

COMP7/8118 M50

Data Mining

Clustering Concepts

Xiaofei Zhang

Slides compiled from Jiawei Han and Raymond C.W. Wong's work

Clustering

	Computer	History
Raymond	100	40
Louis	90	45
Wyman	20	95

Cluster 2 (e.g. High Score in History and Low Score in Computer)

Cluster 1 (e.g. High Score in Computer and Low Score in History)

Problem: to find all clusters

Why Clustering?

Understanding

 Group related documents for browsing, genes and proteins that have similar functionality, stocks with similar price fluctuations, users with same behavior

Summarization

Reduce the size of large data sets

Applications

- Biology Group different species
- Psychology and Medicine Group medicine
- Business Group different customers for marketing
- Network Group different types of traffic patterns
- Software Group different programs for data analysis

Notion of a Cluster can be Ambiguous

How many clusters?

Two Clusters Four Clusters Six Clusters

Types of Clustering

- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
 - A division of data objects into subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
 - A set of nested clusters organized as a hierarchical tree

Partitional Clustering

Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

Traditional Dendrogram

Non-traditional Dendrogram

Other types of clustering

- Exclusive (or non-overlapping) versus non-exclusive (or overlapping)
 - In non-exclusive clustering, points may belong to multiple clusters.
 - Points that belong to multiple classes, or 'border' points
- Fuzzy (or soft) versus non-fuzzy (or hard)
 - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
 - Weights usually must sum to 1 (often interpreted as probabilities)

Types of Clusters: Well-Separated

- Well-Separated Clusters:
 - A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.

Types of Clusters: Center-Based

Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the minimizer of distances from all the points in the cluster, or a medoid, the most "representative" point of a cluster

Types of Clusters: Contiguity-Based

- Contiguous Cluster (Nearest neighbor or Transitive)
 - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.

8 contiguous clusters

Types of Clusters: Density-Based

Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

6 density-based clusters

Types of Clusters: Conceptual Clusters

- Shared Property or Conceptual Clusters
 - Finds clusters that share some common property or represent a particular concept.

Objective Function

- Clustering as an optimization problem
 - Finds clusters that minimize or maximize an objective function.
 - Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (NP Hard)
 - Can have global or local objectives.
 - Hierarchical clustering algorithms typically have local objectives
 - Partitional algorithms typically have global objectives
 - A variation of the global objective function approach is to fit the data to a parameterized model.
 - The parameters for the model are determined from the data, and they determine the clustering
 - E.g., Mixture models assume that the data is a 'mixture' of a number of statistical distributions.

Takeaways

- The notion of clustering can be ambiguous
- Clustering results can be very different under different semantics or using different methods
- The evaluation of a clustering output is non-trivial (will be covered later)