CS-102: Discrete Structures Tutorial #4

binary relation	a subset of $A \times B$
from A to B	
relation on A	a binary relation from A to itself (i.e., a subset of $A \times A$)
Dom(R)	set of elements in A that is related to some element in set B.
Ran(R)	set of elements in B that is related to some
	element in set A.
R-relative set $x, R(x)$	If R is a relation from A to B and $x \in A$ and $y \in B$, $R(x) = \{y \in B \mid xRy\}$
Matrix of a	If R is a relation from A to B, $ A = m$ and
relation, M_R	$ B = n$; $M_R = [m_{ij}]$ is defined by $m_{ij} =$
, K	$\int 1 \ if \ (a,b) \in R 1 \le i \le m$
Dantitian an	$0 \text{ if } (a,b) \notin R 1 \leq i \leq n$
Partition or Quotient Set of a	a collection of pair-wise disjoint nonempty subsets of A, that have A as their union. i.e. A
non-empty set A	partition or a quotient set of a non empty set A is
non empty set 11	the collection \mathcal{P} of non-empty subsets of A such that –
	(a) each element of A belongs to one of the subsets in \mathcal{P} and
	(b) if A_1 and A_2 are distinct elements of
directed graph or	\mathcal{P} then $A_1 \cap A_2 = \emptyset$. Pictorial representation of a relation. A set of
digraph	elements called vertices and ordered pairs of
a.g.upii	these elements, called edges.
loop	an edge of the form (a, a)
path of length n	a finite sequence $a, x_1, x_2, \dots, x_{n-1}, b$
from a to b in a	$\exists aRx_1, x_1Rx_2, \dots, x_{n-1}Rb$
relation	·
xR^ny (R a	there is a path of length n from x to y in R
relation on A)	$M_{R^n} = M_R \odot M_R \odot \dots M_R $ (n factors)
$xR^{\infty}y$ (connecti-	some path exists in R from x to y
vity relation of <i>R</i>)	i.e. $R^{\infty} = R \cup R^2 \cup R^3 \cup$
R^* (reachability relation of R)	the relation consisting of those ordered pairs (a, b) such that there is a path from a to b , $i.e.$ $aR^{\infty}b$ B or $a=b$
reflexive	a relation R on A is reflexive if $(a, a) \in R$ for
Tellexive	all $a \in A$. R is not reflexive if $\exists a \in A$, \ni
irreflexive	$(a, a) \notin R$. a relation R on A is irreflexive if $(a, a) \notin R$ for
Indioaive	all $a \in A$. R is not irreflexive if $\exists a \in A$, \ni
	$(a,a) \in R$
symmetric	a relation R on A is symmetric if whenever (a,
	b) $\in \mathbb{R}$ then (b, a) $\in \mathbb{R}$. R is not symmetric if
	$\exists (a,b) \in R, \ni (b,a) \notin R$
antisymmetric	a relation R on A is antisymmetric if whenever $(a,b) \in P$ and $(b,a) \in P$ then $a=b$ is
	$(a,b) \in R$ and $(b,a) \in R$ then $a = b$. i.e. whenever, if $a \neq b$, then $(a,b) \notin$
	whenever, if $a \neq b$, then $(a,b) \notin R$ or $(b,a) \notin R$. R is not antisymmetric if
	$\exists a \text{ and } b \text{ in } A, a \neq b \text{ and both } (a, b) \in$
transitive	R and $(b,a) \in R$. a relation R on A is transitive if whenever
transitive	a relation R on A is transitive if whenever $(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$.
	$(a,b) \in R$ and $(b,c) \in R$ then $(a,c) \in R$. A relation R is NOT transitive if there exists a, b
	and c in A $(a,b) \in R$ and $(b,c) \in R$ but
	$(a,c) \notin R$. If such a, b, and c does not exist, the
	R is transitive.
equivalence relation	a reflexive, symmetric, and transitive relation
equivalence	If \mathcal{P} is a partition on set A and R a relation on A
relation	is defined as aRb if and only if a and b are the
determined by a	members of the same block, then R is an
partition	equivalence relation.
equivalent	If R is an equivalence relation, a is equivalent to
	b if aRb

Equivalence relation determined by a Partition	 If Pis a partition on A and a relation R on A is defined as aRb if and only if a and b are members of the same block, then R is an equivalent relation. R is called the equivalence relation determined by P If R is an equivalence relation on A and P the collection of all distinct relative sets R(a) for a in A, then P is a partition of A and R is the equivalence relation determined by P. Sets R(a) are traditionally called equivalence classes of R. A/R is the quotient set of A that is constructed from and determines R
R(a) or [a]R (equivalence class of a with respect to R)	If R is an equivalence relation on A , then the set $R(a)$ is traditionally called the equivalence class. i.e. the set of all elements of A that are equivalent to a [a] m (congruence class modulo m): the set of integers congruent to a modulo m
Operations on relations	If R and S are relations on a non-empty set A • R^{-1} , inverse relation of R means $(b,a) \in R^{-1}$ if and only of $(a,b) \in R$ • \overline{R} , complement of relation R means $(a,b) \in \overline{R}$ if and only if $(a,b) \notin R$ • $a(R \cap S)b$ means aRb and aSb • $a(R \cup S)b$ means aRb or aSb • $a(R \cup S)b$ means aRb or aSb • $a(R \cup S)b$ means $a(R \cup S)b$ • if R and R are equivalence relations so is $R \cap S$ • $R \cap S$ • $R \cap S \cap S$ • $R \cap S \cap $
Closure	If a binary relation R on A does not possess a desired property, then appropriate related pairs may be added to R until the desired property is achieved. The smallest relation R_1 on A that contains R and possess the desired property, if such a relation R_1 exists, is called the closure of R with respect to the property in question. Reflexive closure of a relation R on theset R is $R \cup A$, where $A = \{(a, a) a \in A\}$. The symmetric closure of a relation R on the set $R \cup R^{-1}$. where $R \cap R \cup R^{-1}$ where $R \cap R \cup R^{-1}$. The transitive closure of a relation is the connectivity relation formed from the relation i.e. R^{∞} is the transitive closure of R .

XX7 1 113	XX 1 112 1 14 C C 12 1 1 1 12	
Warshall's	Warshall's algorithm for finding the transitive	
algorithm	closure of relation R on a set A, gives a procedure	
	to compute each matrix W_k from the previous	
	matrix W_{k-1} , starting with the matrix $M_R = W_0$	
	and proceeding one step at a time till in n steps	
	$M_{R^{\infty}}$ is computed; where $n = A $.	
	If $W_k = [t_{ij}]$ and $W_{k-1} = [s_{ij}]$, then $t_{ij} = 1$ if	
	and only if	
	• $s_{ij} = 1$ or	
	$\bullet s_{ik} = 1 \text{ and } s_{kj} = 1$	
	$1 \le i \le n, 1 \le j \le n, 1 \le k \le n$	
If R and S are equivalence relations on A, $(R \cup S)^{\infty}$ is the smallest		
	n on A containing both A and B	
Function	if A and B are non-empty sets, a function, f from	
	A to B, which is denoted by $f: A \rightarrow B$, is a	
	relation from A to $B \ni \forall a \in Dom(f)$,	
	f(a)contains only one element of B.	
G 1 1	Identity function, $1_A:1_A(a)=a$	
Special types of		
functions	$f: A \to B \text{ with } Dom(f) = A$	
	One-to-one (injective) function,	
	$f: A \to B \text{ with } a \neq a' \text{ implies } f(a) \neq f(a')$	
	Onto (surjective) function,	
	$f: A \to B \text{ with } Ran(f) = B$	
	Bijection: one-to-one and onto function	
	One-to-one correspondence: onto, one-to-one,	
	everywhere defined function	
	$f: A \to B$ is invertible if f^{-1} is a function	
	Let $f: A \to B$ be a function. Then	
	• f^{-1} is a function from $B \to A$ if and only of f	
	is one-to-one	
	• If f^{-1} is a function, then f^{-1} is also one to	
	one	
	• f^{-1} is everywhere defined if and only if f is	
	onto	
	• f^{-1} is onto if and only if f is everywhere	
	defined	
	if $f: A \to B$. Then	
	$\bullet \qquad 1_R \circ f = f;$	
	• $f \circ 1_A = f$ $if \ f: A \to B$ is invertible, (i.e. a one-to-one	
	correspondence between A and B)	
	• $f^{-1} \circ f = 1_A$	
	$f \circ f^{-1} = 1_B$	
Composition of	Let $f: A \to B$ and $g: B \to A$ be functions such	
Functions		
	that $g \circ f = 1_A$ and $f \circ g = 1_B$, then f is a one-to-one correspondence between A and B , g is a	
	one-to-one correspondence between <i>B</i> and <i>B</i> , <i>g</i> is a one-to-one correspondence between <i>B</i> and <i>A</i> and	
	each is the inverse of the other.	
	If $f: A \to B$ and $g: B \to A$ be invertible.	
	Then $g \circ f$ is invertible and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$	
Dormutation		
Permutation Function	A bijection from set A to itself.	
Function	if (h h h) and distinct alcounts of set 4	
Cyclic	if $(b_1, b_2,, b_r)$ are distinct elements of set $A = \begin{bmatrix} a_1 & a_2 \\ a_3 & a_4 \end{bmatrix}$	
permutation or	$\{a_1, a_2,, a_n\}, r \le n$, the permutation p	
cycle of length r	defined as $p(b_1) = b_2, p(b_2) = b_3, p(b_r) = b_1, p(b$	
	$b_1 p(x) = x \text{ if } x \in A \text{ and } x \notin (b_1, b_2,, b_r) \text{ is}$	
	called a cyclic permutation of length <i>r</i> , denoted	
	$by(b_1,b_2,\ldots,b_r)$	
		

written as a product of	
Transposition	a cycle of length 2
	a finite set with at least two elements can be
written as a product of	t transpositions.
Product of	The product of
permutations	two even permutations is even
	two odd permutation is even
D 1 1 C	• an even and an odd permutation is odd
Period of p	if p is a permutation of set A, then the period
	of p is the smallest integer, $k \ni p^k = 1_A$
n-ary relation on	a subset of $A_1 \times A_2 \times \cdots \times A_n$
A_1, A_2, \ldots, A_n join	a function that combines <i>n</i> -ary relations that
Partial order on a	agree on certain fields relation that is reflexive, anti-symmetric and
set:	
Partially ordered set	transitive, traditionally represented by \leq set together with a partial order, (A, \leq)
or poset A	set together with a partial order, (A, \(\)
Comparable	If (A, \leq) is a poset, the elements $a, b \in A$ are
elements in a poset	said to be comparable if $a \le b$ or $b \le a$
Linearly ordered	partially ordered set in which every pair of
set:	elements is comparable
Dual of a	the poset (A, \geq) , where \geq denotes the inverse
poset (A, \leq)	of ≤
Hasse diagram:	Convenient representation of a Poset that
	completely describes the associated partial
	order.
Theorem:	If A and B are posets, then $A \times B$ is a poset
	with the product partial order
 Topological 	If A is a poset with partial order \leq , we
sorting	sometimes need to find a linear order \prec for the
	set A that will merely be an extension of the
	given partial order in the sense that if $a \le b$.
	then $a < b$. The process of constructing a
	linear order such as ≺ is called topological sorting.
• isomorphism of	If (A, \leq) and (A', \leq') are posets and $f: A \rightarrow$
posets:	A' a one-to-one correspondence between A
posets.	and A' . The function f is called an
	isomorphism from (A, \leq) to (A', \leq') if, for
	any $a, b \in A$, $a \le b$ if and only if $f(a) \le b$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	If $f: A \to A$ is an isomorphism, we say that
	(A, \leq) and (A', \leq') are isomorphic posets.
• Maximal	For the poser (A, \leq) , an element $a \in A$
(minimal) element	$(b \in A)$ is called a maximal (minimal)
of a poset:	element of A, if there is no element $c \in A \ni$
	$a < c \ (c < b)$
Theorem:	A finite nonempty poset has at least one
	maximal element and at least one minima
- C	element.
• Greatest (least)	For the poser (A, \leq) , an element $a \in A$
element of a poset <i>A</i> :	$(b \in A)$ is called a greatest (<i>least</i>) element of
Theorem:	A, if $x \le a$, $\forall x \in A$ ($b \le x$, $\forall x \in A$) A poset has at most one greatest element and
r i iiculciii.	at most one least element.
• Upper (lower)	element $a \in A$ such that $b \le a$ $(a \le b)$
bound of subset B of	for all $b \in B$
poset A:	101 un 0 C B
• Least upper bound	element $a \in A$ such that a is an upper (<i>lower</i>)
(greatest lower	bound of B and $a \le a'$ ($a' \le a$), where a'
bound) of subset B	is any upper (<i>lower</i>) bound of B
of poset A:	

I: Product Sets and Quotient Sets

- 1.1 If $A = \{a \mid a \text{ is a real number}\}\$ and $B = \{1.2.3.4\}$. sketch each of the following in the Cartesian Plane:
- (a) $A \times B$
- (b) $B \times A$
- 1.2. List all the possible partitions of the set $A = \{a, b, c\}$
- 1.3. Given $B = \{0, 3, 6, 9, 12, 15, ...\}$. What are the partitions of B containing: -
 - (a) two infinite series.
 - (b) three infinite series.

II: Relations and Digraphs

- 2.1. If $A = \{1, 2, 3, 4, 5\}$ and R is a relation on A defined as aRb if and only if $a \le b$. Find the domain, range, matrix and digraph of R.
- 2.2. If $A = \{1, 2, 3, 4, 8\}$ and R is a relation on A defined as aRb if and only if $a + b \le 9$. Find the domain, range, matrix and digraph of R.
- 2.3. If $A = Z^+$ and R is the relation defined by a R b if and only $\exists a, k \in Z^+$ so that $a = b^k$, (k depends on a and b). Which of the following belong to *R*?
- (a) (4, 16) (f)(2,32)
- (b) (1, 7) (c) (8, 2)
- (d) (3, 3) (e) (2, 8)
- 2.4. Given $A = \{1,2,3,4,5,6\}$ and R is a relation on A defined as aRb if and only if a is a multiple of b. Find
- the R relative sets: -(a) R(3)

 - (b) R(6) (c) $R(\{2,4,6\})$
- 2.5. Given $A = \mathbb{R}$, the set of real numbers. Give a description of the relation R specified by the shaded region.

- 2.6. Given $A = \{1, 2, 3, 4\}$ and R is a relation on A with $M_R = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}$. What is the relation R? Also draw its digraph.
- 2.7. Find the relation determined by the digraph given below along with the matrix M_R .

2.8. List the in-degree and out-degree of each vertex of the digraph of Q.2.7.

2.9. Given $A = \{1,2,3,4,5,6,7\}$ and

 $R = \{(1,2), (1,4), (2,3), (2,5), (3,6), (4,7)\}$. Compute the restriction of R to B for the subset of A given by

 $B = \{1,2,4,5\}$

2.10. If S is the product set $\{1, 2, 3\} \times \{a, b\}$. How many relations are there on S?

2.11. Given R is relation whose digraph is given below, draw the digraph of R^2 and also list M_{R^2} and $M_{R^{\infty}}$.

2.12. Given R is a relation on set A, whose digraph is given below. If $\pi_1: 1, 7, 5$ and $\pi_2: 5, 6, 7, 4, 3$; find the composition $\pi_2 \circ \pi_1$.

- 2.13. Given $A = \{1, 2, 3, 4\}$ and R is a relation on A. Determine whether R is reflexive, irreflexive, symmetric, anti-symmetric or transitive: -
- (a) $R = \{(1,1), (2,2), (3,3)\}$
- (b) $R = \{ \}$
- 2.14. Given $A = Z^+$ and R is a relation on A defined as aRb if and only if $a = b^k$ for some $k \in Z^+$ (i.e. a is an exponent of b). Determine whether R is reflexive, irreflexive, symmetric, anti-symmetric or transitive.
- 2.15. Let $A = \{1, 2, 3\}$ and R be a relation on A, whose matrix is given below. Determine whether R is an equivalence relation.

$$M_R = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

2.16. Let R be a relation on A whose digraph is given below. Determine whether R is an equivalence relation.

- 2.17. If $\{ \{a, b, c\}, \{d, e\}, \{f\} \}$ is a partition of the set A = $\{a, b, c, d, e, f\}$ determine the corresponding equivalence relation.
- 2.18. Let = $\{a, b, c\}$; $B = \{1, 2, 3\}$; R and S be relations from A to B. $R = \{(a, 1), (b, 1), (c, 2), (c, 3)\}$

 $S = \{(a, 1), (a, 2), (b, 1), (b, 2)\}.$ Determine $\overline{R}, R \cap S,$ $R \cup S$ and S^{-1} .

2.19. Let R and S be relations on set A whose digraphs are given below. Determine \overline{R} , $R \cap S$, $R \cup S$ and S^{-1} .

2.20. Let $A = \{1,2,3\}$; $B = \{a,b,c,d\}$ and R and S be relation from set A to set B, whose matrices are given below. Determine \overline{S} , $R \cap S$, $R \cup S$ and R^{-1} .

$$M_R = \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} M_S = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 \end{bmatrix}$$

- 2.21. Let $A = \{2,3,6,12\}$ and let *R* and *S* be relations on A defined by aRb if and only if 2|(a - b) and aSb if and only if 3|(a-b)I respectively.
- (a) Determine \overline{S} , $R \cap S$, $R \cup S$ and R^{-1} .
- (b) Does $(2,3) \in S \circ R$?
- 2.22. Which properties of relation on a set A are preserved by composition?
- 2.23. Let $A = \{a, b, c, d, e\}$ and let M_R and M_S respectively, be the matrices of the relations R and S on A as given below. Compute $M_{R \circ R}$, $M_{R \circ S}$, $M_{S \circ R}$ and $M_{S \circ S}$.

$$M_{R} = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \end{bmatrix}; M_{S} = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- 2.24. Let R be a relation from sets A to B and let S and T be relations from sets B to C. Prove or disprove: -
- (a) $(S \cup T) \circ R = (S \circ R) \cup (T \circ R)$
- (b) $(S \cap T) \circ R = (S \circ R) \cap (T \circ R)$
- 2.25. Let $A = \{a, b, c\}$ and

 $R = \{(a, a), (a, b), (b, c), (a, c), (c, a), (c, b)\}.$

- (a) Compute the Matrix $M_{R^{\infty}}$ of the transitive closure of Rby using the formula $M_{R^{\infty}} = M_R \vee (M_R)_{\odot}^2 \vee (M_R)_{\odot}^3$.
- (b) Compute the transitive closure of R by using Warshall's Algorithm.
- 2.26. Let $A = \{a, b, c, d\}$ and let R be a relation on A whose matrix is given below. Find the matrix of the transitive closure using Warshall's Algorithm.

$$M_R = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2.27. Let $A = \{a, b, c, d\}$ and let R and S be relations on A whose matrices are given below. Compute the matrix of the smallest relation containing R and S. Also list the elements of this relation.

$$M_R = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}; M_S = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

2.28. Compute the partition of A that corresponds to the equivalence relation found in Q2.27.

III: Functions

3.1. Let $A=B=C=\mathbb{R}$, the set of real numbers and let : $A \rightarrow$ B, $f: B \to C$ be defined by f(a) = a + 1 and g(b) = $b^2 + 2$. Find: -

- (a) $(g \circ f)(x)$
- (b) $(f \circ g)(x)$
- 3.2. For a non-empty set A, if |A| = n
- (a) How many functions are there from A to A.
- (b) How many bijections are there from A to A.
- 3.3. For a non-empty sets A and B, if |A| = |B| = n and $f: A \to B$ is an everywhere defined function, show that the following three statements are equivalent: -
 - (a) f is one to one.
 - (b) f is onto.
 - (a) f is a one-to-one correspondence.
- 3.4. Given \mathbb{R} is the set of real numbers, which of the following functions $f: \mathbb{R} \to \mathbb{R}$ are permutations of \mathbb{R} .
- (a) f is defined by f(a) = a 1
- (b) f is defined by $f(a) = a^2$
- (c) f is defined by $f(a) = a^3$
- (d) f is defined by $f(a) = e^a$

3.5. If
$$A = \{1, 2, 3, 4, 5, 6\}$$
,
$$p_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 1 & 2 & 6 & 5 \end{pmatrix}$$
$$p_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 1 & 5 & 4 & 6 \end{pmatrix}$$
$$p_3 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 3 & 2 & 5 & 4 & 1 \end{pmatrix}$$
Compute (a) p^{-1} (b) $p_3 \circ p_1$ (c) $(p_2 \circ p_1) \circ p_3$

- 3.6. If $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$,
- (a) compute the product $(3,5,7,8) \circ (1,3,2)$
- (b) compute the product $(2,6) \circ (3,5,7,8) \circ (2,5,3,4)$
- (c) write the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 6 & 5 & 7 & 8 & 4 & 3 & 2 \end{pmatrix}$ as a product of disjoint cycles.
- (d) Is the permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 6 & 5 & 7 & 8 & 4 & 3 & 2 & 1 \end{pmatrix}$ odd or even?

(e) Find the period of the permutation
$$p = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 4 & 3 & 1 & 5 & 6 \end{pmatrix}$$

IV: Partial Order and Partially Ordered Sets

- 4.1. Determine whether the relation R is a partial order on set A
 - (a) A = Z and aRb if and only if a = 2b.
 - (b) A = Z and aRb if and only if $b^2 | a$.
 - (c) A = Z and aRb if and only if $a = b^k$
 - for some $k \in \mathbb{Z}^+$. Note that k depends on a and b.
 - (d) $A = \mathbb{R}$ and aRb if and only if $a \leq b$.

4.2. Draw the Hasse Diagram of the relation R on the following sets: -

(a) $A = \{1, 2, 3, 4\},\$

$$R = \{(1,1), (1,2), (2,2), (2,4), (1,3), (3,3), (3,4), (1,4), (4,4)\}.$$
(b)
$$A = \{a,b,c,d,e\},$$

$$R = \{(a,a), (b,b), (c,c), (a,c), (c,d), (c,e), (a,d), (d,d), (a,e), (b,c), (b,d), (b,e), (e,e)\}.$$

4.3. Describe the ordered pairs in the relation determined by the Hasse diagram on the set $A = \{a, b, c, d\}$ given in Figs. 1(a) and 1(b).

4.4. Determine the Hasse diagram of the relation R on $A = \{a, b, c, d, e\}$ whose matrix, M_R is given below.

$$M_R = \begin{bmatrix} 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- 4.5. For the following, consider the partial order of divisibility on the set A. Draw the Hasse diagram of the poset and determine which posets are linearly ordered.
 - (a) $A = \{1, 2, 3, 5, 6, 10, 15, 30\}$
 - (b) $A = \{2, 4, 8, 16, 32\}$
 - (c) $A = \{3, 6, 12, 36, 72\}$
 - (d) $A = \{1, 2, 3, 4, 5, 6, 10, 12, 15, 30, 60\}$
- 4.6. Let $B = \{2, 3, 6, 9, 12, 18, 24\}$ and let $A = B \times B$. Define the following relation on A: (a, b) < (a', b') if and only if $a \mid a'$ and $b \leq b'$, where \leq is the usual partial order. Show that \prec is a partial order.
- 4.7. Let $A = \{1, 2, 3, 5, 6, 10, 15, 30\}$ and consider the partial order \leq of divisibility on A. That is, define $a \leq b$ to mean that $a \mid b$. Let A' = P(S), where $S = \{e, f, g\}$, be the poset with partial order \subseteq . Show that (A, \leq) and (A',\subseteq) are isomorphic.
- 4.8. Let $A = \{1, 2, 4, 8\}$ and let \leq be the partial order of divisibility on A. Let $A' = \{0, 1, 2, 3\}$ and let \leq be the usual relation "less than or equal to" on integers. Show that (A, \leq) and (A', \leq) are isomorphic posets.
- 4.9. For each of the posets whose Hasse diagram is given in Figs 2(a) and 2(b), list the set of largest pair of elements that are incomparable to one another.

- Determine all maximal and minimal elements of the posets given below: -
 - (a) $A = \{x | x \text{ is a real number and } 0 < x \le 1\}$ with the usual partial order \leq .
 - (b) $A = \{2, 3, 4, 6, 8, 24, 48\}$ with the partial order of divisibility.
- Determine the maximal, minimal, least and greatest elements (if they exist) of the poset, whose Hasse diagram is given in Fig 3.

- 4.12. Determine the least and greatest elements (if they exist) of the posets given below: -
 - (a) $A = \{x | x \text{ is a real number and } 0 < x < 1\}$ with the usual partial order \leq .
 - (b) $A = \{x | x \text{ is a real number and } 0 \le x \le 1\}$ with the usual partial order \leq .
 - (c) $A = \{2, 4, 6, 8, 12, 18, 24, 36, 72\}$ with the partial order of divisibility.
 - (d) $A = \{2, 3, 4, 6, 8, 24, 36\}$ with the partial order of divisibility.
- 4.13. If A is a poset with Hasse diagram as given in Fig.4 and $B=\{4,5,6\}$. Find (if they exist): -
 - (a) all upper bounds of B,
 - (b) all lower bounds of B,
 - (c) the least upper bound of B,
- (d) the greatest lower bound of B.
- Let R be a partial order on a finite set A. Describe how to use the matrix M_R to find the least and greatest elements of A if they exist.
- Let $A = \{a | a \in Z^+ \text{ and } 2 \le a \le 100\}$ with the partial order of divisibility on A i.e. $a \le b$ if and only if a divides b where $a, b \in A$
 - (a) How many maximal elements does (A, \leq) have?
 - (b) How many minimal elements does (A, \leq) have?
 - (c) Determine the largest subset of A that is a linear order under divisibility.
- Let * be a binary operation on a set A, and suppose that * satisfies the following properties $\forall a, b, c \in A$.
 - (a) a = a * a

Idempotent property

- (b) a * b = b * a
- Commutative property
- (c) a * (b * c) = (a * b) * c Associative property

Define a relation \leq on A by $a \leq b$ if and only if a = a * b. Show that (A, \leq) is a poset, and for all a, b in A, GLB(a, b) = a * b.