Introduction to Programming Lecture Six

N.R.Aravind

I.I.T. Hyderabad

24 Oct 2017

Topics in this lecture

- Structures
- Review
- Passing addresses
- Recursion
- Binary search

Structures

```
struct Book
  char bookName[30];
  char author[20];
  float price;
};
struct Book book1,book2;
strcpy(book1.bookName,"Timeline");
strcpy(book1.author,"Michael Crichton");
book1.price=400;
```

```
struct polynomial
{
   unsigned int degree;
   float coefficients[30];
};
```

```
struct Circle
   double centerX;
   double centerY;
   double radius:
struct Circle c[10];
c[1].centerX=2.3;
c[1].centerY=-2.1;
c[1].radius=3.0;
```

```
struct Point
   double x:
   double y;
struct Circle
   struct Point center;
   double radius;
};
```

Divide-and-Conquer

- Compute x^{80} .
- Method 1: Compute $x^2, x^3, \dots, x^{79}, x^{80}$.
- Method 2: Compute $y = x^{40}$; then $x^{80} = y * y$.
- Method 2 (Bottom-up): Compute $x, x^2, x^4, x^8, x^{16}, x^{32}, x^{64}$.
- Write $x^{80} = x^{64} * x^{16}$.
- Write $x^{83} = x^{64} * x^{16} * x^2 * x$.
- $x^{105} = x^{64} * x^{32} * x^8 * x^1.$

Divide-and-Conquer: Top-down

- Compute x^{164} .
- Compute x^{82} .
- Compute x^{41} .
- Compute $y = x^{20}$; write $x^{41} = y * y * x$.
- Compute x^n .
- If n is even, square $x^{n/2}$.
- If n is odd, square $x^{(n-1)/2}$ and multiply by x.

Recursive solution

```
double power (double x, unsigned int n)
  double y;
  if (n==0) return 1;
 y=power(x,n/2);
 y=y*y;
  if (n\%2==1) \{y=y*x;\}
  return y;
```

- $X \in [1, 100]$. Find X using Y/N questions.
- Is X >= 50?

- $X \in [1, 100]$. Find X using Y/N questions.
- Is X >= 50? No. $X \in [1, 50]$.
- Is X >= 25?

- $X \in [1, 100]$. Find X using Y/N questions.
- Is X >= 50? No. $X \in [1, 50]$.
- Is X >= 25? Yes. $X \in [25, 50]$.
- Is X >= 37?

- $X \in [1, 100]$. Find X using Y/N questions.
- Is X >= 50? No. $X \in [1, 50]$.
- Is X >= 25? Yes. $X \in [25, 50]$.
- Is X >= 37? Yes. $X \in [37, 50]$.
- Is X >= 43?

```
int binarySearch(int value,int left,int right);
//
```

```
left=0; right=n-1;
while(right> left)
   mid = (left + right)/2;
   if (X \le a[mid])
      right=mid;
   else
      left=mid:
```

```
Finding square-root of X; X>=1.
left=1; right=X;
while (right-left>0.001)
  mid = (left + right)/2;
  if (mid*mid>X) right=mid;
  else left=mid:
```