17 10	Naidhiższe	dwa boki	tróikata	prostokątnego	o polu P	sa równe	$5\sqrt{3}$	oraz $3\sqrt{5}$.	Wtedy

A.
$$P = 15\sqrt{3}$$

B.
$$P = \frac{15\sqrt{15}}{2}$$

C.
$$P = \frac{15\sqrt{6}}{2}$$

C.
$$P = \frac{15\sqrt{6}}{2}$$
 D. $P = \frac{7\sqrt{30}}{4}$

17.11. W trójkącie prostokątnym ABC dwa krótsze boki są równe |AB| = 6 oraz $|BC| = 3\sqrt{2}$. Wynika stąd, że cosinus kąta ostrego BCA w trójkącie ABC jest równy:

A.
$$\frac{1}{3}$$

B.
$$\frac{\sqrt{3}}{3}$$

C.
$$\frac{\sqrt{6}}{3}$$

A.
$$\frac{1}{3}$$

B. $\frac{\sqrt{3}}{3}$

C. $\frac{\sqrt{6}}{3}$

D. $\frac{2\sqrt{6}}{3}$

17.12. Dany jest trójkąt prostokątny ABC o przyprostokątnej |AB| = 1 i przeciwprostokątnej |BC| = 7. Oznaczmy miarę kąta ostrego ACB jako α . Wówczas

A.
$$tg \alpha = 4\sqrt{3}$$

B.
$$tg \alpha = \frac{1}{7}$$

D.
$$tg \alpha = \frac{\sqrt{3}}{12}$$

17.13. Dany jest trójkąt prostokątny ABC o przeciwprostokątnej AB równej $4\sqrt{3}$ oraz znana jest długość przyprostokątnej $|BC| = 4\sqrt{2}$. Sinus kąta ostrego ABC jest równy:

A.
$$\frac{1}{\sqrt{3}}$$

B.
$$\frac{1}{3}$$

C.
$$\frac{\sqrt{5}}{3}$$

D.
$$\frac{\sqrt{6}}{3}$$

17.14. W trójkącie prostokątnym ABC dane są: $|AB| = 2\sqrt{7}$, $|BC| = 4\sqrt{2}$, |AC| = 2 oraz miara kąta $|\angle ACB| = \alpha$. Wtedy

A.
$$\sin \alpha = 1$$

B.
$$\cos \alpha = 1$$

D.
$$\cos \alpha = \frac{\sqrt{2}}{4}$$

17.15. Odcinki |AB| = 10 oraz |AC| = 8 są najdłuższymi bokami trójkąta prostokątnego ABC. Tangens kąta ostrego CBA przyjmuje wartość równą:

A.
$$\frac{3}{4}$$

B.
$$\frac{4}{3}$$

C.
$$\frac{4}{5}$$

D.
$$\frac{5}{4}$$

17.16. Dany jest trójkąt prostokątny o bokach a=5, b=12, c=13 i kątach ostrych α i β takich, że $\alpha < \beta$. Miara kąta β spełnia warunek:

A.
$$\beta$$
 < 23°

B.
$$23^{\circ} \le \beta \le 24^{\circ}$$

A.
$$\beta < 23^{\circ}$$
 B. $23^{\circ} \le \beta \le 24^{\circ}$ C. $24^{\circ} < \beta \le 65^{\circ}$ D. $\beta > 65^{\circ}$

D.
$$\beta > 65^{\circ}$$

17.17. W trójkącie prostokątnym ABC dane są boki: |AB| = 3, |BC| = 4, |AC| = 5. Oznaczmy literą α miarę kąta ostrego *CAB*. Wtedy

A.
$$\alpha$$
 < 40°

B.
$$40^{\circ} < \alpha < 45^{\circ}$$

C.
$$45^{\circ} < \alpha < 50^{\circ}$$

D.
$$\alpha > 50^{\circ}$$

17.18. Dany jest trójkąt prostokątny ABC o przyprostokątnych |AC| = 8, |BC| = 5 i kątach ostrych α i β (zobacz rysunek): Wskaż warunek, który jest spełniony.

A.
$$\beta - \alpha < 24^{\circ}$$

A.
$$\beta - \alpha < 24^{\circ}$$
 B. $24^{\circ} < \beta - \alpha < 28^{\circ}$

C.
$$28^{\circ} < \beta - \alpha < 32^{\circ}$$
 D. $\beta - \alpha > 32^{\circ}$

D.
$$\beta - \alpha > 32^\circ$$

