Matroids And their Graphs

o.mcdonnell4@nuigalway.ie

19 January 2018

1 Matroids imply Circuits: Alternative C3

Definition 1.1. By using (I1)–(I3), it is not difficult to show that the collection \mathscr{C} of circuits of a matroid M has the following three properties:

- (C1) The empty set is not in \mathscr{C}
- (C2) No member of $\mathscr C$ is a proper subset of another member of $\mathscr C$
- (C3) if C_1 and C_2 are distinct members of C and $e \in C_1 \cap C_2$, then $(C_1 \cup C_2) \setminus \{e\}$ contains a member of \mathscr{C} .

Theorem 1.1. A matroid $M \implies all \ circuits \ in \ \mathscr{C} \ satisfy \ (C1-C3).$

Proof: Let $A, b \in \mathcal{C}$, $A \neq B$

Let $e \in A \cap B$

Suppose(seeking a contradiction) that $(A \cap B) \setminus \{e\}$ is independent.

Let $x \in A \setminus B$, noting that $x \neq e$

 $\implies A \setminus \{x\} \in \mathscr{I}$ i.e independent.

We can add elements of $(A \cup B) \setminus \{e\}$ to $A \setminus \{x\}$ retaining independence until we have $|A \cup B| - 1$ elements.

But now our new set $(A \cup B) \setminus \{x\}$ contains all of B and $B \in \mathscr{C}$. Therefore, we have a contradiction, $(A \cup B) \setminus \{e\}$ cannot be independent