

#### Outline

- i. Overview
- ii. Topic Modeling Approaches
- iii. Structural Topic Model (STM)
- iv. Keyword-Based Topic Extraction

**Overview** 

#### Overview Goal of Topic Modeling

- Goal. Discover latent semantic structures in a corpus & group documents into topical clusters
- Exploratory method that does not require prior knowledge
  - → Unsupervised learning



as opposed to: topic classification

- Often particularly useful in early phases of text analysis
  - Getting a better feeling for the corpus at hand
  - Facilitating / enhancing downstream tasks (e.g., sentiment analysis)

#### Overview **Terminology**

#### So, what exactly is a topic?

- Topic modeling revolves around the probability of words occurring in texts of a specific cluster.
- Intuitively, we would expect some words to appear more frequently in documents about a certain topics than in others.



e.g., the word tasty should be more likely to occur in a text about food than in one about stock markets

• In fact, a topic is just a **probability distribution** over a fixed vocabulary.

#### Overview Terminology

- Topic-word distribution  $\beta_k$ : probability distribution over vocabulary given topic k
  - Constant across documents
  - Characteristic of a topic



• **Topic proportions:** length-*K* vector of probabilities of a document belonging to a certain topic

**Topic Modeling Approaches** 

### Approaches Rough Taxonomy



#### Approaches Deterministic

- Deterministic approaches
  - Term-by-document matrix
  - LSA, NMF: matrix factorization to identify latent topics



• **Problems**: inference & out-of-sample extension

#### Approaches Probabilistic / Generative

- Probabilistic / generative approaches
  - Hierarchical Bayesian mixture models
  - Idea: reverse-engineer the imaginative process of document generation

- 1. For each of document d within a corpus draw a vector of topic proportions from the assumed distribution
- 2. For each word position n within d
  - 1. draw a topic assignment from the assumed distribution
  - 2. draw a word from the assumed distribution

#### Approaches Probabilistic / Generative

 Example corporate writing cat dog C-level author profit topic 3 topic 1 topic 2 Document d position 1 position 1 position 1 position 1 position 1 writing profit dog cat cat

#### Overview Challenges

- Hyperparameters: most importantly, number of topics
- Extreme brevity of Twitter data
  - Problematic for most topic modeling approaches
  - Potential mitigation by pooling
  - Special models dedicated to short texts

**Structural Topic Model (STM)** 

### STM Expert Talk



**Expert Talk: STM** 

Patrick Schulze & Simon Wiegrebe: **Twitter in the Parliament – A Text-based Analysis of German Political Entities** 

### STM Approach



**Demo 7: STM** 

#### STM Exercise



**Exercise 4: Topic Modeling** 

**Keyword-Based Topic Extraction** 

#### Keyword-Based TE Idea

#### Situation:

- (Statistical) topic modeling not always producing meaningful topics
- Quite some human input required still
- Also, unsupervised approach not always appropriate
- Idea: specify keywords & find related documents

#### Approach:

- Specify list of keywords.
- Find similar words (both morphologically & semantically).
- Assign all documents using these words to the associated topic.

**Literature and References** 

https://www.apalyticgyidhya.com/blog/2015/10/baginnar.guida.wah.comping.bagytiful

under construction

mining and statistical analysis for non-structured text data applications, Academic Press. (text normalization