Word Vectors Representations

Cristian Cardellino • Milagro Teruel

Aprendizaje Profundo • Diplodatos 2019
Facultad de Matemática, Astronomía, Física y Computación
Universidad Nacional de Córdoba

Credits

Slides adapted from the Stanford University course CS224d - Deep Learning for Natural Language Processing

Word Representations

How to represent the meaning of a word?

- **Meaning:** Idea represented by a word (or phrase).
- Represent meaning using a taxonomy, like WordNet, with hypernyms (is-a) relationships and synonyms.
 - New words need update of the resource.
 - Needs human labor to create or adapt.
 - Word similarity is hard to compute.

How to represent a word?

- Common denominator in any NLP task (from synonym finding to question answering).
- Any model in NLP needs an input representation of a word.
- Much of the NLP work treats words as atomic symbols.
- To perform well on most NLP tasks we need to have some notion of similarity and difference between words.
- Word vectors can encode this ability in the vectors themselves (using distance measures such as Euclidean, Cosine, etc).

Discrete Word Vectors

Discrete Word Vectors

- First approximation: one-hot vector.
- Treats the words as **atomic symbols**.
- For each word in the vocabulary we have one vector.
- In vector space terms, is a vector with one 1 and a lot of zeroes.

Discrete Word Vectors: Example

Given a corpus: "The cat sat on the mattress", it has a vocabulary $V=\{cat, mattress, on, sat, the\}$. Then, we can encode |V| number of vectors for each word $w^{(i)} \in \mathbb{R}^{|V|}$ (|V|=5 in this example).

Vectors for: "The cat sat on the mattress"

$$w^{cat} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}, w^{mattress} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, w^{on} = \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, w^{sat} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}, w^{the} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Problems with Discrete Representations

- English has an estimated 13 million tokens for the language.
- The **dimensionality** of the vector can be extremely large.
- All the vectors are sparse, then:

$$(w^{cat})^T w^{feline} = (w^{cat})^T w^{hotel} = 0$$

Distributional Representations

Distributional similarity based representations

- Idea: Represent a word by means of its neighbours.
- One of the **most successful ideas** in modern statistical NLP.

government debt problems turning into banking crises as has happened in saying that Europe needs unified banking regulation to replace the hodgepodge

How to make neighbours represent a word?

- Use a **co-occurrence matrix** X.
- Can be of the full document or of a window.
- Word-Document Matrix: Gives general topics (all sport terms will have similar entries). Leads to "Latent Semantic Analysis".
- Word-Word Matrix: An affinity matrix. It captures syntactic (PoS) and semantic information of the words.

Word-Word Co-occurrence Matrix

- Window length is usually in [5, 10].
- Symmetric (irrelevant whether the context is to the left or right).
- $X \in \mathbb{R}^{|V| \times |V|}$
- X_{ij} represents the co-occurrence between $w^{(i)}$ and $w^{(j)}$ within the window.

Word-Word Co-occurrence Matrix Example

Given the corpus:

- I enjoy flying.
- I like NLP.
- I like deep learning.

We have a word-word co-occurrence matrix with window of size 1:

counts	I	like	enjoy	deep	learning	NLP	flying	
L	0	2	1	0	0	0	0	0
like	2	0	0	1	0	1	0	0
enjoy	1	0	0	0	0	0	1	0
deep	0	1	0	0	1	0	0	0
learning	0	0	0	1	0	0	0	1
NLP	0	1	0	0	0	0	0	1
flying	0	0	1	0	0	0	0	1
	0	0	0	0	1	1	1	0

Problems with Co-Occurrence Matrix

- This first approximation for co-occurrence matrix increases with the vocabulary.
- It ends up being very high-dimensional and requires a lot of storage.
- We have to deal with sparsity issues (due to Zipf Law) → Models are less robust.
- Idea: store most of the important information in a fixed, small number of dimensions: a dense vector.
 - How to reduce dimensionality?

Word Vectors via Matrix

Factorization

Singular Value Decomposition on X

- We generate the **co-occurrence matrix** *X*.
- We apply SVD (Singular Value Decomposition) on X to get $X = USV^T$
- We observe the singular values (the diagonal matrix S) and cut them off at some index k.
- We take U_{1:|V|,1:k} as the word embedding matrix of k-dimensional word vectors.
- Each word is represented by a row in the matrix. The rows of V represent the words as context.
- In all subsequent models (e.g. deep learning models), the word is represented by a dense vector.

Applying SVD to X

$$|V| \left[\begin{array}{c} |V| \\ |V| \end{array} \right] = |V| \left[\begin{array}{ccc} |V| & & |V| & & |V| \\ -u_1 & - \\ -u_2 & - \\ \vdots & \vdots & \end{array} \right] |V| \left[\begin{array}{ccc} \sigma_1 & 0 & \cdots \\ 0 & \sigma_2 & \cdots \\ \vdots & \vdots & \ddots \end{array} \right] |V| \left[\begin{array}{ccc} | & | \\ v_1 & v_2 & \cdots \\ | & | \end{array} \right]$$

We reduce by selecting the first k singular vectors.

$$|V| \begin{bmatrix} & k & & & k & & k \\ & \hat{X} & & & & & \\ & & \hat{X} & & & \\ & & & \vdots & & \end{bmatrix} = |V| \begin{bmatrix} & -u_1 & - & & & \\ -u_2 & - & & & \\ & -u_2 & - & & \\ & \vdots & & \ddots & \\ \end{bmatrix} k \begin{bmatrix} & \sigma_1 & 0 & \cdots & \\ 0 & \sigma_2 & \cdots & \\ \vdots & \vdots & \ddots & \\ \end{bmatrix}$$

Semantic Patterns in Vectors

An Improved Model of Semantic Similarity Based on Lexical Co-Occurrence Rohde et al. 2005.

Problems with SVD

- Function words (the, he, has) are too frequent.
 - Ignore them or use an upper bound.
 - Use positive pointwise mutual information.
 - Use positive Pearson correlation.
- The dimension of the matrix changes as new words are added to the corpus. This changes the size of the vocabulary |V|.
- The matrix is extremely sparse (most of the words don't co-occur).
- The matrix is very high-dimensional in general.
- The cost to perform SVD is quadratic.

Probabilistic Word Vectors

Directly Learn Low Dimensional Vectors

- Don't store global information.
- Create a model that learns one iteration at a time.
- The model encodes the probability of a word given a context C.
- Possible approach: Language models.
 - This will give a **correct sentence high probability**.

Language models

 In the unigram model we assume each word occurrence is independent.

$$P(w^{(1)}, w^{(2)}, \dots, w^{(n)}) = \prod_{i=1}^{n} P(w^{(i)})$$

- Naive solution. Next word is contingent upon previous sequence of words.
- In the bigram model, the probability of a word depends on the previous one.

$$P(w^{(1)}, w^{(2)}, \dots, w^{(n)}) = \prod_{i=2}^{n} P(w^{(i)}|w^{(i-1)})$$

 Still naive, but works well. We are getting more on what we want to learn.

Neural Word Vectors

word2vec: Using Neural Networks to Learn Word Vectors

- Idea: Predict surroundings of every word.
- Is faster, can easily incorporate new sentences/documents to the vocabulary.
- Two possible variations.
 - Continuous Bag of Words (CBOW): Given a context predict the center word.
 - Skip-Gram Model: Given a center word predict its context.

Parameters of the Models

- We have a vocabulary $V=w^{(1)},w^{(2)},\ldots,w^{(m)}$ (|V|=m), and a symmetric context C.
- For each word $w^{(i)}$ we have a one-hot vector $x^{(i)} \in \mathbb{R}^m$.
- We create two matrices $W^{(1)} \in \mathbb{R}^{m \times n}$ and $W^{(2)} \in \mathbb{R}^{n \times m}$. In this case n is the dimension of our learned vectors.
- $u^{(i)} \in \mathbb{R}^n$ is the i-th row of matrix $W^{(1)}$, and represents the embedded input vector of the word $w^{(i)}$.
- $v^{(j)} \in \mathbb{R}^n$ is the j-th column of matrix $W^{(2)}$, and represents the *embedded output vector* of the word $w^{(j)}$.
- We learn 2 vector representations for every word $w^{(i)}$.

Continuous Bag of Words Model (CBOW)

Continuous Bag of Words: Forward Step

- We want to get the center word $w^{(i)}$ given the context words $(w^{(i-C)},\ldots,w^{(i-1)},w^{(i+1)},\ldots,w^{(i+C)}).$
- Generate the one-hot word vectors $(x^{(i-C)},\dots,x^{(i-1)},x^{(i+1)},\dots,x^{(i+C)}).$
- Get the embedded input vectors for each one-hot encoding $(u^{(i-C)} = x^{(i-C)T}W^{(1)}, \dots, u^{(i-1)} = x^{(i-1)T}W^{(1)}, u^{(i+1)} = x^{(i+1)T}W^{(1)}, \dots, u^{(i+C)} = x^{(i+C)T}W^{(1)}).$
- \bullet Average the vectors to get $h=\frac{u^{(i-C)}+u^{(i-C+1)}+\cdots+u^{(i+C)}}{2C}.$
- Generate a score vector $z = h^T W^{(2)}$.
- Turn the scores into a probability array, $\hat{y} = \operatorname{softmax}(z)$.
- We desire our probabilities generated, $\hat{y}^{(i)}$, to match the true probabilities, $y^{(i)}$. That is, our one-hot vector of the center word $w^{(i)}$.

Continuous Bag of Words: Visualization

Continuous Bag of Words: Learning the Weight Matrices

- Question: How do we learn the values of the matrices $W^{(1)}$ and $W^{(2)}$?
 - We use an objective function (also known as cost/loss function).
- What do we want? Maximize the probability of a true event.
- Use cross-entropy, i.e. the negative log-likelihood of the true labels given a probabilistic classifier's prediction.

$$H(y, \hat{y}) = -\sum_{j=1}^{m} y_j \log(\hat{y}_j)$$

Continuous Bag of Words: Objective Function

ullet Given a center word $w^{(i)}$ we want to predict, and a one-hot vector $y^{(i)}$ for the word, cross entropy simplifies to:

$$H(y, \hat{y}) = -y_i \log(\hat{y}_i)$$

• Then, we want to minimize our loss function:

$$J = -\log P(w^{(i)}|w^{(i-C)}, \dots, w^{(i-1)}, w^{(i+1)}, \dots, w^{(i+C)})$$

$$= -\log P(v^{(i)}|h)$$

$$= -\log \frac{\exp(v^{(i)T}h)}{\sum_{k=1}^{m} \exp(v^{(k)T}h)}$$

$$= -v^{(i)T}h + \log \sum_{k=1}^{m} \exp(v^{(k)T}h)$$

ullet We need to get the gradients of each of the vectors $v^{(i)}$ and $u^{(j)}$ for the gradient descent algorithm with backpropagation.

Skip-Gram Model

Skip-Gram: Forward Step

- We want to get the context words $(w^{(i-C)},\dots,w^{(i-1)},w^{(i+1)},\dots,w^{(i+C)}) \text{ given the center word } w^{(i)}.$
- ullet Generate the one-hot word vector $x^{(i)}$.
- \bullet Get the embedded input vector for the one-hot encoding $u^{(i)}=x^{(i)T}W^{(1)}.$
- There's no average, we set $h = u^{(i)}$.
- \bullet Generate 2C score vectors $(z^{(i-C)},\dots,z^{(i-1)},z^{(i+1)},\dots,z^{(i+C)}) \text{ with } z^{(j)}=h^{(T)}W^{(2)}.$
- Turn each of the scores into probabilities arrays, $\hat{y}^{(j)} = \text{softmax}(z^{(j)}).$
- We desire our probabilities vectors generated, $(\hat{y}^{(i-C)},\ldots,\hat{y}^{(i-1)},\hat{y}^{(i+1)},\ldots,\hat{y}^{(i+C)})$, to match the true probabilities, $(y^{(i-C)},\ldots,y^{(i-1)},y^{(i+1)},\ldots,y^{(i+C)})$. That is, our one-hot vectors for each of the context words.

Skip-Gram: Visualization

Skip-Gram: Learning the Weight Matrices

- We also need an **objective function** to learn the weight matrices $W^{(1)}$ and $W^{(2)}$.
- A key difference is to invoke a Naive Bayes assumption.
- Each of the probabilities of the outputs given a center word is independent.
- We want to maximize the log probability of any context word given the current center word.

$$J(\theta) = \frac{1}{T} \sum_{t=1}^{T} \sum_{-C \le j \le C, j \ne 0} \log p(w_{t+j}|w_t)$$

Skip-Gram: Objective Function

 \bullet A way to maximize the function $J(\theta)$ is to minimize the negative log-likelihood.

$$J = -\log P(w^{(i-C)}, \dots, w^{(i-1)}, w^{(i+1)}, \dots, w^{(i+C)} | w^{(i)})$$

$$= -\log \prod_{-C \le j \le C, j \ne 0} P(w^{(i+j)} | w^{(i)})$$

$$= -\log \prod_{-C \le j \le C, j \ne 0} P(v^{(i+j)} | u^{(i)})$$

$$= -\log \prod_{-C \le j \le C, j \ne 0} \frac{\exp(v^{(i+j)T}h)}{\sum_{k=1}^{m} \exp(v^{(k)T}h)}$$

$$= -\sum_{-C \le j \le C, j \ne 0} v^{(i+j)T}h + 2C \log \sum_{k=1}^{m} \exp(v^{(k)T}h)$$

• As in CBOW we need to get the gradients of each of the vectors $\boldsymbol{v}^{(j)}$ and $\boldsymbol{u}^{(i)}$.

Negative Sampling

Negative Sampling

- ullet If we look at the objective function, it sums over all |V|.
- Any update or evaluation we do is O(|V|), which is in the millions (if not billions).
- Idea: For every training step, instead of loop over the entire vocabulary, we sample several negative examples.
- Use a **noise distribution** $P_n(w)$ whose probabilities match the ordering of the frequency of the vocabulary.

Mikolov's Negative Sampling

- Based on Skip-Gram, changing the objective.
- ullet Considering a pair (w,c) of word and context. Does it comes from the training data?
 - P(D=1|w,c) is the probability that (w,c) came from the corpus data.
 - P(D=0|w,c) is the probability that (w,c) didn't come from the training data.
 - We model P(D=1|w,c) with the sigmoid function:

$$P(D = 1|w, c) = \frac{1}{1 + \exp(-v_c^T v_w)}$$

- We build a new objective function.
 - Maximize P(D=1|w,c) if (w,c) are in the corpus.
 - Maximize P(D=0|w,c) if (w,c) are not in the corpus.
- Take a maximum log-likelihood approach of these two probabilities.

Mikolov's Negative Sampling: Parameter Estimation

Given θ , the parameters of the model, we have:

$$\begin{split} \theta &= \operatorname{argmax}_{\theta} \prod_{(w,c) \in D} P(D=1|w,c,\theta) \prod_{(w,c) \in \tilde{D}} P(D=0|w,c,\theta) \\ &= \operatorname{argmax}_{\theta} \prod_{(w,c) \in D} P(D=1|w,c,\theta) \prod_{(w,c) \in \tilde{D}} (1-P(D=1|w,c,\theta)) \\ &= \operatorname{argmax}_{\theta} \sum_{(w,c) \in D} \log P(D=1|w,c,\theta) + \sum_{(w,c) \in \tilde{D}} \log (1-P(D=1|w,c,\theta)) \\ &= \operatorname{argmax}_{\theta} \sum_{(w,c) \in D} \log \frac{1}{1+e^{-v_c^T v_w}} + \sum_{(w,c) \in \tilde{D}} \log \left(1-\frac{1}{1+e^{-v_c^T v_w}}\right) \\ &= \operatorname{argmax}_{\theta} \sum_{(w,c) \in D} \log \frac{1}{1+e^{-v_c^T v_w}} + \sum_{(w,c) \in \tilde{D}} \log \left(\frac{1}{1+e^{v_c^T v_w}}\right) \end{split}$$

Mikolov's Negative Sampling: Objective Function

- ullet In the previous equations \tilde{D} is a **false corpus**.
- Unnatural sentences should have low probability of occurrence.
- The final objective function is defined:

$$J = -\log \sigma(v^{(j)}h) + \sum_{k=1}^{K} \log \sigma(\tilde{v}^{(k)}h)$$

- Where $\{\tilde{v}^{(k)}|k=1,\ldots,K\}$ are sampled from $P_n(w)$.
- What is $P_n(w)$?
 - The approach taken by Mikolov: Unigram Model raised to the power of $\frac{3}{4}$. Why is this?
 - is: $0.9^{\frac{3}{4}} = 0.92$.
 - Constitution: $0.09^{\frac{3}{4}} = 0.16$.
 - bombastic: $0.01^{\frac{3}{4}} = 0.032$.
 - "bombastic" is 3 times more likely to be sampled now, but
 "is" only went up marginally.

Learning the Word Vectors

Learning the Vectors

- The idea of getting the gradient of any parameter of the previous loss functions is to use them in gradient descent to train the input/output vectors.
- Usually, the set of all parameters in a model is defined in terms of one long vector θ.

 E.g. with *d*-dimensional vectors and *V* vocabulary size:

$$\theta = \begin{bmatrix} v_{aardvark} \\ v_{a} \\ \vdots \\ v_{zebra} \\ v'_{aardvark} \\ v'_{a} \\ \vdots \\ v'_{zebra} \end{bmatrix}$$

Gradient Descent

- To minimize $J(\theta)$ over the full batch, requires to compute gradients for all windows.
- Updates for each element of θ :

$$\theta_j^{new} = \theta_j^{old} - \alpha \frac{\partial}{\partial \theta_j^{old}} J(\theta)$$

- ullet With step size lpha
- In matrix notation for all parameters:

$$\theta^{new} = \theta^{old} - \alpha \frac{\partial}{\partial \theta^{old}} J(\theta)$$

$$\theta^{new} = \theta^{old} - \alpha \nabla_{\theta} J(\theta)$$

Stochastic Gradient Descent

- Corpus may have billions of tokens and windows.
- Is a bad idea for neural nets to wait that much for a single update.
- The parameters should be updated after each window t.
- This is call Stochastic Gradient Descent
- Each gradient can be very sparse (only contains information of the vectors of the window)
 - Keep a hash for word vectors or update certain columns of full embedding matrices ${\cal W}^{(1)}$ and ${\cal W}^{(2)}.$

Final Vectors

- We end up with **two matrices of vectors** $W^{(1)}$ and $W^{(2)}$.
- Each matrix has the input and output representation of each vector.
- Both capture co-occurrence information.
- How do we get a final vector?

Word2Vec Vectors' Characteristics

Linear Relationships

- The embeddings are very good at encoding dimensions of similarity.
- Analogies testing dimensions of similarity can be solved quite well by doing vector subtraction.
- Syntactically:
 - $w^{apple} w^{apples} \approx w^{car} w^{cars} \approx w^{family} w^{families}$
 - Similarly for verb and adjectives morphological forms
- Semantically:
 - $w^{shirt} w^{clothing} \approx w^{char} w^{furniture}$
 - $w^{king} w^{man} \approx w^{queen} w^{woman}$

Word Analogies

Count Based vs. Direct Prediction

LSA, HAL (Lund & Burgess), COALS (Rohde et al), Hellinger-PCA (Lebret & Collobert)

- · Fast training
- Efficient usage of statistics
- Primarily used to capture word similarity
- Disproportionate importance given to small counts

- NNLM, HLBL, RNN, Skipgram/CBOW, (Bengio et al; Collobert & Weston; Huang et al; Mnih & Hinton; Mikolov et al; Mnih & Kavukcuoglu)
- Scales with corpus size
- Inefficient usage of statistics
- Generate improved performance on other tasks
- Can capture complex patterns beyond word similarity