

Aufgabe 3.1 Alte Rechenaufgabe

- % Aufgabe 3.1 % Drei Reisende finden, waehrend sie zusammen so dahingehen, einen Ranzen % mit 73 Gulden. % Sie stellen fest, dass diese 73 Gulden zusammen mit der % Barschaft der ersten beiden das Doppelte dessen sind, was % der erste und dritte und der zweite und dritte gemeinsam bei sich haben. % Diese 73 Gulden ergeben aber auch mit dem Besitz des ersten und dritten % das Dreifache dessen, was der zweite und dritte und der erste und zweite % mit sich fuehren. % Und schliesslich ergeben diese 73 Gulden zusammen mit der Barschaft des % zweiten und dritten das Vierfache dessen, was der erste und zweite % und der erste und dritte zusammen bei sich tragen. % Wie viele Gulden besitzt jeder? % Setzen Sie dieses Skript mit Ihrer Lösung fort. % Geben Sie die Ergebnisse in Sätzen aus (Strings benutzen). % Testen Sie anschließend die Ergebnisse und geben Sie auch diese % Antworten aus.
- % Loesungsvorschlag:

응

Aufgabe 3.2 Widerstandsnetzwerk

Die Kirchhoff'schen Regeln liefern für den skizzierten Stromkreis

die Gleichungen

$$I_1 + I_3 - I_2 - I_5 = 0$$

 $I_3 + I_4 - I_5 = 0$
 $R I_3 - W + R I_5 = 0$
 $3 R I_1 - U - V + R I_2 = 0$
 $V + W - R I_3 - R I_2 + 2 R I_4 = 0$

Fasst man die unbekannten Ströme I_1 bis I_5 im Vektor x zusammen, dann können die Gleichungen in der Form A x = b angeschrieben werden.

Wie groß sind die Ströme I_1 bis I_5 , wenn die Widerstände und Spannungen durch R = 300 und U = V = 300 V, W = 200 V gegeben sind.

Schreiben Sie ein MATLAB-Skipt und geben Sie die Ergebnisse für die Ströme an.

Variieren Sie die Werte für R, U, Vund W(spielen).

Aufgabe 3.3 Exzentrischer Stoß

Zwei gelenkig miteinander verbundene Stäbe sind im Punkt A drehbar gelagert. Die Stäbe haben jeweils die Länge a=0,4 m und die Masse M=1 kg. Eine kleine Kugel mit der Masse m=2 kg trifft im Punkt C mit der Geschwindigkeit v=10 m/s senkrecht auf den zweiten Stab. Der Abstand von Punkt C zum Gelenk B beträgt s=0,3 m. Die Stoßziffer $\epsilon=0,1$ beschreibt den Energieverlust beim Aufprall der Kugel auf den Stab.

Während des Stoßes treten im Lager A, im Gelenk B sowie im Auftreffpunkt C die Kraftstöße Δp_A , Δp_B und Δp_C auf. Unmittelbar nach dem Stoß drehen sich die Stäbe mit den Winkelgeschwindigkeiten Ω_1 und Ω_2 . Zur Berechnung stehen die Gleichungen

$$\begin{split} M\frac{a}{2}\Omega_1 &= \Delta p_B - \Delta p_A \\ Ma\Omega_1 + M\frac{a}{2}\Omega_2 &= \Delta p_C - \Delta p_B \\ Ma\Omega_1 + Ms\,\Omega_2 &= mv(1+\epsilon) - \Delta p_C \\ \frac{1}{12}Ma^2\Omega_1 &= \frac{a}{2}\Delta p_A + \frac{a}{2}\Delta p_B \\ \frac{1}{12}Ma^2\Omega_2 &= \left(s - \frac{a}{2}\right)\Delta p_C + \frac{a}{2}\Delta p_B \end{split}$$

zur Verfügung. Fasst man nun die Unbekannten im Spaltenvektor

$$x = [\Omega_1 \ \Omega_2 \ \Delta p_A \ \Delta p_B \ \Delta p_C]^T$$

zusammen, dann können die Gleichungen in der Form A x = b angeschrieben werden.

Erstellen Sie eine MATLAB-Funktion, welche die Winkelgeschwindigkeiten der Stäbe und die Kraftstöße in den Lagern zum Zeitpunkt des Aufpralls berechnet.

Variieren Sie nun den Auftreffpunkt der Kugel im Bereich $0 \le s \le a$. Stellen Sie in einem figure die Winkelgeschwindigkeiten sowie die Kraftstöße über dem Auftreffpunkt dar. Achten Sie auf eine sinnvolle Darstellung der unterschiedlichen physikalischen Größen.