Computer Organization HW1

Problem 1 (20 points)

For the following C statement, write the corresponding RISC-V assembly code. Assume that the variables i, and j are assigned to registers x28 and x29, the base address of the arrays A and B are in registers x10 and x11. Assume that the elements of the arrays A and B are 4-byte words:

```
B[8] = A[i] - (A[j] - 5);
```

Problem 2 (25 points)

Please answer the following questions, you need to show the procedures.

a) (10 points)

For the following binary value, provide the instruction type and the corresponding assembly language instruction:

 $0000000000100001000000010110011_2\\$

b) (15 points)

Provide the instruction type, assembly language instruction, and the hexadecimal representation of the instruction described by the following RISC-V fields:

```
opcode = 0x3; funct3 = 0x0; rs1 = 27; rd = 3; imm = -5
```

Problem 3 (25 points)

Consider the following RISC-V loop:

```
LOOP: beq x6, x0, DONE
addi x6, x6, -1
addi x5, x5, 2
jal x0, LOOP
DONE:
```

a) (10 points)

Assume that the register x6 is initialized to the value 10. What is the final value in register x5 assuming the x5 is initially zero?

b) (15 points)

For the loop above, write the equivalent C code. Assume that the registers x5 and x6 are integers A and i, respectively.

Problem 4 (30 points)

Translate function f into RISC-V assembly language. The C code is as follows:

Register Selection Guidelines:

- Assume that the arguments a, b, c and d are initially assigned to register a0~a3.
- Follow the RISC-V function calling convention when passing arguments and returning values.
- Be mindful to preserve values during function calls if needed and try to keep the implementation efficient by using only necessary registers.

```
int f(int a, int b, int c, int d) {
    return g(g(a, b), c + d);
}
int g(int a, b) {
    return a+b;
}
```