Academia Sabatina de Jóvenes Talento

Polinomios Clase #2

Encuentro: 2 Nivel: 5

Curso: Polinomios Semestre: I

Fecha: 25 de marzo de 2023

Instructor: Kenny Jordan Tinoco

D. auxiliar: José Adán Duarte

Contenido: Raíces de polinomios I

1. Desarrollo

1.1. Definiciones

Definición 1.1 (Raíz de un Polinomio). La raíz de un polinomio P(x) es un número r, tal que P(r) = 0. También, diremos que r es una solución de la ecuación P(x) = 0.

Ejemplo 1. Demuestre que u es raíz del polinomio $R(x) = x^2 - (u+17)x + 17u$.

Solución. Para demostrar que u es raíz¹ de R(x), basta probar que R(u) = 0. Lo cual es fácil ver cuando evaluamos $R(u) = u^2 - (u+17)u + 17u = u^2 - u^2 - 17u + 17u = 0$.

Definición 1.2 (Factor de un Polinomio). Sea P un polinomio con deg (P) = n y $a \in \mathbb{R}$. Entonces, (x - a) es un factor de P(x) si existe un polinomio² Q(x) tal que

$$P(x) = (x - a)Q(x).$$

Teorema 1.1 (**Teorema del factor**). Dado un polinomio P, de grado n y $a \in \mathbb{R}$, diremos que a es una raíz de P si y sólo si (x - a) es un factor de P(x). Es decir

$$P(a) = 0 \leftrightarrow P(x) = (x - a)Q(x)$$

para algún polinomio Q(x).

Si a_1, a_2 y a_3 son tres raíces distintas del polinomio cúbico P(x), por el **Teorema 1.1**,

$$P(x) = (x - a_1)Q(x)$$

Para algún Q(x), pero como $P(a_2) = (a_2 - a_1)Q(a_2) = 0$ y $a_2 \neq a_1$, entonces $Q(a_2) = 0$, es decir a_2 es raíz de Q, por lo tanto por el **Teorema 1.1**

$$Q(x) = (x - a_2)R(x)$$

¹¿Podés encontrar otra raíz de R(x)?

²¿Por qué deg (Q) = (n-1)?

Para algún R(x). Analogamente, podemos expresar a $R(x) = (x - a_3) \times c$, para alguna constante c. Así,

$$P(x) = c(x - a_1)(x - a_2)(x - a_3), \text{ con } c \in \mathbb{R}.$$

Vemos que saber las raíces de P nos condujo a su factorización³. Y en general, para un polinomio P(x) de grado n y raíces r_i con $1 \le i \le n$, este puede ser expresado como:

$$P(x) = c(x - r_1)(x - r_2) \cdots (x - r_{n-1})(x - r_n), \text{ con } c \in \mathbb{R}.$$

Cantidad de raíces de un polinomio: Un polinomio de grado n tiene como máximo n raíces (o ceros). Así, por ejemplo, un polinomio P con deg (P) = 7, tiene a lo más 7 raíces.

Multiplicidad de raíces: Si existe $m \in \mathbb{N}$ y un polinomio Q(x) tal que

$$P(x) = (x - a)^m Q(x)$$

diremos que la raíz a tiene multiplicidad m. Cuando m = 1 diremos que la raíz a es simple.

Ejemplo 2. Sea P(x) un polinomio con coeficientes enteros y suponga que P(1) y P(2) son ambos impares. Demuestre que no existe ningún entero n para el cual P(n) = 0.

Solución. Nos piden mostrar que P(x) no tiene raíces enteras, entonces supongamos por el contrario, que existe un entero n tal que P(n) = 0. Entonces, por el **Teorema 1.1** P(x) = (x - n)Q(x), con Q(x) un polinomio con coeficientes enteros. Así podemos ver que, P(1) = (1 - n)Q(1) y P(2) = (2 - n)Q(2) son impares, pero (1 - n) y (2 - n) son enteros consecutivos, así que uno de ellos debe ser par. Por lo tanto, P(1) o bien P(2) tiene que ser par, lo cual contradice las condiciones del problema. Luego, n no existe.

Ejemplo 3. Sea M(x) un polinomio cúbico con coeficientes enteros y $a, b, c \in \mathbb{Z}$ tal que M(a) = M(b) = M(c) = 2. Demuestre que no existe $d \in \mathbb{Z}$ para el que M(d) = 3.

Solución. Sea N(x) = M(x) - 2, como a, b y c son raíces de N(x), es claro que $N(x) = \alpha(x-a)(x-b)(x-c)$, para algún entero α . Si para algún entero d se tiene que M(d) = 3, entonces $N(d) = \alpha(d-a)(d-b)(d-c) = 1$, y para esto los factores de la ecuación deben ser 1 o -1, luego dos de ellos deben ser iguales. Pero esto es una contradicción a la condición del problema, luego d no existe.

1.2. Métodos para determinar raíces de polinomios

En este apartado nos centraremos en los métodos para la determinación de raíces de polinomios, particularmente para polinomios cuadráticos y cúbicos.

³Tema que se introduce en la sección 1.2.1.

1.2.1. Factorización

Si un polinomio P(x) es equivalente al producto de otros polinomios con grado menor, entonces diremos que P(x) está factorizado. Por ejemplo, el polinomio $M(x) = 5x^3 + 4x^2 + 5x + 4$, es equivalente a $(5x+4)(x^2+1)$, así diremos que M(x) está factorizado y sus factores son (5x+4) y (x^2+1) .

Definición 1.3. Dado un polinomio cuadrático $P(x) = ax^2 + bx + c$ con $a, b, c \in \mathbb{R}$, este puede ser factorizado como

$$P(x) = \frac{(ax+m)(ax+n)}{a}, \text{ con } m+n = b \land mn = ac$$

Ejercicio 1. Determina las raíces los siguietes polinomios

1.
$$x^2 + x - 20$$

3.
$$(c+d)^2-18(c+d)+65$$

5.
$$12p^2 - 7p - 12$$

2.
$$9t^2 + 88t - 20$$

4.
$$-21x^2 - 11x + 2$$

1.2.2. Completación de cuadrados

No todos los polinomios cuadráticos pueden ser factorizados facilmente. Por ejemplo, al tratar de factorizar $x^2 + 6x - 1$ no resulta tan evidente llegar de golpe a $(x + 3 - \sqrt{10})(x - 3 - \sqrt{10})$, por lo cual podemos auxiliarnos en la **completación de cuadrados**. Sea el polinomio⁴ $P(x) = x^2 + bx$, los podemos transformar en:

$$P(x) = \left(x + \frac{b}{2}\right)^2 - \left(\frac{b}{2}\right)^2.$$

Que luego nos permite utilzar más fácilmente la diferencia de cuadrados.

Ejemplo 4. Hallar las raíces del polinomio $R(x) = r^2 - 10r + 7$.

Solución. Utilizando la completación de cuadrados, tenemos que

$$R(x) = r^{2} - 10r + 7$$

$$= \left(r - \frac{10}{2}\right)^{2} - \left(\frac{10}{2}\right)^{2} + 7$$

$$= (r - 5)^{2} - 18$$

$$= \left(r - 5 + \sqrt{18}\right)\left(r - 5 - \sqrt{18}\right)$$

$$= \left[r - \left(5 - 3\sqrt{2}\right)\right]\left[r - \left(5 + 3\sqrt{2}\right)\right]$$

De esta manera sabemos que R(x) tiene como raíces a $\left(5-3\sqrt{2}\right)$ y $\left(5+3\sqrt{2}\right)$.

⁴¿Cómo sería la fórmula si $P(x) = ax^2 + bx$?

1.2.3. Fórmula general

Cuando tenemos un polinomio cuadrático $P(x) = ax^2 + bx + c$ con $a \neq 0$, podemos encontrar los valores para sus dos raíces en función de los coeficientes, a esta fórmula le conoceremos como fórmula general

$$r_1 = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \wedge r_2 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}.$$

Demostración: Al completar cuadrado en P(x) tenemos que

$$P(x) = ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x + \frac{c}{a}\right)$$

$$= a\left[\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2} + \frac{c}{a}\right] = a\left[\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b^{2} - 4ac}{4a^{2}}\right)\right]$$

$$= a\left[x + \frac{b}{2a} - \frac{\sqrt{b^{2} - 4ac}}{2a}\right]\left[x + \frac{b}{2a} + \frac{\sqrt{b^{2} - 4ac}}{2a}\right]$$

$$= a\left[x - \left(\frac{-b + \sqrt{b^{2} - 4ac}}{2a}\right)\right]\left[x - \left(\frac{-b - \sqrt{b^{2} - 4ac}}{2a}\right)\right]$$

Así, $\frac{-b-\sqrt{b^2-4ac}}{2a}$ y $\frac{-b+\sqrt{b^2-4ac}}{2a}$ son la raíces del polinomio.

1.2.4. Análisis del discriminante

1.3. Agregados culturales y preguntas

Pregunta: ¿Cuántas raíces reales tiene el polinomio $P(x) = x^2 + 1$?

2. Problemas propuestos

3. Extra

Referencias

[Bar89] Edward Barbeau. Polynomials. Springer, 1989.

[BGV14] Radmila Bulajich, José Gómez, and Rogelio Valdez. Álgebra. UNAM, 2014.

[CL22] Axel Canales and Ricardo Largaespada. Clase 2. Raíces de polinomios I. *Academia Sabatina de Jóvenes Talento*, Marzo 2022.

[Rub19] Carlos Rubio. Un breve recorrido por los polinomios. Tzaloa, (2), 2019.

En caso de consultas

Instructor: Kenny J. Tinoco Teléfono: +505 7836 3102 (*Tigo*) Correo: kenny.tinoco10@gmail.com

Docente: José A. Duarte Teléfono: +505 8420 4002 (Claro) Correo: joseandanduarte@gmail.com