Reportez ici votre numéro d'anonymat :

	Exa	men	LU3	3IN014	«	Rése	aux	X »
Mar	di 7	Jany	ier 2	2020 -	Dι	ırée	: 2	heures

Sont autorisées : 1 feuille A4 manuscrite recto/verso, 1 calculatrice (téléphone interdit)

Voici : - 5 feuilles contenant les énoncés et les zones de réponse à compléter (sans déborder).

Vous devez reporter votre numéro d'anonymat sur chacune des feuilles.

- 1 feuille d'annexe que vous pouvez détacher.

Exercice 1 : Algorithmes de routage (5 points)

1. Expliquer les différences entre les algorithmes à état des liens et à vecteurs de distance, du point de vue de l'échange de messages et de la connaissance du réseau, en complétant le tableau ci-dessous :

	échange de messages	connaissance du réseau
état des liens	les messages sont envoyés à tous les nœuds du réseau	chaque nœud connaît la topologie complète du réseau
vecteurs de distance	les messages sont échangés seulement entre voisins directs	un nœud ne connaît que le prochain nœud pour aller vers la destination

2. On considère le réseau ci-dessous, où les valeurs indiquées correspondent au coût sur le lien correspondant.

a. Compléter la table de routage du nœud C, en utilisant l'algorithme de Dijkstra :

destination	prochain nœud	chemin	coût
A	В	CBGA	4
В	В	СВ	2
D	В	CBGD	4
Е	В	CBGE	5
F	В	CBGEF	7
G	В	CBG	3

b. Le nœud G tombe en panne. Donner les tables de routage des nœuds B et E obtenues après une nouvelle convergence de l'algorithme de Dijkstra:

	table de B				
dest.	prochain	chemin	coût		
A	A	BA	3		
С	С	BC	2		

	table de E		
dest.	prochain	chemin	coût
D	D	ED	3
F	F	EF	2

c. Quel problème observe-t-on? Proposer une solution possible à ce problème.

Après la panne du nœud G, le réseau est déconnecté. Les nœuds A, B et C ne peuvent plus joindre les nœuds D, E et F.

Il faut éviter, dans le monde réel, que deux parties du réseau ne soient connectées que par un seul nœud.

3. On considère un réseau avec 5 nœuds. Les tables de routage des nœuds B et E suivantes ont été obtenues en utilisant un algorithme à vecteurs de distance :

table de B				
destination	prochain	coût		
A	Е	3		
В	-	-		
С	С	1		
D	D	2		
Е	Е	2		

table de E				
destination	prochain	coût		
A	A	1		
В	В	2		
C	В	3		
D	A	3		
Е	-	-		

a. Déduire tous les voisins directs possibles du nœud E, et préciser les coûts vers tous ces voisins directs possibles.

Nœud A, avec un coût de 1

Nœud B, avec un coût de 2

Nœud C, avec un coût supérieur ou égal à 3

Nœud D, avec un coût supérieur ou égal à 3

b. Dessiner la topologie du réseau avec les coûts sur les liens, en partant des tables de B et E.

- c. En considérant la topologie de la réponse précédente, on suppose une panne entre B et C. Compléter le scénario dans lequel le "comptage à l'infini" a lieu.
- T0 : le lien entre B et C tombe en panne, B le détecte et met à jour les entrées de sa table dont C est le "next" avec la valeur "infini"

T1 : E envoie à B VE = (A1, B2, C3, D3, E0)

T2 : B envoie à E VB = (A3, B0, C5, D2, E2)

T3 : E envoie à B VE = (A1, B2, C7, D2, E2)

T4 : B envoie à E VB = (A3, B0, C9, D2, E2)

T3: E envoie à B VE = (A1, B2, C11, D2, E2)

. . .

Reportez ici votre	
numéro d'anonymat :	

Exercice 2 : Plan d'adressage (5 points)

En Annexe A1 se trouve le schéma du réseau de l'entreprise 3IN&Associés, pour lequel on se propose d'élaborer un plan d'adressage efficace.

La figure montre 5 réseaux locaux (LAN A, ... E). Pour chacun d'eux, est indiqué le nombre de machines hôtes connectées. L'interconnexion est réalisée au moyen de 4 routeurs (R1, ... R4) dont les interfaces sont identifiées comme indiqué dans la figure.

On suppose dans un premier temps l'utilisation des classes d'adressage et du découpage en sous-réseaux.

1. De quelle classe d'adresses l'entreprise a-t-elle besoin ? Justifier.

Elle a besoin d'une classe B : il y a 280 machines hôtes, plus les 4 routeurs à adresser. Une classe C ne comprend que 2^8=256 adresses et ne suffit donc pas, alors qu'une classe B comprend 2^16=65536 adresses.

2. On suppose qu'il lui a été attribuée l'adresse 134.157.0.0. Quel masque de sous-réseau peut-on utiliser, sachant qu'il n'y aura jamais plus de 254 équipements connectés par sous-réseau ? Justifier.

En prenant un maximum de 254 équipements par sous-réseaux, avec les 2 valeurs réservées du *HostId*, il faut 8 bits pour le HostId. Il reste donc 24 bits pour le NetId et le SubNetId, soit le masque : 255.255.255.0

3. Donner un plan d'adressage associé à ce masque de sous-réseau, en complétant le tableau ci-dessous :

	Adresse de sous-réseau	Adresse de diffusion	Masque de sous-réseau
LAN A	134.157.1.0	134.157.1.255	255.255.255.0
LAN B	134.157.2.0	134.157.2.255	255.255.255.0
LAN C	134.157.3.0	134.157.3.255	255.255.255.0
LAN D	134.157.4.0	134.157.4.255	255.255.255.0
LAN E	134.157.5.0	134.157.5.255	255.255.255.0

4. Calculer le taux d'utilisation de ce schéma d'adressage (nombre d'adresses utilisées / nombre d'adresses allouées).

Le nombre d'adresses utilisées est (120+1+2) + (60+2+2) + (50+3+2) + (30+1+2) + (20+1+2) = 298

Le nombre d'adresses allouées est $2^16 = 65536$

Le ratio est donc de 298/65536 = 0,0045 soit 0,45% !!!

On souhaite maintenant utiliser un schéma d'adressage CIDR, avec le bloc d'adresses 134.157.0.0/23 attribué à l'entreprise.

5. Donner le plan d'adressage, en complétant le tableau ci-dessous :

	Adresse de sous-réseau	Adresse de diffusion	Masque de sous-réseau
LAN A	134.157.0.0	134.157.0.127	255.255.255.128
LAN B	134.157.0.128	134.157.0.191	255.255.255.192
LAN C	134.157.0.192	134.157.0.255	255.255.255.192
LAN D	134.157.1.0	134.157.1.63	255.255.255.192
LAN E	134.157.1.64	134.157.1.95	255.255.255.224

6. Calculer le taux d'utilisation de ce schéma d'adressage (nombre d'adresses utilisées / nombre d'adresses allouées).

Le nombre d'adresses utilisées est (120+1+2) + (60+2+2) + (50+3+2) + (30+1+2) + (20+1+2) = 298

Le nombre d'adresses allouées est $2^9 = 512$

Le ratio est donc de 298/512 = 0,58 soit 58%

7. Donner la table de routage de l'hôte H1, en attribuant des adresses au choix aux routeurs :

Destination	Mask	Gateway	Interface
A-134.157.0.0	255.255.255.128	*	i1
0.0.0.0	0.0.0.0	R1-134.157.0.126	i1

8. Donner la table de routage du routeur R2, en attribuant des adresses au choix aux routeurs :

Destination	Mask	Gateway	Interface
A-134.157.0.0	255.255.255.128	R1-134.157.0.190	i1
B-134.157.0.128	255.255.255.192	*	i1
C-134.157.0.192	255.255.255.192	*	i2
D-134.157.1.0	255.255.255.192	R4-134.157.1.62	i2
E-134.157.1.64	255.255.255.224	R3-134.157.1.61	i2
0.0.0.0	0.0.0.0	R1-134.157.0.190	i1

Sorbonne Université
Licence d'Informatique
1 U3IN 014 - 2019/2020

Reportez ici votre numéro d'anonymat :	

Exercice 1 : MTU et fragmentation (5 points)

Dans cet exercice, une application cherche à envoyer 1656 octets. L'objectif est de comparer la quantité totale de trafic que génère cet envoi selon que l'application utilise UDP ou TCP.

On supposera:

- la MTU du réseau local est égale à 576 octets,
- la taille minimum d'une trame est égale à 62 octets,
- la longueur de l'entête et de l'enqueue des trames est de 16 octets,
- les entêtes IP et TCP n'ont pas d'options.
- 1. Dans cette question, l'application utilise les services de TCP. Remplir le tableau donné en page 7 pour chacun des paquets IP que génère la machine hôte exécutant cette application. Exprimer toutes les valeurs en décimal. Laisser vides les cellules qui n'ont pas lieu d'être.

	valeurs en décimal. Laisser vides les cellules qui n'ont pas lieu d'être.
2.	Donner la taille de la dernière trame envoyée.
	104 octets
3.	Quel est le volume total résultant de l'envoi des 1656 octets en comptabilisant pour toutes les trames, l'ensemble des entêtes et enqueues utilisés.
	1880 octets
4.	Dans cette question, l'application utilise les services de UDP. Remplir le tableau donné en page 8 pour chacun des paquets IP que génère la machine hôte exécutant cette application. Exprimer toutes les valeurs en décimal. Laisser vides les cellules qui n'ont pas lieu d'être.
5.	Donner la taille de la dernière trame envoyée.
	62 octets
6.	Quel est le volume total résultant de l'envoi des 1656 octets en comptabilisant pour toutes les trames, l'ensemble des entêtes et enqueues utilisés.
	1826 octets

Exercice 2 : Décodage (5 points)

La trace correspond à une trame Ethernet capturée sur le réseau local de la source du paquet IPv4 encapsulé. Les valeurs de certains champs sont en erreur. L'objectif de cet exercice est de corriger ces erreurs lorsque possible en donnant la valeur correcte.

0000	84	b8	02	5a	59	40	f0	18	98	59	ae	32	80	06	6f	00
0010	00	44	00	00	60	00	20	11	7b	94	84	e 3	7d	1b	86	9d
0020	36	88	f5	85	00	50	a1	da	9b	80	a1	da	9b	09	b0	11
0030	ff	ff	89	26	00	00	02	04	05	b4	01	03	03	06	01	01
0040	08	0a	2d	d7	8d	61	00	00	00	00	04	02	00	00		

On supposera:

- la trame est donnée sans préambule ni CRC,
- le paquet IP est sans option,
- le paquet n'a pas été fragmenté et ne pourra pas l'être,
- le segment TCP encapsulé est un SYN,
- la valeur par défaut du TTL de la source est égale à 64,
- la destination est un serveur Web.
- 1. Remplir le tableau donné page 9. Pour chaque champ, donner la valeur capturée telle que présente dans la trace. Pour les entrées en gras, donner également la valeur corrigée. Exprimer toutes les valeurs en hexadécimal précédées du suffixe 0x ou en décimal selon la mention présente dans la seconde colonne (Hex/Dec).
- 2. Le tableau donné page 10 concerne le segment TCP SYN ACK reçu en réponse au TCP SYN capturé dans la question 1. L'entête de ce segment contient 20 octets d'options. Remplir la dernière colonne du tableau avec les valeurs manquantes concernant ce segment au format demandé selon la mention présente dans la seconde colonne (Hex/Dec).

Sorbonne Université Licence d'Informatique LU3IN014 – 2019/2020

Exercice 1 Question 1

Paquet IP 1		Segment TCP encapsulé				
Longueur entête IP	20	Longueur entête TCP	20			
Longueur totale du paquet	576	Longueur des données TCP	536			
DF	0					
MF	0					
Fragment Offset	0					
Paquet IP 2		Segment TCP encapsulé				
Taille entête IP	20	Taille entête TCP	20			
Longueur totale du paquet	576	Longueur des données TCP	536			
DF	0					
MF	0					
Fragment Offset	0					
Paquet IP 3		Segment TCP encapsulé				
Taille entête IP	20	Taille entête TCP	20			
Longueur totale du paquet	576	Longueur des données TCP	536			
DF	0					
MF	0					
Fragment Offset	0					
Paquet IP 4		Segment TCP encapsulé				
Taille entête IP	20	Taille entête TCP	20			
Longueur totale du paquet	88	Longueur des données TCP	48			
DF	0					
MF	0					
Fragment Offset	0					
Paquet IP 5		Segment TCP encapsulé				
Taille entête IP		Taille entête TCP				
Longueur totale du paquet		Longueur des données TCP				
DF						
MF						
Fragment Offset						

Exercice 1 Question 4

Datagramme UDP							
Longueur entête UDP	8						
Longueur des données UDP	1656						
Paquet IP 1							
Longueur entête IP	20						
Longueur totale du paquet	572						
DF	0						
MF	1						
Fragment Offset	0						
Paquet IP 2							
Taille entête IP	20						
Longueur totale du paquet	572						
DF	0						
MF	1						
Fragment Offset	69						
Paquet IP 3							
Taille entête IP	20						
Longueur totale du paquet	572						
DF	0						
MF	1						
Fragment Offset	138						
Paquet IP 4							
Taille entête IP	20						
Longueur totale du paquet	28						
DF	0						
MF	0						
Fragment Offset	207						
Paquet IP 5							
Taille entête IP							
Longueur totale du paquet							
DF							
MF							
Fragment Offset							

Sorbonne Université Licence d'Informatique LU3IN014 – 2019/2020

Reportez ici votre numéro d'anonymat :	

Exercice 2 Question 1

Champ d'entête		Valeur capturée	Valeur corrigée		
Entête Ethernet	•				
Adresse MAC sourc)	Hex	84-B8-02-5A-59-40	84-B8-02-5A-59-40		
Adresse MAC destination	Hex	F0-18-98-59-AE-32	F0-18-98-59-AE-32		
Type	Hex	0x0806	0x0800		
Entête IPv4					
Version	Dec	6	4		
IHL	Dec	60	20		
TOS	Hex	0x00	0x00		
Longueur totale	Dec	68	64		
Identificateur	Hex	0x0000	0x0000		
Flags-Fragment offset	Hex	0x6000	0x4000		
TTL	Dec	32	64		
Protocole	Hex	0x11	0x6		
Checksum	Hex	0x7b94	0x7b94		
Adresse IP source	Dec	132.227.125.27	132.227.125.27		
Adresse IP destination	Dec	134.157.54.136	134.157.54.136		
Segment TCP					
Port source	Hex	0x7b94	0x7b94		
Port destination	Dec	0x0050	0x0050		
Numéro de séquence	Dec	0xa1da9b08	0xa1da9b08		
Numéro d'acquittement	Hex	0xa1da9b09	0x00000000		
THL	Hex	0xa	0xb		
Drapeaux	Hex	0x011	0x002		
Fenêtre	Hex	0xffff	0xffff		
Checksum	Hex	0xc184	0xc184		
Pointeur urgent	Hex	0xffff	0x0000		

Exercice 2 Question 2

Champ d'entête		Valeur			
Entête Ethernet					
Adresse MAC source	Hex	F0-18-98-59-AE-32			
Adresse MAC destination	Hex	84-B8-02-5A-59-40			
Туре	Hex	0x0800			
Entête IP					
Version	Dec	4			
IHL	Dec	40			
TOS	Hex	0x00			
Longueur totale	Dec	60			
Identificateur	Hex	0xacd3			
Flags-Fragment offset	Hex	0x4000			
TTL	Dec	254			
Protocole	Hex	0x06			
Checksum	Hex	0x10c4			
Adresse IP source	Dec	134.157.54.136			
Adresse IP destination	Dec	132.227.125.27			
Segment TCP					
Port source	Hex	0x0050			
Port destination	Hex	0x f585			
Numéro de séquence	Hex	0x1a25487e			
Numéro d'acquittement	Hex	0xa1da9b09			
THL	Hex	0xa			
Drapeaux	Hex	0x012			
Fenêtre	Hex	0x4380			
Checksum	Hex	0x21bf			
Pointeur urgent	Hex	0x0000			