

Modulhandbuch

für den Studiengang:

Informatik

im Bachelor - Studiengang 180 Leistungspunkte

(Modulversionstand vom 05.03.2025)

Modul: Abschlussmodul (Bachelor Informatik)

Identifikationsnummer:

INF.08060.01

Lernziele:

- Die Studierenden können eine bestimmte Aufgabe unter Anleitung selbstständig und erfolgreich bearbeiten.
- Sie bringen wissenschaftlich begründet theoretische und praktische Kenntnisse zur Lösung eines Problems ein.
- Sie fertigen eine wissenschaftlichen Arbeit an.
- Sie präsentieren die Ergebnisse ihrer Arbeit in einem wissenschaftlichen Vortrag.

Inhalte:

- Die Aufgabenstellung kann sowohl praktischer als auch theoretischer Natur sein und in der Regel den im Berufsleben auftretenden Problemstellungen entsprechen. Zu ihrer Lösung sollten die aus dem Studium vermittelten und in der aktuellen Fachliteratur zugänglichen Kenntnisse und Techniken ausreichen.

Verantwortlichkeiten (Stand 30.01.2023):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	die am Studiengang beteiligten
III - Agrar- und		Hochschullehrer*innen
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 23.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Informatik - 180 LP 1. Version 2023	6.	Pflichtmodul	Benotet	15/155

Teilnahmevoraussetzungen:

Obligatorisch:

mindestens 90 LP müssen im Bereich der Pflichtmodule erreicht sein!

Wünschenswert:

keine

Dauer:

5 Monate

Angebotsturnus:

jedes Semester

Studentischer Arbeitsaufwand:

450 Stunden

Leistungspunkte:

15 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Bearbeitung des Themas der	0	360	Winter- und
Bachelor-Arbeit			Sommersemester
Verteidigen	0	75	Winter- und
			Sommersemester
Konsultation	0	15	Winter- und
			Sommersemester

Studienleistungen:

- keine

Modulvorleistungen:

- keine

Modulteilleistungen block 1:

Nr.	Modulteilleistungen block	1. Wiederholung	2. Wiederholung	Anteil an
	1			Modulnote
1	Bachelorarbeit	Bachelorarbeit	nicht möglich laut	80 %
			RStPOBM §20 Abs.13	
2	Verteidigung	Verteidigung	nicht möglich laut	20 %
			RStPOBM §20 Abs.13	

Termine für Modulteilleistung Nr. 1:

1.Termin: 5 Monate nach Ausgabe des Themas

1. Wiederholungstermin: Erst nach erneuter Anmeldung

Termine für Modulteilleistung Nr. 2:

1.Termin: Nach Abgabe der Arbeit, spätestens jedoch 6 Monate nach Ausgabe des

Themas

1. Wiederholungstermin: mindestens 5 Wochen nach dem 1. Termin

Modul: Automaten und Berechenbarkeit

Identifikationsnummer:

INF.00882.08

Lernziele:

Studierende sollen durch dieses Modul die folgenden Kompetenzen erwerben:

- Sie können Sprachen mit Automaten, Grammatiken und Regulären Ausdrücken formalisieren.
- Sie können von einer Formalisierungsmethode zu einer anderen übersetzen und die Korrektheit beweisen. Die dabei verwendeten Konstruktionen können sie an Beispielen durchführen und mathematisch allgemein formalisieren.
- Sie können Sprachen in der Chomsky-Hierarchie klassifizieren und Nichtzugehörigkeiten zu Klassen beweisen.
- Sie kennen die Grenzen der Machbarkeit bezüglich der Berechenbarkeit und Komplexität und können Vollständigkeiten beweisen.

Inhalte:

- Abstrakte Spezifikation und Verifikation sind grundlegende intellektuelle Fähigkeiten eines Informatikers. Daher ist es für angehende Informatiker unerlässlich, die Fähigkeit zum logischen Denken, zur Abstraktion sowie Verständnis für kausale Zusammenhänge zu entwickeln.
- Demgemäß werde in dieser Vorlesung an Hand abstrakter Berechnungsmodelle deren Fähigkeiten und Grenzen analysiert. Basis und Methode dieser Analyse sind Verifikations-(Beweis-)verfahren, wie sie in der Mathematik, insbesondere der mathematischen Logik entwickelt wurden. Ein wesentlicher Bestandteil des Moduls sind daher das Vorstellen von Beweisverfahren in der Vorlesung und deren selbständiges Üben durch die Teilnehmer. Die Gegenstände an Hand derer dies erfolgen soll sind der Informatik entnommen, es werden in der Vorlesung die folgenden Gebiete behandelt.
- Endliche Automaten und reguläre Sprachen
- Kellerautomaten und kontextfreie Sprachen
- Algorithmenbegriffe: Turing-Maschinen, partiell-rekursive Funktionen
- Berechenbarkeitstheorie, unentscheidbare Probleme

Effiziente Algorithmen, P-NP-Problem

Chomsky-Hierarchie formaler Sprachen

Verantwortlichkeiten (Stand 16.01.2023):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	apl. Prof. Dr. Klaus Reinhardt
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 24.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Informatik (Gymnasium) 1.	4. oder 6.	Pflichtmodul	Benotet	examens-
Gymnasien	Version 2007				relevant
Lehramt	Informatik (Gymnasium) 1.	4. oder 6.	Pflichtmodul	Benotet	examens-
Gymnasien	Version 2012				relevant
Bachelor	Mathematik - 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Benotet	10/110
	Version 2022				
Bachelor	Informatik - 180 LP 1.	4.	Pflichtmodul	Benotet	10/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Benotet	10/170
	Version 2023				
Bachelor	Physik und Digitale	6.	Wahlpflichtmodul	Benotet	10/157
	Technologien - 180 LP 1.				
	Version 2019				

Teilnahmevoraussetzungen:

Obligatorisch:

Modul "Mathematische Grundlagen der Informatik und Konzepte der Modellierung" (Besuch)

Wünschenswert:

"Datenstrukturen und effiziente Algorithmen I und II"

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

300 Stunden

Leistungspunkte:

10 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	4	60	Sommersemester
Übung	2	30	Sommersemester
Bearbeiten der Übungsausgaben	0	210	Sommersemester

Studienleistungen:

- Korrekte Bearbeitung der theoretischen Übungsaufgaben in Höhe von mindestens 60% der maximal erreichbaren Punkte
- 5 Kurzvorträge über Lösungen von Übungsaufgaben

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: nach der Vorlesungszeit, des laufenden Semesters1.Wiederholungstermin: spätestens am Ende des nachfolgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: <u>Datenstrukturen und Effiziente Algorithmen I</u>

Identifikationsnummer:

INF.00679.08

Lernziele:

Studierende sollen durch dieses Modul folgende Kompetenzen erwerben:

- Sie kennen die grundlegenden Methoden zum Entwurf von Algorithmen und können diese Entwurfsmethoden auf algorithmische Problemstellungen anwenden.
- Sie sind in der Lage, für neue Problemstellungen geeignete Methoden auszuwählen und selbstständig algorithmische Lösungen zu entwickeln.
- Sie können die Korrektheit von Algorithmen überprüfen, geeignete Invarianten herleiten und formale Korrektheitsbeweise führen.
- Sie erwerben die Fähigkeit, Laufzeit und Speicherbedarf eines Algorithmus asymptotisch abschätzen zu können und insbesondere rekursive Algorithmen zu analysieren.
- Sie besitzen einen Überblick über die wichtigsten elementaren Datenstrukturen und können deren Vor- und Nachteile beurteilen.
- Sie verstehen, dass die Effizienz eines Algorithmus von der geeigneten Wahl der Datenstrukturen abhängt, und können eigenständig die Auswahl der Datenstrukturen treffen.
- Sie können einfache Algorithmen effizient in einer objektorientierten Programmiersprache implementieren und testen.

Inhalte:

- Korrektheit von Algorithmen: Verifikation
- Asymptotische Kosten eines Algorithmus: Effizienzanalyse
- Grundlegende Datenstrukturen (Felder, Listen, Bäume, Queues, Stacks)
- Rekursive Algorithmen, Rekurrenzgleichungen
- Sortierverfahren (Mergesort, Quicksort, Heapsort, Bucketsort)
- Suchen: Wörterbücher, Suchbäume, Hashing
- einfache Graphenalgorithmen (Tiefen- und Breitensuche, Zusammenhang, kürzeste Wegeprobleme)
- algorithmische Prinzipien: dynamisches Programmieren, divide and conquer

Verantwortlichkeiten (Stand 14.02.2025):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Matthias Müller-Hannemann
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 30.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
T -1	Informatik	semester	DCI: 1.4 1. 1	Deveted	Abschlussnote
Lehramt		2. oder 4.	Pflichtmodul	Benotet	examens-
Sekundarschulen	(Sekundarschule) 1.				relevant
	Version 2012			_	
Lehramt	Informatik (Gymnasium) 1.	2. oder 4.	Pflichtmodul	Benotet	examens-
Gymnasien	Version 2007				relevant
Lehramt	Informatik (Gymnasium) 1.	2. oder 4.	Pflichtmodul	Benotet	examens-
Gymnasien	Version 2012				relevant
Bachelor	Mathematik - 180 LP 1.	2.	Pflichtmodul	Benotung	0/110
	Version 2022			ohne Anteil	
Bachelor	Physik - 180 LP 1. Version	2.	Wahlpflichtmodul	Benotung	0/137
	2019			ohne Anteil	
Bachelor	Wirtschaftsinformatik	2.	Wahlpflichtmodul	Benotet	5/165
	(Business Information				
	Systems) - 180 LP 1.				
	Version 2020				
Bachelor	Wirtschaftsmathematik -	2.	Pflichtmodul	Benotung	0/105
	180 LP 1. Version 2022			ohne Anteil	
Bachelor	Informatik - 180 LP 1.	2.	Pflichtmodul	Benotet	5/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	2.	Pflichtmodul	Benotet	5/170
	Version 2023				
Bachelor	Physik und Digitale	2.	Pflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				
Master	Bioinformatik - 120 LP 1.	2.	Wahlpflichtmodul	Benotet	5/120
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

[INF.00677.09] Objektorientierte Programmierung (Studienleistung)

Wünschenswert:

Kenntnisse in einer Programmiersprache

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch/Englisch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Sommersemester
Übung	2	30	Sommersemester
Bearbeiten der Übungsausgaben	0	15	Sommersemester
Bearbeiten praktischer	0	30	Sommersemester
Programmieraufgaben			
Selbststudium	0	45	Sommersemester

Studienleistungen:

- Erfolgreiches Lösen von Übungsaufgaben
- Korrekte Bearbeitung der Programmieraufgaben
- Erfolgreiches Vorrechnen von Übungsaufgaben in der Übung

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des folgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: Datenstrukturen und Effiziente Algorithmen II

Identifikationsnummer:

INF.00885.06

Lernziele:

Studierende sollen durch dieses Modul folgende Kompetenzen erwerben:

- Sie können algorithmische Probleme bezüglich ihrer Komplexität analysieren und für schwere Probleme den Nachweis der NP-Vollständigkeit selbstständig führen.
- Sie können algorithmische Lösungsansätze einschätzen und beurteilen, welche Verfahren für konkrete schwere Probleme aussichtsreich sind.
- Sie können Entwurfsmethoden wie Dynamische Programmierung, Branch-And-Bound oder Greedy-Verfahren auf algorithmische Probleme selbstständig anwenden und zu algorithmischen Lösungen entwickeln, diese in einer objektorientierten Programmiersprache implementieren und testen.
- Sie besitzen einen Überblick über fortgeschrittene Datenstrukturen, wissen um deren Einsatzgebiete und können auswählen, welche Datenstrukturen für konkrete Problemstellungen angemessen sind.
- Sie sind vertraut mit Basisalgorithmen zu ausgewählten Anwendungsgebieten (Graphenalgorithmen, String-Matching, zahlentheoretische Algorithmen und Kryptographie sowie in die algorithmische Geometrie) und können deren Leistungsfähigkeit einschätzen.

Inhalte:

- Komplexität von Berechnungen
- Polynomialzeitberechenbarkeit und -reduzierbarkeit, NP-Vollständigkeit
- Höhere Datenstrukturen (u.a. Prioriätswarteschlangen, union-find, AVL-Bäume, B-Bäume)
- Designprinzipien für Algorithmen (Greedy-Verfahren, Branch&Bound)
- Ausgewählte Themen aus den Bereichen Graphenalgorithmen, String-Matching, Zahlentheoretische Methoden, Algorithmische Geometrie

Verantwortlichkeiten (Stand 03.01.2023):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Matthias Müller-Hannemann
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 24.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Informatik (Gymnasium) 1.	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien	Version 2007			Benotung	Abschluss
Lehramt	Informatik (Gymnasium) 1.	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien	Version 2012			Benotung	Abschluss
Bachelor	Mathematik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				

Bachelor	Wirtschaftsinformatik	3.	Wahlpflichtmodul	Benotet	5/165
	(Business Information				
	Systems) - 180 LP 1.				
	Version 2020				
Bachelor	Informatik - 180 LP 1.	3.	Pflichtmodul	Benotet	5/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/170
	Version 2023				
Master	Wirtschaftsmathematik -	1.	Wahlpflichtmodul	Benotet	5/115
	120 LP 1. Version 2006				
Master	Wirtschaftsmathematik -	1.	Wahlpflichtmodul	Benotung	0/110
	120 LP 1. Version 2013			ohne Anteil	
Master	Physik - 120 LP 1. Version	1.	Wahlpflichtmodul	Benotung	0/70
	2009			ohne Anteil	
Master	Physik - 120 LP 1. Version	1.	Wahlpflichtmodul	Benotung	0/70
	2019			ohne Anteil	

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Datenstrukturen und Effiziente Algorithmen I

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Übung	2	30	Wintersemester
Selbststudium und Prüfungsvorbereitung	0	45	Wintersemester
Bearbeiten der Übungsausgaben	0	45	Wintersemester

Studienleistungen:

- Erfolgreiches Lösen von Übungsaufgaben.
- Erfolgreiches Vorrechnen von Übungsaufgaben in der Übung

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters, in dem das

Modul angeboten wurde

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des folgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: Einführung in Betriebssysteme

Identifikationsnummer:

INF.05180.10

Moduluntertitel:

Betriebssystemkonzepte

Lernziele:

Studierende sollen durch dieses Modul folgende Kompetenzen erwerben:

- Sie kennen die Aufgaben eines Betriebssystems und können diese erläutern.
- Sie können die Zustände, welche ein Prozess vom Start bis zu seiner Terminierung annehmen, beschreiben und die Übergänge erläutern.
- Sie wissen, wie Prozesse von einem Unix-System verwaltet werden, und können unter Linux eigene Dienste erstellen und auf Shell-Ebene verwalten.
- Sie sind in der Lage, die Prozess-Scheduling-Algorithmen mit eigenen Worten wiederzugeben und an Beispielen selbstständig durchzuführen. Sie kennen die Optimierungskriterien für Scheduling-Algorithmen und können die vorgestellten Algorithmen diesbezüglich bewerten.
- Sie können die Anforderungen an eine moderne Speicherverwaltung benennen und sind in der Lage, die Verfahren Paging und Segmentierung zur virtuellen Speicherverwaltung zu beschreiben und zu unterscheiden, virtuelle Adressen in physische Adressen umzurechnen und umgekehrt. Sie können an Beispielen die Algorithmen zu den vorgestellten Verdrängungsstrategien selbst durchführen.
- Sie können erklären, was Nebenläufigkeit bedeutet, und an Beispielen darstellen, in welchen Situationen Probleme auftreten können. Sie kennen und verstehen die Ansätze zur Sicherstellung des wechselseitigen Ausschlusses und zur Synchronisation von Prozessen und sind in der Lage, eigene Programme mit dem Mutex-Konzept (Mutual Exclusion Device) zu implementieren.
- Sie kennen die Aufgaben, die ein Dateisystem hat, und können den Unterschied zwischen einem virtuellen und einem physischen Dateisystem erklären. Die Begriffe Datei, Verzeichnis, Inode, Mount-Point und Link können sie beschreiben.
- Sie können erklären, was man unter Virtualisierung in Bezug auf Rechnersysteme versteht, und können für gegebene Szenarien benennen, welchen Virtualisierungsstrategie in diesem eine sinnvolle Lösung darstellt.

Inhalte:

- 1. Aufgaben eines Betriebssystems und Klassifizierung von Betriebssystemen
- 2. Interrupt-gesteuerte Betriebssysteme
- 3. Prozesszustandsmodelle und Prozessverwaltung
- 4. Verfahren zum Prozessscheduling
- 5. Threads
- 6. Verfahren zum wechselseitigen Ausschluss
- 7. Interprozesskommunikation
- 8. Speicherverwaltung
- 9. Dateisysteme
- 10. Nutzer- und Rechtemanagement
- 11. Shell-Programmierung
- 12. Virtualisierung

Verantwortlichkeiten (Stand 23.01.2024):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Paul Molitor
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

$Studien programm verwend barkeiten \ (Stand\ 24.01.2023):$

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Mathematik - 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				
Bachelor	Wirtschaftsinformatik	4.	Wahlpflichtmodul	Benotet	5/165
	(Business Information				
	Systems) - 180 LP 1.				
	Version 2020				
Bachelor	Informatik - 180 LP 1.	2.	Pflichtmodul	Benotet	5/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Benotet	5/170
	Version 2023				
Bachelor	Physik und Digitale	6.	Wahlpflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

"Einführung in Rechnerarchitektur", Programmierkenntnisse

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Sommersemester
Prüfungsvorbereitung	0	45	Sommersemester
Übung	2	30	Sommersemester
Bearbeiten der Übungsaufgaben	0	45	Sommersemester

Studienleistungen:

- Erfolgreiches Bearbeitung eines Praxisprojektes bestehend aus mehreren Teilaufgaben
- Aktive Mitarbeit

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: In der Regel zu Bginn, spätestens am Ende der vorlesungsfreien Zeit des

Semesters, in den das Modul angeboten wurde

1. Wiederholungstermin: In der Regel am Ende der vorlesungsfreien Zeit des Semesters, in dem das

Modul angeboten wurde, spätestens am Ende der vorlesungsfreien Zeit des

folgenden Semesters

2. Wiederholungstermin: Nach Absprache mit dem Verantwortlichen des Moduls. Die maximale

Anzahl der zweiten Wiederholungsmöglichkeiten ist in den

Prüfungsordnungen festgelegt.

Modul: Einführung in Data Science

Identifikationsnummer:

INF.06485.05

Lernziele:

Die Studierenden erwerben durch dieses Modul die folgenden Kompetenzen:

- Sie verstehen die Grundlagen der Wahrscheinlichkeitsrechnung und Kombinatorik und können einfache reale Vorgänge modellieren.
- Sie verstehen den Satz von Bayes und können Randwahrscheinlichkeiten und bedingte Wahrscheinlichkeiten sowie Randwahrscheinlichkeitsdichten bedingte Randwahrscheinlichkeitsdichten berechnen.
- Sie können abhängige, unabhängige, bedingt abhängige und bedingt unabhängige Zufallsvariablen, Zufallsvektoren und Zufallsmatrizen voneinander unterscheiden und modellieren.
- Sie können mit univariaten Verteilungen von Zufallsvariablen und multivariaten Verteilungen von Zufallsvektoren sowie mit Erwartungswerten, Varianzen, Kovarianzen und höheren Momenten von Zufallsvariablen rechnen und diese Kompetenz zur Lösung einfacher realer Problemstellungen nutzen.
- Sie kennen verschiedene konjugierte Prior-Verteilungen für verschiedene univariate und multivariate Verteilungen und können mit diesen die Parameter dieser Verteilungen mittels verschiedener Schätzverfahren schätzen.
- Sie verstehen die Grundlagen statistischer Tests und die Bedeutung von P-Werten und können verschiedene statistische Tests zur Beantwortung einfacher Fragestellungen praktisch anwenden.
- Sie beherrschen die praktische Anwendung dieser Kompetenzen, um einfache Klassifikationsprobleme aus der Informatik und der Bioinformatik zu lösen, und können die Güte verschiedener Modelle oder verschiedener Klassifikatoren berechnen und miteinander vergleichen.

Inhalte:

- Kombinatorik, Wahrscheinlichkeitstheorie, Zufallsvariablen, Zufallsvektoren, Zufallsmatrizen
- Univariate Verteilungen, multivariate Verteilungen, matrixvariate Verteilungen, Randverteilungen, bedingte Verteilungen, Satz von Bayes
- Erwartungswert, Varianz, Kovarianz, Korrelationskoeffizient, höhere Momente, Erwartungswertvektor, Kovarianzmatrix
- Bedingter Erwartungswert, bedingte Varianz, bedingte Kovarianz, bedingter Korrelationskoeffizient, bedingter Erwartungswertvektor, bedingte Kovarianzmatrix
- Unabhängigkeit, bedingte Unabhängigkeit, Unkorreliertheit, bedingte Unkorreliertheit
- Verschiedene konjugierten Prior-Verteilungen für verschiedene Verteilungen, Schätzverfahren
- Statistische Tests und Klassifikation von Daten aus der Informatik und der Bioinformatik

Verantwortlichkeiten (Stand 10.07.2024):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Andreas Dräger
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 28.01.2025):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Informatik - 180 LP 1.	3.	Pflichtmodul	Benotet	5/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	3.	Pflichtmodul	Benotet	5/170
	Version 2023				
Bachelor	Physik und Digitale	6.	Wahlpflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				
Master	Nutzpflanzenwissenschafte	3.	Wahlpflichtmodul	Benotet	5/120
	n - 120 LP 1. Version 2018				
Master	Bioinformatik - 120 LP 1.	1.	Wahlpflichtmodul	Benotet	5/120
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

Mathematik B oder Mathematik C oder Mathematik D.

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Übung	2	30	Wintersemester
Bearbeitung der Arbeitsblätter und	0	70	Wintersemester
Übungsaufgaben			
Vorbereitung Klausur	0	20	Wintersemester

Studienleistungen:

- Erfolgreiche Bearbeitung und Vorstellung von Übungsaufgaben: die Übungen können Arbeitsblätter, Programmieraufgaben und Testate umfassen. Bei der Bearbeitung der Übungsaufgaben muss eine Mindestpunktzahl erreicht werden.

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur/Bericht	Klausur/Bericht	Klausur/Bericht	

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters, in dem das

Modul angeboten wurde

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des folgenden Semesters

2. Wiederholungstermin: Nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: Einführung in Datenbanken

Identifikationsnummer:

INF.06483.05

Lernziele:

- Die Studierenden können relationale Datenbank-Managementsysteme für gegebene Anwendungen verwenden.
- Sie sollen insbesondere die Fähigkeit erwerben, die Datenbank-Sprache SQL für Anfragen, Tabellendeklarationen und Updates anwenden zu können.
- Zur fundierten Nutzung von Datenbanken sollen sie auch die logischen Grundlagen von Datenbanken kennenlernen, und damit u.a. die Äquivalenz von Anfragen beurteilen können. Die logischen Grundlagen sollen die Teilnehmer auch in die Lage versetzen, Anfragesprachen für alternative Datenmodelle leichter zu erlernen.
- Die Studierenden sollen praktische Erfahrungen im Umgang mit mindestens einem verbreiteten relationalen Datenbank-Managementsystem gewinnen (z.B. PostgreSQL).
- Die Studierenden sollen einen Überblick über Vorteile von Datenbanken gegenüber datei-basierten Lösungen gewinnen. Hierzu gehört insbesondere das Transaktionskonzept. Sie sind dadurch in der Lage, den Nutzen eines DBMS für eine Anwendung zu beurteilen.
- Es werden Grundlagen zum Entwurf von Datenbanken für gegebene (kleinere) Anwendungen vermittelt: Die Studierenden können Entity-Relationship-Diagramme zur Beschreibung eines Weltausschnitts zeichnen und ER-Schemata in das relationale Modell übersetzen. Die Studierenden können BCNF bzw. 3NF erklären und gegebene Tabellen auf Verletzungen prüfen.

Inhalte:

- Grundlegende Datenbank-Begriffe, Funktionen von Datenbanksystemen
- Einführung in die mathematische Logik mit Anwendungen für Datenbanken
- Relationales Datenmodell, Integritätsbedingungen
- Relationale Algebra
- Die Datenbanksprache SQL (Schwerpunkt der Vorlesung)
- Einführung in Datenbankentwurf (Entity-Relationship-Modell, Logischer Entwurf, Relationale Normalformen: BCNF)

Verantwortlichkeiten (Stand 30.01.2023):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Stefan Brass
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 14.06.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Mathematik - 180 LP 1.	3.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				
Bachelor	Geographie - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/120
	Version 2023				
Bachelor	Wirtschaftsinformatik	3.	Pflichtmodul	Benotet	5/165
	(Business Information				
	Systems) - 180 LP 1.				
	Version 2020				
Bachelor	Informatik - 180 LP 1.	3.	Pflichtmodul	Benotet	5/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	5.	Pflichtmodul	Benotet	5/170
	Version 2023				
Bachelor	Physik und Digitale	3.	Pflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				
Master	Mathematik - 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Benotet	5/120
	Version 2013				
Master	Mathematik - 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Benotung	0/90
	Version 2023			ohne Anteil	
Master	Wirtschaftsmathematik -	1. oder 3.	Wahlpflichtmodul	Benotung	0/110
	120 LP 1. Version 2013			ohne Anteil	

Teilnahmevoraussetzungen:

Obligatorisch:

Objektorientierte Programmierung (Studienleistung)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Übung	2	30	Wintersemester
Hausaufgaben	0	30	Wintersemester
Selbststudium	0	60	Wintersemester

Studienleistungen:

- Korrekte Bearbeitung der Hausaufgaben, wobei ein gewisser Prozentsatz der Punkte erreicht werden muss, eine weitere Präzisierung findet sich in der konkreten Modulbeschreibung
- aktive Mitarbeit in den Übungen inklusive Kurzvorträgen über die Hausaufgaben und der Beantwortung von Fragen zum Umfeld der Aufgaben
- In Einzelfällen (begründete Ausnahmen) kann der Modulverantwortliche eine mündliche Kurzprüfung als Alternative anbieten.

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur oder	Klausur oder	Klausur oder	
Open-Book-Prüfung	Open-Book-Prüfung	Open-Book-Prüfung	

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters

1. Wiederholungstermin: spätestens am Ende der Vorlesungszeit des folgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: Einführung in Rechnerarchitektur

Identifikationsnummer:

INF.05179.06

Lernziele:

Studierende sollen durch dieses Modul folgende Kompetenzen erwerben:

- Sie wissen, wie Zeichen und Zahlen in einem Rechner dargestellt werden, und können die entsprechenden Kodierungen anwenden. Insbesondere können sie Zahlen in die unterschiedlichen Zahlendarstellungen (dezimale und binäre Darstellung durch Betrag und Vorzeichen, Einerkomplementdarstellung, Zweierkomplementdarstellung, Gleitkommadarstellungen nach IEEE 754) umwandeln und vice versa.
- Sie können Zahlen in den unterschiedlichen Zahlendarstellungen addieren und multiplizieren.
- Sie wissen, wie ein Rechner, insbesondere ein Prozessor, aufgebaut ist, und können den Aufbau erklären.
- Sie kennen den Unterschied zwischen RISC und CISC.
- Sie können kleine Assemblerprogramme schreiben und debuggen.
- Sie verstehen, wie ein Maschinenprogramm in einem RISC durch die Hardware ausgeführt wird und können dies an Beispielen erklären.
- Sie verstehen, wie ein Maschinenprogramm in einem CISC mithilfe eines Mikroprogramms ausgeführt wird und können dies an Beispielen erklären.
- Sie wissen, was unter dem Begriff Speicherhierarchie zu verstehen ist, und verstehen den Zweck der Speicherhierarchie. Sie verstehen die Funktionsweise von assoziativen und direktabbildenden Caches und können die Anzahl der Cache-Misses bei einfachen Maschinenprogrammen abschätzen.
- Sie wissen, wie Befehlspipelining funktioniert, und verstehen, dass Befehlspipelining zur Beschleunigung eines Rechners eingesetzt wird. Sie kennen darüber hinaus die Hemmnisse, die eine Befehlspipeline ausbremsen können, und wissen, wie diese Hemmnisse umgegangen werden können bzw. wie man diese löst.

Inhalte:

- 1. Historischer Rückblick auf die Rechner-Entwicklung
- 2. Codierung von Zeichen
- 3. Darstellung von Zahlen: Festkomma- und Gleitkomma-Zahlendarstellungen
- 4. Grober Aufbau eines Rechners
- 5. Aufbau eines Ein-Zyklus-Prozessors (RISC)
- 6. Aufbau eines Mehr-Zyklen-Prozessors (RISC)
- 7. Mikroprogrammierung (CISC)
- 8. Speicherhierarchie in einem modernen Rechner
- 9. Überblick existierender Rechnerarchitekturen

Verantwortlichkeiten (Stand 30.01.2023):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Paul Molitor
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 24.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Informatik	1.	Pflichtmodul	Benotet	examens-
Sekundarschulen	(Sekundarschule) 1.				relevant
	Version 2012				
Lehramt	Informatik (Gymnasium) 1.	1.	Pflichtmodul	Benotet	examens-
Gymnasien	Version 2012				relevant
Bachelor	Mathematik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				
Bachelor	Wirtschaftsinformatik	3.	Wahlpflichtmodul	Benotet	5/165
	(Business Information				
	Systems) - 180 LP 1.				
	Version 2020				
Bachelor	Informatik - 180 LP 1.	1.	Pflichtmodul	Benotet	5/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/170
	Version 2023				
Bachelor	Physik und Digitale	5.	Wahlpflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Prüfungsvorbereitung	0	45	Wintersemester
Übung	1	15	Wintersemester
Bearbeiten der Übungsaufgaben	0	45	Wintersemester

Studienleistungen:

- Erfolgreiches Lösen der Übungsaufgaben
- Aktive Mitarbeit

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur oder	Klausur oder	Klausur oder	
Open-Book-Prüfung	Open-Book-Prüfung	Open-Book-Prüfung	

Termine für die Modulleistung:

1.Termin: In der Regel zu Beginn, spätestens am Ende der vorlesungsfreien Zeit des

Semesters, in dem das Modul angeboten wurde

1. Wiederholungstermin: In der Regel am Ende der vorlesungsfreien Zeit des folgenden Semesters in

dem das Modul angeboten wurde, spätestens am Ende der vorlesungsfreien

Zeit des folgenden Semesters

2. Wiederholungstermin: Nach Absprache mit dem Verantwortlichen des Moduls. Die maximale

Anzahl der zweiten Wiederholungsmöglichkeiten ist in den

Prüfungsordnungen festgelegt.

Modul: Einführung in die Bildverarbeitung

Identifikationsnummer:

INF.02362.08

Lernziele:

- Die Studierenden sind befähigt, die Prinzipien der Aufnahme und Repräsentation von digitalen Bildern zu beschreiben.
- Sie kennen die grundlegenden Fragestellungen und Teilprobleme bei der Verarbeitung digitaler Bilder.
- Die Studierenden verstehen grundlegende Methoden der automatischen Bildverarbeitung und erläutern ihre Funktionsweise.
- Sie sind in der Lage, die Eigenschaften dieser Methoden zu bewerten und die mit ihnen erzielten Ergebnisse zu interpretieren.
- Sie sind im Stande, geeignete Methoden für gegebene Problemstellungen auszuwählen, diese in einer geeigneten Programmiersprache zu implementieren und auf Bilddaten anzuwenden.

Inhalte:

- Die Bildverarbeitung beschäftigt sich mit der automatischen Verarbeitung bildhafter Daten, die von unterschiedlichsten Sensoren stammen können. Das Ziel der Verarbeitung ist letzlich die Analyse und Interpretation der in den Daten abgebildeten Umwelt hinsichtlich einer gegebenen Aufgabenstellung. Bildverarbeitung arbeitet in Abgrenzung zur Bildanalyse im wesentlichen mit problemunabhängigen Modellannahmen, wobei diese Abgrenzung unscharf ist.
- Teile der Methoden können sehr intuitiv motiviert werden, in wesentlichen Teilen ist aber auch eine mathematische Fundierung essentiell. Auch Fragen der Effizienz von Algorithmen und Datenstrukturen werden berücksichtigt. Neben Methoden der Verarbeitung selber ist auch die Formation und die Repräsentation von Bildern Inhalt des Moduls.
 - 1. Digitale Bilder
 - 2. Binärbilder
 - 3. Vorverarbeitung und Bildverbesserung
 - 4. Bildsegmentierung: kontur- und regionenbasiert
 - 5. Bildrepräsentation, Fouriertransformation
 - 6. Textur
 - 7. Maschinelles Lernen für die Bildanalyse

Verantwortlichkeiten (Stand 16.01.2023):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Doz. Dr. Birgit Möller
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 02.03.2023):

Abschluss	Studienprogramm	empf. Studien- semester	Modulart	Benotung	Anteil der Modulnote an Abschlussnote
Lehramt	Informatik (Gymnasium) 1.	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien	Version 2007			Benotung	Abschluss
Lehramt	Informatik (Gymnasium) 1.	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien	Version 2012			Benotung	Abschluss
Bachelor	Mathematik - 180 LP 1. Version 2022	4. oder 6.	Wahlpflichtmodul	Benotet	5/110
Bachelor	Wirtschaftsinformatik (Business Information Systems) - 180 LP 1. Version 2020	6.	Wahlpflichtmodul	Benotet	5/165
Bachelor	Informatik - 180 LP 1. Version 2023	4.	Pflichtmodul	Benotet	5/155
Bachelor	Bioinformatik - 180 LP 1. Version 2023	4. oder 6.	Wahlpflichtmodul	Benotet	5/170
Bachelor	Physik und Digitale Technologien - 180 LP 1. Version 2019	5.	Wahlpflichtmodul	Benotet	5/157
Master	Mathematik - 120 LP 1. Version 2013	2.	Wahlpflichtmodul	Benotet	5/120
Master	Mathematik - 120 LP 1. Version 2023	2. oder 4.	Wahlpflichtmodul	Benotung ohne Anteil	0/90
Master	Physik - 120 LP 1. Version 2009	2.	Wahlpflichtmodul	Benotung ohne Anteil	0/70
Master	Physik - 120 LP 1. Version 2019	2.	Wahlpflichtmodul	Benotung ohne Anteil	0/70

Teilnahmevoraussetzungen:

Obligatorisch:

Grundkenntnisse in linearer Algebra und Analysis, objektorientierte Programmierkenntnisse

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesungen	2	30	Sommersemester
Selbststudium zur Vorlesung	0	45	Sommersemester
Übung	2	30	Sommersemester
Bearbeiten der Übungsaufgaben	0	45	Sommersemester

Studienleistungen:

- Erfolgreiches Lösen von Übungsaufgaben d.h. Erreichen von mind. 50% der Punkte für theoretische Aufgaben und mind. 50% der Punkte für praxisorientierte Aufgaben
- Erfolgreiches Vorrechnen von Übungsaufgaben in den Übungen
- aktive Teilnahme

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: In der Regel zu Beginn, spätestens am Ende der vorlesungsfreien Zeit des

Semesters, in dem das Modul angeboten wurde

1. Wiederholungstermin: In der Regel am Ende der vorlesungsfreien Zeit des folgenden Semesters in

dem das Modul angeboten wurde, spätestens am Ende der vorlesungsfreien

Zeit des folgenden Semesters

2. Wiederholungstermin: Nach Absprache mit dem Verantwortlichen des Moduls. Die maximale

Anzahl der zweiten Wiederholungsmöglichkeiten ist in der

Prüfungsordnungen festgelegt.

Modul: Einführung in die Technische Informatik

Identifikationsnummer:

INF.00883.08

Lernziele:

Studierende sollen durch dieses Modul folgende Kompetenzen erwerben:

- Sie verstehen die Grundgesetze der Elektronik (Ohm'sches Gesetz, Kirchhoff'sche Knotenregel, Kirchhoff'sche Maschenregel, usw.) und können diese anwenden, um das Verhalten elektronischer Schaltungen zu analysieren.
- Sie kennen die grundlegenden Bausteine der Digitaltechnik und ihren Aufbau über Transistoren in der CMOS-Technologie und können die entsprechenden Schaltungen diskutieren.
- Sie haben die Funktionsweise des Quine-McCluskey Verfahrens zur Berechnung eines Minimalpolynoms einer Booleschen Funktion verstanden und können dieses Verfahren auf Boolesche Funktionen anwenden.
- Sie können mithilfe binärer Entscheidungsgraphen mehrstufige Schaltungen zu Booleschen Funktionen konstruieren, insbesondere können sie den binären Einscheidungsgraphen zu einer durch einen Booleschen Ausdruck gegebenen Booleschen Funktion konstruieren.
- Sie kennen die Funktionsweise eines Operationsverstärkers und können einfache Schaltungen, in denen ein Operationsverstärker verwendet wird, diskutieren. Insbesondere haben sie verstanden, wie ein D/A-Wandel und ein A/D-Wandler aufgebaut ist und arbeitet, und können dies erläutern.
- Sie kennen den Aufbau effizienter Schaltungen zur Addition (Conditional-Sum-Adder, Carry-Look-AheadAdder) und Multiplikation (Wallace-Tree-Multiplier, Multiplizierer nach Luk & Vuillemin) von Zahlen im Zweierkomplement.
- Sie kennen den prinzipiellen Designflow integrierter Schaltungen und können diesen erläutern.

Inhalte:

- 1. Mathematische Grundlagen der Technischen Informatik: Boolesche Algebra (Einführung mittels eines konstruktiven Ansatzes)
- 2. Elektronische Grundlagen der Technischen Informatik: Gesetze der Elektronik, elektronische Bausteine (beginnend bei Transistoren über CMOS-Bausteine bis hin zu Operationsverstärker und ihre Beschaltung)
- 3. Rechnerinterne Darstellungen Boolescher Funktionen (Boolesche Ausdrücke, Disjunktive Normalformen, Binäre Entscheidungsdiagramme)
- 4. Verfahren zur Berechnung von Minimalpolynomen
- 5. Verfahren zur Berechnung mehrstufiger kombinatorischer Schaltungen
- 6. Aufbau und Analyse effizienter Schaltungen zur Addition, Subtraktion, Multiplikation und Division von Zahlen im Zweierkomplement
- 7. Designflow integrierter Schaltungen
- 8. Einführung in eine Hardwarebeschreibungssprache an einem Beispiel

Verantwortlichkeiten (Stand 30.01.2023):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Paul Molitor
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 13.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Informatik (Gymnasium) 1.	2. oder 4.	Pflichtmodul	keine	erfolgreicher
Gymnasien	Version 2007			Benotung	Abschluss
Bachelor	Mathematik - 180 LP 1.	4. oder 6.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				
Bachelor	Wirtschaftsinformatik	6.	Wahlpflichtmodul	Benotet	5/165
	(Business Information				
	Systems) - 180 LP 1.				
	Version 2020				
Bachelor	Informatik - 180 LP 1.	2.	Pflichtmodul	Benotet	5/155
	Version 2023				
Bachelor	Physik und Digitale	6.	Wahlpflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

Modul Einführung in Rechnerarchitektur

Dauer:

1 Semester

Angebotsturnus:

jedes Sommersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Sommersemester
Selbststudium und Prüfungsvorbereitung	0	45	Sommersemester
Übung	1	15	Sommersemester
Bearbeiten der Übungsaufgaben	0	45	Sommersemester

Studienleistungen:

- Erfolgreiches Lösen der Übungsaufgaben
- Aktive Mitarbeit

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur oder	Klausur oder	Klausur oder	
Open-Book-Prüfung	Open-Book-Prüfung	Open-Book-Prüfung	

Termine für die Modulleistung:

1.Termin: In der Regel zu Beginn, spätestens am Ende der vorlesungsfreien Zeit des

Semesters, in dem das Modul angeboten wurde

1. Wiederholungstermin: In der Regel am Ende der vorlesungsfreien Zeit des folgenden Semesters in

dem das Modul angeboten wurde, spätestens am Ende der vorlesungsfreien

Zeit des folgenden Semesters

2. Wiederholungstermin: Nach Absprache mit dem Verantwortlichen des Moduls. Die maximale

Anzahl der zweiten Wiederholungsmöglichkeiten ist in den

Prüfungsordnungen festgelegt.

Modul: Gestaltung und Durchführung von Fachvorträgen in der Informatik (FSQ-Modul)

Identifikationsnummer:

INF.05181.05

Lernziele:

Studierende sollen durch dieses Modul folgende Kompetenzen erwerben:

- Sie können zu einem vorgegebenen Thema selbstständig geeignete Fachliteratur recherchieren.
- Sie sind in der Lage, sich in Fachliteratur (fortgeschrittene Lehrbücher oder Forschungsartikel, insbesondere auch auf Englisch) einzuarbeiten und diese kritisch zu hinterfragen.
- Sie können die wesentlichen Inhalte derartiger Quellen mit eigenen Worten zusammenfassen, sowie klar und verständlich in einem wissenschaftlichen Vortrag präsentieren.
- Sie können in einer an den Vortrag anschließenden Diskussion Fragen zu diesem Stoff beantworten.
- Sie können die eigene Vortragsleistung selbstkritisch reflektieren.
- Sie können die Inhalte des Vortrags in einer schriftlichen Ausarbeitung zusammenfassend nachvollziehbar darstellen.
- Sie kennen die Grundzüge guter wissenschaftlicher Arbeit Sie wissen, wie man wissenschaftliche Texte unter Beachtung fachspezifischer Regeln zum Strukturieren und Zitieren verfasst

Inhalte:

- Planung, Vorbereitung und Durchführung von Fachvorträgen in der Informatik
- (die weiteren Inhalte sind von der jeweils verwendeten Literatur abhängig und werden vor Beginn der Vorlesungszeit bekannt gegeben)

Verantwortlichkeiten (Stand 15.07.2024):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	die Professorinnen und Professoren des
III - Agrar- und		Instituts für Informatik
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 13.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Informatik - 180 LP 1.	5.	Pflichtmodul	Benotet	5/155
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Objektorientierte Programmierung
- Datenstrukturen und Effiziente Algorithmen I
- Einführung in die Technische Informatik
- Mathematische Grundlagen der Informatik und Konzepte der Modellierung
- Einführung in Rechnerarchitektur
- Einführung in Betriebssysteme

Zusatzangaben:

Alle Pflichtmodule des 1. Studienjahres außer Mathematik B (Modul- und Studienleistungen) Studienleistungen der Pflichtmodule des 3. Semesters

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Seminar	2	30	Wintersemester
Selbststudium	0	60	Wintersemester
Vorbereitung eines Seminarvortrages und	0	60	Wintersemester
Erstellung eines Berichtes			

Studienleistungen:

- keine

Modulvorleistungen:

- Zwei eigene, erfolgreich präsentierte Vorträge
- Teilnahme an den wissenschaftlichen Diskussionen sowie den Frage- und Feedbackrunden zu den Vorträgen anderer

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
Hausarbeit (15-20 Seiten)	Hausarbeit (15-20 Seiten)	Hausarbeit (15-20 Seiten)	100 %

Termine für die Modulleistung:

1.Termin: wird am Beginn der Vorlesungszeit bekannt gegeben

1. Wiederholungstermin: spätestens bis zum Ende der Vorlesungszeit des folgenden Semesters.

2. Wiederholungstermin: erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Modul: Konzepte der Programmierung

Identifikationsnummer:

INF.00685.11

Lernziele:

- Die Studierenden verstehen die Grundkonzepte von Programmiersprachen, deren zu Grunde liegenden Paradigmen und sind in der Lage die Grundkonzepte praktisch umzusetzen. Insbesondere sollen die Studierenden in der Lage sein, sich schnell in eine neue Programmiersprache einzuarbeiten und dort schnell programmieren zu können.
- Die Studierenden sind in der Lage Modelle systematisch in Programme umzusetzen.
- Die Studierenden sind in der Lage, die Korrektheit von Programmen zu beweisen.
- Die Studierenden können aus Spezifikationen systematisch korrekte Programme konstruieren.

Inhalte:

Programmiersprachen haben viele Konzepte gemeinsam, die man für eine schnelle Einarbeitung in eine neue Programmiersprache kennen muss. Deshalb werden hier unterschiedliche Programmierparadigmen behandelt. Jedes dieser Paradigmen ist eng verwandt mit einer Modellierungstechnik, so dass Modelle, die nach einer Modellierungstechnik entstanden sind, systematisch in Programme umgesetzt werden können. Insbesondere können dann solche Programme leicht verifiziert werden, d.h. nachgewiesen werden, dass die Modelle korrekt implementiert wurden.

Grundsätzlich müssen beim Übergang von Modellen zum Programm die Korrektheit der Programme gegenüber den Modellen verifiziert werden. In diesem Modul wird gezeigt, wie für die Modellierungstechniken des Moduls "Mathematische Grundlagen der Informatik und Konzepte der Modellierung" dies erfolgen kann. Dabei werden zunächst Programmierkonzepte, die konzeptuell nahe an den Modellierungstechniken sind, diskutiert sowie gezeigt, wie Programme verifiziert und systematisch konstruiert werden können. Im Einzelnen beinhaltet das Modul die folgenden Themen:

- Funktionales Programmieren: Funktionale Programmierkonzepte, Verifikation und Validierung funktionaler Programme (Qualitätssicherung), Typkonzept, Transformation von Abstrakten Datentypen in funktionale Programme, Grenzen der Berechenbarkeit
- ImperativesProgrammieren: Grundlegende Elemente und Konzepte imperativer Sprachen, Verifikation imperativer Programme (Qualitätssicherung), Typkonzept, Schrittweise Verfeinerung zur Konstruktion korrekter Programme, Implementierung abstrakter Datentypen.
- Objektorientiertes Programmieren: Objekt-orientierte Programmierkonzepte, Typkonzept, Systematische Transformation aus UML-Klassendiagrammen, Verifikation objekt-orientierter Programme (Qualitätssicherung)
- Logisches Programmieren: Logische Programmierkonzepte, Grundlagen der Logikprogrammierung, SLD-Resolution.

Verantwortlichkeiten (Stand 29.01.2025):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Wolf Zimmermann, Dr. Mandy
III - Agrar- und		Weißbach
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 24.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Informatik	3.	Pflichtmodul	keine	erfolgreicher
Sekundarschulen	(Sekundarschule) 1.			Benotung	Abschluss
	Version 2012				
Lehramt	Informatik (Gymnasium) 1.	3.	Pflichtmodul	Benotet	examens-
Gymnasien	Version 2007				relevant
Lehramt	Informatik (Gymnasium) 1.	3.	Pflichtmodul	keine	erfolgreicher
Gymnasien	Version 2012			Benotung	Abschluss
Bachelor	Mathematik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				
Bachelor	Informatik - 180 LP 1.	3.	Pflichtmodul	Benotet	5/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/170
	Version 2023				
Bachelor	Physik und Digitale	5.	Wahlpflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Objektorientierte Programmierung
- Mathematische Grundlagen der Informatik und Konzepte der Modellierung oder
- Objektorientierte Programmierung
- Grundlagen der Bioinformatik oder
- Objektorientierte Programmierung
- Grundlagen und Konzepte der Modellierung

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	2	30	Wintersemester
Rechnerübung	2	30	Wintersemester
Bearbeitung der	0	90	Wintersemester
Übungsaufgaben/Selbststudium			

Studienleistungen:

- Bearbeitung von mindestens 80% der Übungsaufgaben und auf Anfrage erfolgreiche Vorstellung der Lösung einer bearbeiteten Aufgabe (siehe Hinweise)

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: Zu Beginn der vorlesungsfreien Zeit1.Wiederholungstermin: Am Ende der vorlesungsfreien Zeit

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.

Hinweise:

zu den Studienleisungen: (nicht die eigene Lösung erklären können bzw. die Vorstellung ablehnen bedeutet, dass alle Aufgaben der Übungsserie als nicht bearbeitet gelten)

Modul: Mathematik B

Identifikationsnummer:

MAT.02372.02

Lernziele:

Vermittlung der Grundlagen über

- Algebraische Strukturen
- Lineare Algebra
- Analysis

sowie deren sichere Handhabung

Inhalte:

Die Veranstaltung besteht aus zwei Teilen:

Teil 1: Diskrete Strukturen und lineare Algebra

- Elementare Logik und Mengentheorie
- Gruppen, Ringe, Körper
- rationale, reelle, komplexe Zahlen
- lineare Gleichungssysteme, Vektoren, Matrizen
- Vektorräume und lineare Operatoren
- Eigenwerte, Diagonalisierung, Normalformen
- Analytische Geometrie

Teil 2: Analysis

- Folgen, Reihen, Konvergenz
- Funktionen und Stetigkeit
- Iterationen und Fixpunkte
- Differential- und Integralrechnung in einer Variablen
- Fourier-Reihen
- Differentialrechnung in mehreren Variablen
- Vektoranalysis

Verantwortlichkeiten (Stand 23.03.2009):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät II	Mathematik	Institut für Mathematik

Studienprogrammverwendbarkeiten (Stand 24.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Informatik (Gymnasium) 1.	1. bis 4.	Wahlpflichtmodul	Benotung	erfolgreicher
Gymnasien	Version 2007			ohne Anteil	Abschluss
Bachelor	Informatik - 180 LP 1.	1. bis 2.	Pflichtmodul	Benotet	15/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	1. bis 2.	Pflichtmodul	Benotet	15/170
	Version 2023				
Bachelor (2-Fach)	Physik Plus - 120 LP 1.	1. bis 2.	Pflichtmodul	Benotet	15/110
	Version 2020				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

450 Stunden

Leistungspunkte:

15 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Übung	2	30	Wintersemester
Selbststudium	0	300	Winter- und
			Sommersemester
Vorlesung	3	45	Sommersemester
Übung	2	30	Sommersemester

Studienleistungen:

- Lösen von Übungsaufgaben und deren Präsentation (Teil 1: Lineare Algebra und Geometrie)
- Lösen von Übungsaufgaben und deren Präsentation (Teil 2: Analysis)

Modulvorleistungen:

- keine

Modulteilleistungen block 1:

Nr.	Modulteilleistungen block	1. Wiederholung	2. Wiederholung	Anteil an
	1			Modulnote
1	Klausur I	Klausur	mündl. Prüfung oder	50 %
			Klausur	
2	Klausur II	Klausur	mündl. Prüfung oder	50 %
			Klausur	

Termine für Modulteilleistung Nr. 1:

1.Termin: am Ende der Vorlesungszeit des Wintersemesters

1. Wiederholungstermin: zu Beginn der Vorlesungszeit des Sommersemesters

2. Wiederholungstermin: im Sommersemester oder Klausur des nächsten Wintersemesters

Termine für Modulteilleistung Nr. 2:

1.Termin: am Ende der Vorlesungszeit des Sommersemesters

1. Wiederholungstermin: zu Beginn der Vorlesungszeit des Wintersemesters

2. Wiederholungstermin: im Wintersemester oder Klausur des nächsten Sommersemesters

Modul: Mathematische Grundlagen der Informatik und Konzepte der Modellierung

Identifikationsnummer:

INF.05173.08

Lernziele:

Die Teilnehmer*innen erwerben folgende Kompetenzen

- Sie sind in der Lage, auf Basis eines mathematischen Grundlagenwissens selbstständig zu lernen und zu erarbeiten.
- Sie können auf Grund eines umfassenden Überblicks über grundlegende Modellierungsmethoden diese situations- und sachgerecht einsetzen.
- Sie sind in der Lage, exakt und gründlich zu arbeiten.
- Sie beherrschen die mathematischen Sprache und können dies problem- und sachorientiert einsetzen.
- Sie können Zusammenhänge zwischen verschiedenen Gebieten und Konzepten der Mathematik und Informatik erkennen und nutzen.
- Sie sind in der Lage, logisch zu denken und von Einzelheiten problemgerecht zu abstrahieren.
- Sie können Modelle auf Eigenschaften hin untersuchen und validieren
- Sie sind in der Lage, Aussagen über Modellierungstechniken selbstständig zu beweisen.
- Sie verstehen den Zusammenhang zwischen den verschiedenden Grundkonzepten der Modellierung

Inhalte:

Modellieren von IT-Systemen ist eine zentrale Tätigkeit bei der Konstruktion von IT-Systemen aller Art. Mit Modellen möchte man erreichen, dass bereits vor der Umsetzung in Programme oder Hardware ein Verständnis für die Funktionsweise, Struktur und Eigenschaften des IT-Systems entsteht. Insbesondere bei sicherheitskritischen IT-Systemen wie beispielsweise im Automobil, Flugzeug oder Medizintechnik ist eine Überprüfung der Systemeigenschaften auf Modellebene notwendig. Um unerwünschte Eigenschaften auszuschließen ist ein formaler Nachweis (Validerung) und sehr sorgfältiges Arbeiten erforderlich. Aus diesem Grund basieren die Modellierungstechniken meist auf mathematischen Grundlagen wie Mengentheorie, Algebren und Logik. Dieses Modul vermittelt die grundsätzlichen Denk- und Herangehensweisen der Informatik. Fundamental ist die Trennung zwischen Syntax und Semantik. Während Modelle und Programme in einer formalen Notation entwickelt werden, muss hinter dieser eine Semantik stecken. Validierungen von Eigenschaften von Modellen erfolgen jedoch in der formalen Notation. Deshalb müssen die Validierungstechniken bzgl. der Semantik gerechtfertigt werden. Semantische Modelle sind meist mathematische Modelle, so dass deren Grundlagen behandelt werden müssen. Nach einer Einführung in die grundlegenden Begrifflichkeiten und Denkweisen der Informatik und Modellierung werden nacheinander Modellierungstechniken auf Basis der verschiedenen Mathematischen Grundlagen behandelt: Mengen, Folgen (Texte), Monoide und Verbände, Automaten, Algebren und Abstrakte Datentypen, Logik. Dabei wird jeweils die Modellierung an Hand von Beispielen aus der Praxis eingeführt, deren Theoretische Grundlagen diskutiert und anschließend wieder gezeigt, wie diese zu Validierungsmöglichkeiten für die Modelle führen. Das Modul schließt mit einer der heute gebräuchlichsten Modellierungstechniken, den UML-Klassendiagrammen, ab, die letztendlich die im Modul erlernten Modellierungstechniken einsetzten. Im Einzelnen werden die folgenden Themenbereiche behandelt:

- 1. Einführung in die Informatik: Was ist Informatik? Datum, Information, Signal, Semiotik, Wissen, Verantwortung von Informatikerinnen bzw. Informatiker, Systembegriff, Modellbegriff, Prinzipien der Modellierung
- 2. Mengen, Relationen, Funktionen, Graphen und Bäume
- 3. Texte: Textersetzungssysteme, Grammatiken, Chomsky-Hierarchie, endliche Automaten, Strukturbäume
- 4. Monoide, Boolesche Algebra und Verbände
- 5. Modellierung technischer Systeme: Mealy-Automaten, Moore-Automaten, Petri-Netze, Lebendigkeit, Sicherheit
- 6. Abstrakte Datentypen: Terme und Signaturen, Algebren, Homomorphiesatz, Strukturelle

Induktion, Termersetzungssystem

- 7. Logik: Aussagenlogik, Prädikatenlogik, Kalküle, Korrektheit und Vollständigkeit, Konsistenz, Spezifikation mit Vor- und Nachbedingungen
- 8. Objekt-Orientiertes Modellieren: UML Klassendiagramme, UML Objektdiagramme, Klasseninvarianten, Verträge

Verantwortlichkeiten (Stand 10.01.2024):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Wolf Zimmermann
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 13.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Informatik	1.	Pflichtmodul	keine	erfolgreicher
Sekundarschulen	(Sekundarschule) 1.			Benotung	Abschluss
	Version 2012				
Lehramt	Informatik (Gymnasium) 1.	1.	Pflichtmodul	keine	erfolgreicher
Gymnasien	Version 2007			Benotung	Abschluss
Lehramt	Informatik (Gymnasium) 1.	1.	Pflichtmodul	keine	erfolgreicher
Gymnasien	Version 2012			Benotung	Abschluss
Bachelor	Wirtschaftsinformatik	3. bis 4.	Wahlpflichtmodul	Benotet	15/165
	(Business Information				
	Systems) - 180 LP 1.				
	Version 2020				
Bachelor	Informatik - 180 LP 1.	1.	Pflichtmodul	Benotet	15/155
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Wintersemester

Studentischer Arbeitsaufwand:

450 Stunden

Leistungspunkte:

15 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Mathematische Grundlagen der Informatik	2	45	Wintersemester
und Konzepte der Modellierung 1			
Übung	2	30	Wintersemester
Mathematische Grundlagen der Informatik	2	30	Sommersemester
und Konzepte der Modellierung 2			
Übung	2	30	Sommersemester
Selbststudium, Lösen von Übungsaufgaben	0	75	Wintersemester
Selbststudium, Lösen von Übungsaufgaben	0	90	Sommersemester
Klausurvorbereitung	0	50	Sommersemester
Tutorium (fakultativ)	0	60	Winter- und
			Sommersemester
Übungsaufgaben in vorlesungsfreier Zeit	0	40	Wintersemester
(Ferienübungsblatt)			

Studienleistungen:

- Bearbeitung von mindestens 80% der Übungsaufgaben im WiSe und auf Anfrage erfolgreiche Vorstellung der Lösung einer bearbeiteten Aufgabe (siehe Hinweise)
- Bearbeitung von mindestens 80% der Übungsaufgaben im SoSe und auf Anfrage erfolgreiche Vorstellung der Lösung einer bearbeiteten Aufgabe (siehe Hinweise)

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: Innerhalb der ersten vier Wochen nach Vorlesungsende

1.Wiederholungstermin: Mindestens 6 Wochen nach dem 1. Termin2.Wiederholungstermin: Erst nach erneutem Besuch des Moduls

Hinweise:

zu den Studienleistungen: (nicht die eigene Lösung erklären können bzw. die Vorstellung ablehnen bedeutet, dass alle Aufgaben der Übungsserie als nicht bearbeitet gelten)

Modul: Objektorientierte Programmierung

Identifikationsnummer:

INF.00677.09

Lernziele:

- Die Studierenden verstehen die grundlegenden Konstrukte objektorientierter Programmiersprachen.
- Die Studierenden entwickeln ein Bewusstsein für die Langlebigkeit der grundlegenden Konzepte von Programmiersprachen.
- Die Studierenden sind in der Lage, kleinere, korrekt funktionierende Programme in einer objektorientierten Programmiersprache selbstständig zu erstellen.
- Die Studierenden sind in der Lage, Programme in einer objektorientierten Programmiersprache zu lesen und deren Bedeutung zu verstehen.
- Die Studierenden sind in der Lage, kleinere objektorientierte Programme auf ihre korrekte Funktionsweise selbstständig systematisch zu testen und ggf. festgestellte Fehler zu korrigieren.

Inhalte:

- 1. Operatoren, Variablen und Zuweisungen
- 2. Gültigkeitsbereiche und Blöcke
- 3. Basisdatentypen und Ausdrücke
- 4. zusammengesetzte Datentypen
- 5. einfache Ablaufsteuerung
- 6. Klassen, Attribute, Methoden
- 7. Vererbung und Polymorphie
- 8. Parametrisierte Klassen
- 9. Ausnahmebehandlung
- 10. Rekursion

Verantwortlichkeiten (Stand 25.06.2024):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	die Professorinnen und Professoren des
III - Agrar- und		Instituts für Informatik
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 14.06.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Informatik	1.	Pflichtmodul	Benotet	examens-
Sekundarschulen	(Sekundarschule) 1.				relevant
	Version 2012				
Lehramt	Informatik (Gymnasium) 1.	1.	Pflichtmodul	Benotet	examens-
Gymnasien	Version 2007				relevant
Lehramt	Informatik (Gymnasium) 1.	1.	Pflichtmodul	Benotet	examens-
Gymnasien	Version 2012				relevant
Bachelor	Mathematik - 180 LP 1.	1.	Pflichtmodul	Benotung	0/110
	Version 2022			ohne Anteil	

Bachelor	Physik - 180 LP 1. Version	1.	Wahlpflichtmodul	Benotung	0/137
	2019			ohne Anteil	
Bachelor	Geographie - 180 LP 1.	3.	Wahlpflichtmodul	Benotet	5/120
	Version 2023				
Bachelor	Wirtschaftsinformatik	1.	Pflichtmodul	Benotet	5/165
	(Business Information				
	Systems) - 180 LP 1.				
	Version 2020				
Bachelor	Wirtschaftsmathematik -	1.	Pflichtmodul	Benotung	0/105
	180 LP 1. Version 2022			ohne Anteil	
Bachelor	Informatik - 180 LP 1.	1.	Pflichtmodul	Benotet	5/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	1.	Pflichtmodul	Benotet	5/170
	Version 2023				
Bachelor	Physik und Digitale	1.	Pflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				
Master	Bioinformatik - 120 LP 1.	1.	Wahlpflichtmodul	Benotet	5/120
	Version 2023				

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Kolloquium:	2	30	Wintersemester
Wissensaustausch/Diskussion/Vertiefung			
Selbststudium: Bearbeitung des Lernmoduls	0	30	Wintersemester
Rechnerübung	2	30	Wintersemester
Selbststudium	0	60	Wintersemester

Studienleistungen:

- vollständige Bearbeitung des Lernmoduls
- Bearbeitung von mindestens 70 % der Übungsaufgaben
- erfolgreiches Testat zur Programmierung (die genauen Details werden in der ersten Vorlesung bekanntgegeben)

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur	Klausur	Klausur	

Termine für die Modulleistung:

1.Termin: spätestens am Ende der vorlesungsfreien Zeit des Semesters

1. Wiederholungstermin: spätestens am Ende der vorlesungsfreien Zeit des folgenden Semesters

2. Wiederholungstermin: Nach Absprache mit den Verantwortlichen des Moduls. Die maximale

Anzahl der zweiten Wiederholungsmöglichkeiten ist in den

Prüfungsordnungen festgelegt.

Modul: Projektseminar

Identifikationsnummer:

INF.08028.03

Lernziele:

- Die Studierenden erwerben erste praktische Erfahrungen in Planung und Durchführung von selbst organisierten Projekten.
- Die Studierenden erwerben Kompetenzen in Teamarbeit. Hierzu gehören das Gewinnen der Einsicht in die Notwendigkeit von Organisationsstrukturen, der Festlegung verschiedener Rollen im Team und das Zusammenwirken der einzelnen Aufgaben bzw. Lösungen im Team zur Gesamtlösung des Projekts. Insbesondere lernen die Studierenden sich an Absprachen (wie beispielsweise bzgl Schnittstellen) zu halten und bei gewünschten Änderungen, diese in den Teamsitzungen zu thematisieren.
- Die Studierenden lernen, auf Kundenwünsche einzugehen und durch den Einsatz der erlernten Methoden aus dem Modul Softwaretechnik diese gemeinsam mit dem Kunden zu schärfen.
- Die Studierenden sind in der Lage Tagesordnungen für Besprechungen zu erstellen und Besprechungen entsprechend dieser Tagesordnung durchzuführen sowie zu protokollieren.
- Die Studierenden sind in der Lage die wesentlichen Ergebnisse ihres Projekts kompakt zusammen zu fassen und dies gegenüber Dritten schriftlich (in einem Bericht) und mündlich (in einer Präsentation) darzulegen.
- Die Studierenden sind in der Lage ihr Projekt kritisch im Verlauf sowie bzgl. ihrer eigenen Rolle zu reflektieren und dies gegenüber Dritten schriftlich (in einem Bericht) und mündlich (in einer Präsentation) darzulegen.

Inhalte:

Im Projektseminar sollen die in den Modulen `Softwaretechnik` erworbenen Kenntnisse in der Planung und Durchführung von Projekten in mittelgroßen Teams (10-15 Personen) umgesetzt werden. Die Projekte können das ganze Spektrum von Hardware- über Software- bis hin zu Beratungsprojekten umfassen. Ziel ist, dass die Teilnehmerinnen bzw. Teilnehmer aus den Erfahrungen mit der Durchführung eines solchen Projekts lernen.

Die Teilnehmer arbeiten in einem Team von 10-15 Personen selbstständig an einem IT-Projekt, das von externen Partnern (Unternehmen aus der Region, Forschungseinrichtungen etc.). Das fachliche Thema ist vom konkreten Projekt abhängig. Zu Beginn der Veranstaltung wird im Rahmen einer Vorlesung in Projektplanungs und -management Techniken sowie in Konfigurations- und Versionsmanagement eingeführt. Danach soll das konkrete Projekt geplant, durchgeführt und präsentiert werden.

Verantwortlichkeiten (Stand 29.01.2025):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Wolf Zimmermann
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 13.01.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Informatik - 180 LP 1.	4. bis 5.	Pflichtmodul	keine	
	Version 2023			Benotung	

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Objektorientierte Programmierung
- Datenstrukturen und Effiziente Algorithmen I
- Softwaretechnik

Wünschenswert:

Engagement im Projekt

Dauer:

2 Semester

Angebotsturnus:

jedes Studienjahr beginnend im Sommersemester

Studentischer Arbeitsaufwand:

450 Stunden

Leistungspunkte:

15 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Projektseminar	4	60	Sommersemester
Einführung in Projektmanagement	0,6	6	Sommersemester
Projektseminar	4	60	Wintersemester
Selbststudium	0	294	Winter- und
			Sommersemester
Erstellen Bericht, Vorbereitung	0	30	Wintersemester
Verteidigung			

Studienleistungen:

- keine

Modulvorleistungen:

- Aktive Mitarbeit am Projekt (Nachweis über nachvollziehbare Zeitaufschreibung)
- regelmäßige Teilnahme an den Projektbesprechungen

Modulteilleistungen block 1:

Nr.	Modulteilleistungen block	1. Wiederholung	2. Wiederholung	Anteil an
	1			Modulnote
1	Präsentation des Projekts	Präsentation des Projekts	Präsentation des Projekts	50 %
	(30 min, 15 min	(30 min, 15 min	(30 min, 15 min	
	Diskussion)	Diskussion)	Diskussion)	
2	Bericht (35 Seiten)	Bericht (35 Seiten)	Bericht (35 Seiten)	50 %

Termine für Modulteilleistung Nr. 1:

1.Termin: spätestens 2 Wochen nach Projektbericht

1.Wiederholungstermin: innerhalb von 4 Wochen stattfinden2.Wiederholungstermin: erst nach Wiederholung des Moduls

Termine für Modulteilleistung Nr. 2:

1.Termin: in der vorlesungsfreien Zeit des Wintersemesters

1. Wiederholungstermin: innerhalb von 6 Wochen nach dem 1. Termin

2. Wiederholungstermin: erst nach Wiederholung des Moduls

Modul: Rechnernetze und verteilte Systeme

Identifikationsnummer:

INF.08027.01

Lernziele:

Studierende sollen durch dieses Modul folgende Kompetenzen erwerben:

- Sie kennen die wesentlichen Kriterien zur Einteilung von Rechnernetzen und verteilten Systemen.
- Sie kennen die unterschiedlichen Aufbauten und Topologien von Rechnernetzen. Sie verstehen die Netzwerkmaße zur Beurteilung der Leistungsfähigkeit von Rechnernetzen und Teilnetzen und können diese auf konkrete Szenarien anwenden.
- Sie wissen, wie Netzwerke mittels Schichtenmodell modelliert werden. Sie kennen die Aufgaben der einzelnen Schichten von Layer 1 bis Layer 4 und können darauf basierend die Aufgabenverteilung, Konstruktion und schichtübergreifende Zusammenarbeit der zugehörigen Protokolle erklären.
- Sie kennen die wichtigsten Protokolle von Layer 1 bis Layer 4 und ausgewählte Protokolle der darüber liegenden Schicht.
- Sie verstehen die Adressvergabe in den einzelnen Schichten und können diese anwenden sowie selbstständig Adressen zuordnen bzw. zuweisen.
- Sie können die Funktionsweise des Ethernet-L2 Protokolls und vergleichbarer Protokolle, u.a. WLAN erklären. Diese Kenntnisse können sie anwenden, um logische Topologien zur Vermeidung von Schleifen in LAN-Netzwerken zu ermitteln.
- Sie können mittels des IP-Adressschemas IP-Netzbereiche selbstständig berechnen, Adressraumaufteilungen durchführen und Routing-Entscheidungen treffen.
- Sie kennen die Funktionsweise von HUB, Switch und L3-Router. Sie können L3-Routingtabellen zur Wegbestimmung von Datenpaketen nutzen und können die wesentlichen Algorithmen zur Ermittlung von Routingtabellen selbstständig anwenden.
- Sie verstehen die Funktionsweise der UDP- und TCP-Transportprotokolle. Für TCP kennen Sie die Funktionsweise zur sicheren Paketzustellung, zur Anpassung an den Netzwerkdurchsatz und zur Vermeidung von Netzwerküberlastung. Sie können diese anwenden, um das Verhalten des Protokolls in Netzwerkaufzeichnungen nachzuvollziehen, Probleme zu identifizieren und Leitungsgrenzen abzuschätzen.
- Mit den erworbenen Kenntnissen können sie Fehler in Netzwerken erkennen und aufdecken und bis zu einem bestimmten Maß selbstständig beheben.
- Sie haben eine Übersicht über Kodierungen im Allgemeinen. Insbesondere können sie Kodierungen, die für Rechnernetze von Bedeutung sind, für konkrete Protokolle von Schicht 1 bis 4 anwenden. Dazu zählen verschiedene Quell-, Leitungs- und fehlertolerante Kodierungen.

Inhalte:

- 1. Synchrone und asynchrone Übertragungen
- 2. Fehlertolerante Kodierungen
- 3. Grundlagen der Informationstheorie (Entropie, Präfixcodes)
- 4. Netzwerktopologien
- 5. Schichtenmodell
- 6. Protokolle(Internetprotokolle,Ethernet, IP, TCP, UDP,usw)
- 7. Netzwerkprogrammierung / Interprozesskommunikation
- 8. Sicherheitstechniken
- 9. Verteilte Systeme

Verantwortlichkeiten (Stand 30.01.2023):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Dr. Sandro Wefel
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

$Studien programm verwend barkeiten \ (Stand \ 01.02.2023):$

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Bachelor	Mathematik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				
Bachelor	Wirtschaftsinformatik	5.	Wahlpflichtmodul	Benotet	5/165
	(Business Information				
	Systems) - 180 LP 1.				
	Version 2020				
Bachelor	Informatik - 180 LP 1.	5.	Pflichtmodul	Benotet	5/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/170
	Version 2023				
Bachelor	Physik und Digitale	5.	Wahlpflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				
Master	Physik - 120 LP 1. Version	1.	Wahlpflichtmodul	Benotung	0/70
	2019			ohne Anteil	

Teilnahmevoraussetzungen:

Obligatorisch:

keine

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung mit Übung	2	30	Wintersemester
Selbststudium zur Vorlesung	0	30	Wintersemester
Bearbeiten der Übungsaufgaben	0	30	Wintersemester
Übung	1	15	Wintersemester
Prüfungsvorbereitung	0	45	Wintersemester

Studienleistungen:

- Erfolgreiches Lösen von Übungsaufgaben
- Erfolgreiches Vorrechnen von Übungsaufgaben in den Übungen

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur oder	Klausur oder	Klausur oder	
Open-Book-Prüfung	Open-Book-Prüfung	Open-Book-Prüfung	

Termine für die Modulleistung:

1.Termin: In der Regel zu Beginn, spätestens am Ende der vorlesungsfreien Zeit des

Semesters, in dem das Modul angeboten wurde

1. Wiederholungstermin: In der Regel am Ende der vorlesungsfreien Zeit des folgenden Semesters in

dem das Modul angeboten wurde, spätestens am Ende der vorlesungsfreien

Zeit des folgenden Semesters

2. Wiederholungstermin: Nach Absprache mit dem Verantwortlichen des Moduls. Die maximale

Anzahl der zweiten Wiederholungsmöglichkeiten ist in den

Prüfungsordnungen festgelegt.

Modul: Softwaretechnik

Identifikationsnummer:

INF.00682.09

Lernziele:

- Die Studierenden verstehen den Unterschied zwischen `Programmieren im Großen` vs. `Programmieren im Kleinen` und sind in der Lage, dies bei der Softwareentwicklung im Rahmen der Kenntnisse verschiedener Vorgehensweisen bei der Erstellung größerer Softwaresysteme einzusetzen.
- Die Studierenden sind in der Lage, unkonkrete Kundenanforderungen durch verschiedene Modellierungstechniken in ein Analysemodell umzusetzen und durch dabei entstehenden Rückfragen (in der Sprache der Kunden) zu konkretisieren.
- Die Studierenden sind in der Lage, Problem-, Ziel- und Anforderungsanalysen durchzuführen.
- Die Studierenden sind in der Lage, selbstständig Softwarearchitekturen als Brücke zwischen dem Funktionalen Analysemodell und der Implementierung zu entwickeln und dabei nicht-funktionale Anforderungen zu berücksichtigen.
- Die Studierenden sind in der Lage, systematisch umfassende White- und Blackbox-Tests unter verschiedenen Gütekriterien zu entwickeln.
- Die Studierenden sind in der Lage, Integrationstests zu entwickeln und nach bestimmten Integrationsstrategien durchzuführen.
- Die Studierenden sind in der Lage, eine sachgerechte Dokumentation von Softwaresystemen zu erstellen.

Inhalte:

Die Softwaretechnik beschäftigt sich mit der Konstruktion größerer Softwaresysteme. Dazu sind systematische Vorgehensweisen und die Planung eines Softwareprojekts notwendig. Neben diesen Managementaspekten ist ein zentraler Teil die Gestaltung einer Softwarearchitektur, so dass Softwaresysteme auch über einen längeren Zeitraum zu warten und zu pflegen sind.

Heutzutage wachsen Softwaresysteme auf einen großen Umfang. Do gibt es in nahezu allen Bereichen Softwaresysteme mit mehreren 100 Mio oder sogar Milliarden Quellcodezeilen. Diese Komplexität ist durch einen einzelne Person nicht mehr beherrschbar. Solche Software entsteht über Jahre durch eine Vielzahl von beteiligten Entwicklern. Eine weitere Eigenschaft von größeren Softwaresystemen ist, dass der Hauptteil der Phase nicht die Entwicklung des Systems (die heutzutage sowieso in den meisten Fällen Weiterentwicklungen sind), sondern die Wartungs- und Pflegephase, in der Fehlerkorrekturen und Änderungswünsche eingearbeitet werden. In diesem Modul werden Techniken und Methoden diskutiert, wie man solche Softwaresysteme erstellen, warten und pflegen kann. Das umfasst sowohl technische Vorgehensweise als auch organistorische Gesichtspunkte. Im Einzelnen werden die folgenden Themen behandelt.

- 1. Einleitung: Programmieren im Großen vs. Programmieren im Kleinen, Herausforderungen
- 2. Problem- und Systemanalyse: Anforderungsanalyse
- 3. Modellierung: Erstellen funktionaler Modelle
- 4. Software-Architekturen: Grob- und Feinarchitekturen, Muster, Komponenten und Services
- 5. Testen: Datenflussmodelle, Kontrollflussmodelle, Qualitätssicherung, Integrationstests, Systemtests, Abnahmetests, Verifikation
- 6. Installation und Abnahme
- 7. Pflege und Wartung, Reengineering
- 8. Softwareentwicklungsprozesse: Softwareprozessmodelle, Qualitätssicherung,
- 9. Kostenschätzung

Verantwortlichkeiten (Stand 11.01.2024):

Fakultät	Institut	Verantwortliche/r
Naturwissenschaftliche Fakultät	Informatik	Prof. Dr. Wolf Zimmermann
III - Agrar- und		
Ernährungswissenschaften,		
Geowissenschaften und		
Informatik		

Studienprogrammverwendbarkeiten (Stand 02.03.2023):

Abschluss	Studienprogramm	empf.	Modulart	Benotung	Anteil der
		Studien-			Modulnote an
		semester			Abschlussnote
Lehramt	Informatik (Gymnasium) 1.	5. bis 8.	Wahlpflichtmodul	keine	erfolgreicher
Gymnasien	Version 2007			Benotung	Abschluss
Bachelor	Mathematik - 180 LP 1.	5.	Wahlpflichtmodul	Benotet	5/110
	Version 2022				
Bachelor	Wirtschaftsinformatik	3.	Pflichtmodul	Benotet	5/165
	(Business Information				
	Systems) - 180 LP 1.				
	Version 2020				
Bachelor	Informatik - 180 LP 1.	3.	Pflichtmodul	Benotet	5/155
	Version 2023				
Bachelor	Bioinformatik - 180 LP 1.	5.	Pflichtmodul	Benotet	5/170
	Version 2023				
Bachelor	Physik und Digitale	5.	Pflichtmodul	Benotet	5/157
	Technologien - 180 LP 1.				
	Version 2019				
Master	Mathematik - 120 LP 1.	1. oder 3.	Wahlpflichtmodul	Benotet	5/120
	Version 2013				
Master	Mathematik - 120 LP 1.	1. bis 3.	Wahlpflichtmodul	Benotung	0/90
	Version 2023			ohne Anteil	
Master	Wirtschaftsmathematik -	1.	Wahlpflichtmodul	Benotet	5/115
	120 LP 1. Version 2006				
Master	Wirtschaftsmathematik -	1.	Wahlpflichtmodul	Benotung	0/110
	120 LP 1. Version 2013			ohne Anteil	

Teilnahmevoraussetzungen:

Obligatorisch:

Modul/e:

- Objektorientierte Programmierung

Zusatzangaben:

Modul "Mathematische Grundlagen der Informatik und Konzepte der Modellierung" (Modulleistung) oder Modul "Grundlagen und Konzepte der Modellierung" (Modulleistung) oder Modul "Grundlagen der Bioinformatik" (Modulleistung) oder Modul "Einführung in die Wirtschaftsinformatik" (Modulleistung)

Wünschenswert:

keine

Dauer:

1 Semester

Angebotsturnus:

jedes Wintersemester

Studentischer Arbeitsaufwand:

150 Stunden

Leistungspunkte:

5 LP

Sprache:

Deutsch

Modulbestandteile:

Lehr- und Lernformen	SWS	Studentische Arbeitszeit in	Semester
		Stunden	
Vorlesung	3	45	Wintersemester
Übung	1	15	Wintersemester
Bearbeitung der	0	90	Wintersemester
Übungsaufgaben/Selbststudium			

Studienleistungen:

- Erfolgreiche Bearbeitung eines Projektes einschließlich aller damit gestellten Aufgaben und auf Nachfrage Vorstellung von Zwischenergebnissen. Das Projekt gilt als erfolgreich, wenn alle Meilensteine erreicht wurden.
- Bearbeiten von mindestens 80% aller Übungsaufgaben im ILIAS

Modulvorleistungen:

- keine

Modulleistung:

Modulleistung	1. Wiederholung	2. Wiederholung	Anteil an Modulnote
mündl. Prüfung oder	mündl. Prüfung oder	mündl. Prüfung oder	100 %
Klausur oder Bericht (max.	Klausur oder Bericht (max.	Klausur oder Bericht (max.	
25 Seiten ohne Anhang)	25 Seiten ohne Anhang)	25 Seiten ohne Anhang)	

Termine für die Modulleistung:

1.Termin: Spätestens zum Ende der vorlesungsfreien Zeit des Semester

1. Wiederholungstermin: Spätestens zum Ende der vorlesungsfreien Zeit des folgenden Semesters

2. Wiederholungstermin: Erst nach Wiederholung des Moduls. Die maximale Anzahl der zweiten

Wiederholungsmöglichkeiten ist in den Prüfungsordnungen festgelegt.