Dona Minhoca

Prova Fase 3 - OBI2022

Dona Minhoca construiu uma bela casa, composta de N salas conectadas por N-1 túneis. Cada túnel conecta exatamente duas salas distintas, e pode ser percorrido em qualquer direção. A casa de dona Minhoca foi construída de modo que, percorrendo os túneis, é possível partir de qualquer sala e chegar a qualquer outra sala da casa.

Para deixar sua casa mais segura, Dona Minhoca decidiu instalar radares anti-furto em algumas das salas. Ela comprou K radares, e deve agora decidir em quais salas colocará um radar. Além disso, todos radares terão um raio de alcance, cujo valor R também deve ser decidido. Quando um radar com raio de alcance R é instalado na sala s, todas as salas com distância menor ou igual a R da sala s (incluindo a própria s) ficam sob o alcance do radar, e estarão protegidas.

Devido à política estranha de cobrança da empresa de radares, todos os K radares devem ter o mesmo raio de alcance. Dona Minhoca então se pergunta: qual seria o menor valor possível para R, tal que, se o raio de alcance dos radares for R, é possível escolher K salas para instalar os radares de forma que todas as N salas estejam protegidas?

Entrada

A primeira linha da entrada contém dois inteiros N e K, indicando o número de salas, e de radares que Dona Minhoca possui. As N-1 linhas seguintes contém dois inteiros a_i e b_i cada, indicando que existe um túnel conectando essas duas salas.

Saída

Seu programa deve produzir uma única linha, contendo um único inteiro, o menor valor possível para R.

Restrições

- $1 \le N \le 300000$
- $1 \le K < N$
- $a_i \neq b_i$

Informações sobre a pontuação

- Para um conjunto de casos de testes valendo 25 pontos, K=1
- Para outro conjunto de casos de testes valendo 17 pontos, o túnel i conecta as salas i e i+1 $(1 \le i \le N-1)$. Ou seja, a casa possui o formato de uma linha reta.
- Para outro conjunto de casos de testes valendo 17 pontos, $N, K \leq 100$
- Para outro conjunto de casos de testes valendo 41 pontos, nenhuma restrição adicional.

Exemplos

Exemplo de entrada 1	Exemplo de saída 1
6 1	2
1 2	
2 3	
3 4	
4 5	
4 6	

Exemplo de entrada 2	Exemplo de saída 2
6 2	1
1 2	
2 3	
3 4	
4 5	
4 6	