Lemma 0.1. We have $2^x \ge x + 1$ for any real $x \ge 1$.

Lemma 0.2. We have $2^x \ge x/2 + 1$ for any real $x \ge 0$.

Proof.
$$\Box$$

Theorem 0.3 (Fundamental theorem of arithmetic). Every integer $n \geq 1$ factors uniquely into a product of primes $n = p_1^{a_1} \cdots p_k^{a_k}$.

Proof.
$$\Box$$

Definition 0.4 (Divisor function). $\tau(n)$ denotes the number of divisors of an integer $n \geq 1$.

Lemma 0.5. If $n = p_1^{a_1} \cdots p_k^{a_k}$ is the prime factorization of an integer, then the divisor function evaluated at n equals $\tau(n) = (a_1 + 1) \cdots (a_k + 1)$.

Lemma 0.6. If $n = p_1^{a_1} \cdots p_k^{a_k}$ is the prime factorization of an integer, then

$$\frac{\tau(n)}{n^{\varepsilon}} = \prod_{i \le k} \frac{a_i + 1}{p_i^{a_i \varepsilon}}.$$
 (1)

Proof. Use definition 0.4, lemma 0.5.

Lemma 0.7. Let $p_i, a_i \ge 1$ and $\varepsilon > 0$. If $p_i^{\varepsilon} \ge 2$ then $\frac{a_i+1}{p_i^{a_i\varepsilon}} \le \frac{a_i+1}{2^{a_i}} \le 1$.

Proof. Use lemma 0.1 with
$$x = a_i$$
.

Lemma 0.8. Let $p_i, a_i \ge 1$ and $\varepsilon > 0$. If $p_i^{\varepsilon} < 2$ then $\frac{a_i + 1}{p_i^{a_i \varepsilon}} \le 2/\varepsilon$.

Proof. Use lemma 0.2 with
$$x = \varepsilon$$
.

Lemma 0.9. If $\varepsilon > 0$, $a_1, \ldots, a_k \ge 1$ are integers, and p_1, \ldots, p_k are primes, then

$$\prod_{i \leq k} \frac{a_i+1}{p_i^{a_i\varepsilon}} = \prod_{i \leq k, \, p_i^\varepsilon \geq 2} \frac{a_i+1}{p_i^{a_i\varepsilon}} \prod_{i \leq k, \, p_i^\varepsilon < 2} \frac{a_i+1}{p_i^{a_i\varepsilon}}$$

Proof. Uses no previous result

Lemma 0.10. If $\varepsilon > 0$, $a_1, \ldots, a_k \geq 1$ are integers, and p_1, \ldots, p_k are primes, then

$$\prod_{i \le k, \, p^{\varepsilon} > 2} \frac{a_i + 1}{p_i^{a_i \varepsilon}} \le 1$$

Proof. Uses lemma 0.7

Lemma 0.11. If $\varepsilon > 0$, $a_1, \ldots, a_k \geq 1$ are integers, and p_1, \ldots, p_k are primes, then

$$\prod_{i \leq k, \, p_i^{\varepsilon} < 2} \frac{a_i + 1}{p_i^{a_i \varepsilon}} \leq \prod_{i \leq k, \, p_i^{\varepsilon} < 2} \frac{2}{\varepsilon}$$

Proof. Uses lemma 0.8

Lemma 0.12. If $\varepsilon > 0$, $a_1, \ldots, a_k \geq 1$ are integers, and p_1, \ldots, p_k are primes, then

$$\prod_{i \le k, \, p_i^{\varepsilon} < 2} \frac{2}{\varepsilon} \le (2/\varepsilon)^{2^{1/\varepsilon}}$$

Proof. Uses no previous result

Lemma 0.13. If $\varepsilon > 0$, $a_1, \ldots, a_k \geq 1$ are integers, and p_1, \ldots, p_k are primes, then

$$\prod_{i < k} \frac{a_i + 1}{p_i^{a_i \varepsilon}} \le (2/\varepsilon)^{2^{1/\varepsilon}}$$

Proof. Uses lemmas 0.9, 0.10, 0.11, 0.12

Lemma 0.14. Let $\varepsilon > 0$. Then $(2/\varepsilon)^{2^{1/\varepsilon}} \leq O_{\varepsilon}(1)$.

Proof. Uses definition of $O_{\varepsilon}(1)$.

Lemma 0.15. Let $\varepsilon > 0$ and $n \ge 1$. Then $\frac{\tau(n)}{n^{\varepsilon}} \le O_{\varepsilon}(1)$

Proof. Uses lemma 0.6, 0.13, 0.14

Lemma 0.16. Let $\varepsilon > 0$ and $n \ge 1$. Then $\tau(n) \le O_{\varepsilon}(n^{\varepsilon})$.

Proof. Uses lemma 0.15

Lemma 0.17. We have $\tau(n) \leq O_{\varepsilon}(n^{\varepsilon})$ for any integer $n \geq 1$ and any $\varepsilon > 0$.

Proof. Uses lemma 0.16

Theorem 0.18 (Divisor bound). We have $\tau(n) \leq n^{o(1)}$ for any integer $n \geq 1$.

Proof. Uses lemma 0.17 and definition of o(1).

Definition 0.19 (Radical). For an integer $n \geq 1$ define the radical rad $(n) = \prod_{p|n} p$.

Lemma 0.20. If $n = p_1^{a_1} \cdots p_k^{a_k}$ is the prime factorization of an integer,

then $\operatorname{rad}(n) = p_1 \cdots p_k$.

Proof. Uses definition 0.19.

Lemma 0.21. $\operatorname{rad}(n)$ is a multiplicative function. That is, if $a, b \geq 1$ are integers with $\gcd(a, b) = 1$ then $\operatorname{rad}(ab) = \operatorname{rad}(a)\operatorname{rad}(b)$.

Proof. Uses lemma 0.20 and theorem 0.3.

Lemma 0.22. If $a, b \ge 1$ are integers with gcd(a, bc) = 1 and gcd(b, c) = 1 then rad(abc) = rad(a) rad(b) rad(c).

Proof. Uses lemma 0.21 with $\{a,bc\}$, and again uses lemma 0.21 with $\{b,c\}$

Lemma 0.23. If $a, b \ge 1$ are integers with gcd(a, bc) = 1 and gcd(b, c) = 1 then $rad(ab) rad(ac) rad(bc) = (rad(abc))^2$.

Proof. Uses lemma 0.22, and then uses lemma 0.21 three times, with $\{a,b\}$ and $\{a,c\}$ and $\{b,c\}$.

Lemma 0.24. Let $p_1 < \cdots < p_k$ be distinct primes, and denote the product $r = p_1 \cdots p_k$. If an integer $n \ge 1$ satisfies $\operatorname{rad}(n) = r$, then $n = p_1^{a_1} \cdots p_k^{a_k}$ for some integers $a_1, \ldots, a_k \ge 1$.

Proof. Uses theorem 0.3 with n, then uses lemma 0.20.

Definition 0.25. Let $N, r \ge 1$. Define $\mathcal{R}(r, N) := \{n \le N : rad(n) = r\}$. When context is clear, we may simply write $\mathcal{R} = \mathcal{R}(r, N)$.

Lemma 0.26. Let $p_1 < \cdots < p_k$ be distinct primes, and denote the product $r = p_1 \cdots p_k$. Then

$$\mathcal{R} \subset \left\{ p_1^{a_1} \cdots p_k^{a_k} : a_1, \dots, a_k \ge 1 \right\}.$$

Proof. Uses lemma 0.20 and theorem 0.3.

Lemma 0.27. For any set $S \subset \mathbb{Z}$, we have $|S| = \sum_{n \in S} 1$.

Proof. Uses no previous result

Lemma 0.28. If $\varepsilon > 0$ and $1 \le n \le N$, then $\frac{1}{n^{\varepsilon}} \ge \frac{1}{N^{\varepsilon}}$.

Proof. Uses no previous result

Lemma 0.29. For any $\varepsilon > 0$ and $N, r \geq 1$, we have

$$\sum_{n \in \mathcal{R}} \frac{1}{n^{\varepsilon}} \ge \frac{|\mathcal{R}|}{N^{\varepsilon}},$$

Proof. Uses lemma 0.27 with S = R, and lemma 0.28.

Lemma 0.30. Let $\varepsilon > 0$ and $N \geq 1$. If $r = p_1p_2$, then $\mathcal{R} = \mathcal{R}(r, N)$ satisfies

$$\sum_{n \in \mathcal{R}} \frac{1}{n^{\varepsilon}} \le \sum_{a_1 > 1} \sum_{a_2 > 1} \frac{1}{(p_1^{a_1} p_2^{a_2})^{\varepsilon}}$$

Proof. Uses lemma 0.26.

Lemma 0.31. Let $\varepsilon > 0$ and $N \geq 1$. If $r = p_1 \cdots p_k$, then $\mathcal{R} = \mathcal{R}(r, N)$ satisfies

$$\sum_{n \in \mathcal{R}} \frac{1}{n^{\varepsilon}} \le \sum_{a_1, \dots, a_k \ge 1} \frac{1}{(p_1^{a_1} \cdots p_k^{a_k})^{\varepsilon}}$$

Proof. Uses lemma 0.26.

Lemma 0.32. Let $\varepsilon > 0$ and $N \ge 1$. Then

$$\sum_{a_1 \geq 1} \sum_{a_2 \geq 1} \frac{1}{(p_1^{a_1} p_2^{a_2})^{\varepsilon}} = \Big(\sum_{a_1 \geq 1} \frac{1}{p_1^{\varepsilon a_1}}\Big) \Big(\sum_{a_2 \geq 1} \frac{1}{p_2^{\varepsilon a_2}}\Big)$$

Proof. Uses no previous result

Lemma 0.33. Let $\varepsilon > 0$ and $p_1 < \cdots < p_k$ be distinct primes. Then

$$\sum_{a_1,\dots,a_k\geq 1}\frac{1}{(p_1^{a_1}\cdots p_k^{a_k})^\varepsilon}=\prod_{i\leq k}\Bigl(\sum_{a_i\geq 1}\frac{1}{p_i^{\varepsilon a_i}}\Bigr)$$

Proof. Uses no previous result

Theorem 0.34 (Geometric series). For any 0 < x < 1 we have $\sum_{a \ge 1} x^a = \frac{x}{x-1}$.

Proof. Uses no previous result

Lemma 0.35. Let $\varepsilon > 0$ and let $p_i \geq 2$ be a prime. Then

$$\sum_{a_i > 1} \frac{1}{p_i^{\varepsilon a_i}} = \frac{1}{p_i^{\varepsilon} - 1}.$$

Proof. Uses lemma 0.34

Lemma 0.36. Let $\varepsilon > 0$ and let $p_1 < \cdots < p_k$ be distinct primes. Then

$$\prod_{i \le k} \left(\sum_{a_i \ge 1} \frac{1}{p_i^{\varepsilon a_i}} \right) = \prod_{i \le k} \frac{1}{p_i^{\varepsilon} - 1}$$

Proof. Uses lemma 0.35

Lemma 0.37. Let $\varepsilon > 0$ and let $p_1 < \cdots < p_k$ be distinct primes. Then

$$\prod_{i\leq k}\frac{1}{p_i^\varepsilon-1}=\prod_{i\leq k,\,p_i^\varepsilon\geq 2}\frac{1}{p_i^\varepsilon-1}\prod_{i\leq k,\,p_i^\varepsilon<2}\frac{1}{p_i^\varepsilon-1}$$

Proof. Uses no previous result

Lemma 0.38. Let $p_i, a_i \geq 1$ and $\varepsilon > 0$. If $p_i^{\varepsilon} \geq 2$ then $\frac{1}{p_i^{\varepsilon} - 1} \leq 1$.

Proof. Uses no previous result

Lemma 0.39. Let $\varepsilon > 0$ and let $p_1 < \cdots < p_k$ be distinct primes. Then

$$\prod_{i \le k, \, p_i^{\varepsilon} \ge 2} \frac{1}{p_i^{\varepsilon} - 1} \le 1.$$

Proof. Uses lemma 0.38

Lemma 0.40. Let $\varepsilon > 0$. Then $\frac{1}{2^{\varepsilon}-1} \leq \frac{2}{\varepsilon}$.

Proof. Uses lemma 0.2

Lemma 0.41. Let $p_i \geq 2$, $a_i \geq 1$ and $\varepsilon > 0$. If $p_i^{\varepsilon} < 2$ then $\frac{1}{p_i^{\varepsilon} - 1} \leq \frac{2}{\varepsilon}$.

Proof. Uses $p_i \geq 2$ and lemma 0.40

Lemma 0.42. Let $\varepsilon > 0$ and let $p_1 < \cdots < p_k$ be distinct primes. Then

$$\prod_{i \leq k, \, p_i^{\varepsilon} < 2} \frac{1}{p_i^{\varepsilon} - 1} \leq \prod_{i \leq k, \, p_i^{\varepsilon} < 2} \frac{2}{\varepsilon}$$

Proof. Uses lemma 0.41

Lemma 0.43. Let $\varepsilon > 0$ and let $p_1 < \cdots < p_k$ be distinct primes. Then

$$\prod_{i \le k, \, p_i^{\varepsilon} < 2} \frac{2}{\varepsilon} \le (2/\varepsilon)^{2^{1/\varepsilon}}.$$

Proof. Uses no previous results

Lemma 0.44. Let $\varepsilon > 0$ and let $p_1 < \cdots < p_k$ be distinct primes. Then

$$\prod_{i \le k} \frac{1}{p_i^{\varepsilon} - 1} \le (2/\varepsilon)^{2^{1/\varepsilon}}.$$

Proof. Uses lemmas 0.37, 0.39, 0.42, 0.43

Lemma 0.45. Let $\varepsilon > 0$ and $N \ge 1$. Then $(2/\varepsilon)^{2^{1/\varepsilon}} \le O_{\varepsilon}(1)$.

Proof. Uses lemma 0.14.

Lemma 0.46. For any $\varepsilon > 0$ and $N, r \ge 1$, we have

$$\frac{|\mathcal{R}|}{N^{\varepsilon}} \le O_{\varepsilon}(1).$$

Proof. Uses lemmas 0.29, 0.31, 0.33, 0.36, 0.44, 0.45.

Lemma 0.47. Let $\varepsilon > 0$ and $1 \le r \le N$. Then we have

$$|\mathcal{R}(r,N)| \leq O_{\varepsilon}(N^{\varepsilon})$$

Proof. Uses lemma 0.46

Theorem 0.48. Let $1 \le r \le N$. Then we have

$$|\mathcal{R}(r,N)| \le N^{o(1)}.$$

Proof. Uses lemma 0.47 and definition of o(1)

Lemma 0.49. Let $N \ge 1$ and $0 < \lambda < 1$. We have

$$\left|\left\{n \leq N : \operatorname{rad}(n) \leq N^{\lambda}\right\}\right| = \sum_{\substack{1 \leq r \leq N^{\lambda} \\ \operatorname{rad}(n) = r}} \sum_{1 \leq n \leq N} 1$$

Proof. Uses no previous results

Lemma 0.50. Let $N \ge 1$ and $0 < \lambda < 1$. We have

$$\left|\left\{n \leq N : \operatorname{rad}(n) \leq N^{\lambda}\right\}\right| = \sum_{1 \leq r \leq N^{\lambda}} |\mathcal{R}(r, N)|$$

Proof. Uses lemma 0.49 and definition 0.25.

Lemma 0.51. Let $N \ge 1$ and $0 < \lambda < 1$. We have

$$\left|\left\{n \le N : \operatorname{rad}(n) \le N^{\lambda}\right\}\right| \le \sum_{1 \le r \le N^{\lambda}} N^{o(1)}$$

Proof. Uses lemma 0.50 and theorem 0.48.

Theorem 0.52. Let $N \ge 1$ and $0 < \lambda < 1$. We have

$$\left|\left\{n \le N : \operatorname{rad}(n) \le N^{\lambda}\right\}\right| \le N^{\lambda + o(1)}.$$

Proof. Uses lemma 0.51

Definition 0.53 (Exceptional set). Let $N \geq 1$ and $\varepsilon > 0$. Define the exceptional set

$$\mathcal{E}(N) = \left\{ (a, b, c) \in \{1, \dots, N\}^3 : \gcd(a, b) = 1, a + b = c, \operatorname{rad}(abc) < c^{1 - \varepsilon} \right\}.$$

Lemma 0.54. Let $a, b \ge 1$ be integers with gcd(a, bc) = 1 and gcd(b, c) = 1. If rad(ab), rad(ac), rad(bc) all exceed $c^{\frac{2}{3}(1-\varepsilon)}$, then

$$c^{2-2\varepsilon} \le \operatorname{rad}(ab)\operatorname{rad}(ac)\operatorname{rad}(bc) = (\operatorname{rad}(abc))^2.$$

Proof. Uses lemma 0.23

Lemma 0.55. Let $a, b \ge 1$ be integers with gcd(a, bc) = 1 and gcd(b, c) = 1. If rad(ab), rad(ac), rad(bc) all exceed $c^{\frac{2}{3}(1-\varepsilon)}$, then $c^{1-\varepsilon} \le rad(abc)$.

Proof. Uses lemma
$$0.54$$

Lemma 0.56. Let $(a,b,c) \in \mathcal{E}(N)$. Then either $\operatorname{rad}(ab) < c^{\frac{2}{3}(1-\varepsilon)}$ or $\operatorname{rad}(ac) < c^{\frac{2}{3}(1-\varepsilon)}$ or $\operatorname{rad}(bc) < c^{\frac{2}{3}(1-\varepsilon)}$.

Proof. Uses lemma
$$0.55$$
 in contrapositive form

Lemma 0.57. Let $(a,b,c) \in \mathcal{E}(N)$. Then there exist $x,y \in \{a,b,c\}$ with $x \neq y$ and $\operatorname{rad}(xy) \leq N^{2/3-\varepsilon}$.

Proof. Uses lemma 0.56

Lemma 0.58. We have

$$|\mathcal{E}(N)| = \sum_{\substack{1 \le a,b,c \le N \\ \gcd(a,b) = 1 \\ \operatorname{rad}(abc) < c^{1-\varepsilon} \\ a+b=c}} 1.$$

Proof. Uses no previous results

Lemma 0.59. Let $\varepsilon > 0$ and $N \ge 1$. We have

$$\underbrace{\sum_{\substack{1 \leq a,b,c \leq N \\ \gcd(a,b)=1\\ \operatorname{rad}(abc) < c^{1-\varepsilon} \\ a+b=c}} 1 \ \leq \ \underbrace{\sum_{\substack{r \leq N^{2/3-\varepsilon} \\ \gcd(a,b)=1\\ r=\operatorname{rad}(abc)\\ a+b=c}} \underbrace{\sum_{\substack{1 \leq a,b,c \leq N \\ \gcd(a,b)=1\\ r=\operatorname{rad}(abc)\\ a+b=c}} 1$$

Proof. Uses no previous results

Lemma 0.60. Let $\varepsilon > 0$ and $r, N \ge 1$. We have

$$\sum_{\substack{1 \leq a,b,c \leq N \\ \gcd(a,b)=1 \\ r=\operatorname{rad}(abc) \\ a+b=c}} 1 \leq 3 \sum_{\substack{1 \leq x,y \leq N \\ \gcd(x,y)=1 \\ r=\operatorname{rad}(xy)}} 1$$

Proof. Uses lemma 0.57

Lemma 0.61. Let $\varepsilon > 0$ and $r, N \ge 1$. We have

$$\sum_{\substack{1 \le x,y \le N \\ \gcd(x,y)=1 \\ r=\operatorname{rad}(xy)}} 1 \le \sum_{\substack{1 \le n \le N^2 \\ r=\operatorname{rad}(n)}} \tau(n).$$

Proof. Uses definition 0.4 with n = xy

Lemma 0.62. We have

$$\sum_{\substack{1 \leq n \leq N^2 \\ r = \mathrm{rad}(n)}} \tau(n) \leq \sum_{\substack{1 \leq n \leq N^2 \\ r = \mathrm{rad}(n)}} N^{o(1)}$$

Proof. Uses theorem 0.18, and that $n \leq N$

Lemma 0.63. We have

$$3 \sum_{\substack{r \leq N^{2/3 - \varepsilon} \\ \gcd(x,y) = 1 \\ r = \operatorname{rad}(xy)}} \sum_{\substack{1 \leq x,y \leq N \\ r = \operatorname{rad}(n)}} 1 \leq \sum_{\substack{r \leq N^{2/3 - \varepsilon} \\ r = \operatorname{rad}(n)}} N^{o(1)}$$

Proof. Uses lemmas 0.61, 0.62

Lemma 0.64. We have

$$\sum_{\substack{r \leq N^{2/3-\varepsilon} \\ r = \mathrm{rad}(n)}} \sum_{\substack{1 \leq n \leq N^2 \\ r = \mathrm{rad}(n)}} 1 = \left| \left\{ n \leq N^2 : \mathrm{rad}(n) \leq N^{2/3-\varepsilon} \right\} \right|.$$

Proof. Uses no previous results

Lemma 0.65. Let $N \ge 1$ and $\varepsilon > 0$. We have

$$|\mathcal{E}(N)| \ \leq \ N^{o(1)} \cdot \left| \left\{ n \leq N^2 : \mathrm{rad}(n) \leq N^{2/3 - \varepsilon} \right\} \right|$$

Proof. Uses lemmas 0.58, 0.59, 0.60, 0.63, 0.64

Lemma 0.66. Let $N \ge 1$ and $\varepsilon > 0$. We have

$$\left|\left\{n \leq N^2 : \operatorname{rad}(n) \leq N^{2/3 - \varepsilon}\right\}\right| \ \leq \ N^{2/3 - \varepsilon + o(1)}$$

Proof. Uses definition 0.25, theorem 0.52 with N^2 and $\lambda = 2/3 - \varepsilon$

Theorem 0.67. We have $|\mathcal{E}(N)| \leq O(N^{2/3})$.

Proof. Uses lemmas 0.65, 0.66