

Common Polyatomic Ions

lon	Name	lon	Name	
C ₂ H ₃ O ₂ -	H ₃ O ₂ ⁻ acetate		carbonate	
CIO ₃ -			chromate	
CIO ₂ -	chlorite *	Cr ₂ O ₇ ²⁻	dichromate	
CN-	cyanide	HPO ₄ 2-	hydrogen phosphate	
H ₂ PO ₄ ⁻	dihydrogen phosphate	C ₂ O ₄ ²⁻	oxalate	
HCO ₃ ⁻ hydrogen carbonate (bicarbonate)		022-	peroxide	
HSO ₄ hydrogen sulfate (bisulfate)		SiO ₃ ²⁻	silicate	
HS ⁻ hydrogen sulfide (bisulfide)		SO ₄ 2-	sulfate	
HSO ₃ hydrogen sulfite (bisulfite)		SO ₃ ²⁻	sulfite	
CIO ⁻ , OCI ⁻ hypochlorite *		S ₂ O ₃ ²⁻	thiosulfate	
OH- hydroxide		BO ₃ 3-	borate	
NO ₂ nitrite		PO ₄ 3-	phosphate	
NO ₃ nitrate		P ₃ O ₁₀ ⁵⁻	tripolyphosphate	
CIO ₄ -	IO ₄ perchlorate *		ammonium	
Mn0 ₄ -	permanganate	H ₃ 0+	hydronium	
SCN-	thiocyanate	Hg ₂ ²⁺	mercury(I)	

Solubility of Ionic Compounds at SATP

				Ani	ons			
	at Sparting and the state of th	Cl-, Br-, I-	S ²⁻	OH-	SO ₄ 2-	CO ₃ ²⁻ , PO ₄ ³⁻ , SO ₃ ²⁻	C ₂ H ₃ O ₂ ⁻	NO ₃ -
	High solubility (aq) ≥0.1 mol/L (at SATP)	most All Group 1 comp	Group 1, NH ₄ ⁺ Group 2 ounds, including a	Group 1, NH ₄ + Sr ²⁺ , Ba ²⁺ , TI+ cids, and all amm	most onium compounds	Group 1, NH ₄ + are assumed to have h	most igh solubility in wa	all ater.
Cations	Low Solubility (s) <0.1 mol/L (at SATP)	Ag ⁺ , Pb ²⁺ , TI ⁺ , Hg ₂ ²⁺ (Hg ⁺), Cu ⁺	most	most	Ag+, Pb ²⁺ , Ca ²⁺ , Ba ²⁺ , Sr ²⁺ , Ra ²⁺	most	Ag ⁺	none

SPECIFIC HEAT CAPACITIES OF PURE SUBSTANCES

Substance	Specific Heat Capacity* (J/(g•°C))	Substance	Specific Heat Capacity* (J/(g •°C))
aluminum	0.900	nickel	0.444
calcium	0.653	potassium	0.753
copper	0.385	silver	0.237
gold	0.129	sodium	1.226
hydrogen	14.267	sulfur	0.732
iron	0.444	tin	0.213
lead	0.159	zinc	0.388
lithium	3.556	ice, H ₂ O _(s)	2.01
magnesium	1.017	water, H ₂ O ₍₁₎	4.19
mercury	0.138	steam, H ₂ O _(a)	2.01

Ion Colours

Solution colour
colourless
blue
green
pink
green
blue
pale green
yellow-brown
pale pink
green
yellow
orange
purple
Flame
bright red
yellow
violet
yellow-red
bright red
yellow-green
blue (halides)
green (others)
light blue-grey
whitish green

Reference

Defined	(E	xact) Quantities
1 mL*	=	1 cm ³ *
1 kL†		1 m ^{3†}
1000 kg	=	1 t
1 Mg	=	1 t
1 atm	=	101.325 kPa
0°C		273.15 K
STP	=	0°C and 101.325 kPa
SATP	=	25°C and 100 kPa

MEASURED (UNCERTAIN) QUANTITIES

NA	=	6.02×10^{23} /mol	
R	=	8.31 kPa • L/(mol • K)	
F	=	$9.65 \times 10^{4} \text{C/mol}$	
K_{yy}	=	$1.0 \times 10^{-14} (\text{mol/L})^2$	
H _{fusion}	=	+6.03 kJ/mol	
H _{vop} н ₂ 0	=	+40.8 kJ/mol	
C	=	$3.00 \times 10^8 \text{m/s}$	
VSTP	=	22.4 L/mol	
VSATP	=	24.8 L/mol	
$d_{\rm H_{2}O}$	=	1.00 g/mL	

	SI PREFIXES	
Prefix	Symbol	Factor
giga	G	109
mega	M	106
kilo	k	103
milli	m	10-3
micro	μ	10-6
nano	n	10-9

Common Acid-Base Indicators

Indicator	Approximate pH Range for Color Change	Color Change	
methyl orange	3.2-4.4	red to yellow	
bromthymol blue	6.0-7.6	yellow to blue	
phenolphthalein	8.2-10	colorless to pink	
lítmus	5.5-8.2	red to blue	
bromeresol green	3.8 - 5.4	yellow to blue	
thymol blue	8.0-9.6	yellow to blue	

Solubility Curves

Concentrated Reagents*

Reagent	Formula	Molar mass (g/mol)	Concentration (mol/L)	Concentration (mass %)
acetic acid	HC ₂ H ₃ O _{2(aq)}	60.05	17.45	99.8
carbonic acid	H ₂ CO _{3(aq)}	62.03	0.039	0.17
formic acid	HCOOH _(aq)	46.03	23.6	90.5
hydrobromic acid	HBr _(aq)	80.91	8.84	48.0
hydrochloric acid	HCI _(aq)	36.46	12.1	37.2
hydrofluoric acid	HF (aq)	20.01	28.9	49.0
nitric acid	HNO _{3(aq)}	63.02	15.9	70.4
perchloric acid	HCIO _{4(aq)}	100.46	11.7	70.5
phosphoric acid	H ₃ PO _{4(aq)}	98.00	14.8	85.5
sulfurous acid	H ₂ SO _{3(aq)}	82.08	0.73	6.0
sulfuric acid	H ₂ SO _{4(aq)}	98.08	18.0	96.0
ammonia	NH _{3(aq)}	17.04	14.8	28.0
potassium hydroxide	KOH _(aq)	56.11	11.7	45.0
sodium hydroxide	NaOH _(aq)	40.00	19.4	50.5