

King

County Housing Market Model

TExecutive Overview

Usecase:

Build a
 predictive
 model using
 regression
 and analyze
 effect on
 target
 feature

Stakeholders:

- King County Housing Administration
- King County Board of Supervisors
- Home Facilities
 Management Supply
 Chain

Data

- The data used is a CSV file of all home sales in King County.
- The records span from 2021-2022

 BeautifulSoup also used to make calls to Washington Hometown Locator, a website containing map data to help us incorporate King County only sales

Features

- The response variable shall be price.
- There are 25 predictor variables, all with different kinds of values and classifications
 - 1. Number Bedrooms
 - 2. Number Bathrooms
 - 3. Square Feet Living Space
 - 4. Square Feet Lot
 - 5. Floors
 - 6. Greenbelt
 - 7. Nuisance
 - 8. View
 - 9. Condition
 - 10. Grade
 - 11. Heat Source
 - 12. Square Footage (excl.

Basement)

13. Square Footage Basement

- 14. Square Footage Garage
- 15. Square Footage Patio
- 16. Year Built
- 17. Year Renovated
- 18. Address
- 19. Lat
- 20. Long
- 21. Age (engineered)
- 22. Zipcode (engineered)
- 23. City (engineered)

Response

Baseline

Model 1

Grade

Dep. Variable: price R-squared: 0.356 Model: Adj. R-squared: 0.355 Method: Least Squares F-statistic: 1062. Date: Sun, 02 Oct 2022 Prob (F-statistic): 0.00 Log-Likelihood: -2.7653e+05 Time: 15:25:53 No. Observations: 19268 AIC: 5.531e+05 **Df Residuals:** 19257 BIC: 5.532e+05 Df Model: 10

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	1.001e+06	3.87e+04	25.890	0.000	9.25e+05	1.08e+06
grade_2 Substandard	-1.2e-09	3.55e-10	-3.384	0.001	-1.9e-09	-5.05e-10
grade_3 Poor	-4.608e+05	1.59e+05	-2.899	0.004	-7.72e+05	-1.49e+05
grade_4 Low	-4.397e+05	7.91e+04	-5.562	0.000	-5.95e+05	-2.85e+05
grade_5 Fair	-4.169e+05	4.58e+04	-9.099	0.000	-5.07e+05	-3.27e+05
grade_6 Low Average	-3.58e+05	3.97e+04	-9.012	0.000	-4.36e+05	-2.8e+05
grade_7 Average	-1.613e+05	3.89e+04	-4.146	0.000	-2.38e+05	-8.5e+04
grade_8 Good	8.218e+04	3.9e+04	2.109	0.035	5805.256	1.59e+05
grade_9 Better	4.886e+05	3.94e+04	12.399	0.000	4.11e+05	5.66e+05
grade_10 Very Good	8.563e+05	4.11e+04	20.834	0.000	7.76e+05	9.37e+05
grade_11 Excellent	1.08e+06	5.08e+04	21.244	0.000	9.8e+05	1.18e+06
grade_12 Luxury	1.292e+06	8.77e+04	14.726	0.000	1.12e+06	1.46e+06
grade_13 Mansion	-9.612e+05	3.8e+05	-2.532	0.011	-1.71e+06	-2.17e+05

Omnibus: 1728.213 Durbin-Watson: 2.044

Prob(Omnibus): 0.000 Jarque-Bera (JB): 2594.997

Skew: 0.697 Prob(JB): 0.00

Model 9

```
2 Y9 = df_modeling['price']
 3 X9 = df_modeling[['sqft_living',
                      'grade_8 Good',
 5
                      'grade_9 Better',
 6
                      'grade_10 Very Good',
                      'grade_11 Excellent',
 8
                      'grade 12 Luxury',
 9
                      'bathrooms',
10
                      'condition_Poor',
11
                      'condition_Fair',
12
                      'condition_Average',
13
                      'condition_Good',
14
                      'condition_Very Good',
15
                      'floors_1.0',
16
                      'floors_1.5',
17
                      'floors_2.0',
18
                      'floors_2.5',
19
                      'floors_3.0',
20
                      'floors_3.5',
21
                      'floors 4.0',
22
                      'city_Auburn',
23
                      'city_Bellevue',
24
                      'city_Black Diamond',
25
                      'city_Bothell',
26
                      'city_Enumclaw',
27
                      'city_Fall City',
                      'city_Preston',
28
29
                      'city Ravensdale',
30
                      'city_Redmond',
31
                      'city_Renton',
32
                      'city_Sammamish',
33
                      'city_Seattle',
34
                      'city_Skykomish',
35
                      'city_Snoqualmie',
36
                      'city_Woodinville',
37
                      'sqft above',
38
                      'sqft_lot',
39
                      'yr_built',
40
                      'sqft_patio',
41
                      'sqft_garage',
42
                      'age',
43
44
```

Dep. Variable:	price	R-squared:	0.599
Model:	OLS	Adj. R-squared:	0.598
Method:	Least Squares	F-statistic:	756.3
Date:	Sun, 02 Oct 2022	Prob (F-statistic):	0.00
Time:	15:26:00	Log-Likelihood:	-2.7195e+05
No. Observations:	19268	AIC:	5.440e+05
Df Residuals:	19229	BIC:	5.443e+05
Df Model:	38		
Covariance Type:	nonrobust		

RFE

- Post Model 9, we use Recursive Feature Engineering (RFE) using Decision Tree Algorithm:
 Random Forest.
- We called a list of the ranked best to worst predictive features based on backward elimination of a training and test set that will be modeled on:

```
1 sqft_living
2 lat
3 long
4 sqft_lot
5 sqft_above
6 age
7 grade_7 Average
8 sell_year
9 sqft_patio
10 grade_8 Good
11 sqft_garage
12 yr_built
13 sqft_basement
14 view_EXCELLENT
15 bathrooms
```

```
15 bathrooms
16 grade_9 Better
17 condition_Average
18 view NONE
19 bedrooms
20 heat_source_Gas
21 city_Bellevue
22 condition_Very Good
23 grade_6 Low Average
24 yr_renovated
25 grade_10 Very Good
26 heat_source_Oil
27 floors
28 grade_13 Mansion
29 view GOOD
30 view_AVERAGE
```

Final Model

```
X_{final} = df_{modeling}[
                        'sqft_living',
                        'sqft_lot',
                        'sqft above',
                        'sqft_patio',
                        'lat',
                        'long',
                        'sell_year',
                        'age',
                        'grade_7 Average',
                        'grade 8 Good',
                        'grade_9 Better',
                        'grade_10 Very Good',
                        'sqft_garage',
                        'yr_built',
                        'view_EXCELLENT',
                        'sqft_basement',
                        'condition_Average',
                        'condition_Good',
                        'condition_Very Good',
                        'view_NONE',
                        'heat_source_0il',
                        'heat_source_Gas',
                        'city_Bellevue',
                        'city_Seattle'
```

OLS Regression Resu	ults		
Dep. Variable:	price	R-squared:	0.652
Model:	OLS	Adj. R-squared:	0.651
Method:	Least Squares	F-statistic:	1566.
Date:	Sun, 02 Oct 2022	Prob (F-statistic):	0.00
Time:	15:32:43	Log-Likelihood:	-2.7060e+05
No. Observations:	19268	AIC:	5.412e+05
Df Residuals:	19244	BIC:	5.414e+05
Df Model:	23		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[0.025	0.975]
const	-3.607e+08	9.74e+06	-37.021	0.000	-3.8e+08	-3.42e+08
sqft_living	172.2158	9.935	17.334	0.000	152.742	191.690
sqft_lot	0.3488	0.036	9.600	0.000	0.278	0.420
sqft_above	116.8426	10.561	11.063	0.000	96.141	137.544
sqft_patio	46.4693	10.323	4.502	0.000	26.236	66.703
lat	1.472e+06	1.75e+04	84.057	0.000	1.44e+06	1.51e+06
long	1.924e+04	2.1e+04	0.916	0.360	-2.19e+04	6.04e+04
sell_year	9.715e+04	3063.401	31.712	0.000	9.11e+04	1.03e+05
age	4.921e+04	1530.886	32.142	0.000	4.62e+04	5.22e+04
grade_7 Average	-1.535e+04	7823.145	-1.962	0.050	-3.07e+04	-14.237
grade_8 Good	9.19e+04	9025.565	10.182	0.000	7.42e+04	1.1e+05
grade_9 Better	2.858e+05	1.14e+04	25.123	0.000	2.64e+05	3.08e+05
grade_10 Very Good	4.305e+05	1.58e+04	27.261	0.000	4e+05	4.61e+05

Final Model (cont.)

sqft_garage	18.0695	11.248	1.607	0.108	-3.977	40.116
yr_built	4.794e+04	1534.180	31.249	0.000	4.49e+04	5.09e+04
view_EXCELLENT	2.734e+05	2.18e+04	12.559	0.000	2.31e+05	3.16e+05
sqft_basement	27.8161	8.125	3.424	0.001	11.891	43.742
condition_Average	6.955e+04	2.31e+04	3.011	0.003	2.43e+04	1.15e+05
condition_Good	1.242e+05	2.32e+04	5.355	0.000	7.87e+04	1.7e+05
condition_Very Good	2.021e+05	2.38e+04	8.500	0.000	1.56e+05	2.49e+05
view_NONE	-1.274e+05	7738.175	-16.465	0.000	-1.43e+05	-1.12e+05
heat_source_Oil	-5445.3391	9168.220	-0.594	0.553	-2.34e+04	1.25e+04
heat_source_Gas	4.198e+04	5812.279	7.222	0.000	3.06e+04	5.34e+04
city_Bellevue	3.324e+05	1.05e+04	31.654	0.000	3.12e+05	3.53e+05
city_Seattle	-1.694e+04	7631.152	-2.219	0.026	-3.19e+04	-1977.957

 $R^2 = 0.652$

p-value: all less than threshold. (Heat_source_Oil observed at Threshold 0.05)

RMSE = 304211

Determinants

Final Model 9 – RFE Results
 Deemed Recursive or otherwise unnecessary by feature ranking

k-NN

- •We recall the R² and RMSE for the **final model** observed was 0.652 & 304211.0600187805.
- •The **k-NN algorithm** predictions produce a higher R² of 0.685 & a lower RMSE of 282204.3965664784.

We can conclude: the **k-NN** algorithm performs slightly better than our final model when the number of nearest neighbors is set to 20.

Findings

The the R² and RMSE for the final model observed was

- R²: 0.652

- RMSE: 304211.0600187805

For our usecase, this model seems to be sufficient.

The final model was then used against a trained and tested set using Machine Learning algorithm, **k-NN**; which is Nearest Neighbors algorithms.

We found that:

- •the k-NN algorithm performs slightly better than our final model when the
- •number of nearest neighbors is set to 20.
- R²: 0.685
- RMSE: 304211.0600187805

Recommendations

- 1. With the final model, we can estimate existing home sales records to form the basis for our classifications for tax revenue
- 2. In addition, our Home Facilities Stakeholder has a reliable model they can use to help them understand home sale price
- 3. The k-NN model can help predict the trajectory of future home sale prices
- 4. This model achieves the objectives of King County:
 - Build a model that provides data on home sale prices
 - and recorded dimensions of homes in the sale.
 - Filter out and clean a DataFrame that included homes
 - located in counties other than KC.
 - Prepare and execute an iterative modeling process with explanations of coefficients.
 - Through EDA and research, information on dimensions about homes in KC.
 - Investigates 'grade' for Home Facilities Management stakeholder.

Further Investigation

- We recommend maybe incorporating webscraped topographical data to engineer new features
- There are many powerful libraries that handle geolocational data structures
- Time-Series Forecasting can be used to help US Census Bureau estimate population growth