Board Questions

Fourth Session, Sep 26th

1 Bernoulli RVs

- 1. Prove: if $X \sim Bernoullip$ then var(X) = p(1-p)
- 2. Prove: if $X \sim bin(n, p)$ then var(X) = np(1-p)
- 3. Suppose X_1 , ldots, X_n are independent and all have the same standard deviation $\sigma = 2$. Let \overline{X} be the average of X_1 , ldots, X_n . What is the standard deviation of X?

2 Probability Table

$X \backslash Y$	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

Compute F(3.5, 4).

3 Computing Covariance

Flip a fair coin 3 times. Let X be the number of heads in the first two flips and Y be the number of heads in the last two flips. Compute Cov(X,Y).

4 Concept Question

Toss a fair coin 2n + 1 times. Let X be the number of heads on the first n + 1 trials and Y be the number of heads on the last n + 1 trials. If n = 1000 then Cov(X, Y) is

- a) 0
- b) 1/4
- c) 1/2
- d) 1
- e) more than 1
- f) tiny but not 0