Estructuras Discretas

Tarea #4

"Cómo aprender a generar en una tarde"

Sonny Muñoz Galaz

(201673003-6)

Utilice funciones generatrices ordinarias para responder las siguientes preguntas.

1. Recurrencia

Halle una fórmula explícita para a_n dada la siguiente recurrencia:

$$a_n = \binom{n}{2} + 3a_{n-1} \qquad a_0 = 1$$

2. Safari

Un safari nuevo en la Selva Amazónica quiere armar un área mixta solo con animales herbívoros. El safari cuenta con los siguientes: elefantes, jirafas, ciervos y gansos. El área debe obedecer:

- Puede haber una cantidad libre de gansos.
- No puede haber más de dos elefantes.
- Los ciervos deben ir en grupos de a cuatro.
- No debe haber más de cinco jirafas.
- a) ¿De cuántas formas se puede armar esta área si se quiere que hayan 20 animales en ella?

 Obtenemos expresiones (polinomios característicos) para cada animal con sus respectivas condiciones.
 - Cantidad libre de gansos:

$$G(z) = 1z^{0} + 1z^{1} + 1z^{2} + \dots$$
$$= \sum_{n \ge 0} z^{n}$$
$$= \frac{1}{1 - z}$$

• No más de 2 elefantes:

$$E(z) = 1z^{0} + 1z^{1} + 1z^{2} + 9z^{3} + 9z^{4} + \dots$$
$$= 1 + 1z^{1} + 1z^{2}$$

• Ciervos en grupos de a 4:

$$C(z) = 1z^{0} + 1z^{4} + 1z^{8} + \dots$$

$$= \sum_{n \ge 0} z^{4n}$$

$$= \sum_{n \ge 0} (z^{4})^{n}$$

$$= \frac{1}{1 - z^{4}}$$

• No más de 5 jirafas:

$$J(z) = 1z^{0} + 1z^{1} + 1z^{2} + 1z^{3} + 1z^{4} + 1z^{5}0z^{6} + 0z^{7} + \dots$$
$$= 1 + z^{1} + z^{2} + z^{3} + z^{4} + z^{5}$$

Multiplicaremos las expresiones para obtener la función generatriz que representa esta situación y buscaremos el coeficiente que acompaña a z^{20} :

$$P(z) = G(z) \cdot E(z) \cdot C(z) \cdot J(z)$$

$$P(z) = \frac{1}{1-z} \cdot (1+1z^1+1z^2) \cdot \frac{1}{1-z^4} \cdot (1+z^1+z^2+z^3+z^4+z^5)$$

$$P(z) = 1+3z^1+6z^2+\ldots+85z^20+\ldots$$

Como el coeficiente de z^20 es 85 , existen 85 maneras distintas de distribuir 20 animales en el área

b) Se agrega una quinta regulación: si se decide incluir alguna especie en el área, se debe incluir más de un animal de dicha especie. ¿De cuántas formas se puede armar ahora el área con 20 animales?

3. Da2 mágicos

Se tienen dos dados canónicos de 4 caras ({1,2,3,4}), un dado canónico de 6 caras ({1,2,3,4,5,6}), dos dados canónicos de 8 caras ({1,2,3,4,5,6,7,8}) y un dado desconocido. Determine, en cada caso, el dado desconocido (número de caras y los valores de cada cara):

- a) Si se tiran los 2 dados canónicos de 4 caras y el dado desconocido, existe la misma posibilidad de que salgan cada uno de los valores que al tirar los 2 dados canónicos de 8 caras.
- b) Determine si existe un dado tal que si se tira el dado desconocido y el dado ({0,1,2}), exista el doble de posibilidad de que salga un 1, 3 y 5 que al tirar el dado canónico de 6 caras, y la misma posibilidad para los demás valores.
- c) ¿Existe un dado tal que al tirarlo con el dado {1,2,2,3,3,4,4,5}, tiene la misma posibilidad de que salgan cada uno de los valores que al tirar los dos dados canónicos de 8 caras? Si es así, encuentre el dado.

(35 ptos.)