assignment-4

Name: Rasineni Manoj Reg No: 21BCE8519

#Grapes to Greatness: Machine Learning in Wine Quality Prediction

0.0.1 Task 1: Load the Dataset

```
[]]: # import required libraries
     import pandas as pd
     import numpy as np
     import matplotlib.pyplot as plt
     import seaborn as sns
[2]: df = pd.read_csv("/content/winequality-red.csv")
df.head()
[2]:
        fixed_acidity
                        volatile_acidity citric_acid residual_sugar
                                                                          chlorides
                   7.4
                                     0.70
                                                  0.00
                                                                     1.9
                                                                              0.076
     1
                   7.8
                                     0.88
                                                  0.00
                                                                     2.6
                                                                              0.098
     2
                   7.8
                                     0.76
                                                  0.04
                                                                     2.3
                                                                              0.092
     3
                  11.2
                                     0.28
                                                  0.56
                                                                     1.9
                                                                              0.075
                   7.4
                                     0.70
                                                  0.00
                                                                     1.9
                                                                              0.076
     4
        free_sulfur_dioxide
                              total_sulfur_dioxide
                                                      density
                                                                 pH sulphates \
     0
                                                34.0
                                                       0.9978 3.51
                                                                           0.56
                        11.0
     1
                        25.0
                                               67.0
                                                       0.9968 3.20
                                                                           0.68
     2
                        15.0
                                                54.0
                                                       0.9970 3.26
                                                                           0.65
     3
                        17.0
                                               60.0
                                                       0.9980 3.16
                                                                           0.58
     4
                        11.0
                                                34.0
                                                       0.9978 3.51
                                                                           0.56
        alcohol quality
     0
             9.4
                        5
                        5
             9.8
     1
                        5
     2
             9.8
                        6
     3
             9.8
     4
             9.4
                        5
```

0.0.2 Task 2: Data preprocessing including visualization

[3]: df.shape

[3]: (1599, 12)

[4]: df.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1599 entries, 0 to 1598 Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed_acidity	1599 non-null	float64
1	volatile_acidity	1599 non-null	float64
2	citric_acid	1599 non-null	float64
3	residual_sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free_sulfur_dioxide	1599 non-null	float64
6	total_sulfur_dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1) memory usage: 150.0 KB

[5]: df.isnull().sum() # There are no null values in the dataset.

```
[5]: fixed_acidity
                               0
     volatile_acidity
                               0
     citric_acid
                               0
     residual_sugar
                               0
     chlorides
     free_sulfur_dioxide
                               0
     total_sulfur_dioxide
                               0
     density
                               0
     рН
                               0
     sulphates
                               0
     alcohol
                               0
     quality
                               0
     dtype: int64
```

[6]: df.describe() # Descriptive Statistics

[6]:	count mean std min 25% 50% 75% max	fixed_acidity 1599.000000 8.319637 1.741096 4.600000 7.100000 7.900000 9.200000 15.900000	volatile_acidity 1599.000000 0.527821 0.179060 0.120000 0.390000 0.520000 0.640000 1.580000	citric_acid 1599.000000 0.270976 0.194801 0.000000 0.090000 0.260000 0.420000 1.000000	residual_sugar 1599.000000 2.538806 1.409928 0.900000 1.900000 2.200000 2.600000	5 3)))
	count mean std min 25% 50% 75%	1599.000000 0.087467 0.047065 0.012000 0.070000 0.079000 0.090000	ree_sulfur_dioxide 1599.000000 15.874922 10.460157 1.000000 7.000000 14.000000 21.000000		99.000000 1599.0 46.467792 0.9 32.895324 0.0 6.000000 0.9 22.000000 0.9 38.000000 0.9	lensity \ 000000 96747 01887 90070 95600 96750
	max count mean std min 25% 50% 75% max	0.611000 pH 1599.000000 1 3.311113 0.154386 2.740000 3.210000 3.310000 3.400000 4.010000	599.000000 1599.0 0.658149 10.4 0.169507 1.0 0.330000 8.4 0.550000 9.5 0.620000 10.2 0.730000 11.1	cohol qu 00000 1599.0 22983 5.63 65668 0.80 00000 3.00 00000 5.00 00000 6.00	ality	03690
[7]:			fixed_acidity void 1.000000 -0.256131 0.671703 0.114777 0.093705 -0.153794 -0.113181 0.668047 -0.682978 0.183006 -0.061668 0.124052	0latile_acidity -0.256131 1.000000 -0.552496 0.001918 0.061298 -0.010504 0.076470 0.022026 0.234937 -0.260987 -0.202288 -0.390558	0.671703 0 -0.552496 1.000000 0.143577 0.203823 -0.060978 0.035533 0.364947 7 -0.541904 0.312770 0.109903	\

residual_sugar chlorides free_sulfur_dioxide \

```
fixed_acidity
                           0.114777
                                      0.093705
                                                          -0.153794
volatile_acidity
                           0.001918
                                      0.061298
                                                          -0.010504
citric_acid
                           0.143577
                                      0.203823
                                                          -0.060978
residual_sugar
                           1.000000
                                      0.055610
                                                          0.187049
chlorides
                                                           0.005562
                           0.055610
                                      1.000000
free_sulfur_dioxide
                           0.187049
                                      0.005562
                                                           1.000000
total_sulfur_dioxide
                           0.203028
                                      0.047400
                                                           0.667666
density
                           0.355283
                                      0.200632
                                                          -0.021946
Нq
                          -0.085652 -0.265026
                                                           0.070377
sulphates
                           0.005527
                                      0.371260
                                                           0.051658
alcohol
                           0.042075 -0.221141
                                                          -0.069408
quality
                           0.013732 -0.128907
                                                          -0.050656
                     total_sulfur_dioxide
                                            density
                                                          нα
                                                              sulphates \
fixed_acidity
                                -0.113181 0.668047 -0.682978
                                                              0.183006
volatile_acidity
                                 0.076470 0.022026 0.234937
                                                              -0.260987
citric_acid
                                 0.035533  0.364947  -0.541904
                                                              0.312770
                                 0.203028 0.355283 -0.085652
residual_sugar
                                                              0.005527
chlorides
                                 0.047400 0.200632 -0.265026
                                                              0.371260
free_sulfur_dioxide
                                 0.667666 -0.021946 0.070377
                                                              0.051658
total_sulfur_dioxide
                                 1.000000 0.071269 -0.066495
                                                              0.042947
density
                                 0.071269 1.000000 -0.341699
                                                              0.148506
                                -0.066495 -0.341699 1.000000
Нq
                                                              -0.196648
sulphates
                                 0.042947 0.148506 -0.196648
                                                              1.000000
alcohol
                                -0.205654 -0.496180 0.205633
                                                              0.093595
quality
                                -0.185100 -0.174919 -0.057731
                                                              0.251397
                      alcohol
                                quality
fixed_acidity
                    -0.061668 0.124052
volatile_acidity
                    -0.202288 -0.390558
citric_acid
                     0.109903 0.226373
residual_sugar
                     0.042075 0.013732
chlorides
                    -0.221141 -0.128907
```

[8]: # Correlation of dependent varriables with the target variable

0.476166

-0.069408 -0.050656

-0.496180 -0.174919

0.205633 -0.057731

0.093595 0.251397

1.000000 0.476166

1.000000

df.corr().quality.sort_values(ascending = F

total_sulfur_dioxide -0.205654 -0.185100

[8]: quality 1.000000 alcohol 0.476166

free_sulfur_dioxide

density

alcohol

quality

sulphates

Ηg

False)

sulphates 0.251397 citric_acid 0.226373 fixed_acidity 0.124052 residual_sugar 0.013732 free_sulfur_dioxide -0.050656 Нq -0.057731chlorides -0.128907density -0.174919total_sulfur_dioxide -0.185100 volatile_acidity -0.390558Name: quality, dtype: float64

Univariate Analysis

[9]: sns.distplot(df.sulphates)

<ipython-input-9-8b271c44c149>:1: UserWarning:

Please adapt your code to use either `displot` (a figure-level function with similar flexibility) or `histplot` (an axes-level function for histograms).

For a guide to updating your code to use the new functions, please see https://gist.github.com/mwaskom/de44147ed2974457ad6372750bbe5751

sns.distplot(df.sulphates)

[9] : <Axes: xlabel='sulphates', ylabel='Density'>

^{&#}x27;distplot' is a deprecated function and will be removed in seaborn v0.14.0.

[10]: sns.displot(df.chlorides)

[10] : <seaborn.axisgrid.FacetGrid at 0x7ddd8a543160>

Bivariate Analysis

[11]: sns_lineplot(x=df_sulphates, y=df_pH)

[11] : <Axes: xlabel='sulphates', ylabel='pH'>

[12]: sns.scatterplot(x=df.alcohol, y=df.pH)

 $\hbox{\small [12] : <} Axes: xlabel='alcohol', ylabel='pH'>$

Multivariate Analysis

[13]: sns.pairplot(df)

[13] : <seaborn.axisgrid.PairGrid at 0x7ddd4f583280>

[14]: # Correlation Heatmap sns_heatmap(df_corr(),annot=True)

[14] : <Axes: >

Outlier Detection and removal by percentile method & IQR MEthod

					•		
[16]: df	head()						
[1 6]	6						,
[16]:	fixed_acidity vol	atile_acidity	citric_ac	ıd residi	ual_sugar	chlorides	\
0	7.4	0.70	0.0	00	1.9	0.076	
1	7.8	0.88	0.0	00	2.6	0.098	
2	7.8	0.76	0.0)4	2.3	0.092	
3	11.2	0.28	0.5	56	1.9	0.075	
4	7.4	0.70	0.0	00	1.9	0.076	
	free_sulfur_dioxide	total_sulfur	dioxide	density	pH sul	phates \	
0	11.0		34.0	0.9978	3.51	0.56	
0							
ļ	25.0)	67.0	0.9968	3.20	0.68	
2	15.0)	54.0	0.9970	3.26	0.65	
3	17.0)	60.0	0.9980	3.16	0.58	
4	11.0)	34.0	0.9978	3.51	0.56	

```
alcohol quality
9.4 5
       0
                          5
       1
              9.8
       2
              9.8
                          5
                          6
       3
              9.8
                          5
       4
              9.4
[49]: # Removing outliers from fixed_acidity column
      f1 = df.fixed_acidity.quantile(0.25) #Q1
       f3 = df.fixed\_acidity.quantile(0.75) #Q3
       IQR_f = f3 - f1
       upper_limit_f = f3+(1.5)*(IQR_f)
       lower_limit_f = f1-(1.5)*(IQR_f)
       print(f1)
       print(f3)
       print(IQR_f)
       print(upper_limit_f)
print(lower_limit_f)
      7.1
      8.9
      1.8000000000000007
      11.600000000000001
      4.39999999999999
```

[51]: $df = df[(df.fixed_acidity < upper_limit_f) \ \& \ (df.fixed_acidity > lower_limit_f)]$ $sns.boxplot(df.fixed_acidity)$

[51]: <Axes: >


```
[47]: fa_01=df_fixed_acidity_quantile(0.01)
fa_9=df_fixed_acidity_quantile(0.98)
print(fa_01)
print(fa_98)
```

5.6 11.6

[48]: df=df[(df_fixed_acidity>=fa_01) & (df_fixed_acidity<=fa_98)] sns.boxplot(df.fixed_acidity)

[48]: <Axes: >


```
[22]: # Removing outliers from volatile_acidity column
      v1 = df.volatile_acidity.quantile(0.25)
                                                  #Q1
      v3 = df.volatile_acidity.quantile(0.75) #Q3
      IQR_v = v3 - v1
      upper_limit_v = v3+(1.5)*(IQR_v)
      lower_limit_v = v1 - (1.5)*(IQR_v)
      print(v1)
      print(v3)
      print(IQR_v)
      print(upper_limit_v)
print(lower_limit_v)
      0.3925
      0.64
      0.2475
      1.01125
      0.021250000000000047
```

[23]: df=df[(df.volatile_acidity<upper_limit_v) & (df.volatile_acidity>lower_limit_v)] sns.boxplot(df.volatile_acidity)

[23]: <Axes: >


```
[24]: #Removing outliers from citric_acid column

cl = df.citric_acid.quantile(0.25) #Q1
c3 = df.citric_acid.quantile(0.75) #Q3

IQR_c = c3 - cl
upper_limit_c = c3+(1.5)*(IQR_c)
lower_limit_c = c1-(1.5)*(IQR_c)
print(c1)
print(c3)
print(IQR_c)
print(Upper_limit_c)
print(lower_limit_c)
```

0.09 0.41 0.3199999999999999 0.889999999999999 -0.389999999999999

[25]: df=df[(df_citric_acid<upper_limit_c) & (df_citric_acid>lower_limit_c)] sns.boxplot(df.citric_acid)

[25]: <Axes: >


```
[26]: #Removing outliers from residual_sugar column

rl = df.residual_sugar.quantile(0.25) #Q1
r3 = df.residual_sugar.quantile(0.75) #Q3
IQR_r = r3 - rl
upper_limit_r = r3+(1.5)*(IQR_r)
lower_limit_r = rl-(1.5)*(IQR_r)
print(rl)
print(r3)
print(IQR_r)
print(upper_limit_r)
print(lower_limit_r)
```

- 1.9
- 2.6
- 0.7000000000000002
- 3.6500000000000004

0.849999999999996

[27]: df=df[(df_residual_sugar<upper_limit_r) & (df_residual_sugar>lower_limit_r)] sns.boxplot(df_residual_sugar)

[27]: <Axes: >


```
rs_02=df_residual_sugar_quantile(0.02)
rs_96=df_residual_sugar_quantile(0.96)
print(rs_02)
print(rs_96)
```

1.4 3.015999999999854

[35]: df=df[(df_residual_sugar>=rs_02) & (df_residual_sugar<=rs_96)] sns.boxplot(df.residual_sugar)

[35]: <Axes: >


```
[36]: #Removing outliers from chlorides column
       ch1 = df.chlorides.quantile(0.25) #Q1
       ch3 = df.chlorides.quantile(0.75) #Q3
       IQR_ch = ch3 - ch1
       upper_limit_ch = ch3+(1.5)*(IQR_ch)
       lower_limit_ch = ch1-(1.5)*(IQR_ch)
       print(ch1)
       print(ch3)
       print(IQR_ch)
       print(upper_limit_ch)
print(lower_limit_ch)
      0.07
       0.089
      0.0189999999999999
      0.1174999999999998
      0.041500000000000002
[37]: \begin{array}{ll} df = df[(df\_chlorides < upper\_limit\_ch) \ \& \ (df\_chlorides > lower\_limit\_ch)] \\ sns.boxplot(df.chlorides) \end{array}
```

[37]: <Axes: >


```
[44]: ch_01=df.chlorides.quantile(0.01)
ch_97=df.chlorides.quantile(0.97)
print(ch_01)
print(ch_97)
```

0.049890000000000004

0.106

[45]: df=df[(df_chlorides>=ch_01) & (df_chlorides<=ch_97)] sns.boxplot(df.chlorides)

[45]: <Axes: >


```
[52]: # Removing outliers from free_sulfur_dioxide column

fs1 = df.free_sulfur_dioxide.quantile(0.25) #Q1
fs3 = df.free_sulfur_dioxide.quantile(0.75) #Q3
IQR_fs = fs3 - fs1
upper_limit_fs = fs3+(1.5)*(IQR_fs)
lower_limit_fs = fs1-(1.5)*(IQR_fs)
print(fs1)
print(fs3)
print(IQR_fs)
print(IQR_fs)
print(lower_limit_fs)

8.0
21.0
13.0
40.5
-11.5
```

[53]: <Axes: >

57.0 34.0 108.0 -28.0


```
ts1 = df.total_sulfur_dioxide.quantile(0.25) #Q1
ts3 = df.total_sulfur_dioxide.quantile(0.75) #Q3
lQR_ts = ts3 - ts1
upper_limit_ts = ts3+(1.5)*(IQR_ts)
lower_limit_ts = ts1-(1.5)*(IQR_ts)
print(ts1)
print(ts3)
print(IQR_ts)
print(upper_limit_ts)

23.0
```

```
[55]: df=df[(df_total_sulfur_dioxide<upper_limit_ts) & (df_

_total_sulfur_dioxide>lower_limit_ts)]

sns.boxplot(df.total_sulfur_dioxide)
```

[55]: <Axes: >


```
[60]: ts_01=df.total_sulfur_dioxide.quantile(0.01)
ts_97=df.total_sulfur_dioxide.quantile(0.97)
print(ts_01)
print(ts_97)
```

9.0 89.0

[61]: df=df[(df_total_sulfur_dioxide>=ts_01) & (df_total_sulfur_dioxide<=ts_97)] sns.boxplot(df.total_sulfur_dioxide)

[61]: <Axes: >


```
[62]: # Removing outliers from density column
       d1 = df.density.quantile(0.25) #Q1
       d3 = df.density.quantile(0.75) #Q3
       IQR_d = d3 - d1
       upper_limit_d = d3+(1.5)*(IQR_d)
       lower\_limit\_d = d1-(1.5)*(IQR\_d)
       print(d1)
       print(d3)
       print(IQR_d)
       print(upper_limit_d)
print(lower_limit_d)
      0.9955
      0.99745
      0.0019499999999998963
      1.0003749999999998
      0.9925750000000002
[63]: df=df[(df_density<upper_limit_d) & (df_density>lower_limit_d)] sns.boxplot(df.density)
```

[63]: <Axes: >


```
[64]: d_01=df_density_quantile(0.01)
d_99=df_density_quantile(0.99)
print(d_01)
print(d_99)
```

0.9933132 1.0

[65]: df=df[(df_density>=d_01) & (df_density<=d_99)] sns.boxplot(df.density)

[65]: <Axes: >


```
[66]: # Removing outliers from pH column
       pH1 = df_pH_quantile(0.25) #Q1
       pH3 = df_pH_quantile(0.75) #Q3
      IQR_pH = pH3 - pH1
       upper_limit_pH = pH3+(1.5)*(IQR_pH)
      lower_limit_pH = pH1-(1.5)*(IQR_pH)
       print(pH1)
       print(pH3)
       print(IQR_pH)
      print(upper_limit_pH)
print(lower_limit_pH)
      3.2425
      3.41
      0.1674999999999998
      3.66125
      2.99125
[67]: df=df[(df.pH<upper_limit_pH) \& (df.pH>lower_limit_pH)]  sns.boxplot(df.pH)
```

[67]: <Axes: >


```
[68]: pH_01=df_pH_quantile(0.01)
pH_99=df_pH_quantile(0.99)
print(pH_01)
print(pH_99)
```

3.06 3.6066

[69]: <Axes: >


```
[74]: # Removing outliers from fixed_acidity column

su_01=df.sulphates.quantile(0.01)
su_98=df.sulphates.quantile(0.98)
print(su_01)
print(su_98)

0.44
0.9

[75]: df=df[(df.sulphates>=su_01) & (df.sulphates<=su_98)]
sns.boxplot(df.sulphates)</pre>
```

[75]: <Axes: >


```
[76]: # Removing outliers from alcohol column

a_01=df_alcohol_quantile(0.01)
a_99=df_alcohol_quantile(0.99)
print(a_01)
print(a_99)

9.0
12.724

[77]: df=df[(df_alcohol>=a_01) & (df_alcohol<=a_99)]
sns.boxplot(df.alcohol)
```


Therefore all the outliers are removed

0.0.3 Task - 3: Machine Learning Model Building

```
# split into X and y
[233]:
       X =df.iloc[:,:-1]
X.head()
[233]:
          fixed_acidity
                          volatile_acidity citric_acid residual_sugar chlorides \
                     7.4
                                       0.70
                                                    0.00
                                                                      1.9
                                                                                0.076
                     7.8
                                       0.88
                                                    0.00
                                                                      2.6
                                                                                0.098
       1
       2
                     7.8
                                       0.76
                                                    0.04
                                                                      2.3
                                                                                0.092
       3
                    11.2
                                       0.28
                                                    0.56
                                                                      1.9
                                                                                0.075
       4
                     7.4
                                                    0.00
                                                                                0.076
                                      0.70
                                                                      1.9
          free_sulfur_dioxide
                                total_sulfur_dioxide
                                                                   pH sulphates \
                                                        density
       0
                                                                             0.56
                          11.0
                                                 34.0
                                                         0.9978
                                                                 3.51
                          25.0
       1
                                                 67.0
                                                         0.9968 3.20
                                                                             0.68
       2
                          15.0
                                                 54.0
                                                         0.9970 3.26
                                                                             0.65
       3
                          17.0
                                                 60.0
                                                         0.9980 3.16
                                                                             0.58
                          11.0
                                                 34.0
                                                         0.9978 3.51
                                                                             0.56
```

```
9.4
       0
               9.8
       1
       2
               9.8
       3
               9.8
       4
               9.4
[234]: Y = df_quality Y.head()
[234]: 0
            5
             5
             5
       2
       3
             6
       4
             5
       Name: quality, dtype: int64
       Label Binarisation (Conidering alcohol quality > 7 as good and assigning '1' to it else assigning
       'o')
[235]: Y = df['quality'].apply(lambda y_value: | if y_value>=7 else 0)
[236]: print(Y)
       0
               0
       1
               0
       2
               0
       3
               0
               0
       1593
               0
       1594
               0
       1595
               0
       1596
               0
       1597
       Name: quality, Length: 866, dtype: int64
       from sklearn.model_selection import train_test_split
[237]:
       X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2,_
         [238]: X_train.shape
[238]: (692, 11)
[239]: X_test.shape
```

alcohol

```
[239]: (174, 11)
[240]: print(Y.shape, Y_train.shape, Y_test.shape)
      (866,) (692,) (174,)
      0.0.4 Decision Tree Classifier
[242]: from sklearn.tree import DecisionTreeClassifier
      model1 = DecisionTreeClassifier(max_depth=2,splitter="best",criterion="entropy")
      model1.fit(X_train,Y_train)
[242]: DecisionTreeClassifier(criterion='entropy', max_depth=2)
[243]: d_y_predict = model1.predict(X_test)
      d_y_predict
[243]: array([1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
             1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
             0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
             0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0,
             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
             0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0])
[245]: d_y_predict_train = model1.predict(X_train)
      0.0.5 Task - 4: Evaluating the model (Decision tree classifier)
[246]: from sklearn.metrics import
       -accuracy score.classification report.confusion matrix
      print("Testing Accuracy = ", accuracy_score(Y_test,d_y_predict))
print("Training Accuracy = ", accuracy_score(Y_train,d_y_predict_train))
      Testing Accuracy = 0.8793103448275862
      Training Accuracy = 0.8916184971098265
      0.0.6 Random Forest Classifier
[247]: from sklearn.ensemble import RandomForestClassifier
      model2 =RandomForestClassifier(n_estimators=200,criterion="entropy")
      model2.fit(X_train,Y_train)
```

[247]: RandomForestClassifier(criterion='entropy', n_estimators=200)

```
[248]: |r_y_predict = model2.predict(X_test)
       r_y_predict_train = model2.predict(X_train)
      0.0.7 Task - 4: Evaluating Random Forest Model
```

```
[249]: print("Testing Accuracy = ", accuracy_score(Y_test,r_y_predict)) print("Training Accuracy = ", accuracy_score(Y_train,r_y_predict_train))
```

Testing Accuracy = 0.9425287356321839Training Accuracy = 1.0

0.0.8 Naive Bayesian Classification Model

```
[251]: from sklearn.naive_bayes import GaussianNB
       gnb = GaussianNB()
       gnb.fit(X_train,Y_train)
```

[251]: GaussianNB()

```
[252]: y_pred2 = gnb.predict(X_test)
y_pred2
```

```
[252]: array([1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0,
           0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
           0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1,
           0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
           0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0]
```

0.0.9 Task - 4: Evaluating Naive Bayesian Classification Model

```
[254]: from sklearn.metrics import accuracy_score
       gnb_acc=accuracy_score(Y_test,v_pred2)
       gnb_acc
```

[254]: 0.8850574712643678

0.1 Accuracies of all the algorithms used in model nuilding phase:

Decision Tree Classification: 87.93 %

0.1.1 Random Forset Classification: 94.25 %

Naive Bayesian Classification: 88.50 %

0.1.2 Conclusion: Random Forest Classifier Model is best suited for the wine quality dataset.

0.1.3 Task - 5: Test with random observation

```
[262]: input_data = [7.9, 1.0, 0, 3.0, 0.08, 30, 100, 0.9562, 3.1, 0.74, 11.5] prediction = model1.predict([input_data]) prediction
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but DecisionTreeClassifier was fitted with feature names

warnings.warn(

[262]: array([0])

According to "decision tree classifier" model, the above random observation gives prediction "array([o])" i.e., bad quality alcohol

```
[263]: input_data_2 = [7.9, 1.0, 0, 3.0, 0.08, 30, 100, 0.9562, 3.1, 0.74, 11.5] prediction2 = model2.predict([input_data_2]) prediction2
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but RandomForestClassifier was fitted with feature names

warnings.warn(

[263]: array([0])

According to "Random Forest classifier" model, the above random observation gives prediction "array([o])" i.e., bad quality alcohol

```
[264]: input_data_3 = [7.9, 1.0, 0, 3.0, 0.08, 30, 100, 0.9562, 3.1, 0.74, 11.5] prediction3 = gnb.predict([input_data_3]) prediction3
```

/usr/local/lib/python3.10/dist-packages/sklearn/base.py:439: UserWarning: X does not have valid feature names, but GaussianNB was fitted with feature names warnings.warn(

[264]: array([0])

According to "Naive Bayesian classifier" model, the above random observation gives prediction "array([0])" i.e., bad quality alcohol

0.2	CONCLUSION : For the same random gave the "alchohol quality is BAD"	observation, a	all the	three models