

Partecipazione di utenti passivi al mercato dei servizi di dispacciamento: il caso di un Data Center bitcoin mining

Relatore: prof. Marco Merlo Simone Colombo

Co-Relatore: prof. Ferdinando Ametrano Anno Accademico: 2018/19

Introduzione

Normativa:

- Efficienza energetica
- Decarbonizzazione
- Aumento quote energia rinnovabile

- Crescente diffusione FER e GD

- Riduzione impianti programmabili

- Riduzione risorse riserva primaria e terziaria
- Aumento congestioni locali

Necessità di riformare il servizio di dispacciamento per garantire sicurezza ed efficienza del sistema elettrico

Introduzione

INIZIATIVE

- Aumento delle risorse partecipanti al MSD

TIDE delibera 300/2017

PROGETTI PILOTA

Partecipazione volontaria al MSD:

- delle unità di produzione non abilitate;
- delle unità di produzione e di consumo su base aggregata UVA (Unità Virtuali Abilitate)

unità di produzione non rilevanti UVAC

unità di consumo

UVAM

insieme di unità di produzioni rilevanti (UVAP + UVAC) UVAN

unità di produzione rilevanti e/o non rilevanti, ubicate all'interno dello stesso nodo di trasmissione nazionale

Progetto pilota UVAC

ANALISI DEL SERVIZIO DI FLESSIBILITÀ

UVAC

(Unità Virtuali Abilitate di Consumo)

Requisiti abilitazione

Abilitazione a MSD di aggregati di carico in grado di ridurre il proprio prelievo di almeno 1 MW entro 15 minuti dalla richiesta di Terna e per almeno 3 ore consecutive

Servizi offerti

Riserva terziaria di potenza a salire nella fase di programmazione del MSD Bilanciamento nella fase di bilanciamento del MSD

Impegno di offerta

Offerta a salire con un quantitativo di risorse almeno pari alla quantità assegnata per 3 ore consecutive **tra le 14:00 e le 20:00 dal lunedì al venerdì**

Progetto pilota UVAC

ANALISI DEL SERVIZIO DI FLESSIBILITÀ

UVAC

(Unità Virtuali Abilitate di Consumo)

Corrispettivo variabile

Massimo prezzo dell'offerta che il BSP può presentare sul MSD (*Strike Price*):

400 €/MWh

Corrispettivo fisso

Definito in esito ad asta a ribasso («pay as bid») a partire dal corrispettivo di 30.000 €/MW (nno

Selezione offerte

Accettazione in fase di programmazione del MSD **Attivazione** in fase di bilanciamento del MSD

60.000 per offerte di 6 ore continuative e comunque, in generale, per almeno il 70% dei giorni del periodo di validità

Data Center Mining

Data Center: impianto che ospita macchine di processo all'interno di sale opportunamente segregate.

Data Center mining o Mining Farm: Data Center costituito da hardware specializzati nello svolgere il processo di mining, processo altamente energivoro il cui scopo principale è quello di coniare nuova moneta digitale e rendere la rete di tale moneta sicura e affidabile.

Mining bitcoin

Parametri **tecnici** ed **economici** da considerare:

Prezzo bitcoin: il controvalore in moneta fiat. Segue le normali regole del mercato di compravendita [\$/BTC]

Efficienza: parametro utilizzato per misurare le <u>prestazioni</u> dei miner. L'unità di misura base è [J/GH]

Difficoltà: parametro dinamico che sta ad indicare quanto è difficile trovare un blocco dati rispetto ad una condizione di riferimento. È adimensionale []

Ciclo bitcoin

Nel corso della breve storia del mercato di bitcoin, si è ripetuto ciclicamente un particolare pattern.

Nei mercati finanziari, difatti, si tendono a ripetere con una certa frequenza tre **fasi cicliche**:

- Fase accumulativa
- Fase distributiva
- Fase di trend

Ciclo bitcoin

Nel corso della breve storia del mercato di bitcoin, si è ripetuto ciclicamente un particolare pattern.

Si cercano i **momenti critici** per ogni fase:

Fase accumulativa: UP

Fase distributiva: LOWER LOW

Fase di trend: BREAKOUT

Data Center mining – Casi studio –

CASI STUDIO

Rappresentano gli **inizi temporali** della finestra di studio considerando le seguenti variabili:

- Contratto di fornitura con Terna: 6 mesi / 1 anno
- Servizio di flessibilità: Regolazione / Senza regolazione

Si cercano i **momenti critici** per ogni fase:

- Fase *accumulativa:* **UP**
- Fase distributiva: LOWER LOW
- Fase di trend: BREAKOUT

- Valutare la coerenza dei risultati economici ottenuti a partire da uno stesso momento critico di due scenari diversi

- Valutare l'incidenza economica di <u>due momenti critici differenti all'interno dello stesso scenario</u>

Data Center mining — Casi studio —

CASO 1: NO regolazione

CASO 2: NO UPS, NO GE. 3 ore di regolazione

CASO 3: NO UPS, NO GE. 6 ore di regolazione

CASO 4: SI UPS per 3 ore di regolazione, NO GE

CASO 5: SI UPS per 6 ore di regolazione, NO GE

CASO 6: SI UPS per 0,25 ore di regolazione,

SI GE per 2,75 ore di regolazione

CASO 7: SI UPS per 0,25 ore di regolazione,

SI GE per 5,75 ore di regolazione

Si considerano le seguenti condizioni logiche operative:

- REGOLAZIONE POSSIBILE (SI o NO)
- **PROFITTO NEGATIVO** (SI o NO)
- OFFERTA ACCETTATA (SI o NO)

Per ogni caso si possono verificare <u>6 stati operativi</u>, ottenuti attraverso la combinazione delle precedenti condizioni

Data Center mining – Caso senza regolazione –

IPOTESI DI FUNZIONAMENTO

- Hardware di mining ASIC
- Mining pool
- Efficienza massima
- Shutdown provvisorio
- Dati storici
- Politica di trading

Se profitto **POSITIVO**DC sempre acceso

Se profitto **NEGATIVO**DC sempre spento

Data Center mining – Caso senza regolazione –

PARAMETRI ECONOMICI

- Ricavi: proporzionali all'Hash rate generato dal Data Center e inversamente proporzionale all'Hash rate della rete Bitcoin
- Costi: costi di elettricità del miner e del sistema di raffreddamento
- Costo di investimento: costo del Data Center Miner (1,3 \$/W)
- Flusso netto di cassa: parametro economico di confronto

Data Center mining - Caso con regolazione-

IPOTESI DI FUNZIONAMENTO

- Shutdown provvisorio
- No penali contrattuali
- No indisponibilità/guasti
- Servizio di regolazione ideale
- Ordine di dispacciamento
- Contratto

Per il *servizio di bilanciamento*, TERNA considera validi i dati tecnici dichiarati almeno 30 minuti prima dell'ordine di dispacciamento

Per il servizio di *riserva terziaria*, è definito (per le UVAC) un programma vincolante sempre pari a zero

Se profitto **POSITIVO**DC sempre acceso,
ad eccetto:
lun – ven
14:00 – 20:00
in caso di ordine di
dispacciamento

Se profitto **NEGATIVO**DC sempre spento,
ad eccetto:
lun – ven
13:00 – 20:00

Data Center mining — Caso con regolazione—

IPOTESI DI FUNZIONAMENTO

- Shutdown provvisorio
- No penali contrattuali
- No indisponibilità/guasti
- Servizio di regolazione ideale
- Ordine di dispacciamento
- Contratto

Non ci sono accettazioni parziali di offerte Offerta accettata = offerta attivata

Al massimo 1 ordine di dispacciamento al giorno, della durata di 3-6 ore

Stipulato un contratto con TERNA per una durata di 6 mesi – 1 anno

Data Center mining – Caso con regolazione-

DIMENSIONAMENTO UPS

Ipotesi: Batteria agli ioni di Litio

Costo di installazione	500
[€/kWh]	
Vita utile [anni]	10
$\eta_s[]$	0,9
η_c []	0,9
Costo adeguamento	10.000
impianto [€]	
Costo di adeguamento	2.000
operativo [€/anno]	

Ammortamento proporzionale alla durata del contratto e inversamente proporzionale alla vita utile dell' UPS

	[%/anno]	[%/giorno]
P_{ciclo}	15,87	0,043
P_{s-d}	13,14	0,036

 Costo perdita capacità di carica

Sovradimensionamento del 10%

Costi di carica/scarica proporzionali a Qrete

Data Center mining - Caso con regolazione-

DIMENSIONAMENTO GE

Ipotesi: Gruppo Elettrogeno a gasolio

Vita utile [anni]	20
Costo adeguamento	15.000
impianto [€]	
Costo di adeguamento	3.000
operativo [€/anno]	

PCI [GJ/ton]	20	
Densità [kg/mc]	835	

Autonomia di almeno 3 ore Sovradimensionamento del 10%

$$c_{fuel} = \frac{\dot{Q}_{el} \cdot t_{reg,GE}}{\eta_{el} \cdot \rho_{comb} \cdot PCI_{comb}}$$
 Costo operativo legato al consumo del combustibile

$t_{reg}[h]$	N. unità	Potenza singola unità GE [kW]	$\eta_{el}[]$	Costo su unità di potenza [€/kW]	Capacità serbatoio [L]
2,75	1	1100	0,435	170	670
5,75	2	1100	0,435	170	670

Simulazione offerte MSD

Funzione densità di probabilità

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} e^{\frac{(x-\mu)^2}{2\sigma^2}} con x \in \mathbb{R}$$

ex-ante della zona Nord del mercato elettrico italiano

Funzione di ripartizione

$$f(x) = \frac{1}{2} \left(1 + erf \frac{(x - \mu)}{\sigma \sqrt{2}} \right)$$

- Prezzo marginale a salire zonale orario $oldsymbol{P}_{oldsymbol{M}}$
- Prezzo medio ponderato a salire zonale orario $\overline{P_{p,or}}$
- Offerte accettate a salire zonale orario N

Probabilità di accettazione offerta

$$\overline{P_p} = \frac{\sum_{m=1}^{24} (\overline{P_{p,or}} \cdot N)}{\sum_{m=1}^{24} N}$$

$$\overline{P_{p,M}} = rac{\sum_{m=1}^{24} (P_M \cdot N)}{\sum_{m=1}^{24} N}$$

$$x = [-3.2, 3.2]$$

$$f(x) = [0.000687, 0.999313]$$

$$\overline{P_{p,m}} = \overline{P_p} - (\overline{P_{p,M}} - \overline{P_p})$$

Offerta minima MSD

Per **offerta minima** si intende il minimo valore del prezzo offerto in MSD tale che una sua eventuale accettazione porterebbe ad annullare il mancato ricavo che si avrebbe durante il servizio di regolazione, nel giorno precedente a quello cui si riferisce l'offerta

$$\Delta Profitto (D-1) \left[\frac{\epsilon}{giorno} \right] = 0$$

$$\Delta Profitto (D-1) \left[\frac{\epsilon}{giorno} \right] =$$

$$= Profitto (D-1) - Profitto_{Reg} (D-1) =$$

$$= Ricavi (D-1) - Costi (D-1) - (Ricavi_{Reg} (D-1) - Costi_{Reg} (D-1)) =$$

$$= Ricavi - Costi - (Ricavi_{Reg} - Costi_{Reg})$$

Per *profitto positivo* si Per *p* riferisce alla **stato b)** riferi

Per *profitto positivo* si riferisce alla **stato a**)

Offerta minima MSD

Se <u>profitto negativo</u> o <u>offerta minima troppo bassa</u>:

offerta minima = offerta minima limite

Offerta minima limite assume il valore tale per cui si ottenga il maggiore NCF a fine contratto.

Per avere un margine di profitto bisognerà incrementare l'offerta minima

L'incremento rispetto l'offerta minima assume il valore tale per cui si ottiene il maggiore NCF a fine contratto.

Risultati

Si definisce **caso base** quello che possiede i seguenti due parametri: - Costo corrente elettrica: **0,15** [€/kWh]

- Durata contratto: 1 [anno]

A: scenario 3, fase accumulativa, caso 3, 0.15 [€/kWh], 1 anno

A: scenario 3, fase accumulativa, 0.15 [€/kWh], 1 anno

Risultati

Si definisce **caso base** quello che possiede i seguenti due parametri: - Costo corrente elettrica: **0,15** [€/kWh]

- Durata contratto: 1 [anno]

B: scenario 3, fase distributiva, caso 3, 0.15 [€/kWh], 1 anno

Risultati

Si definisce **caso base** quello che possiede i seguenti due parametri: - Costo corrente elettrica: **0,15** [€/kWh]

- Durata contratto: 1 [anno]

C: scenario 2, fase trend, 0.15 [€/kWh], 1 anno

Confronto tra diversi scenari:

Confronto tra diversi scenari:

Confronto tra diversi prezzi di energia:

Confronto tra diversi prezzi di energia:

Conclusioni

Per la zona nord del mercato elettrico italiano, nel contesto del progetto pilota UVAC, risulta che:

- Servizio di regolazione economicamente vantaggioso per il Data Center di mining (NO GE e UPS)
- Servizio di regolazione conveniente anche con profitti negativi, durante lo spegnimento delle apparecchiature di minimg
- Caso sempre più conveniente: fornitura del servizio per 6 ore
- Beneficio reciproco tra Data Center di mining con servizio di regolazione e rete elettrica

• Utilizzo del Data Center di mining, ai prezzi attuali (0,10 -0,15 €/kWh), non assicura il ritorno economico; eventuali nuovi imprenditori che vogliano investire in questo settore sono inibiti dai rischi che ingenti investimenti a queste condizioni porterebbero

La fornitura di questa nuova risorsa di flessibilità risulta quindi, alle condizioni attuali, non percorribile

THANKS FOR YOUR ATTENTION