	$\sigma_{0^+}^{\sharp 1}$	$ au_0^{\#1}$	$ au_{0}^{\#2}$	$\sigma_{0}^{\#1}$
$\sigma_{0^{+}}^{#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$ au_{0^{+}}^{\#1} +$	$\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$\tau_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\sharp 1}$ †	0	0	0	$\frac{1}{k^2 r_2 + t_2}$

	#	τ	τ	3	3	3	2	16
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} = 0$	$t_1^{\#2}{}^{\alpha} + 2ik \sigma_1^{\#2}{}^{\alpha} = 0$	$t_1^{\#_1^{}\alpha} == 0$	$\tau_1^{\#1}{}^{\alpha\beta} + ik \sigma_1^{\#2}{}^{\alpha\beta} == 0$	$t_{2+}^{\#1}\alpha\beta-2ik\sigma_{2+}^{\#1}\alpha\beta==0$	Total #:

	$\omega_0^{\#1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\#1}\dagger$	t_3	$-i\sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}\dagger$	$i\sqrt{2}kt_3$	$2 k^2 t_3$	0	0
$f_{0}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2 + t_2$

Lagrangian density $\frac{1 + \frac{\alpha}{2} \alpha + \frac{\alpha}{2} +$
$\frac{1}{3}t_1 \; \omega_{\kappa \lambda}^{\prime} \; \omega_{\kappa \alpha}^{\prime} + \frac{1}{3}t_3 \; \omega_{\kappa \alpha}^{\prime} \; \omega_{\kappa \alpha}^{\prime} - \frac{1}{3}t_1 \; \omega_{\kappa \lambda}^{\prime} + \frac{1}{3}t_2 \; \omega_{\ell}^{\prime} \; \omega_{\kappa \lambda}^{\prime} + \frac{1}{3}t_2 \; \omega_{\ell \lambda}^{\prime} \; \omega_{\kappa \lambda}^{\prime} + \frac{1}{3}t_2 \; \omega_{\kappa}^{\prime} + \frac{1}{3$
$\frac{1}{3}r_2\partial_ heta\omega_{lphaeta}^{k}\partial_\kappa\omega^{lphaeta heta} - \frac{2}{3}r_2\partial_ heta\omega_{lphaeta}^{k}\partial_\kappa\omega^{etalphaeta} - \frac{1}{3}t_1\partial^lpha f_{eta\kappa}\partial^\kappa f_{lpha}^{} +$
$\frac{1}{6}t_2\partial^{\alpha}f_{\theta\kappa}\partial^{\kappa}f_{\alpha}^{\ \ \theta} - \frac{2}{3}t_1\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \ \theta} - \frac{1}{6}t_2\partial^{\alpha}f_{\kappa\theta}\partial^{\kappa}f_{\alpha}^{\ \ \theta} - \frac{1}{3}t_1\partial^{\alpha}f^{\lambda}_{\ \ \kappa}\partial^{\kappa}f_{\alpha\lambda} +$
$\frac{1}{6}t_{2}\partial^{\alpha}f^{\lambda}_{\ \ }\partial^{\kappa}f_{\alpha\lambda}+\frac{1}{3}t_{1}\ \omega_{\kappa\alpha}^{\ \ \alpha}\partial^{\kappa}f'_{\ \ ,}-\frac{2}{3}t_{3}\ \omega_{\kappa\alpha}^{\ \ \alpha}\partial^{\kappa}f'_{\ \ ,}+\frac{1}{3}t_{1}\ \omega_{\kappa\lambda}^{\ \ \lambda}\partial^{\kappa}f'_{\ \ ,}-$
$\frac{2}{3}t_3\;\omega_{\kappa\lambda}^{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+\frac{2}{3}t_1\;\partial^{\alpha}f_{\;\;\kappa\alpha}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{4}{3}t_3\;\partial^{\alpha}f_{\;\;\kappa\alpha}\;\partial^{\kappa}f'_{\;\;\prime}-\frac{1}{3}t_1\;\partial_{\kappa}f^{\;\lambda}_{\;\;\lambda}\;\partial^{\kappa}f'_{\;\;\prime}+$
$\frac{2}{3} t_3 \partial_{\kappa} f^{\lambda}_{\ \lambda} \partial^{\kappa} f'_{\ \prime} + \frac{1}{3} t_1 \omega_{i\theta\kappa} \partial^{\kappa} f'^{\theta} + \frac{1}{3} t_2 \omega_{i\theta\kappa} \partial^{\kappa} f'^{\theta} + \frac{4}{3} t_1 \omega_{i\kappa\theta} \partial^{\kappa} f'^{\theta} -$
$\frac{2}{3}t_{2}\ \omega_{_{I}K\theta}\ \partial^{K}f^{I\theta}-\frac{1}{3}t_{1}\ \omega_{\theta_{I}K}\ \partial^{K}f^{I\theta}-\frac{1}{3}t_{2}\ \omega_{\theta_{I}K}\ \partial^{K}f^{I\theta}+\frac{2}{3}t_{1}\ \omega_{\theta_{KI}}\ \partial^{K}f^{I\theta}+$
$\frac{2}{3}t_{2}\ \omega_{\theta\kappa l}\ \partial^{\kappa}f^{l\theta} - \frac{1}{3}t_{1}\ \omega_{l\alpha}^{\ \alpha}\ \partial^{\kappa}f^{'}_{\ \kappa} + \frac{2}{3}t_{3}\ \omega_{l\alpha}^{\ \alpha}\ \partial^{\kappa}f^{'}_{\ \kappa} - \frac{1}{3}t_{1}\ \omega_{l\lambda}^{\ \lambda}\ \partial^{\kappa}f^{'}_{\ \kappa} +$
$\frac{2}{3}t_3\;\omega_{_{I}\lambda}^{\lambda}\;\partial^{\kappa}f_{_{K}}^{}+\frac{1}{3}t_1\;\partial^{\alpha}f_{_{A}}^{}\;\partial^{\kappa}f_{_{A}\alpha}^{}-\frac{1}{6}t_2\;\partial^{\alpha}f_{_{A}}^{}\;\partial^{\kappa}f_{_{A}\alpha}^{}+\frac{1}{3}t_1\;\partial_{\kappa}f_{_{\beta}}^{\lambda}\;\partial^{\kappa}f_{_{\lambda}}^{\theta}-$
$\frac{1}{6}t_2\partial_\kappa f_{\beta}^{\lambda}\partial^\kappa f_{\beta}^{\beta} + \frac{2}{3}t_1\partial_\kappa f^{\lambda}_{\beta}\partial^\kappa f_{\beta}^{\beta} + \frac{1}{6}t_2\partial_\kappa f^{\lambda}_{\beta}\partial^\kappa f_{\beta}^{\beta} -$
$rac{1}{3}t_1\partial^{lpha}f^{\lambda}_{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $
$rac{2}{3} r_2 \partial_\kappa \omega^{ heta lpha eta} \partial^\kappa \omega_{lpha eta heta} - rac{2}{3} r_2 \partial^eta \omega_{}^{ a \lambda} \partial_\lambda \omega_{ \beta}^{ \prime} + rac{2}{3} r_2 \partial^eta \omega_{ \lambda}^{ \lambda a} \partial_\lambda \omega_{ \beta}^{ \prime}$
Added source term: $\left f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} \sigma_{\alpha\beta\chi}\right $

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$\tau_{2}^{\#1}{}_{\alpha\beta}$	$\sigma_{2-\alpha\beta\chi}^{\#1}$
$\sigma_{2^{+}}^{\sharp 1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_2^{#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^+\alpha\beta}^{\#1}$	$\omega_2^{\#1}_{\alpha\beta\chi}$
$\omega_{2}^{\#1}\dagger^{lphaeta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0
$f_{2}^{#1} \dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0
$\omega_2^{\#1} \dagger^{\alpha\beta\chi}$	0	0	<u>t</u> 1 2

	$\omega_{1^{+}\alpha\beta}^{\#1}$	$\omega_{1^{+}lphaeta}^{ ext{#2}}$	$f_{1}^{\#1}{}_{\alpha\beta}$	$\omega_{1-\alpha}^{\#1}$	$\omega_{1}^{\#2}{}_{lpha}$	$f_{1-\alpha}^{\#1}$	$f_{1}^{#2}\alpha$
$\omega_{1}^{\#1}\dagger^{lphaeta}$	$\frac{1}{6}(t_1+4t_2)$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	$-\frac{ik(t_1-2t_2)}{3\sqrt{2}}$	0	0	0	0
$\omega_{1}^{\#2}\dagger^{\alpha\beta}$	$-\frac{t_1-2t_2}{3\sqrt{2}}$	\frac{t_1 + t_2}{3}	$\frac{1}{3}\bar{l}k(t_1+t_2)$	0	0	0	0
$f_{1}^{\#1} \dagger^{\alpha\beta}$	$\frac{i k (t_1 - 2 t_2)}{3 \sqrt{2}}$	$-\frac{1}{3}ik(t_1+t_2)$	$\frac{1}{3}k^2(t_1+t_2)$	0	0	0	0
$\omega_1^{\sharp 1} \dagger^{lpha}$	0	0	0	$\frac{1}{6}(t_1+4t_3)$	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	0	$\frac{1}{3}$ <i>i k</i> (t_1 - 2 t_3)
$\omega_{1}^{#2}$ † $^{\alpha}$	0	0	0	$\frac{t_1 - 2t_3}{3\sqrt{2}}$	<u>t₁+t₃</u> 3	0	$\frac{1}{3}\bar{l}\sqrt{2}k(t_1+t_3)$
$f_{1}^{#1} \dagger^{\alpha}$	0	0	0	0	0	0	0
$f_{1}^{#2} \dagger^{\alpha}$	0	0	0	$-\frac{1}{3} \bar{i} k (t_1 - 2 t_3)$	$-\frac{1}{3}\bar{i}\sqrt{2}k(t_1+t_3)$	0	$\frac{2}{3}k^2(t_1+t_3)$

? $J^P = 0^-$	
? k^{μ} ?	

Massive particl	e	Uni 72 <
Pole residue:	$-\frac{1}{r_2} > 0$	Jnitarity c_1 $c_2 < 0 \&\& t_2$
Polarisations:	1	$\frac{1}{t_2}$
Square mass:	$-\frac{t_2}{r_2} > 0$	ondition of the condition of the conditi
Spin:	0	ions
Parity:	Odd	

	$\sigma_{1}^{\#1}{}_{lphaeta}$	$\sigma_{1}^{\#2}{}_{+}$	$\tau_{1}^{\#1}_{\alpha\beta}$	$\sigma_{1^{-}\alpha}^{\#1}$	$\sigma_{1^{-}\alpha}^{\#2}$	$\tau_{1}^{\#1}{}_{\alpha}$	$\tau_{1^{-}}^{\#2}\alpha$
$\sigma_1^{\#1} + ^{lphaeta}$	$\frac{2(t_1+t_2)}{3t_1t_2}$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2)t_1t_2}$	$\frac{i\sqrt{2}k(t_1-2t_2)}{3(1+k^2)t_1t_2}$	0	0	0	0
$\sigma_1^{#2} + \alpha \beta$	$\frac{\sqrt{2} (t_1 - 2t_2)}{3(1 + k^2) t_1 t_2}$	$\frac{t_1+4t_2}{3(1+k^2)^2t_1t_2}$	$\frac{i k (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$_{1}^{\#1}$ $\dagger^{\alpha\beta}$	$\tau_{1}^{\#1} + \alpha \beta - \frac{i \sqrt{2} k(t_{1} - 2t_{2})}{3(1 + k^{2})t_{1}t_{2}}$	$-\frac{i k (t_1 + 4 t_2)}{3 (1 + k^2)^2 t_1 t_2}$	$\frac{k^2 (t_1 + 4t_2)}{3 (1 + k^2)^2 t_1 t_2}$	0	0	0	0
$\sigma_{1}^{\#1} +^{lpha}$	0	0	0	$\frac{2(t_1+t_3)}{3t_1t_3}$	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2 k^2) t_1 t_3}$	0	$-\frac{2ikt_1-4ikt_3}{3t_1t_3+6k^2t_1t_3}$
$\sigma_{1}^{\#2} +^{\alpha}$	0	0	0	$-\frac{\sqrt{2} (t_1 - 2t_3)}{3(1 + 2k^2)t_1t_3}$	$\frac{t_1+4t_3}{3(1+2k^2)^2t_1t_3}$	0	$\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$
$\tau_{1}^{\#1} + \alpha$	0	0	0	0	0	0	0
$\tau_{1}^{\#2} +^{\alpha}$	0	0	0	$\frac{2ik(t_1-2t_3)}{3t_1t_3+6k^2t_1t_3}$	$-\frac{i\sqrt{2}k(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$	0	$\frac{2k^2(t_1+4t_3)}{3(1+2k^2)^2t_1t_3}$