WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

(51) International Patent Classification 6:		(11) International Publication Number: WO 97/49643
C03C 13/00	A1	43) International Publication Date: 31 December 1997 (31.12.97)
(21) International Application Number: PCT/GB (22) International Filing Date: 20 June 1997 ((30) Priority Data: 9613023.2 21 June 1996 (21.06.96) (71) Applicant (for all designated States except US): TH GAN CRUCIBLE COMPANY PLC [GB/GB]; House, Madeira Walk, Windsor, Berkshire SL4 IB (72) Inventors; and (75) Inventors/Applicants (for US only): IUBB, Gathony [GB/GB]; 11 Lawnswood House, Church Stourport-on-Severn, Worcestershire DY13 90: EATON, Paul, Nigel [GB/GB]; 5 Lisle Avenu Park, Kidderminster, Worcestershire DY11 7D: Kidderminster, Worcestershire DY14 9RU (GB). Alison, Jane [GB/GB]; 11 Mayfield Close, Femda Kidderminster, Worcestershire DY11 5NG (GB). (74) Agent: PHILLIPS & LEIGH; 7 Staple Inn, Holborn WC1V 7QF (GB).	20.06.9 IE MO. Morg SP (GB Avent X (GH te, Fol DE (GI te, Roc LOW le Esta	BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE GH, HU, IL, IS, IP, KE, KG, KP, KR, KZ, LC, LK, LR LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN ML, MR, NE, SN, TD, TG). Published With international search report.

(57) Abstract

The use of P_2O_5 and/or B_2O_3 as a component to improve the refractoriness of inorganic fibres comprising SiO₂, and CaO and/or MgO is described. The inorganic fibres have a composition such that SiO₂ + P_2O_5 -(58 + (if MgO > 10, 0.5 x (MgO-10) else 0)) > -2.4 wt.%.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	Fi	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	Prance	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobugo
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil -	ΙL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of Americ
CA	Canada	ΙT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	YN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivotre	KP	Democratic People's	NZ.	•	,	
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cube	KZ	Kazakutan	R	Romania		_
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	u	Liechtenstein	SD	Sudan		
DK	Denmark	1.K	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG.	Singapore		

. 1

SALINE SOLUBLE INORGANIC FIBRES

This invention relates to saline soluble inorganic fibres.

Saline soluble inorganic fibres have been described in several patent specifications, see for example WO93/15028. Fibres are required to be soluble in saline solution so that inhaled or ingested fibres dissolve rather than providing a source of irritation or otherwise affecting health. WO93/15028 showed that fibres comprising SiO₂, CaO and MgO and having a silica content of greater than 58% (or greater than 58% plus 0.5 times (wt%MgO - 10) if MgO > 10wt%) had suitable shrinkage characteristics at 800°C and 1000°C to be usable as refractory materials. A further feature of WO93/15028 was the use of the percentage of non-bridging oxygens present to predict the solubility of fibres in physiological saline solution.

Various subsequent applications have described the effect of P_2O_5 and B_2O_3 on solubility - see for example WO95/29135. P_2O_5 is alleged to have a solubilising effect on such fibres.

The German government have proposed a fibre classification which turns on a variable K_I which is defined as:

 $K_I = \Sigma$ (Na,K,B,Ca,Mg,Ba -oxide) - 2* Al-oxide (the amounts of the oxides being expressed as weight %)

According to the proposed fibre classification if K_I is greater than 40 the fibre requires no health warnings. If K_I lies between 30 and 40 the fibre requires health warnings to be made. If K_I is less than 30 more serious marking is required (it is labelled as a carcinogen). It is readily apparent that it is difficult to provide a high K_I fibre ($K_I > 40$) while still providing a refractory fibre like that of WO93/15028 (SiO₂>58wt%), there being a very narrow window of compositions to meet.

As a result of investigating fibre compositions that may meet the fibre classification and yet still be refractory enough to meet the standard of WO93/15028 (shrinkage of less than 3.5% at both 800°C and 1000°C) the applicants have found that addition of P_2O_5 to compositions allows a broader range of refractory fibres to be produced than had previously been appreciated. They have also found that P_2O_3 , previously thought to be

extremely detrimental to refractoriness, has a similar, although lesser, effect and that both P_2O_5 and B_2O_3 may be used in the fibres of WO93/15028.

The applicants have found that the refractoriness of the P_2O_5 and B_2O_3 containing fibres of the present invention is dependent on the sum of the amounts of SiO_2 and P_2O_5 (expressed in wt%)

It appears that a further factor that may be important in determining the refractoriness of a fibre is the percentage of non-bridging oxygens. If this percentage is 61.4% or more (calculated on the basis of the amounts of the components SiO₂, CaO, MgO, P₂O₅, and B₂O₃) the fibres tend to fail shrinkage tests at 800°C and 1000°C (failure being defined as a shrinkage of 3.5% or more).

Accordingly the present invention provides the use of P_2O_5 and/or B_2O_3 as a component to improve the refractoriness of inorganic fibres comprising SiO_2 , and CaO and/or MgO, the inorganic fibres having a composition such that

$$SiO_2 + P_2O_5 - (58 + (if MgO > 10, 0.5 \times (MgO - 10) else 0)) > -2.4wt%$$

The invention provides further such fibres in which the percentage of non-bridging oxygens is less than 61.4%.

Further features of the invention are apparent from the claims in the light of the following description.

The percentage of non-bridging oxygens (%N.B.O.) is calculated by converting the weight percentages of SiO₂, CaO, MgO, P₂O₅, and B₂O₃ to molar amounts and inserting these amounts into the equation:-

%N.B.O. =
$$\frac{2*(CaO + MgO + P_2O_5 + B_2O_3)}{(2*SiO_2 + CaO + MgO + 5 \times P_2O_5 + 3 \times B_2O_3)} \times 100$$

The reason the amounts of CaO, MgO, P_2O_5 , and B_2O_3 are doubled in the numerator to this equation is that each contributes two non-bridging oxygens. The reason terms are multiplied in the denominator to this equation is to reflect the number of oxygen atoms each molecular formula possesses.

Table I shows the results of a first set of shrinkage and solubility tests on compositions comprising SiO₂, CaO, MgO, P₂O₅, and B₂O₃ as main

ingredients. In this table the analysed compositions are normalised to 100%. It is clear from these compositions that where the percentage of non-bridging oxygens calculated on the basis of the amounts of the above named components is greater than 61.4% (those fibres lying above line A of Table I) the fibres fail the shrinkage tests, having shrinkages of greater than 3.5% at either or both of 800°C and 1000°C.

WO93/15028 stressed the importance of alumina content and the fibres lying between lines B and A of Table I show that alumina contents of greater than 1wt% are damaging to the shrinkage properties of fibres.

The applicants have also found that the combined amount of CaO and MgO is important. Those fibres lying between lines C and B have a combined CaO and MgO content of greater than 42wt% and also fail the shrinkage tests.

The fibres below line C have a percentage of non-bridging oxygens less than 61.4%, an alumina content of less than 1wt%, and a combined CaO and MgO content of less than 42wt%. All of these fibres pass the shrinkage tests. These fibres fall within the compositional ranges:-

SiO ₂	52.4 - 57.85wt%
CaO	22.2 - 39.4wt%
MgO	1.96 - 17.4wt%
P_2O_5	0.82 - 7.8wt%
B_2O_3	0 - 1.95wt%
Al_2O_3	<1wt%

The solubility results presented in Table I were obtained by the methods described in WO93/15028 and show a high solubility for all of the fibres produced.

It can be seen that all of the fibres below line C have a K_1 of more than 35 and more than half have a K_1 of more than 40.

Further testing resulted in the data presented in Table II. The data presented are as in table I but an additional column entitled deviation shows the result of looking to the difference between the sum of the SiO₂ and P₂O₅ contents and the SiO₂ amount predicted to be needed by WO93/15028 for a fibre to be refractory (shrinkage of less than 3.5% at both 800°C and 1000°C. The figure given is found by calculating the sum

 $SiO_2 + P_2O_5 - (58 + (if MgO > 10, 0.5 \times (MgO - 10) else 0))$

If this is less than -2.4wt% the fibres fail. The fibres that failed are shown in plain text, those that passed in bold text, and those that were difficult to form in italics.

More than 12.5wt% P_2O_5 is undesirable as it causes difficulties in making the fibres.

While the above description and the claims refer to P_2O_5 , B_2O_3 , SiO_2 , CaO and MgO it will be clear to the person skilled in the art that the pure materials need not be used and that provision of these components in combined form (e.g. provision of P_2O_5 in the form of mixed oxide phosphates) is part of the invention.

Chemica	Chemica	Chemics	31	2	postto	Chemical Composition (XRF - Weight percent)	Weight	()	1 1	1 }	Ι-τ	2	Shrinkage		1 H	Solubility (ppe	(E.				% N.B.O.	
CaO MgO P205 SiO2 A1203 Na.20 K20 B2O	P205 Si02 A1203 Na.20 K20	SiO2 Al2O3 Na2O K2O	102 A1203 Na.20 K20 B20	1203 Na 20 K20 B20	120 K20 B10	20 820	01	B103 F203	_	Z _{CO2}	S S	-	2008	1000 1	3	Q.	Sign	B203	Total	CaO + MgO		
24.95 19.18 3.41 \$1.69 0.25 0.30 0.05	3.41 51.69 0.25 0.30	51.69 0.25 0.30	0.25 0.30	0.30	<u> </u>	.03		6	0.17	< 0.05	< 0.03	40.	40.0	40.0	23	88	T.		328	4.1	68.5%	
24.81 18.66 5.10 50.42 0.38 0.31 <0.05	5.10 50.42 0.38 0.31	50.42 0.38 0.31	0.38 0.31	0.31	_	203		ō	0.17 0	0.15	< 0.03	43.0	23.9	39 30 30 30 30 30 30 30 30 30 30 30 30 30	8	113	193		367	43.47	68.1%	
25.13 19.07 2.51 52.54 0.28 0.25 0.05	2.51 52.54 0.28 0.29	52.54 0.28 0.29	0.28 0.29	0.23		.0S		0	0.17	< 0.05	< 0.05	43.9	46.8	39.1	22	2	7		323	44.20	68.0%	
31.83 12.27 3.39 51.59 0.26 0.42 0.06	3.39 51.59 0.26 0.42	51.59 0.26 0.42	0.26 0.42	0.42		8		0	0.17	< 0.03	< 0.03	=======================================	49.1	_	۶	76	200		355	4	\$1.39	
24.48 17.89 2.48 54.46 0.21 0.28 0.05	2.48 54.46 0.21 0.28	54.46 0.21 0.28	0.21 0.28	0.28		SO:		0	0.16	< 0.05	< 0.03	42.3	3.62	19.1	**	8	169		317	42.37	64.7%	
24.04 17.78 3.31 53.85 0.31 0.26 0.05	3.31 53.85 0.31 0.26	53.85 0.31 0.26	0.31 0.26	0.26		50		0	0.15	0.25	< 0.05	41.5	3.71	4.77	8	28	180		331	41.83	64.3%	
24.22 17.17 4.91 52.72 0.33 0.30 < 0.05	4.91 52.72 0.33 0.30	52.72 0.33 0.30	0.33 0.30	0.30	÷	0.00		0	0.14	0.21	<0.05	41.0	3.63	5.39	65	90	161		362	41.40	\$1.35	
5.54	3.41 51.22 0.40 0.42	51.22 0.40 0.42	0.40 0.42	0.42		101		0	0.16	0.38	<0.05	43.6	45.2	43.8	:	32	161		300	43.94	. 63.9%	
5.56	2.57 52.23 0.34 0.46	52.23 0.34 0.46	0.34 0.46	0.46		20		0	<u>√</u>	< 0.05	< 0.03	40.4	42.90		2	8	8		310	44.18	63.7%	
11.01 4.90	4.90 51.96 0.30 0.45	51.96 0.30 0.45	0.30 0.45	0.45		50:		6	0.15	0.25	< 0.05	# #	3.24	3.92	200	69	<u>6</u>		338	41.95	63.0%	
27.95 3.26	3.26 57.2 < 0.05 0.13	57.2 < 0.05 0.13	< 0.05 0.13	0.13	_	0.03		Ö	0.17	< 0.05	< 0.05	39.4	5.72	5.26	2	117	188		335	39.23	63.0%	
30,93 11,35 3,36 53,52 0,32 0,31 0,06	3,36 53.52 0,32 0,31	53.52 0.32 0.31	0.32 0.31	0.31	_	8		6	0.15	< 0.03	<0.05	42.0	2.55	30.1	E	72	207		361	42.27	62.6%	
31.05 11.35 2.52 34.14 0.32 0.31 0.06	2.52 34.14 0.32 0.31	34.14 0.32 0.31	0.32 0.31	0.31		8		Ö	0.16	0.10	< 0.03	42.1	3.38	29.7	2	=	200		320	42.40		
36 89 5.70 5.05 51.22 0.31 0.43 0.10	5.05 51.22 0.31 0.43	51.22 0.31 0.43	0.31 0.43	0.43		01.10		Ö	0.16	0.13	< 0.03	42.5	3.4	5.03	80 80	35	202		327	42.59		
	6.70 52.58 0.25 0.29	52.58 0.25 0.29	0.25 0.29	0.29	_	0.05		0	0.14	0.46	< 0.03	39.4	23.3	29.5	7	<u>\$</u>	14		350	39 58		
27.85 3.29	3,29 58.18 < 0.05 0.15	58.18 < 0.05 0.15	< 0.05 0.15	0.15		0.05		Ö	0.16	< 0.05	< 0.05	38.4	10.9	15.5	38	132	152		33	38.23	_	4
24.9 11.5 4.89 54.8 2.06 0.28 0.05 <0.05	4.89 54.8 2.06 0.28 0.05	54.8 2.06 0.28 0.05	2.06 0.28 0.05	0.28 0.05	0.05		2.05	-	1.38	<0.05	<0.05	32.6	32.1		r	7	140		286	36.40		1
11 1 62	1.62 36.6 1.38 0.29 0.07	56.6 1.38 0.29 0.07	1.38 0.29 0.07	0.29 0.07	0.07		2.05	•	0.26	<0.05	<0.05	37.3	3.07	3.61	83	69	159		310	39.70	58.4%	~
40.29 2.09 1.23 55.09 0.43 0.39 0.12	1.23 55.09 0.43 0.39	55.09 0.43 0.39	0.43 0.39	0.39	L	112	Γ	٥	0.19	0.17	< 0.05	42.0	45.9		76	10	306		282	42.38		
5.58 2.54	2.54 54.19 0.39 0.46	54.19 0.39 0.46	0.39 0.46	0.46	_	70.0		0	0.15	< 0.05	< 0.05	43.0		35.5	28	X	208		ğ	2 2		
39.40 1.96 2.22 55.25 0.45 0.41 0.10	2.22 55.25 0.45 0.41	55.25 0.45 0.41	0.45 0.41	0.41	! —	01.0	l	Ļ	0.21	<0.05	< 0.05	41.0	1.74	2.04	2	=	209			41.36	_	
9.48	0.85 55.63 0.27 0.30 0.07	55.63 0.27 0.30 0.07	0.27 0.30 0.07	0.30 0.07	0.07	_	•		0.16	> 50.0>	< 0.05	42.5	1.20	232	£2	3	194	20				
29.83 10.45 3.34 55.65 0.21 0.32 0.05	3.34 55.65 0.21 0.32	55.65 0.21 0.32	0.21 0.32	0.32		0.03		_	0.15	< 0.05 <	< 0.05	40.3	<u>26</u>	2.76	\$	52	22		282			
30.44 9.81 1.68 57.3 0.25 0.31 0.07	1.68 57.3 0.25 0.31	57.3 0.25 0.31	0.25 0.31	0.31		0.07		_	0.15	<0.05	< 0.05	10	\$	٤.	9/	51	881		315			
30.51 9.68 1.68 56.19 0.28 0.32 0.07 1.11	1.68 56.19 0.28 0.32 0.07	56.19 0.28 0.32 0.07	0.28 0.32 0.07	0.32 0.07	0.07		Ξ		0.15		< 0.05	=	0.97	* 8.	62	*		. 12				
30,55 9.56 0.86 57.13 0.27 0.33 0.07 1.08	0.86 57.13 0.27 0.33 0.07	57.13 0.27 0.33 0.07	0.27 0.33 0.07	0.33 0.07	0.07		\simeq	_	0.15	<0.05	< 0.05	=	70.	<u></u>	2	65						
17.4 3.98 55.2 0.31 0.31 0.05	3.98 55.2 0.31 0.31 0.05	55.2 0.31 0.31 0.05	0.31 0.31 0.05	0.31 0.05	0.03	_	ø	<0.05	=	<0.0>	<0.05	39.3	1.97	2.14	58	3	197		329			
4.73 0.82	0.82 37.84 0.31 0.30 0.08	57.84 0.31 0.30 0.08	0.31 0.30 0.08	0.30 0.08	80.0		Š	_	0.15	\$0.05	< 0.05	40.3	1.07	1.40	=	25	175	_		39.56		
16 10 4 27 54 25 0 46 0.24	427 5425 046 0.24	54.25 0.46 0.24	0.46 0.24	0.24		0.03			0.16	0.58	< 0.05	38.8	2.34	3.05	8	8						
4.73 1.67 57.39 0.27 0.30	1.67 57.39 0.27 0.30 0.08	57.39 0.27 0.30 0.08	0.27 0.30 0.08	0.30 0.08	80.0		8		_	_	< 0.05	40.0	1.47	1.93	32	33	203	9				
13.66 3.33 57.01 0.24 0.22 0.06	3.33 57.01 0.24 0.22 0.06	57.01 0.24 0.22 0.06	0.24 0.22 0.06	0.22 0.06	90.0			_	0.14	< 0.05	0.03	38.7	<u></u>	1.7	63	8	175		725			
6.87 7.8	7.8 52.4 0.52 0.34 0.05	52.4 0.52 0.34 0.05	0.52 0.34 0.05	0.34 0.03	0.03		Ö		0.13	0.18	<0.05	38.2	1.24	1.53	2	4	203		337			
4.75 0.86 57.85 0.38 0.31	0.86 57.85 0.38 0.31 0.08	57.85 0.38 0.31 0.08	0.38 0.31 0.08	80'0 16'0	80.0		5		0.15	<0.05	< 0.05	0.04	1.15	2.39	\$	32		22				
4.56 3,73 56.95 0.36 0.43 0.06	3,73 \$6,95 0.36 0.43 0.06	\$6.95 0.36 0.43 0.06	0.36 0.43 0.06	0.43 0.06	90.0				0.14	0.07	< 0.05	38.0	122	\$	2	28			312	38.25		
9,33 3.66 57.32 0.22 0.36	3.66 57.32 0.22 0.36	57.32 0.22 0.36	0.22 0.36	0.36		0.05		_		\$0.05	< 0.03	38.2	6.0	1.16	67	48			788			
8.69 2.67 59 0.29 0.33	2.67 59 0.29 0.33 0.06	59 0.29 0.33 0.06	0.29 0.33 0.06	0.33 0.06	9.0		:0.05	!	0.13		<0.05	36.9	0.91	0.99	17	\$	173		292	37.09	53.3%	
					1														i			

TABLE II (Part 1)

500			ð	Chemical Compositi			- Web	on (XRF - Weight percent)	H			2	55	Strtaken	_		Salability	(mag)	ŀ			OGNY
E.	8	S M	ŝ	SiO2	A1203	8	20	B203	Fe203	202	S.O	<u> </u>	800°C 1000°C Deviation	2000	eviation	3	Q	802	8203	Total	CaO Mao	
LTP8	24.95		3.4	81.69	27.	0.30	0.0		0.17	-	\vdash	43.99	40.00	40.00	-7.49	S	8	17.		328	44.14	68 59%
I.TPI			2.51	52.54	0.28	22.0	0.03		0.17			8.0	46.80	39.10	-7.48	\$\$	X	17.		323	44 20	6R (P)
I.TP49	• •			50.54	0.57	0.4	80.0	9.17	0.14			47.60	2.65	15.20	-7.46	۶	4	214	120	463	39.09	62 1%
1,TP 9	24.81		5.10		. 0.38	0.31			0.17	0.15	_	43.03	23.90	38.80	18.9	\$	115	193		367	43.47	%1 %
1.TP67	15.17	25.18	8	87.8	6:10	0.23			0.15	····		40.22	5.70	•	6.53						40.35	3
LTP13	8	27.95	3.26	57.20		0.13			0.17			39.36	5.72	5.26	4.51	30	117	188		335	39.23	63.0%
L.TP62	8.		222	57.24	0.35	0.19			9.16			39.02	4.48	•	-5.51	x	*	119		210	39.53	62 3%
L.TP.7	10.37		2.	58.18		0.15			0.16			38.37	10.90	5.50	-5.46	36	132	152		320	38.23	9
1.TP10	24.48		2.48	54.46	0.2	0.28	0.03		91.0		_	42.28	3.62	19.10	10.8-	58	8	\$		317	42.37	64.7%
1.174	24.04		33	53.85	0.31	97.0	0.05		0.15	0.25	_	41.52	3.71	£.	1.73	*	8	2		331	4 83	7
1.TP16	31.83		3.39	51.59	9.79	0.42	90.0		0.17		-	44.07	49.10	_		۶	76	200		355	4	99
L.TP S	24.22	_	<u>1</u>	52.72	0.33	0.30		л	0.14	0.21	-	4.04	3.63	5.39	-3.96	65	8	161		362	41	64.10
L.TPS9	32.13	_	12.93	41.37	231	%	0.05		0.17			38.59	43.20		3.84	42	7	2		262	42.60	69.3%
L.TP50	31.00	10.40		54.50	0.36	0.31	80.0	3.19	0.16			4 .8	29.80	•	-3.70	2	88	8	2	367	41.40	62.0%
1.177	38.39	_		\$1.22	9	0.42	0.07		91.0	0.38		43.62	45.20	3.80	-3.37	83	32	5		306	43.94	63.9%
LTPS6	34.38			40.02	0.72	0.55			0.16		_	42.95	86.6	_	-3.26	8	53	8		313	43.84	70.5%
LTP23	38.62	•	_	\$2.23	0.34	9.46	0.07		0.15			4.03	42.90	•	-3.20	82	20	8		310	44.18	63.7%
1.7757	_	_	19.83	15.24	0.23	0.26			0.15		_	11.08		•	-2.93	_				0	44.28	73.0%
1.173				57.52	2.	0.13 81.0	80.0	3.01	0.18	-		40.97	3.63	7.86	-238	75	22	255	77	424	38.58	58.7%
L.TP63	14.61	22.87	23	59.45	0.21	- - - -	7	-	9.		7	37.06	9.57	•	-2.46	11	108	83		208	37.48	58.4%
-			1					1	bowe ben	od moo g	didona he	Above bers compositions have deviation of more than 2.4w1%	tion of m	ore then	2.4wf%							
				_					0.0		Ė	38.43			3.23		_				18.13	60.1%
	_				-		0.03		0.15				3.44	3.65	-13	_			-		42.32	67.4%
9417	31.46	82.8	1264	14.91	0.69	0.54	0.05	1	20	-	4	40.25	-		0.45	_					11.01	64.8%
	ļ	1	- 1	- 1		ŀ		\$	ove bere	composit	Sons bery	Above here compositions have P2O5 content	content m	more than 12.5 wr?	12.5 WICE							
	24.93					_	20.0		3			32.66 32.10	2.10		1.02	12	74	2 4		286	36.45	\$6.1%
LTPSI	28.72	101	1.62	\$6.65	2	82	10.0	1	9.30	-	-	37.33	3.07	3.61	-0.24	8.2	69	159		310	39.73	58.4%
		-	L				ļ		¥ P	Above bere fibres have AI203	as bew	Al203 c	content ab	above I w	WE%							
LTPIS	36.83	5.78		21.22		€.	0.0		9.10	0.13			_	<u> </u>	1.72	88	35	204	_	327	42.59	62.2%
CTP14	30.93	=	_	%	0.30	0.43	0.03		0.15	0.25	_	41.85	3.24 3	3.92	-1.65	22	69	161		338	41.95	63.0%;
	32.93	_		#77	5	23.	50		Q.19				_	2.78	1.65	150	7	22		322	42.70	67.0%
	32.58			2 3	3		S S	-			_	10.88	1.72	_	1.56	E	*	203		328	42.65	65.1%
CIPS	29.74	7.84	9.58	38.26 I	5	8.8	808		0.15	S.	1	39.45	10.0	8	7.5	71	2	121	-	376	39.18	60.1%
										Above here SiO2 content	202	content k	less then 52wr	Zartie								

TABLE II (Part 2)

May Page P	ı	L	·	9	Chemical Composition	nposttle		- Welg	(XRF - Weight percent)				2		Shrinkage			Solublity (ppm)	y (ppm)				%N.B.O.
2.20 2.41.4 0.23 0.23 0.02 0.00 0.14 0.06 0.10 0.10 0.10 0.10 0.10 0.10 0.10		-	P	_			ဝို	-		_	202	င္မ				Deviation	_	S N	8i02	BZO3	Total	CaO+MaO	
1,10 1,10	_	100				L	62.0			_	0.46		39.37	23.30	1.	7.07	Е	8		ㅗ			100 19
4.17 54.25 6.44 0.14 0.15 <t< td=""><td></td><td>-</td><td></td><td>_</td><td></td><td></td><td>0.31</td><td>90.0</td><td></td><td></td><td>0.10</td><td></td><td>42.13</td><td></td><td>26.30</td><td>-2.01</td><td></td><td>7</td><td></td><td></td><td>326</td><td>42.40</td><td>62.6%</td></t<>		-		_			0.31	90.0			0.10		42.13		26.30	-2.01		7			326	42.40	62.6%
3.35 5.35 6.35 6.35 6.35 6.15					•	G-46	0.24	~		0.16	0.58		38.77	224	3.05	-1.93	3	*	167		316		60.8%
1.25 54.19 0.39 0.46 0.07 0.15 41.9 1.15 1.53 1.27 518 34 208 204					53.52	0.32	0.31	90.0		0.15			42.00		30.10	÷.73	E	2	207		361		62.6%
7.78 \$2.24 \$6.35 \$6.34 \$6.35 \$6.15 \$6.15 \$1.24 \$1.53 \$1.65 \$2.25 \$1.64 \$1.55 \$1.65	~		-	-	24.19	0.39	0.46	0.07		0.15			41.95	•	35.50	-1.27	28	¥	808		300		60.3%
2.55 G.15 Above bare 8/02 content 52m/74 to best than 55m/74. 2.55 5.52 0.25 0.14 39.52 1.97 2.14 -2.29 88 194 197 4.55 5.55 0.20 0.24 0.14 0.14 39.52 1.97 -2.19 88 194 197 4.25 5.55 0.20 0.24 0.12 0.14 39.64 3.00 4.16 197 20.6 4.67 197 20.6 4.67 197 20.6 4.67 197 20.6 4.67 197 20.6 4.67 197 20.6 4.67 197 20.6 4.67 197 20.6 4.67 197 4.69 1.78 1.18 1.68 1.69 0.14 4.09 4.16 1.78 1.68 1.78 1.78 1.18 1.18 1.18 4.16 4.16 1.79 4.16 1.79 4.16 1.79 4.16 1.79 4.16 1.17 4.16 1.17	31.90	انف	\dashv	⊣		n.52	70	0.05		0.15	6.18		38.10		1.53	7.62	3	₩	202		337		57.7%
4.00 55.45 0.13 0.10 39.64 1.97 2.14 -2.29 58 104 197 2.52 57.63 0.22 0.26 0.14 38.49 3.90 4.16 -1.92 51 76 197 4.55 55.92 0.30 0.24 0.14 38.49 3.90 4.16 -1.92 51 76 197 4.55 0.43 0.24 0.12 0.14 0.14 0.19 0.17 4.203 4.16 -1.92 51 89 226 1.23 55.90 0.41 0.19 0.17 4.203 4.16 -1.92 51 89 226 1.23 6.21 0.20 0.14 0.19 0.17 4.16 -1.92 51 89 226 1.24 0.24 0.12 0.14 0.19 0.17 4.16 -1.92 51 19 11 11 12 11 19 11 11.00 1										Abor	c bare S	50 50 50	tent 524		23 Chan S	Swr%							
2.52 57.63 0.22 0.26 0.14 19.04 3.01 3.02 4.16 -1.02 5.16 7.6 19.0 4.55 55.92 0.30 0.24 0.14 0.19 0.17 4.20 4.16 -1.92 51 9.0 0.85 5.45 0.13 0.12 0.19 0.17 4.20 4.35 1.22 51 9.0 1.0 9.0 1.23 5.50 0.43 0.12 0.19 0.17 4.20 4.35 1.13 7.0 1.0 1.0 9.0 4.16 4.10 4.10 9.0 1.0 9.0 4.16 4.10 9.0 1.0 9.0 4.16 4.10 9.0 1.10 0.17 4.10 4	22.30	11	_	_		15	0.31	6.05		0.10			39.52	L	717	-2.29	38	ᆵ	197		359	39.78	61.0%
4.55 55.92 0.30 0.24 0.14 38.49 3.90 4.16 -1.92 51.9 226 1.23 55.09 0.43 0.12 0.19 0.17 42.03 42.8 - -1.6s 76 19 206 0.85 0.43 0.12 0.19 0.14 42.03 42.8 - -1.6s 76 10 206 2.45.1 6.25 0.44 0.10 0.14 41.69 6.29 1.43 -1.49 73 73 17 206 194 2.45.1 6.45 0.14 0.14 0.14 41.69 6.29 1.41 2.04 40.3 60 194 10 206 194 10 206 194 10 206 194 10 206 194 10 206 194 10 206 194 10 10 10 10 10 10 10 10 10 10 10 10 </td <td>20.81</td> <td>==</td> <td></td> <td>_</td> <td></td> <td>0.22</td> <td>92.0</td> <td></td> <td></td> <td>9.T</td> <td></td> <td></td> <td>39.04</td> <td>3.01</td> <td>3.73</td> <td>-2.05</td> <td>\$</td> <td>76</td> <td>197</td> <td></td> <td>319</td> <td></td> <td>59.7%</td>	20.81	==		_		0.22	92.0			9.T			39.04	3.01	3.73	-2.05	\$	76	197		319		59.7%
1.23 55.00 0.4.1 0.39 0.12 0.19 0.17 42.03 45.85 1.64 76 10 206 10.45 26.23 0.27 0.30 0.07 1.88 0.14 0.19 0.17 41.69 0.29 1.43 -1.49 7.3	20.03	2	_		_	030	0.24		_	0.14			38.49	•	4.16	-1.92	5	83	226		366		60.2%
Q.S. S.S.G. Q.17 Q.20 Q.09 3.54 Q.14 Q.15 1.17 4.49 6.3 1.75 1.15 1.15 2.09 1.15 4.15 4.15 4.15 4.15 1.15 2.15 1.15 2.15 4.15 <t< td=""><td>40.23</td><td>•</td><td></td><td>_</td><td></td><td>0.43</td><td></td><td>0.12</td><td>_</td><td>0.19</td><td>0.17</td><td></td><td>42.03</td><td>45.85</td><td></td><td>28.</td><td>92</td><td>0.</td><td>206</td><td></td><td>292</td><td></td><td>58.89.</td></t<>	40.23	•		_		0.43		0.12	_	0.19	0.17		42.03	45.85		28.	92	0.	206		292		58.89.
26.51 6.45 0.20 0.09 3.54 0.14 41.69 6.29 1.43 -1.49 73 73 278 3.33 57.01 0.21 0.20 0.21 0.26 1.74 2.04 -6.53 77 11 209 1.68 56.19 0.21 0.06 33.74 1.31 1.77 -6.49 6.3 77 10 209 175 1.79 6.0 175 204 -6.53 77 1.0 209 175 179 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 175 1.0 6.0 1.0 1.0 1	31,36	_	_			6.27		0.07	88.	9.16			42.55	1.20	2.32	2.5	16	\$	8	2	36		%0.09
2.22 56.25 0.45 0.45 1.74 2.04 -6.53 7.2 1.11 209 175 -4.9 6.3 7.2 1.11 209 175 -4.9 6.3 7.2 1.11 209 175 1.24 -0.12 6.0 175 177 -4.9 6.3 175 175 177 -4.9 6.3 175 175 175 6.3 175 175 6.3 175 175 6.0 175 175 6.0 175 175 6.0 175 6.0 175 6.0 175 175 6.0 175 175 6.0 175 175 6.0 175 175 175 6.0 175 175 175 6.0 175	38.31	ď	89	•	_	2		600	3.54	0.11		_	41.69	65.0	1.43	1.49	55	~	278	袑	\$0		\$6.2%
1.58 56.19 62.24 62.25 62.14 62.55 62.14 62.55 62.13 62.05 62.14 62.55 62.13 62.05 62.15 62.13	39.40			_	55.25	0.45	7	0.10		0.21			\$	1.7	7.01	6.53	2	Ξ	203		192	41.36	\$7.5%
1.68 56.19 6.28 6.21 6.27 1.11 6.15 6.15 6.15 6.21 6.2 6.2 187 6.2 6.2 6.2 187 6.2	13.29	¥			57.01	977	2.	90.0		9.14		20.0	38.74	131	1.71	4.49	3	2	875		327		58.7%
57.72 4.11 4.21 4.0.9 1.57 2.13 -0.06 37 30 195 57.96 4.49 4.23 4.0.9 1.66 2.13 -0.06 37 30 195 6.08 57.96 4.49 4.13 40.43 1.23 3.00 -0.04 76 2 164 6.08 57.13 6.13 40.43 1.23 3.00 -0.04 76 2 164 6.08 57.13 6.13 40.43 1.23 3.00 -0.04 76 2 164 6.08 6.13 40.13 40.24 1.23 3.00 40.04 76 179 40.13 179 172 164 179 179 172	30.51	-1		_	\$6.19	6.28	~	60	==	0.15	-		41.13	0.97	18.1	-0.12	3	8	187	12	337	40.19	58.8%
57.55 0.13 0.09 2.69 0.18 40.01 1.68 1.53 0.04 76 1.64 1181 -0.05 0.04 76 1.64 1181 -0.04 76 1.54 1181 -0.04 76 1.54 108 0.13 40.43 1.23 3.00 -0.04 76 2 264 108 0.13 40.43 1.23 3.00 -0.04 76 2 264 108 <th< td=""><td>35.46</td><td>~</td><td>1.71</td><td>--</td><td>57.92</td><td>2</td><td>0.31</td><td>g 03</td><td>28</td><td>0.15</td><td></td><td></td><td>40.99</td><td>1.57</td><td>2.13</td><td>-0.06</td><td>33</td><td>30</td><td>195</td><td>13</td><td>275</td><td>40.16</td><td>56.1%</td></th<>	35.46	~	1.71	- -	57.92	2	0.31	g 03	28	0.15			40.99	1.57	2.13	-0.06	33	30	195	13	275	40.16	56.1%
57.96 6.49 6.23 0.13 40.43 1.23 3.00 -0.04 76 2 54 0.86 57.13 0.27 6.33 0.07 1.08 0.15 40.26 1.04 1.81 -0.02 75 55 192 0.86 57.34 0.31 0.30 0.08 0.04 0.15 40.06 1.07 1.40 0.66 83 173 194 1.34 55.65 0.21 0.23 0.15 0.15 40.00 1.15 2.39 0.71 40 32 194 1.54 57.59 0.31 0.05 0.15 0.15 40.21 1.80 0.71 40 32 172 4.66 57.93 0.31 0.27 0.45 0.75 0.35 24 173 188 241 1.67 57.30 0.25 0.31 0.07 0.15 0.14 0.79 1.86 21 188 241 1.67	5	~	3	- '	57.95	6.32	6.23	8 08	2.69	0.18			40.92	3.	2.83	8	2	*	7	**	334	38.54	56.3%
QBE 57.13 Q.27 Q.38 G.15 Q.16 G.15 Q.16 I.81 Q.02 I.82 Q.02 I.83 I.84 Q.02 Q.02 Q.02 Q.02 Q.02 Q.02 <th< td=""><td>36.93</td><td>ĕ</td><td>62</td><td>60</td><td></td><td>5</td><td>3</td><td>6.0</td><td>3.5</td><td>0.13</td><td></td><td></td><td>40.43</td><td>1.23</td><td>3.00</td><td>3.9</td><td>76</td><td>~</td><td>75</td><td>9</td><td>382</td><td>37.55</td><td>\$2.6%</td></th<>	36.93	ĕ	62	60		5	3	6.0	3.5	0.13			40.43	1.23	3.00	3.9	76	~	75	9	382	37.55	\$2.6%
Q.05 57.54 Q.31 Q.30 Q.09 Q.15 Q.00 1.59 Q.15 Q.00 1.59 Q.15 Q.00 1.51 Q.00 1.59 Q.13 Q.00 1.51 Q.00 1.59 Q.15 Q.00 1.59 Q.15 Q.00 1.59 Q.15 Q.00 1.59 Q.13 Q.00 1.59 Q.13 Q.00 1.59 Q.13 Q.00 1.59 Q.13 Q.00 Q.13 Q.13 <t< td=""><td>30.55</td><td>_</td><td>_</td><td>_</td><td>27.13</td><td>0.17</td><td>3</td><td>6.07</td><td>8.</td><td>0.85</td><td></td><td></td><td>41.06</td><td>1.04</td><td>1.81</td><td>19.00</td><td>\$5</td><td>65</td><td>192</td><td>12</td><td>7</td><td>40.12</td><td>58.2%</td></t<>	30.55	_	_	_	27.13	0.17	3	6 .07	8.	0.85			41.06	1.04	1.81	19.00	\$5	65	192	12	7	40.12	58.2%
0.06 57.45 0.18 0.13 0.15 2.39 0.71 46 32 194 1.34 55.65 0.21 0.13 0.15 0.13 0.13 1.68 0.81 49 88 241 1.68 57.30 0.23 0.23 1.68 0.81 49 88 241 1.68 57.30 0.25 0.21 0.07 0.15 0.13 1.60 1.79 0.96 76 51 188 241 1.67 57.39 0.25 0.31 0.07 0.15 0.14 1.79 0.96 76 51 188 1.67 57.39 0.27 0.30 0.06 0.06 0.16 0.14 0.07 38.07 1.77 1.93 1.96 31 203 2.75 0.25 0.36 0.06 0.06 0.14 0.07 38.07 1.72 1.66 91 28 193 2.75 0.25 0.	34.82	•			57.84	ī	3	800	ĭ	0.15			40.26	1.07	8.	25.6	22	25	175	6	262	39.56	55.4%
3.34 55.65 42.1 43.2 40.15 40.23 1.89 2.76 0.76 65 52 172 4.66 57.39 0.31 0.23 0.13 0.13 36.34 1.23 1.68 0.81 49 189 241 1.68 57.30 0.25 0.31 0.07 0.15 0.15 40.13 1.40 1.79 0.98 76 531 188 1.67 57.39 0.27 0.30 0.06 0.16 0.14 0.07 38.03 1.27 1.90 1.96 33 203 3.73 56.39 0.36 0.06 0.14 0.07 38.03 1.22 1.40 1.66 32 33 203 3.73 56.39 0.36 0.06 0.06 0.14 0.07 38.03 1.22 1.40 1.66 31 23 193	33.67	_		-	57.85	6.38	15.	8	2.2	0.15			40.00	1.15	239	0.71	\$	32	7	23	167	38.42	\$4.5%
4.66 57.39 6.31 0.23 0.13 36.34 1.23 1.68 0.81 49 89 241 1.68 57.30 6.25 6.31 0.07 6.15 40.13 1.40 1.79 0.98 76 53 188 1.67 57.39 6.27 6.30 6.08 1.06 0.14 39.98 1.47 1.93 1.06 32 33 203 3.73 56.59 6.36 6.43 0.06 0.14 0.07 38.02 1.22 1.40 1.66 21 20 2.53 6.35 6.43 0.06 0.14 0.07 38.02 1.22 1.40 1.66 21 20	29.83	=		_	-	Q.21	ĩ	9.05		0.15			40.23	26	2.76	0.76		8	172		289	40.28	59.0%
1.68 57.30 6.25 6.31 0.07 6.15 40.13 1.60 1.79 0.98 76 51 188 1.167 57.39 6.27 6.30 6.08 1.06 0.14 0.07 39.39 1.47 1.93 1.66 32 33 208 1.47 1.93 1.66 32 33 208 1.47 1.59 6.59 6.36 6.43 0.66 0.14 0.07 38.02 1.12 1.40 1.68 91 228 193	19.17	7.					22			0.13			36.34	1.23	1.68	0.83	\$	22	241		378	36.73	\$6.5%
1.67 57.39 6.27 6.30 6.08 1.06 0.14 39.98 1.47 1.93 1.06 32 33 203 1.37 3.56.95 6.36 6.43 0.06 0.14 0.07 38.02 1.22 1.40 2.68 91 229 193	79.4	•		•		0.25	Ē	0.0		0.15			40.13	1.8	1.3	96.0	16	5	100		315	40.25	58.0%
3.73 S6.95 8.36 8.4J 0.066 8.14 0.07 38.07 1.22 1.40 2.68 91 28	34.35	4				6.27	3	88	8 .	6.14			39.98	1.07	1.93	¥.	33	33	203	91	381	39.08	56.7%
	13.69	4			86.98	ž	3	8		=	eg G		38.02	1.22	\$	7.68	=	2	193		312	38.25	\$0.78
30.00 37.32 W.Z. 0.30 W.V.S W.	28.91	~	9.33	3.66	57.32	6.22	9.36	900		0.14			38.21	6.99	1.16	2.99	67	\$	173		288	38.24	55.5%

TABLE II (Part 3)

	C a N X	5			57.7%		2.6%		22.07	53 50		55.1%		2.5%		Ŗ	43 10%	,	41 184	1	27,7	
	8	-	000	+	36.81	-	38.10	14 77	•	37.48	!	37.50	:	76.19	20 33	3.5	35.03		35.50		37.25	
		Т	<u>2</u>		2	-	167	302	;	322		387		293	2.62	}	358	!	345		7.37	
		ŀ	1003		_	_		23	1	R	-			3	a.	?	32		9	_	4	
	Î	ŀ	_	L	•	:	?	16		2	-	CO2	90	R	193	-	193		2	36	0	
	Solubility (ppen)		202		7	9		200		<u>-</u>		` }	-		2		- =	_	2	-		
	3	Ͱ	S.	-	R	=	-	\$	-	200		_	43			_			_	7		
1	-	2	4	_	_	_		_	_	_	_	` _	_	· 	*			•	D	ŕ		
	ار	Projector	7	£	1	-0.62	! ;	9	5	3	5	,	9		5		B .		9.5	3.03		
	Series Series	Tours	?	3.10	-	7	:	9.0	***	3	7 22	}	3.12	-	2.74	;		1 0.6	2	280		
		000	-	265	_	2.28		7	1 64	_	3.15	_	8	;	917		3			£91	About her City section 60	
5	2			× ×		57.72	20	١٠.٢	40 40	} }	\$ 2		46.13	***	79.00	2	100	34 34	2	3		
	ŀ	င် တိ							_							010	}		•	_	6	
	-	203 203 203		_			_	_			_		_	_				_			Ahme	
1		Fe203		2	•	2	71 0	<u> </u>	9 0.15		= 0 -	_	2	A 2.7		0.13		0.13		0.13		
o CKRF - Welets person		8203		_		_	3.25	·	3.09	_	8.8	7.	_	8	_	3.16		<u>:</u>		_		
W- 42	1	2	-	_	_	_	900	_	0.0		800	9		8		0.57	`	8		5		
Cuspe	1 1 COULT	New C	A 836	_	0 0 0 0	<u>,</u>	7 0.27	_	1E'0 (82	9.0		2		6.28	_	55	_	77	_	3		
Chemical Composition	2 4	7	17 0 24		25 0 25		4 0.37		0.28	200				01 6.27	,	1 0.35	_	7	_	0.67		
	X GOS	8	-	_	_	-	29.6	_	700	C. 13	•	ž		Š	-	9.6	-		AC 03	-		
• 	Med Pank		16 4.38	-	74 250	_	9	72.1	2	0.20	-	4.82	_	6.63	_	_		-	2 4	-		
	Н	-	15.65 21.16	-	36 17.74	_	03.50								_	5 9 8	11 60	_	12 B 73			
L	3		LTP66 15.	_	P65 20.36		LIF/2 22.67	22 22		31 21.30		36 33.37		33 34.20	400	CB*67	24.10	-	L.TP46 28.52			
	1		5	1	5		=	I TP14	;	II.TP31	_	Ė	-	11,1733	-		1.1745	_	1.1			

CLAIMS

1. The use of P₂O₅ or B₂O₃ as a component to improve the refractoriness of inorganic fibres comprising SiO₂, and CaO and/or MgO, to produce inorganic fibres having a composition having a shrinkage of less than 3.5% when exposed to 1000°C for 24 hours and having a shrinkage of less than 3.5% when exposed to 800°C for 24 hours, the fibres having a composition such that

 $SiO_2 + P_2O_5 - (58 + (if MgO > 10, 0.5 \times (MgO - 10) else 0)) > -2.4wt%$

- 2. The use of P₂O₅ or B₂O₃ as a component to improve the refractoriness of inorganic fibres as claimed in claim 1 in which the percentage of non-bridging oxygens is less than 61.4%.
- 3. The use of P₂O₅ or B₂O₃ as a component to improve the refractoriness of inorganic fibres as claimed in claim 1 or claim 2 in which the fibres fall within the compositional range:-

SiO ₂	44 or more
CaO	20 - 40wt%
MgO	0 - 18wt%
P ₂ O ₅	0- 12.5wt%
B ₂ O ₃	0 - 4wt%

4. The use of P₂O₅ or B₂O₃ as a component to improve the refractoriness of inorganic fibres as claimed in claim 3 in which the fibres fall within the compositional range:-

5. The use of P₂O₅ or B₂O₃ as a component to improve the refractoriness of inorganic fibres as claimed in claim 3 in which the fibres fall within the compositional range:-

CaO	20.36 - 39.4wt%
MgO	0.62 - 21.16wt%
P_2O_5	0 - 12.01wt%
B_2O_3	0 - 3. 54wt%

6. Saline soluble inorganic fibres having a shrinkage of less than 3.5% when exposed to 1000°C for 24 hours and having a shrinkage of less than 3.5% when exposed to 800°C for 24 hours, in which:-

$$SiO_2 + P_2O_3 - (58 + (if MgO > 10, 0.5 \times (MgO - 10) else 0)) > -2.4wt%$$

7. Saline soluble inorganic fibres as claimed in claim 6 comprising:-

8. Saline soluble inorganic fibres as claimed in claim 7 comprising:-

SiO₂ 52 - <58wt% [52 - <58+0.5'(MgO-10)wt% if MgO > 10wt%]

 $\begin{array}{lll} \text{CaO} & 22 - 40 \text{wt\%} \\ \text{MgO} & 0 - 17.5 \text{wt\%} \\ \text{MgO} + \text{CaO} & < 42 \text{wt\%} \\ \text{P}_2\text{O}_5 & 0.5 - 10 \text{wt\%} \\ \text{B}_2\text{O}_3 & 0 - 2 \text{wt\%} \end{array}$

and in which the percentage of non-bridging oxygens calculated on the basis of the amounts of the above named components is less than 61.4%.

9. Saline soluble inorganic fibres as claimed in claim 7 comprising:-

 SiO2
 44.34 - 62.48

 CaO
 20.36 - 39.4wt%

 MgO
 0.62 - 21.16wt%

 P2O5
 0 - 12.01wt%

 B2O3
 0 - 3.54wt%

10. Saline soluble inorganic fibres as claimed in claim 6 in which the fibres have a composition:-

SiO₂ 52.4 - 57.85wt% CaO 22.2 - 39.4wt% MgO 1.96 - 17.4wt% P₂O₅ 0.82 - 7.8wt% B₂O₃ 0 - 1.95wt% Al₂O₃ <1wt%

PCT/GB 97/01667

A. CLASSI	IFICATION OF SUBJECT MATTER C03C13/00		
	o International Patent Classification (IPC) or to both national class	ification and IPC	
. FIELDS	SEARCHED ocumentation searched (classification system followed by classification system followed by classifi	gion symbols)	
IPC 6	C03C		
Documentat	tion searched other than minimum documentation to the extent that	such documents are included in the fields	searched
Electronic d	lata base consulted during the international search (name of data be	se and, where practical, search terms used	•
	MENTS CONSIDERED TO BE RELEVANT	pelevant nastaves	Relevant to claim No.
Category *	Citation of document, with indication, where appropriate, of the	Icterate harrages	
X	WO 93 22251 A (SAINT GOBAIN ISOV ;HOLSTEIN WOLFGANG (DE); LOHE PE SCHW) 11 November 1993	TER (DE);	1-3,5-7, 9
	see page 1, line 37 - page 3, li example 6	ne 30,	
X	WO 89 12032 A (MANVILLE SALES CO December 1989 see page 9, paragraph 3 - page 1 paragraph 2; examples 164,166-17	.0,	1-3,6,7
Х	DE 44 17 230 A (GRUENZWEIG & HAR November 1995 see example 2		1,2,6
		-/	
		•	
:			
X Fur	ther documents are listed in the continuation of box C.	X Patent family members are liste	d in annex.
"A" docum consist "E" earlier filing "L" docum which citatic "O" docum other "P" docum	nent which may throw doubts on priority claim(s) or n is cited to establish the publication date of another on or other special reason (as specified) ment referring to an oral disclosure, use, exhibition or means nent published prior to the international filing date but	To later document published after the interpretation or priority date and not in conflict cited to understand the principle or invention "X" document of particular relevance; if campt be considered novel or campinolity an inventive step when the "Y" document of particular relevance; if cannot be considered to involve an document is combined with one or ments, such combined with one or ments, such combined with one or in the art. "&" document member of the same pate	with the application our theory underlying the the claimed invention to the considered to document is taken alone the claimed invention inventive step when the more other such document to a person skilled
	than the priority date claimed e actual completion of the international search	Date of mailing of the international	
•	22 September 1997	3 0. 09. 97	
	mailing address of the ISA European Patent Office, P.B. 5818 Patentiaan 2	Authorized afficer	
	NL - 2230 HV Rignerik Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Van Bommel, L	

Interna 1 Application No PCT/GB 97/01667

		PCI/GB 9	(10100)
C.(Continua Category	ation) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages		Relevant to claim No.
Category	Clauden of mocument, with mancadom, where appropriate, of the relevant passages		Relevant to traini 140.
X	WO 93 15028 A (MORGAN CRUCIBLE CO) 5 August 1993 cited in the application see page 7, paragraph 4 - page 9, paragraph 3; examples		6,7
X	WO 92 09536 A (PAROC OY AB) 11 June 1992 see example C		6
A	WO 96 01793 A (ROCKWOOL AB ;PERANDER MICHAEL (FI); ROENNLOEF BJOERN (FI)) 25 January 1996 see page 5, line 28 - page 7, line 10	•	1-10
A	WO 95 29135 A (ROCKWOOL INT ;JENSEN SOREN LUND (DK); CHRISTENSEN VERMUND RUST (DK) 2 November 1995 cited in the application see page 3, line 26 - page 7, line 26		1-10
ł			· ·
		٠	·
			•
1			
			,
1			
.			·
	•		•

1

Information on patent family members

Interna. J Application No PCT/GB 97/01667

	**		
Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9322251 A	11-11-93	FR 2690438 A	29-10-93
NO SSECEST II	** ** **	AU 670439 B	18-07-96
		AU 4263293 A	29-11-93
		BR 9305492 A	11-10-94
•		CA 2110998 A	11-11-93
		CN 1078708 A	24-11-93
		CZ 9302865 A	19-10-94
		DE 69312857 D	11-09-97
•		EP 0596088 A	11-05-94
		HR 930837 A	30-04-96
•		HU 67212 A,B	28-03-95
		JP 6508600 T	29-09-94
		NO 934725 A	20-12-93
•		NZ 252695 A	27-08-96
		SI 9300218 A	31-12-93
. '		SK 146893 A	09-11-94
	• •	ZA 9302874 A	01-06-94
WO 8912032 A	14-12-89	AU 3765789 A	05-01-90
110 031E03E 11	2 1 22 07	CA 1338340 A	21-05-96
•		US 5332699 A	26-07-94
DE 4417230 A	23-11-95	AU 2612895 A	05-12-95
		CN 1136307 A	20-11-96
		WO 9531410 A	23-11-95
		EP 0710220 A	08-05-96
		FI 960209 A	16-01-96
		HU 74107 A	28-11-96
		JP 8511760 T	10-12-96
	,	NO 960192 A	16-01-96
		PL 312574 A	29-04-96
	•	SK 4896 A	08-05-96
		ZA 9503954 A	17-01-96
WO 9315028 A	05-08-93	AT 136874 T	15-05-96
		AU 663155 B	28-09-95
		AU 3358493 A	01-09-93
•		AU 5837494 A	15-08-94
•		BR 9305741 A	28-01-97
		BR 9406117 A	19-03-96
			•

Information on patent family members

Interna J Application No PCT/GB 97/01667

	Information on patent family members		PCT/GB 97/01667	
Patent document cited in search report	Publication date	Patent family member(s)	Publication date	
WO 9315028 A		CA 2154442 A CZ 9501836 A DE 69400154 D E 69400154 D EP 0621858 A EP 0679145 A EP 0710628 A ES 2086248 T FI 943380 A W0 9415883 A GB 2277516 A GB 2289673 A JP 7502969 T JP 8506561 T N0 942655 A PL 309954 A SK 85694 A ZA 9400236 A AU 2717195 A CA 2127357 A CN 1078218 A CZ 9401700 A GB 2287934 A HU 68033 A NZ 246629 A	15-05-96 23-05-96 28-11-96 02-11-94 02-11-95 08-05-96 16-06-96 14-09-94 21-07-94 30-03-95 16-07-96 14-07-94 13-11-95 05-01-95 22-08-94 28-09-95 05-08-93 10-11-93 14-06-95 04-10-95 22-08-95	
WO 9209536 A	11-06-92	FI 93346 B AT 117662 T AU 8908791 A DE 69107091 T EP 0558548 A	15-12-94 15-02-95 25-06-92 09-03-95 17-08-95	
WO 9601793 A	25-01-96	SE 504288 C AU 2939895 A EP 0768989 A FI 970016 A NO 965293 A PL 318055 A	09-02-96 23-04-97 06-02-97 11-12-96	
	·			

Information on patent family members

Intern. at Application No PCT/GB 97/01667

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
WO 9601793 A		SE 9402405 A	08-01-96
WO 9529135 A 02-11-95	02-11-95	AU 2446395 A AU 6679594 A CA 2165081 A CZ 9503297 A EP 0695206 A EP 0703879 A FI 955973 A PL 312244 A SI 9520005 A	16-11-95 08-11-94 02-11-95 12-06-96 07-02-96 03-04-96 13-12-95 01-04-96 31-08-96
		SK 157395 A US 5614452 A	08-05-96 25-03 - 97