[TA 3-3]

Database and SQL - Basics

박데이터 프로그래밍 기초 박진수 교수

> Big Data Institute, Seoul National University

데이터베이스 시스템(Database Systems)

데이터베이스(Database)

- ·데이터베이스: 체계화된 데이터의 모임("the collection of data"). 작성된 목록으로써 여러 응용 시스템의 통합된 정보를 저장하여 운영할 수 있는 공용 데이터들의 묶음
 - 여러 사람이 공유하고 사용할 목적으로 통합 관리되는 정보의 집합
 - 논리적으로 연관된 하나 이상의 자료의 모음으로, 그 내용을 고도로 구조화함으로써 검색과 갱신의 효율화를 꾀한 것
 - "몇 개의 자료 파일을 조직적으로 통합하여 자료 항목의 중복을 없애고 자료를 구조화하여 기억시켜 놓은 자료의 집합 체"

데이터베이스(Database)

- 데이터베이스의 장점
 - 데이터 중복(Data redundancy) 최소화
 - 데이터 공유
 - 일관성(consistency), 무결성(integrity), 보안성(security) 유지
 - 최신 데이터 유지
 - 데이터의 표준화(standardization)
 - 용이한 데이터 접근
 - 데이터 저장공간 절약

관계형 데이터베이스(Relational Database)

- · 관계형 데이터베이스(RDB): 데이터를 표(table)로 표현하는 형식의 데이터베이스
 - 1970년 커드(codd)가 제시한 데이터 관계형 모델에 기반한 키(key)와 값(value)들의 간단한 관계를 테이블화 시킨 매우 간단한 데이터베이스
 - 데이터를 표를 이용해 구조화하고, 그들 간의 관계(relationship)를 바탕으로 서로를 연결(link)한다
 - 그러한 "관계"들은 하나의 쿼리(query)로 여러 표에 산재한 정보를 불러오는 것을 가능케 한다

관계형 데이터베이스(Relational Database)

- · 관계형 데이터베이스 예시 대학교 데이터베이스(University database)
 - 교수자(instructor) 테이블
 - 부서(department) 테이블

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

(a) The instructor table

dept_name	building	budget
Comp. Sci.	Taylor	100000
Biology	Watson	90000
Elec. Eng.	Taylor	85000
Music	Packard	80000
Finance	Painter	120000
History	Painter	50000
Physics	Watson	70000

(b) The department table

관계형 데이터베이스(Relational Database)

- · 관계형 데이터베이스 예시 대학교 데이터베이스(University database)
 - 관계를 나타내기 위한 E-R 다이어그램(Entity-Relationship Diagram)
 - E-R 다이어그램: 개체(entities)와 개체들 간의 관계(relationships)를 바탕으로 데이터를 표현하는 방식

데이터베이스 관리 시스템(DBMS)

- ·데이터베이스 관리 시스템: 데이터베이스를 관리하는데 필요한 데이터의 추가, 변경, 삭제, 검색 등의 기능을 집대성한 소프트웨어 패키지
 - 데이터베이스에 존재하는 데이터의 검색/삽입/삭제/수정을 가능하게 하고, 모든 응용프로그램이 데이터베이스를 공유할 수 있게 한다
 - DBMS의 주요 기능
 - 정의: 데이터베이스 구조를 정의하거나 수정할 수 있다
 - 조작: 데이터를 삽입/삭제/수정/검색하는 연산을 할 수 있다
 - 제어: 데이터를 항상 정확하고 안전하게 유지할 수 있다

데이터베이스 관리 시스템(DBMS)

- · 관계형 데이터베이스 관리시스템: 관계형 모델을 기반으로 하는 DBMS. 현재 상업적으로 사용되는 대부분의 DB는 RDB 모델을 기반으로 한다
 - 마이크로소프트의 액세스(Access)와 MSSQL, 오라클의 오라클(Oracle)과 MySQL 등
 - DB 내에 테이블들이 존재하고 테이블 내에 데이터가 존재

구조화 질의 언어(SQL)

· 구조화 질의 언어(Structured Query Language): 데이터베이스에서 데이터를 저장하거나 얻기 위해서 사용하는 표준 언어

- 데이터 정의 언어: 테이블과 인덱스 구조 등을 관리

■ CREATE: 테이블 등을 생성

■ DROP: 테이블 등을 삭제

- 데이터 조작 언어: 데이터 변경

■ INSERT: 데이터 삽입

■ DELETE: 행 삭제

■ SELECT: 검색 결과 집합의 취득

- 데이터 제어 언어: 데이터 작업 권한 등을 관리

MySQL 설치

MySQL이란?

- · MySQL: 세계에서 가장 많이 쓰이는 오픈 소스 관계형 데이터베이스 관리 시스템(RDBMS)
- · 파이썬의 MySQL API를 활용하여 MySQL 데이터베이스에 접근할 수 있다(pymysql 등)

- · MySQL 홈페이지에서 community version 다운로드 가능(무료)
 - URL: https://dev.mysql.com/downloads/mysql/

- · MySQL 홈페이지에서 community version 다운로드 가능(무료)
 - 운영체제와 비트수에 맞는 installer 다운로드

· 불린(Boolean) 타입

- · 필요한 프로그램 설치
 - 필수 프로그램: MySQL Server

· Root 비밀번호 입력

· 기타 사용자 등록(설치 후에도 수정 가능)

·설치 완료

MySQL 설치하기(for MAC OSX)

- · MySQL을 맥에 설치하기 위해서 우선 HomeBrew를 먼저 설치한다
 - 터미널에 아래 명령어를 입력한다
 - > /usr/bin/ruby -e "\$(curl -fsSL https://raw.githubusercontent.com/
 Homebrew/install/master/install)"
 - 참고: https://brew.sh/index_ko.html
- · HomeBrew는 Apple에서 번들로 제공되지 않는 다양한 패키지 관리를 지원한다

- 참고: https://github.com/helloheesu/SecretlyGreatly/wiki/%EB%A7%A5%EC%97%90%EC%84%9C-mysql-%EC%84%A4%EC%B9%98-%ED%9B%84-%ED%99%98%EA%B2%BD%EC%84%A4%EC%A0%95%ED%95%98%EA%B8%B0
- 영상: https://www.youtube.com/watch?v=xX9W5dmEpO0

MySQL 설치하기(for MAC OSX)

- · brew 명령어를 이용해 MySQL을 설치한다
 - 터미널에 아래 명령어를 입력한다
 - > brew install mysql
- · MySQL 구동하기
 - MySQL 시작
 - > mysql.server start
 - Root 비밀번호 설정하기
 - > mysql secure installation

MySQL 설치하기(for MAC OSX)

· brew 명령어를 이용해 MySQL을 설치한다

SQL & MySQL basics

MySQL Monitor

- · MySQL 서버의 번들로 제공되는 기본 프로그램
- · 명령어 기반으로, 커맨드 라인 인터페이스를 활용하여 MySQL 데이터베이스를 이용할 수 있다
 - GUI(Graphic User Interface)가 제공되지 않는다는 단점이 있다

MySQL Monitor

- · MySQL Monitor에 접속하기
 - 커맨드 라인에 아래와 같이 입력한다

```
> mysql -u[아이디] -p
Enter password:[비밀번호 입력]
```

- 사용자를 따로 생성하지 않았으면 아이디는 'root'(superuser)를 사용한다
 - 비밀번호는 설치하면서 설정 → 꼭 기억해 둔다!
- 커맨드 라인에서 MySQL이 실행이 안될 경우:
 - 환경변수 설정을 확인해 본다(MySQL이 설치된 디렉토리)

MySQL Monitor

· MySQL Monitor에 접속하기

```
- D X
C:\Windows\system32\cmd.exe - mysql -uroot -p
Microsoft Windows [Version 10.0.14393]
(c) 2016 Microsoft Corporation. All rights reserved.
C:\Users\Buomsoo>mysql -uroot -p
Enter password: *****
Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 5
Server version: 5.6.36 MySQL Community Server (GPL)
Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved.
Oracle is a registered trademark of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective
owners.
Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.
mysql>
```

사용자 관리하기

- 현재 사용자 목록 조회하기
 - root 사용자로 접속 후 아래 명령어 입력
 - > use mysql;
 - > select host, user, password from user;

```
C:\Windows\system32\cmd.exe - mysql -uroot -p
mysql> select host, user, password from user;
             user password
 host
 localhost | root | *A7BCF4103D430B953423CA6325B929E97B9C2C26
 127.0.0.1 | root | *A7BCF4103D430B953423CA6325B929E97B9C2C26
            root | *A7BCF4103D430B953423CA6325B929E97B9C2C26
3 rows in set (0.00 sec)
mysql>
```

사용자 관리하기

- · 새로운 사용자 생성하기
 - ID 와 PASSWORD로 식별되는 사용자 생성
 - > CREATE USER '[사용자 ID]'@LOCALHOST IDENTIFIED BY '[비밀번호]'
 - 권한 부여하기
 - > GRANT ALL PRIVILEGES ON *.* TO '[사용자 이름]'@'localhost' WITH GRANT OPTION;

- TODO: 사용자를 자유롭게 새로이 생성해 본다
 - 예시: ID는 'buomsoo', 비밀번호는 '12345'인 사용자 생성
 - 1 CREATE USER 'buomsoo'@localhost IDENTIFIED BY '12345';

사용자 관리하기

- · 새로운 사용자 생성하기
 - ID 와 PASSWORD로 식별되는 사용자 생성

· 현재 DBMS에 존재하는 데이터베이스 조회하기

> SHOW DATABASES;

```
- E X
C:\Windows\system32\cmd.exe - mysql -uroot -p
mysql> show databases;
  Database
  information_schema
                               현재 시스템 내의
데이터베이스 목록
  mysql
  performance_schema
4 rows in set (0.04 sec)
mysql>
```

· 새로운 데이터베이스 생성하기

```
> CREATE DATABASE [데이터베이스 이름] CHARACTER SET utf8
COLLATE utf8_general_ci;
```

- TODO: 'university' 데이터베이스를 생성해 본다

·데이터베이스 선택(접근)하기

> USE [데이터베이스 이름];

- TODO: 'university' 데이터베이스를 선택한다

```
C\Windows\system32\cmd.exe - mysql - uroot -p
mysql> use university;
Database changed
mysql>
```

· 데이터베이스 삭제하기

> DROP DATABASE [데이터베이스 이름];

- TODO: 'university' 데이터베이스를 삭제한다

```
- P X
C:\Windows\system32\cmd.exe - mysql -uroot -p
mysql> drop database university;
Query OK, 0 rows affected (0.20 sec)
mysql>
```

테이블 관리하기

· 새로운 테이블 생성하기

- TODO: 'university' 데이터베이스를 다시 생성하고 'student' 테이블을 생성해 본다
 - 컬럼1: 이름은 'name', 데이터 타입은 'varchar(20)'
 - 컬럼2: 이름은 'id', 데이터 타입은 'int(5)'
 - 컬럼3: 이름은 'department', 데이터 타입은 'varchar(30)'
 - 컬럼4: 이름은 'birthday', 데이터 타입은 'date'

테이블 관리하기

· 참고: 데이터 타입

타입	설명	예시
CHAR()	고정 문자(0-255)	성명
VARCHAR()	가변 문자(0-65535)	상품 리뷰
INT()	정수형	나이
DATE	날짜(YYYY-MM-DD)	생년월일
ENUM(V1, V2, VN)	V1,,VN 중 하나의 값	상품 타입(사이즈 등)

테이블 관리하기

· 새로운 테이블 생성하기

```
C:\Windows\system32\cmd.exe - mysql -uroot -p
                                                                                 mysql> use university;
Database changed
mysql> create table `student`(
    -> `name` varchar(20),
    -> `id` int(5),
    -> `department` varchar(30),
    -> `birthday` date) engine = innodb;
Query OK, 0 rows affected (0.21 sec)
mysql>
```

· 테이블 목록 보기

```
> SHOW TABLES;
```

- TODO: 현재 생성된 테이블 목록을 확인한다

```
C:\Windows\system32\cmd.exe - mysql -uroot -p
                                                                                      - B X
mysql> show tables;
 Tables_in_university
  student
1 row in set (0.02 sec)
mysql>
```

· 테이블 스키마 보기

```
> DESC `[테이블 이름]`;
```

- TODO: 'student' 테이블의 스키마를 확인한다

- ·참고: 테이블 스키마[source: https://stackoverflow.com/questions/298739/what-is-the-difference-between-a-schema-and-a-table-and-a-database]
 - 테이블 스키마(Relation schema): 테이블에 대한 논리적 정의("defines what the name of the table is, and what the name and type of each column is")
 - 데이터베이스 스키마(Database schema): 전체 데이터베이스에 포함된 테이블 스키마의 총집합("the collection of relation schemas for a whole database")

· 테이블 제거하기

```
> DROP TABLE `[테이블 이름]`
```

- TODO: 임의의 테이블을 하나 만들고 삭제한다

```
mysql> create table `professor`(
    -> `name` varchar(20)) engine=innodb;
Query OK, 0 rows affected (0.30 sec)

mysql> drop table `professor`;
Query OK, 0 rows affected (0.11 sec)

mysql>
```

· 테이블에 로우(row) 삽입하기

- > INSERT INTO `[테이블 이름]` VALUES (값1, 값2, 값3, ...)
 > INSERT INTO `[테이블 이름]` (컬럼1, 컬럼2, ...) VALUES (값1, 값2, ...)
- 주의: 값을 입력할 때에는 `가 아닌 '를 사용한다

· 테이블에 로우(row) 삽입하기

- TODO: 아래 데이터를 student 테이블에 삽입한다

name	id	department	birthday
Brad Pitt	13001	Humanities	1963-12-18
Leonardo Dicaprio	13002	Social sciences	1974-11-11
Tom Cruise	13003	Engineering	1962-07-03
John Travolta	13004	Engineering	1954-02-18
Kevin Costner	13005	Humanities	1955-01-18

- · 테이블에 로우(row) 삽입하기
 - TODO: 아래 데이터를 student 테이블에 삽입한다

```
C:\Windows\system32\cmd.exe - mysql -uroot -p
mysql> insert into `student` values ('Brad Pitt', '13001', 'Humanities', '1963-12-1<mark>^</mark>
8');
Query OK, 1 row affected (0.10 sec)
mysql> insert into `student` values ('Leonardo Dicaprio', '13002', 'Social sciences
', '1974-11-11');
Query OK, 1 row affected (0.03 sec)
mysql> insert into `student` values ('Tom Cruise', '13003', 'Engineering', '1962-07
-03');
Query OK, 1 row affected (0.03 sec)
mysql> insert into `student` values ('John Travolta', '13004', 'Engineering', '1954
-02-18'):
Query OK, 1 row affected (0.06 sec)
mysql> insert into `student` values ('Kevin Costner', '13005', 'Humanities', '1955-
01-18');
Query OK, 1 row affected (0.04 sec)
mysql>
```

· 테이블에 로우(row) 삽입하기

- TODO: 아래 데이터를 student 테이블에 삽입한다

```
C:\Windows\system32\cmd.exe - mysql -uroot -p
mysql> select * from student;
                                                 birthday
                      id
                               department
  name
  Brad Pitt
                      13001
                               Humanities
                                                 1963-12-18
  Leonardo Dicaprio
                      13002
                               Social sciences
                                                 1974-11-11
 Tom Cruise
                               Engineering
                      13003
                                                 1962-07-03
 John Travolta
                      13004
                               Engineering
                                                 1954-02-18
 Kevin Costner
                      13005
                              Humanities
                                                 1955-01-18
5 rows in set (0.03 sec)
mysql>
```

· 데이터 변경하기

```
> UPDATE `[테이블 이름]` SET 컬럼N = 컬럼N의 값
```

- > UPDATE `[테이블 이름]` SET 컬럼N = 컬럼N의 값 WHERE 대상이 될 컬럼 이름
- = 컬럼의 값

- **TODO**: Brad Pitt의 생년월일을 '1963-12-24'로 변경한다

- TODO: Tom Cruise의 이름을 'Tom Hanks'로 변경한다

· 데이터 변경하기

```
- 0
C:\Windows\system32\cmd.exe - mysql -uroot -p
mysql> update `student` set birthday = '1963-12-24' where id = '13001';
Query OK, 0 rows affected (0.03 sec)
Rows matched: 1 Changed: 0 Warnings: 0
mysql> update `student` set name = 'Tom Hanks' where id = '13003';
Query OK, 0 rows affected (0.03 sec)
Rows matched: 1 Changed: 0 Warnings: 0
mysql> select * from student;
                     id
                              department
                                                birthday
  name
 Brad Pitt
                     13001 | Humanities
                                                 1963-12-24
 Leonardo Dicaprio | 13002
                             Social sciences
                                                1974-11-11
                            Engineering
 Tom Hanks
                      13003
                                                 1962-07-03
  John Travolta
                             Engineering
                     13004
                                                 1954-02-18
 Kevin Costner
                     13005 | Humanities
                                                 1955-01-18
5 rows in set (0.00 sec)
mysql>
```

- · **참고:** 일차 키(Primary key)
 - 'student' 테이블에서 이름(name), 단과대학(department), 생년월일(birthday)이 같은 사람은 여럿 존재할 수 있지만, 일반적으로 대학교 데이터베이스에서 학번(id)는 각 학생이 고유한 값을 갖는다
 - 즉, 학번을 이용해 각 학생을 고유하게 식별해낼 수가 있다. 이 경우, 이를 일차 키(primary key)로 지정할 수 있다 ("candidate key whose values are used to *identify* tuples in the relation").
 - 일차 키 설정하기

```
1 create table `student`(
2    `name` varchar(20),
3    `id` int(5) PRIMARY KEY,
4    `department` varchar(30),
5    `birthday` date) engine = innodb;
```

· **참고:** 일차 키(Primary key)

. 데이터 삭제하기

```
> DELETE FROM `[테이블 이름]`;
> DELETE FROM `[테이블 이름]` WHERE 삭제하려는 컬럼 이름 = 값;
```

- TODO: 이름이 'Leonardo Dicaprio'인 행의 데이터를 삭제한다

```
mysql> delete from `student` where name = 'Leonardo Dicaprio';
Query OK, 1 row affected (0.06 sec)
mysql> select * from student;
                id | department |
                                     birthday
  Brad Pitt
                13001 | Humanities
                                    1963-12-24
                13003 | Engineering | 1962-07-03
 Tom Hanks
 John Travolta | 13004 |
                        Engineering
                                    1954-02-18
 Kevin Costner | 13005 | Humanities | 1955-01-18
4 rows in set (0.00 sec)
mysql>
```

· 데이터 조회하기

```
> SELECT 컬럼 이름1, 컬럼 이름 2, ... 컬럼 이름 N
FROM `[테이블 이름]`
GROUP BY 컬럼 이름
ORDER BY 컬럼 이름
LIMIT 시작 행 번호, 조회할 행의 수

> SELECT *
FROM `[테이블 이름]`
GROUP BY 컬럼 이름
ORDER BY 컬럼 이름
LIMIT 시작 행 번호, 조회할 행의 수
```

- 전체 데이터를 조회하려면 와일드카드('*')를 활용한다

· 데이터 조회하기

- TODO: student 테이블의 전체 데이터를 조회해 본다

```
C:\Windows\system32\cmd.exe - mysql -uroot -p
                                                                                _ @ X
mysql> select * from student;
                  id
                           department
                                          birthday
  name
 Brad Pitt
                  13001
                           Humanities
                                          1963-12-24
                           Engineering
 Tom Hanks
                  13003
                                          1962-07-03
                  13004
                           Engineering
 John Travolta
                                          1954-02-18
 Kevin Costner | 13005 | Humanities
                                          1955-01-18
4 rows in set (0.00 sec)
mysql>
```

- · 데이터 조회하기
 - TODO: student 테이블의 이름(name)만 조회해 본다

```
C:\Windows\system32\cmd.exe - mysql -uroot -p
                                                                                 mysql> select name from student;
  name
  Brad Pitt
  Tom Hanks
  John Travolta
  Kevin Costner
4 rows in set (0.00 sec)
mysql>
```

- · 데이터 조회하기
 - TODO: student 테이블의 이름(name)과 생년월일(birthday)만 조회해 본다

```
C:\Windows\system32\cmd.exe - mysql -uroot -p
                                                                              _ _
mysql> select name, birthday from student;
                 birthday
 name
 Brad Pitt
               1963-12-24
 Tom Hanks
              1962-07-03
 John Travolta | 1954-02-18
 Kevin Costner | 1955-01-18
4 rows in set (0.00 sec)
mysql>
```

- · 데이터 조회하기
 - TODO: student 테이블에서 id가 13004인 사람의 데이터만 조회해 본다

```
C:\Windows\system32\cmd.exe - mysql -uroot -p
                                                                                 - O
mysql> select * from student where id = '13004';
                                         birthday
                  id
                           department
  name
  John Travolta | 13004 | Engineering | 1954-02-18
1 row in set (0.03 sec)
mysql>
```

- · 데이터 조회하기
 - TODO: student 테이블에서 이름이 'Tom Hanks' 인 사람의 데이터만 조회해 본다

```
C:\Windows\system32\cmd.exe - mysql -uroot -p
                                                                                  _ 0
mysql> select * from student where name = 'Tom Hanks';
              id
                      | department | birthday
  name
 Tom Hanks | 13003 | Engineering | 1962-07-03
1 row in set (0.00 sec)
mysql>
```

실습 3-1-1. 데이터베이스 및 테이블 생성하기

· company 데이터베이스를 만들고, 데이터베이스에 아래의 데이터를 담은 employee 테이블을 생성해 본다

fname	Iname	id	bdate	sex	salary
Scarlette	Johnasson	100001	1984-11-22	F	100000
Natalie	Portman	100002	1981-06-09	F	250000
Emma	Stone	100003	1988-11-06	F	350000
Ryan	Gosling	100004	1980-11-22	M	340000
Tom	Hardy	100005	1977-09-15	M	750000

실습 3-1-1. 데이터베이스 및 테이블 생성하기

· 수행 예시

PyMySQL

PyMySQL

· Python DB API 표준을 따르는 MySQL DB 모듈로, Python을 활용해 MySQL 데이터베이스에 접근을 가능하게 한다

- · PyMySQL 설치(with conda)
 - 커맨드 라인에 아래 명령어를 입력한다

> conda install pymysql

실습 3-3-2. DB에서 데이터 불러오기

- · 실습 3-3-1에서 생성한 데이터베이스 테이블에서 데이터를 불러온다
 - sql query 'select ~ from'을 활용한다
 - fetchall() 함수를 활용한다
 - 수행 예시

실습 3-3-3. DB에서 데이터 불러오기

- · 테이블에서 일부 정보만 불러온다
 - SQL query를 바꿀 수도 있고 불러온 이후에 데이터를 가공할 수도 있다
 - 수행 예시

```
C:\Windows\system32\cmd.exe
C:\Users\Buomsoo\Google Drive\2017-1\422222 22222222222222222)\TA22>python 3-3-3.py
Name of the employee is: Scarlett Johansson
Name of the employee is: Natalie Portman
Name of the employee is: Emma Stone
Name of the employee is: Ryan Gosling
Name of the employee is: Tom Hardy
C:\Users\Buomsoo\Google Drive\2017-1\422222 222222(22222222)\TAE2>
                                  C:\Windows\svstem32\cmd.exe
                                  C:\Users\Buomsoo\Google Drive\2017-1\4222222 2222222(2222222222)\TA22>python 3-3-3.py
                                   ('Scarlett', 'Johansson')
                                   'Natalie', 'Portman')
                                    'Emma', 'Stone')
                                   'Ryan', 'Gosling')
                                   'Tom', 'Hardy')
                                  C:\Users\Buomsoo\Google Drive\2017-1\422222 2222222(222222222)\TA22>
```

실습 3-3-4. DB에 데이터 저장하기

- · 테이블에 새로운 정보를 저장한다
 - Insert into문을 활용해 아래 데이터를 담은 행을 하나 추가한다

fname	Iname	id	bdate	sex	salary
Daniel	Craig	100006	1968-03-02	M	800000

- 수행 예시

실습 3-3-5. DB에 데이터 저장하기 (2)

- · 테이블에 새로운 정보를 저장한다
 - Insert into문을 활용해 텍스트 파일(data.txt)에서 데이터를 불러와 이를 employee 테이블에 추가한다

```
🌌 *C:\Users\Buomsoo\Google Drive\2017-1\4차산업혁명 인력양성사업(비즈니스애널리틱스)\TA세...
File Edit Search View Encoding Language Settings Tools Macro Run Plugins Window ?
        🔚 data.txt 🗵
     Johnny Depp
                  100007 1963-06-09 M
                                         350000
     Margot Robbie 100008 1990-07-02 F
                                         500000
     Matt
            Damon
                    100009 1970-10-08 M
                                         900000
     Eva Green
                100010 1980-07-06 F 250000
length: 159 lines: 5 Ln: 5 Col: 1 Sel: 0 | 0
                                          Windows (CR LF)
                                                                    INS
                                                      UTF-8
```

- 한 줄에 하나씩 추가한다

실습 3-3-5. DB에 데이터 저장하기 (2)

· 테이블에 새로운 정보를 저장한다

- 수행 예시

