微积分期末讲座习题(2021年6月10日)

考点1重积分的计算

- 一、重积分的对称性与大小比较
- 二、直角坐标系下计算重积分,积分换序,物理意义,不等式法
- 三、极坐标系下计算二重积分, 柱坐标系, 球坐标系计算三重积分
- 1. 已知区域 $D = \{(x, y) | 0 \le y \le \sqrt{1 x^2} \}$,记

$$I_1 = \iint_D (x+y)^2 dxdy$$
, $I_2 = \iint_D (x-y)^2 dxdy$,

). (A) $I_1 < I_2$ (B) $I_1 = I_2$ (C) $I_1 > I_2$ (D) $I_1 与 I_2$ 大小关系不确定

2. 已知空间区域

$$\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \leq 1, z \geq 0\},$$

$$\Omega_2 = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 1, x \ge 0, y \ge 0, z \ge 0\},$$

则().

(A)
$$\iiint_{\Omega} x dx dy dz = 4 \iiint_{\Omega} x dx dy dz$$

(A)
$$\iiint_{\Omega} x dx dy dz = 4 \iiint_{\Omega_2} x dx dy dz$$
 (B)
$$\iiint_{\Omega} y dx dy dz = 4 \iiint_{\Omega_2} y dx dy dz$$

(C)
$$\iiint_{\Omega} z dx dy dz = 4 \iiint_{\Omega_{z}} z dx dy dz$$

(C)
$$\iiint_{\Omega} z dx dy dz = 4 \iiint_{\Omega_2} z dx dy dz$$
 (D)
$$\iiint_{\Omega} xyz dx dy dz = 4 \iiint_{\Omega_2} xyz dx dy dz$$

3. 已知区域 $D = \{(x, y) | x \ge 0, y \ge 0, x + y \le 2\}$,函数

$$f(x,y) = \begin{cases} 1, & x+y \le 1, \\ \frac{1}{\sqrt{x^2 + y^2}}, & x+y > 1, \end{cases}$$

计算二重积分 $\iint f(x,y) dx dy$.

4. 设 Ω 由曲面 $z = x^2 + y^2$ 和曲面 $z = 2 - \sqrt{x^2 + y^2}$ 围成,将

$$\iiint_{\Omega} f(x, y, z) dx dy dz$$

化为直角坐标系下的累次积分.

5. 计算积分
$$\int_0^1 dx \int_0^x dy \int_0^y \frac{\cos z}{1-z} dz$$
.

6. 交换积分次序: $\int_0^1 dx \int_0^{1-x} dy \int_0^{x+y} f(x, y, z) dz$

(1) 先积y, 再积x, 最后积z; (2) 先积x, 再积z, 最后积y.

7. (1) 已知区域
$$\Omega = \{(x, y, z) \mid x^2 + y^2 + z^2 \le 2z\}$$
, 计算 $\iint_{\Omega} (x + z) dx dy dz$.

- (2) 已知区域 Ω 由锥面 $x^2 + (y-z)^2 = (1-z)^2$, $(0 \le z \le 1)$ 与平面 z = 0 围成,计算 Ω 的形心.
- 8. 已知区域 $D = [0,1] \times [0,1]$,函数 $f(x,y) \in C^2(D)$,且 f(1,y) = 0, $\frac{\partial f(x,1)}{\partial x} = 0$,

$$\left|\frac{\partial^2 f}{\partial x \partial y}(x, y)\right| \leq 1$$
. 证明: $\left|\iint_D f(x, y) dx dy\right| \leq \frac{1}{4}$.

考点 2 第一型曲线积分与第一型曲面积分

9. 计算
$$I = \oint_L [(x + \sqrt{y})\sqrt{x^2 + y^2} + x^2 + y^2] dl$$
, 其中 L 是圆周 $x^2 + (y - 1)^2 = 1$ 。

10.
$$\oint_C x^2 dl$$
, $C: \begin{cases} x^2 + y^2 + z^2 = 1 \\ x + y + z = 0 \end{cases}$.

- 11. 曲线 $y = \ln x (1 \le x \le e)$ 的线密度 $\rho(x) = x$, 求该曲线的质量.
- 12. 计算曲面积分 $\iint_{\Sigma} (x+y+z) dS$, 其中 Σ 为上半球面 $x^2+y^2+z^2=1$ $(z\geq 0)$.
- 13. 求柱面 $x^2 + y^2 = 1$ 位于平面 z = 0 与 z = x + 2 之间的面积.

14. 计算
$$\iint_S xyz(y^2z^2+z^2x^2+x^2y^2) dS$$
 ,其中 S 为 $x^2+y^2+z^2=a^2$ ($x,y,z \ge 0$)

15. 证明
$$\iint_S f(ax+by+cz)dS = 2\pi \int_{-1}^1 f(\sqrt{a^2+b^2+c^2}t)dt$$
, $S: x^2+y^2+z^2=1$, f 连

续.

考点3 第二型曲线积分与格林公式

16. 设曲线
$$L$$
 为 $\frac{x^2}{4} + y^2 = 1$, 逆时针方向为正, 则 $\oint_L \frac{x dy - y dx}{x^2 + y^2} = \underline{\qquad}$

17. 证明 $\oint_L \cos(\bar{y}, \bar{n}) dl = 0$ 。其中 L 为简单光滑的平面封闭曲线, \bar{n} 为曲线的外法线方向。

18. 设
$$D_t = \{(x, y) \in \mathbb{R}^2 | x^2 + y^2 \le t^2, t > 0\}, \quad f(x, y) \oplus D_t$$
上连续,在 D_t 内可微,

$$f(0,0) = 1$$
, D_t 的正向边界为 C_t 。若 $f(x,y)$ 在 D_t 上满足方程 $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = \frac{1}{2}f(x,y)$,设

曲线
$$C_t$$
的外法矢量为 $\overrightarrow{n_0(t)}$,则极限 $\lim_{t\to 0} \frac{1}{1-\cos t} \oint_{C_t} \frac{\partial f}{\partial n_0} dl = ($)。

19. 设 $D = \{(x,y) \mid x^2 + y^2 \le 1\}$,函数f(x,y)在D上有二阶连续偏导数,在D的边界 ∂D 上

$$f(x,y) = 0$$
。证明:
$$\iint_D f(x,y) \left(\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \right) dxdy \leq 0.$$

20. 求
$$I = \int_{I} [e^{x} \sin y - b(x+y)] dx + [e^{x} \cos y - ax] dy$$
, 其中, a,b 为正常数,

$$L$$
 为沿 $y = \sqrt{2ax - x^2}$ 从 $A(2a,0)$ 到 $O(0,0)$ 的曲线,顺时针为正.

考点 4 第二型曲面积分与高斯公式,斯托克斯公式

21.
$$I = \iint_{\Sigma} xzdy \wedge dz + 2zydz \wedge dx + 3xydx \wedge dy$$
,其中 Σ 为曲面 $z = 1 - x^2 - \frac{y^2}{4}$ ($0 \le z \le 1$) 的上侧。

22.
$$I = \iint_{\Sigma} \frac{1}{b^2} xy^2 dy \wedge dz + \frac{1}{c^2} yz^2 dz \wedge dx + \frac{1}{a^2} zx^2 dx \wedge dy$$
,其中 Σ 为曲面 $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ 的外侧。

23. 设曲线 L 是曲面 $x^2 + y^2 + z^2 = 4x(z \ge 0)$ 与 $x^2 + y^2 = 2x$ 的交线,从 z 轴正方向看上去 L 为逆时针方向,计算曲线积分

$$I = \oint_{L} (y^{2} + z^{2}) dx + (z^{2} + x^{2}) dy + (x^{2} + y^{2}) dz.$$