Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №9 "Экспериментальное построение частотных характеристик типовых динамических звеньев" Вариант - 7

Выполнил			(подпись)
		(фамилия, и.о.)	
Проверил		(фамилия, и.о.)	(подпись)
""	20г.	Санкт-Петербург,	20г.
Работа выполне	на с оценкой		
Дата защиты "_	" 9	20 г.	

Задание

Цель работы

Изучение частотных характеристик типовых динамических звеньев и способов их построения; построение частотных характеристик, расчёт передаточных функций для заданных типовых звеньев.

В работе предстоит построить АЧХ, ФЧХ, АФЧХ и ЛАФЧХ исследуемых звеньев, а также асимптотические ЛАЧХ, построенные графо-аналитическим методом. На вход исследуемого звена подаётся синусоидальный сигнал постоянной амплитуды. Надо измерить амплитуду выходного сигнала и сдвиг фаз между входным и выходным сигналами при различных частотах таким образом будут получены данные для построения частотных характеристик.

Таблица 1 – Исходные элементарные звенья

Тип звена	Передаточная функция
Интегрирующее с замедлением	$\frac{k}{s(Ts+1)}$
Изодромное	$\frac{k(Ts+1)}{s}$
Колебательное	$\frac{k}{T^2s^2 + 2\xi Ts + 1}$

Таблица 2 – Параметры

k	Т	ξ
3	5	0.4

1 Исследование интегрирующего звена с замедлением

Передаточная функция исследуемого звена:

$$W(s) = \frac{k}{s(Ts+1)} \tag{1}$$

Найдём выражения для АЧХ и ФЧХ:

$$W(j\omega) = \frac{-k(T\omega + j)}{\omega(T^2\omega^2 + 1)}$$
 (2)

$$A(\omega) = \frac{k}{\omega\sqrt{T^2\omega^2 + 1}}\tag{3}$$

$$\psi(\omega) = arctg \frac{1}{T\omega} \tag{4}$$

Данные, полученные по результатам моделирования, представлены в таблице 3.

Таблица 3 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
$1 \cdot 10^{-2}$	-2	299.63	49.53	-92.3
$1.78 \cdot 10^{-2}$	-1.75	168.04	44.51	-95.33
$3.16 \cdot 10^{-2}$	-1.5	93.7	39.44	-98.88
$5.62 \cdot 10^{-2}$	-1.25	51.36	34.21	-105.55
0.1	-1	26.83	28.57	-116.5
0.18	-0.75	12.61	22.01	-131.04
0.32	-0.5	5.07	14.1	-147.6
0.56	-0.25	1.79	5.05	-160.42
1	0	0.59	-4.61	-168.91
1.78	0.25	0.19	-14.49	-173.81
3.16	0.5	$5.99 \cdot 10^{-2}$	-24.45	-176.26
5.62	0.75	$1.9 \cdot 10^{-2}$	-34.44	-178.42
10	1	$6 \cdot 10^{-3}$	-44.44	-178.99
17.78	1.25	$1.9 \cdot 10^{-3}$	-54.44	-179.42
31.62	1.5	$6 \cdot 10^{-4}$	-64.44	-179.42
56.23	1.75	$1.9 \cdot 10^{-4}$	-74.44	-179.42
100	2	$6\cdot 10^{-5}$	-84.44	-179.42

На рисунке 1 представлены частотные характеристики интегрирующего звена с замедлением.

Рисунок 1 — Частотные характеристики интегрирующего звена с запаздыванием

2 Исследование изодромного звена

Передаточная функция исследуемого звена:

$$W(s) = \frac{k(Ts+1)}{s} \tag{5}$$

Найдём выражения для АЧХ и ФЧХ:

$$W(j\omega) = \frac{-k(T\omega + j)}{\omega(T^2\omega^2 + 1)}$$
(6)

$$A(\omega) = \frac{k\sqrt{T^2\omega^2 + 1}}{\omega} \tag{7}$$

$$\psi(\omega) = arctg \frac{1}{T\omega} \tag{8}$$

Данные, полученные по результатам моделирования, представлены в таблице 4.

Таблица 4 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
$1 \cdot 10^{-2}$	-2	300.37	49.55	-87.26
$1.78 \cdot 10^{-2}$	-1.75	169.37	44.58	-84.53
$3.16 \cdot 10^{-2}$	-1.5	96.05	39.65	-80.88
$5.62 \cdot 10^{-2}$	-1.25	55.42	34.87	-74.59
0.1	-1	33.54	30.51	-63.94
0.18	-0.75	22.57	27.07	-48.24
0.32	-0.5	17.75	24.98	-31.68
0.56	-0.25	15.92	24.04	-20.02
1	0	15.3	23.69	-11.23
1.78	0.25	15.09	23.58	-6.05
3.16	0.5	15.03	23.54	-4.18
5.62	0.75	15.01	23.53	-2.02
10	1	15	23.52	-1.15
17.78	1.25	15	23.52	-0.14
31.62	1.5	15	23.52	-0.14
56.23	1.75	15	23.52	-0.14
100	2	15	23.52	-0.14

На рисунке 2 представлена временная диаграмма изодромного звена.

Рисунок 2 — Временная диаграмма изодромного звена при $\omega=1$

На рисунке 3 представлены частотные характеристики изодромного звена.

Рисунок 3 — Частотные характеристики изодромного звена

3 Исследование колебательного звена

Передаточная функция исследуемого звена:

$$W(s) = \frac{k}{T^2 s^2 + 2\xi T s + 1} \tag{9}$$

Найдём выражения для АЧХ и ФЧХ:

$$W(j\omega) = \frac{k}{1 - T^2\omega^2 + iT\xi\omega} \tag{10}$$

$$A(\omega) = \frac{k}{\sqrt{(1 - T^2 \omega^2)^2 + (2T\xi\omega)^2}}$$
 (11)

$$\psi(\omega) = -arctg \frac{2T\xi\omega}{1 - T^2\omega^2} \tag{12}$$

Экспериментальные данные, полученные по результатам моделирования, представлены в таблице 5.

Таблица 5 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
$1 \cdot 10^{-2}$	-2	3.01	9.56	-0.86
$1.78 \cdot 10^{-2}$	-1.75	3.02	9.6	-2.45
$3.16 \cdot 10^{-2}$	-1.5	3.07	9.73	-4.56
$5.62 \cdot 10^{-2}$	-1.25	3.22	10.16	-9.07
0.1	-1	3.79	11.58	-18.58
0.18	-0.75	6.1	15.71	-64.08
0.32	-0.5	1.77	4.96	-151.92
0.56	-0.25	0.43	-7.42	-169.06
1	0	0.12	-18.11	-173.95
1.78	0.25	$3.84 \cdot 10^{-2}$	-28.32	-176.69
3.16	0.5	$1.21 \cdot 10^{-2}$	-38.38	-178.42
5.62	0.75	$3.81 \cdot 10^{-3}$	-48.38	-179.14
10	1	$1.24 \cdot 10^{-3}$	-58.14	-179.86
17.78	1.25	$3.93 \cdot 10^{-4}$	-68.1	-178.7
31.62	1.5	$1.29 \cdot 10^{-4}$	-77.79	-179.71
56.23	1.75	$3.87 \cdot 10^{-5}$	-88.26	-180
100	2	$1.23 \cdot 10^{-5}$	-98.21	-179.86

На рисунке 4 представлены частотные характеристики колебательного звена.

Рисунок 4 — Частотные характеристики колебательного звена

270

(г) График ЛАФЧХ

270

(в) График АФЧХ

Вывод

В лабораторной работе были исследованы следующие элементарные звенья: колебательное, интегральное с запаздыванием и изодромное. Были найдены частотные характеристики, а также построены графо-аналитическим методом асимптотические ЛАЧХ, к которым сходятся полученные с помощью математического моделирования графики. В области низких и высоких частот смоделированные ЛАЧХ асимптотически приближаются к прямым. Для колебательного звена на частоте среза ω_c имеется "горб". Это объясняется явлением резонанса, а зависит высота такого пика от коэффициента затухания ξ , причём чем меньше значение ξ , тем больше высота. При $\xi=0$ звено вырождается в консервативное, а график на частоте среза претерпевает разрыв.

Согласно критерию Найквиста по полученным графикам можно определить устойчивость заданного звена. По ${\rm A}\Phi{\rm Y}{\rm X}$ исследуемых звеньев видно, что все звенья устойчивы, однако колебательное звено, что логично, находится на границе устойчивости при высоких частотах ($\phi \approx -180$). Интегрирующее с замедлением звено также на высоких частотах почти выходит за границу устойчивости, что объясняется тем самым замедлением, которое существенно ухудшает характеристики системы, в частных случаях приводя её в состояние неустойчивости.