IMPORTANT Please remember to destroy all the resources after each work session. You can recreate infrastructure by creating new PR and merging it to master.

Figure 1: img.png

1. Authors:

Grupa nr 7

- Adam Górski
- Zuzanna Górecka
- Michał Oracki

Link to repo

2. Follow all steps in README.md.

Select the key and value of the label you want to filter.

3. Select your project and set budget alerts on 5%, 25%, 50%, 80% of 50\$ (in cloud console -> billing -> budget & alerts -> create buget; unclick discounts and promotions&others while creating budget).

Credits
Selected credits are applied to the total cost. Budget tracks the total cost minus any applicable selected credits

Discounts
Promotions and others

NEXT

Figure 2: img.png

- 5. From available Github Actions select and run destroy on main branch.
- 6. Create new git branch and:
 - 1. Modify tasks-phase1.md file.

2. Create PR from this branch to **YOUR** master and merge it to make new release.

place the screenshot from GA after succesfull application of re-

7. Analyze terraform code. Play with terraform plan, terraform graph to investigate different modules.

Moduł, który przeanalizowalśmy to data-pipeline. Tworzy on joby dla dgt i dag oraz trzyma dane wyjściowe z nich w bucketach.

8. Check if pyspark kernel exists - if not then in your Jupyterlab environment add Python $3.8~{\rm kernel}$

Pyspark kernel nie istniał i został utworzony przy pomocy polecenia:

python3.8 -m ipykernel install --user --name pyspark

9. Reach YARN UI

gcloud compute ssh --zone "europe-west1-d" "tbd-cluster-m" --tunnel-through-iap --proj

- 10. Draw an architecture diagram (e.g. in draw.io) that includes:
 - 1. VPC topology with service assignment to subnets
 - 2. Description of the components of service accounts
 - 3. List of buckets for disposal
 - 4. Description of network communication (ports, why it is necessary to specify the host for the driver) of Apache Spark running from Vertex AI Workbech

W Apache Spark węzeł główny zarządza i dystrybuuje zadania do odpowiednich wykonawców. Dlatego potrzebne jest podanie hosta, aby wykonawcy wiedzieli

Figure 3: yarn_ui

 $Figure\ 4:\ architecture_diagram.drawio$

skąd nasłuchiwać, z kim się komunikować i gdzie wysyłać wyniki swojej pracy.

11. Create a new PR and add costs by entering the expected consumption into Infracost For all the resources of type: google_artifact_registry, google_storage_bucket, google_service_networking_connection create a sample usage profiles and add it to the Infracost task in CI/CD pipeline. Usage file example

place the expected consumption you entered here

```
version: 0.1
google_artifact_registry_repository.registry:
    storage_gb: 15 # Total data stored in the repository in GB
    monthly_egress_data_transfer_gb: # Monthly data delivered from the artifact registry r
    europe west1: 10 # GB of data delivered from the artifact registry to europe-north1.
google_storage_bucket.my_bucket:
storage_gb: 150
                                  # Total size of bucket in GB.
monthly_class_a_operations: 40 # Monthly number of class A operations (object adds, bucket,
monthly_class_b_operations: 20 # Monthly number of class B operations (object gets, retries
monthly_data_retrieval_gb: 5 # Monthly amount of data retrieved in GB.
monthly_egress_data_transfer_gb: # Monthly data transfer from Cloud Storage to the follow
    same_continent: 55
google_storage_bucket.mlflow_artifacts_bucket:
                                  # Total size of bucket in GB.
storage_gb: 150
monthly_class_a_operations: 40 # Monthly number of class A operations (object adds, bucket,
monthly_class_b_operations: 20 # Monthly number of class B operations (object gets, retriev
monthly_data_retrieval_gb: 5  # Monthly amount of data retrieved in GB.
monthly_egress_data_transfer_gb: # Monthly data transfer from Cloud Storage to the follow
    same continent: 55
google_storage_bucket.tbd-state-bucket:
                                  # Total size of bucket in GB.
storage_gb: 150
monthly_class_a_operations: 40 # Monthly number of class A operations (object adds, bucket,
monthly_class_b_operations: 20 # Monthly number of class B operations (object gets, retries
monthly_data_retrieval_gb: 5 # Monthly amount of data retrieved in GB.
monthly_egress_data_transfer_gb: # Monthly data transfer from Cloud Storage to the follow
    same_continent: 55
google_storage_bucket.tbd-code-bucket:
                                  # Total size of bucket in GB.
storage_gb: 150
monthly class a operations: 40 # Monthly number of class A operations (object adds, bucket,
monthly_class_b_operations: 20 # Monthly number of class B operations (object gets, retrieval)
```

```
monthly_data_retrieval_gb: 5
                             # Monthly amount of data retrieved in GB.
monthly_egress_data_transfer_gb: # Monthly data transfer from Cloud Storage to the follow
    same_continent: 55
google_storage_bucket.tbd-data-bucket:
storage_gb: 150
                                  # Total size of bucket in GB.
monthly_class_a_operations: 40 # Monthly number of class A operations (object adds, bucket,
monthly_class_b_operations: 20 # Monthly number of class B operations (object gets, retries
monthly_data_retrieval_gb: 5 # Monthly amount of data retrieved in GB.
monthly_egress_data_transfer_gb: # Monthly data transfer from Cloud Storage to the follow
    same_continent: 55
google_storage_bucket.notebook-conf-bucket:
                                  # Total size of bucket in GB.
monthly_class_a_operations: 40 # Monthly number of class A operations (object adds, bucket,
monthly_class_b_operations: 20 # Monthly number of class B operations (object gets, retriev
monthly_data_retrieval_gb: 5 # Monthly amount of data retrieved in GB.
monthly_egress_data_transfer_gb: # Monthly data transfer from Cloud Storage to the follow
    same_continent: 55
```

google_service_networking_connection.private_vpc_connection:

monthly_egress_data_transfer_gb: # Monthly VM-VM data transfer from VPN gateway to the same_region: 250 # VMs in the same Google Cloud region.

europe: 70 # Between Google Cloud regions within Europe.

worldwide: 200 # to a Google Cloud region on another continent.

Dodatkowo poza dodaniem jako część CI/CD wykonaliśmy też instrukcję lokalnie:

infracost breakdown --sync-usage-file --usage-file infracost-usage.yml --path . i dostaliśmy takie wyniki

11. Create a BigQuery dataset and an external table using SQL

ORC nie wymaga schematu, ponieważ konektor jest w stanie go samemu inferować.

- 12. Start an interactive session from Vertex AI workbench:
- 13. Find and correct the error in spark-job.py

Gdy weszliśmy w szczegóły DAG uzyskaliśmy link do logów dla jobu, w którym pojawił się błąd. Następnie po wczytaniu się w szczegóły, okazało się, że kubełek nie istnieje (gs://tbd-2024l-9910-data/data/shakespeare/), żeby to naprawić podmieniliśmy nazwę kubełka na nasz własny (gs://tbd-2024l-3040540-data/data/shakespeare).

DATA_BUCKET = "gs://tbd-20241-3040540-data/data/shakespeare/"

- 14. Additional tasks using Terraform:
 - 1. Add support for arbitrary machine types and worker nodes for a Dataproc cluster and JupyterLab instance

Main dataproc Variables dataproc Main vertex_ai Variables vertex_ai

3. Add support for preemptible/spot instances in a Dataproc cluster Link Text

```
$4.98 *
Access operations
$5.00 *
Rotation notifications
$5.00 *
                                                                                                                                                                          166.6666 10K requests
   module.gcp_mlflow_appengine.google_secret_manager_secret_version.mlflow_db_password_secret
   ⊢ Active secret versions
$0.06
    ☐ Access operations
$5.00 *
                                                                                                                                                                          166.6666 10K requests
   module.gcp\_mlflow\_appengine.google\_service\_networking\_connection.private\_vpc\_connection
Horwork egress

Horaffic within the same region
e: $0.02 per GB

Horaffic within the US or Canada
e: $0.02 per GB

Horaffic within Europe
e: $0.02 per GB

Horaffic within Asia
e: $0.08 per GB

Horaffic within South America
e: $0.14 per GB

Horaffic to/from Indonesia and Oceania
e: $0.10 per GB

Horaffic between continents (excludes Oceania)
e: $0.08 per GB
                                                                                                                                                                 Monthly cost depends on usag
                                                                                                                                                                 Monthly cost depends on usag
                                                                                                                                                                 Monthly cost depends on usag
                                                                                                                                                                Monthly cost depends on usag
  Project total
$87.23
  OVERALL TOTAL
$156.68
  *Usage costs were estimated by merging usage defaults from Infracost Cloud and values from infracost-usage.yml.
85 cloud resources were detected:
• 12 were estimated
• 66 were free
• 7 are not supported yet, rerun with --show-skipped to see details
                                                                                                                           Usage cost* | Total cost
    a-s-gorski/tbd-workshop-1
a-s-gorski/tbd-workshop-1/bootstrap
a-s-gorski/tbd-workshop-1/cicd_bootstrap
a-s-gorski/tbd-workshop-1/mlops
                                                                                                                           $56
$14
$0.00
$60
```

Figure 5: infracost_local.png

Figure 6: bigquery

Figure 7: vertex_ai.png

Figure 8: airflow

```
preemptible_worker_config {
  num_instances = 2
  preemptibility = "SPOT"
}
```

metadata = {

3. Perform additional hardening of Jupyterlab environment, i.e. disable sudo access and enable secure boot Link Text

```
vmDnsSetting = "GlobalDefault"
  network-disable-root = true
}
post_startup_script = "gs://${google_storage_bucket_object.post-startup.bucket}/${google_instance_config {
    enable_secure_boot = true
}
```

4. (Optional) Get access to Apache Spark WebUI