# Clustering

Pradeep Ravikumar

Co-instructor: Manuela Veloso

Machine Learning 10-701

Some slides courtesy of Eric Xing, Carlos Guestrin





#### Unsupervised Learning

Learning from unlabeled/unannotated data (without supervision)



What can we predict from unlabeled data?

### **Unsupervised Learning**

Learning from unlabeled/unannotated data (without supervision)



What can we predict from unlabeled data?

Density estimation



### **Unsupervised Learning**

"Learning from unlabeled/unannotated data" (without supervision)



What can we predict from unlabeled data?

- Density estimation
- Groups or clusters in the data



#### What is clustering?

- Clustering: the process of grouping a set of objects into classes of similar objects
  - high intra-class similarity
  - low inter-class similarity
  - It is the most common form of unsupervised learning



#### What is Similarity?



Hard to define! But we know it when we see it

• The real meaning of similarity is a philosophical question. We will take a more pragmatic approach - think in terms of a distance (rather than similarity) between vectors or correlations between random variables.

#### Distance metrics

$$x = (x_1, x_2, ..., x_p)$$
  
 $y = (y_1, y_2, ..., y_p)$ 



Euclidean distance

$$d(x,y) = 2\sqrt{\sum_{i=1}^{p} |x_i - y_i|^2}$$

Manhattan distance

$$d(x,y) = \sum_{i=1}^{p} |x_i - y_i|$$

Sup-distance

$$d(x,y) = \max_{1 \le i \le p} |x_i - y_i|$$

#### Correlation coefficient

$$x = (x_1, x_2, ..., x_p)$$
  
 $y = (y_1, y_2, ..., y_p)$ 

Random vectors (e.g. expression levels of two genes under various drugs)

#### Pearson correlation coefficient

$$\rho(x,y) = \frac{\sum_{i=1}^{p} (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\sum_{i=1}^{p} (x_i - \bar{x})^2 \times \sum_{i=1}^{p} (y_i - \bar{y})^2}}$$

where 
$$\overline{x} = \frac{1}{p} \sum_{i=1}^{p} x_i$$
 and  $\overline{y} = \frac{1}{p} \sum_{i=1}^{p} y_i$ .





#### Clustering Algorithms

- Hierarchical algorithms
  - Single-linkage
  - Average-linkage
  - Complete-linkage
  - Centroid-based

- Partition algorithms
  - K means clustering
  - Mixture-Model based clustering







#### Hierarchical Clustering

Bottom-Up Agglomerative Clustering

Starts with each object in a separate cluster, and repeat:

- Joins the most similar pair of clusters,
- Update the similarity of the new cluster to others until there is only one cluster.

Greedy – less accurate but simple to implement



#### Top-Down divisive

Starts with all the data in a single cluster, and repeat:

• Split each cluster into two using a partition algorithm Until each object is a separate cluster.

More accurate but complex to implement



#### Bottom-up Agglomerative clustering

Different algorithms differ in how the similarities are defined (and hence updated) between two clusters

- Single-Linkage
  - Nearest Neighbor: similarity between their closest members.



- Complete-Linkage
  - Furthest Neighbor: similarity between their furthest members.



- Centroid
  - Similarity between the centers of gravity



- Average-Linkage
  - Average similarity of all cross-cluster pairs.

# Single-Linkage Method



**Distance Matrix** 

#### Complete-Linkage Method

#### **Euclidean Distance**



Distance Matrix

## Dendrograms



## **Another Example**





### Single vs. Complete Linkage

#### Shape of clusters

Single-linkage allows anisotropic and

non-convex shapes

Complete-linkage

assumes isotropic, convex

shapes



#### Computational Complexity

- All hierarchical clustering methods need to compute similarity of all pairs of n individual instances which is  $O(n^2)$ .
- At each iteration,
  - Find largest of the set of similarities .... O(n²)
  - Update similarity between merged cluster and other clusters ... O(n)
  - Maximum no. of iterations ... O(n)
- So we get time complexity of O(n³)
  - could be reduced with more complicated data structures such as heaps which however come with greater storage complexity

#### Partitioning Algorithms

- Partitioning method: Construct a partition of n objects into a set of K clusters
- Given: a set of objects and the number *K*
- Find: a partition of K clusters that optimizes the chosen partitioning criterion
  - Globally optimal: exhaustively enumerate all partitions
  - Effective heuristic method: K-means algorithm

#### K-Means

#### **Algorithm**

Input – Desired number of clusters, k

Initialize – the *k* cluster centers (randomly if necessary)

Iterate –

- 1. Assign points to the nearest cluster centers
- 2. Re-estimate the *k* cluster centers (aka the centroid or mean), by assuming the memberships found above are correct.

$$\vec{\mu}_k = \frac{1}{\mathcal{C}_k} \sum_{i \in \mathcal{C}_k} \vec{x}_i$$

#### Termination -

If none of the objects changed membership in the last iteration, exit. Otherwise go to 1.











# K-means Recap ...

Randomly initialize k centers

$$\square \ \mu^{(0)} = \mu_1^{(0)}, \dots, \ \mu_k^{(0)}$$

Classify: Assign each point j∈{1,...m} to nearest center:

$$\Box C^{(t)}(j) \leftarrow \arg\min_{i=1,\dots,k} \|\mu_i^{(t)} - x_j\|^2$$

• Recenter:  $\mu_i$  becomes centroid of its points:

$$\square \mu_i^{(t+1)} \leftarrow \arg\min_{\mu} \sum_{j:C^{(t)}(j)=i} \|\mu - x_j\|^2 \qquad i \in \{1, \dots, k\}$$

 $\square$  Equivalent to  $\mu_i \leftarrow$  average of its points!

# What is K-means optimizing?

• Potential function  $F(\mu,C)$  of centers  $\mu$  and point allocations C:

$$F(\mu, C) = \sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$
$$= \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

- Optimal K-means:
  - $\square$  min<sub> $\mu$ </sub>min<sub>C</sub> F( $\mu$ ,C)

# K-means algorithm

Optimize potential function:

$$\min_{\mu} \min_{C} F(\mu, C) = \min_{\mu} \min_{C} \sum_{i=1}^{k} \sum_{j:C(j)=i} ||\mu_i - x_j||^2$$

K-means algorithm: (coordinate descent on F)

(1) Fix  $\mu$ , optimize C Expected cluster assignment

(2) Fix C, optimize  $\mu$  Maximum likelihood for center

Next class, we will see a generalization of this approach:

**EM** algorithm

#### Computational Complexity

- At each iteration,
  - Computing distance between each of the n objects and the K cluster centers is O(Kn).
  - Computing cluster centers: Each object gets added once to some cluster: O(n).
- Assume these two steps are each done once for l iterations: O(lKn).

• Results are quite sensitive to seed selection.



• Results are quite sensitive to seed selection.





• Results are quite sensitive to seed selection.





- Results can vary based on random seed selection.
- Some seeds can result in poor convergence rate, or convergence to sub-optimal clustering.
- Select good seeds using a heuristic (e.g., object least similar to any existing mean)
- k-means ++ algorithm of Arthur and Vassilvitskii
  - key idea: choose centers that are far apart
  - probability of picking a point as cluster center proportional to distance from nearest center picked so far
- Try out multiple starting points (very important!!!)
- Initialize with the results of another method.

#### Other Issues

- Shape of clusters
  - Assumes isotropic, equal variance, convex clusters
- Sensitive to Outliers
  - use K-medoids



#### Other Issues

- Number of clusters K
  - Objective function

$$\sum_{j=1}^{m} ||\mu_{C(j)} - x_j||^2$$

• Look for "Knee" in objective function



Can you pick K by minimizing the objective over K?