FIELD PROPERTIES	Supremum Definition
What are the five fundamental properties that define a field?	What does it mean for $\beta = \sup S$?
MATHEMATICAL INDUCTION	Sequence Convergence
State the Principle of Mathematical Induction.	Define convergence of a sequence $\{s_n\}$.
Limit Superior and Inferior	FUNCTION LIMIT
Define $\limsup_{n\to\infty} s_n$ and $\liminf_{n\to\infty} s_n$.	Define $\lim_{x\to x_0} f(x) = L$.
Continuity	Intermediate Value Theorem
Define continuity of f at x_0 .	State the Intermediate Value Theorem.
DERIVATIVE DEFINITION	Mean Value Theorem
Define the derivative $f'(x_0)$.	State the Mean Value Theorem.

$\beta = \sup S$ if and only if: (1) $x \leq \beta$ for all $x \in S$ (β is an upper bound) (2) If $\gamma < \beta$, then $\exists x \in S$ such that $x > \gamma$ (no smaller upper bound exists)	(A) $a+b=b+a$ and $ab=ba$ (commutative laws) (B) $(a+b)+c=a+(b+c)$ and $(ab)c=a(bc)$ (associative laws) (C) $a(b+c)=ab+ac$ (distributive law) (D) $\exists 0,1\in\mathbb{R}$ such that $a+0=a$ and $a\cdot 1=a$ for all a (E) For each $a,\exists (-a)$ such that $a+(-a)=0,$ and if $a\neq 0,\exists a^{-1}$ such that $a\cdot a^{-1}=1$
$\lim_{n\to\infty} s_n=s$ if and only if: $\forall \epsilon>0, \exists N\in\mathbb{N}$ such that $ s_n-s <\epsilon$ whenever $n\geq N$	Let $P_1, P_2, \ldots, P_n, \ldots$ be propositions. If: (a) P_1 is true (b) For each positive integer $n, P_n \Longrightarrow P_{n+1}$ Then P_n is true for each positive integer n .
$\lim_{x\to x_0} f(x) = L$ if and only if: $\forall \epsilon > 0, \exists \delta > 0$ such that $0 < x - x_0 < \delta \implies f(x) - L < \epsilon$	$M_k = \sup_{n \geq k} s_n$, then $\limsup_{n \to \infty} s_n = \lim_{k \to \infty} M_k$ $m_k = \inf_{n \geq k} s_n$, then $\liminf_{n \to \infty} s_n = \lim_{k \to \infty} m_k$
If f is continuous on $[a,b]$, $f(a) \neq f(b)$, and μ is between $f(a)$ and $f(b)$, then $\exists c \in (a,b)$ such that $f(c) = \mu$.	f is continuous at x_0 if: $\lim_{x\to x_0} f(x) = f(x_0)$ Equivalently: $\forall \epsilon > 0, \exists \delta > 0$ such that $ x - x_0 < \delta \implies f(x) - f(x_0) < \epsilon$
If f is continuous on $[a,b]$ and differentiable on (a,b) , then $\exists c \in (a,b)$ such that: $f'(c) = \frac{f(b) - f(a)}{b-a}$	$f'(x_0) = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$ provided this limit exists.

Series Convergence	Absolute Convergence
Define convergence of the series $\sum_{n=1}^{\infty} a_n$.	Define absolute and conditional convergence.
Uniform Convergence	Power Series
ONIFORM CONVERGENCE	TOWER SERIES
Define uniform convergence of $\{f_n\}$ to f on S .	Define a power series and its radius of convergence.
Taylor Series	Cauchy Convergence Criterion
Define the Taylor series of f about x_0 .	State the Cauchy convergence criterion for sequences.
Monotonic Sequences	Completeness Axiom
State the convergence theorem for bounded	
monotonic sequences.	State the Completeness Axiom for \mathbb{R} .
Comparison Test	Ratio Test
State the Comparison Test for series.	State the Ratio Test.

$\sum a_n$ converges absolutely if $\sum a_n $ converges. $\sum a_n$ converges conditionally if $\sum a_n$ converges but $\sum a_n $ diverges.	$\sum_{n=1}^{\infty} a_n$ converges if $\lim_{n\to\infty} S_n$ exists and is finite, where $S_n = \sum_{k=1}^n a_k$ are the partial sums.
A power series is $\sum_{n=0}^{\infty} a_n (x-x_0)^n$. Radius of convergence: $\frac{1}{R} = \limsup_{n \to \infty} a_n ^{1/n}$	$\{f_n\}$ converges uniformly to f on S if: $\forall \epsilon > 0, \exists N$ such that $n \geq N \implies f_n(x) - f(x) < \epsilon$ for all $x \in S$
$\{s_n\}$ converges if and only if: $\forall \epsilon>0, \exists N$ such that $m,n\geq N\implies s_m-s_n <\epsilon$	$T(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n \text{ where } f^{(n)}(x_0) \text{ is the }$ n-th derivative of f evaluated at x_0 .
Every nonempty set $S \subset \mathbb{R}$ that is bounded above has a supremum in \mathbb{R} . Equivalently: $\sup S \in \mathbb{R}$ whenever $S \neq \emptyset$ and S is bounded above.	If $\{s_n\}$ is increasing and bounded above, then $\lim_{n\to\infty} s_n = \sup\{s_n\}$. If $\{s_n\}$ is decreasing and bounded below, then $\lim_{n\to\infty} s_n = \inf\{s_n\}$.
Let $L=\lim_{n\to\infty}\left \frac{a_{n+1}}{a_n}\right $ If $L<1$, then $\sum a_n$ converges absolutely - If $L>1$, then $\sum a_n$ diverges - If $L=1$, the test is inconclusive	If $0 \le a_n \le b_n$ for all $n \ge N$, then: - If $\sum b_n$ converges, then $\sum a_n$ converges - If $\sum a_n$ diverges, then $\sum b_n$ diverges

Heine-Borel Theorem	Bolzano-Weierstrass Theorem
State the Heine-Borel Theorem.	State the Bolzano-Weierstrass Theorem.
Extended Real Numbers	Indeterminate Forms
Define the extended real number system $\overline{\mathbb{R}}$.	List the seven indeterminate forms.
Open and Closed Sets	L'Hôpital's Rule
	E HOLLINE & WOLF
Define open and closed sets in \mathbb{R} .	State L'Hôpital's Rule.
One-Sided Limits	One-Sided Derivatives
Define left-hand and right-hand limits.	Define left-hand and right-hand derivatives.
Rolle's Theorem	Taylor's Theorem
State Rolle's Theorem.	State Taylor's Theorem with Lagrange remainder.

Every bounded sequence $\{s_n\}$ in \mathbb{R} has a convergent subsequence.	A subset $K \subset \mathbb{R}$ is compact if and only if K is closed and bounded. Equivalently: Every open cover of K has a finite subcover.
$\frac{0}{0}, \frac{\infty}{\infty}, 0 \cdot \infty, \infty - \infty, 0^0, 1^{\infty}, \infty^0$	$\overline{\mathbb{R}} = \mathbb{R} \cup \{-\infty, +\infty\} \text{ With arithmetic: } a + \infty = \infty,$ $a \cdot \infty = \infty \text{ (if } a > 0), \ \frac{a}{\infty} = 0 \text{ Undefined: } \infty - \infty,$ $0 \cdot \infty, \ \frac{\infty}{\infty}, \ \frac{0}{0}$
If $\lim_{x\to a} f(x) = \lim_{x\to a} g(x) = 0$ or $\pm \infty$, and $\lim_{x\to a} \frac{f'(x)}{g'(x)}$ exists, then: $\lim_{x\to a} \frac{f(x)}{g(x)} = \lim_{x\to a} \frac{f'(x)}{g'(x)}$	U is open if $\forall x \in U, \exists \delta > 0$ such that $(x - \delta, x + \delta) \subset U$ F is closed if $\mathbb{R} \setminus F$ is open Equivalently: F is closed if it contains all its limit points
$f'_{-}(x_0) = \lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h}$ $f'_{+}(x_0) = \lim_{h \to 0^{+}} \frac{f(x_0 + h) - f(x_0)}{h}$	$\lim_{x \to x_0^-} f(x) = L \text{ if } \forall \epsilon > 0, \exists \delta > 0 \text{ such that}$ $x_0 - \delta < x < x_0 \implies f(x) - L < \epsilon$ $\lim_{x \to x_0^+} f(x) = L \text{ if } \forall \epsilon > 0, \exists \delta > 0 \text{ such that}$ $x_0 < x < x_0 + \delta \implies f(x) - L < \epsilon$
If f is $(n+1)$ times differentiable on (a,b) containing x_0 , then: $f(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k + \frac{f^{(n+1)}(\xi)}{(n+1)!} (x-x_0)^{n+1}$ for some ξ between x_0 and x .	If f is continuous on $[a, b]$, differentiable on (a, b) , and $f(a) = f(b)$, then $\exists c \in (a, b)$ such that $f'(c) = 0$.

Taylor Polynomials	Uniform Continuity
Define the n -th Taylor polynomial of f about x_0 .	Define uniform continuity of f on S .
Subsequences	Weierstrass Test
Define a subsequence of $\{s_n\}$.	State the Weierstrass M-Test.
DIRICHLET'S TEST	Abel's Theorem
State Dirichlet's Test for series.	State Abel's Theorem for power series.
Integration of Power Series	Differentiation of Power Series
State the theorem on term-by-term integration of power series.	State the theorem on term-by-term differentiation of power series.
Rearrangement of Series	Integral Test
State Riemann's Rearrangement Theorem.	State the Integral Test.

f is uniformly continuous on S if: $\forall \epsilon > 0, \exists \delta > 0$ such that $x,y \in S$ and $ x-y < \delta \implies f(x)-f(y) < \epsilon$	$T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$
If $ f_n(x) \leq M_n$ for all $x \in S$ and $\sum M_n$ converges, then $\sum f_n$ converges absolutely and uniformly on S .	$\{s_{n_k}\}$ is a subsequence of $\{s_n\}$ if $n_1 < n_2 < n_3 < \cdots$ are positive integers. If $\lim_{n\to\infty} s_n = s$, then $\lim_{k\to\infty} s_{n_k} = s$.
If $\sum a_n r^n$ converges for some $r > 0$, then $\sum a_n x^n$ converges uniformly on $[0, r]$.	If $\{a_n\}$ is monotonic with $\lim_{n\to\infty}a_n=0$ and the partial sums $\sum_{k=1}^n b_k$ are bounded, then $\sum a_n b_n$ converges.
If $f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$ has radius of convergence $R > 0$, then: $f'(x) = \sum_{n=1}^{\infty} n a_n (x - x_0)^{n-1} \text{ for } x - x_0 < R$	If $\sum a_n(x-x_0)^n$ has radius of convergence $R>0$, then: $\int_a^b \sum_{n=0}^\infty a_n (x-x_0)^n dx = \sum_{n=0}^\infty a_n \int_a^b (x-x_0)^n dx \text{ for } [a,b] \subset (x_0-R,x_0+R)$
If f is positive, continuous, and decreasing on $[1, \infty)$, then: $\sum_{n=1}^{\infty} f(n)$ and $\int_{1}^{\infty} f(x)dx$ both converge or both diverge.	If $\sum a_n$ converges conditionally, then for any $L \in \mathbb{R} \cup \{\pm \infty\}$, there exists a rearrangement $\sum a_{\sigma(n)}$ that converges to L . If $\sum a_n$ converges absolutely, then every rearrangement converges to the same sum.

ROOT TEST	Raabe's Test
State the Root Test (Cauchy's Test).	State Raabe's Test.
Compactness	Pointwise vs Uniform Convergence
Define compactness in \mathbb{R} .	State the key difference between pointwise and uniform convergence.

Let $L = \lim_{n \to \infty} n \left(1 - \left \frac{a_{n+1}}{a_n} \right \right)$ If $L > 1$, then $\sum a_n$ converges absolutely - If $L < 1$, then $\sum a_n$ diverges - If $L = 1$, the test is inconclusive	Let $L=\limsup_{n\to\infty} a_n ^{1/n}$ If $L<1$, then $\sum a_n$ converges absolutely - If $L>1$, then $\sum a_n$ diverges - If $L=1$, the test is inconclusive
Pointwise: $\forall x \in S, \forall \epsilon > 0, \exists N(x, \epsilon)$ such that $n \geq N \implies f_n(x) - f(x) < \epsilon$ Uniform: $\forall \epsilon > 0, \exists N(\epsilon)$ such that $n \geq N \implies f_n(x) - f(x) < \epsilon$ for all $x \in S$	$K \subset \mathbb{R}$ is compact if every open cover $\{U_{\alpha}\}$ of K has a finite subcover. Equivalently in \mathbb{R} : K is compact $\iff K$ is closed and bounded.