MATH3301 Tutorial 10

- 1. Let R be a nonzero commutative ring with unity 1_R and characteristic char(R) = n > 1.
 - (a) If $m1_R = 0$ where $m \in \mathbb{N}$, show that $n \mid m$.
 - (b) Show that for any ideal $I \neq R$, char(R/I) divides char(R).
- 2. Let $(R, +, \cdot)$ be a nonzero commutative ring, and $R^{\times} \subset R$ be the group of <u>units</u>. Let $A \subset R$ be the subset of all <u>zero divisors</u>. Consider the following group action of R^{\times} on R (i.e. R^{\times} acts on R by):

$$R^{\times} \times R \longrightarrow R$$
: $(g, x) \mapsto g \cdot x$.

(Remark: $g \cdot x$ is the multiplication of g and x in R, and for simplicity, you may write gx for $g \cdot x$.) For $x \in R$, let G_x and Gx be respectively its <u>stabilizer</u> and <u>orbit</u> for the action of R^{\times} . Also we let R^G be the fixed point set of R^{\times} in R.

- (a) Show that $A \cap R^{\times} = \emptyset$.
- (b) If $x \in R$ is **not** a zero divisor, show that G_x is trivial.
- (c) Now suppose R is the ring \mathbb{Z}_{2p} under the above action of R^{\times} , where p is an odd prime.
 - i. List the elements in \mathbb{R}^G . [Hint: Part (b) may be helpful.]
- ii. Count the number of elements x in R whose stabilizer G_x is a proper subgroup of R^{\times} .
- 3. Let R be a non-zero commutative ring with unity. Show that
 - (a) if R is a field, then R is a PID.
 - (b) R is an integral domain if and only if the zero ideal is a prime ideal.
 - (c) R is a field if and only if the zero ideal is a maximal ideal.
- 4. Consider the ring $\mathbb{Z}[t]$.
 - (a) Show that $\langle 2 \rangle, \langle t \rangle \subseteq \langle 2, t \rangle$.
 - (b) Show that (2,t) is *not* a principal ideal in $\mathbb{Z}[t]$.
 - (c) Show that $\mathbb{Z}[t]/\langle 2, t \rangle$ is a field and $\mathbb{Z}[t]/\langle 2 \rangle$ is not a field.
 - (d) Show that $\mathbb{Z}[t]/\langle 2 \rangle$ is an integral domain.
 - (e) Give an example of a nonzero prime ideal that is not a maximal ideal.