Lóp: KHTN2024

BÁO CÁO KÉT QUẢ THỬ NGHIỆM

Thời gian thực hiện: 28/02 -28/02/2025

Sinh viên thực hiện: Mai Quốc Anh

Nội dung báo cáo: Đo thời gian chạy các thuật toán Sort

I. Kết quả thử nghiệm

1. Bảng thời gian thực hiện¹

Dữ liệu	Thời gian thực hiện (ms)				
	Quicksort	Heapsort	Mergesort	sort (C++)	sort (numpy)
1	143.284	205.942	79.836	53.1584	42.98
2	244.572	205.583	82.5813	41.1419	42.78
3	184.216	305.348	159.566	145.63	40.65
4	183.891	343.475	164.602	147.853	41.52
5	187.598	318.337	163.39	143.777	42.48
6	182.323	321.986	167.726	147.871	43.53
7	193.07	321.602	172.474	147.981	42.43
8	191.98	324.928	182.242	143.809	42.97
9	189.523	322.642	165.376	145.282	43.95
10	191.053	331.336	164.012	142.806	41.86
Trung bình	189.151	300.118	150.181	125.931	42.515

2. Biểu đồ (cột) thời gian thực hiện

¹ Số liệu chỉ mang tính minh họa

II. Kết luận:

- Dựa vào kết quả của biểu đồ, ta có thể kết luận:
 - Ở hầu hết tất cả các test, **Heapsort(cột màu cam)** tuy với độ phức tạp O(NlogN) nhưng lại có hiệu suất kém nhất vì có nhiều thao tác trên bộ nhớ hơn so với các thuật toán khác.
 - Quicksort(cột màu xanh nhạt) với độ phức tạp O(NlogN), nó có hiệu suất trung bình ở hầu hết các test nhưng với test 2 là một trường hợp xấu nhất của Quicksort khi dãy là một dãy giảm dần, việc không chọn khóa (pivot) đủ mạnh sẽ làm cho thuật toán chạy khá chậm.
 - Mergesort (cột màu xám) với độ phức tạp O(NlogN), khá ổn định với tất cả các test.
 - Sort(C++) (cột màu vàng) với độ phức tạp O(NlogN), do có sự tích hợp sẵn của nhiều thuật toán sắp xếp, Sort(C++) cho thấy sự ổn định và hiệu suất hơn so với cả Quicksort và MergeSort.
 - Sort(numpy) (cột màu xanh đậm) với độ phức tạp O(NlogN), có hiệu suất nhanh nhất và ổn định nhất trong tất cả các test được so sánh.

III. Thông tin chi tiết – link github, trong repo gibub cần có

- Link repo github: https://github.com/MQAnh/SortingAlgorithms