Khôlles de Mathématiques - Semaine 30

Hugo Vangilluwen

2 juin 2024

Dénombrement des surjections de [1; n] dans [1; 2] et dans 7 [1;3]

Démonstration. Soit $n \in \mathbb{N}^*$. Il y a $|[1;2]|^{|[1;n]|} = 2^n$ applications de [1;n] dans [1;2]. Seules les applications constantes $\widetilde{1}$ et $\widetilde{2}$ ne sont pas surjectives. Il y a donc 2^n-2 surjections de [1;n] dans [1;2].

Il y a $|[1;3]|^{|[1;n]|} = 3^n$ applications de [1;n] dans [1;3]. Les applications non surjectives sont celles dont l'image n'est pas [1; 3]. C'est-à-dire, celles dont l'image est de cardinal 1 (les fonctions constantes 1, 2 et 3) et celles dont l'image est de cardinal 2. Ces dernières sont les surjections de [1;n] dans [1;2], $\{1;3\}$ et $\{2;3\}$. Comme ces trois ensembles ont la même taille, il y a $3\times(2^n-2)$ (voir résultat précédent) applications de [1; n] dans [1; 3] dont l'image est de cardinal 2. Ainsi, le nombre de surjections de $\llbracket 1; n \rrbracket$ dans $\llbracket 1; 3 \rrbracket$ est $3^n - 3 - 3(2^n - 2) = 3^n - 3 \times 2^n + 3$.

8 Lemme des bergers

Soient E, F deux ensembles finis non vides et $f: E \to F$ telle que tout élément de F possède le même nombre $k \in \mathbb{N}^*$ d'antécédents par f.

Alors $|F| = \frac{|E|}{k}$

"Pour compter les moutons, il faut compter les pattes puis diviser par quatre."

 $D\acute{e}monstration$. Considérons la relation binaire définie sur E par :

$$\forall (x,y) \in E^2, x \sim y \iff f(x) = f(y)$$

Elle est réflexive, transitive et symétrique donc c'est bien une relation d'équivalence. Donc les classes d'équivalence réalise une partition de E. Nous avons $E = \prod C$ donc, en passant aux

$$\text{cardinaux, } |E| = \sum_{C \in {}^E/{\sim}} |C|.$$

Soit $x \in E$ fixé quelconque. Alors $\bar{x} = \{y \in E \mid f(x) = f(y)\} = f^{-1}(f(\{x\}))$. Par hypothèse, tous les éléments de F ont le même nombre k d'antécédents, or f(x) est un singleton d'élément de

f(x) = f(y) donc l'image par φ ne dépend pas du représentant de classe choisi. φ est surjective car soit $z \in F$, f est surjective donc $\exists x_z \in E : f(x_z) = z$ et alors $\varphi(\bar{x_z}) = f(x_z) = z$. φ est injective car soient $(C,C') \in (E/\sim)^2$, $\varphi(C) = \varphi(C')$ alors $\exists (x,x') \in C \times C' : x \sim x'$, comme deux classes

car soient
$$(C, C') \in (E/\sim)^2$$
, $\varphi(C) = \varphi(C')$ alors $\exists (x, x') \in C \times C' : x \sim x'$, comme deux classes d'équivalence sont confondues ou disjointes, $C = C'$. Ainsi φ est une bijection donc $|F| = |E/\sim|$. Ainsi $|E| = \sum_{C \in E/\sim} |C| = \sum_{C \in E/\sim} k = |E/\sim| k = |F| k$.