Learning to Reason without External Rewards

开源代码: HTTPS://GITHUB.COM/SUNBLAZE-UCB/INTUITOR

Xuandong Zhao* **UC** Berkeley

Zhewei Kang* UC Berkeley

Aosong Feng Yale University

xuandongzhao@berkeley.edu waynekang@berkeley.edu aosong.feng@yale.edu **Dawn Song Sergey Levine UC** Berkeley UC Berkeley svlevine@berkeley.edu dawnsong@berkeley.edu

本文设计了一种隐式的reward计算方式,即利用IIm自身的置信度作为reward,其核心思想基于一个 观察结果: IIm在遇到难题时往往表现出较低的置信度。如何定义置信度呢? 它等于IIm对vocab的输出 概率分布与均匀分布之间的平均 KL 散度

$$\mathbf{Self\text{-}certainty}(o|q) \coloneqq \frac{1}{|o|} \sum_{i=1}^{|o|} \mathrm{KL}(U \parallel p_{\pi_{\theta}}(\cdot|q,o_{< i})) = -\frac{1}{|o| \cdot |\mathcal{V}|} \sum_{i=1}^{|o|} \sum_{j=1}^{|\mathcal{V}|} \log \left(|\mathcal{V}| \cdot p_{\pi_{\theta}}(j|q,o_{< i})\right)$$

背景

简介

不论是RLHF还是RLVR 都依赖明确的reward,前者依靠 reward model,为了建模reward model需要标注偏好数 据,后者依赖数据的ground truth(比如数学题的标准答 案),但是很多领域难以找到适合RLVR的训练数据。 本论文延续隐式reward的思路: 在没有标准答案和人类反 馈的场景下,如何用RL训练IIm? 关键是如何定义"隐式 reward"。本文作者设计了self-certainty作为reward。

• 框架: open-r1

• 实验对象: Qwen-2.5 1.5B/3B/7B/14B和 Llama3.2-3B-Instruct

• 强化学习算法: GRPO,保留kl loss

• reward function: self-certainty和KL两项

REWARD

Reinforcement Learning from Internal Feedback (RLIF)

部分实验结果

Table 1: Performance comparison of various methods on the GSM8K, MATH, LCB, CRUXEval-O, MMLU-Pro, and AlpacaEval benchmarks. The INTUITOR-Code variant is trained on Codeforces data with a smaller learning rate and fewer training steps. All evaluations are obtained with the chat inference template except for MMI II-Pro

nterence template, except for MMLU-Pro.							
Model	Training Data	GSM8K	MATH500	LCB	CRUX	MMLU-Pro	AlpacaEval
Qwen2.5-1.5B Results							
Base	-	0.002	0.090	0.000	0.000	0.297	2.10
+ GRPO	MATH	0.747	0.560	0.056	0.328	0.315	4.03
+ Intuitor	MATH	0.711	0.530	0.099	0.296	0.310	4.28
Qwen2.5-3B Results							
Base	-	0.673	0.544	0.093	0.236	0.377	3.72
+ GRPO	MATH	0.826	0.636	0.085	0.341	0.403	6.91
+ GRPO-PV	MATH	0.820	0.636	0.086	0.299	0.398	6.17
+ Intuitor	MATH	0.792	0.612	0.153	0.416	0.379	7.10
+ Intuitor-Code	Codeforces	0.743	0.572	0.153	0.411	0.386	4.16

我一直觉得隐式REWARD类型的工作挺有意思的,如 果真的能通过无监督的方式让LLM提升能力,那可太 棒了,此处省略一万个优点。

再来思考下可能存在的不足,将置信度作为 REWARD, LLM可能对一些"幻觉"内容信心满满,这 个时候还进行鼓励,岂不是对错误问题越陷越深? REWARD HACKING的风险是否也比较高,模型可能学 会制造高置信度而非正确的答案,最终优化的也许只 是"看起来自信",而不是"真正有理有据"的推理。