

planetmath.org

Math for the people, by the people.

rational integers in ideals

Canonical name RationalIntegersInIdeals

Date of creation 2013-03-22 19:08:47 Last modified on 2013-03-22 19:08:47

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 6

Author pahio (2872)
Entry type Theorem
Classification msc 12F05
Classification msc 06B10
Classification msc 11R04

Related topic CharacteristicPolynomialOfAlgebraicNumber

Related topic IdealNorm

Any non-zero ideal of an algebraic number field K, i.e. of the maximal order \mathcal{O}_K of K, contains positive rational integers.

Proof. Let $\mathfrak{a} \neq (0)$ be any ideal of \mathcal{O}_K . Take a nonzero element α of \mathfrak{a} . The http://planetmath.org/NormInNumberFieldnorm of α is the product

$$N(\alpha) = \alpha^{(1)} \underbrace{\alpha^{(2)} \cdots \alpha^{(n)}}_{\gamma}$$

where n is the degree of the number field and $\alpha^{(1)}$, $\alpha^{(2)}$, \cdots , $\alpha^{(n)}$ is the set of the http://planetmath.org/node/12046K-conjugates of $\alpha = \alpha^{(1)}$. The number

$$\gamma = \frac{N(\alpha)}{\alpha}$$

belongs to the field K and it is an algebraic integer, since $\alpha^{(2)}, \dots, \alpha^{(n)}$ are, as algebraic conjugates of α , also algebraic integers. Thus $\gamma \in \mathcal{O}_K$. Consequently, the non-zero integer

$$N(\alpha) = \alpha \gamma$$

belongs to the ideal \mathfrak{a} , and similarly its opposite number. So, \mathfrak{a} contains positive integers, in fact infinitely many.