Great direction — shifting from static modeling to interactive, immersive coding projects aligns well with cognitive growth at that age (10–11). Here's a **6-week structured plan** that scaffolds skills while maintaining engagement through a persistent Mars Base project.

Mission to Mars – Immersive Experience Design

Platform: CoSpaces Edu / Delightex

Target Age: Year 5 (Ages 10–11)

Learning Focus: Interactive coding (JavaScript/block-based), physics (gravity/velocity),

lists, functions, paths, conditional logic

Tools: CoSpaces Edu + CoBlocks (or basic JavaScript)

Unit Overview

Wee k	Focus Skill	Key Concepts	Project Milestone	Deliverable
1	Intro to CoSpaces + Orbiting Animation	Object paths, animation timing	Planets orbiting the sun	Solar System scene
2	Gravity & Velocity	Forces, vector movement, event-driven code	Astronaut floats via button click	Micro-sim: Floating astronaut
3	Functions & Lists	Defining actions, storing objects, reusability	Define gravity function, list of floating items	Gravity function test scene

4	Mars Base – Part 1	Apply skills: paths, velocity, functions	Tour scenes, object interactions	Base w/ gravity features
5	Mars Base – Part 2	Quizzes, if/else logic	Branching paths, checkpoints	Base + quiz interactions
6	Evaluation + Presentation	Reflection, debugging, screen recording	Share & peer assess projects	Screen tour + peer feedback

Week-by-Week Breakdown

Week 1: Solar System Animation

Objective: Animate planets orbiting the sun on simple circular paths.

- Introduce CoSpaces: how to add and move 3D objects
- Use "Move on Path" block
- Add the Sun and at least 3 planets (scaling encouraged)
- Animate rotation using loops
- [Optional]: Add a simple fade-in intro or rotating sun

Stretch goal: Customize background space scene

Week 2: Floating Astronaut - Gravity & Velocity

Objective: Simulate zero-gravity movement.

- Add astronaut model
- Button click triggers movement using velocity
- Introduce vectors and basic velocity blocks
- Discuss physics: gravity vs. space float
- Students experiment with direction and speed
- Piscussion: What would happen without gravity on Mars?

Week 3: Functions & Lists – Floating Objects

Objective: Create a gravity function and list of floating objects.

- Teach functions: function applyGravity()
- Create a list of floating objects (e.g., crates, rocks)
- Loop through list and apply physics effect
- Link to previous astronaut concept
- Concept anchor: "What if gravity fails on Mars base?"

Week 4: Mars Base - Build Phase 1

Objective: Begin interactive Mars Base with gravity, floating objects, and path tours.

- Students design layout and import key assets
- Add tunnels, solar panels, pods, vehicles
- Animate camera on a guided path (like a rollercoaster)
- Add interactivity to floating objects using prior functions

Concept: Think like a systems engineer — every object has a purpose

Week 5: Mars Base - Build Phase 2 + Quizzes

Objective: Add quizzes or decision points using if/else.

- Add 2–3 quiz interactions during the base tour
- Use if/else to show/hide feedback or change object behavior
- Optional: Create a terminal where students answer mission questions
- Challenge: Use a list of quiz questions and loop through it

Week 6: Evaluation & Showcase

Objective: Reflect, present, and peer-assess.

- Screen recording via CoSpaces or Screencastify
- Prompt students to explain their choices:
 - O Why that rover?
 - O Why dome shape?
 - O Why floatation here?
- Peer review via Seesaw or Google Forms
- Use rubric with:
 - o Function use
 - Interactivity
 - o Design logic

Optional: Turn into a virtual museum showcase for parents

Suggested Assessment Rubric

Criteria	Emerging	Developing	Mastered
Animation & Physics	Basic movement	Uses velocity or paths	Integrates both with logic
Code Structures	Minimal reuse	Uses functions or lists	Reuses clean, readable code
Creativity	Generic design	Thoughtful layout	Creative + scientifically sound
Interactivity	Static	Some triggers	Fully interactive base tour
Reflection	Minimal	Describes features	Evaluates purpose and process

Would you like a PDF version of this or a planning document (e.g. Google Doc) to use with your team? I can also scaffold student handouts or build CoSpaces code blocks aligned to these milestones.