

Lecture 13 – Neuromorphic systems

Outline – Lecture 13

- Selector devices
- CrossNet architecture
- Neuromorphic systems examples
 - TrueNorth
 - Loihi
 - SpiNNaker

A full neuromorphic system?

Architecture of the crossbar memory array

The crossbar

- Maximum density
 - → 4F² per memory element, F as small as possible
 - → As large arrays as possible (> 1000 x 1000)
- 20 nm node: 20 nm 10 nm

• Line resistance and Capacitance limits size

Biasing schemes

	Ground unsel.	V/3 scheme	V/2 scheme
V	V_{dd}	V_{dd}	V_{dd}
V_{r}	0	V _{dd} /3	V _{dd} /2
V _c	0	2V _{dd} /3	V _{dd} /2

Un-selected

devices

Current sink

 What happens to the current as it goes towards the "last" device?

The Selector device

- Purpose: To cut of leakage paths through unselected memory devices
- A switch Implementation should be compact and efficient
- Ideas:
 - Transistor:
 - Good switch
 - Third terminal
 - Footprint
 - Diode:
 - high currents at high V
 - Very low currrents at low V
 - only for unipolar memories (PCM, some RRAM)

Examples of selector devices

- **Requirements**: High nonlinearity (10⁶), high current density (10s MA/cm²), (bipolar)
- Vertical Transistors → Excellent performance, 3-terminal → complexity, not easy in BEOL
- Oxide Schottky barriers → limited currents, bidirectional

8

Burr et al. J. Vac Sci. Techn. B 2014 Mattias Borg | EITP25 VT20 – Lecture 13

Nonlinear memory devices

- Nonlinearity decreases leakage through unselected devices
- Unselected devices have lower bias → higher R
- $\eta = R(0)/R(V_{dd})$: nonlinearity factor
- Parabolic nonlinearity: ReRAM, PCM ($\eta \sim 10-100$)
- Exponential: MRAM, FTJ ($\eta > 1000$)

Exercise - Selector-less device

A FTJ has the following I-V characteristic

A selected device in HRS and half-selected in LRS, $V_{dd} = 1 \text{ V}$

Compare the leakage current through the half-selected device ($V_{dd}/3$) to the current through the current through the selected device (V_{dd})

B:
$$\frac{I_{sel}}{I_{total}} = 100$$

C:
$$\frac{I_{sel}}{I_{local}} = 1000$$

$$D: \frac{I_{sel}}{I_{leak}} = 10000$$

Is that sufficient for a 1000x1000 memory array?

Go to PollEv.com/mattiasborg110

Hybrid Neuromorphic systems

- Synapses in memristor arrays (4-6F²)
- Neurons in CMOS (>100F²)
- For density CMOS should be underneath

CrossNet architecture

- Memory crossbar above CMOS neuron arrays at 2F_{nano} pitch.
- Interface pin network in two heights
 - Pitch: $2\beta F_{CMOS}$
 - Offset angle: $\alpha = asin\left(\frac{F_{nano}}{\beta F_{CMOS}}\right)$
 - $\beta > 1$, depends on size needed for CMOS cell
- Allows for $F_{nano} \ll F_{CMOS}$!!

Neural nets in CrossNet topology

Connectivity can be arbitrarily defined by distance between CMOS neurons

Neural nets in CrossNet topology II

"InBar" – Non-layered (N=9) – F_{nano} can be smaller

Exercise – Neural density in CrossNet?

"InBar" topology $F_{nano} = 10 \text{ nm}$ N = 10 000

How many neurons on a 100 mm² chip?

The human brain has 200 billion...

A: 100 000

B: 100 million

C: 100 billion

3 options

Go to PollEv.com/mattiasborg110

Examples of existing neuromorphic hardware

SpiNNaker (Uni Manchester) v1 in 2009

TrueNorth (IBM) v1 in 2015

Loihi (Intel) v1 in 2018

Other chips: HICANN (Heidelberg), Neurogrid (Stanford)

TrueNorth

- 4096 neurosynaptic cores á 256x256 synapses
- Digital implementation of Spiking Neural Network
 - Digital LIF Neurons
- Mixed asynchronous-synchronous design
 - Asynchronous event-based connections between cores
 - Collects spikes in each core input
 - After global "ticks" every 1 ms keep execute core computations and send new events
- 80 chip system (80M neurons, 20B synapses @ 20W)

Loihi (Intel)

- Fully digital implementation of SNN
- 128 neuromorphic cores (x1024 neurons) connected by Network-on-chip
- Implements LIF Neurons
- Homeostasis, refractoriness, stochasticity, STDP
- SRAM Synapses (1-9 bit)
- Connectivity by network communication, not physical
 - Tricks to handle N ~ 10 000
- Each time step
 - Integrate neuronal input messages, update potential
 - Neurons that should fire sends messages to corresponding cores
 - Cores send barrier messages to synchronize before next time step

SpiNNaker

Array of ARM9 cores communicating on custom interconnect fabric

1000 neurons and their connections in each core

Same principle as Loihi

57K chips, Each 102 mm² chip with 18 cores and 128 MB DRAM

>1 M ARM cores, 7 TB (!) RAM

Part of EU Human Brian Project

Designed to be connected together (up to 65K nodes)

- Now at > 1M ARM cores
- SpiNNaker2 in 2023

Scaling SpiNNaker to a billion neurons

100 kW power!

5 racks per cabinet, 10 cabinets.

Benchmarking

	SpiNNaker	TrueNorth	Loihi
Model	Digital	SNN, digital	SNN, digital
Chip area mm ²	102	430	60
Process tech	UMC 130 nm	Samsung 28 nm	Intel 14 nm
Neurons / chip	18K	1M	131K
Synapses / chip	18M	256M	120M
Power / chip (mW)	1000	100	100
Release year	2011	2014	2018

Summary

- Line resistance + current drop limits memory array size
- Large scale memory arrays require non-linearity to avoid leakage
- Selector devices : non-linear ($\eta > 10^6$), bidirectional, high current density
- Non-linear memory devices can avoid selectors
- CrossNets, a promising approach to high-density hybrid neuromorphic systems
 - High density synapses on top
 - CMOS neurons underneath

- Neuromorphic systems available with < 100 mW power consumption
 - CMOS based
- Still no full-scale memristor-based neuromorphic system on market

Exam information

- Online Written Exam
- June 4th 2.00pm 18.00pm
- https://lu-se.zoom.us/j/66625232949?pwd=Q1I4MFJmdXpycW1aSW5JQnAvY2o1QT09

Meeting code: 666 2523 2949

Password: 027756

- ID check starts at 1.45pm
- Exam is visually monitored (need camera on at all times)
 - >5 min downtime
- Oral follow-up exam in case of suspicious behaviour
- Solutions to be scanned and uploaded to Canvas before 6.10pm
- Allowed aids for the exam:
 - Writing aids e.g. Pen, paper, ruler, etc..
 - Calculator
 - Printed notes (i.e. your own list of important things to remember),
 1 A4 paper (double-sided printing is ok)
- Computer or similar for displaying the exam questions, but not for anything else.

Master project openings

Investigating ITO electrode properties for lowpower self-compliant RRAMs

Karl-Magnus.Persson@eit.lth.se Saketh_ram.Mamidala@eit.lth.se **Optimization of Ferroelectric Tunnel Junctions**

mattias.borg@eit.lth.se robin.atle@eit.lth.se

Performance of binary ferroelectric synapses in Spiking neural networks

mattias.borg@eit.lth.se

Piezoresponsive Microscopy of ferroelectric devices

Mattias.borg@eit.lth.se robin.atle@eit.lth.se