Illinois U. Library

UNITED STATES ATOMIC ENERGY COMMISSION

Nuclear Science Abstracts

NEW NUCLEAR DATA

January 15, 1955 — March 31, 1955

Volume 9 No. 6B

Technical Information Service, Oak Ridge, Tennessee

NEW NUCLEAR DATA

The printing of this publication has been approved by The Director of the Bureau of the Budget, August 3, 1954.

Compiled by the Nuclear Data Group National Research Council

K. Way, G. H. Fuller, R. W. King, C. L. McGinnis R. van Lieshout, and A. L. Hankins

Readers: B. Crasemann, University of Oregon; R. W. Fink, University of Arkansas; J. M. Hollander, University of California; W. E. Meyerhof, Stanford University; H. Pomerance, Oak Ridge National Laboratory; and J. R. Stehn, Knolls Atomic Power Laboratory.

Table 1—Radioactivity, Levels, Abundances, Moments

Table 2—Neutron Cross Sections

Table 3 - Ground State Q's

Table 4 -- Mass Differences

INTRODUCTION

This issue of Nuclear Science Abstracts contains the first 1955 quarterly list of new nuclear data. Additional summaries will follow in Volume 9, Nos. 12B, 18B, and 24B. Number 12B will contain a semiannual cumulation, No. 18B a quarterly list, and No. 24B an annual cumulation for 1955. The 1952, 1953, and 1954 annual cumulations are contained in Vol. 6, No. 24B; Vol. 7, No. 24B; and Vol. 8, No. 24B, respectively, and are available from the Superintendent of Documents, Government Printing Office, Washington 25, D. C., for \$0.25 each. Send check or money order but not stamps. Nuclear Data Cards: As the current literature

Nuclear Data Cards: As the current literature is surveyed, the new nuclear results are first

printed on 3- by 5-in. cards which are collected into sets of 100 to 150 cards each month. Individuals, laboratories, or libraries may subscribe to the card sets directly by applying to the Publications Office, National Research Council, 2101 Constitution Avenue, N.W., Washington 25, D. C. The price, based on actual mechanical costs, is currently \$20 per year domestic and \$30 per year foreign (air mail postage included for foreign but not for domestic subscriptions).

The Nuclear Data Group, which is sponsored by the National Research Council, is supported by the U. S. Atomic Energy Commission and the National Bureau of Standards.

CONVENTIONS

All energies are given in Mev and all cross sections in barns unless otherwise stated in the tabular material.

Numerals in italies, following measured values, are the <u>errors</u> (as reported by the authors) in the last figures of the values. In cases where confusion seems possible, the conventional ± is used.

Magnetic moments are reported as before with-

out diamagnetic correction. They are based on $\mu(H) = 2.79267$ and the substandards listed by H. Walchli, ORNL-1469.

In writing reactions, the upper right hand superscript denoting A, the mass number of the target nucleus, is given without parentheses when the target was monoisotopic or when enriched (or depleted) material was used to establish the identity of the reacting isotope. It is given in parentheses when natural material was used but when the identity of the reacting isotope was strongly suggested by its predominating abundance, the observed reaction energy, or the activity or yield of the end product. It is given in parentheses with a question mark when the target A was assigned by systematics, elimination, etc. For instance, "B¹⁰(d,p)" means that the proton groups from the deuteron bombardment of B10 were identified by comparing effects in B10 enriched and natural B samples. "B11(d,p)" means that the assignment to B¹¹ was made by using B¹¹ depleted and natural B samples. "C(12)(d,p)" means that natural C was used to study the reaction, but, because of the 99% abundance of C12, the reaction observed was assumed to take place in that isotope. In the reaction "Sn⁽¹¹⁶⁾(n,p)13^sIn", the Sn isotope was identified by the In product. "Te(125?) (d,p)Te(126?)", indicates that from the trend of Q values in the region, the experimenters believed that their measured Q most likely belonged to the indicated reaction.

When a method of production of a radioactive nucleus is given, the lowest bombarding energy used by the experimenter is indicated; e.g., Ag(20-Mev p).

The large black dots on the decay schemes are used to indicate experimentally established coincidences. α , β , or γ rays entering a level and dotted at their arrowheads have been shown to be in coincidence with gamma rays leaving the same level and dotted at their origins. In case of a simple cascade, the dots of the incoming and outgoing rays are superimposed. Dashes are used for doubtful radiations or levels.

For the light nuclei, energy levels in the compound nucleus are usually tabulated rather than the resonant energy of the bombarding particle. The binding energy of the bombarding particle in the compound nucleus is taken from the table of F. Ajzenberg, T. Lauritsen, Revs. Modern Phys. 27, 77(1955) for Z<11, and from P. M. Endt, J. C. Kluyver, Revs. Modern Phys. 26, 95(1954) for Z from 11 to 20.

In 1954, nuclear data, reported at meetings of the American Physical Society, were not tabulated until Physical Review references for the abstracts were available. This year, they will be reported more promptly with references to the Bulletin of the American Physical Society, BAPS, and to the volume number of the Physical Review in which the Bulletin will later be reprinted.

ABBREVIATIONS

a	absorption	cc	cloud chamber
α βγ	absorption of β 's in coincidence	CcW	Cockcroft Walton accelerator
	with γ's	ce	conversion electrons
a ce	absorption of conversion elec-	chem	chemical separation of product
	trons		following reaction
a coin	absorption of photoelectrons be-	Ср	Compton electrons
	tween counters in coincidence	cryst	crystal spectrometer
α	total γ-ray conversion coeffi-	d	(1) deuteron, (2) descendant of,
	cient, Ne/Ny		(3) days, when used as super-
$\alpha_{\rm K}, \alpha_{\rm L}, \ldots$	γ-ray conversion coefficient for		script
	electrons ejected from the K,	$d,p(\theta)$	angular distribution of protons
	L, shell		with respect to deuteron beam
$\alpha_0, \alpha_1, \ldots$	α to g.s., first excited state,	$D\gamma n, D\gamma p$	measurement by detection of
	of residual nucleus		photoneutrons or photoprotons
В	band spectra method	_	from deuterium
$B_e(2)$	reduced E2 excitation probability	E	average energy
	in barns ²	$\mathbf{E_0}$	resonance energy
Beγn	measurement by detection of	$E_{\beta}, E_{\gamma}, \ldots$	energy of β ray, energy of γ ray,
	photoneutrons from Be		
B_n, B_p	binding energy of a neutron, pro-	Edis	disintegration energy
	ton to a nucleus	EA	electrostatic analyzer
$\beta\gamma(\theta)$	angular correlation of β 's and γ 's	E1,E2,	electric dipole, electric quadru-
	in coincidence		pole,
ealc	calculated from experimental	GV	Auger electron
	work reported elsewhere	el	elastic scattering

€	(1) electron capture, (2) fractional transition probability for decay process observed	parentheses	parentheses are put around val- ues which are given for identi- fication purposes
€K,€L	electron capture from K, L shell	bcillabyo	proportional counter
f	fission, in abbreviations for	pe	photoelectrons
	methods of production or de-	ppl	photoplates or emulsions
	tection	primes	primes indicate inelastically
F-K	Fermi-Kurie β energy distribu- tion plot	q 500	scattered particles electric quadrupole moment in
$\gamma(\theta, \mathbf{T})$	numbers of γ 's as function of		units of barns
Salar Scott Salar	angle and temperature	quad res	quadrupole resonance method
$\gamma\gamma$, $\beta\gamma$, $\alpha\gamma$, $n\gamma$	$\gamma\gamma$, $\beta\gamma$, $\alpha\gamma$, or ny coincidences.	Q	reaction energy in Mev
	$(0.123 \ \gamma) \ (0.246 \ \gamma, \ 0.325 \ \gamma)$	S	(1) spectrometer method, (2)
	means 0.123 γ in coincidence with 0.246 γ and 0.325 γ		seconds, when used as super- script
g	gyromagnetic ratio	s coh	coherent scattering
γ±	annihilation radiation	S	atomic spectra measurement
T DOGE	resonance half-width (the whole	scin	1 crystal scintillation counter
	width at half-maximum)	scin Cp	2 crystal scintillation counter
G-M	Geiger-Müller counter	scin pr	3 crystal scintillation counter
g.s.	ground state	sd	double focusing spectrometer
I CARLETTE INC.	(1) nuclear induction magnetic	sl	lens spectrometer
	resonance method	sl ce	conversion electrons measured
ic	ionization chamber		in lens spectrometer
IT. A SERVICE DE	isomeric transition	st	strong
J	spin in units $h/2\pi$	Sπ	180° spectrometer
K/L	$\alpha_{\rm K}/\alpha_{\rm L}$	sπ pr	180° pair spectrometer
l	angular momentum of particle	σ	cross section in barns
	absorbed into or picked up	σ_0	cross section at resonance en- ergy, E ₀
Lin The state of t	linear accelerator	σ	absorption cross section
M	molecular or atomic beam res-	$\sigma_{\mathbf{a}}$ $\sigma_{\mathbf{t}}$	total cross section
TAT.	onance method	ΣA_{ν}	$[W(\pi)-W(\pi/2)]/W(\pi/2)$. W is the
m	medium intensity	2110	coincident count at the indicated
	magnetic dipole, magnetic quad-		angle
M1,M2,	rupole rupole, magnetic quau-	t	(1) triton, H ³ , (2) total cross sec-
mb	millibarns	law .	tion when used under σ in cross
Mic	microwave method		section list
mir		trans	transmission
mir.	measurement by total reflection of neutron beam from mirror	T	(1) isotopic spin; (2) temperature
	surface	τ	half life in units indicated
mc		Charles Annual Control of the Contro	half life of upper, lower state
ms	mass spectrometer	$ au_1, au_2$	half life for double β , double ϵ
μ	(1) magnetic moment in units of nuclear magnetons, (2) micron,	$\tau_{\beta\beta}, \tau_{\epsilon\epsilon}$	decay
	10 ⁻⁴ cm	th	thermal
μ3 2 - 2 02 1.0 - 20	magnetic octupole moment in	VdG	Van de Graaff accelerator
r3	units of nuclear magneton	w,vw	weak, very weak
	barns	%	% of disintegrations
μs	microseconds	+	relative numbers. When used in
week property	neutrino	1	connection with γ rays, rela-
osc	pile oscillator method	All a	tive numbers of photons, not photons plus conversion elec-
p -15-0	(1) proton, (2) predecessor of		trons, are meant
	The second secon	+,-	even, odd parity when used in
p res	proton resonance. Magnetic field		connection with level proper-
	standardized by means of pro-		ties
	ton resonance frequency	Contract of the same	- CHANGE AND THE PARTY AND THE PARTY

paramagnetic resonance method

para

Standard journal abbreviations are used.

TABLE 1- RADIOACTIVITY, LEVELS, ABUNDANCES, MOMENTS,

Imagaigned	antivities	from	proton	bombardment
OTTGOS TIMIER	PC CTATCTED	T T OW	DI O O OTI	nonner mierre

T (Sec)	Target	Ep
0.4	Mg	50
4.5	Mg	80
~0.2.	A127	80
~2.5	Si	20
~1	81	50
0.2	Ti	80
0.77	Mn55	95
0.55	Fe	50
0.3	Cu	130
1.3	Cu	130
0.15	Zn	100
0.8	zn	100

H.Tyran, P.A.Tove, Phys. Rev. 96,773(1954).

n!
0 1
Direct measurement with neutron beam
13
C.P.Stanford, T.E.Stephenson, S.Bernsteln,
Phys. Rev. 96, 983 (1954).

HI au > 10^{21y}
From pulse rate in large scintillator of $au_7 H_8$ with 100 ft of rock shielding au for bound p> 10²² y

F.Reines, C.L.Cowan, dr., M.Goldhaber, Phys. Rev. 96, 1157 (1954).

> E.G.Fuller, Phys. Rev. 96, 1306 (1954); Phys. Rev. 83, 2024 (1951).

 H^2 (d,p) $E_d = 0.15$ to 0.45 H^2 (d,n) H^3 , H^3 detected, pc σ (H^3) σ (H^3) \sim 1 Ratio decreases with E_d d,n(θ) more asymmetric than d,p(θ)

Q.Preaton, P.F.D.Shaw, S.A.Young, Proc. Roy. Soc. 226A, 206 (1954).

C.S.Godfrey, Phys. Rev. 96, 1621 (1954).

He⁵ Levels $L1^6(t,a)$ $E_t = 0.24$ 0.24 0.24 s, pc other ?

K.W.Ailen, E.Aimqvist, J.T.Dewan, T.P.Pepper, Phys. Rev. 96, 684 (1954). Me⁶ τ 0.799^S 3 L1⁽⁷⁾ (≤ 65-MeV γ, D)

0.83 R.M.Kline, D.J.Zaffarano, Phys. Rev. 96, 1620 (1954).

Levels $L1^{(7)}(t,a)$ $E_t = 0.24$ 1† 9.3. J = 0† $t,a(\theta)$ 8† (1.71) J = 2†

E.Almqvist, T.P.Pepper, P.Lorrain, Can. J. Phys 32, 621 (1954).

Levels $L1^{7}(t,a)$ $E_{t}=0.24$ pc g.s $Q=9.79\pm0.03$ I.71 I $\Gamma \le 0.1$? 3.35° ?

*From a's observed at backward angles only

K.W.Alien, E.Almqvist, J.T.Dewen, T.P.Pepper, Phys. Rev. 96, 684 (1954).

Li Abundances L16 7.98% L17/L16 = 11.53 ± 0.29 L17 92.02%

From crystal density and x ray data

D.A. Hutchison, Phys. Rev. 96, 1018 (1954).

Li⁴? τ ~0.4^S Li (50-MeV p) See also Be⁶ Be⁹ (50-MeV p)

H. Tyrén, P. A. Tove, Phys. Rev. 96, 773 (1954).

 $E_p = 9.73$ scin 3 2 Graph of $p, p(\theta)$ disagrees with Putnam's

B.Cork, W.Hartsough, Phys. Rev. 96,1267(1954).

 $He^{4}(p,p)$ $E_{p} = 9.76$ ppl pata for $p,p(\theta)$ agree with Putnam's

J.H.Williams, S.W.Resmussen, Phys. Rev. 98 (1955) 8APS 30, \$1 (New York), L3.

Level He^{3} (d, γ) $E_{d} = 0.2 \text{ to } 2.86$ γ $I_{6.6}$ Z $\Gamma_{\gamma} = 11 \text{ eV}$ $E_{0} = 0.45 \text{ } \mu$ $\sigma_{0} = 0.6$

 $d_{\gamma}(\theta) \sim isotropic$ at $E_d = 0.58$

J.M.Biair, N.M.Hintz, D.M.Van Patter, Phys. Rev. 96, 1023 (1954).

Li⁷ Level Li⁽⁷⁾ (α,α,γ) $E_{\alpha} = 1.9$ scin stable (0.478)

 $\tau < 3 \times 10^{-13}$ from Doppler shift of γ a $\gamma(\theta)$ isotropic within 10%

C.W.L1, R.Sherr, Phys. Rev. 96, 389 (1954).

E = 5.30

LI7 Level L1 (7) (a, a 17) 15. 0.478 2 stable

 $\tau < 1.3 \times 10^{-13}$ from Doppler shift of γ

V-S-Zhipinel, 1zvest. Akad. Nauk Ser. Fiz. SSSR 18, 65 (1954).

L1(7) (Y,a) Leveis $\gamma, \alpha(\theta)$ 4.7 1 J=5/2 J = 5/2 (3/2, 1/2 ?) 5.5 1 J = 5/2 (3/2, 1/2 ?)

Possible levels at 7.4, 8.3, 9.0 σ(E = 4.7) ~0.15 mb

P.Stoll, Helv. Phys. Acta 27, 395 (1954). P.Erdős, P.Stoll, M.Wächter, V.Wataghin, Nuovo Cim. 12, 639 (1954).

Level L16 (n) E = 0.035 to 4.2 7.46 $E_0 = 0.261$ $\sigma_0 = 10.3$ $J = 5/2 - \Gamma_a = 0.06, \Gamma_n = 0.114$

C.H.Johnson, H.S.Willard, J.K.Bair, Phys. Rev. 96, 985 (1954).

Li8 0.841 S 4 Be9 (≤ 65-Hev γ, p) 3 5 0.84 R.M.Kiine, D.J.Zaffarano, Phys. Rev. 96,1620 (1954).

Be 67 ~0.4S L1 (50-Mev p) 2 See also Li4 Be (50-Mev p)

H. Tyren, P. A. Tove, Phys. Rev. 96, 773(1954).

Be8 Ep = 1.5 to 5 L1 (7) (D.Y) $\Gamma = 0.4$ scin (E, > 10) ~10-16: 19.1

C.P.Swann, M.A.Rothman, W.C.Porter, C.E.Mandeville, Phys. Rev. 98 (1955) -BAPS 30, \$1(New York), RAL

L1(7) (p,n) (19.2)

J=3+, T=1 Background due to J = 1- and J = 2-, T = 0 states Conclusions from analysis of available data

R.K.Adair, Phys. Rev. 96, 709 (1954).

Be 9 Be 9 (n, ? y) En = 3.2 scin 8 No y's observed stable

> V.E.Scherrer, B.A.Allison, W.R.Faust, Phys. Rev. 96, 386 (1954).

L17 (He3, D) Levels Ens = 0.72 scin 9.8. 1.8 2 2. 8 2 3.2 1 4.9 1

p's distinguished from d's by absorption

C.D.Mork, W.M.Good, W.E.Kunz, Phys. Rev. 96, 1363; 95, 640A (1954).

Belo Levels Be9 (d. D) E, = 11.9 Q. S. 1 = 1 d, p(8) 2.5×106y 1 = 1 (3.37)

F.S. Eby, Phys. Rev. 96, 1355 (1954).

Be9 (d, p) Levels E, = 5.4 to 7.4 S77 90° Q=4.586 8 g. s. 3.37 1 st 6.26 1 7.37 F~0.086 5.96 1 7.54 \[\^ 0.010 6.18 1

J.J.Jung, C.K.Bockelman, Phys. Rev. 96, 1353 (1954); Phys. Rev. 94, 7484 (1954).

L1 (7) (t,a) Levels E. = 0.24 ~17.4 $J = 2^+, 2^-$ levels $t, a(\theta)$

T.P.Pepper, P.Lorrain, Can. J. E.Almqvist, T.P.Pepper Phys. 32, 621 (1954).

En = 3.2 B B(n, ? y) scin st 0.43 1.41 0.76 1.61 1.02 2.0 1.17

V.E.Scherrer, B.A.Allison, W.R.Faust, Phys. Rev. 96, 386 (1954).

811 B10 (d, p) Levels $E_d = 0.18, 0.29,$ 5 6 0.41,0.58 stable ppl; scin 9.5 6.41 d. p(8) 1.8 (2.14)3 (4.46)0 7.17 1.3 (5.03)2

 $+\int d\sigma$ in mb at E_d = 0.58. σ 's given at other E_d $d, p(\theta)$ analyzed for stripping and compound nucleus formation

C.H.Paris, F.P.G.Valckx, P.M.Endt, Physica 20, 573 (1954).

L1 (7) (a,a++0.478 γ) E_a ≤ 2.8 Levels Γ= 0.125 J≤5/2 1f -0.11+ 9.86 J = 3/2 1f +

Γ~0.155 J≤7/2 0.08 10.23 No 10.32 level (<0.006†) Correction made for barrier penetration J from comparison of reduced width with limit †Peak cross section in barns

C.W.Li, R.Sherr, Phys. Rev. 96, 389 (1954).

812 B(11) (d, DY) Ed = 1.05 scin 7 0.940 21 0.038 1+ 1.64

L.C. Thompson, Phys. Rev. 96, 369 (1954).

cli	Levels		B ¹⁰ (d	,n)	E _d = 0.58 ppl
6 5 20.4 ^m				1 _p	$d, n(\theta)$
		2.01	g.s.	1	
		0.8+	(1.85)	37	
		2.21	(4.23)	0	
		0.7	(4:77)		
	A . 11				

 $+\int d\sigma$ in mb $d_*n(\theta)$ analyzed for stripping and compound nucleus formation

C.H.Paris, P.M.Endt, Physics 20, 585(1954).

T.M.Hahn, Jr., B.D.Kern, G.K.Farney, Phys. Rev. 98 (1955). BAPS 30, 61 (New York), RA2.

C12 6 6 stable

Levels $B^{\{11\}}(d,n)$ $E_d = 1.8 \text{ to } 4.7$ g.s. pc scin (4.43)

d,n(8) varies markedly with E

J.R.Risser, J.Price, C.M.Class, Phys. Rev. 98, (1955).
BAPS 30, #1 (New York), RA3.

Levels $C^{(12)}(p,p)$ $E_p = 9.9$ $p,p(\theta)$. (4.43) $p,p(\theta)$.

*Diffraction effects observed

**Analyzed for direct collision and compound nucleus formation

G.E.Fischer, Phys. Rev. 96, 704 (1954).

Levels $C^{(12)}(p,p')$ $E_p = 9.5$ ppl g.s. $\sigma(\theta)$ has a max. at 100° (4.43) σ symmetric about 90°

W.E.Burcham, W.M.Gibson, A.Hossain, J.Rotblat, Phys. Rev. 92, 1266 (1953).

Levels $C^{(12)}(p,p^*)$ $\dot{E}_p = 14 \text{ to } 19$ 9.5. (4.43) σ asymmetric about 90° (7.65) (9.61)

 $p,p'(\theta)$ does not fit direct interaction picture

R.Peelle, Phys. Rev. 98 (1955). BAPS 30, #1 (New York), RAJ.

Levels $C^{(12)}(d,d)$ $E_d = 19$ ppl 9.5. (4.43) (9.61)

Group to level at 7.88 not observed Graphs of $\sigma(\theta)$ given but not analyzed

R.G.Freemantie, W.M.Gibson, J.Rotbiat, Phil. Mag. 45, 1200 (1954). C¹² Levels C⁽¹²⁾(e,e¹) E_e = 150 to 188 4.4 7.7 9.7

Resolution 0.2%

J.H.Fregeau, R.Hofstadter, Phys. Rev. 98 (1955)... BAPS 30, sl(New York), RA6.

Levels $B^{11}(d,n)$ $E_d = 0.85$ ppl $d, n(\theta)$ g.s. 1,27 4.4 1 7.7 isotropic within 25% 9.6 2 12.7

A.Graue, Phil. Mag. 45, 1205 (1954).

 $C^{(12)}(p,p\gamma)^* = E_p = 30 \text{ to } 340$ $B^{11}(d,n\gamma) = E_d = 18 \text{ to } 50$ 15.2 2 From T = 1 level? s pr

* σ (15.2-Mev γ) at 90° given γ not produced by B¹⁰ (d), Be (p), B(p), 0(p) for above E_d and E_p nor by Be (170-Mev α)

D.Cohen, B.J.Noyer, H.Shaw, C.Waddell, Phys. Rev. 96, 714 (1954).

 γ $B^{(11)}(d,n\gamma)$ $E_d = 10.8 \text{ scin}$ $100\dagger \quad 15.1$ $N^{(14)}(d,\alpha\gamma)$ $E_d = 10.8$ $2\dagger \sim 15$ $Be^9(\alpha,n\gamma)$ $E_a = 21.7$

et ~15

Results consistent with agaignment of T = 1, J = 1⁺ state to $C^{1/2}$

V.K.Rasmussen, J.R.Rees, M.B.Sampson, N.S.Wall Phys. Rev. 96, 812 (1954).

Levels $B^{(11)}(p,\gamma)$ $E_p = 0.6$ to 2.0 (16.10) (18.39) (17.22) (19.25)

p. $(12-\text{Mev}\gamma)(\theta)_i$ p. $(16-\text{Mev}\gamma)(\theta)$ as $f(E_p)$ show that more than two of above levels are involved in interference scin

H.H.Gîvîn, G.K.Farney, T.H.Hahn, B.D.Kern, Phys. Rev. 96, 1337; 95, 302A, 641A (1954).

Level $B^{10}(d,p)$ $E_d = 0.15 to 0.7$ 25.36 scin

Irregularities in relative intensities of four longest p groups observed at E_d = 0.21

C.H.Parls, F.P.O.Valckx, P.M.Endt, Physica 20, 573 (1954).

J 1/2 μ 0.702198 ν (C¹³)/ ν (H¹) = 0.2514431 5 Both nuclei in same molecule

V-Royden, Phys. Rev. 96, 543 (1954).

 $C^{(12)}(d,p)$ $E_d = 0.52 \text{ to } 0.84$ g.s. ppl

Values of $a_1 \cdots a_n$ in $\Sigma a_1 P_1(\theta)$ for $d_1 P(\theta)$

S. Takemoto, T. Dazal, R. Chiba, S. Ito, S. Suganomata, Z. Watanabe, J. Phys. Soc. Japan 9, 447 (1954).

Level

 $C^{\{12\}}(d,p)$ $E_d = 1.2$ (3.09) E1 $e^+e^-(\theta)$ scin

S.Gorodetzky, R.Armbruster, P.Chevalifer, A.Galimann, Compt. rend. 239, 1623 (1954).

Leve 1s

 $C^{\{12\}}(d,p)$ $E_d = 7.00$ g.s. Q = 2.717 10 $g/7 90^\circ$ 3.090 3.6843.855 $\Delta Q = 0.170 \pm 0.003$

No 0.70, 4.6 level found (<0.5% of g.s.)

A.Sperduto, W.W.Buechner, C.K.Bockelman, C.P.Browne, Phys. Rev. 96, 1316 (1954).

R.G.Freemantie, W.M.Gibson, J.Rotblat, Phil. Mag. 45, 1200 (1954).

Levels

 $C^{(12)}(n,n)$ $E_n = 1.9 \text{ to } 3.9$ 6.84 J = 3/2+(5/2+7) $n, n(\theta)$ 7.67 J = 3/2+8.29 J = 3/2+

Old results corrected and extended Phase analyses use $\boldsymbol{\sigma}_{\mathbf{t}}$ and polarization

P. Huber, R. Budde, Helv. Phys. Acta 27, 512A

Levels $C^{(12)}(n,n)$ $E_n = 2.4 \text{ to 3.7}$ $\frac{\text{Res.}}{\Gamma}$ $\frac{\text{Level}}{7.67}$ $\frac{J}{3/2^{\dagger}}$ 0.06 $\frac{3.66}{3.66}$ $\frac{3.32}{3/2^{\dagger}}$ $\frac{3/2^{\dagger}}{1.20}$ Phase shift analysis of $n,n(\theta)$ scin

R.W. Weier, P.Scherrer, G.Trumpy, Helv. Phys. Acta 27, 577 (1954).

C14 6 8 ~5600¥

 β^- 0.155 I F-K linear above 0.03 Source thickness \sim 15 $\mu \rm g/cm^2$ sl

M.H.Forster, A.Oswald, Phys. Rev. 96,1030 (1954). C14 6 8 ~5 600 y

Comparison with 8^{35} shows β spectrum has allowed shape down to 3 keV

A. Holjk, S.C. Curran, Phys. Rev. 96, 395(1954).

Levels

A.Sperduto, W.W.Buechner, C.K.Bockelman, C.P.Browne, Phys. Rev. 96, 1316 (1954).

C15 6 9 2.48

Level C^{14} (d,p)2.4°C E_d = 0.6 to 3.0 g.s. Q = 0.15 15 scin Q = 0.12 5°

Excitation curve gives J(g.s.) = 5/2, not 1/2

J.A.Rickard, E.L.Hudspeth, W.W.Clendenin, Phys. Rev. 96, 1272 (1954); Phys. Rev. 94, 806A (1954); *K.R.Spearman, quoted in first reference.

N14 7 7 stable

Hyperfine splitting of 48 g.s. of atomic N observed but no evidence of q nic

M.A. Heald, R.Beringer, Phys. Rev. 96, 645 (1954).

Levels $N^{\{14\}}(p,p^*)$ $E_p = 9.5$ ppl 100^+ 9.8. $\sigma(\theta)$ has a max at $\sim 100^\circ$ $\leq 1^+$ (2.31) σ symmetric about 90° (4.91) (5.10)

†Relative numbers of p's at 90°

R.G.Freemantie, D.J.Prowse, J.Rotbiat, Phys. Rev. 96, 1268 (1954).

Levels

 $N^{(1+)}(\alpha,\alpha^*)$ E_a = 22 87 7.01 6 12.5°, 79°, 90° 7.94 7 8.45 7 composite?

10.05 7 composite?

Levels at 7.4, 7.7, 8.06, 9.49 not observed

D.W.Miller, U.C.Gupte, V.K.Resmussen, N.B.Sampson, Phys. Rev. 98 (1955). BAPS 30, #1 (New York), RAB.

C13 (p,7)

8.08 level E_p = 0.684

17† 1.66 1† 5.7 ? scin pr
15† 2.35 100† 8.05
13† 4.05

 $(4.05 \ \gamma) (1.66 \ \gamma) (2.35 \ \gamma)$ $4.01 \ \text{crossover} \ 5 \pm 5\% \ \text{of} \ 2.35 \ \gamma$

B.Hird, C.Whitehead, J.Butler, C.M.Collie, Phys. Rev. 96, 702 (1954).

stable

ala Level $C^{13}(p,\gamma)$ scin 7 7 γ 10.43 Γ = 0.03 J = 2- $p,\gamma(\theta)$ stable (Channel spin 0)/(channel spin 1) = 1.5

> N.B. Willard, J.D. Kington, J.K. Bair, Phys. Rev. 98 (1955). BAPS 30, 61 (New York), RA7.

 $N^{(14)}(y,a)$ $K_y \le 31$ ppl σ shows structure for $E_y = 14.5$ to $30 (\le 0.2mb)$ P.Stoll, Nolv. Phys. Acta 27, 395 (1954).

N¹⁵ Levels N¹¹⁴⁾ (d,p) $E_d = 11.9$ scin 7 8 g.s. $I_n = 1$ d,p(θ) stable (~5.3) forward max observed

F.S. Eby, Phys. Rev. 96, 1355 (1954).

Levels N⁽¹⁴⁾ (d, py) E_d = 4 sl pr γ 5.26 4° 8.33 4 6.33 5 9.13 σ 7.31 4 10.04 4

*Hay be from both 015 and N15

R.D.Bent, T.W.Bonner, J.H.McCrary, R.F.Sippel, Phys. Rev. 98, (1955). BAPS 30, \$1(New York), X10.

 γ $N^{\{14\}}(d,p)$ $E_d = 1.06$ scin 5† 0.84 100† 1.88 280† 5.3

L.C. Thompson, Phys. Rev. 96, 369 (1954).

N(14) (d, p) Levels E, = 5 to 8 ΔQ *377* 90° 5.280 10 6.330 10 7.165 10 0.149 4 7.314 20 0.263 5 7.575 10 8.316 10 0.258 4 8.571 10 9.062 10 0.103 4 9.165 10 9.834 10 0.239 6 10.069 10 10.458 10 0.085 3 10.544 10 0.160 4 10.705 10 0.106 3 10.811 10

Level values based on g. s. Q= 8.615

A.Sperduto, W.W.Buechner, C.K.Bockelman, C.P.Browne, Phys. Rev. 96, 1316 (1954).

C14 (p,n) E, = 0.25 to 1.8 Levels C14 (P.Y) BF3,scin kev ev Γ Ip_ Inlyal 11.30" 12 1/2-10.4 0.25 1.6 $(1/2^{+})$ 11.43** 41 2.3 33 8 11.61** 475 1/2+ 5 28 470 *p,n(θ) isotropic, p $\gamma_{o}(\theta)$ has cos θ term **p, $n(\theta)$ and $p, \gamma_{\rho}(\theta)$ isotropic

G.A.Bartholomew, F.Brown, M.E.Gove, A.E.Litherland, E.B.Paul, Phys. Rev. 96, 1154 (1954).

N(14) (n.n) Levels E. = 2.6 to 4.2 J $n, n(\theta)$ 7/2+ 13.2 13.6 5/2+ 13.8 3/2+ 14.1 5/2+? 14.3 5/2+ 14.4 7/2+? 14.7 5/2+

D.Spelser, Helv. Phys. Acta 27, 427, 159A; P.Huber, H.R.Striebel, Helv. Phys. Acta 27, 157A (1954).

J.A.Rickard, E.L.Hudspeth, W.W.Clendenin, Phys. Rev. 96, 1272 (1954).

S.Bashkin, R.R.Carlson, E.B. Helson, Phys. Rev. 98 (1955).
BAPS 30, \$1(New York), RA9.

Levels $N^{\{14\}}(d,n\gamma)$ $E_d = 4$ sl pr γ 5.26 μ^* 6.12 σ 6.81 μ

*May be from both 015 and N15

R.D.Bent, T.W.Bonner, J.McCrary, R.F.Sippel, Phys. Rev. 98, (1955).
BAPS 30, \$1(New York), X10.

 τ 2.06^m 2 0⁽¹⁶⁾ (\leq 25-HeV γ , n)

R.M.Kline, D.J.Zaffarano, Phys. Rev. 96, 1620

Levels

F19 (p,a) E_p = 0.873 to 1.431 6.14 J = 3- p,a(θ) 6.91 Γ^{\sim} 0.006 J = 2+ sr 7.12 Γ^{\sim} 0.006 J = 1-

No evidence for doublets at 6.91, 7.12 No level between 7.12 and 8.7 No evidence for 2 level from $p_{\sigma}a(\theta)$

R.W.Peterson, W.A.Fowler, C.C.Lauritson, Phys. Rev. 96, 1250 (1954); 93, 1085A (1953).

C(12) (a,a) Levels E = 4.0 to 7.6 J Г 10.36 0.036 $a,a(\theta)$ 11.10 ? 0.010 11.25 0+ 3.3 11.51 2+ 0.11 11.62 3-1.6 12.43 1-0.23

J.W.Bittner, R.D.Woffat, Phys. Rev. 96, 374 (1954); 94, 769A (1954).

Levels $0^{(16)} (\gamma_{\sigma^2})$ $\mathbb{E}_{\gamma} \geq 31$ Ppl 14.2 ? 22.6 ? 23.2 ? 17.3 24.6 ?

J=2, T=0 for above levels from $\gamma_0 a(\theta)$ $\sigma(E_{\nu}=17.8)=0.16$ mb

P.Stoll, Noiv. Phys. Acta 27, 395 (1954).

017 8 9

Levels 0⁽¹⁶⁾ (d,p) E_d = 5.0 to 8.5 g.s. Q = 1.915 10 sn 90°
0.875 12
3.055 12
3.840 12

A.Sperduto, W.W.Buechner, C.K.Bockelman, C.P.Browne, Phys. Rev. 96, 1316 (1954).

 σ = 10 ± 1 mb. n yield 1/30 that from Be⁹(α , n)

M.E. Nahmias, P. Savel, Compt. rend. 239, 761 (1954).

018 8 10

Level

 $0^{17} (d, p)$ $E_d = 0.855$ sd q.s. Q = 5.821 10 $61^{\circ}, 135^{\circ}$ 1.986 13

K.Ahnlund, Phys. Rev. 96, 999 (1954).

0¹⁹
8 11
29.48

6 (2.9) log ft = 4.3 (4.5) log ft = 5.8

 γ intensities show log ft ≥ 5.3 , ≥ 7.3 , ≥ 6.6 for transitions to 1.37, 0.112, g.s. F¹⁹ levels

 γ_1 4† 0.112 3 $\tau << 10^{-6}$

 γ_2 100† 0.200 2 $\tau = 1.0 \pm 0.2 \times 10^{-7}$ 8 γ_2 67† 1.366 8

 $\gamma_2\gamma_3(\theta)$ supports decay scheme. See F^{19} . NO 0.22 γ (<0.04†). NO 1.59 γ (<0.03†).

G.A.Jones, W.R.Phillips, C.M.P.Johnson, D.M.Wilkinson, Phys. Rev. 96, 547 (1954).

0¹⁹
8 11
29.4°

Levels 0¹⁸ (d,p) E_d = 0.855 sd 9.8.7 Q = 1.730 8 61°,135° 0.094 11 1.468 10

C.Milelkowsky, K.Ahnlund, Phys. Rev. 96, 996 (1954).

F¹⁷ Levels

N⁽¹⁺⁾ (a,n) pc; n thresh g.s. Q=-4.73 10 0.53

W-T-Doyle, A.B.Robbins, Phys. Rev. 98 (1955). BAPS 30, \$1(New York), RAll; verbai report.

FI8 9 9 1.87^h Levels $N^{(1+)}(\alpha, p)$ $E_{\underline{a}} = 5.50$ oc $\alpha, p(\theta)$ 6.0 $1-0.64 \cos\theta -1.2 \cos^2\theta$ 7.2 $1-1.1 \cos^2\theta$ 7.8 $1-1.1 \cos^2\theta$

6.S.Mani, R.fandhi, Proc. Indian Acad. Sci. 40A, 61 (1974).

#19 9 10

Levels $F^{1.9}(p,p^*)$ $E_p = 1.431$ 0.1088 8 $p,p^*(\theta)$ 0.1960 24

See Ne20 for o's

R.W.Peterson, W.A.Fowler, C.C.Lauritsen, Phys. Rev. 96, 1250; 94, 1075, 951A (1954):

Levels

 $\begin{array}{ll}
\mathbb{F}^{1,9}(\alpha,\alpha^{\circ}\gamma) & \mathbb{E}_{\alpha} = 0.6 \text{ to } 2.6 \\
0.109 & J = 1/2^{-} \\
0.196 & J = 5/2^{+}
\end{array}$ $\begin{array}{ll}
\sigma(\mathbb{E}); & \alpha,\gamma(\theta)
\end{array}$

Spin assignments consistent with $\sigma(\mathbf{E})$; $a,\gamma(\theta)$; and τ_{γ}

R.Sherr, C.W.LI, R.F.Christy, Phys. Rev. 96, 1258 (1954); 94, 1076 (1954).

Levels

 $F^{19}(\alpha,\alpha^*\gamma)$ $E_{\alpha}=0.8$ to 2.0 0.113 E1,E2? from γ yield 0.198 E2 from α yield/p yield

G.M.Temmer, N.P.Heydenburg, Phys. Rev. 96,426 (1954); BAPS 30, #1 (New York), X5.

F19

G.A.Jones, W.R.Philips, C.M.P.Johnson, D.H.Wilkinson, Phys. Rev. 96, 547 (1954).

Large variations for Ne²¹/Ne²⁰ and Ne²²/Ne²⁰ in radioactive ores attributed to 0^{18} (α , n) and F^{19} (α , n) $^{+}$)

6.W.Wetherill, Phys. Rev. 96, 679 (1954).

%el9 10 9 18.5* β^+ ~100% (2.2) log ft = 3.3 Absence of low energy γ 's shows log ft \geq 6.0, \geq 5.5 for transitions to 0.112, 0.200 F¹⁹ levels

G.A.Jones, W.R.Phillips, C.H.P.Johnson, D.H.Wilkinson, Phys. Rev. 96, 547 (1954).

He²⁰
10 10
stable

F19 (D,a) Levels 877 F19 (D. D'7) scin Level $J^* \sigma(0.109\gamma)\sigma(0.196\gamma)$ Res. 0.875 13.70 2 < 1 ~00 1+ 13.76 130 1.1 0-955 3 14.10 1-290 14.16 2 1.856 42** 24 1 -561 18.18 2" ~700 1 -481 18.28 187** *From $p_{\theta}a(\theta)$ and $p_{\theta}p^{\theta}(\theta)$ Ė **From p,p* rather than p,p*y

R.W.Peterson, W.A.Fowler, C.C.Lauritson, Phys. Rev. 96, 1250, 851A (1954).

From preliminary analysis of $p,p(\theta)$ at 4 angles

G.Dearnaley, Phil. Mag. 45, 1213 (1954).

Levels ' He⁽²⁰⁾ (p,p) E_p = 9.5 ppl g.s. σ(θ) has a max, at 90° 1.58 1 σ symmetric about 90° 4.20 1 4.95 2 5.62 2

R.4.Freemantie, D.J.Prowse, A.Hossain, J.Retbiat, Phys. Rev. 96, 1270 (1954).

Ha22 ϵ 11.0±0.95 $\gamma^{\pm}/1.28\,\gamma$ scin 2.67 w.E.Kreger, Phys. Rev. 96, 1554, 2544 (1954).

R.D.Leamer, G.W.Winman, Phys. Rev. 96, 1607 (1954); 90, 370A (1953).

Na²³ Level Na²³ (α,α,γ) E_{α} = 1.5 to 3.7 11 12 γ 0.446 \in B_a(2) = 0.041 scin E2 from α yield/p yield

G.M.Temmer, N.P.Heydenburg, Phys. Rev. 96, 426 (1954); 95, 629A (1954); 98 (1955). BAPS 30, #1 (New York), X5.

V.E.Scherrer, B.A.Allison, W.R.Faust, Phys. Rev. 96, 386 (1954).

 ${\rm Mg}^{22}$? au 0.13⁸ Mg (23-MeV D) 12 See also Al²³

H. Tyren, P. A. Tove, Phys. Rev. 96, 773(1954).

G.W.Greenlees, Proc. Phys. Soc. 67A, 1107 (1954).

Levels $Mg^{\{24\}}(p,p^{\circ})$ $E_{p} = 9.9$ g.s. $p,p(\theta)^{\circ}$ (i.37) $p,p^{\circ}(\theta)^{\circ \circ}$ ~ 4.2 90° $5.1 \ 1$ $5.9 \ 1$ $6.3 \ 1$ pc, scin

*Diffraction effects observed

**Analyzed for direct collision and compound nucleus formation

6.E.Fischer, Phys. Rev. 96, 704 (1954).

 $Na^{23}(p,\gamma)$ Level 11.99 level E_p = 0.31 1.38 2 11† scin 4.11 5 double ? scin pr Ot 1.31 6.7 2 7.7 1 8 10.6 2 7 No 2.76 Y

B.Hird, C.Whitehead, J.Butler, C.H.Collie, Phys. Rev. 96, 702 (1954).

A125
13 12
7.6*

 τ 7.28 ${\rm Mg}^{24}$ (825-kev p. γ)

D.W.Green, J.C.Harris, J.N.Cooper, Phys. Rev. 96, 817A (1954).

Ng ²⁴	Levels		Na ²³	(D,γ)		scin	A126	$ au_1$	6.4 ⁸ 2	18 ²⁵ (563, 720–14	2V D ₂ γ)
12 12 stable				(p,a)		8	13 13				
872016		11.98	level	E, = 0.2	37		6.7°	96, 817A (195		N.Cooper, Phys	. Rev.
		Y_a =	0.2	Y < 0.00	5						
		12.00		E. = 0.3			A126	T .	~10 ^{6y}	Hig (15-Hev d	chem
	γ	18†	1.38	8.6†	6.75		13 13	$\frac{\tau_2}{\beta^+ \gamma}$	~1	ue (10-liev d	
	1	4.4†	2.88	15†	7.75		~1069				8
		2.7†	4.0	10	10.5			γ	0.5 (annil	nilation?)	scin
		13	4.24						1.5		
		Ya <	< 0.2	$Y_{\gamma} = 0.37$						re, A.L.Long,	
		12.03	level	E, = 0.3	38			for a Konman,	rnys. Kev. 98	5, 1711 (1954).	•
		Y,	- 0.17	Y. < 0.01				Levels	Na ²³ (a, n)		
								Devers		2.9	pc
		_12.20	level	E. = 0.5	15				0.3*		thresh
	γ	12†	1.39	1.2†	7.1				1.0	2.5	
	′	0.01	2.86	2.4†	8.1				1.4	3.0	
		1.5	4.23	10	10.8			*y* first app	ears at Q=-	3.2	scin
		Υ <	< 0.04	Y. = 0.16				W.T.Doyle, A.	B.Robbins, P	hys. Rev. 98 (1955).
		_	level		07			BAPS 30. #1 ((New York), R	All; verbal re	port.
				E _p = 0.5							
	γ	20† 8†	1.38	12.7†	4.24 7.01		A127	γ	Al27 (n, ??	y) E _n = 5.2	scin
		10 †	2.86	19†	8.09		13 14		0.05	1.20	
		31	3.93	10	10.8		stable		0.89	1.70	
	*Assig	med to	Ne ²⁰	Y _a = 84	Y., = 0.3	5			1.05	2.2	
				a	7			V.E.Scherrer,	B.A.Allison	, W.R.Faust, F	hys.
		12.35	level	E, = 0.6	79			Rev. 96, 386	(1954).		
	γ	32t	1.38	7†	5.5			Levels	A127 (D. D.	E, =4.9	
			1.6*	19†	7.09			62†	g. s. 1	.21 2.22	ppl
		14†	2.84	39†	8.15			0.56	0.83 10 0.	.84† 3.0I	
		10†	8.91	10†	10.9			1.4	1.01	.0	
		28†	4.23					†dσ/dω in mb/ Possible leve			
		med to		Y _a < 0.13 yield per	γ = 1.0	9 tono					
	(~ 1ó.	6γ) (1.	38 Y)	(~8.0		·~2.8 γ)		K.B.Wather, A	lustrallan J.	Phys. 7, 658	(1954).
	(1.38	γ) (\sim 7.	, U 'y, 'C 8	3.0 77				Levels	A127 (D. D.) E _p = 5.64	to 8.45
				rglen, P.	J.Grant,	Proc.			0.842 4.	054 5.425	877 90°
	Phys.	Soc. 67	14, 913	(1954).						403 5.491	
										505 5.544 576 5.659	
	Levels		Na.23	(D,a,)	E. = 1.0	0 to 1.9				807 5.821	
				عا ا		pq				150 5.951 ?	
			12.678	8-		$p, a(\theta)$				242	
			12.751						3.954 5.	440	
			12.793							aks due to C12	*
			12.821						el below 5.3	(yield < 5% of	0.842
			12.926					level) All values ± 0	OOR Pacali	ition A ME	
			13.43	double ?				All values 1	,,,,,,,	101011 0.013	
	P.H.St	elson,	Phys. R	ov. 96, 1	584 (1954			C.P.Browne, S Rev. 96, 725	.F.Zimmerman (1954).	, W.W.Suechner	, Phys.
								Tayolo	No.23 (1	1 020/ 5 -	
A1232	ap 1		0.138		Mr. / 00	5-Mev p)		Levels	Na ⁻³ (a, p +)	1.83 γ) E _α = 1.6 12.69	scin
13 10		so Mg ²²			138 (22	, rev p)			11.93	12.72	DOIM
								-	12.08	12.79	
	H.Tyrå	n, P.A.	Tove, P	hys. Rev.	96, 773	119541.			12.24	12.85	
									12.28	12.90	
									12 25	19.00	

G.M.Temmer, N.P.Heydenburg, Phys. Rev. 96, 426 (1954).

13.00

13.08

13.15

12.35

12.49

12.57

31267	T	1.78	A127 (23-Mev p)	C1 ³²	$ au_{1}$	0.28 ^S	8 (23-Mev p)
14 12				17 15 0.31 ⁸	u Tanin e A	Tone Phys. Ds	v. 96,773(1954).
	H-Tyron, P.A.	Tove, Phys. Rev.	96, 773(1954).	0.51	nelyrun, rea	- love, rnys. Ke	** 90,113(1994)*
₂ 28		S	74 (00)(m n)	C1 ³⁴	7	1.598.2 01	(35) (≤22-HeV Y•n)
15 13	au	0.27 ^S	S1 (20-Mev p)	17 17	$ au_2$	1.55	(286 187 792)
0.28	H.Tyrån, P.A.	Tove, Phys. Rev.	96, 773 (1954).	1.53*	R.M.Kline, D (1954).	.J.Zaffarano, P	hys. Rev. 96, 1620
			•		(17547.		
91		27		C1 ³⁵	Levels	8 ⁽³²⁾ (a, p)	E _a = 8.1
p31 15 16	γ	P ³¹ (n, γγ)	$E_n = 3.2$ scin	17 18	201020	g.s. Q=-	
stable	st	1.0	1.75	stable		0.7 ?	
	80	1.60				1.1	
						1.7 ?	
	V.E.Scherrer, Rev. 96, 386	B.A.Allison, W.F (1954).	.Faust, Phys.		G.F.Pleper,	G.S.Stanford, P	. von Herrmann,
	30, 320				Phys. Rev. 91 BAPS 30. #1	8 (1955). (New York), RA1	3.
p32	0=		p31 4		J., J., J.		
15 17	β-	1.712 8	$P^{3\perp}(n,\gamma)$ 8	A	436 /438 vart	ation of > 300%	in radioactive
14.3 ^d		r-K I	inear (E _{\$} > 0.06)	1:8		buted to Cl35 (a	
	N.M.Anton'eva	, A.A.Bashilov, vest. Akad. Nauk	S.S.Dzhelepov,				
	18, 93 (1954)		3010 F120 333K		G.W.Wether!!	1, Phys. Rev. 9	16, 679 (1954).
g81	Lavels	P ³¹ (p, n)	E _o = 17.5	A37	E _{d l s}	0.812 8	recoil
16 15		g. s. Q= -6.		340	O. Kofoed-Han	son, Phys. Rev.	96, 1045 (1954).
2.48		1.13 20	4.60 <i>15</i>				
		2.28 15	6.20 20	A40	Levels	À(40) (D,D1)	E _p = 9.51 Dpl
	g.s. nis nesk	3.29 <i>15</i> pp ted in forward di	1 50°, 90°, 1 50°	18 22 stable		_	has a max. at 120°
				8 (8 0 1 9		1.48 2 \(\sigma\) as	ymmetric about 90°
	A-Rubin, F-Aj Rev. 98 (1955) BAPS 30, 61(N	zenberg, J.B.Rey). ew York), RA14.	nołds, Phys.			ie, D.J.Prowse, hys. Rev. 96, 1	
₂ 32	Tamal	8 ⁽³²⁾ (e,e ¹)	F = 150 to 199	K38	$ au_1$	0.935 ⁸ 25 K	(³⁹⁾ (≤22 -M ev γ,n)
16 16	Level	6.8	E = 150 to 188	19 19			
Stable				0.948	R.M.Kline, D. (1954).	.J.Zattarano, P	hys. Rev. 96, 1620
	BAPS 30, 61 (R.HOTSTROTOF, Ph New York), RA6;	ys. Rev. 98(1955) verbai report.	•			
334	Levels	P ³¹ (2.p)	E_ = 8.1	19 21	τ_{β}	9.6×10 ⁸³ đ	42 β'8/80C/E K
16 18		g.s. Q=0.5	scin	1.3×109y			.Jarovoy, M. Wack,
stable		0.7 ?*	3.0 7		Ann. geophys	· 10, 19 (1954)	•
	#Annioment a	2.1 o 834 uncertain	- 3.6 ?				
	- wooldiment f	0 by uncertain		K ⁴²	γ 10†*	(0.309)	
	G.F.Pleper, G	S.Stanford, P. (1955).	von Herrmann,	19 23	100	(1.51)	
	BAPS 30, #1(N	ow York) RAL3.		12.5 ^h	$\gamma\gamma(\theta)$	J=4, 2, 0	
					*Disagrees w	ith results of	Lazar and Bell
335	β-	0.165 5	sl			1	
16 19 87 ^d	Includes corr	ection of -C.002	for 3%		V.Cappeller, 1052 (1954).		, Z. Naturf. 9a,
		Yunna Canada					
	(1954).	.Yuasa, Compt. r	eno. 239, 1627				01
				Ca ³⁹	au	0.90° 1 Ca(4	⁽⁰⁾ (≤19.5-Mev γ,n)
	B	(0.167)	, рс	0.9		.J.Zaffarano, P	hys. Rev. 96, 1620
	After instrum linear (E _B	ental correction > 0.005)	s F-K plot		(1954).		
	A-Molik, S.C.	Curran, Phys. Re	v. 96, 395(1954)			4000	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Ca ⁴⁰	Level	Ca ⁽⁴⁰⁾ (p.p.	
	K vacancy / β	2.3×10 ⁻³ 7	рс			3.46 10 J	= 0 sl pr
			Shun Sau of			R.D.Bent, J.N.	deCrary, Phys. Rev.
	W.Rubinson, J 1610 (1954).	J. Howland, Jr.,	rnys. Rev. 96;		98 (1955). BAPS 30, 61	(New York), X9	

```
Sc40
                                               Ca (40) (23-Mev p,n)
                             ~0.358
21
     19
 0.228
            H.Tyrén, P.A.Tove, Phys. Rev. 96, 773(1954).
7 i
                               Ti (n,?))
                                                   E. = 3.2
                                                               scin
                       st
                              0.92
                              1.30
                              2.2
           V.E.Scherrer, B.A.Alilson, W.R.Faust, Phys. Rev. 96, 386 (1954).
  T143
                               0.58<sup>S</sup>
                                                     T1 (80-Mev p)
22 21
 0.588
            H. Tyren, P. A. Tove, Phys. Rev. 96,773 (1954).
7 i 44
                                       Sc45 (30-Mev p.2n)
                           ≥ 23<sup>y</sup>
                                                               chem
≥ 23 y
                                                                scin
           D 4.0 Sc chem
                                                     Not p 2.4dSc
           R.A.Sharp, R.M.Diamond, Phys. Rav. 93, 358 (1954); * 96, 1713 (1954).
   T147
                                T147 (a, a 7)
                                           (2) = 3.5
(2) = 0.047
22 25
                              0.160
                                                               scin
stable
            Previously reported 0.433 \gamma not in Ti*
           G.M.Temmer, N.P.Heydenburg, Phys. Rev. 96, 426 (1954); 93, 351 (1954); *priv. comm.
   TISI
                                                   Ti50 (pile n, y)
22 29
           B-
                                                       a β(0.92 γ)
                               1.8
 5.8
                              2.3
                                                       a $ (0.32 y)
                              (0.32)
                     100#
                                                                acin
                       11
                               0.610 15
                               0.920 15
                       5†
            (0.52 y) (0.61 y)
                                      MO (0.32 7) (0.92 7)
           No β to g. s. (< 15%)
                                                      \beta(0.32 \gamma)/\beta
           W.C.Jordan, S.B.Burson, J.M.LeBlanc, Phys. Rev. 96, 1582 (1954).
  V46
                              0.48
                                                     T1 (23-Mev p)
23 23
           See also Cr47
                                                      V (57-Mev p)
 0.48
           H.Tyren, P. A.Tove, Phys. Rev. 96, 773(1954).
  V51
                               ψ(51) (n, ?γ)
                                                   E. = 3.2
                                                               scin
23 28
                       st
                              0.33
stable
                              0.97
                               1.67
           V.E.Scherrer, B.A.Allison, W.R.Faust, Phys.
Rev. 96, 386 (1954).
Cr
24
                               Cr (n, ? y)
                                                   E_{n} = 3.2
                                                               scin
                   0.031
                   0.10+
                   0.73†
                              1.43
           to in barns
           V.E.Scherrer, B.A.Allison, W.R.Faust, Phys.
Rev. 96, 386 (1954).
```

Cr462 - 1.18 V (57-HeV p) 24 22 Cr (165-Mev p) H-Tyren, P.A.Tove, Phys. Rev. 96, 773(1954). Cr472 0.48 V (57-Mev p) 24 23 See also V46 and Mn49 Cr (100-Mev p) H.Tyrén, P. A.Tove, Phys. Rev. 96, 773(1954). Cr48 23^h 1 Ni (380-Mev p) chem 24 D 16.2dV 23h 0.116 4 a~0.02 Mi l 81 ce 100+ 0.305 10 a~ 0.006 Eg S No β^+ (<2%), no other γ 's (<0.2%) $(0.018\gamma)(0.306\gamma)$ scin 23h Cr48 1+ 0.116 24 0.305 0.305 0.116 16.2d R. van Lieshout, D.H.Greenberg, C.S.Wu, Phys. Rev. 98 (1955). BAFS 30, \$1(New York), MAI Mn49? 0.48 Cr (100-Mev p) 24 See also Cr47 H.Tyrén, P. A.Tove, Phys. Rev. 96, 773(1954). Mn50 0.26^S Cr (45-Mev p) 25 25 Mn55 (95-Mev p) 0/28 0.38 H. Tyren, P. A. Tove, Phys. Rev. 96, 773 (1954). Mn 52 β /ε = 0.47± 0.05 $\gamma^{\pm}\gamma^{\pm}/\gamma$ CH 25 27 5.8ª R.Sohr, Z.Phys. 137, 523 (1954). Mn⁵⁴ 25 29 Fe (56) (d,a) chem (0.835)Anisotropy up to 90% in $\gamma(\theta,T)$ shows 0.835 γ 320d is not dipole and that angular momentum of $e^- + \nu$ is the minimum for given J, and J, M.A.Graca, C.E.Johnson, N.Kurti, H.R.Lammar, F.N.H.Robinson, Phil. Mag. 45, 1192 (1954). (0.835) Fe^{56}(d.a) chem Polarization as $f(\theta,T)$ shows that if

quadrupole, 0.835 γ is E2

G.R.Bishop, J.M.Daniels, H.Durand, C.E.Johnson, J.Perez, Phil. Mag. 45,1197 (1954).

5.23

Mn55 Mic +0.6 Mno, F 25 30 q coupling compared with that for ReO Cl stable A.Javan, A.Engelbrecht, Phys. Rev. 96, 649

m55 (a, a 17) Level E = 3.5 $\in B_{\bullet}(2) = 0.070$ scin E2 from a yield/p yield

G.M.Temmer, M.P.Heydenburg, Phys. Rev. 96, 426 (1954); 93, 351 (1954).

γ mn55 (n, ? y) $E_0 = 3.2$ scin 1.50 0.58 0 67 St. 1.86 st. 0.83 st 2.2 1.16

V.E.Scherrer, B.A.Alilison, W.R.Faust, Phys. Rev. 96, 386 (1954).

26 Fe (n, n'γ) E, = 3.2 1.181 0.84 scin 1.17 0.391 0.331 1.67 to in barns

V-E-Scherrer, 8.A.Allison, W-R-Faust, Phys. Rev. 96, 386 (1954).

718 Fe (n, n ')') $E_n = 4.4$ scin 0.85 2.1 1.20 2.5 1.73 3.0

R.M.Sinciair, Phys. Rev. 98 (1955). BAPS 30, \$1, (New York), A2; verbal report.

Fe⁵⁴ 26 28 Fe 5 (n, n)) Laval En = 4.4 1.40 2* scin stable No other y with E < 3.0

R.W.Sinciair, Phys. Rev. 98(1999). BAPS 30, #1 (New York), A2; "verbal report.

Fe 56 26 30 $Fe^{(56)}(D,D^*)$ $E_0 = 17$ Lavel ~400 (0.84)stable o in mb

Angular distribution and σ suggest applicability of the direct interaction theory [see Phys. Rev. 92,350(1953)]

G.Schrank, P.C.Gugelot, 1.E.Dayton, Phys. Rev. 96, 1156 (1954).

Fe57 Fe57 (a, a 17) E. = 3.5 26 31 Y (0.014)scin stable 0.123*

(0.137) $\epsilon B_{.}(2) = 0.043$ *Excitation function suggests y emitted from 0.137 level

G.M.Temmer, N.P.Heydenburg, Phys. Rev. 96, 426 (1954); 93, 351 (1954); 95, 629A (1954).

Co54 0.20^S Fe (23-Mev p) 27 27 0.2* See also Cu57 N1 (50-Mev p)

H. Tyran, P. A. Tove, Phys. Rev. 96, 773 (1954).

Co59 Co59 (n, ? y) E, = 3.2 scin 27 32 1.7 0.60 0.201 0.15 stable 0.821 1.15 0.19† 2.5 0.531 1.49 to in barns

V.E.Scherrer, B.A.Allison, W.R.Faust, Phys. Rev. 96, 386 (1954).

Co60 81 0.309 3 27 33 F-K plot linear above 0.066

8.Bolla, S.Torrani, L.Zappa, Nuovo Cim. 12, 875 (1954).

No delayed $\beta \gamma (\tau_{\gamma} < 5 \times 10^{-10})$

Y.Z.Wintersteiger, Bull. Inst. Huslear Sel., Boris Kidrich 4, 79 (1954).

 $\gamma\gamma(\theta)$ from paramagnetic crystal source same at 288°K and 20°K

N.R.Lemmer, M.A.Grace, Proc. Phys. Soc. 67A, 1051 (1954).

Co59 (d. D) E . 5 Levels 90° g.s. Q=5.283 8 0.060 3 2.610 6 0.286 3 2.624 6 0.445 3 2.786 9 0.513 3 2.870 13 0.557 5 2.924 8 3.038 8 0.622 4 0.792 3 3.120 8 1.012 3 3.138 9 3.208 8 1.237 5 1.394 4 3.288 9 1.533 6 3.304 9 4. 221 8 1.663 6 4.302 10 1.825 € 2.005 6 4.421 10 4.494 13 2.065 € 2.154 6 4.583 13 2.295 6 4.571 13 2.370 13

G.M.Foglesong, D.G.Foxwell, Phys. Rev. 96, 1001 (1954)

			•
M1 28	γ Ni (n, $\gamma\gamma$) $E_n = 3.2$ So $0.05 \uparrow$ 0.59 0.54 \uparrow 1.49 0.84 \uparrow 1.33 0.01 \uparrow 2.7 $\uparrow \sigma$ in barns	2n69 30 39 14h	γ 0.435 α = 0.063 H4 sl A.B.Smith, Dissertation Abstr. 13,849(1953).
	V-E-Scherrer, B-A-Allison, W-R-Faust, Phys. Rev. 96, 386 (1954).	Zn69 30 39	β 100% 0.9 4 d 14 ^h Zn; sl A.8.Smith, Dissertation Abstr. 13,849(1953).
N154	Not observed from Ni (9e-Hev p) chem; T<5		
28 26 < 5"	R.W.Fink, Thesis, Univ. of Rochester (1953)		Levels $2n^{68}$ (d,p) $E_d = 11.9$ scin 100† g.s. $Q = 4.16$ 15 $I_1 = 1$ d,p(θ) 40† (0.435) $I_1^n = 4$ 125† 0.77 $I_1^n = 22$
28 27	Not observed from Ni(96-HeV p) chem; $\tau < 5^{\circ}$		1.6
< 5 ^m	R.W.Fink, Thesis, Univ. of Rochester (1953)	•	†Relative numbers at forward peaks
Cu 29	γ Cu(n,γγ) E _n = 3.2 sc 0.21† 0.66 0.81† 1.37	in	F.S.Eby, Phys. Rev. 96, 1355 (1954); 93, 925A (1954).
	0.12† 0.96 0.16† 1.9 †\sigma in barns	Ga69 31 38 stable	μ_3 0.11 2 M Interaction constant = 84 ± 6 cps
	V.E.Scherrer, B.A.Allison, W.R.Faust, Phys. Rev. 96, 386 (1954).		R.T.Daiy, Jr., J.H.Hofloway, Phys. Rev. 96, 539 (1954).
Cu ⁵⁷ ?	7 0.18 N1 (50-MeV See also Co^{54}	D) Ga71 31 40	μ ₃ 0.15 2 M Interaction constant = 115± 7 cps
	H.Tyrån, P.A.Tove, Phys. Rev. 96, 773(1954)		R.T.Daly, dr., J.M.Holloway, Phys. Rev. 96, 539 (1954).
Cu ⁵⁸	τ 3 ^S N1 (23-Hev	D)	
3.0*	H.Tyrén, P.A.Tove, Phys. Rev. 96, 773 (1994	32 39 11.4 ^d	$e_A(L)/e_A(K) = 1.26$ pc $e_L/e_K = 0.30$, 0.22 or 0.11 (theory) for fluorescence yield 0.45°, 0.49° or 0.54 resp.
Cu63 29 34 stable	Cu ⁽⁶³⁾ (y,n) E = 17.55 to 17. Structure in giant resonance observed from yield of 10°Cu	67	M.Langevin, Compt. rend. 239, 1625 (1954); *Burhop, The Auger Effect, Camb. Univ. Press p. 48 (1952); **Broyles, Thomas, Haynes, Phys. Rev. 89, 723 (1953).
	D.P.Bunbury, Proc. Phys. Soc. 67A, 1106(19)	343-	
		6e ⁷³	Level $\operatorname{Ge}^{73}(a,a,\gamma)$ $E_a = 3.5$
Zn 30	γ $2n(n, \gamma\gamma)$ $E_n = 3.2$ so $1.3\uparrow$ 1.02 $0.03\uparrow$ 1.3	in 32 41 stable	γ 0.088 \in B ₆ (2) = 0.042 scin No 0.014 γ or 0.064 γ observed
	0.02t 1.6 to in barns		G.M.Temmer, N.P.Heydenburg, Phys. Rev. 96, 426 (1954); 93, 351 (1954); 95, 629A (1954).
	V.E.Scherrer, B.A.Allison, W.R.Faust, Phys. Rev. 96, 386 (1954).	Ge⁷⁵ 32 43	τ 49 ³ 3 Ge ⁷⁴ (pile n,γ) γ 0.1385 10 K/LM>3 S7 ce, scin
Zn ⁶⁴ 30 34 a table	Zn ⁽⁶⁴⁾ (//on) E _y = 17.55 to 17. Possible structure in giant resonance from yield of 38 ^m Zn	49 ⁸ . 67	S.B.Burson, W.C.Jordan, J.M.LeBlanc, Phys. Rev. 96, 1595 (1994); 95, 613A (1994).
	D.P.Bunbury, Proc. Phys. Soc. 674,1106(1954	1.	
	Daragenbury, 11060 111980 3000 07751100(1994	Ge ⁷⁷	τ ₁ 52 ⁸ 2
Zn67	-67:	32 45 52 ⁸	-β ⁻ 10° ~2.7 a βγ
30 37		<i>'</i> -	90° (2.9) scin
stable	$0.182 \in \mathbb{B}_{0}(2) = 0.043$		7 100† 0.159 3 100† 0.215 3
	*Excitation function shows γ *s emitted fro 0.182 level	DI CONTRACTOR DE	(~2.7 β) (0.215 γ) No β (0.159 γ) No (0.159 γ) (0.215 γ) •2.7 β /2.9 β = 1/9
	G.N.Tammer, N.P.Heydenburg, Phys. Rev. 96, 426 (1954); 93, 351 (1954).		5.B.Burson, W.C.Jordan, J.M.LeBlanc, Phys. Rev. 96, 1555 (1954); 95, 613A (1954).

/=									
Ge ⁷⁷ 32 45 12 ^h	β-	~1.3 ~1.5 2.1	Ge ⁷⁶ (pile n _θ γ)	a βγ a βγ a βγ	Rb86 37 49 19.5 ^d	Levels	Rb ⁶⁵ (d,p) g.s. ? Q= 6.2	E _d = 15.1	scin
	γ	0.210 1 0.215 3 0.265 1	0.91 2 1.09 2 1.19 2	scin		H.S.wall, Phy	s. Rev. 96, 664	(1954).	
		0.365 7 0.410 8 0.560 10	1.36 3 (1.46)* (1.54)*		Rb87 37 50 6.2×10 ¹⁰ y	τ Corrections f	4.3 × 10 ^{10y} or backscatterin	g and absor	GH ption
		0.625 15 0.710 15 0.79 2	1.75 3 2.00 5 2.30 5			!.Goese-Bahn! 495 (1954).	sch, E.Huster, N	nturwiss. 4	1,
	*Unresolved				Sr	Resonance	Sr(n, y) E _n s	0.025 to 5	00 ev
	γ. V. ~0.21		0.410 0.560	0.625	38		3.58 ev σ _ο Γ	2 = 5.6 to 8	
	0.210	Y	Y						d cyc
	0.265 Y 0.365 0.410 Y	Y Y N N	Y Y Y			E.Neservey, P 605A (1952).	hys. Rev. 96, 10	06 (1954);	86,
	0.560 Y 0.625 0.79	Y Y	Y Y Y	Y	3r87 38 49 2.8 ^h	γ . Authors concl	(0.388) α = 0.2 ude γ is E5		1c 80 hy .
	0.91 Y 1.19 N 1.36	Y Y Y N Y Y	Y N N Y N	Y? N	200		1.V.Estulin, 12 R 18, 79 (1954).	vest. Akad.	Nauk
		observed (Y) and indicat	and not observe	d (N)	\$r89 38 51 53 1	Levels	Sr ⁸⁸ (d,p) g.s. Q=4.2	E _d = 15.1 9 15	scin
	No 2.75 γ (No (~1.3 β) (1.6	a ²⁴ impurity) 09 γ) (~1	28 γ, 0.466 γ - -5 β) (0.56 γ) 	10 %)		N.S.Wall, Phy	1.09 c. Rov. 96, 664	(1954).	
	(1.09 y) y de	elay>1.048			γ 90 39 51	No nuclear γ	(<10 ⁻⁴ %)		scin
			7.W.LeBlanc, Ph 6134 (1954)	y s •	64.2 ^h	98 (1955).	rma, C.E.Mandevi ew York) SP1; pr		Rev.
3e ⁷³		Ge (⁷⁰⁾ (30 -H ev a,n)	chem			-99 (0>		
7.1 ^h	β ⁺ 100†* ≤1†*			sl		Levels	$Y^{89}(d,p)$ $g. *. l_n = 2$	$E_d = 15.1$ Q = 4.41 5	
	γ 29.8**		K/LM = 10.2 H1	sl ce		*Possibly two	1.17* l _n = 0 unresolved leve		, D (θ)
	1.4** No 0.86% 1.	81 7 (< 15)	$\tau < 5 \times 10^{-98}$ $\tau = 6.0 \times 10^{-68} M2$	$\begin{array}{c} \gamma \gamma \\ \gamma^{\pm} \gamma \\ \text{scin} \end{array}$		N.S.Wali, Phy	e. Rev. 96, 664,	670 (1954)	•
	(0.3597)(0.0 *6#8 delay f	or > 99% of	.066 γ, 0.359 γ) γ [±] (0.066γ)		¥0 ¥0	γ 0.038† 0.40†	Zr (n, ?\gamma) 0.69 0.14† 0.89 0.44†	E _n = 3.2 1.5 2.2	scin
	R.W.Hayward, BAPS 30, 61(D.D.Hoppes, New York), M	Phys. Rev. 98 A2; verbal repo	(1955). Ft.		0.12† to in barns	1.14		
Rb81						V.E.Scherrer, Rev- 96, 386	B.A.Allison, W.	R.faust, Ph	y s -
37 44	J μ	3/2 2.00 f		н					
4 • 7 h	i de la companya de l				Zr ⁹⁰ 40 50	$ au_{\mathtt{l}}$	0.83 ^S 3	Zr ⁹⁰ (fast	n,nº)
	d.P.Mobson, .H.B.Slisbee,	J.C.Hubbs, W. Phys. Rev.	.A.Wierenberg, 96, 1450 (1954)	•	0.838	higher leve	2.30 2 E5 com threshold (2. els feed this met th Hauser-Feshba	3) to 4.4 a astable sta	te
Rb86	3 .	2		MC		best fit fo			
37 49 19.5 ^d	μ	-1.69 1				Not d 15 ^h Nb°			
		K.F.Smith, ire 168, 5560	Phil. Neg. 44, 19517.	33		P.M.Stelson,	R.W.Peelle, F.C Phys. Rev. 98 (1 lew York), MA3; *	9551.	

```
40 Zr95
                                                                                  Rhios
                                 Zr94 (d,p)
            Levels
                                                    E<sub>d</sub> = 15.1
  6545
                                                                                            No delayed \beta \gamma (r_{\sim} < 5\pi 10^{-106})
                                                                                55
                                                                                      61
                                g. s.
                                           Q= 4.19 5
                                                                    scin
                                                                                  300
                                                                                            V.Z.Wintersteiger, Bull. Inst. Nuclear Sci.,
Boris Kidrich 4, 79 (1954).
                                0.9 2
            N.S. Wall, Phys. Rev. 96, 664 (1954).
40 Zr 97
                                              2r96 (pile n, y); scin
                                                                                47Ag
                                                                                                                 Ag (n, ? y)
                                                                                                                                      E. = 3.2
                                                                                                                                                   scin
                                 1.6
                        2%
                                                                                                                0.74
 17.0h
            B. Saraf, J. Varma, C. E. Mandeville, Phys. Rev. 98 (1955).
                                                                                                                1.10
                                                                                                                1.50
            BAPS 30, $1 (New York), SP1; priv. comm.
                                                                                            V.E.Scherrer, B.A.Alilson, W.R.Faust, Phys. Rev. 96, 386 (1954).
AL
            Abundances
                    Nb93
                                    1005
                              <2x10-4%
            All others
                                                                                  Ag1 08
                                                                                                                 Ag(107) (n)
                                                                                                                                    En = 10 to 75 ev
                                                                                            Resonances
            F.A. White, T.L. Collins, F.M. Rourke, Phys. Rev.
                                                                                      61
                                                                                47
                                                                                                               E<sub>o</sub> (ev)
                                                                                                                                               mod cyc
                                                                                  2.3
            98 (1955).
BAPS 30, #1(New York), N4.
                                                                                                              (16.6)
                                                                                                                          O = 2.6x103
                                                                                                               41.8
                                                                                                               45.3
Nb<sup>93</sup>
                                  No 93 (n. 22)
                                                      En = 3.2
                                                                   scin
                                                                                                               51.7
                                0.27
                                                      0.69
                                                                                            See Ag110 for other Ag resonances
stab le
                                0.53
                                                      0.91
                                                                                            G.Grimm, L.J.Rainwater, W.W.Havens, Jr.,
            V.E.Scherrer, B.A.Allison, W.R.Faust, Phys.
Rev. 96, 386 (1954).
                                                                                            Phys. Rev. 98 (1955).
8APS 30, $1 (New York), HA2; verbal report.
   Nb97
                                                       d 17h Zr; scin
                                 0.75
                                                                                  Agilo
  608
                                                                                                                 Ag(109) (n.Y)
                                                                                 14.63
                                                                                            Resonance
                                                                                                                                               mod cyc
             B.Saraf, d.Yarma, C.E.Mandeville, Phys. Rev.
98 (1995).
BAPS 30, £1 (Mew York), SP1; priv. comm.
                                                                                                               (5.18 eV) 0, 12 = 345 ± 80
                                                                                            Assuming \Gamma_0/\Gamma = 0.11
                                                                                            E.Neservey, Phys. Rev. 96, 1006 (1954); 86, 605A (1952).
   Nb97
                                0.67
                                                       d 60°Nb, scin
 8.7
  1 56
74<sup>m</sup>
                                                                                                                 Ag(109) (n)
                                                                                            Resonances
                                                                                                                                     E = 10 to 75 ev
             B.Saraf, J.Yarma, C.E.Mandeville, Phys. Rev.
98 (1955).
BAPS 30, #1 (New York), SP1; priv. comm.
                                                                                                                                               mod cyc
                                                                                                              E (ev)
                                                                                                               30.6
                                                                                                              40.5
                                                                                                              56.1
42
                                                                                                              71.4
                                  Mo (n, ? y)
                                                      E. = 3.2
                                                                   scin
                                                                                            See Ag108 for other Ag resonances
                    0.661
                                0.73
                     0.331
                                1.4
                                                                                            G.Grimm, L.J.Rainwater, W.W.Havens, Jr.,
Phys. Rev. 98 (1975).
BAPS 30, s1 (New York), HA2; verbai report.
                     0.00
                                2.5
            to in barns
            V-E-Scherrer, B.A.Allison, W.R.Faust, Phys.
Rev. 96, 386 (1954).
                                                                                                                                     E. = 3.2
                                                                                 Cd
                                                                                                                Cd (n, ? )
                                                                                                                                                  scin
                                                                                                   0.69+
                                                                                                               0.57
                                                                                                   0.021
                                                                                                               2.8
  No 93
                                                                                            toin barns
                                  Mo92 (d, D)
                                                      Ed = 15.1
            Levels
> 2 y 51
                                                                                            V.E.Scherrer, B.A.Aillson, W.R.Faust, Phys.
Rev. 96, 386 (1954).
                                           Q=5.63 5
                                                                   scin
                                Q. S.
                                0.91 10
                                1.41 10
                                2.23 10
                                                                                                                              E. = 0.025 to 500 ev
                                                                                                                 Cd(n_{\bullet}\gamma)
                                                                                            Resonances
                                2.73 10
                                                                                                              E (ev)
                                                                                                                                               mod cyc
            N.S. Wall, Phys. Rev. 96, 664 (1954).
                                                                                                                0.177 5
                                                                                                                               \Gamma = 0.110 \ s eV
                                                                                                                               σ<sub>0</sub> = 7.6×10<sup>3</sup> 3
σ<sub>0</sub>Γ~3
                                                                                                            ~19
                                                                                                                               0 12 = 9
                                                                                                              28
   Mo98
                                                      E<sub>d</sub> = 15.1
                                  Mo<sup>97</sup> (d, p)
             Levels
                                                                                                             100
    56
                                           Q= 6.06 10
                                 g. 8.
                                                                    scin
                                                                                            Other unresolved resonances with E<sub>o</sub> > 100
 stable
                                 2.5 3
```

M.S.Wall, Phys. Rev. 96, 664 (1954).

E. Meservey, Phys. Rev. 96, 1006 (1954); 86, 605 A (1952).

```
Cdlll
                                                         d 2.8d In
                             0.247 level
     63
48
                                                          \gamma\gamma(\theta,H)
                             -0.783 28
atable
           Heasurement independent of quadrupole interaction
            R.W.Steffen, W.Zobel, Phys. Rev. 97, 1188
            (1955).
                            0.247 level
                                               Single In crystal
                             -0.725 47
                                                           \gamma\gamma(\theta,H)
           | Q|
           H.Albers-Schönberg, E.Heer, T.B.Novey,
P.Scherrer, Helv. Phys. Acts 27, 547,
(1954).
  Cd 113
                                Cd112 (d,p)
                                                   E_d = 15.1
48 65
                                                                scin
                               g. s.
                                        Q=4.10 9
stable?
                               0.55 8
           N.S. Wall, Phys. Rev. 96, 664 (1954).
  inila y
                                                                   10
                              (0.392) \alpha = 0.44
49
    64
                                                           d 118dSn
           Authors conclude y is E5
 1.73h
            1.A.Antonova, 1.V.Estulin, 12
Ser. Fiz. SSSR 18, 79 (1954).
                                              Izvest. Akad. Nauk
  inlis y
                             (0.335) a = 0.82
                                                                   ic
49 66
                                                           d 2.3dCd
           Authors conclude y is E5
  4.5h
           I.A.Antonova, I.V.Estulin, Izvest. Akad. Nauk
Ser. Fiz. SSSR 18, 79 (1954).
  inlis y
                                In^{(115)}(n,?\gamma) E_n = 3.2
                                                                scin
49
      6.6
                   0.16+
                               0.77
                                          0.10+ 1.15
6×10<sup>14</sup> y
                                          0.16+ 2.1
                   0.27+
            toin barns
            Y-E-Scherrer, B.A.Allison, W.R.Faust, Phys.
Rev. 96, 386 (1954).
5000
            Y
                                                   E. = 3.2
                                \operatorname{Sn}(n, ?\gamma)
                                                              scin
                               0.69
                   0.14
                               1.14
                    1.67†
                    0.21†
                               2.0
            to in barns
            v.E.Scherrer, B.A.Allison, W.R.Faust, Phys.
Rev. 96, 386 (1954).
  Sn 1 25
                                Sn124 (d, p)
           Levels
                                                   E_d = 15.1
50
     75
                                                                scin
                                       Q = 3.52 7
                               Q. S
  9.5m
                               1.16 8
                               2.77 10
                               3.41 10
                               4.09 10
```

H.S. Wall, Phys. Rev. 96, 664 (1954).

```
35116
            	au_1
                                 60<sup>m</sup> In (115) (26-MeV a.3n) chem
51 65
  60<sup>m</sup>
                        15†
                                                                         scin
                                  0.41 2
                       130t
                                   0.95 5
                                   1.31 5
                       150t
             Yield 15.5^{\text{m}}\text{SD}/60^{\text{m}}\text{SD} \sim \text{const.} for E_a = 26 to 52
            †Photons per 100 \beta *
             A.H.W.Aten, Jr., J.Manassen, G.D.de Feyfer,
Physica 20, 665 (1954).
  Sb116
                                  14<sup>m</sup> In (115) (26-Mev α, 3n)
51 65
            B+
 15.5 m
                                  2.4 2
                                                                         scin
                                   2.2 1
             Lower energy y's probably present
             Yield 15.5^{\text{m}}\text{Sb}/60^{\text{m}}\text{Sb} \sim \text{const.} for E<sub>a</sub> = 26 to 52
             A.H.W.Aten, dr., d.Wanassen, G.D.de Feyfer,
Physica 20, 665 (1954).
   36120
            73
                                   5.8d 2 Sn119 (15-Hev d,n) chem
      69
  5.8d
                      1770°
                                   0.090 1 K/LM = 8.3 E1
                      1000°
                                   0.200 1 K/LM = 4.6
                                                                E2
                      10.4*
                                   1.035 5
                                   1.180 5
                                                                E2.
                       7.8
              (0.09\gamma)(0.20\gamma)(\theta)
                                                \Delta J = 1(D), 2(Q)
                                                                         scin
              (0.20 \gamma)(1.04 + 1.18 \gamma)(\theta) \Delta J = 2(Q), 2(Q)
              (1.04 \gamma)(1.18 \gamma)(\theta)
                                                J=4, 2, 0
              \mathbf{x}(0.09\,\gamma, 0.20\,\gamma, 1.04 + 1.18\,\gamma) delay = 11^{\mu_5}
              Not p 16.4 Sb (\beta^{+} < 0.3\%)
                                                                          scin
              *Relative intensity ce
              C.L.NeGinnis, Phys. Rev. 98 (1995).
BAPS 30, 81 (New York), NA5; **verbal report.
   36120
                                    1.18
                                                                          scin
 51 69
              (1.18\gamma)/\beta^+ = 0.03
                                                 Sb (121) (\leq 50-MeV \gamma, n)
  16.4"
              C.L. McGinnis, Phys. Rev. 98 (1955).
BAPS 30, $1 (New York), MA5.
    3b122
                                                 80^{(121)} (pile n, \gamma); sl
                          12%
                                    0.72 2
 51 71
                           7%
                                    0.90 5
  2.75d
                                     1.41 2
                                                F-K plot linear
                          21%
                                               \Delta J = 2. Yes shape
                                     1.97 1
                                    0.558
                                                                         sl pe
                                    0.687
               (1.41 \, \beta, \sim 0.90 \, \beta) \gamma
               (0.90 \beta, 0.72 \beta) (1.1-1.2 \gamma)
               (E_B = 0.3) (0.56 \gamma, 0.69 \gamma)
               (\mathbb{E}_{\beta} = 1.1) (0.56 \ \gamma); no (\mathbb{E}_{\beta} = 1.1) (0.69 \ \gamma)
              J.Moreau, Compt. rend. 239, 1130 (1954).
                                                           En = 3.2
    Te
                                     Te (n. ?γ)
 52
                                                           1.43
                                    0.72
              V.E.Scherrer, B.A.Allison, W.R.Faust, Phys.
Rev. 96, 386 (1954).
```

1127 53 74 Ca134 1127 (n, n) Level $E_n = 0.2 \text{ to } 2$ 0.2004 15 41 ad ce, pc 79 (0.20)0.2083 15 41 stable 2.37 Yield indicates direct decay to g.s. 0.4753 30 41 0.5652 7 15† J.B.Guernsey, A.Wattenberg, Phys. Rev. 98 (195 (1955).
BAPS 30, BI(New York), All verbal report. 0.5709 2 201 0.6058 7 100t K/L = 6.3 0.6618 20 2 100 0.7970 € K/L = 8.0 0.8022 6 15 1.0345 30 Ir¹²⁷ (n, n'γ) En = 3.2 scin 41 st 0.63 1.168 3 0.21 41 1.370 3 0.33 1.04 ? 4† st 0.42 J. Verhaeghe, J. Demuynck, Compt. rend. 239, V.E.Scherrer, B.A.Allison, W.R.Faust, Phys. Rev. 96, 386 (1954). 1374 (1954). 3.5 0.467 15 31 pe 0.553 7 Cs 126 0.571 7 1.6m 2 d 96 Ba chem; ms 21† 55 71 0.607 5 1001 B+ 1.6" 3.8 4 a, scin 0.794 3 100 y 0.385 5 scin 1.027 15 1.164 10 41 No 0.48 γ (< 10% of 0.385 γ) 1.368 5 No γ with E_{γ} > 0.8(<13% of 0.385 γ) 5.31 1.401 15 $\beta^+: x: \gamma = 62: 18: 38$ $(0.385 \gamma)(\gamma^{\pm}, << 3-\text{Mev } \beta^{+})$ M.C.Joshi, B.V.Thosar, Phys. Rev. 96, 1022 No $(0.385 \gamma) (3.8 \beta^+)$ (1954). M.I.Kalkstein, J.M.Hollander, Phys. Rev. 96, 730 (1954). Σ scin y sum peaks 1.175 1.400 Ca 131 1.972 5/2 204 M 55 D.C.Lu, N.L. Wiedenbeck, Phys. Rev. 94,501 (1954). +3.48 4 μ E.H.Bellamy, K.F.Smith, Phil. Mag. 44, 33 No delayed $\beta \gamma$ ($\tau_{\gamma} < 5 \times 10^{-10}$) Cs 134 V.Z.Wintersteiger, Bull. Inst. Nuclear Sci., Boris Kidrich 4, 79 (1954). 55 79 +2.95 1 2.34 E.H.Bollamy, K.F.Smith, Phil. Mag. 44, 33 (1953). En = 3.2 Ba Ba (n, ?) scin 56 st. 0.47 1.19 0.60 · st 1.41 B-0.78 1.51 25% 0.088 4 Cs^{133} (slow n, γ); s 1.06 2.1 75% 0.654 6 a K/LM V.E.Scherrer, B.A.Allison, W.R.Faust, Phys. Rev. 96, 386 (1954). 101 0.563 2 0.004 18 0.589 2 0.006 100t 0.60% 2 7.0 100 0.796 3 8.4 81 0.802 3 0.0026 $E_{\rm p} = 0.025$ to 500 eV Resonances Ba (n, γ) 1.038 47 0.002 1.17 7.6 0 12 mod cyc Eo (ev) 1.7 1:166 47 0.0015 8.4 25 8 1.367 4 2.81 0.0014 10.0 93 NO B+ (< 0.1%) 90 380 550 A.A.Beshilov, N.M.Anton'eva, M.Y.Bilnov, B.S.Dzholepov, izvest. Akad. Nauk Ser. Fiz. SSSR 18, 43 (1954). E-Meservey, Phys. Rev. 96, 1006 (1954); 86, 605A (1952).

```
Ce 139
  Ba 1247 7
                                                                                                    La(139) (11-Mev d,2n) chem
                       \sim 12^{m} In (115) (140-Mev N<sup>14</sup>, 5n)
                                                                     18 81
     68
                                                          chem
                                                                                                 0.1665 a_{K} = 0.20 \text{ sr} ce, scin
          Possibly Bal27 but 6.3hCsl27 not detected
                                                                                                  K: L: MN = 82: 10: 2.5
                                                                               No harder y (<0.1%) No other ce
          M.1.Kalkateln, J.M.Hollander, Phys. Rev. 96,
                                                                               No B+
          730 (1954).
                                                                                                                                scin
                                                                               K \times ray/0.166 \gamma = 1.0 \pm 0.2
                                                                                                                                  877
                                                                                e /ce = 0.84
                                                                                                                      (x\gamma/\gamma)/(xx/x)
                                                                               € K /Ce K = 4.4 ± 0.2
                                                                                (K x ray) (0.166\gamma) delay< 10^{-88}
                                                                                                                                scin
  Ba 126
                                             p 1.6 Cs chem
                                                                                E<sub>s</sub> ≤ 0.15 (to 0.166 level) from coincidence
56
     70
                                   In(115) (140-Mev N14,3n)
                                                                                  and single counting rates
  96m
                                                                               C.M.Pruett, R.G.Wilkinson, Phys. Rev. 96, 1340; 95, 625A (1954).
                                                          scin
                  100
                           0.225 10
                           0.700 30
                   33†
                           0.9 7
                     W
                    st
                           K x ray
          (0.225 \gamma) (0.70 \gamma)?
                                                                       Ce | 43
                                                                                                 Ce142 (d, p)
                                                                                                                E_d = 15.1
                                                                               Levels
                                                                     58 85
          M.1.Kalkstein, J.M.Hollander, Phys. Rev. 96,
                                                                                                 g.s. Q= 2.86 7
                                                                                                                               scin
                                                                       33<sup>h</sup>
                                                                                                 0.90 15
                                                                               N.S. wall, Phys. Rev. 96, 664 (1954).
  Ba1277 T
                                  In (115) (140-Mev N14,2n)
                         ~12m
                                                          chem
                                                                       Ce 144
          6.3hCs127 not detected, activity probably
                                                                                                                  U(n, f) chem; sd
                                                                                                 0.160 15
                                                                                         20%
                                                                      8 86
290<sup>d</sup>
            Ba124
                                                                                        ~ 5%
                                                                                                 0.258 15
                                                                                         75%
                                                                                                 0.327 7
          M.I.Kalkateln, J.M.Hollander, Phys. Rev. 96,
          730 [1954].
                                                                                                 0.0334
                                                                                                                              877 CB
                                                                                                 0.0408
                                                                                                 0.0632
                                                                                                                    No L
                                                                                                 0.0590 K/L<1
56 Ba 137
                                                                                                 0.0799
                           (0.662)
                                             d 33 Cs; sd ce
                                                                                                 K: L_1: L_3 = 345: 100: \sim 15
                            K: L: LM: MN = 52: 10: 13: 2.8
 2.60m
                                                                                                 0.0950
                                                                                                 0.1335
          J. Verhaeghe, J. Demuynck, Compt. rend. 239,
          1374 (1954).
                                                                                                 K: L_1: L_2: L_3 = 53: 10: 0: \sim 1
                                                                                                 0.1452
                                                                                No 0.0468\gamma, 0.0603\gamma, 0.100\gamma, 0.231\gamma
  Lal40
                                                                                (0.134 \gamma)(0.033 \gamma, 0.041 \gamma)
                          40.5h 6
57 83
40.2<sup>h</sup>
                                                                                (0.080 \gamma)(0.041 \gamma, 0.145 \gamma?)
          B-
                    16%
                            0.42 4
                                                                                J.M.Cork, M.K.Brice, L.C.Schmid, Phys. Rev.
                            0.86 3
                    12%
                                                                                96, 1295 (1954).
                    20%
                            1.15 3
                    30%
                            1.36 2
                    14%
                            1.62 2
                            2.20 2
                     8%
                                                                                                                             S acin
                                                                                         29t
                                                                                                 (0.081)
                            0.331 2
                   1.34
                                        K: L: M= 100: 14: 6
                                                                                        100t
                                                                                                 (0.134)
                            0.486 3
                                        K: L: M= 32: 8:4
                  0.46
                                                                                W.E.Kreger, C.S.Cook, Phys. Rev. 96, 1276
                            0.810 3
                  0.10°
                 0.14*
                            1.60 1
                                       K: L= 11: 2
           *ce per 100 $-
           A.A.Bashilov, B.S.Dzhelepov, L.S.Chervinskaya, (zvest. Akad. Nauk Ser. Fiz. SSSR 18,88(1954).
                                                                     Pr135
                                                                                                22 m
                                                                                                                            D 22hCe
                                                                                                        Ce136 (22-Mev p,2n) chem
                                                                        22
                                                                                                         Not by Ce136 (9.5-Mev p.n)
                                                                                B+
                                                                                                                             a,scin
                                                                                                 2.5 1
                                                                                                 0.080
                                                                                                                                scin
                                               En = 3.2
  Ce
                             Ce (n, ? y)
                                                         scin
                                                                                                  0.22
                                               1.50
                            0.48
                            0.90
                                               2.5
           V.E.Scherrer, B.A.Allison, W.R.Faust, Phys.
Rev. 96, 386 (1954).
                                                                                T.H. Handley, E.L.Olson, Phys. Rev. 96, 1003
```

			1	NEW NUCL	EAR DATA					21
Pr136 59 77 70 ^m	β ⁺ γ	70 th Ce ¹³⁶ (2.0 1 0.17 ~0.8 ? ~1.1 ?	∂.5 -16 v p,n	a, acin	Pr144 59 05 17-5 ⁿ	β- γ	1.5% 98.5%	0.92 3.12 0.688 1.49 2.18	U(n,f) ch	scin
	T.H.Handley, (1954).	E.L.Oison, Phys	. Rev. 96,	1003		J.M.	.06037 Cork, M.: 1295 (19)		.Schmid, Phys.	ST Ce
pr137 59 78	No 1.4h activi	>1 ^y or <5 ^m lty Ce ¹ E.L.Olson, Phy							d 290 dCe;	scin
Pri 38 59 79 2.0 ^h	τ β ⁺ ·	2.0 1	Ce ¹³⁸ (9.5 -1	ev p,n) chem a.scin			(1954).		y== Rev= 96, 85	54,
	γ	0.30 0.80 1.05	~1.4 ? ~1.7 ?	scin	Nd 60	Resor	nance	Nd (n) E ₀ (ev) 4.38 #	$E_n = 0.07 \text{ to}$ $\frac{\sigma_0 \Gamma^2}{1-10}$	20 eV
	T.H.Handley, [E-L-Oison, Phys	. Rev. 96,	1003				M.H.Landon, 4 (1954).	H.L.Foote, Jr.,	Phys.
pri39 59 80 4.5 ^h	\mathcal{M}^{142} (1) \mathcal{T} β^+ γ	4.5 ^h	D 140 ^d Ce	chem a,scin scin	Nd 143 60 83 stable	μ K.Mu		Nd ¹⁴² (d,)	Enriched Md 6, 1543 (1954). D) E _d = 15.1 = 3.79 8	scin
	T.H.Handley, 8 (195%).	E.L.Oison, Phys				N.S.W	all, Phy	0.70 10	664 (1954).	
Pr ¹⁴⁰ 59 81 3-5**	T.N.Handley, (1954).	3.4 ^m Pr ¹⁴¹ (; Ce ⁽¹⁴⁰⁾ ((9.5-Mev p,n) chem	Nd 145 60 85 stable	μ K. Nu	rakawa, i	-0.69 <i>10</i> Phys. Rev. 9	Enriched Nd	145 g
pri42 59 83 19.2 ^h	98 (1955).	i.6 Prima, C.E. Manden	viiie, Phys	•	Nd 150 60 90 > 1015y		s with (> 1016y 0.006 < E ₈ < 0 (2.1 mg/cm ²)	. s from 1.18g	pe
	Levels	Pr ¹⁺¹ (d, D) g.s. Q=3. .0.62 10	E _d = 15.	i scin		D. D1x	on, A.Mc	Nair, Phil.	Mag. 45, 1099(1	9541•
	H.S.Wall, Phys	. Rev. 96, 661	(1954).		Pm149	ß-		Nd	150 (9-Mev p,2n)	chem š
pr143 59 84 13.8 ^d	No y (<10 ⁻³ %) 8.Saraf, J. Var 98 (1955).	ma, C.E.Mandet	rīlie, Phys.	scin	50 ^h	γ	Plankar	0.285 ~1.0	4 3440 (304V)	scin

8.Saraf, J. Varma, C.E. Mandeville, Phys. Rev. 98 (1955).
BAPS 30, \$1(New York), SP1.

V.K.Fischer, Phys. Rev. 96, 1549 (1954).

Pm 1 50	τ		2.7 ^h	Nd ¹⁵⁰ (8	Hev p,n)	chem
61 89 2.7 ^h	β	~ 80% ~ 20%	2.01 <i>5</i> 3.05 <i>5</i>	4		8d
	γ	100†	0.34 1 0.39?	4†	1.24? 1.32 5	scin
		20†	0.43 2	0.8	1.67 5	
		401	0.82 2	0.4† 0.8†	2.0 1 2.6 1	
		4†	1.17 5	0.4+	3.0 1	

 $(E_{\beta} = 2) (0.34, 0.43, 0.82, 1.17 \gamma^{\circ}s)$ scin $(\mathbf{E}_{\beta} = 2) (1.32, 1.67, < 2.5 \gamma \cdot s)$ $(E_{\beta} = 3) (0.39?, 0.82, 1.24?, 1.32 \gamma^{\circ}s)$ $(0.34 \gamma)(0.39?, 0.43, 0.82, 1.32, 1.67, < 2.0 \gamma s)$ Decay scheme proposed

V.K. Fischer, Phys. Rev. 96, 1549; 95, 626A (1954).

Resonances 8m(n) $E_n = 0.07 \text{ to} \sim 22 \text{ eV}$ cryst

Eo (ev)		σ, Γ2∗	Isotope**
0.0976	5	68	150
0.871	5	10-50	150
3.43	2	1-10	148
4.98	5	1-10	150
6.45	10	1-10	150 ?
8.2	1	> 100	153
9.1	2	1-10	150 ?
12.0	5	1-10	
15.2	5	1-10	150 ?
17.2	5	1-10	150 ?
19.1	5	50-100	148
27.1	5	50-100	151

*For natural Sm **Enriched samples used

V.L.Sailor, H.H.Landon, H.L.Foote, Jr., Phys. Rev. 96, 1014 (1954); 89, 904A (1953).

Sm 148 62 86 stable

Sm147 (n) Resonances $E_n = 0.07 \text{ to} \sim 22 \text{ eV}$ 052 cryst Eo (ev) 3.43 2 10-50 19.1 5 > 100

See also Sm

V.L.Sallor, H.H.Landon, H.L.Foote, Jr. Rev. 96, 1014 (1954); 89, 9044 (1953). Jr., Phys.

Sm150 Resonances Sm149 (n) $E_n = 0.07 \text{ to} \sim 22 \text{ eV}$ E (ev) cryst stable 0.0976 5 490 0.871 >100 4.98 10-50 6.45 10* 10-50 2* 9.1 10-50 5° 15.2 10-50

17.2 10-50 *Assignment uncertain See also Sm

V.L.Sallor, H.H.Landon, H.L.Foote, Jr. Rev. 96, 1014 (1954); 89, 904A (1953).

5°

3m151	Resonance	Sm ¹⁵⁰ (n)	E _n = 0.07	to~22 ev
62 89 ~70 ^y		E (ev)	$\sigma_{o}\Gamma^{2}$	cryst
		21.1 5	>100	

See also Sm

V.L.Sallor, H.H.Landon, H.L.Foote, Jr., Phys. Rev. 96, 1014 (1954): 89, 904A (1953).

N. Warty, J. Phys. radium 15, 605 (1954).

19% 0.810 10

$$\gamma$$
 100† 0.0690 μ $\alpha = 6$ sl ce, scin
 $K/L > 4.6$
0.1025 5 $K/L > 6.1$
 $\tau = 4.0 \times 10^{-98}$ β (ce)
0.033† 0.1716 $K/L = 4.6^{\circ}$

 $T = 1.4 \times 10^{-10}$

 β (ce)

0.520

 $(0.64 \beta) (0.1025 \gamma) (0.71 \beta) (0.069 \gamma)$ tce per 100 β

**Spectrum analyzed only for E > 0.35

R.L.Graham, J.Walker, Phys. Rev. 94, 794A (1954); *prīv. comm.

Sm152 (n) Resonance E = 0.07 to~22 ev E_o (ev) cryst > 100 8.2 1

See also Sm

V.L.Salior, M.H.Landon, M.L.Foote, dr., Phys. Rev. 96, 1014 (1954); 89, 904A (1953).

Eu 52	β - 0.38 10? Eu ^{152,154} source;	sl
63 89	0.70 3	3γ
	(00122)	in
	(0.244)* sl ce (0.720) sc	in
	(0.343)* sl ce (0.964) sc	in
	No 0.336 y (1.086) 80	in
	(0.70 β) (ce _k 0.343 γ)	sl
		sl
		sl
	(x ray) (0.122 γ , 0.244 γ , 0.984 γ ?) Σ sc	in
	Sum peaks also at ~1.14? ~1.26 \(\Sigma\) sc	in
	No (0.343γ) (x ray, γ) Σ sc	in

R.E.Sisttery, D.C.Lu, M.L.Wiedenbeck, Phys. Rev. 96, 465 (1954).

66 Dy

67 36.

$r_{y} = 0.0006 \text{ eV}$ $r_{y} = 0.0067$	137	Resonance	-0.0006 eV	$E_n = 0.001 \text{ to } 0.01 \text{ or } 0.001 \text{ or } 0.0000 \text{ or } 0.00000 \text{ or } 0.0000000000000000000000000000000000$	st
--	-----	-----------	------------	--	----

N.Molt, Phys. Rev. 98 (1955) BAPS 30, #1(New York), HALL.

Eu¹⁵⁴ β⁻ 1.45 5 Eu¹⁵², 154 source; sl
63 91
16⁷ γ (0.123) ° (1.116) ° scin
(0.778) ? 1.415 ° °

No 0.336 γ (1.415 γ) (x ray, 0.123 γ) Σ scin No (0.123 γ) (x ray) Σ scin No (0.778 γ) (x ray, γ) Σ scin No (ce₁ 0.123 γ) β sl *Assignment from ms results of Katz, Lee

**Assignment from coincidences

R.E.Slattery, D.C.Lu, M.L.Wledenbeck, Phys. Rev. 96, 465 (1954).

96	Resonances	Gd (1	1)	En = 0.07	to~	35 ev
64		E _o (ev)	_	م لء		cryst
		2.01	1	1-10		
		2.57	2	10-50		
		2.81	3	1-10		
		6.33	6	10-50		
		7.8	1	1-10		
		11.9	2			
		16.9	4			
		21.1	5			
		22.5	8			
		30.8	8			
		34.0	10			

V.L.Sallor, M.H.Landon, M.L.Foote, Jr., Phys. Rev. 96, 1014 (1954).

ed 155 J ≥ 5/2 8

64 91

•table μ -0.19 5 assuming J = 7/2

K. Murakawa, Phys. Rev. 96, 1543 (1954).

K.Nurakawa, Phys. Rev. 96, 1543 (1954).

P1 60	T	,000	72.3 ^d 5				
95 3 d	β-	19%	0.28 4	32%	0.557	15	3
		19%	0.46 2	30%	0.851		
	γ		0.064	0.297		8	ce, pe
			0.0862	0.391	0.962		
			0.093	0.411	0.976		
			0.156	0.466	1.034		
			0.181	0.569	1.110		
			0.196	0.679	1.173		
			0.274	0.762	1.196		
			0.234	0.856	1.250		
			0.274	0.876	1.266		
			0.282	0.915	1.447		

(ce_L 0.086γ)(ce_K 0.196γ, ce_K 0.297γ) s ce
The above 29 most intense γ's (out of 70γ's
found) fitted into 8 levels

V. Keshishian, H. W. Kruse, R.J. Kiotz, C.M. Fowler, Phys. Rev. 96, 1050 (1954).

Resonances	To ¹⁵⁹ (n) E _o (ev)	E _n = 0.07 to 13 ev or 2 cryst
	3.37 3	10-60
	5.4 2 ?	1-10
	10.6 3	10-50
	11.4 2	50-100

V.L.Sailor, H.H.Landon, H.L.Foote, Jr., Phys. Rev. 96, 1014 (1954).

Resonances	Dy (n)	E _n = 0.07 to~80 ev
	E (ev)	σ[²] cryst
	1.72 1	10-50
	2.73 2	1-10
	3.70 3	1-10
	4.86 5	1-10
	5.49 4	> 100
	7.8 2	
	9.9 5	<1
	10.6 15	10-50
	13.5 5	
	16.8 g	
	19.7 5	
	74 15	50-100
	. W. landon	H I Foods Je Phys

V.L.Sallor, M.H.Landon, H.L.Foote, Jr., Phys. Rev. 96, 1014 (1954); 91, 450A (1953).

CTC 1804	, Ho ¹⁶⁵ (≤	, ,		τ
		90)	58†	β-
		99 3	62†	
4			(<0.081)	No B
DC, S	a, ~10	0378 5	5.et	γ
	ITº?	046		
	N. Contraction	0728 5	8.8t	
	T = 1.4x1			
E2 B	a_K = 1.9	0905 5	ठ• ठा	
0-98	T = 1.4x1			
	0.0467	x ray +	90†	I
ray (<	NO ET K X			NO H
	0.04620	n 180 100	e 0.091 y)	18) 10

(x ray) $(0.057\gamma, 0.073\gamma)$ No $(0.037\gamma)(0.073\gamma)$ Assignment to IT based on: $\epsilon_W/\beta = 0.9 \pm 0.2$ from $x/\beta = 0.9 \pm 0.2$

 $\epsilon_{\rm W}/\beta$ = 0.9 ± 0.2 from x/ β = 0.9 ± 0.2 (< 0.164-HeV pulses)/ β = 1.30 ± 0.15 Σ scin

N.N.Brown, R.A.Becker, Phys. Rev. 96, 1372 (1954); 95, 626A (1954).

No! 66 67 99 27.3h

sl By 0.78% 0.393 1.771 7 $\Delta J = 2$, yes shape al $\beta \gamma$ 47.6% 1.854 5 F-Kplot linear 51.0%

0.0803 2 ax = 1.9 E2 slce K: L: MN = 10: 25:7

> ax = 1.7x10-3 E2 0.76% 1.380

No 0.184 y (ce < 10-3%) $(1.77 \beta)(0.080 \gamma, ce_L 0.080 \gamma) delay = 1.8 \times 10^{-98}$ $(1.77\beta)(0.080\gamma)(\theta)$ J = 0, 2, 0 assuming same attenuation as for $\gamma \gamma(\theta)$

R.L.Graham, J.L.Woifson, M.A.Cfark, Phys. Rev. 98 (1955). BAPS 30, \$1 (New York), MAIL; verbai report.

 γ

0.080 1.378 7 1.61 2

scin

1.69 (0.080 \gamma)(1.38 \gamma)(\theta) J=0. 2. 0 $(0.080\gamma)(1.61\gamma)(\theta)$ J = 1, 2, 0

No $(0.080\gamma)(1.69\gamma)$

Attenuation of $\gamma\gamma(\theta)$ coefficients shows quadrupole interaction

J.S.-Fraser, J.C.D.Milton, Phys. Rev. 98(1955). Proc. Roy. Soc. Canada 48, 12A (1954). BAPS 30, 61 (New York), MAIO.

R.L.Graham, J.L.Wolfson, M.A.Clark, Phys. Rev. 98 (1995). BAPS 30, 81 (New York), MAII; verbal report.

Ho 1 66 99 > 304

0.0803 2 sl ce 0.1841 10 0.282 4

 $(0.080\gamma)(0.184\gamma)$ delay = 18.2 ± 0.6 m 10^{-10} s $(0.184\gamma)(0.282\gamma)$ delay = 8 ± 5 m 10^{-11} s scin g.s. and first 3 excited states form a rotational band (from energy spacing)

RoloGraham, NoAcClark, Physo Rev. 98 (1955); quoted by Milton, Fraser, Milton-BAPS 30, si (New York), MA12; verbal report.

Hol65 (pile n, y) chem scin

0.080 1† ~1+ 0.188 5 ~ 1+ 0.283 10

~ 1+ 0.725 20 ~ 1+ 0.845 20

 $(0.080\gamma)(0.188\gamma)(\theta)$ J=4, 2, 0°

yy scin All 5 y's in cascade $(0.725 \gamma. 0.845 \gamma)$ (most of the x rays)* Delay 0.264 level ~8x10-11s*

No $\beta\gamma$ delay (<2x10⁻⁹⁸)

J.S.Fraser, G.M.Milton, Phys. Rev. 98 (1955).
BAPS 30, \$1(New York), MA12; "verbal report.

68 Er $E_n = 0.07 \text{ to } \sim 30 \text{ eV}$ Er (n) Resonances of 12 cryst E_o (ev)

0.47 1 10-50 0.58 1 10-50 6.10 € 50-100 10-50 9.62 8 16.2 2 10-50 21.2 27.5

V.L.Sallor, H.H.Landon, H.L.Foote, Jr., Phys. Rev. 96, 1014 (1954); 90, 362A (1953).

Tm169 100 stable

1/2 -0.20 3

Shell model predicts even parity but μ agrees with p Schmidt limit

K.H.Lindenberger, A.Steudel, Naturwiss. 42,

Yb	Resonances	Yb (n)	E _n = 0.07 to 20 ev
10		Eo (ev)	σ ₀ Γ ^{2**} cryst
		0.597 1*	1.28±0.10
		4.551 3	<1
		8.09 8	1-10
		13.30 14	1-10
		18.2 2	1-10
	*Assigned to	A = 169	**For natural Yb

V.L.Sailor, H.H.Landon, H.L.Foote, Jr., Phys. Rev. 96, 1014 (1954); 89, 904A (1953).

 Yb
 169
 Resonance
 Yb
 (168)
 (n)
 En = 0.07
 to 20 ev

 70
 99

 31.8d
 E. (ev)
 σ Γ^2 cryst

 0.597 1
 995 ± 90

See also Yb

V.L.Sallor, H.H.Landon, H.L.Foote, Jr., Phys. Rev. 96, 1014 (1954); 89, 904A (1953).

Lu Resonances Lu(n) $E_n = 0.07 \text{ to} \sim 21 \text{ eV}$

E (ev)		<u>σ</u> Γ2°	Isotope
0.142	1	1.4±0.3	177
1.57	1	<1	177
2.62	2	1-10	177
4.80	4	1-10	177 ?
5.30	5	10-60	176
11.4	2	10-50	176
14.4	3		176
20.6	5		176 ?

*For natural Lu

v.t.Sallor, H.H.Landon, H.L.Foote, Jr., Phys. Rev. 96, 1014 (1954); 92, 656 (1953); 90, 362A (1953).

Lu¹⁷⁶ Resonances Lu⁽¹⁷⁹⁾ (n) E_n = 0.07 to \sim 21 eV

E_o (ev) $\sigma_o \Gamma^2$ cryst

5.30 5 10-50

11.4 2 10-50

14.4 3

20.6° 5

*Assignment uncertain

V.L.Sallor, M.H.Landon, M.L.Foote, Jr., Phys Rev. 96, 1014 (1954); '92, 656 (1953); 90, 362A (1953).

Lu¹⁷⁷ Resonances Lu⁽¹⁷⁶⁾ (n) E_n = 0.07 to \sim 21 eV

E_o(ev) $\sigma_o \Gamma^2$ cryst

0.142 1 54 ± 12

1.57 1 10-50

2.62 2 > 100

4.80 4 > 100

*Assignment uncertain

V.L.Sailor, H.H.Landon, H.L.Foote, Jr., Phys. Rev. 96, 1014 (1954); 92, 656 (1953); 90, 362A (1953). Tal81 γ Tal81 (n,?γ) E_n = 3.2 scin

1.26† 0.46
0.93† 1.4

†σ in barns

V.E.Scherrer, B.A.Allison, W.R.Faust, Phys.
Rev. 96, 386 (1954).

W Abundances 74 W185 < 0.0002% ms W187 < 0.0001%

F.A.White, T.L.Collins, F.M.Rourke, Phys. Rev. 98 (1955).
BAPS 30, #1 (New York), N4.

Re¹⁸⁵ J 5/2 Mic

75 110 q(Re¹⁸⁵)/q(Re¹⁸⁷) = 1.07 ± 0.05

**Table

A-Javan, A-Engelbrecht, Phys. Rev. 96, 649
(1954); 91, 2224 (1953).

Re¹⁸⁷ J 5/2 Mic 75 ll² $q(Re^{185})/q(Re^{187}) = 1.07 \pm 0.06$

A.Javan, A.Engelbrecht. Phys. Rev. 96, 649 (1954); 91, 222A (1953).

au > 10^{16y} pc No eta with E_{eta} > 0.001 L x rays observed from Re, Os, Pt, W believed

produced by background y's

D.Dixon, A.McNeir, Phil. Mag. 43, 1099(1954).

Re¹⁸⁸ τ_2 16.7^h 5 W⁽¹⁸⁶⁾ (slow n) chem 16.9^h β^- 2.01 s

8.S.Dzhelepov, N.D.Novosii tseva, P.A.Tishkin, Izvest. Akad. Nauk Ser. Fiz. SS SR 18,76(1954).

0s¹⁸⁷ τ > 10^{16y} pc
76 lll L x rays observed from Re, Os, Pt, W believed
stable produced by background γ's

D.Dixon, A.McNair, Phil. Mag. 45, 1099 (1954)-

J.W.Mihelich, M.Goldhaber, Phys. Rev. 98 (1955). BAPS 30, \$1(New York), \$1; verbal report.

1r191 7,	5.68 4	d 15 ^d Os chem
17 114 7 ₁ 5.6° 7	(0.042) (0.129)	

R.A. Waumann, J.B. Gabhart, Phys. Rev. 96, 1452 (2954).

J.W.Miheliah, M.McKeown, M.Goldhaber, P Rev. 96, 1450(1954); *A.W.Sunyar, ibid. Phys.

No $\gamma\gamma$ (< 1% of count expected for 2 quantum decay)

Continuum ≤ 50 kev attributed to bremsstrahlung (<0.01 quantum/ce)

J.P.Mize, M.E.Bunker, J.W.Starner, Phys. Rev. 96, 444; 95, 627A (1954).

W.W.Johns, S.V.Nablo, Phys. Rev. -96,1599(1954)

M.W.Johns, S.V.Nablo, Phys. Rev. 96, 1599 (1954). 🖫

Aul 92	7	4.8 ^h	Au ¹⁹⁷ (p)	Hg (p)	chem
79 113	γ	0.1365	. 0.	401	s ce
4.0		0.1577	0.	4155	
		0.1734	0.	4355	
		0.2054	0.	467	
		0.2818	0.	588	
		0.2957	0.	612	
		0.3081	0.	.783	
		0.3160	1.	158	

6.T.Ewan, A.L.Thompson, Proc. Roy. Soc. Canada 47, 126A (1953); and quoted by M.W.Johns, S.V.Nabio, Phys. Rev. 96, 1599

Au¹⁹⁵

Pt⁽¹⁹⁶⁾ (28-Mev d,3n) chem

79 116
$$\gamma$$
 1.4+ (0.031) α = 32 M1 pc

14+ (0.099)

X 41+ L x ray

100+ K x ray

(L x ray) (L x ray, 0.031 γ)

 $\epsilon_{1/2}' \epsilon_{1/2}' \epsilon_$

3/2+ 185 Au 195 0.27 0.031 3/2-

A.Bisi, L.Zappa, Nuovo Cim. 12, 539 (1954).

0.130 0.099

Stable Pti 95

79

Au 197 Au¹⁹⁷ (p, p'γ) E, = 2.0 to 5.0 118 $p,\gamma(\theta)$ 0.279 Level $J = 5/2^{+}$ stable E2/M1~0.7 0.279 0.555 Level $J = 7/2^{+}$ $p,\gamma(\theta)$

0.555

No 0.278 γ (<5% of 0.565 γ) from no (0.279 γ) γ No 0.478 7

C.F.Cook, C.M.Class, J.T.Elsinger, Phys. Rev. 94, 744, 747A; 95, 628A; 96, 658 (1954).

Au¹⁹⁸ Resonance Au¹⁹⁷ (n) $E_n = 1$ to 14 ev 79 119 2.70^d (4.94 ev) $\sigma_n \Gamma^2 = 76.4$ cryst $\sigma_n / \sigma_t = 0.106$

H.L.Foote, dr., J.Noore, Phys. Rev. 98 (1955). BAPS 30, #1(New York), HAL.

Hg γ Hg $(n, ?\gamma)$ E_n = 3.2 scin 1.21 0.54 2.0 0.90

V.E.Scherrer, B.A.Aillson, W.R.Faust, Phys. Rev. 96, 386 (1954).

Supporting coincidence data not given

J.Bruner, J.Helter, O.Huber, R.Joly, D.Haeder, Helv. Phys. Acta 27, 512A, 572 (1954).

Supporting coincidence data not given

J.Brunner, J.Malter, O.Muber, R.Joly, D.Maeder, Helv. Phys. Acta 27, 512A, 572 (1954).

F.Bitter, S.P.Davis, B.Richter, J.E.R.Young, Phys. Rev. 96, 1531 (1954).

 Hg^{198} Level $Hg^{(198)}(\gamma,\gamma)$ Au¹⁹⁸ at 1125°C (0.411) J=2 $\gamma\gamma(\theta)$

F.R. Metzger, Phys. Rev. 97, 1258 (1955). 71202 d $\sim 3\times 10^{57}$ Pb chem

81 121 $\epsilon_{\rm W}/\epsilon_{\rm L}\sim 2.3$ from K x ray/L x ray= 2.6 scin

J.R.Hulzenga, C.N.Stevens, Phys. Rev. 96,548

7|204 β - 0.762 5 sl 81 123 Includes correction of -0.005 for 35 *·17 resolution

L.Fauvrals, T.Yussa, Compt. rend. 239, 1627 (1994).

T1208 γ 0.252 s ce scin, s ce of the scin, s c

L.G.Elliott, R.L.Graham, J.Walker, J.C.Wolfson, Proc. Roy. Soc. Canada 48, 12A (1954).

Pb Pb (n, n'γ) E_n = 3.2 scin 52 0.35 1.10 0.52 0.18 1.02 0.52 0.25+ 1.4 1.05 0.80 0.18 2.2 to in barns

V.E.Scherrer, B.A.Allison, W.R.Faust, Phys. Rev. 96, 386 (1954).

 $\epsilon_{\rm m} \sim 40\%$ for Pb²⁰² No K x ray (<0.5% of Tl²⁰² K x ray) scin

J.R.Huizenga, C.N.Stevens, Phys. Rev. 96,548 (1954).

Tl (205) (21-Mev d, 2n) chem ms

J.R.Huizenga, C.M.Stevens, Phys. Rev. 96, 548 (1954).

Threshold of \sim 9-MeV inferred from activation ratios of Pb to Ag and Cu for $12 \le E_{\gamma} \le 23$

J.M.Reid, K.G.McNeill, Phil. Mag. 45, 957 (1954); Proc. Phys. Soc. 66A, 1179 (1953).

N.S. Wall, Phys. Rev. 96, 670 (1954).

```
B1207
                                                                     B1212
                                                                              (>0.65\gamma)(\le 1.50\gamma)
                                                                                                                             scin
                                   x)* Pb (25-HeV D)
                                                        chem
                                                                   83 129
  124
                                                                              (>0.80\gamma)(\le 1.35\gamma)
                           0.57
                                    19
                                                         scin
                 157+
                                                                    60.5
~907
                 100+
                           1.07
                                    6
                                                                              F.Demichelis, Muovo Cim. 12, 407 (1954).
                ≤1.0t
                           1.46
                                  ≤1.5
                   161
                           1.76
                                                                     Bi214
                                                                              (0.61\gamma)(1.12\gamma) most intense cascade
                0.724
                           2-47
                                                                                                                             scin
                                                                   83 131
                                                                             Weak yy for both y's with 1.3 > E > 0.61
          (0.57 y) (1.07 y, 1.46 y, 1.76 y)
                                                                    19.7<sup>m</sup>
                                                                              All other \gamma\gamma include 0.61\gamma
         No 2.05 y, 2.20 y, 2.33 y (< 0.14†)
                                                                              No (0.617)(y) for E, > 1.6
          No (0.57 γ) γγ
                            NO 0.137 γ, 0.87 γ
                                                                             ~ 65% of all y's belong to a cascade
          *Percent of photons coincident with K x ray
                                                                              F. Demichelis, R. Malvano, Nuovo Cim. 12, 358
          J.R. Prescott, Proc. Phys. Soc. 67A, 540
                                                                              (1954).
          {1954}.
                                                                     Pol 977 7
                                                                                             ~ LE
                                                                                                        B1209 (170-Mev P)
                                                                                                                             chem
         Y
                  100t
                          (0.570)
                                                         scin
                                                                       113
                          (0.890)
                                                                                               6.040
                          (1.064)
                                                                              S.Rosenblum, H.Tyren, Compt. rend. 239,1205
                          (1.46)
                ~0.1+
                                                                              (1954) -
                           1.77
                                    E2.M1 or 25% E2.75% M3
          (1.77\gamma)(0.570\gamma)(\theta) J = 7/2, 5/2, 1/2*
                            or J=9/2. 5/2. 1/2*
                                                                      Po! 987 -
                                                                                             ~6M
                                                                                                        B1209 (170-Mev p)
          (1.46\gamma)(0.89\gamma)^*
                                                                        114
                                                                                               5.935
          No 2.467 (< 0.25t)*
          € only to 2.34 level
                                                                              S.Rosenbium, H.Tyran, Compt. rend. 239, 1205
          €, ~8% to 0.57 level
          N.H.Lazar, E.D.Klama, Phys. Rev. 98 (1955).
BAPS 30, $1 (New York), $3; "verbal report.
                                                                      Po 1997
                                                                                            ~ [12
                                                                                                        B1<sup>209</sup> (170-Hev D)
                                                                                                                             chem
                                                                        115
  Bi209
                                                                                               5.846
                            Bi^{209}(n,n'\gamma)
                                             E = 3.2
                                                         scin
83 126
                 0.43†
                           0.49
                                                                              S.Rosenblum, H.Tyrén, Compt. rend. 239, 1205
stablet
                 1.2 +
                           0.94
                                                                              (1954).
                 0.59
                           1.62
                 0.39+
                                                                      Po2007 7
                           2.6 ?
                                                                                              ~8m
                                                                                                         B1209 (170-Mev p)
          to in barns
                                                                        116
                                                                                               5.770
          Y.E.Saherrer, B.A.Aillison, W.R.Faust, Phys.
Rev. 96, 386 (1954).
                                                                              S.Rosenblum, H.Tyrén, Compt. rend. 239, 1205
Bi210
                                                             8
                                                                      Po201
                                                                                            ~17m.
                                                                                                        B1209 (170-HeV D)
                                                                                                                             chem
                                                                    84
                                                                       117
 5.00d
          K.F.Smith, quoted by E.A.Plassmann, L.M.Langer
Phys. Rev. 96, 1593 (1954).
                                                                                               5.671
                                                                      18
                                                                              S.Rosenblum, M.Tyrén, Compt. rend. 239, 1205
                                                                              (1954).
                           1.155 5
                                                           377
          Spectrum shape can be fitted by S, T
            interaction with \Delta J = 1, yes
                                                                      Po202
                                                                                            ~55M
                                                                                                         B1209 (170-Mev D)
                                                                    84
                                                                        118
          E.A.Plassmann, L.M.Langer, Phys. Rev. 96,
                                                                                               5.575
                                                                      56m
                                                                                                                                 8
          1593 (1954).
                                                                              S.Rosenblum, H.Tyrån, Comot. rend. 239, 1205
                           1.17
                                                           A1
          No y (<0.01%)
                                                                    Po<sup>204</sup>
          Spectrum shape can be fitted by 8, T
                                                                                              \sim 3.8^{h}
                                                                                                         B1209 (170-HeV D)
            interaction with \Delta J = 1, yes
                                                                                               5.370
                                                                     3.8h
          L.Lidofsky, N.Benczer, P. Macklin, C.S. Wu,
                                                                              S.Rosenblum, H.Tyrén, Compt. rend. 239, 1205
          Phys. Rev. 98 (1955).
BAPS 30, $1 (New York), $4.
  B1210
                            B1209 (d. D)
          Level
                                             E = 15.1 scin
                                                                    Po<sup>208</sup>
                                                                                    ~0.1%
                                                                                               8.72E
   127
          d, p(\theta) for proton group with Q = 1.94 not in
                                                                                    ~100%
                                                                                               (5.109)
2.6×106y
            agreement with simple theory for 1 = 2,4,6
                                                                     2.97
                                                                               S.Rosenbium, H.Tyrén, Compt. rend. 239, 1205
          N.S. Wall, Phys. Rev. 96, 670 (1954).
                                                                               (1954).
```

```
Po210
                                                                              Pa234
                                                                                      B-
                            138.4005d 58
                                                      calorimeter
                                                                                                       ~1.35
                                                                                                                                           scin
    126
                                                                            91 143
            Five samples measured during 100-350 days
 138.4d
                                                                                                       0.250 0.00†
                                                                                                                               (0.81)
                                                                             1.18
                                                                                             < 0.191
                                                                                                                                           scin
                                                                                                          0.33 ? 0.374
                                                                                                                                1.00
            J.F.Eichelberger, K.C.Jordan, S.R.Orr,
J.R.Parka, Phys. Rev. 96, 719 (1954).
                                                                                                          0.38 ? 0.04+
                                                                                                                               1.81
                                                                                               0.12
                                                                                                          0.75
                                                                                        (~1.35 β) (1.00 γ)
                                                                                                                   (\sim 0.6 \beta) (1.81 \gamma)
  Po211
                   0.53%
                               6.569
                                                      d 7.5hAt;
                                                                                       \beta(0.75\gamma)/\beta(1.00\gamma) not f(E_{\alpha}) for E_{\alpha} > 0.7
                   0.50%
                               6.895
                                                                                       †Photons per 100 Th<sup>234</sup> disintegrations
 0.52
                     99%
                              (7.43)
            No 6.34a (<0.02%)
                                                                                       S.A.E.Johansson, Phys. Rev. 96, 1075 (1954).
            R. W. Hoff, UCRL-2325 (1953).
                                                                             Pa234
                                                                                                          6.658<sup>h</sup> 12
                                                                                                                             d 24.1dTh chem
85 At 210
                                                                           91 143
                                                                                       Background of 24.1d Th ~0.2%
                                                                             6.66h
                  0.063%
                               5.355
  8.3h
                  0.0536
                               5.437
                                                                                       W.L.Zijp, Sj. Tom, G.J.Sizoo, Physica 20, 727
                  0.054%
                               5.519
                     199
                               0.0446
                                                               ad ce
                             L12: L3: M: N = 100: 48: 41: 10
                                                                                                                           Th<sup>234</sup> chem: scin
                                                                                            < 0.19†
                                                                                                          0.250
                              0.115
                      33*
                                         K: L: MN = 100: 17: 14
                                                                                               0.00
                                                                                                          0.76
                      56*
                              0.243
                                         \alpha_{\rm K} = 0.11
                                                                                               0.07
                                                                                                          0.91
                                         K: L: MN = 100: 83: 25
                                                                                               0.021
                                                                                                          1.68
                               1.189
                                         K: L= 100: 21
                     1.8*
                                                                                       (0.91 \gamma) (0.26 \gamma)/(0.91 \gamma) (0.76 \gamma) \sim 1 †Transitions per 100 Th<sup>23</sup>* disintegrations
                                         \alpha_{\rm K} = 4.8 \times 10^{-3}
                             1.458
                   0.21
                                         a = 1.2×10-3
                                                                 E1
                              1.504
                                                                                       S.A.E.Johansson, Phys. Rev. 96, 1075 (1954).
            NO 0.5117 ( 5%)
                                                                scin
                                                                             U<sup>239</sup>
            *Relative intensity ce
                                                                                                           U(238) (n)
                                                                                       Resonances
                                                                                                                              E_a = 3 \text{ to 700 eV}
                                                                            92 147
                                                                                           o (103b)
                                                                                                        E_o (ev) \Gamma (10<sup>-3</sup>ev)
            R-W-Hoff, UCRL-2325 (1953).
                                                                                                                                  \Gamma_{\gamma}(10^{-3} \text{eV})
                                                                            23.5
At<sup>2||</sup>
                                                                                             23±3
                                                                                                          6.70 6 25.5± 2.0
                                                                                                                                   24 ± 2
                                      B1<sup>209</sup> (38-Mev a, 2n) chem
                                                                                                         20.9 2
                                                                                                                     33±5
                                                                                             31 ± 6
                                                                                                                                   25 ± 5
                              5.862
  7.5h
                                                                                                                     61 ± 7
                                                                                                        37.0
                                                                                                                                   29±9
                                                                                             37 ± 8
           \epsilon_{\rm W}/\epsilon_{\rm L} \sim 7 from K x rays/L x rays = 3.1, scin, pc
                                                                                             24 ± 10
                                                                                                         66.5
                                                                                                                     44±10
                                                                                                                                   17±10
            R. W. Hoff, UCRL-2325 (1953).
                                                                                                         81.6
                                                                                                                      166
                                                                                                                                    278
                                                                                                        90
                                                                                                                       192
                                                                                                                                    297
                                                                                                       104
                                                                                                                      212
                                                                                                                                    368
  Ra 223
                             11.680 6
                                                                                                        118
                                                                                                                       242
                                                                                                                                    MIR
88 135
           Counted over period of 118 days
                                                                                                        146
                                                                                                                       258
 11.7d
           G.R.Hagee, M.L.Curtis, G.R.Grove, Phys. Rev. 96, 817A (1954).
                                                                                       R.S.Carter, Phys. Rev. 98 (1955).
BAPS 30, $1, (New York), HA5; verbal report.
                                                                           93 Np 234
  Th227
                                                                                                                  U<sup>235</sup> (19-Mev d, 3n)
                        18.17<sup>d</sup> 8
                                                                                                                                          chem
90 137
                                                                                                        ((0.76))
                                                                                                                                           scin
           Counted over period of 116 days
                                                                             4.40
                                                                                                                    unresolved
 18.2d
                                                                                                        (0-81)
           G.R.Hages, N.L.Curtis, G.R.Grove, Phys. Rev. 96, 817A (1954).
                                                                                                          1.57
                                                                                                 40t
                                                                                                100t
                                                                                                          K x ray
                                                                                                          L x ray
                                                                                                 70t
  Th234
                                                                                      € w/€ 1 ~ 1.0
                            ~0.10
                                                           By scin
   144
                              0.029
                                        a_1 = 10^\circ
                                                               scin
 24.1d
                    6.5%
                                                                                       R.W.Hoff, UCRL-2325 (1953).
                    6.5%
                              0.064
                                        a, = 0.25°
                                        a = 2.5*
                              0.093
                                                                             Np235
                                                                                      No y observed
           (\sim 0.10 \beta) (0.029 \gamma, 0.064 \gamma, 0.093 \gamma)
                                                                           93 142
           (0.064 \ \gamma) (0.029 \ \gamma) No (0.093 \ \gamma) \ \gamma
                                                                             410d
                                                                                      R.W.Hoff, S.G.Thompson, Phys. Rev. 96, 1350
           *Using ce data of Stoker et al.
           S.A.E.Johansson, Phys. Rev. 96, 1075 (1954).
                                                                             Np236
                                                                                                           U^{238} (21.6-Mev d,4n) chem ms
                                                                           93
                                                                                                   > 5000 y
                                                                                      \sigma(n, f) = 2800
                                                                            > 50009
          D 6.66 Pa 0.63 ± 0.06%
             from (1.18^{m}Pa \beta^{-})/(6.66^{h}Pa \beta^{-})
                                                                                       No a's observed other than Np237 a's
           W.L.Zijp, Sj. Tom, G.J.Sizoo, Physica 20, 727
                                                                                       M.H.Studier, J.E.Gindler, C.M.Stevens, Phys.
Rev. 97, 88 (1955).
```

30.03		NUC	LEAR SCIEN	NCE ABSTRA	CTS		
Np ²³⁷ 93 144 2.2×10 ⁶ y	(1955).	Vel=1.4±0.2 Novey, S.Raboy, Phys. F Dw York), S10; verbal re		Am ²⁴² 99 147 16.0 ^h	16 ^h A	035? 100 ^y	-
Mp239 93 146 2.33 d		1/2 D.No.Laughiin, Phys. Rev.	96,		0.66	0.628	63
Pu234 94 140 9 ^h	No γ (< 0.5%)	U ²³³ (36 -M ev a, 3n) -2325 (1953).	; scin		~5 ×1057 Pu ²⁴²	162 ^d Cm ²⁴²	-
Pu237 94 143 40 ^d			n) chem	8 k249 97 152 290 ^d	R.W.Hoff, UCRL-2325 $ \tau $ 290 ^d 20 $ a \sim 10^{-3}\% $ 5.40 $ \beta^{-} $ 0.08 $ \tau $ for spontaneous fi	Pu(pile n) C S SSION ≥ 2×10 ^{8 y} tudler, P.R.Fielda, h, A.M.Friedman, H.Dla	hem ic a
Pu238 94 144 90 ⁹	γ E.L.Church, A. BAPS 30, #1 (N	τ < 5×10-10s	E2 8 Ce E2 (1955).	Cf ²⁴⁶ 98 148	τ for spontaneous fi	; quoted by P.R.Fields	
Pu ²⁴⁰ 94 146 6580 ⁹	Resonance	Pu ²³⁹ (n,f) E _n = 0.008 0.298 2 ev Γ = 0.0 gative energy resonance	8ev		γ ~0.043 D.C. Dunlavey, 6.7.3e UCRL-2325 (1953).	a(ce);	
	M.Galula, B.Ja 239, 1128 (195 Resonance	Pu ²³⁹ (n,f) $E_n = 0.01 \text{ t}$ 0.300 5 eV $\Gamma = 0.09e$	rend. DO.95 eV V cryst	Cf ²⁴⁹ 98 151 ∼470У	τ 470 y 10 a 5.81 No other α (< 5% of τ for spontaneous fi L.8. Magnusson, N. H. S. C. M. Stevens, J. F. Mec H. Dlamond, J. R. Hulze 1576 (1954); 94, 108	3 5.81 a) ssion ≥ 5 x 10 ^{6 y} tudler, P.R.Fields, h, A.M.Friedman, nga, Phys. Rev. 96,	ms ic
Am 241 95 146 470 ⁹		(0.060) dipole	a,y(0)	Cf ²⁵⁰ 98 152 10 ^y	τ 10.0 ^y α 10% 5.99 90% 6.03 (5.99 α) (L x ray)	1 1 No (6.03 a) (L x 1	ms ic ray)
Am 242 95 147 16.0 ^h	γ	0.628 Am ²⁴¹ (pile n 0.041 2 $\alpha_{\rm L}$ > 200 crys $M_2: M_3: N = 100: 74: 67: 0.043 2 \alpha_{\rm L} > 200M_2: M_3: M_4: 0.0$	at, sd ce 44:<22		T for spontaneous fi L.B. Hagnusson, M.H.S C.M.Stevens, J.F. Mec J.R. Hulzenga, Phys. 1083 (1954).		94,
	_ / /	L x ray intensities om L x ray intensities	cryst	Cf251 98 153 >18 ^d	τ _β >> 18 ^d No a's observed	Pu(pile n) chem,	ms 1c

L.B.Magnuseon, M.H.Studier, P.R.Fields, C.M.Stevens, J.F.Mech, A.M.Friedman, H.Diamond J.R.Huizenga, Phys. Rev. 96, 1576 (1954).

(CONTINUED)

Cf253

155

18^d

B-

Pu(pile n) chem

P 19^d99

Cf252	7		2.2 ^y 2	Pu(pile n)	chem, ms	
98 154 2.2 ^y	a	10 † 90 †	6.08 1			
	τ for		eous fissi)(L I ray)	

H.Dlamond, J.R.Hulzenga, Phys. Rev. 96, 1576 (1954); 94, 1083 (1954). L.B. Magnusson, M.H. Studier, P.R. Fields, C.M. Stavens, J. F. Mech, A.M. Friadman, H. Diamond, J.R. Huizenga, Phys. Rev. 96, 1576 (1954); 94, 1083 (1954).

18ª 3

TABLE 2—NEUTRON CROSS SECTIONS

Absorption cross sections for neutron energies marked "th" (thermal) have been determined, from measurements in a thermal neutron flux, in terms of the cross section value of a "standard" for neutrons of velocity 2200 m/sec, or energy ~0.025 ev. The standard used is stated just after the reference and is generally one known to have a thermal absorption cross section with a 1/v energy

dependence. If the nucleus whose cross section is being measured also has a cross section with 1/v dependence, the cross section found for it by comparison with the standard will, of course, be a cross section for 2200 m/sec. If not, and the dependence often is not known, the value found by the comparison is $\overline{\sigma v}/2200$.

- Constant	Property and	43,00g27	Value of	Machael	Doe		,		Value of	Makhad	7-4
Targe	t Energy	- 5	o or sdo	Method	Ref.	Target	Energy	<u>σ</u>	σ or sd σ	Method	Ref.
Н	0.0253 ev	a	0.333 3	mean life	54V10	Zr	3.2	n, γ_1^*	table	γ scin	54885
	91	e1(θ)	graph	p scin	54839	Мо	3.2	n, γ_1^*	table	γ scin	54885
Li6	0.035-4.2	t	graphs		54J17	Ag	0.0253 ev	a	64.0 5	cryst	54.440
В	0.0253 ev	a	781h &	trans	53E18		0.0253 ev	a	63.7 4	osc	54081
	0.0253 ev	a	785 ^h 8	osc	54061		0.0253 ev	8	4.2 7	cryst	54A40
	0.0253 ev	a	771ª 8	osc	54G61	0	.004-0.08 ev	t	graph		54A40
	0.0253 ev	a	764 ⁸ 3	mean Ife	54708	Cd	10-1000 ev	n.y	graph	y scin	54M87
	0.0253 eV	a	749ª 4	trans	53035	Cu	3.2		table	y scin	54885
	0.0253 eV	8	755 ^a 3	trans	53K54		0.2	$n_*\gamma_1^*$	Labie	y scin	54565
	0.0253 eV	8	761 ⁸ 3	mean ilfe	54708	In	0.0253 ev	a	190 2		54A40
	0.0253 ev	8	763 ⁸ 3	mean 11fe	54708		0.0253 ev	8	8.6 2.4		54A40
	h, Harwell	standard	(tran	ns = transm	mission)	0	.004-0.08 ev	t	graph		5 4A4 0
	a, Argonne	-Brookhave	en standard			10000	3.2	n, γ_1^*	table		54885
	s, two add	itional s	amples			Sn	3.2	n, γ_i^*	table	y scin	54885
C	2.4-3.7	el(θ)	graphs	n scin	54M97	Ba	12-500 ev	n,y	graph	γ scin	54M87
Cr	3.2	n,γ*1	table	y scin	54385	Ho 165	pile	n,y	≥0.03	> 30 yHo	55M08
Fe	3.2	n, γ_1^*	table	y scin	54385	Er(168) th	a	2.0 4	9.4dEr	54B62
Co ⁵⁹	3.2	n, γ_1^*	table	y scin	54885	Er(170) th	a	8.7 1.8	7.5 ^d Er	54B62
Ni	th	s coh	13.1 3		54440	Ta181	3.2	n, γ_1^*	table	γ scin	54885
0	.0033-0.33		graph	Diser	54.440	Au 197	0.0253 ev	a	98.4 9		54E26
	3.2	n, γ*1	table	γ scin	54885		0.0253 ev	8.	96.5 7		54.440
Cu	3.2	n,y*	table	y scin	54385		0.0253 ev	s	9 2		54E26
		N I					0.0253 ev	3	8.7 9		54A40
Zn ·	3.2	$n_*\gamma_1^*$	table	γ scin	54885	0	.004-0.08 ev	t	graph		54A40

Neutron Cross Sections continued

			Value of		
Target	Energy	<u> </u>	σ or sd σ	Method	Ref.
Au 198	pile	a	18,000	S	54B99
Pb	3.2	n,γ_1^*	table	y scin	54S85
Bi ²⁰⁹	3.2	n,γ_1^*	table	y scin	54885
Ac ²²⁷	th	a . '	516	1.9 ^y Th	54870
U	0.0253 ev	s coh	2.8		54E25
U ²³⁵	0.0253 ev	a	720 15		54E25
		3	8.6 3		54E25
U ²³⁸	0.0253 ev	a	2.8 1		54E25
>5000 ^y	Mp ²³⁶ pile	n, f	~ 2800		55810
Bk ²⁴⁹	pile	a	350	10 y C f 2 5 0	54M90
Cf ²⁵⁰	pile	a	~1500	ms	54M90
Cf ²⁵¹	pile	a	~3000	ms	54M90
Cf ²⁵²	pile	a	25	18dCf253	54M90

*Cross sections were measured for specific γ^*s whose energies are given in the reference.

53C35 R.S.Carter, H.Palevsky, V.W.Myers, D.J.Hughes, Phys. Rev. 92, 716 (1953); 91, 450A (1953).

53E18 P.A. Egelstaff, AERE N/H 62 (1953).

53K54 C.W.Kimbail, G.R.Ringo, T.R.Robillard, S.Wexler, quoted by 8.Hamermeah, G.R.Ringo, S.Wexler, Phys. Rev. 90, 603 (1953).

Neutron Cross Sections continued

54A40	R.G.Allen, T.E S.Bernstein, P	E.Stephenson, C.P.Stanford, Phys. Rev. 96, 1297 (1954).	
54862	R.F. Sarnes, AN	NNL-5287 (1954); Au standard.	
54899	R.E.Bedford, A	A.M. Crooker, Proc. Roy. Soc.	
	Canada 48,27At	(1954); Hg 198/Hg 199 atomic spect	ra.
54E25	P.A.Egelstaff,	, J. Nuclear Energy 1, 92 (1954	١.
54E26	P.A.Egelstaff,	f, J. Nuclear Energy 1, 57 (1954	1.
54661	A.Green, D.J.L A.H.Spurway, J Based on og (Au	Littler, E.E.Lockett, V.G.Small J. Nuclear Energy 1, 144 (1954) (u) = 98.6.	,
54017	C.H.Johnson, H 96, 985 (1954)	H.B.Willard, J.K.Bair, Phys. Re	٧.
54887	E-Meservey, Ph	hys. Rev. 96, 1006 (1954).	
54M90	C.M. Stevens, J	n, M.H.Studier, P.R.Fields, J.F.Mech, A.M.Friedman, H.Diamo , Phys. Rev. 96, 1576 (1954).	nd
54497	R.W.Meler, P.S Acta 27, 577 (Scherrer, G.Trumpy, Helv. Phys. (1954).	
54539	R.H.Stahi, N.F (1954).	F.Ramsey, Phys. Rev. 96, 1310	
54570	R.K.Sjoblom, P Np ²³⁷ standard	P.R.Fields, ANL-5263 (1954); d.	
54585	V.E.Scherrer, Rev. 96, 386 (, B.A.Allison, W.R.Faust, Phys. (1954).	
54408	G. von Dardel, 1566 (1954).	l, N.G.Sjöstrand, Phys. Rev. 96,	
54710	G. von Dardel, 1245 (1954).	l, N.G.Sjöstrand, Phys. Rev. 96,	
55M08		, J.S.Fraser, G.N.Milton, (New York), MA12; verbal report.	1
55510	M.H.Studier, J Rev. 97, 88 (1	J.E.Gindler, C.W.Stevens, Phys. (1955).	

TABLE 3—GROUND STATE Q'S

Q values are defined by the conservation equation, $\mathrm{M}_1+\mathrm{M}_2=\mathrm{M}_3+\mathrm{M}_4+\mathrm{Q}$ or $\mathrm{Q}=\mathrm{E}_3+\mathrm{E}_4-\mathrm{E}_1+\mathrm{E}_2$ where the M's are the rest masses and the E's the kinetic energies of the reacting particles. Ground state Q's are those measured when the product particles are left in their lowest energy states. If the most energetic emitted particle has escaped detection, the true ground state Q is greater than the value given.

The energy standard used, when clearly stated by the experimenter, is mentioned with the reference. Usually

the energy measurement for only one particle, either the incident or emitted light particle, presents difficulties. It is the standard used for this particle that is given.

N. B. A uniform policy for denoting the use of enriched or monoisotopic material is now in use in all four New Nuclear Data tables. This policy is described in the section on Conventions just following the Introduction. Briefly, parentheses around the Avalue indicate natural material, no parentheses enriched or monoisotopic material.

Reaction	Value		Sourc	e tector	Ref.
${\rm He}^3({ m d},\gamma){ m Li}^5$	16.36	20	VdG	scin	54889
Li ⁶ (t,d)Li ⁷	0.986	7	CcW	8	54A35a
Li6(t,p)Li8	0.790	11	CcW	8	54A35b
Li ⁷ (t,a)He ⁶	9.79	3	CcW	8	54A35c

Reaction	Value	500	Dete	Ref.	
Be ⁹ (d,p)Be ¹⁰	4.586	9	VdG	877	54J23
c(12)(d,p)c(13)	2.717	10	VdG	877	548101
C13(d,p)C14	5.942	11	VdG	STT	548101

Ground State Q's continued

			Source							Source		
Reaction	Value	-	Det	ector	Ref.	React	ion	Value		Det	ector	Ref.
c ¹⁴ (d,p)c ¹⁵	0.15	15	VdG	2.4°C	54R38a	1 127 (d	,p)1128	4.35	5	Cyc	scin	54W33
	0.12	5	- 521		54R38b	Cs 133(d, p)Ca 134	4.50	10	Сус	scin	54W33
N(14)(a,n)F(17)	-4.73	10	Сус	gп	55D01	La(139)) (d, p)La(140) 2.87	10	Сус	scin	54W33
0(16)(d,p)0(17)	1.915	10	VdG	sn	548101	c=140/	d, p) Ce 141	0.17	10	0000	- colo	C 41970
0 ¹⁷ (d, p)0 ¹⁸	5.821	10	CcW	sd	54A37		d,p)Ce ¹⁴³	3.17	10	Cyc	scin	54W33
0 ¹⁸ (d,p)0 ¹⁹ g.s?	1.730	8	CCW	sd	54M89			2.86	7	Сус	scin	54W33
Na ²³ (a, n) Al ²⁶	-2.9	3.5	Сус	pc	55D01		d, p)Pr142	3.42	30	Сус	scin	54W33
$A1^{27}(p,\alpha)Mg^{24}$	1.61	4 .	Сус	ppl	54055		d,p)Nd ¹⁴³	3.79	8	Сус	scin	54W33
P31(p,n)331	-6.03	15	Сус	ppl	55R02	Sm 154 (d, p) Sm 155	3.36	30	Сус	scin	54W33
P ³¹ (α, p) S ³⁴ .	0.5	1	Сус	scin	55P03	54435	K.W.Allen, Phys. Rev.	96, 684 (19541	. a: b	ased on	pper,
$s^{(32)}(\alpha, p)c1^{(35)}$	-2.3		Сус	scin	55P03		Q[L16(p,a)] Q[L16(t,d)]	= 4.023 ±	0.002	b: 6	ased on	
Ca ⁴⁸ (d,p)Ca ⁴⁹	2.80	30	Сус	scin	54W33		excited sta $E_{\alpha}(Cm^{2+2}) =$	te) = 0.47	8 ± 0.	007. C	: based	on
Co ⁵⁹ (d,p)Co ⁶⁰	5.283	8	VdQ	STT	54F27	54437	K.Ahnlund, calibrated			999 (1	954);	
Zn ⁶⁸ (d,p)Zn ⁶⁹	4.16	15	Сус	scin	54E22	54889	J.M.Blair, Rev. 96,102			-Van Pa	tter, Pi	ys.
Rb85(d,p)Rb86	6.2	3	Cyc	scin	54W33	54E22	F.S.Eby, Ph (1954); bas	ys. Rev.	96, 1	355 (19 ,p) Q's.	541; 93,	925A
Rb ⁸⁷ (d, p)Rb ⁸⁸	3.75	20	Cyc	scin	54W33	54F27	G.M.Fogleso 1001 (1954)	: HO (PO 0	11 = 331	. 590 us	ed as	6,
3r84(d,p)3r85	5.25	30	Сус	scin	54W33		standard for particles.	or both Ir	ciden	t and e	mitted	
Sr ⁸⁶ (d,p)Sr ⁸⁷	6. 26	20	Сус	scin	54W33	54655	G.W. Greenle	es, Proc.	Phys	. Soc.	67A, 110	7
Sr ⁸⁸ (d, p)Sr ⁸⁹	4. 29	15	Cyc	scin	54W33	12	(1954).					
Y ⁸⁹ (d,p)Y ⁹⁰	4.41	5	Cyc	scin	54W33	54J23	d.d.dung, ((1954); Hp (for both	Po a) = 33	1,590	used a	s stands	rd
Zr ⁹² (d,p)Zr ⁹³	4.46	5	Cyc	scin	54W33	54M89	C.Milelkows 996 (1954);			Phys.	Rev. 96,	
Zr94(d,p)Zr95	4.19	5.,	Cyc	scin	54W33		Q6[810(d,p)			6.		
No ⁹² (d,p)No ⁹³	5.63	5				54R38	J.A.Rickard Phys. Rev.					,
Mo ⁹⁶ (d, p)No ⁹⁷	4.51	30	Сус	scin	54W33		analysis of	F excitati	on cu	rve. D	: from	
No ⁹⁷ (d, p)No ⁹⁸	6.06	10	Cyc	scin	54W33	545101	A.Sperduto,				ckelman.	
	0.00		Сус	scin	54W33	24	C.P. Browne, Hρ(Po α) = 3	Phys. Re	v. 96	, 1316	(1954);	
Cd ¹¹² (d,p)Cd ¹¹³	4.10	9	Cyc	scin	54W33.		both incide	ent and en	nitted	'partic	les.	
Cd114(d,p)Cd115	3.52	15	Cyc	scin	54W33	54W33	N.S.Wail, P	hys. Rev. ly on Q[c]	96, 12 _{{d,p}	664 (19	54);	4
\$n ¹²⁰ (d,p)\$n ¹²¹	3.92	7	Cyc	scin	54W33	55001	W.T.Doyle, (New York),	A.B.Robbi	ins, 8	APS 30,	61	
Sn 124(d, p) Sn 125	3.52	7	Сус	scin	54W33	55P03		G.S.Star	ford.	P. von	Herrman 551; ba	nn, sed on
Te ¹²⁴ (d,p)Te ¹²⁵	4.25	7	Сус	scin	54W33	*****						
Te(125?)(d,p)Te(1	267) 5.0	2	Cyc	scin	54W33	55KU2	A.Rubin, F. BAPS 30, #1	L (New Yor	rk), R	A14 (19	551.	

TABLE 4-MASS DIFFERENCES

Differences are given in millimass units

	Value		Ref.				Value	171147	Ref.
L16/L17	0.857342	2	54H68	2Ru99	- Pt198		-152.6	4	54P84
K39/K41	0.951225	7	54H68	0:189	- 3Cu ⁶³		+169.8	8	54P84
3Cu63 _ 0e189	-169.8	9	54P84	0.192	- 3NI 64		+179.7	8	54P84
3Ni 64 - 0s 192	-179.7	6	54P84		- 2Ru ⁹⁸		+154.0	8	54P84
Br ⁷⁹ /Br ⁸¹	0.975300	7	54H63	bfiag	- 2Ru ⁹⁹		+152.6	4	54P34
Rb85/Rb87	0.977017	5	54H63	54163	A. Honlg, M. Ma Rev. 96, 629			, C.H.Tow	nes, Physi
	0.977016	5	54735	54P34	E.M.Penningto 32, 808 (1954		E. Duckworth	, Can. J.	Phys.
2Ru98 - Pt196	-154.0	6	54P34	54T35	J.W.Trischka, (1954).	R. Br	aunstein, P	hys. Rev.	96, 968