Eine Woche, ein Beispiel 7.18 irreducible representation of semisimple Lie alg

today: 5/2(C) & 5/3(C)

Goal. 1 Get some informations of irr rep
- dim
- weight space + dim
- realization (eg. Sym'V, ^hV,...)

2. Understand why "each irr rep corresponds to each highest weight vector".

1.56(C)

Notations.

$$h = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \qquad N + = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \qquad N = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$$

the compact basis
$$k = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 $\times + = \frac{1}{2} \begin{bmatrix} 1 & -i \\ -i & -1 \end{bmatrix}$ $\times - = \frac{1}{2} \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix}$

$$X_{+} = \frac{1}{2} \begin{bmatrix} 1 & -i \\ -i & -1 \end{bmatrix} \times$$

$$X_{-} = \frac{1}{2} \begin{bmatrix} 1 & i \\ i & -1 \end{bmatrix}$$

the Casimir element
$$\Omega = -\frac{K^2}{4} + \frac{X_+ X_-}{2} + \frac{X_- X_+}{2}$$

$$h.v_{-} = -2v_{-}$$
 ad $h = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2 \end{bmatrix}$ ad $v_{+} = \begin{bmatrix} 0 & 0 & 1 \\ -2 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ ad $v_{-} = \begin{bmatrix} 0 & -1 & 0 \\ 0 & 0 & 0 \\ 2 & 0 & 0 \end{bmatrix}$

Killing form:
$$k(x, y) = tr(ad \times ad y)$$

Lie bracket structure on N'sli@ = C @ slz(C) & A'slz(C) & A'slz(C). of degree -1

$[\downarrow, \rightarrow]$	ı	Y	е	f	enf	h1f	h1e	LNENF
1	0	0	0	o	0	ð	0	ō
h	0	0	2e	2f	0	-zhaf	21110	٥
e	0	-26	0	À	-h1e	-zenf	0	0
f	0	-2f	4	0	-haf	0	-281f	6
enf	0	0	Lne	haf	0	0	0	Ó
4NF	0	2h1f	2e1f	0	0	0	- 461eAf	0
hne	0	-2410	0	20Af	0	-4hren-	0	0
LAMENT	0	0	0	0	0	0	0	0

Representations Symⁿ V e.g.
$$n=3$$

$$h \mapsto \begin{bmatrix} 3 & & & \\ & 1 & & \\ & & -1 & \\ & & & 2 \end{bmatrix} \qquad V_{+} \mapsto \begin{bmatrix} 0 & 1 & & \\ & 0 & 2 & & \\ & & 0 & 3 & \\ & & & 0 & \\ & & & & 10 \\ & & & & & 10 \\ & & & & & 10 \\ & & & & & 10 \\ & & & & & & 10 \\ & & & & & & 10 \\ & & & & & & & 10 \\ & & & & & & & & 10 \\ & & & & & & & & & & & & \\ \end{pmatrix}$$

$$V_{+} \longmapsto \begin{bmatrix} 0 & 1 & \\ & 0 & 2 & \\ & & 0 & 3 \\ & & & 0 \end{bmatrix}$$

$$V_{-} \longrightarrow \begin{bmatrix} 0 \\ 30 \\ 10 \\ 10 \end{bmatrix}$$

e.p. the adjoint representation is

2. s(3(C)

Ref: I would recommend the book "Representation Theory -- a First Course" by Fulton.[Lecture 11-13].

Actually, if you just want to find the answer, then the website "https://www.jgibson.id.au/lievis/" can satisfy most of your requirement. And also if you want to draw the rank 2 root diagrams, then "https://ctan.org/pkg/rank-2-roots" may be a good choice.