Lecture 08 – Classification Models

Prof. André Gustavo Hochuli

gustavo.hochuli@pucpr.br aghochuli@ppgia.pucpr.br

Topics

- Discussion of Lecture #07
 - Image Descriptors
- Classification Models
 - K-NN, Logistic Regression, Decision Trees Naïve Bayes, SVM and MLP
- Evaluation Metrics
 - Accuracy, Precision, Recall and F1-Score
- Practice

• So far, we have extracted features from data to compute the feature space.

How discriminating are features?

Computer Vision - Prof. André Hochuli

Lecture 08

How to compute the decision boundary?

- Hyperplane
 - 2-D, 3-D ... N-D (or N-Features)

Binary Classification vs Multi-Class Classification

Binary vs Multi-Class

Classification Models KNN

- Computes the similarity in a feature space (Euclidian Distance, Manhattan....)
- The K-Nearest Neighbors determines the class (Majority Vote)
- There is no training step. Compute the distance of the test sample to each training sample

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

Computer Vision - Prof. André Hochuli

Lecture 08

Classification Models K-Means

- Computes the distance between k-cluster
- The clusters are defined in training step

Classification Models Naïve Bayes

- Bayes Theorem
- A priori vs Posteriori Probabilities

$$P(A|B) = \frac{P(B|A) P(A)}{P(B)}$$

Classification Models Logistic Regression

Linear vs Logistic

Classification Models Logistic Regression (LR)

Logistic Boundary

Classification Models Logistic Regression (LR)

Logistic Boundary

Classification Models Decision Tree

Creates decision rules from the data features

Decision surface of a decision tree using paired features

Classification Models Decision Tree

• The support vectors determine the decision boundary

• The support vectors determine the decision boundary

Kernels

Computer Vision - Prof. André Hochuli

Lecture 08

Kernel Trick

Classification Models Multi-Layer Perceptron

Perceptron

Classification Models Multi-Layer Perceptron

Multi-Layer Perceptron (MLP)

Evaluation Metrics

- Accuracy:
 - Correctly classified instances over total instances

$$Accuracy = \frac{TN + TP}{TN + FP + TP + FN}$$

• (55 + 30)/(55 + 5 + 30 + 10) = 0.850

- What is the problem with accuracy?
 - Imbalanced Data

• Acc: 90% (90/100)

• Error TP: 100% (10/10)

THE TOTAL PROPERTY.		
	NEGATIVE	POSITIVE
NEGATIVE	90 TRUE NEGATIVE	O FALSE POSITIVE
POSITIVE	10 FALSE NEGATIVE	O TRUE POSITIVE

PREDICTED LABEL

Computer Vision - Prof. André Hochuli

Lecture 08

Evaluation Metrics

- Precision:
 - Correctly positive classified instances over positive predictions

$$Precision = \frac{TP}{TP + FP}$$

• 30/(30+5) = 0.857

- Recall
 - Correctly positive classified instances over positive instances (A.K.A Sensitivity or TP Rate)

$$Recall = \frac{TP}{TP + FN}$$

• 30/(30+10) = 0.750

TRUE NEGATIVE 5

FALSE POSITIVE

10
30

PREDICTED LABEL

NEGATIVE

FALSE NEGATIVE

POSITIVE

TRUE POSITIVE

Computer Vision - Prof. André Hochuli

Lecture 08

Evaluation Metrics

• F1-SCORE:

Harmonic Mean^(*) of precision and recall rates

$$F1\ Score = 2 * \frac{Precision * Recall}{Precision + Recall}$$

• 2*(0.857*0.75)/(0.857+0.75) = 0.799

PREDICTED LABEL

	NEGATIVE	POSITIVE
NEGATIVE	55 TRUE NEGATIVE	5 FALSE POSITIVE
POSITIVE	10 FALSE NEGATIVE	30 TRUE POSITIVE

Final Remarks

Accuracy: 0.850

• F1-Score: 0.799

Precision: 0.857

• Recall: 0.750

^(*) The harmonic mean is a method that gives less weightage to larger single values and more weightage to smaller values

Let's Code!

<u>Lecture 08 - Image Classification.ipynb [LINK]</u>