

Università degli Studi dell'Aquila

Prima Prova Parziale di Algoritmi e Strutture Dati con Laboratorio

Martedì 8 Novembre 2016 – Prof. Guido Proietti (Modulo di Teoria)

Scrivi i tuoi dati \Longrightarrow	Cognome:	Nome:	Matricola:	PUNTI
ESERCIZIO 1	Risposte Esatte:	Risposte Omesse:	Risposte Errate:	

ESERCIZIO 1: Domande a risposta multipla

Premessa: Questa parte è costituita da 10 domande a risposta multipla. Per ciascuna domanda vengono fornite 4 risposte, di cui soltanto una è corretta. Per rispondere utilizzare la griglia annessa, barrando con una \times la casella corrispondente alla risposta prescelta. È consentito omettere la risposta. In caso di errore, contornare con un cerchietto la \times erroneamente apposta (ovvero, in questo modo \otimes) e rifare la \times sulla nuova risposta prescelta. Se una domanda presenta più di una risposta, verrà considerata omessa. Per tutti i quesiti verrà attribuito un identico punteggio, e cioè: risposta esatta 3 punti, risposta omessa 0 punti, risposta sbagliata -1 punto. Il voto relativo a questa parte è ottenuto sommando i punti ottenuti e normalizzando su base 30. Se tale somma è negativa, verrà assegnato 0.

- 1. Detto F_n l' n-esimo numero della sequenza di Fibonacci, quale delle seguenti relazioni asintotiche è falsa? a) $F_n = O(2^n)$ *b) $F_n = \Theta(2^n)$ c) $F_n = \Theta(\phi^n)$ d) $F_n = \Omega(\phi^n)$
- 2. Per $n=2^k$, in quale caso del teorema master rientra l'equazione di ricorrenza $T(n)=4\cdot T(n/4)+n\log^2 n$, $T(1)=\Theta(1)$: a) caso 1 b) caso 2 c) caso 3 *d) in nessuno dei tre casi
- 3. Quale tra i seguenti rappresenta lo pseudocodice dell'algoritmo INSERTIONSORT2 per l'ordinamento non decrescente:

```
InsertionSort(A)
                                                                   \stackrel{\circ}{\text{InsertionSort}}(A)
                                                                                                    InsertionSort(A)
                                 I_{NSERTIONSORT}(A)
for k = 1 to n - 1 do
                                 for k = 1 to n - 1 do
                                                                  for k = 1 to n - 1 do
                                                                                                    for k = 1 to n - 1 do
                                  x = A[k]
 x = A[k+1]
                                                                    x = A[k+1]
                                                                                                     x = A[k+1]
                                   i = k - 1
                                                                                                     i = k
                                                                    while j > 0 e A[j] < x do
                                                                                                      while j > 0 e A[j] > x do
 while j > 0 e A[j] > x do
                                   while j > 0 e A[j] > x do
   A[j+1] = A[j]
j = j-1
                                                                     A[j+1] = A[j]i = j-1
                                                                                                       A[j+1] = A[j]<br/>j = j-1
                                    A[j+1] = A[j]
```

- 4. Dato un problema con una delimitazione inferiore alla complessità temporale pari a $\Omega(f(n))$, un algoritmo per la sua risoluzione non può avere tempo di esecuzione g(n) pari a:
 a) $g(n) = \Theta(f(n))$ *b) g(n) = o(f(n)) c) $g(n) = \omega(f(n))$ d) g(n) = O(f(n))
- 5. Siano f(n) e g(n) i costi dell'algoritmo Insertion Sort e Quicksort nel caso medio, rispettivamente. Quale delle seguenti relazioni asintotiche è vera:
 - a) f(n) = o(g(n)) b) $f(n) = \Theta(g(n))$ *c) $f(n) = \omega(g(n))$ d) f(n) = O(g(n))Sin h(n) l'alterne dell'albert di decisione associate all'algoritme HEADSOFT. Quale delle segmenti relegioni
- 6. Sia h(n) l'altezza dell'albero di decisione associato all'algoritmo Heapsort. Quale delle seguenti relazioni asintotiche è falsa:
 a) $h(n) = o(n^2)$ *b) $h(n) = o(n \log n)$ c) $h(n) = \Theta(\log n!)$ d) $h(n) = \Theta(n \log n)$
- 7. Sia dato un array A di n elementi in cui l'elemento massimo è pari a k. Trasformando gli elementi da ordinare in base $b = \Theta(n)$, quante passate di BUCKET SORT sono necessarie all'algoritmo RADIX SORT per ordinare A?

 a) $\Theta(n^k)$ b) $\Theta(n \log_k n)$ *c) $\Theta\left(\frac{\log k}{\log n}\right)$ d) $\Theta(\log n)$
- 8. Sia dato l'heap binomiale in figura, i seguenti è l'heap binomiale risultante?

 9
 5
 12
 23
 12
 7
 e si supponga di rimuovere da esso l'elemento con chiave 77. Quale tra
 33
 24
 23

- 9. Quali sono, rispettivamente, i costi per implementare le operazioni di IncreaseKey, DecreaseKey, e Merge in una coda di priorità di n elementi implementata utilizzando un d-heap? a) $O(d \log_d n)$, $O(d \log_d n)$, $O(d \log_d n)$, O(n) b) $O(\log_d n)$, $O(\log_d n)$, O(n) *c) $O(d \log_d n)$, $O(\log_d n$
- 10. Quali sono, rispettivamente, i costi per implementare le operazioni di *Insert, Delete*, e *Search*, in un dizionario di *n* elementi implementato utilizzando una lista ordinata?
 - $\text{a)} \ O(n), O(1), \Theta(n) \qquad \text{b)} \ \Theta(n), O(1), O(n) \qquad \text{c)} \ O(n), O(n), O(n) \qquad \text{*d)} \ O(n), O(1), O(n)$

Griglia Risposte

	Domanda									
Risposta	1	2	3	4	5	6	7	8	9	10
a										
b										
С										
d										