基礎コンピュータ工学 2023 年度 前期中間試験

(2023.05.25 重村 哲至)

IE1 番 氏名

模範解答

1. 空欄に適切な用語・数値・数式を答えなさい。 ((1),(2),(3),(4) には数値を, (5) には数式を答えること)

(2点×5問=10点)

情報の最小単位はビットと呼ばれる. 1 ニブルは (1) ビットのこと, 1 バイトは (2) ビットのことである.

2 ビットを組合せて 4 種類の状態を表現することができる. (3) ビットを組合せると 8 種類の状態を表現することができる. (4) ビットを組合せると 32 種類の状態を表現することができる.

n 桁の 2 進数で表現できる数値の範囲は 0~ (5) である.

(1)	4	(2)	8
(3)	3	(4)	5
(5)	$2^{n}-1$		

2. 同じ値を 2 進数、16 進数、10 進数で書き並べた次の表を 完成しなさい。(4 点 ×6 問=24 点)

2 進数	(8 桁)	16 進数 (2 桁)	10 進数
0011	0010	32	50
0111	0000	70	112
1110	0001	E1	225
1111	1111	FF	255

3. 10 進数と 8 ビット 2 の補数表現の対応表を完成しなさい。(5 点×3 問=15 点)

10 進数	8 ビット 2 の補数表現		
-1	1111	1111	
-20	1110	1100	
127	0111	1111	
-127	1000	0001	

4. 次の 2 進数の計算を 8 桁で行いなさい。但し、8 桁目からの桁上げは無視し、8 桁目への桁借りは自由に行えるものとします。(2 の補数の計算で学んだ 9 ビット目を無視する手順で計算する。) (5 点 $\times 3$ 問=15 点)

(例)
$$+ 0000 0001$$

 $+ 0000 0000$
 $0011 0010$
 $+ 0011 0010$
 $0110 0100$
 $1100 1110$
 $+ 0011 0001$
 $1111 1111$
 $0000 0000$
 $- 1100 1110$
 $0011 0010$

5. 4. の計算で用いた 8 ビット 2 進数が 2 の補数表現を用いて符号付き整数を表していたとします。(1)~(3) の各計算の意味を 10 進数で書くとどのようになるか答えなさい。(4 点 $\times 3$ 問=12 点)

(例)
$$(-1) + (1) = (0)$$

$$(1)$$

$$(50) + (50) = (100)$$

$$(2)$$

$$(-50) + (49) = (-1)$$

$$(3)$$

$$(0) - (-50) = (50)$$

基礎コンピュータ工学 2023 年度 前期中間試験

(2023.05.25 重村 哲至)

IE1 番 氏名

模範解答

6. 10 進数と固定小数点数形式の 2 進数の対応表を完成しなさい。なお、2 進数は、符号無しの 8 ビット 2 進数である。8 ビットの内容は、整数部 4 ビット、小数部 4 ビットとする。(4 点 ×3 問=12 点)

10 進数	8 ビット 2 進数表現 (xxxx.xxxx)
15.5	1111.1000
9.625	1001.1010
8.3125	1000.0101
3.1875	0011.0011

- 7. **下の** ASCII **文字コード表に関する問いに答えなさい。** (2 点 ×4 問=8 点)
- (1) 記号「{」の文字コードを 16 進数で答えなさい。

(2) 数字「5」の文字コードを16進数で答えなさい。

(3) 文字コードが 16 進数で「25」の文字を答えなさい。

(4) 文字コードが 16 進数で「40」の文字を答えなさい。

(上位3ビット) 0 3 4 7 @ NUL DLE 0 (SP) p SOH DC1 A \mathbf{q} STX DC2 В R b r 3 C ETX DC3 EOT DC4 4 D d 5 Е ENQ NAK 5 u ACK SYN G BEL ETB Η CAN 9 I HTEMΑ J $_{
m LF}$ SUB K В ESC VTC FFFS L D M m GS CR Ν RS SO ? O SI US

8. 回路図から真理値表と論理式を答えなさい.

(1) 真理値表を完成しなさい. (2点)

Α	В	Χ
0	0	0
0	1	1
1	0	0
1	1	0

(2) 論理式を答えなさい. (2点)

$$X = \overline{(A \cdot B)} \cdot B$$