Chapter-8

Quadrilaterals

Exercise 8.1

5marks Questions

1. The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.

Solution:

Let the common ratio between the angles be x.

We know that the sum of the interior angles of the quadrilateral = 360°

Now,

$$3x+5x+9x+13x = 360^{\circ}$$

$$\Rightarrow 30x = 360^{\circ}$$

$$\Rightarrow$$
 x = 12°

, Angles of the quadrilateral are:

$$3x = 3 \times 12^{\circ} = 36^{\circ}$$

$$5x = 5 \times 12^{\circ} = 60^{\circ}$$

$$9x = 9 \times 12^{\circ} = 108^{\circ}$$

$$13x = 13 \times 12^{\circ} = 156^{\circ}$$

2. If the diagonals of a parallelogram are equal, then show that it is a rectangle.

Solution:

Given that,

$$AC = BD$$

To show that ABCD is a rectangle if the diagonals of a parallelogram are equal

To show ABCD is a rectangle, we have to prove that one of its interior angles is right-angled.

Proof,

In $\triangle ABC$ and $\triangle BAD$,

AB = BA (Common)

BC = AD (Opposite sides of a parallelogram are equal)

AC = BD (Given)

Therefore, $\triangle ABC \cong \triangle BAD$ [SSS congruency]

 $\angle A = \angle B$ [Corresponding parts of Congruent Triangles]

also.

 $\angle A + \angle B = 180^{\circ}$ (Sum of the angles on the same side of the transversal)

$$\Rightarrow 2\angle A = 180^{\circ}$$

$$\Rightarrow \angle A = 90^{\circ} = \angle B$$

Therefore, ABCD is a rectangle.

Hence Proved.

3. Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.

Solution:

Let ABCD be a quadrilateral whose diagonals bisect each other at right angles.

Given that,

$$OA = OC$$

$$OB = OD$$

and
$$\angle AOB = \angle BOC = \angle OCD = \angle ODA = 90^{\circ}$$

To show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus, we have to prove that ABCD is a parallelogram and AB = BC = CD = AD

Proof,

In $\triangle AOB$ and $\triangle COB$,

OA = OC (Given)

 $\angle AOB = \angle COB$ (Opposite sides of a parallelogram are equal)

OB = OB (Common)

Therefore, $\triangle AOB \cong \triangle COB$ [SAS congruency]

Thus, AB = BC [CPCT]

Similarly, we can prove,

BC = CD

CD = AD

AD = AB

$$AB = BC = CD = AD$$

Opposite sides of a quadrilateral are equal. Hence, it is a parallelogram.

ABCD is rhombus as it is a parallelogram whose diagonals intersect at a right angle.

Hence Proved.

4. Show that the diagonals of a square are equal and bisect each other at right angles.

Solution:

Let ABCD be a square and its diagonals AC and BD intersect each other at O.

To show that,

$$AC = BD$$

$$AO = OC$$

and
$$\angle AOB = 90^{\circ}$$

Proof,

In $\triangle ABC$ and $\triangle BAD$,

$$AB = BA$$
 (Common)

$$\angle ABC = \angle BAD = 90^{\circ}$$

$$BC = AD$$
 (Given)

$$\triangle ABC \cong \triangle BAD$$
 [SAS congruency]

Thus,

AC = BD [CPCT]

diagonals are equal.

Now,

In \triangle AOB and \triangle COD,

 $\angle BAO = \angle DCO$ (Alternate interior angles)

 $\angle AOB = \angle COD$ (Vertically opposite)

AB = CD (Given)

, $\triangle AOB \cong \triangle COD$ [AAS congruency]

Thus,

AO = CO [CPCT].

, Diagonal bisect each other.

Now,

In \triangle AOB and \triangle COB,

OB = OB (Given)

AO = CO (diagonals are bisected)

AB = CB (Sides of the square)

, $\triangle AOB \cong \triangle COB$ [SSS congruency]

also, $\angle AOB = \angle COB$

 $\angle AOB + \angle COB = 180^{\circ}$ (Linear pair)

Thus, $\angle AOB = \angle COB = 90^{\circ}$

, Diagonals bisect each other at right angles

5. Diagonal AC of a parallelogram ABCD bisects ∠A (see Fig. 8.19). Show that

(i) it bisects $\angle C$ also,

(ii) ABCD is a rhombus.

Fig. 8.19

Solution:

(i) In \triangle ADC and \triangle CBA,

AD = CB (Opposite sides of a parallelogram)

DC = BA (Opposite sides of a parallelogram)

AC = CA (Common Side)

, $\triangle ADC \cong \triangle CBA$ [SSS congruency]

Thus,

 \angle ACD = \angle CAB by CPCT

and $\angle CAB = \angle CAD$ (Given)

 $\Rightarrow \angle ACD = \angle BCA$

Thus,

AC bisects ∠C also.

(ii) $\angle ACD = \angle CAD$ (Proved above)

 \Rightarrow AD = CD (Opposite sides of equal angles of a triangle are equal)

Also, AB = BC = CD = DA (Opposite sides of a parallelogram)

Thus,

ABCD is a rhombus.

6. In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig. 8.20). Show that:

- (i) $\triangle APD \cong \triangle CQB$
- (ii) AP = CQ
- (iii) $\triangle AQB \cong \triangle CPD$
- (iv) AQ = CP
- (v) APCQ is a parallelogram

Solution:

(i) In \triangle APD and \triangle CQB,

DP = BQ (Given)

 $\angle ADP = \angle CBQ$ (Alternate interior angles)

AD = BC (Opposite sides of a parallelogram)

Thus, $\triangle APD \cong \triangle CQB$ [SAS congruency]

- (ii) AP = CQ by CPCT as \triangle APD \cong \triangle CQB.
- (iii) In \triangle AQB and \triangle CPD,

BQ = DP (Given)

 $\angle ABQ = \angle CDP$ (Alternate interior angles)

AB = CD (Opposite sides of a parallelogram)

Thus, $\triangle AQB \cong \triangle CPD$ [SAS congruency]

(iv) As
$$\triangle AQB \cong \triangle CPD$$

$$AQ = CP [CPCT]$$

(v) From the questions (ii) and (iv), it is clear that APCQ has equal opposite sides and also has equal and opposite angles. , APCQ is a parallelogram.

2marks Questions

1. ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.

Solution:

Given that,

ABCD is a rhombus.

AC and BD are its diagonals.

Proof,

AD = CD (Sides of a rhombus)

 $\angle DAC = \angle DCA$ (Angles opposite of equal sides of a triangle are equal.)

also, AB || CD

 $\Rightarrow \angle DAC = \angle BCA$ (Alternate interior angles)

⇒∠DCA = ∠BCA

, AC bisects $\angle C$.

Similarly,

We can prove that diagonal AC bisects $\angle A$.

Following the same method,

We can prove that the diagonal BD bisects $\angle B$ and $\angle D$.

2 ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that:

- (i) ABCD is a square
- (ii) Diagonal BD bisects $\angle B$ as well as $\angle D$.

Solution:

(i) $\angle DAC = \angle DCA$ (AC bisects $\angle A$ as well as $\angle C$)

 \Rightarrow AD = CD (Sides opposite to equal angles of a triangle are equal)

also, CD = AB (Opposite sides of a rectangle)

$$AB = BC = CD = AD$$

Thus, ABCD is a square.

(ii) In ΔBCD ,

$$BC = CD$$

 \Rightarrow \angle CDB = \angle CBD (Angles opposite to equal sides are equal)

also, $\angle CDB = \angle ABD$ (Alternate interior angles)

$$\Rightarrow \angle CBD = \angle ABD$$

Thus, BD bisects ∠B

Now,

 $\angle CBD = \angle ADB$

 $\Rightarrow \angle CDB = \angle ADB$

Thus, BD bisects $\angle B$ as well as $\angle D$.

- 3. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig. 8.21). Show that
- (i) $\triangle APB \cong \triangle CQD$
- (ii) AP = CQ

Fig. 8.21

Solution:

(i) In \triangle APB and \triangle CQD,

 $\angle ABP = \angle CDQ$ (Alternate interior angles)

 $\angle APB = \angle CQD$ (= 90° as AP and CQ are perpendiculars)

AB = CD (ABCD is a parallelogram)

, $\triangle APB \cong \triangle CQD [AAS congruency]$

(ii) As $\triangle APB \cong \triangle CQD$.

, AP = CQ [CPCT]

8marks Question

1. In $\triangle ABC$ and $\triangle DEF$, AB = DE, $AB \parallel DE$, BC = EF and $BC \parallel EF$. Vertices A, B and C are joined to vertices D, E and F, respectively (see Fig. 8.22).

Show that

 $(i)\ quadrilateral\ ABED\ is\ a\ parallelogram$

- (ii) quadrilateral BEFC is a parallelogram
- (iii) $AD \parallel CF$ and AD = CF
- (iv) quadrilateral ACFD is a parallelogram
- $(\mathbf{v}) \mathbf{AC} = \mathbf{DF}$
- (vi) $\triangle ABC \cong \triangle DEF$.

Fig. 8.22

Solution:

(i) AB = DE and $AB \parallel DE$ (Given)

Two opposite sides of a quadrilateral are equal and parallel to each other.

Thus, quadrilateral ABED is a parallelogram

(ii) Again BC = EF and BC \parallel EF.

Thus, quadrilateral BEFC is a parallelogram.

(iii) Since ABED and BEFC are parallelograms.

 \Rightarrow AD = BE and BE = CF (Opposite sides of a parallelogram are equal)

, AD = CF.

Also, AD || BE and BE || CF (Opposite sides of a parallelogram are parallel)

, AD || CF

- (iv) AD and CF are opposite sides of quadrilateral ACFD which are equal and parallel to each other. Thus, it is a parallelogram.
- (v) Since ACFD is a parallelogram

 $AC \parallel DF$ and AC = DF

(vi) In \triangle ABC and \triangle DEF,

AB = DE (Given)

BC = EF (Given)

AC = DF (Opposite sides of a parallelogram)

, $\triangle ABC \cong \triangle DEF$ [SSS congruency]

- 2. ABCD is a trapezium in which AB \parallel CD and AD = BC (see Fig. 8.23). Show that
- (i) $\angle A = \angle B$
- (ii) $\angle C = \angle D$
- (iii) $\triangle ABC \cong \triangle BAD$
- (iv) diagonal AC = diagonal BD

[Hint: Extend AB and draw a line through C parallel to DA intersecting AB produced at E.]

Fig. 8.23

Solution:

To Construct: Draw a line through C parallel to DA intersecting AB produced at E.

(i) CE = AD (Opposite sides of a parallelogram)

AD = BC (Given)

, BC = CE

also,

 $\angle A + \angle CBE = 180^{\circ}$ (Angles on the same side of transversal and $\angle CBE = \angle CEB$)

$$\angle B + \angle CBE = 180^{\circ}$$
 (As Linear pair)

$$\Rightarrow \angle A = \angle B$$

(ii)
$$\angle A + \angle D = \angle B + \angle C = 180^{\circ}$$
 (Angles on the same side of transversal)

$$\Rightarrow \angle A + \angle D = \angle A + \angle C (\angle A = \angle B)$$

$$\Rightarrow \angle D = \angle C$$

(iii) In \triangle ABC and \triangle BAD,

$$AB = AB$$
 (Common)

$$\angle DBA = \angle CBA$$

$$AD = BC (Given)$$

,
$$\triangle ABC \cong \triangle BAD$$
 [SAS congruency]

- (iv) Diagonal AC = diagonal BD by CPCT as \triangle ABC \cong \triangle BAD.
- 3. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Solution:

Given that,

Let ABCD be a quadrilateral and its diagonals AC and BD bisect each other at a right angle at O.

To prove that,

The Quadrilateral ABCD is a square.

Proof,

In \triangle AOB and \triangle COD,

AO = CO (Diagonals bisect each other)

 $\angle AOB = \angle COD$ (Vertically opposite)

OB = OD (Diagonals bisect each other)

, $\triangle AOB \cong \triangle COD$ [SAS congruency]

Thus,

$$AB = CD [CPCT] - (i)$$

also,

 $\angle OAB = \angle OCD$ (Alternate interior angles)

 \Rightarrow AB \parallel CD

Now,

In $\triangle AOD$ and $\triangle COD$,

AO = CO (Diagonals bisect each other)

 $\angle AOD = \angle COD$ (Vertically opposite)

OD = OD (Common)

, $\triangle AOD \cong \triangle COD$ [SAS congruency]

Thus,

$$AD = CD [CPCT] - (ii)$$

also,

$$AD = BC$$
 and $AD = CD$

$$\Rightarrow$$
 AD = BC = CD = AB — (ii)

also, $\angle ADC = \angle BCD$ [CPCT]

and $\angle ADC + \angle BCD = 180^{\circ}$ (co-interior angles)

$$\Rightarrow$$
 2 \angle ADC = 180°

$$\Rightarrow \angle ADC = 90^{\circ}$$
 — (iii)

One of the interior angles is a right angle.

Thus, from (i), (ii) and (iii), given quadrilateral ABCD is a square.

Hence Proved.

Exercise 8.2

2marks Question

1. ABCD is a trapezium in which AB \parallel DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig. 8.30). Show that F is the mid-point of BC.

Fig. 8.30

Solution:

Given that,

ABCD is a trapezium in which AB \parallel DC, BD is a diagonal and E is the midpoint of AD.

To prove,

F is the mid-point of BC.

Proof,

BD intersected EF at G.

In $\triangle BAD$,

E is the mid point of AD and also EG || AB.

Thus, G is the mid point of BD (Converse of mid point theorem)

Now,

In $\triangle BDC$,

G is the mid point of BD and also GF || AB || DC.

Thus, F is the mid point of BC (Converse of mid point theorem)

2. Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.

Solution:

Let ABCD be a quadrilateral and P, Q, R and S the mid points of AB, BC, CD and DA, respectively.

Now,

In $\triangle ACD$,

R and S are the mid points of CD and DA, respectively.

, SR \parallel AC.

Similarly we can show that,

PQ∥AC,

PS || BD and

 $QR \parallel BD$

, PQRS is parallelogram.

PR and QS are the diagonals of the parallelogram PQRS. So, they will bisect each other.

5marks Questions

- 1. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA (see Fig 8.29). AC is a diagonal. Show that:
- (i) $SR \parallel AC$ and SR = 1/2 AC
- (ii) PQ = SR
- (iii) PQRS is a parallelogram.

Fig. 8.29

Solution:

(i) In ΔDAC,

R is the mid point of DC and S is the mid point of DA.

Thus by mid point theorem, $SR \parallel AC$ and $SR = \frac{1}{2} AC$

(ii) In ΔBAC,

P is the mid point of AB and Q is the mid point of BC.

Thus by mid point theorem, $PQ \parallel AC$ and $PQ = \frac{1}{2} AC$

also, $SR = \frac{1}{2}AC$

$$, PQ = SR$$

$$\Rightarrow$$
 SR || PQ – from (i) and (ii)

also,
$$PQ = SR$$

, PQRS is a parallelogram.

2. ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively. Show that the quadrilateral PQRS is a rectangle.

Solution:

Given in the question,

ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA, respectively.

To Prove,

PQRS is a rectangle.

Construction,

Join AC and BD.

Proof:

In \triangle DRS and \triangle BPQ,

DS = BQ (Halves of the opposite sides of the rhombus)

 \angle SDR = \angle QBP (Opposite angles of the rhombus)

DR = BP (Halves of the opposite sides of the rhombus)

, $\Delta DRS \cong \Delta BPQ$ [SAS congruency]

In \triangle QCR and \triangle SAP,

RC = PA (Halves of the opposite sides of the rhombus)

 $\angle RCQ = \angle PAS$ (Opposite angles of the rhombus)

CQ = AS (Halves of the opposite sides of the rhombus)

, $\triangle QCR \cong \triangle SAP$ [SAS congruency]

Now,

In $\triangle CDB$,

R and Q are the mid points of CD and BC, respectively.

$$\Rightarrow$$
 QR \parallel BD

also,

P and S are the mid points of AD and AB, respectively.

 \Rightarrow PS || BD

$$\Rightarrow$$
 QR || PS

, PQRS is a parallelogram.

also,
$$\angle PQR = 90^{\circ}$$

Now,

In PQRS,

$$RS = PQ$$
 and $RQ = SP$ from (i) and (ii)

$$\angle Q = 90^{\circ}$$

, PQRS is a rectangle.

3. ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA, respectively. Show that the quadrilateral PQRS is a rhombus.

Solution:

Given in the question,

ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA, respectively.

Construction,

Join AC and BD.

To Prove,

PQRS is a rhombus.

Proof:

In ΔABC

P and Q are the mid-points of AB and BC, respectively

, PQ \parallel AC and PQ = $\frac{1}{2}$ AC (Midpoint theorem) — (i)

In \triangle ADC,

 $SR \parallel AC$ and $SR = \frac{1}{2} AC$ (Midpoint theorem) — (ii)

So, $PQ \parallel SR$ and PQ = SR

As in quadrilateral PQRS one pair of opposite sides is equal and parallel to each other, so, it is a parallelogram.

, PS || QR and PS = QR (Opposite sides of parallelogram) — (iii)

Now,

In $\triangle BCD$,

Q and R are mid points of side BC and CD, respectively.

, QR || BD and QR = $\frac{1}{2}$ BD (Midpoint theorem) — (iv)

AC = BD (Diagonals of a rectangle are equal) — (v)

From equations (i), (ii), (iii), (iv) and (v),

$$PQ = QR = SR = PS$$

So, PQRS is a rhombus.

Hence Proved

4.In a parallelogram ABCD, E and F are the mid-points of sides AB and CD, respectively (see Fig. 8.31). Show that the line segments AF and EC trisect the diagonal BD.

Solution:

Given that,

ABCD is a parallelogram. E and F are the mid-points of sides AB and CD, respectively.

To show,

AF and EC trisect the diagonal BD.

Proof,

ABCD is a parallelogram

, AB || CD

also, AE || FC

Now,

AB = CD (Opposite sides of parallelogram ABCD)

 $\Rightarrow \frac{1}{2} AB = \frac{1}{2} CD$

 \Rightarrow AE = FC (E and F are midpoints of side AB and CD)

AECF is a parallelogram (AE and CF are parallel and equal to each other)

AF || EC (Opposite sides of a parallelogram)

Now,

In ΔDQC ,

F is mid point of side DC and FP \parallel CQ (as AF \parallel EC).

P is the mid-point of DQ (Converse of mid-point theorem)

$$\Rightarrow$$
 DP = PQ — (i)

Similarly,

In $\triangle APB$,

E is midpoint of side AB and EQ \parallel AP (as AF \parallel EC).

Q is the mid-point of PB (Converse of mid-point theorem)

$$\Rightarrow$$
 PQ = QB — (ii)

From equations (i) and (i),

$$DP = PQ = BQ$$

Hence, the line segments AF and EC trisect the diagonal BD.

Hence Proved.

- 5. ABC is a triangle right angled at C. A line through the mid-point M of hypotenuse AB and parallel to BC intersects AC at D. Show that
- (i) D is the mid-point of AC
- (ii) $MD \perp AC$
- (iii) $CM = MA = \frac{1}{2}AB$

Solution:

(i) In $\triangle ACB$,

M is the midpoint of AB and MD \parallel BC

- , D is the midpoint of AC (Converse of mid point theorem)
- (ii) $\angle ACB = \angle ADM$ (Corresponding angles)

also,
$$\angle ACB = 90^{\circ}$$

, $\angle ADM = 90^{\circ}$ and $MD \perp AC$

(iii) In \triangle AMD and \triangle CMD,

AD = CD (D is the midpoint of side AC)

Class-IX Mathematics

 $\angle ADM = \angle CDM \text{ (Each } 90^\circ\text{)}$

DM = DM (common)

, $\Delta AMD \cong \Delta CMD$ [SAS congruency]

AM = CM [CPCT]

also, $AM = \frac{1}{2}AB$ (M is midpoint of AB)

Hence, $CM = MA = \frac{1}{2}AB$