

Early Journal Content on JSTOR, Free to Anyone in the World

This article is one of nearly 500,000 scholarly works digitized and made freely available to everyone in the world by JSTOR.

Known as the Early Journal Content, this set of works include research articles, news, letters, and other writings published in more than 200 of the oldest leading academic journals. The works date from the mid-seventeenth to the early twentieth centuries.

We encourage people to read and share the Early Journal Content openly and to tell others that this resource exists. People may post this content online or redistribute in any way for non-commercial purposes.

Read more about Early Journal Content at http://about.jstor.org/participate-jstor/individuals/early-journal-content.

JSTOR is a digital library of academic journals, books, and primary source objects. JSTOR helps people discover, use, and build upon a wide range of content through a powerful research and teaching platform, and preserves this content for future generations. JSTOR is part of ITHAKA, a not-for-profit organization that also includes Ithaka S+R and Portico. For more information about JSTOR, please contact support@jstor.org.

182. Proposed by A. H. HOLMES, Brunswick, Maine.

Evaluate
$$\int_{0}^{\frac{1}{2}\pi} d\theta \sqrt{[1+\sin^2\theta(1-4\cos\theta)]}.$$

MECHANICS.

170. Proposed by ELISHA S. LOOMIS, Berea, Ohio.

Two angles of iron, A_1CD and A_1CA_3 , move freely on a pivot at C. Rods B_1A_1 and B_1A_3 are attached respectively at A_1 and at some point A_3 so that when B_1 moves along the rod CR, which is perpendicular to A_1A_4 , CD and CA_3 shall coincide in position with CE which is perpendicular to rod KR. When angle A_1CD is 135° find CA_3 in

Also find the following:

terms of CA_1 .

- 1. That value of CB_1 which will require least effort exerted at B_1 to cause CA_3 to take the position CA_4 .
- 2. That value of CB_1 which will cause B_2A_2 , if produced, to pass through the point A_1 .
- 3. As CB_1 varies in value, what is the locus of the intersection of A_1B_1 and A_2B_2 ? Of B_1A_3 and B_2A_4 ?
- 4. Suppose angle A_1CD to be any other angle than 135°, then find CA_3 in terms of CA_1 .

GROUP THEORY.

5. Proposed by L. E. DICKSON, Ph. D., The University of Chicago.

In lieu of the incorrect developments of Burnside, Theory of Groups, pp. 56-58, show that an Abelian group of type $(m_1, m_2, \dots, m_r), m_1 = m_2 = \dots = m_r$, has a subgroup of type $(n_1, n_2, \dots, n_s), n_1 = n_2 = \dots = n_s$, if and only if s = r, $n_i = m_i$ $(i=1, \dots, s)$.

MISCELLANEOUS.

145. Proposed by H. F. MacNEISH, Chicago, Ill.

Two complete 5-plane configurations in space having the same vertices are identical; in general two complete (n+2)-faces in n-space having the same vertices are identical.

NOTES.

Dr. H. L. Rietz has been promoted to an assistant professorship at the University of Illinois.