

Broadband PIN Diode Attenuator Bias Network

Carey Ritchey
613 Duke Court
Plano, TX 75093
Citizenship: Canada

Tom L. Davis
2730 Timberleaf
Carrollton, TX 75006
Citizenship: United States of America

RELATED APPLICATIONS

The present application is related to concurrently filed commonly assigned United States patent application serial number [49581-P029US-10103788] entitled "Linearizer for a PIN Diode Attenuator," the disclosure of which is hereby incorporated herein by reference.

TECHNICAL FIELD

The invention relates generally to signal attenuators and, more particularly, to a controllable attenuator using positive-intrinsic-negative (PIN) diodes.

BACKGROUND

A common requirement in radio frequency (RF) circuits is the control of RF signal levels. For example, often in RF systems, such as CATV cable television systems, RF signal levels vary significantly resulting in unpredictable and/or undesired operation of particular components thereof, such as receivers, tuners, repeaters, and the like. Accordingly, such systems often utilize controllable signal attenuators, such as at the input stage of one of the aforementioned components, in order to provide a relatively constant RF signal level as provided to such components.

Often the above mentioned controllable attenuators are provided with a voltage controlled RF attenuator such as a linear attenuator. A linear attenuator typically has three ports or interfaces; those being an RF input port, an RF output port, and a control input. Ideally, a linear attenuator provides attenuation (generally expressed in decibels) between the RF input and RF output ports that is a linear function of a control signal. Other desirable attributes of a linear attenuator may include maintaining a good impedance match at the RF ports with respect the circuit coupled thereto over the control and frequency range, providing a flat attenuation response over a wide band of frequencies, introducing little or no excess noise into the circuit, and generating little or no distortion in the signals attenuated thereby. In RF systems that operate with signals of more than one octave of RF spectrum (broadband) the attenuator must also ensure that, in addition to acting as an attenuator, the RF impedance (return loss) of both the input and output of the attenuator is held as close as possible to the desired system impedance. Failure to maintain a proper impedance match can greatly affect the system frequency response (power transfer) and noise figure.

However, prior art linear attenuators generally provide a tradeoff with respect to these desirable attributes and, therefore, often provide less than ideal operation in demanding system applications. For example, there is generally a trade off between providing a flat attenuation response across a broadband signal and maintaining a good impedance match throughout the control and frequency range. Similarly, previous attenuation circuit

implementations have experienced a trade off between providing attenuation that is a linear function of the control input and providing a low insertion loss. Specifically, PIN diode attenuator circuits are available that will provide a decibel per volt linearization, but typically will have a minimum of approximately 3 to 4 dB insertion loss.

One common implementation of a linear attenuator consists of a two section embodiment including a PIN diode attenuator section and a linearizer section coupled to the PIN diode attenuator section. In such a configuration, a PIN diode network, such as a π network or a bridge T network, and passive bias components form the PIN diode attenuator section and provide attenuation of signals passed therethrough in response to a control voltage. Specifically, the PIN diodes exhibit a variable RF resistance that is inversely proportion to the DC current through the diode and, therefore, the arrangement of PIN diodes and the corresponding bias components provides a circuit in which variable attenuation is achieved in response to a control voltage applied to bias components.

Such a PIN diode attenuator transfer function of RF attenuation versus DC current is non-linear due to the non-linear RF resistance of the PIN diodes versus bias current. Accordingly, a linearizer section is provided to allow a linear control voltage applied to an input of the linearizer section to result in a corresponding linear attenuation response of an RF signal applied to the PIN diode attenuator section.

Next-generation digital cable set-top boxes, such as those conforming to the OPENCABLE tuner specifications from Cable Television Laboratories, Inc., must provide attenuation in a large dynamic range (gain control range), such as on the order of 30 dB of dynamic range and beyond, while maintaining the RF input impedance of the device, such as 75 ohms. However, PIN diode attenuator configurations, such as those described above, have heretofore been unable to adequately address such requirements. For example, previously known bridge T attenuator structures are precluded for use in the above conditions as 30 dB of dynamic range are not available with commercially available PIN diodes in the prior art bridge T network configurations. Similarly, previously known π attenuator structures,

although perhaps able to achieve a relatively large dynamic range, generally are not able to maintain the return loss or impedance match over this dynamic range. For example, typical prior art π attenuator structures result in poor return loss with designs with greater than 15 dB of attenuation range.

5 Accordingly, a need exists in the art for a controllable attenuator circuit which provides an excellent return loss over a relatively large attenuation range.

PCT/EP2018/052322

SUMMARY OF THE INVENTION

The present invention is directed to a system and method in which PIN diode networks are configured to provide controllable attenuators having a relatively good input and output return loss over a relatively large dynamic range. Preferred embodiments of the present invention provide PIN diode attenuators which are controlled by the application of control (bias) current at two control ports of the PIN diode network.

A preferred embodiment PIN diode attenuator is provided by connecting the PIN diodes in a π network. Preferably, the cathodes of all PIN diodes in the π network are DC grounded, such as through large value inductors coupling the cathodes to a DC ground, providing a common cathode point bias voltage which is constant. The preferred embodiment arrangement provides for control current to be applied to the π network shunt diodes and series diode(s) separately. Accordingly, although the complexity of the attenuator control circuitry is increased by the preferred embodiment multiple control current configuration, this configuration allows control of diode currents independently of each other and, therefore, at any given point the preferred embodiment attenuator circuit may be optimized both for insertion loss and return loss. Moreover, controllable attenuators of the present invention provide a large dynamic range. PIN diode attenuators of the present invention have been proven to exceed 35 dB of attenuation range, while maintaining a return loss better than 16 dB.

Alternative embodiments of the present invention provide a PIN diode attenuator by connecting the PIN diodes in a bridge T network. Preferably, the cathodes of all PIN diodes in the T network are DC grounded, such as through a large value inductor coupling the cathodes to a DC ground, providing a common cathode point bias voltage which is constant. As with the preferred embodiment π network discussed above, the preferred embodiment T network arrangement provides for control current to be applied to the T network shunt diode and series diodes separately. Accordingly, although the complexity of the attenuator control circuitry is increased by the this multiple control current configuration, this configuration

allows control of diode currents independently of each other and, therefore, at any given point the preferred embodiment attenuator circuit may be used to optimize its insertion loss and return loss.

The foregoing has outlined rather broadly the features and technical advantages of the present invention in order that the detailed description of the invention that follows may be better understood. Additional features and advantages of the invention will be described hereinafter which form the subject of the claims of the invention. It should be appreciated by those skilled in the art that the conception and specific embodiment disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present invention. It should also be realized by those skilled in the art that such equivalent constructions do not depart from the spirit and scope of the invention as set forth in the appended claims. The novel features which are believed to be characteristic of the invention, both as to its organization and method of operation, together with further objects and advantages will be better understood from the following description when considered in connection with the accompanying figures. It is to be expressly understood, however, that each of the figures is provided for the purpose of illustration and description only and is not intended as a definition of the limits of the present invention.

BRIEF DESCRIPTION OF THE DRAWING

For a more complete understanding of the present invention, reference is now made to the following descriptions taken in conjunction with the accompanying drawing, in which:

FIGURE 1 shows a typical prior art PIN diode attenuator circuit;

5 FIGURE 2 shows a preferred embodiment π network PIN diode attenuator circuit of

the present invention;

FIGURE 3 shows an alternative embodiment π network PIN diode attenuator circuit
of the present invention; and

FIGURE 4 shows an alternative embodiment T network PIN diode attenuator circuit
of the present invention.

DETAILED DESCRIPTION

A discussion of a typical prior art PIN diode attenuator circuit is helpful in understanding the present invention. Directing attention to FIGURE 1, a typical prior art PIN diode attenuator circuit is shown as attenuator 100. PIN diodes exhibit a variable RF resistance that is inversely proportional to the DC current through the diode. The design of attenuator 100 requires arranging the PIN diodes to form a suitable RF attenuator network while providing DC bias current to each of the PIN diodes. Accordingly, attenuator 100 includes two PIN diodes arranged in a common cathode configuration (diodes D₁₁ and D₂₁) which are mirrored (diodes D₃₁ and D₄₁) to form a configuration commonly referred to as a π network.

The common cathode nodes of attenuator 100 are coupled to a DC ground (whether zero potential ground or some potential with respect thereto) through resistors (R₃₁ for the common cathode node of D₁₁ and D₂₁ and R₄₁ for the common cathode node of D₃₁ and D₄₁). Resistors R₃₁ and R₄₁ are used to adjust the voltage present at that common cathode point as a function of the control voltage ($V_{control}$). The control voltage in attenuator 100 is provided to the pairs of diodes at the common anode node of D₂₁ and D₃₁. As the control voltage is applied across one diode at the anode node, the corresponding cathode voltage will have a tendency to rise or fall, therefore adjusting the bias in the corresponding diode of the pair. As the current through a shunt diode (diode D₁₁ or D₄₁) is increased, the current through the corresponding series diode (diode D₂₁ or D₃₁, respectively) will decrease, and vice versa. With the control voltage $V_{control}$ low, D₂₁ and D₃₁ are biased off and D₁₁ and D₄₁ receive DC bias from the reference voltage $V_{reference}$ resulting in a high attenuation. As the control voltage $V_{control}$ is increased, D₂₁ and D₃₁ start receiving current from $V_{control}$ and stealing current from D₁₁ and D₄₁ resulting in a lower attenuation.

In this design approach, both the series and shunt diodes are driven by a single control signal $V_{control}$, therefore only requiring a single control voltage relative to a standard reference voltage. Unfortunately, however, this design approach does not maintain the RF impedance

of the two diodes, and therefore the attenuator input impedance (as seen by RF_{in}) and the attenuator output impedance (as seen by RF_{out}), over the attenuation range. Accordingly, a challenge with respect to implementing this prior art approach is selecting values of the resistors and $V_{reference}$ that simultaneously satisfy both attenuation range and return loss requirements. However, it has been found that, under the above mentioned circuit conditions, it is not possible to achieve optimal return loss over a range of more than approximately 15 dB of attenuation variation. Failure to maintain a proper impedance match can greatly affect the system frequency response (power transfer) and noise figure.

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180
185
190
195
200
205
210
215
220
225
230
235
240
245
250
255
260
265
270
275
280
285
290
295
300
305
310
315
320
325
330
335
340
345
350
355
360
365
370
375
380
385
390
395
400
405
410
415
420
425
430
435
440
445
450
455
460
465
470
475
480
485
490
495
500
505
510
515
520
525
530
535
540
545
550
555
560
565
570
575
580
585
590
595
600
605
610
615
620
625
630
635
640
645
650
655
660
665
670
675
680
685
690
695
700
705
710
715
720
725
730
735
740
745
750
755
760
765
770
775
780
785
790
795
800
805
810
815
820
825
830
835
840
845
850
855
860
865
870
875
880
885
890
895
900
905
910
915
920
925
930
935
940
945
950
955
960
965
970
975
980
985
990
995
1000
1005
1010
1015
1020
1025
1030
1035
1040
1045
1050
1055
1060
1065
1070
1075
1080
1085
1090
1095
1100
1105
1110
1115
1120
1125
1130
1135
1140
1145
1150
1155
1160
1165
1170
1175
1180
1185
1190
1195
1200
1205
1210
1215
1220
1225
1230
1235
1240
1245
1250
1255
1260
1265
1270
1275
1280
1285
1290
1295
1300
1305
1310
1315
1320
1325
1330
1335
1340
1345
1350
1355
1360
1365
1370
1375
1380
1385
1390
1395
1400
1405
1410
1415
1420
1425
1430
1435
1440
1445
1450
1455
1460
1465
1470
1475
1480
1485
1490
1495
1500
1505
1510
1515
1520
1525
1530
1535
1540
1545
1550
1555
1560
1565
1570
1575
1580
1585
1590
1595
1600
1605
1610
1615
1620
1625
1630
1635
1640
1645
1650
1655
1660
1665
1670
1675
1680
1685
1690
1695
1700
1705
1710
1715
1720
1725
1730
1735
1740
1745
1750
1755
1760
1765
1770
1775
1780
1785
1790
1795
1800
1805
1810
1815
1820
1825
1830
1835
1840
1845
1850
1855
1860
1865
1870
1875
1880
1885
1890
1895
1900
1905
1910
1915
1920
1925
1930
1935
1940
1945
1950
1955
1960
1965
1970
1975
1980
1985
1990
1995
2000
2005
2010
2015
2020
2025
2030
2035
2040
2045
2050
2055
2060
2065
2070
2075
2080
2085
2090
2095
2100
2105
2110
2115
2120
2125
2130
2135
2140
2145
2150
2155
2160
2165
2170
2175
2180
2185
2190
2195
2200
2205
2210
2215
2220
2225
2230
2235
2240
2245
2250
2255
2260
2265
2270
2275
2280
2285
2290
2295
2300
2305
2310
2315
2320
2325
2330
2335
2340
2345
2350
2355
2360
2365
2370
2375
2380
2385
2390
2395
2400
2405
2410
2415
2420
2425
2430
2435
2440
2445
2450
2455
2460
2465
2470
2475
2480
2485
2490
2495
2500
2505
2510
2515
2520
2525
2530
2535
2540
2545
2550
2555
2560
2565
2570
2575
2580
2585
2590
2595
2600
2605
2610
2615
2620
2625
2630
2635
2640
2645
2650
2655
2660
2665
2670
2675
2680
2685
2690
2695
2700
2705
2710
2715
2720
2725
2730
2735
2740
2745
2750
2755
2760
2765
2770
2775
2780
2785
2790
2795
2800
2805
2810
2815
2820
2825
2830
2835
2840
2845
2850
2855
2860
2865
2870
2875
2880
2885
2890
2895
2900
2905
2910
2915
2920
2925
2930
2935
2940
2945
2950
2955
2960
2965
2970
2975
2980
2985
2990
2995
3000
3005
3010
3015
3020
3025
3030
3035
3040
3045
3050
3055
3060
3065
3070
3075
3080
3085
3090
3095
3100
3105
3110
3115
3120
3125
3130
3135
3140
3145
3150
3155
3160
3165
3170
3175
3180
3185
3190
3195
3200
3205
3210
3215
3220
3225
3230
3235
3240
3245
3250
3255
3260
3265
3270
3275
3280
3285
3290
3295
3300
3305
3310
3315
3320
3325
3330
3335
3340
3345
3350
3355
3360
3365
3370
3375
3380
3385
3390
3395
3400
3405
3410
3415
3420
3425
3430
3435
3440
3445
3450
3455
3460
3465
3470
3475
3480
3485
3490
3495
3500
3505
3510
3515
3520
3525
3530
3535
3540
3545
3550
3555
3560
3565
3570
3575
3580
3585
3590
3595
3600
3605
3610
3615
3620
3625
3630
3635
3640
3645
3650
3655
3660
3665
3670
3675
3680
3685
3690
3695
3700
3705
3710
3715
3720
3725
3730
3735
3740
3745
3750
3755
3760
3765
3770
3775
3780
3785
3790
3795
3800
3805
3810
3815
3820
3825
3830
3835
3840
3845
3850
3855
3860
3865
3870
3875
3880
3885
3890
3895
3900
3905
3910
3915
3920
3925
3930
3935
3940
3945
3950
3955
3960
3965
3970
3975
3980
3985
3990
3995
4000
4005
4010
4015
4020
4025
4030
4035
4040
4045
4050
4055
4060
4065
4070
4075
4080
4085
4090
4095
4100
4105
4110
4115
4120
4125
4130
4135
4140
4145
4150
4155
4160
4165
4170
4175
4180
4185
4190
4195
4200
4205
4210
4215
4220
4225
4230
4235
4240
4245
4250
4255
4260
4265
4270
4275
4280
4285
4290
4295
4300
4305
4310
4315
4320
4325
4330
4335
4340
4345
4350
4355
4360
4365
4370
4375
4380
4385
4390
4395
4400
4405
4410
4415
4420
4425
4430
4435
4440
4445
4450
4455
4460
4465
4470
4475
4480
4485
4490
4495
4500
4505
4510
4515
4520
4525
4530
4535
4540
4545
4550
4555
4560
4565
4570
4575
4580
4585
4590
4595
4600
4605
4610
4615
4620
4625
4630
4635
4640
4645
4650
4655
4660
4665
4670
4675
4680
4685
4690
4695
4700
4705
4710
4715
4720
4725
4730
4735
4740
4745
4750
4755
4760
4765
4770
4775
4780
4785
4790
4795
4800
4805
4810
4815
4820
4825
4830
4835
4840
4845
4850
4855
4860
4865
4870
4875
4880
4885
4890
4895
4900
4905
4910
4915
4920
4925
4930
4935
4940
4945
4950
4955
4960
4965
4970
4975
4980
4985
4990
4995
5000
5005
5010
5015
5020
5025
5030
5035
5040
5045
5050
5055
5060
5065
5070
5075
5080
5085
5090
5095
5100
5105
5110
5115
5120
5125
5130
5135
5140
5145
5150
5155
5160
5165
5170
5175
5180
5185
5190
5195
5200
5205
5210
5215
5220
5225
5230
5235
5240
5245
5250
5255
5260
5265
5270
5275
5280
5285
5290
5295
5300
5305
5310
5315
5320
5325
5330
5335
5340
5345
5350
5355
5360
5365
5370
5375
5380
5385
5390
5395
5400
5405
5410
5415
5420
5425
5430
5435
5440
5445
5450
5455
5460
5465
5470
5475
5480
5485
5490
5495
5500
5505
5510
5515
5520
5525
5530
5535
5540
5545
5550
5555
5560
5565
5570
5575
5580
5585
5590
5595
5600
5605
5610
5615
5620
5625
5630
5635
5640
5645
5650
5655
5660
5665
5670
5675
5680
5685
5690
5695
5700
5705
5710
5715
5720
5725
5730
5735
5740
5745
5750
5755
5760
5765
5770
5775
5780
5785
5790
5795
5800
5805
5810
5815
5820
5825
5830
5835
5840
5845
5850
5855
5860
5865
5870
5875
5880
5885
5890
5895
5900
5905
5910
5915
5920
5925
5930
5935
5940
5945
5950
5955
5960
5965
5970
5975
5980
5985
5990
5995
6000
6005
6010
6015
6020
6025
6030
6035
6040
6045
6050
6055
6060
6065
6070
6075
6080
6085
6090
6095
6100
6105
6110
6115
6120
6125
6130
6135
6140
6145
6150
6155
6160
6165
6170
6175
6180
6185
6190
6195
6200
6205
6210
6215
6220
6225
6230
6235
6240
6245
6250
6255
6260
6265
6270
6275
6280
6285
6290
6295
6300
6305
6310
6315
6320
6325
6330
6335
6340
6345
6350
6355
6360
6365
6370
6375
6380
6385
6390
6395
6400
6405
6410
6415
6420
6425
6430
6435
6440
6445
6450
6455
6460
6465
6470
6475
6480
6485
6490
6495
6500
6505
6510
6515
6520
6525
6530
6535
6540
6545
6550
6555
6560
6565
6570
6575
6580
6585
6590
6595
6600
6605
6610
6615
6620
6625
6630
6635
6640
6645
6650
6655
6660
6665
6670
6675
6680
6685
6690
6695
6700
6705
6710
6715
6720
6725
6730
6735
6740
6745
6750
6755
6760
6765
6770
6775
6780
6785
6790
6795
6800
6805
6810
6815
6820
6825
6830
6835
6840
6845
6850
6855
6860
6865
6870
6875
6880
6885
6890
6895
6900
6905
6910
6915
6920
6925
6930
6935
6940
6945
6950
6955
6960
6965
6970
6975
6980
6985
6990
6995
7000
7005
7010
7015
7020
7025
7030
7035
7040
7045
7050
7055
7060
7065
7070
7075
7080
7085
7090
7095
7100
7105
7110
7115
7120
7125
7130
7135
7140
7145
7150
7155
7160
7165
7170
7175
7180
7185
7190
7195
7200
7205
7210
7215
7220
7225
7230
7235
7240
7245
7250
7255
7260
7265
7270
7275
7280
7285
7290
7295
7300
7305
7310
7315
7320
7325
7330
7335
7340
7345
7350
7355
7360
7365
7370
7375
7380
7385
7390
7395
7400
7405
7410
7415
7420
7425
7430
7435
7440
7445
7450
7455
7460
7465
7470
7475
7480
7485
7490
7495
7500
7505
7510
7515
7520
7525
7530
7535
7540
7545
7550
7555
7560
7565
7570
7575
7580
7585
7590
7595
7600
7605
7610
7615
7620
7625
7630
7635
7640
7645
7650
7655
7660
7665
7670
7675
7680
7685
7690
7695
7700
7705
7710
7715
7720
7725
7730
7735
7740
7745
7750
7755
7760
7765
7770
7775
7780
7785
7790
7795
7800
7805
7810
7815
7820
7825
7830
7835
7840
7845
7850
7855
7860
7865
7870
7875
7880
7885
7890
7895
7900
7905
7910
7915
7920
7925
7930
7935
7940
7945
7950
7955
7960
7965
7970
7975
7980
7985
7990
7995
8000
8005
8010
8015
8020
8025
8030
8035
8040
8045
8050
8055
8060
8065
8070
8075
8080
8085
8090
8095
8100
8105
8110
8115
8120
8125
8130
8135
8140
8145
8150
8155
8160
8165
8170
8175
8180
8185
8190
8195
8200
8205
8210
8215
8220
8225
8230
8235
8240
8245
8250
8255
8260
8265
8270
8275
8280
8285
8290
8295
8300
8305
8310
8315
8320
8325
8330
8335
8340
8345
8350
8355
8360
8365
8370
8375
8380
8385
8390
8395
8400
8405
8410
8415
8420
8425
8430
8435
8440
8445
8450
8455
8460
8465
8470
8475
8480
8485
8490
8495
8500
8505
8510
8515
8520
8525
8530
8535
8540
8545
8550
8555
8560
8565
8570
8575
8580
8585
8590
8595
8600
8605
8610
8615
8620
8625
8630
8635
8640
8645
8650
8655
8660
8665
8670
8675
8680
8685
8690
8695
8700
8705
8710
8715
8720
8725
8730
8735
8740
8745
8750
8755
8760
8765
8770
8775
8780
8785
8790
8795
8800
8805
8810
8815
8820
8825
8830
8835
8840
8845
8850
8855
8860
8865
8870
8875
8880
8885
8890
8895
8900
8905
8910
8915
8920
8925
8930
8935
8940
8945
8950
8955
8960
8965
8970
8975
8980
8985
8990
8995
9000
9005
9010
9015
9020
9025
9030
9035
9040
9045
9050
9055
9060
9065
9070
9075
9080
9085
9090
9095
9100
9105
9110
9115
9120
9125
9130
9135
9140
9145
9150
9155
9160
9165
9170
9175
9180
9185
9190
9195
9200
9205
9210
9215
9220
9225
9230
9235
9240
9245
9250
9255
9260
9265
9270
9275
9280
9285
9290
9295
9300
9305
9310
9315
9320
9325
9330
9335
9340
9345
9350
9355
9360
9365
9370
9375
9380
9385
9390
9395
9400
9405

Capacitors C_{12} and C_{22} , such as may be approximately 150 pF in a preferred embodiment, preferably provide DC blocks at the attenuator input and output ports. According to preferred embodiments, capacitors C_{12} and C_{22} cooperate with inductors L_{12} and L_{22} , respectively, to form high pass filters that extend the low frequency performance of the circuit. Cable television signals, for example, are very broadband and, therefore, low value capacitors provided as capacitors C_{12} and C_{22} is counter intuitive. However, experimentation has revealed that these low value capacitors providing the above high pass filter arrangement provides improved low frequency response.

Capacitors C_{32} - C_{52} , such as may be approximately 10,000 pF in a preferred embodiment, preferably provide RF shorts to ground. Inductors L_{12} and L_{22} , such as may be approximately 820 nH in a preferred embodiment, and inductor L_{32} , such as may be approximately 1,500 nH in a preferred embodiment, pass DC bias currents but present high impedance at RF frequencies. Resistors R_{12} and R_{22} , such as may be approximately 470 ohms in a preferred embodiment, preferably decouple the anodes of D_{12} and D_{42} , to thereby block a possible RF leakage path.

In the π network configuration of FIGURE 2, PIN diodes D_{12} and D_{22} are coupled in a common cathode configuration with PIN diodes D_{42} and D_{32} mirrored with respect thereto. Specifically, the two series diodes, D_{22} and D_{32} , are disposed in anti-phase or a common anode configuration. This configuration improves the dynamic range over the linearity of the structure by having the second order products of one diode canceled out by the opposite, non-linear portion generated in the series diode pair. The two shunt diodes, D_{12} and D_{42} , are connect to the two series diodes in a common cathode configuration.

In contrast to the attenuator configuration shown in FIGURE 1, attenuator 200 of the preferred embodiment includes inductors L_{12} and L_{22} effectively providing a DC short to ground at the common cathode nodes. Specifically, the common cathode nodes are connected through RF inductors of a large enough value to have an impedance to make it not appear in the RF spectrum for which attenuator 200 is used to attenuate signals. Accordingly,

the common cathode points of attenuator 200 have a constant DC bias voltage associated therewith in an implementation which does not significantly affect the RF characteristics of the signal path between RF_{in} and RF_{out} . Moreover, it should be appreciated that, by employing a configuration in which a minimum number of inductors are used (three in the preferred embodiment) frequency disturbances caused by such inductors is further minimized.

With the common cathode points of attenuator 200 configured to have a constant DC bias voltage, the preferred embodiment configuration of attenuator 200 provides for separate control of series diodes $D2_2$ and $D3_2$, controlled by a control current provided to port SP_1 , and shunt diodes $D1_2$ and $D4_2$, controlled by a control current provided to port SP_2 . As a result, the return loss of the attenuator can be optimized for any desired insertion loss and return loss. Accordingly, the preferred embodiment configuration described above allows attenuator 200 to operate in a multi-octave structure, such as with the CATV spectrum of frequencies, typically 45 MHz to 870 MHz. Experimentation using the above described preferred embodiment values for the individual components of attenuator 200 has revealed that this preferred embodiment circuit provides in excess of 35 dB of dynamic attenuation range, while maintaining a return loss better than 16 dB, when utilized with the CATV spectrum.

As mentioned above, the two shunt diodes, $D1_2$ and $D4_2$, are connected through two series steering resistors, $R1_2$ and $R2_2$, according to the preferred embodiment. However, it should be appreciated that the use of these steering resistors are provided in the preferred embodiment for simplification with respect to the circuitry controlling attenuator 200. Accordingly, these two steering resistors are not necessary for implementation of a controllable attenuator of the present invention.

According to an alternative embodiment of the present invention, steering resistors $R1_2$ and $R2_2$ are omitted and the two shunt diodes, $D1_2$ and $D4_2$, are provided independent attenuator control currents. This embodiment of the present invention provides additional flexibility with respect to optimizing the match on either end of the attenuator to the

characteristic impedance of the circuit into which it is inserted. For example, this alternative embodiment allows matching from a 50 ohm system to a 75 ohm system, if desired.

As discussed above, diodes D₂ and D₃ in the series arm of the π network serve to suppress even order RF distortion since the distortion induced in D₂ is canceled by that in D₃. However, if even order RF distortion is not a concern in a particular implementation, it should be appreciated that the attenuator can be simplified by replacing one of the series diodes with a capacitor as shown in the alternative embodiment of FIGURE 3. Specifically, in the alternative embodiment of FIGURE 3 diode D₃ has been replaced with capacitor C₆, such as may be approximately 10,000 pF, to thereby provide an attenuator of the present invention without the advantage of the anti-phase or a common anode series diode configuration. However, this configuration provides the cost advantage associated with omitting one diode in favor of a typically less expensive capacitor (which may be significant in mass production quantities) in addition to avoiding the insertion loss caused by that single diode. This alternative embodiment implementation might typically be used in applications where the absolute level of the RF signal applied to the attenuator is low enough that the non-linear effects of the diodes will not have a substantial effect on the operating characteristics of the circuit.

Directing attention to FIGURE 4, another alternative embodiment of the present invention is shown. Attenuator 400 of FIGURE 4 is provided by PIN diodes, diodes D₁₄-D₃₄, such as may be provided by PIN diodes as described above, arranged in a T network. Specifically, attenuator 400 includes two series diodes, D₁₄ and D₂₄, in the RF path and one shunt diode, D₃₄.

As with attenuator 200 described above, attenuator 400 includes an RF input port (RF_{in}) and an RF output port (RF_{out}), such that an RF signal introduced to the RF input port is controllably attenuated by attenuator 400 for output at the RF output port. Attenuator 400 further includes two control current input ports (SP₁ and SP₂) for use in controllably attenuating an RF signal passed therethrough. The control currents I₁ and I₂ are preferably

provided by a linearizer circuit, such as described in the above referenced patent application entitled "Linearizer for a PIN Diode Attenuator," to thereby provide linear attenuation control of the RF signal.

Capacitors C₁₄ and C₂₄, such as may be approximately 150 pF in a preferred embodiment, preferably provide DC blocks at the attenuator input and output ports. Capacitor C₃₄, such as may be approximately 10,000 pF in a preferred embodiment, preferably provides an RF short to ground. Inductor L₂₄, such as may be approximately 1,500 nH in a preferred embodiment, and inductors L₁₄ and L₃₄, such as may be approximately 820 nH in a preferred embodiment, pass DC bias currents but present high impedance at RF frequencies. Preferably, the particular inductors selected for use according to the present invention are selected to be as large as possible to appear as a DC short and an open circuit at high frequencies with the constraint that often large inductors are of poor quality, e.g., have parasitics associated therewith. Preferred embodiments of the present invention may be configured with components varying within approximately 20% of the above specified values.

In the T network configuration of FIGURE 4, PIN diodes D₁₄-D₃₄ are coupled in a common cathode configuration. The two series diodes, D₁₄ and D₂₄, disposed in common the common collector configuration improves the dynamic range over the linearity of the structure by having the second order products of one diode canceled out by the opposite, non-linear portion generated in the series diode pair.

Similar to the preferred embodiment configuration of FIGURE 2, attenuator 400 of this alternative embodiment includes inductor L₂₄ effectively providing a DC short to ground at the common cathode node. Specifically, the common cathode node is connected through an RF inductor of a large enough value to have an impedance to make it not appear in the RF spectrum for which attenuator 400 is used to attenuate signals. Accordingly, the common cathode point of attenuator 400 has a constant DC bias voltage associated therewith in an implementation which does not significantly affect the RF characteristics of the signal path

between RF_{in} and RF_{out} . Moreover, it should be appreciated that, by employing a configuration in which a minimum number of inductors are used (three in the preferred embodiment) frequency disturbances caused by such inductors is further minimized.

With the common cathode point of attenuator 400 configured to have a constant DC bias voltage, the preferred embodiment configuration of attenuator 400 provides for separate control of series diodes $D1_4$ and $D2_4$, controlled by a control current provided to port SP_1 , and shunt diode $D3_4$, controlled by a control current provided to port SP_2 . As a result, the return loss of the attenuator can be optimized for any desired insertion loss and return loss.

Accordingly, the preferred embodiment configuration described above allows attenuator 400 to be used to optimize insertion loss and return loss over a band in excess of 35 dB, as well as maintaining return losses in excess of 15 to 16 dB.

Although the present invention and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the invention as defined by the appended claims. Moreover, the scope of the present application is not intended to be limited to the particular embodiments of the process, machine, manufacture, composition of matter, means, methods and steps described in the specification. As one of ordinary skill in the art will readily appreciate from the disclosure of the present invention, processes, machines, manufacture, compositions of matter, means, methods, or steps, presently existing or later to be developed that perform substantially the same function or achieve substantially the same result as the corresponding embodiments described herein may be utilized according to the present invention. Accordingly, the appended claims are intended to include within their scope such processes, machines, manufacture, compositions of matter, means, methods, or steps.