PRACTICE SHEET-1

Computer Science & Information Technology Digital Logic Combinational Circuit

- Q1 Which of the following is true?
 - (A) All gates follow commutative as well as associative law.
 - (B) NOR & XNOR do not follow associative law
 - (C) NAND & XOR do not follow associative law
 - (D) All gates follow commutative law, but some gates do not follow associative law.
- Q2 We have to implement half adder as well as half subtractor. The minimum number of 2-i/P NAND gate required is _____.
- Q3 A digital circuit is as given below:

This circuit implements:

- (A) A + B
- (B) A B
- (C) B A
- (D) None of these
- **Q4** A logical circuit is as given below:

Function of logic circuit - 1 & logic circuit - 2 is same. The output y'1 will be

- (A) $A \oplus B$
- (B) AB

- (C) $\overline{A}B$
- (D) A-B
- Q5 We have two numbers A and B and both are 4bit numbers. To perform complete addition of these two numbers, total number of H.A.s + OR gate required is _____.
- **Q6** Which of the following circuits can be used as universal circuit:

- (A) circuit 1 and circuit 2 both
- (B) circuit 1 only
- (C) circuit 2 only
- (D) Neither circuit 1 nor circuit 2
- Q7 A logical circuit is implemented as:

Output y is

- (A) '1' when majority of the i/P_s A, B, C are at '1'
- (B) '0' when minority of the i/P_s A, B, C are at '1'
- (C) '1' when minority of the i/P_s A, B, C are at '1'
- (D) '0' when majority of the i/P_s A, B, C are at '1'
- **Q8** x, y, z are i/P_s of a full adder then, sum output of full adder will be '1' if
 - (A) $\bar{\mathbf{x}} \bar{\mathbf{y}} + \bar{\mathbf{y}} \bar{\mathbf{z}} + \bar{\mathbf{z}} \bar{\mathbf{x}} = 1$

- (B) xyz = 1
- (C) (x + y) (y + z) (z + x) = 0
- (D) None of these
- **Q9** Which of the following is/are true?
 - (A) NOR gate is equivalent to NAND gate with bubbled $\ensuremath{\mathrm{i/P_s}}$
 - (B) OR gate is equivalent to NAND gate with bubbled $i/P_{\textrm{s}}$
 - (C) AND gate is equivalent to NOR gate with bubbled $i/P_{\text{\tiny S}}$
 - (D) NAND gate is equivalent to NOR gate with bubbled i/P_{S}
- Q10 We have to implement H.A circuit & full adder circuit together. I/P lines for H.A. is x, y and i/P lines for full adder is x, y, z then minimum number of 2 i/P NAND gate required is
- **Q11** We have a 4-bit adder in which each full adder has sum delay of t_s = 4 nsec and carry delay of 2 nsec. In one minute number of additions completed by this full adder is _____ × 10^9 .
- Q12 A logical circuit is as given below:

Which of the following circuit is/are equivalent to the above circuit:

(B)

Q13 A K-map is as given below:

	$\overline{y}\overline{z}$	\overline{y} z	уz	$y \overline{z}$
\overline{X}	1	1		1
х		1	1	

In minimized solution of above K-map, there are terms x y, x z and one term is missing. The missing term is

- (A) $\bar{y}z$
- (B) xz
- (C) $\bar{x}z$
- (D) $\bar{x} \bar{z}$
- **Q14** A K-Map is as given below:

	$\overline{y}\overline{z}$	\overline{y} z	уz	уZ
$\overline{\mathbf{X}}$	1	1		Х
Х	Х		1	1

Its minimized solution will be

(A) $x \odot y$

(B)
$$\mathbf{x} \oplus \mathbf{y}$$

(C)
$$\bar{z} + \bar{x} \bar{y}$$

(D)
$$\bar{\mathbf{z}} + \mathbf{x}\mathbf{y} + \bar{\mathbf{x}}\,\bar{\mathbf{y}}$$

Q15
$$F(x, y, z) = \overline{x\overline{y} + \overline{x}y} + x\overline{y}z + x\overline{y}\overline{z}$$

Then the minimized solution of f(x,y,z) will be

(A)
$$x+ar{y}$$

(B)
$$\bar{x}y$$

(C)
$$xy \bar{z}$$

(D)
$$\mathbf{x} + \bar{\mathbf{y}} + \mathbf{z}$$

- Q16 In a 4-bit parallel adder, sum delay and carry delay of each full adder is $t_s = 1$ nsec and $t_c = 5$ nsec respectively. No. of additions performed per sec by adder is N_1 . If delays are interchanged then no. of additions performed per sec is N_2 , then N_2/N_1 _____.
- Q17 A K-map is as given below:

Then minimized solution of K-map is:

/	$\overline{C}\overline{D}$	\overline{C} D	C D	$C\overline{D}$
$\overline{A}\overline{B}$	1	1	1	
\overline{A} B	1	1	1	Х
АВ			1	
$A\overline{B}$		Χ	Х	

(A)
$$\overline{A}\overline{C} + \overline{A}D + CD$$

(B)
$$\overline{A}\overline{C}+CD$$

(C)
$$\overline{A}B + CD + \overline{A}\overline{C}$$

- (D) None of these
- **Q18** K-map of two logical functions f_1 (A, B) and f_2 (A, B) is as given below:

f_1	$\overline{\mathbf{B}}$	В
\overline{A}	1	
Α		1

f_1	$\overline{\mathbf{B}}$	В
\overline{A}	1	1
Α		

Then K-map of f (A, B) will be

$$f_1$$
 f_2 f (A,B)

(A)

$$\begin{array}{c|cccc} f & \overline{B} & B \\ \overline{A} & 1 & 1 \\ A & & 1 \end{array}$$

(C)
$$f$$
 \overline{B} B A A B

(D)
$$f$$
 \overline{B} B \overline{A} 1 A 1

Q19 f (A, B, C, D) is as given below:

$$f\Big(A,B,C,D\Big) = \overline{\overline{B}D + AC + \overline{A}B} + ABCD$$

$$+\overline{A}BC + ABC$$

Then no. of entries in K-map of f (A, B, C, D) that are filled with '1' are_____.

Q20 f (x, y, z) is given as: $f(x,y,z) = \bar{x}\bar{y} + \bar{x}z + zy$, The equivalent f (x, y, z) can also be

(A)
$$(\bar{x} + y + \bar{z})(x + \bar{y} + \bar{z})(x + \bar{y} + z)$$

(B)
$$(x + \overline{y} + z)(\overline{x} + y + z)(\overline{x} + y + \overline{z})$$

(C)
$$(\bar{x} + \bar{y})(\bar{x} + z)(x + y)$$

- (D) None of these
- **Q21** Which of the following is true?
 - (A) K-map has more than one solution.
 - (B) K-map always has unique solution.
 - (C) K-map can have more than one solution.
 - (D) None of these
- **Q22** A & B are two-bit numbers as

 $A = a_1 a_0$ and $B = b_1 b_0$

Then no. of combination in which A > 2B are

Q23 A digital circuit is as given below:

Input lines of the circuit are a_1 , b_1 , a_0 , b_0 and output line is y.

Then no. of combinations of input lines in which output y will be '1'are _____.

Q24 A MUX circuit is as given below:

Output y is

- (A) $\mathbf{A} + \overline{\mathbf{B}}$
- (B) $\overline{A+B}$
- (C) $\mathbf{A} \oplus \mathbf{B}$
- (D) $A\overline{B}$

Q25 A MUX circuit is as given below:

f(A, B, C, D) is:

- (A) Σ (0, 1, 2, 3, 4, 5, 6, 14, 15)
- (B) Σ (0, 1, 2, 3, 4, 6, 13, 15)
- (C) Σ (0, 1, 2, 3, 4, 6, 14, 15)
- (D) Σ (1, 2, 3, 4, 5, 6, 7, 13, 14, 15)

Q26 A MUX circuit is as given below, output y is

- $(A) \overline{A}$
- (C) O

(D) 1

Q27 A 4:1 MUX is given as:

Output y is

(A) $\overline{\mathrm{B}}$

- (B) B
- (C) $A \oplus B$
- (D) $\mathbf{A} \odot \mathbf{B}$

Q28 A combinational circuit is designed using MUX as shown below: -

output y is

- (A) A + B
- (B) A. B
- (C) $A \oplus B$
- (D) $\mathbf{A} \odot \mathbf{B}$

Q29 A MUX circuit is implemented as shown:

output y represents

- (A) Comparator output when B < A
- (B) Comparator output when B = A
- (C) Comparator output when B > A
- (D) Comparator output when B < 2A
- Q30 In a full subtractor the corresponding input bits of two

numbers are x & y [x - y] and input borrow is zand

output borrow is B. Output borrow is implemented as shown.

The values of l_0 , l_1 , $l_2 \& l_3$ are:

- (A) $I_0 = z$, $I_1 = 1$, $I_2 = 0$, $I_3 = z$
- (B) $I_0 = z$, $I_1 = 0$, $I_2 = 1$, $I_3 = \overline{z}$
- (C) $I_0 = 1$, $I_1 = z$, $I_2 = 0$, $I_3 = z$
- (D) $I_0 = \bar{z}$, $I_1 = 1$, $I_2 = 0$, $I_3 = z$
- Q31 To implement 1024: 1, the required 4: 1 MUXs are _____.
- **Q32** Which of the following is true:

- (A) MUX is non-universal circuit.
- (B) MUX can be used to implement half adder as well as full adder.
- (C) 2:1 MUX has 1-input line, 1-output line and 2-select line
- (D) If in a MUX input lines are 24 then minimum 4-select lines are required for proper functioning.
- Q33 Which of the following is true:
 - (A) Decoder and MUX have same internal circuitry
 - (B) MUX & De MUX have same internal circuitry
 - (C) De MUX and decoder have same internal circuitry
 - (D) None of these
- Q34 A combinational circuit using decoder and OR gate is

as given below:

 $o/p y_1 \& y_2$ combinedly represents:

- (A) Half adder
- (B) Half subtractor with subtraction (B-A)
- (C) Half subtractor with subtraction (A-B)
- (D) Comparator o/p with (A > B)
- Q35 To implement 1: 512 De MUX, we require N, 1:8 De MUX, then the value of N is _____.
- Q36 To implement 1:128 De MUX, we require
 - (A) 127 1:4 DeMUX
 - (B) 127 1:2 DeMUX
 - (C) 18 1:8 DeMUX & 1 1:2 DeMUX
 - (D) 40 1:8 DeMUX & 1 1:2 DeMUX

Q37 A combinational circuit is as given below. When input is A = 0 & B = 1, then LED no. that glows will be_____.

- For a decoder having 4 input lines, no. of output lines are
 - (A) 1

(B) 2

(C) 16

- (D) 4
- **Q39** A digital circuit is as given below:

Output y is

(A) A

(B) B

(C) A.B

- (D)(A + B)
- **Q40** Which of the following is 'not true'?
 - (A) DeMUX is not a universal circuit
 - (B) For 52 output lines, no. of select lines must be atleast 6 for DeMUX.
 - (C) DeMUX is parallel to serial converter.
 - (D) DeMUX is serial to parallel converter
- **Q41** A circuit is as shown below:

- (A) $A \oplus B$ if I = 1
- (B) $\mathbf{A} \odot \mathbf{B}$ if $\mathbf{I} = \mathbf{0}$
- (C) A. B if I = 1
- (D) A + B if I = 0
- Q42 For implementing full adder and full subtractor we require a decoder of the order n: M, where n is no. of input lines & M is no. of output lines, then value of M is _____.
- Q43 It is given that:

$$\mathbf{x}_1 \odot \mathbf{x}_2 \odot \mathbf{x}_3 \odot \mathbf{x}_4 = \mathbf{0}$$

Then which of the following is true?

(A)
$$x_1 x_2 + x_3 x_4 = 1$$

(B)
$$x_1 \oplus x_2 + x_2 \oplus x_3 + x_3 \oplus x_4 = 1$$

(C)
$$x_1x_2 x_3x_4 = 0$$

(D)
$$\overline{x_1}\overline{x_2} + x_2x_3 + \overline{x_3}\overline{x_4} = 1$$

Q44 A digital circuit is as given below:

Output y is

- (A) $\overrightarrow{AB} \overrightarrow{C}$
- (B) $A \oplus B \oplus C$
- (C) $A \odot B \oplus C$
- (D) A + B + C
- **Q45** A circuit is designed as shown:

Output P is 1 when majority of input lines are '0'.

Output is

- (A) xy + yz + zx
- (B) $\bar{\mathbf{x}}\,\bar{\mathbf{y}} + \bar{\mathbf{y}}\,\bar{\mathbf{z}} + \bar{\mathbf{z}}\,\bar{\mathbf{x}}$
- (C) $\overline{x + y + z}$
- (D) $\overline{xy + yz}$
- **Q46** Two logical functions:

$$f_1(A, B) = \Sigma(1, 2)$$

$$f_2(A, B) = \Sigma (0, 1, 3)$$

then output f(A, B) will be

- (A) Σ (1, 2)
- (B) Σ (0, 1, 3)
- (C) Σ (0, 1, 2, 3)
- (D) Σ (1)
- **Q47** A K-Map is as given below:

f_{\searrow}	\bar{B}	B
\bar{A}	X	1
A	\bar{C}	

Its simplified solution will be

- (A) $(A + \overline{B})\overline{C}$
- (B) $(\overline{A} + \overline{B})(\overline{A} + \overline{C})$
- (C) $AB + \overline{BC}$
- (D) None of these
- **Q48** A 4: 2 Encoder is as given below:

Output y₁ will be

- (A)(P+Q)
- (B)(Q+R)
- (C)(R + S)
- (D)(P+S)
- **Q49** Which of the following is not true?

(A)
$$\overline{A} + \overline{B}C = (A + \overline{B})(\overline{B} + C)$$

- (B) $\overline{A} + \overline{B}C = \overline{AB} \cdot (\overline{A} + C)$
- (C) $AB + AC + \overline{B}C = AB + \overline{B}C$
- (D) AB + BC + AC = (A + B) (B + C) (C + A)
- Q50 For n-variable, the number of self dual functions are found to be 256, then the value of n is____.
- Q51 To add two 5-bit numbers, we required m H.A.s and n-OR gates then minimum value of (m + n)
- Q52 Two stage SOP circuit can directly be implemented
 - (A) Using NAND gates at first stage & AND gate at second stage.
 - (B) Using NAND gates only at both first & second stage.
 - (C) Using AND gates only at both first & second stage.
 - (D) Using NOR gates only at both stages.

Answer Key

- (D) Q1
- 6 Q2
- Q3 (C)
- Q4 (B)
- (10) Q5
- (B) Q6
- (A, B) Q7
- (D) Q8
- Q9 (B, C)
- Q10 10
- Q11 6
- (A, C) Q12
- (B) Q13
- (A) Q14
- Q15 (A)
- Q16 2.5
- (B) Q17
- Q18 (B)
- Q19 8
- **Q20** (B)
- **Q21** (C)
- 4 Q22
- 6 Q23
- Q24 (A)
- Q25 (C)
- Q26 (D)

- **Q27** (A)
- (B) **Q28**
- (C) **Q29**
- Q30 (A)
- Q31 341
- (B) Q32
- (C) Q33
- (C) Q34
- Q35 **73**
- (B, C) Q36
- 2 Q37
- (C) Q38
- (C) Q39
- Q40 (C)
- (A) Q41
- Q42 8
- (C) Q43
- (A) Q44
- Q45 (B)
- (B) Q46
- Q47 (B)
- Q48 (C)
- Q49 (A)
- Q50 4
- Q51 13
- (B) Q52

Hints & Solutions

Q1 Text Solution: (d)

Q2 Text Solution: 6

Q3 Text Solution: (c)

Q4 Text Solution: (b)

Q5 Text Solution: (10)

Q6 Text Solution: (b)

Q7 Text Solution: (a, b)

Q8 Text Solution: (d)

Q9 Text Solution: (b, c)

Q10 Text Solution: 10

Q11 Text Solution:

Q13 Text Solution: (b)

Q14 Text Solution: (a)

Q15 Text Solution: (a)

Q16 Text Solution: 2.5

Q17 Text Solution: (b)

Q18 Text Solution:

(b)

Q19 Text Solution:

Q20 Text Solution: (b)

Q21 Text Solution: (c)

Q22 Text Solution:

Q23 Text Solution:

Q24 Text Solution: (a)

Q25 Text Solution: (c)

Q26 Text Solution: (d)

Q27 Text Solution: (a)

Q28 Text Solution: (b)

Q29 Text Solution: (c)

Q30 Text Solution: (a)

Q31 Text Solution: 341

Q32 Text Solution: (b)

Q33 Text Solution:

Q43 Text Solution: (c) (c) Q34 Text Solution: (c) Q44 Text Solution: (a) Q35 Text Solution: 73 Q45 Text Solution: (b) Q36 Text Solution: (b, c) Q46 Text Solution: (a) Q37 Text Solution: 2 Q47 Text Solution: (b) Q38 Text Solution: (c) Q48 Text Solution: (c) Q39 Text Solution: (c) Q49 Text Solution: (a) Q40 Text Solution: (c) Q50 Text Solution: 4 Q41 Text Solution: (a) Q51 Text Solution: 13 Q42 Text Solution: 8 Q52 Text Solution: (b)

