《大学物理》练习题 No.15 狭义相对论时空观及动力学基础

内容提要:

1. 狭义相对论的基本原理

(狭义) 相对性原理: 物理规律对所有惯性系都是等价的。

光速不变原理: 在有惯性参考系中, 光在真空中的速率都相等, 恒为 c。

2. 洛伦兹变换

洛伦兹坐标变换
$$\begin{cases} x' = \frac{x - ut}{\sqrt{1 - \frac{u^2}{c^2}}} \\ y' = y \\ z' = z \\ t' = \frac{t - \frac{u}{c^2}x}{\sqrt{1 - \frac{u^2}{c^2}}} \end{cases}$$
 洛伦兹速度变换
$$\begin{cases} v_x' = \frac{v_x - u}{1 - \frac{uv_x}{c^2}} \\ v_y' = \frac{v_y \sqrt{1 - \frac{u^2}{c^2}}}{1 - \frac{uv_x}{c^2}} \\ v_z' = \frac{v_z \sqrt{1 - \frac{u^2}{c^2}}}{1 - \frac{uv_x}{c^2}} \end{cases}$$

3. 狭义相对论时空观

同时的相对性: 在一个惯性系中不同地点同时发生的两个事件, 在其他惯性系中肯定不是同 时的。

时间的延缓:
$$\Delta t' = \Delta t / \sqrt{1 - \frac{u^2}{c^2}}$$

长度的收缩:
$$L = L_0 \sqrt{1 - \frac{u^2}{c^2}}$$

因果关系: 因果关系是绝对的。

4. 狭义相对论动力学:

①相对论质量:
$$m = m_0 / \sqrt{1 - \frac{u^2}{c^2}}$$

②相对论动量:
$$\overrightarrow{P} = \overrightarrow{m} \overrightarrow{v} = \overrightarrow{m_0} \overrightarrow{v} / \sqrt{1 - \frac{u^2}{c^2}}$$

③静能:
$$E_0 = m_0 c^2$$

④动能:
$$E_k = mc^2 - m_0c^2$$

- ⑤总能 (质能关系): $E = mc^2$
- ⑥动量能量关系式: $E^2 = p^2c^2 + m_0^2c^4$

基本要求:

- 1. 了解狭义相对论产生的历史背景
- 2. 了解牛顿的绝对时空观及伽利略坐标变换式
- 3. 了解狭义相对论的两个基本原理
- 4. 掌握狭义相对论的时空观(同时性的相对性、时间的延缓、长度的收缩)及洛仑兹变换式
- 5. 掌握狭义相对论中的质速关系,质能关系

一、选择题

- 1. 静止参照系 S 中有一尺子沿 x 方向放置不动,运动参照系 S'沿 x 轴运动,S、S'的坐标轴平 行. 在不同参照系测量尺子的长度时必须注意
- - (B) S'中的观察者可以不同时,但 S 中的观察者必须同时去测量尺子两端的坐标。
 - (C) S'中的观察者必须同时,但 S中的观察者可以不同时去测量尺子两端的坐标.
 - (D) S'与 S中的观察者都必须同时去测量尺子两端的坐标 .
- 2. 下列几种说法:
- (1) 所有惯性系对一切物理规律都是等价的.
- (2) 真空中, 光的速度与光的频率、光源的运动状态无关.
- (3) 在任何惯性系中,光在真空中沿任何方向的传播速度都相同. 其中哪些正确的?
- [] (A) 只有(1)、(2)是正确的.
 - (B) 只有(1)、(3)是正确的.
 - (C) 只有(2)、(3)是正确的.
 - (D) 三种说法都是正确的.
- 3. 边长为 a 的正方形薄板静止于惯性系 K 的 xOy 平面内,且两边分别与 x 轴、y 轴平行,今有惯性系 K'以 0.8c (c 为真空中光速)的速度相对于 K 系沿 x 轴作匀速直线运动,则从 K'系测得薄板的面积为
- [] (A) a^2 . (B) $0.6a^2$. (C) $0.8 a^2$. (D) $a^2/0.6$.
- 4. 在某地发生两件事,静止位于该地的甲测得时间间隔为 6s,若相对甲以 4c/5(c 表示真空中光速)的速率作匀速直线运动的乙测得时间间隔为
- (A) 10s. (B) 8s. (C) 6s. (D) 3.6s. (E) 4.8s.
- 5. (1) 对某观察者来说,发生在某惯性系中同一地点,同一时刻的两个事件,对于相对该惯性系作匀速直线运动的其它惯性系的观察者来说,它们是否同时发生?
- (2) 在某惯性系中发生于同一时刻,不同地点的两个事件,它们在其它惯性系中是否同时发生?

[](A)(1)一定同时, (2)一定不同时.
(B) (1)一定不同时, (2)一定同时.
(C) (1)一定同时, (2)一定同时.
(D) (1)一定不同时, (2)一定不同时.
$6.$ 圆柱形均匀棒静止时的密度为 ρ_0 ,当它以速率 u 沿其长度方向运动时,测得它的密度为 ρ_0 ,
则两测量结果的比 ρ : ρ 0 是 [] (A) $\sqrt{1-u^2/c^2}$. (B) $1/\sqrt{1-u^2/c^2}$. (C) $1-u^2/c^2$. (D) $1/(1-u^2/c^2)$.
[] (A) $\sqrt{1-u^2/c^2}$. (B) $1/\sqrt{1-u^2/c^2}$. (C) $1-u^2/c^2$. (D) $1/(1-u^2/c^2)$. 7.把一个静止质量为 m_0 的粒子由静止加速到 $0.6c$,需要做的功是
[] (A) $0.225m_0c^2$. (B) $0.25m_0c^2$. (C) $0.36m_0c^2$. (D) $0.18m_0c^2$.
8.电子的静止质量 m_0 ,当电子以 $0.8c$ 的速度运动时,它的动量 p ,动能 E_k 和能量 E 分别是
[] (A) $p = 4m_0 c/3$, $E_K = 2 m_0 c^2/3$, $E = 5 m_0 c^2/3$.
(B) $p = 0.8m_0 c$, $E_K = 0.32 m_0 c^2$, $E = 0.64 m_0 c^2$. (C) $p = 4m_0 c/3$, $E_K = 8m_0 c^2/18$, $E = 5 m_0 c^2/3$.
(C) $p = 4m_0 c/3$, $E_K = 6m_0 c/18$, $E = 3m_0 c/3$. (D) $p = 0.8m_0 c$, $E_K = 2m_0 c^2/3$, $E = 0.64 m_0 c^2$.
9.一观察者测得电子质量是其静止质量 m_0 的两倍,则电子相对观察者的速率 v 、 动能 E_k 分别是
[] (A) $\sqrt{3}c/2$, $2 m_0 c^2$. (B) $c/2$, $2 m_0 c^2$.
(C) $\sqrt{3}c/2$, $m_0 c^2$. (D) $c/2$, $m_0 c^2$.
10. 某核电站年发电量为100亿度,它等于3.6×10 ¹⁶ J.如果这些能量是由核材料的全部静止能
转化产生的,则需要消耗的核材料的质量为
[] (A) 0.4 kg. (B) 0.8 kg. (C) 12×10^7 kg. (D) $(1/12) \times 10^7$ kg.
二、填空题
1. 有一速度为 u 的宇宙飞船沿 x 轴的正方向飞行,飞船头尾各有一个脉冲光源在工作,处
于船尾的观察者测得船头光源发出的光脉冲的传播速度大小为;处于船头的观察
者测得船尾光源发出的光脉冲的传播速度大小为
2. 一火箭以 0.8c 在空中竖直向上匀速直线飞行时, 若火箭上发出某信号的持续时间为 2.4s,
则相对于地面观察者,该信号的持续时间为
3. 观察者测得运动棒的长度是它静止长度的一半,设棒沿其长度方向运动,则棒相对于观
察者运动的速度是
4. 观察者甲以 $\frac{4}{5}c$ 的速度 (c) 为真空中光速)相对于观察者乙运动,若甲携带一长度为 l 、截
面积为 S 、质量为 m 的棒,这根棒安放在运动方向上,则
(1) 甲测得此棒的密度为;
(2) 乙测得此棒的密度为。
5.某加速器将电子加速到能量 $E=2\times10^6$ eV 时,该电子的动能 $E_k=$ eV.
三、计算题

关于上述两问题的正确答案是:

1. 观察者甲和乙分别静止于两惯性参照系 K 和 K '中,甲测得在同一地点发生的两事件的时间
间隔为 4s,而乙测得这两事件的时间间隔为 5s. 求
(1) <i>K</i> ′相对于 <i>K</i> 的运动速度;
(2) 乙测得这两个事件发生地点的空间距离.
2. 静止长度为 90m 的宇宙飞船以相对地球 0.8c 的速度飞离地球,一光脉冲从船尾传到船头. 求:(1) 飞船上的观察者测得该光脉冲走的时间和距离;(1) 地球上的观察者测得该光脉冲走的时间和距离.
10 H 3 H 3 H 3 H 5 H 5 H 5 H 5 H 5 H 5 H 5
3.一电子经加速器加速后获得了 1MeV 的能量,求电子的速度 v 、动量 p 、能量 E 的大小.
4.一物体的速度使其质量增加 10%, 此物在其运动方向上的长度缩短了多少?

参考答案

No.15

一.选择

1. (C) 2. (D) 3. (B) 4. (A) 5. (A)

6. (**D**) 提示:
$$\frac{\rho}{\rho_0} = \frac{m/l}{m_0/l_0} = \frac{m}{m_0} \times \frac{l_0}{l} = \frac{m_0/\sqrt{1 - \frac{u^2}{c^2}}}{m_0} \times \frac{l_0}{l_0\sqrt{1 - \frac{u^2}{c^2}}} = \frac{1}{1 - \frac{u^2}{c^2}}$$

- 7. **(B)** 8. **(A)** 9. **(C)** 10. **(A)**
- 二. 填空
- 1. c c 2. 4s 3. $\frac{\sqrt{3}}{2}c$ 4. $\frac{m_0}{SI}$, $\frac{m_0}{0.36SI}$
- 5. 1.49MeV 提示: 电子的静质量 $m_0=9.1\times 10^{-31} Kg$, $E_k=E-m_0c^2$,代入计算即可得结

三、计算题

1. 解: 由于,
$$\tau = \frac{\tau_0}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$5 = \frac{4}{\sqrt{1 - \frac{u^2}{c^2}}}$$

$$5 = \frac{4}{\sqrt{1 - \frac{u^2}{c^2}}}$$

得到, K'相对于 K 的运动速度 $u = \frac{3}{5}c$

由于,
$$x' = \frac{x - ut}{\sqrt{1 - \frac{u^2}{c^2}}}$$

所以,乙测得这两个事件发生地点的空间距离

$$x' = \frac{0 - \frac{3}{5}c \times 4}{\sqrt{1 - \frac{9}{25}}} = -3c$$

2. 解: (1)飞船上的观察者测得该光脉冲走的时间

$$t' = \frac{L_0}{c} = \frac{90}{c} = 3.0 \times 10^{-7} \, s$$

距离 $s = L_0$

(2) 地球上的观察者测得该光脉冲走的距离
$$L = L_0 \sqrt{1 - \frac{u^2}{c^2}} = \frac{270}{5} m$$
 时间 $t = \frac{L}{c} = 1.8 \times 10^{-7} s$

3. **解:** 电子经加速后获得的动能 $E_k = m_0 c^2 (1 - \frac{v^2}{c^2})^{-\frac{1}{2}}$

$$\mathbb{BI} \ 1 \times 10^6 \times 1.6 \times 10^{-19} = 9.11 \times 10^{-31} \times 9 \times 10^{16} \times \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}}$$

所以 电子的速度为 $v \approx 0.86c$

有效质量
$$m = m_0 \left(1 - \frac{v^2}{c^2}\right)^{-1/2} = 1.95 m_0$$

动量,
$$p = mv \approx 4.6 \times 10^{-22} kg \cdot m/s$$

能量,
$$E = mc^2 \approx 1.6 \times 10^{-13} J$$

4. 解:

物体有效质量,
$$m = m_0 \left(1 - \frac{v^2}{c^2} \right)^{-\frac{1}{2}}$$

所以,
$$\frac{m}{m_0} = \left(1 - \frac{v^2}{c^2}\right)^{-\frac{1}{2}} = 1.1$$

所以,
$$L = L_0 \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}}$$
 得到, $\frac{L}{L_0} = \left(1 - \frac{v^2}{c^2} \right)^{\frac{1}{2}} \approx 0.91$

物在其运动方向上的长度缩短到原来的 0.91 倍。