Internship Program Report

By

Thorlapati Mahesh teja-18481A0288

In association with

Contents

Introduction	3
Program organiser	3
Courtesy	3
Program details	3
Internship program	3
3 rd May2021: Introduction to EPC Industry	ţ
4 th May2021: Engineering documentation for EPC projects5	5
5 th May2021: Engineering documentation for commands and formulae6	3
7 th May2021: Engineering documentation for Electrical system design	7
10 th May2021: Engineering documentation for Typical diagrams	3
11 th May2021: Classification of Transformers and Generators)
12 th May2021: Classification of Switchgare construction and power factor improvement10)
17 th May2021: Detailing about UPS system and Busducts	l
18 th May2021: Detailing about Motor Starters and Sizing of motors12	2
19 th May2021: Discribing about Earthing system and Lighting Protection13	}
20 th May2021: Lighting or illumination systems and calculations14	ţ
21 th May2021: Lighting or illumination systems using DIALUX software15	5
24 th May2021: Cabling and their calculations and types	;
25 th May2021: Cabling calculations and Cable gland selection17	7
28 th May2021: Load calculations and Transformer sizing calculations18	
29th May2021: DG set calculations)
2nd june2021: Caluculations of Earthing and Lighting protection)
5 th june 2021: Cable sizing and cable tray sizing calculations	l
Conclusion	22
Feedback:	22

Introduction

Internship program arranged by GUDLAVALLERU ENGINEERING COLLEGE in association with Smart Internz, Hyderabad for the benefit of 3rd year EEE batch 2018-2022 on Electrical Detailed design Engineering for Oil& Gas, Power and Utility industrial sectors.

Program organiser

Smart Bridge, Hyderabad.

Pioneer in organising Internships, knowledge workshops, debates, hackathons, Technical

sessions and Industrial Automation projects.

Courtesy

Dr. Sri B. Dasu – HOD – EEE, GEC

Mr. G. Srinivasa Rao – Internship coordinator

Mr. Ramesh V - Mentor

Mr. Vinay Kumar - System Support

Mr. Harikanth – Software/Technical Support

Program details

Smart Internz program schedule: 4 weeks starting from 3rd May 2021

Daily schedule time shall be 4PM to 6.30PM

Mode of Classes: On line through ZOOM

Presenter: Mr Ramesh V

Internship program

We have been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

3rd May2021: Introduction to EPC Industry

1	EPC Industry &	EPC Industry	Introduction
	Electrical Detailed	Engineering	Types of Engineering
	Engineering	Procurement	Engineering role in procurement
		Construction	Engineering role during construction

Topic details:

Engineering phases, Engineering deliverables (drawings & documents) list, Design Engineer role at various phases of project.

4th May2021: Engineering documentation for EPC projects

2	Electrical Design	Engineering Deliverables list	Sequence of deliverables
	Documentation	Detailed Engineering work flow	Detailed engineering process
		Document transmission	Document submission and info
			exchange
		Deliverables types	Different types of deliverables

Z

3. ELECTRICAL DESIGN & DETAILED ENGINEERING - PROCESS

Topic details:

Engineering deliverables list, detailed engineering flow, engineering support flow, engineering support to procurements.

5 th May2021: Engineering documentation for commands and formulae

3	Document & Drawing	MS Word	Report / Calculations formats
	tools	MS Excel	Basic excel commands
		Autocad	Basic line diagrams and layout
			commends

3C. AUTOCAD BASIC COMMANDS

OWN LA PER	AUTOCAD BASIC KEYS							
STAND	ARD	DRAW		MOL	MODIFY		FORMAT	
NEW	Ctrl+N	LINE	L	ERASE	E	PROPERTIES	MO	
OPEN	Ctrl+0	RAY	RAY	COPY	CO	SELECT COLOR	COL	
SAVE	Ctrl+S	PLINE	PL	MIRROR	MI	LAYER	LA	
PLOT	Ctrl+P	3DPOLY	3P	OFFSET	0	LINETYPE	LT	
PLOT PREVIEW	PRE	POLIGONE	POL	ARRAY	AR	LINEWEIGHTS	LW	
CUT	Ctrl+X	RECTANGLE	REC	MOVE	M	LT SCALE	LTS	
COPY	Ctrl+C	ARC	A	ROTATE	RO	LIST	LI	
PASTE	Ctrl+V	CIRCLE	C	SCALE	SC	DIMEN. STYLE	D	
MATCH PROPE.	MA	SPLINE	SPL	STRECH	S	RENAME	REN	
CLOSE	Ctrl+F4	ELLIPSE	EL	TRIM	TR	OPTION	OP	
EXIT	Ctrl+Q	BLOCK	В	EXTENED	EX			
		POINT	PO	BRAKE	BR			
		HATCH	Н	CHAMFER	CHA			
		GRADIENT	GD	FILLET	F			
		REGION	REG	EXPLODE	Х			
		BOUNDARY	ВО					
		DONUT	DO					

	EXTRA			DRAF	TING	PAPER SIZE
UNIT	UN	UCS	UCS	ORTHO	F8, Ctrl+L	A4=210*297
LIMITS	LIMITS	SINGLE TEXT	DT	OSNAP	F3, Ctrl+F	A3=297*420
(0,0; 1000,	1000)	MULTILINE TEXT	MT	POLAR	F10, Ctrl+U	A2=420*594
ZOOM	Z	EDIT TEXT	ED	GRID D	F7, Ctrl+G	A1=594*841
ALL	Α	OBJECT SNAP	ОВ	OTRACK	F11	A0=841*1189
PAN	Р	DIMENTION	DIM	SNAP	F9	
CLEAN SCREEN	Ctrl+0	HORIZONTAL	HOR			
COMMAMD WIN	Ctrl+9	VERTICAL	VER			

Topic details:

Here we need to learn the basis of the autocadbasic keys like standard, modify,draw,format,papersize etc..

7 th May2021: Engineering documentation for Electrical system design

4	Electrical system	Overall plant description
	design for a small	Sequence of approach
	small project	Approach to detailed design

Topic details:

Internz

1C. DETAILED ENGINEERING

Here we observed that how to do a project and Sequence of approach, Approach to detail design and Overall plant distribution system.

10th May2021: Engineering documentation for Typical diagrams

5	Electrical system design for typical diagrams		
		Load lists shedule	Power flow diagram
		Single line diagram	Typical schematic diagram

Topic details:

We conclude here how to do load calculations and Typical diagrams and inernal structure and also about the power flow diagram.

11th May2021: Classification of Transformers and Generators

(6	Classification of		
		Transformers and Generators	Different types of Transformers	Different types of Generators

Topic details:

Classification of Transformers and Generators

12th May2021: Classification of Switchgare construction and power factor improvement

7	Classification of Switchgare construction and power factor improvement	Different types of Switchgare assembles	Power factor improvement

Topic details:

Classification of Switchgare contruction and Power Factor Improvement

17th May2021: Detailing about UPS system and Busducts.

8	Detailing about		
	UPS system and	Uninterruptible power supply	Busduts of the system
	Busducts	system	

Topic details: Power distribution of UPS system and Busducts.

UPS systems are designed to provide continuous power to a load, even with an interruption or loss of utility supply power. UPS generally involves a balance of cost Vs need.

18th May2021: Detailing about Motor Starters and Sizing of motors.

9	Detailing about Motor	Motor starters and drives	Sizing and selection of
	Starters and Sizing of		motors
	motors		

Topic details: Detailing about Motor Starter and Sizing of motors and their selection.

The principal function of a motor starter is to start and stop the respective motor connected with specially designed electromechanical switches which are similar in some ways to relays. The main difference between a relay and a starter is that a starter has overload protection for the motor that is missing in a relay.

Different types of motor starters are as follows:

- Direct-On-Line Starter
- Rotor Resistance Starter
- Stator Resistance Starter
- Auto Transformer Starter

19th May2021: Discribing about Earthing system and Lighting Protection.

10	Discribing	Plant Earthing system	Lighting Protection materials
	about Earthing		
	system and		
	Lighting		
	Protection.		

Topic details: Discribing about Earthing system and Lighting Protection.

Lightning protection required for high rise structures and important buildings against lightning currents during thunder storms. Primarily Lightning protection system calculations are done based on soil resistivity, conductor material, coverage structure / Building to determine whether lightning protection is required or not.

20th May2021: Lighting or illumination systems and calculations.

11	Lighting		
	or	Lighting or illumination systems	Lighting calculations
	Illuminatio		
	n systems		
	and		
	Calculation		
	S		

Topic details: Lighting or Illumination systems and Calculations.

All outdoor lighting fittings shall be connected with armoured PVC cable of suitable no. of cores and size. Necessary type and no. of junction boxes shall be provided for branch connections. Indoor light fittings shall be connected with FRLS PVC wires laid in cable trunks or conduits.

Inputs required: Equipment and cable routing layouts, lighting calculations, Design basis for type of light fittings to be used, required lux levels

Lighting calculations software: Dialux, Chalmlite, Calculux, Relux, Luxicon,

CG Lux Applicable Standards: IS 6665: Code of practice for industrial

lighting, IS 3646: Code

of practice for interior illumination, IEC 60598: Luminaires, IEC 62493: Assessment of lighting equipment related to human exposure to electromagnetic field

Deliverables: Indoor Lighting layouts, socket outlet layouts, Street lighting and area lighting layouts. BOQ.

Types of light fittings: Industrial, flame proof type (EX d), increased safety type (Ex e).

21th May2021: Lighting or illumination systems using DIALUX software.

12	Lighting or Illumination using DIALUX software	Lighting or illumination systems	Operation software	of	dialux
----	--	----------------------------------	--------------------	----	--------

Topic details: Lighting or Illumination Calculations using DIALUX software.

Here we are using this Dialux evo 5.9.2 software windows to construct the power plant and we can perform the operation from this software.

24th May2021: Cabling and their calculations and types.

13	Cabling and their				
	types and claculations	Cabling calculations	Types materials	of	cabling

Topic details: Cabling and their types and claculations .

Electrical cables must be properly supported to relieve mechanical stresses on the conductors, and protected from harsh conditions such as abrasion which might degrade the insulation.

Cables generally laid in the cable trays above ground, direct buried underground and in metallic or PVC conduits. Derating factors may be applicable for each type of cable laying conditions.

25th May2021: Cabling calculations and Cable gland selection.

14	Cabling		
	claculations and	Cabling calculations	Cable gland selection
	cable gland		
	selection		

Topic details: Cable sizing calculation and cable gland selection.

Inputs required: Load List, Design basis, Electrical equipment layout, cable schedule, vendor catalogues for cable tray.

Cable tray sizing shall be performed for each branch of cable tray routing up to the load point. Results shall be checked with specified limits mentioned in design basis.

Cable gland:

Cable Gland Selection Table
Refer to illustration at the top of the page.

Cable Gland Size	Available Entry Threads "C" (Alternate Metric Thread Lengths Available)		Cable Bedding Diameter "A"	Overall Cable Diameter "B"	Armou	r Range	Across Flats "D"	Across Corners "D"	Protrusion
Size	Metric	Thread Length (Metric) "E"	Max	Max	Min	Max	Max	Max	Length "F"
20516	M20	10.0	8.7	13.2	8.0	1.25	24.0	26.4	35.2
205	M20	10.0	11.7	15.9	8.0	1.25	24.0	26.4	32.2
20	M20	10.0	14.0	20.9	0.8	1.25	30.5	33.6	30.6
25	M25	10.0	20.0	26.2	1.25	1.6	36.0	39.5	36.4
32	M32	10.0	26.3	33.9	1.6	2.0	46.0	50.6	32.6
40	M40	15.0	32.2	40.4	1.6	2.0	55.0	60.5	36.6
505	M50	15.0	38.2	46.7	2.0	2.5	60.0	66.0	39.6
50	M50	15.0	44.1	53.1	2.0	2.5	70.1	77.1	39.1
635	M63	15.0	50.0	59.4	2.0	2.5	75.0	82.5	52.0
63	M63	15.0	56.0	65.9	2.0	2.5	80.0	0.88	49.8
755	M75	15.0	62.0	72,1	2.0	2.5	90.0	99.0	63.7
75	M75	15.0	68.0	78.5	2.5	3.0	100.0	110.0	57.3
90	M90	24.0	80.0	90.4	3.15	4.0	114,3	125.7	66.6

28 th May2021: Load calculations and Transformer sizing calculations

15	Load calcu	ulations		
	and	TR	Load calculations	TR calculations
	calculation	ns		

Topic details:

List of electrical load calculations.

T/F calculation:

29th May2021: DG set calculations

16	DG set
	calculations

Topic details:

Transformer and DG set calculations, types , sizing or selections

	Assignment 3		
	DG SIZING CALCULATIONS		
Design Data			
Rated Volatge	:	415	KV
Power factor	(CosØ)	0.82	Avg
Efficiency		0.93	Avg
Total operation	ng load on DG set in kVA at 0.82 power factor	470.9	
Largest moto	to start in the sequence - load in KW	90	KW
Running kVA	of last motor (CosØ= 0.91)	118	KVA
Starting curre	nt ratio of motor	6	(Considering starting method as Soft starter)
_	of the largest motor	708	KVA
	of last motor X Starting current ratio of motor)		
Base load of I	OG set in KVA	353	KVA
(Total operati	ng load in kVA – Running kVA of last motor)		
A Continous op	eration under load -P1		
-	G set based on continuous operation under load P1	353	KVA
	•		
	tage dip during starting of Last motor P2 tary load in KVA	1061	KVA
	of the last motor+Base load of DG set in KVA	1061	KVA
(
Subtransient	Reactance of Generator (Xd")	7.91%	(Assumed)
Transient Res	ctance of Generator (Xd')	10.063%	(Assumed)
xa*** =(xa**+x)	1')/2	0.089875	
Transient Vo	tage Dip	13%	(Max)
	tage dip during Soft starter starting of Last motor mentary load in KVA x Xd x (1-Transient Voltage Dip)	540	KVA
	(Transient Voltage Dip)		
C Overload cap	ecity P3		
Capacity of D	S set required considering overload capacity		
Total momen	tary load in KVA	1061	KVA
overcurrent o	apacity of DG (K)	150%	
(Ref: IS/IEC 6	0034-1, Clause 9.3.2)		
	S set required considering overload capacity	707	KVA
(P3) =	Total momentary load in KVA overcurrent capacity of DG (K)		
	he last value amongst P1, P2 and P3	353	
Continous op	eration under load -P1		KVA
Transient Vol	tage dip during Soft starter starting of Last motor P2	540	KVA
Overload cap	scity P3	707	KVA
Considering t	he last value amongst P1, P2 and P3	707	KVA
Hence, Existin	g Generator 707 KVA is adequate to cater the loads as per re-		
scheduled los	ds		
NOTE:VOLTA	GE DIP CONSIDERED - 15%		

2nd june2021: Caluculations of Earthing and Lighting protection.

17	Calculation of			
	Earthing and	Earthing calculations	Lighting protection	
	Lighting		calculation	
	protection			
	calculations			

Topic details:

Calculation of Earthing and Lighting protection calculations

Lightning calculation

June 2021

5 th june 2021: Cable sizing and cable tray sizing calculations.

18	Cable sizing and		
	cable tray	Cable sizing calculations	Cable tray calculation
	sizing		
	calculations		

Topic details:

Cable sizing and cable tray sizing calculations for LV cables and MV/HV cables.

T CAB		I LT-4		-		T-5			92
ABLET	RAY: FROM	LTN	1	TO		.T-5		1	
Br. No.	Cable Route (Front-To)	Type & Cable Size	Size of Catrie (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (KgMt)	Remarks
1	PU2315	4	50	1	26	28	23	2.3	Į.
2	PU2322A	4	25	1	22	22	1.4	1.4	Į.
3	PU 2314A	4	25	t	22	22	1.4	1.4	
4	PU2324	4	50	1	26	28	23	2.3	
5	PU2333	4	50	1.	26	28	23	2.3	
6	PU 2322B	4	70	f.	29	29	3.25	3.25	
7	PU2321A	4	35	1	24	24	1.8	1.8	į.
8	PU2321B	4	4	1	17	17	0.6	0.6	
9	PU2305	4	6	1	18	18	0.7	0.7	
10	PU2332	4	- 6	10	18	18	0.7	0.7	
11	MX2305	4	6	1	18	18	0.7	0.7	
12	MX2308	4	25	10	22	22	1.4	1.4	
13	CF2312	4	25	t	22	22	1.4	1.4	
_	Total			13		290	20.25	20.25	
ensider istance i alculated alculated	EION Cable Diameter: Spare Capacity of Cable Tray: between each Cable: d Width of Cable Tray: d Area of Cable Tray: er of Cables in Cable Tray:		29 30% 0 377 10933	mm mm Sq.mm		Result Selected Cable T Selected Cable T Selected Cable T Selected Cable T	ray Depth: ray Weight: ray Size:	0.K 0.K 0.K 0.K	Including Spere Capacity Including Spere Capacity
Net on Labora in Labora Irray. Selected No of Cable Tray: Selected Cable Tray Watth: Selected Cable Tray Matth: Selected Cable Tray Deptit: Selected Cable Tray Deptit: Selected Cable Tray Deptit: Selected Cable Tray Weight Capacity: Type of Cable Tray:			2 1 300 100 90 Ladder	Nos. mm mm Kg/Meter		Required Nos of Required Cable 1 Type of Cable Tr Cable Tray Width	Cable Tray: fray Weight: ay:	300 x 100 1 90.00 Ladder	mm No KgMeter/Tray
	of Cable Tray:		30000	Sq.mm		Cable Tray Area		64%	

No.	Descriptor	Equipment No.	Description	Consumed Load Not	Estati Factorial FAN	Anthera evi	Se Co	ad Starting nest Current	Lead P.F. Phireiry	SN 0 Residue	Motor P.F Oraces	581 0 001/04	Type	No of Hora	Mo of Cones	Star (mint)	Cornect Plateing (A)	Senting Solar El	Sensing Security 62	Senting Sector 15	functor factor his	Carrying Sector	Detailed Outstand (A)	Cante Length (N)	Cattle Feetstation (Demokin)	Casks Newcasco (Cheru-Nell)	choo phusaingi (10)	French (French)	drop drunting	(rterong)	Catom size result	Cable Cable (mm)	Gland HDII
2	DV 9800	Puzzts.	broading healthcap	70.00	-90	412	2 13	né 000.11	26	2.0	6.2	15	- 2	9 -	40	- 50	#307	0.90	0.9	11	1.	0.002	*5177	90	#10071	#KETT	#X171	PEXT:	#85F	witte.	#9071	#R011	70
	19 8000		Softwaler pomp	22.26	222	410	2 30	202,40	0.6	20	2.5	25	2	- X 33	40	25	#1071	0.90	0.3	141	7.	0.860	#REPT.	85	#REDT:	wccm .	enen.	PEET.	PROFE	#12ft	RECEI	ARC:	236
	W ME	MATERIA.	American Hautel of pump	物性		410	3 2	1 (133.00)	12.0	0.00	0.0	28		8111	4,0	. 3k	WHEN	0.96	0,0		. 1:	11,680	ATET	80	MINIST	WEEK!	81111	APER:	ATT T	40111		#YEST	70e
	TO ME	FUSCIE!	Clark Park Fack years	17.44	(3)	216	3 18		Tie.	5.8	6.8	18	-2	***	3.0	7. 30	#1671	2.00	0.5	- 1	- 1	1,681	ATTEN	56	AND	ARCH.	MALLE	MELL	450.71	#11.07F	#Birt	#RIT	, 30e
9	LIV MICE.		Map Of purps	78.04	.00	416	2 13	E7 E1430	2.6	0,0	6.3	1.0	- 2	A	40.	- 60	#10"	CH	0.0	- 1	10	0.000	40251	76	PROP	WIETT.	#31FT	#FEF	#R271	#NETI	MEDIT!	#10°1	20e
8	LO MICC.	PERMIT	Softwaler sump-disorcity	VEIDA	. 90.	415	3 33	5.7 894.30	- 06	0.5	6.8	15	- 7	8.00	40.	70	#1071	0.96	0.9	- 1		0.883	AREST	166	44031	4850	#811T	- MEETS	#R321	#HEH:	#R271	■1077	204
0	TO WOOD		Lya/Crecian Metering Furne	203.401	: 3'	415	3 %	3 39.55	0.6	9.8	6.8	15	- 1	1.0	40.	. 35	#4271	CHE	0.9	,		0.863	40271	160	#601	46531	MARKET !	MEET	PER	with:	#405°	#E71.	234
10	SV ME	3100016	Lys storage berd marry	1.76	37	419	3 6	7 1231	128	5.6	6.5	25			6.0	504	# TELET	D36	0.0		1.	3.880	ARETT	100	Attent	- HITTH	*****	AFER.	-	403.01	#BDT	#10/P	75he
11	LV RES	FV2000	Feed Pumpt Seprestry	0.13E-0	T.A	415	2 1	11. 13.47	0.0	20	6.0	15	- 2	1.7	40.		#107	CHE	0.0		187	0.002	***	70	PRETT	MIST.	#RIFT	MEET.	PER	#IER	#N071	#1071	. 19
17	TA MOD		Seco Hitok Puraz	5.88	. 55	411	3 9		0.0	2.0	5.2	1.5	1	A	40.		MATE.	COM	0.8	1	1.	0.000	#825C	110	# PER	#R071	#317T	WET:		#1ET1		#10°C	224
13	TO MUZE	80,3335		5.55	38	415	3 9	5 58.95	0.6	9.5	6.8	1.5	1	8 (1)	40	0.8	WAST.	0.96	0.0	- 1	1 1	(0,M)	*KERC	- 75	44031	40231	AREIT	WED.	A 0391	#12.F1		MET.	. 26
14	TO MOD	W07200W		2548	1.35	A10	5 25		. ae .	9.8	6.8	1.6	1	# S0	40		MARKET.	0.96	0.0			0.862	AFRE	116.	4407	403,01	#35m	80'557	#R071	WHEN.		AND T	.76
11.	DV MESS	112313	Imposite	Y,468	78	-4til	3 0	18.00	3.0	1.0	6.3	13	3	-10	42	35	WHERE	C36	0.0	- 1	31:	0.862	ANETT	-	MICH	AREST	AREN	#FEF	PREFI	METT	ARCE	eren.	12
												- 5		- 9									- 1		1								\equiv
\rightarrow	_	_				-	_	-	-	-	-	-	-	_	_			_	_	_		_	-	-		_	_	_	-	-		-	-
\rightarrow								-																				-	$\overline{}$	-		-	-
					-									-		-3																	
														(2)		1.5) 10						300		
\rightarrow	_	-		-	-			-	-			-						_		_		-	-					-	-				-
\rightarrow	_	-		- 10			_	_	_	_			-	_	-			_				_	_	-	2 73	_		-	$\overline{}$	_		-	-
\rightarrow			-	-	-			-	-			-		-		22		_						-	-				_				+
\rightarrow			1	100				_	_					- 0											2 23				$\overline{}$				-
\rightarrow	_	-				-	_	_	_	_	_		-		-				_	-		_	_	-	-	-	-	_	$\overline{}$	_	$\overline{}$	-	-

East:

Dead darray four 1 = 14, 1/2, 1/2, 1/2

11 = 1/2 = 1/2, 1/2, 1/2

11 = 1/2 = 1/2

11 = 1/2 = 1/2

11 = 1/2 = 1/2

11 = 1/2 = 1/2

11 = 1/2 = 1/2

11 = 1/2 = 1/2

12 = 1/2 = 1/2

12 = 1/2 = 1/2

13 = 1/2 = 1/2

14 = 1/2 = 1/2

15 = 1/2 = 1/2

15 = 1/2

16 = 1/2

16 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/2

17 = 1/

Conclusion

We have been taught many aspects of engineering activities during the EPC stages for all electrical and related other disciplines also.

Feedback

Smart Bridge

They conduct summer internships, work shops, debates, hackthons, technical sessions.

Method of conducting program

Online virtual program with presentation slides and explanation on the topic and practical usage of topic and with some examples.

Program highlights

It is for the detailed design of any industrial sectors.

Material

The material was good.

Benefits

It has been given the opportunity to learn and interact with industry experienced engineering specialist to learn the Electrical detailed design engineering for various industrial sectors.

ELECTRICAL LOAD CALCULATIONS LV MCC

Assignment-1

						Ass	signmer	1t-1										
												kW = [A] / [D]		Consumed L	oad	kVAR = kW	x tan φ	
6l. O.	Equipment No.	Equipment Description	Breaker Rating	Breaker Type	Breaker No. of Poles	ELCB Rating	Absorbed Load	Motor / Load Rating	Load Factor [A] / [B]	Efficiency at Load Factor [C]		Continuo	ous	Intermi	ttent	Stand-t	ру	Rema
							[]	(D)	101	LD1	Factor [C]							
			A			mA -	[A] kW	[B] kW	[C] decimal	[D] decimal	cos φ	kW	kVAR	kW	kVAR	kW	kVAR	
											<u> </u>		i					
1	PU2315	Silica filter feed pump					76.68	90.00	0.85	0.93	0.82	82.45	57.55					
2	PU 2314-A	Absorbesnt/Neutral oil pump (W)					22.28	22.00	1.01	0.91	0.78	24.5	19.6					
3	PU 2314 -B	Absorbesnt/Neutral oil pump (S)					19.16	22.00	0.87	0.91	0.78					21.1	16.9	
4	PU2305	Feed Pump (Seperator)					77.44	90.00	0.86	0.93	0.82	83.3						
5	MX2305	MIXER (W)					78.04	90.00	0.87	0.93	0.82	83.9	58.6					
	MX 2308	MIXER (S)					78.04		0.87							83.9	58.6	
7	BW2313	Blower					33.50		0.91	0.91		36.8	29.5					
	Rotary valve	TK 2313B (I)					3.25		0.88					3.8	3.6			
9	SC2314	Screw conveyor (I)					7.52		1.00					8.85	8.28			
0	AG 2324A	Citric acid tan agitator (W)					5.65		1.03			6.65	6.22					
	AG 2324B	Citric acid tank agitator (S)					5.65		1.03	0.85	0.73					6.6	6.2	
	AG 2305	Citric oil rection vessol agitator					20.55	22.00	0.93	0.91	0.78	22.58	18.12					
	AG 2309	Lye oil reaction vessel agitator					7.48		1.00	0.85	0.73	8.80						
14	AG 2310	Lye oil reaction vessel agitator					7.48	7.50	1.00	0.85	0.73	8.80	8.24					
5	AG 2314	Soap Adsorbant Tank Agitator					13.08	15.00	0.87	0.85	0.73	15.39	14.41					
		nal running plant load : 377.0 kW		282.2	kVAR		sqrt (kW² +kVAR²) =	470.9	kVA	TOTAL	373.15	278.65	12.67	11.86	111.62	81.69	
	(Est. x%E + y%F) Peak Load :	388.1 kW		290.4	kVAR		sqrt (kW² +kVAR²) =	484.7	kVA	kVA	465.7	1	17.3	66	138.3		
	(Est. x%E + y%F	+ z%G)																
	Assumptions 1) Load factor Ef	ficiency and Power factor.																
	.,	Load Rating (kW)	Effic	iency		Power fac	ctor											
		<= 20		85		0.73												
		> 20 - <= 45	0.			0.78												
		> 45 - < 150		93		0.82												
		>= 150		94		0.91												

2) Coincidence factors x= 1.0, y= 0.3, and z=0.1 considered for contnious, intermittent and standby load.

Assignment -2

Calculation for Transformer Capacity

1.0 Example of calculation for Transformer Capacity

1.1 Calculation for consumed load

Consumed loads used for this example are as follows:

	kW	kVar	kVA	
a. Continuous load	373.15	278.7	465.71	(i)
b. Intermittent load / Diversity Factor	12.67	11.9	17.36	(ii)
c. Stand-by load required as consumed load	111.62	81.7	17.36	(iii)
Max. Consumed load = ((i) + 30% (ii) + 10% (iii)) =	388.1	290.4	484.72	
Future expansion load (20% capacity)	77.6	58.1	96.94	
Total Load =	465.7	348.5	581.66	

1.2 Calculation for 3.3kV / 0.433 kV transformer capacity

 Max. Consumed load
 =
 484.7 kVA

 Spare capacity
 =
 96.9 kVA

 Required capacity
 =
 581.7 kVA

 Transformer rated capacity
 =
 120 kVA

1.3 Voltage regulation check

During starting or reacceleration of max. capacity motor (3400 kW), while all the other loads running, the voltage regulation is as follows:

Result: During starting of max. capacity motor, while all other loads are running, the voltage regulation at Transformer secondary terminals is approx. 5.3%, which meets the criteria to maintain less than 15% voltage regulation.

1.4 Selection of rated capacity

120 kVA transformer selected.

	Assignment 3 DG SIZING CALCULATIONS		
	Design Data		
	Rated Volatge	415	KV
	Power factor (CosØ)	0.82	Avg
	Efficiency	0.93	Avg
	Total operating load on DG set in kVA at 0.82 power factor	470.9	Ü
	Largest motor to start in the sequence - load in KW	90	KW
	Running kVA of last motor (CosØ= 0.91)	118	KVA
	Charles a constant of contra	6	(Considering starting
	Starting current ratio of motor	708	method as Soft starter) KVA
	Starting KVA of the largest motor (Running kVA of last motor X Starting current ratio of motor)	700	NVA
		353	1/1//
	Base load of DG set in KVA (Total operating load in kVA – Running kVA of last motor)	333	KVA
	(Total specialing local in NV) Training NV (or last motor)		
Α	Continous operation under load -P1		
	Capacity of DG set based on continuous operation under load P1	353	KVA
В	Transient Voltage dip during starting of Last motor P2		
	Total momentary load in KVA	1061	KVA
	(Starting KVA of the last motor+Base load of DG set in KVA		
	Subtransient Reactance of Generator (Xd'')	7.91%	(Assumed)
	Transient Reactance of Generator (Xd')	10.065%	(Assumed)
	Xd''' =(Xd"+Xd')/2	0.089875	(acamea,
		450/	(2.2.)
	Transient Voltage Dip	15%	(Max)
	Transient Voltage dip during Soft starter starting of Last motor	540	
	P2 = Total momentary load in KVA x Xd''' x (1-Transient Voltage Dip) (Transient Voltage Dip)	340	KVA
С	Overload capacity P3		
·			
	Capacity of DG set required considering overload capacity	1061	KVA
	Total momentary load in KVA		
	overcurrent capacity of DG (K)	150%	
	(Ref: IS/IEC 60034-1, Clause 9.3.2)		
	Capacity of DG set required considering overload capacity (P3) = Total momentary load in KVA	707	KVA
	overcurrent capacity of DG (K)		
	Considering the last value amongst P1, P2 and P3		
	Continous operation under load -P1	353	KVA
	The state William also design of the state o	540	KVA
	Transient Voltage dip during Soft starter starting of Last motor P2 Overload capacity P3	707	KVA
	Considering the last value amongst P1, P2 and P3	707	KVA
	Hence, Existing Generator 707 KVA is adequate to cater the loads as per rescheduled loads $$		
	NOTE:VOLTAGE DIP CONSIDERED - 15%		

Assignment -4

Maximum line-to-ground fault in kA for 1 sec	16	
Earthing material (Earth rod & earth strip)	GI	
Depth of earth flat burrial in meter	0.5	
Average depth / length of Earth rod in meters	3.5	
Soil resistivity Ω-meter	11	
Ambient temperature in deg C	45	
Plot dimensions (earth grid) L x B in meters	60	120
Number of earth rods in nos.	6	

Earth electrode sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I_{l-g} - RMS fault current in kA = 50 KA	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	114
Earth rod dia in mm	12
Earth rod dia (including 25% corrosion allowance) in mm	15

Earth flat sizing:

Ac - Required conductor cross section in sq.mm

$$I_{lg} = A_c x \sqrt{\left[\frac{TCAPx10^{-4}}{t_c x \alpha_r x \rho_r}\right] x l_n \left[\frac{K_0 + T_m}{K_0 + T_a}\right]}$$

αr - Thermal co-efficient of resistivity, at 20 oC	0.0032
pr - Resistivity of ground conductor at 20 oC	20.10
Ta - Ambient Temperature is °C	50
I _{I-g} - RMS fault current in kA = 50 KA	14
tc - Short circuit current duration sec	1
Thermal capacity factor, TCAP J/(cm3.oC)	3.93
Tm - Maximum allowable temperature for copper conductor, in oC	419
KO - Factor at oC	293
The data taken from IEEE 80-2000, Clause 11.3, Table-1 for clad steel rod:	
14 = Ac *	0.123
Ac - Required conductor cross section in sq.mm	114

Rg - Grid resistance

Grid resistance can be calculated using Eq. 52 of IEEE 80

$$R_g = \rho \left\{ \frac{1}{L} + \frac{1}{\sqrt{20 \times A}} \left[1 + \frac{1}{1 + h \sqrt{20 / A}} \right] \right\}$$

ρ - Soil resistivity in Ω -meter=	11
L - Total buried length of ground conductor in meter	360
h - Depth of burial in meter	0.5
A - Grid area in sq. meter	7200

Rg - Grid resistance 0.088

Rr - Earth Electrode resistance

Grid resistance can be calculated using Eq. 55 of IEEE 80

$$R_{r} = \frac{\rho}{2 \times \pi \times n_{r} \times L_{r}} \left\{ l_{n} \left[\frac{4 \times L_{r}}{b} \right] - 1 + \frac{2 \times k_{1} \times L_{r}}{\sqrt{A}} \left(\sqrt{n_{r}} - 1 \right)^{2} \right\}$$

ρ - Soil resistivity in Ω -meter, 16.96	11
n - No of earth electrodes	6
Lr - Length of earth electrode in meter	3.5
b - Diameter of earth electrode in meter	0.020
k1 - co-efficient	1
A - Area of grid in square metre	7200

Rr - Earth Electrode resistance 4.74245

Grounding system resistance

Grounding system resistance can be calculated using equation 53 of IEEE 80 as follows:

$$R_{s} = \frac{R_{g} \times R_{2} - R_{m}^{2}}{R_{g} + R_{2} - 2R_{m}}$$

 R_m - Mutual ground resistance between the group of ground conductors, R_g and group of electrodes, R_r in $\Omega.$ Neglected R_m , since this is for homogenous soil

Rs - Total earthing system resistance 0.086 Ohms

The calculated resistance grounding system is less than the allowable 1 $\boldsymbol{\Omega}$ value.

Assignment -5

1 Raichur Location Building Concrete, Hospital Type of Building Flat Roofs (a) Building Length (L) 17 Building breadth (W) 7 Building Height (H) 9

Risk Factor Calculation

1 Collection Area (A_c)

(L*W) + (2*L*H) + (2*W*H) + (3.14*H*H) A_c 805.34 2 Probability of Being Struck (P) $A_c * N_g * 10^{-6}$ 0.000885874

Pa

20 X 2.5 mm Galvanized Steel Strip

3 Overall weighing factor

a) Use of structure (A) 1.2 b) Type of construction (B) 0.4 c) Contents or consequential effects (C) 8.0 d) Degree of isolation (D) 1.0 e) Type of country (E) 0.3 A * B * C * D * E Wo - Overall weighing factor 0.115 P * Wo 4 Overall Risk Factor Ро Ро 0.000102053 10-5

As per clause no. 9.7 of BS- 6651, suggested acceptable risk factor (Po) has been taken as 10^{-5} Since Po > Pa lightning protection required.

5 Air Terminations

Perimeter of the building 2(L+W) 48 Mts. **6 Down Conductors** Perimeter of building 48 Mts. No. of down conductors based on perimeter 2 Nos.

Hence 2 nos. of Down conductors have been selected.

Size of Down conductor

(As per BS6651, lightning currents have very short duration, therefore thermal factors are of little consequence in deciding the cross-section of the conductor. The minimum size of Down conductors - 20mm X 2.5 mm Galvanized Steel Strip)

S.NO.	Description	Equipment No.	Description	Consumed Load KW	Load Rating KW	Voltage	No. Los of Curr	d Startin		SIN Φ Running	Motor P.F Staring	SIN Φ Staring	Туре	No. of Runs	No. of Cores	Size (mm2)	Current Rating (A)	Derating factor k1	Derating factor k2	Derating factor k3	Derating factor k4	Overall Derating factor	Derated Current (A)	Cable Length (M)	Cable Resistance (Ohms/kM)	Cable Reactance (Ohms/kM)	Voltage drop (Running)	Voltage drop (Running)	Voltage drop (Starting) (V)	Voltage drop (starting) (%)	size	OD of Cable (mm)	Gland size
3	LV MCC	PU2315	Silica filter feed pump	76.68	90	415			0.8	0.6	0.8	0.5	2	1	4.0	50	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
4	LV MCC	PU2322A	Soft water pump	22.28	22	415	3 38	7 232.48	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	95	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
5	LV MCC	PU 2314A	Absorbesnt/Neutral oil pump	19.16	22	415	3 33	3 199.92	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	60	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
6	LV MCC	PU2324	Citric Acid Tank pump	77.44	90	415	3 134	.7 808.04	8.0	0.6	0.8	0.5	2	1	4.0	50	#REF!	0.98	0.9	1	1	0.882	#REF!	85	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
7	LV MCC	PU2333	Slop Oil pump	78.04	90	415	3 13	5.7 814.30	0.8	0.6	0.8	0.5	2	1	4.0	50	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
8	LV MCC	PU 2322B	Soft water pump-Stand by	78.04	90	415	3 135	5.7 814.30	0.8	0.6	0.8	0.5	2	1	4.0	70	#REF!	0.98	0.9	1	1	0.882	#REF!	105	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
9	LV MCC	PU2321A	Lye/Simplex Metering Pump	33.50	37	415	3 58	3 349.55	0.8	0.6	0.8	0.5	2	1	4.0	35	#REF!	0.98	0.9	1	1	0.882	#REF!	100	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
10	LV MCC	PU2321B	Lye storage tank pump	3.25	3.7	415	3 5.	7 33.91	0.8	0.6	0.8	0.5	2	1	4.0	4	#REF!	0.98	0.9	1	1	0.882	#REF!	100	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
11	LV MCC	PU2305	Feed Pump(Seperator)	7.52	7.5	415	3 13	1 78.47	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
12	LV MCC	PU2332	Saop Stock Pump	5.65	5.5	415	3 9.	58.95	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	110	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20s
13	LV MCC	MX2305	Mixer	5.65	5.5	415	3 9.	58.95	0.8	0.6	0.8	0.5	2	1	4.0	6	#REF!	0.98	0.9	1	1	0.882	#REF!	75	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
14	LV MCC	MX2308	Mixer	20.55	22	415	3 35	7 214.43	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	105	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	20
15	LV MCC	CF2312	Separator	7.48	7.5	415	3 13	0 78.05	0.8	0.6	0.8	0.5	2	1	4.0	25	#REF!	0.98	0.9	1	1	0.882	#REF!	85	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	#REF!	32
\vdash																																	
																												.—					
																																\longrightarrow	
-																															-		
																												.—					

Basis: 1. Overall denoting factor $k = k1 \times k2 \times k3 \times k4$

K1=Rating factor for variation in air/ground temperature K2=Rating factor for depth of laying K3=Rating factor for spacing between two circuits K4=Rating factor for variation in thermal resistivity of the soil

2. LT Motors: Running Voltage Drop = 3%, Starting Voltage Drop = 15%

3. Cable type:

TYPE 1: Al Conductor, XLPE Insulated, Armoured, PVC outer sheathed TYPE 2: Cu Conductor, XLPE Insulated, Armoured, PVC outer sheathed

4. Effect of Frequency Variation ± 5%

5. Combined Effect of Voltage & Frequency Variation ±10%

T CAE				_				1	
ABLE .	TRAY: FROM	LT-4	T .	то	L	T-5			
Sr. No.	Cable Route (From-To)	Type & Cable Size	Size of Cable (mm2)	No. of Cable	Overall Diameter of each Cable (mm)	Sum of Cable OD (mm)	Self Weight of Cable (Kg/Mt)	Total Weight of Cable (Kg/Mt)	Remarks
1	PU2315	4	50	1	26	26	2.3	2.3	
2	PU2322A	4	25	1	22	22	1.4	1.4	
3	PU 2314A	4	25	1	22	22	1.4	1.4	
4	PU2324	4	50	1	26	26	2.3	2.3	
5	PU2333	4	50	1	26	26	2.3	2.3	
6	PU 2322B	4	70	1	29	29	3.25	3.25	
7	PU2321A	4	35	1	24	24	1.8	1.8	
8	PU2321B	4	4	1	17	17	0.6	0.6	
9	PU2305	4	6	1	18	18	0.7	0.7	
10	PU2332	4	6	1	18	18	0.7	0.7	
11	MX2305	4	6	1	18	18	0.7	0.7	
12	MX2308	4	25	1	22	22	1.4	1.4	
13	CF2312	4	25	1	22	22	1.4	1.4	
	Total			13		290	20.25	20.25	
onsider stance alculate alculate	ation n Cable Diameter: - Spare Capacity of Cable Tray: - between each Cable: - dd Width of Cable Tray: - ed Area of Cable Tray:		29 30% 0 377 10933	mm mm mm Sq.mm	I	Result Selected Cable Tray width: Selected Cable Tray Depth: Selectrd Cable Tray Weight: Selected Cable Tray Size:		0.K 0.K 0.K 0.K	Including Spare Capacity
lected lected lected lected	yer of Cables in Cable Tray: No of Cable Tray: Cable Tray Width: Cable Tray Depth: Cable Tray Weight Capacity: Cable Tray:		2 1 300 100 90 Ladder	Nos. mm mm Kg/Meter		Required Cable T Required Nos of Required Cable T Type of Cable Tra Cable Tray Width	Cable Tray: Tray Weight: ay:	300 x 100 1 90.00 Ladder 37%	mm No Kg/Meter/Tray