Fixed effects

We make observations of random variables $(\beta_i)_{i=1..n}$, that are assumed to be instances of unique random variable β . For each $i \in [1..n]$, let $\hat{\beta}_i$ and σ_i^2 be the empirical estimate and variance of β_i . What is the linear combination of these variables $\hat{\beta} = \sum_{i=1}^n w_i \beta_i$ s.t. $\sum_{i=1}^n w_i = 1$ and $w_i > 0 \ \forall i \in [1..n]$ such that $\hat{\beta}$ has the minimal variance? What are the corresponding variance and effect estimates?

Illustration

Fixed effects

$$\min_{(w_i)} \sum_{i=1}^n w_i^2 \sigma_i^2$$
 s.t. $\sum_{i=1}^n w_i = 1$

Constrained opt.
$$w_i \propto \frac{1}{\sigma_i^2} \Longrightarrow w_i = \frac{1}{\sigma_i^2} \left(\sum_{j=1}^n \frac{1}{\sigma_j^2} \right)^{-1}$$

Effect estimate:
$$\bar{\beta} = \sum_{i=1}^{n} \frac{\hat{\beta}_i}{\sigma_i^2} \left(\sum_{i=1}^{n} \frac{1}{\sigma_i^2} \right)^{-1}$$

Effect variance:
$$\bar{\sigma^2} = \left(\sum_{i=1}^n \frac{1}{\sigma_i^2}\right)^{-1}$$

Illustration

Data $\mathbf{X} \Longrightarrow \text{statistics } \hat{\tau}(\mathbf{X}) \Longrightarrow \text{p-value}(\mathbf{X})$

Data
$$\mathbf{X} \Longrightarrow \text{statistics } \hat{\tau}(\mathbf{X}) \Longrightarrow \text{p-value}(\mathbf{X})$$

Definition: p-value(\mathbf{X}) = $\alpha \Leftrightarrow \mathbb{P}(\tau > \hat{\tau}(\mathbf{X})|H_0(\mathbf{X})) \leq \alpha$

Data
$$\mathbf{X} \Longrightarrow \text{statistics } \hat{\tau}(\mathbf{X}) \Longrightarrow \text{p-value}(\mathbf{X})$$

Definition: p-value(\mathbf{X}) = $\alpha \Leftrightarrow \mathbb{P}(\tau > \hat{\tau}(\mathbf{X})|H_0(\mathbf{X})) \leq \alpha$ p-value(\mathbf{X}) = $1 - \Phi(\hat{\tau}(\mathbf{X}))$ where $\Phi(t) = \int_{-\infty}^{t} p(\tau|H_0)d\tau$ is the null density

Data
$$\mathbf{X} \Longrightarrow \text{statistics } \hat{\tau}(\mathbf{X}) \Longrightarrow \text{p-value}(\mathbf{X})$$

Definition: p-value(\mathbf{X}) = $\alpha \Leftrightarrow \mathbb{P}(\tau > \hat{\tau}(\mathbf{X})|H_0(\mathbf{X})) \leq \alpha$ p-value(\mathbf{X}) = $1 - \Phi(\hat{\tau}(\mathbf{X}))$ where $\Phi(t) = \int_{-\infty}^{t} p(\tau|H_0)d\tau$ is the null density

Data
$$\mathbf{X} \Longrightarrow \text{statistics } \hat{\tau}(\mathbf{X}) \Longrightarrow \text{p-value}(\mathbf{X})$$

Definition: p-value(
$$\mathbf{X}$$
) = $\alpha \Leftrightarrow \mathbb{P}(\tau > \hat{\tau}(\mathbf{X})|H_0(\mathbf{X})) \leq \alpha$
p-value(\mathbf{X}) = 1 = $\Phi(\hat{\tau}(\mathbf{X}))$ where $\Phi(t) = \int_0^t -\eta(\tau|H_0)d\tau$ is the null densit

p-value(**X**) = $1 - \Phi(\hat{\tau}(\mathbf{X}))$ where $\Phi(t) = \int_{-\infty}^{t} p(\tau|H_0)d\tau$ is the null density

Property:
$$\mathbb{P}(\text{p-value}(\mathbf{X}) \leq \alpha | H_0) = \alpha$$

Data $\mathbf{X} \Longrightarrow \text{statistics } \hat{\tau}(\mathbf{X}) \Longrightarrow \text{p-value}(\mathbf{X})$

Definition: p-value(
$$\mathbf{X}$$
) = $\alpha \Leftrightarrow \mathbb{P}(\tau > \hat{\tau}(\mathbf{X})|H_0(\mathbf{X})) \leq \alpha$
p-value(\mathbf{X}) = $1 - \Phi(\hat{\tau}(\mathbf{X}))$ where $\Phi(t) = \int_{-\infty}^{t} p(\tau|H_0)d\tau$ is the null density

Property:
$$\mathbb{P}(\text{p-value}(\mathbf{X}) \leq \alpha | H_0) = \alpha$$

$$\mathbb{P}(\text{p-value}(\mathbf{X}) \le \alpha | H_0) = \mathbb{P}(1 - \Phi(\hat{\tau}(\mathbf{X})) \le \alpha | H_0)$$
$$= \mathbb{P}(\hat{\tau}(\mathbf{X}) \ge \Phi^{-1}(1 - \alpha) | H_0)$$

$$= \int_{\Phi^{-1}(1-\alpha)}^{\infty} p(\tau|H_0)d\tau$$
$$= 1 - \Phi(\Phi^{-1}(1-\alpha)) = \alpha$$

Property: $\mathbb{P}(\text{p-value}(\mathbf{X}) \leq \alpha | H_0) = \alpha$

Property: $\mathbb{P}(\text{p-value}(\mathbf{X}) \leq \alpha | H_0) = \alpha$

Or equivalently: Under H_0 , p-value(\mathbf{X}) $\leq \mathcal{U}(0,1)$

Property: $\mathbb{P}(\text{p-value}(\mathbf{X}) \leq \alpha | H_0) = \alpha$

Or equivalently: Under H_0 , p-value(\mathbf{X}) $\leq \mathcal{U}(0,1)$

Not to be confused with Bayesian posterior:

$$p(H_0|\mathbf{X}) = \frac{p(\mathbf{X}|H_0)p(H_0)}{p(\mathbf{X}|H_0)p(H_0) + p(\mathbf{X}|H_1)p(H_1)}$$

[Arlot et al. Annals of Stats 2010]

Setting Sample $\mathbf{X} = (\mathbf{X}^1, ..., \mathbf{X}^n) \in \mathbb{R}^{n \times p}, \ \mu_i = \text{mean}(\mathbf{X}_i)$ test $H_0: \mu_i \leq 0 \text{ vs } H_1: \mu_i > 0$ \mathbf{X} Gaussian, unknown Covariance

[Arlot et al. Annals of Stats 2010]

Setting Sample
$$\mathbf{X} = (\mathbf{X}^1, ..., \mathbf{X}^n) \in \mathbb{R}^{n \times p}, \ \mu_i = \text{mean}(\mathbf{X}_i)$$
test $H_0: \mu_i \leq 0 \text{ vs } H_1: \mu_i > 0$
 \mathbf{X} Gaussian, unknown Covariance

[Arlot et al. Annals of Stats 2010]

Setting Sample
$$\mathbf{X} = (\mathbf{X}^1, ..., \mathbf{X}^n) \in \mathbb{R}^{n \times p}, \ \mu_i = \text{mean}(\mathbf{X}_i)$$
test $H_0: \mu_i \leq 0 \text{ vs } H_1: \mu_i > 0$
 \mathbf{X} Gaussian, unknown Covariance

Critical region
$$W_{\alpha}(\mathbf{X}) = \{i \in [p] : \bar{\mathbf{X}}_i > t_{\alpha}(\mathbf{X})\}$$

[Arlot et al. Annals of Stats 2010]

Setting Sample
$$\mathbf{X} = (\mathbf{X}^1, ..., \mathbf{X}^n) \in \mathbb{R}^{n \times p}, \ \mu_i = \text{mean}(\mathbf{X}_i)$$
test $H_0: \mu_i \leq 0 \text{ vs } H_1: \mu_i > 0$
 \mathbf{X} Gaussian, unknown Covariance

```
Critical region W_{\alpha}(\mathbf{X}) = \{i \in [p] : \bar{\mathbf{X}}_i > t_{\alpha}(\mathbf{X})\}
Null region H_0 = \{i \in [p] : \mu_i = 0\}
```

[Arlot et al. Annals of Stats 2010]

Setting Sample
$$\mathbf{X} = (\mathbf{X}^1, ..., \mathbf{X}^n) \in \mathbb{R}^{n \times p}, \ \mu_i = \text{mean}(\mathbf{X}_i)$$
test $H_0: \mu_i \leq 0 \text{ vs } H_1: \mu_i > 0$
 \mathbf{X} Gaussian, unknown Covariance

```
Critical region W_{\alpha}(\mathbf{X}) = \{i \in [p] : \bar{\mathbf{X}}_i > t_{\alpha}(\mathbf{X})\}
Null region H_0 = \{i \in [p] : \mu_i = 0\}
 \text{FWER}(W_{\alpha}) = \mathbb{P}(W_{\alpha} \cap H_0) \neq 0; \text{FWER}(W_{\alpha}) \leq \alpha wanted
```

[Arlot et al. Annals of Stats 2010]

Setting Sample $\mathbf{X} = (\mathbf{X}^1, ..., \mathbf{X}^n) \in \mathbb{R}^{n \times p}, \ \mu_i = \text{mean}(\mathbf{X}_i)$ test $H_0: \mu_i \leq 0 \text{ vs } H_1: \mu_i > 0$ \mathbf{X} Gaussian, unknown Covariance

Goal Non-asymptotic control of FWER

Critical region $W_{\alpha}(\mathbf{X}) = \{i \in [p] : \bar{\mathbf{X}}_i > t_{\alpha}(\mathbf{X})\}$

Null region $H_0 = \{i \in [p] : \mu_i = 0\}$

 $\text{FWER}(W_{\alpha}) = \mathbb{P}(W_{\alpha} \cap H_0) \neq 0$; $\text{FWER}(W_{\alpha}) \leq \alpha$ wanted

For instance: if covariance= $\sigma \mathbb{I}_p$; Bonferroni $t_{\alpha}^{bonf} = \sigma \Phi^{-1}(1 - \frac{\alpha}{p})$

 $FWER(W_{\alpha}) = \mathbb{P}(W_{\alpha} \cap H_0) \neq 0$; $FWER(W_{\alpha}) \leq \alpha$ wanted

$$\text{FWER}(W_{\alpha}) = \mathbb{P}(W_{\alpha} \cap H_0) \neq 0); \text{ FWER}(W_{\alpha}) \leq \alpha \text{ wanted}$$

Family of thresholds indexed by region C: $\tau(\alpha, C), C \subset [p]$

$$\text{FWER}(W_{\alpha}) = \mathbb{P}(W_{\alpha} \cap H_0) \neq 0); \text{ FWER}(W_{\alpha}) \leq \alpha \text{ wanted}$$

Family of thresholds indexed by region C: $\tau(\alpha, C), C \subset [p]$ 2 hypotheses:

- $\mathbb{P}(\sup_{i \in H_0} \bar{\mathbf{X}}_i > \tau(\alpha, H_0)) \le \alpha$
- $\tau(\alpha, C) \nearrow C$: $C \subset C' \Rightarrow \tau(\alpha, C) \leq \tau(\alpha, C')$

$$\text{FWER}(W_{\alpha}) = \mathbb{P}(W_{\alpha} \cap H_0) \neq 0); \text{ FWER}(W_{\alpha}) \leq \alpha \text{ wanted}$$

Family of thresholds indexed by region C: $\tau(\alpha, C), C \subset [p]$

- 2 hypotheses:
 - $\mathbb{P}(\sup_{i \in H_0} \bar{\mathbf{X}}_i > \tau(\alpha, H_0)) \le \alpha$
 - $\tau(\alpha, C) \nearrow C$: $C \subset C' \Rightarrow \tau(\alpha, C) \leq \tau(\alpha, C')$

Proposition: Taking $W_{\alpha} = \{i \in [p] : \bar{\mathbf{X}}_i > t_{\alpha}([p])\}$ yields α -level control of the FWER.

Proposition: Taking $W_{\alpha} = \{i \in [p] : \bar{\mathbf{X}}_i > t_{\alpha}([p])\}$ yields α -level control of the FWER.

Proposition: Taking $W_{\alpha} = \{i \in [p] : \bar{\mathbf{X}}_i > t_{\alpha}([p])\}$ yields α -level control of the FWER.

$$\mathbb{P}(\exists i : \bar{\mathbf{X}}_i > t_{\alpha}([p]) \text{ and } i \in H_0) = \mathbb{P}(\sup_{i \in H_0} \bar{\mathbf{X}}_i > t_{\alpha}([p]))$$

$$\leq \mathbb{P}(\sup_{i \in H_0} \bar{\mathbf{X}}_i > t_{\alpha}(H_0)) < \alpha$$

Proposition: Taking $W_{\alpha} = \{i \in [p] : \bar{\mathbf{X}}_i > t_{\alpha}([p])\}$ yields α -level control of the FWER.

$$\mathbb{P}(\exists i : \bar{\mathbf{X}}_i > t_{\alpha}([p]) \text{ and } i \in H_0) = \mathbb{P}(\sup_{i \in H_0} \bar{\mathbf{X}}_i > t_{\alpha}([p]))$$

$$\leq \mathbb{P}(\sup_{i \in H_0} \bar{\mathbf{X}}_i > t_{\alpha}(H_0)) < \alpha$$

Note: Generalization to multi-step procedure: "step-down"

$$W_{\alpha}^{j+1} = \{ i \in [p] : \bar{\mathbf{X}}_i > t_{\alpha}([p] - W_{\alpha}^j) \}$$

 $\bigcup_{i} W_{\alpha}^{j}$ controls the FWER

Rademacher variables $Z = (Z^j, j = 1..n) : \mathbb{P}(Z_j = 1) = \mathbb{P}(Z_j = -1) = \frac{1}{2}$

Rademacher variables $Z = (Z^j, j = 1..n) : \mathbb{P}(Z_j = 1) = \mathbb{P}(Z_j = -1) = \frac{1}{2}$

$$t_{\alpha}(\mathbf{X}, C) = \inf\{t \in \mathbb{R} : \mathbb{P}_{Z}(\sup_{i \in C} \left(\frac{1}{n} \sum_{j=1}^{n} Z^{j} \mathbf{X}_{i}^{j} > t\right) \le \alpha\}$$

Rademacher variables $Z = (Z^j, j = 1..n) : \mathbb{P}(Z_j = 1) = \mathbb{P}(Z_j = -1) = \frac{1}{2}$

$$t_{\alpha}(\mathbf{X}, C) = \inf\{t \in \mathbb{R} : \mathbb{P}_{Z}(\sup_{i \in C} \left(\frac{1}{n} \sum_{j=1}^{n} Z^{j} \mathbf{X}_{i}^{j} > t\right) \leq \alpha\}$$

$$Z\mathbf{\bar{X}} = \frac{1}{n} \sum_{j=1}^{n} Z^j \mathbf{X}^j$$

Rademacher variables $Z = (Z^j, j = 1..n) : \mathbb{P}(Z_j = 1) = \mathbb{P}(Z_j = -1) = \frac{1}{2}$

$$t_{\alpha}(\mathbf{X}, C) = \inf\{t \in \mathbb{R} : \mathbb{P}_{Z}(\sup_{i \in C} \left(\frac{1}{n} \sum_{j=1}^{n} Z^{j} \mathbf{X}_{i}^{j} > t\right) \leq \alpha\}$$

$$Z\mathbf{\bar{X}} = \frac{1}{n} \sum_{i=1}^{n} Z^{i} \mathbf{X}^{j}$$

Proposition: $t_{\alpha}(\mathbf{X},[p])$ controls the FWER at level α

Rademacher variables $Z=(Z^j,j=1..n): \mathbb{P}(Z_j=1)=\mathbb{P}(Z_j=-1)=\frac{1}{2}$

$$t_{\alpha}(\mathbf{X}, C) = \inf\{t \in \mathbb{R} : \mathbb{P}_{Z}(\sup_{i \in C} \left(\frac{1}{n} \sum_{j=1}^{n} Z^{j} \mathbf{X}_{i}^{j} > t\right) \leq \alpha\}$$

$$Z\mathbf{\bar{X}} = \frac{1}{n} \sum_{j=1}^{n} Z^j \mathbf{X}^j$$

Proposition: $t_{\alpha}(\mathbf{X},[p])$ controls the FWER at level α

$$\mathbb{P}_{\mathbf{X}} \left(\sup_{i \in H_0} \bar{\mathbf{X}}_i > t_{\alpha}([p]) \right) = \mathbb{P}_{\mathbf{X}} \left(\sup_{i \in H_0} Z \bar{\mathbf{X}}_i > t_{\alpha}(Z \mathbf{X}, [p]) \right) \text{ for any } Z \\
= \mathbb{E}_Z \mathbb{P}_{\mathbf{X}} \left(\sup_{i \in H_0} Z \bar{\mathbf{X}}_i > t_{\alpha}(Z \mathbf{X}, [p]) \right) \\
= \mathbb{E}_{\mathbf{X}} \mathbb{P}_Z \left(\sup_{i \in H_0} Z \bar{\mathbf{X}}_i > t_{\alpha}(\bar{\mathbf{X}}, [p]) \right)$$

$$= \mathbb{E}_{\mathbf{X}} \mathbb{P}_{Z} \left(\sup_{i \in H_{0}} Z \bar{\mathbf{X}}_{i} > t_{\alpha}([p]) \right)$$

$$< \alpha$$

Rademacher variables $Z = (Z^j, j = 1..n) : \mathbb{P}(Z_j = 1) = \mathbb{P}(Z_j = -1) = \frac{1}{2}$

$$t_{\alpha}(\mathbf{X}, C) = \inf\{t \in \mathbb{R} : \mathbb{P}_{Z}(\sup_{i \in C} \left(\frac{1}{n} \sum_{j=1}^{n} Z^{j} \mathbf{X}_{i}^{j} > t\right) \leq \alpha\}$$
$$Z\bar{\mathbf{X}} = \frac{1}{n} \sum_{j=1}^{n} Z^{j} \mathbf{X}^{j}$$

Proposition: $t_{\alpha}(\mathbf{X},[p])$ controls the FWER at level α

Notes:

- this holds for any non-Gaussian symmetric distribution
- Can be combined with step-down procedure