EECS 3101

Prof. Andy Mirzaian

Assignment Project Exam Help Chttps://eduassistpro.github.lo/

Add WeChat edu_assist_pro

8

Time Complexity

STUDY MATERIAL:

- [CLRS] chapters 1, 2, 3
- Lecture Motsignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

Example

Time complexity shows dependence of algorithm's running time on input size.

Let's assume: Computer speed = 10^6 IPS,

Input: a data base of size $n = 10^6$

Time Consignment Project Fram Helme		
n https://e	eduassistpro.github.io/	
Add W n log n	eChat edu_assist_pro	
n^2	12 days	
2 ⁿ	40 quadrillion (10 ¹⁵) years	

Machine Model

Algorithm Analysis:

- should reveal intrinsic properties of the algorithm itself.
- should not depend on any computing platform, programming language, compiler, computer speed, etc.
- Random Acceigsmachin P(bjett): Exam Help an idealize
- Elementary st https://eduassistpro.github.io/
 - > arithmetic: Add WeChat edu_assist_pro
 - logic: and or not
 - \triangleright comparison: = < > \neq \leq \geq
 - ➤ assigning a value to a scalar variable: ←
 - input/output a scalar variable
 - following a pointer or array indexing
 - \triangleright on rare occasions: $\sqrt{}$, sin, cos, ...

Time Complexity

- Time complexity shows dependence of algorithm's running time on input size.
 - Worst-case
 - Average or expected-case
 - Amortized (studied in EECS 4101)
- What is it good Assignment Project Exam Help
 - https://eduassistpro.github.io/ Tells us how eff
 - Reveals ineffici
 - Can use it to compare that edu_assistrippos that solve the same problem.
 - Is a tool to figure out the true complexity of the problem itself! How fast is the "fastest" algorithm for the problem?
 - Helps us classify problems by their time complexity.

Input size & Cost measure

Input size:

> Bit size: # bits in the input.

This is often cumbersome but sometimes necessary when running time depends on numeric data values, e.g., factoring an n-bit integer.

Assignment Project Exam Help

Combinatorial size: e.g., # items in an array, a list, a tree,

https://eduassistpro.github.io/ graph, ...

Cost measure: Add WeChat edu_assist_pro

Bit cost: charge one unit of time to each bit operation

Arithmetic cost: charge one unit of time to each elementary RAM step.

Complexity:

- Bit complexity
- Arithmetic complexity

Input size & Cost measure

Input size:

▶ Bit size: # bits in the input.This is often cumbersome but sometimes necessary when running time depends on

Assignment Project Exam Help

Combinatorial size: e.g., # items in an array, a list, a tree,

https://eduassistpro.github.io/a graph, ...

Cost measure: Add WeChat edu_assist_pro

numeric data values, e.g., factoring an n-bit integer.

Bit cost: charge one unit of time to each bit operation

Arithmetic cost: charge one unit of time to each elementary RAM step unless stated otherwise

Complexity:

- Bit complexity
- Arithmetic complexity

Time Complexity Analysis

Worst-case time complexity is a function of input size

T:
$$\mathcal{N} \to \Re^+$$

T(n) = maximum # steps by the algorithm on any input of size n.

Incidentally, this can be improved to $\Theta(n \log n)$ time by divide-&-conquer

Which line do you prefer?
The 2nd is simpler and platform independent.

Caution!

```
Algorithm SUM(A[1..n])

S \leftarrow 0

for i \leftarrow 1 ... n do

S \leftarrow S + A[i]

return S

end
```

```
Algorithm PRIME(P) § integer P > 1 for i \leftarrow 2 ... P - 1 do if P mod i = 0 then return NO return YES end
```

Assignment Projects Exame Help) time. Linear?

Worst Case: $\Theta(n)$ ti

LINEA https://eduassistpro.github.lim/P

Add WeChat edu_assistPpro(2n).
NTIAL!

PRIMALITY TESTING: used in cryptography ...

It was a long standing open problem whether there is any deterministic algorithm that solves this problem in time polynomial in the input bit size. This was eventually answered affirmatively by:

M. Agrawal, N. Kayal, N. Saxena, "PRIMES is in P," Annals of Mathematics 160, pp: 781-793, 2004.

Asymptot Project Example 10 ns

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

$T(n) = \Theta(f(n))$

$$T(n) = 23 n^{3} + 5 n^{2} \log n + 7 n \log^{2} n + 4 \log n + 6.$$

$$drop constant multiplicative factor$$

$$Assignment Project Exam Help$$

 $T(n) = \Theta(n^3)$ https://eduassistpro.github.io/

Why do we want to do this? WeChat edu_assist_pro

- 1. Asymptotically (at very large values of n) the leading term largely determines function behaviour.
- 2. With a new computer technology (say, 10 times faster) the leading coefficient will change (be divided by 10). So, that coefficient is technology dependent any way!
- 3. This simplification is still capable of distinguishing between important but distinct complexity classes, e.g., linear vs. quadratic, or polynomial vs exponential.

Asymptotic Notations: Θ O Ω o ω

Rough, intuitive meaning worth remembering:

Theta	$f(n) = \Theta(g(n))$	$f(n) \approx c g(n)$
Big Oh Ass	ignfræht Projecnexan	$f(n) \leq c g(n)$
Big Omega	https://eduassistpro.	
Little Oh	$\frac{\text{Add WeChat edu_as}}{f(n) = o(g)}$	$n) \ll c g(n)$
Little Omega	$f(n) = \omega(g(n))$	$f(n) \gg c g(n)$

Asymptotics by ratio limit

 $L = \lim_{n\to\infty} f(n)/g(n)$. If L exists, then:

Theta	$f(n) = \Theta(g(n))$	$0 < L < \infty$
Big Oh Ass	igninent Projectne kan	n HelpL < ∞
Big Omega	https://eduassistpro.	
Little Oh	$\frac{\text{Add WeChat edu_as}}{f(n) = o(g)}$	ESIST_PRO L=0
Little Omega	$f(n) = \omega(g(n))$	$L = \infty$

∀ & ∃ quantifiers

Logic: "and" commutes with "and", "or" commutes with "or", but "and" & "or" do not commute.

Similarly, same type quantifiers commute, but different types do not:

```
\exists x \ \exists y : \ P(x,y) = \exists y \ \exists x : \ P(x,y) = \exists x,y : \ P(x,y)
Vx Vy: P(Assignment Project Exam Help)
\forall x \exists y : P(x,y)
```

Counter-example f https://eduassistpro.github.io/

LHS: for every person dethereichdat edu_assistx is born on date y.

RHS: there is a date y, such that for ev \overline{x} is born on date y.

Each person has a birth date, but not every person is born on the same date!

Give natural examples for the following to show their differences:

- 1. $\forall x \exists y \forall z$: P(x,y,z)
- 2. $\forall x \ \forall z \ \exists y$: P(x,y,z)
- 3. $\exists y \ \forall x \ \forall z$: P(x,y,z)

Theta: Asymptotic Tight Bound

Theta: Example

$$\begin{split} f(n) &= \Theta(g(n)) & \Longrightarrow \exists c_1, c_2, n_0 \! > \! 0 : \forall n \! \geq n_0, \ c_1 g(n) \leq f(n) \leq c_2 g(n) \\ \hline f(n) &= 23 n^3 - 10 \ n^2 \ log \ n + 7 n + 6 \\ \hline f(n) &= [23 - (10 \ log \ n)/n + 7/n^2 + 6/n^3] n^3 \quad \textit{factor out leading term} \\ \forall n \! \geq \! 10 : \quad f(n) \leq (23 + 0 + 7/100 + 6/1000) n^3 \quad Help \\ &= (2 \\ = 2 \text{https://eduassistpro.github.io/} \end{split}$$

 $\forall n \geq 10: \quad f(n) \geq (23 - log10 + 0 + 0)n \qquad \qquad 16)n^3 = 19n^3 \\ Add \ WeChat \ edu_assist_pro$

$$\forall n \ge 10 : 19 \ n^3 \le f(n) \le 24 \ n^3$$

(Take
$$n_0 = 10$$
, $c_1 = 19$, $c_2 = 24$, $g(n) = n^3$)

Now you see why we can drop lower order terms & the constant multiplicative factor.

Big Oh: Asymptotic Upper Bound

Big Omega: Asymptotic Lower Bound

Little oh: Non-tight Asymptotic Upper Bound

Little omega: Non-tight Asymptotic Lower Bound

Definitions of Asymptotic Notations

$$f(n) = \Theta(g(n)) \qquad \exists c_1, c_2 > 0, \exists n_0 > 0: \ \forall n \ge n_0, \ c_1 g(n) \le f(n) \le c_2 g(n)$$

$$f(n) = O(g(n)) \qquad \exists c > 0, \quad \exists n_0 > 0: \ \forall n \ge n_0 \,, \qquad \qquad f(n) \le c \, g(n)$$

$$f(n) = \Omega(g(n))$$
Assignment Project Exam Help_n $\leq f(n)$

$$f(n) = o(g(n))$$

https://eduassistpro.github.io/

∀c>0, ∃n₀> Add WeChat edu_assist_pro

$$f(n) = \omega(g(n)) \qquad \forall c > 0, \quad \exists n_0 > 0: \ \forall n \ge n_0, \quad cg(n) < f(n)$$

f(n) < cg(n)

Example Proof

$$\mathbf{f}(\mathbf{n}) = \mathbf{o}(\mathbf{g}(\mathbf{n})) \qquad \forall \ \mathbf{c} > 0, \ \exists \mathbf{n}_0 > 0: \ \forall \mathbf{n} \ge \mathbf{n}_0, \quad \mathbf{f}(\mathbf{n}) < \mathbf{c} \, \mathbf{g}(\mathbf{n})$$

CLAIM: $n^2 \neq o(n)$.

Proof: Need to show: $\neg (\forall c > 0 \exists n_0 > 0 : \forall n \ge n_0 (n^2 < c n))$. Assignment Project Exam Help

Move ¬ inside:

 \geq cn)).

Work inside-out:

Add WeChat edu_assist_pro

https://eduassistpro.github.io/

 $\exists n \ (n \ge n_0 \ and \ n \ge c)$

 $\forall n_0 > 0, \exists n \ge \max\{n_0, c\}$

Now browse outside-in. Everything OK!

choose c=1, then \forall n₀ >0, choose n = max{n₀, c}

Any short cuts?

$$\mathbf{f}(\mathbf{n}) = \mathbf{o}(\mathbf{g}(\mathbf{n})) \qquad \forall \ \mathbf{c} > 0, \ \exists \mathbf{n}_0 > 0: \ \forall \mathbf{n} \ge \mathbf{n}_0, \quad \mathbf{f}(\mathbf{n}) < \mathbf{c} \mathbf{g}(\mathbf{n})$$

Assignment Project Exam Help

If you are https://eduassistpro.githubeio/advised to exercise your ic muscles fold Where the edu_assist_pro

However, in the next few slides, we will study some **FACTS & RULES** that help us manipulate and reason about asymptotic notations in most common situations with much ease.

A Classification of Functions

Recall: $X < Y \Leftrightarrow \log X < \log Y$. Also, $\log(X^Y) = Y \log X$.

o(1)

e.g., $1/\omega(1)$, $(\log n)^{-3}$, n^{-2} , 2^{-3n} , 0.

O(1)

- asymptotically upper-bounded by a constant
- O(1) Assignment Project $\mathbb{E} x \frac{\pi n^1 Help^{2n+1}}{(6n+\log n)}$
- Poly-Logarithmic: $f(n) = \log^{\Theta(1)} n$ https://eduassistpro.github.io/
- Polynomial: $f(n) = n^{\Theta(1)}$
- Add WeChat edu_assist_pro(log n) e.g., f(n) = 3n + 1, $n^{1.5} log^{-3} n$, n^{100} .
- Super-Polynomial but Sub-Exponential: $f(n) = n^{\omega(1)} \cap 2^{o(n)}$

 $\log f(n) = \omega(\log n) \cap o(n)$ e.g., $f(n) = n^{\log n}$, $2^{\sqrt{n}}$, $2^{\log n}$

• Exponential or more: $f(n) = 2^{\Omega(n)}$

$$\log f(n) = \Omega(n)$$

e.g., $f(n) = 23^{n \log n}$, 2^{n^2} , 2^{2^n} .

Order of Growth Rules

1. Below $X \ll Y$ means X = o(Y):

o(1)
$$\ll$$
 Θ (1) \ll Poly-Log \ll Polynomial \ll Exponential or more
$$\underset{o(1)}{\text{Assignment Project Exam Help}}_{o(1)} \ll \underset{o(1)}{\Theta}$$
 https://eduassistpro.github.io/

Examples:

Add WeChat edu_assist_pro

$$log^{100} n = o(n^{0.01})$$

 $n^{100} = o((1.1)^{3n+1})$

Asymptotic Relation Rules

- 2. Skew Symmetric: $f(n) = O(g(n)) \Leftrightarrow g(n) = \Omega(f(n))$ $f(n) = o(g(n)) \Leftrightarrow g(n) = \omega(f(n))$
- 3. $f(n) = \Theta(g(n))$ \Leftrightarrow f(n) = O(g(n)) & $f(n) = \Omega(g(n))$ \Leftrightarrow f(n) = O(g(n)) & g(n) = O(f(n))
- 4. Symmetric [on A Signment Project ExampHelp
- 5. Reflexive: $f(n) = \Theta \atop f(n) \neq o$ https://eduassistpro.github.io/
- 6. Transitive: $f(n) = O(n) \times O(n) \times O(n)$ works for Θ , Ω , O, O, O too.
- 7. $f(n) = o(g(n)) \Rightarrow f(n) = O(g(n)) \& f(n) \neq \Omega(g(n)) \Rightarrow f(n) \neq \Theta(g(n))$
- **8.** $f(n) = \omega(g(n)) \Rightarrow f(n) = \Omega(g(n)) \& f(n) \neq O(g(n)) \Rightarrow f(n) \neq \Theta(g(n))$
- **9.** $f(n) = g(n) + o(g(n)) \Rightarrow f(n) = \Theta(g(n))$ [can hide lower order terms]

Arithmetic Rules

10. Given: f(n) = O(F(n)), g(n) = O(G(n)), h(n) = O(H(n)), constant d > 0.

Sum:
$$f(n) + g(n) = O(F(n)) + O(G(n)) = O(max{F(n), G(n)}).$$

$$\begin{array}{lll} \textbf{Product:} & f(n) \cdot g(n) & = & \textbf{O}(F(n)) \cdot \textbf{O}(G(n)) & = & \textbf{O}(\ F(n) \cdot G(n)\). \\ & f(n) \cdot h(n) & = & \textbf{O}(F(n)) \cdot \Theta(H(n)) & = & \textbf{O}(\ F(n) \cdot H(n)\). \end{array}$$

Division:
$$\frac{f(n)}{h(n)} = \frac{\text{Assignment Project Exam Help}}{(n)} = O\left(\frac{1}{n}\right)$$

 $f(n)^d = O$ https://eduassistpro.github.io/

Power:

In addition to Add the Chat edu_assist_proo. o.

Examples:

- $16 n^2 + 9n \log n = O(n^2) + O(n \log n) = O(\max\{n^2, n \log n\}) = O(n^2)$.
- $n^2 = \Theta(n^2)$, $\log n = o(n^{0.01}) \implies n^2 \log n = o(n^{2.01})$.
- $\frac{3n+7\log n}{4n\log n+9} = \frac{\Theta(n)}{\Theta(n\log n)} = \Theta\left(\frac{n}{n\log n}\right) = \Theta\left(\frac{1}{\log n}\right).$
- $3n + 1 = \Theta(n)$ $\Rightarrow (3n + 1)^{3.7} = \Theta(n^{3.7}).$

Proof of Rule of Sum

$$f(n) = O(F(n)) & g(n) = O(G(n))$$
 \longrightarrow $f(n)+g(n) = O(\max\{F(n),G(n)\})$

Proof: From the premise we have:

```
\exists n_1, c_1 > 0: \forall n \ge n_1, f(n) \le c_1 F(n)
\exists n_2, c_2 \text{ Assignment Project Exam Help}
```

Now define $n_0 = max\{$ We get: https://eduassistpro.github.io/

```
 \forall n \geq n_0 \,, \, f(n) + g(n) + c_2 \\ \underbrace{Adc_1 F(n) + c_2}_{C_1 \text{ max}} edu\_assist_n p_{fO}(n), \, G(n) \} \\ = (c_1 + c_2) \, max\{F(n), \, G(n)\} \\ = c \, max\{F(n), \, G(n)\}
```

We have shown:

$$\exists n_0, c > 0: \forall n \ge n_0, f(n) + g(n) \le c \max\{F(n), G(n)\}.$$

Therefore, $f(n) + g(n) = O(max{F(n), G(n)}).$

Where did we go wrong!

```
"CLAIM" \Theta(n) = \Theta(1).
```

"Proof": By repeated application of the max rule of sum: $\Theta(1) + \Theta(1) = \Theta(1)$.

$$\Theta(n) = \Theta(1) + \Theta(1) + \Theta(1) + \cdots + \Theta(1) + \Theta(1) + \Theta(1) + \Theta(1)$$

$$= \Theta(1) + O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1) + O(1) + O(1)$$

$$= O(1) + O(1) + O(1)$$

Do you buy this? Where did we go wrong?

META RULE: Within an expression, you can apply the asymptotic simplification rules only a **constant** number of times! WHY?

Algorithm Complexity

Assignment Project Exam Help

Prob https://eduassistpro.gith@xity

Add WeChat edu_assist_pro

Algorithm Time Complexity

T(n) = worst-case time complexity of **algorithm ALG**.

• T(n) = O(f(n)):

You must prove that on **every** input of size n, for <u>all sufficiently large</u> n, ALG takes at most Off(n) tippe That is even the worst input of size n cannot force ALG to require more than O(f(n)) time.

• $T(n) = \Omega(f(n))$:

https://eduassistpro.github.io/

Demonstrate the existence of that edu_assist size of the edu_assist $\Omega(f(n))$ time.

• $T(n) = \Theta(f(n))$:
Do both!

Just one n or a finite # of sample n's won't do, because for all n beyond those samples, ALG could go on cruise speed!

Problem Time Complexity

- **T(n)** = worst-case time complexity of **problem P** is the time complexity of the "best" algorithm that solves P.
- T(n) = O(f(n)):
 Need to demonstrate (the existence of) an algorithm ALG that correctly solves problem P, and that worst-case time complexity of ALG is at most O(f(n)).
 much
- $T(n) = \Omega(f(n))$: https://eduassistpro.github.io/
- $T(n) = \Theta(f(n))$: Do both!

Example Problem: Sorting

Some sorting algorithms and their worst-case time complexities:

```
Quick-Sort:
                                           \Theta(n^2)
                                           \Theta(n^2)
         Insertion-Sort:
                                           \Theta(n^2)
         Selection-Sort:
         Merge-Sort:
Heap-Sort:
Heap-Sort:

Merge-Sort:
Project Example (n log n)
         there are i thms! https://eduassistpro.github.io/
Shown in Slide 5: essentially ey that solves the Adgordant edu_assist_pro
                              requires at least
                                 \Omega(n \log n)
                          time in the worst-case.
```

So, Merge-Sort and Heap-Sort are worst-case optimal, and

SORTING complexity is $\Theta(n \log n)$.

Insertion Sort

an incremental algorithm

Insertion Sort: Time Complexity

Algorithm InsertionSort(A[1..n])

Pre-Condition: A[1..n] is an array of n numbers Post-Condition: A[1..n] permuted in sorted order

for $i \leftarrow 2 ... n do$

LI: A[1..i –1] is sorted, A[i..n] is untouched.

Assignment Project Exam Help by right-cyclic-shift:

3. https://eduassistpro.github.ig/

5. Add WeChat_edu_assist_pro

end-while

 $A[j+1] \leftarrow key$

end-for

end

Worst-case: t_i

 $\sum_{i=2}^{n} i = \frac{n(n+1)}{2} - 1 = \Theta(n^2).$

 $=\Theta(n+n^2)$

 $=\Theta(n^2).$

ed).

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro

- We listed a number of facts and showed the proofs of some of them. Prove the rest.
- Give the most simplified answer to each of the following with a brief explanation.
 - $f(n) = 4 n^3 + 6 n^2 \log n + 1200 = \Theta(?)$
 - b) $f(n) = \frac{5 n^6 + O(n^3 \log n)}{3n^2 \log n + O(n)} = \Theta(?)$
 - c) $f(n) = 109 n^2 + 10^{10^{10}} n \log n + 3 \cdot 2^n = \Theta(?)$
 - d) $f(n) = n \frac{\log \log n}{\log n} = \Theta(?)$ e) Does $f(n) = o(n) + \Theta(n^2 \log n)$ imply $f(n) = \Omega(n \log \log n)$?

 - Indicate wheth https://eduassistpro.gitfulfs.io/3n + 2, 5n / lo ((2)!). f)
 - g) Let $f(n) = 3n^{2} dg^{-1}WeChat edu_assist_{1}DFO$
- 3. Are there any differences between $\Theta(1)^n$ and $\Theta(2^n)$ and $2^{\Theta(n)}$? Explain.
- 4. Are any of the following implications always true? Prove or give a counter-example.
 - a) $f(n) = \Theta(g(n)) \Rightarrow f(n) = cg(n) + o(g(n))$, for some real constant c > 0.
 - b) $f(n) = \Theta(g(n)) \Rightarrow f(n) = cg(n) + O(g(n))$, for some real constant c > 0.
- 5. Show that $2^{0(\log \log n)} = \log^{0(1)} n$.
- **Prove or disprove:** $n^5 = \Theta(n^{5+o(1)})$.

7. [CLRS: Problem 3-4, p. 62] Asymptotic notation properties

Let f(n) and g(n) be asymptotically positive functions.

Prove or disprove each of the following conjectures.

- (a) f(n) = O(g(n)) implies g(n) = O(f(n)).
- (b) $f(n) + g(n) = \Theta(\min(f(n), g(n))).$
- (c) f(n) = O(g(n)) Sisting in the project (Fix) an Help
- (e) $f(n) = O((f(n))^2)$. Add WeChat edu_assist_pro
- (f) f(n) = O(g(n)) implies $g(n) = \Omega(f(n))$.
- (g) $f(n) = \Theta(f(n/2))$.
- (h) $f(n) + o(f(n)) = \Theta(f(n))$.

- 8. We have: $2^{2^{\log \log n}} = 2^{\log n} = n$, and $2^{2^{\log \log n 1}} = \left(2^{2^{\log \log n}}\right)^{\frac{1}{2}} = \sqrt{n}$. So, is $2^{2^{\lfloor \log \log n \rfloor}}$ equal to $\Theta(n)$ or $\Theta(\sqrt{n})$? Which one?
- 9. **Prove or disprove:** The following implications hold.
 - (a) f(n) Assignment Project Exam Help
 - $f(n) = \Theta(g \qquad \qquad f(n)^{h(n)} = \Theta(\ g(n)^{h(n)}\) \ . \label{eq:fn}$

[Note: Compare https://eduassistpro.github.io/

10. Is it true that for every pair Weight edu_assist_pro we must have at least one of: f(n) = O(g(n)) or g(n) = O(f(n))?

[Hint: Consider
$$f(n) = \begin{cases} n & for \ odd \ n \\ n^2 & for \ even \ n \end{cases}$$
, $g(n) = \begin{cases} n^3 & for \ odd \ n \\ n & for \ even \ n \end{cases}$.]

- 11. Demonstrate two functions $f: \mathcal{N} \to \mathcal{N}$ and $g: \mathcal{N} \to \mathcal{N}$ with the following properties: Both f and g are strictly monotonically increasing, and $f \neq O(g)$, and $g \neq O(f)$.
- 12. Show that $\left(1 + \frac{1}{\Theta(n)}\right)^{\Theta(n)} = \Theta(1)$.

 [Hint: $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e \approx 2.7182$ is Neper's constant.]
- 13. Rank the following function to project the example of the equivalence classes based on Θ -equa e class iff $f = \Theta(g)$, and f is in an earlier class than g in the equivalence of the equivalence

5,
$$\sqrt{\log n}$$
, $\log \text{Add WeChatedu_assist_pro}^{g n}$ $n^{\frac{3}{\log n}}$, $n^{\log \log n}$, $\sqrt{4^n}$, $\sqrt{4^n}$, $2^{2^{n+3}}$, $2^{2^{n-3}}$, $\left(\frac{n^4 + 4n + 1}{n^4 + 1}\right)^{6n^3 + 5}$, $\left(\frac{n^2 + 4n + 1}{n^2 + 1}\right)^{n \log n}$, $\left(\frac{2n + 1}{2n}\right)^{2n^2} n^{-4}$.

- 14. We say a function $f: \mathcal{N} \to \Re^+$ is **asymptotically additive** if $f(n) + f(m) = \Theta(f(n+m))$. Which of the following functions are asymptotically additive? Justify your answer.
 - i) Logarithm: $\log n$, (Assume n > 1.)
 - ii) Monomial: n^d , for any real constant $d \ge 0$ (this includes, e.g., \sqrt{n} with d=0.5.)
 - iii) Harmonic: 1/n. (Assume n > 0.)
 - iv) Exponential: a^n , for any real constant a > 1.

Prove or disprove: If f and g are asymptotically additive and are positive. then so is:

- i) $a \cdot f$, for any real constant a > 0,
- ii) f+g, Assignment Project Exam Help iii) f-g, assuming (f-g)(n) is always positive. Extra credit is given if f-g is monotonically i
- https://eduassistpro.github.io/ iv) $f \cdot g$.
- v) f ^g.

Add WeChat edu_assist_pro

- 15. The **Set Disjointness Problem** is defined as follows: We are given two sets A and B, each containing n arbitrary numbers. We want to determine whether their intersection is empty, i.e., whether they have any common element.
 - Design the most efficient algorithm you can to solve this problem and analyze worst-case time complexity of your algorithm.
 - b) What is the time complexity of the Set Disjointness Problem itself? [You are not yet equipped to answer part (b). The needed methods will be covered in Lecture Slide 5.]

Assignment Project Exam Help

https://eduassistpro.github.io/

Add WeChat edu_assist_pro