Department of Computer Science, UET Lahore Course Preparation Report				
Course Code Semester Spring 2024				
Course Title	Graph Theory			
Subject Teachers	Tazeem Haider			
(names of all teachers)				
Course Type	Theory			

Course Description

Graph theory is a branch of mathematics that studies the properties of graphs, which are mathematical structures used to model a wide variety of relationships between objects. Complex data can be represented as a graph of relationships between objects. Such networks are a fundamental tool for modeling social, technological, and biological systems. Graph theory provides a mathematical framework for representing and analyzing networks and systems, which is a useful tool in many fields, from computer science to physics. It provides a powerful toolset for solving problems in many fields, such as finding the shortest path between two points, scheduling tasks, and analyzing social networks. Graph theory is used in a wide variety of real-world applications, including transportation systems, electrical power grids, social networks, the World Wide Web, and many others. Learning graph theory also provides a solid theoretical background for understanding more advanced topics in related areas such as Machine Learning, Artificial Intelligence and Data Science. This course focuses on the computational, algorithmic, and modeling challenges specific to the analysis of massive graphs. At the end of this course, by means of studying the underlying graph structure and its features, students are introduced to machine learning techniques and data mining tools to reveal insights on a variety of networks.

Course Learning Outcomes

CLO1	Understand and apply the fundamental concepts in graph theory
CLO2	Model problems using graphs and to solve these problems algorithmically.
CLO3	Describe the concepts of colorings, matching, flows, connectivity and planarity
CLO4	Apply graph theory concepts to solve real world applications

Text Books

Please add the latest text books

T1	A Textbook of Graph Theory, 5 th Edition by R. Balakrishnan, K. Ranganathan
T2	Graph Theory & Applications, 3 rd Edition by Jean-Clause Fournier
T3	Introduction to Graph Theory, 2 nd Edition, by Douglas B. West.
T4	Graph Theory, 5 th edition by Reinhard Diestel

Course Plan

Week wise content with mapping of text book

Week	Content	CLO	Text Book
W1	Basic Concepts	CLO1	T2 Ch#1
	The origin of the graph concept,	CLO2	
	Definition of graphs, Notation,		
	Representation, Isomorphism and		
	unlabeled graphs, Complete graphs,		
	Subgraphs		
	Customary notation, Paths and		
	cycles, Paths, Cycles, Paths and cycles		
	as graphs, Degrees, Regular graphs,		
	Connectedness, Bipartite graphs,		
	Characterization,		
	Algorithmic aspects, Representations		
	of graphs inside a machine, Weighted		

	graphs		
W2	Trees	CLO1	T2 Ch#2
	Definitions and properties, First	CLO2	
	properties of trees, Forests, Bridges,		
	Tree characterizations, Spanning		
	trees, , Spanning trees in a weighted		
	graph, Application: minimum		
	spanning tree problem, Kruskal's		
	algorithm, Connectivity, Block		
	decomposition, k-connectivity, k-		
	connected graphs, Menger's		
	theorem, Edge connectivity, k-edge-		
	connected graphs		
W3	Connectivity		T1 CH#3
	Introduction, Vertex Cuts and Edges		
	Cuts, Connectivity and Edge	CLO1, CLO2, CLO3	
	Connectivity, Blocks, Cyclical Edge		
	Connectivity of a Graph, Menger's		
	Theorem		
W4	Search Algorithms	CLO2, CLO4	T2 CH#5
	Depth-first search of an		
	arborescence, Iterative form, Visits to		
	the vertices, Optimization of a		
	sequence of decisions, Application to		
	game theory: finding a winning		
	strategy, The minimax algorithm,		
	Pruning, Depth-first search of a		
	digraph		
W5	Optimal Paths	CLO1, CLO2, CLO3	T2 CH#6
	Distances and shortest paths		

			I
	problems, Types of problems, Case of		
	non-weighted digraphs: breadth-first		
	search, Application to calculation of		
	distances, Determining the shortest		
	paths, Digraphs without circuits,		
	Shortest paths, Longest paths,		
	Formulas, Application to scheduling,		
	Potential task graph, Earliest starting		
	times, Latest starting times, Total		
	slacks and critical tasks, Free slacks,		
	More general constraints, Positive		
	lengths, Associated shortest paths,		
	Undirected graphs		
W6	Matchings	CLO3	T2 CH#7
	Matchings and alternating paths,		
	Concept of alternating paths and		
	Berge's theorem, Matchings in		
	bipartite graphs, Matchings and		
	transversals, The Hungarian method,		
	Concept of alternating trees,		
	Maximum matching algorithm, Kuhn-		
	Munkres algorithm		
W7	Graph Colorings	CLO3	T1 CH#7
	Introduction, Vertex Colorings,		
	Applications of Graph Coloring,		
	Critical Graphs, Brooks' Theorem,		
	Other Coloring Parameters, b-		
	Colorings, Homomorphisms and		
	Colorings, Quotient Graphs		
W9	Flows	CLO3, CLO4	T2 CH#8
	Flows in transportation networks,		

	Interpretation, Single-source single-		
	sink networks, The max-flow min-cut		
	theorem, Concept of unsaturated		
	paths, Maximum flow algorithm,		
	Flow with stocks and demands,		
	Revisiting theorems, Menger's		
	theorem, Hall's theorem, K"onig's		
	theorem		
W10	Planarity	CLO3, CLO4	T1 CH#8
	Introduction, Planar and Nonplanar		
	Graphs, Euler Formula and Its		
	Consequences, K5 and K3;3 are		
	Nonplanar Graphs, Dual of a Plane		
	Graph, The Four-Color Theorem and		
	the Heawood Five-Color		
	Theorem, Kuratowski's Theorem,		
	Hamiltonian Plane Graphs, Tait		
	Coloring		
W11	Euler Tours	CLO3, CLO4	T2 CH#9, T2 CH#10
	Euler trails and tours, Principal result,		
	Algorithms		
	Elimination of recursion, The		
	Rosenstiehl algorithm, The Chinese		
	postman problem, The Edmonds-		
	Johnson algorithm		
	Hamilton Cycles		
	A few simple properties, The		
	traveling salesman problem,		
	Approximation of a difficult problem,		
	Concept of approximate algorithms,		
	Approximation of the metric TSP, An		
<u> </u>	1	I	

	approximate algorithm, Amelioration		
	Christofides' algorithm, Upper and		
	lower bounds for the optimal value		
W12	Graph Databases: Neo4J	CLO4	NEO4J
	Graph Query Languages: Cypher		Documentation +
			Cypher Query
			Language
			developer Guide +
			Graph Databases
			book by lan
			Robinson
W13	Graph – Knowledge Representation	CLO4	
	Learning:		
	Basics of network and graph analysis		
	(Introductory Concepts)		
	Link prediction		
	Graph and node classification		
	Spectral clustering		
	Node embeddings		
	Knowledge graph embeddings		
	Graph signal processing		
	Deep generative models of graphs		
W14	Graph Neural Networks	CLO2, CLO4	
	(Introduction level)		
	Graph Convolutional Networks		
	Graph Attention Networks		
	Graph Transformers		
W15	Identify using Graph Algorithms:	CLO2, CLO4	
	What's Important		
	What's Unusual?		
1	I .	I.	I

	What's Next?		
W16	Smarter Predictive Analytics with	CLO2, CLO4	
	Graph		
	Graph Level Prediction		
W17	Graph Generation	CLO2, CLO4	
	Graph Evolution		
W18	Graph visualization	CLO2, CLO4	
W19	Graph Centrality algorithms	CLO2, CLO4	
	Graph Similarity algorithms		
	Graph Pathfinding algorithms		
	Node embedding algorithms		
	Community detection Algorithms		