Студент: Группа: Дата сдачи работы:

Лабораторная работа № 1

ОПРЕДЕЛЕНИЕ МОЛЯРНОЙ МАССЫ ЭКВИВАЛЕНТА МЕТАЛЛА Цель работы:

Установка для измерения молярной массы эквивалента металла (эвдиометр):

<u>Основные законы,</u> используемые для определения молярной массы эквивалента металла:

Закон эквивалентов:

$$M_{_{9\text{KBM}}} = \frac{m_{_{\rm M}}}{V_{_{\rm H_2}}} V_{_{9\text{KBH}_2}},$$

где $m_{\rm M}$ — масса металла; $V_{\rm H_2}$ — измеренный объем водорода; $V_{_{_{^{9{\rm KBH}_2}}}}$ — молярный объем химического эквивалента водорода при условиях опыта.

Объединенный газовый закон:

$$V_{_{9\text{KBH}_2}} = \frac{T}{T_0} \frac{P_0}{P_{\text{H}_2}} V_{_{0,9\text{KBH}_2}},$$

где $P_{\rm H_2}$ — парциальное давление водорода в закрытой бюретке; T — температура, при которой проводится эксперимент; $V_{0,{\rm экв}{\rm H_2}}$ — молярный объем химического эквивалента

водорода при нормальных условиях (T_0 = 273,15 K; p_0 = 101,3 кПа = 760 мм рт. ст.). Так как число эквивалентности водорода $z_{\scriptscriptstyle 3KB}$ = 2, то $V_{\scriptscriptstyle 0,\scriptscriptstyle 3KBH_2}$ = $\frac{V_0}{z_{\scriptscriptstyle 3KB}}$ = $\frac{22,414}{2}$ = 11,207 л/моль

Закон Дальтона:

$$P_{\rm H_2} = P_{\rm atm} - P_{\rm H_2O}$$
,

где $P_{\rm H,O}$ – давления насыщенного водяного пара при температуре опыта.

Расчетная формула молярной массы химического эквивалента металла:

$$M_{_{\rm 9KBM}} = \! \frac{m_{_{\rm M}}}{V_{_{\rm H_{_2}}}} \frac{T P_{_0} V_{_{0,9{\rm KBH}_{_2}}}}{T_{_0} (P_{_{\rm aTM}} - P_{_{\rm H_2O}})} \, . \label{eq:M_skbm}$$

Относительная ошибка эксперимента:

$$\eta = \left| \begin{array}{c} M_{ ext{9KBM, Teop.}} - M_{ ext{9KBM, 9KCII.}} \\ M_{ ext{9KBM, Teop.}} \end{array} \right| 100\%.$$

Таблица. Условия проведения опыта, результаты измерений и расчетов

№	Условия проведения опыта			Результаты измерений		
опыта	Т, К	$P_{ m atm}$, MM pt.ct.	$P_{ m H_2O}$, MM pt.ct.	$m_{ m M}$, Г	$h_{\scriptscriptstyle{ m Ha ext{ ext{ iny Ha}}}},{ m M}$ Л	$h_{ m koh},$ мл
1		*	P			
2						
No॒	Результаты расчетов					
опыта	$P_{ m H_2}$, mm pt.ct.	$V_{ m H_2}$, МЛ	$M_{ m эквM}$, эксп $\Gamma/{ m MOЛЬ}$ ЭКВ	\overline{M} эквМ, эксп $\Gamma/$ МОЛЬ. ЭКВ	$M_{ m ЭКВM}$, $_{ m Teop}$ $_{ m Г}/_{ m MOЛЬ}$. ЭКВ	η
1	•					
2						

Расчеты:

Уравнение реакции:

Выводы: (указывают металл, его молярную массу эквивалента, определенную в ходе опыта, и относительную ошибку эксперимента)