ScienceDirect

Electronic Notes in Theoretical Computer Science

Electronic Notes in Theoretical Computer Science 346 (2019) 209–219

www.elsevier.com/locate/entcs

A_{α} -Spectrum of a Firefly Graph

André Ebling Brondani ¹

Department of Mathematics Fluminense Federal University Rio de Janeiro, Brazil

Carla Silva Oliveira²

Department of Mathematics National School of Statistics Sciences Rio de Janeiro, Brazil

Francisca Andrea Macedo França ³

Department of Mathematics Fluminense Federal University Rio de Janeiro, Brazil

Leonardo de Lima ⁴

Department of Production Engineering
Federal Center of Technological Education Celso Suckow da Fonseca
Rio de Janeiro. Brazil

Abstract

Let G be a connected graph of order n, A(G) is the adjacency matrix of G and D(G) is the diagonal matrix of the row-sums of A(G). In 2017, Nikiforov [8] defined the convex linear combinations $A_{\alpha}(G)$ of A(G) and D(G) by

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G), \quad 0 \le \alpha \le 1.$$

In this paper, we obtain a partial factorization of the A_{α} -characteristic polynomial of the firefly graph which explicitly gives some eigenvalues of the graph.

Keywords: Eigenvalues, A_{α} matrix, firefly Graphs

https://doi.org/10.1016/j.entcs.2019.08.019

¹ Email: andrebrondani@id.uff.br

² Email: carla.oliveira@ibge.gov.br

³ Email: francisca franca@id.uff.br

⁴ Email: leonardo.lima@cefet-rj.br

1 Introduction

Let G be a simple graph of order n with vertex set V(G) and edge set E(G), such that |E(G)| = m. We denote the complete graph with n vertices by K_n . The set of neighbours of a vertex v in G is denoted by $N_G(v)$ and $N_G[v] = N_G(v) \cup \{v\}$. The degree of a vertex v of G, d(v), is defined by $|N_G(v)|$. Two distinct vertices u and v are called true twins in G if $N_G[u] = N_G[v]$ and are called false twins if $N_G(u) = N_G(v)$ and u is not adjacent to v, see [7]. The signless Laplacian matrix of G is defined by Q(G) = A(G) + D(G), where D(G) is the diagonal matrix of the degrees and $A(G) = [a_{ij}]$ is the adjacency matrix of G, where $a_{ij} = 1$ if v_i is adjacent to v_j and $a_{ij} = 0$ otherwise. Recently Nikiforov [8] defined for any real $\alpha \in [0, 1]$, the convex linear combinations $A_{\alpha}(G)$ of A(G) and D(G) by

$$A_{\alpha}(G) = \alpha D(G) + (1 - \alpha)A(G).$$

It is easy to see that $A(G) = A_0(G)$, $D(G) = A_1(G)$ and $Q(G) = 2A_{\frac{1}{2}}(G)$. The A_{α} -characteristic polynomial of G is defined by $P_{A_{\alpha}(G)}(x) = \det(xI - A_{\alpha}(G))$ and its roots are called the eigenvalues of $A_{\alpha}(G)$. As usual, we shall index the eigenvalues of $A_{\alpha}(G)$ in non-increasing order and denote them as $\lambda_1(A_{\alpha}(G)) \geq \lambda_2(A_{\alpha}(G)) \geq \cdots \geq \lambda_n(A_{\alpha}(G))$. The spectrum of $A_{\alpha}(G)$ is defined as the multiset of eigenvalues with their algebraic multiplicity and denoted by $Spec(A_{\alpha}(G))$. To simplify we use the A_{α} and $\lambda_i(A_{\alpha})$ notation when there is no risk of ambiguity.

As defined by Aouchiche et al. [1], a firefly graph $F_{s,r,t}$ is a graph on n=2r+s+2t+1 vertices that consists of s pendant edges, r triangles, and t pendant paths of length 2, all of them sharing a common vertex. Let \mathcal{F}_n be the set of all firefly graphs with n vertices. Note that \mathcal{F}_n contains the star $S_n \simeq F_{s,0,0}$, the stretched stars $(\simeq F_{s,0,t})$, the friendship graphs $(\simeq F_{0,r,0})$ and the butterfly graphs $(\simeq F_{s,r,0})$. The relevance of studying this family relates to the fact that many extremal graphs for functions depending on the eigenvalues of graph matrices belong to \mathcal{F}_n . For unicyclic graphs, Hong [4] determined the unique graph, $F_{n-3,1,0}$, with maximum largest eigenvalue of A(G). Fan et al. [2] determined the unique graph, $F_{n-3,1,0}$, with minimum least eigenvalue of A(G) among all unicyclic graphs of order n when $n \geq 12$. Petrović et al. [9] determined the unique graph, $F_{n-3,1,0}$, with minimum least eigenvalue of A(G) among the cacti with n vertices $(n \geq 12)$ and k cycles, where $0 \leq k \leq \lfloor \frac{n-1}{2} \rfloor$. Moreover, Li et al [6] characterized graphs, $F_{n-\lfloor \frac{n-1}{2} \rfloor -1, \lfloor \frac{n-1}{2} \rfloor, 0}$, with the largest signless Laplacian spectral radius among all the cacti with n vertices.

Here, we address the problem of finding all the eigenvalues of $A_{\alpha}(F_{s,r,t})$, which fills a literature gap and generalizes the eigenvalues of the adjacency and signless Laplacian matrix of a firefly graph for a convenient α .

The paper is organized such that preliminary results are presented in the next section and the main proofs are in Section 3.

2 Preliminaries results

First, we present the equitable partition theorem of a matrix which can be found at Horn and Johnson [5] and the Propositions 2.2 and 2.3 that show the eigenvalues of $A_{\alpha}(K_n)$, $A_{\alpha}(S_n)$ and upper bounds for $\lambda_1(A_{\alpha})$, respectively.

Proposition 2.1 ([5]) Let M be a matrix of order n defined by

$$M = \begin{bmatrix} M_{1,1} & M_{1,2} & \cdots & M_{1,k} \\ M_{2,1} & M_{2,2} & \cdots & M_{2,k} \\ \vdots & \vdots & \ddots & \vdots \\ M_{k,1} & M_{k,2} & \cdots & M_{k,k} \end{bmatrix},$$

where $M_{i,j}$, $1 \le i, j \le k$, is a submatrix of order $n_i \times n_j$ such that the sum of each of its rows is equal to $c_{i,j}$. If $\overline{M} = [c_{i,j}]_{k \times k}$, then the eigenvalues of \overline{M} are also eigenvalues of M.

Proposition 2.2 ([8]) For $\alpha \in [0,1]$, we have

- (i) $Spec(A_{\alpha}(K_n)) = \{n-1, (\alpha n-1)^{[n-1]}\};$
- (ii) $Spec(A_{\alpha}(S_n)) = \{\frac{1}{2}(\alpha n + \beta), \alpha^{[n-2]}, \frac{1}{2}(\alpha n \beta)\}, \text{ where } \beta = \sqrt{\alpha^2 n^2 + 4(n-1)(1-2\alpha)}.$

Proposition 2.3 ([8]) If G is a graph of order n and has m edges, then

$$\lambda_1(A_{\alpha}(G)) \ge \sqrt{\frac{1}{n} \sum_{u \in V(G)} d^2(u)} \quad and \quad \lambda_1(A_{\alpha}(G)) \ge \frac{2m}{n}.$$

Equality holds in the second inequality if and only if G is regular. If $\alpha > 0$, equality holds in the first inequality if and only if G is regular.

Proposition 2.4 states that the existence of twin vertices in G implies the presence of certain eigenvalues, λ , in the spectrum of $A_{\alpha}(G)$ and also provides a lower bound for the multiplicity, $m(\lambda)$, of such eigenvalues.

Proposition 2.4 Let G be a graph on $n \geq 2$ vertices, with v_i and v_{j_p} , $1 \leq p \leq r$, twin vertices in G.

- (i) If $v_i \not\sim v_{j_p}$ then $\alpha d(v_i) \in Spec(A_{\alpha}(G))$ and $m(\alpha d(v_i)) \geq r$.
- (ii) If $v_i \sim v_{j_p}$ then $\alpha(d(v_i)+1)-1 \in Spec(A_\alpha(G))$ and $m(\alpha(d(v_i)+1)-1) \ge r$.

Proof. For a given $p \in \{1, 2, ..., r\}$, let v_i and v_{j_p} be twin vertices in G. Consider the vector $\mathbf{x}^{(p)} \in \mathbb{R}^n$ with entries

$$[\mathbf{x}^{(p)}]_k = \begin{cases} 1, & \text{if } k = i; \\ -1, & \text{if } k = j_p; \\ 0, & \text{otherwise.} \end{cases}$$

Since $A_{\alpha}(G) = A_{\alpha}$ we have, for each $\ell \in \{1, 2, \dots, n\}$,

$$[A_{\alpha}\mathbf{x}^{(p)}]_{\ell} = \sum_{k=1}^{n} [A_{\alpha}]_{\ell k} [\mathbf{x}^{(p)}]_{k} = [A_{\alpha}]_{\ell i} - [A_{\alpha}]_{\ell j_{p}}.$$
 (1)

Now, consider the following three cases:

Case 1 $\ell = i$.

In this case,

$$[A_{\alpha}\mathbf{x}^{(p)}]_{i} = [A_{\alpha}]_{ii} - [A_{\alpha}]_{ij_{p}} = \alpha d(v_{i}) - [A_{\alpha}]_{ij_{p}},$$

so,

$$[A_{\alpha}\mathbf{x}^{(p)}]_i = \begin{cases} \alpha(d(v_i) + 1) - 1, \ se \ v_i \sim v_{j_p}; \\ \alpha d(v_i), \qquad \qquad se \ v_i \not\sim v_{j_p}. \end{cases}$$

Case 2 $\ell = j_p$.

In this case,

$$[A_{\alpha}\mathbf{x}^{(p)}]_{j_p} = [A_{\alpha}]_{j_p i} - [A_{\alpha}]_{j_p j_p} = [A_{\alpha}]_{j_p i} - \alpha d(v_{j_p}),$$

and,

$$[A_{\alpha}\mathbf{x}^{(p)}]_{j_p} = \begin{cases} -\alpha(d(v_{j_p}) + 1) + 1, & \text{if } v_i \sim v_{j_p}; \\ -\alpha d(v_{j_p}), & \text{if } v_i \not\sim v_{j_p}. \end{cases}$$

Case 3 $\ell \notin \{i, j_p\}$.

Since v_i and v_{j_p} are twin vertices, we have $[A_{\alpha}]_{\ell i} = [A_{\alpha}]_{\ell j_p}$. Then, for equation (1) $[A_{\alpha}\mathbf{x}^{(p)}]_{\ell} = 0$.

Therefore, of the three previous cases we have

$$A_{\alpha}\mathbf{x}^{(p)} = \begin{cases} (\alpha d(v_i) + \alpha - 1)\mathbf{x}^p, & \text{if } v_i \sim v_{j_p}; \\ \alpha d(v_i)\mathbf{x}^{(p)}, & \text{if } v_i \not\sim v_{j_p}. \end{cases}$$

It is easy to see that $\{\mathbf{x}^{(p)}\}_{p=1}^r$ is linearly independent. Therefore $m(\lambda) \geq r$, for $\lambda \in \{\alpha d(v_i), \alpha d(v_i) + \alpha - 1\}$.

3 Main results

In this section, we present the results involving the eigenvalues of graphs in the family \mathcal{F}_n . There is a convenient vertex labelling of a graph $F_{s,r,t} \in \mathcal{F}_n$ such that $A_{\alpha} = A_{\alpha}(F_{s,r,t})$ can be written as

$$A_{\alpha} = \begin{bmatrix} \alpha(t+s+2r) & (1-\alpha)\mathbf{J}_{1\times s} & (1-\alpha)\mathbf{J}_{1\times 2r} & (1-\alpha)\mathbf{J}_{1\times t} & \mathbf{0}_{1\times t} \\ (1-\alpha)\mathbf{J}_{s\times 1} & \alpha\mathbf{I}_{s} & \mathbf{0}_{s\times 2r} & \mathbf{0}_{s\times t} & \mathbf{0}_{s\times t} \\ (1-\alpha)\mathbf{J}_{2r\times 1} & \mathbf{0}_{2r\times s} & B_{2r} & \mathbf{0}_{2r\times t} & \mathbf{0}_{2r\times t} \\ (1-\alpha)\mathbf{J}_{t\times 1} & \mathbf{0}_{t\times s} & \mathbf{0}_{t\times 2r} & 2\alpha\mathbf{I}_{t} & (1-\alpha)\mathbf{I}_{t} \\ \mathbf{0}_{t\times 1} & \mathbf{0}_{t\times s} & \mathbf{0}_{t\times 2r} & (1-\alpha)\mathbf{I}_{t} & \alpha\mathbf{I}_{t} \end{bmatrix}, (2)$$

where

$$B_{2r} = \begin{bmatrix} 2\alpha \mathbf{I}_r & (1-\alpha)\mathbf{I}_r \\ (1-\alpha)\mathbf{I}_r & 2\alpha \mathbf{I}_r \end{bmatrix}.$$
 (3)

The Figure 1 displays the firefly graph $F_{3,2,2}$ with the adopted labelling.

Fig. 1. Firefly graph $F_{3.2.2}$

Remark 3.1 Let $G \simeq F_{s,r,t}$. The graph G has exactly one vertex of degree equal to 2r+s+t, 2r+t vertices of degree equal to 2 and s+t vertices of degree equal to 1. For $\alpha=1$ the eigenvalues of $A_1(G)=D(G)$ are $d(v), v \in V(G)$, and for $\alpha=0$ the eigenvalues of $A_0(G)=A(G)$ can be see in [3].

In Proposition 3.2, we were able to prove that the occurrence of some eigenvalues of a firefly graph depends on the existence of certain induced subgraphs.

Proposition 3.2 Given the nonnegative integers r, s and t, let $G \simeq F_{s,r,t}$ and $\alpha \in (0,1)$. If $t \geq 2$ then $\theta_1 = \frac{3\alpha + \sqrt{5\alpha^2 - 8\alpha + 4}}{2}$ and $\theta_2 = \frac{3\alpha - \sqrt{5\alpha^2 - 8\alpha + 4}}{2}$ are eigenvalues of G, both with multiplicity at least t-1. Moreover, if $r \geq 2$ then $\alpha + 1$ is an eigenvalue of G with multiplicity at least r-1.

Proof. Given $\lambda \in \{\theta_1, \theta_2\}$ suppose $t \geq 2$ and, for each $i \in \{1, 2, \dots, t-1\}$, consider

the vector $\mathbf{x}^{(i)}$ with 2r + s + 2t + 1 entries, where

$$[\mathbf{x}^{(i)}]_j = \begin{cases} \frac{\lambda - \alpha}{1 - \alpha}, & \text{if } j = s + 2r + 2; \\ -\frac{\lambda - \alpha}{1 - \alpha}, & \text{if } j = s + 2r + 2 + i; \\ 1, & \text{if } j = s + 2r + t + 2; \\ -1, & \text{if } j = s + 2r + t + 2 + i; \\ 0, & \text{otherwise.} \end{cases}$$

In this way, the entries of the vector $A_{\alpha}(G)\mathbf{x}^{(i)} - \lambda\mathbf{x}^{(i)}$ are given by

$$\left[A_{\alpha}(G)\mathbf{x}^{(i)} - \lambda\mathbf{x}^{(i)}\right]_{j} = \begin{cases} \frac{\lambda^{2} - 3\alpha\lambda + \alpha^{2} + 2\alpha - 1}{\alpha - 1}, & \text{if } j = s + 2r + 2; \\ -\frac{\lambda^{2} - 3\alpha\lambda + \alpha^{2} + 2\alpha - 1}{\alpha - 1}, & \text{if } j = s + 2r + 2 + i; \\ 0, & \text{otherwise.} \end{cases}$$

Since λ is a root of the polynomial $x^2 - 3\alpha x + \alpha^2 + 2\alpha - 1$, it follows that $\mathbf{x}^{(i)}$ is an associated eigenvector to λ . Since $\{\mathbf{x}^{(i)}\}_{i=1}^{t-1}$ is a linearly independent set, the multiplicity of λ is at least t-1.

Now, suppose $r \geq 2$ and denote by e_k the vector with s+2r+2t+1 coordinates whose k-th entry is equal to 1 and the others entries are zero. For each j, $s+2 \leq j \leq s+r$, it is easy to show that the vector $z_j = e_j - e_{j+1} + e_{j+r} - e_{j+r+1}$ is an eigenvector of $A_{\alpha}(G)$ associated with the eigenvalue $\alpha+1$. So, $\alpha+1$ is an eigenvalue of $A_{\alpha}(G)$ with multiplicity at least r-1.

Remark 3.3 As described in the Proposition 3.2, we use the notations θ_1 and θ_2 to represent the roots of the polynomial $x^2 - 3\alpha x + \alpha^2 + 2\alpha - 1$.

For $s \geq 1$, $G \simeq F_{s,0,0} \simeq S_s$ and the eigenvalues of $A_{\alpha}(S_s)$ can be seen in the Proposition 2.2.

Proposition 3.4 Let $G \simeq F_{0,r,0}$. If $r \ge 1$ and $\alpha \in (0,1)$ then

$$P_{A_{\alpha}(G)}(x) = (x - \alpha - 1)^{r-1}(x - 3\alpha + 1)^{r}(x^{2} - (2\alpha r + \alpha + 1)x + (6\alpha - 2)r).$$

Moreover, if x_1 and x_2 denote the roots of the quadratic factor of $P_{A_{\alpha}(G)}(x)$ then

$$\begin{cases} x_2 \le 3\alpha - 1 < \alpha + 1 < x_1, & \text{if } 0 < \alpha \le \frac{1}{3}; \\ 3\alpha - 1 \le x_2 < \alpha + 1 < x_1, & \text{if } \frac{1}{3} < \alpha < 1. \end{cases}$$

Proof. For $G \simeq F_{0,r,0}$, we have

$$A_{\alpha}(G) = \begin{bmatrix} 2\alpha r & (1-\alpha)\mathbf{J}_{1\times 2r} \\ (1-\alpha)\mathbf{J}_{2r\times 1} & B_{2r} \end{bmatrix},$$

where B_{2r} is the matrix given in (3).

Applying the Propositions 2.4 for each triangles of G, we obtain that $3\alpha - 1$ is an eigenvalue of $A_{\alpha}(G)$ with multiplicity at least r and from Proposition 3.2, for $r \geq 2$, $\alpha + 1$ is an eigenvalue of $A_{\alpha}(G)$ with multiplicity at least r - 1. If r = 1, the result follow by Proposition 2.2.

From Proposition 2.1, the spectrum of matrix

$$M = \begin{bmatrix} 2\alpha r & 2r(1-\alpha) \\ 1-\alpha & 1+\alpha \end{bmatrix},$$

whose characteristic polynomial is $g(x) = x^2 - (2\alpha r + \alpha + 1)x + (6\alpha - 2)r$, is contained in the spectrum of $A_{\alpha}(G)$. Since $3\alpha - 1$ and $\alpha + 1$ are not roots of g(x), we have $P_{A_{\alpha}(G)}(x) = (x - \alpha - 1)^{r-1}(x - 3\alpha + 1)^r g(x)$.

As G has order n=2r+1 and size m=3r, we have $\overline{d}=\frac{6r}{2r+1}=3-\frac{3}{2r+1}\geq 2$. From Proposition 2.3, $\lambda_1(A_\alpha)\geq 2$. Let x_1 and x_2 be the roots of g(x), with $x_2< x_1$. Since $3\alpha-1<\alpha+1<2$, for $\alpha\in(0,1)$, we conclude that $x_1=\lambda_1(A_\alpha)$. Now, we have $g(\alpha+1)=-2r(\alpha-1)^2<0$ for all $r\geq 1$ and $\alpha\in(0,1)$. On the other hand, $g(3\alpha-1)=-2(r-1)(\alpha-1)(3\alpha-1)$, thus $g(3\alpha-1)\leq 0$ if $\alpha\in(0,\frac{1}{3}]$ and $g(3\alpha-1)>0$ if $\alpha\in(\frac{1}{3},1)$. So it easy to see that

$$\begin{cases} x_2 \le 3\alpha - 1 < \alpha + 1 < x_1, & \text{if } 0 < \alpha \le \frac{1}{3}; \\ 3\alpha - 1 \le x_2 < \alpha + 1 < x_1, & \text{if } \frac{1}{3} < \alpha < 1, \end{cases}$$

and the equalities only hold if r = 1 or $\alpha = \frac{1}{3}$.

Proposition 3.5 Let $G \simeq F_{0,0,t}$. If $t \ge 1$ and $\alpha \in (0,1)$ then

$$P_{A_{\alpha}(G)}(x) = (x^2 - 3\alpha x + \alpha^2 + 2\alpha - 1)^{t-1}h(x),$$

where $h(x) = x^3 - \alpha(t+3)x^2 + [\alpha^2t + (\alpha^2 + 2\alpha - 1)(t+1)]x - 2\alpha(2\alpha - 1)t$. If x_1 , x_2 and x_3 are the roots of h(x) then $x_3 < \theta_2 < x_2 < \theta_1 < x_1$.

Proof. For $G \simeq F_{0,0,t}$, we have

$$A_{\alpha}(G) = \begin{bmatrix} \alpha t & (1-\alpha)\mathbf{J}_{1\times t} & \mathbf{0}_{1\times t} \\ (1-\alpha)\mathbf{J}_{t\times 1} & 2\alpha\mathbf{I}_{t} & (1-\alpha)\mathbf{I}_{t} \\ \mathbf{0}_{t\times 1} & (1-\alpha)\mathbf{I}_{t} & \alpha\mathbf{I}_{t} \end{bmatrix}.$$

From Proposition 3.2, if $t \geq 2$, θ_1 and θ_2 are eigenvalues of $A_{\alpha}(G)$, both with multiplicity at least t-1. From Proposition 2.1, the spectrum of matrix

$$M = \begin{bmatrix} \alpha t & t(1-\alpha) & 0 \\ 1-\alpha & 2\alpha & 1-\alpha \\ 0 & 1-\alpha & \alpha \end{bmatrix},$$

whose characteristic polynomial is $h(x) = x^3 - \alpha(t+3)x^2 + [\alpha^2t + (\alpha^2+2\alpha-1)(t+1)]x - 2\alpha(2\alpha-1)t$, is contained in the spectrum of $A_{\alpha}(G)$. As θ_1 and $\theta_2 = 3\alpha - \theta_1$ are not roots of h(x), we have $P_{A_{\alpha}(G)}(x) = (x^2 - 3\alpha x + \alpha^2 + 2\alpha - 1)^{t-1}h(x)$. Since $h(\theta_1) = -(\alpha-1)^2(\theta_1 - \alpha)t < 0$ and $h(\theta_2) = (\alpha-1)^2(\theta_1 - 2\alpha)t > 0$ for all $t \ge 1$ and $\alpha \in (0,1)$, there is a root of h(x) in (θ_2,θ_1) . As $\lim_{x\to\infty} h(x) = \infty$ and $\lim_{x\to-\infty} h(x) = -\infty$, the previous inequalities imply $x_3 < \theta_2 < x_2 < \theta_1 < x_1$. If t = 1, $G \simeq P_3$ and the result follows.

Proposition 3.6 Let $G \simeq F_{s,r,0}$. If $s \ge 1$, $r \ge 1$ and $\alpha \in (0,1)$ then

$$P_{A_{\alpha}(G)}(x) = (x - \alpha)^{s-1}(x - 3\alpha + 1)^{r}(x - \alpha - 1)^{r-1}h(x),$$

where $h(x) = x^3 - (\alpha s + 2\alpha r + 2\alpha + 1)x^2 + ((\alpha^2 + 3\alpha - 1)(s + 2r) + \alpha^2 + \alpha)x - (2\alpha^2 + \alpha - 1)s + 2\alpha r(1 - 3\alpha)$. If x_1, x_2 and x_3 are the roots of polynomial h(x) then

$$\begin{cases} x_3 < 3\alpha - 1 < \alpha < x_2 < \alpha + 1 < x_1, & if \ 0 < \alpha \le \frac{1}{3}; \\ \min\{x_3, 3\alpha - 1\} < \max\{x_3, 3\alpha - 1\} < \alpha < x_2 < \alpha + 1 < x_1, & if \ \frac{1}{3} < \alpha < \frac{1}{2}; \\ x_3 < \alpha < 3\alpha - 1 < x_2 < \alpha + 1 < x_1, & if \ \frac{1}{2} \le \alpha < 1. \end{cases}$$

Proof. For $G \simeq F_{s,r,0}$, we have

$$A_{\alpha}(G) = \begin{bmatrix} \alpha(s+2r) & (1-\alpha)\mathbf{J}_{1\times s} & (1-\alpha)\mathbf{J}_{1\times 2r} \\ (1-\alpha)\mathbf{J}_{s\times 1} & \alpha\mathbf{I}_{s} & \mathbf{0}_{s\times 2r} \\ (1-\alpha)\mathbf{J}_{2r\times 1} & \mathbf{0}_{2r\times s} & B_{2r} \end{bmatrix},$$

where B_{2r} is the matrix given in (3).

From the vector obtained in the proof of Proposition 2.4 it is possible to obtain r linearly independent eigenvectors related to the eigenvalue $3\alpha - 1$ and s - 1 linearly independent eigenvectors associated to the eigenvalue α . By Proposition 3.2, $\alpha + 1$ is an eigenvalue of $A_{\alpha}(G)$ with multiplicity at least r - 1 and, from Proposition 2.1, the eigenvalues of the reduced matrix

$$M = \begin{bmatrix} \alpha(s+2r) & (1-\alpha)s & (1-\alpha)2r \\ 1-\alpha & \alpha & 0 \\ 1-\alpha & 0 & 1+\alpha \end{bmatrix},$$

whose characteristic polynomial is $h(x)=x^3-(\alpha s+2\alpha r+2\alpha+1)x^2+((\alpha^2+3\alpha-1)(s+2r)+\alpha^2+\alpha)x-(2\alpha^2+\alpha-1)s+2\alpha r(1-3\alpha)$, is contained in the spectrum of $A_{\alpha}(G)$. Note that $h(\alpha+1)=-2(\alpha-1)^2r<0$ and $h(\alpha)=(\alpha-1)^2s>0$ for all $\alpha\in(0,1), s\geq 1$ and $r\geq 1$. So, h(x) has a root, x_2 , in $(\alpha,\alpha+1)$. As $\lim_{x\to\infty}h(x)=\infty$ and $h(\alpha+1)<0$, we concluded that the largest root of $h(x), x_1$, satisfies $\alpha+1< x_1$. We have $h(3\alpha-1)=2(1-\alpha)[(3\alpha^2-3\alpha+1)s+(6\alpha^2-5\alpha+1)(r-1)]$. As $3\alpha^2-3\alpha+1>0$ for all $\alpha\in(0,1)$ and $6\alpha^2-5\alpha+1\geq 0$ for $\alpha\in(0,\frac13]\cup[\frac12,1)$ we have $h(3\alpha-1)>0$ for all $\alpha\in(0,\frac13]\cup[\frac12,1)$. As $\lim_{x\to-\infty}h(x)=-\infty$ we have $x_3<\min\{3\alpha-1,\alpha\}$. Similarly, when $\alpha\in(\frac13,\frac12)$, it is shown that $\max\{x_3,3\alpha-1\}<\alpha$. It is easy to sort the eigenvalues of $A_{\alpha}(G)$ and the result follows.

Proposition 3.7 Let $G \simeq F_{s,0,t}$. If $s \ge 1$ and $t \ge 1$ then

$$P_{A_{\alpha}(G)}(x) = (x - \alpha)^{s-1}(x^2 - 3\alpha x + \alpha^2 + 2\alpha - 1)^{t-1}h(x),$$

where $h(x) = x^4 - \alpha(s+t+4)x^3 + [(3\alpha-1)(\alpha+1)(s+t+1) + \alpha^2]x^2 - \alpha[(\alpha^2+2\alpha-1)(s+2t+1) + (2\alpha-1)(3s+t)]x + (2\alpha-1)[\alpha^2(s+2t) + (2\alpha-1)s]$. Moreover, the polynomial h(x) has four distinct roots, x_1, x_2, x_3 and x_4 , such that $x_4 < \theta_2 < x_3 < \alpha < x_2 < \theta_1 < x_1$.

Proof. For $G \simeq F_{s,0,t}$, we have

$$A_{\alpha}(G) = \begin{bmatrix} \alpha(s+t) & (1-\alpha)\mathbf{J}_{1\times s} & (1-\alpha)\mathbf{J}_{1\times t} & \mathbf{0}_{1\times t} \\ (1-\alpha)\mathbf{J}_{s\times 1} & \alpha\mathbf{I}_{s} & \mathbf{0}_{s\times t} & \mathbf{0}_{s\times t} \\ (1-\alpha)\mathbf{J}_{t\times 1} & \mathbf{0}_{t\times 1} & 2\alpha\mathbf{I}_{t} & (1-\alpha)\mathbf{I}_{t} \\ \mathbf{0}_{t\times 1} & \mathbf{0}_{t\times s} & (1-\alpha)\mathbf{I}_{t} & \alpha\mathbf{I}_{t} \end{bmatrix}.$$

From Proposition 2.4, α is eigenvalue of $A_{\alpha}(G)$ with multiplicity at least s-1. If t=1, θ_1 and θ_2 are not eigenvalues of $A_{\alpha}(G)$. From Proposition 3.2, if $t\geq 2$, θ_1 and θ_2 are eigenvalues of $A_{\alpha}(G)$, both with multiplicity at least t-1. From Proposition 2.1, the eigenvalues of the reduced matrix

$$M = \begin{bmatrix} \alpha(s+t) & (1-\alpha)s & (1-\alpha)t & 0 \\ 1-\alpha & \alpha & 0 & 0 \\ 1-\alpha & 0 & 2\alpha & 1-\alpha \\ 0 & 0 & 1-\alpha & \alpha \end{bmatrix},$$

whose characteristic polynomial is h(x), is contained in the spectrum of $A_{\alpha}(G)$. For θ_1 and $\theta_2 = 3\alpha - \theta_1$, defined in Proposition 3.2, we have

$$h(\alpha) = (\alpha - 1)^4 s > 0, \ h(\theta_1) = -\frac{(\alpha - 1)^2 t}{2} (3\alpha^2 - 4\alpha + 2 + \alpha\sqrt{5\alpha^2 - 8\alpha + 4}) < 0$$

and $h(\theta_2) = -\frac{2(\alpha - 1)^6 t}{3\alpha^2 - 4\alpha + 2 + \alpha\sqrt{5\alpha^2 - 8\alpha + 4}} < 0$, for all $\alpha \in (0, 1)$, $s \ge 1$ and $t \ge 1$.

Since α , θ_1 and θ_2 are not roots of h(x), we have $P_{A_{\alpha}(G)}(x) = (x - \alpha)^{s-1}(x^2 - 3\alpha x + \alpha^2 + 2\alpha - 1)^{t-1}h(x)$. The above inequalities imply that the polynomial h(x) has a root in the interval (θ_2, α) and other root in the interval (α, θ_1) . Moreover, as $h(\theta_1) < 0$ and $\lim_{x \to \infty} h(x) = \infty$, there is a root of h(x) in the interval (θ_1, ∞) . Similarly, we conclude that h(x) has the smallest root in the interval $(-\infty, \theta_2)$.

The next propositions, whose proofs are similar to the previous results, complete all cases in the family \mathcal{F}_n .

Proposition 3.8 Let $G \simeq F_{0,r,t}$. If $r \ge 1$, $t \ge 1$ and $\alpha \in (0,1)$ then

$$P_{A_{\alpha}(G)}(x) = (x - 3\alpha + 1)^{r}(x - \alpha - 1)^{r-1}(x^{2} - 3\alpha x + \alpha^{2} + 2\alpha - 1)^{t-1}h(x),$$

where $h(x) = x^4 - (\alpha(t+2r+4)+1)x^3 + ((3\alpha^2+3\alpha-1)(t+2r+1)+\alpha^2+2\alpha)x^2 - ((\alpha^3+2\alpha^2+\alpha-1)(2t+2r+1)+(2\alpha^2-3\alpha+1)(t+8r)+(14\alpha-6)r)x + 2\alpha t(2\alpha^2+\alpha-1)+2r(3\alpha^3+5\alpha^2-5\alpha+1)$. If x_1, x_2, x_3 and x_4 are the roots of polynomial h(x) then

$$\begin{cases} x_4 < \theta_2 < \min\{x_3, 3\alpha - 1\} < \max\{x_3, 3\alpha - 1\} < \theta_1 < x_2 < \alpha + 1 < x_1, & \text{if } 0 < \alpha < \frac{1}{3}; \\ x_4 < \theta_2 < 3\alpha - 1 < x_3 < \theta_1 < x_2 < \alpha + 1 < x_1, & \text{if } \frac{1}{3} \le \alpha < 1. \end{cases}$$

Proposition 3.9 Let $G \simeq F_{s,r,t}$. For $s \ge 1$, $r \ge 1$, $t \ge 1$ and $\alpha \in (0,1)$,

$$P_{A_{\alpha}(G)}(x) = (x-\alpha)^{s-1}(x-(3\alpha-1))^{r}(x-(\alpha+1))^{r-1}(x^{2}-3\alpha x+\alpha^{2}+2\alpha-1)^{t-1}g(x),$$

 $\begin{array}{l} \textit{where } g(x) = x^5 + (-\alpha t - 2\alpha r - \alpha s - 5\alpha - 1)x^4 + ((4\alpha^2 + 3\alpha - 1)t + (8\alpha^2 + 6\alpha - 2)r + (4\alpha^2 + 3\alpha - 1)s + 8\alpha^2 + 6\alpha - 1)x^3 + ((-5\alpha^3 - 11\alpha^2 + 2\alpha + 1)t + (-8\alpha^3 - 28\alpha^2 + 10\alpha)r + (-4\alpha^3 - 13\alpha^2 + 3\alpha + 1)s - 5\alpha^3 - 8\alpha^2 + 1)x^2 + ((2\alpha^4 + 12\alpha^3 + \alpha^2 - 3\alpha)t + (2\alpha^4 + 28\alpha^3 + 2\alpha^2 - 10\alpha + 2)r + (\alpha^4 + 11\alpha^3 + 7\alpha^2 - 8\alpha + 1)s + \alpha^4 + 3\alpha^3 + \alpha^2 - \alpha)x + (-4\alpha^4 - 2\alpha^3 + 2\alpha^2)t + (-6\alpha^4 - 10\alpha^3 + 10\alpha^2 - 2\alpha)r + (-2\alpha^4 - 5\alpha^3 + \alpha^2 + 3\alpha - 1)s. \\ \textit{Moreover, } g(x) \textit{ has five roots } x_1, x_2, x_3, x_4, x_5 \textit{ which are arranged as} \end{array}$

$$x_5 < \theta_2 < x_4 < \min\{3\alpha - 1, \alpha\} < \max\{3\alpha - 1, \alpha\} < x_3 < \theta_1 < x_2 < \alpha + 1 < x_1$$

and the result follows.

References

- [1] Aouchiche, M., P. Hansen and C. Lucas, On the extremal values of the second largest Q-eigenvalue, Linear Algebra and its Applications 435 (2011), pp. 2591 – 2606.
- [2] Fan, Y.-Z., Y. Wang and Y.-B. Gao, Minimizing the least eigenvalues of unicyclic graphs with application to spectral spread, Linear Algebra and its Applications 429 (2008), pp. 577–588.
- [3] Hong, W. X. and L. H. You, On the eigenvalues of firefly graphs, Transactions on Combinatorics 3 (2014), pp. 1–9.
- [4] Hong, Y., Bounds on the spectra of unicyclic graphs, J. East China Norm. Univ. Natur. Sci. Ed. 1 (1986), pp. 31–34.
- [5] Horn, R. A. and C. R. Johnson, "Matrix Analysis," Cambridge University Press, New York, 1992.
- [6] Li, S. and M. Zhang, On the signless laplacian index of cacti with a given number of pendant vertices, Linear Algebra and its Applications 436 (2012), pp. 4400 – 4411, special Issue on Matrices Described by Patterns.
- [7] Medina, R., C. Noyer and O. Raynaud, Twins vertices in hypergraphs, Electronic Notes in Discrete Mathematics 27 (2006), pp. 87–89.
- [8] Nikiforov, V., Merging the A- and Q-Spectral Theories, Applicable Analysis and Discrete Mathematics 11 (2017), pp. 81–107.
- [9] Petrović, M., T. Aleksić and V. Simić, On the least eigenvalue of cacti, Linear Algebra and its Applications 435 (2011), pp. 2357–2364, Special Issue in Honor of Dragos Cvetković.