of the vertex by using $d=-\frac{b}{2a}=-\frac{1}{2}=\frac{1}{2}$ Now that we have the d-coordinate, we can find the t-coordinate

Ouadratic function: is a function that can be written in the form: $t(d) = ad^2 + bd + c$ where a, b, and c are real numbers and $a \neq 0$ we have $t(d) = -d^2 + d - 19$. note: $-d^2 + d - 19$ is in dt-plane

of the vertex by finding $t(\frac{1}{2}) = -1(\frac{1}{2})^2 + 1(\frac{1}{2}) - 19 = -\frac{1}{4} + \frac{1}{2} - 19 = -\frac{75}{4}$ Maximum = $-\frac{75}{4}$

Solution

Here, we know that a=-1, b=1, c=-19

Since a<0 ,we know that the t-coordinate of the vertex is a maximum.However,to find the t-coordinate of our vertex we first need to find the d-coordinate