A04 – Predikcia kvality vína, lineárna regresia pomocou L^1 , L^∞

Piati proti optimalizácii Tomáš Antal, Erik Božík, Róbert Kendereš, Teo Pazera, Andrej Špitalský 2DAV

Január 2024

Predstavenie projektu - lineárna regresia

lineárna regresia - predikcia závislej premennej $y \in \mathbb{R}^n$ pomocou nezávislých $x_1, \dots, x_n \in \mathbb{R}^n$

$$\min ||y - \hat{y}||$$

$$\hat{y} = \beta_0 + \beta_1 x_1 + \dots + \beta_k x_k$$

pozorovania	<i>x</i> ₁	<i>x</i> ₂	 X _k	у
atribút 1	1	2	 4	5
:	:	:		
atribút n	1	2	 4	5

ightharpoonup vyjadriteľné ako úloha lineárneho programovania - L^1 , L^{∞}

Predstavenie projektu - obsah

- ► formulácia LP úloh a dokázanie optimality
- implementácia v Python-e a predikcia kvality vína
- ▶ počítanie a interpretácia R² koeficientu
- lacktriangle implementácia všeobecnej triedy na počítanie L^1 a L^∞ lineárnej regresie
- minimalizácia váženej sumy noriem

Α

. . .

В

. . .

C

. . . .

D

. . . .

E-model

...

Porovnanie L^1 a L^{∞} lineárnej regresie

- L¹ veľmi dobre zachytáva lineárny vzťah, môže viesť k overfittingu
- $ightharpoonup L^{\infty}$ príliš ovplyňovaná outliermi

Minimalizácia váženého súčtu noriem

- lacktriangle redukcia $\emph{overfittingu}\ \emph{L}^1$ regresie váženým súčtom s \emph{L}^∞ normou
- > stále implementovateľné ako úloha lineárneho programovania
- nadobúda optimum

$$\min \left(0_{k+1}^{T} \mid \omega 1_{n}^{T} \mid (1 - \omega) \right) \left(\frac{\beta}{\underline{t}} \right), \ \omega \in [0; 1]$$

$$\left(\frac{A \mid \mathbb{I}_{n} \mid 0_{n}}{-A \mid \mathbb{I}_{n} \mid 0_{n}} \right) \left(\frac{\beta}{\underline{t}} \right) \geq \left(\frac{\underline{y}}{-\underline{y}} \right)$$

$$\left(\frac{A \mid \mathbb{I}_{n} \mid 0_{n}}{-A \mid 0_{n \times n} \mid 1_{n}} \right) \left(\frac{\beta}{\underline{t}} \right) \geq \left(\frac{\underline{y}}{-\underline{y}} \right)$$

$$\beta \in \mathbb{R}^{k+1}, \ t > 0_{n}, \ \gamma > 0$$

Minimalizácia váženého súčtu noriem

implementované ako WeightedL1LInfModel

regresia váženým súčtom noriem

porovnanie troch regresií

Výsledky

...