#### **APÉNDICE C\***

# "PIPELINING": conceptos básicos e intermedios

\* Computer Architecture, Hennessy & Patterson, 5ta Edición

## PIPELINE EN MIPS



### PIPELINE MIPS MEJORADO





#### LATENCIA vs. INTERVALO DE REPETICIÓN

Latencia de unidad funcional: Número de ciclos entre instrucción que usa resultados y la instrucción que los produce.

<u>Intervalo de iniciación/ intervalo de repetición</u>: número de ciclos que deben darse entre la emisión de instrucciones del mismo tipo.

| UNIDAD FUNCIONAL                                                | LATENCIA | INTERVALO INIC. |
|-----------------------------------------------------------------|----------|-----------------|
| ALU Entera                                                      | 0        | 1               |
| Memoria datos (loads ent. y fp, 1 menos para latencia de store) | 1        | 1               |
| Sumador/Rest. FP                                                | 3        | 1               |
| Multiplicador Ent./FP                                           | 6        | 1               |
| Divisor Ent/FP                                                  | 24       | 25              |

#### EL PIPELINE DE LA MIPS R4000 (A.6)

#### Es realmente una máquina de 64 bits

- •Pipelinig muy profundo (superpipelining). 8 etapas:
  - •IF 1er parte fetch instrucc. selección PC, inicia inst. acceso a cache
  - •IS 2da parte fetch instrucc. Se completa acceso a cache
  - •RF Decod. Instruc, fetch registros, revisión conflictos, detección de si hubo hit en cache
  - •EX EFA, ALU op, branch target (dirección nueva)y cód. condición
  - •DF Fetch de datos, 1era mitad acceso a cache de datos
  - •DS 2da mitad fetch de datos. Se completa acceso de datos en cache
  - •TC Revisión de etiqueta (tag), se determina si hubo hit en acceso a cache de datos
  - •WB "Write Back" para operaciones reg-reg y loads

### PIPELINE MIPS R4000 (CONT)



#### Load tiene 2 ciclos de retraso-(delay slots)

=> debe haber 2 instrucciones o burbujas entre un load y una instrucción dependiente de ésta.



Nótese que el valor está disponible al final de DS del load y se hace un **forwarding** al ALU del ADD=> se usa **ANTES** de la revisión de etiqueta del caché (tag check). Por lo que si hay una falta en cache hay que "devolverse" y atrasarse un ciclo. (ocurre menos del 10% de las veces y es fácil detener instrucciones dependientes)

# BRANCH TIENE 3 CICLOS DE RETRASO (se resuelve en EX) => CPI = 4 si no hay estrategia para disminuir retraso

(Con branch retrasado se pueden incluir 3 instrucciones luego del branch:)



## MIPS SIEMPRE INCLUYE UNA INSTRUCCIÓN POR BRANCH RETRASADO y procesador hace predicción no tomado para las siguientes instrucciones:

(# 1 cuando Branch fue tomado, # 2 cuando Branch no fue tomado)

| #1         | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|------------|----|----|----|----|----|----|----|----|----|
| BRANCH     | IF | IS | RF | EX | DF | DS | TC | WB |    |
| DELAY SLO  | т  | IF | IS | RF | EX | DF | DS | TC | WB |
| BRANCH + 2 | 2  |    | IF | ID |    |    |    |    |    |
| BRANCH +   | 3  |    |    | IF |    |    |    |    |    |
| B.TARGET   |    |    |    |    | IF | IS | RF | EX | DF |
|            |    |    |    |    |    |    |    |    |    |

| # 2       | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  |
|-----------|----|----|----|----|----|----|----|----|----|
| BRANCH    | IF | IS | RF | EX | DF | DS | TC | WB |    |
| DELAY SLO | т  | IF | IS | RF | EX | DF | DS | TC | WB |
| BRANCH +  | 2  |    | IF | IS | RF | EX | DF | DS | TC |
| BRANCH +  | 3  |    |    | IF | IS | RF | EX | DF | DS |
| BRANCH +  | 4  |    |    |    | IF | IS | RF | EX | DF |

# PIPELINE R4000 PARA PUNTO FLOTANTE 8 TIPOS DE ETAPAS

3 unidades funcionales: FP-DIV, FP-MUL, FP-ADD Un sumador usado en paso final de MUL y DIV

| UNIDAD FUNCIONAL  | DESCRIPCION                               |
|-------------------|-------------------------------------------|
| FP-ADD            | Suma mantisa                              |
| FP-DIV            | Etapa de división                         |
| FP-MUL            | Prueba de Excepción                       |
| FP-MUL            | Primera etapa Multipl.                    |
| FP-MUL            | Segunda etapa Multipl.                    |
| FP-ADD            | Redondeo                                  |
| FP-ADD            | "Shift" de Operando                       |
| Las 3 unid. Func. | "Unpack" número FP                        |
|                   |                                           |
|                   |                                           |
|                   |                                           |
|                   | FP-ADD FP-MUL FP-MUL FP-MUL FP-ADD FP-ADD |

#### OPERACIONES FP EN LA R4000

| INST. FP       | LATENCIA | INTERVALO INICIACION | SECUENCIA ETAPAS<br>EN EL PIPE                                                      |
|----------------|----------|----------------------|-------------------------------------------------------------------------------------|
| Suma, resta    | 4        | 3                    | U, S + A, A + R, R + S                                                              |
| Multiplicación | 8        | 4                    | U, E + M, M, M,                                                                     |
| División       | 36       | 35                   | N, N + A, R<br>U, A, R, D <sup>27</sup> , D + A, D + R<br>D + R, D + A, D + R, A, R |
| Raíz Cuadrada  | a 112    | 111                  | U, E, (A + R) <sup>108</sup> , A, R                                                 |
| Negación       | 2        | 1                    | U, S                                                                                |
| Valor Absolute | 2        | 1                    | U, S                                                                                |
| Comparación    | FP 3     | 2                    | U, A, R                                                                             |
|                |          |                      |                                                                                     |