Applied Mathematics – I (New Syllabus) (B. Tech and B. Chem)

	Course Code:	Course Title: Applied Mathematics I	Credits = 4		
			L	Т	P
	Semester: I	Total contact hours: 60	3	1	0
		List of Prerequisite Courses			
	HSC Standard Mathematics				
	List	of Courses where this course will be prerequisite			
	This is a basic Mathematics course. This knowledge will be required in almost all subjects later on				
	Description o	f relevance of this course in the B. Chem. Engg. Program			
knov engi	wledge is also required for so	te. This knowledge will be required in almost all subjects later of living various mathematical equations that need to be solved in sec, momentum transfer, reaction engineering, separation process.	evera		mical
	Course Contents (Topics and subtopics)			Reqd. Hours	
1	Solutions of system of linear equations (Gauss-elimination, LU-decomposition etc.)				
	Numerical methods for solving non-linear algebraic / transcendental etc. Newton's method, Secant, Regula Falsi, Jacobi				
	Numerical solution set of lin relaxation methods	ear algebraic equations: Jacobi, Gauss Siedel, and under / over			
2	Interpolation and extrapolation for equal and non-equal spaced data (Newtons Forward Newtons backward and Lagrange)		10		
	Numerical integration (trape	zoidal rule, Simpson's Rule)			
3	Probability of Statistics: Fur expectation, moments	nctions of random variables, probability distribution functions,	10		
	Methods for Data Fitting: Li	t-tests for one and two samples, F-test, χ^2 -test Statistical near, multi-linear, non-linear regression			
4	Differential Calculus: Higher order differentiation and Leibnitz Rule for the derivative Taylor's and Maclaurin's theorems, Maxima/Minima, convexity of functions, Radius o curvature;				
5	1	variables, Limit and continuity, Partial differentiation, Total em for multivariable functions and its application to error na, Jacobian.	10		

6	Integral Calculus: Beta and Gamma functions, Differentiation under the integral sign, surface integrals, volume integrals	10			
List of Text Books/ Reference Books					
	Advanced Engineering Mathematics, Erwin Kreyszig, John-Wiely.				
	Advanced Engineering Mathematics S. R. K. Iyengar, R. K. Jain, Narosa				
	Introductory Methods Of Numerical Analysis, S. S. Sastry, PHI.				
	A First Course in Probability, Sheldon Ross, Pearson Prentice Hall				
	Probability and Statistics in Engineering , W.W. Hines, D. C. Montgomery, D.M. Goldsman, John-Wiely				

CO for Applied Mathematics – I (New Syllabus) (B. Tech and B. Chem)

CO1: Students should be able to explain basic concepts of matrix theory, numerical techniques, probability distributions and calculus of single variable (K1, K2).

CO2: Students should be able to apply basic concepts of differential calculus to solve problems related to extremum, approximations, curvature etc. (K3, K4)

CO3: Students should be able to apply basic numerical techniques to solve linear and nonlinear equations. (K3, K4)

CO4: Students should be able to do basic statistical inference, linear and nonlinear regression analysis and design of experiments. (K3, K4)

CO5: Students should be able to effectively choose appropriate mathematical and statistical concepts to solve various real world problems. (K4, K5)