New York Stock Exchange Risk and Return Prediction

Presented by:

Guanzhong (Frank) Chen

Zhe (Peter) Huang

Shiyu Liu

Cangcheng Tang

Jiayuan (Justin) Tian

Data Introduction

Fundamentals:

- The quantitative factors extracted from financial statements at the end of each fiscal year
- Time range: 2012 to 2016

Prices/Adjusted Prices:

- Time series data: Open, close, high, low price and volume for each trade day
- Adjusted stock splitting
- Dates from 2010 to 2016

Securities

- Company information
- Will take industry factor from here

Goal & Design

Independent Variables:

- Build factors as independent variables
- Reflect the company financial condition and the stock risk

Logic

- Financial statement is released approximately 3 months after each fiscal year.
- Then include three-month return rate as an additional factor when financial statement is released.
- Use these factors to predict the stock return rate for the next 3 months and the standard deviation

Pie Chart

 Show the ratio of companies in different industry

Pie Chart of Industries

Apple Stock Price

- Show the trend of stock price of Apple in 2016
- Show four metrics: Lows, Highs, Open, and Close

APPLE 2016

Candle Chart of Apple

Show both the price and volume of Apple in 2016

Stock Prices Comparison

Factors----Source: The Barra US Equity Model

- The Barra US Equity Model (USE4) is the first in a family of models to include the latest advances in risk methodology, providing institutional investors the ability to align factor structure with their investment processes.
- The full version can be found here:
 http://cslt.riit.tsinghua.edu.cn/mediawiki/images/4/47/MSCI-US
 E4-201109.pdf
- Presented by MSCI

Factors

- Current Ratio, Quick Ratio, Profit Margin, After Tax ROE
 - Directly obtained from Fundamentals
 - Measures the Company financial health
- Size & Nonlinear Size (Cubic)
 - Log (Shares outstanding * Price)
 - Capture systematic risk differences between large cap and small cap assets
- Beta
 - $r_t r_f = \alpha + \beta(r_m r_f) + e_t \text{ (rt--stock return, rf--risk free return, rm--market return)}$
 - Describe the components of risk driven by market sensitivity
- Momentum
 - $\circ \qquad RSTR = \sum w_t [ln(1+r_t) ln(1+r_{ft})]$
 - Explains the return of stocks based on their recent relative performance

Factors

- Residual Volatility
 - Alpha: Excess Earnings
 - Residual Std
 - Explains returns associated with high-volatility stocks that are not captured by the Beta factor
- Liquidity: Monthly, Quarterly and Annually Volume

$$STOM = \ln\left(\sum_{t=1}^{21} \frac{V_t}{S_t}\right) \qquad STOQ = \ln\left[\frac{1}{T}\sum_{\tau=1}^{T} \exp\left(STOM_{\tau}\right)\right] \qquad STOA = \ln\left[\frac{1}{T}\sum_{\tau=1}^{T} \exp\left(STOM_{\tau}\right)\right],$$

 Describes return patterns to stocks based upon their relative trading activity.

Factors

$$btp = \frac{\frac{Assets - Liabilities}{OutstandingShares}}{Shareprice}$$

Earning Yields

CETOP: Cash earnings-to-price ratio

• ETOP: Trailing earnings-to-price ratio

Earnings Per Share
Share Price
Net Income
Size

BROWN

Leverage

Debt-to-asset Ratio

$$\frac{TotalLiabilities}{TotalAsset}$$

Book Leverage

$$\frac{Total Equity + Long term Debt}{Total Equity}$$

 The above six factors capture the risk premium associated with the firm's business model

Industry Factors

Industry include 11 categories.

Target Variables

Profitability: Quarterly Return
 Total return over the next three month, calculated using adjusted prices

Risk: Quarterly Standard Deviation
 Standard deviation of daily return over the next three month

Target & Continuous Variables

Target & Categorical Variable: Industry

Feature Selection Using stepAIC()

•Strategy:

- 1. Train-test Split 0.8~0.2
- 2. Forward Stepwise Selection

•Algorithm:

```
∘Start with Null Model M_0
```

```
■model_init = lm(half_year_return ~ 1, data = data_trn)
```


Feature Selection Using stepAIC()

•Algorithm:

$$\circ$$
For k = 0,1,...,p-1

- ■Consider all p-k models that augment the predictors in M_k with one additional predictor

 •At first k = 0, we have a total of p models to choose from. Each contains only one covariate. Repeat the process so on and so forth.
- ■Choose the best among these p-k models, and call it M_(k+1)
- Best: smallest RSS

Feature Selection Using stepAIC()

•Algorithm:

∘Select the best model from M_0 ,..., M_p using AIC

$$AIC = \frac{1}{n\hat{\sigma}^2} \left(RSS + 2d\hat{\sigma}^2 \right)$$

```
model_forward = stepAIC(
  model_init,
  direction = "forward",
  scope = list(upper = model, lower = model_init),
  trace = 0
)
```


AIC F

AIC Feature Selection

Quarterly Return

- Earning yields: cash earnings-to-price ratio,
- Industry factor,
- Non linear size,
- Size,
- Return of the first 3 month,
- After tax ROE.
- Leverage: debt-to-asset ratio,
- Beta,
- Current ratio,
- Profit margin,
- Book to price

Quarterly SD

- Residual standard deviation,
- Standard deviation over the past 3 month,
- Half-year liquidity,
- Quarterly-year liquidity,
- Beta,
- Return of the first 3 month,
- Trailing earnings-to-price ratio,
- Quick.Ratio,
- Profit.Margin,
- Momentum,
- Weighted alpha over the past 3 month

Cross Validation

Cross Validation

- R Packages: caret, elasticnet
- 5 folds
- Metric: root mean square error (RMSE)
- Methods
 - K-nearest neighbors (KNN)
 - Ridge
 - Elastic net (including Lasso)

Elastic Net Regularization

Lasso: minimizes

$$\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

Ridge: minimizes

$$\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

Elastic net: minimizes

$$\sum_{i=1}^{n} (y_i - \widehat{y}_i)^2 + \lambda \left[\alpha \sum_{j=1}^{p} |\beta_j| + \frac{1 - \alpha}{2} \sum_{j=1}^{p} \beta_j^2 \right]$$

Results - Quarterly Return

Model	Cross-validated RMSE	Test RMSE
Linear regression	0.1109	0.1001
K-nearest neighbors	0.1094	0.0995
Ridge	0.1127	0.0996
Elastic net	0.1106	0.0993

Results - Quarterly Return - Elastic Net

The Best Model - Quarterly Return

Туре	α	λ
Elastic net	0.15	0.021

Cross-validated RMSE	Test RMSE
0.1106	0.0993

Results - Quarterly SD

Model	Cross-validated RMSE	Test RMSE
Linear regression	0.0041	0.0042
K-nearest neighbors	0.0045	0.0042
Ridge	0.0041	0.0040
Elastic net	0.0041	0.0040

Results - Quarterly SD - Ridge

The Best Model - Quarterly SD

Туре	λ	Cross-validated RMSE	Test RMSE
Ridge	0.0075	0.0041	0.0040

Best Model Comparison - Quarterly SD

	Quarterly Return	Quarterly SD
Test R-square	0.0408	0.4941

Thank you!

Q & A

EDA--Advanced, Relative Return Rate

EDA--Advanced, Quarterly Standard Deviation

