#### RÉPUBLIQUE TUNISIENNE MINISTÈRE DE L'ÉDUCATION

99066

EXAMEN DU BACCALAURÉAT

SESSION 2017

Épreuve : Mathématiques

Section: Mathématiques

Durée: 4h

Coefficient: 4

Session principale

Le sujet comporte six pages numérotées de 1/6 à 6/6.

Les pages 5/6 et 6/6 sont à rendre avec la copie.

#### Exercice 1 (5 points)

Le plan est orienté.

Dans la figure 1 de l'annexe 1 jointe,

ABC est un triangle équilatéral tel que  $\left(\overrightarrow{BC}, \overrightarrow{BA}\right) = \frac{\pi}{3} [2\pi]$ ,

 $\Omega$  est un point intérieur au triangle ABC tel que  $\left(\overrightarrow{AB}, \overrightarrow{A\Omega}\right) \equiv \frac{\pi}{4} [2\pi],$ 

I et J sont les projetés orthogonaux de  $\Omega$  respectivement sur les droites (AB) et (AC),

D est le point de la droite (AC) tel que  $DA = D\Omega$ .

1) Montrer que 
$$\left(\overrightarrow{\Omega J}, \overrightarrow{\Omega D}\right) \equiv \frac{\pi}{3} [2\pi]$$
.

2) Soit 
$$R = S_{(\Omega D)} \circ S_{(\Omega J)}$$
.

a) Justifier que R est la rotation de centre  $\Omega$  et d'angle  $\frac{2\pi}{3}$ .

b) Soit 
$$F = R(J)$$
.

Montrer que F est un point de la demi-droite  $[\Omega I]$ . Construire le point F.

- 3) Soit h l'homothétie de centre  $\Omega$  et telle que h(F) = I. On pose f = h o R.
  - a) Vérifier que f(J) = I.
  - b) Montrer que f est une similitude directe dont on précisera le centre et l'angle.

c) Calculer 
$$\frac{\Omega I}{\Omega A}$$
 et  $\frac{\Omega A}{\Omega J}$ . (On donne  $\sin\left(\frac{\pi}{12}\right) = \frac{\sqrt{3}-1}{2\sqrt{2}}$ ).

En déduire que le rapport de f est égal à  $1+\sqrt{3}$ .

- 4) Soit g la similitude indirecte de centre  $\Omega$  telle que g(J) = I.
  - a) Montrer que  $g = f \circ S_{(\Omega J)}$ .
  - b) Déterminer le rapport de g.
  - c) Montrer que l'axe de g est la droite  $(\Omega D)$ .
  - d) Montrer que g = h o  $S_{(\Omega D)}$ .
  - e) La droite  $(\Omega D)$  coupe la droite (BC) en un point K. On pose K' = g(K). Vérifier que h(K) = K'. Construire alors le point K'.

### Exercice 2 (3,5 points)

L'espace est orienté.

Dans la figure ci-contre ABCDEFGH est un cube d'arrête 1. F

(A,  $\overrightarrow{AB}$ ,  $\overrightarrow{AD}$ ,  $\overrightarrow{AE}$ ) est un repère orthonormé direct de l'espace.



- b) Montrer que l'aire du triangle ECD est égale à  $\frac{\sqrt{2}}{2}$ .
- c) Calculer le volume du tétraèdre AECD.
- 2) Soit h l'homothétie de centre A et de rapport  $\frac{3}{4}$ .



E

- On pose M = h(D).
- a) Le plan passant par M et parallèle au plan (DCG) coupe les segments [AC] et [AG] respectivement en N et P. Montrer que h(C) = N et h(G) = P.
- b) Le plan passant par M et parallèle au plan (ECD) coupe la droite (AE) en un point K.
  Calculer le volume du tétraèdre AKNM.
- 3) Soit (S) la sphère de centre le point I  $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$  et de rayon R =  $\frac{\sqrt{3}}{2}$ .
  - a) Montrer que la sphère (S) coupe le plan (DCG) suivant un cercle dont on précisera le centre et le rayon.
  - b) Soit (S') l'image de la sphère (S) par l'homothétie h.
     Montrer que (S') coupe le plan (MNP) suivant un cercle dont on précisera le centre et le rayon.

# Exercice 3 (4 points)

- 1) Soit x un entier non nul premier avec 53.
  - a) Déterminer le reste modulo 53 de x<sup>52</sup>.
  - b) En déduire que pour tout entier naturel k,  $x^{52k+1} \equiv x \pmod{53}$ .
- 2) Soit l'équation  $(E_1)$ :  $x^{29} \equiv 2 \pmod{53}$ , où  $x \in \mathbb{Z}$ .

Montrer que 29 est une solution de (E<sub>1</sub>).

- 3) Soit x une solution de l'équation  $(E_1)$ .
  - a) Montrer que x est premier avec 53.
  - b) Montrer que  $x^{261} \equiv x \pmod{53}$ .
  - c) En déduire que  $x \equiv 2^9 \pmod{53}$ .

- 4) a) Montrer que  $2^9 \equiv 35 \pmod{53}$ .
  - b) Donner alors l'ensemble des solutions dans  $\mathbb{Z}$  de l'équation ( $\mathsf{E}_1$ ).
- 5) On considère dans  $\mathbb{Z}x\mathbb{Z}$  l'équation (E<sub>2</sub>): 71 u 53 v = 1.
  - a) Vérifier que (3, 4) est une solution de l'équation  $(E_2)$ .
  - b) Résoudre dans  $\mathbb{Z}x\mathbb{Z}$  l'équation  $(E_2)$ .
- 6) Résoudre dans  $\mathbb{Z}$  le système  $\begin{cases} x \equiv 34 \pmod{71} \\ x^{29} \equiv 2 \pmod{53} \end{cases}$

## Exercice 4 (7,5 points)

Soit f la fonction définie sur  $[0,+\infty[$  par  $f(x) = \sqrt{e^x - 1}$ .

On note  $(C_f)$  sa courbe représentative dans un repère orthonormé  $(O, \vec{i}, \vec{j})$ .

- 1) Déterminer  $\lim_{x\to +\infty} f(x)$  et  $\lim_{x\to +\infty} \frac{f(x)}{x}$ . Interpréter graphiquement.
- 2) a) Montrer que  $\lim_{x\to 0^+} \frac{f(x)}{x} = +\infty$ . Interpréter graphiquement.
  - b) Montrer que pour tout  $x \in \left]0,+\infty\right[, f'(x) = \frac{e^x}{2\sqrt{e^x 1}}$
  - c) Dresser le tableau de variation de f.
  - d) En déduire que  $e^X 1 \le \sqrt{e^X 1}$ , si et seulement si,  $x \le ln(2)$ .
- 3) Montrer que le point B(ln2, 1) est un point d'inflexion de  $(C_f)$ .
- 4) Dans la figure 2 de l'annexe 2 jointe, on a tracé dans le repère  $(0, \vec{i}, \vec{j})$  la courbe  $\Gamma$  de la fonction  $x : \mapsto e^x 1$ .
  - a) Etudier la position relative de  $(C_f)$  par rapport à  $\Gamma$ .
  - b) Tracer la courbe (C<sub>f</sub>).
- 5) Soit g la fonction définie sur  $\left[0, \frac{\pi}{2}\right]$  par g(x) = tan(x).
  - a) Montrer que g réalise une bijection de  $\left[0,\frac{\pi}{2}\right[ \text{ sur } \left[0,+\infty\right[. \text{ On note } g^{-1} \text{ sa fonction réciproque.}\right]$
  - b) Calculer  $(g^{-1})(0)$  et  $(g^{-1})(1)$ .
  - c) Montrer que  $g^{-1}$  est dérivable sur  $\left[0,+\infty\right[$  et que  $\left(g^{-1}\right)'(x) = \frac{1}{1+x^2}$ .
  - d) Montrer que  $\lim_{x\to 0^+} \frac{g^{-1}(x)}{x} = 1$ .

- 6) On pose pour tout  $x \in [0, +\infty[$ ,  $F(x) = \int_0^x f(t) dt$  et  $G(x) = 2(f(x) (g^{-1}o f)(x))$ .
  - a) Montrer que pour tout  $x \in [0, +\infty[$ , F'(x) = G'(x).
  - b) En déduire que pour tout  $x \in [0, +\infty[, F(x) = G(x)]$ .
  - c) Soit A l'aire de la partie du plan limitée par la courbe  $(C_f)$ , la courbe  $\Gamma$  et les droites d'équations x = 0 et  $x = \ln 2$ . Montrer que  $A = 1 + \ln 2 \frac{\pi}{2}$ .
- 7) Soit n un entier naturel tel que  $n \ge 2$ .

On désigne par  $f_n$  la fonction définie sur  $[\ln(n), +\infty[$  par  $f_n(x) = \sqrt{e^x - n}$ .

On note  $(C_n)$  sa courbe représentative dans le repère orthonormé  $(O, \vec{i}, \vec{j})$ .

- a) Soit  $G_n$  la fonction définie sur  $\left[\ln(n), +\infty\right[$  par  $G_n(x) = 2\left(f_n(x) \sqrt{n} g^{-1}\left(\frac{f_n(x)}{\sqrt{n}}\right)\right)$ .
- Montrer que pour tout  $x \in [\ln(n), +\infty[$  ,  $G_n(x) = \int_{\ln(n)}^x f_n(t) dt$ . b) Vérifier que pour tout  $x \ge \ln(n)$ ,  $\sqrt{e^x - n} < \sqrt{e^x - 1}$ .
- En déduire que pour tout  $x \ge \ln(n)$ ,  $f_n(x) \le e^x 1$ .
- c) Soit  $A_n$  l'aire de la partie du plan limitée par la courbe  $(C_n)$ , la courbe  $\Gamma$  et les droites d'équations x = ln(n) et x = ln(n+1). Montrer que  $A_n = 2\sqrt{n}$   $g^{-1}\left(\frac{1}{\sqrt{n}}\right) + ln\left(\frac{n}{n+1}\right) 1$ .
- d) Déterminer  $\lim_{n \to +\infty} A_n$ .

|   | Section:                    | Signatures des surveillants |
|---|-----------------------------|-----------------------------|
|   | Nom et Prénom:              |                             |
|   | Date et lieu de naissance : |                             |
| × |                             |                             |

Épreuve : Mathématiques Section : Mathématiques

Annexe 1 à rendre avec la copie



Figure 1

Épreuve : Mathématiques

Section : Mathématiques

Annexe 2 à rendre avec la copie



Figure 2