Politechnika Świętokrzyska

Laboratorium

Przetwarzanie obrazów i systemy wizyjne

Ćwiczenie 4

Realizacja filtracji w dziedzinie częstotliwości.

Cel ćwiczenia

Celem ćwiczenia jest zapoznanie studentów z funkcjami pozwalającymi na realizację dyskretnego przekształcenia Fouriera oraz realizację zadania filtracji w dziedzinie częstotliwości.

Reprezentacja przebiegów sinusoidalnych na obrazie

$$L(m,n) = 128 + 127 \cdot \cos\left(\frac{2 \cdot \pi \cdot m}{32} + \frac{3 \cdot \pi}{4}\right) \cdot \cos\left(\frac{2 \cdot \pi \cdot n}{32/4} - \frac{\pi}{2}\right)$$

$$m = 0, 1, ..., 31; \quad n = 0, 1, ..., 31$$
(1)

Charakterystyki częstotliwościowe obrazu dwóch fal: a) amplituda, b) amplituda po przesunięciu w dziedzinie częstotliwości, c) amplituda po przesunięciu w dziedzinie częstotliwości i logarytmowaniu według zależności (2), d) faza po przesunięciu w dziedzinie częstotliwości.

$$LA(i,k) = \log_{10}(A(i,k)+1)$$
(2)

Funkcje pakietu Scipy do analizy w dziedzinie częstotliwości

Funkcje do realizacji prostej i odwrotnej transformaty Fouriera.

fft(x)	Dyskretna transformata Fouriera dowolnego ciągu rzeczywistego lub zespolonego.
ifft(x)	Odwrotna dyskretna transformata Fouriera ciągu rzeczywistego lub zespolonego.
fftn(x)	Wielowymiarowa dyskretna transformata Fouriera
ifftn(x)	Wielowymiarowa odwrotna dyskretna transformata Fouriera
fft2(x)	Dwuwymiarowa dyskretna transformata Fouriera.

ifft2(x)	Dwuwymiarowa odwrotna dyskretna transformata Fouriera.
rfft(x)	Dyskretna transformata Fouriera ciągu rzeczywistego.
\ /	Odwrotna dyskretna transformata Fouriera dla ciągu rzeczywistego przekształconego funkcją rfft.

Funkcje pomocnicze

fftshift(x)	Przesunięcie składowej stałej i składowych o niskich częstotliwościach do środka wyznaczonego spektrum.
ifftshift(x)	Odwrotność do funkcji fftshift.
fftfreq(n)	Wyznaczenie częstotliwości dla każdej z próbek transformaty.
rfftfreq(n)	Wyznaczenie częstotliwości dla każdej z próbek transformaty wyznaczonej funkcją rfft.

Przykład

Wyznaczenie prostej i odwrotnej transformaty Fouriera dla przebiegu jednowymiarowego.

W celu wygenerowania wektora czasu można wykorzystać funkcje arange lub linspace z modułu numpy.

```
t=arange(0,1,0.1)
t=linspace(0,1,32)
```

Wygenerowanie przebiegu o częstotliwości podstawowej f, składającego się ze składowej stałej i dwóch składowych sinusoidalnych.

```
f=1
y=1+2*sin(2*pi*f*t)+1*sin(2*pi*4*f*t+pi/8)
```

Wykreślenie wykresu utworzonego przebiegu

```
figure(1)
clf()
subplot(2,2,1)
plot(t,y,'.')
```

Wyznaczenie transformaty Fouriera

```
F_y=fft(y)
```

Wyznaczenie transformaty odwrotnej.

```
y r=ifft(F y)
```

Wykreślenie wykresu transformaty odwrotnej.

```
subplot(2,2,2)
plot(y r.real,'.')
```

Wykreślenie wykresu modułu i fazy wyznaczonej transformaty.

```
subplot(2,2,3)
plot(absolute(F_y),'.')
subplot(2,2,4)
plot(angle(F y),'.')
```

Wyznaczenie częstotliwości dla których wyznaczone zostały poszczególne punkty transformaty.

```
n = F_y.size
dt = t[1]-t[0]
f = fftfreq(n, d=dt)
```

Wykreślenie wykresów amplitudy i fazy z określonymi częstotliwościami na osi x.

```
figure(2)
clf()
```

```
subplot(2,2,1)
plot(f,absolute(F_y),'.')
subplot(2,2,2)
plot(f,angle(F_y),'.')
Przesunięcie niskich częstotliwości do środka spektrum.
F_y_s=fftshift(F_y)
Wykreślenie wykresów po przesunięciu częstotliwości
subplot(2,2,3)
plot(absolute(F_y_s),'.')
subplot(2,2,4)
plot(angle(F_y_s),'.')
```

Literatura

Tadeusiewicz R., Korohoda P.: Komputerowa analiza i przetwarzanie obrazów, Społeczeństwo Globalnej Informacji, Kraków 1997.

Zadania

- 1. Napisać skrypt tworzący jednowymiarowy przebieg składający się z trzech składowych sinusoidalnych o różnych amplitudach i fazach.
- 2. Przekształcić przebieg z zadania 1 do dziedziny częstotliwości z wykorzystaniem funkcji z pakietu scipy, wyznaczyć charakterystykę amplitudową i fazową, przeanalizować uzyskane wyniki.
- 3. Wyznaczyć transformatę odwrotną dla transformaty uzyskanej w zadaniu 2.
- 4. Dla wybranej linii z obrazu kraty oraz linii z obrazu naturalnego wyznaczyć reprezentację w dziedzinie częstotliwości, wyznaczyć charakterystykę amplitudową i fazową, przeanalizować uzyskane wyniki.
- 5. Usunąć z transformat uzyskanych w zadaniu 4 wybrane częstotliwości i dokonać przekształcenia odwrotnego.
- 6. Napisać skrypt pozwalający utworzyć obraz dwuwymiarowy składający się z przebiegów sinusoidalnych o różnej częstotliwości na osi x i y.
- 7. Przekształcić przebieg z zadania 6 do dziedziny częstotliwości z wykorzystaniem funkcji z pakietu scipy, wyznaczyć charakterystykę amplitudową i fazową, wykonać przesunięcie częstotliwości, przeanalizować uzyskane wyniki.
- 8. Wyznaczyć transformatę odwrotną dla transformaty uzyskanej w zadaniu 7.
- 9. Na wybranych własnych obrazach testowych i naturalnych przedstawić przetwarzanie obrazów do dziedziny częstotliwości.
- 10. Zaprezentować na własnych obrazach metody filtracji cyfrowej w dziedzinie częstotliwości.