Exploratory Data Analysis

Dutchak Bohdan

This is the EDA for my project. The idea is to classify the position of the player given parformance stats of his average game. I have collected this data from the NBA Reference (https://www.basketball-reference.com/). This data contains ~10,000 individual players stats per game for seasons 2000-2020. It is collected by my data parser.py (https://github.com/bohdan-dutchak/NBAdrafter/blob/main/data parser.py) script

```
#install.packages("devtools")
#install.packages("psych")
#install.packages("dplyr")
#install.packages("ggcorrplot")
#install.packages("ggplot2")
#install.packages("plotly")
#install.packages("gridExtra")
#install.packages("ggpubr")
#install.packages("reshape2")
#install.packages("GGally")
#install.packages("broom")
```

```
library(devtools)
library(psych)
library(dplyr)
library(ggcorrplot)
library(ggplot2)
library(plotly)
library(ggpubr)
library(reshape2)
library(GGally)
library(broom)
```

```
data = read.csv('data/all_seasons.csv', head=T, sep=',')
head(data)
```

Pos	Ht	Wt	_	_	G	GS	MP
<cnr></cnr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>
SG	198	93	10	32	72	72	29.1
SG	193	88	7	30	62	1	20.7
SF	198	95	14	37	54	5	17.4
PG	185	86	3	26	46	1	14.8
С	216	110	10	31	82	81	29.0
PF	206	104	2	29	75	1	13.7
	<chr> SG SG SF PG C</chr>	<pre><chr> <int> SG 198 SG 193 SF 198 PG 185 C 216</int></chr></pre>	<chr><chr><int><int> SG 198 93 SG 193 88 SF 198 95 PG 185 86 C 216 110</int></int></chr></chr>	<chr><int><int><int><int><int><int> SG 198 93 10 SG 193 88 7 SF 198 95 14 PG 185 86 3 C 216 110 10</int></int></int></int></int></int></chr>	<chr><int><int><int><int><int><int><int><int< td=""><td><chr><int><int><int><int><int><int><int><int< td=""><td><chr><int><int><int><int><int><int><int><int< td=""></int<></int></int></int></int></int></int></int></chr></td></int<></int></int></int></int></int></int></int></chr></td></int<></int></int></int></int></int></int></int></chr>	<chr><int><int><int><int><int><int><int><int< td=""><td><chr><int><int><int><int><int><int><int><int< td=""></int<></int></int></int></int></int></int></int></chr></td></int<></int></int></int></int></int></int></int></chr>	<chr><int><int><int><int><int><int><int><int< td=""></int<></int></int></int></int></int></int></int></chr>

Data Exploration

Let's get familiar with the data.

Features description

```
names(data)
```

```
[1] "Player" "Pos"
                           "Ht"
                                     "Wt"
                                               "Exp"
                                                        "Age"
                                                                  "G"
                                                                           "GS"
##
   [9] "MP"
                  "FG"
                           "FGA"
                                               "X3P"
                                                                           "X2P"
                                     "FG."
                                                        "X3PA"
                                                                  "X3P."
                                                        "FT."
## [17] "X2PA"
                  "X2P."
                           "eFG."
                                     "FT"
                                               "FTA"
                                                                  "ORB"
                                                                           "DRB"
                  "AST"
                           "STL"
                                               "TOV"
                                                        "PF"
## [25] "TRB"
                                     "BLK"
                                                                  "PTS.G"
                                                                           "Season"
```

Name	Data type	Feature type	Measurement	Description
Player	string	categorical	none	Full player' name
Pos	string	categorical (target)	5 unique classes	Players position in a team: Center, Power Forward, Small Forward, Shooting Guard, Point Guard
Ht	float	numerical	cm	Players height
Wt	float	numerical	kg	Players weight
Exp	int	numerical	years	Years in the NBA
Age	int	numerical	full years	Players age
G	int	numerical	none	Games played in the season
GS	int	numerical	none	Games started
MP	float	numerical	minutes	Minutes played per game
FG	float	numerical	field goals	Field goals per game
FGA	float	numerical	attemps	Field goal attempts per game
FG%	float	numerical	percentage	% of successful fied goals in the season
3P	float	numerical	shots	3-pointers per game
3РА	float	numerical	attemps	3-point goal attempts per game

Name	Data type	Feature type	Measurement	Description		
3P%	float	numerical	percentage	% of successful 3- point goals in the season		
2P	float	numerical	shots	2-pointers per game		
2PA	float	numerical	attemps	2-point goal attempts per game		
2P%	float	numerical	percentage	% of successful 2- point goals in the season		
eFG%	float	numerical	percentage	Effective Field Goal Percentage		
FT	float	numerical	shots	Free throws per game		
FTA	float	numerical	attemps	Free throws attempts per game		
FT%	float	numerical	percentage	% of successful Free throws in the season		
ORB	float	numerical	rebounds	Offensive Rebounds Per Game		
DRB	float	numerical	rebounds	Deffensive Rebounds Per Game		
TRB	float	numerical	rebounds	Total Rebounds Per Game		
AST	float	numerical	assists	Assists per game		
STL	float	numerical	steals	Steals per game		
BLK	float	numerical	blocks	blocks per game		
TOV	float	numerical	blocks	Turnovers per game		
PF	float	numerical	fouls	Personal fouls per game		
PTS/G	float	numerical	points	Points per game		
Season	int	categorical	year	season		

Missing Data

First of all, let's see whether we have any missing values. If so, what should we do with them

options(warn=-1)
colSums(is.na(data))

1	##	Player	Pos	Ht	Wt	Exp	Age	G	GS	MP	FG	FGA
1	##	0	0	0	0	0	0	0	0	0	0	0
1	##	FG.	X3P	X3PA	X3P.	X2P	X2PA	X2P.	eFG.	FT	FTA	FT.
1	##	65	0	0	1743	0	0	113	65	0	0	557
1	##	ORB	DRB	TRB	AST	STL	BLK	TOV	PF	PTS.G	Season	
1	##	0	0	0	0	0	0	0	0	0	0	

X2Pna <- data[is.na(data\$X2P.),]
head(X2Pna[16:18])</pre>

	X2P <dbl></dbl>	X2PA <dbl></dbl>	X2P. <dbl></dbl>
36	0	0	NA
216	0	0	NA
416	0	0	NA
605	0	0	NA
705	0	0	NA
772	0	0	NA
6 rows			

X3Pna <- data[is.na(data\$X3P.),]
head(X3Pna[13:15])</pre>

	X3P <dbl></dbl>	X3PA <dbl></dbl>	X3P . <dbl></dbl>
8	0	0	NA
12	0	0	NA
14	0	0	NA
24	0	0	NA
25	0	0	NA
26	0	0	NA
6 rows			

Missing values analysis shows, that NA type is only in the rows, where player took 0 attempts of some sort of shot. Since the table could not divide by zero to get his % of shots, we don't have any value there, so we can fill it manually with 0's.

```
data[is.na(data)] <- 0</pre>
```

Univariate Analysis

When exploring our dataset and its features, we have many options available to us. We can explore each feature individually, or compare pairs of features, finding the correlation between. Let's start with some simple Univariate (one feature) analysis.

describe(data)

	v <int></int>	n <dbl></dbl>	mean <dbl></dbl>	sd <dbl></dbl>	median <dbl></dbl>	trimmed <dbl></dbl>	mad <dbl></dbl>		m • <d< th=""></d<>
Player*	1	11071	1011.0335110	586.6800760	1011.000	1011.1261149	759.0912000	1	203
Pos*	2	11071	2.9808509	1.4222373	3.000	2.9760641	1.4826000	1	ţ
Ht	3	11071	200.3395357	9.1927699	201.000	200.7694479	10.3782000	160	23′
Wt	4	11071	99.8982928	12.4288816	100.000	99.6409620	13.3434000	61	163
Ехр	5	11071	4.6453798	4.0736863	4.000	4.1928418	4.4478000	0	2
Age	6	11071	26.6915364	4.2937277	26.000	26.4176358	4.4478000	18	44
G	7	11071	46.9135579	26.5961505	51.000	47.9841933	35.5824000	1	82
GS	8	11071	22.7739138	28.0286360	8.000	18.5898160	11.8608000	0	82
MP	9	11071	19.9033963	10.0387861	19.200	19.7277295	12.1573200	0	43
FG	10	11071	2.9749887	2.1556473	2.500	2.7298182	2.0756400	0	12
1-10 of 32	2 rows	1-10 of	f 14 columns			Previous	1 2 3	4 N	ext

The dataset has 11071 observations and 32 features, 3 of them are categorical: Player, Pos and Season, all the other are numerical. Among the 11071 observations, only 2033 are unique. It means that the data is only about 2033 unique players and their performance in different seasons. I decided to collect seasons separately, since a player could change his position between the seasons.

We also need to know how good the data is balanced and what is it's distributions in order to make further decisions. The bar plot shows the distribution of classes in the target variable.

```
g <- data %>% count(Pos)
ggplot(g, aes(x=Pos, y=n)) + geom_bar(stat='identity', col="cyan") + ggtitle("Balance of classe
s")
```

Balance of classes

g <- data %>% count(G)
ggplot(g, aes(x=G, y=n)) + geom_bar(stat='identity') + ggtitle("Distribution on players dependin
g on the number of games they played")

Distribution on players depending on the number of games they played

To decide what to do with "unrepresentative" observations, i.e., where the player participated only in a relatively small number of games, look at the histogram. Fortunately, there is a similar amount of such players and players who played the "middle" number of games. The bigger this number, the more accurate stats are. So I decided to keep such observations.

```
options(warn=-1)
t(aggregate(data, list(data$Pos), FUN=mean))[3:33,]
```

```
[,4]
##
          [,1]
                        [,2]
                                      [,3]
                                                                  [,5]
## Pos
          NA
                                                                  NA
                        NA
                                      NA
                                                    NA
## Ht
          "210.8179"
                        "205.9835"
                                      "187.5613"
                                                    "201.7632"
                                                                  "195.4064"
                        "107.55043"
          "113.84506"
                                      " 85.11126"
                                                    " 99.72314"
                                                                  " 92.89409"
## Wt
                                      "4.609227"
          "4.977738"
                        "4.805217"
                                                    "4.532227"
                                                                  "4.291262"
## Exp
          "26.99288"
                        "26.66696"
                                      "26.85844"
                                                    "26.52344"
                                                                  "26.40688"
## Age
          "46.66919"
                        "46.56826"
## G
                                      "46.45455"
                                                    "47.77734"
                                                                  "47.17343"
## GS
          "23.47240"
                        "21.54826"
                                      "22.71551"
                                                    "24.26367"
                                                                  "22.03619"
## MP
          "17.70098"
                        "19.19548"
                                      "20.78204"
                                                    "21.05820"
                                                                  "20.90388"
## FG
          "2.614782"
                        "2.959087"
                                      "3.029444"
                                                    "3.085449"
                                                                  "3.195190"
## FGA
          "5.231879"
                        "6.403087"
                                      "7.206649"
                                                    "7.081787"
                                                                  "7.536981"
## FG.
          "0.4818954"
                        "0.4446257"
                                      "0.4023541"
                                                    "0.4183472"
                                                                  "0.4053023"
## X3P
                                                    "0.74458008"
          "0.09532502"
                        "0.38573913"
                                      "0.76024423"
                                                                  "0.91575463"
## X3PA
          "0.2958148"
                        "1.1324783"
                                      "2.2047942"
                                                    "2.1244141"
                                                                  "2.5767432"
## X3P.
          "0.09160508"
                        "0.19292783" "0.30425373" "0.29784619" "0.31512048"
## X2P
          "2.517809"
                        "2.573826"
                                      "2.270149"
                                                    "2.341797"
                                                                  "2.279921"
## X2PA
          "4.934817"
                        "5.271130"
                                                    "4.957373"
                                                                  "4.961827"
                                      "5.003030"
## X2P.
          "0.4912863"
                        "0.4699652"
                                      "0.4326119"
                                                    "0.4552144"
                                                                  "0.4407648"
## eFG.
                        "0.4721378"
          "0.4887809"
                                      "0.4528955"
                                                    "0.4710903"
                                                                  "0.4655684"
## FT
          "1.299466"
                        "1.395783"
                                      "1.489959"
                                                    "1.463770"
                                                                  "1.522374"
## FTA
          "1.931790"
                        "1.934522"
                                      "1.870782"
                                                    "1.912402"
                                                                  "1.920521"
## FT.
          "0.6253166"
                        "0.6594017"
                                      "0.7349833"
                                                    "0.6973638"
                                                                  "0.7298416"
## ORB
          "1.5690116"
                        "1.3094783"
                                      "0.4106287"
                                                    "0.7888672"
                                                                  "0.5034422"
## DRB
          "3.308816"
                        "3.190478"
                                      "1.784487"
                                                    "2.526367"
                                                                  "1.962798"
## TRB
          "4.875913"
                        "4.497826"
                                      "2.192944"
                                                    "3.313232"
                                                                  "2.463283"
## AST
          "0.8673642"
                        "1.1150000"
                                      "3.5502035"
                                                    "1.4600098"
                                                                  "1.8669462"
## STL
          "0.4313001"
                        "0.5336522"
                                      "0.7901854"
                                                    "0.6837402"
                                                                  "0.6961606"
## BLK
          "0.8002671"
                        "0.5035217"
                                      "0.1374943"
                                                    "0.3277832"
                                                                  "0.2080318"
## TOV
          "1.008014"
                        "1.032478"
                                      "1.484848"
                                                    "1.072021"
                                                                  "1.145808"
## PF
          "2.129029"
                        "1.948652"
                                      "1.610493"
                                                    "1.732715"
                                                                  "1.596778"
## PTS.G
          "6.622039"
                        "7.696652"
                                      "8.302668"
                                                    "8.377979"
                                                                  "8.825905"
## Season "2010.152"
                        "2010.389"
                                      "2010.249"
                                                    "2010.345"
                                                                  "2010.959"
```

Taking a glance at the average values of each feature distributed by columns, we can notice some values age siglificantly different, but let's look at it in more representative way plotting it.

Bi-variate Analysis

So far, we have analised all features individually. Let's now start combining some of these features together to obtain further insight into the interactions between them.

```
data_by_pos <- aggregate(data, list(data$Pos), mean)
attach(mtcars)</pre>
```

```
par(mfrow=c(3,4))
barplot(data by pos$X2P, main="AVG 2-point shots", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), c
ol="#fffb00")
barplot(data by pos$X2PA, main="AVG 2-point attempts", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'
), col="#fffb00")
barplot(data by pos$X2P., main="AVG % of 2-point", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), c
ol="#fffb00")
barplot(data by pos$X3P, main="AVG 3-point shots", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), c
ol="red")
barplot(data_by_pos$X3PA, main="AVG 3-point attempts", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'
), col="red")
barplot(data_by_pos$X3P., main="AVG % of 3-point", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), c
ol="red")
barplot(data_by_pos$FG, main="AVG Field goals", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col=
"blue")
barplot(data by pos$FGA, main="AVG Field goal attempts", names.arg = c('C', 'PF', 'PG', 'SF', 'S
G'), col="blue")
barplot(data by pos$FG., main="AVG % of field goals", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'
), col="blue")
barplot(data by pos$FT, main="AVG Free throws", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col=
"#00ff15")
barplot(data by pos$FTA, main="AVG Free throw attempts", names.arg = c('C', 'PF', 'PG', 'SF', 'S
G'), col="#00ff15")
barplot(data by pos$FT., main="AVG % of free throws", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'
), col="#00ff15")
```

AVG 2-point shots

AVG 2-point attempts

AVG % of 2-point

AVG 3-point shots

AVG 3-point attempts

AVG % of 3-point

AVG Field goals

AVG Field goal attempts

AVG % of field goals

AVG Free throws

AVG Free throw attempts

AVG % of free throws

attach(mtcars)

par(mfrow=c(2,4))

barplot(data_by_pos\$Ht, main="AVG Height", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col="blu
e")

barplot(data_by_pos\$Wt, main="AVG Weght", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col="blue"
)

barplot(data_by_pos\$Exp, main="AVG Experience", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col=
"blue")

barplot(data_by_pos\$Age, main="AVG Age", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col="blue")
barplot(data_by_pos\$G, main="AVG Games", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col="blue")
barplot(data_by_pos\$GS, main="AVG Games started", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col="blue")

barplot(data_by_pos\$MP, main="AVG Minutes played", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), c
ol="blue")

barplot(data_by_pos\$PF, main="AVG Personal fouls", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), c
ol="blue")

attach(mtcars)

par(mfrow=c(2,4))

barplot(data_by_pos\$DRB, main="AVG Def rebounds", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), co
l="yellow")

barplot(data_by_pos\$ORB, main="AVG Off rebounds", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), co
l="yellow")

barplot(data_by_pos\$TOV, main="AVG Turovers", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col="y
ellow")

barplot(data_by_pos\$STL, main="AVG Steals", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col="yel
low")

barplot(data_by_pos\$eFG., main="AVG % of effective throws", names.arg = c('C', 'PF', 'PG', 'SF',
'SG'), col="yellow")

barplot(data_by_pos\$TRB, main="AVG total rebounds", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'),
col="yellow")

barplot(data_by_pos\$BLK, main="AVG Blocks", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col="yel
low")

barplot(data_by_pos\$AST, main="AVG Assists", names.arg = c('C', 'PF', 'PG', 'SF', 'SG'), col="ye
llow")

attach(mtcars)

С

PG

SG

par(mfrow=c(2,2))

hist(aggregate(data, list(data\$Player), max)\$Age, main="Distribution of player's AGE", xlab="AG
E", ylab="n")

hist(aggregate(data, list(data\$Player), max)\$Exp, main="Distribution of player's Experience", xl
ab="Experience", ylab="n")

plot(aggregate(data, list(data\$Age), mean)\$Age, aggregate(data, list(data\$Age), mean)\$G, type=
'o', main="Avg Games per season depending on AGE", xlab="AGE", ylab="Games")

plot(aggregate(data, list(data\$Exp), mean)\$Exp, aggregate(data, list(data\$Exp), mean)\$G, type=
'o', main="Avg Games per season depending on Experience", xlab="Experience", ylab="Games")

Distribution of player's AGE

Distribution of player's Experience

Avg Games per season depending on AGAvg Games per season depending on Experi-


```
c = data[data$Pos == 'C', ]
c = aggregate(c, list(c$Season), mean)$PTS.G
pf = data[data$Pos == 'PF', ]
pf = aggregate(pf, list(pf$Season), mean)$PTS.G
sf = data[data$Pos == 'SF', ]
sf = aggregate(sf, list(sf$Season), mean)$PTS.G
sg = data[data$Pos == 'SG', ]
sg = aggregate(sg, list(sg$Season), mean)$PTS.G
pg = data[data$Pos == 'PG', ]
pg = aggregate(pg, list(pg$Season), mean)$PTS.G
plot(unique(data$Season), c, type='o', col='#8df801', ylim=c(5,11), ylab='AVG pts', xlab='Seaso
n', main="Average points per game for each season depending on position")
lines(unique(data$Season), pf, type='o', col='#8c00ff')
lines(unique(data$Season), sf, type='o', col='#ff0000')
lines(unique(data$Season), pg, type='o', col='#0026ff')
lines(unique(data$Season), sg, type='o', col='#ff9900')
legend(x='topleft',legend=c('C','PF','SF','PG','SG'),fill=c('#8df801','#8c00ff','#ff0000','#0026
ff', '#ff9900'))
```

Average points per game for each season depending on position

Handling Outliers

Every dataset ought to have outliers, or observations that can decrease the accuracy. Previous analysis shows, that this dataset is pretty "clean", but still it contains many observations that are beyond 1st or 3rd quartile + 1.5 IQR, that we can see on the boxplots below. I consider this cases as players, who are uprising stars or just had successful season. Besides, each feature has such outliers, so I decided to keep them.

```
x3p <- ggplot(data=data, aes(x=Pos, y=X3P.)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distributi
on of % of 3 pointers")
x2p <- ggplot(data=data, aes(x=Pos, y=X2P.)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distributi
on of % of 2 pointers")
fg <- ggplot(data=data, aes(x=Pos, y=FG.)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution
of % of field goals")
ft <- ggplot(data=data, aes(x=Pos, y=FT.)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution
of % of free throws")
ggarrange(x3p, x2p, fg, ft, ncol=2, nrow=2)</pre>
```


Distribution of % of 2 pointers

Distribution of % of field goals

Distribution of % of free throws

ggarrange(ggplot(data=data, aes(x=Pos, y=X2P)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribu
tion of 2 point shots"),

ggplot(data=data, aes(x=Pos, y=X2PA)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution
of 2 point shot attempts"),

ggplot(data=data, aes(x=Pos, y=X3P)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution o
f 3 point shots"),

ggplot(data=data, aes(x=Pos, y=X3PA)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution
of 3 point shot attempts"),

ggplot(data=data, aes(x=Pos, y=FG)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution of field goals"),

ggplot(data=data, aes(x=Pos, y=FGA)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution o
f field goal attempts"),

ncol=3, nrow=2)

ggarrange(ggplot(data=data, aes(x=Pos, y=FT)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribut
ion of free throws"),

ggplot(data=data, aes(x=Pos, y=FTA)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution o
f free throw attempts"),

ggplot(data=data, aes(x=Pos, y=PTS.G)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution
of points per game"),

 $ggplot(data=data, aes(x=Pos, y=Ht)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution he ight"),$

ggplot(data=data, aes(x=Pos, y=Wt)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution of
weight"),

 $ggplot(data=data, aes(x=Pos, y=AST)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution of assists"),$

ncol=3, nrow=2)

ggarrange(ggplot(data=data, aes(x=Pos, y=BLK)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribu
tion of blocks"),
 ggplot(data=data, aes(x=Pos, y=DRB)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution o
f rebounds in defence"),
 ggplot(data=data, aes(x=Pos, y=ORB)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution o
f rebounds in offence"),
 ggplot(data=data, aes(x=Pos, y=STL)) + geom_boxplot(aes(fill=Pos)) + ggtitle("Distribution o
f steals"),
 ncol=2, nrow=2)

Feature Encoding

Remember that Machine Learning algorithms perform Linear Algebra on Matrices, which means all features need have numeric values. The process of converting Categorical Features into values is called Encoding. Let's encode all positions to the corresponding numbers.

```
data$Pos <- replace(data$Pos, data$Pos == 'C', 5)
data$Pos <- replace(data$Pos, data$Pos == 'PF', 4)
data$Pos <- replace(data$Pos, data$Pos == 'SF', 3)
data$Pos <- replace(data$Pos, data$Pos == 'SG', 2)
data$Pos <- replace(data$Pos, data$Pos == 'PG', 1)
head(data)</pre>
```

Player	Pos	Ht	Wt	Exp	Age	G	GS	MP
<chr></chr>	<chr></chr>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<int></int>	<dbl></dbl>
1 Nick Anderson	2	198	93	10	32	72	72	29.1
2 Jon Barry	2	193	88	7	30	62	1	20.7
3 Tyrone Corbin	3	198	95	14	37	54	5	17.4
4 Tony Delk	1	185	86	3	26	46	1	14.8
5 Vlade Divac	5	216	110	10	31	82	81	29.0

Player <chr></chr>	Pos <chr></chr>	Ht <int></int>		Exp <int></int>				MP <dbl></dbl>
6 Lawrence Funderburke	4	206	104	2	29	75	1	13.7
6 rows 1-10 of 33 columns								

Feature Correlation

Correlation ia s measure of how much two random variables change together. Features should be uncorrelated with each other and highly correlated to the feature we're trying to predict.

```
cor_data = select(data, 2:31)

correlations <- cor(cor_data %>% type.convert(as.is=TRUE))
ggcorrplot(correlations, type = "lower", lab=TRUE, )
```


Filter-based feature selection methods use statistical measures to score the correlation or dependence between input variables that can be filtered to choose the most relevant features.

Source (https://machinelearningmastery.com/feature-selection-with-real-and-categorical-data/)

First of all I decided to visually choose features, that correlates with target variable in condition |corr| > 0.4. There are 8 of them: Ht, Wt, X3PA, X3P, ORB, TRB, AST, BLK

Let's look at their distributions uni- and bi-variative. The differences among classes should be noticable.

attach(data)
ggpairs(select(data, Pos,Ht,Wt,X3PA,X3P,ORB,DRB,TRB,AST,BLK), aes(color=Pos, alpha=0.5))

Nice! Then I decided to use filter-based method called ANOVA in order to check their signifficance for the predicting Pos.

```
attach(data)
```

```
anova <- aov(Pos~Ht*Wt*X3PA*X3P*ORB*DRB*TRB*AST*BLK)
smr <- summary(anova)

coef.tidy <- tidy(anova)
colnames(coef.tidy) <- c("Feature", "Df", "Sum_Sq", "Mean_Sq", "F_value", "pvalue")
coef.tidy[order(coef.tidy$F_value, decreasing = TRUE), ]</pre>
```

Feature <chr></chr>	Df <dbl< th=""><th>Sum_Sq > <dbl></dbl></th><th>Mean_Sq <dbl></dbl></th><th>F_value <dbl></dbl></th><th>p</th></dbl<>	Sum_Sq > <dbl></dbl>	Mean_Sq <dbl></dbl>	F_value <dbl></dbl>	p
Ht	1	1.744096e+04	1.744096e+04	7.754500e+04	0.000000
Wt	1	7.893640e+02	7.893640e+02	3.509624e+03	0.000000
AST	1	2.065518e+02	2.065518e+02	9.183586e+02	1.6557516
X3PA	1	1.671119e+02	1.671119e+02	7.430030e+02	3.6567726
ORB	1	1.594045e+02	1.594045e+02	7.087350e+02	3.4295336

Feature <chr></chr>	Df <dbl< th=""><th>Sum_Sq > <dbl></dbl></th><th>M</th><th>ean_Sq <dbl></dbl></th><th></th><th>F_value <dbl></dbl></th><th>- </th></dbl<>	Sum_Sq > <dbl></dbl>	M	ean_Sq <dbl></dbl>		F_value <dbl></dbl>	-
Ht:ORB	1	1.105264e+02	1.1052	:64e+02	4.9	14161e+02	1.837527€
Ht:X3PA	1	9.374288e+01	9.3742	:88e+01	4.1	67941e+02	6.82735
Ht:Wt:AST	1	8.947397e+01	8.9473	97e+01	3.9	78139e+02	6.491744
Ht:Wt:X3PA	1	8.614445e+01	8.6144	45e+01	3.8	30104e+02	8.321263
Ht:Wt	1	7.468455e+01	7.4684	55e+01	3.3	20581e+02	4.485467
1-10 of 512 rows		Previ	ous 1	2 3	3 4	5 6	52 Next
4)

The table above shows all possible compinations of features and their impact on the target value. We assume the hypothesis that none of the features has impact on the target. The smaller p-value is, the bigger chances to reject this hypothesis and accept another one - some of the features have impact. The bigger F score is - the biger is impact.

Unfortunately, the first 5 (top) rows contain only one feature, it means ANOVA recommends to fit the model having only one feature...

Further I will try to fit first 9 combinations.