Σ

The single-line diagram is the blueprint for electrical system analysis. It is the first step in preparing a critical response plan, allowing you to become thoroughly familiar with the electrical distribution system layout and design in your facility.

Why it's required?

Whether you have a new or existing facility, the single-line diagram is the vital roadmap for all future testing, service and maintenance activities. As such, the single-line diagram is ш like a balance sheet for your facility and provides a snapshot of your facility at a moment Z in time. It needs to change as your facility changes to ensure that your systems are adequately protected. 0

To make all the changes documented in a common file, making the electrical system easily understandable for any technical person inside/outside of the factory.

œ 0

An up-to-date single-line diagram is vital for a variety of service activities including:

Short circuit calculations

ш.

Coordination studies

S

Load flow studies

Σ

Safety evaluation studies

4

All other engineering studies

œ Ġ

Electrical safety procedures

4

Efficient maintenance

ш

What Should Be In A Single Line Diagram (SLD)?

A typical package of single line diagram shall include:

Z

SLD must be started with an index, legend, page references.

All proper symbols shall be used.

Incoming lines showing voltage and size.

ш ш

Incoming main fuses, cutouts, switches, and main/tie breakers.

G Z

S

Power transformers (kVA rating, voltage rating, winding connection and grounding means, % impedance, cooling type).

Feeder breakers and fused switches rating and type.

• All incoming circuits shall have a page reference (mention the page number from where it comes). All outgoing panels shall have a page reference (mention the page number to where this outgoing circuit is detailed-This link-up is required).

z

0

œ

ш

ш

Z

Σ

R A

S

- Current and / or potential transformers with size, type and ratio
- All service-main cable and wire runs with their associated isolating switches shall be clearly mentioned.
- All substations, including integral relays and main panels with total load of each feeder and each substation
- Critical equipment voltage and size (uninterruptible power supply or UPS, battery, generator, power distribution, transfer-switch, computer room air conditioning).
- A load schedule for each distribution panels, busbar trunking or BBT, tap-off boxes of TOB and switch board (load table format is provided later in this guideline) is required to be prepared.
- Rating and dimension of bus bar shall be mentioned. The calculated rating of copper busbar equals to 1.55 Ampere per mm² of cross section area. The calculated rating of Aluminum busbar equals to 1.09 Ampere per mm² of cross section area.
- All outgoing cables shall be mentioned with number of cables, number of cores, cable size and along with number of poles associated with it. For example, 1x4Cx6mm², NYY, TPN represents a 4-core (C) single NYY-type cable of 6mm² cross section area connected to 3-phases (TP) and a neutral (N); Again, 3x1Cx4mm², BYA, TP represents 3 numbers of single-core (C) and BYA-type cable of 4mm² cross section area connected to 3-phases (TP). There are many cable types. Here NYY and BYA are only 2 examples of cable types and used as example
- The rating and type of their all-isolating switches and protective devices (e.g. circuit breaker, fuse, overload relay, magnetic contactor) shall be mentioned.
- The set point of all circuit breakers, thermal overload relay, rating of magnetic contactor shall be mentioned.
- Length of Cable laying is required where no protection is provided for an outgoing circuit or incoming circuit (where rules of tapping circuits is applicable)
- PFI, changeover, ATS, generators with associated protection and isolating switch, synchronizer and interlocking arrangements shall be properly mentioned with rating, proper symbols and details.
- For ATS, all protective ratings of protective device shall be mentioned.
- All earth conductors' size and type shall be mentioned with quantity
- Earth conductors and Earth pit-identification number with page references shall be mentioned in transformer, generators, panelboards and equipment (if directly connected with Earth pits)
- Total connected load (kilo watt or kW) with their individual load capacity (kW) shall be mentioned.
- All connected equipment (loads) shall be identified with marking and mentioned in the load description. The marking/identification number of each load shall also be mentioned in the point reference or load reference column.

Σ	• All spare switches (outgoing circuit breaker) shall be mentioned.
Б В В	Earthing system (excluding LPS Earth pits) must be included with dimension of earthing pit, boring, busbar, earth electrode size, earth lead and ECC size and type in a separate page.
V - 0	• An example of a typical SLD has been given which includes the substation, LT panel, distribution panel with load table format.
ш Z	Sketch 1: Example of SLD of typical substation, low tension or LT panel and MDB (main distribution board)
_	Table 1: Example of load table of a typical LT panel
ш	Table 2: Example of load table of a typical MDB
2 0	Sketch 2: Example of SLD of typical floor MDB (FMDB)
	Table 3: Example of load table of a typical FMDB
0	Table 4: Example of load table of a typical sub distribution board or SDB
~	
S	
<u> </u>	
Σ	
∢	
œ	

Table 1: Example of load table of a typical LT panel

LT PANEL, LOCATION: GROUND FLOOR, FEED ROOM: TRANSFORMER

From SLD page-1

Main Incoming	CKT REF.	Breaker MCCB/MCB	Phase Neutral Earth Size	Load Type	Point Reference	Number of Points/ Pcs	Watt Per Point	Location	Total Watt	Phase Load in k		Phase Load in kW	
Ckt.		Rat/Amp	Size(rm) (re)	,,		Points/ PCS				R	Υ	В	
	RYB1	630A MCCB set:320A	Spare	Future extension	Spare	0	0	-	0	0.00	0.00	0.00	
1000A MCCB, set: 700A	RYB2	250A MCCB set:200A	4x120.0 1x70.0	Fire Hydrant Pump	Fire Hydrant Pump	1	93000	Fire Pump room	93000	31.00	31.00	31.00	
	RYB3	630A MCCB set:504A	4x300.0 1x150.0	Main Distribution Panel	MDB	1	232140	Ground Floor	232140	78.12	78.13	75.79	
					Total Phase Load/kW=						109.13	106.79	
						ected Load=	32!	5.04	kW	Page No-1			

Table 2: Example of load table of a typical MDB

MDB, LOCATION: SUB STATION, FEED ROOM: LT PANEL, REF: RYB-03. AND FROM GENERATOR (400KVA)

<u>From SL</u> page-1

Main Incoming	CKT REF.	Breaker MCCB/MCB	Phase Neutral	Earth	Load Type	Point Rataranca	Number of Points/ Pcs	Watt Per Point	Location	Total Watt	Ph	Remarks		
Ckt.		Rat/Amp	Size(rm)	Size (re)					Location	Total Watt	R	Υ	В	Remarks
	RYB1	500A MCCB set:450	4x300	1×150	PFI	PFI	1	0	0	0	0.00	0.00	0.00	
MCCB 630A (set:504A) X 2,	RYB2	400A MCCB set:320	4x150	1x95	FMDB	FMDB-01	1	229295	Ground Floor	229295	77.38	77.32	74.59	
(interlocked)	RYB3	10A TP	4x4.0	1x4.0	SDB	SDB-Security Post	1	2745	Security Post	2745	0.74	0.81	1.20	
									.oad/kW=	78.12	78.13	75.79		
							232	2.04	kW	Page No-1				

Table: 3 Example of load table of a typical FMDB

FMDB-01, LOCATION: GROUND FLOOR, FEED ROOM: MDB, REF: RYB-02.

rom SLI age-2

Main Incoming Ckt.	CKT REF.	Breaker MCCB/MCB	Phase Neutral	Earth Size	Load Type	Point Reference	Number of	Watt Per	Location	Total Watt	Phas	se Load in	kW	Remarks
		Rat/Ámp	Size		,,		Points/ Pcs	Point			R	Υ	В	
	RYB1	63A MCCB Set at 50A	4x16.0	1x16.0	DB-1	DB-01	1	28370	Ground Floor	28370	9.34	9.21	9.82	
	RYB2	100A MCCB Set at 70A	4x25.0	1x16.0	DB-2	DB-02	1	28373	Ist Floor	28373	9.76	9.28	9.34	
	RYB3	100A MCCB Set at 70A	4x25.0	1x16.0	DB-3	DB-03	1	38786	2nd Floor	38786	14.43	12.36	12.00	
	RYB4	100A MCCB Set at 70A	4x25.0	1x16.0	DB-4	DB-04	1	36770	3rd Floor	36770	12.49	12.38	11.90	
	RYB5	100A MCCB Set at 70A	4x25.0	1x16.0	DB-5	DB-05	1	40850	4th Floor	40850	13.75	13.85	13.25	
MCCB 400A	RYB6	25A MCCB Set at 15A	4x16.0	1x16.0	DB-6	DB-06	1	16540	5th Floor	16540	5.40	5.80	5.34	
(set:320A)	RYB7	63A MCCB Set at 44A	4x25.0	1x16.0	DB-7	DB-07	1	33198	Utility Shed	33198	11.00	11.05	11.148	
	RYB8	100A MCCB	Spare			Spare	1	0	-	0	0.00	0.00	0.00	
	RYB9	16A TP	4X6.0	1x6.0	Exhaust Fan	EXH.101EXH.104	4	746	Sample office room	2984	0.99	0.99	0.99	
	R10	6A SP	2X4.0		Light, Fan	L.101L.108 F.101	8 (L)+1(F)	18 (L)+80(F)	Ground Floor	144(L) + 80(F)	0.22			
	B11	10A SP	2X4.0	1x4.0	Power Socket	PS.101PS.104	4	200	Ground Floor	800			0.80	
	Y12	10A SP	2X4.0	1x4.0	Sewing Machine	SM.101SM.106	6	400	Ground Floor	2400		2.40		
						Total Phase Load/kW:						77.32	74.59	
							Total Connected Load						kW	Page No-2

Table 4: Example of load table of a typical SDB

SDB-03, LOCATION: WEST, LINE NO-01, 3rd FLOOR, FEED ROOM: DB-04, REF: RYB-01.

From SLD page-9

Main Incoming Ckt.	CKT REF.	Breaker MCB	Phase Neutral	Earth	Load Type	Point Reference	Number of	Watt Per	Location	Total Watt	Total Watt Phase Load in k			Remarks
incoming Ckt.		Rat/Amp	Size(rm)	Size (re)			Points/Pcs	Point			R	Υ	В	
	B1	2A SP	2X2.5		Light	L.325L.335	11	18	West Side , Line no-1	198			0.198	
	R2	6A SP	2X4.0	1x4.0	Sewing Machine	SM.347SM.352	6	350	п	2100	2.1			
	В3	6A SP	2X4.0	1x4.0	Sewing Machine	SM.353SM.358	6	350	п	2100			2.1	
MCB	RYB4	6A TP	3X4.0	1x4.0	Exhaust Fan	Exh.309Exh.310	2	1125	п	2250	0.75	0.75	0.75	
16A TP	Y5	6A SP	2X4.0	1x4.0	Sewing Machine	SM.359SM.363	5	350	п	1750		1.75		
	Y6	2A SP	2X2.5		Light	L.336L.346	11	18	п	198		0.198		
	RYB7	6A TP	2X4.0		Ceiling Fan	F.301-F.310	10 (R-3, Y-5, B-2)	70	п	700	0.21	0.35	0.14	
								7	Total Phase Load/kW=			3.048	3.188	
								Total Connected Load=			9.296 k		kW	Page No-17