If
$$v^*m^*t$$
 not = 0, is $v^{2*}m^{3*}t^{-4} > 0$?

 $v^*m^*t \neq 0$ means that none of the unknowns equals to zero.

Is $v^2*m^3*t^{-4}>0$? As v^2 and t^4 are positive (remember none of the unknowns equals to zero) this inequality will hold true if and only $m^3>0$, or, which is the same, when m>0.

(1) $m > v^2$ --> m is more than some positive number (v^2), hence m is positive. Sufficient.

(2)
$$m>t-4$$
 ...> $m>\frac{1}{t^4}$...> Again m is more than some positive number ($\frac{1}{t^4}$), hence m is positive. Sufficient.

Answer: D.

2

If 1/3 < z < 2/3, then what is the value of z?

(1) When positive integer x is divided by 2, the result is z --> $z=\frac{x}{2}$... $\frac{1}{3} < \frac{x}{2} < \frac{2}{3}$... $\frac{2}{3} < x < \frac{4}{3}$... since x is an integer then x=1 (the only integer in that range) --> $z=\frac{x}{2}=\frac{1}{2}$. Sufficient.

(2) When positive even integer y is divided by 12, the result is z --> $z=\frac{y}{12}$ $\frac{1}{3} < \frac{y}{12} < \frac{2}{3}$ $\frac{2}{3}$ $\frac{4}{3} < \frac{y}{2} < \frac{2}{3}$ $\frac{4}{3} < \frac{y}{3} <$

Answer: D.

3

If xy < 4, is x < 2?

Notice that in order xy < 4 to hold true at least one of the multiples must be less than 2 (if both x and y are more than or equal to 2 then xy > 2).

(1) y > 1. If for example y=1.5>1 then x can be 1, so less than 2 or 2 so not less than 2. Not sufficient.

(2) y > x. According to above: $y>x\geq 2$ is not possible since in this case xy>4, so x must be less than 2. Sufficient. Answer: B.

4

Note: It is an integer.

(1)
$$4 < (x-1)^*(x-1) < 16$$
 ... $4 < (x-1)^2 < 16$... $(x-1)^2$ is a perfect square between 4 and 16 ··· there is only one perfect square: 9 ··· $(x-1)^2 = 9$... $x-1=3$ or $x-1=-3$ ··· $x=4$ or $x=-2$. Two answers, not sufficient.

(2)
$$4 < (x+1)^*(x-1) < 16$$
 ... $4 < x^2 - 1 < 16$... $5 < x^2 < 17$... x^2 is a perfect square between 5 and 17 ... there are two perfect squares : 9 and 16 ... $x^2 = 9$ or $x^2 = 16$... $x = 3$ or $x = -3$ or $x = 4$ or $x = -4$. Four answers, not sufficient.

(1)+(2) Intersection of values from (1) and (2) is x=4. Sufficient.

Answer: C.