OPIC OFFICE DE LA PROPRIÉTÉ INTELLECTUELLE DU CANADA OFFICE DE LA PROPRIÉTÉ PROPERTY OFFICE

(12) (19) (CA) Demande-Application

(21) (A1) **2,286,694**

(86) 1998/04/09 (87) 1998/10/22

- (72) FILLINGHAM, IAN JOHN, GB
- (72) HAZELWOOD, GEOFFREY PETER, GB
- (72) GILBERT, HARRY JOHN, GB
- (71) THE BABRAHAM INSTITUTE, GB
- (71) THE UNIVERSITY OF NEWCASTLE-UPON-TYNE, GB
- (51) Int.Cl. 6 C12N 15/55, C12P 7/42, C12N 9/18, D21H 17/00, A23K 1/165, C12P 19/00
- (30) 1997/04/14 (9707540.2) GB
- (54) ESTERASE D'ACIDE PHENOLIQUE ET UTILISATION DE CETTE DERNIERE
- (54) PHENOLIC ACID ESTERASE AND USE THEREOF

- (57) La présente invention concerne une enzyme présentant une activité d'estérase d'acide phénolique, un gène codant cette enzyme ainsi qu'un procédé pour la production et l'utilisation de cette enzyme.
- (57) The present invention relates to an enzyme with phenolic acid esterase activity, gene encoding said enzyme as well as a method for the production and use of said enzyme.

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:

C12N 15/55, 9/18, C12P 7/42, 19/00,
D21H 17/00, A23K 1/165 // (C12N 9/18,
C12R 1:645)

(11) International Publication Number: WO 98/46768

(43) International Publication Date: 22 October 1998 (22.10.98)

(21) International Application Number:

PCT/EP98/02080

(22) International Filing Date:

9 April 1998 (09.04.98)

(30) Priority Data:

9707540.2

14 April 1997 (14.04.97)

GB

(71) Applicants (for all designated States except US): THE BABRA-HAM INSTITUTE [GB/GB]; Babraham Hall, Babraham, Cambridge CB2 4AT (GB). THE UNIVERSITY OF NEW-CASTLE-UPON-TYNE [GB/GB]; 6 Kensington Terrace, Newcastle-upon-Tyne NE1 7RU (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): FILLINGHAM, Ian, John [GB/GB]; 42 The Close, Babraham, Cambridge CB2 4AQ (GB). HAZELWOOD, Geoffrey, Peter [GB/GB]; 109A Duchess Drive, Newmarket, Suffolk CB8 8AL (GB). GILBERT, Harry, John [GB/GB]; 16 Kells Gardens, Low Fell, Gateshead, Tyne & Wear NE9 5XS (GB).
- (74) Agents: KOLB, Helga et al.; Hoffmann . Eitle, Arabellastrasse 4, D-81925 München (DE).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(88) Date of publication of the international search report:

21 January 1999 (21.01.99)

(54) Title: PHENOLIC ACID ESTERASE AND USE THEREOF

(57) Abstract

The present invention relates to an enzyme with phenolic acid esterase activity, gene encoding said enzyme as well as a method for the production and use of said enzyme.

International Application PCT/EP98/02080
The Babraham Institute et al

73069 m2/sr 2 June 1999

Proposed Claims:

- 1. Enzyme with phenolic acid esterase activity including ferulic acid esterase activity and coumaric acid esterase activity, characterized in that said enzyme has a pH optimum greater than pH 6.5 and a temperature optimum greater than 45°C when measured in a citric acid/disodium hydrogen orthophosphate buffer containing 33 μ M FAXX as a substrate as well as a K_m of about 3.0 μ m and a V_{max} of about 35 μ mol/min/mg protein when measured at 37°C and pH 6.0 in MOPS buffer containing FAXX as a substrate.
- 2. Enzyme according to claim 1, characterized in that said enzyme has a pH optimum of about pH 7.0 and/or a temperature optimum of about 55°C.
- 3. Enzyme according to any of claims 1 or 2, characterized in that said enzyme is obtainable from Piromyces Sp., preferably Piromyces equi deposited at the International Mycological Institute (IMI) under the accession number 375061.
- 4. Enzyme according to any of claims 1 to 3, characterized in that said enzyme comprises the amino acid sequence given in SEQ ID NO:1 or SEQ ID NO:3 or functional derivatives thereof.
- 5. Enzyme according to any of claims 1 to 4, characterized in that said enzyme is encoded by the DNA sequence given in SEQ ID NO:1 or SEQ ID NO:3 or functional derivatives or homologues thereof.

- 6. DNA molecule encoding an enzyme according to any of claims 1 to 5, characterized in that said DNA molecule comprises a DNA sequence as given in SEQ ID NO:1 or SEQ ID NO:3 or functional derivatives or homologues thereof.
- 7. DNA molecule according to claim 6 further comprising vector sequence capable of expressing said enzyme in a procaryotic or eucaryotic host.
- 8. Transformed procaryotic cell or eucaryotic cell or organism comprising one or more DNA molecules according to claim 6 or 7.
- 9. Method for the production of an enzyme or enzyme preparation having phenolic acid esterase activity according to any of claims 1 to 5, characterized in that said enzyme is isolated from a cell or organism according to claim 8.
- 10. Enzyme preparation comprising enzyme according to any of claims 1 to 5 and/or obtainable by the method according to claim 9.
- 11. Enzyme preparation according to claim 10 comprising one or more further polysaccharide modifying and/or degrading enzymes.
- 12. Enzyme preparation according to claim 11, characterized in that said polysaccharide modifying and/or degrading enzyme is selected from the group comprising xylanase, arabinanase, α -L-arabinofuranosidase, endoglucanase, α -D-glucuronidase, pectinase, acetyl esterase, mannanase, acetyl xylan esterase and other glycosyl hydrolases.

- 13. Enzyme preparation according to any of claims 10 to 12 comprising one or more further enzymes selected from the group comprising amylase, protease, α -galactosidase, phytase and lipase.
- 14. Use of the enzyme according to any of claims 1 to 5 and/or enzyme preparation according to any of claims 10 to 13 in a process for releasing or preparing phenolic acids from a substrate comprising phenolic acid moieties.
- 15. Use of the enzyme according to any of claims 1 to 5 and/or enzyme preparation according to any of claims 10 to 13 in the production of animal feed.
- 16. Use of the enzyme according to any of claims 1 to 5 and/or enzyme preparation according to any of claims 10 to 13 in the production of food.
- 17. Use of the enzyme according to any of claims 1 to 5 and/or enzyme preparation according to any of claims 10 to 13 in the production of paper.
- 18. Use of the enzyme according to any of claims 1 to 5 and/or enzyme preparation according to any of claims 10 to 13 in a process for bioconversion of plant material or ligno-cellulose wastes to sugars.
- 19. Use of the enzyme according to any of claims 1 to 5 and/or enzyme preparation according to any of claims 10 to 13 in crop plants to improve the digestibility of said plants for livestock.

- 20. Feed additive comprising the enzyme according to any of claims 1 to 5 and/or enzyme preparation according to any of claims 10 to 13.
- 21. Feed comprising the feed additive according to claim 20.

Phenolic Acid Esterase and Use Thereof

The present invention relates to an enzyme with phenolic acid esterase activity, DNA molecule encoding said enzyme as well as a method for the production and use of said enzyme.

Background

Plant cell walls are divided into two sections, the primary and secondary cell wall. The primary cell wall is comprised of three major classes of polysaccharides: cellulose, hemicellulose and pectin. The secondary cell wall also contains polysaccharides as well as lignin. Hemicellulose, a general class of highly branched polysaccharides found in the plant cell wall, is bound to itself as well as to cellulose and lignin, and these bonds contribute to the stability and support of the plant structure.

Hemicelluloses based on a xylose backbone are designated as Xylan, which has been shown to exist in a wide xylans. variety of different plants including fruits, vegetables legumes, cereals, grasses, softwoods and hardwoods, is a linear β -(1-4)-D-xylopyranose polymer which can be substituted sugar residues, including α -L-arabinose, glucuronic acid and/or the 4-0-methyl ether derivative of α -D-Many xylans are also esterified with glucuronic acid. phenolic acid residues, including coumaric acid and ferulic These phenolic acid residues are present in an ester linkage to $\alpha\text{-L-arabinofuranosyl}$ xylan and can serve to protect xylan from xylan-degrading enzymes, so-called xylanases, as well they confer structural stability to the plant cell wall by forming covalent bonds with the lignin present therein. In addition, ferulic acid has been shown to exist as a bridge between different xylan diferulic acid chains, imparting further structural support for plant cells (Linden, J.C. et al., American Chemical Society Symposium Series, vol. 566 (1994), 452-467).

2

A number of microorganisms are known which are capable of hydrolysing phenolic acid esters and digesting plant cell walls through the enzymatic breakdown of plant cell wall polysaccharides. Some of these microorganisms possess enzyme(s) with phenolic acid esterase activity, i.e. coumaric acid esterase activity or ferulic acid esterase activity or a combination of these two activities.

For example, Borneman, W.S. et al (Applied and Environmental Microbiology, vol. 58 (1992), 3762-3766) describe two ferulic esterases (FAE), designated FAE-I and from the anaerobic respectively, isolated fungus strain MC-2. FAE-II was Neocallimastix reported to be $(O-\{5-O-[(E)-feruloyl]-\alpha-L$ the substrate for specific arabinofuranosyl}- $(1-3)-O-\beta-D-xylopyranosyl-(1-4)-D$ xylopyranose (FAXX), whereas FAE-I was reported to have both a degrading activity as well as a $(0-\{5-0-[(E)-p$ coumaroy1] - α -L-arabinofuranosy1}-(1-3)-0- β -D-xylopyranosyl-(1-4) -D-xylopyranose (PAXX) degrading activity, the maximum ratio of metabolism of FAXX: PAXX being 3:1. The pH optima of these two enzymes were shown to be 6.2 and 7.0 respectively when using FAXX as a substrate.

GB 2 301 103 discloses an FAE obtained from Aspergillus niger as well as the gene encoding said enzyme. Said enzyme has a pH optimum of about 5 and a temperature optimum of from about 50 to 60°C when methyl ferulate is used as a substrate.

Other purified enzymes with ferulic acid esterase activity are known (for example, see McCrae, S.I. et al., Enzyme Microb. Technol., vol. 16 (1994), 826-834; Faulds, C.B. and Williamson, G., Microbiology, vol. 140 (1994), 779-787; Castanares, A. et al., Enzyme Microb. Technol., vol. 14 (1992), 875; and Kroon, P.A. et al., Biotechnol. Appl. Biochem., vol 23 (1996), 255-262) which have pH optima ranging from about 5.0 to 6.0 and temperature optima from 30 to 60°C.

3

Enzymes with phenolic acid esterase activity can be used in a number of industrial, agricultural and health applications which can be carried out at pH values about or above 6.5 and/or at temperatures above 45°C.

Summary of the invention

It is an object of the present invention to provide enzyme with good phenolic acid esterase activity.

In addition, it is an object of the present invention to provide a source of an enzyme with phenolic acid esterase activity which is available in relatively large amounts.

Furthermore, it is an object to provide a method for the production of an enzyme with phenolic acid esterase activity.

A further object is to provide uses of an enzyme phenolic acid esterase activity for the preparation of food and feed, for the processing of paper and pulp as well as for the bioconversion of ligno-cellulose wastes, for example.

Other objects of the present invention will become apparent from the following detailed description.

Subject matter of the present invention is an enzyme with phenolic acid esterase activity, characterized in that said enzyme has a pH optimum greater than pH 6.5, preferably about 7.0, and a temperature optimum greater than 45°C, preferably greater than 50°C, and more preferably about 55°C, when measured in a citric acid/disodium hydrogen orthophosphate buffer containing 33 μ M FAXX as a substrate. Preferably, said enzyme has ferulic acid esterase activity and coumaric acid esterase activity.

4

Subject matter of the present invention is also an enzyme with phenolic acid esterase activity obtainable from Piromyces Sp., for example Piromyces equi, and more preferably from the Piromyces equi strain deposited under the Budapest Treaty at the International Mycological Institute (IMI), Bakeham Lane, Egham, Surrey, UK under the Accession Number 375061.

Preferably, the enzyme of the present invention comprises the amino acid sequence given in SEQ ID NO:1 or a functional derivative thereof. A functional derivative of the enzyme of the present invention is defined as an enzyme having one or more N-terminal, C-terminal or internal substitution(s), insertion(s) and/or deletion(s) in the amino acid sequence given in SEQ ID NO:1 which maintains a pH optimum greater than 6.5, preferably about 7.0, and a temperature optimum greater than 45°C, preferably greater than 50°C, and more preferably about 55°C, when measured in a citric acid/disodium hydrogen orthophosphate buffer containing 33 μ M FAXX as a substrate. More preferably, the enzyme of the present invention comprises the amino acid sequence given in SEQ ID NO:3 or a functional derivative thereof.

In addition, the enzyme of the present invention is preferably encoded by the DNA sequence given in SEQ ID NO:1 or a functional derivative thereof. More preferably, the enzyme of the present invention is encoded by the DNA sequence given in SEQ ID NO:3 or a functional derivative thereof.

The present invention relates to a phenolic acid esterase with one or more of the above properties.

Further subject matter of the present invention is a DNA molecule encoding an enzyme with phenolic acid esterase activity, characterized in that said DNA molecule comprises a DNA sequence as given in SEQ ID NO:1 or a functional derivative or homologue thereof. A functional derivative of the DNA sequence given in SEQ ID NO:1 is defined as a DNA

5

5'-, 3'- or more internal orhaving one sequence substitution(s), insertion(s) and/or deletion(s) in the DNA sequence given in SEQ ID NO:1 which maintains its capability to encode an enzyme with phenolic acid esterase activity which has a pH optimum greater than 6.5, preferably about 7.0, and a temperature optimum greater than 45°C, preferably greater than 50°C, and more preferably about 55°C, when measured in a citric acid/disodium hydrogen orthophosphate buffer comprising 33 $\mu \mathrm{M}$ A functional homologue of the DNA FAXX as a substrate. sequence of the present invention is defined as a DNA sequence with preferably 75% homology, more preferably 85% homology and most preferably 95% homology to the DNA sequence given in SEQ ID NO:1 or SEQ ID NO:3. More preferably, a DNA molecule according to the present enzyme encoding comprises a DNA sequence as given in SEQ ID NO:3 or a functional derivative or homologue thereof.

In a preferred embodiment, DNA molecules of the present invention comprise vector sequence capable of replicating said DNA molecules and/or expressing said enzyme in a procaryotic or eucaryotic host.

Further subject matter of the present invention is a transformed procaryotic cell or eucaryotic cell comprising one or more DNA molecules of the present invention. Preferably said cells are selected from the group comprising E. coli, Bacillus sp., such as Bacillus subtilis, Lactobacillus sp., and Lactococcus sp., Aspergillus, Trichoderma, Penicillium, Mucor, Kluyveromyces and Saccharomyces, such as Saccharomyces cerevisiae.

The enzyme of the present invention may be expressed in transgenic plants such as maize, soybean and canola/rapeseed. or in root storage organs of plants, such as potato, carrot and sugar beet.

6

The introduction of an esterase of the present invention expressed and/or secreted at the appropriate stage, for example, at harvest, has the advantage that the risk of weakening the transgenic plant or storage root organ structure during growth can be reduced.

The methodology for the production of transformed procaryotic and eucaryotic cells is known in the art. Transgenic fungus, such as Aspergillus, tranformed yeast, such as Saccharomyces, and transgenic plants are also known inthe art and can be produced by the methods taught and discussed in GB 2 301 103, EP 479 359 and EP 449 375.

Subject matter of the present invention is also a method for the production of an enzyme or enzyme preparation having phenolic acid esterase activity, characterized in that said enzyme is isolated from a naturally occurring organism or transformed cell or organism capable of expressing the enzyme according to the invention. Enzyme preparations including, for example, partially purified preparations obtainable as a cell or organism extract are also subject matter of the present invention.

The enzyme preparation of the present invention can comprise one or more further polysaccharide modifying and/or degrading Said polysaccharide modifying and/or enzymes. (are) preferably selected from the enzyme(s) is arabinanase, α -L-arabinofuranosidase, xylanase, endoglucanase, α -D-glucuronidase, pectinase, acetyl esterase, and other qlycosyl mannanase, acetyl xylan esterase hydrolases.

In addition, the enzyme preparation of the present invention can also include one or more further enzymes selected from the group comprising amylase, protease, α -galactosidase, phytase and lipase.

7

Use of the enzyme and/or enzyme preparation according to the invention include the use in a process for releasing phenolic acids from a substrate comprising phenolic acid moieties.

enzyme and/or enzyme preparation according to invention can equally find use in the production of animal improving the digestibility of plant material, especially forage in which the plant cell walls have a high phenolic acid content. Furthermore, the enzyme and/or the enzyme preparation according to the invention can be used in or with crop plants including but not limited to maize, wheat, the digestability improve alfalfa, to grasses and livestock by pre-modifying the cell wall content. Said enzyme and/or enzyme preparation according to the invention can also find used in the preparation of food for human consumption.

Further subject matter of the present invention is also a feed additive comprising an enzyme or enzyme preparation having phenolic acid esterase activity according to the invention and a feed comprising said feed additive.

The enzyme and/or enzyme preparation according to the invention can also find use in the paper and pulp industry, for example, in helping remove lignin from cellulose pulps. Additionally, used in combination with xylan degrading enzymes, the enzyme and/or enzyme preparation according to the invention can contribute to a reduction in the amount of chlorine required for bleaching by increasing the solubility and extractability of lignin from pulp.

Furthermore, when combined with xylanases and/or cellulases, the enzyme and/or enzyme preparation according to the invention can be used for the bioconversion of plant material or ligno-cellulose wastes to sugars, for example, for chemical or fuel production, and/or in the production of phenolic acids.

8

Brief description of the drawings

Figure 1: pH profile of the phenolic acid esterase of the present invention measured using FAXX as a substrate.

Figure 2: Temperature profile of the phenolic acid esterase of the present invention measured using FAXX as a substrate.

Detailed description of the invention

The following Examples are intended to more closely illustrate the present invention without limiting the subject matter of the invention to said Examples.

Example 1

Piromyces equi isolated from horse cecum (Orpin, C.G., J. Gen. Microbiol., vol. 123 (1981), 287-296) and as described by E.A. Munn in Anaerobic Fungi, Biology, Ecology and Function, D.O. Mountfort and C.G. Orpin Eds., Marcel Dekker, Inc., New York, 1994, 47-105, and deposited under the Budapest Treaty at the International Mycological Institute (IMI) under the Accession Number 375061 was cultured under anaerobic conditions at a temperature of 39°C in a rumen fluid-containing medium (Kemp, P., Lander, D.J. and Orpin, C.G., J. Gen. Microbiol., vol. 130 (1984), 27-37) with 0.10% soluble xylan and 0.5% Sigmacell (Sigma Chemical Co., Poole, Dorset, England) carbon sources. Total RNA was extracted from fungus grown under the above conditions, poly(A)+ RNA was selected by chromatography, and double-stranded cDNA synthesized from the selected RNA, cloned into λ ZAPII using a ZAP-cDNA synthesis kit and packaged in vitro according to the instructions of the manufacturer (Stratagene, La Jolla, California, USA) (Xue, G-P. et al., J Gen. Microbiol., vol. 138 (1992), 1413-1420 and Ali, B.R.S. et al., FEMS Microbiol.

9

Lett., vol. 125 (1995), 15-22). Recombinant phage were grown by plating on lawns of E. coli XL1-Blue in soft agar overlays and screened using an antibody raised against a fungal according cellulase/hemicellulase purified complex Ali, B.R.S. et al., FEMS Microbiol. Lett., vol. 125 (1995), 15-22). Antibody screening of phage plaques with rabbit anticomplex antibody as the primary antibody was carried out essentially as described in the instruction manual provided with the $picoBlue^{TM}$ immunoscreening kit (Stratagene), with the following modifications: isopropyl- β -D-thiogalactopyranoside (IPTG: 0.33 $\mathfrak{m}\mathfrak{M}$) was added directly to the soft agar overlays containing recombinant $\lambda ZAPII$ and host bacteria (E. coli XL1-Blue); plaques were lifted onto Hybond-C filters (Amersham); blocking solution contained dried milk powder (4% w/v)place of BSA; anti-rabbit IgG (whole molecule) conjugated to horseradish peroxidase (Sigma Chemical Co.) was used as secondary antibody; colour development solution comprised 3,3'-diaminobenzidine (0.5 mg/ml) in 50 mM Tris-HCl buffer, pH 7.4, containing hydrogen peroxide (0.5 μ l/ml. production was verified by showing that a clone selected by antibody screening synthesized an enzyme which hydrolysed [4methylumbelliferoyl(p-trimethylammonium cinnamate chloride)] according to Dalrymple, B.P. et al., FEMS Microbiol. Lett., vol 143 (1996), 115-120.

General molecular biological techniques including DNA isolation, restriction endonuclease digestion, ligation, transformation as well as DNA sequencing of the esterase gene were performed in accordance with Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd. Ed. (1989), Cold Spring Harbor, New York.

Nucleotide sequencing of the the gene encoding the enzyme having phenolic acid esterase activity of the present invention was performed and the results are given in SEQ ID NO:3. The open reading frame comprises 1608 nucleotides,

10

encoding a protein of 536 amino acids with a predicted molecular weight of 55,540 daltons.

Example 2

Measurement of pH optimum

A truncated enzyme encoded by SEQ ID NO. 1 was generated in a PCR reaction (20 cycles of 30 seconds at 94°C, 45 seconds at 50°C, and 1 minute at 72°C) in a buffer comprising 50 mM Tris-HCl, pH 9.0, 50 mM NaCl, 10 mM MgCl $_2$, 200 μ M dNTPs, 50 picomoles of the primers

5'-end: 5'-CGCGGATCCAACAGCGGTCCAACTGTTG-3'

3'-end: 5'-GCGAATTCTTATCTTATGGGAGAGAG-3', and

250 ng template DNA and expressed in E.coli BL21 (DE3) (Novagen, Inc., Wisconsin, USA) using the vector pET32a (Novagen, Inc.).

enzyme was purified from freshly prepared cell-free extracts by binding to Talon resin (Clontech Laboratories Inc., California, USA) and cleaved from the metal affinity resin using restriction grade Thrombin (Sigma) in accordance to the quidelines provided by Novagen, Inc., USA, for use with pET vectors. The enzyme was further purified as follows: ml MonoQ column (Pharmacia) was equilibrated with 10 mM Tris, pH 8.0, and fresh enzyme was applied. The enzyme was eluted at 1.0 ml/min with a sodium chloride gradient (0 to 0.5 M NaCl in 10 mM Tris, pH 8.0). Fractions of 1.0 ml were collected. The enzyme was assayed in McIlvaine's buffer (citric acid/ disodium hydrogen orthophosphate, see Data for Biochemical Research, 3rd Edition, Dawson, Elliot, Elliot, Jones, Oxford Science Publications, Oxford University Press, 1987) for pH values ranging from 3 to 7 or a buffer comprising potassium chloride/ boric acid for pH values ranging from 8 to 9. The assay was carried out at 37°C with a final FAXX concentration of 33 μ M. Ferulic acid release from FAXX was monitored

11

continuously for 3 min at 335 nm according to (Faulds, C.B. and Williamson, G., Microbiology, vol. 140 (1994), 779-787).

The results of the assay are given in Figure 1. As can be deduced from Figure 1, the enzyme of the invention exhibited 50% activity at about pH 5.5 and about 8.5

In order to determine the temperature optimum of the enzyme according to the invention using FAXX as a substrate, FAXX was employed at a concentration of 33 $\mu \rm M$ and the assay was performed at pH 6.0 in 100 mM MOPS buffer. The temperature of incubation was changed from 20°C to 70°C using a thermostatically controlled spectrophotometer. The release of ferulic acid from FAXX was measured at 335 nm as described above. The results are presented in Figure 2.

Kinetics

The K_m and V_{max} of the enzyme of the present invention were determined using FAXX and Ara_2F (0-[2-0(trans-feruloy1)- α -arabinofuranosyl]-(1-5)-L-arabinofuranose) as substrates. FAXX was employed at concentrations varying from 3.72 μ M to 49.18 μ M and Ara_2F was used at concentrations ranging from 4.46 μ M to 122.92 μ M. The assay was performed at 37°C and pH 6.0 in 100 mM MOPS ((3-[N-morpholino]propanesulfonic acid)) buffer with 90 ng enzyme. For both substrates, the release of ferulic acid was measured at 335 nM as described above.

Based on results of the above experiments, it was determined that the enzyme of the present invention has the following kinetic constants:

substrate	K _m	v_{max}
FAXX	3.0±0.3 μM	$35.6\pm0.9~\mu\mathrm{mol/min/mg}$
Ara ₂ F	234±27 μM	19.6 \pm 1.7 μ mol/min/mg.

12

Hence, the enzyme of the present invention has a K_m of about 3.0 and a V_{max} of about 35 when measured under the above conditions using FAXX as a substrate.

The specific activity of the enzyme of the present invention was determined for methyl ferulate, methyl coumarate and methyl p-coumarate in an assay at 37°C comprising 100 mM MOPS buffer (with 0.02% azide), pH 6.0., 44 ng enzyme and 1 mM of the above substrates. After 15 minutes incubation time, the reaction was terminated by boiling and the free acid liberated was measured using reverse phase HPLC (Kroon, P.A. and Williamson, G., Biotechnol. Appl. Biochem., vol. 23 (1996), 263-267). The results of the above experiment are shown below.

In addition, the specific activity of the enzyme of the present invention was determined for p-nitrophenyl acetate, α -naphthyl acetate, α -naphthyl butyrate, α -naphthyl caproate α -naphthyl caprylate and α -naphthyl laurate according to the methods described in Ferreira, L.M.A. et al.(Biochem. J., vol. 294 (1993), 349-355). The results of the above assay are shown below.

Substitute appearance desired to ma	substrate	specific	activity	(U*/mg	3)
-------------------------------------	-----------	----------	----------	--------	----

p-nitrophenyl acet	tate 204.3
α -naphthyl acetate	121
α -naphthyl butyrat	ce 220
α -naphthyl caproat	ce 256
α -naphthyl capryl:	ate 54
α -naphthyl laurate	e 6
methyl ferulate	10.6
methyl coumarate	10.5
methyl p-coumarate	e 2.7

*1 U is defined as the amount of enzyme which gives 1 $\mu mol/min$ of ester hydrolysis.

13

SEQUENCE LISTING

- (1) GENERAL INFORMATION:
 - (i) APPLICANT:
 - (A) NAME: Biotechnology and Biological Sciences Research Council
 - (B) STREET: Polaris House, North Star Avenue
 - (C) CITY: Swindon
 - (D) STATE:
 - (E) COUNTRY: United Kingdom
 - (F) POSTAL CODE (ZIP): SN2 1UH
 - (ii) TITLE OF INVENTION: Phenolic Acid Esterase and Use Thereof
 - (iii) NUMBER OF SEQUENCES: 4
 - (iv) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Floppy disk
 - (B) COMPUTER: IBM PC compatible
 - (C) OPERATING SYSTEM: PC-DOS/MS-DOS
 - (D) SOFTWARE: PatentIn Release #1.0, Version #1.30 (EPO)
- (2) INFORMATION FOR SEQ ID NO: 1:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 825 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: double
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: DNA (genomic)
 - (vi) ORIGINAL SOURCE:
 - (A) ORGANISM: Piromyces equi

14

(ix)	FEATURE	:

(A) NAME/KEY: CDS

(B) LOCATION:1..822

	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:																
AAC	AGC	GGT	CCA	ACT	GTT	GAA	TAC	TCT	ACT	GAT	GTT	GAC	TGT	TCC	GGT	4	8
Asn	Ser	Gly	Pro	Thr	Val	Glu	Tyr	Ser	Thr	Asp	Val	Asp	Cys	Ser	Gly		
1				5					10					15			
AAG	ACC	CTT	AAG	AGT	AAC	ACC	AAC	CTT	AAC	ATC	TAA	GGT	CGT	AAG	GTT	9	6
Lys	Thr	Leu	Lys	Ser	Asn	Thr	Asn	Leu	Asn	Ile	Asn	Gly	Arg	Lys	Val		
			20					25					30				
ATT	GTA	AAA	TTC	CCA	AGC	GGC	TTC	ACT	GGT	GAC	AAG	GCT	GCT	CCA	CTT	14	4
Ile	Val	Lys	Phe	Pro	Ser	Gly	Phe	Thr	Gly	Asp	Lys	Ala	Ala	Pro	Leu		
		35					40					45					
		AAC														19	92
Leu	Ile	Asn	Tyr	His	Pro	Ile	Met	Gly	Ser	Ala	Ser	Gln	Trp	Glu	Ser		
	50					55					60						
		CAA														24	40
-	Ser	Gln	Thr	Ala		Ala	Aia	Leu	Asn		Gly	Ala	lle	vai			
65					70					75					80		
mm.a	> ##.	GAT	CCM	aam	CAA	CCT	CCA	አጥር	CCA	CAA	CCT	TCC	አአሮ	CTT	CCT	2	88
		Asp														2.	00
PHE	Mec	Asp	GTÅ	85		dry	110	rice	90		1114	11.p	11511	95			
				0.5													
CCA	TGT	TGT	ACT	GAT	GCT	GAT	GAT	GTT	CAA	TTC	ACT	CGT	AAC	TTC	ATT	3	36
		Cys															
_ •	2 ~		100	•		-	-	105				_	110				
											•						
AAG	GAA	ATC	ACT	AGT	' AAG	GCT	TGT	GTT	GAT	. CCA	AAG	CGT	ATC	TAT	GCT	3	84
Lys	Glu	Ile	Thr	Ser	Lys	Ala	Cys	Val	Asp	Pro	Lys	Arg	Ile	Tyr	Ala		

									15								
		115					120					125					
					~ ~ ~	o om	COTT	N TO CT	TO T	N N C	ጥለጥ	C CT	CCT	TCT	ר א ר	A 7	32
				ATG Met												4.3	2
	-	Pne	Ser	Mec	GIY	135	Gry	Mec	301	11,511	140	2120	011	C _I S	01		
	130					133											
СТТ	GCT	GAT	GTT	TTA	GCT	GCT	GCT	GCT	CCA	TCA	GCC	TTT	GAT	CTT	GCC	4 8	80
Leu	Ala	Asp	Val	Ile	Ala	Ala	Ala	Ala	Pro	Ser	Ala	Phe	Asp	Leu	Ala		
145					150					155					160		
				GAT												5	28
Lys	Glu	Ile	Val	Asp	Gly	Gly	Lys	Cys		Pro	Ala	Arg	Pro		Pro		
				165					170					175			
እጥር	متست	አአሮ	ጥጥር	CGT	GGT	ACT	CAA	GAT	AAC	GTT	GTT	ATG	TAC	AAC	GGT	5	76
				Arg													
110		11011	180		•			185					190				
GGT	СТТ	TCT	CAA	GTT	GTT	CAA	GGT	AAG	CCA	ATT	ACT	TTC	ATG	GGT	GCC	6	24
Gly	Leu	Ser	Glr	val	Val	Gln	Gly	Lys	Pro	Ile	Thr	Phe	Met	Gly	Ala		
		195					200					205					
							. ~				aar	mO.rr	N CITT	CCT	C N N	c	72
															GAA	•	112
Lys			ı Phe	e rys	GIU	215		nys	Mec	ASII	220		1111	G L y	Glu		
	210	l				4.10	,										
CCA	AAA	CAA	AA A	C ACT	r cc <i>i</i>	GGT	AA 1	: AAC	TGI	GAA	ATG	TAC	GAA	AAC	TGT	7	720
															Cys		
225	_				230)				235	;				240		
															CAC	,	768
Lys	Gly	/ Gly	y Va	l Ly	s Vai	l Gl	y Le	ı Cy:			e Asr	ı Gly	/ Gl}		/ His		
				24	5				250)				255	•		
		, cc	m	c cc	ጥ አን	አ አጥ	ഭഭഭ	ጥ ጥር!	G GA	ى لى ل د	ቦ (ፕፕግ	מב ד	A CAX	4 TT	C TCT		816
															e Ser		
T.	. (1)		y A3 26		1			26				•	27				

16

CTC CCA TAA 825

Leu Pro

- (2) INFORMATION FOR SEQ ID NO: 2:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 274 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:

Asn Ser Gly Pro Thr Val Glu Tyr Ser Thr Asp Val Asp Cys Ser Gly

1 5 10 15

Lys Thr Leu Lys Ser Asn Thr Asn Leu Asn Ile Asn Gly Arg Lys Val 20 25 30

Ile Val Lys Phe Pro Ser Gly Phe Thr Gly Asp Lys Ala Ala Pro Leu 35 40 45

Leu Ile Asn Tyr His Pro Ile Met Gly Ser Ala Ser Gln Trp Glu Ser 50 55 60

Gly Ser Gln Thr Ala Lys Ala Ala Leu Asn Asp Gly Ala Ile Val Ala 65 70 75 80

Phe Met Asp Gly Ala Gln Gly Pro Met Gly Gln Ala Trp Asn Val Gly
85 90 95

Pro Cys Cys Thr Asp Ala Asp Asp Val Gln Phe Thr Arg Asn Phe Ile 100 105 110

17

Lys Glu Ile Thr Ser Lys Ala Cys Val Asp Pro Lys Arg Ile Tyr Ala 115 120 125

Ala Gly Phe Ser Met Gly Gly Gly Met Ser Asn Tyr Ala Gly Cys Gln 130 135 140

Lys Glu Ile Val Asp Gly Gly Lys Cys Lys Pro Ala Arg Pro Phe Pro 165 170 175

Ile Leu Asn Phe Arg Gly Thr Gln Asp Asn Val Val Met Tyr Asn Gly
180 185 190

Gly Leu Ser Gln Val Val Gln Gly Lys Pro Ile Thr Phe Met Gly Ala 195 200 205

Lys Asn Asn Phe Lys Glu Trp Ala Lys Met Asn Gly Cys Thr Gly Glu 210 215 220

Pro Lys Gln Asn Thr Pro Gly Asn Asn Cys Glu Met Tyr Glu Asn Cys
225 230 235 240

Lys Gly Gly Val Lys Val Gly Leu Cys Thr Ile Asn Gly Gly His 245 250 255

Ala Glu Gly Asp Gly Lys Met Gly Trp Asp Phe Val Lys Gln Phe Ser 260 265 270

Leu Pro

- (2) INFORMATION FOR SEQ ID NO: 3:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 1611 base pairs

									18							
		(B) TY	PE:	nucl	eic	acid									
		(C) ST	RAND	EDNE.	SS:	doub	le								
		(D) TO	POLO	GY:	line	ar									
	(ii)	MOL	ECUL	E TY	PE:	AND	(gen	omic)							
	(vi)	ORI	GINA	L SC	URCE	:										
		(A	.) OR	.GANI	SM:	Pirc	myce	s eq	ui							
	(ix)	FEA	TURE	:												
		(A	AN (.	ME/k	ŒΥ:	CDS										
		(B) LC	CATI	ON:1	16	808									
	(xi)	SEÇ	UENC	E DE	ESCRI	PTIC	ON: S	SEQ I	D NO): 3:						
አሞር	λλG	ACT	ΔGC	тта	GTA	ATT	TCT	ATC	GTT	GCT	TTA	TTT	TTA	ACA	TCC	48
		Thr														
275	2,5				280					285					290	
AAA	GCT	TCT	GCT	GAT	TGT	TGG	TCA	GAA	AGA	TTA	GGT	TGG	CCA	TGC	TGT	96
Lys	Ala	Ser	Ala	Asp	Cys	Trp	Ser	Glu	Arg	Leu	Gly	Trp	Pro	Cys	Cys	
				295					300					305		
AGT	GAC	AGC	AAT	GCC	GAA	GTA	ATC	TAC	GTC	GAT	GAC	GAT	GGT	GAT	TGG	144
Ser	Asp	Ser	Asn	Ala	Glu	Val	Ile	Tyr	Val	Asp	Asp	Asp	Gly	Asp	Trp	
			310					315					320			

GGT GTT GAA AAT AAT GAC TGG TGT GGT ATC CAA AAG GAA GAA GAA AAC

Gly Val Glu Asn Asn Asp Trp Cys Gly Ile Gln Lys Glu Glu Glu Asn 330

AAT AAC TCA TGG GAT ATG GGT GAT TGG AAC CAA GGT GGT AAC CAA GGT

Asn Asn Ser Trp Asp Met Gly Asp Trp Asn Gln Gly Gly Asn Gln Gly

GGC GGT ATG CCA TGG GGC GAC TTT GGC GGT AAC CAA GGT GGT ATG

345

335

350

192

240

288

325

340

PCT/EP98/02080 WO 98/46768

									19							
Gly 355	Gly	Met	Pro	Trp	Gly .	Asp	Phe	Gly		Asn (365	Gln	Gly	Gly	Gly	Met 370	
					GGT											336
Gln	Trp	Gly	Asp	375	Gly	GIY	ASN	GIN	380	Gly	Gly	mec	FIO	385	O.L.y	
					CAA											384
Asp	Phe	Gly	Gly 390	Asn	Gln	Gly	Gly	Gly 395	Met	Pro	Trp	Gly	Asp 400	Phe	Gly	
															TTT	432
Gly	Asn	Gln 405	Gly	Gly	Asn	Gln	Gly 410	Gly	Gly	Met	Pro	Trp 415	Gly	Asp	Phe	
GGA	GGA	. AAC	CAA	. GGA	GGT	AAC	CAA	GGT	GGC	GGT	ATG	CCA	TGG	GGT	GAT	480
Gly	Gly 420		Gln	Gly	· Gly	Asn 425	Gln	Gly	Gly	Gly	Met 430	Pro	Trp	Gly	Asp	
															GGA	528
Phe	Gly	Gly	Asn	Glr	ı Gly	Gly	Gly	Met	Gln	Trp	Gly	Asp	Phe	Gly	gly	
435					440					445					450	
AAC	CAA	A GGA	GGT	AA 1	CAA	GGT	GGC	GGT	TATG	CCA	TGG	GGI	GAT	TT	C GGA	576
Asr	Glr	ı Gly	/ Gl _}	/ Ası	n Glr	Gly	Gly	Gl)	/ Met	Pro	Trp	Gly	Asp		e Gly	
				45	5				460	1				46	5	
															C CAA	624
Gly	/ Ası	n Gli	n Gly	y Gl	y Gly	/ Met	Glr	Tr	p Gly	/ Asp) Phe	e Gly	/ Gly	y As	n Gln	
			47	0				47	5				480	0		
GG	A GG	T AA	C CA	A GG	T GG	C GG	T AT	G CC.	A TGO	G GGT	r GA	C TT	C GG.	A GG	T AAC	672
Gl	y Gl	y As	n Gl	n Gl	y Gl	y Gly	y Me	t Pr	o Tr	o Gly	/ As	p Ph	e Gl	y Gl	y Asn	
		48	5				49	0				49	5			
CA	A GG	T GG	T GG	TA T	G CA	A TG	G GG	C GA	TT T	C GG	A GG	AA T	T CA	A GG	T GGT	720
Gl	n Gl	v Gl	v Gl	v Me	t Gl	n Tr	p Gl	y As	p Ph	e Gl	y Gl	y As	n Gl	n Gl	y Gly	

20

	500					505					510					
сст	ስጥር	ر م م	TGG	GGC	GAC	TTC	GGC	GGT	AAC	CAA	GGA	GGT	AAC	CAA	GAT	768
						Phe										
515	MEC	0111	P	Ory	520		U-1	5- 1		525	1	J-7			530	
212					520					525						
TGG	GGT	AAC	CAA	GGT	GGT	AAC	AGC	GGT	CCA	ACT	GTT	GAA	TAC	TCT	ACT	816
Trp	Gly	Asn	Gln	Gly	Gly	Asn	Ser	Gly	Pro	Thr	Val	Glu	Tyr	Ser	Thr	
				535					540					545		
GAT	GTT	GAC	TGT	TCC	GGT	AAG	ACC	CTT	AA G	AGT	AAC	ACC	AAC	CTT	AAC	864
						Lys										
		- -	550		•	-		555					560			
ATC	TAA	GGT	CGT	AAG	GTT	TTA	GTA	AAA	TTC	CCA	AGC	GGC	TTC	ACT	GGT	912
Ile	Asn	Gly	Arg	Lys	Val	Ile	Val	Lys	Phe	Pro	Ser	Gly	Phe	Thr	Gly	
		565					570					575				
GAC	AAG	GCT	GCT	CCA	CTT	CTT	ATT	AAC	TAC	CAT	CCA	ATT	ATG	GGT	AGT	960
Asp	Lys	Ala	Ala	Pro	Leu	Leu	Ile	Asn	Tyr	His	Pro	Ile	Met	Gly	Ser	
	580					585					590					
GCT	TCT	CAA	TGG	GAA	AGT	GGT	TCT	CAA	ACT	GCT	AAG	GCT	GCT	ATT	AAT	1008
Ala	Ser	Gln	Trp	Glu	Ser	Gly	Ser	Gln	Thr	Ala	Lys	Ala	Ala	Leu	Asn	
595					600					605					610	
															GGA	1056
Asp	Gly	Ala	Ile	Val	Ala	Phe	Met	Asp	Gly	Ala	G1n	Gly	Pro	Met	Gly	
				615					620					625		
															CAA	1104
Gln	Ala	Trp	Asn	Val	Gly	Pro	Cys			Asp	Ala	Asp			Gln	
			630	1				635					640			
					<u>-</u> -		· ~					. ~~-			1 (1200	1150
															GAT	1152
Phe	Thr	_		Phe	: Ile	: Lys			Thr	: Ser	: гуѕ			vai	. Asp	
		645	i				650)				655)			

21

CCA A	AAG	CGT	ATC	TAT	GCT	GCT	GGT	TTC	TCT	ATG	GGT	GGT	G GT	ATG	TCT	1200	
Pro :																	
	660	_				665					670						
	-																
AAC	TAT	GCT	GGT	TGT	CAA	CTT	GCT	GAT	GTT	ATT	GCT	GCT	GCT	GCT	CCA	1248	
Asn	Tyr	Ala	Gly	Cys	Gln	Leu	Ala	Asp	Val	Ile	Ala	Ala	Ala	Ala	Pro		
675					680					685					690		
												GGT				1296	
Ser	Ala	Phe	Asp	Leu	Ala	Lys	Glu	Ile	Val	Asp	Gly	Gly	Lys	Cys	Lys		
				695					700					705			
					•												
CCA	GCT	CGT	CCA	TTC	CCA	ATC	CTT	AAC	TTC	CGT	GGT	ACT	CAA	GAT	AAC	1344	ł
Pro	Ala	Arg	Pro	Phe	Pro	Ile	Leu	Asn	Phe	Arg	Gly	Thr	Gln	Asp	Asn		
			710					715					720				
GTT	GTT	ATG	TAC	AAC	GGT	GGT	CTI	TCT	' CAA	GTT	GTI	CAA	GGI	' AAG	CCA	1392	2
Val	Val	Met	Tyr	Asn	Gly	Gly	Leu	Ser	Gln	Val	Val	. Gln	Gly	. TAa	Pro		
		725					730)				735					
ATT	ACT	TTC	OTA :	GGT	GCC	AAC	AAC	CAAC	TTC	: AAG	GA/	A TGG	GCT	` AAC	ATG	144	0
Ile	Thr	Phe	Met	: Gly	Ala	a Lys	Ası	n Asr	n Phe	e Lys	Glu	ı Trp	Ala	Lys	Met		
	740)				745	5				750)					
															TGT	148	8
Asn	Gly	у Суя	Th:	c Gly	/ Glv	ı Pro	o Ly:	s Gl	n Ası	n Thi	r Pro	o Gly	/ Ası	n Ası	n Cys		
755	5				76	0				769	5				770		
															CACT	153	6
Glu	ı Me	t Ty	r Gl	u Ası	n Cy	s Ly	s Gl	y Gl	y V a	l Ly:	s Va	1 G1	y Le	u Cy	s Thr		
				77	5				78	0				7 8	5		
															G GAC	158	14
Ile	e As	n Gl	y Gl	y Gl	y Hi	s Al	a Gl	u Gl	y As	p G1	у Гу	s Me	t Gl	y Tr	p Asp		
			79	0				79	5				80	0			

22

TTT GTT AAA CAA TTC TCT CTC CCA TAA
Phe Val Lys Gln Phe Ser Leu Pro
805 810

1611

- (2) INFORMATION FOR SEQ ID NO: 4:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 536 amino acids
 - (B) TYPE: amino acid
 - (D) TOPOLOGY: linear
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

Met Lys Thr Ser Ile Val Leu Ser Ile Val Ala Leu Phe Leu Thr Ser 1 5 10 15

Lys Ala Ser Ala Asp Cys Trp Ser Glu Arg Leu Gly Trp Pro Cys Cys
20 25 30

Ser Asp Ser Asn Ala Glu Val Ile Tyr Val Asp Asp Asp Gly Asp Trp
35 40 45

Gly Val Glu Asn Asn Asp Trp Cys Gly Ile Gln Lys Glu Glu Glu Asn 50 55 60

Asn Asn Ser Trp Asp Met Gly Asp Trp Asn Gln Gly Gly Asn Gln Gly 65 70 75 80

Gly Gly Met Pro Trp Gly Asp Phe Gly Gly Asn Gln Gly Gly Met $85 \hspace{1.5cm} 90 \hspace{1.5cm} 95$

Gln Trp Gly Asp Phe Gly Gly Asn Gln Gly Gly Gly Met Pro Trp Gly 100 105 110

Asp Phe Gly Gly Asn Gln Gly Gly Met Pro Trp Gly Asp Phe Gly

									23						
		115					120				:	125			
Gly	Asn 130	Gln	Gly	Gly	Asn	Gln 135	Gly	Gly	Gly		Pro '	rp (Gly .	Asp	Phe
Gly 145	Gly	Asn	Gln	Gly	Gly 150	Asn	Gln	Gly	Gly	Gly 155	Met	Pro	Trp	Gly	Asp 160
Phe	Gly	Gly	Asn	Gln 165	Gly	Gly	Gly	Met	Gln 170	Trp	Gly	Asp	Phe	Gly 175	Gly
Asn	Gln	Gly	Gly 180	Asn	Gln	Gly	Gly	Gly 185	Met	Pro	Trp	Gly	Asp 190	Phe	Gly
Gly	Asn	Gln 195		Gly	Gly	Met	Gln 200	Trp	Gly	Asp	Phe	Gly 205	Gly	Asn	Gln
Gly	Gly 210		Gln	Gly	Gly	Gly 215		Pro	Trp	Gly	Asp 220	Phe	Gly	Gly	Asn
Gln 225		· Gly	Gly	. Met	Gln 230		Gly	Asp	Phe	Gly 235	Gly	Asn	Gln	Gly	Gly 240
Gly	Met	Gl:	n Trp	Gly 245		Phe	e Gly	Gly	Asn 250		Gly	Gly	Asn	Gln 255	
Trp	Gly	y Ası	n Gli 260		⁄ Gly	Asr	ı Ser	Gly 265		Thr	Val	Glu	Tyr 270		Thr
Asp	va	l As		s Sei	c Gly	y Ly:	3 Thr 280		ı Lys	s Ser	: Asn	Thr		. Leu	Asn
Ιlε	e As 29		y Ar	g Ly:	s Vai	1 I1e 29		l Lys	s Phe	e Pro	300		Phe	e Thr	Gly
Asi 30	_	s Al	a Al	a Pr	o Le		u Ile	e Ası	n Ty:	r His) Ile	e Met	Gly	y Ser 320

24

Ala	Ser	Gln	Trp	Glu	Ser	Gly	Ser	Gln	Thr	Ala	Lys	Ala	Ala	Leu	Asn
				325					330					335	
Non.	Gly	בומ	Ile	Val	Ala	Phe	Met	Asn	Glv	Ala	Gln	Glv	Pro	Met	Glv
мър	дту	Ara	340	Val	ALG	1110	1100	345	J27	1120	J	O11	350		017
Gln	Ala	Trp	Asn	Val	Gly	Pro	Cys	Cys	Thr	Asp	Ala	Asp	Asp	Val	Gln
		355					360					365			
Phe	Thr	Arg	Asn	Phe	Ile	Lys	Glu	Ile	Thr	Ser	Lys	Ala	Cys	Val	Asp
	370					375					380				
															_
	Lys	Arg	Ile	Tyr		Ala	Gly	Phe	Ser		Gly	Gly	Gly	Met	
385					390					395					400
V ca	Teen	בות	Gly	Cve	Gln	Leu	Ala	Asp	Val	Ile	Ala	Ala	Ala	Ala	Pro
ASII	туг	Ala	Gry	405	J	200	1124		410					415	
Ser	Ala	Phe	Asp	Leu	Ala	Lys	Glu	Ile	Val	Asp	Gly	Gly	Lys	Cys	Lys
			420					425					430		
Pro	Ala	Arg	Pro	Phe	Pro	Ile	Leu	Asn	Phe	Arg	Gly	Thr	Gln	Asp	Asn
		435					440	ŀ				445			
Val	Val	Met	Tyr	Asn	Gly			Ser	Gln	ı Val			Gly	Lys	Pro
	450					455	i				460	1			
T10	Thr	Dho	. Met	Gly	γΔla	i I.vc	. Acr	λen	Phe	ivs	Glu	Trr	Δla	lvs	Met
465		FIIC	. Mec	. Gly	470		, 11.3.	. 1151		475				-12	480
103					1,0										
Asn	Gly	r Cys	Thr	Gly	r Gli	ı Pro	Lys	s Glr	n Asr	ı Thr	Pro	Gly	Asn	Asn	Cys
		_		485					490					495	
Glu	ı Met	: Tyr	Glu	ı Ası	ı Cys	s Lys	s Gly	y Gly	/ Val	l Lys	Val	l Gl	Leu	Cys	Thr
			500)				505	5				510)	

25

Ile Asn Gly Gly Gly His Ala Glu Gly Asp Gly Lys Met Gly Trp Asp

515

520

525

Phe Val Lys Gln Phe Ser Leu Pro

530

535

Figure 1: pH profile of the phenolic acid esterase using FAXX as substrate

SUBSTITUTE SHEET (RULE 26)