

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:
H04L 9/08, H04M 1/72

A1

(11) International Publication Number: WO 99/41876

(43) International Publication Date: 19 August 1999 (19.08.99)

(21) International Application Number: PCT/SE99/00155 (81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR,

(21) International Application Number: PCT/SE99/001

(22) International Filing Date: 5 February 1999 (05.02.99)

(30) Priority Data: 09/022,289 11 February 1998 (11.02.98)

09/022,289 11 February 1998 (11.02.98) US 09/232,289 15 January 1999 (15.01.99) US

(71) Applicant: TELEFONAKTIEBOLAGET LM ERICSSON (publ) [SE/SE]; S-126 25 Stockholm (SE).

(72) Inventor: BJÖRNDAHL, Per, Barkstigen 5, S-181 47 Lidingö (SE).

(74) Agent: ERICSSON MOBILE COMMUNICATIONS AB;
Patent Unit, S-164 80 Stockholm (SE).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW). Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: SYSTEM, METHOD AND APPARATUS FOR SECURE TRANSMISSION OF CONFIDENTIAL INFORMATION

(57) Abstract

A system, method and apparatus for establishing a secure wireless radio communications link (IR) between two devices that minimizes the exposure of sensitive information to third party interception is disclosed. The secure link is established by first establishing an infrared link (IR) between the two devices for the exchange of sensitive information, such as encryption information. Subsequent communications (RF) would then have the benefit of encryption protection, establishing the secure wireless radio communications link.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI .	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
ΑT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑŪ	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	, MG ,	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	1L	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Јарап	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	· PL	Poland		•
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD ·	Sudan		•
DK	Denmark	LK	Sri Lanka .	SE	Sweden		•
EE	Estonia	LR	Liberia	SG	Singapore		

SYSTEM, METHOD AND APPARATUS FOR SECURE TRANSMISSION OF CONFIDENTIAL INFORMATION

CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation-in-part of Assignee's U.S. Patent Application Serial No. 09/022,289, entitled "System, Method and Apparatus for Secure Transmission of Confidential Information", filed on February 11, 1998, and incorporates by reference Assignee's co-pending U.S. Patent Application Serial No. 08/845,938, entitled "Combined Mobile Telephone and Remote Control Terminal", filed on April 29, 1997.

BACKGROUND OF THE PRESENT INVENTION

Field of the Invention

The present invention relates generally to a system, method and apparatus for establishing a secure wireless communications link between two devices that minimizes the risk of third party interception of sensitive information, such as may be exchanged during communication initialization.

Background and Objects of the Present Invention

The evolution of wireless communication over the past century, since Guglielmo Marconi's 1897 demonstration of radio's ability to provide continuous contact with ships sailing the English Channel, has been remarkable. Since Marconi's discovery, new wireline and wireless communication methods, services and standards have been adopted by people throughout the world. This evolution has been accelerating, particularly over the least ten years, during which the mobile radio communications industry has grown by orders of magnitude, fueled by numerous technological advances that have made portable radio equipment smaller, cheaper and more reliable. The exponential growth of mobile telephony will continue to rise in the coming decades as well, as this wireless network interacts with and eventually overtakes the existing wireline networks.

Cordless telephony has also been a part of the exponential rise in wireless telephony. Cordless telephones were originally aimed at providing economical, tetherless voice communications inside residences, i.e., using a short wireless link to replace the cord between a telephone base unit and its handset. Although early cordless phones were of marginal quality, with the introduction of improved cordless phones in the 1980s sales dramatically increased. More recent advances, particularly in Europe, have extended the use domain of cordless phones outside of residences.

Another European revolution of cordless telephones is the digital enhanced cordless communications (DECT) standard, which was optimized for use inside buildings. DECT controllers may hand off active calls from one base unit to another as the users move, and can page or ring handsets as a user walks through areas covered by different base units. As is understood in the art, however, the range of cordless telephones is greatly limited compared to the more versatile cellular telephones, i.e., 0.3-30 or more kilometer range for cellular and less than 100 meters in cordless systems, and usually only up to tens of meters.

More recently, the worlds of cellular and cordless telephony have begun to converge with the introduction of cordless standards compatible with that of its cellular cousin. Accordingly, a mobile cellular user may utilize their cellular telephones within a cordless telephony system, thereby avoiding the need to purchase proprietary and typically non-compatible cordless telephones. Shown in FIGURE 1 is a private telephone system, generally referred to by the numeral 10, having at least one private base station 12 and a multiplicity of cellular phones 14 in communication therewith. When in a cordless mode a cellular user, e.g., at phone 14A, may communicate with another user within the private telephone system 10, e.g., another cordless-mode cellular phone 14B or a cordless phone 16, via the private base station 12 which serves as a relay.

One problem with the use of the cellular phones 14 within the private telephone system 10 is security. As discussed, original cordless telephones, e.g., phones 16 in FIGURE 1 were stand-alone consumer products that did not require any interoperability specifications. In other words, each cordless phone came with its own base station and needed to be compatible only with that base station. Billing, security and privacy concerns within such systems were addressed by both preventing that

cordless phone from operating with any other base station and limiting the transmission range of the cordless phones. With the convergence of cordless and cellular technologies and the use of interoperability specifications, however, the inherent physical limitations of the cordless systems no longer serve a security function. With cellular phones 14 being capable of transmitting their signals over many kilometers, the use of such phones within private telephone systems 10 raise genuine security considerations.

As is understood in the art, cellular phone 14A may communicate through the private base station 12 by use of encryption keys or other such security protocol, whereby the messages are encrypted and more difficult to decipher. Accordingly, even though the communications from a cellular user communicating within the private telephone system 10 may extend well outside the outer reaches of the system 10, the conversation or data exchanged is kept relatively confidential. Another problem, however, arises during communication initialization over the radio interface which must occur without encryption since no encryption keys have been exchanged between the cellular user, e.g., of cellular terminal 14A. The information is therefore being broadcast across a wide range, including the keys, until encryption protocols are established. Accordingly, third parties may listen in on such pre-encryption transmissions and acquire sensitive information.

Various techniques may be employed to thwart such eavesdropping. A first approach is to use a wireline connection for the initial information exchange, whereby the cellular phone 14A must be electrically connected to the private base station to start the private communication. This approach would, accordingly, require the definition of an electrical interface between the two components and limit the manufacturer's freedom to design attractive terminals since a standardized connector may increase the size and weight of the terminal. Further, such a definition may also restrict further improvements of such phones 14, e.g., moving to lower voltage technologies for energy conservation and size deduction.

An alternative approach would be using Subscriber Identity Modules (SIMs) in both the private base station 10 and the respective cellular terminal 14, whereby the requisite identification information is readily established and the proper keys applied without transmitting them. In addition to the added component costs, the use of two

SIMs in this manner also adds to the administrative costs of mobile network operators who must allocate unique SIM pairings between the private base stations 20 and respective cellular terminals 14. Furthermore, there is a risk that a SIM meant for the cellular terminal 14 may instead be inserted into the private base station 12, further complicating this approach.

A third approach is to utilize the advantages of the radio interface, e.g., standardization. As discussed, however, because radio waves propagate through walls and over large distances, this also poses a security risk which must be overcome.

In view of the disadvantages of each of the aforementioned approaches, it is clear that there is a need for a simple and secure system and method for establishing a communications link between a first device, such as a cellular phone, and another device, such as a private base station.

It is, accordingly, an object of the present invention to provide a system, method and apparatus for establishing such a simple and secure communications link, whereby at least a portion of a transmission, particularly one containing sensitive information, may be transmitted clearly for proper reception while simultaneously minimizing the risk of interception.

It is a further object of the present invention to provide additional systems, methods and apparatuses that securely transmit confidential or sensitive information for establishing a connection between a first and a second device that communicate via radio links, e.g., a lap-top computer and a peripheral device such as a printer.

It is another object of the present invention to provide a secure wireless transmission link between any two devices, whether in the work-place or at home, e.g., a computer which receives an Internet command to turn on the heat in an apartment. After the establishment of the secure link, using the systems, methods and apparatuses of the present invention, the two devices may then communicate via short- or long-range wireless radio links without the need for proprietary cables or other physical interconnection.

SUMMARY OF THE INVENTION

The present invention is directed to a system, method and apparatus for establishing a secure wireless radio communications link between two devices that minimizes the exposure of sensitive information to third party interception. The secure link is established by establishing an infrared link between the two devices for the exchange of sensitive information, such as encryption information. Subsequent communications would then have the benefit of encryption protection, establishing the secure wireless radio communications link.

A more complete appreciation of the present invention and the scope thereof can be obtained from the accompanying drawings which are briefly summarized below, the following detailed description of the presently-preferred embodiments of the invention, and the appended claims.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGURE 1 is a schematic illustration of a private telephone system, including a private base station with cellular and cordless phones in communication therewith;

FIGURE 2 illustrates a dual-mode radiofrequency and infrared mobile station and private base station in accordance with the present invention;

FIGURE 3 illustrates various circuitry employed in the dual-mode devices shown in FIGURE 2; and

FIGURE 4 illustrates a variety of devices that communicate with each other using the principles of the present invention.

DETAILED DESCRIPTION OF THE PRESENTLY PREFERRED EXEMPLARY EMBODIMENTS

The present invention will now be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.

The use of infrared (IR) transmissions between diverse electronic devices, e.g., between a television and a remote controller, are known, e.g., U.S. Patent Nos. 5,508,836, 5,588,009, 5,564,020, 5,617,236 and 5,446,783 each describe various IR-electronic interconnections. U.S. Patent No. 5,636,264 similarly describes an IR interface between a phone handset and a computer. Although generally describing the usage of IR in these contexts, the references fail to discuss the aforementioned security problems inherent in wireless communications nor the proposed solution set forth in the present invention, described in more detail hereinafter.

Shown in FIGURE 2 is a dual mode mobile station 20 in communication with a dual mode private base station 21. As discussed, mobile station 20 communicates with the private base station 21 via an RF transmission, which has an effective range of hundreds of meters, and via a more limited, "cordless" communications mode having a much shorter, contained range. As is understood in the art, the RF transmission mode is via the respective antennae 20A and 21A of the mobile station 20 and private base station 21, respectively, the signals being transceived in a conventional manner.

Also shown in FIGURE 2 are IR transceiver interfaces 20B and 21B on the mobile station 20 and private base station 21, respectively. Each interface preferably includes a photodetector 22 for receiving IR signals and an IR signal emitter 23 for transmitting such IR signals. It should be understood that the position of the interfaces 20B and 21B on the respective bodies of the mobile station 20 and the private base station 21 are arbitrary, provided the respective IR signals to and from the interfaces 20B and 21B are not blocked, e.g., by the palm or fingers of the phone user. In other words, ergonomic considerations may dictate particular placements for the interfaces, as is understood in the art.

With further reference to FIGURE 2, one of the practical utilizations of the dual-mode mobile station 20 is now illustrated. In particular, when the dual-mode mobile station 20 comes within the more limited range of the private base station 21, e.g., in the same or an adjacent room, the subscriber may wish to transfer control from the cellular provider to the private system, e.g., to save money on the cheaper wireline phone rates through the private system to the Public Switched Telephone Network (PSTN). For example, through the PSTN 24, the mobile station 20 can communicate

with remote wireline phones 25 and remote cellular phones 26 via a base transceiver system 27(shown for simplicity as a base transceiver station tower).

With reference now to FIGURE 3 of the drawings, there is illustrated a portion of the mobile station 20 (in FIGURE 2), particularly, the IR transceiver interface 20B and various circuitry within the mobile station 20 for handling the IR signals. An IR receiver or photodetector 30 receives the IR signals, such as from the private base station 21, and passes the signals to a decoder 31, which converts the infrared information within the IR signal to electrical information, e.g., digital pulses. The converted information is then forwarded to a controller 32, which controls the flow of the electrical information (pulses). A signal conversion device 33 receives the aforesaid electrical information flow and groups the incoming pulses into a unit size (frame) pursuant to a known signal format. The controller 32 may be a UART or other like controller, as is understood in the art.

The incoming signal, now translated, is sent to a processor 34, which implements the command(s) set forth in the signal, e.g., forward the incoming signal to another phone such as mobile station 14B (in FIGURE 1) across the RF communications link. Similarly, the processor 34, in response to one or more commands, may send a message across the IR communications link by first forwarding the message to the signal conversion device 33, which converts the structured message into the aforesaid electrical information or pulses, which the controller 32 sends to an encoder 35. The electrical pulses are there converted to IR radiation signals which are then transmitted by an IR transmitter 36, e.g., light emitting diodes, releasing the IR signal.

It should, of course, be understood that the circuitry shown in FIGURE 3 is preferably also incorporated within the private base station 21 so that a wireless IR dialogue may be established with the mobile station 20.

As discussed, the effective range of the IR signal so emitted is limited, e.g., on the order of several dozens of meters. With obstacles like walls, floors and ceilings, the effective range is even further reduced, as is encountered by consumers with products such as television remotes. Accordingly, IR signals provide an excellent way to exchange confidential information wirelessly, effectively limiting communications to a point-to-point conversation, albeit preferably temporarily until the security

protocols are safely established. Eavesdropping, although still possible, is thwarted by such range restrictions since other security measures, e.g., building control, may be employed in conjunction to provide almost any level of interception prevention.

Since various encryption methods are available to make a wireless conversation almost impervious to code-breakers, wireless communications between a user of the dual-mode phone 20 (in FIGURES 2 and 3) preferably switches to the RF communications mode to utilize the enhanced security advantages of encryption to prevent deciphering. Wireless RF communications, however, even with encryption, are easily intercepted by a distant eavesdropper. Although encryption data may thwart the eavesdropper's deciphering the intercepted coded message, the caller and recipient must first establish the secure transmission through the exchange of encryption keys over a non-encrypted wireless communication, which the eavesdropper can monitor, easily decipher the pertinent keys and then decipher the supposedly secure encrypted transmissions.

The system, method and apparatus of the present invention provide an improved, more secure way to preserve the confidentiality of wirelessly transmitted information by restricting exposure of the encryption keys and any other confidential information through use of the aforementioned IR transmissions.

In one embodiment of the present invention the subscriber of mobile station 20 when sufficiently close to the private telephone system, e.g., near the private base station 21, activates the mobile station 20 to emit an IR signal, e.g., via IR transmitter 36. Alternatively, the mobile station 20 may activate IR signaling capability automatically in advance of transceiving any security-related data. In a preferred embodiment of the present invention, the mobile station utilizes conventional radiofrequencies for all non-security-related transmissions, e.g., when initiating communications with the private base station 21 such as a cordless telephone base station and after the exchange of encryption or other such security data. Upon reaching the aforementioned security data or protocols in the transmission, the mobile station 20 then switches over to the aforementioned IR signaling using the IR transmitter 36. It should be understood, that the RF-to-IR switchover may occur early in the transmission, e.g., in the initial communications attempts, or later during the

WO 99/41876 PCT/SE99/00155

-9-

transmission, so long as any secured portions of the signal are transmitted via IR transmissions.

In either event, the private base station 21 detects the IR signal transmission from the mobile station 20, via the aforementioned photodetector 30 in the station 21, processes the incoming IR signal, and responds with an IR response signal, which preferably includes an encryption key. It should be understood that one or more encryption keys may be inserted into the response signal by an encryption device 37 in communication with the processor 34. Upon the secure receipt of the encryption key(s) from the private base station 21 via IR transmission, the mobile station 20 may then safely begin/resume wireless RF communications, which are now encrypted pursuant to the embedded encryption key(s). The subscriber is then able to move more freely throughout the building, all the while taking advantage of the inexpensive wireline communications link through the PSTN 24, as discussed hereinbefore.

In another embodiment of the present invention, the private base station 21 may periodically emit an IR signal, which the mobile station 20 may intercept, if close enough. In effect, the private base station may perform an IR poll to establish the preliminary IR linkage to exchange security information, such as the aforedescribed encryption keys. For example, upon detection (in photodetector 30), the mobile station 20 may (like the private base station 21 in the previous embodiment) also respond with an IR response signal, which may include encryption key(s) for governing the subsequent RF transmissions with the private base station 21, thereby providing a procedure for periodic or random security measures.

In still another embodiment of the present invention, the more secure IR communications link may be employed by the subscriber of the mobile station 20 or an administrator of the private telephone system to transfer other, non-initialization-related information. For example, if particularly sensitive information needs to be transmitted during an RF communication, the mobile station 20 and private base station 21 may switch to the more private IR communications mode and resume the RF mode transmissions after the sensitive information has been transferred. It should also be understood that the mobile station 20 and private base station 21 may automatically revert to the IR communication mode while in range of each other and only switch over when the IR transmissions begin to deteriorate.

Although one preferred embodiment of the present invention utilizes the principles of the present invention in the context of mobile telephony, it should be understood that the scope of the present invention, as set forth in the claims hereinbelow, covers a variety of dual-mode wireless interconnections using an infrared mode for security purposes.

With reference now to FIGURE 4, there is illustrated a further embodiment of the present invention in which a first device, such as a mobile phone, a headset on a user or a computer, communicates with at least one of a large number of other devices, such as set forth in detail in Assignee's pending patent application entitled "Combined Mobile Telephone and Remote Control Terminal", U.S. Patent Application Serial No. 08/845,938, filed April 29, 1997, incorporated herein in its entirety by reference. It should be understood that although all of the various devices depicted in FIGURE 4 may be able to communicate with each other, certain pairings may not be utilized (at present). For example, a printer 50 (receiving commands from a personal computer or PC 48) need not communicate with a television 68, although the television 68 could transmit an image for printing at the printer 50. The printer 50, however, could well forward a printing completion message (or out-of-paper or error message) to the PC 48 (using the security measures of the instant application or not).

Recent initiatives, such as the Bluetooth Mobile Communications Initiative, are promoting the increase in interoperability of the various electrical, electronic and mechanical devices utilized in the work place and at home. A number of the various devices capable of using the Bluetooth or other like technology are illustrated in FIGURE 4, including a home base station 40 which is linked to a conventional Public Switched Telephone Network (PSTN) 42, converting the wireless rf and infrared signals received from other devices, such as the dual-mode phones 26 (shown in FIGURE 2), a wireless headset/hands-free unit 44 or other cordless device 46. The desk-top or lap-top PC 48 may also interact with a number of additional peripheral devices, e.g., printer/plotter/projector 50, a facsimile 52, a pager 54, a data organizer 56 or other such personal, hand-held organizer device (enabling the download of sensitive information both to and from the organizer 56 and synchronization with data stored in the PC 48, another PC 57 or an electronic data terminal 58), a scanner 60, microphone 62, a PC card 64 and numerous other such peripherals, generally

designated by the reference numeral 66. Of course, the principles of the present invention are also applicable in the mobile station 26 and a SIM card 26A, such as the one associated therewith, or a SIM card 67 separate from mobile station 26 as illustrated in FIGURE 4.

In the home, numerous other household devices may be equipped with the dual-mode functionality such as set forth in the present invention. For example, the PC 48 may intercommunicate with the television 68, a radio 70, a stereo 72 or peripheral attached thereto, or a VCR or other video player 74 (tape or disk). Other interconnected devices in the home include a light device (lamp) 76, a dimmer switch 78, a thermostat 80 to control heating/cooling of a domicile, a door device 82 such as a garage door, a refrigerator/freezer 84, a cooking device 85 (microwave, gas, etc.), a washer/dryer 86, an answering machine 88 and an alarm device 90. Additional devices that may include the inventive techniques of the present invention include a car alarm 92 (with a car lock feature), which to operate in infrared mode must be in close proximity, preferably also in line-of-sight, and other external alarm devices which may be stationary.

Utilizing the principles of the present invention, secure communications may be established, via the infrared and wireless links, enabling a user, e.g., through voice or keyed-entry commands entered into a handheld or wrist (watch) communication device, generally designated by the reference numeral 94, to open their garage door 82, exit and lock their car, disarm their home alarm devices 90, and enter their domicile which has been heated/cooled by a prior remote command to the thermostat 80 (relayed wirelessly by the home PC 48).

It should be understood that although the plethora of wirelessly interconnected devices, such as specified pursuant to the Bluetooth initiative, may utilize low-cost, short-range radio links instead of the expensive, cumbersome and proprietary cabling now required, the need for securing these rf transmissions, which may range for a hundred meters or more, is critical since an unauthorized user could easily eavesdrop, intercept and decrypt these communications, thereby gaining access to the personal domain and effects of a user. The initial, more secured infrared transmissions of the present invention, requiring close proximity, more line-of-sight security data

exchanges, provide the requisite level of protection necessary in these open-to-tampering systems.

Frequency spectrums available for these private applications are, at present, rather limited. In the United States, for instance, bands at 900 MHZ, 2.4 GHz and 5.7 GHz are currently unlicensed and may be used freely, provided the transmission (TX) power levels are low or spreading is applied. The Bluetooth initiative is scheduled to operate at the globally-available 2.45 GHz Industrial, Scientific, Medical (ISM) 'free band', allowing international travelers to employ Bluetooth-enabled equipment worldwide. It is understood to those skilled in the art that in an effort to avoid interference, spreading should be applied either by Frequency Hopping (FH) or directsequence (DS) spread spectrum. The 2.45 GHz ISM band may be used for a variety of devices and constitutes a band ranging from about 2.4 GHz to about 2.483 GHz, as described in Assignee's co-pending patent application entitled "Method and Apparatus" for Tracking a Mobile Phone". As discussed in said patent application, describing frequencies in a phone tracking system, in an effort to avoid sharp filters to fulfill outof-band emission requirements, the applied radio band is preferably placed away from the ISM band edges. Known interference areas, e.g., from 2.435 GHz to 2.465 GHz in which microwave ovens operate, are preferably avoided as well. Frequency Shift Keying (FSK) can be used to map the user code on the rf carrier. In such an FSK modulation technique, a bit representing 'one' is mapped to the frequency rf + Df, and a bit representing 'zero' is mapped to the frequency rf - Df (or vice versa) where rf is the carrier frequency and Df is the frequency deviation, which should be large enough to combat the frequency offset between the transmitter and the receiver. For example, if inaccurate frequency references (with an accuracy of about 50 parts per million) are used, the worst-case frequency offset can reach up to 240 KHz. In order to receive the burst in such a case, the frequency duration Df should be greater than 240 KHz.

It should be understood that although GSM technology is presently preferred, the principles of the present invention may also be employed in other Time Division Multiple Access (TDMA), Personal Digital Cellular (PDC) and presently developed (and future) third generation systems and equipment. Consequently, the various frequencies used by these and other systems, e.g., 800, 900, 1500, 1800, 1900, 2000

WO 99/41876 PCT/SE99/00155

-13-

and 2100 MHz bands, may also be employed in the system, method and apparatus of the present invention.

The previous description is of preferred embodiments for implementing the invention, and the scope of the invention should not necessarily be limited by this description. The scope of the present invention is instead defined by the following claims.

WHAT IS CLAIMED IS:

- 1. A communications system for secure wireless communications, said communications system comprising:
- a first device having transceiving means therein for communicating in a first and a second communication mode; and

a second device, in wireless communication with said first device, said first and second devices wirelessly communicating in said first communication mode using an infrared signal and in said second communication mode using a radiofrequency signal.

- 2. The communications system according to claim 1, wherein said first and second devices transceive a plurality of messages therebetween in said second communication mode, wherein, prior to transceiving a security message therebetween, said first and second devices switch transceiving to said first communication mode, and transmit said security message in said first communication mode.
- 3. The communications system according to claim 2, wherein said first and second devices, upon completion of the transceiving of said security message, switch transceiving therebetween to said second communication mode.
- 4. The communications system according to claim 2, wherein said security message comprises a plurality of encryption keys for the subsequent encryption of a plurality of said messages transceived in said second communication mode.
- 5. The communications system according to claim 2, wherein upon said second device switching said transceiving to said first communication mode, said second device transmits an infrared request message to said first device.
- 6. The communication system according to claim 5, wherein said first device, upon receipt of said infrared request message, transmits said security message to said second device.

- 7. The communication system according to claim 6, wherein said security message comprises a plurality of encryption keys for the subsequent encryption of a plurality of said messages transceived in said second communication mode.
- 8. The communication system according to claim 1, wherein said transceiving means within said first device comprises:

infrared transceiving means for transceiving infrared signals with said second device in said first communications mode;

radiofrequency transceiving means for transceiving radiofrequency signals with said second device in said second communications mode; and

switching means for switching between said infrared and radiofrequency transceiving means.

9. The communication system according to claim 8, wherein said infrared transceiving means comprises:

a photodetector for receiving said infrared signals from said second device; and

an infrared emitter for transmitting said infrared signals to said second device.

10. The communication system according to claim 1, wherein said second device comprises a transceiving means therein, said transceiving means within said second device comprising:

infrared transceiving means for transceiving said infrared signals with said first device in said first communications mode;

radiofrequency transceiving means for transceiving said radiofrequency signals with said first device in said second communications mode; and

switching means for switching between said infrared and radiofrequency transceiving means.

11. The communication system according to claim 10, wherein said infrared transceiving means within said second device comprises:

a photodetector for receiving said infrared signals from said first device; and

an infrared emitter for transmitting said infrared signals to said first device.

- 12. The communication system according to claim 1, wherein said communication system is a cordless system.
- 13. The communication system according to claim 1, wherein said first and second devices are each selected from the group consisting of:

mobile telephones, home base stations, SIM cards, headsets, computers, printers, plotters, projectors, facsimile devices, pagers, data organizers, computer terminals, scanners, microphones, PC cards, televisions, radios, stereos, VCRs, light devices, dimmers, thermostats, doors, refrigerators, freezers, ovens, washers, dryers, answering machines, home alarms, car alarms, and other peripheral and portable devices.

- 14. The communication system according to claim 1, wherein said first and second devices communicate on a radiofrequency band ranging from about 2.4 GHz to about 2.483 GHz.
- 15. The communication system according to claim 14, wherein said band is at about 2.45 GHz.
- 16. A method for establishing a secure communication link between a dual-mode first device and a dual-mode second device of a communication system, a first mode of said dual-mode being an infrared mode and a second mode of said dual-mode being a radiofrequency mode, said method comprising the steps of:

forwarding an infrared request message in said infrared mode;

establishing said secure communication link between said first and second devices, said secure communication link operating in said infrared mode; and

WO 99/41876 PCT/SE99/00155

-17-

transferring, during said secure communications link, a security message between said first and second devices in said infrared mode.

- 17. The method according to claim 16, wherein prior to said establishment of said secure communication link, said first and second devices operated in said radiofrequency mode.
- 18. The method according to claim 16, wherein, in said step of forwarding, said first device forwards said infrared request message to said second device, and said second device, upon receipt of said infrared request message, replies with an infrared reply message.
- 19. The method according to claim 16, wherein said security message comprises a plurality of encryption keys for the subsequent encryption of a plurality of transmissions in said radiofrequency mode.
- 20. The method according to claim 16, further comprising, after said step of transferring said security message, the step of:

establishing a radiofrequency communication link between said first and second devices in said radiofrequency mode.

21. The method according to claim 16, further comprising, after said step of transferring said security message, the step of:

forwarding, from said second device, a security poll signal to said first device.

- 22. The method according to claim 21, wherein said step of forwarding said security poll signal occurs periodically.
- 23. The method according to claim 21, wherein said step of forwarding said security poll signal occurs randomly.

24. The method according to claim 16, wherein said first and second devices are each selected from the group consisting of:

mobile telephones, home base stations, SIM cards, headsets, computers, printers, plotters, projectors, facsimile devices, pagers, data organizers, computer terminals, scanners, microphones, PC cards, televisions, radios, stereos, VCRs, light devices, dimmers, thermostats, doors, refrigerators, freezers, ovens, washers, dryers, answering machines, home alarms, car alarms, and other peripheral and portable devices.

- 25. The method according to claim 16, wherein said first and second devices communicate on a radiofrequency band ranging from about 2.4 GHz to about 2.483 GHz.
- 26. The method according to claim 25, wherein said band is at about 2.45 GHz.
- 27. A transceiving device for secure wireless communications in a communications system, said device comprising:

radiofrequency transceiving means for transceiving a plurality of radiofrequency transmissions within said communications system; and

infrared transceiving means for transceiving a plurality of infrared transmissions within said communications system.

28. The transceiving device according to claim 27, wherein said infrared transceiving means comprises:

a photodetector for receiving said infrared transmissions; and an infrared emitter for transmitting said infrared transmissions.

29. The transceiving device according to claim 28, wherein said infrared emitter comprises a light-emitting diode.

- 30. The transceiving device according to claim 27, wherein said transceiving device switches transceiving from said radiofrequency transceiving means to said infrared transceiving means prior to the transmission of an infrared security message within said communications system.
- 31. The transceiving device according to claim 30, wherein, after the transmission of said infrared security message, said transceiving device switches transceiving to said radiofrequency transceiving means.
- 32. The transceiving device according to claim 30, wherein said infrared security transmission comprises a plurality of encryption keys for the subsequent encryption of a plurality of said radiofrequency transmissions between said transceiving device and said communications system.
- 33. The transceiving device according to claim 27, wherein said first and second devices are each selected from the group consisting of:

mobile telephones, home base stations, SIM cards, headsets, computers, printers, plotters, projectors, facsimile devices, pagers, data organizers, computer terminals, scanners, microphones, PC cards, televisions, radios, stereos, VCRs, light devices, dimmers, thermostats, doors, refrigerators, freezers, ovens, washers, dryers, answering machines, home alarms, car alarms, and other peripheral and portable devices.

- 34. The Transceiving device according to claim 27, wherein said first and second devices communicate on a radiofrequency band ranging from about 2.4 GHz to about 2.483 GHz.
- 35. The transceiving device according to claim 34, wherein said band is at about 2.45 GHz.

FIG. 3

FIG. 4

INTERNATIONAL SEARCH REPORT

national Application No

	·		PCT/SE 99/0	0155
A. CLASSI IPC 6	FICATION OF SUBJECT MATTER H04L9/08 H04M1/72			
	o International Patent Classification (IPC) or to both national classi	fication and IPC		
	SEARCHED cumentation searched (classification system followed by classific	ation cumbols		
IPC 6	H04L H04M	adon symbols)		
Documenta	tion searched other than minimum documentation to the extent the	at such documents are include	ded in the fields sear	ched
Electronic d	ata base consulted during the international search (name of data	base and, where practical,	search terms used)	
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT			
Category *	Citation of document, with indication, where appropriate, of the	relevant passages		Relevant to claim No.
х	EP 0 756 397 A (HEWLETT PACKARD 29 January 1997		1,13,16, 24,27,33	
Α	see column 4, line 31 - line 42 see column 7, line 29 - line 49			4,32
Α	EP 0 806 878 A (ALCATEL) 12 Nove see column 1, line 35 - line 39 see column 2, line 1 - line 43		1	
A	DE 196 29 408 A (MUTTERER) 22 J see column 3, line 6 - line 41 see column 3, line 56 - line 60 see column 4, line 3 - line 18 see column 4, line 48 - column		ŵ	1,8
		-/		
			·	
X Furth	her documents are listed in the continuation of box C.	X Patent family n	nembers are listed in	annex.
° Special ca	tegories of cited documents :	"T" (ater document publi	shed after the interne not in conflict with the	ational filing date
	ent defining the general state of the art which is not leavened to be of particular relevance	cited to understand invention	the principle or theor	y underlying the
"E" earlier o	document but published on or after the International late	"X" document of particul cannot be consider	ed novel or cannot be	considered to
which	nt which may throw doubts on priority claim(s) or is cited to establish the publication date of another	involve an inventive "Y" document of particul	e step when the docum ar relevance; the claim	ment is taken alone med invention
"O" docume	n or other special reason (as specified) ent referring to an oral disclosure, use, exhibition or	cannot be consider document is combi	ed to involve an inver ead with one or more	ntive step when the other such docu-
	means ant published prior to the international filling date but aan the priority date claimed	ments, such combi in the art. "&" document member of	nation being obvious of the same patent far	
	actual completion of the international search		he International searc	
2	5 May 1999	01/06/19	999	
Name and n	nalling address of the ISA	Authorized officer		
	European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	HOLPER,	G	

2

INTERNA DNAL SEARCH REPORT

I national Application No

C /C==4'==	No. 1 DOCUMENT	PCT/SE 99	9/00155	
Category *	tion) DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages	Colombia de la colombia del colombia de la colombia del colombia de la colombia del la colombia de la colombia dela colombia della colombia dela colombia della colombia della colombia della colombia de		
Α		 	Relevant to claim No.	
	US 4 856 046 A (STRECK ET AL.) 8 August 1989 see column 5, line 1 - line 16 see column 10, line 46 - line 65		1	
		*	• • • • • • • • • • • • • • • • • • • •	
an a	*			
			,	
	·			

Information on patent family members

PCT/SE 99/00155

Patent document cited in search report	t	Publication date		Patent family member(s)	Publication date
EP 756397	Α	29-01-1997	JP US	9167098 A 5887063 A	24-06-1997 23-03-1999
EP 806878	Α	12-11-1997	DE AU	19618243 A 2003797 A	13-11-1997 13-11-1997
DE 19629408	Α	22-01-1998	WO	9804051 A	29-01-1998
US 4856046	A	08-08-1989	NONE		· · · · · · · · · · · · · · · · · · ·

THIS PAGE BLANK (USPTO)

Kundmöte

2000-11-14

Närvarande:

Christer Wahlström, IF Ronny Jansson, SPOF Raymond Bergström, SUF Sune Hilstad, SUF Dag Hedefält, SIPF Herman Phalén, PRV Claes Pantzar, PRV Pia Danemar, PRV Ingela Söderlund, PRV Kerstin Brinkman, PRV

Frånvarande:

Helen Selemark, IF

1. Föreläggande på engelska (IF)

Vid föregående möte framfördes ett önskemål från Industriförbundet om att få en översättning av det tekniska föreläggandet till engelska. Inför detta mötet hade frågan diskuterats internt på PRV, varvid följande framkommit:

- Det konstaterades att det är föreläggandet på svenska som utgör den lagliga grunden.
- Det är också viktigt att skilja på myndighetsrollen kontra uppdragsverksamheten, varför PRV:s kundtjänst föreslås administrera översättningarna.
- Av praktiska skäl föreslogs att översättningen skulle bifogas det ordinarie föreläggandet.
- En begäran om att få en översättning skulle kunna göras på ansökningsblanketten. På ansökningsblanketten kommer det att finnas information om att det är fråga om en betaltjänst och att den bara kan erhållas i de fall handlingarna ursprungligen är ingivna på engelska. Vidare ska möjlighet ges att godkänna en debitering på hos PRV innestående konto för tjänsten.

Tidsplanen är att introducering av tjänsten planeras ske under första halvåret 2001.

Förslaget och upplägget togs emot positivt.

Med anledning av denna fråga framfördes från SIPF ett önskemål om att även kunna lämna in svaromål på engelska. Frågan var inte ny för PRV, den har diskuterats tidigare (i somras) med Ericsson. De argument som framförts som motiv för att vi skulle godtaga engelska svarsskrifter grundar sig på det faktum att tredje man inte har tillgång till skriftväxlingen på svenska i ett vid EPO godkänt patent för Sverige. Därför skulle det heller inte vara nödvändigt att ha det i av PRV godkända patent.

Praxis i svensk statsförvaltning är att korrespondensen sker på svenska. Följaktligen är det inte en fråga som PRV kan hantera själva. Det är inte THIS PAGE BLANK (USPTO)

heller relevant att jämföra EPO och PRV som myndigheter betraktat.

Från SPOF framfördes även önskemål om att vi skulle vidga grundförutsättningarna till att även omfatta andra accepterade språk i ursprungshandlingarna för att kunna få en översättning på engelska.

PRV ansåg att vi skulle börja med det engelska språket som ju inte skulle vålla några bekymmer beträffande använd terminologi mm. Att översätta tekniska termer från exempelvis franska till engelska däremot var inte helt självklart att vi skulle kunna hantera. Men vi är beredda att ta upp diskussionen längre fram när vi har erfarenheter från engelska ursprungshandlingar.

2. Förelägganderapporten (PRV)

Kerstin Brinkman gav en kort presentation om innehållet och syftet med rapporten.

Sammanfattningsvis pekar rapporten på att PRV ska:

- Skriv enkelt, korrekt men med formell ton.
- Tydliga och logiska motiveringar som vi grundar vår ståndpunkt på

Från kundsidan framfördes följande:

- PRV skriver generellt bra förelägganden
- Det är viktigt med motiveringarna eftersom föreläggandet kan utgöra ett viktigt beslutsunderlag för en företagslednings förhållningssätt till ett projekts överlevnad.
- Det är viktigt med en tydlig grund för påståenden. Generella formuleringar är svåra att bemöta.
- Det är vanskligt att från PRV:s sida komma med förslag till nya godkännbara patentkrav, sökanden kan uppfatta det som att de måste ändra till PRV:s förslag. Dessutom är det ombudssidan arbete att råda sökande till nya formuleringar. PRV:s huvuduppgift är att peka på de brister som ansökan och då framförallt patentkraven är behäftade med.
- Att PRV skriver "Uppfinningen avser...." i början på föreläggandet uppfattas ofta onödigt och ibland som vilseledande. Det kan vara motiverat i de fall där det finns tvetydigheter om vad ansökan avser, men oftast inte. Detta kan vävas in i argumentationen i övrigt.

Från PRV:s sida framfördes att syftet med det skrivsätt som åsyftas i den sista punkten är att tydliggöra hur problem och lösning har uppfattats av granskaren. Detta för att inte få en skriftväxling som grundar sig på vitt skiljda uppfattningar om vad uppfinningen avser.

3. Inlämning av översättning av internationellt fullföljd patentansökan (SIPF)

Bakgrund

Ett svenskt företag lämnade in en ansökan, betalade alla avgifter

THIS PAGE BLANK (USPTO)

(inklusive avgifter för extra krav) samt en översättning, men enligt PRV så kom bland annat en sida med krav och sammandraget inte med.

Den fullföljda ansökningen inlämnades över en vecka innan 30-månadersfristen gick ut. Meddelandet om att dessa sidor saknades kom från PRV efter det att fristen för senare inlämning mot extra avgift hade gått ut (2 extra månader). Ansökan var då redan ansedd som återtagen. Enligt PRV så var det enda som då gick att göra att åberopa paragraf 72, vilket gjordes. Ansökan är numera vid liv. Dock är vad som hände inte bra. PRV borde så fort en nationell fullföljd kommit in kontrollera att allt är med och meddelade sökanden detta. En lämplig rutin verkar inte finnas. Man borde rimligtvis få en chans att komplettera vad som har missats.

(Dessutom borde inte bristen på sammandrag ha dessa ödesdigra konsekvenser. Sammandraget har inte någon speciellt viktig funktion så sent i processen och är dessutom något som inte behövs vid inlämningen av EPC-översättningar.)"

Åtgärd

PRV ska se över rutiner i fullföljda nationella ansökningar för att undvika liknande missöden.

4. Beställning av dokument från IPS (SIPF)

Bakgrund

Eftersom det är första gången vi träffas har jag inte riktigt klart för mig om vi enbart skall prata om saker som har med patentavdelningen att göra eller om vi även skall ta upp "vardagsfrågor" som berör patentsidan inom PRV i övrigt. Om det senare gäller vill jag gärna ta upp något som minskar tilltron till PRV (jag har tagit upp frågan tidigare). Vi, FMV, beställer 10-12 gånger om året från Interpat 20-25 skrifter, EP-översättningar och svenska patent. Tre gånger av fyra är det något fel på leveransen. Ofta saknas en eller flera sidor på någon skrift. Detta upptäcker vi oftast men ger oss merarbete. Framför allt förr fick vi dessutom ofta beskedet "lucka i nummerserien" när vi beställt en EP-översättning. Icke desto mindre hade skriften varit med i Patenttidningen och fanns i Biblioteket. Något samband mellan Interpat och Biblioteket finns uppenbarligen inte. Det är allvarligt att man upprepat får ett felaktigt besked från "Patentverket" att det saknas en EP-översättning, när den i själva verket är inlämnad i tid. Visserligen ett svar i samband med en kopiebeställning, men främst ovana användare tycker nog att "Patentverket" (=Interpat) är det samma som "Patentverket" (=myndigheten). Det har uppenbarligen funnits (finns än?) ett systemfel när denna typ av felaktigt meddelande kunnat sändas under lång tid."

PRV:

Det måste naturligtvis fungera så med våra kundmöten att patentrelaterade frågor kan tas upp oavsett om de, som i detta fall, organisatoriskt hanteras av någon annan avdelningen än patentavdelningen.

I denna specifika fråga är det oroväckande hög felprocent, det är helt

BETHIS PACE BLANK WEDE

5. Kontaktkommitténs framtida öde (PRV)

Ett förslag var att kontaktkommittén skulle vara ett forum för strategiska frågor och kundmöten ett för operativa frågor. Att ha en kontaktkommitté med en sammansättning liknande den innan PRV:s omorganisation var dock inte något som efterfrågades.

Ett annat förslag var att avveckla kontaktkommittén och ha dessa kundmöten som enda forum, med möjlighet att bjuda in fler personer och med möjlighet att ha strategiska frågor på agendan. Även möjlighet att kunna kalla till ad hoc möten vid behov föreslogs.

Det bestämdes att Kontaktkommittén ska sammanträda den 14 mars 2001 kl 13 för att diskutera frågan. Kallelse kommer senare.

6. Övriga frågor

Överlåtelsehandling/Åtkomsthandling (SUF)

Det vållar ibland bekymmer för uppfinnare att det heter "överlåtelsehandling" då den rätta benämningen borde vara "åtkomsthandling". Anledning till detta angavs vara att uppfinnaren får en känsla av att han skänkt sin uppfinning till den som den är överlåten till. PRV borde använda rätt term. Det är en begreppsförvirring.

En diskussion kring detta fördes där uppfattningarna gick isär om vad som är den rätta terminologin.

PRV tittar närmare på definitionen av dessa begrepp.

Ett förslag som framfördes var att vi skulle ta upp hela ärendegången från inlämning av en ansökan till Regeringsrätten. (I små steg förståss J). Dessutom ska vi kunna ta upp aktuella frågor om förbättringar.

Önskemål framfördes från IF och SPOF om att på nästa möte behandla "komplexa ansökningar" och "enhetlighetsbedömningar". Något som stod i smaklang med vad PRV just hade för avsikt att ta upp på agendan till nästa möte.

Sammanfattning på förslag till nästa möte:

Komplexa ansökningar Enhetlighet Överlåtelsehandlingsfrågan Konkret om kundmötesgruppen, sammansättning, struktur och form. Processen, en bit i taget.

Allt detta torsdagen den 22 februari 2001 kl 12, lunch i Uppfinnaren, kl 12:45 – 15:00

/ vid pennan, Kerstin.

/justerat Herman

BEST AVAILABLE COPY

THIS PAGE BLANK (USPTO)

BEST AVAILABLE COPY

Beställare PATNAYO DM

Ärende **aha**

Dokument **WO 9941876A1 I**

Antal sidor utöver denna **27**

B**THIS PAGEIBLANK**WOODPY