μPD71611

CMOS CLOCK GENERATOR September 1986

PRELIMINARY INFORMATION

Description

The μ PD71611 is a high performance CMOS clock generator/driver for the μ PD70616 (V60) microprocessor. The μ PD71611 contains a crystal oscillator for use with a fundamental mode crystal. An external clock source can also be used if it is necessary to synchronize the μ PD70616 to an external clock.

Reset logic with a Schmitt-trigger input is also included to synchronize a power-on reset signal to the system clock and be used as a system-wide reset signal. The $\mu\text{PD71611}$ also contains wait state logic for generation of 0 to 7 wait states in any bus cycle.

Features

- μPD70616 system clock generator/driver
- 16 MHz system clock (32MHz input divided by two)
- Programmable wait state generator
- Schmitt-trigger reset logic
- Low power CMOS technology
- ♦ 20-pin plastic DIP

Ordering Information

Part Number	Package	Maximum Frequency
μPD71611C	20-pin plastic DIP	16 MHz

Pin Configuration

Block Diagram

Pin Identification

Symbol		1/0	Function
X1, X2	Crystal Inputs	1/0	I/O terminals for crystal, twice the µPD70616 frequency
EXFS	External Clock Source	In	External clock input pin, twice the µPD70616 frequency
F/X*	Frequency/Crystal Select	In	Clock source multiplexer control
CLK	Clock	Out	μPD70616 system clock, 1/2 the input clock frequency
PRCLK	Peripheral Clock	Out	Peripheral clock, 1/4 the input clock frequency
RESIN'	Reset Input	I n	Schmitt trigger reset input
RESET	Reset Out	Out	μPD70616 and system reset output
ARDY	Asynchronous Ready	In	Asynchronous ready input
AREN"	Asynchronous Ready Enable	In	Enable input for ARDY
SRDY	Synchronous Ready	In	Synchronous ready input
SREN*	Synchronous Ready Enable	In	Enable input for SRDY
BCY*	Bus Cycle	In	μPD70616 bus cycle output
WAITO WAIT1 WAIT2	Wait State Controls	In	Wait state inputs to add 0 to 7 wait states to a bus cycle
READY'	Ready	Out	Ready output to the µPD70616

Pin Functions

This section describes the operation of the µPD71611 I/O terminals. Inputs and outputs are considered at a logic "0" level when a low level signal is present. Likewise, a logic "1" is represented by a high level signal. Bus states are defined and measured from the rising edge of the clock to the rising edge of the next clock.

X1, X2 [Crystal Inputs] inputs/outputs

The X1 and X2 inputs are used to connect a fundamental mode crystal to the internal oscillator circuitry. The crystal is selected to oscillate at a frequency twice the µPD70616 operating frequency.

EXFS [External Frequency Source] input

The EXFS pin allows an external TTL-level clock source twice the desired operating frequency to be used as the input clock.

F/X* [Frequency/Crystal Select] input

The F/X* input selects either the internal crystal oscillator or an external clock oscillator as the clock source for the uPD70616 and other devices.

CLK [Clock] output

CLK is the µPD70616 processor clock output. The CLK output has additional drive capabilities matched to the requirements of the µPD70616 and associated microprocessors.

PRCLK [Peripheral Clock] output

CLK is the µPD70616 system clock output available for use by peripheral devices.

μPD71611

RESIN* [Reset Input] input

RESIN* is a Schmitt-trigger input used to synchronize the asynchronous reset input to the rising edge of the processor clock before use by the rest of the system.

RESET [Reset Output] output

RESET is an active high synchronized reset signal for the µPD70616 and peripheral devices.

ARDY [Asynchronous Ready Input] input

The ARDY input is used by ready signals which are not synchronized to the µPD70616 clock. This input is internally applied to a synchronizer before being used as a ready output to the processor.

AREN* [Asynchronous Ready Enable] input

AREN* is an enable for the ARDY input. If ARDY is not used in a system, AREN* can be pulled up to the positive power supply to disable the asynchronous ready logic.

SRDY [Synchronous Ready Input] input

The SRDY input is used by ready signals which are synchronized to the μPD70616 clock.

SREN* [Synchronous Ready Enable] input

SREN* is an enable for the SRDY input. If SRDY is not used in a system, SREN* can be pulled up to the positive power supply to disable the synchronous ready logic.

BCY* [Bus Cycle]input

The μ PD70616 indicates the start of a new bus cycle by asserting the BCY* output. The μ PD71611 uses BCY* to control the operation of the wait state logic.

WAIT2-0 [Wait State Mode Inputs] inputs

The WAIT2-0 inputs are decoded to determine the number of wait states the µPD71611 should automatically insert into the bus cycle. These inputs can be dynamically changed on a bus cycle basis to insert from 0 to 7 seven wait states into a bus cycle.

READY* [Ready Output] output

READY* is an active low output used by slow memory and peripheral devices to insert wait states into a μPD70616 bus cycle.

Vpp [Power Supply]

The VDD pin supplies +5 Volt power to the μ PD71611.

GND [Ground]

The GND pin is the power supply return.

Operational Description

The μ PD71611 serves as the system clock generator/driver for the μ PD70616 (V60) microprocessor. The primary clock source can be selected from an internal crystal oscillator and fundamental mode crystal or from an external TTL-level clock. The source clock is then divided by two to generate the μ PD70616 clock (CLK) and by four to generate the peripheral clock (PRCLK).

The μ PD71611 contains additional logic for synchronization of a reset input and the generation of processor wait states. Figure 1 shows a typical μ PD71611 design example using the on-chip clock oscillator logic.

Figure 1. Crystal Oscillator Example

Three different types of wait states are accommodated by the µPD71611. Both synchronous and asynchronous wait ready inputs are available, each with a corresponding enable input. Zero to seven wait states can also be automatically inserted into a bus cycle using the WAIT2-0 inputs.

Figure 2. WAIT2-0 and READY* Timing

3

2

1

٥

Wait States

5

4

μPD71611

Absolute Maximum Ratings TA = +25°C

-0.5 V to +7.0 V
-1.0 V to V _{DD} + 1.0 V
-0.5 V to V _{DD} + 0.5 V
-40°C to +85°C
-65°C to +150°C
500mW

Comment: Exposing the device to stresses above those listed in the Absolute Maximum Ratings could cause permanent damage. The device is not meant to be operated under conditions outside the limits described in the operational sections of this specification. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Capacitance T_A = +25°C, V_{DD} = 0 V

		Lir				
Parameter	Symbol	Min Max		Unit	Conditions	
Input Capacitance	Cı		10	pf	f = 1 MHz	

DC Characteristics
TA = -40°C to +85°C, VDD = +5 V ±5%

		Lim	its		Conditions
Parameter	Symbol	Min	Max	Unit	
Input Voltage Low	ViL		0.8	V	
Input Voltage High	ViH	2.2		V	except RESIN*
	•	2.6		V	RESIN* input
Output Voltage Low	Vol		0.45	V	IOL = 4mA
Output Voltage High	Vон	V _{DD} = 0.4		V	CLK output, IOH = -4mA
	•	V _{DO} = 0.8		٧	except CLK, IOH = -4mA
Input Current	11	-1.0	1.0	μА	
RESIN* Hysteresis	· · · · · · · · · · · · · · · · · · ·	0.25		٧	
Supply Current (Static)	IDD		200	μΑ	
Supply Current (Dynamic)	IDDdyn		50	mA	f _{in} = 32 MHz, outputs open

AC Characteristics T_A = -40°C to +85°C, V_{DD} = +5 V ±5%

Parameter		Limits			
	Symbol	Min	Max	Unit	Conditions
EXFS Cycle Time	tcyfs	28		ns	
EXFS Pulse Width High	tpwFSH	10		ns	2.2 V measurement point
EXFS Pulse Width Low	tpwFSL	10		ns	0.8 V measurement point
OSC Cycle Time	fosc		32	MHz	
CLK Cycle Time	tcyck	60		ns	
CLK Pulse Width High	†PWCKH	25		ns	3.0 V measurement point
CLK Pulse Width Low	†PWCKL	25		ns	1.5 V measurement point
CLK Rise Time	t _L HCK		5	ns	1.5 V → 3.0 V
CLK Fall Time	tHLCK	·.	5	ns	3.0 V → 1.5 V
CLK Delay from EXFS1	†DCKH	0	20	ns	CLKT
CLK Delay from EXFSI	tDCKL-	0	20	ns	CLK1

AC Characteristics (cont)
TA = -40°C to +85°C, VDD = +5 V ±5%

	Limits					
Parameter	Symbol	Min	Max	Unit	Conditions	
PRCLK Cycle Time	1 CYPRK	120		ns		
PRCLK Pulse Width High	1pwpakh	tcyck - 15	· · · · · · · · · · · · · · · · · · ·	ns		
PRCLK Pulse Width Low	tpwpRKL .	tcyck - 15		ns		
PRCLKT Delay from CLKJ	^I DPRKH		20	rs.		
PRCLK↓ Delay from CLK↓	t _{DPRKL}		20	ns		
RESIN* Setup to CLKJ	tsrick	20		ns ns		
RESIN* Hold from CLKJ	4HCKRI	0		ns.		
RESET* Delay from CLK↓	†DCKRS		10	ns		
SREN* Setup to CLKT	ISSRECK	20	·	ns		
SREN* Hold from CLK1	tHCKSRE	0		ns		
SRDY Setup to CLKT	\$SRYCK	20		ns		
SRDY Hold from CLKT	tHCKSRY	0		ns ns		
AREN* Setup to CLKJ	†SARECK	20	- '	ns		
AREN* Hold from CLK↓	\$HCKARE	0		ns		
ARDY Setup to CLK	tsaryck	20		ns		
ARDY Hold from CLK↓	tHCKARY	0		ns		
READY* Output Delay from CLKT	†DCKRDY		10	ns	READYT	
-			8	ns	READY↓	
BCY* Setup to CLKT	tsBCCK	15		ns an		
BCY* Hold from CLKT	tHCKRE	5	······	ns		
WAITO, 1, 2 Setup to CLKT	1SRYCK	15	*	ns		
WAITO, 1, 2 Hold from CLKT	thckry	5		ns		
Input Rise Time	tRI		15	ns	0.8 V → 2.2 V	
Input Fall Time	t _{FI}		В	ns	2.2 V → 0.8 V	
Output Rise Time	tRO		10	ns	0.8 V → 2.2 V	
Output Fall Time	tFO		6	ns	2.2 V → 0.8 V	

Timing Waveforms

AC Test Input (except RESIN*)

Timing Waveforms (cont)

AC Test Output (except CLK)

Clock (CLK) Timing

Peripheral Clock (PRCLK) Timing

Timing Waveforms (cont)

Clock (CLK) Output Timing

Reset Timing

Synchronous Ready Timing

Timing Waveforms (cont)

Asynchronous Ready Timing

Wait State Timing

Loading Circuits

Packaging Information

20-Pin Plastic DIP Package (300 mil)

