

DoExercises:

Esercizi per il corso di Probabilità e Statistica

Esercizi Soluzioni Riepilogo Voti

Luigi Miazzo	
LUCU MICTO	
- I - I - I - I - I - I - I - I - I - I	١
Lulu Wilazzu	2

2022-06-01 2022-05-31 2022-05-30 2022-05-27 2022-05-26 2022-05-25 2022-05-24 2022-05-23 2022-05-20 2022-05-19 2022-05-18 2022-05-17 2022-05-16 2022-05-13 2022-05-12 2022-05-11 2022-05-10 2022-05-09 2022-05-06 2022-05-05 2022-05-04 2022-05-03 2022-05-02 2022-04-29 2022-04-28 2022-04-27 2022-04-26 2022-04-22 2022-04-21 2022-04-20 2022-04-19 2022-04-15 2022-04-14 2022-04-13 2022-04-12 2022-04-11 2022-04-08 2022-04-07 2022-04-06 2022-04-05

2022-04-04

2022-04-01

2022-03-31

2022-03-30

2022-03-29

2022-03-28

2022-03-24

Soluzione all'esercizio	2022-05-20 creato per luigi.miazzo
-------------------------	------------------------------------

In un cinema multisala vengono venduti solo biglietti in prevendita online e non all'entrata. Sapendo che il 16% delle persone che acquistano un biglietto online per un film poi non si presenta al cinema, i gestori del sito di prevendita del cinema vendono 16 biglietti per il film proiettato nella sala 1, che ha 15 posti e 23 biglietti per quello nella sala 2, da 20 posti.

Quesiti e soluzioni

Quesito 1

Calcolare la probabilità che almeno una persona che ha comprato il biglietto online (per il primo film) non trovi posto nella sala 1.

Sia X_1 la v.a che conta il numero di persone che che si presentano al cinema per il film della sala 1.

Definendo "successo" l'evento "La persona che ha acquistato il biglietto si presenta al cinema", la probabilità di successo è p=0.84. Quindi X_1 conterà il numero di successo è p=0.84. Quindi X_1 conterà il numero di successo è p=0.84. Quindi X_1 conterà il numero di successo è p=0.84. Quindi X_1 conterà il numero di successo è p=0.84. Quindi X_1 conterà il numero di successo è p=0.84. Quindi X_1 conterà il numero di successo è p=0.84. Quindi p=0.84

Se si presentano al cinema per il primo film più di 15 persone, cioè più del numero di posti della sala 1, allora almeno una persona non troverà posto, quindi in definitiva dobbiamo calcolare $P(X_1 > 15)$:

$$P(X_1>15)=\sum_{k=16}^{N_1} inom{N_1}{k} p^k (1-p)^{N_1-k}.$$

Con R possiamo farlo con pbinom(q, n, p, lower_tail = FALSE) , con q=15, n=16 e p=0.84.

- La risposta corretta è: 0.0614425
- La risposta inserita è: 0.06144246
- che corrisponde a 0.0614425

Quesito 2.

Calcolare la probabilità che nessun acquirente del biglietto online per il secondo film abbia problemi a trovare posto nella sala 2.

Ragionando come prima, chiamiamo X_2 la v.a. che conta il numero di persone che si presentano al cinema per il film della sala 2, allora $X_2 \sim \sin(N_2 = 23, p)$.

In questo caso dobbiamo calcolare la probabilità che il numero di persone che si presentano per il secondo film sia al più uguale al numero di posti della sala 2, i.e. $P(X_2 \le 20)$.

- La risposta corretta è: 0.7360099
- La risposta inserita è: 0.7360099
- che corrisponde a 0.7360099

Quesito 3.

Calcolare il numero di biglietti che si potrebbero vendere per la sala 1, accettando che la probabilità di scontentare una persona (i.e. lasciarla fuori dalla sala) non sia superiore a 0.36.

Sia lpha=0.36. Fissata la probabilità lpha, dobbiamo determinare il parametro N_1 tale per cui

$$lpha \geq P(X_1 > 15) = \sum_{k=16}^{N_1} inom{N_1}{k} p^k (1-p)^{N_1-k}.$$

Possiamo procedere per tentativi con un calcolo esplicito. Osserviamo che dobbiamo trovare il più grande intero N_1 per cui $P(X_1>15) \leq \alpha$. Allora, iniziamo provando con $N_1=15+1$ per capire qual è la probabilità di scontentare qualcuno vendendo solo un biglietto in più rispetto ai posti della sala 1. Se già questa probabilità è maggiore di lpha, dobbiamo prendere $N_1=15$, cioè dobbiamo vendere un numero di biglietti pari al numero di posti in sala.

Altrimenti, aumentiamo di un'unità il valore di N_1 e calcoliamo la nostra probabilità; iteriamo il procedimento fino a quando non troviamo quel valore di N_1 per cui

$$\sum_{k=16}^{N_1} inom{N_1}{k} p^k (1-p)^{N_1-k} \leq lpha \qquad \mathrm{e} \qquad \sum_{k=16}^{N_1+1} inom{N_1+1}{k} p^k (1-p)^{(N_1+1)-k} > lpha.$$

Tale valore di N_1 sarà la nostra soluzione.

- La risposta corretta è: 17
- La risposta inserita è: 17
- che corrisponde a 17

Quesito 4.

In media quante persone si presentano per il film della sala 2?

Dobbiamo calcolare il valore atteso di una v.a. binomiale di parametri N_2 e p, cioè $E[X_2] = N_2 \cdot p$.

- La risposta corretta è: 19.32
- La risposta inserita è: 19.32
- che corrisponde a 19.32