IOWA STATE UNIVERSITY

Department of Computer Science

The Role of Similarity in Detecting Feature Interaction in Software Product Lines

Zahra Khoshmanesh
Iowa State University
Dept. of Computer Science
zkh@iastate.edu

Robyn R. Lutz
Iowa State University
Dept. of Computer Science
rlutz@iastate.edu

Outline

- Introduction
- Related Work
- Description Of Approach
- Results
- Conclusion and Future Work

Software Product Line (SPL)

Family of software products that *share* common features as well as other optional or alternative features that it is worthwhile to study those products together as a *set*.¹

¹ D. L. Parnas, "On the design and development of program families," IEEE Transactions on software engineering, no. 1, pp. 1–9, 1976.

Feature-Oriented Domain Analysis (FODA)

- First graphical representation of a SPL.
- Feature: "a prominent or distinctive user-visible aspect, quality, or characteristic of a software system or systems,"

Figure 1: FODA representation of a Software product line case study

¹ K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, "Feature-oriented domain analysis (FODA) feasibility study," Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1990.

Software Aging in SPL

SPL evolve over time as new features are added.¹

Performance

Failure rate

One Possible Reason : Feature Interaction

¹ S. Johnsson and J. Bosch, "Quantifying software product line ageing, "Software Product Lines: Economics, Architectures, and Implications, 2000.

Feature Interaction

- Integrate two or more features from a feature model to produce a new product, but they do not work together as intended (Behavioral Interaction).
- Example :
 - Email Client + Encrypt/Decrypt
 - Email Client + Forward
 - Email Client + Encrypt/Decrypt + Forward
- Violates a security property of system: E-mail content shall be kept encrypted if received email was encrypted

Detection of Feature Interaction

- Difficult
- Currently depends primarily on Testing
 - Costly
 - Fails to exploit developers' knowledge of prior feature interactions that exist in the product line(PL)
 - Late

Our Idea to improve detection of feature Interaction in a new Product in a SPL

knowledge of prior feature interactions in a PL

detect earlier, in the design phase.

Similarity measures

Two Goals

Understand whether information about features' structural elements suffices to detect potential new Feature Interaction.

Investigate whether similarity measures can help achieve this detection.

Research Questions

RQ1

How effectively can we measure the similarity between a new feature and existing features using structural similarity measures?

RQ2

To what extent does a high similarity measure between a new and an existing feature, in the context of a known feature interaction, detect possible feature interactions in a new product?

Case study: Electronic Email System[Hall(2005), Apel(2011)]

Figure 1: Software product line case study: Electronic Email System

Addressbook : manage e-mail contacts

Autoresponder: respond to e-mails

Email Client or Base: basic e-mail client

Decrypt: decrypt incoming e-mails

Encrypt: encrypt outgoing e-mails

Forward : forward incoming e-mails

Sign: sign outgoing e-mails

Verify: verify e-mail signatures

Outline

- Introduction
- Related Work
- Description Of Approach
- Results
- Conclusion and Future Work

Related Work

 Johnsson and Bosch(2000) proposed an approach to quantify the aging of a software architecture for a software product line.

 Cotroneo, Natella, and Pietrantuono(2013) investigated the relation between software aging and software metrics.

 Al-Hajjaji, et al.(2014) proposed a similarity-based prioritization that increases coverage of SPL test cases to detect errors in reasonable time.

Outline

- Introduction
- Related Work
- Description Of Approach
- Results
- Conclusion and Future Work

Our proposed Similarity Framework

Feature Interaction Detection Similarity-Based Framework

Artifacts We Used

Repository of Artifacts

Name of Class Attributes of a Feature Name of Class Methods of a Feature

Known Feature Interactions in a SPL

Feature Name	Attribute name	Method name
Decrypt	private key	incoming
Sign	private key, signed, signkey	outgoing, sign, printmail, issigned

Similarity measures

Jaccard

$$\begin{split} J: F \times F &\longrightarrow [0,1] \\ J(Fi,Fj) &= \frac{|Fi \cap Fj|}{|Fi \cup Fj|}, \quad \text{Where} \quad Fi,Fj \in F \end{split} \tag{1}$$

S

Hamming

$$H: F \times F \longrightarrow [0,1]$$
 (2)
$$H(Fi, Fj) = \frac{|Fi \cap Fj| + |(S \setminus Fi) \cap (S \setminus Fj)|}{|S|},$$
 Where $Fi, Fj \in F, S = \bigcup_{i \in I} Fi, I = \{1, ..., n\}$

S

- 1: Two features are identical
- **0**: Two features are totally different

Jaccard/Hamming Calculation

Jaccard

$\begin{array}{l} F1 = \{a,b,c,d\} \text{ , } F2 = \{a,c,f\} \\ |F1 \cap F2| = |\{a,c\}| = 2 \\ J(F1,F2) = \frac{|F1 \cap F2|}{|F1 \cup F2|} = \frac{2}{5} = 0.4 \end{array}$

Hamming

$$\begin{split} F1 &= \{a,b,c,d\} \;,\; F2 = \{a,c,f\}, F3 = \{b,e\} \\ S &= \bigcup_{i \in I} Fi = F1 \cup F2 \cup F3 = \{a,b,c,d,e,f\} \\ |F1 \cap F2| &= |\{a,c\}| = 2 \\ |(S \backslash F1) \cap (S \backslash F2)| &= |\{e\}| = 1 \\ H(F1,F2) &= \frac{|F1 \cap F2| + |(S \backslash F1) \cap (S \backslash F2)|}{|S|} = \frac{2+1}{6} = 0.5 \end{split}$$

Known feature interactions from the original sources

[Hall(2005), Apel(2011)]

Feature Id	Features Involved
0	Decrypt, Forward
1	Addressbook ,Encrypt
3	Sign ,Verify
4	Sign, Forward
6	Encrypt, Decrypt
7	Encrypt, Verify
8	Encrypt, Autoresponder
9	Encrypt, Forward
11	Decrypt, Autoresponder
13	Autoresponder, Forward
27	Verify, Forward

Known Feature Interaction	Encrypt, Autoresponder (8)			
Possible new features	Add	dressbook, Decrypt,	Forward, Sign, Verify	
	En	crypt	Autoresponder	
Similar features by Jaccard	Ve	erify	Decrypt	
Jaccard Detection	Verify-Autoresponder		Encrypt-Decrypt	
True Detection	X		✓	
Similar feature by Hamming	Decry	ot Verify	Decrypt	
Hamming Detection	(Decrypt – (Verify–		Encrypt-Decrypt	
	Autoresponder) Autoresponder)			
True Detection	✓	X	✓	

Known Feature Interaction	Encrypt, Autoresponder (8)			
Possible new features	Addressbook, Decrypt, Forward, Sign, Verify			
	Encrypt Autoresponder			
Similar features by Jaccard	Verify	Decrypt		

Known Feature Interaction	Encrypt, Autoresponder (8)			
Possible new features	Addressbook, Decrypt, Forward, Sign, Verify			
	Encrypt	Autoresponder		
Similar features by Jaccard	Verify	Decrypt		

Jaccard Distance ([0-1] ;1:same 0:totally different)							
	addressbook	autoresponder	decrypt	encrypt	forward	sign	verify
addressbook		0.000	0.000	0.059	0.000	0.053	0.000
autoresponder	0.000		0.167	0.000	0.111	0.000	0.100
decrypt	0.000	0.167		0.000	0.167	0.091	0.143
encrypt	0.059	0.000	0.000		0.000	0.125	0.167
forward	0.000	0.111	0.167	0.000		0.000	0.100
sign	0.053	0.000	0.091	0.125	0.000		0.067
verify	0.000	0.100	0.143	0.167	0.100	0.067	

Known Feature Interaction	Encrypt, Autoresponder (8)			
Possible new features	Addressbook, Decrypt, Forward, Sign, Verify			
	Encrypt Autoresponder			
Similar features by Jaccard	Verify	Decrypt		

Known Feature Interaction	Encrypt, Autoresponder (8)				
Possible new features	Addressbook, Decrypt, Forward, Sign, Verify				
	Encrypt Autoresponder				
Similar features by Jaccard	Verify	Decrypt			
Jaccard Detection	Verify-Autoresponder	Encrypt-Decrypt			
True Detection	X	✓			

Feature Id	Features Involved	
0	Decrypt, Forward	
1	Addressbook ,Encrypt	
3	Sign ,Verify	
4	Sign , Forward	
6	Encrypt, Decrypt	
7	Encrypt, Verify	
8	Encrypt , Autoresponder	
9	Encrypt, Forward	
11	Decrypt, Autoresponder	
13	Autoresponder, Forward	
27	Verify, Forward	

Outline

- Introduction
- Related Work
- Description Of Approach
- Results
- Conclusion and Future Work

RQ1: How effectively can we measure the similarity between a new feature and existing features using structural similarity measures?

Yes,
We can effectively
measure the
similarity of two
features.

1		Jaccard	Distance ([0-1] ;1:5ame	o:totally o	different)			
2		addressbook	autoresponder	decrypt	encrypt	forward	sign	verify	
3	addressbook		0.000	0.000	0.059	0.000	0.053	0.000	
4	autoresponder	0.000		0.167	0.000	0.111	0.000	0.100	
5	decrypt	0.000	0.167		0.000	0.167	0.091	0.143	
6	encrypt	0.059	0.000	0.000		0.000	0.125	0.167	
7	forward	0.000	0.111	0.167	0.000		0.000	0.100	
8	sign	0.053	0.000	0.091	0.125	0.000		0.067	
9	verify	0.000	0.100	0.143	0.167	0.100	0.067		
10									
11									
12		Hammir	g Distance ([0-	1] ;1: same	o:totally	different)		
13		addressbook	autoresponder	decrypt	encrypt	forward	sign	verify	
14	addressbook		0.810	0.848	0.797	0.810	0.772	0.797	
15	autoresponder	0.810		0.937	0.835	0.899	0.810	0.886	
16	decrypt	0.848	0.937		0.873	0.937	0.873	0.924	
17	encrypt	0.797	0.835	0.873		0.835	0.823	0.873	
18	forward	0.810	0.899	0.937	0.835		0.810	0.886	
19	sign	0.772	0.810	0.873	0.823	0.810		0.823	
20	verify	0.797	0.886	0.924	0.873	0.886	0.823		
21									

Jaccard/Hamming Distance between features in the Electronic Mail System

RQ2: To what extent does a high similarity measure between a new and an existing feature, in the context of a known feature interaction, detect possible feature interactions in a new product?

	True detection	False detection	Accuracy
Jaccard	16	7	70%
Hamming	19	7	73%

Summary of feature interaction detection using Jaccard and Hamming distance

FI ID	Detected by Jaccard	Detected by Hamming
0	✓	✓
1	X	X
3	✓	X
4	✓	√
6	✓	✓
7	✓	✓
8	✓	√
9	✓	✓
11	✓	√
13	√	√
27	✓	✓
Total	10	9

1 Addressbook ,Encrypt

Why Not detected?
Addressbook does not have
the highest similarity value of
any of the features in the SPL

Outline

- Introduction
- Related Work
- Description Of Approach
- Results
- Conclusion and Future Work

Conclusion

- The heuristic behind this study :
 - similar features often behave in the same way
- Our results :
 - using similarity measures between features in a software product line can help us detect possible feature interactions at the design stage.

Future Work

Explore more case studies,

- Additional structural artifacts
- Improved similarity metric

Thank you!

Supported in part by NSF grant 1513717

Reference

- [1] D. L. Parnas, "On the design and development of program families," IEEE Transactions on software engineering, no. 1, pp. 1–9, 1976.
- [2] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson, "Feature-oriented domain analysis (FODA) feasibility study," Carnegie-Mellon Univ Pittsburgh Pa Software Engineering Inst, Tech. Rep., 1990.
- [3] S. Johnsson and J. Bosch, "Quantifying software product line ageing, "Software Product Lines: Economics, Architectures, and Implications, 2000.
- [4]R. J. Hall, "Fundamental nonmodularity in electronic mail," Automated Software Engineering, vol. 12, no. 1, pp. 41–79, 2005.
- [5] S. Apel, H. Speidel, P. Wendler, A. Von Rhein, and D. Beyer, "Detection of feature interactions using feature-aware verification," in Proceedings of the 2011 26th IEEE/ACM International Conference on Automated Software Engineering. IEEE Computer Society, 2011, pp. 372–375.
- [6] D. Cotroneo, R. Natella, and R. Pietrantuono, "Predicting aging-related bugs using software complexity metrics," Performance Evaluation, vol. 70, no. 3, pp. 163–178, 2013.
- [7] M. Al-Hajjaji, T. Th¨um, J. Meinicke, M. Lochau, and G. Saake, "Similarity-based prioritization in software product-line testing," in Proceedings of the 18th International Software Product Line Conference-Volume 1. ACM, 2014, pp. 197–206.

IOWA STATE UNIVERSITY