Thursday, 17 October 2024

1. Elasticity and Stress. [5 pts] Two specimens of granite are studied. The cross-sectional area of each sample is 1 cm². One sample is 11 cm in length and for this sample a load of 375 MPa

causes a deformation of 508 microns. The stiffness k of the second sample is 5.08×10^7 N/m.

1.1 What is Youngs modulus E of the granite?

12:22

1.2 The stiffness k can be expressed in units of force per displacement. Write an equation for stiffness in terms of E and other variables.

1.3 How long is the second granite sample?

A =
$$1 \text{ cm}^2 = 1.10^4 \text{ m}^2$$
 } both
 $L_1 = 11 \text{ cm} = 0.11 \text{ m}$
 $\sigma_1 = 375 \text{ MPa} = 3.75 \cdot 10^9 \text{ Pa}$ } Sirst
 $\Delta L_1 = 508 \text{ µm} = 5.08 \cdot 10^4 \text{ m}$
 $L_2 = 5.08 \cdot 10^7 \text{ N/m}$ } second sample

1.1 long Model + E = E - strain
$$\mathcal{E}_{1} = \frac{\Delta L_{1}}{14} = 5.08.10^{4} \text{ m} / 0.11 \text{ m} = 4.618.10^{3}$$

$$E_1 = \frac{\Delta L_1}{L_1} = 5.08.10 \text{ m} / 0.11 \text{ m} = 4.618.10$$

 $\Rightarrow E_1 = \frac{6!}{E_1} = 3.75.10^8 \text{ Pa} / 4.618.10^3 \approx 8.12.10^{10} \text{ Pa}$

$$\Rightarrow E_{\Lambda} = \frac{6!}{E_{\Lambda}} = 3.75 \cdot 10^{8} \, \text{Pa} / 4.618 \cdot 10^{-3} \approx 8.12 \cdot 10^{10} \, \text{Pa}$$

$$= 81.2 \, \text{GPa} \quad \text{e. for gravite}$$

Using
$$F = GA$$
 and $G = \frac{E}{E} = \frac{\Delta L}{L}$

we can write
$$k = \frac{EA}{L} = \frac{EA}{L}$$

1.3
$$K = \frac{EA}{L} \rightarrow L = \frac{EA}{K}$$

$$L_2 = \frac{E_6A}{K_2} = \frac{8.12 \cdot 10^{10} Pa \cdot 10^{7} m^2}{5.08 \cdot 10^{7} N/m} \approx 0.159 m^{12} 16 cm$$

- the vertical direction due to the mass of the rock above with lateral strain that generates a horizontal stress. The relevant equations are written as: $\sigma_h = \sigma_v \left[v/(1-v) \right]$ where v is Poisson's ratio, σ_h is horizontal stress, and σ_v is effective vertical stress. Assuming a Poisson ratio of 0.25 and a rock density of $2.5 \times 10^3 \text{ kg/m}^3$ calculate:
- 2.1 The vertical effective stress at 10 km
- 2.2 The horizontal effective stress at 10 km

$$g = 2.5 \cdot 10^3 \text{ kg/m}^3$$

 $V = 0.25$

2.2

2.1
We can calculate the vertical stress as
$$8v = 98h = 2.5 \cdot 10^3 \, \mu 8/n^3 \cdot 9.81 \, m/s^2 \cdot 10^4 \, \mu \approx 2.45 \cdot 10^8 \, P_0 = 2.45 \, \text{MPa}$$

 $\sigma_{h} = \sigma_{v} \left(\frac{\nu}{1 - \nu} \right) = 2.45 \cdot 10^{3} Pa \left(\frac{0.25}{0.75} \right) \stackrel{\sim}{=} 8.17 \cdot 10^{3} Pa =$

3. Stress Analysis [5] Construct a Mohr circle for principal stresses of σ_1 =70 MPa and σ_2 = 10 MPa.

Determine 3.1) the maximum shear stress

- 3.2) the mean stress
- 3.3) the stresses on a plane with normal that has an angle of 21° to σ_1 . 3.4) Make a detailed sketch (for example like the one in Question 5) of the principal stresses and all

3.1)

Ymax must be equal to R

2max = R = 181-82/2 = 30 MPa

 $6 \text{ mean} = 62 + \frac{161 - 621}{2} = 62 + R = 40 \text{ MPa}$

Hohr circle we need to double it $\alpha = 2t^2 \rightarrow 2\alpha = 42^\circ$

An flue who know that:

→ V= 20.07 MPa, G= 62.29 MPa

7 = R sin (20), 6 = 6men + R con (20)

3.4) Drawing on top

Poisson's ratio = 0.25, and the fault normal stress is 30 MPa, if the fault obeys Slip Weakening Friction with $\Delta\mu/L = 1e-5/\mu m$, what is the size of the Earthquake nucleation dimension?

4. Earthquake Nucleation [5] For a fault zone in Earth's crust where shear modulus G = 30 GPa,

4.
$$G = \frac{30 \, \text{GPa}}{24}$$
, $V = 0.25$? $S = \frac{30 \, \text{HPa}}{30 \cdot 10^{5} \, \text{Pa}}$, $\Delta \mu / L = 10^{5} \, \mu \text{m}^{3}$

$$r = \frac{7\pi}{24} \frac{G L}{8 \, \Delta \mu} = \frac{7\pi}{24} \frac{30 \cdot 10^{5} \, \text{Pa}}{30 \cdot 10^{5} \, \text{Pa}} \cdot 10^{5} \, \mu \text{m} = \frac{7\pi}{24} \cdot 10^{8} \, \mu \text{m}^{2} = \frac{31.62 \, \text{m}}{30 \cdot 10^{5} \, \text{Pa}}$$

Nuclearly size

the Coulomb parameters τ , μ' and C, where α is the angle between σ_1 and the normal to the failure plane, μ' is the coefficient of internal friction and C is the cohesion. State carefully whether the optimum angle α depends on μ' and/or C. (hint: derivatives will be useful; failure occurs when the difference between τ and $(\mu' \sigma_n)$ is maximum)

5. Coulomb Failure [15] Starting from the Coulomb failure criterion and a stress state $\sigma_1 > 0$

 σ_2 , derive the optimum angle α for Coulomb failure in terms of the relationship between α and

coulomb failure criturion
$$\rightarrow \Upsilon = C + \mu' G$$
 internal friction
$$R = \frac{(\delta_1 - \delta_2)}{2}, \quad \Upsilon(\alpha) = R \sin(2\alpha), \quad G(\alpha) = G_2 + R + R \cos(2\alpha)$$

$$\Upsilon(\alpha) = C - \mu' G(\alpha) = \Re(\alpha), \quad \max \in \mathbb{R}$$

$$\Upsilon(\alpha) - c - \mu' \sigma(\alpha) =: g(\alpha) \text{ must maximum}$$
 is indipendent $g(\alpha) = R \min(2\alpha) - c - \mu' \sigma_2 - \mu' R - \mu' R \cos(2\alpha)$

$$g'(\alpha) = 2R \cos(2\alpha) + 2\mu'R \sin(2\alpha) + set to quo$$

$$\rightarrow \cos(2\alpha) = -\mu'\sin(2\alpha) \rightarrow$$

$$\rightarrow \frac{\cos(2\alpha)}{\sin(2\alpha)} = -\mu' \rightarrow \frac{1}{\tan(2\alpha)} = -\mu' \rightarrow$$

$$\Rightarrow \tan(2\alpha) = -1/\mu' \Rightarrow \overline{\alpha} = \frac{1}{2} \operatorname{arcton}(-\frac{1}{\mu'})$$
But, is it a Maximum?

with this famula, if $\mu' < 0$, $\xi(\bar{\alpha})$ is a minimum but that doesn't care because

a minimum but that doesn't care because we could take the module of the difference. Maybe, set
$$\mu' > 0$$
 we could use $f(\alpha) = \mu b - \nu$ for a better funda $\rightarrow \bar{\alpha} = \frac{1}{2}$ ancton $(\frac{1}{\mu'})$