Architecture

Part 1:

Telephone networks

- 1 application (voice)
- Long unicast connections/sessions (calls)
- Almost constant traffic generation during the connection
- Sparse call arrival

Topologies

Figure 2-29. (a) Fully interconnected network. (b) Centralized switch. (c) Two-level hierarchy.

Tanenbaum fig. 2-29

Fully-connected topology

 Large number of links

Expensive infrastructure!

Centralized switch topology

 Small number of links

Local infrastructure:

- Connections from any point to a central switch
- Very long wires

Multi-level hierarchical topology

 Slightly larger number of links (2 levels)

Scalable infrastructure:

- Many short connections
- Fewer long-distance connections

Topology with long distance

Fig. 2-16. The relationship of LATAs, LECs, and IXCs. All the circles are LEC switching offices. Each diamond belongs to the IXC whose number is in it

Multiple longdistance carriers

LATA = Local Access and Transport Area

LEC = local exchange carrier

IXC =
Interexchange
(long distance)
carrier

Lines and trunks

Tanenbaum fig. 2-15

Local loop line is often twisted-pair copper (low capacity, analog) Trunks are often fiber (high capacity, digital)

Trunks

 Trunk lines carry more than 1 call simultaneously (thousands-millions)

Digital vs Analog

Signal degrades with distance

- Analog sensitive to noise
- Digital: regeneration, recovery