

正则表达式RE

- ➤ 3.1 Regular Expression(RE): 类似于算术表达式的代数式子, 作为与符号串进行匹配的模式来定义语言, 多用做文本匹配模式。
 - 正则表达式是如何构成的?
 - 正则表达式如何定义语言?
- ➤ 3.2 RE与DFA、NFA等价性
- > 3.3 RE应用典型
- > 3.4 为RE所满足的代数定律有哪些?

构造正则语言

- ▶ 观察字母表Σ上的语言L⊆Σ*:
 - 原子语言: {a}, a∈Σ
 - 原子语言: {ε}
 - 原子语言: φ
- > 原子语言都是正则语言吗?
 - 因为可用自动机定义,所以显然是。
- ▶ 但语言L可能是正则语言也可能不是(乔姆斯基体系)。
- > 那么产生一种构造语言的思路:
 - 通过原子语言与语言上的运算构造出语言。
 - 同时断言如此构造的语言是正则语言。

- \rightarrow 令L, L₁, L₂ 是 Σ 上的语言。
- > 语言连接运算'.'借助于符号串的连接运算计算结果
 - $L_1 \cdot L_2 = \{ s \cdot t \mid s \in L_1, t \in L_2 \}$
 - '.'可省略
 - 满足结合律: L(L₁L₂) = (LL₁)L₂
 - n个L依次连接(n-次幂) $L^n = \{s_1 s_2 ... s_n \mid s_1, s_2, ..., s_n \in L\}$
 - $L^0 = \{ \epsilon \}$
- ➤ 语言上的闭包运算'*'
- $ightharpoonup L^* = L^0 \cup L^1 \cup L^2 \cup ... = Un \ge 0 \cdot L^n$
- > 语言上的并运算'U'就是集合并运算

$$ightharpoonup L_1 = \{0, 01\}$$

$$ightharpoonup L_2 = \{\epsilon, 1, 11, 111, ...\}$$

- $ightharpoonup L_1L_2 = \{0, 01, 011, 0111, ...\} \cup \{01, 011, 0111, ...\}$
- $ightharpoonup L_1^2 = \{00, 001, 010, 0101\}$
- $ightharpoonup L_2^n = L_2 \ (n \ge 1)$
- ightharpoonup L₁ U L₂ = {0, 01, ε, 1, 11, 111, ...}

语言的闭包运算例

$$L_1 = \{0, 01\}, L_1^* = ?$$

$$L_1^0 = \{\epsilon\}$$
 $L_1^1 = \{0, 01\}$
 $L_1^2 = \{00, 001, 010, 0101\}$

 L_1^* 所有以0开头不含连续1的串 (加上空串)

 $L_1^3 = \{000, 0001, 0010, 00101, 0100, 01001, 01010, 01010, 010101\}$

语言闭包运算例

➤ 由任意个1组成的串的全集L₂

$$L_2 = \{\epsilon, 1, 11, 111, ...\}, L_2^* = ?$$

$$L_2^0 = \{\epsilon\}$$
 $L_2^1 = L_2$
 $L_2^2 = L_2$
 $L_2^n = L_2 \quad (n \ge 1)$

$$(n \ge 1)$$

$$L_2^* = L_2$$

$$L_2^* = L_2^0 \cup L_2^1 \cup L_2^2 \cup ...$$

= $\{\epsilon\} \cup L_2^1 \cup L_2^2 \cup ...$
= L_2

$$\varepsilon \in L^*$$
? $\varepsilon \in L^*$
{}*=? {}*={\varepsilon}\$
{\varepsilon}\$*=? {\varepsilon}\$*={\varepsilon}\$
{1}*=L₂? {1}*=L₂

构造语言的方法

- ightharpoonup 原子语言: Σ上最基本的语言 φ 、 $\{\epsilon\}$ 、 $\{a\}$, $a\in\Sigma$ 。
- > 语言上运算:连接、闭包、并
- 构造方法: 从原子语言开始,利用语言上的运算逐步组合而成,其中可使用括号。
- > 满足性质:
 - 原子语言是Σ上语言。
 - 如果L, L_1 是 Σ 上语言, 那么 $L\cdot L_1$ 、 $L \cup L_1$ 、 L^* 都是。
 - 任何Σ上语言的运算结果仍然是Σ上语言。
- > 语言构造过程就是语言运算表达式的计算过程。例子:
 - $L_1 = \{0\}(\{0\} \cup \{1\})^*$
 - $L_2 = (\{0\}\{1\}^*) \cup (\{1\}\{0\}^*)$
- > 语言运算表达式模式化为正则表达式。

什么是正则表达式

- > 原子语言的模式
 - 语言{a}模式化为RE a, 有L(a)={a}
 - 语言{ε}模式化为RE ε, 有L(ε)={ε}
- ➤ 运算符U改名为+

例:	语言L ₁ 是0或由0开头的0-1串组成
レン・	

- 语言运算表达式: {0}({0}∪{1})*
- 对应正则表达式: 0(0+1)*
- $L(0(0+1)^*) = \{0\}(\{0\}\cup\{1\})^* = L_1$
- ▶ 例: L₂=({0}{1}*)∪({1}{0}*)
 - 对应正则表达式: 01*+10*

RE运算符	语言运算符
连接'•'	连接'.'
并'+'	并'U'
闭包'*'	闭包'*'

构造正则表达式

- > 字母表Σ上的正则表达式是使用如下规则形成的表达式。
- ▶ 基础:
 - 符号 Ø 和 ε 都是正则表达式;
 - Σ中每个元素 a 都是正则表达式;
 - 引用某个语言的变量或者某个正则表达式的名字。
- > 归纳:
 - 如果R和S是正则表达式,那么R+S、RS和R*都是;
 - 如果R是正则表达式,那么(R)也是。
- > 正则表达式运算符的优先级
 - 优先级: '*'最高, '.'次之, '+'最低
 - 计算顺序: 先括号里, 后括号外, 同级从左往右

a)
$$0(0+1)^*$$

b)
$$01^* + 10^*$$

c)
$$(0+1)*01(0+1)*$$

归纳:字母表Σ上RE:r与L(r)间的——对应 ωνά

➤ R, S, T为正则表达式, L(R)为R定义的语言

正则表达式r	正则语言L(r)
Ø	$L(\emptyset) = \varphi$
ε	$L(\varepsilon) = \{\varepsilon\}$
a	$L(a) = \{a\}$
R	L(R)
R∙S	$L(R \cdot S) = L(R) \cdot L(S)$
R+S	L(R+S)=L(R)UL(S)
R*	$L(R^*)=L(R)^*$
R+S+T=(R+S)+T	L(R+S+T)=L(R+S)UL(T)
$R \cdot S \cdot T = (R \cdot S) \cdot T$	$L(R\cdot S\cdot T)=L(R\cdot S)\cdot L(T)$
$R+S\cdot T=R+(S\cdot T)$	$L(R+S\cdot T)=L(R)\cup L(S\cdot T)$
$R \cdot S^* = R \cdot (S^*)$	$L(R \cdot S^*) = L(R) \cdot L(S^*)$
$R+S^*=R+(S^*)$	L(R)UL(S*)

> 以下例子都是关于RE的判定性质

$$0 + 1$$

长度为1的0-1串={0,1}

$$(0+1)^*$$

任意0-1串{ε, 0, 1, 00, 01, 10, 11, ...} L((0+1)*)={0,1}*

$$(0+1)*010$$

以010结尾的0-1串

$$(0+1)*11(0+1)*$$

包含子串11的0-1串

$$((0+1)(0+1))^* + ((0+1)(0+1)(0+1))^*$$

长度是偶数或是3的倍数的0-1串

$$((0+1)(0+1))^*$$

$$(0+1)(0+1)$$

$$((0+1)(0+1)(0+1))^*$$

$$(0+1)(0+1)(0+1)$$

偶数长度

长度为2

长度3的倍数

长度为3

$$((0+1)(0+1)+(0+1)(0+1)(0+1))^*$$

串可以分成段, 其中每段长度为2或3

$$(0+1)(0+1)$$
 长度2

$$(0+1)(0+1)(0+1)$$
 长度3

不会有连续三个0的串

$$L((1+01+001)*(\epsilon+0+00)) = \{x: x 不含子串000\}$$

3

00

01|1001|01|10

0010010

例:写出正则表达式

- > 该语言元素包含子串00
 - (0+1)*00(0+1)*
- > 该语言元素不含子串00
 - $1*(011*)*(\epsilon+0)$

111011010101010

开头有些 1 每个 0后跟 有可能以一个 0为结束 1到多个1

- 可有全1前缀,也可没有
- 中间部分,每个0后跟1到多个1
- 可有0为后缀,也可没有

例:写出正则表达式

- > 该语言元素都有偶数个0
 - (1*01*01*)*
- > 该语言元素有偶数个0,或者有奇数个1
 - (1*01*01*)*+(0*10*)(0*10*10*)*
- > 该语言元素有偶数个0,并且有奇数个1
 - ?

例:写出正则表达式

> 有符号十进制定点数。

 $(\epsilon+++-)((0+...+9)^*.(0+...+9)(0+...+9)^*+(0+...+9)(0+...+9)^*.(0+...+9)^*)$

3.2 RE与DFA、NFA等价性

- > 一个语言用正则表达式定义、也用有穷自动机定义,如何?
- ➤ 定理3.1: 对任一DFA A 存在正则表达式 R 使得 L(R)=L(A)
- 定理3.2: 对任意正则表达式 R 存在 ε-NFA E 使得 L(E)=L(R)

2024/3/15

每一个用正则表达式来定义的语言也可用有穷自动机来定义

$$R_1 = 0$$

原子

$$R_2 = 01$$

连接

例:正则表达式⇒NFA

$$R_4 = (0 + 01)^*$$

闭包

正则表达式转换为NFA通用方法

基础:

• 正则表达式 \emptyset , ε和a, a \in Σ对应的NFA如图所示。

归纳

• 对于正则表达式R和S, R+S, RS, R*和(R),?

归纳证明示意

 R^* q_0 ϵ q_1

(0+1)*01(0+1)*

$$(0+1)^* \qquad 01 \qquad (0+1)^*$$

$$\varepsilon \qquad \qquad \varepsilon \qquad \qquad \zeta \qquad$$

有穷自动机转换为RE

- ➤ 对任一DFA A 存在正则表达式 R 使得 L(R)=L(A)
- > DFA是NFA特例,所以关键是NFA到RE转换方法

任一个 2-状态 GNFA 总与某个正则表达式 R等价。

通用NFA (GNFA)

- > 只有一个接受状态
- > 没有射入到初始状态的弧
- > 没有从接受状态射出的弧
- > 弧上标记采用正则表达式作标记

- 只有一个接受状态? YES
- 没有射入到初始状态的弧? NO
- 没有从接受状态射出的弧? NO
- 弧上标记是正则表达式? NO/YES

√ • 只有一个接受状态

√ • 没有射入到初始状态的弧

√ • 没有从接受状态射出的弧

- √ 只有一个接受状态
- √ 没有射入到初始状态的弧
- √ 没有从接受状态射出的弧

- √ 只有一个接受状态
- √ 没有射入到初始状态的弧
- √ 没有从接受状态射出的弧

GNFA

GNFA

NFA与GNFA对比

- > GNFA弧上标记采用正则表达式作标记
- > NFA的a弧看作正则表达式a做标记
- > NFA的ε弧看作正则表达式ε做标记
- > NFA的缺失弧可看作是正则表达式Ø做标记的弧
- ➤ 如此,NFA弧上标记都被当作正则表达式,再检查没有射入 初始状态的弧和没有从接受状态射出的弧,即成为GNFA

GNFA的状态约简

GNFA状态约简-通用规则

➤ 要消除状态q, 对于每个状态对 (u, v)

➤ 注意u=v时也如此

例: GNFA状态约简

- ightharpoonup 定理3.1 对于任意一个DFA A,存在一个正则表达式R,使得 L(A) = L(R)。
- > DFA A = (Q, Σ, υ, q₀, F)
- \triangleright L(A) = {w | w $\in \Sigma$ *, $\tilde{v}(q_0, w) \in F$ }
- > 证明的思路:
 - 考察q₀至q, q ∈F, 之间所有路径, 用正则表达式表示之 , 即得。
 - 这些路径是否不无遗漏地都表示为正则表达式了呢?

关键思路: 用归纳法穷尽所有路径

- > 对结点编号,对两端点间所有路径进行排序以便于归纳。
- ➤ 对DFA状态图中的顶点从1到n, n = |Q|, 编号。
- \triangleright 对始端i 到末端j 的所有路径,1≤i, j ≤n,进行如下排列:
 - 路径上除端点外的所有中间结点其编号不大于k,按照 k = 0,1,...,n 依次对路径进行排列
 - 注意k = 0时满足条件的路径为只有端点,没有中间结点
- ➤ 那么针对路径PATH(i,j)的归纳方式:
 - 基础:不经过任何中间结点的路径的标记为 $R_{ij}^{(0)}$
 - 归纳: 经过不大于k 的中间结点的路径的标记为 $R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)})^* R_{kj}^{(k-1)} = R_{ij}^{(k)}$

证明定理3.1

- ➤ 基础:不经过任何中间结点的路径为R_{ii}⁽⁰⁾,分两种情形:
- 情形一: i ≠ j;
 - $R_{ij}^{(0)} = \emptyset;$
 - for($a \in \Sigma$)if($j \in \upsilon(i,a)$) $R_{ij}^{(0)} = R_{ij}^{(0)} + a;$
- ▶ 情形二: i = j;
 - $R_{ij}^{(0)} = \varepsilon$;
 - for($a \in \Sigma$)if($j \in \upsilon(i,a)$) $R_{ij}^{(0)} = R_{ij}^{(0)} + a$;
- > 归纳: PATH(i,j)可分为三部分,

PATH(i, j, R_{ij}⁽⁰⁾, 0); PATH(i, j, R_{ij}^(k-1), k-1); PATH(i, j, R_{ij}^(k), k); PATH(i, j, ?, ?)

证明定理3.1

- ▶ 归纳:假定顶点i 到顶点j 所有经过顶点不大于k -1的路径, 它们的标记并在一起定义为R_{ij}^(k-1),那么i 到j 所有经过顶点 不大于k 的路径,分为两种情形:
- ▶ 情形一: 没有经过顶点k;
 - 根据归纳假设,这些路径的标记都属于L(R_{ij}(k-1))
- ▶ 情形二:经过顶点k;
 - 路径分段为: PATH(i,k), PATH(k,k), PATH(k,j), 且各 段都属于情形一
 - 根据归纳假设,这三段组合成的所有路径,它们的标记构成的集合定义为 $R_{ik}^{(k-1)}(R_{kk}^{(k-1)})*R_{ki}^{(k-1)}$
- > 最后,将两种情形合并在一起得到
 - $R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)}) * R_{kj}^{(k-1)}$

- - $\text{llr} = R_{1j1}^{(n)} + ... + R_{1jm}^{(n)}$, $\text{其中j}_1,...,\text{j}_m$ 是F中各元素的编号
- > 则L(A)=L(r)
- > 证毕。

例:构造DFA的正则表达式

$$ightharpoonup R_{ij}^{(k)} = R_{ij}^{(k-1)} + R_{ik}^{(k-1)} (R_{kk}^{(k-1)}) * R_{kj}^{(k-1)}$$

$$ightharpoonup r = R_{13}^{(3)} = R_{13}^{(2)} + R_{13}^{(2)} (R_{33}^{(2)}) * R_{33}^{(2)}$$

$$R_{13}^{(2)} = R_{13}^{(1)} + R_{12}^{(1)} (R_{22}^{(1)}) * R_{23}^{(1)}$$

$$R_{13}^{(1)} = \emptyset$$

$$R_{12}^{(1)} = R_{12}^{(0)} + R_{11}^{(0)} (R_{11}^{(0)}) * R_{12}^{(0)})$$

$$R_{22}^{(1)} = R_{22}^{(0)}$$

$$R_{23}^{(1)} = R_{23}^{(0)}$$

$$R_{33}^{(2)} = R_{33}^{(1)} + R_{32}^{(1)} (R_{22}^{(1)}) R_{23}^{(1)}$$

$$R_{33}^{(1)} = R_{33}^{(0)} + R_{31}^{(0)} (R_{11}^{(0)}) * R_{13}^{(0)}$$

$$R_{32}^{(1)} = R_{32}^{(0)} + R_{31}^{(0)} (R_{11}^{(0)}) * R_{12}^{(0)}$$

$$R_{11}^{(0)}$$
 $\epsilon+1$

$$R_{12}^{(0)}$$
 0

$$R_{22}^{(0)}$$
 $\epsilon+1$

$$R_{23}^{(0)}$$
 0

$$R_{33}^{(0)}$$
 ϵ

$$R_{13}^{(0)}$$
 Ø

$$R_{31}^{(0)}$$
 1

$$R_{32}^{(0)}$$
 Ø

状态约简规则(图变换前)

2024/3/15

口香糖球机的语言

➤ 始端0末端g的路径有三条:

• 0,5,a,b,g $R^*fR^*fR^*(f+t)(f+t)^*R$

• 0,a,b,g $R^*tR^*(f+t)(f+t)^*R$

• 0,5,b,g R*fR*t(f+t)*R

R*fR*fR*(f+t)(f+t)*R + R*tR*(f+t)(f+t)*R + R*fR*t(f+t)*R

口香糖球机RE

口香糖球机RE

2024/3/15 48

3.3 正则表达式应用举例

- 正则表达式是基于模式匹配定义了实际应用中感兴趣的符号串集合,可用于生成、检索、识别有用的文本内容。通常地,这种作为模式的正则表达式被自动构建成DFA以方便程序实现来完成上述功能。
- > UNIX中的正则表达式扩展了RE的操作符
- ▶ 允许以RE为输入自动生成词法分析器
- > 识别有用的文本内容

UNIX中的正则表达式

- > 字母表较大时如ASCII字符集需要更为简洁的表达方式
- ▶ 元符号的概念,如元符号'.'表示任意字符,那么'\.'才是点
- 序列[a₁a₂...a_k]表示a₁+a₂+...+a_k
- > 默认序列的子序列: [0-9]、[a-z]、[A-Za-z0-9]
- ▶ 增加的运算符: R?指R出现或不出现; R+指R重复1到多次; R{n}指恰有连续n个R; 另外|取代+
- ▶ 整数: [+-]?[1-9][0-9]*|0
- 定点数: <整数>\.?|(<整数>|[+-]?)\.[0-9]*[1-9]
- ▶ 浮点数: <定点数>[e|E]<整数>

以RE为输入自动生成词法分析器

- ➤ 工具lex、flex
- > 以正则表达式作为所识别的单词的模式提供给工具
- 工具将生成一个词法分析器,它按照这些模式一个一个识别输入流中的单词并返回结果
- > 具体将在后面课程中介绍

2024/3/15

识别有用的文本内容

- > 如识别街道地址
- Street|St\.|Avenue|Ave\.|Road|Rd\.
- 有些街道包含多个单词如华盛顿特区的Rhode Island Avenue(罗德岛大道)、Xianning West Rd.
- ([A-Z][a-z]*\s)+(Street|St\.|Avenue|Ave\.|Road|Rd\.)
- > \s匹配任何空白字符
- ▶ 加上门牌号码,如123A Main St
- [0-9]+[A-Z]?\s ([A-Z][a-z]*\s)+
 (Street|St\.|Avenue|Ave\.|Road|Rd\.)
- > 其它地址情形往上加...
- 28 XIANNING West Rd.
- > 咸宁西路28号

识别有用的文本内容

正则表达式通常被用来检索、替换那些符合某个模式(规则)的文本。

- > 用户名
- > 电子邮箱
- > IP地址

常用正则表达式

用户名	/^[a-z0-9]{3,16}\$/
密码	/^[a-z0-9]{6,18}\$/
十六进制值	/^#?([a-f0-9]{6}l[a-f0-9]{3})\$/
电子邮箱	/^([a-z0-9_\]+)@([\da-z\]+)\.([a-z\.]{2,6})\$/ /^[a-z\d]+(\.[a-z\d]+)*@([\da-z](-[\da-z])?)+(\.{
URL	/^(https?:\V)?([\da-z\]+)\.([a-z\.]{2,6})([\Vw\
IP 地址	/((2[0-4]\dl25[0-5] [01]?\d\d?)\.){3}(2[0-4]\dl25 /^(?:(?:25[0-5] 2[0-4][0-9] [01]?[0-9][0-9]?)\.){ [0-9]?)\$/
HTML 标签	/^<([a-z]+)([^<]+)*(?:>(.*)<\\1>I\s+\>)\$/

2024/3/15

3.4 正则表达式的代数定律

- > R和S为正则表达式
- ightharpoonup L(RS)=L(R)L(S)
- ightharpoonup L(R+S)=L(R)UL(S)
- ightharpoonup $L(R^*)=(L(R))^*$
- 若w∈L(RS), 则w=xy, 且x∈L(R), y∈L(S)
- ➤ 若w∈L(R+S),则w∈L(R),或者w∈L(S)
- ➤ 若w∈L(R*), 则w=x*, 且x∈L(R)

正则表达式的代数定律

- ▶ 交換律: R+S = S+R
- ▶ 结合律: (R+S)+E = R+(S+E)、(RS)E = R(SE)
- 恒等律: R+φ = R、εR = Rε = R
- ▶ 零元律: ØR = RØ = Ø
- ➢ 分配律: R(S+E) = RS + RE 、 (S+E)R = SR+ER
- ▶ 幂等律: R+R=R
- > 涉及Kleene 闭包的:
 - ① $(R^*)^* = R^*$

 - $3 \epsilon^* = \epsilon$

P63 习题6 (2)

- ➤ A是任意正则表达式,证明(A*)*=A*
- ➤ 只须证明L((A*)*)=L(A*)

对任意 $\alpha \in L(A^*)$, $\alpha = A^k$, 其中k为非负整数; 那么 α 可写成 $(A^k)^1$, 即与正规式 $(A^*)^*$ 匹配; 因此, $\alpha \in L((A^*)^*)$ 。

对任意 $\alpha \in L((A^*)^*)$, $\alpha = (A^k)^j$, 其中k和j为非负整数; 那么 α 可写成 A^{k^*j} , 其中 k^*j 为非负整数; 所以 α 与正规式 A^* 匹配,从而, $\alpha \in L(A^*)$ 。

小结

- ➤ 知识点:原子语言、语言运算表达式、正则表达式,正则表 达式的语言、UNIX中扩展的运算符
- > 知识点:正则表达式与NFA、DFA等价转换
- > 知识点:正则表达式代数定律

▶ 作业: P72 习题3.1(a); 习题3.2(b)(c); 习题3.4(b); 习题3.6(b)