CS310 Natural Language Processing

Name: Wang Ziheng

SID: 12310401

Assignment 1. Neural Text Classification

Total points: 50

You should roughtly follow the structure of the notebook. Add additional cells if you feel needed.

You can (and you should) re-use the code from Lab 2.

Make sure your code is readable and well-structured.

0. Import Necessary Libraries

```
import json
import re
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_score
import tqdm
from torch.nn.utils.rnn import pad_sequence
```

1. Data Processing

```
In [3... def basic_tokenizer(text):
    return [char for char in text if '\u4e00' <= char <= '\u9fff']

def improved_tokenizer(text):
    tokens = []
    pattern = re.compile(r'[\u4e00-\u9fff]+|[a-zA-Z]+|\d+|[^\w\s]')
    for match in pattern.finditer(text):
        tokens.append(match.group())
    return tokens</pre>
```

```
In [3... class HumorDataset(Dataset):
            def __init__(self, file_path, tokenizer):
                self.data = []
                self.tokenizer = tokenizer
                self.vocab = {}
                self.vocab_size = 0
                with open(file_path, 'r', encoding='utf-8') as f:
                    for line in f:
                        item = json.loads(line)
                        sentence = item['sentence']
                        tokens = tokenizer(sentence)
                        label = item['label'][0]
                        self.data.append((tokens, label))
                        for token in tokens:
                            if token not in self.vocab:
                                self.vocab[token] = len(self.vocab)
                self.vocab_size = len(self.vocab)
            def __len__(self):
                return len(self.data)
            def __getitem__(self, idx):
                tokens, label = self.data[idx]
                token_ids = [self.vocab[token] for token in tokens]
                return token_ids, label
        def generate_offsets(batch):
            offsets = [0]
            for tokens in batch:
                offsets.append(offsets[-1] + len(tokens))
            return offsets[:-1]
        def collate_fn(batch):
```

```
tokens, labels = zip(*batch)
    token_ids = [torch.tensor(ids) for ids in tokens]
    token_ids = pad_sequence(token_ids, batch_first=True, padding_value=0) # Padding with 0
    token_ids = token_ids.view(-1)
    offsets = [0] + [len(ids) for ids in tokens]
    offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)
    labels = torch.tensor(labels)
    return token_ids, offsets, labels

In [3... train_dataset = HumorDataset('/Users/earendelh/Documents/Sophomore_Second/NLP/Ass1/train.jsonl', improved_tokenizer)
test_dataset = HumorDataset('/Users/earendelh/Documents/Sophomore_Second/NLP/Ass1/test.jsonl', improved_tokenizer)
In [3... train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, collate_fn=collate_fn)
```

test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False, collate_fn=collate_fn)

In [3... model = HumorClassifier(vocab_size, embed_dim, hidden_dim1, hidden_dim2, output_dim)

2. Build the Model

```
In [3... class HumorClassifier(nn.Module):
            def __init__(self, vocab_size, embed_dim, hidden_dim1, hidden_dim2, output_dim):
                super(HumorClassifier, self).__init__()
                self.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)
                self.fc = nn.Sequential(
                    nn.Linear(embed_dim, hidden_dim1),
                    nn.LayerNorm(hidden dim1),
                    nn.ReLU(),
                    nn.Linear(hidden_dim1, hidden_dim2),
                    nn.ReLU().
                    nn.Linear(hidden_dim2, output_dim)
            def forward(self, text, offsets):
                embedded = self.embedding(text, offsets)
                return self.fc(embedded)
In [3... vocab_size = train_dataset.vocab_size
        embed_dim = 64
        hidden_dim1 = 128
        hidden dim2 = 64
        output_dim = 2
```

3. Train and Evaluate

criterion = nn.CrossEntropyLoss()

optimizer = optim.SGD(model.parameters(), lr=1e-3)

```
In [3... num_epochs = 10
       for epoch in tqdm.tqdm(range(num_epochs)):
           model.train()
           for token_ids, offsets, labels in train_loader:
               optimizer.zero_grad()
               outputs = model(token_ids, offsets)
               loss = criterion(outputs, labels)
               loss.backward()
               optimizer.step()
           print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
                     | 1/10 [00:00<00:06, 1.45it/s]
        Epoch [1/10], Loss: 0.6480
        20%
                     | 2/10 [00:01<00:04, 1.90it/s]
       Epoch [2/10], Loss: 1.0771
                     | 3/10 [00:01<00:03, 2.07it/s]
        30%|
       Epoch [3/10], Loss: 0.6369
        40%|
                     | 4/10 [00:02<00:02, 2.08it/s]
       Epoch [4/10], Loss: 0.3405
        50%|
                     | 5/10 [00:02<00:02, 2.16it/s]
       Epoch [5/10], Loss: 0.8334
        60%
                     | 6/10 [00:02<00:01, 2.22it/s]
       Epoch [6/10], Loss: 0.5213
        70%| | 7/10 [00:03<00:01, 2.19it/s]
       Epoch [7/10], Loss: 0.7186
        80%| | 8/10 [00:03<00:00, 2.04it/s]
       Epoch [8/10], Loss: 0.5395
       90%| 90%| 9/10 [00:04<00:00, 1.94it/s]
```

```
Epoch [9/10], Loss: 0.8940
                   10/10 [00:04<00:00, 2.01it/s]
        Epoch [10/10], Loss: 0.5159
In [3... model.eval()
        all_labels = []
        all_preds = []
        with torch.no_grad():
            for token_ids, offsets, labels in test_loader:
               outputs = model(token_ids, offsets)
                _, predicted = torch.max(outputs.data, 1)
               all_labels.extend(labels.tolist())
               all_preds.extend(predicted.tolist())
        accuracy = accuracy_score(all_labels, all_preds)
        precision = precision_score(all_labels, all_preds, average='weighted')
        recall = recall_score(all_labels, all_preds, average='weighted')
        f1 = f1_score(all_labels, all_preds, average='weighted')
        print(f'Accuracy: {accuracy:.4f}, Precision: {precision:.4f}, Recall: {recall:.4f}, F1: {f1:.4f}')
        Accuracy: 0.7389, Precision: 0.5459, Recall: 0.7389, F1: 0.6279
        /opt/miniconda3/envs/NLP/lib/python3.9/site-packages/sklearn/metrics/_classification.py:1565: UndefinedMetricWarning:
        Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to co
        ntrol this behavior.
        _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
```

4. Explore Word Segmentation

```
In [3... # use jieba as the tokenizer
        train_dataset2 = HumorDataset('/Users/earendelh/Documents/Sophomore_Second/NLP/Ass1/train.jsonl', jieba._lcut_for_searc
        test\_dataset2 = HumorDataset('/Users/earendelh/Documents/Sophomore\_Second/NLP/Ass1/test.jsonl', jieba.\_lcut\_for\_search)
        train_loader2 = DataLoader(train_dataset2, batch_size=32, shuffle=True, collate_fn=collate_fn)
        test_loader2 = DataLoader(test_dataset2, batch_size=32, shuffle=False, collate_fn=collate_fn)
        vocab_size = train_dataset2.vocab_size
        embed_dim = 64
        hidden_dim1 = 128
        hidden_dim2 = 64
        output_dim = 2
        model2 = HumorClassifier(vocab_size, embed_dim, hidden_dim1, hidden_dim2, output_dim)
        criterion = nn.CrossEntropyLoss()
        optimizer = optim.SGD(model2.parameters(), lr=1e-3)
        num_epochs = 10
        for epoch in tqdm.tqdm(range(num_epochs)):
            model2.train()
            for token_ids, offsets, labels in train_loader2:
               optimizer.zero_grad()
               outputs = model2(token_ids, offsets)
               loss = criterion(outputs, labels)
               loss.backward()
               optimizer.step()
            print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {loss.item():.4f}')
        model2.eval()
        all_labels2 = []
        all_preds2 = []
        with torch.no_grad():
            for token_ids, offsets, labels in test_loader2:
               outputs = model2(token_ids, offsets)
                _, predicted = torch.max(outputs.data, 1)
               all_labels2.extend(labels.tolist())
               all_preds2.extend(predicted.tolist())
        accuracy_jieba = accuracy_score(all_labels2, all_preds2)
        precision_jieba = precision_score(all_labels2, all_preds2, average='weighted')
        recall_jieba = recall_score(all_labels2, all_preds2, average='weighted')
        f1_jieba = f1_score(all_labels2, all_preds2, average='weighted')
        print(f'Jieba Accuracy: {accuracy_jieba:.4f}, Precision: {precision_jieba:.4f}, Recall: {recall_jieba:.4f}, F1: {f1_jie
        10%|
                       | 1/10 [00:00<00:04, 2.00it/s]
        Epoch [1/10], Loss: 0.6005
        20%|
                       | 2/10 [00:01<00:04, 1.70it/s]
        Epoch [2/10], Loss: 0.5828
        30%| | 3/10 [00:01<00:04, 1.49it/s]
```

```
Epoch [3/10], Loss: 0.3643
  40%| | 4/10 [00:02<00:04, 1.43it/s]
 Epoch [4/10], Loss: 0.6817
  50% | 5/10 [00:03<00:03, 1.34it/s]
 Epoch [5/10], Loss: 0.3535
60%| | 6/10 [00:04<00:02, 1.40it/s]
 Epoch [6/10], Loss: 1.2037
70%| | 7/10 [00:04<00:02, 1.45it/s]
 Epoch [7/10], Loss: 0.3543
 80%| | 8/10 [00:05<00:01, 1.48it/s]
 Epoch [8/10], Loss: 0.7192
90%| 90%| 9/10 [00:06<00:00, 1.29it/s]
Epoch [9/10], Loss: 0.6979
100% | 10/10 [00:06<00:00, 1.43it/s]
Epoch [10/10], Loss: 1.1027
 Jieba Accuracy: 0.7389, Precision: 0.5459, Recall: 0.7389, F1: 0.6279
 /opt/miniconda3/envs/NLP/lib/python 3.9/site-packages/sklearn/metrics/\_classification.py: 1565: \ Undefined Metric Warning: 1.0.1. A state of the following o
 Precision is ill-defined and being set to 0.0 in labels with no predicted samples. Use `zero_division` parameter to co
 ntrol this behavior.
    _warn_prf(average, modifier, f"{metric.capitalize()} is", len(result))
```

Comparison of the training results

I found that the dataset is too small , easily overfitting. Only when I use the very small learning rate and epoch, I can find a different result.

From the result below, we can observe that the jieba tokenizer is better than the improved tokenizer and better than basic tokenizer.

Tokenizer	Learning Rate	Epoch	Accuracy	Precision	Recall	F1
Basic	1e-5	20	0.6482	0.6338	0.6482	0.6404
Basic	1e-5	10	0.6820	0.6113	0.6820	0.6347
Basic	1e-3	10	0.7389	0.5459	0.7389	0.6279
Improved	1e-5	20	0.7097	0.6336	0.7097	0.6493
Improved	1e-5	10	0.7266	0.6188	0.7266	0.6347
Improved	1e-3	10	0.7389	0.5459	0.7389	0.6279
jieba	1e-5	20	0.7189	0.5849	0.7189	0.6257
jieba	1e-5	10	0.7389	0.6770	0.7389	0.6307
jieba	1e-3	10	0.7389	0.5459	0.7389	0.6279