Table of ansatzes for the method of undetermined coefficients

f	ansatz y_p
Polynomial $P_m(x) = a_0 + \ldots + a_m x^m$	Polynomial $x^s(A_0 + \ldots + A_m x^m)$
$a\cos kx + b\sin kx$ (one of a or b can be 0)	$x^{s}(A\cos kx + B\sin kx)$
$e^{rx}(a\cos kx + b\sin kx)$	$x^{s}e^{rx}(A\cos kx + B\sin kx)$
$P_m(x)e^{rx}$	$\frac{x^s(A_0+\ldots+A_mx^m)e^{rx}}{}$
$P_m(x)(a\cos kx + b\sin kx)$	$\frac{\mathbf{x}^{\mathbf{s}}}{\mathbf{s}}\left[\left(A_{0}+\ldots+A_{m}x^{m}\right)\cos kx+\left(B_{0}+\ldots+B_{m}x^{m}\right)\sin kx\right]$
$P_m(x)e^{rx}(a\cos kx + b\sin kx)$	$\boxed{x^s \left[(A_0 + \ldots + A_m x^m) e^{rx} \cos kx + (B_0 + \ldots + B_m x^m) e^{rx} \sin kx \right]}$

Table of solutions to $\boldsymbol{X}' = A\boldsymbol{X} \in \mathbb{R}^2$

Eigenvalues of A	General solution $m{X}$
$\lambda_1, \lambda_2 \in \mathbb{R}, \ \lambda_1 \neq \lambda_2$	$c_1e^{\lambda_1t}oldsymbol{v}_1+c_2e^{\lambda_2t}oldsymbol{v}_2$
$\lambda_1,\lambda_2\in\mathbb{R},\lambda_1=\lambda_2$	$\begin{cases} c_1 e^{\lambda t} \boldsymbol{v}_1 + c_2 t e^{\lambda t} \boldsymbol{v}_2, & \text{if } \boldsymbol{v}_1, \boldsymbol{v}_2 \text{ are linearly independent} \\ c_1 e^{\lambda t} \boldsymbol{v} + c_2 (t e^{\lambda t} \boldsymbol{v} + e^{\lambda t} \boldsymbol{w}), & \boldsymbol{w} \text{ is a generalized eigenvector associated to } \boldsymbol{v} \end{cases}$
$\lambda = \alpha + i\beta \ (\beta \neq 0)$ $\mathbf{p} = \mathbf{B}_1 + i\mathbf{B}_2$	$c_1 e^{\alpha t} \left[\cos(\beta t) \boldsymbol{B}_1 - \sin(\beta t) \boldsymbol{B}_2 \right] + c_2 e^{\alpha t} \left[\cos(\beta t) \boldsymbol{B}_2 + \sin(\beta t) \boldsymbol{B}_1 \right] \text{ or } c_1 \operatorname{Re}(e^{\lambda t} \boldsymbol{p}) + c_2 \operatorname{Im}(e^{\lambda t} \boldsymbol{p})$