International Knowledge Diffusion: Role of Immigration and FDI

Aakash Kalyani Boston University

November 22, 2022

Motivation: Measuring diffusion key for study of economic growth

- ▶ Innovation and R&D is highly concentrated across countries/geographies/firms.
- ▶ Subsequent diffusion important for overall economic growth.
- Limitation A measure of diffusion.
- ► Traditional measure citations imperfect, esp. across countries.

This paper:

Measure diffusion: using variation in similarity of a patent's text to past patents from various countries.

Correlates with trade, FDI, immigration; Large variation at the firm level

Correlated with channels of diffusion and associated with higher firm value:

- 1. Correlated with trade (at the industry level), FDI (at the firm level) and immigration (at the county level).
- 2. Patents with higher proximity to advanced countries are more valuable.
- 3. Firms which file these patents are more productive.

Large variation at the firm level:

- 1. About 70% of the variation at the firm level.
- 2. Larger firms have patents which are more proximate to foreign countries.

Table of Contents

Measurement

Correlation with Trade, FDI and Immigration

Firm level results - Evidence of Frictions

Measure of spillovers at the firm level

Measure is based on textual similarity between two patents.

1. Proximity $(Proximity_p^c)$ at the patent level:

$$Proximity_p^c = \frac{\text{Avg Similarity to c patents}|t-1 \text{ and } t-5}{\text{Avg Similarity to US patents}|t-1 \text{ and } t-5}$$

- 2. Backward similarity calculated with two word combinations. [TF-IDF + dot product]
- 3. Proximity ($Proximity_f^c$) at the firm level:

$$Proximity_f^c = Avg(Proximity_p^c | p \in f)$$

Example Patent - MATTEL INC - 'Robotic Humanoid' more frequent in JP patents

- ► Title : Reconfigurable tov
- Abstract: A reconfigurable toy which may be used to selectively simulate a robotic humanoid figure and a rock configuration. The toy has head, arm and leg members which are rotatably coupled to a torso member. Each member has a surface simulating part of a robotic humanoid figure and a rock simulating surface. The toy may be folded into a compact configuration by rotating the members until they are positioned so that only the rock simulating surfaces of the members are visible and a rock configuration is simulated such as a boulder resting on a supporting surface. The toy may then be unfolded or reconfigured to simulate a robotic humanoid figure supported on two leg members.

bigram	Frequency	# patents	weight	relative overall weight (JP vs US)
robotic_humanoid	33	14	0.269	8.432
humanoid_figure	30	17	0.214	2.525
rock_configuration	17	1	0.114	0.0
mating_edges	24	236	0.073	0.115
surface_simulating	17	22	0.065	0.0
reconfigurable_toy	13	15	0.041	0.0
head_retainer	13	15	0.041	0.0
hollow_torso	12	15	0.035	0.0
semicircular_apertures	11	13	0.030	0.0
rock_simulating	9	3	0.026	Inf
arm_retainer	10	19	0.023	NA
rotatably_coupled	12	907	0.012	0.2919
simulating_surface	6	6	0.010	0.0

Table of Contents

Measurement

Correlation with Trade, FDI and Immigration

Firm level results - Evidence of Frictions

Trade (esp. Imports) are associated with proximity of innovations, US industry x Country level

Specification: $Proximity_{o,d,t} = \delta_o + \delta_d + \delta_t + log(imports_{o,d,t}) + \epsilon_{o,d,t}$

		Proximity _{o,d,}	t
$\overline{\log(imports_{o,d,t})}$	0.062***		0.062***
	(0.006)		(0.006)
$log(exports_{o,d,t})$		0.025***	0.013
.,,,,,,		(0.009)	(800.0)
R^2	0.265	0.168	0.268
N	4,019	3,584	3,474
Time FE	Y	Y	Υ
Country FE	Υ	Υ	Υ
Industry FE	Υ	Υ	Υ

Standard errors are robust.

Immigration is associated with proximity of inventions, US County \boldsymbol{x} Country Level

▶ Specification: $Proximity_{o,d,t} = \delta_o + \delta_d + \delta_t + log(immigrants_{o,d,t}^{flow}) + \epsilon_{o,d,t}$

	$Proximity_{o,d,t}$ (using text)		(using citations)
	(1)	(2)	(3)
$log(immigrants_{o,d,t}) \times 0.01$	-0.002*** (0.000)	0.001*** (0.000)	-0.007 (0.005)
R^2	0.090	0.254	0.275
N	113,613	113,613	113,613
Distance Time FE	N Y	Y	Y
County FE Country FE	Y Y	Y Y	Y Y

Standard Errors are clustered by state.

Firms with shareholders in foreign countries file patents with higher foreign proximity, US Firm \times Country Level

	$Proximity_{f,t,c}$				
$shareholding_{i,c,t}$	0.249*** (0.007)	0.256*** (0.007)	0.313*** (0.029)	0.325*** (0.029)	
R^2	0.004	0.006	0.026	0.101	
N	190,564	190,564	190,564	190,564	
Time FE	N	Υ	Υ	Υ	
Country FE	N	N	Υ	Υ	
Firm FE	N	N	N	Υ	

Table of Contents

Measurement

Correlation with Trade, FDI and Immigration

Firm level results - Evidence of Frictions

More foreign proximate patents are more valuable

Specification: $log(Valuation_{p_t}) = \alpha_0 + \beta \sum_j Proximity_{i,p_t} T_{j,t} + \chi_p + \epsilon_{i,t}$

	$log(Valuation_p)$		
$log(Proximity_p^{non-US})$	0.018***	0.047***	
	(0.004)	(0.003)	
$log(Similarity_p^{non-US})$			0.096***
			(0.005)
$log(TotalSimilarity_p)$			-0.103***
			(0.006)
R^2	0.238	0.688	0.688
N	1,176,564	1,201,660	1,201,660
Year FE	Y	Y	Y
Class FE	Υ	Υ	Υ
Industry FE	Υ	Υ	Υ
Firm FE	N	Υ	Υ

Standard Errors are robust.

Firms with higher foreign proximity innovations are more productive

Specification:

$$log(TFP_{i,t}) = \delta_t + \delta_i + \beta \sum_{j} Proximity_{i,j,t} T_{j,t} + \epsilon_{i,t}$$

▶ Long Differences (as in Bloom et al. (2015))

$$\Delta^5 log(\mathit{TFP}_{i,t}) = \Delta^5 \delta_t + \beta \Delta^5 \sum_{i} \mathit{Proximity}_{i,j,t} \ T_{j,t} + \Delta^5 \epsilon_{i,t}$$

	$\Delta log(\mathit{TFP}_{i,t})$		
$\Delta Proximity_{i,t+2}$	0.082*** (0.023)	0.077*** (0.024)	
$\Delta Similarity_{i,t+2}^{nonUS}$	` ,	` ,	0.083** (0.039)
Δ TotalSimilarity _{i,t+2}			-0.092** (0.046)
R^2	0.020	0.020	0.019
N	17,086	16,508	17,086

Variance Decomposition: Large chunk of variation at the firm level

Table: Variance Decomposition

Fixed Effects	R^2
Country × industry × time	29%
$Firm + Country \times industry \times time$	34%
Firm x year $+$ Country x industry x time	41%
$Firm \times Country + Country \times industry \times time$	64%
Industry is NAICS4.	

▶ About one-fourth of the variation at firm x country level.

Large firms file patents more proximate to foreign innovation

Average Patent Proximity vs Firm Size (Assets, in mill)

Direction of Technology Flows: Industries with innovation closer to Japanese patents lost employment

Japanese patent proximity at the industry level: Avg. Proximity_{i,JP,1980s}

Industries with at least 500 patents in the sample.

Industry Exposure to Labor market impact

Regression specification - Bartik Shift Share:

$$\Delta log(Emp)_{i,90-05} = \beta_0 + \beta_c \sum_{j} ShareEmp_{j,i,1990} * \Delta Proximity_{j,c} + \epsilon_{i,90-05}$$

i is industry, j is a CBSA (urban area), c is country.

ldentification assumption: $Proximity_{j,c} \perp \epsilon_{i,90-05}$. Lead-lag textual relationships between foreign patents and US industries are uncorrelated with local level shocks in employment.

CBSAs exposed to innovation from ageing economies lost employment

Conclusion + In Progress

- A text-based measure of knowledge diffusion: variation in similarity across countries.
- Measure of knowledge diffusion correlated with trade, immigration and FDI.
- Firms with higher diffusion from advanced countries are more productive and file more valuable patents.
- Large variation at the firm level and evidence of firm-level frictions.
- WIP: A quantified model of diffusion to quantify the level of convergence across and within countries.