

 Prediktivní model odhadující hodnotu z diskrétní množiny Y na základě příznaků X

- Prediktivní model odhadující hodnotu z diskrétní množiny Y na základě příznaků X
- K rozhodnutí dochází testováním posloupnosti podmínek - uzel reprezentuje podmínku, list predikci

Rozhodovací strom - příklad

Survival of passengers on the Titanic

Rozhodovací strom - příklad

 Použití pro regresi i klasifikaci - výstupem může být i pravděpodobnostní rozdělení

- Použití pro regresi i klasifikaci výstupem může být i pravděpodobnostní rozdělení
- Classification and regression tree analysis CART analysis)

- Použití pro regresi i klasifikaci výstupem může být i pravděpodobnostní rozdělení
- Classification and regression tree analysis CART analysis)
- Neparametrická metoda učení s učitelem

- Použití pro regresi i klasifikaci výstupem může být i pravděpodobnostní rozdělení
- Classification and regression tree analysis CART analysis)
- Neparametrická metoda učení s učitelem
- Interpretovatelný "white box" algoritmus

- Použití pro regresi i klasifikaci výstupem může být i pravděpodobnostní rozdělení
- Classification and regression tree analysis CART analysis)
- Neparametrická metoda učení s učitelem
- Interpretovatelný "white box" algoritmus
- Budeme se zabývat binárním rozhodovacím stromem pro klasifikaci

 Jakákoli funkce ve výrokové logice se dá vyjádřit jako rozhodovací strom

- Jakákoli funkce ve výrokové logice se dá vyjádřit jako rozhodovací strom
- Pro n příznaků existuje 2^{2^n} funkcí, stromů pak ještě víc **Jak vybrat ten správný?**

Jak sestrojit rozhodovací strom?

Jak sestrojit rozhodovací strom

 Jak určit podmínky, které nejlépe rozdělí vstupní množinu?

Jak sestrojit rozhodovací strom

- Jak určit podmínky, které nejlépe rozdělí vstupní množinu?
- Existuje více algoritmů v závislosti na vybrané metrice pro "nejlepší rozdělení"

Jak sestrojit rozhodovací strom

- Jak určit podmínky, které nejlépe rozdělí vstupní množinu?
- Existuje více algoritmů v závislosti na vybrané metrice pro "nejlepší rozdělení"
- Obvykle využívají strategii rozděl a panuj (divide and conquer) a hladový algoritmus (greedy search)

Staví na konceptu entropie a informačního zisku

$$H_{Shannon}(X) = -\sum_{x \in Y} p(x) \log_2 p(x)$$

Staví na konceptu entropie a informačního zisku

$$H_{Shannon}(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

• Nechť ${m X}$ je množina všech tréninkových dat ve formě $(x,y)=(x_1,\ldots,x_k,y),\ \mathrm{kde}\ x_a\in V(a)$ je hodnota ${m a}$ -tého příznaku ${m x},{m y}$ je label a ${m V}({m a})$ je množina hodnot ${m a}$ -tého příznaku

• Nechť $S_a(v)=\{x\in X\,|\,x_a=v\}$ je množina tréninkových dat z ${\it X}$, pro které je hodnota ${\it a}$ -tého příznaku rovna ${\it v}$

- Nechť $S_a(v)=\{x\in X\,|\,x_a=v\}$ je množina tréninkových dat z ${\it X}$, pro které je hodnota ${\it a}$ -tého příznaku rovna ${\it v}$
- Pomocí vzájemně disjunktních $S_a(v)$ můžeme pokrýt celou množinu ${\it X}$

- Nechť $S_a(v)=\{x\in X\,|\,x_a=v\}$ je množina tréninkových dat z ${m X}$, pro které je hodnota ${m a}$ -tého příznaku rovna ${m v}$
- Pomocí vzájemně disjunktních $S_a(v)$ můžeme pokrýt celou množinu ${\it X}$
- $H(X \mid a)$ je entropie **X** podmíněná hodnotou atributu **a**

$$H(X \,|\, a) = \sum_{v \,\in V(a)} rac{|S_a(v)|}{|X|} H(S_a(v))$$

• Informační zisk $IG(X,a) = H(X) - H(X \mid a)$,

- Informační zisk $IG(X, a) = H(X) H(X \mid a)$,
- IG je tedy rozdíl entropií před a po rozdělení množiny podmínkou

- Informační zisk $IG(X,a) = H(X) H(X \mid a)$,
- IG je tedy rozdíl entropií před a po rozdělení množiny podmínkou
- Střední hodnota IG(X,a) = I(X,A), kde A je množina všech příznaků a I(X,A) je vzájemná informace X a A

- Informační zisk $IG(X,a) = H(X) H(X \mid a)$,
- IG je tedy rozdíl entropií před a po rozdělení množiny podmínkou
- Střední hodnota IG(X,a) = I(X,A), kde A je množina všech příznaků a I(X,A) je vzájemná informace X a A
- Průměrně se tedy H(X) v každém uzlu snižuje o
 I(X,A)

Algoritmus:

1. Spočítáme entropii všech příznaků v datasetu X

Algoritmus:

- 1. Spočítáme entropii všech příznaků v datasetu X
- 2. Rozdělíme X podle atributu, který maximalizuje IG

Algoritmus:

- 1. Spočítáme entropii všech příznaků v datasetu X
- 2. Rozdělíme X podle atributu, který maximalizuje IG
- 3. Vytvoříme rozhodovací uzel s daným atributem

Algoritmus:

- 1. Spočítáme entropii všech příznaků v datasetu X
- 2. Rozdělíme X podle atributu, který maximalizuje IG
- 3. Vytvoříme rozhodovací uzel s daným atributem
- 4. Rekurzivně zpracujeme zbytek atributů

Rekurze končí, pokud:

1. Všechny zbývající prvky **x** patří do stejné třídy -> uzel je listem

Rekurze končí, pokud:

- 1. Všechny zbývající prvky **x** patří do stejné třídy -> uzel je listem
- Všechny atributy byly vyčerpány, ale zbývající prvky x patří do více tříd -> označíme list třídou s největším zastoupením

Rekurze končí, pokud:

- 1. Všechny zbývající prvky **x** patří do stejné třídy -> uzel je listem
- 2. Všechny atributy byly vyčerpány, ale zbývající prvky **x** patří do více tříd -> označíme list třídou s největším zastoupením
- 3. Množina zbývajících prvků **x** je prázdná -> uzel je listem a pro rozhodnutí použijeme předka

 Výhody: jednoduchý, interpretovatelný, rychlý, stačí mu málo dat, automaticky vybere příznaky, verzatilní, poradí si s nenormalizovanými, nelineárními i chybějícími daty

 Nevýhody: mají tendenci overfittovat, nestabilní, špatně zvládají klasifikaci v případě nevybalancovaných tříd, nespojité predikce

- Často se kombinují do tzv. ensemble metod:
 - a. Boosted trees následující strom se zaměřuje na ta data, která se v předchozím nedařilo modelovat, např. Adaboost
 - Bootstrap aggregated (bagged) trees sestrojuje stromy nad opakovaně vzorkovanými daty, např. Random forest
 - c. Rotation forest aplikuje se po použití PCA