Circuit Analysis Techniques

Lecture 7 Norton Theorem

Lecture delivered by:

Topics

- Norton's Theorem Computing
- Norton's Equivalent Circuit
- To Find I_N
- To Find R_N

Objectives

At the end of this lecture, student will be able to:

 State and implement Thevenin's theorem on any complicate linear bilateral network

Norton's Theorem

Statement:

- "Any two terminal active network when viewed from its load terminals, can be replaced by a single current source in parallel with a single resistance."
- That single current source is called Norton's current source (I_N)
- Resistance is called Norton's resistance (R_N)

Norton's Equivalent Circuit

Fig.1 Two terminal circuit

Fig.2 Norton's equivalent circuit

To Find I_N

Remove the load resistance & put a short there

 Then find the current flowing through the short circuited terminals

• $I_N = I_{SC}$

To Find R_N

Replace the voltage source (battery) with its internal resistance

 Calculate the resistance of the circuit as viewed by the open circuited load terminals. (i.e. terminals A & B as shown in Fig.1)

• $R_N = R_i$ (internal resistance)

Problem

 Using Norton's theorem, calculate current through
 15 Ω resistor in the circuit shown in Fig.3

Fig.3

Step 1: To find out I_N :

- Remove the load resistance
- Short circuit the load terminals as shown in Fig.4
- Find the current flowing through the short
- 12 Ω resistor is in parallel with the short as shown in Fig.4

- So,12 Ω resistor will also be short circuited
- Therefore the circuit will be as shown in Fig.5

•
$$I_N = 24 / (3+1)$$

= 6 A

Step 2 : To find out R_N :

- Replace the battery with its internal resistance
- Open circuit load terminals as shown in Fig.6
- Calculate the resistance of the circuit as viewed from the open circuited load terminals

Fig.6

 Replace the given network with Norton's equivalent circuit as shown in Fig.8

$$\bullet I_{L} = \frac{I_{N} * R_{N}}{(R_{N} + R_{L})}$$

Fig.8

Summary

 Norton's theorem stares that, "Any two terminal active network when viewed from its load terminals, can be replaced by a single current source in parallel with a single resistance"

