Questions à préparer sur le chapitre 1

- 1. Tracer l'allure du graphe de la fonction f définie sur \mathbb{R} par $f(x) = \sin x$, puis en déduire le tracé du graphe de la fonction g définie sur \mathbb{R} par $g(x) = \sin(2x)$.
- **2.** Déterminer, sans utiliser la dérivation, le sens de variation de la fonction $f:[0,2\pi] \longrightarrow \mathbb{R}$ définie par $f(x) = \sqrt{1+\sin x}$.
- 3. Montrer que l'équation $x^5 5x + 1 = 0$ possède au moins trois solutions réelles.
- **4.** Déterminer le domaine de définition D de l'expression $\sqrt{\frac{1+x}{1-x}}$. On définit alors une fonction $h:D\longrightarrow \mathbb{R}$ par $h(x)=\sqrt{\frac{1+x}{1-x}}$. Etudier la dérivabilité de h sur D et calculer h'(x) quand elle est définie.
- **5.** Montrer que la fonction $\psi : \mathbb{R} \longrightarrow \mathbb{R}$ définie par $\psi(x) = \ln(x + \sqrt{x^2 + 1})$ est dérivable sur \mathbb{R} et calculer sa dérivée.
- **6.** On rappelle que $\lim_{\substack{x\to 0\\x>0}} x \ln x = 0$.

On définit les fonctions f et g sur \mathbb{R}^+ par

$$f(x) = \begin{cases} x \ln x & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases} \qquad g(x) = \begin{cases} x^2 \ln x & \text{si } x > 0 \\ 0 & \text{si } x = 0 \end{cases}$$

- 1. Montrer que f et g sont continues en 0.
- 2. Etudier la dérivabilité à droite en 0 de f et g.
- 3. Etudier le sens de variation de f et g sur \mathbb{R}^+ .
- 4. Tracer les graphes de f et q en respectant la position relative des deux graphes.
- 7. On considère la fonction $\varphi: \mathbb{R} \longrightarrow \mathbb{R}$ définie par

$$\varphi(x) = \begin{cases} 2x + \cos x & \text{si } x \le 0\\ x^2 + \alpha x + \beta & \text{si } x > 0 \end{cases}$$

où α et β sont des nombres réels.

Déterminer α et β de telle façon que φ soit continue et dérivable sur \mathbb{R} .

8. Soit a et b deux réels tels que a < b. Montrer l'inégalité

$$e^b - e^a < (b - a)e^b$$

9. Montrer que la fonction $f:]1,+\infty[\longrightarrow \mathbb{R}$ définie par $f(x)=\ln(\ln x)$ est concave. En déduire que pour tout x dans $]1,+\infty[$ on a $\ln(\ln x)\leq \frac{x}{e}-1$.