Impact of Developer Experience in the outcome of Software Projects

Anders Nylund

School of Science

Thesis submitted for examination for the degree of Master of Science in Technology.

Espoo TBA

Supervisor

Prof. Pirjo Professor

Advisor

Dr Alan Advisor

Copyright © 2019 Anders Nylund

Aalto University, P.O. BOX 11000, 00076 AALTO www.aalto.fi Abstract of the master's thesis

Author Angers nyigh	ithor ${ m Anders} \; { m N}^{3}$	vlunc
---------------------	-----------------------------------	-------

Title Impact of Developer Experience in the outcome of Software Projects

Degree programme Computer, Communication and Information Sciences

Major Software and Service Engineering

Code of major SCI3043

Supervisor Prof. Pirjo Professor

Advisor Dr Alan Advisor

Abstract

Your abstract in English. Keep the abstract short. The abstract explains your research topic, the methods you have used, and the results you obtained.

The abstract text of this thesis is written on the readable abstract page as well as into the pdf file's metadata via the \thesisabstract macro (see above). Write here the text that goes onto the readable abstract page. You can have special characters, linebreaks, and paragraphs here. Otherwise, this abstract text must be identical to the metadata abstract text.

If your abstract does not contain special characters and it does not require paragraphs, you may take advantage of the abstracttext macro (see the comment below).

Keywords Developer Experience, Software Projects

Aalto-universitetet, PB 11000, 00076 AALTO www.aalto.fi Sammandrag av diplomarbetet

Språk Engelska

Författare Anders Nylund		
Titel Impact of Developer Experience in the outcom	e of Software Projects	
Utbildningsprogram Computer, Communication and	Information Sciences	
Huvudämne Software and Service Engineering	Huvudämnets kod	SCI3043
Övervakare Prof. Pirjo Professori		
Handledare TkD Alan Advisor		

$\frac{\text{Datum TBA}}{\text{Sammandrag}}$

Sammandrag på svenska. Try to keep the abstract short. Abstract explains your research topic, the methods you have used, and the results you obtained.

 ${\bf Sidantal}\ \ 21$

Nyckelord Nyckelord på svenska, temperatur

Preface

I want to thank Professor Pirjo Professori and my instructor Dr Alan Advisor for their good and poor guidance.

Otaniemi, Date to te announced

Anders Nylund

Contents

A	bstract	3
A	Abstract (in Swedish)	4
P	reface	5
C	Contents	6
\mathbf{T}	Phesis dictionary	7
1	Introduction 1.1 Motivation	8 9 10 10
2	Background and literature review 2.1 Programmer Experience 2.2 Developer Experience 2.3 Intrinsic Motivation 2.4 Performance Alignment Work 2.5 Happiness of developers 2.6 Selection of tools 2.7 Flow state	11 12 12 12 12 12 12 13
3	Research material and methods	14
4 5	4.1 Validity of results	15 15 16
6	Summary	17
7		18
	Possible references	19
	references	21

Thesis dictionary

DX Developer Experience

UX User Experience

IDE Integrated Development Environment

HCI Human Computer Interaction

API Application Programming Interface

1 Introduction

Software engineering and development is a complex practice that requires both technical and social skills. Compared to other engineering professions, software engineering is still in early stages. The best practices are still evolving, new ideas are coming and previous ideals are discarded.

Creating software products is a social activity that requires both technical and social skills from the developers.

Human Computer Interaction (HCI), a traditional field of research, studies the interface between computers and humans.

User Experience (UX) is another field of research. UX includes the aspects of HCI, but on top of that includes also emotions and the user's perceptions of the product. UX can be seen as a more hedonic than a pragmatic approach of studying and understanding the usage of a software product.

Software developers are in an interesting role where they are both creators and designers when they write the logic that makes up the product. Meantime they are also users of tools that they use to create the product. Developers using a software product that helps in their creative design work will create an user experience for them.

Developer Experience is a term that explains how developers experience their development environments, both technically and socially. The same way as User Experience (UX) is considering the user of a system or tool, Developer Experience (DX) can be seen as the experience that developers have as users of a system. Here the system however includes the tools, frameworks, processes that the developer is the user of when developing software.

This thesis will look at the question of "Is developer experience something worth investing on?", i.e. is there any apparent reward in investing into improvement of the developer experience.

1.1 Motivation

At the time of writing, a quick search with the keyword "Developer Experience" on google.com gives as a result mostly articles on how framework and library authors should consider their users (developers) experience with using the product (tool, library, framework). However, DX is something more and includes also the feelings and perceptions of the developers. In some research the term Perceptione with the abbreviation of PE is used, and in some other research the term Programmer eXperience and abbreviation PX is used [4] [8]. This shows also that there is still some ambiguity to the terms and definitions. It is also apparent that most results when searching with the term Perceptione gives results about the experience level of a developer in e.g. terms of years working in the field of software development, and not the hedonic and pragmatic experience.

DX has been studied previously, but research on it is still lacking the connection to practical applications. This is one the biggest motivators for this thesis, as the topic is novel and there is huge potential in improving software development processes,

and thereby also potential to improve the outcome of the projects.

There is possibly huge value that can be gained from studying Developer Experience and learning about how it works. A better understanding of DX can help organisations, teams, and individual software developers to create a better experience that enables them to benefit in multiple different areas.

For the author the Developer Experience means having a low friction and easy setup with their own development environment. They want to have an environment that is lightweight, fast, and easy to use. It should have a short cycle of feedback i.e. when making a change to the source code it should be immediately reflected in the output. This might be the reason why they like to develop for the web, as the tools are often quick and have a fast feedback cycle. The environment should perform tasks automatically as building, reporting errors. The frontend JavaScript framework React and the tools supporting it are a great examples of excellent developer experience. The tools are intuitive and guide the developer in making the right things.

After all learning new technologies is not about solving new problems, but it's about solving the same old problems more efficiently, faster, easier i.e. with a better Developer Experience.

1.2 Research questions and problem

The research problem is finding out *How the developer experience in software projects* can affect the outcome. The goal is to create an understanding of what Developer Experience is, and how it might affect the outcome of software projects.

Currently the research problem is too vague and needs a lot of more specification of what is researched and what is the actual problem.

The debate throughout the thesis has to be something that makes the reader interested in the topic and engages the reader. This helps to find the argument of each article and paper that is read for this thesis. It helps the author of this thesis to take a stand when writing some statements. The meaning is not to create some kind of truth that has to be followed. The constant debate throughout the thesis helps to put things in perspective. One example of debate is "Is Developer Experience something worth investing in?".

There could also be some hypotheses that will be tested in the thesis.

The original research problem was to understand how the developer experience affects the outcome of the project. This problem could also be rephrased so that it would consider the performance of the team, instead of the outcome as they basically mean the same thing. In [3] it's stated that "since software development is largely human-based activity, most types of outcome depend on human factors". Therefore it's probably not worth to take the approach of studying how some technical artifact could improve the developer experience, and how that furthermore could improve the performance of the team, and finally improve the outcome of the project

Table 1: The research questions

- RQ 1 How is Developer Experience defined in software projects?
- **RQ 2** What aspects of Developer Experience are currently being considered in software projects? What aspects of Developer Experience do developers see as valuable?
- **RQ 3** Can the results of software projects be improved by investing in a better developer experience?

1.2.1 Alternative research problems:

- "How Developer Experience affects the productivity of developers in software projects"?
- "How the cognitive Developer Experience can affect the outcome of Software Projects". This would allow to restrict the scope of the thesis significantly, as the cognitive Developer Experience takes only into account the "technical" parts e.g. Platform, techniques, process, skill, procedures (How developers perceive the development infrastructure?) [4]

1.3 Scope and focus

Scope and focus will be defined later. This can still vary quite a lot as it depends on basically everything, including the research problem and questions.

1.4 Structure of the thesis

This will be finalized later

- 1. Introduction
- 2. Background and literature review
- 3. Research material and methods
- 4. Results
- 5. Summary
- 6. Conclusions
- 7. ...???

2 Background and literature review

Keywords to search background and literature material with:

- 1. Developer Experience
- 2. Programmer Experience
- 3. Happy Developer
- 4. Unhappy Developer
- 5. User Experience

https://insights.stackoverflow.com/ could be an interesting source of basic facts about programmers around the world, what technologies they are using, what they love and what they dread

Create a much clearer and better foundation of what software development is, why it is complex etc.

This section includes the background and literature review of the topic. The background of the topic should be covered equally from all points of view.

A software project is a project where a group of people share a common goal what can for example be to create a product or service. In a software project there is a developer or multiple developers that have the responsibility of implementing the technical product itself. The developers are the ones writing the executable source code for the program or service, so that it can by it's functions and features achieve the requirements set to it.

Developer Experience and its related terms have been studied and researched relatively little at the moment of writing. A literature review of the term "Programmer Experience" studied 73 articles that matched their search criteria [8]. The study concluded that there is still some ambiguity in the term Programmer Experience in the context of programming environments, design documents, and programming codes.

A doctoral thesis titled "Software Developer Experience: Case Studies in Lean-Agile and Open Source Environments" in 2015 coined the term Developer Experience.

Developer experience can be divided into three different sub areas – cognitive (How developers perceive the development infrastructure), affective (How developers feel about their work), and conative (How developers see the value of their contribution) [4].

2.1 Programmer Experience

http://programming-experience.org/px19/https://2019.programming-conference.org/

Programmer Experience (PX) can be defined as *The result of the intrinsic moti*vations and perceptions of programmers about the use of development artifacts [8]. A programmer can be seen as person who gives exact instructions on how a program should behave and function. PX is based on the study mainly related to the programming environment, but also programming codes and Application Programming Interfaces (API).

2.2 Developer Experience

A developer is a person with a bigger responsibility than a programmer. If a programmer is following instructions, requirements, and guidelines, the developer is also finding out what the instructions, requirements and guidelines should be (find other source than https://devskiller.com/programmer-vs-developer/). Therefore DX is also considering more of the surrounding context than what PX is considering.

Developer Experience (DX) is a bigger construct than PX. DX includes also the motivation of developers, and not only the artefacts like the programming environments [8]. Developer Experience is considering also the social aspect of being a software developer. Developer Experience is what is felt by the developer while trying to achieve a goal i.e. completing a project

The Developer Experience can be divided into 2 different environments, a social and a technical environment [2]. This thesis might focus more on the technical environment.

2.3 Intrinsic Motivation

2.4 Performance Alignment Work

2.5 Happiness of developers

Happiness of developers have been reported have direct consequences to the themselves, process and the product [5]

2.6 Selection of tools

Perceived choice is a perception of that the choice has already been made [7]. Selecting tools in software development projects is in a crucial role, as it can significantly improve the Developer Experience in software projects.

One study of Integrated Development Environment (IDE), and how it is connected with state of flow, intrinsic motivation, and user experience reveal that if the developers have a high perception of choice, the also are overall more satisfied with the tools [7]. They also concluded that if the selected tools are selected without their input, (they perceive it chosen already), the developers will have a worse developer experience with it, as e.g. their frustration with the tool will be more common.

There has been a study on the Developer Experience of IDEs [6]. However, the study concentrated on the UX of the selected IDE that was studied.

When selecting an IDE it is also important to consider what the other developers in the team or organization is using or what other would prefer to use.

There can be situations when two different developers use a different IDE, and therefore also the experience can be completely different between them. At the most extreme the 2 IDEs are not compatible with each other as their files related to the project are different. An example of this is Eclipse and IntelliJ IDEA as Java IDEs.

In a study of IDEs [6], the survey in the study produced answers that were most pragmatic, but not hedonic. This could show that most of the developers are practical, and not feeling based. This has also been proven [1]. This might also be a reason why Developer Experience has not gotten that much attention yet, as big part of people in software engineering are "Introverts". Software engineers are also more logical thinkers than feeling based. As Developer Experience is focusing on the feelings and subjective opinions about things, it might be a difficult topic to research.

2.7 Flow state

Flow state is something that many developers want to achieve. For some developers it is really difficult to focus if there are external things that disturb them like sound or something similar. Also, people coming and asking questions might disturb or interrupt the flow state. Therefore many developers are now also trying out remote work where they are not co-located.

[9] studied how an IDE worked in a collaborative environment and it's developer experience.

3 Research material and methods

What material will be used in the research and what methods/methodologies will be used to study the problem. What kind of approach to research will be used in the thesis.

The developer experience can be both short term impulsive, or related to one event in software development, but it can also be a long term experience over a period of time [2]. The research in this thesis will use a longer time-frame of developer experience.

4 Results

Answer the research questions and problem.

4.1 Validity of results

Tässä osassa on syytä myös arvioida tutkimustulosten luotettavuutta. Jos tutkimustulosten merkitystä arvioidaan »Tarkastelu»-osassa, voi luotettavuuden arviointi olla myös siellä.

5 Literature review

6 Summary

7 Conclusions

8 Possible references

Development tools

- 1. Murphy,G.C.,Kersten,M.,Findlater,L.:HowareJavasoftwaredevelopersusingtheElipseIDE? Softw. IEEE 23(4), 76–83 (2006)
- 17. Muslu, K., Brun, Y., Holmes, R., Ernst, M.D., Notkin, D.: Speculative analysis of integrated development environment recommendations. ACM SIGPLAN Not. 47(10), 669–682 (2012)
- 3. Kersten, M., Murphy, G.C.: Using task context to improve programmer productivity. In: Proceedings of the 14th ACM SIGSOFT International Symposium on Foundations of Software Engineering (SIGSOFT 2006/FSE-14), pp. 1–11. ACM, New York, NY, USA (2006)
- 4. The Impact of "Cosmetic" Changes on the Usability of Error Messages Tao Dong, Kandarp Khandwala May 2019 CHI EA '19: Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems
- 5. Designing a live development experience for web-components Jens Lincke, Patrick Rein, Stefan Ramson, Robert Hirschfeld, Marcel Taeumel, Tim Felgentreff October 2017 PX/17.2: Proceedings of the 3rd ACM SIGPLAN International Workshop on Programming Experience
- Are Software Developers Just Users of Development Tools? Assessing Developer Experience of a Graphical User Interface Designer. Kati Kuusinen Conference paper First Online: 23 August 2016

Software Development

- 1. Capretz, L.F., Ahmed, F.: Making sense of software development and personality types. IT Prof. 12(1), 6–13 (2010)
- An exploratory study on the influence of developers in technical debt Reem Alfayez, Pooyan Behnamghader, Kamonphop Srisopha, Barry Boehm May 2018 TechDebt '18: Proceedings of the 2018 International Conference on Technical Debt

Soft skills

1. empty

Developer mood

- 1. Graziotin, D., Wang, X., Abrahamsson, P.: Happy software developers solve problemsbetter: psychological measurements in empirical software engineering. PeerJ2(1), e289(2014)
- 2. Beecham, S., Baddoo, N., Hall, T., Robinson, H., Sharp, H.: Motivation in software engineering: A systematic literature review. IST 50, 860–878 (2008)

- 3. D. Graziotin, Consequences of unhappiness while developing software, in Proc. 2nd Int. Workshop Emotion Awareness Softw. Eng., May 2017, pp. 42–47.
- 4. On the Unhappiness of Software Developers Daniel Graziotin, Fabian Fagerholm, Xiaofeng Wang, Pekka Abrahamsson June 2017 EASE'17: Proceedings of the 21st International Conference on Evaluation and Assessment in Software Engineering

Flow state and distractions. Sociability and Social Support

- 1. Ryan, R.M., Mims, V., Koestner, R.: Relation of reward contingency and interpersonal context to intrinsic motivation: a review and test using cognitive evaluation theory. J. Pers. Soc. Psychol. 45, 736–750 (1983)
- 27.Oehlberg, L., Ducheneaut, N., Thorton, J.D., Moore, R.J., Nickell, E. 2006. Social TV: Designing for D istributed, Social Television Viewing. In Proc. Euro iTV'06. (2006), 251-259
- 3. Leont'ev, A. N. Activity, consciousness, and personality. Prentice-Hall Press, (1978)
- 4. Perlow, L.A., The time famine: Toward a sociology of work time. Admin. Science Quarterly, 44, (1999), 57-81

User Experience

1. Hassenzahl, M., Tractinsky, N.: User experience - a research agenda. Behav. Inf. Technol. 25(2), 91–97 (2006)

Other

- 1. Kansala, M. and Tuomivaara, S. (2013). Do Agile Principles and Practices Support the Well-being at Work of Agile Team Members? In Proceedings of the 8th International Conference on Software Engineering Advances (ICSEA 2013), pages 364–367.
- 2. Dingsøyr, T., Nerur, S., Balijepally, V., and Moe, N. B. (2012). A decade of agile methodologies: Towards explaining agile software development. Journal of Systems and Software, 85(6):1213–1221.
- 3. Journal of Systems and Software Volume 140, June 2018, Pages 32-47 Journal of Systems and Software What happens when software developers are (un)happy Author links open overlay panel Daniel Graziotina Fabian Fagerholm bcXi-aofengWangd PekkaAbrahamssone Show more https://doi.org/10.1016/j.jss.2018.02.041
- 4. Teamwork quality and project success in software development: A survey of agile development teams Author links open overlay panelYngveLindsjørnaDag I.K.Sjøbergab TorgeirDingsøyrbc Gunnar R.Bergersen Tore Dybåa
- 5. Gass, O., Meth, H., Maedche, A.: PaaS characteristics for productive software development: an evaluation framework. Internet Comput. IEEE 18(1), 56–64 (2014)

References

- [1] L. F. Capretz. Personality types in software engineering. *International Journal of Human-Computer Studies*, 58(2):207 214, 2003.
- [2] F. Fagerholm. Software Developer Experience: Case Studies in Lean-Agile and Open Source Environments. PhD thesis, University of Helsinki, 2015.
- [3] F. Fagerholm, M. Ikonen, P. Kettunen, J. Münch, V. Roto, and P. Abrahamsson. How do software developers experience team performance in lean and agile environments? In *Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering*, EASE '14, pages 7:1–7:10, New York, NY, USA, 2014. ACM.
- [4] F. Fagerholm and J. Münch. Developer experience: Concept and definition. CoRR, abs/1312.1452, 2013.
- [5] D. Graziotin, F. Fagerholm, X. Wang, and P. Abrahamsson. Unhappy developers: Bad for themselves, bad for process, and bad for software product. *CoRR*, abs/1701.02952, 2017.
- [6] K. Kuusinen. Software developers as users: Developer experience of a cross-platform integrated development environment. In P. Abrahamsson, L. Corral, M. Oivo, and B. Russo, editors, *Product-Focused Software Process Improvement*, pages 546–552, Cham, 2015. Springer International Publishing.
- [7] K. Kuusinen, H. Petrie, F. Fagerholm, and T. Mikkonen. Flow, intrinsic motivation, and developer experience in software engineering. In H. Sharp and T. Hall, editors, *Agile Processes, in Software Engineering, and Extreme Programming*, volume 251. XP 2016, Springer, Cham, 2016.
- [8] J. Morales, C. Rusu, F. Botella, and D. Quinones. Programmer experience: A systematic literature review. *IEEE Access*, PP:1–1, 05 2019.
- [9] J. Palviainen, T. Kilamo, J. Koskinen, J. Lautamäki, T. Mikkonen, and A. Nieminen. Design framework enhancing developer experience in collaborative coding environment. In *Proceedings of the 30th Annual ACM Symposium on Applied Computing*, SAC '15, pages 149–156, New York, NY, USA, 2015. ACM.