GERENCIAMENTO DE MEMÓRIA

Capítulo 8 e 9

Sabrina e Giovana

GERENCIAMENTO DE MEMÓRIA

O sistema operacional deve:

- Controlar quais regiões de memória são utilizadas e por qual processo.
- Decidir qual processo deve ser carregado para a memória, quando houver espaço disponível.
- Alocar e desalocar espaço de memória.

Memória Principal

Capítulo 8

Hardware básico

Memória Secundária: É a memória que os dados ficam armazenados permanentemente, ela funciona como complemento da memória principal.

Memória RAM: É um dos hardware mais importante do computador, é uma memória de rápido acesso que armazena os dados temporariamente.

Memória Cache: É uma memória que faz parte do processador, com um rápido acesso a dados sem a necessidade da busca na memória principal.

Registradores: É um dispositivo de armazenamento temporário localizado no processador, é utilizado na execução de programas disponibilizando um local para armazenar os dados.

Endereço lógico e físico

Endereço lógico – gerado pela CPU; também conhecido como endereço virtual, Este endereço é usado como referência para acessar o local da memória física pela CPU.

 É o conjunto de todos os endereços lógicos gerados pela perspectiva de um programa.

Endereço físico – endereço visto pela unidade de memória, O programa do usuário gera o endereço lógico e pensa que o programa está rodando neste endereço lógico, mas o programa precisa de memória física para sua execução, portanto, o endereço lógico deve ser mapeado para o endereço físico pela MMU antes de serem usados.

- MMU é o dispositivo de hardware que mapeia o endereço logico para físico.

Endereço lógico e físico

Permuta entre processos (swapping)

É uma técnica onde um processo pode ser transferido temporariamente entre a memória e um armazenamento de apoio, e depois trazido de volta a memória principal para continuar a execução e tem como objetivo melhorar o problema da insuficiência de memória durante a execução de alguns processos em ambientes multiprogramados.

Memória Virtual

Capítulo 9

Memória Virtual

Ex de SO que usam memória virtual: Windows e Solaris

A memória virtual diferentemente da física permite a execução de processos sem que estejam totalmente na memória.

Remove as preocupações sobre limitações de memória, facilita o compartilhamento de arquivos e possui mecanismos eficientes para criação de processos.

Paginação Por Demanda

Ocorre quando as páginas somente são carregadas a medida que forem necessárias, comumente usadas em sistemas de memória virtual.

Substituição de Página, FIFO E LRU

Quando nenhum quadro estiver livre no sistema, procuramos um que não esteja sendo executado corretamente e o liberamos para assim conseguir substituí-lo.

FIFO acontece quando uma página precisa ser substituída, a página mais antiga é selecionada.

LRU utiliza o conceito de menos-recentemente-utilizado, sendo assim, quando uma página precisa ser substituída, a página que não foi utilizada pelo maior período de tempo é selecionada.

Alocações

Alocação Global: permite que um processo selecione um quadro para substituição, mesmo se este quadro estiver alocado para um outro processo.

Alocação Local: requer que cada processo faça a seleção apenas em seu próprio conjunto de quadros.

Alocação de memória no kernel: quando um processo solicita memória adicional são alocadas listas de páginas livres mantidas pelo kernel. estas listas são geralmente preenchidas com algum dos tipos de algoritmo de substituição.

Atividade Improdutiva (Thrashing)

Acontece quando o número de quadros alocados de um processo de baixa prioridade for abaixo do número mínimo requerido pelo computador, devemos suspender a execução do mesmo. não podemos ter processos gastando mais tempo com paginação do que com execução.

Sistema buddy:

Aloca a memória a partir de um segmento de tamanho fixo e páginas vizinhas.

Alocação de slabs:

Um slab é composto por uma ou mais páginas vizinhas, um cache é composto por um ou mais slabs.
Os slabs usam o cache para armazenar objetos do kernel, a pedido do mesmo usa-se a alocação dos slabs que podem estar cheio, vazio ou parcial.