Chapter 9: Independence and Conditioning (Joint Distributions)

Meike Niederhausen and Nicky Wakim

2024-10-21

Learning Objectives

- 1. Calculate probabilities for a pair of discrete random variables
- 2. Calculate a joint, marginal, and conditional probability mass function (pmf)
- 3. Calculate a joint, marginal, and conditional cumulative distribution function (CDF)

Where are we?

What is a joint pmf?

Definition: joint pmf

The **joint pmf** of a pair of discrete r.v.'s X and Y is

$$p_{X,Y}(x,y) = \mathbb{P}(X = x)$$
 and $Y = y) = \mathbb{P}(X = x, Y = y)$

This chapter's main example

Example 1

Let X and Y be two random draws from a box containing balls labelled 1, 2, and 3 without replacement.

- 1. Find $p_{X,Y}(x,y)$.
- 2. Find $\mathbb{P}(X+Y=3)$.
- 3. Find $\mathbb{P}(Y=1)$.
- 4. Find $\mathbb{P}(Y \leq 2)$.
- 5. Find the joint CDF $F_{X,Y}(x,y)$ for the joint pmf $p_{X,Y}(x,y)$
- 6. Find the marginal CDFs $F_X(x)$ and $F_Y(y)$
- 7. Find $p_{X|Y}(x|y)$.
- 8. Are X and Y independent? Why or why not?

E

Let X and Y be two random draws from a box containing balls labelled 1, 2, and 3 without replacement?

- 1. Find $p_{X,Y}(x,y)$.
- 2. Find $\mathbb{P}(X+Y=3)$.

P(X+Y=3)?

joint pmf for X & Y

$$X=1$$
, $Y=1$
 $I= impossible$
 $X=1$ $Y=2$

X = 1, Y = 2L> P(X&Y) = P(X)P(YIX)

$$P(X+Y=3) = P(X=2,Y=1) + P(X=1,Y=2)$$

= $\frac{1}{6} + \frac{1}{6} = \frac{2}{6} = \frac{1}{3}$

Marginal pmf's

Example 1

Let
$$X$$
 and Y be two random draws from a box containing balls labelled 1, 2, and 3 without replacement.

3. Find $\mathbb{P}(Y = 1)$.

4. Find $\mathbb{P}(Y \leq 2)$.

 $\mathbb{P}(Y = 1) = \mathbb{P}(X = 1) + \mathbb{P}(X = 2) + \mathbb{P}(X = 3) \times \mathbb{P}(X = 3) \times$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{6} + \frac{1}{6} = \frac{1}{3}$$

$$= \sum_{y=1}^{3} P_{X,Y}(x,y) = 0 + \frac{1}{3} + \frac{1}{3} = \frac{1}{$$

Remarks on the joint pmf

Some properties of joint pmf's:

- A joint pmf $p_{X,Y}(x,y)$ must satisfy the following properties:
 - $p_{X,Y}(x,y) \geq 0$ for all x,y.
 - $lacksquare \sum_{\{all\ x\}}\sum_{\{all\ y\}}p_{X,Y}(x,y)=1.$
- Marginal pmf's:
 - $lackbox{$
 - $lackbox{lackbox{}} p_Y(y) = \sum_{\{all \ x\}} p_{X,Y}(x,y)$

What is a joint CDF?

Definition: joint CDF

The **joint CDF** of a pair of discrete r.v.'s X and Y is

$$F_{X,Y}(x,y) = \mathbb{P}(X \leq x \ and \ Y \leq y) = \mathbb{P}(X \leq x, Y \leq y)$$

Joint CDFs

Let X and Y be two random draws from a box containing balls labelled 1, 2, and 3 without replacement.

5. Find the joint CDF $F_{X,Y}(x,y)$ for the joint pmf $p_{X,Y}(x,y)$

$$\forall (\chi \leq \chi \ \& \ \Upsilon \leq)$$

$$P(X \leq X \& Y \leq Y)$$

5. Find the joint CDF
$$F_{X,Y}(x,y)$$
 for the joint pmf $p_{X,Y}(x,y)$

$$P(X \leftarrow X & Y \leftarrow Y)$$

$$P(X \leftarrow I, Y \leftarrow I) = P(X = I, Y = I)$$

$$P(X \leftarrow 3, Y \leftarrow 2) = P(X = 3, Y = I) + P(X = 2, Y$$

$$\sum_{\substack{X \in \mathbb{Z}, Y \in X, y \\ \text{all}_X \text{ all}_y}} P_{X,Y}(x,y)$$

$$= 1$$

$$P(X \le 1, Y \le 1) = P(X = 1, Y = 1)$$

$$P(X \le 3, Y = 1) + P(X = 3, Y = 2) + P(X = 2, Y = 1) + P(X = 2, Y = 2) + P(X = 2, Y = 1) + P(X = 2, Y = 2) + P(X = 1, Y = 2)$$

$$= \sum_{X=1}^{3} \sum_{y=1}^{3} P_{X,Y}(X,y)$$

Marginal CDFs

Example 1

Let X and Y be two random draws from a box containing balls labelled 1, 2, and 3 without replacement.

6. Find the marginal CDFs $F_X(x)$ and $F_Y(y)$

and
$$F_{Y}(y)$$

$$F_{Y}(y) = P(x \le 1) = P(x = 1, Y = 1) + P(x = 1, Y = 2) + P(x = 1, Y = 3)$$

$$F_{X}(x) = P(x \le 2) = P(x = 1) + P(x = 2)$$

$$F_{X}(x) = P(x \le 2) = P(x = 1) + P(x = 2)$$

for marginal y, sum across all x $F_{x}(x) = \frac{1}{3}$ marginal x, sum across all y $\frac{2}{3}$

 $x \ge 3$

Remarks on the joint and marginal CDF

- $F_X(x)$: right most columns of the CDf table (where the Y values are largest)
- $F_Y(y)$: bottom row of the table (where X values are largest)
- $ullet F_X(x) = \lim_{y o \infty} F_{X,Y}(x,y)$
- $ullet F_Y(y) = \overline{\lim_{x o\infty}} \, F_{X,Y}(x,y)$

Independence and Conditioning

Recall that for events A and B,

•
$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

- ullet A and B are independent if and only if
 - $\blacksquare \mathbb{P}(A|B) = \mathbb{P}(A)$
 - $lacksquare \mathbb{P}(A\cap B)=\mathbb{P}(A)\cdot\mathbb{P}(B)$

Independence and conditioning are defined similarly for r.v.'s, since

$$p_{X}(x) = \mathbb{P}(X = x) \text{ and } p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y).$$

$$p(X) \qquad p(X \cap Y)$$
if X &Y are independent:
$$p(X = x, Y = y) = p(X = x) P(Y = y)$$

What is the conditional pmf?

Definition: conditional pmf

if $p_Y(y) > 0$.

The **conditional pmf** of a pair of discrete r.v.'s X and Y is defined as

$$p_{X|Y}(x|y) = \underbrace{\mathbb{P}(X=x|Y=y)}_{P(Y=y)} = \frac{\mathbb{P}(X=x \ and \ Y=y)}{\mathbb{P}(Y=y)} = \underbrace{\frac{p_{X,Y}(x,y)}{p_{Y}(y)}}_{p_{Y}(y)} > 0$$

when
$$P_Y(y) = 0$$
, $P_{X|Y}(x|y) = 0$

Remarks on the conditional pmf

The following properties follow from the conditional pmf definition:

- If $X \perp Y$ (independent)
 - $ullet p_{X|Y}(x|y) = p_X(x)$ for all x and y
 - $lackbox{lackbox{
 ho}}_{X,Y}(x,y) = p_X(x)p_Y(y)$ for all x and y

• If X_1, X_2, \dots, X_n are independent

$$p_{X_1,X_2,\ldots,X_n}(x_1,x_2,\ldots,x_n) = P(X_1=x_1,X_2=x_2,\ldots,X_n=x_n) = \prod_{i=1}^n p_{X_i}(x_i)$$

$$\blacksquare \ F_{X_1,X_2,\dots,X_n}(x_1,x_2,\dots,x_n) = P(X_1 \leq x_1,X_2 \leq x_2,\dots,X_n \leq x_n) = \prod_{i=1}^n P(X_i \leq x_i) = \prod_{i=1}^n F_{X_i}(x_i)$$

Conditional pmf's

Let X and Y be two random draws from a box containing balls labelled 1, 2, and 3 without replacement.

- 7.) Find $p_{X|Y}(x|y)$.
- 8. Are X and Y independent? Why or why not?

Remark:

- To show that *X* and *Y* are not independent, we just need to find one counter example
- However, to show that they are possible pairs of x and y

We just need to find one counter example

However, to show that they are
independent, we need to verify this for all possible pairs of
$$x$$
 and y

$$P(X = 2 \mid Y = 3) = P(X = 2, Y = 3)$$

$$P(Y = 3)$$

	·	