高温超导材料特性测试和低温温度计

第十组 9号 甘城屹

一、实验数据 (数据列表分两栏)

1. 温度计比较数据(直接测量值及温度)

	SiD电	温差电	
Pt/mV	压八	偶/mV	T/K
106	0.5304	5.727	288.36
105.5	0.5333	5.678	287.08
105	0.5365	5.62	285.8
104.5	0.5396	5.58	284.52
104	0.5426	5.533	283.24
103.5	0.5456	5.487	281.96
103	0.5489	5.438	280.68
102.5	0.552	5.39	279.4
102	0.555	5.343	278.12
101.5	0.558	5.297	276.84
101	0.5612	5.25	275.56
100.5	0.5644	5.2	274.29
100	0.5674	5.158	273.01
99.5	0.5705	5.112	271.73
99	0.5738	5.064	270.46
98.5	0.5769	5.018	269.18
98	0.5801	4.973	267.91
97.5	0.5833	4.925	266.63
97	0.5864	4.881	265.36
96.5	0.5895	4.836	264.08
96	0.5928	4.789	262.81
95.5	0.596	4.745	261.54
95	0.5991	4.7	260.26
94.5	0.6024	4.653	258.99
94	0.6056	4.612	257.72
93.5	0.6088	4.566	256.45
93	0.612	4.524	255.18
92.5	0.6152	4.479	253.91
92	0.6185	4.436	252.64
91.5	0.6218	4.391	251.37
91	0.6251	4.345	250.1
90.5	0.6284	4.304	248.83
90	0.6316	4.26	247.56
89.5	0.635	4.216	246.3
89	0.6383	4.172	245.03

88.5	0.6415	4.132	243.77
88	0.6447	4.09	242.5
87.5	0.648	4.049	241.24
87	0.6514	4.004	239.98
86.5	0.6546	3.964	238.71
86	0.6581	3.92	237.45
85.5	0.6615	3.879	236.19
85	0.6649	3.837	234.93
84.5	0.6682	3.797	233.67
84	0.6714	3.756	232.41
83.5	0.6748	3.715	231.15
83	0.6781	3.673	229.89
82.5	0.6815	3.633	228.63
82	0.6848	3.593	227.37
81.5	0.6882	3.517	226.11
81	0.6916	3.392	224.86
80.5	0.695	3.327	223.6
80	0.6982	3.283	222.34
79.5	0.7016	3.249	221.09
79	0.705	3.202	219.83
78.5	0.7084	3.159	218.58
78	0.7118	3.112	217.33
77.5	0.7152	3.073	216.08
77	0.7186	3.034	214.82
76.5	0.722	2.987	213.57
76	0.7255	2.945	212.32
75.5	0.7289	2.915	211.07
75	0.7323	2.869	209.82
74.5	0.7357	2.833	208.57
74	0.7391	2.792	207.32
73.5	0.7425	2.755	206.07
73	0.7459	2.711	204.83
72.5	0.7493	2.669	203.58
72	0.7527	2.631	202.33
71.5	0.7562	2.592	201.09
71	0.7595	2.548	199.84
70.5	0.763	2.508	198.6
70	0.7664	2.67	197.35

69.5	0.77	2.628	196.11
69	0.7744	2.584	194.87
68.5	0.778	2.548	193.62
68	0.7815	2.513	192.38
67.5	0.785	2.477	191.14
67	0.7881	2.441	189.9
66.5	0.7913	2.406	188.66
66	0.7945	2.378	187.42
65.5	0.798	2.337	186.18
65	0.8013	2.302	184.94
64.5	0.8048	2.268	183.7
64	0.8081	2.233	182.47
63.5	0.8112	2.201	181.23
63	0.8147	2.166	179.99
62.5	0.8182	2.13	178.76
62	0.8214	2.097	177.52
61.5	0.8247	2.065	176.29
61	0.828	2.034	175.06
60.5	0.8314	2.002	173.82
60	0.8346	1.97	172.59
59.5	0.8378	1.936	171.36
59	0.8412	1.905	170.13
58.5	0.8444	1.872	168.9
58	0.8478	1.84	167.67
57.5	0.8509	1.81	166.44
57	0.8541	1.778	165.21
56.5	0.8575	1.748	163.98
56	0.8607	1.716	162.76
55.5	0.8639	1.688	161.53
55	0.8671	1.656	160.31
54.5	0.8704	1.624	159.08
54	0.8734	1.595	157.86
53.5	0.8768	1.564	156.63
53	0.8798	1.535	155.41
52.5	0.883	1.505	154.19
52	0.8861	1.476	152.97
51.5	0.8892	1.447	151.75
51	0.8924	1.418	150.53
50.5	0.8955	1.388	149.31
50	0.8987	1.359	148.1
49.5	0.9018	1.331	146.88
49	0.9049	1.303	145.66
48.5	0.908	1.274	144.45

48 47.5 47 46.5 46 45.5 45 44.5 44 43.5 43 42.5	0.911 0.9142 0.9172 0.9203 0.9233 0.9264 0.9294 0.9324	1.247 1.219 1.191 1.165 1.137 1.11	143.24 142.02 140.81 139.6 138.39
47 46.5 46 45.5 45 44.5 44 43.5 43	0.9172 0.9203 0.9233 0.9264 0.9294	1.191 1.165 1.137	140.81 139.6
46.5 46 45.5 45 44.5 44 43.5 43	0.9203 0.9233 0.9264 0.9294	1.165 1.137	139.6
46 45.5 45 44.5 44 43.5 43	0.9233 0.9264 0.9294	1.137	-
45.5 45 44.5 44 43.5 43	0.9264 0.9294		138.39
45 44.5 44 43.5 43	0.9294	1.11	
44.5 44 43.5 43			137.18
44 43.5 43	0.9324	1.083	135.97
43.5 43		1.056	134.76
43	0.9353	1.03	133.56
	0.938	1.009	132.35
12 5	0.9414	0.978	131.15
42.0	0.9453		129.94
42	0.9481		128.74
41.5	0.9511		127.54
40.5	0.957		125.14
40	0.9599		123.94
39.5	0.962	0.802	122.74
39	0.9658		121.55
38.5	0.9686	0.752	120.35
38	0.9716		119.16
37.5	0.9756	0.698	117.96
37	0.9796		116.77
36.5	0.9814	0.638	115.58
36	0.9844	0.616	114.39
35.5	0.9881		113.2
35	0.9907		112.01
34.5	0.9925	0.554	110.82
34	0.9962		109.64
33.5	0.9986	0.51	108.45
33	1.0017		107.27
32.5	1.0044		106.09
32	1.0063	0.445	104.96
31.5	1.0101		103.72
31	1.0118	0.403	102.56
30.5	1.0153		101.36
30	1.0182		100.18
29.5	1.02	0.341	99.007
29	1.0235		97.831
28.5	1.0262		96.655
28	1.028	0.281	95.481
27.5	1.0316		94.307
27	1.0342		93.133
26.5	1.0368		91.961

26	1.0395		90.789
25.5	1.0421		89.618
25	1.0439	0.165	88.447
24.5	1.0486	0.152	87.277
24	1.053	0.14	86.107
23.5	1.0543	0.119	84.937
23	1.0572	0.104	83.767
22.5	1.0596	0.083	82.597
22	1.0612	0.065	81.427
21.5	1.0632	0.045	80.256
21	1.0651	0.028	79.084
20.5	1.0672	0.008	77.912

2. 超导曲线测量数据

R(Pt)	<i>U_{样品}</i> /mV	T/K	R _{样品} $/$ m Ω
42.5	0.042	129.94	4.194966
42	0.042	128.74	4.194966
41.5	0.042	127.54	4.194966
40.5	0.041	125.14	4.095086
40	0.041	123.94	4.095086
39	0.04	121.55	3.995206
38.5	0.04	120.35	3.995206
38	0.039	119.16	3.895326
37	0.039	116.77	3.895326
35.5	0.038	113.2	3.795445
35	0.037	112.01	3.695565
34	0.037	109.64	3.695565

33	0.036	107.27	3.595685
32.5	0.036	106.09	3.595685
31.5	0.035	103.72	3.495805
30.5	0.034	101.36	3.395925
30	0.033	100.18	3.296045
29	0.032	97.831	3.196165
28.5	0.032	96.655	3.196165
27.5	0.03	94.307	2.996404
27	0.028	93.133	2.796644
26.9	0.027	92.842	2.696764
26.8	0.026	92.596	2.596884
26.7	0.025	92.349	2.497004
26.6	0.023	92.103	2.297243
26.5	0.014	91.961	1.398322
26.4	0.004	91.61	0.399521
26.3	0.002	91.363	0.19976
26.2	0.001	91.117	0.09988
26.1	0.001	90.87	0.09988
26	0.001	90.789	0.09988
25.5	0.001	89.618	0.09988

3. 液氮沸点检测实验数据。 (77K)

铂电阻电	SiD 电压	温差电偶	样品电压
压(mV)	(V)	(mV)	(mV)
20. 37	1.0690	0	0.001(乱真
			电动势)

二、实验数据的分析、处理和结论

1. 处理室温检测实验数据,给出三部分测量电路的电流、室温、室温下超导样品的电阻的测量结果;

Pt 电阻测量电路: $I_1 = 1mA$

SiD 测量电路: $I_2 = 0.1 mA$

样品测量电路: $I_3 = 10.012mA$

室温: 由*实验测得铂电阻电压* 106.19mV,查表得 T≈289K

2. 处理低温温度计比对实验数据,作图给出比对结果,总结三种温度计的特点;

铂电阻温度计与硅二极管温度计表征量与温度满足良好的线性关系,其中铂电阻温度计电阻与温度正相关,而硅二极管电阻与温度负相关。而温差电偶温度计电压与温度正相关,且温度越高,电压升得越快。

3. 作图和最小二乘法处理超导样品测量数据,给出转变温度的测量结果;

Origin 中做出如上所示的 R-T 图像,拟合转变前数据点有:

R(mΩ)=0.03062T(K)+0.28168 即图中红色虚线

由此可做出 $\frac{1}{2}R(T)$ 图像,即图中黑色虚线

利用 origin 取点工具可得: $T_{c,onset} = 92.40K, T_{cm} = 91.97K$

三、实验收获 对预习问题的进一步理解或与实验结果相关的其它问题讨论。

讨论:在上述实验数据处理中,可见温差电偶 U-T 图像十分不连续,仔细查看手机记录的照片后发现数据记录并无差错,这可能是因为中途将超导材料放低以加快降温速率,但铂电阻响应速度快,而温差电偶回路电压滞后,所以出现转折。

收获:此次实验的实验内容较简单但数据处理较为复杂,在完成报告的过程中,我对 Excel 的掌握更为熟练,也学会了origin中画部分数据点拟合直线及其延长线等内容。