Particle spectrograph

Wave operator and propagator

<u> </u>	Fundamental fields	Multiplicities
$\sigma_{0}^{\#1} = 0$	$\partial_{\beta}\sigma^{\alpha\beta}{}_{\alpha}==0$	1
$\tau_{0}^{\#1} == 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta} == \partial_{\beta}\partial^{\beta}\tau^{\alpha}$	1
$\tau_0^{\#2} = 0$	$\partial_{\beta}\partial_{\alpha}\tau^{\alpha\beta}==0$	1
$\tau_{1}^{\#2\alpha} == 0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\alpha\beta}$	8
$\tau_{1}^{\#1}{}^{\alpha}=0$	$\partial_{\chi}\partial_{\beta}\partial^{\alpha}\tau^{\beta\chi} == \partial_{\chi}\partial^{\chi}\partial_{\beta}\tau^{\beta\alpha}$	е
$\sigma_{1}^{\#2}\alpha == 0$	$\partial_{\chi}\partial_{\beta}\sigma^{\alpha\beta\chi} == 0$	М
$\tau_1^{\#1}\alpha\beta + ik \ \sigma_1^{\#2}\alpha\beta == 0$	$) \partial_{\chi} \partial^{\alpha} \tau^{\beta \chi} + \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} + \partial_{\chi} \partial^{\chi} \tau^{\alpha \beta} +$	К
	$2 \partial_{\delta} \partial_{\chi} \partial^{\alpha} \sigma^{\beta \chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial_{\chi} \sigma^{\alpha \beta \chi} = =$	
	$\partial_{\chi}\partial^{\alpha}\tau^{\chi\beta} + \partial_{\chi}\partial^{\beta}\tau^{\alpha\chi} +$	
	$\partial_{\chi}\partial^{\chi} t^{\beta\alpha} + 2 \partial_{\delta}\partial_{\chi}\partial^{\beta}\sigma^{\alpha\chi\delta}$	
$\sigma_{2}^{\#1}\alpha\beta\chi=0$	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\alpha} \sigma^{\beta \delta} +$	2
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\alpha \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\beta} \sigma^{\chi \delta \alpha} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \beta \delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\alpha \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\beta \chi \alpha} +$	
	$3 \eta^{eta\chi} \partial_{\phi} \partial_{\phi} \partial_{\epsilon} \partial^{\alpha} \sigma^{\delta \epsilon}{}_{\delta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\beta \delta \varepsilon} +$	
	$3 \eta^{\beta \chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\varepsilon} \sigma^{\alpha \delta}{}_{\delta} = =$	
	$3 \partial_{\epsilon} \partial_{\delta} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta \epsilon} + 3 \partial_{\epsilon} \partial^{\epsilon} \partial^{\chi} \partial^{\beta} \sigma^{\alpha \delta} \partial_{\delta} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \chi \delta} + 4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\beta \delta \chi} +$	
	$2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\alpha} \sigma^{\chi \delta \beta} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\chi} \sigma^{\beta \delta \alpha} +$	
	$4 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \beta \chi} + 2 \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \sigma^{\alpha \chi \beta} +$	
	$3 \eta^{\alpha\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial^{\beta} \sigma^{\delta \varepsilon}{}_{\delta} +$	
	$3 \eta^{\beta\chi} \partial_{\phi} \partial^{\phi} \partial_{\varepsilon} \partial_{\delta} \sigma^{\alpha\delta\varepsilon} +$	
	$3 \eta^{\alpha \chi} \partial_\phi \partial^\phi \partial_\epsilon \partial^\epsilon \sigma^{\beta \delta}$	
$\tau_2^{\#1}\alpha\beta == 0$	$4 \partial_{\delta} \partial_{\chi} \partial^{\beta} \partial^{\alpha} t^{\chi \delta} + 2 \partial_{\delta} \partial^{\delta} \partial^{\beta} \partial^{\alpha} t^{\chi}_{\chi} +$	5
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\alpha\beta} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\chi} \tau^{\beta\alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial_{\chi} \tau^{\chi\delta} ==$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\beta \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\alpha} t^{\chi \beta} +$	
	$3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\alpha \chi} + 3 \partial_{\delta} \partial^{\delta} \partial_{\chi} \partial^{\beta} \tau^{\chi \alpha} +$	
	$2 \eta^{\alpha\beta} \partial_{\epsilon} \partial^{\epsilon} \partial_{\delta} \partial^{\delta} \iota^{\chi}_{\chi}$	

1				- (,			$t_{1}^{*1} \sim t_{1}^{*}$
	9'A ^{aβ} -		<u>'</u> α	+ 2 0 ₀ f ^α			σ_{1-}^{*} σ_{1-}^{*} σ_{1-}^{*} σ_{1-}^{*} σ_{1-}^{*} σ_{1-}^{*} σ_{1-}^{*}
	$==\int \int \int \int \int (\frac{1}{6} \left(6 f^{\alpha \beta} \iota_{\alpha \beta} + 6 \mathcal{A}^{\alpha \beta \chi} \sigma_{\alpha \beta \chi} - 3 \iota_3 \partial_\beta \mathcal{A}_{\beta \ \ \alpha}^{\ \ \theta} \partial^\prime \mathcal{A}^{\alpha \beta}_{\ \ \alpha} - 3 \iota_3 \partial_\beta \mathcal{A}_{\beta \ \ \theta}^{\ \ \theta} \partial^\prime \mathcal{A}^{\alpha \beta}_{\ \ \alpha} -$	الم	$4t_2 \mathcal{A}_{1etalpha} \partial^{eta} f^{lpha \prime} + 2t_2 \partial_{lpha} f_{$	$4t_2\mathcal{R}_{lpha heta_1}(\mathcal{R}^{lpha heta}+\partial^ heta f^{lpha heta})+2t_2\mathcal{R}_{lpha heta}(\mathcal{R}^{lpha heta}+2\partial^ heta f^{lpha heta}).$	$\beta^{ heta}\mathcal{A}^{lpha\prime}_{}$ - $\mathcal{A}^{\kappa}_{}$ +	OK H B	
	$_{ heta}\partial^{\prime}\mathcal{A}^{lphaeta}_{\sigma}^{-3}$	$3r_{3}\partial_{\alpha}\mathcal{A}^{\alpha\beta'}\partial_{\theta}\mathcal{A}_{\beta}^{\ \theta'}+6r_{3}\partial'\mathcal{A}^{\alpha\beta}_{\ \alpha}\partial_{\theta}\mathcal{A}_{\beta}^{\ \theta'}-$ $3r_{3}\partial_{\alpha}\mathcal{A}^{\alpha\beta'}\partial_{\theta}\mathcal{A}_{\beta}^{\ \theta}+6r_{3}\partial'\mathcal{A}^{\alpha\beta}_{\ \alpha}\partial_{\theta}\mathcal{A}_{\beta}^{\ \theta}+$	$4t_2\mathcal{R}_{_{I} hetalpha}\partial^{ heta}f^{lpha\prime} + 2t_2\partial_{lpha}f_{_{I} heta}\partial^{ heta}f^{lpha\prime} - t_2\partial_{lpha}f_{_{eta\prime}}\partial^{ heta}f_{_{eta\prime}}\partial^{ h$	$^{\prime\prime})+2t_{2}\mathcal{A}_{2}$	$24r_3\partial_{\beta}\mathcal{A}_{I\theta\alpha}\partial^{\theta}\mathcal{A}^{\alpha\beta'}+6r_5\partial_{i}\mathcal{A}_{\theta}^{\ \ \kappa}\partial^{\theta}\mathcal{A}^{\alpha'}_{\ \ \alpha}-6r_5\partial_{\alpha}\mathcal{A}^{\alpha'\theta}\partial_{\kappa}\mathcal{A}_{\beta}^{\ \ \kappa}+$	$12r_5 \partial^{\theta} \mathcal{A}^{\alpha \prime}{}_{\alpha} \partial_{\kappa} \mathcal{A}^{\kappa}{}_{\beta} + 6r_5 \partial_{\alpha} \mathcal{A}^{\alpha \prime \theta} \partial_{\kappa} \mathcal{A}^{\kappa}{}_{\beta}.$	$a_{\alpha} = \frac{1}{\alpha} \sum_{\alpha \in \mathcal{A}} \frac{1}{\beta} \sum_{\alpha \in \mathcal{A}} \frac{1}{\beta} \sum_{\alpha \in \mathcal{A}} \frac{1}{\alpha} \sum_{\alpha \in \mathcal{A}} \frac{1}{\alpha} \sum_{\alpha \in \mathcal{A}} \frac{1}{\alpha}$
	3 r ₃ 0 _k A, ^θ	$\mathcal{A}_{\beta}^{\theta}$ + 6, $\mathcal{B}_{\epsilon}^{\theta}$	$-\alpha' + 2t_2 \partial_{\alpha} + t_5 \partial_{\alpha} f$	$\alpha^{(\alpha)} + \partial^{\theta} f^{c}$	$\partial^{\theta}\mathcal{A}^{lphaeta_{!}}+6$	$\partial_{\kappa} \mathcal{A}_{I}^{\kappa} + 6$	عارر و ۳۸۸
	$^{lphaeta\chi}$ $\sigma_{lphaeta\chi}$ -	$_3 \partial_{\alpha} \mathcal{A}^{\alpha\beta_1} \partial_{\beta}$	$^{2}\mathcal{A}_{1 heta lpha}\partial^{ heta}f^{lpha ert}$., ab , 2 Aab, (A	$r_3 \partial_{\beta} \mathcal{A}_{I\theta\alpha}$ 5 $\partial_{\theta} \mathcal{A}_{IK}^{K} \partial^{6}$	$r_5 \partial^{\theta} \mathcal{A}^{\alpha \prime}$	σ_{α}^{*}
action	_{αβ} +6 A	w w	$4t_{2}$	4 t	24	12	
Quadratic (free) action	$(6 f^{\alpha \beta} t)$						$\sigma_{1+\alpha\beta}^{\#1}$
Quadrat	$S == \iiint \int_{0}^{1}$						

0 0 0

0

 $\mathcal{A}_{1}^{\#2}$

 $\mathcal{A}_{1}^{\#1}$

0

0 0 0

 $\mathcal{A}_{1}^{\#2}\alpha\beta$ $\frac{\sqrt{2}t_{2}}{3}$ $\frac{t_{2}}{3}$ $\frac{t_{2}}{3}$

0 0 0

0 0 0

0 0 0 0

 $\begin{array}{c}
2 (r_3 + 2 r_5) \\
0 \\
0 \\
0
\end{array}$

0 0 0 0

0 0 0 0

 $\mathcal{R}_{2^{+}\alpha\beta}^{\#1} f_{2^{+}\alpha\beta}^{\#1} \mathcal{R}_{2^{-}\alpha\beta\chi}^{\#1}$

 $f_{2}^{#1} + \alpha^{\alpha}$

0

0

 $\sigma_{2^{+}\alpha\beta}^{\#1} \ \tau_{2^{+}\alpha\beta}^{\#1} \ \sigma_{2^{-}\alpha\beta\chi}^{\#1}$

0 0

0

0

 $\sigma_{2}^{\#1} \dagger^{lphaeta}$

 $\sigma_2^{\#1} + \alpha\beta\chi$

0

0

0

 $f_{1}^{#1}\alpha\beta$ $\frac{1}{3}i\sqrt{2}kt_{2}$ $\frac{1}{3}i\sqrt{2}kt_{2}$ 0 0 0 0 0

 $\mathcal{A}_{1}^{\#1} + \alpha \beta \\
\mathcal{A}_{1}^{\#2} + \alpha \beta \\
f_{1}^{\#1} + \alpha \beta \\
\mathcal{A}_{1}^{\#1} + \alpha \\
\mathcal{A}_{1}^{\#2} + \alpha \\
f_{1}^{\#2} + \alpha \\
f_{2}^{\#3} + \alpha \\
f_{3}^{\#4} + \alpha \\
f_{4}^{\#4} + \alpha \\
f_$

0 0 0

0

2 73+2 0 0 0

0 0 0 0

0 0 0 0

0 0 0

0

 $\begin{bmatrix}
 t_1^{\#1} + \alpha \beta \\
 \sigma_{1}^{\#1} + \alpha \\
 \sigma_{1}^{\#2} + \alpha \\
 \tau_{1}^{\#1} + \alpha \\
 \tau_{1}^{\#2} + \alpha
 \end{bmatrix}$

0

0

0

0

0

0

0

0

0

0

0

0

Massive and massless spectra

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$

(No massive particles)