\vdash

Calculus Homework #6

Problem 8.8

In general, to prove that the two-variable limit does not exist, it is enough to find two different limits for two different paths.

Subproblem A

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^3 - y}{x^3 + y}$$

$$x \to 0y \to 0 \lim x3 + yx3 - y$$

For
$$y = mx^3y = mx3$$
:

$$\lim_{x \to 0} \frac{x^3 - mx^3}{x^3 + mx^3} = \lim_{x \to 0} \frac{1 - m}{1 + m} = \frac{1 - m}{1 + m}$$

$$x \to 0 \lim_{x \to 0} x^3 + mx^3 +$$

The limit is dependent on $m \Rightarrow m \Rightarrow$ the limit does not exist.

Subproblem B

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{xy}{x^2 + y^2}$$

$$x \to 0y \to 0 \lim x^2 + y^2 xy$$

For y = mxy = mx:

$$\lim_{x \to 0} \frac{x \cdot mx}{x^2 + m^2 x^2} = \lim_{x \to 0} \frac{mx^2}{(1 + m^2)x^2} = \lim_{x \to 0} \frac{m}{1 + m^2} = \frac{m}{1 + m^2}$$

$$x \to 0 \lim_{x \to 0} x^2 + m^2 x^2 x \cdot mx = x \to 0 \lim_{x \to 0} (1 + m^2)x^2 = x \to 0 \lim_{x \to 0} 1 + m^2 = 1 + m$$

The limit is dependent on $m \Rightarrow m \Rightarrow$ the limit does not exist.

Subproblem C

$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{y^2 - x^2}{y^2 + x^2}$$

$$x \to 0y \to 0 \text{ lim } y^2 + x^2y^2 - x^2$$

For y = mxy = mx:

$$\lim_{x \to 0} \frac{m^2 x^2 - x^2}{m^2 x^2 + x^2} = \lim_{x \to 0} \frac{m^2 - 1}{m^2 + 1} = \frac{m^2 - 1}{m^2 + 1}$$

$$x \to 0 \lim_{x \to 0} \max_{x \to 0} 2x^2 + x^2 \lim_{x \to 0} 2x^2 - x^2 = x \to 0 \lim_{x \to 0} 2x^2 + 1 \lim_{x \to 0} 2x^2 - 1 = x^2 + 1 \lim_{x \to 0} 2x^2 + 1 \lim_{x \to 0$$

The limit is dependent on $m \Rightarrow m \Rightarrow$ the limit does not exist.

Subproblem D

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{x^2 y^2}{x^2 y^2 + (x - y)^2}$$

$$x \to 0y \to 0 \lim x^2 y^2 + (x - y)^2 x^2 y^2$$

For y = xy = x:

$$\lim_{x \to 0} \frac{x^2 x^2}{x^2 + (x - x)^2} = \lim_{x \to 0} \frac{x^4}{x^4} = \lim_{x \to 0} 1 = 1$$

$$x \to 0 \lim_{x \to 0} x^2 x^2 + (x - x)^2 x^2 x^2 = x \to 0 \lim_{x \to 0} x^4 x^4 = x \to 0 \lim_{x \to 0} 1 = 1$$

For y = 0y = 0:

$$\lim_{x \to 0} \frac{x^2 0^2}{x^2 0^2 + (x - 0)^2} = \lim_{x \to 0} \frac{0}{x^2} = \lim_{x \to 0} 0 = 0$$

$$x \to 0 \lim_{x \to 0} x^2 0^2 + (x - 0)^2 x^2 0^2 = x \to 0 \lim_{x \to 0} x^2 0 = x \to 0 \lim_{x \to 0} 0 = 0$$

This should be enough, but in case you can't go along y = 0y = 0, a different option for y = kx, $k \ne 1$ y = kx, $k \diamondsuit = 1$:

$$\lim_{x \to 0} \frac{k^2 x^4}{k^2 x^4 + (1 - k)^2 x^2} = \lim_{x \to 0} \frac{x^2}{x^2 + \frac{(1 - k)^2}{k^2}} = \lim_{x \to 0} \frac{0}{0 + \frac{(1 - k)^2}{k^2}} = 0$$

$$x \rightarrow 0 \lim k2x4 + (1-k)2x2k2x4 = x \rightarrow 0 \lim x2 + k2(1-k)2x2 = x \rightarrow 0 \lim 0 + k2(1-k)20 = 0$$

There are at least two different limits for two paths y = x, $y = 0 \Rightarrow y = x$, $y = 0 \Rightarrow$ the limit does not exist.

Subproblem E

$$\lim_{\substack{x \to 0 \\ y \to 0}} \left(x + y \sin \frac{1}{x} \right)$$

$$x \to 0$$

$$x \to 0$$

$$x \to 0$$

$$x \to 0$$

 $f_1(x) = \sin \frac{1}{x} \in [-1, 1]$ f1(x) = $\sin x1 \in [-1, 1]$ is a bounded function. $f_2(y) = y$ f2(y) = y as $y \to 0$ y $\to 0$ is an infinitesimal function. Product of a bounded function and an infinitesimal function is infinitesimal. Therefore, $\lim_{\substack{x \to 0 \ y \to 0}} g(x, y) = \lim_{\substack{x \to 0 \ y \to 0}} f_1(x)f_2(y) = 0$ limx $\to 0$ y $\to 0$ g(x, y) = $\lim_{\substack{x \to 0 \ y \to 0}} f_1(x)f_2(y) = 0$

$$\lim_{\substack{x \to 0 \\ y \to 0}} \left(x + y \sin \frac{1}{x} \right) = \lim_{\substack{x \to 0 \\ y \to 0}} x + \lim_{\substack{x \to 0 \\ y \to 0}} y \sin \frac{1}{x} = \lim_{\substack{x \to 0 \\ y \to 0}} x + \lim_{\substack{x \to 0 \\ y \to 0}} g(x, y) = 0 + 0 = 0$$

$$x \to 0y \to 0 \lim (x + y \sin x) = x \to 0y \to 0 \lim x + x \to 0y \to 0 \lim y \sin x = x \to 0 \lim x + x \to 0y \to 0 \lim y \to 0$$

$$g(x, y) = 0 + 0 = 0$$

Answer:

$$\lim_{\substack{x \to 0 \\ y \to 0}} \left(x + y \sin \frac{1}{x} \right) = 0$$

$$x \to 0y \to 0 \lim (x + y \sin x 1) = 0$$

Problem 8.9

Find limit of $f(x, y) = \frac{y - 2x^2}{y - x^2} f(x, y) = y - x2y - 2x2$ in point (0, 0)(0, 0) along the path $x = \alpha t$, $y = \beta t$, $\alpha^2 + \beta^2 \neq 0$ and $\alpha t = 0$. Prove that $\lim_{\substack{x \to 0 \\ y \to 0}} f(x, y) \lim_{\substack{x \to 0 \\ y$

$$\lim_{\substack{x \to 0 \\ y \to 0}} \frac{y - 2x^2}{y - x^2} \qquad \Rightarrow \qquad \lim_{t \to 0} \frac{\beta t - 2\alpha^2 t^2}{\beta t - \alpha^2 t^2} = \lim_{t \to 0} \frac{\beta - 2\alpha^2 t}{\beta - \alpha^2 t} = \lim_{t \to 0} \frac{\beta - 0}{\beta - 0} = \lim_{t \to 0} 1 = 1$$

$$x \rightarrow 0y \rightarrow 0 \\ lim \\ y - x2y - 2x2 \\ \Rightarrow t \rightarrow 0 \\ lim \\ \beta t - \alpha 2t2 \\ \beta t - 2\alpha 2t2 \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t \\ = t \rightarrow 0 \\ lim \\ \beta - \alpha 2t\beta - 2\alpha 2t\beta - 2$$

$$\beta - 0\beta - 0 = t \rightarrow 0 \lim 1 = 1$$

For $y = mx^2y = mx2$:

$$\lim_{x \to 0} \frac{mx^2 - 2x^2}{mx^2 - x^2} = \lim_{x \to 0} \frac{m - 2}{m - 1} = \frac{m - 2}{m - 1}$$

$$x \to 0 \lim_{x \to 0} mx^2 - x^2 = \lim_{x \to 0} \frac{m - 2}{m - 1}$$

Thus, the multivariable limit does not exist.

Answer:
$$\lim_{\substack{x \to 0 \ y \to 0}} \frac{y - 2x^2}{y - x^2} = 1 \lim_{x \to 0} 0$$
 y $-x2y - 2x2 = 1$ along the path of $x = \alpha t$, $y = \beta t$, $\alpha^2 + \beta^2 \neq 0$ $x = \alpha t$, $y = \beta t$, $\alpha^2 + \beta^2 \neq 0$

Problem 8.10

Is the function

$$u(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, \ \forall x, y \text{ [i]} : x^2 + y^2 \neq 0 \\ 0, \ \forall x, y \text{ [i]} : x^2 + y^2 = 0 \end{cases}$$
$$u(x, y) = \begin{cases} \begin{cases} x^2 + y^2 & \text{if } x^2 + y^2 \neq 0 \\ 0, \ \forall x, y \text{ [i]} & \text{if } x^2 + y^2 = 0 \end{cases}$$
$$u(x, y) = \begin{cases} \begin{cases} x^2 + y^2 & \text{if } x^2 + y^2 \neq 0 \\ 0, \ \forall x, y \text{ [i]} & \text{if } x^2 + y^2 \neq 0 \end{cases}$$

continuous in point (0, 0)(0, 0)?

$$u'(x, y) = \frac{xy}{x^2 + y^2}$$

 $u'(x, y) = x^2 + y^2xy$

Per the continuity criterion: for u(x, y)u(x, y) to be continuous in point of closure (0, 0)(0, 0) it is required and sufficient that $u(0, 0) = \lim_{\substack{x \to 0 \ y \to 0}} u'(x, y).u(0, 0) = \lim_{\substack{x \to 0 \ y \to 0}} u'(x, y).u'(x, y)$. This limit of u'(x, y)u'(x, y),

as proven in **Problem 8.8, Subproblem B** does not exist and takes different values depending on the path. Therefore, (0, 0)(0, 0) is not the point of closure and the function u(x, y)u(x, y) is not continuous.

Answer: u(x, y)u(x, y) is not continuous