Intermediate Value Theorem:

Suppose that f(x) is continuous on [a, b] and let M be any number between f(a) and f(b). Then there exists a number c such that a < c < band f(c) = M.

- 1. Is the function continuous?
- 2. Plug in both interval values and solve
- 3. If one is (+) and one is (-) then 0 is between
- 4. "By the \underline{IVT} , there exists c in (x,y) with f(c)=0 -{write eq. with c}."

Limits at Infinity:

 θ radians

 $\sin \theta$

 $\cos \theta$

 $\tan \theta$

 $\cot \theta$

 $\sec \theta$

 $\csc \theta$

$$\lim_{x \to \infty} \frac{3x^2 - x - 2}{5x^2 + 4x + 1} = \frac{3x^2}{5x^2} = \boxed{\frac{3}{5}}$$

- 1. Take two biggest powers in equation
- 2. If equal exponents, x values cancel, otherwise think which value is larger when x goes to infinity!

<u>0°</u>

0

0

Continuous Functions:

"don't pick up the pencil"

Polynomials, Rational Functions, Root Functions, Exponentials, Logarithmic, Trigonometric

If f and g are $\underline{continuous}$ then so are f+g, f*g, f/g, $f\circ g$

mathmatical definition:
$$\lim_{x \to a} f(x) = f(a)$$

mathmatical definition:
$$\lim_{x \to a} f(x) = f(a)$$

Derivative & Tangent Line:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$m = \lim_{x \to a} \frac{f(x) - f(a)}{x - a}$$

Law of Exponents

45°

 $\pi/4$

 $\sqrt{2}$

2

1

 $\sqrt{2}$

$$a^{x+y} = a^x a^y$$

2.
$$a^{x-y} = \frac{1}{2}$$

60°

 $\pi/3$

 $\sqrt{3}$

2

 $\sqrt{3}$

2

90°

 $\pi/2$

1

und.

und.

3.
$$(a^x)^y =$$

$$a^{y}$$

Rate of Change:

3. $\lim_{x \to a} [cf(x)] = c \lim_{x \to a} f(x)$

6. $\lim_{x \to a} [f(x)]^n = \left[\lim_{x \to a} f(x)\right]$

7. $\lim_{c \to c} c = c$ c a constant

11. $\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$

5. $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$

8. $\lim x = a$

9. $\lim x^n = a^n$

$$Average \ velocity = \frac{change \ in \ position}{time \ elapsed}$$

$$=\frac{h(t_2)-h(t_1)}{t_2-t_1}$$

10. $\lim \sqrt[n]{x} = \sqrt[n]{a}$ if n is even, we assume a > 0.

Important Limit Laws: Steps for Squeeze Theorem:

1. Start with $-1 \le second \le 1$

Tangent Line Equation:

(after finding slope)

 $y - y_1 = m(x - x_1)$

- 2. The value of *first* is ≥ 0 , so we multiply
- 3. Set $-(first) \le whole \le first$
- 4. Apply the limit values! (just add in front of the previous step)
- 5. Because both sides are 0, {whole including *limit*} must be 0 too.

Note: Look for two seperate

no simplification

$$1. \ a^{x+y} = a^x a^y$$

2.
$$a^{x-y}$$

3.
$$(a^x)^y =$$

3.
$$(a^x)^y = a^{xy}$$
 4. $(ab)^x = a^x b^x$

Copy this onto exam first thing before you forget.

30°

 $\pi/6$

1

 $\bar{2}$

 $\sqrt{3}$

3

 $2\sqrt{3}$

11 76	15 6	ven,	we as
	у х	: /	$y = x^2$
	0	1	\overrightarrow{x}
<i>y</i> ↑			
$y = \sin x$			
1+	\bigcap_{i}	π	2π
		١	,

- Log Rules:
- (5) $\log_a a = 1$ (1) $\log_a m + \log_a n = \log_a mn$
- (6) $a^{\log_a x} = x$ (2) $\log_a m - \log_a n = \log_a \left(\frac{m}{n}\right)$
- (3) $\log_a m^n = n \log_a m$
- (7) $\log_a x =$

Important Rules: $\log_e x = \ln x$

ln e = 1ln 1 = 0

Trnsformations:

Simplification Property If f(x) = g(x) when $x \neq a$, then

(4) $\log_a 1 = 0$

$$\lim_{x \to a} f(x) = \lim_{x \to a} g(x),$$

provided the limits exist. Thus we can simplify and THEN compute the limit.

Order Theorem If $f(x) \leq g(x)$ when x is near a (except possibly at a) and the limits of f and g both exist as x approaches a, then

$$\lim_{x \to a} f(x) \le \lim_{x \to a} g(x).$$

Squeeze Theorem If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and

$$\lim_{x \to a} f(x) = \lim_{x \to a} h(x) = L$$

then

$$\lim_{x\to a}g(x)=L.$$

Random Review Notes:

- When writing "lim" there must be a function following!
- The last part of every theorem problem <u>must</u> end in a sentence
- With absolute values, turn them into piecewise functions!

Steps for Limits:

- 1. Is it infinity?
- 2. Can I plug in the limit directly?
- 3. Can I factor it?
- 4. If neither: a. Conjugate
- b. things cancel c. then plug in the limit!

 $y=f(x \pm \leftrightarrow) \pm \updownarrow$