Homework 4 Causal Inference

STAT/CS 387: Data Science II

Instructions

Provide a typed (not handwritten) write-up that addresses the problems given below. Be sure to show all your work when answering these problems. Please use one of the provided writeup templates.

To submit

Submit HW04_writeup_[NETID].pdf (Ex: HW04_writeup_jbagrow.pdf) to Blackboard.

Problem 1. Counterfactuals. Recall the example population dataset from class:

X	Y	C_0	C_1
0	0	0	0*
0	0	0	0*
0	0	0	0*
0	0	0	0*
1	1	1*	1
1	1	1*	1
1	1	1*	1
1	1	1*	1

where asterisks denote unobserved values. In class, we showed for this example that the *average causal effect* $\theta = E[C_1] - E[C_0] = 0$ and that the *association* $\alpha = E[Y \mid X = 1] - E[Y \mid X = 0] = 1$, i.e., $\theta \neq \alpha$.

Create an example like this one in which $\alpha > 0$ and $\theta < 0$. (Include the computation of α and θ for your example.) What is the "intuition" of your example?

Problem 2. Suppose the variables *X*, *Y* and *Z* have the following joint distribution:

- (1) Find the conditional distribution of X and Y given Z = 0 and the conditional distribution of X and Y given Z = 1.
- (2) Show that $X \perp \!\!\! \perp Y \mid Z$.
- (3) Find the marginal distribution of X and Y.
- (4) Show that *X* and *Y* are not marginally independent.

Problem 3. Consider the following DAG, called a *collider*:

$$X \longrightarrow Y \longleftarrow Z$$

Prove that $X \perp \!\!\! \perp Z$ and that X and Z are dependent given Y. Use these results to interpret the meaning of a collider.

1

Problem 4. Let V = (X, Y, Z) be distributed as follows:

$$X \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$$
 $Y \mid X = x \sim \operatorname{Bernoulli}\left(\frac{e^{4x-2}}{1 + e^{4x-2}}\right)$
 $Z \mid X = x, Y = y \sim \operatorname{Bernoulli}\left(\frac{e^{2(x+y)-2}}{1 + e^{2(x+y)-2}}\right)$

- (1) Make a diagram showing the DAG corresponding to this model.
- (2) Derive a mathematical expression for $Pr(Z = z \mid Y = y)$. What is $Pr(Z = 1 \mid Y = 1)$?
- (3) Write a program to simulate this model. Conduct simulations to compute Pr(Z = 1 | Y = 1) empirically. Plot this probability as a function of the simulation size N and show that it converges to the theoretical value you derived in (2).
- (4) Interventions. Derive a mathematical expression for $Pr(Z = 1 \mid Y := y)$. What is $Pr(Z = 1 \mid Y := 1)$?
- (5) Modify your program to simulate the intervention "fix Y = 1". Use simulations to compute $Pr(Z = 1 \mid Y := 1)$. Plot this probability as a function of simulation size N and show that it converges to the theoretical value you derived in (4).

Your plots should be included in your write-up as figures (with captions). You do not need to submit your simulation code.