ΕΝΝΟΙΕΣ ΣΤΗΝ ΚΡΥΠΤΟΓΡΑΦΙΑ

Δ. Ζήνδρος

Επιμέλεια διαφανειών: Π. Αγγελάτος, Δ. Ζήνδρος

Στόχος της παρουσίασης

- Έννοιες στην κρυπτογραφία
- Συμμετρική κρυπτογραφία
- AES
- Ασύμμετρη κρυπτογραφία
- RSA
- DSA
- Κρυπτογράφηση & αποκρυπτογράφηση μηνυμάτων
- Ψηφιακές υπογραφές & επιβεβαίωση
- Ανταλλαγή κλειδιών
- Diffie-Hellman

Συμμετρική κρυπτογραφία

- Η Alice θέλει να στείλει ένα μήνυμα στον Bob
- Δεν θέλει να το διαβάσουν άλλοι
- Μοιράζονται ένα κοινό μυστικό κλειδί
- Η Alice κρυπογραφεί το μήνυμά της με το κλειδί
- Στέλνει στο δίκτυο το κρυπτογραφημένο κείμενο
- Ο Bob λαμβάνει το κρυπτογραφημένο κείμενο
- Ο Bob αποκρυπτογραφεί το κρυπτογραφημένο κείμενο με το κλειδί
- Λαμβάνει το αρχικό κείμενο

- m
 - message καθαρό κείμενο
- S
 - secret μυστικό κλειδί
- c = E(s, m)
 - encrypt κρυπτογράφηση m με κλειδί s
 - δίνει ως αποτέλεσμα κρυπτοκείμενο c
- m = D(s, c)
 - decrypt αποκρυπτογράφηση c με κλειδί s
 - δίνει ως αποτέλεσμα το καθαρό κείμενο m
- Ορθότητα: D(s, E(s, m)) = m

Threat models

- Δε μιλάμε γενικά για «ασφαλή» ή «ανασφαλή» συστήματα
- Ορίζουμε τι είδους ασφάλεια θέλουμε
- Δε γίνεται ένα σύστημα να είναι απόλυτα «ασφαλές»
- Ποιος είναι ο εχθρός μας;
 - Ένας φίλος που μας κάνει πλάκα;
 - Ένας πρώην σύζυγος;
 - Ένας εταιρικός κατάσκοπος;
 - Μία κυβέρνηση;
 - Οι μυστικές υπηρεσίες;
- Πόσα χρήματα μπορεί να ξοδέψει ο εχθρός μας;
- Πόσο χρόνο μπορεί να ξοδέψει ο εχθρός μας;

Threat models

- Αναρωτηθείτε
- Για να «χακάρει» κάποιος ένα website
 - Είναι πιο φθηνό να «σπάσει» ένα κρυπτογραφικό κλειδί;
 - ...ή να «λαδώσει» ένα προγραμματιστή;
- Για να κλέψει κάποιοες δεδομένα από τον υπολογιστή σου
 - Είναι πιο φθηνό να φτιάξει και να σε μολύνει με έναν ιό;
 - ...ή να τον χρησιμοποιήσει όταν τον ξεχάσεις ξεκλείδωτο;
- Για να διαβάσει κάποιος τα κρυπτογραφημένα μηνύματά σου
 - Είναι πιο εύκολο να παραβιάσει την κρυπτογραφία;
 - ...ή να αλλάξει το πληκτρολόγιό σου σε ένα κατασκοπικό;

Συμμετρική κρυπτογραφία

- Σήμερα χρησιμοποιούμε το σύστημα AES
- Γρήγορη
- Για κρυπτογράφηση σε σκληρούς δίσκους
- Για κρυπτογράφηση πολλών δεδομένων στο δίκτυο

Προβλήματα συμμετρικής κρυπτογραφίας

- Κάθε ζεύγος ανθρώπων χρειάζεται ένα κλειδί
- n άνθρωποι → ~n² κλειδιά
- Τα κλειδιά πρέπει να μείνουν μυστικά
- Κάπως πρέπει να τα ανταλλάξουν

- Diffie & Hellman, 1976
- RSA Rivest, Shamir, Adleman, 1977
- Νέα ιδέα:
 - Κάθε άνθρωπος έχει ένα ζεύγος κλειδιών:
 - Ιδιωτικό κλειδί & Δημόσιο κλειδί
 - Τα κλειδιά συνδέονται μαθηματικά
 - Για κάθε ιδιωτικό κλειδί υπάρχει μοναδικό δημόσιο
 - Για κάθε δημόσιο κλειδί υπάρχει μοναδικό ιδιωτικό
 - Από το ιδιωτικό μπορούμε να βρούμε το δημόσιο
 - Από το δημόσιο δεν μπορούμε να βρούμε το ιδιωτικό

Diffie & Hellman

Whitfield Diffie

Martin Hellman

RSA

Ron Rivest Adi Shamir

Leonard Adleman

- Αρχή λειτουργίας:
 - Ό,τι κρυπτογραφείται με το δημόσιο κλειδί κάποιου, αποκρυπτογραφείται από το αντίστοιχο ιδιωτικό του.
 - Ό,τι κρυπτογραφείται με το ιδιωτικό κλειδί κάποιου, αποκρυπτογραφείται από το αντίστοιχο δημόσιο του.

- Η Alice θέλει να στείλει ένα μήνυμα στον Bob
- Δεν θέλει να το διαβάσουν άλλοι
- Ο καθένας έχει το ιδιωτικό και δημόσιο κλειδί του
- Η Alice κρυπογραφεί το μήνυμά της με το δημόσιο κλειδί του Bob
- Στέλνει στο δίκτυο το κρυπτογραφημένο κείμενο
- Ο Bob λαμβάνει το κρυπτογραφημένο κείμενο
- Ο Bob αποκρυπτογραφεί το κρυπτογραφημένο κείμενο **με** το ιδιωτικό κλειδί του
- Λαμβάνει το αρχικό κείμενο

- A_s
 - Alice's secret μυστικό κλειδί
- A_p
 - Alice's public δημόσιο κλειδί
- B_s
 - Bob's secret μυστικό κλειδί
- B_p
 - Bob's public δημόσιο κλειδί
- $c = E(B_p, m)$
 - encrypt κρυπτογράφηση m με κλειδί B_p
 - δίνει ως αποτέλεσμα κρυπτοκείμενο c
- $m = D(B_s, c)$
 - decrypt αποκρυπτογράφηση c με κλειδί B_s
 - δίνει ως αποτέλεσμα το καθαρό κείμενο m
- Ορθότητα: $D(B_s, E(B_p, m)) = m$

Συμμετρική κρυπτογραφία

- Γρήγορη απόδοση
- Μοιρασμένο μυστικό
- n² κλειδιά
- Δυσκολία ανταλλαγής κλειδιών

- Αργή απόδοση
- Ο καθένας έχει το δικό του ζεύγος κλειδιών
- η κλειδιά
- Δεν υπάρχει ανάγκη ανταλλαγής κλειδιών

Από την θεωρία στην πράξη

PGP

- Pretty Good Privacy
- Όρισε το OpenPGP πρωτόκολλο για κρυπτογράφηση/αποκρυπτογράφηση
- Πρώτη ευρείας χρήσης ασύμμετρη κρυπτογραφία
- Phil Zimmermann, 1991

GPG

• Ελεύθερη υλοποίηση

Phil Zimmermann

Quiz

- Η Alice στέλνει ένα κρυπτογραφημένο μήνυμα στον Bob
- Πριν το στείλει θέλει να επιβεβαιώσει ότι είναι σωστό
- Μπορεί να αποκρυπτογραφήσει αυτό που κρυπτογράφησε;

Quiz

- Η Alice στέλνει ένα κρυπτογραφημένο μήνυμα στον Bob
- Πριν το στείλει θέλει να επιβεβαιώσει ότι είναι σωστό
- Μπορεί να αποκρυπτογραφήσει αυτό που κρυπτογράφησε;
- Öχι!
- Η κρυπτογράφηση έγινε με το δημόσιο κλειδί του Bob.
- Η Alice δεν έχει το ιδιωτικό κλειδί του Bob.
- Ό,τι κρυπτογραφείται με το δημόσιο κλειδί κάποιου, αποκρυπτογραφείται με το αντίστοιχο ιδιωτικό!

- Άρχή λειτουργίας:
 - Ό,τι κρυπτογραφείται με το δημόσιο κλειδί κάποιου, αποκρυπτογραφείται από το αντίστοιχο ιδιωτικό του.
 - Ό,τι κρυπτογραφείται με το ιδιωτικό κλειδί κάποιου, αποκρυπτογραφείται από το αντίστοιχο δημόσιο του.
- Γιατί χρειάζεται αυτό;

Quiz

- Τι συμβαίνει αν η Alice κρυπτογραφήσει ένα μήνυμα με το ιδιωτικό κλειδί της;
- Ποιος μπορεί να το διαβάσει;

Ψηφιακές υπογραφές

- Η Alice θέλει να στείλει ένα μήνυμα στον Bob
- Ο Bob θέλει να επιβεβαιώσει ότι το έγραψε η Alice
- Ο καθένας έχει το ιδιωτικό και δημόσιο κλειδί του
- Η Alice κρυπογραφεί το μήνυμά της με το ιδιωτικό κλειδί της
- Στέλνει στο δίκτυο το κρυπτογραφημένο κείμενο
- Ο Bob λαμβάνει το κρυπτογραφημένο κείμενο
- Ο Bob αποκρυπτογραφεί το κρυπτογραφημένο κείμενο με το δημόσιο κλειδί της Alice
- Λαμβάνει το αρχικό κείμενο

Ψηφιακές υπογραφές

- Η Alice θέλει να στείλει ένα μήνυμα στον Bob
- Ο Bob θέλει να επιβεβαιώσει ότι το έγραψε η Alice
- Ο καθένας έχει το ιδιωτικό και δημόσιο κλειδί του
- Η Alice υπογράφει το μήνυμά της με το ιδιωτικό κλειδί της
- Στέλνει στο δίκτυο το υπογεγραμμένο κείμενο
- Ο Bob λαμβάνει το **υπογεγραμμένο** κείμενο
- Ο Bob επιβεβαιώνει το υπογεγραμμένο κείμενο με το δημόσιο κλειδί της Alice

- A_s
 - Alice's secret μυστικό κλειδί
- A_p
 - Alice's public δημόσιο κλειδί
- B_s
 - Bob's secret μυστικό κλειδί
- B_p
 - Bob's public δημόσιο κλειδί
- $c = S(B_s, m)$
 - sign υπογραφή του μηνύματος m με κλειδί B_s
 - δίνει ως αποτέλεσμα κρυπτοκείμενο c
- $m = V(B_p, c, m)$
 - verify επιβεβαίωση υπογραφής c με κλειδί B_p
- Ορθότητα: $V(B_p, S(B_p, m), m) = true$

Ψηφιακές υπογραφές

- Πιο ασφαλείς από τις συμβατικές υπογραφές
- Δεν μπορούν να παραχαρακτούν
- Περιλαμβάνουν το αρχικό καθαρό κείμενο μαζί με την υπογραφή
- Είναι συνδεδεμένες με το κείμενο που υπογράφονται
- Κάθε υπογραφή είναι διαφορετική και εξαρτάται από το κείμενο
- Αν αλλάξει το κείμενο, η υπογραφή δεν είναι πια έγκυρη!
- Δεν γίνεται να αντιγράψω μία υπογραφή και να τη βάλω σε άλλο κείμενο
- Είστε ενδεχομένως νομικά υπεύθυνοι γι' αυτές!

Μαθηματικά κρυπτογραφίας

- Η κρυπτογραφία στηρίζεται σε one-way προβλήματα
- Πολυωνυμικά υπολογίζονται προς τη μία κατεύθυνση
- Εκθετικά προς την αντίστροφη

Διακριτός λογάριθμος

- y = be mod p
- Δεδομένων b, e, p, η εύρεση του y είναι εύκολη
- Δεδομένων y, b, p, η εύρεση του e είναι δύσκολη
- π . χ . y = 3435, b = 7, p = 7919, e = ?

Παραγοντοποίηση

- Έστω p, q πρώτοι και n = pq
- Δεδομένων p, q, η εύρεση του n είναι εύκολη
- Δεδομένου n, η εύρεση των p, q είναι δύσκολη
- π . χ . n = 1263237248027, p = ?, q = ?

Ανταλλαγή κλειδιού

- Alice και Bob θέλουν να συμφωνήσουν σε ένα κοινό κλειδί
- Το κλειδί αυτό θα χρησιμοποιηθεί για συμμετρική κρυπτογραφία
- Έχουν μόνο ένα **δημόσιο** κανάλι επικοινωνίας
- Δεν έχουν προσυμφωνημένα μυστικά

Diffie-Hellman

- Alice, Bob: Συμφωνούν σε κοινά p, g, δημόσια
- Alice: Σκέφτεται ένα μυστικό α
- Bob: Σκέφτεται ένα μυστικό β
- Alice: Υπολογίζει και δημοσιεύει A = g^α (mod p)
- Bob: Υπολογίζει και δημοσιεύει $B = g^{\beta}$ (mod p)
- Alice: Υπολογίζει B^{α} (mod p) = $(g^{\beta})^{\alpha}$ (mod p) = $g^{\beta\alpha}$ (mod p)
- Bob: Υπολογίζει A^{β} (mod p) = $(g^{\alpha})^{\beta}$ (mod p) = $g^{\alpha\beta}$ (mod p)
- Αντιμεταθετική ιδιότητα: $g^{\alpha\beta}$ (mod p) = $g^{\beta\alpha}$ (mod p) = s
- s μυστικό κλειδί
- Ενε: Δεν μπορεί να ανακτήσει το α από το Α ή β από το Β λόγω διακριτού λογαρίθμου

RSA

- p, q πρώτοι
- n = pq
- e τυχαίος αριθμός από 2 έως n 2
- d επιλέγεται έτσι ώστε de = 1 (mod $\phi(n)$)
- Κρυπτογράφηση: c = m^e (mod n)
- Αποκρυπτογράφηση: $m = c^d \pmod{n}$
- Ορθότητα: $m^{ed} = m \pmod{n}$
- Μικρό θεώρημα Fermat: m^{φ(n)} = 1 (mod n)

Μάθαμε

- Έννοιες στην κρυπτογραφία
- Συμμετρική κρυπτογραφία AES
- Έννοιες στην ασύμμετρη κρυπτογραφία
- RSA
- Κρυπτογράφηση & αποκρυπτογράφηση μηνυμάτων
- Ψηφιακές υπογραφές & επιβεβαίωση
- Ανταλλαγή κλειδιών
- Diffie-Hellman

Ευχαριστώ! Ερωτήσεις;

@dionyziz