Spatial Inefficiencies in Africa's Trade Network

Tilman Graff

University of Oxford

6th March 2018

Figure: Road Network Guinea

Figure: Road Network Guinea

Figure: Optimal Road Network Guinea

- Are African roads where they should be?
- Which country has the most efficient trade network?
- ▶ Do some regions have *too* many roads?

Individual transport policies

Overall network efficiency

Overall network efficiency

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

Network Nodes

Figure: 10,167 grid cells $(0.5 \times 0.5 \text{ degrees})$

Network Nodes

- ► Population
- Output (night lights)
- ▶ Geography

Network Edges

- Average Speed
- Distance
- ▶ Topography

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

- ▶ Node *i* houses L_i and produces Y_i^n of good n
- ▶ Two varieties $n \in \{\text{urban}, \text{rural}\}$
- ▶ Consumers in *i* consume $C_i = \left(\sum_n (C_i^n)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$
- ▶ Derive utility $u_i = c_i^{\alpha}$, where $c_i = \frac{C_i}{L_i}$
- ▶ Can trade with neighbouring nodes N(i)
- Occur iceberg trade cost $\tau_{i,k}^n = \delta_{i,k}^{\tau} \frac{(Q_{i,k}^n)^{\beta}}{l_{i,k}^{\gamma}}$
 - ightharpoonup costs fall with $I_{i,k}$ (infrastructure)
 - ightharpoonup costs rise with $Q_{i,k}^n$ (congestion)

- ▶ Node *i* houses L_i and produces Y_i^n of good n
- ▶ Two varieties $n \in \{urban, rural\}$
- ► Consumers in i consume $C_i = \left(\sum_n (C_i^n)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$
- ▶ Derive utility $u_i = c_i^{\alpha}$, where $c_i = \frac{C_i}{L_i}$
- ▶ Can trade with neighbouring nodes N(i)
- ▶ Occur iceberg trade cost $\tau_{i,k}^n = \delta_{i,k}^{\tau} \frac{(Q_{i,k}^n)^{\beta}}{I_{i,k}^{\gamma}}$
 - costs fall with l_{i,k} (infrastructure)
 - \triangleright costs rise with $Q_{i,k}^n$ (congestion)

- ▶ Node *i* houses L_i and produces Y_i^n of good n
- ▶ Two varieties $n \in \{\text{urban}, \text{rural}\}$
- ► Consumers in i consume $C_i = \left(\sum_n (C_i^n)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$
- ▶ Derive utility $u_i = c_i^{\alpha}$, where $c_i = \frac{C_i}{L_i}$
- ▶ Can trade with neighbouring nodes N(i)
- ▶ Occur iceberg trade cost $\tau_{i,k}^n = \delta_{i,k}^{\tau} \frac{(Q_{i,k}^n)^{\beta}}{I_{i,k}^{\gamma}}$
 - ightharpoonup costs fall with $I_{i,k}$ (infrastructure)
 - costs rise with $Q_{i,k}^n$ (congestion)

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patters of reshuffling

- ▶ Social planner can reallocate infrastructure $I_{i,k}$
- Keeping total infrastructure cost fixed

 - where K = total cost of building the current network

Full Planner's Problem

Network Reallocation

Network Reallocation

Network Reallocation

Λ_i for sample countries

Figure: Local Infrastructure Discrimination Index Λ_i

 $\Lambda_i = \frac{\text{Welfare under the optimal Infrastructure}_i}{\text{Welfare under the current Infrastructure}_i}$

Λ_i for entire sample

Figure: African grid cells by Λ_i

Steps

- 1. Network representation for all African countries
 - Nodes
 - Edges
- 2. Employ in simple trade model
- 3. Reshuffle roads to get optimal network
- 4. Analyse patterns of reshuffling

Why do some areas have too few roads while others have too many?

Lasting impact of Colonial Railroads

Figure: Colonial Railroads

Source: Jedwab & Moradi (2016) and own digitisations

Lasting impact of Colonial Railroads

	Dependent variable:											
	Local Infrastructure Discrimination Index Λ_i											
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)				
KM of Colonial Railroads	-0.0002*** (0.0001)	-0.0001*** (0.0001)	-0.0002*** (0.0001)	-0.0002*** (0.0001)								
KM of Colonial Placebo Railroads					0.00004 (0.0003)	-0.0002 (0.0003)	-0.0003 (0.0003)	-0.0003 (0.0003)				
Country FE Geographic controls Simulation controls		Yes	Yes Yes	Yes Yes Yes		Yes	Yes Yes	Yes Yes Yes				
Observations R ²	10,158 0.001	10,158 0.099	10,158 0.112	10,158 0.114	10,158 0.00000	10,158 0.098	10,158 0.111	10,158 0.113				

Note: *p<0.1; **p<0.05; ***p<0.01

Columns (1)-(4) estimate the effect of colonial infrastructure investments on today's Local Infrastructure Discrimination Index. Starting with a simple univariate cross-section in (1), column (2) adds 49 country-fixed effects. Column (3) adds geographic controls, consisting of altitude, temperature, average land suitability, malaria prevalence, yearly growing days, average precipitation, the fourth-order polynomial of latitude and longitude, and an indicator of whether the grid cell lies on the border of a country's network. Simulation controls are added in column (4) and are comprised of population, night lights, ruggedness, and a dummy for whether a cell is classified as urban. These are indicators that went into the original infrastructure re-allocation simulation and are hence not orthogonal to A. Columns (5)-(8) repeat these calculations with railroads that were planned, but never built ("placebo railroads"). Results are robust to using only the subsample of 33 countries with any colonial infrastructure investment as reported by Jedwab & Moradi (2016), plus South Africa. Heteroskedasticity-robust standard errors are clustered on the 3x3 degree level and are shown in parantheses.

General Equilibrium Effects of Colonial Railroads

			L	Dependent 1	variable:						
	Local Infrastructure Discrimination Index Λ_i										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)			
< 10 KM to Colonial Railroad	-0.013*** (0.003)	-0.015*** (0.004)	-0.017*** (0.004)				-0.014*** (0.004)				
$10-20\ \text{KM}$ to Colonial Railroad	-0.013*** (0.005)	-0.015*** (0.005)	-0.017*** (0.005)				-0.015*** (0.005)				
$20-30\ \text{KM}$ to Colonial Railroad	-0.002 (0.004)	-0.004 (0.004)	-0.005 (0.004)				-0.005 (0.004)				
$30-40\ \text{KM}$ to Colonial Railroad	0.010** (0.005)	0.008* (0.005)	0.007 (0.005)				0.008 (0.005)				
< 10 KM to Colonial Placebo Railroad				-0.005 (0.004)	-0.005 (0.004)	-0.006 (0.004)		-0.007* (0.004)			
$10-20\ \text{KM}$ to Colonial Placebo Railroad				-0.003 (0.005)	-0.004 (0.005)	-0.004 (0.005)		-0.005 (0.005)			
20 – 30 KM to Colonial Placebo Railroad				-0.001 (0.004)	-0.001 (0.004)	-0.001 (0.004)		-0.004 (0.004)			
30 – 40 KM to Colonial Placebo Railroad				0.007 (0.004)	0.006 (0.004)	0.005 (0.004)		0.003 (0.004)			
Country FE	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes			
Geographic controls		Yes	Yes		Yes	Yes	Yes	Yes			
Simulation controls			Yes			Yes	Yes	Yes			
Observations R ²	10,158 0.101	10,158 0.115	10,158 0.118	10,158 0.099	10,158 0.111	10,158 0.114	6,362 0.116	6,362 0.110			

Note: *p<0.1; **p<0.05; ***p<0.01

Concerns

- Identification
- Non-linearity of model
- ..

Backup: full planner's problem

$$\begin{aligned} \max_{\left\{C_{i}^{n}, \left\{Q_{i,k}^{n}\right\}_{k \in N(i)}\right\}_{n}}, & \sum_{i} L_{i}u(c_{i}) \\ c_{i}, \left\{I_{i,k}\right\}_{k \in N(i)} & \\ \text{subject to} & L_{i}c_{i} \leq \left(\sum_{n=1}^{N} (C_{i}^{n})^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}} \\ & C_{i}^{n} + \sum_{k \in N(i)} Q_{i,k}^{n}(1 + \tau_{i,k}^{n}(Q_{i,k}^{n}, I_{i,k})) \leq Y_{i}^{n} + \sum_{j \in N(i)} Q_{j,i}^{n} \\ & \sum_{i} \sum_{k \in N(i)} \delta_{i,k}^{i} I_{i,k} \leq K \\ & I_{i,k} = I_{k,i} \text{ for all } i \in \mathcal{I}, k \in N(i) \\ & C_{i}^{n}, c_{i}, Q_{i,k}^{n} \geq 0 \text{ for all } i \in \mathcal{I}, n \in \mathcal{N}, k \in N(i). \end{aligned}$$

Backup: A for entire countries

Figure: African countries by Λ_i