

Apport du flou de défocalisation sur l'estimation de profondeur monoculaire par réseau de neurones

Marcela Carvalho^{1,2}, Bertrand Le Saux¹, Pauline Trouvé-Peloux¹, Andrés Almansa², Frédéric Champagnat¹

¹ONERA ²Paris Descartes

Camera RGB

Le réseau D3-Net Étude de fonctions de coût L'influence du flou L'incertitude du réseau

Estimation de profondeur mono-image

Camera RGB

Image RGB

Le réseau D3-Net Étude de fonctions de coût L'influence du flou L'incertitude du réseau

Estimation de profondeur mono-image

Camera RGB

Image RGB

Carte de profondeur

Avantages

- Compact;
- Bas coût;
- Passif.

- Compact;
- Bas coût:
- Passif.

Inconvénients

- Pas de correspondance stéréo ;
- Pas de mouvement (vidéo).

Possibles indices sur les images 2D

Indices géométriques;

Le réseau D3-Net

Possibles indices sur les images 2D

- Indices géométriques;
- Lignes de fuite;

Possibles indices sur les images 2D

- Indices géométriques;
- Lignes de fuite;
- Flou de défocalisation.

Bases de données pour l'estimation de la profondeur

- Make3D (Saxena et al., 2009);
- NYUv2 (Nathan Silberman & Fergus, 2012);
- KITTI (Geiger et al., 2012).

Bases de données pour l'estimation de la profondeur

- Make3D (Saxena et al., 2009);
- NYUv2 (Nathan Silberman & Fergus, 2012);
- KITTI (Geiger et al., 2012).

État de l'art : estimation de profondeur avec les CNNs

(Eigen & Fergus, 2015)

Caractéristiques

- Architecture multiple-échelle;
- Fonction de coût invariante à l'échelle.
- $\mathcal{L}_{eigengrad}$ $= \frac{1}{N} \sum_{i}^{N} d_{i}^{2} \frac{\lambda}{2N^{2}} (\sum_{i}^{N} d_{i})^{2} + \frac{1}{N} \sum_{i}^{N} [(\nabla_{X} d_{i})^{2} + (\nabla_{Y} d_{i})^{2}]$

(Xu et al., 2017)

Caractéristiques

- CRF multiple-échelle;
- Réseau profondément supervisé.
- $\bullet \ \mathcal{L}_2 = \frac{1}{N} \sum_{i}^{N} (l_i)^2$

(Jégou et al., 2017; Kendall & Gal, 2017)

Caractéristiques

- Connections denses dans l'encodeur et décodeur :
- Fonctions de coût prennent en compte l'ignorance du modèle.
- $\bullet = \frac{1}{N} \sum_{i}^{N} \frac{1}{2} exp(-s_{i})(l_{i})^{2} + \frac{1}{2} s_{i}$

Sommaire

L'influence du flou

Le réseau D3-Net

Sommaire

Le réseau D3-Net

Le réseau D3-Net

Estimation de profondeur avec des connections denses

D3-Net: Deep Dense Depth estimation Network

Architecture proposée

Le réseau D3-Net

- Exploration des connections denses(Huang et al., 2017);
- Exploration des skip-connections entre le codeur et le décodeur (Ronneberger et al., 2015).

Le réseau génératif adversaire (GAN)

L'entraînement adversaire

- Le générateur (G) doit créer des cartes de profondeur pour tromper le discriminateur (D);
- Le discriminateur doit être capable de classifier des vrais et faux échantillons.

Le réseau génératif adversaire (GAN)

L'entraînement adversaire

- Le générateur (G) doit créer des cartes de profondeur pour tromper le discriminateur (D);
- Le discriminateur doit être capable de classifier des vrais et faux échantillons.

Avantage

Pas besoin de définir une fonction de coût.

Le réseau génératif adversaire (GAN)

L'entraînement adversaire

- Le générateur (G) doit créer des cartes de profondeur pour tromper le discriminateur (D);
- Le discriminateur doit être capable de classifier des vrais et faux échantillons.

Avantage

Pas besoin de définir une fonction de coût.

Inconvénient

Besoin de beaucoup de données.

Étude de fonctions de coût

Régression pour l'estimation de la profondeur

D3-Net

Performance en fonction de la taille de la base de données

Considérations

- Plus de données = meilleure performance :
- Évolution des courbes est différente pour chaque fonction de coût;

- \mathcal{L}_1 et \mathcal{L}_{eigen} ont des bonnes performances en général :
- L_{gan} bénéficie d'un plus grand nombre de données pour des meilleures prédictions.

Comparaison qualitative des fonctions de régression

Comparaison quantitative des fonctions de régression

Méthodes		Er	reur		Précision			
	rel	log10	rms	rmslog	$\delta < 1.25$	$\delta < 1.25^2$	$\delta < 1.25^3$	
		Im	ages RV	B GPC				
Saxena [26]	0.349	-	1.214	-	44.7%	74.5%	89.7%	
Eigen [3] (VGG16)	0.158	-	0.641	0.214	76.9%	95.0%	98.8%	
Laina [16]	0.127	0.055	0.573	0.195	81.1%	95.3%	98.8%	
Xu [32]	0.121	0.052	0.586	-	81.1%	95.4%	98.7%	
Cao [2]	0.141	0.060	0.540	-	81.9%	96.5%	99.2%	
D3-Net	0.135	0.059	0.600	0.199	81.9%	95.7%	98.7%	
Jung[13]	0.134	-	0.527	_	82.2%	97.1%	99.3%	
Kendall and Gal [15]	0.110	0.045	0.506	-	81.7%	95.9%	98.9%	

Le réseau D3-Net

L'influence du flou

L'apport du flou de défocalisation pour l'estimation de profondeur

D3-Net

Approche par couches successives (Hasinoff & Kutulakos, 2007)

- Somme d'images floutées :
- Multipliées par des masques en fonction de la profondeur et de l'occlusion des objets en premier plan;
- Modélisation du flou comme une fonction disque.

Génération de la base de données NYUv2 floutée synthétiquement

Approche par couches successives (Hasinoff & Kutulakos, 2007)

- Somme d'images floutées :
- Multipliées par des masques en fonction de la profondeur et de l'occlusion des objets en premier plan;
- Modélisation du flou comme une fonction disque.

Notation :

- GPC : Grande Profondeur de Champs ;
- FPC : Faible Profondeur de Champs.

Résultats sur l'apport du flou de défocalisation

Méthodes		Er	reur	Précision			
	rel	log10	rms	rmslog	$\delta < 1.25\delta$	< 1.252	$\delta < 1.25^{3}$
	Image	s RVB (GPC - NY	/Uv2 795			
D3-Net GPC	0.226	-	0.779	×	65.8%	89.2%	96.7%
Ima	ges RVB av	ec flou si	upplémei	ntaire - NYU	Jv2 795		
D3-Net f=2m	0.068	0.028	0.328	0.110	96.1%	99.0%	99.69
D3-Net f=8m	0.060		0.403		95.2%	99.1%	99.99
Zhuo et al.[33] f=8m)	0.273	-	1.088		51.7%	83.1%	95.19
Trouvé et al. [30] f=8m	0.429	0.289	1.856	0.956	39.2%	52.7%	61.59
Anwar [1]	0.094	0.039	0.347	-			

Résultats sur l'apport du flou de défocalisation

Méthodes		Er	reur	Précision			
	rel	log10	rms	rmslog	$\delta < 1.25\delta$	< 1.252	$\delta < 1.25^{\frac{5}{2}}$
	Image	s RVB C	GPC - NY	/Uv2 795			
D3-Net GPC	0.226		0.779	×	65.8%	89.2%	96.79
Ima	ges RVB av	ec flou si	upplémei	ntaire - NYU	Jv2 795		
D3-Net f=2m	0.068	0.028	0.328	0.110	96.1%	99.0%	99.69
D3-Net f=8m	0.060		0.403		95.2%	99.1%	99.9%
Zhuo et al.[33] f=8m)	0.273	-	1.088		51.7%	83.1%	95.19
Trouvé et al. [30] f=8m	0.429	0.289	1.856	0.956	39.2%	52.7%	61.59
Anwar [1]	0.094	0.039	0.347		-	-	

- Amélioration des prédictions;
- Capacité de surmonter l'ambiguïté du flou de défocalisation;
- Sensibilité de la performance selon les paramètres.

Résultats sur l'apport du flou de défocalisation

Méthodes	Erreur				Précision			
	rel	log10	rms	rmslog	$\delta < 1.25\delta$	< 1.252	$\delta < 1.25^{\frac{5}{2}}$	
	Image	s RVB C	GPC - NY	YUv2 795				
D3-Net GPC	0.226		0.779		65.8%	89.2%	96.79	
Ima	ges RVB av	ec flou si	upplémei	ntaire - NY	Jv2 795			
D3-Net f=2m	0.068	0.028	0.328	0.110	96.1%	99.0%	99.69	
D3-Net f=8m	0.060		0.403		95.2%	99.1%	99.99	
Zhuo et al.[33] f=8m)	0.273	-	1.088		51.7%	83.1%	95.19	
Trouvé et al. [30] f=8m	0.429	0.289	1.856	0.956	39.2%	52.7%	61.59	
Anwar [1]	0.094	0.039	0.347	-		-		

- Amélioration des prédictions;
- Capacité de surmonter l'ambiguïté du flou de défocalisation :
- Sensibilité de la performance selon les paramètres.

Étude de l'incertitude du réseau

L'ignorance du modèle par rapport à la distribution à priori

L'étude de l'incertitude du modèle

 La connaissance de l'incertitude du réseau nous permet de connaître les limitations du modèle.

L'étude de l'incertitude du modèle

La méthode consiste à utiliser un :

- Réseau Bayésien; et
- la méthode *Monte Carlo dropout* pour générer une carte d'estimation moyenne et de variance.

Le réseau D3-Net

Conclusions

Conclusions

- \mathcal{L}_1 et \mathcal{L}_{eigen} produisent les meilleures performances pour différentes tailles de la base de données;
- Nous pouvons nous bénéficier d'une fonction de perte adversaire quand nous avons un grand nombre de données;
- Le flou de défocalisation est un indice important pour l'estimation de la profondeur;
- Permet d'améliorer les prédictions et réduire l'incertitude du réseau.

Conclusions

Conclusions

- \mathcal{L}_1 et \mathcal{L}_{eigen} produisent les meilleures performances pour différentes tailles de la base de données ;
- Nous pouvons nous bénéficier d'une fonction de perte adversaire quand nous avons un grand nombre de données;
- Le flou de défocalisation est un indice important pour l'estimation de la profondeur;
- Permet d'améliorer les prédictions et réduire l'incertitude du réseau.

Inconvénients

• Il n'existe pas des bases de données floutées réelles.

Le réseau D3-Net Étude de fonctions de coût L'influence du flou L'incertitude du réseau

Conclusions

Conclusions

- \mathcal{L}_1 et \mathcal{L}_{eigen} produisent les meilleures performances pour différentes tailles de la base de données :
- Nous pouvons nous bénéficier d'une fonction de perte adversaire quand nous avons un grand nombre de données;
- Le flou de défocalisation est un indice important pour l'estimation de la profondeur;
- Permet d'améliorer les prédictions et réduire l'incertitude du réseau.

Inconvénients

Il n'existe pas des bases de données floutées réelles.

Perspectives

• Création d'une base de données avec un capteur DSLR, Kinect, stereo.

Merci!

marcela.carvalho@onera.fr

Bibliographie succinte

- Eigen, D., & Fergus, R. (2015). Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture. *ICCV*.
- Geiger, A., Lenz, P., & Urtasun, R. (2012). Are we ready for autonomous driving? the kitti vision benchmark suite. In *Computer vision and pattern recognition (cvpr)*, 2012 ieee conference on (pp. 3354–3361).
- Hasinoff, S. W., & Kutulakos, K. N. (2007, Oct). A layer-based restoration framework for variable-aperture photography. In *2007 ieee 11th international conference on computer vision* (p. 1-8). doi: 10.1109/ICCV.2007.4408898
- Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional networks. In *Cvpr*.
- Jégou, S., Drozdzal, M., Vazquez, D., Romero, A., & Bengio, Y. (2017). The one hundred layers tiramisu: Fully convolutional densenets for semantic segmentation. In Cvprw (pp. 1175–1183).
- Kendall, A., & Gal, Y. (2017). What uncertainties do we need in bayesian deep learning for computer vision? arXiv preprint arXiv:1703.04977.
- Nathan Silberman, P. K., Derek Hoiem, & Fergus, R. (2012). Indoor segmentation and support inference from rgbd images. In *Eccv*.