Examenul de bacalaureat național 2019 Proba E. c)

Matematică *M_pedagogic*

Clasa a XII-a

BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$(\sqrt{2}-1)(3\sqrt{2}+1) = 5-2\sqrt{2}$	2p
	$(\sqrt{2}+1)^2 = 3+2\sqrt{2}$, deci $(\sqrt{2}-1)(3\sqrt{2}+1)+(\sqrt{2}+1)^2 = 5-2\sqrt{2}+3+2\sqrt{2}=8 \in \mathbb{Z}$	3 p
2.	f(1) = 2m - 6, deci $2m - 6 = -4$ sau $2m - 6 = 4$	3p
	m=1 sau $m=5$	2 p
3.	$2x+3 = (3x+2)^2 \Rightarrow 9x^2 + 10x + 1 = 0$	3 p
	$x = -1$ care nu convine, $x = -\frac{1}{9}$ care convine	2 p
4.	Sunt 90 de numere naturale de două cifre, deci sunt 90 de cazuri posibile	1p
	Sunt 36 de numere naturale de două cifre care au cifra zecilor strict mai mică decât cifra unităților, deci sunt 36 de cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri favorabile}} = \frac{2}{3}$	20
	nr. cazuri posibile 5	2 p
5.	$m_{AC} = -a + 1, \ m_{OB} = \frac{1}{2}$	2p
	$\frac{1}{2}(-a+1) = -1 \Leftrightarrow a = 3$	3 p
6.	$\frac{BC}{\sin A} = \frac{AC}{\sin B} \Rightarrow \frac{6\sqrt{2}}{\sin A} = \frac{12}{\frac{\sqrt{2}}{2}} \Rightarrow \sin A = \frac{1}{2}$	2
	$\sin A \sin B \sin A \frac{\sqrt{2}}{2}$	3 p
	$m(A) = 30^{\circ}$, care convine, sau $m(A) = 150^{\circ}$, care nu convine, deoarece $m(B) = 45^{\circ}$	2 p

SUBIECTUL al II-lea (30 de puncte)

1.	$\sqrt{2} * \sqrt{4} = (\sqrt{2} - 2)(\sqrt{4} - 2) + 2 =$	3р
	$=(\sqrt{2}-2)(2-2)+2=2$	2p
2.	$x * y = (x-2)(y-2) + 2$, pentru orice numere reale $x \neq y$	2p
	y*x=(y-2)(x-2)+2=(x-2)(y-2)+2=x*y, pentru orice numere reale x și y , deci legea de compoziție "*" este comutativă	3 p
3.	x*3 = (x-2)(3-2) + 2 = x-2+2 = x, pentru orice număr real x	2p
	3*x = (3-2)(x-2)+2=x-2+2=x, pentru orice număr real x , deci $e=3$ este elementul neutru al legii de compoziție ,,*"	3p
4.	$(2^{x}-2)(4^{x}-2)+2=2 \Leftrightarrow 2^{x}-2=0 \text{ sau } 4^{x}-2=0$	3 p
	$x=1 \text{ sau } x=\frac{1}{2}$	2p

5.	$(x-2)(x+1-2)+2 \le 8 \Leftrightarrow x^2-3x-4 \le 0$	3p	
	$x \in [-1,4]$	2p	
6.	x*2=2 şi $2*y=2$, pentru orice numere reale x şi y	2p	Ī
	$1*\sqrt{2}*\sqrt{3}**\sqrt{10} = ((1*\sqrt{2}*\sqrt{3})*\sqrt{4})*(\sqrt{5}*\sqrt{6}**\sqrt{10}) = 2*(\sqrt{5}*\sqrt{6}**\sqrt{10}) = 2$	3 p	

SUBIECTUL al III-lea (30 de puncte)

1.	$\det M = \begin{vmatrix} 2 & 1 \\ -1 & 3 \end{vmatrix} = 2 \cdot 3 - 1 \cdot (-1) =$	3p
	=6+1=7	2p
2.	$A(a) = \begin{pmatrix} 2+2a & 1 \\ -1 & 3+2a \end{pmatrix} \Rightarrow \det(A(a)) = \begin{vmatrix} 2+2a & 1 \\ -1 & 3+2a \end{vmatrix} = 4a^2 + 10a + 7$	3 p
	$4a^2 + 10a + 7 = 7 \Leftrightarrow a = -\frac{5}{2} \text{ sau } a = 0$	2p
3.	$M \cdot A(a) = M \cdot (M + 2aI_2) = M \cdot M + 2aM$, pentru orice număr real a	2p
	$A(a) \cdot M = (M + 2aI_2) \cdot M = M \cdot M + 2aM = M \cdot A(a)$, pentru orice număr real a	3 p
4.	$A(-1) = \begin{pmatrix} 0 & 1 \\ -1 & 1 \end{pmatrix}, \det(A(-1)) = 1 \neq 0$	2p
	$\left(A(-1)\right)^{-1} = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$	3p
5.	Suma elementelor matricei $A(\log_2 a)$ este $5 + 4\log_2 a$	2 p
	$5 + 4\log_2 a = 37 \Leftrightarrow \log_2 a = 8$, deci $a = 256$	3 p
6.	Pentru orice număr întreg m , numărul $\det(A(m)) = 4m^2 + 10m + 7$ este întreg și, cum	2p
	$4m^2 + 10m + 7 > 0$, obținem că numărul $det(A(m))$ este natural	
	Cum $4m^2$ și $10m$ sunt numere pare, obținem că numărul $\det(A(m))$ este natural impar	3 p