Math 131A - Homework 5

Zooey Nguyen zooeyn@ucla.edu July 28, 2021

Question 1.

- (a) True. Given $\epsilon > 0$, there are $\delta_f > 0$ and $\delta_g > 0$ such that for some $x, y \in S$, $|x y| < \delta_f \Rightarrow |f(x) f(y)| < \epsilon/2$ and $|x y| < \delta_g \Rightarrow |g(x) g(y)| < \epsilon/2$. If $|x y| < \min(\delta_f, \delta_g)$, then $|(f + g)(x) (f + g)(y)| \le |f(x) f(y)| + |g(x) g(y)| < \epsilon$. Thus f + g is uniformly continuous on S for $\delta = \min(\delta_f, \delta_g)$.
- (b) False. Let f(x) = g(x) = x, then $(fg)(x) = x^2$ which is not uniformly continuous. Consider $\epsilon = 1$, then there must be δ such that $|x y| < \delta \Rightarrow |x^2 y^2| < 1$, so if we take $x = x, y = x + \frac{\delta}{2}$ it needs to be true that $|x^2 (x + \frac{\delta}{2})^2| = |\delta x + \frac{\delta^2}{2}| < 1$. But this does not hold for every x, simply choose $x = 1/\delta$ and the left side becomes greater than one.
- (c) True. Given $\epsilon > 0$, we have $|x y| < \delta_g \Rightarrow |g(x) g(y)| < \epsilon$. Given δ_g , we have $|x y| < \delta_f \Rightarrow |f(x) f(y)| < \delta_g$. Thus for any $\epsilon > 0$, we have δ_f such that $|x y| < \delta_f \Rightarrow |g(f(x)) g(f(y))| < \epsilon$.

Question 2.

Question 3.

If f is continuous at a, then for any $\epsilon > 0$, there is δ so that $|x-a| < \delta \Rightarrow |f(x)-f(a)| < \epsilon$. By definition of a limit we get that $\lim_{I\ni x\to a} = f(a)$. This then implies for some, since for some $\eta > 0$, $a\in I=(a+\eta,a-\eta)\in\mathbb{R}$, that $\lim_{x\to a} = f(a)$.

Question 4.

f is differentiable at 0 if the limit exists: $\lim_{x\to 0}\frac{f(x)-f(0)}{x-0}=\lim_{x\to 0}\frac{f(x)}{x}$. If $x\in\mathbb{Q}$ then $\frac{f(x)}{x}=1+x$, and $\lim_{x\to 0}1+x=1$. If $x\in\mathbb{R}\setminus\mathbb{Q}$ then $\frac{f(x)}{x}=1-x$, and $\lim_{x\to 0}1-x=1$. Thus $\lim_{x\to 0}\frac{f(x)}{x}=1$ exists, so f is differentiable at 0.

Question 5.

f is differentiable at c if the limit exists: $\lim_{x\to c} \frac{f(x)-f(c)}{x-c} = f'(c) = \lim_{x\to c} f'(x) = L$. The limit exists, so f is differentiable at c and f'(c) = L.

Question 6.

f is Riemann integrable if the limit of the lower and upper Riemann sums equal each other. Let S_l denote

Math 131A Homework 5

the lower sum and S_u denote the upper. Partitioning the interval into n pieces gives us pieces of 2/n since the interval is on [-1, 1].

$$S_{l} = \sum_{i=1}^{n} \frac{f(x_{n})}{n} = \sum_{i=1}^{n/2} 0 \frac{2}{n} + \sum_{i=1}^{n/2} 1 \frac{2}{n} = \sum_{i=1}^{n/2} \frac{2}{n} = 1$$

$$S_{u} = \sum_{i=1}^{n} \overline{f(x_{n})} \frac{2}{n} = \sum_{i=1}^{n/2} 0 \frac{2}{n} + \sum_{i=1}^{n/2} 1 \frac{2}{n} = \sum_{i=1}^{n/2} \frac{2}{n} = 1$$

$$\lim_{n \to \infty} S_{l} = 1 = \lim_{n \to \infty} S_{u}$$

So f is Riemann integrable and $\int_{-1}^{1} f = 1$.