The Pumping Lemma for Context-Free Languages

Derivation tree of string wLast repeated variable w = uvxyz vrepeated w = uvxyz v = uvxyz v = uvxyzrepeated v = uvxyz v =

We know:

$$S \stackrel{*}{\Rightarrow} uAz$$

$$S \stackrel{*}{\Rightarrow} uAz$$
 $A \stackrel{*}{\Rightarrow} vAy$

$$A \stackrel{*}{\Longrightarrow} x$$

This string is also generated:

$$s \Rightarrow uAz \Rightarrow uxz$$

$$uv^0xy^0z$$

We know:

$$S \stackrel{*}{\Rightarrow} uAz$$

$$S \Rightarrow uAz$$
 $X \Rightarrow vAy$ $X \Rightarrow x$

$$A \stackrel{*}{\Longrightarrow} x$$

This string is also generated:

$$s \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvxyz$$

The original
$$w = uv^1xy^1z$$

We know:

$$S \stackrel{*}{\Rightarrow} uAz$$
 $A \stackrel{*}{\Rightarrow} vAy$ $A \stackrel{*}{\Rightarrow} x$

$$A \Rightarrow vAy$$

$$A \stackrel{*}{\Longrightarrow} x$$

This string is also generated:

$$uv^2xy^2z$$

We know:

$$S \stackrel{*}{\Rightarrow} uAz$$

$$A \stackrel{*}{\Rightarrow} vAy$$

$$A \stackrel{*}{\Rightarrow} x$$

This string is also generated:

$$uv^3xy^3z$$

We know:

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow x$$

This string is also generated:

$$S \stackrel{*}{\Longrightarrow} uAz \stackrel{*}{\Longrightarrow} uvAyz \stackrel{*}{\Longrightarrow} uvvAyyz \stackrel{*}{\Longrightarrow}$$

$$\stackrel{*}{\Longrightarrow} uvvvAyyyz \stackrel{*}{\Longrightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvv\cdots vAy\cdots yyyz \stackrel{*}{\Rightarrow}$$

$$\stackrel{*}{\Rightarrow} uvvv\cdots vxy\cdots yyyz$$

$$uv^ixy^iz$$

Therefore, any string of the form

$$uv^i xy^i z$$
 $i \ge 0$

is generated by the grammar G

2

Therefore,

knowing that $uvxyz \in L(G)$

we also know that $uv^i xy^i z \in L(G)$

$$L(G) = L - \{\lambda\}$$

$$uv^{i}xy^{i}z \in L$$

The Pumping Lemma:

For infinite context-free language L there exists an integer m such that for any string $w \in L$, $|w| \ge m$ we can write w = uvxyz with lengths $|vxy| \le m$ and $|vy| \ge 1$ and it must be: $uv^i xy^i z \in L$, for all $i \ge 0$

13

Applications of The Pumping Lemma

Non-context free languages

$$\{a^nb^nc^n:n\geq 0\}$$

Context-free languages

$$\{a^nb^n: n \ge 0\}$$

15

Theorem: The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that ${\cal L}$ is context-free

Since L is context-free and infinite we can apply the pumping lemma

17

$$L = \{a^n b^n c^n : n \ge 0\}$$

Pumping Lemma gives a magic number m such that:

Pick any string $w \in L$ with length $|w| \ge m$

We pick: $w = a^m b^m c^m$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

We can write: w = uvxyz

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

19

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Pumping Lemma says:

$$uv^i xy^i z \in L$$
 for all $i \ge 0$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

We examine <u>all</u> the possible locations of string vxy in w

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 1: } vxy \text{ is within } a^m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$u vxy \qquad z$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: v and y consist from only a

 $L = \{a^n b^n c^n : n \ge 0\}$ $w = a^m b^m c^m$ $w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$ Case 1: Repeating v and y $k \ge 1$ $m + k \qquad m \qquad m$ aaaaaaa...aaaaaa bbb...bbb ccc...ccc $u \qquad v^2 xy^2 \qquad z$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: From Pumping Lemma: $uv^2xy^2z \in L$ $k \ge 1$ $m+k \qquad m \qquad m$

aaaaaa...aaaaaaabbb...bbb ccc...ccc

25

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: From Pumping Lemma: $uv^2xy^2z \in L$ $k \ge 1$

However: $uv^2xy^2z = a^{m+k}b^mc^m \notin L$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 2: } vxy \text{ is within } b^m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$u \qquad vxy \qquad z$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 2: Similar analysis with case 1}$$

$$m \qquad m \qquad m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$u \qquad vxy \qquad z.$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 3: } vxy \text{ is within } c^m$$

$$m \qquad m \qquad m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$u \qquad vxy z.$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\textbf{Case 3: Similar analysis with case 1}$$

$$m \qquad m \qquad m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$u \qquad vxy z.$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 4: } vxy \text{ overlaps } a^m \text{ and } b^m$$

$$aaa...aaa bbb...bbb ccc...ccc$$

$$u \qquad vxy \qquad z$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 4: Possibility 1: } v \text{ contains only } a$$

$$y \text{ contains only } b$$

$$m \qquad m$$

$$aaa...aaa \ bbb...bbb \ ccc...ccc$$

$$u \qquad vxy \qquad z$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 4: Possibility 1: } v \text{ contains only } a$$

$$k_1 + k_2 \ge 1 \qquad y \text{ contains only } b$$

$$m + k_1 \qquad m + k_2 \qquad m$$

$$aaa...aaaaaaaa bbbbbbbb...bbb ccc...ccc$$

$$u \qquad v^2xy^2 \qquad z$$

$$L = \{a^nb^nc^n : n \ge 0\}$$

$$w = a^mb^mc^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

$$\text{Case 4: From Pumping Lemma: } uv^2xy^2z \in L$$

$$k_1 + k_2 \ge 1$$

$$m + k_1 \qquad m + k_2 \qquad m$$

$$aaa...aaaaaaa bbbbbbb...bbb ccc...ccc$$

$$u \qquad v^2xy^2 \qquad z$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$ $k_1 + k_2 \ge 1$

However:
$$uv^2xy^2z = a^{m+k_1}b^{m+k_2}c^m \notin L$$

Contradiction!!!

35

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 2: v contains a and b y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$

However:
$$k_1 + k_2 + k \ge 1$$

$$uv^2xy^2z = a^mb^{k_1}a^{k_2}b^{m+k}c^m \notin L$$

Contradiction!!!

37

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 3: v contains only a y contains a and b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 3: v contains only a y contains a and b

Similar analysis with Possibility 2

39

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 5: vxy overlaps b^m and c^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 5: Similar analysis with case 4

There are no other cases to consider

(since $|vxy| \le m$, string vxy cannot overlap a^m , b^m and c^m at the same time)

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{a^n b^n c^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free