

Prüfbericht-Nr.: 17040153 004 Auftrags-Nr.: Seite 1 von 19 164013996 Test Report No.: Order No.: Page 1 of 19 Kunden-Referenz-Nr.: N/A Auftragsdatum: 07.05.2014 Client Reference No.: Order date: Auftraggeber: KEEN HIGH TECHNOLOGIES LTD., Block A1 & A2, Ze Da Li Industrial Park, Client: Tangwei Area, Fuyong, Bao'an, Shenzhen, Guangdong, China Prüfgegenstand: **Tablet** Test item: Bezeichnung / Typ-Nr.: NS-15AT08 T8240RK-88T Identification / Type No.: Auftrags-Inhalt: FCC/IC Certification Order content: CFR Title 47 Part 2 Subpart J Section 2.1093 Prüfgrundlage: FCC OET Bulletin 65 Supplement C (Edition 01-01) Test specification: IEEE 1528-2003 ANSI/IEEE C95.1-1992 **RSS-102 Issue 4 March 2010** Wareneingangsdatum: 07.05.2014 Date of receipt: Prüfmuster-Nr.: A000070974 004 Test sample No.: Prüfzeitraum: 14.05.2014 Testing period: Ort der Prüfung: Shenzhen Academy of Metrology and Quality Inspection Place of testing: Prüflaboratorium: TÜV Rheinland (Shenzhen) Co., Ltd. Testing laboratory: Prüfergebnis*: **Pass** Test result*: geprüft von I tested by: kontrolliert von I reviewed by: TomWang 06-06-2014 Tom Wang/Assistant Project Manager 06-06-2014 Sam Lin/Technical Certifier Unterschrift Name / Stellung Datum Name / Stellung Datum Unterschrift Name / Position Name / Position Date Signature Date Signature Sonstiges I Other:

Zustand des Prüfgegenstandes bei Anlieferung: Prüfmuster vollständig und unbeschädigt Condition of the test item at delivery: Test item complete and undamaged

* Legende: 1 = sehr gut 2 = gut 3 = befriedigend 4 = ausreichend 5 = mangelhaft P(ass) = entspricht o.g. Prüfgrundlage(n) F(ail) = entspricht nicht o.g. Prüfgrundlage(n) N/T = nicht getestet N/A = nicht anwendbar Legend: 1 = very good 2 = good3 = satisfactory 4 = sufficient 5 = poorP(ass) = passed a.m. test specification(s) F(ail) = failed a.m. test specification(s) N/A = not applicable N/T = not tested

Dieser Prüfbericht bezieht sich nur auf das o.g. Prüfmuster und darf ohne Genehmigung der Prüfstelle nicht auszugsweise vervielfältigt werden. Dieser Bericht berechtigt nicht zur Verwendung eines Prüfzeichens.

This test report only relates to the a.m. test sample. Without permission of the test center this test report is not permitted to be duplicated in extracts. This test report does not entitle to carry any test mark.

 Prüfbericht - Nr.:
 17033717 004
 Seite 2 von 19

 Test Report No.
 Page 2 of 19

STATEMENT OF COMPLIANCE

TEST ITEM	SPECIFICATION	RESULT
Specific Absorption Rate - Wi-Fi 802.11 b/g/n - 2.4GHz Band	OET Bulletin 65 Supplement C (Edition 01-01): Evaluating compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields	PASS

This device complies with Specific Absorption Rate (SAR) for general population/uncontrolled exposure limits (1.6W/kg) specified in CFR Title 47 Part 2 Subpart J Section 2.1093 and ANSI/IEEE C95.1-1992.

This device have been testd in accordance with the measurement methods and procedure specified in IEEE 1528-2003 and FCC OET Bulletin 65 Supplement C (edition 01-01).

Refer to the maximum results of Specific Absorption Rate (SAR) durning testing as below.

FREQUENCY BAND	EXPOSURE POSITION		HIGHEST REPORTED SAR VALUE (W/KG)
802.11 b/g/n - 2.4GHz Band	Body	DTS	0.76

 Prüfbericht - Nr.:
 17033717 004
 Seite 3 von 19

 Test Report No.
 Page 3 of 19

Contents

1.	GENERAL REMARKS	4
1.1	COMPLEMENTARY MATERIALS	4
2.	TEST SITES	4
2.1	TEST FACILITIES	4
2.2	LIST OF TEST AND MEASUREMENT INSTRUMENTS	5
3.	GENERAL PRODUCT INFORMATION	6
3.1	PRODUCT FUNCTION AND INTENDED USE	6
3.2	RATINGS AND SYSTEM DETAILS	6
3.3	INDEPENDENT OPERATION MODES	8
3.4	SUBMITTED DOCUMENTS	8
4.	TEST SET-UP AND OPERATION MODES	9
4.1	PRINCIPLE OF CONFIGURATION SELECTION	9
4.2	SPECIFIC ABSORPTION RATE (SAR) SYSTEM CHECK	9
4.3	EXPOSURE POSITIONS CONSIDERATION	10
4.4	TEST OPERATION AND TEST SOFTWARE	11
4.5	SPECIAL ACCESSORIES AND AUXILIARY EQUIPMENT	11
5.	TEST RESULTS	12
5.1	HUAMAN EXPOSURE TO RADIOFREQUENCY ELECTROMAGNETIC FIELDS	12
5.2 5.2. 5.2.		15
6.	PHOTOGRAPHS OF THE TEST SET-UP	17
7.	LIST OF TABLES	19
8	LIST OF PHOTOGRAPHS	10

 Prüfbericht - Nr.:
 17033717 004
 Seite 4 von 19

 Test Report No.
 Page 4 of 19

1. General Remarks

1.1 Complementary Materials

All attachments are integral parts of this test report. This applies especially to the following appendix:

Appendix A: System Performance Check Appendix B: Test Plots of SAR Measurement

Appendix C: Calibration Certificate

2. Test Sites

2.1 Test Facilities

Shenzhen Academy of Metrology and Quality Inspection Bldg. Metrology and Quality Inspection, Longzhu Road, Shenzhen, Guangdong, China

The Laboratory is listed in the United States of American Federal Communications Commission (FCC), and the registration number are 446246 806614 994606 (semi anechoic chamber).

The Laboratory is registered to perform emission tests with Industry Canada (IC), and the registration number is IC4174.

The tests at the test site have been conducted under the supervision of a TÜV engineer.

Prüfbericht - Nr.: 17033717 004
Test Report No.

Seite 5 von 19 Page 5 of 19

2.2 List of Test and Measurement Instruments

Table 1: List of Test and Measurement Equipment

Kind of Equipment	Manufacturer	Туре	Calibrated until
SAR test system	SPEAG	TX60L	
SAR Probe	SPEAG	ES3DV3	2014.10.31
System Validation	SPEAG	D835V2	2014.09.24
Dipole,835MHz	SPEAG	D635 V Z	2014.09.24
System Validation	SPEAG	D1900V2	2014.09.21
Dipole,1900MHz	SPEAG	D1900V2	2014.09.21
System Validation	SPEAG	D2450V2	2014.10.18
Dipole,2450MHz	SPEAG	D2450V2	2014.10.16
Dielectric Probe Kit	SPEAG	85070E	
Dual-directional coupler,0.10-2.0GHz	Agilent	778D	
Dual-directional coupler,2.00-18GHz	Agilent	772D	
Coaxial attenuator	Agilent	8491A	
Power Amplifier	Agilent	ZHL42W	
Signal Generator	R&S	SMR20	2015.01.16
Power Meter	R&S	NRVD	2015.01.19
Call Tester	R&S	CMU 200	2015.03.30
Data Acquisition Electronics	SPEAG	DAE4	2015.10.30
Software	SPEAG	DASY52	
Network Analyzer	Agilent	E5071C	2015.04.24

 Prüfbericht - Nr.:
 17033717 004
 Seite 6 von 19

 Test Report No.
 Page 6 of 19

3. General Product Information

3.1 Product Function and Intended Use

The EUT is a 8" tablet with Wi-Fi & Bluetooth function. For details refer to the User Manual and Circuit Diagram.

3.2 Ratings and System Details

Table 2: Technical Specification

Device type:	Portable device	е			
EUT Name:	Tablet				
Type Identification:	NS-15AT08 T	NS-15AT08 T8240RK-88T			
FCC ID:	XUZNS-15ATO)8			
IC number:	10558A-NS15	AT08			
Operating mode(s) / WiFi:	802.11b	802.11g	802.11n		
Test modulation	DSSS	OFDM	OFDM		
Transmit Frequency Range (MHz):	2412-2462	2412-2462	2412-2462		
Maximum tune-up average output power (dBm):	16	15	14		
Operating mode(s) / Bluetooth:	Bluetooth 4.0				
Test modulation	GFSK, π/4DQI	PSK, 8DPSK			
Transmit Frequency Range (MHz):	2402-2480				
Maximum tune-up average output power (dBm):	10				
Antenna type:	Integrated antenna				
Antenna Gain	2dBi				
Battery options:	DC 3.7V	DC 3.7V			

Prüfbericht - Nr.: 17033717 004

Seite 7 von 19 Page 7 of 19

Test Report No.

Table 3: List of WLAN Channel of 802.11b/g/n mode

802.11b		802.11g		802.11	n (HT20)
Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)	Channel Number	Frequency (MHz)
1	2412	1	2412	1	2412
2	2417	2	2417	2	2417
3	2422	3	2422	3	2422
4	2427	4	2427	4	2427
5	2432	5	2432	5	2432
6	2437	6	2437	6	2437
7	2442	7	2442	7	2442
8	2447	8	2447	8	2447
9	2452	9	2452	9	2452
10	2457	10	2457	10	2457
11	2462	11	2462	11	2462

Table 4: List of Bluetooth Channel (BDR & EDR mode)

Channel Number	Frequency (MHz)		Frequency (MHz)		Frequency (MHz)	Channel Number	Frequency (MHz)
0	2402.00	20	2442.00	40	2442.00	60	2462.00
1	2403.00	21	2423.00	41	2443.00	61	2463.00
2	2404.00	22	2424.00	42	2444.00	62	2464.00
3	2405.00	23	2425.00	43	2445.00	63	2465.00
4	2406.00	24	2426.00	44	2446.00	64	2466.00
5	2407.00	25	2427.00	45	2447.00	65	2467.00
6	2408.00	26	2428.00	46	2448.00	66	2468.00
7	2409.00	27	2429.00	47	2449.00	67	2469.00
8	2410.00	28	2430.00	48	2450.00	68	2470.00
9	2411.00	29	2431.00	49	2451.00	69	2471.00
10	2412.00	30	2432.00	50	2452.00	70	2472.00
11	2413.00	31	2433.00	51	2453.00	71	2473.00
12	2414.00	32	2434.00	52	2454.00	72	2474.00
13	2415.00	33	2435.00	53	2455.00	73	2475.00
14	2416.00	34	2436.00	54	2456.00	74	2476.00
15	2417.00	35	2437.00	55	2457.00	75	2477.00
16	2418.00	36	2438.00	56	2458.00	76	2478.00
17	2419.00	37	2439.00	57	2459.00	77	2479.00
18	2420.00	38	2440.00	58	2460.00	78	2480.00
19	2421.00	39	2441.00	59	2461.00		

Produkte

Products

 Prüfbericht - Nr.:
 17033717 004
 Seite 8 von 19

 Test Report No.
 Page 8 of 19

Table 5: List of Bluetooth Channel (LE mode)

Channel Number	Frequency (MHz)		Frequency (MHz)		Frequency (MHz)		Frequency (MHz)
0	2402.00	10	2422.00	20	2442.00	30	2462.00
1	2404.00	11	2424.00	21	2444.00	31	2464.00
2	2406.00	12	2426.00	22	2446.00	32	2466.00
3	2408.00	13	2428.00	23	2448.00	33	2468.00
4	2410.00	14	2430.00	24	2450.00	34	2470.00
5	2412.00	15	2432.00	25	2452.00	35	2472.00
6	2414.00	16	2434.00	26	2454.00	36	2474.00
7	2416.00	17	2436.00	27	2456.00	37	2476.00
8	2418.00	18	2438.00	28	2458.00	38	2478.00
9	2420.00	19	2440.00	29	2460.00	39	2480.00

3.3 Independent Operation Modes

The basic operation modes are:

- A. WiFi transmitting
 - 1. 802.11b
 - i. CH1
 - ii. CH6
 - iii. CH11
 - 2. 802.11g
 - i. CH1
 - ii. CH6
 - iii. CH11
- B. Off

3.4 Submitted Documents

- Bill of Material
- Constructional Drawing
- PCB Layout
- Photo Document

- Circuit Diagram
- Instruction Manual
- Rating Label

 Prüfbericht - Nr.:
 17033717 004
 Seite 9 von 19

 Test Report No.
 Page 9 of 19

4. Test Set-up and Operation Modes

4.1 Principle of Configuration Selection

The EUT is commanded to operate at maximum transmitting power. The EUT shall use its internal transmitter. The antenna, battery and accessories shall be those specified by the manufacturer. The EUT battery must be fully charged and checked periodically during the test to ascertain uniform power output.

Table 6: Configuration of EUT

Operation mode	Frequency	Frequency Modulation		est Chann	Power Control	
Operation mode	Range (MHz)	iviodulation	Low	Middle	High	Level
802.11b/g/n	2412-2462	DSSS, OFDM	CH1	CH6	CH11	Test software was
Bluetooth (BDR & EDR mode)	2402-2480	FHSS	CH0	CH39	CH78	used to configure the EUT to transmit at maximum output
Bluetooth (LE mode)	2402-2480	GFSK	CH0	CH19	CH39	power

4.2 Specific Absorption Rate (SAR) System Check

Dielectric parameters of the tissue simulating liquid were verified prior to the SAR evaluation using the dielectric proble kit and the network analyzer.

A system check measurement was made following the determination of the dielectric parameters of the tissue simulating liquid, using the dipole validation kit. A power level of 250 mW for 2.4GHz band as supplied to the dipole antenna, which was placed under the flat section of the twin SAM phantom. The system check results (dielectric parameters and SAR values) are given in the following table.

Table 7: System Check Results of Dielectric Performance of Tissue Simulating Liquid

Llood Target	Target Ti	Measu	Liquid			
Used Target Frequency / Position	ε _r (+/-5%)	σ (S/m) (+/-5%)	٤r	σ (S/m)	Temp. (°C)	
2450 MHz / Body	52.70	1.95	51.4	1.98	22	
ε_r = Relative permittivity, σ = Conductivity						

Table 8: System Check Results of System Verification

System Check	Target SAR Value (1W) (+/-5%)	Measured SAR Value (Normalized to 1W)	
	1-g (W/kg)	1-g (W/kg)	
2450 MHz / Body	50.8	48.8	

 Prüfbericht - Nr.:
 17033717 004
 Seite 10 von 19

 Test Report No.
 Page 10 of 19

4.3 Exposure Positions Consideration

Remark: the diagonal length of EUT is more than 20cm, hence the test was applied on the rear side & top side only.

 Prüfbericht - Nr.:
 17033717 004
 Seite 11 von 19

 Test Report No.
 Page 11 of 19

4.4 Test Operation and Test Software

Test operation refers to test setup in chapter 5.

A communication link is set up with the test mode software for WiFi mode test. During the test, at the each test frequency channel, the EUT is operated at the RF continuous emission mode.

802.11 b/g/n operating modes are tested independently according to the service requirements in each frquency band.802.11b/g/n modes are tested on channel 1, 6, 11. However, if output power reduction is necessary for channels 1 and/or 11 to meet restricted band requirements the highest output channel closest to each of these channels must be tested instead.

SAR is not required for 802.11n when the maximum average output power is less than ½ dB higher than that measured on the corresponding 802.11b channels.

Each channel should be tested at the lowest data rate, and repeated SAR measurement is required only when the measured SAR is ≥ 0.8 W/kg.

For each frequency band testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than ½ dB higher than those measured at the lowest data rate.

4.5 Special Accessories and Auxiliary Equipment

None.

Produkte

Products

 Prüfbericht - Nr.:
 17033717 004
 Seite 12 von 19

 Test Report No.
 Page 12 of 19

5. Test Results

5.1 Huaman Exposure to Radiofrequency Electromagnetic Fields

RESULT: Passed

Date of testing : 2014-05-14

Test standard : CFR Title 47 Part 2 Subpart J Section 2.1093

ANSI/IEEE C95.1-1992

IEEE 1528-2003

FCC OET Bulletin 65 Suppplement C (Edition 01-01)

FCC KDB Publication : KDB 447498 D01 v05r01

KDB 248227 D01 v01r02 KDB 616217 D04 v01r01 KDB 865664 D01 v01r01

Limits : 1.6W/kg

Test setup

Operation mode : A
Ambient temperature : 22°C
Relative humidity : 60%
Atmospheric pressure : 101.0kPa

Table 9: Conducted Power of 802.11b

802.11b Average Power (dBm)						
Channel	Frequency(MHz)	Data Rate (bps)	Data Rate (bps)			
		1M bps	2M bps	5.5M bps	11M bps	
CH 01	2,412	12.58	12.72	14.23	14.47	
CH 06	2,437	12.53	12.76	14.37	14.53	
CH 11	2,462	12.69	12.76	14.40	14.67	

Table 10: Conducted Power of 802.11g

802.11g Average Power (dBm)										
Channel	Frequency(MHz)	Data Rate (Data Rate (bps)							
		6M bps	9M bps	12M bps	24M bps	36M bps	48M bps	54M bps		
CH 01	2,412	12.06	12.16	12.39	12.95	12.99	13.04	13.14		
CH 06	2,437	12.44	12.46	12.63	13.30	13.31	13.29	13.37		
CH 11	2,462	12.35	12.50	12.75	13.46	13.39	13.48	13.52		

 Prüfbericht - Nr.:
 17033717 004
 Seite 13 von 19

 Test Report No.
 Page 13 of 19

Table 11: Conducted Power of 802.11n

802.11n-HT20 Average Power (dBm)										
Channel	Frequency(M	Data Rate	Data Rate (bps)							
	Hz)	MCS0	MCS1	MCS2	MCS3	MCS4	MCS5	MCS6	MCS7	
CH 01	2,412	10.52	10.63	10.71	11.26	11.42	11.45	11.50	11.54	
CH 06	2,437	10.79	11.04	11.15	11.59	11.64	11.67	11.76	11.82	
CH 11	2,462	10.92	11.19	11.24	11.79	11.82	11.85	11.89	11.91	

Remark:

- 1. Per KDB 248227 D01 v01r02, choose the highest output power channel to test SAR and determine further SAR exclusion.
- 2. For each frequency band, testing at higher data rates and higher order modulations is not required when the maximum average output power for each of these configurations is less than 1/4dB higher than those measured at the lowest data rate. 2.4GHz WLAN SAR was tested on 802.11b 11Mbps.
- 3. Per KDB 248227 D01 v01r02, 11g, 11n-HT20 and 11n-HT40 output power is less than 1/4dB higher than 11b mode, thus the SAR can be excluded.

Table 12: Test result of Peak Output Power of Buletooth (BDR mode)

Channel	Channel Frequency	Peak Output Power	Limit
Onamici	(MHz)	(dBm)	(dBm)
Low Channel	2402	-4.32	21
Middle Channel	2441	-3.83	21
High Channel	2480	-3.80	21

Table 13: Test result of Peak Output Power of Bluetooth (EDR mode)

Channel	Channel Frequency	Peak Output Power	Limit
Ghannei	(MHz)	(dBm)	(dBm)
Low Channel	2402	-4.25	21
Middle Channel	2441	-3.76	21
High Channel	2480	-3.73	21

Table 14: Test result of Peak Output Power of Bluetooth (LE mode)

Channel	Channel Frequency	Peak Output Power	Limit
Griannei	(MHz)	(dBm)	(dBm)
Low Channel	2402	5.61	30
Middle Channel	2440	5.97	30
High Channel	2480	5.88	30

 Prüfbericht - Nr.:
 17033717 004
 Seite 14 von 19

 Test Report No.
 Page 14 of 19

According to KDB 447498 D01 v05r01, the 1-g and 10-g SAR test exclusion thresholds for 100 MHz to 6 GHz at test separation distances \leq 50mm are determined by: [(max. power of channel, including tune-up tolerance, mW)/(min.test separation distance, mm)]*[$\sqrt{f_{\text{(GHz)}}}$] \leq 3.0 for 1-g SAR and \leq 7.5 for 10-g extremity SAR

The maximum output power of Bluetooth is 5.97dBm (3.95mW), and the minimum separation distance is 5mm, hence the exclusion thresholds is 1.23 < 3.0, therefore RF exposure evaluation is not required for Bluetooth.

Table 15: Test result of SAR Values

Band	Mode	Test Position	Channel	Freq. (MHz)	Average Power (dBm)	Tune-Up Limit (dBm)	Scaling Factor	Measured SAR (W/kg)	Reported SAR (W/kg)
WIFI 2.4G	11b	Front	6	2437	14.53	15	1.114	0.682	0.760
WIFI 2.4G	11b	Front	1	2412	14.47	15	1.130	0.392	0.443
WIFI 2.4G	11b	Front	11	2462	14.67	15	1.079	0.621	0.670
WIFI 2.4G	11b	Back	6	2437	14.53	15	1.114	0.226	0.252
WIFI 2.4G	11b	Тор	6	2437	14.53	15	1.114	0.501	0.558

Remark:

1. Per KDB 447498 D01v05, the reported SAR is the measured SAR value adjusted for maximum tune-up tolerance.

Scaling Factor = tune-up limit power (mW) / EUT RF power (mW), where tune-up limit is the maximum rated power among all production units.

Reported SAR(W/kg)= Measured SAR(W/kg)* Scaling Factor

- 2. Per KDB 447498 D01v05, for each exposure position, if the mid channel or highest output channel reported SAR ≤0.8W/kg, other channels SAR testing are not necessary
- 3. Per KDB 941225 D06v01r01, when the same wireless mode and device transmission configurations are required for testing body-worn accessories and hotspot mode, it is not necessary to test body-worn accessory SAR for the same device orientation if the test separation distance for hotspot mode is more conservative than that used for body-worn
- 4. According to KDB 865664 D01v01, for each frequency band, repeated SAR measurement is required only when the measured SAR is ≥0.8W/kg.Measured SAR of all frequency band are lower than 0.8W/kg, repeated SAR is not required.

Refer to attached Appendix B for details of test results.

 Prüfbericht - Nr.:
 17033717 004
 Seite 15 von 19

 Test Report No.
 Page 15 of 19

5.2 Measurement Uncertainty

5.2.1 Uncertainty for SAR Test

Uncertainty Budget of DASY for frequency range 300 MHz to 3 GHz

Uncertainty Component	Tol. (%)	Prob Dist.	Div	ci (1g)	ci.ui(%) (1g)	vi
Measurement System					\ J/	
Probe Calibration	±5.9	N	1	1	±5.9	∞
Axial Isotropy	±4.7	R	$\sqrt{3}$	0.7	±1.9	∞
Hemispherical Isotropy	±9.6	R	$\sqrt{3}$	0.7	±3.9	∞
Boundary Effect	±1.0	R	$\sqrt{3}$	1	±0.6	∞
Linearity	±4.7	R	$\sqrt{3}$	1	±2.7	∞
System Detection Limits	±1.0	R	$\sqrt{3}$	1	±0.6	∞
Readout Electronics	±0.3	N	1	1	±0.3	∞
Response Time	±0.8	R	$\sqrt{3}$	1	±0.5	∞
Integration Time	±2.6	R	$\sqrt{3}$	1	±1.5	∞
RF Ambient Conditions - Noise	±3.0	R	$\sqrt{3}$	1	±1.7	∞
RF Ambient Conditions - Reflections	±3.0	R	$\sqrt{3}$	1	±1.7	∞
Probe Positioner Mechanical Tolerance	±0.4	R	$\sqrt{3}$	1	±0.2	∞
Probe Positioning with respect to Phantom Shell	±2.9	R	$\sqrt{3}$	1	±1.7	∞
Extrapolation, interpolation and Integration Algorithms for Max. SAR Evaluation	±1.0	R	$\sqrt{3}$	1	±0.6	∞
Test Sample Related						
Test Sample Positioning	±2.9	N	1	1	±2.9	145
Device Holder Uncertainty	±3.6	N	1	1	±3.6	5
Output Power Variation - SAR drift measurement	±5.0	R	$\sqrt{3}$	1	±2.9	∞
Phantom and Tissue Parameters						
Phantom Uncertainty (shape and thickness tolerances)	±4.0	R	$\sqrt{3}$	1	±2.3	∞
Conductivity Target - tolerance	±5.0	R	$\sqrt{3}$	0.43	±1.2	∞
Conductivity - measurement uncertainty	±2.5	N	1	0.43	±1.1	∞
Permittivity Target - tolerance	±5.0	R	$\sqrt{3}$	0.49	±1.4	8
Permittivity - measurement uncertainty	±2.5	N	1	0.49	±1.2	5
Combined Standard Uncertainty					±10.7	387
Expanded STD Uncertainty					±21.4	

 Prüfbericht - Nr.:
 17033717 004
 Seite 16 von 19

 Test Report No.
 Page 16 of 19

5.2.2 Uncertainty for System Validation

Uncertainty Component	Uncert. value	Prob. Dist.	Div.	(ci) (1g)	Std. Unc. (1g)	(vi) veff
Probe Calibration	±6.55 %	N	1	1	±6.55 %	1
Axial Isotropy	±4.7 %	R	$\sqrt{3}$	1	±2.7 %	1
Hemispherical Isotropy	±9.6 %	R	$\sqrt{3}$	0	±0 %	1
Boundary E_ects	±1.0 %	R	$\sqrt{3}$	1	±0.6 %	1
Linearity	±4.7 %	R	$\sqrt{3}$	1	±2.7 %	1
System Detection Limits	±1.0 %	R	$\sqrt{3}$	1	±0.6 %	1
Modulation Response	±0 %	R	$\sqrt{3}$	1	±0 %	1
Readout Electronics	±0.3 %	N	1	1	±0.3 %	1
Response Time	±0 %	R	$\sqrt{3}$	1	±0 %	1
Integration Time	±0 %	R	$\sqrt{3}$	1	±0 %	1
RF Ambient Noise	±1.0 %	R	$\sqrt{3}$	1	±0.6 %	1
RF Ambient Re ections	±1.0 %	R	$\sqrt{3}$	1	±0.6 %	1
Probe Positioner	±0.8 %	R	$\sqrt{3}$	1	±0.5 %	1
Probe Positioning	±6.7 %	R	$\sqrt{3}$	1	±3.9 %	1
Max. SAR Eval.	±2.0 %	R	$\sqrt{3}$	1	±1.2 %	1
Dipole Related	±2.0 /6		1	1	11.2 /0	'
Deviation of exp. dipole	±5.5 %	R	$\sqrt{3}$	1	±3.2 %	1
Dipole Axis to Liquid Dist.	±2.0 %	R	$\sqrt{3}$	1	±1.2 %	1
Input power & SAR drift	±3.4 %	R	$\sqrt{3}$	1	±2.0 %	1
Phantom and Setup						
Phantom Uncertainty	±4.0 %	R	$\sqrt{3}$	1	±2.3 %	1
SAR correction	±1.9 %	R	$\sqrt{3}$	0.84	±0.9 %	1
Liquid Conductivity (meas.)	±2.5 %	N	1	0.71	±1.8 %	1
Liquid Permittivity (meas.)	±2.5 %	N	1	0.26	±0.7 %	1
Temp. uncConductivity	±1.7 %	R	$\sqrt{3}$	0.71	±0.7 %	1
Temp. uncPermittivity	±0.3 %	R	$\sqrt{3}$	0.26	±0.0 %	∞
Combined Std. Uncertainty					±10.1 %	
Expanded STD Uncertainty	<u>.</u>				±20.1 %	

Prüfbericht - Nr.:

Test Report No.

17033717 004

Seite 17 von 19 *Page 17 of 19*

6. Photographs of the Test Set-Up

Photograph 1: Set-up for front side

Photograph 2: Set-up for rear side

Prüfbericht - Nr.: 17033717 004
Test Report No.

Seite 18 von 19 *Page 18 of 19*

Photograph 3: Set-up for top side

Produkte

Products

 Prüfbericht - Nr.:
 17033717 004
 Seite 19 von 19

 Test Report No.
 Page 19 of 19

7. List of Tables

Table 1: List of Test and Measurement Equipment	5
Table 2: Technical Specification	6
Table 3: List of WLAN Channel of 802.11b/g/n mode	
Table 4: List of Bluetooth Channel (BDR & EDR mode)	
Table 5: List of Bluetooth Channel (LE mode)	
Table 6: Configuration of EUT	
Table 7: System Check Results of Dielectric Performance of Tissue Simulating Liquid	9
Table 8: System Check Results of System Verification	9
Table 9: Conducted Power of 802.11b1	2
Table 10: Conducted Power of 802.11g1	2
Table 11: Conducted Power of 802.11n1	3
Table 12: Test result of Peak Output Power of Buletooth (BDR mode)1	3
Table 13: Test result of Peak Output Power of Bluetooth (EDR mode)1	3
Table 14: Test result of Peak Output Power of Bluetooth (LE mode)1	3
Table 15: Test result of SAR Values1	

8. List of Photographs

Photograph 1: Set-up for front side	. I /
Photograph 2: Set-up for rear side	.17
Photograph 3: Set-up for top side	.18

SystemPerformanceCheck-D2450 Body

Date: 2014.5. 14.

Produkte

Products

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN:818

Communication System: CW; Communication System Band: Not Specified; Frequency:

2450 MHz;Communication System PAR: 0 dB

Medium parameters used: f = 2450 MHz; σ = 1.98 mho/m; ϵ_r = 51.4; ρ = 1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3203; ConvF(4.72, 4.72, 4.72); Calibrated: 2013.10.31.

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn876; Calibrated: 2013.10.31.

Phantom: SAM 1; Type: QD000P40CC; Serial: TP:1504

Measurement SW: DASY52, Version 52.8 (0); SEMCAD X Version 14.6.4 (4989)

Pin=250mW/Area Scan (81x81x1): Interpolated grid: dx=12mm, dy=12mm

Maximum value of SAR (interpolated) = 18.3 W/kg

Pin=250mW/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 82.205 V/m; Power Drift = -0.01 dB

Peak SAR (extrapolated) = 24.691 mW/g

SAR(1 g) = 12.2 mW/g; SAR(10 g) = 5.72 mW/gMaximum value of SAR (measured) = 18.4 W/kg

17040153 004

Produkte

Page 1 of 11 Products

Contents

1.	NS-15AT08 WiFi 802.11b Body Faceup, Low channel	2
	NS-15AT08 WiFi 802.11b Body Faceup, Middel channel	
	NS-15AT08 WiFi 802.11b Body Faceup, High channel	
	NS-15AT08 WiFi 802.11b Body Facedwon, Middel channel	
	NS-15AT08 WiFi 802.11b Body Top, Middle Channel	
•.		•

17040153 004

Produkte

Products Page 2 of 11

Test Result of SAR Measurement

Date/Time: 2014.05.14.

Test Laboratory: SMQ SAR Test

1. NS-15AT08 WiFi 802.11b Body Faceup, Low channel

DUT: MID; Type: default; Serial: Not Specified

Communication System: 802.11b WiFi 2.4GHz(DSSS,11Mbps); Communication System

Band: 802.11b; Frequency: 2412 MHz;Communication System PAR: 3.599 dB

Medium parameters used (interpolated): f = 2412 MHz; $\sigma = 2.00 \text{ mho/m}$; $\epsilon_r = 51.2$; $\rho = 1000 \text{ mHz}$

kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

Probe: ES3DV3 - SN3203; ConvF(4.72, 4.72, 4.72); Calibrated: 2013.10.31.;

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE4 Sn876; Calibrated: 2014.03.03.

Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx

Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

802.11b-0mm/Faceup-Low/Area Scan (71x101x1): Interpolated grid: dx=1.200

mm, dy=1.200 mm

Reference Value = 6.859 V/m; Power Drift = 0.25 dB

Fast SAR: SAR(1 g) = 0.310 mW/g; SAR(10 g) = 0.158 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.404 W/kg

802.11b-0mm/Faceup-Low/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 6.859 V/m; Power Drift = 0.25 dB

Peak SAR (extrapolated) = 0.854 mW/g

SAR(1 g) = 0.392 mW/g; SAR(10 g) = 0.184 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.428 W/kg

17040153 004

Produkte Products

Page 3 of 11

0 dB = 0.404 W/kg = -7.87 dB W/kg

17040153 004

Products

Page 4 of 11

2. NS-15AT08 WiFi 802.11b Body Faceup, Middel channel

DUT: MID; Type: default; Serial: Not Specified

Communication System: 802.11b WiFi 2.4GHz(DSSS,11Mbps); Communication System

Band: 802.11b; Frequency: 2437 MHz;Communication System PAR: 3.599 dB

Medium parameters used (interpolated): f = 2437 MHz; σ = 2.011 mho/m; ϵ_r = 50.719; ρ =

1000 kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3203; ConvF(4.72, 4.72, 4.72); Calibrated: 2013.10.31.;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 2014.03.03.
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

802.11b-0mm/Faceup-Mid/Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dv=1.200 mm

Reference Value = 4.690 V/m; Power Drift = 0.04 dB

Fast SAR: SAR(1 g) = 0.265 mW/g; SAR(10 g) = 0.112 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.389 W/kg

802.11b-0mm/Faceup-Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 4.690 V/m; Power Drift = 0.04 dB

Peak SAR (extrapolated) = 1.848 mW/g

SAR(1 g) = 0.682 mW/g; SAR(10 g) = 0.237 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.845 W/kg

17040153 004

Produkte Products

Page 5 of 11

0 dB = 0.389 W/kg = -8.21 dB W/kg

17040153 004

Produkte Products

Page 6 of 11

3. NS-15AT08 WiFi 802.11b Body Faceup, High channel

DUT: MID; Type: default; Serial: Not Specified

Communication System: 802.11b WiFi 2.4GHz(DSSS,11Mbps); Communication System

Band: 802.11b; Frequency: 2462 MHz; Communication System PAR: 3.599 dB

Medium parameters used (interpolated): f = 2462 MHz; $\sigma = 1.974$ mho/m; $\epsilon_r = 51.3$; $\rho = 1000$ kg/m³

1000 kg/m

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3203; ConvF(4.72, 4.72, 4.72); Calibrated: 2013.10.31.;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 2014.03.03.
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

802.11b-0mm/Faceup-High/Area Scan (71x101x1): Interpolated grid: dx=1.200

mm, dy=1.200 mm

Reference Value = 8.454 V/m; Power Drift = 0.07 dB

Fast SAR: SAR(1 g) = 0.480 mW/g; SAR(10 g) = 0.236 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.583 W/kg

802.11b-0mm/Faceup-High/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 8.454 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 1.417 mW/g

SAR(1 g) = 0.621 mW/g; SAR(10 g) = 0.283 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.657 W/kg

Page 7 of 11

Produkte

Products

0 dB = 0.583 W/kg = -4.68 dB W/kg

17040153 004

Products

Page 8 of 11

4. NS-15AT08 WiFi 802.11b Body Facedwon, Middel channel

DUT: MID; Type: default; Serial: Not Specified

Communication System: 802.11b WiFi 2.4GHz(DSSS,11Mbps); Communication System

Band: 802.11b; Frequency: 2437 MHz; Communication System PAR: 3.599 dB

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.011$ mho/m; $\epsilon_r = 50.719$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3203; ConvF(4.72, 4.72, 4.72); Calibrated: 2013.10.31.;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 2014.03.03.
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

802.11b-0mm/Facedown-Mid/Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Reference Value = 2.671 V/m; Power Drift = 0.96 dB

Fast SAR: SAR(1 g) = 0.150 mW/g; SAR(10 g) = 0.066 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.229 W/kg

802.11b-0mm/Facedown-Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 2.671 V/m; Power Drift = 0.96 dB

Peak SAR (extrapolated) = 0.508 mW/g

SAR(1 g) = 0.226 mW/g; SAR(10 g) = 0.096 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.239 W/kg

17040153 004 Page 9 of 11

Produkte

Products

0 dB = 0.229 W/kg = -12.79 dB W/kg

Date/Time: 2014.05.14

Test Laboratory: SMQ SAR Test

17040153 004

Produkte Products

Page 10 of 11

5. NS-15AT08 WiFi 802.11b Body Top, Middle Channel

DUT: MID; Type: default; Serial: Not Specified

Communication System: 802.11b WiFi 2.4GHz(DSSS,11Mbps); Communication System

Band: 802.11b; Frequency: 2437 MHz; Communication System PAR: 3.599 dB

Medium parameters used (interpolated): f = 2437 MHz; $\sigma = 2.011$ mho/m; $\epsilon_r = 50.719$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY5 Configuration:

- Probe: ES3DV3 SN3203; ConvF(4.72, 4.72, 4.72); Calibrated: 2013.10.31.;
- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn876; Calibrated: 2014.03.03.
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:xxxx
- Measurement SW: DASY52, Version 52.8 (2); SEMCAD X Version 14.6.6 (6824)

802.11b-0mm 2/top-Mid/Area Scan (71x101x1): Interpolated grid: dx=1.200 mm, dy=1.200 mm

Reference Value = 6.932 V/m; Power Drift = 0.47 dB

Fast SAR: SAR(1 g) = 0.411 mW/g; SAR(10 g) = 0.146 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (interpolated) = 0.625 W/kg

802.11b-0mm 2/top-Mid/Zoom Scan (5x5x7)/Cube 0: Measurement grid: dx=5mm, dv=5mm, dz=5mm

Reference Value = 6.932 V/m; Power Drift = 0.47 dB

Peak SAR (extrapolated) = 1.231 mW/g

SAR(1 g) = 0.501 mW/g; SAR(10 g) = 0.186 mW/g

Info: Interpolated medium parameters used for SAR evaluation.

Maximum value of SAR (measured) = 0.618 W/kg

Produkte

Products

Page 11 of 11

0 dB = 0.625 W/kg = -4.09 dB W/kg

17040153 004

Produkte

Products

Page 1 of 21

Client

SMQ

Certificate No: J13-2-2921

CALIBRATION CERTIFICATE

Object

ES3DV3 - SN:3203

Calibration Procedure(s)

TMC-OS-E-02-195

Calibration Procedures for Dosimetric E-field Probes

Calibration date:

October 31, 2013

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
Power Meter NRP2	101919	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101547	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Power sensor NRP-Z91	101548	01-Jul-13 (TMC, No.JW13-044)	Jun-14
Reference10dBAttenuator	BT0520	12-Dec-12(TMC,No.JZ12-867)	Dec-14
Reference20dBAttenuator	BT0267	12-Dec-12(TMC,No.JZ12-866)	Dec-14
Reference Probe EX3DV4	SN 3846	03-Sep-13(SPEAG,No.EX3-3846_Sep13)	Sep-14
DAE4	SN 777	22-Feb-13 (SPEAG, DAE4-777_Feb13)	Feb -14
Secondary Standards	ID#	Cal Date(Calibrated by, Certificate No.)	Scheduled Calibration
SignalGeneratorMG3700A	6201052605	01-Jul-13 (TMC, No.JW13-045)	Jun-14
Network Analyzer E5071C	MY46110673	15-Feb-13 (TMC, No.JZ13-781)	Feb-14
	Name	Function	Signature
Calibrated by:	Zhao Jing	SAR Test Engineer	支對

Reviewed by:

Qi Dianyuan

SAR Project Leader

Approved by:

Lu Bingsong

Deputy Director of the laboratory

Issued: November 4, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: J13-2-2921

Page 1 of 11

17040153 004

Produkte

Products Page 2 of 21

Add: No.52 Huayuaebei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emeite.com Http://www.emeite.com

Glossary:

TSL tissue simulating liquid
NORMx,y,z sensitivity in free space
ConvF sensitivity in TSL / NORMx,y,z
DCP diode compression point

CF crest factor (1/duty_cycle) of the RF signal A,B,C,D modulation dependent linearization parameters

Polarization Φ rotation around probe axis

Polarization θ θ rotation around an axis that is in the plane normal to probe axis (at measurement center), i

θ=0 is normal to probe axis

Calibration is Performed According to the Following Standards:

a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003

 b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300MHz to 3GHz)", February 2005

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization θ=0 (f≤900MHz in TEM-cell; f>1800MHz: waveguide).
 NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not effect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z* frequency_response (see Frequency Response Chart). This
 linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the
 frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal characteristics
- Ax,y,z; Bx,y,z; Cx,y,z; VRx,y,z:A,B,C are numerical linearization parameters assessed based on the
 data of power sweep for specific modulation signal. The parameters do not depend on frequency nor
 media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in flat phantom using E-field (or Temperature Transfer Standard for f≤800MHz) and inside waveguide using analytical field distributions based on power measurements for f >800MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty valued are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z* ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from±50MHz to±100MHz.
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the
 probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Produkte

Products

Page 3 of 21

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Probe ES3DV3

SN: 3203

Calibrated: October 31, 2013

Calibrated for DASY/EASY Systems

(Note: non-compatible with DASY2 system!)

Certificate No: J13-2-2921

Page 3 of 11

17040153 004

Produkte

Products

Page 4 of 21

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100194, China Tel: *86-10-62304633-2079 Fax: *86-10-62304633-2504 Http://www.emcite.com

DASY - Parameters of Probe: ES3DV3 - SN: 3203

Basic Calibration Parameters

THE PROPERTY AND THE PARTY AND	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm(µV/(V/m)2)A	1.30	1.26	1.11	±10.8%
DCP(mV) ⁸	103.9	104.0	105.8	

Modulation Calibration Parameters

UID	Communication System Name		A dB	B dBõV	C	D dB	VR mV	Unc ^E (k=2)
0	cw	x	0.0	0.0	1.0	0.00	200.4	±3.5%
		Y	0.0	0.0	1.0		184.0	
		Z	0.0	0.0	1.0		184.4	

The reported uncertainty of measurement is stated as the standard uncertainty of Measurement multiplied by the coverage factor k=2, which for a normal distribution Corresponds to a coverage probability of approximately 95%.

⁸ Numerical linearization parameter: uncertainty not required.

A The uncertainties of Norm X, Y, Z do not affect the E2-field uncertainty inside TSL (see Page 5 and Page 6).

EUncertainty is determined using the max, deviation from linear response applying rectangular distribution and is expressed for the square of the field value,

17040153 004

Produkte Products

Page 5 of 21

Add: No.52 Huaywanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY - Parameters of Probe: ES3DV3 - SN: 3203

Calibration Parameter Determined in Head Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
900	41.5	0.97	6.55	6.55	6.55	0.39	1.77	±12%
1810	40.0	1.40	5.41	5.41	5.41	0.31	2.22	±12%
2450	39.2	1.80	5.07	5.07	5.07	0.54	1.66	±12%

^G Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band, ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters,

Certificate No: J13-2-2921

Page 5 of 11

17040153 004

Produkte Products

Page 6 of 21

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.cencite.com

DASY - Parameters of Probe: ES3DV3 - SN: 3203

Calibration Parameter Determined in Body Tissue Simulating Media

f [MHz] ^C	Relative Permittivity F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha	Depth (mm)	Unct. (k=2)
900	55.0	1.05	6.75	6.75	6.75	2.14	0.90	±12%
1810	53.3	1.52	5.12	5.12	5.12	0.32	2.38	±12%
2450	52.7	1.95	4.72	4.72	4.72	0.64	1.49	±12%

^C Frequency validity of ±100MHz only applies for DASY v4.4 and higher (Page 2), else it is restricted to ±50MHz. The uncertainty is the RSS of ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. ^F At frequency below 3 GHz, the validity of tissue parameters (ε and σ) can be relaxed to ±10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ε and σ) is restricted to ±5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Certificate No: J13-2-2921

Page 6 of 11

17040153 004

Produkte Products

Page 7 of 21

Add: No.52 Husyuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Frequency Response of E-Field (TEM-Cell: ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ±7.5% (k=2)

Produkte Products

Page 8 of 21

Add: No.52 Huayvambei Road, Haidian District, Beijing, 100191, China Tel; *86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Receiving Pattern (Φ), θ=0°

f=600 MHz, TEM

f=1800 MHz, R22

Uncertainty of Axial Isotropy Assessment: ±0.9% (k=2)

17040153 004

Produkte Products

Page 9 of 21

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

Dynamic Range f(SAR_{head}) (TEM cell, f = 900 MHz)

Uncertainty of Linearity Assessment: ±0.9% (k=2)

Certificate No: J13-2-2921

Page 9 of 11

Page 10 of 21

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 E-mail: Info@emcite.com Http://www.emcite.com

Conversion Factor Assessment

f=900 MHz, WGLS R9(H_convF)

f=1810 MHz, WGLS R22(H_convF)

Deviation from Isotropy in Liquid

Uncertainty of Spherical Isotropy Assessment: ±2.8% (K=2)

Certificate No: J13-2-2921

Page 10 of 11

Produkte Products

Page 11 of 21

Add: No.52 Huayuanbei Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2079 Fax: +86-10-62304633-2504 Http://www.emcite.com

DASY - Parameters of Probe: ES3DV3 - SN: 3203

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	175
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disable
Probe Overall Length	337mm
Probe Body Diameter	10mm
Tip Length	10mm
Tip Diameter	4mm
Probe Tip to Sensor X Calibration Point	2mm
Probe Tip to Sensor Y Calibration Point	2mm
Probe Tip to Sensor Z Calibration Point	2mm
Recommended Measurement Distance from Surface	3mm

Produkte Products

> Calibration Laboratory of Schmid & Partner

> Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

SMQ (Auden)

Accreditation No.: SCS 108

Certificate No: D2450V2-818_Oct12

CALIBRATION CERTIFICATE

Object

D2450V2 - SN: 818

Calibration procedure(s)

QA CAL-05.v8

Calibration procedure for dipole validation kits above 700 MHz

Calibration date:

October 18, 2012

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3) "C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Power meter EPM-442A	GB37480704	05-Oct-11 (No. 217-01451)	Oct-12
Power sensor HP 8481A	US37292783	05-Oct-11 (No. 217-01451)	Oct-12
Reference 20 dB Attenuator	SN: 5058 (20k)	27-Mar-12 (No. 217-01530)	Apr-13
Type-N mismatch combination	SN: 5047.2 / 06327	27-Mar-12 (No. 217-01533)	Apr-13
Reference Probe ES3DV3	SN: 3205	30-Dec-11 (No. ES3-3205_Dec11)	Dec-12
DAE4	SN: 601	27-Jun-12 (No. DAE4-601_Jun12)	Jun-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Power sensor HP 8481A	MY41092317	18-Oct-02 (in house check Oct-11)	In house check: Oct-13
RF generator R&S SMT-06	100005	04-Aug-99 (in house check Oct-11)	In house check: Oct-13
Network Analyzer HP 8753E	US37390585 S4206	18-Oct-01 (in house check Oct-12)	In house check: Oct-13
	Name	Function	Signature
Calibrated by:	Israe El-Naouq	Laboratory Technician	Ostreen El Dassen
Approved by:	Katja Pokovic	Technical Manager	2014

Issued: October 18, 2012

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

17040153 004

Products

Page 13 of 21

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst

C Service suisse d'étalonnage

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConvF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point.
 No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

17040153 004

Produkte Products

Page 14 of 21

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY5	V52.8.3
Advanced Extrapolation	
Modular Flat Phantom	
10 mm	with Spacer
dx, dy, dz = 5 mm	
2450 MHz ± 1 MHz	
	Advanced Extrapolation Modular Flat Phantom 10 mm dx, dy, dz = 5 mm

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	39.2	1.80 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	38.4 ± 6 %	1.85 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	****

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	Condition	
SAR measured	250 mW input power	13.3 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	52.3 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	250 mW input power	6.19 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	24.5 W/kg ± 16.5 % (k=2)

Body TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	52.7	1.95 mho/m
Measured Body TSL parameters	(22.0 ± 0.2) °C	51.0 ± 6 %	2.02 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C	1	1022

SAR result with Body TSL

SAR averaged over 1 cm ³ (1 g) of Body TSL	Condition	
SAR measured	250 mW input power	13.0 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	50.8 W/kg ± 17.0 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	250 mW input power	6.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	23.8 W/kg ± 16.5 % (k=2)

Produkte Products

Page 15 of 21

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	53.0 Ω + 2.5 j Ω		
Return Loss	- 28.4 dB		

Antenna Parameters with Body TSL

Impedance, transformed to feed point	50.1 Ω + 4.4 j Ω		
Return Loss	- 27.1 dB		

General Antenna Parameters and Design

Electrical Delay (one direction)	1,165 ns		
The state of the s			

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals. On some of the dipoles, small end caps are added to the dipole arms in order to improve matching when loaded according to the position as explained in the "Measurement Conditions" paragraph. The SAR data are not affected by this change. The overall dipole length is still according to the Standard.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG		
Manufactured on	December 11, 2008		

Page 16 of 21

DASY5 Validation Report for Head TSL

Date: 18.10.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 818

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 1.85 \text{ mho/m}$; $\varepsilon_r = 38.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.45, 4.45, 4.45); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (front); Type: QD000P50AA; Serial: 1001

DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Head Tissue/Pin=250 mW, d=10mm/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 99.551 V/m; Power Drift = 0.07 dB

Peak SAR (extrapolated) = 27.4 W/kg

SAR(1 g) = 13.3 W/kg; SAR(10 g) = 6.19 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Page 17 of 21

Impedance Measurement Plot for Head TSL

Page 18 of 21

Produkte Products

DASY5 Validation Report for Body TSL

Date: 18.10.2012

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 2450 MHz; Type: D2450V2; Serial: D2450V2 - SN: 818

Communication System: CW; Frequency: 2450 MHz

Medium parameters used: f = 2450 MHz; $\sigma = 2.02 \text{ mho/m}$; $\varepsilon_r = 51$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2007)

DASY52 Configuration:

Probe: ES3DV3 - SN3205; ConvF(4.26, 4.26, 4.26); Calibrated: 30.12.2011;

Sensor-Surface: 3mm (Mechanical Surface Detection)

Electronics: DAE4 Sn601; Calibrated: 27.06.2012

Phantom: Flat Phantom 5.0 (back); Type: QD000P50AA; Serial: 1002

DASY52 52.8.3(988); SEMCAD X 14.6.7(6848)

Dipole Calibration for Body Tissue/Pin=250 mW, d=10mm 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 95.079 V/m; Power Drift = 0.02 dB

Peak SAR (extrapolated) = 26.9 W/kg

SAR(1 g) = 13 W/kg; SAR(10 g) = 6.03 W/kg

Maximum value of SAR (measured) = 17.0 W/kg

0 dB = 17.0 W/kg = 12.30 dBW/kg

Page 19 of 21

Impedance Measurement Plot for Body TSL

17040153 004

Produkte

Products

Page 20 of 21

Referring to KDB 865664, if dipoles are verified in return loss (<-20dB, within 20% of prior calibration), and in impedance (within 5 ohm of prior calibration), the annual calibration is not necessary and the calibration interval can be extended.

Justification of the extended calibration

	2450 Body							
	Return-Loss (dB)	Delta(%)	Real Impedance(ohm)	Delta (ohm)	Imaginary Impedance(ohm)	Delta (ohm)		
2013-10-18	-27.110		50.055		4.4121			
2013-10-17	-26.329	-2.88	51.434	1.38	5.9356	1.52		

17040153 004

Produkte

Page 21 of 21 **Products**

2450 Body

