Representations of Depth Maps: Spherical Harmonics and Spherical Haar Wavelets

Katrina Ashton: u5586882

Supervisor: Jochen Trumpf

Australian National University

Basis Functions

Benefits: Bases looked at:

Integrate previous knowledge Spherical Harmonics

Store coefficients, can interpolate Spherical Haar Wavelets

->Efficient

Well-studied update formulae

Spherical Harmonics

R. Green. Spherical Harmonic Lighting: The Gritty Details. *Archives of the Game Developers Conference*, Vol. 56, 2003.

L. Shen, H. Farid, M. McPeek. Modelling three-dimensional morphological structures using spherical harmonics. *Evolution*, 63(4), 2010.

Spherical Haar Wavelets

P. Addison. *The Illustrated Wavelet Transform Handbook.* IOP Publishing, 2002. p 74.

Spherical Haar Wavelets

- P. Addison. The Illustrated Wavelet Transform Handbook. IOP Publishing, 2002. p 74.
- W. Sweldens. The lifting scheme: A construction of second generation wavelets.
- SLAM journal on mathematical analysis, 29(2):511-546, 1998.

Spherical Haar Wavelets

- W. Sweldens. The lifting scheme: A construction of second generation wavelets. *SLAM journal on mathematical analysis*, 29(2):511-546, 1998.
- C. Lessig and E. Fiume. SOHO: orthogonal and symmetric Haar wavelets on the sphere.

+

 $\psi_{j,m1}$

 $\psi_{j,m2}$

0

 $\psi_{j,m3}$

(a)

(b)

ACM Transactions on Graphics (TOG), 27(1):4, 2008

Updating Models

Unaligned measurements

1. Transformed model

2. Transformed measurements

Transforming measurements

Results

	Spherical Harmonics		Spherical Haar Wavelets	
Moved Model Method	Need to choose good step size	No translation	Choice of data structure is important	No translation
Moved Measurements Method	Negligible difference in noise floor, robustness and convergence	Translation Fast	Need to choose good step sizes Only have preliminary results	Translation

Results

Conclusion and Future Work

Main outcomes

Spherical Harmonic Basis Functions
Implementation of creating a base model
Implementation of update method

Spherical Haar Wavelet Basis Functions
Implementation of creating a base model
Implementation of update method

Future work

Modelling different shapes

Investigate which way to implement the moved measurements method

Investigate different data structures

Investigate different spherical wavelet bases

Questions?

Formulae

Spherical Harmonics

The complex spherical harmonic Y_{lm} can be written as

$$Y_{lm}(\theta, \phi) = (-1)^m N_{lm} P_l^m(cos(\theta)) e^{im\phi},$$

where $l \in \{0, 1, 2, ..., n, ...\}$ and $m \in \{-l, -l+1, ..., 0, ... l-1, l\}$, N_{lm} is the normalisation factor

$$N_{lm} = \sqrt{\frac{2l+1}{4\pi} \frac{(l-m)!}{(l+m)!}}$$

and $P_l^m(x)$ are the Legendre associated polynomials, that is

$$P_l^m(x) = (-1)^m (1 - x^2)^{m/2} \frac{d^m}{dx^m} P_l(x),$$

where $P_l(x)$ is the usual Legendre polynomial of degree l,

$$P_l(x) = \frac{1}{2^l l!} \frac{d^l}{dx^l} (x^2 - 1)^l.$$

The real spherical harmonics can be found by combining complex conjugates, corresponding to opposite values of m. Then the real spherical harmonics S_{lm} can be defined as

$$S_{lm}(\theta, \phi) = \begin{cases} N_{lm} P_l^m(\cos \theta) \sqrt{2} \cos(m\phi) & m > 0 \\ N_{lm} P_l^m(\cos \theta) & m = 0 \\ N_{l|m|} P_l^{|m|}(\cos \theta) \sqrt{2} \sin(|m|\theta) & m < 0 \end{cases}$$

Spherical Haar Wavelets

The scaling basis functions $\phi_{j,k}$ are constant over their support $T_{j,k}$, with their value given by a normalisation constant $\eta_{j,k}$:

$$\phi_{j,k} = \eta_{j,k}\tau_{j,k}$$
.

We choose $\eta_{j,k} = 1/\sqrt{\alpha_{j,k}}$, as this combined with the disjoint nature of the $T_{j,k}$ for fixed j gives that the $\phi_{j,k}$ on the same level are orthogonal

The wavelet basis functions $\psi_{j,k}^l$ are as follows

$$\begin{split} \psi^0_{j,k} &= \frac{\Lambda_1}{\Lambda_0} \tau_0 + \frac{1}{\Lambda_1} ((-2a+1)\tau_1 + a\tau_2 + a\tau_3) \\ \psi^1_{j,k} &= \frac{\Lambda_1}{\Lambda_0} \tau_0 + \frac{1}{\Lambda_1} (a\tau_1 + (-2a+1)\tau_2 + a\tau_3) \\ \psi^2_{j,k} &= \frac{\Lambda_1}{\Lambda_0} \tau_0 + \frac{1}{\Lambda_1} (a\tau_1 + a\tau_2 + (-2a+1)\tau_3), \end{split}$$

where

$$a = \frac{\alpha_0 \pm \sqrt{\alpha_0^2 + 3\alpha_0 \alpha_1}}{2\alpha_0}$$
$$\Lambda_l = \sqrt{\alpha_{j+1,l}^k}.$$