Tang Nano 9K

编辑时间 2022年1月13日

一、简介

Tang Nano 9K 是基于高云半导体 GW1NR-9 FPGA芯片设计的精简型开发板。它搭载的HDMI连接器、RGB接口屏幕连接器、SPI屏幕连接器、SPI FLASH和6个LED使得用户可以方便且快速地进行FPGA验证,RISC-V软核验证和功能样机验证。GW1NR-9拥有的8640 LUT4 逻辑单元除了可以用来设计各种复杂的逻辑电路,还可以运行完整的PicoRV软核,满足了用户学习FPGA、验证软核和深度设计的各种需求。

二、产品参数

类别	数值
逻辑单元(LUT4)	8640
寄存器(FF)	6480
分布式静态随机存储器 SSRAM(bits)	17280
块状静态随机存储器 B-SRAM(bits)	468K
块状静态随机存储器数目 BSRAM (个)	26
用户闪存(bits)	608K
PSRAM(bits)	64M

类别	数值
高性能DSP模块	支持9x9,18x18,36x36bit的乘法运算和54bit累加器
乘法器 (18 x 18 Multiplier)	20
SPI FLASH	32M-bits
灵活的PLL资源	2个锁相环(PLLs)
显示屏幕接口	HDMI接口, SPI屏幕接口和RGB屏幕接口
调试器	板载BL702芯片,为GW1NR-9提供USB-JTAG下载和USB-UART串口打印功能
IO	支持4mA、8mA、16mA、24mA等驱动能力对每个I/O提供独立的Bus Keeper、上拉/下拉电阻及OpenDrain输出选项
连接器	TF卡座子, 2x24P 2.54mm 排针焊盘
按键	2个用户可编程按键
LED	板载6个可编程LED

2.1. 板载功能框图

2.2. 板子引脚图

三、前代对比

Tang Nano 9K 是 Sipeed 所推出的第五款 FPGA 开发板,与在售前代产品参数对比如下:

版型	Tang Nano 1K	Tang Nano 4K	Tang Nano 9K
外观图	S Tang Nans		
逻辑单元 (LUT4)	1152	4608	8640

版型	Tang Nano 1K	Tang Nano 4K	Tang Nano 9K
硬核处理器		Cortex M3	
板载晶振	27MHZ	27MHZ	27MHZ
屏幕接口	RGB 屏幕接口	HDMI 接口	HDMI 接口, RGB 屏幕接口, SPI 屏幕接口
摄像头接口		默认 OV2640	
外部存储	仅预留焊盘	32Mbits SPI flash	32Mbits SPI flash
TF 卡槽			有
下载器	板载 USB-JTAG	板载 USB-JTAG	板载 USB-JTAG & USB- UART

四、适用人群

用法	FPGA	MCU	FPGA+MCU
语言	Verilog HDL/Verilog	C/C++	Verilog HDL/ C/C++
简介	上板验证用户HDL	用户将软核的比特流文件下载到芯片后可将 GW1NR-9当做普通的MCU来使用	烧入软核后可し
适用人群	初学者, FPGA开发者	RISC-V开发者,Cortex-M开发者	资深软硬件工程

五、上手指引

1. 下载我们打包好的用户指南文档: 下载站 (下文提到的所有pdf文件都在这里)

2. 安装IDE和填写正确的License: 点击这里

- 3. 阅读第一步下载的文件里面的: SUG100-2.6 Gowin云源软件用户指南.pdf
- 4. 阅读这个教程完成点灯实验。

建议新手在完成这一步之后,自己重新独立新建项目、编写代码,完成这个实验,并且按自己的想法修改点灯程序,增强对FPGA和硬件描述语言的理解。

建议在这个过程阅读以下内容,阅读完才进入下一步:

○ Verilog代码规范(自行搜索,从初学就培养良好的代码规范是非常必要的)

下面的这些内容对于初学者来说是非常有用的,对未来深入学习 FPGA 很有帮助。

- SUG100-2.6 Gowin云源软件用户指南.pdf
- SUG949-1.1_Gowin_HDL编码风格用户指南.pdf
- UG286-1.9.1_Gowin时钟资源(Clock)用户指南.pdf
- SUG940-1.3 Gowin设计时序约束用户指南.pdf
- SUG502-1.3 Gowin Programmer用户指南.pdf
- SUG114-2.5 Gowin在线逻辑分析仪用户指南.pdf

上面的都已经打包进了下载站点我跳转。可以点击压缩包全都下载下来

其他学习链接:

- 在线免费教程: 菜鸟教程 (学习Verilog)
- 在线免费FPGA教程: Verilog
- 在线高云半导体官方视频教程: 点击这里
- 1. 按照这个教程进行5寸RGB屏驱动实验(其他尺寸屏幕自行修改一下)。 如果用户自行无法完成这个实验,可以下载我们 9K例程 (适配9K板子+5寸屏) 查看哪个步骤没做正确

注意: 屏幕接线时需要注意排线的1脚对应连接器旁的1脚丝印

需要阅读的文档:

- 。 rPLL IP核的说明文档:在IDE里>Tools>IP Core Generator>Hard Module>CLOCK>rPLL>点击弹出界面右下角的Help按键就会弹出说明文档
 - ▶ 点开查看说明位置

- o SUG284-2.1E Gowin IP Core Generator User Guide.pdf
- 5寸屏规格书: (主要是获取CLK是33.3Mhz这个信息)
- 2. 驱HDMI屏讲解 (待更新)

六、例程汇总

访问 相关例程

七、硬件资料汇总

规格书、原理图、尺寸图、3D文件等均可在这里找到:点击这里

八、注意事项

- 1. 如果有什么疑问, 欢迎加群 834585530, 或者去论坛发帖
- 2. 下载 FPGA 是要求使用 这里 的 Programmer 软件。不然有极大概率不能下载固件到板子。
- 3. 有问题的话先去 常见问题 自查,通常来说使用 这里 的 Programmer 软件能解决 99% 问题。
- 4. 避免使用JTAG、MODE、DONE等引脚。如果一定要使用这些引脚,请查看 UG292-1.0原 理图指导手册
- 5. 请注意避免静电打到PCBA上;接触PCBA之前请把手的静电释放掉
- 6. 每个GPIO的工作电压已经在原理图中标注出来,请不要让GPIO的实际工作的电压超过额定值,否则会引起PCBA的永久性损坏
- 7. 在连接FPC软排线的时候,请确保排线无偏移、完整地插入到排线中,且线序正确没有接反
- 8. 请在上电过程中,避免任何液体和金属触碰到PCBA上的元件的焊盘,否则会导致短路,烧毁 PCBA