

Unité de Formation et de Recherche en Sciences Et Technologies Département Informatique Année académique : 2018-2019

Licence 1 en Informatique INF 1121 : Fondamentaux de Physique

Dr Idrissa GAYE

Examen 1ère session, Durée : 02H

Il sera tenu compte de la clarté de la rédaction / Aucun document n'est autorisé.

QUESTIONS DE COURS:

- Enoncer la loi de Biot et Savart.
- Enoncer le Théorème de GAUSS.
- Rappeler l'expression du champ électrique créé par :
 - Un fil infiniment long et uniformément chargé avec une densité linéique $\lambda > 0$;
 - Un plan infini portant une densité de charge surfacique uniforme $\sigma > 0$;

EXERCICE 1

Soit un segment **AB** uniformément chargé avec une densité linéique $\lambda > 0$ (Fig.1). On désigne par **O** le milieu du segment **AB**.

- 1_ Calculer le champ \vec{E} crée par cette distribution en tout point M sur une distance a de la médiatrice de AB et en un point M appartenant au segment [AB].
- 2 Calculer le champ dans les cas limites suivants :
 - a_Le point M est très éloigné de l'origine O (a >> L)
 - \mathbf{b} _ Le point \mathbf{M} est très proche du segment ($\mathbf{L} >> \mathbf{a}$)
 - c_L Le point M est sur l'axe x'x et est très éloigné du segment [AB] (a >> L)

EXERCICE 2:

Un fil de section négligeable en forme d'un cercle de centre O et de rayon R placé dans le plan xOy, porte une charge électrique répartie avec une densité linéique λ : $\lambda = \lambda \sin \theta_0$ où λ_0 est une constante positive et

 $\theta = (\overrightarrow{Ox}, \overrightarrow{OP})$, **P** étant un point quelconque du cercle.

La charge est répartie positivement sur le demi-cercle supérieur (y > 0) et négativement sur le demi-cercle

inférieur (y < 0) (Fig.2), avec des valeurs maximale et minimale respectivement en $\theta = \frac{\pi}{2}$ et $\theta = \frac{3\pi}{2}$.

- **1**_ Calculer le champ \vec{E} crée par le fil au point **O**.
- **2**_ Calculer les composantes de la force F exercée sur une charge ponctuelle \mathbf{q}_0 (>0), placée en \mathbf{O} , par l'ensemble de la charge portée par le cercle.

Fig.2

EXERCICE 3:

Une spire filiforme de centre O, de rayon R est parcourue par un courant électrique d'intensité I.

- 1_ Calculer le champ magnétique créé en un point M(z) de l'axe passant par O.
- 2_ Que devient le système si $z \gg R$.

Fig.3
BONNE CHANCE