Problem Set 7

D. Zack Garza

October 27, 2019

Contents

T	Problem 1	1
	1.1 Case 1: $p = q$	
	1.2 Case 2: $p > q$	
	1.3 Case 3: $q > p$	2
2	Problem 2	3
3	Problem 3	3
4	Problem 4	3
5	Problem 5	4
6	Problem 6	4
7	Problem 7	4
8	Problem 8	4
9	Problem 9	4
10	Problem 10	4

1 Problem 1

Note that if either p=1 or q=1, G is a p-group, which is a nontrivial center that is always normal. So assume $p \neq 1$ and $q \neq 1$.

We want to show that G has a non-trivial normal subgroup. Noting that $\#G = p^2q$, we will proceed by showing that either n_p or n_q must be 1.

We immediately note that

$$n_p \equiv 1 \mod p$$

$$n_q \equiv 1 \mod q$$

$$n_p \mid q \qquad \qquad n_q \mid p^2,$$

which forces

$$n_p \in \{1, q\}, \quad n_1 \in \{1, p, p^2\}.$$

If either $n_p = 1$ or $n_q = 1$, we are done, so suppose $n_p \neq 1$ and $n_1 \neq 1$. This forces $n_p = q$, and we proceed by cases:

1.1 Case 1: p = q.

Then $\#G = p^3$ and G is a p-group. But every p-group has a non-trivial center $Z(G) \leq G$, and the center is always a normal subgroup.

1.2 Case 2: p > q.

Here, since $n_p \mid q$, we must have $n_p < q$. But if $n_p < q < p$ and $n_p = 1 \mod p$, then $n_p = 1$.

1.3 Case 3: q > p.

Since $n_p \neq 1$ by assumption, we must have $n_p = q$. Now consider sub-cases for n_q :

- $n_q = p$: If $n_q = p = 1 \mod q$ and p < q, this forces p = 1.
- $n_q = p^2$: We will reach a contradiction by showing that this forces

$$\left| P := \bigcup_{S_n \in \operatorname{Syl}(p,G)} S_p \setminus \{e\} \right| + \left| Q := \bigcup_{S_n \in \operatorname{Syl}(q,G)} S_q \setminus \{e\} \right| + \left| \{e\} \right| > |G|.$$

We have

$$\begin{split} |P| + |Q| + |\{e\}| &= n_p(q-1) + n_q(p^2-1) + 1 \\ &= p^2(q-1) + q(p^2-1) + 1 \\ &= p^2(q-1) + 1(p^2-1) + (q-1)(p^2-1) + 1 \qquad \text{(since } q > 1) \\ &= (p^2q - p^2) + (p^2-1) + (q-1)(p^2-1) + 1 \\ &= p^2q + (q-1)(p^2-1) \\ &\geq p^2q + (2-1)(2^2-1) \qquad \text{(since } p, q \geq 2) \\ &= p^2q + 3 \\ &> p^2q = |G|, \end{split}$$

which is a contradiction.

2 Problem 2

We'll use the fact that $H \subseteq N(H)$ for any subgroup H (following directly from the closure axioms for a subgroup), and thus

$$P \leq N(P)$$
 and $N(P) \leq N^2(P)$.

Since it is then clear that $N(P) \subseteq N^2(P)$, it remains to show that $N^2(P) \subseteq N(P)$.

So if we let $x \in N^2(P)$, so x normalizes N(P), we need to show that x normalizes P as well, i.e. $xPx^{-1} = P$.

However, supposing that $|G| = p^k m$ where (p, m) = 1, we have

$$P \le N(P) \le G \implies p^k \mid |N(P)| \mid p^k m,$$

so in fact $P \in \text{Syl}(p, N(P))$ since it is a maximal p-subgroup.

Then $P' := xPx^{-1} \in \text{Syl}(p, N(P))$ as well, since all conjugates of Sylow p-subgroups are also Sylow p-subgroups.

But since $P \leq N(P)$, there is only one Sylow p- subgroup of N(P), namely P. This forces P = P', i.e. $P = xPx^{-1}$, which says that $x \in N(P)$ as desired. \square

3 Problem 3

By definition, G is simple iff it has no non-trivial subgroups, so we will show that if |G| = 148 then it must contain a normal subgroup.

Noting that $248 = p^2q$ where p = 2, q = 37, we find that (for example) $n_2 \mid 37$ but $n \equiv 1 \mod 2$; but the only odd divisor of 7 is 1, forcing $n_2 = 1$. So G has a normal Sylow 2-subgroup and we are done.

4 Problem 4

Let $\tau := (t_1, t_2)$ denote the transposition and $\sigma = (s_1, s_2 \cdots, s_p)$ denote the *p*-cycle, and let $S = \langle \sigma, \tau \rangle$. We would like to show that $S = S_p$, and since $S \subseteq S_p$ is clear, we just need to show that $S_p \subseteq S$.

We first note that because p is prime, σ^k is a p-cycle for every $1 \le k \le p$, and $\langle \sigma \rangle = \langle \sigma^k \rangle$ for any such k.

Then note that $t_1 = s_i$ for some i and $t_2 = s_j$ for some j, so we can take k = j - i to get a cycle σ^k that sends t_1 to t_2 . So without loss of generality, we can replace σ with

$$\sigma = (t_1, t_2, \cdots)$$

But now, we can relabel all of the elements of S_p simultaneously (i.e. replace $\langle \sigma, \tau \rangle$ with another subgroup in the same conjugacy class) in such a way that t_1 becomes 1 and t_2 becomes 2. We can

then assume wlog that

$$\tau = (1, 2), \quad \sigma = (1, 2, \cdots, p)$$

We can then get all adjacent transpositions: noting that

$$\sigma^{-1}\tau\sigma = (2,3)$$

$$\sigma^{-2}\tau\sigma^2 = (3,4)$$

$$\cdots$$

$$\sigma^{-k}\tau\sigma^k = (k+1 \mod p, \ k+2 \mod p) \quad \forall 1 \le k \le p,$$

where we use the fact that for any $\gamma \in S_p$, we have $\gamma \tau \gamma = (\gamma(1), \ \gamma(2))$.

But this also gives us all transpositions of the form (1,j) for each $2 \le j \le p$:

$$(2,3)^{-1}(1,2)(2,3) = (1,3)$$

$$(3,4)^{-1}(1,3)(3,4) = (1,4)$$

$$\dots$$

$$(j-1,j)^{-1}(1,j-1)(j-1,j) = (1,j) \quad \forall 1 \le j \le p.$$

Thus we have $J := \langle \{(1,j) \mid 2 \le j \le p\} \rangle \subseteq S$.

But now if $\gamma=(g_1,g_2,\cdots,g_k)\in S_p$ is an arbitrary cycle, we can write

$$\gamma = (g_1, g_2, \cdots, g_k) = (1, g_1)(1, g_2), \cdots (1, g_k),$$

so $\gamma \in J$. Then writing any arbitrary permutation as a product of disjoint cycles, we find that $S_p \subseteq J \subseteq S$, and so $S_p \subseteq S$ as desired. \square

- 5 Problem 5
- 6 Problem 6
- 7 Problem 7
- 8 Problem 8

?

- 9 Problem 9
- 10 Problem 10