Mystery1 Module Interface

Uses

None

Syntax

Exported Types

Mystery1 = ?

Exported Access Routine

Routine Name	In	Out	Exceptions
new Mystery1		Mystery1	None
f1		N	None
f2	String		None
f3	String, String		None
f4	String, String	\mathbb{B}	None

Semantic

Local Types

String = char[] X = tuple(x:String, y:String)

State Variables

 $S_1 : \text{String}\{\ \}$ $S_2 : X\{\ \}$

Assumptions

- All inputs are of the proper type.
- The notation $X(s_1, s_2)$ is shorthand for saying (s_1, s_2) is a tuple of type X, where $x = s_1$ and $y = s_2$.

Access Routine Semantics

Mystery1():

- transition: $S_1, S_2 = \{ \}, \{ \}$
- \bullet output: out := this

f1():

• output: out := $|S_1|$

f2(s):

• transition: $S_1 := S_1 \cup \{s\}$

 $f3(s_1,s_2)$:

• transition: $S_2 := S_2 \cup \{X(s_1, s_2)\}$

 $f4(s_1,s_2)$:

• output: out := $s_2 \in \cup (s : \text{String } | s \in g(s_1) : g(s)) \land s_2 \notin g(s_1)$

Local Functions

$$\begin{array}{l} g(s): \text{String} \rightarrow \text{String} \{ \ \} \\ g(s) = \{s' \ : \ X(s,s') \in S_2 \} \end{array}$$

Mystery2(T) Generic Module

Uses

None

Syntax

Exported Types

Mystery2 = ?

Exported Access Routine

Routine Name	In	Out	Exceptions
new Mystery2		Mystery2	None
f1	T, T		Exception
f2		T	Exception

Semantic

Local Types

 $X = tuple(x_1:T, x_2:T \cup \{k\}, x_3:\mathbb{N})$

Local Constants

k = -1

State Variables

 $S = X\{ \}$

Assumptions

- All inputs are of the proper type.
- $k \notin T$
- The notation X(a, b, c) is shorthand for saying (a, b, c) is a tuple of type X, where $x_1 = a$, $x_2 = b$ and $x_3 = c$.

Access Routine Semantics

Mystery2():

• transition: $S = \{ \}$

• output: out := this

 $f1(t_1, t_2)$:

• transition: $S := S \cup \{X(t_1, t, n)\}$, where the following all hold:

```
1. \forall (x : X | x \in S : x.x_3 < n)
2. \exists (x : X | x \in S : x.x_1 = t_2) \Rightarrow t = t_2
3. \neg \exists (x : X | x \in S : x.x_1 = t_2) \Rightarrow t = k
```

• exception: $\exists (x: X | x \in S: x.x_2 = t_1) \Rightarrow \text{Exception}$

f2():

- transition: $S := g_2(x.x_1) \cup g_3(x.x_1) \{x\}$, where: $x \in g_1() \land \forall (x' : X | x' \in g_1() : x'.x_3 \leq x.x_3)$
- output: out := $x.x_1$ where, $x \in g_1() \land \forall (x' : X | x' \in g_1() : x'.x_3 \le x.x_3)$
- exception: $S = \{\} \Rightarrow \text{Exception}$

Local Functions

$$\begin{split} g_1() : &\text{None} \to \mathbf{X} \{ \ \} \\ g_1() = \{x \ : \ x \in S \land x. x_2 = k \} \\ \\ g_2(t) : T \to \mathbf{X} \{ \ \} \\ g_2(t) = \{X(x_1, k, x_3) \ : \ X(x_1, t, x_3) \in S \} \\ \\ g_3(t) : T \to \mathbf{X} \{ \ \} \\ g_3(t) = \{X(x_1, x_2, x_3) \ : \ X(x_1, x_2, x_3) \in S \land x_2 \neq t \} \end{split}$$

Considerations

It is assumed that $t_1 = t_2$, where $t_1, t_2 : T$, would be implemented using the .equals method in Java. That is, $t_1 = t_2$ would be equivalent to t1.equals(t2).