Laporan

ANALISA HASIL PEMANTAUAN KUALITAS UDARA

KOTA YOGYAKARTA

KATA PENGANTAR

Kami mengucapkan puji dan syukur kepada Tuhan Yang Maha Esa atas

terlaksananya kegiatan Pemantauan Kualitas Udara oleh Dinas Lingkungan

Hidup Kota Yogyakarta Tahun 2019. Seluruh kegiatan tersebut dilaksanakan

dalam rangka Pemantauan Kualitas Lingkungan dan merupakan suatu kegiatan

rutin.

Hasil pelaksanaan kegiatan ini dapat dijadikan sebagai bahan acuan bagi

Pemerintah Kota Yogyakarta untuk membuat kebijakan terkait pengelolaan

lingkungan hidup. Laporan Analisa Hasil Pemantauan Kualitas Udara dibuat

atas hasil kerjasama antara tenaga ahli dari Fakultas Geografi UGM, UPT

Laboratorium Pengujian Kualitas Lingkungan, dan Seksi Penaatan dan

Pemantauan Lingkungan Dinas Lingkungan Hidup Kota Yogyakarta.

Yogyakarta, Januari 2020

Tim Penyusun

| i

DAFTAR ISI

KATA PENGANTAR	i
DAFTAR ISI	ii
DAFTAR TABEL	iii
DAFTAR GAMBAR	iv
BAB I PENDAHULUAN	5
1.1. Latar belakang	5
1.2. Rumusan Masalah	5
1.3. Tujuan Kegiatan	6
1.4. Manfaat Kegiatan	6
1.5. Landasan Hukum	6
BAB II METODE	8
2.1. Ruang Lingkup	8
2.2. Alat dan Bahan	10
2.3. Pendekatan kajian	11
2.4. Jenis dan Sumber Data	12
2.5. Analisis Data	13
2.6. Tahapan Kegiatan	13
BAB III DESKRIPSI WILAYAH	17
3.1. Administrasi	17
3.2. Kependudukan	17
3.3. Penggunaan Lahan	18
3.4. Transportasi	18
3.5. Kondisi Iklim	19
BAB IV HASIL DAN PEMBAHASAN	21
4.1. Analisis Kualitas Udara Ambien Roadside	21
4.2. Analisis Kualitas Udara Ambien Permukiman	26
BAB V KESIMPULAN DAN SARAN	36
5.1. Kesimpulan	36
5.2. Saran	36
DAFTAR PUSTAKA	37

DAFTAR TABEL

Tabel 2.1	Lokasi dan Jadwal Pemantauan Kualitas Udara Ambien Permukiman 8
Tabel 2.2	Lokasi dan Jadwal Pemantauan Kualitas Udara Ambien Roadside9
Tabel 2.3	Daftar Alat dan Bahan Kegiatan Pemantauan Kualitas Udara
Tabel 2.4	Jenis dan Sumber Data Analisis Kualitas Udara
Tabel 2.5	Metode Analisis Parameter Kualitas Udara
Tabel 2.6	Batas Indeks Standar Pencemaran Udara Dalam Satuan SI
Tabel 2.7	Kategori Indeks Standar Pencemar Udara dan Pengaruh Setiap Parameter
	Pencemar
Tabel 3.1	Jenis dan Luas Lahan Kota Yogyakarta
Tabel 3.2	Jumlah Kendaraan Bermotor Menurut Jenis di Kota Yogyakarta19
Tabel 4.1	Hasil Pemantauan Kualitas Udara Ambien Roadside
Tabel 4.2	Nilai dan Kelas ISPU SO ₂ Roadside di Kota Yogyakarta23
Tabel 4.3	Nilai dan Kelas ISPU NO ₂ Roadside di Kota Yogyakarta24
Tabel 4.4	Hasil Pemantauan Parameter Kebisingan Roadside di Kota Yogyakarta24
Tabel 4.5	Hasil Pemantauan Kualitas Udara Ambien Permukiman
Tabel 4.6	Nilai dan Kelas ISPU SO ₂ Permukiman di Kota Yogyakarta30
Tabel 4.7	Nilai dan Kelas ISPU NO ₂ Permukiman di Kota Yogyakarta31
Tabel 4.8	Nilai dan Kelas ISPU O ₃ Permukiman di Kota Yogyakarta32
Tabel 4.9	Hasil Pemantauan Parameter Kebisingan Permukiman di Kota
	Yogyakarta33

DAFTAR GAMBAR

Gambar 3.1	Piramida Penduduk Kota Yogyakarta Tahun 201818
Gambar 3.2	Diagram Curah Hujan dan Rata-rata Suhu Udara Harian Kota Yogyakarta
	Tahun 2018
Gambar 3.3	Diagram Kelembapan Kota Yogyakarta Tahun 201820
Gambar 4.1	Pemantauan Kualitas Udara Ambien Roadside di Perempatan Galeria 21
Gambar 4.2	Diagram Hasil Pemantauan Kualitas Udara SO ₂ Roadside
Gambar 4.3	Diagram Hasil Pemantauan Kualitas Udara NO ₂ Roadside
Gambar 4.4	Peta Kelas ISPU Roadside Semester I di Kota Yogyakarta25
Gambar 4.5	Peta Kelas ISPU Roadside Semester II di Kota Yogyakarta
Gambar 4.6	Pemantauan Kualitas Udara Ambien Permukiman
Gambar 4.7	Diagram Hasil Pemantauan Kualitas Udara SO ₂ Permukiman
Gambar 4.8	Diagram Hasil Pemantauan Kualitas Udara NO ₂ Permukiman
Gambar 4.9	Diagram Hasil Pemantauan Kualitas Udara O ₃ Permukiman30
Gambar 4.10	Peta Kelas ISPU Permukiman Semester I di Kota Yogyakarta
Gambar 4 11	Peta Kelas ISPI Permukiman Semester I di Kota Yogyakarta 35

BABI

PENDAHULUAN

1.1. Latar belakang

Udara bersih merupakan salah satu kebutuhan primer bagi keberlangsungan mahluk hidup. Kondisi udara yang tercemar dapat berdampak pada kesehatan mahluk hidup yang berakibat pada kematian. Menurut WHO (2005), lebih dari 2 juta kematian tiap tahun penduduk di dunia dipengaruhi oleh efek dari pencemaran udara baik di dalam maupun di luar ruangan, dan lebih dari setengahnya terjadi di negaranegara berkembang.

Pencemaran udara di kota-kota besar, khususnya di negara berkembang tidak lepas dari pengaruh perkembangan zaman yang semakin maju. Pertumbuhan penduduk yang meningkat dan pembangunan ekonomi untuk pemerataan kesejahteraan masyarakat apabila tidak dibarengi dengan persiapan yang baik dapat menimbulkan permasalahan lain, salah satunya pencemaran udara (Hixson et al., 2010). Tidak hanya di Negara berkembang, pencemaran udara juga terjadi di Negara maju, salah satu contohnya adalah di China. Berdasarkan Lu et al., (2010), akibat percepatan pembangunan ekonomi, emisi SO₂ sejak tahun 2000 – 2006 meningkat 53%, artinya setiap tahun meningkat 7,3% dan berpotensi menimbulkan hujan asam.

Kota Yogyakarta merupakan salah satu kota dengan aktivitas manusia yang cukup padat. Aktivitas manusia ini diantaranya adalah terkait pariwisata, industri, dan pendidikan. Selain itu, Kota Yogyakarta yang juga sekaligus ibukota provinsi tentu menjadi pusat dari kegitan-kegiatan tersebut. Semakin banyaknya aktivitas yang dilakukan tentu akan mendesak kebutuhan penunjang seperti meningkatnya konsumsi energi dan pembangunan yang semakin banyak dilakukan (Fenger, 2009). Semakin banyak aktivitas yang dilakukan, maka limbah buang yang dihasilkan juga semakin banyak. Dampak dari aktivitas manusia yang demikian berpotensi menimbulkan polutan-polutan yang mencemari udara di perkotaan.

1.2. Rumusan Masalah

Pencemaran udara di perkotaan merupakan peristiwa yang umum terjadi di kota-kota besar di Indonesia. Pencemaran udara ditimbulkan oleh aktivitas-aktivitas dari berbagai sektor, baik domestik maupun publik diantaranya transportasi dan industri. Selain menghasilkan gas buang yang mencemari udara, aktivitas yang padat tersebut juga berpotensi menimbulkan kebisingan.

Sebagai salah satu kegiatan pemantauan lingkungan, pemantauan kualitas udara di perkotaan harus rutin dilakukan. Pemantauan yang berkala dapat memberikan gambaran kondisi udara baik secara temporal maupun spasial, sehingga dapat digunakan sebagai pedoman dalam menyusun atau mengevaluasi kebijakan yang berkaitan dengan lingkungan. Selain itu, hasil dari evaluasi kualitas udara juga dapat digunakan untuk mengevaluasi kebijakan sektor lain yang terkait, seperti dari pertanian, kesehatan dan transportasi publik. Oleh karena itu, kegiatan Analisis Hasil Pemantauan Kualitas Udara di Kota Yogyakarta penting dilakukan sebagai upaya untuk turut serta dalam menjaga kualitas lingkungan.

1.3. Tujuan Kegiatan

Kegiatan ini bertujuan untuk memantau kualitas udara di Kota Yogyakarta, yang terdiri dari pemantauan kualitas udara ambien roadside dan pemantauan kualitas udara ambien pemukiman.

1.4. Manfaat Kegiatan

Kegiatan Analisis hasil pemantauan Kualitas Udara di Kota Yogyakarta ini untuk mengetahui kondisi kualitas udara di Kota Yogyakarta, dan sebagai pedoman bagi penyusunan kebijakan bagi Pemerintah Kota Yogyakarta.

1.5. Landasan Hukum

- Undang-Undang Nomor 14 Tahun 2008 tentang Keterbukaan Informasi Publik (KIP).
- Undang-undang Nomor 32 Tahun 2009 tentang Perlindungan dan Pengelolaan Lingkungan Hidup
- Undang-undang Nomor 23 Tahun 2014 tentang Pemerintahan Daerah (Lembaran Negara Republik Indonesia Tahun 2014 Nomor 244, Tambahan Lembaran Negara Republik Indonesia Nomor 5587) sebagaimana telah diubah beberapa kali terakhir dengan Undang Undang Nomor 9 Tahun 2015 tentang Perubahan

- Kedua atas Undang-undang Nomor 23 Tahun 2014 tentang Pemerintahan Daerah (Lembaran Negara Republik Indonesia Tahun 2014 Nomor 58, Tambahan Lembaran Negara Republik Indonesia Nomor 5679)
- Peraturan Pemerintah Nomor 41 Tahun 1999 tentang Pengendalian Pencemaran Udara
- Peraturan Menteri Negara Lingkungan Hidup Republik Indonesia Nomor 12
 Tahun 2010 tentang Pelaksanaan Pengendalian Pencemaran Udara di Daerah
- Peraturan Daerah Provinsi DIY Nomor 5 Tahun 2007 Tentang Pengendalian Pencemaran Udara
- Keputusan Gubernur Daerah Istimewa Yogyakarta Nomor 153 tahun 2002 tentang Baku Mutu Udara Ambien Daerah di Provinsi Daerah Istimewa Yogyakarta
- Keputusan Gubernur DIY Nomor 176 Tahun 2003 Tentang Baku Mutu Tingkat Getaran, Kebisingan, dan Kebauan di Provinsi DIY - Peraturan Daerah Kotamadya Daerah Tingkat II Yogyakarta Nomor 1 Tahun 1992 tentang Yogyakarta Berhati Nyaman
- Peraturan Daerah Daerah Istimewa Yogyakarta Nomor 3 Tahun 2015 Tentang
 Perlindungan dan Pengelolaan Lingkungan Hidup
- Peraturan Daerah Kota Yogyakarta Nomor 1 Tahun 2012 tentang Pengelolaan Lingkungan Hidup
- Peraturan Daerah Kota Yogyakarta Nomor 72 Tahun 2016 tentang Susunan, Kedudukan dan Tatakerja Dinas Lingkungan Hidup Kota Yogyakarta
- Dokumen Pelaksanaan Perubahan Anggaran Tahun 2019 Dinas Lingkungan Hidup Kota Yogyakarta Nomor: 22/DPPA-SKPD/VIII/2019 Tanggal 15 Agustus 2019.
- Dokumen Pelaksanaan Anggaran Tahun 2020 Dinas Lingkungan Hidup Kota Yogyakarta Nomor: 04/DPA-SKPD/XII/2019 Tanggal 31 Desember 2019.
- Keputusan Kepala Bapedal No. 17 Tahun 1997 Tentang Penghitungan dan Pelaporan Serta Informasi Indeks Standar Pencemaran Udara.

BAB II

METODE

2.1. Ruang Lingkup

Kegiatan pemantauan kualitas udara dilakukan pada beberapa lokasi di Kota Yogyakarta. Pemantauan kualitas udara dilakukan sepanjang tahun 2019. Pengambilan data dilakukan dari Bulan Januari hingga November tahun 2019. Kegiatan yang dilakukan meliputi pengukuran kualitas udara ambien permukiman yang terdiri dari 16 lokasi titik pantau (Tabel 2.1) dan kualitas udara ambien roadside terdiri dari 10 lokasi titik pantau (Table 2.2).

Tabel 2.1 Lokasi dan Jadwal Pemantauan Kualitas Udara Ambien Permukiman

No.	Lokasi	Waktu	Longitude	Latitude
1	Kel. Demangan Kec.	4 Maret 2019	110 23'20.5"	07 47'10.2"
1	Gondokusuman	3 Agustus 2019	110 23 20.3	07 47 10.2
2	Depan SMA Santa Maria, Kec.	5 Maret 2019	110 22'14.2"	07 48 27.5"
2	Gondomanan	2 September 2019	110 22 14.2	07 46 27.3
3	Kel. Purwokinanti, Kec.	11 Maret 2019	110 22'30.6"	07 47'58.5"
3	Pakualaman	9 September 2019	110 22 30.0	07 47 30.3
4	Kel. Rejowinangun, Kec. Kotagede	12 Maret 2019	110 22'30.6"	07 47'58.5"
4	Kei. Kejowinangun, Kec. Kotagede	10 September 2019	110 22 30.0	07 47 30.3
5	Lapangan Karang, Kec. Kotagede	28 Maret 2019	110 23'49.0"	07 49 24.2"
3	Lapangan Karang, Kec. Kotagede	16 September 2019	110 23 49.0	07 49 24.2
6	Kel. Bumijo Kec. Jetis	1 April 2019	110 21'24.8"	07 47 08.4"
0		17 September 2019	110 21 24.0	
7	Kel. Bener, Kec. Tegal Rejo 2 April 2019 7 Oktober 2019	2 April 2019	110 21'16.5"	07 4638.8"
/		7 Oktober 2019		
8	Kel. Suryodiningratan, Kec.	8 April 2019	110 21'39.5"	07 49 07.9"
0	Mantrijeron	8 Oktober 2019	110 21 39.3	07 49 07.9
9	Kel. Sorosutan, Kec. Umbulharjo	8 April 2019	110 23'12.2"	07 49'14.3"
9	Kei. Solosutan, Kee. Ombumarjo	15 Oktobe 2019	110 23 12.2	07 49 14.3
10	Kel. Sosromenduran, Kec.	10 Juni 2019	110 21'50.4"	07 47'33.6"
10	Gedongtengen	22 Oktober 2019	110 21 30.4	07 47 55.0
11	Kel. Ngampilan, Kec. Ngampilan	11 Juni 2019	110 21'19.1"	07 46'40.6"
11	Kei. Ivgamphan, Kee. Ivgamphan	4 November 2019	110 41 17.1	
12	Kel. Wirobrajan, Kec. Wirobrajan	17 Juni 2019	110 21'11.7"	07 48'16.5"

No.	Lokasi Waktu		Longitude	Latitude
		5 November 2019		
13	Kel. Brontokusuman, Kec	18 Juni 2019	110 22'09.7"	07 49 20.7"
13	Mergangsan 11 November 2019		110 22 09.7	07 49 20.7
14	Kel. Kadipaten, Kec. Kraton	24 Juni 2019	110 21'26.1"	07 48 28.5"
14	Kei. Kadipaten, Kec. Kraton	12 November 2019	110 21 20.1	07 46 26.3
15	Balai Kota, Kec. Umbulharjo	1 Juli 2019	110 23'27.0"	07 48'02.6"
13	Baiai Kota, Rec. Unioumarjo	18 November 2019	110 23 27.0	07 40 02.0
16	Kel. Bausasran, Kec. Danurejan	21 Oktober 2019	110 22'37.4"	07 47'29.2"

Tabel 2.2 Lokasi dan Jadwal Pemantauan Kualitas Udara Ambien Roadside

No.	Lokasi	Waktu	Longitude	Latitude
1	Parampatan Gajayan	7 Januari 2019	110 23'15.8"	07 46'59.5"
1	Perempatan Gejayan	2 Juli 2019	110 23 13.8	07 40 39.3
2	Perempatan Galeria	8 Januari 2019	110 22'44.7"	07 46'58.4"
2	1 erempatan Gaieria	8 Juli 2019	110 22 44.7	07 40 30.4
3	Doromaton Tugu	14 Januari 2019	110 22'01.8"	07 46'59.5"
3	Perempatan Tugu	9 Juli 2019	110 2201.8	07 40 39.3
4	Degenerator Nachage	15 Januari 2019	110 21'22.9"	07 48'0"
4	Perempatan Ngabean 17 Juli 2019	110 21 22.9	07 48 0	
5	LIDT Maliahana	21 Januari 2019	110 21'57.8"	07 47'30.0"
3	UPT Malioboro	15 Juli 2019		
6	Perempatan Titik Nol 4 Februari 2019 22 Juli 2019	110 21'52.3"	07 487.11"	
0		22 Juli 2019	110 21 32.3	0/ 46 /.11
7	Denomination Planaluma Coding	11 Februari 2019	110 21'45.5"	07 48'52.0"
/	Perempatan Plengkung Gading	5 Agustus 2019	110 21 43.3	07 48 32.0
8	December 2 Points Daton & Water	12 Februari 2019	110 22'08.5"	07 40252 5"
0	Perempatan Pojok Beteng Wetan	6 Agustus 2019	110 22 08.3	07 48'53.5"
0	Denomination Codenace	18 Februari 2019	110 2402 41	07 49'12.7"
9	Perempatan Gedongan	7 Agustus 2019	110 24'03.4"	0/ 49 12./
10	Danama etan DUUDN	19 Februari 2019	110 2224 5"	07 47'59.8"
10	Perempatan BKKBN	12 Agustus 2019	110 23'34.5"	

Lingkup dan teknis pelaksanaan pemantauan kualitas udara berdasarkan SNI 19-7119.6:2005 tentang Penentuan Lokasi Pengambilan Contoh Uji Pemantauan Kualitas Udara Ambien dan SNI 19-7119.9:2005 tentang Penentuan Lokasi

Pengambilan Contoh Uji Kualitas Udara Roadside. Tahapan kegiatan dalam rangka pemantauan kualitas udara di Kota Yogyakarta ialah sebagai berikut.

- 1. Persiapan Pelaksanaan Kegiatan
 - a. Koordinasi dan Survei Pendahuluan
 - b. Survei pemantapan lokasi
- 2. Pelaksanaan kegiatan pemantauan (pengambilan sampel udara)
- 3. Rekapitulasi dan pemasukan data
- 4. Pelaporan

2.2. Alat dan Bahan

Alat dan bahan yang digunakan dalam kegiatan pemantauan kualitas udara di Kota Yogyakarta dapat dilihat pada Tabel 2.3 berikut.

Tabel 2.3 Daftar Alat dan Bahan Kegiatan Pemantauan Kualitas Udara

No.	Nama Alat / Bahan	Kegunaan	Gambar
1	Impenger	Mengukur SO ₂ , NO ₂ , dan O ₃	
2	Thermometer	Mengukur suhu (temperatur) udara	
3	Thermohygrometer	Mengukur tingkat kelembaban udara	
4	Barometer	Mengukur tekanan udara	
5	Anemometer	Mengukur kecepatan angin	

No.	Nama Alat / Bahan	Kegunaan	Gambar
6	Sound level meter	Mengukur tingkat kebisingan	
7	GPS	Mengetahui koordinat	
8	Checklist Pengukuran Lapangan	Mencatat hasil pengukuran	

2.3. Pendekatan kajian

Kegiatan pemantauan kualitas udara di Kota Yogyakarta menggunakan metode aktif, yaitu pengukuran kualitas udara yang dilakukan secara kontinyu atau berlanjut. Pengukuran lapangan dilaksanakan dengan mengacu pada pedoman SNI 19-7119.6:2005 tentang Penentuan Lokasi Pengambilan Contoh Uji Pemantauan Kualitas Udara Ambien dan SNI 19-7119.9:2005 tentang Penentuan Lokasi Pengambilan Contoh Uji Kualitas Udara Roadside.

Berdasarkan standar tersebut, pengukuran dengan metode aktif dilakukan dengan 2 (dua) cara, yaitu pengukuran secara langsung (*direct reading*) dan tidak langsung (Analisa Laboratorium). Pengukuran secara langsung (*direct reading*) dilakukan menggunakan alat yang hasilnya dapat diketahui secara langsung, sekaligus dapat menyimpan data hasil pengukuran. Sedangkan pengukuran kualitas

udara secara tidak langsung dilakukan dengan cara mengambil sampel udara terlebih dahulu kemudian dianalisa di laboratorium.

Dalam pengukuran secara tidak langsung, terdapat pendekatan untuk mendapatkan nilai rata-rata pengukuran per jam maupun harian dari parameter kualitas udara ambien. Pendekatan yang dilakukan adalah sebagai berikut :

1. Parameter SO₂ dan NO₂

Dilakukan dengan cara pengukuran selama satu jam.

2. Parameter O₃

Untuk mendapatkan data/nilai satu (1) jam, pengukuran dilakukan selama satu jam pada interval waktu antara pukul 11.00 – 14.00 (jam puncak) pada kondisi udara cerah, sehingga O₃ yang terukur maksimal.

2.4. Jenis dan Sumber Data

Jenis dan sumber data yang digunakan dalam kegiatan pemantauan kualitas udara di Kota Yogyakarta dapat dilihat dalam Tabel 2.4 berikut.

Tabel 2.4 Jenis dan Sumber Data Analisis Kualitas Udara

No	Parameter	Jenis Data	Sumber Data	
1	NO_2	Primer	Pengambilan sampel dan Uji Laboratorium	
2	SO ₂	Primer	Pengambilan sampel dan Uji Laboratorium	
3	O_3	Primer	Pengambilan sampel dan Uji Laboratorium	
4	Kebisingan	Primer	Pengukuran langsung	
5	Suhu Udara	Primer	Pengukuran langsung	
6	Kelembaban	Primer	Pengukuran langsung	
7	Tekanan Udara	Primer	Pengukuran langsung	
8	Kecepatan Angin	Primer	Pengukuran langsung	

2.5. Analisis Data

Analisis data dalam kegiatan ini menggunakan metode analisis deskriptif kuantitatif untuk mendapatkan informasi terkait kualitas udara Kota Yogyakarta. Analisis deskriptif kuantitatif dilakukan dengan bantuan visualisasi informasi menggunakan grafik dan peta untuk mengetahui sebaran spasialnya. Analisis deskriptif juga dilakukan untuk membandingkan kondisi parameter kualitas udara Kota Yogyakarta terhadap baku mutu.

2.6. Tahapan Kegiatan

1. Persiapan Pelaksanaan Kegiatan

Dalam tahap persiapan terdiri dari beberapa kegiatan, yaitu koordinasi awal, penetapan Surat Keputusan (SK) tim dari DLH Kota Yogyakarta, penetapan lokasi pemantauan, dan survei pendahuluan.

2. Pelaksanaan Pemantauan Kualitas Udara

- a. Pemantauan kualitas udara ambien roadside dilakukan dengan menguji dua (dua) parameter, yaitu Sulfur Dioksida (SO₂) dan Nitrogen Dioksida (NO₂).
- b. Pemantauan kualitas udara ambien permukiman dilakukan dengan menguji tiga (3) parameter, yaitu Sulfur Dioksida (SO₂), Nitrogen Dioksida (NO₂), dan Ozon (O₃).
- c. Pemantauan parameter meteorologis dan kebisingan untuk ambien roadside dan ambien permukiman dilakukan pengukuran secara langsung menggunakan alat uji portabel.

Metode uji parameter kualitas udara yang digunakan dapat dilihat pada tabel 2.5 berikut.

Tabel 2.5 Metode Analisis Parameter Kualitas Udara

No	Parameter	Metode Uji
1	Sulfur dioksida (SO)	SNI-7119-7:2015
2	Nitrogen dioksida (NO)	SNI-7119-2:2015
3	Ozon (O ₃)	SNI-7119-8:2017

3. Rekapitulasi dan Analisa Data

Data yang diperoleh dari hasil pemantauan selanjutnya direkap dan dianalisa sesuai keperluan, data yang diperoleh yaitu:

- a. Rata-rata konsentrasi SO₂ (Sulfur Dioksida)
- b. Rata-rata konsentrasi NO₂ (Nitrogen Dioksida)
- c. Rata-rata konsentrasi O₃ (Ozon)

4. Olah Data Hasil Pengukuran Kualitas Udara

a. Penghitungan Indeks Standar Pencemaran Udara (ISPU)

Penghitungan ISPU dilakukan pada 3 (tiga) parameter kualitas udara ambien roadside dan ambien permukiman, yaitu sulfur dioksida (SO₂), nitrogen dioksida (NO₂), dan ozon (O₃). Penghitungan ISPU dilakukan dengan mengacu pada Keputusan Kepala Bapedal No. 17 Tahun 1997 Tentang Penghitungan dan Pelaporan Serta Informasi Indeks Standar Pencemaran Udara. Sebelum digunakan untuk menghitung nilai ISPU, nilai konsentrasi dirata-rata sesuai dengan periode waktu untuk masing-masing parameter yang digunakan dalam penghitungan ISPU. Penghitungan ISPU menggunakan rumus persamaan di bawah ini.

$$I = \frac{I_a - I_b}{X_a - X_b} (X_x - X_b) + I_b$$

Keterangan:

I = ISPU terhitung

I = ISPU batas atas

I. = ISPU batas bawah

y = Ambien batas atas

 χ_b = Ambien batas bawah

 χ_{ν} = Kadar ambien nyata hasil pengukuran

Batas nilai ISPU dalam satuan SI dan konsentrasi ambien untuk setiap kelas ISPU dapat dilihat pada Tabel 2.6, sedangkan kategori ISPU dan pengaruh setiap parameter dapat dilihat pada Tabel 2.7 berikut.

Tabel 2.6 Batas Indeks Standar Pencemaran Udara Dalam Satuan SI

Indeks Standar Pencemar Udara	24 jam PM μg/m³	24 jam SO μg/m³	8 jam CO μg/m³	1 jam Ο μg/m³	1 jam NO μg/m³
50	50	80	5	120	(2)
100	150	365	10	235	(2)
200	350	800	17	400	1130
300	420	1600	34	800	2260
400	500	2100	46	1000	3000
500	600	2620	57.5	1200	3750

Sumber: Keputusan Kepala Bapedal No. 17 Tahun 1997

Tabel 2.7 Kategori Indeks Standar Pencemar Udara dan Pengaruh Setiap Parameter Pencemar

Kategori	Rentang	Karbon Monoksida (CO)	Nitrogen Dioksida (NO)	Ozon (O)	Sulfur Dioksida (SO)	Partikulat
Baik	0 - 50	Tidak ada efek	Sedikit berbau	luka pada beberapa spesies tumbuhan akibat kombinasi dengan SO2 (selama 4 jam)	luka pada beberapa spesies tumbuhan akibat kombinasi dengan O2 (selama 4 jam)	tidak ada efek
Sedang	51 - 100	Perubahan kimia darah tetapi tidak terdeteksi	berbau	luka pada beberapa spesies tumbuhan akibat kombinasi dengan SO2 (selama 4 jam)	luka pada beberapa spesies tumbuhan akibat kombinasi dengan SO2 (selama 4 jam)	terjadi penurunan jarak pandang
Tidak Sehat	101 - 199	peningkatan pada kardiovaskule r pada perokok yang sakit jantung	bau dan kehilangan warna, peningkatan reaktivitas pembuluh tenggorokan pada penderita asma	penurunan kemampuan pada atlet yang berlatih keras	bau, meningkatnya kerusakan tanaman	jarak pandang turun dan pengotoran debu terjadi dimana- mana

Kategori	Rentang	Karbon Monoksida (CO)	Nitrogen Dioksida (NO)	Ozon (O)	Sulfur Dioksida (SO)	Partikulat
Sangat Tidak Sehat	200 - 299	meningkatnya karidovaskula r pada orang bukan perokok yang berpenyakit jantung, dan tampak beberapa kelemahan yang terlihat nyata	meningkatnya sensitivitas pasien yang berpenyakit asma dan bronkitis	olahraga ringan mengakibatka n pengaruh pernafasan pada pasien yang berpenyakit paru-paru kronis	meningkatnya sensitivitas pasien yang berpenyakit asma dan bronkitis	Meningkat nya sensitivitas pasien yang berpenyakit asma dan bronkitis
Berbahaya	300 - lebih	tingkat yang berbahaya bagi semua populasi yang terpapar				

Sumber: Keputusan Kepala Bapedal No. 17 Tahun 1997

BAB III

DESKRIPSI WILAYAH

2.1. Administrasi

Kota Yogyakarta merupakan ibukota Daerah Istimewa Yogyakarta. Secara administratif Kota Yogyakarta terdiri dari 14 kecamatan dan 45 kelurahan. Kota Yogyakarta terletak di antara 110°24'19" hingga 110°28'53" Bujur Timur dan antara 07°15'24" hingga 07°49'26" lintang selatan. Luas Kota Yogyakarta sekitar 32,5 km². Kota Yogyakarta berbatasan langsung dengan daerah-daerah berikut:

- Sebelah Utara : Kabupaten Sleman

- Sebelah Timur : Kabupaten Bantul dan Kabupaten Sleman

- Sebeleh Selatan : Kabupaten Bantul

- Sebelah Barat : Kabupaten Bantul dan Kabupaten Sleman

2.2. Kependudukan

Menurut BPS (2019), jumlah penduduk Kota Yogyakarta pada tahun 2018 menurut proyeksi penduduk sebanyak 427.498 jiwa. Jumlah tersebut terdiri dari 208.792 jiwa penduduk laki-laki dan 218.706 jiwa penduduk perempuan dengan rasio jenis kelamin 94,81. Berdasarkan kepadatan penduduknya, Kecamatan dengan penduduk yang paling padat adalah Kecamatan Ngampilan yaitu 20.874 jiwa/km², sedangkan yang paling jarang penduduknya adalah Kecamatan Umbulharjo yaitu 11.437 jiwa/km². Berdasarkan piramida penduduk Kota Yogyakarta tahun 2018 (Gambar 3.1) dapat dilihat bahwa Kota Yogyakarta memiliki jenis piramida penduduk yang ekspansif, artinya didominasi oleh penduduk usia muda. Hal tersebut mengindikasikan angka kelahiran yang tinggi, kematian yang rendah dan pertumbuhan penduduk yang tinggi pula.

Menurut WHO (2005) anak-anak merupakan elemen yang paling rawan terkena polusi udara. Efek jangka panjangnya dapat mengekibatkan penyakit di saluran pernafasan dan kerusakan hati. Oleh karena itu data kependudukan penting untuk penaksiran risiko paparan polusi udara, terutama di Kota Yogyakarta yang sebagian besar penduduknya didominasi usia muda dan anak-anak.

Gambar 3.1 Piramida Penduduk Kota Yogyakarta Tahun 2018 Sumber: BPS (2019)

2.3. Penggunaan Lahan

Berdasarkan BPS (2019), penggunaan lahan di Kota Yogyakarta dapat dibagi menjadi enam (6) jenis, yaitu perumahan, jasa, perusahaan, industri, pertanian, dan non-produktif. Kota Yogyakarta didominasi oleh penggunaan lahan berupa perumahan, yaitu mencapai 65 % dari total luas penggunaan lahan di Kota Yogyakarta. Penggunaan lahan yang terus mengalami penurunan adalah lahan pertanian. Penurunan lahan pertanian di Kota Yogyakarta mengindikasikan adanya konversi lahan pertanian sepanjang tahun. Luas penggunaan lahan di Kota Yogyakarta dalam empat (4) tahun terakhir dapat dilihat pada Tabel 3.1 berikut ini.

Tabel 3.1 Jenis dan Luas Lahan Kota Yogyakarta

Luas Penggunaan	Tahun						
lahan (Hektar)	2015	2016	2017	2018			
Perumahan	2.099,93	2.099,93	2.101,19	2.101,24			
Jasa	281,33	281,33	281,59	281,84			
Perusahaan	307,99	307,77	311,06	311,54			
Industri	52,23	52,23	52,23	52,23			
Pertanian	102,77	101,10	101,10	100,45			
Non Produktif	17,59	15,62	14,67	14,53			

Sumber : BPS (2019)

2.4. Transportasi

Infrastruktur yang memadai merupakan salah satu modal dalam pembangunan yang akan meningkatkan kesejahteraan masyarakat. Salah satu infrastruktur yang pokok adalah jalan. Jalan sangat berguna sebagai jalur mobilitas

masyarakat untuk mendistribusikan barang dan jasa. Menurut BPS (2019), panjang jalan di Kota Yogyakarta pada tahun 2018 yang tertutup aspal adalah sepanjang 233,21 km. secara umum, kondisi jalan yang dapat dilalui dengan baik adalah 40,83 %, 41,11 % kondisi sedang dan 18,06 % jalan dengan kondisi rusak.

Berdasarkan Tabel 3.2 dapat dilihat bahwa jumlah kendaraan bermotor di Kota Yogyakarta dari tahun 2015 hingga tahun 2018 terus mengalami peningkatan. Jenis kendaraan yang paling banyak beroperasi adalah sepeda motor. Jumlah kendaraan bermotor yang semakin meningkat dapat memengaruhi kualitas udara perkotaan khususnya pada parameter Karbon Monoksida (CO) karena sebagian besar sumber CO adalah pembakaran tidak sempurna dari kendaraan bermotor.

Tabel 3.2 Jumlah Kendaraan Bermotor Menurut Jenis di Kota Yogyakarta

Ionia Vandanaan	Tahun							
Jenis Kendaraan	2015	2016	2017	2018				
Mobil Penumpang	48.439	50.562	54.346	60.780				
Bus	1.094	1056	1147	1.230				
Mobil Barang	10.011	10266	10.623	11.226				
Kendaraan Khusus	583	656	701	768				
Sepeda Motor	293.843	303.403	309.373	341.986				

Sumber : BPS (2019)

2.5. Kondisi Iklim

Data meteorologi sangat penting dalam analisis kualitas udara di suatu wilayah. Kualitas udara sangat dipengaruhi oleh kondisi cuaca dan sangat sensitif terhadap perubahan iklim (Jacob & Winner, 2009). Suhu udara dan kelembaban dapat memengaruhi reaksi kimia yang berlangsung di atmosfer. Selain itu, kecepatan dan arah angin dapat memengaruhi persebaran zat kimia dan partikulat di udara. Berdasarkan Gambar 3.2, curah hujan tertinggi terjadi pada bulan Januari sebesar 464,1 mm. Pada gambar tersebut juga dapat dilihat pola yang hampir sama antara curah hujan dan suhu rerata, yaitu ketika curah hujannya tinggi suhu udara juga mengalami peningkatan (musim penghujan) dan sebaliknya (musim kemarau). Hal tersebut terjadi karena pada musim penghujan banyak terbentuk awan yang akan menahan pantulan radiasi sinar matahari dari bumi. Akibatnya suhu di bumi meningkat. edangkan pada musim kemarau langit akan terlihat cerah karena

pembentukan awan belum optimal, sehingga pantulan radiasi matahari akan mudah terlepaskan kembali ke atmosfer.

Gambar 3.2 Diagram Curah Hujan dan Rata-rata Suhu Udara Harian Kota Yogyakarta Tahun 2018 Sumber : diolah dari BPS (2019)

Berdasarkan Gambar 3.3, kelembapan udara di Kota Yogyakarta sepanjang tahun 2018 cukup tinggi, berkisar 79% hingga 87%. Kondisi tersebut mengindikasikan udara di Kota Yogyakarta cukup lembab. Kelembaban menggambarkan kandungan air yang ada di udara. Menurut Jacob & Winner (2009), kandungan air di udara memengaruhi pergerakan ozon atmosfer yang dapat memindahkan ozon dari lapisan atas menuju lapisan bawah. Ozon seharusnya tempatnya di lapisan Stratosfer yang berfungsi untuk menangkal sinar Ultraviolet (UV), apabila terdapat ozon dalam jumlah banyak di lapisan Troposfer maka dapat mencemari udara.

Gambar 3.3 Diagram Kelembapan Kota Yogyakarta Tahun 2018

Sumber: diolah dari BPS (2019)

BAB IV

HASIL DAN PEMBAHASAN

4.1. Analisis Kualitas Udara Ambien Roadside

Menurut WHO (2005) di beberapa belahan dunia, jalan raya merupakan sumber terbesar dari polusi udara di perkotaan. Jalan raya erat kaitannya dengan tempat bercampurnya bahan-bahan kimia yang bersifat karsinogen. Pemantauan kualitas udara ambien roadside / tepi jalan raya dilakukan secara bertahap sepanjang tahun 2019 yang terbagi dalam dua semester. Semester I dilakukan Bulan Januari dan Februari, sedangkan semester II Bulan Juli dan Agustus. Pengukuran kualitas udara ambien roadside dilakukan pada 10 lokasi di Kota Yogyakarta (Gambar 4.1).

Gambar 4.1 Pemantauan Kualitas Udara Ambien Roadside di Perempatan Galeria

Secara umum, hasil pengukuran udara ambien roadside dapat dilihat pada Tabel 4.1. Hasil pengukuran kualitas udara ambien roadside dalam bentuk grafik dapat dilihat pada Gambar 4.2 dan Gambar 4.3.

Tabel 4.1 Hasil Pemantauan Kualitas Udara Ambien Roadside

			Baku		Hasil A	Analisa
No.	Lokasi	Parameter	Mutu	Satuan	Semester 1	Semester 2
1	Damana dan Caianan	SO_2	900	$\mu g/m^3$	0,4471	0,4586
1	Perempatan Gejayan	NO_2	400	$\mu g/m^3$	0,6793	3,3271
2	Dagamatan Calaria	SO_2	900	$\mu g/m^3$	0,4718	0,1334
2	Perempatan Galeria	NO ₂	400	μg/m ³	0,9482	2,2429
3	Demonstra Trans	SO_2	900	$\mu g/m^3$	0,4113	0,0258
3	Perempatan Tugu	NO ₂	400	μg/m ³	1,0205	1,1108
4	D	SO_2	900	μg/m ³	0,4402	0,5652
4	Perempatan Ngabean	NO_2	400	$\mu g/m^3$	0,2094	1,2855
5	LIDT Maliahana	SO_2	900	μg/m ³	0,1206	0,4219
3	UPT Malioboro	NO ₂	400	μg/m ³	2,9728	0,5749
_	Danamastan Titila Nat	SO_2	900	$\mu g/m^3$	0,1844	0,4502
6	Perempatan Titik Nol	NO ₂	400	μg/m ³	0,2484	0,8658
7	Perempatan Plengkung	SO_2	900	μg/m ³	0,3134	0,4875
/	Gading	NO ₂	400	μg/m ³	2,243	0,786
8	Perempatan Pojok Beteng	SO_2	900	μg/m ³	0,2827	0,299
8	Wetan	NO ₂	400	μg/m ³	5,4875	0,6349
9	Domonanton Codonaci	SO ₂	900	μg/m ³	0,7075	0,1995
9	Perempatan Gedongan	NO ₂	400	μg/m ³	0,0498	1,214
10	Danamatan DVVDN	SO_2	900	μg/m ³	0,356	0,299
10	Perempatan BKKBN	NO ₂	400	$\mu g/m^3$	0,3628	0,6349

Gambar 4.2 Diagram Hasil Pemantauan Kualitas Udara SO₂ Roadside

Gambar 4.3 Diagram Hasil Pemantauan Kualitas Udara NO2 Roadside

Berdasarkan Gambar 4.2 dan Gambar 4.3 tidak ditemukan pola yang jelas dari konsentrasi SO₂ dan NO₂ baik pada semester I maupun di semester II. Secara umum, hasil pengukuran kualitas udara ambien roadside berdasarkan parameter SO₂ dan NO₂ di Kota Yogyakarta masih jauh **dibawah batas baku mutu**. Hal tersebut mengindikasikan bahwa kualitas udara ambien roadside di Kota Yogyakarta masih tergolong baik. Berdasarkan perhitungan ISPU untuk parameter SO₂ dan NO₂ juga masih termasuk dalam **kategori baik** (Tabel 4.2 dan Tabel 4.3). Persebaran kelas ISPU dari hasil pemantauan kualitas udara roadside di Kota Yogyakarta semester I dan semester II dapat dilihat pada Gambar 4.4 dan semester II pada Gambar 4.5 berikut.

Tabel 4.2 Nilai dan Kelas ISPU SO₂ Roadside di Kota Yogyakarta

No.	lokasi	IS	PU	aatuum	Irotonongon
110.	iokasi	Semester 1	Semester 2	satuan	keterangan
1	Perempatan Gejayan	0,279	0,287	$\mu g/m^3$	
2	Perempatan Galeria	0,295	0,083	$\mu g/m^3$	
3	Perempatan Tugu	0,257	0,016	$\mu g/m^3$	
4	Perempatan Ngabean	0,275	0,353	$\mu g/m^3$: Baik
5	UPT Malioboro	0,075	0,264	$\mu g/m^3$: Sedang
6	Perempatan Titik Nol	0,115	0,281	$\mu g/m^3$: Sangat Tidak Sehat
7	Perempatan Plengkung Gading	0,196	0,305	$\mu g/m^3$: Berbahaya
8	Perempatan Pojok Beteng Wetan	0,177	0,187	$\mu g/m^3$	
9	Perempatan Gedongan	0,442	0,125	$\mu g/m^3$	
10	Perempatan BKKBN	0,223	0,187	$\mu g/m^3$	

Tabel 4.3 Nilai dan Kelas ISPU NO₂ Roadside di Kota Yogyakarta

NT.	laborat.	IS	PU		14	
No.	lokasi	Semester 1	Semester 2	satuan	keterangan	
1	Perempatan Gejayan	0,120	0,589	$\mu g/m^3$		
2	Perempatan Galeria	0,168	0,397	$\mu g/m^3$		
3	Perempatan Tugu	0,181	0,197	$\mu g/m^3$		
4	Perempatan Ngabean	0,037	0,228	$\mu g/m^3$: Baik	
5	UPT Malioboro	0,526	0,102	μg/m ³	: Sedang	
6	Perempatan Titik Nol	0,044	0,153	$\mu g/m^3$: Sangat Tidak Sehat	
7	Perempatan Plengkung Gading	0,397	0,139	$\mu g/m^3$: Berbahaya	
8	Perempatan Pojok Beteng Wetan	0,971	0,112	μg/m ³		
9	Perempatan Gedongan	0,009	0,215	$\mu g/m^3$		
10	Perempatan BKKBN	0,064	0,112	μg/m ³		

Pengukuran tingkat kebisingan di roadside/ tepi jalan raya menunjukkan secara keseluruhan semua titik pengukuran diperoleh hasil yang **melebihi baku mutu,** hanya 3 lokasi yang masih dibawah baku mutu yaitu perempatan Ngabean, Perempatan Plengkung Gading, dan Perempatan BKKBN (Tabel 4.4). Hal tersebut menunjukkan bahwa tingkat kebisingan di tepi jalan raya lebih besar daripada di permukiman.

Tabel 4.4 Hasil Pemantauan Parameter Kebisingan Roadside di Kota Yogyakarta

		Baku		Hasil Analisa				
No.	Lokasi	Mutu	Satuan	Semester 1	Keterangan	Semester 2	Keterangan	
1	Perempatan Gejayan	55	dBA	58,15	> Baku Mutu	59,19	> Baku Mutu	
2	Perempatan Galeria	55	dBA	57,84	> Baku Mutu	55,57	> Baku Mutu	
3	Perempatan Tugu	55	dBA	57,4	> Baku Mutu	56,59	> Baku Mutu	
4	Perempatan Ngabean	55	dBA	57,64	> Baku Mutu	53,01	< Baku Mutu	
5	UPT Malioboro	55	dBA	55,02	> Baku Mutu	61,56	> Baku Mutu	
6	Perempatan Titik Nol	55	dBA	55,94	> Baku Mutu	58,62	> Baku Mutu	
7	Perempatan Plengkung Gading	55	dBA	54,43	< Baku Mutu	56,12	> Baku Mutu	
8	Perempatan Pojok Beteng Wetan	55	dBA	58,63	> Baku Mutu	58,3	> Baku Mutu	
9	Perempatan Gedongan	55	dBA	56,44	> Baku Mutu	58,39	> Baku Mutu	
10	Perempatan BKKBN	55	dBA	54,88	< Baku Mutu	58,3	> Baku Mutu	

Gambar 4.4 Peta Kelas ISPU Roadside Semester I di Kota Yogyakarta

Gambar 4.5 Peta Kelas ISPU Roadside Semester II di Kota Yogyakarta

4.2. Analisis Kualitas Udara Ambien Permukiman

Evaluasi kualitas udara permukiman dilakukan secara bertahap sepanjang tahun 2019 yang terbagi dalam dua semester. Semester I dilakukan pada Bulan Maret, April dan Juni, sedangkan semester II dilakukan Bulan Juli, Agustus, September, Oktober dan November. Pengukuran kualitas udara ambien permukiman dilakukan pada 16 lokasi di Kota Yogyakarta (Gambar 4.6). Secara umum, hasil pengukuran udara ambien roadside dapat dilihat pada Tabel 4.5

Gambar 4.6 Pemantauan Kualitas Udara Ambien Permukiman

Tabel 4.5 Hasil Pemantauan Kualitas Udara Ambien Permukiman

No.	Lokasi	Parameter	Baku	Satuan	Hasil Analisa	
110.	Lokasi	Parameter	Mutu	Satuan	Semester 1	Semester 2
		SO_2	900	$\mu g/m^3$	0,0312	0,2594
1	Demangan Kec. Gondokusuman	O ₃	235	μg/m ³	0,0443	0,4685
	Gondokusuman	NO ₂	400	μg/m ³	0,1063	0,0419
	Depan SMA Santa	SO_2	900	μg/m ³	0,1071	0,0249
2	Maria Kec.	O_3	235	μg/m ³	0,1248	0,4685
	Gondomanan	NO ₂	400	μg/m ³	0,4194	0,3269
		SO ₂	900	μg/m ³	0,0916	0,2658
3	Kel. Purwokinanti Kec. Pakualaman	O ₃	235	μg/m ³	0,0371	0,0993
		NO ₂	400	μg/m ³	0,5823	0,0139

Ma	Labori	Domonioton	Baku	Cotuon	Hasil .	Analisa
No.	Lokasi	Parameter	Mutu	Satuan	Semester 1	Semester 2
		SO_2	900	μg/m ³	0,5005	0,0740
4	Kel. Rejowinangun Kec. Kotagede	O_3	235	μg/m ³	0,0928	0,1181
	Rec. Rotagede	NO ₂	400	μg/m ³	1,2919	0,7629
		SO_2	900	μg/m ³	0,1981	0,1404
5	Lapangan Karang Kec. Kotagede	O_3	235	μg/m ³	0,4794	0,0697
	Komgede	NO ₂	400	μg/m ³	1,3885	0,0934
		SO_2	900	$\mu g/m^3$	0,4945	0,5748
6	Kel. Bumijo Kec. Jetis	O_3	235	$\mu g/m^3$	0,0810	5,4504
		NO ₂	400	μg/m ³	0,8871	0,5041
		SO_2	900	$\mu g/m^3$	0,2247	0,1265
7	Bener Kec. Tegal Rejo	O ₃	235	μg/m ³	0,0156	0,0402
		NO ₂	400	μg/m ³	0,6685	0,6290
		SO_2	900	μg/m ³	0,0527	0,2840
8	Suryodiningratan Kec.	O ₃	235	μg/m ³	0,1352	0,0611
	Mantrijeron	NO ₂	400	μg/m ³	0,4338	0,0657
		SO_2	900	μg/m ³	0,2720	0,0907
9	Sorosutan Kec. Umbulharjo	O ₃	235	μg/m ³	0,0782	0,2887
		NO ₂	400	μg/m ³	0,0492	0,2739
	Sosromenduran, Kec. Gedongtengen	SO_2	900	$\mu g/m^3$	0,0260	0,2191
10		O ₃	235	μg/m ³	0,0548	0,6620
		NO ₂	400	μg/m ³	0,3566	0,0957
		SO_2	900	μg/m ³	0,1710	0,1904
11	Kel. Ngampilan Kec. Ngampilan	O ₃	235	μg/m ³	0,0633	0,0188
	14gamphan	NO_2	400	$\mu g/m^3$	0,0055	0,3159
		SO ₂	900	μg/m ³	0,2176	0,2397
12	Kel. Wirobrajan Kec. Wirobrajan	O ₃	235	μg/m ³	0,0898	0,0156
	vv iroorajan	NO_2	400	$\mu g/m^3$	0,0171	0,1849
		SO_2	900	μg/m ³	0,4439	0,0304
13	Kel. Brontokusuman Kec Mergangsan	O_3	235	μg/m ³	0,1137	0,0086
	ixee wergungsun	NO_2	400	$\mu g/m^3$	0,1176	0,9042
		SO_2	900	$\mu g/m^3$	0,3629	0,2024
14	Kadipaten Kec. Kraton	O ₃	235	μg/m ³	0,5370	0,0587
		NO ₂	400	μg/m ³	0,5329	0,5519
	D 1 1 1 1 1 1 1	SO_2	900	μg/m ³	0,0268	0,2328
15	Balai Kota Kec. Umbulharjo	O ₃	235	μg/m ³	0,2041	0,0887
	omounia jo	NO ₂	400	μg/m ³	1,0965	0,1724
	W 1 B	SO_2	900	$\mu g/m^3$	-	0,5508
16	Kel. Bausasran, Kec. Danurejan	O ₃	235	μg/m ³	-	0,6230
	Danarojan	NO ₂	400	μg/m ³	-	0,2813

Keterangan:

- : tidak ada data

Pengukuran kualitas udara ambien permukiman dilakukan di 16 titiSecara keseluruhan, konsentrasi dari NO₂, SO₂ dan O₃ di permukiman Kota Yogyakarta memiliki konsentrasi yang sangat rendah **dibawah baku mutu** nasional. Hal tersebut mengindikasikan bahwa kualitas udara di permukiman Kota Yogyakarta pada semester 1 dan semester 2 masih dalam **kategori baik**. Perbandingan konsentrasi parameter NO₂, SO₂ dan O₃ dapat dilihat pada Gambar 4.7, Gambar 4.8 dan Gambar 4.9 berikut.

Gambar 4.7 Diagram Hasil Pemantauan Kualitas Udara SO2 Permukiman

Gambar 4.8 Diagram Hasil Pemantauan Kualitas Udara NO2 Permukiman

Gambar 4.9 Diagram Hasil Pemantauan Kualitas Udara O3 Permukiman

Berdasarkan Gambar 4.9, terdapat satu lokasi yang memiliki konsentrasi Ozon lebih tinggi dari lokasi lainnya meskipun nilainya masih dibawah baku mutu, yaitu di kelurahan Bumijo, Kecamatan Jetis. Hal tersebut menjadi anomali dengan data lainnya yang nilainya terpaut cukup besar. Perbedaan nilai tersebut dapat dipengaruhi dari cara pengukuran, faktor alat ukur atau kesalahan dalam input data.

Hasil perhitungan Indeks Standar Pencemar Udara (ISPU) tahun 2019 dapat dilihat pada Tabel 4.6, Tabel 4.7 dan Tabel 4.8.

Tabel 4.6 Nilai dan Kelas ISPU SO₂ Permukiman di Kota Yogyakarta

	Tabel 4.0 Miai dan Kelas 151 U 50		PU		
No.	Lokasi	Semester 1	Semester 2	Satuan	Keterangan
1	Demangan Kec. Gondokusuman	0,020	0,162	μg/m³	
2	Depan SMA Santa Maria Kec. Gondomanan	0,067	0,016	$\mu g/m^3$	
3	Kel. Purwokinanti Kec. Pakualaman	0,057	0,166	$\mu g/m^3$	
4	Kel. Rejowinangun Kec. Kotagede	0,313	0,046	μg/m³	
5	Lapangan Karang Kec. Kotagede	0,124	0,088	$\mu g/m^3$	
6	Kel. Bumijo Kec. Jetis	0,309	0,359	$\mu g/m^3$: Baik
7	Bener Kec. Tegal Rejo	0,140	0,079	$\mu g/m^3$: Sedang
8	Suryodiningratan Kec. Mantrijeron	0,033	0,178	μg/m³	: Tidak Sehat
9	Sorosutan Kec. Umbulharjo	0,170	0,057	$\mu g/m^3$: Sangat Tidak Sehat
10	Sosromenduran, Kec. Gedongtengen	0,016	0,137	μg/m³	: Berbahaya
11	Kel. Ngampilan Kec. Ngampilan	0,107	0,119	$\mu g/m^3$	
12	Kel. Wirobrajan Kec. Wirobrajan	0,136	0,149	μ g/m ³	
13	Kel. Brontokusuman Kec Mergangsan	0,277	0,019	$\mu g/m^3$	
14	Kadipaten Kec. Kraton	0,227	0,126	$\mu g/m^3$	
15	Balai Kota Kec. Umbulharjo	0,017	0,145	μg/m ³	
16	Kel. Bausasran, Kec. Danurejan	-	0,344	μg/m ³	

Keterangan:

- : tidak ada data

Berdasarkan hasil perhitungan ISPU SO_2 di permukiman Kota Yogyakarta, diperoleh hasil bahwa semua lokasi masih termasuk dalam **kategori baik** (Tabel 4.6). Nilai dari hasil pengukuran juga masih jauh dibawah baku mutu nasional untuk 1 jam (900 μ g/m³) dan WHO (20 μ g/m³). Hal tersebut mengindikasikan bahwa kualitas udara di permukiman Kota Yogyakarta untuk parameter SO_2 masih dalam **kondisi baik**.

Tidak berbeda dengan hasil ISPU SO_2 , hasil ISPU NO_2 di semua lokasi pengukuran masih termasuk dalam **kategori baik** (Tabel 4.7). Nilai dari hasil pengukuran juga masih jauh dibawah baku mutu nasional untuk 1 jam (400 μ g/m³) dan WHO (40 μ g/m³). Hal tersebut mengindikasikan bahwa kualitas udara di permukiman Kota Yogyakarta untuk parameter NO_2 masih dalam **kondisi baik**.

Tabel 4.7 Nilai dan Kelas ISPU NO₂ Permukiman di Kota Yogyakarta

		IS	PU		
No.	Lokasi	Semester	Semester	Satuan	Keterangan
		1	2		
1	Demangan Kec. Gondokusuman	0,019	0,007	μg/m ³	
2	Depan SMA Santa Maria Kec. Gondomanan	0,074	0,058	$\mu g/m^3$	
3	Kel. Purwokinanti Kec. Pakualaman	0,103	0,002	$\mu g/m^3$	
4	Kel. Rejowinangun Kec. Kotagede	0,229	0,135	$\mu g/m^3$	
5	Lapangan Karang Kec. Kotagede	0,246	0,017	$\mu g/m^3$: Baik
6	Kel. Bumijo Kec. Jetis	0,157	0,089	$\mu g/m^3$: Sedang
7	Bener Kec. Tegal Rejo	0,118	0,111	$\mu g/m^3$: Tidak Sehat
8	Suryodiningratan Kec. Mantrijeron	0,077	0,012	$\mu g/m^3$: Sangat Tidak Sehat
9	Sorosutan Kec. Umbulharjo	0,009	0,048	$\mu g/m^3$: Berbahaya
10	Sosromenduran, Kec. Gedongtengen	0,063	0,017	$\mu g/m^3$	
11	Kel. Ngampilan Kec. Ngampilan	0,001	0,056	$\mu g/m^3$	
12	Kel. Wirobrajan Kec. Wirobrajan	0,003	0,033	$\mu g/m^3$	
13	Kel. Brontokusuman Kec Mergangsan	0,021	0,160	$\mu g/m^3$	
14	Kadipaten Kec. Kraton	0,094	0,098	$\mu g/m^3$	
15	Balai Kota Kec. Umbulharjo	0,194	0,031	μg/m ³	
16	Kel. Bausasran, Kec. Danurejan	-	0,050	$\mu g/m^3$	

Keterangan:

- : tidak ada data

Hasil perhitungan ISPU O_3 di permukiman Kota Yogyakarta menunjukkan bahwa semua lokasi masih termasuk dalam **kategori baik** (Tabel 4.8). Nilai dari hasil pengukuran juga masih jauh dibawah baku mutu nasional untuk 8 jam (235 μ g/m³) dan WHO (100 μ g/m³). Hal tersebut mengindikasikan bahwa kualitas udara di

permukiman Kota Yogyakarta untuk parameter O₃ masih dalam **kondisi baik**. Hal tersebut perlu dijaga dan terus dikontrol konsentrasinya karena ozon merupakan parameter yang mempunyai ikatan yang labil. Perkembangan perkotaan dalam segala sektor di Kota Yogyakarta berpotensi menambah sumber bahan pencemar udara diantaranya melalui penggunaan pendingin ruangan (AC) yang semakin banyak. Ozon seharusnya berada di lapisan Stratosfer sebagai penangkal sinar Ultraviolet (UV), apabila terdapat ozon dalam konsentrasi berlebih di lapisan Troposfer maka dapat mencemari udara. Persebaran kualitas udara ambien permukiman di Kota Yogyakarta berdasarkan perhitungan ISPU dapat dilihat pada Gambar 4.10 dan Gambar 4.11.

Tabel 4.8 Nilai dan Kelas ISPU O₃ Permukiman di Kota Yogyakarta

		IS	PU		
No.	Lokasi	Semester	Semester 2	Satuan	Keterangan
1	Demangan Kec. Gondokusuman	0,018	0,195	μg/m ³	
2	Depan SMA Santa Maria Kec. Gondomanan	0,052	0,195	μg/m ³	
3	Kel. Purwokinanti Kec. Pakualaman	0,015	0,041	μg/m ³	
4	Kel. Rejowinangun Kec. Kotagede	0,039	0,049	μg/m ³	
5	Lapangan Karang Kec. Kotagede	0,200	0,029	μg/m ³	
6	Kel. Bumijo Kec. Jetis	0,034	2,271	$\mu g/m^3$: Baik
7	Bener Kec. Tegal Rejo	0,007	0,017	$\mu g/m^3$: Sedang
8	Suryodiningratan Kec. Mantrijeron	0,056	0,025	$\mu g/m^3$: Tidak Sehat
9	Sorosutan Kec. Umbulharjo	0,033	0,120	$\mu g/m^3$: Sangat Tidak Sehat
10	Sosromenduran, Kec. Gedongtengen	0,023	0,276	$\mu g/m^3$: Berbahaya
11	Kel. Ngampilan Kec. Ngampilan	0,026	0,008	$\mu g/m^3$	
12	Kel. Wirobrajan Kec. Wirobrajan	0,037	0,007	$\mu g/m^3$	
13	Kel. Brontokusuman Kec Mergangsan	0,047	0,004	$\mu g/m^3$	
14	Kadipaten Kec. Kraton	0,224	0,024	$\mu g/m^3$	
15	Balai Kota Kec. Umbulharjo	0,085	0,037	$\mu g/m^3$	
16	Kel. Bausasran, Kec. Danurejan	-	0,260	$\mu g/m^3$	

Keterangan:

- : tidak ada data

Hasil pengukuran parameter kebisingan (Tabel 4.9) menunjukkan, seluruh lokasi pengukuran di permukiman Kota Yogyakarta masih berada **dibawah baku mutu** (55 dBA). Pengukuran parameter kebisingan penting dilakukan karena hal tersebut berkaitan dengan tingkat kenyamanan. Pada kegiatan ini, pengukuran hanya

dilakukan pada siang hari. Pengukuran di malam hari sebaiknya juga dilakukan untuk mengetahui tingkat kebisingan di permukiman, karena kebanyakan orang menggunakan waktu malam untuk beristirahat dan membutuhkan suasana yang nyaman dan tidak terganggu oleh kebisingan.

Tabel 4.9 Hasil Pemantauan Parameter Kebisingan Permukiman di Kota Yogyakarta

No.	Lokasi	Baku Mutu	Satuan	Hasil Analisa			
				Semester 1	Keterangan	Semester 2	Keterangan
1	Demangan, Kec. Gondokusuman	55	dBA	54,35	< Baku Mutu	44,91	< Baku Mutu
2	Depan SMA Santa Maria, Kec.Gondomanan	55	dBA	43,18	< Baku Mutu	43,23	< Baku Mutu
3	Kel. Purwokinanti, Kec. Pakualaman	55	dBA	48,59	< Baku Mutu	42,99	< Baku Mutu
4	Kel. Rejowinangun, Kec, Kotagede	55	dBA	41,86	< Baku Mutu	46,49	< Baku Mutu
5	Lapangan Karang, Kec. Kotagede	55	dBA	45,13	< Baku Mutu	41,94	< Baku Mutu
6	Kel. Bumijo, Kec. Jetis	55	dBA	43,13	< Baku Mutu	44,03	< Baku Mutu
7	Bener, Kec. Tegal Rejo	55	dBA	35,94	< Baku Mutu	42,23	< Baku Mutu
8	Suryodiningratan, Kec. Mantrijeron	55	dBA	45,89	< Baku Mutu	43,14	< Baku Mutu
9	Sorosutan, Kec. Umbulharjo	55	dBA	40	< Baku Mutu	37,94	< Baku Mutu
10	Sosromenduran, Kec. Gedongtengen	55	dBA	37,15	< Baku Mutu	46,61	< Baku Mutu
11	Kel. Ngampilan, Kec. Ngampilan	55	dBA	46,06	< Baku Mutu	49,26	< Baku Mutu
12	Kel. Wirobrajan, Kec. Wirobrajan	55	dBA	43,84	< Baku Mutu	43,24	< Baku Mutu
13	Kel. Brontokusuman, Kec. Mergangsan	55	dBA	44,14	< Baku Mutu	39,82	< Baku Mutu
14	Kadipaten, Kec. Kraton	55	dBA	52,66	< Baku Mutu	43,87	< Baku Mutu
15	Balai Kota, Kec. Umbulharjo	55	dBA	43,33	< Baku Mutu	42,36	< Baku Mutu
16	Kel. Bausasran, Kec. Danurejan	55	dBA	-	-	40,91	< Baku Mutu

Keterangan:

- : tidak ada data

Gambar 4.10 Peta Kelas ISPU Permukiman Semester I di Kota Yogyakarta

Gambar 4.11 Peta Kelas ISPU Permukiman Semester I di Kota Yogyakarta

BAB V

KESIMPULAN DAN SARAN

5.1. Kesimpulan

Berdasarkan hasil yang telah disampaikan, dapat disimpulkan sebagai berikut :

- 1. Kualitas udara ambien pemukiman untuk parameter NO₂, SO₂, O₃ dan kebisingan seluruhnya masih berada dibawah batas baku mutu dan berdasarkan hasil ISPU masih termasuk dalam kategori baik.
- Kualitas udara ambien roadside (jalan raya) untuk parameter NO₂ dan SO₂ masih dibawah batas baku mutu dan berdasarkan hasil ISPU masih termasuk dalam kategori baik.

5.2. Saran

Saran yang diajukan dari hasil kegiatan Pemantauan Kualitas Udara di Kota Yogyakarta yang telah dilaksanakan ialah sebagai berikut.

- Mengadakan pengkajian lebih lanjut mengenai sumber-sumber pencemar yang dominan di Kota Yogyakarta khususnya untuk parameter kualitas udara yang melebihi baku mutu atau berada dalam tingkatan yang membahayakan kesehatan.
- 2. Penentuan unit analisis yang lebih jelas sebagai pertimbangan dalam penentuan sampel yang lebih merepresentasikan wilayah Kota Yogyakarta.
- 3. Pemanfaatan sistem monitoring kualitas udara ambien otomatis untuk memperoleh data time series yang lebih baik.
- 4. Mensosialisasikan hasil kegiatan pengamatan yang telah dilakukan.

DAFTAR PUSTAKA

- Badan Pusat Statistik. 2019. *Kota Yogyakarta Dalam Angka 2018*. Yogyakarta: Badan Pusat Statistik Kota Yogyakarta.
- Elbayoumi, M., Ramli, N., A., Md Yusof, N., F., F., & Madhoun, W., Al. (2014). The effect of seasonal variation on indoor and outdoor carbon monoxide concentrations in Eastern Mediterranean climate. *Atmospheric Pollution Research*, 5(2), 315–324.
- Fenger, J. 2009. Air Pollution in the Last 50 Years from Local to Global. *Atmospheric Environment 43 (2009) 13–22.*
- Hixson, M., Mahmud, A., Hu, J., Bai, S., Niemeier, D.A., Handy, S.i., Gao, S., Lund, J.R., Sullivand, D.C and Kleeman, M.J. 2010. Influence of Regional Development Policies and Clean Technology Adoption on Future Air Pollution Exposure. *Atmospheric Environment* 44 (2010) 552e562.
- Indrawati, A., Tanti, D.A., Sumaryanti,, dan Budiwati. 2016. Estimasi Konsentrasi SO2 Ambien dengan *Aerosol Optical Depth (AOD)*. *Prosiding SNSA 2016 ISBN*: 976-602-6465-05-4.
- Jacob, D, J., & Winner, D, A. 2009. Effect of Cliamte Change on Air Quality. *Atmospheric Environment*, 43.
- Lu, Z., Streets, D.G., Zhang, Q., Wang, S., Carmichael, G.R., Cheng, Y.T., Wei, C., Chin, M., Diehl, T dan Tan, Q. 2010. Sulfur Dioxide Emissions in China and Sulfur Trends in East Asia Since 2000. *Atmospheric Chemistry and Physics* 10. 6311–6331. 2010.
- Ukpebor, E,E,, Ukpebor, J,E,, Eromomene, F,, Odiase, J,I dan Okoro, D. 2010. Spatial and Diurnal Variations of Carbon Monoxide (CO) Pollution from Motor Vehicles in an Urban Centre. *Polish J, of Environ, Stud, Vol, 19, No, 4 (2010), 817-823.*
- Whelpdale, D, M., Dorling, S, R., Hicks, B, B., and Summers, P,W.: Atmospheric process, in: Global Acid Deposition Assess-ment, edited by: Whelpdale, D, M, and Kaiser, M, S. World Meteorological Organization Global Atmosphere Watch. *Report Number 106, Geneva, 7–32, 1996*.
- World Health Organization. 2005. *Effects of Air Pollution on Children's Health and Development*, Copenhagen: World Health Organization.
- World Health Organization. 2005. WHO Air quality guidelines for particulate matter, ozone, nitrogen dioxide and sulfur dioxide, Geneva: World Health Organization.

LAMPIRAN

1. Pengukuran Kualitas Udara Ambien Permukiman

2. Pengukuran Kualitas Udara Ambien Roadside/ Tepi Jalan Raya

Jl. Bimasakti No.1 Yogyakarta Telp. (0274) 515876 Email:lingkungan@jogjakota.go.id