Perceptron Simple y Multicapa

Gomez, Lucas

Volcovinsky, Bruno

Sartorio, Alan

Modelo

Modelo

Cada capa es representada como una matriz de pesos, uniendo los perceptrones de la capa anterior con la siguiente.

$$\begin{pmatrix} W_{11} & W_{12} & W_{13} \\ W_{21} & W_{22} & W_{23} \end{pmatrix}$$

Funciones de activación

Funciones de activación

Se buscó generalizar los distintos modelos en una misma implementación. Para ello, se observó que la actualización de pesos en la función escalón tomaba como derivada la función constante y=1

Con función de activación no lineal:

$$\Delta w = \eta(\zeta^{\mu} - O^{\mu})g'(h^{\mu})\xi_i^{\mu}$$

Con función de activación escalón:

$$\Delta w = \eta (\zeta^{\mu} - O^{\mu}) \xi_i^{\mu}$$

Ejercicio 1

Datos para el entrenamiento

AND:

$$x = \{\{-1, 1\}, \{1, -1\}, \{-1, -1\}, \{1, 1\}\}\}$$
$$y = \{-1, -1, -1, 1\}$$

XOR:

$$x = \{\{-1, 1\}, \{1, -1\}, \{-1, -1\}, \{1, 1\}\}\}$$

$$y = \{1, 1, -1, -1\}$$

Input

capas: 2, 1

Solución

Ejercicio 2

Datos de entrenamiento

Solución

Con activación lineal:

Con activación exponencial (b=0.3):

Error

Ejercicio 3

Función lógica 'O exclusivo'

XOR:

$$x = \{\{-1, 1\}, \{1, -1\}, \{-1, -1\}, \{1, 1\}\}\}$$

$$y = \{1, 1, -1, -1\}$$

Utilizando un perceptrón multicapa es posible separar los puntos que se indican en la entrada del problema.

Función lógica 'O exclusivo

Con función de activación tanh

Datos de entrada

Validación Cruzada

Utilizando softmax

Píxeles afectados por ruido

Probabilidad de error = 0.002

Probabilidad de error = 0.2

Probabilidad de error = 0.5

Conclusiones