AGH, WIET	Laboratorium – elementy	Kierunek : EiT
	elektroniczne	
Nr ćwiczenia	Temat:	Ocena:
2	Diody półprzewodnikowe	
Data wykonania: 07.04.2022	Imię i nazwisko: Hubert Mąka, Jakub Wojtycza	

Wykorzystane przyrządy:

- -płyta prototypowa NI ELVIS Prototyping Board (ELVIS)
- Virtual Instruments (VI):
- Digital Multimeter (DMM),
- Variable Power Supply (VPS),
- Two-Wire Voltage Analyzer (2-Wire),
- zestaw elementów (rezystory, diody LED i Zenera, diody prostownicze)

Opis ćwiczenia:

Wyznaczanie charakterystycznych wartości diod prostowniczych, Zenera i świecących za pomocą zewnętrznych i wbudowanych w płytkę mierników.

1. Wyznaczanie charakterystyki prądowo-napięciowej diody prostowniczej.

Gdzie:

VPS – regulowany zasilacz z płyty NI ELVIS II

R – rezystor $100[\Omega]$

A – amperomierz zewnętrzny umożliwiający pomiary prądów 1[uA]

V – woltomierz wbudowany w płytę NI ELVIS II

Porównanie pomiarów ręcznych i za pomocą ELVISa				
Pomia	Pomiar ręczny Dioda (1N 4448		N 4448)	
Id[mA]	U[V]		Id[mA]	U[V]
0,0011	0,27975		0,001	0,028
0,01	0,39072		0,01	0,382
0,1015	0,49821		0,115	0,503
1,0028	0,60817		1,045	0,61
3,0825	0,66776		3,046	0,669
5,0354	0,6961		4,898	0,698
10,033	0,73948		9,87	0,746
20,689	0,78942		20,18	0,805
30,304	0,81928		30,215	0,843

Wniosek:

Na wykresie przedstawiona jest charakterystyka diody (1N 4448) spolaryzowanej w kierunku przewodzenia.

Zanim napięcie na diodzie nie osiągnie napięcia przewodzenia przez diodę płynie bardzo niewielki prąd. Dopiero, gdy napięcie przekroczy wartość ok. 0,6[V] przez diodę zaczyna płynąć duży prąd dyfuzyjny.

Uwaga:

Początkowy kształt wykresu do napięcia 0,3V jest powodowany najprawdopodobniej zakłóceniami w pomiarze małych prądów przez wirtualny multimetr wbudowany w płytkę.

Z charakterystyki w skali półlogarytmicznej jesteśmy w stanie odczytać zakresy prądu diody. Nie uchwyciliśmy zakresu małych prądów przez niedoskonałość i ograniczenia przyrządu pomiarowego.

Wartość prądu nasycenia	0,7 [uA]	
Rezystancję szeregową	1,35 [Ohma]	
Współczynnik nieidealności złącza	1,12	

Diody Zenera

Badane zakresy dla diody:

$$(3.3V) \rightarrow -4V \rightarrow 0V \quad i \quad 0V \rightarrow 0.9V$$

$$(5.1V) \rightarrow -5,5V \rightarrow -3V i 0V \rightarrow 0,9V$$

$$(9.3V) \rightarrow -9.3V \rightarrow -8V \text{ i } 0V \rightarrow 0.9V$$

Charakterystyki prądowo-napięciowa diod Zenera

Rezystancje dynamiczne dla 3 wybranych wartości:

	Z 3.3 V	Z 5.1 V	Z 9.1 V	
		1/rd [1/Ω]		
5 [mA]	0,1627	0,11468	0,1194	
10 [mA]	0,321	0,21895	0,1963	
20 [mA]	0,4185	0,34715	0,3478	
		rd [Ω]		
5 [mA]	6,1449	8,7196	8,3752	
10 [mA]	3,1153	4,56731	5,0946	
20 [mA]	2,3895	2,8806	2,8749	

Charakterystyki diod Zenera w kierunku przewodzenia pokrywają się z wykresami dla zwykłych diod półprzewodnikowych. W kierunku zaporowym po przekroczeniu określonego napięcia można zaobserwować gwałtowne wzrastanie prądu wstecznego płynącego przez diodę. Dochodzi wtedy do przebicia diody w kierunku zaporowym. Dla napięć mniejszych od ok. -4V do 0 V zjawisko to nosi nazwę przebicia Zenera, od -8V do -4V zjawisko przebicia lawinowego i Zenera a dla napięć wyższych niż 8V jest to zjawisko przebicia lawinowego. Dioda 5,1V ma najlepsze właściwości stabilizacyjne, ponieważ temperatura ma najmniejszy wpływ na jej parametry.

Diody świecące

Napięcia na diodach dla kilku wartości prądów:

	RED LED	BLUE LED	GREEN LED
	U [V]		
5 [mA]	1,78	2,9	2,5
10 [mA]	1,87	3,01	2,68
14 [mA]	1,94	3,08	2,8

Wniosek:

W zależności od barwy świecenia diody można zaobserwować różne napięcia przy których zaczynają świecić.