Flow networks COMS20010 2020, Video 8-3

John Lapinskas, University of Bristol

Water networks;

- Water networks:
- Power networks;

- Water networks:
- Power networks:
- Road systems;

- Water networks:
- Power networks:
- Road systems;
- Internet infrastructure;

- Water networks;
- Power networks:
- Road systems;
- Internet infrastructure;
- People moving through stalls at Freshers' Fair.

- Water networks;
- Power networks:
- Road systems;
- Internet infrastructure;
- People moving through stalls at Freshers' Fair.

They're also useful in a wide variety of other settings, including:

Airline scheduling;

- Water networks;
- Power networks:
- Road systems;
- Internet infrastructure:
- People moving through stalls at Freshers' Fair.

- Airline scheduling;
- Image segmentation;

- Water networks;
- Power networks;
- Road systems;
- Internet infrastructure;
- People moving through stalls at Freshers' Fair.

- Airline scheduling;
- Image segmentation;
- Proving graph theory results;

- Water networks;
- Power networks:
- Road systems;
- Internet infrastructure;
- People moving through stalls at Freshers' Fair.

- Airline scheduling;
- Image segmentation;
- Proving graph theory results;
- Survey design;

- Water networks;
- Power networks:
- Road systems;
- Internet infrastructure;
- People moving through stalls at Freshers' Fair.

- Airline scheduling;
- Image segmentation;
- Proving graph theory results;
- Survey design;
- Professional baseball. (See KT 7.12!)

For now, let's just consider a toy problem. One pump supplies water for one factory, passing through a network of pipes of different capacities.

The problem: How much water can get to the factory?

(The reason we're considering such a basic problem is that it will turn out most of the more interesting problems **reduce** to this one...!)

For now, let's just consider a toy problem. One pump supplies water for one factory, passing through a network of pipes of different capacities.

The problem: How much water can get to the factory?

(The reason we're considering such a basic problem is that it will turn out most of the more interesting problems **reduce** to this one...!)

A **flow** in (G, c, s, t) is a function $f: E \to \mathbb{R}$ with the following properties:

A **flow** in (G, c, s, t) is a function $f: E \to \mathbb{R}$ with the following properties:

• No edge has more flow than capacity; for all $e \in E$, $0 \le f(e) \le c(e)$.

A **flow** in (G, c, s, t) is a function $f: E \to \mathbb{R}$ with the following properties:

- No edge has more flow than capacity; for all $e \in E$, $0 \le f(e) \le c(e)$.
- Flow is conserved at vertices; for all $v \in V \setminus \{s, t\}$,

$$\sum_{u\in N^-(v)} f(u,v) = \sum_{w\in N^+(v)} f(v,w).$$

A **flow** in (G, c, s, t) is a function $f: E \to \mathbb{R}$ with the following properties:

- No edge has more flow than capacity; for all $e \in E$, $0 \le f(e) \le c(e)$.
- Flow is conserved at vertices; for all $v \in V \setminus \{s, t\}$,

$$\sum_{u\in N^-(v)}f(u,v)=\sum_{w\in N^+(v)}f(v,w).$$

For brevity, we write $f^-(v) = \sum_{u \in N^-(v)} f(u, v)$ for the total flow into v, and $f^+(v) = \sum_{w \in N^+(v)} f(v, w)$ for the total flow out of v.

A **flow** in (G, c, s, t) is a function $f: E \to \mathbb{R}$ with the following properties:

- No edge has more flow than capacity; for all $e \in E$, $0 \le f(e) \le c(e)$.
- Flow is conserved at vertices; for all $v \in V \setminus \{s, t\}$,

$$\sum_{u\in N^-(v)}f(u,v)=\sum_{w\in N^+(v)}f(v,w).$$

For brevity, we write $f^-(v) = \sum_{u \in N^-(v)} f(u, v)$ for the total flow into v, and $f^+(v) = \sum_{w \in N^+(v)} f(v, w)$ for the total flow out of v.

The **value** of f, denoted v(f), is $f^+(s)$.

The problem: Find a maximum flow: a flow f maximising v(f).

A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

- $0 \le f(e) \le c(e)$;
- $f^+(v) := \sum_{u \in N^-(v)} f(u, v) = \sum_{w \in N^+(v)} f(v, w) =: f^-(v).$

Why do we define the value of f by $v(f) = f^+(s)$ rather than e.g. $f^-(t)$?

A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

- $0 \le f(e) \le c(e)$;
- $f^+(v) := \sum_{u \in N^-(v)} f(u, v) = \sum_{w \in N^+(v)} f(v, w) =: f^-(v).$

Why do we define the value of f by $v(f) = f^+(s)$ rather than e.g. $f^-(t)$?

Because we get the same answer either way! Let's make that formal.

A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

- $0 \le f(e) \le c(e)$;
- $f^+(v) := \sum_{u \in N^-(v)} f(u, v) = \sum_{w \in N^+(v)} f(v, w) =: f^-(v).$

Why do we define the value of f by $v(f) = f^+(s)$ rather than e.g. $f^-(t)$?

Because we get the same answer either way! Let's make that formal.

A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

- $0 \le f(e) \le c(e)$;
- $f^+(v) := \sum_{u \in N^-(v)} f(u, v) = \sum_{w \in N^+(v)} f(v, w) =: f^-(v).$

Why do we define the value of f by $v(f) = f^+(s)$ rather than e.g. $f^-(t)$?

Because we get the same answer either way! Let's make that formal.

A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

- $0 \le f(e) \le c(e)$;
- $f^+(v) := \sum_{u \in N^-(v)} f(u, v) = \sum_{w \in N^+(v)} f(v, w) =: f^-(v).$

Why do we define the value of f by $v(f) = f^+(s)$ rather than e.g. $f^-(t)$?

Because we get the same answer either way! Let's make that formal.

A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

- $0 \le f(e) \le c(e)$;
- $f^+(v) := \sum_{u \in N^-(v)} f(u, v) = \sum_{w \in N^+(v)} f(v, w) =: f^-(v)$.

Why do we define the value of f by $v(f) = f^+(s)$ rather than e.g. $f^-(t)$?

Because we get the same answer either way! Let's make that formal.

We write $f^+(X) := \sum_{e \text{ out of } X} f(e)$ and $f^-(X) := \sum_{e \text{ into } X} f(e)$.

A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

- $0 \le f(e) \le c(e)$;
- $f^+(v) := \sum_{u \in N^-(v)} f(u, v) = \sum_{w \in N^+(v)} f(v, w) =: f^-(v).$

Why do we define the value of f by $v(f) = f^+(s)$ rather than e.g. $f^-(t)$?

Because we get the same answer either way! Let's make that formal.

We write $f^+(X) := \sum_{e \text{ out of } X} f(e)$ and $f^-(X) := \sum_{e \text{ into } X} f(e)$.

For example, here $f^{+}(X) = 5 + 7 = 12$ and $f^{-}(X) = 1$.

A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

- $0 \le f(e) \le c(e)$;
- $f^+(v) := \sum_{u \in N^-(v)} f(u, v) = \sum_{w \in N^+(v)} f(v, w) =: f^-(v)$.

The value of f, denoted v(f), is $f^+(s)$.

We write $f^+(A) := \sum_{e \text{ out of } A} f(e)$ and $f^-(A) := \sum_{e \text{ into } A} f(e)$.

A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

- $0 \le f(e) \le c(e)$;
- $f^+(v) := \sum_{u \in N^-(v)} f(u, v) = \sum_{w \in N^+(v)} f(v, w) =: f^-(v)$.

The value of f, denoted v(f), is $f^+(s)$.

We write $f^+(A) := \sum_{e \text{ out of } A} f(e)$ and $f^-(A) := \sum_{e \text{ into } A} f(e)$.

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$. (So flow is conserved in sets as well as at individual vertices.)

A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

- $0 \le f(e) \le c(e)$;
- $f^+(v) := \sum_{u \in N^-(v)} f(u, v) = \sum_{w \in N^+(v)} f(v, w) =: f^-(v)$.

The value of f, denoted v(f), is $f^+(s)$.

We write $f^+(A) := \sum_{e \text{ out of } A} f(e)$ and $f^-(A) := \sum_{e \text{ into } A} f(e)$.

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$. (So flow is conserved in sets as well as at individual vertices.)

Proof: By summing conservation of flow over all $v \in X$:

$$\sum_{v\in X}\sum_{u\in N^-(v)}f(u,v)=\sum_{v\in X}\sum_{w\in N^+(v)}f(v,w).$$

A flow is a function $f: E \to \mathbb{R}$ such that for all $e \in E$ and $v \in V \setminus \{s, t\}$:

- $0 \le f(e) \le c(e)$;
- $f^+(v) := \sum_{u \in N^-(v)} f(u, v) = \sum_{w \in N^+(v)} f(v, w) =: f^-(v)$.

The value of f, denoted v(f), is $f^+(s)$.

We write $f^+(A) := \sum_{e \text{ out of } A} f(e)$ and $f^-(A) := \sum_{e \text{ into } A} f(e)$.

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$. (So flow is conserved in sets as well as at individual vertices.)

Proof: By summing conservation of flow over all $v \in X$:

$$\sum_{v \in X} \sum_{u \in N^-(v)} f(u, v) = \sum_{v \in X} \sum_{w \in N^+(v)} f(v, w).$$

For all $e \subseteq X$, f(e) appears once on each side; after cancelling those terms we're left with $f^+(X) = f^-(X)$.

We write $f^+(A) := \sum_{e \text{ out of } A} f(e)$ and $f^-(A) := \sum_{e \text{ into } A} f(e)$.

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$.

The **value** of a flow f, denoted v(f), is $f^+(s)$. We write $f^+(A) := \sum_{e \text{ out of } A} f(e)$ and $f^-(A) := \sum_{e \text{ into } A} f(e)$. **Lemma 1:** For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$.

A **cut** is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B = V$, $s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$.

A **cut** is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B = V$, $s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts (A, B), $f^+(A) - f^-(A) = f^-(B) - f^+(B) = v(f)$.

The **value** of a flow f, denoted v(f), is $f^+(s)$. We write $f^+(A) := \sum_{e \text{ out of } A} f(e)$ and $f^-(A) := \sum_{e \text{ into } A} f(e)$. **Lemma 1:** For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$.

A **cut** is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B = V$, $s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts (A, B), $f^+(A) - f^-(A) = f^-(B) - f^+(B) = v(f)$.

Proof: By Lemma 1, we have $f^+(A \setminus \{s\}) = f^-(A \setminus \{s\})$.

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$.

A **cut** is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B = V$, $s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts (A, B), $f^+(A) - f^-(A) = f^-(B) - f^+(B) = v(f)$.

Proof: By Lemma 1, we have $f^+(A \setminus \{s\}) = f^-(A \setminus \{s\})$.

But $f^+(A \setminus \{s\}) = f^+(A) - f(s, B)$ and $f^-(A \setminus \{s\}) = f^-(A) + f(s, A)...$

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$.

A **cut** is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B = V$, $s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts (A, B), $f^+(A) - f^-(A) = f^-(B) - f^+(B) = v(f)$.

Proof: By Lemma 1, we have $f^+(A \setminus \{s\}) = f^-(A \setminus \{s\})$.

But $f^+(A \setminus \{s\}) = f^+(A) - f(s, B)$ and $f^-(A \setminus \{s\}) = f^-(A) + f(s, A)...$ So $f^+(A) - f(s, B) = f^-(A) + f(s, A).$

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$.

A **cut** is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B = V$, $s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts (A, B), $f^+(A) - f^-(A) = f^-(B) - f^+(B) = v(f)$.

Proof: By Lemma 1, we have $f^+(A \setminus \{s\}) = f^-(A \setminus \{s\})$.

Rearranging $f^{+}(A) - f(s, B) = f^{-}(A) + f(s, A)$:

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$.

A **cut** is any pair of disjoint sets $A, B \subseteq V$ with $A \cup B = V$, $s \in A$ and $t \in B$. (So A and B partition V, the source is in A and the sink is in B.)

Lemma 2: For all cuts (A, B), $f^+(A) - f^-(A) = f^-(B) - f^+(B) = v(f)$.

Proof: By Lemma 1, we have $f^+(A \setminus \{s\}) = f^-(A \setminus \{s\})$.

Rearranging
$$f^+(A) - f(s, B) = f^-(A) + f(s, A)$$
:
 $f^+(A) - f^-(A) = f(s, B) + f(s, A) = f^+(s) = v(f)$.

We write $f^+(A) := \sum_{e \text{ out of } A} f(e)$ and $f^-(A) := \sum_{e \text{ into } A} f(e)$.

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$.

A **cut** is any partition (A, B) of V with $s \in A$ and $t \in B$.

Lemma 2: For all cuts (A, B), $f^+(A) - f^-(A) = f^-(B) - f^+(B) = v(f)$. **Proof:** We have shown $v(f) = f^+(A) - f^-(A)$.

We write $f^+(A) := \sum_{e \text{ out of } A} f(e)$ and $f^-(A) := \sum_{e \text{ into } A} f(e)$.

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$.

A cut is any partition (A, B) of V with $s \in A$ and $t \in B$.

Lemma 2: For all cuts (A, B), $f^+(A) - f^-(A) = f^-(B) - f^+(B) = v(f)$. **Proof:** We have shown $v(f) = f^+(A) - f^-(A)$.

Since A and B are disjoint and $A \cup B = V$, the edges out of A are the edges into B, so $f^+(A) = f^-(B)$. Likewise $f^-(A) = f^+(B)$.

We write $f^+(A) := \sum_{e \text{ out of } A} f(e)$ and $f^-(A) := \sum_{e \text{ into } A} f(e)$.

Lemma 1: For all sets $X \subseteq V \setminus \{s, t\}$, we have $f^+(X) = f^-(X)$.

A **cut** is any partition (A, B) of V with $s \in A$ and $t \in B$.

Lemma 2: For all cuts (A, B), $f^+(A) - f^-(A) = f^-(B) - f^+(B) = v(f)$. **Proof:** We have shown $v(f) = f^+(A) - f^-(A)$.

Since A and B are disjoint and $A \cup B = V$, the edges out of A are the edges into B, so $f^+(A) = f^-(B)$. Likewise $f^-(A) = f^+(B)$.

Lemma 2 implies we could have defined v(f) via **any** cut in the network. In particular, $f^+(s) = f^-(t)$.