复变 2017.6.18

1 考题

- 1. 写出高阶导数公式并证明:
 - (a) 若 $M(r) = \max_{|z|=r} |f(x)|$, 求证 $|f^{(n)}(0)| \le \frac{n!M(r)}{r^n}$
 - (b) 若 f(z) 有界,即 $\exists M > 0, \forall Z \in \mathbb{C}, |f(z)| \leq M, 则 f(z)$ 是常数 (Liouville 定理)
- 2. 求 $\max_{|z| \le r} |3z^n + \alpha|$, 并给出 z 的取值范围
- 3. 求 $\sin(x+iy)$ 的实部和虚部,并证明: $\forall A, B \in \mathbb{R}, \ \sin(z) = \sin(x+iy) = A+iB$ 有无穷多解
- 4. 求 $I = \oint\limits_{|z|=r>1} \frac{e^{\frac{1}{z}}}{1+z^n} \mathrm{d}z$,其中 $n \in \mathbb{N}$
- 5. 求 $I_{a,b} = \int_0^{2\pi} \frac{\mathrm{d}\theta}{a + b \cos \theta}$, 其中 $a, b \in \mathbb{R}$ 且 a > |b| 并求 $I = \int_0^{2\pi} \frac{\mathrm{d}\theta}{A^2 \cos^2 \theta + B^2 \sin^2 \theta}$, 其中 $A, B \in \mathbb{R}$ 且 A, B > 0
- 7. 求图形 |z-A| > A 与 |z-B| < B 之间的部分到单位圆盘 $\omega < 1$ 的一个映射,其中 0 < A < B
- 8. 求半径为 3,角度为 $\theta = \frac{\pi}{8}$ 的扇形到单位圆盘 $\omega < 1$ 的一个映射
- 9. 求单位圆盘 |z| < 1 到单位圆盘 $|\omega| < 1$ 的分式线性映射的一般表达式, 并证明不变式 $\frac{|d\omega|}{1-|\omega|^2} = \frac{|dz|}{1-|z|^2}$, 并指出该映射将 z 的圆外,上,内分别映射到 ω 的圆外,上,内
- 10. 二选一
 - (a) 求 $I_{r,n} = \int_0^{+\infty} \frac{\mathrm{d}x}{r^{2n} + x^{2n}}$, 其中 $n \in \mathbb{N}$ 且 r > 0
 - (b) 求 $I_{r,n} = \int_0^{+\infty} \frac{\mathrm{d}x}{(r^2 + x^2)^n}$, 其中 $n \in \mathbb{N}$ 且 r > 0