INTRODUCTION TO STATISTICS

LECTURE 8

TODAY

- Confidence intervals based on normal data
 - for μ when σ is known;
 - for μ when σ is unknown;
 - for σ .

TODAY

- Confidence intervals based on normal data
 - for μ when σ is known;
 - for μ when σ is unknown;
 - for σ .
- Large sample CI

TODAY

- Confidence intervals based on normal data
 - for μ when σ is known;
 - for μ when σ is unknown;
 - for σ .
- Large sample CI
- Bernoulli data and polling

A QUICK REMINDER

What we saw last time

CI: DEFINITION

A $1-\alpha$ confidence interval for a parameter θ is an interval $C_n=(T_1,T_2)$ such that $T_1=t_1(X_1,\ldots,X_n),\ T_2=t_2(X_1,\ldots,X_n)$ and

$$P(T_1 < \theta < T_2) \ge 1 - \alpha$$

CI: DEFINITION

A $1-\alpha$ confidence interval for a parameter θ is an interval $C_n=(T_1,T_2)$ such that $T_1=t_1(X_1,\ldots,X_n),\ T_2=t_2(X_1,\ldots,X_n)$ and

$$P(T_1 < \theta < T_2) \ge 1 - \alpha$$

• Random intervals: T_1 and T_2 are functions of random samples.

CI: DEFINITION

A $1-\alpha$ confidence interval for a parameter θ is an interval $C_n=(T_1,T_2)$ such that $T_1=t_1(X_1,\ldots,X_n),\ T_2=t_2(X_1,\ldots,X_n)$ and

$$P(T_1 < \theta < T_2) \ge 1 - \alpha$$

- Random intervals: T_1 and T_2 are functions of random samples.
- θ is unknown, but fixed T_1 and T_2 are random

$$C_n = (T_1, T_2)$$
: $P(T_1 < \theta < T_2) \ge 1 - \alpha$

$$C_n = (T_1, T_2)$$
: $P(T_1 < \theta < T_2) \ge 1 - \alpha$

• **Not** a probability statement about θ since it's fixed.

$$C_n = (T_1, T_2)$$
: $P(T_1 < \theta < T_2) \ge 1 - \alpha$

- **Not** a probability statement about θ since it's fixed.
- Common interpretation:

$$C_n = (T_1, T_2)$$
: $P(T_1 < \theta < T_2) \ge 1 - \alpha$

- **Not** a probability statement about θ since it's fixed.
- Common interpretation:

If I repeat the experiment many times, the interval will contain the true value of θ 95% of the time (α =0.05).

CI FOR NORMAL DATA

CI for μ , known σ

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is known. How to construct a CI for μ ?

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is known. How to construct a CI for μ ? Consider \bar{X} :

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is known. How to construct a CI for μ ? Consider \overline{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim$$

 $X_1, X_2, ..., X_n$ — samples from $N(\mu, \sigma^2)$, σ is known. How to construct a CI for μ ? Consider \overline{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N() \quad \Rightarrow \quad$$

 $X_1, X_2, ..., X_n$ — samples from $N(\mu, \sigma^2)$, σ is known. How to construct a CI for μ ? Consider \overline{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \quad) \quad \Rightarrow$$

 $X_1, X_2, ..., X_n$ — samples from $N(\mu, \sigma^2)$, σ is known. How to construct a CI for μ ? Consider \overline{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \quad \Rightarrow$$

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is known. How to construct a CI for μ ? Consider \overline{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \quad \Rightarrow \quad \sim N(0,1)$$

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is known. How to construct a CI for μ ? Consider \bar{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \quad \Rightarrow \quad \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$$

 $X_1, X_2, ..., X_n$ — samples from $N(\mu, \sigma^2)$, σ is known. How to construct a CI for μ ? Consider \bar{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \quad \Rightarrow \quad \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$$

$$P\left(\begin{array}{c} <\frac{(\bar{X}-\mu)\sqrt{n}}{\sigma} < \end{array}\right) = 1 - \alpha$$

 $X_1, X_2, ..., X_n$ — samples from $N(\mu, \sigma^2)$, σ is known. How to construct a CI for μ ? Consider \overline{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \quad \Rightarrow \quad \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$$

$$P\left(-\frac{z_{1-\frac{\alpha}{2}}}{\sigma} < \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} < \frac{z_{1-\frac{\alpha}{2}}}{\sigma}\right) = 1 - \alpha$$

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is known. How to construct a CI for μ ? Consider \bar{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \quad \Rightarrow \quad \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$$

$$P\left(-z_{1-\frac{\alpha}{2}} < \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} < z_{1-\frac{\alpha}{2}}\right) = 1 - \alpha$$

$$P\left(\overline{X} - \frac{\sigma}{\sqrt{n}}z_{1 - \frac{\alpha}{2}} < \mu < \overline{X} + \frac{\sigma}{\sqrt{n}}z_{1 - \frac{\alpha}{2}}\right) = 1 - \alpha$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 3^2)$, $\bar{X} = 12$.
- Give the 95%-Cl for μ .

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 3^2)$, $\bar{X} = 12$.
- Give the 95%-Cl for μ .
- Interval:

$$\bar{X} \pm \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 3^2)$, $\bar{X} = 12$.
- Give the 95%-Cl for μ .
- Interval:

$$\bar{X} \pm \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}$$

$$1 - \alpha = 0.95 \Rightarrow \alpha = 0.05$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 3^2)$,
- Give the 95%-Cl for μ .
- Interval:

$$\bar{X} \pm \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}$$

Quantile (p)	$\Phi^{-1}(p, 0, 1)$
0.995	2.58
0.99	2.33
0.975	1.96
0.95	1.64
0.9	1.28

$$1 - \alpha = 0.95 \Rightarrow \alpha = 0.05, \qquad z_{1-0.025} =$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 3^2)$,
- Give the 95%-Cl for μ .
- Interval:

$$\bar{X} \pm \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}$$

Quantile (p)	$\Phi^{-1}(p,0,1)$
0.995	2.58
0.99	2.33
0.975	1.96
0.95	1.64
0.9	1.28

$$1 - \alpha = 0.95 \Rightarrow \alpha = 0.05, \qquad z_{1-0.025} =$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 3^2)$,
- Give the 95%-Cl for μ .
- Interval:

$$\bar{X} \pm \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}$$

Quantile (p)	$\Phi^{-1}(p,0,1)$
0.995	2.58
0.99	2.33
0.975	1.96
0.95	1.64
0.9	1.28

$$1 - \alpha = 0.95 \Rightarrow \alpha = 0.05, \qquad z_{1-0.025} = 1.96$$

$$z_{1-0.025} = 1.96$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 3^2)$, $\bar{X} = 12$.
- Give the 95%-Cl for μ .
- Interval:

$$\overline{X} \pm \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}$$

$$1 - \alpha = 0.95 \Rightarrow \alpha = 0.05, \qquad z_{1-0.025} = 1.96$$

$$12 \pm \frac{3}{\sqrt{100}} \cdot 1.96$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 1^2)$, $\bar{X} = 5$.
- Give the 90%-Cl for μ .

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 1^2)$, $\bar{X} = 5$.
- Give the 90%-Cl for μ .
- Interval:

$$\bar{X} \pm \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}$$

Quantile (p)	$\Phi^{-1}(p,0,1)$
0.995	2.58
0.99	2.33
0.975	1.96
0.95	1.64
0.9	1.28

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 1^2)$, $\bar{X} = 5$.
- Give the 90%-Cl for μ .
- Interval:

$$\bar{X} \pm \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}$$

Quantile (p)	$\Phi^{-1}(p,0,1)$
0.995	2.58
0.99	2.33
0.975	1.96
0.95	1.64
0.9	1.28

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 1^2)$, $\bar{X} = 5$.
- Give the 90%-Cl for μ .
- Interval:

$$\bar{X} \pm \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}$$

$$1 - \alpha = 0.90 \Rightarrow \alpha = 0.1, \qquad z_{1-0.05} = 1.64$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, 1^2)$, $\bar{X} = 5$.
- Give the 90%-Cl for μ .
- Interval:

$$\overline{X} \pm \frac{\sigma}{\sqrt{n}} \cdot z_{1-\alpha/2}$$

$$1 - \alpha = 0.90 \Rightarrow \alpha = 0.1, \qquad z_{1-0.05} = 1.64$$

$$5 \pm \frac{1}{\sqrt{100}} \cdot 1.64$$

PRACTICE!

Google Classroom -> Lecture 8 -> z-intervals

CI FOR NORMAL DATA

CI for μ , unknown σ

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

How to construct a CI for μ ?

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n)$$

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \quad \Rightarrow \quad \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$$

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \quad \Rightarrow \quad \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$$

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

How to construct a CI for μ ? Consider \overline{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \quad \Rightarrow \quad \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$$

Approximate with sample variance $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$:

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

How to construct a CI for μ ? Consider \overline{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \quad \Rightarrow \quad \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$$

Approximate with sample variance $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$:

$$\frac{(\bar{X}-\mu)\sqrt{n}}{s}$$

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

How to construct a CI for μ ? Consider \overline{X} :

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N(\mu, \sigma^2/n) \quad \Rightarrow \quad \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$$

Approximate with sample variance $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \bar{X})^2$:

$$\frac{(\bar{X}-\mu)\sqrt{n}}{s} \sim t(n-1) - \text{Student distribution}$$

STUDENT DISTRIBUTION

William Sealy Gosset

STUDENT DISTRIBUTION

$$\frac{(\bar{X}_n - \mu)\sqrt{n}}{s} \sim t(n-1)$$

William Sealy Gosset

STUDENT DISTRIBUTION

$$\frac{(\bar{X}_n - \mu)\sqrt{n}}{s} \sim t(n-1)$$

William Sealy Gosset

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

$$\frac{(\bar{X}-\mu)\sqrt{n}}{s}$$
 ~ $t(n-1)$ — Student distribution

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

$$\frac{(\bar{X}-\mu)\sqrt{n}}{s}$$
 ~ $t(n-1)$ — Student distribution

Before:
$$P\left(-z_{1-\alpha/2} < \frac{(\bar{X}-\mu)\sqrt{n}}{\sigma} < z_{1-\alpha/2}\right) = 1 - \alpha$$

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

How to construct a CI for μ ? Consider \overline{X} :

$$\frac{(\bar{X}-\mu)\sqrt{n}}{s}$$
 ~ $t(n-1)$ — Student distribution

Before:
$$P\left(-z_{1-\alpha/2} < \frac{(\bar{X}-\mu)\sqrt{n}}{\sigma} < z_{1-\alpha/2}\right) = 1 - \alpha$$

Now:

$$P\left(\begin{array}{c} <\frac{(\overline{X}-\mu)\sqrt{n}}{S} < \end{array}\right) = 1 - \alpha$$

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

How to construct a CI for μ ? Consider \overline{X} :

$$\frac{(\bar{X}-\mu)\sqrt{n}}{s}$$
 ~ $t(n-1)$ — Student distribution

Before:
$$P\left(-z_{1-\alpha/2} < \frac{(\bar{X}-\mu)\sqrt{n}}{\sigma} < z_{1-\alpha/2}\right) = 1 - \alpha$$

Now: same logic, replace $z_{1-a/2}$ with $t_{1-a/2}$:

$$P\bigg(< \frac{(\bar{X} - \mu)\sqrt{n}}{s} < \bigg) = 1 - \alpha$$

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

How to construct a CI for μ ? Consider \overline{X} :

$$\frac{(\bar{X}-\mu)\sqrt{n}}{s}$$
 ~ $t(n-1)$ — Student distribution

Before:
$$P\left(-z_{1-\alpha/2} < \frac{(\bar{X}-\mu)\sqrt{n}}{\sigma} < z_{1-\alpha/2}\right) = 1 - \alpha$$

Now: same logic, replace $z_{1-a/2}$ with $t_{1-a/2}$:

$$P\left(-t_{1-\alpha/2} < \frac{(\bar{X} - \mu)\sqrt{n}}{s} < t_{1-\alpha/2}\right) = 1 - \alpha$$

 $X_1, X_2, ..., X_n$ – samples from $N(\mu, \sigma^2)$, σ is unknown.

How to construct a CI for μ ? Consider \overline{X} :

$$\frac{(\bar{X}-\mu)\sqrt{n}}{s}$$
 ~ $t(n-1)$ — Student distribution

Before:
$$P\left(-z_{1-\alpha/2} < \frac{(\bar{X}-\mu)\sqrt{n}}{\sigma} < z_{1-\alpha/2}\right) = 1 - \alpha$$

Now: same logic, replace $z_{1-a/2}$ with $t_{1-a/2}$:

$$P\left(\overline{X} - \frac{s}{\sqrt{n}}t_{1-\alpha/2} < \mu < \overline{X} + \frac{s}{\sqrt{n}}t_{1-\alpha/2}\right) = 1 - \alpha$$

- $X_1, X_2, ..., X_{20}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- $\bar{X} = 42$, $s^2 = 36$
- Give the 95%-Cl for μ .

- $X_1, X_2, ..., X_{20}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- $\bar{X} = 42$, $s^2 = 36$
- Give the 95%-Cl for μ .

$$\mu = \bar{X} \pm \frac{s}{\sqrt{n}} t_{1-\alpha/2}$$

- $X_1, X_2, ..., X_{20}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- $\bar{X} = 42$, $s^2 = 36$
- Give the 95%-Cl for μ .

$$\mu = \bar{X} \pm \frac{s}{\sqrt{n}} t_{1-\alpha/2}$$

$$1 - \alpha = 0.95 \Rightarrow \alpha = 0.05$$
,

- $X_1, X_2, ..., X_{20}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- $\bar{X} = 42$, $s^2 = 36$
- Give the 95%-Cl for μ .

$$\mu = \bar{X} \pm \frac{s}{\sqrt{n}} t_{1-\alpha/2}$$

$$1 - \alpha = 0.95 \Rightarrow \alpha = 0.05,$$
 $t_{1-0.025} =$

- $X_1, X_2, ..., X_{20}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- $\bar{X} = 42$, $s^2 = 36$
- Give the 95%-Cl for μ .

$$\mu = \bar{X} \pm \frac{s}{\sqrt{n}} t_{1-\alpha/2}$$

$$1 - \alpha = 0.95 \Rightarrow \alpha = 0.05,$$
 $t_{1-0.025} = 2.093$

- $X_1, X_2, ..., X_{20}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- $\bar{X} = 42$, $s^2 = 36$
- Give the 95%-Cl for μ .

$$\mu = \bar{X} \pm \frac{s}{\sqrt{n}} t_{1-\alpha/2}$$

$$1 - \alpha = 0.95 \Rightarrow \alpha = 0.05,$$
 $t_{1-0.025} = 2.093$

$$t_{1-0.025} = 2.093$$

$$\mu = 42 \pm \frac{6}{\sqrt{20}} \cdot 2.093$$

PRACTICE!

Google Classroom -> Lecture 8 -> t-intervals

CI FOR NORMAL DATA

CI for σ , unknown μ , σ

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- How to construct a CI for σ ?

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- How to construct a CI for σ ? Consider S^2 :

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- How to construct a CI for σ ? Consider S^2 :

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- How to construct a CI for μ ? Consider S^2 :

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

$$\frac{(n-1)s^2}{\sigma^2}$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- How to construct a CI for μ ? Consider S^2 :

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \bar{X})^{2}$$

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

Chi-squared distribution

CHI-SQUARED DISTRIBUTION

$$Z_1, Z_2, ..., Z_n - i.i.d. N(0,1)$$

CHI-SQUARED DISTRIBUTION

$$Z_1, Z_2, \dots, Z_n - i.i.d. N(0,1)$$

$$\Rightarrow$$

$$Q = Z_1^2 + \dots + Z_n^2 \sim \chi^2(n-1)$$

CHI-SQUARED DISTRIBUTION

$$Z_1, Z_2, \dots, Z_n - i.i.d. N(0,1)$$
 \Rightarrow

$$Q = Z_1^2 + \dots + Z_n^2 \sim \chi^2(n-1)$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- How to construct a CI for σ ? Consider S^2 :

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- How to construct a CI for σ ? Consider S^2 :

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

$$P\left(\begin{array}{c} <\frac{(n-1)s^2}{\sigma^2} < \end{array}\right) = 1 - \alpha$$

Chi Square Distribution: df = 8 P(X < 3.49) = 10%

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- How to construct a CI for σ ? Consider S^2 :

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

$$P\left(\frac{c_{\alpha/2}}{\sigma^2} < \frac{(n-1)s^2}{\sigma^2} < \frac{c_{1-\alpha/2}}{\sigma^2}\right) = 1 - \alpha$$

- $X_1, X_2, ..., X_{100}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- How to construct a CI for μ ? Consider S^2 :

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi^2(n-1)$$

$$P\left(c_{\alpha/2} < \frac{(n-1)s^2}{\sigma^2} < c_{1-\alpha/2}\right) = 1 - \alpha$$

$$P\left(\frac{(n-1)s^2}{c_{1-\alpha/2}} < \sigma^2 < \frac{(n-1)s^2}{c_{\alpha/2}}\right) = 1 - \alpha$$

- $X_1, X_2, ..., X_{20}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- $\bar{X} = 42$, $s^2 = 36$

- $X_1, X_2, ..., X_{20}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- $\bar{X} = 42$, $s^2 = 36$
- Give the 95%-Cl for σ .

- $X_1, X_2, ..., X_{20}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- $\bar{X} = 42$, $s^2 = 36$
- Give the 95%-Cl for σ .

$$\left[\frac{(n-1)s^2}{c_{1-\alpha/2}}; \frac{(n-1)s^2}{c_{\alpha/2}}\right]$$

- $X_1, X_2, ..., X_{20}$ samples from $N(\mu, \sigma^2)$, σ is unknown.
- $\bar{X} = 42$, $s^2 = 36$
- Give the 95%-Cl for σ .

$$\left[\frac{(n-1)s^2}{c_{1-\alpha/2}}; \frac{(n-1)s^2}{c_{\alpha/2}}\right]$$

$$\left[\frac{19 \cdot 36}{32.85}, \frac{19 \cdot 36}{8.91}\right]$$

LARGE SAMPLES

Using Central Limit Theorem

CI FOR LARGE SAMPLES

- Typical task: estimating the mean of a distribution.
- Suppose X_1 , ... X_n is drawn from an unknown distribution.
- How to construct a CI?

• CLT:

If μ , $\sigma^2 < \infty$ and if n is sufficiently large, then:

$$\frac{(\bar{X} - \mu)\sqrt{n}}{S} \approx N(0,1)$$

CI FOR LARGE SAMPLES

- Typical task: estimating the mean of a distribution.
- Suppose X_1 , ... X_n is drawn from an unknown distribution.
- How to construct a CI?

• CLT:

If μ , $\sigma^2 < \infty$ and if n is sufficiently large, then:

$$\frac{(\bar{X} - \mu)\sqrt{n}}{S} \approx N(0,1) \Rightarrow \mu \approx$$

CI FOR LARGE SAMPLES

- Typical task: estimating the mean of a distribution.
- Suppose X_1 , ... X_n is drawn from an unknown distribution.
- How to construct a CI?

• CLT:

If μ , $\sigma^2 < \infty$ and if n is sufficiently large, then:

$$\frac{(\bar{X} - \mu)\sqrt{n}}{S} \approx N(0,1) \implies \mu \approx \bar{X} \pm \frac{S}{\sqrt{n}} z_{1-\alpha/2}$$

PRACTICE!

Google Classroom -> Lecture 8 -> Large sample Cl