ZWSOFT

Brep与方向体系

主讲人: Finley

- 1. 模型表达方式有哪些?
- 2. 模型数据是如何存储的?
- 3. 方向体系与建模的关系?
- 4. 方向体系在建模中的应用

PART 01 模型表达方式有哪些?

可信赖的All-in-One CAx解决方案供应商

模型表达方式有哪些?

以ZW3D为例>

pzTt	0x0000002f9fdef930 {nShape=1,nShell=1,nLoop=6,nEdge=12,nVertex=8}	VsApplTopTa
b tbl shape(VsShape)		***
⊿ ❷ [0]	0x00000200a5dc2800 {db_idx=1 mod=UN_MODIFIED (0) data={type=0 data=0x000	VsShell *
		int
mod mod	UN_MODIFIED (0)	top_mod_fla
🕨 🥥 data	{type=0 data=0x00000000000000 V_NO_DATA= }	VsAppData
*pzHeadAttr	0x00000000000000	void *
▶ 🔗 box	{x={min=-51.50000000000014 max=51.50000000000007 } y={min=-43.50000000000	VsLim3
▶ 🤪 *list_face	0x00000200a5ecce40 {type=V_ARRAY_DAT (2) elem_size=184 num=6}	VsListObj *
✓ ✓ list_face data(VsFace)		
▶ 🤪 [0]	{db_idx=4 face_db_mod=UN_MODIFIED (0) data={type=0 data=0x0000000000000	VsFace
▶ <a> [1]	{db_idx=30 face_db_mod=UN_MODIFIED (0) data={type=0 data=0x000000000000	VsFace
▶ <a> [2]	{db_idx=10 face_db_mod=UN_MODIFIED (0) data={type=0 data=0x000000000000	VsFace
▶ 🤪 [3]	{db_idx=16 face_db_mod=UN_MODIFIED (0) data={type=0 data=0x0000000000000	VsFace
▶ 🤪 [4]	{db_idx=22 face_db_mod=UN_MODIFIED (0) data={type=0 data=0x0000000000000	
	{db_idx=27 face_db_mod=UN_MODIFIED (0) data={type=0 data=0x0000000000000	VsFace
open_flag	0	int
shl_next		int
shl_prev		int
shl_first_inner		int
shl_last_inner		int
shl_enclosing		int
shp_indx	0	int
layer	0	int
attrib_id		int
idx_tx_color		int
	0 '\0'	char
at_custom	0 '\0'	char
▶ ● [0]	0x00000200a5fdd080 {db_idx=3 mod=UN_MODIFIED (0) data={type=0 data=0x0000	VsLoop *
▶ 🤪 [1]	0x00000200a5fdc6c0 {db_idx=29 mod=UN_MODIFIED (0) data={type=0 data=0x000	VsLoop *
▶ 	0x00000200a5fdc060 {db_idx=9 mod=UN_MODIFIED (0) data={type=0 data=0x0000	VsLoop *
▶ 	0x00000200a5fdfa80 {db_idx=15 mod=UN_MODIFIED (0) data={type=0 data=0x000	VsLoop *
▶ 🔪 [4]	0x00000200a5fd07e0 {db_idx=21 mod=UN_MODIFIED (0) data={type=0 data=0x000	VsLoop *
▶ 🥥 [5]	0x00000200a5fdde00 {db_idx=26 mod=UN_MODIFIED (0) data={type=0 data=0x000	
▶		
b tbl_vrtx(VsVertex)		
▶		
→ list_idxs(VsDbldxObj)		
▶ tbl_xref	0x0000020033568e20 {plpliEndCaps=0x00000200a5ecd1c0 {type=V_LIST_KEY (0) ele	VsFcXRefTab
▶ 🗭 [Raw View]	0x0000002f9fdef930 {tbl_shape=0x00000200a5eccdc0 {type=V_ARRAY_PTR (3) elem	

Constructive Solid Geometry (CSG)>

- 基本几何体
- 树状结构
- 布尔运算

优点:

- 方法简洁
- 生成速度快
- 无冗余信息

缺点:

- 无点,边等边界信息
- 不易实现局部操作(如倒角)
- 基本几何体的构建方式单一

Boundary Representation (B-Rep)>

什么是边界 (Boundary)?以区间[0, 1]为例

通过曲线曲面的数据组合以构 建实体模型

Q: 为什么模型中有些面是红色的?

Boundary Representation (B-Rep)>

e.g. obj format

容差问题>

• 原因: 拓扑信息与几何信息的不一致。

容差点

容差边

PART 02 模型数据是如何存储的?

可信赖的All-in-One CAx解决方案供应商

常见的模型拓扑结构>

边结构:

不可定向性!

半边结构:

半边结构的必要性>

已知面与边的几何数据及连接关系

边结构 半边结构

内核数据存储方式>

拓扑:

几何: VsNurbCurv, VsNurbSurf, VsPoint

BTW: VsLoop 是"压在" VsFace 对应的 VsNurbSurf

上的,而非 VsFace 。(设计的不足)

Overdrive Parasolid

PART 03 方向体系与建模的关系?

可信赖的All-in-One CAx解决方案供应商

方向在建模中的体现>

方向体系:为确保建模过程的一致性所加的一些规则。

方向对象	方向含义
Face	构成完整brep的方向,认定指向实体区域外侧的方向为正向
Loop	拓扑概念,但是方向定义为与曲面(几何)方向保持右手定则。外环以逆时针为正向, 内环以顺时针为正向。
PreEdge	下一条 PreEdge 的索引,根据 PreEdge 之间的顺序关系来决定 Loop 的方向;
Edge	vertex0 -> 1,同时与对应的三维参数曲线方向相同
VsNurbCurv	随着曲线参数 t 增加的方向,实际体现一般为曲线在任一点的切向
VsNurbSurf	 对u,v一阶偏导数叉乘出的方向,一般指曲面的法向

拓扑对象的方向>

由半边结构确定唯一性:

- 1. Edge需要由两条方向相反的PreEdge组成;
- 2. PreEdge通过逆时针组成Outer Loop,通过顺时针组成 Inner Loop;
- 3. Outer Loop 根据右手定则可得其所在 Face 的方向

几何对象的方向>

VsNurbCurv VsNurbSurf

方向间的关系>

修正:

1. Fin -> VsPreEdge.

潜规则:

- 1. Edge的拓扑方向与其几何对应的方向 实际是可以不同的,但是算法内已通 过调整 Vertex 的顺序使其一致了。
- 2. VsNurbSurf 以 u X v 的方向为正向。

方向标识及其意义>

存储方向标识 的拓扑元素	dir	意义
VsFace	face_dir	表示面的方向与其对应的曲面方向是否一致
VsPreEdge	edge_dir	表示edge对应的三维曲线与preEdge对应的三维曲线的方向是否相同;或者理解为edge对应的三维曲线在参数空间的二维投影与preEdge对应2维曲线方向是否相同
	loop_dir	表示preedge对应在参数空间中的二维参数曲线方向与loop的方向是否一致
复合方向	edge_dir*loop_dir	表示loop的方向是否与边的二维投影方向一致;或者理解为loop对应的3维曲线链方向是否与edge方向一致(loop和edge方向的关系)
	edge_dir*loop_dir*f ace_dir	表示与face方向保持逆时针的loop对应三维曲线链方向是否与三维边的方向一致(因此一条与两个面相邻的流形边,这6个dir(VsFace.face_dir*2, VsPreEdge.edge_dir*2, VsPreEdge.loop_dir*2)之间的乘积应该等于-1;否则面的定向不一致)

方向标识图解>

Surface Out_normal

face.face_dir

preedge.loop_dir

topol direction geom direction

preedge.edge_dir

复合方向图解>

topol direction geom direction

face.face_dir * preedge.loop_dir * preedge.edge_dir

PART 04 方向体系在建模中的应用

可信赖的All-in-One CAx解决方案供应商

仅以布尔举例>


```
azEdgeDetails[i].uvcv = hPe.crv().release();
azEdgeDetails[i].edgeDir = hPe.loopDir() * hPe.edgeDir() * hFc.dir();
azEdgeDetails[i].preDir = hPe.loopDir();
azEdgeDetails[i].faceDir = hFc.dir();
azEdgeDetails[i].solid_side = hFc.solidSide();
azEdgeDetails[i].iShape = -1;
azEdgeDetails[i].xFc = hFc.xref();
```

```
for (j = 0; !fSelfX && j < i; ++j)
{
    if (azEdgeDetails[j].surf->cp.list == azEdgeDetails[i].surf->cp.list)
    {
        loc_edg[i] = loc_edg[j];
        loc_edg[i].indx = i;
        loc_edg[i].curvature *= azEdgeDetails[i].faceDir * azEdgeDetails[j].faceDir loc_edg[i].vec3 = -loc_edg[i].vec3;
        VmV2Reverse(loc_edg[i].vec2, loc_edg[i].vec2);
        loc_edg[i].theta = atan2(loc_edg[i].vec2.y, loc_edg[i].vec2.x);
        fDupe = V_TRUE;
        break;
}
```

- 表达模型的方式—— Brep 与 CSG
- 半边结构与方向体系概述
- · ZW3D中方向体系的定义及用法。

吐槽:

- 方向的1与-1仅表示是否一致,在应用时做乘法与除法的结果一致;
- 代码注释较少;
- 变量命名不能反应变量的含义。

建议:

- 对于不理解的代码,调试时结合实际案例的方向与坐标来理解;
- 变量名与注释应当协助开发人员维护代码;
- 多记录文档:)。

方向相关问题参考:

https://zwiki.zwcax.com/pages/viewpage.action?pageId=148649252

ZWSOFT

THANKS

感谢观看