Présentation du Routage IP

Comment acheminer une information dans une infrastructure mondiale?

Contenu de ce cours.

☐ Découverte du routage IP

- Structuration des réseaux
- Principes du routage IP
- Rôle des tables de routage IP
- Tables de routage IP

Prés requis.

- **☐** Principes de communication
- ☐ Principes de fonctionnement du protocole Ethernet
- ☐ Principes de fonctionnement du protocole IP

Réseaux informatiques.

- **☐** Routage IP
 - ☐ Structuration des réseaux

Structuration des réseaux (1).

- ☐ De quoi a-t-on besoin ?
 - De segmenter en sous réseaux :
 - ✓ Limiter les domaines de broadcast Ethernet et IP (ARP, ...)
 - √ Apporter de la sécurité
 - √ Respecter des politiques de sécurité de chacun
 - Attribuer des adresses de réseaux différentes à chaque segment
 - De router les paquets entre les différents réseaux

Structuration des réseaux (2).

☐ Organisation :

- Routage de réseaux locaux → LAN (Local Area Network),
- Routage de site, ensemble de réseaux locaux → MAN (Metropolitan Area Network),
- Routage hors site → WAN (Wide Area Network).

Réseaux informatiques.

- **₽** Routage IP
 - ☐ Structuration des réseaux
 - **☑** Principes du routage IP

Principes du routage IP (1).

□ Définition :

 Acheminement de datagrammes entre machines situées sur des réseaux IP différents à travers un ensemble d'autres réseaux.

Principes du routage IP (2).

☐ Remise d'un datagramme :

 Le datagramme ne subit aucune modification lors de son passage à travers les routeurs.

Principes du routage IP (3).

Position du routeur :

- Les informations sont desencapsulées jusqu'à la couche 3 du routeur puis réencapsulées,
- Le routeur se sert de l'entête du datagramme.

Réseaux informatiques.

- **₽** Routage IP
 - ☐ Structuration des réseaux
 - ☐ Principes du routage IP
 - ☑ Rôle des tables de routage IP

Rôle des tables de routage IP (1).

☐ Définition du plan de routage :

Rôle des tables de routage IP (2).

☐ Définition du plan de routage (poste 1) :

Destination	Masque	Passerelle	Interface
193.50.24.0	/24	*	eth1

Rôle des tables de routage IP (3).

☐ Définition du plan de routage (poste 2) :

Destination	Masque	Passerelle	Interface
193.50.24.0	/24	*	eth2
195.8.1.0	/24	*	eth3

Rôle des tables de routage IP (4).

☐ Définition du plan de routage (poste 3) :

Destination	Masque	Passerelle	Interface
195.8.1.0	/24	*	eth4

Réseaux informatiques.

- **₽** Routage IP
 - ☐ Structuration des réseaux
 - ☐ Principes du routage IP
 - □ Rôle des tables de routage IP
 - **☑** Tables de routage IP

Tables de routage IP (1).

☐ Nécessité :

- Plusieurs chemins peuvent se présenter sur un segment de réseau,
- Nécessité de définir par quel itinéraire il faut passer pour se rendre de la source à la destination.

Tables de routage IP (2).

☐ Définition du routage :

- A deux niveaux : postes et routeurs
- Classe IP de destination / masque, adresse IP de passerelle de proximité.

Tables de routage IP (3).

- ☐ Définition du routage (suite) :
 - Définition dans un sens.

Tables de routage IP (4).

- ☐ Définition du routage (suite) :
 - Définition dans l'autre sens.

Tables de routage IP (5).

☐ Définition du plan de routage :

• Attribution d'une adresse IP à chaque interface.

Tables de routage IP (6).

- Définition du plan de routage (suite) :
 - Définition d'une seule table de routage sur chaque équipement.

Tables de routage IP (7).

□ Définition des tables de routage :

Attribution d'une entrée sur « Source » pour l'aller.

Tables de routage IP (8).

Définition des tables de routage (suite) :

Attribution d'une entrée sur « Routeur 1 » pour l'aller.

Tables de routage IP (9).

Définition des tables de routage (suite) :

Aucune entrée sur « Routeur 2 » pour l'aller.

Tables de routage IP (10).

☐ Définition des tables de routage (suite) :

Attribution d'une entrée sur « Destination » pour le retour.

Tables de routage IP (11).

➡ Définition des tables de routage (suite) :

Attribution d'une entrée sur « Routeur 2 » pour le retour.

Tables de routage IP (12).

Définition des tables de routage (suite) :

Aucune entrée supplémentaire sur « Routeur 1 » pour le retour.

Tables de routage IP (13).

☐ Définition des tables de routage :

Tables de routage IP (14).

☐ Définition des tables de routage (suite) :

Tables de routage IP (15).

☐ Définition des tables de routage (suite) :

Tables de routage IP (16).

☐ Définition des tables de routage (suite) :

Réseaux informatiques.

- **₽** Routage IP
 - ☐ Structuration des réseaux
 - ☐ Principes du routage IP
 - □ Rôle des tables de routage IP
 - ☐ Tables de routage IP
 - ☑ Priorité de mise en circulation

Priorité de mise en circulation (1).

☐ Scrutation de la table de routage locale :

• Comparaison de l'adresse de destination avec (adresse / masque) de chaque entrée de la table de routage triées dans l'ordre /32, ..., /24, ..., /16, ..., /8, ..., /0

Destination	Masque	Passerelle	Interface
194.60.18.0	/24	*	eth1
xxx.xxx.xxx	/xx	194.60.18.45	eth1

Réseaux informatiques.

- **☐** Routage IP
 - ☐ Structuration des réseaux
 - ☐ Principes du routage IP
 - □ Rôle des tables de routage IP
 - ☐ Tables de routage IP
 - ☐ Priorité de mise en circulation
 - **☑** Exemples

Exemples (1).

₽ Poste n°1

Destination	Masque	Passerelle	Interface
194.60.18.0	/24 *1	*	eth1
196.23.48.0	/24 *1	194.60.18.45	eth1

(194.60.18.38 masquée 24 *1) = 194.60.18.0 ?

Oui, le datagramme est donc transmis directement au poste n°2

Exemples (2).

₽ Poste n°1

Destination	Masque	Passerelle	Interface
194.60.18.0	/24 *1	*	eth1
196.23.48.0	/24 *1	194.60.18.45	eth1

Non, on recherche le couple suivant dans la table de routage

(196.23.48.5 masquée 24 *2) = 196.23.48.0 ?

Oui, le datagramme est donc transmis au routeur n°1

Exemples (3).

₽ Poste n°1

Destination	Masque	Passerelle	Interface
194.60.18.0	/24 * ¹	*	eth1
196.23.48.0	/24 *1	194.60.18.45	eth1

Non, on recherche le couple suivant dans la table de routage

(196.23.12.55 masquée 24 *2) = 196.23.48.0 ?

Non, le datagramme n'est donc pas transmis

Fin.