André Biedenkapp

Personal Information

Date of birth: 13.07.1992 Nationality: German

Work experience

Position held.....

Machine Learning Lab Scientific Researcher

Albert-Ludwigs-University Freiburg Since 10.2017

Past positions.

Machine Learning Lab Student Assistant

Albert-Ludwigs-University Freiburg 10.2015 - 09.2017

Assisting in the implementation of research projects

Chair of Computer Architecture

Albert-Ludwigs-University Freiburg 04.2014 - 09.2014 Student Assistant

Maintenance of the mobile robots for the Hardware-Labcourse

Research Interests

- Dynamic Algorithm Configuration
- Learning to Learn
- Deep Reinforcement Learning
- o Automated Machine Learning and Reinforcement Learning

Education

PhD. Candidate (Computer Science)

Albert-Ludwigs-University Freiburg

Machine Learning Lab

Since 02.2018

Thesis Working Title: Dynamic Algorithm Configuration by Reinforcement Learning

Summer School

Reinforcement Learning Summer SCOOL (RLSS'19)

In: Lille, France

Computer Science

Computer Science

July 2019

Topics: Reinforcement Learning and Bandits

Master of Science (M.Sc.), Final Grade: 1.2

Albert-Ludwigs-University Freiburg 2014 - 2017

Thesis: Per Instance Algorithm Configuration (Grade 1.0)

Supervisor: Prof. Dr. Frank Hutter

Albert-Ludwigs-University Freiburg

2011 - 2014 Bachelor of Science (B.Sc.)

Thesis: Data Analysis for the Selection of Recording Channels on Multielectrode-Arrays (Grade 1.7)

Supervisor: Prof. Dr. Wolfram Burgard

Teaching Experience

Automated Machine Learning

Massive Open Online Course (MOOC)

Graduate course

Published 04.2021

Creation of coding exercises. Involved in setting up MOOC

Teaching Assistant	
Automated Machine Learning	(Flipped Classroo
Graduate course	04.2022 – 09.202
Creation and grading of exercises & final pro	(Figure 1 Classes
Automated Machine Learning <i>Graduate course, Virtual</i>	(Flipped Classroo 04.2021 – 09.202
	teaching through Zoom and GitHub classroo
Automated Machine Learning	(Flipped Classroo
Graduate course, Virtual	04.2020 – 09.202
	teaching through Zoom and GitHub classroo
Automated Machine Learning	
Graduate course	04.2019 - 09.201
Creation and grading of exercises & final pro	
Machine Learning for Automated Alg	10 2010 - 02 201
Graduate course Creation and grading of exercises & final pro	10.2018 – 03.201
Machine Learning for Automated Alg	
Graduate course	10.2017 - 03.201
Creation and grading of exercises & final pro	
Hardware-Labcourse	
Undergraduate course	04.2014 - 09.201
Assisting students with practical exercises	
Student Supervision	
MSc Thesis	
Baohe Zhang, Joint supervision with R. I On the Importance of Hyperparameter Optin	
MSc Project & Thesis	_
Gresa Shala, Published at PPSN'20	04.2019 - 05.202
Learning to Optimize CMA-ES	
MSc Thesis	
Furkan Bozkurt	03.2019 – 11.201
RL-DCBO: Reinforcement Learning Guided I MSc Thesis	yesian Optimization
Theresa Eimer, Follow up work published	12.2018 – 09.201
Improved Meta-Learning for Algorithm Cont	
MSc Thesis	9
Kevin Hättig	12.2018 - 09.201
Model-Based Population Based Training	
MSc Thesis	
Oliver Brunner, Joint supervision with D. Learning Domain-Independent Heuristics with	
MSc Project	
Theresa Eimer & Kevin Hättig	04.2018 – 12.201
Algorithm State Description for Algorithm C	
Publications	© 0000-0002-8703-8

Journal & Conference Publications.....

[1] **A. Biedenkapp***, N. Dang*, M. S. Krejca*, F. Hutter, and C. Doerr. "Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration". In: *Proceedings of the Genetic and Evolution*-

- ary Computation Conference (GECCO'22). **Joint first authorship**, Conference Rating: A, Nominated for Best Paper. ACM, July 2022.
- [2] J. Parker-Holder, R. Rajan, X. Song, A. Biedenkapp, Y. Miao, T. Eimer, B. Zhang, V. Nguyen, R. Calandra, A. Faust, F. Hutter, and M. Lindauer. "Automated Reinforcement Learning (AutoRL): A Survey and Open Problems". In: *Journal of Artificial Intelligence Research (JAIR)* 74 (2022), pp. 517–568
- [3] M. Lindauer, K. Eggensperger, M. Feurer, **A. Biedenkapp**, D. Deng, C. Benjamins, R. Sass, and F. Hutter. "SMAC3: A Versatile Bayesian Optimization Package for Hyperparameter Optimization". In: *Journal of Machine Learning Research (JMLR) MLOSS* 23.54 (2022), pp. 1–9.
- [4] **A. Biedenkapp**, R. Rajan, F. Hutter, and M. Lindauer. "TempoRL: Learning When to Act". In: *Proceedings of the Thirty-eighth International Conference on Machine Learning. Acceptance rate:* 21.5%, Conference Rating: A*. July 2021, pp. 914–924.
- [5] T. Eimer, **A. Biedenkapp**, F. Hutter, and M. Lindauer. "Self-Paced Context Evaluation for Contextual Reinforcement Learning". In: *Proceedings of the Thirty-eighth International Conference on Machine Learning. Acceptance rate: 21.5%, Conference Rating: A**. July 2021, pp. 2948–2958.
- [6] T. Eimer, A. Biedenkapp, M. Reimer, S. Adriaensen, F. Hutter, and M. Lindauer. "DACBench: A Benchmark Library for Dynamic Algorithm Configuration". In: *Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence (IJCAI'21). Acceptance rate: 19.3%, Conference Rating: A**. ijcai.org, Aug. 2021, pp. 1668–1674.
- [7] D. Speck*, **A. Biedenkapp***, F. Hutter, R. Mattmüller, and M. Lindauer. "Learning Heuristic Selection with Dynamic Algorithm Configuration". In: *Proceedings of the Thirty-First International Conference on Automated Planning and Scheduling (ICAPS'21)*. **Joint first authorship**, *Acceptance rate:* ~30%, *Conference Rating:* A*. Aug. 2021, pp. 597–605.
- [8] B. Zhang, R. Rajan, L. Pineda, N. Lambert, **A. Biedenkapp**, K. Chua, F. Hutter, and R. Calandra. "On the Importance of Hyperparameter Optimization for Model-based Reinforcement Learning". In: *Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS'21). Acceptance rate: 29.8%, Conference Rating: A.* Apr. 2021.
- [9] J. KH Franke, G. Köhler, A. Biedenkapp, and F. Hutter. "Sample-Efficient Automated Deep Reinforcement Learning". In: Proceedings of the International Conference on Learning Representations (ICLR'21). Published online: iclr.cc, Acceptance rate: 28.7%, Conference Rating: A*. May 2021.
- [10] G. Shala*, A. Biedenkapp*, N. Awad, S. Adriaensen, F. Hutter, and M. Lindauer. "Learning Step-Size Adaptation in CMA-ES". In: Proceedings of the Sixteenth International Conference on Parallel Problem Solving from Nature (PPSN'20). Joint first authorship, Conference Rating: A. Sept. 2020, pp. 691–706.
- [11] **A. Biedenkapp**, H. F. Bozkurt, T. Eimer, F. Hutter, and M. Lindauer. "Dynamic Algorithm Configuration: Foundation of a New Meta-Algorithmic Framework". In: *Proceedings of the European Conference on Artificial Intelligence (ECAI)*. Acceptance rate: 26.8%, Conference Rating: A. June 2020, pp. 427–434.
- [12] **A. Biedenkapp**, J. Marben, M. Lindauer, and F. Hutter. "CAVE: Configuration Assessment, Visualization and Evaluation". In: *Proceedings of the International Conference on Learning and Intelligent Optimization (LION'18)*. June 2018.
- [13] **A. Biedenkapp**, M. Lindauer, K. Eggensperger, C. Fawcett, H. Hoos, and F. Hutter. "Efficient Parameter Importance Analysis via Ablation with Surrogates". In: *Proceedings of the AAAI conference. Acceptance rate: 24.6%, Conference Rating: A**. Feb. 2017, pp. 773–779.

Workshop Publications & Preprints....

[14] R. Sass, E. Bergman, **A. Biedenkapp**, F. Hutter, and M. Lindauer. "DeepCAVE: An Interactive Analysis Tool for Automated Machine Learning". In: *Workshop on Adaptive Experimental Design and Active Learning in the Real World (ReALML@ICML'22)*. 2022.

- [15] **A. Biedenkapp**, D. Speck, S. Sievers, F. Hutter, M. Lindauer, and J. Seipp. "Learning Domain-Independent Policies for Open List Selection". In: *Workshop on Bridging the Gap Between AI Planning and Reinforcement Learning (PRL@ICAPS'22)*. 2022.
- [16] C. Benjamins, T. Eimer, F. Schubert, A. Biedenkapp, B. Rosenhan, F. Hutter, and M. Lindauer. "CARL: A Benchmark for Contextual and Adaptive Reinforcement Learning". In: Workshop on Ecological Theory of Reinforcement Learning (EcoRL@NeurIPS'21). Sept. 2021.
- [17] S. Izquierdo, J. Guerrero-Viu, S. Hauns, G. Miotto, S. Schrodi, **A. Biedenkapp**, T. Elsken, D. Deng, M. Lindauer, and F. Hutter. "Bag of Baselines for Multi-objective Joint Neural Architecture Search and Hyperparameter Optimization". In: *Workshop on Automated Machine Learning (AutoML@ICML'21)*. May 2021.
- [18] S. Müller, **A. Biedenkapp**, and F. Hutter. "In-Loop Meta-Learning with Gradient-Alignment Reward". In: *AAAI workshop on Meta-Learning Challenges (MetaLearning@AAAI'21)*. Feb. 2021.
- [19] N. Awad, G. Shala, D. Deng, N. Mallik, M. Feurer, K. Eggensperger, A. Biedenkapp, D. Vermetten, H. Wang, C. Doerr, M. Lindauer, and F. Hutter. "Squirrel: A Switching Hyperparameter Optimizer Description of the entry by AutoML.org & IOHprofiler to the NeurIPS 2020 BBO challenge". In: arXiv:2012.08180 (Dec. 2020). Winning entry of the BBO Competition@NeurIPS'20 on a metalearnable search space.
- [20] **A. Biedenkapp**, R. Rajan, F. Hutter, and M. Lindauer. "Towards TempoRL: Learning When to Act". In: Workshop on Inductive Biases, Invariances and Generalization in RL (BIG@ICML'20). July 2020.
- [21] T. Eimer, A. Biedenkapp, F. Hutter, and M. Lindauer. "Towards Self-Paced Context Evaluation for Contextual Reinforcement Learning". In: Workshop on Inductive Biases, Invariances and Generalization in RL (BIG@ICML'20). July 2020.
- [22] S. Adriaensen, **A. Biedenkapp**, G. Shala, N. Awad, T. Eimer, M. Lindauer, and F. Hutter. "Automated Dynamic Algorithm Configuration". In: *arXiv*:2205.13881 [cs.AI] (2022). Under Review.
- [23] Carolin Benjamins, Theresa Eimer, Frederik Schubert, Aditya Mohan, André Biedenkapp, Bodo Rosenhan, Frank Hutter, and Marius Lindauer. "Contextualize Me The Case for Context in Reinforcement Learning". In: *arXiv*:2202.04500 [cs.LG] (2022).
- [24] R. Rajan, J. L. B. Diaz, S. Guttikonda, F. Ferreira, **A. Biedenkapp**, and Frank Hutter. "MDP Playground: Controlling Dimensions of Hardness in Reinforcement Learning". In: *arXiv*:1909.07750v3 (Oct. 2020).
- [25] **A. Biedenkapp**, H. F. Bozkurt, F. Hutter, and M. Lindauer. "Towards White-Box Benchmarks for Algorithm Control". In: *IJCAI 2019 DSO Workshop*. Aug. 2019.
- [26] M. Lindauer, M. Feurer, K. Eggensperger, A. Biedenkapp, and F. Hutter. "Towards Assessing the Impact of Bayesian Optimization's Own Hyperparameters". In: IJCAI 2019 DSO Workshop. Aug. 2019.
- [27] M. Lindauer, K. Eggensperger, M. Feurer, **A. Biedenkapp**, J. Marben, P. Müller, and F. Hutter. "BOAH: A Tool Suite for Multi-Fidelity Bayesian Optimization & Analysis of Hyperparameters". In: *arXiv*:1908.06756 (Aug. 2019).

Blog Posts.

- [28] **A. Biedenkapp**, R. Rajan, F. Hutter, and M. Lindauer. "TempoRL Learning When to Act". In: *Personal Blog* (May 2022). URL: https://andrebiedenkapp.github.io/blog/2022/temporl/.
- [29] **A. Biedenkapp**, N. Dang, M. S. Krejca, F. Hutter, and C. Doerr. "Theory-Inspired Parameter Control Benchmarks for DAC". In: *Personal Blog* (May 2022). URL: https://andrebiedenkapp.github.io/blog/2022/gecco/.
- [30] N. Lambert, B. Zhang, R. Rajan, and **A. Biedenkapp**. "The Importance of Hyperparameter Optimization for Model-based Reinforcement Learning". In: https://bair.berkeley.edu/blog (Apr. 2021). URL: https://bair.berkeley.edu/blog/2021/04/19/mbrl/.

- [31] R. Rajan, A. Biedenkapp, T. F. Runge, and J. Franke. "AutoRL: AutoML in the Realm of Deep Reinforcement Learning". In: https://www.automl.org/automl-blog (Apr. 2021). URL: https://www.automl.org/blog-autorl.
- [32] **A. Biedenkapp**. "Learning Step-Size Adaptation in CMA-ES". In: https://www.automl.org/automl-blog (Aug. 2020). URL: https://www.automl.org/learning-step-size-adaptation-in-cmaes.
- [33] **A. Biedenkapp**. "Dynamic Algorithm Configuration". In: https://www.automl.org/automl-blog (Feb. 2020). URL: https://www.automl.org/dynamic-algorithm-configuration.
- [34] **A. Biedenkapp** and F. Hutter. "BOHB". In: https://www.automl.org/automl-blog (Aug. 2018). URL: https://www.automl.org/blog_bohb.
- [35] **A. Biedenkapp**, K. Eggensperger, M. Feurer, and F. Hutter. "2nd AutoML Challenge". In: https://www.automl.org/automl-blog (Aug. 2018). URL: https://www.automl.org/blog-2nd-automl-challenge.

Patents

- [36] **Biedenkapp, A.**, G. Shala, S. Adriaensen, N. Awad, M. Lindauer, and F. Hutter. "Method and Device for Learning a Strategy and for Implementing the Strategy". U.S. pat. req. 17/305,586. Robert Bosch GmbH. July 9, 2021. Filed.
- [37] S. Müller, **Biedenkapp, A.**, and F. Hutter. "Verbesserte Vorrichtung zum Anlernen von maschinellen Lernsysteme für Bildverarbeitung". German pat. DE202021100225. Robert Bosch GmbH. Feb. 12, 2021. URL: https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE202021100225U1.
- [38] D. Speck, **Biedenkapp, A.**, R. Matmüller, F. Hutter, and M. Lindauer. "Device and Method for Planning and Operation of a Technical System". U.S. pat. req. 17/242,790. Robert Bosch GmbH. Apr. 28, 2021. Filed.
- [39] D. Speck, **Biedenkapp, A.**, R. Matmüller, F. Hutter, and M. Lindauer. "Device and Method for Planning and Operation of a Technical System". European pat. req. EP20178576.3 1203. Robert Bosch GmbH. *Also filed requests for US patent and CN patent*. June 1, 2020. URL: http://v3.espacenet.com/textdoc?IDX=EP3920103. Filed.
- [40] **Biedenkapp, A.**, H. F. Bozkurt, F. Hutter, and M. Lindauer. "Method, Device and Computer Program for Adjusting a Hyperparameter". European pat. req. EP3748551. Robert Bosch GmbH. June 11, 2020. URL: http://v3.espacenet.com/textdoc?IDX=EP3748551. Filed.

Presentations

Invited Talks & Competitively-Selected Tutorials.	
Dynamic Algorithm Configuration	02 2022
ELLIS Meetup Freiburg, Freiburg, Germany Advances of Dynamic Algorithm Configuration	03.2022
Bosch Center for Artificial Intelligence, Renningen, Germany	06.2021
Algorithm Configuration: Challenges, Methods and Perspectives IJCAI 2020 Tutorial Jointly with Prof. Marius Lindauer	01.2021
Algorithm Configuration: Challenges, Methods and Perspectives PPSN 2020 Tutorial Jointly with Prof. Marius Lindauer	09.2020
Challenges of Dynamic Algorithm Configuration Bosch Center for Artificial Intelligence, Renningen, Germany	03.2020

Dynamic Algorithm Configuration Institut für Informationsverarbeitung (TNT), University of Hannover	01.2020
Conference Presentations	
The Genetic and Evolutionary Computation Conference GECCO (Joint video presentation with all authors) Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration	Online 07.2022
International Conference on Machine Learning ICML (Poster) TempoRL: Learning When to Act	Online 07.2021
International Conference on Parallel Problem Solving from Nature PPSN (Poster), Netherlands Learning Step-SizeAdaptation in CMA-ES	Leiden 08.2020
	de Compostela 08.2020
Learning and Intelligent OptimizatioN Conference LION (Oral), Greece CAVE: Configuration Assessment, Visualization and Evaluation	Kalamata 06.2018
AAAI Conference on Artificial Intelligence AAAI (Poster), California, USA Efficient Parameter Importance Analysis via Ablation with Surrogates	San Francisco 02.2017
Workshop Presentations	
Bridging the Gap Between AI Planning and Reinforcement Learning PRL@ICAPS'22 Learning Domain-Independent Policies for Open List Selection	Online 06.2022
Inductive Biases, Invariances and Generalization in Reinforcement Learning BIG@ICML'20	Online 07.2020
Towards TempoRL: Learning When to Act Data Science Meets Optimisation DSO@IJCAI'19, Macau (SAR), China Towards White-box Benchmarks for Algorithm Control	Macau 08.2019
Scholarships, Honors and Awards	
Best Paper Award Nomination GECCO'22, Theory-inspired Parameter Control Benchmarks for Dynamic Algorithm Configuration Part Paris and (Tan 1004)	2022
Best Reviewers (Top 10%) ICML'21	2021
Black-Box Optimization Competiton@NeurIPS'20 Part of the AutoML & IOHprofiler Team, 1st place on a meta-learning friendly search space Leaderboard: https://bbochallenge.com/altleaderboard	
Black-Box Optimization Competiton@NeurIPS'20 Part of the AutoML & IOHprofiler Team Leaderboard: https://bbochallenge.com/leaderboard	3rd place 2020
Travel Grant <i>to visit the</i> Thirty-First AAAI Conference on Artificial Intelligence (AAAI-17), \$400	2017
Professional Service	
2nd AutoML Fall School	

2022, Co-Organiser

Journal Reviewing

Computational Intelligence

2022

Journal of the Association for Computing Machinery

2022, 2021

Program Committee Membership at Conferences.....

AAAI Conference on Artificial Intelligence (AAAI)

2018

AutoML Conference (AutoML-Conf)

2022

European Conference on Artificial Intelligence (ECAI)

2020

European Workshop on Reinforcement Learning (EWRL)

2022

International Conference on Machine Learning (ICML)

2021, 2019

Neural Information Processing Systems (NeurIPS)

2022, 2021

NeurIPS Datasets and Benchmarks (NeurIPS DBT)

2021 (Track 1 & Track 2)

Program Committee Membership at Workshops.....

ICLR Workshop on Agent Learning in Open-Endedness (ALOE)

2022

ICML Workshop on Automated Machine Learning (AutoML@ICML)

2021, 2020, 2019, 2018

NeurIPS Workshop on Meta-Learning (MetaLearn@NeurIPS)

2019

Programming Skills

Excellent: Python, Bash, LATEX

Good: C, C#, C++ **Basic**: Matlab, Java

Selected Open-Source Projects

GitHub Page: https://github.com/AndreBiedenkapp

https://github.com/automl/DAC

DAC

Role: Developer

DAC is the first dynamic algorithm configurator which enables configuration not only to specific problem instances but also at each time-step. To gain insights into the strengths and weaknesses of this reinforcement learning based configurator DAC comes with example white-box benchmarks.

https://github.com/automl/DACBench

DACBench

Role: Contributor

DACBench is a benchmark library for Dynamic Algorithm Configuration. Its focus is on reproducibility and comparability of different DAC methods as well as easy analysis of the optimization process.

https://github.com/automl/ParameterImportance

PyImp

Role: Developer

PyImp is an easy to use tool that helps developers to identify the most important parameters of their algorithms. Given the data of a configuration run with SMAC3, PyImp allows for usage of various parameter importance methods to determine which parameters have the most influence on the algorithms behaviour.

https://github.com/automl/SMAC3

SMAC3

Former Role: Contributor

Python implementation of SMAC (sequential model-based algorithm configuration). SMAC is a tool for automated algorithm configuration.

Languages

Native: German Fluent: English Basic: French