Sheng-Kai Hsu

Email: sh2246@cornell.edu

Affiliation: Postdoc, Institute for Genomic Diversity, Cornell University

ORCID: 0000-0002-6942-7163

Positions & Education

Year	Position / Degree
2022–present	Postdoc, Institute for Genomic Diversity, Cornell University
2017 – 2021	Ph.D., Vienna Graduate School of Population Genetics, Univ. of
	Veterinary Medicine Vienna Advisor: Christian Schlötterer
2014 – 2015	M.Sc., Department of Agronomy, National Taiwan University
	Advisor: Chih-Wei Tung
2010 – 2014	B.Sc., Department of Agronomy, National Taiwan University

Publications

1. Hsu, S., Emmett, B.D., Haafke, A., Costa-Neto, G., Schulz, A.J., Lepak, N., La, T., AuBuchon-Elder, T.M., Hale, C.O., Raglin, S.S., Ojeda-Rivera, J.O., Kent, A.D., Kellogg, E.A., Romay, M.C., & Buckler, E.S. (2025). Contrasting rhizosphere nitrogen dynamics in Andropogoneae grasses. The Plant Journal, 123(1). https://doi.org/10.1111/tpj.70319

- 2. Thorhölludottir, D.A.V., **Hsu, S.**, Barghi, N., Mallard, F., Nolte, V., & Schlötterer, C. (2025). **Reduced Parallel Gene Expression Evolution With Increasing Genetic Divergence—A Hallmark of Polygenic Adaptation**. *Molecular Ecology*, 34 (12). https://doi.org/10.1111/mec.17803
- 3. Lai, W., Hsu, S., Futschik, A., & Schlötterer, C. (2025). Pleiotropy increases parallel selection signatures during adaptation from standing genetic variation. *eLife*, 13. https://doi.org/10.7554/eLife.102321.3
- 4. Hsu, S., Lai, W., Novak, J., Lehner, F., Jakšić, A.M., Versace, E., & Schlötterer, C. (2024). Reproductive isolation arises during laboratory adaptation to a novel hot environment. *Genome Biology*, 25(1). https://doi.org/10.1186/s13059-024-03285-9
- Buchner, S., Hsu, S., Nolte, V., Otte, K.A., & Schlötterer, C. (2023). Effects of larval crowding on the transcriptome of Drosophila simulans. Evolutionary Applications, 16 (10), 1671-1679. https://doi.org/10.1111/eva.13592

- 6. Hsu, S., Belmouaden, C., Nolte, V., & Schlötterer, C. (2020). Parallel gene expression evolution in natural and laboratory evolved populations. *Molecular Ecology*, 30(4), 884-894. https://doi.org/10.1111/mec.15649
- Jakšić, A.M., Karner, J., Nolte, V., Hsu, S., Barghi, N., Mallard, F., Otte, K.A., Svečnjak, L., Senti, K., & Schlötterer, C. (2020). Neuronal Function and Dopamine Signaling Evolve at High Temperature in Drosophila. *Molecular Biology and Evolution*, 37(9), 2630-2640. https://doi.org/10.1093/molbev/msaa116
- 8. Hsu, S., Jakšić, A.M., Nolte, V., Lirakis, M., Kofler, R., Barghi, N., Versace, E., & Schlötterer, C. (2020). Rapid sex-specific adaptation to high temperature in Drosophila. *eLife*, 9. https://doi.org/10.7554/eLife.53237
- 9. Hsu, S., Jakšić, A.M., Nolte, V., Barghi, N., Mallard, F., Otte, K.A., & Schlötterer, C. (2019). A 24 h Age Difference Causes Twice as Much Gene Expression Divergence as 100 Generations of Adaptation to a Novel Environment. Genes, 10(2), 89. https://doi.org/10.3390/genes10020089
- 10. Lin, P., Tsai, Y., Hsu, S., Ou, J., Liao, C., & Tung, C. (2018). Identification of natural variants affecting chlorophyll content dynamics during rice seedling development. *Plant Breeding*, 137(3), 355-363. https://doi.org/10.1111/pbr.12584
- 11. Hsu, S., & Tung, C. (2017). RNA-Seq Analysis of Diverse Rice Genotypes to Identify the Genes Controlling Coleoptile Growth during Submerged Germination. Frontiers in Plant Science, 8. https://doi.org/10.3389/fpls.2017.00762
- 12. Hsu, S., & Tung, C. (2015). Genetic Mapping of Anaerobic Germination-Associated QTLs Controlling Coleoptile Elongation in Rice. *Rice*, 8(1). https://doi.org/10.1186/s12284-015-0072-3

Last updated: 2025-07-07