Binary Matroids with Graphic Cocircuits

Konstantinos Papalamprou London School of Economics Leonidas Pitsoulis Aristotle University of Thessaloniki

Abstract

An excluded minor characterization for the class of binary signed-graphic matroids with graphic cocircuits is provided. In this report we present the necessary computations for the case analysis in the proof.

An excluded minor characterization

The complete list of regular excluded minors for signed-graphic matroids is provided in [2], specifically:

Theorem 1. A regular matroid M is signed-graphic if and only if M has no minor isomorphic to $M^*(G_1), \ldots, M^*(G_{29}), R_{15} or R_{16}$.

The matroids $M^*(G_1), \ldots, M^*(G_{29})$ are the cographic matroids of the 29 non-separable forbidden minors for projective planar graphs, while R_{15} and R_{16} are two special matroids whose binary compact representation matrices are given in [2] and in the next section of this Technical Report.

Clearly one could easily produce the complete list of binary excluded minors for signed-graphic matroids by adding to the list of the above 31 regular excluded minors the binary excluded minors for regular matroids (i.e. F_7 and F_7^*), since any binary signed-graphic matroid is also regular.

Theorem 2. A binary matroid M is signed-graphic if and only if M has no minor isomorphic to $M^*(G_1), \ldots, M^*(G_{29}), R_{15}, R_{16}, F_7$ or F_7^* .

We define a cocircuit Y of a matroid M to be graphic if the matroid $M \setminus Y$ is graphic. The main result in this report is the complete list of excluded minors for the class of binary signed-graphic matroids with graphic cocircuits. Of importance for the proof of that result, Theorem 3 here, is the following Lemma.

Lemma 1. If N is a minor of the matroid M then for any cocircuit $C_N \in \mathcal{C}(N^*)$ there exists a cocircuit $C_M \in \mathcal{C}(M^*)$ such that $N \setminus C_N$ is a minor of $M \setminus C_M$.

Proof: If $N = M \setminus X/Y$ then by duality $N^* = M/X \setminus Y$. Therefore by the definitions of contraction and deletion of a set, we have that for any cocircuit $C_N \in \mathcal{C}(N^*)$ there exists a cocircuit $C_M \in \mathcal{C}(M^*)$ such that

- (i) $C_N \subseteq C_M$,
- (ii) $E(N) \cap C_M = C_N$,

which in turn imply that $C_M - C_N \subseteq X$. So we have

$$M \backslash C_M = M \backslash \{C_M - C_N\} \backslash C_N \succeq N \backslash C_N$$

Theorem 3. Let M be a binary matroid such that all its cocircuits are graphic. Then, M is signed-graphic if and only if M has no minor isomorphic to $M^*(G_{17})$, $M^*(G_{19})$, F_7 or F_7^* .

Proof: M must contain a minor isomorphic to some matroid in the set

$$\mathcal{M} = \{M^*(G_1), \dots, M^*(G_{16}), M^*(G_{18}), M^*(G_{20}), \dots, M^*(G_{29}), R_{15}^*, R_{16}^*\}.$$

By case analysis, verified also by the MACEK software [1], it can be shown that for each matroid $N \in \mathcal{M}$ there exists a cocircuit $Y_N \in \mathcal{C}(N^*)$ such that the matroid $N \setminus Y_N$ contains an $M^*(K_{3,3})$ or an $M^*(K_5)$ as a minor, which implies that $N \setminus Y_N$ is not graphic. Therefore, by Lemma 1, there is a cocircuit $Y_M \in \mathcal{C}(M^*)$ such that $N \setminus Y_N$ is a minor of $M \setminus Y_M$. Thus, $M \setminus Y_M$ is not graphic which is in contradiction with our assumption that M has graphic cocircuits.

As already mentioned, this Technical Report is mainly devoted to the computations performed using the MACEK software [1] appearing in the proof of Theorem 3. These computations are provided in detail in the next section.

MACEK computations

Each case, i.e. matroid in \mathcal{M} in the proof of Theorem 3, will be examined separately and specifically:

- for each cographic matroids in \mathcal{M} , a compact representation matrix of its dual graphic matroid along with the associated graph $((G_1,\ldots,G_{16},G_{18},G_{20},\ldots,G_{29}))$ are provided. It is clear that due to matroid duality, it is enough to find a circuit C in each $M \in \{M(G_1),\ldots,M(G_{16}),M(G_{18}),M(G_{20}),\ldots,M(G_{29})\}$ such that M/C contains an $M(K_{3,3})$ or an $M(K_5)$ -minor. The advantage of working with the duals of the cographic matroids in \mathcal{M} is that someone could graphically see that by contracting a cycle (i.e. the one corresponding to C) in the associated graph, a minor isomorphic to $K_{3,3}$ or K_5 is contained in the resulting graph. Therefore, in that case, the MACEK computations may be seen just as a validation tool.
- for each of the two non-cographic matroid in \mathcal{M} (i.e. R_{15} and R_{16}), a compact representation matrix is provided along with the cocircuit to be deleted. The MACEK commands and the outputs showing that each of the resulting matroids contains an $M^*(K_{3,3})$ or an $M^*(K_5)$ as a minor are given.

The matroid $M(G_1)$:

$$r_1$$
 s_3
 s_4
 s_2
 r_2
 s_5
 s_6
 r_7
 s_{11}
 s_{10}
 r_4
 r_5

$M(G_1)/\{r_1,s_1,s_3\}$ contains an $M(K_5)$ -minor.

Command: ./macek -pGF2 '!contract 1;!contract -1;!contract -3;!minor' g1 ' $\{grK5, grK33\}$ '
Output: The #1 matroid [g1 \sim c1 \sim c-1 \sim c-3] +HAS+ minor #1 [grK5] in the list $\{grK5, grK33\}$.

The matroid $M(G_2)$:

$$M(G_2)/\{r_4,r_5,s_9\}$$
 contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 4;!contract 5;!contract -9;!minor' g2 ' $\{grK5, grK33\}$ '
Output: The #1 matroid [g2 \sim c4 \sim c5 \sim c-9] +HAS+ minor #2 [grK33] in the list $\{grK5, grK33\}$.

The matroid $M(G_3)$:

$$M(G_3)/\{r_1,r_2,r_3,s_2\}$$
 contains an $M(K_5)$ -minor.

 $\label{local_command: command: 2} \textbf{Command: ./macek -pGF2 '!contract 1;!contract 2;!contract 3;!contract -2;!minor' g3 '{grK5,grK33}' \\ \textbf{Output: The #1 matroid } [g3\sim c1\sim c2\sim c3\sim c-2] \textbf{ +HAS+ minor #1 } [grK5] in the list {grK5 } grK33}.$

The matroid $M(G_4)$:

$$M(G_4)/\{r_4, r_5, r_6, s_6\}$$
 contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 4;!contract 5;!contract 6;!contract -6;!minor' g4 ' $\{grK5,grK33\}$ '
Output: The #1 matroid [g4 \sim c4 \sim c5 \sim c6 \sim c-6] +HAS+ minor #2 [grK33] in the list $\{grK5,grK33\}$.

The matroid $M(G_5)$:

$$M(G_5)/\{r_7, r_8, r_9, s_8\}$$
 contains an $M(K_{3,3})$ -minor.

Command:./macek -pGF2 '!contract 7;!contract 8;!contract 9;!contract -8;!minor' g5 '{grK5,grK33}' Output: The #1 matroid [g5 \sim c7 \sim c8 \sim c9 \sim c-8] +HAS+ minor #2 [grK33] in the list {grK5 grK33}.

The matroid $M(G_6)$:

$$M(G_6)/\{r_6, r_7, r_8, s_7\}$$
 contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 6;!contract 7;!contract 8;!contract -7;!minor' g6 ' $\{grK5, grK33\}$ ' Output: Output: The #1 matroid [$g6\sim c6\sim c7\sim c8\sim c-7$] +HAS+ minor #2 [grK33] in the list $\{grK5, grK33\}$.

The matroid $M(G_7)$:

$$M(G_7)/\{r_1,r_2,s_5\}$$
 contains an $M(K_5)$ -minor.

Command: ./macek -pGF2 '!contract 1;!contract 2;!contract -5;!minor' g7 '{grK5,grK33}' Output: The #1 matroid [g7 \sim c1 \sim c2 \sim c-5] +HAS+ minor #1 [grK5] in the list {grK5 grK33}.

The matroid $M(G_8)$:

$$M(G_8)/\{r_4,s_5,s_6\}$$
 contains an $M(K_5)$ -minor.

Command: ./macek -pGF2 '!contract 4;!contract -5;!contract -6;!minor' g8 ' $\{grK5, grK33\}$ '
Output: The #1 matroid [g8 \sim c4 \sim c-5 \sim c-6] +HAS+ minor #1 [grK5] in the list $\{grK5, grK33\}$.

The matroid $M(G_9)$:

$$g_9 = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 \\ 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 1 & 0 & 1 & 0 \\ r_6 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ r_7 & 1 & 0 & 1 & 1 & 1 & 0 & 1 & 1 \\ r_8 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$M(G_9)/\{r_1, r_2, r_3, s_2\}$$
 contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 1;!contract 2;!contract 3;!contract -2;!minor' g9 '{grK5,grK33}' Output: The #1 matroid [g9 \sim c1 \sim c2 \sim c3 \sim c-2] +HAS+ minor #2 [grK33] in the list {grK5 grK33}.

The matroid $M(G_{10})$:

$$M(G_{10})/\{r_1, r_6, s_1, s_3\}$$
 contains an $M(K_5)$ -minor.

Command: ./macek -pGF2 '!contract 1;!contract 6;!contract -1;!contract -3;!minor' g10 '{grK5,grK33}'

Output: The #1 matroid [g10 \sim c1 \sim c6 \sim c-1 \sim c-3] +HAS+ minor #1 [grK5] in the list {grK5 grK33}.

The matroid $M(G_{11})$:

$$M(G_{11})/\{r_3, r_6, s_5, s_7\}$$
 contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 3;!contract 6;!contract -5;!contract -7;!minor' g11 '{grK5,grK33}' Output: The #1 matroid [g11 \sim c3 \sim c6 \sim c-7] +HAS+ minor #2 [grK33] in the list {grK5 grK33}.

The matroid $M(G_{12})$:

$$M(G_{12})/\{r_8, s_1, s_2, s_3\}$$
 contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 8;!contract -1;!contract -2;!contract -3;!minor' g12 ' $\{grK5, grK33\}$ '
Output: The #1 matroid [g12 \sim c8 \sim c-1 \sim c-2 \sim c-3] +HAS+ minor #2 [grK33] in the list $\{grK5, grK33\}$.

$$g_{12} = \begin{bmatrix} r_1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ r_2 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ r_5 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ r_6 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ r_7 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ r_8 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \end{bmatrix}$$

The matroid $M(G_{13})$:

$$M(G_{13})/\{r_2, r_6, s_6, s_9\}$$
 contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 2;!contract 6;!contract -6;!contract -9;!minor' g13 '{grK5,grK33}' Output: The #1 matroid [g13 \sim c2 \sim c6 \sim c-9] +HAS+ minor #2 [grK33] in the list {grK5 grK33}.

The matroid $M(G_{14})$:

 $M(G_{14})/\{r_7,r_8,s_2,s_5\}$ contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 7;!contract 8;!contract -2;!contract -5;!minor' g14 ' $\{grK5, grK33\}$ '
Output: The #1 matroid [g14 \sim c7 \sim c8 \sim c-2 \sim c-5] +HAS+ minor #2 [grK33] in the list $\{grK5, grK33\}$.

The matroid $M(G_{15})$:

$$g_{15} = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 \\ 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 1 \\ r_6 & 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ r_7 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\ r_8 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ r_9 & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 \end{bmatrix}$$

$$M(G_{15})/\{r_7, r_8, r_9, s_3\}$$
 contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 7;!contract 8;!contract 9;!contract -3;!minor' g15 '{grK5,grK33}' Output: The #1 matroid [g15 \sim c7 \sim c8 \sim c9 \sim c-3] +HAS+ minor #2 [grK33] in the list {grK5 grK33}.

The matroid $M(G_{16})$:

$$M(G_{16})/\{r_6, r_7, r_9, s_5\}$$
 contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 6;!contract 7;!contract 9;!contract -5;!minor' g16 'grK5, grK33'
Output: The #1 matroid [g16 \sim c6 \sim c7 \sim c9 \sim c-5] +HAS+ minor #2 [grK33] in the list grK5 grK33}.

The matroid $M(G_{18})$:

$$M(G_{18})/\{r_4, r_7, s_4, s_5\}$$
 contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 4;!contract 7;!contract -4;!contract -5;!minor' g18 ' $\{grK5, grK33\}$ '
Output: The #1 matroid [g18 \sim c4 \sim c7 \sim c-4 \sim c-5] +HAS+ minor #2 [grK33] in the list $\{grK5, grK33\}$.

The matroid $M(G_{20})$:

$$g_{20} = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 \\ r_1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 0 & 1 & 1 & 1 & 1 & 1 \\ r_5 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ r_6 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ r_7 & 0 & 1 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ r_8 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$M(G_{20})/\{r_1, r_2, s_7, s_8\}$$
 contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 1;!contract 2;!contract -7;!contract -8;!minor' g20 '{grK5,grK33}' Output: The #1 matroid [g20 \sim c1 \sim c2 \sim c-7 \sim c-8] +HAS+ minor #2 [grK33] in the list {grK5 grK33}.

The matroid $M(G_{21})$:

$$g_{21} = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 & s_9 \\ 0 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ r_6 & & & & & & & & & & & & & & & \\ r_7 & & & & & & & & & & & & & & & \end{bmatrix}$$

$M(G_{21})/\{r_4, s_2, s_5\}$ contains an $M(K_5)$ -minor.

Command: ./macek -pGF2 '!contract 4;!contract -2;!contract -5;!minor' g21 '{grK5,grK33}' Output: The #1 matroid [g21 \sim c4 \sim c-2 \sim c-5] +HAS+ minor #1 [grK5] in the list {grK5 grK33}.

The matroid $M(G_{22})$:

$$g_{22} = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 \\ 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 1 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ r_5 & 0 & 0 & 0 & 1 & 1 & 1 & 0 & 1 \\ r_6 & 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ r_7 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 1 \\ r_8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$M(G_{22})/\{r_5, r_6, r_7, s_6\}$$
 contains an $M(K_5)$ -minor.

Command: ./macek -pGF2 '!contract 5;!contract 6;!contract 7;!contract -6;!minor' g22 'grK5, grK33'
Output: The #1 matroid [g22 \sim c5 \sim c6 \sim c7 \sim c-6] +HAS+ minor #1 [grK5] in the list grK5 grK33.

The matroid $M(G_{23})$:

$$g_{23} = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 1 \\ r_7 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ r_8 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ r_9 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

 $M(G_{23})/\{r_1, r_8, s_3, s_4\}$ contains an $M(K_{3,3})$ -minor.

Command: ./macek -pGF2 '!contract 1;!contract 8;!contract -3;!contract -4;!minor' g23 ' $\{grK5, grK33\}$ '
Output: The #1 matroid [g23 \sim c1 \sim c8 \sim c-4] +HAS+ minor #2 [grK33] in the list $\{grK5, grK33\}$.

The matroid $M(G_{24})$:

 $M(G_{24})/\{r_1, s_1, s_9\}$ contains an $M(K_5)$ -minor.

Command: ./macek -pGF2 '!contract 1;!contract -1;!contract -9;!minor' g24 '{grK5,grK33}' Output: The #1 matroid [g24 \sim c1 \sim c-9] +HAS+ minor #1 [grK5] in the list {grK5 grK33}.

The matroid $M(G_{25})$:

$$M(G_{25})/\{r_5, s_{10}, s_{12}\}\$$
contains an $M(K_5)$ -minor.

Command: ./macek -pGF2 '!contract 5;!contract -10;!contract -12;!minor' g25 ' $\{grK5, grK33\}$ ' Output: The #1 matroid [g25 \sim c5 \sim c-10 \sim c-12] +HAS+ minor #1 [grK5] in the list $\{grK5, grK33\}$.

The matroid $M(G_{26})$:

$$M(G_{26})/\{r_5, r_6, r_7, s_4\}$$
 contains an $M(K_5)$ -minor.

Command: ./macek -pGF2 '!contract 5;!contract 6;!contract 7;!contract -4;!minor' g26 '{grK5,grK33}' Output: The #1 matroid [g26 \sim c5 \sim c6 \sim c7 \sim c-4] +HAS+ minor #1 [grK5] in the list {grK5 grK33}.

The matroid $M(G_{27})$:

$$M(G_{27})/\{r_1, r_2, r_3, r_4, s_2\}$$
 contains an $M(K_5)$ -minor.

Command: ./macek -pGF2 '!contract 1;!contract 2;!contract 3;!contract 4;!contract -2;!minor' g27
'{grK5,grK33}'

Output: The #1 matroid $[g27\sim c1\sim c2\sim c3\sim c4\sim c-2]$ +HAS+ minor #1 [grK5] in the list $\{grK5\ grK33\}$.

$$g_{27} = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 & s_9 & s_{10} \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ r_6 & & & & & & & & & & \\ r_7 & & & & & & & & & & & \\ r_8 & & & & & & & & & & & & \\ 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$

The matroid $M(G_{28})$:

$$g_{28} = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 & s_9 \\ 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ r_7 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ r_8 & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$

 $M(G_{28})/\{r_1,r_2,r_3,r_4,r_5,s_2\}$ contains an $M(K_5)$ -minor.

Command: ./macek -pGF2 '!contract 1;!contract 2;!contract 3;!contract 4;!contract 5;!contract -2;!minor' g28 '{grK5,grK33}'

 $\textbf{Output:} \quad \text{The \#1 matroid } [g28 \sim c1 \sim c2 \sim c3 \sim c4 \sim c5 \sim c] \quad \text{+HAS+ minor \#1 } [grK5] \text{ in the list } \{grK5 \ grK33\}.$

The matroid $M(G_{29})$:

$$M(G_{29})/\{r_1, r_2, r_3, r_4, r_5, s_2\}$$
 contains an $M(K_{3,3})$ -minor.

Command:./macek -pGF2 '!contract 1;!contract 2;!contract 3;!contract 4;!contract 5;!contract -2;!minor' g29 '{grK5,grK33}'

Output: The #1 matroid [$g5\sim c7\sim c8\sim c9\sim c-8$] +HAS+ minor #2 [grK33] in the list {grK5 grK33}.

The matroid R_{15} :

$$r_{15} = \begin{bmatrix} r_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 \\ r_2 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ r_6 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ r_7 & 0 & 1 & 1 & 1 & 1 & 1 & 0 & 1 \end{bmatrix}$$

 $R_{15}\setminus\{r_6,r_7,s_8\}$ contains an $M(K_{3,3})$ -minor.

Command:./macek -pGF2 '!delete 6; !delete 7; !delete -8; !minor' r15 '{"grK5; !dual", "grK33; !dual"}'
Output: The #1 matroid [r15 \sim d6 \sim d7 \sim d-8] +HAS+ minor #2 [grK33#] in the list {grK5# grK33#}.

The matroid R_{16} :

$$r_{16} = \begin{bmatrix} s_1 & s_2 & s_3 & s_4 & s_5 & s_6 & s_7 & s_8 \\ 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 1 & 1 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ r_6 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\ r_7 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ r_8 & 1 & 0 & 1 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

 $M(R_{16})\setminus\{r_8,s_1,s_3,s_8\}$ contains an $M(K_{3,3})$ -minor.

```
Command: ./macek -pGF2 '!delete 8;!delete -1;!delete -3;!delete -8;!minor' r16
'{"grK5;!dual","grK33;!dual"}'
Output: The #1 matroid [r16~d8~d-1~d-3~d-8] +HAS+ minor #2 [grK33#] in the list {grK5# grK33#}.
```

Acknowledgements

This research has been funded by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thalis. Investing in knowledge society through the European Social Fund.

References

- [1] P. Hlileny. MACEK 1.2+ MAtroids Computed Efficiently Kit, 2007. http://www.fi.muni.cz/~hlineny/MACEK/.
- [2] H. Qin and D. Slilaty and X. Zhou. The regular excluded minors for signed-graphic matroids. *Combinatorics, Probability and Computing*, 18:953–978, 2009.

