10 Superfícies: Curvatura normal. Geodèsiques

Exercici 99: Sigui $S \subset \mathbb{R}^3$ una superfície regular, i sigui $\alpha : I \to S$ una corba regular continguda a S. Suposem que α és una corba asimptòtica de S (i.e. que la seva curvatura normal és zero).

- 1. Demostreu que $B = \nu \circ \alpha$, on B és el binormal a α i ν és el normal a S.
- 2. Calculeu H(T,T) i H(N,T), on T i N són respectivament el tangent i el normal principal a α , i H és la segona forma fonamental. (Observeu que N és tangent a la superfície, per l'apartat anterior, i per tant té sentit fer aquest càlcul).
- 3. Demostreu que per tot $t \in I$ es compleix la igualtat $K(\alpha(t)) = -\tau(t)^2$, on τ és la torsió de α i K és la curvatura de Gauss de S.

Exercici 100: Sigui $\gamma(s)$ una corba sobre una superfície S (no necessàriament parametritzada per l'arc). Demostreu que la seva curvatura normal k_n es pot calcular com

$$k_n(s) = \frac{\langle \gamma''(s), \mathcal{N}(\gamma(s)) \rangle}{|\gamma'(s)|^2}$$

(on \mathcal{N} és el vector normal de la superfície).

Exercici 101: Demostreu que la curvatura mitjana H en un punt d'una superfície es pot calcular com

$$H = \frac{1}{\pi} \int_0^{\pi} k_n(\theta) d\theta,$$

on $k_n(\theta)$ és la curvatura normal, en aquest punt, en la direcció que forma un angle θ amb una direcció prefixada.

Exercici 102: Sigui S la superfície de \mathbb{R}^3 donada pels punts del pla horitzontal (x, y, 0).

- 1. Calculeu els símbols de Christoffel de S quan es parametritza S per les coordenades cartesianes (x, y).
- 2. Considereu la parametrització de S per les coordenades polars (de forma que $x=r\cos(t),\ y=r\sin(t)$) i calculeu un altre cop els símbols de Christoffel respecte aquesta parametrització.
- 3. En els dos casos, apliqueu la fórmula de Gauss per a calcular la curvatura de S.

Exercici 103: Considereu una superfície S de \mathbb{R}^3 amb una parametrització de la forma (gràfic)

$$\varphi(u,v) = (u,v,a(u,v)),$$

on a és una funció diferenciable.

Doneu, en termes de a i de les seves derivades, l'expressió dels símbols de Christoffel de S.

Exercici 104: Calculeu els símbols de Christoffel de l'esfera de radi r arbitrari en el sistema de coordenades (esfèriques) naturals donades per la longitud (θ) i la colatitud (φ)

$$x = r \cos(\theta) \sin(\varphi)$$
$$y = r \sin(\theta) \sin(\varphi)$$
$$z = r \cos(\varphi)$$

Exercici 105: Doneu una parametrització del cercle màxim de l'esfera obtingut per la intersecció amb el pla y=z en termes de les coordenades esfèriques (expresseu la colatitud com funció de la longitud). Es compleix l'equació diferencial de les geodèsiques per a aquesta corba (amb aquesta parametrització)?

Exercici 106: Quina condició (tipus equació diferencial) ha de complir una corba sobre una superfície per tal de poder afirmar que, fent un canvi de paràmetre, s'obté una geodèsica?

Exercici 107: Considereu l'helicoide parametritzat per

$$\varphi(u, v) = (u \cos(v), u \sin(v), v)$$

- 1. Determineu les equacions diferencials que han de complir (u(s), v(s)) per tal que la corba $\alpha(s) = \varphi(u(s), v(s))$ sigui una geodèsica.
- 2. Comproveu que les corbes de la forma v = ct., convenientment parametritzades, són geodèsiques.
- 3. Si una corba sobre l'helicoide talla amb un angle constant les corbes de la forma v = ct., pot ser una geodèsica?

Exercici 108:

- 1. Suposem que dues superfícies són tangents al llarg d'una certa corba C. Demostreu que si C és geodèsica en una de les dues superfícies també ho és a l'altra.
- 2. Demostreu que tota corba $\alpha(s)$ de \mathbb{R}^3 és geodèsica d'alguna superfície. (**Nota:** Si no veieu com obtenir aquesta superfície, proveu la superfície reglada $\varphi(s,t) = \alpha(s) + t B(s)$, on B(s) és el vector binormal de la corba).
- 3. Descriviu un mètode per determinar les geodèsiques d'una superfície per medi d'una banda adhesiva (cel·lo).

Exercici 109: Sigui $\alpha(t) = (u(t), v(t))$ una corba regular de \mathbb{R}^2 . Considereu la parametrització del cilindre $\varphi(u, v) = (\cos(v), \sin(v), u)$ i la corba $\beta(t) = \varphi(\alpha(t))$. Determineu, en termes dels invariants de α , la curvatura geodèsica de β .

Exercici 110: Siguin $S \subset \mathbb{R}^3$ una superfície regular i $C \subset S$ una corba regular continguda a S. Demostreu les següents afirmacions.

- 1. C és geodèsica de S i línia asimptòtica de S si i només si C està continguda en una recta de \mathbb{R}^3 .
- 2. Suposem que C és geodèsica de S. Aleshores C és línia de curvatura de S si i només si C és plana.
- 3. Podeu donar un exemple de línia curvatura plana però que no sigui geodèsica?

Exercici 111: Sigui S una superfície connexa i suposem que tots els seus punts són umbilicals (un punt es diu umbilical si les curvatures principals en aquest punt són iguals). Demostreu que S està continguda en una esfera o en un pla.

Exercici 112: Sigui S una superfície connexa en la que totes les geodèsiques són corbes planes. Demostreu que S està continguda en un pla o en una esfera.

Exercici 113: Calculeu la curvatura geodèsica del paral·lel superior del tor de revolució generat per revolució del cercle

$$(x-a)^2 + z^2 = r^2, y = 0$$

al voltant de l'eix z (a > r > 0).

Exercici 114: Considerem dos meridians C_1 i C_2 d'una esfera que formen un angle φ en el punt P. Fem el transport paral·lel d'un vector w tangent a C_1 en P al llarg de C_1 i també al llarg de C_2 fins el punt Q on els meridians es tornen a trobar (Q és doncs l'antipodal de P). Siguin w_1 i w_2 els dos vectors tangents a l'esfera en Q així obtinguts. Quin angle formen w_1 i w_2 ?

Exercici 115: Sigui P un pol de l'esfera S^2 i siguin Q, R dos punts del corresponent equador tals que els meridians PQ, PR formen un angle θ en P. Sigui w un vector unitari tangent al meridià PQ en P. Fem el transport paral·lel de w al llarg de la corba tancada PQRP (meridià-equador-meridià).

- a) Determineu l'angle que forma w amb el seu transportat paral·lel al final de la corba, és a dir, en P.
- b) Repetir l'exercici anterior quan Q, R són punts d'un paral·lel de colatitud φ_0 (si $\varphi_0 = \pi/2$ estem en el cas anterior).