Exercises completed using SPSS, ArcGIS, GAM, Getis Ord Gi*

1. Descriptive statistics for the Voter Turnout Index and for one other variable

Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
Voter turnout index (over 100	50	51.42	140.79	100.6076	17.66990
= higher than average)					
% Persons students	50	.70	38.46	13.5032	9.29519
Valid N (listwise)	50				

2. A histogram for the Voter Turnout Index and for one other variable

Voter turnout index (over 100 = higher than average)

3. A boxplot of four or five variables which are percentages

4. The frequency count of different categories of 'Areas of Stress'

Area in multiple stress (5 levels)

					Cumulative
		Frequency	Percent	Valid Percent	Percent
Valid	No stress	5	10.0	10.0	10.0
	One stress indicator	10	20.0	20.0	30.0
	Two stress indicators	13	26.0	26.0	56.0
	Three stress indicators	15	30.0	30.0	86.0
	Four stress indicators	7	14.0	14.0	100.0
	Total	50	100.0	100.0	

1. The correlation between the Voter Turnout Index and % Households with long-term illness

Correlations

		Voter turnout	
		index (over 100	% Households
		ilidex (over 100	/0 1 10u3e110lu3
		= higher than	with long-term
		average)	illness
Voter turnout index (over 100	Pearson Correlation	1	597**
= higher than average)	Sig. (2-tailed)		.000
	N	50	50
% Households with long-	Pearson Correlation	597 ^{**}	1_
term illness	Sig. (2-tailed)	.000	
	N	50	50

^{**.} Correlation is significant at the 0.01 level (2-tailed).

2. A scatterplot of Voter Turnout Index and % Households with long-term illness

3. Present the table of coefficients of an OLS regression between Voter Turnout Index (dependent) and % Households with long-term illness (independent). Write the R square model fit.

		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	123.241	4.834		25.496	.000
	% Households with long-	-1.608	.312	597	-5.157	.000
	term illness					

a. Dependent Variable: Voter turnout index (over 100 = higher than average)

The R Square Model fit is .357

Model Summary

1	.597 ^a	.357	.343	14.32136
Model	R	R Square	Square	Estimate
			Adjusted R	Std. Error of the

a. Predictors: (Constant), % Households with long-term illness

- 1. Report the strongest two positively correlating variables with Voter Turnout Index
- % Persons Indian, Pakistani, Bangladeshi ethnicity = .691

2. Report the strongest two *negatively* correlating variables with Voter Turnout Index

% Persons White ethnicity or other groups = .-.666

3. After checking for collinearity between any possible independent variables, include here the table of coefficients for a multiple regression model with two or more variables you consider to be useful to include. Report the adjusted R square value

Coefficients^a

		Unstandardize	ed Coefficients	Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	87.800	8.604		10.204	.000
	% Persons Indian, Pakistani,	.422	.090	.522	4.665	.000
	Bangladeshi ethnicity					
	% Households with long-	899	.302	334	-2.982	.005
	term illness					

a. Dependent Variable: Voter turnout index (over 100 = higher than average)

Model Summary

[%] Persons students = .224

[%] Households with long-term illness = -.597

			Adjusted R	Std. Error of the
Model	R	R Square	Square	Estimate
1	.748 ^a	.560	.541	11.96552

a. Predictors: (Constant), % Households with long-term illness, % Persons Indian, Pakistani, Bangladeshi ethnicity

Practical: Using the various resources on spatial clustering

Copy and paste here:

1. A graduated symbol map of voter turnout by postcode point location

2. Two jpg outputs of spatial clustering from GAM which use different parameters (minimum / maximum radius, etc.)

GAM output with parameters:

[Minimum radius 100.0]

[Maximum radius 500.0]

[Radius increment 100.0]

GAM with parameters: [Minimum radius 150.0] [Maximum radius 700.0] [Radius increment 150.0] [Circle overlap 0.5]

3. Two examples of Kernel Density and / or Getis Ord Gi* outputs

Gi Ord Gi*

When you have developed a classification using k-means, using information from your SPSS Output Window (or equivalent from other software), include below:

1. The frequency count of the Number of Cases (i.e. areas) in each Cluster

Number of Cases in each Cluster

Cluster	1	22.000
	2	17.000
	3	8.000
	4	3.000
Valid		50.000
Missing		.000

2. A table of the Final Cluster Centres or a graph to illustrate these (using SPSS or Excel)

Final Cluster Centers

	Cluster				
	1	2	3	4	
Zscore: % Persons Indian,	.65955	10472	70701	-2.35794	
Pakistani, Bangladeshi					
ethnicity					
Zscore: % Without access to	73888	.58458	.15823	1.68388	
a car					
Zscore: % Households one	43447	.99105	86335	12754	
parent					
Zscore: % Persons	22996	.32295	.14269	52417	
unemployed					
Zscore: % Households	34853	.33324	61018	2.29466	
single pensioners					
Zscore: % Persons students	09291	41074	1.59390	-1.24149	
Zscore: % Households with	39740	.25418	56738	2.98691	
long-term illness					

Final Cluster Centers

3. Stratify the Voter Turnout Index across your classification using the Aggregate procedure to show how the mean level of voting varies by area type. Paste the table below.

South Asian Cluster (1)	109.10
Single Persons & Deprived Cluster (2)	95.90
Student Cluster (3)	100.09
Pensioners & Deprived Cluster (4)	66.36