AP HW3

Linear Factor Models

```
In [1]: import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import statsmodels.api as sm
In [2]: industry_portfolios = \
            /ba
            .read_csv("/Users/lu/Desktop/Industry_Portfolios.csv")
        risk_factor =\
            pd\
            .read csv("/Users/lu/Desktop/Risk Factors.csv")
In [3]: #risk_factor
        # print(industry_portfolios.columns)
        # print(risk_factor.columns)
In [4]: #risk_factor["Rf"].to_frame()
In [5]: data = pd.merge(industry_portfolios, risk_factor, on='Date')
        # data
```

Fama-French 3-Factor Model:

```
	ilde{R}_i - R_f = lpha_i + eta_i (	ilde{R}_m - R_f) + \gamma_i (	ilde{R}_s - 	ilde{R}_b) + \delta_i (	ilde{R}_h - 	ilde{R}_l) + 	ilde{\epsilon}_i
```

Create A Table

```
In [7]: X = sm.add_constant(data[["Rm-Rf",'SMB', 'HML']])
factor = []

for industry in industry_columns:
    y = data[industry]
    model = sm.OLS(y, X).fit()
    factor.append({
        "Industry": industry,
        "Fama-French 3-factor alpha": model.params["const"],
        "Market risk": model.params["Rm-Rf"],
        "SMB Loading": model.params['SMB'],
        'HML Loading': model.params['HML'],
```

```
})

df = pd.DataFrame(factor)
df
```

Out[7]:

	Industry	Fama-French 3-factor alpha	Market risk	SMB Loading	HML Loading
0	NoDur	0.386704	0.712134	-0.229102	-0.023342
1	Durbl	-0.474342	1.447452	0.670878	0.240949
2	Manuf	0.153285	1.142282	0.087388	0.027727
3	Enrgy	0.523007	1.028354	-0.259360	-0.008158
4	HiTec	-0.065979	1.152803	0.335674	-0.556947
5	Telcm	0.200724	0.924137	-0.080299	-0.019063
6	Shops	0.255941	0.770227	0.280191	-0.039080
7	Hlth	0.257472	0.751976	-0.212655	-0.143765
8	Utils	0.474411	0.631827	-0.387961	-0.016881
9	Other	-0.404412	1.123473	-0.061676	0.547325

Calculate:

```
Sharpe ratio Sortino ratio (using risk-free rate as target) Treynor ratio (using CAPM \beta) Jensen's \alpha Fama-French three-factor \alpha
```

```
Out[8]:
               Industry
                              CAPM Market risk
            0
                  NoDur
                           0.369717
                                         0.653744
                   Durbl
                          -0.417903
            1
                                         1.649374
            2
                  Manuf
                           0.160494
                                          1.167929
            3
                  Enrgy
                           0.504485
                                         0.965527
            4
                  HiTec
                         -0.064024
                                          1.132387
            5
                  Telcm
                           0.194348
                                          0.901721
                           0.274093
            6
                  Shops
                                         0.829515
            7
                    Hlth
                           0.236968
                                         0.675890
            8
                    Utils
                           0.446523
                                         0.537009
            9
                  Other -0.387508
                                         1.206992
           Sharpe Ratio: S_i = rac{E(	ilde{R}_i - R_f)}{\sqrt{Var(	ilde{R}_i - R_f)}}
 In [9]: # SHarpe ratio
            res = pd.DataFrame()
           S_i = data[industry_columns].mean() / data[industry_columns].std()
            res["Sharpe ratio"] = S_i.values
           Sortino Ratio: St_i = rac{E(	ilde{R}_i - 	ilde{R}_t)}{\sqrt{SV(	ilde{R}_i; 	ilde{R}_t)}}
In [10]: # Sortino ratio
           St_i = data[industry_columns].mean() / np.sqrt((data[industry_columns].ap
           res["Sortino ratio"] = St_i.values
           Treynor Ratio: T_i = rac{E(	ilde{R}_i - R_f)}{eta_i}
In [11]: # Treynor ratio
           T_i = data[industry_columns].mean() / df1["Market risk"].values
           res["Treynor ratio"] = T_i.values
           Jensen's \alpha : \alpha_i = E(\tilde{R}_i - R_f) - \beta_i E(\tilde{R}_m - R_f)
In [12]: # Jensen's \alpha
           J_alpha = data[industry_columns].mean() - df1["Market risk"].values * dat
            res["Jensen's \alpha"] = J_alpha.values
           # Fama-French 3-factor
```

res["Fama-French 3-factor alpha"] = df["Fama-French 3-factor alpha"]

res

In [13]:

res.index = industry_columns

Out[13]: Fama-French 3-factor Sharpe Sortino Treynor Jensen's ratio ratio ratio alpha NoDur 0.231099 0.350804 1.186372 0.369717 0.386704 **Durbl** 0.072356 0.111967 0.367463 -0.417903 -0.474342 Manuf 0.166616 0.241260 0.758251 0.160494 0.153285 0.181708 0.504485 0.523007 **Enrgy** 0.273612 1.143330 HiTec 0.118552 0.170620 0.564295 -0.064024 -0.065979 **Telcm** 0.169064 0.244940 0.836363 0.194348 0.200724 **Shops** 0.191753 0.293032 0.951258 0.274093 0.255941 Hlth 0.172529 0.270294 0.971435 0.236968 0.257472 Utils 0.210948 0.290044 1.452334 0.446523 0.474411 Other 0.064693 0.087351 0.299781 -0.387508 -0.404412

```
In [14]: performance_metrics = ["Sharpe ratio", "Sortino ratio", "Treynor ratio",

plt.figure(figsize=(10, 6))

for metric in performance_metrics:
    plt.figure()
    res[metric].plot(kind='bar', color='pink', edgecolor='black')
    plt.title(f'{metric} by Industry')
    plt.xlabel('Industry')
    plt.ylabel(metric)
    plt.xticks(rotation=45)
    plt.tight_layout()
    plt.show()
```

<Figure size 1000x600 with 0 Axes>

0.0

MODIN

Durbl

Manuf

EMOY

HiTec

Telch

shops

HET

Jtils

0.4

0.2

0.0

-0.2

-0.4

Fama-French 3-factor alpha

Fama-French 3-factor alpha by Industry

Jills

Explanation

The Sharpe ratio helps investors assess the return per unit of total risk. The pricing implication is that returns in proportion to risk may be appropriately priced.

_HiTec

Industry

ENTON

The Sortino ratio focuses on downside risk, measuring performance in negative risk situations. The pricing implication is that assets with well-controlled downside risk may be appropriately priced.

The Treynor ratio evaluates the risk-return for each unit of market risk. The pricing implication is that assets providing sufficient compensation for market risk will likely be priced appropriately.