

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение

высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ ИНФОРМАТИКА И СИСТЕМЫ УПРАВЛЕНИЯ

КАФЕДРА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ (ИУ6)

Название: Дескриптивный анализ данных

Дисциплина: Методы машинного обучения

НАПРАВЛЕНИЕ ПОДГОТОВКИ 09.04.01 Информатика и вычислительная техника

МАГИСТЕРСКАЯ ПРОГРАММА **09.04.01/05 Интеллектуальный анализ больших** данных в системах поддержки принятия решений.

ОТЧЕТ

по домашнему заданию № 1

Студент	ИУ6-21М		Д.С. Голубятников
	(Группа)	(Подпись, дата)	(И.О. Фамилия)
Преподаватель			С.Ю. Папулин
преподаватель			С.10. Папулип

(Подпись, дата)

(И.О. Фамилия)

Задание 1. Анализ индикаторов качества государственного управления (The Worldwide Government Indicators, WGI)

Импорт библиотек

```
import pandas as pd
import numpy as np
import matplotlib.cm as cm
import matplotlib.pyplot as plt
from matplotlib import gridspec
```

1. Загрузка данных в DataFrame

```
In [3]: page_number = 6
    df = pd.read_excel('wgidataset.xlsx', sheet_name=page_number, header = 14)
    df
```

Out[3]:		Country/Territory	Code	Estimate	StdErr	NumSrc	Rank	Lower	Upper	Estin
	0	Aruba	ABW	NaN	NaN	NaN	NaN	NaN	NaN	
	1	Andorra	ADO	1.318143	0.480889	1.0	87.096771	72.043015	96.774193	1.3
	2	Afghanistan	AFG	-1.291705	0.340507	2.0	4.301075	0.000000	27.419355	-1.1
	3	Angola	AGO	-1.167702	0.262077	4.0	9.677420	0.537634	27.419355	-1.1
	4	Anguilla	AIA	NaN	NaN	NaN	NaN	NaN	NaN	
	•••									
	209	Serbia	SRB	-1.140072	0.262077	4.0	11.827957	0.537634	29.032259	-1.1
	210	South Africa	ZAF	0.732927	0.210325	6.0	76.344086	66.129036	81.182793	0.6
	211	Congo, Dem. Rep.	ZAR	-1.647852	0.315914	3.0	0.000000	0.000000	12.365591	-1.4
	212	Zambia	ZMB	-0.840641	0.262077	4.0	24.731182	5.913979	41.397850	-0.8
	213	Zimbabwe	ZWE	-0.278847	0.244907	5.0	47.849461	30.645161	60.752689	-0.5

214 rows × 146 columns

2. Датасет отсортированный по убыванию индекса

Out[4]:		Country/Territory	Code	Estimate	StdErr	NumSrc	Rank	Lower	Upper	Estin
	213	Zimbabwe	ZWE	-0.278847	0.244907	5.0	47.849461	30.645161	60.752689	-0.5
	212	Zambia	ZMB	-0.840641	0.262077	4.0	24.731182	5.913979	41.397850	-0.8
	211	Congo, Dem. Rep.	ZAR	-1.647852	0.315914	3.0	0.000000	0.000000	12.365591	-1.4
	210	South Africa	ZAF	0.732927	0.210325	6.0	76.344086	66.129036	81.182793	0.6
	209	Serbia	SRB	-1.140072	0.262077	4.0	11.827957	0.537634	29.032259	-1.1
	•••									
	4	Anguilla	AIA	NaN	NaN	NaN	NaN	NaN	NaN	
	3	Angola	AGO	-1.167702	0.262077	4.0	9.677420	0.537634	27.419355	-1.1
	2	Afghanistan	AFG	-1.291705	0.340507	2.0	4.301075	0.000000	27.419355	-1.1
	1	Andorra	ADO	1.318143	0.480889	1.0	87.096771	72.043015	96.774193	1.3
	0	Aruba	ABW	NaN	NaN	NaN	NaN	NaN	NaN	

214 rows × 146 columns

Выведем название страны, код и rank за 2022 год

```
In [5]: df_2022 = df_sorted[['Country/Territory','Rank.23']]
    df_2022
```

Out[5]:		Country/Territory	Rank.23
	213	Zimbabwe	8.490566
	212	Zambia	34.433964
	211	Congo, Dem. Rep.	3.301887
	210	South Africa	44.811321
	209	Serbia	35.377357
	•••		
	4	Anguilla	88.679245
	3	Angola	30.660378
	2	Afghanistan	12.264151
	1	Andorra	88.679245
	0	Aruba	77.830185

214 rows × 2 columns

3. Данные по индексу WGI за 2022 год в виде горизонтального столбчатого графика

```
In [6]: df_sorted_by_wgi = df_2022.sort_values('Rank.23', ascending=True)
        if df_sorted_by_wgi['Rank.23'].isnull().any():
            print("Найдены NaN значения в 'Rank.23'.")
            # удаление NaN
            df_sorted_by_wgi = df_sorted_by_wgi.dropna(subset=['Rank.23'])
        # присвоение порядковых номеров
        df_sorted_by_wgi['Num'] = df_sorted_by_wgi['Rank.23'].rank(method='min', ascending=
        # формирование названия
        df_sorted_by_wgi['Name'] = df_sorted_by_wgi['Num'].astype(str) + '. ' + df_sorted_t
        # построение графика
        plt.figure(figsize=(30, 50)) # размер графика
        plt.barh(df_sorted_by_wgi['Name'], df_sorted_by_wgi['Rank.23'], color='green')
        # вывод числовых значений справа om bar'a
        # for index, value in enumerate(df_sorted_by_wgi['Rank.23']):
              plt.text(value, index, str(value), va='center', ha='left', fontsize=10)
        plt.gca().xaxis.set_ticks_position('top')
        plt.gca().xaxis.set_label_position('top')
        plt.grid(axis='x', linestyle='-', alpha=0.7)
        plt.grid(axis='y', linestyle='-', alpha=0.7)
        plt.xlabel('WGI')
        plt.ylabel('Country/Territory')
        plt.show()
```

Найдены NaN значения в 'Rank.23'.

4. Получение списка стран входящего в регион Europe and Central Asia из датасета regions

```
In [7]: df_by_region = pd.read_excel('regions.xlsx')
    df_by_region_ECA = df_by_region.loc[df_by_region['Region']=='ECA']
    df_by_region_ECA
```

_		
\cap	7	
Out	/	

	Country	Code	Region
1	Albania	ALB	ECA
5	Armenia	ARM	ECA
8	Azerbaijan	AZE	ECA
13	Belarus	BLR	ECA
18	Bosnia and Herzegovina	BIH	ECA
59	Georgia	GEO	ECA
83	Kazakhstan	KAZ	ECA
87	Kosovo	KSV	ECA
89	Kyrgyzstan	KGZ	ECA
107	Moldova	MDA	ECA
109	Montenegro	MNE	ECA
120	North Macedonia	MKD	ECA
133	Russia	RUS	ECA
140	Serbia	SRB	ECA
158	Tajikistan	TJK	ECA
165	Turkey	TUR	ECA
166	Turkmenistan	TKM	ECA
168	Ukraine	UKR	ECA
173	Uzbekistan	UZB	ECA

5. Получекние стран из WGI входящих в указанный регион

```
In [8]: df_sorted_by_ECA_by_name = df[df['Country/Territory'].isin(df_by_region_ECA['Countr
df_sorted_by_ECA_by_name
```

Out[8]:		Country/Territory	Code	Estimate	StdErr	NumSrc	Rank	Lower	Upper	Estin
	5	Albania	ALB	-0.893903	0.315914	3.0	19.354839	2.688172	43.010754	-0.9
	9	Armenia	ARM	-0.473051	0.340507	2.0	38.172043	15.053763	59.139786	-0.9
	14	Azerbaijan	AZE	-1.445619	0.275614	3.0	2.688172	0.000000	17.204302	-1.2
	23	Bosnia and Herzegovina	BIH	-0.270570	0.275614	3.0	48.924732	28.494623	60.752689	-0.4
	24	Belarus	BLR	-0.389609	0.340507	2.0	42.473118	17.741936	60.752689	-0.3
	69	Georgia	GEO	-1.527264	0.340507	2.0	1.075269	0.000000	17.741936	-0.9
	98	Kazakhstan	KAZ	-1.132820	0.275614	3.0	12.365591	0.537634	30.107527	-1.0
	117	Kosovo	KSV	NaN	NaN	NaN	NaN	NaN	NaN	
	121	Moldova	MDA	-0.437427	0.275614	3.0	39.784946	19.354839	57.526882	-0.3
	126	North Macedonia	MKD	-0.613846	0.275614	3.0	32.258064	14.516129	51.075268	-0.6
	131	Montenegro	MNE	NaN	NaN	NaN	NaN	NaN	NaN	0.4
	186	Tajikistan	TJK	-1.273033	0.340507	2.0	5.913979	0.000000	29.032259	-1.2
	187	Turkmenistan	TKM	-1.021493	0.340507	2.0	15.591398	0.537634	38.709679	-1.0
	197	Ukraine	UKR	-1.110137	0.255844	4.0	13.440860	0.537634	29.569893	-1.2
	200	Uzbekistan	UZB	-1.128821	0.320799	2.0	12.903226	0.000000	32.258064	-1.1
	209	Serbia	SRB	-1.140072	0.262077	4.0	11.827957	0.537634	29.032259	-1.1

16 rows × 146 columns

```
In [9]: # unu mak

df_sorted_by_ECA = df[df['Code'].isin(df_by_region_ECA['Code'])]

df_sorted_by_ECA
```

Out[9]:		Country/Territory	Code	Estimate	StdErr	NumSrc	Rank	Lower	Upper	Estin
	5	Albania	ALB	-0.893903	0.315914	3.0	19.354839	2.688172	43.010754	-0.9
	9	Armenia	ARM	-0.473051	0.340507	2.0	38.172043	15.053763	59.139786	-0.9
	14	Azerbaijan	AZE	-1.445619	0.275614	3.0	2.688172	0.000000	17.204302	-1.2
	23	Bosnia and Herzegovina	BIH	-0.270570	0.275614	3.0	48.924732	28.494623	60.752689	-0.4
	24	Belarus	BLR	-0.389609	0.340507	2.0	42.473118	17.741936	60.752689	-0.3
	69	Georgia	GEO	-1.527264	0.340507	2.0	1.075269	0.000000	17.741936	-0.9
	98	Kazakhstan	KAZ	-1.132820	0.275614	3.0	12.365591	0.537634	30.107527	-1.0
	100	Kyrgyz Republic	KGZ	-0.993923	0.340507	2.0	17.204302	0.537634	39.784946	-1.0
	117	Kosovo	KSV	NaN	NaN	NaN	NaN	NaN	NaN	
	121	Moldova	MDA	-0.437427	0.275614	3.0	39.784946	19.354839	57.526882	-0.3
	126	North Macedonia	MKD	-0.613846	0.275614	3.0	32.258064	14.516129	51.075268	-0.6
	131	Montenegro	MNE	NaN	NaN	NaN	NaN	NaN	NaN	0.4
	163	Russian Federation	RUS	-1.053342	0.210325	6.0	15.053763	2.688172	29.032259	-0.9
	186	Tajikistan	TJK	-1.273033	0.340507	2.0	5.913979	0.000000	29.032259	-1.2
	187	Turkmenistan	TKM	-1.021493	0.340507	2.0	15.591398	0.537634	38.709679	-1.0
	192	Türkiye	TUR	-0.148074	0.210325	6.0	51.612904	36.559139	61.827957	-0.3
	197	Ukraine	UKR	-1.110137	0.255844	4.0	13.440860	0.537634	29.569893	-1.2
	200	Uzbekistan	UZB	-1.128821	0.320799	2.0	12.903226	0.000000	32.258064	-1.1
	209	Serbia	SRB	-1.140072	0.262077	4.0	11.827957	0.537634	29.032259	-1.1

19 rows × 146 columns

Получение WGI содержащего estimate по годам для заданного региона

```
In [13]: columns = {
           'Estimate' : '1996',
           'Estimate.1' : '1998',
           'Estimate.2' : '2000', 'Estimate.3' : '2002',
           'Estimate.4' : '2003',
           'Estimate.5' : '2004',
           'Estimate.6' : '2005',
           'Estimate.7' : '2006',
           'Estimate.9' : '2008',
           'Estimate.10' : '2009',
           'Estimate.11' : '2010',
           'Estimate.12' : '2011',
           'Estimate.13' : '2012',
           'Estimate.14' : '2013', 'Estimate.15' : '2014',
           'Estimate.16' : '2015',
           'Estimate.17' : '2016',
           'Estimate.18' : '2017',
           'Estimate.19' : '2018',
```

```
'Estimate.20' : '2019',
'Estimate.21' : '2020',
'Estimate.22' : '2021',
'Estimate.23' : '2022',
df_sorted_by_ECA_wgi = df_sorted_by_ECA.filter(like='Estimate')
df_sorted_by_ECA_countries = df_sorted_by_ECA['Country/Territory']
df_sorted_by_ECA_wgi_estimate = df_sorted_by_ECA_wgi
df_sorted_by_ECA_wgi_estimate = pd.concat([df_sorted_by_ECA_countries,df_sorted_by_
df_sorted_by_ECA_wgi_estimate_output = df_sorted_by_ECA_wgi_estimate.rename(columns
'Estimate' : '1996',
'Estimate.1' : '1998',
'Estimate.2' : '2000',
'Estimate.3' : '2002',
'Estimate.4' : '2003',
'Estimate.5' : '2004',
'Estimate.6' : '2005',
'Estimate.7' : '2006',
'Estimate.8' : '2007',
'Estimate.9' : '2008',
'Estimate.10' : '2009',
'Estimate.11' : '2010',
'Estimate.12' : '2011',
'Estimate.13' : '2012',
'Estimate.14' : '2013',
'Estimate.15' : '2014',
'Estimate.16' : '2015',
'Estimate.17' : '2016',
'Estimate.18' : '2017',
'Estimate.19' : '2018',
'Estimate.20' : '2019',
'Estimate.21' : '2020',
'Estimate.22' : '2021',
'Estimate.23' : '2022',
df_sorted_by_ECA_wgi_estimate_output
```

Out[13]:		Country/Territory	1996	1998	2000	2002	2003	2004	2005
	5	Albania	-0.893903	-0.992025	-0.855564	-0.845341	-0.853787	-0.723732	-0.813264
	9	Armenia	-0.473051	-0.936306	-0.848086	-0.778165	-0.649022	-0.703455	-0.683350
	14	Azerbaijan	-1.445619	-1.289568	-1.292383	-1.195502	-1.046232	-1.180832	-1.052521
	23	Bosnia and Herzegovina	-0.270570	-0.402136	-0.595849	-0.387543	-0.282097	-0.324706	-0.232809
	24	Belarus	-0.389609	-0.323170	-0.504358	-0.657885	-0.537340	-0.759293	-0.723231
	69	Georgia	-1.527264	-0.982506	-1.040173	-1.264142	-0.650767	-0.459568	-0.212854
	98	Kazakhstan	-1.132820	-1.078855	-1.149889	-1.113585	-1.026524	-1.105954	-1.014963
	100	Kyrgyz Republic	-0.993923	-1.058797	-1.007479	-1.064770	-1.032819	-1.097712	-1.267269
	117	Kosovo	NaN	NaN	0.371275	0.360482	-0.504248	-0.305081	-0.526772
	121	Moldova	-0.437427	-0.399806	-0.623196	-0.980350	-0.884173	-1.039576	-0.672626
	126	North Macedonia	-0.613846	-0.636420	-0.638976	-0.826058	-0.651164	-0.554222	-0.488401
	131	Montenegro	NaN	0.497083	-0.177506	-0.156704	-0.411994	-0.467465	-0.354254
	163	Russian Federation	-1.053342	-0.954374	-0.943414	-0.954848	-0.783092	-0.825626	-0.847121
	186	Tajikistan	-1.273033	-1.252361	-1.265868	-1.174971	-1.147746	-1.319210	-1.176047
	187	Turkmenistan	-1.021493	-1.068734	-1.077138	-1.054273	-1.015132	-1.270521	-1.347762
	192	Türkiye	-0.148074	-0.354078	-0.258080	-0.570129	-0.209118	-0.191904	-0.035273
	197	Ukraine	-1.110137	-1.258210	-1.110609	-1.091394	-0.966655	-0.979342	-0.740643
	200	Uzbekistan	-1.128821	-1.134654	-1.080415	-0.964739	-0.914872	-1.068812	-1.229638
	209	Serbia	-1.140072	-1.195605	-1.156671	-0.895785	-0.494189	-0.493294	-0.406051

19 rows × 25 columns

6. Построение графика индекса WGI за 1996-2022 для Europe and Central Asia

```
In [11]: # df_sorted_by_ECA_wgi = df_sorted_by_ECA_wgi
# df_sorted_by_ECA_wgi
# plt.figure(figsize=(30, 50))
# plt.title(" WGI за 1996-2022 для региона ECA")
# plt.plot(df_sorted_by_ECA_wgi_estimate['Country/Territory'],
# df_sorted_by_ECA_wgi)

# ycmaновим индекс для DataFrame
df_sorted_by_ECA_wgi_estimate_output_T = df_sorted_by_ECA_wgi_estimate_output.set_i

df_sorted_by_ECA_wgi_estimate_output_T = df_sorted_by_ECA_wgi_estimate_output.T

plt.figure(figsize=(20, 10))

markers = ['o', 's', '^', 'D', 'x', '+', '*']

# генерация уникальных иветов
colors = plt.cm.viridis(np.linspace(0, 1, len(df_sorted_by_ECA_wgi_estimate_output_
```


7. Получение стран с наибольшим и наименьшим значением WGI в регионе Europe and Central Asia

```
In [15]: # надо перезапустить In [10] иначе не работает

df_sorted_by_ECA_wgi_estimate_output_2022 = df_sorted_by_ECA_wgi_estimate_output[['
    df_sorted_by_ECA_wgi_estimate_output_2022

max_2022 = df_sorted_by_ECA_wgi_estimate_output_2022['2022'].max()

maxes = df_sorted_by_ECA_wgi_estimate_output_2022[df_sorted_by_ECA_wgi_estimate_outprint("Страны с наибольшим индексом WGI за 2022 год:")

maxes
```

Страны с наибольшим индексом WGI за 2022 год:

```
Out[15]: Country/Territory 2022

69 Georgia 0.620238
```

```
In [16]: min_2022 = df_sorted_by_ECA_wgi_estimate_output_2022['2022'].min()
mins = df_sorted_by_ECA_wgi_estimate_output_2022[df_sorted_by_ECA_wgi_estimate_outp
print("\nCтраны с наименьшим индексом WGI за 2022 год:")
mins
```

Страны с наименьшим индексом WGI за 2022 год:

```
Out[16]: Country/Territory 2022

187 Turkmenistan -1.436774
```

8. Определение среднего значения за каждый год в период с 1996 по 2022 в регионе Europe and Central Asia

```
In [17]:
         means = df_sorted_by_ECA_wgi_estimate_output.drop(columns = ['Country/Territory'])
         means = df_sorted_by_ECA_wgi_estimate_output.mean(numeric_only=True)
         means
         1996
               -0.885471
Out[17]:
         1998
               -0.823362
         2000
               -0.802862
         2002 -0.821879
         2003 -0.740051
         2004
               -0.782648
         2005
               -0.727624
               -0.685522
         2006
         2007
               -0.721019
         2008 -0.698221
         2009 -0.720827
         2010 -0.721366
         2011
               -0.719957
         2012
               -0.666920
         2013 -0.660700
         2014 -0.584655
         2015 -0.643372
         2016 -0.618599
         2017
               -0.633326
         2018 -0.600420
         2019 -0.561316
         2020 -0.596217
         2021 -0.551040
         2022
               -0.562725
         dtype: float64
```

9. Построение графика индекса WGI за 1996-2022 для стран региона Europe and Central Asia с выделением страны с наибольшим и наименьшим значением WGI за 2022 год, а также отображение среднего значения по региону и РФ

```
In [18]:
         fig, ax = plt.subplots(figsize=(25, 10))
         task1_9 = df_sorted_by_ECA_wgi_estimate_output_T
         task1_9 = task1_9.drop(columns=['Russian Federation'])
         # строим основной график
         task1 9.plot(ax=ax, color='lightgrey', marker='o', legend=False, title="WGI 3a 1996
         # добавляем максимумы, минимумы и средние значения
         ax.plot(df_sorted_by_ECA_wgi_estimate_output_T[maxes['Country/Territory']], color='
         ax.plot(df_sorted_by_ECA_wgi_estimate_output_T[mins['Country/Territory']], color='@
         ax.plot(means, color='blue', marker='o', label='Средние значения')
         # добавляем линию для "Russian Federation"
         ax.plot(df_sorted_by_ECA_wgi_estimate_output_T['Russian Federation'], color='orange
         ax.set_xticks(df_sorted_by_ECA_wgi_estimate_output_T.index) # Установка всех гοдов
         ax.set xticklabels(df sorted by ECA wgi estimate output T.index, rotation=45) # Id
         ax.set_xlabel("CPI")
         ax.set_ylabel("Год")
         ax.legend()
         ax.grid() # Сетка по каждому году на оси X
         plt.show()
```


11. Определение изменения rank с 1996 по 2022 в регионе Americas

	Country	Code	Region
4	Argentina	ARG	AME
9	Bahamas	BHS	AME
12	Barbados	BRB	AME
17	Bolivia	BOL	AME
20	Brazil	BRA	AME
27	Canada	CAN	AME
30	Chile	CHL	AME
32	Colombia	COL	AME
35	Costa Rica	CRI	AME
38	Cuba	CUB	AME
44	Dominica	DMA	AME
45	Dominican Republic	DOM	AME
46	Ecuador	ECU	AME
48	El Salvador	SLV	AME
63	Grenada	GRD	AME
64	Guatemala	GTM	AME
67	Guyana	GUY	AME
68	Haiti	HTI	AME
69	Honduras	HND	AME
80	Jamaica	JAM	AME
106	Mexico	MEX	AME
117	Nicaragua	NIC	AME
124	Panama	PAN	AME
126	Paraguay	PRY	AME
127	Peru	PER	AME
135	Saint Lucia	LCA	AME
136	Saint Vincent and the Grenadines	VCT	AME
153	Suriname	SUR	AME
163	Trinidad and Tobago	TTO	AME
171	United States of America	USA	AME
172	Uruguay	URY	AME
175	Venezuela	VEN	AME

```
In [20]: df_sorted_by_AME = df[df['Code'].isin(df_by_region_AME['Code'])]
    df_sorted_by_AME
```

Out[20]:		Country/Territory	Code	Estimate	StdErr	NumSrc	Rank	Lower	Upper	Esti
_	8	Argentina	ARG	-0.101317	0.210325	6.0	53.763439	38.709679	62.903225	-0.
	22	Bahamas, The	BHS	1.156810	0.418145	2.0	83.870964	69.892471	93.010750	1.
	27	Bolivia	BOL	-0.824829	0.262077	4.0	25.268818	6.451613	41.935482	-0.
	28	Brazil	BRA	-0.018580	0.210325	6.0	56.989246	44.086021	63.440861	0.
	29	Barbados	BRB	1.542726	0.340507	2.0	90.860214	81.182793	96.774193	1.
	35	Canada	CAN	2.031408	0.210325	6.0	96.236557	91.397850	100.000000	2.
	37	Chile	CHL	1.454119	0.210325	6.0	90.322578	81.182793	93.010750	1.
	43	Colombia	COL	-0.512254	0.210325	6.0	36.559139	23.118280	50.537636	-0.
	46	Costa Rica	CRI	0.696142	0.244907	5.0	75.268814	63.440861	81.182793	0.
	47	Cuba	CUB	0.289153	0.262077	4.0	63.440861	52.150539	75.806450	0.
	53	Dominica	DMA	0.869897	0.480889	1.0	80.107529	59.139786	91.397850	0.
	55	Dominican Republic	DOM	-0.422995	0.262077	4.0	41.397850	23.655914	57.526882	-0.
	57	Ecuador	ECU	-0.684874	0.262077	4.0	30.107527	12.903226	49.462364	-0.
	76	Grenada	GRD	0.869897	0.480889	1.0	80.107529	59.139786	91.397850	0.
	78	Guatemala	GTM	-0.856944	0.244907	5.0	23.655914	6.451613	38.709679	-0.
	81	Guyana	GUY	-0.140642	0.315914	3.0	52.688171	31.182796	65.053764	-0.
	83	Honduras	HND	-1.078811	0.244907	5.0	14.516129	2.150538	30.645161	-1.
	85	Haiti	HTI	-1.173277	0.315914	3.0	9.139785	0.000000	31.182796	-1.
	95	Jamaica	JAM	0.187061	0.262077	4.0	61.827957	49.462364	73.118279	0.
	110	St. Lucia	LCA	NaN	NaN	NaN	NaN	NaN	NaN	
	124	Mexico	MEX	-0.512429	0.210325	6.0	36.021507	23.118280	50.537636	-0.
	141	Nicaragua	NIC	-0.564544	0.244907	5.0	33.870968	17.741936	51.075268	-0.
	150	Panama	PAN	-0.201106	0.262077	4.0	50.537636	31.720430	62.903225	-0.
	152	Peru	PER	-0.398886	0.244907	5.0	41.935482	25.268818	57.526882	-0.
	159	Paraguay	PRY	-1.166015	0.262077	4.0	10.215054	0.537634	27.419355	-1.
	172	El Salvador	SLV	-0.865278	0.244907	5.0	21.505377	5.913979	38.709679	-0.
	176	Suriname	SUR	0.185647	0.315914	3.0	61.290321	46.236561	75.268814	0.
	190	Trinidad and Tobago	TTO	0.901226	0.262077	4.0	80.645164	69.892471	87.096771	0.
	198	Uruguay	URY	1.124996	0.262077	4.0	82.258064	74.731186	90.860214	1.
	199	United States	USA	1.571041	0.210325	6.0	91.397850	84.408600	94.086021	1.
	201	St. Vincent and the Grenadines	VCT	NaN	NaN	NaN	NaN	NaN	NaN	
:	202	Venezuela, RB	VEN	-0.862947	0.210325	6.0	22.580645	7.526882	35.483871	-0.

32 rows × 146 columns

```
In [21]: df_sorted_by_AME_rank = df_sorted_by_AME.filter(like='Rank')
         df_sorted_by_AME_countries = df_sorted_by_AME['Country/Territory']
         # df_sorted_by_AME_countries
         df_sorted_by_AME_rank = pd.concat([df_sorted_by_AME_countries,df_sorted_by_AME_rank
          df_sorted_by_AME_rank
          df_sorted_by_AME_rank_output = df_sorted_by_AME_rank.rename(columns = {
          'Rank' : '1996',
          'Rank.1' : '1998',
          'Rank.2' : '2000',
          'Rank.3' : '2002',
          'Rank.4' : '2003',
          'Rank.5' : '2004',
          'Rank.6' : '2005',
          'Rank.7' : '2006',
          'Rank.8' : '2007',
          'Rank.9' : '2008',
          'Rank.10' : '2009',
          'Rank.11' : '2010',
          'Rank.12' : '2011',
          'Rank.13' : '2012',
          'Rank.14' : '2013',
          'Rank.15' : '2014',
          'Rank.16' : '2015',
          'Rank.17' : '2016',
          'Rank.18' : '2017',
          'Rank.19' : '2018',
          'Rank.20' : '2019',
          'Rank.21' : '2020',
          'Rank.22' : '2021',
          'Rank.23' : '2022',
         })
          df_sorted_by_AME_rank_output
```

Out[21]:		Country/Territory	1996	1998	2000	2002	2003	2004	200
	8	Argentina	53.763439	50.267380	52.127659	41.798943	40.211639	39.901478	43.41463
	22	Bahamas, The	83.870964	85.561501	86.170212	89.417992	89.947090	91.625618	89.26829
	27	Bolivia	25.268818	40.641712	40.425533	22.22221	23.280424	24.630543	24.39024
	28	Brazil	56.989246	56.149734	57.978722	58.730160	59.788361	54.679802	51.70731
	29	Barbados	90.860214	90.909088	90.957443	91.005295	91.005295	91.133003	90.73170
	35	Canada	96.236557	95.187164	95.212769	94.179893	94.179893	92.118225	93.65853
	37	Chile	90.322578	86.096260	91.489365	90.476189	83.597885	87.684731	91.21951
	43	Colombia	36.559139	36.363636	42.553192	46.560848	50.793652	52.216747	52.19512
	46	Costa Rica	75.268814	77.005348	74.468086	70.370369	72.486771	63.054188	65.36585
	47	Cuba	63.440861	64.171120	65.957443	69.312172	62.433861	60.591133	62.92683
	53	Dominica	80.107529	80.748665	81.382980	80.423279	79.365082	74.876846	74.63414
	55	Dominican Republic	41.397850	29.411764	32.446808	39.682541	28.571428	32.019703	28.29268
	57	Ecuador	30.107527	28.342245	27.659575	23.809525	29.100529	27.093596	25.36585
	76	Grenada	80.107529	80.748665	81.382980	80.423279	79.365082	74.876846	74.63414
	78	Guatemala	23.655914	26.203209	25.531916	33.333332	27.513227	30.049261	29.26829
	81	Guyana	52.688171	46.524063	42.021278	47.089947	44.973545	40.886700	35.12195
	83	Honduras	14.516129	16.577539	17.553192	15.873015	15.873015	18.719212	22.43902
	85	Haiti	9.139785	9.090909	7.446808	0.000000	0.000000	2.463054	3.41463
	95	Jamaica	61.827957	59.893047	59.042553	38.095238	41.269840	41.379311	46.34146
1	110	St. Lucia	NaN	NaN	NaN	NaN	NaN	62.561577	84.39024
1	124	Mexico	36.021507	43.850266	54.787235	47.619049	48.677250	41.871922	45.85365
1	141	Nicaragua	33.870968	20.855616	20.744680	39.153439	37.037037	38.423645	32.68292
1	150	Panama	50.537636	51.871658	45.744682	44.973545	43.386242	45.812809	42.92683
1	152	Peru	41.935482	41.176472	43.085106	46.031746	53.439152	38.916256	44.39024
1	159	Paraguay	10.215054	2.673797	1.063830	2.645503	3.174603	3.940887	4.87804
1	172	El Salvador	21.505377	25.668449	29.787233	25.925926	41.798943	35.960590	38.53658
1	176	Suriname	61.290321	62.566845	68.617020	65.079369	66.66664	61.576355	60.00000
1	190	Trinidad and Tobago	80.645164	73.796791	64.361702	58.201057	59.259258	55.665024	57.07317
1	198	Uruguay	82.258064	82.887703	82.446808	82.010582	82.539680	81.280785	81.95121
1	199	United States	91.397850	91.978607	92.021278	92.592590	92.063492	92.610840	91.70731
2	201	St. Vincent and the Grenadines	NaN	NaN	NaN	NaN	NaN	62.561577	82.43902
2	202	Venezuela, RB	22.580645	22.459892	32.978722	10.582010	10.052910	17.241379	16.09756

32 rows × 25 columns

```
df_sorted_by_AME_wgi_estimate_output_2022 = df_sorted_by_AME_rank_output[['Country/
In [22]:
          df_sorted_by_AME_wgi_estimate_output_2022
          AME_max_2022 = df_sorted_by_AME_rank_output['2022'].max()
          AME_maxes = df_sorted_by_AME_wgi_estimate_output_2022[df_sorted_by_AME_wgi_estimate
          print("Страны с наибольшим индексом WGI за 2022 год:")
          country_with_max_value = AME_maxes['Country/Territory'].values[0]
          AME_maxes
         Страны с наибольшим индексом WGI за 2022 год:
                                 2022
Out[22]:
             Country/Territory
         35
                      Canada 93.396225
In [23]:
          AME_min_2022 = df_sorted_by_AME_rank_output['2022'].min()
          AME_mins = df_sorted_by_AME_wgi_estimate_output_2022[df_sorted_by_AME_wgi_estimate_
          print("Страны с наименьшим индексом WGI за 2022 год:")
          country_with_min_value = AME_mins['Country/Territory'].values[0]
          AME_mins
         Страны с наименьшим индексом WGI за 2022 год:
Out[23]:
              Country/Territory
                                 2022
          202
                  Venezuela, RB 1.886792
         AME_means = df_sorted_by_AME_rank_output.drop(columns =['Country/Territory'])
In [24]:
          AME means = df sorted by AME rank output.mean(numeric only=True)
          AME_means
                  53,279570
         1996
Out[24]:
         1998
                  52.655972
         2000
                  53.581560
         2002
                  51.587302
         2003
                  51.728395
         2004
                  51.200739
         2005
                  52.728659
         2006
                  53.033536
         2007
                  53.200849
         2008
                  53.929005
         2009
                  53.588517
         2010
                  53.497023
         2011
                  54.028437
         2012
                  51.836493
         2013
                  51.747630
         2014
                 48.332332
         2015
                  48.660715
         2016
                  48.854167
         2017
                  48.229167
         2018
                 47.961309
         2019
                 48.050595
         2020
                  46.964286
         2021
                  45.982143
                  45.592570
         2022
         dtype: float64
In [25]: # df_sorted_by_AME = df[df['Code'].isin(df_by_region_AME['Code'])]
          # df_by_region
          data = {'Country': df_sorted_by_AME_rank_output['Country/Territory'],
                  '1996': df_sorted_by_AME_rank_output['1996'],
                  '2022': df_sorted_by_AME_rank_output['2022'],
                  'Rank_Difference': df_sorted_by_AME_rank_output['2022'] - df_sorted_by_AME_
          rank_diff = pd.DataFrame(data)
          rank_diff
```

	Country	1996	2022	Rank_Difference
8	Argentina	53.763439	36.320755	-17.442684
22	Bahamas, The	83.870964	84.433960	0.562996
27	Bolivia	25.268818	20.754717	-4.514101
28	Brazil	56.989246	32.075470	-24.913776
29	Barbados	90.860214	89.150940	-1.709274
35	Canada	96.236557	93.396225	-2.840332
37	Chile	90.322578	80.660378	-9.662201
43	Colombia	36.559139	41.037735	4.478596
46	Costa Rica	75.268814	66.981133	-8.287682
47	Cuba	63.440861	52.358490	-11.082371
53	Dominica	80.107529	69.339622	-10.767906
55	Dominican Republic	41.397850	37.264153	-4.133698
57	Ecuador	30.107527	29.716982	-0.390545
76	Grenada	80.107529	67.452827	-12.654701
78	Guatemala	23.655914	11.320755	-12.335159
81	Guyana	52.688171	45.283020	-7.405151
83	Honduras	14.516129	18.867924	4.351794
85	Haiti	9.139785	5.188679	-3.951106
95	Jamaica	61.827957	54.245281	-7.582676
110	St. Lucia	NaN	70.754715	NaN
124	Mexico	36.021507	17.452829	-18.568678
141	Nicaragua	33.870968	7.547170	-26.323798
150	Panama	50.537636	28.773584	-21.764051
152	Peru	41.935482	22.169811	-19.765671
159	Paraguay	10.215054	15.094339	4.879286
172	El Salvador	21.505377	27.830189	6.324812
176	Suriname	61.290321	39.150944	-22.139378
190	Trinidad and Tobago	80.645164	40.566036	-40.079128
198	Uruguay	82.258064	91.981133	9.723068
199	United States	91.397850	82.547173	-8.850677
201	St. Vincent and the Grenadines	NaN	77.358490	NaN
202	Venezuela, RB	22.580645	1.886792	-20.693852

Out[25]:

```
'Rank.23': '2022'}, inplace=True)

russ_data['Rank_Difference'] = russ_data['2022'] - russ_data['1996']

russ_data
# rank_diff = pd.merge(rank_diff,df_by_region, on='Country', how='left')
# rank_diff
```

Out[26]: Country 1996 2022 Rank_Difference

163 Russian Federation 15.053763 19.339622 4.285859

```
In [27]: rank_diff_and_rus = pd.concat([rank_diff, russ_data], ignore_index=True)
    rank_diff_and_rus
```

	Country	1996	2022	Rank_Difference
0	Argentina	53.763439	36.320755	-17.442684
1	Bahamas, The	83.870964	84.433960	0.562996
2	Bolivia	25.268818	20.754717	-4.514101
3	Brazil	56.989246	32.075470	-24.913776
4	Barbados	90.860214	89.150940	-1.709274
5	Canada	96.236557	93.396225	-2.840332
6	Chile	90.322578	80.660378	-9.662201
7	Colombia	36.559139	41.037735	4.478596
8	Costa Rica	75.268814	66.981133	-8.287682
9	Cuba	63.440861	52.358490	-11.082371
10	Dominica	80.107529	69.339622	-10.767906
11	Dominican Republic	41.397850	37.264153	-4.133698
12	Ecuador	30.107527	29.716982	-0.390545
13	Grenada	80.107529	67.452827	-12.654701
14	Guatemala	23.655914	11.320755	-12.335159
15	Guyana	52.688171	45.283020	-7.405151
16	Honduras	14.516129	18.867924	4.351794
17	Haiti	9.139785	5.188679	-3.951106
18	Jamaica	61.827957	54.245281	-7.582676
19	St. Lucia	NaN	70.754715	NaN
20	Mexico	36.021507	17.452829	-18.568678
21	Nicaragua	33.870968	7.547170	-26.323798
22	Panama	50.537636	28.773584	-21.764051
23	Peru	41.935482	22.169811	-19.765671
24	Paraguay	10.215054	15.094339	4.879286
25	El Salvador	21.505377	27.830189	6.324812
26	Suriname	61.290321	39.150944	-22.139378
27	Trinidad and Tobago	80.645164	40.566036	-40.079128
28	Uruguay	82.258064	91.981133	9.723068
29	United States	91.397850	82.547173	-8.850677
30	St. Vincent and the Grenadines	NaN	77.358490	NaN

Out[27]:

31

32

```
In [28]: # rank_diff = pd.merge(rank_diff_and_rus,df_by_region, on='Country', how='left')
# rank_diff
codes_df = df[['Country/Territory', 'Code']]
```

-20.693852

4.285859

Venezuela, RB 22.580645 1.886792

Russian Federation 15.053763 19.339622

Out[28]:		Country	Code
	0	Aruba	ABW
	1	Andorra	ADO
	2	Afghanistan	AFG
	3	Angola	AGO
	4	Anguilla	AIA
	•••		
	209	Serbia	SRB
	210	South Africa	ZAF
	211	Congo, Dem. Rep.	ZAR
	212	Zambia	ZMB
	213	Zimbabwe	ZWE

214 rows × 2 columns

```
In [29]: rank_diff_and_rus = pd.merge(rank_diff_and_rus, codes_df, on='Country', how='left')
    rank_diff_and_rus['Country'] = rank_diff_and_rus['Country'].replace('Russian Federa
    rank_diff_and_rus
```

	Country	1330	LULL	Rank_Directice	Couc
0	Argentina	53.763439	36.320755	-17.442684	ARG
1	Bahamas, The	83.870964	84.433960	0.562996	BHS
2	Bolivia	25.268818	20.754717	-4.514101	BOL
3	Brazil	56.989246	32.075470	-24.913776	BRA
4	Barbados	90.860214	89.150940	-1.709274	BRB
5	Canada	96.236557	93.396225	-2.840332	CAN
6	Chile	90.322578	80.660378	-9.662201	CHL
7	Colombia	36.559139	41.037735	4.478596	COL
8	Costa Rica	75.268814	66.981133	-8.287682	CRI
9	Cuba	63.440861	52.358490	-11.082371	CUB
10	Dominica	80.107529	69.339622	-10.767906	DMA
11	Dominican Republic	41.397850	37.264153	-4.133698	DOM
12	Ecuador	30.107527	29.716982	-0.390545	ECU
13	Grenada	80.107529	67.452827	-12.654701	GRD
14	Guatemala	23.655914	11.320755	-12.335159	GTM
15	Guyana	52.688171	45.283020	-7.405151	GUY
16	Honduras	14.516129	18.867924	4.351794	HND
17	Haiti	9.139785	5.188679	-3.951106	HTI
18	Jamaica	61.827957	54.245281	-7.582676	JAM
19	St. Lucia	NaN	70.754715	NaN	LCA
20	Mexico	36.021507	17.452829	-18.568678	MEX
21	Nicaragua	33.870968	7.547170	-26.323798	NIC
22	Panama	50.537636	28.773584	-21.764051	PAN
23	Peru	41.935482	22.169811	-19.765671	PER
24	Paraguay	10.215054	15.094339	4.879286	PRY
25	El Salvador	21.505377	27.830189	6.324812	SLV
26	Suriname	61.290321	39.150944	-22.139378	SUR
27	Trinidad and Tobago	80.645164	40.566036	-40.079128	TTO
28	Uruguay	82.258064	91.981133	9.723068	URY
29	United States	91.397850	82.547173	-8.850677	USA
30	St. Vincent and the Grenadines	NaN	77.358490	NaN	VCT
31	Venezuela, RB	22.580645	1.886792	-20.693852	VEN
32	Russia	15.053763	19.339622	4.285859	RUS

	Country	1996	2022	Rank_Difference	Code	Region
0	Argentina	53.763439	36.320755	-17.442684	ARG	AME
1	Bahamas, The	83.870964	84.433960	0.562996	BHS	AME
2	Bolivia	25.268818	20.754717	-4.514101	BOL	AME
3	Brazil	56.989246	32.075470	-24.913776	BRA	AME
4	Barbados	90.860214	89.150940	-1.709274	BRB	AME
5	Canada	96.236557	93.396225	-2.840332	CAN	AME
6	Chile	90.322578	80.660378	-9.662201	CHL	AME
7	Colombia	36.559139	41.037735	4.478596	COL	AME
8	Costa Rica	75.268814	66.981133	-8.287682	CRI	AME
9	Cuba	63.440861	52.358490	-11.082371	CUB	AME
10	Dominica	80.107529	69.339622	-10.767906	DMA	AME
11	Dominican Republic	41.397850	37.264153	-4.133698	DOM	AME
12	Ecuador	30.107527	29.716982	-0.390545	ECU	AME
13	Grenada	80.107529	67.452827	-12.654701	GRD	AME
14	Guatemala	23.655914	11.320755	-12.335159	GTM	AME
15	Guyana	52.688171	45.283020	-7.405151	GUY	AME
16	Honduras	14.516129	18.867924	4.351794	HND	AME
17	Haiti	9.139785	5.188679	-3.951106	HTI	AME
18	Jamaica	61.827957	54.245281	-7.582676	JAM	AME
19	St. Lucia	NaN	70.754715	NaN	LCA	AME
20	Mexico	36.021507	17.452829	-18.568678	MEX	AME
21	Nicaragua	33.870968	7.547170	-26.323798	NIC	AME
22	Panama	50.537636	28.773584	-21.764051	PAN	AME
23	Peru	41.935482	22.169811	-19.765671	PER	AME
24	Paraguay	10.215054	15.094339	4.879286	PRY	AME
25	El Salvador	21.505377	27.830189	6.324812	SLV	AME
26	Suriname	61.290321	39.150944	-22.139378	SUR	AME
27	Trinidad and Tobago	80.645164	40.566036	-40.079128	TTO	AME
28	Uruguay	82.258064	91.981133	9.723068	URY	AME
29	United States	91.397850	82.547173	-8.850677	USA	AME
30	St. Vincent and the Grenadines	NaN	77.358490	NaN	VCT	AME
31	Venezuela, RB	22.580645	1.886792	-20.693852	VEN	AME
32	Russia	15.053763	19.339622	4.285859	RUS	ECA

Out[30]:

```
In [31]: result = pd.DataFrame({
               'Регион': ['-']*4,
                'Страна': ['-']*4,
                'WGI 1996': ['-']*4,
               'WGI 2022': ['-']*4,
               'Изменение (см. пункт 11)': ['-']*4
           }, index=['mean_2022', 'max_2022', 'min_2022', 'Russia_2022'])
           result
Out[31]:
                       Регион Страна WGI 1996 WGI 2022 Изменение (см. пункт 11)
           mean_2022
            max 2022
             min 2022
           Russia 2022
           AME_maxes.columns = ['Country', '2022']
In [32]:
           AME_mins.columns = ['Country', '2022']
           AME maxes
          result.at['mean_2022', 'Peгион'] = "AME"
result.at['mean_2022', 'WGI 1996'] = AME_means['1996']
result.at['mean_2022', 'WGI 2022'] = AME_means['2022']
           result.at['mean_2022', 'Изменение (см. пункт 11)'] = AME_means['2022'] - AME_means[
           Max = rank_diff_and_rus[rank_diff_and_rus['Country'] == AME_maxes['Country'].values
           result.at['max_2022', 'Peгион'] = Max['Region'].values[0]
           result.at['max_2022', 'Страна'] = Max['Country'].values[0]
           result.at['max_2022', 'WGI 1996'] = Max['1996'].values[0]
           result.at['max_2022', 'WGI 2022'] = Max['2022'].values[0]
           result.at['max_2022', 'Изменение (см. пункт 11)'] = Max['Rank_Difference'].values[@
           Min = rank_diff_and_rus[rank_diff_and_rus['Country'] == AME_mins['Country'].values[
           result.at['min_2022', 'Регион'] = Min['Region'].values[0]
           result.at['min_2022', 'CTpaHa'] = Min['Country'].values[0]
           result.at['min_2022', 'WGI 1996'] = Min['1996'].values[0] result.at['min_2022', 'WGI 2022'] = Min['2022'].values[0]
           result.at['min_2022', 'Изменение (см. пункт 11)'] = Min['Rank_Difference'].values[@
           russ = rank_diff_and_rus[rank_diff_and_rus['Country'] == "Russia"]
           result.at['Russia_2022', 'Регион'] = russ['Region'].values[0]
          result.at['Russia_2022', 'Страна'] = russ['Country'].values[0] result.at['Russia_2022', 'WGI 1996'] = russ['1996'].values[0]
           result.at['Russia_2022', 'WGI 2022'] = russ['2022'].values[0]
           result.at['Russia 2022', 'Изменение (см. пункт 11)'] = russ['Rank Difference'].valu
           result
Out[32]:
                       Регион
                                     Страна WGI 1996 WGI 2022 Изменение (см. пункт 11)
           mean_2022
                          AME
                                               53.27957
                                                          45.59257
                                                                                   -7.686999
            max_2022
                          AME
                                     Canada
                                              96.236557
                                                        93.396225
                                                                                   -2.840332
             min 2022
                          AME Venezuela, RB
                                              22.580645
                                                         1.886792
                                                                                  -20.693852
```

Russia 15.053763 19.339622

4.285859

Russia_2022

ECA

12. Создание диаграммы размаха (boxplot) индекса WGI за 2022 для всех стран и для каждого региона в отдельности (estimate)

```
In [33]: df_merged = pd.merge(df, df_by_region, on='Code', how='left')
    df_merged = df_merged.rename(columns={'Estimate.23': 'WGI_2022'})
    df_merged = df_merged[['Country', 'WGI_2022', 'Region']].dropna(subset=['WGI_2022',
    df_merged
```

Out[33]:		Country	WGI_2022	Region
	2	Afghanistan	-1.183776	AP
	3	Angola	-0.601941	SSA
	5	Albania	-0.407876	ECA
	7	United Arab Emirates	1.155336	MENA
	8	Argentina	-0.447030	AME
				•••
	208	Yemen	-1.679558	MENA
	209	Serbia	-0.456188	ECA
	210	South Africa	-0.319765	SSA
	212	Zambia	-0.529200	SSA
	213	Zimbabwe	-1.255139	SSA

177 rows × 3 columns

```
In [34]:
         import pandas as pd
         import matplotlib.pyplot as plt
         df_merged = pd.merge(df, df_by_region, on='Code', how='left')
         df_merged = df_merged.rename(columns={'Estimate.23': 'WGI_2022'})
         # удаление NaN
         df_merged = df_merged[['Country', 'WGI_2022', 'Region']].dropna(subset=['WGI_2022',
         regions = df merged['Region'].unique()
         data = [df_merged[df_merged['Region'] == region]['WGI_2022'] for region in regions]
         # данные для всех стран
         data.append(df_merged['WGI_2022'])
         # метки для диаграммы размаха
         labels = list(regions) + ['All Countries']
         plt.figure(figsize=(14, 8))
         plt.boxplot(data, labels=labels)
         plt.title('Диаграмма размаха WGI за 2022 по регионам и всем странам')
         plt.xlabel('Peruoh')
         plt.ylabel('Индекс WGI 2022')
         plt.grid(True, which='both', linestyle='--', linewidth=0.7, alpha=0.7)
         plt.show()
```


Задача 2. Анализ рынка акций

```
In [35]: import os
```

1. Загрузка данных в один dataframe из всех файлов в папке /data/stock.

```
In [36]: folder_path = 'stock'
combined_df = pd.DataFrame()

for filename in os.listdir(folder_path):
    if filename.endswith('.csv'):
        file_path = os.path.join(folder_path, filename)

    df = pd.read_csv(file_path)

    stock_name = filename.replace('.csv', '')

    df = df[['Date', 'Close']]

    df.set_index('Date', inplace=True)

    df.rename(columns={'Close': stock_name}, inplace=True)

    if combined_df.empty:
        combined_df = df
    else:
        combined_df = combined_df.join(df, how='outer')

combined_df
```

Out[36]: AAPL ABNB ADBE AMZN CSCO DBX EBAY GOOG

Date								
2022- 01-01	174.779999	153.970001	534.299988	149.573502	55.669998	24.750000	60.070000	135.30349
2022- 02-01	165.119995	151.490005	467.679993	153.563004	55.770000	22.690001	54.590000	135.05700
2022- 03-01	174.610001	171.759995	455.619995	162.997498	55.759998	23.250000	57.259998	139.06750!
2022- 04-01	157.649994	153.210007	395.950012	124.281502	48.980000	21.750000	51.919998	114.10949
2022- 05-01	148.839996	120.870003	416.480011	120.209503	45.049999	20.840000	48.669998	113.76200 ⁻
2022- 06-01	136.720001	89.080002	366.059998	106.209999	42.639999	20.990000	41.669998	108.96299
2022- 07-01	162.509995	110.980003	410.119995	134.949997	45.369999	22.740000	48.630001	116.320000
2022- 08-01	157.220001	113.120003	373.440002	126.769997	44.720001	21.389999	44.130001	108.22000
2022- 09-01	138.199997	105.040001	275.200012	113.000000	40.000000	20.719999	36.810001	95.650007
2022- 10-01	153.339996	106.910004	318.500000	102.440002	45.430000	21.750000	39.840000	94.510002
2022- 11-01	148.029999	102.139999	344.929993	96.540001	49.720001	23.559999	45.439999	100.989998
2022- 12-01	129.929993	85.500000	336.529999	84.000000	47.639999	22.379999	41.470001	88.230003
2023- 01-01	144.289993	111.110001	370.339996	103.129997	48.669998	23.230000	49.500000	98.83999(
2023- 02-01	147.410004	123.279999	323.950012	94.230003	48.419998	20.400000	45.900002	90.059998
2023- 03-01	164.899994	124.400002	385.369995	103.290001	52.279999	21.620001	44.369999	103.730003
2023- 04-01	169.679993	119.669998	377.559998	105.449997	47.250000	20.340000	46.430000	107.339990
2023- 05-01	177.250000	109.769997	417.790009	120.580002	49.669998	23.020000	42.540001	122.870003
2023- 06-01	193.970001	128.160004	488.989990	130.360001	51.740002	26.670000	44.689999	119.69999
2023- 07-01	196.449997	152.190002	546.169983	133.679993	52.040001	26.950001	44.509998	132.72000 ⁻
2023- 08-01	187.869995	131.550003	559.340027	138.009995	57.349998	27.790001	44.779999	136.169998
2023- 09-01	171.210007	137.210007	509.899994	127.120003	53.759998	27.230000	44.090000	130.86000 ⁻
2023- 10-01	170.770004	118.290001	532.059998	133.089996	52.130001	26.299999	39.230000	124.080002

	AAPL	ABNB	ADBE	AMZN	CSCO	DBX	EBAY	GOOG
Date								
2023- 11-01	189.949997	126.339996	611.010010	146.089996	48.380001	28.180000	41.009998	132.52999!
2023- 12-01	192.529999	136.139999	596.599976	151.940002	50.520000	29.480000	43.619999	139.690002
2024- 01-01	184.399994	144.139999	617.780029	155.199997	50.180000	31.680000	41.070000	140.100006
2024- 02-01	180.750000	157.470001	560.280029	176.759995	48.369999	23.950001	47.279999	138.46000
2024- 03-01	173.229996	166.669998	579.140015	175.389999	50.070000	23.840000	50.910000	138.500000
2024- 03-12	173.229996	166.669998	579.140015	175.389999	50.070000	23.840000	50.910000	138.500000

28 rowe v 25 columns

2. Получеине корряляционной матрицы для всех акций

In [37]: correlation_matrix = combined_df.corr()
 correlation_matrix

	AAPL	ABNB	ADBE	AMZN	csco	DBX	EBAY	GOOGL	GTLE
AAPL	1.000000	0.617430	0.833129	0.665715	0.589552	0.740429	0.115591	0.806847	0.282373
ABNB	0.617430	1.000000	0.670509	0.830690	0.594365	0.332740	0.644140	0.780440	0.460602
ADBE	0.833129	0.670509	1.000000	0.819614	0.554172	0.816359	0.180354	0.915440	0.496556
AMZN	0.665715	0.830690	0.819614	1.000000	0.404820	0.478171	0.434078	0.912332	0.690644
csco	0.589552	0.594365	0.554172	0.404820	1.000000	0.496982	0.494938	0.600025	0.068856
DBX	0.740429	0.332740	0.816359	0.478171	0.496982	1.000000	-0.157363	0.669228	0.402517
EBAY	0.115591	0.644140	0.180354	0.434078	0.494938	-0.157363	1.000000	0.375794	0.251066
GOOGL	0.806847	0.780440	0.915440	0.912332	0.600025	0.669228	0.375794	1.000000	0.535473
GTLB	0.282373	0.460602	0.496556	0.690644	0.068856	0.402517	0.251066	0.535473	1.000000
HPQ	0.067074	0.390153	0.081518	0.235247	0.214262	-0.177013	0.744560	0.263251	0.094128
INTC	0.507251	0.738241	0.713875	0.816519	0.420854	0.390625	0.580047	0.826042	0.53544
META	0.705358	0.723419	0.873388	0.830910	0.374998	0.552874	0.190361	0.808784	0.46764
MSFT	0.790691	0.679204	0.913842	0.838702	0.391476	0.648164	0.127010	0.845993	0.451366
MU	0.606787	0.842928	0.817961	0.906932	0.472688	0.440043	0.512637	0.867191	0.543109
NFLX	0.701937	0.646901	0.821314	0.735466	0.497727	0.635239	0.138580	0.717756	0.452625
NVDA	0.633114	0.649664	0.802739	0.765294	0.320159	0.519374	0.087027	0.715287	0.404702
ORCL	0.769309	0.471504	0.785432	0.534556	0.463955	0.667833	-0.070414	0.618983	0.138574
PINS	0.640294	0.554616	0.804657	0.666996	0.384233	0.710191	-0.002757	0.640675	0.525458
SHOP	0.465147	0.696599	0.783919	0.824934	-0.144612	0.424923	0.338672	0.824313	0.855342
SPOT	0.687415	0.753797	0.863827	0.875779	0.424007	0.525305	0.296858	0.821587	0.540113
тсом	0.439363	0.294269	0.533298	0.309545	0.257188	0.423136	-0.149330	0.322718	0.103614
TSLA	0.248385	0.353807	0.071508	0.302321	0.253808	0.037233	0.434899	0.326662	0.260908
TWLO	0.042914	0.429915	0.067604	0.314869	0.383777	-0.113102	0.753732	0.315410	0.310273
UBER	0.661323	0.680764	0.834611	0.796897	0.326346	0.595928	0.085736	0.737311	0.521399

XIACY 0.408747 0.564475 0.697612 0.654564 0.474311 0.382992 0.535223 0.680658 0.453669

25 rows × 25 columns

Out[37]:

3. Отображение корреляционной матрицы в виде диаграммы

```
In [38]: plt.figure(figsize=(16, 14), dpi=300)

# menлoвая карта корреляционной матрицы
cax = plt.matshow(correlation_matrix, cmap='coolwarm', vmin=-1, vmax=1)
plt.colorbar(cax)

# добавление меток
plt.xticks(ticks=np.arange(len(correlation_matrix.columns)), labels=correlation_mat
plt.yticks(ticks=np.arange(len(correlation_matrix.columns)), labels=correlation_mat
plt.title('Корреляционная матрица', pad=20)
```

```
plt.show()
```

<Figure size 4800x4200 with 0 Axes>

Корреляционная матрица

4. Определение:\ Акции с максимальной положительной корреляцией (max)\ Акции с максимальной отрицательной корреляцией (min)\ Акции с минимальной корреляцией (которая больше всего соответствует отсутствию какой-либо корреляции (none)\ Для компании Netflix

```
In [39]: df_NFLX = correlation_matrix.drop(["NFLX"], axis=1)
    df_NFLX = df_NFLX.loc[["NFLX"]].T
    df_NFLX.head()
Out[39]: NFLX
```

AAPL 0.701937
ABNB 0.646901
ADBE 0.821314
AMZN 0.735466
CSCO 0.497727

```
In [40]: max_corr_id = df_NFLX.idxmax()[0]
    df_NFLX.loc[[max_corr_id]]
```

Out[40]: NFLX
UBER 0.937042

5. Диаграммы разброса

```
In [43]: def plot_scatter(x, y, x_label, y_label, title):
    plt.figure(figsize=(10, 6))
    plt.scatter(combined_df[x], combined_df[y], alpha=0.7)
    plt.xlabel(x_label)
    plt.ylabel(y_label)
    plt.grid(True)
    plt.show()

plot_scatter('NFLX', max_corr_id, 'Netflix (NFLX)', f'{max_corr_id}', f'Netflix - {
    plot_scatter('NFLX', min_corr_id, 'Netflix (NFLX)', f'{min_corr_id}', f'Netflix - {
        plot_scatter('NFLX', abs_min_corr, 'Netflix (NFLX)', f'{abs_min_corr}', f'Netflix (NFLX)', f'Netflix (NFLX)', f'Netflix
```


6. Средняя цена акций для каждого месяца

```
In [44]: monthly_mean = combined_df.mean(axis=1)
monthly_mean
```

```
Date
Out[44]:
        2022-01-01
                    154.857167
        2022-02-01 140.774723
        2022-03-01
                   145.272287
        2022-04-01 115.763514
        2022-05-01
                   112.316034
        2022-06-01
                     99.256929
        2022-07-01 114.014999
        2022-08-01 107.380833
        2022-09-01
                    94.437083
        2022-10-01
                     97.227501
        2022-11-01 100.671666
        2022-12-01
                     92.028958
        2023-01-01 108.279540
        2023-02-01 108.613126
        2023-03-01 120.210832
        2023-04-01 115.778799
        2023-05-01
                     131.258401
        2023-06-01
                     145.426799
        2023-07-01 153.207200
        2023-08-01 152.016000
        2023-09-01 141.760400
        2023-10-01
                    140.454598
        2023-11-01 159.367601
        2023-12-01 164.859599
        2024-01-01 174.886801
        2024-02-01
                   189.609962
        2024-03-01
                     196.083201
        2024-03-12
                     196.083201
        dtype: float64
```

7. Графики для акций из пункта 4 и средней из пункта 6

```
In [45]: fig, ax = plt.subplots(figsize=(25, 10))

ax.plot(combined_df[max_corr_id], color='red', marker='o', label=f'{max_corr_id} - ax.plot(combined_df[min_corr_id], color='green', marker='o', label=f'{min_corr_id} ax.plot(combined_df[abs_min_corr], color='orange', marker='o', label=f'{abs_min_corr} ax.plot(combined_df['NFLX'], color='purple', marker='o', label='Netflix') ax.plot(monthly_mean, color='blue', marker='o', label='Средние значение')

ax.set_xlabel("Дата") ax.set_ylabel("Цена")

ax.legend() ax.grid()

ax.set_title("Сравнение с Netflix (?)")

plt.show()
```


Вывод:

В результате выполнения работы был получен ценный опыт использования библиотек Python, таких как numpy, pandas и matplotlib для анализа данных на практических задачах.