Solving Differential Equations Free Falling Ball

Faculty of Technology and Bionics

The position of a free falling ball should be modeled. The collision to the ground is considered as elastic.

Modeling during contact phase

Equations of motion

Free fall and jump: $m \ddot{x} + d_{fall} \dot{x} = -mg$

Contact phase: $m \ddot{x} + d \dot{x} + c x = -mg$

$x_0 - 1$ iii iii ii iii ii ii ii ii ii ii ii ii	$x_0 = 1 m$	Initial height
--	-------------	----------------

m = 0.285 kg Weight of the ball

 $g = 9.81 \, m/s^2$ Gravitational acceleration

 $d_{fall} = 0.4 Ns/m$ Velocity proportional damping

during free fall and jump

d = 22.2 Ns/m Velocity proportional damping

during contact phase

c = 52800 N/m Spring stiffness during contact

phase

