KotsubinskyaYV 18092024-150526

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.1	0.511	-116.9	23.653	107.3	0.027	51.4	0.500	-59.5
1.2	0.503	-122.4	22.050	104.1	0.028	50.8	0.469	-62.1
1.3	0.498	-127.2	20.607	101.3	0.029	50.5	0.443	-64.4
1.4	0.492	-131.8	19.296	98.7	0.030	50.3	0.418	-66.7
1.5	0.489	-135.6	18.166	96.4	0.031	50.3	0.397	-68.6
1.6	0.488	-139.4	17.130	94.0	0.032	50.3	0.379	-70.7
1.7	0.484	-142.9	16.207	92.0	0.033	50.3	0.362	-72.6
1.8	0.482	-145.8	15.324	90.0	0.034	50.5	0.348	-74.4
1.9	0.482	-148.9	14.573	88.2	0.035	50.7	0.335	-76.4
2.0	0.480	-151.2	13.871	86.5	0.036	50.8	0.324	-78.0
2.1	0.478	-153.8	13.250	84.8	0.037	50.9	0.314	-79.8

и частоты $f_{\mbox{\tiny H}}=1.2$ $\Gamma\Gamma\mbox{\scriptsize II},$ $f_{\mbox{\tiny B}}=2.0$ $\Gamma\Gamma\mbox{\scriptsize II}.$

Найти неравномерность усиления в полосе $f_{\scriptscriptstyle \rm H}...f_{\scriptscriptstyle \rm B}$, используя рисунок 1.

Рисунок 1 – Частотная характеристика усиления

Варианты ОТВЕТА:

1) 2.0 дБ 2) 0.6 дБ 3) 5.0 дБ 4) 4.0 дБ

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.0	0.343	-157.7	12.929	92.5	0.039	67.3	0.326	-63.5
1.5	0.360	-174.0	8.599	81.4	0.054	66.4	0.235	-75.3
2.0	0.372	176.3	6.319	74.0	0.069	64.8	0.186	-88.5
3.0	0.387	162.0	4.150	62.3	0.100	60.3	0.155	-110.9
5.5	0.415	137.5	2.272	37.5	0.174	44.9	0.120	-148.4
8.0	0.497	113.8	1.563	13.8	0.238	27.1	0.125	128.5

Найти точку (см. рисунок 2), соответствующую s_{11} на частоте 1.5 $\Gamma\Gamma$ ц.

Рисунок 2 – Кривые s_{11} и s_{22}

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Найти точку (см. рисунок 3), соответствующую коэффициенту отражения от нормированного импеданса $z=0.2\text{-}0.65\mathrm{i}$.

Рисунок 3 — Точки s_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной точки.

Задан двухполюсник на рисунке 4, причём $R1 = 38.96 \, \text{Om}$.

Рисунок 4 – Двухполюсник

Найти полуокружность (см. рисунок 5), описываемую коэффициентом отражения от этого двухполюсника в среде с волновым сопротивлением 50 Ом при изменении частоты от 0 до ∞ .

Рисунок 5 — Полуокружности Γ_i на s-плоскости

В качестве ОТВЕТА указать индекс выбранной полуокружности.

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
3.3	0.484	-176.9	8.423	68.8	0.051	51.6	0.254	-100.1
3.4	0.485	-178.3	8.159	67.6	0.052	51.6	0.252	-101.4
3.5	0.486	-179.8	7.898	66.3	0.053	51.6	0.250	-102.7
3.6	0.486	178.9	7.699	65.3	0.054	51.5	0.248	-103.6
3.7	0.487	177.6	7.502	64.3	0.055	51.5	0.246	-104.4
3.8	0.488	176.3	7.308	63.2	0.057	51.4	0.244	-105.3
3.9	0.489	175.0	7.117	62.1	0.058	51.4	0.242	-106.2
4.0	0.490	173.7	6.928	60.9	0.059	51.3	0.240	-107.1
4.1	0.492	172.5	6.767	59.9	0.060	51.0	0.238	-108.3
4.2	0.494	171.3	6.608	58.9	0.062	50.7	0.236	-109.5
4.3	0.496	170.1	6.452	57.8	0.063	50.5	0.234	-110.7

и частоты $f_{\scriptscriptstyle \rm H}=3.3$ ГГц, $f_{\scriptscriptstyle \rm B}=4.2$ ГГц.

Найти модуль $s_{12}\;$ в дБ на частоте $f_{\scriptscriptstyle \rm B}$.

Варианты ОТВЕТА:

- 1) 16.4 дБ
- 2) -24.2 дБ
- 3) -6.1 дБ
- 4) -12.6 дБ

Даны значения ѕ-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
GHz	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
1.3	0.498	-127.2	20.607	101.3	0.029	50.5	0.443	-64.4
2.0	0.480	-151.2	13.871	86.5	0.036	50.8	0.324	-78.0
2.7	0.479	-167.3	10.300	75.8	0.044	51.5	0.272	-91.3
3.4	0.485	-178.3	8.159	67.6	0.052	51.6	0.252	-101.4
4.1	0.492	172.5	6.767	59.9	0.060	51.0	0.238	-108.3
4.8	0.505	164.7	5.744	52.4	0.069	49.2	0.222	-116.9
5.5	0.502	158.5	4.950	45.8	0.079	48.0	0.208	-122.2
6.2	0.513	150.4	4.426	38.7	0.088	44.0	0.192	-132.8
7.2	0.536	139.1	3.761	28.6	0.101	39.9	0.155	-150.0

и частоты $f_{\scriptscriptstyle \rm H}=2.0$ $\Gamma\Gamma\mathrm{tt},$ $f_{\scriptscriptstyle \rm B}=7.2$ $\Gamma\Gamma\mathrm{tt}.$

Найти развязку на $f_{\scriptscriptstyle \mathrm{H}}$.

Варианты ОТВЕТА:

1) 28.9 дБ 2) 19.9 дБ 3) 10.0 дБ 4) 57.7 дБ