Hölder Spaces

Sean Richardson

Motivation via Arzelà-Ascoli

Suppose we have a sequence of functions u_n and wish to prove that this sequence converges uniformly (we often encounter this, for example, when solving PDEs). If we are working on a compact subset $X \subset \mathbb{R}^n$, the Arzelà-Ascoli theorem provides a convenient criteria for uniform convergence: pointwise boundedness and equicontinuity. Recall these are defined as follows, letting C(X) denote the space of continuous functions $X \to \mathbb{R}$.

Def (pointwise boundedness). A subset $\mathcal{F} \subset C(X)$ is *pointwise bounded* if for all $x \in X$, the set $\{u(x) : u \in \mathcal{F}\} \subset \mathbb{R}$ is bounded.

Def (equicontinuity). A subset $\mathcal{F} \subset C(X)$ is *equicontinuous* if for all $x \in X$ and $\varepsilon > 0$, there exists $\delta > 0$ such that $|x - y| < \delta$ implies we have the bound $|u(x) - u(y)| < \varepsilon$ for all $u \in \mathcal{F}$.

Importantly, given such a x and ε as above, the same δ must work for all $u \in \mathcal{F}$. Keep in mind the subset \mathcal{F} above is often simply a sequence u_n of continuous functions. The Arzelà-Ascoli theorem then promises

Theorem (Arzelà-Ascoli). If $\mathcal{F} \subset C(X)$ is equicontinuous and pointwise bounded, then there exists a subsequence $u_k \subset \mathcal{F}$ such that $u_k \to u \in C(X)$ uniformly.

Equicontinuity is generally harder than pointwise boundedness to verify when using Arzelà-Ascoli. A convenient sufficient condition for equicontinuity is there exists a fixed C > 0 so that

$$|u(x) - u(y)| \le C||x - y||$$
 (1)

for all $u \in \mathcal{F}$. This immediately implies equicontinuity because for any $\varepsilon > 0$ we can simply take $|x - y| < \varepsilon/C$. However, an even weaker sufficient condition which is often easier to check is that for some fixed $\alpha \in (0, 1]$ there exists C > 0 such that

$$|u(x) - u(y)| \le C||x - y||^{\alpha}$$
 (2)

for all $u \in \mathcal{F}$. In this case, we get equicontinuity by taking $||x - y|| < (\varepsilon/C)^{1/\alpha}$ for any given $\varepsilon > 0$. If u satisfies (1), it is called *Lipshitz continuous* and if u satisfies (2), it is called α -Hölder continuous. This terminology is due to the following.

Proposition. If $u: X \to \mathbb{R}$ satisfies either (1) or (2), it is a continuous function.

Proof. Suppose u is α -Hölder continuous with Hölder constant C>0. Then or any $\varepsilon>0$, taking $\|x-y\|<(\varepsilon/C)^{1/\alpha}$ guarantees

$$|u(x) - u(y)| \le C|x - y|^{\alpha} < \varepsilon.$$

Given an α -Hölder continuous function $u: X \to \mathbb{R}$, the minimum constant C is given by the α -Hölder semi-norm

$$[u]_{\alpha} := \sup_{x \neq y} \frac{|u(x) - u(y)|}{\|x - y\|^{\alpha}}.$$

This semi-norm is convenient because $\{[u]_{\alpha} : u \in \mathcal{F}\}$ bounded implies \mathcal{F} is equicontinuous. Additionally, note that if $\{\|u\|_{\sup} : u \in \mathcal{F}\}$ is bounded, then \mathcal{F} is pointwise bounded where $\|\cdot\|_{\sup}$ denotes the uniform norm.

This motivates defining the α -Hölder norm

$$||u||_{\alpha} := ||u||_{\sup} + [u]_{\alpha}$$

because if $\{||u||_{\alpha} : u \in \mathcal{F}\}$ is bounded, then \mathcal{F} is equicontinuous and pointwise bounded, so Arzelà-Ascoli applies and there exists $u_k \in \mathcal{F}$ such that $u_k \to u \in C(X)$ uniformly.

Hölder spaces over a compact subset

The point is the α -Hölder norm $\|\cdot\|_{\alpha}$ is useful because it allows us to conclude uniform convergence due to Arzelà-Ascoli. We can rephrase this oberservation using the language of functional analysis, which begins by considering the function space of α -Hölder continuous functions.

Def (Hölder space). For a compact subset $X \subset \mathbb{R}^n$ and $\alpha \in (0,1]$, the Hölder space $C^{\alpha}(X)$ is

$$C^{\alpha}(X) := \{ u \in C(X) : ||u||_{\alpha} < \infty \}.$$

It is over $C^{\alpha}(X)$ that $[\cdot]_{\alpha}$ is a semi-norm and $\|\cdot\|_{\alpha}$ is a norm, which we prove below.

Proposition. $[\cdot]_{\alpha}$ is a semi-norm over $C^{\alpha}(X)$.

Proof. First we check positive homogeneity

$$[cu]_{\alpha} = \sup_{x \neq y} \frac{|cu(x) - cu(y)|}{\|x - y\|^{\alpha}} = |c| \cdot \sup_{x \neq y} \frac{|u(x) - u(y)|}{\|x - y\|^{\alpha}} = |c| \cdot [u]_{\alpha}.$$

Next we check the triangle inequality

$$[u+v]_{\alpha} = \sup_{x \neq y} \frac{|(u+v)(x) - (u+v)(y)|}{\|x-y\|^{\alpha}} \le \sup_{x \neq y} \frac{|u(x) - u(y)|}{\|x-y\|^{\alpha}} + \sup_{x \neq y} \frac{|v(x) - v(y)|}{\|x-y\|^{\alpha}} \le [u]_{\alpha} + [v]_{\alpha}.$$

Proposition. $\|\cdot\|_{\alpha}$ is a norm over $C^{\alpha}(X)$.

Proof. Positive homogeneity of $\|\cdot\|_{\alpha}$ follows immediately from that of $[\cdot]_{\alpha}$ and $\|\cdot\|_{\text{sup}}$:

$$||cu||_{\alpha} = ||cu||_{\sup} + ||cu||_{\alpha} = |c| \cdot (||u||_{\sup} + |u||_{\alpha}) = |c| \cdot ||u||_{\alpha}.$$

Similarly, the triangle inequality of $\|\cdot\|_{\alpha}$ follows from that of $[\cdot]_{\alpha}$ and $\|\cdot\|_{\sup}$:

$$||u+v||_{\alpha} = ||u+v||_{\sup} + [u+v]_{\alpha} \le ||u||_{\sup} + [u]_{\alpha} + ||v||_{\sup} + [v]_{\alpha} = ||u||_{\alpha} + ||v||_{\alpha}.$$

Finally, positive definiteness of $\|\cdot\|_{\alpha}$ follows from the positive definiteness of $\|\cdot\|_{\sup}$. Indeed, if $0 = \|u\|_{\alpha} = \|u\|_{\sup} + [u]_{\alpha}$ then we must have $\|u\|_{\sup} = 0$, implying u = 0.

Proposition. The Hölder space $C^{\alpha}(X)$ is a Banach space.

Proof. Take a Cauchy sequence $u_k \in C^{\alpha}(X)$. Then

Compact embedding theorems

/recall motivation for Holder spaces... rephrase in terms of compact embeddings/

$$C^{0,\alpha} \to C^0$$

$$C^{0,\alpha} \to C^{0,\beta}$$

 $C^{k,\alpha} \to C^k$ /hopefully using earlier embedding/

 $C^{k,\alpha} \to C^{k,\beta}$ /hopefully using earlier embedding/