Credit Card Transaction Fraud

Index

Sr.no	Topic	Page No
1	Executive Summary	3
2	Description of Data	4
3	Data Cleaning	11
4	Variable creation	14
5	Feature Selection	15
6	Preliminary model exploration	21
7	Final model performance	27
8	Financial curves and recommended cutoff	30
9	Summary	32

Executive Summary

This project aims to develop a supervised machine-learning model that can detect and predict credit card transaction fraud. Credit card transaction fraud is a type of fraud where someone illegally uses another person's credit card information to make unauthorized purchases or cash advances. This can result in significant financial losses for both the cardholder and the card issuer and damage to the victim's credit score. The prevalence of credit card transaction fraud has increased with the growing use of online shopping and the widespread use of credit cards for payment transactions.

To achieve our goal, we followed a process consisting of data cleaning, variable creation, feature selection, and modelling. We examined the dataset and removed any inaccuracies, generated new and insightful features from the existing data, selected the most relevant features from the dataset, and built and tested multiple machine learning models, including Logistic Regression, Random Forest, Light GBM, and Neural Network.

This report aims to document the process of creating and completing a supervised machinelearning algorithm that can detect and prevent fraud in real-time.

- Data Cleaning: Examine the dataset and remove any inaccuracies
- Variable Creation: Generate new and insightful features from the existing data
- Feature Selection: Select the most relevant features from the dataset.
- **Modeling**: Build and test multiple machine learning models, to determine the most efficient and effective model for detecting and predicting fraud in real-time.

Conclusion: After testing different algorithms, including Logistic Regression, Random Forest, Light GBM, and Neural Network, we experimented with various hyperparameter combinations for each model and compared their performance based on **FDR at 3%**.

Our machine learning model has demonstrated that we are not overfitting and achieving good performance. By rejecting the top 3% of credit card transaction applications, we are able to catch 55.63% of all fraud cases. Furthermore, the dollar savings calculated at this cut-off point for the model are estimated to be around 21 million dollars annually, indicating that our model has the potential to prevent significant financial losses due to credit card transaction fraud.

Description of the data

1. Data Description

The dataset consists of 96,753 records and 10 distinct fields, documenting real card payments made between January 1, 2010, and December 31, 2010. Each record in this dataset captures essential transaction details such as card numbers, transaction dates, merchant numbers, descriptions, states, zip codes, payment amounts in US dollars, and fraud scores.

Summary Table

Numerical Table

Field Name	% Populated	Min	Max	Mean	Stdev	%Zero
Date	100.00	2010-01-01	2010-12-31	NA	NA	0.00
Amount	100.00	0.01	3102045.53	427.88	10006.140	0.00

Table 1: Numerical Table

Categorical Table

Field Name	%	Blank	Zeroes	#Unique	Most Common
	Populated			Value	Value
Recnum	100.00	0	0	96,753	1
Cardnum	100.00	0	0	1,645	5142148452.0
Merchnum	96.51	3375	231	13,091	930090121224
Merch	100.00	0	0	13,126	GSA-FSS-ADV
Description					
Merch state	98.76	1195	0	227	TN
Merch Zip	95.19	4656	0	4567	38118
Transtype	100.00	0	0	4	Р
Fraud	100.00	0	0	2	0.0

Table 2: Categorical Table

Visualization of Each Field:

1. Field Name: Recnum

Description: Recnum: Ordinal Unique positive integer for each record

from 1 to 96753.

2. .Field Name: Date

Description: Date: The "date" field indicates the date on which the individual has raised a request for an application. The Weekly use distribution across time.

Fig 1. Weekly distribution of Transaction

Fig 2. Monthly distribution of Transaction

3. Field Name: Cardnum

Description: SSN: SSN refers to the Card number of the user. The distribution indicates the top 20 most common card users. The most common value of the 5142148452, the count is 1192.

Fig 3. Bar plot displaying distribution of field 'Cardnum'

4. Field Name: Merchnum

Description: Merchnum: The field "Merchnum" refers to the number of the Merchant. The distribution indicates the top 15 most common Merchant number used by the user.

The most common value of the Merch num is 930090121224, the count is 9310.

Fig 4. Bar plot displaying distribution of field 'Merchnum'

1. Field Name: Merch description

Description: Merch description: The field "Merch description" refers to description of the merchant. The distribution indicates the top 15 most common Merchant used by the applicant.

The most common value of the Merch Description is GSA-FSS-ADV, the count is 1688.

Fig 5. Bar plot displaying distribution of field 'Merch description'

2. Field name: Merch state

Description: Address: The field "Merch state" refers to the state of the merchant. The distribution indicates the top 15 most common merchant state used.

The most common value of the Merch state is TN, the count is 12,35.

Fig 6. Bar plot displaying distribution of field 'Merch state'

3. Field Name: Merch Zip

Description: Merch Zip: The field "Merch Zip" refers to the Zip code of the user. The distribution indicates the top 15 most common Zip code used.

The most common value of the Zip code is 38,118, the count is 11868.

Fig 7. Bar plot displaying distribution of field 'Merch zip'

4. Field Name: Transtype

Description: Transtype: The field "Transtype" refers to the type of transaction. The distribution indicates the 4 types of transactions where P means Purchase, A stands for Approval, D stands for Debit and Y stands for Year-end.

The most type of value of the transaction is P, the count is 96,398.

Fig 8. Bar plot displaying distribution of field 'Transtype'

9. Field Name: Amount

Description: Amount: The field "Amount" refers to the Transaction Amount. The distribution indicates the top 10 most common transaction amount. The most common value of the Amount is 3.62, the count is 4,283.

Fig 9. Bar plot displaying distribution of field 'Amount'

10.Field Name: Fraud

Description: Fraud = 0 (no fraud label), Fraud=1 (fraud label)

The count of Fraud=0 (95,694) and Fraud =1 (1,059)

Fig 10. Bar plot displaying distribution of field 'Fraud'

Data Cleaning

After Exploratory data analysis, we found that data cleaning need to be performed before feature engineering, to remove outliers and fill missing values.

Data Imputation Logic followed:

Transtype: We are only keeping records that have "P" (Purchase) value for Transtype data field, because this transaction type is more relevant to our project for detecting Fraud. (Result: **excluding 355** records that contained "A", "D", "D", "Y" entries in Transtype data field). Now our dataset consists of **96,398 records**.

Amount: The record with Recnum value of '52715' contained **Amount** value that was discovered with to be annotated in Mexican Peso, and its value was **3,102,045.53**. I excluded this this record because it can cause issues in our analysis. Now our dataset consists of **96,398 records**.

Merch state: This field had 1020 records with a missing value, I started cleaning this field as this has a smaller number of missing value than the other two. ("Merch zip", Merchnum)

- a) I used free database which has **33,790 US zip** codes provided by SimpleMaps.com available on https://simplemaps.com/data/us-zips, To form dictionary to map (zip code as key state_id as values) in zip_dict then mapped this dictionary to "Merch zip" data field to fill missing values in in corresponding "Merch state" field records, which reduced missing count to **980.**
- b) Filter for non-null 'Merch zip' values then form merch_zip_dict which had merch zip as key and and most common "Merch state" values as value for each group after performing group by "Merch zip". Then mapped this to "Merch state field" and filled the missing value with most common mech state value after group by "Merch zip". As I was keeping not null "Merch

- zip" as key in mask object so mapping original "Merch state" did not imposed problem. This step reduced count of missing values to **963** records.
- c) I filled the remaining missing values with the most common values after group by first by Cardnum then by Date, using unique combination of 'Cardnum' 'Date' field to fill the missing value with most common value. This step reduced count of missing values to **636 records**.
- d) I filled the remaining missing values with the most common values after group by "Merch description". This step reduced count of missing values to **134 records**.
- e) I filled the remaining missing values with the most common values after group by "Cardnum". This step reduced count of missing values to **31** records.
- f) Filled the remaining missing values with their corresponding "Recnum". Now our "Merch state" column is filled.

Merch zip:_This field had **4300 records** with a missing value, used following logic to fill the missing value.

- a) First selecting not null row of 'Merchnum then merging 'Merchnum', 'Merch state', and 'Merch zip' columns into a new Data Frame merch_not_null. Then, fills missing values in the 'Merch zip' column by grouping 'Merch zip' by unique combinations of 'Merchnum' and 'Merch state' and filling missing values with the mode of each group. This step reduced count of missing values to **2474 records**.
- b) I filled the remaining missing values with the most common values after group by first by Cardnum then by Date, using unique combination of 'Cardnum' 'Date' field to fill the missing value with most common value. This step reduced count of missing values to **1628 records**.
- c) I filled the remaining missing values with the most common values after group by first by "Merch Description" then by "Merch state", using unique combination of 'Merch Description' 'Merch state' field to fill the missing value with most common value. This step reduced count of missing values to 353 records.
- d) I filled the remaining missing values with the most common values after group by "Merch state". This step reduced count of missing values to **31** records.
- e) Filled the remaining missing values with their corresponding "Recnum". Now our "Merch zip" column is filled.

Merchnum: This field had **3198 records** with a missing value, and also this filed had 53 records with noise value as **"0"** as "Merchnum", used following logic to fill the missing value.

- a) First, I selected all the records in this column which had 0 "Merchnum" as 0 and replaced with "NaN".
- b) Now, total records which has missing values is **3251.**
- c) I filled the remaining missing values with the most common values after group by first by 'Merch description' then by 'Merch zip' using their unique combination to fill the missing value with most common value. This step reduced count of missing values to **2177 records**.
- d) Filled the remaining missing values with the most common values after group by first by 'Merch description' then by 'Merch state' using their unique combination to fill the missing value with most common value. This step reduced count of missing values to **2109 records.**
- e) I filled the remaining missing values with the most common values after group by "Merch state". This step reduced count of missing values to **48** records.
- f) Filled the remaining missing values with their corresponding "Recnum". Now our "Merchum" column is filled.

Variable Creation

It is the process of selecting, transforming, and creating variables from raw data to improve the performance of machine learning models. It involves steps like data cleaning, transformation, and selection of relevant features.

Description of variables	#Variables
Original fields from the dataset excluding 'record' and 'fraudl'	8
Target Variable	1
Record Variable	1
New entities created: dow(day of the week),check_date, check_record	3
New entities combining/concatenating different original fields	12

Velocity and Days since Variable: Velocity Variable: #records with same entity over last {0,1,7,14,30.60} days. Example: Cardnum_days_since Frequency and amount variable: For various time periods (0, 1, 3, 7, 14, 30, and 60 days), counting the number of rows, calculating the mean, maximum, median, and sum of the 'Amount'	687
Velocity change: Speed at which the transaction behavior of each entity is changing over time, by looking at the relative difference in transaction count and total amount between two different time periods	170
Vdratio: The ratio of velocity change variables and the number of days since the last transaction for each entity.	24
Nunique: calculates the number of unique values in the field of the second entity for each value of the first entity	109
Relative velocity: Speed at which an entity is seen in the dataset for a particular transaction over a short period of time (0-1) days in relation to how often the same entity is seen over a longer period. Example: A_total_amount_0_by_7	8
Variablilty: Calculate the difference between the transaction amount and the check amount for each record	211
Benford variable(excluding them)	16
Total	1233

Feature selection

Difference between forward and backward selection

Forward selection starts with a (usually empty) set of variables and adds variables to it, until some stop- ping criterion is met. Similarly, backward selection starts with a (usually complete) set of variables and then excludes variables from that set, again, until some stopping criterion is met.

Tried different combinations of wrapper and filter combination using Forward and Backward Selection to identify the top 20 variables of the wrapper result.

Proving Stochastic and Non-Stochastic Nature of LGBM (Gradient Boosting) and Random

Forest (RF) using Forward Selection.

LGBM

First Attempt

Num_filter :- 150 , Num_wrapper :- 20

Since LGBM has no stochastic nature hence when we use this for wrapper model; we will always get the same result.

Second Attempt

st Attempt		Second Attempt	
add variables in this order	variable name	add variables in this order	variable name
1.0	card_merch_total_14	1.0	card_merch_total_14
2.0	Card_Merchnum_desc_max_60	2.0	Card_Merchnum_desc_max_60
3.0	card_merch_total_30	3.0	card_merch_total_30
4.0	Merchnum_desc_total_7	4.0	Merchnum_desc_total_7
5.0	card_zip3_total_30	5.0	card_zip3_total_30
6.0	Cardnum_avg_1	6.0	Cardnum_avg_1
7.0	Card_Merchnum_desc_total_30	7.0	Card_Merchnum_desc_total_30
8.0	Card_Merchdesc_total_3	8.0	Card_Merchdesc_total_3
9.0	card_zip3_max_30	9.0	card_zip3_max_30
10.0	Card_Merchdesc_total_7	10.0	Card_Merchdesc_total_7
11.0	Cardnum_max_0	11.0	Cardnum_max_0
12.0	card_merch_max_60	12.0	card_merch_max_60
13.0	Card_Merchnum_desc_total_14	13.0	Card_Merchnum_desc_total_14
14.0	Card_Merchdesc_total_30	14.0	Card_Merchdesc_total_30
15.0	card_merch_max_30	15.0	card_merch_max_30
16.0	Card_Merchdesc_max_14	16.0	Card_Merchdesc_max_14
17.0	Card_Merchdesc_max_30	17.0	Card_Merchdesc_max_30
18.0	Card_Merchnum_desc_max_14	18.0	Card_Merchnum_desc_max_14
19.0	card_merch_total_60	19.0	card_merch_total_60
20.0	Card_Merchnum_desc_max_30	20.0	Card_Merchnum_desc_max_30

Random Forest (RF) First Attempt

Num_filter = 150, Num_Wrapper = 20

Second Attempt
(Num_filter= 150, Num_wrapper= 20)

Since RF has a stochastic nature hence when we use this for wrapper model; we will always get different results.

First Attempt			Second attempt				
add variables in this order			add variables in this order	variable name			
1.0	card_zip3_total_7		1.0	card_zip3_total_3			
2.0	Card_Merchdesc_max_60		2.0	Card_Merchdesc_max_30			
3.0	Card_Merchnum_desc_total_14		3.0	Card_Merchdesc_total_30			
4.0	Merchnum_desc_total_1		4.0	Merchnum_total_0			
5.0	Cardnum_total_3		5.0	card_zip_total_30			
6.0	card_zip_avg_7		6.0	card_merch_total_0			

7.0	zip3_actual/avg_60	7.0	card_zip_max_60
8.0	Card_Merchnum_desc_total_30	8.0	Cardnum_total_14
9.0	card_zip3_max_3	9.0	card_zip3_max_14
10.0	Cardnum_max_1	10.0	card_zip3_avg_3
11.0	Card_Merchdesc_avg_7	11.0	Card_Merchdesc_avg_1
12.0	card_merch_max_14	12.0	card_merch_total_14
13.0	Card_Merchnum_desc_max_60	13.0	card_zip3_max_7
14.0	card_merch_med_30	14.0	Card_Merchdesc_total_0
15.0	Card_Merchnum_desc_max_0	15.0	Cardnum_avg_3
16.0	Merchnum_desc_total_3	16.0	card_merch_max_0
17.0	card_zip_total_3	17.0	Card_Merchdesc_max_3
18.0	card_merch_total_60	18.0	Card_Merchdesc_total_14
19.0	Card_Merchnum_desc_max_3	19.0	card_zip3_avg_0
20.0	card_merch_max_30	20.0	Card_Merchnum_desc_total_7

Other Trial Runs

LGBM(n_estimators=20,num_leaves=3,Num_filter :- 200, num_wrapper :- 20)

LGBM

Num_filter :- 350 num_wrapper :- 20

BACKWARD SELECTION
LGBM (Num_filter= 150, Num_wrapper= 20)

Backward Selection is slower and problematic
Decided to go with the wrapper result of LGBM Num_filter :- 350
num_wrapper :- 20;
since it has a performance rate of more than 0.70.

wrapper or	variable	filter score
1	card_merch_state_total_14	0.6280605
2	card_merch_state_max_60	0.5889724
3	merchnum_desc_total_7	0.5138036
4	merch_zip_med_7	0.3801237
5	card_merch_total_14	0.6280395
6	merchnum_desc_avg_7	0.4538652
7	card_merch_max_60	0.5889409
8	merchnum_desc_total_14	0.4909752
9	merch_zip_avg_7	0.4539831
10	card_state_max_14	0.6002801
11	card_state_total_1	0.6075727
12	merchnum_desc_avg_60	0.3537857
13	merchnum_desc_total_1	0.5220379
14	merchnum_desc_total_0	0.499112
15	card_merch_state_total_30	0.6150971
16	card_zip_avg_1	0.511248
17	card_merch_total_30	0.6150552
18	card_merch_desc_total_30	0.6052308
19	card_merch_state_total_60	0.5983826
20	card_merch_total_60	0.5983196

Preliminary model exploration

After testing different algorithms to fit the data, such as Logistic Regression, Decision Tree, Random Forest, Catboost, LightGBM, and Neural Network, experimented with various hyperparameters combinations for each model & compared their performance based on FDR at a 3% rejection rate.

Random forest with parameters: max_depth=8, criterion = 'gini', n_estimators = 80, min_samples_split = 50, min_samples_leaf = 40, max_features = 8, was the best and final model.

The FDR scores for this model on training, testing, and OOT data were 78.52%, 78.21%, and 55.41%, respectively. (Taking number of variables =10)

Final model shows that we are not overfitting and getting good performance and we can catch 55.63% of all the Fraud by rejecting the top 3% of the application.

After comparing the results between logistics regression, boosted trees, random forest, and a neural network, we determined that Light Boosting Gradient Model performed the best. Random forest outperformed other models for both training, testing and out of time validation datasets with 78.52%, 78.21% and 55.41% respectively.

The chosen hyperparameters are:

No. of variables: 20 n_estimators: 80 max_depth: 8

min_child_split: 50 minsamples_leaf:40 max_features: 8

Performance Score (FDR @ 3%) of different models with best model parameter

Using different values of hypermeters forcing models to overfit:

Single Decision Tree: In this we are increasing max_depth of DecisionTreeClassifier and making model to be more complex.(Increasing depth of Tree) nitermax = 3, i in range (2, 20, 2)

model=DecisionTreeClassifier(max_depth=i,criterion='entropy',min_samples_l eaf=5,min_samples_split=20)

Boosted Tree (LGBM): With Each iteration we are increasing max_depth of model making it more complex and the interpretability of the model also decreases as the depth of the tree increases.

nitermax = 3, i in range (2, 16, 2) model = lgb.LGBMClassifier(max_depth = i , min_child_samples = 10, n_estimators = 600, learning_rate = 0.00001, num_leaves = 7)

Random Forest: With Each Iteration , I am increasing max_depth which is casing model to overfit.

nitermax = 3, i in range(2,16,2) model = RandomForestClassifier(max_depth = i, criterion = 'gini',n_estimators = 16, min_samples_split = 18, min_samples_leaf = 10, max_featurs = 4)

Neural Net: With each iteration we are adding increasing neruons in each of the layer, which cause model to be more complex and overfit.

nitermax = 3, i in range(2,16,2) model=MLPClassifier(activation = 'logistic', hidden_layer_sizes = (5*i, 5*i,), solver = 'adam', learning_rate = 'constant',learning_rate_init = 0.01, alpha = 0.00001,max_iter = 5000)

Final model performance

The overall goal of the project is to develop a supervised machine-learning model that can be used to detect and predict fraud in credit card transaction. It aims to develop an efficient and effective statistical analysis model that can be applied in practice to predict fraud and identify fraudulent transactions. After testing different algorithms to fit the data, such as Logistic Regression, Random Forest, XGBoost, Light GBM, and Neural Network experimented with various hyperparameters combinations for each model & compared their performance based on FDR at a 3% rejection rate.

Final Model: Random Forest

After comparing the results between logistics regression, boosted trees, random forest, and a neural network, we determined that Light Boosting Gradient Model performed the best. Random forest out performed other models for both training, testing and out of time validation datasets with 78.52%, 78.21% and 55.41% respectively.

The chosen hyperparameters are:

No. of variables: 20 n_estimators: 80 max_depth: 8

min_child_split: 50 minsamples_leaf: 40 max_features: 8

Summary Table has basically two categories: Bin statistics and cumulative statistics. The Fraud rate on the top of the Table is calculated by #Bads divided by #Goods and #Bads.

% Goods = Cum.Good/ Total Good

The fraud detection rate (%Bads) is calculated to be the number of true frauds in the bin, which are caught by the model, divided by the total number of true frauds exists in the entire dataset.

FDR reflects how many frauds can be caught by a model, with a fixed number of predicted positives.

FDR = Cum.Bad / Total Bad

KS is the maximum difference in cumulative fractions of goods and bads flagged at any possible cutoff.

KS= %Bad - % Good

False positive rate (FPR) – Percentage of total legitimate events that are incorrectly predicted as fraud.

FPR= Cum.Good/ Cum.Bad

FRD_TRN

		Bin Sta	ntistics			Cumulative Statistics							
#Bins	#Records	#Goods	#Bads	% Goods	%Bads	Total #Records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FDR)	KS	FPR	
1	590	224	366	37.966	62.034	590	224	366	0.3836	60	59.616	0.612	
2	590	514	76	87.119	12.881	1180	738	442	1.2637	72.459	71.195	1.6697	
3	590	562	28	95.254	4.7458	1770	1300	470	2.226	77.049	74.823	2.766	
4	590	576	14	97.627	2.3729	2360	1876	484	3.2123	79.344	76.132	3.876	
5	590	576	14	97.627	2.3729	2950	2452	498	4.1986	81.639	77.441	4.9237	
6	591	581	10	98.308	1.692	3541	3033	508	5.1935	83.279	78.085	5.9705	
7	590	580	10	98.305	1.6949	4131	3613	518	6.1866	84.918	78.731	6.9749	
8	590	585	5	99.153	0.8475	4721	4198	523	7.1884	85.738	78.549	8.0268	
9	590	583	7	98.814	1.1864	5311	4781	530	8.1866	86.885	78.699	9.0208	
10	590	578	12	97.966	2.0339	5901	5359	542	9.1764	88.852	79.676	9.8875	
11	590	587	3	99.492	0.5085	6491	5946	545	10.182	89.344	79.163	10.91	
12	590	581	9	98.475	1.5254	7081	6527	554	11.176	90.82	79.643	11.782	
13	590	585	5	99.153	0.8475	7671	7112	559	12.178	91.639	79.461	12.723	
14	590	590	0	100	0	8261	7702	559	13.188	91.639	78.451	13.778	
15	591	590	1	99.831	0.1692	8852	8292	560	14.199	91.803	77.605	14.807	
16	590	589	1	99.831	0.1695	9442	8881	561	15.207	91.967	76.76	15.831	
17	590	585	5	99.153	0.8475	10032	9466	566	16.209	92.787	76.578	16.724	
18	590	590	0	100	0	10622	10056	566	17.219	92.787	75.568	17.767	
19	590	590	0	100	0	11212	10646	566	18.229	92.787	74.557	18.809	
20	590	590	0	100	0	11802	11236	566	19.24	92.787	73.547	19.852	

FDR_TST

		Bin Sta	atistics			Cumulative Statistics							
#Bins	#Records	#Goods	#Bads	% Goods	%Bads	Total #Records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FDR)	KS	FPR	
1	253	104	149	41.11	58.89	253	104	149	0.416	55.19	54.77	0.698	
2	253	216	37	85.38	14.62	506	320	186	1.279	68.89	67.61	1.72	
3	253	241	12	95.26	4.743	759	561	198	2.242	73.33	71.09	2.833	
4	253	249	4	98.42	1.581	1012	810	202	3.237	74.81	71.58	4.01	
5	252	246	6	97.62	2.381	1264	1056	208	4.221	77.04	72.82	5.077	
6	253	248	5	98.02	1.976	1517	1304	213	5.212	78.89	73.68	6.122	
7	253	249	4	98.42	1.581	1770	1553	217	6.207	80.37	74.16	7.157	
8	253	249	4	98.42	1.581	2023	1802	221	7.202	81.85	74.65	8.154	
9	253	249	4	98.42	1.581	2276	2051	225	8.197	83.33	75.14	9.116	
10	253	249	4	98.42	1.581	2529	2300	229	9.193	84.81	75.62	10.04	
11	253	252	1	99.6	0.395	2782	2552	230	10.2	85.19	74.99	11.1	
12	253	252	1	99.6	0.395	3035	2804	231	11.21	85.56	74.35	12.14	
13	253	251	2	99.21	0.791	3288	3055	233	12.21	86.3	74.09	13.11	
14	253	251	2	99.21	0.791	3541	3306	235	13.21	87.04	73.82	14.07	
15	253	252	1	99.6	0.395	3794	3558	236	14.22	87.41	73.19	15.08	
16	252	251	1	99.6	0.397	4046	3809	237	15.22	87.78	72.55	16.07	
17	253	253	0	100	0	4299	4062	237	16.24	87.78	71.54	17.14	
18	253	253	0	100	0	4552	4315	237	17.25	87.78	70.53	18.21	
19	253	251	2	99.21	0.791	4805	4566	239	18.25	88.52	70.27	19.1	
20	253	253	0	100	0	5058	4819	239	19.26	88.52	69.26	20.16	

FDR OOT

		Bin Sta	atistics			Cumulative Statistics								
#Bins	#Records	#Goods	#Bads	% Goods	%Bads	Total #Records	Cumulative Goods	Cumulative Bads	% Goods	% Bads (FDR)	KS	FPR		
1	121	49	72	40.4959	59.5041	121	49	72	0.4111	40.2235	39.8123	0.6806		
2	121	98	23	80.9917	19.0083	242	147	95	1.2334	53.0726	51.8392	1.5474		
3	121	115	6	95.0413	4.9587	363	262	101	2.1984	56.4246	54.2262	2.5941		
4	121	119	2	98.3471	1.6529	484	381	103	3.1968	57.5419	54.3451	3.699		
5	121	118	3	97.5207	2.4793	605	499	106	4.1869	59.2179	55.0309	4.7075		
6	121	115	6	95.0413	4.9587	726	614	112	5.1519	62.5698	57.418	5.4821		
7	121	119	2	98.3471	1.6529	847	733	114	6.1504	63.6872	57.5368	6.4298		
8	121	114	7	94.2149	5.7851	968	847	121	7.1069	67.5978	60.4909	7		
9	121	118	3	97.5207	2.4793	1089	965	124	8.097	69.2737	61.1767	7.7823		
10	121	120	1	99.1736	0.8264	1210	1085	125	9.1039	69.8324	60.7285	8.68		
11	121	120	1	99.1736	0.8264	1331	1205	126	10.1108	70.3911	60.2803	9.5635		
12	121	118	3	97.5207	2.4793	1452	1323	129	11.1009	72.067	60.9662	10.2558		
13	121	120	1	99.1736	0.8264	1573	1443	130	12.1077	72.6257	60.518	11.1		
14	121	120	1	99.1736	0.8264	1694	1563	131	13.1146	73.1844	60.0697	11.9313		
15	121	119	2	98.3471	1.6529	1815	1682	133	14.1131	74.3017	60.1886	12.6466		
16	121	120	1	99.1736	0.8264	1936	1802	134	15.12	74.8603	59.7403	13.4478		
17	120	119	1	99.1667	0.8333	2056	1921	135	16.1185	75.419	59.3005	14.2296		
18	121	120	1	99.1736	0.8264	2177	2041	136	17.1254	75.9777	58.8523	15.0074		
19	121	120	1	99.1736	0.8264	2298	2161	137	18.1322	76.5363	58.4041	15.7737		
20	121	120	1	99.1736	0.8264	2419	2281	138	19.1391	77.095	57.9559	16.529		

Financial curve and recommended cutoff

We have the score that ranks the transactions by a probability that event is a fraud. Evaluation is done based on rank ordering.

Business managers know the estimate that is the average loss that they make when a mistake of not catching a fraud transaction. Estimated penalty for a false positive (denying a good transaction thinking it's fraud) this will substantially lead to customer cancelling the account.

So the key number are:

- Estimate \$ lost for every fraud transaction missed (\$400).
- Estimate lost sales from every false positive, a good transaction that we denied (20).

Overall saving is the difference between these values.

Score is used on the evaluation data to estimate the value the model will be and to set the cut off. Out of time data is used make fair assessment of the model performance after we implement it and to get score cutoff.

This plot is the based the 2 key numbers and different penetration percentiles for the overall savings.

Lost revenue is when a good transaction is denied. Fraud caught is the benefit caught for every fraud caught.

Fraud caught is in the high percentile bin because it is sorted by fraud score. After some time not a lot of fraud is caught.

Out of time is used because it's the most likely scenario and it is projected to an annualized number.

Overall saving = Fraud caught- lost revenue

Fraud cutoff:

Cut-off can't be kept at the steep part of the curve because behaviour can change in the future as the overall saving is very sensitive to the cut-off. So, we flat region of the overall saving curve. We must keep the cut-off far to the left as possible because of the denial for fewest number of transactions and still a decent amount of saving. Denying 5% is a lot so the cutoff is kept at 3%.

Dollar Savings:

To get the annual benefit we must annualize number of transactions (100,000). Dollar savings is about a 21 million transactions

Summary

Step 1: Exploratory data analysis and Data Cleaning: Exploratory data analysis was conducted to describe and visualize each of the 10 data fields. The data cleaning involved removing outliers upon knowledge group approval and addressing missing values by carefully crafted data imputation techniques.

Step 2: Feature Engineering: There were six different types of variables: amount variables, frequency variables, days-since variables, velocity change variables, vd ratio variables and variability variables were created along with two Benford's Law variables, and a day-of-the-week risk table variable. Target encoding and statistical smoothing was conducted on Day-of-week variable and Merchant state variables.

Step 3: Feature Selection: The data was divided into three sections for model development and analysis: training, testing, and out-of-time (OOT). Feature selection involved filtering based on Kolmogorov-Smirnov(KS) score and using the wrapper method. Top 20 best variables with each having a wrapper score more or less above 0.6.

Step 4: Model Selection: Having a logistic regression model as a baseline, several non-linear models with varying hyper parameters were explored. These non-linear models included Decision Tree, Random Forest, Gradient Boosting, and Neural Network. Random Forest delivered the best training, testing, and OOT data results along with the \$ savings of 21,216,000 and the score cutoff at 3%.