

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE FACULTAD DE MATEMÁTICAS DEPARTAMENTO DE MATEMÁTICA

Ayudante: Nicholas Mc-Donnell

Email: namcdonnell@uc.cl

Solución Ayudantía 4

Álgebra I - MAT2227

Fecha: 2019/08/27

1) a) Se nota que $18 \mid 4x - 7$, por lo que específicamente $2 \mid 4x - 7$, y por ende $2 \mid -7$, pero eso es una contradicción.

b)

$$10x\equiv 5\mod 20$$
 /Se divide por 5, 20
$$2x\equiv 1\mod 4 \ /-1$$

$$2x-1\equiv 0\mod 4$$
 Se nota que $2x-1$ es impar, pero $4\mid 2x-1$

No tiene solución.

c)

Con lo que se tiene una solución

d)

$$25-x\equiv 3(x+2)\mod 27$$

$$25-x\equiv 3x+6\mod 27 \quad /+x-6$$

$$19\equiv 4x\mod 27 \quad /\cdot 7$$

$$133\equiv 28x\mod 27 \quad \text{Reduciendo } 133 \text{ y } 28$$

$$25\equiv x\mod 27$$

Juntando ambas se tiene $x \equiv 808 \mod (27 * 38)$

2) Se nota que si $a^{16} \equiv 1 \mod 17$ para todo $a \in \mathbb{Z}_{17}$, se tiene lo pedido. Dado un a coprimo con 17, sean $r_1, \ldots, r_{16} \in \mathbb{Z}_{17} \setminus \{0\}$, todos los números coprimos con 17, luego $ar_1, \ldots, ar_{16} \in \mathbb{Z}_{17} \setminus \{0\}$ también son números coprimos con 17, por lo tanto se tiene la siguiente congruencia:

$$r_1 \cdot r_2 \cdot \dots \cdot r_{15} \cdot r_{16} \equiv ar_1 \cdot ar_2 \cdot \dots \cdot ar_{15} \cdot ar_{16} \mod 17$$

Reagrupando se ve lo siguiente:

$$r_1 \cdot r_2 \cdot \dots \cdot r_{15} \cdot r_{16} \equiv a^{16} \cdot (r_1 \cdot r_2 \cdot \dots \cdot r_{15} \cdot r_{16}) \mod 17$$

Y como cada r_i es coprimo con 17 se tiene que $a^{16} \equiv 1 \mod 17$. Con esto se tiene lo pedido.

3) Como (a,68)=(b,68)=1, específicamente (a,17)=(b,17)=1, por lo que $a^{16}\equiv b^{16}$ mód 17, o equivalentemente 17 | $b^{16}-a^{16}$. Como (a,68)=1 específicamente se tiene (a,2)=1, por lo que $a\equiv 1\mod 4$ o $a\equiv 3\mod 4$, luego viendo cada caso:

$$a\equiv 1\mod 4\implies a^2\equiv 1\mod 4$$

$$a\equiv 3\mod 4\implies a^2\equiv 3^2\equiv 9\equiv 1\mod 4$$

Por lo que si (a, 2) = 1 se tiene que $a^2 \equiv 1 \mod 4$, más aún $a^{16} \equiv 1 \mod 4$. Como esto solo dependía de (a, 2) = 1, tambien se aplica a b, por lo que $a^{16} \equiv b^{16} \equiv 1 \mod 4$, por lo que $4 \mid b^{16} - a^{16}$. Juntando esto con lo anterior se tiene que $68 \mid b^{16} - a^{16}$.

4) Se generan las siguientes particiones de $\mathbb{Z}_p \setminus \{0\}$:

$$x, x^{-1}$$

Donde x^{-1} es el inverso modular de x^1 , para que esto sea una partición se necesita que en cada subconjunto solo estén esos elementos, para eso es suficiente ver que cada elemento tiene un único inverso y es el único inverso de su inverso². Con esto se tiene que cada partición esta bien definida y es a lo más de tamaño dos, las únicas particiones de tamaño menor cumplen que son su propio inverso:

$$x^2 \equiv 1 \mod p \quad / -1$$

$$x^2 - 1 \equiv 0 \mod p$$

$$(x-1)(x+1) \equiv 0 \mod p$$

Como p es primo se tiene que $p \mid (x-1)$ o $p \mid (x+1)$, por lo que $x \equiv \pm 1 \mod p$. Esto implica que las únicas particiones de tamaño 1 son $\{1\}, \{-1\}$. Usando esta información se agrupan los elementos del producto (p-1)! cada uno con su inverso, exceptuando p-1 y 1, y se llega a la siguiente expresión:

$$(p-1)! \equiv (p-1) \cdot 1 \equiv -1 \mod p$$

Demostrando lo pedido.

 $^{1 \}cdot x \cdot x^{-1} \equiv 1 \mod p$ $2 \cdot \text{Aquí } x^{-1} \text{ es el único elemento en } \mathbb{Z}_p \text{ tal que } x \cdot x^{-1} \equiv 1 \mod p, \text{ similarmente } x \text{ es el único que cumple } x \text{ es el único que$ lo mismo para x^{-1}