Title: Going round in circles

Aim: To see/feel centripetal force.

Subjects: 1D50 (Central Forces)

Diagram:

Equipment:

- Tube, with rounded edges, I=15cm.
- Piece of rope, I=1.5m.
- Two rubber stoppers (m₁).
- A number of weights (m₂). We use thick washers.
- Paperclip.
- (Stopwatch).

Presentation: Diagram shows the components and how to use them. Swinging the tube a little makes the mass m_1 go round in circles above your head. The demonstrator needs to make m_1 go round at a certain frequency to balance the system.

- When he slows down to a lower frequency m₂ will move down, making the circle of m₁ smaller and smaller. Speeding up makes m₂ go upward and m₁ goes round in larger and larger circles.
- The demonstrator makes m₁ go round in a stable circle. Then he grabs m₂ and pulls it downwards. m₁ speeds up dramatically, going round in smaller and smaller circles.

If time permits the relationship between the variables in this demonstration can be verified more exactly.

Just below the tubing a paperclip is fixed to the rope used as a marker to make m_1 go round in a circle with fixed R. A stopwatch can be used to time the frequency.

- 1. When m_1 is doubled by adding another rubber stopper to it, a lower frequency is needed to balance the system.
- 2. When m₂ is increased, a higher frequency is needed to balance the system.
- 3. When half the rope length is used (shifting the paperclip) a higher frequency is needed to balance the system.

Explanation: Analysis shows that movement at a constant speed (v) of a mass (m_I) in a circle with radius R can be described by $a_c = \frac{v^2}{r}\omega^2R$. In our demonstration the tension (7) in the string provides the force needed for a_c : $T=m_Ia_\alpha$ and $m_2g=m_1a_c\Rightarrow a_c=\frac{m_2}{m_1}g$, (see Figure 2).

R T

Figure 2

- First, the demonstrator showed a balanced situation. Then he slowed down ω . The centripetal acceleration, describing such a slower movement, will be lower $(a_c = \omega^2 R)$. But T is a fixed value, so T will pull m_I inwardly. As $a_c = \omega^2 R$ shows, this proces is cumulative and m_I ends at the centre of the circle.
- When m_2 is pulled downwards, the stringtension increases substantially and so a_c will. According to $a_c = \omega^2 R$ and seeing that R decreases, ω increases much.
- 1. Doubling m_I means that the provided a_c by the tension of the string will be halved $(a_c = \frac{m_2}{m_1} g)$. To make m_I still go round in the same circle ω has to be a factor $\sqrt{2}$ lower $(a_c = \omega^2 R)$.
- 2. Increasing m_2 will make the string tension higher and so the provided a_c is higher $(T=m_1a_c)$. To make m_1 still go in the same circle, ω has to increase.
- 3. When R is halved. The tension in the string has remained the same, so the provided a_c has remained the same. To make m_I still go in a (smaller) circle, ω has to increase a factor $\sqrt{2}$ ($a_c = \omega^2 R$).

Remarks:

- Practice the demonstration before you show it. A practiced hand is needed to make m₁ go round properly.
- We use rubber stoppers as masses moving around in circles for safety reasons.
- The spinning mass should be light compared to the hanging weight (about a factor 3), because otherwise the angle between the string and the vertical does not approach 90°: there will be more friction and due to the slanting rope (making a cone of our circle) the analysis becomes a different one.
- In the last part of the presentation (grabbing and pulling m_2 downwards) the demonstrator will feel that quite a lot of force is needed. It is of course most instructive for the students if they feel this force themselves (during coffeebreak?).

Sources:

- Ehrlich, Robert, Turning the World Inside Out and 174 Other Simple Physics Demonstrations, pag. 72-73
- Mansfield, M and O'Sullivan, C., Understanding physics, pag. 68-71 and 74-75

