```
import pandas as pd
In [247...
           import numpy as np
           house=pd.read_csv('Banglore_Housing_Prices.csv')
In [248...
           house
Out[248]:
                             location
                                            size total_sqft bath
                                                                  price
               0 Electronic City Phase II
                                          2 BHK
                                                     1056
                                                                  39.07
                                                             2.0
                       Chikka Tirupathi 4 Bedroom
               1
                                                     2600
                                                             5.0 120.00
               2
                            Uttarahalli
                                          3 BHK
                                                     1440
                                                             2.0
                                                                  62.00
                                          3 BHK
                     Lingadheeranahalli
                                                                  95.00
               3
                                                     1521
                                                             3.0
               4
                             Kothanur
                                          2 BHK
                                                     1200
                                                             2.0
                                                                  51.00
                            Whitefield 5 Bedroom
                                                     3453
           13315
                                                             4.0 231.00
           13316
                         Richards Town
                                          4 BHK
                                                     3600
                                                             5.0 400.00
           13317
                  Raja Rajeshwari Nagar
                                          2 BHK
                                                     1141
                                                             2.0
                                                                  60.00
           13318
                     Padmanabhanagar
                                          4 BHK
                                                             4.0 488.00
                                                     4689
           13319
                        Doddathoguru
                                                             1.0
                                                                 17.00
                                          1 BHK
                                                      550
          13320 rows × 5 columns
           null val=house.isnull().sum()
In [249...
           null_val
Out[249]: location
                           1
           size
                          16
                           0
           total_sqft
           bath
                          73
                           0
           price
           dtype: int64
           house['location'].fillna(method='ffill',inplace=True)
In [250...
In [251...
           house.dropna(subset='size',inplace=True)
           house.dropna(subset='bath',inplace=True)
In [252...
           null_val=house.isnull().sum()
           null_val
Out[252]:
           location
           size
                          0
           total_sqft
                          0
           bath
                          0
           price
                          0
           dtype: int64
In [253... house['size'].unique()
Out[253]: array(['2 BHK', '4 Bedroom', '3 BHK', '4 BHK', '6 Bedroom', '3 Bedroom',
                   '1 BHK', '1 RK', '1 Bedroom', '8 Bedroom', '2 Bedroom',
                   '7 Bedroom', '5 BHK', '7 BHK', '6 BHK', '5 Bedroom', '11 BHK',
                   '9 BHK', '9 Bedroom', '27 BHK', '10 Bedroom', '11 Bedroom',
                   '10 BHK', '19 BHK', '16 BHK', '43 Bedroom', '14 BHK', '8 BHK',
                   '12 Bedroom', '13 BHK', '18 Bedroom'], dtype=object)
```

```
In [254... house['size'].replace(['2 BHK', '4 Bedroom', '3 BHK', '4 BHK', '6 Bedroom', '3 Bedroom',
                   '1 BHK', '1 RK', '1 Bedroom', '8 Bedroom', '2 Bedroom',
                   '7 Bedroom', '5 BHK', '7 BHK', '6 BHK', '5 Bedroom', '11 BHK', '9 BHK', '9 Bedroom', '27 BHK', '10 Bedroom', '11 Bedroom',
                   '10 BHK', '19 BHK', '16 BHK', '43 Bedroom', '14 BHK', '8 BHK',
                   '12 Bedroom', '13 BHK', '18 Bedroom'],[2,4,3,4,6,3,1,1,1,8,2,7,5,7,6,5,11,9,9,27,10,11
In [255... house['total_sqft'].unique()
Out[255]: array(['1056', '2600', '1440', ..., '1133 - 1384', '774', '4689'],
                  dtype=object)
In [256... def convert_sqft_into_number(x):
               token = x.split('-')
               if len(token) == 2:
                    return (float(token[0]) + float(token[1])) / 2
               try:
                    return float(x)
               except:
                    return None
In [257... house1 = house.copy()
           house1['total_sqft'] = house1['total_sqft'].apply(convert_sqft_into_number)
In [258... house=house1
In [259...
           house['price_per_sqft'] = house['price']*100000 / house['total_sqft']
           house.head()
Out[259]:
                          location size total_sqft bath
                                                         price price_per_sqft
           0 Electronic City Phase II
                                           1056.0
                                                         39.07
                                                                 3699.810606
                                                   2.0
           1
                   Chikka Tirupathi
                                           2600.0
                                                   5.0 120.00
                                                                 4615.384615
                                                         62.00
           2
                        Uttarahalli
                                     3
                                          1440.0
                                                   2.0
                                                                 4305.555556
           3
                 Lingadheeranahalli
                                          1521.0
                                                   3.0
                                                         95.00
                                                                 6245.890861
                                     3
           4
                         Kothanur
                                     2
                                          1200.0
                                                   2.0
                                                         51.00
                                                                 4250.000000
In [260...
           house.price_per_sqft.describe()
Out[260]: count
                     1.320100e+04
           mean
                     7.920566e+03
           std
                     1.067231e+05
           min
                     2.678298e+02
           25%
                     4.267782e+03
           50%
                     5.438066e+03
           75%
                     7.317073e+03
           max
                     1.200000e+07
           Name: price per sqft, dtype: float64
```

In [261... house.describe()

```
size
                        total_sqft
                                           bath
                                                         price
                                                                price_per_sqft
count 13247.000000 13201.000000 13247.000000 13247.000000
                                                                1.320100e+04
           2.801917
                      1555.306169
                                        2.692610
                                                    112.387400
                                                                7.920566e+03
mean
  std
           1.295710
                      1237.276637
                                        1.341458
                                                    149.071136
                                                                1.067231e+05
 min
           1.000000
                         1.000000
                                        1.000000
                                                      8.000000
                                                                2.678298e+02
           2.000000
                      1100.000000
 25%
                                        2.000000
                                                     50.000000
                                                                4.267782e+03
 50%
           3.000000
                      1275.000000
                                        2.000000
                                                     72.000000
                                                                5.438066e+03
 75%
           3.000000
                      1672.000000
                                        3.000000
                                                    120.000000
                                                                7.317073e+03
          43.000000 52272.000000
                                       40.000000
                                                   3600.000000
                                                                1.200000e+07
 max
```

Out[263]:

Out[261]:

	size	total_sqft	bath	price	price_per_sqft
count	9260.000000	9260.000000	9260.000000	9260.000000	9260.000000
mean	2.557883	1504.737585	2.464255	94.158715	5724.681625
std	0.846329	893.377483	0.951529	110.655686	2536.074109
min	1.000000	300.000000	1.000000	10.000000	1250.000000
25%	2.000000	1110.000000	2.000000	49.000000	4258.695469
50%	2.000000	1283.000000	2.000000	67.000000	5185.251646
75%	3.000000	1650.000000	3.000000	100.000000	6404.402624
max	10.000000	30400.000000	14.000000	2912.000000	35000.000000

```
In [264...
         def remove_bhk_outliers(df):
             exclude_indices = np.array([])
              for location, location_df in df.groupby('location'):
                  bhk_stats = {}
                  for bhk, bhk_df in location_df.groupby('size'):
                      bhk_stats[bhk] = {
                          'mean': np.mean(bhk_df.price_per_sqft),
                          'std': np.std(bhk_df.price_per_sqft),
                          'count': bhk_df.shape[0]
                  for bhk, bhk_df in location_df.groupby('size'):
                      stats = bhk_stats.get(bhk-1)
                      if stats and stats['count']>5:
                          exclude indices = np.append(exclude indices, bhk df[bhk df.price per sqft<(st
              return df.drop(exclude indices,axis='index')
         house4 = remove bhk outliers(house3)
         house4.shape
```

```
In [265... house4
```

\bigcirc	LJCE	٦.
out	200	

	location	size	total_sqft	bath	price	price_per_sqft
0	Devarabeesana Halli	3	1672.0	3.0	150.00	8971.291866
1	Devarabeesana Halli	3	1750.0	3.0	149.00	8514.285714
2	Devarabeesana Halli	3	1750.0	3.0	150.00	8571.428571
4	Devarachikkanahalli	2	1250.0	2.0	40.00	3200.000000
5	Devarachikkanahalli	2	1200.0	2.0	83.00	6916.666667
•••			•••			•••
9255	frazertown	3	2900.0	3.0	325.00	11206.896552
9256	manyata park	3	1780.0	3.0	84.83	4765.730337
9257	tc.palya	2	880.0	2.0	48.00	5454.545455
9258	tc.palya	2	1000.0	2.0	55.00	5500.000000
9259	tc.palya	3	1400.0	2.0	78.00	5571.428571

7509 rows × 6 columns

```
In [266... house5=house4
```

```
In [267...
from sklearn.preprocessing import LabelEncoder
loc=['location']
le = LabelEncoder()
house5[loc] = house5[loc].apply(le.fit_transform)
house5
```

Out[267]:

	location	size	total_sqft	bath	price	price_per_sqft
0	0	3	1672.0	3.0	150.00	8971.291866
1	0	3	1750.0	3.0	149.00	8514.285714
2	0	3	1750.0	3.0	150.00	8571.428571
4	1	2	1250.0	2.0	40.00	3200.000000
5	1	2	1200.0	2.0	83.00	6916.666667
•••	•••	•••				•••
9255	762	3	2900.0	3.0	325.00	11206.896552
9256	763	3	1780.0	3.0	84.83	4765.730337
9257	764	2	880.0	2.0	48.00	5454.545455
9258	764	2	1000.0	2.0	55.00	5500.000000
9259	764	3	1400.0	2.0	78.00	5571.428571

7509 rows × 6 columns

```
In [268... cleaned_data=house5
```

```
import matplotlib.pyplot as plt
total_sqft = cleaned_data['total_sqft']
price= cleaned_data['price']
plt.scatter(total_sqft,price, label='Raw Data')
plt.xlabel('total_sqft')
```

```
plt.ylabel('price')
plt.legend()
```

Out[269]: <matplotlib.legend.Legend at 0x1e9f66e6c10>

In [270... house5.head()

Out[270]:		location	size	total_sqft	bath	price	price_per_sqft
	0	0	3	1672.0	3.0	150.0	8971.291866
	1	0	3	1750.0	3.0	149.0	8514.285714
	2	0	3	1750.0	3.0	150.0	8571.428571
	4	1	2	1250.0	2.0	40.0	3200.000000

1200.0

2.0

83.0

```
In [271... x=house5.drop(['price','bath'],axis=1)
    y=house5['price']
```

6916.666667

In [272... x.shape

5

1

2

Out[272]: (7509, 4)

In [273... from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(x,y,test_size=0.3,random_state=101)

In [274... X_train.shape, X_test.shape, y_train.shape, y_test.shape

Out[274]: ((5256, 4), (2253, 4), (5256,), (2253,))

In [284... y_test.describe()

```
Out[284]: count
                   2253.000000
                     96.376460
          mean
          std
                    116.104378
                     10.000000
          min
          25%
                     50.000000
          50%
                     69.000000
          75%
                    104.000000
                   2912.000000
          max
          Name: price, dtype: float64
In [275... from sklearn.linear_model import LinearRegression
          lr = LinearRegression()
          lr.fit(X_train,y_train)
          lr.score(X_test,y_test)
Out[275]: 0.8332026111275647
In [276... pred = lr.predict(X_test)
          pred
Out[276]: array([181.2688959 , 122.46264329, 73.87822944, ..., 31.3580742 ,
                  72.23505505, 322.91396007])
In [279... | lr.predict([[200,5,3000,9000]])
          C:\Users\Chaitanya\AppData\Local\Programs\Python\Python311\Lib\site-packages\sklearn\base.py:
          420: UserWarning: X does not have valid feature names, but LinearRegression was fitted with f
          eature names
            warnings.warn(
Out[279]: array([264.18370071])
In [285...
          from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
In [286...
          print("Mean Absolute Error:", mean_absolute_error(y_test, pred))
          print("Mean Squared Error:", mean_squared_error(y_test, pred))
          print("R-squared:", r2_score(y_test, pred))
          Mean Absolute Error: 16.849862382246624
          Mean Squared Error: 2247.468619112665
          R-squared: 0.8332026111275647
```

In []: