# Discrete Optimization

Local Search: Part IV

#### Goals of the Lecture

- Local search
  - optimization under constraints
  - -graph coloring

# Coloring a Map



# Coloring a Map



# Coloring a Map



# Graph Coloring



# Graph Coloring

- Two aspects
  - optimization
    - reducing the number of colors
  - -feasibility:
    - two adjacent vertices must be colored differently

#### Graph Coloring

- Two aspects
  - optimization
    - reducing the number of colors
  - -feasibility:
    - two adjacent vertices must be colored differently
- ► How to combine them in local search?
  - -sequence of feasibility problems
  - -staying in the space of solutions
  - -considering feasible and infeasible configurations

#### Optimization as Feasibility

- Sequence of feasibility problems
  - find an initial solution with k colors
    - greedy algorithms
  - -remove one color, say k.
    - reassign randomly all vertices colored with k with a color in the range 1..k-1
  - find a feasible solution with k-1 colors
  - -repeat

#### Optimization as Feasibility

- Sequence of feasibility problems
  - find an initial solution with k colors
    - greedy algorithms
  - -remove one color, say k.
    - reassign randomly all vertices colored with k with a color in the range 1..k-1
  - find a feasible solution with k-1 colors
  - repeat
- ► How to find a solution with k-1 colors
  - we have seen that in the first two lectures
  - just minimize the violations

- Neighborhood
  - -change the color of a vertex

- Neighborhood
  - -change the color of a vertex
- Objective function
  - -minimizing the number of colors

- Neighborhood
  - -change the color of a vertex
- Objective function
  - -minimizing the number of colors
- ► How to guide the search?
  - changing the color of a vertex typically does not change the number of colors

- Color classes
  - -C<sub>i</sub> is the set of vertices colored with i

- Color classes
  - -C<sub>i</sub> is the set of vertices colored with i
- ► How to drive the search?
  - -use a proxy as objective function
  - -favor large color classes

- Color classes
  - -C<sub>i</sub> is the set of vertices colored with i
- ► How to drive the search?
  - -use a proxy as objective function
  - -favor large color classes
- ► The objective function becomes

maximize 
$$\sum_{i=1}^{n} |C_i|^2$$

- Richer neighborhoods
  - -exploiting problem structure better
- Kemp Chains



- Richer neighborhoods
  - exploiting problem structure better
- Kemp Chains



- Richer neighborhoods
  - exploiting problem structure better
- Kemp Chains



- Richer neighborhoods
  - exploiting problem structure better
- Kemp Chains



- Richer neighborhoods
  - exploiting problem structure better
- Kemp Chains



- Richer neighborhoods
  - exploiting problem structure better
- Kemp Chains



- Richer neighborhoods
  - exploiting problem structure better
- Kemp Chains



- Richer neighborhoods
  - exploiting problem structure better
- Kemp Chains



- Explore both feasible and infeasible colorings
  - the search must focus on reducing the number of colors and on ensuring feasibility.

- Explore both feasible and infeasible colorings
  - the search must focus on reducing the number of colors and on ensuring feasibility.
- How to combine optimization and feasibility
  - make sure that local optima are feasible
  - use an objective function that balances feasibility and optimality

minimize  $w_f f + w_o O$ 

- Neighborhood
  - -change the color of a vertex

- Neighborhood
  - -change the color of a vertex
- Bad edges
  - a bad edge is an edge whose adjacent vertices have the same color
  - B<sub>i</sub> is the set of bad edges between vertices colored with i

- Neighborhood
  - -change the color of a vertex
- Decreasing the number of colors

maximize 
$$\sum_{i=1}^{n} |C_i|^2$$

- Neighborhood
  - -change the color of a vertex
- Decreasing the number of colors

maximize 
$$\sum_{i=1}^{n} |C_i|^2$$

Removing violations

- Neighborhood
  - -change the color of a vertex
- Decreasing the number of colors

maximize 
$$\sum_{i=1}^{n} |C_i|^2$$

Removing violations

minimize 
$$\sum_{i=1}^{n} |B_i|$$

- Neighborhood
  - -change the color of a vertex
- Decreasing the number of colors

maximize 
$$\sum_{i=1}^{n} |C_i|^2$$

Removing violations

► How to combine them?

#### The Combined Objective Function

- Neighborhood
  - -change the color of a vertex
- Objective function

minimize 
$$\sum_{i=1}^{n} 2 |B_i| |C_i| - \sum_{i=1}^{n} |C_i|^2$$

#### The Combined Objective Function

- Neighborhood
  - -change the color of a vertex
- Objective function

minimize 
$$\sum_{i=1}^{n} 2 |B_i| |C_i| - \sum_{i=1}^{n} |C_i|^2$$

► Why?

#### The Combined Objective Function

- Neighborhood
  - -change the color of a vertex
- Objective function

minimize 
$$\sum_{i=1}^{n} 2 |B_i| |C_i| - \sum_{i=1}^{n} |C_i|^2$$

► Why?

Local minima of this objective are legal colorings

- ► Consider a coloring C<sub>1</sub>,...,C<sub>k</sub>
  - -assume that B<sub>i</sub> is not empty
  - we show that this coloring is not a local minimum

- ► Consider a coloring C<sub>1</sub>,...,C<sub>k</sub>
  - -assume that B<sub>i</sub> is not empty
  - we show that this coloring is not a local minimum
- ► Consider an additional color k+1
  - select an edge in  $B_i$  and color one of its vertices with k+1 (instead of i)

- ► Consider a coloring C<sub>1</sub>,...,C<sub>k</sub>
  - -assume that B<sub>i</sub> is not empty
  - we show that this coloring is not a local minimum
- ► Consider an additional color k+1
  - select an edge in  $B_i$  and color one of its vertices with k+1 (instead of i)
- Consider the objective

minimize 
$$\sum_{i=1}^{n} 2 |B_i| |C_i| - \sum_{i=1}^{n} |C_i|^2$$

- ► Consider a coloring C<sub>1</sub>,...,C<sub>k</sub>
  - -assume that B<sub>i</sub> is not empty
  - we show that this coloring is not a local minimum
- ► Consider an additional color k+1
  - select an edge in  $B_i$  and color one of its vertices with k+1 (instead of i)
- Consider the objective

minimize 
$$\sum_{i=1}^{n} 2 |B_i| |C_i| - \sum_{i=1}^{n} |C_i|^2$$

► How does it vary?

- ► Consider a coloring C<sub>1</sub>,...,C<sub>k</sub>
- Consider an additional color k+1
  - Select an edge in B<sub>i</sub> and color one vertex with k+1
- ► How does the objective vary?

- ► Consider a coloring C<sub>1</sub>,...,C<sub>k</sub>
- ► Consider an additional color k+1
  - Select an edge in B<sub>i</sub> and color one vertex with k+1
- ► How does the objective vary?
  - -the left term decreases by

$$2|B_i||C_i| - 2(|B_i| - 1)(|C_i| - 1) = 2|B_i| + 2|C_i| - 2 \ge 2|C_i|$$

- ► Consider a coloring C<sub>1</sub>,...,C<sub>k</sub>
- Consider an additional color k+1
  - Select an edge in B<sub>i</sub> and color one vertex with k+1
- ► How does the objective vary?
  - -the left term decreases by

$$2|B_i||C_i| - 2(|B_i| - 1)(|C_i| - 1) = 2|B_i| + 2|C_i| - 2 \ge 2|C_i|$$

-the right term increases by

$$|C_i|^2 - ((|C_i| - 1)^2 + 1) = 2|C_i| - 2.$$

- ► Consider a coloring C<sub>1</sub>,...,C<sub>k</sub>
- ► Consider an additional color k+1
  - Select an edge in B<sub>i</sub> and color one vertex with k+1
- ► How does the objective vary?
  - -the left term decreases by

$$2|B_i||C_i| - 2(|B_i| - 1)(|C_i| - 1) = 2|B_i| + 2|C_i| - 2 \ge 2|C_i|$$

-the right term increases by

$$|C_i|^2 - ((|C_i| - 1)^2 + 1) = 2|C_i| - 2.$$

-Overall, the objective decreases by at least 2

#### Until Next Time