Is Air Temperature Enough to Predict **Lake Surface Temperature?** Sebastiano Piccolroaz, Marco Toffolon and Bruno Majone

Department of Civil, Environmental and Mechanical Engineering University of Trento, Italy. s.piccolroaz@unitn.it

Deterministic process-based models:

accurate description of the energy fluxes between the lake and the surrounding system, but are complex and require a large amount of data. e.g., Stefan et al. 1998; Goudsmith et al., 2002; Peeters et al. 2002; Perroud et al., 2009; Martynov et al., 2010; Thiery et al., 2014; Wahl and Peeters 2014; and many others

Deterministic process-based models:

accurate description of the energy fluxes between the lake and the surrounding system, but are complex and require a large amount of data. e.g., Stefan et al. 1998; Goudsmith et al., 2002; Peeters et al. 2002; Perroud et al., 2009; Martynov et al., 2010; Thiery et al., 2014; Wahl and Peeters 2014; and many others

Deterministic process-based models:

accurate description of the energy fluxes between the lake and the surrounding system, but are complex and require a large amount of data. e.g., Stefan et al. 1998; Goudsmith et al., 2002; Peeters et al. 2002; Perroud et al., 2009; Martynov et al., 2010; Thiery et al., 2014; Wahl and Peeters 2014; and many others

Statistical models:

relatively **simple** and rely on **minimal data requirement**, but their applicability is often **limited** (e.g., weekly to annual time scales, ice-free season).

e.g., McCombie, 1959; Shuter et al., 1983; Matuszek and Shuter, 1996; Livingstone and Lotter 1998; Kettle et al., 2004; Groeger and Bass, 2005; Trumpickas et al., 2009; and many others

Deterministic process-based models:

accurate description of the energy fluxes between the lake and the surrounding system, but are complex and require a large amount of data. e.g., Stefan et al. 1998; Goudsmith et al., 2002; Peeters et al. 2002; Perroud et al., 2009; Martynov et al., 2010; Thiery et al., 2014; Wahl and Peeters 2014; and many others

Statistical models:

relatively **simple** and rely on **minimal data requirement**, but their applicability is often **limited** (e.g., weekly to annual time scales, ice-free season).

e.g., McCombie, 1959; Shuter et al., 1983; Matuszek and Shuter, 1996; Livingstone and Lotter 1998; Kettle et al., 2004; Groeger and Bass, 2005; Trumpickas et al., 2009; and many others

Deterministic process-based models:

accurate description of the energy fluxes between the lake and the surrounding system, but are complex and require a large amount of data. e.g., Stefan et al. 1998; Goudsmith et al., 2002; Peeters et al. 2002; Perroud et al., 2009; Martynov et al., 2010; Thiery et al., 2014; Wahl and Peeters 2014; and many others

Statistical models:

relatively **simple** and rely on **minimal data requirement**, but their applicability is often **limited** (e.g., weekly to annual time scales, ice-free season).

e.g., McCombie, 1959; Shuter et al., 1983; Matuszek and Shuter, 1996; Livingstone and Lotter 1998; Kettle et al., 2004; Groeger and Bass, 2005; Trumpickas et al., 2009; and many others

Mean depth: 146 m Significant air-water hysteresis cycle

Deterministic process-based models:

accurate description of the energy fluxes between the lake and the surrounding system, but are complex and require a large amount of data. e.g., Stefan et al. 1998; Goudsmith et al., 2002; Peeters et al. 2002; Perroud et al., 2009; Martynov et al., 2010; Thiery et al., 2014; Wahl and Peeters 2014; and many others

Statistical models:

relatively **simple** and rely on **minimal data requirement**, but their applicability is often **limited** (e.g., weekly to annual time scales, ice-free season).

e.g., McCombie, 1959; Shuter et al., 1983; Matuszek and Shuter, 1996; Livingstone and Lotter 1998; Kettle et al., 2004; Groeger and Bass, 2005; Trumpickas et al., 2009; and many others

Mean depth: 146 m Significant air-water hysteresis cycle

Deterministic process-based models:

accurate description of the energy fluxes between the lake and the surrounding system, but are complex and require a large amount of data. e.g., Stefan et al. 1998; Goudsmith et al., 2002; Peeters et al. 2002; Perroud et al., 2009; Martynov et al., 2010; Thiery et al., 2014; Wahl and Peeters 2014; and many others

Statistical models:

relatively simple and rely on minimal data requirement, but their applicability is often limited (e.g., weekly to annual time scales, ice-free season).
e.g., McCombie, 1959; Shuter et al., 1983; Matuszek and Shuter, 1996; Livingstone and Lotter 1998; Kettle et al., 2004; Groeger and Bass, 2005; Trumpickas et al., 2009; and many others

Hybrid physically-based/statistical models:
 Relying on few input data (only air temperature), while retaining

the same **high performance** of deterministic models.

The model: air2water

The key equation

Heat budget in the wellmixed surface layer (volume integrated)

 $T_{
m w}$ water temperature of the surface layer

 Φ_{net} net heat flux: complex balance of different contributions

$$\Phi_{\text{net}} = H_{\text{s}} + H_{\text{a}} + H_{\text{w}} + H_{\text{e}} + H_{\text{c}} + H_{\text{p}} + H_{\text{i}} + H_{\text{d}}$$

Piccolroaz, S., M. Toffolon, and B. Majone (2013), A simple lumped model to convert air temperature into surface water temperature in lakes, Hydrology and Earth System Sciences, 17(8), p. 3323-3338.

The model: air2water

Temporal evolution of LST

In order to keep the formulation of the model as **simple** as possible:

- linearization of heat flux terms by Taylor expansion
- air temperature T_a as a proxy for the integrated effect of the relevant processes and fluxes (see e.g., Livingstone and Padisák, 2007)

$$\frac{\mathrm{d}T_{\mathrm{w}}}{\mathrm{d}t} = \frac{1}{\delta} \left\{ a_1 + a_2 T_{\mathrm{a}} - a_3 T_{\mathrm{w}} + a_5 \cos \left[2\pi \left(\frac{t}{t_y} - a_6 \right) \right] \right\}$$

The model: air2water

Temporal evolution of LST

In order to keep the formulation of the model as **simple** as possible:

- linearization of heat flux terms by Taylor expansion
- air temperature T_a as a proxy for the integrated effect of the relevant processes and fluxes (see e.g., Livingstone and Padisák, 2007)

$$\frac{\mathrm{d}T_{\mathrm{w}}}{\mathrm{d}t} = \frac{1}{\delta} \left\{ a_1 + a_2 T_{\mathrm{a}} - a_3 T_{\mathrm{w}} + a_5 \cos \left[2\pi \left(\frac{t}{t_y} - a_6 \right) \right] \right\}$$

dimensionless depth of the surface well-mixed layer

$$\delta = \exp\left(-\frac{T_{\rm w} - T_{\rm h}}{a_4}\right)$$

$$\delta = \exp\left(-\frac{T_{\rm w} - T_{\rm h}}{a_4}\right) \qquad \text{for} \quad T_{\rm w} \ge T_{\rm h}$$

$$\delta = \exp\left(-\frac{T_{\rm h} - T_{\rm w}}{a_7}\right) + \exp\left(-\frac{T_{\rm w}}{a_8}\right) \quad \text{for} \quad T_{\rm w} < T_{\rm h}$$

Piccolroaz, S., M. Toffolon, and B. Majone (2013), A simple lumped model to convert air temperature into surface water temperature in lakes, Hydrology and Earth System Sciences, 17(8), p. 3323-3338.

Model calibration

Based on the optimization of the Nash-Sutcliffe efficiency index, by performing 100'000'000 Monte Carlo realizations with unifrom random sampling (GLUE).

Data provided by: GLERL Great Lakes Environmental Research Laboratory, NOAA National Oceanic and Atmospheric Administration

Water temperature:
offshore buoy (27 years),
satellite (18 years).
Air temperature:

C-MAN station (27 years).

Time [years]

Application to different lakes

Air2water has been tested on **14 temperate lakes** within the North Temperate Zone, having **different morphological** characteristics.

Toffolon, M., S. Piccolroaz, B. Majone, An.M. Soja, F. Peeters, M. Schmid, and A. Wüest (2014), **Prediction of surface temperature in lakes** with different morphology using air temperature, *Limnology and Oceanography*, 59(6), p. 2185-2202.

Application to different lakes

1:1MeasurementsSimulation

Measurements Simulation

Application to different lakes

The difference between deep lakes and shallow lakes is well reproduced.

Measurements Simulation

Application to different lakes

- The difference between deep lakes and shallow lakes is well reproduced.
- RMSEs are comparable with those obtained by using process based models: SimStrat (Peeters et al., 2002) → 0.77°C air2water (Toffolon et al., 2014) → 0.90°C

8/10

What is the role of stratification?

1997: cold year **1998**: warm year

1997: cold year **1998**: warm year

Anticipated onset of stratified conditions due to a nearly ice-free winter.

Earlier reduction of the surface volume and a faster increase of LST, which in turn contributed to further decrease δ during summer months.

Piccolroaz, S., M. Toffolon, and B. Majone (under review), **The role of stratification on lakes' thermal response: Analysis of the exceptional warming of Lake Superior in summer 1998**, *Water Resources Research*

1997: cold year **1998**: warm year

Anticipated onset of stratified conditions due to a nearly ice-free winter.

Earlier reduction of the surface volume and a faster increase of LST, which in turn contributed to further decrease δ during summer months.

Positive feedback between LST annual cycle and stratification dynamics.

Thermal inertia → historical memory of past conditions.

Piccolroaz, S., M. Toffolon, and B. Majone (under review), **The role of stratification on lakes' thermal response: Analysis of the exceptional warming of Lake Superior in summer 1998**, *Water Resources Research*

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

The historical memory of the system

365 air temperature cycles dynamically **reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

 ΔT_W = difference between period-averaged LST of the scenario and of the mean year.

 $0.1^{\circ}C$

The historical memory of the system

Feb

Jan

365 air temperature cycles dynamically **reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

 ΔT_W = difference between period-averaged LST of the scenario and of the mean year.

Mar

 $0.1^{\circ}C$

Apr

May

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

The historical memory of the system

365 air temperature cycles **dynamically reconstructed** on the basis of two reference years, progressively delaying of one day the transition between the two years.

Further developments

Parameters regionalization

definition of **regionalization** relationships between model parameters and morphological characteristics of lakes \rightarrow possibility to apply *air2water* to **ungauged** lakes.

Further developments

- Parameters regionalization
 - definition of **regionalization** relationships between model parameters and morphological characteristics of lakes \rightarrow possibility to apply *air2water* to **ungauged** lakes.
- Application under climate change conditions
 comparison between LST predictions obtained
 with air2water and more complex physically based models.

Further developments

Parameters regionalization

definition of **regionalization** relationships between model parameters and morphological characteristics of lakes \rightarrow possibility to apply *air2water* to **ungauged** lakes.

 Application under climate change conditions comparison between LST predictions obtained with air2water and more complex physicallybased models.

air2stream

a simple model to predict water temperature in **streams** based on air temperature and **discharge**.

We are currently testing the model on 29 Swiss rivers characterized by different hydrological regimes (glacia, nival, pluvial, ...).

River Dischmabach - mean year: 2003-2009

Thank you

s.piccolroaz@unitn.it

