Optimal Timing Analytical Solution (Agent)

Seth Sullivan

June 24, 2022

Constants

 $P_{50}=1/2,\,P_{100}=1,\,P_0=0$ $\mu_1=$ Player Mean Reach Time; $\mu_2=$ Agent Mean Reach Time

 σ_1 = Player SD Reach Time; σ_2 = Agent SD Reach Time

$$\mu_d = \mu_1 - \mu_2$$

$$\sigma_d = \sqrt{\sigma_1^2 + \sigma_2^2}$$

 DT_1 = Player Decision Time; DT_2 = Agent Decision Time RT_1 = Player Reaction Time;

 RMT_1 = Player Reaction+Movement Time; RMT_2 = Movement Time

Probabilites

$$\begin{array}{l} P_1 = P(win|\mu_d \leq RT_1) = P(\mu_d \leq RT) * P(X_1 < 1500) * P(X_2 < 1500) * P_{50} \\ P_2 = P(win|\mu_d > RT_1) = P(\mu_d > RT) * P(X_1 < 1500) * P(X_2 < 1500) * P_{100} \\ P_3 = P(win|X_1 < 1500 \cap X_2 > 1500) = P(X_1 < 1500) * P(X_2 > 1500) * P_{100} \\ P_4 = P(win|X_1 > 1500 \cap X_2 < 1500) = P(X_1 < 1500) * P(X_2 < 1500) * P_0 \end{array}$$

Win Rate

Win Rate = $P_1 + P_2 + P_3 + P_4$