AD-A217 097

REPORT DOCUMENTATION PAGE

OMB No. 0704-0188

Public reserving barden for this collection of information is estimated to everage. I hour per resource, including the time for reviewing instructions, searching data sources, gethering and reviewing the collection of information. Send comments represent this burden estimate or any other searce of this collection of information, and collection of information including suggestions for reducing this burden, to Watehperson indeeducerters Services, Overtimate for information Operations and Reserva. 1215 Jefferson Devis Highman, Sales 1391, Artington, VA 22292-4392, and to the Office of Management and Budget, Paperwork Reduction Project (9784-6188), Weshington, DC 20583.

. AGENCY USE ONLY (Leave blank)	2. REPORT DATE	3. REPORT TYPE AND	PORT TYPE AND DATES COVERED Technical	
	Apr 82	Technical		
L TITLE AND SUSTITLE			5. FUNDING HUMBERS	
LOGARITHMIC TRANSFORMA	FIONS AND STOCHASTIC	CONTROL	PE61102F	
AUTHOR(S)	2304/A4			
Wendell H. Fleming				
PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
Lefschetz Center for Divison of Applied Mat Brown University, Prov	nematics	the natura	-89-1782	
, SPONSORPIG/MONITORING AGENC	Y NAME(S) AND ADDRESS(ES)	ì.	16. SPONSORING/MONITORING AGENCY REPORT NUMBER	
AFOSR - BLDG 410				
BAFB DC 20332-6445			AFOSR-81-0116,	
1. SUPPLEMENTARY NOTES				
		÷		
12a. DISTRIBUTION/AVAILABILITY STA	TEMENT		12b. DISTRIBUTION CODE	

distribution unlimited.

Approved for public release.

13. ABSTRACT (Maximum 200 words)

We are concerned with a class of problems described in a somewhat imprecise way as follows. Consider a linear operator of the form L + V(x), where L is the generator of a Markov process x_t and the "potential" V(x) is some real-valued function on the state space $\sum_{i=1}^{\infty} of_{i} x_t$. We are interested in probability of the formula of the state space $\sum_{i=1}^{\infty} of_{i} x_t$. We are interested in probability of the formula of the state space $\sum_{i=1}^{\infty} of_{i} x_t$.

14. SUBJECT TERMS				15. NUMBER OF PAGES
				16. PRICE CODE
17	SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
ļ.	unclassified	unclassified		

NSN 7540-01-280-5500

0 01 0

J. 3

072

Standard Form 298 (890104 Draft)

APPER . 77 99-1 999

LOGARITHMIC TRANSFORMATIONS AND STOCHASTIC CONTROL

Wendell H. Fleming

in Filtering and Optimal Stochastic Control
Springer Lecture
Notes in Control
and Info. Sci.
(W. II. Fleming r
L. G. Gorostiza
Eds.)

To appear in: Adv sice:

Lefschetz Center for Dynamical Systems
Division of Applied Mathematics
Brown University

Providence, Rhode Island 02912

e 151and 02912 (5/gma

1. Introduction. We are concerned with a class of problems described in a somewhat imprecise way as follows. Consider a linear operator of the form L + V(x), where L is the generator of a Markov process x and the potential V(x) is some real-valued function on the state space of x_1 . We are interested in probabilistic representations for solutions $\phi(s,x)$ to the backward equation

(1.1)
$$\rho h' \qquad \frac{d\phi}{ds} + L\phi + V(x)\phi = 0, \quad s \leq T,$$

with data $\phi(T,x) = \phi(x)$ at a final time T. It is well known that, under suitable assumptions,

(1.2)
$$\phi(s,x) = E_{sx} \left\{ \phi(x_T) \exp \int_s^T V(x_t) dt \right\}$$

gives such a representation. For instance, if $x_t = x_s + w_t - w_s$, with w_t a brownian motion, then (1.2) is just the Feynman-Kac formula. We seek a different kind of probabilistic representation for $1 = -\log \phi$, if $\phi(s,x)$ is a positive solution to (1.1). In this representation the generator L is replaced by another generator $L^{\underline{u}}$ of a Markov process ξ_t (possibly time inhomogeneous.) The operator $L^{\underline{u}}$ is chosen to solve an optimal stochastic control problem of the following kind. The logarithmic transformation $L = -\log \phi$ changes (1.1) into the nonlinear equation

(1.3)
$$\frac{dI}{ds} + II(I) \cdot V(x) = 0, \text{ where}$$

(1.4)
$$II(I) = -e^{I}L(e^{-I}).$$

The function II is concave. For a fairly wide class of Markov processes, we wish to write (1.3) as the dynamic programming equation associated with a suitable optimal stochastic control problem for Markov processes. The stochastic control problem is specified by giving: (a) a suitable control space U; for each constant control $u \in U$, the generator L^U of a Markov process; and (c) a cost function k(x,u) associated with constant control u and state x. See [6, Chap. VI]. It is re-

This research was supported in part by the National Science Foundation under contract MCS 79-03554 and in part by the Air Force Office of Scientific Research under contract

'quired that

(1.5)
$$II(I)(x) = \min_{u \in U} [L^{u}I(x) + k(x,w)], x \in \Sigma.$$

Then (1.3) becomes a dynamic programming equation:

(1.6)
$$\frac{dI}{ds} + \min_{u \in U} \left[L^{u}I + k(x,u) - V(x) \right] = 0.$$

Time and state dependent controls $\underline{u}(s,x)$, in feedback form, with values in the control space U are allowed. The stochastic control problem is to find a feedback u minimizing

(1.7)
$$J(s,x;\underline{u}) = E_{sx} \int_{s}^{T} [k(\xi_{t},u_{t}) - V(\xi_{t})]dt + \Psi(\xi_{T}),$$

where ξ_t is the (controlled) Markov process with generator $L^{\underline{u}}$, $\xi_s = x$, and

$$u_t = \underline{u}(t, \xi_t), \quad \Psi = -\log \Phi$$
.

The Verification Theorem of optimal stochastic control theory [6, p.159] asserts that if I is a "well behaved" solution to (1.3) with $I(T,x) = \Psi(x)$ and if certain other *rehnical conditions hold, then

$$I(s,x) = \min_{\underline{u}} J(s,x;\underline{u}).$$

Moreover, an optimal feedback control $\underline{u}(s,x)$ is found by minimizing $L^{u}I(s,x) + k(x,u)$ over the control space U.

In this paper we take $\Sigma \subset \mathbb{R}^n$, a subset of n-dimensional euclidean space. In §2 we review the case when x_t is a diffusion process on \mathbb{R}^n . For nondegenerate diffusions, an appropriate stochastic control problem is immediately suggested by the form of equation (1.3). In §3 we consider jump Markov processes x_t , and associated stochastic control problems. The choice of an appropriate control problem is less immediate for jump processes than for diffusions. In his Ph.D. thesis S-J Sheu [II], uses a different control formulation, valid for a wide class of generators L(§4). The optimal control in his sense leads to the change of probability measures described in (4.5). In §5 we give a formal derivation indicating why stochastic control methods can be used to obtain asymptotic estimates for exit probabilities for a family x_t^{ε} of nearly deterministic jump processes. The results are not new (see [1][12]); the interest is in the stochastic control method. Rigorous proofs are given in [11] using such methods.

In §6 we consider briefly the Donsker-Varadhan formula for the dominant eigenvalue λ_1 of L+V, from a control viewpoint. For nondegenerate diffusions the stochastic control representation obtained for λ_1 is the same as Holland's [9].

Availability Codes

Avail and/or
Special

FOC

2. Diffusion processes. Let x_t be a diffusion in n-dimensional R^n , with generator

(2.1) Lf =
$$\frac{1}{2}$$
 tr $a(x)f_{xx} + b(x) \cdot f_{x}$
tr $a(x)f_{xx} = \sum_{i,j=1}^{n} \sigma_{ij}(x) \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$,

and with f_x the gradient. In this case,

(2.2)
$$II(I) = \frac{1}{2} tr_{x} a(x) I_{xx} + b(x) \cdot I_{x} - \frac{1}{2} I_{x}^{\dagger} a(x) I_{x}$$

We may take $U = R^{n}$, $u = (u_{1}, ---, u_{n})$,

(2.3)
$$L^{u}I = \frac{1}{2} \operatorname{tr} a(x)I_{xx} + u \cdot I_{x}$$

(2.4)
$$k(x,u) = \frac{1}{2}(b(x)-u)'a^{-1}(x)(b(x)-u).$$

For a feedback control \underline{u} , the drift coefficient b(x) in (2.1) is changed to drift c ificient $\underline{u}(s,x)$ in the operator $L^{\underline{u}}$.

The stochastic control representation (1.8) was used in [3] to give a stochastic control proof of results of Ventsel-Freidlin type for some large deviations problems for nearly deterministic diffusions. In those results a(x) is replaced by &a(x), &small. In [4] the logarithmic transformation was used to obtain stochastic representations for positive solutions to the heat equation with a potential term, and to obtain the "classical mechanical limit." In [5] [10] the same logarithmic transformation was applied to solutions to the pathwise equation of nonlinear filtering. Large deviations results for the nonlinear filter problem are obtained by Hijab [8] elsewhere in this volume.

In [7] Hernandez-Lerma obtained similar results for certain degenerate diffusions, for which the matrix $(a_{ij}(x))$, i,j=1,---, n < n is positive definite and $a_{ij}(x)=0$ if i > m or j > m.

3. Jump processes. To motivate our choice of stochastic control problem, let us begin with a simple special case in which the process \mathbf{x}_t jumps only by a fixed increment y (as for example for a Poisson process.) In this case the generator L takes the form

$$Lf(x) = a(x)[f(x+y)-f(x)].$$

From (1.4)

$$II(1)(x) = a(x)(1 - \exp [1(x) - 1(x+y)]).$$

The dual function to the convex function e^{r} is $u - u \log u (u > 0)$:

(3.1)
$$e^{r} = \max_{u>0} [u - u \log u + ur].$$

The max occurs when log u = r. Let

(3.2)
$$L^{u}I(x) = ua(x)[I(x+y)-I(x)], \quad u > 0$$

(3.3)
$$k(x,u) = a(x)(u \log u - u+1).$$

By taking r = I(x)-I(x+y) in (3.1) and changing signs (to replace max by min), we get the required form (1.5) for H(I). In this special case the control u is scalar, with u > 0. A constant control u changes the jumping rate from a(x) to ua(x). A feedback control u(s,x) changes the rate at time s and state x from a(x) to u(s,x)a(x). If $I(s,x) = -\log \phi(s,x)$ as in §1, then the optimal feedback control is $u^*(s,x) = \phi(s,x)^{-1}\phi(s,x+y)$.

Let us now consider a jump process x_t with generator of the form

(3.4) Lf(x) = a(x)
$$\int_{0}^{\pi} [f(x+y) - f(x)] \cdot \pi(x, dy)$$
.

Here $f \in B(R^n)$, the space of bounded Borel measurable functions on R^n . We assume that $a \in B(R^n)$ and that $\pi(x, \cdot)$ is a probability measure with $\pi(\cdot, \Lambda)$ Borel measurable for each Borel set Λ and $\pi(x, \{0\}) = 0$. Additional conditions on a and π need to be imposed later. Motivated by the special case above, we control the jumping distribution, replacing $a(x)\pi(x,dy)$ by $a(x)u(x,x;y)\pi(dy)$. To formalize this idea, we introduce the control space

(3.5)
$$U = \{u(\cdot): u, u^{-1} \in B(\mathbb{R}^n), u(y) > 0 \text{ for all } y \in \mathbb{R}^n \}.$$

Suitable $L^{u(\cdot)}$ and $k(x,u(\cdot))$ are obtained by integrating (3.2), (3.3) with respect to $\pi(x,dy)$:

(3.6)
$$L^{u(\cdot)}I(x) = a(x) \int_{\mathbb{R}^{n}} [I(x+y) - I(x)]u(y)^{\pi}(x,dy)$$

(3.7)
$$k(x,u(\cdot)) = a(x) \int_{\mathbb{R}^n} [u(y) \log u(y) - u(y) + 1] \pi(x,dy).$$

We get as in equation (1.5).

(3.8)
$$||I(I)(x)| = \min_{u(\cdot) \in U} [L^{u(\cdot)}I(x) + k(x,u(\cdot))]$$

If $\phi(s,x)$ is a positive solution to (1.1) and $1 = -\log \phi$, then the optimal feed-

back control is

$$\underline{\underline{u}}^{*}(s,x;\bullet) = \frac{\psi(s,x+\bullet)}{\psi(s,x)} .$$

As outlined in the next section, it is sometimes more convenient to consider instead a related control problem. In particular, the formulation in §4 is the one used in [11] to give control method proofs of the results on the exit problem mentioned in §5.

4. The Sheu formulation. In [11] another kind of control problem is considered. Let L be a bounded linear operator on $C(\Sigma)$, the space of continuous bounded functions on Σ , such that L obeys a positive maximum principle. (In particular, L may be of the form (3.4) above.) For $w = w(\cdot)$ a positive function with $w, w^{-1} \in C(\Sigma)$, define the operator \hat{L}^W by

(4.1)
$$\widetilde{L}^{W} f = \frac{1}{W} \left[L(wf) - fLw \right].$$

In addition, define $K^{V}(x)$ by

(4.2)
$$k^{W'} = \hat{L}^{W}(\log w) - \frac{1}{w}L(w).$$

For unbounded L, additional restrictions on w are needed in order that \widetilde{L}^W and k^W be well defined.

From the duality (3.1) between $e^{\mathbf{r}}$ and u log u - u, it is not difficult to show [11] that for $\mathbf{I} \in C(\Sigma)$

(4.3)
$$II(I) = \min_{W} \left[\widetilde{L}^{W} I + K^{W} \right] .$$

The minimum is attained for $w=\exp(-1)$. For L the generator of a jump process, the two formulations are related by $\hat{L}^W=L^{\underline{u}}$, where \underline{u} is the (stationary) feedback control defined by

(4.4)
$$\underline{u}(x;y) = \frac{w(x+y)}{w(x)}$$

Moreover, $K^{W}(x) = k(x,u(x;\cdot))$.

In Sheu's formulation, the control problem is to choose $w_t(\cdot)$ for $s \le t \le T$ to minimize

$$\mathcal{I}(s,x;w) = E_{sx} \{ \int_{s}^{T} [K^{wt}(\xi_{t}) - V(\xi_{t})] dt + \Psi(\xi_{T}) \},$$

where ξ is a Markov process with concrator 1. and with $\xi=x$. Here

we assume that L is the generator of a Markov process x_t which implies in particular LL = 1.

Suppose that ϕ is a positive solution to (1.1), with $\phi(s,\cdot)$, $\phi(s,\cdot)^{-1} \in C(\Sigma)$ and with $V \in C(\Sigma)$. We can use (4.3) together with the Verification Theorem in stochastic control to conclude that $I(s,x) \leq J(s,x;w)$ with equality when $w_t^* = \phi(t,\cdot)$. Thus the control $w_t^* = \phi(t,\cdot)$ is optimal in this sense. For jump processes this agrees with (3.9), according to (4.4).

The change of generator from L to $\tilde{L} = \tilde{L}^{wt}$ corresponds to a change of probability measure, from P to \tilde{P} , as follows:

(4.5)
$$\widetilde{E}_{sx}f(\xi_t) = \frac{E_{sx}[f(x_t)\phi(x_T)]}{E_{sx}\phi(x_T)}, s \le t \le T, f \in C(\Sigma).$$

This is seen from the following argument. The denominator of the right side is $\phi(s,x)$. Let

$$\psi(s,x) = E_{sx}[f(x_t)\phi(x_t)] = E_{sx}[f(x_t)\phi(t,x_t)] .$$

Since ϕ and ψ both satisfy (1.1) with V=0, the quotient $v=\psi\phi^{-1}$ satisfies

$$\frac{\partial v}{\partial s} = -\left[\frac{L\psi}{\phi} - \frac{\psi L\phi}{\phi^2}\right] = -\frac{1}{\phi}\left[L(v\phi) - v L\phi\right],$$

$$\frac{\partial v}{\partial s} + \tilde{L}v = 0, \quad s \le t,$$

with v(t,x) = f(x) as required.

The author wishes to thank M. Day for a helpful suggestion related to (4.5).

5. Asymptotic estimates for exit probabilities.

Let $x_t^{\mathcal{E}}$ be a family of Markov processes, $s \leq t \leq T$, depending on a small parameter $\varepsilon > 0$, such that $x_t^{\mathcal{E}}$ tends (in a suitable sense) to a deterministic limit x_t^0 as $\varepsilon \to 0$. Let $\phi^{\mathcal{E}}$ denote the probability that $x^{\mathcal{E}}$ belongs to a set Γ of trajectories which does not include trajectories "near" x^0 . Typically $\phi^{\mathcal{E}}$ is exponentially small. Its asymptotic rate of decay to 0 can be found from the theory of large deviations [1][12][13]. In the exponent a constant Γ^0 appears, which is the minimum of a certain action functional over a set of smooth paths.

In many instances these asymptotic estimates can also be obtained by introducing a stochastic control problem of the kind indicated in previous sections, for each $\varepsilon > 0$ [3] [11]. With this method a (stochastic) optimization problem appears for each

 $\varepsilon > 0$, not just in the limit as $\varepsilon \to 0$.

Let us consider the special case when ϕ^{ε} is an exit probability:

$$\phi^{\varepsilon}(s,x) = P_{sx}(t^{\varepsilon} \leq T),$$

where t^{ε} is the exit time of x_t^{ε} from a bounded, open set $D \subseteq \mathbb{R}^n$, and where $x_t^0 \in D$ for $s \le t \le T$. We consider nearly deterministic jump processes, as follows. Nearly deterministic diffusions were considered in [3] [7]. Following Vent'cel [12] let us rescale the jump process in §3, replacing y by ε and a(x) by $\varepsilon^{-1}a(x)$ to obtain the generator for x_t^{ε} :

(5.1)
$$L_{\varepsilon}f(x) = \varepsilon^{-1}a(x) \int_{\mathbb{R}^{n}} [f(x+\varepsilon y) - f(x)] \pi(x, dy).$$

Fix $x_s^{\epsilon} = x$. For $s \le t \le T$, the path x^{ϵ} tends in probability as $\epsilon \to 0$ (D-metric) to x^0 , where x_t^0 satisfies

(5.2)
$$\frac{dx_{t}^{0}}{dt} = a(x_{t}^{0}) \int_{\mathbb{R}^{n}} y\pi(x_{t}^{0}, dy), \ s \le t \le T,$$

with $x_s^0 = x$. The exit probability $\phi^{\epsilon}(s,x)$ is a positive solution to

$$(5.3) \qquad \frac{\partial \phi^{\varepsilon}}{\partial s} + L_{\varepsilon} \phi^{\varepsilon} = 0$$

in $(-\infty,T)\times D$. The logarithmic transformation $I^{\varepsilon}=-\varepsilon$ log ϕ^{ε} changes (5.3) into

(5.4)
$$\frac{\partial I^{\varepsilon}}{\partial s} + \varepsilon \operatorname{H}_{\varepsilon}(\varepsilon^{-1} I^{\varepsilon}) = 0,$$

where $H_{\varepsilon}(1) = -e^{1}L_{\varepsilon}(e^{-1})$. Then

(5.5)
$$\varepsilon II_{\varepsilon}(\varepsilon^{-1}I) = a(x) \int_{\mathbb{R}^{n}} (1 - \exp\left[\frac{I(x) - I(x + \varepsilon y)}{\varepsilon}\right]) \pi(x, dy)$$

For I(x) such that I, I_x are continuous, bounded

$$\lim_{\varepsilon \to 0} \varepsilon \, \operatorname{II}_{\varepsilon} \, (\varepsilon^{-1} \mathbf{I}) = \operatorname{II}_{0}(\mathbf{x}, \mathbf{I}_{\mathbf{x}}),$$

with I_x the gradient and

(5.6)
$$H_0(x,p) = a(x) \int_{\mathbb{R}^n} (1 - e^{-p \cdot y}) \pi(x, dy).$$

This suggests (but certainly does not prove) that I^{ϵ} tends to a limit I^{0} as $\epsilon \to 0$, where L^{0} satisfies (perhaps in some generalized sense)

(5.7)
$$\frac{\partial I^0}{\partial s} + II(x, I_x^0) = 0.$$

Now (5.7) is the dynamic programming equation for the deterministic control problem with control space U as in §3, with running cost $k(\xi_t, u_t(\cdot))$, and with dynamics

(5.8)
$$\frac{d\xi_t}{dt} = h(\xi_t, u_t(\cdot)),$$

$$b(x, u(\cdot)) = a(x) \int_{u} y \ u(y) \pi(x, dy).$$

Show [11] proved that indeed $I^{\epsilon} \to I^{0}$ as $\epsilon \to 0$ under the following hypotheses:

- (i) a(·) is bounded, positive, and Lipschitz;
- (ii) $\pi(x,dy) = g(x,y)\pi_1(dy)$ with π_1 a probability measure, $\pi_1(\{0\}) = 0$, $g(\cdot,y)$ uniformly Lipschitz, and $0 < c_1 < g(x,y) \le c_2$;
- (iii) $\int_{\mathbb{R}^n} \exp (\alpha |y|^2) \pi_1(dy) < \infty$ for some $\alpha > 0$;
 - (iv) the convex hull of the support of π_1 contains a neighborhood of 0.

Condition (iv) insures that $H_0(x,p)$ is the dual of the usual "action integrand" $\Lambda(\xi,\xi)$ in large deviation theory, where for $\xi,\xi\in\mathbb{R}^n$

(5.9)
$$\Lambda(\xi,\xi) = \min_{u(\bullet)} \{k(\xi,u(\bullet)) : \dot{\xi} = b(\xi,u(\bullet))\}.$$

Then
$$1^0(s,x) = \min_{\xi} \int_s^\theta \Lambda(\xi_t, \dot{\xi}_t) dt, \ x \in D.$$
 The minimum is taken among C^1 paths $\dot{\xi}_s$ with $\dot{\xi}_s = x$ such that $\dot{\xi}_t$

The minimum is taken among C^1 paths ξ , with $\xi_s = x$ such that ξ_t first reaches ∂D at time $\theta \le T$. The requirement in (5.10) that ξ_t exit from D by time T is suggested by the boundary condition $I^{\varepsilon}(T,x) = +\infty$ for $x \in D$. This corresponds in the limit as $\varepsilon \to 0$ to an infinite penalty for failure to reach ∂D by time T.

In both [3] and [11] the stochastic control method used to show that $1^{\varepsilon} \to 1^{0}$ depends on comparison arguments involving an optimal stochastic control process when $\varepsilon > 0$ and an optimal ξ^{0} in (5.10) when $\varepsilon = 0$.

6. The dominant eigenvalue. In [2] Donsker and Varadhan gave a variational formula [(6.4)below] for the dominant eigenvalue λ_1 of L + V. Another derivation of this formula is given in [11], using the family of operators \widetilde{L}^W mentioned in §4.

When L is the generator of a nondegenerate diffusion process, Holland [9] expressed λ_1 as the minimum average cost per unit time in a stochastic control problem. Let us

impose strong restrictions on b, and give a short derivation of (6.4).

Assume that L+V has a positive eigenfunction ϕ_1 corresponding to $\lambda_1: (L+V)\psi_1 = \lambda_1 \psi_1$. Let $I_1 = -\log \phi_1$. Then

(6.1)
$$-II(I_1) + V = \lambda_1.$$

Assuming that there is a stochastic control representation (1.5) for II(I), equation (6.1) becomes

(6.2)
$$\min_{u \in U} [L^{u}I_{1}(x) + k(x,u)] - V(x) = -\lambda_{1}.$$

Equation (6.2) is the dynamic programming equation for the following average cost per unit time control problem. We admit stationary controls $\underline{u}(\cdot)$ such that the controlled process with generator $\underline{L}^{\underline{u}}$ has an equilibrium distribution μ . The criterion to be minimized is

(6.3)
$$J(\mu,\underline{u}) = \int_{\Sigma} [k(x,\underline{u}(x)) - V(x)] d\mu(x).$$

(If there is a unique equilibrium distribution $\mu = \mu^{\frac{u}{}}$ then reference to μ on the left side of (6.3) is unnecessary.). The principle of optimality states that $-\lambda_1 \leq J(\mu,\underline{u})$ with equality provided $\underline{u}^*(x)$ gives the minimum over $u \in U$ of $L^u I_1(x) + k(x,u)$.

Let us now assume that Σ is compact, that the generator L is bounded on $C(\Sigma)$ and $V \in C(\Sigma)$. As in [2] for any probability measure μ on Σ let

$$\mathcal{J}(\mu) = \sup_{\bar{\Gamma}} \int_{\hat{\Sigma}} H(\bar{T}) d\mu = -\inf_{\phi > 0} \int_{\hat{\Sigma}} \frac{i \phi}{\phi} d\mu ,$$

where I, $\phi \in C(\Sigma)$. The Donsker-Varadhan formula is

(6.4)
$$\lambda_{1} = \sup_{\mu} \left[\int_{\Sigma} V d\mu - \mathscr{F}(\mu) \right].$$

Let

$$P(I,\mu) = \int_{\Sigma} [-II(I) + V]d\mu$$
.

The function P is convex in I and linear in μ . Formula (6.4) will follow if we can find I_1 , μ_1 with the saddle point property:

(6.5)
$$P(I_1,\mu) \leq \lambda_1 \leq P(I,\mu_1)$$
 for all I, μ .

(This idea was known to Donsker and Varadhan a long time ago, and figures in their

From (6.1) we have in fact $P(I_1,\mu) = \lambda_1$ for all probability measures μ on Σ . To get the right hand inequality, choose \underline{u}^* as above and assume that $L^{\underline{u}^*}$ is bounded on $C(\Sigma)$. The corresponding Markov process ξ_t^* has an equilibrium distribution μ_1 , and

(6.6)
$$\int_{\Sigma} (L^{\underline{u}^*}I) d\mu_{\underline{l}} = 0, \text{ for all } I \in C(\underline{\Sigma}).$$

(If $L^{\underline{u}^*}$ is unbounded we need to assume the existence of μ_1 , and to restrict I to the domain of $L^{\underline{u}^*}$). By taking $u = \underline{u}^*(x)$ in (1.5) we have for $I \subseteq C(\Sigma)$

$$L^{\underline{u}^{\star}}I + k(x,\underline{u}^{\star}) - V \geq H(I) - V.$$

By integrating both sides with respect to μ_1 ,

$$-\lambda_1 = \mathrm{J}(\mu_1,\underline{u}^*) \geq -\mathrm{P}(\mathrm{I},\mu_1)\,,\,\,\lambda_1 \leq \mathrm{P}(\mathrm{I},\mu_1)\,,$$

as required.

In order to derive (6.4) in this way we had to impose unnecessarily restrictive hypotheses. In particular, we assumed that λ_1 is a dominant eigenvalue in the strict sense that $(L+V)\phi_1=\lambda_1\phi_1$, with $\phi_1>0$. Actually, (6.4) holds if L is the generator of a strongly continuous, nonnegative semigroup T_t on $C(\Sigma)$, such that $T_t 1=1$, L has domain dense in $C(\Sigma)$, and L satisfies the maximum principle [2]. With such assumptions λ_1 is a dominant eigenvalue in the sense that the spectrum of L+V is contained in $\{z\colon \text{Re }z\leq \lambda_1\}$ and λ_1 - $\{L+V\}$ does not have an inverse.

REFERENCES

- [1] R. Azencott, Springer Lecture Notes in Math. No. 774, 1978.
- [2] M. D. Donsker and S. R. S. Varadhan, "On a variational formula for principal eigenvalue for operators with a maximum principle, Proc. Nat. Acad. Sci. USA 72(1975) 780-783.
- [3] W. H. Fleming, Exit probabilities and optimal stochastic control, Applied Math. Optimiz. 4 (1978) 329-346.
- [4] W. H. Fleming, Stochastic calculus of variations and mechanics, to appear in J. Optimiz. Th. Appl.
- [5] W. H. Fleming and S. K. Mitter, Optimal control and nonlinear filtering for nondegenerate diffusion processes, to appear in Stochastics,
- [6] W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control, Springer-Verlag, 1975.
- [7] O. Hernandez-Lerma, Exit probabilities for a class of perturbed degenerate systems, SIAM J. on Control and Optimiz. 19 (1981) 39-51.

References (cont.)

- [8] O. Hijab, Asymptotic nonlinear filtering and large deviations, this volume.
- [9] C. J. Holland, A minimum principle for the principal eigenvalue of second order linear elliptic equations with natural boundary conditions, Communications Pure Appl. Math. 31(1978) 509-519.
- [10] E. Pardoux, The solution of the nonlinear filter equation as a likelihood function, Proc. 20th Conf. on Decision and Control, Dec. 1981.
- [11] S. J. Sheu, PhD Thesis, Brown University, 1982.
- [12] A. D. Ventsel, Rough limit theorems on large deviations for Markov stochastic processes, Theory of Probability and its Appl. 21(1976) 227-242, 499-512.
- [13] A. D. Ventsel and M. I. Freidlin, On small random perturbations of dynamical systems, Russian Math. Surveys. 25(1970) 1-55.