§2-2 廣義自三自函數

(甲)廣義角

設∠EOF 爲一角,如果OE代表正東方向,OF代表東北方向,如果站在 O 點,面向東然後轉到東北方位與先面對東北方然後再轉到東方,顯然這兩個動 作是有差別的,雖然它們的方位差是一樣的,但是轉動的方向則不相同,爲了 能把這種差異表現出來,我們擴大了角度的意義,從而定義了**有向角**。

(1)定義:

一角以OE以始邊,旋轉到終邊OF,從OE旋轉到OF的旋轉量稱爲**有向角**,定義中規定**遊時針旋轉為正向角,順時針旋轉為負向角**。

因為旋轉時可以轉半圈、一圈、二圈、二圈半..等等,亦即他們的旋轉量分別是 180°、360°、720°、900°...等,因此我們打破角度 180°的限制,而將角度的範圍擴充到 180°以上,像這樣的角度就稱為廣義角(或稱爲有向角)。

(2) 同界角:

兩個廣義角 θ , ϕ 有共同的始邊與終邊,我們將這樣的 θ , ϕ 稱爲**同界自**。而兩個同界角之間,因爲始邊與終邊相同,因此差別只是所繞的圈數不同,故可得 θ - ϕ = $k\cdot360°$,k爲整數。

例如:上圖中的 400°角與 40°角, 690°角與-30°各都是一對同界角。

例如:57°的同界角都可寫成 $57^{\circ}+360^{\circ}\times k$ (k為整數) 方法:**判斷θ與φ爲同界角** \Leftrightarrow θ $-\varphi$ = $k\cdot360^{\circ}$,k為整數

[**例題**1] 求 1178° 之最小正同界角與最大負同界角。 Ans: 98° , -262°

(練習1) 試求下列諸角的最小正同界角與最大負同界角:

 $(1)675^{\circ}$ $(2)-1520^{\circ}$ $(3)-1473^{\circ}$ $(4)-21508^{\circ}$ Ans: $(1)315^{\circ}$, $-45^{\circ}(2)280^{\circ}$, $-80^{\circ}(3)327^{\circ}$, $-33^{\circ}(4)92^{\circ}$, -268° (練習2) 480°的角,令其始邊與正 X 軸重合,則其終邊落在(A)第一象限 (B)第二象限(C)第三象限(D)第四象限(E)Y 軸上 Ans: (B)

(乙)廣義角三角函數

我們想要定義廣義角的三角函數,首先我們要先清楚三角函數(正弦、正切、...) 它們是一個角度的函數,此處想要利用廣義角來定義 6 個三角函數,換句話說, 我們想要知道sin(-120°)、cos370°、tan0°...等等,它們的值應如何定義才好?

- (1)三角函數的定義:
- (a)回顧銳角三角函數的定義:

直角三角形ABC中,根據銳角三角函數的定義可得 $sinC = \frac{c}{a}$, $cosC = \frac{b}{a}$,現在將C點移至座標原點,如上右圖所示,可得B(b,c),所以正弦與餘弦的定義,可用

而這個觀點使得我們可以將定義由線段長度,延伸至坐標,因爲坐標可正可負,因此定義廣義角時就可以拿來引用。

(b)廣義角的三角函數;

在坐標平面上做一個以原點爲圓心,半徑等於r的圓,給定一個廣義角 θ ,規定 θ 的始邊爲x軸的正向,角的頂點爲原點,根據 θ 的旋轉量,可畫出終邊的位置。設終邊這條射線與單位圓交於P(x,y),

定義:
$$\sin\theta = \frac{y}{r}$$
, $\cos\theta = \frac{x}{r} \cdot r = \overline{OP}$

特別情形:

當
$$r=1$$
 時 $\sin\theta = \frac{y}{1} = y$, $\cos\theta = \frac{x}{1} = x$

所以單位圓上的點P的坐標可以寫成P(cosθ,sinθ)

(c)這樣的定義符合銳角三角函數的定義嗎?

如果角度爲銳角,即終邊爲 \overrightarrow{OQ} ,此時O(m,n)在圓上,設O對x軸的垂足點爲S, 則 ΔQOS 爲直角三角形,設 $\angle SOQ=\alpha$,根據銳角三角函數的定義,

$$\cos\alpha = \frac{m}{r}$$
, $\sin\alpha = \frac{n}{r}$, 此與(a)中的定義是一樣的。

(d)其他三角函數的定義:

根據三角函數間的關係,我們可定義其他的三角函數:如果 $\cos\theta = \frac{x}{r}$, $\sin\theta = \frac{y}{r}$

結論:設角 θ 終邊上的點P(x,y), $r=\overline{OP}=\sqrt{x^2+y^2}$

(1) $\sin\theta = \cos\theta = \cos\theta$

 $\tan\theta = (x \neq 0) \quad \cot\theta = (y \neq 0)$

$$\cot\theta = \underline{\hspace{1cm}}(y\neq 0)$$

 $\sec\theta = \underline{\hspace{1cm}}(x\neq 0) \quad \tan\theta = \underline{\hspace{1cm}}(y\neq 0)$

- (2)由終邊的位置判別三角兩數的正負:
- (a)sinθ之正負⇒看y在第一、二象限爲正,y在第三、四象限爲負 所以 $\sin\theta = \frac{y}{r}$ 在第一、第二象限爲正,在第三、第四象限爲負
- $(b)\cos\theta$ 之正負 \Rightarrow 看x在第一、四象限爲正,x在第二、三象限爲負 所以 $\cos\theta = \frac{x}{r}$ 在第一、第四象限爲正,在第二、第三象限爲負
- (c)整理成表格如下:

象限函數	_	11	111	四
sinθ與 cscθ	+	+	_	_
cosθ與 secθ	+	_	_	+
tanθ與 cotθ	+	_	+	_

(d) 完成下列各表:

角度θ	0°	90°	180°	270°	360°	120°	135°	150°	225°	270°	300°
sinθ											
cosθ											
tanθ											

(e) 廣義角三角函數值的範圍:

 $|\sin\theta| \le 1$, $|\cos\theta| \le 1$

 $tan\theta \in R$, $cot\theta \in R$

 $|\sec\theta| \ge 1$, $|\csc\theta| \ge 1$

[例題2] 在xy 平面上,以x 軸之正向爲始邊作一廣義角 θ ,其終邊上有一點P 之坐標 如下表所示,試填寫0的各三角函數值。

P點坐標	(5,12)	(3,-4)	(-1,-2)	(3,-1)	(5,0)	(0,3)	(-4,0)	(0,-3)
OP 長度								
$\sin\theta$								
$\cos\theta$								
tanθ								
cotθ								
secθ								
cscθ								

[**例題3**] 設
$$\theta$$
之終邊上有一點 $(x,-5\sqrt{2})$,已知 $\tan\theta=\sqrt{2}$,求 $\sin\theta$, $\cos\theta$ 。 Ans: $\sin\theta=\frac{-\sqrt{6}}{3}$, $\cos\theta=\frac{-\sqrt{3}}{3}$

- (練習3) 座標平面上,O 為原點, θ 為第二象限角,P(x,2)是 θ 角終邊上一點,已 知 $\overline{OP}=3$,求 x 及 $\cos\theta$ 之値。 $Ans: x=-\sqrt{5}$, $\cos\theta=\frac{-\sqrt{5}}{3}$
- (練習4) 設點 $P(-5\sqrt{3}, y)$ 在角θ 的終點上,若 $tanθ = \frac{1}{\sqrt{3}}$,則 y=____,cscθ =____。Ans: y=-5,cscθ=-2
- (練習5) θ不是象限角且 $tan\theta > 0$, $sec\theta < 0$, 則點 $p(cos\theta$, $sin\theta$)在 (A)第一象限 (B)第二象限 (C)第三象限 (D)第四象限 (E)兩坐標軸上。Ans:(C)
- (練習6) 若 θ 在第二象限,則 $\frac{\theta}{2}$ 可能在第幾象限?Ans:第 1 或 3 象限
- (練習7) 設 $\sin\theta = \frac{-4}{5}$,求其他三角函數。(hint:需討論象限) Ans:

$$(1)\theta$$
 第三象限角, $\sin\theta = \frac{-4}{5}$, $\cos\theta = \frac{-3}{5}$, $\tan\theta = \frac{4}{3}$, $\cot\theta = \frac{3}{4}$, $\sec\theta = \frac{5}{-3}$, $\csc\theta = \frac{5}{-4}$

$$(2)$$
 的為第四象限角, $\sin\theta = \frac{-4}{5}$, $\cos\theta = \frac{3}{5}$, $\tan\theta = \frac{-4}{3}$, $\cot\theta = \frac{3}{-4}$, $\sec\theta = \frac{5}{3}$, $\csc\theta = \frac{5}{-4}$

- (2)三角函數的化簡:
- (a)角度θ終邊的位置與三角函數的正負:

- (b)角度化簡的原則:
- ①凡是同界角均有相同的三角函數值:

若 θ_1 與 θ_2 若爲同界角,則由於同界角具有相同的始邊與終邊,所以我們知道同界角具有相同的三角函數值。

$$\sin \cdot \cos \cdot \tan \cdot \cot \cdot \sec \cdot \csc (n \times 360^{\circ} + \theta)$$

=
$$\sin \cdot \cos \cdot \tan \cdot \cot \cdot \sec \cdot \csc (\theta)$$

利用此觀念可將任意角度的三角函數化成 0° 到 360° 之間的三角函數例如: $\sin 789^{\circ} = \sin(2\cdot360^{\circ}+69^{\circ}) = \sin69^{\circ}$, $\tan(-1000^{\circ}) = \tan(-3\cdot360^{\circ}+80^{\circ}) = \tan80^{\circ}$

②負角之三角函數值的變換:

$$\sin \cdot \tan \cdot \cot \cdot \csc (-\theta) = -\sin \cdot \tan \cdot \cot \cdot \csc (\theta)$$

 $\cos \cdot \sec (-\theta) = \cos \cdot \sec (\theta)$

[說明]:

如右圖,P點與Q點分別是廣義角 θ , $-\theta$ 終邊與單位圓的交點根據定義可知

 $m = \cos\theta, n = \sin\theta$; $m' = \cos(-\theta), n' = \sin(-\theta)$

又因為 $P \cdot Q$ 分別對稱於x軸,

- $\Rightarrow m=m'$, n=-n'
- $\Rightarrow \cos\theta = \cos(-\theta)$, $\sin(-\theta) = -\sin\theta$

其餘四個三角函數,可由sinθ,cosθ 的關係推得。

- $=\pm \sin \cdot \cos \cdot \tan \cdot \cot \cdot \sec \cdot \csc (\theta)$
- ◆ ±號的選定可將θ 視爲銳角去判斷正負

[說明]:

如右圖,P點與Q點分別是廣義角θ,180°+θ終邊與單位圓的交點

根據定義可知

 $m=\cos\theta, n=\sin\theta$; $m'=\cos(180^{\circ}+\theta), n'=\sin(180^{\circ}+\theta)$ 又因爲P與Q對稱於O點

 $\Rightarrow m' = -m, n' = -n \circ$

 $\Rightarrow \cos(180^{\circ}+\theta)=-\cos\theta$, $\sin(180^{\circ}+\theta)=-\sin\theta$ 另外一方面,

 $\cos(180^{\circ}-\theta)=\cos(180^{\circ}+(-\theta))=-\cos(-\theta)=-\cos\theta$ $\sin(180^{\circ}-\theta) = \sin(180^{\circ}+(-\theta)) = -\sin(-\theta) = \sin\theta$

④角
$$90^{\circ}\pm\theta$$
 , $270^{\circ}\pm\theta$ 之三角函數値的變換:
$$\overline{\sin,\cos,\tan,\cot,\sec,\csc} (90^{\circ}\pm\theta,270^{\circ}\pm\theta)$$

- $=\pm\cos$, \sin , \cot , \tan , \csc , \sec (θ)
- ◆ ±號的選定可將θ 視爲銳角去判斷正負,請注意上式中正餘函數互換。 例如:

$$\sin(90^{\circ}+\theta) = \cos(90^{\circ}+\theta) = \tan(90^{\circ}+\theta) =$$

 $\sin(270^{\circ}-\theta) = \cos(270^{\circ}-\theta) = \tan(270^{\circ}-\theta) =$

[例題4]請化簡下列三角函數:

(a) $\sin 1800^{\circ}$ (b) $\cos 1560^{\circ}$ (c) $\sin (-1050^{\circ})$ (d) $\tan 945^{\circ}$

[例題5] 化簡下列各小題的值:

 $(1)\sin 60^{\circ} \cdot \cos 150^{\circ} - \cos 225^{\circ} \sin (-315^{\circ}) + \tan 300^{\circ} \cdot \sec (-180^{\circ}) = \underline{\hspace{2cm}}$ $(2)4\cos(-960^{\circ})+\tan(585^{\circ})+2\sin(-1020^{\circ})=$

Ans: $(1)\frac{-1+4\sqrt{3}}{4}$ (2)-1+ $\sqrt{3}$

[**例題6**] 化簡
$$\frac{\sin(180^{\circ} + \theta)\tan^{2}(180^{\circ} - \theta)}{\cos(270^{\circ} + \theta)} - \frac{\sin(270^{\circ} - \theta)\csc^{2}(90^{\circ} + \theta)}{\sin(90^{\circ} + \theta)}$$
 。Ans:1

[**例題7**] 設cos100°=k, 試以k表

(1)sin(-260°)=_____ \circ (2)tan(-260°)=____ \circ (3)cos(-80°)=____ \circ (4)sin(-80°)=____ \circ

Ans: $(1)\sqrt{1-k^2}$ $(2)\frac{\sqrt{1-k^2}}{k}$ (3)-k $(4)-\sqrt{1-k^2}$

(練習8) 右圖爲一圓心在原點的單位圓,則圓弧上一點 P 的坐標爲?

- (A) $(\cos\theta, \sin\theta)$ (B) $(\cos\theta, -\sin\theta)$ (C) $(-\cos\theta, \sin\theta)$
- (D) $(-\cos\theta, -\sin\theta)$ (E) $(-\sin\theta, \cos\theta)$ Ans : (B)

(練習10) 設 $0 < \alpha < 45^{\circ}$, 試求下列二式的值:

$$(1)\sin^2(45^\circ + \alpha) + \sin^2(45^\circ - \alpha)$$
 $(2)\tan(45^\circ + \alpha) \cdot \tan(45^\circ - \alpha)$ Ans : $(1)1$ $(2)1$

(練習11) 試求下列各值:

- $(1)\cos 570^{\circ} \cdot \sin 150^{\circ} + \sin(-330^{\circ}) \cdot \cos(-390^{\circ}) = \underline{\hspace{1cm}} \circ$
- $(2)\sin 210^{\circ} + \tan(-135^{\circ}) + \cos(-390^{\circ}) = ____{\circ}$
- $(4)\sin 1560^{\circ} \tan (-510^{\circ}) + \cos (-240^{\circ})\cot 495^{\circ} = \underline{\hspace{1cm}}$

Ans:
$$(1)0 (2) \frac{1+\sqrt{3}}{2} (3) \frac{4\sqrt{3}-5}{4} (4)1$$

(練習12) 化簡
$$\frac{\cos(180^{\circ}+\theta)\cot^2(180^{\circ}-\theta)}{\sin(270^{\circ}+\theta)} - \frac{\cos(270^{\circ}-\theta)\csc^2\theta}{\cos(90^{\circ}+\theta)}$$
 · Ans : -1

[例題8] 在坐標平面上以原點O為圓心,1 為半徑畫一圓,交x軸正向於A點,y軸正向於B點,再畫一直線L過原點並交圓O於C,C'兩點。過A點與B點作圓的切線,分別交直線L於D點與E點並自C點作x軸的垂線 ϕ x軸於 ϕ x點,設 ϕ ϕ ϕ

- (1)在上圖中分別找出長度等於 $\sin\theta$, $\cos\theta$, $\tan\theta$, $\cot\theta$, $\sec\theta$, $\csc\theta$ 的單一線段。
- (2)試比較sinθ,tanθ,secθ 的大小。
- (3)試比較 $\cos\theta$, $\cot\theta$, $\csc\theta$ 的大小。

[**例題9**] (1)試求函數 $f(x)=\cos^2 x + 3\sin x + 1$ 的最大値與最小値。 (2)試求函數 $f(x)=\frac{2\sin x + 1}{\sin x + 2}$ 的範圍。

Ans: $(1) 4 \cdot -2 (2) - 1 \le f(x) \le 1$

(練習14) 請計算
$$\sum_{k=1}^{180} \cos k^\circ = \cos 1^\circ + \cos 2^\circ + \dots + \cos 179^\circ + \cos 180^\circ = ?$$
 Ans: -1

- (練習15) 請求出sin1°+sin2°+...+sin360°=? Ans: 0
- (練習16) 求下列各函數的範圍:

$$(1)f(x) = \frac{2\sec x + 1}{3\sec x - 1} \quad (2)f(x) = \sin^2 x - \cos x$$

Ans:
$$(1)\frac{1}{4} \le f(x) \le \frac{3}{2}$$
 $(2)-1 \le f(x) \le \frac{5}{4}$

(丙)三角函數值表

(1) 三角函數值表的簡介:

- (a)附錄中列出了 0° 到 90° ,每隔 10° (「 $^{\prime}$ 」讀做分,「 $^{\prime\prime}$ 」讀做秒, 1° = 60^{\prime} , 1^{\prime} = $60^{\prime\prime}$)的六種三角函數,其中數值是以十進位有限小數表示(小數點前後共取四位),大都只是近似值。
- (b)表中最左一行由上而下列有 0° 到 45° 的各角度,最上一列由左而右印有 $\sin \cdot \cos \cdot \tan \cdot \cot \theta \cdot \sec \cdot \csc$ 各函數的符號,而表中最右一行由下而上 列

有 45° 到 90° 的各角度,最下一列由左而右印有 $\cos \times \sin \times \cot \times \tan \times \csc \times$ \sec 各函數的符號,這是應用餘角關係所編排的,如 $\sin 43^{\circ}20' = \cos 46^{\circ}40'$ 。

(2) 如何杳表:

- (a)查1°到45°的各角三角函數值,是從表的**最左一行**,**自上而下**查角度,再從**最上一列**,查三角函數的符號,則角度所在的一列,與函數符號所在的一行,相交位置上的數,就是這個角度的某一個三角函數值。
- (b)查 45°到 90°的各角三角函數值,是從表的**最右一行**,**自下而上**查角度,再從**最下一列**,查三角函數的符號,則角度所在的一列,與函數符號所在的一行,相交位置上的數,就是這個角度的某一個三角函數值。

[例題10] 查表求下列各三角函數值:

 $(1)\cos 22^{\circ}$ $(2)\sin 22^{\circ}40^{\prime}$ $(3)\cot 22^{\circ}30^{\prime}$

[例題11] 查表求下列各三角函數值:

 $(1)\sin 67^{\circ}$ $(2)\tan 67^{\circ}20^{\prime}$ $(3)\sec 67^{\circ}50^{\prime}$

[**例題**12] 利用下表求各三角函數的角度 (1)cosA=0.9528 (2)tanB=0.4006 (3)cscC=1.063

角度	sin	cos	tan	cot	sec	csc	200
17° 40′	0.3035	0.9528	0.3185	3.140	1.049	3.295	3. 三角網
19° 50′	0.3393	0.9407	0.3607	2.773	1.063	2.947	(2) and
11 = 101 30	0.3719	0.9283	0.4006	2.496	1.077	2.689	68° 10′
e≡ain ë	0.6494	0.7604	0.8541	1.171	1.315	1.540	49° 30′
(2) 、 加三的	cos	sin	cot	tan	csc	sec	角度函數

Ans: $(1)\angle A=17^{\circ}40'$ $(2)\angle B=21^{\circ}50'$ $(3)\angle C=70^{\circ}10'$

[例題13] 利用三角函數值表與三角函數的變換公式求下列各值:

(1)sin26° (2)sin926° (3)tan70° (4)tan(-290°) (5)cos63°20′ (6)cos603°20′ Ans: (1)0.4384 (2)-0.4384 (3)2.7475 (4)2.7475 (5)0.4488 (6)-0.4488

(3)三角函數的大小:

(a)

角度θ	sinθ	$\cos\theta$	tanθ	cotθ	secθ	cscθ
由 1°到 89°	增大	減小	增大	減小	增大	減小

(b)

角度 函數	0<θ<45°	θ=45°	45°<θ<90°
正餘弦	$\sin\theta < \cos\theta$	$\sin\theta = \cos\theta$	$\sin\theta > \cos\theta$
正餘切	$tan\theta < cot\theta$	$tan\theta = cot\theta$	$\tan\theta > \cot\theta$
正餘割	$\sec\theta < \csc\theta$	$\sec\theta = \csc\theta$	$\sec\theta > \csc\theta$

[**例題14**] 設cos40°=0.7660,cos41°=0.7547

(1)求 $\cos 40^{\circ} 10^{\prime}$ 的值。 (2)若 $\cos \theta = 0.76$,求銳角 θ 的值。

Ans: (1)0.7641 (2)40.53°

(練習17) 試比較下列各大小次序:

(1)sin20°, tan20°, sec20° (2)sin130°, tan130°, sec130° (3) sin220°, tan220°, sec220° (4)sin310°, tan310°, sec310°

Ans : (1) $\sin 20^{\circ} < \tan 20^{\circ} < \sec 20^{\circ}$ (2) $\sec 130^{\circ} < \tan 130^{\circ} < \sin 130^{\circ}$

(3) $\sec 220^{\circ} < \sin 220^{\circ} < \tan 220^{\circ}$ (4) $\tan 310^{\circ} < \sin 310^{\circ} < \sec 310^{\circ}$

(練習18) 設 $a=\cos(-750^\circ)$, $b=\tan(-1140^\circ)$, $c=\sec(4995^\circ)$,是比較a,b,c之大小。 Ans : c>a>b

(練習19) 已知 $\sin 47^{\circ}20' = 0.7353$, $\sin 47^{\circ}30' = 0.7373$,則 $\sin (-227^{\circ}27')$ 最接近下列那 一個數?(A)0.7359(B)-0.7359(C)-0.7367(D)0.7367

(練習20) 若 $\sin 53^{\circ}20' = 0.8021$, $\sin 53^{\circ}30' = 0.8039$, $\sin \theta = -0.8030$, 且 $180^{\circ} < \theta < 270^{\circ}$,

- (1) 設 $\cot\theta = \frac{-4}{3}$,且 $\sin\theta > 0$,試求 $\frac{3\sin\theta + 5\cos\theta}{2\sin\theta + 6\cos\theta} = \underline{\hspace{1cm}}$ 。
- (2) 如右圖,單位圓 O 與 y 軸交於 A,B 兩點。角 θ 的頂點為原點,始邊在 x 軸的正向上,終邊為 \overrightarrow{OC} ,直線 AC 垂直於 y 軸且與角 θ 的終邊交於 C 點,則下列那一個函數值為AC ?

 $(A)|\sin\theta|(B)|\cos\theta|(C)|\tan\theta|(D)|\cot\theta|(E)|\sec\theta|$

(3) 如下圖,A 爲單位圓與y 軸負向的交點, $\overline{AC} \perp y$ 軸與角 θ 終點交點爲C,則 \overline{AC} =?

- (A) $|tan\theta|$ (B) $|cot\theta|$ (C) $|sec\theta|$ (D) $|csc\theta|$ (E) $|sin\theta|$ \circ
- (4) 若點(sinθ cosθ , tanθ secθ)在第三象限,則θ在第_____象限。
- (5) 點 P(a,b) 爲角的終邊與直線 y+12=0 的交點,且 $\sec\theta = \frac{-13}{5}$,求 $(a,b) = \underline{\hspace{1cm}}$ 。
- (6) 求下列各函數的值。(a)sin870°(b)sin(-1215°)(c)cos(-105°)(d)tan2010°
- (7) 設 $\tan\theta = 3$,試求下列各式: $(a) \frac{3\sin\theta + \cos\theta}{\sin\theta 2\cos\theta} \quad (b)\sin^2\theta 3\sin\theta\cos\theta + 2\cos^2\theta \quad (c) \frac{10\sin\theta + 3}{\cos\theta + 1}$
- (8) 設 $4\cos^2\theta 8\cos\theta 5 = 0$,求 $\sin\theta$ 之値。
- (10) 若 $90^{\circ} < \theta < 180^{\circ}$,且 $\cos \theta + \sin \theta = \frac{1}{5}$,請求下列兩小題的値:
 (a) $\cos \theta = ?$ (b) $\frac{\sec \theta}{\tan \theta} + \frac{\csc \theta}{\cot \theta} = ?$ (c) $\sin \theta \cos \theta = ?$
- (11) $\Re \sin^2 1^\circ + \sin^2 2^\circ + \sin^2 3^\circ + \dots + \sin^2 90^\circ = ?$
- (12) 設 45< θ < 90° ,令a= $\log_{\frac{1}{2}}\sin\theta$,b= $\log_{\frac{1}{2}}\cos\theta$,c= $\log_{\frac{1}{2}}\tan\theta$,d= $\log_{\frac{1}{2}}\sec\theta$ 試比較a,b,c,d之大小。
- (13) 設*a*=sec337°, *b*=tan225°, *c*=cos143°, *d*=sin37°, 試比較*a,b,c,d*之大小。
- (14) 設 $a = \sin 1230^{\circ}$, $b = \cos \theta (-430)$, $c = \tan 65^{\circ}$, $d = \sin (-430)$,則(A)a > b > c > d(B) d > c > b > a(C) a > c > b > d(D) c > a > b > d (E) c > d > a > b 。
- (15) 利用三角函數與內插法表求 $\sin(-1028^{\circ}23^{\prime})$ 之值。(四捨五入求至小數點第四位)

- (16) 若 0° <0< 45° ,求 $\sqrt{1-2\sin\theta\cos\theta} \sqrt{1+2\sin\theta\cos\theta}$ 之值。
- (17) 設A+B+C=180°, 求證:

$$(a) tan \frac{A+B}{2} = cot \frac{C}{2} \quad (b) sin A = -cos (\frac{3A}{2} + \frac{B}{2} + \frac{C}{2}) \quad (c) sin (\frac{A}{2} + B) = cos (\frac{B}{2} - \frac{C}{2}) \\ \circ (a) tan \frac{A+B}{2} = cot \frac{C}{2} \quad (b) sin A = -cos (\frac{3A}{2} + \frac{B}{2} + \frac{C}{2}) \\ \circ (a) tan \frac{A+B}{2} = cot \frac{C}{2} \quad (b) sin A = -cos (\frac{3A}{2} + \frac{B}{2} + \frac{C}{2}) \\ \circ (a) tan \frac{A+B}{2} = cot \frac{C}{2} \quad (b) sin A = -cos (\frac{3A}{2} + \frac{B}{2} + \frac{C}{2}) \\ \circ (a) tan \frac{A+B}{2} = cot \frac{C}{2} \quad (b) sin A = -cos (\frac{3A}{2} + \frac{B}{2} + \frac{C}{2}) \\ \circ (a) tan \frac{A+B}{2} = cos (\frac{A}{2} + \frac{C}{2} + \frac{C}{2}) \\ \circ (a) tan \frac{A+B}{2} = cos (\frac{A}{2} + \frac{C}{2} + \frac{C}{2} + \frac{C}{2}) \\ \circ (a) tan \frac{A+B}{2} = cos (\frac{A}{2} + \frac{C}{2} + \frac{C}{2} + \frac{C}{2}) \\ \circ (a) tan \frac{A+B}{2} = cos (\frac{A}{2} + \frac{C}{2} + \frac{C}{2} + \frac{C}{2} + \frac{C}{2} + \frac{C}{2}) \\ \circ (a) tan \frac{A+B}{2} = cos (\frac{A}{2} + \frac{C}{2} + \frac{C}{2}$$

進階問題

- (18) 求 $f(x) = \frac{2\tan x}{\tan^2 x + \tan x + 1}$ 的範圍。
- (19) 將半徑爲 1 的半圓周 $\stackrel{\frown}{AB}$ 分成 180 等分,設等分點依次爲 $\stackrel{\frown}{P_1}$ 、 $\stackrel{\frown}{P_2}$ 、 $\stackrel{\frown}{P_{179}}$ 之和。
- (20) 設 $\sin\theta$ 爲 $x^2+x+a=0$ 的一根,求a值的範圍。

綜合練習解答

(1) $\frac{11}{18}$ (2) (D) (3) (B) (4) 第四象限 (5) (-5,-12) (6) (a) $\frac{1}{2}$ (b) $\frac{-\sqrt{2}}{2}$ (c) $-\frac{\sqrt{6}-\sqrt{2}}{4}$ (d) $\frac{1}{\sqrt{3}}$ (7) (a) 10 (b) $\frac{1}{5}$ (c) $\pm 3\sqrt{10}$ (8) ① θ 在第二象限, $\sin\theta = \frac{\sqrt{3}}{2}$,;② θ 在第三象限, $\sin\theta = \frac{-\sqrt{3}}{2}$ (9) -3 (10) (a) $\frac{-3}{5}$ (b) $\frac{-5}{12}$ (c) $\frac{-12}{25}$ (11) $\frac{91}{2}$ [提示: $\sin(90^{\circ}-\theta)=\cos\theta$, $\sin^{2}\theta+\cos^{2}\theta=1$] (12) b < a < c < d (13) a > b > d > c (14) (D) (15) 0.7839 (16) $-2\sin\theta$ [提示: $1 = \sin^{2}\theta+\cos^{2}\theta$] (17) 提示:(b) $\frac{3A}{2} + \frac{B}{2} + \frac{C}{2} = A + \frac{A + B + C}{2} = A + 90^{\circ}$ (c) $\frac{A}{2} + B = (\frac{A}{2} + \frac{B}{2}) + \frac{B}{2} = (90^{\circ} - \frac{C}{2}) + \frac{B}{2}$ (18) $-2 \le f(x) \le \frac{2}{3}$ (19) 358 [提示:可令 $P_{k}(\cos k^{\circ}, \sin k^{\circ})$, $\Rightarrow \overline{AP_{k}}^{2} = 2 + 2\cos k^{\circ}$] (20) $-2 \le a \le \frac{1}{4}$