```
lateral acceleration
a_{v}
           slip velocity dependency coefficient for friction
a_{\mu}
           rolling resistance coefficient
A_r
h
           distance rear axle to c.g.; half contact width
R
           stiffness factor in 'Magic Formula'
B_1
           brake force of rolling wheel
           stiffness: factor
c
           lateral carcass stiffness per unit length
c_c
           non-dimensional gyroscopic coefficient
c_{\rm gyr}
           tread element stiffness per unit length of circumference
c_{px,y}
C'_{px}
C'
           tread element longitudinal stiffness per unit area
           cornering stiffness; sum front and rear
C_i
           cornering stiffness, sum left and right
\boldsymbol{C}
           contact centre (point of intersection)
C
           shape factor in 'Magic Formula'
C_{dA}
           air drag coefficient
C_{Fx}
           longitudinal stiffness of standing tyre
           lateral stiffness of standing tyre
C_{Fv}
C_{F_7}
           stiffness of tyre normal to the road
C_{F\alpha}
           cornering stiffness
C_{F_{\kappa}}
           longitudinal slip stiffness
           camber stiffness for side force
C_{F\gamma}
           spin stiffness for side force
C_{Fo}
C_{\rm gvr}
           tyre gyroscopic coefficient
C_{M\alpha}
           aligning torque stiffness
C_{M\gamma}
           camber stiffness for aligning torque
C_{M\omega}
           spin stiffness for aligning torque
           torsional yaw stiffness of standing tyre
C_{M\psi}
C_{Mx\gamma}
           overturning couple stiffness against camber
           carcass horizontal stiffness of standing tyre
C_{cx,v}
           gyroscopic coefficient
C_{\rm gyr}
df_z
           normalised change in normal load, Eq.(4.E2a)
           normalised change in inflation pressure, Eq.(4.E2b)
dp_i
```

distance front axle to c.g.; half of contact length

longitudinal acceleration

a

 a_x

```
d_t
           tread depth
D
           peak factor in 'Magic Formula'; dissipation function
\boldsymbol{E}
           curvature factor in 'Magic Formula'
e.
           caster length; tread element deflection
f
           trail of c.g.; frequency [Hz]
           rolling resistance coefficient
f_r
F_{ax}
           force for forward acceleration
F_d
           air drag force
F_{x,\text{tot}}
           sum of longitudinal tyre forces
F_{x}
           longitudinal tyre force
F_{\nu}
           lateral tyre force
F_z
           vertical (normal) tyre force (load) (>0), in Chap.9,10: F_z < 0
F_r
           rolling resistance force (>0)
F_N
           tyre normal force (>0)
           reference vertical load, nominal load (= |F_{zo}|)
F_{No}
F_V
           tyre vertical force
F_H
           tyre longitudinal horizontal force
           acceleration due to gravity; feedback rider control gain
g
G
           weighting factor
h
           height
Н
           height; sharpness factor in 'Magic Formula'
Н
           transform: Hurwitz determinant
           \sqrt{-1}
           radius of inertia
i_7
           moment of inertia
I_{w}
           wheel polar moment of inertia
I_p
           wheel polar moment of inertia
           \sqrt{-1}
j
k
           radius of inertia; viscous damping coefficient
K
           centrifugal force; force acting on belt, wheel centre
           wheel base
l_{\varsigma}
           shift; two-point follower length
l_b
           length of basic curve
l_f
           offset
1
           unit vector along line of intersection
           mass; fraction of contact length 2a where adhesion occurs
m
           contact patch mass
m_c
m_t
           mass of mainframe (including lower part of rider)
m_m
m_{mr}
           mass of mainframe plus rider
           mass of upper torso
m_r
M_{B,D}
           brake, drive torque
```

 $M_{\rm r}$ overturning couple M_{ν} rolling resistance moment M_{τ} (self) aligning torque M_{z}^{\prime} (self) aligning torque due to lateral deflections M_{z}^{*} aligning torque due to longitudinal deflections gyroscopic couple $M_{z,gvr}$ M_{δ} steer torque number of elements; frequency [Hz] unit vector normal to the road $=(0,0,-1)^{T}$ n n_{st} steer system ratio Laplace variable [1/m] pinflation pressure p_i average vehicle yaw resistance arm; generalised coordinate qcontact force per unit length of circumference, vector qQ generalised force yaw rate; tyre (loaded) radius radius of carcass (belt), unloaded; cross section crown radius r_c free tyre radius varying along cross section contour, $r_{vo} = r_{vo}(y_{co})$ r_{vo} effective rolling radius of freely rolling wheel r_e free unloaded tyre radius r_f loaded radius r_l free unloaded tyre radius (= R_o) r_o R radius of curvature R_{o} free unloaded tyre radius (= r_o) forward position of neutral steer point; half track width S Laplace variable; travelled distance S S_{SX} κ (practical longitudinal slip component) $tan\alpha$ (practical lateral slip component) S_{SV} S unit vector along wheel spin axis S wheel slip point; impulse; string tension force $S_{V,H}$ vertical, horizontal shift pneumatic trail; time caster length t_c rise time t_r t unit vector in road plane perpendicular to line of intersection \boldsymbol{l} Tkinetic energy; moment acting on belt, wheel centre forward velocity of c.g.; longitudinal deflection и Upotential energy lateral velocity of c.g.; lateral deflection 12 Vspeed of travel of c.g. (with x, y components) Vspeed of travel of wheel centre (with x, y components) V_c speed of contact centre C (with x, y components)

 V_{g} speed of sliding (with x, y components) V_{α} reference velocity = $\sqrt{(gR_o)}$ wheel linear speed of rolling (= $V_{cx} - V_{sx}$) V_s wheel slip velocity of slip point S (with x, y components) V_{x} longitudinal speed component of wheel centre V_{ς}^* velocity of contact patch mass (with x, y components) vertical road (effective) profile (positive downwards) w W work longitudinal, lateral, vertical displacement x, y, zx, y, zcoordinates with respect to moving axes system, z axis vertical x^{o}, y^{o}, z^{o} global coordinates \overline{X} , \overline{Y} , \overline{Z} global coordinates X longitudinal horizontal tyre force X, Y, Zglobal coordinates distance from wheel centre plane y_{co} lateral offset of m_{mr} c.g. y_{mr} wheel (side) slip angle; axle (side) slip angle α road transverse slope angle α α' transient tyre slip angle virtual axle slip angle α_a β vehicle side slip angle; tyre yaw torsion angle $\beta_{x,y}$ road transverse, forward (effective) slope angle gyroscopic wheel coupling coefficient, Eq.(6.35) β_{gvr} camber (wheel inclination) angle γ γ' transient tyre camber angle Γ unit step response function δ steer angle of front wheels δ_o $\approx l/R$, steer angle at $V \rightarrow 0$ Δ increment roll steer coefficient; rake angle of steering axis ε string length ratio, Eq.(5.153); eff. roll. radius gradient $-\partial r_e/\partial d_t$ ε ε small quantity to avoid singularity camber stiffness reduction factor ε_{γ} non-lagging part ε_{NL} ζ damping ratio; spin factor (=1 if spin influence is disregarded) ζ_h height ratio, Eq.(6.36) ζ_{α} cornering stiffness load transfer coefficient ζ_{γ} camber stiffness load transfer coefficient understeer coefficient; effective rolling radius gradient $-\partial r_e/\partial \rho_z$ η c.g. offset steer coefficient η_{ν} tyre model parameter, Eqs.(3.6,3.24,3.46)

heta	angular displacement about η axis; pitch angle
θ_c	string model composite parameter, Eq.(5.160)
κ	longitudinal wheel slip
κ'	transient longitudinal tyre slip
κ*	damping coefficient due to tread width
λ	wavelength; root characteristic equation
λ	fraction of 2a where adhesion occurs; user scaling factor
μ	coefficient of friction
ρ	tyre radial (vertical) deflection
$\rho_{x,y,z}$	tyre longitudinal, lateral, normal deflection
σ	relaxation length; load transfer coefficient
σ	theoretical slip, vector, Eq.(3.34)
σ^*	intersection length in string model with tread elements
σ_c	string model length parameter, Eq.(5.153)
σ_c	contact patch relaxation length
τ	roll camber coefficient
φ	body roll angle; spin slip
arphi'	transient spin slip
φ_t	turn slip
φ	phase angle
ψ	yaw angle; steer angle
$\psi_{\mathrm{c}1}$	compliance steer angle
ψ_{io}	toe angle
ω	frequency [rad/s]
$\omega_{ m o}$	undamped natural frequency
$\omega_{1,2}$	natural frequencies
$\omega_{ m n}$	damped natural frequency
$\omega_{ m s}$	path frequency [rad/m]
Ω	wheel speed of revolution
ξ,η,ζ	moving axes system, η axis along spin axis, ξ horizontal

SUBSCRIPTS AND SUPERSCRIPTS

a	axle; from belt to wheel rim centre
b	belt; from belt centre to rim
c	compliance (steer)
c	contact patch; from contact patch centre to belt; crown; contour
D	drag
e	effective
eff	effective (cornering stiffness)

eqequivalent f free, unloaded; of front frame global g i 1: front, 2: rear L.Rleft, right of mainframe m mr of mainframe plus rider NLnon-lagging original; initial; average; unloaded; nominal; at vanishing 0 speed; natural roll; rolling; rolling resistance; of residual spring; of rider slip; from road surface to contact patch; of front sub-frame slat verge of total sliding side force (steer) sf steady state SS static st stw steering wheel transition from adhesion to sliding t wheel w x, y, zforward (longitudinal), lateral (to the right), downward residual (torque) zr ξ,η,ζ along, around ξ, η, ζ axes 0 at zero condition 1,2 front, rear; leading, trailing edge