Princípios da modelagem ecológica e seleção de modelos

Leonardo Liberali Wedekin

LET – Laboratório de Ecologia Teórica Instituto de Biociências - USP

Resumo

- 1. Uso de modelos na ecologia
- 2. Seleção de modelos
- 3. O modelo de regressão linear e suas extensões

"A natureza é um livro escrito em linguagem matemática" Galileu Galilei

"Toda inferência na ecologia é feita através de algum modelo. Para alguma observação fazer sentido, todo mundo precisa de um modelo, independente se o observador sabe disto ou não"

(Kéry, 2010)

Inferência:

Obter conclusões estatísticas através de dados.

Fazer afirmações sobre uma população através de uma amostra.

"A modelagem na ciência permanece, no mínimo parcialmente, uma arte."

(McCullagh & Nelder, 1989)

Algumas dicotomias (Bolker, 2008):

Teórico **Aplicado** Preditivo Descritivo Matemático Estatístico Analítico Computacional Estático Dinâmico Contínuo Discreto Determinístico Estocástico Indivíduo População

Objetivos de um modelo incluem:

- Previsão

- Explanação

- Generalização

"... o objetivo dos métodos estatísticos é a redução dos dados. Uma quantidade de dados, que geralmente pelo seu grande tamanho é impossível de entrar na mente, é para ser substituído por relativamente poucas quantidades que devem representar adequadamente o todo, ou que, em outras palavras, deve conter o máximo possível, ou idealmente toda a informação relevante contida nos dados originais"

(Fisher, 1922)

Ronald A. Fisher (1890-1962)

PERGUNTA NECESSÁRIA

Qual modelo deve ser usado para melhor aproximar a realidade, baseado em dados de boa qualidade e relevantes para a questão?

(Burnham & Anderson, 2001)

TRÊS PRINCÍPIOS GERAIS GUIAM

(Burnham & Anderson, 2001)

- PARCIMÔNIA
- MÚLTIPLAS HIPÓTESES DE TRABALHO
- FORÇA DA EVIDÊNCIA

"quia frustra fit per plura quod potest fieri per pauciora"

"porque é em vão fazer com mais o que se pode fazer com menos"

Múltiplas hipóteses de trabalho

Ao invés de uma única hipótese de trabalho (como no teste de hipóteses), trabalha-se com múltiplas hipóteses ou modelos biologicamente plausíveis

Múltiplas hipóteses de trabalho

Esta abordagem permite que hipóteses novas ou mais elaboradas sejam adicionadas continuamente nos modelos, enquanto hipóteses sem fundamento sejam gradualmente abandonadas.

Força de evidência

Não existe dicotomia, mas diferentes forças de evidência para cada hipótese / modelo

Evitar dragagem de dados...

Abordagens diferentes para inferência estatística (Bolker, 2008):

- Frequentista clássica
- Verossimilhança
- Bayesiana

Estimativa por máxima verossimilhança

Função de verossimilhança: calcula-se uma distribuição de probabilidades que é função dos parâmetros condicionada aos dados.

Estimativa por máxima verossimilhança

Dado o modelo, para quais valores de parâmetros os dados são mais prováveis?

Os valores que maximizam a função de verossimilhança são as melhores estimativas para os parâmetros.

Estimativa por métodos Bayesianos

MCMC - Markov Chain Monte Carlo

 Nos métodos atuais grande ênfase é dada à seleção de modelos, sendo um aspecto crítico da análise de dados;

 Estimativa dos parâmetros assume uma menor importância relativa, enquanto identificar processos biológicos significantes na área de estudo comparando diferentes modelos assume uma maior importância.

 S. Kullback & R. A. Leibler (1951) descreveram uma medida de distância entre a realidade conceitual (f) e um modelo que aproxima esta realidade (g) – distância Kullback-Leibler (K-L)

 I(f, g) = informação perdida quando um modelo é usado para aproximar a realidade ou distância entre o modelo e a realidade

Estabeleceu a relação entre a distância K-L e a máxima verossimilhança dentro de uma abordagem de otimização (Akaike, 1974).

Hirotugo Akaike (1927 - 2009)

Critério de Informação de Akaike

$$AIC = -2 \log(\mathcal{L}(\hat{\theta} \mid data)) + 2K.$$

Valor da log verossimilhança

Número de parâmetros

Critério de informação não é teste...

Não existem conceitos como: poder do teste, p-valor ou significância.

K = Number of Parameters

- Quanto menor o AIC, menor a distância entre o modelo e a realidade
- AIC pode ser computado para cada modelo
- Assim, devemos comparar e escolher o modelo com menor valor de AIC

Delta AIC

$$\Delta_i = AIC_i - minAIC$$

- Valores de AIC re-escalados de forma que o modelo com menor AIC passe a ter AIC = 0
 - $-\Delta_i$ ≤ 2: suporte substancial ao modelo
 - $-\Delta_{i} = 4 7$: menor suporte considerável ao modelo
 - $-\Delta_i > 10$: sem suporte

AICc

- Correção para modelos com amostra pequena relativa ao número de parâmetros
- Como AIC e AICc convergem com amostras grandes AICc sempre deve ser usado

Peso de Akaike (Akaike weight)

- Indica a força de evidência de um modelo
- Pode ser interpretado com a probabilidade daquele modelo ser o melhor dentre os modelos candidatos

$$w_i = \frac{\exp(-\frac{1}{2}\Delta_i)}{\sum_{r=1}^R \exp(-\frac{1}{2}\Delta_r)}$$

Inferência multi-modelos (model averaging)

Inferência é feita a partir do conjunto de modelos ponderando as estimativas pelos pesos de Akaike de cada modelo

Teste de razão de verossimilhança (Likelihood Ratio Test - LRT)

Teste de hipótese para modelos aninhados, ou seja, um modelo contém o outro, ou é um caso simplificado do outro

Teste de razão de verossimilhança (LRT)

In *L*(parâmetros de um modelo geral) vs.

In L(parâmetros de um modelo reduzido)

Tamanho da diferença entre log-verossimilhanças indica se o modelo reduzido deve ser preferido

Seleção de modelos

Teste de razão de verossimilhança (LRT)

Diferença possui distribuição de Qui-Quadrado com graus de liberdade igual à diferença de parâmetros entre os dois modelos

Diferença significativa indica que modelo geral deve ser preferido, enquanto diferença não significativa indica que o modelo mais simples deve ser escolhido

Seleção de modelos

Teste de razão de verossimilhança (LRT)

$$y = \alpha + \beta x$$

Modelo linear clássico

$$Y = \alpha + \beta X + \epsilon$$

Onde:

 α = intercepto / onde a linha cruza o eixo y

 β = coeficiente regressão / inclinação (+ ou -)

Y = variável resposta/dependente

X = variável explicatória/independente

 ε = erro residual

Premissas

- Relação linear entre X e Y
- Normalidade
- Variância constante
- Independência

Regressão múltipla

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_i X_i + \epsilon$$

Onde:

```
\beta_0 = intercepto / onde a linha cruza o eixo y \beta_i = coeficiente regressão / inclinação (+ ou -) Y = variável resposta/dependente X_i = variável explicatória/independente \epsilon = erro residual
```

Modelo linear generalizado (GLM)

$$E(Y) = f(\beta_0 + \beta_1 X)$$

Onde:

E = distribuição assumida da variável resposta (estrutura do erro) $f(z) = função de ligação (link function) (<math>\beta_0 + \beta_1 X$) = componente linear

> Permite outras distribuições de erro relaxando premissas do modelo linear clássico e conferindo flexibilidade ao modelo

Funções de ligação (link function)

- Variável resposta assume outras distribuições da família exponencial, como por exemplo:
 - Números positivos e inteiros (Poisson)
 - Resposta binária 0 ou 1 (Binomial)

Error	Canonical link
normal	identity
poisson	log
binomial	logit
Gamma	reciprocal

Modelo linear / ANOVA

$$Y = \beta_0 + \beta_1 x + \varepsilon$$

Onde:

Y = variável resposta contínua

 β_0 = intercepto

 β_1 = inclinação da reta

x = variável código (dummy) = 0 ou 1

 ε = erro residual

Modelos fatoriais

Matriz de desenho

Modelo aditivo generalizado (GAM)

- > Extensão não paramétrica dos GLM;
- ➤ O que determinada o formato da função são os dados e não funções ou distribuições específicas definidas *a priori*;
- ➤ Vários métodos de "suavização" (smooth) e grau de suavização (graus de liberdade).

Leituras adicionais

Burnham & Anderson (2002)

Leituras adicionais

Review

TRENDS in Ecology and Evolution Vol.19 No.2 February 2004

Model selection in ecology and evolution

Jerald B. Johnson¹ and Kristian S. Omland²

¹Conservation Biology Division, National Marine Fisheries Service, 2725 Montlake Boulevard East, Seattle, WA 98112, USA ²Vermont Cooperative Fish & Wildlife Research Unit, School of Natural Resources, University of Vermont, Burlington, VT 05405, USA

Leituras adicionais

Faraway (2006)