Arithmetic of Fourier coefficients of Gan-Gurevich lifts on G_2

Naomi Sweeting

(joint work with Petar Bakic, Alex Horawa, and Siyan Daniel Li-Huerta)

June 10, 2025 International Seminar on Automorphic Forms

 $G = \text{reductive group}, \ \pi = \otimes' \pi_{\nu} \ \mathsf{AR} \ \mathsf{of} \ G(\mathbb{A}).$

Some π_{∞} are more arithmetic than others.

$$G = \text{reductive group}, \ \pi = \otimes' \pi_{\nu} \ \mathsf{AR} \ \mathsf{of} \ G(\mathbb{A}).$$

Some π_{∞} are more arithmetic than others.

Most arithmetic: π_{∞} is a **holomorphic discrete series**, e.g. for SL_2

 $G = \text{reductive group}, \ \pi = \otimes' \pi_{\nu} \ \mathsf{AR} \ \mathsf{of} \ G(\mathbb{A}).$

Some π_{∞} are more arithmetic than others.

Most arithmetic: π_{∞} is a **holomorphic discrete series**, e.g. for SL₂, Sp_{2g}, ...

$$G = \text{reductive group}, \ \pi = \otimes' \pi_{\nu} \ \mathsf{AR} \ \mathsf{of} \ G(\mathbb{A}).$$

Some π_{∞} are more arithmetic than others.

Most arithmetic: π_{∞} is a holomorphic discrete series, e.g. for SL2, $\mathrm{Sp}_{2g},\ \dots$

You can use the relation to Shimura varieties to construct Galois representations, study Fourier expansions, and much more

$$G = \text{reductive group}, \ \pi = \otimes' \pi_{\nu} \ \mathsf{AR} \ \mathsf{of} \ G(\mathbb{A}).$$

Some π_{∞} are more arithmetic than others.

Most arithmetic: π_{∞} is a **holomorphic discrete series**, e.g. for SL₂, Sp_{2g}, ...

You can use the relation to Shimura varieties to construct Galois representations, study Fourier expansions, and much more

But not all groups admit holomorphic discrete series!

On G_2 , the **quaternionic discrete series** are the most arithmetic.

 π_k : QDS representation of $G_2(\mathbb{R})$ of weight $k \geq 2$.

On G_2 , the **quaternionic discrete series** are the most arithmetic.

 π_k : QDS representation of $G_2(\mathbb{R})$ of weight $k \geq 2$.

Definition

 $\varphi: G_2(\mathbb{Q}) \setminus G_2(\mathbb{A}) \to \mathbb{C}$ is a **quaternionic modular form** of weight $k \geq 2$ if φ generates the lowest K-type in π_k under $G_2(\mathbb{R})$.

On G_2 , the **quaternionic discrete series** are the most arithmetic.

 π_k : QDS representation of $G_2(\mathbb{R})$ of weight $k \geq 2$.

Definition

 $\varphi: G_2(\mathbb{Q}) \setminus G_2(\mathbb{A}) \to \mathbb{C}$ is a **quaternionic modular form** of weight $k \geq 2$ if φ generates the lowest K-type in π_k under $G_2(\mathbb{R})$.

Fact

The Fourier coefficients $c_A(\varphi)$ of a cuspidal QMF φ of weight k are indexed by totally real cubic rings A (and these determine φ)

On G_2 , the **quaternionic discrete series** are the most arithmetic.

 π_k : QDS representation of $G_2(\mathbb{R})$ of weight $k \geq 2$.

Definition

 $\varphi: G_2(\mathbb{Q}) \setminus G_2(\mathbb{A}) \to \mathbb{C}$ is a **quaternionic modular form** of weight $k \geq 2$ if φ generates the lowest K-type in π_k under $G_2(\mathbb{R})$.

Fact

The Fourier coefficients $c_A(\varphi)$ of a cuspidal QMF φ of weight k are indexed by totally real cubic rings A (and these determine φ)

- A free of rank 3 over \mathbb{Z} , $A \otimes \mathbb{R} = \mathbb{R}^3$ as a ring
- e.g. $A = \mathbb{Z}^3$, $A = \mathcal{O}_E$ with E/\mathbb{Q} totally real cubic field

On G_2 , the **quaternionic discrete series** are the most arithmetic.

 π_k : QDS representation of $G_2(\mathbb{R})$ of weight $k \geq 2$.

Definition

 $\varphi: G_2(\mathbb{Q}) \setminus G_2(\mathbb{A}) \to \mathbb{C}$ is a **quaternionic modular form** of weight $k \geq 2$ if φ generates the lowest K-type in π_k under $G_2(\mathbb{R})$.

Fact*

The Fourier coefficients $c_A(\varphi)$ of a cuspidal QMF φ of weight k are indexed by totally real cubic rings A (and these determine φ)

- A free of rank 3 over \mathbb{Z} , $A \otimes \mathbb{R} = \mathbb{R}^3$ as a ring
- e.g. $A = \mathbb{Z}^3$, $A = \mathcal{O}_E$ with E/\mathbb{Q} totally real cubic field
- *: actually, only if φ has a nice level (like $\Gamma_0(N)$)

Fourier coefficients and arithmetic

The Fourier coefficients $c_A(\varphi)$ are arithmetic in nature.

Fourier coefficients and arithmetic

The Fourier coefficients $c_A(\varphi)$ are arithmetic in nature.

Some examples:

• There exists a natural family of Eisenstein series E_{2k} of weight $2k \ge 4$, such that

$$c_A(E_{2k}) = \zeta_A(1-2k)$$

when A is maximal. (Jiang-Rallis 97, Gan-Gross-Savin 02, Xiong 17)

Fourier coefficients and arithmetic

The Fourier coefficients $c_A(\varphi)$ are arithmetic in nature.

Some examples:

• There exists a natural family of Eisenstein series E_{2k} of weight $2k \ge 4$, such that

$$c_A(E_{2k}) = \zeta_A(1-2k)$$

when A is maximal. (Jiang-Rallis 97, Gan-Gross-Savin 02, Xiong 17)

 For k ≥ 6, there is a basis of level one forms with all coefficients in Q^{cyc} (Pollack 22)

Gross's Conjecture

Let f be a cusp form for $SL_2(\mathbb{Z})$ of weight k.

Assuming $L(1/2, f) \neq 0$, there exists a cuspidal **Gan-Gurevich lift** φ of f to G_2

Conjecture (Gross)

For all maximal totally real cubic rings A,

$$c_A(\varphi)^2 = L(1/2, f \otimes \rho_A) \operatorname{disc}(A)^{\frac{k-1}{2}}$$

where ρ_A = two-dimensional Artin representation associated to A

Gross's Conjecture

Let f be a cusp form for $SL_2(\mathbb{Z})$ of weight k.

Assuming $L(1/2, f) \neq 0$, there exists a cuspidal **Gan-Gurevich lift** φ of f to G_2

Conjecture (Gross)

For all maximal totally real cubic rings A,

$$c_A(\varphi)^2 = L(1/2, f \otimes \rho_A) \operatorname{disc}(A)^{\frac{k-1}{2}}$$

where ρ_A = two-dimensional Artin representation associated to A

• Kim-Yamauchi 24: true when $A = \mathbb{Z} \times \mathcal{O}_F$ for F/\mathbb{Q} quadratic

Gross's Conjecture

Let f be a cusp form for $SL_2(\mathbb{Z})$ of weight k.

Assuming $L(1/2, f) \neq 0$, there exists a cuspidal **Gan-Gurevich lift** φ of f to G_2

Conjecture (Gross)

For all maximal totally real cubic rings A,

$$c_A(\varphi)^2 = L(1/2, f \otimes \rho_A) \operatorname{disc}(A)^{\frac{k-1}{2}}$$

where ρ_A = two-dimensional Artin representation associated to A

- Kim-Yamauchi 24: true when $A = \mathbb{Z} \times \mathcal{O}_F$ for F/\mathbb{Q} quadratic
- Today: Gross's conjecture when f is a CM form (always has level!)

Main result

- $f = f_{\chi}$ CM form of weight k, trivial character, and any level N, associated to K/\mathbb{Q} and $\chi: K^{\times} \backslash \mathbb{A}_{K}^{\times} \to \mathbb{C}^{1}$.
- Assume: $L(1/2, \chi) \neq 0$.
- $\mathcal{A}_{GG}(f_{\chi})$ space of "Gan-Gurevich lifts" $G_2(\mathbb{Q})\backslash G_2(\mathbb{A}) \to \mathbb{C}$.

Theorem (Bakic-Horawa-Li-Huerta-S., in progress)

For all $\ell | N$, fix a cubic ring $A_{\ell}/\mathbb{Z}_{\ell}$, such that

$$\prod_{\ell \mid N} \epsilon_{\ell}(A_{\ell}, \chi_{\ell}) = -\epsilon(1/2, \chi^{3})$$

Then \exists a QMF $\varphi \in A_{GG}(f_\chi)$ s.t. for A maximal outside N

$$|c_A(\varphi)|^2 = egin{cases} L(1/2,f_\chi\otimes
ho_A)\operatorname{disc}(A)^{rac{k-1}{2}} & A\otimes\mathbb{Z}_\ell = A_\ell \ orall \ell|N \ otherwise \end{cases}$$

Plan of talk

- 1. Theory of Gan-Gurevich lifts, and role of epsilon factors
- 2. A construction of $\mathcal{A}_{GG}(f_{\chi})$
- 3. Sketch of proof

1. Theory of Gan-Gurevich lifts

Langlands philosophy, G/F reductive group:

 $\{\mathsf{aut.\ repns\ of}\ G\} \longleftrightarrow \left\{\text{``Galois\ representations''}\ L_\mathbb{Q} \to {}^LG\right\}$

Langlands philosophy, G/F reductive group:

$$\{ ext{aut. repns of } G \} \longleftrightarrow \left\{ ext{"Galois representations" } L_{\mathbb{Q}} o {}^L G \right\}$$

Arthur's conjecture:

$$\mathcal{A}_{\sf disc}({\sf G}) = \oplus_{\psi} \mathcal{A}_{\psi}({\sf G})$$

where

$$\psi: L_{\mathbb{Q}} \times SL_2(\mathbb{C}) \to {}^LG,$$

 $\psi|_{L_{\mathbb{Q}}}$ is tempered, and $\psi|_{\mathsf{SL}_2(\mathbb{C})}$ is algebraic

Langlands philosophy, G/F reductive group:

$$\{ \text{aut. repns of } G \} \longleftrightarrow \left\{ \text{``Galois representations''} \ L_{\mathbb{Q}} \to {}^L G \right\}$$

Arthur's conjecture:

$$\mathcal{A}_{\sf disc}({\sf G}) = \oplus_{\psi} \mathcal{A}_{\psi}({\sf G})$$

where

$$\psi: L_{\mathbb{Q}} \times SL_2(\mathbb{C}) \to {}^LG$$
,

 $\psi|_{L_{\mathbb{Q}}}$ is tempered, and $\psi|_{\operatorname{SL}_2(\mathbb{C})}$ is algebraic

The more nontrivial the $SL_2(\mathbb{C})$, the more nontempered (and degenerate) the representation.

Langlands philosophy, G/F reductive group:

$$\{ \text{aut. repns of } G \} \longleftrightarrow \left\{ \text{``Galois representations'' } L_{\mathbb{Q}} \to {}^L G \right\}$$

Arthur's conjecture:

$$\mathcal{A}_{\sf disc}({\sf G}) = \oplus_{\psi} \mathcal{A}_{\psi}({\sf G})$$

where

$$\psi: L_{\mathbb{Q}} \times SL_2(\mathbb{C}) \to {}^LG$$
,

 $\psi|_{L_{\mathbb{Q}}}$ is tempered, and $\psi|_{\mathsf{SL}_2(\mathbb{C})}$ is algebraic

The more nontrivial the $\mathrm{SL}_2(\mathbb{C})$, the more nontempered (and degenerate) the representation. e.g. for $G=\mathrm{GL}_2$, ${}^LG=\mathrm{GL}_2(\mathbb{C})$: $\psi|_{\mathrm{SL}_2(\mathbb{C})}$ nontrivial corresponds to the characters

Theory of Gan-Gurevich lifts: Arthur parameters

$$G = G_2, \ ^LG = G_2(\mathbb{C})$$

$$\psi : L_{\mathbb{Q}} \times \mathsf{SL}_2(\mathbb{C}) \to \mathsf{SL}_{2,\mathsf{short}}(\mathbb{C}) \times \mathsf{SL}_{2,\mathsf{long}}(\mathbb{C}) \to G_2(\mathbb{C})$$

Theory of Gan-Gurevich lifts: Arthur parameters

$$G = G_2, \ ^LG = G_2(\mathbb{C})$$

$$\psi : L_{\mathbb{Q}} \times \mathsf{SL}_2(\mathbb{C}) \to \mathsf{SL}_{2,\mathsf{short}}(\mathbb{C}) \times \mathsf{SL}_{2,\mathsf{long}}(\mathbb{C}) \to G_2(\mathbb{C})$$

For any $\tau = \text{cuspidal AR of PGL}_2$, consider ψ_{τ} where $L_{\mathbb{Q}} \to \mathsf{SL}_{2,\mathsf{short}}(\mathbb{C})$ corresponds to τ .

Theory of Gan-Gurevich lifts: Arthur parameters

$$G = G_2, \ ^LG = G_2(\mathbb{C})$$

$$\psi : L_{\mathbb{Q}} \times \mathsf{SL}_2(\mathbb{C}) \to \mathsf{SL}_{2,\mathsf{short}}(\mathbb{C}) \times \mathsf{SL}_{2,\mathsf{long}}(\mathbb{C}) \to G_2(\mathbb{C})$$

For any $\tau=$ cuspidal AR of PGL₂, consider ψ_{τ} where $L_{\mathbb{Q}} \to \mathsf{SL}_{2,\mathsf{short}}(\mathbb{C})$ corresponds to τ . Specialize to $\tau=\tau_{\chi}$ CM, $\mathcal{A}_{GG}(f_{\chi}):=\mathcal{A}_{\psi_{\tau_{\chi}}}(G_2)$

Arthur has a precise conjectural description for $\mathcal{A}_{\psi}(G)$ in terms of **local packets** and **global multiplicities.**

Arthur has a precise conjectural description for $A_{\psi}(G)$ in terms of **local packets** and **global multiplicities**.

Arthur's prediction for structure of global GG packet (partially known, Alonso-He-Ray-Roset 23 and BHL-HS24):

$$\mathcal{A}_{GG}(f_{\chi}) = \bigoplus_{(\epsilon_{v})_{v}} m((\epsilon_{v})_{v}) \bigotimes_{v}' \pi_{v}^{\epsilon_{v}}$$

where $\{\pi_{\nu}^+,\pi_{\nu}^-\}$ is a local packet depending only on χ_{ν} , with $\pi_{\nu}^-=0$ almost everywhere, and

$$m((\epsilon_{\nu})_{\nu}) = \begin{cases} 1 & \prod \epsilon_{\nu} = \epsilon(1/2, \chi^{3}) \\ 0 & \text{else} \end{cases}$$

Arthur has a precise conjectural description for $\mathcal{A}_{\psi}(G)$ in terms of **local packets** and **global multiplicities**.

Arthur's prediction for structure of global GG packet (partially known, Alonso-He-Ray-Roset 23 and BHL-HS24):

$$\mathcal{A}_{GG}(f_{\chi}) = \bigoplus_{(\epsilon_{\nu})_{\nu}} m((\epsilon_{\nu})_{\nu}) \bigotimes_{\nu}' \pi_{\nu}^{\epsilon_{\nu}}$$

where $\{\pi_{\nu}^+,\pi_{\nu}^-\}$ is a local packet depending only on χ_{ν} , with $\pi_{\nu}^-=0$ almost everywhere, and

$$m((\epsilon_{\nu})_{\nu}) = \begin{cases} 1 & \prod \epsilon_{\nu} = \epsilon(1/2, \chi^{3}) \\ 0 & \text{else} \end{cases}$$

It is always interesting to see how arithmetic conspires to enforce the multiplicity formula.

Arthur has a precise conjectural description for $\mathcal{A}_{\psi}(G)$ in terms of **local packets** and **global multiplicities**.

Arthur's prediction for structure of global GG packet (partially known, Alonso-He-Ray-Roset 23 and BHL-HS24):

$$\mathcal{A}_{GG}(f_{\chi}) = \bigoplus_{(\epsilon_{\nu})_{\nu}} m((\epsilon_{\nu})_{\nu}) \bigotimes_{\nu}' \pi_{\nu}^{\epsilon_{\nu}}$$

where $\{\pi_{\nu}^+, \pi_{\nu}^-\}$ is a local packet depending only on χ_{ν} , with $\pi_{\nu}^-=0$ almost everywhere, and

$$m((\epsilon_{\nu})_{\nu}) = \begin{cases} 1 & \prod \epsilon_{\nu} = \epsilon(1/2, \chi^{3}) \\ 0 & \text{else} \end{cases}$$

It is always interesting to see how arithmetic conspires to enforce the multiplicity formula. Here, it comes in via local-global obstruction for existence of Hermitian spaces.

Arthur's prediction for structure of GG packet:

$$\mathcal{A}_{GG}(f_{\chi}) = \bigoplus_{(\epsilon_{\nu})_{\nu}} m((\epsilon_{\nu})_{\nu}) \bigotimes_{\nu}' \pi_{\nu}^{\epsilon_{\nu}}$$

$$(1 \quad \Pi_{\epsilon_{\nu}} = \epsilon(1/2 \quad v^{3})$$

$$m((\epsilon_{\nu})_{\nu}) = \begin{cases} 1 & \prod \epsilon_{\nu} = \epsilon(1/2, \chi^{3}) \\ 0 & \text{else} \end{cases}$$

Given $\pi = \otimes'_{\mathbf{v}} \pi^{\epsilon_{\mathbf{v}}}_{\mathbf{v}}$:

• $\varphi \in \pi$ can be a QMF only if $\epsilon_{\infty} = -1$.

Arthur's prediction for structure of GG packet:

$$\mathcal{A}_{GG}(f_{\chi}) = \bigoplus_{(\epsilon_{v})_{v}} m((\epsilon_{v})_{v}) \bigotimes_{v}' \pi_{v}^{\epsilon_{v}}$$

$$m((\epsilon_{\nu})_{\nu}) = \begin{cases} 1 & \prod \epsilon_{\nu} = \epsilon(1/2, \chi^{3}) \\ 0 & \text{else} \end{cases}$$

Given $\pi = \otimes'_{\mathbf{v}} \pi^{\epsilon_{\mathbf{v}}}_{\mathbf{v}}$:

- $\varphi \in \pi$ can be a QMF only if $\epsilon_{\infty} = -1$.
- $\varphi \in \pi$ can have $c_A(\varphi) \neq 0$ only if $\epsilon_\ell = \epsilon_\ell(A \otimes \mathbb{Z}_\ell, \chi_\ell)$ for all $\ell | N$.

Arthur's prediction for structure of GG packet:

$$\mathcal{A}_{GG}(f_{\chi}) = \bigoplus_{(\epsilon_{v})_{v}} m((\epsilon_{v})_{v}) \bigotimes_{v}' \pi_{v}^{\epsilon_{v}}$$

$$m((\epsilon_{\nu})_{\nu}) = \begin{cases} 1 & \prod \epsilon_{\nu} = \epsilon(1/2, \chi^{3}) \\ 0 & \text{else} \end{cases}$$

Given $\pi = \otimes'_{\mathbf{v}} \pi^{\epsilon_{\mathbf{v}}}_{\mathbf{v}}$:

- $\varphi \in \pi$ can be a QMF only if $\epsilon_{\infty} = -1$.
- $\varphi \in \pi$ can have $c_A(\varphi) \neq 0$ only if $\epsilon_\ell = \epsilon_\ell(A \otimes \mathbb{Z}_\ell, \chi_\ell)$ for all $\ell | N$.

$$\implies$$
 to see $c_A(\varphi)$, need $\prod \epsilon_\ell(A \otimes \mathbb{Z}_\ell, \chi_\ell) = -\epsilon(1/2, \chi^3)$

Main result

- $f = f_{\chi}$ CM form of weight k, trivial character, and any level N, associated to K/\mathbb{Q} and $\chi: K^{\times} \backslash \mathbb{A}_{K}^{\times} \to \mathbb{C}^{1}$.
- Assume: $L(1/2, \chi) \neq 0$.
- $\mathcal{A}_{GG}(f_{\chi})$ space of Gan-Gurevich lifts $G_2(\mathbb{Q})\backslash G_2(\mathbb{A}) \to \mathbb{C}$.

Theorem (Bakic-Horawa-Li-Huerta-S., in progress)

For all $\ell | N$, fix a cubic ring $A_{\ell}/\mathbb{Z}_{\ell}$, such that

$$\prod_{\ell \mid N} \epsilon_{\ell}(A_{\ell}, \chi_{\ell}) = -\epsilon(1/2, \chi^{3})$$

Then \exists a QMF $\varphi \in A_{GG}(f_{\chi})$ s.t. for A maximal outside N:

$$c_A(\varphi) = egin{cases} L(1/2, f_\chi \otimes
ho_A) \operatorname{disc}(A)^{rac{k-1}{2}} & A \otimes \mathbb{Z}_\ell = A_\ell \ orall \ell | N \ 0 & otherwise \end{cases}$$

2. construction of $\mathcal{A}_{GG}(f_{\chi})$

• A theta correspondence is a construction

$$\Theta: \{\mathsf{ARs} \; \mathsf{of} \; \mathsf{G}\} \leadsto \{\mathsf{ARs} \; \mathsf{of} \; \mathsf{H}\}$$

for "dual reductive pairs" H, G.

• A theta correspondence is a construction

$$\Theta: \{\mathsf{ARs} \; \mathsf{of} \; \mathsf{G}\} \leadsto \{\mathsf{ARs} \; \mathsf{of} \; \mathsf{H}\}$$

for "dual reductive pairs" H, G.

$$\begin{array}{c|c} H \times G & \widetilde{G} \\ \hline SO_n \times Sp_{2m} & Sp_{2mn} \\ U(n) \times U(m) & Sp_{2mn} \end{array}$$

A theta correspondence is a construction

$$\Theta: \{\mathsf{ARs} \; \mathsf{of} \; \mathsf{G}\} \leadsto \{\mathsf{ARs} \; \mathsf{of} \; \mathsf{H}\}$$

for "dual reductive pairs" H, G.

$$\begin{array}{c|cccc} H \times G & \widetilde{G} & H \times G & \widetilde{G} \\ \hline SO_n \times Sp_{2m} & Sp_{2mn} & G_2 \times PGL_3 & E_6 \\ U(n) \times U(m) & Sp_{2mn} & G_2 \times PGSp_6 & E_7 \\ & & G_2 \times F_4 & E_8 \\ \hline \end{array}$$

A theta correspondence is a construction

$$\Theta: \{\mathsf{ARs} \; \mathsf{of} \; \mathsf{G}\} \leadsto \{\mathsf{ARs} \; \mathsf{of} \; \mathsf{H}\}$$

for "dual reductive pairs" H, G.

$$\begin{array}{c|cccc} H \times G & \widetilde{G} & H \times G & \widetilde{G} \\ \hline SO_n \times Sp_{2m} & Sp_{2mn} & G_2 \times PU_3 & E_6' \\ U(n) \times U(m) & Sp_{2mn} & G_2 \times PGSp_6 & E_7 \\ & & G_2 \times F_4 & E_8 \\ \hline \end{array}$$

Gan-Gurevich:

 σ $\mathsf{PGL}_2 \xrightarrow{\mathsf{PGSp}_6} \xrightarrow{\Theta} G_2$

Gan-Gurevich:

Alternative approach when $\sigma = {\rm CM}$ form associated to χ , cf. [BHL-HS24]

Gan-Gurevich:

Alternative approach when $\sigma = {\rm CM}$ form associated to χ , cf. [BHL-HS24]

Gan-Gurevich:

Alternative approach when $\sigma={\rm CM}$ form associated to $\chi,$ cf. [BHL-HS24]

Easier to understand packet structure (comes from Howe–Piatetskii-Shapiro CAP forms on PU₃)

3. sketch of proof

$$c_{\lambda}(\varphi) := \int_{[N]} \psi_{\lambda}^{-1}(n) \varphi(n) dn$$

 $\varphi: G_2(\mathbb{Q}) \backslash G_2(\mathbb{A}) \to \mathbb{C}$ modular form of weight $k \geq 2$

$$c_{\lambda}(\varphi) := \int_{[N]} \psi_{\lambda}^{-1}(n) \varphi(n) dn$$

• arphi invariant by $P(\widehat{\mathbb{Z}}) \implies c_{\lambda}(arphi)$ is supported on $\lambda \in \mathbb{Z}^4$

$$c_{\lambda}(\varphi) := \int_{[N]} \psi_{\lambda}^{-1}(n) \varphi(n) dn$$

- φ invariant by $P(\widehat{\mathbb{Z}}) \implies c_{\lambda}(\varphi)$ is supported on $\lambda \in \mathbb{Z}^4$ and depends only on the **cubic ring** A_{λ}
 - $A_{\lambda} = \mathbb{Z}^3$ with multiplication determined by $\lambda = (a, b, c, d) \in \mathbb{Z}^4$

$$c_{\lambda}(\varphi) := \int_{[N]} \psi_{\lambda}^{-1}(n) \varphi(n) dn$$

- φ invariant by $P(\widehat{\mathbb{Z}}) \implies c_{\lambda}(\varphi)$ is supported on $\lambda \in \mathbb{Z}^4$ and depends only on the **cubic ring** A_{λ}
 - $A_{\lambda} = \mathbb{Z}^3$ with multiplication determined by $\lambda = (a, b, c, d) \in \mathbb{Z}^4$
- More generally have a cubic algebra E_{λ}/\mathbb{Q}

$$c_{\lambda}(\varphi) := \int_{[N]} \psi_{\lambda}^{-1}(n) \varphi(n) dn$$

- φ invariant by $P(\widehat{\mathbb{Z}}) \Longrightarrow c_{\lambda}(\varphi)$ is supported on $\lambda \in \mathbb{Z}^4$ and depends only on the **cubic ring** A_{λ}
 - $A_{\lambda} = \mathbb{Z}^3$ with multiplication determined by $\lambda = (a, b, c, d) \in \mathbb{Z}^4$
- More generally have a cubic algebra E_{λ}/\mathbb{Q}
- Turns out $c_{\lambda}(\varphi) = 0$ unless E_{λ} is totally real

Periods for $\Theta(\pi)$ often reduce to periods for π .

Periods for $\Theta(\pi)$ often reduce to periods for π .

For $\varphi \in \mathcal{A}_{GG}(f_{\chi})$ (any level),

$$c_{\lambda}(arphi) \sim \int_{[T_E]}
ho(t) dt$$

where:

- $E = E_{\lambda}$ is totally real cubic étale algebra corresponding to λ .
- T_E

 → PU₃ is a torus embedding coming from
 E

 → Herm_{3×3}(Q).
- $\rho = \text{thing you're lifting on PU}_3$ (Howe-PS CAP forms).

Periods for $\Theta(\pi)$ often reduce to periods for π .

For $\varphi \in \mathcal{A}_{GG}(f_{\chi})$ (any level),

$$c_{\lambda}(arphi) \sim \int_{[T_E]}
ho(t) dt$$

 ρ is itself a Θ lift from U(1)

Periods for $\Theta(\pi)$ often reduce to periods for π .

For $\varphi \in \mathcal{A}_{GG}(f_{\chi})$ (any level),

$$c_{\lambda}(arphi) \sim \int_{[T_E]}
ho(t) dt$$

 ρ is itself a Θ lift from U(1)

$$\left| \int_{[T_E]} \rho(t) dt \right|^2 \sim L(1/2, f_\chi \otimes \rho_E) L(1/2, \chi) \Delta_E^{1/2}$$

cf. Yang 97, Borade-Franzel-Girsch-Yao-Yu-Zelingher 24

$$|c_{\lambda}(\varphi)|^2 = L(1/2, f_{\chi} \otimes \rho_E)L(1/2, \chi)\Delta_E^{1/2} \prod |I_{\nu}(\varphi_{\nu}, \lambda)|^2$$

$$|c_{\lambda}(\varphi)|^2 = L(1/2, f_{\chi} \otimes \rho_E)L(1/2, \chi)\Delta_E^{1/2} \prod_{\nu} |I_{\nu}(\varphi_{\nu}, \lambda)|^2$$

• Additional $\Delta_E^{k/2-1}$ comes from evaluating I_{∞} (using Pollack's explicit Whittaker model of minimal representation of E_6)

$$|c_{\lambda}(\varphi)|^{2} = L(1/2, f_{\chi} \otimes \rho_{E})L(1/2, \chi)\Delta_{E}^{1/2} \prod_{v} |I_{v}(\varphi_{v}, \lambda)|^{2}$$

- Additional $\Delta_E^{k/2-1}$ comes from evaluating I_{∞} (using Pollack's explicit Whittaker model of minimal representation of E_6)
- $I_{\ell}(\varphi_{\ell}, \lambda)$ is hard to compute in general
 - For $\ell \nmid N$, we show $I_{\ell}(\varphi_{\ell}^{\mathsf{sph}}, \lambda) = 1$ if $A_{\lambda} \otimes \mathbb{Z}_{\ell}$ is a maximal order in a cubic étale algebra

$$|c_{\lambda}(\varphi)|^{2} = L(1/2, f_{\chi} \otimes \rho_{E})L(1/2, \chi)\Delta_{E}^{1/2} \prod_{v} |I_{v}(\varphi_{v}, \lambda)|^{2}$$

- Additional $\Delta_E^{k/2-1}$ comes from evaluating I_{∞} (using Pollack's explicit Whittaker model of minimal representation of E_6)
- $I_{\ell}(\varphi_{\ell},\lambda)$ is hard to compute in general
 - For $\ell \nmid N$, we show $I_{\ell}(\varphi_{\ell}^{\mathsf{sph}}, \lambda) = 1$ if $A_{\lambda} \otimes \mathbb{Z}_{\ell}$ is a maximal order in a cubic étale algebra
 - For $\ell | N$, we show you can "rig" φ_{ℓ} so $I_{\ell}(\varphi_{\ell}, \lambda)$ is the indicator function of $A_{\lambda} \otimes \mathbb{Z}_{\ell} =$ any fixed A_{ℓ}

Thanks!