Machine Learning: Lecture -1

Introduction

Topics (Part -1)

1. Linear modelling:

Least square (LS)

Non-linear response from linear models

Generalization versus overfitting

Regularized LS: L2, L1 regularization (LASSO)

2. Maximum likelihood (ML) approach

3. Classifiers:

Probabilistic Classifier: Bayes classifier, Logistic regression

Non-Probabilistic classifier: K-nearest neighbours

4. Decision Trees

5. Random Forests

6. Gradient Boosting

Tutorials: (Mon 5.00 -6.30 PM)

R-102 - Batch 1

R-104 - Batch 2

R-105 - Batch 3

R-110 - Batch 4

Text Books:

1, 2, 3: A first Course on Machine Learning by Simon Rogers 4,5, 6: To be decided later

Reference:

Machine Learning: Foundations, Methodologies, and Applications by Alexander Jung

Assessment Plan: Part 1 (50 Marks)

Class Quiz (After Aug 31): 10 Marks

Assignment – 1 (After Sep 15): 10 Marks

Mid-term: 20 Marks

Tutorial Assessment (Multiple assessments spread across random tutorial days): 5 Marks

Class Participation: 5 Marks

Machine Learning

Machine Learning and Artificial Intelligence

A Simple Learning Example

Objective: Predict the maximum day temperature after observing the temperature at 7 AM.

Observations:

x: Temperature at 7 AM

y: Maximum Day Temperature

How can we find suitable w_1 and w_0 ?

Sample hypotheses: $h(x) := w_1 x + w_0 \quad w_1 \in \mathbb{R}_+, w_0 \in \mathbb{R}.$

Model:

 $y \approx w_1 x + w_0$

ML Objective: Find the "best" hypothesis from the set of feasible hypotheses

[ML & Linear Algebra]: Vector Representation

[a_x, a_y, a_z] Point in 3- dimensional Space / 3-dimensional Vector / Data

[ML & Linear Algebra]: Data in Multi-Dimensional Space

5 –Dimensional Space (\mathbb{R}^5)

(Do not bother to Imagine! Look only Algebraic way)

	۲1٦		۲0٦		٦0
	0		1		0
$a_1 =$	0	$a_2 =$	0	$a_3 =$	1
	0		0		0
	L01		$L_{0}J$		[0]

$$a_4 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \qquad a_5 = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Dimension	Meaning	Value	
a ₁	Height (ft)	6	
a ₂	Age	30	
a ₃	Weight (kg)	70	
a ₄	Waist-Size(in)	32	
a ₅	Gender	1	

$$a = [6, 30, 70, 32, 1]$$
 \Longrightarrow $a = 6a_1 + 30a_2 + 70a_3 + 32a_4 + a_5$

[ML & Linear Algebra]: Image Representation

 8×8 image

 8×8 image can be represented as 64 dimensional vector

$$x = [0.65 \ 0.05 \ 0.20 \ \dots \dots 0.28 \ 0.00 \ 0.90]$$

x is a point in 64-dimension space, $x \in \mathbb{R}^{64}$

Videos:

k frames in a video of resolution $m \times n$ can be represented as as $m \times n \times k$ vector

$$x \in \mathbb{R}^{m \times n \times k}$$

Poll: $x \in \mathbb{R}^{m \times n \times k} \& x \in \mathbb{R}^{m \times k \times n}$ represents the same video?

[ML & Linear Algebra]: Document Representation

Documents:

D1: I like deep learning

D2: I like NLP

D3: I enjoy flying

Word Count Histogram:

counts	D1	D2	D3
1	1	1	1
like	1	1	0
enjoy	0	0	1
deep	1	0	0
learning	1	0	0
NLP	0	1	0
flying	0	0	1
	1	1	1

[ML & Optimization] Cost Function Minimization

Line Fitting: Loss function minimization with two parameters

[ML & Probability]

What if we can model the joint probability distribution of data and labels?

What if we can additionally sample new data from this joint distribution ?

Generative Models

7 AM Temperature vs. Max Day temperature:

[ML Flavours]: Supervised Learning

[ML Flavours]: Supervised vs Un-supervised Learning

supervised learning Input data Prediction Its an apple! Annotations Model These are apples unsupervised learning Input data Model

Supervised Learning

Unsupervised Learning

[ML Flavours]: Supervised vs Un-supervised Learning vs Reinforcement Learning

[ML Flavours]: Reinforcement Learning Example

Learning to assemble using robotic arms

Example:

Warehouse automation: picking objects of different size and shape

States:

-Robot State: joint angles, joint velocities, the end-effector pose -Ref Object State: object positional information

Actions:

-Torque on various joints

Reward:

- -1 for success
- -0 for failure

