

Perceptron

School of Information Studies Syracuse University

Perceptron Model

Rosenblatt's Model

- Initialize the weights
- For each sample:
 - Compute the output
 - Update the weights

Rosenblatt's Model (cont.)

•
$$\mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$

•
$$\varphi(z) = \begin{cases} 1, & \text{if } z \ge \theta \\ -1 & \text{otherwise} \end{cases}$$

Perceptron Learning Rule

•
$$\mathbf{w} = \begin{bmatrix} w_1 \\ \vdots \\ w_m \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}$

$$z = \mathbf{w}^T \mathbf{x}$$

$$\Delta w_j = \eta (y^i - \hat{y}^i) x_j^{(i)}$$

•
$$\varphi(z) = \begin{cases} 1, & \text{if } z \ge \theta \\ -1 & \text{otherwise} \end{cases}$$

Perceptron Learning Rule (cont.)

$$z = \mathbf{w}^T \mathbf{x}$$

$$\Delta w_j = \eta (y^i - \hat{y}^i) x_j^{(i)}$$