Data set loading....

```
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

# Load the dataset (use raw string `r"..."` to prevent backslash issues)
df = pd.read_csv(r"D:\An EDA Project\StudentsPerformance.csv")

# Quick overview
print("Shape of dataset:", df.shape)
print("\nInfo:\n")
print(df.info())
print("\nFirst 5 rows:\n")
print(df.head())
```

```
Shape of dataset: (1000, 8)
```

Info:

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1000 entries, 0 to 999
Data columns (total 8 columns):

| # | Column                      | Non-Null Count | Dtype  |
|---|-----------------------------|----------------|--------|
|   |                             |                |        |
| 0 | gender                      | 1000 non-null  | object |
| 1 | race/ethnicity              | 1000 non-null  | object |
| 2 | parental level of education | 1000 non-null  | object |
| 3 | lunch                       | 1000 non-null  | object |
| 4 | test preparation course     | 1000 non-null  | object |
| 5 | math score                  | 1000 non-null  | int64  |
| 6 | reading score               | 1000 non-null  | int64  |
| 7 | writing score               | 1000 non-null  | int64  |

dtypes: int64(3), object(5)
memory usage: 62.6+ KB

None

First 5 rows:

|   | gender   | race/ethnicity   | parental lev | vel of education | lunch         | \ |
|---|----------|------------------|--------------|------------------|---------------|---|
| 0 | female   | group B          | ba           | chelor's degree  | standard      |   |
| 1 | female   | group C          |              | some college     | standard      |   |
| 2 | female   | group B          |              | master's degree  | standard      |   |
| 3 | male     | group A          | ass          | ociate's degree  | free/reduced  |   |
| 4 | male     | group C          |              | some college     | standard      |   |
|   |          |                  |              |                  |               |   |
|   | test pre | eparation course | math score   | reading score    | writing score | 5 |
| 0 |          | none             | 2 72         | 2 72             | 74            | 1 |
| 1 |          | completed        | d 69         | 90               | 88            | 3 |
| 2 |          | none             | 96           | 95               | 93            | 3 |
| 3 |          | none             | 47           | 57               | 44            | 1 |
| 4 |          | none             | 2 76         | 78               | 75            | 5 |

Plot Score Distributions (Numerical Columns)

```
import os
    os.makedirs("visuals", exist_ok=True)

plt.figure(figsize=(15, 5))
    for i, col in enumerate(score_cols):
        plt.subplot(1, 3, i+1)
        sns.histplot(df[col], bins=20, kde=True, color='skyblue')
        plt.title(f'{col.title()} Distribution')

plt.tight_layout()
    plt.savefig("visuals/score_distribution.png")
    plt.show()
```



Plot Bar Charts for Categorical Columns

```
import matplotlib.pyplot as plt
import seaborn as sns

plt.figure(figsize=(15, 12))

for i, col in enumerate(cat_cols):
```

```
plt.subplot(3, 2, i + 1)
    sns.countplot(
        data=df,
       x=col,
                                # Added to avoid future warnings
       hue=col,
        palette="Set2",
       order=df[col].value_counts().index,
       legend=False
                                # Avoid duplicated legends
    plt.xticks(rotation=45)
    plt.title(f'Distribution of {col.title()}')
plt.tight_layout()
# Make sure the "visuals" folder exists before saving
import os
os.makedirs("visuals", exist_ok=True)
plt.savefig("visuals/categorical_counts.png")
plt.show()
```





test preparation course

## Gender vs Scores

```
In [14]: import matplotlib.pyplot as plt
import seaborn as sns

score_cols = ['math score', 'reading score', 'writing score']

plt.figure(figsize=(15, 4))
for i, col in enumerate(score_cols):
    plt.subplot(1, 3, i+1)
    sns.boxplot(data=df, x='gender', y=col, hue='gender', palette='Set2', legend=False)
    plt.title(f"{col.title()} by Gender")
    plt.xlabel('Gender')
    plt.ylabel(col.title())
plt.tight_layout()
plt.savefig("visuals/gender_vs_scores.png")
plt.show()
```



Parental Education vs. Scores

```
In [15]: plt.figure(figsize=(15, 4))
for i, col in enumerate(score_cols):
```

```
plt.subplot(1, 3, i+1)
    sns.boxplot(data=df, x='parental level of education', y=col, hue='parental level of education', palette='Set3', legend=Fal
    plt.title(f"{col.title()} by Parental Education")
    plt.xlabel('Parental Education')
    plt.ylabel(col.title())
    plt.xticks(rotation=45)
plt.tight_layout()
plt.savefig("visuals/parental_education_vs_scores.png")
plt.show()
```



Test Preparation Course vs Scores

```
In [16]:
    plt.figure(figsize=(15, 4))
    for i, col in enumerate(score_cols):
        plt.subplot(1, 3, i+1)
        sns.boxplot(data=df, x='test preparation course', y=col, hue='test preparation course', palette='Set1', legend=False)
        plt.title(f"{col.title()} by Test Prep")
        plt.xlabel('Test Preparation')
        plt.ylabel(col.title())
    plt.tight_layout()
    plt.savefig("visuals/testprep_vs_scores.png")
    plt.show()
```



## Correlation Between Scores

```
In [17]: plt.figure(figsize=(6, 4))
    score_corr = df[score_cols].corr()
    sns.heatmap(score_corr, annot=True, cmap='coolwarm', fmt='.2f')
    plt.title("Correlation Between Student Scores")
    plt.tight_layout()
    plt.savefig("visuals/score_correlation_heatmap.png")
    plt.show()
```



```
import os
# Key insights
insights = [
    "1. Students whose parents have a master's degree tend to perform better, especially in math.",
    "2. Test preparation course is linked with higher scores in reading and writing.",
    "3. Males tend to score higher in math; females in reading and writing.",
    "4. Students with standard lunch generally outperform those with free/reduced lunch.",
    "5. Strong correlation exists among all three subjects (math, reading, writing)."
    "6. Students who completed the test preparation course scored higher across all subjects.",
    "7. The distribution of scores is generally normal, with some outliers.",
    "8. The majority of students are from a standard lunch background, which correlates with higher scores."

| # Save to text file
with open("key_insights.txt", "w") as f:
    for insight in insights:
        f.write(insight + "\n")
```

print(" ☑ Key insights saved to 'key\_insights.txt'")

Key insights saved to 'key\_insights.txt'