1/1 point

Grade received 100% To pass 80% or higher

- Can Neural Architecture Search (NAS) be seen as a subfield of AutoML?

 - Yes

Correct

No

Exactly! NAS can be seen as a subfield of AutoML and has significant overlap with hyperparameter optimization and meta-learning.

1/1 point

Indeed! AutoML enables developers -even those with minimal experience in machine learning- to readily produce simple, optimal solutions.

Correct! AutoML determines the approach that works best for a certain application.

AutoML aims to automate the decision-making in a data-driven and objective way.

Correct

Correct

AutoML aims to automate the end-to-end process of machine learning to produce simpler and faster solutions.

8.	The lower fidelity estimates are a performance estimation strategy that allows (Select all that apply):	1/1 point
	✓ Training on lower-resolution	
	Correct That's it! The lower fidelity reduces the computational cost as a result.	
	✓ Training with less filters per layer	
	 Correct Way to go! The lower fidelity estimates strategy uses fewer filters per layer and fewer cells. 	
	✓ Training on a subset of the data	
	Correct! It also reduces training times.	
	☐ Training for a few epochs	

1/1 point

9. Can **network morphism** modify an architecture while leaving the network's function unchanged?

Exactly! This property increases the network's capacity retaining a high performance as a result.