Outline of the MIT BIH Arrhythmia Classification project

- Summary of results
- Analysis Pipeline Overview
- Dataset Summary and Class Imbalance
 - Filtering and normalization
 - Data Split and Augmentation
- Deep Learning Models
 - o 3 models before fine-tuning
 - The final model after fine-tuning
- Prediction Example: True vs. Predicted Labels

Summary of results

- Goal: Develop a deep learning model achieving 98.90% accuracy for classifying 5 heartbeat types, surpassing the literature benchmark of 94.03%.
 - Reference: "A deep convolutional neural network model to classify heartbeats" (Acharya et. al., 2017)
- Method: Use data augmentation and 5-fold cross-validation to address severe class imbalance.
- Outcome: An enhanced CNN model with fine-tuned hyperparameters for optimal performance.

Analysis Pipeline Overview

Dataset Summary and Class Imbalance

MIT-BIH Arrhythmia Database

- 109,451 heartbeats across 5 classes
- Severe imbalance: N class makes up 82.8%
- Each heartbeat: 260 samples (sampling rate: 360 Hz)
- Data source: https://www.physionet.org/content/mitdb/1.0.0/

Filtering & Normalization

- Filtering: Tested Uniform, Gaussian, Median, and Savitzky-Golay filters.
 - Savitzky-Golay showed the best performance based on residual flatness.
- Normalization: Applied z-score normalization after filtering.

Data Split and Augmentation

- The 109,451 heartbeats are split into 70% training, 20% validation, and 10% testing.
- Data augmentation and k-fold cross-validation are applied to address severe class imbalance.
- Augmentation Techniques
 - TimeWarp: Simulates faster or slower heartbeats.
 - o Drift: Mimics baseline shifts in ECG signals.
 - AddNoise: Adds slight noise to reflect real-world conditions.
 - Pooling: Smooths the signal by reducing sharp fluctuations.

Original vs. Augmented ECG Samples (3 per class)

1. AcharyaCNN (baseline from literature before fine-tuning)

Weighted accuracy: 0.9810

The median of 5-folds

Architecture

- Input \rightarrow (1 × 260)
- Conv1D(5 filters, k=3) → ReLU → MaxPool
- Conv1D(10 filters, k=4) → ReLU → MaxPool
- Conv1D(20 filters, k=4) → ReLU → MaxPool
- Flatten
- FC(30) → ReLU → FC(20) → ReLU
 → FC(5) (Output)

Weighted accuracy: 0.9736

The median of 5-folds

Architecture

- Input \rightarrow (1 × 260)
- Linear Projection → Embedding (dim=128)
- Add CLS Token
- Add Positional Encoding
- Transformer Encoder Layers (×4, heads=4)
- CLS Token Output
- FC(5) (Output)

Reference

"A deep convolutional neural network model to classify heartbeats" (Acharya et. al., 2017)

3. ECGCNN (our tunable model, before fine-tuning)

Weighted accuracy: 0.9891

The median of 5-folds

Architecture

- Input \rightarrow (1 × 260)
- Conv1D(filters1) → BatchNorm → ReLU
 → MaxPool
- Conv1D(filters2) → BatchNorm → ReLU
 → MaxPool
- (Optional) Conv1D(filters3) → BatchNorm
 → ReLU → MaxPool
- Flatten
- FC(fc1 size) → ReLU → Dropout
- FC(5) (Output)

4. ECGCNN (after fine-tuning)

Weighted accuracy: 0.9890

Hyperparameter Optimization (Optuna)

- For each fold:
 - Run an Optuna study (20 trials) to search for best hyperparameters.
 - Retrain best trial model on combined train+val data.
- After all folds:
 - Identify best overall hyperparameters across folds.
 - Retrain final model on full training+validation set.
- Fine-tuning parameters
 - o 'kernel size': 7
 - o 'dropout': 0.35248649322853515
 - o 'filters1': 64
 - o 'filters2': 128
 - 'fc1 size': 256
 - o 'use third conv': False
 - o 'lr': 0.0021064202284029935
 - 'weight_decay': 0.0001900286386709703
 - 'Class_weight_alpha': 0.8138978456439353

Example: True vs. Predicted Labels

- Example heartbeat signals with predicted vs true labels.
- Generated by running: "python run_demo.py"

