CORONAVIRUS
AND MENTAL
HEALTH

How are you, really?

01

PROBLEM STATEMENT

Stakeholders, context, success metrics 02

METHODOLOGY

Brief overview of workflow

03

DATA ANALYSIS

Data cleaning and EDA

04

MODEL PREPARATION

feature engineering, feature selection

06

CONCLUSION

Addressing the advantages, shortcomings of models and recommendations

05

MODEL OPTIMIZATION

Optimization of supervised machine learning models(kNN, Neural Nets, Logistic regression, RandomForests) CONTENT

In addition to the economical and social effects of the pandemic on the livelihoods of people, it has also brought to light the implications of such an unprecedented pandemic on the mental health of people.

Large scale disasters (SARS,9/11,hurricanes)) were almost always accompanied with increase in mental health and behavioural disorders Together with <u>past</u> <u>knowledge</u> and <u>existing</u> <u>data.</u> what can we do to prevent such occurrences?

INTRODUCTION

Goal

Aim to <u>identify</u> characteristics of respondents prone to developing avoidance behaviours in receiving mental health aid and build a binary classification model to <u>predict</u> likelihood of this tendency based on data from **Household Pulse Survey**. Models are evaluated using **ROC-AUC** and **recall** scores

Stakeholders:

Mental Health America, Local healthcare departments

PROBLEM STATEMENT

1. 2. 3. 4

Business Goal

- Develop a binary model to identify vulnerable respondents that exemplifies resistance to receiving mental health aid

Data Cleaning

- Presence of imbalanced classes in target variable
- Presence of null values
 - Presence of correlated predictor variables

Model Pre-processing

- Feature selection
- Feature
 engineering
 (creating new
 feature, PCA)
- Remove correlated categorical features (Pearson's chi squared test)

Data Modeling

- Experimenting with different models
- Logreg,
 Xgboost, k-NN,
 RandomForest,
 Neural Nets)

METHODOLOGY

HOUSEHOLD PULSE SURVEY

Time period: 19 Aug - 19

Sep)

Rows: 219,070 Columns: 188

	T_BIRTHYEAR	INSURED	WKRLOSS	FOODSUF	MH_NOTGET
1	1989	Yes	Yes	Somewhat confident	No
2	1988	Yes	No	Very confident	No
3	1969	No	Yes	Not at all confident	Yes
4	1947	Yes	No	-	-

DATA ANALYSIS

IMPUTATION

- Impute missing values with averages
- Remove missing values

DROPPING REDUNDANT FEATURES

- Remove secondary features (travel plans, accessibility to internet etc)

FEATURE ENGINEERING

- Creation of new feature ('HOUSEPAY') to reduce dependence between predictor variables
- PCA for dimensionality reduction

FEATURE SELECTION

- Pearson's Chi Squared test to analyze correlation between categorical variables and target variable
- Reduce unrelated/redundant features(p-value < 0.05)

DATA CLEANING

TRAIN -TEST SPLIT

STANDARD SCALING UNDER -SAMPLING

Splitting final data into train and test sets

Scaling X_train and X_test for algorithms that use distance metrics(k-NN) and gradient descent(Neural Nets) Undersampling of majority classes in train set using RandomUnderSampler to balance dataset

MODEL PREPARATION

Bimodel strategy

Logistic Regression

Recall: 0.802 ROC-AUC: 0.790

Pros: Rank feature

recall score

ExtraTrees Classifier

class_weight: balanced,max_depth: 40 max_features: auto, min_samples_leaf: 40

Recall: 0.856

bias-variance trade off

Logistic Regression

Top 10 predictor features

FEATURE IMPORTANCE

Logistic Regression

DOWN:
How often do you feel
sad/hopeless?
1 - Not at all, 4 - Everyday

How often do you feel anxious?

1 - Not at all, 4 - Everyday

FEATURE IMPORTANCE

AGE:
How old are you?

Distribution of avoidance behaviour

- High percentages: Oregon, Washington
- Low percentages: North and South Dakota
- Oregon and Colorado ranked 48th and 47th respectively in mental health

1) Constantly feeling down

- Strong correlation between high frequency of feeling sad/hopeless and development of avoidance behaviours
- A **common symptom** of depression
- High anxiety levels: Oregon, Louisiana
- Low anxiety levels: North and South Dakota

2) Constantly feeling anxious

- Strong correlation between high frequency of feeling anxious and development of avoidance behaviour
- A **common symptom** of anxiety disorders
- High anxiety levels: Oregon, Washington
- Low anxiety levels: North and South Dakota

3) Younger population

- Correlation between a younger population and development of avoidance behaviour
- Average age of respondents that do not exhibit such behaviours: **52.0**
- Average age of respondents that do exhibit such behaviours: **44.2**

	Logistic Regression	XgBoost	Random Forest	k-NN	Neural Nets	Extra Trees
CV Recall	0.776	0.921	0.824	0.733	0.702	0.840
Train Recall	0.777	0.999	0.861	0.744	0.843	0.870
Test Recall	0.799	0.940	0.839	0.750	0.836	0.856
Train ROC-AUC	0.775	0.881	0.807	0.769	0.799	0.797
Test ROC-AUC	0.787	0.743	0.771	0.771	0.790	0.770

Extra Trees Classifier

CONFUSION MATRIX

	PREDICT NEGATIVE	PREDICT POSITIVE
ACTUAL NEGATIVE	13816	6402
ACTUAL POSITIVE	647	3711

MODEL PERFORMANCE

Re-evaluating false positives

Criteria for False positives? DOWN >= 3, ANXIOUS >= 3

	False positives	False positives?
Total	6402	2117

	Age of actual positives	Age of false positives?
Average	44.2	46.2

Bias in responses:
Response bias and
self-reported
assessment of mental
health status is
highly subjective.

Imbalanced classes:
Undersampling was
done randomly to
reduce the number of
majority class which
would disregard
potentially important
features

3

Unrepresentative data:
Insufficient data on
minority class and thus
model could be overfitted
with this particular class
Groups of people such as
those without internet
access/people who are
institutionalized are
excluded

LIMITATIONS

Implement model on a smaller scale and as reference

Critical features identified (DOWN,AXNIOUS,age) would be the deciding factors on where to implement models. Models viable as references, not indicative of actual mental health disorders

Implement model in dire state - Oregon

Propose models to Oregon Health Authority are Oregon marked the checkboxes for high ANXIOUS, high DOWN and a younger population

Implement model in states that show similar trend - Utah, Illinois

Medium to high levels of DOWN and ANXIOUS with a growing population

- Utah has a resident: behavioural professionals ratio below national average
- Illinois has per capita expenditure on health services below that of national average

CONCLUSION

THANKYOU

ANY QUESTIONS?

