MA50259: Statistical Design of Investigations

Dr. Sandipan Roy

Lecture 7 (extra part): Confounding

Ex 1. Comparability

We have two treatments , A (new) and B (standard) and we want to know weather the new treatment is more effective than the standard treatment.

*Method 1 Compare the results of the new treatment on patients in one clinic with results of patients under the standard treatement in a different clinic (at the same time)

Method 2 Compare the results of the new treatment on historic patients with results of the same patients under the standard treatment in the past

Method 3 Compare the results of the new treatment on new patients with records of previous results using the standard treatment (different patients)

Ex 2. Comparability

In a trial of a new vaccine, children were assigned at random to a vaccine or a control group. The vaccine group were offered vaccination, which two-thirds accepted. The control group were offered nothing

- The group which should be compared to the controls is all children who accepted vaccination (T/F)
- Those refusing vaccination should be excluded (T/F)
- ► The trial is useless because not all treated group were vaccinated (T/F)

Confounding

	Exposed	Non- exposed
Asthma	1000	800
cases Non-	2000	2200
cases Total	3000	3000
Risk/100 Risk ratio	33.3 1.25	26.7

Confounding (cont'd)

	Smoker Expose	s Non- d exposed	Non- smoker Exposed	Non- exposed	Total Expose	Non- d exposed
Asthma cases	800	400	200	400	1000	800
Non- cases	1200	600	800	1600	2000	2200
Total	2000	1000	1000	2000	3000	30000
Risk/100	40	40	20	20	33.3	26.7
Risk ratio	1		1		1.25	

Confounding

- ► The exposed and non-exposed groups are **not comparable**, because of differences in background disease risk
- As a result, the effect estimate will usually change when we adjust for the risk factors that differ between the exposed and non-exposed
- Confounding can also be introduced into a study through other ways!

Criteria for Confounding

A risk factor is a confounder if it is:

- A risk factor for disease (response/outcome) among the non-exposed
- 2. Associated with exposure in the **source population**
- 3. Not an intermediate step in the **causal pathway** between the exposure and disease
- These three criteria are necessary but not sufficient criteria for confounding
- ▶ P-values will not be enough