Linear algebra

Course MATH 416 Honor@UIUC

Textbook

- Linear Algebra via Exterior Products (2020)
- Linear Algebra Done Right (2023)
- Linear Algebra Done Wrong (2021)
- Linear Algebra (Stephen H. Friedberg, Arnold J. Insel etc.) (2021) [main]

Reminder

1. Carefully look at "dependent" or "independent".

Notation

1. ϵ_n is the standard basis of F^n .

Ch1 Vector Spaces

1.2 Vector Space

Def. (Vector space V on field F)

A non-empty set with vector addition and scalar multiplication, with the following axioms:

- 1. Additive commutativity;
- 2. Additive and scalar multiplicative associativity;
- 3. Additive identity and scalar multiplicative identity;
- 4. Additive inverse:
- 5. Vector and scalar additive distributivity.

Rmk. This definition gives rise to a few special vector space, e.g. \mathbb{R}^n and \mathcal{P}^n , which will compose others by standard procedure introduced later.

Thm. (1.1 Cancellation law for vector addition) By playing inverse (rule 4).

Cor. a)
$$\exists ! \underline{0}$$
; b) $\exists ! \underline{-x}$; c) $0 \cdot \underline{x} = \underline{0}$; d) $(-\lambda) \cdot \underline{x} = -(\lambda \underline{x}) = \lambda \cdot \underline{-x}$; e) $\lambda \cdot \underline{0} = \underline{0}$.

1.3 Subspaces

⊘ Def. (Subspace W of vector space V)

A non-empty subset of V, such that:

 $1.0 \in W$;

2. Closed under vector addition and scalar multiplication.

Thm. (1.4) Subspace is closed under arbitrary intersection.

1.4 Linear combination

For a set $S \subset V$, $span(S) := \bigcap_{S \subset \text{subspace } W \subset V} W$.

Rmk. If $S_1 \subset S_2$, then $span(S_1) \subset span(S_2)$.

Prop. span(S) is the set of linear combination of elements in S.

1.5 Linear independence

Def. (Linear dependent)

n distinct s_i , there exists $\lambda_1 \dots \lambda_n$ that are not all zero, such that $\sum \lambda_i s_i = 0$.

Thm. S are linear independent set of vectors, $v \in V \setminus S$, then $S \cup \{v\}$ are linear dep. iff $v \in span(S)$.

1.6 Bases and dimention

Minimal (defined in the subset inclusion sence, not in size sence) spanning set.

Cor. span(S) = V, then it's basis iff it's linear indep.

Thm. (**Replacement thm**) V has a basis s_1, \ldots, s_n of size n, let $\{x_1, \ldots, x_i\}$ of size i be linear indep. and $i \leq n$, then $\{x_1, \ldots, x_i, s_{i+1}, \ldots, s_n\}$ (some of si is replaced by xi) is a basis.

Cor. card(linear indep) <= card(basis) <= card(spanning set)

Cor. Basis has the same cardinality.

Cor. If $|S| = \dim V$, then TFAE: a) spanning; b) linear indep; c) basis.

Thm. (1.11) $W \subset V$, dim $W \leq \dim V$, then dim $W = \dim V$ iff W = V.

Cor. $\dim V < \infty, W \subset V$, then W posseses a compliment.

⊘ Def. (Quotient space)

Given subspace W, define $x \sim y$ if $x - y \in W$, $[x] := \{y : x \sim y\} =: \{x + w | w \in W\} =: x + W$, and $\{[x]\} := V_{/W}$ is a vector space called quotient space, by the intuitive definition of addition and scalar multiplication: $[v] = [\sum \lambda_i s_i] := \sum \lambda_i s_i$ and $\lambda[x] := [\lambda x]$, e.g. -[x] = [-x].

Prop. $\dim(V_{/W}) = \dim V - \dim W$.

Thm. Given subspace W, there's a bijection between $\{H: subspace\ H, W\subset H\}$ and $\{\bar{H}\in V_{/W}: subspace\ H\}$, where the $\bar{H}:=H_{/W}=\{[x]\in V_{/W}: x\in H\}$.

Rmk. This together with the usage of flags give another proof for Cor 1.11.

```
otin {f Def. (Direct sum)} 
otin W_1 \oplus W_2 	ext{ if } W_1 + W_2 = V 	ext{ and } W_1 \cap W_2 = \emptyset.
otag
```

Cor. $\dim(W_1+W_2)=\dim W_1+\dim W_2-\dim(W_1\cap W_2)$, by showing $\dim \bar{V}=\dim \bar{W}_1+\dim \bar{W}_2$.

1.7 Maximal linear independent subset

```
Def. (Chain / nest / tower)
```

A collection of elements that are totally ordered.

Thm. (**Hausdorff maximal principle** / **the axiom of choice**) Every partially ordered set has a maximal linearly / totally ordered subset. It's the same as the next thm.

Thm. (**Zorn's lemma**) For a partially ordered set (X, \leq) , for any $C \subset X$ be totally ordered. Suppose $\exists x_c \in X, s.t., \forall x \in C, x \leq x_c$ (every chain has a top), then $\exists x_m, s.t., \forall y \in X, x_m \leq y \rightarrow x_m = y$ (maximum exists).

```
O Def. (Maximal linear independent set)
```

Again, maximal with respect to set inclusion.

Lemma. A set is a maximal linear independent set iff it's a basis.

Thm. For any linearly independent subset S of a vector space V, there's a basis that contains S.

Proof. Construct X to be the collection of independent sets containing S. For any chain C in X, we need to find a top of it in X. This can be done by taking union of sets in C, which means it's a top and therefore containing S. Also, it's independent, since for any u_i for $i = 1 \dots n$, we can find a set in C such that it contains all these vectors, therefore they're linearly independent.

Cor. Every vector space has basis.

Thm. Subspace $W \subset V$, then $\exists W', s.t. V = W \oplus W'$.

Ch2. Linear Transformations and Matrices

2.1 Rank-nullity

```
T:V	o W.
```

Rmk.

- 1. T(0) = 0.
- 2. $Ker(T) \subset V$, $Ran(T) \subset W$ are subspaces, called **null space / kernel** and **range / image**, and their dimention is called **nullity** and **rank**.
- 3. (2.4) T is 1-1 iff $Ker(T) = \{0\}$.

ర్ Thm. (Dimension thm)

For linear $T: V \to W$, and V is finite-dimensional, then $nullity(T) + rank(T) = \dim(V)$.

Thm. T is isomorphic iff $\exists T^{-1}, s.t., T \circ T^{-1} = id_V.T^{-1} \circ T = id_W, T^{-1}$ linear.

Thm. (2.19) $T: V \to W$, dim $V = n < \infty$, then T is isomorphism iff dim W = n.

Cor. Subspace $V' \subset V$, then $T|_{V'}: V' \to T(V')$ is still isomorphic.

Thm. $T:V \to W$ induces linear $\bar{T}:V_{/KerT} \to R(T)$ by letting $\bar{T}:=[x] \mapsto T(x)$.

Cor. $\dim V < \infty, \dim KerT + \dim R(T) = \dim V$.

Cor. If V = R(T) + Ker(T), then it's direct sum.

Ex. If $T \circ T = T$, then the above is true, and further more, $T = \pi_{R(T)}$.

Ex. Consider subspace $W' \subset W$, then $T^{-1}(W') \subset V$ is a subspace, and another induced linear quotient map $\bar{T}: V_{/T^{-1}(W')} \to W_{/W'}$ can be given by $\bar{T}: [x] \to [T(x)]$. When T is onto, it's bijective.

2.2 Matrix and map

Lemma. For linear map $T: F^n \to F$, there's a unique tuple (a_i) , such that $T(x) = \sum_{i=1}^n a_i x_i$. Constructively, $a_i = T(e_i)$.

రి Thm.

For linear map $T: F^n \to F^m$, there's a unique $m \times n$ matrix $A = (a_{ji})$ such that $T(x) = (T_1(x), T_2(x), \ldots)$ and $T_j(x) = \sum_{j=1}^n a_{ji} x_i$. We use L_A to refer to T. Further more, $T(e_i) = (a_{1i}, a_{2i}, \ldots)$ is the i-th column of A.

Rmk. We define matrix as a compact representation of a linear transformation between euclidean spaces. Matrix A is defined to be $[L_A]_{\epsilon_n}^{\epsilon_m}$.

♦ Thm. (2.20)

 $T:V\to W$, V and W respectively possess ordered bases $\beta=(\beta_1,\beta_2,\ldots,\beta_n)$ and $\alpha=(\alpha_1,\alpha_2,\ldots,\alpha_m)$, then $T(\beta_i)=\sum_{j=1}^m a_{ji}\alpha_j$. Further more, given β,α , there's an isomorphism

between T and $[T]^{\alpha}_{\beta}=(a_{ji})$. This can be done since $\phi_{\beta}:V\to F^n, \phi_{\alpha}:W\to F^n$, we have $L_A\phi_{\beta}=\phi_{\alpha}T$.

Ex. Given a complete flag \mathcal{F} : $\{0\} = V_0 \subset V_1 \subset \cdots \subset V_n = V \text{ in V so that } \dim(V_i/V_{i-1}) = 1, \forall i.$ We say T is **upper triangular** w.r.t. \mathcal{F} if $T(V_i) \subset V_i, \forall i.$ In this case, let β be any ordered basis that can generate the flag, then matrix $[T]_{\beta}$ will also be **upper triangular** in matrix sense. At the same time, the induced quotient map $\bar{T}_i: V_i/V_{i-1} \to V_i/V_{i-1}, \bar{T}_i: [x] \mapsto [T(x)]$ is given by multiplication by a unique $\lambda_i \in F$. In this case, T is invertible iff $\forall i, \lambda_i \neq 0$, or $a_{ii} \neq 0$ for $[T]_{\beta}$. If invertible, T^{-1} and $[T^{-1}]_{\beta}$ also upper triangular w.r.t. \mathcal{F} .

ð Thm. (2.11)

$$[S\circ T]^{eta''}_eta=[S]^{eta''}_{eta'}[T]^{eta'}_eta.$$

Def. (Nilpotent)

For a non-zero matrix A, it's called nilpotent if $\exists n \in \mathbb{N}, s.\, t.\, , A^n = 0.$

Prop. Multiplicative property of A: non-communative, no cancellation, and there exist nilpotent matrix.

Prop. If $T: V \to W$, dim $V = \dim W = n$, T.F.A.E:

- 1. T is an isomorphism;
- 2. $\exists \beta$ as a basis of V, s.t. $T(\beta)$ is a basis of W.
- 3. $\forall \beta$ as a basis of V, $T(\beta)$ is a basis of W.

Proof. (1->3) We know $card(T(\beta)) \le n$, and since T is onto, $T(\beta)$ spans W.

Thm. (2.22 Change of basis)

Say $\dim V = n$,

- 1. $A=[Id_V]^{\alpha}_{\beta}\in M_{n\times n}$ is invertible;
- 2. Fix β/α , then any invertible A is $[Id_V]^{\alpha}_{\beta}$ for some unique α/β .

Proof.

- 1. The inverse is $[Id_V]^{\beta}_{\alpha}$;
- 2. Say fix $\beta=(s_1,\ldots,s_n)$, for invertible $A=[A_1,\ldots,A_n]$, find unique $\alpha=(t_1,\ldots,t_n)$. Let $\phi_\beta,\phi_\alpha:F^n\to V$ be the translation isomorphism. Since $\{A_j\}$ is a basis of $F^n,\phi_\beta(\{A_j\})$ is a basis of F^n . Let $t_i=\phi_\beta(A_i)=\phi_\beta(L_A(e_i))=\sum_j a_{ji}s_j$. Then we can write $Id(t_i)=\sum_j a_{ji}s_j$, which means $[Id]_\alpha^\beta=A$, and so $[Id]_\beta^\alpha=A^{-1}$.
- 3. So if we apply the above construction with A^{-1} in place of A to construct $\alpha' = \{\phi_\beta(A_i^{-1})\}$, then $[Id]_\beta^{\alpha'} = A$. This gives the existence of α in original statement.
- 4. If $[Id]^{\alpha}_{\beta} = [Id]^{\gamma}_{\beta}$, then $[Id]^{\beta}_{\alpha} = [Id]^{\beta}_{\gamma}$, and then $\alpha = \gamma$, which shows the uniqueness.

Rmk. $V \stackrel{T}{\to} W$, $\dim V = n$, $\dim W = m$, then $B := [T]^{\alpha'}_{\beta'} = [Id_W]^{\alpha'}_{\alpha}[T]^{\alpha}_{\beta}[Id_V]^{\beta}_{\beta'} =: QAP$. This inspires an equivalence relation on $M_{m \times n}$, i.e., $A \sim B$ iff $B = [L_A]^{\alpha'}_{\beta'}$ for some ordered bases β' of V and α' for W.

Prop. If rk(A) = r, then there're invertible matrices P, Q s.t.

$$PAQ = egin{bmatrix} I_r & 0 \ 0 & 0 \end{bmatrix} \in M_{m imes n}$$

That means there's only $\min(n, m)$ many equivalence classes. Also, that means $rkA \leq \min(n, m)$. This result will be justified later.

Proof.

- 1. By replacement thm, we can pick α so that $R(L_A) = span(t_1, \ldots, t_r)$. For $i \leq r$, since $t_i \in R(L_A)$, we can find s_i s.t. $L_A(s_i) = t_i$.
- 2. Claim $\{s_i\}_{i=1}^r$ are independent. Since $\bar{L}_A: F^n/ker(T) \to R(L_A)$ is isomorphism and $R(L_A) = span(t_1, \ldots, t_r)$, we have $\{[s_i]\}$ forming a basis in $F^n/ker(T)$.
- 3. Now let $W = span(s_1, \ldots, s_r)$. Claim $W \cap ker(L_A) = 0$, otherwise contradicts with the independence.
- 4. By rank-nullity, $F^n = W \oplus ker(L_A)$. Merge them into one basis β we seek.

2.3 Duality

⊘ Def. (Dual space)

 $V^* := \mathcal{L}(V, F)$.

Rmk.

- $1. (F^n)^* \cong F^n.$
- 2. Further more, when dim V = n and a basis is given, $V^* := \mathcal{L}(V, F) \cong \mathcal{L}(F^n, F) =: (F^n)^* \cong F^n$.
- 3. Which means although the "all linear functionals" looks scary, the cardinality doesn't increase.

Def. (Dual basis)

 $s_i^*: V \to F$ defined by $s_i^*(s_i) = \mathbb{1}(i=j)$. Then $\beta^*:=\{s_i^*\}$ is a basis of V^* .

E.g. $e_i^*(e_j) = \mathbb{1}(i=j) =: \delta_{ij}$. Then e_i^* is the functional that essentially picks the i-th coordinate.

Def. (Dual map)

$$T^*:W^* o V^*, T^*:\phi\mapsto\phi\circ T.$$

 $\operatorname{Rmk.} V(=span(\beta)) \overset{T}{\rightarrow} W(=span(\alpha)) \overset{\phi \in W^*}{\rightarrow} F.$

b Thm. (Transpose)

$$A^T = [T^*]_{lpha^*}^{eta^*}.$$

Proof.

1. It suffices to show $T^*(t_i^*) = \sum_i (A^T)_{ji} s_j^* = \sum_i a_{ij} s_j^*$.

2.
$$T^*(t_i^*)(s_k) = t_i^* \circ T(s_k) = t_i^*(\sum_j a_{jk}t_j) = a_{ik}$$
.

$$3. \sum_{i} a_{ij} s_{i}^{*}(s_{k}) = a_{ik}.$$

Lemma. $rkT = rkL_A$.

Proof. Since $R(T) = R(T \circ \varphi_{\beta}) = R(\varphi_{\alpha} \circ L_A) = R(L_A)$.

ర్ట్ Thm.

 $rkA = rkA^T$.

Proof.

- 1. It suffices to show that $rkT = rkT^*$.
- 2. $kerT^* = \{ \varphi \in W^* : \varphi \circ T = 0 \}$. Write $\varphi = \sum_i a_i t_i^*$.
- $3. \ arphi \circ T = 0 \ ext{iff} \ arphi(R(T)) = 0$, pick basis so that $R(T) = span(t_1 \dots t_r)$, then iff $a_1 \dots a_r = 0 \ ext{iff}$ $kerT^* = span(t_{r+1} \dots t_m)$. Then $rkT^* = rkT$.

& Thm. (Double dual)

There's a canonical isomorphism between V and V^{**} that doesn't depends on choice of bases, given by $hat: V \to \mathcal{L}(V^*, F)$ and $hat: x \mapsto \hat{x}$, where $\hat{x}: V^* \to F$, $\hat{x}: \varphi \mapsto \varphi(x)$.

Proof.

- 1. \hat{x} is linear;
- 2. hat is linear;
- 3. hat is bijective. The case of infinite dimension is <code>#NotCovered</code> . Otherwise, $\dim V^{**} = \dim V$, we need only 1-1 or onto. We show 1-1 here. Whenever $\hat{x}=0$, i.e. $\forall \varphi \in \mathcal{L}(V,F), \varphi(x)=0$. Suppose $\exists x_0 \neq 0$ follows the above condition. When it's non-zero, one thing we can tell by replacement thm is that we can pick a basis in V as $\beta:=(x_0,\ldots)$, then we got $x_0^*(x_0)=1\neq 0, x_0^*\in \mathcal{L}(V,F)$, contradicts.

Cor. If dim $V < \infty$, then for any basis γ of V, there's a basis β of V, s.t. $\Delta \phi$

Proof. It's nice to be able to regard linear transformation as elements of vector space. For $\gamma := (\varphi_1, \ldots)$, we can generate $\gamma^* := (\varphi_1^*, \ldots)$, and find unique $\beta := (x_1, \ldots), s.t.$ $\hat{x}_i = \varphi_i^*$. It's what suggested by the notation since $\varphi_i(x_j) =: \hat{x}_j(\varphi_i) = \varphi_j^*(\varphi_i) := \delta_{ji} = \delta_{ij}$.

Ch3. Elementary Matrix Operations and Systems of Linear Equations

Def. (System of linear equations)

Ax = b, where x is the variable vector.

Prop. Given an invertible matrix P, then Ax = b iff PAx = Pb.

Def. (Elementary operations on row)

 $A\in M_{m imes n}$,

- 1. Interchanging two rows;
- 2. Multiplying each element in a row by a non-zero number;
- 3. Adding a scalar λ multiple of j-th row to i-row ($E = I_m + \lambda e_{ij}$, A'=EA).

Prop. Inverse and transpose of elementary matrix are still elementary.

Lemma. If P, Q are invertible, then rk(PAQ) = rk(A).

Proof. We can express PAQ into $[Id]^{\alpha}_{\epsilon}[L_A]^{\epsilon'}_{\epsilon}[Id]^{\epsilon'}_{\beta}$, where α, β can be given by thm2.22. Then $PAQ = [L_A]^{\alpha}_{\beta}$, and then rk(PAQ) = rk(A).

లి Thm.

There're invertible matrix P, Q that are product of elementary matrices, s.t. $PAQ = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.

Proof. Constructive induction. Transform A into $\begin{pmatrix} 1 & 0 \\ 0 & B \end{pmatrix}$, then $R(A) = span(e_1) \oplus R(B)$, and doing row and column transformations on B won't affect the first row and column, thus induction works.

Cor. Every invertible matrix in $M_{n\times n}$ is a product of elementary matrices.

Proof. $PAQ = I_n$, then $A = Q^{-1}I_nP^{-1}$ is a product of them.

Cor. $rkA = rkA^T$.

Proof. Since transposing $PAQ = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$ gives $Q^TA^TP^T = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$.

Cor. $rk(AB) \leq rk(A), rk(B)$.

Proof. The first is trivial, and second is because $rk(AB) = rk(B^TA^T) \le rk(B^T) = rk(B)$.

Eigenvalue

Eigenvalue, eigenvector and movement

For a matrix $A_{n\times n}$, consider all (\vec{u}, λ) pair such that: $A\vec{u} = \lambda \vec{u}$ We call them **eigenvalues** and **eigenvectors** of matrix A. There're totally n pairs of (\vec{u}_i, λ_i) for diagonalizable linear transformation,

and the eigenvectors form a basis(some λ_i might be the same).

If we regard matrix/transformation W as a space movement in Euclidean space, we need to apply it on certain vector to examine its feature. What if we try to apply it multiple times?

$$ec{v} = \sum_i lpha_i ec{u}_i \ W^k ec{v} = \sum_i lpha_i W^k ec{u}_i = \sum_i lpha_i \lambda_i^k ec{u}_i$$

We find out that the largest eigenvalue corresponding eigenvector will eventually dominate as k getting larger and larger. That's why we would like to conclude:

- first principle eigenvalue(largest) indicates the movement speed
- first principle eigenvector indicates the movement direction

e.g. When A is the adjacency matrix, $(A\vec{v})_i=rac{1}{deg_i}\sum_{j\in N(i)}v_j$ When $L=I-D^{-1}A$, the Laplacian matrix, $(L\vec{v})_i=rac{1}{deg_i}\sum_{j\in N(i)}(v_i-v_j)$

How to find them?

When the transformation A is normal operator, which means orthogonal diagonalizable, then:

$$A=P\Lambda P^{-1}$$

where Λ stretchs (eigenvalues), P rotates (orthonormal eigenvectors). Further more, when A is symmetric real matrix(e.g. adjacency and Laplacian matrix), then it is hermitian/self-adjoint, which means all eigenvalues are real.

THM

Symmetric real matrix M $M:=\sum_i \lambda_i v_i v_i^T$, #TODO (upd) dim V=K We may use the same eigenvectors in M^k , such that $M^k:=\sum_i \lambda_i^k v_i v_i^T$ claim: $M^{-1}:=\sum_i \frac{1}{\lambda_i} v_i v_i^T$, $M^{-1}M=I$ proof: substitute

thm2: $tr(M) = \sum_i \lambda_i$ https://courses.cs.washington.edu/courses/cse521/16sp/521-lecture-8.pdf

Variational Characterization of Eigenvalues

$$egin{aligned} ext{symmetric real } M_{n imes n}, ext{ eigenvalue } \lambda_1 \leq \lambda_2 \ldots \leq \lambda_n \ ext{Rayleigh quotient } R_M(oldsymbol{x}) = rac{oldsymbol{x}^T M oldsymbol{x}}{oldsymbol{x}^T oldsymbol{x}} \ \lambda_k = \min_{orall V, \dim V = k} \max_{oldsymbol{x} \in V - \{oldsymbol{0}\}} R_M(oldsymbol{x}) \end{aligned}$$

proof: https://blog.csdn.net/a358463121/article/details/100166818

证明V里面一定存在向量使得Rayleigh quotient时,只需要取 $\lambda_1, \lambda_2, \ldots, \lambda_k$ 对应的 $v1, v_2, \ldots, v_k$ 组成的空间V即可。 https://zhuanlan.zhihu.com/p/80817719

Hilbert space

conjucture symmetric

Reference

Basic knowledge in Spectral Theory.