

planetmath.org

Math for the people, by the people.

holomorphic function associated with continuous function

 ${\bf Canonical\ name} \quad {\bf Holomorphic Function Associated With Continuous Function}$

Date of creation 2013-03-22 19:14:29 Last modified on 2013-03-22 19:14:29

Owner pahio (2872) Last modified by pahio (2872)

Numerical id 11

Author pahio (2872)
Entry type Theorem
Classification msc 30E20
Classification msc 30D20

Related topic DifferentiationUnderIntegralSign

Related topic CauchyIntegralFormula

Theorem. If f(z) is continuous on a (finite) contour γ of the complex plane, then the contour integral

$$g(z) =: \int_{\gamma} \frac{f(t)}{t-z} dt, \tag{1}$$

defines a function $z \mapsto g(z)$ which is holomorphic in any domain D not containing points of γ . Moreover, the derivative has the expression

$$g'(z) = \int_{\gamma} \frac{f(t)}{(t-z)^2} dt.$$
 (2)

Proof. The right hand side of (2) is defined since its integrand is continuous. On has to show that it equals

$$\lim_{\Delta z \to 0} \frac{g(z + \Delta z) - g(z)}{\Delta z}.$$

Let $z_1 =: z + \Delta z \notin \gamma$, $\Delta z \neq 0$. We may write first

$$\frac{g(z_1) - g(z)}{z_1 - z} = \frac{1}{\Delta z} \int_{\gamma} f(t) \left[\frac{1}{t - z_1} - \frac{1}{t - z} \right] dt = \int_{\gamma} \frac{f(t)}{(t - z_1)(t - z)} dt,$$

whence

$$E =: \frac{g(z_1) - g(z)}{z_1 - z} - \int_{\gamma} \frac{f(t)}{(t - z)^2} = \Delta z \cdot \int_{\gamma} \frac{f(t)}{(t - z_1)(t - z)^2} dt.$$

Because f is continuous in the compact set γ , there is a positive constant M such that

$$|f(t)| < M \quad \forall \ t \in \gamma.$$

As well, we have a positive constant d such that

$$|t-z| \ge d \quad \forall \ t \in \gamma.$$

When we choose $|\Delta z| < \frac{d}{2}$, it follows that

$$|t-z_1| = |(t-z) - \Delta z| \ge |t-z| - |\Delta z| > d - \frac{d}{2} = \frac{d}{2}.$$

Consequently,

$$\left| \frac{f(t)}{(t-z_1)(t-z)^2} \right| = \frac{|f(t)|}{|t-z_1||t-z|^2} < \frac{M}{\frac{d}{2} \cdot d^2} = \frac{2M}{d^3}$$

and, by the estimating theorem of contour integral,

$$|E| = |\Delta z| \cdot \left| \int_{\gamma} \frac{f(t)}{(t-z_1)(t-z)^2} dt \right| < |\Delta z| \cdot \frac{2M}{d^3} \cdot k,$$

where k is the length of the contour. The last expression tends to zero as $\Delta z \to 0$. This settles the proof.

Remark 1. By induction, one can prove the following generalisation of (2):

$$g^{(n)}(z) = n! \int_{\gamma} \frac{f(t)}{(t-z)^{n+1}} dt \qquad (n = 0, 1, 2, ...)$$
 (3)

Remark 2. The contour γ may be . If it especially is a circle, then (1) defines a holomorphic function inside γ and another outside it.