The Countability Axioms David Yang and James Wang

1 Introduction and Relevant Theorems

Definition (First Countability Axiom). A space X is said to have a **countable basis at** x if there is a countable collection \mathcal{B} of neighborhoods of x such that each neighborhood of x contains at least one of the elements of \mathcal{B} .

A space that has a countable basis at each of its points is said to satisfy the **first countability** axiom, or to be **first-countable**.

Theorem. Let X be a topological space.

- a) Let A be a subset of X. If there is a sequence of points of A converging to x, then $x \in \overline{A}$; the converse holds if X is first-countable.
- b) let $f: X \to Y$. If f is continuous, then for every convergent sequence $x_n \to x$ in X, the function $f(x_n)$ converges to f(x). The converse holds if X is first-countable.

Definition (Second Countability Axiom). If a space X has a countable basis for its topology, then X is said to satisfy the **second countability axiom**, or to be **second-countable**.

Motivation: A topology on a space can have multiple bases of various sizes. We want to settle the size of a basis.

2 Examples

Example. \mathbb{R}^{ω} is first-countable but not second-countable.

Note: this should illustrate the difference between having a countable basis (second-countable) and having a countable basis at each of its points (first-countable).

Lemma. If X is a space having a countable basis B, then any discrete subspace A of X must be countable.

Proof. Choose, for each $a \in A$, a basis element B_a that intersects A in the point a alone.

Then the map $a \mapsto B_a$ is injective; (as if $a \neq b$, the sets B_a and B_b are disjoint). It follows that A must be countable.

Proof of Example. First, note that \mathbb{R}^{ω} satisfies first countability axiom, as it is metrizable.

We will show that it is not second-countable. Consider the subspace A of \mathbb{R}^{ω} consisting of all sequences of 0's and 1's; this subspace is uncountable.

Furthermore, this space has the discrete topology as for any distinct $x, y \in A$, $\bar{\rho}(x, y) = 1$. By the above lemma, since A is uncountable, it follows that \mathbb{R}^{ω} cannot have a countable basis, so it is not second-countable.

Example. \mathbb{R}^n is second-countable.

Proof. We use the fact \mathbb{Q} is dense in \mathbb{R} (i.e. $\overline{\mathbb{Q}} = \mathbb{R}$).

$$\mathbb{B}_1 = \{ B_r(x) \mid x \in \mathbb{R}^n, r \in \mathbb{R}^+ \}$$

$$\mathbb{B}_2 = \{ B_q(x) \mid x \in \mathbb{Q}^n, q \in \mathbb{Q}^+ \}$$

We want to show \mathbb{B}_2 is also a basis for \mathbb{R}^n . Let U be an open set of \mathbb{R}^n , then for all $u \in U$, there exists some $r \in \mathbb{R}^+$ such that $u \in B_r(u) \subseteq U$. By a version of the Archimedean Property, there exists some $q \in \mathbb{Q}$ such that $q \leq r$.

Recall that $u \in \overline{\mathbb{Q}^n}$ if and only if every open set U containing u intersects \mathbb{Q}^n (Theorem 17.5a), so there exists $p \in \mathbb{Q}^n$ such that d(u,p) < q/2. We claim

$$u \in B_{q/2}(p) \subseteq B_r(u) \subseteq U$$
, and
$$\bigcup B_2 = U$$
.