# Supervised Analysis: PLS, OPLS and O2PLS in Metabolic Profiling

Dr Tim Ebbels

Computational and Systems Medicine Imperial College

#### **Imperial International Phenome Training Centre**



### Plan

Partial Least Geometrical PLS-DA Squares overview What is it? How to Orthogonal Why bother make use of variation with it? it? Compare **Exploring** O-PLS Geometrical with orthogonal model view variation PCA/PLS O-PLS-DA & Comparison O2-PLS Conceptual O2-PLS for with other model overview multiblock methods exploration

#### **Imperial International Phenome Training Centre**



### Plan

Partial Least
Squares

Geometrical Overview

PLS-DA

Orthogonal variation

What is it?
Why bother
with it?

How to make use of it?

O-PLS model

Geometrical view

Compare with PCA/PLS

Exploring orthogonal variation

O2-PLS model

Conceptual overview

Comparison with other methods

O-PLS-DA & O2-PLS for multiblock exploration

# Multivariate analysis techniques

Clustering/classification/r Visualisation / egression dimension reduction Jnsupervised Principal component Hierarchical cluster analysis analysis (PCA) Biclustering Self-organizing ndependent component (Kohoren) maps k means clustering analysis Multidimensional scaling / Fuzzy *k* means clustering Non-linear mapping Deep Neural Networks K nearest neighbour classification Supervised Partial least Random Forests Shrunken centroids squares (PLS) Genetic Programming regression Linear discriminant analysis Orthogonal PLS **Support Vector Machines** Multilayer perceptron neural networks



# Supervised methods

- Unsupervised = algorithm does not know true answer/output (e.g. class) – e.g. PCA
- Supervised = algorithm does know true answer
  - Attempt to find rule which predicts output (e.g. class) for given input (e.g. metabolic profile)
- Two cases
  - Classification: output is class label
  - Regression: output is continuous
- Usually denote input data as X and output as Y



# **Partial Least Squares (PLS)**

- Regression technique relates X to Y
- Projection technique (linear like PCA)
- Often considered the 'regression extension of PCA'
- One of many multivariate regression techniques
  - OLS, PCR, RR, RRR...
- Good when
  - More variables than samples
  - Many highly correlated variables
  - More than one Y variable
  - Missing data
- Common conditions in metabolomics!



# PLS - Step by step (1)



Initially, we have two sets of *N* (mean centred) data points in the *X* and *Y* spaces



# PLS - Step by step (2)



First PLS component: maximises *covariance* between X scores (t) and Y scores (u)

- Good summary of X space (X variance)
- Good representation of relationship between X & Y (X-Y correlation)



### Covariance and Correlation

$$Cov(x, y) = Cor(x, y) \times \sigma_x \sigma_y$$





# PLS - Step by step (3)





# PLS - Step by step (4)



Subsequent components:

- orthogonal (uncorrelated) to previous components and
- continue to maximise the covariance between X & Y scores
  - good description of X space & relationship between X & Y



# PLS - Step by step (5)





#### PLS-DA schematic



- PLS-DA models separation between classes
- Y = 'dummy matrix' gives class membership
- Q: Why can't Y just be a single column of class numbers 1,2,3 etc?

# PLS-DA - geometrical view



### **PLS-DA Interpretation**

PLS-DA 'scores'

PLS-DA 'loadings'



#### Scores

- information about class separation
- ANIT, Hydrazine → effect
- Insulin  $\rightarrow$  no effect

#### Loadings

- information about variables responsible for class separation.
- ANIT c.f. Controls: citrate  $\downarrow$ , bile acids  $\uparrow$

Credit: Consortium for Metabonomic Toxicology / Imperial College



### **PLS - Prediction**





### PLS & PLS-DA - Summary

- PLS regression method
  - models relationship between X & Y
- PLS components maximise covariance between scores in X & Y spaces
- PLS-DA classification with PLS
  - Y = dummy matrix, gives class info

#### **Imperial International Phenome Training Centre**



### Plan

Partial Least Geometrical PLS-DA overview Squares What is it? How to Orthogonal Why bother make use of variation with it? it? Compare **Exploring** O-PLS Geometrical with orthogonal model view variation PCA/PLS O-PLS-DA & Comparison O2-PLS Conceptual O2-PLS for with other model overview multiblock methods exploration



# What is orthogonal variation?

- Orthogonal variation: Systematic variation in one block which is not linearly related to the other block(s)
- Not all systematic variation in X is related to Y
- The 'O'-methods, OPLS and O2PLS, are able to divide the systematic variation in two parts:
  - What in X is correlated to Y 'predictive' or shared variation
  - What in X is not correlated to Y orthogonal variation
  - What in Y is not correlated to X orthogonal variation
- Orthogonal variation is important information for the total understanding of the system

#### **Imperial International Phenome Training Centre**



# What is orthogonal variation?

- Effect of interest often masked by other unwanted variation
- Orthogonal methods can rotate the projection to focus on effect of interest
- Here we want to focus on control vs treated but gender is the bigger influence on X
- OPLS rotates the PLS model so that the first OPLS component shows the between class difference



Control vs Treated

Credit: Erik Johansson / Umetrics

#### **Imperial International Phenome Training Centre**



# Why bother with orthogonal variation?

#### Improve interpretation

Interpret 'predictive' and orthogonal effects separately

#### Useful when effects cannot be controlled

- Human studies, epidemiology
- Environmental studies
- Observational studies
- Orthogonal effects akin to confounders or covariates in conventional regression
  - But confounders not necessarily orthogonal

#### What about controlled experiments?

- Do not expect orthogonal variation?
- But if you find it, you will discover how to improve the experiment!



### O-PLS and O2-PLS

- Regression problem
   PLS and OPLS are unidirectional, i.e., X → Y
- Integration problem
   O2PLS is bi-directional, i.e., X ↔ Y
- Differences in preferred terminology
   OPLS: 'Predictive' & Orthogonal variabilities
   O2PLS: Joint & Unique variabilities

#### **Imperial International Phenome Training Centre**



### Plan

Partial Least Geometrical PLS-DA Squares overview What is it? How to Orthogonal Why bother make use of variation with it? it? Compare **Exploring** Geometrical with orthogonal model view variation PCA/PLS O-PLS-DA & Comparison O2-PLS Conceptual O2-PLS for with other model overview multiblock methods exploration



# Orthogonal PLS (O-PLS)

- Divide variation in to predictive and orthogonal components
- Same number of components & prediction ability as ordinary PLS, but...
- Interpretation is improved
- E.g. 6 component, 2 class PLS-DA model
  - What variables important for separating classes?
  - Interpret 6 sets of weights
- 1 pred + 5 orth O-PLS-DA model
  - Interpret one set of weights



# O-PLS model structure





# O-PLS – geometrical view

#### X space

Points colourcoded according to Y value



#### **Imperial International Phenome Training Centre**



# **Comparing models - PCA**



- 1-D <sup>1</sup>H NMR metabolic profiles of rat hepatocytes treated with trichostatin-A (TSA) & control.
- Some separation visible in scores mostly time related





# Comparing models – PLS-DA



- Scores better separation
  - But still some time related substructure
- Loadings two clear variables related to TSA treatment



### Comparing models – O-PLS-DA



- Discrimination in 'predictive' component only
- Interpretation using 'S-plot':
  - Covariance: magnitude of change
  - Correlation: 'reliability' of change





# S-Plot





# What about the orthogonal variation?

- Rats dosed with paracetamol
- Liver extracts profiled by NMR
- PCA strong trend with run order
- Impossible to separate control & dosed classes





# Examining the orthogonal variation

- Separation now visible (though marginal)
- Interpret loadings on predictive component
- Orthogonal component shows trend with run order removed



#### **Imperial International Phenome Training Centre**



### Plan

Partial Least Squares

Geometrical overview

PLS-DA

Orthogonal variation

What is it?
Why bother
with it?

How to make use of it?

O-PLS model

Geometrical view

Compare with PCA/PLS

Exploring orthogonal variation

model

Conceptual overview

Comparison with other methods

O-PLS-DA & O2-PLS for multiblock exploration



### O2PLS

- Objective: integration of two data blocks (X & Y)
- What information overlaps between the two data blocks?
- What information is unique to a specific data blocks?
- Three types of components:
  - Model of joint variation
  - Model of variation unique to X
  - Model of variation unique to Y
- Improved interpretability compared to PLS

### O2-PLS model structure



### O-PLS-DA & O2-PLS for multiblock data

- O-PLS-DA: Same variables. What is difference between sample blocks (classes)?
- O2-PLS: Same samples. What is difference between variable blocks?
- Example: integration of Free Fatty Acid (FFA) and Lipidomic data



Kirwan, G.M. et al. Ana.l Chem., 2012. 84(16): p. 7064-71.

# O2-PLS Example: Joint Variation



 Joint scores give variation between samples shared by both blocks



- Joint loadings help interpret joint variation in both X & Y
- Both X loadings (p) and Y loadings (q) visualised on same plot ('biplot')



# O2-PLS Example: Unique Variation



Unique scores give variation between samples specific to each block



Unique loadings help explain unique variation in each block



#### PCA

All variation in one joint model Remaining variation is seen as white noise



**PLS** 

Predicts Y from X
Remaining variation is seen as white noise



#### O2PLS

Joint variation in one model in addition to a model of unique variation for each of X and Y.
Remaining variation is seen as noise



**OPLS** 

Predicts Y from X
Remaining variation is seen as white noise for Y
X is divided into orthogonal information and noise



Erik Johansson / Umetrics



# O-PLS, O2-PLS - summary

- Model variation in each block which is orthogonal to the other block(s)
- 'Predictive' and orthogonal variation (O-PLS)
- Shared and unique variation (O2-PLS, On-PLS)
- Improve interpretation of models



### **O2PLS & OPLS References**

- Trygg, J. & S. Wold, J. Chemometrics 2002, 16, 283–293.
- Trygg, J. & S. Wold, J. Chemometrics, 2003. 17, 53-64.
- Wiklund, S. et al. Anal. Chem. 2008, 80, 115–122.
- Bylesjö M. et al. Plant J. 2007, 52, 1181–1191.
- Bylesjö M., J. Prot. Res. 2009, 8, 199–210.
- Rantalainen, M., et al. J Prot. Res, 2006, 5, 2642-55.
- Richards, S. E. et al. Chemom. Intell. Lab. Syst. 2010, 104, 121-131
- Löfstedt, T. and J. Trygg, 2011, 25, 441-455.