Леммы о накачке для контекстно-свободных языков. Нормальная форма Грейбах

Теория формальных языков *2021 г*.

Высота вывода слова в CFL

Вопрос

Дана КС-грамматика G в CNF (н.ф. Хомского). Дерево разбора какой высоты может соответствовать непустому слову длины $w \in L(G)$?

Высота вывода слова в CFL

Вопрос

Дана КС-грамматика G в CNF (н.ф. Хомского). Дерево разбора какой высоты может соответствовать непустому слову длины $w \in L(G)$?

• Максимум: |w| (каждое нефинальное правило увеличивает длину слова хотя бы на 1);

Высота вывода слова в CFL

Вопрос

Дана КС-грамматика G в CNF (н.ф. Хомского). Дерево разбора какой высоты может соответствовать непустому слову длины $w \in L(G)$?

- Максимум: |w| (каждое нефинальное правило увеличивает длину слова хотя бы на 1);
- Минимум: $[\log_2 w] + 1$ (если вывод высоты k порождает максимум слова длины s, тогда вывод высоты k+1 породит максимум слово длины 2*s).

Лемма о накачке КС-языков

Лемма о накачке (разрастании)

Пусть G — KC-грамматика в форме Хомского. Тогда существует $p \in \mathbb{N}$ такое, что любое слово $w \in L(G)$ длины не меньше p имеет представление вида $x_1y_1zy_2x_2$, где $|y_1y_2|\geqslant 1$, $|y_1zy_2|\leqslant p$, и все слова вида $x_1y_1^kzy_2^kx_2$ также принадлежат L(G).

Лемма о накачке КС-языков

Пусть в н.ф. Хомского G n нетерминалов. Возьмём $p=2^n$. Его вывод будет иметь минимум высоту $n+1\Rightarrow$ в нём будет существовать путь, содержащий два одинаковых нетерминала A.

Лемма о накачке КС-языков

Пусть в н.ф. Хомского G n нетерминалов. Возьмём $p=2^n$. Его вывод будет иметь минимум высоту $n+1\Rightarrow$ в нём будет существовать путь, содержащий два одинаковых нетерминала A.

Выберем самые нижние два одинаковых нетерминала \Rightarrow высота поддерева от первого из них не больше $n+1 \Rightarrow$ длина выводимого слова $y_1zy_2 \leqslant 2^n$ (т.е. $\leqslant p$).

Пример применения

Парсинг в Python

Проанализировать язык

$$\{\alpha^nz_1\alpha^nz_2\alpha^n|n\geqslant 1, |z_{\mathfrak{i}}|_{\alpha}=0, |z_{\mathfrak{i}}|\geqslant 1\}.$$

Пример применения

Парсинг в Python

Проанализировать язык $\{a^n z_1 a^n z_2 a^n | n \ge 1, |z_i|_a = 0, |z_i| \ge 1\}.$

Пусть длина накачки есть p. Рассмотрим слово $a^pba^pba^p$. Заметим, что если $y_1zy_2=a^iba^j$ (где i и j могут быть равны 0), тогда $|y_1y_2|_b=0$. Действительно, иначе нулевая накачка породит слово a^mba^p , которое не принадлежит языку.

Значит, $y_1=a^j$, $y_2=a^i$. Однако слова $a^{p+i+j}ba^pba^p$, $a^pba^{p+i+j}ba^p$, a^pba^{p+i+j} , $a^{p+j}ba^{p+i}ba^p$, a^pba^{p+i+j} ни одно не принадлежат требуемому языку \Rightarrow он не контекстно-свободен.

Теоретико-игровая интерпретация

Достаточное условие непринадлежности языка L к КС по лемме о накачке: $\forall p \exists w \in L(|w|>p \& \forall x_i, y_i, z(w=x_1y_1zy_2x_2 \& |y_1zy_2|$

В пренексной форме этого условия кванторы образуют последовательность: $\forall\exists\forall\exists$. Эта последовательность задаёт правила игры, где каждый квантор \exists — ход протагониста, квантор \forall — ход антагониста. Ходы антагониста назначают неопределённые параметры. Ходы протагониста дают выбор известной вам структуры, зависящей от ходов антагониста. В случае леммы о накачке это выглядит так.

- Антагонист выбирает длину накачки р.
- Зная р, протагонист выбирает w.
- Антагонист выбирает разбиение w на пять подстрок.
- Возможно, в зависимости от этого разбиения, протагонист предъявляет і, для которого накачка не выполняется.

Теоретико-игровая интерпретация

- Антагонист выбирает длину накачки р.
- Зная р, протагонист выбирает w.
- Антагонист выбирает разбиение w на пять подстрок.
- Возможно, в зависимости от этого разбиения, протагонист предъявляет і, для которого накачка не выполняется.

Иногда такая система анализа свойств, записанных в виде формул с чередующимися кванторами, также называется игрой Элоизы и Абеляра (по буквам, образующим кванторы \exists и \forall).

Техника применения

Сужение перебора

Если в язык L входят подслова произвольной формы из Σ^+ , где $|\Sigma| > 1$, тогда, скорее всего, потребуется пересечь L с регулярным языком, чтобы облегчить поиск свидетельства о ненакачиваемости. Пример: язык $\{w_1w_1w_2\,|\,|w_1|_a=|w_2|_a\}$. Пересечение этого языка с $ba^*bba^*bba^*$ гораздо легче поддаётся анализу, поскольку такие слова разбиваются на подходящие w_1 и w_2 однозначно.

- Начальная буква b вынуждает w_1 содержать ровно две буквы b. Действительно, если $|w_1|_b=1$, тогда второе вхождение w_1 должно будет начинаться c b^2 , что противоречит выбору w_1 .
- Последняя буква b навязывает позицию начала w_2 .

Техника применения

Работа с отрицанием

Если характеристическая функция L содержит предикат отрицания, связывающий две структуры неопределённого размера, в некоторых случаях это приводит к невозможности применения леммы о накачке. В других можно попробовать воспользоваться приёмом «всё включено». Поскольку мы знаем, что длина накачиваемого фрагмента y_1zy_2 меньше p, то выберем w так, чтобы в нём нашлись всевозможные фрагменты такой длины, удовлетворяющие желательному свойству.

Техника применения

Покажем, что язык $L=\{w\,|\,w\neq\alpha^{n^2}\;\&\;w\in\{\alpha,b\}^*\}$ не является КС. Для начала заметим, что слова L содержат произвольные подслова в $\{\alpha,b\}^*$, и пересечём L с α^* . Получим $L'=\{\alpha^k\,|\,k\neq n^2\}$ — если он не КС, то исходный язык также не КС.

- Антагонист выбирает р.
- Наша задача подобрать такое k, что $\forall p' \exists i, m(p' . То есть включить возможность взятия любого такого <math>p'$ в наше значение k как конструктивного элемента для построения квадрата числа.
- ullet Возьмём $k=(p!)^2+1.$ Тогда при любом значении p', меньшем p, можно взять $\mathfrak{i}=rac{p!}{p'}*2$, и получим $k+p'*\mathfrak{i}=(p!+1)^2.$

Ещё пример применения

Покажем, что язык $L = \{ww^R a^n \,|\, |w|_a = n\}$ не является КС. Опять сначала избавимся от произвольных подслов в L и пересечём его с языком $ba^+b^2a^+ba^+$. Пересечение с таким языком вынуждает w иметь вид ba^ib , а весь язык — вид $L' = \{ba^nbba^nba^n\}$.

- Абеляр выбирает р. Элоиза строит слово $ba^pb^2a^pba^p$. Абеляру предоставляется возможность построить его разбиение на $x_1y_1zy_2x_2$.
- Если Абеляр выберет $|y_1|_a > 0 \& |y_1|_b > 0$ (т.е. y_1 содержащим сразу буквы a и b), тогда ненулевая накачка сразу же выведет нас из языка. Аналогично с y_2 .
- Если Абеляр решит накачивать только b (т.е. выберет y_1 либо y_2 равными b или b^2), тогда любая накачка также будет выводить из языка.

Ещё пример применения

Покажем, что язык $L = \{ww^R a^n \,|\, |w|_a = n\}$ не является КС. Опять сначала избавимся от произвольных подслов в L и пересечём его с языком $ba^+b^2a^+ba^+$. Пересечение с таким языком вынуждает w иметь вид ba^ib , а весь язык — вид $L' = \{ba^nbba^nba^n\}$.

- Абеляр выбирает р. Элоиза строит слово $ba^pb^2a^pba^p$. Абеляру предоставляется возможность построить его разбиение на $x_1y_1zy_2x_2$.
- Остаётся только возможность $y_1 = a^i$, $y_2 = a^j$, что позволяет следующие накачки y_1 , y_2 на расстоянии не больше p:
 - $ba^{p+i*k}b^2a^{p+j*k}ba^p$ можно сохранить свойство палиндрома, но нельзя сохранить корректный подсчёт букв a, последний индекс не меняется.
 - $ba^pb^2a^{p+i*k}ba^{p+j*k}$ теряется свойство палиндрома.
 - $ba^{p+(i+j)*k}b^2a^pba^p$ теряется свойство палиндрома, при накачке только второго подслова a^p аналогично.
 - $ba^pb^2a^pba^{p+(i+j)*k}$ некорректный подсчёт букв а в w.

Некоторые не КС-языки тоже накачиваются, например, $\{a^mb^nc^nd^n\,|\,m>0\}\cup\{b^ic^jd^k\}.$

Некоторые не КС-языки тоже накачиваются, например, $\{a^mb^nc^nd^n\,|\,m>0\}\cup\{b^ic^jd^k\}.$

Действительно, если слово языка содержит буквы α , тогда мы можем взять $y_1y_2=\alpha^i$. Иначе накачку можно выбрать произвольно.

Некоторые не КС-языки тоже накачиваются, например, $\{a^mb^nc^nd^n\,|\,m>0\}\cup\{b^ic^jd^k\}.$

Действительно, если слово языка содержит буквы α , тогда мы можем взять $y_1y_2=\alpha^i$. Иначе накачку можно выбрать произвольно.

То, что этот язык — не КС, можно понять по тому факту, что его пересечение с регулярным языком $ab^*c^*d^*$ не контекстно-свободно.

Некоторые не КС-языки тоже накачиваются, например, $\{a^mb^nc^nd^n\,|\,m>0\}\cup\{b^ic^jd^k\}.$

Действительно, если слово языка содержит буквы α , тогда мы можем взять $y_1y_2=\alpha^i$. Иначе накачку можно выбрать произвольно.

То, что этот язык — не КС, можно понять по тому факту, что его пересечение с регулярным языком $ab^*c^*d^*$ не контекстно-свободно.

Иногда пересечение с регулярным языком делает язык «излишне накачиваемым»: например, пересекая $L=\{ww^R\alpha^n\,|\,|w|_\alpha=n\}$ с $b\alpha^+b^*\alpha^+b\alpha^+$, мы даём возможность Абеляру выбрать в качестве y_1 пару букв из центрального блока b^* (положив $y_2=\epsilon$). Заметим, что слова без этого блока будут иметь вид $b\alpha^{2n}b\alpha^n-$ а такие слова тоже можно накачивать, выбрав y_1 из α^{2n} , y_2- из α^n .

Лемма Огдена

Пусть L — КС-язык. Тогда существует такое число n, что в любом слове w, $|w| \ge n$, можно отметить n или более букв так, что wпредставляется в виде $x_1y_1zy_2x_2$, причём либо во всех трех из x_1 , y_1 , z есть отмеченные буквы, либо они есть во всех трех из z, y_2 , x_2 , в слове y_1zy_2 отмечено не более $\mathfrak n$ букв, и $\forall k(x_1y_1^kzy_2^kx_2\in L)$.

Исследуем «плохой» язык $\{a^mb^nc^nd^n\,|\,m>0\}\cup\{b^ic^jd^k\}$ с помощью леммы Огдена. Абеляр (антагонист) выбирает п. Элоиза (т.е. мы) строит слово $ab^{2n}c^{2n}d^{2n}$ и отмечает n последних букв d. Абеляр может разбить слово $ab^{2n}c^{2n}d^{2n}$ на $x_1y_1zy_2x_2$ двумя способами:

- отмечены x_1 , y_1 , z, накачиваться может только d^{2n} .
- \bullet отмечены x_2 , y_2 , z, накачивается либо d^{2n} , либо d^{2n} совместно с c^{2n} .

Оба типа накачки выводят из языка, поскольку число вхождений букв b расходится с числом вхождений d в слово.

Н.ф. Хомского и левосторонний вы-

- Могут быть непродуктивные левосторонние цепочки: $A \rightarrow AB \rightarrow \dots AB^n \rightarrow \dots$
- Есть гарантия роста слова при развёртке, но нет определённости, по какому префиксу.

Определение

Грамматика G ($\epsilon \notin L(G)$) находится в GNF (н.ф. Грейбах) \Leftrightarrow каждое её правило имеет вид $A_i \to a_j \alpha$, где $A_i \in N$, $\alpha \in N^*$, $a_j \in \Sigma$.

 Левосторонний разбор по грамматике в GNF на каждом шагу переписывания порождает терминальный символ.

Определение

Грамматика G ($\varepsilon \notin L(G)$) находится в GNF (н.ф. Грейбах) \Leftrightarrow каждое её правило имеет вид $A_i \to \alpha_j \alpha$, где $A_i \in N$, $\alpha \in N^*$, $\alpha_j \in \Sigma$.

- Левосторонний разбор по грамматике в GNF на каждом шагу переписывания порождает терминальный символ.
- Для приведения к GNF нужно «вытащить из рекурсии» возможные first-терминалы, порождаемые нетерминалами грамматики.

Определение

Грамматика G ($\varepsilon \notin L(G)$) находится в GNF (н.ф. Грейбах) \Leftrightarrow каждое её правило имеет вид $A_i \to a_j \alpha$, где $A_i \in N$, $\alpha \in N^*$, $\alpha_j \in \Sigma$.

- Левосторонний разбор по грамматике в GNF на каждом шагу переписывания порождает терминальный символ.
- Для приведения к GNF нужно «вытащить из рекурсии» возможные first-терминалы, порождаемые нетерминалами грамматики.
 - явно найти все завершающиеся цепочки вывода;

Определение

Грамматика G ($\varepsilon \notin L(G)$) находится в GNF (н.ф. Грейбах) \Leftrightarrow каждое её правило имеет вид $A_i \to \alpha_j \alpha$, где $A_i \in N$, $\alpha \in N^*$, $\alpha_j \in \Sigma$.

- Левосторонний разбор по грамматике в GNF на каждом шагу переписывания порождает терминальный символ.
- Для приведения к GNF нужно «вытащить из рекурсии» возможные first-терминалы, порождаемые нетерминалами грамматики.
 - явно найти все завершающиеся цепочки вывода;
 - рассмотреть язык-реверс сентенциальных форм.
- По умолчанию считаем, что к GNF приводится CNF (н.ф. Хомского).

Первый способ приведения к GNF

- Пронумеровать нетерминалы в правых частях правил в порядке их вхождения;
- ② (по исчерпанию) Если имеется правило вида $A_i \to B_j \beta$, где j < i, тогда подставить вместо B_j все правые части α_k правил вида $B_j \to \alpha_k$.
- f a Если после этого все правила имеют вид либо $A_i o a lpha, \ a \in \Sigma$, либо $A_i o B_j eta$, причём i < j, тогда GNF получается последовательной развёрткой B_j .

Первый способ приведения к GNF

- Пронумеровать нетерминалы в правых частях правил в порядке их вхождения;
- ② (по исчерпанию) Если имеется правило вида $A_i \to B_j \beta$, где j < i, тогда подставить вместо B_j все правые части α_k правил вида $B_j \to \alpha_k$.
- f a Если после этого все правила имеют вид либо $A_i o a lpha, \ a \in \Sigma$, либо $A_i o B_j eta$, причём i < j, тогда GNF получается последовательной развёрткой B_j . Существует лексикографический порядок на функциональных символах из N.

Первый способ приведения к GNF

- Пронумеровать нетерминалы в правых частях правил в порядке их вхождения;
- ② (по исчерпанию) Если имеется правило вида $A_i \to B_j \beta$, где j < i, тогда подставить вместо B_j все правые части α_k правил вида $B_j \to \alpha_k$.
- f a Если после этого все правила имеют вид либо $A_i o a lpha, \ a \in \Sigma$, либо $A_i o B_j eta$, причём i < j, тогда GNF получается последовательной развёрткой B_j . Существует лексикографический порядок на функциональных символах из N.
- ② Если есть правила вида $A_i o A_i lpha$, тогда устраняем левую рекурсию.

Устранение левой рекурсии

• Предположим, для A_i нашлось n леворекурсивных правил и m упорядоченных лексикографически:

$$\begin{array}{lll} A_i \rightarrow A_i \alpha_1 & A_i \rightarrow \beta_1 \\ \dots & \dots \\ A_i \rightarrow A_i \alpha_n & A_i \rightarrow \beta_m \end{array}$$

2 Вводим новый нетерминал A_i' такой, что его вес меньше всех прочих, и заменяем правила на:

$$A'_{i} \rightarrow \alpha_{1}A'_{i} | \alpha_{1}$$
 $A_{i} \rightarrow \beta_{1} | \beta_{1}A'_{i}$ $A'_{i} \rightarrow \alpha_{n}A'_{i} | \alpha_{n}$ $A_{i} \rightarrow \beta_{m} | \beta_{m}A'_{i}$

 После всех таких замен грамматика лексикографически упорядочена по левому разбору, и GNF получается последовательной левой развёрткой.

13 / 20

Второй способ приведения к GNF

Алгоритм Блюма-Коха (1999).

Неформальное описание

- Рассмотрим язык сентенциальных форм с переписыванием только по левому разбору. Он регулярен, и в конечное состояние его NFA ведут стрелки, помеченные терминалами.
- Для такого языка легко построить инверсный \Rightarrow множество терминалов-префиксов, которые может породить данный нетерминал.

Второй способ: порождение NFA

- По каждому нетерминалу B строим автомат $M_B = \langle N_B \cup \{S_B\}, \Sigma \cup N, B_B, \{S_B\}, \delta \rangle$ (S_B новое состояние, N_B множество нетерминалов CFG, индексированное нетерминалом B). Правила перехода δ :
 - $\langle C_B, E, M \rangle \Leftrightarrow M = \{D_B \mid C \to DE \in P\};$
 - $\langle C_B, \alpha, \{S_B\} \rangle \Leftrightarrow C \rightarrow \alpha \in P$.
- ${f 2}$ Строим реверс к M_B , получаем NFA M_B^R .
- © Строим грамматику $G_B' = \langle N_B \cup \{S_B\}, \Sigma \cup N, R_B', S_B \rangle$ для M_B^R с правилами переписывания:
 - $S_B \to \alpha C_B \Leftrightarrow \langle S_B, \alpha, C_B \rangle \in \delta^R$ и $C_B \neq B_B$ либо из B_B есть стрелки в M_B^R ;
 - $S_B \rightarrow a \Leftrightarrow \langle S_B, a, B_B \rangle \in \delta^R$;
 - $D_B o EC_B \Leftrightarrow \langle S_B, E, C_B \rangle \in \delta^R$ и $C_B \neq B_B$ либо из B_B есть стрелки в M_B^R ;
 - $C_B \to E \Leftrightarrow \langle C_B, E, B_B \rangle \in \delta^R$.

Окончание конструкции

Построение GNF

Теперь по всем G_i' строим окончательный вариант грамматики $G_B = \langle N_B \cup \{S_B\}, \Sigma, R_B, S_B \rangle$ с правилами:

- $S_B o \alpha C_B$, $S_B o \alpha C_B \in R_B'$;
- $S_B \rightarrow \alpha S_B \rightarrow \alpha \in R_B'$;
- $D_B o \alpha C_B \Leftrightarrow D_B o E C_B \in R_B' \ \& \ S_E o \alpha$ (по всем таким α и E);
- $D_B \to \alpha \Leftrightarrow D_B \to E \in R_B'$ & $S_E \to \alpha$ (по всем таким α и E).

Грамматика $\bigcup_{i\in N}G_i$ со стартовым символом S_S — это искомая GNF для исходной грамматики G.

Привести к GNF грамматику некорректных сумм двоичных чисел (почему некорректных?)

$$S \rightarrow S + S \mid D$$
 $D \rightarrow D0 \mid D1 \mid 1 \mid (S)$

Привести к GNF грамматику некорректных сумм двоичных чисел (почему некорректных?)

$$S \rightarrow S + S \mid D$$
 $D \rightarrow D0 \mid D1 \mid 1 \mid (S)$

Сначала избавляемся от цепного правила S o D. Потом строим порождающую структуру Ау сентенциальных форм по левостороннему разбору с финальным состоянием $N_{
m V}$ и стартовым V_V . Каждому нетерминалу V соответствует своя структура.

Для
$$A_S:$$
 $S_S \xrightarrow{+S} S_S$ $S_S \xrightarrow{0} D_S$ $S_S \xrightarrow{1} D_S$ $S_S \xrightarrow{1} N_S$ $S_S \xrightarrow{(S)} N_S$ $S_S \xrightarrow{0} D_S$ $S_S \xrightarrow{1} D_S$

Привести к GNF грамматику некорректных сумм двоичных чисел (почему некорректных?)

$$S \rightarrow S + S \mid D$$
 $D \rightarrow D0 \mid D1 \mid 1 \mid (S)$

Сначала избавляемся от цепного правила S o D. Потом строим порождающую структуру А_V сентенциальных форм по левостороннему разбору с финальным состоянием N_V и стартовым V_V . Каждому нетерминалу V соответствует своя структура.

Для
$$A_S:$$
 $S_S \xrightarrow{+S} S_S$ $S_S \xrightarrow{0} D_S$ $S_S \xrightarrow{1} D_S$ $S_S \xrightarrow{1} N_S$ $S_S \xrightarrow{(S)} N_S$ $D_S \xrightarrow{0} D_S$ $D_S \xrightarrow{1} D_S$ $D_S \xrightarrow{1} N_S$ $D_S \xrightarrow{(S)} N_S$

Для
$$A_D: D_D \xrightarrow{0} D_D D_D \xrightarrow{1} D_D D_D \xrightarrow{1} N_D D_D \xrightarrow{(S)} N_{D_{17/20}}$$

Превращаем структуры в праволинейные (меняя местами нетерминалы левых и правых частей правил и стартовые состояния с финальными):

Для
$$A_S:$$
 $S_S \xrightarrow{+S} S_S$ $D_S \xrightarrow{0} S_S$ $D_S \xrightarrow{1} D_S$ $N_S \xrightarrow{1} S_S$ $N_S \xrightarrow{(S)} S_S$ $D_S \xrightarrow{0} D_S$ $D_S \xrightarrow{1} D_S$ $N_S \xrightarrow{1} D_S$ $N_S \xrightarrow{(S)} D_S$

Для
$$A_D: \ D_D \xrightarrow{0} D_D \ D_D \xrightarrow{1} D_D \ N_D \xrightarrow{1} D_D \ N_D \xrightarrow{(S)} D_D$$

q-RLG $G_S: S_S \rightarrow +SS_S D_S \rightarrow 0S_S D_S \rightarrow 1D_S N_S \rightarrow 1S_S$

Заменяем неразмеченные нетерминальные символы V исходной грамматики на N_V . В данном случае нет правил, в которых неразмеченные нетерминалы стояли бы первыми в правых частях, поэтому достаточно просто заменить их на N_V . Иначе пришлось бы заменять их на все возможные правые части α правил вида $N_V \to \alpha$. Стартовый символ — N_S . GNF почти построена!

Заменяем неразмеченные нетерминальные символы V исходной грамматики на N_V . В данном случае нет правил, в которых неразмеченные нетерминалы стояли бы первыми в правых частях, поэтому достаточно просто заменить их на N_V . Иначе пришлось бы заменять их на все возможные правые части α правил вида $N_V \to \alpha$. Стартовый символ — N_S . GNF почти построена!

q-GNF для
$$G: S_S \rightarrow +N_S S_S$$
 $D_S \rightarrow 0 S_S$ $D_S \rightarrow 1 D_S$ $N_S \rightarrow 1 S_S$ $N_S \rightarrow (N_S) S_S$ $D_S \rightarrow 0 D_S$ $D_S \rightarrow 1 D_S$ $N_S \rightarrow 1 D_S$ $N_S \rightarrow (N_S) D_S$ $S_S \rightarrow +N_S$ $D_S \rightarrow 0$ $D_S \rightarrow 1$ $N_S \rightarrow 1$ $N_S \rightarrow (N_S)$

Заменяем неразмеченные нетерминальные символы V исходной грамматики на N_V . В данном случае нет правил, в которых неразмеченные нетерминалы стояли бы первыми в правых частях, поэтому достаточно просто заменить их на N_V . Иначе пришлось бы заменять их на все возможные правые части α правил вида $N_V \to \alpha$. Стартовый символ — N_S . GNF почти построена!

q-GNF для
$$G: S_S \rightarrow +N_S S_S \quad D_S \rightarrow 0 S_S \quad D_S \rightarrow 1 D_S \quad N_S \rightarrow 1 S_S \\ N_S \rightarrow (N_S) S_S \quad D_S \rightarrow 0 D_S \quad D_S \rightarrow 1 D_S \quad N_S \rightarrow 1 D_S \quad N_S \rightarrow (N_S) D_S \\ S_S \rightarrow +N_S \quad D_S \rightarrow 0 \quad D_S \rightarrow 1 \quad N_S \rightarrow 1 \quad N_S \rightarrow (N_S)$$

Осталось обернуть в delay-нетерминалы терминальные символы правых частей правил, кроме первого. Здесь это символ).

Много разных лемм о накачке

Теорема Турчина плюс нормальная форма Грейбах (а также обращение н.ф. Грейбах) позволяют выводить неограниченное количество лемм о накачке. Можно отсечь произвольный префикс (суффикс) слова и накачивать то, что осталось. Можно находить несколько точек накачки.

Рассмотрим

 $\{a^nb^m\,|\,n\neq m\}\cup\{a^nb^n\,|\,n$ — простое число $\}$. Этот язык накачивается любыми леммами Огдена! Но множественный анализ накачек его берёт.