6. (a) Geoff was given an unknown alcohol of molecular formula C₄H₁₀O. It was labelled A. He performed the following tests and noted his results in order to find the identity of A.

	Test	Results
1.	Heat A with acidified potassium dichromate(VI), distilling the product as it forms	Colourless liquid B is formed
2.	Heat A with ethanoic acid and sulfuric acid	Sweet smelling liquid C is formed
3.	Reflux A with acidified potassium dichromate(VI), followed by distillation	Colourless liquid D is formed
4.	Add sodium hydrogencarbonate solution to liquid D	Effervescence of CO ₂ and compound E is formed

After analysing his results Geoff concluded that compound **A** must be butan-1-ol. Assume that he is correct in order to answer parts (i) and (ii).

(i)	Name compounds B and C.	[2]
(ii)	Give the formula of compound E.	[1]

(iii)	By considering all the alcohols of formula $\rm C_4H_{10}O$, state if you agree with Geoconclusion. Give reasons to justify your answer.	off's [5]
		· · · · · · · ·
(iv)	Draw a labelled diagram of the apparatus Geoff should use to carry out distillation in test 3.	the [3]

1-Ch	lorobutane can be warmed with aqueous sodium hydroxide to form butan-1-ol.
(i)	Classify the type of reaction mechanism occurring and draw the mechanism for this reaction. [4]
	Type of reaction mechanism
(ii)	Use the infrared absorption frequencies given in the Data Sheet to explain how you would know if all the 1-chlorobutane has been converted into butan-1-ol. [2]
(iii)	1-lodobutane also reacts with aqueous sodium hydroxide to form butan-1-ol. State, giving a reason, if this reaction is faster or slower than the one between 1-chlorobutane and aqueous sodium hydroxide under the same conditions. [1]

6.	(a)	(i)	B = Butanal (1)						
			C = Butyl ethanoate (1)		2		2		
		(ii)	C₃H₁COONa Accept NaC₃H₁COO		1		1		
		(iii)	Other possible structures are butan-2-ol, methylpropan-2-ol, methylpropan-1-ol (2) (Accept displayed formulae) (1) for 2 correct structures		2				
			Cannot be methylpropan-2-ol / must be primary or secondary alcohol since it is oxidised (1)			1			
			Cannot be butan-2-ol / must be primary alcohol since it is oxidised to acid (1)			1			
			Could be methylpropan-1-ol since it is a primary alcohol (1)			1	5		
		(iv)	Thermometer with bulb opposite outlet to condenser (1)						
			Condenser with correct water connections (1)						
			Suitable overall diagram	3			3		3
_			1					1	
6.	(b)	(i)	Nucleophilic substitution (1)	1					
			Polarisation of C—CI (1)		1				
			Curly arrow from OH ⁻ (1)	1					
			Curly arrow to show C—CI breaking / intermediate (1)	1			4		
		(ii)	No peak at 650–800 cm ⁻¹ due to C—Cl bond (1)						
			Peak at 2500–3500 cm ⁻¹ due to O—H bond Accept peak at 1000–1300 cm ⁻¹ due to C—O bond (1)		2		2		
		(iii)	Faster since C— I bond weaker than C—CI bond	1			1		
			Question 6 total	7	8	3	18	0	3

(b)	A compound is show that the observation(s).	compound is	either 1-chlorob 1-chlorobutane.	utane or 1-iod Give any rea	obutane. Describe gent(s) used and	e a test to expected [3]
						· · · · · · · · · · · · · · · · · · ·
						······································

(c)	1-Ch	lorobutane can undergo an elimination reaction with hydroxide ions.	
	(i)	Draw the displayed formula of the organic product of this reaction.	[1]
	(ii)	State the conditions required for this reaction.	[1]
(d)	Expl	ain why 1-chlorobutane has a higher boiling temperature than chloroethane.	[2]
(e)	depl	s have been shown to be serious pollutants due to their contribution to detion. Chemists are now replacing them with HFCs. Suggest two properties versions should have.	ozone which [2]

(f)	T 3	he ma :1 and	ass spectrum of a CFC shows two major sign molecular ion peaks at 170, 172 and 174.	als at	m/z 13	5 and	137 ir	the ra	atio of
	Т	he CF	C contains 14.0 % carbon, 44.5 % fluorine ar	nd 41.5	% chl	orine b	y mas	SS.	
	It	only h	nas one peak in its ¹³ C NMR spectrum.						
	U	se the	e information to find the structural formula for	the Cl	FC. Ex	plain y	our re	easoni	ng. [5]
7.	(b)	ı	Heat with aqueous sodium hydroxide (1)	I	I	I 1		I	I
	(~)		Add nitric acid and aqueous silver nitrate (1)						
			White precipitate observed (1)	3			3		3
	(c)	(i)	н 4 4						

2

2

(ii)

(d)

Dissolved in ethanol + heated

It has stronger/more Van der Waals forces (1)

Because it has a larger surface area / hydrocarbon chain (1)

7.	(e)	Any two of following for (1) each non-flammable non-toxic suitable volatility	2			2		
	O	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		1 1 1 1	1	5	1	

6.	Giv —C	e a c	hemical test which could be used I. Your answer should include all r	d to show the peagents and ob	reser serva	ice of tions.	a carb	oxylic	acid g	roup, [2]
6			dd Na ₂ CO ₃ / NaHCO ₃ (1)							
		b	ubbles seen (1)		2			2		2
((c)	Prop	ene reacts with hydrogen bromid Draw the mechanism for this re		nopro	pane a	as the	major	produc	ct. [3]
		(ii)	State briefly why 2-bromopropa	ne is the main p	orodu	ct of th	is read	ction.		[1]
((d)	1-Br	omopropane is used in the synthe	esis of many org	ganic	compo	ounds.			•
		(i)	Classify the type of reaction me from 1-bromopropane.	echanism taking	g plac	e whe	n prop	an-1-	ol is fo	rmed [1]
		(ii)	Give the reagent(s) and concepropene.	litions necessa	ry to	conv	ert 1-l	bromo	propar	e to [1]

(e) A student was given a sample of bromopropane but was not told which isomer it was. The low resolution ¹H NMR spectrum of the sample is shown below.

Deduce which isomer the student was given and hence the relative areas under each peak. Give your reasoning. [2]

(i)	CH ₃ CH ₇ CH ₂					
	dipole and curly arrow in HBr (1) curly arrow from double bond (1) curly arrow from Br ⁻ to carbocation (1)	3		3		
(ii)	secondary carbocation is more stable than primary carbocation	1		1		
(i)	nucleophilic substitution	1		1		
(ii)	alcoholic potassium/sodium hydroxide (+ heat)	1		1		1
	2-bromopropane since only two different proton environments (1) relative areas of the peaks must be 6:1 (1)		2	2		
	(ii) (i)	CH ₃ CH=CH ₂ H ⁸⁺ H ⁸⁺ dipole and curly arrow in HBr (1) curly arrow from double bond (1) curly arrow from Br⁻ to carbocation (1) (ii) secondary carbocation is more stable than primary carbocation (i) nucleophilic substitution (ii) alcoholic potassium/sodium hydroxide (+ heat) 2-bromopropane since only two different proton environments (1)	CH3CH=CH2 CH3CH=CH2 CH3CH-CH2 CH3CH-CH2	CH ₃ CH=CH ₂ CH ₃ CH=CH ₂ CH ₃ CH-CH ₂ SH CH ₂ CH ₃ CH-CH ₂ SH CH ₂ CH ₃ CH-CH ₂ CH ₃ CH-CH ₂ CH ₃ CH-CH ₂ SH CH ₂ CH ₃ CH ₂ SH CH ₂ CH ₃ CH ₂ CH ₃ CH ₂ SH CH ₂ CH ₃ CH ₂ CH ₃ CH ₂	CH ₃ CH=CH ₂ H ⁸⁺ Gipole and curly arrow in HBr (1) curly arrow from double bond (1) curly arrow from Br to carbocation (1) (i) secondary carbocation is more stable than primary carbocation 1 1 (ii) nucleophilic substitution 1 1 (iii) alcoholic potassium/sodium hydroxide (+ heat) 2-bromopropane since only two different proton environments (1)	CH ₃ CH=CH ₂ LH ₃ C

8.	(a)	A s	Pour 10 cm ³ of dilute sulfuric acid into a round-bottomed flask. Add 5 g of a suitable reagent and 2-3 anti-bumping granules. Swirl the flask gently until all the reagent has dissolved. Add 2 cm ³ of concentrated sulfuric acid and cool the flask under running water. Set up the apparatus for heating under reflux. Add 12.0 cm ³ of ethanol, drop by drop,						
			 to the solution in the round-bottomed flask. When all of the ethanol has been added, boil gently under reflux for 20 minutes, not allowing any vapour to escape. 						
		•	Distil the mixture in the flask and collect the aqueous solution of ethanoic acid formed.						
		(i)	Name the type of reaction taking place, giving a suitable reagent. [2]						
		(ii)	Draw a labelled diagram of the apparatus you would use for heating under reflux. Explain how this apparatus prevents the escape of vapour. [4]						
	•								
	**********		•						

	(iii) 	Give two reasons why the escape of vapour should be prevented.	[2]
	(iv)	Ethanol has a density of 0.79 g cm ⁻³ at room temperature. Calculate temperature of ethanol in 12.0 cm ³ .	
	(v)	In another experiment, the same reaction mixture was only gently he product distilled off as it was formed. Explain why ethanoic acid is not this instance.	
(b)		nother preparation of ethanoic acid from ethanol, 10.2g of pure ethan ined. The percentage yield of ethanoic acid was 65%.	oic acid were
	Calc	culate the mass of ethanol used in the preparation.	[3]
		Mass =	g

8	(a)	(i)	oxidation (1)						
			potassium dichromate(VI) (1)	2			2		2
		(ii)	water out water in reaction mixture with anti-bumping granules HEAT flask with vertical condenser (1) unsealed apparatus (1) heat (1)						
			reaction mixture being heated returns to the flask / vapour is (cooled and) condensed (1)	4			4		4
		(iii)	any two of following for (1)						
			 yield would be reduced / reactants (products) would be lost complete oxidation could not occur vapour is flammable / acidic 			2	2		2
		(iv)	0.206 (2) if answer is incorrect award (1) for mass of ethanol = 9.48 g ecf possible from incorrectly calculated mass		2		2	2	
		(v)	ethanal / aldehyde is formed (1) only partial oxidation occurs (1)		2		2		
	(b)		0.170 mol of ethanoic acid (1)						
			from 0.262 mol of ethanol (1)					1	
			12.0 (1)		3		3	1	
			ecf possible throughout					-	

(d)	Butane is another common alkane. Two other compounds with a similar molecular mass to butane are ethanoic acid and propan-1-ol.
	The boiling temperatures in °C for butane, ethanoic acid and propan-1-ol are
	-1, 97 and 118, but not necessarily in that order.
	Deduce the boiling temperature of each compound, giving reasons in support of your conclusions. [3]

•	·
•	
•	

(e) Compounds A and B are two of butane, ethanoic acid and propan-1-ol.
Their ¹³C NMR spectra and simplified mass spectra are shown below.

Compound A

¹³C NMR spectrum

Mass spectrum

Compound B

¹³C NMR spectrum

Mass spectrum

	Us De spe	se the information to identify compounds A and B c escribe the main features that would be seen in the ¹ ectrum of the remaining compound.	learly ex ³ C NMR	plainin spectr	g your um ar	reasoning. d the mass [6 QER]
*********						······································
						······································
						······································
						······································
						· · · · · · · · · · · · · · · · · · ·
						······································
						• • • • • • • • • • • • • • • • • • •
(f)	Sta	ate and explain how you would expect the infrared sp	pectrum	of etha	noic a	cid to differ
• • •	fro	m that of propan-1-ol.				[2]
						······································
_						
(d)		butane −1°C, propan-1-ol 97°C, ethanoic acid 118°C (1)				
		butane shows no hydrogen bonding between molecules (1)				
		ethanoic acid has more/stronger hydrogen bonds between molecules than propan-1-ol (1) (accept answers in terms of more dipoles)	3		3	

(e)	Indicative content • A is ethanoic acid, B is propan-1-ol • ¹³C NMR for butane has 2 peaks between 5 and 40 ppm • ¹³C NMR ethanoic acid has 2 peaks but propan-1-ol has 3 peaks • both have peaks at m/z 60 due to molecular ion (butane does not) • both have peaks at m/z 45 due to COOH* and CH ₂ CH ₂ OH* respectively (butane does not) • mass spectrum for butane has peaks at m/z 15, 29, 43 and 58 • propan-1-ol has a peak at m/z 29 due to CH ₃ CH ₂ * and m/z 31 due to CH ₂ OH* (ethanoic acid does not) • ethanoic acid has a peak at m/z 43 due to CH ₃ CO* (propan-1-ol does not) 5-6 marks Correctly identifies compounds giving a comprehensive explanation and of the contraction of the cont					
	The candidate constructs a relevant, coherent and logically structured me content. A sustained and substantiated line of reasoning is evident and so accurately throughout.					ve
	3-4 marks Correctly identifies compounds giving good basic explanation and gives of the candidate constructs a coherent account including most of the key elevident in the linking of key points and use of scientific conventions and versions.	lements o	f the ind	icative co	ontent. So	ning is
	1-2 marks Correctly identifies compound(s) giving some explanation. The candidate attempts to link at least two relevant points from the indica inclusion of irrelevant material. There is some evidence of appropriate use					n and/or
	0 marks The candidate does not make any attempt or give an answer worthy of credit.					
(f)	only ethanoic acid would have an absorption at 1650-1750 cm ⁻¹ due to presence of the C=O bond (1)					
	ethanoic acid would have an absorption at 2500-3200 cm ⁻¹ due to the presence of the O—H bond, while the absorption due to O—H in propan-1-ol would be at 3200-3550 cm ⁻¹ (1)	2			2	

8. (a) Study the reaction scheme shown below and the other information about compounds A-E that follows.

Compound A is a straight-chained gaseous hydrocarbon.

Compounds B and C are isomers.

Compound E reacts with sodium hydroxide in a 1:1 molar ratio.

0.412 g of compound E in aqueous solution requires 23.40 cm 3 of sodium hydroxide solution of concentration 0.200 mol dm $^{-3}$ for complete neutralisation.

(i)	Calculate the relative molecular mass of compound E.	[2]
	Relative molecular mass =	
(ii)	Identify compounds A-E giving your reasoning.	[7]
•		······

		······································
*******		······
		······································
(iii)	Name the type of reaction taking place when compound B is compound A .	onverted back to
		······································

(b) Geraniol is one of the main constituents of rose oil and is widely used in perfumes and flavourings. Its structure is shown below.

(ii) Name the functional groups present in the compound. [1]

(iii) State the **molecular** formula of the compound. [1]

(iii) Draw the structure of an organic product formed when geraniol reacts with

I. Br₂ [1]

II. CH₃COOH in the presence of sulfuric acid [1]

8.	(a)	(i)		moles NaOH = $0.2 \times 23.4/1000 = 4.68 \times 10^{-3}$ therefore 4.68×10^{-3} moles of E (1)						
				$M_{\rm f}(E) = 0.412/4.68 \times 10^{-3} = 88.03$ (1)		2		2	1	
		(ii)		A is but-1-ene (1)						
				B is 2-bromobutane (1)						
				C is 1-bromobutane (1)						
				D is butan-1-ol (1)						
				E is butanoic acid (1)		5				
				award (1) each for any two of following						
				E must be acid since neutralised by NaOH D must be primary alcohol since oxidised to acid						
				A must be alkene since reacts with HBr			2	7		
				 B/C must be bromoalkane since formed from alkene (and C forms alcohol) 			2	′		
		(iii)		elimination	1			1		
	(b)	(i)		alkene / C=C and alcohol / hydroxyl	1			1		
		(ii)		C ₁₀ H ₁₈ O	1			1		
		(iii)	I	H ₃ C — C — CH ₂ Br Br CH ₂ CH ₃ H OH		1		1		
				accept addition across 1 double bond only						
			II	,cH₃						
				H ₃ C CH ₂ CH ₂ CH ₂ O		1		1		
				ignore error in chain						

(e)	A student was given separate samples of pentan-2-ol and 2-methylbutan-2-ol but was not told which was which.											
	Describe a chemical test that the student could use to clearly distinguish between the alcohols. Give any reagent(s) used and expected observation(s) for both compounds. [3]											

- (f) Another student wanted to make pure 2-chloro-2-methylbutane from 2-methylbutan-2-ol in a multi-step process. One of the steps used was distillation.
 - (i) An incomplete diagram of the distillation apparatus is shown below.

Complete the diagram by drawing a thermometer and clearly labelled arrows to show the flow of water into and out of the condenser. [2]

(ii) The student predicted that since this was a multi-step process the overall yield would be less than 70 %.

In the process, $5.00\,\mathrm{cm^3}$ of 2-methylbutan-2-ol were used and $4.05\,\mathrm{cm^3}$ of 2-chloro-2-methylbutane were made.

Is the student correct? Use the following information to justify your answer.

[3]

Compound	Density / g cm ⁻³
2-methylbutan-2-ol	0.805
2-chloro-2-methylbutane	0.866

density =
$$\frac{\text{mass}}{\text{volume}}$$

(e)		reflux both with acidified potassium dichromate (1)						
		colour changes from orange to green with pentan-2-ol (1)						
		no change with 2-methylbutan-2-ol (1)		3		3		
(f)	(i)	thermometer bulb adjacent to outlet leading to condenser (1)						
		water in through lower tube and out through upper tube (1)	2			2		2
	(ii)	mass of alcohol = $5 \times 0.805 = 4.025$ moles of alcohol = $4.025 \div 88 = 0.0457$ (1)						
		theoretical mass of chloroalkane = $0.0457 \times 106.5 = 4.87$ actual mass chloroalkane = $4.05 \times 0.866 = 3.51$ g (1)					2	
		percentage yield = 3.51/4.87 × 100 = 72% therefore student is incorrect (1)			3	3		

7. Ethanoic acid, CH ₃ COOH, is a typical organic acid.									
	Write the equation for the reaction between ethanoic acid and magnesium oxide.								
7		$2CH_3COOH + MgO \rightarrow (CH_3COO)_2Mg + H_2O$		1		1			
8.	(a)	Discuss how 1-bromobutane can react with hyd give two different organic products.	roxide	ions ur	nder di	fferent	condit	ions to	
		Draw the mechanism for the formation of one of	the org	ganic p	roduct	s.	[6	QER]	
								······································	
	******							· · · · · · · · · · · · · · · ·	
	•								
								······································	
								· · · · · · · · · · · · · · · · · · ·	

	reac	tion a mixture of products is obtained.	
	(i)	Name the type of reaction mechanism taking place.	[1]
	(ii)	Explain why butane can also form during this reaction.	[2]
(c)	Halo	ogenoalkanes can also be formed from alkenes.	
		en 3-methylbut-1-ene is reacted with hydrogen bromide a mixture of two diffe lucts is formed.	rent
	(i)	Identify the products.	[2]
	(ii)	State and explain which of the two products is more likely to be formed.	[1]
(d)	mos	ogenoalkanes containing both chlorine and fluorine are known as CFCs. One of t abundant CFCs in the atmosphere is trichlorofluoromethane, CCl ₃ F.	
	Expl than	lain why CCI ₃ F remains longer in the troposphere (lower atmosphere) of the E in the stratosphere (upper atmosphere).	arth [2]

8	(a)		Indicative content • types of mechanism - nucleophilic substitution and elimination • reaction conditions NaOH dissolved in water for nucleophilic substitution NaOH dissolved in ethanol for elimination • products - butan-1-ol and but-1-ene / equations • mechanism for nucleophilic substitution polarisation of C-Br curly arrow from OH- curly arrow showing C-Br breaking / intermediate	6			6	
	(b)	(i)	radical substitution accept photochlorination	1			1	
		(ii)	during the reaction ethyl radicals form (1) two of these radicals can combine to give butane (1)	2			2	
	(c)	(i)	award (1) for each product 1-bromo-3-methylbutane 2-bromo-3-methylbutane accept correct structures award (1) if Br in correct place but error in structures		2		2	
		(ii)	2-bromo-3-methylbutane since intermediate carbocation formed is more stable		1		1	
	(d)		CFCs are very stable and they do not break down easily in the lower atmosphere since the C—F and C—Cl bonds are strong / energy from uv light not strong enough to break C—F or C—Cl bond (1) in the upper atmosphere higher energy uv light breaks the C—Cl bond forming chlorine radicals (1)		1	1	2	

	(i)	Write an equation for this reaction. [1]								
		Use [O] to represent the oxidising agent and show the structure of the organic product.								
	(ii)	Describe, giving brief experimental details, how he can carry out the reaction. [4]								
	(iii)	Ethanol can also be oxidised to ethanoic acid. Describe how the student could use a chemical test to confirm that his sample of ethanal did not contain ethanoic acid. [2]								
(b)	State a difference and a similarity between the ¹³ C NMR spectra of ethanal and ethanol. [2]									
		larity								

10. (a) A student is asked to prepare a sample of ethanal by oxidising ethanol.

10	(a)	(i)	$C_2H_5OH + [O] \rightarrow H \longrightarrow C \longrightarrow C + H_2O$		1	1	
		(ii)	place acid in flask and add sodium dichromate(VI) until it has dissolved (1) (cool mixture) and add ethanol dropwise (shaking between additions) (1) set up distillation apparatus (1) heat gently until liquid boils over (1)	4		4	4
		(iii)	add sodium (hydrogen)carbonate (1) no effervescence (1) do not accept references to pH	2		2	2
	(b)		award (1) for either of following		2	2	

11. Compound A contains 55.8% carbon, 7.00% hydrogen and 37.2% oxygen by mass.

Part of its infrared spectrum is shown below.

- · An aqueous solution of compound A has a pH of less than 7.
- In an addition reaction, 2.00 g of compound A reacts with 3.71 g of bromine in a 1:1 molar ratio.

•	 	 						······	
•	 	 						•	
•	 	 						······································	
11		•	С	Н	0			*	
			55,8 7,00 12 1,01	37,2	(1)				
			4.65 :	6.93 :	2.325	⇨	C ₂ H ₃ O	(1)	
		•	peak a	round 1		⁻¹ (C = O		carboxylic ac d 3000 cm ⁻¹ (
		•	pH < 7	so mu	st be aci	d - must (contain at le	ast two oxyge	ens (1)
		•					so must con ble bond (1)		
		•	moles	$Br_2 = \frac{3}{15}$	$\frac{71}{9.8} = 2.3$	32 × 10 ⁻²	(1)		
			$M_{\rm r} = \frac{1}{2.3}$	2 32 × 10 ⁻²	= 86.2		(1)		
			molecu	ular forr	nula = C	₄ H ₆ O ₂	(1)		
		•	possib	le struc	tures of	A			
			H ₂ C=C	HCH₂C	СООН		H ₂ C=C(Cl	H₃)COOH	
			Z-CH₃	CH=CH	СООН		E-CH₃CH	=СНСООН	
			award	(2) for a	all four c	orrect or	(1) for any to	wo correct	

1. Name the compound whose formula is shown below.

2-bromobutan-2-ol

5. Complete the equation for the reaction between propanoic acid and sodium carbonate. [1]

		1
5		2C ₂ H ₅ COONa + H ₂ O + CO _{2C}

	(a)	A student wanted to form a halogenoalkane from an alcohol. He added hydrochloric acid to the alcohol and a mixture of organic and inorganic products formed. The halogenoalkane is the only substance in the mixture that does not dissolve in the inorganic aqueous solution.											
		(i)	Suggest how the student could separate the halogenoalkane from the ot compounds.	ther [1]									
		(ii)	The student wants to purify the halogenoalkane by distillation. He sets up apparatus as shown in the diagram. You may assume that all the equipmen suitably clamped.										
	anti-b	umpin	water in water out heat										
			Anti-bumping granules were placed in the flask. Suggest why these granules prevent bumping.	[1]									

.....

	II.	State two changes that must be made to the apparatus for use. Give your reason in each case.	or safe and effective [4]							

	*******		<u>-</u>							

(b)	Another st	tudent wanted to make 1-chloropentane.								
		ed with pentan-1-ol and obtained 1.62g of 1-chloropentar chloropentane was 67%.	ne. The percentage							
	A fellow student told her that since 67% is about two-thirds, she must have started with about 2.43g of pentan-1-ol.									
	le the etud	dent correct? Justify your answer.	[3]							
	is the stud									
	is the stud									
	is the stud									
	is the stud									
	is the stud									
	is the stud									

(d)		Whe struc	Vhen 2-bromobutane is heated with potassium hydroxide dissolved in ethanol, two tructural isomers are formed.											
		(i)	S	State the meaning of the term structural isomers.										
		(ii)) Draw the structure of both isomers.											
	((iii)	С	ircle the isomer which exhibits E-Z isomerisn	n. Expl	lain yo	ur cho	oice.		[1]				
										······································				
8	(a)	(i)		separating funnel accept any answer that recognises the presence of two separate layers			1	1		1				
		(ii)	I	award (1) for any of following small(er) bubbles form prevent large bubbles provide surface for bubbles to form		1		1		1				
			II	accept any two from three possible changes/explanations (bulb of the) thermometer should be opposite the opening to the condenser (1) temperature of the vapour is measured (1)										
				water should go in at the bottom of the condenser and out at the top (1) keeps condenser full of water / prevents 'air-lock' / allows better cooling (1) flask receiving condensed product should not be sealed (1)			4	4		4				
				pressure could build inside a sealed system (1)										

(b)		moles 1-chloropentane formed = 0.0152 (1)		2			
		moles pentan-1-ol used = 0.0227 (1)		_			
		mass pentan-1-ol used = 2.00 g student incorrect (1)			1		
		alternative answer				3	2
		moles pentan-1-ol = 0.0276 (1)					
		moles 1-chloropentane = 0.0152 (1)					
		percentage yield = 55% ⇒ student incorrect (1)					
	·				1	1	
(d)	(i)	compounds with the same molecular formula but different structural formulae	1			1	
	(ii)	H ₂ C CH ₂ CH ₃ (1)		1			
		H ₃ C CH CH (1)		1		2	
	(iii)	but-2-ene circled (or identified in any way)					
		it has two <u>different</u> groups attached to <u>both</u> carbons in the double bond	1			1	

9.	(a)	Compound	Χi	s an	alcohol.	When	compound	X	is	warmed	with	acidified	potassium
		dichromate	(VI)	there	is a colo	our char	nge.						

In the mass spectrum of compound X

Structure of compound X

- the molecular ion peak is at m/z 74
- the peak with the greatest relative intensity is at m/z 43 and is due to a secondary carbocation

Compound X has the following ¹³C NMR spectrum.

Explain what can be deduced from each piece of information and identify the structure of compound X. [7]

(b) Complete the sketches of the low resolution ¹H NMR spectra for propan-1-ol and propan-2-ol.

Identify which protons are responsible for each peak giving the approximate chemical shift (ppm) and the relative area of each peak. [4]

Propan-1-ol, $\mathrm{CH_3CH_2CH_2OH}$

Propan-2-ol, CH₃CH(OH)CH₃

δ/ppm

each spectrum

award (1) for approximate chemical shifts and (1) for peak areas for

3.	Explain why propanoic acid is soluble in water but propane is not.	2]
	lly propanoic acid forms hydrogen bonds / propanoic acid forms drogen bonds but propane does not (1)	
wi	th water (1)	

(c)	Etha sulfu	nol can be heated under reflux with propanoic acid in the presence of concentrated ric acid to form an ester.
	(i)	Draw a labelled diagram of the apparatus you could use for heating under reflux. [3]
	(ii)	Explain how this apparatus prevents escape of vapour and give a reason why the escape of vapour should be prevented. [2]
	(iii)	Draw the structure of the ester that forms. [1]

(c)	(i)	flask with vertical condenser (1) direction of water flow (1) clear indication that flask and condenser are two different pieces of apparatus (1)
	(ii)	vapour / mixture being heated is condensed and returns to the flask (1) award (1) for any of following yield would be reduced / product would be lost reactants would be lost solvent would be lost
	(iii)	neutral answer – vapour is flammable H H H O H H H O O C C C H H H H H H H H

10. (a) Halogenoalkanes can be hydrolysed to give alcohols.

Devise an experiment to compare the rates of hydrolysis of 1-chlorobutane, 1-bromobutane and 1-iodobutane.

Include the expected results and use these to state the trend in the rates of reaction.

Explain this trend.

[6 QER]

Indicative content

Method

- Equal amounts of halogenoalkane in each tube
- Add ethanol as a solvent
- Add AgNO₃(aq) to each tube
- Heat mixture to same temperature
- Measure time taken for each precipitate to form

Results

- C₄H₉I produces yellow precipitate quickly
- C₄H₉Br takes longer to produce a cream precipitate
- C₄H₉Cl takes a very long time to produce a white precipitate

Use of Results

- Trend is 1-iodobutane > 1-bromobutane > 1-chlorobutane
- Bond enthalpy C − Cl > C − Br > C − I

12. Study the reaction scheme shown below and the other information that follows.

Compound L is a hydrocarbon. It does not show E-Z isomerism and its mass spectrum shows a molecular ion peak at m/z 56.

The ¹HNMR spectrum for compound **K** shows 3 peaks and the ratio of the peak areas is 6:1:2.

The ¹³C NMR spectrum for compound **N** shows 3 peaks.

Compound **O** does not react with sodium carbonate.

(a)	Identify compounds K , L , M and N . Give your reasoning.	[
•		
•		
•		
•		
•		
•		
(b)	Name the homologous series to which compound O belongs.	
(c)	State the reagent(s) and conditions needed for the conversion of compound K to	

12	(a)	award (1) for each compound identified and (1) for each relevant point in reasoning (up to maximum of 4) e.g. K ⇒ ¹H NMR peak area 6 so must have two CH₃ groups attached to same carbon / must have branched chain (1) L ⇒ hydrocarbon with M₂ of 56 so must be C₄H₆ and must have branched chain (1) L ⇒ 2-methylpropene (1) M ⇒ formed by addition of H₂ to alkene L (1) M ⇒ 2-methylpropane (1) K ⇒ undergoes nucleophilic substitution to form (primary) alcohol N (1) K ⇒ 1-chloro-2-methylpropane
	(b)	aldehyde KOH in ethanol (+ heat)

(c)	to fo	rm an	ol can react with ethanoic acid in the presence of concentrated sulfuric acid ester and water. This reaction is reversible so an equilibrium mixture is and the ester is removed by distillation.	d
	(i)	Write	the equation for the reaction between propan-2-ol and ethanoic acid.	
		Clea	rly show the structure of the ester formed.	[2]
	(ii)		ain fully why the ester can be separated from the equilibrium mixture by lation.	[2]
	(iii)	l.	Explain why the yield of ester in the equilibrium mixture is increased by removing the ester.	[1]
		II.	Concentrated sulfuric acid is a dehydrating agent.	
			Suggest why the yield of ester in the equilibrium mixture is increased by adding concentrated sulfuric acid.	[1]
		•		

(c)	(i)	$CH_3CH(OH)CH_3 + CH_3COOH \Rightarrow CH_3 - CH_3$ ester structure (1) balanced equation (1)	+ H ₂ O
	(ii)	boiling temperature of ester is lower (than alcohol and ad alcohols and acids form hydrogen bonds between molec are stronger than van der Waals forces between ester m esters do not form hydrogen bonds between molecules	cules (which nolecules) /
(iii)	1	removing ester decreases its concentration so equilibrium pos moves to the right to form more ester	ition
	II	dehydrating agent so removes water so equilibrium position mate to the right (to form more water and more ester)	ioves

(b) The information given below relates to liquid X.

Quantitative analysis shows that it contains 29.2% carbon and 5.8% hydrogen by mass. The remainder is bromine.

The mass spectrum shows two molecular ion signals at m/z 122 and m/z 124 in the ratio of 1:1.

Its ¹³C NMR spectrum is shown below.

(i) Use all the information to identify liquid X.

|
 |
|------|
| |
|
 |
|
 |

[5]

Identify which protons are responsible for each peak giving the approximate chemical shift (ppm) and the relative area of each peak.

(b)	(i)	С	Н	Br		
		29.2	5.80	65.0		
		12	1.01	79.9		
		2.43	5.74	0.814	(1)	
		simplest	whole number ⇔ empiri	ratio is 3 : 7 : 1 cal formula is C	₃H ₇ Br (1)	
		• M _r of	spectrum peal	llowing ula is 122 ⇔ mo c at 122 due to ∈		
		• 13C N		llowing ppm due to CH oon environmer		m due to CHBr
		X is 2-bro	omopropane (1)		

9. (a) A student is provided with unlabelled samples of the three liquids listed below.

1-chloropropane

hex-1-ene

propanoic acid

Describe chemical tests, apart from the use of an indicator, that the student should carry out to positively identify each of the three liquids.

You should include balanced equations for any reactions that occur.

[6 QER]

Indicative content

- add aqueous sodium hydroxide and heat add nitric acid followed by aqueous silver nitrate white precipitate forms with 1-chloropropane only C₃H₇Cl + OH⁻ → C₃H₇OH + Cl⁻ Ag⁺ + Cl⁻ → AgCl
- add bromine water and shake well changes from orange to colourless with hex-1-ene only C₆H₁₂ + Br₂ → C₆H₁₂Br₂
- add suitable carbonate e.g. Na₂CO₃
 effervescence with propanoic acid only
 2C₂H₅COOH + Na₂CO₃ → 2C₂H₅COONa + CO₂ + H₂O

11. Five non-cyclic structural isomers have the molecular formula C₅H₁₀.

Three of these are shown below.

$$C = C - C - C - H$$

3-methylbut-1-ene

(a) Draw the structures of the other two isomers.

Do **not** include both the *E* and the *Z* isomer of the same structure.

[2]

(b) Compound A is one of the five isomers on the previous page.

Study the reaction scheme and the information below.

Compound **D** does **not** react with aqueous sodium carbonate.

Compound E does not show E-Z isomerism.

(i)	Use the information to name the homologous series to which compounds B – E belong. Give your reasoning.	[6]

(ii)	State what you would observe when compound C is oxidised to compound D .	[1]
(iii)	Compound B can also undergo an elimination reaction.	
	State the reagent(s) and conditions needed for this reaction.	[1]
(iv)	Compound A can only be 3-methylbut-1-ene.	
	It cannot be pent-2-ene because its reaction with HBr would give two products significant quantities.	in
	I. Explain why compound A cannot be pent-1-ene.	[2]
	•	
	Explain why compound A cannot be either of the two isomers drawn in part (a).	[2]
		· · · · · · · · · · · · · · · · · · ·

11	(a)			award (1) for each correct structure						
	(-)			$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2		2		
	(b)	(i)		B must be a bromoalkane since A is an alkene and addition of HBr gives a bromoalkene (1) B must be a secondary bromoalkene because a secondary carbocation is more stable (1) bromoalkanes undergo substitution reactions with aqueous sodium hydroxide therefore C is an alcohol (1) C must be a secondary alcohol (1) award (1) for either of following C is not a primary alcohol since when completely oxidised by acidified dichromate(VI) a primary alcohol forms a carboxylic acid which reacts with aqueous sodium carbonate C is not tertiary alcohol because it cannot be oxidised by acidified dichromate(VI) D must be a ketone since it does not react with aqueous sodium carbonate / because it forms from a secondary alcohol (1) D is not an aldehyde because complete oxidation would form a carboxylic acid (1)		6		6		
				E must be an alkene since alcohols are dehydrated to alkenes (1) award up to six of possible eight marks but all compounds must be correct for full marks						
				credit named compounds instead of homologous series						
		(ii)		colour change from orange to green	1			1		-
		(iii)		NaOH in ethanol	1			1		-
		(iv)	ı	pent-1-ene is incorrect as it would form 2-bromopentane as the only major product with HBr (which would then form pentan-2-ol) (1) alkene E formed on dehydration of pentan-2-ol would be pent-2-ene but this has <i>E-Z</i> isomers (1)			2	2		
			II	A cannot be 2-methylbut-1-ene or 2-methylbut-2-ene because a tertiary bromoalkane would be formed as the major product on addition of HBr (1) after the substitution reaction, this bromoalkane would become a tertiary alcohol / an alcohol which cannot be oxidised by acidified dichromate(VI) (1)			2	2		-