sklearn.model selection.train_test_split

sklearn.model_selection.train_test_split(*arrays, **options)

[source]

Split arrays or matrices into random train and test subsets

Quick utility that wraps input validation and next(ShuffleSplit().split(X, y)) and application to input data into a single call for splitting (and optionally subsampling) data in a oneliner.

Read more in the <u>User Guide</u>.

Parameters

*arrayssequence of indexables with same length / shape[0]

Allowed inputs are lists, numpy arrays, scipy-sparse matrices or pandas dataframes.

test sizefloat or int, default=None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the test split. If int, represents the absolute number of test samples. If None, the value is set to the complement of the train size. If train_size is also None, it will be set to 0.25.

train_sizefloat or int, default=None

If float, should be between 0.0 and 1.0 and represent the proportion of the dataset to include in the train split. If int, represents the absolute number of train samples. If None, the value is automatically set to the complement of the test size.

random_stateint or RandomState instance, default=None

Controls the shuffling applied to the data before applying the split. Pass an int for reproducible output across multiple function calls. See <u>Glossary</u>.

shufflebool. default=True

Whether or not to shuffle the data before splitting. If shuffle=False then stratify must be None.

stratifyarray-like, default=None

If not None, data is split in a stratified fashion, using this as the class labels.

Returns

splittinglist, length=2 * len(arrays)

List containing train-test split of inputs.

New in version 0.16: If the input is sparse, the output will be a scipy sparse csr_matrix. Else, output type is the same as the input type.

Examples

```
>>> train_test_split(y, shuffle=False)
[[0, 1, 2], [3, 4]]
```

Examples using sklearn.model_selection.train_test_split

Release Highlights for scikit-learn 0.23

Release Highlights for scikit-learn 0.22

Probability Calibration curves

Probability calibration of classifiers

Recognizing hand-written digits

Classifier comparison

Post pruning decision trees with cost complexity pruning

<u>Understanding the decision tree structure</u>

Comparing random forests and the multioutput meta estimator

Gradient Boosting regression

Early stopping of Gradient Boosting

Feature transformations with ensembles of trees

Gradient Boosting Outof-Bag estimates

Faces recognition example using eigenfaces and SVMs

Prediction Latency

Pipeline Anova SVM

<u>Univariate Feature</u> <u>Selection</u>

Comparing various online solvers

MNIST classification using multinomial logistic + L1

Multiclass sparse logistic regression on 20newgroups

Early stopping of Stochastic Gradient Descent

Poisson regression and non-normal loss

Tweedie regression on insurance claims

Permutation Importance with Multicollinear or Correlated Features

Permutation Importance vs Random Forest Feature Importance (MDI)

<u>Partial Dependence</u> Plots

Common pitfalls in interpretation of coefficients of linear models

ROC Curve with Visualization API

<u>Visualizations with Display Objects</u>

Confusion matrix

Parameter estimation using grid search with cross-validation

Receiver Operating
Characteristic (ROC)

Precision-Recall

Classifier Chain

Comparing Nearest Neighbors with and without Neighborhood Components Analysis

<u>Dimensionality Reduction with Neighborhood</u> <u>Components Analysis</u>

Restricted Boltzmann Machine features for digit classification

<u>Varying regularization in</u> <u>Multi-layer Perceptron</u>

<u>Column Transformer</u> <u>with Mixed Types</u>

Effect of transforming the targets in regression model

<u>Using FunctionTransformer to select</u> <u>columns</u>

Importance of Feature Scaling

Map data to a normal distribution

Feature discretization

© 2007 - 2019, scikit-learn developers (BSD License). Show th