Práctica 9

En lo que sigue \mathcal{M} ser la σ -álgebra de los conjuntos medibles Lebesgue de \mathbb{R} y μ la medida de Lebesgue. Además, E denotar a un subconjunto medible Lebesgue de \mathbb{R} .

- 1. Sea f una función simple. Probar que |f| es simple.
- **2.** Probar que dada una σ -álgebra \mathcal{A} de subconjuntos de X y dada $f:X\to\mathbb{R}$, son equivalentes:
 - (a) $\{x \in X : f(x) > a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.
 - (b) $\{x \in X : f(x) \le a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.
 - (c) $\{x \in X : f(x) \ge a\} \in \mathcal{A}$ para todo $a \in \mathbb{R}$.
 - (d) $\{x \in X : f(x) < a\} \in \mathcal{A} \text{ para todo } a \in \mathbb{R}.$

Concluir que si $X \in \mathcal{M}$ y $\mathcal{A} = \mathcal{M}$, entonces f es medible si y sólo si vale alguno de (y por lo tanto todos) los ítems de arriba.

- **3.** Sean $f, g: E \to \mathbb{R}$. Probar que:
 - (a) Si f es medible entonces $\{x \in E : f(x) = a\} \in \mathcal{M}$ para todo $a \in \mathbb{R}$.
 - (b) Si f y g son medibles entonces $\{x \in E : f(x) \leq g(x)\} \in \mathcal{M}$.
 - (c) Si f es medible y f(x) = g(x) para casi todo $x \in E$, entonces g es medible.
- **4.** Sean $f, g: E \to \mathbb{R}$ funciones medibles. Probar que:
 - (a) f + g es medible.
 - (b) αf es medible para todo $\alpha \in \mathbb{R}$.
 - (c) f^2 es medible.
 - (d) $f \cdot g$ es medible. Sugerencia: $f \cdot g = \frac{(f+g)^2 - (f-g)^2}{2}$.
- 5. Sea $f: \mathbb{R} \to \mathbb{R}$ monótona. Probar que f es medible.
- **6.** Sea $f:[0,1]\to\mathbb{R}$ una función. Probar que:
 - (a) Si f es continua en [0,1], entonces es medible.
 - (b) Si f es continua en casi todo punto de [0,1] (esto es, si su conjunto de discontinuidades es nulo), entonces es medible.

7. Dada una sucesión $(f_n)_n$ de funciones en E, consideremos las funciones

$$S(x) = \sup_{n \in \mathbb{N}} f_n(x)$$
 y $I(x) = \inf_{n \in \mathbb{N}} f_n(x)$.

Probar que si las funciones f_n son medibles, entonces S e I también lo son.

8. Dada $(f_n)_n$ una sucesión de funciones medibles y no negativas E, sea $f(x) = \sum_{n=1}^{\infty} f_n(x)$. Probar que f es medible, y que

$$\int_{E} f \ d\mu = \sum_{n=1}^{\infty} \int_{E} f_n \ d\mu.$$

9. Sea $f: E \to \mathbb{R}$ una función medible, no negativa e integrable. Probar que si $A \in \mathcal{M}$, entonces

$$\int_A f(x+y) \, d\mu(x) = \int_{A+y} f(x) \, d\mu(x)$$

para todo $y \in \mathbb{R}$ tal que $A + y \subseteq E$.

- 10. Sea $f: E \to \mathbb{R}$ una función medible y acotada. Supongamos que E tiene medida finita. Probar que f es integrable.
- **11.** Sean $f, g : E \to \mathbb{R}$ funciones medibles e integrables tales que para todo $A \subseteq E$ medible se tiene que $\int_A f d\mu = \int_A g d\mu$. Probar que f = g en casi todo punto de E.
- 12. Consideremos $E = [0, +\infty)$. Sea $f_n : E \to \mathbb{R}$ dada por $f_n = (-1/n)\chi_{[0,n]}$. Probar que la sucesión $(f_n)_n$ converge uniformemente a la función nula en E. Probar que, sin embargo $\int_E f_n d\mu = -1$, de manera que

$$\liminf_{n \to \infty} \int_E f_n \ d\mu = -1 < 0 = \int_E \liminf_{n \to \infty} f_n \ d\mu.$$

Deducir que el lema de Fatou no vale si las funciones f_n no son no negativas, aún cuando converjan uniformemente.

- 13. Sean $f: E \to \mathbb{R}$ una función integrable y $(E_n)_{n \in \mathbb{N}}$ una sucesión de subconjuntos medibles de E tales que $E = \bigcup_{n \in \mathbb{N}} E_n$. Probar que:
 - (a) Si los E_n son disjuntos dos a dos entonces

$$\int_{E} f \ d\mu = \sum_{n=1}^{\infty} \int_{E_n} f \ d\mu.$$

(b) Si $(E_n)_{n\in\mathbb{N}}$ es creciente entonces

$$\lim_{n\to\infty} \int_{E_n} f\ d\mu = \int_E f\ d\mu \quad \text{y} \quad \lim_{n\to\infty} \int_{E\backslash E_n} f\ d\mu = 0.$$

14. Sea $f:(0,+\infty)\to\mathbb{R}$ integrable. Probar que para todo x>0 la función $F_x:(0,+\infty)\to\mathbb{R}$ dada por $F_x(t)=f(t)\,e^{-xt}$ es integrable, y que la función

$$g:(0,+\infty)\to\mathbb{R}, \qquad g(x)=\int_{(0,+\infty)}f(t)\,e^{-xt}\,dt$$

es continua.