Série d'exercices N°2

Exercice 01

On considère le PL suivant :

$$PL \begin{cases} x_1 + 2x_2 + x_3 \leq 3 \\ x_1 - x_2 + x_3 \geq 2 \\ -x_1 + x_2 - x_3 = 1 \\ x_1 \geq 0, x_2 \geq 0, x_3 \text{ qlq} \\ MaxZ = x_1 + x_2 + 2x_3 \end{cases}$$

- 1-Mettre (P) sous forme canonique puis sous forme standard
- 2-soit (P') la forme standard de (P)
- a) Ecrire mxn matrice A
- b) Ecrire b_{I} , c^{I} , A^{J} , A_{I} , A_{I} , et $A_{I}X = b_{I}$ pour $I = \{1,3\}$ et $J = \{1,3,4\}$

Exercice 02

-Résoudre graphiquement les PL suivants

Max	$100x_1 + 200x_2$		Max	$-2x_1 + 3x_2$	
s.c.	$x_1 + x_2 \le 150$	(1)	S.C.	$x_1 \le 5$	(1)
	$4x_1 + 2x_2 \le 440$	(2)		$2x_1 - 3x_2 \le 6$	(2)
	$x_1 + 4x_2 \le 480$	(3)		. 2	(2)
	$x_1 \leq 90$	(4)		$x_1 \ge 0, x_2 \ge 0$	
	$x_1 \ge 0, x_2 \ge 0$				

Min
$$3x_1 + 2x_2$$

s.c. $x_1 + 2x_2 \le 2$ (1) Max $x_1 + 3x_2$
 $2x_1 + 4x_2 \ge 8$ (2) s.c. $2x_1 + 6x_2 \le 30$ (1)
 $x_1 \ge 0, x_2 \ge 0$ $x_1 \le 10$ (2)
 $x_2 \le 4$ (3)
 $x_1 \ge 0, x_2 \ge 0$

$$\text{PL1} \begin{cases} 80x_1 + 90x_2 \leq 9000 \\ 40x_1 + 90x_2 \leq 5400 \\ 30x_2 \leq 1200 \\ x_1, x_2 \geq 0 \\ \text{MaxZ} = 60x_1 + 90x_2 \end{cases} \begin{cases} x_1 - 2x_2 \leq 4 \\ x_1 - 3x_2 \leq 6 \\ -2x_1 + x_2 \leq 3 \\ x_1, x_2 \geq 0 \\ 2x_1 + x_2 = Z(\text{Max}) \end{cases} \\ \text{PL} \begin{cases} \text{MaxZ} = 6x_1 + 4x_2 \\ 3x_1 + 9x_2 \leq 81 \\ 4x_1 + 5x_2 \leq 55 \\ 2x_1 + x_2 \leq 20 \\ x_1 \geq 0, x_2 \geq 0 \end{cases}$$

Exercice 03

Une usine fabrique 2 produits P1 et P2 en quantité x_1 et x_2 , le problème de production se modélise sous la forme d'un programme linéaire :

Université AMO de Bouira - Faculté des sciences et sciences appliquées

1-Résoudre le PL graphiquement et déterminer :

- -Quelles quantités de produits P1 et P2 doit produire l'usine pour maximiser le bénéfice total venant de la vente des 2 produits ?
- Quel est le bénéfice maximal de la vente?