МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ ИМЕНИ Н.Э. БАУМАНА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Метод автоматического определения переменного ритмического рисунка и переменного темпа цифровой музыкальной записи на основе байесовского иерархического моделирования

Студент: Петрова Анна Алексеевна

Группа: ИУ7-86Б

Научный руководитель: Кивва Кирилл Андреевич

Москва, 2023 г.

Цель: реализовать метод автоматического определения переменных темпа и ритма музыки на основе байесовского иерархического моделирования.

Задачи:

- проанализировать предметную область, основные методы определения темпа и ритма, сформулировать задачу;
- разработать метод решения поставленной задачи;
- спроектировать и реализовать программное обеспечение;
- сравнить результаты работы реализованного метода с результатами, полученными с помощью известных аналогов.

Понятие ритмического рисунка

Темп — мера времени в музыке, упрощенно — «скорость исполнения музыки».

Ритм — чередование сильных и слабых долей в определенном темпе (тактовый размер + тактовая черта).

Темп и ритм музыки могут быть переменными, т. е. изменяться в определенных тактах.

- Задача определения постоянного темпа решена.
- Задача определения переменного темпа и ритма остается открытой.

Метод решения задачи

Ограничения:

- формат входного аудиофайла mp3;
- знаменатели размеров равны 4.

Методы определения ритма и темпа

Метод	Точность результатов	Переменный темп и ритм	Формат входного аудиофайла	Размер обучающего датасета*
ДВП**	~ 65 % (13 верных из 20)	Не определяются	Нет ограничений	Обучение не нужно
Скрытые марковские модели	~ 80 %	Могут определяться при модификации метода	MIDI	88
На основе БИМ***	~ 82%	Не определяются	Нет ограничений	100
Сверточная нейросеть	До 92%	Не определяются	Нет ограничений	8596

^{*}На основе данных из исследований

^{**}ДВП – дискретное вейвлет-преобразование

^{***}БИМ – байесовское иерархическое моделирование

Байесовское моделирование

Априорное распределение ритма либо темпа для заданного жанра:

$$P(Q|X) = \frac{P(X|Q)P(Q)}{P(X)},$$

Х – собранные данные с известным темпом, ритмом и жанром,

Q – параметр – темп или ритм,

P(Q) – априорная вероятность с заданным распределением,

P(X|Q) – функция правдоподобия (X фиксированное),

P(X) – нормирующее число, гарантирующее, что $P(Q|X) \le 1$ (зависит только от набора данных).

Корреляция темпа с жанром

Темп музыки имеет некоторую корреляцию с жанром.

За счет учета этого фактора возможно улучшить результаты уже существующих методов.

Акустическая музыка

Рок-музыка

Иерархический подход к байесовскому моделированию

t – темпы для жанра,

g – коэффициент жанра анализируемой музыки,

P(t), P(g) – априорные распределения темпа и значений коэффициентов жанра,

likelihood_params — paспределение параметров функции правдоподобия,

P(d|t) – функция правдоподобия.

Определение переменного темпа

Применение результатов моделирования к аудио фрагменту

Корректировка наиболее вероятного темпа коэффициентом жанра:

 $t = tempo + c \cdot \sigma,$

t – итоговый темп,

tempo – темп, найденный применением результатов моделирования к фрагменту,

с – коэффициент жанра,

 σ — дисперсия априорного распределения темпа.

Определение переменного ритма

Определение границ ритма

Структура программного обеспечения

Точность определения ритмического

рисунка при разных наборах музыкальных инструментов

Формула определения точности для одного аудиофайла:

$$e = 100 - \frac{\sum_{t} \frac{|\theta - \theta_{\text{ид}}|}{\theta_{\text{ид}}}}{n} \cdot 100\%,$$

 θ – темп (ритм) в соответствующий промежуток времени,

 $\theta_{\rm ил}$ – идеальный темп (ритм) в соответствующий промежуток времени,

t — временной промежуток,

n — количество временных промежутков.

Точность для темпа (%):

Точность для ритма (%):

Точность определения ритмического рисунка при разных жанрах

Точность определения темпа (%):

Точность определения ритма (%):

Сравнение результатов работы с аналогом

Точность определения **переменного** темпа (%):

Точность определения **постоянного** темпа (%):

Предложенный метод определяет переменный темп с более высокой точностью, чем аналог.

Заключение

Цель достигнута: был разработан метод автоматического определения переменных темпа и ритма музыки на основе байесовского иерархического моделирования.

Были решены все задачи:

- проанализирована предметная область, методы определения темпа и ритма и сформулирована задача;
- разработан метод решения поставленной задачи;
- спроектировано и реализовано программное обеспечение;
- проведено сравнение результатов работы реализованного метода с результатами, полученными с помощью аналога.

Разработанный метод рекомендуется к применению для определения переменных темпа и ритма музыки.

Дальнейшее развитие

- Улучшение оценки постоянного темпа
- Увеличение точности определения темпа и ритма при работе с гитарной музыкой
- Повышение точности результатов при работе с более сложными и нестандартными жанрами (фанк, джаз, классика)
- Определение размеров с другими знаменателями
- Добавление работы с иными форматами аудиофайлов