How Agentic RAG Solves Naïve RAG Weaknesses

Based on RAG Weak Points Tables – Ricoh, RNA Meeting July 2025

Xerox PARC visit moment

Example

Architecture

General Naïve RAG Failure Modes

Weak spot	What goes wrong	Concrete example
Compound / multi- hop questions	A single chunk rarely contains all required facts; similarity search returns pieces that answer only part A or part B, so the LLM hallucinates or guesses.	"Who led the ServiceNow rollout and which cost-saving KPI did the project hit in its first quarter?"
Comparative / option evaluation	Retrieval brings chunks about each item in isolation; the model may produce an ungrounded opinion or miss a dimension.	"Should we host the vector DB on Cosmos DB vs. Pinecone? List trade-offs for latency, price, DevOps effort."
Long-range summarization & synthesis	Large corpora exceed the context window; sampling yields an incomplete picture.	"Give me the 5-bullet executive summary of all incident-post-mortems from the last fiscal year."
Numeric aggregation & filtering	Chunks store raw numbers; LLMs struggle with arithmetic over many dispersed values.	"Total downtime minutes for StoreNext clusters across all 2024 incidents—broken down by root cause."
Temporal reasoning	Vector similarity ignores time; older docs outrank fresher ones unless filtered.	"What are the latest security patches still pending on production?"
Domain-specific jargon / synonyms	Embeddings may not capture subtle synonymy; the right doc stays below	Query: "steps to fail over the telephony core" → top hits cover PBX firmware

top-k.

updates, but not the DR run-book.

HR Knowledge Base – Naïve RAG Gaps

Weak spot	What goes wrong	Concrete example
Compound / multi-hop questions	Top-k retrieval brings either the policy or the procedure, not both; LLM guesses the missing half.	"How many vacation days can I carry over and which form do I submit to request it?"
Comparative / option evaluation	Chunks describe each benefit plan in isolation; no doc explicitly contrasts them.	"Compare premium costs and coverage between the BlueShield PPO and the Kaiser HMO plans."
Long-range summarization & synthesis	Engagement-survey results span dozens of PDFs; only a few get stuffed into the prompt.	"Give me a three-bullet summary of the 2024 Employee Engagement Survey across all regions."
Numeric aggregation & filtering	Totals must be computed across multiple policies; LLM flubs arithmetic.	"How many paid holidays do US-based employees get on average versus Japan-based employees?"
Temporal reasoning	Vector search returns older but semantically similar docs unless date-filtered.	What changes were made to parental-leave policy after 2023?
Domain jargon / synonyms	Embeddings miss Ricoh-specific terms, so the right doc falls outside top-k.	I need to take some R&R days, what forms should I complete to request LOA next month?

General Naïve RAG Failure Modes vs Agentic RAG

Naïve Weakness	What Goes Wrong	Agentic RAG Fix
Compound / Multi-hop Questions	Only retrieves part of the answer; LLM guesses the rest.	Agent decomposes question and retrieves for each subpart.
Comparative / Option Evaluation	Retrieves isolated facts; lacks structured comparison.	Agent compares retrieved content explicitly, may use tools.
Long-range Summarization	Incomplete context from large corpora.	Uses map-reduce (Hadoop) summarization across batches of docs.
Numeric Aggregation & Filtering	LLMs fail at multi-chunk arithmetic.	Agent calls external tools (e.g., SQL, Pandas) to compute.
Temporal Reasoning	Older documents dominate due to vector similarity.	Agent filters and prioritizes by metadata like date.
Domain Jargon / Synonyms	Misses internal terms; wrong chunks retrieved.	Agent reformulates queries and expands synonyms.

Agentic RAG Fixes – HR Examples

Examples from HR knowledge base:

- Vacation days + form → Agent splits into policy + procedure lookup.
- PPO vs HMO → Agent builds side-by-side comparison.
- Survey summary → Map-reduce summarization over all regions.
- Holiday averages → Uses arithmetic tools to aggregate by country.
- Parental leave after 2023 → Filters results using metadata.

Mitigation techniques

- **1. Iterative (multi-hop) retrieval** decompose the user query into sub-questions; retrieve for each hop; chain the answers.
- **2. Reranking & fusion-in-decoder** pull a wider candidate set (k = 50-100), rerank with a cross-encoder, then weave snippets together during generation.
- **3. Hierarchical or map-reduce summarization** summarize batches of chunks, then summarize the summaries.
- **4. Structured tool calls** push arithmetic, filtering, or comparison to an external tool (SQL, Pandas) and feed results back to the LLM.
- **5. Metadata-aware retrieval** store and query by tags like "date," "system," or "owner," not just dense vectors.
- **6. Agentic orchestration** use planners (e.g., ReAct, GraphRAG) that can decide "I need more context for part B—run another search."

Summary: Techniques Used by Agentic RAG

Agentic RAG combines multiple advanced techniques:

- Multi-hop planning with ReAct / GraphRAG
- Metadata filtering (e.g., by date, region)
- Structured tools for math & filtering (SQL, Pandas)
- Hierarchical summarization (map-reduce style)
- Cross-encoder reranking and fusion-in-decoder
- Reflective retry if answer is incomplete

Naïve/Simple RAG vs Agentic RAG

Feature	Naïve RAG	Agentic RAG
Retrieval	Static query to vector DB	Multi-hop, dynamic tool usage
Context handling	Fixed chunks	Context-aware reasoning
Execution	Single-pass	Iterative planning & refinement
Integration	Standalone answer	Workflow automation & action execution

The RAG Triad

https://www.trulens.org/getting_started/core_concepts/rag_triad/

MRKL: Modular Reasoning with Knowledge and Language

The MRKL pattern uses an LLM to route sub-tasks to specialized tools (math, search, SQL, APIs), then synthesizes the outputs into a final, coherent answer.

Key takeaway

- A naïve "retrieve-top-k-then-stuff" pipeline is great for local fact lookup but brittle for reasoning that spans documents, options, or time.
- Layering smarter retrieval (filters, rerankers), structured reasoning, and multi-step orchestration transforms RAG from a FAQ helper into a robust enterprise knowledge system.

Agentic Retrieval Concepts

Key Insights from Microsoft Learn

Agent = Reasoning + Memory + Action

- Agents do more than retrieve:
- Reason about the user's intent.
- Maintain memory of previous steps and gaps.
- Take action: search, calculate, call tools, refine queries.

Example: For Q2 metrics, the agent retrieves data, runs calculations, and revises the output as needed.

Orchestration Patterns for Agents

- Agentic RAG uses intelligent workflows:
- ReAct: Combines reasoning and tool use (think-act-think).
- MRKL: Modular Reasoning with tools for math, APIs, and search.
- GraphRAG: Uses a knowledge graph for semantic search and traversal.

Structured Retrieval = Higher Precision

- Agents filter and rank with metadata:
- Use fields like doc_type, project_id, or date_updated.
- Improves results for time-sensitive or domainspecific queries.
- Avoids reliance on dense vectors alone.

Example: Filter to docs updated in the last 30 days to answer 'What's still pending?'

Tool Use is First-Class

- Agents don't just guess—they use real tools:
- SQL queries, APIs, Excel-like computation tools.
- Enables accurate math, comparison, and dynamic lookup.
- Supports grounded enterprise logic.

Example: To compare sprint velocity, the agent queries Jira and calculates rankings.

Memory Powers Intelligent Retrieval

- Agents keep track of what's known or missing:
- Maintains short-term memory of retrieved and used documents.
- Prevents repetition, hallucination, and context gaps.
- Enables long-form synthesis across steps.

Agent ≠ Just an LLM

- Agents orchestrate, LLMs assist:
- Agent decides when and how to retrieve.
- LLM generates queries, parses output, or writes summaries.
- Tools and APIs provide facts, calculations, and results.
- Enhances traceability, security, and flexibility.

Final Takeaway

- Agentic RAG = Think + Plan + Act
- Not just Q&A it's structured knowledge work.
- Dynamically adapts to user needs.
- Uses tools, memory, filters, and multi-step logic.
- Ideal for robust enterprise-scale answers.

Resources

- https://www.youtube.com/watch?v=Fjef7uhV3gw
- https://learn.microsoft.com/en-us/azure/search/search-get-startedrag?pivots=python
- https://learn.microsoft.com/en-us/azure/search/search-agentic-retrievalconcept
- https://www.youtube.com/watch?v=PeTmOidqHM8
- https://www.trulens.org/getting_started/core_concepts/rag_triad/
- https://github.com/Azure-Samples/azure-search-python-samples