Optimization in Machine Learning

Multi-Start Optimization

Learning goals

- Multimodal functions
- Basins of Attractions
- Simple multi-start procedure

MOTIVATION

- So far: derivative-free methods for unimodal objective function (exception: simulated annealing)
- With multimodal objective functions, methods converge to local minima.
- Optimum found may differ for different starting values x^[0]

Attraction areas:

- Let f_1^*, \ldots, f_k^* be local minimum values of f with $f_i^* \neq f_i^* \quad \forall i \neq j$.
- Notation: $A(\mathbf{x}^{[0]})$ denotes result of algorithm A started at $\mathbf{x}^{[0]}$
- Then: Set

$$\mathcal{A}(f_i^*, A) = \{\mathbf{x} : A(\mathbf{x}) = f_i^*\}$$

is called attraction area/basin of attraction of f_i^* for algorithm A

ATTRACTION AREAS

MULTI-STARTS

Levy function:

$$f(\mathbf{x}) = \sin^2(3\pi x_1) + (x_1 - 1)^2[1 + \sin^2(3\pi x_2)] + (x_2 - 1)^2[1 + \sin^2(2\pi x_2)]$$

- Global minimum: $f(\mathbf{x}^*) = 0$ at $\mathbf{x}^* = (1, 1)^{\top}$
- Optimize f by BFGS method with random starting point in [−2, 2]² and collect result
- Repeat 100 times

Distribution of results (y values):

## M	in.	1st Qu.	Median	Mean	3rd Qu.	Max.
## 0	.0000	0.1099	0.5356	2.4351	1.9809	18.3663

MULTI-STARTS

Idea: use multiple starting points $\mathbf{x}^{[1]},\dots,\mathbf{x}^{[k]}$ for algorithm A

Algorithm Multistart optimization

- 1: Given: optimization algorithm $A(\cdot)$, $f: \mathcal{S} \mapsto \mathbb{R}$, $\mathbf{x} \mapsto f(\mathbf{x})$
- 2: k = 0
- 3: repeat
- 4: Draw starting point $\mathbf{x}^{[k]}$ from \mathcal{S} (e.g. uniform if \mathcal{S} is of finite volume)
- 5: **if** k = 0 then $\hat{x} = x^{[0]}$
- 6: end if
- 7: Initialize algorithm with start value $\mathbf{x}^{[k]} \Rightarrow \tilde{\mathbf{x}} = A(\mathbf{x}^{[k]})$
- 8: if $f(\tilde{\mathbf{x}}) < f(\hat{\mathbf{x}})$ then $\hat{\mathbf{x}} = \tilde{\mathbf{x}}$
- 9: end if
- 10: k = k + 1
- 11: until Stop criterion fulfilled
- 12: return x

MULTI-STARTS

BFGS with Multistart gives us the true minimum of the Levy function:

```
iters = 20 # number of starts
xbest = c(runif(1, -2, 2), runif(1, -2, 2))
for (i in 1:iters) {
x1 = runif(1, -2, 2)
x2 = runif(1, -2, 2)
res = optim(par = c(x1, x2), fn = f, method = "BFGS")
if (res$value < f(xbest)) {
xbest = res$par
xbest.
## [1] 1 1
```