z or -(CH₂)_o-Ar,

 R^2 is H, R^7 or -C(O)Z,

 R^3 is NHR⁶, -NR⁶-C(=NR⁶)-NHR⁶, -C(=NR⁶)-NHR⁶, -NR⁶-C(=NR⁹)-NHR⁶, Het¹or -C(=NR⁹)-NHR⁶.

 R^6 is H, -C(O)R⁷, -C(O)-Ar, -C(O)-Het, R⁷, COOR⁷, COO-(CH₂)_o-Ar, COO-(CH₂)_o-Het, SO₂-Ar, SO₂R⁷ or SO₂-Het,

R⁷ is alkyl having 1 to 10 carbon atoms or cycloalkyl having 3 to 10 carbon atoms,

5 R⁸ is Hal, NO₂, CN, Z, -(CH₂)₀-Ar, COOR¹, OR¹, CF₃, OCF₃, SO₂R¹, NHR¹, N(R¹)₂, NH-C(O)R¹, NHCOOR¹, COOH, COOZ or C(O)R¹,

R⁹ is CN or NO₂,

Z is alkyl having 1 to 6 carbon atoms,

Ar is aryl which is unsubstituted or monosubstituted or polysubstituted by R⁸,

Hal is F, Cl, Br or I,

Het¹ is a monocyclic or bicyclic heterocyclic radical having 5 to 10 ring members and 1 to 4 N atoms each of which may be unsubstituted or monosubstituted or disubstituted by Hal, R⁷, OR⁷, CN, NHZ, oxo or

 $15 NO_2$

n is 0, 1 or 2,

m is 0, 1, 2, 3, 4, 5 or 6, and

o is 0, 1 or 2,

and physiologically acceptable salts and solvates thereof.

20

10

14. A compound according to Claim 1, wherein

X is a bond,

B is O.

 R^1 is H,

R⁴ is Het,

A is a bond,

and

R³ is Het¹.

30

- 15. A compound according to claim 14, wherein Het¹ is pyridine which may be substituted by NHZ where Z is alkyl having 1 to 6 carbon atoms.
- 16. A compound according to claim 14, wherein R⁴ is benzothiadiazole.

17. A compound according to claim 1, which is 3- (benzo[1,2,5]thiadiazol-5-yl)-3-{6-[2-(6-methylamino-pyridin-2-yl)-ethyloxy]-indol-3-yl}-propionic acid.

5

15

20

- 18. A compound according to claim 1, in racemic form.
- 19. A compound according to claim 1, in the form of substantially only one of its enantiomers.

10 20. A compound of the formula lj

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & &$$

in which

R³ is NHR⁶, -NR⁶-C(=NR⁶)-NHR⁶, -C(=NR⁶)-NHR⁶, -NR⁶-C(=NR⁹)-NHR⁶, Het¹or -C(=NR⁹)-NHR⁶,

Is H, oxo, R^7 , -(CH₂)₀-Ar, -C(O)-(CH₂)₀-Ar, -C(O)-(CH₂)₀- R^7 , -C(O)-(CH₂)₀-Het, Het, NHR⁶, NHAr, NH-Het, CONH- R^7 , CONH-(CH₂)₀-Ar, CONH-(CH₂)₀-Het, OR⁷, OAr, OR⁶ or O-Het,

 R^6 is H, $-C(O)R^7$, -C(O)-Ar, -C(O)-Het, R^7 , $COOR^7$, $COO-(CH_2)_o-Ar$, $COO-(CH_2)_o-Het$, SO_2-Ar , SO_2R^7 or SO_2-Het ,

R⁷ is alkyl having 1 to 10 carbon atoms or cycloalkyl having 3 to 10 carbon atoms,

 R^8 is Hal, NO₂, CN, Z, -(CH₂)_o-Ar, COOR¹, OR¹, CF₃, OCF₃, SO₂R¹, NHR¹, N(R¹)₂, NH-C(O)R¹, NHCOOR¹, COOH, COOZ or C(O)R¹,

25 R^9 is CN or NO_2 ,

Z is alkyl having 1 to 6 carbon atoms,

Ar is aryl which is unsubstituted or monosubstituted or polysubstituted by R⁸,

Hal is F, Cl, Br or I,

Het is a saturated, partially or fully unsaturated monocyclic or bicyclic heterocyclic radical having 5 to 10 ring members, where 1 or 2 N and/or 1 or 2 S or O atoms may be present and the heterocyclic radical may be monosubstituted or disubstituted by R⁸,

- Het¹ is a monocyclic or bicyclic heterocyclic radical having 5 to 10 ring members and 1 to 4 N atoms each of which may be unsubstituted or monosubstituted or disubstituted by Hal, R⁷, OR⁷, CN, NHZ, oxo or NO₂,
- o is 0, 1 or 2, and physiologically acceptable salts and solvates thereof.
 - 21. A pharmaceutical composition comprising a compound of claim 17 and a pharmaceutically acceptable carrier.

22. A method of treating thromboses, cardiac infarction, coronary heart diseases, arteriosclerosis, inflammations, rheumatic arthritis, macular degenerative disease, diabetic retinopathy, a tumour by inhibition of metastasis, a tumour by initiation of apoptosis, tumour induced
20 angiogenesis disease, osteoporosis, and/or infections and restenosis after angioplasty comprising administering to a patient in need thereof a compound according to Claim 17 and/or physiologically acceptable salts or solvates thereof.

25