NAME	:: (FIRST NAME <u>FIRST</u>) TOTAL:									
	COSC 3360/6310 THIRD QUIZ JULY 3, 2018									
	This exam is closed book. You can have one page of notes. UH expels cheaters.									
1.	Short answer questions. (6×5 points)									
	a) What is the main goal of the translation lookaside buffer?									
	To overcome the effect of doubling the memory access time in a virtual memory scheme									
	b) What is the main benefit of Gang scheduling?									
	To reduce the overhead when executing a set of related threads									
	Explain the priority inversion problem in the context of real-time scheduling. Solution a condition where the system forces a higher priority task to wait for a lower priority									
	d) What is the difference between SCAN and CSCAN (disk scheduling algorithms)?									
	SCAN: satisfies all outstanding requests until it reaches the last track in that direction then the direction is reversed.									
	C-SCAN: Restricts scanning to one direction only									
	e) Describe the main goal of long-term scheduling, medium-term scheduling, and short-term scheduling?									
	Long – Term Scheduling : A program becomes a process									
	Medium – Term Scheduling : A process uses virtual memory									
	Short – Term Scheduling : Selects the process that will be executed									
) What is the major disadvantage of: a) static memory partitions; and b) dynamic memory partitions?									
	a) Internal fragmentation									
	b) External fragmentation									
	T:									

2. Simple choice questions: (10×3 points)

I.	Select the RAID level that does NOT include redundancy:										
	a) RAID 1	b) RAID 2	c) RAID 3	d) RAID 5	e) None of th	ne above					
II.	Select the value of	the quantum tl	nat guarantees	the same sche	duling solution	for FCFS and RR:					
	a) Q=min(T _S)	b) Q=max(Ts	s) c) Q=min(T _{arri}	ival) d) Q=	max(T _{arrival})	e) None of the above					
III.	Select the page siz	Select the page size of a system where a logical memory address has an offset field size equal to 12 its:									
	a) 4 KB	b) 1 KB	c) 2 KB	d) Noi	ne of the above)					
IV.	What happens who handed clock page				e bit = 1 when	executing the two-					
	a) Frame is i	gnored; b) use	e bit = 0 c) frar	ne gets replace	ed d) No	ne of the above					
V.	Select the type of a data to memory:	address that re	presents memo	ory location inde	ependent of the	e current assignment of					
	a) Logical	b) Physical	c) Relative	d) Absolute	e) None of th	e above					
VI.	Select the resident	set manageme	ent combinatior	n that is NOT fe	easible.						
		cation / Local R location / Loca	eplacement I Replacement			I Replacement al Replacement					
VII.	A fixed-length bloc	k of main mem	ory is:								
	a) Page	b) Segment	c) Virtual mer	mory d) Fr a	e) No	ne of the above					
VIII.	What is the main o	bjective of a re	al-time system′	?							
	 a) Meeting all the deadlines b) Minimizing the waiting time. c) Maximizing CPU Utilization d) None of the above 										
IX.	Select the scheduli	ing algorithm th	nat IS preemptiv	ve:							
	a) FIFO	b) FCFS	c) SRT	d) HRRN	e) None of th	e above					
X.	The maximum size	of a partition i	n the Buddy Sy	stem memory i	management s	olution is:					
	a) Entire Me c) Entire Men			b) Entire Men d) None of the							

3. Execute RR (Q=3), SPN, SRT, and HRRN for the following group of processes. (20 points).

Process	Α	В	С	D
T _{arrival}	0	1	2	3
Ts	2	3	4	1

4. Execute the page replacement algorithms FIFO, LRU, and Clock for a system with 3 frames and the following string of page references (10 points):

Page references: 7,0,1,2,0,3,0,4,2,3,0,3,2

F	ΙF	0
		\sim

🔾												
7	7	7	2	2	2	2	4	4	4	0	0	0
	0	0	0	0	3	3	3	2	2	2	2	2
		1	1	1	1	0	0	0	3	3	3	3
			F		F	F	F	F	F	F		

LRU

7	7	7	2	2	2	2	4	4	4	0	0	0
	0	0	0	0	0	0	0	0	3	3	3	3
		1	1	1	3	3	3	2	2	2	2	2
			F		F		F	F	F	F		

CLOCK (a gray frame represents the pointer)

<u> </u>	· (a 9.a)	, marmo i	оргооо:	no uno p	0111101							
7 ¹	71	7 ¹	2 ¹	2 ¹	2 ¹	2 ¹	4 ¹	4 ¹	4 ¹	4 ⁰	3 ¹	3 ¹
	O ¹	O ¹	00	O ¹	00	O ¹	00	2 ¹	2 ¹	20	20	2 ¹
		1 ¹	1 ⁰	1 ⁰	3 ¹	3 ¹	30	30	3 ¹	O ¹	O ¹	O ¹
			F		F		F	F		F	F	

5. Consider a 32-bit file system and a 4 K-byte block size with an inode format that has 12 blocks for direct access, 1 block for single indirect access, 1 block for double indirect access. Calculate the following parameters (6 points).

LEVEL	Number of Blocks	Number of Bytes
Direct	12	12 blocks * 4 K-byte / block = 48 K-byte
Single Indirect	4 K-byte/4 bytes = 1024 blocks 32 bit FS -> 4 bytes	1024 blocks * 4 K-byte / block = 4 M-byte
Double Indirect	1024 * 1024 blocks	4 G-byte – 4 M-byte – 4 K-byte (max file size = 2^{32} = 4 G-byte)

6. Write the argument for the chmod command to set the permissions of a file on a UNIX system to RW-R-X--X (4 points).

chmod(6,5,1)