#UNIX Assignment

##Data Inspection

###Attributes of fang_et_al_genotypes

here is my snippet of code used for data inspection:

Is -Ih fang_et_al_genotypes.txt

file fang_et_al_genotypes.txt

head -n 10 fang_et_al_genotypes.txt

tail -n 10 fang_et_al_genotypes.txt

less fang_et_al_genotypes.txt

wc fang_et_al_genotypes.txt

wc -l fang_et_al_genotypes.txt

wc -w fang_et_al_genotypes.txt

wc -c fang_et_al_genotypes.txt

awk -F'\t' '{print NF; exit}' fang_et_al_genotypes.txt

awk -F'\t' " fang_et_al_genotypes.txt | sort -u

head -n 1 fang_et_al_genotypes.txt

cut -f1 fang_et_al_genotypes.txt | sort | uniq | head -n 20

cut -f1 fang_et_al_genotypes.txt | sort | uniq | wc -l

grep -E "\bNA\b|\b.\b|\b?\b" fang_et_al_genotypes.txt | head -n 10

cut -f1 fang_et_al_genotypes.txt | sort | uniq -d

By inspecting this file I learned that:

- 1. The file size is 11 MB
- 2. It is an ACII text with very long lines
- 3. it has 2783 Lines
- 4. It has 2744038 words
- 5. It has 11051939 Bytes
- 6. It has 986 columns

here is my snippet of code used for data inspection:

Is -Ih snp_position.txt

file snp_position.txt

head -n 10 snp position.txt

tail -n 10 snp_position.txt

less snp_position.txt

wc snp_position.txt

wc -l snp_position.txt

wc -w snp_position.txt

wc -c snp_position.txt

awk -F'\t' '{print NF; exit}' snp_position.txt

awk -F'\t' " snp_position.txt | sort -u

head -n 1 snp_position.txt

cut -f1 snp_position.txt | sort | uniq | head -n 20

cut -f1 snp_position.txt | sort | uniq | wc -l

cut -f1 snp_position.txt | sort | uniq -d

By inspecting this file I learned that:

- 1. The file size is 81 KB
- 2. It is an ACII text
- 3. it has 984 Lines
- 4. It has 13198 words
- 5. It has 82763 Bytes
- 6. It has 15 columns

##Data Processing

###Maize Data

Step 1: Extract ZMMIL, ZMMLR, and ZMMMR from the Group column awk ' $3 \sim /Group|ZMMIL|ZMMLR|ZMMMR/'$ fang_et_al_genotypes.txt > maize_data.txt

Step 2: Transpose the extracted data awk -f transpose.awk maize_data.txt > maize_transposed.txt

Step 3: Sort the transposed file and add the header

- head -n 1 maize_transposed.txt > header.txt tail -n +4 maize_transposed.txt | sort -k1,1 > sorted_maize.txt cat header.txt sorted_maize_txt > sorted_maize_with_header.txt
- Step 4: Process SNP position data head -n 1 snp_position.txt > snp_header.txt tail -n +2 snp_position.txt | sort -k1,1 > sorted_snp.txt cat snp_header.txt sorted_snp.txt > sorted_snp_with_header.txt cut -f 1,3,4 sorted_snp_with_header.txt > snp_trimmed.txt
- Step 5: Join SNP data with maize data sed 's/Sample_ID/SNP_ID/' sorted_maize_with_header.txt > maize_final.txt join -1

 1 -2 1 -t \$"\t' snp trimmed.txt maize final.txt > maize joined.txt
- Step 6: Extract unknown and multiple positions grep -E "(Chromosome|unknown)" maize_joined.txt > maize_unknown.txt grep -E "(Chromosome|multiple)" maize_joined.txt > maize_multiple.txt
 - Step 7: Sort by increasing position and replace missing data head -n 1 maize_joined.txt > maize_header.txt tail -n +2 maize_joined.txt | sort -k3,3n > maize_sorted_asc.txt cat maize_header.txt maize_sorted_asc.txt | sed 's!?/?!?!g' > maize_final_asc.txt
 - Step 8: Sort by decreasing position and replace missing data tail -n +2 maize_joined.txt | sort -k3,3nr > maize_sorted_desc.txt cat maize_header.txt maize_sorted_desc.txt | sed 's!?/?!-!g' > maize_final_desc.txt
- Step 9: Extract chromosomes (using a loop for efficiency) for i in {1..10}; do awk -v chr="\$i" '\(2 == chr' maize_final_asc.txt > maize_chr\)_asc.txt awk -v chr="\$i" '\(2 == chr' maize_final_desc.txt > maize_chr\)_desc.txt done

Here is my brief description of what this code does: I wrote brief description of each line in previous section

###Teosinte Data

- here is my snippet of code used for data processing Step 1: Extract ZMPBA, ZMPIL, and ZMPJA from the Group column awk '\$3 ~ /Group|ZMPBA|ZMPIL|ZMPJA/' fang_et_al_genotypes.txt > teosinte_data.txt
 - Step 2: Transpose the extracted data awk -f transpose.awk teosinte_data.txt > teosinte_transposed.txt
 - Step 3: Sort the transposed file and add the header head -n 1 teosinte_transposed.txt > header.txt tail -n +4 teosinte_transposed.txt | sort -k1,1 > sorted_teosinte.txt cat header.txt sorted_teosinte.txt > sorted_teosinte_with_header.txt
- Step 4: Join SNP data with teosinte data sed 's/Sample_ID/SNP_ID/' sorted_teosinte_with_header.txt > teosinte_final.txt join -1 1 -2 1 -t \$'\t' snp_trimmed.txt teosinte_final.txt > teosinte_joined.txt
 - Step 5: Extract unknown and multiple positions grep -E "(Chromosome|unknown)" teosinte_joined.txt > teosinte_unknown.txt grep -E "(Chromosome|multiple)" teosinte_joined.txt > teosinte_multiple.txt
- Step 6: Sort by increasing position and replace missing data head -n 1 teosinte_joined.txt > teosinte_header.txt tail -n +2 teosinte_joined.txt | sort -k3,3n > teosinte_sorted_asc.txt cat teosinte_header.txt teosinte_sorted_asc.txt | sed 's!?/?!?!g' > teosinte_final_asc.txt

Step 7: Sort by decreasing position and replace missing data tail -n +2 teosinte_joined.txt | sort -k3,3nr > teosinte_sorted_desc.txt cat teosinte_header.txt teosinte_sorted_desc.txt | sed 's!?/?!-!g' > teosinte_final_desc.txt

Step 8: Extract chromosomes (using a loop for efficiency)

for i in {1..10}; do awk -v chr="\$i" '\(2 == chr' teosinte_final_asc.txt > teosinte_chr\)_asc.txt awk -v chr="\$i" '\(2 == chr' teosinte_final_desc.txt > teosinte_chr\)_desc.txt done

Here is my brief description of what this code does: You can Find Breif Description of each line above that.

Following steps are for making folders for better undeerstanding:

Step 1: Create Folder Structure

Create Maize and Teosinte folders

mkdir -p Maize/increasing Maize/decreasing

mkdir -p Teosinte/increasing Teosinte/decreasing

Step 2: Move Maize Files

Move increasing position files for Maize

mv maize_chr*_asc.txt Maize/increasing/

Move decreasing position files for Maize

mv maize_chr*_desc.txt Maize/decreasing/

Move unknown and multiple files for Maize

mv maize_unknown.txt maize_multiple.txt Maize/

Step 3: Move Teosinte Files

Move increasing position files for Teosinte

mv teosinte_chr*_asc.txt Teosinte/increasing/

Move decreasing position files for Teosinte

mv teosinte_chr*_desc.txt Teosinte/decreasing/

Move unknown and multiple files for Teosinte

mv teosinte_unknown.txt teosinte_multiple.txt Teosinte/

Step 4: Create a Folder for Temporary Files

Create a folder named "temp_files" in the current directory

mkdir -p temp_files

Step 5: Move Temporary Files into the Folder

Move all intermediate maize-related files

mv maize_data.txt maize_transposed.txt sorted_maize.txt header.txt maize_final.txt maize_joined.txt maize_sorted_asc.txt

maize_sorted_desc.txt maize_header.txt temp_files/

Move all intermediate teosinte-related files

mv teosinte_data.txt teosinte_transposed.txt sorted_teosinte.txt teosinte_final.txt teosinte_joined.txt teosinte_sorted_asc.txt

teosinte_sorted_desc.txt teosinte_header.txt temp_files/

Move SNP-related intermediate files

mv snp_header.txt sorted_snp.txt sorted_snp_with_header.txt snp_trimmed.txt temp_files/