ANALYSIS QUALIFYING EXAM AUGUST 2004

DIRECTIONS: Attempt all questions. Answer each question on a separate sheet. Questions 1-8 are worth 10 points each and question 9 is worth 20 points.

NOTATION: m denotes Lebesgue measure on the real line \mathbb{R} .

- 1. (a) Suppose that $A \subset \mathbb{R}$ is compact and $B \subseteq \mathbb{R}$ is closed. Prove that $A + B = \{a + b : a \in A, b \in B\}$ is closed.
- (b) Give an example of closed sets A and B such that A + B is not closed.
- 2. (a) Define the outer measure $m^*(A)$ of $A \subseteq \mathbb{R}$.
- (b) Suppose that $(A_n)_{n=1}^{\infty}$ is an increasing sequence of subsets of \mathbb{R} . Prove that there exists an increasing sequence $(G_n)_{n=1}^{\infty}$ of G_{δ} -sets such that $A_n \subseteq G_n$ and $m^*(A_n) = m(G_n)$ for each $n \ge 1$. (Recall that a G_{δ} set is a countable intersection of open sets.)
- (c) Deduce from (b) that $m^*(\bigcup_{n=1}^{\infty} A_n) = \lim m^*(A_n)$.
- 3. (a) State Fatou's Lemma for an arbitrary measure space (X, \mathcal{M}, μ) .
- (b) Let (X, \mathcal{M}, μ) be a measure space. Suppose that (f_n) is a sequence of non-negative integrable functions which converges pointwise to an integrable function f. Suppose also that

$$\int_X f_n \, d\mu \to \int_X f \, d\mu < \infty.$$

Prove that

$$\int_E f_n \, d\mu \to \int_E f \, d\mu$$

for all $E \in \mathcal{M}$.

4. Suppose that $1 < p, q < \infty$, that 1/p + 1/q = 1, and that $f \in L_p(\mathbb{R}) \cap L_q(\mathbb{R})$. Prove that

$$\int_{-\infty}^{\infty} f(x+y)f(x) \, dx \to 0$$

as $|y| \to \infty$.

- 5. (a) What is an absolutely continuous function from [a, b] to \mathbb{R} .
- (b) Suppose that $g:[a,b]\to [c,d]$ is monotone increasing and absolutely continuous and that $f:[c,d]\to\mathbb{R}$ is absolutely continuous. Prove that $f\circ g$ is absolutely continuous.

(c) Now suppose, in addition to the above, that f is differentiable *everywhere*. Deduce that

$$f(g(x)) = f(g(a)) + \int_a^x f'(g(t))g'(t) dt \qquad (a \le x \le b).$$

- 6. Suppose that E is an $m \otimes m$ -measurable subset of $[0,1] \times [0,1]$ such that $m(\{x \in [0,1]: m(E_x) \geq 4/5\}) \geq 3/4$. Prove that $(m \otimes m)(E) \geq 3/5$ and deduce that $m(\{y \in [0,1]: m(E^y) \geq 1/2\}) \geq 1/5$. (Here $E_x = \{y: (x,y) \in E\}$ and $E^y = \{x: (x,y) \in E\}$.)
- 7. Suppose that f(z) is analytic on a convex domain U and that $\gamma(t)$ $(0 \le t \le 1)$ is a positively-oriented simple closed smooth parametrized curve contained in U.
- (a) Write down an integral on [0,1] for the length $L(\gamma)$ of γ .
- (b) Write down Cauchy's Integral Formula for f(z) for a point z inside γ^* .
- (c) Deduce that

$$|f(z)| \le \frac{ML(\gamma)}{2\pi \operatorname{dist}(z, \gamma^*)},$$

where M denotes the maximum value of |f(z)| on γ^* and $\operatorname{dist}(z, \gamma^*)$ denotes the distance from z to γ^* .

- 8. (a) Suppose that $f: \Delta \to \Delta$ is an analytic mapping from the open unit disk Δ to itself such that f(0) = 0. By considering f(z)/z, show that $|f'(0)| \leq 1$.
- (b) Deduce that if $h: H \to \Delta$ is an analytic mapping from the upper half-plane $H = \{z = x + iy \colon y > 0\}$ into Δ , with h(i) = 0, then $|h'(i)| \le 1/2$. (Hint: Consider g(z) = (z i)/(z + i).)
- 9. TRUE OR FALSE. Prove the result or find a counterexample.
- (a) If $f:[a,b]\to\mathbb{R}$ is increasing and continuous then

$$f(b) - f(a) = \int_a^b f'(x) dx.$$

- (b) If $f: \mathbb{R} \to \mathbb{R}$ is continuous and $B \subseteq \mathbb{R}$ is a Borel set, then $f^{-1}(B)$ is a Borel set.
 - (c) If f_n $(n \ge 1)$ and f are integrable functions on [0,1] and $f_n \to f$ pointwise then $\int_0^1 f_n dx \to \int_0^1 f dx$.
 - (d) Suppose that U is a domain in the complex plane and that f is analytic on U. Then $\int_{\gamma} f(z) dz = 0$ for every simple closed smooth curve γ contained in U.
 - (e) If f is an entire function and $|f(z)| \to \infty$ as $|z| \to \infty$ then f is a polynomial.