JACOB HAUSER

jhauser@pitp.ca • 909-541-6443 • jahauser.github.io

EDUCATION

Perimeter Scholars International, Perimeter Institute, Waterloo, Ontario

Fall 2020 – present

Expected in June 2021

Supervisors: Alioscia Hamma, Tim Hsieh, Roger Melko

M.Sc. Physics, University of Waterloo, Waterloo, Ontario

Fall 2020 – present

Expected in June 2021

B.A. Physics, Pomona College, Claremont, California

Fall 2016 - Spring 2020

Concentrations: Physics major; Mathematics and Computer Science minors GPA: 3.96/4.00, Magna Cum Laude, Phi Beta Kappa, Distinction in the Senior Exercise

SELECTED HONOURS

NSF Graduate Research Fellowship

2020 - 2025

138,000 USD - awarded to 2,000 out of 13,000 applicants

Perimeter Scholars International Award

2020 - 2021

45,000 CAD – awarded to 22 out of 814 applicants

RESEARCH

Emergent Irreversibility in Random Quantum Circuits, Perimeter Institute

Spring 2020 – present

Supervisor: Alioscia Hamma (University of Massachusetts Boston)

Analytically modeling purity fluctuations in random ensembles of physical Clifford and Haar states, and using finite-size scaling analysis to determine the transition between two regimes of "state learnability" in random quantum circuits. Developed and characterized a method for distinguishing random Haar and stabilizer states based on periodic structure.

t-Design Transition in Doped Clifford Circuits, Pomona College

Fall 2019 – Spring 2020

Supervisor: Alioscia Hamma (University of Massachusetts Boston)

Prepared a year-long senior thesis computationally analyzing the unitary t-design transition in Clifford circuits doped with non-Clifford gates. Created a random quantum circuit engine which simulates local quantum circuits up to 20 times faster than standard libraries.

Causality Violations in General Relativity, Perimeter Institute

Summer 2019

Supervisors: Barak Shoshany, Beatrice Bonga, and Rafael Sorkin (Perimeter Institute)

Developed a concrete model for analyzing multiple-history resolutions to causality violations in 1+1 dimensions. Introduced a novel covering space approach to resolving paradoxes and explicitly constructed solutions using infinite and finite numbers of histories. Calculated the number of histories required for consistent evolution for a family of toy physical laws.

Experimental Quantum Optics, Pomona College

Fall 2017 – Spring 2019

Supervisor: Dwight Whitaker (Pomona College)

Revitalized single-photon optics equipment to produce entangled, down-scattered photon pairs and prepared equipment and procedure for use in Sophomore-level laboratory class. Locked diode lasers to Rubidium atomic spectra using saturated absorption spectroscopy. Cared for equipment, including repairing electronics and recollimating lasers.

Simulating & Fabricating GaAs Devices, University of British Columbia

Summer 2017

Supervisor: Joshua Folk (Quantum Devices Group)

Characterized experimental nanowire design by simulating quantum device electrostatics using COMSOL. Conducted and analyzed wet etches to test new back-gated GaAs chip design. Supported installation of new dilution refrigerator by developing a high frequency shielding component and analyzing lab vibration data.

Simulating nEDM Electrode Profiles, TRIUMF

Supervisor: Rüdiger Picker (Ultra-Cold Neutron Project)

Used finite element analysis simulations to determine the optimal electrode profile for group's neutron electric dipole moment (nEDM) experiment. Prepared 5,000-word report supporting my recommendation, which the group then used in subsequent designs. Automated electrode modeling and electric field analysis to streamline simulations.

PUBLICATIONS & PRESENTATIONS

Publications

- **J. Hauser** and B. Shoshany, (2020), "Time Travel Paradoxes and Multiple Histories", *Phys. Rev. D* 102, 064062, *DOI:* 10.1103/PhysRevD.102.064062.

In Preparation

- **J. Hauser** and A. Hamma, "Characterization of a T-Gate-Doping Transition in Random Quantum Circuits".

Presentations

- J. Hauser and B. Shoshany, (2020), "A Hybrid Approach to Resolving Causality Violations". Contributed talk at 30th Midwest Relativity Meeting in Notre Dame, IN.
- **J. Hauser** and B. Shoshany, (2019), "Solving Time Travel Paradoxes". Contributed talk at 29th Midwest Relativity Meeting in Grand Rapids, MI.
- I. Cui and **J. Hauser**, (2019), "Retention from Physics 70 to 101: Experiences in Introductory Physics". Poster presentation at the PKAL Southern California Regional Meeting 2019 in Claremont, CA.

HONOURS & ACHIEVEMENTS

Richard P. Edmunds Physics Prize	Spring 2020
Alfred Kwok Memorial Physics Prize	Spring 2020
Elected to Phi Beta Kappa Honor Society	Spring 2020
Elected to Sigma Xi Scientific Honor Society	Spring 2019
Tileston Sophomore Physics Prize	Fall 2018
Bixby Mathematics Prize	Fall 2018
88th percentile (572 of 4623) on Putnam Competition	Fall 2018
Tileston First Year Physics Prize	Fall 2017
Pomona College Scholar	Each Semester
Graduation Program Examinations Scholarship (top 20 graduating students in province)	Summer 2016
National Merit Finalist	Spring 2016

SERVICE

Perimeter Institute, Member of Inclusive PI (Anti-Racism & Mental Health)	Fall 2020 – present
Pomona College, Member of Academic Affairs Committee	Fall 2019 – Spring 2020
Physics Department, Chair of Physics Pedagogy Reading Group	Fall 2019 – Spring 2020
Studying Retention in Introductory Physics Sequence	Fall 2017 – Spring 2020

- Conducted multi-year survey to determine factors in physics department retention
- Wrote 200-page report analyzing findings and proposing action items for department
- Developed and launched new student-driven course PHYS 009: Peer Mentoring in STEM

Physics Department, Department Liaison	Fall 2017 – Spring 2020
Physics Department, Cohort Program Organizer	Fall 2017 – Winter 2019
Residence Life, Orientation Leader and Sponsor	Summer 2017 – Spring 2018
National High School Model UN, Director of Security Council Simulation	Summer 2017 – Spring 2018
Mock Trial, Team Captain and Tournament Coordinator	Spring 2017 – Spring 2018

Summer 2016

WORK EXPERIENCE

Pomona College, Claremont, California

Professor Thomas Moore – Textbook Editor

- Edited new 400+ page particle physics textbook written for advanced undergraduates
- Produced 128 pages of notes in LaTeX addressing technical and grammatical errors

Pomona College, Claremont, California

Physics Department – Teaching Assistant

Fall 2017 – Spring 2020

Summer - Fall 2020

- Ran weekly mentor sessions for majors and non-majors, teaching
 - o general relativity (including cosmology, gravitational waves, and the Kerr metric)
 - o intermediate Newtonian, Lagrangian, and Hamiltonian mechanics
 - o introductory classical mechanics, introductory electricity and magnetism
- Assisted with weekly lab classes, resolving student questions and equipment issues
- Led three class sessions when professor was travelling

Pure Storage, Mountain View, California

FlashBlade Division – Software Engineering Intern

Summer 2018

- Developed an incremental VMware virtual machine backup and restoration solution for FlashBlade, Pure Storage's high-bandwidth network-attached flash storage product
- Optimized backup/restore with single-file-restore, changed block tracking, & threading

Vancouver, Model UN, Vancouver, British Columbia

Spring 2015 – Spring 2016

Secretary-General (Chief Executive Officer)

- Led planning and execution of one of the world's largest high-school-run Model UN conferences (1300+ attendees)
- Hired and oversaw volunteer staff of 80+ and managed \$300,000 budget
- Negotiated arrangements with hotels, suppliers, and sponsors

COMPUTATIONAL PROJECTS

Tensor-Based Quantum Circuit Engine, Python

Summer 2019 - present

Simulates quantum circuits, implementing quantum states and circuits as tensor objects to achieve simulation speedup over standard libraries when using circuits assembled from local gates.

Numerical Topology Library, Haskell

Spring 2020

Computes persistent homology and Betti barcodes of filtered simplex streams.

Physics Education Applets, JavaScript, HTML

Fall 2017 - Spring 2019

Equipotentials: models the electric potential around arbitrary 2D charge distributions.

EField/BField: model 3D electric and magnetic fields (contributed to existing software).

AllSky Data Pipeline, awk, bash, Python

Fall 2018

Uses multiprocessing and solution-caching to efficiently process high volume of low-resolution wide-angle 'AllSky' photos from Table Mountain Observatory.

n-Body Orbit Simulator, Python

Spring 2017

Simulates 2D Newtonian gravity (or other force laws) in the user's preferred reference frame.

WORKSHOPS & SEMINARS

Quantum Matter Frontier SeminarsSeptember 2020 – presentQuantum Matter in the Age of EntanglementDecember 2020Perimeter Institute Undergraduate Summer SchoolJuly 2019Perimeter Institute International Summer School for Young PhysicistsJuly 2015

SKILLS

Programming Languages: Python (including machine learning and quantum information packages), awk, bash, C++, Haskell, HTML, Java, JavaScript, Lua, Mathematica, MATLAB, OCaml, and Standard ML

Computer Software: AutoCAD, COMSOL, Fusion 360, LabVIEW, virtual machine management

Lab: clean room and machine shop fabrication, telescope operation, single-photon optics and doppler-free spectroscopy