Отчёт по лабораторной работе

Лабораторная работа №_07 / Элементы криптографии. Однократное гаммирование

Габриэль Тьерри

Содержание

цель работы
Выполнение лабораторной работы
Выводы
Список литературы

Цель работы

Освоить на практике применение режима однократного гаммирования

Выполнение лабораторной работы

Нужно подобрать ключ, чтобы получить сообщение «С Новым Годом, друзья!». Требуется разработать приложение, позволяющее шифровать и дешифровать данные в режиме однократного гаммирования Приложение должно:

- 1. Определить вид шифротекста при известном ключе и известном открытом тексте.
- 2. Определить ключ, с помощью которого шифротекст может быть преобразован в некоторый фрагмент текста, представляющий собой один из возможных вариантов прочтения открытого текста.

```
In [4]: | import random
    import string

#set a seed for reproducibility
    random.seed(23)
# the text that i will use
    text = "C Hobbum Fodom, apy3bs!"

# initialize an empty key
key = ""

# Generate a random key with the same length as the text
for i in range(len(text)):
    #choose a random character for the set of ASCII letters and digits
    key += random.choice(string.ascii_letters + string.digits)

# Print the generated key
print(f"ключ: {key}")

Know: 7x8s5ifbLtByHwiUmrCaoN
```

```
In [7]:
    def F_encrypted_text(text, key):
        # check if the length of the key and the text match
        if len(key) != len(text):
            return "error length"
        # initialize an empty string to store the encrypted text
        encrypted_text = ""
        # iterate through each character of the key and text
        for i in range (len(key)):
            # Perfom XOR operation on ASCII values of the text and key characters
            encrypted_text_symbol = ord(text[i])^ord(key[i])
            # Convert the result back to a character and append it to the encrypted text
            encrypted_text *= chr(encrypted_text_symbol)
            return encrypted_text

# Encrypt the text using the F_encrypted_text function
        encrypted_text = F_encrypted_text(text, key)
        print(f"encrypted_text: {encrypted_text(encrypted_text, key)})')
        print(f"Original_text: {F_encrypted_text(encrypted_text, key)})')
        print(f"Kniou: {F_encrypted_text(encrypted_text, text)}'')

        encrypted_text: **xxxx**Communication**
        encrypted_text: **xxxx***Communication**
        encrypted_text: **xxxx***Communication**
        encrypted_text: **xxxx***

        encrypted_text: **Encrypted_text(encrypted_text, text)}'')

        encrypted_text: **xxxx***

        encrypted_text: **xxxx***

        encrypted_text: **xxxx***

        encrypted_text: **xxxx**

        encrypted_text: **xxxx**
```

Выводы

Освоить на практике применение режима однократного гаммирования

Список литературы

1. А.А. Аргановский, Р.А.Хади. Практическая криптография: алгоритмы и их программирование. солон пресс, 2009.