Figura 1.1.20 La recta l, dada en forma paramétrica por $\mathbf{l}(t) = \mathbf{a} + t\mathbf{v}$, tiene la direcci ón de \mathbf{v} y pasa por el extremo de \mathbf{a} .

expresada en forma paramétrica, con el parámetro t. En t = 0, $\mathbf{l}(t) = \mathbf{a}$. A medida que t aumenta, el punto $\mathbf{l}(t)$ se aleja de \mathbf{a} en la dirección de \mathbf{v} . A medida que t decrece desde t = 0 tomando valores negativos, $\mathbf{l}(t)$ se aleja de \mathbf{a} en el sentido $-\mathbf{v}$.

Forma punto-vector de una recta La ecuación de la recta l que pasa por la punta de ${\bf a}$ y apunta en la dirección del vector ${\bf v}$ es ${\bf l}(t)={\bf a}+t{\bf v}$, donde el parámetro t toma todos los valores reales. Usando coordenadas, las ecuaciones son

$$x = x_1 + at,$$

$$y = y_1 + bt,$$

$$z = z_1 + ct,$$

donde $\mathbf{a} = (x_1, y_1, z_1)$ y $\mathbf{v} = (a, b, c)$. Para rectas en el plano xy, no es necesario tener en cuenta la componente z.

Ejemplo 11

Determinar la ecuación de la recta l que pasa por el punto $(1,\,0,\,0)$ en la dirección de **j**. Véase la Figura 1.1.21.

Figura 1.1.21 La recta l pasa por la punta de $\mathbf i$ en la direcci ón de $\mathbf j$.

Solución

La recta deseada se puede expresar paramétricamente como $\mathbf{l}(t) = \mathbf{i} + t\mathbf{j}$. Usando coordenadas,

$$\mathbf{l}(t) = (1,0,0) + t(0,1,0) = (1,t,0).$$