AOI WAKUDA

2

by the WINGS-FMSP program at the Graduate School of Mathematical Sciences, the University of Tokyo.

2. ISOMETRIES ON HYPERBOLIC PLANE

Let \mathbb{H} be the upper half-plane model in hyperbolic geometry. The group of isometries of \mathbb{H} is given by

$$\mathrm{PSL}_2^{\pm}(\mathbb{R}) = \left\{ \pm \begin{pmatrix} a & b \\ c & d \end{pmatrix} \middle| a, b, c, d \in \mathbb{R}, ad - bc = \pm 1 \right\}.$$

Each isometry $g \in \mathrm{PSL}_2^{\pm}(\mathbb{R})$ is classified according to the absolute value of its trace (for example, see [5]):

- Case 1: $\det g = 1$ (Orientation-preserving isometries)
 - Elliptic if $|\operatorname{Tr} g| < 2$. In this case, g has a unique fixed point in \mathbb{H} .
 - Parabolic if $|\operatorname{Tr} g| = 2$. In this case, g has a unique fixed point on the real axis.
 - Hyperbolic if $|\operatorname{Tr} g| > 2$. In this case, g has exactly two fixed points on the real axis.
- Case 2: $\det g = -1$ (Orientation-reversing isometries)
 - Reflection if $\operatorname{Tr} g = 0$. In this case, g is an involution with a geodesic of fixed points.
 - Glide-reflection if Tr $g \neq 0$. In this case, g has two fixed points on the real axis.

For each $g \in \mathrm{PSL}_2^{\pm}(\mathbb{R})$, the translation length t_q is defined as:

$$t_g = \inf_{z \in \mathbb{H}} d(z, gz).$$

If t_g is positive, we call g a positive translation isometry. For a positive translation isometry g, the absolute value of the trace of g satisfies the following:

$$|\operatorname{Tr} g| = \begin{cases} 2\cosh\frac{t_g}{2}, & \text{if } g \text{ is hyperbolic,} \\ 2\sinh\frac{t_g}{2}, & \text{if } g \text{ is a glide-reflection.} \end{cases}$$
 (1)

For a positive translation isometry $g \in \mathrm{PSL}_2^{\pm}(\mathbb{R})$, we define A_g as the axis of g, i.e., the geodesic joining the two fixed points of g, and let ρ_{A_g} be the reflection with respect to A_g .

We state the following result from [1, Theorem 7.38.6] because it will be used later.

Theorem 2.1. [1, Theorem 7.38.6] Let g and h be hyperbolic transformations of the hyperbolic plane and suppose that A_g and A_h intersect at a point P. Denote by θ_P the angle at P between forward direction of A_g and A_h . Then the composition $g \circ h$ is hyperbolic and

$$\frac{1}{2}|\operatorname{Tr} gh| = \cosh\left(\frac{t_g}{2}\right)\cosh\left(\frac{t_h}{2}\right) + \sinh\left(\frac{t_g}{2}\right)\sinh\left(\frac{t_h}{2}\right)\cos(\theta_P). \tag{2}$$

Now, we generalize the above theorem to positive translation isometries. The proof of [1, Theorem 7.38.6] uses the law of cosines for the triangle formed by the three axes A_g , A_h , and A_{gh} to compute the absolute value of the trace. In this paper we compute the absolute value of the trace by matrix computations as follows.

Theorem 2.2. Let g and h be positive translation isometries and suppose that A_g and A_h intersect at a point P. Denote by θ_P the angle at P between forward direction of A_g and A_h . Then, the following hold.

 ${\it Case 1:}\ {\it If}\ {\it g}\ {\it is}\ {\it a}\ {\it glide-reflection}\ {\it and}\ {\it h}\ {\it is}\ {\it a}\ {\it hyperbolic}\ {\it element},$

$$\frac{1}{2}|\operatorname{Tr} gh| = \left|\sinh\left(\frac{t_g}{2}\right)\cosh\left(\frac{t_h}{2}\right) + \cosh\left(\frac{t_g}{2}\right)\sinh\left(\frac{t_h}{2}\right)\cos\theta_P\right|. \tag{3}$$

Case 2: If both g and h are glide-reflections,

$$\frac{1}{2}|\operatorname{Tr} gh| = \left|\sinh\left(\frac{t_g}{2}\right)\sinh\left(\frac{t_h}{2}\right) + \cosh\left(\frac{t_g}{2}\right)\cosh\left(\frac{t_h}{2}\right)\cos\theta_P\right|. \tag{4}$$

Proof. Without loss of generality, we may assume the axis A_g equals the imaginary axis with the intersection point $P \in A_g \cap A_h$ located at $i \in \mathbb{H}$. See Figure 1.