Representation Learning of Knowledge Graphs with Entity Descriptions

Ruobing Xie^{1,2}, Zhiyuan Liu^{1,2,3}, Jia Jia¹, Huanbo Luan^{1,2}, Maosong Sun^{1,2,3}

Department of Computer Science and Technology,
State Key Lab on Intelligent Technology and Systems,
National Lab for Information Science and Technology, Tsinghua University, Beijing, China
Jiangsu Collaborative Innovation Center for Language Ability,
Jiangsu Normal University, Xuzhou 221009 China

Representor Tang Ning

November 20, 2017

Overview

- Motivation
- Problem Formulation
- Training
- 4 Experiment
- 5 Importance based Learning

Motivation

- Most methods concentrate on learning representations with knowledge triples indicating relations between entities. In fact, in most knowledge graphs there are usually concise descriptions for entities
- In zero-shot setting, previous triple embedding cannot work

Figure 1: Example of entity descriptions in Freebase.

Problem Formulation

Definition 1. Structure-based Representations

 h_s and t_s are the structure-based representations for head and tail which can directly represent entities.

Definition 2. Description-based Representations

 h_d and t_d are the description-based representations for head and tail which are built from entity descriptions.

Continuous Bag-of-words Encoder

Figure 2: The CBOW Encoder

$$e_d = x_1 + x_2 + \dots + x_k \tag{1}$$

Convolutional Neural Network Encoder

Figure 3: The Convolutional Neural Network Encoder

Convolutional Neural Network Encoder

Convolution

$$x_i^{\prime(1)} = x_{i:i+k-1} = [x_i^T, x_{i+1}^T, \dots, x_{i+k-1}^T]^T$$
 (2)

$$z_i^{(l)} = \sigma(\mathbf{W}^{(l)} x_i^{\prime (l)} + b_i^{(l)})$$
 (3)

$$\mathbf{W}^{(I)} \in \mathcal{R}^{n_2^{(I)} \times n_1^{(I)}} \tag{4}$$

$$n_1^{(l)} = k \times n_0^{(l)} \tag{5}$$

Pooling

$$x_i^{(2)} = \max(z_{n \times i}^{(1)}, \dots, z_{n \times (i+1)-1}^{(1)})$$
 (6)

$$x_i^{(3)} = \sum_{i=1,\dots,m} \frac{z_i^{(2)}}{m} \tag{7}$$

Training

Energy Function

$$\mathbf{E} = \mathbf{E_S} + \mathbf{E_D} \tag{8}$$

$$\mathbf{E}_{\mathbf{D}} = \mathbf{E}_{\mathbf{D}\mathbf{D}} + \mathbf{E}_{\mathbf{D}\mathbf{S}} + \mathbf{E}_{\mathbf{S}\mathbf{D}} \tag{9}$$

$$\mathbf{E}(\mathbf{h}, \mathbf{r}, \mathbf{t}) = ||\mathbf{h} + \mathbf{r} - \mathbf{t}|| \tag{10}$$

objective function

$$L = \sum_{(h,r,t)} \sum_{(h',r',t') \in T'} \max(\gamma + d(h+r,t) - d(h'+r',t'),0)$$
 (11)

DataSet

Table 1: Statistics of data sets

Dataset	#Rel	#Ent	#Train	#Valid	#Test
FB15K	1,341	14,904	472,860	48,991	57,803
Dataset	#Ent	#e - e	#d - e	#e - d	#d - d

Knowledge Graph Completion

Table 2: Evaluation results on entity prediction

Metric	Mear	Rank	Hits@	10(%)
	Raw	Filter	Raw	Filter
TransE	210	119	48.5	66.1
DKRL(CBOW)	236	151	38.3	51.8
DKRL(CNN)	200	113	44.3	57.6
DKRL(CNN)+TransE	181	91	49.6	67.4

Table 3: Evaluation results on relation prediction

Metric	Mean Rank		Hits@1(%)	
Wettic	Raw	Filter	Raw	Filter
TransE	2.91	2.53	69.5	90.2
DKRL(CBOW)	2.85	2.51	65.3	82.7
DKRL(CNN)	2.91	2.55	69.8	89.0
DKRL(CNN)+TransE	2.41	2.03	69.8	90.8

Entity Classification

Table 4: Evaluation results on entity classification

Metric	FB15K	FB20K
TransE	87.9	-
BOW	86.3	57.5
DKRL(CBOW)	89.3	52.0
DKRL(CNN)	90.1	61.9

Zero-shot Scenario

Table 5: Evaluation results on entity prediction in zero-shot scenario

Metric	d-e	e-d	d - d	Total
Partial-CBOW	26.5	20.9	67.2	24.6
CBOW	27.1	21.7	66.6	25.3
Partial-CNN	26.8	20.8	69.5	24.8
CNN	31.2	26.1	72.5	29.5

Table 6: Evaluation results on relation prediction in zeroshot scenario

Metric	d-e	e-d	d-d	Total
Partial-CBOW	49.0	42.2	0.0	46.2
CBOW	52.2	47.9	0.0	50.3
Partial-CNN	56.6	52.4	4.0	54.8
CNN	60.4	55.5	7.3	58.2

Two basic assumptions

- If a relation is important to an entity, most of its connections will be connected through that relation
- If an entity is important to a relation, the relation can be well defined by the entity.

Relation Importance to Entity

$$\alpha_j = \frac{En_j \cdot Rel_i}{\sum_{i=1}^k En_i \cdot Rel_i} \tag{12}$$

Entity Importance to Relation

$$\alpha_j = \frac{En_i \cdot Rel_j}{\sum_{i=1}^k En_i \cdot Rel_i} \tag{13}$$

Objective function and gradient update

Objective function

$$f_r(h, r, t) = ||r^T h r + d_r - r^T t r||$$
 (14)

$$\mathcal{L} = \sum_{(h,r,t)\in\mathcal{T}} \sum_{(h',r',t')} [f_r(h,t) + \gamma - f_r(h',t')]_+$$
 (15)

gradient update

$$h = h - \alpha_{(h,r)} \frac{\partial L}{\partial h} \tag{16}$$

$$r = r - \alpha_{(h,r)} \frac{\partial L}{\partial r} \tag{17}$$