Improving the Needleman-Wunsch algorithm with the DynaMine predictor

Olivier Boes

Advisors: Tom Lenaerts, Wim Vranken, Elisa Cilia.

Université Libre de Bruxelles — September 2014

Reminder on sequence alignments

A protein sequence alignment is something like this:

```
MSDINATRLPAWLVDC-PCVGDDINRLLTRGENSLC
MSDINATRLPAWLVDC-PCVGDDVNRLLTRGE-SLC
MSDINATRLPIWGIGCDPCIGDDVTALLTRGEASLC
----IWGIGCNPCVGDEVTALLTRGEA---
```

(Amanita virosa) (Amanita bisporigera) (Amanita phalloides) (Amanita fuligineoides)

It tries to identify regions of similarity between different proteins believed to be related (e.g. common ancestor).

- Applications: sequence identification, homology modeling, genome assembly, motif discovery, phylogenetics,...
- In this thesis, we focus on pairwise global alignments:
 - only two protein sequences are aligned,
 - · all amino acid residues are aligned.

What does the thesis title mean?

- Needleman-Wunsch is a sequence alignment algorithm.
 It aligns proteins using their amino acid sequences alone.
- **DynaMine** is a predictor of protein backbone flexibility. It gives us some information on a protein structure.
- Structure is more conserved than sequence.
 Therefore we want to create a Needleman-Wunsch variant which uses the structural information provided by DynaMine.

Could such a variant produce better alignments?

This question is central to the thesis.

Outline of what was done

Basically:

- 1. Choosing datasets of reference alignments.
- 2. Creating DynaMine-based score matrices.
- 3. Using them in our Needleman-Wunsch variant.
- 4. Comparing computed and reference alignments.
- **5.** Results, discussion, conclusion.

Lots of programming (mostly C and Python) was required!

The BAliBASE benchmark database

Contains multiple sequence alignments believed to be correct.

Five BAliBASE datasets were used:

- RV11 and RV12: sequences with low residue identity.
- RV20: families aligned with a highly divergent sequence.
- RV30: alignments of divergent protein subfamilies
- RV50: sequences with large internal insertions

Each one is partitioned into a training set and a test set.

GXVETDDGRSFVXADLPGLIEGA-HOGVGLGHO-FLRHIERTRVIVHVIDXSGLEGRDPYDDY
ADAEIRRCPNCGRYSTSPVCPYCGHETEFVRRVSFIDAPGHEALMTTMLAGASLMDGAILVIAANEPCPRPQTRE
WKFETPDCAILIIAGGVGEFEAG-ISKDGQTRE
VEYETADGAILVVSAADGPMPQTRE
GATEIPXDVIEGICGDFLKKFSIRETLPGLFFIDTPGAFTTLRKRGGALADLAILIVDINEGFKPQTQE
LGAYTDKAQEIYIVASGEMMALYAANNISKGIQ
GIIETQFSFKDLNFRMFDVGGQRSERKKWIHCFEGVTCIIFIAALSAYDMVLVEDDEVNRMHE

The DynaMine flexibility predictor

Predicts protein backbone flexibility at the residue-level.

Elisa Cilia, Rita Pancsa, Peter Tompa, Tom Lenaerts, Wim F. Vranken. From protein sequence to dynamics and disorder with Dynamine. Nature Communications. 4:2741. 2013.

Reference:

The Needleman-Wunsch variant

Algorithm for aligning two sequences $(x_1 \cdots x_m)$ and $(y_1 \cdots y_n)$.

In its most generalized version, it requires:

- substitution scores sub(i, j) for aligning x_i with y_i
- opening and extending gap penalties (not necessarily constant)

Usually: $\mathrm{sub}(i,j) := \mathrm{seqS}(x_i,y_j)$ Variant: $\mathrm{sub}(i,j) := \alpha \cdot \mathrm{seqS}(x_i,y_j) + (1-\alpha) \cdot \mathrm{dynS}(u_i,v_j)$

Several dynS matrices were created using BLOSUM and BAliBASE.

Custom Needleman-Wunsch alignment software was also developed.

BLOSUM matrices: how they are created

- 1. Choose a reference dataset of blocks (gap-free alignments).
- **2.** Cluster together sequences with more than T% similarity.
- 3. Compute log-odds scores (i.e. log-likehood ratios).

$$\mathrm{BLOSUM}T(x,y) := \frac{1}{\lambda} \log \left(\frac{\mathrm{P}(\mathsf{substitution}\ x \!\leftrightarrow\! y)}{\mathrm{P}(\mathsf{residue}\ x) \cdot \mathrm{P}(\mathsf{residue}\ y)} \right)$$

Mark P. Styczynski, Kyle L. Jensen, Isidore Rigoutsos, Gregory Stephanopoulos. BLOSUM62 miscalculations improve search performance. Nature Biotechnology. 26:274–275. 2008.

BLOSUM matrices: with DynaMine values

- DynaMine values converted to integers using 50 bins
- Blocks taken from BAliBASE alignments of DynaMine values
- Same expected score for seqBLOSUM and dynBLOSUM
- Each BAliBASE dataset has its own dynBLOSUM matrix

Example:

The dynBLOSUM62 matrix created from the BAliBASE RV30 training dataset

(there are no values < 0.4)

Summary of how we do our experiments

substitution scores:

$$\mathrm{sub}(i,j) := \alpha \cdot \mathrm{seqBLOSUM62}(x_i,y_j) + (1-\alpha) \cdot \mathrm{dynBLOSUM62}(u_i,v_j)$$

- Clustering threshold: 62%
- ullet Gap penalties: 10 for opening, 0.5 for extending
- Matrix from RVxy training set used for aligning RVxy test set
- Quality measure: # pairs correctly aligned in RVxy # pairs aligned in reference RVxy
 (sum-of-pairs score)
- Computational cost?
 - α goes from 0 to 1 by increments of 0.01
 - $80\,000$ pairs of sequences to align for each α
 - \implies more than 8 million alignments to compute

Results for each BAliBASE dataset

dataset	RV11	RV12	RV20	RV30	RV50
multiple alignments	19	22	21	15	8
pairwise alignments	412	1655	23552	50899	3429
score without DynaMine	40%	78%	87%	62%	62%
est score with DynaMine	46%	82%	89%	65%	66%
possible score increase	6%	4%	2%	3%	4%
lpha producing best score	0.57	0.59	0.58	0.58	0.57
				•	•

Results for dissimilar sequences

- Pairwise alignments from RV11 and RV12 with ≥ 150 pairs.
- Datasets for each residue identity percentage are created.
- Possible score increase and corresponding α determined.

Example of an improved pairwise alignment

reference RV11 alignment: 145 aligned pairs and 11% residue identity:

RKNLVQFGVGEKNGSVRWVMNALGVKDDWLLVPSHAYKFEKDYEMMEFYFNRGGTYYSISAGNVVIQSLDVGFQDVVLMKVPTIPKFRDITQHFIKKGDVPRA-LNR LEADRLFDVKNEDGDVIGHALAMEGKVMKPLHVKGTIDHPVLSKLKFTKSSAYDMEFAQLPVNMRSEAFTYTSEHP
LATLVTTVNGTPMLISEGPLKMEEKATYVHKKNDGTTVDLTVDQAWRGKGEGLPGMCGGALVSSNQSIQNAILGIHVAGGNSILVAKLVT-QEMFQNIDKKI EGFYNWHHGAVQYSGGRFTIPRGVGGRGDAGRPIMDNSGRVVAIVLGGADEGTRTALSVVTWNSKGKTIKTTPE

aligned without DynaMine ($\alpha = 1.00$): 27/145 = 19% correct pairs:

aligned with DynaMine ($\alpha = 0.57$): 57/145 = 39% correct pairs:

Pairwise alignment: sequences '1hav_A' and '1svp_A' from the BB11011 file in the RV11 BAliBASE dataset.

Conclusion

Good:

- Better alignments produced, and α value stays the same across datasets.
- Best results obtained with dissimilar sequences.

Bad:

- Improvements are very small, and largest ones occur in smallest datasets.
- Datasets of dissimilar sequences are too small.

What could be interesting to try:

- Alignment benchmarks for dissimilar or disordered proteins.
- Using DynaMine differently for creating substitution scores.
- Gap penalties also depending on DynaMine values.
- Aligning with something else than Needleman-Wunsch.
- Measuring quality with something else than sum-of-pairs.

Questions?

Appendix: different sum-of-pairs scores

Appendix: best seqBLOSUM matrices

Appendix: DynaMine bias near end sequence ends

