Schematic Representation:

Layer 1 (Input layer) Layer 2 (Hidden Layer)

$$Z_{1}^{(2)} = \omega_{11}^{(1)} \times_{1} + \omega_{12}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{3} + \dots + \omega_{1D}^{(1)} \times_{D} + b_{1}^{(1)}$$

$$Z_{1}^{(2)} = \omega_{11}^{(1)} \times_{1} + \omega_{12}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{3} + \dots + \omega_{1D}^{(1)} \times_{D} + b_{1}^{(1)}$$

$$Z_{1}^{(2)} = \omega_{11}^{(1)} \times_{1} + \omega_{12}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{3} + \dots + \omega_{1D}^{(1)} \times_{D} + b_{1}^{(1)}$$

$$Z_{1}^{(2)} = \omega_{11}^{(1)} \times_{1} + \omega_{12}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{3} + \dots + \omega_{1D}^{(1)} \times_{D} + b_{1}^{(1)}$$

$$Z_{1}^{(2)} = \omega_{11}^{(1)} \times_{1} + \omega_{12}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{3} + \dots + \omega_{1D}^{(1)} \times_{D} + b_{1}^{(1)}$$

$$Z_{1}^{(2)} = \omega_{11}^{(1)} \times_{1} + \omega_{12}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{3} + \dots + \omega_{1D}^{(1)} \times_{D} + b_{1}^{(1)}$$

$$Z_{1}^{(2)} = \omega_{11}^{(1)} \times_{1} + \omega_{12}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{3} + \dots + \omega_{1D}^{(1)} \times_{D} + b_{1}^{(1)}$$

$$Z_{1}^{(2)} = \omega_{11}^{(1)} \times_{1} + \omega_{12}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{3} + \dots + \omega_{1D}^{(1)} \times_{D} + b_{1}^{(1)}$$

$$Z_{1}^{(2)} = \omega_{11}^{(1)} \times_{1} + \omega_{12}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{2} + \dots + \omega_{1D}^{(1)} \times_{D} + b_{1}^{(1)}$$

$$Z_{1}^{(2)} = \omega_{11}^{(1)} \times_{1} + \omega_{12}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{2} + \omega_{13}^{(1)} \times_{2} + \dots + \omega_{1D}^{(1)} \times_{D} + \omega_{1D}^{(1)} \times_{$$

output =
$$h_{w,b}(x) = \chi_1^{(3)} = f_{\sigma}(z_1^{(3)})$$

$$W = \begin{bmatrix} w_{11} & w_{12} & \dots & w_{1D} \\ \vdots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots &$$

$$b^{(1)} = \begin{bmatrix} b_1^{(1)} & b_2^{(1)} & \cdots & b_M \end{bmatrix}$$
1xM

$$x^{(2)} = f(\omega^{(1)} \times + b^{(1)})$$

$$h_{w,b}(x) = x^{(3)} = f(w^{(2)}, x^{(2)} + b^{(2)})$$

output =
$$hw_1b(x) = d_1 = f(w_1)d_1 + \dots + w_1m d_1 + b_1$$

where
$$d_M = f(w_{M1} x_1 + w_{M2} x_2 + \cdots + w_{MD} x_D + b_n)$$

In general,

where
$$z^{(2)} = f_{o}(w^{(2)}) + f^{(1)}$$

Sigmoid(
$$\lambda$$
) = $f(x) = \frac{1}{1+e^{-\lambda}}$; $f(x) = f(x) = \frac{e^{\lambda} - e^{\lambda}}{e^{\lambda} + e^{-\lambda}}$

$$\Rightarrow f_{ton}(x) = \frac{e^{x}-1}{e^{x}+1}$$

$$\Rightarrow f_{tan}(x) = \frac{e^{2x}}{e^{2x}+1}$$

$$\Rightarrow f_{tan}(x) = 2\left[\frac{e^{2x}}{e^{2x}+1}\right] - 1$$

$$= 2f_{0}(2x) - 1$$

$$= 2f_{0}(2x) - 1$$

$$= 2f_{0}(2x) - 1$$

Newal Network - 1 with sigmoid Activation:

output =
$$hw_1b(x) = d_1 = f(w_1)d_1 + ... + cw_1m d_m + b_1$$

(1) -> where
$$dm = f_{\sigma}(w_{m1} x_{1} + w_{m2} x_{2} + ... + w_{m0} x_{D} + b_{m})$$

newral Network-2 with tanh Activation: (w,b) (V, c)

(2) -> where
$$d_{M} = f_{tan} \left(V_{m1} \times_{1} + V_{m2} \times_{2} + \cdots + V_{mp} \times_{p} + c_{m} \right)$$

we know that,
$$f_{tan}(x) = 2f_{\sigma}(2x) - 1$$

Consider, (2)

From (1),
$$dm = f_{\sigma}(\omega_{m1} x_{1} + ... + \omega_{mp} x_{p} + b_{m})$$

From (2)

(2)

$$dm = \frac{1}{2} f_{ton}(\omega_{m1} x_{1} + \omega_{m2} x_{2} + ... + b_{m}) + \frac{1}{2}$$

$$\frac{i}{V_{MD}} = K_1 \frac{i}{V_{MD}} + K_2$$
and $\frac{i}{C_{M}} = K_1 \frac{i}{V_{M}} + K_2 = 0$ on.

where VMI,... Vmb are weights in the network-2 and wmi,... wmp are weights in the network-1 After substituting these in output equation, we can see that there exists an equivalent network with hidden unit activation functions given by hyperbolic tangent, which computes exactly the same function as their of with Sigmoid activation function. END OF Question 1