Church-Turing These Een nieuw paradijs

Pieter van Engelen

Radboud Universiteit Nijmegen

03-06-2022

De tijd

De protagonisten

De situatie

Entscheidungsproblem Berekenbaarheidsmodellen De kracht van berekenbaarheid

De these

Huidige stand van zaken

Hypercomputation Quantum computing

Radboud Universiteit Nijmegen

De These

Every effectively calculable function is computable

Church (1936), Turing (1937)

De protagonisten

Alonzo Church (1903 - 1995) Princeton University, USA

- Logicus, wiskundige
- Van 1936 tot 1979 redacteur van Journal of Symbolic Logic
- 'Bedenker' van de λ -calculus
- Eerste-orde predicaat-logica is onbeslisbaar
- Peano-arithmetiek is onbeslisbaar

De protagonisten

Alan Turing (1912 - 1954) Cambridge & Manchester

- Grondlegger van
 - Informatica
 - Artificiële intelligentie
 - Morphogenetica
- Legendarisch codebreaker
- Marathonloper

De protagonisten

Stephen Kleene (1909-1994)

??? (1897 - 1954)

Das Entscheidungsproblem

Das Entscheidungsproblem

Vind een algoritme waarmee de waarheid van een uitspraak in de eerste orde predikaatlogica vast te stellen is.

(D. Hilbert & W. Ackermann, 1928, Grundzüge der theoretischen Logik)

Entscheidungsproblem

Eerste orde predikaatlogica

(extreem kort door de bocht)

Logica met

- variabelen
- de gebruikelijke operatoren $\land, \lor, \rightarrow, \neg, \ldots$
- predikaten P(x)
- universele en existentiële kwantificatie ∀,∃

Voorbeelden:

$$\forall_{n \in \mathbb{N}} \exists_{m \in \mathbb{N}} [m > n]$$

$$\forall_{p,q \in \mathbb{Q}} \exists_{r \in \mathbb{Q}} [p < r < q]$$

$$\exists_{x} [P(x) \land \forall_{y} \forall_{y'} [P(y) \land P(y') \rightarrow y = y']]$$

Entscheidungsproblem

Eerste orde predikaatlogica

Afspraak:

We hebben het alleen over predikaten en kwantificatie over de natuurlijke getallen $\mathbb N$

Gezocht:

Algoritme wat gegeven een uitspraak roept of die uitspraak WAAR of ONWAAR is.

Probleem:

Wat is een algoritme?

De λ -calculus

Recursietheorie

Turing machines

De equivalentie

$$\lambda - {\sf definieerbaar} \overset{({\sf Turing } \ 1937)}{\Longrightarrow} {\sf Turing } \ {\sf berekenbaar}$$

Turing berekenbaar
$$\stackrel{\text{(Turing 1937)}}{\Longrightarrow} \mu$$
 — recursief

$$\mu - \mathsf{recursief} \overset{(\mathsf{Kleene} \ 1936)}{\Longrightarrow} \lambda - \mathsf{definieerbaar}$$

Halting Problem

Universaliteits principe

Every effectively calculable function is computable

Church (1936), Turing (1937)

Hypercomputation

Quantum computing

