

Figure 1.1

Update:

- Filled out the table to calculate the E_soc for Intel Xeon gold 6248, Intel Xeon Platinum 8260, and Nvidia Volta V100
- Found the mechanical drawing for the Intel Xeon series:
 https://www.mouser.com/pdfDocs/second-gen-xeon-scalable-tmsdg-338847-rev001.pdf

Implementation Choices:

1. For the die area of the Intel Xeon Gold 6248 and Intel Xeon Platinum 8260 the mechanical drawing pdf (pg 41) labeled the die as XCC (figure 1.2)

Table 5-1. Second Generation Intel® Xeon® Scalable Processors Non-MCP SKU Thermal Specifications

Processor Brand String				Die	Heatsink Form Factor	System Form Factor	C1E Offset Disable ⁸	TCONTROL (OC)	Thermal Profiles				7.		
	TDP (W)	Core Count	Frequency (GHz)						Tcase (°C)	DTS (°C)	TCASE_MAX (°C)	DTS_MAX (°C)	Smiling Pond Correction Fact (°C/W)	Stepping	Sample Type
Intel [®] Xeon [®] Platinum 8280 CPU	205	28	2.7	XCC	2U	Spread Core	0	10	[0.180*P]+47	[0.263*P]+47	84	101	0	В1	Revenue
Intel [®] Xeon [®] Platinum 8270 CPU	205	26	2.7	XCC	2U	Spread Core	0	10	[0.180*P]+47	[0.278*P]+47	84	104	0	В1	Revenue
Intel [®] Xeon [®] Platinum 8268 CPU	205	24	2.9	XCC	2U	Spread Core	0	10	[0.180*P]+47	[0.278*P]+47	84	104	0	B1	Revenue
Intel [®] Xeon [®] Gold 6254 CPU	200	18	3.1	XCC	2U	Spread Core	0	10	[0.175*P]+47	[0.285*P]+47	82	104	0.001	B1	Revenue
Intel [®] Xeon [®] Gold 6246 CPU	165	12	3.3	XCC	2U	Spread Core	0	10	[0.182*P]+46	[0.321*P]+46	76	99	0.00031	B1	Revenue

Figure 1.2

2. A quick search on: https://en.wikichip.org/wiki/intel/microarchitectures/skylake_(server) reveals that the die size is ~694 mm^2 (Figure 1.3).

Extreme Core Count (XCC) [et

- 14 nm process
- 13 metal layers
- ~694 mm² die size (estimated)
- 28 cores
- 30 tiles (5x6)

Figure 1.3

3. Found the die area and lithography for Nvidia Volta V100 here: https://en.wikipedia.org/wiki/Volta (microarchitecture)

Figure 1.4

- 4. The lithography of the Intel Xeon Gold 6248 and the Intel Xeon Platinum 8260 come from the Intel sites directly:
 - https://ark.intel.com/content/www/us/en/ark/products/192446/intel-xeon-gold-624 8-processor-27-5m-cache-2-50-ghz.html
 - https://www.intel.com/content/www/us/en/products/sku/192474/intel-xeon-platin
 um-8260-processor-35-75m-cache-2-40-ghz/specifications.html
- 5. Used the MPA from the materials.json file from Facebook ACT github:

Figure 1.5

6. Used the gpa 95.json from the Facebook ACT github:

```
[(base) lipet@Peters-MacBook-Pro logic % cat gpa_95.json {
    "28nm" : 175,
    "20nm" : 190,
    "14nm" : 200,
    "10nm" : 240,
    "8nm" : 240,
    "7nm" : 350,
    "5nm" : 430,
    "3nm" : 470
}
```

Figure 1.6

7. And the EPA from the epa.json

```
[(base) lipet@Peters-MacBook-Pro logic % cat epa.json {
    "28nm" : 0.90,
    "20nm" : 1.200,
    "14nm" : 1.200,
    "10nm" : 1.475,
    "8nm" : 1.520,
    "7nm" : 2.150,
    "5nm" : 2.750,
    "3nm" : 3.250
```

Figure 1.7

- 8. However these json's don't have a 12nm lithography option so for the Nvidia Volta V100, I just averaged the 14nm and 10nm
- 9. I used the example yield of 0.875 found in the logic model.py example provided for us

Figure 1.8