THM3060 应用笔记 Type B 应用说明

Tongfang Microelectronics Company

REF: AN_TypeB

保密等级: MID 页码: 第 2 共 18

版本

版本	修改	日期	作者
V0.1	初稿 (SYS_THM3060_AN_TypeB_V0_1)	2009-06-22	DingYM

保密等级: MID

REF: AN_TypeB

页码: 第3 共 18

目录

版ス	本			2
目录	录			3
1	简介			4
	1.1	概〕	述	4
	1.2		O/IEC14443 协议	
	1	1.2.1	协议简介	4
	1	1.2.2	Type A 与 Type B	4
	1.3	TH	IM3060 对 Type B 的支持	
2	详细计			
	2.1	发ì	送电路	7
	2.2	寄石	送电路 存器设置	7
		2.2.1	协议选择 PSFI	7
	2	2.2.2	帧格式设置 FCONB	8
	2	2.2.3	EGT 设置	9
	2	2.2.4	CRCSEL 设置	9
	2	2.2.5	FWT 设置	10
3	Type	B 常用	命令	11
		3.1.1	寻卡命令 REQB/WUPB	
	3	3.1.2	Slot-MARKER 🖘	12
	3	3.1.3	ATQB 哨心	12
	3	3.1.4	ATTRIB 命令	14
	3	3.1.5	其 他命令	15
4	防冲线	突流程.	4	16
	4.1	选扎	择合适的时间槽数 N	16
	4.2	循环	环使用 REQB	16
	4.3	RE	EQB 与 Slot-MARKER 组合	16
5	举例			17
۸n	00V 1	11公子	玄	17

保密等级: MID 页码: 第 4 共 18

REF: AN_TypeB

1 简介

1.1 概述

本文档介绍了使用 THM3060 操作 ISO/IEC14443 B 类卡片的方法和注意事项。

1.2 ISO/IEC14443 协议

1.2.1 协议简介

ISO/IEC14443 协议分为四个部分,第一部分为物理特性,介绍卡片的物理特性如尺寸、防静电(ESD)、抗压、抗弯曲等。第二部分为射频功率和信号接口。第三部分为卡片的初始化和防冲突流程。第四部分为传输协议。 在 ISO/IEC14443 协议中定义了两种类型的卡片,A 类卡和 B 类卡。两种卡片的调制方式、初始化和防冲突、传输协议的激活过程等均有不同。

1.2.2 Type A 与 Type B

不同点	Ā	TYPE A	TYPE B		
调制方式	106K	PCD to PICC 密勒编码	PCD to PICC NRZ 编码		
		PICC to PCD 曼彻斯特编码	PICC to PCD BPSK 编码		
	212K	PCD to PICC 密勒编码			
	424K	PICC to PCD BPSK 编码			
	848K	> /			
调制幅度		1 00%	8~14%		
帧格式		短帧、标准帧、比特帧	标准帧		
CRC		CRCA	CRCB		
防冲突		比特帧防冲突法	时间槽防冲突法		
初始化		命令不同,流程不同	命令不同,流程不同		
传输协议		命令不同	命令不同		
帧起始/帧结	束	无	有		
奇偶校验位		有	无		

保密等级: MID 页码: 第5 共 18

REF: AN_TypeB

图 1 A 类卡与 B 类卡读卡器到卡片的调制方式

保密等级: MID 页码: 第 6 共 18

REF: AN_TypeB

图 2A 类卡和 B 类卡卡片到读卡器的调制

1.3 THM3060 对 Type B 的支持

THM3060 支持 Type B 的所有速率,通过设置有关寄存器可以方便的设置 Type B 相关的速率、帧格式等。

REF: AN_TypeB

页码: 第7 共 18

2 详细说明

保密等级: MID

2.1 发送电路

图 3 THM3060 发送电路

对于 Type B 协议 THM3060 的发送电路中 R5 的大小可以调节调制深度,电阻增大时增加调制深度,电阻减小时减小调制深度。一般的,在读卡器发送速率¹ 106K 和 212K 通讯时,如图 R5 (12 欧)可保证调制深度处于 10~11%²。当读卡器发送速率工作在 424K 或 848K 时,需要重新设定 R5 (R5 应增大)来满足读卡器发送速率 424K 和 848K 下的调制深度要求。此时,使用二极管 D1 可以满足 106K~848K 同时工作的需求。

2.2 寄存器设置

THM3060 复位后的默认值,不需任何设置即可满足 106K 速率的 Type B 卡的通讯。

2.2.1 协议选择 PSEL

П									
	PSEL	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0

¹ 卡片发送速率与调制深度无关

Tongfang Microelectronics Company

² ISO/IEC14443 协议要求 8~14%

保密等级: MID 页码: 第 8 共 18

REF: AN_TypeB

RFU	RFU	协议法	选择	发送》	皮特率选择	接收波特	寺率选择
未用	未用	00`	ISO14443	00	发送波特	00	接收波特率为
			TYPE B		率为		106K
			协议		106K		
		01	ISO14443	01	发送波特	01	接收波特率为
			TYPE A		率为		212K
			协议		212K		
		10	ISO15693	10	发送波特	10	接收波特率为
			协议		率为		424K
					424K		
		11	RFU	11	发送波特	11	接收波特率为
					率为		848K
					848K	>	
				.0	V		

表 1 PSEL 寄存器

PSEL 寄存器用于协议和速率选择,其复价值为 0x00。即默认为 Type B 协议,发送和接收 均为 106K。 所谓发送波特率是指读长器的发送速率,接收波特率是指读卡器的接收波特率。 在有些应用中发送速率和接收速率可以不同。

2.2.2 帧格式设置 FCONB

FCONB	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
	RFU	RFU	EOF	宽度设置	SOF 高电平宽度设置		SOF	SOF 低电平宽度设		
							置	置 SOFL		
	未用	未用	00	10 个 ETU	00	2 个 ETU	00	10.00 个		
								ETU		
			01	10.25 个	01	2.25 个	01	10.25 个		
				ETU		ETU		ETU		
			10	10.5 个 ETU	10	2.5 个	10	10.5 个 ETU		
						ETU				
			11	11 个 ETU	11	3 个 ETU	11	11 个 ETU		

表 2 帧格式设置 FCONB

帧格式设置寄存器设置帧起始(SOF) 和 EOF 的宽度。单位为 ETU³。寄存器默认值为 0x2A。 即 EOF 为 10.5 ETU, SOF 高电平为 2.5 ETU, SOF 低电平为 10.5 个 ETU。一般情况下,默认值即可满足读写卡片的需要。

³ Element of Time Unit,时间单元。指协议中一个位宽占用的时间。不同的速率下 ETU 不同。106K 为 128/fc,212K 为 64/fc,424K 为 32/fc,848K 为 16/fc。其中 fc 为载波频率 13.56MHz。

保密等级: MID 页码: 第 9 共 18

REF: AN_TypeB

图 4 ISO/IEC14443 SOF 要求

图 5 ISO/IEC14443 EOF 要求

2.2.3 EGT 设置

EGT	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	EGT 宽	置度设置	, (1.5)	RFU	RFU	RFU	RFU	RFU
	000	0 个 €	TU)					
	001	1 1 E	τŬ					
	010	2 ↑ E	TU					
	011	3 个 E	TU					
	100	4 个 E7	ΓU					
	101	5 个 E7	ΓU					
	110	6 个 ET	ΓU					
	111	RFU						

表 3 EGT 设置

EGT (Extra Guard Time),是指字节与字节之间的额外等待时间⁴。EGT 设置的越大,字节与字节之间的间隔时间越长,对于卡片的接收要求就越低。某些 CPU 卡片速度比较慢,读卡器可以将 EGT 设得大一些。默认值为 0x40, 即 2 个 ETU。

2.2.4 CRCSEL 设置

DATA	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
	SCRC	RCRC	RFU	RF	RFU	RFU	RFU	TMREN

⁴ ISO/IEC14443 协议中要求读卡器 EGT 为 0~6ETU。

Tongfang Microelectronics Company

保密等级: MID

REF: AN_TypeB

页码: 第10 共 18

		11		
		U		
1:发	1:接			
送电	收电			1: 启动接
路自	路判			收超时判
动产	断			断
生	CRC			0: 关闭接
CRC	0:接			收超时判
0. 发	收电			断
送电	路不			
路不	判断			
自动	CRC			
产生				
CRC			111	

表 4 CRCSEL 寄存器

不同协议的 CRC 计算方法不同, THM3060 内置了 TypeA/TypeB/ISO15693 的 CRC 硬件 计算单元。设置 CRCSEL 寄存器可以设置发送自动添加 CRC,接收自动判断 CRC。 硬件自动发送 CRC 时,实际发送长度比写入的数据长度多 2 个 CRC 字节。如 Type B 的 寻卡指令 REQB, 050000, 发送长度设为 3, 自动添加 CRC, 实际发送数据为 05000071FF。

2.2.5 FWT 设置

TypeB 协议定义了帧等待时间 FWT,即读卡器发送命令后,等待卡片返回的时间。FWT 设 置的过长,将导致读卡器发送命令后等待时间过长,对于卡片离场、卡片通讯失败等反应迟 缓。FWT 设置过短,则会导致读卡器发送命令后等待时间过短,无法接收到卡片应答。

一般的做法是:发送寿卡命令(REQB)时,将 FWT 设得短一些,协议要求大约为 302 µS。 因此 FWT 设为几毫秒就可以了。其他的命令,可以依据卡片的手册提供的卡片响应时间⁵设 定。也可以设定一个命令里面响应时间的最长值。

THM3060 的 TMRH 和 TMRL 共同组成一个 16 位的 FWT 值, 其单位为 302μS, 默认 值 TMRH 为 0x01, TMRL 为 0x00, 即 FWT = 0x0100, 等待时间约为 77mS。 THM3060 的定时器启动需要设置 CRCSEL.TMREN =1, 否则等待时间为无限长。

⁵ 在卡片 REQB 的响应 ATQB 中也会返回卡片的最大等待时间,见 3.1.3

保密等级: MID

REF: AN_TypeB

页码: 第11 共 18

3 Type B 常用命令

3.1.1 寻卡命令 REQB/WUPB

REQB 和 WUPB 为寻卡命令,用于发现射频场中的 Type B 卡片。也是 TypeB 卡片需要接收的第一条命令。

1 st byte	е	2 nd byte		3 rd byte	4 th , 5 th byte	S
APf		AFI		PARAM	CRC_B	
(1 byte	e)	(1 byte)		(1 byte).	(2 bytes)	
MSB	LSB	MSB	LSB MSB	LSE	3 MSB	LSB

表 5 REQB/WUPB 命令格式

APf 固定为 0x5。

AFI 为应用代码,不同的应用代码代表不同应用的卡片。具体 AFI 的字节,可以查看卡片的手册。0x00 为通用 AFI,所有卡片无论其 AFI 是什么,均响应 AFI 为 0x00 的命令。

I	b8	b7	b6	b5 b4	b3	b2	b1
I		R	FU	REQB / WUPB	N (N	umber of	slots)

All RFU bits shall be set to 0

表 6 REQB/WUPB PARAM 定义

PARAM 的 b4, 表示本命令是 REQB 还是 WUPB。两者的区别是 WUPB 可以将处于 HALT 状态的卡片唤醒。而 REQB 不可以。

N:代表时间槽。

b3	b2	b1	N
0	0	0	1 = 2 ⁰
0	0	1	$2 = 2^{1}$
0	1	0	$4 = 2^2$
0	1	1	$8 = 2^3$
1	0	0	$16 = 2^4$
1	0	1	RFU
1	1	Х	RFU

保密等级: MID 页码: 第 12 共 18

REF: AN_TypeB

表 7 REQB/WUPB 时间槽

卡片接收到 REQB/WUPB 命令后,卡片随机的产生一个 $0\sim N-1$ 的时间槽号,只有时间槽号为 0 的卡片响应 REQB/WUPB 命令。 当 N=0 时,时间槽号只能为 0,所以卡片会立即响应。 时间槽号可以在后面的 SlotMarker 命令中应用,从而实现防冲突流程。

3.1.2 Slot-MARKER 命令

Slot-Marker 命令与 REQB/WUPB 命令配合可以实现卡片的防冲突流程。

1 st	byte		2 ^{na} , 3 ^{ra} bytes	3
A	Pn		CRC_B	
(1	byte)		(2 bytes)	
MSB	LSB	MSB	A COL	LSB

表 8 Slot-MARKER 命令格式

APn 的二进制格式为 nnnn0101

pnnn	Slot number
0,0001	2
6010	3
0011	4
1110	15
1111	16

表 9 Slot-MARKER 命令时间槽

其中 nnnn 代表不同的时间槽号。

卡片接收到 Slot-Marker 命令后,如果自身的时间槽号与命令中的相同,则卡片发送响应。 因此,Slot-Marker 命令中的 nnnn 的范围由 REQB/WUPB 命令中 N 决定。 应用中不需要防冲突流程的,可以不发送 Slot-Marker 命令。

3.1.3 ATQB 响应

卡片对于 REQB/WUPB 或 Slot-Marker 命令的响应。

保密等级: MID 页码: 第 13 共 18

REF: AN_TypeB

1 st byte	2 nd , 3 rd , 4 th , 5 th bytes	6 th , 7 th , 8 th , 9 th , bytes	10 th , 11 th , 12 th , bytes	13 th , 14 th bytes
'50'	PUPI	Application Data	Protocol Info	CRC_B
(1 byte)	(4 bytes)	(4 bytes)	(3 bytes)	(2 bytes)
MSB LSB M	SB LSB	MSB LSB	MSB LSB	MSB LSB

表 10 ATQB 命令格式

PUPI 中为卡片随机产生的或固定但经过随机化的四个字节,每个卡片应为唯一值。

Applicaiton Data 中返回卡片的应用的种类,应用的数量等信息。

Porotocol Info: 定义卡片支持的波特率,最大帧长,是否支持 ISO/IEC14443-4 (传输协议),以及卡片的最大帧等待时间。

	1 st byte		yte	3	byte	
	Bit_Rate_capability	Max_Frame_Size	Protocol_Type <	FWI	ADC	FO
	(8 bits)	(4 bits)	(4 bits)	(4 bits)	(2 bits)	(2 bit)
Ī	MSB LSB	MSB	LSB	MSB		LSB

表 11 ATQB Protocol Info 字段定义

b8	b7	b6	b5	b4	b3	b2	b1	Meaning
0	0	0	0	0	0	0	0	FICC supports only 106 kbit/s in both directions
1	X	X	X	0	Х	×	X	Same bit rate from PCD to PICC and from PICC to PCD compulsory
X	X	X	1	0	X	×	×	PICC to PCD, 1etu = 64 / fc, bit rate supported is 212 kbit/s
X	X	1	X	0	×	->	X	PICC to PCD, 1etu = 32 / fc, bit rate supported is 424 kbit/s
X	1	X	X	Ö	X	X	X	PICC to PCD, 1etu = 16 / fc, bit rate supported is 847 kbit/s
X	X	X	X	9	X	X	1	PCD to PICC, 1etu = 64 / fc, bit rate supported is 212 kbit/s
X	X	X	X	0	X	1	X	PCD to PICC, 1etu = 32 / fc, bit rate supported is 424 kbit/s
X	X	X	X	0	1	X	X	PCD to PICC, 1etu = 16 / fc, bit rate supported is 847 kbit/s
Oth	er va	lues	(with	b4 =	1) a	re RFl	J.	

表 12 Bit_Rate_capability

Maximum Frame Size Code in ATQB	0	1	2	3	4	5	6	7	8	9-F
Maximum Frame Size (bytes)	16	24	32	40	48	64	96	128	256	RFU > 256

表 13 Max Frame Size

b4	b3	b2	b1	Meaning				
0	0	0	1	PICC compliant with ISO/IEC 14443-4				
0	0	0	0	PICC not compliant with ISO/IEC 14443-4				
Other v	Other values are RFU.							

保密等级: MID

表 14 Protcol Type

b2	b1	Meaning
1	х	NAD supported by the PICC
X	1	CID supported by the PICC

表 15 FO 定义

3.1.4 ATTRIB 命令

选卡命令,读卡器通过 ATTRIB 命令选中具有特定 PUPI 的卡片。

	1 st byte	2 nd , 3 rd , 4 th , 5 th bytes	6 th byte	7 th byte	8 th byte 9 th byte	10 th ,bytes	
ı	'1D'	Identifier	Param 1	Param 2	Param 3 Param 4	Higher layer - INF	CRC_B
١	(1 byte)	(4 bytes)	(1 byte)	(1 byte)		(optional – 0 or more bytes)	(2 bytes)

MSB LSB MSB

LSB MSB LSB MSB LSB MSB LSB MSB

LSB MSB LSB

REF: AN_TypeB

页码: 第14 共 18

表 16 ATTRIB 命令格式

Identifier · 卡片的 PUP

b8	67//	b6	b5	b4	b3	b2	b1
Minim	um TR0	Minimu	ım TR1	EOF	SOF	RF	C

All RFU bits shall be set to 0 if not otherwise specified

表 17 ATTRIB 命令中 PARAM1 定义

PARAM1 向卡片指示读卡器允许接收读的卡片帧格式和卡片最小返回时间。 对于 THM3060, Minimum Tr0 可选择 00, 01, 10 (全部支持); Minimum TR1 可选择 00,

对于 THM3060, Minimum Tr0 可选择 00, 01, 10 (全部支持); Minimum TR1 可选择 00, 01 (不支持 TR1 为 16fs)。

EOF 需选择 1, SOF 需选择 1。卡片必须具有帧起始和帧结束。

Table 24 — Coding of b4 to b1 of Param 2

Maximum Frame Size Code in ATTRIB	0	1	2	3	4	5	6	7	8	9-F
Maximum Frame Size (bytes)	16	24	32	40	48	64	96	128	256	RFU > 256

表 18 ATTRIB 命令中 PARAM2 b1~b4 定义

THM3060 支持最大 512 字节的帧长,因此可以选择 0~8。

保密等级: MID 页码: 第 15 共 18

REF: AN_TypeB

b6	b5	Meaning
0	0	PCD to PICC, 1etu = 128 / fc, bit rate is 106 kbit/s
0	1	PCD to PICC, 1etu = 64 / fc, bit rate is 212 kbit/s
1	0	PCD to PICC, 1etu = 32 / fc, bit rate is 424 kbit/s
1	1	PCD to PICC, 1etu = 16 / fc, bit rate is 847 kbit/s

b8	b7	Meaning
0	0	PICC to PCD, 1etu = 128 fc, bit rate is 106 kbit/s
0	1	PICC to PCD, 1etu = 64 fc, bit rate is 212 kbit/s
1	0	PICC to PCD, 1 = 32 / fc, bit rate is 424 kbit/s
1	1	PICC to PCD, etu = 16 / fc, bit rate is 847 kbit/s

表 19 ATTRIB 命令中 PARAM2 b5~b8 的定义

分别选择读卡器到卡片和卡片到读卡器的通讯速率。

注意:虽然 THM3060 对所有速率均支持,但很多卡片并不支持高速率,或者不支持采用 ATTRIB 切换卡片的速率。卡片支持的速率以及速率切换的方式请参考所使用的卡片手册。

PARAM3 高位 b5~b8 为 0000, b1~b4 为确认 ATTRIB 命令中 Protocol Info 中的 Protocol Type。

PARAM4 高位 b5~b8 为 0000, b1~b4 为定义 CID, CID 的范围为 0~14。CID 可以理解为读卡器为卡片指定的一个临时编号。后续操作,读卡器通过 CID 而不是 PUPI 来操作卡片。

Higher Layer-INF: 读卡器通过 ATTRIB 命令同时发给卡片的更高层的命令。

注意: 很多卡片并不支持在 ATTRIB 命令中传输更高层命令。

3.1.5 其他命令

卡片响应 ATTRIB 命令后就进入了 ACITVE 状态,可以接收其他命令。其他命令请参考卡片的用户手册。

保密等级: MID 页码: 第 16 共 18

REF: AN_TypeB

4 防冲突流程

4.1 选择合适的时间槽数 N

时间槽的值应根据可能发生冲突卡片数来决定。如果 N 选的太大,虽然降低了冲突概率,但 影响了效率。 如果 N 选的太小,冲突概率非常大,同样会降低效率。一般选择 N 为冲突卡 片数的 2 倍或 3 倍即可。

4.2 循环使用 REQB

循环的发送带有时间槽信息 N 的 REQB,则射频场内每张卡片随机产生一个 0~N-1 的时间槽号,0号的卡片在 REQB 后立即响应。读卡器可以发送 ATTRIB 命令选中该卡片。操作完成后,使其进入停止(HALT)状态。

读卡器继续发送 REQB,直到下一张卡片应答,以此类推、最终,可以选中射频场内的所有 卡片。

最后,发送 N 为 0 的 REQB 命令,确认射频场内已没有未选中的卡。

4.3 REQB 与 Slot-MARKER 组合

首先发送带有时间槽信息 N 的 REQB 命令,卡片随机产生 0~N-1 的时间槽号。 读卡器依次发送带有时间槽号信息 1~N-1 的 Slot-MARKER 的命令,选中相应的卡片。 操作选中的卡片,然后使其选入停止(HALT)状态。

最后,发送 N 为 0 的 REQB 命令,确认射频场内已没有未选中的卡。

保密等级: MID 页码: 第 17 共 18

REF: AN_TypeB

5 举例

PSEL 为 0x00, CRCSEL 为 0xC1。 以某 TypeB 卡片为例,数据如下

ЬÜ
卡片
500000000D1038607008090
卡片响应 ATQB
1/0>
112
$\omega'V$
1882
01 卡片返回 CID
OID

保密等级: MID 页码: 第 18 共 18

REF: AN_TypeB

Annex 1 联系我们

公司名称: 北京同方微电子有限公司

办公地点: 北京市海淀区知春路 27 号大运村量子芯座 11 层

邮 编: 100083

电话: +86-10-82351818 传真: +86-10-82357168

电子邮件: support@tsinghuaic.com 网 址: www.tsinghuaic.com

