

Figure 1

Figure 2

3H-thymidine Incorporation

Figure 4

Figure 5

1251-HP1-1D Bound

CCTTCACAGC

CTGCTTCGTG ACTCCCATGT

r L -10 Σ > L < n n

AGACTGGTGA 1 GAATTCCTGG AATACCAGCT GACAATGATT TCCTCCTCAT CTTTCAACCT CACCTCCTCT CATCTAAĞAA TTGCTCCTCG TGGTCATGCT TCTCCTAACT CTTAAGGACC TTATGGTCGA CTGTTACTAA AGGAGGAGTA GAAAGTTGGA GTGGAGAGGA GTAGATTCTT AACGAGGAGC ACCAGTACGA AGAGGATTGA Ξ د. ΛН ഗ M D r r S ᄓ я > J Ω ပ ЬА Д P A ഗ ഗ L A R L

CGTTCCGATT GCGACAGGTC GGGCCGAGGA GGACGAACAC TGGAGGCTCA GGAGTCATTT GACGAAGCAC TGAGGGTACA GGAAGTGTCG TCTGACCACT

GCAAGGCTAA CGCTGTCCAG CCCGGCTCCT CCTGCTTGTG ACCTCCGAGT CCTCAGTAAA

101

201

GAACTCCCAA CATTATCCCC TTTATCCGCG TAACTGGTAA GACACCCATA CTCCCAGGAA GACACCATCA CTTCCTCTAA CTCCTTGACC CAATGACTAT CTTGAGGGTT GTAATAGGGG AAATAGGCGC ATTGACCATT CTGTGGGTAT GAGGGTCCTT CTGTGGTAGT GAAGGAGATT GAGGAACTGG GTTACTGATA

TCTTCCCATA TIGICCCCAC CTACTGAICA CACTCTCTGA CAAGAATTAT ICTTCACAAT ACAGCCCGCA TITAAAAAGCI CICGICTAGA AGAAGGGTAT AACAGGGGTG GATGACTAGT GTGAGAGACT GTTCTTAATA AGAAGTGTTA TGTCGGGCGT AAATTTTCGA GAGCAGATCT 301

Figure

M 223263

 $1 \ \, \text{tcttcctacccatctgctccccagagggctgcctgctgtgcacttgggtcctggagcccttctccacccggatagattcctcacccttggcccgcctttg}$ -10 MetGluLeuThrGluLeuLeuLeuValValMetLeuLeuLeuThrAlaArgLeuThrLeuSerSerProAlaProProAlaCysAsp 40 LeuArgValLeuSerLysLeuLeuArgAspSerHisValLeuHisSerArgLeuSerGlnCysProGluValHisProLeuProThrProValLeuLeu 301 ACCTCCGAGTCCTCAGTAAACTGCTTCGTGACTCCCATGTCCTTCACAGCAGACTGAGCCAGTGCCCAGAGGTTCACCCTTTGCCTACACCTGTCCTGCT 60 ProAlaValAspPheSerLeuGlyGluTrpLysThrGlnMetGluGluThrLysAlaGlnAspIleLeuGlyAlaValThrLeuLeuLeuGluGlyVal 90 80 MetAlaAlaArgGlyGlnLeuGlyProThrCysLeuSerSerLeuLeuGlyGlnLeuSerGlyGlnValArgLeuLeuLeuGlyAlaLeuGlnSerLeuLeu 501 ATGGCAGCACGGGGACAACTGGGACCCACTTGCCTCTCATCCCTCCTGGGGCAGCTTTCTGGACAGGTCCGTCTCCTTCGGGGCCCTGCAGAGCCTCC 130 120 ${\tt GlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheGlyThrGlnLeuProProGlnGlyArgThrThrAlaHisLysAspProAsnAlaIlePheLeuSerPheGlnHisLeuLeuArgGlyLysValArgPheGlyThrG$ 601 TTGGAACCCAGCTTCCTCCACAGGGCAGGACCACAGCTCACAAGGATCCCAATGCCATCTTCCTGAGCTTCCAACACCTGCTCCGAGGAAAGGTGCGTTT 160 ${\tt LeuMetLeuValGlyGlySerThrLeuCysValArgArgAlaProProThrThrAlaValProSerArgThrSerLeuValLeuThrLeuAsnGluLeu}$ 190 801 CCAAACAGGACTTCTGGATTGTTGGAGACAAACTTCACTGCCTCAGCCAGAACTACTGGCTCTGGGCTTCTGAAGTGGCAGCAGGGATTCAGAGCCAAGA 220 901 TTCCTGGTCTGCTGAACCAAACCTCCAGGTCCCTGGACCAAATCCCCGGATACCTGAACAGGATACACGAACTCTTGAATGGAACTCGTGGACTCTTTCC 250 GlyProSerArgArgThrLeuGlyAlaProAspIleSerSerGlyThrSerAspThrGlySerLeuProProAsnLeuGlnProGlyTyrSerProSer 1001 TGGACCCTCACGCAGGACCCTAGGAGCCCCGGACATTTCCTCAGGAACATCAGACACAGGCTCCCTGCCACCCAACCTCCAGCCTGGATATTCTCCTTCC 290 300 280 ProThrHisProProThrGlyGlnTyrThrLeuPheProLeuProProThrLeuProThrProValValGlnLeuHisProLeuLeuProAspProSerAla ProThrProThrProThrSerProLeuLeu<mark>AsnThrSer</mark>TyrThrHisSerGln<mark>AsnLeuSer</mark>GlnGluGly 1201 CTCCAACGCCCACCCCTACCAGCCCTCTTCTAAACACATCCTACACCCACTCCCAGAATCTGTCTCAGGAAGGGTAAggttctcagacactgccgacatc

1301 agcattgtctcatgtacagctcccttccctgcagggcgcccctgggagacaactggacaagatttcctactttctcctgaaacccaaagccctggtaaaa

1401 gggatacacaggactgaaaagggaatcatttttcactgtacattataaaccttcagaagctatttttttaagctatcagcaatactcatcagagcagcta

1501 gctctttggtctattttctgcagaaatttgcaactcactgattctctacatgctctttttctgtgataactctgcaaaggcctgggctggcctggcagtt

1601 gaacagagggagagactaaccttgagtcagaaaacagagaaagggtaatttcctttgcttcaaattcaaggccttccaacgcccccatcccctttactat

MEETKAODILGAVTLLLEGVMAARGOLGPTCLS--SLLGOLSGOVR EVGOOAVEVWOGLALLSEAVLRGOALLVMSSOPWEPLOLHVDKAVS Q H L L R G K V R F L - R K L F R V Y S N F L R × م ш∢ <u>۔</u> ا SPAPPACDLRVLSKLLRDSHVLHSRLSQCPEVHPLPTPVLLPAVDFSLG APPRLICDSRVLERYLLEAKEAENIITGCAEHCSLNEMITVPDTKVNFY S FTA QYTLFP œ RTSGLLETN G z ELL 9 G w _ H O L S 99 LL - - LGALOS LLGTO - - - LPPOGRTTAHKDPNAIFLSF 101 GLRSLTTLLRALGAOKEAISPPDAASAAPLRTITADTF œ ۵ PGYLN Ŧ 0 zELP ۵. PTPTPTSPLLNTSYTH လ ۵ П О RTSLVLTLN S > 5 SLD ؎ O ∝ z S LLNOT م ر ا PPTTAVPS R S 9 D 1 ပ AKIP S × DPS R A G D ~ S S PLLP u_ O - M L V G G S T L C V R K L K L Y T G E A C R T G O \Box O ۵. 3 RTLGA¥ PVVQL <u>ر</u> ا 9 S ~ 0 E 9 S RTT ۵. **⊢** ∝ 3 3 2 2 G _ 51 143 h-epo h-ML h-epo h-epo h-epo h-ML h-ML 카 두

Figure 9

1401 TCTTTGGTCT ATTTTCGGTA TAAATTTGAA AATCACTAAT TCT

0			v			ຜ					
AspvalaspPro GACGTCGACC	euGlyAlaVal TAGGGGCAGT	100 lArgLeuLeu TCGCCTCCTC	LeudrgGlyLys ctrcGGGGAA	euLeuThrLeu TCCTCACACT	200 uGlnGlyPhe TCAGGGATTC	AsnGlyThrHi <u>AATGGAACT</u> C	euGlnGlyGly TCCAGGGTGG	300 nLeuHisPro GCTCCACCC	Thr ACATAGCGCG	GCTTTCACCT	CTAGCGA
Asp\ GACC	euG] TAG	lare		eul	uG1) TCA	ASD	eug TCC	nLe			CAG
rGlnCysPro TCAGTGTCCC	60 nSerLysAla GlnAspIleL GAGCAAGGCA CAGGACATTC	erGlyGlnVa CTGGGCAGGT	130 heLeuSerLe uGinGlnLeu TCTTGAGCTT GCAACAACTG	ThrSerGlnL ACTTCTCAAC	euSerArgLe TGAGCAGGCT	230 sGlyProval cGGACCTGTG	AlaPheAsnL GCATTCAACC	erProProGl CTCCACCCCA	330 roArgasnLe uSerGinGlu CCAGGAATTT GTCTCAGGAA	CAGATGTTCT	TTCATCAGAG
erArgLeuSe GCCGACTGAG		GlyGlnLeuS GGACAGCTTT	heLeuSerLe TCTTGAGCTT	160 lProSerSer CCCAAGCAGT	ProGlyLeuL CCTGGACTTC	GlyTyrLeuA snArgThrHi GGATACCTGA ACAGGACACA	260 sGlySerLeu AGGCTCCCTG	ThrHisGlyS ACCCATGGAT		GCATCTGCTC	ATCAGCAATA
LeuLeuHisS CTCCTTCACA	lnThrGluGl AGACGGAACA	90 rSerLeuLeu ATCCCTCCTG	AsnalaLeuP AATGCCCTCT	hrThrAlaVa ccacagcTGT	190 gThralaGly AACTGCTGGC		laPheAsnLy CTTTCAACAA	290 aleuProThr CTTGCCCACC	Tyr ProHisP TACCCTCATC	AGAGGCAGCT	TTTTAACCT
gAspSerHis TGACTCCCAC	TrpLysThrG TGGAAAACCC	erCysLeuSe CCTGCCTCTC	120 sLysAspPro CAAGGACCCC	ThrLeuProT ACCCTGCCAA	alThrAlaAr TCACAGCCAG	220 lGlnIleSer CCAAATCTCT	SerProGlyA TCGCCCGGAG	roSerProAl CTTCACCTGC	320 ovalThrMet AGTCACAATG	AGGAAGGCTG	GAGCTATTTT
ysLeuLeuAr AACTGCTGCG	50 rLeuGlyGlu CCTGGGAGAA	LeuGluProS TTGGAACCCT	hrThrAlaHi ccacaGCTCA	150 sValArgArg TGTCAGACGG	AsnPheserV AACTTCAGTG	rgSerProVa GGTCCCCAGT	250 aSerAspile CTCAGACATC	ProPheProP CCCTTCCCTC	laProHisPr CCCCTCATCC	AAGCTTCCCC	AAAATTTTAG
LeuLeuAsnL CTCCTAAATA	alAspPheSe TGGACTTTAG	80 aArgGlyGln ACGAGGACAG	GlnGlyArgT CAGGGCAGGA	roThrLeuCy	180 ProAsnArgT hrSerGlyLe uLeuGluThr CCAAACAGGA CTTCTGGATT GTTGGAGACG	210 yGlnLeuAsn GlnThrSerA TCAGCTAAAT CAAACCTCCA	SerLeuGlnT hrLeuGluAl TCACTTCAGA CCCTGGAAGC	280 pGlyHisThr TGGACACACA	AsnSerThrA AACTCTACCG	CTGCAGCTTC TCTCGGGGAC AAGCTTCCCC	TACACAGCAC TGGAGATTGT AAAATTTTAG GAGCTATTTT TTTTTAACCT ATCAGCAATA TTCATCAGAG CAGCTAGCGA
SASPProArg TGACCCCAGA	LeuProAlaV CTGCCTGCTG	alMetAlaAl TGATGGCAGC	110 uLeuGlyThr CCTAGGAACC	ValGluGlyP GTAGAAGGTC	170 AsnLysPhe ProAsnArgT hrSerGlyLe AAACAAGTTC CCAAACAGGA CTTCTGGATT			euAlaProAs TTGCTCCTGA	310 rThrMetPro		. TACACAGCAC
laProAlaCy CrccrGccrG	40 eProValLeu cccrGTTCTG	LeuGluGlyV CTGGAGGGAG	LeuGlyAlaL euGlnGlyLe TYGGGGGCCC TGCAGGGCCT	140 eleuleuleu ccrgcrrcrg	ProAsnArgT CCAAACAGGA	leThrProGl TTACTCCTGG	240 GlyLeuPh eAlaGlyThr ATGGGCTCTT TGCTGGAACC	270 Leupropro SerProSerL ACTTCCTCCT TCTCCAAGCC	LeuPheProA spProSerTh CTGTTTCCTG ACCCTTCCAC	: CAGTGAGCGI	. GGGGAAGGGA
SerProValA AGCCCCGTAG	LeuSerIl CTTTGTCTAT	70 SerLeuLeu GTCCCTTCTA		ValArgPh 601 AGGTGCGCTT		ArgValLysI AGAGTCAAGA	GlyLeuPh ATGGGCTCTT	270 LeuProPro ACTTCCTCCT		1201 GGCACTGGCC CAGTGAGCGT	1301 AAAAGGCCCT GGGGAAGGGA
201	301	401	501	, 601	701	801	901	1001	1101	1201	1301

-10
Met GluLeuThrA spleuLeuLe uAlaAlaMet LeuLeuAlaV alAlaArgle uThrLeuSer
101 ATACAGGGAG CCACTTCAGT TAGACACCT GGCCAGAATG GAGCTGACTG ATTTGCTCT GGCGGCCATG CTTCTTGCAG TGGCAAGACT AACTCTGTCC

10

1 GAGTECTTGG CCCACCTCT TCCCACCCGA CTCTGCCGAA AGAAGCACAG AAGCTCAAGC CGCCTCCATG GCCCCAGGAA AGATTCAGGG GAGAGGCCCC

```
1 SPAPPACDLRVLSKLLRDSHVLHSRLSQCPEVHPLPTPVLLPAVDFSLGE
hML
     1 SPVAPACOPRILINKLIRDSHILLHSRLSOCPOVOPLS IPVLLPAVOFSIGE
mML
     51 WKTQMEETKAQDILGAVTLLLEGVMAARGQLGPTCLSSLLGQLSGQVRLL
hML
     51 WKTQTEQSKAQDILGAVSLLLEGVMAARGQLEPSCLSSLLGQLSGQVRLL
mML
        GALQS LLGTQLPPQGRTTAHKDPNA I FLSFQHLLRGKVRFLMLVGGSTL
hML
        GALOGLLGT - - - QGRTTAHKDPNALFLSLQQLLRGKVRFLLLVEGPTL
mML
    151 CVRRAPPTTAVPSRTSLVLTLNELPNRTSGLLETNFTASARTTGSGLLKW
hML
    147 CVRRTLPTTAVPSSTSQLLTLNKFPNRTSGLLETNFSVTARTAGPGLLSR
mML
    201 QQGFRAKI). PGLL NQTSRSLDQIPGYLNAIHELLNGTRGLFPGPSRATLG
hML
    197 LQGFRVKITPGQLNQTSRSPVQISGYLNRTHGPVNGTHGLFAGTSLQTLE
mML
    250 APDISSGTSDTGSLPPNLQPGYSPSPTHPPTGQYTLFPLPPTLPT. - PV
hML
    247 ASDISPGAFNKGSLAFNL QGGL PPSPSLAPDGH - TPFPPSPALPT HGSP
mML
    297 VQLHPLLPDPSAPTPTTSPLLNTSYTHSQNLSQEG
296 PQLHPLFPDPSTTMPNSTAPHPVTMYPHPRNLSQET
hML
mML
```

Figure 11

Figure 12