Modèles de calcul

Université de Montpellier TD 2 : Les jetons de Rosza

Représentation des programmes de définition des fonctions récursives primitives

Auteurs : G. Lafitte et B. Durand modifié par V. Prince

Exercice I Behold the tokens

Nous allons travailler avec des jetons, qui représentent les "lettres" d'un alphabet utilisé pour construire le langage des fonctions n-aires dans $\mathbb N$. Nous les appelons jetons de Rózsa, du nom de la fondatrice de la théorie sur les fonctions récursives, Roszà Péter. Une suite de jetons bien formée représente une fonction n-aire sur les entiers. Nous commençons avec le premier type de jetons, les jetons fonctions : $\mathbf{0} = \mapsto 0$, $\mathbf{1} = x \mapsto x$ et $\mathbf{S} = x \mapsto x + 1$.

1. Quelles sont les arités de ces trois jetons? Pourquoi la suite de jetons **S** o n'a-t-elle pas de signification?

2. Si \mathbf{f} est d'arité n, quelles sont les arités des fonctions \mathbf{d} \mathbf{f} et \mathbf{f} ?

Le jeton constructeur $[mathbb{0}]$ permet de composer une fonction $[mathbb{f}]$ d'arité p avec p fonctions $[mathbb{g}_1]$, ..., $[mathbb{g}_2]$, ..., $[mathbb{g}_2]$ de même arité n:

- 3. Les suites de jetons suivantes sont-elles syntaxiquement correctes et si oui que calculentelles?____
 - a) **(0) S S**
 - b) **(0) S (0)**
 - c) **(0) (1)**
 - d) **(0)** I (0)
 - e) **0 S**

^{1.} Les jetons constructeurs permettent de donner un sens à certaines suites de jetons. Pour qu'une suite de jetons soit bien formée, il faut respecter les arités des fonctions utilisées dans une construction par un jeton constructeur.

Le jeton constructeur \mathbb{R} permet de faire des constructions inductives. Il permet de définir une fonction h à partir d'une fonction f (le cas 0), et d'une fonction g (l'induction : le cas n+1 en fonction du cas n) :

$$h = \mathbf{R} \mathbf{f} \mathbf{g} = n, \mathbf{x} \mapsto \begin{cases} \mathbf{f} (\mathbf{x}) & \text{si } n = 0, \\ \mathbf{g} (n - 1, h(n - 1, \mathbf{x}), \mathbf{x}) & \text{sinon} \end{cases}$$

Pour la formule de récurrence, on préfèrera écrire :

$$h(n+1,\mathbf{x}) = \mathbf{g}(n,h(n,\mathbf{x}),\mathbf{x})$$

pour éviter d'utiliser des soustractions pour l'instant.

- 4. Est-il possible d'écrire un programme valide de 3 symboles commençant par **R** (justifiez votre réponse) ?
- 5. Trouvez tous (il y en a 4) les programmes de 4 symboles commençant par **R**, donnez leurs arités et les calculs effectués.

Exercice 2 3 symboles

- 1. Donnez l'arité et la valeur des fonctions calculées par les programmes suivants :
 - a) **(0) I (0)**
 - b) **(0) S (0)**
 - c) **41**
- 2. Est-il possible d'écrire un programme valide de 4 symboles commençant par (justifiez votre réponse) ?

Exercice 3 Reconnaissance

Aide pour la méthode : dans cet exercice, on s'essaye à reconnaître des programmes. Pour cela, face au constructeur on n'hésitez pas à repérer la fonction "mère" qui est immédiatement à sa droite puis la ou les fonctions "filles" en fonction de l'arité de la "mère".

Quand vous avez plusieurs jetons , commencez par celui qui est le plus à droite.

Pour le constructeur **R**, il faut que l'arité de la fonction de récurrence soit égale à l'arité de la fonction de base +2.

Donnez les fonctions calculées par les programmes suivants :

- 2. R 0 4 @ S @ @ S S S
- 3. RORS > S
- 4. **RORS** > **(**) (**) (**)**
- 5. **® R S > > I < I > S**

Exercice 4 Opérateurs arithmétiques

Trouvez un programme pour calculer les fonctions suivantes. (On peut réutiliser des programmes déjà faits!)

- i. $f_2:(x,y)\mapsto x+y$
- 2. $f_2:(x,y)\mapsto x\times y$
- 3. $f_1: x \mapsto 2^x$

- 4. $f_2:(x,y)\mapsto y^x$
- 5. $f_2:(x,y)\mapsto x^y$

Astuce : pensez à écrire une fonction qui inverse les arguments d'une autre fonction.

6. $f_2:(x,y)\mapsto x-y$ (Si y>x alors 0)

Pour cela, commencez par définir la fonction prédécesseur \mathbf{P} telle que $x \mapsto x - 1$ si x > 0, 0 sinon.

Définissez ensuite la fonction $\mathit{Minus}(x,y) \mapsto y - x$. A partir de là vous pourrez définir la fonction $\mathit{soustraction dans}(x,y) \mapsto y - x$. A partir de là vous pourrez définir la fonction $\mathit{soustraction dans}(x,y) \mapsto y - x$.