

Algoritmos: Conceitos e formas de representação

Disciplina: Algoritmos e Programação

Curso: Engenharia de Computação

Professora: Mariza Miola Dosciatti

mariza@utfpr.edu.br

Objetivos

- Compreender o conceito de algoritmo.
- Entender a ideia de algoritmo.
- Conhecer os elementos fundamentais de um algoritmo.
- Saber as formas básicas de organizar as instruções de um algoritmo.
- Conhecer formas de representação de algoritmos.
- Aprender um método para o desenvolvimento de algoritmos.
- Itens da ementa (Plano de Ensino):
 - Conceito de algoritmo e programação.
 - Algoritmos: representação, técnicas e estruturas de elaboração.

Sumário

1. Algoritmo – Conceito

- 1.1. Algoritmo Estrutura básica
- 1.2. Algoritmo Método para a construção
- 1.3. Algoritmo Considerações
- 1.4. Algoritmo Elementos fundamentais

2. Representação de algoritmos

- 2.1. Descrição narrativa
- 2.2. Fluxograma
- 2.3. Português estruturado
- 2.4. Linguagem de programação

1. Algoritmo: Conceito

Procedimentos para vir à UTFPR:

- Condição:
 - Morar em uma casa.
- Passos:
 - Fechar a porta da casa.
 - Fechar o portão.
 - Andar até o ponto de ônibus.
 - Apanhar o ônibus e chegar na universidade.
 - Dirigir-se à sala de aula.

- Algoritmo (mais detalhado) para vir para a UTFPR:
 - Fechar porta da casa.
 - Outras pessoas permanecem em casa e a porta pode ficar aberta.
 - Outras pessoas permanecem em casa e fecharão a porta.
 - Fechar o portão.
 - Gato quer entrar → reconhecimento do gato.
 - Se gato conhecido e pode permanecer no jardim e quintal da casa. Então, deixar o gato entrar e fechar o portão.
 - Se gato desconhecido ou não deve permanecer no jardim e quintal da casa.
 Então, não deixar o gato entrar (ou colocá-lo para fora) e fechar o portão.
 - Andar até o ponto de ônibus.
 - Agendado com colega para apanhar ônibus juntos.
 - Se o ônibus chegar antes do colega.
 - » Apanhar o ônibus.
 - » Aguardar o colega para apanharem outro ônibus.
 - » Aguardar e ligar para o colega.
 - » Apanhar o ônibus e ligar para o colega.
 - »
 - Ir para a sala de aula.
 - Ter verificado (ou saber) a sala correta.

 Algoritmos fornecem uma descrição detalhada e rigorosa das instruções (ações) para a resolução de problemas.

Definem a sequência de instruções computacionais que representa a solução de problemas. É a essência da programação de computadores.

Exemplo: Algoritmo para ligar de um telefone público – sequência

de instruções.

Início

- 1. Tirar o fone do gancho;
- 2. Ouvir o sinal de linha;
- 3. Inserir o cartão;
- 4. Teclar o número desejado;
- 5. Conversar;
- 6. Desligar;
- 7. Retirar o cartão;

Fim

Neste algoritmo todas as instruções são realizadas e na sequência definida.

Algoritmo para ligar de um telefone público – sequência de instruções.

E se telefone estiver com defeito?

Início

- 1. Tirar o fone do gancho;
- 2. Se ouvir o sinal de linha, então
 - 1. Inserir o cartão;
 - 2. Teclar o número desejado;
 - 3. Conversar;
 - 4. Desligar;
 - 5. Retirar o cartão;

3. Senão

1. Ir para o próximo telefone;

Fim

Neste algoritmo não são todas as instruções que são realizadas.
Quais serão realizadas depende do resultado de um teste lógico (verdadeiro/falso)

Algoritmo para ligar de um telefone público – repetição

E se o próximo telefone também estiver com defeito?

Início

- 1. Repita
 - 1. Tirar o fone do gancho;
 - 2. Se ouvir o sinal de linha, então
 - 1. Inserir o cartão;
 - 2. Teclar o número desejado;
 - 3. Conversar;
 - 4. Desligar;
 - 5. Retirar o cartão;
 - 3. Senão
 - 1. Ir para o próximo telefone;
- 2. Até fazer a ligação desejada

Fim

Neste algoritmo as instruções serão repetidas até ser obtido um determinado resultado (verdadeiro) de um teste lógico realizado.

 Um algoritmo é uma sequência finita de ações ou instruções para executar uma tarefa, alcançar um objetivo ou obter uma saída desejada para quaisquer entradas válidas, visando resolver um problema.

1.1. Algoritmo: Estrutura básica

Entrada

Dados necessários para realizar as instruções.

Resultado: texto e dados (formatados).

1.2. Algoritmo: Método para a construção

- Entender o problema;
- Retirar do problema as entradas e as saídas de dados necessárias;
- Determinar o que deve ser feito para transformar as entradas nas saídas desejadas;
 - Determinar o tipo de dado a ser manipulado, definindo as variáveis e as constantes necessárias;
 - Definir as instruções e as estruturas de decisão e de repetição necessárias;
 - Definir as fórmulas e as operações a serem realizadas;
- Apresentar os resultados;
- Verificar se as instruções definidas resolvem o problema da maneira esperada;
 - Realizar testes, como teste de mesa por exemplo, para verificar o resultado.

1.3. Algoritmo: Considerações

- No início do algoritmo colocar o enunciado do problema;
- Comentar as partes mais complexas ou relevantes do algoritmo;
- Utilizar espaços e linhas em branco para melhorar a legibilidade do algoritmo, mas sem abusar dos mesmos;
- Escolher nomes representativos para os identificadores;
- Uma instrução por linha é suficiente;
- Utilizar indentação (recuo no início da linha de código).

1.4. Algoritmo: Elementos fundamentais

- De acordo com o paradigma de programação estruturada, os elementos fundamentais são:
 - a) Tipos de dados;
 - b) Variáveis e constantes;
 - c) Operadores aritméticos, relacionais e lógicos;
 - d) Instruções de entrada e saída;
 - e) Estrutura sequencial;
 - f) Estruturas de controle decisão;
 - g) Estruturas de controle repetição;
 - h) Estruturas de dados homogêneos;
 - i) Funções.

2. Representação de Algoritmos

- Exemplos de formas de representação de um algoritmo:
 - Descrição narrativa
 - Palavras em linguagem natural: português.
 - Representação gráfica
 - Fluxograma (diagrama de blocos).
 - Português estruturado
 - Pseudocódigo intermediário entre o português e uma linguagem de programação.

2.1. Descrição narrativa

- Descrição narrativa ou linguagem natural consiste no uso de frases para expressar ações a serem realizadas.
- Apresenta a facilidade de a linguagem ser conhecida e o inconveniente da ambiguidade de termos.
- Procedimento para elaborar um algoritmo em descrição narrativa:
 - Definição dos dados de entrada
 - Processamento (instruções a serem realizadas)
 - Definição dos dados de saída

2.1. Descrição narrativa (cont.)

EXEMPLO: Receita de bolo

- Misture os ingredientes.
- Unte a forma com manteiga.
- Despeje a mistura na forma.
- Leve ao forno.
- Enquanto n\u00e3o dourar, deixe o bolo no forno.
- Retire do forno.
- Deixe esfriar.

2.1. Descrição narrativa (cont.)

EXEMPLO: Calcular a soma de dois números

- Apresentar na tela uma mensagem para o usuário informando-o que deverá digitar dois números do tipo inteiro.
- Após ler a mensagem, o usuário deverá inserir os números por meio do teclado, que serão lidos e armazenados em duas variáveis diferentes.
- Em seguida, será aplicada a operação de soma nos dois operandos informados pelo usuário e o resultado será armazenado em uma terceira variável.
- O resultado será apresentado na tela para o usuário e o algoritmo será finalizado.

2.2. Fluxograma

- Um fluxograma, diagrama de fluxo ou diagrama de blocos, é uma representação gráfica que utiliza formas geométricas ligadas por setas para indicar as instruções que devem ser seguidas para resolver um problema.
- A principal **função de um fluxograma** é facilitar a visualização da sequência das instruções de um algoritmo.

2.2. Fluxograma (cont.)

• Exemplos de símbolos (norma ISO 5807):

Símbolo	Descrição
	Terminal: início e fim do algoritmo.
	Entrada e saída: Receber e mostrar informações. Ler dados para armazenar em variáveis e mostrar dados contidos em variáveis. Escrever texto.
	Processamento: realizar operações com variáveis e constantes; executar as instruções contidas em estruturas de decisão e de repetição.
	Representar as condições de uma estrutura de decisão.
	Conector para agrupar fluxos.
	Linha: conector direcionado entre símbolos.

2.2. Fluxograma (cont.)

- Fluxograma Estrutura Sequencial.
- Problema: Calcular a média de duas notas.

Teste de mesa:

Nota1	Nota2	Media
10	9	9,5
7	8	7,5
10	10	10

2.3. Português estruturado

 Português Estruturado (Pseudocódigo, Pseudolinguagem, Portugol) é uma forma de representar algoritmos utilizando um conjunto de termos da língua portuguesa para expressar instruções.

2.3. Português estruturado (cont.)

 Forma geral da representação de um algoritmo em português estruturado:

```
Algoritmo <nome_do_algoritmo>
  <declaração_de_variáveis>
Início
  <instruções>
Fim
```

• A forma de representação de algoritmos em português estruturado assemelha-se às linguagens de programação.

2.3. Português estruturado (cont.)

EXEMPLO:

```
Algoritmo "Media"
// Calcula a média aritmética de duas notas
Var
   // Declarações das variáveis
   notal, nota2, media: real
Inicio
      // Entrada de dados
      escreva ("Informe a primeira nota: ")
      leia (nota1)
      escreva ("Informe a segunda nota: ")
      leia (nota2)
      //Processamento de dados
      media <- (nota1 + nota2) / 2
      //Saída de dados
      escreva ("A média aritmética é: ", media)
```

Fimalgoritmo

Aplicação das formas de representação

As formas de representação de algoritmos são utilizadas em vários contextos na área da Computação, mas principalmente em enunciados e resoluções de problemas em provas e livros da área.

Referências

FORBELLONE, A. L. V.; EBERSPÄCHER, H. F. Lógica de programação:
 A construção de algoritmos e estruturas de dados. São Paulo:
 Makron, 1993.

Dúvidas

• 555