# The maximum-flow problem flow network (a directed graph)



Another application: file transfer (capacity = Kbit/s)

S

(5)

26-1x







26-2a

26-1y

### Flow Conservation: for all $u \in V - \{s, t\}$



if no edge between u and v

$$\begin{array}{ccc}
 & f/0 \\
 & -f/0
\end{array}$$

$$\begin{array}{cccc}
 & f \leq 0 \\
 & -f \leq 0
\end{array}$$

$$f = 0$$

add (v, u) only if  $((u, v) \in E)$  and  $((v, e) \neq E)$ 



there are at most 2E edges

find a path: 
$$O(V + E)$$
 time, not  $O(V^2)$ 

26-3x

negative flow: 1 real edge



## negative flow: 2 real edges







26-4x



**Example:** 

G and f

\* ignore negative flows & zero edges



New  $f \leftarrow f + f_p$ 



26-5x

## a cut (S, T): a partition of V, s∈S, t∈T



$$f(S, T) = 12 + (-4) + 11$$

Capacity of a cut:

**Example:** |f|=19, f(S, T)=19, and c(S, T)=26.



26-6x

Net flow across a cut:

$$f(S, T) = 15 + (-7) + 11$$

Capacity of a cut:



Lemma 26.5: 
$$f(S, T) = |f|$$

(flow conservation)

Corollary 26.6:  $|f| = f(S, T) \le c(S, T)$ 

(capacity constraint)



26-6z

**Lemma 26.5**: f(S, T) = |f|

(flow conservation)

Corollary 26.6:  $|f| = f(S, T) \le c(S, T)$ 

(capacity constraint)



Lemma 26.5: f(S, T) = |f| (flow conservation)

Corollary 26.6:  $|f| = f(5, T) \le c(5, T)$ 

(capacity constraint)



26-6z

## 

Corollary 26.6

(by Lemma 26.5: f(S, T) = |f|)

26-6a

### The min cut problem





### Constructing flow paths



26-9x



## Appendix (See course-page, x is a larger integer) about 0.372 left each time



Uri Zwick's non-terminating flow example, and three augmenting paths.

26-9z



- \* matching ---> flow
- \* flow ->-> matching? \* integer flow ---> matching
  - \* integer flow <----> matching
  - \* max integer flow <---> max matching

## Max flow on undirected G

