SOLUCIÓN DE ECUACIONES NO LINEALES

Contenido

- Preliminares
 - Definiciones
- Métodos de solución
 - El Método de Bisección de Bolzano
 - El Método de Newton-Raphson
 - El Método de la Secante
 - El Método de la Posición Falsa

Contenido

- Preliminares
 - Definiciones
- Métodos de solución
 - El Método de Bisección de Bolzano
 - El Método de Newton-Raphson
 - El Método de la Secante
 - El Método de la Posición Falsa

Definiciones

Definición

Supongamos que f(x) está definida en un conjunto S de número reales y sea $x_0 \in S$. Se dice que f es *continua* en $x = x_0$ si

$$\lim_{x \to x_0} f(x) = f(x_0)$$

Se dice que f(x) es continua en S si es continua en cada punto $x \in S$. Denotaremos por C(s) el conjunto de todas las funciones f que son continuas en S. Cuando S sea un intervalo, digamos [a,b], entonces usaremos la notación C[a,b].

Definiciones

Definición

Raíz de una ecuación, cero de una función. Supongamos que f(x) es una función continua. Cualquier número r tal que f(r) = 0 se llama raíz de la ecuación f(x) = 0; también se dice que r es un cero de la función f(x).

Teorema del valor intermedio o de Bolzano

Supongamos que $f \in C[a, b]$ y que L es cualquier número entre f(a) y f(b). Entonces existe un número c en (a, b) tal que f(c) = L.

Definiciones

Definición

Raíz de una ecuación, cero de una función. Supongamos que f(x) es una función continua. Cualquier número r tal que f(r) = 0 se llama raíz de la ecuación f(x) = 0; también se dice que r es un cero de la función f(x).

Teorema del valor intermedio o de Bolzano.

Supongamos que $f \in C[a, b]$ y que L es cualquier número entre f(a) y f(b). Entonces existe un número c en (a, b) tal que f(c) = L.

- El Método de Bisección de Bolzano
- El Método de Newton-Raphson
- El Método de la Posición Falsa

Contenido

- Preliminares
 - Definiciones
- Métodos de solución
 - El Método de Bisección de Bolzano
 - El Método de Newton-Raphson
 - El Método de la Secante
 - El Método de la Posición Falsa

- El Método de Bisección de Bolzano
- El Metodo de Newton-Raphson
- El Método de la Posición Falsa

1. Empezar con un intervalo de partida [a, b] en el que f(a) y f(b) tengan distinto signo. Entonces, por el anterior Teorema, la gráfica y = f(x) cruzará el eje OX en un cero x = r que está en dicho intervalo.

2. Tomar el punto medio del intervalo $c = \frac{a+b}{2}$.

- Si f(a) yf(c) tienen signos opuestos, entonces hay un cero en [a, c].
- Si f(c) y f(b)tienen signos opuestos, entonces hay un cero en [c, b].
- Si f(c) = 0, entonces c es un cero.
- 3. Renombramos el nuevo intervalo más pequeño también como [a,b] y repetimos el proceso hasta que el intervalo sea tan pequeño como deseemos.

- 2. Tomar el punto medio del intervalo $c = \frac{a+b}{2}$.
 - Si f(a) yf(c) tienen signos opuestos, entonces hay un cero en [a, c].
 - Si f(c) y f(b)tienen signos opuestos, entonces hay un cero en [c, b].
 - Si f(c) = 0, entonces c es un cero.
- 3. Renombramos el nuevo intervalo más pequeño también como [a,b] y repetimos el proceso hasta que el intervalo sea tan pequeño como deseemos.

- 2. Tomar el punto medio del intervalo $c = \frac{a+b}{2}$.
 - Si f(a) yf(c) tienen signos opuestos, entonces hay un cero en [a, c].
 - Si f(c) y f(b)tienen signos opuestos, entonces hay un cero en [c, b].
 - Si f(c) = 0, entonces c es un cero.
- 3. Renombramos el nuevo intervalo más pequeño también como [a,b] y repetimos el proceso hasta que el intervalo sea tan pequeño como deseemos.

- 2. Tomar el punto medio del intervalo $c = \frac{a+b}{2}$.
 - Si f(a) yf(c) tienen signos opuestos, entonces hay un cero en [a, c].
 - Si f(c) y f(b)tienen signos opuestos, entonces hay un cero en [c, b].
 - Si f(c) = 0, entonces c es un cero.

- 2. Tomar el punto medio del intervalo $c = \frac{a+b}{2}$.
 - Si f(a) yf(c) tienen signos opuestos, entonces hay un cero en [a, c].
 - Si f(c) y f(b)tienen signos opuestos, entonces hay un cero en [c, b].
 - Si f(c) = 0, entonces c es un cero.
- 3. Renombramos el nuevo intervalo más pequeño también como [a,b] y repetimos el proceso hasta que el intervalo sea tan pequeño como deseemos.

(a) Si f(a) y f(c) tienen signos opuestos, entonces se recorta por la derecha.

(b) Si *f(c)* y *f(b)* tienen signos opuestos, entonces se recorta por la izquierda

- Método de Bisección de Bolzano
- El Método de Newton-Raphson
- El Méta da da la Dadición Fal
- El Método de la Posición Falsa

Contenido

- Preliminares
 - Definiciones
- Métodos de solución
 - El Método de Bisección de Bolzano
 - El Método de Newton-Raphson
 - El Método de la Secante
 - El Método de la Posición Falsa

Supongamos que la aproximación inicial p_0 está cerca de la raíz p. Definimos p_1 como el punto de intersección del eje de abcisas con la recta tangente a la curva en el punto $(p_0, f(p_0)) . p_1$ estará más cerca de p que p_0 .

Podemos encontrar la ecuación que relaciona p_1 con p_0 igualando dos fórmulas distintas para la pendiente m de la recta tangente. Por un lado,

$$m=\frac{0-f(p_0)}{p_1-p_0}$$

que es la pendiente de la recta que pasa por $(p_1, 0)$ y $(p_0, f(p_0))$; por otro lado,

$$m=f^{\prime}\left(p_{0}\right)$$

que es la pendiente de la recta tangente a la curva en el punto $(p_0, f(p_0))$.

Igualando y despejando p₁ obtenemos:

$$p_1 = p_0 - \frac{f(p_0)}{f'(p_0)}$$

Este proceso puede repetirse para obtener una sucesión $\{p_k\}$ que converge a p.

- l Método de Bisección de Bolzano L Método de Newton-Banhson
- El Método de Newton-Raphson
- El Método de la Posición Falsa

Teorema de Newton-Raphson.

Supongamos que la función $f \in C^2[a,b]$ y que existe un número $p \in [a,b]$ tal que f(p)=0. Si $f'(p)\neq 0$, entonces existe $\delta>0$ tal que la sucesión $\{p_k\}_{k=0}^{\infty}$ definida por el proceso iterativo

$$p_k = g(p_{k-1}) = p_{k-1} - \frac{f(p_{k-1})}{f'(p_{k-1})}$$

para k=1,2,..., converge a p cualquiera que sea la aproximación inicial $p_0 \in [p-\delta,p+\delta]$.

- Método de Bisección de Bolzano
- El Método de Newton-Raphson
- El Método de la Secante
 - l Método de la Posición Falsa

Contenido

- Preliminares
 - Definiciones
- Métodos de solución
 - El Método de Bisección de Bolzano
 - El Método de Newton-Raphson
 - El Método de la Secante
 - El Método de la Posición Falsa

- El Método de Bisección de Bolzano El Método de Newton-Raphson
- El Método de la Secante
- El Método de la Posición Falsa

- En el algoritmo de Newton-Raphson hay que evaluar dos funciones en cada iteración, $f(p_{k-1})$ y $f'(p_{k-1})$.
- Hay muchas funciones dadas en forma no elemental (como integrales, o sumas de series, etc.) para las que sería deseable disponer de un método que necesite evaluaciones únicamente de f (x)y no de f'(x).
- El método de la secante necesita sólo una evaluación de f (x) por paso.

- El Método de la Secante

- En el algoritmo de Newton-Raphson hay que evaluar dos funciones en cada iteración, $f(p_{k-1})$ y $f'(p_{k-1})$.
- Hay muchas funciones dadas en forma no elemental (como integrales, o sumas de series, etc.) para las que sería deseable disponer de un método que necesite evaluaciones únicamente de f(x)y no de f'(x).
- El método de la secante necesita sólo una evaluación de

- El Método de la Secante

- En el algoritmo de Newton-Raphson hay que evaluar dos funciones en cada iteración, $f(p_{k-1})$ y $f'(p_{k-1})$.
- Hay muchas funciones dadas en forma no elemental (como integrales, o sumas de series, etc.) para las que sería deseable disponer de un método que necesite evaluaciones únicamente de f(x)y no de f'(x).
- El método de la secante necesita sólo una evaluación de f(x) por paso.

Partimos de dos puntos iniciales $(p_0, f(p_0))$ y $(p_1, f(p_1))$ cercanos al punto (p, 0), y se define p_2 como la abcisa del punto de intersección de la recta que pasa por estos dos puntos con el eje OX. p_2 estará más cerca de p que p_0 y que p_1 .

- El Método de la Secante

 La fórmula que relaciona p₂, p₁y p₀ se halla escribiendo la pendiente de la recta en cuestión:

$$m = \frac{f(p_1) - f(p_0)}{p_1 - p_0}$$
 y $m = \frac{0 - f(p_1)}{p_2 - p_1}$

La primera es la pendiente de la recta secante que pasa

- il Método de Bisección de Bolzano il Método de Newton-Raphson
- El Método de Newton-Hapns
 El Método de la Secante
 - El Método de la Posición Falsa

 La fórmula que relaciona p₂, p₁y p₀ se halla escribiendo la pendiente de la recta en cuestión:

$$m = \frac{f(p_1) - f(p_0)}{p_1 - p_0}$$
 y $m = \frac{0 - f(p_1)}{p_2 - p_1}$

• La primera es la pendiente de la recta secante que pasa por los dos puntos iniciales. La segunda es la pendiente de la recta que pasa por $(p_1, f(p_1))$ y $(p_2, 0)$.

 Igualando los miembros derechos de las dos fórmulas y despejando p₂ = g (p₁, p₀) obtenemos

$$p_2 = p_1 - \frac{f(p_1)(p_1 - p_0)}{f(p_1) - f(p_0)}$$

 El término general de la sucesión generada por este método viene dado por la fórmula de iteración de dos puntos:

$$p_{k+1} = g(p_k, p_{k-1}) = p_k - \frac{f(p_k)(p_k - p_{k-1})}{f(p_k) - f(p_{k-1})}$$

para
$$k = 1, 2,$$

 Igualando los miembros derechos de las dos fórmulas y despejando p₂ = g (p₁, p₀) obtenemos

$$p_2 = p_1 - \frac{f(p_1)(p_1 - p_0)}{f(p_1) - f(p_0)}$$

 El término general de la sucesión generada por este método viene dado por la fórmula de iteración de dos puntos:

$$p_{k+1} = g(p_k, p_{k-1}) = p_k - \frac{f(p_k)(p_k - p_{k-1})}{f(p_k) - f(p_{k-1})}$$
para $k = 1, 2,$

- il Método de Bisección de Bolzano
- El Método de Newton-Raphson
- El Método de la Posición Falsa

Contenido

- Preliminares
 - Definiciones
- Métodos de solución
 - El Método de Bisección de Bolzano
 - El Método de Newton-Raphson
 - El Método de la Secante
 - El Método de la Posición Falsa

- Método de Bisección de Bolzano Método de Newton-Raphson
- El Método de la Posición Falsa

- Supongamos que f(a) y f(b) tienen distinto signo. En el método de bisección se usa el punto medio del intervalo [a, b] para llevar a cabo el siguiente paso.
- Suele conseguirse una mejor aproximación usando el punto (c,0)en el que la recta secante L que pasa por los puntos (a, f (a)) y (b, f (b)) cruza el eje OX.

- Supongamos que f(a) y f(b) tienen distinto signo. En el método de bisección se usa el punto medio del intervalo [a, b] para llevar a cabo el siguiente paso.
- Suele conseguirse una mejor aproximación usando el punto (c,0)en el que la recta secante L que pasa por los puntos (a, f (a)) y (b, f (b)) cruza el eje OX.

- Método de Bisección de Bolzano
 Método de Newton-Raphson
- El Método de Newton-Raphson
- El Método de la Posición Falsa

(a) Si f(a) y f(c) tienen signos opuestos, entonces se recorta por la derecha.

(b) Si f(c) y f(b) tienen signos opuestos, entonces se recorta por la izquierda.

Para hallar el punto c, igualamos dos fórmulas para la pendiente m de la recta L:

$$m=\frac{f(b)-f(a)}{b-a}$$

usando los puntos (a, f(a)) y (b, f(b))y

$$m=\frac{0-f(b)}{c-b}$$

usando los puntos (c,0) y (b,f(b)). Igualando y despejando c:

$$c = b - \frac{f(b)(b-a)}{f(b) - f(a)}$$

Las tres posibilidades son las mismas que con la bisección de Bolzano:

- Si f(a) y f(c) tienen signos opuestos, entonces hay un cero en [a, c].
- 2 Si f(c) y f(b) tienen signos opuestos, entonces hay un cero en [c, b].
- ③ Si f(c) = 0, entonces c es un cero.

Las tres posibilidades son las mismas que con la bisección de Bolzano:

- Si f(a) y f(c) tienen signos opuestos, entonces hay un cero en [a, c].
- ② Si f(c) y f(b) tienen signos opuestos, entonces hay un cero en [c, b].
- Si f(c) = 0, entonces c es un cero.

Las tres posibilidades son las mismas que con la bisección de Bolzano:

- Si f(a) y f(c) tienen signos opuestos, entonces hay un cero en [a, c].
- ② Si f(c) y f(b) tienen signos opuestos, entonces hay un cero en [c, b].
- 3 Si f(c) = 0, entonces c es un cero.

- La fórmula dada junto con el proceso de decisión descrito se usa para construir una sucesión de intervalos $\{[a_n, b_n]\}$ cada uno de los cuales contiene un cero.
- En cada paso la aproximación al cero obtenida es:

$$c_n = b_n - \frac{f(b_n)(b_n - a_n)}{f(b_n) - f(a_n)}$$

y puede probarse que la sucesión $\{c_n\}$ converge a un cero r de la función

- La fórmula dada junto con el proceso de decisión descrito se usa para construir una sucesión de intervalos $\{[a_n, b_n]\}$ cada uno de los cuales contiene un cero.
- En cada paso la aproximación al cero obtenida es:

$$c_n = b_n - \frac{f(b_n)(b_n - a_n)}{f(b_n) - f(a_n)}$$

y puede probarse que la sucesión $\{c_n\}$ converge a un cero r de la función.

Bibliografía

