

Ames Housing Data

Below we load the numeric features from the Ames Housing dataset into a dataframe. We also drop any rows with missing data.

```
import pandas as pd
ames = pd.read_csv("ames.csv", index_col=0)
ames = ames.select_dtypes("number")
ames.dropna(inplace=True)
ames

<style scoped > .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

</style>

	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	Yea
Id						
1	60	65.0	8450	7	5	200
2	20	80.0	9600	6	8	197
3	60	68.0	11250	7	5	200
4	70	60.0	9550	7	5	191
5	60	84.0	14260	8	5	200
•••						
1456	60	62.0	7917	6	5	199
1457	20	85.0	13175	6	6	197
1458	70	66.0	9042	7	9	194
1459	20	68.0	9717	5	6	195

	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	Yea
ld						
1460	20	75.0	9937	5	6	196

1121 rows × 37 columns

Identify Good Candidates for Log Transformation

Below we plot each of the potential numeric features against SalePrice:

```
import matplotlib.pyplot as plt
import numpy as np
y = ames["SalePrice"]
X = ames.drop("SalePrice", axis=1)
fig, axes = plt.subplots(nrows=6, ncols=6, figsize=(15,15), sharey=True)
for i, column in enumerate(X.columns):
    # Locate applicable axes
    row = i // 6
    col = i \% 6
    ax = axes[row][col]
    # Plot feature vs. y and label axes
    ax.scatter(X[column], y, alpha=0.2)
    ax.set xlabel(column)
    if col == 0:
        ax.set_ylabel("SalePrice")
fig.tight_layout()
```


Let's say we want to build a model with **at least one log-transformed feature** as well as a **log-transformed target**

Do you see any features that look like good candidates for this type of transformation?

For reference, a good candidate for this might look like any of these three graphs:

Skbkekas, CC BY-SA 3.0, via Wikimedia Commons

Try to find one feature that resembles each of these shapes.

Because this is real-world messy data, none of them are going to match perfectly, and that's ok!

```
....
```

LotFrontage resembles the first graph, GrLivArea resembles the second one, and YearRemodAdd resembles the third one. So these are all potential candidates for log transformation.

Plot Log Transformed Versions of Features

For each feature that you identified as a good candidate for log transformation, plot the feature vs. SalePrice as well as the log transformed feature vs. log transformed SalePrice.

```
import numpy as np
candidates = ["LotFrontage", "GrLivArea", "YearRemodAdd"]

fig, axes = plt.subplots(ncols=2, nrows=len(candidates), figsize=(8,10))
```

```
for i, column in enumerate(candidates):
    # Plot raw version
    left_ax = axes[i][0]
    left_ax.scatter(ames[column], y, alpha=0.5)
    left_ax.set_xlabel(column)
    left_ax.set_ylabel("SalePrice")

# Plot log transformed version
    right_ax = axes[i][1]
    right_ax.scatter(np.log(ames[column]), np.log(y), alpha=0.5)
    right_ax.set_xlabel(f"log({column})")
    right_ax.set_ylabel("log(SalePrice)")

fig.suptitle("Raw vs. Log Transformed")

fig.tight_layout()
```


Do the transformed relationships look more linear? If so, they should be included in the model.

Build a Model with Log-Transformed Features and Target

Data Preparation

Choose up to 3 of the features you investigated, and set up an X dataframe containing the log-transformed versions of these features as well as a y series containing the log-transformed version of the target.

► Hint (click to reveal)

```
# We are going to use all 3 of the candidates graphed above
X_log = X[candidates].copy()

X_log.describe()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }

.dataframe tbody tr th {
    vertical-align: top;
}

.dataframe thead th {
    text-align: right;
}
```

</style>

	LotFrontage	GrLivArea	YearRemodAdd
count	1121.000000	1121.000000	1121.000000
mean	70.665477	1531.411240	1985.683318
std	24.266812	523.723899	21.025974
min	21.000000	438.000000	1950.000000
25%	60.000000	1155.000000	1966.000000
50%	70.000000	1479.000000	1995.000000
75%	80.000000	1776.000000	2005.000000
max	313.000000	5642.000000	2010.000000

```
# However YearRemodAdd is tricky. A 1% increase in the year means
# roughly a 20-year increase for 20th-21st century dates

# That would result in a very large, difficult-to-interpret coefficient

# Based on the .describe() call above, we see that the latest remodel
# year was 2010

# So let's try subtracting 1910 from YearRemodAdd. So now a 0 means 1910
```

```
# and 1 year = 1% increase
X_log["YearRemodAdd"] = X_log["YearRemodAdd"] - 1910
X_log.describe()

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
    .dataframe tbody tr th {
        vertical-align: top;
    }
    .dataframe thead th {
        text-align: right;
    }
```

</style>

	LotFrontage	GrLivArea	YearRemodAdd
count	1121.000000	1121.000000	1121.000000
mean	70.665477	1531.411240	75.683318
std	24.266812	523.723899	21.025974
min	21.000000	438.000000	40.000000
25%	60.000000	1155.000000	56.000000
50%	70.000000	1479.000000	85.000000
75%	80.000000	1776.000000	95.000000
max	313.000000	5642.000000	100.000000

```
# Go through and log transform all columns
for column in X_log.columns:
    X_log[f"log_{column}"] = np.log(X_log[column])
    X_log.drop(column, axis=1, inplace=True)

X_log

<style scoped> .dataframe tbody tr th:only-of-type { vertical-align: middle; }
    .dataframe tbody tr th {
        vertical-align: top;
    }
```

```
.dataframe thead th {
    text-align: right;
}
```

</style>

	log_LotFrontage	log_GrLivArea	log_YearRemodAdd
Id			
1	4.174387	7.444249	4.532599
2	4.382027	7.140453	4.189655
3	4.219508	7.487734	4.521789
4	4.094345	7.448334	4.094345
5	4.430817	7.695303	4.499810
•••			
1456	4.127134	7.406711	4.499810
1457	4.442651	7.636752	4.356709
1458	4.189655	7.757906	4.564348
1459	4.219508	6.982863	4.454347
1460	4.317488	7.135687	4.007333

1121 rows × 3 columns

```
y_log = np.log(y)
y_log.name = "log_SalePrice"
y_log
```

```
Ιd
1
        12.247694
2
        12.109011
3
        12.317167
        11.849398
5
        12.429216
          . . .
        12.072541
1456
1457
        12.254863
        12.493130
1458
1459
        11.864462
```

```
1460 11.901583
Name: log_SalePrice, Length: 1121, dtype: float64
```

Modeling

Now build a StatsModels OLS model with a log-transformed target as well as log-transformed features.

```
import statsmodels.api as sm

model = sm.OLS(y_log, sm.add_constant(X_log))
results = model.fit()
```

Model Evaluation and Interpretation

How did the model perform? How might we interpret its coefficients? Create as many cells as needed.

```
print(results.summary())
```

OLS Regression Results

Dep. Variable:	log_Sal	lePrice	R-squared:		0.688
Model:	OLS		Adj. R-squared:		0.687
Method:	Least S	Squares	F-statistic:		820.6
Date:	Mon, 13 Ju	ın 2022	Prob (F-stati	stic):	8.34e-282
Time:	12	2:10:13	Log-Likelihoo	d:	98.731
No. Observations:		1121	AIC:		-189.5
Df Residuals:		1117	BIC:		-169.4
Df Model:		3			
Covariance Type:	nor	nrobust			
===========				=======	
	coef	std err	t	P> t	[0.025
0.975]					
const	4.2715	0.160	26.740	0.000	3.958
4.585					
log_LotFrontage	0.1755	0.020	8.651	0.000	0.136
0.215					
log_GrLivArea	0.6705	0.023	29.320	0.000	0.626
0.715					
<pre>log_YearRemodAdd</pre>	0.5041	0.022	23.014	0.000	0.461

```
0.547
```

_____ Durbin-Watson: Omnibus: 124.227 2.076 Prob(Omnibus): Jarque-Bera (JB): 0.000 380.156 Skew: -0.549 Prob(JB): 2.82e-83 Kurtosis: 5.633 Cond. No. 230.

Notes:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

log LotFrontage

Approximation: 0.17553002535033485 More precise value: 0.17481079893331142

log_GrLivArea

Approximation: 0.6704791556946889 More precise value: 0.6693793387537061

log YearRemodAdd

Approximation: 0.5040970917054829 More precise value: 0.5028533695270898

0.00

The model explained about 69% of the variance in SalePrice

All coefficients were statistically significant

For each increase of 1% in lot frontage, we see an associated increase of about 0.2% in sale price

For each increase of 1% in above-grade living area, we see an associated increase of about 0.7% in sale price

For each increase of 1 year since 1910 in remodel year, we see an associated increase of about 0.5% in sale price

Summary

Now you have practiced modeling with log transformations! This is a subtle, messy process, so don't be discouraged if this was a tricky lab.

Releases

No releases published

Packages

No packages published

Languages

Jupyter Notebook 100.0%