Measurement of Hydrogen T_1 and T_2 Relaxation Times in Copper Sulfate Solutions Using PNMR PNMR Hydrogen Relaxation Times

Nathan Ryan Physics 403, Fall 2021

University of Illinois at Urbana-Champaign

Oct 12, 2021

- 1 Background Theory Goal and Motivation PNMR Techniques
- 2 Methods 180° | 90°
- 3 Results
- 4 Conclusion Conclusion Continuing Study

PNMR, or Pulsed Nuclear Magnetic Resonance, falls under the umbrella of MRI techniques that many of us are familiar with.

Figure: Initial Polarization [3]

Relaxation Path

Figure: [1]

Relaxation Path

Figure: General Relaxation Path [1]

Pulsed Nuclear Magnetic Resonance

TABLE II: Mico-reactor design specifications

Design Criteria	USNC MMR TM	X-Energy Xe-100 TM
Reactor type	Modular HTGR	Modular HTGR
Power Output (MWth)	15	200
Enrichment (% ^{235}U)	13	15.5
Cycle Length (years)	20	online refuel
Fuel form	TRISO compacts	TRISO pebbles
Reactor Lifetime	20 years	60 years
Coolant	Не	Не

- TRIstructural ISOtropic fuel has core of uranium, carbon, and oxygen: and is coated in layers of ceramic
- Roughly the size of billiard balls
- Load follows
- Fuel transitions directly to dry-cask storage

Figure: DOE HALEU Overview

Figure: MRI Scan of a Brain [4]

Figure: MRI Scan of a Brain [4]

Metabolite Identification

Figure: [2]

- Background
 Theory
 Goal and Motivation
 PNMR Techniques
- 2 Methods $180^{\circ} | 90^{\circ}$
- 3 Results
- 4 Conclusion Conclusion Continuing Study

Figure:

- 1 Background
 Theory
 Goal and Motivation
 PNMR Techniques
- 2 Methods 180° | 90°
- 3 Results
- 4 Conclusion
 Conclusion
 Continuing Study

Scenario Details:

- SMR deployments begin in 2025
- Scenarios run from 1965 to 2090
- UF₆ processing capacity limits enrichment facilities
- All scenarios incorporate existing reactors, decommissioning on current timelines (e.g. Dresden generating station is active until 2029)

TABLE I: Fuel cycle scenarios

Scenario No.	Advanced Reactor	Demand Growth
1	None	N/A
2	USNC MMR	No growth
3	X-energy Xe-100	No growth
4	USNC MMR	1% growth
5	X-energy Xe-100	1% growth

Figure:

- 1 Background Theory Goal and Motivation PNMR Techniques
- 2 Methods 180° | 90°
- 3 Results
- 4 Conclusion Conclusion Continuing Study

Mass and SWU

Figure: Mass of Enriched Uranium.

Figure: Separative Work Units needed for enrichment.

Conclusions and Energy Use

- Transition will require a mixture of HALEU production methods and deployments
- Scenario 2 never reaches required power level
- Scenario 3 requires more SWU than 2 due to higher enrichment

Figure: Energy use in each year.

Further Analysis of Sample K

Figure: Fit without Sample K

- The T₁ fit indicates a concentration of 37.9
- The T₂ fit indicates a concentration of 33.4

Superficial literature review revealed no indication that this range of concentrations should behave differently.

References I

- [1] Spin echo, 2020.
- [2] Teresa W.-M. Fan and Andrew N. Lane.Applications of nmr spectroscopy to systems biochemistry, 2017.
- Ben Nashman.
 How to measure a system without touching it: Magnetic resonance, 2018.
- [4] Tamije S. Perumal and Viji Palanisamy.Performance analysis of clustering algorithms in brain tumor detection of mr images, 2011.

Acknowledgement

The author would like to thank Yaashnaa Singhaal for their collaboration on this project, Albur Hasssan for their advisement and software contributions, Vishal Ganesan for their guidance, Virginia (Gina) Lorenz and Eugene Colla.

Frequency Deviation

Figure: Sample D [3.37 \pm 1.6×10⁻²]: T_1

Figure: Sample H [53.3 \pm 8.1 \times 10⁻²]: T_2