

FIT Readout

D. Finogeev

Institute for Nuclear Research, Russian Academy of Sciences, Moscow on behalf of the FIT Collaboration

Production Readiness Review, December, 14, 2020

- I. FIT Readout Unit (description)
- II. FIT Readout Software simulation

FIT GBT readout project

FIT GBT readout project :

- Is a part of PM and TCM FPGA firmware, provides data exchange between PM/TCM modules and CRU
- Receives BCID and Trigger information from LTU via CRU trough GBT link
- Corrects event ID to compensate trigger data latency (near 2us)
- Receives data from PM or TCM logic, build RDH packet
- Selects detector data frames according to readout mode, and send readout data to CRU

FIT GBT readout structure

CONTINIOUS READOUT

- 1) Closing frame for HBO; sending HB1 response
- 2) Data collected more than 8K send with out trigger
- 3) Then HB2 received frame with HB1 is closed sending remains data; new HB2 response send
- Upper data throughput estimation
 - Max packet payload = 512 7(RDH,trlr,xOP) = 505
 - Orbit = 3563 bc = 7 packets = 3535 GBT payload words
 - 1 PM hit (12 channels) = 7 GBT words; orbit = 505 hits x 11kHz orbit rate = 5.5 MHz hit rate

TRIGGER READOUT

- 1) Closing frame for HBO; sending HB1 response
- 2) Data selected by trigger
- Then HB2 received frame with HB1 is closed sending remains data; new HB2 response send

RX – TX domain crossing

Clock phase [ps] vs Ph counter

Chipscope @320MHz, triggered while phase crossing

BC & Orbit Id Synchronization

- CTP could not send event id each BC (CTP requirements 2017)
- Internal counter starts with first received event id (isData='1')
- Each time next event ID (orbit + bc) is received, the internal counter is compared to received ID
- In case of discrepancy the system goes to "lost" state and generates an error status

Changes in GBT project version 5_0:

- 1. MGT RefClk changed from 120 to 200 MHz
 - 1. CPLL_FBDIV changed from 4 to 3
 - 2. CPLL_FBDIV_45 changed from 5 to 4
 - 3. 120*4*5 = 200*3*4 = 2400 SerialClk
- 2. Project option changed to latency optimized only for RX
- 3. TX manually changed to standard version
 - 1. TX changed to STD version
 - 2. TX buffer enabled
 - 3. TXOUTCLKSEL changed from 011b to 010b
 - 4. PHASE_ALIGNMENT_MANUAL changed from TX_GTX_BUFFBYPASS_MANUAL_MULTILINK to false

Table 2-8: CPLL Divider Settings

Factor	Attribute	Valid Settings
M	CPLL_REFCLK_DIV	1, 2
N2	CPLL_FBDIV	1, 2, 3, 4, 5
N1	CPLL_FBDIV_45	4, 5
D	RXOUT_DIV TXOUT_DIV	1, 2, 4, 8, 16 ⁽¹⁾

1. TX/RXOUT_DIV = 16 is not supported when using CPLL.

FIT firmware repository

- https://github.com/AliceO2Group/alice-fit-fpga
- Vivado projects compilation from tcl script
- Auto verification by Jenkinsfile
- Many thanks to Christoph Mayer

Continuous Integration - FIT FPGA

Slide from Christoph Mayer

- **Jenkins** is running on FITSERVER2:8080
- Pull requests can only be merged if CI passes
- Whenever a new commit appears in GitHub, a complete rebuild is triggered
- Bitstreams and log files are put in a common directory

return the correct exit code in build.sh #7

Add more commits by pushing to the cI branch on AliceO2Group/alice-fit-fpga

This branch has no conflicts with the base branch

n continuous-integration/jenkins/pr-merge — This commit looks good

Collaborator 😧 · · ·

Hide all check

17 Open hcab14 wants to merge 2 commits into master from CI

hcab14 commented 1 hour ago

hcab14 added 2 commits 2 hours ago
return the correct exit code in build.sh

All checks have passed

1 successful check

No description provided

FIT TEST MODULE FW

- Includes readout firmware (two versions PM, TCM) for standalone tests
- Simulates CTP: triggers, BC and Orbit ID
- Generates laser start pulses
- GBT Readout
 - Receives data through GBT from PM, TCM
 - Sends received data to PC through IP-BUS
- Emulates TCM/PM HDMI connections for tests.
- Generates synchronous high quality clocks for TCM and LTU

- I. FIT Readout Unit (description)
- II. FIT Readout Software simulation

Readout simulation

- The goal is to perform software testing of firmware modules with Vivado simulation
- Firmware data and trigger generators are used, in hardware they are configured via IPbus
- Implemented with Python
- Included in git fpga repository
- Simulation workflow
 - 1. Software procedure generates readout configuration file
 - The file has readout control registers records for each 40MHz cycle
 - Includes generators parameters
 - Consists of chain runs with different parameters
 - 2. Vivado vhdl testbench load readout configuration and run behavioral simulation
 - Readout Status registers are stored in the file for each 40MHz cycle
 - GBT readout output is stored in the file
 - 3. Software macro to analyze testbench outputs
 - Configuration file analysis (checks types and configuration correctness)
 - Each run is analyzed with data from status and GBT files
 - 50 Mb files in total for 8 ms simulation (4 runs); 20 MB control + 30 MB status + 350KB GBT files
 - Allows to control firmware behavior on each cycle and checks control registers

Check list

- RDH packet format
- SOR/EOR triggers presence in data
- Page counter
- Stop bit
- Accordance events orbit to RDH orbit
- Data integrity
 - All generated triggers and events saved in status file
 - Macro to check presence of events in GBT dataflow
 - Data selection in trigger mode is also implemented
- Dropped data in overload mode (to be implemented)

```
[INFO] ###### TESTING SIMULATION DATA ######
[INFO] Run N1
[INFO]
[INFO] Run rdh data successfully read ...
[INFO] Read 21 events
[INFO]
[INFO] Checking run ...
[INFO] First run trigger: 82 [True]
[INFO] Last run trigger: 102 [True]
[INFO] RDH page counters are correct ...
[INFO] RDH stop bits are correct ...
[INFO] Detectors orbits are correct ...
[INFO] Data integrity test [readout_cmd.trigger] ...
[INFO] Run orbits: [14 (72), 1e (143)]; total data packets: 71; selected data: 18
[INFO] All data in RDHs OK! ...
[INFO]
[INFO] !!! Run tested with 0 errors !!!
```

Debugging ...

- During first tests with TCM CRU readout data wasn't sent occasionally
- Simulation with data generator with turned on before SOR evaluates the bug
- Bug was found in FSM of Data converter only header was pushed to FIFO at the end of data taking


```
[INFO]
###### TESTING SIMULATION DATA ######
    [INFO] Run N3
[INFO]
[INFO] Run rdh data successfully read ...
[INFO] Read 0 events
```

Conclusion

- FIT Readout firmware module is implemented and tested with PM/TCM + LTU + CRU
- Software data simulation and verification is implemented
- FIT FPGA projects are in git repository

Thank you for your attention

BACKUP

FIT (FTO) data flow structure

Fiber Optics connections:

- To CRU: readout data
- From CRU: trigger, event id

Readout Components functional description

Rx DataClkSync

- Synchronizes Rx data from CRU Tx to on board clock derived from HQClock
- Calculates phase shift between clocks domain by clock 320MHz

Rx Data Decoder

- Decodes event id with BC and Orbit triggers
- Synchronizes BC and Orbit counter with values, received from CTP
- Corrects event ID for trigger message delay
- Changes CNT/TRG/IDLE readout mode according to start/stop triggers and status bits

Data Converter

Takes data from PM/TCM, build hit packet

Event Selector

Selects hits and places them into CRU packet

CRU packet builder

Builds CRU packet (adds header and trailer)

Test Generator

Generates trigger data like CRU and emulates data from PM/TCM modules for stand-alone tests and simulations

Test generators features

- CTP/LTU generator
 - Generates Orbit/BC and triggers
 - Generates SOR/EOR triggers and status bits (by registers command)
 - Generates trigger with 64 pattern mask
 - Fixed frequency and fixed BC offset
 - Generator outputs (81bit GBT words) could be sent to readout or to RBT TX (LTU simulating)
- Detector data generator
 - Two data types: PM, TCM
 - 8 pattern mask, 4bit for data length each turn
 - Fixed frequency and fixed BC offset
- Trigger and data generators are synchronized by writing a command to the control register