Building Aging Clocks Using Transcriptomics and EEG Data

Davyd Sadovskyy 11/15/2024

Motivation

- It has been shown that aging of an organism can be manipulated via caloric restriction, heterochronic parabiosis, partial epigenetic reprogramming, and certain drug interventions.
- We need a way to quantify biological age to be able to tell if an intervention is working.
- Chronological vs Biological age. Someone's biological age can be very informative.

Pulse and blood pressure Creatinine and albumin CRP and blood count Glucose, insulin and LDL AST and ALT Expiratory volume

Statistical Learning Model Y = Chronological Age

DNA methylation

- X = CpG methylation sites
- Hannum, Horvath clocks

Proteomics

- X = protein levels in plasma or CF fluid
- SomaLogic platform can quantify over 7,000 proteins, but its currently not yet possible to quantify entire proteome

Transcriptomics

- X = RNA expression levels measured with microarray or RNAseq
- Issue of combining data from

- different sources

Not Used Yet:

Less Commonly Used:

Glycomics

Microbiome Composition

PRO: data is widely available in biobanks

Metabolomics

acids

CONS: low accuracy despite large sample sizes

X = metabolites in plasma

like albumin, LDL, amino

My Transcriptomics Dataset

RNAseq is a newer technology that can detect a broader range of expression levels

RNAseq

- 14232 observations x 25570 transcripts
- 768 columns with mean and standard dev equal to 0 --> 14232 x 24802
- Data was normalized with arcsin

```
refine_normed = np.arcsinh(refine)
```

- Both datasets were merged with their respective, separate labels data set to obtain the age label, dropping some rows that had NA age
- Biologically informed age bins were used:

Microarray

- 16107 observations x 18478 transcripts
- No columns dropped
- I did not need to do normalization because that was already done earlier in the pipeline using log transformation.

```
age
```

12wk

12wk

16wk

```
age_mapping = {
    'Carnegie Stage 23': 0.16, # ~ 8 weeks (~0.16 years)
    'Carnegie Stage 22': 0.15, # ~ 7.5 weeks
    'Carnegie Stage 21': 0.14, # ~ 7 weeks
    'Carnegie Stage21': 0.14, # account for the typo
    'Carnegie Stage 20': 0.13, # ~ 6.5 weeks
    'Carnegie Stage 19': 0.12, # ~ 6 weeks
    'Carnegie Stage 18': 0.11, # ~ 5.5 weeks
    'Carnegie Stage 17': 0.10, # ~ 5 weeks
```

Old Approach

- One vs All Classifier
- Elastic Net Logistic Regression
- A model trained on a certain age group predicts adjacent age categories better than distant categories

$$ext{Loss}_{ ext{Elastic Net}} = ext{SSE} + \lambda_1 \sum_{j=1}^p |eta_j| + \lambda_2 \sum_{j=1}^p eta_j^2$$

What's the problem with treating age as a continuous variable?

Source: (Johnson & Krishnan, 2023)

0.75

0.5

0.25

Rank-Consistent Ordinal Regression Neural Network

(Shi et al., 2021)

35 years...

Regular MLP model

- No concept of ranking.
- Loss function doesn't respect "close predictions"
- Ranking concept can be incorporated by having output nodes >0, >2, >8, etc. However, this has issue of rank inconsistency

MLP model with CORN

- One less output node
- Loss function respects ordinal relationships
- Uses chain rule for probabilities
- Learned using conditional training subsets.

CORN MLP vs Regular MLP on RNAseq Dataset

```
5 Fold CV - Ordinal Neural Network (CORN) vs MLP
  Age Bin Label Count
                         CORN MAE
                                     MLP MAE
           [0-2]
                   1243
                            1.0829
                                    1.237329
0
           (2-8]
                    760
                            0.7539
                                    0.689474
         (8-12]
                   1098
                            0.6630
                                    0.652095
3
        (12 - 201)
                   2157
                            0.5614
                                    0.607789
4
        (20 - 35]
                   1867
                            0.7568
                                    0.857525
5
        (35-451)
                   1404
                            0.6282
                                    1.037037
                                    0.838436
        (45 - 601)
6
                   2711
                            0.4921
        (60 - 701)
                   1554
                            0.7117
                                    0.958816
8
        (70 - 80]
                    929
                            1.0032
                                    1.257266
9
           > 80
                    483
                            1.0414 1.455487
```

- On average, the CORN model's predicted age bin was 0.712 bins away from the actual age bin on the test data.
- MAE is more informative than measures of classification accuracy in the one vs all approach

** Performance was notably worse on microarray dataset

Overall MAE Comparison:

```
Model Overall MAE
0 CORN 0.711673
1 MLP 0.899621
```

EEG Sleep Data

Single channel recording 726 Participants

Spectrogram

- roundness, average pixel intensity of events, etc, etc
- 36 features * 2 clusters = 72 features

Slow Waves

- waveform metrics were things like distances between zero crossings, amplitudes at peaks troughs, etc.
- 15 waveform metrics * 3
 frequency groups * 13
 summary statistics * 2
 clusters = 1170 features

Short-time Fourier transform (STFT)

- mean, sd, skewness, kurtosis
- 7 frequency ranges * 6 time regions * 4 summary statistics * 2 clusters = 336 features

(Yao & Allen, 2020)

My Goal: Feature Selection

- Basics were already implemented on the dataset. Recursive feature elimination. SHAP (SHapley Additive exPlanations) values.
- I used "minipatch feature selection" technique from 2020.
 - A minipatch is a subsample of n observations and m features without replacement.
 - A base selector is applied on the minipatch (decision tree or OLS)
 - Unique algorithm for exploring the feature space
- Ran into bugs that I couldn't work out completely in time.

Acknowledgments

- Dr. Arjun Krishnan
- Dr. Brice McConnell
- Parker Hicks and Krishnan Lab Members

References

Rutledge, J. C., Oh, H., & Wyss-Coray, T. (2022). Measuring biological age using omics data. *Nature Reviews Genetics*, 23(12), 715–727. https://doi.org/10.1038/s41576-022-00511-7

Johnson, K. A., & Krishnan, A. (2023). Human pan-body age- and sex-specific molecular phenomena inferred from public transcriptome data using machine learning. *bioRxiv*. https://doi.org/10.1101/2023.01.12.523796

Shi, X., Cao, W., & Raschka, S. (2021). Deep neural networks for rank-consistent ordinal regression based on conditional probabilities. *arXiv*. https://arxiv.org/abs/2111.08851

McConnell, B. V., Liu, Y., Biswas, A. K., Bettcher, B. M., Medenblik, L. M., Broussard, J. L., Lucey, B. P., Ramos, A. R., & Kheyfets, V. O. (2023). On monitoring brain health from the depths of sleep: Feature engineering and machine learning insights for digital biomarker development. *BioRxiv*. https://www.biorxiv.org/content/10.1101/2024.02.27.581950v1

Yao, T., & Allen, G. I. (2020). Feature selection for huge data via minipatch learning. *ArXiv*. https://arxiv.org/abs/2010.08529