Solutions Estimate the amount of heat, Q, that must pass across the stratified layer to maintain a steady state.

Set up a heat budget calculation:

heat in = heat out

$$Q_{geo} + Q_{mixing} + Q_{GINS} + Q_{Lab} + Q_{Med} = Q_{upwelling} + Q_{so}$$

$$Q = Q_{mixing} - Q_{upwelling}$$

$$= Q_{so} - (Q_{geo} + Q_{GINS} + Q_{Lab} + Q_{Med})$$

We want to calculate all terms in units of Watts. The geothermal heating, Q_{geo} is given to be 2×10^{13} W, and the cooling of the abyssal box in the Southern Ocean, Q_{so} , is given to be 2.8×10^{14} W. For the other terms, use:

$$\rho C_p \Delta T \times \text{production rate}$$

where the density of water is $\rho = 1025 \text{ kgm}^{-3}$, the specific heat capacity of water is $C_p = 3990 \text{ Jkg}^{-1}\text{K}^{-1}$, ΔT is the change in temperature of the water, and the production rate is given in *Sverdrups*.

$$\begin{split} Q_{GINS} &= 1025 \times 3990 \times (2-1.7) \times 13 \times 10^6 = 1.60 \times 10^{13} \text{ W} \quad \text{(3 s.f.)} \\ Q_{Lab} &= 1025 \times 3990 \times (3-1.7) \times 3 \times 10^6 = 1.60 \times 10^{13} \text{ W} \quad \text{(3 s.f.)} \\ Q_{Med} &= 1025 \times 3990 \times (12-1.7) \times 1 \times 10^6 = 4.21 \times 10^{13} \text{ W} \quad \text{(3 s.f.)} \end{split}$$

$$\Rightarrow Q = 2.8 \times 10^{14} - (2 \times 10^{13} + 1.60 \times 10^{13} + 1.60 \times 10^{13} + 4.21 \times 10^{13})$$
$$= 1.86 \times 10^{14} \text{ W} \quad (3 \text{ s.f.})$$

Therefore, the diffusive heat flux, Q_{flux} , is:

$$= \frac{Q}{\text{area of stratified layer}}$$

$$= \frac{1.86 \times 10^{14}}{0.65 \times 3.62 \times 10^{14}}$$

$$\therefore Q_{flux} = 0.79 \text{ Wm}^{-2}$$

To find K_z , use the 1-D Advection/Diffusion balance equation, and integrate by dz:

$$w C_p \frac{d\theta}{dz} = C_p \frac{K_z}{\rho} \frac{d^2\theta}{dz^2}$$

$$\int \left[w C_p \frac{d\theta}{dz} = C_p \frac{K_z}{\rho} \frac{d^2\theta}{dz^2} \right] dz$$

$$w C_p \Delta\theta = C_p \frac{K_z}{\rho} \frac{d\theta}{dz} + constant$$

$$\Rightarrow \frac{w \ C_p \theta - constant}{C_p \frac{d\theta}{dz}} = \frac{K_z}{\rho}$$

When advection and diffusion are balanced, the constant term would be equal to zero, due to no throughflow of heat. In this case, the abyssal box has a throughflow of heat out, $-Q_{flux}$:

$$\Rightarrow \frac{w \ C_p \theta + constant \ Q_{flux}}{C_p \frac{d\theta}{dz}} = \frac{K_z}{\rho}$$

With dimensional analysis, the exact form of the constant can be determined by equating the units. The units of terms $[wC_p\theta]$ must match the units for [constant Q_{flux}]:

$$ms^{-1} Jkg^{-1}K^{-1} K = [constant] Js^{-1}m^{-2}$$

$$\Rightarrow [constant] = kg^{-1}m^3 = \left[\frac{1}{\rho}\right]$$

$$\Rightarrow \frac{K_z}{\rho} = \frac{w C_p \theta + \frac{Q_{flux}}{\rho}}{C_p \frac{d\theta}{dz}}$$

$$= \frac{(3990 \times 7.2 \times 10^{-8} (13 - 1.7)) + \frac{0.79}{1025}}{3990 \times \frac{(13 - 1.7)}{500}}$$

$$= 4.45 \times 10^{-5} mks$$

Where $w=\frac{\text{production rate}}{\text{Area of Ocean}}=\frac{17\times 10^6}{0.65\times 3.62\times 10^{14}}=7.2\times 10^{-8}~\text{m}s^{-1}.$ This value of K_z is close to typical values for mixing depths of 500 m, $\sim 5\times 10^{-5}$ mks.