Foundations of Machine Learning

Brett Bernstein

August 22, 2018

Week 5 Lab: Concept Check Exercises

Kernels

Kernel Learning Objectives

- Explain how explicit feature maps can be used to extend the expressivity of linear models.
- Explain potential issues explicitly computing large feature spaces.
- State and explain the definition of a 'kernelized' method.
- Explain why the SVM dual is kernelized, while the primal is not (ignoring the representer theorem).
- Give the relationship between a feature map and kernel function.
- Explain the computational benefits of kernelization based on costs of optimizing over \mathbb{R}^n vs \mathbb{R}^d .
- Be able to apply the kernel trick using the kernel matrix K.
- Be able to apply the elements of our proof of the representer theorem (ex: projections decrease norms) to prove related theorems.
- Compare using the representer theorem and duality to kernelized SVM.
- Describe common kernels (RBF/polynomial) and their properties (i.e. equivalent feature maps, computational benefits relative to explicit computation (if possible),...).
- Describe some general recipes for deriving "new" kernel function.

Kernel Concept Check Questions

1. Fix n > 0. For $x, y \in \{1, 2, ..., n\}$ define $k(x, y) = \min(x, y)$. Give an explicit feature map $\varphi : \{1, 2, ..., n\}$ to \mathbb{R}^D (for some D) such that $k(x, y) = \varphi(x)^T \varphi(y)$.

Solution. Define $\varphi(x) = (\mathbf{1}(x \le 1), \mathbf{1}(x \le 2), \dots, \mathbf{1}(x \le n))$. Then $\varphi(x)^T \varphi(y) = \min(x, y)$.

2. Show that $k(x,y) = (x^T y)^4$ is a positive semidefinite kernel on $\mathbb{R}^d \times \mathbb{R}^d$.

Solution. $k_1(x,y) = x^T y$ is a psd kernel, since $x^T y$ is an inner product on \mathbb{R}^d . Using the product rule for psd kernels, we see that

$$k(x,y) = k_1(x,y)k_1(x,y)k_1(x,y)k_1(x,y) = k_1(x,y)^4$$

is psd as well.

3. Let $A \in \mathbb{R}^{d \times d}$ be a positive semidefinite matrix. Prove that $k(x, y) = x^T A y$ is a positive semidefinite kernel.

Solution. Fix $x_1, \ldots, x_n \in \mathbb{R}^d$ and let X denote the matrix that has x_i^T as its ith row. Then note that $(XAX^T)_{ij} = x_i^T A x_j = k(x_i, x_j)$. Thus we are done if we can show XAX^T is positive semidefinite. But note that, for any $\alpha \in \mathbb{R}^n$,

$$\alpha^T X A X^T \alpha = (X^T \alpha)^T A (X^T \alpha) \ge 0,$$

since A is positive semidefinite.

4. Consider the objective function

$$J(w) = ||Xw - y||_1 + \lambda ||w||_2^2.$$

Assume we have a positive semidefinite kernel k.

- (a) What is the kernelized version of this objective?
- (b) Given a new test point x, find the predicted value.

Solution.

- (a) $J(\alpha) = ||K\alpha y||_1 + \lambda \alpha^T K\alpha$, where $K_{ij} = k(x_i, x_j)$. Here x_i^T is the *i*th row of X.
- (b) $f_{\alpha}(x) = \sum_{i=1}^{n} \alpha_{i} k(x_{i}, x).$
- 5. Show that the standard 2-norm on \mathbb{R}^n satisfies the parallelogram law.

Solution.

$$||x - y||_{2}^{2} + ||x + y||_{2}^{2} = (||x||_{2}^{2} - 2x^{T}y + ||y||_{2}^{2}) + (||x||_{2}^{2} + 2x^{T}y + ||y||_{2}^{2})$$

$$= 2||x||_{2}^{2} + 2||y||_{2}^{2}.$$

- 6. Suppose you are given an training set of distinct points $x_1, x_2, \ldots, x_n \in \mathbb{R}^n$ and labels $y_1, \ldots, y_n \in \{-1, +1\}$. Show that by properly selecting σ you can achieve perfect 0-1 loss on the training data using a linear decision function and the RBF kernel.
 - Solution. By selecting σ sufficiently small (say, much smaller than $\min_{i\neq j} \|x_i x_j\|_2$) we can use $\alpha_i = y_i$ and get very pointy spikes at each data point. [Note: This is not possible if any repeated points have different labels, which is not unusual in real data.]
- 7. Suppose you are performing standard ridge regression, which you have kernelized using the RBF kernel. Prove that any decision function $f_{\alpha}(x)$ learned on a training set must satisfy $f_{\alpha}(x) \to 0$ as $||x||_2 \to \infty$.

Solution. Since $f_{\alpha}(x) = \sum_{i=1}^{n} \alpha_{i} k(x_{i}, x)$ we have

$$\lim_{\|x\|_2 \to \infty} f_{\alpha}(x) = \lim_{\|x\|_2 \to \infty} \sum_{i=1}^n \alpha_i \exp\left(-\frac{\|x_i - x\|_2^2}{2\sigma^2}\right) = \sum_{i=1}^n \alpha_i \lim_{\|x\|_2 \to \infty} \exp\left(-\frac{\|x_i - x\|_2^2}{2\sigma^2}\right) = 0.$$

- 8. Consider the standard (unregularized) linear regression problem where we minimize $L(w) = \|Xw y\|_2^2$ for some $X \in \mathbb{R}^{n \times m}$ and $y \in \mathbb{R}^n$. Assume m > n.
 - (a) Let w^* be one minimizer of the loss function L above. Give an infinite set of minimizers of the loss function.
 - (b) What property defines the minimizer given by the representer theorem (in terms of X)?

Solution.

- (a) $\{w^* + v \mid v \in \text{null}(X)\}$. Using the standard inner product on \mathbb{R}^n , we can also write null(X) as the set of all vectors orthogonal to the row space of X.
- (b) w^* lies in the row space of X.