Runtimes Cheat Sheet

Big-Oh Notation Rules

- 1. Ignore constant coefficients.
- 2. Ignore lower-order terms.
- 3. Can add and multiply.

Formally,

$$f(x) \in O(g(x)) \text{ as } x \to \infty \iff \exists C \in \mathbb{R}^+ \text{ and } \exists x_0 \in \mathbb{R} \text{ such that } \forall x \in \mathbb{R} \text{ where } x \geq x_0, |f(x)| \leq C * g(x).$$

Common Runtimes

Runtimes are listed in order of increasing complexity. Note that this is not an exhaustive list.

$$O(1), O(\log n), O(n), O(n \log n), O(n^2), O(n^3), ..., O(n^k), ..., O(2^n), O(3^n), ..., O(k^n), ..., O(n!), ...$$

Runtimes of Data Structures and Algorithms

Stacks

<pre>push(item)</pre>	O(1)
pop()	O(1)
peek()	O(1)

Queues

Enqueue(item)	O(1)
Dequeue()	O(1)
Peek()	O(1)

Binary Search Trees

	Balanced	Unbalanced
<pre>Insert(key, value)</pre>	$O(\log n)$	O(n)
Remove(key)	$O(\log n)$ $O(\log n)$	O(n)
Lookup(key)	$O(\log n)$	O(n)

Heaps and Priority Queues

insert(key, value)	$O(\log n)$
extract()	$O(\log n)$
peek()	O(1)
bubbleup(index)	$O(\log n)$
bubbledown(index)	$O(\log n)$
heapify(list)	O(n)
merge(list)	O(n)
<pre>get_priority(item)</pre>	O(1)
update_priority(item, priority)	$O(\log n)$
remove(item)	$O(\log n)$

Trees

Note that order can be one of Preorder, Inorder, or Postorder.

traverse(order)	O(n)
-----------------	------

Graphs

Note that weighted_shortest_paths() is Dijkstra's Algorithm.

		Requirements
breadth_first_search(start_node)	O(V+E)	Any
depth_first_search()	O(V+E)	Any
topological_sort()	O(V+E)	Directed Acyclic Graph
<pre>weighted_shortest_paths()</pre>	$O(E + V \log V)$	Weighted Graph

Sorting

	Best Case	Average Case	Worst Case
bubble_sort(list)	O(n)	$O(n^2)$	$O(n^2)$
selection_sort(list)	$O(n^2)$	$O(n^2)$	$O(n^2)$
<pre>insertion_sort(list)</pre>	O(n)	$O(n^2)$	$O(n^2)$
merge_sort(list)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
quicksort(list)	$O(n \log n)$	$O(n \log n)$	$O(n^2)$
heapsort(list)	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$
<pre>introsort(list)</pre>	$O(n \log n)$	$O(n \log n)$	$O(n \log n)$