Motivation

Königsberg Seven Bridges Problem

In Königsberg, there were two islands connected to each other and the mainland by seven bridges, as shown in the figure below.

Question:

Is it possible to take a walk and cross over each bridge exactly once?

Euler showed that it is not possible, but he proved it?

(image source: https:

//simple.wikipedia.org/wiki/Seven_Bridges_of_K%C3%B6nigsberg)

Basics

CPT108 Data Structures and Algorithms

Lecture 21 Graphs

One of the MOST useful tool in modelling problems

Vertex can be considered as "sites" or "locations"

Edge represents connections

Graphs Applications

School at Trent Protein No.

(image source: https://www.travelchinaguide.c
om/cityguides/jiangsu/suzhou/subway/map.ht
m)

Railway Travel

- Each vertex represent a station
- Each edge represents a direct travel between two stations
- A query on direct travel
 a query on whether an edge exists
- A query on how to get to a location = does a path exist from station A to station B
- We can even associate costs to edges (weighted graphs), then ask "What is the cheapest path from station A to station B"

Applications (cont.)

Wireless Communication

- Vertices are stations
- Edges represent the Euclidean distance d_{ij} between two station
- Each station uses certain power to transmit messages. Given this power i, only a few nodes can be reached. A station reachable by i then uses its own power to relay the message to other stations not reachable by i.
- A typical (wireless) communication problem is: how to broadcast between all stations such that they are all connected and the power consumption is minimized

(image source: https://www.microwavej
ournal.com/articles/33966-wireles
s-communication-beyond-5q)

Applications (cont.)

- Graph algorithms might be very difficult!
- E.g.,

Four color problem

Strongly connected components

Word ladder problem

- The player is given a start word and an end word, and the player is required to change the start word into the end word progressively by substituting a single letter in each step
- e.g., if the start word is "WARM" and the end word is "COLD", we can do it as follows:

$$\mathsf{WARM} \to \mathsf{WARD} \to \mathsf{CARD} \to \mathsf{CORD} \to \mathsf{COLD}$$

Formal definitions

A graph G is specified by an ordered pair (V, E), where V is the set of vertices and E is the set of edges

$$V = \{a, b, c, d, e, f\}$$

$$E = \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, e\}, \{e, a\}, \{b, f\}, \{f, e\}\}$$

Terminologies

- If v₁ and v₂ are connected, then they are said to be adjacent vertices
 - $v_1 \& v_2$ are *neighbors* of each other
 - v_1 & v_2 are *endpoints* of the edge $\{v_1, v_2\}$
- If an edge e is connected to v, then v is said to be incident to e.
 The edge e is incident to v.
- If the pair is unordered, i.e., $\{v_1, v_2\} = \{v_2, v_1\}$, the graph is *undirected*; otherwise it is *directed*
- If edge has direction, then it can be drawn as an arrow (called arc)

Graphs

Formal definitions: Some Examples

Formal definitions (cont.)

A graph G is specified by an ordered pair (V, E), where V is the set of vertices and E is the set of edges

Terminologies

$$V = \{a, b, c, d, e, f\}$$

$$E = \{\{a, b\}, \{b, c\}, \{c, d\}, \{d, e\}, \{e, a\}, \{b, f\}, \{f, e\}\}$$

- Degree of a vertex v, deg (v), is the number of edges incident to v.
 - e.g., deg(a) = 2, deg(e) = 3
- An edge $e = \{u, v\}$ of the graph contributes:
 - a count of 1 to deg (u), and
 - another count of 1 to deg (v)
- Therefore,

$$\sum_{v \in V} \deg(v) = 2m,$$

where m is the total number of edges

Graphs

Formal definitions (cont.)

Path

- A *path* is a sequence of vertices $\{v_0, ..., v_n\}$ such that $\{v_i, v_{i+1}\}$, $0 \le i < n$, is an edge.
 - length, n = number of edges on the path
 - e.g., the path $\{a, f, e, d, c\}$ is a path with length 4
- A cycle is a path without repeated edges leading from a node back to itself (following arrows if directed)
 (Or: A path is a cycle if and only if v₀ = v_n)
 - e.g., the path {a, b, c, a} is a cycle of length 3

A path is simple if and only if it does not contain the same vertex twice

Graphs

Trees are Graphs

Connectivity

- A graph is connected if there is a (possibly directed) path between every pair of distinct vertices
 - i.e., if one vertex of the pair is reachable from the other
- A directed acyclic graph (DAG) is a (rooted) tree iff it is connected, and every vertex but the root has exactly one parent
- A connected, acyclic, undirected graph is also called a free tree, i.e., we are free to pick any node as the root

Examples of Use

Edge = Connecting road, with length

 Edge = Must be completed before (dependencies); Vertex label=time to complete

Edge = Begat

Graphs

Examples of Use (cont.)

• Edge = some relationship

• Edge = word/phrase relationship in a sentence

Graph Representation

Graphs

Graph Representation

Adjacency matrix

 2-D array, where n is the number of vertices

Detect in O(1) time whether two vertices are connected

	а	b	С	d	е
а	0	0	1	1	1
b	0	0	0	0	0
С	1	0	0	1	0
d	1	0	1	0	1
e	1	0	0	1	0

$$O(n^2)$$
 storage

Graph Representation (cont.)

Adjacency list

- If the graph is not dense, in other words, sparse, a better solution is an adjacency list
- Can be implemented using array and linked list

$$O(n+m)$$
 storage, where $n=|V|$ and $m=|E|$

However, one cannot tell in O(1) time whether two vertices are connected!

Graph Representation (cont.)

Incidence matrix (not commonly used)

Each edge has a name

	e 1	e 2	e ₃	e ₄	e 5
а	1	1	1	0	0
b	0	0	0	0	0
С	1	0	0	1	0
d	0	1	0	1	1
e	0	0	1	0	1

$$O(mn)$$
 storage where $n = |V|$ and $m = |E|$

Reading

• Chapter 20, Cormen (2022)