Introduction

Other Works

ODN-+

Experiments and Results

References

PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning

Mario De Simone

Faculty of Artificial Intelligence University of Florence

June 2025

Table of Contents

Introduction

Other Works

Experiments a

. .

- 1 Introduction
- 2 Other Works
- 3 PODNet
- 4 Experiments and Results

Introduction

Introduction
Other Works
PODNet

Experiments an Results

Reference

Class-Incremental Learning (CIL) is a branch of a wider Incremental Learning framework, which purpose is to increase knowledge and ability of a model in different 'steps'

Figure: Different settings of Incremental Learning

CIL and Catastrophic Forgetting

Introduction
Other Works

Experiments ai Results The worst enemy for CIL is **Catastrophic Forgetting**, the model overwrites past knowledge learning new classes

Figure: CIL framework

Other Works

Introduction
Other Works
PODNet

Experiments an Results

Taxonomy suggested by [4]:

- Data Replay: there is a memory to store past examples
- Data Regularization: control of the optimization process in order to avoid hurting past classes
- Dynamic Networks: dynamically adjust the weights, in order to learn new classes and not forget previous ones
- Parameter Regularization: find and fix the most important part of the network and keep it static
- **Knowledge Distillation**: learning in steps, each one uses the knowledge of the previous one to resist forgetting
- Model Rectify: correct the behavior of CIL, trying to reach ideal 'oracle'
- Template-based Classification: try to build a template (prototype) representing a class

PODNet Roots

Other Works
PODNet

Experiments an Results

PODNet is a model suggested by [1]:

- Replay Memory: the network takes into account the usage of a part of memory for storing past examples
- Distillation Knowledge: the paper suggests a new distillation loss with the aim of reducing catastrophic forgetting
- Template-based Classification: a new kind of classifier is employed in order to reach a shift-invariant representation

Figure: Example of a Knowledge Distillation framework

PODNet Intro

Introduction Other Works

PODNet

Experiments and

resurts

Some notation about incremental learning:

- T tasks
- C_t^N set of new classes (to learn) of task t
- $lacksquare C_t^O = C_{t-1}^N \cup C_{t-1}^O$ set of old classes (already seen) of task t
- C_t^O is a **limited memory** M_{per} samples per class

Moreover classic deep neural network frame with:

$$\hat{y} = g(h)$$
 where $h = f(x)$

h are the features extracted and g the classification layer

Rigidity vs Plasticity

Other Works
PODNet

Experiments a Results

D (

Two key concepts control incremental learning:

■ Rigidity: ability to resist to variations

■ Plasticity: oppose of rigidity

It is easy to suppose there is a trade-off between the two, we have to optimize in order to reach good performances

Pooled Outputs Distillation (POD) is a set of constraints using the invariance of pooling to intermediate layers (h_i^t features of layer l of task t):

$$L_{POD-width}(h_{l}^{t-1},h_{l}^{t}) = \sum_{c=1}^{C} \sum_{h=1}^{H} \| \sum_{w=1}^{W} h_{l,c,w,h}^{t-1} - \sum_{w=1}^{W} h_{l,c,w,h}^{t} \|^{2}$$

$$L_{POD-height}(h_{l}^{t-1},h_{l}^{t}) = \sum_{c=1}^{C} \sum_{w=1}^{W} \| \sum_{h=1}^{H} h_{l,c,w,h}^{t-1} - \sum_{h=1}^{H} h_{l,c,w,h}^{t} \|^{2}$$

$$L_{POD-spatial}(h_l^{t-1}, h_l^t) = L_{POD-width}(h_l^{t-1}, h_l^t) + L_{POD-height}(h_l^{t-1}, h_l^t)$$

Due to the flattening of the last layer the POD idea must be adjusted:

$$L_{POD-flat}(h_l^{t-1}, h_l^t) = \|h^{t-1} - h^t\|^2$$

Multimodal Classification Layer

Introduction
Other Works

PODNet

Experiments an

Results

References

To fight shift in the distribution of h, the classifiers learns K vectors (modes) for each class:

$$\hat{y}_c = \sum_k s_{c,k} \langle \theta_{c,k}, h \rangle$$
 where $s_{c,k} = \frac{\exp(\langle \theta_{c,k}, h \rangle)}{\sum \exp(\langle \theta_{i,k}, h \rangle)}$

moreover to fight the imbalance of data [2] proposed cosine normalization, so in the end the classification loss become:

$$L_{lsc} = \left[-\log \frac{\exp(\eta(\hat{y}_y - \delta))}{\sum_{y \neq i} \exp \eta \hat{y}_i} \right]_+$$

Distillation Loss

ntroduction Other Work

PODNet

Experiments a

D. C

Putting all together we get:

$$L_{POD-final} = \frac{\lambda_c}{L-1} \sum_{l=1}^{L-1} L_{POD-spatial}(f_l^{t-1}(x), f_l^t(x)) + \lambda_f L_{POD-flat}(f^{t-1}(x), f^t(x))$$

Taking into account the classification loss too, we arrive to the total loss:

$$L_{total} = L_{POD-final} + L_{lcs}$$

- L is the total number of layers
- lacktriangleright λ_c and λ_f act as importance weights for the two POD losses
- the feature of *POD_s patial* are l2 normalized
- [2] suggests to scale pod loss by a factor $\lambda = \sqrt{\frac{N}{T}}$ where N is the number of classes already seen and T the number of classes in the current task

PODNet Architecture

Introduction

PODNet

Experiments an

References

Figure: PODNet Architecture

Experiments Details

Introduction

Other Works

Experiments and Results

Reference

■ Optimizer: SGD with learning rate 0.1 and 0.8 momentum

■ Batch Size: 128

■ Metric: Average Incremental Accuracy (suggested by [3])

	Cifar100	Imagenet(100-1000)
Epochs	160	90
Weight Decay	$5 \cdot 10^{-4}$	$1\cdot 10^{-4}$
(λ_c, λ_f)	(3,1)	(8, 10)

Table: Experiments Settings

Imagenet Results

Introduction Other Works

Experiments and Results

References

	ImageNet100			Imagenet1000		
	50 steps	$25 { m steps}$	$10 { m steps}$	5 steps	10 steps	5 steps
New classes per step	1	2	5	10	50	100
iCaRL* [33]	_	_	59.53	65.04	46.72	51.36
iCaRL [33]	54.97	54.56	60.90	65.56	_	_
BiC [38]	46.49	59.65	65.14	68.97	44.31	45.72
$UCIR (NME)^* [14]$	_	_	66.16	68.43	59.92	61.56
UCIR (NME) [14]	55.44	60.81	65.83	69.07	_	_
$UCIR (CNN)^* [14]$	_	_	68.09	70.47	61.28	64.34
UCIR(CNN) [14]	57.25	62.94	67.82	71.04	_	_
PODNet (CNN)	62.48	68.31	74.33	75.54	64.13	66.95
	\pm 0.59	\pm 2.45	\pm 0.93	\pm 0.26		

Figure: Average Incremental Accuracy on Imagenet datasets

Cifar100

Introduction

Experiments and Results

	CIFAR100				
	$50 { m steps}$	$25 { m steps}$	$10 { m steps}$	$5 { m steps}$	
New classes per step	1	2	5	10	
iCaRL*[33]	_	_	52.57	57.17	
iCaRL	44.20 ± 0.98	50.60 ± 1.06	53.78 ± 1.16	58.08 ± 0.59	
BiC [38]	47.09 ± 1.48	48.96 ± 1.03	53.21 ± 1.01	56.86 ± 0.46	
UCIR(NME)*[14]		_	60.12	63.12	
UCIR (NME) [14]	48.57 ± 0.37	56.82 ± 0.19	60.83 ± 0.70	63.63 ± 0.87	
UCIR(CNN)*[14]			60.18	63.42	
UCIR(CNN) [14]	49.30 ± 0.32	57.57 ± 0.23	61.22 ± 0.69	64.01 ± 0.91	
PODNet (NME)	61.40 ± 0.68	$\textbf{62.71} \pm \textbf{1.26}$	64.03 ± 1.30	$\textbf{64.48} \pm \textbf{1.32}$	
PODNet (CNN)	$\textbf{57.98} \pm \textbf{0.46}$	$\textbf{60.72} \pm \textbf{1.36}$	$\textbf{63.19} \pm \textbf{1.16}$	$\textbf{64.83} \pm \textbf{0.98}$	

Figure: Average Incremental Accuracy on Cifar100 dataset

Remotion POD_{spatial}

Introduction

Other Works

Experiments and Results

References

${\bf Classifier}$	POD-flat	POD-spatial	NME	CNN
Cosine			40.76	37.93
Cosine	✓		48.03	46.73
Cosine		✓	54.32	57.27
Cosine	✓	✓	56.69	55.72
LSC-CE	✓	✓	59.86	57.45
LSC			41.56	40.76
$_{ m LSC}$	✓		53.29	52.98
LSC		✓	$\boldsymbol{61.42}$	57.64
LSC	✓	✓	61.40	57.98

Figure: Average Incremental Accuracy disabling parts of the model

Alternatives to $POD_{spatial}$

ntroduction

Other Work

Experiments and Results

References

Loss	NME	CNN
λ7	F2 00	
None	53.29	52.98
POD-pixels	49.74	52.34
POD-channels	57.21	54.64
POD-gap	58.80	55.95
POD-width	60.92	57.51
POD-height	60.64	57.50
POD-spatial	61.40	57.98
GradCam [5]	54.13	52.48
Perceptual Style [16]	51.01	52.25

Figure: Average Incremental Accuracy changing the distillation method of intermediate layers

Remotion POD_{flat}

Introduction

Otner vvork

Experiments and Results

References

Loss	NME	CNN
\overline{None}	41.56	40.76
POD-pixels	42.21	40.81
POD-channels	55.91	50.34
POD-gap	57.25	53.87
POD-width	61.25	57.51
POD-height	61.24	57.50
POD-spatial	$\boldsymbol{61.42}$	57.64
$\overline{\text{GradCam}}[\overline{5}]$	41.89^{-}	$\overline{42.07}$
Perceptual Style [16]	41.74	40.80

Figure: Effect of the remotion of POD_{flat}

Different Steps

Introduction
Other Works

Experiments and Results

References

(b) 25 steps, 2 classes / step

Figure: Performance of various model changing 'step-size'

Different Memory Size

Introduction Other Works

Experiments and Results

References

M_{per}	5	10	20	50	100	200
iCaRL [33]	16.44	28.57	44.20	48.29	54.10	57.82
BiC [38]	20.84	21.97	47.09	55.01	62.23	67.47
UCIR (NME) [14]	21.81	41.92	48.57	56.09	60.31	64.24
UCIR(CNN) [14]	22.17	42.70	49.30	57.02	61.37	65.99
PODNet (NME)	48.37	57.20	61.40	62.27	63.14	63.63
PODNet (CNN)	35.59	48.54	57.98	$\boldsymbol{63.69}$	$\boldsymbol{66.48}$	$\boldsymbol{67.62}$

Figure: Evaluation on different models changing M_{per}

Conclusion

Introduction Other Works

Experiments and Results

D-f----

To conclude the model suggested by [1] outperform state-of-art architectures thanks to:

- a multimodal classifier avoiding catastrophic forgetting
- a smart pooling method aggregating spatial features at different layers
- a distillation loss solving the rigidity vs plasticity trade-off

Some research ideas could be:

- make a transition to a no-replay memory model
- find a way to select the most 'significant' M_{per} examples
- find a way to weight features at different layers

References

Introduction

Experiments ar

References

- [1] Arthur Douillard et al. *PODNet: Pooled Outputs Distillation for Small-Tasks Incremental Learning*. 2020.
- [2] Saihui Hou et al. "Learning a Unified Classifier Incrementally via Rebalancing". In: 2019.
- [3] Sylvestre-Alvise Rebuffi et al. *iCaRL: Incremental Classifier and Representation Learning*. 2017.
- [4] Da-Wei Zhou et al. "Class-Incremental Learning: A Survey". In: (2024).