May 7 Lec—Probability Functions Cont., Expected Value, Variance, Bernoulli, Binomial

Properties of probability functions

Numbers 1 and 2 below assume that p_X is the probability function of a discrete random variable X.

- 1. $\forall x \in \mathbb{R}$ we have $0 \leq p_X(x) \leq 1$ (cuz it's the probability $P(\{X = x\})$, bleh)
- 2. $1=\sum_{x\in\mathbb{R}}p_X(x)$ (Looks like summing over an uncountable set, but $p_x(x)$ is only nonzero at countably many points since X (and thus its target set) is discrete. Another way to write this sum is $\sum_{x\in X(S)}p_X(x)$.)
- 3. Let $p:\mathbb{R} \to [0,1]$ be a function such that the set $\{x \in \mathbb{R} \,|\, p(x) \neq 0\}$ is discrete and $\sum_x p(x) = 1$. Then p is the probability function of some discrete random variable X.

Examples

1. Let $p:\mathbb{R} \to \mathbb{R}$ such that

$$p(x) = egin{cases} 0 & x
otin \{1,2,\ldots,N\} \ C \cdot x & x \in \{1,2,\ldots,N\} \end{cases}$$

Find a constant C such that p is the probability function of some discrete random variable X.

Note that $\{x\,|\,p(x)\neq 0\}$ is finite, therefore discrete.

We must have C>0. It is enough to have

$$\sum_{n=1}^N p_X(n) = 1$$

$$\implies \sum_{n=1}^N c \cdot n = 1$$

$$\implies c \cdot \sum_{n=1}^{N} n = 1$$
 $\implies C \cdot \frac{N(N+1)}{2} = 1$
 $\implies C = \frac{2}{N(N+1)}$

We saw this example last week with the die example.

2. Let $p:\mathbb{R} \to \mathbb{R}$ such that

$$p(x) = egin{cases} 0 & x
otin \mathbb{N}^* = \{1, 2, \ldots\} \ rac{C}{x(x+1)}, & x \in \mathbb{N}^* \end{cases}$$

Find C such that p is a probability function.

Note that we already see that the set of values over which p is nonzero is discrete. We need

$$\sum_{n=1}^{\infty} \frac{C}{n(n+1)} = 1$$

$$C \cdot \sum_{n=1}^{\infty} rac{1}{n(n+1)} = 1$$

This example is cooked up such that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$ converges. You can't set up this kind of question nilly-willy (since series like $\sum_{n=1}^{\infty} \frac{1}{n}$ diverges). We observe (or rather, you should already know) that $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$ because it's a telescoping series. (Don't do this but I think you can also brute force it into a geometric sum.) So C=1 is the solution.

The second example is a useful counterexample in many situations.

Expected Value

Definition: Expected value

Let X be a discrete random variable and p_X be the probability function of X. The **expected value** of X, denoted $\mathbb{E}(X)$, is the number (∞ is not a number, mind you) defined as $\mathbb{E}(X) = \sum_x x \cdot p_X(x)$.

(This term is also sometimes called the *mean* or the *average value* of X, for good reason—given a set of x_i 's, the sum $\sum_{i=1}^n x_i \cdot \frac{1}{n}$ is the average of n of the x_i 's.)

Digression: How does Minerva calculate the average of a course?

The method is absolutely nonsense: it converts each person's grade to a 4.0-scale, averages that, and converts it back to a letter grade. Averages (expected values) already have much less information than the probability function, let alone Minerva's "average."

Examples

- 1. Let $x\in\{0,1,2\}$ with probability function $p_X(0)=\frac12, p_X(1)=\frac13, p_X(2)=\frac16$. We calculate $\mathbb{E}(X)=0\cdot\frac12+1\cdot\frac13+2\cdot\frac16=\frac23$.
- 2. Consider the example we had a moment ago:

$$p(x) = egin{cases} 0 & x
otin \mathbb{N}^* = \{1, 2, \ldots\} \ rac{1}{x(x+1)}, & x \in \mathbb{N}^* \end{cases}$$

We calculate

$$\mathbb{E}(X) = \sum_{x} x \cdot p(x)$$

$$= \sum_{n=1}^{\infty} n \cdot \frac{1}{n(n+1)}$$

$$= \sum_{n=1}^{\infty} \frac{1}{n+1}$$

which diverges. So $\mathbb{E}(X)$ is not defined (again, ∞ is not a number!!!)

Proposition

Let X be a discrete random variable, and let $F: \mathbb{R} \to \mathbb{R}$. Then $Y = F \circ X = F(X)$ is also a discrete random variable. Moreover,

$$\mathbb{E}(Y) = \mathbb{E}(F(X)) \ = \sum_x F(x) p_X(x)$$

Note that if you don't use this then you need to compute $\sum_n n \cdot p_Y(n)$. The proof will be omitted here.

Example

Suppose we have a probability function $p_X(-1)=\frac{1}{4}, p_X(0)=\frac{5}{12}, p_X(1)=\frac{1}{3}$. Let $F:\mathbb{R}\to\mathbb{R}$, $F(x)=x^2$. The target set of $Y=F(X)=X^2$ is $\{0,1\}$, with $p_Y(0)=\frac{5}{12}$ and $p_Y(1)=\frac{7}{12}$. Here you can see that $\mathbb{E}(Y)=\frac{7}{12}$, which is also what we get if we apply the formula above:

$$\mathbb{E}(Y) = (-1)^2 \cdot \frac{1}{4} + 0^2 \cdot \frac{5}{12} + 1^2 \cdot \frac{1}{3} = \frac{7}{12}$$

Properties of the expected value

Let X be a discrete random variable.

- 1. If $F:\mathbb{R} o \mathbb{R}$, $F(x) = C \ orall x \in \mathbb{R}$, then $\mathbb{E}(F(X)) = C$ (duh).
- 2. (Linearity—addition) If F and G are two functions, then $\mathbb{E}(F(X)+G(X))=\mathbb{E}(F(X))+\mathbb{E}(G(X))$.
- 3. (Linearity—scalar multiplication) Let $\alpha \in \mathbb{R}$. Then $\mathbb{E}(\alpha \cdot F(X)) = \alpha \cdot \mathbb{E}(F(X))$.

Variance

Definition: Variance

If X is a discrete random variable and we let $\mu_X = \mathbb{E}(X)$, then the **variance** of X is defined as

$$V(X) = \mathbb{E}([X - \mu_X]^2)$$

Proposition: A better formula to compute the variance

$$egin{aligned} V(X) &= \mathbb{E}(X^2) - \mu_X^2 \ &= \mathbb{E}(X^2) - (\mathbb{E}(X))^2 \end{aligned}$$

Proof

$$egin{aligned} V(X) &= \mathbb{E}[(X-\mu_X)^2] \ &= \mathbb{E}(X^2-2\mu_XX+\mu_X^2) \end{aligned}$$

By linearity,

$$=\mathbb{E}(X^2)-2\mu_X\mathbb{E}(X)+\mathbb{E}(\mu_X^2)$$

Since μ_X is a constant, $\mathbb{E}(\mu_X^2) = \mu_X^2$. Then following above:

$$egin{aligned} &= \mathbb{E}(X^2) - 2\mu_X \mathbb{E}(X) + \mu_X^2 \ &= \mathbb{E}(X^2) - 2\mu_X \cdot \mu_X + \mu_X \cdot \mu_X \ &= \mathbb{E}(X^2) - \mu_X^2 \end{aligned}$$

Example

Consider the example we had earlier: $p_X(-1)=\frac{1}{4}, p_X(0)=\frac{5}{12}, p_X(1)=\frac{1}{3}$. We have $\mathbb{E}(X)=\frac{1}{12}, \mathbb{E}(X^2)=\frac{7}{12}$. Calculating the variance:

$$V(X) = \mathbb{E}(X^2) - (\mathbb{E}(X))^2$$

$$= \frac{7}{12} - \left(\frac{1}{12}\right)^2$$

$$= \frac{83}{144}$$

Scribe's aside

There are 3 types of mathematicians, those that can count and those that can't. I'm the third type.

Properties of variance

- 1. $V(X) \geq 0$
- 2. $V(X) = 0 \iff X \text{ is constant}$
- 3. $V(lpha \cdot X) = lpha^2 \cdot V(X)$ for any $lpha \in \mathbb{R}$.

Bernoulli Random Variable

We have this kind of experiment:

Flip a coin (not necessarily fair) where $P(\{H\})=p$, $0 (so <math>P(\{T\})=1-p$). Define a discrete random variable $X(T)=0,\,X(H)=1$. The probability function looks like this:

x	$p_X(x)$
0	1-p
1	p

Definition: Bernoulli distribution

In the above scenario, X is said to have a **Bernoulli** distribution with parameter p, denoted $X \sim \operatorname{Bernoulli}(p)$ (or just $X \sim Ber(p)$).

Theorem: Expected value and variance of a Bernoulli distribution

If $X \sim Ber(p)$, then

1.
$$\mathbb{E}(X) = p$$

2.
$$V(X) = p(1-p)$$

Proof

1.
$$\mathbb{E}(X) = 0 \cdot (1-p) + 1 \cdot p = p$$

2.
$$\mathbb{E}(X^2)=0^2(1-p)+1^2p=p$$
, so
$$\Longrightarrow V(X)=\mathbb{E}(X^2)-(\mathbb{E}(X))^2=p-p^2=p(1-p)\,.$$

Exercise

For any discrete random variable X, and any constant $C \in \mathbb{R}$, we have V(X+C) = V(X).

Example

Let X be a discrete random variable with target set (support) $\{a,b\}$ (where $a,b\in\mathbb{R}$) such that $p_X(a)=1-p$ and $p_X(b)=p$. This is not a Bernoulli distribution, but it is the transform of a Bernoulli distribution. Indeed, let $Y\sim Ber(p)$, then X=(b-a)Y+a. Calculating, we get

$$\mathbb{E}(X) = (b-a)\mathbb{E}(y) + a$$
 $= (b-a)p + a$
 $= pb + (1-p)a$

and

$$V(X) = V[(b-a)Y + a]$$

= $V[(b-a)Y]$
= $(b-a)^2 \cdot p(1-p)$

Binomial Random Variable

We have an experiment that has two outcomes, S ("success") and F ("failure"). Let $P(\{S\}) = p$, 0 . Repeat the experiment <math>N times, where N is a fixed positive integer, and assume that the different trials are independent. Let X be the number of "successes." (Note that if N=1 we get our good ol' friend the Bernoulli distribution.) The support of X is $\{0,1,\ldots,N\}$. Let us find $p_X(x)$:

- $p_X(0)=P(\{X=0\})=P(0\ {
 m successes})=P(\underbrace{FF\dots F}_{N\ {
 m times}})$. By independence, $=[P(F)]^N=(1-p)^N$.
- $p_X(1)=P(\{X=1\})$. There are N events A_1,\ldots,A_N that correspond to this: $A_1:=SFF\ldots F$, $A_2:=FSF\ldots F$, \ldots , $A_N=FF\ldots FS$. The event $\{X=1\}$ is the union of these N pairwise disjoint events A_1,\ldots,A_N . So $P(\{X=1\})=P(A_1)+\cdots+P(A_N)=Np(1-p)^{N-1}=C_1^N\cdot p^1(1-p)^{N-1}$
- $p_X(2)=P(\{X=2\})$. There are C_2^N events (ways that 2 successes can be put between N-2 failures) of probability $p^2(1-p)^{N-2}$ each. So $p_X(2)=C_2^Np^2(1-p)^{N-2}$

Generalization: For any $k \in \{0, 1, \dots, N\}$, we have

$$p_X(k) = C_k^N p^k (1-p)^{N-k}$$

Definition: Binomial distribution

A random variable with the above probability distribution is said to have a Binomial distribution with parameter N,p. This is written as $X \sim \operatorname{Binomial}(N,p)$.

Scribe's aside

Another common notation that the professor didn't cover is $X \sim B(N,p)$. Because of the brevity of this notation, I will use this notation in my notes.

Proposition

Let
$$X \sim B(N,p)$$
 .

1.
$$\mathbb{E}(X) = Np$$

2.
$$V(X) = Np(1-p)$$

Proof

$$\mathbb{E}(X) = \sum_{k=0}^N k p_X(k)$$

Since k=0 is just a zero term,

$$egin{aligned} &= \sum_{k=1}^N k p_X(k) \ &= \sum_{k=1}^N k \cdot C_k^N p^k (1-p)^{N-k} \end{aligned}$$

Let's try computing $k \cdot C_k^N$ because we really want k to disappear.

$$egin{aligned} k \cdot C_k^N &= k \cdot rac{N!}{k!(N-k)!} \ &= rac{N!}{(k-1)!(N-k)!} \ &= N \cdot rac{(N-1)!}{(k-1)!(N-k)!} \ &= N \cdot C_{k-1}^{N-1} \end{aligned}$$

So going back to the original calculation:

$$\mathbb{E}(X) = \sum_{k=1}^N N \cdot C_{k-1}^{N-1} p^k (1-p)^{N-k}$$

Make a change of variable l = k - 1.

$$egin{aligned} &= N \cdot \sum_{l=0}^{N-1} C_l^{N-1} p^{l+1} (1-p)^{N-1-l} \ &= N \cdot p \cdot \sum_{l=0}^{N-1} C_l^{N-1} p^l (1-p)^{N-1-l} \end{aligned}$$

By the binomial theorem,

$$=Np[p+(1-p)]^{N-1}$$

Since
$$p+(1-p)=1$$
,

$$\mathbb{E}(X) = Np$$