3rd March Assignment

March 14, 2023

1 Assignment 27

Que 1: Name any five plots that we can plot using the Seaborn library. Also, state the uses of each plot.

Ans - Seaborn is a Python data visualization library based on Matplotlib. It provides a high-level interface for creating informative and attractive statistical graphics. Here are five types of plots that can be created using Seaborn along with their uses:

- 1. Scatter plot: A scatter plot displays the relationship between two continuous variables. It can be used to identify patterns and trends in data.
- 2. Line plot: A line plot displays the relationship between two continuous variables using lines. It can be used to show changes in data over time or to display trends.
- 3. Bar plot: A bar plot displays categorical data using rectangular bars. It can be used to compare the values of different categories.
- 4. Histogram: A histogram displays the distribution of a continuous variable. It can be used to identify the shape of the distribution and to identify outliers.
- 5. Heatmap: A heatmap displays the relationship between two categorical variables using color. It can be used to identify patterns and relationships between different categories

Que 2: Load the "fmri" dataset using the load_dataset function of seaborn. Plot a line plot using x = "timepoint" and y = "signal" for different events and regions.

```
Ans.
[1]:
     import seaborn as sns
     d=sns.load_dataset('fmri')
[6]: d
[6]:
          subject
                    timepoint event
                                        region
                                                   signal
     0
               s13
                            18
                                stim
                                      parietal -0.017552
     1
                ธ5
                                stim
                                      parietal -0.080883
     2
                            18
                                      parietal -0.081033
               s12
                                stim
     3
               s11
                            18
                                stim
                                      parietal -0.046134
     4
               s10
                            18
                                stim
                                      parietal -0.037970
                            8
                                       frontal 0.018165
     1059
                s0
                                 cue
```

```
1060
         s13
                           cue
                                  frontal -0.029130
1061
         s12
                       7
                                  frontal -0.004939
                           cue
1062
         s11
                       7
                           cue
                                  frontal -0.025367
1063
          s0
                                parietal -0.006899
                           cue
```

[1064 rows x 5 columns]

```
[13]: sns.lineplot(data=d,x=d.timepoint,y=d.signal,hue='event',style='region')
```

[13]: <AxesSubplot: xlabel='timepoint', ylabel='signal'>

Que 3: Load the "titanic" dataset using the load_dataset function of seaborn. Plot two box plots using x = `pclass', y = `age' and y = `fare'.

```
Ans.
[14]: t=sns.load_dataset('titanic')

[15]: t
```

```
[15]:
            survived pclass
                                                 sibsp
                                                         parch
                                                                     fare embarked
                                                                                       class
                                    sex
                                            age
                                   male
                                          22.0
                                                                   7.2500
                                                                                       Third
      0
                    0
                              3
                                                      1
                                                              0
                                                                                   S
                    1
                                          38.0
                                                                                       First
      1
                              1
                                 female
                                                      1
                                                              0
                                                                 71.2833
                                                                                   С
      2
                    1
                              3
                                 female
                                          26.0
                                                      0
                                                              0
                                                                  7.9250
                                                                                   S
                                                                                       Third
                                 female
                                                                                   S
      3
                    1
                              1
                                          35.0
                                                      1
                                                                 53.1000
                                                                                       First
      4
                    0
                              3
                                   male
                                          35.0
                                                      0
                                                                  8.0500
                                                                                   S
                                                                                       Third
      . .
                                    •••
                                          •••
                                                                                      Second
      886
                    0
                              2
                                   male
                                          27.0
                                                      0
                                                                 13.0000
                                                                                   S
      887
                                 female
                                          19.0
                                                      0
                                                                 30.0000
                                                                                   S
                                                                                       First
                    1
                              1
                                                              0
      888
                    0
                                                                                   S
                                                                                       Third
                              3
                                 female
                                           NaN
                                                      1
                                                              2
                                                                 23.4500
                                                                                   С
      889
                    1
                              1
                                   male
                                          26.0
                                                      0
                                                              0
                                                                 30.0000
                                                                                       First
      890
                    0
                              3
                                   male
                                          32.0
                                                      0
                                                                  7.7500
                                                                                       Third
                    adult_male deck
                                        embark_town alive
                                                              alone
              who
      0
                           True
                                  NaN
                                        Southampton
                                                              False
              man
                                                         no
      1
            woman
                          False
                                    C
                                          Cherbourg
                                                        yes
                                                              False
      2
            woman
                          False
                                  {\tt NaN}
                                        Southampton
                                                        yes
                                                               True
      3
            woman
                          False
                                    C
                                        Southampton
                                                        yes
                                                              False
      4
                           True
                                  NaN
                                        Southampton
                                                               True
              man
                                                         no
       . .
                                                               True
      886
              man
                           True
                                  \mathtt{NaN}
                                        Southampton
                                                         no
      887
                          False
                                    В
                                        Southampton
                                                               True
            woman
                                                        yes
      888
            woman
                          False
                                  \mathtt{NaN}
                                        Southampton
                                                         no
                                                              False
      889
                           True
                                    С
                                                               True
              man
                                          Cherbourg
                                                        yes
      890
                           True
                                  NaN
                                         Queenstown
                                                               True
              man
                                                         no
```

```
[20]: sns.boxplot(data=t,x=t.pclass,y=t.age)
```

[891 rows x 15 columns]

[20]: <AxesSubplot: xlabel='pclass', ylabel='age'>

[19]: <AxesSubplot: xlabel='pclass', ylabel='fare'>

Que 4: Use the "diamonds" dataset from seaborn to plot a histogram for the 'price' column. Use the hue parameter for the 'cut' column of the diamonds dataset.

Ans.										
diamond=sns.load_dataset('diamonds')										
diamon	.d									
	carat	cut	color	clarity	depth	table	price	х	У	z
0	0.23	Ideal	Е	SI2	61.5	55.0	326	3.95	3.98	2.43
1	0.21	Premium	Ε	SI1	59.8	61.0	326	3.89	3.84	2.31
2	0.23	Good	Ε	VS1	56.9	65.0	327	4.05	4.07	2.31
3	0.29	Premium	I	VS2	62.4	58.0	334	4.20	4.23	2.63
4	0.31	Good	J	SI2	63.3	58.0	335	4.34	4.35	2.75
	•••	•••	•••		•••					
53935	0.72	Ideal	D	SI1	60.8	57.0	2757	5.75	5.76	3.50
53936	0.72	Good	D	SI1	63.1	55.0	2757	5.69	5.75	3.61
53937	0.70	Very Good	D	SI1	62.8	60.0	2757	5.66	5.68	3.56
53938	0.86	Premium	Н	SI2	61.0	58.0	2757	6.15	6.12	3.74
53939	0.75	Ideal	D	SI2	62.2	55.0	2757	5.83	5.87	3.64
	diamon 0 1 2 3 4 53935 53936 53937 53938	diamond=sns.1 diamond carat 0 0.23 1 0.21 2 0.23 3 0.29 4 0.31 53935 0.72 53936 0.72 53937 0.70 53938 0.86	diamond=sns.load_dataset diamond carat cut 0 0.23 Ideal 1 0.21 Premium 2 0.23 Good 3 0.29 Premium 4 0.31 Good 53935 0.72 Ideal 53936 0.72 Good 53937 0.70 Very Good 53938 0.86 Premium	diamond=sns.load_dataset('diamond carat cut color 0 0.23 Ideal E 1 0.21 Premium E 2 0.23 Good E 3 0.29 Premium I 4 0.31 Good J 53935 0.72 Ideal D 53936 0.72 Good D 53937 0.70 Very Good D 53938 0.86 Premium H	diamond=sns.load_dataset('diamonds') carat cut color clarity 0 0.23 Ideal E SI2 1 0.21 Premium E SI1 2 0.23 Good E VS1 3 0.29 Premium I VS2 4 0.31 Good J SI2 53935 0.72 Ideal D SI1 53936 0.72 Good D SI1 53937 0.70 Very Good D SI1 53938 0.86 Premium H SI2	diamond=sns.load_dataset('diamonds') carat cut color clarity depth 0 0.23 Ideal E SI2 61.5 1 0.21 Premium E SI1 59.8 2 0.23 Good E VS1 56.9 3 0.29 Premium I VS2 62.4 4 0.31 Good J SI2 63.3	diamond=sns.load_dataset('diamonds') carat cut color clarity depth table 0 0.23 Ideal E SI2 61.5 55.0 1 0.21 Premium E SI1 59.8 61.0 2 0.23 Good E VS1 56.9 65.0 3 0.29 Premium I VS2 62.4 58.0 4 0.31 Good J SI2 63.3 58.0 53935 0.72 Ideal D SI1 60.8 57.0 53936 0.72 Good D SI1 63.1 55.0 53937 0.70 Very Good D SI1 62.8 60.0 53938 0.86 Premium H SI2 61.0 58.0	diamond=sns.load_dataset('diamonds') carat cut color clarity depth table price 0 0.23 Ideal E SI2 61.5 55.0 326 1 0.21 Premium E SI1 59.8 61.0 326 2 0.23 Good E VS1 56.9 65.0 327 3 0.29 Premium I VS2 62.4 58.0 334 4 0.31 Good J SI2 63.3 58.0 335 53935 0.72 Ideal D SI1 60.8 57.0 2757 53936 0.72 Good D SI1 63.1 55.0 2757 53937 0.70 Very Good D SI1 62.8 60.0 2757	diamond=sns.load_dataset('diamonds') carat cut color clarity depth table price x 0 0.23 Ideal E SI2 61.5 55.0 326 3.95 1 0.21 Premium E SI1 59.8 61.0 326 3.89 2 0.23 Good E VS1 56.9 65.0 327 4.05 3 0.29 Premium I VS2 62.4 58.0 334 4.20 4 0.31 Good J SI2 63.3 58.0 335 4.34 53935 0.72 Ideal D SI1 60.8 57.0 2757 5.69 53937 0.70 Very Good D SI1 62.8 60.0 2757 5.66 53938 0.86<	diamond=sns.load_dataset('diamonds') carat cut color clarity depth table price x y 0 0.23 Ideal E SI2 61.5 55.0 326 3.95 3.98 1 0.21 Premium E SI1 59.8 61.0 326 3.89 3.84 2 0.23 Good E VS1 56.9 65.0 327 4.05 4.07 3 0.29 Premium I VS2 62.4 58.0 334 4.20 4.23 4 0.31 Good J SI2 63.3 58.0 335 4.34 4.35

[53940 rows x 10 columns]

[23]: sns.histplot(data=diamond,x=diamond.price,hue=diamond.cut)

[23]: <AxesSubplot: xlabel='price', ylabel='Count'>

Que 5: Use the "iris" dataset from seaborn to plot a pair plot. Use the hue parameter for the "species" column of the iris dataset.

```
Ans.
[24]:
     iris=sns.load_dataset('iris')
      iris
[25]:
[25]:
           sepal_length
                          sepal_width petal_length petal_width
                                                                        species
      0
                     5.1
                                   3.5
                                                  1.4
                                                                0.2
                                                                         setosa
                     4.9
                                   3.0
                                                                0.2
      1
                                                  1.4
                                                                         setosa
      2
                     4.7
                                   3.2
                                                  1.3
                                                                0.2
                                                                         setosa
                     4.6
                                                                0.2
      3
                                   3.1
                                                  1.5
                                                                         setosa
```

4	5.0	3.6	1.4	0.2	setosa
• •	•••	•••			
145	6.7	3.0	5.2	2.3	virginica
146	6.3	2.5	5.0	1.9	virginica
147	6.5	3.0	5.2	2.0	virginica
148	6.2	3.4	5.4	2.3	virginica
149	5.9	3.0	5.1	1.8	virginica

[150 rows x 5 columns]

```
[26]: sns.pairplot(data=iris,hue='species')
```

[26]: <seaborn.axisgrid.PairGrid at 0x7f3c1cd02f80>

Que 6: Use the "flights" dataset from seaborn to plot a heatmap.

```
Ans.
[28]: f=sns.load_dataset('flights')
[31]: f
[31]:
           year month passengers
           1949
                   Jan
                                112
      1
           1949
                   Feb
                                118
      2
           1949
                   Mar
                                132
                                129
      3
           1949
                   Apr
      4
           1949
                   May
                                121
      . .
            •••
      139
           1960
                   Aug
                                606
      140
                                508
           1960
                   Sep
      141
           1960
                   Oct
                                461
      142 1960
                   Nov
                                390
      143
           1960
                                432
                   Dec
      [144 rows x 3 columns]
[32]: month_dict = {
           'Jan': 1,
           'Feb': 2,
           'Mar': 3,
           'Apr': 4,
           'May': 5,
           'Jun': 6,
           'Jul': 7,
           'Aug': 8,
           'Sep': 9,
           'Oct': 10,
           'Nov': 11,
           'Dec': 12
      }
[33]: f['month']=f['month'].map(month_dict)
[34]: f
[34]:
           year month passengers
      0
           1949
                     1
                                112
      1
           1949
                     2
                                118
      2
           1949
                     3
                                132
      3
           1949
                     4
                                129
      4
           1949
                     5
                                121
      139
           1960
                     8
                                606
```

140	1960	9	508
141	1960	10	461
142	1960	11	390
143	1960	12	432

[144 rows x 3 columns]

[35]: sns.heatmap(data=f)

[35]: <AxesSubplot: >

[]: