Index

A accelerators, 419-425 computational capabilities, 422 defined, 420-421 memory size and bandwidth, 422-424 power consumption, 424-425 active injection, 243	AI engineering (AIE) defined, 12 ML engineering versus, 39-46 rise of AI engineering, 2-14 AI engineering architecture (see engineering architecture) AI engineering stack (see engineering stack)
adapter-based methods, 336 adapters finetuning, 358 LoRA, 338-347 merging with concatenation, 356 PEFT techniques, 336-338	AI judge, 136 (see also AI-as-a-judge) AI pipeline orchestration (see pipeline orchestration) AI systems evaluation (see systems evaluation) AI-as-a-judge, 136-148
agents, 275-300 agent failure modes and evaluation, 298-300 efficiency, 300 planning failures, 298 tool failures, 299 overview, 276-278 planning agents, 281-298 foundation models as planners, 284-286 overview, 282-284 plan generation, 286-292 reflection and error correction, 292-294 tool selection, 295-298 tools, 278-281 capability extension, 279 knowledge augmentation, 279	limitations, 141-145 biases, 144 criteria ambiguity, 142-144 inconsistency, 142 increased costs and latency, 144 models, 145-148 reasons, 137 reference-based, 147 uses, 138-141 AI-powered data synthesis (see data synthesis, AI-powered) AMP (automatic mixed precision), 332 ANN (approximate nearest neighbor), 262 Annoy (approximate nearest neighbors oh yeah), 263
write actions, 280 AI accelerators (see accelerators) AI application building (see application building) AI application planning (see application planning)	anomaly detection, 129 Anthropic contextual retrieval, 271 inverse scaling and alignment training, 71 prompt caching, 444 RAG and, 256

APIs (see open source models, model APIs ver-	defined, 380
sus)	automated attacks, 240
application building, 1-48	automatic mixed precision (AMP), 332
application planning, 28-35	autoregressive decoding bottleneck, 428-433
maintenance, 34	inference with reference, 430
milestone planning, 33	parallel decoding, 432
set expectations, 32	speculative decoding, 428-430
use case evaluation, 29-32	autoregressive language model, 4
engineering stack, 35-47	
AI engineering versus ML engineering,	В
39-46	-
application development, 44-46	backpropagation, 320-322
full-stack engineering versus, 46	batch inference APIs, 410-412 batch size, 360
three layers of AI stack, 37-39	
foundation model use cases, 16-28	batching
coding, 20-22	batch inference APIs, 410-412
conversational bots, 26	batch size, 360
data organization, 27	continuous, 441
education, 24	dynamic, 441
image and video production, 22	static, 440
information aggregation, 26	benchmarks
workflow automation, 28	for comparative evaluation, 155
writing, 22-24	data contamination detection, 124
rise of AI engineering, 2-14	domain distribution and, 56
foundation models to AI engineering,	domain-specific, 161-163
12-14	instruction-following criteria, 173-175
application development, 37, 44-46	model-centric versus data-centric, 364
AI interface, 45	navigating public benchmarks, 191-197
evaluation, 44	biases, 144, 490
prompt engineering and context construc-	bits-per-byte (BPB), 121
tion, 45	bits-per-character (BPC), 121
application planning, 28-35	bottlenecks
maintenance, 34	autoregressive decoding, 428-433
milestone planning, 33	computational, 407-410
set expectations, 32	compute-bound, 407
use case evaluation, 29-32	memory, 319-332, 407
approximate nearest neighbor (ANN), 262	scaling, 75-77, 152
approximate string matching, 130	BPB (bits-per-byte), 121
ARC-C, 192	BPC (bits-per-character), 121
attention mechanisms, 60-62	build time, 266
attention modules, 62	
MLP modules, 62	C
optimization, 433-436	canonical responses, 127
attention mechanism redesign, 435	capability extension, 279
wiring kernels for attention computa-	chain-of-thought (CoT), 227-229, 365
tion, 436	chaining, 473
redesign, 435	change failure rate (CFR), 466
attention modules, 62	CharacterEval, 176
augmentation of data	ChatGPT
	comparative evaluation, 149

data privacy issues, 184	copyright regurgitation, 246
effect on AI investment, 13	copyright, model training and, 185
Gemini versus, 44	CoT (chain-of-thought), 227-229
hallucinations, 107	CPU memory (DRAM), 423
and human writing quality, 23	criteria ambiguity, 142-144
introduction of, xi	cross entropy, 120
and languages other than English, 55	cross-layer attention, 435
query rewriting, 270	,
reverse prompt engineering attacks, 237	D
in schools, 24	
Chinchilla scaling law, 72	data annotation, 377-380
chunking, 257, 268-269	and data curation, 365-380
Claude, RAG and, 256	and data inspection, 398
CLIP, 10, 56, 135	dataset engineering and, 42
clustering, 129	data augmentation, 380-396
Common Crawl dataset, 50-55	defined, 380
comparative evaluation, 148-156	data cleaning/filtering, 401
comparison data, 85	data contamination, 197-200
compilers, 438	data coverage, 369-371
components definition, 472	data curation, 365-380
	data deduplication, 129, 399-400
computational bottlenecks, 407-410	data flywheels, 377
computational capabilities, of AI accelerators, 422	data formatting, 401-403
	data inspection, 397-399
compute-bound bottlenecks, 407	data lineage, 185
compute-optimal models, 72-74	data organization, 27
compute-optimal training, 72	data privacy, 184
concatenation, 356	data processing, 396-403
constrained sampling, 103	data cleaning/filtering, 401
context construction, 45, 224, 451	data formatting, 401-403
context efficiency, 218-220	deduplicating data, 399-400
context length, 218-220	inspecting data, 397-399
context parallelism, 447	data synthesis, 380-396
context precision, 264	AI-powered, 386-395
context recall, 264	data verification, 391-393
contextual retrieval, 271-272	instruction data synthesis, 388-391
continuous batching, 441	limitations, 393-395
control flow, 291	obscure data lineage problems, 395
conversational bots, 26	potential model collapse, 394
conversational feedback	quality control problems, 393
conversation length, 480	reasons for synthesizing data, 381-382
conversation organization, 479	superficial imitation problems, 393
extracting, 475-480	model distillation, 395
language diversity, 480	traditional techniques, 383-386
natural language feedback, 476-479	rule-based, 383-385
complaints, 478	simulation, 385
early termination, 476	data verification, 391-393
error correction, 477	dataset engineering, 42, 363-404
sentiment, 478	data augmentation/synthesis, 380-396
regeneration, 479	data curation, 365-380
	data Curation, 505-500

data acquisition/annotation, 377-380	E
data coverage, 369-371	edit distance, 130
data quality, 368-369	Elo, 151, 152, 346
data quantity, 372-377	embedding, 134-136
data processing, 396-403	embedding algorithm, 133, 135
data cleaning and filtering, 401	embedding model, 10
data formatting, 401-403	embedding-based retrieval, 260-263
deduplicating data, 399-400	multimodal RAG and, 273
inspecting data, 397-399	embedding models, 134
data-centric view of AI, 364	engineering architecture, 449-474
DDR SDRAM (doubled data rate synchronous	AI pipeline orchestration, 472-474
dynamic random-access memory), 423	monitoring and observability, 465-472
debugging, 226	drift detection, 471
decoding	logs and traces, 469-470
autoregressive decoding bottleneck, 428-433	metrics, 467-469
decoupling from prefilling, 442	monitoring versus observability, 466
in transformer architecture, 58	step 1: enhancing context, 450
defensive prompt engineering	step 2: putting in guardrails, 451-455
jailbreaking and prompt injection, 238-243	guardrail implementation, 455
automated attacks, 240	input guardrails, 451-452
direct manual prompt hacking, 239-240	output guardrails, 453-454
indirect prompt injection, 242-243	step 3: adding model router and gateway,
prompt attack defense, 248-251	456-460
model-level defense, 248	gateway, 458-460
prompt-level defense, 249	router, 456-457
system-level defense, 250	step 4: reducing latency with caches,
degenerate feedback loops, 491	460-463
demonstration data, 81	exact caching, 461
dense retrievers, 258	semantic caching, 461
dimensionality reduction, 400	step 5: adding agent patterns, 463
direct manual prompt hacking, 239-240	engineering stack, 37-39
Direct Preference Optimization (DPO), 84	application development, 37
distillation, 312	AI interface, 45
base, 358	evaluation, 44
model distillation, 182, 395, 427	prompt engineering and context con-
synthetic data and, 382	struction, 45
domain-specific capability, 161-163	infrastructure, 37
domain-specific task finetuning, 314	ML engineering versus, 40-44
domain-specific training data models, 56-57	model development, 37
dot products, 61	entropy, 119
doubled data rate synchronous dynamic	epochs, 360
random-access memory (DDR SDRAM), 423	error correction, 292-294
	evaluation, 44
DPO (Direct Preference Optimization), 84 DRAM (CPU memory), 423	evaluation harnesses, 191
drift detection, 471	evaluation methodology, 113-157
dynamic batching, 441	AI as a judge, 136-148
dynamic features, 30	AI systems evaluation (see systems evalua
aynamic leatures, 50	tion)
	challenges, 152-155

challenges of foundation model evaluation,	when to collect feedback
114-117	in the beginning, 481
comparative performance to absolute	when something bad happens, 481
performance, 154	when the model has low confidence,
lack of standardization and quality con-	483-485
trol, 153-154	feedforward computation, 447
scalability bottlenecks, 152	feedforward layer, 62, 343
exact evaluation, 125-136	few-shot learning, 213-215
future, 155	finetuning, 307-362
language model for computing text perplex-	defined, 42
ity, 125	domain-specific tasks, 314
language modeling metrics, 118-124	finetuning and RAG, 316-319
rank models with comparative evaluation,	hyperparameters, 359-361
148-156	batch size, 360
evaluation pipeline design, 200-208	learning rate, 359
step 1: creating an evaluation guideline,	number of epochs, 360
202-203	prompt loss rate, 361
step 2: evaluating all components in a sys-	memory bottlenecks, 319-332
tem, 200-201	backpropagation and trainable parame-
creating scoring rubrics with examples,	ters, 320-322
202	memory math, 322-324
defining evaluation criteria, 202	numerical representations, 325-328
tying evaluation metrics to business met-	quantization, 328-332
rics, 203	overview, 308-311
step 3: defining evaluation methods and	structured outputs, 104
data, 204-208	tactics, 357-361
annotating evaluation data, 205-207	techniques, 332-361
evaluating evaluation pipeline, 207	LoRA, 338-347
iteration, 208	model merging and multi-task finetun-
selecting evaluation methods, 204	ing, 347-357
evaluation-driven development, 160-161	parameter-efficient finetuning, 332-347
eviction policies, 461	PEFT techniques, 336-338
exact caching, 461	when to finetune, 311-319
exact evaluation, 125-136	reasons not to finetune, 312-315
functional correctness, 126-127	reasons to finetune, 311
similarity measurements against reference	FLOP (floating point operation), 70
data, 127-133	foundation models, 12, 49-112
exact matches, 129	evaluation challenges, 114-117
expectation setting, 32	comparative performance to absolute
explicit feedback, 475-480	performance, 154
•	lack of standardization and quality con-
F	trol, 153-154
factual consistency, 165-169, 202	scalability bottlenecks, 152
faithfulness, 164	inverse scaling, 71
feature-based transfers, 104, 309	modeling, 58-77
feature-free transfers, 104, 509	model architecture, 58-66
federated learning, 348	model size, 67-77
feedback design	parameter versus hyperparameter, 74
how to collect feedback, 485-489	post-training, 78-88
non to concer recubuck, 403-407	

preference finetuning, 83-88	high-bandwidth memory (HBM), 423
supervised finetuning, 80-83	hyperparameters, 74, 359-361
sampling, 88-111	
probabilistic nature of AI, 105-111	I
sampling fundamentals, 88-90	IDF (inverse document frequency), 259
sampling strategies, 90-95	IFEval, 174
structured outputs, 99-104	implicit feedback, 475
test time compute, 96-99	=
training data, 50-57	in-context learning, 213-215
domain-specific models, 56-57	inconsistency, 106-107, 142
multilingual models, 51-55	indexing
use cases, 16-28	chunking strategy and, 268-269
coding, 20-22	defined, 256
conversational bots, 26	with embedding-based retrieval, 261
data organization, 27	retrieval systems and, 266
education, 24	indirect prompt injection, 242-243
image and video production, 22	inference APIs, 410-412
workflow automation, 28	inference optimization, 43, 405-448
writing, 22-24	AI accelerators
full finetuning, 332-347	computational capabilities, 422
function calling, 288-290	defined, 420-421
fuzzy matching, 130	memory size and bandwidth, 422-424
uzzy matching, 150	power consumption, 424-425
•	case study from PyTorch, 439
j	inference overview
gateways, 458-460	computational bottlenecks, 407-410
Gemini, 44, 99, 444, 483	online and batch inference APIs,
generation capability, 163-172	410-412
global factual consistency, 165	inference performance metrics, 412-419
goodput, 414-415	latency, TTFT, and TPOT, 412-414
GPU on-chip SRAM, 423	throughput/goodput, 414-415
ground truths, 127	utilization, MFU, and MBU, 416-419
grouped-query attention, 436	inference service optimization, 440-447
guardrail implementation, 455	batching, 440
guardrails, 189, 251, 451-455	decoupling prefill and decode, 442
	parallelism, 444-447
H	prompt caching, 443-444
H3 architecture, 66	KV cache size calculation, 435
nallucinations	memory-bound versus bandwidth-bound
causes of, 107-111	interference, 408
	at model/hardware/service levels, 426
defined, 105	model optimization, 426-439
and finetuning, 317	attention mechanism optimization,
measurement, 166	433-436
metrics for, 467	autoregressive decoding bottleneck,
superficial imitation and, 393	428-433
nard attributes, 179	kernels and compilers, 437-440
nashing, 400	model compression, 427
HellaSwag, 192	understanding, 406-425
nierarchical navigable small world (HNSW),	AI accelerators, 419-425
263	AI accelerators, 417-423

inference overview, 406-412	knowledge augmentation, 279
inference performance metrics, 412-419	knowledge-augmented verification, 167
inference performance metrics, 412-419	KV cache (see key-value cache)
latency, TTFT, and TPOT, 412-414	
throughput/goodput, 414-415	L
utilization, MFU, and MBU, 416-419	-
inference quantization, 329-331	LangChain, 232, 250, 303
inference service	language modeling metrics, 118-124 bits-per-byte, 121
defined, 183	
and inference optimization, 406	bits-per-character, 121
throughput/goodput, 414-415	cross entropy, 120
inference service optimization, 440-447	entropy, 119
decoupling prefill and decode, 442	perplexity, 121
parallelism, 444-447	perplexity interpretation and use cases,
prompt caching, 443-444	122-124
inference with reference, 430	language models, 2-6, 125
INFOBench, 174	large language models, 8-12
information aggregation, 26	AI product defensibility, 31
information extraction, 243-247	role of AI and humans in the application,
information retrieval optimization, 267-272	30-31
chunking strategy, 268-269	set expectations, 31
contextual retrieval, 271-272	large multimodal model (LMM), 9
query rewriting, 270	latency
reranking, 269	AI judges and, 144
instruction data synthesis, 388-391	inference performance and, 412-414
instruction-following capability, 172-177	metrics, 33
instruction-following capability, 172-177	reliability versus, 455
intent classifiers, 457	layer stacking, 354-355
inter-token latency (ITL), 413	leaderboards, 152-154, 191-197
	learning rate, 359
interface, AI, 45	leniency bias, 490
internal knowledge, 301	lexical similarity, 130-131
inverse document frequency (IDF), 259	linear combination summing, 350-352
inverted file index (IVF), 263	Llama
iteration, 208	attention function, 62
	data coverage, 370
J	data quality, 368
jailbreaking, 238-243	data quantity, 372
automated attacks, 240	data synthesis, 387, 390
direct manual prompt hacking, 239-240	finetuning, 310
indirect prompt injection, 242-243	inference optimization, 439
Jamba architecture, 66	inference quantization, 330
judges (see AI judges)	model distillation, 395
	open source models, 182
K	prefer, 84
k-nearest neighbors (k-NN), 262	preference finetuning, 78
kernels, 436, 437-440	prompt template, 215
key vector (K), 60	scaling law and, 73
key-value (KV) cache, 433-436	LLM-as-a-judge, 136
key-value (KV) cache, 455-456 key-value vectors, 323	(see also AI-as-a-judge)
key-value vectors, 323	, , , , , , , , , , , , , , , , , , , ,

LMM (large multimodal model), 9	observability metrics, 466
local factual consistency, 165	reference-based versus reference-free, 127
locality-sensitive hashing (LSH), 263	tying evaluation metrics to business metrics,
logit vectors, 89	203
logprobs, 93, 204	usefulness thresholds, 33
logs, 469-470	MFU (model FLOPs utilization), 416-419
long-term memory, 301	milestone planning, 33
loop tiling, 438	mixture-of-experts (MoE) models, 68, 354
LoRA (low-rank adaptation), 338-347	ML engineering, AI engineering versus, 39-46
configurations, 341-343	MLP modules, 62
LoRA adapters service, 343-345	MMLU (Massive Multitask Language Under-
mechanism of operation, 340	standing), 34, 192
quantized LoRA (QLoRA), 345-347	model APIs, open source models versus (see
low-rank factorization, 340	open source models, model APIs versus)
LSH (locality-sensitive hashing), 263	model architecture, 58-66
	(see also specific architectures, e.g.: trans-
M	former architecture)
Mamba architecture, 66	model bandwidth utilization (MBU), 416-419
manual generation, 383-386	model compression, 427
masked language models, 4	model development, 37, 40-44
Massive Multitask Language Understanding	dataset engineering, 42
(MMLU), 34, 192	inference optimization, 43-44
matches, 150	modeling and training, 41-42
MBU (model bandwidth utilization), 416-419	model distillation, 395
MCQs (multiple-choice questions), 163	model FLOPs utilization (MFU), 416-419
mean time to detection (MTTD), 466	model inference, 34
mean time to response (MTTR), 466	model merging, 347-357
memory, 300-304	concatenation, 356
internal knowledge, 301	layer stacking, 354-355
long-term memory, 301	summing, 350-354
short-term memory, 301	model optimization, 426-439
memory bottlenecks, 319-332	attention mechanism optimization, 433-436
bandwidth-bound, 407	attention mechanism redesign, 435
memory math, 322-324	KV cache size optimization, 436
memory needed for inference, 323	write kernels for attention computation,
memory needed for training, 323-324	436
quantization, 328-332	autoregressive decoding bottleneck, 428-433
inference quantization, 329-331	inference with reference, 430
training quantization, 331-332	parallel decoding, 432
size and bandwidth, 422-424	speculative decoding, 428-430
memory math, 322-324	kernels and compilers, 437-440
metrics, 467-469	model compression, 427
correlations between, 208	model ranking, 148-156
for AI as a judge, 142-144	model router, 456-460
for generation capability, 163	model selection, 179-200
for hallucination measurement, 166	model build versus buy, 181-191
inference performance metrics, 412-419	open source models versus model APIs,
language modeling (see language modeling	183-191
metrics)	

open source, open weight, and model	data lineage and copyright, 185
licenses, 181-183	data privacy, 184
model selection workflow, 179-181	functionality, 187
navigating public benchmarks, 191-197	on-device deployment, 190
benchmark selection and aggregation,	performance, 186
191	open weight models, 182
public leaderboards, 192	OpenAI
model size, 67-77	batch APIs, 410
scaling bottlenecks, 75-77	evaluation harnesses, 191
scaling extrapolation, 74	first GPT model, 8
scaling law: building compute-optimal	instruction hierarchy for model-level
models, 72-74	defense, 248
model-centric AI, 364	model as a service, 14
model-level defense, 248	natural language supervision, 10
modeling, 58-77	open source APIs, 183
model architecture, 58-66	progression/distillation paths, 357
model size, 67-77	quality of updated models, 196
MoE (mixture-of-experts) models, 354	test time compute, 97
monitoring, 226, 465-472	operator fusion, 438
MTTD (mean time to detection), 466	optimization
MTTR (mean time to response), 466	inference optimization (see inference opti-
multi-query attention, 435	mization)
multi-task finetuning, 347	of retrieval systems, 267-272
multilingual training data models, 51-55	•
multimodal models, 9	Р
multiple-choice questions (MCQs), 163	•
	pairwise comparison, 400
N	parallelism 444 447
	parallelism, 444-447
n-gram similarity, 131	parallelization, 226, 438
natural language feedback, 476-479	parameter-efficient finetuning, 332-347
complaints, 478	adapter-based/soft-prompt techniques, 336-338
early termination, 476 error correction, 477	LoRA, 338-347
sentiment, 478	configurations, 341-343
natural language generation (NLG), 163-172	how it works, 340
natural language processing (NLP), 163-172	LoRA adapters service, 343-345
needle in a haystack (NIAH) test, 218	quantized LoRA, 345-347
•	Pareto optimization, 177
0	partial finetuning, 333
obscure data lineage, 395	passive phishing, 242
observability, 465-472	PEFT (see parameter-efficient finetuning)
on-device deployment, 190	perplexity, 121-124
online inference APIs, 410-412	perturbation, 385
Open CLIP, 56	pipeline orchestration, 472-474
open source licenses, 181-183	monitoring and observability, 465-472
open source models, model APIs versus,	drift detection, 471
183-191	logs and traces, 469-470
API cost versus engineering cost, 188	metrics, 467-469
control, access, and transparency, 189	planning

plan generation, 286-292	provide sufficient context, 223
complex plans, 291	write clear and explicit instructions, 220
function calling, 288-290	defensive engineering, 235-251
granularity, <mark>290</mark>	information extraction, 243-247
reflection and error correction, 292-294	jailbreaking and prompt injection,
pointwise evaluation, 84, 148	238-243
position bias, 491	prompt attacks defense, 248-251
post-processing, 102	proprietary prompts and reverse promp
post-training, 42, 78-88	engineering, 236-238
preference finetuning, 83-88	defined, 45
supervised finetuning, 80-83	restricting model knowledge to its context,
potential model collapse, 394	224
power consumption, 424-425	terminology ambiguity: prompt versus con-
PPO (proximal policy optimization), 87	text, 214
pre-training, <mark>41</mark>	prompt loss rate, 361
precision bits, 326	prompt optimization, 230
preference bias, 491	prompt versioning, 233-235
preference finetuning, 83-88, 309	prompt-level defense, 249
preference models, 147	proprietary prompts, 236-238
prefilling, 60	proximal policy optimization (PPO), 87
prefilling, decoupling from decoding, 442	public leaderboards, 192
proactive features, 30	
probabilistic nature of AI, 105-111	Q
hallucination, 107-111	QAT (quantization-aware training), 331
inconsistency, 106-107	QLoRA (quantized LoRA), 345-347
probabilistic definition, 105-111	QPS (queries per second), 266
procedural generation, 383-386	quality control, 393
product quantization, 263	quantization, 328-332
prompt attacks, 235, 238-243	inference quantization, 329-331
automated attacks, 240	training quantization, 331-332
defense against, 248-251	quantization-aware training (QAT), 331
direct manual prompt hacking, 239-240	quantized LoRA (QLoRA), 345-347
indirect prompt injection, 242-243	queries per second (QPS), 266
prompt caching, 443-444	query rewriting, 270
prompt catalogs, 235	query vector (Q), 60
prompt engineering, 211-252	query vector (Q), oo
basics, 212-220	D
context length and context efficiency,	R
218-220	RAG (retrieval-augmented generation),
in-context learning: zero-shot and few-	253-275
shot, 213-215	finetuning and, 316-319
best practices, 220-235	RAG architecture, 256
break complex tasks into simpler sub-	RAG beyond texts, 273-275
tasks, 224-227	multimodal RAG, 273
evaluating prompt engineering tools,	RAG with tabular data, 274-275
230-233	retrieval algorithms, 257-267
give the model time to think, 227-229	combining, 266
iterating on your prompts, 229	comparing, 264-266
organize and version prompts, 233-235	embedding-based retrieval, 260-263
	term-based retrieval, 258-260

retrieval optimization, 267-272	rule-based data synthesis, 383-385
chunking strategy, 268-269	
contextual retrieval, 271-272	S
query rewriting, 270	S4 architecture, 66
reranking, 269	safety, 170-172
random feedback, 491	safety, as evaluation criteria, 170-172
range bits, 326	sampling, 88-111
ranking, 129	probabilistic nature of AI, 105-111
rating algorithms, 151	sampling fundamentals, 88-90
reactive features, 30	sampling strategies, 90-95
recall, 266	strategies, 90-95
recurrent neural networks (RNNs), 58	stopping condition, 95
reference-based judges, 147	temperature, 90-93
reference-based metrics, 127	top-k, 94
reference-free metrics, 127	top-p, 94
reflection, 292-294	structured outputs, 99-104
regeneration, 479	test time compute, 96-99
reinforcement learning from human feedback	scaling bottlenecks, 75-77, 152
(RLHF), 83-88	scaling extrapolation, 74
relevance, 164	scaling law, 72-74
reliability, latency versus, 455	scoring rubrics, 202
replica parallelism, 445	self-evaluation, 146
reranking, <mark>269</mark>	self-supervision language models, 6-8
restricted weight, 183	self-verification, 167
retrieval algorithms, 257-267	semantic caching, 461
combining, 266	semantic similarity, 132-133
comparing, 264-266	sequence parallelism, 447
embedding-based retrieval, 260-263	sequential finetuning, 348
term-based retrieval, 258-260	SFT (supervised finetuning), 78, 80-83, 309
retrieval optimization	short-term memory, 301
chunking strategy, 268-269	simulation, 385
contextual retrieval, 271-272	simultaneous finetuning, 347
query rewriting, 270	SLERP (spherical linear interpolation), 352
reranking, 269	slicing, 205
retrieval-augmented generation (see RAG)	soft attributes, 179
retrievers	soft prompt-based PEFT methods, 336-338
combining retrieval algorithms, 266	sparse models, 68, 427
main functions, 256	sparse retrievers, 258
multimodal RAG and, 273	speculative decoding, 428-430
quality evaluation, 264	spherical linear interpolation (SLERP), 352
sparse versus dense, 258	SQL queries, 277
reverse prompt engineering, 236-238	static batching, 440
reward models, 84-87, 147	static features, 30
RLHF (reinforcement learning from human	stopping condition, 95
feedback), 83-88	structured data, 123, 303
RNNs (recurrent neural networks), 58	structured outputs, 99-104
RoleLLM, 176	constrained sampling, 103
roleplaying, 175-177	finetuning, 104
routers, 456-457	post-processing, 102
	1 1 0

summing, 350-354	defined, 3
linear combination, 350-352	tokenizer, 268
pruning redundant task-specific parame-	tokens, 3, 68
ters, 353	tool use, 296
spherical linear interpolation (SLERP), 352	top-k, 94
superficial imitation, 393	top-p, 94
supervised finetuning (SFT), 78, 80-83, 309	TPOT (time per output token), 33, 412-414
supervision, 6	traces, 470
synthesis of data (see data synthesis)	trainable parameters, 320-322
system components evaluation, 200-201	training, 41-42
creating scoring rubrics with examples, 202	training data, 50-57
defining evaluation criteria, 202	domain-specific models, 56-57
tying evaluation metrics to business metrics,	multilingual models, 51-55
203	training quantization, 331-332
system prompts, 215-217	transfer learning, 308
system-level defense, 250	transformer architecture, 58-64
systems evaluation, 159-209	attention mechanism, 60-62
evaluation criteria, 160-179	attention modules, 62
cost and latency, 177-179	MLP modules, 62
domain-specific capability, 161-163	transformer blocks, 62-64
evaluation-driven development, 160-161	attention modules, 62
generation capability, 163-172	embedding modules, 63
instruction-following capability, 172-177	MLP modules, 62
evaluation pipeline design, 200-208	output layers, 63
step 1: creating an evaluation guideline,	TruthfulQA, 192
202-203	TTFT (time to first token), 33, 412-414
step 2: evaluating all components in a	turn-based evaluation, 201
system, 200-201	
step 3: defining evaluation methods and	U
data, 204-208	unstructured data, 27, 303
evaluation-driven development, 160-161	use case evaluation, 29-32
model selection, 179-200	usefulness threshold, 33
data contamination with public bench-	user feedback, 474-492
marks, 197-200	extracting conversational feedback, 475-480
model build versus buy, 181-191	natural language feedback, 476-479
model selection workflow, 179-181	other conversational feedback, 479-480
navigating public benchmarks, 191-197	feedback design, 480-489
OpenAI model quality, 196	when to collect feedback, 481
T	feedback limitations, 490-492
T	biases, 490
task-based evaluation, 201	degenerate feedback loops, 491
temperature, 90-93	
term frequency (TF), 259	V
text-to-SQL, 99, 126, 274	value vector (V), 61
throughput, 414-415	vector database, 261-263
time between tokens (TBT), 413	vectorization, 438
time per output token (TPOT), 33, 412-414	vocabulary, 123
time to first token (TTFT), 33, 412-414	defined, 3
tokenization, 55, 69, 121, 260, 268	

W

WinoGrande, 192 workflow automation, 28 write actions, 280

Z

zero-shot learning, 213-215