2023 Second Semester CSE 4185 Assignment#06

1. Requirements

- python version >= 3.6
- numpy >= 1.15

2. 문제 설명

주어진 폴더에는 데이터 파일(model.json), main.py, hw6.py, utils.py가 있다. 데이터 파일은 이번 과제에서 사용할 wall, state, reward, action, gamma에 대한 정보가 json 파일로 저장 되어 있다.

```
{
    "wall": [[0, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 0]],
    "isterminal": [[0, 0, 0, 1], [0, 0, 0, 1], [0, 0, 0, 0]],
    "rewards": [
        [-0.04, -0.04, -0.04, 1],
        [-0.04, -0.04, -0.04, -1],
        [-0.04, -0.04, -0.04, -0.04],
],
    "disturbances": [
        [[0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1]],
        [[0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1]],
        [[0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1]],
],
    "gamma": 1.0,
```

[그림 1] 데이터 파일 예시

utils.py는 데이터 파일을 불러와 각 정보 별로 분리(load_MDP())하고, grid환경, 벽, terminal state, utility를 시각화(visualize())하는데 사용된다. main.py는 데이터를 읽고 각 함수를 실행하여 결과를 확인할 수 있는 코드들이 작성되어있다. 작성해야 하는 함수는 모두 hw6.py에 정의되어 있다. hw6.py의 주석을 참고하여 주어진 함수를 모두 작성해야 한다.

결과 값은 아래 command를 콘솔에 입력하여 확인한다.

python main.py

함수마다 출력 예시가 주어지며, 출력 예시와 본인이 작성한 코드의 결과가 같은지 확인하고 다음 문제로 넘어가기를 권장한다.

작성해야하는 함수는 총 3개로 이루어져있다. 오류를 전파하는 기본 코드(raise RuntimeError("You need to write this part!"))를 지우고 주어진 주석에 맞게 함수를 구현해 야한다.

각 문제와 문제별로 구현해야할 각 함수에 대한 설명은 아래와 같다. input과 output에 대한 상세한 설명은 hw6.py의 주석을 참고하면 된다.

▶ 환경 설명

main.py에 작성되어 있는 model=utils.load_MDP('model.json')은 아래와 같이 활용된다.

- **model.M, model.N** : 주어진 환경은 $M \times N$ 차원의 grid world이며 r-th row, c-th column에 해당하는 셀은 각 state (r,c) 정보를 의미한다.
- model.gamma : discount factor를 의미한다.
- model.W : $M \times N$ boolean matrix로, 주어진 환경에 존재하는 벽을 나타낸다. model.W[r, c] == True이면 (r,c) state는 벽을 의미하므로, agent가 해당 state로 이동할 수 없다.

2023 Second Semester CSE 4185 Assignment#06

wall 예시)

```
array([[False, False, False],
[False, True, False, False],
[False, False, False, False]])
```

• **model.T** : $M \times N$ boolean matrix로 model.T[r, c] == True이면 terminal state를 의미한다.

terminal state 예시)

```
array([[False, False, False, True],
[False, False, False, True],
[False, False, False, False]])
```

• **model.R** : $M \times N$ matrix로 reward를 의미한다. agent가 이동한 next state가 terminal state에 해당한다면 big reward +1,-1, 해당하지 않는 셀은 small negative number 가 부여된다.

reward 예시)

```
array([[-0.04, -0.04, -0.04, 1. ],
[-0.04, -0.04, -0.04, -1. ],
[-0.04, -0.04, -0.04, -0.04]])
```

• model.D : $M \times N \times 3$ numpy 배열이며, 각 state에서 agent의 움직임에 대한 확률을 정의한다. non-terminal state (r,c)에서 agent는 left(0), up(1), right(2), down(3) 총 4 가지 방향으로 움직일 수 있다. 하지만, 언제나 의도한 방향으로 움직이지는 않으며, 확률에 근거하여 움직이게 된다.

즉, (r,c)에서 agent가 의도한 방향으로 움직일 확률 D[r,c,0], 의도한 방향의 반시계 방향으로 움직일 확률 D[r,c,1], 의도한 방향의 시계 방향으로 움직일 확률 D[r,c,2]을 나타낸다.

(r,c) state에서 모든 action을 취할 확률의 합은 1이며, 의도한 방향과 반대 방향으로는 이동하지 않는다. 테스트 케이스에서 각 action에 대한 확률은 달라질 수 있다.

action probability 예시)

```
array([[[0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1]],

[[0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1]],

[[0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1], [0.8, 0.1, 0.1]]
```


[그림 2] model.D 예시

그림 2의 경우, 해당 state (1,0)에서 agent가 **의도한 방향**이 **right(2)**면

- D[1,0,0]: right 방향으로 이동할 확률 - D[1,0,1]: up 방향으로 이동할 확률 - D[1,0,2]: down 방향으로 이동할 확률

마찬가지로, 해당 state (1,0)에서 agent가 의도한 방향이 left(0)면

- D[1,0,0]: left 방향으로 이동할 확률 - D[1,0,1]: up 방향으로 이동할 확률 - D[1,0,2]: down 방향으로 이동할 확률

2023 Second Semester CSE 4185

** Assignment#06 참고로, 주어진 grid world 환경은 왼쪽 위 모서리 (0,0), 왼쪽 아래 모서리 (2,0), 오른쪽 위 모서리 (0,3), 오른쪽 아래 모서리 (2,3)으로 구성되며,

agent가 특정 state (r, c)에서 left 방향으로 이동하고 싶은 경우 (r, c-1), up 방향으로 이동 하고 싶은 경우 (r+1, c)로 계산한다.

[그림 3] $M \times N$ grid world

▶ 함수1. Transition Probability 계산

value iteration 수행 전 방대한 연산량을 방지하기 위해, transition probability P(s'|s,a)를 미리 계산한다. 각 state (r,c)에서 action $a\in\{0,1,2,3\}$ (left(0), up(1), right(2), down(3))를 취했을 때, state (r',c')로 갈 확률 P[r,c,a,r',c']를 계산하는 compute_transition_matrix 함수를 구현해야 한다.

함수의 input은 앞서 설명했던 action, state, 등의 환경 정보가 들어있는 model이며, transition probability P를 반환하면 된다.

만약, 각 state가 특정 action을 취할 때, 이동하는 다음 state가 grid 환경의 경계 범위를 벗 어나거나, 벽에 해당한다면 현재 state를 유지한다.

편의를 위해 해당 state가 terminal state인 경우는 P[r, c, :, :, :] = 0으로 설정한다. 해당 state가 벽인 경우의 이동 확률은 계산되어야 한다.

계산된 P에 대한 정답 확인을 위해 solution_P.npy 파일을 첨부하였으며, main.py에서 확인 할 수 있다.

```
= hw6.compute_transition_matrix(model)
sol_P = np.load("solution_P.npy")
if not np.array_equal(P, sol_P):
   raise ValueError(
        "The computed transition matrix P does not match the ground truth."
```

[그림 4] Transition Probability 정답 확인 방법

▶ 함수2. Next Utility 계산

가능한 discounted rewards의 expected sum을 가장 크게 만들도록 utility $\mathit{U}(s)$ 를 업데이트 하는 update utility 함수를 구현한다. 구현에 필요한 수식은 아래와 같다.

수식)

$$U_{i+1}(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) [R(s,a,s') + \gamma U_i(s')]$$

이때, 본 과제에서 reward는 특정 state (r,c)에 도달했을 때, 주어지는 즉각적인 보상이므로 action a나 next state s'에 의존하지 않는다. 따라서 R(s,a,s')=R(s)로 표현된다.

기초 인공지능 2023 Second Semester CSE 4185 Assignment#06

수식으로 표현하면 다음과 같다.

$$U_{i+1}(s) = \max_{a \in A(s)} \sum_{s'} P(s'|s,a) [R(s) + \gamma U_i(s')]$$

R(s)는 상수로, 각 action에 대해 최대 utility를 구할 때 변하지 않으므로 최대값 연산에 영향을 주지 않는다. 따라서 최대값 연산 밖으로 분리할 수 있으며, 수식은 다음과 같다.

$$U_{i+1}(s) = R(s) \max_{a \in A(s)} \sum_{s'} P(s'|s,a) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$

이때, 모든 action을 취할 확률의 합은 1이 되므로 $R(s)_{\max_{a \in A(s)} \sum_{s'}} P(s'|s,a)$ 에서 $\max_{a \in A(s)} \sum_{s'} P(s'|s,a) = 1$ 이 되어 생략하면 최종적으로 아래 수식이 된다.

최종 수식)

$$U_{i+1}(s) = R(s) + \gamma \max_{a \in A(s)} \sum_{s'} P(s'|s,a) U_i(s')$$

update_utility 함수 구현은 최종적으로 간소화된 수식을 활용해 구현하면 된다.

함수의 input은 model, 앞서 계산된 transition probability(P), 현재 utility 정보(U_current)이 며 계산된 U_next를 반환하면 된다. U_current는 $M \times N$ matrix로 0으로 초기화된다.

```
# 문제 2. Update utility
U_current = np.zeros((model.M, model.N))
U_next = hw6.update_utility(model, P, U_current)
model.visualize(U_next, save_path=True, figname="U_next")
```

[그림 5] update utility

 $U_{current}(s)$ 를 0으로 초기화 후 한 번 업데이트 된 $U_{next}(s)$ 의 예시는 다음과 같다.

-0.040	-0.040	-0.040	1.000
-0.040	×	-0.040	-1.000
-0.040	-0.040	-0.040	-0.040

[그림 6] 초기화된 Utility 한 번 업데이트

효율성은 점수 산정에 포함되지 않으므로 np.dot(), for문 등 구현 방식의 제한이 없다.

▶ 함수3. Value Iteration 구현

update_utility 함수를 반복적으로 호출하면서 모든 state에 대해 $|U_{i+1}(s) - U_i(s)| < \epsilon$ 이면, 수렴되었다고 판단하여 iteration을 종료하도록 value_iteration 함수를 구현한다. transition probability P는 value_iteration 함수 내에서 compute_transition_matrix 함수를 호출하여 사용한다. iteration은 수렴되지 않아도 최대 100회로 제한한다. $(\epsilon=1e-3$ 로 코드 내 정의 되어 있음)

함수의 input은 model로 최종 업데이트 된 utility를 반환한다.

2023 Second Semester CSE 4185 Assignment#06

```
# 문제 3. Value iteration
U = hw6.value_iteration(model)
model.visualize(U, save_path=True, figname="result")
```

[그림 7] value iteration

실행 결과) value_iteration 함수를 구현 후 정상적으로 실행이 되면, 아래와 같은 결과 이미지가 생성된다.

0.812	0.868	0.918	1.000
0.762	×	0.660	-1.000
0.705	0.655	0.611	0.387

[그림 8] 최종 utility 업데이트 결과

3. 보고서

보고서 분량 제한은 없으나, 반드시 다음과 같은 내용이 포함되어야한다.

- 1. 각 함수마다 구현한 방법에 대한 간략한 설명
- 2. 실행 결과 후 저장된 사진 첨부

참고) model.visualize()

해당 함수에 utility 정보를 넣은 후 저장된 그림 6, 8과 동일한 결과를 보고서에 첨부한다.

```
# 문제 2. Update utility
U_current = np.zeros((model.M, model.N))
U_next = hw6.update_utility(model, P, U_current)
model.visualize(U_next, save_path=True, figname="U_next")

# 문제 3. Value iteration
U = hw6.value_iteration(model)
model.visualize(U, save_path=True, figname="result")
```

[그림 9] model.visualize() 활용

4. 주의사항

- 코드 실행시 출력 화면과 보고서에 첨부된 화면 캡처 내용이 반드시 동일해야 한다. (다를 경우 코드 실행 시의 결과를 기준으로 점수를 산정할 것)
- 함수 구현에 대한 라이브러리는 numpy만 가능하며 추가적인 test case가 있을 수 있음.
- 본인이 **작성한 코드에 대하여 annotation**을 작성할 것. (미 작성 시 감점)
- copy check 적발시 0점 처리.

5. 제출

아래 두 가지 파일만 압축하여 AI분반_학번_이름.zip으로 사이버 캠퍼스에 업로드 한다.

- python file: hw6.py
- report: AI분반_학번_이름.pdf