

Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki Kierunek Automatyka i Robotyka

Projekt inżynierski

Sprzętowa implementacja regulatora MPC

Autor: Szymon Zosgórnik

Kierujący pracą: dr hab. inż., prof. PŚ Jarosław Śmieja

Spis treści

1	Wstęp	1
	1.1 Motywacja projektu	1
	1.2 Cel pracy	1
2	Idea regulatora MPC	2
	2.1 First	2
	2.2 Second	2
	2.3 Third	2
3	Założenia projektowe i wykorzystane narzędzia	3
	3.1 Architektura systemu	3
	3.2 Narzędzia programistyczne	3
	3.2.1 Języki programowania C/C++	3
	3.2.2 Język programowania Python	3
	3.2.3 Środowisko MATLAB	3
	3.2.4 Biblioteka HAL	3
	3.3 Przykład referencyjny	3
	3.4 Sposób testowania	3
4	Implementacja rozwiązania	5
_	4.1 Nawet nie wiem od czego tu zacząć	5
	1.1 Ivawet inc wiem od czego tu zacząc	0
5	Przykładowe wyniki	6
	5.1 Dużo wyników	6
6	Podsumowanie	7
U	6.1 Wyniki	
	6.2 Wnioski	7
	U.Z WIIIUSKI	1
Do	datki	8
Δ	Jak zrobie jakieś fajen porównania to tu dam	O
_	JAN ALUHE JANES JAJEH DULUWHAHIA LU LIL HAHI	

Wstęp

1.1 Motywacja projektu

Lorem ipsum.

1.2 Cel pracy

Lorem ipsum.

Idea regulatora MPC

2.1 First

Lorem ipsum.

2.2 Second

Lorem ipsum.

2.3 Third

Lorem ipsum.

Założenia projektowe i wykorzystane narzędzia

3.1 Architektura systemu

Lorem ipsum. Cokolwiek o STMie / ARMie.

3.2 Narzędzia programistyczne

3.2.1 Języki programowania C/C++

A gdzie Rust?!

3.2.2 Język programowania Python

Lorem ipsum.

3.2.3 Środowisko MATLAB

Lorem ipsum.

3.2.4 Biblioteka HAL

Lorem ipsum.

3.3 Przykład referencyjny

Lorem ipsum.

3.4 Sposób testowania

Lorem ipsum.

dsdsa.

dsdsadsa.

dsa.ds.a.dsdsads.a

. sad.

sad.

dsa.d.a

•

. aad

sad.

.aa

Implementacja rozwiązania

4.1 Nawet nie wiem od czego tu zacząć Todooo.

Przykładowe wyniki

5.1 Dużo wyników

Wiyncyj wyników.

Podsumowanie

6.1 Wyniki

No działa.

6.2 Wnioski

Jak wyżej.

Dodatki

Dodatek A

Jak zrobię jakieś fajen porównania to tu dam

Lorem ipsum.

Spis rysunków

Spis tablic

Spis listingów

Bibliografia

[1] Rolf Findeisen Markus Kögel. A fast gradient method for embedded linear predictive control. Proceedings of the 18th World Congress The International Federation of Automatic Control, strony 1362–1367, 28.08 - 02.09.2011.