Być albo nie być czarną dziurą

Franciszek Hansdorfer Jacek Winiarczyk Łukasz Parda Tomasz Gruss Opiekun projektu: dr hab. Radosław Poleski

13 czerwca 2024

- Ogólna teoria względności
- Masa zakrzywia czasoprzestrzeń ⇒
- Światło idące w pobliżu masy jest odchylane
- Obserwator widzi obiekty za zakrzywiającą masą w inny sposób ⇒
- Soczewkowanie grawitacyjne

ESA/Hubble, NASA

Principles of Gravitational Lensing, Arthur B. Congdon, Charles R. Keeton

Równanie soczewki:

$$\beta = \theta - \alpha(\theta)$$

Dla punktowej masy mamy:

$$\theta_E = \sqrt{\frac{4GM}{c^2} \frac{D_s - D_l}{D_s D_l}}$$

Mikrosoczewkowanie

$$M \sim M_{\odot}$$

Na przykład dla $D_s=8$ kpc, $D_l=4$ kpc, $M=1M_{\odot}$:

$$\theta_E = 0.32 \; \mathrm{mas}$$

Dla $u=\frac{\beta}{\theta_E}$ wzmocnienie źródła określa wzór:

$$A(u) = \frac{u^2 + 2}{u\sqrt{u^2 + 4}}$$

u możemy natomiast obliczyć znając u_0, t_0, t_E :

$$u(t) = \sqrt{u_0^2 + \left(\frac{t - t_0}{t_E}\right)^2}$$

Animation by B.S. Gaudi - microlensing-source.org

Paralaksa

Dla $t_{\rm E} > 30$ d ruchu Ziemi wokół Słońca przestaje być pomijalny. Wtedy:

$$u_{\oplus}(t) = u_{\odot}(t) +$$

$$+ \pi_E \beta \cos(\Omega(t - t_0) + \varphi) +$$

$$+ \Lambda \omega (\sin(\Omega(t - t_0) + \varphi))$$

PAR-20, $u_0 < 0$

Xallarap

Jeżeli źródło jest częścią układu podwójnego, to jego ruch orbitalny może mieć znaczący wpływ na parametr u(t). Ten feonomen nosi nazwę xallarap (Parallax od tyłu).

PAR-06.10

Mulens Model, to paczka służąca do modelowania zjawisk mikrosoczewkowania. Do dopasowania krzywej, używany jest algorytm MCMC (Próbkowanie Monte Carlo łańcuchami Markowa).

Opis projektu

59 zjawisk wykazujących dominujący wpływ paralaksy(?), z przeglądu OGLE-III (Wyrzykowski et al. 2016).

A co jeśli źródło jest w układzie podwójnym?

Porównanie modeli

Nazwa	$\Delta\chi^2$	$\chi^2_{Paraxall}$
PAR-05	52.7989	2360.0741
PAR-06	304.5130	4567.5600
PAR-14	37.3174	7164.3571
PAR-39	129.9147	13677.8037
PAR-57	59681.0222	4335.8364
PAR-58	34.7714	1087.9253
PAR-59	124.1144	2175.4949

Wyniki

Nazwa	ξ_{period}	π_{EN}	π_{EE}
OGLE-Ulens-	[days]		
PAR-05	$600.151^{+92.9}_{-80.54}$	$0.065^{+0.02}_{-0.0}$	$0.065^{+0.02}_{-0.0}$
PAR-06	$392.271^{+3.46}_{-3.58}$	$-0.014_{-0.01}^{+0.02}$	$-0.014^{+0.02}_{-0.01}$
PAR-14	$314.276^{+191.6}_{-11.7}$	$-0.553^{+0.49}_{-0.04}$	$-0.553^{+0.49}_{-0.04}$
PAR-39	$0.239_{-0.04}^{+0.87}$	$0.032^{+0.09}_{-0.0}$	$0.032^{+0.09}_{-0.0}$
PAR-57	$0.692^{+0.32}_{-0.11}$	$-0.012^{+0.08}_{-0.03}$	$-0.012^{+0.08}_{-0.03}$
PAR-58	$159.123^{+10.96}_{-14.02}$	$-0.04_{-0.06}^{+0.08}$	$-0.04^{+0.08}_{-0.06}$
PAR-59	$16.886^{+1.52}_{-0.95}$	$-0.566^{+0.74}_{-0.22}$	$-0.566^{+0.74}_{-0.22}$

Dalsze kontynuacje badań

- Wyznaczenie masy soczewek, dla których nasz model jest lepszy
- Ponowne wymodelowanie zjawisk, w celu zmniejszenia niepewności
- Zbadanie wpływu innych efektów na model (np. soczewka potrójna)