

Notation (标记)

From here on:

- N denotes a positive integer (正整数).
- p denote a prime(素数).

Notation: $\mathbb{Z}_N = \{0, 1, 2, ..., N-1\}$

Can do addition and multiplication modulo N (模N的加法与乘法)

Modular arithmetic (模的算术运算)

Examples: let N = 12

in \mathbb{Z}_{12}

5-7 = in \mathbb{Z}_{12}

还满足分配率等运算法则,如: $x\cdot(y+z) = x\cdot y + x\cdot z$ in \mathbb{Z}_{12}

Modular Arithmetic (模运算)

- Modular addition
 - $-[(a \mod n) + (b \mod n)] \mod n = (a + b) \mod n$

Example: $[16 \mod 12 + 8 \mod 12] \mod 12 = (16 + 8) \mod 12 = 0$

- Modular subtraction
 - $-[(a \mod n) (b \mod n)] \mod n = (a b) \mod n$

Example: $[22 \mod 12 - 8 \mod 12] \mod 12 = (22 - 8) \mod 12 = 2$

- Modular multiplication
 - $-[(a \mod n) \times (b \mod n)] \mod n = (a \times b) \mod n$

Example: $[22 \mod 12 \times 8 \mod 12] \mod 12 = (22 \times 8) \mod 12 = 8$

3

Properties of Modular Arithmetic

- Commutative laws (交换律)
 - $-(w + x) \bmod n = (x + w) \bmod n$
 - $-(w \times x) \mod n = (x \times w) \mod n$
- Associative laws (结合律)
 - $-[(w + x) + y] \mod n = [w + (x + y)] \mod n$
 - $-[(w \times x) \times y] \mod n = [w \times (x \times y)] \mod n$
- Distributive law (分配率)
 - $-[w \times (x + y)] \mod n = [(w \times x) + (w \times y)] \mod n$

Greatest common divisor (最大公约数)

<u>Def</u>: For ints. x,y: gcd(x, y) is the greatest common divisor of x,y

Example: gcd(12, 18) = 6

<u>Fact</u>: for all ints. x,y there exist ints. a,b such that $\mathbf{a} \cdot \mathbf{x} + \mathbf{b} \cdot \mathbf{y} = \gcd(\mathbf{x}, \mathbf{y})$

a,b can be found efficiently using the extended Euclid alg (扩展的欧几里得算法).

If gcd(x,y)=1 we say that x and y are relatively prime(互素)

5

6

Greatest Common Divisor (最大公约数)

- Def: gcd(a,b) = max{k, such that k|a and k|b}
- Observations
 - $-\gcd(a,b) = \gcd(|a|,|b|)$
 - $-\gcd(a, 0) = |a|$
 - $-\gcd(a,b) \le \min(|a|,|b|)$
 - -a and b are relatively prime if gcd(a, b) = 1
 - -If $0 \le n$, then gcd(an, bn) = n*gcd(a,b)

More properties of Common divisor

 A number d that is a divisor of both a and b is a common divisor of a and b

Example: common divisors of 30 and 24 are 1, 2, 3, 6

• If d|a and d|b, then d|(a+b) and d|(a-b)

Example: Since 3 | 30 and 3 | 24, 3 | (30+24) and 3 | (30-24)

• If d|a and d|b, then d|(ax+by) for any integers x and y

Example: $3 \mid 30 \text{ and } 3 \mid 24 \implies 3 \mid (2*30 + 6*24)$

7

How to compute GCD(x,y)?

Method one: 算术基本定理

算术基本定理

- Any integer a > 1 can be factored (因子分解) in a unique way as p₁a1 p₂a2 •... ptat
 - Where all $p_1>p_2...>p_t$ are prime numbers and where each $a_i>0$

Examples: $91 = 13^{1} \times 7^{1}$ $11011 = 13^{1} \times 11^{2} \times 7^{1}$

9

Finding the Greatest Common Divisor

Computing GCD by hand:

if
$$a = p_1^{al} p_2^{a2} \dots p_r^{ar}$$
 and $b = p_1^{bl} p_2^{b2} \dots p_r^{br}$,

...where p1 < p2 < ... < pr are prime,

...and ai and bi are nonnegative,

...then
$$gcd(a, b) = p_1^{\min(a1, b1)} p_2^{\min(a2, b2)} \dots p_r^{\min(ar, br)}$$

Method two: Euclid's Algorithm for GCD

Suppose we have integers x, y such that d = gcd(x, y).
 Because gcd(|x|, |y|) = gcd(x, y), assuming x ≥ y>0.

$$x = q_1 y + r_1 \qquad 0 \le r_1 < y$$

• **Prove:** $gcd(x, y) = gcd(y, r_1)$

辗转相除法

• Or gcd(x, y) = gcd(y, x mod y)

12

Euclid's Algorithm for GCD

$$x = q_1y + r_1 & 0 < r_1 < y$$

$$y = q_2r_1 + r_2 & 0 < r_2 < r_1$$

$$r_1 = q_3r_2 + r_3 & 0 < r_3 < r_2$$

$$\vdots$$

$$\vdots$$

$$r_{n-2} = q_nr_{n-1} + r_n & 0 < r_n < r_{n-1}$$

$$r_{n-1} = q_{n+1}r_n + 0$$

$$d = gcd(x,y) = r_n$$

Procedure euclid(x, y)

```
r[0] = x, r[1] = y, n = 1;
while (r[n] != 0) {
    n = n+1;
    r[n] = r[n-2] % r[n-1];
}
return r[n-1];
```

13

14

Example

n	q_n	r_n			
0	-	595			
1	-	408			
2	1	187			
3	2	34			
4	5	17			
5	2	0			
gcd(595,408) = 17					

Exercise

Try to calculate GCD(1071,462) using Euclid algorithm.

```
Step k Equation Quotient and remainder 0 	 1071 = q_0 	 462 + r_0 	 q_0 = 2 	 and 	 r_0 = 147 1 	 462 = q_1 	 147 + r_1 	 q_1 = 3 	 and 	 r_1 = 21 2 	 147 = q_2 	 21 + r_2 	 q_2 = 7 	 and 	 r_2 = 0; algorithm ends
```

15

Extended Euclid's Algorithm

- Let *LC*(*x*, *y*) = {*ax*+b*y*: *a*,*b*∈*Z*} be the set of linear combinations (线性组合) of x and y.
- gcd(x,y) is the smallest positive value of LC(x, y).

$$ax + by = d = gcd(x, y)$$

- Euclid's algorithm can be extended to compute a and b, as well as gcd(x, y).
- Used in Multiplicative inverses and the RSA algorithm. (用在 求模的逆以及RSA算法中)

17

Extended Euclid's Example						
n	q_n	r_n	u_n	v_n		
0	-	595	1	0		
1	-	408	0	1		
2	1	187	1	-1		
3	2	34	-2	3		
4	5	17	11	-16		
5	2	0	-24	35		
gcd(!	gcd(595,408) = 17 = 11*595 + -16*408					

Extended Euclid's Exercise					
n	q_n	r_n	u_n	v_n	
0		99	1	0	
1		78	0		
2	1	21	1	-1	
3	3	15	-3	4	
4	1	6	4	-5	
5	2	3	-11	14	
6		9/			

Modular inversion (模的逆)

<u>**Def**</u>: The **inverse** of x in \mathbb{Z}_N is an element y in \mathbb{Z}_N s.t.

$$x \cdot y = 1 \ in \ \mathbb{Z}_N$$

y is denoted x^{-1} .

Example: let N be an odd integer. The inverse of 2 in \mathbb{Z}_N is

$$\frac{N+1}{2}$$

$$2 \cdot \frac{N+1}{2} = N + 1 = 1 \text{ in } \mathbb{Z}_N$$

Modular inversion

Which elements have an inverse in \mathbb{Z}_N ?

<u>Lemma</u>: $x \text{ in } \mathbb{Z}_N \text{ has an inverse, if and only if gcd(x,N) = 1}$

Proof:

$$gcd(x,N)=1 \Rightarrow \exists a,b: a\cdot x + b\cdot N = 1$$

$$\Rightarrow a \cdot x = 1 in \mathbb{Z}_N$$

$$\Rightarrow x^{-1} = a \ in \ \mathbb{Z}_N$$

21

Finding the Multiplicative Inverse

- Given x and N, how do you find x⁻¹ mod N?
- Extended Euclid's Algorithm
- exteuclid(x, N)

Example						
• 12 ⁻¹ mod3	35					
	n	q_n	r_n	u_n	v_n	
	0		35	1	0	
	1		12	0	1	
	2	2	11	1	-2	
	3	1	1	-1	3	
	4	11	0	12	-35	
gcd(35,12) = 1 =						

23

24

More notation

<u>Def:</u> $\mathbb{Z}_N^* = \text{(set of invertible elements in } \mathbb{Z}_N \text{)} =$ = $\{ x \in \mathbb{Z}_N : \gcd(x, N) = 1 \}$

Examples:

- 1. for prime p, $\mathbb{Z}_p^* = \{1, 2, ..., p-1\}$
- 2. $\mathbb{Z}_{12}^* = \{1, 5, 7, 11\}$

Fermat's theorem (1640)

Thm: Let p be a prime

$$\forall x \in Z_p^*$$
: $x^{p-1} = 1 \text{ in } Z_p$

Example: p=5. $3^4 = 81 = 1$ in Z_5

So: $x \in (Z_p)^* \Rightarrow x \cdot x^{p-2} = 1 \Rightarrow x^{-1} = x^{p-2} \text{ in } Z_p$

another way to compute inverses, but less efficient than Euclid

Dan Bone

25

Exercise

• Try to compute 2¹⁰⁰⁰¹ mod 11

Application: generating random primes

Suppose we want to generate a large random prime say, prime p of length 1024 bits (i.e. $p \approx 2^{1024}$)

Step 1: choose a random integer $p \in [2^{1024}, 2^{1025}-1]$ Step 2: test if $2^{p-1} = 1$ in Z_p If so, output p and stop. If not, goto step 1.

Simple algorithm (not the best). Pr[p not prime] < 2⁻⁶⁰

n Boneh

Dan Bonel

27

Primality test(素性测试)

- **Inputs**: *n*: a value to test for primality, *n*>3; *k*: a parameter that determines the number of times to test for primality
- **Output**: *composite* if *n* is composite, otherwise *probably prime*
- Repeat *k* times:
- Pick a randomly in the range [2, n-2]
- If aⁿ⁻¹ ≠ 1 mod n, then return *composite*
- If composite is never returned: return probably prime

an Boneh

30

29

Euler's generalization of Fermat (1736)

<u>Def</u>: For an integer N define $\varphi(N) = |(Z_N)^*|$ (Euler's φ func.)

Examples: $\phi(12) = |\{1,5,7,11\}| = 4$; $\phi(p) = p-1$ For $N=p \cdot q$: $\phi(N) = N-p-q+1 = (p-1)(q-1)$

Thm (Euler): $\forall x \in (Z_N)^*$: $x^{\phi(N)} = 1$ in Z_N

Example: $5^{\phi(12)} = 5^4 = 625 = 1$ in Z_{12}

Generalization of Fermat. Basis of the RSA cryptosystem

Exercise:验证欧拉定理

The structure of $(Z_p)^*$

 $\exists g \in (Z_n)^*$ such that $\{1, g, g^2, g^3, ..., g^{p-2}\} = (Z_n)^*$

Example: p=7. $\{1, 3, 3^2, 3^3, 3^4, 3^5\} = \{1, 3, 2, 6, 4, 5\} = (Z_7)^*$

Not every elem. is a generator: $\{1, 2, 2^2, 2^3, 2^4, 2^5\} = \{1, 2, 4\}$

Thm (Euler): (Z_n)* is a **cyclic group (循环群)**, that is

g is called a generator (生成元) of (Z_p)*

- x = 3, N = 10
- x= 2, N = 11
- x = 4, N = 12

31

Exercise

• Try to compute 7²²² mod 10.

Exponentiation

Finite cyclic group G (for example $G = \mathbf{Z_p}^*$)

Goal: given g in G and x compute g^x

Example: suppose $x = 53 = (110101)_2 = 32+16+4+1$

Then: $g^{53} = g^{32+16+4+1} = g^{32} \cdot g^{16} \cdot g^4 \cdot g^1$

Dan Roneh

33

34

The repeated squaring alg.

Input: g in G and x>0; **Output**: g^x

write
$$x = (x_n x_{n-1} ... x_2 x_1 x_0)_2$$

 $y \leftarrow g$, $z \leftarrow 1$ for i = 0 to n do: if (x[i] == 1): $z \leftarrow z \cdot y$ $y \leftarrow y^2$ output z
 example:
 g⁵³

 Y
 Z

 g²
 g

 g⁴
 g

 g³
 g⁵

 g³
 g⁵

 g³²
 g²¹

 g³²
 g²¹

 g³³
 g²¹

 g³³
 g²¹

 g³³
 g²¹

53 = (110101)₂

Exercise

- Use the modular exponentiation algorithm to calculate
- (1) 59 mod 42
- (2) 11¹³ mod 53

35