Функции нескольких переменных

Основные теоремы (без доказательств)

Математический анализ, 3 семестр

ммф нгу

Оглавление

1	Hop	омированные векторные пространства	4
2	Дифференциальное исчисление функций нескольких перемен-		
	ных	IX	
	2.1	Производные высших порядков	(
	2.2	Формула Тейлора	,
	2.3	Дифференциалы высших порядков	(
	2.4	Экстремумы функций нескольких переменных	(
	2.5	Теорема о неявной функции	(
	2.6	Диффеоморфизмы	
	2.7	Условные экстремумы	9
3	Мн	огообразия	10

Глава 1

Нормированные векторные пространства

Определение 1.1. V – в. п-во над \mathbb{R} , если

$$\forall x, y \in \mathcal{V} \ x + y = y + x, \tag{B\Pi.1}$$

$$\forall x, y, z \in \mathcal{V} \ (x+y) + z = x + (y+z), \tag{B\Pi.2}$$

$$\exists \vec{0} \ \forall x \in \mathcal{V} \ \vec{0} + x = x + \vec{0} = x, \tag{B\Pi.3}$$

$$\forall x \in \mathcal{V} \ \exists -x \in \mathcal{V}: \ x + (-x) = \vec{0}, \tag{B\Pi.4}$$

$$\forall \alpha, \beta \in \mathbb{R} \ \forall x \in \mathcal{V} \ (\alpha + \beta)x = \alpha x + \beta x, \tag{B\Pi.5}$$

$$\forall \alpha, \beta \in \mathbb{R} \ \forall x \in \mathcal{V} \ (\alpha \beta) x = \alpha(\beta x), \tag{B\Pi.6}$$

$$\forall \alpha \in \mathbb{R} \ \forall x, y \in \mathcal{V} \ \alpha(x+y) = \alpha x + \alpha y, \tag{B\Pi.7}$$

$$\exists 1 \in \mathbb{R} \ \forall x \in \mathcal{V} \ 1 \cdot x = x. \tag{B\Pi.8}$$

Определение 1.2. $\|\cdot\|\colon \mathcal{V} \to \mathbb{R}_{\geq 0}$ – норма, если

$$\forall x \in \mathcal{V} \|x\| \ge 0, \tag{H.1}$$

$$\forall x, y \in \mathcal{V} \ ||x + y|| \le ||x|| + ||y||, \tag{H.2}$$

$$\forall \alpha \in \mathbb{R} \ \forall x \in \mathcal{V} \ \|\alpha x\| = |\alpha| \|x\|, \tag{H.3}$$

$$||x|| = 0 \Leftrightarrow x = \vec{0}. \tag{H.4}$$

Замечание 1.1. *На нормированном в. п-ве можно определить метрику следу- ющим образом:*

$$\rho(x,y) = ||x - y||.$$

И это действительно будет метрикой.

Определение 1.3. Банахово пространство – полное (относительно метрики из предыдущего замечания) нормированное векторное пространство.

Определение 1.4. $(\cdot,\cdot):\mathcal{V}\times\mathcal{V}\to\mathbb{R}$ – скалярное произведение, если

$$\forall x \in \mathcal{V} \ (x, x) \ge 0, \tag{C\Pi.1}$$

$$\forall x, y \in \mathcal{V} \ (x, y) = (y, x), \tag{CII.2}$$

$$\forall \alpha, \beta \in \mathbb{R} \ \forall x, y, z \in \mathcal{V} \ (\alpha x + \beta y, z) = (\alpha x, z) + (\beta y, z), \tag{CII.3}$$

$$(x,x) = 0 \Leftrightarrow x = \vec{0}. \tag{C\Pi.4}$$

Определение 1.5. Если \mathcal{V} – в. пр-во и (\cdot,\cdot) – скалярное произведение, то $(\mathcal{V},(\cdot,\cdot))$ – евклидово пространство.

Утверждение 1.2. В евклидовом пространстве можно ввести норму следующим образом:

$$||x|| = \sqrt{(x,x)}.$$

Определение 1.6. Две нормы $\|\cdot\|_1$ и $\|\cdot\|_2$ билипшицево эквивалентны, если

$$\exists C > 0: \ \frac{1}{C} ||x||_1 \le ||x||_2 \le C ||x||_1, \quad \forall x \in \mathcal{V}$$

Теорема 1.3. Все нормы в \mathbb{R}^n билипшицево эквивалентны.

Следствие 1.4. Последовательность точек

$$v^m = \begin{pmatrix} v_1^m \\ \vdots \\ v_n^m \end{pmatrix}$$

сходится к точке

$$u = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$$

 $npu\ m o \infty\ morдa\ u\ morдa,\ korдa\ v_i^m \longrightarrow_{m o \infty} u_i\ для\ всех\ i=1,\dots,n.$

Определение 1.7. Введем понятие отображения $F: \mathbb{R}^n \to \mathbb{R}^m$.

$$F(x) = \begin{pmatrix} f_1(x) \\ \vdots \\ f_m(x) \end{pmatrix},$$

где $x \in U$ и U – область в \mathbb{R}^n .

Следствие 1.5.

$$\lim_{x\to a} F(x) = F(x) \Leftrightarrow \lim_{\eta\to a_i} f_i(\eta) = f(a_i) \quad \text{dir } scex \ i=1,\ldots,m.$$

Глава 2

Дифференциальное исчисление функций нескольких переменных

Определение 2.1. Функция $f: \mathcal{D} \to \mathbb{R}$, где \mathcal{D} – область в \mathbb{R}^n , дифференцируема в точке $a \in \mathcal{D}$, если

$$f(a+h) = f(a) + \sum_{k=1}^{n} A_k h_k + o(||h||),$$

где A_k – константы и $h=(h_1,\ldots,h_n)^T$.

Аналогичное определение:

$$f(a+h) = f(a) + \mathcal{L} \langle h \rangle + o(||h||),$$

где \mathcal{L} – линейное отображение.

Нетрудно понять, что $\mathcal{L}\langle h\rangle=df(a)\langle h\rangle$ и

$$A_k = \left. \frac{\partial f(x)}{\partial x_k} \right|_{x=a}$$
 для всех $k=1,\ldots,n.$

Определение 2.2. Пусть \vec{v} – некоторый фиксированный вектор из \mathbb{R}^n .

Производная функции f в точке $a \in \mathcal{D}$ по направлению \vec{v} определяется следующим образом:

$$\partial_{\vec{v}} f(a) = \lim_{t \to 0} \frac{f(a + t\vec{v}) - f(a)}{t}.$$

Если положить $\varphi(t) = f(a+t\vec{v})$, то

$$\partial_{\vec{v}}f(a) = \frac{d\varphi(0)}{dt}.$$

Если $\vec{v} = \vec{e_i}$, то

$$\partial_{\vec{e_i}} f(a) = \frac{\partial f(a)}{\partial x_i} = f'_{x_i}(a).$$

Утверждение 2.1. Если функция f дифференцируема в точке $a \in \mathcal{D}$, то для любого вектора $\vec{v} \in \mathbb{R}^n$ существует $\partial_{\vec{v}} f(a)$, которую можно вычислить следующими способами:

$$\partial_{\vec{v}} f(a) = \left((f'_{x_1}(a), \dots, f'_{x_n}(a))^T, (v_1, \dots, v_n)^T \right),$$

$$\partial_{\vec{v}} f(a) = \left(\operatorname{grad} f(a), \vec{v} \right)$$

Лемма 2.2. Пусть функция $f: \mathcal{D} \to \mathbb{R}$, где \mathcal{D} – выпуклая область в \mathbb{R}^n , имеет в \mathcal{D} ограниченные константой K частные производные, тогда

$$\forall a, b \in \mathcal{D} \quad |f(b) - f(a)| \le nK||b - a||_2$$

или

$$\forall a, b \in \mathcal{D} \quad |f(b) - f(a)| \le K ||b - a||_1.$$

Замечание 2.3. Далее полагается, что множество определения функций – выпуклая область, если не оговорено другое.

Теорема 2.4. Пусть все частные производные функции $f: \mathcal{D} \to \mathbb{R}$ существуют в \mathcal{D} и непрерывны в точке $a \in \mathcal{D}$, тогда f дифференцируема в точке a.

Теорема 2.5. Пусть $f, g \in D(a)$.

Тогда $f+g, fg \in D(a)$

$$d(f+g)(a) = df(a) + dg(a),$$

$$d(fg)(a) = g(a)df(a) + f(a)dg(a).$$

Определение 2.3. Вектор-функция (векторное поле) $f: U \to \mathbb{R}^m$, где $U \subset \mathbb{R}^n$, дифференцируема в точке $a \in U$, если

$$f(a+h) = f(a) + df(a) \langle h \rangle + o(||h||).$$

Определение 2.4. Введем понятие матрицы Якоби отображения $f \colon U \to \mathbb{R}^m$, где $U \subset \mathbb{R}^n$, в точке $a \in U$:

$$\frac{\partial f(a)}{\partial (x_1, \dots, x_n)} = \frac{\partial f(x)}{\partial (x_1, \dots, x_n)} \Big|_{x=a} = \begin{pmatrix} \frac{\partial f_1(a)}{\partial x_1} & \dots & \frac{\partial f_1(x)}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m(a)}{\partial x_1} & \dots & \frac{\partial f_n(a)}{\partial x_n} \end{pmatrix}.$$

и понятие Якобиана отображения в точке $a \in U$:

$$\mathcal{J} = \left| \frac{\partial f(a)}{\partial (x_1, \dots, x_n)} \right|.$$

Тогда
$$df(a) = \frac{\partial f(a)}{\partial (x_1, \dots, x_n)}$$
.

Теорема 2.6. Если функция $f: U \to \mathbb{R}^m$, где $U \subset \mathbb{R}^n$, дифференцируема в точке $a \in U$, и функция $g: V \to \mathbb{R}^k$, где $V \subset R^m$, дифференцируема в точке f(a), тогда $g \circ f$ дифференцируема в точке $a \in U$ и

$$d(g \circ f)(a) = dg(f(a)) \cdot df(a).$$

Следствие 2.7. Пусть отображение $f: U \to \mathbb{R}^n$, где $U \subset \mathbb{R}^n$, дифференцируемо в точке $a \in U$ и имеет обратное отображение f^{-1} .

Тогда $f^{-1} \in D(f(a))$ и

$$df^{-1}(f(a)) = (df(a))^{-1}.$$

2.1 Производные высших порядков

Определение 2.5. Функция f k-раз дифференцируема в точке $a \in \mathcal{D}$, если любая n-ая частная производная, где $n = 1, \ldots, k-1$, дифференцируема в точке $a \in \mathcal{D}$.

Замечание 2.8. Используют также понятие гладкости функции f.

Функция f класса \mathcal{C}^r в точке $a \in \mathcal{D}$, если каждая ее k-ая производная, где $k=1,\ldots,r$, непрерывна.

По достаточному условию дифференцируемости, функция $f \in D^r$.

Теорема 2.9. Пусть $u = f(x,y) \in D^2(M_0)$, $M_0 = (x_0,y_0) \in U$ и M_0 – внутренняя точка U. Тогда

$$\frac{\partial^2 u(M_0)}{\partial x \partial y} = \frac{\partial^2 u(M_0)}{\partial y \partial x}.$$

Теорема 2.10. Пусть $f: U \to \mathbb{R}^2$ в некоторой окрестности точки $M_0 = (x_0, y_0)$ имеет частные производные $f'_x, f'_y, f''_{xy}, f''_{yx}$ и при этом вторые производные непрерывны в M_0 . Тогда

$$f_{xy}''(M_0) = f_{yx}''(M_0).$$

Следствие 2.11. Пусть $u = f(x_1, \ldots, x_n)$ – m-раз дифференцируемая функция в точке M_0 , при этом $M_0 = (x_1^0, \ldots, x_n^0)$. Тогда в точке M_0 любые смешанные производные равны, то есть

$$\frac{\partial^k f(M_0)}{\partial x_{\pi(1)} \dots \partial x_{\pi(k)}} = \frac{\partial^k f(M_0)}{\partial x_{\sigma(1)} \dots \partial x_{\sigma(k)}},$$

 $ede \ \pi, \sigma \in \mathbb{S}_k \ makue, \ umo \ \pi \neq \sigma.$

2.2 Формула Тейлора

Определение 2.6. Определим понятие мультииндекса.

$$\alpha = (\alpha_1, \ldots, \alpha_n),$$

где $\alpha_i \in \mathbb{N}_{>0}$ для всех $i \in \mathbb{N}$.

Так же определим следующие операции:

$$lpha!=lpha_1!\dotslpha_n!,$$
 $|lpha|=\sum_{k=1}^nlpha_k,$ Пусть $h\in\mathcal{V}:h=(h_1,\dots,h_n)^T,$ то $h^lpha=\prod_{i=1}^nh_i^{lpha_i}.$

Удобство мультииндекса заключается в компактности обозначений. Далее под

$$\frac{\partial^{\alpha} f}{\partial x^{\alpha}}$$

будем подразумевать

$$\frac{\partial^{\alpha_1}}{\partial x_1^{\alpha_1}} \left(\frac{\partial^{\alpha_2}}{\partial x_2^{\alpha_2}} \dots \left(\frac{\partial^{\alpha_n} f}{\partial x_n^{\alpha_n}} \right) \dots \right).$$

Теорема 2.12.

$$(x_1 + \ldots + x_n)^k = \sum_{\substack{\alpha_i \ge 0, \ i=1,\ldots,n \\ \alpha_1 + \ldots + \alpha_n = k}} \frac{|\alpha|!}{\alpha!} \prod_{i=1}^n x_i^{\alpha_i}.$$

Пример 2.1. Обозначим за \mathfrak{D} следующее отображение:

$$\mathfrak{D} = \sum_{i=1}^{n} h_i \frac{\partial}{\partial x_i},$$

где h_i – i-ая компонента фиксированного вектора $h = (h_1, \dots, h_n)^T$. Если функция $f \in D^k$, то

$$\mathfrak{D}^{k} f = \left(\sum_{i=1}^{n} h_{i} \frac{\partial}{\partial x_{i}}\right)^{k} f =$$

$$= \left(\sum_{\substack{\alpha_{i} \geq 0, \ i=1,\dots,n \\ \alpha_{1}+\dots\alpha_{n}=k}} \frac{k!}{\alpha_{1}! \dots \alpha_{n}!} \prod_{i=1}^{n} h_{i}^{\alpha_{i}} \frac{\partial^{\alpha_{i}}}{\partial x_{i}^{\alpha_{i}}}\right) f =$$

$$= \left(\sum_{|\alpha|=k} \frac{|\alpha|!}{\alpha!} h^{\alpha} \frac{\partial^{\alpha}}{\partial x^{\alpha}}\right) f.$$

Теорема 2.13 (Формула Тейлора с остаточным членом в форме Пеано). *Пусть* $f \in D^k(a)$, $\epsilon \partial e \ a \in U \subset \mathbb{R}^n$.

Tог ∂a

$$f(a+h) = \sum_{i=0}^{k} \left(\sum_{|\alpha|=i} \frac{1}{\alpha!} \frac{\partial^{\alpha} f(a)}{\partial x^{\alpha}} h^{\alpha} \right) + o(\|h\|^{k}),$$

 $\epsilon \partial e \ o(\|h\|^k) \to 0 \ npu \ \|h\| \to 0.$

Определение 2.7. $\sum_{i=0}^k \left(\sum_{|\alpha|=i} \frac{1}{\alpha!} \frac{\partial^{\alpha} f(a)}{\partial x^{\alpha}} h^{\alpha} \right)$ — полином Тейлора порядка k в точке $a \in U$ функции $f \in D^k(a)$.

Лемма 2.14. $h^{\alpha} = o(\|h\|^k)$ $npu \|h\| \to 0$ тогда и только тогда, когда $k < |\alpha|$.

Теорема 2.15 (Единственность полинома Тейлора). Пусть существует полином

$$P = \sum_{i=0}^{k} \sum_{|\alpha|=i} P_{\alpha} h^{\alpha}$$

такой, что

$$f(a+h) - P = o(\|h\|^k)$$

 $npu \ \|h\| \to 0.$

Тогда Р – полином Тейлора.

Следствие 2.16. Пусть $f \in D^k(a)$ и

$$\frac{\partial^{\alpha} f(a)}{\partial x^{\alpha}} = 0$$

 $npu |\alpha| \le k$.

 $Tor \partial a f(a+h) = o(\|h\|^k) npu \|h\| \to 0.$

- 2.3 Дифференциалы высших порядков
- 2.4 Экстремумы функций нескольких переменных
- 2.5 Теорема о неявной функции
- 2.6 Диффеоморфизмы
- 2.7 Условные экстремумы

Глава 3 Многообразия

Литература

[1] М. Спивак, Математический анализ на многобразиях