Email timothy.hosgood@univ-amu.fr for questions or corrections.

March 18, 2019

Problem 1. Let $f:[a,b] \to \mathbb{R}$ and $g:[b,c] \to \mathbb{R}$ be continuous functions that agree on the overlap (i.e. such that f(b) = g(b). Show that $h:[a,c] \to \mathbb{R}$, defined by

$$h(x) = \begin{cases} f(x) & x \in [a, b] \\ g(x) & x \in [b, c] \end{cases}$$

is continuous.

Problem 2. Assume that the temperature T(x) at a point x on a sphere of radius 1 is continuous in space, i.e. a continuous function $T: S^2 \to \mathbb{R}$. Show that there is a point $y \in S^2$ on the surface such that T(y) = T(-y). Hint: consider f(x) = T(x) - T(-x) and compare f(x) with f(-x).

Problem 3. Let $f: \overline{B}(0;1) \to \mathbb{R}$ be a continuous function, where $\overline{B}(0;1) \subset \mathbb{R}^2$ is the closed ball of radius 1, centred at (0,0). Show that f cannot be injective.