- Tutorium -

Funkortung und Funknavigation

URL: http://www.siart.de/lehre/navigation.pdf

Uwe Siart tutorien@siart.de

4. Januar 2015 (Version 1.21)

Inhaltsverzeichnis

Aus	breitung elektromagnetischer Wellen	4
1.1	Kenngrößen	4
1.2	Brechung und Funkhorizont	8
1.3	Beugung	10
1.4	Streuung	11
1.5	Bodenreflexion	12
1.6	Doppler-Effekt	14
Rad	artechnische Grundlagen	15
2.1	Rückstreuquerschnitt und Radargleichung	15
2.2	Funkkoordinaten	16
2.3	Entfernungsauflösung	17
2.4	Winkelauflösung	19
2.5	Dopplerauflösung	21
2.6	Auflösung und Genauigkeit	22
2.7	Eindeutigkeitsbereich	23
	1.1 1.2 1.3 1.4 1.5 1.6 Rad 2.1 2.2 2.3 2.4 2.5 2.6	1.2 Brechung und Funkhorizont 1.3 Beugung 1.4 Streuung 1.5 Bodenreflexion 1.6 Doppler-Effekt Radartechnische Grundlagen 2.1 Rückstreuquerschnitt und Radargleichung 2.2 Funkkoordinaten 2.3 Entfernungsauflösung 2.4 Winkelauflösung 2.5 Dopplerauflösung 2.6 Auflösung und Genauigkeit

Inhaltsverzeichnis

Ortu	ıngsfehler	24
3.1	Wichtige Verteilungsdichten	24
3.2	Fehlerellipsen und Fehlerkreis	27
3.3	Standlinien-Netz	28
Ortu	ungs- und Navigationsverfahren	29
4.1	Begriffe	29
4.2	Aufgaben	29
4.3	Grundverfahren	30
4.4	Frequenzbereiche	31
4.5	Hyperbelnavigation	32
4.6	Richtungspeilung	34
4.7	Dopplerpeiler	36
4.8	Very High Frequency Omnidirectional Radio (VOR)	38
4.9	Monopuls-Verfahren	39
4.10	Instrumentenlandesystem (ILS)	40
4.11	Satellitennavigation	42
	3.1 3.2 3.3 Ortu 4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 4.10	3.2 Fehlerellipsen und Fehlerkreis 3.3 Standlinien-Netz Ortungs- und Navigationsverfahren 4.1 Begriffe 4.2 Aufgaben 4.3 Grundverfahren 4.4 Frequenzbereiche 4.5 Hyperbelnavigation 4.6 Richtungspeilung 4.7 Dopplerpeiler 4.8 Very High Frequency Omnidirectional Radio (VOR) 4.9 Monopuls-Verfahren

1 Ausbreitung elektromagnetischer Wellen

1.1 Kenngrößen

Elektrisches und magnetisches Feld¹:

$$E(r) = E(0) e^{-jk \cdot r}$$

$$H(r) = \frac{1}{Z_F} u \times E(r)$$

Wellenzahl und Wellenvektor:

$$\boldsymbol{k} = k\boldsymbol{u} = (\beta - \mathrm{j}\alpha)\boldsymbol{u}$$

Phasengeschwindigkeit:

$$v_{\rm p} = \frac{c_0}{\sqrt{\varepsilon_{\rm r} \, \mu_{\rm r}}} = \frac{1}{\sqrt{\varepsilon \, \mu}}$$

Phasenkonstante:

$$\beta = \frac{2\pi}{\lambda} = \frac{\omega}{v_{\rm p}} = \omega \sqrt{\varepsilon \,\mu}$$

Laufzeit:

$$\Delta \tau = \frac{\Delta r}{v_{\rm p}} = \Delta r \sqrt{\varepsilon \,\mu}$$

Phasenverschiebung (elektrische Länge):

$$\Delta \varphi = -\beta \, \Delta r = -\omega \, \Delta \tau$$

 $^{^{1}\}boldsymbol{u}$ ist der Einheitsvektor in Richtung der Wellenausbreitung.

Kenngrößen (Forts.)

Wellenlänge:

$$\lambda = \frac{v_{\rm p}}{f} = \frac{c_0}{f\sqrt{\varepsilon_{\rm r}\,\mu_{\rm r}}} = \frac{\lambda_0}{\sqrt{\varepsilon_{\rm r}\,\mu_{\rm r}}}$$

Feldwellenwiderstand des Vakuums:

$$Z_{\mathrm{F0}} = \sqrt{\frac{\mu_0}{\varepsilon_0}} \approx 120\pi \,\Omega \approx 377 \,\Omega$$

Feldwellenwiderstand:

$$Z_{\rm F} = \sqrt{\frac{\mu}{\varepsilon}} = Z_{\rm F0} \sqrt{\frac{\mu_{\rm r}}{\varepsilon_{\rm r}}}$$

Poynting-Vektor:

$$S(\mathbf{r}) = \frac{1}{2} \operatorname{Re} \{ E(\mathbf{r}) \times \mathbf{H}^*(\mathbf{r}) \}$$

Strahlungsleistungsdichte:

$$S_* = |S| = \frac{1}{2} \frac{|E|^2}{Z_F} = \frac{1}{2} |H|^2 Z_F$$

Eindringtiefe:

$$\delta = \sqrt{\frac{2}{\omega \,\kappa \,\mu_0 \,\mu_r}}$$

Dielektrizitätskonstante und Leitfähigkeit

Untergrund	Dielektrizitätskonstante ε_{r}	Leitfähigkeit κ (S/m)
Meerwasser	80	1 – 5
Süßwasser	80	$10^{-2} - 10^{-3}$
Eis	3	10^{-5}
feuchtes Gelände	5 – 15	$10^{-2} - 10^{-3}$
trockenes Gelände	2 - 6	$10^{-3} - 5 \cdot 10^{-5}$

Eindringtiefe δ_0 in m

Frequenz	Seewasser	feuchtes Gelände	mittleres Gelände
	$\varepsilon_{\rm r} = 80 \; ; \; \kappa = 4 {\rm S/m}$	$\varepsilon_{\rm r} = 10 \; ; \; \kappa = 10^{-2} {\rm S/m}$	$\varepsilon_{\rm r} = 5$; $\kappa = 10^{-3} {\rm S/m}$
10 kHz	2,5	50	150
$100\mathrm{kHz}$	0,80	15	50
1 MHz	0,14	5	17
10 MHz	0,08	2	9

Funknavigation von Unterseebooten ist wegen der hohen Leitfähigkeit von Seewasser nur bei tiefen Frequenzen im unteren Kilohertzbereich möglich.

1.2 Brechung und Funkhorizont

In inhomogenen Medien wird die Ausbreitungsrichtung elektromagnetischer Wellen zum optisch dichteren Medium (größeres ε_r) hin gekrümmt.

In der Atmosphäre nimmt die Brechzahl $n=\sqrt{\varepsilon_{\rm r}}$ von n=1,0000 im Weltraum mit wachsendem Luftdruck bis auf n=1,0003 auf der Erdoberfläche zu.

Der Funkhorizont

$$d_{\text{Funk}} = \sqrt{2 \cdot k_{\text{E}} \cdot R \cdot h_{\text{A}}}$$

ist daher weiter als der geometrische Horizont. Der Krümmungsfaktor ist $k_{\rm E}=4/3$.

1.3 Beugung

Die Beugung an einer leitenden Halbebene wird beschrieben durch den normierten Parameter $ka = \sqrt{2/(r \lambda_0)} \cdot a$ und durch die dargestellte Funktion $|E_{\rm S}/E_0| = f(ka)$.

1.4 Streuung

$$\frac{P_{\rm E}}{P_{\rm S}} = G_{\rm E} G_{\rm S} \frac{\lambda_0^2}{4\pi^3 d^4} \sigma \propto \frac{1}{d^4}$$

1.5 Bodenreflexion

Die Reflexion unter streifendem Einfall erfolgt näherungsweise mit Betrag 1 und mit 180° Phasensprung ($\Gamma \approx -1$). Direkter und reflektierter Anteil löschen sich am Empfängerort nahezu aus.

$$\frac{P_{\rm E}}{P_{\rm S}} = G_{\rm E} \ G_{\rm S} \ \frac{(h_1 h_2)^2}{d^4} \propto \frac{1}{d^4}$$

Bodenreflexion

Wegen der Zweiwegeausbreitung durch Reflexion an der Erdoberfläche haben Satellitensignale meist erst dann ausreichenden Pegel, wenn der Satellit mehr als 10° über dem Horizont steht.

1.6 Doppler-Effekt

Empfangsfrequenz bei Relativbewegung (Relativgeschwindigkeit $v_{\rm r}$):

$$\omega_{\rm E} = \frac{\mathrm{d}\phi}{\mathrm{d}t} = \omega_{\rm S} - \beta_0 \frac{\mathrm{d}r(t)}{\mathrm{d}t} = \omega_{\rm S} + \omega_{\rm D}$$
; $r(t)$: Länge des Signalweges.

Radar

$$r(t) = 2(r_0 - v_r t)$$

$$f_S \qquad \text{Objekt}$$
Radarsystem
$$f_S + f_D \qquad v_r$$

$$f_{\rm D} = f_{\rm S} \cdot \frac{2 \cdot v_{\rm r}}{c_0}$$

Kommunikation

 $r(t) = r_0 - v_r t$

$$f_{\rm D} = f_{\rm S} \cdot \frac{v_{\rm r}}{c_0}$$

2 Radartechnische Grundlagen

2.1 Rückstreuquerschnitt und Radargleichung

Strahlungsleistungsdichte:

$$S_* = \frac{G \cdot P_{\rm S}}{4\pi r^2}$$

Rückstreuquerschnitt:

$$\sigma = \frac{P_{\text{S,\ddot{a}qu}}}{S_*} \quad ; \quad [\sigma] = \text{m}^2$$

Antennenwirkfläche:

$$A_{\rm W} = G \cdot \frac{\lambda_0^2}{4\pi}$$

Empfangsleistung:

$$P_{\rm E} = A_{\rm W} \cdot \frac{P_{\rm S,\ddot{a}qu}}{4\pi r^2}$$

Radargleichung:

$$\frac{P_{\rm E}}{P_{\rm S}} = \frac{G^2 \, \lambda_0^{\, 2}}{(4\pi)^3 \, r^4} \cdot \sigma$$

 S_* am Ort des Streuers einfallende Strahlungsleistungsdichte

 $P_{S, \ddot{a}qu}$ äquivalente, am Ort des Streuers isotrop abgestrahlte Sendeleistung

 σ Rückstreuquerschnitt

*P*_S Sendeleistung

P_E Empfangsleistung

G Antennengewinn

 λ_0 Freiraum-Wellenlänge

r Zielabstand

2.2 Funkkoordinaten

Funkkoordinate	Messung durch	Auflösung begrenzt durch Signalbandbreite Signalbandbreite
Entfernung	Signallaufzeit (Puls oder PN-Code) Frequenzgang der Reflexion	
Richtung (Winkel)	Antennenbündelung Strahlergruppe Monopulsverfahren	Antennengröße Antennengröße –
Radialgeschwindigkeit	Empfangsfrequenz (Dopplereffekt)	Messzeit

Die Möglichkeiten eines Radarsystems sind außer von Signalerzeugung und Signalverarbeitung wesentlich von der Antenne (Bandbreite und Baugröße) bestimmt.

2.3 Entfernungsauflösung

Zwei Ziele können getrennt detektiert werden, wenn $\tau_2 - \tau_1 \ge t_{\rm P}$. Für den Abstand Δr zwischen den Zielen folgt daraus

$$\Delta r = \frac{c_0 \cdot t_{\rm P}}{2} = \frac{c_0}{2B} \,.$$

Zahlenbeispiel: Für eine Entfernungsauflösung von $\Delta r = 50$ cm darf die Impulsdauer maximal $t_{\rm P} = 3{,}33$ ns betragen.

Entfernungsauflösung

Die gleiche Beziehung gilt bei Messung des Reflexionsfaktors im Frequenzbereich (z. B. steppedfrequency CW).

$$\Delta r = \frac{c_0 \cdot t_{\rm P}}{2} = \frac{c_0}{2B} \,.$$

Zahlenbeispiel: Für eine Entfernungsauflösung von $\Delta r = 50\,\mathrm{cm}$ ist die Signalbandbreite $B = 300\,\mathrm{MHz}$ erforderlich.

2.4 Winkelauflösung

Zwischen der Bündelung einer Antenne und der erforderlichen Baugröße besteht ebenfalls ein grundsätzlicher (Fourier-)Zusammenhang:

> Je kleiner der Öffnungswinkel, desto größer die erforderliche Aperturabmessung in Wellenlängen.

Winkelauflösung

Aperturbelegung

Richtcharakteristik

Abschätzung der Halbwertsbreite (3-dB-Breite) und der Winkelauflösung (Zweiwegediagramm, 1,5-dB-Breite):

$$\gamma_{3\,\mathrm{dB}}pprox70^\circ\cdotrac{\lambda_0}{D}$$
 $\Deltaarphipprox50^\circ\cdotrac{\lambda_0}{D}\,.$

Zahlenbeispiel: Für eine Winkelauflösung von $\Delta \varphi = 5^{\circ}$ ist in etwa eine Antenne von der Größe $D = 10\lambda_0$ erforderlich. Mit zunehmender Frequenz kann die Antennenbaugröße bei gleicher Bündelung also kleiner werden.

2.5 Dopplerauflösung

Die spektrale Linienbreite ist umgekehrt proportional zur Messdauer:

$$\int \Delta f = \frac{1}{T} \,.$$

Zahlenbeispiel: Für eine Dopplerauflösung von $\Delta f = 100\,\mathrm{Hz}$ ist eine Messdauer von $T = 10\,\mathrm{ms}$ erforderlich.

2.6 Auflösung und Genauigkeit

Auflösung Der *kleinste Abstand*, den zwei Ziele in einer Funkkoordinate haben dürfen, damit sie als getrennte Ziele erkannt werden.

$$\Delta r = rac{c_0}{2B}$$
 $\Delta \varphi = 50^{\circ} \cdot rac{\lambda_0}{D}$

Wesentlich sind hier die Signalbandbreite *B* und/oder die Aperturgröße *D*.

Messgenauigkeit Der *kleinste Messfehler*, mit dem eine Funkkoordinate bestimmt werden kann.

$$\delta r = \tau_{\rm p} \frac{c_0}{2\sqrt{2S/N}}$$

 $\tau_{\rm p}$ ist die Anstiegszeit der Impulsflanke. Wesentlich sind hier Signalleistung und Empfängerempfindlichkeit. Bei statistischen Störungen kann hoher Störabstand S/N auch durch eine hohe Messzeit erreicht werden (Mittelung).

2.7 Eindeutigkeitsbereich

Die Laufzeit-Zuordnung ist eindeutig, solange alle Antwortimpulse vor der Aussendung des nächsten Sendeimpulses eintreffen. Damit ist der Eindeutigkeitsbereich

$$r_{
m E} = rac{c_0 \cdot T_{
m P}}{2} \, .$$

Zahlenbeispiel: Bei einer Pulswiederholfrequenz von $1/T_{\rm P}=1\,{\rm MHz}$ ist der Eindeutigkeitsbereich $r_{\rm E}=150\,{\rm m}.$

3 Ortungsfehler

3.1 Wichtige Verteilungsdichten

Gaußverteilung

$$p(x) = \frac{1}{\sqrt{2\pi}\sigma} \cdot e^{-\frac{(x-x_0)^2}{2\sigma^2}}$$

 χ^2 -Verteilung

$$p(x) = \frac{1}{\sqrt{\pi \mu x}} \cdot e^{-\frac{x}{\mu}}$$

$$f \ddot{u} r x > 0$$

Rayleighverteilung

$$p(x) = \frac{x}{\sigma^2} \cdot e^{-\frac{x^2}{2\sigma^2}}$$

Wichtige Verteilungsdichten

Gleichverteilung

$$p(x) = \frac{\delta_{-1}(x - a) - \delta_{-1}(x - b)}{|b - a|}$$

Exponentialverteilung

$$p(x) = \frac{1}{\mu} \cdot e^{-\frac{x}{\mu}}$$
 für $x \ge 0$

Beispiele aus der Signalverarbeitung

Gaußverteilung entsteht, wenn sich eine große Anzahl statistisch unabhängiger,

gleichverteilter Prozesse zu einem Summenprozess überlagert (zen-

traler Grenzwertsatz).

 χ^2 -Verteilung entsteht, wenn eine gaußverteilte Zufallsvariable über eine quadra-

tische Kennlinie transformiert wird.

Rayleighverteilung ist die Verteilungsdichte der Einhüllenden eines stationären, gauß-

verteilten Schmalbandprozesses.

Gleichverteilung ist die Verteilungsdichte des Quantisierungsfehlers, der durch Ana-

log-Digital-Wandlung entsteht.

Exponentialverteilung entsteht, wenn die Einhüllende eines stationären, gaußverteilten

Schmalbandprozesses mit einer quadratischen Kennlinie detektiert

wird.

3.2 Fehlerellipsen und Fehlerkreis

Durch Hauptachsentransformation lassen sich Koordinatenrichtungen (x'_1, x'_2) finden, für die x'_1 und x'_2 unkorreliert sind.

Wahrscheinlichkeiten p dafür, dass der wahre Standort innerhalb einer Ellipse mit den Halbachsen $a = \xi \sigma_x$ und $b = \xi \sigma_y$ liegt:

ξ	p
1	39,3 %
2	86,5 %
3	98,9 %

Der Radius

$$R_{\rm RMS} = \sqrt{\sigma_1^{\prime 2} + \sigma_2^{\prime 2}}$$

eines Fehlerkreises mit 63 % $\leq p \leq$ 68 % ist auch dann sinnvoll, wenn $\sigma'_{\nu} \rightarrow 0$.

3.3 Standlinien-Netz

Standlinien sollten sich möglichst senkrecht schneiden. Spitze Schnittwinkel sind ungünstig.

4 Ortungs- und Navigationsverfahren

4.1 Begriffe

- a) Eigenortung b) Fremdortung c) Navigation
- d) Standfläche e) Standlinie f) Standort

4.2 Aufgaben

- Messungen und Berechnungen, die zur Bestimmung des augenblicklichen Ortes und der augenblicklichen Geschwindigkeit notwendig sind.
- Vorhersage des Weges eines Fahrzeugs unter Beibehaltung des augenblicklichen Bewegungszustandes.
- Berechnung der notwendigen Manöver, um ein vorgegebenes Ziel zu erreichen.

4.3 Grundverfahren

Prinzip	Beispiel
Laufzeit	
Einwegverfahren	GPS, GLONASS
Zweiwegverfahren	DME, Pulsradar
Phasendifferenz	
Codemäßige oder zeitliche Trennung der Signale	OMEGA, LORAN
Frequenzmäßige Trennung der Signale	DECCA
Amplitude	
Drehung einer Richtantenne (Max oder MinPeilung)	ADF, Radar
Auswertung eines Differenzdiagramms	Monopuls
konstanter Umlauf einer bekannten Richtcharakteristik	VOR
Schwenken einer Richtcharakteristik in begrenztem Sektor	MLS
richtungsabhängige Modulationsgrad-Diagramme	ILS
Frequenz	
Auswertung der Dopplerinformation	Dopplernavigator

4.4 Frequenzbereiche

Frequenzband	Navigationsverfahren	Frequenzband	Navigationsverfahren
10 kHz14 kHz 70 kHz130 kHz 190 kHz375 kHz	OMEGA DECCA, LORAN-C/D CONSOL	225 MHz400 MHz 328 MHz335 MHz 960 MHz1215 MHz	Peiler, militärisch ILS-Gleitweg TACAN, DME, Sekundär-Radar
255 kHz415 kHz	Flug- und Seefunkfeuer	600 MHz, 1300 MHz, 2,8 GHz, 10 GHz, 15,5 GHz, 38 GHz	Bordradar, Wetterradar, Flugfeldüberwachung
1750 kHz1950 kHz	LORAN-A	1574,42 MHz, 1227,6 MHz	GPS, GLONASS, GALILEO
73,8 MHz75,2 MHz	Markierungs-Funkfeuer	5,0 GHz5,25 GHz	Mikrowellenlandesys- tem (MLS, TRSB)
108 MHz118 MHz	ILS-Landekurs, VOR, Doppler-VOR	440 MHz, 1630 MHz, 4,3 GHz	Radarhöhenmesser
118 MHz136 MHz	Peiler, zivil	8,75 GHz8,85 GHz 13,25 GHz13,4 GHz	Dopplernavigator

4.5 Hyperbelnavigation

Eine Basis besteht aus einem Leitsender und einem Nebensender.

Bestimmung von $d_2 - d_1$ durch Phasendifferenz (DECCA) oder Puls-Laufzeitdifferenz (LORAN).

Standortbestimmung durch drei Hyperbelscharen (höhere Genauigkeit) benötigt einen Leitsender und drei Nebensender (»Kette«).

DECCA-Kette

4.6 Richtungspeilung

Leerlaufspannung einer Rahmenantenne (Abmessung $D \ll \lambda_0$, Einfallsebene ist die xy-Ebene, Polarisation in z-Richtung):

$$U_0 \approx j\omega \mu_0 H_0 \cdot A \cdot \sin \varphi$$
$$= j\beta_0 E_0 \cdot A \cdot \sin \varphi.$$

Leerlaufspannung einer Monopol-Antenne (Polarisation in *z*-Richtung):

$$U_0 = \ell_{\text{eff}} E_0$$
.

Die Rahmenspannung eilt der Monopolspannung um 90° vor. Zur Addition der Empfangsspannungen ist daher ein 90°-Phasenschieber notwendig.

Richtungspeilung

Richtcharakteristik einer Kombination aus Monopol- und Rahmenantenne:

4.7 Dopplerpeiler

Eine auf einer Kreisbahn mit der Kreisfre- Gangunterschied zum Ursprung: quenz ω umlaufende Antenne:

$$\Delta s(t) = \boldsymbol{a}(t) \cdot \boldsymbol{e}_{i} = a \sin \vartheta \cos(\omega t - \varphi).$$

Empfangsspannung:

$$u_{\rm E}(t) = U_{\rm E}\cos(\omega_{\rm S}t + \beta_0\Delta s(t)).$$

Sinusförmige FM mit Momentanfrequenz

$$\omega_{\rm M} = \frac{2\pi a}{\lambda_0} \omega \sin \vartheta \sin(\omega t - \varphi).$$

$$\mathbf{e}_{i} = \sin \theta \cos \varphi \mathbf{e}_{x} + \sin \theta \sin \varphi \mathbf{e}_{y} + \cos \theta \mathbf{e}_{z}$$
 Frequenzhub $\rightarrow \theta$
 $\mathbf{a}(t) = a \cos \omega t \mathbf{e}_{x} + a \sin \omega t \mathbf{e}_{y}$ Phase $\rightarrow \varphi$

Realisierung eines Dopplerpeilers

Kreisförmige, starr aufgebaute Dipolgruppe mit sequenzieller Abtastung.

4.8 Very High Frequency Omnidirectional Radio (VOR)

• Kombination Rahmenantenne-Monopol erzeugt eine Richtcharakteristik mit harmonischer Amplitudenschwankung:

$$F_{\rm R}(\varphi) = 1 + a\cos\varphi$$
.

- Durch Rotation der Rahmenantenne mit 30 U/s wird ein mit 30 Hz amplitudenmoduliertes Signal abgestrahlt.
- Zusätzlich wird mit Rundcharakteristik ein 30-Hz-FM-Signal als Referenz abgestrahlt.
 Die Phase der Modulation dieses Referenzsignals ist 0°, wenn die umlaufende Antenne nach Norden weist.

Die Phasenverschiebung zwischen den beiden empfangenen 30-Hz-Signalen gibt die Richtung an, in der sich der Empfänger von der VOR-Station aus gesehen befindet.

4.9 Monopuls-Verfahren

Einzeldiagramme

Summendiagramm

Differenzdiagramm

Winkelkennlinie:

$$C(\alpha) = \frac{U_1 - U_2}{U_1 + U_2} \,.$$

Durch die Verhältnisbildung wird $C(\alpha)$ unabhängig von der Empfangsamplitude.

4.10 Instrumentenlandesystem (ILS)

Hauptbestandteile

Landekurssender (110 MHz), modulationsabhängige Richtcharakteristik mit ±90 Hz- und ±150 Hz-Seitenbändern im Azimut

```
90 Hz → »nach rechts«
150 Hz → »nach links«
```

Gleitwegsender (330 MHz), modulationsabhängige Richtcharakteristik mit ±90 Hz- und ±150 Hz-Seitenbändern in der Elevation

```
90 Hz → »tiefer«
150 Hz → »höher«
```

Haupteinflugzeichen (75 MHz), Gleitweg ist 100 ft über der Landebahn

Voreinflugzeichen (75 MHz), 4,5 Meilen vor der Landebahn

Erzeugung einer modulationsabhängigen Richtcharakteristik

ILS-Landekurssender

ILS-Gleitwegsender

4.11 Satellitennavigation

Prinzip

Eigenortung durch Messung der Dopplerverschiebung (Relativgeschwindigkeit des Satelliten) oder durch Laufzeitmessung (Entfernung zu Satelliten).

Durch Analyse des zeitlichen Dopplerverlaufs und/oder durch Abstandsmessung lassen sich Standlinien/Standflächen bezüglich einzelner Satelliten gewinnen.

Fehlerursachen

- Mehrfachreflexionen (Erdoberfläche, Gebäude, Gelände)
- Fluktuierende Brechung (geänderte Phasengeschwindigkeit) in der Ionosphäre

Zeitlicher Verlauf der Dopplerverschiebung

Maximale Änderung der Dopplerfrequenz bei eindimensionaler Bewegung:

$$\left. \frac{\mathrm{d}f_{\mathrm{D}}}{\mathrm{d}t} \right|_{t=0} = -\frac{v^2}{\lambda \cdot h} \propto \frac{1}{h}$$

Global Positioning System (GPS)

GPS - Technische Daten

Flughöhe	20183 km	Modulationsart	BPSK
Umlaufdauer T	11 h 56 min	Symbolrate C/A-Code	1,023 MHz
Satelliten	21 + 3	Symbolrate P-Code	10,23 MHz
Umlaufbahnen	6	Navigationsdaten	50 Bit/s
Inklination	55°	Sendeleistung	+44,3 dBm
Dopplerverschiebung	±5 kHz max.	Empfangsleistung	-130 dBm
Frequenzen			

L1 1,57542 GHz L2 1,22760 GHz

Einfluss einer Gangabweichung der GPS-Atomuhren:

$$\frac{\Delta t}{T} = 4 \cdot 10^{-13}$$
 \rightarrow $\Delta t = 17.3 \text{ ns}$ \rightarrow $\Delta r = 5.2 \text{ m}$

GPS – Positionsbestimmung

Beschreibende Geometrieparameter

Gesuchte Nutzerposition:

$$\boldsymbol{R}_0 = x_0 \boldsymbol{e}_x + y_0 \boldsymbol{e}_y + z_0 \boldsymbol{e}_z$$

Entfernungsmessfehler aufgrund des Uhrenfehlers $\Delta t_{\rm u}$:

$$\varrho_0 = c_0 \Delta t_{\rm u}$$

Position des *i*-ten Satelliten:

$$\boldsymbol{R}_i = x_i \boldsymbol{e}_x + y_i \boldsymbol{e}_y + z_i \boldsymbol{e}_z$$

Gemessene Entfernung vom Nutzer zum *i*-ten Satelliten inklusive Uhrenfehler (Pseudoentfernung, scheinbare Entfernung):

$$\varrho_i = \|\boldsymbol{R}_i - \boldsymbol{R}_0\| + \varrho_0$$

Einheitsvektor vom Nutzer in Richtung des *i*-ten Satelliten:

$$\boldsymbol{e}_i = (\boldsymbol{R}_i - \boldsymbol{R}_0) / ||\boldsymbol{R}_i - \boldsymbol{R}_0|| = e_{xi}\boldsymbol{e}_x + e_{yi}\boldsymbol{e}_y + e_{zi}\boldsymbol{e}_z$$

Algebraische Lösung

Das Ortungsproblem hat vier Unbekannte x_0 , y_0 , z_0 und ϱ_0 . Daher benötigt man Entfernungsmessungen zu vier Satelliten, um daraus die drei Standortkoordinaten und den eigenen Uhrenfehler zu bestimmen.

Die vier Unbekannten x_0 , y_0 , z_0 und ϱ_0 müssen die vier Gleichungen

$$q_i(\mathbf{R}_0, \varrho_0) = ||\mathbf{R}_i - \mathbf{R}_0||^2 - (\varrho_i - \varrho_0)^2 = 0$$
 ; $i = 1, ..., 4$

erfüllen. Diese Gleichungen lauten ausgeschrieben

$$R_0 \cdot R_0 - 2(R_i \cdot R_0) + R_i \cdot R_i - \varrho_0^2 + 2\varrho_i\varrho_0 - \varrho_i^2 = 0$$
 ; $i = 1, ..., 4$.

Dieses nichtlineare Gleichungssystem lässt sich wie folgt in drei lineare und eine quadratische Gleichung umformen. Zunächst berechnet man die drei Differenzen

$$q_{j}(\mathbf{R}_{0}, \varrho_{0}) - q_{1}(\mathbf{R}_{0}, \varrho_{0}) = 2(\mathbf{R}_{j} - \mathbf{R}_{1}) \cdot \mathbf{R}_{0} - 2(\varrho_{j} - \varrho_{1})\varrho_{0} - \varrho_{1}^{2} + \varrho_{j}^{2} + ||\mathbf{R}_{1}||^{2} - ||\mathbf{R}_{j}||^{2} = 0 \quad ; \quad j = 2, ..., 4.$$

Es entsteht ein Gleichungssystem mit drei Gleichungen, welches homogen und linear in den vier Unbekannten x_0 , y_0 , z_0 und ϱ_0 ist. Falls die Systemmatrix vollen Rang hat, ergeben sich drei abhängige und eine unabhängige Variable, sodass die allgemeine Lösung von der Form

$$\begin{pmatrix} \mathbf{R}_0 \\ \varrho_0 \end{pmatrix} = \begin{pmatrix} \tilde{\mathbf{R}}_0 \\ \tilde{\varrho}_0 \end{pmatrix} + \lambda \begin{pmatrix} \hat{\mathbf{R}}_0 \\ \hat{\varrho}_0 \end{pmatrix}$$

mit dem Parameter λ ist. Für jede dieser Lösungen gilt

$$q_1(\mathbf{R}_0, \varrho_0) = q_2(\mathbf{R}_0, \varrho_0) = q_3(\mathbf{R}_0, \varrho_0) = q_4(\mathbf{R}_0, \varrho_0).$$

Wenn zusätzlich $q_1(\mathbf{R}_0, \varrho_0) = 0$ gilt, sind alle vier Bedingungen $q_i(\mathbf{R}_0, \varrho_0) = 0$ erfüllt. Einsetzen der allgemeinen Lösung in die Gleichung für $q_1(\mathbf{R}_0, \varrho_0) = 0$ ergibt

$$||\tilde{\mathbf{R}}_{0}||^{2} + 2(\tilde{\mathbf{R}}_{0} \cdot \hat{\mathbf{R}}_{0})\lambda + ||\hat{\mathbf{R}}_{0}||^{2}\lambda^{2} - 2(\mathbf{R}_{1} \cdot \tilde{\mathbf{R}}_{0}) - 2(\mathbf{R}_{1} \cdot \hat{\mathbf{R}}_{0})\lambda + ||\mathbf{R}_{1}||^{2} = \tilde{\varrho}_{0}^{2} + 2\tilde{\varrho}_{0}\hat{\varrho}_{0}\lambda + \hat{\varrho}_{0}^{2}\lambda^{2} - 2\varrho_{1}\tilde{\varrho}_{0} - 2\varrho_{1}\hat{\varrho}_{0}\lambda + \varrho_{1}^{2},$$

also eine quadratische Gleichung in λ . Die Lösung liefert zwei mögliche Werte λ_1 und λ_2 , von denen einer durch eine grobe Schätzung (z. B. R_0 auf Erdoberfläche) auszuschließen ist (Quelle: [1, S. 640]).

Iterative Lösung

Ansatz: Die gemessenen Pseudoentfernungen enthalten einen unbekannten Fehler:

$$\varrho_i = \sqrt{(x_i - x_0 + \delta x)^2 + (y_i - y_0 + \delta y)^2 + (z_i - z_0 + \delta z)^2}.$$

Linearisierung um Schätzwert (x_0, y_0, z_0) ergibt

$$\varrho_i = \sqrt{(x_i - x_0)^2 + (y_i - y_0)^2 + (z_i - z_0)^2} - \boldsymbol{e}_i \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix} = ||\boldsymbol{R}_i - \boldsymbol{R}_0|| + B_0.$$

Mit $||\mathbf{R}_i - \mathbf{R}_0|| = \mathbf{e}_i \mathbf{R}_i - \mathbf{e}_i \mathbf{R}_0$ ergibt sich

$$\boldsymbol{e}_i \cdot \boldsymbol{R}_0 - B_0 = \boldsymbol{e}_i \cdot \boldsymbol{R}_i - \varrho_i.$$

In ausführlicher Matrix-Notation:

Die bestmögliche Lösung $X_{\text{opt}} = \begin{pmatrix} x_0 & y_0 & z_0 & B_0 \end{pmatrix}^{\text{T}}$ dieser Gleichung wird durch Iteration (Schätzwert \hat{X} ergibt \hat{e}_i , danach neue Schätzung \hat{X} bis Änderung sehr klein) bestimmt.

Quellen und weiterführende Literatur

- [1] T. Arens, F. Hettlich, Ch. Karpfinger, U. Kockelkorn, K. Lichtenegger und H. Stachel: *Mathematik*. Heidelberg: Spektrum Akademischer Verlag GmbH, 2008.
- [2] C. A. Balanis: Antenna Theory. 3rd ed. Hoboken, New Jersey: John Wiley & Sons, 2005.
- [3] D. K. Barton: Modern Radar System Analysis. Artech House, 1988.
- [4] D. K. Barton and H. R. Ward: *Handbook of Radar Measurement*. Artech House, 1984.
- [5] K. Baur: Eine Einführung in die Funkortung. Ulm: Süddeutsche Verlagsgesellschaft, 1996.
- [6] L. Blake: Radar Principles. John Wiley & Sons, 1988.
- [7] R. E. Collin: Antennas and Radiowave Propagation. New York: McGraw-Hill, 1985.
- [8] J. Detlefsen: Radartechnik. Nachrichtentechnik 18. Berlin: Springer, 1989.
- [9] J. Detlefsen: *Radio Navigation and Location*. Lecture Notes. Lehrstuhl für Hochfrequenztechnik. Technische Universität München, 2003.
- [10] J. Detlefsen und U. Siart: *Grundlagen der Hochfrequenztechnik*. 4. Aufl. München: Oldenbourg, 2012.
- [11] E. Hölzler und H. Holzwarth: *Pulstechnik*. 2. Aufl. Bd. 1. Berlin: Springer, 1986.

- [12] A. Ishimaru: *Electromagnetic Wave Propagation, Radiation, and Scattering*. Englewood Cliffs: Prentice Hall, 1991.
- [13] J. D. Kraus: Antennas. 2nd ed. New York: McGraw-Hill, 1988.
- [14] N. Levanon: Radar Principles. John Wiley & Sons, 1988.
- [15] A. Ludloff: *Handbuch Radar und Radarsignalverarbeitung*. Braunschweig: Vieweg, 1993.
- [16] W. Mansfeld: *Satellitenortung und Navigation*. 3. Aufl. Wiesbaden: Vieweg + Teubner, 2010.
- [17] P. Z. Peebles: *Radar Principles*. New York: Wiley & Sons, 1998.
- [18] M. I. Skolnik: *Introduction to Radar Systems*. 3rd ed. Auckland: McGraw-Hill, 2001.
- [19] M. I. Skolnik, ed.: Radar Handbook. McGraw-Hill, 1990.
- [20] L. Uhlig u. a.: Leitfaden der Navigation. 2. Aufl. Berlin: transpress VEB Verlag für Verkehrswesen, 1977.