中山大学本科生期末考试

考试科目:《概率与数理统计》(A卷)

学年学期: 2019 学年第 2 学期

学 院/系: 物理学院

姓 名: _____

学 号: ______

考试方式: 开卷	年级专业:	
考试时长: 120 分钟	班 别:	
任课老师:何春山、凌家杰		
警示《中山大学授予学士	-学位工作细则》第八条:"考试作弊者,不授予等	学士学位。"
以下为试题区域,	,共四道大题,总分 100 分,考生请在答题纸上作答	
一、选择题(每题只有唯一答	答案; 共 6 小题, 每小题 3 分, 共 18 分)	
1. 当事件 <i>A</i> 和 <i>B</i> 同时发生时,导	事件 <i>C</i> 必发生,则。	
$A. P(C) \le P(A) + P(B) - P(B)$	B. $P(C) \ge P(A) + P(B)^{-1}$	
C. P(C) = P(AB)	D. $P(C) = P(A \cup B)$	
2. 某地 1987 年全国高校统考物理的考生名列该考生之后。	理成绩 X 服从正态分布 N(42,36), 若考生得 48 分, 则大	、 约有%
A. 84	B. 56	
C. 723. 己知离散型随机变量 <i>X</i> 的可	D. 66 「能取值为-2, 0, 2, $\sqrt{5}$, 相应的概率依次为 $\frac{1}{a}$, $\frac{3}{2a}$, $\frac{3}{a}$	$\frac{5}{4}, \frac{7}{8}, $
$P(X \le 2 \mid X \ge 0)$ 为。	a 2a 2	4 <i>a</i> 8 <i>a</i>

4. 设随机变量 $X_1, X_2, X_3 \cdots, X_9$ 相互独立同分布, $E(X_i) = 1, D(X_i) = 1, i = 1, \cdots, 9$ 。令

A. $\frac{21}{29}$ B. $\frac{22}{29}$ C. $\frac{2}{3}$ D. $\frac{1}{3}$

 $S_9 = \sum_{i=1}^9 X_i$,则对任意 $\varepsilon > 0$,从切比雪夫不等式直接可得____。

A.
$$P\{|S_9 - 1| \le \varepsilon\} \ge 1 - \frac{1}{\varepsilon^2}$$

B.
$$P\{|S_9 - 9| \le \varepsilon\} \ge 1 - \frac{9}{\varepsilon^2}$$

C.
$$P\{|S_9 - 9| \le \varepsilon\} \ge 1 - \frac{1}{\varepsilon^2}$$

A.
$$P\{|S_9 - 1| \le \varepsilon\} \ge 1 - \frac{1}{\varepsilon^2}$$
 B. $P\{|S_9 - 9| \le \varepsilon\} \ge 1 - \frac{9}{\varepsilon^2}$ C. $P\{|S_9 - 9| \le \varepsilon\} \ge 1 - \frac{1}{\varepsilon^2}$ D. $P\{|\frac{1}{9}S_9 - 1| \le \varepsilon\} \ge 1 - \frac{1}{\varepsilon^2}$

5. 设 $X \sim N(\mu, \sigma^2)$, $X_1, X_2, X_3, \dots, X_n$ 为其样本, \overline{X} 是样本均值, 记

$$S_1^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2,$$
 $S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$

$$S_2^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$$

$$S_3^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \mu)^2,$$
 $S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$

$$S_4^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

则服从自由度为 n-1 的 t 分布的随机变量是___

A.
$$t = \frac{\overline{X} - \mu}{S_1 / \sqrt{n-1}}$$

$$B. \quad t = \frac{\overline{X} - \mu}{S_2 / \sqrt{n-1}}$$

C.
$$t = \frac{\overline{X} - \mu}{S_2 / \sqrt{n}}$$

D.
$$t = \frac{\overline{X} - \mu}{S_A / \sqrt{n}}$$

6. 设 $X \sim N(\mu, \sigma^2)$, σ^2 为已知,若样本容量n和置信度 $1-\alpha$ 均不变,则对于不同的样本观测值, μ 的置信区间长度____。A. 变长;B. 变短;

- C. 保持不变; D. 不能确定.

二、填空题(共8小题,每小题4分,共32分)

- 1. 一批电子元件共有 100 个, 次品率为 0.05. 连续两次不放回地从中任取一个, 则 第二次才取到正品的概率为 . (用分数表示)
- 2. 设连续随机变量 X 的密度函数为 f(x),则随机变量 $Y=3e^{x}$ 的概率密度函数 $f_{Y}(y) = \underline{\hspace{1cm}}$
- 3. 设 \overline{X} 为总体 $X \sim N(3,4)$ 中抽取的样本 (X_1, X_2, X_3, X_4) 的均值,则 $P(-1 < \overline{X} < 5) =$
- 4. 设二维随机变量(X,Y)的联合概率密度函数为

■中山大学本科生期末考试试卷■

$$f(x, y) = \begin{cases} 1, & |y| < x, 0 < x < 1; \\ 0, & \text{ if } \text{ it } \end{cases}$$

则条件概率密度函数为: 当_____时 , $f_{Y|X}(y|x)$ = _____.

- 5. 设 $X \sim t(n)$, (n > 1), 则随机变量 $Y = \frac{1}{X^2}$ 服从的分布为_____. (需写出自由度)
- 6. 设随机变量 X 的分布函数为 $F(x) = 0.3\Phi(x) + 0.7\Phi(\frac{x-1}{2})$,其中 $\Phi(x)$ 为标准正态分布函数,则 E(X) =
- 7. 设随机变量 X 在区间 [-1, 2] 上服从均匀分布: 随机变量

$$Y = \begin{cases} 1, & X > 0, \\ 0, & X = 0, \\ -1, & X < 0, \end{cases}$$

则方差 $D(Y) = _____.$ (用分数表示)

8. 设 $X \sim N(\mu,1)$, 容量 n=16 , 均值 $\bar{X}=5.2$, 则未知参数 μ 的置信度 0.95 的置信区 间为______.

三、分析计算题(共 5 小题,每小题 10 分,共 50 分)

- 1. 一个工厂有甲、乙、丙三个车间生产同一种产品,这三个车间的产量分别占总产量的 25%,35%,40%。如果甲、乙、丙每个车间成品中的次品分别占其产量的 5%,4%,2%,问从全厂生产出的产品中抽出一个是次品的条件下,它恰好是甲车间生产出来的概率是多少?
- 2. 设随机变量 $X \sim U(0,\pi)$, 求 $Y = \sin X$ 的概率密度函数。
- 3. 设随机变量 X,Y 的联合概率密度函数为:

$$f(x,y) = \begin{cases} C(x+y), & 0 \le y \le x \le 1 \\ 0, & 其他 \end{cases}$$

(1) 求 C:

- (2) 求X,Y的边缘分布;
- (3) 讨论 X与Y 的独立性; (4) 计算 $P(X+Y \le 1)$ 。

■中山大学本科生期末考试试卷■■

4. 设 X_1, X_2, \cdots, X_n 为总体 X 的一个样本,记 N 为样本值 x_1, x_2, \cdots, x_n 中小于 1 的个数。总体 X的密度函数为:

$$f(x;\theta) = \begin{cases} \theta, & 0 < x < 1 \\ 1 - \theta, & 1 \le x < 2 \\ 0, & \sharp \text{ th} \end{cases}$$

 $0 < \theta < 1$. 求参数 θ 的矩估计量和极大似然估计量

5. 用老的铸造法铸造的零件的强度平均值是 0.528 N/mm²,标准差是 0.016 N/mm²。为了降低成本, 改变了铸造方法,现抽取了9个样品,测其强度(N/mm²)为

0.519, 0.530, 0.527, 0.541, 0.532, 0.523, 0.525, 0.511, 0.541 假设强度服从正态分布, 试判断是否没有改变强度的均值和标准差。(检验水平为 $\alpha = 0.05$)

附表: 标准正态分布数值表 χ^2 分布数值表

$$\Phi(1.0) = 0.8413$$

$$\Phi(1.96) = 0.975$$

$$\Phi(2.0) = 0.9772$$

$$\Phi(2.5) = 0.9938$$

$$\chi^{2}_{0.025}(8) = 17.534$$

$$\chi^{2}_{0.075}(8) = 2.180$$

$$\chi^{2}_{0.05}(8) = 15.507$$

$$\chi^{2}_{0.05}(8) = 15.507$$

$$t_{0.025}(9) = 2.2622$$

$$t_{0.05}(9) = 1.8331$$

$$\chi^2_{0.075}(8) = 2.180$$

$$\gamma_{0.05}^2(8) = 15.507$$

$$\chi_{0.95}^2(8) = 2.733$$

t 分布数值表

$$t_{0.025}(8) = 2.306$$

$$(8) = 1.8595$$

$$t_{0.025}(9) = 2.2622$$

$$t_{0.05}(9) = 1.8331$$