

RÉSOLUTION NUMÉRIQUE DES ÉQUATIONS NON-LINÉAIRES

Enoncés et corrections de la série Exercice 3

3ème année

On se propose de résoudre numériquement l'équation (E) : f(x) = 0 dans $I = [0, \frac{\pi}{3}]$, où la fonction f est donnée par:

$$f(x) = \cos(x) - 3x \quad \forall x \in I.$$

Il est à noter que la variable x est exprimée en radian.

- ① Montrer que l'équation (E) admet une solution unique $x^* \in]0, \frac{\pi}{3}[$. En utilisant la méthode de dichotomie :
- 2 Estimer le nombre d'itérations nécessaire pour déterminer x^* avec une précision de $\varepsilon = 10^{-3}$.
- 3 déterminer x^* avec une tolérence de $\varepsilon = 10^{-3}$.
 - En utilisant la méthode du point fixe :

Pour approcher *x**, on définit la suite suivante:

$$\begin{cases} x_0 \in [0, \frac{\pi}{3}] , \\ x_{n+1} = g(x_n) \end{cases}$$

avec
$$g(x) = \frac{cos(x)}{3}$$

- 4 Montrer que cette suite converge bien vers *x**.
- **5** Pour $x_0 = 0$, calculer les quatre premières itérations.

Application de la méthode de Newton:

- 6 Ecrire le schéma itératif de la méthode de Newton.
- **②** Choisir une valeur intitiale x_0 assurant la convergence de la méthode.
- **8** Déterminer x^* avec une précision de $\varepsilon = 10^{-3}$.

Correction

Existence: L'application $x \to cos(x) - 3x$ est continue sur tout $\mathbb R$ en particulier sur $[0,\frac{\pi}{3}]$ (Somme de deux fonctions continues sur tout $\mathbb R$ en particulier sur $[0,\frac{\pi}{3}]$.) D'autre part f(0)=1>0 et $f(\frac{\pi}{3})=\frac{1}{2}-\pi<0$. Donc $f(0).f(\frac{\pi}{3})<0$, il existe alors $x^*\in]0,\frac{\pi}{3}[$ tel que $f(x^*)=0$.

Unicité: L'application $x \to cos(x) - 3x$ est dérivable sur $[0, \frac{\pi}{3}]$ et on a pour tout $x \in [0, \frac{\pi}{3}]$, f'(x) = -sin(x) - 3 < 0. Alors f est strictement décroissante sur $[0, \frac{\pi}{3}]$.

Conclusion: l'équation (E) admet une unique solution $x^* \in]0, \frac{\pi}{3}[$.

② on a $d=|\frac{\pi}{3}-0|=\frac{\pi}{3}$, $\varepsilon=10^{-3}$ et n le nombre minimal pour estimer x^* à ε prés. n doit vérifier: $n\geq log_2\left(\frac{d}{\varepsilon}\right)$ alors $n\geq 10.0323$ donc n=11.

Correction

3 Les itérations sont décrites dans le tableau suivant:

n	a_n	x_n	b_n	Précison
0	0	$\frac{\pi}{6}$	$\frac{\pi}{3}$	$ b_0 - a_0 \le \frac{\pi}{3} = 1.046$
	$f(a_0) > 0$	$f(x_0) < 0$	$f(b_0) < 0$	
1	0	$\frac{\pi}{12}$	$\frac{\pi}{6}$	$ b_1 - a_1 \le \frac{\pi}{6} = 0.523$
	$f(a_1) > 0$	$f(x_1) > 0$	$f(b_1) < 0$	
2	$\frac{\pi}{12}$	$\frac{\pi}{8}$	$\frac{\pi}{6}$	$ b_2 - a_2 \le \frac{\pi}{12} = 0.261$
	$f(a_2) > 0$	$f(x_2) < 0$	$f(b_2) < 0$	
3	$\frac{\pi}{12}$	$\frac{5\pi}{48}$	$\frac{\pi}{8}$	$ b_3 - a_3 \le \frac{\pi}{24} = 0.13$
	$f(a_3) > 0$	$f(x_3) < 0$	$f(b_3) < 0$	
4	$\frac{\pi}{12}$	$\frac{3\pi}{32}$	$\frac{5\pi}{48}$	$ b_4 - a_4 \le \frac{\pi}{48} = 0.065$
	$f(a_4) > 0$	$f(x_4) > 0$	$f(b_4) < 0$	
5	$\frac{3\pi}{32}$	$\frac{19\pi}{192}$	$\frac{5\pi}{48}$	$ b_5 - a_5 \le \frac{\pi}{96} = 0.032$
	$f(a_5) > 0$	$f(x_5) > 0$	$f(b_5) < 0$	

Correction

n	a_n	x_n	b_n	Précison
6	$\frac{19\pi}{192}$	$\frac{13\pi}{128}$	$\frac{5\pi}{48}$	$ b_6 - a_6 \le \frac{\pi}{192} = 0.016$
	$f(a_6) > 0$	$f(x_6) < 0$	$f(b_6) < 0$	
7	$\frac{19\pi}{192}$	$\frac{77\pi}{768}$	$\frac{13\pi}{128}$	$ b_7 - a_7 \le \frac{\pi}{384} = 0.0081$
	$f(a_7) > 0$	$f(x_7) > 0$	$f(b_7) < 0$	
8	$\frac{77\pi}{768}$	$\frac{155\pi}{1536}$	$\frac{13\pi}{128}$	$ b_8 - a_8 \le \frac{\pi}{768} = 0.0041$
	$f(a_8) > 0$	$f(x_8) < 0$	$f(b_8) < 0$	
9	$\frac{77\pi}{768}$	$\frac{309\pi}{3072}$	$\frac{155\pi}{1536}$	$ b_9 - a_9 \le \frac{\pi}{1536} = 0.002$
	$f(a_9) > 0$	$f(x_9) > 0$	$f(b_9) < 0$	
10	$\frac{309\pi}{3072}$	$\frac{619\pi}{6144}$	$\frac{155\pi}{1536}$	$ b_{10} - a_{10} \le \frac{\pi}{3072} = 0.00102$
	$f(a_{10}) > 0$	$f(x_{10}) > 0$	$f(b_{10}) < 0$	
11	$\frac{619\pi}{6144}$	$\frac{413\pi}{4096}$	$\frac{155\pi}{1536}$	$ b_{11} - a_{11} \le \frac{\pi}{6144} = 5.1 * 10^{-4}$
	$f(a_{11}) > 0$	$f(x_{11}) > 0$	$f(b_{11}) < 0$	

Correction

D'après le tableau précédent, on a : $x^* \simeq x_{11} = \frac{413\pi}{4096} = 0.3167$ à 10^{-3} près.

4 Schéma du point fixe associé à (E):

$$\begin{cases} x_{n+1} = x_n + \frac{\cos(x_n)}{3} \\ x_0 \in [0, \frac{\pi}{3}]. \end{cases}$$

Convergence de la méthode du point fixe:

 $\overline{(H_1)}: g \text{ est dérivable sur } [0, \frac{\pi}{3}]$

$$(H_2): g'(x) = \frac{-sin(x)}{3}$$
 < 0 alors g est décroissante et $g([0, \frac{\pi}{3}] = [g(\frac{\pi}{3}), g(0)] = [\frac{1}{6}, \frac{1}{3}] \subset [0, \frac{\pi}{3}]$

 $(H_3): |g'(x)| = \frac{\sin(x)}{3}$ est croissante sur $[0, \frac{\pi}{3}]$ (on peut passer par la dérivée seconde) et par la suite |g'(x)| atteint son maximum au point $\frac{\pi}{3}$, ce qui donne

$$|g'(x)| \le \frac{\sqrt{3}}{6} < 1 \quad \forall x \in [0, \frac{\pi}{3}].$$

Comme les trois hypothèses sont bien vérifiées, g converge bien vers x*.

Correction

⑤ Pour
$$x_0 = 0$$
, $x_1 = g(0) = \frac{1}{3} = 0.33333$
$$x_2 = g(\frac{1}{3}) = \frac{\cos(\frac{1}{3})}{3} = 0.31498$$

$$x_3 = g(0.31498) = 0.31693$$

$$x_4 = g(0.31693) = 0.31673$$

6 Schéma de Newton associé à (E):

$$\begin{cases} x_{n+1} = \frac{\cos(x_n) - 3x_n}{\sin(x_n) + 3} \\ x_0 \in [0, \frac{\pi}{3}]. \end{cases}$$

Convergence de la méthode de Newton:

$$\overline{(H_1): f \text{ est de classe } C^2 \text{ sur } [0, \frac{\pi}{3}]}
(H_2): f(0).f(\frac{\pi}{3}) < 0
(H_3): \forall x \in]0, \frac{\pi}{3}[, f'(x) = -sin(x) - 3 \neq 0.
(H_4): \forall x \in]0, \frac{\pi}{3}[, f''(x) = -cos(x) < 0.$$

Correction

7 Choix de x_0 :

Comme $f(\frac{\pi}{3}).f''(\frac{\pi}{3}) > 0$ alors $x_0 = \frac{\pi}{3}$ assure la convergence de la méthode.

8 $\varepsilon = 10^{-3} = 0.001$. Comme $x_0 = \frac{\pi}{3}$ et $x_1 = f(x_0)$, alors $x_1 = 0.3639$. Donc $|f(x_1)| = 0.1571 > \varepsilon$. $x_2 = 0.3170$, alors $|f(x_2)| = 0.0009 < \varepsilon$. Donc

 $x^* \approx 0.3170.$