Mana		
Name		

Date	
Period	

Robert Colson's

Lesson 4.2: Graphing Rational Functions

Objectives	 Graph rational functions by identifying asymptotes and end behavior. Rewrite simple rational expressions in different forms using long division. 	
Language Objective	 SWBAT use a 3-reads protocol to interpret an Algebra 2 word problem by listening to the teacher's reading and summarizing the situation in a sentence, reading it aloud to state the math question, and silently rereading to list key facts and figures. 	
Essential Understanding	A rational function is any function $R(x) = \frac{P(x)}{Q(x)}$ where $P(x)$ and $Q(x)$ are polynomial functions. The domain of a rational function is all real numbers except any x -values for which $Q(x)$ equals to zero. The graph of a rational function has one or more asymptotes, which guide the end behavior of the graph.	

EXPLORE & REASON using DESMOS

A. **Look for Relationships**. Graph each function. Determine whether the functions are linear. Find the y intercept of each function, and slope, if appropriate.

Function	Linear? (Yes/No)	y-intercept	Slope
f(x) = x - 1			
$g(x) = \frac{x-1}{2}$			
$h(x) = \frac{x-1}{x-2}$			

- B. What is the effect on the graph of f when dividing x-1 by 2?
- C. What happens to the graph of h as \boldsymbol{x} approaches 2?
- D. Communicate Precisely. What is the effect on the graph of f(x) when dividing x-1 by x-2. (Hint: Compare it to what you found in part (B)

EXAMPLE 5

Use a Rational Function Model

A pediatric doctor may need to administer medication without knowing a child's weight. Young's Rule can be used to calculate a child's dosage D(a) given their age a and the adult dosage.

A doctor has 60 mcg of a medication. What is the youngest a child can be to receive this dose of medication if the adult dosage is 125 mcg?

Date	Period	
First Read - Understanding the Context		
What is the core of the problem?		
I think this problem is about		
Coond Dood Interpreting the		
Second Read - Interpreting the Question		
What are we trying to find out?		
Trinat are tre aying to ima out.		
I know the problem is		
askingbecause		
Third Dood Identifying Information		
Third Read - Identifying Information		
What are the important quantities, relationships, and other relevant		
information?		
mornadon.		
The quantities are		
I can count		
These quantities help me to answer		
The information from the situation that		
we need is		
Solution (show and explain your answer)		
Interpretation of solution (interpret your solution in your own words)		

ESSENTIAL QUESTION

How can you graph a rational function?

EXAMPLE 1 Rewrite a Rational Function to Identify Asymptotes

How is the quotient $g(x) = \frac{4x}{x-3}$ related to the reciprocal function, $f(x) = \frac{1}{x}$?

Use long division to write the rational expression in the form $\frac{a}{x-h} + k$.

Check, using <u>Desmos</u>.

Try It!

- **1.** Use long division to rewrite each rational function. Find the asymptotes of *f* and sketch the graph.
- **a.** $f(x) = \frac{6x}{2x+1}$

Try It!

1. Use long division to rewrite each rational function. Find the asymptotes of *f* and sketch the graph.

b.
$$f(x) = \frac{x}{x - 6}$$

CONCEPT Rational Function

Just as a rational number is a number that can be expressed as the ratio of two integers, a rational expression is an expression that can be expressed as the ratio of two polynomials, such as $\frac{P(x)}{Q(x)}$.

A rational function is any function defined by a rational expression, such as $R(x) = \frac{P(X)}{O(X)}$. The domain of R(x) is all values of x for which $Q(x) \neq 0$.

The function $g(x) = \frac{4x}{x-3}$ is a rational function.

EXAMPLE 2 Find Multiple Vertical Asymptotes of a Rational Function

What are the vertical asymptotes for the graph of $f(x) = \frac{3x-2}{x^2+7x+12}$?

Try It!

Find the vertical asymptotes for each function. Graph the function to check your work.

a.
$$g(x) = \frac{5x}{x^2 - x - 6}$$

Try It!

2. Find the vertical asymptotes for each function. Graph the function to check your work.

b.
$$h(x) = \frac{7-x}{(x-5)(x+1)(x+3)}$$

EXAMPLE 3 Find Types of Horizontal Asymptotes

There are 3 cases to consider, below is case 1:

EXAMPLE 3 Find Types of Horizontal Asymptotes

There are 3 cases to consider, below is case 2:

EXAMPLE 3 Find Types of Horizontal Asymptotes

There are 3 cases to consider, below is case 3:

EXAMPLE 3 Find Types of Horizontal Asymptotes

What are the horizontal asymptotes for the graph $f(x) = \frac{3x-2}{x^2+7x+12}$?

Try It!

3. What are the horizontal asymptotes of the graph of each function?

a.
$$g(x) = \frac{2x^2 + x - 9}{2x - 8}$$

b.
$$h(x) = \frac{x^2 + 5x + 4}{3x^2 - 12}$$

c.
$$k(x) = \frac{x}{(2x-1)(x+6)}$$

Practice & Problem Solving

2. What is the domain of the f

$$f(x) = \frac{x^2 - x - 2}{x^4 - 81}$$
?

- All real numbers except
- B All real numbers except -
- C All real numbers except -
- All real numbers except and 3

What are the horizontal ar vertical asymptotes of the

$$y = \frac{x^4 + 3}{x^4 + 2x^2 - 3}$$
?

- **A** $y = 1; x = \pm 1$
- **B** $y = 1; x = \pm 3$
- © y = 0; x = 1
- ① y = 0; x = -1
- 3. What are the horizontal and vertical asymptotes of the g

$$y = \frac{x^2 - 3x - 4}{3 - x^2}$$
?

(A)
$$y = -1$$
; $x = \pm \sqrt{3}$

B
$$y = 1; x = \pm \sqrt{3}$$

©
$$y = -1$$
; $x = 1$ and $x = \sqrt{3}$

①
$$y = -1$$
; $x = 1$ and $x = -\sqrt{3}$

Period

18. Select all the functions who graphs have a horizontal asymptote at $y = \frac{2}{3}$.

$$\Box$$
 A. $y = \frac{2}{3x-1}$

B.
$$y = \frac{2x^2 + 1}{3x^2 - 2}$$

$$\Box$$
 C. $y = \frac{2}{3} + \frac{1}{x}$

$$\Box$$
 D. $y = \frac{2x-3}{3x^2+1}$

$$\Box$$
 E. $y = 3 + \frac{3}{2x}$

What are the horizontal and vertical asymptotes of the g

$$y = \frac{-x+3}{x-8}$$
?

A
$$y = -1$$
; $x = 8$

B
$$y = -1$$
; $x = -8$

©
$$y = 1$$
; $x = 8$

①
$$y = 1; x = -8$$

Graphing Rational Functions

RATIONAL FUNCTION

A function that is expressible as a fraction with polynomials in the numerator and the denominator

ASYMPTOTES

Vertical

Vertical asymptotes are guides for the behavior of a graph as it approaches a vertical line.

- The line x = a is a vertical asymptote of P(x)/Q(x), if Q(a) = 0 and P(a) ≠ 0.
- The up or down behavior of the function as it approaches the asymptote can be determined by substituting values close to <u>a</u> on either side of the asymptote.

Horizontal

Horizontal asymptotes are guides for the end behavior of a graph as it approaches a horizontal line.

If the degree of the numerator is

- less than the degree of the denominator, the horizontal asymptote is at y = 0.
- greater than the denominator, there is no horizontal asymptote.
- equal to the degree of the denominator, set y equal to the ratio of the leading coefficients. The graph of this line is the horizontal asymptote.

ALGEBRA

$$f(x) = \frac{8x-3}{4x+1}$$

Vertical Asymptote: Let 4x + 1 = 0 and solve.

$$x = -\frac{1}{4}$$

Horizontal Asymptote: Find the ratio of the leading coefficients $\left(\frac{8}{4}\right)$.

$$y = 2$$

GRAPH

