Теория и реализация языков программирования.

Задание 1: регулярные языки и автоматы

Сергей Володин, 272 гр.

задано 2013.09.04

Задача 1

- 1. $\{a, aa\} \cdot \{b, bb\} \stackrel{\text{def}}{=} \{x \cdot y | x \in \{a, aa\}, y \in \{b, bb\}\} = \{ab, abb, aab, aabb\}.$
- 2. $\{a, aa\} + \{b, bb\} \stackrel{\text{def}}{=} \{x | x \in \{a, aa\} \lor x \in \{b, bb\}\} = \{a, aa, b, bb\}.$
- 3. $\{a, aa\} \times \{b, bb\} \stackrel{\text{def}}{\equiv} \{(x; y) | x \in \{a, aa\}, y \in \{b, bb\}\} = \{(a; b), (a; bb), (aa; b), (aa; bb)\}.$
- 4. Так как $(A|B)\supseteq A,\ X\stackrel{\mathrm{def}}{=}\{((aa|b)^*(a|bb)^*)^*\}\supseteq\{(b^*a^*)^*\}.$ Также $b^*a^*\supseteq(a|b),$ поэтому $X\supseteq\{(a|b)^*\}.$ Но $\{(a|b)^*\}=\Sigma^*,$
- $5. \ \ Z \stackrel{\text{def}}{=} \underbrace{\{a^{3n}|\, n>0\}}_{\mathbf{X}} \cap \underbrace{\{a^{5n+1}|n\geq 0\}}_{\mathbf{Y}}^*. \ \ Y \underset{n=0}{\supseteq} \{a\}, \ Y^* \supseteq \{a\}^* \supseteq \{a^{3n}|n>0\} = X, \ \text{поэтому} \ Z = X = \{a^{3n}|\, n>0\}.$
- 6. $\varnothing \cap \{\varepsilon\} \equiv \{\} \cap \{\varepsilon\} = \varnothing$.

Задача 2

 $L=\Sigma^*\setminus\underbrace{\{(0^*110^*)^*\}}_{\mathrm{L}_-}$. Для слова w из L_- есть два варианта, в соответствии с количеством повторений N в последней

звездочке:

- a. $(N=0 \text{ pas}) w = \varepsilon$
- b. (N>0) Докажем по индукции, что $w-cmpo\kappa u$ из четного количества «1», отделенные друг от друга нулями, либо концом/началом слова, причем в слове хотя бы одна единица есть.

Для N=1 это верно: $w_1\in\{0^*110^*\}\Rightarrow w_1=\underbrace{0\ldots0}_{n_1}11\underbrace{0\ldots0}_{n_2},\;n_1$ и $n_2\geqslant0$. Строка из двух единиц отделена нулями при $n_1,n_2>0$, либо концом/началом слова при $n_1=0$, либо $n_2=0$.

Пусть верно для $N \leqslant n$. Докажем для n+1: $w_{n+1} = w_n \cdot w, w \in \{0^*110^*\} = w_n \underbrace{0 \dots 0}_{n_1} 11 \underbrace{0 \dots 0}_{n_2}$. Рассмотрим различные

случаи: w_n может заканчиваться на 0, либо на 1; $n_1=0$, либо $n_1>0$:

- 1. $(0, n_1 = 0)$ Добавленная строка из единиц отделена слева нулями из w_n .
- 2. $(0, n_1 > 0)$ Добавленная строка из единиц отделена слева нулями из w.
- 3. $(1, n_1 = 0)$ Получена строка более, чем из двух единиц, но она четной длины (т.к. строка единиц из w_n имеет четную длину по предположению индукции, и 2 — четно).
- 4. $(1, n_1 > 0)$ Добавленная строка из единиц отделена слева нулями из w. Строка единиц из w_n отделена теми же нулями.

Очевидно, что под это определение не попадают слова не из L_- (можно построением найти вхождения PB: найдем все строки из единиц в слове. Рассмотрим их по-очереди, с первой. Если строка длины 2, то единицы и все нули справа и слева — вхождение выражения. Если длина больше 2, то нули слева от первой пары вместе с ней — вхождение, нули справа от последней пары вместе с ней — вхождение. Четное количество единиц между этими парами (если есть) несколько вхождений. Из этого следует, что слово из L_{-}).

Таким образом, L — непустые слова, состоящие либо только из нулей, либо из строк единиц, отделенных друг от друга нулями или началом/концом слова, но длина хотя бы одной строки нечетна. Иными словами, непустое слово w:

- 1. либо состоит из нулей,
- 2. либо в нем присутствует строка из единиц нечетной длины, отделенная
 - а. нулями
 - в. началом слова слева и нулями справа
 - с. началом слова слева и концом слова справа
 - d. нулями слева и концом слова справа.

Тогда $L = \{(\underbrace{00^*}_1 | \underbrace{(0|1)^*01(11)^*0(0|1)^*}_{2a} | \underbrace{1(11)^*0(0|1)^*}_{2b} | \underbrace{1(11)^*}_{2c} | \underbrace{(0|1)^*01(11)^*}_{2d} \}$

Задача 3

1. Конкатенация

В результате будет порождено слово c = ab.

Если $N_{\alpha} = F$, то a — его префикс, так как слово a всегда непустое. Тогда $f = f_{\alpha}$. Иначе, если $N_{\alpha} = T$, либо a, либо b (в случае $a = \varepsilon$) — префикс c, и $f = f_{\alpha} \cup f_{\beta}$. Аналогично, если $N_{\beta} = F$, то b — суффикс c, откуда $l = l_{\beta}$. Иначе $l = l_{\alpha} \cup l_{\beta}$. Всё выражение может быть пустым тогда и только тогда, когда α и β могут быть пустыми. Результат в таблице ниже:

2. Объединение

В результате будет порождено слово c.

Во всех случаях c может начинаться как с символов, порожденных первым выражением, так и с символов, порожденных вторым, и ни с каких других. Тогда $f = f_{\alpha} \cup f_{\beta}$, $l = l_{\alpha} \cup l_{\beta}$, Всё выражение не может быть пустым тогда и только тогда, когда α и β не могут быть пустыми. Результат в таблице ниже:

Задача 4

- $2.~\mathcal{A}$ детерминированный, так как из каждого состояния есть только один переход с определенным символом.
 - \mathcal{B} недетерминированный, так как из состояния q_1 есть два перехода по символу 0: в q_0 и q_2 .
- 3. $(q_0, 101011) \vdash (q_1, 01011) \vdash (q_2, 1011) \vdash (q_2, 011) \vdash (q_1, 11) \vdash (q_0, 1) \vdash (q_1, \varepsilon)$. Принимает, так как $q_1 \in F$.
- 4. Да: $(q_0, 01001) \vdash (q_0, 1001) \vdash (q_1, 001) \vdash (q_0, 01) \vdash (q_0, 1) \vdash (q_1, \varepsilon)$ и $q_1 \in F$.
- 5. \mathcal{A} не примет слово 0: $(q_0,0) \vdash (q_0,\varepsilon)$ и $q_0 \notin F$, но примет 10011: $(q_0,10011) \vdash (q_1,0011) \vdash (q_2,011) \vdash (q_1,11) \vdash (q_0,1) \vdash (q_1,\varepsilon)$ и $q_1 \in F$.

 \mathcal{B} не примет пустое слово, так как $q_0 \notin F$, но примет слово 100: $(q_0, 100) \vdash (q_1, 00) \vdash (q_2, 0) \vdash (q_1, \varepsilon)$.

Задача 5

- 1. Докажем, что L=T:
 - 1. $(L \subseteq T)$. Если $w \in L$, то w получено из одного из слов ε, b, bb применением правила (2) $N(w) \geqslant 0$ раз. Действительно, $w \in L \Rightarrow \begin{bmatrix} (1) & w \in \{\varepsilon, b, bb\} \\ 0 & 0 \end{bmatrix}$ $N(w) \leq \infty$ так как в случае (2) $|x| \leq |w|$

 $w \in L \Rightarrow \left[\begin{array}{ccc} (1) & w \in \{\varepsilon, b, bb\} & N(w) = 0 \\ (2) & w \in \{ax, bax, bbax\}, & N(w) = 1 + N(x) \end{array} \right]$. $N(w) < \infty$, так как в случае (2) |x| < |w|. Таким образова опросово опросово образова функция $N(w) : L \to \mathbb{N} \cup \{0\}$, комическое применения провеждения (2) им.

Таким образом, определена функция $N(w): L \longrightarrow \mathbb{N} \cup \{0\}$ — количество применений правила (2) для слова w. Заметим, что значение этой функции также равно количеству букв a в слове w, так как правило (2) добавляет одну букву a. Индукцией по N докажем, что $L \subseteq T$:

- а. (N=0) $w \in \{\varepsilon, b, bb\}$. В w нет трех букв b подряд, поэтому $w \in T$.
- b. (доказано для N=n-1, докажем для N=n) $w \in \{ax, bax, bbax\}$, причем N(x)=n-1, так как в w на одну букву a больше, чем в x. Поэтому по предположению индукции в x нет трех букв b подряд. Заметим, что x отделено буквой a от ε , b или bb, поэтому в w нет трех букв b подряд, отсюда $w \in T$.
- 2. $(T \subseteq L)$. В слове $w \in T$ M(w) букв a. Индукцией по m докажем, что $w \in L$:
 - а. (M=0) Букв a нет $\Rightarrow w$ состоит из букв b, причем не более, чем из двух. Тогда $w \in \{\varepsilon, b, bb\} \subset L$.
 - b. (доказано для M=m-1, докажем для M=m). Разобьем $w=x_1ax_2$, где в x_1 нет букв a (можно сделать, так как случай, где в w нет букв a разобран выше). В слове x_2 будет m-1 букв a, и, по предположению индукции, $x_2 \in L$. В x_1 только буквы b, поэтому $x_1 \in \{\varepsilon, b, bb\}$. Таким образом, $w \in \{ax_2, bax_2, bbax_2\}$, и $x_2 \in L$. По правилу (2) получаем $w \in L$
- 2. Докажем, что следующий автомат ${\cal A}$ распознает T:

Определим $N(w): T \longrightarrow \mathbb{N} \cup \{0\}$ — количество букв a в слове $w \in T$. Индукцией по N(w) докажем, что автомат npuhumaem w:

- а. (N=0) слово состоит из букв b. Тогда $w \in T \Rightarrow$ в w не больше 2 букв b подряд $\Rightarrow w \in \{\varepsilon, b, bb\}$. Запишем цепочки конфигураций для этих слов:
 - 1. $(w = \varepsilon) (q_0, \varepsilon)$. q_0 принимающее \Rightarrow автомат принимает w.
 - 2. (w=b) $(q_0,b)\vdash (q_1,\varepsilon)$. q_1 принимающее \Rightarrow автомат принимает w.
 - 3. (w = bb) $(q_0, bb) \vdash (q_1, b) \vdash (q_2, \varepsilon)$. q_2 принимающее \Rightarrow автомат принимает w.
- b. (доказано для N=m-1, докажем для N=m) Разделим w по последнему символу a (это можно сделать, так как случай, где в w нет символов a разобран выше): $w=x_1ax_2$, в x_2 нет символов a. Тогда $N(x_1)=m-1$, откуда следует, что автомат принимает x_1 . Поэтому после обработки x_1 он оказывается в одном из состояний. Тогда после обработки следующего символа, a, он окажется в состоянии q_0 , так как $\forall q \in Q \hookrightarrow ((q,a),q_0) \in \delta$, где обозначения Q,δ стандартные. x_2 состоит из букв b, поэтому $x_2 \in \{\varepsilon,b,bb\}$. Поскольку автомат находится в состоянии q_0 , цепочка конфигураций после конфигурации (q_0,x_2) будет такой же, как в базе индукции.

Этим доказано, что автомат принимает T, то есть, $L(A) \supseteq T$.

Теперь докажем, что $L(\mathcal{A}) \subseteq T \Leftrightarrow w \in L(\mathcal{A}) \Rightarrow w \in T \Leftrightarrow w \notin T \Rightarrow w \notin L(\mathcal{A})$.

 $w \notin T \Rightarrow$ в w есть больше двух букв b подряд. Найдем первый символ b в w, после которого идет больше двух: $w = x_1 \underbrace{b \dots b}_{x_2}, x_1$ не заканчивается на $b, x_1 \in T$ (так как там не больше двух b подряд), $n \geqslant 3$.

 $x_1 \in T \Rightarrow$ после обработки x_1 автомат будет в одном из состояний. Также x_1 не заканчивается на $b \Rightarrow$ либо заканчивается на a, либо $x_1 = \varepsilon$. В любом случае, этим состоянием будет q_0 . Тогда дальнейшая цепочка конфигураций такая: $(q_0, b^n x_2) \vdash (q_1, b^{n-1} x_2) \vdash (q_2, b^{n-2} x_2)$. Но перехода из q_2 по b нет, поэтому автомат останавливается (и не принимает слово), т.е. $w \notin L(\mathcal{A})$