(Actual) Shortest Paths

Consider the following:

$$SP \equiv AddZero(\infty, (\mathbb{R}^+, \min, +) \overrightarrow{\times} (\mathcal{P}(E^*), \cup, \hat{\cdot}))$$

we combine paths by adding their weights and concatenating their edges (thus, second component can be seen as set of paths). We choose by using min; if both have the same weight, we take the union the path sets.

ref	S	\oplus	\otimes	$\bar{0}$	$\bar{1}$
(1)	\mathbb{R}^+	min	+		0
(2)	$\mathcal{P}(E^*)$	U ,	÷	Ø	$\{\epsilon\}$
(3)	$\mathbb{R}^+ \times \mathcal{P}(E^*)$	$\min \overrightarrow{\times} \cup$	+ × :		$(0, \{\epsilon\})$
SP	$ \left\{ \infty \right\} \uplus \left(\mathbb{R}^+ \times \mathcal{P}(E^*) \right) $	$(\min \overrightarrow{\times} \cup)^{id}_{\infty}$	$(+\overrightarrow{\times}\hat{\cdot})^{\mathrm{an}}_{\infty}$	$\operatorname{inl}(\infty)$	$\operatorname{inl}((0, \{\epsilon\}))$

We show that SP is a semiring.

First, We show that (2) is \mathbb{LD} (\mathbb{RD} is similar):

$$(A \,\widehat{\cdot}\, B) \cup (A \,\widehat{\cdot}\, C) = \{a \cdot b : a \in A, b \in B\} \cup \{a \cdot c : a \in A, c \in C\}$$

$$= \{a \cdot x : a \in A, x \in B \cup C\}$$

$$= A \,\widehat{\cdot}\, (B \cup C)$$

 \mathbb{LD} for (3) requires:

$$\mathbb{LD}((1) \xrightarrow{\times} (2)) \equiv \underbrace{\mathbb{LD}((1))}_{yes} \wedge \underbrace{\mathbb{LD}((2))}_{yes} \wedge \underbrace{(\mathbb{LC}(\mathbb{R}^+, +)}_{yes!} \vee \mathbb{LK}(\mathcal{P}(E^*), \hat{\cdot}))$$

 $\mathbb{L}\mathbb{D}$ for SP follows, since AddZero preserves $\mathbb{L}\mathbb{D}.$

 \mathbb{RD} is similar. Thus, SP is both \mathbb{LD} and \mathbb{RD} .

We need \oplus to be commutative:

$$\mathbb{CM}((\mathbb{R}^+, \min) \overset{\rightarrow}{\times} (\mathcal{P}(E^*), \cup)) \equiv \underbrace{\mathbb{CM}(\mathcal{P}(E^*), \cup)}_{\text{yes!}}$$

We have a zero by construction, annihilating \otimes . $\operatorname{inr}((0, \{\epsilon\}))$ is a multiplicative ID, since $((0, \{\epsilon\}))$ is an ID for $+ \times \hat{\cdot}$.

It follows that SP is a semiring.

SP adjacency matrix, A for graph G = (V, E) with weights $w : E \mapsto \mathbb{R}^+$:

$$A_{ij} = \begin{cases} \inf((w(ij), \{ij\})) & \text{if } ij \in E\\ \inf(\infty) & \text{otherwise} \end{cases}$$