

Algorithms for Scientific Computing

From Quadtrees to Space-Filling Orders

Tobias Neckel Technical University of Munich

Summer 2020

Part I

Quadtrees

Overview: Modelling of Geometric Objects

Surface-oriented models:

- wire-frame models
- augmented models using Bezier curves and planes
- typically described by graphs on nodes, edges, and faces

Volume-oriented models:

- Constructive Solid Geometry (boolean operations on primitives)
- voxel models: place object in a grid
- octrees: recursive refinement of voxel grids
- quadtrees: 2D analogon (voxel → pixel)

Quadtrees to Describe Geometric Objects

- start with an initial square (covering the entire domain)
- recursive substructuring in four subsquares

Quadtrees to Describe Geometric Objects

- start with an initial square (covering the entire domain)
- recursive substructuring in four subsquares
- adaptive refinement possible
- terminate, if squares entirely within or outside domain

Number of Quadtree Cells to Store a Rectangle

Terminal (t_k) and boundary (b_k) cells after k refinement steps (for k > 2):

$$b_{k} = 2 \cdot b_{k-1} t_{k} = t_{k-1} + 2 \cdot b_{k-1}$$
 \Rightarrow
$$b_{k} = 2^{k-2} \cdot b_{2} = \frac{5}{2} \cdot 2^{k} t_{k} = \dots = 5 \cdot 2^{k} - 14$$

Number of Quadtree Cells to Store a Rectangle

- uniformly ref. voxel-grid (level k): $(2^{d-2})^k = (2^k)^2 =: \mathcal{O}(N^2)$ cells
- quadtree-refined grid (level k): ¹⁵/₂ · 2^k − 14 =: O(N) cells
 ⇒ number of cells proportional to length of boundary (N := 2^k)

Storing a Quadtree – Sequentialisation

- sequentialise cell information according to depth-first traversal
- relative numbering of the child nodes determines sequential order

Storing a Quadtree – Sequentialisation

- sequentialise cell information according to depth-first traversal
- relative numbering of the child nodes determines sequential order
- here: leads to so-called Morton order

Morton Order ("Z curve")

Relation to bit arithmetics:

- odd digits: position in vertical direction
- even digits: position in horizontal direction

Morton Order and Cantor's Mapping

Georg Cantor (1877):

$$0.01111001... \rightarrow \begin{pmatrix} 0.0110... \\ 0.1101... \end{pmatrix}$$

- bijective mapping $[0,1] \rightarrow [0,1]^2$
- proved identical cardinality of [0, 1] and [0, 1]²
- provoked the question: is there a continuous mapping? (i.e. a curve)

Similar: is there a contiguous order on the quadtree cells?

Preserving Neighbourship for a 2D Octree

Requirements:

- consider a simple 4 × 4-grid
- uniformly refined
- subsequently numbered cells should be neighbours in 2D

Leads to (more or less unique) numbering of children:

5	6	9	10
4	7	8	11
3	-2	13	12
0	-1	14	15

Preserving Neighbourship for a 2D Octree (2)

- adaptive refinement possible
- neighbours in sequential order remain neighbours in 2D

Preserving Neighbourship for a 2D Octree (2)

- adaptive refinement possible
- neighbours in sequential order remain neighbours in 2D
- here: similar to the concept of Hilbert curves

Open Questions

Algorithmics:

- How do we describe the sequential order algorithmically?
- What kind of operations are possible?
- Are there further "orderings" with the same or similar properties?

Applications:

- · Can we quantify the "neighbour" property?
- In what applications can this property be useful?
- Which other properties and/or operations can be useful?

Part II

Hilbert Orders

Construction of the Hilbert Order

Incremental construction of the Hilbert order:

- start with the basic pattern on 4 subsquares
- combine four numbering patterns to obtain a twice-as-large pattern
- proceed with further iterations

Construction of the Hilbert Order

Recursive construction of the Hilbert order:

- start with the basic pattern on 4 subsquares
- for an existing grid and Hilbert order: split each cell into 4 congruent subsquares
- order 4 subsquares following the rotated basic pattern, such that a contiguous order is obtained

A Grammar for Describing the Hilbert Order

Examine pattern during the construction of the Hilbert order:

→ motivates a Grammar to generate the iterations

A Grammar for Describing the Hilbert Order

- Non-terminal symbols: {H, A, B, C}, start symbol H
- terminal characters: {↑, ↓, ←, →}
- productions:

$$H \leftarrow A \uparrow H \rightarrow H \downarrow B$$

$$A \leftarrow H \rightarrow A \uparrow A \leftarrow C$$

$$B \leftarrow C \leftarrow B \downarrow B \rightarrow H$$

$$C \leftarrow B \downarrow C \leftarrow C \uparrow A$$

- replacement rule: in any word,
 all non-terminals have to be replaced at the same time
 → L-System (Lindenmayer)
- ⇒ the arrows describe the iterations of the Hilbert curve in "turtle graphics"

Using the Grammar to Describe the Hilbert Curve

The grammar for the Hilbert order prepares the mathematical definition of the curve (and proof of continuity):

- there are only four basic patterns that occur (corresp. to the symbols {H, A, B, C} of the grammar)
 - → closed recursive system!
- two subsequent subsquares of the Hilbert-curve construction share a common edge(!)
 - \rightarrow follows from the fact that the move operators $\{\uparrow,\downarrow,\leftarrow,\rightarrow\}$ are sufficient to describe the operators
 - → contiguous order! (leads to continuity of the curve)
- last but not least: we have formalised the construction of the iterations (towards formal definition of a mapping)

Part III

Applications of Space-Filling Orders

Sequentialising Multi-dimensional Data

Examples of multi-dimensional data structures:

- Matrices
- Image data (images, tomographic data, movies, ...)
- discretisation meshes (to discretise mathematical models in physics/...; PDE, etc.)
- Coordinates (often used in connection with graphs)
- tables (also in data bases)
- in computational finance and financial mathematics: "baskets" of stocks/options/...

Sequentialising Multi-dimensional Data (2)

Typical algorithms and operations:

- traversal (update/processing of all data; simulation meshes, e.g.)
- matrix operations (linear algebra, etc.)
- sequentialisation (e.g. to store data on discs or in main memory)
- partitioning of data (for parallelisation or in divide-and-conquer algorithms)
- sorting of data (to simplify further operations)
- in general: nested loops

```
for i from 1 to n do
for j from 1 to m do ...
```


Demands on Efficient Sequentialisation

Effective Sequentialisation:

- unique numbering ⇒ requires bijective mapping
- sequentialisation without "holes" (for data structures, e.g.)

Efficient Sequentialisation:

- preserve neighbourship properties ⇒ data locality
- fast, simple index computation
- "smoothness", stability vs. small changes
- dimensional symmetry (no fast or slow dimensions)
- "clustering" of data

Application Examples

- range queries in image and raster data bases
- image browsing and image search in image collections
- heuristical approaches for graph-based algorithms (nearest neighbour, traveling salesman)
- collision detection
- parallelisation of data
- efficient use of cache memory (in simulations, e.g.)

Also: everything that involves Quadtrees/Octrees:

- Searching (collision detection, access to surface representations, etc.)
- Fast access to level-of-detail infos (geodata, graphics, games, ...)
- Dynamically adaptive meshes in scientific computing
- many more . . .