2. Traversal Techiques

Diamond Traversal :-

Description

 $\frac{\text{an}}{\text{b}} \Rightarrow 3x3, 5x5, 7x7 \dots$

Given a square matrix of $\underbrace{\text{odd length}}_{\text{odd length}}$, print the matrix elements in the order shown in the figure :

4

 $1:7 to 5 -) 7-2 to \frac{n}{2}+1$ $j: 5 \Leftrightarrow 7 \rightarrow \frac{n}{2} + 1 \Leftrightarrow n-2$

 $nxn = 9x9 \qquad \left[\frac{9}{2}\right] = 49112$ (L) 048, 037, 026, 015, 004 i: $4 + 0 = 0 \Rightarrow i = \frac{n}{2} = 0 = 0$ $\mathring{J} : 8 \quad \text{to } 4 \quad \Rightarrow \mathring{J} = h-1 \quad \text{to } \frac{h}{2}$ - Halt

> 012, 022, 031, 040 id bj \hat{l} : 1 to $\underline{4} \rightarrow \hat{l} = \underline{1}$ to \underline{n} j:3 to $0 \rightarrow j = \frac{\eta}{2} - 1$ to 0

(P3)

a 51, a62, a73, a84 $e: 5 + 0 + 8 \rightarrow \frac{h}{2} + 1 + 1 + 0 + 1 - 1$ j: 1 to 4 -> 1 to n/2

a00	a01	a02	a03	a04	a05	a06 >
a10	a11	a12	a13	a14	a15	a16
a20	a21 🏌	a22	a23	a24	a25	a26
a30	a31	a32 ↑	a33	a34	a35	a36
a40	a41	a42	a43	a44 \	a45	a46
a50	a51	a52	a53	a54_	a55 √	a56
′a60_	a61	a62	a63	a64	a65	a66 🗸

```
RL -> circular Trav.
R2 ->
                       ננ
 R<sub>3</sub> →
               1 C
 R<sub>4</sub> → ··· function spiralTraversal(arr,n)
```

- Fx7


```
fXF = fXJ
         dry-run/
          function spiralTraversal(arr,n)
                                                        mxn
                 top=0,bottom=n-1,left=0,right=n-1
                 C = 0
                 while(top<=bottom and left<=right)
                                                   6 c ≤m+n ~
                       _ for(j=left;j<=right;j++)</pre>
                                print(arr[top][j]) ✓
                         top=top+1
                        for(i=top;i<=bottom;i++)
                                                                50 fail
                                 print(arr[i][right])
                         right=right-1
                        √for(j=right;j>=left;j--)
                                 print(arr[bottom][j])
                         bottom=bottom-1
                        √for(i=bottom;i>=top;i--)
                                print(arr[i][left])
                         left=left+1
```

Q) Find the Transpose of a Matrix [N*N]

Correct Code for Transpose is as follows:

Q) Rotate N*N Matrix 90 degrees Clock Wise [you should not use any extra array]

0	P
_	1

И	P	K	+	0
V	٩	Į	90	Ь
2	8	m	4	С
K	2	ŋ	,_	d
y	t	0	•]	е

1 2 3		1 4 7		7 4 1	
4 5 6	Transpose>	2 5 8	—-Reverse individual rows—->	8 5 2	(Resultant matrix)
7 8 9		3 6 9		9 6 3	