ESE-2005 Assignment 1 Number system

Exercise

- 1. An analog voltage is in the range of 0–5V. If it can be measured with an accuracy of \pm 50mV, at most how many bits of information does it convey?
- 2. What is the largest 8-bit binary number that can be represented with
 - (a) unsigned numbers?
 - (b) two's complement numbers?
 - (c) sign/magnitude numbers?
- 3. Convert the following unsigned binary numbers to decimal. Show your process.
 - (a) 1010₂
 - (b) 110110₂
 - (c) 11110000₂
 - (d) 000100010100111₂
- 4. Convert the following unsigned binary numbers to hexadecimal. Show your process.
 - (a) 1010₂
 - (b) 110110₂
 - (c) 11110000₂
 - (d) 000100010100111₂
- 5. Convert the following hexadecimal numbers to decimal. Show your process.
 - (a) $4E_{16}$
 - (b) $7C_{16}$
 - (c) $ED3A_{16}$
 - (d) $403FB001_{16}$
- 6. Convert the following two's complement binary numbers to decimal.
 - (a) 1100₂
 - (b) 100001₂
 - (c) 01001100_2
 - (d) 10110101₂
- 7. A particular DSL modem operates at 768 kbits/sec. How many bytes can it receive in 1 minute? USB 3.0 can send data at 5 Gbits/sec. How many bytes can it send in 1 minute?
- 8. Estimate the value of 2^{31} without using a calculator. Show your process.
- 9. Perform the following additions of unsigned binary numbers. Indicate whether or not the sum overflows an 8-bit result.
 - (a) $10011001_2 + 01000100_2$
 - (b) $11010010_2 + 10110110_2$

- 10. Perform the following additions of two's complement binary numbers. Indicate whether or not the sum overflows an 8-bit result.
 - (a) $10011001_2 + 01000100_2$
 - (b) $11010010_2 + 10110110_2$