Homework 11

Problem 11.1 Understanding Red Black Trees

a) < 3, 10, 2, 4 >, $h_1(k) = k \mod 5$ and $h_2(k) = 7k \mod 8$, m = 5

• key:3

 $h_1(3) = 3 \mod 5 = 3$ $\sqrt{1 \text{ probe}}$

• key: 10

 $h_1(10) = 10 \mod 5 = 0$ $\sqrt{1}$ probe

• key: 2

 $h_1(2) = 2 \mod 5 = 2$ $\sqrt{1 \text{ probe}}$

key: 4

 $h_1(4) = 4 \mod 5 = 4$ $\sqrt{1 \text{ probe}}$

No collision happened; hence we did not need the second hash function.

10			
(idx 0)			
2			
(idx 2)			
3			
(idx 3)			
4			
(idx 4)			
•			

Problem 11.2 Greedy Algorithms

A)

<u>Activities</u>	a ₁	a ₂	a ₃
start	0	5	4
finish	5	8	6
duration	5	3	2

The greedy algorithm that selects the activity with shortest duration will produce as solution only a_3 . But the optimal solution is $S = \{a_1, a_2\}$. Hence, this algorithm will fail at producing a globally optimal solution.