

Presenter

Presenter: Paul Vincent, CTO Business Rules and CEP, TIBCO Software

- Member OMG PRR and W3C RIF rules standards bodies
- Co-author CEP Blog http://tibcoblogs.com/cep

TIBCO Software Inc.:

- Provides enterprise software that helps companies achieve service-oriented architecture (SOA) and business process management (BPM) success
- Headquartered in Palo Alto, California
- Over 3,000 customers and offices in 40 countries
- CEP product is TIBCO BusinessEvents
 - Developed from a customer solution and launched 2005
 - Currently at Release 3.0

Agenda

Introducing CEP

Real-world Events

Conventional Event Processing

(Lots of Events)

Synchronous Events

Event-at-a-time

Simple event processing

Aggregation as data

Business Processes:
BPM & Workflow Processes

IT Services: SOA & traditional Data Processing

Persistence Services

Simple EP = default IT Model, 1950-now

- Based on "human workflow": one thing at a time
 - Processes handle cases 1 at a time ← office clerk
 - Use database and refer to it where necessary ← card index
 - Provide some service flexibility with middleware ← internal mail
 - Use BPM to document / manage / automate processes
 - Use SOA to distribute / manage / automate services

This model does NOT exploit
ALL the information / data / events
ALL the time

Behaviour (and business logic) is silo'd
There is a better way!

Complex Event Processing

Asynchronous Events (Lots of Events)

High performance pattern-matching via rules, states, § queries

High performance

persistence

continuous Event Processing

Complex Patterns
of Events

Event Store

Business Processes:
BPM & Workflow Processes

IT Services: SOA & traditional Data Processing

Persistence Services

CEP Terminology

- CEP (technology) applies pattern detection & filtering to the event clouds & streams and their histories
- Multiple modelling / execution paradigms are available for pattern detection

What does CEP cover?

"CEP applies to a very broad spectrum of challenges in information systems.

A short list includes:"

- Business process automation
- Computer systems to automate scheduling and control network-based processes and processing
- Identifying when complex contracts are fulfilled
- Detection intrusion, fraud and other network attacks
- C3I

AN INTRODUCTION TO COMPLEX EVENT PROCESSING IN DISTRIBUTED ENTERPRISE SYSTEMS

DAVID LUCKHAM

The Power of Events, Addison Wesley, ISBN: 0-201-72789-7, 2002

What does CEP Solve?

What CEP provides

"Situational Awareness"

"Sense and Respond"

"Track and Trace"

Agenda

History

Command and Control

Command and Control

- Correlate all available information
- Determine tactics based on strategy and up-to-date information

-- from RAF Battle of Britain Fighter Control System 1940 http://www.raf.mod.uk

Data Fusion

-- Revised JDL data fusion model, 1998 Steinberg, A., & Bowman, C., Handbook of Multisensor Data Fusion, CRC Press, 2001

Condition Based Maintenance

-- from "Data Fusion for Developing Predictive Diagnostics for Electromechanical Systems" Steinberg, A., & Bowman, C., Handbook of Multisensor Data Fusion, CRC Press, 2001

Agenda

Events and CEP

Complex Business Problems

Fraud / Theft

- Thousands-to-millions of high-value small-size product items or transactions
- How do you identify known patterns of "suspicious" behavior?

Logistics / Scheduling

- Raw material, production & delivery scheduling and resources are complex and prone to change
- How do we reallocate resources to handle business and production changes?

Activity Monitoring

- Complex production and supply process with multiple actors
- How to measure and action Key Performance Indicators?

Relevant event of interest

Associated Events

Positive Events

- Product item X arrives at Production station S from Store T
- Production worker Y arrives at Production station S
- Production contract for item Z by time T is posted

Negative Events

- Product item X has been in transit to Store T for >15 minutes
- Subcomponent Y hasn't arrived at the Production station by the ETA
- Delivery of contract Z has not taken place

Sets of Events

- 5+ items of Product item type Y failed to arrive at destination
- Supplier Y was 5 mins late for 1 delivery, but made it early to the next
- Return rate on component Z exceeds SLA %

Significant features of these Events

Time Sensitivity

- A thief may leave the building at the same time as stolen product
- A product should take 40 minutes to travel a given production line segment

Distributed Event Sources

- A series of produced items fails at various QA stages, and their common attribute was a storage location
- Multiple suppliers for a subcomponent are reporting delivery delays

What *is* an "event"?

Change of state in some entity

- Customer call
- Bank debit
- Aircraft movement

Observation of some entity

- CRM record of a customer call
- ATM report of debit transaction success
- Radar plot update of an aircraft

IT Message

- Queued point-to-point message
- Publish / subscribe message

"Happening"

Observation

IT Message

Sample Event Metamodel

Event-driven vs Event Processing

Event Driven Architecture

SOA EDA

Request - Reply Transmit-Listen

Synchronous Events

Asynchronous Events

Assumptions...

CEP in the Event Driven Architecture

Complex Event Processing

Sense and Respond / Track and Trace / Situational Awareness

Processing type:

Decision Processing

Event Processing

TIBCO
Reference Architecture

Analysts on CEP

Decision Latency —

Real Time Agility through Event Processing and Business Activity Monitoring

19 - 21 September 2007 Orlando, FL JW Marriott Grande Lakes

- > How to Contact Us
- > Download PDF Brochure
- > Request Event Information
- > Build My Agenda

Gartner. Event Processing Summit 2008

Gartner Event Processing Summit

15 - 16 September 2008 | Stamford, CT | Hilton Stamford Hotel

Why CEP?

- Detecting event patterns across multiple event types + time is difficult for simple event processing solutions
- Computers can correlate across large volumes of events at high speed, identifying patterns that are not conventionally visible
- The architecture pattern of "continuous event processing" applies to many business domains such as BAM
- Examples in use:
 - Track and Trace of RFID data
 - Situation Assessment of airline operational delays (+ their causal events)
 - Sense and Respond to fraud indicators in internet transactions

Agenda

CEP Technologies

CEP = an Event-Decision Architecture

Steinberg, A., & Bowman, C., Handbook of Multisensor Data Fusion, CRC Press, 2001

Requirements for CEP Technology

- Access and Monitor the "Event Cloud"
 - JMS, RV, MQ, TCP/IP, etc...
 - Timers to detect lack of events
 - Determine event state changes
- Match Patterns, Apply Business Logic
 - Detect events
 - Detect event patterns
 - Maintain State and Facts over time
 - Update Detection algorithms as events change

Event Bus or Source

Low-latency reliable message delivery

Event and Data Model

for information modeling

Temporal Model

for determining time-dependent info

Pattern Detection Model

for recognizing patterns, defining actions

History and Cache

CEP-Related Standards

Event Bus or Source

Low-latency reliable message delivery

Event and Data Model

for information modeling

Temporal Model

for determining time-dependent info

Pattern Detection Model

for recognizing patterns, defining actions

History and Cache

JMS, (DDS)

OMG EMP (RFP in progress)

OMG UML2 State Models OMG UML2 Class Models

OMG PRR, W3C RIF
Production Rules

ANSI SQL-based continuous queries

Example CEP Technologies

Sample Event Processing Metamodel

CEP Behavior: State-oriented

Event Bus or Source

Low-latency reliable message delivery

Event and Data Model

for information modeling

Temporal Model

for determining time-dependent info

Pattern Detection Model

for recognizing patterns, defining actions

History and Cache

State Model / Process Flow CEP Agent features

1. Visual modeling metaphor

State diagram / flow diagram is simple to follow

State / flow transitions can be time-related

Can model missing events through time-outs etc

This yields significant savings by eliminating driver man hours wasted waiting at the border. When a truck is dispatched, a conveyance report is transmitted to an agent. The truck's position is tracked via GPS events. When the truck is 20 minutes from the border, there must be a confirmation that customs has received the documents. If that hasn't occurred, an alert is sent to the agent and the problem is remedied before it can cause a costly problem, incurring fines and wasting man hours.

CEP Behavior: Rule-oriented

Event Bus or Source

Low-latency reliable message delivery

Event and Data Model

for information modeling

Temporal Model

for determining time-dependent info

Pattern Detection Model

for recognizing patterns, defining actions

History and Cache

Inference Rule CEP Agent features

1. High performance pattern matching

 Rete algorithm determines rules that are executable based on underlying data changes

2. Declarative + Inferencing

- Rules defined in terms of classes: can be relevant for any # instances
- Rules' actions can cause other rules to fire automatically

3. In-memory

Limited only by JVM / process memory

CEP Behavior: Query-oriented

Event Bus or Source

Low-latency reliable message delivery

Event and Data Model

for information modeling

Temporal Model

for determining time-dependent info

Pattern Detection Model

for recognizing patterns, defining actions

History and Cache

Query CEP Agent features

1. Common query language

- Usually SQL-based widely used language
- May be in-memory, in-file or both
- Can include query optimizers

2. Continuous

Extensions usually support time windows for the query to operate over

Agenda

Examples

Typical Business Situations for CEP

Detected Business Situation	Resulting Situation-Decision	
User X is behaving suspiciously (high likelihood of fraud)	Investigate for fraud manually	
Subcomponent delivery Y is slightly late	Issued an automated reminder to supplier	
Customer Y payment for policy P is very late	Alert Customer Agent	
Orders for product Z are up >20%	Alert manufacturing and marketing	

CEP in Action: Investment Banking

CEP Processing

Example CEP Product Architecture

Agenda

""Advanced" CEP

"Advanced" CEP defined in many ways

Intelligent CEP

- Adaptive
- Learning
- Logic
- AI

Semantic CEP

- Ontologies + Logic
- Text / language interpretation

Multiple CEP

 Including all types of data processing paradigm (transactional, CLP, inference, mathematical methods, ...)

Advanced CEP Infrastructure

Advanced Patterns & Event Behaviors

• Many EP apps fit the standard CEP patterns:

- Filter interesting rules
- Detect predefined patterns / state changes
- Update data / invoke processes and services based on business rules and high level events

Advanced EP:

- Apply interesting statistical functions to event data to detect new / complex trends
- Apply different algorithms to event data
- Modify parameters used in other rules ("metarules")

"Event-Decision" Architecture

-- Adapted from JDL Steinberg, A., & Bowman, C., Handbook of Multisensor Data Fusion, CRC Press, 2001

Self-Modifying "Event-Decision" Rules

• What are the variables that can be adjusted in real-time to optimize system performance?

Pre-Processing Event Filtering Rules

If RFID event for
 product X
Then
 monitor, else
 ignore

Becomes

If RFID event for
 product in list Y
 where cost > Z
Then monitor, else
 ignore

Updated by

If average loss increase for all products in Y > 2%
Then reduce Z by 5%

Event Tracking and Refinement Rules

If drug class X
 and dose > 200ml
Then
 move to monitored
 drug state

Becomes

If drug class X
 and dose > Y ml
Then
 move to monitored
 drug state

Updated by

If clinical negative events for drug class X increase

Then reduce Z by 10ml

Event Tracking and Refinement Rules

If bag X is not on
 prescribed flight
 at (depart - 20)

Then

move X state to
MissedFlight

Becomes

If bag X is not on
 prescribed flight
 at lastBagTime

Then

move X state to
MissedFlight

Updated by

If flight NOT international
Then set lastBagTime to
 carrier's min(DoorCloseTime)

Event Tracking and Refinement Rules


```
If
  product.ShipDelay
  > 1 days
Then
  contactLegal
```

Becomes

If
 product.ShipDelay
 > contract.SLA
 MaxDelay AllowedShipLag
Then
 warnLegal

Updated by

If contract.customer.status = Hi
Then set AllowedShipLag to 2
 days

Issues

Needs constraints

- Eg Cannot reduce discount to <0 or increase above>25
- Can handle as "change events" and rules to test...

Difficult to test

 May be based on statistical functions – implies complex test regimes (or testspecific rules)

Complex to prove ROI / value

- End-user may not be able to source or validate the advanced rules
- Requires statistical function libraries / analytics

Other sources for "advanced rules"

- Uncertainty
 - Scoring
- Generating rules
 - Machine learning
 - Predictive Analytics
 - Reasoning + Ontologies
- Other types of rules
 - Constraint Logic Programming

Scoring

- Simple technique to handle "variable" decisions
- Rules update a score
- Example: insurance scoring
- Typically handled in a special ruleset (or decision table)
- Good as a KPI in a scorecard
- Typically used with an aggregation rule

Object Property	Condition	Score Effect
Age	<18	-10
Age	19 to 26	-15
Age	27 to 49	+5
Age	50 to 69	0
Age	70+	-5

Machine Learning

- Given a set of data, deduce classification patterns and hence rules
- Requires sophisticated algorithms

data				result
A	A	A	A	1
A	В	A	В	2
В	A	В	A	3
other	other	other	other	4

Predictive Analytics

- Analyze data to deduce segmentation breaks for tasks like customer classifications
 - Eg: Which customers should be offered what interest rate to maximise profit?
- Typically using specialist data mining tools
 - Exports decision tree, rules etc in varieties of PMML
- Overlaps with BI (eg custom reports on historic data)
- Analytical functions may also be mapped to a ruleset in CEP for real-time analytics

Reasoning + Ontologies

- "Semantic Event Processing"
- Use Semantic Web technologies to augment CEP
 - Textual news etc analysis
 - Use of deeper ontology relationships
- Example components
 - OMG Ontology Definition Metamodel ODM joins W3C OWL to UML concept models
 - OWL, RDF, RDFS for terminology, relationships
 - Logic languages/rules to reason about truth over event types and metadata

Example: Semantic Technology to Refine CEP

Event Source / Bus

-- courtesy of Sandpiper Software

- Features include:
 - Production rule reasoning can
 - report up (situation assessment & current course of action)
 - report laterally (situation assessment, & sensed changes, etc.)
 - report down (initiating actions, querying)
 - Adaptive capabilities are possible at all levels

Constraint Logic Programming

- Constraint rules for systems
- Constraint solver to find best values (eg optimize price)
 - With response time as a system constraint!
 - Goal-driven

Uses:

- Maximizing value of inventory
- Scheduling the best routes for trucks
- Maximizing probability for SLA achievement

Agenda

The End

Agenda

APPENDICES

A. Appendices & Back-up Information

Appendix: Generalized Architecture for CEP

Appendix: Useful web resources

- Event Processing Technical Society EPTS www.ep-ts.com
- Luckham's web site complexevents.com
- Various vendor blogs (reference from complexevents.com)

