Graded algebras with cyclotomic Hilbert series

Alessio Borzì (joint work with Alessio D'Alì)

University of Warwick

22 April 2021 Graduate student meeting on Applied Algebra and Combinatorics

Graded algebras

Graded algebra: $R = k[x_1, \dots, x_n]/I$ with I homogenoeus positively graded $\deg(x_i) = e_i > 0$

$$R = \bigoplus_{i \in \mathbb{N}} R_i$$

Definition

The Hilbert series of a graded algebra $R = \bigoplus_{i \in \mathbb{N}} R_i$ is

$$H(R,t) = \sum_{i \in \mathbb{N}} \dim_k R_i t^i \in \mathbb{Z}[[t]].$$

Example

• R = k[x, y], $\deg(x) = \deg(y) = 1$ standard grading.

Example

$$k[x,y] = k \oplus (kx + ky) \oplus (kx^2 + kxy + ky^2) \oplus \dots$$

 $H(R,t) = 1 + 2t + 3t^2 + \dots = \frac{1}{(1-t)^2}.$

Example

lacksquare R = k[x,y], $\deg(x) = \deg(y) = 1$ standard grading.

$$k[x,y] = k \oplus (kx + ky) \oplus (kx^2 + kxy + ky^2) \oplus \dots$$

 $H(R,t) = 1 + 2t + 3t^2 + \dots = \frac{1}{(1-t)^2}.$

② $R = k[x,y]/(x^3 - y^2)$, $\deg(x) = 2$, $\deg(y) = 3$ not standard graded.

Example

lacksquare R = k[x,y], $\deg(x) = \deg(y) = 1$ standard grading.

$$k[x,y] = k \oplus (kx + ky) \oplus (kx^2 + kxy + ky^2) \oplus \dots$$

 $H(R,t) = 1 + 2t + 3t^2 + \dots = \frac{1}{(1-t)^2}.$

② $R = k[x,y]/(x^3 - y^2)$, $\deg(x) = 2$, $\deg(y) = 3$ not standard graded.

$$\frac{k[x,y]}{(x^3-y^2)} \simeq k[u^2, u^3] = k \oplus 0 \oplus ku^2 \oplus ku^3 \oplus ku^4 \oplus \dots$$
$$H(R,t) = 1 + t^2 + t^3 + t^4 + \dots = \frac{(1-t^6)}{(1-t^2)(1-t^3)}$$

H(R,t) is always a rational function

We will consider H(R,t) reduced to the *lowest terms*. Thus we can speak about *the* numerator of H(R,t).

H(R,t) is always a rational function

We will consider H(R,t) reduced to the *lowest terms*. Thus we can speak about *the* numerator of H(R,t).

$$R = k[x, y]/(x^3 - y^2)$$

$$H(R,t) = \frac{(1-t^6)}{(1-t^2)(1-t^3)} = \frac{1-t+t^2}{1-t}$$

Definition

A sequence of elements $f_1, \ldots, f_m \in R$ is a regular sequence if f_i is not a zerodivisor in $R/(f_1, \ldots, f_{i-1})$ for all $i \leq m$.

Definition

A sequence of elements $f_1, \ldots, f_m \in R$ is a regular sequence if f_i is not a zerodivisor in $R/(f_1, \ldots, f_{i-1})$ for all $i \leq m$.

A graded algebra is a complete intersection if

$$R \simeq k[x_1,\ldots,x_n]/(f_1,\ldots,f_m)$$

with f_1, \ldots, f_m a regular sequence in $k[x_1, \ldots, x_n]$.

Proposition

If $R \simeq k[x_1,\ldots,x_n]/(f_1,\ldots,f_m)$ is a complete intersection with $\deg(x_i)=e_i$ and $\deg(f_i)=d_i$, then

$$H(R,t) = \frac{(1-t^{d_1})\dots(1-t^{d_m})}{(1-t^{e_1})\dots(1-t^{e_n})}.$$

Proposition

If $R \simeq k[x_1, \dots, x_n]/(f_1, \dots, f_m)$ is a complete intersection with $\deg(x_i) = e_i$ and $\deg(f_i) = d_i$, then

$$H(R,t) = \frac{(1-t^{d_1})\dots(1-t^{d_m})}{(1-t^{e_1})\dots(1-t^{e_n})}.$$

Example

 $R = k[x,y]/(x^3-y^2)$ is a complete intersection with $\deg(x) = 2$, $\deg(y) = 3$ and $\deg(x^3-y^2) = 6$

$$H(R,t) = \frac{(1-t^6)}{(1-t^2)(1-t^3)}.$$

Definition

A graded algebra R is cyclotomic if the numerator of its Hilbert series has all its roots in the unit circle.

Definition

A graded algebra R is cyclotomic if the numerator of its Hilbert series has all its roots in the unit circle.

complete intersection \Longrightarrow cyclotomic

Definition

A graded algebra R is cyclotomic if the numerator of its Hilbert series has all its roots in the unit circle.

complete intersection \Longrightarrow cyclotomic

Is the converse true?

Definition

A graded algebra R is cyclotomic if the numerator of its Hilbert series has all its roots in the unit circle.

complete intersection \Longrightarrow cyclotomic

Is the converse true? No

Example (Stanley)

 $R=k[x,y]/(x^3,xy,y^2)$ standard graded, $H(R,t)=(1+t)^2$ but R is not a complete intersection.

Definition

A graded algebra R is cyclotomic if the numerator of its Hilbert series has all its roots in the unit circle.

complete intersection \Longrightarrow cyclotomic

Is the converse true? No

Example (Stanley)

 $R=k[x,y]/(x^3,xy,y^2)$ standard graded, $H(R,t)=(1+t)^2$ but R is not a complete intersection.

What about other families?

Definition

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that:

- \bullet $0 \in S$,
- \bullet $a, b \in S \Rightarrow a + b \in S$,
- $\mathbb{N} \setminus S$ is finite.

Definition

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that:

- \bullet $0 \in S$,
- $a, b \in S \Rightarrow a + b \in S$,
- ullet $\mathbb{N}\setminus S$ is finite.

•
$$S = \mathbb{N} = \langle 1 \rangle$$

Definition

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that:

- $0 \in S$
- $a, b \in S \Rightarrow a + b \in S$,
- ullet $\mathbb{N}\setminus S$ is finite.

- $S = \mathbb{N} = \langle 1 \rangle$
- $S = \{0, 2, 4, \dots\} = 2\mathbb{N}$ not a numerical semigroup

Definition

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that:

- \bullet $0 \in S$,
- $a, b \in S \Rightarrow a + b \in S$,
- ullet $\mathbb{N}\setminus S$ is finite.

- $S = \mathbb{N} = \langle 1 \rangle$
- $S = \{0, 2, 4, \dots\} = 2\mathbb{N}$ not a numerical semigroup
- $S = \{0, 2, 3, 4, \dots\} = \langle 2, 3 \rangle \subseteq \mathbb{N}$

Definition

A numerical semigroup is a subset $S \subseteq \mathbb{N}$ such that:

- \bullet $0 \in S$,
- $a, b \in S \Rightarrow a + b \in S$,
- ullet $\mathbb{N}\setminus S$ is finite.

- $S = \mathbb{N} = \langle 1 \rangle$
- $S = \{0, 2, 4, \dots\} = 2\mathbb{N}$ not a numerical semigroup
- $S = \{0, 2, 3, 4, \dots\} = \langle 2, 3 \rangle \subseteq \mathbb{N}$
- $S = \{0, 3, 4, 6, 7, \dots\} = \langle 3, 4 \rangle \subseteq \mathbb{N}$

Semigroup ring

Every numerical semigroup has a unique minimal system of generators $S = \langle n_1, \dots, n_e \rangle$.

Semigroup ring

Every numerical semigroup has a unique minimal system of generators $S = \langle n_1, \dots, n_e \rangle$.

Semigroup ring: $k[S] = k[u^{n_1}, \dots, u^{n_e}]$

$$S = \langle 2, 3 \rangle, \ k[S] = k[u^2, u^3] \simeq k[x, y]/(x^3 - y^2).$$

A conjecture

Conjecture (Ciolan, García-Sánchez, Moree 2016)

For every numerical semigroup S, k[S] is cyclotomic if and only if it is a complete intersection.

A conjecture

Conjecture (Ciolan, García-Sánchez, Moree 2016)

For every numerical semigroup S, k[S] is cyclotomic if and only if it is a complete intersection.

(Ciolan, García-Sánchez, Moree 2016) $\max(\mathbb{N} \setminus S) \leq 70$.

A conjecture

Conjecture (Ciolan, García-Sánchez, Moree 2016)

For every numerical semigroup S, k[S] is cyclotomic if and only if it is a complete intersection.

(Ciolan, García-Sánchez, Moree 2016) $\max(\mathbb{N} \setminus S) \leq 70$.

(B., Herrera-Poyatos, Moree, 2021) k[S] with at most two irreducible factors in the numerator of H(k[S],t).

Koszul algebras

Definition

A standard graded algebra R is Koszul if the minimal free resolution of k as an R-module is linear (i.e. $\beta_{i,j}^R(k) = 0$ whenever $i \neq j$).

Koszul algebras

Definition

A standard graded algebra R is Koszul if the minimal free resolution of k as an R-module is linear (i.e. $\beta_{i,j}^R(k) = 0$ whenever $i \neq j$).

If
$$R=k[x_1,\ldots,x_n]/I$$
 is standard graded, then

I has a Gröbner $\Longrightarrow R$ is Koszul $\Longrightarrow I$ is generated by quadrics

Theorem (B., D'Alì 2021)

A Koszul algebra R is cyclotomic if and only if it is a complete intersection.

If the numerator of H(k[S],t) is irreducible, then k[S] cyclotomic \iff complete intersection.

If the numerator of H(k[S],t) is irreducible, then k[S] cyclotomic \iff complete intersection.

Theorem (B.,D'Alì 2021)

Let R be a standard graded algebra with irreducible h-polynomial. TFAE:

- lacktriangledown R is cyclotomic
- $oldsymbol{2}$ R is a complete intersection
- **3** R is a hypersurface of degree p, with p prime.

Thank you for your attention!