Name:	Date of birth:	-	Student ID	No.	-
-------	----------------	---	------------	-----	---

Final Exam of "Fundamentals of modern optics" WS 2015/16 to be written on February 15, 10:00 - 12:00 am

Problem 1 – Maxwell's equations (MWEs)

3+2+2+3=10 points

- a) Write down MWEs in frequency domain, with external sources, in its most general form in a material. Furthermore, write down the constitutive equations for auxiliary fields D and H, in frequency domain, where the material is inhomogeneous, dispersive, linear, isotropic, and magnetic.
- b) Find the wave equation for E, from the MWEs of part (a), for an inhomogeneous, dispersive, linear, isotropic, and non-magnetic material, in the presence of external sources.
- c) Write down the MWEs of part (a) in their integral form, using the Stoke's and divergence theorems.
- d) Derive the continuity equation connecting the charge density and the current density, from MWEs in (a)-Write your final answer also in terms of the total charge in a volume and the total current escaping that volume.

Problem 2 – Normal Modes

2+2+1+3=8 points

Consider two monochromatic plane waves with electric field amplitudes E_1 and E_2 polarized along the x direction in free space with wavelength λ . One plane wave is propagating along the z direction and the other in yz plane at an angle θ as shown in the figure.

- a) Write down the space and time dependent electric field vector for both plane waves.
- b) Find the intensity pattern due to interference of these two waves and plot it along the y direction (assume x=z=0 and $E_1=2E_2$).
- c) Calculate the distance between two consecutive maxima (or minima) in y direction. What will be the effect of increasing angle θ on the observed pattern?
- d) Define and calculate the time averaged Poynting vector.

Problem 3 – Diffraction theory

2 + 1 + 6 = 9 points

- a) Explain the condition shortly and write a mathematical inequality for which you can apply the following approximations: (i) Fresnel approximation. (ii) Fraunhofer approximation.
- b) Can the Fraunhofer approximation be applied without the Fresnel approximation. Please explain your answer in two sentences.
- c) Give formulas for calculating the observed diffraction patterns of an illumination function $u_0(x,y)$ (in scaler approximation) for: (i) non-paraxial case. (ii) Fresnel approximation. (iii) Fraunhofer approximation.

Problem 4 - Pulses

1 + 2 + 3 = 6 points

Consider a fiber of the length $L_1=1\,\mathrm{m}$ has the dispersion relation $k_1(\omega)=\alpha_1\omega_0+\beta_1(\omega-\omega_0)+\frac{\gamma_1}{\omega_0}(\omega-\omega_0)^2$, with the frequency ω and the constants $\omega_0=2\cdot 10^{15}\mathrm{rad/s}$, $\alpha_1=\frac{3}{2c}$, $\beta_1=\frac{3}{4c}$ and $\gamma_1=\frac{3}{8c}$, where $c=3\cdot 10^8\mathrm{m/s}$ is the speed of light in vacuum.

- a) What is the phase velocity of monochromatic light of frequency $\omega_1 = 3 \cdot 10^{15} \frac{\text{rad}}{\text{s}}$ in this fiber?
- b) Now, we couple a Gaussian pulse into the fiber (center frequency $\omega_1 = 3 \cdot 10^{15} \frac{\text{rad}}{\text{s}}$ and FWHM 100 fs). Its maximum starts at $t_0 = 0$ sec at the beginning of the fiber. At which time does this maximum arrive at the end of the fiber?
- c) Consider a second fiber with the dispersion relation $k_2(\omega) = \alpha_2\omega_0 + \beta_2(\omega \omega_0) + \frac{\gamma_2}{\omega_0}(\omega \omega_0)^2$, where $\alpha_2 = \frac{10}{c}$, $\beta_2 = \frac{2}{c}$ and $\gamma_1 = \frac{-4}{9c}$. It is merged to the end of the first fiber. We launch two Gaussian pulses with the center frequencies $\omega_1 = 3 \cdot 10^{15} \frac{\text{rad}}{\text{s}}$ and $\omega_2 = 4 \cdot 10^{15} \frac{\text{rad}}{\text{s}}$, respectively, and both with the FWHM of 100 fs at the same time into the first fiber. Calculate the length L_2 of the second fiber when both pulses maxima shall arrive at the end of the second fiber at the same time.

3 + 4 + 3 = 10 points

Assume, a source with 16 bright illuminating rectangles, each of size $a \times b$. They are arranged in x and y direction with period Δ (shown in figure a).

- a) Please write the amplitude transmittance function of the source (figure a).
- b) Calculate the diffraction pattern at 2f distance just before the filter (shown in figure b).
- c) Suppose one wishes to obtain the diffraction pattern on the screen as shown in the figure c. What should the range of aperture width W in the filter be, to realize this pattern?

Problem 6 – Anisotropy

2 + 1 + 3 = 6 points

A layer of a uniaxial crystal of thickness $d = 5\mu m$ is shown in the figure. The extraordinary crystal axis is in the x-y plane and makes a 45° angle with the x and y axis. The ordinary and extraordinary refractive indices are $n_o = 2.2$ and $n_e = 2.15$, respectively. A plane wave with an electric field of $E = E_0 e^{i\frac{2\pi}{\lambda}z} (\hat{x} + i\hat{y})$ is incident on this layer from one side, where $\lambda = 1 \mu m$ is the wavelength of the wave in free space.

- a) What are the two eigenmodes of the crystal propagating in the z direction. Specify the direction of electric field (in terms of \hat{x} and \hat{y}) and the magnitude of k-vector for each eigenmode.
- b) Decompose the input electric field polarization into the two eigenmodes of part (a).
- c) Calculate the electric field polarization at the other side of this crystal layer. You can ignore the reflections from the crystal surfaces; it is the final polarization state that matters to us.

Problem 7 - Interface

1 + 2 + 2 = 5 points

The reflection coefficient of a TE mode field, with incident angle of θ_1 and refracted angle of θ_2 , from a media 1 (n_1) into a media 2 (n_2) is described by the following Fresnel equation,

$$r_{TE} = \frac{n_1 \cos \theta_1 - n_2 \cos \theta_2}{n_1 \cos \theta_1 + n_2 \cos \theta_2}.$$

- a) Assume $n_1 > n_2$. What is the relation for the critical angle θ_c , after which we have total internal reflection?
- b) Show that for $\theta_1 > \theta_c$ we get $|r_{TE}| = 1$.
- c) Find the value of the extra phase that the reflected wave acquires for the limiting case of $\theta_1 = \pi/2$.

Problem 8 – Multilayer system

Consider a multilayer system of N isotropic layers with the permittivities ϵ_i and the thicknesses d_i (i = 1, 2, ..., N). In front of and behind this multilayer system, there are the substrate (ϵ_s) and the cladding (ϵ_c) , respectively.

c) Derive the matrix for a single layer, for a TE-polarized monochromatic plane wave.

Maybe useful formulas:

$$\nabla \times \nabla \times \mathbf{a} = \nabla(\nabla \cdot \mathbf{a}) - \Delta \mathbf{a}, \quad \nabla \cdot (\nabla \times \mathbf{a}) = 0.$$

$$\nabla \cdot (\nabla \times \mathbf{a}) = 0.$$