Definiciones

Valor absoluto

$$\sqrt{x^2} = |x|$$

Ejemplo

$$x^2 = 20$$

$$\sqrt{x^2} = \sqrt{20}$$

$$|x| = \sqrt{20}$$

$$x = \pm \sqrt{20}$$

Conjunto de valores admisibles (C.V.A)

$$\frac{1}{f(x)}; f(x) \neq 0$$

$$\sqrt{f(x)}; f(x) \geq 0$$

$$a^x; a>0, a
eq 1, x \in \mathbb{R}$$

Inecuaciones

Valor absoluto

b > 0

a < b	-b < a < b	
$ a {>}b$	a < -b	$a{>}b$

b < 0

a < b	no hay soluci ó n
a > b	\mathbb{R}

Propiedades Iogaritmicas

$$x = log_a(n) \Leftrightarrow a^x = n$$

$$log_a n^k = klog_a n$$

$$\log xy = \log x + \log y$$

$$\log\left(\frac{x}{y}\right) = \log x - \log y$$

$$log_b n = rac{log_a n}{log_a b}$$
 $log_a a^x = x$ $a^{log_a x} = x$

$$log_a a = 1$$

$$log_a 1 = 0$$

$$log_a 0 = \mathrm{indefinido}$$

Trigonometría

Medidas de ángulos en grados y radianes

30° (θ)	Radianes	Radianes (simplificado)	45° (θ)	Radianes	Radianes (simplificado)
30°	$\frac{1\pi}{6}$	$\frac{\pi}{6}$	45°	$\frac{1\pi}{4}$	$\frac{\pi}{4}$
60°	$\frac{2\pi}{6}$	$\frac{\pi}{3}$	90°	$\frac{2\pi}{4}$	$\frac{\pi}{2}$
n°	$\frac{k\pi}{6}$		n°	$\frac{k\pi}{4}$	

$$k=rac{n^{\circ}}{ heta}$$

Tabla trigonométrica

θ	0°	30°	45°	60°	90°
$\cos \theta$	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
$\sin heta$	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
an heta	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞

Recomendado: Funk da trigonometria

Visualización

Functions	Quadrants			
		Ш	III	IV
sin α	+	+		
cos α	+			+
tan α	+	_	+	
cot α	+	-		
sec α	+			+
cosec α	+	+	-	-

Periodicidad

$$\sin{(2\pi+ heta)}=\sin{ heta}$$

$$\cos{(2\pi+ heta)}=\cos{ heta}$$

$$\tan\left(\pi + \theta\right) = \tan\theta$$

Identidades trigonometricas

Identidades pitagóricas

$$\sin^2 \theta + \cos^2 \theta = 1$$

$$\sec^2\theta - \tan^2\theta = 1$$

$$\csc^2 - \cot^2 = 1$$

Identidades ángulo doble

$$\sin(2\theta) = 2\sin\theta\cos\theta$$

$$\cos(2\theta) = \cos^2\theta - \sin^2\theta$$

$$an(2 heta) = rac{2 an heta}{1- an^2 heta}$$

Funciones

Cuadrática

Discriminante

Indica el número de soluciones

$$\Delta = b^2 - 4ac$$

$\Delta > 0$	$x=rac{-b\pm\sqrt{\Delta}}{2a}$
$\Delta = 0$	$x=rac{-b}{2a}$
$\Delta < 0$	no hay solución

Combinación

$$(f+g)x = f(x) + g(x)$$

 $(f-g)x = f(x) - g(x)$
 $(fg)x = f(x)g(x)$
 $\left(\frac{f}{g}\right)x = \frac{f(x)}{g(x)}$
 $(f \circ g) = f(g(x))$

Límites

Límites notables

$$\lim_{n \to \pm \infty} \frac{1}{n} = 0$$

$$\lim_{n \to \pm \infty} (\pm)n = (\pm) \pm \infty$$

Si un límite es igual a infinito, no existe pero se denota que tiende a infinito.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

$$\lim_{x \to 0} \frac{1 - \cos x}{x} = 0; \lim_{x \to 0} \frac{\cos x - 1}{x} = 0$$

$$\lim_{x \to 0} \frac{\sin(ax)}{bx} = \frac{a}{b}$$

$$\lim_{x \to -\infty} \arctan x = -\frac{\pi}{2}; \lim_{x \to +\infty} \arctan x = \frac{\pi}{2}$$

Casos en los que no existe

El límite izquierdo no es igual al derecho

$$\lim_{x o c^+}
eq \lim_{x o c^-}$$

Función que oscila alrededor de c

<u>Ejemplo</u>

$$c = 0$$

$$\lim_{x o c}=rac{1}{\sin(x)}$$

Función que oscila hacia el infinito

<u>Ejemplo</u>

$$\lim_{x o\infty}=\sin(x)$$

Continuidad

$$f(a) = n \Leftrightarrow \exists \lim_{x o a} f(x) = n$$

Función es continua != Función es continua en un punto. Para saber si f es continua se debe evaluar el dominio.

Cálculo de asíntotas

Asíntota horizontal

$$\lim_{x o -\infty} f(x); \lim_{x o +\infty} f(x)$$

Asíntota vertical

$$c$$
 es asíntota horizontal $\Leftrightarrow \lim_{x \to c} f(x) = \infty$

Teorema del sandwich

$$f(x) \le h(x) \le g(x)$$

$$\lim_{x o c}f(x)=lpha\wedge\lim_{x o c}g(x)=lpha\Longleftrightarrow\lim_{x o c}h(x)=lpha$$

Derivadas

$$f'(x) = \lim_{h o 0} rac{f(x+h)+f(x)}{h}$$

Casos en los que no se puede derivar (punto)

- 1. Recta tangente es vertical
- 2. f es discontinua
- 3. "Giro" brusco

Derivadas notables

Función	Derivada
f(x)=ax	$f(x)=a(x)^{\prime}$
$f(x)=x^n$	$f'(x) = nx^{n-1}$
$f(x)=a^x$	$f'(x) = a^x \ln a$
$f(x)=e^x$	$f'(x)=e^x$
$f(x) = \sin x$	$f'(x) = \cos x$
$f(x) = \cos x$	$f'(x) = -\sin x$
$f(x) = \ln x$	$f'(x) = \frac{1}{x}$
$f(x) = \log_a x$	$f'(x) = \frac{1}{\ln a} \frac{1}{x}$

n-ésima derivada

Función	Derivada
$f(x)=xe^x$	$f^{(n)}(x) = ne^x + xe^x$

Recta tangente, normal

La pendiente de la recta tangente es igual a la derivada evaluada en una constante.

$$m_{L_T}=f^\prime(a)$$

La recta normal es perpendicular a la tangente, por tanto:

$$m_{L_N}=-rac{1}{m_{L_T}}$$

Para obtener la ecuación de la recta tangente o la recta normal se usa:

$$y - f(a) = m(x - a)$$

Reglas

Regla del producto

$$(fg)' = fg' + f'g$$

Regla del cociente

$$\left(\frac{N}{D}\right)' = \frac{DN' - D'N}{D^2}$$

Regla de la cadena

$$\frac{d}{dx}[(f(x))^n] = nf(x)^{n-1}f(x)'$$

$$\frac{d}{dx}[f(g(x))] = f'(g(x))g'(x)$$

Derivadas implícitas

TODO