Multi-Model Based Incident Prediction and Risk Assessment in Dynamic Cybersecurity Protection for Industrial Control Systems

Zhang Qi qiqi@hust.edu.cn

October 17, 2015

Automation School, Huazhong University of Science and Technology, Wuhan.

Outlines

Dynamic Risk Assessment

Decouple of Incident Consequences

Classification of Incident Consequences

Quantification of Incident Consequences

Calculation of Dynamic Risk

Dynamic Risk Assessment

For each incident e_i , analyze its consequence and generate a consequence set

$$\boldsymbol{c}_i = (c_1, c_2, \cdots, c_n).$$

The meaning of c_i is that the occurring of the incident e_i will threaten the elements in consequence set c_i .

For example, the incident e_i is an explosion of a reactor, which may cause worker casualties, air pollution, facilities damages, and products loss. The consequence set of e_i is

 $c_i = (workers, air, facilities, products).$

Then, enerate $C'=(c'_1,c'_2,\cdots,c'_{m'})$ based on $C=(c_1,c_2,\cdots,c_m)$. The following conditions must be met:

Completeness:
$$\bigcup_{i=1}^{m} c_i = \bigcup_{i=1}^{m'} c'_i$$

Independence: $\forall c'_i, c'_j \in C' : c'_i \cap c'_j = \varnothing$,
Traceability: $\forall c' \in C', \exists c \in C : c' \subseteq c$.

Then, enerate $C'=(c_1',c_2',\cdots,c_{m'}')$ based on $C=(c_1,c_2,\cdots,c_m)$. The following conditions must be met:

Completeness:
$$\bigcup_{i=1}^{m} c_i = \bigcup_{i=1}^{m'} c'_i$$

Independence: $\forall c'_i, c'_j \in C' : c'_i \cap c'_j = \varnothing$,
Traceability: $\forall c' \in C', \exists c \in C : c' \subseteq c$.

Then, enerate $C'=(c_1',c_2',\cdots,c_{m'}')$ based on $C=(c_1,c_2,\cdots,c_m)$. The following conditions must be met:

Completeness: $\bigcup_{i=1}^{m} c_i = \bigcup_{i=1}^{m'} c'_i$ Independence: $\forall c'_i, c'_j \in C' : c'_i \cap c'_j = \varnothing$, Traceability: $\forall c' \in C', \exists c \in C : c' \subseteq c$.

Then, enerate $C'=(c_1',c_2',\cdots,c_{m'}')$ based on $C=(c_1,c_2,\cdots,c_m)$. The following conditions must be met:

Completeness: $\bigcup_{i=1}^{m} c_i = \bigcup_{i=1}^{m'} c'_i$ Independence: $\forall c'_i, c'_j \in C' : c'_i \cap c'_j = \varnothing$, Traceability: $\forall c' \in C', \exists c \in C : c' \subseteq c$.

Then, enerate $C'=(c'_1,c'_2,\cdots,c'_{m'})$ based on $C=(c_1,c_2,\cdots,c_m)$. The following conditions must be met:

Completeness: $\bigcup_{i=1}^{m} c_i = \bigcup_{i=1}^{m'} c'_{i'}$ Independence: $\forall c'_i, c'_j \in C' : c'_i \cap c'_j = \emptyset$, Traceability: $\forall c' \in C', \exists c \in C: c' \subseteq c$.

For each $c'_j \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in C$, where $c_j' \subseteq c_i$.

For each $c_j' \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in C$, where $c_j' \subseteq c_i$. So, for each $c_j' \in C'$, we can find the incident set

$$\boldsymbol{e}_j=(e_{i_1},e_{i_2},\cdots,e_{i_n}).$$

For each $c'_j \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in C$, where $c_j' \subseteq c_i$. So, for each $c_j' \in C'$, we can find the incident set

$$\boldsymbol{e}_j=(e_{i_1},e_{i_2},\cdots,e_{i_n}).$$

For each incident e_k of the incident set e_j , the corresponding consequence set c_k satisfies the following condition:

$$c'_j \subseteq c_k$$
.

For each $c'_j \in C'$, generate a corresponding auxiliary node x_j . According to the **traceability** of C'

$$\forall c' \in C', \exists c \in C, c' \subseteq c,$$

there must be a consequence set $c_i \in C$, where $c_j' \subseteq c_i$. So, for each $c_i' \in C'$, we can find the incident set

$$e_j = (e_{i_1}, e_{i_2}, \cdots, e_{i_n}).$$

For each incident e_k of the incident set e_j , the corresponding consequence set c_k satisfies the following condition:

$$c'_j \subseteq c_k$$
.

Therefore, the parent nodes of the auxiliary node x_j are incident nodes $e_{i_1}, e_{i_2}, \dots, e_{i_n}$.

For each auxiliary node x_j , generate a conditional probability table. A typical conditional probability table of auxiliary node x_j is shown as following table.

$H(e_{i_1})$	T	T	Т		F	F	F
$H(e_{i_2})$	Т	T	T		F	F	F
$H(e_{i_3})$	T	T	T	• • •	F	F	F
÷	÷	÷	÷	٠٠.	:	÷	÷
$H(e_{i_{n-2}})$	Т	T	T		F	F	F
$H(e_{i_{n-1}})$	Т	T	F		T	F	F
$H(e_{i_n})$	Т	F	F		F	T	F
$H(x_j)$	1	1	1		1	1	0
$\overline{H}(x_j)$	0	0	0	• • •	0	0	1

Classification of Incident Consequences

In this paper, there are three main kinds of incident consequences to be considered:

· Harm to Humans:

- temporary harm,
- permanent disability,
- fatality.

· Environmental Pollution:

- air pollution,
- soil contamination,
- water pollution.

· Property Loss:

- damage of materials,
- damage of products,
- damage of equipment.

Quantification of Incident Consequences

· Harm to Humans Q_H :

If the decision-maker would like to increase the cost of an investment by Δc to reduce the probability of a fatality by Δp ,

$$Q_H = \Delta c / \Delta p$$
.

· Environmental Pollution Q_E :

The monetary loss of environmental pollution is defined as

$$Q_E = Penalty + Compensation + HarnessCost.$$

• Property Loss Q_P :

The cost of replacement is used to quantify the loss of property Q_P , such as the loss of materials, products, and equipment.

Calculation of Dynamic Risk

Due to the following two reasons:

- there is no overlapping between the consequences of any two auxiliary nodes x_i and x_j , $i \neq j$,
- · the auxiliary nodes contain all the consequences of incidents,

the dynamic cybersecurity risk can be defined as

$$\mathscr{R} = \sum_{i=1}^{m'} p(x_i) q(x_i),$$

where

- $p(x_i)$ is the occurrence probability of the auxiliary node x_i
- · $q(x_i)$ is the monetary loss of the auxiliary node x_i .

Thank You!

Thank You!

You can obtain this slide from my Github:

zqmillet@github.com:Presentation.for.Loughborough.University

Thank You!

You can obtain this slide from my Github: zqmillet@github.com:Presentation.for.Loughborough.University

And I have pushed the code of the simulation to my Github, too. zqmillet@github.com:Multi-level.Bayesian.Network

Any Questions?