Sumários Alargados de Análise Matemática II Séries Numéricas, Séries de Potências, Séries de Fourier

Departamento de Matemática, Faculdade de Ciências e Tecnologia Universidade de Coimbra

2010-2011

3.1 Sucessões de números reais

Definição 3.1. Chama-se sucessão de números reais a qualquer função $u: A \to \mathbb{R}$, onde A é um subconjunto infinito de \mathbb{N}_0 . A expressão u(n) diz-se **termo geral** da sucessão u.

A sucessão u também se denota por $\{u(n)\}_{n\in A}$ ou $\{u_n\}_{n\in A}$.

Exemplos 3.2. 1. Sucessão de termo geral $\frac{1}{n}$:

$$u: \mathbb{N} \longrightarrow \mathbb{R}$$

 $n \longrightarrow \frac{1}{n}$ ou $1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, \dots$ ou $\left\{\frac{1}{n}\right\}_{n \ge 1}$.

2. Sucessão de Fibonacci: $f: \mathbb{N} \to \mathbb{R}$ tal que

$$f(1) = 1,$$
 $f(2) = 1,$ $f(n) = f(n-1) + f(n-2),$

ou 1, 1, 2, 3, 5, 8, 13,....

3. Sucessão de termo geral $u_n = \sqrt{n-3}$:

$$\{\sqrt{n-3}\}_{n\geq 3}$$
 ou $u:\{n\in\mathbb{N}:n\geq 3\}$ \rightarrow \mathbb{R} n \rightarrow $\sqrt{n-3}$.

Definição 3.3 (Sucessão limitada, sucessão monótona). Uma sucessão $\{u_n\}_{n\in A}$ diz-se

- limitada superiormente se existe $S \in \mathbb{R}$ tal que $u_n \leq S$, para todo o $n \in A$;
- limitada inferiormente se existe $s \in \mathbb{R}$ tal que $s \leq u_n$, para todo o $n \in A$;
- limitada se $\{u_n\}$ é limitada superior e inferiormente;
- monótona crescente se $u_n \le u_{n'}$ sempre que $n, n' \in A$ e $n \le n'$;
- monótona decrescente se $u_n \ge u_{n'}$ sempre que $n, n' \in A$ e $n \le n'$.

Exemplos 3.4. 1. A sucessão $\left\{\frac{1}{2^n}\right\}_n$ é monótona decrescente e limitada.

- 2. A sucessão $\{-n^2\}_n$ é monótona decrescente e ilimitada inferiormente.
- 3. A sucessão $\{e^n\}_n$ é monótona crescente e ilimitada superiormente.
- 4. A sucessão $\left\{\frac{n-1}{n}\right\}_n$ é monótona crescente e limitada.

Definição 3.5 (Limite de uma sucessão). Seja $u:A\to\mathbb{R}$ uma sucessão de números reais. Diz-se que

• a sucessão u tem **limite** $\lambda \in \mathbb{R}$, e escreve-se $\lim_{n \in A} u_n = \lambda$, se dado $\varepsilon > 0$ qualquer, existe uma ordem $p \in \mathbb{N}$ tal que

$$|u_n - \lambda| < \varepsilon$$
 para todo o $n \in A$ e $n \ge p$.

• a sucessão u tem **limite** $+\infty$, e escreve-se $\lim_{n\in A} u_n = +\infty$, se dado M > 0 qualquer, existe uma ordem $p \in \mathbb{N}$ tal que

$$u_n > M$$
 para todo o $n \in A$ e $n \ge p$.

• a sucessão u tem **limite** $-\infty$, e escreve-se $\lim_{n \in A} u_n = -\infty$, se dado M > 0 qualquer, existe uma ordem $p \in \mathbb{N}$ tal que

$$u_n < -M$$
 para todo o $n \in A$ e $n \ge p$.

Uma sucessão diz-se **convergente** se converge para $\lambda \in \mathbb{R}$; caso contrário diz-se **divergente**.

Exemplos 3.6. 1. A sucessão $\left\{\frac{1}{n^2+1}\right\}_n$ converge para 0.

2. A sucessão $\{e^n\}_n$ é divergente, pois $\lim_n e^n = +\infty$.

Definição 3.7 (Subsucessão de uma sucessão). Chamamos **subsucessão** da sucessão $\{u_n\}_{n\in A}$ a toda a sucessão

$$\{v_n\}_{n\in B}$$

tal que $B \subseteq A$ e $v_n = u_n$, para todo o $n \in B$.

Exemplos 3.8. 1. As sucessões

$$1, 1, 1, 1, \dots, 1, \dots$$
 e $-1, -1, -1, -1, \dots, -1, \dots$

são subsucessões da sucessão $\{(-1)^n\}_n$.

2. A sucessão $\{2^n\}_{n\geq 100}$ é uma subsucessão da sucessão $\{2^n\}_n$.

Proposição 3.9 (Propriedades). 1. Se uma sucessão $\{a_n\}_{n\in A}$ é convergente então também é limitada.

- 2. Seja $\{a_n\}_{n\in A}$ uma sucessão tal que $\lim_{n\in A}a_n=L\in\mathbb{R}\cup\{+\infty,-\infty\}$. Se $\{a_n\}_{n\in B}$ é uma subsucessão de $\{a_n\}_{n\in A}$ então $\lim_{n\in B}a_n=L$.
- 3. Se $\{a_n\}_{n\in B}$ é uma subsucessão da sucessão $\{a_n\}_{n\in A}$ e $\{a_n\}_{n\in B}$ é divergente então a sucessão $\{a_n\}_{n\in A}$ também é divergente.
- 4. Se $\{a_n\}_{n\in B}$ e $\{a_n\}_{n\in C}$ são subsucessões da sucessão $\{a_n\}_{n\in A}$ tais que

$$\lim_{n \in B} a_n = L, \qquad \qquad \lim_{n \in C} a_n = M,$$

com $L \neq M$, então $\{a_n\}_{n \in A}$ é divergente.

Exemplos 3.10. 1. A sucessão $\left\{n\sin\frac{1}{n}\right\}_n$ é limitada pois é convergente:

$$\lim_{n} n \sin \frac{1}{n} = \lim_{n} \frac{\sin \frac{1}{n}}{\frac{1}{n}} = 1.$$

2. A sucessão $\{(-1)^n\}_n$ é limitada , mas é divergente.

De facto, a subsucessão dos termos de ordem par converge para 1:

$$\lim_{n \text{ par}} (-1)^n = 1,$$

e a subsucessão dos termos de ordem ímpar converge para -1:

$$\lim_{n \text{ impar}} (-1)^n = -1.$$

3. A sucessão de termo geral

$$u_n = \begin{cases} -n, & \text{se } n \text{ \'e par} \\ 0, & \text{se } n \text{ \'e impar} \end{cases}$$

é divergente pois $\lim_{n \text{ par}} u_n = -\infty$. Portanto a sucessão $\{(-1)^n\}_n$ é divergente.

Proposição 3.11. Se $\{a_n\}_{n\in B}$ e $\{a_n\}_{n\in C}$ são subsucessões da sucessão $\{a_n\}_{n\in A}$ tais que

$$\lim_{n \in B} a_n = L = \lim_{n \in C} a_n$$

e $A = B \cup C$, então $\lim_{n \in A} a_n = L$.

Exemplo 3.12. A sucessão de termo geral $v_n = \begin{cases} e^{-n}, & \text{se } n \text{ \'e par} \\ \frac{1}{n^2}, & \text{se } n \text{ \'e impar} \end{cases}$ converge para 0, pois $\mathbb{N} = \{n \in \mathbb{N} : n \text{ \'e par}\} \cup \{n \in \mathbb{N} : n \text{ \'e impar}\}$, e

$$\lim_{n \text{ par}} v_n = \lim_{n \text{ par}} e^{-n} = 0 , \qquad \lim_{n \text{ impar}} v_n = \lim_{n \text{ impar}} \frac{1}{n^2} = 0.$$

Proposição 3.13. Uma sucessão monótona (crescente ou decrescente) e limitada é convergente.

Exemplo 3.14. A sucessão de termo geral $u_n = \left(1 + \frac{1}{n}\right)^n$ é monótona crescente e limitada, portanto é convergente. O seu limite é o número e:

$$\lim_{n} \left(1 + \frac{1}{n} \right)^n = e.$$

(Ver, por exemplo http://www.mathcs.org/analysis/reals/numseq/s_euler.html).

Proposição 3.15. Sejam $\{a_n\}_{n\in A}$ e $\{b_n\}_{n\in A}$ sucessões que convergem para L e M, respectivamente. Então

- 1. a sucessão $\{a_n + b_n\}_{n \in A}$ converge para L + M;
- 2. a sucessão $\{a_nb_n\}_{n\in A}$ converge para LM;
- 3. se $M \neq 0$ então a sucessão $\left\{\frac{a_n}{b_n}\right\}_{n \in A}$ converge para L/M.

Exemplos 3.16. 1. $\lim_{n} \left(e^{\frac{1}{n}} + \frac{en}{n+100} \right) = 1 + e,$

2.
$$\lim_{n} \left(\left(1 - \frac{1}{n} \right)^n \left(1 + \frac{3}{n} \right)^n \right) = e^2,$$

3.
$$\lim_{n} \frac{n^2 + 2}{3n^2 - n} = \frac{1}{3}$$
.

Proposição 3.17. Sejam

$$\{a_n\}_{n\in A}, \qquad \{b_n\}_{n\in A}, \qquad \{c_n\}_{n\in A}$$

sucessões tais que para todo o $n \in A$,

$$a_n \le b_n \le c_n$$
, $\lim_{n \in A} a_n = L$, $\lim_{n \in A} c_n = M$.

- 1. Se L = M então $\lim_{n \in A} b_n = L$.
- 2. Se $M = -\infty$ então $\lim_{n \in A} b_n = -\infty$.
- 3. Se $L = +\infty$ então $\lim_{n \in A} b_n = +\infty$.

Exemplo 3.18. Como, para todo o n,

$$-\frac{1}{n^2+1} \le \frac{\cos n}{n^2+1} \le \frac{1}{n^2+1}$$

e $\lim_{n} \frac{1}{n^2 + 1} = 0$, tem-se que $\lim_{n} \frac{\cos n}{n^2 + 1} = 0$.

Proposição 3.19. Seja $f: \mathbb{R}^+ \to \mathbb{R}$ uma função real de variável real. Se

$$\lim_{x \to +\infty} f(x) = L \in \mathbb{R} \cup \{+\infty, -\infty\},\$$

então $\lim_{n \in \mathbb{N}} f(n) = L$.

Exemplo 3.20. Como $\lim_{x\to 0} \frac{e^x-1}{x} = 1$, também

$$\lim_{n} n \left(e^{\frac{1}{n}} - 1 \right) = \lim_{n} \frac{e^{\frac{1}{n}} - 1}{\frac{1}{n}} = 1.$$

3.2 Séries Numéricas

Nesta secção definiremos "somas infinitas" através de limites. Por exemplo,

$$\frac{9}{10} + \frac{9}{100} + \dots + \frac{9}{10^n} + \dots$$

exprime o limite $\lim_{n} \left(\frac{9}{10} + \frac{9}{100} + \dots + \frac{9}{10^n} \right)$. Verifica-se que

$$\lim_{n} \left(\frac{9}{10} + \frac{9}{100} + \dots + \frac{9}{10^n} \right) = 1$$

(isto é, dado $\varepsilon > 0$ existe uma ordem p tal que se n > p então $\frac{9}{10} + \frac{9}{100} + \cdots + \frac{9}{10^n}$ difere de 1 por menos de ε), e escrevemos

$$\frac{9}{10} + \frac{9}{100} + \dots + \frac{9}{10^n} + \dots = 1$$

À soma com um número infinito de parcelas chamamos série numérica. Note-se que nem sempre uma série representa um número, uma série é um limite de uma sucessão e esse limite pode não existir.

Definição 3.21. Seja $\{a_n\}_{n\geq 1}$ uma sucessão de números reais. Chama-se série numérica de termo geral a_n a uma expressão da forma

$$a_1 + a_2 + \dots + a_n + \dots$$
 ou $\sum_{n=1}^{\infty} a_n$.

Exemplos 3.22. 1. Série harmónica: $1 + \frac{1}{2} + \frac{1}{3} + \cdots + \frac{1}{n} + \cdots$ ou $\sum_{n=1}^{\infty} \frac{1}{n}$.

2. Série geométrica de razão $\frac{1}{2}$ e primeiro termo 1:

$$1 + \frac{1}{2} + \frac{1}{4} \cdots + \frac{1}{2^n} + \cdots \qquad \text{ou} \qquad \sum_{n=0}^{\infty} \left(\frac{1}{2}\right)^n.$$

3. Série geométrica de razão r e primeiro termo $a \neq 0$:

$$a + ar + ar^2 \cdots + ar^n + \cdots$$
 ou $\sum_{n=0}^{\infty} ar^n$.

4. Série telescópica ou de Mengoli:

$$\sum_{n=1}^{\infty} (a_n - a_{n+p}),$$

onde $\{a_n\}_n$ é uma sucessão de números reais e p é um número inteiro positivo fixo.

6

Definição 3.23 (Sucessão das somas parciais da série). Dada uma série numérica $\sum_{n=1}^{\infty} a_n$, chama-se **sucessão associada** ou **sucessão das somas parciais** da série à sucessão $\{S_n\}_{n\geq 1}$, onde

$$S_n = a_1 + a_2 + \dots + a_n.$$

Exemplos 3.24. 1. A sucessão das somas parciais da série $\sum_{n=1}^{\infty} n$ tem termo geral

$$S_n = 1 + 2 + \dots + n = \frac{(1+n)n}{2}.$$

2. A sucessão das somas parciais da série $\sum_{n=1}^{\infty} (-1)^n$ tem termo geral

$$S_n = \begin{cases} 0, & \text{se } n \text{ \'e par} \\ -1, & \text{se } n \text{ \'e impar} \end{cases}.$$

3. A sucessão das somas parciais da série geométrica de razão $r \neq 1$ e primeiro termo $a, \sum_{n=0}^{\infty} ar^n$ tem termo geral

$$S_n = a + ar + ar^2 \cdot \cdot \cdot + ar^n = a \frac{1 - r^{n+1}}{1 - r}.$$

Definição 3.25 (Natureza de uma série). Se $\{S_n\}_{n\geq 1}$ for convergente, isto é, se $\lim_n S_n = s \in \mathbb{R}$, então a série $\sum_{n=1}^{\infty} a_n$ diz-se **convergente** e s diz-se **soma da série**. Escreve-se ∞

$$\sum_{n=1}^{\infty} a_n = s.$$

Se $\{S_n\}_{n\geq 1}$ diverge, a série $\sum_{n=1}^{\infty} a_n$ diz-se **divergente**.

Determinar a **natureza** de uma série consiste em averiguar se a série é convergente ou divergente.

Exemplos 3.26. 1. A série numérica $\sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1} \right)$ é convergente:

Seja $\{S_n\}$ a sucessão das somas parciais da série. Então

$$S_1 = 1 - \frac{1}{2}, S_2 = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) = 1 - \frac{1}{3},$$

$$S_n = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n-1} - \frac{1}{n}\right) + \left(\frac{1}{n} - \frac{1}{n+1}\right) = 1 - \frac{1}{n+1}$$

Como $\lim_{n} S_n = \lim_{n} \left(1 - \frac{1}{n+1}\right) = 1$, a série é convergente e a sua soma é 1.

2. A série $\sum_{n=1}^{\infty} (-1)^n$ é divergente:

Seja $\{S_n\}$ a sucessão das somas parciais desta série. Então

$$S_n = \begin{cases} 0, & \text{se } n \text{ \'e par} \\ -1, & \text{se } n \text{ \'e impar} \end{cases}.$$

Como $\lim_{n} S_n$ não existe, a série é divergente.

3. A série $\sum_{n=1}^{\infty} n$ é divergente:

Seja $\{S_n\}$ a sucessão das somas parciais desta série. Então

$$S_n = \frac{n(n+1)}{n}.$$

Como $\lim_{n} S_n = +\infty$, a série de termo geral n é divergente.

4. A série harmónica $\sum_{n=1}^{\infty} \frac{1}{n}$ é divergente:

Seja $\{S_n\}$ a sucessão das somas parciais de $\sum_{n=1}^{\infty} \frac{1}{n}$. Então $S_2 = 1 + \frac{1}{2}$,

$$S_{2^2} = S_4 = S_2 + (\frac{1}{3} + \frac{1}{4}) > S_2 + (\frac{1}{4} + \frac{1}{4}) = S_2 + \frac{1}{2} = 1 + 2\frac{1}{2},$$

$$S_{2^3} = S_8 = S_4 + (\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}) > S_4 + (\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8})$$

$$= S_4 + \frac{1}{2} > 1 + 3\frac{1}{2}.$$

Para cada $n \in \mathbb{N}$, tem-se $S_{2^n} > 1 + n\frac{1}{2}$. Portanto $\{S_n\}$ não é uma sucessão limitada, logo $\{S_n\}$ não é convergente.

5. A série geométrica de razão r e primeiro termo r^p , $\sum_{n=p}^{\infty} r^n$, é convergente se e só se

$$|r| < 1$$
. Nesse caso, a sua soma é $s = \frac{r^p}{1 - r}$:

Note-se que o termo geral da sucessão das somas parciais da série é

$$S_n = r^p + r^{p+1} + r^{p+2} + \dots + r^n, \quad n > p.$$

Assim,
$$S_n = \begin{cases} \frac{r^p - r^{n+1}}{1 - r}, \text{ se } r \neq 1\\ n - p + 1, \text{ se } r = 1 \end{cases}$$
.

Se r=1 então $\lim_n S_n=\lim_n (n-p+1)=+\infty$. Se $r\neq 1$, tem-se

$$\lim_{n} r^{n} = \begin{cases} 0, \text{ se } |r| < 1 \\ +\infty, \text{ se } r > 1 \end{cases}.$$
 não existe , se $r \le -1$

Logo
$$\lim_{n} S_n = \begin{cases} \frac{r^p}{1-r}, & \text{se } |r| < 1 \\ +\infty, & \text{se } r > 1 \end{cases}$$
.

não existe, se $r \le -1$

Então $\{S_n\}$ converge se e só se |r| < 1 e, nesse caso, $\lim_n S_n = \frac{r^p}{1-r}$.

Exemplos 3.27. 1. A série geométrica $\sum_{n=0}^{\infty} \frac{(-1)^n}{7^n}$ converge, pois tem razão $r=-\frac{1}{7}$ (e $|r|=\frac{1}{7}<1$). A sua soma é $\frac{7}{8}$.

2. A série geométrica $\sum_{n=0}^{\infty} 7^n$ diverge, pois tem razão r=7 (e |r|=7>1).

Exemplo 3.28. Usando séries geométricas podemos escrever o número decimal 1, 45454545... na forma de fracção:

Notemos que

$$1,45454545... = 1 + 0,45 + 0,0045 + 0,000045 + \cdots$$
$$= 1 + 45 \cdot 10^{-2} + 45 \cdot 10^{-4} + 45 \cdot 10^{-6} + \cdots$$

A série $45 \cdot 10^{-2} + 45 \cdot 10^{-4} + 45 \cdot 10^{-6} + \dots = \sum_{n=1}^{\infty} 45 \cdot (10^{-2})^n$ é uma série geométrica de razão $r = 10^{-2}$. Portanto a série é convergente e a sua soma é

$$s = 45 \cdot \frac{10^{-2}}{1 - 10^{-2}} = \frac{5}{11}.$$

Então $1,45454545... = 1 + \frac{5}{11} = \frac{16}{11}.$

Proposição 3.29. Sejam $\sum_{n=1}^{\infty} a_n \in \sum_{n=1}^{\infty} b_n$ duas séries numéricas.

1. Se
$$\sum_{n=1}^{\infty} a_n$$
 e $\sum_{n=1}^{\infty} b_n$ são convergentes, então $\sum_{n=1}^{\infty} (a_n + b_n)$ é convergente e a sua soma é $\sum_{n=1}^{\infty} a_n + \sum_{n=1}^{\infty} b_n$.

2. Se
$$\sum_{n=1}^{\infty} a_n$$
 é convergente e $\sum_{n=1}^{\infty} b_n$ é divergente, então $\sum_{n=1}^{\infty} (a_n + b_n)$ é divergente.

3. Se
$$\lambda \in \mathbb{R} \setminus \{0\}$$
, então $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} (\lambda a_n)$ têm a mesma natureza.

Se
$$\sum_{n=1}^{\infty} (\lambda a_n)$$
 é convergente, então a sua soma é $\lambda \sum_{n=1}^{\infty} a_n$.

4. As séries numéricas
$$\sum_{n=1}^{\infty} a_n$$
 e $\sum_{n\geq p}^{\infty} a_n$ têm a mesma natureza.

Proposição 3.30 (Condição necessária de convergência). Se a série $\sum_{n=1}^{\infty} a_n$ é convergente então $\lim_n a_n = 0$.

O corolário que se segue é equivalente à condição necessária de convergência.

Corolário 3.31 (Critério de Divergência). Se $\lim_{n} a_n$ não existe ou $\lim_{n} a_n \neq 0$ então $\sum_{n=0}^{\infty} a_n$ é divergente.

Exemplos 3.32. Atendendo ao Critério de Divergência, as séries

$$\sum_{n=1}^{\infty} \frac{n}{n+1}, \quad \sum_{n=1}^{\infty} \left(\frac{n}{n+1}\right)^n, \quad \sum_{n=1}^{\infty} n \sin \frac{\pi}{n}, \quad \sum_{n=1}^{\infty} \cos \left(\frac{\pi n}{6}\right)$$

são divergentes (em cada caso, o limite do termo geral da série não existe ou é diferente de 0).

Observação 3.33. Note-se que se $\lim_{n} a_n = 0$, a série $\sum_{n=1}^{\infty} a_n$ pode ser divergente. Por exemplo, $\lim_{n} \frac{1}{n} = 0$ e a série harmónica $\sum_{n=1}^{\infty} \frac{1}{n}$ é divergente.

Proposição 3.34 (Critério do Integral). Se $f:[a,+\infty[\to \mathbb{R}$ é uma função contínua, decrescente e não-negativa em $[a,+\infty[$, então o integral impróprio e a série numérica seguintes

$$\int_{a}^{+\infty} f(x)dx \quad e \quad \sum_{n \in \mathbb{N}, n > a}^{\infty} f(n)$$

têm a mesma natureza.

Exemplo 3.35. Seja α um parâmetro real. Mostremos que a série numérica $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ é convergente se e só se $\alpha > 1$.

Primeiro, recordemos que o integral impróprio $\int_1^{+\infty} \frac{1}{x^{\alpha}} dx$ é convergente se e só se $\alpha > 1$.

- Se $\alpha > 0$, a função $f(x) = \frac{1}{x^{\alpha}}$, $x \in [1, +\infty[$, é contínua, decrescente e positiva. Pelo Critério do Integral, a série numérica $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ converge se e só se $\alpha > 1$.
- Se $\alpha \leq 0$, a série $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ é divergente, pois $\lim_{n} \frac{1}{n^{\alpha}}$ não é zero.

Definição 3.36 (Séries de Riemann ou Dirichlet). Seja $\alpha \in \mathbb{R}^+$. As séries numéricas

$$\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$$

dizem-se séries de Riemann ou séries de Dirichlet.

Proposição 3.37. Uma série de Riemman $\sum_{n=1}^{\infty} \frac{1}{n^{\alpha}}$ converge se e só se $\alpha > 1$.

Exemplo 3.38. As séries $\sum_{n=1}^{\infty} \frac{1}{n^5}$ e $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{3}{2}}}$ são convergentes. As séries

$$\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{2}}} \qquad e \qquad \sum_{n=1}^{\infty} \frac{1}{n^{\frac{8}{9}}}$$

são divergentes.

Proposição 3.39 (Primeiro Critério de Comparação). Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ são séries de termos não-negativos e, para todo o n, $a_n \leq b_n$, então

(a) se
$$\sum_{n=1}^{\infty} b_n$$
 converge então $\sum_{n=1}^{\infty} a_n$ converge;

(b) se
$$\sum_{n=1}^{\infty} a_n$$
 diverge então $\sum_{n=1}^{\infty} b_n$ diverge.

Exemplos 3.40. Usando o 1º Critério de Comparação, podemos determinar a natureza das séries numéricas seguintes.

1. A série
$$\sum_{n=1}^{\infty} \frac{1}{n^{10} + n^2 + 7}$$
 é convergente: basta comparar com a série $\sum_{n=1}^{\infty} \frac{1}{n^{10}}$;

2. A série
$$\sum_{n=1}^{\infty} \frac{\ln n}{n}$$
 é divergente: comparar com a série $\sum_{n=1}^{\infty} \frac{1}{n}$;

3. A série
$$\sum_{n=1}^{\infty} \frac{\sin^2 n}{3^n}$$
 é convergente: comparar com a série $\sum_{n=1}^{\infty} \frac{1}{3^n}$;

4. A série $\sum_{n=1}^{\infty} \frac{2+(-1)^n}{3^n}$ é convergente: comparar com a série $\sum_{n=1}^{\infty} \frac{1}{3^{n-1}}$.

Proposição 3.41 (Segundo Critério de Comparação). Se $\sum_{n=1}^{\infty} a_n$ e $\sum_{n=1}^{\infty} b_n$ são séries de termos positivos e $\lim_n \frac{a_n}{b_n} = L \in \mathbb{R}_0^+ \cup \{+\infty\}$ então

- (a) se $L \in \mathbb{R}^+$ ambas as séries têm a mesma natureza;
- (b) se L=0 e $\sum_{n=1}^{\infty}b_n$ converge então $\sum_{n=1}^{\infty}a_n$ converge;
- (c) se $L = +\infty$ e $\sum_{n=1}^{\infty} b_n$ diverge então $\sum_{n=1}^{\infty} a_n$ diverge.

Exemplos 3.42. Usando o 2º Critério de Comparação, podemos determinar a natureza das séries numéricas seguintes.

- 1. A série $\sum_{n=1}^{\infty} \sin \frac{\pi}{2n}$ é divergente: comparar com a série $\sum_{n=1}^{\infty} \frac{1}{n}$;
- 2. A série $\sum_{n=2}^{\infty} \frac{n+1}{n^3-1}$ é convergente: comparar com a série $\sum_{n=1}^{\infty} \frac{1}{n^2}$;
- 3. A série $\sum_{n=1}^{\infty} \frac{n+1}{n3^n}$ é convergente: comparar com a série $\sum_{n=1}^{\infty} \frac{1}{3^n}$.

Definição 3.43 (Séries absolutamente convergentes e simplesmente convergentes). 1. Uma série numérica $\sum_{n=1}^{\infty} a_n$ diz-se absolutamente convergente se a série dos módulos $\sum_{n=1}^{\infty} |a_n|$ é convergente.

2. Se $\sum_{n=1}^{\infty} a_n$ é convergente, mas $\sum_{n=1}^{\infty} |a_n|$ diverge, então $\sum_{n=1}^{\infty} a_n$ diz-se **simplesmente** convergente.

Exemplos 3.44. As séries

$$\sum_{n=1}^{\infty} \frac{\sin n}{n^2} \quad e \quad \sum_{n=1}^{\infty} \frac{n+1}{n3^n}$$

são absolutamente convergentes. A série $\sum_{n=1}^{\infty}\frac{(-1)^n}{n}$ não é absolutamente convergente.

Proposição 3.45. Se uma série numérica $\sum_{n=1}^{\infty} a_n$ é absolutamente convergente então também é convergente.

Proposição 3.46 (Critério da Razão ou de D'Alembert). Se $a_n \neq 0$, para todo o n, e

$$\lim_{n} \frac{|a_{n+1}|}{|a_{n}|} = L \in \mathbb{R}_{0}^{+} \cup \{+\infty\}$$

então

- (a) se $0 \le L < 1$ então a série $\sum_{n=1}^{\infty} a_n$ converge absolutamente;
- (b) se L > 1 ou $L = +\infty$ então a série $\sum_{n=1}^{\infty} a_n$ é divergente;
- (c) se L = 1, o teste é inconclusivo.

Exemplos 3.47. Usando o Critério da Razão ou de D'Alembert, podemos determinar a natureza das séries numéricas seguintes.

1. A série $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ é absolutamente convergente, pois

$$\lim_{n} \frac{|a_{n+1}|}{|a_n|} = \lim_{n} \frac{(n+1)!n^n}{n!(n+1)^{n+1}} = \lim_{n} \frac{n^n}{(n+1)^n} = \lim_{n} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e} < 1.$$

2. A série $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}\pi^n}{n!}$ é absolutamente convergente, pois

$$\lim_{n} \frac{|a_{n+1}|}{|a_n|} = \lim_{n} \frac{\pi^{n+1} n!}{\pi^n (n+1)!} = \lim_{n} \frac{\pi}{n+1} = 0 < 1.$$

3. A série $\sum_{n=1}^{\infty} \frac{n+1}{n3^n}$ é absolutamente convergente, pois

$$\lim_{n} \frac{|a_{n+1}|}{|a_n|} = \lim_{n} \frac{(n+2)n3^n}{(n+1)3^{n+1}(n+1)} = \lim_{n} \frac{(n+2)n}{(n+1)^23} = \frac{1}{3} < 1.$$

Proposição 3.48 (Critério da Raiz ou de Cauchy). Se

$$\lim_{n} \sqrt[n]{|a_n|} = L \in \mathbb{R}_0^+ \cup \{+\infty\}$$

então

(a) se $0 \le L < 1$ então a série $\sum_{n=1}^{\infty} a_n$ é converge absolutamente;

- (b) se L > 1 ou $L = +\infty$ então a série $\sum_{n=1}^{\infty} a_n$ é divergente;
- (c) se L=1, o teste é inconclusivo.

Exemplos 3.49. Usando o Critério da Raiz ou de Cauchy, podemos determinar a natureza das séries numéricas seguintes.

1. A série $\sum_{n=1}^{\infty} \left(\frac{1}{\ln(n+4)}\right)^n$ é absolutamente convergente pois

$$\lim_{n} \sqrt[n]{|a_n|} = \lim_{n} \frac{1}{\ln(n+4)} = 0 < 1.$$

2. A série $\sum_{n=1}^{\infty} \frac{\pi^n}{n^n}$ é absolutamente convergente pois

$$\lim_{n} \sqrt[n]{|a_n|} = \lim_{n} \frac{\pi}{n} = 0 < 1.$$

3. A série $\sum_{n=1}^{\infty} \left(\frac{n+3}{n+1}\right)^{n^2+n+1}$ é divergente, pois é convergente pois

$$\lim_{n} \sqrt[n]{|a_n|} = \lim_{n} \left(\frac{n+3}{n+1}\right)^{n+1+\frac{1}{n}} = e^2 > 1.$$

Definição 3.50 (Séries alternadas). Chama-se série alternada a uma série numérica do tipo

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \text{ou} \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n,$$

 $com a_n \ge 0$ para todo o n.

Proposição 3.51 (Critério de Leibnitz). Se $a_n \ge 0$, para todo o n, $\{a_n\}$ é decrescente e $\lim a_n = 0$, então as séries

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \text{e} \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

são convergentes.

Exemplos 3.52. Usando o Critério de Leibnitz, mostra-se que as séries alternadas $\sum_{n=2}^{\infty} \frac{(-1)^{n-1}}{n \ln n} e^{-\frac{1}{2n}} \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{2n-1} \sin \frac{1}{\sqrt{n}}$ são convergentes.

Proposição 3.53 (Cálculo aproximado da soma de uma série). Se $\{a_n\}_{n\geq 1}$ é uma sucessão de números reais não-negativos, monótona decrescente com $\lim_n a_n = 0$, então as séries alternadas

$$\sum_{n=1}^{\infty} (-1)^n a_n \quad \text{e} \quad \sum_{n=1}^{\infty} (-1)^{n+1} a_n$$

são convergentes com somas s e t, respectivamente, tais que

(a)
$$-a_1 \le s \le 0$$
, $|s - \sum_{k=1}^{n} (-1)^k a_k| \le a_{n+1}$;

(b)
$$0 \le t \le a_1$$
, $|t - \sum_{k=1}^{n} (-1)^{k+1} a_k| \le a_{n+1}$.

Exemplo 3.54. Determinemos um valor aproximado para a soma da série $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$ com um erro inferior a 0, 1:

A série
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$$
 é alternada com $a_n = \frac{1}{n}$.

Ora, $a_n \geq 0$, para todo o n, $\{a_n\}$ é decrescente e tem limite 0. Tem-se que a série converge e a sua soma s verifica $0 \leq s \leq 1 = a_1$. Suponhamos que S_k é a soma dos k primeiros termos da série. Então

$$|s - S_k| \le a_{k+1}.$$

Se $a_{k+1} < 0, 1$ então S_k é um valor aproximado de s com um erro inferior a 0, 1. Ora,

$$a_{k+1} = \frac{1}{k+1} < 0, 1 = \frac{1}{10} \Leftrightarrow k+1 > 10 \Leftrightarrow k > 9.$$

Um valor aproximado para s com erro inferior a 0, 1 será $S_{10} = 1 - \frac{1}{2} + \frac{1}{3} - \ldots + \frac{1}{9} - \frac{1}{10}$.

Proposição 3.55. Seja $\sum_{n=1}^{\infty} a_n$ uma série simplesmente convergente.

- 1. Dado $L \in \mathbb{R}$, existe uma reordenação dos termos da série dada tal que a nova série é convergente e a sua soma é L.
- 2. Existe uma reordenação dos termos da série dada tal que a nova série é divergente e a sua soma (=limite da sucessão das somas parciais) é $+\infty$.
- 3. Existe uma reordenação dos termos da série dada tal que a nova série é divergente e a sua soma é $-\infty$.
- 4. Existe uma reordenação dos termos da série dada tal que a nova série é divergente e a sua soma não é $+\infty$ ou $-\infty$.

Proposição 3.56. Seja $\sum_{n=1}^{\infty} a_n$ uma série absolutamente convergente e seja $\sum_{n=1}^{\infty} b_n$ uma

série que se obtém da anterior reordenando os termos desta. Então $\sum_{n=1}^{\infty} b_n$ é absoluta-

mente convergente e $\sum_{n=1}^{\infty} b_n = \sum_{n=1}^{\infty} a_n$.