Laurea Triennale in Informatica, Università di Roma Tor Vergata

Calcolo delle Probabilità (ed insegnamenti mutuati)

Anno accademico: 2013-2014. Titolare del corso: Claudio Macci

Appello del 27 Giugno 2014

Esercizio 1. Si lanciano due dadi equi e sia X la variabile aleatoria che conta il numero di volte che esce il numero 4.

- D1) Trovare la densità discreta della variabile aleatoria X.
- D2) Si considerino lanci ripetuti di due dadi equi e sia Y la variabile aleatoria che conta il numero di lanci (dei due dadi) necessari per avere per la prima volta "un solo 4". Calcolare $P(Y \ge k)$ per $k \ge 1$ intero.

Esercizio 2. Si lancia una moneta equa. Se esce testa, si lancia un dado equo; se esce croce, si lancia un dado truccato le cui facce hanno i numeri 1, 2, 3, 4, 5, 5.

- D3) Calcolare la probabilità di ottenere un numero dispari.
- D4) Calcolare la probabilità di aver lanciato il dado equo sapendo di aver ottenuto un numero dispari.

Esercizio 3. Consideriamo la seguente densità congiunta: $p_{X_1,X_2}(0,0) = p_{X_1,X_2}(0,1) = p_{X_1,X_2}(1,0) =$ $p_{X_1,X_2}(0,2) = p_{X_1,X_2}(2,0) = \frac{9}{50} \, e \, p_{X_1,X_2}(1,1) = \frac{1}{10}.$

- D5) Calcolare $P(X_1 > X_2)$.
- D6) Calcolare $P(X_1 = X_2 | X_1 + X_2 = 2)$.

Esercizio 4. Sia X una variabile aleatoria con distribuzione uniforme in (-1,1).

- D7) Trovare la densità continua di $Y = e^X$.
- D8) Calcolare $\mathbb{E}[Y]$.

Esercizio 5.

D9) Sia $N_t = \sum_{n\geq 1} 1_{T_n \leq t}$ (per $t\geq 0$) un processo di Poisson con intensità di $\lambda=2$. Calcolare $P(N_3\leq 1)$. D10) Trovare la distribuzione di $2X_1 + 3X_2$ nel caso in cui X_1 e X_2 sono variabili aleatorie Normali indipendenti, entrambe con media 1 e con varianza 2.

Esercizio 6. Sia $\{X_n:n\geq 1\}$ una successione di variabili aleatorie i.i.d. (indipendenti e identicamente distribuite).

D11) Dire per quale valore di m si ha

$$\lim_{n\to\infty}P\left(\left|\frac{X_1+\cdots+X_n}{n}-m\right|>\varepsilon\right)=0 \text{ per ogni } \varepsilon>0,$$

nel caso in cui le variabili aleatorie $\{X_n:n\geq 1\}$ abbiano densità continua $f(t)=\frac{1}{10}1_{(1,11)}(t)$. D12) Calcolare, usando l'approssimazione Normale, $P(X_1+\cdots+X_{10000}-10000\leq 135)$ nel caso in cui le variabili aleatorie $\{X_n : n \geq 1\}$ abbiano distribuzione esponenziale con parametro $\lambda = 1$.

Esercizio 7 (solo per Lauree Magistrali). Consideriamo una catena di Markov omogenea $\{X_n : n \geq 0\}$ con spazio degli stati $E = \{1, 2, 3\}$ e matrice di transizione

$$P = \left(\begin{array}{ccc} 0 & 0 & 1\\ a & 0 & 1-a\\ 0 & 1 & 0 \end{array}\right)$$

per $a \in [0, 1]$.

- D13) Calcolare $P(X_1=1,X_2=3,X_3=2,X_4=3|X_0=2)$. D14) Trovare il valore di a per cui $(\frac{1}{3},\frac{1}{3},\frac{1}{3})$ è una distribuzione invariante.

Cenno alle soluzioni (Ogni segnalazione di errori o sviste (sempre possibili) è gradita)

Esercizio 1.

D1) La variabile aleatoria
$$X$$
 ha distribuzione binomiale con parametri $n=2$ e $p=1/6$. Quindi $p_X(k)=\binom{k}{2}(\frac{1}{6})^k(1-\frac{1}{6})^{2-k}$ per $k\in\{0,1,2\}$, da cui segue $p_X(0)=\frac{25}{36}, p_X(1)=\frac{10}{36}$ e $p_X(2)=\frac{1}{36}$. D2) Si ha $P(Y\geq k)=\sum_{n=k}^{\infty}(1-p)^{n-1}p$ con $p=p_X(1)=\frac{10}{36}=\frac{5}{18}$, e quindi $P(Y\geq k)=\sum_{n=k}^{\infty}(1-\frac{5}{18})^{n-1}\frac{5}{18}=\frac{5}{18}\frac{(1-\frac{5}{18})^{k-1}}{1-(1-\frac{5}{18})}=\frac{5}{18}\frac{(\frac{13}{18})^{k-1}}{\frac{5}{18}}=(\frac{13}{18})^{k-1}$.

Esercizio 2. Sia D l'evento "esce un numero dispari" e E l'evento "si lancia il dado equo". D3) Per la formula delle probabilità totali si ha $P(D) = P(D|E)P(E) + P(D|E^c)P(E^c) = \frac{3}{6}\frac{1}{2} + \frac{4}{6}\frac{1}{2} = \frac{3+4}{12} = \frac{3+4}{12}$

D4) Per la formula di Bayes, e tenendo conto del valore di P(D) calcolato prima, si ha $P(E|D) = \frac{P(D|E)P(E)}{P(D)} = \frac{P(D|E)P(E)}{P(D)}$ $\frac{\frac{3}{6}\frac{1}{2}}{7/12} = \frac{3}{7}$.

Esercizio 3.

Esercizio 3.

D5) Si ha
$$P(X_1 > X_2) = p_{X_1, X_2}(1, 0) + p_{X_1, X_2}(2, 0) = \frac{9+9}{50} = \frac{18}{50} = \frac{9}{25}$$
.

D6) Si ha $P(X_1 = X_2 | X_1 + X_2 = 2) = \frac{P(\{X_1 = X_2\} \cap \{X_1 + X_2 = 2\})}{P(X_1 + X_2 = 2)} = \frac{p_{X_1, X_2}(1, 1)}{p_{X_1, X_2}(2, 0) + p_{X_1, X_2}(1, 1) + p_{X_1, X_2}(0, 2)} = \frac{1/10}{1/10} = \frac{1/10}{1/10}$

$$\frac{1/10}{(9/50)+(1/10)+(9/50)} = \frac{1/10}{(9+5+9)/50} = \frac{1}{10} \cdot \frac{50}{23} = \frac{5}{23}$$

Esercizio 4.

D7) Si ha $f_X(t) = \frac{1}{2} \mathbf{1}_{(-1,1)}(t)$. Si vede che $P(e^{-1} \le e^X \le e) = 1$, da cui $F_Y(y) = 0$ per $y \le e^{-1}$ e $F_Y(y) = 1$ per $y \ge e$. Per $y \in (e^{-1}, e)$ si ha $F_Y(y) = P(e^X \le y) = P(X \le \log y) = \int_{-1}^{\log y} \frac{1}{2} dt = \left[\frac{t}{2}\right]_{t=-1}^{t=\log y} = \frac{1+\log y}{2}$. Quindi la densità è $f_Y(y) = \frac{1}{2y} 1_{(e^{-1},e)}(y)$.

D8) Si ha
$$\mathbb{E}[Y] = \int_{e^{-1}}^{e} y \frac{1}{2y} dy = \int_{e^{-1}}^{e} \frac{1}{2} dy = \left[\frac{t}{2}\right]_{t=e^{-1}}^{t=e} = \frac{e^{-e^{-1}}}{2}.$$

Esercizio 5.

D9) Si ha
$$P(N_3 \le 1) = \sum_{k=0}^{1} \frac{(2\cdot3)^k}{k!} e^{-2\cdot3} = (1+6)e^{-6} = 7e^{-6}$$

D9) Si ha $P(N_3 \le 1) = \sum_{k=0}^{1} \frac{(2\cdot 3)^k}{k!} e^{-2\cdot 3} = (1+6)e^{-6} = 7e^{-6}$. D10) Ricordando le proprietà delle combinazioni lineari di variabili aleatorie Normali indipendenti, $2X_1 + 3X_2$ ha distribuzione Normale con media $2 \cdot 1 + 3 \cdot 1 = 5$ e varianza $2^2 \cdot 2 + 3^2 \cdot 2 = 26$.

Esercizio 6.

D11) Per la legge dei grandi numeri (e ricordando la speranza matematica delle variabili aleatorie con distribuzione uniforme; in questo caso abbiamo variabili aleatorie uniformi in (1,11)) si ha $m=\frac{1+11}{2}=\frac{12}{2}=6$. D12) Le variabili aleatorie $\{X_n:n\geq 1\}$ hanno media 1 e varianza 1. Quindi, se indichiamo con Z la standardizzata di $X_1+\cdots+X_{10000}$, si ha $\{X_1+\cdots+X_{10000}-10000\leq 135\}=\{Z\leq \frac{135}{\sqrt{1}\sqrt{10000}}\}=\{Z\leq 1.35\}$ e, per l'approssimazione normale, $P(X_1 + \cdots + X_{10000} - 10000 \le 135) = \Phi(1.35) = 0.91149$.

Esercizio 7.

D13) Si ha
$$P(X_1 = 1, X_2 = 3, X_3 = 2, X_4 = 3 | X_0 = 2) = p_{21}p_{13}p_{32}p_{23} = a \cdot 1 \cdot 1 \cdot (1 - a) = a(1 - a)$$
.

D14) Si ha che $\pi = (\pi_1, \pi_2, \pi_3)$ è una distribuzione invariante se vale la seguente relazione matriciale

$$(\pi_1, \pi_2, \pi_3) \left(egin{array}{ccc} 0 & 0 & 1 \ a & 0 & 1-a \ 0 & 1 & 0 \end{array}
ight) = (\pi_1, \pi_2, \pi_3),$$

che fornisce il seguente sistema di equazioni:

$$\begin{cases} a\pi_2 = \pi_1 \\ \pi_3 = \pi_2 \\ \pi_1 + (1-a)\pi_2 = \pi_3. \end{cases}$$

Allora le distribuzioni invarianti sono del tipo $(a\alpha, \alpha, \alpha)$ per qualche α (si vede bene dalle prime due equazioni; poi si verifica che anche la terza equazione è soddisfatta); inoltre, poiché si deve avere $\pi_1 + \pi_2 + \pi_3 = 1$, si ha $(a+2)\alpha=1$, e quindi $\alpha=\frac{1}{a+2}$. In corrispondenza, per $a\in[0,1]$ fissato, $(\frac{a}{a+2},\frac{1}{a+2},\frac{1}{a+2})$ è l'unica distribuzione invariante. In conclusione dobbiamo trovare il valore di a per cui $(\frac{a}{a+2},\frac{1}{a+2},\frac{1}{a+2})=(\frac{1}{3},\frac{1}{3},\frac{1}{3})$, e il valore di a richiesto è a=1.

Commenti.

La somma dei valori di ciascuna densità discreta che appare è 1 in accordo con la teoria. D2) In particolare si ha $P(Y \ge 1) = (\frac{13}{18})^{1-1} = 1$ come deve essere per come è definita la variabile aleatoria

D7-D8) In altro modo $\mathbb{E}[Y] = \mathbb{E}[e^X] = \int_{-1}^1 e^x \frac{1}{2} dx = \frac{1}{2} [e^x]_{x=-1}^{x=1} = \frac{e-e^{-1}}{2}$. Si osservi che qui non abbiamo usato la densità f_Y .

D14) È noto che, se le somma degli elementi di ciascuna colonna della matrice di transizione è uguale a 1, allora la distribuzione uniforme (cioè quella che assegna probabilità uguale a 1/(#E) a ciascuno stato) è invariante. In effetti questo è quello che accade per a=1.

L'unicità della distribuzione invariante per $a \neq 0$ (con probabilità tutte positive) è in accordo con l'irriducibilità della catena. La distribuzione invariante $(0, \frac{1}{2}, \frac{1}{2})$ nel caso a=0 si può ricavare senza calcoli come segue: lo stato 1 è transitorio (una volta che si lascia lo stato 1 non ci si torna più); $(\frac{1}{2}, \frac{1}{2})$ è la distribuzione invariante della matrice di transizione

$$\left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

ristretta alla componente irriducibile che si ottiene considerando gli stati {2,3}.