A* 알고리즘

충남대학교 컴퓨터공학과 이영석

A* 알고리즘

- 최단경로 알고리즘
- 휴리스틱
 - Dijkstra 알고리즘과 유사
 - f(n) = g(n) + h(n)
 - g(n): 출발지에서 n까지 경로 비용
 - h(n): n부터 목적지까지 추정 경로 비용

A* : 퍼즐 맞추기 예

- f(n) = g(n) + h(n)
- g(n) : 현재까지의 값, 즉 지금까지 움 직인 횟수
- h(n): 앞으로 예상되는 값, 위에서는 제자리에 있지 않은 퍼즐의 수
- 알고리즘
 - 비용이 최소화되는 경우 선택

1	2	3
8		4
7	6	5

목표노드

- 이동가능한 노드에서

 - f(n) = g(n) + h(n) 계산
 g(n): 출발지에서의 경로 비용
 - h(n): 목적지까지 좌표평면의 거리
- Open List (O)
 - 경로 업데이트
- Closed List (C)
 - 완료
- 출발지: 0
- 목적지: 6
- 노드 1의 H = 12
 - 휴리스틱(추정값): 좌표평면에서 직선거리(Euclidean distance)
- 노드 3의 H = 10
 - 휴리스틱(추정값): 좌표평면에서 직선거리(Euclidean distance)

F Sco	Node ID	1	3
	F Score	17.6	16.8
	G Score	5.6	6.8
	H Score	12	10
	Parent Node	0	0

C =	Node ID	0
	F Score	0
	G Score	0
	H Score	0
	Parent Node	-

- O 리스트 중 f 최소값 선택
 - 노드 3을 C 리스트에 추가
- 노드 3에서 f, g, h 업데이트
 - 노드 2

•
$$g = 6.8 + 5.6 = 12.4$$

- h = 7 (추정)
- 노드 5
 - g = 6.8 + 5.6 = 13.3
 - h = 5.5 (추정)

O =	Node ID	1	2	5
	F Score	17.6	19.4	18.8
	G Score	5.6	12.4	13.3
	H Score	12	7	5.5
	Parent Node	0	3	3

C =	Node ID	0	3
	F Score	0	16.8
	G Score	0	6.8
	H Score	0	10
	Parent Node	-	0

- O 리스트 중 f 최소값 선택
 - 노드 1을 C 리스트에 추가
- 노드 1에서 f, g, h 업데이트
 - 노드 2 -> 이전 값 갱신

•
$$g = 5.6 + 4.3 = 9.9$$

- h = 7 (추정)
- 노드 4
 - g = 5.6 + 6.5 = 12.1
 - h = 5.2 (추정)

	Node ID	0	3	1
C = G	F Score	0	16.8	17.6
	G Score	0	6.8	5.6
	H Score	0	10	12
	Parent Node	-	0	0

- O 리스트 중 f 최소값 선택
 - 노드 2를 C 리스트에 추가
- 노드 2에서 f, g, h 업데이트
 - 노드 6

•
$$g = 9.9 + 7 = 16.9$$

- h = 0
- 노드 5, 4는 그대로

O =	Node ID	5	4	6
	F Score	18.8	17.3	16.9
	G Score	13.3	12.1	16.9
	H Score	5.5	5.2	0
	Parent Node	3	1	2

	Node ID	0	3	1	2
	F Score	F Score 0 16.8 17.6	16.9		
<u> </u>	G Score	0	6.8	5.6	9.9
	H Score	0	10	12	7
	Parent Node	-	0	0	1

- O 리스트 중 f 최소값 선택
 - 노드 6을 C 리스트에 추가
 - 종료!
- 경로
 - 6 -> 2 -> 1 -> 0

O =	Node ID	5	4
	F Score	18.8	17.3
	G Score	13.3	12.1
	H Score	5.5	5.2
	Parent Node	3	1

	Node ID	0	3	1	2	6
C = (F Score	0	16.8	17.6	16.9	16.9
	G Score	0	6.8	5.6	9.9	16.9
	H Score	0	10	12	7	0
	Parent Node	-	0	0	1	2

최단 경로 알고리즘 비교

https://qiao.github.io/PathFinding.js/visual/