Sommaire

Liste de diffusion	1
Historique des modifications	1
Sommaire	2
Liste des figures	3
Liste des tableaux	4
1 Identification	5
1.1 Objet du document	5
1.2 Domaine d'application	5
1.3 Description du document	5
1.4 Emplacement du document	Erreur! Signet non défini.
2 Documents de référence et applicables	
2.1 Documents de référence	5
4 Description du testeur fonctionnel	
4.1 Description et exigences relatives à la conception mécanique	
4.2 Description et exigences relatives à la Electriques	
4.3 Description et exigences relatives à la conception logicielle.	
4.4 Description et exigences fonctionnelles	
4.4.1 Nombre de phase	_
4.4.2 Capacité	•
4.4.3 Temps	<u> </u>
4.5 Test fonctionnel	
4.5.1 Contrôle des alimentations	
4.6 Vérification des chaines de mesure	
4.6.2 Flashage du microcontrôleur	
4.6.3 Contrôle des périphériques	16
4.6.4 Contrôle RTC	21
4.6.5 Contrôle interfaces de communication	
4.6.6 Rapport de test	23
5 Sommaire Points de test Testeur Fonctionnel Plan B (Prototype S	IAME)23
Liste des figures	
Figure 1 Compteur ME100.	
Figure 2 Points de test	
Figure 4 Carte Face Top	
Figure 5 : Chargement super capa	
Figure 6 : Déchargement super capa	
Figure 8 : JTAG PCB	
Figure 9 Jtag	
Figure 10 : Afficheur	
Figure 11 : LEDs PCB.	

Figure 12: Boutons	Erreur ! Signet non défini.
Figure 13 : Relais auxiliaires	21
Figure 14: Capteur magnétique	Erreur! Signet non défini.
Figure 15 Pine 3	22
Liste destab	
Tableau 1: Documents de référence	5
Tableau 2: Documents applicables	Erreur ! Signet non défini.

1 Identification

1.1 Objet du document

Ce document contient les éléments nécessaires du cahier des charges pour la conception et la réalisation du testeur fonctionnel de la nouvelle gamme du compteur ME100.

Une description générale de la gamme des compteurs ME100, qu'on note Produit, est décrite au début du document. Ensuite, on présente toutes les données nécessaires relatives à la procédure de test ainsi qu'aux différentes exigences que doivent satisfaire le Banc.

1.2 Domaine d'application

Ce document est applicable dans la phase de spécifications.

1.3 Description du document

Il s'agit d'étudier et d'analyser les exigences mécaniques, électriques, hardware et les contraintes à respecter au testeur fonctionnel.

2 Documents de référence et applicables

2.1 Documents de référence

	Intitulé	Référence	Version
1	Les documents de spécification de compteur ME100	F:\SIAME_RD_REPOSITORY\3. PROJETS\3.1. ME100SM-2018\3.1.2. DEVELOPMENT\3.1.2.2. SPECIFICATIONS\5. Spécifications Techniques	V1.0
2	Plan_Test_ME100SM_RUN6	20220512_Plan_Test_ME100SM_RUN6	V1.0

Tableau 1: Documents de référence

3 Caractéristiques générales du (es) compteur

Le compteur, tel que présenté dans la figure 1 est équipé de :

- Un écran LCD
- > Deux boutons de défilement
- > Une interface optique
- ➤ 4 diodes LEDs:
 - 1 LED de pulse out de couleur rouge
 - 3 LEDs configurables.

Le compteur assure les fonctions suivantes :

- Mesure des grandeurs électriques : Courant, tension, puissance, énergie
- Affichage des données et des paramètres du compteur.
- Lecture et programmation des données.
- > Sauvegarde et accès aux données systèmes et de consommation
- Communication à distance avec le concentrateur et les différents composants de système AMI.
- Détection des différentes fraudes

Selon la variante du compteur, les fonctionnalités suivantes sont optionnelles :

- Carte fille intégrée, comme Module de communication : G3 PLC ou GPRS
- Carte fille comme module de communication W-MBUS
- Port de communication HAN
- Connecteurs : Relais domotiques, RS 485, Pulse out, M-Bus
- Antenne externe sur connecteur SMA
- Support de carte SIM
- Batterie interne accessible sous le couvre borne

Figure 1 Compteur ME100

3.1.2 Données électriques

3.1.3 Tension de fonctionnement

Tension

La tension nominale est 230 V (-20% à +15%.)

3.1.4 Plage du courant de fonctionnement

Courant

La plage d'intensité d'entrée de "Imax" doit être entre 40A et 100A ; paramétrables. La plage d'intensité d'entrée de "Ibase" doit être entre 5A et 40A ; paramétrables. Le courant de démarrage doit être inférieur à 0.004*Ibase

3.1.5 Fréquence de fonctionnement

Fréquence

La valeur de fréquence d'entrée est 50Hz avec une tolérance de $\pm 5\%$.

3.1.6 Communication disponible

Communication

- Infrarouge : obéit au protocole IEC 62056-21
- CPL / GPRS
- W-MBUS
- Port HAN

3.2 Données mécaniques

Dimensions carte compteur

Schéma de la figure 3

Figure 2 Points de test

Figure 3 Dimensions de la carte

Figure 4 Carte Face Top

4 Description du testeur fonctionnel

4.1 Description et exigences relatives à la conception mécanique

Mode FAB

Le testeur doit intégrer deux pins mobiles pour shunter le connecteur J302 du compteur jusqu'à le code Obis clignote puis éliminer le shunt.

Affichage

L'afficheur de la carte doit être visible pour l'opérateur

LEDs

Les LEDs doivent être visibles pour l'opérateur

4.2 Description et exigences relatives à l'Electriques

Sonde optique

La sonde optique utilisée est conforme à la norme IEC62056-21 pour communiquer avec les compteurs avec une vitesse de transmission (300 Bd,115 200 Bd)

Outil de flashage

Il faut utiliser un outil de flashage commandé par le logiciel

Douchette

Il faut scanner le numéro gravé sur la carte au début du test

Protection Electrique

Le banc de test doit être équipé par des éléments permettant l'isolement de l'équipement et de l'opérateur de tout danger électrique

4.3 Description et exigences relatives à la conception logicielle

Base des données

La base des données du logiciel doit être en SQL

Base des données

- La base des données doit être client serveur
- Enregistrement de l'état de test par carte
- La base des données doit être transparente par rapport au client (Consultation en ligne)
- Une carte peut avoir plusieurs enregistrements (en cas d'un test NOK)

Autotest

Il faut avoir un soft spécifique du compteur pour tester les éléments suivants :

- Pulse Led
- Afficheur
- Relais

- Routons
- RTC

- UART 2 (CPL)
- UART4(HAN)
- UART5 (W-Mbus)

Description de la stratégie de test

- Comme première étape, il faut scanner le code série de la carte avec une douchette et l'envoyer vers la base des données.
- > Puis, téléverser le programme d'autotest vers le microcontrôleur.
- Le microcontrôleur reste en attente d'un signal de commande pour démarrer le test N°i : Le signal de commande peut provenir du soft d'autotest ou l'opérateur qui va démarrer le test (exemple : pression sur les boutons de défilement ou de fraude ...)
- Après avoir reçu le signal de commande N°i, le microcontrôleur va lancer le test N°i.
- ➤ Le Soft d'autotest va envoyer le résultat de test vers le banc de test, aussi l'opérateur peut contrôler le résultat de test visuellement (par exemple contrôle afficheur LCD).
- Après avoir fait le test N°i, le microcontrôleur va attendre un autre signal de commande N°i+1 pour démarrer le test N°i+1.
- Après avoir fait tous les tests, le testeur doit générer un rapport de test et l'envoyer vers la base des données.

Rapport de test

Le testeur doit générer un rapport de test pour chaque carte testée

4.4 Description et exigences fonctionnelles

Adaptabilité à un support de chargement /déchargement

Le montage et le démontage du carte compteur sur le testeur doit être rapide et facile. Le testeur doit être adaptable pour les compteurs monophasés et triphasés

Capacité

Le testeur doit permettre une cadence de 500 Cartes/jr (1shift)

Temps

Le temps de test ne doit pas dépasser les 3 minutes.

4.5 Test fonctionnel

4.5.1 Contrôle des alimentations

Alimentation Carte ME100SM

Potentiels	Point de soudure	VMIN	VMAX	Côté	Coord X	Coord Y
220V	PH_IN	176V	253V	Bottom	-7.725 mm	11.75 mm
Neutre	N_IN			Bottom	-15.3 mm	18 mm

Contrôle sortie transformateur

Alimentations

Il faut contrôler les niveaux d'alimentation de sortie transformateur

Potentiels		Point de test	VMIN	VMAX	Côté	Coord X	Coord Y
20V	20V	TP200 (Block Power block)	19V	22,1V	ТОР	10.8458mm	73.1266mm
15V	15V	TP300 (Block Interface carte fille)	14,9V	15,2V	TOP	84.325 mm	115.575 mm
5V	5V	TP412(Block Power block)	4,8V	5,3V	TOP	96.6mm	49.525mm
3V3	3.3V	TP206 (Block LDO)	2,7V	3,6V	TOP	0.6604mm	118.8466mm

RL_15V	15V	TP1702(Block Cde Reais)	14,9V	15,2V	TOP	87.4268mm	73.6854mm	
5V_iso	5V	TP207 (Block DC-DC Convertor)	4,8V	5,3V	TOP	60.2996mm	22.0726mm	
VDD_IHM	3.3V	TP413 (Block RTC Switching)	2,7V	3,6V	TOP	89mm	81mm	
VRTC	3.3V	TP415 (Block Power MCU)	2V	3,8V	TOP	47.7mm	54.65mm	v <u>n</u> v T
VNV	3.3V	TP408 (Block Power MCU)	2,7V	3,6V	TOP	62.725mm	67.425mm	3V3 20v
VIO	3.3V	TP1903 (Block Power MCU)	2,7V	3,6V	TOP	55.15mm	62.1mm	1 <u>5</u> v.
GND_RL		TP1802 (Block Cde Relais)			TOP	93.475mm	69mm	<u>5V</u>
GND_ISO		TP1800 (DC-DC Convertor)			TOP	55.775mm	18mm	V <u>rt</u> o T
DGND		TP1801 (DC-DC Convertor)			TOP	83.2mm	92.9mm	VDD
RL_1 5V_is	RL_15" 5V iso							
DGND DGN	D DGNI		<u></u> DGND	GND_RL G	⊥ √D_iso			

4.5.2 Contrôle super-capa et batterie Optionnelle :

Super-capa

Ce test consiste à charger et décharger la super capa dans le but de vérifier le temps de montée et de descente ainsi que les niveaux de tension.

- ✓ Connaitre les points de test
- ✓ Les caractéristiques de la capacité

Contrôle du chargement

Les points de mesure par rapport au DGND

	Point de test	VMIN	VMAX	Côté	Coord X	Coord Y
Potentiels						
VBAT-RTC	TP416	2V	3,8V	TOP	28.775mm	70mm
VBAT-IN	TP414	2V	3.8V	TOP	28.525mm	73.125mm

Contrôle du déchargement Les points de mesure par apport DGND Point de test **VMIN VMAX** Côté Coord X Coord Y Potentiels VBAT-RTC 2V **TP416** 3.8V TOP 28.775mm 70mm VBAT-RTC VBAT IN VBAT-RTC TP416 DNI C252 47μΙ C253 **Supercaps** 1F C254 1F DGND DGND

Figure 6 : Déchargement super capa

Il faut contrôler le temps de déchargement du super capa

4.6 Vérification des chaines de mesure

Chaine de mesure

Ce test consiste à contrôler les étages de mesure en appliquant une tension à l'entrée de chaque étage et de mesurer la tension de sortie.

4.6.1 Mesure de la tension

Tension

La tension nominale est 230V avec une tolérance de -20 à +15%

- > Injecter 80% de la tension nominale : 80% Un
- Mesurer la tension à la sortie de la chaine de mesure
- > Comparer la valeur de la tension d'entrée par la tension de référence
- > Afficher le résultat

Les points d'entrés NT, PH_IN

Les points de se	· —
	.

Potentiels	Point de test	VMAX	Coord X	Coord Y
N_IN	NT	ТОР	-14.775mm	20.075mm
PH_IN	PH-I-1	ТОР	2.8mm	9.9mm
VA	C1301-1	ТОР	49.55mm	50.025mm
DGND	TP1801	ТОР	83.2mm	92.9mm

Chaine de Mesure de Tension

Figure 7 : Mesure tension

4.6.2 Flashage du microcontrôleur

Flashage

Type du processeur : MAX71617.

Programmation: les codes à charger dans le micro seront fournis par la SIAME.

Name	Coord X	Coord Y	Côté
J300 (JTAG)	37.75mm	70.6mm	TOP

Figure 8: JTAG PCB

Figure 9 Jtag

4.6.3 Contrôle des périphériques

4.6.4 Contrôle de l'afficheur

Afficheur

- > Envoyer la commande pour prendre le contrôle de LCD
- Envoyer la commande pour éteindre le LCD
- Envoyer la commande pour allumer tous les segments de LCD
- Prendre une image de LCD

- Comparer l'image à l'image de référence
- > Afficher le résultat
- Envoyer la commande pour libérer le contrôle LCD
- i. Il faut utiliser une caméra pour prendre une image de l'afficheur et vérifier l'affichage de tous les pictos

ii.

Figure 10: Afficheur

4.6.5 Contrôle des LEDs

LEDs

Le compteur contient quatre LEDs

LEDs	Etat par défaut	Couleur
IHM_Stat_Relais_V	Etat off	Vert
IHM_Statut_	Etat off	Orange
IHM_Com	Etat off	Vert
WPULSE	Etat off	Rouge

Simuler un courant de 10 A pour vérifier le fonctionnement de la Led métrologique WPULSE Pour les 3 autres LEDs :

- > Envoyer la commande pour prendre le contrôle des LEDs
- > Envoyer la commande pour éteindre les LEDs
- > Envoyer la commande pour allumer toutes les LEDs
- > Envoyer la commande pour libérer le contrôle des LEDs

Coordonnées des points de test LED

LEDs	Point de TEST	Coord X	Coord Y	Côté
IHM_Stat_Relais_V	TP401	96.6 mm	88.4 mm	TOP
IHM_Statut_	ТР402	94.2086 mm	104.6734 mm	TOP
IHM_Com	TP403	96.4438 mm	96.4946 mm	TOP
WPULSE	TP404	94.2086 mm	109.982 mm	TOP

4.6.6 Contrôle des Boutons

Boutons

La force d'appui des boutons est égale à 160g

Bouton /Switch	Réf	Etat par défaut
Bouton 1	B400	Etat ouvert
Bouton 2	B401	Etat ouvert
SW	SW1800 (Détection Fraude)	Etat off
SW	SW1801 (Détection Fraude)	Etat off
Bouton reset com	B301 (Interface Carte fille)	Etat ouvert

- > Appuyer sur les Boutons
- > Lecture de l'état Bouton/Switch
- > Afficher le résultat

Boutons	Coord X	Coord Y	Côté
B400	-0.4mm	68.6mm	TOP
B401	17.6mm	68.6mm	TOP
B300	46.025mm	75.625mm	TOP
SW1800	6.1mm	4.1mm	TOP
SW1801	14.5mm	4.12mm	TOP
B301	30.023mm	5.41mm	TOP

4.6.7 Contrôle Relais de coupure

Relais

- > Envoyer la commande pour la Lecture de l'état du relais (Ouvert/Fermé)
- ➤ Appliquer les commandes Open/Close
- > Afficher le résultat

4.6.8 Contrôle Relais auxiliaires

Relais domotiques

- Envoyer la commande pour la Lecture de l'état du relais 1 (Ouvert/Fermé)
- > Appliquer les commandes Open/Close
- > Afficher le résultat
- > Envoyer la commande pour la Lecture de l'état du relais 2 (Ouvert/Fermé)
- ➤ Appliquer les commandes Open/Close
- > Afficher le résultat

Name	Points de test	Coord X	Coord Y	Côté
CMD RELAIS DOM1	TP1700	96.2914 mm	60.6552 mm	ТОР
CMD RELAIS DOM1	TP1701	90.6272 mm	60.7314 mm	ТОР

4.6.9 Contrôle des capteurs

4.6.10 Contrôle RTC

Name	Coord X	Coord Y	Côté
RTC	66.65mm	76.657mm	TOP

4.6.11 Contrôle interfaces de communication

4.6.12 Uart3 (Interface Optique)

Name	PT de Test	Coord X	Coord Y	Côté
NetR1101_1 (UART3_TX3)	TP332-1	73.3548 mm	61.976 mm	TOP
UART3_RX3	TP331-1	71.755 mm	61.57 mm	TOP

UART3 (Interface Optique)

Le test de l'UART3 sera fait par le SW AUTO TEST Interface : envoie « TEST UART » Compteur : Renvoie une trame de réponse (Par Exemple « UART OK)

4.6.13 UART5 (W-Mbus)

Name	PT de Test	Coord X	Coord Y	Côté
UART5_RX5	TP324	58.075mm	66.825 mm	TOP
UART5_TX5	TP314	55.75 mm	65.875 mm	TOP

UART5 (W-MBUS)

Le test de l'UART5 sera fait par le SW AUTO TEST Interface : envoie « TEST UART » Compteur : Renvoie une trame de réponse (Par Exemple « UART OK)

4.6.14 Port HAN

Port HAN

• Le test du port HAN sera fait par le SW AUTO TEST Interface : envoie « TEST UART » Compteur : Renvoie une trame de réponse (Par Exemple « UART OK)

4.6.15 Rapport de test

RAPPORT DE TEST

Le banc de test doit générer un rapport à la fin de chaque passage d'une carte, le rapport contient : le numéro de la carte, les listes des tests ainsi que le résultat de chaque test, date de passage de la carte dans le testeur, heure...

5 Sommaire Points de test Testeur Fonctionnel Plan B (Prototype SIAME)

Block	Points de Test	Paragraphe	
Alimentation Carte ME100SM	PH-IN / N-IN	5.5.1 Contrôle alimentation carte	
Sortie transfo	TP 200/TP 300/TP 412/TP 206/TP 1702/ TP 207/TP 413/TP 415/TP 408/TP 1903/ TP 1802/TP 1800/TP 1801	5.5.1 Contrôle alimentation carte	
Super Capa	TP 1416/TP 414	5.5.2 Super Capa, batterie	
Mesure de tension	NT/PH-I-1/C1301-1/TP 1801	5.6.1 Mesure de tension	
Flashage	J 300	5.6.2 Flashage microcontrôleur	

Pour la version Prototype, le test;

- De l'afficheur LCD
- Le contrôle des LEDs
- Le contrôle des relais de coupure et domotiques
- Le test des boutons de défilement et fraude
- Le test RTC et test UARTs

Sera fait par le SW Auto-test.