

日本国特許庁 JAPAN PATENT OFFICE

17.02.04

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 1月27日

RECEIVED **0 1 APR 2004**

PCT

WIPO

出願番号 Application Number:

特願2003-017294

[ST. 10/C]:

[JP2003-017294]

出 願 人
Applicant(s):

大日本インキ化学工業株式会社

PRIORITY DOCUM
SUBMITTED OR TRANSMIT
COMPLIANCE WITH
RULE 17.1(a) OR (b)

2004年 3月18日

特許庁長官 Commissioner, Japan Patent Office 今井康

【書類名】

特許願

【整理番号】

PX020437

【あて先】

特許庁長官殿

【国際特許分類】

C09K 19/42

【発明者】

【住所又は居所】

埼玉県北足立郡伊奈町小室9651-4-101

【氏名】

田中 芳清

【発明者】

【住所又は居所】

東京都板橋区高島平1-67-12

【氏名】

竹内 清文

【発明者】

【住所又は居所】

東京都東大和市仲原3-6-27

【氏名】

高津 晴義

【特許出願人】

【識別番号】 000002886

【氏名又は名称】

大日本インキ化学工業株式会社

【代理人】

【識別番号】

100088764

【弁理士】

【氏名又は名称】 高橋 勝利

【電話番号】

03-5203-7754

【手数料の表示】

【予納台帳番号】

008257

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【包括委任状番号】 0214178

【プルーフの要否】

要

【書類名】

明細書

【発明の名称】

ネマチック液晶組成物及びこれを用いた液晶表示素子

【特許請求の範囲】

【請求項1】 一般式 (IA) 及び (IB) で表される化合物群から1種もしくは2種以上選ばれる化合物を10~40質量%含有し、一般式 (II) で表される化合物を1種もしくは2種以上を10~40質量%含有し、なおかつ一般式 (IA)、 (IB) 及び (II) で表される化合物群の含有量が45~70質量%であり、さらに一般式 (III) で表される化合物を30~55質量%含有することを特徴とする負の誘電異方性を有するネマチック液晶組成物。

【化1】

(式中、 $R^1 \sim R^4$ は各々独立的に炭素数 $1 \sim 10$ のアルキル基又は炭素数 $2 \sim 10$ のアルケニル基を表し、該アルキル基又は該アルケニル基中に存在する1個又は2個以上の CH_2 基は、0原子が相互に直接結合しないものとして、-0-、-C0-又は-C00-で置換されていてもよく、 $R^5 \sim R^8$ は各々独立的に炭素数 $1 \sim 10$ のアルキル基、アルコキシ基又は炭素数 $2 \sim 10$ のアルケニル基、アルケニルオキシ基を表し、該アルキル基、該アルコキシ基、該アルケニル基又は該アルケニルオキシ基中に存在する1個又は2個以上の CH_2 基は、0原子が相互に直接結合しないものとして、-0-、-C0-又は-C00-で置換されていてもよく、 $2^1 \sim 2^6$ は各々独立的に単結合、 $-CH_2$ CH2-、

-CH=CH-、 $-C\equiv C-$ 、 $-CH_2O-$ 、 $-OCH_2-$ 、-COO-又は-OCO-を表し、1 及びmは0又は1であり、A、B及びCはh ランス-1, 4-シクロヘキシレン、1, 4-フェニレン又は2, 3-ジフルオロ-1, 4-フェニレンを表すが、B及びCの少なくとも一方は2, 3-ジフルオロ-1, 4-フェニレンを表し、D及びEはh ランス-1, 4-シクロヘキセニレン又は1, 4-フェニレンを表す。)

【請求項2】 一般式 (IVA) 、 (IVB) 及び (V) で表される化合物群から 1種もしくは2種以上選ばれる化合物を0.1~25質量%含有する請求項1記載のネマチック液晶組成物。

【化2】

$$R^9 \longrightarrow Z^7 \longrightarrow Z^8 \longrightarrow F$$
 F F OR^{10} (IVA)
 $R^{11} \longrightarrow Z^9 \longrightarrow Z^{10} \longrightarrow OR^{12}$ (IVB)
 $R^{13} \longrightarrow Z^{11} \longrightarrow OR^{14}$ (V)

(式中、 $R^9\sim R^{14}$ は各々独立的に炭素数 $1\sim 10$ のアルキル基又は炭素数 $2\sim 10$ のアルケニル基を表し、該アルキル基又は該アルケニル基中に存在する1個又は2個以上の CH_2 基は、0原子が相互に直接結合しないものとして、-0-、-CO-又は-COO-で置換されていてもよく、 $Z^7\sim Z^{11}$ は各々独立的に単結合、 $-CH_2CH_2$ -、-CH=CH-、 $-CH_2O$ -、 $-OCH_2$ -、-COO-又は-OCO-を表す。)

【請求項3】 一般式(IA-1)及び(IA-2)で表される化合物群から選ばれる化合物を含有する請求項1又は2記載のネマチック液晶組成物。

【化3】

$$R^{1}$$
 OR^{2}
 OR^{2}
 OR^{2}
 OR^{2}
 OR^{2}
 OR^{2}
 OR^{2}

(式中、R¹及びR²は請求項1に記載の一般式(IA)におけると同じ意味を表す。

【請求項4】 一般式(IB-1)及び(IB-2)で表される化合物群から選ばれる化合物を含有する請求項1~3のいずれかに記載のネマチック液晶組成物。

【化4】

(式中、R³及びR⁴は請求項1に記載の一般式(IB)におけると同じ意味を表す。

【請求項5】 一般式 (II-1) ~ (II-12) で表される化合物群から選ばれる化合物を含有する請求項1~4のいずれかに記載のネマチック液晶組成物。

【化5】

(式中、 R^5 は請求項1に記載の一般式 (II) におけると同じ意味を表し、 R^{15} は炭素数1~10のアルキル基又は炭素数2~10のアルケニル基を表す。)

【請求項6】 一般式(III-1)~(III-16)で表される化合物群から選ばれる化合物を含有する請求項1~5のいずれかに記載のネマチック液晶組成物。

【化6】

【請求項7】 一般式 (IVA-1) ~ (IVA-3) で表される化合物群から選ばれる化合物を含有する請求項1~6のいずれかに記載のネマチック液晶組成物。

【化7】

$$R^9$$
 OR^{10}
 $IVA-1$)
 R^9
 OR^{10}
 $IVA-2$)
 R^9
 OR^{10}
 $IVA-2$)
 R^9
 OR^{10}
 $IVA-3$)

(式中、 R^9 及び R^{10} は請求項2に記載の一般式(IVA)におけると同じ意味を表す。)

【請求項8】 一般式 (IVB-1) ~ (IVB-3) で表される化合物群から選ばれる化合物を含有する請求項1~7のいずれかに記載のネマチック液晶組成物。

【化8】

(式中、 R^{11} 及び R^{12} は請求項2に記載の一般式(IVB)におけると同じ意味を表す。)

【請求項9】 一般式 (V-1) 及び (V-2) で表される化合物群から選ばれる 化合物を含有する請求項1~8のいずれかに記載のネマチック液晶組成物。

【化9】

$$R^{13} \longrightarrow OR^{14} \qquad (V-1)$$

$$R^{13} \longrightarrow OR^{14} \qquad (V-2)$$

(式中、R13及びR14は請求項2に記載の一般式(V)におけると同じ意味を表す。)

【請求項10】 誘電異方性が $-6\sim-3$ の範囲であり、ネマチック相一等方性液体相転移温度(T_{N-I})が70 $\mathbb{C}\sim120$ \mathbb{C} の範囲であり、屈折率異方性が $0.07\sim0.1$ 5の範囲であり、粘度が30m $\mathbb{P}a\cdot s$ 以下である請求項 $1\sim9$ のいずれかに記載のネマチック液晶組成物。

【請求項11】 請求項1~10のいずれかに記載のネマチック液晶組成物を 用いた液晶表示素子。

【請求項12】 請求項1~10のいずれかに記載のネマチック液晶組成物を 用いたアクティブマトリックスディスプレイ用液晶表示素子。

【請求項13】 請求項1~10のいずれかに記載のネマチック液晶組成物を用いたVAモード、IPSモード又はECBモード用液晶表示素子。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は液晶表示素子に最適な諸物性を有する、負の誘電異方性を有するネマチック液晶組成物及びこれを用いた液晶表示素子に関する。

[0002]

【従来の技術】

現在広く使用されているTN (Twisted Nematic) 型液晶表示素子やSTN (Super Twisted Nematic) 型液晶表示素子は、視野角により電気光学特性に変化が生じるため視角特性が悪いという問題を有しており、TV等の視角特性が重要な用途に

8/

おいて大きな問題となっている。より広い視野角を得る方法としてVA(Vertical ly aligned)方式(非特許文献1参照)、IPS(In-Plane Switching)方式(非特許文献2参照)等が提案され実用化に至っている。VA-LCD(Vertically Aligned Liquid Crystal Display)において用いられる液晶材料は、TN型、STN型と異なり誘電率異方性が負の液晶材料が必要とされ(特許文献1参照)、次のような特性が求められている。1.低い駆動電圧、2.速い応答速度、3.高いネマチック相一等方性液体相転移温度(T_{N-I})すなわち絶対値の大きな負の誘電率異方性、及びより高いネマチック相一等方性液体相転移温度(T_{N-I})を有する低電圧駆動が可能な低粘性の液晶組成物が要求されている。

[0003]

以上の要求に対し、以下の液晶材料(特許文献2~7参照)が用いられている。 【化10】

(式中、R及びR'は炭素数1~10のアルキル基、アルコキシ基を表す。)

[0004]

しかし、(a) の化合物は絶対値の大きな負の誘電率異方性を有するが、この化合物を多量に用いた液晶組成物はネマチック相一等方性液体相転移温度(T_{N-I})を低下させてしまう問題がある。又、(b) の化合物を用いた液晶組成物は比較的高いネマチック相一等方性液体相転移温度(T_{N-I})を有するものの、負の誘電率異方性の絶対値が大きくないという問題点があった。

[0005]

一方、縮合環系液晶として幅広い液晶温度範囲を有する液晶組成物に用いられる液晶材料が開示されている(特許文献8参照)。この化合物を用いた液晶組成物は絶対値の大きな負の誘電率異方性を有し、ネマチック相一等方性液体相転移温度(T_{N-I})も高い特徴を有するが、粘性が比較的高く用いた液晶表示素子の応答速度が速くならない問題点を有している。

[0006]

以上より、絶対値の大きな負の誘電率異方性を有し、ネマチック相一等方性液体相転移温度(T_{N-I})が高く、なおかつ粘性の低い液晶組成物の提供は必ずしも容易ではなく、優れた特性を有する液晶組成物の開発が望まれていた。

【特許文献1】

特開平11-24225号公報 (1頁)

【特許文献2】

特開平8-104869号公報 (2頁)

【特許文献3】

特開平10-176167号公報 (2頁)

【特許文献4】

特開平11-140447号公報 (2頁)

【特許文献5】

特開2001-192657号公報 (2頁)

【特許文献6】

特開2001-316669号公報 (2頁)

【特許文献7】

特開2002-201474号公報 (2頁)

【特許文献8】

特開2002-69449号公報 (2頁)

【非特許文献 1】

ディスプレイ国際ワークショップ (IDW) '97 ダイジェスト、1997年 (156頁)

【非特許文献2】

アジアディスプレイ, 95 ダイジェスト、1995年 (707頁)

[0007]

【発明が解決しようとする課題】

本発明の課題は、低電圧駆動が可能な絶対値の大きな負の誘電異方性、幅広い 液晶温度範囲、低い粘性を有する、負の誘電異方性を有するネマチック液晶組成

物及びその組成物を用いた液晶表示素子を提供することにある。

[0008]

【課題を解決するための手段】

本発明は上記課題を解決するために、一般式(IA)及び(IB)で表される化合物群から1種もしくは2種以上選ばれる化合物を10~40質量%含有し、一般式(II)で表される化合物を1種もしくは2種以上を10~40質量%含有し、なおかつ一般式(IA)、(IB)及び(II)で表される化合物群の含有量が45~70質量%であり、さらに一般式(III)で表される化合物を30~55質量%含有することを特徴とする負の誘電異方性を有するネマチック液晶組成物及びこれを用いた液晶表示素子を提供する。

[0009]

【化11】

[0010]

(式中、 R^1 ~ R^4 は各々独立的に炭素数1~10のアルキル基又は炭素数2~10のアルケニル基を表し、該アルキル基又は該アルケニル基中に存在する1個又は2個以上の CH_2 基は、0原子が相互に直接結合しないものとして、-0-、-C0-又は-C00-で置換されていてもよく、 R^5 ~ R^8 は各々独立的に炭素数1~10のアルキル基、アルコキシ基又は炭素数2~10のアルケニル基、アルケニルオキシ基を表し、該アルキ

ル基、該アルコキシ基、該アルケニル基又は該アルケニルオキシ基中に存在する 1個又は2個以上の CH_2 基は、0原子が相互に直接結合しないものとして、-0-、-C0-又は-C00-で置換されていてもよく、 Z^1 - Z^6 は各々独立的に単結合、 $-CH_2CH_2$ -、-CH=CH-、-C=C-、 $-CH_2O$ -、 $-OCH_2$ -、-C00-又は-0C0-を表し、1 及びmは0又は1であり、A、B及びCは1ランス-1,4-シクロヘキシレン、1,4-フェニレン又は2,3-ジフルオロ-1,4-フェニレンを表すが、B及びCの少なくとも一方は2,3-ジフルオロ-1,4-フェニレンを表し、D及びEは19ンス-11,4-シクロヘキセニレン又は11,4-フェニレンを表す。1

[0011]

【発明の実施の形態】

本発明で得られるネマチック液晶組成物は、絶対値が大きい負の誘電異方性、 幅広い液晶温度範囲、低い粘度を特徴とした特性を有している。

[0012]

一般式 (IA) 及び (IB) で表される化合物群から選ばれる化合物を15~40質量%含有することが好ましく、なおかつ一般式 (II) で表される化合物から選ばれる化合物を15~40質量%含有することが好ましく、全体として一般式 (IA)、 (IB) 及び (II) で表される化合物群から3種以上選ばれる化合物を50~70質量%含有することが好ましい。

[0013]

一般式 (IA) 、 (IB) 及び (II) で表される化合物群の含有率は、応答速度を 重視した場合には45~55質量%が好ましく、誘電異方性は-5~-3の範囲であるこ とが好ましく、粘度は26mPa・s以下であることが好ましい。

[0014]

一般式 (III) で表される化合物から1種もしくは2種以上選ばれる化合物を含有するが、2種以上含有することが好ましく、含有率は35~55質量%が好ましく、 粘度は26mPa・s以下であることが好ましい。

[0015]

追加の成分として、一般式 (IVA)、 (IVB) 及び (V) で表される化合物群

【化12】

$$R^{9}$$
 Z^{7} Z^{8} P P QR^{10} QR^{10} QR^{11} QR^{12} QR^{13} QR^{13} QR^{14} QR^{14} QR^{15} QR^{15} QR^{16} QR

[0016]

(式中、 $R^9\sim R^{14}$ は各々独立的に炭素数 $1\sim 10$ のアルキル基又は炭素数 $2\sim 10$ のアルケニル基を表し、該アルキル基又は該アルケニル基中に存在する1個又は2個以上の CH_2 基は、0原子が相互に直接結合しないものとして、-0-、-CO-又は-COO-で置換されていてもよく、 $Z^7\sim Z^{11}$ は各々独立的に単結合、 $-CH_2CH_2$ -、-CH=CH-、-C $\equiv C$ -、 $-CH_2O$ -、 $-OCH_2$ -、-COO-又は-OCO-を表す。)から1種もしくは2種以上選ばれる化合物を $0.1\sim 25$ 質量%含有することが好ましく、-般式(IVA)、(IVB)及び(V)で表される化合物群から選ばれる化合物を $0.1\sim 15$ 質量%含有することが特に好ましい。

$[0\ 0\ 1\ 7]$

一般式 (IVA) 及び (IVB) で表される化合物はより低い駆動電圧、より高いネマチック相一等方性液体相転移温度 (T_{N-I}) を可能とするものであり、一般式 (V) で表される化合物はより低い駆動電圧、その所望の駆動電圧に比してより速い応答速度、より高いネマチック相一等方性液体相転移温度 (T_{N-I}) を可能とするものである。

[0018]

また、一般式 (IVA) 及び (IVB) で表される化合物群は、駆動電圧を低くし、なおかつネマチック相一等方性液体相転移温度 (T_{N-I}) を高くする効果があり、 $0.1\sim5$ 質量%の少量添加で用いることができる。

[0019]

一般式 (IA) の化合物の好ましい形態として、下記の一般式 (IA-1) 及び (IA-2) で表される化合物が好ましい。

【化13】

$$R^{1}$$
 OR^{2}
 $IA-1$)
 R^{1}
 OR^{2}
 OR^{2}
 OR^{2}

(式中、R¹及びR²は各々独立的に炭素数1~10のアルキル基、又は炭素数2~10のアルケニル基を表し、該アルキル基又は該アルケニル基中に存在する1個又は2個以上のCH₂基は、0原子が相互に直接結合しないものとして、-0-、-CO-又は-COO-で置換されていてもよい。)

[0020]

一般式 (IA-1) 及び (IA-2) において、 R^1 及び R^2 は各々独立的に炭素数 $1\sim10$ のアルキル基又は炭素数 $2\sim10$ のアルケニル基が好ましく、更には炭素数 $1\sim5$ のアルキル基又は炭素数 $2\sim5$ のアルケニル基が好ましく、アルケニル基としてはビニル基、1-プロペニル基又は3-ブテニル基が特に好ましい。

[0021]

一般式 (IB) の化合物の好ましい形態として、下記の一般式 (IB-1) 及び (IB-2) で表される化合物が好ましい。

【化14】

(式中、 R^3 及び R^4 は各々独立的に炭素数 $1\sim10$ のアルキル基、又は炭素数 $2\sim10$ の

アルケニル基を表し、該アルキル基又は該アルケニル基中に存在する1個又は2個以上のCH₂基は、0原子が相互に直接結合しないものとして、-0-、-CO-又は-COO-で置換されていてもよい。)

[0022]

一般式 (IB-1) 及び (IB-2) において、R³及びR⁴は各々独立的に炭素数1~10 のアルキル基又は炭素数2~10のアルケニル基が好ましく、更には炭素数1~5の アルキル基又は炭素数2~5のアルケニル基が好ましく、アルケニル基としてはビニル基、1-プロペニル基又は3-ブテニル基が特に好ましい。

[0023]

一般式 (II) の化合物の好ましい形態として、下記の一般式 (II-1) \sim (II-1 2) で表される化合物が好ましい。

【化15】

(式中、 R^5 は炭素数 $1\sim10$ のアルキル基、アルコキシ基又は炭素数 $2\sim10$ のアルケニル基、アルケニルオキシ基を表し、該アルキル基、該アルコキシ基、該アルケニル基又は該アルケニルオキシ基中に存在する1個又は2個以上の CH_2 基は、0原子が相互に直接結合しないものとして、-0-、-C0-又は-C00-で置換されていてもよく、 R^{15} は炭素数 $1\sim10$ のアルキル基又は炭素数 $2\sim10$ のアルケニル基を表す。)

[0024]

一般式 (II-1) \sim (II-12) において、 R^5 は炭素数 $1\sim10$ のアルキル基又は炭素数 $2\sim10$ のアルケニル基が好ましく、更には炭素数 $1\sim5$ のアルキル基又は炭素数 $2\sim5$ のアルケニル基が好ましく、アルケニル基としてはビニル、1-プロペニル、 $3\sim7$ テニルが特に好ましい。 R^{15} は炭素数 $1\sim5$ のアルキル基又は炭素数 $2\sim5$ のアルケニル基が好ましく、アルケニル基としてはビニル基、1-プロペニル基又は $3\sim7$ テニル基が特に好ましい。

[0025]

一般式 (III) の化合物の好ましい形態として、下記の一般式 (III-1) \sim (II I-16) で表される化合物が好ましい。

【化16】

(式中、R⁷及びR⁸は各々独立して炭素数1~10のアルキル基、アルコキシ基又は 炭素数2~10のアルケニル基、アルケニルオキシ基を表し、該アルキル基、該ア ルコキシ基、該アルケニル基又は該アルケニルオキシ基中に存在する1個又は2個 以上のCH₂基は、0原子が相互に直接結合しないものとして、-0-、-CO-又は-COO-

で置換されていてもよい。)

[0026]

一般式 (III-1) ~ (III-16) において、R⁷及びR⁸は各々独立して、炭素数1~10のアルキル基、アルコキシ基又は炭素数2~10のアルケニル基、アルケニルオキシ基が好ましく、更には炭素数1~5のアルキル基、アルコキシ基又は炭素数2~5のアルケニル基、アルケニルオキシ基が好ましく、アルケニル基としてはビニル、1-プロペニル、3-ブテニルが特に好ましい。

[0027]

一般式 (III-1) ~ (III-16) の中でも、 (III-1) 、 (III-2) 、 (III-3) 、 (III-7) 、 (III-8) 、 (III-9) 、 (III-10) 、 (III-11) 及び (III-15) が 好ましく、更には (III-1) 、 (III-2) 、 (III-7) 、 (III-8) 、 (III-9) 及び (III-15) が好ましい。

[0028]

一般式 (IVA) の化合物の好ましい形態として、下記の一般式 (IVA-1) ~ (IV A-3) で表される化合物が好ましい。

【化17】

(式中、 R^9 及び R^{10} は各々独立的に炭素数 $1\sim10$ のアルキル基、又は炭素数 $2\sim10$ のアルケニル基を表し、該アルキル基又は該アルケニル基中に存在する1個又は2個以上の CH_2 基は、0原子が相互に直接結合しないものとして、-0-、-CO-又は-CO0-で置換されていてもよい。)一般式(IVA-1) \sim (IVA-3)において、 R^9 及び R^1

0は各々独立的に炭素数1~10のアルキル基又は炭素数2~10のアルケニル基が好ましく、更には炭素数1~5のアルキル基又は炭素数2~5のアルケニル基が好ましく、アルケニル基としてはビニル基、1-プロペニル基又は3-ブテニル基が特に好ましい。

[0029]

一般式 (IVB) の化合物の好ましい形態として、下記の一般式 (IVB-1) \sim (IVB-3) で表される化合物が好ましい。

【化18】

(式中、 R^{11} 及び R^{12} は各々独立的に炭素数 $1\sim10$ のアルキル基、又は炭素数 $2\sim10$ のアルケニル基を表し、該アルキル基又は該アルケニル基中に存在する1個又は2個以上の CH_2 基は、0原子が相互に直接結合しないものとして、-0-、-CO-又は-CO0-で置換されていてもよい。) 一般式(IVB-1) \sim (IVB-3)において、 R^{11} 及び R^{12} は各々独立的に炭素数 $1\sim10$ のアルキル基又は炭素数 $2\sim10$ のアルケニル基が好ましく、更には炭素数 $1\sim5$ のアルキル基又は炭素数 $2\sim5$ のアルケニル基が好ましく、アルケニル基としてはビニル基、1-プロペニル基又は3-ブテニル基が特に好ましい。

[0030]

一般式 (V) の化合物の好ましい形態として、以下の一般式 (V-1) 及び (V-2))で表される化合物が好ましい。

【化19】

$$R^{13} \longrightarrow OR^{14} \qquad (V-1)$$

$$R^{13} \longrightarrow OR^{14} \qquad (V-2)$$

(式中、 R^{13} 及び R^{14} は各々独立的に炭素数 $1\sim10$ のアルキル基、又は炭素数 $2\sim10$ のアルケニル基を表し、該アルキル基又は該アルケニル基中に存在する1個又は2 個以上の CH_2 基は、0原子が相互に直接結合しないものとして、-0-、-C0-又は-C0 0-で置換されていてもよい。) 一般式 (V-1) 及び (V-2) において、 R^{13} 及び R^{14} は各々独立的に炭素数 $1\sim10$ のアルキル基又は炭素数 $2\sim10$ のアルケニル基が好ましく、更には炭素数 $1\sim5$ のアルキル基又は炭素数 $2\sim5$ のアルケニル基が好ましく、アルケニル基としてはビニル基、1-プロペニル基又は3-ブテニル基が特に好ましい。

[0031]

本発明の液晶組成物は、誘電異方性が $-6\sim-3$ の範囲であり、ネマチック相一等方性液体相転移温度(T_{N-I})が70 $^{\circ}$ $^{\circ}$ $^{\circ}$ 0.15の範囲であり、粘度が30mPas・s以下であることが好ましい。本発明において、誘電異方性が $-6\sim-4$ の範囲であることが好ましく、更には $-6\sim-5$ の範囲であることが好ましい。ネマチック相一等方性液体相転移温度(T_{N-I})は80 $^{\circ}$ $^{\circ}$ 以上であることが好ましく、更には90 $^{\circ}$ $^{\circ}$ $^{\circ}$ 0.12の範囲であることが好ましく、更には $0.07\sim0.12$ の範囲であることが好ましく、更には $0.07\sim0.11$ の範囲であることが好ましい。粘度は25mPas・s以下であることが好ましい。

[0032]

本発明の液晶組成物は後述する実施例でも明らかなように、絶対値の大きい負の誘電異方性、幅広い液晶温度範囲、低い粘度を特徴とした特性を有している。 更に非常に良好な急峻性を有しており同一の誘電異方性を有する従来の液晶組成

物に比して、より低い駆動電圧で動作することができる。これは負の誘電異方性 の絶対値が非常に大きい第一成分の化合物を選定し、更に第二成分を効果的に組 み合わせたことによるものである。急峻性(γ=Vsat/Vth)は2.2以下であるこ とが好ましく、更には2.0以下であることが好ましい。

[0033]

【実施例】

以下、実施例を挙げて本発明を更に詳述するが、本発明はこれらの実施例に限定されるものではない。また、以下の実施例及び比較例の組成物における「%」は「質量%」を意味する。VAモード表示特性を示す液晶表示装置は以下のように作製した(図 1 参照)。対向する一方のガラス基板上に透明ベタ電極を設けその上に垂直配向膜(JSR社製 商品名JALS-204)を形成し、他のガラス基板上の透明電極には図2に示したように幅 $10\,\mu$ mのジグザグな屈曲パターンを有するスリットを $50\,\mu$ mの間隔で設け(図 3 参照)その上に垂直配向膜(JSR社製 商品名JALS-204)を形成し、両ガラス基板を重ね合わせてVA-LCD用表示セルを作製する(セル厚 $3.5\,\mu$ m)。液晶組成物をこのセルに注入して液晶表示装置を構成した。実施例中、測定した特性は以下の通りである。

[0034]

T_{N-T} :ネマチック相-等方性液体相転移温度(℃)

Δ ε : 誘電異方性 (25℃及び1kHz)

Δn : 複屈折 (20℃及び589nm)

η :粘度 (mPa·s) (20℃)

Vth : しきい値電圧 (V) (25℃)

y :急峻性 (25℃) 飽和電圧 ((Vsat) とVthとの比)

 $\gamma = Vsat / Vth$

VHR : 電圧保持率(%) (70℃)

5Vフレーム時間20msec後の保持された電圧Vtと初期電圧Vo(5V)との比を%で表したもの。

 $VHR(\%) = Vt / V_0 \times 100$

 $セル厚6\mu m$ のホメオトロピック配向(配向膜はJSR社製JALS-204を使用)したセ

ルを使用した。

[0035]

(実施例1)

以下の液晶組成物を作成し特性の測定を行った。

【化20】

(比較例1)

比較例1として、以下の液晶組成物を作成し特性の測定を行った。

【化21】

(比較例2)

比較例2として、以下の液晶組成物を作成し特性の測定を行った。

【化22】

F F
$$C_{3}H_{7}$$
—OC H_{3} 10%

 $C_{3}H_{7}$ —OC $_{2}H_{5}$ 10%

実施例1及び比較例1、2の測定結果を以下の表に示す。

【表1】

実施例1及び比較例1、2

-12424-1		
実施例1	比較例1	比較例2
100. 2	82. 0	93. 0
-4.8	-4.0	-2.8
23.8	23. 5	47.5
0.091	0.081	0. 098
1.81	2. 11	2. 34
1. 91	2. 30	2. 22
99. 5	99. 5	99. 5%
	実施例1 100.2 -4.8 23.8 0.091 1.81 1.91	実施例1 比較例1 100.2 82.0 -4.8 -4.0 23.8 23.5 0.091 0.081 1.81 2.11 1.91 2.30

[0039]

実施例1は大きい負の誘電率異方性の絶対値を有し、高いネマチック相-等方性 液体相転移温度 (T_{N-I})、低い粘度を有する。

比較例1は、実施例1と同等の誘電率異方性及び粘度を有しているが、実施例1 と比較して大幅にネマチック相-等方性液体相転移温度(T_{N-I})が低下している 。比較例2はネマチック相一等方性液体相転移温度(T_{N-I})は比較的高いものの 、負の誘電率異方性の絶対値が小さく、粘度も高い。

[0040]

又、実施例1は優れた急峻性を有するため、比較例1よりも低電圧駆動が可能であり、高い電圧保持率を有することからアクティブマトリックス用として有用である。実施例1の液晶組成物を用いた表示素子は高速応答が要求される液晶テレビや、幅広い液晶温度範囲が要求される携帯電話、PDA用途等のVA-LCDに適する

[0041]

(実施例2)

以下の液晶組成物を作成し特性の測定を行った。

【化23】

[0042]

T_{N-I} :84.8℃

Δε :-5.8

 Δn : 0.086

 η : 24. 1mPa · s

Vth : 1.69 V

 γ : 1.79

VHR : 99.4%

実施例2は絶対値の大きな負の誘電異方性、低い粘度を有する。高速応答が要求される液晶テレビや低電圧駆動が要求される携帯電話、PDA用途等のVA-LCDに適

する。また優れた急峻性を有しているため低電圧駆動が可能である。

[0043]

(実施例3)

【化24】

[0044]

 T_{N-I} : 91.0°C

Δε :-4.9

 Δn : 0.093

 η : 25.2mPa · s

VHR : 99.6%

実施例3は高いネマッチック相一等方性液体相転移温度(T_{N-I})を有し、幅広い液晶温度範囲が要求される携帯電話、PDA用途等のVA-LCDに適する。

[0045]

(実施例4)

【化25】

T_{N-I} :83.7℃

Δ ε : -4.0

Δn : 0.078

 η : 20.0mPa·s

VHR : 99.7%

実施例4は低い粘度を有し、高速応答が要求される液晶テレビ用途等のVA-LCDに 適する。

[0047]

(実施例5)

【化26】

[0048]

T_{N-I} : 82.6℃

Δε :-4.4

 Δn : 0.094

 η : 21.5mPa·s

VHR : 99.5%

実施例5は低い粘度を有し、高速応答が要求される液晶テレビ用途等のVA-LCDに適する。

[0049]

【発明の効果】

本発明により、低電圧駆動が可能な絶対値の大きな負の誘電異方性、幅広い液晶 温度範囲、低い粘性を有するネマチック液晶組成物が得られ、より低い電圧での 駆動が達成された。また、該組成物を用いた優れた液晶表示素子が得られた。

【図面の簡単な説明】

- 【図1】VAモード表示特性を示す液晶表示装置を説明する図である。
- 【図2】ジグザグな屈曲パターンを有するスリットを設けた透明電極を説明する 図である。
- 【図3】ジグザグな屈曲パターンを有するスリットを説明する図である。 (単位: μm)

【符号の説明】

- 1・・・ガラス基板
- 2・・・透明ベタ電極
- 3・・・垂直配向膜
- 4・・・液晶相
- 5・・・スリットを設けた透明電極
- 6・・・ジグザグスリット

【書類名】

図面

【図1】

【図2】

【図3】

【書類名】

要約書

【要約】

【課題】 低電圧駆動が可能な絶対値の大きな負の誘電異方性、幅広い液晶温度 範囲、低い粘性を有する、負の誘電異方性を有するネマチック液晶組成物及びそ の組成物を用いた液晶表示素子を提供する。

【解決手段】 一般式(IA)及び(IB)で表される化合物群から1種以上選ばれる化合物を10~40質量%含有し、なおかつ一般式(II)で表される化合物から1種以上選ばれる化合物を10~40質量%含有し、全体として一般式(IA)、(IB)及び(II)で表される化合物群から2種以上選ばれる化合物を45~70質量%含有し、一般式(III)で表される化合物から1種以上選ばれる化合物を30~55質量%含有することを特徴とする負の誘電異方性を有するネマチック液晶組成物。

【化1】

及び、この液晶組成物を用いた液晶表示素子を提供する。

【選択図】 なし

認定・付加情報

特許出願の番号

特願2003-017294

受付番号

5 0 3 0 0 1 2 2 3 3 6

書類名

特許願

担当官

第六担当上席 0095

作成日

平成15年 1月28日

<認定情報・付加情報>

【提出日】

平成15年 1月27日

次頁無

特願2003-017294

出願人履歴情報

識別番号

[000002886]

1. 変更年月日

1990年 8月17日

[変更理由]

新規登録

住 所

東京都板橋区坂下3丁目35番58号

氏 名 大日本インキ化学工業株式会社