Hyperparameter optimization

MIPT

2023

Model selection: coherent inference

First level: select optimal parameters:

$$\mathbf{w} = \operatorname{arg\,max} rac{
ho(\mathfrak{D}|\mathbf{w})
ho(\mathbf{w}|\mathbf{h})}{
ho(\mathfrak{D}|\mathbf{h})},$$

Second level: select optimal model (hyperparameters).

Evidence:

$$p(\mathfrak{D}|\mathbf{h}) = \int_{\mathbf{w}} p(\mathfrak{D}|\mathbf{w}) p(\mathbf{w}|\mathbf{h}) d\mathbf{w}.$$

Model selection scheme

Example: polynoms

Hyperparameters

Definition

Prior for parameters \mathbf{w} and structure $\mathbf{\Gamma}$ of the model \mathbf{f} is a distrubution $p(\mathbf{W}, \mathbf{\Gamma} | \mathbf{h}) : \mathbb{W} \times \Gamma \times \mathbb{H} \to \mathbb{R}^+$, where \mathbb{W} is a parameter space, Γ is a structure space.

Definition

Hyperparameters $\mathbf{h} \in \mathbb{H}$ of the models are the parameters of $p(\mathbf{w}, \mathbf{\Gamma} | \mathbf{h})$ (parameters of prior \mathbf{f}).

Laplace approximation

Nonlinear case with m objects and n features: $\mathbf{y} \sim \mathcal{N}(\mathbf{f}(\mathbf{X}, \mathbf{w}), \lambda^{-1}), \mathbf{w} \sim \mathcal{N}(0, \mathbf{A}^{-1}).$ Write integral:

$$p(\mathfrak{D}|\mathbf{h}) = p(\mathbf{y}|\mathbf{X}, \mathbf{A}, \lambda) = \frac{\sqrt{\lambda \cdot |\mathbf{A}|}}{\sqrt{(2\pi)^{m+n}}} \int_{\mathbf{w}} \exp(-S(\mathbf{w})) d\mathbf{w}.$$

Using Taylor serioes for S:

$$S(\mathbf{w}) pprox S(\hat{\mathbf{w}}) + rac{1}{2} \Delta \mathbf{w}^\mathsf{T} \mathbf{H} \Delta \mathbf{w}$$

Integral reduces to the following expression:

$$\frac{\sqrt{\lambda \cdot |\mathbf{A}|}}{\sqrt{(2\pi)^{m+n}}} S(\hat{\mathbf{w}}) \int_{\mathbf{w}} \exp(-\frac{1}{2} \Delta \mathbf{w}^{\mathsf{T}} \mathbf{H} \Delta \mathbf{w}) d\mathbf{w}$$

The expression under integral corresponds to the unnormalized Gaussian PDF.

Graves, 2011

Prior: $p(\mathbf{w}|\sigma) \sim \mathcal{N}(\boldsymbol{\mu}, \sigma \mathbf{I})$.

Variational inference: $q(\mathbf{w}) \sim \mathcal{N}(\boldsymbol{\mu}_q, \sigma_q \mathbf{I})$.

Greedy optimization:

$$\mu = \hat{E}\mathbf{w}, \quad \sigma = \hat{D}\mathbf{w}.$$

Prune w_i using relative PDF:

$$\lambda = rac{q(\mathbf{0})}{q(oldsymbol{\mu}_{i,q})} = \exp(-rac{\mu_i^2}{2\sigma_i^2}).$$

Problem statement

Let $\theta \in \mathbb{R}^s$ be the set of all the optimized parameters (including variational parameters if needed).

 $L(\theta, \mathbf{h})$ is a differential loss function \mathbf{f} .

 $Q(\theta, \mathbf{h})$ is a differential validation function.

The problem is to find optimal parameters $m{ heta}^*$ and hyperparameters $m{h}^*$ of the model that minimze

$$egin{aligned} \mathbf{h}^* &= rg \max_{\mathbf{h} \in \mathbb{H}} Q(oldsymbol{ heta}^*(\mathbf{h}), \mathbf{h}), \ oldsymbol{ heta} (\mathbf{h})^* &= rg \min_{oldsymbol{ heta} \in \mathbb{R}^s} L(oldsymbol{ heta}, \mathbf{h}). \end{aligned}$$

Bayesian inference

Let $\theta = [\mathbf{w}]^{\mathsf{T}}$.

$$oldsymbol{ heta}^* = rg \max ig(-L(oldsymbol{ heta}, \mathbf{h}) ig) = oldsymbol{p}(\mathbf{w}|\mathbf{X}, \mathbf{y}, \mathbf{h}) = rac{oldsymbol{p}(\mathbf{y}|\mathbf{X}, \mathbf{w})oldsymbol{p}(\mathbf{w}|\mathbf{h})}{oldsymbol{p}(\mathbf{y}|\mathbf{X}, \mathbf{h})}.$$

Second level:

$$p(\mathbf{h}|\mathbf{X},\mathbf{y}) \propto p(\mathbf{y}|\mathbf{X},\mathbf{h})p(\mathbf{h}),$$

Considering p(h) improper flat prior we get the following expression:

$$Q(oldsymbol{ heta},\mathbf{h}) = p(\mathbf{y}|\mathbf{X},\mathbf{h}) = \int_{\mathbf{w} \in \mathbb{R}^u} p(\mathbf{y}|\mathbf{X},\mathbf{w}) p(\mathbf{w}|\mathbf{h})
ightarrow \max_{\mathbf{h} \in \mathbb{H}}.$$

Cross-validation

Split the dataset \mathfrak{D} into k equal (maybe stratified) parts:

$$\mathfrak{D}=\mathfrak{D}_1\sqcup\cdots\sqcup\mathfrak{D}_k.$$

Optimize k modelsfor each data part. Let $\theta = [\mathbf{w}_1, \dots, \mathbf{w}_k]$, where $\mathbf{w}_1, \dots, \mathbf{w}_k$ are the model parameters for optimization k.

Let *L* be a loss function:

$$L(\boldsymbol{\theta}, \mathbf{h}) = -\frac{1}{k} \sum_{q=1}^{k} \left(\frac{k}{k-1} \log p(\mathbf{y} \setminus \mathbf{y}_q | \mathbf{X} \setminus \mathbf{X}_q, \mathbf{w}_q) + \log p(\mathbf{w}_q | \mathbf{h}) \right). \tag{1}$$

Let Q be a validation loss:

$$Q(\theta, \mathbf{h}) = \frac{1}{k} \sum_{q=1}^{k} k \log p(\mathbf{y}_q | \mathbf{X}_q, \mathbf{w}_q).$$

ELBO

Let L = -Q:

$$\log p(\mathbf{y}|\mathbf{X},\mathbf{A}) \geq \sum_{\mathbf{x},y} \log p(y|\mathbf{x},\hat{\mathbf{w}}) - D_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{A})) = -L(\boldsymbol{\theta},\mathbf{A}^{-1}) = Q(\boldsymbol{\theta},\mathbf{A}^{-1}),$$

where q is a normal distribution with diagonal covariance matrix:

$$q \sim \mathcal{N}(oldsymbol{\mu}_{oldsymbol{q}}, oldsymbol{\mathsf{A}}_{oldsymbol{q}}^{-1}),$$

$$D_{\mathsf{KL}}\big(q(\mathbf{w})||p(\mathbf{w}|\mathbf{f})\big) = \frac{1}{2}\big(\mathsf{Tr}[\mathbf{A}\mathbf{A}_q^{-1}] + (\mu - \mu_q)^\mathsf{T}\mathbf{A}(\mu - \mu_q) - u + \mathsf{ln}\ |\mathbf{A}^{-1}| - \mathsf{ln}\ |\mathbf{A}_q^{-1}|\big).$$

Use variational parameters of q as a vector of optimized parameters θ :

$$\boldsymbol{\theta} = [\alpha_1, \ldots, \alpha_u, \mu_1, \ldots, \mu_u].$$

Evidence vs CV

Evidece estimation:

$$\log p(\mathfrak{D}|\mathbf{f}) = \log p(\mathfrak{D}_1|\mathbf{f}) + \log p(\mathfrak{D}_2|\mathfrak{D}_1,\mathbf{f}) + \cdots + \log p(\mathfrak{D}_n|\mathfrak{D}_1,\ldots,\mathfrak{D}_{n-1},\mathbf{f}).$$

Leave-one-out estimation:

$$\mathsf{LOU} = \mathsf{Elog}\ p(\mathfrak{D}_n | \mathfrak{D}_1, \dots, \mathfrak{D}_{n-1}, \mathbf{f}).$$

Cross-validation uses expected values of the last term $p(\mathfrak{D}_n|\mathfrak{D}_1,\ldots,\mathfrak{D}_{n-1},\mathbf{f})$ as a complexity estimation.

Evidence considers full complexity.

Experiment: polynoms

Basic methods of hyperparameter optimization

Variants:

- Grid search:
- random search.

Both methods suffer from curse of dimensionality.

The random search can be more effective if the hyperparameter space is degenerate.

Bergstra et al., 2012

Sequential model-based optimization (SMBO)

Algorithm Framework 1: Sequential Model-Based Optimization (SMBO)

 ${f R}$ keeps track of all target algorithm runs performed so far and their performances (i.e., SMBO's training data $\{([{m \theta}_1, {m x}_1], o_1), \dots, ([{m \theta}_n, {m x}_n], o_n)\})$, ${\cal M}$ is SMBO's model, $\vec{{\cal O}}_{new}$ is a list of promising configurations, and t_{fit} and t_{select} are the runtimes required to fit the model and select configurations, respectively.

```
Input : Target algorithm A with parameter configuration space \Theta; instance set \Pi; cost metric \hat{c}

Output: Optimized (incumbent) parameter configuration, \theta_{inc}

1 [\mathbf{R}, \theta_{inc}] \leftarrow Initialize(\Theta, \Pi)

2 repeat

3 [\mathcal{M}, t_{fit}] \leftarrow FitModel(\mathbf{R})

4 [\vec{\Theta}_{new}, t_{select}] \leftarrow SelectConfigurations(\mathcal{M}, \theta_{inc}, \Theta)

5 [\mathbf{R}, \theta_{inc}] \leftarrow Intensify(\vec{\Theta}_{new}, \theta_{inc}, \mathcal{M}, \mathbf{R}, t_{fit} + t_{select}, \Pi, \hat{c})

6 until total time budget for configuration exhausted

7 return \theta_{inc}
```

Next point to estimate

Next point selection is done using Acquisition function:

- Upper confidence level
- Probability of Improvement: $P(I(\mathbf{h} > 0)), I(\mathbf{h}) = \max(L(\mathbf{h}) L(\mathbf{h}^*), 0)$
- Expected improvement E/(h)

Tree Parzen estimator

Basic idea

- Sample multiple hyperparameter instances \mathbf{h}_i
- Fit models \mathbf{f}_i using \mathbf{h}_i
- ullet Select models from λ -quantile of model results Loss_λ and fit adaptive Parzen estimator p_1
- ullet Select reaming models and fit adaptive Parzen estimator p_2
- Sample new hyperparameter \mathbf{h} that maximizes Expected improvement: $EI(\mathbf{h})$.

Gaussian process, definition (wiki)

- A random process f_t with continuous time is gaussian if and only if for each finite set of indices t_1, \ldots, t_k : f_{t_1}, \ldots, f_{t_k} is a multivariative Gaussian variable.
- Each linear combination f_{t_1}, \ldots, f_{t_k} is a univariative Gaussian.

Definition (simplified)

Define a Gaussian process $\mathcal{GP}(m(x), k(x, x'))$ to be a distribution on the set of functions that for each $x, x' : \mathcal{GP}(m(x), k(x, x'))$ is a Gaussian distribution.

Gaussian process

Idea: Model $Q(\theta(\mathbf{h})^*, \mathbf{h})$ using Gaussian process depending on \mathbf{h} .

Pros:

- Flexibility.
- Probabilistic model, cheaper than exhaustive search.

Cons: cubic complexity, $O(|\mathbb{H}|^3)$.

Shahriari et. al, 2016. GP example.

Hyperparameter optimization

TPE vs GP

GP: complexity challenge

(Snoek, 2015)

Muilti-objective optimization

Can we use multiple criteria for optimization task?

Muilti-objective optimization

Can we use multiple criteria for optimization task?

References

- Bishop C. M. Pattern recognition //Machine learning. 2006. T. 128. №. 9.
- Bakhteev O. Y., Strijov V. V. Comprehensive analysis of gradient-based hyperparameter optimization algorithms //Annals of Operations Research. 2020. T. 289. №. 1. C. 51-65.
- Graves A. Practical variational inference for neural networks //Advances in neural information processing systems. – 2011. – T. 24.
- Bergstra et al., Random Search for Hyper-Parameter Optimization, 2012
- Bobak Shahriari et. al, Taking the Human Out of the Loop: A Review of Bayesian Optimization, 2016
- Daniel McDuff, Gaussian Processes, https://courses.media.mit.edu/2010fall/mas622j/ProblemSets/slidesGP.pdf
- Chris Williams, Gaussian Processes for Machine Learning, https://www.newton.ac.uk/files/seminar/20070809140015001-150844.pdf
- Ed Snelson, utorial: Gaussian process models for machine learning, https://mlg.eng.cam.ac.uk/tutorials/06/es.pdf
- Snoek J., Larochelle H., Adams R. P. Practical bayesian optimization of machine learning algorithms //Advances in neural information processing systems. – 2012. – T. 25.
- Snoek J. et al. Scalable bayesian optimization using deep neural networks //International conference on machine learning. – PMLR, 2015. – C. 2171-2180.