SOME TYPES OF MACHINE LEARNING

Supervised learning - have inputs and corresponding targets

(May want to make predictions with new input data, or just understand relationship!)

Regression: continuous target variables

Classification: target variable is discrete category

Unsupervised learning - do not have target values

Typically want to discover structure in the data. Examples goals:

Clustering

Dimensionality reduction

Density estimation

Reinforcement learning

Data is high dimensional

Want to project to a lower dimensional space but still keep relevant information

$$\{\mathbf{x}_n\} \in \mathbb{R}^D \longrightarrow \{\tilde{\mathbf{x}}_n\} \in \mathbb{R}^M$$

M<D

First, find \mathbf{u}_1 (vector of length 1) to minimize variance of the projection onto \mathbf{u}_1

First, find \mathbf{u}_1 (vector of length 1) to minimize variance of the projection onto \mathbf{u}_1

Projection of \mathbf{x}_n onto \mathbf{u}_1 :

$$\mathbf{u}_1^T \mathbf{x}_n = u_1 x_1 + \dots u_D x_D$$

First, find \mathbf{u}_1 (vector of length 1) to minimize variance of the projection onto \mathbf{u}_1

Projection of \mathbf{x}_n onto \mathbf{u}_1 :

$$\mathbf{u}_1^T \mathbf{x}_n = u_1 x_1 + \dots u_D x_D$$

First, find \mathbf{u}_1 (vector of length 1) to minimize variance of the projection onto \mathbf{u}_1

Projection of \mathbf{x}_n onto \mathbf{u}_1 :

$$\mathbf{u}_1^T \mathbf{x}_n = u_1 x_1 + \dots u_D x_D$$

variance of projection: $\frac{1}{N} \sum_{n=1}^{N} (\mathbf{u}_1^T \mathbf{x}_n - \mathbf{u}_1^T \bar{\mathbf{x}})^2 = \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$

where
$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T$$
, $\underline{\bar{\mathbf{x}}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$

data covariance

First, find \mathbf{u}_1 to minimize variance of the projection onto \mathbf{u}_1

variance of projection:
$$\frac{1}{N} \sum_{n=1}^{N} (\mathbf{u}_1^T \mathbf{x}_n - \mathbf{u}_1^T \bar{\mathbf{x}})^2 = \mathbf{u}_1^T \mathbf{S} \mathbf{u}_1$$

where
$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T$$
, $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$

maximizing subject to $||\mathbf{u}_1|| = 1$, we get:

$$\mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1 \\ \mathbf{u}_1^{\mathbf{T}} \mathbf{S}\mathbf{u}_1 = \lambda_1$$

First, find \mathbf{u}_1 to minimize variance of the projection onto \mathbf{u}_1

variance of projection:
$$\frac{1}{N} \sum_{n=1}^{N} (\mathbf{u}_{1}^{T} \mathbf{x}_{n} - \mathbf{u}_{1}^{T} \bar{\mathbf{x}})^{2} = \mathbf{u}_{1}^{T} \mathbf{S} \mathbf{u}_{1}$$

where
$$\mathbf{S} = \frac{1}{N} \sum_{n=1}^{N} (\mathbf{x}_n - \bar{\mathbf{x}}) (\mathbf{x}_n - \bar{\mathbf{x}})^T$$
, $\bar{\mathbf{x}} = \frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_n$

maximizing subject to $||\mathbf{u}_1|| = 1$, we get:

$$\mathbf{S}\mathbf{u}_1 = \lambda_1 \mathbf{u}_1 \\ \mathbf{u}_1^{\mathbf{T}} \mathbf{S}\mathbf{u}_1 = \lambda_1$$

So choose \mathbf{u}_1 to be unit-length eigenvector corresponding to largest eigenvalue of \mathbf{S}

Can imagine continuing iteratively, e.g. next choosing \mathbf{u}_2 to minimize the covariance of the projections of the \mathbf{x}_n - $\mathbf{u}_1^T\mathbf{x}_n$ onto \mathbf{u}_2

Stop at desired number of components M - can use variance explained to decide

PROBABALISTIC PCA

Figure 12.9 from Pattern Recognition and Machine Learning, by Christopher Bishop

PROBABALISTIC PCA

PROBABALISTIC PCA

Can also put a prior over W!

$$p(\mathbf{z}) \sim N(0, \mathbf{I})$$
 $p(\mathbf{x}|\mathbf{z}) = N(\mathbf{W}\mathbf{z} + \mathbf{m}\mathbf{u}, \sigma^2\mathbf{I})$
 $\implies p(\mathbf{x}) = N(\mathbf{x}, \mu, \mathbf{W}\mathbf{W}^T + \sigma^2\mathbf{I}),$
can compute $p(\mathbf{z}|\mathbf{x})$

Figure 12.9 from Pattern Recognition and Machine Learning, by Christopher Bishop

z are latent variables

T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE)

Again want to represent high dimensional vectors x with low dimensional counterparts y

Aim to transform close points into points that are still close

T-DISTRIBUTED STOCHASTIC NEIGHBOR EMBEDDING (T-SNE)

Again want to represent high dimensional vectors x with low dimensional counterparts y

Aim to transform close points into points that are still close

$$p_{j|i} = \frac{\exp(-||\mathbf{x}_i - \mathbf{x}_j||/\sigma_i^2)}{\sum_{k \neq i} \exp(-||\mathbf{x}_i - \mathbf{x}_k||/\sigma_i^2)} \qquad q_{ij} = \frac{(1 + ||\mathbf{y}_i - \mathbf{y}_j||^2)^{-1}}{\sum_{k \neq i} (1 + ||\mathbf{y}_i - \mathbf{y}_k||^2)^{-1}}$$

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$

$$\text{minimize } KL(p, q) = \int p_{ij} \log(\frac{p_{ij}}{q_{ij}}) = \int p_{ij}(\log(p_{ij}) - \log(q_{ij}))$$

KL DIVERGENCE

minimize
$$KL(p,q) = \int p_{ij} \log(\frac{p_{ij}}{q_{ij}}) = \int p_{ij}(\log(p_{ij}) - \log(q_{ij}))$$

A way to measure the "distance" two probability distributions, but caution....

Not symmetric! KL(p, q) and KL(q, p) are different in general

An intro blog post on KL divergence: https://karinknudson.com/kl_divergence.html

Useful in variational inference, among other settings

FOR AN EXCELLENT DISCUSSION OF T-SNE, SEE:

For an excellent discussion of t-SNE, see:

https://distill.pub/2016/misread-tsne/

Check out alternative manifold learning techniques! For a brief introduction to those that are implemented in sci-kit learn, see: https://scikit-learn.org/stable/modules/manifold.html#manifol

For a discussion and comparison of t-SNE and PCA (with examples in Python), see e.g.:

https://towardsdatascience.com/an-introduction-to-t-sne-with-python-example-5a3a293108d1

K-MEANS CLUSTERING

Choose the number of clusters you expect: K

Choose a set of K points ("means") then alternately

- 1. "Assign" each data point to the cluster corresponding to the nearest "mean"
- 2. Recalculate the means by taking the average of the points assigned to each cluster

MIXTURE OF GAUSSIANS CLUSTERING

Assume data points are generated from a mixture of K Gaussian distributions

Find the mean and variance of those Gaussians that give the highest likelihood

(Can use EM algorithm to optimize the likelihood)