Lecture 3: Convolutional Networks

Neural network: parameter overdoze

Multiplicative number of parameters: the main problem. Solving the problem:

- Stop optimization early (always keep checking progress on validation set)
- Impose smoothness (weight decay)
- Bag multiple models

Main avenue: picking a less generic architecture with less parameters

Huber-Wiesel

The reaction of a neuron is localized to a part of the visual field

Huber and Wiesel 1968

V1 physiology: direction selectivity

Idea 1: neuron maps

- 1. Organize neurons into map stacks
- 2. E.g. an image is a WxHx3 map stack

Idea 1: limited receptive field

- Organize neurons into maps
- 2. Limit the *receptive field* in the multiplicative layer:

$$V(x,y,t) = \sum_{i=x-\delta}^{x+\delta} \sum_{j=y-\delta}^{y+\delta} \sum_{s=1}^{S} K^{x,y,t} (i-x+\delta, j-y+\delta, s) \cdot U(i,j,s)$$

3. Huge parameter reduction O($(W/2\delta)^2$)

Stacking layers

 The layers are stacked and interleaved with non-linearities (e.g. ReLU)

Growing receptive field

E.g. with 7x7 filters:

- Receptive field is 7x7 after 1 conv layers
- Receptive field is 13x13 after 2 conv layers

Accelerating growth: stride

- In the early layers strides are often > 1
- Strides > 1 downsample maps
- Strides > 1 increase the receptive fields

What is the receptive field after [7x7 stride=2] followed by [7x7 stride = 1] convolution?

Idea 2: tying together weights

$$V(x,y,t) = \sum_{i=x-\delta}^{x+\delta} \sum_{j=y-\delta}^{y+\delta} \sum_{s=1}^{S} K^{t}(i-x+\delta, j-y+\delta, s) \cdot U(i,j,s)$$

Further dramatic reduction in the number of parameters: O(W²)

$$V(x,y,t) = \sum_{i=x-\delta}^{x+\delta} \sum_{j=y-\delta}^{y+\delta} \sum_{s=1}^{S} K(i-x+\delta, j-y+\delta, s, t) \cdot U(i,j,s)$$

Boundary issues

"Valid" mode:

- Complicates implementation and reasoning
- Unequal contribution of elements

Boundary issues: padding with zeros

"Same" mode:

- Solves the problem
- Introduces "false" edges

Conv. layer is still multiplicative

E.g. 1D correlation with is a multiplication over a banded matrix:

Interpretation: looking for patterns

"Deep Learning", Spring 2018: Lecture 3, "Convolutional networks"

 $i=x-\delta j=y-\delta s=1$

Interpretation: looking for patterns

AlexNet filters of the first layer:

Responses in the first layer

What are modern ConvNets made of

Third-component: pooling (+subsampling)

Pooling is almost always with subsampling

Alternatives: sum-pooling, average pooling, Rapid decrease of map size Parameter-free

Max-pooling and jitter-invariance

- Usual motivation: adding invariance to small shifts
- Several max-poolings can accumulate invariance to stronger shifts

Details: nonlinearity

Another formerly popular non-linearity: maxout

$$f(x) = \max(\alpha_1 x + \beta_1, \alpha_2 x + \beta_2, \dots, \alpha_m x + \beta_m)$$

CNN applications

Pattern finding through convolution/correlation is ubiquitous:

- 2D images (and the like, e.g. speech)
- 1D signals (e.g. time series, speech)
- 3D images
- Videos
- Graphs (more generalized sense)

[Bruna et al. Spectral Networks and Locally Connected Networks on Graphs. ICLR 2014]

Reminder: layer abstraction

Each layer is defined by:

- forward performance: y = f(x; w)
- backward performance:

$$z(x) = z(f(x; w))$$

$$\frac{dz}{dx} = \frac{dy}{dx}^{T} \cdot \frac{dz}{dy} \qquad \frac{dz}{dw} = \frac{dy}{dw}^{T} \cdot \frac{dz}{dy}$$

Backprop equations: multipicative layer

$$\frac{z(x) = z(f(x; w))}{\frac{dz}{dx} = \frac{dy}{dx}^{T} \cdot \frac{dz}{dy} \qquad \frac{dz}{dw} = \frac{dy}{dw}^{T} \cdot \frac{dz}{dy}$$

$$y = Wx$$
$$\frac{dy}{dx} = W$$

$$\frac{dz}{dx} = W^T \frac{dz}{dy}$$

Backprop equations: convolutional layer

$$\frac{dz}{dx} = \frac{dy}{dx}^T \cdot \frac{dz}{dy}$$

 $y=Wx\,$ - still holds for conv layer

$$\frac{dz}{dx} = W^T \frac{dz}{dy} \quad \text{- also corresponds to some} \\ \text{correlation?}$$

Backpropagation via convolution

Backprop equations: convolutional layer

$$\frac{dz}{dx} = \frac{dy}{dx}^T \cdot \frac{dz}{dy}$$

 $y=Wx\,$ - still holds for conv layer

$$\frac{dz}{dx} = W^T \frac{dz}{dy} \quad \text{- also corresponds to conv}$$

During backpass do the same correlations but with flipped kernels

Backprop equations: multipicative layer

$$z(x) = z(f(x; w))$$

$$\frac{dz}{dx} = \frac{dy}{dx}^{T} \cdot \frac{dz}{dy} \qquad \qquad \frac{dz}{dw} = \frac{dy}{dw}^{T} \cdot \frac{dz}{dy}$$

$$y = Wx$$

$$\frac{g-m\omega}{du}$$

$$\frac{dy}{dx} = W$$

$$\frac{dz}{dx} = W^T \frac{dz}{dy}$$

$$\frac{\partial z}{\partial w_{ij}} = \left(\frac{dy}{dw_{ij}}\right)^T \frac{dz}{dy} = x_j \frac{\partial z}{\partial y_i}$$

$$\frac{dz}{dW} = \frac{dz}{dy} \cdot x^T$$

Backprop equations: convolutional layer

$$\frac{dz}{dW} = \frac{dz}{dy} \cdot x^T \qquad \frac{\partial z}{\partial W_{ij}} = \frac{\partial z}{\partial y_i} \cdot x_j$$

In conv. layer we tie together multiplicative weights corresponding to the same relative position of y_i and x_j . So the formula becomes:

$$\frac{\partial z}{\partial K_{i,j,s,t}} = \sum_{x,y} \frac{\partial z}{\partial y_{x,y,t}} \cdot x_{x-i,y-j,s}$$

NB: this is also a convolution between dz/dy and x

Backpropagation: max-pooling

backward pass:

$$\frac{dz}{dx} = \frac{dy}{dx}^{T} \cdot \frac{dz}{dy}$$

Bottlenecks

Majority of parameters

Drop-out often applied here

Efficient implementations: direct

$$V(x,y,t) = \sum_{i=x-\delta}^{x+\delta} \sum_{j=y-\delta}^{y+\delta} \sum_{s=1}^{S} K(i-x+\delta, j-y+\delta, s, t) \cdot U(i,j,s)$$

- Loop ordering very important
- Data alignment very important
- NVIDIA cuDNN, Nervana kernels efficient GPU implementations

Efficient implementations: im2col

Idea: reduce all *ST* convolutions to a single matrix multiplication

Efficient implementations: Fourier

$$A * K = \mathcal{F}^{-1}(\mathcal{F}(A) \odot \mathcal{F}(K))$$

- Each map participates in many convolutions (hence FFT is reused)
- Maps are much smaller than images that most FFT codes are optimized for
- Careful implementation needed to get reasonable speed-up
- Memory hungry (why?) ⁽³⁾

[Fast Training of Convolutional Networks through FFTs Michael Mathieu; Mikael Henaff; Yann LeCun, ICLR 2014]

Benchmarking: forward times

VGG-Net (mostly 3x3 convolutions)

Library	Class	Time (ms)	forward (ms)	backward (ms)
Nervana-neon-fp16	ConvLayer	254	82	171
Nervana-neon-fp32	ConvLayer	320	103	217
CuDNN[R4]-fp16 (Torch)	cudnn.SpatialConvolution	471	140	331
CuDNN[R4]-fp32 (Torch)	cudnn.SpatialConvolution	529	162	366
TensorFlow	conv2d	540	158	382
Chainer	Convolution2D	885	251	632
fbfft (Torch)	SpatialConvolutionCuFFT	1092	355	737
cudaconvnet2*	ConvLayer	1229	408	821
CuDNN[R2] *	cudnn.SpatialConvolution	1099	342	757
Caffe	ConvolutionLayer	1068	323	745

https://github.com/soumith/convnetbenchmarks [Soumith Chintala]

"Deep Learning", Spring 2018: Lecture 3, "Convolutional networks"

Benchmarking: forward times

AlexNet (11x11,5x5,3x3 convolutions)

Library	Class	Time (ms)	forward (ms)	backward (ms)	
Library	Cid33	Title (III3)	TOT Ward (TTIS)	backwara (1113)	
CuDNN[R4]-fp16 (Torch)	cudnn.SpatialConvolution	71	25	46	
Nervana-neon-fp16	ConvLayer	78	25	52	
CuDNN[R4]-fp32 (Torch)	cudnn.SpatialConvolution	81	27	53	
TensorFlow	conv2d	81	26	55	
Nervana-neon-fp32	ConvLayer	87	28	58	
fbfft (Torch)	fbnn.SpatialConvolution	104	31	72	
Chainer	Convolution2D	177	40	136	
cudaconvnet2*	ConvLayer	177	42	135	
CuDNN[R2] *	cudnn.SpatialConvolution	231	70	161	
Caffe (native)	ConvolutionLayer	324	121	203	

https://github.com/soumith/convnetbenchmarks [Soumith Chintala]

"Deep Learning", Spring 2018: Lecture 3, "Convolutional networks"

History: LeNet

[LeCun 89, 98]

2012: Image-net

14,197,122 images, 21841 synsets indexed

Statistics of high level categories

	High level category	# synset (subcategories)	Avg # images per synset	Total # images					
	amphibian	94	591	56K					
	animal	3822	732	2799K					
	appliance	51	1164	59K					
	bird	856	949	812K					
	covering	946	819	774K					
	device	2385	675	1610K					
	fabric	262	690	181K					
	fish	566	494	280K					
	flower	462	735	339K					
	food	1495	670	1001K					
	fruit	309	607	188K					

(all competitions on much smaller subset 1000x1000)

Image-net

Soccer, association football

A football game in which two teams of 11 players try to kick or head a ball into the opponents' goal

Image-net

Flying lemur, flying cat, colugo

Arboreal nocturnal mammal of southeast Asia and the Philippines resembling a lemur and having a fold of skin on each side from neck to tail that is used for long gliding leaps

Building the best network

AlexNet (2012)

- .."CaffeNet" variant
- 5 conv layers (11x11,5x5,3x3,3x3,3x3)
- 6oM parameters
- Learns in 3-5 days on a GPU
- Faster than subsequent architectures

[Krizhevsky et al. 2012]

Idea 1: neuron maps

VGGNet (2014)

•	upto	16 conv	. layers

- All filters are 3x3
- balances load between layers
- ~140M params
- Stagewise training (before batch norms)
- The highest performance among chain-like models

	<u> </u>				
В	C	D	Е		
weight	16 weight	16 weight	19 weight		
ayers	layers	layers	layers		
224×2	-				
nv3-64	conv3-64	conv3-64	conv3-64		
nv3-64	conv3-64	conv3-64	conv3-64		
max	pool				
rv 3-128	conv3-128	conv3-128	conv3-128		
rv3-128	conv3-128	conv3-128	conv3-128		
max	pool				
w3-256	conv3-256	conv3-256	conv3-256		
rv 3-256	conv3-256	conv3-256	conv3-256		
	conv1-256	conv3-256	conv3-256		
			conv3-256		
max	maxpool				
w3-512	conv3-512	conv3-512	conv3-512		
w3-512	conv3-512	conv3-512	conv3-512		
	conv1-512	conv3-512	conv3-512		
			conv3-512		
	pool				
w3-512	conv3-512	conv3-512	conv3-512		
w3-512	conv3-512	conv3-512	conv3-512		
	conv1-512	conv3-512	conv3-512		
			conv3-512		
	pool				
	4096				
FC-	4096				

[Simonyan & Zisserman, 2014]

soft-max

"Deep Learning", Spring 2018: Lecture 3, "Convolutional networks"

ResNet (2015)

Simply deepening does not work:

ResNet, 152 layers (ILSVRC 2015)

[He et al. 2015]

ResNet (2015)

Q: How to ensure that the training error does not go up?

A: shortcuts

Learn F(x) instead of H(x)
[He et al. 2015]

DenseNet

 Gives the information variety of path lengths to flow along

[Huang et al CVPR17]

Recap

- Convolutional networks are the most popular and influential model in modern deep learning
- Convolutional layer is a special type of a multiplicative one with greatly reduced number of parameters
- Different ways to compute convolutions exist
- Good ConvNet architectures have been discovered

Bibliography

Yann LeCun, Bernhard E. Boser, John S. Denker, Donnie Henderson, R. E. Howard, Wayne E. Hubbard, Lawrence D. Jackel: Handwritten Digit Recognition with a Back-Propagation Network. NIPS 1989: 396-404

Alex Krizhevsky, Ilya Sutskever, Geoffrey E. Hinton: ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012: 1106-1114

Joan Bruna, Wojciech Zaremba, Arthur Szlam, Yann LeCun: Spectral Networks and Locally Connected Networks on Graphs. ICLR 2014

Kumar Chellapilla and Sidd Puri and Patrice Simard, High— Performance Convolutional Neural Networks for Document Processing

Bibliography

Karen Simonyan, Andrea Vedaldi, Andrew Zisserman:

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps.CoRR abs/1312.6034 (2013)

Karen Simonyan, Andrew Zisserman:

Very Deep Convolutional Networks for Large-Scale Image Recognition. CoRR abs/1409.1556 (2014)

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, Andrew Rabinovich: Going deeper with convolutions. CVPR 2015: 1-9

Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun: Deep Residual Learning for Image Recognition. CoRR abs/1512.03385 (2015)

Gao Huang, Zhuang Liu, Laurens van der Maaten, Kilian Q. Weinberger: Densely Connected Convolutional Networks. CVPR 2017: 2261-2269