最初に $A[1/x] \cong A_x$ であることを示す.

$$\phi: A[1/x] \longrightarrow A_x$$

を自然な全射準同型とする. $a/x^n, b/x^m \in A[1/x]$ を $n \le m$ となるように任意にとったとき,

$$\frac{a}{x^n} = \phi\left(\frac{a}{x^n}\right) = \phi\left(\frac{b}{x^m}\right) = \frac{b}{x^m}$$

とすれば、ある k が存在して、A において、 $x^k(x^{m-n}a-b)=0$ が成り立つ.ここで、A が整域であることと $x \neq 0$ より、 $x^{m-n}a=b$ であり、A[1/x] において、

$$\frac{b}{x^m} = \frac{x^{m-n}a}{x^m} = \frac{a}{x^n}$$

となるので, ϕ は単射である. したがって, $A[1/x] \cong A_x$ が成り立つ.

A が高さ 1 の素イデアルを持たない場合は主張が成り立つので、高さ 1 の素イデアルは存在するとしてよい。 $\mathfrak{p} \in \operatorname{Spec} A$ を高さ 1 の素イデアルとする。また、 $x \in \mathfrak{p}$ のときには \mathfrak{p} の極小性と $xA \subseteq \mathfrak{p}$ が素イデアルであることから、 $\mathfrak{p} = xA$ となるので、 $x \notin \mathfrak{p}$ としてよい。

このとき、局所化による素イデアルの対応関係から、 $\mathfrak{p}A_x$ も高さ 1 の素イデアルである.したがって、ある $a\in A_x$ が存在して、 $\mathfrak{p}A_x=aA_x$ となる.特に $a\in \mathfrak{p}A_x$ なので、ある $p\in \mathfrak{p}$ と n が存在して、 $a=p/x^n$ が成り立つ.これより、 $p=ax^n\in \mathfrak{p}$ となり、 $x\notin \mathfrak{p}$ と \mathfrak{p} が素イデアルであることから、 $a\in \mathfrak{p}$ が成り立つ.ゆえに、 $aA\subseteq \mathfrak{p}$ である.

次に, $y \in \mathfrak{p}$ を任意にとる. このとき, ある n と $b \in A$ が存在して, $x^n y = ab$ となる. ここで,

$$I_n = \sum_{x^n z \in aA} zA$$

とおく. すると, $x^nz \in aA \subseteq \mathfrak{p}$ ならば $z \in \mathfrak{p}$ であることから, $I_n \subseteq \mathfrak{p}$ であり,

$$I_0 \subseteq I_1 \subseteq \cdots \subseteq I_n \subseteq \cdots \subseteq \mathfrak{p}$$

となる. ここで, A は Noetherian なので, ある m が存在して, 任意の $k \ge m$ に対して, $I_m = I_k$ が成り立つ. したがって, 任意の $y \in \mathfrak{p}$ に対して, ある $b \in A$ が存在して, $ab = x^m y \in xA$ が成り立つ.

最後に、 $\mathfrak p$ が単項イデアルであることを示す。 $a \notin xA$ のとき、 $x^my = ab \in xA$ と x が素元であることから、 $b \in xA$ となる。ゆえに、ある $b' \in A$ が存在して、b = b'x が成り立つ。このとき、 $x^my = ab'x$ と A が整域であることから、 $x^{m-1}y = ab'$ となるので、これを繰り返すことにより、 $y \in aA$ が従う。

あとは $a \in xA$ の場合を考えればよい. $a \in x^{k_0}A$ を満たす最大, または m 以上の k_0 をとり, $k = \min(k_0, m)$ と定める. このとき, ある $a' \in A$ が存在して, $a = a'x^k$ となるので, 上と同様にして, $x^{m-k}y = a'b$ が成り立つ. m = k ならば $y \in a'A$ であり, $m - k \ge 1$ の場合には, $a' \notin xA$ なので, $a \notin xA$ の場合と同様にして, $y \in a'A$ が従う. これらより, $\mathfrak{p} \subseteq a'A$ となる. しかし, $a'x^k = a \in \mathfrak{p}$ なので, $x \notin \mathfrak{p}$ より, $a' \in \mathfrak{p}$ となって, $\mathfrak{p} = a'A$ が成り立つ.