

BOOTCAMP CIÊNCIA DE DADOS

Numpy

por Thais Viana

NumPy, abreviação de Numerical Python, é um dos mais importantes e fundamentais pacotes de computação numérica em Python.

PYTHON FOR DATA ANALYSIS, WES MCKINNEY

A maioria dos pacotes voltados para funcionalidades científicas usam NumPy's array objects como lingua franca para troca de dados.

PYTHON FOR DATA ANALYSIS, WES MCKINNEY

NOSSA MOTIVAÇÃO

PORQUE NÓS ESTUDAMOS NUMPY?

Biblioteca otimizada para funções matemáticas básicas para tudo que faremos!

PONTOS PRINCIPAIS

ndarray Funções Matemáticas Entrada e saída de dados do array Algebra Linear

C API

ndarray

An array object represents a multidimensional, homogeneous array of fixed-size items. An associated data-type object describes the format of each element in the array (its byte-order, how many bytes it occupies in memory, whether it is an integer, a floating point number, or something else,

COMPARANDO

```
In [7]: import numpy as np
In [8]: my_arr = np.arange(1000000)
In [9]: my_list = list(range(1000000))
```

```
In [10]: %time for _ in range(10): my_arr2 = my_arr * 2
CPU times: user 20 ms, sys: 10 ms, total: 30 ms
Wall time: 31.3 ms

In [11]: %time for _ in range(10): my_list2 = [x * 2 for x in my_list]
CPU times: user 680 ms, sys: 180 ms, total: 860 ms
Wall time: 861 ms
```

GERAÇÃO DE NÚMEROS ALEATÓRIO

OPERAÇÕES MATEMÁTICAS

DATATYPES

```
In [33]: arr1 = np.array([1, 2, 3], dtype=np.float64)
In [34]: arr2 = np.array([1, 2, 3], dtype=np.int32)
In [35]: arr1.dtype
Out[35]: dtype('float64')
In [36]: arr2.dtype
Out[36]: dtype('int32')
```


ATENÇÃO

ARRAY INDEXING

```
>>> a[0]

0

>>> a[0] = 10

>>> a

array([10, 1, 2, 3])
```

FILL

```
# set all values in an array
>>> a.fill(0)
>>> a
array([0, 0, 0, 0])

# this also works, but may
# be slower
>>> a[:] = 1
>>> a
array([1, 1, 1, 1])
```

BEWARE OF TYPE COERCION

```
>>> a.dtype
dtype('int32')
# assigning a float into
# an int32 array truncates
# the decimal part
>>> a[0] = 10.6
>>> a
array([10, 1, 2, 3])
# fill has the same behavior
>>> a.fill(-4.8)
>>> a
array([-4, -4, -4, -4])
```

SLICING

```
>>> a[0, 3:5]
array([3, 4])
>>> a[4:, 4:]
array([[44, 55],
       [54, 55]])
>>> a[:, 2]
a([2, 12, 22, 32, 42, 52])
>>> a[2::2, ::2]
array([[20, 22, 24],
       [40, 42, 44]])
```

	\angle				\overline{Z}	$\overline{\ \ }$
0	1	2	3	4	5	
10	11	12	13	14	15	
20	21	22	23	24	25	
30	31	32	33	34	35	
40	41	42	43	44	45	
50	51	52	53	54	55	

SLICING

INSTALAÇÃO

PYTHON + MINICONDA

https://docs.conda.io/en/latest/miniconda.html

#1 DESAFIO

Contar o número de ocorrências de cada elemento em uma matriz.

Exemplo

$$A = [[12745]$$

$$[16349]$$

$$[50748]]$$

#1 DESAFIO

Contar o número de ocorrências de cada elemento em uma matriz.

Exemplo

$$A = [[12745]$$

$$[16349]$$

$$[50748]]$$

Resultado:

```
{0: 1, 1: 2, 2: 1, 3: 1, 4: 3, 5: 2, 6: 1, 7:
2, 8: 1, 9: 1}
```


#2DESAFIO

Dada uma seqüência de informações sobre partidas de Par ou Ímpar (nomes dos jogadores e números que os jogadores escolheram), você deve escrever um programa para indicar o vencedor de cada uma das partidas.

#2 DESAFIO

A entrada é composta de vários conjuntos de testes. A primeira linha de um conjunto de testes contém um inteiro N, que indica o número de partidas de Par ou Ímpar que aconteceram. As duas linhas seguintes contêm cada uma um nome de jogador. Um nome de jogador é uma cadeia de no mínimo um e no máximo dez letras (maiúsculas e minúsculas), sem espaços em branco. As N linhas seguintes contêm cada uma dois inteiros A e B que representam o número de dedos que cada jogador mostrou em cada partida (0 <= A <= 5 e 0 <= B <= 5). Em todas as partidas, o primeiro jogador sempre escolhe Par. O final da entrada é indicado por N = 0.

#2 DESAFIO

A entrada é composta de vários conjuntos de testes. A primeira linha de um conjunto de testes contém um inteiro N, que indica o número de partidas de Par ou Ímpar que aconteceram. As duas linhas seguintes contêm cada uma um nome de jogador. Um nome de jogador é uma cadeia de no mínimo um e no máximo dez letras (maiúsculas e minúsculas), sem espaços em branco. As N linhas seguintes contêm cada uma dois inteiros A e B que representam o número de dedos que cada jogador mostrou em cada partida (0 <= A <= 5 e 0 <= B <= 5). Em todas as partidas, o primeiro jogador sempre escolhe Par. O final da entrada é indicado por N = 0.

#2 DESAFIO (ENTRADA)

A entrada é composta de vários conjuntos de testes. A primeira linha de um conjunto de testes contém um inteiro N, que indica o número de partidas de Par ou Ímpar que aconteceram. As duas linhas seguintes contêm cada uma um nome de jogador. Um nome de jogador é uma cadeia de no mínimo um e no máximo dez letras (maiúsculas e minúsculas), sem espaços em branco. As N linhas seguintes contêm cada uma dois inteiros A e B que representam o número de dedos que cada jogador mostrou em cada partida (0 <= A <= 5 e 0 <= B <= 5). Em todas as partidas, o primeiro jogador sempre escolhe Par. O final da entrada é indicado por N = 0.

Exemplo de entrada

Pedro

Paulo

2 4

3 5

1 0

2

Claudio

Carlos

#2 DESAFIO (SAÍDA)

Para cada conjunto de teste da entrada, seu programa deve produzir a saída da seguinte forma. A primeira linha deve conter um identificador do conjunto de teste, no formato "Teste n", onde n é numerado seqüencialmente a partir de 1. As próximas N linhas devem indicar o nome do vencedor de cada partida. A próxima linha deve ser deixada em branco. A grafia mostrada no Exemplo de 3 Saída, abaixo, deve ser seguida rigorosamente.

Exemplo de Saída

Teste 1

Pedro

Pedro

Paulo

Teste 2

Claudio

Carlos

#3 DESAFIO

A OBI (Organização de Bocha Internacional) é responsável por organizar a competição mundial de bocha. Infelizmente esse esporte não é muito popular, e numa tentativa de aumentar a sua popularidade, ficou decidido que seriam chamados, para a Grande Final Mundial, o campeão e o vice-campeão de cada sede nacional, ao invés de apenas o primeiro lugar.

Tumbólia é um país pequeno que já havia realizado a sua competição nacional quando a nova regra foi instituída, e o comitê local não armazenou quem foi o segundo classificado. Felizmente eles armazenaram a pontuação de todos competidores - que foram apenas três, devido ao tamanho diminuto do país. Sabe-se também que as pontuações de todos jogadores foram diferentes, de forma que não ocorreu empate entre nenhum deles.Resta agora descobrir quem fono vice-campeão e para isso o comitê precisa de ajuda.

Entrada

A primeira e única linha da entrada consiste de três inteiros separados por espaço s, A, B e C, as pontuações dos 3 competidores.

Saída

Imprima uma única linha na saída, contendo apenas um número inteiro, a pontuação do vice-campeão.

Restrições

- 1 ≤ *A* ≤ 100
- 1 ≤ *B* ≤ 100
- 1 ≤ *C* ≤ 100

Exemplos