Linear Algebra and Calculus

General notations

 $x \in \mathbb{R}^n$ a vector with n entries, where $xi \in \mathbb{R}$ is the i^{th} entry:

$$x = \begin{cases} x_1 \\ x_2 \end{cases} \in \mathbb{R}^n$$

■ Matrix-Wenote A $\in \mathbb{R}^{m \times n}$ a matrix with m rows and n columns, where $A_{i,i}$ $\in R$ is the entry located in the i^{th} row and j^{th} column:

$$A = \frac{\epsilon}{4\pi i} \frac{A}{4\pi i} \frac{A}{$$

 $A_{m,1}$ $A_{m,n}$ Remark: the vector x defined above can be viewed as a n× 1 matrix and is more particularly called a column-vector.

 \square **Identitymatrix**-Theidentitymatrix $I \in \mathbb{R}^{n \times n}$ is a square matrix with one sinits diagonal and zero everywhere else:

$$I = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \end{bmatrix}$$

Remark: for all matrices $A \in \mathbb{R}^{n \times n}$, we have $A \times I = I \times A = A$. \square Diagonal matrix — A diagonal matrix D $\in \mathbb{R}^{n \times n}$ is a square matrix with nonzero values in its diagonal and zero everywhere else:

Remark: we also note D as diag $(d_1,...,d_n)$.

Matrix operations

□ **Vector-vector multiplication** – There are two types of vector-vector products:

• inner product: for $x, y \in \mathbb{R}^n$, we have:

$$x^T y = \sum_{i=1}^n x_i y_i \in \mathsf{R}$$

• outer product: for $x \in \mathbb{R}^m$, $y \in \mathbb{R}^n$, we have:

$$xy^{T} = \begin{array}{ccc} - & & & & & & & & & & & & & & & \\ & & & & & & & & & & & & & & \\ & & & & & & & & & & & & \\ & & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ &$$

☐ Matrix-vectormultiplication—The product of matrix *A* vector of size \mathbb{R}^m , such that:

 $\in \mathbb{R}^{m \times n}$ and vector $x \in \mathbb{R}^n$ is a

$$Ax = \begin{bmatrix} & a_{r,1}^T & & & & \\ & a_{r,1}^T & & & & \\ & & \ddots & & \\ & & a_{r,m}^T x & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

where $a_{r,i}^T$ are the vector rows and $a_{c,j}$ are the vector columns of A, and x_i are the entries

□ Matrix-matrixmultiplication—The product of matrices $A \in \mathbb{R}^{m \times n}$ and $B \in \mathbb{R}^{n \times p}$ is a matrix of size $\mathbb{R}^{n \times p}$, such that:

$$AB = \square \qquad a_{r,n}^T b_{c,1} \qquad a_{r,1}^T c_{,p} \qquad \sum_{i=1}^{m} a_{c,i} b_{r,i}^T \in \mathbb{R}^{n \times p}$$

$$a_{r,m}^T b_{c,1} \qquad a_{r,m}^T b_{c,p} \qquad i=1$$

 $a_{r,i}, b_{r,i}$ are the vector rows and $a_{c,i}, b_{c,i}$ are the vector columns of A and B respectively.

 \square Transpose – The transpose of a matrix $A \in \mathbb{R}^{m \times n}$, noted A^T , is such that its entries are flipped:

$$\forall i,j, \quad A_{i,j}^T = A_{j,i}$$

Remark: for matrices A.B. we have $(AB)^T = B^T A^T$.

 \square Inverse – The inverse of an invertible square matrix A is noted A^{-1} and is the only matrix such that:

$$AA^{-1} = A^{-1}A = I$$

Remark: not all square matrices are invertible. Also, for matrices A,B, we have $(AB)^{-1}$ =

$$B^{-1}A^{-1}$$

 \square Trace – The trace of a square matrix A, noted tr(A), is the sum of its diagonal entries:

$$tr(A) = \int_{i=1}^{i} A_{i,i}$$

Remark: for matrices A,B, we have $tr(A^T) = tr(A)$ and tr(AB) = tr(BA)

 $n \times n$, noted |A| or det(A) is \square **Determinant** – The determinant of a square matrix $A \in \mathbb{R}$ expressed recursively in terms of $A_{i,j}$, which is the matrix A without its i^{th} row and j^{th} column, as follows:

$$\det(A) = |A| = \sum_{j=1}^{n} (-1)^{-i+j} A_{i,j} |A_{\lambda_i, \lambda_j}|$$

Remark: A is invertible if and only if |A| = 0. Also, |AB| = |A| |B| and $|A^T| = |A|$.

Matrix properties

 \square Symmetric decomposition – A given matrix A can be expressed in terms of its symmetric and antisymmetric parts as follows:

$$A = \frac{A + A^{T}}{S \cdot S^{2} \times S \cdot S \cdot S \times S} \times \frac{A - A^{T}}{X^{2}}$$
Symmetric Antisymmetric —

□ Norm – A norm is a function $N: V \longrightarrow [0, +\infty[$ where V is a vector space, and such that for all $x,y \in V$, we have:

$$N(x + y)$$
 TM $N(x) + N(y)$

- N(ax) = |a|N(x) for a scalar
- if N(x) = 0. then x = 0

For $x \in V$, the most commonly used norms are summed up in the table below:

Norm	Notation	Definition	Use case
Manhattan, L^1	x 1		LASSO regularization
Euclidean, L^2	x 2	x _i ² i=1	Ridge regularization
p -norm, L^p	x _p	$-\sum_{\substack{X \\ i=1}} \sum_{p} \sum_{p} x_{i}^{p}$	Hölder inequality
Infinity, L^{∞}	<i>x</i> ∞	$\max_{i} x_i $	Uniform convergence

☐ Linearly dependence—A set of vectors is said to be linearly dependent if one of the vectors in the set can be defined as a linear combination of the others.

Remark: if no vector can be written this way, then the vectors are said to be linearly independent.

 $\ \square$ Matrix rank – The rank of a given matrix A is noted rank(A) and is the dimension of the vector space generated by its columns. This is equivalent to the maximum number of linearly independent columns of A

□ Positive semi-definite matrix – A matrix $A \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD) and is noted $A \leq 0$ if we have:

$$A = A^T$$
 and $\forall x \in \mathbb{R}^n, x^T A x$ 0

Remark: similarly, amatrix A is said to be positive definite, and is noted A \mathcal{I} 0, if it is a PSD matrix which satisfies for all non-zero vector x, $x^T A x > 0$.

□ **Eigenvalue, eigenvector** – Given a matrix $A \in \mathbb{R}^{n \times n}$, λ is said to be an eigenvalue of A if there exists a vector $z \in \mathbb{R}^n \setminus \{0\}$, called eigenvector, such that we have:

$$Az = \lambda z$$

□ **Spectral theorem**—Let $A \in \mathbb{R}^{n \times n}$. If A is symmetric, then A is diagonalizable by a real orthogonal matrix $U \in \mathbb{R}^{n \times n}$. By noting Λ = diag $(\lambda_1, ..., \lambda_n)$, we have:

$$\exists \Lambda$$
 diagonal, $A = U \Lambda U^T$

 \square Singular-value decomposition – For a given matrix A of dimensions $m \times n$, the singular-value decomposition (SVD) is a factorization technique that guarantees the existence of U $m \times m$ unitary, Σ $m \times n$ diagonal and V $n \times n$ unitary matrices, such that:

$$A = U \Sigma V^T$$

Matrix calculus

□ **Gradient**-Let $f: \mathbb{R}^{m \times n} \to \mathbb{R}$ be a function and $A \in \mathbb{R}^{m \times n}$ be a matrix. The gradient of f with respect to A is a $m \times n$ matrix, noted $\nabla_{A} f(A)$, such that:

$$\nabla_{A} f(A) = \frac{\partial f(A)}{\partial A_{i,j}}$$

Remark: the gradient of f is only defined when f is a function that returns a scalar.

□ **Hessian** – Let $f: \mathbb{R}^n \to \mathbb{R}$ be a function and $x \in \mathbb{R}^n$ be a vector. The hessian of f with respect to x is a $n \times n$ symmetric matrix, noted f by f and f and f by f and f are f and f and f are f are f and f are f are f and f are f and f are f are f and f and f are f are f and f are f and f are f and f are f and f are f are f and f are f are f are f and f are f are f are f are f are f are f and f are f and f are f

$$\begin{array}{c}
\partial f(x) \\
\partial f(x)
\end{array}$$

$$= \partial x_i \partial x_j$$

Remark: the hessian of f is only defined when f is a function that returns a scalar.

 \square Gradient operations – For matrices A,B,C, the following gradient properties are worth having in mind:

$$V_A \operatorname{tr}(AB) = B^T$$
 $V_{AT} f(A) = (V_A f(A))^T$

$$\nabla_A \operatorname{tr}(ABA^T C) = CAB + C^T AB^T$$

$$\nabla_{A} |A| = |A| (A^{-1})^{T}$$