let
$$H = \left\{ \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} : a_1 b \in C \right\}.$$

then H is a subring of
$$M_2(\epsilon)$$
.

If let
$$X = \begin{pmatrix} a & b \\ -\overline{b} & \overline{a} \end{pmatrix} \neq 0$$
. Write $a = \alpha_0 + \alpha_1 \sqrt{-1}$, $b = \alpha_2 + \alpha_3 \sqrt{-1}$.

Then
$$\Delta = \det x = \alpha_0^2 + \alpha_1^2 + \alpha_2^2 + \alpha_3^2 \neq 0$$
.

$$Also, \quad \chi^{-1} = \Delta^{-1} \quad adj \quad x = \begin{pmatrix} \overline{a} \Delta^{-1} & -b \Delta^{-1} \\ \overline{b} \Delta^{-1} & a \Delta^{-1} \end{pmatrix} \in H.$$

$$j = \begin{pmatrix} \sqrt{-1} & 0 \\ 0 & -\sqrt{-1} \end{pmatrix} , \quad j = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} , \quad k = \begin{pmatrix} 0 & \sqrt{-1} \\ \sqrt{-1} & 0 \end{pmatrix}$$

in the sense that any Quaternion can be written as

$$\chi = \alpha_0 + \alpha_1 i + \alpha_2 j + \alpha_3 k$$

and this representation is unique.

Using this representation, the multiplication is determined by the laws

$$i^2 = j^2 = k^2 = -l$$
, $ij = -ji = k$

Quotient Rings & Ideals

Def Let $(M, \cdot, 1)$ be a monoid. a congruence \equiv on M is an equivalence relation st. for $a, a', b, b' \in M$ $w/a \equiv a', b \equiv b', ab \equiv a'b'$

Ex the relation \equiv (mod m), m>0 is a congruence on $(\mathbb{Z},+,0)$ and on $(\mathbb{Z},\times,1)$.

Prop the quotient set $\overline{M} = M / \equiv is$ a monoid $w / \overline{1} = \int a \in M[a \equiv 1]$ and $\overline{ab} = \overline{ab}$.

This Let G be a gp. There is a one-to-one correspondence between congruences 4 normal subgrs. $= \longleftrightarrow T$

Def Let R be a ring. A congruence \equiv in R is an equiv. velⁿ in R that is both a congruence on (R,+,0) and on $(R,\cdot,1)$. Prop The quotient set $R = R/\equiv w/$ additive gr $(R,+,\bar{0})$ and mult monoid $(R,\cdot,\bar{1})$.

By thm, congruences on $(R,+,\delta)$ correspond to subgrs I.

Given I, we have the corresponding congruence a=b iff $a-b\in I$.

So a cong class $\overline{a}\in R/=is$ a coset a+I.

If =is also a congruence for $(R,\cdot,1)$, $\overline{a} \ \overline{o} = \overline{o} \ \overline{a} = \overline{o}$.

So for $a\in R$, $b\in I$, $ab\in I$ and $ba\in I$ (*)

Conversely, if $I \leq (R,+,o)$ s.t. I satisfies (*), then $|f \quad a \equiv a' \mod I, \quad b \equiv b' \mod I, \quad ab \equiv a'b' \mod I$ $\left[ab - a'b' = ab - a'b + a'b - a'b' = (a-a')b + a'(b-b') \in I \right].$

Def let R be a ring. An ideal is a subgr of (R,+,0)
Satisfying (X).

R/=

Def Let R be a ring, I = R be an ideal. Then R/I is the quotient ring.

Ex The elements of R/I are the cosets at I.

Page 3

$$(a+I) + (b+I) = (a+b)+I$$
 this is a set equality-
$$(a+I) (b+I) = : ab+I$$
this is not necessarily
a set equality

Let
$$R = \mathbb{Z}$$
, $I = 10 \cdot \mathbb{Z}$

$$(2+102)$$
 $(4+102)$ $\{4+101\}$

set-wise product is {8+201+40k+100ke} € 8+102.

Def Let 5 be a subset of a ring R. The ideal gen by S, is the intersection of all ideals = S. (5).

Ex let $S = \{a_1, ..., a_n\}$ be a finite subset of R.

Write $(a_1, ..., a_n)$ for (S). This ideal contains all Xa_iy $\forall x_iy \in R$.

it also contains all finite linear combinations.

Xia,y,+...+ xnanyn.

Let I be the set of all elmoss of the form

Then I is an ideal, Also, any element of I must be in $(a_1,...,a_n)$, and $I > \{a_1,...,a_n\}$.

So
$$I = (a_1, ..., a_n)$$
.