Classificação de partidas de League of Legends usando KNN e Árvore de Decisão

Alunos: Guilherme Alves Carvalho e Heitor Freitas Ferreira

Tarefa de mineração escolhida

Classificação dos dados das partidas competitivas de League Of Legends para descobrir se um time irá ganhar a partida dadas informações da partida

Dados disponíveis no kaggle e no github

Base de dados

- Arquivo csv contendo informações dos times e dos jogadores em todas partidas das principais ligas do mundo como LCS, LEC, LCK, LPL, PCS, CBLoL e mais
- Todos os dados foram agregados e divulgados por Tim Sevenhuysen da OraclesElixir.com.

Pré processamento

- Base originalmente continha 123 atributos
 - Atributos de players
 - Atributos dos times

'gameid',	'ban3',	'ckpm',	'barons',	'wardsplaced',	'cspm',	'opp_goldat15',
'datacompleteness',	'ban4',	'firstdragon',	'opp_barons',	'wpm',	'goldat10',	opp_xpat15',
'url',	'ban5',	'dragons',	'firsttower',	'wardskilled',	'xpat10',	'opp_csat15',
'league',	'gamelength',	'opp_dragons',	'towers',	'wcpm',	'csat10',	'golddiffat15',
'year',	result',	'elementaldrakes',	'opp_towers',	'controlwardsbought',	opp_goldat10',	'xpdiffat15',
'split',	'kills',	'opp_elementaldrakes',	'firstmidtower',	'visionscore',	opp_xpat10',	'csdiffat15',
'playoffs',	'deaths',	'infernals',	'firsttothreetowers',	'vspm',	opp_csat10',	'killsat15',
'date',	'assists',	'mountains',	'turretplates',	'totalgold',	'golddiffat10',	'assistsat15',
'game',	'teamkills',	'clouds',	'opp_turretplates',	'earnedgold',	'xpdiffat10',	'deathsat15',
'patch',	'teamdeaths',	'oceans',	'inhibitors',	'earned gpm',	'csdiffat10',	'opp_killsat15',
'participantid',	'doublekills',	'chemtechs',	'opp_inhibitors',	'earnedgoldshare',	'killsat10',	'opp_assistsat15',
'side',	'triplekills',	'hextechs',	'damagetochampions',	'goldspent',	'assistsat10',	'opp_deathsat15',
'position',	'quadrakills',	'dragons (type unknown)',	'dpm',	'gspd',	'deathsat10',	'ban2',
'playername',	'pentakills',	'elders',	'damageshare',	'total cs',	'opp_killsat10',	'firstbaron',
'playerid',	'firstblood',	'opp_elders',	'damagetakenperminute',	'minionkills',	'opp_assistsat10',	
'teamname',	'firstbloodkill',	'firstherald',	'damagemitigatedperminute',	'monsterkills',	'opp_deathsat10',	
'teamid',	'firstbloodassist',	'heralds',	damagemingateupeminute,	'monsterkillsownjungle',	'goldat15',	
'champion',	'firstbloodvictim',	'opp_heralds',		'monsterkillsenemyjungle',	'xpat15',	
'ban1',	'team kpm',	opp_neralus,			'csat15',	

Pré processamento

- Base originalmente continha 123 atributos
 - Atributos de players
 - Atributos dos times
- Dados temporais divididos pela duração do jogo
 - totalgold, minionskills, monsterkills, constrolwardsbought
- Todas colunas normalizadas, exceto dados categóricos
 - 'league', 'game', 'side', 'teamname', 'ban1', 'ban2', 'ban3', 'ban4', 'ban5', 'result', 'firstblood', 'firstdragon', 'firstherald', 'firstbaron', 'firsttower', 'firstmidtower', 'first tothreetowers'

Pré processamento

- Selecionadas as linhas das seguintes ligas
 - 'LCK', 'SL', 'LCK CL', 'NLC', 'PRM', 'VCS', 'LMF', 'LCS', 'PCS',
 'LFL','CBLOL', 'LEC', 'LAS', 'TCL', 'LJL', 'LCO', 'LPLOL', 'NEXO', 'LLA',
 'EBL', 'GL', 'PGN', 'WCS','MSI', 'CDF','LCL'
- Selecionadas linhas com todos os dados
- Removidas linhas que diziam respeito aos players
- Selecionado apenas partidas de 2022

Colunas com maior correlação com 'result'

golddiffat15	0.540542
firsttothreetowers	0.555000
monsterkills_per_minute	0.565751
elementaldrakes	0.586517
dragons	0.587794
doublekills	0.594394
barons	0.628934
firstbaron	0.663992
team kpm	0.681801
assists	0.682777
teamkills	0.686663
kills	0.686663
inhibitors	0.749887
totalgold_per_minute	0.826226
towers	0.885757

Foram usadas como entrada para os modelos de classificação os 15 elementos com a maior correlação

Ao final do pré-processamento, saímos de um dataset com 123 atributos e 149232 objetos, para um com 15 atributos e 12000 objetos

Métodos utilizados

KNN

- Aprendizado supervisionado
- Calcula as distâncias de um objeto para todos outros
- O objeto é classificado de acordo com a classificação dos vizinhos
- Muito sensível à ruídos
- Dependente de uma boa escolha da quantidade de vizinhos (k)
 - o k grande -> Reduz influência de ruído
 - k pequeno -> Separação melhor entre as classes

Árvore de decisão (ID3)

- Aprendizado supervisionado
- Começa com todos os objetos em um nó raiz
- Divide o nó raiz usando o atributo que maximiza o ganho de entropia considerando o nó raiz e seus filhos
- Processo repetido recursivamente até obter apenas elementos de uma classe no nó
- Pode gerar árvore mais complexas que o necessário que não generaliza bem (overfitting)

Métodos utilizados

Árvore de decisão (ID3)

Classificação usando KNN

- Dataset dividido aleatoriamente em 90% para treino e 10% para teste
- Usada distância de Manhattan.
- Testado com k = [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
- Para cada teste foi montada a matriz de confusão
- Para cada teste foram calculados os valores de Sensitividade e Especificidade

Valores para diferentes Ks

```
Para K = 1:
Valor real
Valor predito
         563 22
          25 590
Sensitividade = 96.41%
Especificidade = 95.75%
Para K = 7:
Valor real
Valor predito
         557 5
          31 607
Sensitividade = 99.18%
Especificidade = 94.73%
```

```
Para K = 3:
Valor real
             0
Valor predito
         563 12
          25 600
Sensitividade = 98.04%
Especificidade = 95.75%
Para K = 9:
Valor real
Valor predito
         563 8
          25 604
Sensitividade = 98.69%
Especificidade = 95.75%
```

```
Para K = 5:
Valor real
             \mathbf{0}
Valor predito
         564 9
          24 603
Sensitividade = 98.53%
Especificidade = 95.92%
Para K = 11:
Valor real
             0
Valor predito
         562 8
          26 604
Sensitividade = 98.69%
Especificidade = 95.58%
```

Valores para diferentes Ks

```
Para K = 13:

Valor real 0 1

Valor predito
0 552 4
1 36 608

Sensitividade = 99.35%

Especificidade = 93.88%
```

```
Para K = 17:

Valor real 0 1

Valor predito
0 553 4
1 35 608

Sensitividade = 99.35%

Especificidade = 94.05%
```

```
Para K = 15:
Valor real 0 1
Valor predito
0 555 4
1 33 608
Sensitividade = 99.35%
Especificidade = 94.39%
```

```
Para K = 19:
Valor real 0 1
Valor predito
0 554 4
1 34 608
Sensitividade = 99.35%
Especificidade = 94.22%
```

Classificação usando Árvore de Decisão (ID3)

Valor real 0 1

Valor predito

0 588 20

1 17 563

Sensitividade = 96.57%

Especificidade = 97.19%

Conclusão

Ambos os modelos tiveram resultados satisfatórios com relação à classificação da partida em vitória ou derrota usando os top 15 atributos mais relacionados com a variável alvo (resultado da partida), futuramente em outra pesquisa o grupo pretende usar a mesma base para agrupar os jogadores conforme seus dados individuais ao longo de todas as ligas e realizar a classificação para prever o resultado com os dados coletados no meio da partida (15 minutos de jogo).