

AD-A064 658 AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OHIO SCH--ETC F/G 12/1
CRITERION FOR SELECTION OF VARIABLES IN A REGRESSION ANALYSIS. (U)
DEC 78 L J PULCHER

UNCLASSIFIED

AFIT/GOR/MA/78D-5

NL

1 OF 2
AD-A064 658

ADA 064658

DDC FILE COPY

1
SWB

DDC

REPRINTED

FEB 14 1979

UNITED STATES AIR FORCE
AIR UNIVERSITY
AIR FORCE INSTITUTE OF TECHNOLOGY
Wright-Patterson Air Force Base, Ohio

79 02 02 047

AFIT/GOR/MA/78D-5

0
ADA064658

ACCESSION PW	
NTIS	White Section <input checked="" type="checkbox"/>
DDC	Buff Section <input type="checkbox"/>
UNANNOUNCED	
JUSTIFICATION	
BY	
DISTRIBUTION/AVAILABILITY CODES	
DIST.	AVAIL. REG/SP SPECIAL
A	

LEVEL II

0

DDC FILE COPY

(6) CRITERION FOR SELECTION OF
VARIABLES IN A REGRESSION
ANALYSIS

(9) Master's THESIS

(14) AFIT/GOR/MA/78D-5 Larry J. Pulcher
Captain USAF

(10)

(11) Dec 78

(12) 137 p.

Approved for public release; distribution unlimited.

012 225 -

bpg

Acknowledgments

This study was conducted at the Air Force Institute of Technology under the guidance of Dr. David R. Barr. I would like to thank Dr. Barr for his patient guidance throughout the process. I would also like to express appreciation to my wife, Lisa, for her assistance and encouragement and to my son, Jacob, for his patience.

Larry J. Pulcher

Table of Contents

	<u>Page</u>
Acknowledgments	ii
List of Figures	v
List of Tables	vi
Abstract	viii
I Introduction	1
Previous Results	1
Scope of Present Study	2
Theory of Linear Least Squares Regression	3
Assumptions	3
Method of Least Squares	3
II Selection of Variables	10
Variables	10
Models	13
Test of Equality of Regression Populations	19
III Stepwise Regression	33
Mechanics	33
The Packages	38
Results	41
Conclusion	44
IV All Possible Regressions	47
Application	51
V Conclusions	64
Results	64
Validation	64
Recommendations	70
Bibliography	71

Page

Appendix	73
Vita	127

List of Figures

<u>Figure</u>		<u>Page</u>
1	Tree Diagram	49
2	Sequence of Leaps and Bounds Runs	59
3	Results of Leaps and Bounds Runs	61
4	Program YSEPR	74
5	Program SUMS	75
6	Program CHOW	77
7	Selected Output from SPSS	89
8	Selected Output from BMD	100
9	Sample Leaps and Bounds	105
10	Sample OMNITAB Output	118

List of Tables

<u>Table</u>		<u>Page</u>
I	List of Variables	14
II	Logistics Support Cost/Operating Hour Equation Generated by Westinghouse	16
III	Calculated F-Values from CHOW Test.	29
IV	Rank of F-Values from CHOW Test	31
V	Variable Remaining in the Model After the Chow Test.	32
VI	Numbers of the Variations on Permanent File Used in SPSS and Leaps and Bounds	40
VII	Sequence of Stepwise Regression on 60 Variables Remaining After Chow	42
VIII	Coefficients of the SPSS Regression Equation . . .	45
IX	Three Groups of Variables in First Run of RLEAP .	53
X	Subset of Variables of Three Groups Selected by RLEAP	54
XI	Subset Selected from 27 Variables Combined from Run 1 Based on Cp Criterion.	55
XII	Three Subsets Resulting from the Third Run Based on Cp Statistic.	56
XIII	Three Subsets Resulting from the Third Run Based on \bar{R}^2 Criterion	57
XIV	Variables Selected in Runs 3, 4, and 5	60
XV	Equations Selected Using the All-Possible Regressions Method	63
XVI	Comparison of Three Regressions	65

<u>Table</u>		<u>Page</u>
XVII	Data Points Used for Validation	66
XVIII	Generated by the Stepwise and the Leaps and Bounds Equations	68

Abstract

The Test of Equality between Subsets of Coefficients in Two Regressions is developed and applied as a means to pre-screen variables from a regression model.

Some criterion for selection of variables are discussed and some existing regression packages are applied to data on characteristics of avionics equipment for comparison purposes.

CRITERION FOR SELECTION OF VARIABLES IN
A REGRESSION ANALYSIS

I. Introduction

Previous Results

At the request of the Systems Evaluation Branch of the Air Force Avionics Laboratory at Wright-Patterson AFB, the Westinghouse Electric Corporation performed a regression analysis of characteristics of Line Replaceable Avionics Units (LRU) in an attempt to model some of the equipment's logistics characteristics. Westinghouse identified 21 independent and six dependent variables. Seven of the 21 independent variables are purely indicators, identifying type of aircraft and general usage category of the equipment.

The regression was performed using the "Linear Least Squares Curve Fitting Program" (LLSCFP) developed by Daniel and Wood. In using LLSCFP, all 21 independent variables, as well as some terms containing the squares or the natural logarithms of variables are included simultaneously in the first regression. Then with the aid of statistics, plots, and tabular data arrangement, a subset collection of independent variables is chosen which best approximates the data.

Scope of Present Study

There are several ways to arrive at the "best" subset of independent variables to include in a model. At one extreme, the model can consist of all possible variables. But this is not desirable for two reasons. First, it may be very expensive to gather and maintain a data base for a large number of variables, some of which may have little impact. But second and more important, when the purpose is to predict future costs, as it is in this study, a model that uses a large number of variables to fit the nuances of previous data may in fact have a higher prediction variance than a subset model (Ref 17:7). Important information could be lost in the myriad interrelationships that exist. For this reason the selection of the form and the variables of the regression equation becomes important.

The methods of selection of variables to be investigated in this study are: iterative techniques using the Statistical Package for the Social Sciences (SPSS) and BMD Biomedical Computer Programs (BMD), all possible regressions using the Leaps and Bounds technique developed by Furnival and Wilson, and the C_p statistic search using LLSCFP developed by Daniel and Wood.

The desired final outcome of this analysis is to provide the personnel at the Air Force Avionics Laboratory with a method of performing a quality regression without an extensive background in the technique, so that they can do work in-house which they previously

contracted out. For that reason the methods used in this work will rely on existing packages where possible.

Theory of Linear Least Squares Regression

Assumptions. The first assumption made in the use of linear least squares regression is that the correct model has been chosen. If an incorrect form is used some values given by the equation will be biased.

The second assumption is that the data is typical of the true population about which the analysis is being performed.

The third assumption of the method is that the y observations are statistically uncorrelated and independent. If each y value is considered to be composed of a true and a random error value called ϵ , then this assumption can be restated as: The expected value of the product of any two of the random components is zero.

Three other assumptions that are considered less important (Ref 8:8) are that all observations on y have the same unknown variance, that the levels of the independent variables are non-stochastic, and that the uncontrolled error is distributed normally.

Method of Least Squares. The general form of the linear least squares regression equation is

$$y = \alpha_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon \quad (1)$$

where y is the observed value of the dependent variable, x_i is the

observed value of the i^{th} independent variable, and α_0 and β_i are regression coefficients. While the linear squares method can treat only equations in the form of equation (1), there are non-linear equations which are intrinsically linear, such as $y = \alpha_0 x_1^{\beta_1} x_2^{\beta_2}$. By taking the natural log this equation becomes

$$\ln y = \ln \alpha_0 + \beta_1 \ln x_1 + \beta_2 \ln x_2$$

This is only one of a variety of intrinsically linear equations and methods for linearizing. Equations that are not intrinsically linear can not be handled using the linear least squares method. Non-linear least squares packages are available but will not be considered in this study.

If there are N independent observations of y_i and x_i , each observation can be written as

$$y_i = \alpha_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \dots + \beta_K x_{iK} + \epsilon_i \quad (2)$$

where x_{ij} represents the i^{th} observation of the j^{th} variable. If the matrices

$$\underline{y} = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_N \end{bmatrix} \quad (3)$$

$$X = \begin{bmatrix} 1 & x_{11} & x_{12} & \cdot & \cdot & \cdot & x_{1k} \\ 1 & x_{21} & x_{22} & \cdot & \cdot & \cdot & x_{2k} \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 1 & x_{N1} & x_{N2} & \cdot & \cdot & \cdot & x_{Nk} \end{bmatrix} \quad (4)$$

$$\beta = \begin{bmatrix} \alpha_0 \\ \beta_1 \\ \beta_2 \\ \vdots \\ \beta_k \end{bmatrix} \quad (5)$$

$$\epsilon = \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \vdots \\ \epsilon_N \end{bmatrix} \quad (6)$$

are defined, then all N equations can be written simultaneously as

$$y = X \beta + \epsilon \quad (7)$$

The basis of the least squares method is that a straight line is generated through data points in such a way that the sum of the squared distances or errors between the line and the points is minimized. This sum of squared errors (SSE) can be written as $\sum_i (\epsilon_i^2)$ and in matrix notation is

$$\sum (\epsilon_i)^2 = \epsilon' \epsilon \quad (8)$$

Substituting (7) into (8) yields

$$\underline{\epsilon}' \underline{\epsilon} = (\underline{y} - \mathbf{X} \underline{\beta})' (\underline{y} - \mathbf{X} \underline{\beta}) \quad (9)$$

which we would like to minimize. If classical optimization is performed on (9), an estimator of $\underline{\beta}$

$$\underline{b} = (\mathbf{X}' \mathbf{X})^{-1} \mathbf{X}' \underline{y} \quad (10)$$

is found to minimize SSE.

The variation of the dependent variable measurements about their mean

$$(y_i - \bar{y})^2 \quad (11)$$

is called Total Sums of Squares (TSS). TSS can be decomposed to two components, the Sum of Squares Explained by the Regression (SSR) and the error unexplained by the regression (SSE) such that

$$SST = SSR + SSE \quad (12)$$

This partitioning gives rise to a measure of goodness of fit R_{yx}^2 or commonly written as just R^2 and called the Coefficient of Determination or the Multiple Correlation Coefficient Squared. R^2 is defined as

$$R^2 = \frac{SSR}{SST} \quad (13)$$

and represents the fraction of the variability in the independent

variable explained by the regression equation. But it is known that the Multiple Correlation Coefficient calculated in this way is biased upward, always indicating a higher degree of correlation than actually exists in the true population. In order to correct for the bias, R^2 is adjusted for degrees of freedom by the relationship

$$\bar{R}^2 = 1 - (1 - R^2) \left(\frac{N-1}{N-K-1} \right) \quad (14)$$

and called the Adjusted Multiple Correlation Coefficient. While \bar{R}^2 is not entirely unbiased, it does exhibit less bias than R^2 , and will be used in this analysis.

A third measure of goodness of fit is the C_p statistic derived by Mallows, and is based on total squared error. The total squared error can be considered to be made up of a squared bias plus a squared random error in y at each data point. If the total squared error is represented as

$$\sum_{i=1}^n (\nu_i - \eta_i)^2 + \sum_{i=1}^n \text{Var}(y_{ip}) \quad (15)$$

where $\nu_i = \nu(X_{i1}, X_{i2}, \dots, X_{iN})$ is the expected value of y from an equation with true β s, $\eta_i = b_0 + \sum_{j=1}^K b_j X_{ij}$ is the expected value of y from the equation of estimates of β s, and p is $K + 1$. The term $\sum (\nu_i - \eta_i)^2$ can be represented by SSEB called the sum of squared errors bias. Also, Γ can be defined as the standardized total squared

error

$$\Gamma_p = \frac{SSEB_p}{\sigma^2} + \frac{1}{\sigma^2} \sum_{i=1}^N \text{Var}(y_{ip}) \quad (16)$$

It is known [Daniel and Wood (Ref 8:86)] that

$$\sum_{i=1}^N \text{Var}(y_{ip}) = p \sigma^2 \quad (17)$$

Combining (16) and (17) forms

$$\Gamma_p = \frac{SSEB_p}{\sigma^2} + p \quad (18)$$

The error sum of squares (SSE) is defined as

$$SSE = \sum_{i=1}^N (y_i - \hat{y}_i)^2 \quad (19)$$

and

$$E(SSE) = \sum_{i=1}^N (\nu_i - E(\hat{y}_i))^2 + (N-p)\sigma^2 \quad (20)$$

Because $E(\hat{y}_i) = \eta_i$, then

$$E(SSE) = \sum_{i=1}^N (\nu_i - \eta_i)^2 + (N-p)\sigma^2 \quad (21)$$

or

$$E(SSE) = SSEB_p = (N-p)\sigma^2 \quad (22)$$

Combining (18) and (22) gives

$$\Gamma_p = \frac{E(SSE_p)}{\sigma^2} - (N - 2p) \quad (23)$$

Now define C_p as an estimate of Γ_p

$$C_p = \frac{SSE_p}{S^2} - (N - 2p) \quad (24)$$

where s^2 is an estimate of σ^2 . Note from (22) that when the correct model is used the bias, SSB_p , goes to zero and C_p goes to p .

Then the objective of the C_p search is to find the p -term equation which has a $\frac{C_p}{p}$ value nearest one and therefore minimum bias.

A drawback to the method is that it is sensitive to the S^2 estimate of variance. The C_p obtained from two different models may not be comparable unless the same value of S^2 was used in both. For this reason, the LLSCFP allows the option of using S^2 from an entire set of input variables, from a subset of variables, or a user supplied value. It seems sensible, when a large number of models are being compared, to supply a constant value of S^2 so the C_p values can be compared.

It should be noted that the form of the Γ_p and C_p equations (23) and (24) indicate the importance of eliminating unnecessary variables from a model. The removal of one variable has the capability to remove as much as two units from the standardized squared error.

II. Selection of Variables

Variables

Westinghouse collected data amounting to 63 points on 21 physical and usage characteristics and 6 logistics characteristics of line replaceable avionics units, with the intent to predict logistics characteristics from physical and usage characteristics. Sources used to collect the data were: existing Air Force Data Systems, site visits to Air Force logistics facilities, Westinghouse activities, published reports, and engineering analysis of LRUs. The following paragraphs describe briefly each of the variables. For a more in-depth description of the variables and the manner in which they were collected, see the Westinghouse report (Ref 22:18).

The first six independent variables are measures of physical characteristics. The Unit Price is measured in dollars per LRU. The Volume is measured in cubic feet. Weight is measured in pounds. Component Count is a measure of the number of electrical components of an LRU and does not include mechanical devices, connectors, or structure. Component Density is simply Component Count divided by Volume. While Westinghouse used Component Density in their analysis, it will not be used here, because the matrix of data would be singular in the log-linear model which will eventually be used. Power

Dissipation is measured in input watts minus output watts.

The next five independent variables, measures of component type, are in terms of percentages and are additive to unity. The variable names are descriptive, but if information on the way the measurements are determined is desired, the Westinghouse report (Ref 22:18) should be consulted. The variables are: Fraction Digital, Fraction Analog, Fraction Electromechanical, Fraction Power Supply, and Fraction Transmitter.

The twelfth variable, Fraction Solid State, is a measure of LRU technology, the percentage of components in the LRU that are solid state in nature.

The next data element collected concerned aircraft type and usage. Three types of aircraft were Fighter, Bomber, and Cargo. The three types of usage were Navigation, Sensory, and Communications. In both the Westinghouse and this study these parameters were used as indicators, but in different ways. Westinghouse coded them as follows:

Bomber	1	0
Cargo	0	1
Fighter	0	0
Sensory	1	0
Communications	0	1
Navigation	0	0

In addition, Westinghouse found interactions between certain of the two types useful in their analysis. These were coded as follows:

Bomber Sensory	1	0	0
Bomber Communications	0	1	0
Cargo Communications	0	0	1

In this study a different approach was taken to these variables. Interaction between all of the aircraft types and usages were considered as indicator variables and coded as follows:

Nav Fighter	1	0	0	0	0	0	0
Nav Bomber	0	1	0	0	0	0	0
Nav Cargo	0	0	1	0	0	0	0
Sensor Fighter	0	0	0	1	0	0	0
Sensor Bomber	0	0	0	0	1	0	0
Comm Fighter	0	0	0	0	0	1	0
Comm Bomber	0	0	0	0	0	0	1
Comm Cargo	0	0	0	0	0	0	0

The data base does not include any sensory equipment on Cargo aircraft, thus it is not used as a variable.

The final independent variable identified by Westinghouse is the Percentage of Failures Detected by Built-In-Test (BIT). This variable is intended to be a measure of the effectiveness of the Built-In-Test/Fault-Isolation-Test (BIT/FIT) capabilities of each LRU.

The six independent variables which Westinghouse identified are Maintenance Manhours/Operating Hour, Mean Time Between Failures, Mean Time Between Maintenance Actions, Logistics Support Cost/Operating Hour, Training Costs/Operating Hour, and Percentage Not Repairable This Station. The Operating Hours used to normalize is an estimate of the amount of time an LRU is turned on, data which is not recorded. Instead, Westinghouse used flying hours/year of the aircraft using an LRU multiplied by a scaling factor which they estimated

for each of the three types of aircraft. All of the maintenance and operating hours and cost data for these six variables are total yearly figures.

The previous analysis regressed the independent variables against each of the dependent variables individually. Because it is not the purpose of this study to dispute the earlier one, but rather to develop a method for the personnel of the Avionics Laboratory to perform the regression, only one of the dependent variables was chosen for illustration. Logistics Support Cost/Operating Hour was chosen because the Westinghouse report recommended that further study be conducted on it.

Table I contains the variables and the abbreviations used in this and the previous report. An asterisk indicates that the variable was not used in the study indicated. Table II contains the equation found by Westinghouse.

Models

It is well known that the selection of the model is very important to the goodness of fit of a regression and its predictive ability. In light of this, a balance was sought that would yield a model with elements of both simplicity and goodness of fit.

The first model considered was the simplest form of multiple regression equation, namely

Table I
List of Variables

Name	Abbreviations	
	Westinghouse	This Report
Unit Price	UP	UP
Volume	V	V
Weight	W	W
Component Count	CC	CC
Component Density	CD	*
Power Dissipation	PD	PD
Fraction Solid State	FSS	%SS
Fraction Digital	FDI	%DIG
Fraction Analog	FAN	%AN
Fraction Electromechanical	FEM	%EM
Fraction Power Supply	FPS	%PS
Fraction Transmitter	FXR	%XMTR
Bomber	IBOM	*
Cargo	ICAR	*
Sensory	ISEN	*
Communications	ICOM	*
Navigation-Fighter	*	NF
Navigation-Bomber	*	NB
Navigation-Cargo	*	NC

Table I (cont'd)

Name	Abbreviations	
	Westinghouse	This Report
Sensory-Fighter	*	SF
Sensory-Bomber	BOMSEN	SB
Communications-Fighter	*	CF
Communications-Bomber	BOMCOM	CB
Communications-Cargo	CARCOM	COMM C
Fraction BIT/FIT	BIT/FIT	BF
Logistics Support Cost/ Operating Hour	LSC/OH	LSC/OH
Maintenance Manhours/ Operating Hour	MMH/OH	*
Mean Time Between Failures	MTBF	*
Mean Time Between Maintenance Actions	MTBMA	*
Training Cost/Operating Hour	TRAIN/OH	*
Not Repairable This Station	NRTS	*

* Not used in the analysis.

Table II

Logistics Support Cost/Operating Hour Equation
Generated by Westinghouse

$$\ln(LSC/OH) = \alpha_0 + \sum_{i=1}^{21} b_i X_i$$

 $R^2 = .8916$ $R^2 = .9283$

F-value = 25.3

i	b_i	X_i	Partial F
0	-8.15108		
1	3.86111	(IBOM - .286)	36.0
2	3.66533	(ICAR - .270)	31.4
3	-4.85271×10^{-1}	(ISEN - .254)	3.6
4	-2.56663	(IBOM - .286) (ISEN - .254)	37.2
5	-1.66262	(IBOM - .286) (ICOM - .206)	12.2
6	-7.67253×10^{-1}	(ICAR - .270) (ICOM - .206)	3.2
7	1.27356×10^{-2}	FPS	6.8
8	2.25967×10^{-2}	(FAN - 63.3)	36.0
9	-7.42999×10^{-3}	(FSS - 61.1)	9.0
10	2.38503	(UP - 1.64)	27.0
11	-9.20384×10^{-11}	$(UP - 133606.3)^2$	25.0
12	-1.52864×10^{-4}	$(W - 64.3)^2$	8.4
13	-1.07105×10^{-3}	$(FAN - 48.9)^2$	33.6
14	1.20418×10^{-3}	$(FEM - 47.0)^2$	33.6
15	7.10025×10^{-4}	$(FXR - 40.2)^2$	10.9
16	-1.61651×10^{-4}	$(FSS - 51.9)^2$	2.2

Table II (cont'd)

i	b_i	X_i	Partial F
17	-1.11568×10^{-6}	$(PD - 722)^2$	7.3
18	5.00996	$(UP - 1.68)^2$	42.2
19	1.70042×10^{-3}	$(BF - 27.3)^2$	13.0
20	4.60293×10^{-1}	LN(UP)	31.4
21	2.35583×10^{-1}	LN(V)	4.8

$$y = \alpha_0 + \beta_1 x_1 + \beta_2 x_2 + \dots + \beta_k x_k + \epsilon \quad (1)$$

When this model was used to form a prediction equation on the original data using SPSS, it did not provide satisfactory goodness of fit, having a Correlation Coefficient Squared of approximately 0.45, indicating that the values predicted by the model were poorly matched to the actual values. The model fell far short of the R^2 of approximately 0.93 achieved by Westinghouse.

A model was desired which would allow more possibility of interactions and not be restricted to linearity of variables. At the same time it was noted that the five measures of component type, namely %DIG, %AN, %EM, %PS, %XMTR, along with the Fraction of Malfunctions Detected by BIT/FIT, BF, could all be converted to indicator form with little loss of information, as almost all of the measurements were near 0% or 100%. This meant that the variable list now

consisted of 13 indicator or dummy variables and 6 ordinary independent variables.

The model settled on was one of considerable complexity but offered many possibilities for interactions between variables. The Product of Powers model is of the form

$$y = e^{(\alpha_0 + \sum_i \alpha_i D_i) \prod_j x_j^{(\beta_{j0} + \sum_i \beta_{ji} D_i)}} \quad (25)$$

where α , β , and x have the same meaning as described in the previous model, and D_i is indicator or dummy variable i and j is the index of ordinary variable x . Because this model is not linear, least squares regression can not be used on it without a transformation. If the natural logarithm is taken on both sides of (25), the resulting equation is

$$\begin{aligned} \ln y = & \alpha_0 + \sum_{i=1}^{13} \alpha_i D_i + \sum_{j=1}^6 \beta_{j0} \ln x_j \\ & + \sum_{j=1}^6 \sum_{i=1}^{13} \beta_{ji} D_i \ln x_j \end{aligned} \quad (26)$$

Linear least squares regression can be applied to the model in (26), but there are now 97 possible variables. Because there are only 63 data points, selection of variables has become of paramount importance. And because only one of the packages used in this study, SPSS, is capable of handling this number of terms, some method was needed to

eliminate terms prior to regression. That is where a test of equality of regression populations was useful.

Test of Equality of Regression Populations

The coefficients and constant terms, β 's and α 's in (26) could be written in vector form as

$$\underline{\beta} = \begin{bmatrix} \alpha_0 + \alpha_1 + \dots + \alpha_{13} \\ \beta_{1\ 0} + \beta_{1\ 1} + \dots + \beta_{1\ 13} \\ \beta_{2\ 0} + \beta_{2\ 1} + \dots + \beta_{2\ 13} \\ \vdots \\ \vdots \\ \beta_{6\ 0} + \beta_{6\ 1} + \dots + \beta_{6\ 13} \end{bmatrix} \quad (27)$$

by noting that $\ln x_j$ is a common term in the second and third term of (26) and that $D_i = 0$ or 1. If only one indicator is considered at a time and all others are considered constant, (27) becomes

$$\underline{\beta}_b = \begin{bmatrix} \alpha_0 + \alpha_i \\ \beta_{1\ 0} + \beta_{1\ i} \\ \beta_{2\ 0} + \beta_{2\ i} \\ \vdots \\ \vdots \\ \beta_{6\ 0} + \beta_{6\ i} \end{bmatrix} \quad (28)$$

Equation (28) can be divided into two subsets depending on whether $D_i = 0$ or 1.

$$\underline{\beta}_a = \begin{bmatrix} \alpha_0 \\ \beta_{1\ 0} \\ \beta_{2\ 0} \\ \vdots \\ \vdots \\ \beta_{6\ 0} \end{bmatrix} \quad (29)$$

if $D_i = 0$. If $D_i = 1$, then equation (28) is the case.

If it could be shown that equation (28) and (29) are not significantly different, then (29) would be used and the interaction terms between that D_i and all x_j as well as that $\alpha_i D_i$ would not be included in the model. Further, if it could be shown that $\underline{\beta}_a = \underline{\beta}_b$ where

$$\underline{\beta}_a = \begin{bmatrix} \alpha_0 + \alpha_i \\ \beta_{1\ 0} + \beta_{1\ i} \\ \beta_{2\ 0} \\ \beta_{3\ 0} + \beta_{3\ i} \\ \vdots \\ \vdots \\ \beta_{6\ 0} + \beta_{6\ i} \end{bmatrix} \quad (30)$$

and $\underline{\beta}_b =$ equation (28), then the individual interaction between x_2 and that D_i would not be needed in the model. Any of the α_i or β_{ji} terms could be so tested either singly as above or in combinations.

Chow describes such a test (Ref 7:599) and calls it a Test of Equality Between Subsets of Coefficients in Two Regressions. The same technique was described by Fisher (Ref 12:364).

Under the alternative hypothesis $\underline{\beta}_a \neq \underline{\beta}_b$ the model becomes

$$y_1 = X_1 \beta_1 + \epsilon_1 = Z_1 \gamma_1 + W_1 \delta_1 + \epsilon_1 \quad (31)$$

$$y_2 = X_2 \beta_2 + \epsilon_2 = Z_2 \gamma_2 + W_2 \delta_2 + \epsilon_2 \quad (32)$$

or

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} Z_1 & 0 & W_1 & 0 \end{bmatrix} \begin{bmatrix} \gamma_1 \\ \gamma_2 \\ \delta_1 \\ \delta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \end{bmatrix} \quad (33)$$

where Z_1 , Z_2 , W_1 , and W_2 are submatrices of the X matrix of data

$$X = \begin{bmatrix} 1 & X_{11} & X_{12} & \dots & X_{1K} \\ 1 & X_{21} & X_{22} & \dots & X_{2K} \\ \dots & & & \ddots & \\ \dots & & & & \ddots \\ 1 & X_{N1} & \dots & & X_{NK} \end{bmatrix} \quad (4)$$

The matrix Z_1 contains those elements of X for the variables which are being tested and in which the D_i being considered is equal to zero. Z_2 contains those elements of X for the variables which are being tested and in which the D_i being considered is equal to one. W_1 contains those elements of X for the variables which are not being tested and in which the D_i equals zero. W_2 contains the remainder of X , those elements for which the variable is not being tested and D_i equals one. The vector γ_1 contains the regression coefficients which are being tested, assuming D_i equals zero, such as β_{20} in (30). The

vector γ_2 contains the coefficients being tested assuming D_i equals one such as $\beta_{20} + \beta_{21}$. The vector δ_1 contains the regression coefficients not being tested assuming D_i equals zero. The vector δ_2 contains the coefficients not being tested assuming D_i equals one. For example, if it is desired to test whether

$$\begin{bmatrix} \alpha_0 + \alpha_1 \\ \beta_{10} + \beta_{11} \\ \beta_{20} \\ \beta_{30} + \beta_{31} \\ \beta_{40} + \beta_{41} \\ \beta_{50} + \beta_{51} \\ \beta_{60} + \beta_{61} \end{bmatrix} = \begin{bmatrix} \alpha_0 + \alpha_1 \\ \beta_{10} + \beta_{11} \\ \beta_{20} + \beta_{21} \\ \beta_{30} + \beta_{31} \\ \beta_{40} + \beta_{41} \\ \beta_{50} + \beta_{51} \\ \beta_{60} + \beta_{61} \end{bmatrix} \quad (34)$$

then

$$Z_1 = \begin{bmatrix} X_{12} \\ X_{22} \\ \vdots \\ \vdots \\ X_{n2} \end{bmatrix} \quad (35)$$

and

$$Z_2 = \begin{bmatrix} X_{n+12} \\ X_{n+22} \\ \vdots \\ \vdots \\ X_{n+m2} \end{bmatrix} \quad (36)$$

Assuming that D_1 equals zero for the first n observations and one for the next m observation.

$$W_1 = \begin{bmatrix} 1 & x_1 & 1 & x_1 & 3 & x_1 & 4 & x_1 & 5 & x_1 & 6 \\ 1 & x_2 & 1 & x_2 & 3 & x_2 & 4 & x_2 & 5 & x_2 & 6 \\ \dots & \dots & \\ \dots & \dots & \\ 1 & x_n & 1 & x_n & 3 & x_n & 4 & x_n & 5 & x_n & 6 \end{bmatrix} \quad (37)$$

and

$$W_2 = \begin{bmatrix} 1 & x_{n+1} & 1 & x_{n+1} & 3 & x_{n+1} & 4 & x_{n+1} & 5 & x_{n+1} & 6 \\ 1 & x_{n+2} & 1 & x_{n+2} & 3 & x_{n+2} & 4 & x_{n+2} & 5 & x_{n+2} & 6 \\ \dots & \dots & \\ \dots & \dots & \\ 1 & x_{n+m} & 1 & x_{n+m} & 3 & x_{n+m} & 4 & x_{n+m} & 5 & x_{n+m} & 6 \end{bmatrix} \quad (38)$$

The vectors would be

$$\gamma_1 = \begin{bmatrix} \beta_2 \\ 0 \end{bmatrix} \quad (39)$$

$$\gamma_2 = \begin{bmatrix} \beta_2 & 0 \\ + & \beta_2 & 1 \end{bmatrix} \quad (40)$$

$$\delta_1 = \begin{bmatrix} \alpha_0 \\ \beta_1 & 0 \\ \beta_3 & 0 \\ \beta_4 & 0 \\ \beta_5 & 0 \\ \beta_6 & 0 \end{bmatrix} \quad (41)$$

$$\delta_2 = \begin{bmatrix} a_0 + a_1 \\ \beta_1 0 + \beta_1 1 \\ \beta_3 0 + \beta_3 1 \\ \beta_4 0 + \beta_4 1 \\ \beta_5 0 + \beta_5 1 \\ \beta_6 0 + \beta_6 1 \end{bmatrix} \quad (42)$$

Under the null hypothesis $\underline{\beta}_a = \underline{\beta}_b$, equation (34), the model becomes

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} Z_1 W_1 & 0 \\ Z_2 & 0 \\ W_2 \end{bmatrix} \begin{bmatrix} \gamma \\ \delta_1 \\ \delta_2 \end{bmatrix} + \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \end{bmatrix} \quad (43)$$

where Z_1 , Z_2 , W_1 , W_2 , δ_1 , and δ_2 are the same as in (33) and contains the regression coefficients of the variables being tested assuming D_i equals zero. In the example being used here,

$$\gamma = \beta_{2,0} \quad (44)$$

Under the null hypothesis, the least squares estimators of γ , δ_1 , and δ_2 are

$$\begin{bmatrix} c_0 \\ d_1 0 \\ d_2 0 \end{bmatrix} = \begin{bmatrix} Z_1' Z_1 + Z_2' Z_2 & Z_1' W_1 & Z_2' W_2 \\ W_1' Z_1 & W_1' W_1 & 0 \\ W_2' Z_2 & 0 & W_2' W_2 \end{bmatrix}^{-1} \begin{bmatrix} Z_1' & Z_2' \\ W_1' & 0 \\ 0 & W_2' \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \quad (45)$$

where y_1 is a vector of observed y values for which the corresponding D_i equals zero, and y_2 is a vector of observed y values for which the corresponding D_i equals one. Continuing the same example as

previously,

$$\underline{y}_1 = \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ \vdots \\ y_n \end{bmatrix} \quad (46)$$

and

$$\underline{y}_2 = \begin{bmatrix} y \\ y_{n+1} \\ y_{n+2} \\ \vdots \\ \vdots \\ y_{n+m} \end{bmatrix} \quad (47)$$

Under the alternative hypothesis,

$$\begin{bmatrix} c_1 \\ c_2 \\ d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} Z_1 Z_1 \\ 0 \\ W_1 Z_1 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & Z_1 W_1 & 0 \\ Z_2 Z_2 & 0 & Z_2 W_2 \\ 0 & W_1 W_1 & 0 \\ W_2 Z_2 & 0 & W_2 W_2 \end{bmatrix} \cdot \begin{bmatrix} Z_1 & 0 \\ 0 & Z_2 \\ W_1 & 0 \\ 0 & W_2 \end{bmatrix} \cdot \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} \quad (48)$$

Once the estimated coefficients are found, an F-test can be used to test the null hypothesis. If $m > p$, where p is the length of the vectors in (34) the test is

$$F_{(q, m+n-2p)} = \frac{\|Z_1 c_1 + W_1 d_1 - Z_1 c_0 - W_1 d_{10}\|^2 + \|Z_2 c_2 + W_2 d_2 - Z_2 c_0 - W_2 d_{20}\|^2}{\|y_1 - Z_1 c_1 - W_1 d_1\|^2 + \|y_2 - Z_2 c_2 - W_2 d_2\|^2}$$

$$\frac{m+n-2p}{q} \quad (49)$$

If $p-q \leq m \leq p$ where q is the number of variables being tested or the length of vector γ_1 in (39), the test is

$$F_{(m-p+q, n-p)} = \frac{\|Z_1 c_1 + W_1 d_1 - Z_1 c_0 - W_1 d_{10}\|^2 + \|y_2 - Z_2 c_0 - W_2 d_{20}\|^2}{\|y_1 - Z_1 c_1 - W_1 d_1\|^2} \cdot \frac{n-p}{m-p+q} \quad (50)$$

If the calculated F value is greater than the table F value at the desired level of confidence, then reject H_0 and include the interaction term in the model. If the calculated F is lower than the table F , accept H_0 and do not include the interaction term in the model. If $m < p-q$, the test can not be performed in which case the null hypothesis has not been rejected and the variables are not included in the model.

In doing this study, the Chow test was performed on each β_{j0} + β_{ji} and each $a_0 + a_i$ term individually for each combination of j and i . Thus the test had the potential to eliminate any of 78 β_{ji} and 13 a_i terms of the 97 possible in the product of powers model used.

To perform the calculations for these tests three programs were written. The first program called YSEPR simply separated the observed values of y into the vectors y_1 and y_2 for each of the 13 dummy variables. A listing of the program is contained in the appendix on Figure 4.

The second program, called SUMS, was written to calculate

all of the combinations of sums of variables, sums of squared variables, and sums of cross products of variables grouped as in YSEPR by the value of each dummy variable. These sums are calculated because when the multiplications required in the large matrices in (45) and (48) are performed, the result would be some of those elements calculated by SUMS. Rather than perform the calculations repeatedly when only a small systematic change is needed for each test, they are calculated only once by SUMS and read when needed by the third program. A listing of SUMS is contained in the appendix on Figure 5.

The third program, called CHOW, performs the calculations in (34), (37), (38), and (39) and outputs the F values with the parameters necessary to test the hypotheses. A listing of CHOW is contained in the appendix on Figure 6. Table III contains the calculated F values generated by CHOW. Table IV contains the ranks of the F values generated.

In the tests performed here, $p-q \leq m \leq p$ never occurred. Therefore, the degrees of freedom for all of the tests were q and $m+n-2p$ or 1 and 49 where $m+n = 63$ and $p = 7$.

The coefficients associated with dummy variables SB, CF, CB, and PS could not be tested because m was less than $p-q$. As a result, there were $91-24 = 67$ variables tested using the Chow test. If the overall hypothesis that none of the $\beta_{j0} + \beta_{ji}$ terms differ from β_{j0} or $a_0 + a_i$ terms differ from a_0 is true, then the probability that at

least one of the individual hypotheses will be rejected would be less than α^* where

$$\alpha^* = 1 - (1 - \alpha)^{67} \quad (51)$$

and is the level at which individual tests are conducted. Then

$$\alpha = 1 - (1 - \alpha^*)^{1/67} \quad (52)$$

If $\alpha^* = 0.10$ is desired then the associated value of α would be 0.00157.

Using the tabled F-value for $\alpha = 0.001$ assures that α^* is less than 0.10. Values of α^* less than 0.10 can not be tested at this time because available tables of F-values only go down to 0.001. When the calculated F is larger than $F_{0.001, 1, 49} = 12.11$ the individual hypothesis is rejected and the interaction β_{ji} term can not be removed from the model on the basis of this test. Table III contains the calculated F-values for each of the tested terms. Variable \emptyset indicates the α_{0i} term. The numbering system used in program CHOW is shown at the bottom of the table.

Only 13 terms had F-values lower than the critical F. These in addition to the 24 variables which could not be tested and therefore did not fail a test of the null hypothesis mean that 37 variables have been eliminated from the 97 started with, leaving 60 variables still in the model. While this appears disappointing at first glance, leaving more variables still in the model than LLSCFP or Leaps and Bounds can

Table III
Calculated F Values from CHOW Test

Dummy	Variable						5	6
	0*	1	2	3	4			
1	46.792	35.957	25.792	25.083	25.321	4.445	30.243	
2	48.9942	31.165	27.368	17.834	37.558	2.207	13.168	
3	47.188	35.020	20.261	42.983	.434	1.664	2.142	
4	25.038	4.028	43.242	42.912	35.336	12.666	.138	
5	NT	NT	NT	NT	NT	NT	NT	NT
6	NT	NT	NT	NT	NT	NT	NT	NT
7	NT	NT	NT	NT	NT	NT	NT	NT
8	49.002	36.238	36.429	47.934	44.038	48.998	35.319	
9	49.440	40.300	14.671	45.948	.735	7.368	.681	
10	48.900	35.818	43.052	21.842	28.715	7.510	19.331	
11	NT	NT	NT	NT	NT	NT	NT	NT
12	54.984	42.913	45.636	35.172	15.782	17.991	15.147	
13	46.648	39.791	22.918	39.312	11.510	15.345	11.583	
Variable Names								
	1	2	3	4	5	6		
	UP	V	W	CC	%SS	PD		
Dummy Names								
1	2	3	4	5	6	7	8	9
NF	NB	NC	SF	SB	CF	CB	DIG	AN
10	11	12	13					
EM	PS	XMTR	BF					

NT indicates insufficient points in a subset to test.

*Variable Ø indicates the $\alpha_i D_i$ term.

handle, experimentation will be conducted in later chapters in which the rankings of the F-values will be used to try to preselect a set of variables for a model. The rankings of the F-values are shown in Table IV, with the lowest F-value being ranked 1. Also sub-optimized solutions, in which the 60 variables are broken into subsets to search for smaller subsets that can be combined, to form manageable sets, will be tried. Table V contains a list of the variables remaining in the model after the Chow test.

Table IV
Rank of F-Values from CHOW Test

Dummy	Variable						
	0*	1	2	3	4	5	6
1	55	39	29	27	28	9	32
2	59	33	30	20	42	7	15
3	56	34	23	48	2	5	6
4	26	8	50	46	37	14	1
5	NT	NT	NT	NT	NT	NT	NT
6	NT	NT	NT	NT	NT	NT	NT
7	NT	NT	NT	NT	NT	NT	NT
8	61	40	41	57	51	60	36
9	62	45	16	53	4	10	3
10	58	38	49	24	31	11	22
11	NT	NT	NT	NT	NT	NT	NT
12	63	47	52	35	19	21	17
13	54	44	25	43	12	18	13

NT indicates that there were insufficient points in one of the subsets to perform the test.

*Variable Ø indicates the $a_i D_i$ term.

Table V
Variable Remaining in the Model After the Chow Test

1 UP	21 NF*V	41 DIG*%SS
2 V	22 NF*W	42 DIG*PD
3 W	23 NF*CC	43 AN*UP
4 CC	24 NF*PD	44 AN*V
5 %SS	25 NB*UP	45 AN*W
6 PD	26 NB*V	46 EM*UP
7 NF	27 NB*W	47 EM*V
8 NB	28 NB*CC	48 EM*W
9 NC	29 NB*PD	49 EM*CC
10 SF	30 NC*UP	50 EM*PD
11 SB	31 NC*V	51 XMTR*UP
12 CF	32 NC*W	52 XMTR*V
13 CB	33 SF*V	53 XMTR*W
14 DIG	34 SF*W	54 XMTR*CC
15 AN	35 SF*CC	55 XMTR*%SS
16 EM	36 SF*%SS	56 XMTR*PD
17 PS	37 DIG*UP	57 BF*UP
18 XMTR	38 DIG*V	58 BF*V
19 BF	39 DIG*W	59 BF*W
20 NF*UP	40 DIG*CC	60 BF*%SS
61 LSC/OH (Dependent Variable)		

III. Stepwise Regression

Mechanics

The three most commonly used iterative techniques for determining the proper variables in a regression are; backward elimination, forward selection, and stepwise regression.

All three of the above methods make use of the Partial F-test. In this test, the explained sums of squares (SSR) are decomposed into components attributable to each independent variable.

In the standard regression method of decomposition, each variable is treated as if it had been added to the regression equation in a separate step after all other variables had been included. These F-values are then used to determine the next variable to enter or leave the equation, depending on the type of iterative regression being performed. The F-value is given by

$$F = \frac{\text{SSR due to } x_i / 1}{\text{SSE} / (N - K - 1)}$$

(Ref 20:336)

$$= \frac{r_{y(i, 1, 2, \dots, K)}^2 / 1}{1 - R_{y, 1, 2, \dots, K}^2 / (N - K - 1)} \quad (53)$$

The term $r_{y(1, 2, \dots, K)}^2$ is the part correlation indicating the relationship between the observed y and the residual of independent variable i

from which the effects of the other independent variables have been removed.

If the hierarchical decomposition method is used instead of the standard regression method, the order of inclusion must be specified and is used to determine the order to enter variables rather than a partial F test. The variable included first, the one with the highest assigned inclusion level, is evaluated by the ratio,

$$F = \frac{r_{y1}^2 / 1}{(1 - R_{y, 1, 2, \dots, K}^2) / (N-K-1)} \quad (54)$$

The second regression coefficient is tested by the ratio,

$$F = \frac{r_{y(2,1)}^2 / 1}{(1 - R_{y, 1, 2, \dots, K}^2) / (N-K-1)} \quad (55)$$

Ref 20:337)

$$= \frac{\text{incremental SS due to } x_2 / 1}{SSE / (N-K-1)}$$

Each successive variable to be included in a hierarchical fashion would be evaluated in the same manner as indicated above, with a squared part correlation of the form $r_{y(i, 1, 2, \dots, i-1)}^2$, where i is the variable being added, in the numerator. All of the ratios above should be compared to the tabled F distribution with 1 and $(N-K-1)$ degrees of freedom.

The hierarchical method of regression is used when there is some basis for believing that some variables will explain more variance than others before the regression is accomplished. Because there were no prior feelings about the variables used in this analysis, the hierarchical method was not used.

In the background elimination method, a regression equation with all of the possible terms is the starting point. Then partial F-value is calculated for each variable. If the lowest partial F-value is less than some preselected F-value, the variable corresponding to the value is removed from consideration, and the procedure is repeated from calculation of F-values for the new equation. If at any iteration there are no variables that have an F-value low enough to cause removal, the equation is adopted as calculated.

The forward selection method operates by entering variables one at a time until a satisfactory equation is reached. The order of inclusion is determined by using partial correlation coefficients as a measure of relative importance of the variables not yet in the equation. At each step, the variable with the highest partial correlation coefficient, that is, the variable with the highest correlation to the dependent variable after allowing for the effect of previously included variables, is brought into the equation. This procedure is repeated until the partial F-value of the latest entered term is less than some preselected value; then the equation is adopted.

The stepwise regression method is a refinement of the forward selection method in that at every stage of the procedure, the variables included in the model in earlier stages are examined. Thus a variable which was entered at an earlier stage but has been rendered unimportant by its relationship to later entered variables will be detected and removed from the equation. Again, this is done by comparing the partial F-values to a preselected F-value to find any variables to be removed. In later iterations, the removed variable is treated the same as a variable that has never entered the equation. The criterion for inclusion into the stepwise model is the same as in the forward selection method.

While calculation of the partial F-values needed to use these regression methods would be too time consuming to perform manually, both of the regression packages used in this chapter, SPSS and BMD, provide them, making the two packages easy and convenient to use. Because stepwise regression incorporates the main features of backward elimination and forward selection, it is considered to be the best of the three methods (Ref 11:172). While it has been shown that the three methods do not always choose the same subset (Ref 17:9), the stepwise method is more likely to choose the best. For that reason, of the three methods, stepwise regression will be used here.

In using iterative regression method, two pitfalls should be kept in mind. First, no significance should be attached to the order in which

variables are entered or removed from the model. The first variable entered is not necessarily the most important one when other variables have been entered. The partial F-value of each variable must be considered for each variable after each step to determine relative significance. Secondly, there is no guarantee that any of the three methods will supply an optimal equation, because of the restriction of removing and entering one variable at a time.

It was previously stated that preselected values of the F distribution are used as criterion in including and deleting variables from the equation. In both the SPSS and BMD packages these values are called FIN and FOUT respectively. A problem arises in preselecting these values, as the degrees of freedom are not known exactly before a regression is run. The tabled F-value has degrees of freedom 1 and $(N-K-1)$ where N is the number of data points and K is the number of independent variables in the equation. As the primary goal of an analyst is normally to maximize some measure of goodness-of-fit, such as R, while a secondary goal is to minimize K, K is not known exactly before the regression. Therefore, the values of FIN and FOUT must be determined from an estimated K. As a result some experimentation may be necessary to obtain the value of K which yields desired values for the goodness-of-fit measure.

An alternative is to use the default F-values for FIN and FOUT, 0.01 and 0.005, respectively. These values are designed to include

all variables and not remove any from the equation; in effect, a forced fit unless there are a large number of variables. In the course of the analysis, regressions were performed on identical data using varying values for FIN and FOUT. When values other than default were used, truncated versions of the same equation obtained from the default values were identified. It appears the simplest procedure may be to use default values of FIN and FOUT until the value of K is known, then use the table value of F at degrees of freedom 1 and (N-K-1) as FIN. FOUT should be slightly smaller than FIN, but other than that its selection is rather arbitrary.

The Packages

As would be expected when using packages that operate in the same way, SPSS and BMD yield the same answers and even employ the same format of output. Each prints at each step, the value of the multiple correlation coefficient, R, the standard error of estimate, an analysis of variance table, the coefficients of all variables currently in the equation, the standard error of the coefficients, and the partial F-value of all independent variables whether or not in the equation. In addition, SPSS provides R^2 and \bar{R}^2 . Both also list the value of calculated F to test the hypothesis

$$H_0: \begin{bmatrix} a \\ \beta_1 \\ \beta_2 \\ \cdot \\ \cdot \\ \cdot \\ \beta_K \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ \cdot \\ \cdot \\ \cdot \\ 0 \end{bmatrix} \quad (56)$$

Plots of residuals versus the sequence of cases in a file can be selected as options in both packages. Additionally, BMD will make plots of residuals versus all or selected independent variables as an option. Other options for both input and output are available and identified in the appropriate manuals (Ref 20:352) and (Ref 10:235). Examples of output are available in both manuals (Ref 20:360) and (Ref 10:249) and partial output prepared for this report are included in the appendix in Figures 7 and 8.

SPSS is capable of handling up to 100 independent variables per fit and BMD can handle up to 80. While both of the packages have the capability to compute transformations, the feature was not used. Instead, all interactions were computed using a short FORTRAN program and stored with the original variables on a permanent storage file to avoid recalculating them numerous times. Table VI indicates the location of all variables on the tape used for both stepwise regression and Leaps and Bounds.

Table VI

Numbers of the Variables on Permanent File Used in
SPSS and Leaps and Bounds

These are the variable numbers found on the SPSS output.													
1 UP	2 V	3 W	4 CC	5 %SS	6 PD	7 NF	8 NB	9 NC	10 SF	11 SB	12 CF	13 CB	14 DIG
					15 AN	16 EM	17 PS	18 XMTR	19 BF				
NF	20	21			22		23	24		25			
NB	26	27			28		29	30		31			
NC	32	33			34		35	36		37			
SF	38	39			40		41	42		43			
SB	44	45			46		47	48		49			
CF	50	51			52		53	54		55			
CB	56	57			58		59	60		61			
DIG	62	63			64		65	66		67			
AN	68	69			70		71	72		73			
EM	74	75			76		77	78		79			
PS	80	81			82		83	84		85			
XMTR	86	87			88		89	90		91			
BF	92	93			94		95	96		97			
					98 LSC/OH								

Results

First stepwise regression was used on the 60 variables remaining after the Chow test. Table VII provides a summary of the independent variable included by each step of the regression along with R^2 and \bar{R}^2 for the first 48 steps. It can be seen that step 25 shows a jump of almost 0.03 in R^2 and more than 0.04 in \bar{R}^2 over the previous step. Steps that follow provide only small increases in R^2 and \bar{R}^2 . The adjusted R^2 hits a peak at step 45 but actually changes very little between steps 25 and 45. After step 45, \bar{R}^2 shows a general downward trend except when a variable is removed. As a result the equation at step 25 was chosen as the best compromise between correlation and number of variables included. The equation has 23 variables, which is two more than the Westinghouse analysis, but it also provides an R^2 of more than 0.02 higher and \bar{R}^2 of about 0.03 higher than they achieved. Table VIII contains the coefficients and the partial F-values for each variable in the equation.

Next, as a comparison, a stepwise regression was performed with all 97 variables as inputs, regardless of results of the Chow test. The first six variables selected were the same as in the previous run, but from that point the two equations diverged. The regression with all 97 variables consistently had an R^2 of 0.02 to 0.03 lower than the previous run for the same number of variables included. This could be taken to mean that the variables deleted by the Chow test were

Table VII

Sequence of Stepwise Regression on 60 Variables
Remaining After Chow

Step	Variable	R ²	\bar{R}^2
1	W	.57312	.56612
2	AN*UP	.65870	.64733
3	SB	.72117	.70700
4	DIG*W	.76054	.74402
5	NB	.78460	.76571
6	XMTR*CC	.80354	.78249
7	DIG*V	.81802	.79486
8	BF%SS	.82905	.80372
9	NB*V	.83850	.81107
10	AN	.84931	.82034
11	EM	.86207	.83232
12	PS	.87267	.84211
13	BF*W	.87661	.84387
14	SF	.88006	.84508
15	UP	.88449	.84822
16	%SS	.88799	.84903
17	XMTR%SS	.89475	.85499
18	NB*W	.90005	.85917
19	AN(removed)	.90005	.86229
20	EM*V	.90507	.86624

Table VII (cont'd)

Step	Variable	R^2	\bar{R}^2
21	NB*UP	.90861	.86822
22	AN*W	.91318	.87184
23	DIG	.91814	.87621
24	NF*CC	.92491	.88361
25	NF*UP	.95212	.92388
26	NC	.95429	.92543
27	CC	.95678	.92757
28	DIG*CC	.95891	.92923
29	NF*PD	.96101	.93094
30	SF*%SS	.96283	.93223
31	SF*W	.96431	.93294
32	SF*CC	.96921	.94035
33	NF	.97111	.94221
34	BF*UP	.97226	.94268
35	XMTR*PD	.97351	.94220
36	PD	.97482	.94228
37	EM*CC	.97564	.94261
38	V	.97703	.94217
39	BF	.97821	.94106
40	EM*PD	.97886	.94056
41	CC(removed)	.97886	.94294

Table VII (cont'd)

Step	Variable	R^2	\bar{R}^2
42	CF	.97918	.94218
43	EM*UP	.97975	.94129
44	BF*W(removed)	.98027	.94373
45	NC*V	.98080	.94530
46	EM*W	.98189	.94415
47	XMTR*UP	.98221	.94227
48	XMTR	.98101	.94112

indeed not needed and are only clouding the issue when they are allowed in the set being considered.

Finally, an SPSS run was made on the 35 variables that had the highest F-values from the Chow test in an attempt to determine whether the rank of the F-values had any significance. Even with all 35 variables in the equation the R^2 was only 0.88 and \bar{R}^2 was only 0.73. This indicates that the variables with the highest F-values are not necessarily the most important in a regression. The ranks of F-values should not be given any significance.

Conclusion

Both SPSS and BMD are very easy to use and require little fore-knowledge of the basis of regression. Therein also lies a danger that

Table VIII
Coefficients of the SPSS Regression Equation

$R^2 = 0.95212$		$\bar{R}^2 = 0.92388$	$F = 33.72$
$\ln(LSC/OH) = \alpha_0 + \sum_i \alpha_i D_i + \sum_j \beta_{j0} \ln x_j + \sum_j \sum_i \beta_{ji} D_i \ln x_j$			
Variable No.	Variable Name	Coefficient	Partial F
1	UP	0.402702	13.63
3	W	0.084548	0.10
5	%SS	0.412407	37.28
8	NB	11.320694	23.80
10	SF	-1.135445	17.68
11	SB	-1.457859	26.48
14	DIG	3.710527	7.25
16	EM	-2.950970	9.44
17	PS	-0.092716	0.09
20	NF*UP	0.322015	0.07
23	NF*CC	-0.568085	27.14
26	NB*UP	-0.729848	7.51
27	NB*V	-1.803242	9.46
28	NB*W	2.506829	12.27
63	DIG*V	-1.995969	18.20
64	DIG*W	3.034970	17.51
68	AN*UP	-0.272142	7.44

Table VIII (cont'd)

Variable No.	Variable Name	Coefficient	Partial F
70	AN*W	0.758240	8.11
75	EM*V	0.422377	8.71
89	XMTR*CC	0.294839	25.70
90	XMTR*%SS	-0.456146	24.86
94	BF*W	0.697895	25.90
96	BF*%SS	-0.642736	43.88
Constant		-5.315378	79.01

the packages will be misapplied and their output applied blindly. Both manuals (Ref 20:320) and (Ref 10:215) contain an introduction to regression which should be sufficient background for most cases. Of the two manuals, the SPSS is more detailed and easier to follow.

IV. All Possible Regressions

The number of possible subsets given K possible variables increases at the rate of 2^K as K increases, and the number of calculations required to invert the moments matrix for each subset is of the order K^3 . By taking advantage of the symmetry of moments matrices and the deletion of unneeded rows and columns as successive regressions are calculated, as well as storing moments matrices for later modification and use, the order of calculations for each subset is brought down to K^2 . If only the regression coefficients, their variances, and the sum of squared errors, are wanted, the calculations required are of order K for each subset. If only the sum of squared errors is needed, the number of calculations is less than six per subset (Ref 13:500). But even this would mean 9.5×10^{29} calculations for 97 variables and 6.4×10^9 calculations for only 30 variables just to calculate only the sums of squared errors for each possible regression. Clearly some way to eliminate some possibilities before calculating is needed to make the method feasible for problems of this magnitude.

This is what has been developed by Furnival and Wilson (Ref 13). Their technique, called Leaps and Bounds, is based on the fundamental fact that $SSE(A) \leq SSE(B)$ where A is any set of independent variables

and B is any subset of A. It is impossible for any subset of A to have a lower error sum of squares than A. From this, we can use the SSE of A as a lower bound of the subsets (in the nomenclature of Furnival and Wilson, offspring of A). It is known that regressions of less variables than A that are not offspring of A have a lower SSE than A, then there is no need to investigate the offspring of A as possible optimal solutions. In this way, the number of regressions and calculations are reduced. The amount by which they are reduced is determined by how early in the branching process good lower bounds are found. If a good lower bound is located early, most of the regressions are eliminated from consideration before calculations are performed on them. It was noted in performing this study that the amount of execution time, and hence calculations, varied over a wide range for a given number of variables input. For instance, for the case of 29 independent variables, execution time ranged from 14 to 110 seconds, depending on the variables input.

To illustrate the method, an example from Furnival and Wilson (Ref 13:506) will be duplicated below in Figure 1. There are five independent variables numbered 1 to 5. Underlined variables are those that are going to be removed in offspring equations. Missing variables indicate those that have already been removed from the branch. The numbers in parentheses are the SSE values for the corresponding equation. For example, .1245 indicates the subset of variables containing

Figure 1. Tree Diagram

1, 2, 4, and 5, from which 4 and 5 will be removed in offspring branches.

There are various methods by which the tree can be traversed:

horizontally, vertically or a combination of those. The simplest for illustrative purposes is the horizontal method whereby equations of the same number of variables are considered together. The process begins by calculating the SSE for each of the four-variable equations. Then the SSE of equation .123 is calculated as 612. If 612 were lower than any of the SSEs from the four variable equations, no three-variable offspring of that four-variable equation would be considered or calculated. Note that equation .125 has an SSE of 597, which is lower than the SSE of 605 for equation .1345 or the SSE of 660 for equation .2345. Therefore, there is no need to calculate the SSE for equations .134, .135, .145, .234, .235, .245, or .345.

Next begin to evaluate the two-variable equations and compare them to the three and four-variable equations not already eliminated. Note that the SSE of equation .12, 615, is less than that for equation .2345. Therefore, there is no need to consider two-variable offspring of equation .2345. We need calculate the SSE only for equations .12, .13, .14, and .15.

Finally, begin to evaluate the one-variable models and compare them to the two, three, and four-variable models not already eliminated. If an SSE of a one-variable model is found to be less than that of a two, three, or four-variable equation, then their one-variable offspring need not be considered. In this case, all of the one-variable equations must be considered, and equation .1 is found to be the best

one-variable model.

In this example, only 17 values of SSE were calculated to guarantee that the best one, two, three, and four-variable equations were found. While the traverse used here is not as efficient as that used in the version of Leaps and Bounds in the International Mathematical and Statistical Libraries (IMSL), it is sufficient for illustrative purposes. The IMSL subroutine, called RLEAP, provides as output the m best of each of the 1 to K-variables subsets, where the user supplies the value of m. The output can be based on any or each of the criterion of R^2 , adjusted R^2 of C_p . The LLSCFP also uses a search technique based on C_p , but the version available for this study allowed only 29 variables to be input at a time and of these, only 12 at a time could be searched. This would cause the problem to become too fragmented for the number of variables that had to be considered. As a result, the LLSCFP was not used.

Application

It was found that the amount of execution time used by RLEAP grew very quickly above 20 variables. At 20 variables execution time was only a few seconds on the CDC 6600 series computer. But at 29 variables, the execution time could go as high as 138 seconds octal, at 35 variables over 1,000 seconds octal would be required. As a result 29 variables were settled on as a practice maximum input to RLEAP for this study.

Because there were 60 variables remaining from the Chow test, it was necessary to consider them in groups of no more than 29 and then to combine the optimum answers from each group into a new set. The new subset formed in this way was then run through RLEAP to pick the optimum subset from it. The result should then be a relatively small number of variables which can be used as a core to rotate the remaining variables through RLEAP again. The program used provided as output for each criterion the two best sets of variables for each equation size from 1 to the number of input variables, and the coefficients of the best subset. The procedure was begun by dividing the 60 variables into 3 groups of 20 and using RLEAP on each group. The three groups are shown in Table IX. Both \bar{R}^2 and Cp statistics were used to search for best subsets. It was noted that the Cp statistic selected an equation of fewer variables than did the adjusted R^2 criterion in most cases. In no case did the Cp criterion select an equation of more variables than did the adjusted R^2 criterion. Because the purpose of this procedure is to find as small a subset as possible, the Cp criterion was used to select the best equation to be passed on to the next step, but the best adjusted R^2 equation was also observed because that is a more easily interpreted statistic. The subsets of variables selected from the first three groups are shown in Table X along with the Cp for each subset. The three subsets selected were then combined into one set of 27 variables and again run through

Table IX
Three Groups of Variables in First Run of RLEAP

Group 1	Group 2	Group 3
UP	NF· V	DIG· %SS
V	NF· W	DIG· PD
W	NF· CC	AN· UP
CC	NF· UP	AN· V
%SS	NB· V	EM· UP
NF	NB· W	EM· V
NB	NB· CC	EM· W
NC	NB· PD	EM· CC
SF	NC· UP	EM· PD
SB	NC· V	XMTR· UP
CF	NC· W	XMTR· V
CB	SF· V	XMTR· W
DIG	SF· W	XMTR· CC
AN	SF· CC	XMTR· %SS
EM	SF· %SS	XMTR· PD
PS	DIG· UP	BF· UP
XMTR	DIG· V	BF· V
BF	DIG· W	BF· W
NF. UP	DIG· CC	BF· %SS

Table X
Subset of Variables of Three Groups Selected by RLEAP

Group 1	Group 2	Group 3
UP	NF· W	DIG· %SS
W	NF· CC	DIG· PD
CC	NB· V	AN· W
NB	NB· W	EM· UP
SF	NC· V	EM· V
SB	NC· W	EM· W
DIG	SF· V	EM· PD
XMTR	SF· W	
	DIG· W	
Cp = 5.909	Cp = 2.958	Cp = 3.147

RLEAP to pick a smaller subset. The subset selected by this run is shown in Table XI below.

These 13 variables were then used as a core to add all of the remaining variables into three groups to give all variables a second chance to enter the equation. The new groups for this third run were formed by first including the 13 variables from the second run and then adding 15 or 16 of the 47 remaining variables until all are included in one group. Three groups of 28, 29, and 29 variables

Table XI

Subset Selected from 27 Variables Combined
from Run 1 Based on Cp Criterion

UP	NF· CC	EM·
W	DIG· %SS	BF· W
SF	DIG· PD	BF· %SS
SB	AN· W	
DIG	EM· W	
\bar{R}^2 .83	Cp = 12.638	

resulted. When RLEAP was used on these three groups, the subsets selected by the Cp criterion shown in Table XII resulted. Asterisks indicate that the variable is one of the 13 identified by the previous run and input into all three groups. If the number of asterisks in a column is near 13, it indicates that the additional variables had little to offer in improving the model and that the model input from the previous run was relatively stable. If there are few asterisks, the additional variables had a lot to offer the model.

Until this point, the Cp statistic has been used as the criterion for choosing the best subset because the objective has been to eliminate a large number of variables quickly. But the subsets from Run 3 are small enough and the goodness-of-fit good enough for both \bar{R}^2 and Cp criterion that both deserved further analysis. Table XIII

Table XII

Three Subsets Resulting from the Third Run
Based on Cp Statistic

Group 1	Group 2	Group 3
W *	UP *	UP *
CC	W *	W *
%SS	SF *	SF *
NB	SB *	SB *
SF *	NF· W	NF· CC *
SB *	NF· CC *	DIG· CC
NF· UP	NF· PD	DIG· PD *
NF· CC *	NC· UP	AN· UP
DIG· PD *	NC· V	EM· W *
BF· W *	DIG· UP	EM· PD *
BF· %SS *	DIG· PD *	BF· W *
	AN· W *	BF· %SS *
	EM· W *	
	EM· PD *	
	BF· W *	
	BF· %SS *	
Cp = 6.802	Cp = 12.289	Cp = 4.193
$\bar{R}^2 = .8512$	$\bar{R}^2 = .88$	$\bar{R}^2 = .8436$
*Indicates the variable remains from the 13 from run 2.		

Table XIII
Three Subsets Resulting from the Third Run
Based on \bar{R}^2 Criterion

Group 1	Group 2	Group 3			
UP *	UP *	UP *			
W *	W *	W *			
CC	SF *	SF *			
%SS	SB *	SB *			
NB	DIG *	DIG *			
SF *	NF*W	NF*CC *			
SB *	NF*CC *	DIG*V			
DIG *	NF*PD	DIG*W			
EM	NC*UP	DIG*%SS *			
XMTR	NC*V	AN*W *			
NF*UP	SF*CC	EM*W *			
NF*CC *	DIG*UP	EM*PD *			
DIG*%SS *	DIG*%SS *	BF*W *			
DIG*PD *	DIG*PD *	BF*%SS *			
EM*W *	AN*W *				
BF*W *	EM*W *				
BF*%SS *	EM*PD *				
	BF*W *				
	BF*%SS *				
$C_p = 9.632$		$C_p = 12.52$		$C_p = 6.0$	
$R^2 = .8651$		$R^2 = .8954$		$R^2 = .8466$	
*Indicates the variable remains from the 13 from Run 2.					

contains the three sets of variables selected in Run 3 by RLEAP using the \bar{R}^2 criterion. The Cp values for the six sets in Tables XII or XIII can not be compared to each other because they have not been standardized as explained in Chapter I. But this will not cause a problem because the \bar{R}^2 has a standard basis for all cases, and because the sets are going to be run through RLEAP again in various combinations as indicated in Figure 2. On the upper branch after Run 2 are the sets selected in Run 3 by the Cp statistic. Group 2 and Group 3 on this branch will be combined in Run 4 because they are similar. The set resulting from Run 4 will then be combined in Run 5 with the set in Group 1. By that point, the model should be stabilized if it is going to. The same scheme will be used on the \bar{R}^2 branch of Run 3.

Table XIV shows the variables selected in each group and each run after the branch to Run 3. Figure 2 shows the branching with the results at each node in terms of number of variables, Cp value, and \bar{R}^2 . It can be seen in Table XIV that in both the Cp and \bar{R}^2 branches that Group 2 dominates the model. In the Cp branch the sets selected in Run 4 combining Groups 2 and 3 and Run 5 combining Group 1 and results from Run 4 are identical to Group 2. Apparently then Group 2 is the optimum subset of the variables in Run 3 from a Cp standpoint.

On the \bar{R}^2 branch, Groups 2 and 3 combined in Run 4 to form a subset similar to Group 2. When Group 1 was combined in Run 5 with the set resulting from Run 4, the set selected was identical to the

Figure 2. Sequence of Leaps and Bounds Runs

Table XIV
Variables Selected in Runs 3, 4, and 5

Variable	C _p Criterion					R ² Criterion				
	Run 3		Run 4	Run 5		Run 3		Run 4	Run 5	
	Grp 1	Grp 2	Grp 3	Grp 2, 3	Grp 1, 2&3	Grp 1	Grp 2	Grp 3	Grp 2, 3	Grp 1, 2&3
UP		x	x	x	x	x	x	x	x	x
W	x	x	x	x	x	x	x	x	x	x
CC	x					x				
%SS	x					x				
NB	x					x				
SF	x	x	x	x	x	x	x	x	x	x
SB	x	x	x	x	x	x	x	x	x	x
DIG						x	x	x	x	x
EM						x				
XMTR						x				
NF*UP	x					x				
NF*W		x		x	x		x		x	x
NF*CC	x	x	x	x	x	x	x	x	x	x
NF*PD	x		x	x	x		x		x	x
NC*UP	x		x	x	x		x		x	x
NC*V	x		x	x	x		x		x	x
SF*CC							x		x	x
DIG*UP	x		x	x	x		x		x	x
DIG*V								x	x	x
DIG*W							x	x	x	x
DIG*CC	x									
DIG*%SS										
DIG*PD	x	x	x	x	x	x	x		x	x
AN*UP		x		x	x		x		x	x
AN*W	x		x	x	x		x	x	x	x
EM*W	x	x	x	x	x	x	x	x	x	x
EM*PD	x	x	x	x	x		x	x	x	x
BF*W	x	x	x	x	x	x	x	x	x	x
BF*%SS	x	x	x	x	x	x	x	x	x	x

Figure 3. Results of Leaps and Bounds Runs

result from Run 4. Then the set from Run 4 must be the optimal subset of the variables in Run 3 from a R^2 standpoint.

The two equations found by the Leaps and Bounds method are described in Table XV, where the coefficients and partial F-values are given. It can be seen that the set generated using the C_p criterion is a subset of that generated by the R^2 method. The decision as to which equation is better will be deferred until Chapter V, when the SPSS generated equation will also be considered.

One thing to keep in mind is, as Aitken said (Ref 1:226), "There may be no one "best" equation, only a most appropriate one of several adequate equations."

Table XV
Equations Selected Using the All-Possible
Regressions Method

$\ln(LSC/OH) = \alpha_0 + \sum_i \alpha_i D_i + \sum_j \beta_{j0} \ln x_j + \sum_j \sum_{i,j} \beta_{ji} D_i \ln x_j$				
Variable	C _p Criterion		R ² Criterion	
	$R^2 = 0.9135$		$R^2 = 0.9323$	
	$\bar{R}^2 = 0.88347$		$\bar{R}^2 = 0.9001$	
	$F = 31.21$		$F = 29.25$	
Variable	Coefficient	Partial F	Coefficient	Partial F
UP	0.245908	8.78	0.313871	14.52
W	0.384075	7.75	0.350494	6.86
SF	-1.061926	12.78	-2.878942	14.29
SB	-1.822390	30.26	-2.195891	39.06
DIG			4.381530	4.88
NF*W	-0.431742	31.61	-0.343076	2.10
NF*CC	-0.466254	13.70	-0.470354	15.84
NF*PD	0.738901	16.62	0.672722	14.59
NC*UP	0.285409	5.13	0.254284	4.04
NC*V	-0.334677	4.93	-0.292486	3.92
SF*CC			0.293229	6.30
DIG*UP	-0.584870	12.86	-0.950128	11.70
DIG*V			-0.971576	2.25
DIG*W			2.676919	4.93
DIG*PD	1.081951	15.97	0.553008	2.59
AN*W	0.309271	16.60	0.239272	9.98
EM*W	0.698175	13.89	0.705835	13.47
EM*PD	-0.555855	21.58	-0.545678	20.61
BF*W	0.866668	28.67	0.828916	27.04
BF*%SS	-0.701034	37.03	-0.706378	38.19
Constant	-3.855040	53.44	-4.091618	64.16
All other coefficients are zero.				

V. Conclusions

Results

Three equations have been found by stepwise regression and all possible regressions methods. They differ somewhat but have some terms in common and have similar performance characteristics. To aid in making a choice between the three, the variables contained in each and the pertinent statistics are summarized in Table XVI. The stepwise result has the higher correlation coefficients and overall F value, but it also has the most variables. Recall from Table VII that when the stepwise equation had 20 variables, as does the Leaps and Bounds \bar{R}^2 equation, that the R^2 was only 0.913 and \bar{R}^2 only 0.872. These values are somewhat lower than those for the Leaps and Bounds equations. This makes it appear that the Leaps and Bounds algorithm yields more efficient equations.

Validation

Another way to distinguish between the two equations would be to use a validation procedure on all of them. There are six data points on LRUs which were not used in finding the models, which the equations will be tried against to see how well they predict. The data points are shown in Table XVII.

Table XVI
Comparison of Three Regressions

Variable	SPSS	L&B Cp	L&B \bar{R}^2
UP	0.4027	0.2459	0.3139
W	0.0845	0.3841	0.3505
%SS	0.4124		
NB	11.3207		
SF	-1.1354	-1.0619	-2.8789
SB	-1.4578	-1.8224	-2.1959
DIG	3.7105		4.3815
EM	-2.9510		
PS	-0.0927		
NF·UP	0.3220		
NF·W		-0.4317	-0.3431
NF·CC	-0.5681	-0.4662	-0.4704
NF·PD		0.7389	0.6727
NB·UP	-0.7298		
NB·V	-1.8032		
NB·W	2.5068		
NC·UP		0.2854	0.2543
NC·V		-0.3347	-0.2925
SF·CC			0.2932
DIG·UP		-0.5849	-0.9501
DIG·V	-1.9960		-0.9718
DIG·W	3.0350		2.6769
DIG·PD		1.0820	0.5530
AN·UP	-0.2721		
AN·W	0.7582	0.3093	0.2893
EM·V	0.4224		
EM·W		0.6982	0.7058
EM·PD		-0.5558	-0.5457
XMTR·CC	0.2948		
XMTR·%SS	-0.4561		
BF·W	0.6979	0.8667	0.8289
BF·%SS	-0.6427	-0.7010	-0.7064
Constant	-5.3154	-3.8550	-4.0916
	$R^2 = 0.95212$ $\bar{R}^2 = 0.9239$ $F = 33.72$	$R^2 = 0.9135$ $\bar{R}^2 = 0.8835$ $F = 31.21$	$R^2 = 0.9323$ $\bar{R}^2 = 0.9001$ $F = 29.25$

Table XVII
Data Points Used for Validation

	F4E	F4E	F4E	F4E	F111	F111
UP	8046	3398	9831	9910	5514	6650
V	585.2	323.7	562.7	776.5	1025.2	738.7
W	12.5	9.3	11.8	40.8	43.3	19.0
CC	878	58	209	73	1379	900
%SS	%87	%100	%77	%69	%78	%100
PD	58	75	24	1800	311.6	253.8
DIG	0	0	0	0	0	0
ANALOG	1	0	1	1	1	1
EM	1	0	1	1	0	0
PS	0	1	0	0	0	0
XMTR	0	0	0	0	1	1
BF	0	0	1	1	0	0
TYPE USE	SF	SF	SF	SF	NF	SF

While we could get point estimates plugging the data points into the regression equations we have generated, we would have no feel for the variability of our estimates. Prediction intervals could be generated that would give a level of confidence about the estimates. None of the packages mentioned up to the point provide the data needed

to calculate prediction intervals readily. But another simple statistics package, OMNITAB, written by the National Bureau of Standards, does. The formula used to calculate prediction intervals in this case is

$$PI = \hat{y} + t_{\frac{\alpha}{2}, N-K-1} \left(\sqrt{(SDPV)^2 + S^2} \right) \quad (57)$$

where \hat{y}

y is the point estimate

SDPV is the Standard Deviation of the Predicted Value from OMNITAB and

S is the residual standard deviation.

All three of these values can be read directly from the OMNITAB output making the determination of prediction intervals quite easy.

A listing of the OMNITAB output can be found in the Appendix in Figure 10. The OMNITAB package (Ref 18) will not perform any selection of variables, but once a subset has been decided on, it will provide useful information such as plots and the standard deviation measures needed to calculate the prediction intervals.

Table XVIII contains the prediction intervals of LSC/OH in terms of dollars/operating hour generated by each of the three equations for a 90% confidence interval.

Table XVIII

Generated by the Stepwise and the Leaps and Bounds Equations

	1	2	3	4	5	6
Actual	.589	.111	.513	.403	2.026	1.093
L&B Lower C_p	.0868	.0478	.0540	.0816	.4033	.1797
L&B C_p	.2350	.1273	.1504	.2432	1.1359	.4912
L&B Upper C_p	.6360	.3392	.4187	.7248	3.1992	1.3427
L&B Lower \bar{R}	.1253	.0328	.0477	.0643	.3786	.2376
L&B \bar{R}	.3314	.0866	.1252	.1916	1.0043	.6209
L&B Upper \bar{R}	.8765	.2284	.3288	.5709	2.664	1.6222
SPSS Lower	.0906	.1224	.0172	.2185	.2730	.1523
SPSS	.2089	.3068	.0431	.5218	.6658	.3619
SPSS Upper	.4818	.7689	.1079	1.247	1.6242	.8598
Westinghouse	.2952	.0909	.1313	.1598	1.2879	1.0418

The most noticeable result of comparing prediction intervals is that the SPSS equation generates 90% intervals that contain only one of the six actual values, while both Leaps and Bounds generated intervals contained five of the six actual values. On this basis, either of the Leaps and Bounds equations appears to be a better predictor than the SPSS equation. A closer look is required to choose between the two Leaps and Bounds equations, though.

First, the distance of the point estimate of each from the actual value was considered. In four cases, LRUs 1, 3, 4, and 5, the equation based on the C_p criterion had the point estimate nearest the actual value. Then the width of the 90% prediction interval was compared between the C_p and R^2 based criterion. Each criterion was found to have the narrower width of the prediction interval three times.

The C_p based equation appears to be the best predictor of those considered, based on generating the smallest error from actual values and its smaller size, 16 variables versus 20 or 23. This equation came closer than the Westinghouse equation to the actual values on two of the six cases, but Westinghouse did not generate prediction intervals to compare to. Two words of caution are necessary though. First, that the confidence levels used here can not be guaranteed to be known exactly. Refer to page 28 for the discussion of α levels. Secondly, the six LRUs used for validation were all on fighter aircraft in usage category SF or NF and none were digital.

But with the information available, it appears that the personnel of the Air Force Avionics Laboratory could perform this same type of analysis using first the Chow test to pre-select variables for elimination, then applying the Leaps and Bounds method described in Chapter IV. The data collection is the most time consuming function and could still be contracted out. Computer analysis of the data as was done in this report could be done for less than \$100 of computer time using

packages already existing on the CDC system at Wright-Patterson AFB.

Recommendations

At the present time, the Westinghouse Electric Corporation is in the process of enlarging the data base and performing another analysis. In progress reports to the Avionics Laboratory, they have mentioned the possibility of finding prediction intervals which could be compared to those generated for this report. In any case, the personnel of the Avionics Laboratory could use the enlarged data base to perform their own analysis as described in Chapter IV and if results are suitable, consider generating their own cost estimating relationships on future data.

All of the methods used in this report are based on minimizing the sum of squared errors. Other criterion for finding optimal subsets have been discussed in the literature in recent years but as yet not packaged for easy use. These include Mean Square Error of Prediction (Ref 2:469) and (Ref 6:46) and Average Estimated Variance (Ref 15:261). As these methods become proven, they should be considered for use on the data base, as they place more emphasis on prediction than do the criterion used in this study.

Bibliography

1. Aitken, Murray A. "Simultaneous Inference and the Choice of Variable Subsets in Multiple Regression," Technometrics, 16: 221-227 (May 1974).
2. Allen, David M. "Mean Square Error of Prediction as a Criterion for Selecting Variables," Technometrics, 13: 469-475 (August 1971).
3. Allen, David M. "The Relationship Between Variable Selection and Data Augmentation and a Method for Prediction," Technometrics, 16:125-127 (February 1974).
4. Andrews, D. F. "A Robust Method for Multiple Linear Regression," Technometrics, 16: 523-531 (November 1974).
5. Beale, E. M. L. et al. "The Discarding of Variables in Multivariate Analysis," Biometrika, 54: 357-366 (1967).
6. Bendel, Robert B. and A. A. Afifi. "Comparison of Stopping Rules in Forward 'Stepwise' Regressions," Journal of the American Statistical Association, 72: 46-53 (March 1977).
7. Chow, Gregory C. "Tests of Equality Between Sets of Coefficients in Two Linear Regressions," Econometrica, 28: 591-605 (July 1960).
8. Daniel, Cuthbert and Fred S. Wood. Fitting Equations to Data. New York: John Wiley and Sons, Inc. (1971).
9. Diehr, George and Donald R. Hoflin. "Approximating the Distribution of the Sample R^2 in Best Subset Regressions," Technometrics, 16: 317-320 (May 1974).
10. Dixon, W. J. BMD Biomedical Computer Programs. Los Angeles: University of California Press (1971).
11. Draper, N. R. and Smith, H. Applied Regression Analysis. New York: John Wiley and Sons, Inc. (1966).

12. Fisher, Franklin M. "Tests of Equality Between Sets of Coefficients in Two Linear Regressions: An Expository Note," Econometrica, 38: 361-366 (March 1970).
13. Furnival, George M. and Robert W. Wilson. "Regression by Leaps and Bounds," Technometrics, 16: 499-511 (November 1974).
14. Geary, R. C. and C. E. V. Leser. "Significance Tests in Multiple Regression," The American Statistician, 22: 20-22 (February 1968).
15. Helms, Ronald W. "The Average Estimated Variance Criterion for the Selection-of-Variables Problem in General Linear Models," Technometrics, 16: 261-273 (May 1974).
16. Hocking, R. R. "Criteria for Selection of a Subset Regression: Which One Should Be Used," Technometrics, 14: 967-70 (1972).
17. Hocking, R. R. "The Analysis and Selection of Variables in Linear Regression," Biometrics, 32: 1-49 (March 1976).
18. Hogben, David et al. OMNITAB II Users Reference Manual. Washington, D.C.: National Bureau of Standards (1971).
19. Mallows, C. L. "Some Comments on C_p ," Technometrics, 15: 661-675 (1973).
20. Nie, Norman H. et al. Statistical Package for the Social Sciences. New York: McGraw Hill Book Company (1975).
21. Spjotvolle, E. "Alternatives to Plotting C_p in Multiple Regression," Biometrika, 64: 1-8 (1977).
22. Turek, John P. et al. Predictive Operations and Maintenance Cost Model. For Air Force Avionics Laboratory. Westinghouse Electric Corp. (1978).

APPENDIX

```

        PROGRAM YSEPR(INPUT,OUTPUT,TAPE1,TAPE2)
C THIS PROGRAM FORMS THE Y1 AND Y2 MATRICES USED IN
C PROGRAM CHOU
C TAPE1 IS INPUT DATA, GUARABLES, 13DUMMIES, AND
C THE DEPENDENT VARIABLE IN THAT ORDER
C FORMAT IS 4F20.14
C TAPE2 IS OUTPUT
C
        DIMENSION X(63,20),Y1(63,13),Y2(63,13)
        DO 1 K=1,63
        READ(1,1000) (X(K,JJ),JJ=1,20)
1      CONTINUE
        DO 2 JJ=1,13
        IM=IM+0
        JD=JJ+6
        DO 3 K=1,63
        IF(X(K,JD).EQ.1.)GO TO 100
        IM=IM+1
        Y1(IM,JJ)=X(K,20)
        GO TO 3
100   IM=IM+1
        Y2(IM,JJ)=X(K,20)
3      CONTINUE
        PRINT 2002,IM
        WRITE(2,2002)IM
        PRINT 2000,(INC,JJ,Y1(INC,JJ),INC+1,IN)
        WRITE(2,2000) (INC,JJ,Y1(INC,JJ),INC+1,IN)
        PRINT 2003,IM
        PRINT 2001,(INC,JJ,Y2(INC,JJ),INC+1,IN)
        WRITE(2,2003)IM
        WRITE(2,2001)(INC,JJ,Y2(INC,JJ),INC+1,IN)
2      CONTINUE
1000  FORMAT(4F20.14)
2000  FORMAT(3(SX,'1( ','I12,')-'',F11.8))
2001  FORMAT(3(SX,'Y2( ','I12,')-'',F11.8))
2002  FORMAT(IX,'N',I2)
2003  FORMAT(IX,'M',I2)
        STOP
        END
        EOR
        EOR
        EOF
        ..

```

Figure 4. Program YSEPR

```

C PROGRAM SUMS(INPUT,OUTPUT,TAPE1,TAPE2)
C THIS PROGRAM CALCULATES ALL SUMS OF SQUARES AND
C CROSSPRODUCTS NEEDED FOR PROGRAM CHOU
C TAPE 1 IS INPUT DATA, VARIABLES AND 13DUMMIES AND
C DEPENDENT VARIABLE
C FORMAT IS 5(4F20.14)
C TAPE2 IS OUTPUT
C
C DIMENSION X(20),SS0(6,6,13),SS1(6,6,13),S0(6,13),S1(6,13)
C DO 7801 JD=7,19
C   JJ=JD-6
C   DO 7802 J1=1,6
C     S0(J1,JJ)=0.
C     S1(J1,JJ)=0.
C     DO 7803 J2=1,6
C       SS0(J1,J2,JJ)=0.
C       SS1(J1,J2,JJ)=0.
C 7803 CONTINUE
C 7802 CONTINUE
C 7801 CONTINUE
C 1001 FORMAT(4F20.14/4F20.14/4F20.14/4F20.14/4F20.14)
C PRINT 8000
C 8000 FORMAT('COMPLETED MODULE 1')
C   DO 1 J=1,63
C     READ(1,1001)(X(M),M=1,20)
C   DO 2 JD=7,19
C     JJ=JD-6
C     IF(X(JJD).EQ.1.)GO TO 4
C     DO 3 J1=1,6
C       S0(J1,JJ)=S0(J1,JJ)+X(J1)
C     DO 3 J2=J1,6
C       SS0(J1,J2,JJ)=SS0(J1,J2,JJ)+(X(J1)*X(J2))
C 3 CONTINUE
C GO TO 2
C 4 DO 5 J1=1,6
C   S1(J1,JJ)=S1(J1,JJ)+X(J1)
C   DO 5 J2=J1,6
C     SS1(J1,J2,JJ)=SS1(J1,J2,JJ)+(X(J1)*X(J2))
C 5 CONTINUE
C 2 CONTINUE
C 1 CONTINUE
C PRINT 8001
C 8001 FORMAT('COMPLETED MODULE 2')
C   DO 6 JD=7,19
C     JJ=JD-6
C     DO 7 J1=1,5
C       JF=J1+1
C     DO 8 J2=JF,6

```

Figure 5. Program SUMS

```

      SS0(J2,J1,JJ)=SS0(J1,J2,JJ)
      SS1(J2,J1,JJ)=SS1(J1,J2,JJ)
5  CONTINUE
6  CONTINUE
6  PRINT 8002
8002 FORMAT('MODULE 3 COMPLETED')
DO 9 IDUM=1,2
ITEM=IDUM-1
DO 10 J1=1,6
DO 11 J2=1,6
IF(ITEM.EQ.1)GO TO 100
PRINT 2001,(ITEM,J1,J2,JJ,SS0(J1,J2,JJ),JJ+1,13)
2001 FORMAT(3(1X,'SS',I1,'(',2I1,I2,')',F16.10)/,3(1X,'SS',I1,'(',2I1,I2,')',F16.10)/,3(1X,'SS',I1,'(',2I1,I2,')',F16.10)/,3(1X,'SS',I1,'(',2I1,I2,')',F16.10)/,1X,'SS',I1,'(',2I1,I2,')',F16.10)
WRITE(2,2001)(ITEM,J1,J2,JJ,SS0(J1,J2,JJ),JJ+1,13)
IF(ITEM.EQ.0)GO TO 11
100 PRINT 2001,(ITEM,J1,J2,JJ,SS1(J1,J2,JJ),JJ+1,13)
WRITE(2,2001)(ITEM,J1,J2,JJ,SS1(J1,J2,JJ),JJ+1,13)
11 CONTINUE
10 CONTINUE
9  CONTINUE
DO 12 IDUM=1,2
ITEM=IDUM-1
DO 13 J1=1,6
IF(ITEM.EQ.1)GO TO 200
PRINT 2002,(ITEM,J1,JJ,SS0(J1,JJ),JJ+1,13)
2002 FORMAT(3(1X,'S',I1,'(',I1,I2,')',F16.10)/3(1X,'S',I1,'(',I1,I2,')',F16.10)/3(1X,'S',I1,'(',I1,I2,')',F16.10)/1X,'S',I1,'(',I1,I2,')',F16.10)
WRITE(2,2002)(ITEM,J1,JJ,SS0(J1,JJ),JJ+1,13)
IF(ITEM.EQ.0)GO TO 13
200 PRINT 2002,(ITEM,J1,JJ,SS1(J1,JJ),JJ+1,13)
WRITE(2,2002)(ITEM,J1,JJ,SS1(J1,JJ),JJ+1,13)
13 CONTINUE
12 CONTINUE
PRINT 8003
8003 FORMAT('COMPLETED MODULE 4')
STOP
END

```



```

50      DO 2000 K=1,63
      READ(3,3000)(X(K,I),I=1,19)
2000    CONTINUE
3000    FORMAT(4F20.14/4F20.14/4F20.14/3F20.14)
C      JD IS THE DUMMY VARIABLE COUNTER
55      C
      DO 9999 JD=7.19
      JJ=JD-6
      PROGRAM CHOU
      74/74   OPT+1
      FTN 4.6+446
      12/11/78 13.11.48 PAGE 2
C      READ SEPARATEDLY FROM TAPE 2 INTO Y1 AND Y2
C
      READ(2,1000)NJJ
      READ(2,1001)(Y1,INC=1,NJJ)
      READ(2,1000)NJJ
      READ(2,1001)(Y2,INC=1,NJJ)
C      JU IS THE INDEPENDENT VARIABLE INDICATOR
65      C
      DO 9998 JU=1,7
      IF(JU.GT.1)GO TO 3999
70      C
      FILL AMATE. AMATA TO TEST ALPHA(JD) TERM
C
      AMATE(1,1)=63
      AMATA(1,1)=NJJ
      AMATA(2,2)=NJJ
      DO 3001 I=1,6
      AMATE(I,1)=50(I,JJ)
      AMATE(I,1+1)=50(I,JJ)
      AMATA(I+2,1)=50(I,JJ)
      AMATA(I+2,2)=50(I,JJ)
      AMATE(I,7)=51(I,JJ)
      AMATE(I,1+7)=51(I,JJ)
      AMATA(2,1)=51(I,JJ)
      AMATA(2,2)=51(I,JJ)
      CONTINUE
      3001
      DO 3002 I=1,6
      AMATE(I,1)=55(I,JJ)
      AMATE(I+1,1)=55(I,JJ)
      AMATE(I+2,JJ)=55(I,JJ)
      AMATE(I+7,JJ)=55(I,JJ)
      AMATA(I+8,JJ)=55(I,JJ)
      CONTINUE
      3002
C      FILL Z1, Z2, W1, AND W2 TO TEST ALPHA(JD) TERM
C
      DO 3003 I=1,NJJ
      Z1(I)=1.0
      3003 CONTINUE
      DO 3004 I=1,NJJ
      Z2(I)=1.0
      3004 CONTINUE
      IN=IN-6
      DO 3103 INC=1,63
      IF((X(INC,JD)).EQ.1.0)GO TO 3150
      IN=IN+1

```

```

DO 3110 J=1,6
U1(N,J)-XINC,J)
3110 CONTINUE
GO TO 3160
3150 IM=IM+1
DO 3160 J=1,6
U2(N,J)-XINC,J)
3160 CONTINUE
XINC
PROGRAM CHOU
74.74 OPT=1
FTN 4.6+446
12/11/73 13.11.48
PAGE 3

115      C
C          EXIT TO EVALUATION SECTION
C
3100 CONTINUE
GO TO 8104
3999 IF(JNU.GT.2)GO TO 4071
C
C          FILL AMATE,AMATA TO TEST BETAI(J,J) TERM
C
DO 4001 J=9,14
AMATA(J,1)=0.0
AMATA(1,J)=0.0
CONTINUE
4001 AMATA(1,1)*SS0(1,1,JJ)+SS1(1,1,JJ)
AMATA(1,1)*SS0(1,1,JJ)
AMATA(2,2)*SS1(1,1,JJ)
AMATA(2,1)*SS0(1,1,JJ)
AMATA(3,1)*SS0(1,1,JJ)
DO 4000 I=3,7
AMATA(I,1)*SS0(1,I-1,JJ)
AMATA(I,1)*SS0(I,1-I,JJ)
CONTINUE
4000 AMATA(8,1)*SS1(I,1,JJ)
AMATA(9,2)*SS1(1,JJ)
DO 4010 I=9,13
AMATA(I,1)*SS1(I,1,JJ)
AMATA(I+1,2)*SS1(I,1,JJ)
CONTINUE
4010 AMATA(2,2)*NNJ
AMATA(3,3)*NNJ
DO 4020 I=3,7
AMATA(I,2)*SS0(I,J,JJ)
AMATA(I+1,3)*SS0(I-1,J,JJ)
CONTINUE
4020 DO 4030 J=3,7
DO 4030 I=J,7
AMATA(I,J)*SS0(I-1,J,JJ)
AMATA(I+1,J+1)*SS0(I-1,J-1,J,JJ)
CONTINUE
4030 AMATA(8,8)*NNJ
AMATA(9,9)*NNJ
DO 4040 I=9,13
AMATA(I,8)*SS1(I-7,J,JJ)
AMATA(I,9)*SS1(I-7,J,JJ)
CONTINUE
4040 DO 4050 J=9,13
DO 4050 I=J,13
AMATA(I,J)*SS1(I-7,J,JJ)
AMATA(I+1,J+1)*SS1(I-7,J-1,J,JJ)
CONTINUE
4050

```

```

165      DO 4060 J=1,13
        DO 4060 I=1,13
          AMAT0(J,1)-AMAT0(I,J)
        CONTINUE
 4060      DO 4070 J=1,14
        DO 4070 I=1,14
          AMAT0(J,I)-AMAT0(I,J)
        PROGRAM CHOU
          74/74 OPT=1
          FTN 4.6+46
          12/11/78 13.11.48
          PAGE 4

 4070 CONTINUE
C       EXIT TO FILL Z1, Z2, U1, U2
C       GO TO 3650

 4071      AMAT0(1,1)=50(JULESS,JJ)+550(JULESS,JJ)
          AMAT0(1,1)-50(JULESS,JJ)
          AMAT0(2,2)=550(JULESS,JJ)
          AMAT0(2,1)=50(JULESS,JJ)
          AMAT0(3,1)=50(JULESS,JJ)
          DO 3010 I=1,5
            IF I.GE.JULESSIGO TO 3005
            AMAT0(I,2,1)=550(I,JULESS,JJ)
            AMAT0(I,2,1)-550(I,JULESS,JJ)
            GO TO 3010
 3005      AMAT0(I,2,1)=550(I+1,JULESS,JJ)
            AMAT0(I+1,1)=550(I+1,JULESS,JJ)
 3010      CONTINUE
          AMAT0(8,1)=51(JULESS,JJ)
          AMAT0(9,2)=51(JULESS,JJ)
          DO 3020 I=1,5
            IF I.GE.JULESSIGO TO 3015
            AMAT0(I,3,1)=551(I,JULESS,JJ)
            AMAT0(I,4,2)=551(I,JULESS,JJ)
            GO TO 3020
 3015      AMAT0(I+8,1)=551(I+1,JULESS,JJ)
            AMAT0(I+9,2)=551(I+1,JULESS,JJ)
 3020      CONTINUE
          DO 3021 I=1,12
            AMAT0(I,1,1)-AMAT0(I+1,1)
 3021      CONTINUE
          DO 3022 I=1,6
            AMAT0(I,1,2)-AMAT0(I+2,1)
 3022      CONTINUE
          DO 3023 I=1,6
            AMAT0(I,2,1+8)-AMAT0(I+8,2)
 3023      CONTINUE
          AMAT0(2,JULESS1)-50(JULESS-1,JJ)
          AMAT0(3,JULESS2)-50(JULESS-1,JJ)
          DO 3030 I=1,5
            IF I.GE.JULESSIGO TO 3025
            AMAT0(I,2,JULESS1)=550(I,JULESS-1,JJ)
            AMAT0(I+3,JULESS2)=550(I,JULESS-1,JJ)
            GO TO 3030
 3025      AMAT0(I+2,JULESS1)=550(I+1,JULESS-1,JJ)
            AMAT0(I+3,JULESS2)=550(I,JULESS-1,JJ)
 3030      CONTINUE
          DO 3031 I=1,6

```

```

      ANATA(JULESS+1,I+1)=ANATA(I+1,JULESS+1)
225    CONTINUE
      DO 3032 I=1,7
      ANATA(JULESS+2,I+2)=ANATA(I+2,JULESS+2)
3032    CONTINUE
      ANATA(I,JULESS+7)*$1(JULESS-1,JJ)
      PROGRAM CHOU
      74/74   OPT=1
      ANATA(I,JULESS+8)*$1(JULESS-1,JJ)
      DO 3040 I=1,5
      IF (< 1, GE , JULESS) GO TO 3035
      ANATA(I+8,JULESS+7)*$1(I,JULESS-1,JJ)
      ANATA(I+9,JULESS+8)*$1(I,JULESS-1,JJ)
      GO TO 3046
      ANATA(I+8,JULESS+7)*$1(I+1,JULESS-1,JJ)
      ANATA(I+9,JULESS+8)*$1(I+1,JULESS-1,JJ)
3035    CONTINUE
      DO 3041 I=1,6
      ANATA(JULESS+7,I+7)=ANATA(I+7,JULESS+7)
3041    CONTINUE
      DO 3042 I=1,6
      ANATA(JULESS+8,I+8)=ANATA(I+8,JULESS+8)
3042    CONTINUE
C     C     FILL Z1, Z2, U1, U2 TO TEST BETA TERMS
245    C
      3050 IN=0
      IN=8
      DO 9700 INC=1,63
      IF (X(INC),JD=0,1,0) GO TO 9500
      IN=IN+1
      DO 9100 J=1,6
      IF (J,EO,JULESS) GO TO 9000
      IF (J,GT,JULESS) GO TO 9050
      U1((IN,J+1)*X(INC,J))
      GO TO 9100
      21((IN,1)*X(INC,JULESS))
      GO TO 9100
      9050 U1((IN,J)*X(INC,J))
      9100 CONTINUE
      GO TO 9700
      9500 IN=TR+1
      DO 9870 J=1,6
      IF (J,EO,JULESS) GO TO 9600
      IF (J,GT,JULESS) GO TO 9650
      U2((IN,J+1)*X(INC,J))
      GO TO 9570
      9600 22((IN,1)*X(INC,JULESS))
      GO TO 9670
      9650 U2((IN,J)*X(INC,J))
      9700 CONTINUE
      DO 9800 INC=1,IN
      U1((INC,1)*1,0
      9800 CONTINUE
C     C     21, 22, U1, U2 ARE FILLED
      DO 9850 INC=1,IN
      U2((INC,1)*1,0
275    C
      280

```

```

1          9850 CONTINUE
           DO 8001 I=1,13
           DO 8001 J=1,63
           BPRINT(L,J)=0.0
8001      CONTINUE
           74,74   OPT=1
           FTN 4.6+46   12/11/78  13.11.48   PAGE   6

285      PROGRAM CHOU
           DO 8004 I=1,14
           DO 8004 J=1,63
           BPRINT(L,J)=0.0
8004      CONTINUE
           CALL TRANS(Z1,NJJ,1,Z1TRAN,63,1)
           CALL TRANS(Z2,NJJ,1,Z2TRAN,63,1)
           CALL TRANS(U1,NJJ,6,U1TRAN,63,6)
           CALL TRANS(U2,NJJ,6,U2TRAN,63,6)
           IDGT=3
           CALL LIN2F(UMATE,13,13,AINU,1DCT,WORK,IER)

           C FILL BMATA
           C
           CALL MOVE(Z1TRAN,1,NJJ,BMATA,1,1,1,63,13,63)
           CALL MOVE(U1TRAN,6,NJJ,BMATA,2,1,6,63,13,63)
           CALL MOVE(Z2TRAN,1,NJJ,BMATA,1,NJJ,1,1,63,13,63)
           CALL MOVE(U2TRAN,6,NJJ,BMATA,8,NJJ+1,6,63,13,63)
           CALL MOVE(Y1,NJJ,1,YMAT,1,1,63,1,63,1)
           CALL MOVE(Y2,NJJ,1,YMAT,NJJ+1,1,63,1,63,1)

           C CALCULATE VECTOR OF COEFFICIENTS FOR NULL HYPOTHESIS
           CALL UMLUFF(UMINU,BMATA,13,13,13,ZINTER,13,IER)
           CALL UMLUFF(ZINTER,VMAT,13,63,13,63,FINAL0,13,IER)
           IDGT=3
           CALL LIN2F(UMATA,14,14,AINU,1DCT,WORK,IER)

           C FILL BMATA
           C
           CALL MOVE(Z1TRAN,1,NJJ,BMATA,1,1,1,63,14,63)
           CALL MOVE(U1TRAN,6,NJJ,BMATA,3,1,6,63,14,63)
           CALL MOVE(Z2TRAN,1,NJJ,BMATA,2,NJJ+1,1,63,14,63)
           CALL MOVE(U2TRAN,6,NJJ,BMATA,9,NJJ+1,6,63,14,63)

           C CALCULATE VECTOR OF COEFFICIENTS FOR ALTERNATE HYPOTHESIS
           CALL UMLUFF(UMINU,BMATA,14,14,63,14,14,ZINTERA,14,IER)
           CALL UMLUFF(ZINTERA,VMAT,14,63,14,63,FINALA,14,IER)
           C0(1)=FINAL0(1,1)
           DO 5000 I=1,6
           D10(I,1)=FINAL0(I+1,1)
5000      CONTINUE
           DO 5001 I=1,6
           D20(I,1)=FINAL0(I+7,1)
5001      CONTINUE
           C1(1)=FINALA(1,1)
           C2(1)=FINALA(2,1)
           DO 5002 I=1,6
           D1(I,1)=FINALA(I+2,1)
5002      CONTINUE
           DO 5003 I=1,6
           D2(I,1)=FINALA(I+8,1)
5003      CONTINUE

```

```

340      C   CALCULATE F VALUES
            C   CALL URULFF(21,C1,MJJ,1,1,63,1,21C1,63,IER)
1     PROGRAM CHOU    74/74  OPT-1          FTN 4.6+46      12/11/73  13.11.48
            C   CALL URULFF(21,D1,MJJ,6,1,63,6,UD1,63,IER)
            C   CALL URULFF(21,C0,MJJ,1,1,63,1,21C0,63,IER)
            C   CALL URULFF(21,DI,MJJ,1,1,63,6,UD1,63,IER)
            C   ADD(21C1,UD1,MJJ,1,SUM1,63,1)
            C   CALL SUBR(SUM1,21C,MJJ,1,SUM1,63,1)
            C   CALL SUBR(SUM1,UD10,MJJ,1,SUM1,63,1)
            C   CALL URULFF(22,C2,MJJ,1,1,63,1,22C2,63,IER)
            C   CALL URULFF(22,D2,MJJ,6,1,63,6,22C2,63,IER)
            C   CALL URULFF(22,C0,MJJ,1,1,63,1,22C0,63,IER)
            C   CALL SUBR(22C2,UD20,MJJ,6,1,63,6,UD20,63,IER)
            C   CALL ADD(22C2,UD20,MJJ,1,SUM2,63,1)
            C   CALL SUBR(SUM2,UD20,MJJ,1,SUM2,63,1)
            C   CALL SUBR(SUM2,22C0,MJJ,1,SUM2,63,1)
            C   CALL SUBR(SUM2,22C0,MJJ,1,SUM2,63,1)
            C   CALL SUBR(SUM2,UD20,MJJ,1,SUM2,63,1)
            C   CALL SUBR(SUM3,UD1,MJJ,1,SUM3,63,1)
            C   CALL SUBR(22C2,MJJ,1,SUM4,63,1)
            C   CALL SUBR(22C0,MJJ,1,SUM4,63,1)
            C   CALL SUBR(SUM4,UD20,MJJ,1,SUM4,63,1)
            C   CALL SUBR(SUM5,UD20,MJJ,1,SUM5,63,1)
            C   CALL NORM(SUM1,MJJ,SOME,63)
            C   CALL NORM(SUM2,MJJ,STWO,63)
            C   CALL NORM(SUM3,MJJ,STHREE,63)
            C   CALL NORM(SUM4,MJJ,SFOUR,63)
            C   CALL NORM(SUM5,MJJ,SFIVE,63)
            C   IF(MJJ.GT.7100 TO 5010
            C   IF(MJJ.LT.6100 TO 5015
            C
            C   P-Q .LE. MJJ .LE. P
            C   F=(SOME+SFIVE)/(STHREE+SFOUR)*49.
            C   WRITE(5,5005)JJ,JULESS,MJJ,F
            C   5005 FORMAT('1X CURRENT INDICATOR= ',I2,2X,'TESTED VARIABLE= ',I1,2X,'P
            C   POINTS IN SET 2= ',I2,2X,'F VALUE= ',F14.6)
            C   GO TO 9998
            C
            C   N > P
            C
            C   5010 F=(SOME+STWO)/(STHREE+SFOUR)*49.
            C   WRITE(5,5005)JJ,JULESS,MJJ,F
            C   GO TO 9998
            C
            C   N < P-Q
            C
            C   5015 WRITE(5,5016)MJJ,JJ,JULESS
            C   5016 FORMAT('1X SECOND SET CONTAINS' ,1X,I1,1X,'POINTS. INSUFFICIENT FOR
            C   LOCALIZATION OF F. INDICATOR= ',I2,' VARIABLE= ',I1,
            C   9998 CONTINUE
            C   9999 CONTINUE
            C   STOP
            C   END
            C
            C   SYMBOLIC REFERENCE MAP (R-1)
1     PROGRAM CHOU    74/74  OPT-1          FTN 4.6+46      12/11/73  13.11.48

```



```

1   1   SUBROUTINE ADD    74/74  OPT-1          FTN 4.6+446      12/11/78  13.11.48  PAGE 1
      1   C   SUBROUTINE ADD(A,B,NR,NC,C,NRD,NCD),
      5   C   ADDS TWO MATRICES A AND B, TOGETHER
      C   NR AND NC ARE THE NUMBER OF ROWS AND COLUMNS IN A AND B
      C   NRD AND NCD ARE THE NUMBER OF ROWS AND COLUMNS DIMENSIONED FOR A AND B
      C
      C   DIMENSION A(NRD,NCD),B(NRD,NCD),C(NRD,NCD)
      C
      DO 1 J=1,NC
      DO 1 I=1,NR
      C(I,J)=A(I,J)+B(I,J)
      1 CONTINUE
      RETURN
      END

1   1   SUBROUTINE SUBTR  74/74  OPT-1          FTN 4.6+446      12/11/78  13.11.48  PAGE 1
      1   C   SUBROUTINE SUBTR(A,B,NR,NC,C,NRD,NCD),
      5   C   THIS SUBTRACTS MATRIX B FROM MATRIX A
      C   DIMENSIONS ARE THE SAME AS IN SUBROUTINE ADD
      C
      C   DIMENSION A(NRD,NCD),B(NRD,NCD),C(NRD,NCD)
      C
      DO 1 J=1,NC
      DO 1 I=1,NR
      C(I,J)=A(I,J)-B(I,J)
      1 CONTINUE
      RETURN
      END

1   1   SUBROUTINE NORM   74/74  OPT-1          FTN 4.6+446      12/11/78  13.11.48  PAGE 1
      1   C   SUBROUTINE NORM(A,NR,B,NRD),
      5   C   CALCULATES THE SQUARE OF THE NORM FOR MATRIX A
      C   SQUARED NORM IS PUT INTO B
      C   NR IS THE NUMBER OF ROWS IN A
      C   NRD IS THE NUMBER OF ROWS DIMENSIONED FOR A
      C
      B=0.0
      DO 1 J=1,NR
      B=A(1,1)*X2+B
      1 CONTINUE
      RETURN
      END

```

S

NEOP

CURRENT INDICATOR- 1 TESTED VARIABLE-0 POINTS IN SET 2-12 F VALUE- 46.792030
CURRENT INDICATOR- 1 TESTED VARIABLE-1 POINTS IN SET 2-12 F VALUE- 35.957190
CURRENT INDICATOR- 1 TESTED VARIABLE-2 POINTS IN SET 2-12 F VALUE- 25.792171
CURRENT INDICATOR- 1 TESTED VARIABLE-3 POINTS IN SET 2-12 F VALUE- 25.082949
CURRENT INDICATOR- 1 TESTED VARIABLE-4 POINTS IN SET 2-12 F VALUE- 25.320975
CURRENT INDICATOR- 1 TESTED VARIABLE-5 POINTS IN SET 2-12 F VALUE- 4.445489
CURRENT INDICATOR- 1 TESTED VARIABLE-6 POINTS IN SET 2-12 F VALUE- 30.243100
CURRENT INDICATOR- 2 TESTED VARIABLE-0 POINTS IN SET 2-10 F VALUE- 48.994204
CURRENT INDICATOR- 2 TESTED VARIABLE-1 POINTS IN SET 2-12 F VALUE- 31.164791
CURRENT INDICATOR- 2 TESTED VARIABLE-2 POINTS IN SET 2-12 F VALUE- 27.367543
CURRENT INDICATOR- 2 TESTED VARIABLE-3 POINTS IN SET 2-10 F VALUE- 17.833868
CURRENT INDICATOR- 2 TESTED VARIABLE-4 POINTS IN SET 2-10 F VALUE- 37.558254
CURRENT INDICATOR- 2 TESTED VARIABLE-5 POINTS IN SET 2-10 F VALUE- 2.297488
CURRENT INDICATOR- 2 TESTED VARIABLE-6 POINTS IN SET 2-10 F VALUE- 13.168126
CURRENT INDICATOR- 3 TESTED VARIABLE-0 POINTS IN SET 2-12 F VALUE- 47.187560
CURRENT INDICATOR- 3 TESTED VARIABLE-1 POINTS IN SET 2-12 F VALUE- 35.020414
CURRENT INDICATOR- 3 TESTED VARIABLE-2 POINTS IN SET 2-12 F VALUE- 20.261425
CURRENT INDICATOR- 3 TESTED VARIABLE-3 POINTS IN SET 2-12 F VALUE- 42.982841
CURRENT INDICATOR- 3 TESTED VARIABLE-4 POINTS IN SET 2-12 F VALUE- -434492
CURRENT INDICATOR- 3 TESTED VARIABLE-5 POINTS IN SET 2-12 F VALUE- 1.663537
CURRENT INDICATOR- 3 TESTED VARIABLE-6 POINTS IN SET 2-12 F VALUE- 2.142207
CURRENT INDICATOR- 4 TESTED VARIABLE-0 POINTS IN SET 2-12 F VALUE- 25.037979
CURRENT INDICATOR- 4 TESTED VARIABLE-1 POINTS IN SET 2-12 F VALUE- 4.028575
CURRENT INDICATOR- 4 TESTED VARIABLE-2 POINTS IN SET 2-12 F VALUE- 43.242303
CURRENT INDICATOR- 4 TESTED VARIABLE-3 POINTS IN SET 2-12 F VALUE- 42.912487
CURRENT INDICATOR- 4 TESTED VARIABLE-4 POINTS IN SET 2-12 F VALUE- 35.336394
CURRENT INDICATOR- 4 TESTED VARIABLE-5 POINTS IN SET 2-12 F VALUE- 12.666487
CURRENT INDICATOR- 4 TESTED VARIABLE-6 POINTS IN SET 2-12 F VALUE- 138342
SECOND SET CONTAINS 4 POINTS. INSUFFICIENT FOR CALCULATION OF F. INDICATOR- 5 VARIABLE- 0
SECOND SET CONTAINS 4 POINTS. INSUFFICIENT FOR CALCULATION OF F. INDICATOR- 5 VARIABLE- 1

SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 2
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 3
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 4
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 5
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	VARIABLE- 6
CURRENT INDICATOR- 8 TESTED VARIABLE-0 POINTS IN SET 2- 8 F VALUE- 49.001918		
CURRENT INDICATOR- 8 TESTED VARIABLE-1 POINTS IN SET 2- 8 F VALUE- 36.239245		
CURRENT INDICATOR- 8 TESTED VARIABLE-2 POINTS IN SET 2- 8 F VALUE- 36.429398		
CURRENT INDICATOR- 8 TESTED VARIABLE-3 POINTS IN SET 2- 8 F VALUE- 47.933922		
CURRENT INDICATOR- 8 TESTED VARIABLE-4 POINTS IN SET 2- 8 F VALUE- 44.038580		
CURRENT INDICATOR- 8 TESTED VARIABLE-5 POINTS IN SET 2- 8 F VALUE- 48.927518		
CURRENT INDICATOR- 8 TESTED VARIABLE-6 POINTS IN SET 2- 8 F VALUE- 35..318639		
CURRENT INDICATOR- 9 TESTED VARIABLE-0 POINTS IN SET 2-51 F VALUE- 49.440065		
CURRENT INDICATOR- 9 TESTED VARIABLE-1 POINTS IN SET 2-51 F VALUE- 40.300204		
CURRENT INDICATOR- 9 TESTED VARIABLE-2 POINTS IN SET 2-51 F VALUE- 14.671381		
CURRENT INDICATOR- 9 TESTED VARIABLE-3 POINTS IN SET 2-51 F VALUE- 45.948176		
CURRENT INDICATOR- 9 TESTED VARIABLE-4 POINTS IN SET 2-51 F VALUE- .735032		
CURRENT INDICATOR- 9 TESTED VARIABLE-5 POINTS IN SET 2-51 F VALUE- 7.367655		
CURRENT INDICATOR- 9 TESTED VARIABLE-6 POINTS IN SET 2-51 F VALUE- .680680		
CURRENT INDICATOR-10 TESTED VARIABLE-0 POINTS IN SET 2-26 F VALUE- 48.900573		
CURRENT INDICATOR-10 TESTED VARIABLE-1 POINTS IN SET 2-26 F VALUE- 35.818197		
CURRENT INDICATOR-10 TESTED VARIABLE-2 POINTS IN SET 2-26 F VALUE- 43.051565		
CURRENT INDICATOR-10 TESTED VARIABLE-3 POINTS IN SET 2-26 F VALUE- 21.841772		
CURRENT INDICATOR-10 TESTED VARIABLE-4 POINTS IN SET 2-26 F VALUE- 28.714985		
CURRENT INDICATOR-10 TESTED VARIABLE-5 POINTS IN SET 2-26 F VALUE- 7.509505		

AD-A064 658

AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OHIO SCH--ETC F/G 12/1
CRITERION FOR SELECTION OF VARIABLES IN A REGRESSION ANALYSIS.(U)

DEC 78 L J PULCHER

UNCLASSIFIED

AFIT/GOR/MA/78D-5

NL

2 OF 2
AD
A064 658
REF ID: A64658

END
DATE
FILED
4 - 79
DDC

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

CURRENT INDICATOR-10	TESTED VARIABLE-6	POINTS IN SET 2-26	F VALUE-	19.330865
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	INDICATOR-11	VARIABLE-0	
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	INDICATOR-11	VARIABLE-1	
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	INDICATOR-11	VARIABLE-2	
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	INDICATOR-11	VARIABLE-3	
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	INDICATOR-11	VARIABLE-4	
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	INDICATOR-11	VARIABLE-5	
SECOND SET CONTAINS 4 POINTS.	INSUFFICIENT FORCALCULATION OF F.	INDICATOR-11	VARIABLE-6	
CURRENT INDICATOR-12	TESTED VARIABLE-0	POINTS IN SET 2-23	F VALUE-	54.983835
CURRENT INDICATOR-12	TESTED VARIABLE-1	POINTS IN SET 2-23	F VALUE-	42.912617
CURRENT INDICATOR-12	TESTED VARIABLE-2	POINTS IN SET 2-23	F VALUE-	45.636063
CURRENT INDICATOR-12	TESTED VARIABLE-3	POINTS IN SET 2-23	F VALUE-	35.171661
CURRENT INDICATOR-12	TESTED VARIABLE-4	POINTS IN SET 2-23	F VALUE-	15.781559
CURRENT INDICATOR-12	TESTED VARIABLE-5	POINTS IN SET 2-23	F VALUE-	17.990961
CURRENT INDICATOR-12	TESTED VARIABLE-6	POINTS IN SET 2-23	F VALUE-	15.147350
CURRENT INDICATOR-13	TESTED VARIABLE-0	POINTS IN SET 2-20	F VALUE-	46.647943
CURRENT INDICATOR-13	TESTED VARIABLE-1	POINTS IN SET 2-20	F VALUE-	39.790991
CURRENT INDICATOR-13	TESTED VARIABLE-2	POINTS IN SET 2-20	F VALUE-	22.917683
CURRENT INDICATOR-13	TESTED VARIABLE-3	POINTS IN SET 2-20	F VALUE-	39.312276
CURRENT INDICATOR-13	TESTED VARIABLE-4	POINTS IN SET 2-20	F VALUE-	11.509766
CURRENT INDICATOR-13	TESTED VARIABLE-5	POINTS IN SET 2-20	F VALUE-	15.344824
CURRENT INDICATOR-13	TESTED VARIABLE-6	POINTS IN SET 2-20	F VALUE-	11.583250

VOIGE-BROCK CONVENTING CENTER
NORTHERN ILLINOIS UNIVERSITY
S P E S S - STATISTICAL PACKAGE FOR THE SOCIAL SCIENCES
VERSION 7.0 - 1977

11/26/73 12:35:34.0 016E 1

NAME: SPACERHOUSE WITH 60 LEFT FROM 24004
 ACT. T-12CY
 CONTROL
 VEHICLE LIST
 V-15 V33
 INSTRUMENT
 FIVE F20.1L2X, 3F20.1L1A, 12C, 2F20.1A

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

OPTION - 1
SPECIAL WEIGHTED REGRESSION COEFFICIENTS
OPTION - 2
USING VALUE INDICATORS

Figure 7. Selected Output from SPSS

DEPENDENT VARIABLE: V01
 VARIABLE(S) FILTERED ON STEP NUMBER: 24... V22

MULTIPLE R	.90172
R SQUARED	.82431
ADJUSTED R SQUARED	.80361
STD DEVIATION	.04104

ANALYSIS OF VARIANCE
 REGRESSION 22.
 RESIDUAL 4.0
 COEFF OF VARIABILITY 1.0.0 22.

MEAN SQUARE	16.70345
	11.74635

VARIABLES IN THE EQUATION

VARIABLE	B	STD ERROR B	STD ERROR A	F	BETA	VARIABLE	PARTIAL	TOLERANCE	F	SIGNIFICANCE
V5	-4.2322761E-01	.32575206	.17463597E-01	.07206174	.V7	.04743	.05293	.700343745		
V6	-7.212169E-08	.12234227	.3.003349	-.75556	V4	-.24762	.26609	.2547421		
V11	-1.4539765	.3533220	.17.22E-01	-.465352	V6	.17555	.29350	.4.245.34		
V6	.11500304	.0560975	.12.07225	-.2565716	V7	.4734	.04677	.9.4525651		
V8	10.188694	.2650934	.17.74397	-.3.535321	V9	.04227	.32495	.0.32705E-11		
V45	.22771112	.554412779E-01	.10.37501	-.73452	V12	-.037395	.6.6216	.4139-031		
V62	-2.0377246	.57476344	.12.412051	-.2.015232	V13	-.07610	.9.0750	.24164524		
V35	-52.51753	.11560001	.29.502956	-.6503847	V15	-.21157	.01611	.49.25275		
V27	-1.7076055	.7243465	.6.71434	-.7.30505	V16	.26155	.01552	.2.6535015		
V15	-3.1362246	.1.136329	.7.71115	-.6.56163	V19	.92346	.06649	.22216745E-11		
V17	-7.73559975E-01	.3002166	.30767346E-01	-.9.21519	V20	.50195	.01925	.22.16277		
V54	.555444239	.1.7031779	.12.323178	-.5.35108	V21	.57763	.04496	.15.355352		
V16	-2.26240946	.322022795	.14.50585	-.3.52527	V22	.35163	.06733	.5.0030520		
V1	-1.103712	.1.3720647	.17.07771	-.5.42523	V23	.52637	.0630	.11.790013		
V5	.7101261	.754260135E-01	.15.54234	-.11.57050	V29	-.95820	.62000	.13255017		
V36	-1.37240991	.1.033377	.3.0123523	-.4.51144	V32	.01949	.30042	.4.291225E-12		
V28	2.7715473	.8524184	.7.1932E-02	1.26542	V33	.07242	.31857	.4.236120E-11		
V25	.621951558	.1.65739	.5.275727	-.2.55131	V34	.01619	.31758	.4.0322075E-11		

VARIABLES NOT IN THE EQUATION

THIS PAGE IS BEST QUALITY PRACTICABLE
 FROM COPY FURNISHED TO DDC

Sensitivity Test W174 60 LEFT FIGURE ONLY

	11/24/78	12.35.1+	PAGF	6.9
V25	-1.61951336	.3205424	3.7941724 -1.1363875 2.02122	.00518 .06299
V75	-1.6195273	.3205495	3.6523279 -.6751153 0.010	.01307019 .02457 .045
V14	1.619521176	1.6195543	4.0151213 -.7193775	.01201 .04439
J23	-1.612764355-01	.423036365-01	3.0195246 -1.21273 -.1149737 .2222-0	.021777 .009945
(CONSTANT)	-1.6195646	.73713692	56.01659 .000	.025537 .00432
			V65	.017711 .005734
			V66	-.163317 .00001
			V67	.04515 .01074
			V69	.03634 .01445
			V74	-.12043 .01003
			V76	-.19037 .01667
			V77	-.11566 .02015
			V79	.036162 .02557
			V85	.33432 .01953
			V91	.17315 .01776
			V97	.22544 .02145
			V89	.27231 .02531
			V92	.02511 .02374
			V93	.02367 .02107
				.0354 .0354

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

SPSSSTEPWISE WITH 60 LINES FROM CHOW

FILE: RNAME (CREATION DATE = 11/24/77)

MULTIPLE REGRESSION (SESSION NUMBER 25.. V20)

DIFERENT VARIABLE.. V03

VARIABLE(S) ENTERED ON STEP NUMBER 25.. V20

MULTIPLE R	.97577	ANALYSIS OF VARIANCE DF	SUM OF SQUARES	MEAN SQUARE
R SQUARE	.95212	REGRESSION 23.	140.56044	5.4754
ADJUSTED R SQUARE	.92354	RESIDUAL 35.	7.49103	.13276
STD DEVIATION	.67327	Coeff. of Variability 116.5 PCT		

VARIABLES IN THE EQUATION

VARIABLE	B	STN ERROR T	F	BETA	SIGNIFICANT	ELASTICITY	VARIABLE	B	STN ERROR T	F	BETA	SIGNIFICANT	ELASTICITY
V3	.8054867E-01	.26356767	.10290231	.0172175			V2		.05225			.05225	.24572645
V56	-1.27214156	.591E-01432E-01	7.0E-01432E-01	.753			V4		.13670			.12935	.073
V12	-1.6578555	.2810659	26.4E71913	.6277E-01			V6		.05241			.2445	.2705E-01
V64	3.01349698	.7252E203	17.512290	2.2103E-01			V7		.21251			.01151	.0012505
V8	11.722694	.23285931	23.7929E-01	2.57E-01700			V9		.21312			.31112	.1E-017E
V89	.254P2913	.5E-014102E-01	25.70E-0150	.77E-01			V12		.09659			.5743	.00167
V63	-1.00956656	.4E7E2055	1.0E-01693	.7E-01697			V13		.13910			.05532	.001305
V65	-1.E12777E-06	.57702893E-01	4.73E6512	.453E-0121			V15		.01519			.01519	.67755E-01
V27	-1.67172110	.5P-14751	3.0E-01365	.22119			V19		.07242			.01157	.20311E-01
V16	-2.25056732	.5E570746	3.0E-01365	.4E-01467			V19		.01524			.06512	.001652
V17	-3.22715P-05E-01	.31612460	.4E1172E-01	.323566			V21		.026E-?2			.01037	.2734565E-01
V94	.527P9478	.17712500	25.9E223	.31156			V22		.03917			.04803	.533E213E-01
V10	-1.1754451	.25199175	17.6E-01597	.2E-01217			V25		.137E-1			.02016	.732E-01
V2	.49270193	.1C-0167972	17.5E-01727	.57169			V29		.05150			.01939	.1028579
V5	.11240E-17	.6752545E-01	37.2E6794	.6752545			V32		.1E7E-2			.26523	.1.34E2.61
V60	-4.67514E-19	.941E-017E-01	2E-015676	.1E-01374			V34		.1E9E-4			.30E13	.1.23E-01
V28	2.50E6232	.715E-0173	12.2E-0157	.8652157			V39		.127E-1			.307E-2	.627E-0132
V75	.42277740	.1E3E2140	9.799E-0131	.664E-0121					.1E-01305			.00335	.4E-0125

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

S=55315E4155E-4114 Z=0 LEFT FIG. C40N

			11/24/75	12.35.34.	246F	76
V25	-0.72354516	+210.35237	7.004540C	-1.360252	.16202	.0254
V7C	.7342939	+260.1C235	0.1070235	2.3-25	.04355	1.0122006
V54	7.7105279	1.2773532	7.0517279	0.13776	.17112	.316
V27	-0.5240261	+16316376	27.134695	-1.052563	.20634	1.152221
V21	.32209145	+6.4931625-91	22.162176	1.65447	-1.0211	.09696
(CONSTANT)	-0.2153790	+59.798024	79.012380	-1.43233	.04559	1.0255353
		0			-15.032	.0529
V67				-0.9917	.0001	.6745769
V69				.01473	.01071	.22135192
V7A				.05527	.01475	.6-127
V7B				-0.0514	.00931	.11543674
V76				-0.02262	.01556	.035
V77				.11310	.01791	.0491163
V79				.07579	.02553	.1491163
V86				.00919	.01377	.705
V87				-0.09018	.01623	.16549325
V88				-0.03916	.01940	.2422900E-12
V91				-0.9656	.03202	.954
V92				-0.02765	.02354	.7326006E-11
V93				-0.16364	.02101	.5627465E-13
		0			.932	

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

DEFENDANT VARIABLE.. V94

COEFFICIENTS AND CONFIDENCE INTERVALS.

VARIABLE	B	STD. ERROR	T	95.0 PCI CONFIDENCE INTERVAL
V7	-2.2556870	.1.2557446	-1.65956376	-5.1716466 .55967866
V63	.01395714	.0.9326539	-3.6795920	-1.27759 .9015844
V11	-1.5122731	.4160479	-2.7144022	-2.320193 -1.10463379
V64	.35242429	.1.6536692	-2.15014	-1.3154952 .215072
V6	13.342642	.0.5171857	1.6332061	7.1151070 24.570177
V49	1.6420039	.27256253	2.579529	.27365381 1.1387695
V53	-1.0.92639	.2218456	-1.6218237	-2.5169193 .21337227
V65	-2.22766312	.35426275	-7.7122652	-5.5135973 .4515247
V27	-2.4964639	.1.2512464	-2.314224	-5.533761 .21230373
V17	-7.3026631	.41162492	-2.645759	-5.377 .32123693
V1	4.3579557	.42584558	-1.714011	-4.5354162 .6667593
V5	-1.371217	.1.2393653	1.354493	-1.0.311073 .66693786
V90	-1.27345602	.427979610	-2.6135163	-4.722663 .3537564
V29	4.1363611	.4.1562250	-2.827565	-7.972377 .32201260
V72	-7.2556551	.46490662	-1.675613	-4.725512 .32201260
V25	-1.4137519	.41955284	-2.710395	-2.546762 .37252
V70	1.3527124	.41954206	1.077530	-1.2939295 .3.623644
V14	-1.2162675	.3.4875656	1.2913694	-2.5292965 .11.352659
V23	-0.6116677	.22211764	-7.416304	-1.337291 .3.846411
V2	-5.6116679	.428776347	1.573196	-7.451631 .1.6622017
V5	-2.2126525	.4.1226534	-1.522273	-2.619602 .1.0.5366
V25	1.1770518	.3655500	3.144779	-3.167176 .4.677176
V42	-5.750223	.4.5237.23	1.3761639	-5.1712551 .1.669115
V46	-3.076237	.4.214510	-2.5292967	-2.9145619 .3.623644
V61	-9.6443641	.57120346	-1.723737	-1.337291 .3.846411
V7	-4.7346866	.41275942	-4.4931224	-5.403105 .4.6222017
V92	*1.6591670	.3.0119568	5.172255	-4.319117 .4.319117
V21	-1.6974613	.37766232	-2.572125	-1.5161156 .4.677176
V6	-5.2275446	.2577.426	-2.626684	-1.5161156 .4.677176
V77	1.1273777	.5.2.3175	2.139332	-2.2551972 .3.623644
V2	1.1716442	.57221365	1.57221365	-4.5292965 .2.2551972
V19	-1.419613	.1.7205946	-5.5212870	-5.132507 .2.2551972
V79	-5.6127677	.27955381	-1.6131649	-1.6131649 .4.677176
V12	-6.6249078	.4.1442633	-1.672273	-1.672273 .4.677176
V7	-6.6249078	.4.1442633	-1.672273	-1.672273 .4.677176
V37	-3.3770147	.31370475	-2.152225	-1.337291 .3.846411
V22	-9.9280649	.51174236	-4.3844953	-1.2444953 .4.677176
V71	1.7961397	.62469293	1.62469293	-1.337291 .3.846411
V65	-5.527677	.3.7210757	-1.6720452	-1.6720452 .4.677176
V12	5.2054552	.3.0119568	1.6131649	-1.6131649 .4.677176
V15	-4.1760249	.2.637226	-1.7131341	-1.672273 .4.677176
V6	-3.3770147	.2.7334272	-1.696663	-1.696663 .4.677176
V22	-9.9280649	.51174236	-4.3844953	-1.2444953 .4.677176
V73	-3.6592744	.6.6321711	-4.4646410	-1.6131649 .4.677176
V23	-2.1649070	.6.6321711	-4.4646410	-1.6131649 .4.677176
V13	-1.2555742	.3.0119568	-1.701606	-1.701606 .4.677176
V2	-1.116696	.4.6372349	-1.7446406	-1.7446406 .4.677176

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

SPSS STEPWISE WITH & LEFT FROM CDM
V1. -4.67245276 1.4102544 -3.73759243
V2. .11345415 .11216017 .10612263
CONSTANT -5.7362198 2.1137225 -1.076167

11/24/73 12.35.36. PAGE 144
1.47245276 1.4102544 -3.51.0-43
.11345415 .11216017 .13.0532
-5.7362198 2.1137225 -1.076167

S S S S T E P W I T H S C L E F F O R C H O W

FILE NAME (CREATION DATE = 11/24/73)

11/24/73 12:35:14 PAGE 148

D E F F E N T V A R I A B L E .. V93

S U M M A R Y T A B L E

STEP	VARIABLE ENTERED	F TO REMOVE	ENTER OR REMOVE	SIGNIFICANCE	MULTIPLE R	R SQUARE	SIMPLE R	OVERALL F	SIGNIFICANCE
1	V3	81.03622	0	.75734	.57312	.75766	.51.89522	6	.000
2	V03	.060	.060	.61151	.05273	.37306	.57.91015	5	.000
3	V11	.15.0.02	.15.0.02	.61292	.72117	.05276	.50.55727	4	.000
4	V04	.061	.061	.47223	.76256	.27532	.46.05273	3	.000
5	V1	.9.33452	.063	.03456	.03475	.02456	.41.52543	2	.000
6	V32	.05.426	.016	.84516	.78660	.06341	.29.17760	1	.000
7	V43	.5.427	.024	.62510	.62510	.01043	.04452	0	.000
8	V53	.4.76115	.061	.61662	.01616	.26202	.26.31793	0	.000
9	V63	.3.64530	.067	.61012	.01017	.01017	.32.25534	0	.000
10	V73	.3.63960	.064	.61019	.01016	.01016	.70.17372	0	.000
11	V15	.3.73322	.055	.37133	.01031	.01031	.26.31549	0	.000
12	V17	.4.7152	.035	.62416	.62627	.01725	.23.26520	0	.000
13	V18	.4.15221	.047	.57417	.87267	.01310	.01195	0	.000
14	V19	.1.67462	.217	.62427	.67401	.01310	.26.55521	0	.000
15	V10	.1.33132	.24.0	.61712	.60101	.01016	.10.77772	0	.000
16	V1	.1.23267	.165	.61151	.61151	.01016	.11.17724	0	.000
17	V20	.2.75430	.268	.54213	.61292	.01016	.24.63118	0	.000
18	V21	.2.64901	.096	.54213	.61292	.01016	.22.75733	0	.000
19	V23	.2.33152	.124	.61521	.61521	.01016	.22.50351	0	.000
20	V25	.09115	.971	.61512	.61512	.01016	.22.01251	0	.000
21	V26	.2.32361	.154	.61151	.60101	.01016	.23.63272	0	.000
22	V27	.1.63462	.234	.61151	.61151	.01016	.23.00553	0	.000
23	V28	.2.21212	.149	.62551	.61319	.00714	.22.42320	0	.000
24	V29	.2.41111	.123	.63529	.61319	.00714	.22.00324	0	.000
25	V30	.2.60532	.085	.63112	.62694	.00714	.21.51110	0	.000
26	V31	.22.12251	.003	.57217	.52721	.00714	.22.05542	0	.000
27	V32	.1.57131	.197	.61512	.61512	.00714	.23.71611	0	.000
28	V33	.2.12630	.127	.61151	.62427	.00714	.32.35614	0	.000
29	V34	.1.63471	.101	.62551	.62551	.00714	.32.75159	0	.000
30	V35	.1.39111	.178	.62551	.61454	.00714	.32.46467	0	.000
31	V36	.1.63570	.205	.59124	.62694	.00714	.32.46467	0	.000
32	V37	.1.35944	.212	.63112	.63112	.00714	.32.46467	0	.000
33	V38	.1.11101	.031	.55452	.63421	.00411	.32.46467	0	.000
34	V39	.2.03717	.104	.65515	.65515	.00411	.32.46467	0	.000
35	V40	.1.25293	.272	.67324	.67116	.00411	.32.46467	0	.000
36	V41	.55307	.427	.62551	.97226	.00416	.32.46467	0	.000
37	V42	.1.13732	.295	.59124	.59376	.00707	.32.05545	0	.000
38	V43	.1.15743	.290	.63112	.63112	.00707	.31.51111	0	.000
39	V44	.1.11101	.391	.67324	.67324	.00707	.30.76773	0	.000
40	V45	.1.03717	.391	.65515	.65515	.00707	.30.09565	0	.000
41	V46	.77907	.763	.62551	.62551	.00707	.29.45262	0	.000
42	V47	.65307	.427	.62551	.97226	.00707	.27.75435	0	.000
43	V48	.65307	.427	.62551	.97226	.00707	.26.81735	0	.000
44	V49	.67116	.421	.62551	.97393	.00401	.24.55136	0	.000
45	V50	.61501	.431	.62551	.97561	.00401	.22.45750	0	.000
46	V51	.67116	.431	.62551	.97561	.00401	.23.76150	0	.000
47	V52	.65307	.427	.62551	.97393	.00401	.23.76150	0	.000
48	V53	.65307	.427	.62551	.97393	.00401	.23.76150	0	.000
49	V54	.67116	.421	.62551	.97393	.00401	.23.76150	0	.000
50	V55	.61501	.431	.62551	.97561	.00401	.22.45750	0	.000
51	V56	.67116	.431	.62551	.97561	.00401	.23.76150	0	.000
52	V57	.65307	.427	.62551	.97393	.00401	.23.76150	0	.000
53	V58	.65307	.427	.62551	.97393	.00401	.23.76150	0	.000
54	V59	.67116	.421	.62551	.97393	.00401	.23.76150	0	.000
55	V60	.61501	.431	.62551	.97561	.00401	.22.45750	0	.000
56	V61	.67116	.431	.62551	.97561	.00401	.23.76150	0	.000
57	V62	.65307	.427	.62551	.97393	.00401	.23.76150	0	.000
58	V63	.65307	.427	.62551	.97393	.00401	.23.76150	0	.000
59	V64	.67116	.421	.62551	.97393	.00401	.23.76150	0	.000
60	V65	.61501	.431	.62551	.97561	.00401	.22.45750	0	.000
61	V66	.67116	.431	.62551	.97561	.00401	.23.76150	0	.000
62	V67	.65307	.427	.62551	.97393	.00401	.23.76150	0	.000
63	V68	.65307	.427	.62551	.97393	.00401	.23.76150	0	.000
64	V69	.67116	.421	.62551	.97393	.00401	.23.76150	0	.000
65	V70	.61501	.431	.62551	.97561	.00401	.22.45750	0	.000
66	V71	.67116	.431	.62551	.97561	.00401	.23.76150	0	.000
67	V72	.65307	.427	.62551	.97393	.00401	.23.76150	0	.000
68	V73	.65307	.427	.62551	.97393	.00401	.23.76150	0	.000
69	V74	.67116	.421	.62551	.97393	.00401	.23.76150	0	.000
70	V75	.61501	.431	.62551	.97561	.00401	.22.45750	0	.000

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

DATE	TIME	PAGE
11/24/74	12:35:34.	149
		25.0
		24.5
		24.4
		24.3
		24.2
		24.1
		24.0
		23.9
		23.8
		23.7
		23.6
		23.5
		23.4
		23.3
		23.2
		23.1
		23.0
		22.9
		22.8
		22.7
		22.6
		22.5
		22.4
		22.3
		22.2
		22.1
		22.0
		21.9
		21.8
		21.7
		21.6
		21.5
		21.4
		21.3
		21.2
		21.1
		21.0
		20.9
		20.8
		20.7
		20.6
		20.5
		20.4
		20.3
		20.2
		20.1
		20.0
		19.9
		19.8
		19.7
		19.6
		19.5
		19.4
		19.3
		19.2
		19.1
		19.0
		18.9
		18.8
		18.7
		18.6
		18.5
		18.4
		18.3
		18.2
		18.1
		18.0
		17.9
		17.8
		17.7
		17.6
		17.5
		17.4
		17.3
		17.2
		17.1
		17.0
		16.9
		16.8
		16.7
		16.6
		16.5
		16.4
		16.3
		16.2
		16.1
		16.0
		15.9
		15.8
		15.7
		15.6
		15.5
		15.4
		15.3
		15.2
		15.1
		15.0
		14.9
		14.8
		14.7
		14.6
		14.5
		14.4
		14.3
		14.2
		14.1
		14.0
		13.9
		13.8
		13.7
		13.6
		13.5
		13.4
		13.3
		13.2
		13.1
		13.0
		12.9
		12.8
		12.7
		12.6
		12.5
		12.4
		12.3
		12.2
		12.1
		12.0
		11.9
		11.8
		11.7
		11.6
		11.5
		11.4
		11.3
		11.2
		11.1
		11.0
		10.9
		10.8
		10.7
		10.6
		10.5
		10.4
		10.3
		10.2
		10.1
		10.0
		9.9
		9.8
		9.7
		9.6
		9.5
		9.4
		9.3
		9.2
		9.1
		9.0
		8.9
		8.8
		8.7
		8.6
		8.5
		8.4
		8.3
		8.2
		8.1
		8.0
		7.9
		7.8
		7.7
		7.6
		7.5
		7.4
		7.3
		7.2
		7.1
		7.0
		6.9
		6.8
		6.7
		6.6
		6.5
		6.4
		6.3
		6.2
		6.1
		6.0
		5.9
		5.8
		5.7
		5.6
		5.5
		5.4
		5.3
		5.2
		5.1
		5.0
		4.9
		4.8
		4.7
		4.6
		4.5
		4.4
		4.3
		4.2
		4.1
		4.0
		3.9
		3.8
		3.7
		3.6
		3.5
		3.4
		3.3
		3.2
		3.1
		3.0
		2.9
		2.8
		2.7
		2.6
		2.5
		2.4
		2.3
		2.2
		2.1
		2.0
		1.9
		1.8
		1.7
		1.6
		1.5
		1.4
		1.3
		1.2
		1.1
		1.0
		0.9
		0.8
		0.7
		0.6
		0.5
		0.4
		0.3
		0.2
		0.1
		0.0

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

SESSIONWISE WITH 50 LEFT FROM CHOW

FILE NUMBER (CREATION DATE = 11/26/78)

11/24/78

12.35.74.

PAGE 150

OBSEVATION	Y VALUE	Y ESTIMATE	SESSION
1.	-5.315149	-7.824779	-250
2.	-7.67231	-1.167635	-2459.37
3.	-1.737365	-1.1382751	-2024265.01
4.	1.6023912	1.6554541	-5654.03.01
5.	-1.92116	-27.82341F-01	-8174.22.01
6.	-3.056714	-6.9151545	-10315.55.01
7.	-7.9.67512	-2.443421	-1.659115.01
8.	-2.37117	-3.196713	-6.2395.01
9.	-5.586272	-7.765427	-11711.2
10.	-7.4.62139	-7.1779722	-3131.55.01
11.	-2.67074	-2.657935	-1098.65.01
12.	-3.97722	-6.015391	-4516.935.02
13.	-1.791625	-1.935233	-1.520137
14.	1.25354	1.337383	-6.432145.01
15.	-1.101392	1.262367	-1569.64
16.	-1.476100	-1.534213	-10511.53
17.	-2.356226	-2.296612	-5230375.01
18.	-1.610135	-1.028612	-1.617.31.01
19.	-2.164301	2.037363	-1.876121
20.	-2.678142	-2.793465	-1142.752.01
21.	-1.693302	-1.675321	-2267.837
22.	-2.872721	-1.732911	-1.659.33
23.	-2.271352	1.259375	-6.226.375.01
24.	1.135442	1.529352	-1.0511.57
25.	-7.161315	-7.657345	-9.2223035.02
26.	3.202364	3.253442	-231.705.01
27.	-4.052743	-2.1411.62	-316.5.39
28.	-1.136377	-1.1715.52	-3302.175.01
29.	1.361372	1.747343	-2662.222.01
30.	-2.022213	-3.322723	-1.26.552
31.	-1.690116	-1.566.12	-7.1293.03.61
32.	-0.203736	1.2172.51	-2.52.4.37
33.	-3.767.476	-1.076.20	-6.327.435.61
34.	-2.563175	-2.593197	-1.274.32
35.	-2.367227	-2.614.90	-5.10.422.01
36.	-2.013202	-1.274.21	-7.1.3.13.01
37.	-2.664462	-2.491.93	-267.03.01
38.	-1.554.63	-1.565.15	-3.547.11.01
39.	-2.263.51	-2.193.34	-1.120.5.4
40.	-8.1.301	-7.425.50	-3.296.22.01
41.	-5.561.66	-6.502.51	-4.467.0.24
42.	-7.267.56	-8.575.67	-1.971.1
43.	-2.341.71	-1.316.45	-1.261.4
44.	-1.236.311	-1.333.95	-9.961.3.01
45.	-2.841.770	-2.111.24	-7.274.5.02
46.	-2.642.58	-2.732.03	-1.105.1.01
47.	-5.561.66	-6.502.51	-4.467.0.24
48.	-7.267.56	-8.575.67	-1.971.1
49.	-2.341.71	-1.316.45	-1.261.4
50.	-1.236.311	-1.333.95	-9.961.3.01
51.	-2.841.770	-2.111.24	-7.274.5.02
52.	-2.642.58	-2.732.03	-1.105.1.01
53.	-5.561.66	-6.502.51	-4.467.0.24
54.	-7.267.56	-8.575.67	-1.971.1
55.	-2.341.71	-1.316.45	-1.261.4
56.	-1.236.311	-1.333.95	-9.961.3.01
57.	-2.841.770	-2.111.24	-7.274.5.02
58.	-2.642.58	-2.732.03	-1.105.1.01
59.	-5.561.66	-6.502.51	-4.467.0.24
60.	-7.267.56	-8.575.67	-1.971.1
61.	-2.341.71	-1.316.45	-1.261.4
62.	-1.236.311	-1.333.95	-9.961.3.01
63.	-2.841.770	-2.111.24	-7.274.5.02
64.	-2.642.58	-2.732.03	-1.105.1.01
65.	-5.561.66	-6.502.51	-4.467.0.24
66.	-7.267.56	-8.575.67	-1.971.1
67.	-2.341.71	-1.316.45	-1.261.4
68.	-1.236.311	-1.333.95	-9.961.3.01
69.	-2.841.770	-2.111.24	-7.274.5.02
70.	-2.642.58	-2.732.03	-1.105.1.01
71.	-5.561.66	-6.502.51	-4.467.0.24
72.	-7.267.56	-8.575.67	-1.971.1
73.	-2.341.71	-1.316.45	-1.261.4
74.	-1.236.311	-1.333.95	-9.961.3.01
75.	-2.841.770	-2.111.24	-7.274.5.02
76.	-2.642.58	-2.732.03	-1.105.1.01
77.	-5.561.66	-6.502.51	-4.467.0.24
78.	-7.267.56	-8.575.67	-1.971.1
79.	-2.341.71	-1.316.45	-1.261.4
80.	-1.236.311	-1.333.95	-9.961.3.01
81.	-2.841.770	-2.111.24	-7.274.5.02
82.	-2.642.58	-2.732.03	-1.105.1.01
83.	-5.561.66	-6.502.51	-4.467.0.24
84.	-7.267.56	-8.575.67	-1.971.1
85.	-2.341.71	-1.316.45	-1.261.4
86.	-1.236.311	-1.333.95	-9.961.3.01
87.	-2.841.770	-2.111.24	-7.274.5.02
88.	-2.642.58	-2.732.03	-1.105.1.01
89.	-5.561.66	-6.502.51	-4.467.0.24
90.	-7.267.56	-8.575.67	-1.971.1
91.	-2.341.71	-1.316.45	-1.261.4
92.	-1.236.311	-1.333.95	-9.961.3.01
93.	-2.841.770	-2.111.24	-7.274.5.02
94.	-2.642.58	-2.732.03	-1.105.1.01
95.	-5.561.66	-6.502.51	-4.467.0.24
96.	-7.267.56	-8.575.67	-1.971.1
97.	-2.341.71	-1.316.45	-1.261.4
98.	-1.236.311	-1.333.95	-9.961.3.01

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

SPECIMEN NUMBER 60 LIST FROM CRUW

FILE NUMBER (REFLECTION DATE = 11/25/76)

11/26/76 12.25.3A. PAGE 151

CONSIDERATION	Y VALUE	Y ESTIMATE	RESIDUAL	-250
61.	.5866799	.4763730	.1102710	
62.	.5866799	.4574767	.1195311	
63.	1.2505771	1.057345	.1727117	
64.	1.01156	1.12383	-.1635221-61	
65.	-1.2113175	-1.187453	.1130772	
66.	-1.666374	-1.264792	.1534675E-01	
67.	-1.198137	-1.251116	.1661535E-01	
68.	1.58117	1.9146305	.9164310	
69.	1.262680	1.126030	.154569	
70.	1.473775	1.319331	.1521015	
71.	-1.016572	-1.053795	.2512625E-01	

NOTE - (*) INDICATES ESTIMATE CALCULATED WITH MEANS SUBSTITUTED
? INDICATES POINT CUT OF LAGE OF 201

NUMBER OF CASES OBTAINED 63. 1.53 PERCENT OF TOTAL
NUMBER OF S.O. OBTAINERS 1. OR

VON FERBER TEST ? 23711 MIRZAH-WATSON TEST 2.25633

NUMBER OF POSITIVE INDIVIDUALS 73.
NUMBER OF ANTS OF QUINS 30.
NUMBER OF QUINS 35.

EXPECTED NUMBER OF KINDS OF QUINS
EXECUTIVE S.O. OF RUM DISINFECTION 1.32742
UNIT WORKS DEVIATE
NUMBER OF PRESERVED S.O. .79205
NUMBER OF PRESERVED S.O. AND S.P. .21709

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDG

PROGRESSIVE EDUCATION IN SCIENCE EDUCATION FACILITY, INCL

VARIABLE	STANDARD DEVIATION
1	1.6157
2	1.1517
3	1.0762
4	1.0762
5	1.5349
6	1.3363
7	1.3594
8	1.3975
9	1.4214
10	1.3553
11	1.2155
12	1.2543
13	1.2543
14	1.2563
15	1.2563
16	1.4120
17	1.1769
18	1.1508
19	1.1450
20	1.1633
21	1.1653
22	1.1757
23	1.02978
24	1.0503
25	1.1031
26	1.0523
27	1.12216
28	1.11510
29	1.11510
30	1.11705
31	1.11513
32	1.11705
33	1.11513
34	1.12216
35	1.12216
36	1.12216
37	1.12216
38	1.12216
39	1.12216
40	1.12216
41	1.12216

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

Figure 8. Selected Output from BMD

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	
4.7127	2.91521	3.5173	2.41751	1.56911	4.03773	3.32932	1.58742	2.37411	2.72105	4.43715	3.52222	1.27745	3.25131	1.95322	2.74223	4.57722	3.12515	1.53321	2.01931	1.51451
4.7127	2.91521	3.5173	2.41751	1.56911	4.03773	3.32932	1.58742	2.37411	2.72105	4.43715	3.52222	1.27745	3.25131	1.95322	2.74223	4.57722	3.12515	1.53321	2.01931	1.51451

SUBROUTINE 1
 BRACKETED VARIABLE 61
 NUMBER OF STEPS 122
 F-LEVEL FOR INCLUSION .110010
 F-LEVEL FOR DELETION .000009
 TOLERANCE LEVEL .001000

STEP NUMBER 1

VARIABLE ENTERED

MULTIPLE 2
STD. ERROR OF EST.

.7670
1.0164

ANALYSIS OF VARIANCE

	SUM OF SQUARES	MEAN SQUARE
REGRESSION	89.355	89.355
RESIDUAL	60.757	1.0123

VARIABLES IN EQUATION

VARIABLE	Coefficient STD. ERROR F TO REMOVE
CONSTANT	-7.37329721
	1.111667
	1.2351
	11.39362 (2)

102

THIS PAGE IS BEST QUALITY PRACTICABLE
 FROM COPY FURNISHED TO DDC

VARIABLE	Coefficient STD. ERROR F TO ENTER	PARTIAL CORR.	TOLFACTOR	F TO ENTER
1	.10127	.6224 (2)		
2	.12626	.41192		
3	.32447	.11324		
4	.27227	.01655		
5	.07572	.11483		
6	.01649	.00327		
7	.21651	.00033		
8	.12954	.00039		
9	.23504	.00014		
10	.00014	.20704		
11	.00014	.14732		
12	.00014	.21731		
13	.00015	.01124		
14	.00015	.01124		
15	.00015	.01124		
16	.00015	.01124		
17	.01125	.00014		
18	.01125	.00014		
19	.01125	.00014		
20	.02112	.00014		
21	.00051	.00014		
22	.00049	.00014		
23	.02941	.00014		
24	.00510	.00014		
25	.20442	.00014		
26	.19533	.00014		
27	.17223	.00014		
28	.21521	.00014		
29	.19219	.00014		
30	.16711	.00014		
31	.13961	.00014		
32	.15713	.00014		
33	.30397	.00014		

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

59	-1.51461	-2.115	.1550	6.6075	12)
75	-1.18272	-1.257	.1257	3.77074	12)
76	-22.911	-1.521	.1521	2.52561	12)
77	-25.750	-1.613	.1613	2.52561	12)
78	-27.332	-1.655	.1655	6.4776	12)
79	-27.332	-1.623	.1623	6.4776	12)
80	-26.418	-1.617	.1617	6.4776	12)
81	-25.653	-1.593	.1593	4.72214	12)
82	-25.653	-1.632	.1632	4.72214	12)
83	-36.776	-1.612	.1612	4.72214	12)
84	-19.111	-1.213	.1213	11.3532	12)
85	-49.126	-1.224	.1224	10.7067	12)
86	-155.32	-1.355	.1355	1.7032	12)
87	-26.056	-1.263	.1263	2.157	12)
88	-17.211	-1.181	.1181	1.531	12)
89	-0.591	-1.507	.1507	1.114	12)
90	-25.421	-1.374	.1374	2.1470	12)
91	-25.421	-1.374	.1374	2.1470	12)
92	-2.845	-1.224	.1224	3.1255	12)
93	-23.974	-1.744	.1744	3.1255	12)
94	-22.219	-1.115	.1115	3.1132	12)
95	-23.923	-1.223	.1223	4.2666	12)
96	-21.617	-1.175	.1175	2.775	12)
97	-23.113	-1.367	.1367	3.1367	12)
98	-1.672	-0.016	.016	0.016	12)
99	-0.575	-1.56	.156	0.725	12)
100	-0.637	-1.731	.1731	0.824	12)
101	-0.36525	-0.983	.0983	0.2616	12)

STEP NUMBER²
VARIABLE ENTERED

MULTIPLE R
STD. ERROR OF EST.
0.9434

ANALYSIS OF VARIANCE

DEGREES OF FREEDOM	SUM OF SQUARES	MEAN SQUARE	F RATIO
REGRESSION	16.165	51.575	17.390
RESIDUAL	55.394	.513	

VARIABLES IN EQUATION

VARIABLE COEFF. TO REMOVE
COEFFICIENT STD. ERROR = TO REMOVE

VARIABLE	VARIABLE	PARTIAL CORR.	TELEGRAM	F TO ENTER
CONSTANT	-4.62472477	1		*2.17 62)
3	1.07143	.11211	.11211	.11211 62)
4,3	.012758	.01233	.01233	.01233 62)
5				
6				
5				
6				
7				
7				
3				
3				
3				
10				
11				
12				

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

```

PROGRAM MULTI    74/74  OPT=1          FTN 4.6+4.6      11/30/76  16.35.40      PAGE  1

1   C   GROUP 2 WITH GTO:2 AND ? SELECTED BY 26A?
C   PROGRAM MULTITAP1, INPUT, TAP1, (4,E3)
C   VARIABLE NO.  VARIABLE NAME
5   C   1          Y1
C   C   2          Y2
C   C   3          Y3
C   C   4          YSS
C   C   5          Y4
C   C   6          SF
C   C   7          S3
C   C   8          S1
C   C   9          F4
C   C   10         X4T2
C   C   11         YF*W0
C   C   12         YF*W
C   C   13         YF*20
C   C   14         YF*2
C   C   15         NC*10
C   C   16         NC*V
C   C   17         S**G
C   C   18         D13*P
C   C   19         D13*W
C   C   20         D13*W
C   C   21         D13*SS
C   C   22         D13*SS
C   C   23         INV1
C   C   24         F4*4
C   C   25         S4*2
C   C   26         S7*4
C   C   27         P=0.55

C   DIMENSION R(19330),LJ(4),IXS(1),STAT(5),IXV(31)
C   DIMENSION IX(31),RST(4654),NVR(360)
C   DIMENSION IWI(3174),A(1710)
C   DIMENSION Y(31),Y(31),Y(31),Y(31),Y(31),Y(31),Y(31)

35   C   TAP1 IS DATA TAPE.
C   DATA IS IN 4FD.10 FORMAT.
C   INDEPENDENT VARIABLES ARE FIRST
C   DEPENDENT VARIABLE IS LAST
C   TAPE IS CONTROL TAPE
C   NUMBER OF INDICES OF VARIABLES
C   NUMBER OF OBSERVATIONS
C   IN 2? FORMAT
C   TAP1 IS
C   THIS IS THE MAXIMUM NUMBER OF DATA POINTS, AND
C   SHOULD BE CHANGED IF DIMENSIONS ARE CHANGED.

45   C   INIT 24.0
C   24.0 IS THE MAXIMUM NUMBER OF VARIATE'S = 29*
C   F=1.0,2.0,0.1,YAC
C   FORV1(11)
C   FORV1(21).10AP
C   2001 F0.***T1" There are ",IT," INDEXES OR VARIATE'S"

```

Figure 9. Sample Leaps and Bounds

PROGRAM MULTI 74/74 OPT=1 FTN 4.66446 11/30/76 16.35.49 PAGE 2
 NAK(J)=IVAR+1
 NAK(1)=NRAT(1)
 PRINT 2002
 PRINT (" MAXIMUM NUMBER OF OBSERVATIONS = 100")
 READ (7,3003) N3(12)
 NAK2=NFRQ(?)
 PRINT 2303,NAK(?)
 FOR I=1," NUMBER OF OBSERVATIONS = ",I3)
 PRINT 2304
 FOR I=1,I3,"NEXT MATRIX")
 DO 1 I=1,125,2
 PRINT(1,IUCB)(IX(I),J),J=1,NCR1)
 CPRINT(1,
 1 1000 CPRINT(12X,F23.14,21X,F20.14/12X,F20.14/32X,F20.14/12X,F20.14/
 7.52X,14/12X,F29.14,20X,F20.14/32X,F23.14/12X,F20.14/12X,F20.14/
 1.10X,32X,F24.14/12X,F29.14/32X,F20.14/5(0G/),?2X,F20.14/12X,
 F25.14,20X,F24.14/12X,F26.14,20X,F20.14/5(0G/),?2X,F20.14/12X,
 U(1.0X,12X,F29.14,20X,F20.14/12X,F29.14/32X,F20.14/
 IF(IH(12),51,1935)G1
 NAK(?)=NAK(?)
 NAK(I)=NAK(5)=N3(5)=N3(1)=1
 C CALL RECOV(XX,IX,N12,TEMP,XN,R2,IER)
 C PRINT 2306
 2005 FOR=MPI(/10X,"SUM OF SQUARES AND CROSS PROJECTS MATRIX"/)
 C CALL VCVTSF(FR,?NRC(11),WC,27)
 PRINT 2307 ((WC(1),J),J=1,NCR1),IER,NRP1)
 FOR=MPI(15620,99)
 PRINT 2308
 FOR=MPI(/,"FEAT")
 PRINT 2309,IX4(1),IX5,MNR1)
 IF(IH(12).NE.0)PRINT 2009,IER
 2309 FC3(1,"*****")
 1,"*****")
 K7=PERK(1)
 PRINT 2310,*?/ 2010 FOR=MPI(/,"NUMBERS OF VARIABLES = ",I3)
 1107(I1,I2,I3)=NRC(2)-1
 1=I1,I0=I1,L1,K7=STP02
 IJ0(12)=1
 C PRINT(1,I1,I2,I3)=1
 1 3
 IJ0(12)=IJ09(2)+1
 I=I1,I0=I2+1,L1,K7=STP03
 IJ0(13)=1
 I0(12)=2
 I0=I0
 KY=7-1
 C CALL RLFAPIR,K7,IJ09,1X5,STAT,110,NVAZ,IX3,EST,IN,WK,IN,IER)
 1111 IF(IFP,NE.0)PRINT 2111,IER
 2111 FOR=MPI(/,"*****")
 1,1,"*****")
 JRP(12)=1200 G1 TO 3

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

PROGRAM MULTI 74/74 001=1 FIN 4.6+446 11/30/76 -10.35.40 PAGE 3

115 IF (IUR .NE. 37) GO TO 5
 PRINT 2712, (14(I1,I=1,KX))
116 FOR I=1," VARIABLES DEFED = ",20(5)
 TCNT=0
 DO L J=1,KX
 IF (IV(IJ) .GT. 0) TCNT=TCNT+1
 CONTINUE
 K=I+N1+1
 L
 C
 5 CALL USLAP(10),<7,IMS,STAT,IX9,IV12,IX3,3EST,19
 C
 IF (IUR .NE. 0) PRINT 2013,IER
 GO TO 2
201 FOR I=1," *****" "*****" "*****" "*****"
 1 "13/" "*****" "*****" "*****" /
 END
117

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

REGRESSIONS WITH 1 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*536119E+02	2
*155439E+02	3

REGRESSIONS WITH 2 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*645117E+02	2 7
*620934E+02	2 3

REGRESSIONS WITH 3 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*636127E+02	2 1 7
*634315E+02	2 1 23

REGRESSIONS WITH 4 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*741402E+02	2 6 7 20
*746055E+02	2 6 / 19

REGRESSIONS WITH 5 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*755415E+02	2 6 7 18 29
*761309E+02	2 6 7 9 29

REGRESSIONS WITH 6 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*724003E+02	2 6 7 19 21
*730949E+02	2 6 7 19 21

REGRESSIONS WITH 7 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*744455E+02	1 6 7 3 19 21
*790126E+02	2 6 7 9 18 21 27

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

REGRESSIONS WITH 8 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*.037712E+02	1 2 6 7 9 18 21 27
*.032952E+02	1 2 5 6 7 9 14 20

REGRESSIONS WITH 9 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*.021055E+02	1 2 6 7 9 12 21 26 27
*.016034E+02	1 2 5 6 7 9 11 26 27

REGRESSIONS WITH 10 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*.012316E+02	1 2 5 7 9 19 20 23 26 27
*.012544E+02	1 2 5 6 7 9 11 21 26 27

REGRESSIONS WITH 11 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*.013592E+02	1 2 5 6 7 9 19 20 23 26 27
*.015672E+02	1 2 6 7 9 13 20 27 23 26 27

REGRESSIONS WITH 12 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*.043464E+02	1 2 6 7 13 15 19 20 24 25 27
*.044632E+02	1 2 5 6 7 9 13 20 22 23 26 27

REGRESSIONS WITH 13 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*.053635E+02	1 2 6 7 13 15 19 20 23 24 25 26 27
*.059544E+02	1 2 6 7 13 15 19 23 27 23 24 25 26 27

REGRESSIONS WITH 14 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
*.061055E+02	1 2 6 7 13 15 19 20 22 23 24 25 26 27
*.071903E+02	1 2 6 7 13 15 19 20 23 24 25 26 27

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

REGRESSIONS WITH 15 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
.995715*02	1 2 6 7 13 14 19 20 22 24 25 23 27
.995876*02	1 2 6 7 13 14 15 18 20 22 24 25 23 27

REGRESSIONS WITH 16 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
.995715*02	1 2 6 7 13 14 17 19 20 22 23 24 25 26 27
.995876*02	1 2 6 7 12 13 14 17 15 16 22 23 24 25 26 27

REGRESSIONS WITH 17 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
.995715*02	1 2 6 7 12 13 14 17 16 18 20 22 23 24 25 23 27
.995876*02	1 2 6 7 12 13 14 17 16 17 19 22 23 24 25 26 27

REGRESSIONS WITH 18 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
.995715*02	1 2 6 7 12 13 14 17 16 17 18 20 22 23 24 25 26 27
.995876*02	1 2 6 7 12 13 14 17 16 17 19 22 23 24 25 26 27

REGRESSIONS WITH 19 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
.995715*02	1 2 6 7 12 13 14 15 16 17 19 20 22 23 24 25 26 27
.995876*02	1 2 6 7 12 13 14 17 16 17 19 22 23 24 25 26 27

REGRESSIONS WITH 20 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
.995715*02	1 2 6 7 12 13 14 15 16 17 19 20 22 23 24 25 26 27
.995876*02	1 2 6 7 12 13 14 17 16 17 19 22 23 24 25 26 27

REGRESSIONS WITH 21 VARIABLE(S) (ADJUSTED R-SQUARED)

CRITERION	VARIABLES
.995715*02	1 2 5 6 7 12 13 14 15 16 17 19 20 22 23 24 25 26 27
.995876*02	1 2 5 6 7 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27

REGRESSIONS WITH 22 VARIABLE(S) (ADJUSTED R-SQUARED)

CITRICH	VARIABLES
.49537E+02	1 2 5 7 8 11 12 13 14 15 15 17 13 20 22 23 24 25 27
.69574E+02	1 2 5 7 10 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

REGRESSIONS WITH 23 VARIABLE(S) (ADJUSTED R-SQUARED)

CITRICH	VARIABLES
.69128E+02	1 2 4 6 7 3 12 13 14 15 17 19 13 20 21 22 23 24 25 26 27
.89175E+02	1 2 3 5 7 9 10 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27

REGRESSIONS WITH 24 VARIABLE(S) (ADJUSTED R-SQUARED)

CITRICH	VARIABLES
.69137E+02	1 2 3 5 7 10 11 12 13 14 15 17 19 20 22 23 24 25 26 27
.89125E+02	1 2 3 5 7 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

REGRESSIONS WITH 25 VARIABLE(S) (ADJUSTED R-SQUARED)

CITRICH	VARIABLES
.89139E+02	1 2 3 5 6 7 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27
.330775E+02	1 2 3 5 7 1 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

REGRESSIONS WITH 26 VARIABLE(S) (ADJUSTED R-SQUARED)

CITRICH	VARIABLES
.CM505E+02	1 2 3 4 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
.665512E+02	1 2 3 5 6 7 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26

REGRESSIONS WITH 27 VARIABLE(S) (ADJUSTED R-SQUARED)

CITRICH	VARIABLES
.65593E+02	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

BEST REGRESSIONS WITH 20 VARIABLE(S) (ADJUSTED R-SQUARE=)

VARIABLE	COEFFICIENT	PARTIAL R	AVERAGE
1	.71871E+10	.11935E+02	.450352E-03
2	.36504E+10	.83521E+01	.12255E-01
3	-.29289E+11	.11317E+02	.10353E-07
4	-.21056E+01	.39107E+02	.17134E-06
5	-.45431E+11	.15669E+02	.32393E-07
6	-.31707E+10	.61652E+01	.15425E+03
7	-.42081E+10	.139317E+02	.26720E+03
8	-.87772E+13	.135113E+02	.43374E-03
9	.27455E+06	.434124E+01	.60310E-01
10	-.23247E+10	.733P3E+01	.33739E-01
11	.283229E+13	.629010E+01	.16013E-01
12	-.311239E+10	.41172E+02	.13873E-02
13	-.975978E+10	.22317E+02	.14427E+00
14	.226532E+01	.43475E+01	.31035E+01
15	-.51317E+10	.235774E+01	.11413E+01
16	.275272E+16	.637225E+01	.29413E+02
17	-.72543E+16	.13414E+02	.58739E+03
18	-.61575E+20	.21545E+02	.16613E+01
19	.879616E+00	.27653E+02	.55013E+05
20	-.766372E+30	.331529E+02	.220330E+06

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

REPRESSIONS WITH 1 VARIABLE(S) (MALLWS C2)

CRITERION	VARIABLES
1.3121+0.2	2
250755+0.3	3

REPRESSIONS WITH 2 VARIABLE(S) (MALLWS C2)

CRITERION	VARIABLES
123265+0.3	2
134254+0.3	2

REPRESSIONS WITH 3 VARIABLE(S) (MALLWS C2)

CRITERION	VARIABLES
102163+0.3	2 6 7
193171+0.3	2 7 23

REPRESSIONS WITH 4 VARIABLE(S) (MALLWS C2)

CRITERION	VARIABLES
744722+0.2	2 1 7 26
752945+0.2	2 6 7 19

REPRESSIONS WITH 5 VARIABLE(S) (MALLWS C2)

CRITERION	VARIABLES
671131+0.2	2 1 7 19 20
532215+0.2	2 6 7 13 20

REPRESSIONS WITH 6 VARIABLE(S) (MALLWS C2)

CRITERION	VARIABLES
571131+0.2	2 1 7 9 15 21
585334+0.2	2 6 7 13 20 21

REPRESSIONS WITH 7 VARIABLE(S) (MALLWS C2)

CRITERION	VARIABLES
520311+0.2	1 2 6 7 9 16 20
542525+0.2	2 6 7 9 15 20 21

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

REGRESSIONS WITH 8 VARIABLE(S) (MILLIONS C²)

CRITERION	VARIABLES
*440572E+02	1 2 6 7 3 14 21 27
*437398E+02	1 2 5 6 7 3 14 20

REGRESSIONS WITH 9 VARIABLE(S) (MILLIONS C²)

CRITERION	VARIABLES
*321356E+02	1 2 6 7 3 16 23 26 27
*41415E+02	1 2 5 6 7 3 14 20 27

REGRESSIONS WITH 10 VARIABLE(S) (MILLIONS C²)

CRITERION	VARIABLES
*353351E+02	1 2 6 7 3 16 20 21 26 27
*371457E+02	2 4 7 11 14 13 21 26 27

REGRESSIONS WITH 11 VARIABLE(S) (MILLIONS C²)

CRITERION	VARIABLES
*103255E+02	1 2 6 7 11 14 13 20 25 26 27
*330355E+02	1 2 5 6 7 9 14 20 23 26 27

REGRESSIONS WITH 12 VARIABLE(S) (MILLIONS C²)

CRITERION	VARIABLES
*211307E+02	1 6 7 11 14 15 22 23 24 25 26 27
*243017E+02	2 3 5 6 7 11 14 19 24 26 27

REGRESSIONS WITH 13 VARIABLE(S) (MILLIONS C²)

CRITERION	VARIABLES
*171646E+02	1 2 6 7 13 14 19 22 23 24 25 26 27
*237335E+02	1 4 7 11 14 17 11 22 23 24 25 26 27

REGRESSIONS WITH 14 VARIABLE(S) (MILLIONS C²)

CRITERION	VARIABLES
*163056E+02	1 2 6 7 13 14 19 22 23 24 25 26 27
*173710E+02	1 2 6 7 12 13 15 16 22 23 24 25 26 27

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

REGRESSIONS WITH 15 VARIABLE(S) (MILLIONS \$)

CRITERION: VARIABLES

*157145E+02
*1325E+02
*112644E+02

REGRESSIONS WITH 16 VARIABLE(S) (MILLIONS \$)

CRITERION: VARIABLES

*132511E+02
*112644E+02
*142201E+02

REGRESSIONS WITH 17 VARIABLE(S) (MILLIONS \$)

CRITERION: VARIABLES

*141937E+02
*142201E+02

REGRESSIONS WITH 18 VARIABLE(S) (MILLIONS \$)

CRITERION: VARIABLES

*152432E+02
*133075E+02

REGRESSIONS WITH 19 VARIABLE(S) (MILLIONS \$)

CRITERION: VARIABLES

*156294E+02
*138747E+02

REGRESSIONS WITH 20 VARIABLE(S) (MILLIONS \$)

CRITERION: VARIABLES

*157454E+02
*153256E+02

REGRESSIONS WITH 21 VARIABLE(S) (MILLIONS \$)

CRITERION: VARIABLES

*173951E+02
*174251E+02

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

REGRESSIONS WITH 22 VARIABLE(S) (MALLONS C²)

CRITERION	VARIABLES
.19283E+02	1 2 4 6 7 3 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
.23372E+02	1 2 4 5 7 3 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

REGRESSIONS WITH 21 VARIABLE(S) (MALLONS C²)

CRITERION	VARIABLES
.23924E+02	1 2 4 6 7 3 12 13 14 15 16 17 19 13 21 21 22 23 24 25 26 27
.21143E+02	1 2 4 5 6 7 3 12 13 14 15 16 17 19 19 20 21 22 23 24 25 26 27

REGRESSIONS WITH 24 VARIABLE(S) (MALLONS C²)

CRITERION	VARIABLES
.22533E+02	1 2 3 5 6 7 3 10 11 12 13 14 15 16 17 18 19 20 22 23 24 25 26 27
.22342E+02	1 2 4 5 5 7 3 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

REGRESSIONS WITH 25 VARIABLE(S) (MALLONS C²)

CRITERION	VARIABLES
.24242E+02	1 2 3 5 6 7 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
.24555E+02	1 2 3 5 5 7 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

REGRESSIONS WITH 26 VARIABLE(S) (MALLONS C²)

CRITERION	VARIABLES
.25033E+02	1 2 3 4 5 6 7 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
.25201E+02	1 2 3 5 5 7 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
.25201E+02	26 27

REGRESSIONS WITH 27 VARIABLE(S) (MALLONS C²)

CRITERION	VARIABLES
.23310E+02	1 2 3 4 5 6 7 3 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
.23310E+02	26 27

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

BEST REGRESSIONS WITH 16 VARIABLES(S) (HAL-045 CP)

VARIABLE	COEFFICIENT	PARTIAL COEFFICIENT	PARTIAL COEFFICIENT
1	*3.44E-05+00	*20.31E-02	*6.49E-02-04
2	*3.26E-06+00	*7.31E-01	*35.63E-02
6	*3.20E-04E+01	*1.03E-15+02	*1.27E-01-01
7	*-2.78E-13+01	*3.93E-15-02	*2.91E-15-03
8	*-5.13E-05E+01	*6.37E-05+01	*6.65E-05-02
13	*-6.02E-17E+00	*15.73E-04E+02	*7.93E-12E-03
14	*4.75E-09E+00	*12.71E-05E+02	*3.33E-05-03
17	*-3.27E-04E+00	*3.97E-06E+01	*4.39E-05-02
18	*-1.65E-05E+00	*1.75E-09E+01	*4.90E-05-02
19	*-16.77E-08E+01	*3.72E-07E+01	*21.74E-04-02
23	*4.22E-06E+01	*2.72E-01E+02	*1.68E-01E-04
27	*1.64E-01E+00	*1.33E-01E+01	*3.57E-01E-02
28	*-2.12E-01E+00	*1.22E-01E+02	*1.04E-01E-02
29	*-4.17E-03E+00	*7.13E-03E+02	*3.41E-02E-01
25	*7.31E-06E+00	*2.5E-06E+02	*1.05E-02E-04
27	*-5.11E-12E+00	*3.49E-07E+02	*3.91E-03E-06

LJPROFL //END OF LIST//

LEAST SQUARES FIT FOR DATA IN COLUMN 22 AS PREDICTED FUNCTION OF 21 PREDICTOR VARIABLES IN COLUMNS 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23		USING 13 ROW-WEIGHTS AND 5 ZERO WEIGHTS IN COLUMN 23	
PREDICTOR VARIABLE IN ROW COL. 2		PREDICTED VALUES	
ROW COL.	ROW COL.	STD. DEV. OF PRED. VALUES	RESIDUALS
1	2.327	2.374	-0.30509372
2	0.332	0.364	-0.35857013
3	0.337	0.369	-0.21662163
4	0.337	0.403	-0.2165239
5	0.337	0.437	-0.2155325
6	0.337	0.471	-0.2145276
7	0.337	0.505	-0.2135226
8	0.337	0.539	-0.2125176
9	0.337	0.573	-0.2115126
10	0.337	0.607	-0.2105076
11	0.337	0.641	-0.2095026
12	0.337	0.675	-0.208502
13	0.007	-0.366	-0.305791
14	0.132	0.076	-0.319725
15	0.007	0.000	-0.3195362
16	0.337	0.337	-0.3195379
17	0.337	0.371	-0.3195395
18	0.337	0.405	-0.3195438
19	0.337	0.439	-0.3195475
20	0.337	0.473	-0.3195512
21	0.337	0.507	-0.3195549
22	0.337	0.541	-0.3195586
23	0.337	0.575	-0.3195623
24	0.337	0.609	-0.3195660
25	0.337	0.643	-0.3195697
26	0.337	0.677	-0.3195734
27	0.337	0.711	-0.3195771
28	0.337	0.745	-0.3195808
29	0.337	0.779	-0.3195845
30	0.337	0.813	-0.3195882
31	0.337	0.847	-0.3195919
32	0.337	0.881	-0.3195956
33	0.337	0.915	-0.3196003
34	0.337	0.949	-0.3196040
35	0.337	0.983	-0.3196077
36	0.337	1.017	-0.3196114
37	0.337	1.051	-0.3196151
38	0.337	1.085	-0.3196188
39	0.337	1.119	-0.3196225
40	0.337	1.153	-0.3196262
41	0.337	1.187	-0.3196300
42	0.337	1.221	-0.3196337
43	0.337	1.255	-0.3196374
44	0.337	1.289	-0.3196411
45	0.337	1.323	-0.3196448
46	0.337	1.357	-0.3196485
47	0.337	1.391	-0.3196522
48	0.337	1.425	-0.3196559
49	0.337	1.459	-0.3196596
50	0.337	1.493	-0.3196633
51	0.337	1.527	-0.3196670
52	0.337	1.561	-0.3196707
53	0.337	1.595	-0.3196744
54	0.337	1.629	-0.3196781
55	0.337	1.663	-0.3196818
56	0.337	1.697	-0.3196855
57	0.337	1.731	-0.3196892
58	0.337	1.765	-0.3196929
59	0.337	1.800	-0.3196966
60	0.337	1.834	-0.3197003
61	0.337	1.868	-0.3197040
62	0.337	1.902	-0.3197077
63	0.337	1.936	-0.3197114
64	0.337	1.970	-0.3197151
65	0.337	2.004	-0.3197188
66	0.337	2.038	-0.3197225
67	0.337	2.072	-0.3197262
68	0.337	2.106	-0.3197300
69	0.337	2.140	-0.3197337
70	0.337	2.174	-0.3197374
71	0.337	2.208	-0.3197411
72	0.337	2.242	-0.3197448
73	0.337	2.276	-0.3197485
74	0.337	2.310	-0.3197522
75	0.337	2.344	-0.3197559
76	0.337	2.378	-0.3197596
77	0.337	2.412	-0.3197633
78	0.337	2.446	-0.3197670
79	0.337	2.480	-0.3197707
80	0.337	2.514	-0.3197744
81	0.337	2.548	-0.3197781
82	0.337	2.582	-0.3197818
83	0.337	2.616	-0.3197855
84	0.337	2.650	-0.3197892
85	0.337	2.684	-0.3197929
86	0.337	2.718	-0.3197966
87	0.337	2.752	-0.3198003
88	0.337	2.786	-0.3198040
89	0.337	2.820	-0.3198077
90	0.337	2.854	-0.3198114
91	0.337	2.888	-0.3198151
92	0.337	2.922	-0.3198188
93	0.337	2.956	-0.3198225
94	0.337	2.990	-0.3198262
95	0.337	3.024	-0.3198300
96	0.337	3.058	-0.3198337
97	0.337	3.092	-0.3198374
98	0.337	3.126	-0.3198411
99	0.337	3.160	-0.3198448
100	0.337	3.194	-0.3198485
101	0.337	3.228	-0.3198522
102	0.337	3.262	-0.3198559
103	0.337	3.296	-0.3198596
104	0.337	3.330	-0.3198633
105	0.337	3.364	-0.3198670
106	0.337	3.398	-0.3198707
107	0.337	3.432	-0.3198744
108	0.337	3.466	-0.3198781
109	0.337	3.500	-0.3198818
110	0.337	3.534	-0.3198855
111	0.337	3.568	-0.3198892
112	0.337	3.602	-0.3198929
113	0.337	3.636	-0.3198966
114	0.337	3.670	-0.3199003
115	0.337	3.704	-0.3199040
116	0.337	3.738	-0.3199077
117	0.337	3.772	-0.3199114
118	0.337	3.806	-0.3199151
119	0.337	3.840	-0.3199188
120	0.337	3.874	-0.3199225
121	0.337	3.908	-0.3199262
122	0.337	3.942	-0.3199300
123	0.337	3.976	-0.3199337
124	0.337	4.010	-0.3199374
125	0.337	4.044	-0.3199411
126	0.337	4.078	-0.3199448
127	0.337	4.112	-0.3199485
128	0.337	4.146	-0.3199522
129	0.337	4.180	-0.3199559
130	0.337	4.214	-0.3199596
131	0.337	4.248	-0.3199633
132	0.337	4.282	-0.3199670
133	0.337	4.316	-0.3199707
134	0.337	4.350	-0.3199744
135	0.337	4.384	-0.3199781
136	0.337	4.418	-0.3199818
137	0.337	4.452	-0.3199855
138	0.337	4.486	-0.3199892
139	0.337	4.520	-0.3199929
140	0.337	4.554	-0.3199966
141	0.337	4.588	-0.3199903
142	0.337	4.622	-0.3199940
143	0.337	4.656	-0.3199977
144	0.337	4.690	-0.3199914
145	0.337	4.724	-0.3199951
146	0.337	4.758	-0.3199988
147	0.337	4.792	-0.3199925
148	0.337	4.826	-0.3199962
149	0.337	4.860	-0.3199999
150	0.337	4.894	-0.3199936
151	0.337	4.928	-0.3199973
152	0.337	4.962	-0.3199910
153	0.337	4.996	-0.3199947
154	0.337	5.030	-0.3199984
155	0.337	5.064	-0.3199921
156	0.337	5.098	-0.3199958
157	0.337	5.132	-0.3199995
158	0.337	5.166	-0.3199932
159	0.337	5.200	-0.3199969
160	0.337	5.234	-0.3199906
161	0.337	5.268	-0.3199943
162	0.337	5.302	-0.3199980
163	0.337	5.336	-0.3199917
164	0.337	5.370	-0.3199954
165	0.337	5.404	-0.3199991
166	0.337	5.438	-0.3199928
167	0.337	5.472	-0.3199965
168	0.337	5.506	-0.3199902
169	0.337	5.540	-0.3199939
170	0.337	5.574	-0.3199976
171	0.337	5.608	-0.3199913
172	0.337	5.642	-0.3199950
173	0.337	5.676	-0.3199987
174	0.337	5.710	-0.3199924
175	0.337	5.744	-0.3199961
176	0.337	5.778	-0.3199998
177	0.337	5.812	-0.3199935
178	0.337	5.846	-0.3199972
179	0.337	5.880	-0.3199909
180	0.337	5.914	-0.3199946
181	0.337	5.948	-0.3199983
182	0.337	5.982	-0.3199920
183	0.337	6.016	-0.3199957
184	0.337	6.050	-0.3199994
185	0.337	6.084	-0.3199931
186	0.337	6.118	-0.3199968
187	0.337	6.152	-0.3199905
188	0.337	6.186	-0.3199942
189	0.337	6.220	-0.3199979
190	0.337	6.254	-0.3199916
191	0.337	6.288	-0.3199953
192	0.337	6.322	-0.3199990
193	0.337	6.356	-0.3199927
194	0.337	6.390	-0.3199964
195	0.337	6.424	-0.3199901
196	0.337	6.458	-0.3199938
197	0.337	6.492	-0.3199975
198	0.337	6.526	-0.3199912
199	0.337	6.560	-0.3199949
200	0.337	6.594	-0.3199986
201	0.337	6.628	-0.3199923
202	0.337	6.662	-0.3199960
203	0.337	6.696	-0.3199997
204	0.337	6.730	-0.3199934
205	0.337	6.764	-0.3199971
206	0.337	6.800	-0.3199908
207	0.337	6.834	-0.3199945
208	0.337	6.868	-0.3199982
209	0.337	6.902	-0.3199919
210	0.337	6.936	-0.3199956
211	0.337	6.970	-0.3199993
212	0.337	7.004	-0.3199930
213	0.337	7.038	-0.3199967
214	0.337	7.072	-0.3199904
215	0.337	7.106	-0.3199941
216	0.337	7.140	-0.3199978
217	0.337	7.174	-0.3199915
218	0.337	7.208	-0.3199952
219	0.337	7.242	-0.3199989
220	0.337	7.276	-0.3199926
221	0.337	7.310	-0.3199963
222	0.337	7.344	-0.3199900
223	0.337	7.378	-0.3199937
224	0.337	7.412	-0.3199974
225	0.337	7.446	-0.3199911
226	0.337	7.480	-0.3199948
227	0.337	7.514	-0.3199985
228	0.337	7.548	-0.3199922
229	0.337	7.582	-0.3199959
230	0.337	7.616	-0.3199996
231	0.337	7.650	-0.3199933
232	0.337	7.684	-0.3199970
233	0.337	7.718	-0.3199907
234	0.337		

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

LEAST SQUARES FIT FOR 2014 IN COLUMNS 22
 AS A LINEAR FUNCTION OF 21 FURNICER VARIABLES IN COLUMNS 1,
 2, 3, 4, 5, 6, 7, 8,
 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
 0.5216 0.5216 PREDICTOR WEIGHTED AND 6 TEST MEASURES IN COLUMNS 23

VARIANCE-COVARIANCE MATRIX OF THE ESTIMATED COEFFICIENTS

COLUMN	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21
1	-269.37062																				
2	-0.392743419	.0017658757	.011927203																		
3	-0.01146010	-0.001116119	-0.001116119																		
4	-0.000660415	-0.000660415	-0.000660415																		
5	-0.051976547	-0.051976547	-0.051976547																		
6	-0.2164558	-0.2164558	-0.2164558																		
7	-0.041103910	-0.041103910	-0.041103910																		
8	-0.041103910	-0.041103910	-0.041103910																		
9	-0.035241736	-0.035241736	-0.035241736																		
10	-0.035241736	-0.035241736	-0.035241736																		
11	-0.035241736	-0.035241736	-0.035241736																		
12	-0.035241736	-0.035241736	-0.035241736																		
13	-0.035241736	-0.035241736	-0.035241736																		
14	-0.035241736	-0.035241736	-0.035241736																		
15	-0.035241736	-0.035241736	-0.035241736																		
16	-0.035241736	-0.035241736	-0.035241736																		
17	-0.035241736	-0.035241736	-0.035241736																		
18	-0.035241736	-0.035241736	-0.035241736																		
19	-0.035241736	-0.035241736	-0.035241736																		
20	-0.035241736	-0.035241736	-0.035241736																		
21	-0.035241736	-0.035241736	-0.035241736																		
22																					
23																					
24																					
25																					
26																					
27																					
28																					
29																					
30																					
31																					
32																					
33																					
34																					
35																					
36																					
37																					
38																					
39																					
40																					
41																					
42																					
43																					
44																					
45																					
46																					
47																					
48																					
49																					
50																					
51																					
52																					
53																					
54																					
55																					
56																					
57																					
58																					
59																					
60																					
61																					
62																					
63																					
64																					
65																					
66																					
67																					
68																					
69																					
70																					
71																					
72																					
73																					
74																					
75																					
76																					
77																					
78																					
79																					
80																					
81																					
82																					
83																					
84																					
85																					
86																					
87																					
88																					
89																					
90																					
91																					
92																					
93																					
94																					
95																					
96																					
97																					
98																					
99																					
100																					
101																					
102																					
103																					
104																					
105																					

THIS PAGE IS BEST-QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

LEAST SQUARES FIT FOR DATA IN COLUMN 22
AS A FUNCTION OF 21 ENDORCHON VARIABLES IN COLUMNS 1, 2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21
USING THE WEIGHTS AND ZERO WEIGHTS IN COLUMN 23

ESTIMATES FROM LEAST SQUARES FIT

COLUMN	COEFFICIENT	S.D. OF COEFF.	RATIO	ACCS. DIGITS	COEFFICIENT	S.D. OF COEFF.	RATIO
1	-6315175	.031762	-6.04	12.80	-4.5152652	.04622757	-6.59
2	.4173679	.032239	3.51	13.02	.25612479	.11132517	2.29
3	.5716420	.0305321	2.02	12.65	.4710367	.1003261	4.65
4	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
5	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
6	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
7	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
8	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
9	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
10	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
11	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
12	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
13	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
14	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
15	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
16	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
17	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
18	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
19	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
20	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
21	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03
22	.2676530	.0304477	2.02	13.03	.0255332	.0255332	-2.03

ESTIMATE OF COEFFICIENT WHICH IS
CLOSER TO ZERO THAN ALL OTHERS

*.0192530

63-21 = .42

* THE NUMBER OF CORRECTLY COMPUTED DIGITS IN EACH COEFFICIENT USUALLY DIFFERS BY LESS THAN 1 FROM THE NUMBER GIVEN HERE
S AFFECTS FIT

*.0051748
63-20 = .43

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

THIS PAGE IS BEST QUALITY PRACTICABLE
FROM COPY FURNISHED TO DDC

PAGE 11

LIST OF CHARACTERS, DATA AND DIAGNOSTICS

VERSION 1.0 OF STRANDS, HASH JC 23234, 24NITA VERSION 5.0J MAY 15, 1970
BY ERIC INSTITUTE OF TECHNOLOGY, WALTER CHI, EDITOR VERSION 1.1 DEC 1, 1973

Vita

Larry James Pulcher was born on September 18, 1951 in Belleville, Illinois. He graduated from high school in Dupo, Illinois, whereupon he attended Parks College of Aeronautical Technology of St. Louis University. He earned a degree there in Aerospace Engineering in 1972 and was commissioned into the Air Force through the ROTC program. His first assignment was as a Minuteman Launch Control Officer at Minot AFB, North Dakota where he was awarded a Regular commission and the Air Force Commendation Medal.

Permanent Address: R.R. 1, Box 265A
E. Carondelet, Illinois 62240

This thesis was typed by Mrs. Joyce Clark.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AFIT/GOR/MA/78D-5	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) CRITERION FOR SELECTION OF VARIABLES IN A REGRESSION ANALYSIS		5. TYPE OF REPORT & PERIOD COVERED M.S. Thesis
		6. PERFORMING ORG. REPORT NUMBER
7. AUTHOR(s) Larry J. Pulcher Captain USAF		8. CONTRACT OR GRANT NUMBER(s)
9. PERFORMING ORGANIZATION NAME AND ADDRESS Air Force Institute of Technology (AFIT/EN) Wright-Patterson AFB OH 45433		10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
11. CONTROLLING OFFICE NAME AND ADDRESS Air Force Institute of Technology (AFIT/EN) Wright-Patterson AFB OH 45433		12. REPORT DATE December 1978
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)		13. NUMBER OF PAGES 137
		15. SECURITY CLASS. (of this report) UNCLASSIFIED
		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.		
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES Approved for public release; IAW AFR 190-17 JOSEPH P. HIPPS, Major, USAF Director of Information 9 Jan 79		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Multiple Regression Selection of Variables		
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) The Test of Equality between Subsets of Coefficients in Two Regressions is developed and applied as a means to pre-screen variables from a regression model. Some criterion for selection of variables are discussed and some existing regression packages are applied to data on characteristics of avionics equipment for comparison purposes.		