

INFERRING TWEEDIE COMPOUND POISSON MIXED MODELS WITH ADVERSARIAL VARIATIONAL BAYES

YAODONG YANG, RUI LUO, REZA KHORSHIDI, YUANYUAN LIU

TWEEDIE DISTRIBUTION

Tweedie Compound Poisson models are heavily used for modelling non-negative continuous data with a discrete probability spike at zero.

Examples:

- total claim loss for an insurance policy
- total precipitation for a certain period

Figure 1: Tweedie Probability Density Function

- $N \sim \text{Poisson}(\lambda)$ number of the events
- $G_i \overset{i.i.d}{\sim} \text{Gamma}(\alpha, \beta)$ "value" of each event
- $Y = \sum_{i=1}^{N} G_i$ total value of all events
- $\lambda > 0, \alpha > 0, \beta > 0$ Tweedie parameters
- $\mu = \lambda \alpha \beta$ Tweedie expected value
- 1 Tweedie index parameter
- $Var(Y) = \mu^p$ Tweedie power law

$$P(Y, N | \lambda, \alpha, \beta) = P(Y | N, \alpha, \beta) \cdot P(N | \lambda) =$$

$$= d_0(y) \cdot e^{-\lambda} \cdot 1_{n=0} + \frac{y^{n\alpha - 1}e^{-y/\beta}}{\beta^{n\alpha}\Gamma(n\alpha)} \cdot \frac{\lambda^n e^{-\lambda}}{n!} \cdot 1_{n>0},$$

where $d_0(\cdot)$ is the Dirac Delta function at zero.

AFFILIATION

1 AMERICAN INTERNATIONAL GROUP (AIG), SCIENCE TEAM, LONDON

MIXED-EFFECTS MODELS

Goal: to learn the distribution of Tweedie distribution parameters $(\lambda_i, \alpha_i, \beta_i)$ for each record x_i, y_i in the dataset D.

Model: $(\lambda_i, \alpha_i, \beta_i) = f(x_i, u_i | w, \Sigma_b)$, where

- $f(\cdot, w)$ a fully connected neural network,
- w its global parameters.

Thus, we are looking for the posterior distribution P(w|D), given the prior distribution P(w). Once it is found, inference of y_i distribution is done by:

- sampling w and Σ_b ,
- inferring $(\lambda_i, \alpha_i, \beta_i) = f(x_i, u_i | w, \Sigma_b)$,
- sampling y_i from Tweedie $(x|\lambda_i,\alpha_i,\beta_i)$

Figure 2: Tweedie Mixed-Effects Models

We find P(w|D) using Variational Inference:

- Approximate P(w|D) by $Q_{\theta}(w)$
- Minimize KL divergence $KL(Q_{\theta}(w)||P(w|D))$ by minimizing ELBO = $\mathrm{E}_{Q_{\theta}(\mathbf{w})}\left[\log\frac{P(D,\mathbf{w})}{Q_{\theta}(\mathbf{w})}\right]$

Therefore, the optimization problem is to find $\theta^* = \arg\max_{\theta} \mathrm{E}_{Q_{\theta}(\mathbf{w})} \left[-\log\frac{Q_{\theta}(\mathbf{w})}{P(\mathbf{w})} + \log P(D|\mathbf{w}) \right]$

TRAINING DETAILS

We employ Adversarial Variational Bayes method.

- Discriminator $T_{\phi}(\cdot)$ learns to differentiate prior weights $P(\mathbf{w})$ and posterior weights $Q_{\theta}(\mathbf{w})$. Using the optimal discriminator parameters ϕ^* we can compute the distribution log-ratio as: $\mathbb{E}_{Q_{\theta}(\mathbf{z})} \left[\log \frac{Q_{\theta}(\mathbf{z})}{P(\mathbf{z})} \right] = \mathbb{E}_{Q_{\theta}(\mathbf{z})} \left[T_{\phi^*}(\mathbf{z}) \right]$
- Prior distribution $P(\mathbf{w})$ tunes its hyperparameters to decrease the accuracy of $T_{\phi}(\cdot)$. We use

$$\mathbf{w} \sim z_{\mu,\sigma}(\epsilon) = \mu + \sigma \odot \epsilon, \, \epsilon \sim \mathcal{N}(0,1)$$

- Generator $Q_{\theta}(\cdot)$ is itself a neural network with parameters θ , which learns to simultaneously: 1) decrease the accuracy of $T_{\phi}(\cdot)$,
 - 2) maximize Tweedie likelihood $P(Y|\lambda, \alpha, \beta)$

In order to avoid sampling n_j , Tweedie Likelihood is approximated by a limited summation over n_j :

$$P(y_i|\mathbf{w};\mathbf{x_i}) = \sum_{j=1}^{T} P(y_i|n_j,\mathbf{w};\mathbf{x_i}) \cdot P(n_j|\mathbf{w};\mathbf{x_i})$$

RESULTS

We evaluate our method by predicting losses for auto insurance policies.

LAPLACE		$4.06 \cdot 10^{-4}$		
AGQ		$4.027 \cdot 10^{-4}$		
MCMC	1.3458	$4.575 \cdot 10^{-3}$	1.4272	$3.490 \cdot 10^{-2}$
AVB	1.3403	$3.344 \cdot 10^{-3}$	1.4237	$2.120 \cdot 10^{-2}$

 $8.94 \cdot 10^{-5}$

 $1.0346 \cdot 10^{-3}$

Figure 3: Posterior estimation of the index parameter \mathcal{P} estimation on the AutoClaim dataset.

Table 1: Estimation on \mathcal{P} and σ_b^2 for both AutoClaim and FineRoot data with random effects.

Table 2: The pairwise Gini index comparison with standard error based on 20 random splits

BASELINE	GLM	PQL	LAPLACE	AGQ	MCMC	TDBoost	AVB
GLM (AUTOCLAIM)		$-2.97_{6.28}$	$1.75_{5.68}$	$1.75_{5.68}$	$-15.02_{7.06}$	$1.61_{6.32}$	$9.84_{5.80}$
PQL	$7.37_{5.67}$		$7.50_{6.26}$	$7.50_{5.72}$	$6.73_{5.95}$	$0.81_{6.22}$	$9.02_{6.07}$
LAPLACE	$2.10_{4.52}$	$-1.00_{5.94}$		$8.84_{5.36}$	$4.00_{4.61}$	$21.45_{4.84}$	$20.61_{4.54}$
AGQ	$2.10_{4.52}$	$-1.00_{5.94}$	$8.84_{5.36}$		$4.00_{4.61}$	$21.45_{4.84}$	$20.61_{4.54}$
MCMC	$14.75_{6.80}$	$-1.06_{6.41}$	$3.12_{5.99}$	$3.12_{5.99}$		$7.82_{5.83}$	$11.88_{5.50}$
TDBoost	$17.52_{4.80}$	$17.08_{5.36}$	$19.30_{5.19}$	$19.30_{5.19}$	$11.61_{4.58}$		$20.30_{4.97}$
AVB	$-0.17_{4.70}$	$0.049_{5.62}$	$3.41_{4.94}$	$3.41_{4.94}$	$0.86_{4.62}$	$11.49_{4.93}$	
GLM (FINEROOT)		$23.18_{9.30}$	$35.87_{6.52}$	$35.87_{6.52}$	$-15.73_{10.63}$	$35.71_{6.52}$	$35.64_{6.53}$
PQL	$-21.61_{8.34}$		$30.90_{8.86}$	$30.90_{8.86}$	$-21.45_{8.38}$	$24.19_{8.36}$	$28.97_{8.92}$
LAPLACE	$-12.55_{7.37}$	$-14.72_{8.81}$		$15.07_{6.41}$	$-12.55_{7.37}$	$15.33_{7.36}$	$10.61_{7.20}$
AGQ	$-12.55_{7.37}$	$-14.72_{8.81}$	$15.07_{6.41}$		$-12.55_{7.37}$	$15.33_{7.36}$	$10.61_{7.20}$
MCMC	$17.27_{10.25}$	$22.53_{9.31}$	$35.10_{6.54}$	$35.10_{6.54}$		$35.10_{6.54}$	$34.87_{6.55}$
TDBoost	$22.47_{6.80}$	$8.50_{9.09}$	$22.63_{6.80}$	$22.63_{6.80}$	$11.61_{6.80}$		$22.39_{6.80}$
AVB	$-8.261_{7.66}$	$-10.886_{8.98}$	$2.13_{7.28}$	$2.13_{7.28}$	$-8.26_{7.66}$	$11.00_{7.74}$	

Summary: AVB method shows the state-of-the-art performance, even compared with the TDBoost method which is considered to be the strongest.