BDA HM5

Piero Birello

February 2025

9.1

The shape and rate parameters of a Gamma distribution with mean μ and standard deviation σ are:

$$s = \frac{\mu^2}{\sigma^2} \qquad r = \frac{\mu}{\sigma^2} \tag{1}$$

Given mode ω and standard deviation σ , shape and rate are instead given by:

$$s = 1 + \omega r \qquad r = \frac{\omega + \sqrt{\omega^2 + 4\sigma^2}}{2\sigma^2} \tag{2}$$

For $\mu=1$ and $\sigma=10$ we obtain s=0.01 and r=0.01. For $\omega=1$ and $\sigma=10$ we obtain s=1.105125 and r=0.105125. As we can see from Fig. 1, when we set the mean to 1 the distribution is highly peaked at small values. Also, comparing the choice $\omega=1$, values above 75 are favored (i.e., they have higher density). Fig. 2 shows that the choice of the prior on κ also affects the posterior distributions for κ and ω . In particular, setting the mean to 1 leads to a bigger large-values tail in the posterior for κ . In turn, such large κ values affect the estimate of the posterior distribution for individual parameters. Actually, high concentration leads to shrinkage in the θ_s values, see Fig. 3.

9.2

When setting a mode equal to 1 for the prior distribution of κ , the prior distributions for θ_s have rounded shoulders. This is because $\kappa < 1$ values are very unlikely in this case, while they were likely when choosing mean equals to 1. Concentration values $\kappa < 1$ correspond to a u-shaped beta distribution, while values $\kappa > 1$ give a bell shape. If $\kappa < 1$ values have low weight, the bell shape will be dominant and result in the priors of Fig. 4. The choice of mean equals 1 is the least informative one, and could hence be preferable over mode equals 1.

9.3

Fig. 5 shows the results for a Bayesian analysis of the data of Figure 9.12 in the book. Estimates of θ_s are similar to those found by MLE. However, a Bayesian analysis gives us a more complete description of the problem, allowing to obtain full posterior distributions both for hyperparameters κ and ω , informing us about group-level abilities, and for parameters θ_s , describing the abilities of single subjects. Also, We are capable of performing comparisons between subsjects, as well as to average any kind of observable according to the found posterior.

Figure 1: Gamma distribution for the two different parameter choices considered in Exercise 9.

Figure 2: Posterior distributions for group-level concentration and mode, given a prior on κ with mean 1 (a) and mode 1 (b).

Figure 3: Posterior distributions for θ_s , given a prior on κ with mean 1 (a) and mode 1 (b).

Figure 4: Prior distributions for θ_s , given a prior on κ with mean 1 (a) and mode 1 (b).

Figure 5: Exercise 9.3: Posterior distributions for ω , κ , θ_s , given a prior on κ with mean 1.