

Z=x+iy \Rightarrow e^Z=e^x+iy def e^x (cosy + ising) (we will also have later another, equivalent, definition) If Z is pure imaginary, say, Zzit, then ei = cos AtisinA - Euler's formula. Note that $|e^{i\theta}| = |\cos\theta + i\sin\theta| = \sqrt{\cos^2\theta + \sin^2\theta} = 1$ ciscle Also, $e^{i\theta_1}e^{i\theta_2}=e^{i(\theta_1+\theta_2)}$ (cos 0, + i six 0,) (cos 02 + i six 02) = cos 0, cos 02 - six 0 six 02 +; (51, 0, cos Dz + 812 CosO1) $= \cos(\theta_1 + \theta_2) + i \sin(\theta_1 + \theta_2) = e^{i(\theta_1 + \theta_2)}$ Trigonometric (Poler) from of complex sumbers x = rcos o y = rs1 + A $z = x + iy = \Gamma(\cos \theta + i\sin \theta) = re^{i\theta}$ A - asquement Z, & = arg Z; indivitely many arguments for the same Z, they differ by multiple of 21. By araz we mean the cative The value of the between + IT is called the principal aigument,

-J < A 59 2 6 5

Ex. Arg
$$(1-i)=-\frac{\pi}{4}$$

org $(1-i)=-\frac{\pi}{4}$
 $1-i=\sqrt{2}e^{i\frac{\pi}{4}}=\sqrt{2}e^{-i\frac{\pi}{4}}+2\pi n$, $n=0,\pm 1,\pm 2,...$

Note: $1^{\frac{1}{4}} \ Z_1=Y_1e^{i\theta_1}$, $Z_2=F_2e^{i\theta_2}$ and $Z_1=Z_2\Rightarrow F_1=F_2$ $2\theta_1-\frac{1}{2}=2\pi n$ for some n

Products and Quadients (Polar form)

 $Z_1=Y_1e^{i\theta_1}$, $Z_2=Y_2e^{i\theta_2}$
 $Z_1=Z_2=Y_1Y_2e^{i(\theta_1+\theta_2)}$, $Z_2=\frac{Y_1}{F_2}e^{i(\theta_1-\theta_2)}$
 $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1+\theta_2)}$, $Z_2=\frac{Y_2}{F_2}e^{i(\theta_1-\theta_2)}$
 $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1+\theta_2)}$, $Z_2=\frac{Y_2}{F_2}e^{i(\theta_1-\theta_2)}$
 $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1+\theta_2)}$, $Z_2=\frac{Y_2}{F_2}e^{i(\theta_1-\theta_2)}$
 $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1+\theta_2)}$, $Z_2=\frac{Y_1}{F_2}e^{i(\theta_1-\theta_2)}$
 $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1+\theta_2)}$, $Z_2=\frac{Y_1}{F_2}e^{i(\theta_1-\theta_2)}$
 $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1+\theta_2)}$, $Z_2=\frac{Y_1}{F_2}e^{i(\theta_1-\theta_2)}$
 $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1+\theta_2)}$, $Z_2=\frac{Y_1}{F_2}e^{i(\theta_1-\theta_2)}$
 $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1+\theta_2)}$, $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1-\theta_2)}$
 $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1-\theta_2)}$, $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1-\theta_2)}$
 $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1-\theta_2)}$, $Z_1=\frac{Y_1}{F_2}e^{i(\theta_1-\theta_$

Given a complex number Zo we want to find all complex numbers Z such that z=zo (n-integer). Those Z will be Lenoted Zolo and as we will see, there are exactly n such numbers, so that zolo denotes all of them.

It is convenient to use the polar form of them numbers: Zo= roeido, z= reid and z= Zo => reind = Toeido ⇒ r= 1 & n0 = 0. +2ks, k=0,±1,±2,... Thus, $r = r_0^{1/n}$, $\theta = \frac{1}{n}\theta_0 + 2\frac{k\pi}{n}$, $k = 0, \pm 1, \pm 2... \Rightarrow$ $z = \sqrt{r_0} e^{i(\frac{\theta_0}{n} + 2\frac{k}{n}\pi)}, k = 0, \pm 1, \pm 2, ...$ Only n of these roots are different: $k=0,1,\ldots,n-1$ because $\ell=1$ A convenient formal way to get the head answer: $Z_0 = r e^{i(\theta_0 + 2\pi k)} \implies Z_0'' = r'' e^{i(\frac{\theta_0}{n} + 2\frac{k}{n}\pi)}, \quad k = 0, 1, ..., n-1$ $(-8)^{\frac{1}{3}} = (8e^{i\pi})^{\frac{1}{3}} = [8e^{i(\pi + 2\pi k)}]^{\frac{1}{3}}$ $= 2e^{i\frac{\pi}{3} + \frac{2}{3}\pi ki} \quad k = 0,1,2$ 2e'= 2(cos =+ isi =) = 2(1+1)= 1+i13 $2e^{i\pi} = -2$ $2e^{i\frac{\pi}{3} + i\frac{\pi}{3}} = 2e^{i\frac{\pi}{3}} = e^{-\frac{\pi}{3}} = 1 - i\sqrt{3}$ equilateral triangle $1^{1/n} = ? \qquad (n-positive, integer)$ $1 = 1 \cdot e^{i \cdot 2k\pi}, \quad k = 0, \pm 1, \pm 2, \dots$ $1^{1/n} = 1\sqrt{1} e^{(n)}, \quad k = 0,1,..., n-(1) = 0,1,...$ ag, n=8 => On = 4 regular octagon

Functions of a Complex Variable

Det. A complex function f(z) defined on a set of complex numbers S is a rule that assigns to each $z \in S$ a complex number f(z) (S - domain of definition)

Ex. $f(z) = z^2$, $z = x + iy = y = f(z) = (x + iy)^2 = x^2 - y^2 + 2ixy$ = u(x,y) = Re(f(z)), V(x,y) = Im f(z)

In general, f(z) = 4(x,y) + iv(x,y), where z = x + iySometimes we deal real-valued function of complex variable, e.g., $f(z) = |z|^2 = x + y^2$ or $f(z) = z^2 + \overline{z}^2$

Sometimes it is convenient to use the polar form of Z, $Z = re^{i\theta}$, then $u = u(r, \theta)$ 2 $v = v'(r, \theta)$

Ex. $f(z) = z^2 = (re^{i\theta})^2 = r^2 e^{2i\theta} = r^2 (\cos 2\theta + i \sin 2\theta) \implies$ $Re f(z) = r^2 \cos 2\theta, \quad Im f(z) = r^2 \sin 2\theta$

Generalization of the concept of a function: rule that assigns more than one value to each ZES (domain of definition) - multi-valued function

Ex. $Z = re^{i\theta} \implies Z'^{12} = \sqrt{r}e^{i\frac{\theta}{2} + \pi ik}$, k = 0, 1 $Z'^{12} = \pm \sqrt{r}e^{i\frac{\theta}{2}} - multi-valued function$ Often times we choose one of the possible values, e.g. $Z'^{12} = \sqrt{r}e^{i\theta}$

Limits and Continuity

Det. A function f(z) is continuous at z= zo if flzo) exists and lim f(z)=f(zo)

We need to discuss the meaning of the libert. In calculus

f(xn) $\rightarrow f(x_0)$ for any sequence

if (xn) $\rightarrow f(x_0)$ for any sequence

if xn) (There is also the ε - δ definition which is equivalent to this one)

Same for functions of complex variables;

If for any $\{Z_nZ_j \rightarrow Z_o, we have f(Z_n) \rightarrow f(Z_n)\}$ them f(z) is continuous at $z \geq 2$.

We say that $Z_n \rightarrow Z_o$ as $n \rightarrow \omega$ if $|Z_n - Z_o| \rightarrow 0$ $f(Z_n) \rightarrow f(Z_o)$ if $|f(Z_n) - f(Z_o)| \rightarrow 0$

Germe frically,

 $f(z)=z^2$ is continuous at $z=\pm_0$. We have to prove that i.e. $|z_n^2-z_0^2| \rightarrow 0$ if $|z_n-z_0| \rightarrow 0$.

We have $|z_n^2 - \overline{z}_n^2| = |z_n - \overline{z}_0| |\overline{z}_n + \overline{z}_0| \le R |\overline{z}_n - \overline{z}_0| \rightarrow 0$

≤ |Zn-Zo|+ 2|Zo| = | |Zn-Zo| => |Zn-Zo| ≤ const. |Zn-Zo|