Classification Overview

Supervised Learning

 Given a set of data points with an outcome, create a model to describe them

Classification

outcome is a discrete variable (typically <10 outcomes)

Regression

outcome is continuous

Training Data

Each y_i was generated by equation $f(x_i) = y_i$, and more generally f(x) = y.

Since f(x) is unknown, machine learning aims to discover a function h(x) that approximates it

Inductive Learning

- Given a set of observations come up with a model, h, that describes them
- What does "describes" mean?
 - h is the same as the function f that generated them

Inductive Learning

- Given a set of observations come up with a model,
 h, that describes them
- What does "describes" mean?
 - h is the same as the function f that generated them
 - h models the observations well, and is likely to predict future observations well

Avoiding Overfitting the Model

- 1. Divide the data that you have into a distinct training set and test set.
- 2. Use only the training set to train your model.
- 3. Verify performance using the test set.
 - Measure error rate

- Drawback of this method: the data withheld for the test set is not used for training
 - 50-50 split of data means we didn't train on half the data
 - 90-10 split means we might not get a good idea of the accuracy

K-fold Cross-Validation

- 1. Divide the data into k equal subsets.
- 2. Run learning k times, each time leave out $\frac{1}{k}$ of the data (1 set) for testing and use the rest for training
- The average error rate of all k rounds is a better estimate of the model accuracy.
- *k* is usually 5 or 10.
- k=n (number of samples) is "leave-one-out cross-validation"

Classification Algorithms

- Nearest neighbors
- Decision trees
- Neural networks
- Support Vector Machines
- Random Forest
- ADA Boost

• ...

K-Nearest Neighbors

What value do we assign to the green sample?

K-Nearest Neighbors

• 1-NN:

• For a given query point q, assign the class of the nearest neighbour.

K-NN

 Compute the k nearest neighbours and assign the class by majority vote.

Decision Regions for 1-NN

Effect of *k*

k = 1

k = 5

K-Nearest Neighbors

Euclidian Distance:

$$D(x_1, x_2) = \frac{\sum_i (x_{1,i} - x_{2,i})^2}{2}$$

Weighted Euclidian Distance:

$$D(x_1, x_2) = \frac{\sum_i w_i (x_{1,i} - x_{2,i})^2}{2}$$

Where i is the dimensionality of the data.

Weighting the Distance to Remove Irrelevant Features

Weighting the Distance to Remove Irrelevant Features

Weighting the Distance to Remove Irrelevant Features

Decision Trees

...similar to a game of 20 questions

Example: road signs

- Determine feature/attribute vector used to represent signs
- Extract features for each sign
- Construct tree by splitting on features/attributes in order of importance

Choosing an attribute

 a good attribute splits the examples into subsets that are (ideally) "all positive" or "all negative"

Using information theory

 Implementation of Choose-Attribute in the DTL algorithm based on information content – measured by Entropy

- Entropy is the measure of uncertainty of a random variable
 - More uncertainty leads to higher entropy
 - More knowledge leads to lower entropy

Entropy

- Entropy is the measure of uncertainty of a random variable
 - More uncertainty leads to higher entropy
 - More knowledge leads to lower entropy

$$H(V) = -\sum_{k} P(v_k) \log_2 P(v_k)$$

Fair coin flip:

$$H(tails) = -(0.5 \log_2 0.5 + 0.5 \log_2 0.5) = 1$$

Biased coin flip:

$$H(tails) = -(0.99 \log_2 0.99 + 0.01 \log_2 0.01) = 0.08$$

Decision Trees and Information Gain

- Choose the attribute that leads to the greatest expected Information Gain
- The information gain from an attribute test is the expected reduction in entropy

$$IG(T, a) = H(T) = H(T|a)$$

If attribute a is an attribute that can take on d distinct values:

$$IG(T,a) = H(T) - \sum_{k=1}^{d} \frac{|\{x \in T | x_a = k\}|}{|T|} H(\{x \in T | x_a = k\})$$

$$IG(T,a) = 1 - \left[\frac{2}{12}H\left(\frac{0}{2}\right) + \frac{4}{12}H\left(\frac{4}{4}\right) + \frac{6}{12}H\left(\frac{2}{6}\right)\right] = 0.0541$$

$$IG(T,b) = 1 - \left[\frac{2}{12}H\left(\frac{1}{2}\right) + \frac{2}{12}H\left(\frac{1}{2}\right) + \frac{4}{12}H\left(\frac{2}{4}\right) + \frac{4}{12}H\left(\frac{2}{4}\right)\right] = 0$$

$$IG(T,a) = H(T) - \sum_{k=1}^{d} \frac{|\{x \in T | x_a = k\}|}{|T|} H(\{x \in T | x_a = k\})$$

Overfitting

 Overfitting results in decision trees that are more complex than necessary

 Training error does not provide a good estimate of how well the tree will perform on previously unseen records (need a test set)

- Solutions:
 - Pruning
 - Early stopping

Disadvantage of Decision Trees

 Can be sensitive to data, small changes causing significant changes in the model

Balancing between overfitting and generalization can be tricky

Random Forest

(ensemble learning method)

- Create many (hundreds, thousands) of simpler trees, to avoid overfitting any one tree
 - Given training set X, select a random subset of features,
 and fit a tree to these samples using only those features
 - Repeat until desired number of trees is reached
- Report the result obtained from majority vote by the collection of trees

Boosting

- Built many trees (hundreds, thousands), so that the weighted average over all trees is insensitive to fluctuations
- 1. Create one tree
- If there is misclassified data, create a second tree, giving more weight/importance to any misclassified examples
- 3. Score performance of each tree
- 4. Repeat to create more trees
- Average over all trees, using the tree-scores as weights

Neural Networks

Single Layer Perceptron

Structure	Types of Decision Regions	Exclusive-OR Problem	Classes with Meshed regions	Most General Region Shapes
Single-Layer	Half Plane Bounded By Hyperplane	A B A	B	
Two-Layer	Convex Open Or Closed Regions	A B A	B	
Three-Layer	Arbitrary (Complexity Limited by No. of Nodes)	A B A	B	

Example

- Handwriting character recognition
 - http://www.youtube.com/watch?v=ocB8uDYXtt0

Next time we will talk about how some of these techniques apply specifically in the context of (simple) object classification and OpenCV.