CivAl – DRPI System

Al-driven Disaster Resilience Platform

Predicting Risks, Protecting Communities with Databricks using Disaster Recover Preparedness Index

2025

CIVAI

Al-Drived Disaster Resilience Platform

Contents

- O1 The Burning Problem
- O2 Current Struggle & Consequences
- 03 CivAI DRPI Solution Overview
- 04 Key Technical Features
- 05 Immediate Business Value
- 06 Future Evolution
- 07 Demo/Prototype Showcase

Current Crisis – Problem Statement | CivAl

1.5 million lives lost due to disasters in the past decade (Source: WHO)

🦰 \$1 trillion projected annual climate adaptation costs by 2050 (UNEP, 2023)

Disasters are becoming more frequent, intense, and unpredictable, putting lives, infrastructure, and economies at constant risk.

Key Challenges in Disaster Readiness

- Critical data spread across disparate silos: environment, infrastructure, demographics, and policy.
- Lack of interoperability and real-time access leads to blind spots in decision-making.

2. Reactive Approaches

- Current models focus on response and recovery, not prediction and preparedness.
- Communities act after the damage is done too little, too late.

- Traditional risk modeling is labor-intensive, static, and often outdated.
- Governments and relief agencies struggle with scalability and speed.

- 4. Limited Predictive Intelligence
- Vulnerable populations (rural, elderly, underserved) lack tailored risk insights.
- No unified index to quantify disaster readiness across regions.

The World Needs a Shift: From Reaction to Prediction Introducing CivAI: A data-driven, AI-powered platform to quantify and visualize disaster recovery preparedness before the storm hits.

Current Struggle & Consequences | CivAl

Operational Pain Points

- 68% of emergency planners operate without real-time risk insights, relying on outdated or fragmented data sources.
- 2 42-day delay on average for traditional risk analysis cycles, leading to reactive rather than proactive interventions.
- 60% of data scientists' time is consumed by data wrangling and preprocessing, limiting time for strategic modeling or forecasting.

- 23% higher mortality in low-income disaster zones, where early warning and response systems are often weakest.
- \$\secondsymbol{\infty}\$ \$1 spent on prevention saves \$7 in disaster recovery costs yet prevention remains underfunded and undervalued (NIST).
- 80% of SMEs never reopen after a major disaster, highlighting the fragility of local economies without preparedness systems.
- Manual assessments create bottlenecks in risk scoring and resource allocation.
- Limited predictive capacity especially affects vulnerable populations, such as elderly or disabled citizens, who face the highest risk.

■ Bottom Line →

Without **automated**, **intelligent**, **and scalable** risk preparedness systems, we're leaving lives, livelihoods, and public infrastructure exposed to avoidable catastrophe.

CivAl | Solution Overview

Container	Technology	Purpose
Batch/Streaming	PySpark + Delta	Pulls data from APIs (Weather, Events, SDOH), normalizes raw inputs
DRPI Computation Engine	PySpark on Databricks	Core logic: Data harmonization, feature extraction, scoring
Delta Lake Storage	Delta Lake on Databricks	Stores bronze, silver, and gold data layers
DRPI Processing API	FastAPI, Flask	Serves DRPI scores and trends to UI/consumers
Web Dashboard UI	Streamlit, BI Tools, AI-BI Dashboard	Visualization interface for alerts, trends, and maps
Alert & Trigger Module	PySpark + Delta + Email/SMS APIs	Rule-based alert generation, notifies stakeholders

CivAl | Architecture Diagram

The **Disaster Risk Prediction and Integration (DRPI)** system is a unified, scalable platform built to forecast and monitor public risk across geographic regions. It leverages weather, event, and social determinants of health (SDOH) data to enable proactive disaster response and situational awareness.

This solution integrates data ingestion, harmonization, feature engineering, risk scoring, and real-time insights into a streamlined data pipeline, powered by Delta Lake and Databricks.

CivAl | Key Features

Genie-Powered Insights (AI/BI Integration)

- Natural Language
 Querying:
 "Show me high-risk
 flood zones with >40%
 elderly population"
- Dynamic dashboards powered by Databricks Genie + BI apps
- Provides

 automated risk
 interpretation, hotspot
 analysis, and resilience
 scoring

- Unified Risk Scoring
- Combines realtime climate patterns, disaster history, and socioeconomic vulnerability
- State Leverages

 geospatial, policy, and demographic data to generate a composite
 DRPI score
- Achieves 92%

 accuracy in predicting disaster impact zones based on historical simulations

Precision Alerting Engine

- Location-specific evacuation planning and safe zone suggestions
- Recommends
 infrastructure hardening
 strategies: power grid,
 hospitals, roads
- Sends alerts based on DRPI thresholds via integrated APIs (SMS/Email/IVR ready)

- "What-if" scenarios: Evaluate the impact of new shelters, zoning laws, or green cover policies
- Used by urban planners and local governments to simulate resilience outcomes
- Drives databacked investments in community infrastructure and risk response

Business Benefits Of CivAl

ROI Drivers Enabled by Databricks

40% reduction in data preparation time

◆ 90% faster insights with Genie AI

50% model accuracy boost

Business Impact

Enabled by Delta Lake auto-ingestion + schema enforcement across layers

Business users query DRPI scores in natural language – no SQL needed

Achieved using ML Runtime's optimized compute & AutoML tuning pipelines

Why It Matters

CivAI bridges the gap between data complexity and disaster response agility. With intelligent indexing (DRPI) and instant insights, stakeholders don't just react, they prepare and lead.

Building Future Of CivAl

Near Term

Focused on quick wins, community integration, and expanding core functionality using existing Databricks infrastructure.

3 Months

Mid Term

Emphasis on scaling intelligence, enhancing regional applicability, and integrating deeper insights.

9 Months

Long Term

Build toward global resilience intelligence, simulation engines, and large-scale AI fusion.

12 Months

Community Resilience Scoring

- •Auto-generated DRPI scores with AI-driven local metrics
- •Integration of healthcare, housing, and evacuation indicators

Crowdsourced Vulnerability Reporting

- •Web/mobile platform for real-time issue reporting
- •NLP + Vision AI to interpret text and images from citizens

Databricks App Deployment & Sharing

- •Government-ready dashboards via GenAI + **Databricks Apps**
- •Delta Sharing for cross-agency data collaboration

Predictive risk modeling for city infrastructure Event simulation (heatwaves, floods, wildfires)

Region-specific risk templates (coastal, seismic, drought-prone)

Localization support (language, governance, data policies)

IoT & Satellite Fusion (Phase 1)

Integrate sensor data (e.g., water levels, temperature)

Basic satellite-based monitoring for hazard zones

Carbon Impact Simulation Engine

- Model disaster-driven carbon emissions
- Support ESG strategies & climate accountability

Tot & Satellite Fusion (Phase 2)

- •Full-scale fusion of IoT + high-resolution satellite imagery
- •Real-time Al-based spatial-temporal risk detection

Full-Stack Global Climate Brain

- •Al advisor for cities, NGOs, and policymakers
- •City-to-city learning engine and benchmarking tools

Prototype Showcase - CivAl

Genie

distance

Thank You!

Mohit

Nitesh

Jyoti

<u>jyoti_b@epam.com</u> <u>mohit_tewari@epam.com</u> niteshchand sharma@epam.com

