Species population Solving the Lotka-Volterra equations

Andreas Evensen

Computational Physics Stockholm University

May 28, 2024

Table of contents

- Introduction
- 2 Theory
- Method
- Result
- 5 Further investigation
- 6 Conclusion

How does the reproduction of any species depend on its environment? What are the factors that makes a species population thrive, or decline.

• Nutrition

- Nutrition
- Predators

- Nutrition
- Predators
- Climate

- Nutrition
- Predators
- Climate
 - Can one use this information to model the population of any two or more species?

Suppose we want to model a system of two species, X and Y.

• Species X has unlimited food.

- Species X has unlimited food.
- ② The food source of species Y is entirely species X.

- Species X has unlimited food.
- ② The food source of species Y is entirely species X.
- The rate of which the population for the two species increases/decreases is proportional to their current population.

- Species X has unlimited food.
- The food source of species Y is entirely species X.
- The rate of which the population for the two species increases/decreases is proportional to their current population.
- The ecological properties remains unchanged.

- Species X has unlimited food.
- The food source of species Y is entirely species X.
- The rate of which the population for the two species increases/decreases is proportional to their current population.
- The ecological properties remains unchanged.
- Species Y always 'hunt' species X.

- Species X has unlimited food.
- ② The food source of species Y is entirely species X.
- The rate of which the population for the two species increases/decreases is proportional to their current population.
- The ecological properties remains unchanged.
- Species Y always 'hunt' species X.
- Each of the two species population are described by only time, i.e. the entire population of Y partake in 'hunting' species X.

These assumptions gives rise to the following equations:

$$\frac{dx}{dt} = \alpha x - \beta xy
\frac{dy}{dt} = \delta xy - \gamma y.$$
(1)

These assumptions gives rise to the following equations:

$$\frac{dx}{dt} = \alpha x - \beta xy$$

$$\frac{dy}{dt} = \delta xy - \gamma y.$$
(1)

A pair of nonlinear first order differential equation named
 Lotka-Voltera equations, or Pray-Predator equations.

These assumptions gives rise to the following equations:

$$\frac{dx}{dt} = \alpha x - \beta xy
\frac{dy}{dt} = \delta xy - \gamma y.$$
(1)

- A pair of nonlinear first order differential equation named
 Lotka-Voltera equations, or Pray-Predator equations.
- Can be modified by introducing time-dependent variables, $\alpha(t)$, $\beta(t)$, $\delta(t)$, and $\gamma(t)$.

These assumptions gives rise to the following equations:

$$\frac{dx}{dt} = \alpha x - \beta xy
\frac{dy}{dt} = \delta xy - \gamma y.$$
(1)

- A pair of nonlinear first order differential equation named
 Lotka-Voltera equations, or Pray-Predator equations.
- Can be modified by introducing time-dependent variables, $\alpha(t)$, $\beta(t)$, $\delta(t)$, and $\gamma(t)$.
- Can be modifed to the Arditi–Ginzburg equations.

Rewriting our system we obtain:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \underbrace{\begin{pmatrix} \alpha - \beta^* y & -\beta^* x \\ \delta^* y & \delta^* x - \gamma \end{pmatrix}}_{\mathbf{J}^*(x,y)} \cdot \begin{pmatrix} x \\ y \end{pmatrix}, \tag{2}$$

where $\beta^* = 0.5\beta$, $\delta^* = 0.5\delta$.

Rewriting our system we obtain:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \underbrace{\begin{pmatrix} \alpha - \beta^* y & -\beta^* x \\ \delta^* y & \delta^* x - \gamma \end{pmatrix}}_{\mathbf{J}^*(x,y)} \cdot \begin{pmatrix} x \\ y \end{pmatrix}, \tag{2}$$

where $\beta^* = 0.5\beta$, $\delta^* = 0.5\delta$.

• Fixed point at (0,0) (Saddle point).

Rewriting our system we obtain:

$$\begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \underbrace{\begin{pmatrix} \alpha - \beta^* y & -\beta^* x \\ \delta^* y & \delta^* x - \gamma \end{pmatrix}}_{\mathbf{J}^*(x,y)} \cdot \begin{pmatrix} x \\ y \end{pmatrix}, \tag{2}$$

where $\beta^* = 0.5\beta$, $\delta^* = 0.5\delta$.

- Fixed point at (0,0) (Saddle point).
- ② Fixed point at $\left(\frac{\gamma}{\delta^*}, \frac{\alpha}{\beta^*}\right)$ (Oscillatory behavior).

Solutions to eq 1, can be obtained via Explicit Euler, or any order Runge-Kutta method.

Solutions to eq 1, can be obtained via Explicit Euler, or any order Runge-Kutta method.

•

$$k_{1} = f(t_{n}, x_{n})$$

$$k_{2} = f\left(t_{n} + \frac{dt}{2}, x_{n} + dt \cdot \frac{k_{1}}{2}\right)$$

$$k_{3} = f\left(t_{n} + \frac{dt}{2}, x_{n} + dt \cdot \frac{k_{2}}{2}\right)$$

$$k_{4} = f\left(t_{n} + dt, x_{n} + dt \cdot k_{3}\right)$$

$$x_{n+1} = x_{n} + \frac{dt}{6}\left(k_{1} + 2k_{2} + 2k_{3} + k_{4}\right).$$
(3)

Accuracy

Comparison of the two method

Accuracy

Comparison of the two method

 10^{-3}

Step-size

 10^{-2}

• Choose Runge-Kutta method with dt = 0.001.

 10^{-4}

Solutions

Variables: $\alpha=$ 1.0, $\beta=$ 0.1, $\delta=$ 0.8, and $\gamma=$ 1.4.

Initial condition: x(0) = 8, y(0) = 10.

Figure: Population and phase diagram

Solutions

Variables: $\alpha = 1.0$, $\beta = 0.5$, $\delta = 1.0$, and $\gamma = 0.9$.

Initial condition: x(0) = 10, y(0) = 5.

Figure: Population and phase diagram

Solutions

Variables: $\alpha = 1.1$, $\beta = 0.5$, $\delta = 0.3$, and $\gamma = 0.9$.

Initial condition: x(0) = 10, y(0) = 5.

Figure: Population and phase diagram

Extinction

Variables: $\alpha = 1.5$, $\beta = 0.1$, $\delta = 0.1$, and $\gamma = 0.1$.

Initial condition: x(0) = 0, y(0) = 10.

Figure: Population and phase diagram

New set of equations

Suppose we instead want three species, X, Y, and Z.

New set of equations

Suppose we instead want three species, X, Y, and Z.

• Species Y lives in protection of species X.

New set of equations

Suppose we instead want three species, X, Y, and Z.

• Species Y lives in protection of species X.

•

$$\frac{dx}{dt} = \alpha x - \beta xz$$

$$\frac{dy}{dt} = \eta xy - \chi yz$$

$$\frac{dz}{dt} = \delta xz - \gamma z.$$
(4)

Three species

This gives rise to a problem.

Three species

This gives rise to a problem.

• Problem becomes more stiff.

Three species

This gives rise to a problem.

Problem becomes more stiff.

•	α	β	δ	γ	η	χ
	1.1	0.5	0.3	0.9	0.1	0.1

Three species solution

Initial condition: x(0) = 10, y(0) = 1, and z(0) = 5.

Figure: Population and phase diagram

Generalized Lotka-Volterra equations

Suppose now instead of protection, we say that one herbivore and two carnivores.

$$\frac{dx}{dt} = \alpha x - \beta xy - \zeta xy
\frac{dy}{dt} = \eta xy - \chi yz
\frac{dz}{dt} = \delta xz + \iota yz - \gamma z.$$
(5)

Generalized Lotka-Volterra equations

Suppose now instead of protection, we say that one herbivore and two carnivores.

$$\frac{dx}{dt} = \alpha x - \beta xy - \zeta xy
\frac{dy}{dt} = \eta xy - \chi yz
\frac{dz}{dt} = \delta xz + \iota yz - \gamma z.$$
(5)

•		β						
	1.1	0.5	0.3	0.9	0.1	0.1	0.1	0.1

Generalized Lotka-Volterra equations

Figure: Population and phase diagram for generalized Lotka-Volterra solution

• Can we modify the equation to take into account seasonal changes?

• Can we modify the equation to take into account seasonal changes?

•

$$\frac{dx}{dt} = \alpha(t)x - \beta(t)xy$$

$$\frac{dy}{dt} = \delta(t)xy - \gamma(t)y.$$
(6)

How do we then model the seasons?

How do we then model the seasons?

•

$$\begin{split} &\alpha(t) = \alpha_1 \cos(t) + \alpha_1 \\ &\beta(t) = \mathsf{H}^{-1}(t) \cdot \beta_1 \\ &\delta(t) = \mathsf{H}^{-1}(t) \cdot \delta_1 \\ &\gamma(t) = \mathsf{H}(t) \cdot \gamma_1 \end{split}$$

Figure: Population and phase diagram with time dependent variables

What have we learned?

 Solution methods to a pair of nonlinear first order differential equations.

- Solution methods to a pair of nonlinear first order differential equations.
- Generalization to more than two equations.

- Solution methods to a pair of nonlinear first order differential equations.
- Generalization to more than two equations.
- The unperturbed model is fixed in an oscillatory behavior.

- Solution methods to a pair of nonlinear first order differential equations.
- Generalization to more than two equations.
- The unperturbed model is fixed in an oscillatory behavior.
- The model becomes more stiff when introducing more variables.

- Solution methods to a pair of nonlinear first order differential equations.
- Generalization to more than two equations.
- The unperturbed model is fixed in an oscillatory behavior.
- The model becomes more stiff when introducing more variables.
- Naive implementation of seasons brakes symmetry

- Solution methods to a pair of nonlinear first order differential equations.
- Generalization to more than two equations.
- The unperturbed model is fixed in an oscillatory behavior.
- The model becomes more stiff when introducing more variables.
- Naive implementation of seasons brakes symmetry
- Questions?

Thanks

Thanks for listening