ت النسيح	نیارۃ عیا
نبس	things for

0.5

0.5

0.5

0.5

0.5

0.5

1

0.5

0.5

0.5

1

0,5

0,5

الامتحان التجريبي رقم 4 مادة: الرياضيات / ٤ رياضي المدة: 4 ساعات السنة الدر اسبة 2010/2009 الصفحة : 1/2

التمرين الأول بالنفط

المستوى منسوب لمعلم متعامد ممنظم مباشر (O,u,v)

. نعتبر النقط B'(-i) , B(i) , A'(-1) , A(1) من المستوى

 AMM_2 و BMM_1 بالنقطتين $M_1(z_1)$ و $M_2(z_2)$ بحيث يكون المثلثين M(z)

 $(\overline{M_1B},\overline{M_1M})\equiv(\overline{M_2M},\overline{M_2A})[2\pi]\equiv\frac{\pi}{2}[2\pi]$: متساويي الساقين وقائمي الزاوية مع

$$1-z_2=i(z-z_2)$$
 و $z-z_1=i(i-z_1)$ 1.

.
$$z_2 = \frac{1-i}{2}(z+i)$$
 و $z_1 = \frac{1+i}{2}(z+1)$ ب. تحقق أن

 $OM_1 = OM_2 \Leftrightarrow |z+1| = |z+i|$ 2. اثبت أن

 $OM_1=OM_2$ وانشىء (Δ) مجموعة النقط (Δ) التي من اجلها تكون

. $OM_1 = M_1 M_2 \Leftrightarrow |z+1|^2 = 2|z|^2$ ج. اثبت أن

 (Γ) مجموعة النقط M(z) التي من اجلها يكون $OM_1=M_1M_2$ وانشىء (Ω

3. استنتج النقط M(z) التي من اجلها يكو ن المثلث $OM_{_1}M_{_2}$ متساوي الأضلاع .

التمرين الثاني 3,5 نظفظ

المستوى منسوب لمعلم متعامد ممنظم مباشر $(O, \overrightarrow{e_1}, \overrightarrow{e_2})$

 $z' = (1+i)\overline{z} - 1 + 3i$ بحيث (P) الذي يربط كل نقطة (M(z) بالنقطة (P) بحيث (P) نعتبر التطبيق g

0.5 حدد النقط الصامدة ب g . 0.5

. k ونسبته Ω ونسبته gog بين أن 3. بينَ انهَ عَندماً تتغير M(z) عَلَى الدائرةَ C(O,1) فان C(O,1) تتغير على مجموعة M(z) يتم تحديدها

A(3+2i) ونعتبر النقطة z=m+ni ونعتبر النقطة عنصرين من z=m+ni

. $(\Omega A) \perp (\Omega M') \Leftrightarrow 5m + 3n = -2 \text{ et } (m, n) \neq (-1, 1)$

REZ _ -3k-1, 5k+1) 7 1 3 1 1 1 2 5 1 5m+3n=-2 ب. كُفِّق أَنْحِلُول

ج. استنتج النقط M(m+ni) حيث m و n تنتميان للمجال [-6,6] و $(\Omega M) \perp (\Omega M)$.

التمرين الثالث 18,6 نقطة

$$\begin{cases} f(x) = \frac{1}{e} (1+x)^{\frac{1}{x} + \frac{1}{2}} & ; x \neq 0 \\ f(0) = 1 \end{cases} ; x \neq 0$$
is in the proof of the proof of

 $(0,\vec{\iota},\vec{j})$ منحناها في معلم متعامد ممنظم ((C_f) وليكن

الجـــــزء الأول

ا تحقق أن f متصلة في 0

$$w(t) = u(t)v(x) - u(x)v(t)$$
 $g(t) = t^2$ $g(t) = \ln(1+t) - t$

$$\frac{u(x)}{v(x)} = \frac{u'(c)}{v'(c)}$$
: باستعمال مبرهنة ROLLe بین أنه یوجد محصور بین 0 و x بحیث (a

$$\lim_{x \to 0} \frac{\ln(1+x) - x}{x^2} = -\frac{1}{2}$$
 (b)

$$(\forall x \neq 0): \frac{f(x)-f(0)}{x} = \left(\frac{2+x}{2} \cdot \frac{\ln(1+x)-x}{x^2} + \frac{1}{2}\right) \frac{e^{h(x)}-1}{h(x)} \quad \text{if } (3)$$

. $\lim_{h \to 0} h(x) = 0$ حيث h دالة تحقق

 $\lim_{x \to -1^n} f(x) = \lim_{x \to +\infty} f(x)$

 $(\forall x \neq 0): \frac{f(x)}{x} = \frac{1}{e} (1+x)^{\frac{1}{x} - \frac{1}{2}} \cdot \frac{1+x}{x}$ (b)

. (C_f) استنتج الفروع اللانهائية للمنحنى (C_f

 $\varphi(x) = \frac{x^2 + 2x}{1 + x} - 2\ln(1 + x) \quad \text{(5)}$

 $\phi(0)=0$ أدرس تغيرات الدالة ϕ واستنتج إشارتها . (لاحظ أن $\phi(0)=0$) .

 $(\forall x \neq 0): f'(x) = \frac{1}{2x^2} \varphi(x) f(x)$ يين أن (b

 $-1,+\infty$ على f على f على $-1,+\infty$.

. $(\forall x \in]-1,+\infty[$ $): f(x) \geq 1$ استنتج أن (d

(C_f) أنشئ المنحنى (6

الجــــــزء الثــــــأني

 $v_n=u_n\left(\frac{1}{e}
ight)$ و نضع $u_n(x)=rac{(nx)^nn^{rac{1}{2}}}{n!}$ نضع $n\in\mathbb{N}^*$ و نضع $x\in\mathbb{R}^+$ لکل

 $(\forall x > 0)$ $\frac{u_{n+1}(x)}{u_n(x)} = e.x.f(\frac{1}{n})$ نین (a (1

: استنتج أن المتتالية $(v_n)_{n\in\mathbb{N}}$ تزايدية (b

. $(\forall x \in \mathbb{R}^+)$: $\ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}$ ين أن (a (2

. $(\forall x \in \mathbb{R}^+)$: $\ln(f(x)) \le \frac{x^2}{12} + \frac{x^3}{6}$ ناستنج أن (b

 $n \in \mathbb{N}^* - \{1\}$ ليكن (3

 $(\forall n \ge 1)$: $\ln(u_n(\frac{1}{e})) \le -1 + \sum_{k=1}^{n-1} (\frac{1}{12} \frac{1}{k^2} + \frac{1}{6} \frac{1}{k^3})$ نستنتج أن (b

ر اثبت ان المتتالية (v_n) مكبورة واستنتج أنها متقاربة (c

 $\lim(\frac{n^ne^{-n}}{n!}) \quad (4$

0,5

1

4

0, 5

1

0, 5

0, 5

~ =

0,5

11.

0, 5

0,5

0, 5

0, 5

0, 5

0, 5

0,5

0,5