

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
29. April 2004 (29.04.2004)

PCT

(10) Internationale Veröffentlichungsnummer
WO 2004/035649 A1

(51) Internationale Patentklassifikation⁷: C08G 18/38, (74) Anwalt: FITZNER, Uwe; Lintorfer Str. 10, 40878 Ratingen (DE).

(21) Internationales Aktenzeichen: PCT/EP2003/010922

(81) Bestimmungsstaaten (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, IJ, TM, TN, IR, TI, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW

(22) Internationales Anmeldedatum: 2. Oktober 2003 (02.10.2003)

(25) Einreichungssprache: Deutsch

(84) Bestimmungsstaaten (regional): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, RO, SE, SI, SK, TR), OAIPATENT (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG)

(30) Angaben zur Priorität: 102 47 359.5 10. Oktober 2002 (10.10.2002) DE

Veröffentlicht:

— mit internationalem Recherchenbericht

(71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): BASF COATINGS AG [DE/DE]; Glasuritstr. 1, 48165 Münster (DE).

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

(54) Title: NANOPARTICLES, METHOD FOR MODIFYING THEIR SURFACES, DISPERSION OF NANOPARTICLES, METHOD FOR THE PRODUCTION AND THE UTILIZATION THEREOF

(54) Bezeichnung: NANOPARTIKEL, VERFAHREN ZUR MODIFIZIERUNG IHRER OBERFLÄCHE, DISPERSION DER NANOPARTIKEL, VERFAHREN ZU IHRER HERSTELLUNG UND IHRE VERWENDUNG

(57) Abstract: The invention relates to surface-modified nanoparticles, the surfaces of which are almost completely or totally covered with: (A) modifying groups that are bound covalently to the surface by means of linking functional groups (a) and that contain spacer, inert groups (b) and reactive, functional groups (c) which are bound to the groups (a) by means of groups (b) which are inert in comparison with the reactive, functional groups of the surface to be modified; (B) modifying groups that are covalently bound to the surface by means of linking functional groups (a) and that contain inert groups (d) having a smaller hydrodynamic volume V_H than that of the spacer, inert groups (Ab) and (C) modifying groups that are bound to the surface by means of linking functional groups (a) which contain at least one silicon atom, that contain inert groups (e) and that have a smaller hydrodynamic volume V_H than modifying groups (A). The invention also relates to dispersions containing said nanoparticles, to a method for the production and the utilization of the inventive nanoparticles

(57) Zusammenfassung: Zusammenfassung Oberflächenmodifizierte Nanopartikel, deren Oberfläche nahezu vollständig oder vollständig mit (A) modifizierenden Gruppen, die über verküpfende funktionelle Gruppen (a) kovalent an die Oberfläche gebunden sind und- abstandshaltende, inerte Gruppen (b) und- über die Gruppen (b) mit den Gruppen (a) verbundene, reaktive funktionelle Gruppen (c), die gegenüber den reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche inert sind, enthalten, (B) modifizierenden Gruppen, die- über verküpfende funktionelle Gruppen (a) kovalent an die Oberfläche gebunden sind und- inerte Gruppen (d) mit einem kleineren hydrodynamischen Volumen V_H als das der abstandshaltenden, inerten Gruppen (Ab) enthalten, und (C) modifizierenden Gruppen, die- über verküpfende funktionelle Gruppen (a), die mindestens ein Siliziumatom enthalten, an die Oberfläche gebunden sind- inerte Gruppen (e) enthalten und- ein kleineres hydrodynamisches Volumen V_H als die modifizierende Gruppen (A) aufweisen; bedeckt ist; Dispersionen, enthaltend die Nanopartikel, Verfahren zu ihrer Herstellung und ihre Verwendung

WO 2004/035649 A1

Nanopartikel, Verfahren zur Modifizierung ihrer Oberfläche, Dispersion der Nanopartikel, Verfahren zu ihrer Herstellung und ihre Verwendung

5 Gebiet der Erfindung

Die vorliegende Erfindung betrifft neue oberflächenmodifizierte Nanopartikel. Außerdem betrifft die vorliegende Erfindung neue Dispersionen der oberflächenmodifizierten Nanopartikel in aprotischen, 10 insbesondere aprotisch unpolaren, Lösemitteln. Des weiteren betrifft die vorliegende Erfindung ein neues Verfahren zur Herstellung von oberflächenmodifizierten Nanopartikeln und ihren Dispersionen in aprotischen, insbesondere aprotisch unpolaren, Lösemitteln. Nicht zuletzt betrifft die vorliegende Erfindung die Verwendung der neuen 15 oberflächenmodifizierten Nanopartikel und ihrer neuen Dispersion in aprotischen, insbesondere aprotisch unpolaren, Lösemitteln für die Herstellung von Beschichtungsstoffen, Klebstoffen, Dichtungsmassen, Compounds auf der Basis technischer Kunststoffe und härtbaren Massen für die Herstellung von Beschichtungen, Lackierungen, Klebschichten, 20 Dichtungen, Formteilen, insbesondere optischen Formteilen, freitragenden Folien und Hartschäumen.

Stand der Technik

25 Nanopartikel, deren Oberfläche mit primären Alkoholen wie n-Hexanol modifiziert worden sind, sind aus dem amerikanischen Patent US 4,652,470 A bekannt. Durch diese Modifizierung erhalten die Nanopartikel hydrophobe Eigenschaften, so dass sie in organischen Lösemitteln, wie sie üblicherweise in thermisch härtbaren Beschichtungsstoffen verwendet 30 werden, dispergiert werden können. Die bekannten oberflächenmodifizierten Nanopartikel werden allerdings bei der Härtung

der Beschichtungsstoffe nicht in die resultierenden dreidimensionalen Netzwerke der Beschichtungen eingebaut.

Nanopartikel, deren Oberfläche mit blockierte Isocyanatgruppen 5 enthaltenden Silanen und hydrolysebaren Silanen modifiziert worden ist, sind aus dem amerikanischen Patent US 5,998,504 A oder der europäischen Patentanmeldung EP 0 872 500 A1 bekannt. Die oberflächenmodifizierten Nanopartikel können in aprotisch polaren Lösemitteln wie Methoxypropylacetat dispergiert werden.

10

Allerdings müssen erhebliche Mengen an sekundären Alkoholen, insbesondere Isopropanol, zugegen sein, um die Agglomeration der Nanopartikel zu unterdrücken und die Dispersion zu stabilisieren.

15

Auch aus der DE 100 64 637 A1 und der DE 199 15 502 A1 sind anorganische Nanopartikel zur Verwendung in Zahnpflegemitteln bzw. zur Herstellung von Polynukleotidkomplexen zur Transfektion von Zellen bekannt, die an der Oberfläche mit Silanen bzw. Phosphorverbindungen modifiziert sind. Aufgrund der vorgegebenen Anwendungen sind die 20 beschriebenen Partikel polaren Medien mit einer hohen Dielektrizitätskonstante stabilisiert. Somit kann davon ausgegangen werden, dass die Partikel zu einem gewissen Teil über elektrostatische Wechselwirkungen stabilisiert sind. Dies wird u. a. durch die Zeta-Potenziale, die in der DE 199 15 502 A1 angegeben sind, untermauert. da 25 diese Art der Stabilisierung in aromatischen, unpolaren Lösungsmittel, wie z. B. Solventnaphtha oder anderen Lacklösemitteln aufgrund ihrer deutlich niedrigeren Dielektrizitätskonstanten praktisch nicht möglich ist, sind die in den genannten Anmeldungen beschriebenen Nanopartikel nicht für eine Anwendung in konventionellen Lacken nicht geeignet.

30

Aus der europäischen Patentanmeldung EP 0 832 947 A2 sind Nanopartikel bekannt, deren Oberfläche mit Carbamatgruppen enthaltenden Silanen modifiziert worden sind. Die Carbamatgruppen enthaltenden Silane werden hergestellt, indem man eine Isocyanatgruppe 5 enthaltende Silane mit Hydroxypropylcarbamat umsetzt. Die oberflächenmodifizierten Nanopartikel werden in wasserhaltigen, aprotisch polaren Lösemitteln dispergiert.

Die bekannten Beschichtungen mögen zwar im Vergleich zu den 10 nanopartikelfreien Beschichtungen in der Kratzfestigkeit verbessert sein, ihre Chemikalien- und Säurebeständigkeit lassen jedoch weiter zu wünschen übrig. Die bekannten Dispersionen der oberflächenmodifizierten Nanopartikel sind außerdem nicht für die Herstellung von Zweikomponentenbeschichtungsstoffen auf der Basis von 15 Polyisocyanaten geeignet, da sie sehr rasch mit den Polyisocyanaten reagieren und Gele bilden, was zu Trübungen und Stippen in den hieraus hergestellten Beschichtungen führt. Dies liegt zum einen an der weiterhin hohen Reaktivität der oberflächenmodifizierten Nanopartikel und/oder der Reaktivität der zur Stabilisierung der Dispersionen notwendigen 20 sekundären Alkohole gegenüber Polyisocyanaten.

Aufgabe der Erfindung

Der vorliegenden Erfindung lag die Aufgabe zugrunde, neue 25 oberflächenmodifizierte Nanopartikel bereitzustellen, die sich problemlos in aprotischen, insbesondere aprotisch unpolaren, organischen Lösemitteln und/oder olefinisch ungesättigten Monomeren (Reaktivverdünner) dispergieren lassen. Die neuen Dispersionen der oberflächenmodifizierten Nanopartikel sollen auch bei Festkörpergehalten 30 von über 50 Gew.-% lagerstabil sein und nicht zum Sedimentieren neigen.

Sowohl die neuen oberflächenmodifizierten Nanopartikel als auch ihre neuen Dispersionen in aprotischen, insbesondere unpolaren, Lösemitteln und/oder olefinisch ungesättigten Monomeren (Reaktivverdünner) sollen mit Polyisocyanaten keine unerwünschten Reaktionen, wie eine vorzeitige 5 Bildung von Gelen, eingehen. Dabei sollen sie aber eine genügend hohe Reaktionsfähigkeit aufweisen, um mit anderen reaktiven funktionellen Gruppen als Isocyanatgruppen thermisch, radikalisch, kationisch und/oder photochemisch initiierte Vernetzungsreaktionen oder Polymerisationsreaktionen einzugehen.

10

Dabei sollen sich die neuen oberflächenmodifizierten Nanopartikel und ihre Dispersionen in einfacher Weise herstellen lassen, ohne dass hierfür aufwändige Verfahren notwendig werden.

15 Die neuen oberflächenmodifizierten Nanopartikel und ihre Dispersionen in aprotischen, insbesondere aprotisch unpolaren Lösemitteln und/oder olefinisch ungesättigten Monomeren (Reaktivverdünner), sollen außerdem hervorragend für die Herstellung von thermisch und/oder mit aktinischer Strahlung härtbaren Massen, Beschichtungsstoffen, speziell 20 Zweikomponentenbeschichtungsstoffen auf der Basis von Polyisocyanaten, Klebstoffen und Dichtungsmassen sowie von Compounds auf der Basis technischer Kunststoffe geeignet sein.

Die thermisch und/oder mit aktinischer Strahlung härtbaren Massen, 25 Beschichtungsstoffe, Klebstoffe und Dichtungsmassen sollen einfach herzustellen und lagerstabil sein. Vor allem sollen sie keine unerwünschten Gele bilden. Die Compounds auf der Basis technischer Kunststoffe sollen ebenfalls in einfacher Weise nach üblichen und bekannten Verfahren der Kunststoffverarbeitung herstellbar sein. Die 30 Beschichtungsstoffe, Klebstoffe und Dichtungsmassen sollen sich hervorragend für die Herstellung von Beschichtungen, Lackierungen,

Klebschichten und Dichtungen eignen. Die härbaren Massen und die Compounds auf der Basis technischer Kunststoffe sollen sich gleichermaßen hervorragend für die Herstellung von Formteilen, insbesondere optischen Formteilen, frei tragenden Folien und

5 Hartschäumen eignen

Die neuen Beschichtungen, Lackierungen, Klebschichten, Dichtungen, Formteile, frei tragenden Folien und Hartschäume sollen nicht nur kratzfest, sondern auch chemikalienstabil und säurestabil sein. Außerdem 10 sollen die neuen Beschichtungen, Lackierungen, Klebschichten, Dichtungen, optischen Formteile und frei tragenden Folien im Bedarfsfall völlig transparent und klar sein und keine Trübungen oder Stippen aufweisen. Ihre Oberfläche soll außerdem glatt und frei von Oberflächenstörungen sein.

15

Außerdem war es die Aufgabe der vorliegenden Erfindung ein neues Verfahren zur Herstellung von oberflächenmodifizierten Nanopartikeln bereitzustellen, das in einfacher Weise durchgeführt werden und stofflich besonders breit variiert werden kann, so dass neue 20 oberflächenmodifizierte Nanopartikel für besonders zahlreiche Anwendungszwecke maßgeschneidert werden können. Nicht zuletzt soll das neue Verfahren oberflächenmodifizierte Nanopartikel liefern, die sich leicht in aprotischen, insbesondere aprotisch unpolaren Lösemitteln, wie sie beispielsweise für die Herstellung von 25 Zweikomponentenbeschichtungsstoffen verwendet werden, und/oder olefinisch ungesättigten Monomeren (Reaktivverdünner) dispergieren lassen.

30

Die erfindungsgemäße Lösung

Demgemäß wurden die neuen oberflächenmodifizierten Nanopartikel gefunden, deren Oberfläche nahezu vollständig oder vollständig mit

5

- (A) modifizierenden Gruppen, die
 - über verküpfende funktionelle Gruppen (a) kovalent an die Oberfläche gebunden sind und
 - abstandshaltende, inerte Gruppen (b) und
 - über die Gruppen (b) mit den Gruppen (a) verbundene, reaktive funktionelle Gruppen (c), die gegenüber den reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche inert sind, enthalten,
- 10 15 (B) modifizierenden Gruppen, die
 - über verküpfende funktionelle Gruppen (a) kovalent an die Oberfläche gebunden sind und
 - inerte Gruppen (d) mit einem kleineren hydrodynamischen Volumen V_H als das der abstandshaltenden, inerten Gruppen (Ab) enthalten, und
- 20 25 (C) modifizierenden Gruppen, die
 - über verküpfende funktionelle Gruppen (a), die mindestens ein Siliziumatom enthält, an die Oberfläche gebunden sind,
 - inerte Gruppen (e) enthalten und
 - ein kleineres hydrodynamisches Volumen V_H als die modifizierende Gruppen (A) aufweisen:

30

bedeckt ist und die im Folgenden als „erfindungsgemäße Nanopartikel“ bezeichnet werden.

Außerdem wurden die neuen Dispersionen von oberflächenmodifizierten Nanopartikeln gefunden, die durch Dispergieren von erfindungsgemäßen Nanopartikeln in aprotischen Lösemitteln und/oder Reaktivverdünern herstellbar sind, und die folgenden als „erfindungsgemäße Dispersionen“ bezeichnet werden.

10 Weitere Erfindungsgegenstände ergeben sich aus der Beschreibung.

Die Vorteile der erfindungsgemäßen Lösung

Im Hinblick auf den Stand der Technik war es überraschend und für den Fachmann nicht vorhersehbar, dass die Aufgabe, die der vorliegenden Erfindung zugrundelag, mit Hilfe der erfindungsgemäßen Nanopartikel, der erfindungsgemäßen Dispersionen und des erfindungsgemäßen Herstellverfahrens gelöst werden konnte.

20 Insbesondere war es überraschend, dass sich die erfindungsgemäßen Nanopartikel problemlos in aprotischen, insbesondere aprotisch unpolaren, organischen Lösemitteln und/oder olefinisch ungesättigten Monomeren (Reaktivverdünner) dispergieren ließen. Die erfindungsgemäßen Dispersionen Nanopartikel waren überraschenderweise auch bei Festkörpergehalten von über 50 Gew.-% 25 lagerstabil und neigten nicht zum Sedimentieren.

Sowohl die erfindungsgemäßen Nanopartikel als auch ihre erfindungsgemäßen Dispersionen in aprotischen, insbesondere aprotisch unpolaren Lösemitteln und/oder olefinisch ungesättigten Monomeren (Reaktivverdünner) gingen mit Polyisocyanaten keine unerwünschten

Reaktionen, wie eine vorzeitige Bildung von Gelen, ein. Dabei wiesen sie aber eine genügend hohe Reaktionsfähigkeit auf, um mit anderen reaktiven funktionellen Gruppen als Isocyanatgruppen thermisch, radikalisch, kationisch und/oder photochemisch initiierte 5 Vernetzungsreaktionen oder Polymerisationsreaktionen einzugehen.

Die erfindungsgemäßen Nanopartikel und die erfindungsgemäßen Dispersionen ließen sich in einfacher Weise herstellen, ohne dass hierfür aufwändige Verfahren notwendig waren.

10 Die erfindungsgemäßen Nanopartikel und die erfindungsgemäßen Dispersionen waren außerdem hervorragend für die Herstellung von thermisch und/oder mit aktinischer Strahlung härtbaren Massen, Beschichtungsstoffen, speziell Zweikomponentenbeschichtungsstoffen auf 15 der Basis von Polyisocyanaten, Klebstoffen und Dichtungsmassen sowie von Compounds auf der Basis technischer Kunststoffe geeignet.

Die erfindungsgemäßen, thermisch und/oder mit aktinischer Strahlung härtbaren Massen, Beschichtungsstoffe, Klebstoffe und Dichtungsmassen 20 waren einfach herzustellen und lagerstabil. Vor allem bildeten sie keine unerwünschten Gele. Die erfindungsgemäßen Compounds auf der Basis technischer Kunststoffe waren ebenfalls in einfacher Weise nach üblichen und bekannten Verfahren der Kunststoffverarbeitung herstellbar. Die erfindungsgemäßen Beschichtungsstoffe, Klebstoffe und 25 Dichtungsmassen eigneten sich hervorragend für die Herstellung von Beschichtungen, Lackierungen, Klebschichten und Dichtungen. Die erfindungsgemäßen härtbaren Massen und Compounds auf der Basis technischer Kunststoffe eigneten sich gleichermaßen hervorragend für die Herstellung von Formteilen, insbesondere optischen Formteilen, frei 30 tragenden Folien und Hartschäumen.

Die erfindungsgemäßen Beschichtungen, Lackierungen, Klebschichten, Dichtungen, Formteile, frei tragenden Folien und Hartschäume waren nicht nur kratzfest, sondern auch chemikalienstabil und säurestabil. Außerdem waren die erfindungsgemäßen Beschichtungen, Lackierungen, 5 Klebschichten, Dichtungen, optischen Formteile und frei tragenden Folien im Bedarfsfall völlig transparent und klar und wiesen keine Trübungen oder Stippen auf. Ihre Oberfläche war außerdem glatt und frei von Oberflächenstörungen.

10 Das erfindungsgemäße Herstellverfahren für die erfindungsgemäßen Nanopartikel und Dispersionen konnte in einfacher Weise durchgeführt und stofflich besonders breit variiert werden, so dass sich erfindungsgemäße Nanopartikel für besonders zahlreiche Anwendungszwecke maßschneidern ließen. Nicht zuletzt lieferte das 15 erfindungsgemäße Herstellverfahren oberflächenmodifizierte Nanopartikel, die sich leicht in aprotischen, insbesondere aprotisch unpolaren, Lösemitteln, wie sie beispielsweise für die Herstellung von Zwei- und Mehrkomponentenbeschichtungsstoffen verwendet werden, und/oder in olefinisch ungesättigten Monomeren (Reaktivverdünner) dispergieren 20 ließen.

Ausführliche Beschreibung

Für die erfindungsgemäßen Nanopartikel ist es wesentlich, dass ihre 25 Oberfläche nahezu vollständig oder vollständig mit modifizierenden Gruppen bedeckt ist. »Nahezu vollständig oder vollständig bedeckt« bedeutet, dass die Oberfläche der erfindungsgemäßen Nanopartikel so weit bedeckt ist, wie es die sterischen Bedürfnisse der einzelnen modifizierenden Gruppen zulassen, und dass die reaktiven funktionellen 30 Gruppen, die sich gegebenenfalls noch auf der Oberfläche der

erfindungsgemäßen Nanopartikel befinden, sterisch abgeschirmt und so Reaktionen mit beispielsweise Polyisocyanaten entzogen werden.

Die Oberfläche der erfindungsgemäßen Nanopartikel sind mit mindestens 5 drei, insbesondere drei, verschiedenen Klassen von modifizierenden Gruppen bedeckt.

Erfindungsgemäß handelt es sich bei der ersten Klasse um modifizierende Gruppen (A), die über mindestens eine, vorzugsweise mindestens zwei 10 und insbesondere drei, verküpfende funktionelle Gruppe(n) (Aa) kovalent an die Oberfläche gebunden sind. Vorzugsweise sind die Gruppen (Aa) unter den Bedingungen der Anwendung der erfindungsgemäßen Nanopartikeln inert. Bevorzugt enthalten die verküpfenden funktionellen Gruppen (Aa) mindestens ein, insbesondere ein, Siliziumatom. Besonders 15 bevorzugt handelt es sich bei den verküpfenden funktionellen Gruppen (Aa) um Siloxangruppen.

Die Gruppen (A) enthalten mindestens eine, insbesondere eine, abstandshaltende inerte Gruppe (b).

20 »Inert« bedeutet bezüglich der Gruppe (Ab) hier und im Folgenden, dass sie unter den Bedingungen der Herstellung und der Anwendung der erfindungsgemäßen Nanopartikel keine Reaktionen eingeht (vgl. auch, Roempp Online, Georg Thieme Verlag, Stuttgart, New York, 2002, 25 »Inert«).

Vorzugsweise handelt es sich bei der abstandshaltenden, interten Gruppe (Ab) um mindestens einen zweibindigen, insbesondere zweibindigen, 30 organischen Rest R, der bevorzugt aus der Gruppe, bestehend aus aliphatischen, cycloaliphatischen, aromatischen, aliphatisch-cycloaliphatischen, aliphatisch-aromatischen, cycloaliphatisch-

aromatischen und aliphatisch-cycloaliphatisch-aromatischen Resten, ausgewählt wird. Dabei können die Reste R mehr als eine der genannten Struktureinheiten enthalten.

5 Die Reste R können des Weiteren mindestens mindestens eine mindestens zweibindige, insbesondere zweibindige, funktionelle Gruppe und/oder mindestens einen Substituenten enthalten. Wesentlich ist, dass die zweibindigen funktionellen Gruppen und die Substituenten im vorstehend genannten Sinne inert sind. Beispiele geeigneter zweibindiger 10 funktioneller Gruppe sind die nachstehend beschriebenen verknüpfenden funktionellen Gruppen (Ba). Beispiele geeigneter Substituenten sind Halogenatome, insbesondere Fluoratome und Chloratome, Nitrilgruppen, Nitrogruppen oder Alkoxygruppen. Vorzugsweise sind die Reste R unsubstituiert.

15 Die modifizierende Gruppe (A) enthält darüber hinaus mindestens eine, insbesondere eine, über die Gruppe (Ab) mit der Gruppe (a) verbundene, reaktive funktionelle Gruppe (Ac), die unter den Bedingungen der Herstellung der erfindungsgemäßen Nanopartikel gegenüber den 20 reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche inert (vgl. auch, Roempp Online, Georg Thieme Verlag, Stuttgart, New York, 2002, »Inert«) ist. Indes ist die reaktive funktionelle Gruppe (Ac) unter den Bedingungen der Anwendung der erfindungsgemäßen Nanopartikel nicht inert, sondern reaktiv. Insbesondere kann sie thermisch und/oder mit 25 aktinischer Strahlung aktiviert werden, sodass sie thermisch und/oder mit aktinischer Strahlung initiierte Reaktionen, wie Kondensationsreaktionen oder Additionsreaktionen, die nach radikalischen, kationischen oder anionischen Mechanismen ablaufen können, eingehen kann.

30 Hier und im Folgenden wird unter aktinischer Strahlung elektromagnetische Strahlung, wie nahe Infrarot (NIR), sichtbares Licht,

UV-Strahlung, Röntgenstrahlung oder Gammastrahlung, insbesondere UV-Strahlung, und Korpuskularstrahlung, wie Elektronenstrahlung oder Neutronenstrahlung, insbesondere Elektronenstrahlung, verstanden.

5 Beispiele geeigneter thermisch aktivierbarer, reaktiver funktioneller Gruppe (Ac) sind Epoxidgruppen und blockierte Isocyanatgruppen, insbesondere blockierte Isocyanatgruppen der allgemeinen Formel I:

10

worin die Variable X für ein Sauerstoffatom oder ein Schwefelatom, insbesondere ein Sauerstoffatom, steht und die Variable R1 für den Rest eines Blockierungsmittels wie es üblicherweise für die Blockierung von Isocyanatgruppen verwendet wird. Beispiele geeigneter Blockierungsmittel

15 sind

i) Phenole wie Phenol, Cresol, Xylenol, Nitrophenol, Chlorophenol, Ethylphenol, t-Butylphenol, Hydroxybenzoësäure, Ester dieser Säure oder 2,5-di-tert.-Butyl-4-hydroxytoluol;

20

ii) Lactame, wie ε -Caprolactam, δ -Valerolactam, γ -Butyrolactam oder β -Propio-lactam;

25

iii) aktive methylenische Verbindungen, wie Dethylmalonat, Dimethylmalonat, Acetessigsäureethyl- oder methylester oder Acetylacetone;

30

iv) Alkohole wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Isobutanol, t-Butanol, n-Amylalkohol, t-Amylalkohol, Laurylalkohol, Ethylenglykolmonomethylether, Ethylenglykolmonoethylether, Ethylenglykolmonopropylether,

Ethylenglykolmonobutylether, Diethylenglykolmonomethylether,
Diethylenglykolmonoethylether, Propylenglykolmonomethylether,
Methoxymethanol, Glykolsäure, Glykolsäureester, Milchsäure,
Milchsäureester, Methylolharnstoff, Methylolmelamin,
5 Diacetonalkohol, Ethylenchlorohydrin, Ethylenbromhydrin, 1,3-
Dichloro-2-propanol, 1,4-Cyclohexyldimethanol oder
Acetocyanhydrin;

v) Mercaptane wie Butylmercaptan, Hexylmercaptan, t-
10 Butylmercaptan, t-Dodecylmercaptan, 2-Mercaptobenzothiazol,
Thiophenol, Methylthiophenol oder Ethylthiophenol;

vi) Säureamide wie Acetanilid, Acetoanisidinamid, Acrylamid,
Methacrylamid, Essigsäureamid, Stearinsäureamid oder Benzamid;
15 vii) Imide wie Succinimid, Phthalimid oder Maleimid;

viii) Amine wie Diphenylamin, Phenylnnnaphthylamin, Xyridin, N-
Phenylxyridin, Carbazol, Anilin, Naphthylamin, Butylamin,
20 Dibutylamin oder Butylphenylamin;

ix) Imidazole wie Imidazol oder 2-Ethylimidazol;

x) Harnstoffe wie Harnstoff, Thioharnstoff, Ethylenharnstoff,
25 Ethylenthioharnstoff oder 1,3-Diphenylharnstoff;

xi) Carbamate wie N-Phenylcarbamidsäurephenylester oder 2-
Oxazolidon;

30 xii) Imine wie Ethylenimin;

- xiii) Oxime wie Acetonoxim, Formaldoxim, Acetaldoxim, Acetoxim, Methylethylketoxim, Diisobutylketoxim, Diacetylmonoxim, Benzophenonoxim oder Chlorohexanoxime;
- 5 xiv) Salze der schwefeligen Säure wie Natriumbisulfit oder Kaliumbisulfit;
- xv) Hydroxamsäureester wie Benzylmethacrylohydroxamat (BMH) oder Allylmethacrylohydroxamat; oder
- 10 xvi) Substituierte Pyrazole, insbesondere Dimethylpyrazole, Imidazole oder Triazole; sowie
- 15 xvii) Gemische dieser Blockierungsmittel, insbesondere Dimethylpyrazol und Succinimid.

Beispiele geeigneter, mit aktinischer Strahlung aktivierbarer, reaktiver funktioneller Gruppen (Ac) sind Gruppen, die mindestens eine, insbesondere eine, mit aktinischer Strahlung aktivierbare Bindung 20 enthalten. Beispiele geeigneter mit aktinischer Strahlung aktivierbare Bindungen sind Kohlenstoff-Wasserstoff-Einzelbindungen oder Kohlenstoff-Kohlenstoff-, Kohlenstoff-Sauerstoff-, Kohlenstoff-Stickstoff-, Kohlenstoff-Phosphor- oder Kohlenstoff-Silizium-Einzelbindungen oder -Doppelbindungen und Kohlenstoff-Kohlenstoff-Dreifachbindungen. Von 25 diesen werden die Doppelbindungen, insbesondere die Kohlenstoff-Kohlenstoff-Doppelbindungen (nachstehend "Doppelbindungen" genannt, bevorzugt angewandt.

Gut geeignete Doppelbindungen liegen beispielsweise in (Meth)Acrylat-, 30 Ethacrylat-, Crotonat-, Cinnamat-, Vinylether-, Vinylester-, Ethenylarylen-, Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isoprenyl-, Isopropenyl-,

Allyl- oder Butenylgruppen; Ethenylarylen-, Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isopropenyl-, Allyl- oder Butenylethergruppen oder Ethenylarylen-, Dicyclopentadienyl-, Norbornenyl-, Isoprenyl-, Isopropenyl-, Allyl- oder Butenylestergruppen vor. Von diesen sind 5 (Meth)Acrylatgruppen, insbesondere Acrylatgruppen, von besonderem Vorteil und werden deshalb ganz besonders bevorzugt verwendet.

Erfindungsgemäß handelt es sich bei der zweiten Klasse um modifizierende Gruppen (B), die über mindestens eine verknüpfende 10 funktionelle Gruppe (Ba) kovalent an die Oberfläche der zu modifizierenden Nanopartikel gebunden sind. Vorzugsweise werden Gruppen (Ba) verwendet, die unter den Bedingungen der Anwendung der erfindungsgemäßen Nanopartikel inert sind. Die bevorzugt werden die Gruppen (Ba) aus der Gruppe, bestehend aus Ether-, Thioether-, 15 Carbonsäureester-, Thiocarbonsäureester-, Carbonat-, Thiocarbonat-, Phosphorsäureester-, Thiophosphorsäureester-, Phosphonsäureester-, Thiophosphonsäureester-, Phosphit-, Thiophosphit-, Sulfonsäureester-, Amid-, Amin-, Thioamid-, Phosphorsäureamid-, Thiophosphorsäureamid-, Phosphonsäureamid-, Thiophosphonsäureamid-, Sulfonsäureamid-, Imid-, 20 Hydrazid-, Urethan-, Harnstoff-, Thioharnstoff-, Carbonyl-, Thiocarbonyl-, Sulfon- oder Sulfoxidgruppen, ausgewählt. Besonders bevorzugt sind Ethergruppen.

Außerdem enthalten die modifizierende Gruppen (B) mindestens eine, 25 insbesondere eine, über die Gruppe (Ba) mit der Oberfläche verknüpfte inerte Gruppe (Bd). Die Gruppe (Bd) ist wie die Gruppe (Ab) unter den Bedingungen der Herstellung und der Verwendung der erfindungsgemäßen Nanopartikel inert. Vorzugsweise sind die Gruppen (Bb) einbindige organische Reste R^2 . Bevorzugt werden sie aus der 30 Gruppe, bestehend aus aliphatischen, cycloaliphatischen, aromatischen, aliphatisch-cycloaliphatischen, aliphatisch-aromatischen, cycloaliphatisch-

aromatischen oder aliphatisch-cycloaliphatisch-aromatischen Resten, ausgewählt. Sie können die vorstehend beschriebenen mindestens zweibindigen funktionellen Gruppen und/oder Substituenten enthalten.

5 Wesentlich ist, dass die inerten Gruppen (Bd) ein kleineres hydrodynamisches Volumen V_H als die abstandshaltenden, inerten Gruppen (Ab) haben. Das hydrodynamische Volumen V_H ist mit Hilfe der Photonenkorrelationsspektroskopie bestimmbar oder über die Beziehung

10
$$V_H = (r_{\text{cont}}/2)^3,$$

worin r_{cont} die effektive Konturlänge eines Moleküls bedeutet, abschätzbar. Ergänzend wird auf das Lehrbuch von H.-G. Elias, »Makromoleküle«, Hüthig & Wepf Verlag, Basel, Band 1, »Grundlagen«, Seite 51, verwiesen.

15 Erfindungsgemäß handelt es sich bei der dritten Klasse um modifizierende Gruppen (C), die über mindestens eine, insbesondere eine, verküpfende funktionelle Gruppen (Ca) Gruppen kovalent an die Oberfläche der erfindungsgemäßen Nanopartikel gebunden sind. Vorzugsweise sind die 20 Gruppen (Ca) unter den Bedingungen der Anwendung der erfindungsgemäßen Nanopartikeln inert. Bevorzugt enthalten die verküpfenden funktionellen Gruppen (Ca) mindestens ein, insbesondere ein, Siliziumatom. Besonders bevorzugt handelt es sich bei den verküpfenden funktionellen Gruppe (Ca) um Siloxangruppen.

25 Außerdem enthalten die modifizierenden Gruppen (C) mindestens eine, vorzugsweise mindestens zwei und insbesondere mindestens drei über die Gruppe (Ca) mit der Oberfläche verknüpfte inerte Gruppe(n) (Ce). Die Gruppe (Ce) ist wie die Gruppe (Bd) oder (Aa) unter den Bedingungen der 30 Herstellung und der Verwendung der erfindungsgemäßen Nanopartikel inert. Vorzugsweise sind die Gruppen (Ce) einbindige organische Reste

R^2 . Bevorzugt werden sie aus der Gruppe, bestehend aus aliphatischen, cycloaliphatischen, aromatischen, aliphatisch-cycloaliphatischen, aliphatisch-aromatischen, cycloaliphatisch-aromatischen oder aliphatisch-cycloaliphatisch-aromatischen Resten, ausgewählt. Sie können die 5 vorstehend beschriebenen mindestens zweibindigen funktionellen Gruppen und/oder Substituenten enthalten.

Wesentlich ist, dass die Gruppen (C) ein kleineres hydrodynamisches Volumen V_H als die modifizierenden Gruppen (A) haben.

10 Das Gewichtsverhältnis der modifizierenden Gruppen (A) : (B) : (C) kann breit variieren und richtet sich nach den Erfordernissen des Einzelfalls. Das Gewichtsverhältnis (A) : (B) : (C) liegt

15 - vorzugsweise bei (4 bis 200) : (0,1 bis 60) : 1,
- bevorzugt bei (7 bis 100) : (0,2 bis 15) : 1 und
- insbesondere bei (10 bis 50) : (0,5 bis 10) : 1.

20 Die erfindungsgemäßen Nanopartikeln können nach den üblichen und bekannten Methoden der organischen und der siliziumorganischen Chemie hergestellt werden, indem beispielsweise geeignete Silane mit hydrolysierbaren Gruppen gemeinsam hydrolysiert und kondensiert 25 werden oder zu modifizierende Nanopartikel mit geeigneten organischen Verbindungen und Silanen mit hydrolysierbaren Gruppen umgesetzt werden.

Vorzugsweise werden die erfindungsgemäßen Nanopartikel durch die 30 Umsetzung der reaktiven funktionellen Gruppen der Oberfläche von zu modifizierenden Nanopartikeln mit den nachstehend beschriebenen

Modifizierungsmitteln hergestellt. Beispiele geeigneter reaktiver funktioneller Gruppen sind Säuregruppen, wie Carboxylgruppen, Sulfonsäuregruppen oder Phosphorsäuregruppen, oder Hydroxylgruppen, insbesondere Hydroxylgruppen.

5

Erfindungsgemäß werden die zu modifizierenden Nanopartikel mit mindestens einem Modifizierungsmittel (A) umgesetzt.

Das Modifizierungsmittel (A) enthält mindestens eine, vorzugsweise 10 mindestens zwei und insbesondere mindestens drei reaktive funktionelle Gruppen (Aa), die gegenüber den reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche reaktiv sind. Vorzugsweise enthält die reaktive funktionelle Gruppe (Aa) mindestens ein, insbesondere ein, Siliziumatom. Reaktive funktionelle Gruppen (Aa) sind üblich und bekannt und können 15 vom Fachmann anhand der komplementären reaktiven funktionellen Gruppen auf der zu modifizierenden Oberfläche ausgewählt werden.

Das Modifizierungsmittel (A) enthält desweiteren mindestens eine, vorzugsweise eine, der vorstehend beschriebenen, abstandhaltenden, 20 inerten Gruppen (Ab). Diese sind mit den reaktiven funktionellen Gruppen (Aa) kovalent verknüpft.

Außerdem enthält das Modifizierungsmittel mindestens eine, insbesondere eine, der vorstehend beschriebenen, über die Gruppe (Ab) 25 mit der Gruppe (Aa) verbundenen, reaktiven funktionellen Gruppen (Ac), die gegenüber den reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche inert sind.

Erfindungsgemäß werden die zu modifizierenden Nanopartikel außerdem 30 mit mindestens einem Modifizierungsmittel (B) umgesetzt.

Das Modifizierungsmittel (B) enthält mindestens eine, insbesondere eine, reaktive funktionelle Gruppe (Ba), die gegenüber den reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche reaktiv sind. An und für sich kann es sich bei den reaktiven funktionellen Gruppen (Ba) um 5 die vorstehend beschriebenen reaktiven funktionellen Gruppen (Aa) handeln. Vorzugsweise werden aber die reaktiven funktionellen Gruppen (Ba) aus der Gruppe, bestehend aus den Vorstufen der verküpfenden funktionellen Gruppen (Ba), vorzugsweise aus Ether-, Thioether-, Carbonsäureester-, Thiocarbonsäureester-, Carbonat-, Thiocarbonat-, 10 Phosphorsäureester-, Thiophosphorsäureester-, Phosphonsäureester-, Thiophosphonsäureester-, Phosphit-, Thiophosphit-, Sulfonsäureester-, Amid-, Amin-, Thioamid-, Phosphorsäureamid-, Thiophosphorsäureamid-, Phosphonsäureamid-, Thiophosphonsäureamid-, Sulfonsäureamid-, Imid-, Hydrazid-, Urethan-, Harnstoff-, Thioharnstoff-, Carbonyl-, Thiocarbonyl-, 15 Sulfon- oder Sulfoxidgruppen (Ba), insbesondere von Ethergruppen (Ba), ausgewählt. Die reaktiven funktionellen Gruppen (Ba) sind übliche und bekannte reaktive funktionelle Gruppen der organischen Chemie und können daher vom Fachmann leicht aufgrund seines Fachwissens ausgewählt werden.

20

Das Modifizierungsmittel (B) enthält außerdem mindestens eine, insbesondere eine, der vorstehend beschriebenen inerten Gruppen (Bd) mit einem kleineren hydrodynamischen Volumen V_H als das der der vorstehend beschriebenen abstandhaltenden, inerten Gruppe (Ab). 25 Vorzugsweise ist die Gruppe (Bd) mit der reaktiven funktionellen Gruppe (Ba) direkt verknüpft.

Erfindungsgemäß werden die zu modifizierenden Nanopartikel noch mit mindestens einem Modifizierungsmittel (C) mit einem kleineren 30 hydrodynamischen Volumen V_H als das Modifizierungsmittel (A) umgesetzt.

Das Modifizierungsmittel (C) enthält mindestens eine reaktive funktionelle Gruppe (Ca), die mindestens ein, insbesondere ein, Siliziumatom enthält und gegenüber den reaktiven funktionellen Gruppen der zu modifizierenden 5 Oberfläche reaktiv ist.

Außerdem enthält das Modifizierungsmittel (C) mindestens eine, vorzugsweise mindestens zwei und insbesondere drei der vorstehend beschriebenen inerten Gruppen (Ce), die vorzugsweise direkt mit der 10 reaktiven funktionellen Gruppe (Ca) verknüpft ist oder sind.

Bevorzugt werden die Modifizierungsmittel (A) aus der Gruppe, bestehend aus Silanen der allgemeinen Formel II:

worin die Indizes und die Variablen die folgende Bedeutung haben:

20 m und n ganze Zahlen von 1 bis 6, vorzugsweise 1 bis 5 und insbesondere 1 bis 3;

o 0, 1 oder 2, insbesondere 0;

25 Ac thermisch und/oder mit aktinischer Strahlung aktivierbare Gruppe, wie vorstehend definiert;

R mindestens zweibindiger organischer Rest, wie vorstehend definiert;

30 R^2 einbindiger organischer Rest, wie vorstehend definiert, und

R^3 hydrolysierbares Atom oder hydrolysierbare Gruppe;

ausgewählt.

5 Vorzugsweise wird das hydrolysierbare Atom R^3 aus der Gruppe, bestehend aus Wasserstoffatomen, Fluoratomen, Chloratomen und Bromatomen und die hydrolysierbare Gruppe R^3 aus der Gruppe, bestehend aus Hydroxylgruppen und einbindigen organischen Resten R^4 ausgewählt.

10

Vorzugsweise wird der einbindige organische Rest R^4 aus der Gruppe, bestehend aus Gruppen der allgemeinen Formel III:

$-Y-R^2$ (III),

15

* worin die Variable Y für ein Sauerstoffatom oder eine Carbonylgruppe, Carboxyloxygruppe, Oxycarbonylgruppe, Aminogruppe $-NH-$ oder sekundäre Aminogruppe $-NR^2-$, insbesondere ein Sauerstoffatom, steht und die Variable R^2 die vorstehend angegebene Bedeutung hat;

20 ausgewählt.

Bevorzugt wird der hydrolysierbare, einbindige organische Rest R^4 aus der Gruppe, bestehend aus unubstituierten Alkoxyresten mit 1 bis 4 Kohlenstoffatomen im Alkylrest, ausgewählt.

25

Die Silane (A) sind an sich bekannte Verbindungen und können nach den üblichen und bekannten Verfahren der siliziumorganischen Chemie hergestellt werden. Vorzugsweise sind die Silane (A) erhältlich durch

(1) die Umsetzung von Polyisocyanaten mit Blockierungsmitteln, wie die vorstehend beschriebenen, und mit Silanen der allgemeinen Formel IV:

worin die Variable Z für eine isocyanatreaktive funktionelle Gruppe, vorzugsweise eine Hydroxylgruppe, eine Thiolgruppe oder eine primäre oder sekundäre Aminogruppe, insbesondere eine Hydroxylgruppe, steht und die Variablen R, R² und R³ die vorstehend angegebene Bedeutung haben; oder
10

(2) die Umsetzung von Verbindungen der allgemeinen Formel V:

worin der Index n und die Variablen Ac, R und Z die vorstehend angegebene Bedeutung haben; mit Silanen der allgemeinen Formel VI:

worin der Index m und die Variablen R, R² und R³ die vorstehend angegebene Bedeutung haben.

25 Beispiele geeigneter Silane der allgemeinen Formel IV sind beispielsweise aus dem amerikanischen Patent US 5,998,504 A1, Spalte 3, Zeile 37, bis Spalte 4, Zeile 29 oder der europäischen Patentanmeldung EP 1 193 278 A1, Seite 3, Zeile 27 bis 43, bekannt.

30 Beispiele geeigneter Polyisocyanate sind

- Diisocyanate wie Isophorondiisocyanat (= 5-Isocyanato-1-isocyanatomethyl-1,3,3-trimethyl-cyclohexan), 5-Isocyanato-1-(2-isocyanatoeth-1-yl)-1,3,3-trimethyl-cyclohexan, 5-Isocyanato-1-(3-isocyanatoprop-1-yl)-1,3,3-trimethyl-cyclohexan, 5-Isocyanato-(4-isocyanatobut-1-yl)-1,3,3-trimethyl-cyclohexan, 1-Isocyanato-2-(3-isocyanatoprop-1-yl)-cyclohexan, 1-Isocyanato-2-(3-isocyanatoeth-1-yl)cyclohexan, 1-Isocyanato-2-(4-isocyanatobut-1-yl)-cyclohexan, 1,2-Diisocyanatocyclobutan, 1,3-Diisocyanatocyclobutan, 1,2-Diisocyanatocyclopentan, 1,3-Diisocyanatocyclopentan, 1,2-Diisocyanatocyclohexan, 1,3-Diisocyanatocyclohexan, 1,4-Diisocyanatocyclohexan, Dicyclohexylmethan-2,4'-diisocyanat, Trimethylendiisocyanat, Tetramethylendiisocyanat, Pentamethylendiisocyanat, Hexamethylendiisocyanat (HDI), Ethylethylendiisocyanat, Trimethylhexan-diisocyanat, Heptamethylendiisocyanat oder Diisocyanate, abgeleitet von Dimerfettsäuren, wie sie unter der Handelsbezeichnung DDI 1410 von der Firma Henkel vertrieben und in den Patentschriften WO 97/49745 und WO 97/49747 beschrieben werden, insbesondere 2-Heptyl-3,4-bis(9-isocyanatononyl)-1-pentyl-cyclohexan oder 1,2-, 1,4- oder 1,3-Bis(isocyanatomethyl)cyclohexan, 1,2-, 1,4- oder 1,3-Bis(2-isocyanatoeth-1-yl)cyclohexan, 1,3-Bis(3-isocyanatoprop-1-yl)cyclohexan, 1,2-, 1,4- oder 1,3-Bis(4-isocyanatobut-1-yl)cyclohexan oder flüssiges Bis(4-isocyanatocyclohexyl)methan eines trans/trans-Gehalts von bis zum 30 Gew.-%, vorzugsweise 25 Gew.-% und insbesondere 20 Gew.-%, wie es in den Patentanmeldungen DE 44 14 032 A1, GB 1 220 717 A1, DE 16 18 795 A1 oder DE 17 93 785 A1 beschrieben wird, bevorzugt Isophorondiisocyanat, 5-Isocyanato-1-(2-isocyanatoeth-1-yl)-1,3,3-trimethyl-cyclohexan, 5-Isocyanato-1-(3-isocyanatoprop-1-yl)-1,3,3-trimethyl-cyclohexan, 5-Isocyanato-(4-isocyanatobut-1-yl)-

1,3,3-trimethyl-cyclohexan, 1-Isocyanato-2-(3-isocyanatoprop-1-yl)-cyclohexan, 1-Isocyanato-2-(3-isocyanatoeth-1-yl)cyclohexan, 1-Isocyanato-2-(4-isocyanatobut-1-yl)-cyclohexan oder HDI, insbesondere HDI; oder

5

- Isocyanurat-, Biuret-, Allophanat-, Iminooxadiazindion-, Urethan-, Harnstoff-Carbodiimid und/oder Uretdiongruppen aufweisende Polyisocyanate, die in üblicher und bekannter Weise aus den vorstehend beschriebenen Diisocyanaten hergestellt werden; Beispiele geeigneter Herstellungsverfahren und Polyisocyanate sind beispielsweise aus den Patentschriften CA 2,163,591 A, US 4,419,513 A, US 4,454,317 A, EP 0 646 608 A, US 4,801,675 A, EP 0 183 976 A1, DE 40 15 155 A1, EP 0 303 150 A1, EP 0 496 208 A1, EP 0 524 500 A1, EP 0 566 037 A1, US 5,258,482 A, US 5,290,902 A, EP 0 649 806 A1, DE 42 29 183 A1 oder EP 0 531 820 A1 bekannt.

Weitere Beispiele geeigneter Polyisocyanate sind aus dem amerikanischen Patent US 5,998,504 A, Spalte 5, Zeile 21, bis Spalte 6, Zeile 2, bekannt.

Besonders bevorzugt werden Isocyanurate auf der Basis von Isophorondiisocyanat zur Herstellung die Silane (A) verwendet.

25 Beispiele geeigneter Verbindungen der allgemeinen Formel V sind Glycidol und übliche und bekannte, hydroxylgruppenhaltige, olefinisch ungesättigte Monomere, wie

- Hydroxyalkylester von alpha,beta-olefinisch ungesättigten 30 Carbonsäuren, wie Hydroxyalkylester der Acrylsäure, Methacrylsäure und Ethacrylsäure, in denen die Hydroxyalkylgruppe bis zu 20

Kohlenstoffatome enthält, wie 2-Hydroxyethyl-, 2-Hydroxypropyl, 3-Hydroxypropyl-, 3-Hydroxybutyl-, 4-Hydroxybutylacrylat, -methacrylat oder -ethacrylat; 1,4-Bis(hydroxymethyl)cyclohexan-, Octahydro-4,7-methano-1H-indendimethanol- oder Methylpropandiolmonoacrylat, -monoethacrylat, -monoethacrylat oder - monocrotonat; oder Umsetzungsprodukte aus cyclischen Estern, wie zum Beispiel epsilon-Caprolacton und diesen Hydroxylalkylestern;

- olefinisch ungesättigte Alkohole wie Allylalkohol;

10 - Allylether von Polyolen wie Trimethylolpropanmonoallylether oder Pentaerythritmono-, di- oder -triallylether. Die höherfunktionellen Monomeren (1) werden im allgemeinen nur in untergeordneten Mengen verwendet. Im Rahmen der vorliegenden Erfindung sind hierbei unter untergeordneten Mengen an höherfunktionellen Monomeren solche Mengen zu verstehen, welche nicht zur Vernetzung oder Gelierung der Copolymerisate (A) führen, es sei denn, sie sollen in der Form von vernetzten Mikrogelteilchen vorliegen;

15 - Umsetzungsprodukte von alpha,beta-olefinisch Carbonsäuren mit Glycidylestern einer in alpha-Stellung verzweigten Monocarbonsäure mit 5 bis 18 Kohlenstoffatomen im Molekül. Die Umsetzung der Acryl- oder Methacrylsäure mit dem Glycidester einer Carbonsäure mit einem tertiären alpha-Kohlenstoffatom kann vorher, während oder 20 nach der Polymerisationsreaktion erfolgen. Bevorzugt wird als Komponente (a1) das Umsetzungsprodukt von Acryl- und/oder Methacrylsäure mit dem Glycidylester der Versatic®-Säure eingesetzt. Dieser Glycidylester ist unter dem Namen Cardura® E10 im Handel erhältlich. Ergänzend wird auf Römpf Lexikon Lacke und Druckfarben, 25 Georg Thieme Verlag, Stuttgart, New York, 1998, Seiten 605 und 606, 30 verwiesen;

- Formaldehydaddukte von Aminoalkylestern von alpha,beta-olefinisch ungesättigten Carbonsäuren und von alpha,beta-ungesättigten Carbonsäureamiden, wie N-Methylolaminoethylacrylat, 5 aminoethylmethacrylat, -acrylamid und -methacrylamid; sowie
- Acryloxysilangruppen und Hydroxylgruppen enthaltende olefinisch ungesättigte Monomere, herstellbar durch Umsetzung hydroxyfunktioneller Silane mit Epichlorhydrin und anschließender 10 Umsetzung des Zwischenprodukts mit einer alpha,beta-olefinisch ungesättigten Carbonsäure, insbesondere Acrylsäure und Methacrylsäure, oder ihren Hydroxyalkylestern.

Beispiele geeigneter Silane der allgemeinen Formel VI sind beispielsweise 15 aus der deutschen Patentanmeldung DE 199 10 876 A 1 bekannt.

Bevorzugt wird das Modifizierungsmittel (B) aus der Gruppe, bestehend aus hydroxylgruppenhaltigen Verbindungen allgemeinen Formel VII:

20 R^2-OH (VII),

worin die Variable R^2 die vorstehend angegebene Bedeutung hat, ausgewählt. Besonders bevorzugt werden aliphatische, insbesondere primäre, Alkohole, wie sie beispielsweise, in dem amerikanischen Patent 25 US 4,652,470 A 1, Spalte 9, Zeile 59, bis Spalte 10, Zeile 5, beschrieben werden, verwendet. Ganz besonders bevorzugt wird n-Hexanol verwendet.

Bevorzugt wird das Modifizierungsmittel (C) aus der Gruppe, bestehend 30 aus Silanen der allgemeinen Formel VIII:

worin der Index p = 1, 2 oder 3, insbesondere 1, und die Variablen R² und R³ die vorstehend angegebene Bedeutung haben, ausgewählt.

5

Beispiele geeigneter Silane (C) werden in dem amerikanischen Patent US 5,998,504 A, Zeile 30, bis Spalte 5, Zeile 20, beschrieben. Besonders bevorzugt wird Trimethylethoxysilan verwendet.

- 10 Als zu modifizierende Nanopartikel können alle üblichen und bekannten Nanopartikel ausgewählt werden. Vorzugsweise werden sie aus der Gruppe, bestehend aus Metallen, Verbindungen von Metallen und organischen Verbindungen, ausgewählt.
- 15 Vorzugsweise werden die Metalle aus der dritten bis fünften Hauptgruppe, der dritten bis sechsten sowie der ersten und zweiten Nebengruppe des Periodensystems der Elemente sowie den Lanthaniden, und bevorzugt aus der Gruppe, bestehend aus Bor, Aluminium, Gallium, Silizium, Germanium, Zinn, Arsen, Antimon, Silber, Zink, Titan, Zirkonium, Hafnium,
- 20 Vanadium, Niob, Tantal, Molybdän, Wolfram und Cer, ausgewählt. Insbesondere werden Aluminium und Silizium verwendet.

Vorzugsweise handelt es sich bei den Verbindungen der Metalle um Oxide, Oxidhydrate, Sulfate, Hydroxide oder Phosphate, insbesondere Oxide, Oxidhydrate und Hydroxide.

Beispiele geeigneter organischer Verbindungen sind Lignine und Stärken.

Vorzugsweise weisen die zu modifizierenden Nanopartikel eine Primärpartikelgröße <50, bevorzugt 5 bis 50, insbesondere 10 bis 30 nm auf.

An und für sich können die erfindungsgemäßen Nanopartikel hergestellt werden, indem man bei dem erfindungsgemäßen Herstellverfahren die zu modifizierenden Nanopartikel in beliebiger Reihenfolge mit den vorstehend 5 beschriebenen Modifizierungsmitteln umsetzt. Vorzugsweise werden sie aber in einer ersten Verfahrensstufe mit mindestens einem, insbesondere einem, Modifizierungsmittel (A) sowie in einer zweiten Verfahrensstufen mit mindestens einem, insbesondere einem, Modifizierungsmittel (B) und in einer dritten Verfahrensstufe mit mindestens einem, insbesondere 10 einem, Modifizierungsmittel (C) umgesetzt. Alternativ werden sie in einer zweiten Verfahrensstufe mit einem, insbesondere einem, Modifizierungsmittel (C) und in einer dritten Verfahrensstufen mit einem, insbesondere einem, Modifizierungsmittel (B) umgesetzt. In noch einer weiteren Alternative werden sie in einer zweiten Verfahrensstufe mit 15 mindestens einem, insbesondere einem, der Modifizierungsmittel (B) und (C) umgesetzt.

In einer weiteren Variante des erfindungsgemäßen Herstellverfahrens werden mindestens ein, insbesondere ein, Modifizierungsmittel (A) der 20 allgemeinen Formel II und mindestens ein, insbesondere ein, Modifizierungsmittel (C) der allgemeinen Formel VIII gemäß dem Sol-Gel-Prozess miteinander hydrolysiert und kondensiert, wonach man die resultierenden Polykondensate mit mindestens einem, insbesondere einem, Modifizierungsmittel (B) umsetzt, wodurch die erfindungsgemäßen 25 Nanopartikel resultieren (vgl. Römpf Online, Georg Thieme Verlag, Stuttgart, 2002, »Sol-Gel-Prozess«).

Bevorzugt werden bei der Umsetzung der Silane (A) und (C) mit oder zu den zu modifizierenden Nanopartikeln übliche und bekannte Katalysatoren 30 für die Hydrolyse, wie organische und anorganische Säuren, verwendet.

An und für sich können die Modifizierungsmittel (A), (B) und (C) in beliebigen Mengenverhältnissen mit oder zu den zu modifizierenden Nanopartikel umgesetzt werden. Es empfiehlt sich aber die Modifizierungsmittel (A), (B) und (C) in Mengen zu verwenden, dass die 5 vorstehend beschriebenen Gewichtsverhältnisse der modifizierenden Gruppen (A), (B) und (C) resultieren.

Die erfindungsgemäßen Nanopartikel können als solche bereits allen Verwendungszwecken zugeführt werden, wie sie in der internationalen 10 Patentanmeldung WO 99/52964 Seite 12, Zeile 10 bis Seite 14, Zeile 4, beschrieben werden; vor allem aber eignen sich die erfindungsgemäßen Nanopartikel für die Herstellung von Dispersionen in aprotischen, insbesondere aprotisch unpolaren, Lösemitteln und/oder Reaktivverdünnern.

15 Als aprotische Lösemittel werden organische Lösemittel verstanden, die keine protolysefähigen Wasserstoffatome enthalten, also keine Protonendonatoren darstellen. Ergänzend wird hierzu auf Römpf Lexikon Lacke und Druckfarben, Georg Thieme Verlag, Stuttgart, New York 1998, 20 Seite 41, »Aprotische Lösemittel«, oder Römpf Online, Georg Thieme Verlag, Stuttgart, New York, 2002, »Aprotische Lösemittel«, verwiesen.

Unter Reaktivverdünnern werden reaktive Verdünnungsmittel oder reaktive Lösemittel verstanden, wobei es sich um einen vereinfachten Begriff für 25 die längere Bezeichnung nach DIN 55945: 1996-09 handelt, die Verdünnungsmittel beschreibt, die bei der Filmbildung durch chemische Reaktion Bestandteil des Bindemittels werden. Hierbei handelt es sich insbesondere um olefinisch ungesättigte Monomere mit mindestens einer Doppelbindung, insbesondere mindestens zwei Doppelbindungen. 30 Ergänzend wird hierzu auf Römpf Lexikon Lacke und Druckfarben, Georg

Thieme Verlag, Stuttgart, New York, 1998, Seite 491, »Reaktivverdünner« verwiesen.

Besonders bevorzugt haben die aprotischen Lösemittel und/oder
5 Reaktivverdünner bezüglich der modifizierenden Gruppen (A) und (B) einen Flory-Huggins-Parameter $\chi > 0,5$ (vgl. hierzu K. Kehr, Mittlere Feldtheorie von Polymerlösungen, Schmelzen und Mischungen; Random Phase Approximation, in Physik der Polymere, 22. IFF-Ferienkurs, Forschungszentrum Jülich GmbH, Jülich, 1991)

10 Überraschenderweise weisen die erfindungsgemäßen Dispersionen bezogen auf ihre Gesamtmenge ein Festkörpergehalt > 30, bevorzugt > 40 und insbesondere > 50 Gew.-% auf, ohne dass es zu einer Sedimentation oder Gelbildung kommt. So weisen beispielsweise die
15 erfindungsgemäßen Dispersionen, die erfindungsgemäße Nanopartikel auf der Basis von Siliziumdioxid enthalten Festkörpergehalte zwischen 25 und 70% auf, wobei der Anteil an reinem Siliziumdioxid, der durch den Glührückstand gegeben ist, vorzugsweise zwischen 1 und 40 Gew.-%, insbesondere zwischen 20 und 30 Gew.-%, liegt. Die erfindungsgemäßen
20 Dispersionen zeigen auch nach der Zugabe von Polyisocyanaten, wie beispielsweise einer 90%igen Anlösung von Hexamethylendiisocyanat in Solvent Naphta / Butylacetat, keinerlei Tendenz zur Gelbildung.

Der Transfer der erfindungsgemäßen Nanopartikel in die aprotischen, 25 insbesondere in die aprotisch unpolaren, Lösemittel oder Reaktivverdünner gelingt durch eine Destillation. Zur Verfahrensoptimierung können daher bestimmte Schlepper, die mit den eingesetzten protischen Lösemitteln niedrigsiedende Azeotrope bilden, eingesetzt werden. Das Verfahren nach der Erfindung ermöglicht die
30 Herstellung von erfindungsgemäßen Dispersionen mit einem Restgehalt

an protischen Lösemitteln von weniger als 1 Gew.-% (gemäß GC-Analyse).

Die erfindungsgemäßen Dispersionen können mindestens einen Zusatzstoff enthalten. Vorzugsweise wird der Zusatzstoff aus der Gruppe, bestehend aus üblichen und bekannten polymeren und oligomeren Bindemitteln, Vernetzungsmitteln, farb- und/oder effektgebenden Pigmenten, organischen und anorganischen, transparenten oder opaken Füllstoffen, sonstigen von den erfindungsgemäßen Nanopartikeln verschiedenen Nanopartikeln, UV-Absorbern, Lichtschutzmitteln, Radikalfängern, Entlüftungsmitteln, Slipadditiven, Polymerisationsinhibitoren, Photoinitiatoren, Initiatoren der radikalischen oder kationischen Polymerisation, Entschäumern, Emulgatoren, Netz- und Dipergiermitteln, Haftvermittlern, Verlaufmitteln, filmbildenden Hilfsmitteln, Sag control agents (SCA), rheologiesteuernden Additiven (Verdicker), Flammeschutzmitteln, Sikkativen, Trockungsmitteln, Hautverhinderungsmitteln, Korrosionsinhibitoren, Wachsen und Mattierungsmitteln; ausgewählt. Insbesondere werden Lackadditive als Zusatzstoffe eingesetzt (vgl. auch das Lehrbuch von Johan Bieleman, »Lackadditive« Wiley-VCH, Weinheim, New York, 1998, oder Römpf Online, Georg Thieme Verlag, Stuttgart, New York, 2002, »Additive«).

Die Auswahl des Zusatzstoffs richtet sich insbesondere nach dem für die erfindungsgemäße Dispersion vorgesehenen Verwendungszweck. Wesentlich ist dabei, dass der Zusatzstoff die Stabilität der erfindungsgemäßen Dispersion nicht beeinträchtigen darf.

Die Herstellung der erfindungsgemäßen Dispersion erfordert keine methodischen Besonderheiten, sondern erfolgt nach den üblichen und bekannten Methoden der Herstellung von Dispersionen durch Vermischen der vorstehend beschriebenen Bestandteile in geeigneten

Mischaggregaten wie Rührkessel, Dissolver, Inline-Dissolver, Rührwerksmühlen oder Extruder.

Die erfindungsgemäßen Nanopartikeln und die erfindungsgemäßen Dispersionen sind außerordentlich breit anwendbar und übertreffen hierin die modifizierten Nanopartikel des Standes der Technik. Insbesondere können sie der Herstellung von Beschichtungsstoffen, Klebstoffen, Dichtungsmassen, Compounds auf der Basis technischer Kunststoffe und härtbaren Massen dienen.

10 Dabei dienen die Beschichtungsstoffe der Herstellung von Beschichtungen und Lackierungen, die Klebstoffe der Herstellung von Klebschichten, die Dichtungsmassen der Herstellung von Dichtungen und die Compounds auf der Basis technischer Kunststoffe und die härtbaren 15 Massen der Herstellung von Formteilen, insbesondere optischen Formteilen, freitragenden Folien und Hartschäumen.

20 Sie eignen sich insbesondere hervorragend für den Schutz von Oberflächen von Substraten jeglicher Art vor der Beschädigung durch mechanische Einwirkung, insbesondere dem Schutz vor Kratzern, und/oder zu ihrer Dekoration. Bei den Substraten handelt es sich vor allem um Kraftfahrzeuge oder Teile hiervon, Bauwerke, Möbel, Fenster und Türen, industrielle Kleinteile, Coils, Container, Emballagen, weiße Ware, Folien, optische Bauteile, elektrotechnische Bauteile, mechanische 25 Bauteile sowie Glashohlkörper. Weitere Beispiele für Verwendungszwecke und Substrate sind aus der deutschen Patentanmeldung DE 198 16 136 A 1, Spalte 7, Zeile 54, bis Spalte 8, Zeile 58, oder der internationalen Patentanmeldung WO 99/52964 Seite 12, Zeile 10 bis Seite 14, Zeile 4, bekannt.

30

Überraschenderweise können die erfindungsgemäßen Beschichtungsstoffe als Zwei- oder Mehrkomponentensysteme bereitgestellt werden. Die erfindungsgemäßen Zwei- und Mehrkomponentensysteme, insbesondere auf der Basis von 5 Polyisocyanaten, haben eine besonders lange Topfzeit oder Verarbeitungszeit. Dabei können sie thermisch und mit aktinischer Strahlung (Dual-Cure) gehärtet werden.

Besonders bevorzugt werden die erfindungsgemäßen Beschichtungsstoffe 10 für die Herstellung hochkratzfester Klarlackierungen im Rahmen der Automobilserienlackierung (OEM) mit farb- und/oder effektgebenden Mehrschichtlackierungen verwendet. Bekanntermaßen werden diese besonders hochwertigen Mehrschichtlackierungen nach so genannten Nass-in-nass-Verfahren hergestellt, wie sie beispielsweise aus der 15 deutschen Patentanmeldung DE 199 30 665 A 1, Seite 15, Zeilen 15, bis Seite 16, Zeile 24, bekannt sind.

Für die Herstellung der erfindungsgemäßen Beschichtungen und Lackierungen werden die erfindungsgemäßen Beschichtungsstoffe mit 20 Hilfe der für den jeweiligen Verwendungszweck üblichen und bekannten geeigneten Verfahren appliziert, wie z.B. Spritzen, Rakeln, Streichen, Gießen, Tauchen, Tränken, Träufeln oder Walzen erfolgen. Dabei kann das zu beschichtende Substrat als solches ruhen, wobei die Applikationseinrichtung oder -anlage bewegt wird. Indes kann auch das zu 25 beschichtende Substrat, insbesondere ein Coil, bewegt werden, wobei die Applikationsanlage relativ zum Substrat ruht oder in geeigneter Weise bewegt wird.

Für die Herstellung der erfindungsgemäßen Formteile werden die 30 erfindungsgemäßen Dispersionen in geeignete Hohlformen gegossen und darin ausgehärtet, wonach sie von den Hohlformen getrennt werden. Die

erfindungsgemäßen Compounds auf der Basis technischer Kunststoffe werden vorzugsweise extrudiert und anschließend in geeigneten Hohlformen spritzgegossen.

5 Für die Herstellung der erfindungsgemäßen Folien werden die üblichen und bekannten Methoden wie Gießen oder Folienblasen angewandt.

Für die Herstellung der erfindungsgemäßen Hartschäume werden die auf dem Gebiet der Schaumkunststoffe üblichen und bekannten Verfahren 10 angewandt (vgl. Römpf Online, Georg Thieme Verlag, Stuttgart, New York, 2002, »Schaumkunststoffe«).

Die thermische Härtung der erfindungsgemäßen Beschichtungsstoffe, Klebstoffe, Dichtungsmassen und härtbaren Massen kann nach einer 15 gewissen Ruhezeit erfolgen. Sie kann eine Dauer von 30 Sekunden bis 2 Stunden, vorzugsweise 1 Minute bis 1 Stunde und insbesondere 1 bis 45 Minuten haben. Die Ruhezeit dient beispielsweise zum Verlauf und zur Entgasung der Lackschichten oder zum Verdunsten von flüchtigen Bestandteilen. Die Ruhezeit kann durch die Anwendung erhöhter 20 Temperaturen bis unterstützt und/oder verkürzt werden, sofern hierbei keine Schädigungen oder Veränderungen der erfindungsgemäßen Beschichtungsstoffe, Klebstoffe Dichtungsmassen und härtbaren Massen eintreten, wie etwa eine vorzeitige vollständige Vernetzung.

25 Die thermische Härtung weist keine methodischen Besonderheiten auf, sondern erfolgt nach den üblichen und bekannten Methoden wie Erhitzen in einem Umluftofen oder Bestrahlen mit IR-Lampen. Hierbei kann die thermische Härtung auch stufenweise erfolgen. Eine weitere bevorzugte Härtungsmethode ist die Härtung mit nahem Infrarot (NIR-Strahlung). 30 Geeignete Verfahren dieser Art werden beispielsweise von Roger Talbert in Industrial Paint & Powder, 04/01, Seiten 30 bis 33, »Curing in Seconds

with NIR«, oder in Galvanotechnik, Band 90 (11), Seiten 3098 bis 3100, »Lackiertechnik, NIR-Trocknung im Sekudentakt von Flüssig- und Pulverlacken«, beschrieben.

- 5 Vorteilhafterweise erfolgt die thermische Härtung bei einer Temperatur von 50 bis 200, besonders bevorzugt 60 bis 180 und insbesondere 80 bis 160 °C während einer Zeit von 1 Minute bis zu 2 Stunden, besonders bevorzugt 2 Minuten bis zu 1 Stunde und insbesondere 3 bis 30 Minuten.
- 10 Die Härtung mit aktinischer Strahlung wird vorzugsweise mit UV-Strahlung und/oder Elektronenstrahlung durchgeführt. Vorzugsweise wird hierbei eine Dosis von 1.000 bis 3.000, bevorzugt 1.100 bis 2.900, besonders bevorzugt 1.200 bis 2.800, ganz besonders bevorzugt 1.300 bis 2.700 und insbesondere 1.400 bis 2.600 mJ/cm² angewandt. Vorzugsweise liegt die
- 15 Strahlenintensität bei 1×10^0 bis 3×10^5 , bevorzugt 2×10^0 bis 2×10^5 , besonders bevorzugt 3×10^0 bis $1,5 \times 10^5$ und insbesondere 5×10^0 bis $1,2 \times 10^5$ Wm⁻².

Gegebenenfalls kann die Härtung mit aktinischer Strahlung von anderen Strahlenquellen ergänzt werden. Im Falle von Elektronenstrahlen wird vorzugsweise unter Inertgasatmosphäre gearbeitet. Dies kann beispielsweise durch Zuführen von Kohlendioxid und/oder Stickstoff direkt an die Oberfläche der Lackschichten gewährleistet werden. Auch im Falle der Härtung mit UV-Strahlung kann, um die Bildung von Ozon zu vermeiden, unter Inertgas oder einer sauerstoffabgereicherten Atmosphäre gearbeitet werden.

Für die Härtung mit aktinischer Strahlung werden die üblichen und bekannten Strahlenquellen und optischen Hilfsmaßnahmen angewandt.

- 30 Beispiele geeigneter Strahlenquellen sind Blitzlampen der Firma VISIT, Quecksilberhoch- oder -niederdruckdampflampen, welche gegebenenfalls

mit Blei dotiert sind, um ein Strahlenfenster bis zu 405 nm zu öffnen, oder Elektronenstrahlquellen. Die Anlagen und Bedingungen dieser Härtungsmethoden werden beispielsweise in R. Holmes, U.V. and E.B. Curing Formulations for Printing Inks, Coatings and Paints, SITA Technology, Academic Press, London, United Kingdom 1984, beschrieben. Weitere Beispiele geeigneter Verfahren und Vorrichtungen zur Härtung mit aktinischer Strahlung werden in der deutschen Patentanmeldung DE 198 18 735 A 1, Spalte 10, Zeilen 31 bis 61, von R. Stephen Davidson, in »Exploring the Science, Technology and Applications of U.V. and E.B. Curing«, Sita Technology Ltd., London, 1999, oder von Dipl.-Ing. Peter Klamann, in »eltosch System-Kompetenz, UV-Technik, Leitfaden für Anwender«, Oktober 1998, beschrieben.

Bei kompliziert geformten Werkstücken, wie sie für Automobilkarosserien vorgesehen sind, können die nicht direkter Strahlung zugänglichen Bereiche (Schattenbereiche), wie Hohlräume, Falzen und andere konstruktionsbedingte Hinterschneidungen, mit Punkt-, Kleinflächen- oder Rundumstrahlern, verbunden mit einer automatischen Bewegungseinrichtung für das Bestrahlen von Hohlräumen oder Kanten, (partiell) ausgehärtet werden.

Hierbei kann die Aushärtung stufenweise erfolgen, d. h. durch mehrfache Belichtung oder Bestrahlung mit aktinischer Strahlung. Dies kann auch alternierend erfolgen, d. h., dass abwechselnd mit UV-Strahlung und Elektronenstrahlung gehärtet wird.

Werden die thermische Härtung und Härtung mit aktinischer Strahlung zusammen angewandt, können diese Methoden gleichzeitig oder alternierend eingesetzt werden. Werden die beiden Härtungsmethoden alternierend verwendet, kann beispielsweise mit der thermischen Härtung begonnen und mit der Härtung mit aktinischer Strahlung geendet werden.

In anderen Fällen kann es sich als vorteilhaft erweisen, mit der Härtung mit aktinischer Strahlung zu beginnen und hiermit zu enden.

Die erfindungsgemäßen Beschichtungen, Lackierungen, Klebschichten, 5 Dichtungen, Formteile, frei tragenden Folien und Hartschäume haben hervorragende anwendungstechnische Eigenschaften. Vor allem sind ihre hohe Transparenz und Klarheit sowie ihre besonders hohe Kratzfestigkeit hervorzuheben.

10 Die erfindungsgemäßen Beschichtungen und Lackierungen weisen ein hervorragendes Eigenschaftsprofil auf, das hinsichtlich der Mechanik, Optik, Korrosionsbeständigkeit und Haftung sehr gut ausgewogen ist. So weisen die erfindungsgemäßen Mehrschichtlackierungen die vom Markt geforderte hohe optische Qualität und Zwischenschichthaftung auf und 15 werfen keine Probleme wie mangelnde Schwitzwasserbeständigkeit, Rissbildung (mudcracking) oder Verlaufsstörungen oder Oberflächenstrukturen in den erfindungsgemäßen Klarlackierungen auf. Insbesondere weisen die erfindungsgemäßen Mehrschichtlackierungen einen hervorragenden Metallic-Effekt, einen hervorragenden D.O.I. 20 (distinctiveness of the reflected image) und eine hervorragende Oberflächenglätte auf.

Demzufolge weisen Substrate, die beispielsweise mit mindestens einer erfindungsgemäßen Beschichtung, Lackierung oder frei tragenden Folie 25 beschichtet, einer erfindungsgemäßen Klebschicht verklebt und/oder einer erfindungsgemäßen Dichtung abgedichtet sind, bei einem besonders vorteilhaften anwendungstechnischen Eigenschaftsprofil eine besonders lange Gebrauchsduer auf, was sie wirtschaftlich, ästhetisch und technisch besonders wertvoll macht.

Beispiele**Herstellbeispiel 1**

5

Die Herstellung des Modifizierungsmittels (A 1)

80,2 g eines teilblockierten und zu ca. 40 % teilsilanisierten Isophorondiisocyanat-Trimeren gemäß Herstellbeispiel 1 der europäischen Patentanmeldung EP 1 193 278 A 1 wurden mit 13,97 g 3,5 Dimethylpyrazol in einem Dreihalskolben mit Rückflußkühler und Thermometer zusammengegeben und auf 50 °C erhitzt, wobei gerührt wurde. Der Umsatz der Reaktion wurde mit Hilfe der IR – Spektroskopie verfolgt. Nach 13 Stunden war die Blockierungsreaktion vollständig abgeschlossen: es konnten keine freien Isocyanatgruppen mittels IR – Spektroskopie mehr nachgewiesen werden.

Herstellbeispiel 2**20 Die Herstellung des Modifizierungsmittels (A 2)**

40, 6 g eines teilblockierten und zu ca. 40 % teilsilanisierten Isophorondiisocyanat-Trimeren gemäß Herstellbeispiel 1 der europäischen Patentanmeldung EP 1 193 278 A 1 wurden mit 9 g 2- Hydroxyethylmethacrylat in einem Dreihalskolben mit Rückflußkühler und Thermometer zusammengegeben und auf 90 °C erhitzt, wobei gerührt wurde. Der Umsatz der Reaktion wurde mit Hilfe der IR – Spektroskopie verfolgt. Nach 36 Stunden war die Blockierungsreaktion vollständig abgeschlossen: es konnten keine freien Isocyanatgruppen mittels IR – Spektroskopie mehr nachgewiesen werden.

Herstellbeispiel 3**Die Herstellung des Modifizierungsmittels (A 3)**

5

50, 2 g eines teilblockierten und zu ca. 40 % teilsilanisierten Isophorondiisocyanat-Trimeren gemäß Herstellbeispiel 1 der europäischen Patentanmeldung EP 1 193 278 wurden mit 9,8 g 2- Hydroxyethylacrylat in einem Dreihalskolben mit Rückflußkühler und Thermometer 10 zusammengegeben und auf 90 °C erhitzt, wobei gerührt wurde. Der Umsatz der Reaktion wird mit Hilfe der IR – Spektroskopie verfolgt. Nach 30 Stunden war die Blockierungsreaktion vollständig abgeschlossen: es konnten keine freien Isocyanatgruppen mittels IR – Spektroskopie mehr nachgewiesen werden.

15

Beispiel 1**Die Herstellung modifizierter Nanopartikel und ihrer Dispersion in einem aprotischen Lösemittel**

20

11,1 Gewichtsteile des Modifizierungsmittels A 1 gemäß Herstellbeispiel 1 wurden auf 70°C erwärmt und langsam mit 19,9 Gewichtsteile einer kolloidalen Lösung von SiO₂ in Isopropanol (IPA – ST - S, erhältlich bei der Fa. Nissan Chemical) sowie einem Gewichtsteil 0,1 N Essigsäure 25 versetzt. Das so erhaltene Gemisch wurde noch 2 Stunden bei 70°C gerührt und anschließend langsam, durch Zutropfen über einen Zeitraum von mindestens 30 Minuten mit 0,7 Gewichtsteilen Trimethylethoxysilan versetzt. Darauf wurden 10,3 Gewichtsteile Solvent Naphta und 1,6 Gewichtsteile Hexanol zugegeben, und die erhaltene Lösung wurde 30 weitere 2 Stunden bei 70°C gerührt. Um niedrig siedende Bestandteile abzutrennen wurde das abgekühlte Reaktionsgemisch am

Rotationsverdampfer bei einer Badtemperatur von nicht mehr als 55°C i. Vak. von den niedrig siedenden Bestandteilen getrennt.

Die so erhaltene Dispersion der modifizierter Nanopartikel wies einen 5 Gehalt von protischen Lösemitteln (Isopropanol, Hexanol) von weniger als 1 Gew.-% auf. Der Festkörpergehalt betrug 53 %. Der Gehalt an blockierten Isocyanatgruppen betrug 2,26 Gew.-%. Die Dispersion war stabil bei 40 °C über einen Zeitraum von mindestens 30 Tagen, ohne dass ein Viskositätsanstieg zu beobachten war. Die Reaktivität der Dispersion 10 gegenüber freien Isocyanaten war äußerst gering. Eine Mischung von 9 Gewichtsteilen Basonat ® HI 190, einem Polyisocyanat der Firma BASF Aktiengesellschaft, 0,5 Gewichtsteilen Butylacetat, 0,5 Gewichtsteilen Solvent Naphta und 10 Gewichtsteilen der erfindungsgemäßen Dispersion 15 der modifizierten Nanopartikel war auch nach 6 Tagen bei Raumtemperatur stabil und zeigte keinerlei Vergelung.

Beispiele 2 und 3

Die Herstellung modifizierter Nanopartikel und ihrer Dispersion in 20 aprotischen Lösemitteln

Es wurde wie bei Beispiel 1 verfahren, mit dem Unterschied, dass statt der kolloidalen Lösung von SiO₂ IPA – ST – S, die kolloidale Lösung von SiO₂ IPA – ST (Beispiel 2) sowie die kolloidalen Lösung von SiO₂ MA – ST 25 (Beispiel 2) eingesetzt wurden. Die resultierenden Dispersionen modifizierter Nanopartikel der Beispiele 2 und 3 zeigten die gleichen, wie in Beispiel 1 beschriebenen, hervorragenden Eigenschaften.

Beispiel 3**5 Die Herstellung modifizierter Nanopartikel und ihrer Dispersion in
aprotischen Lösemitteln**

Es wurde wie bei Beispiel 1 verfahren, mit dem Unterschied, dass statt des in Beispiel 1 eingesetzten Lösemittels Solvent Naphta, Diisobutylketon als Lösemittel verwendet wurde. Die resultierende Dispersion modifizierter
10 Nanopartikel wies die gleichen, wie in Beispiel 1 beschriebenen, hervorragenden Eigenschaften auf.

Beispiel 4:**15 Die Herstellung modifizierter Nanopartikel und ihrer Dispersion in
einem Reaktivverdünner**

5,1 Gewichtsteile des Modifizierungsmittels A 2 gemäß Herstellbeispiel 2 wurde auf 70°C erwärmt und langsam mit 9,1 Gewichtsteilen einer
20 kolloidalen Lösung von SiO₂ in Isopropanol (IPA - ST, erhältlich bei der Fa. Nissan Chemical) sowie 0,5 Gewichtsteilen 0,1 N Essigsäure versetzt. Das so erhaltene Gemisch wurde noch 3 Stunden bei 70°C gerührt und anschließend langsam durch Zutropfen über einen Zeitraum von mindestens 30 Minuten mit 0,3 Gewichtsteilen Trimethylethoxysilan
25 versetzt. Darauf wurden 4,7 Gewichtsteile n-Butylmethacrylat (Reaktivverdünner) und 0,7 Gewichtsteile Hexanol zugegeben, und die erhaltene Lösung wurde weitere 3 Stunden bei 70°C gerührt. Um niedrig siedende Bestandteile abzutrennen, wurde das abgekühlte Reaktionsgemisch am Rotationsverdampfer bei einer Badtemperatur von
30 nicht mehr als 55°C i Vak. von den niedrig siedenden Bestandteilen getrennt.

Die so erhaltene Dispersion der modifizierten Nanopartikel wies einen Gehalt von protischen Lösemitteln (Isopropanol, Hexanol) von weniger als 1 Gew.-% auf. Der Festkörpergehalt betrug 57 Gew.-%. Der Gehalt an blockierten Isocyanatgruppen betrug 2,14 Gew.-%. Die erhaltene Dispersion war bei Raumtemperatur über einen Zeitraum von mindestens 8 Tagen stabil, ohne dass ein Viskositätsanstieg zu beobachten war.

Die Reaktivität der erhaltenen Dispersion gegenüber freien Isocyanaten war äußerst gering. Eine Mischung von 9 Gewichtsteilen Basonat ® HI 10 190 der Firma BASF Aktiengesellschaft, 0,5 Gewichtsteilen Butylacetat, 0,5 Gewichtsteilen Solvent Naphta und 10 Gewichtsteilen der erfindungsgemäßen Dispersion der Nanopartikel war auch nach 6 Tagen bei Raumtemperatur stabil und zeigte keinerlei Vergelung.

15 Die modifizierten Nanopartikel waren sehr gut geeignet zur Herstellung von Gelen auf Basis von (Meth)Acrylaten sowie als Ausgangspunkt zur Herstellung von hochverzweigten Polymerisaten, die trotz hohem Molekulargewicht eine vergleichsweise niedrige Viskosität aufwiesen.

20 Beispiel 5

Die Herstellung modifizierter Nanopartikel und ihrer Dispersion in aprotischen Lösemitteln

25 11,1 Gewichtsteile des Modifizierungsmittels A 3 gemäß Herstellbeispiel 3 wurden auf 70°C erwärmt und langsam mit 19,9 Gewichtsteilen einer kolloidalen Lösung von SiO₂ in Isopropanol (IPA – ST, erhältlich bei der Fa. Nissan Chemical) sowie 1 Gewichtsteil 0,1 N Essigsäure versetzt. Das so erhaltene Gemisch wurde noch 3 Stunden bei 70°C gerührt und 30 anschließend langsam, durch Zutropfen über einen Zeitraum von mindestens 30 Minuten mit 0,7 Gewichtsteilen Trimethylethoxysilan

versetzt. Darauf wurden 10,3 Gewichtsteile Solvent Naphta und 1,6 Gewichtsteile Hexanol zugegeben, und die erhaltene Lösung wurde weitere 3 Stunden bei 70°C gerührt. Um niedrig siedende Bestandteile abzutrennen, wurde das abgekühlte Reaktionsgemisch am 5 Rotationsverdampfer bei einer Badtemperatur von nicht mehr als 55°C i. Vak. von den niedrig siedenden Bestandteilen getrennt.

Die so erhaltene Dispersion der modifizierten Nanopartikel wies einen Gehalt von protischen Lösemitteln (Isopropanol, Hexanol) von weniger als 10 1 Gew.-% auf. Der Festkörpergehalt betrug 50,4 Gew.-%. Der Gehalt an blockierten Isocyanatgruppen betrug 2,39 Gew.-%. Die erhaltene Dispersion war stabil bei Raumtemperatur über einen Zeitraum von mindestens 8 Tagen, ohne dass ein Viskositätsanstieg zu beobachten ist.

15 Die Reaktivität der erhaltenen Dispersion gegenüber freien Isocyanaten war äußerst gering. Eine Mischung von 9 Gewichtsteilen Basonat ® HI 190 der Firma BASF Aktiengesellschaft, 0,5 Gewichtsteilen Butylacetat, 0,5 Gewichtsteilen Solvent Naphta und 10 Gewichtsteilen der erfindungsgemäßen Dispersion der Nanopartikel war auch nach 6 Tagen 20 bei Raumtemperatur stabil und zeigte keinerlei Vergelung.

Die Dispersion war hervorragend für die Herstellung von thermisch und mit aktinischer Strahlung härtbaren Klarlacken (Dual-Cure-Klarlacken) geeignet.

25

Beispiel 6

Die Herstellung modifizierter Nanopartikel und ihrer Dispersion in aprotischen Lösemitteln

30

11,1 Gewichtsteile des Modifizierungsmittels gemäß Herstellbeispiel 3 wurden auf 70°C erwärmt und langsam mit 19,9 Gewichtsteilen einer kolloidalen Lösung von SiO₂ in Isopropanol (IPA – ST, erhältlich bei der Fa. Nissan Chemical) sowie 1 Gewichtsteil 0,1 N Essigsäure versetzt. Das 5 so erhaltene Gemisch wurde noch 3 Stunden bei 70°C gerührt und anschließend langsam, durch Zutropfen über einen Zeitraum von mindestens 30 Minuten mit 0,7 Gewichtsteilen Trimethylethoxysilan versetzt. Darauf wurden 10,3 Gewichtsteile Sartomer ® 399 (Reaktivverdünner, erhältlich bei der Fa. Cray Valley) und 1,6 10 Gewichtsteile Hexanol zugegeben, und die erhaltene Lösung wurde weitere 3 Stunden bei 70°C gerührt. Um niedrig siedende Bestandteile abzutrennen, wurde das abgekühlte Reaktionsgemisch am Rotationsverdampfer bei einer Badtemperatur von nicht mehr als 60°C i. Vak. von den niedrig siedenden Bestandteilen getrennt.

15. Die so erhaltene Dispersion der modifizierten Nanopartikel wies einen Gehalt von SiO₂ von 22,4 Gew. % auf (bestimmt über die gravimetrische Bestimmung des Glührückstandes bei 800°C/30 Minuten).

20 Die Dispersion war hervorragend für die Herstellung von mit UV-Strahlung härtbaren Beschichtungsstoffen eines besonders hohen Festkörpergehalts (100%-Systeme) geeignet.

Beispiel 7

25 **Die Herstellung modifizierter Nanopartikel und ihrer Dispersion in aprotischen Lösemitteln**

11,1 Gewichtsteile des Modifizierungsmittels (A 1) gemäß Herstellbeispiel 30 1 wurden auf 70°C erwärmt und mit 19,9 g Isopropanol sowie einem Gewichtsteil 0,1 N Essigsäure versetzt. Das so erhaltene Gemisch wurde

noch 3 Stunden bei 70°C gerührt und anschließend langsam, durch Zutropfen über einen Zeitraum von mindestens 30 Minuten mit 0,7 Gewichtsteilen Trimethylethoxysilan versetzt. Die erhaltene Lösung wurde weitere 3 Stunden bei 70°C gerührt. Darauf wurden 10, 3 Gewichtsteile 5 Solvent Naphta und 1,6 Gewichtsteile Hexanol zugegeben. Um niedrig siedende Bestandteile abzutrennen, wurde das abgekühlte Reaktionsgemisch am Rotationsverdampfer bei einer Badtemperatur von nicht mehr als 55°C i. Vak. von den niedrig siedenden Bestandteilen getrennt.

10

Die so erhaltene Dispersion der Nanopartikel wies einen Gehalt von protischen Lösemitteln (Isopropanol, Hexanol) von weniger als 1 Gew.-% auf. Der Festkörpergehalt betrug 38,1 Prozent. Der Gehalt an blockierten Isocyanatgruppen betrug 3,21 Gew.-%.

15

Die Reaktivität der erhaltenen Dispersion gegenüber freien Isocyanaten war äußerst gering. Eine Mischung von 9 Gewichtsteilen Basonat ® HI 190 der Firma BASF Aktiengesellschaft, 0,5 Gewichtsteilen Butylacetat, 0,5 Gewichtsteilen Solvent Naphta und 10 Gewichtsteilen der Dispersion 20 der Nanopartikel war auch nach 6 Tagen bei Raumtemperatur stabil und zeigte keinerlei Vergelung.

Beispiele 8 und 9

25 Die Herstellung modifizierter Nanopartikel und ihrer Dispersion in aprotischen Lösemitteln

Beispiel 7 wurde wiederholt mit dem Unterschied, dass unterschiedliche Mengen Solvent Naphta eingesetzt wurden: In Beispiel 8 wurden 5,3 30 Gewichtsteile Solvent Naphta statt 10,3, in Beispiel 9 wurden 3,7 Gewichtsteile Solvent Naphta statt 10,3 Gewichtsteilen eingesetzt.

Dadurch wurden die in Tabelle 1 dargestellten, deutlich erhöhten Festkörperanteile erreicht. Sieht man von den unterschiedlichen Festkörpergehalten sowie den daraus resultierenden anderen 5 Kenngrößen (beispielsweise Gehalt an blockierten Isocyanatgruppen) ab, so ergeben sich hinsichtlich der anwendungstechnischen Aspekte die gleichen hervorragenden Materialeigenschaften.

10 Tabelle 1

Beispiel	Festkörpergehalt [Gew.-%]	Gehalt anblockierte Isocyanatgruppen [Gew.-%]	Geha
8	52,2	4,19	
9	62,2	4,68	

Patentansprüche

1. Oberflächenmodifizierte Nanopartikel, deren Oberfläche nahezu vollständig oder vollständig mit

5

(A) modifizierenden Gruppen, die

- über mindestens eine verküpfende funktionelle Gruppe (a) kovalent an die Oberfläche gebunden sind und
- mindestens eine abstandshaltende, inerte Gruppe (b) und
- mindestens eine, über die Gruppe (b) mit der Gruppe (a) verbundene, reaktive funktionelle Gruppe (c), die gegenüber den reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche inert ist, enthalten,

(B) modifizierenden Gruppen, die

- über mindestens eine verküpfende funktionelle Gruppen (a) kovalent an die Oberfläche gebunden sind und
- mindestens eine über die Gruppe (a) mit der Oberfläche verbundene, inerte Gruppe (d) mit einem kleineren hydrodynamischen Volumen V_H als das der abstandshaltenden, inerten Gruppe (Ab) enthalten, und

(C) modifizierenden Gruppen, die

30

- über mindestens eine verküpfende funktionelle Gruppe (a), die mindestens ein Siliziumatom enthält, kovalent an die Oberfläche gebunden sind,
- mindestens eine über die Gruppe (a) mit der Oberfläche verbundene, inerte Gruppe (e) enthalten und
- ein kleineres hydrodynamisches Volumen V_H als die modifizierende Gruppe (A) aufweisen

10 bedeckt ist.

2. Oberflächenmodifizierte Nanopartikel nach Anspruch 1, dadurch gekennzeichnet, dass das hydrodynamische Volumen V_H mit Hilfe der Photonenkorrelationsspektroskopie bestimmbar oder über die 15 Beziehung

$$V_H = (r_{\text{cont}}/2)^3,$$

20 worin r_{cont} die effektive Konturlänge eines Moleküls bedeutet, abschätzbar ist.

3. Oberflächenmodifizierte Nanopartikel nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche Hydroxylgruppen sind.

25 4. Oberflächenmodifizierte Nanopartikel nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die verküpfende funktionelle Gruppe (Aa) mindestens ein Siliziumatom enthält.

5. Oberflächenmodifizierte Nanopartikel nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die abstandshaltende, inerte Gruppe (Ab) ein mindestens zweibindiger organischer Rest R ist.
- 5 6. Oberflächenmodifizierte Nanopartikel nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die reaktive funktionelle Gruppe (Ac) thermisch und/oder mit aktinischer Strahlung aktivierbar ist.
- 10 7. Oberflächenmodifizierte Nanopartikel nach Anspruch 6, dadurch gekennzeichnet, dass die thermisch aktivierbare, reaktive funktionelle Gruppe (Ac) eine blockierte Isocyanatgruppe ist und die mit aktinischer Strahlung aktivierbare, reaktive funktionelle Gruppe (Ac) aus der Gruppe, bestehend aus Gruppen, enthaltend 15 mindestens eine Kohlenstoff-Kohlenstoff-Mehrfachbindung, ausgewählt wird.
8. Oberflächenmodifizierte Nanopartikel nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die verküpfende funktionelle Gruppe (Ba) aus der Gruppe, bestehend aus Ether-, Thioether-, 20 Carbonsäureester-, Thiocarbonsäureester-, Carbonat-, Thiocarbonat-, Phosphorsäureester-, Thiophosphorsäureester-, Phosphonsäureester-, Thiophosphonsäureester-, Phosphit-, Thiophosphit-, Sulfonsäureester-, Amid-, Amin-, Thioamid-, 25 Phosphorsäureamid-, Thiophosphorsäureamid-, Phosphonsäureamid-, Thiophosphonsäureamid-, Sulfonsäureamid-, Imid-, Hydrazid-, Urethan-, Harnstoff-, Thioharnstoff-, Carbonyl-, Thiocarbonyl-, Sulfon- oder Sulfoxidgruppen, ausgewählt wird.

9. Oberflächenmodifizierte Nanopartikel nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die inerte Gruppe (Bd) und die inerte Gruppe (Ce) einbindige organische Reste R² sind.

5 10. Oberflächenmodifizierte Nanopartikel nach Anspruch 9, dadurch gekennzeichnet, dass die einbindigen organischen Reste R² aus der Gruppe, bestehend aus aliphatischen, cycloaliphatischen, aromatischen, aliphatisch-cycloaliphatischen, aliphatisch-aromatischen, cycloaliphatisch-aromatischen oder aliphatisch-cycloaliphatisch-aromatischen Resten, ausgewählt werden.

10 11. Oberflächenmodifizierte Nanopartikel nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass die inerten Gruppen (Ab), (Bd) und (Ce) mindestens eine mindestens zweibindige funktionelle Gruppe und/oder mindestens einen Substituenten enthalten.

15 12. Oberflächenmodifizierte Nanopartikel nach einem der Ansprüche 1 bis 11, herstellbar durch die Umsetzung der reaktiven funktionellen Gruppen der Oberfläche von zu modifizierenden Nanopartikeln mit

20 (A) mindestens einem Modifizierungsmittel, enthaltend

25 - mindestens eine reaktive funktionelle Gruppe (a), die gegenüber den reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche reaktiv ist,

30 - mindestens eine abstandshaltende, inerte Gruppe (b) und

- mindestens eine, über die Gruppe (b) mit der Gruppe (a) verbundene, reaktive funktionelle Gruppe (c), die gegenüber den reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche inert ist,

(B) mindestens einem Modifizierungsmittel, enthaltend

5 - mindestens eine reaktive funktionelle Gruppe (a), die gegenüber den reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche reaktiv ist, und

10 - mindestens eine inerte Gruppe (d) mit einem kleineren hydrodynamischen Volumen V_H als das der abstandshaltenden, inerten Gruppe (Ab), sowie

10

(C) mindestens einem Modifizierungsmittel mit einem kleineren hydrodynamischen Volumen V_H als das Modifizierungsmittel (A), enthaltend

15

 - mindestens eine reaktive funktionelle Gruppe (a), die mindestens ein Siliziumatom enthält und gegenüber den reaktiven funktionellen Gruppen der zu modifizierenden Oberfläche reaktiv ist, und

 - mindestens eine inerte Gruppe (e).

20

13. Oberflächenmodifizierte Nanopartikel nach Anspruch 12, dadurch gekennzeichnet, dass das Modifizierungsmittel (A) aus der Gruppe, bestehend aus Silanen der allgemeinen Formel II:

25

worin die Indizes und die Variablen die folgende Bedeutung haben:

30 m und n ganze Zahlen von 1 bis 6;

o 0, 1 oder 2;

5 Ac thermisch und/oder mit aktinischer Strahlung aktivierbare Gruppe, wie vorstehend definiert;

10 R mindestens zweibindiger organischer Rest, wie vorstehend definiert;

15 R² einbindiger organischer Rest, wie vorstehend definiert,
und

20 R³ hydrolysierbares Atom oder hydrolysierbare Gruppe;
ausgewählt wird.

25 14. Oberflächenmodifizierte Nanopartikel nach Anspruch 13, dadurch gekennzeichnet, dass das hydrolysierbare Atom R³ aus der Gruppe, bestehend aus Wasserstoffatomen, Fluoratomen, Chloratomen und Bromatomen und die hydrolysierbare Gruppe R³ aus der Gruppe, bestehend aus Hydroxylgruppen und einbindigen organischen Resten R⁴ ausgewählt werden.

30 15. Oberflächenmodifizierte Nanopartikel nach Anspruch 14, dadurch gekennzeichnet, dass der einbindige organische Rest R⁴ aus der Gruppe, bestehend aus Gruppen der allgemeinen Formel III:

30 worin die Variable Y für ein Sauerstoffatom oder eine Carbonylgruppe, Carboxyloxygruppe, Oxycarbonylgruppe, Aminogruppe $-NH-$ oder sekundäre Aminogruppe $-NR^2-$ steht und

die Variable R^2 die vorstehend angegebene Bedeutung hat; ausgewählt wird.

16. Oberflächenmodifizierte Nanopartikel nach einem der Ansprüche 13
5 bis 15, dadurch gekennzeichnet, dass die Silane (A) der allgemeinen Formel II erhältlich sind durch
(1) die Umsetzung von Polyisocyanaten mit Blockierungsmitteln und mit Silanen der allgemeinen Formel IV:

15 worin die Variable Z für eine isocyanatreaktive funktionelle Gruppe steht und die Variablen R, R^2 und R^3 die vorstehend angegebene Bedeutung haben; oder

(2) die Umsetzung von Verbindungen der allgemeinen Formel V:

worin der Index n und die Variablen Ac, R und Z die vorstehend angegebene Bedeutung haben; mit Silanen der allgemeinen Formel VI:

worin der Index m und die Variablen R, R^2 und R^3 die vorstehend angegebene Bedeutung haben.

30 17. Oberflächenmodifizierte Nanopartikel nach einem der Ansprüche 12 bis 16, dadurch gekennzeichnet, dass das Modifizierungsmittel (B)

aus der Gruppe, bestehend aus hydroxylgruppenhaltigen Verbindungen allgemeinen Formel VII:

5

worin die Variable R^2 die vorstehend angegebene Bedeutung hat, ausgewählt wird.

18. Oberflächenmodifizierte Nanopartikel nach Anspruch 17, dadurch gekennzeichnet, dass die hydroxylgruppenhaltigen Verbindungen der allgemeinen Formel VII primäre aliphatische Alkohole sind.
19. Oberflächenmodifizierte Nanopartikel nach einem der Ansprüche 12 bis 18, dadurch gekennzeichnet, dass das Modifizierungsmittel (C) aus der Gruppe, bestehend aus Silanen der allgemeinen Formel VIII:

20. worin der Index $p = 1, 2$ oder 3 und die Variablen R^2 und R^3 die vorstehend angegebene Bedeutung haben, ausgewählt wird.

20. Oberflächenmodifizierte Nanopartikel nach einem der Ansprüche 1 bis 19, dadurch gekennzeichnet, dass die zu modifizierenden Nanopartikel aus der Gruppe, bestehend aus Metallen, Verbindungen von Metallen und organischen Verbindungen, ausgewählt werden.
21. Oberflächenmodifizierte Nanopartikel nach Anspruch 20, dadurch gekennzeichnet, dass die Metalle aus der dritten bis fünften Hauptgruppe, der dritten bis sechsten sowie der ersten und zweiten

Nebengruppe des Periodensystems der Elemente sowie den Lanthaniden, ausgewählt werden.

22. Oberflächenmodifizierte Nanopartikel nach Anspruch 20 oder 21, dadurch gekennzeichnet, dass es sich bei den Verbindungen der Metalle um Oxide, Oxidhydrate, Sulfate, Hydroxide oder Phosphate handelt.
23. Verfahren zur Herstellung von oberflächenmodifizierten Nanopartikeln gemäß einem der Ansprüche 1 bis 22, dadurch gekennzeichnet, dass die zu modifizierenden Nanopartikel in einer ersten Verfahrensstufe mit mindestens einem Modifizierungsmittel (A) sowie in einer zweiten Verfahrensstufe mit mindestens einem Modifizierungsmittel (B) und in einer dritten Verfahrensstufe mit mindestens einem Modifizierungsmittel (C) oder in der zweiten Verfahrensstufe mit mindestens einem Modifizierungsmittel (C) und in der dritten Verfahrensstufe mit mindestens einem Modifizierungsmittel (B) oder in der zweiten Verfahrensstufe mit mindestens einem Modifizierungsmittel (B) und mindestens einem Modifizierungsmittel (C) umgesetzt werden.
24. Verfahren nach Anspruch 23, dadurch gekennzeichnet, dass die Modifizierungsmittel (A), (B) und (C) in einer Menge eingesetzt werden, die für die nahezu vollständige oder vollständige Bedeckung der Oberfläche der zu modifizierenden Nanopartikel ausreichend ist.
25. Verfahren zur Herstellung modifizierter Nanopartikel gemäß einem der Ansprüche 13 bis 22, dadurch gekennzeichnet, dass mindestens ein Modifizierungsmittel (A) der allgemeinen Formel II und mindestens ein Modifizierungsmittel (C) der allgemeinen

Formel VIII miteinander hydrolysiert und kondensiert werden, wonach man die resultierenden Polykondensate mit mindestens einem Modifizierungsmittel (B) umsetzt.

5 26. Dispersion, enthaltend oberflächenmodifizierte Nanopartikel gemäß einem der Ansprüche 1 bis 22 und/oder nach dem Verfahren gemäß einem der Ansprüche 23 bis 25 hergestellte oberflächenmodifizierte Nanopartikel in aprotischen Lösemitteln und/oder Reaktivverdünnern.

10 27. Dispersion nach Anspruch 26, dadurch gekennzeichnet, dass die aprotischen Lösemittel und/oder Reaktivverdünner bezüglich der modifizierenden Gruppen (A) und (B) einen Flory-Huggins-Parameter $\chi > 0,5$ haben.

15 28. Dispersion nach Anspruch 26 oder 27, dadurch gekennzeichnet, dass sie bezogen auf ihre Gesamtmenge, einen Festkörpergehalt von mindestens 30 Gew.-% aufweist.

20 29. Dispersion nach Anspruch 28, dadurch gekennzeichnet, dass sie mindestens einen Zusatzstoff, ausgewählt aus der Gruppe, bestehend aus polymeren und oligomeren Bindemitteln, Vernetzungsmitteln, farb- und/oder effektgebenden Pigmenten, organischen und anorganischen, transparenten oder opaken Füllstoffen, sonstigen von den erfindungsgemäßen Nanopartikeln verschiedenen Nanopartikeln, UV-Absorbern, Lichtschutzmitteln, Radikalfängern, Entlüftungsmitteln, Slipadditiven, Polymerisationsinhibitoren, Photoinitiatoren, Initiatoren der radikalischen oder kationischen Polymerisation, Entschäumern, Emulgatoren, Netz- und Dipergiermitteln, Haftvermittlern, Verlaufmitteln, filmbildenden Hilfsmitteln, Sag control agents (SCA),

25

30

rheologiesteuernden Additiven (Verdicker), Flammschutzmitteln, Sikkativen, Trockungsmitteln, Hautverhinderungsmitteln, Korrosionsinhibitoren, Wachsen und Mattierungsmittein; enthält.

5 30. Verwendung der oberflächenmodifizierten Nanopartikel gemäß einem der Ansprüche 1 bis 22, der nach dem Verfahren gemäß einem der Ansprüche 23 bis 25 hergestellten oberflächenmodifizierten Nanopartikel und der Dispersion gemäß einem der Ansprüche 26 bis 29 zur Herstellung von
10 Beschichtungsstoffen, Klebstoffen, Dichtungsmassen, Compounds auf der Basis technischer Kunststoffe und härtbaren Massen.

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/10922A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 C08G18/38 C08G18/80 C08K7/04 C08K9/06

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 C08G C08K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal, WPI Data

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
X	EP 0 872 500 A (BAYER AG) 21 October 1998 (1998-10-21) cited in the application page 2, line 4 -page 2, line 45 claims 1-4	1,3-7, 9-22
X	WO 97 38058 A (INST NEUE MAT GEMEIN GMBH ;LESNIAK CHRISTOPH (DE); NASS RUEDIGER () 16 October 1997 (1997-10-16) page 5, line 21 -page 6, line 17 claim 1	1,3-6, 9-12
	---	---/---

 Further documents are listed in the continuation of box C. Patent family members are listed in annex

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

- *T* later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
- *&* document member of the same patent family

Date of the actual completion of the International search

14 January 2004

Date of mailing of the International search report

20/01/2004

Name and mailing address of the ISA

European Patent Office, P B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Heidenhain, R

INTERNATIONAL SEARCH REPORT

International Application No
PCT/EP 03/10922

C (Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document with indication where appropriate, of the relevant passages	Relevant to claim No.
X	WO 02 062881 A (3M INNOVATIVE PROPERTIES CO) 15 August 2002 (2002-08-15) page 6, line 12 -page 6, line 16 page 8, line 3 -page 8, line 7 page 8, line 25 -page 8, line 32 page 22, line 8 -page 22, line 17 claims 5,6	1,3-7, 9-13
P,A	BAUER F ET AL: "Surface modification of nanoparticles for radiation curable acrylate clear coatings" NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - B: BEAM INTERACTIONS WITH MATERIALS AND ATOMS, NORTH-HOLLAND PUBLISHING COMPANY. AMSTERDAM, NL, vol. 208, August 2003 (2003-08), pages 267-270, XP004438734 ISSN: 0168-583X figure 1	1-30

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 03/10922

Patent document cited in search report		Publication date		Patent family member(s)		Publication date
EP 0872500	A	21-10-1998	DE	19715426 A1		15-10-1998
			AT	256156 T		15-12-2003
			BR	9801050 A		05-10-1999
			CA	2234280 A1		14-10-1998
			CZ	9801110 A3		11-11-1998
			EP	0872500 A1		21-10-1998
			US	5998504 A		07-12-1999
WO 9738058	A	16-10-1997	DE	19614136 A1		16-10-1997
			AT	194374 T		15-07-2000
			AU	2637597 A		29-10-1997
			CA	2249609 A1		16-10-1997
			CN	1214716 A ,B		21-04-1999
			DE	59701970 D1		10-08-2000
			WO	9738058 A1		16-10-1997
			EP	0892834 A1		27-01-1999
			ES	2148964 T3		16-10-2000
			JP	2000509005 T		18-07-2000
			US	6183658 B1		06-02-2001
WO 02062881	A	15-08-2002	US	2002128336 A1		12-09-2002
			EP	1358254 A2		05-11-2003
			WO	02062881 A2		15-08-2002

INTERNATIONALES RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/10922

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES
 IPK 7 C08G18/38 C08G18/80 C08K7/04 C08K9/06

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
 IPK 7 C08G C08K

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der Internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

EPO-Internal, WPI Data

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
X	EP 0 872 500 A (BAYER AG) 21. Oktober 1998 (1998-10-21) in der Anmeldung erwähnt Seite 2, Zeile 4 -Seite 2, Zeile 45 Ansprüche 1-4 ---	1,3-7, 9-22
X	WO 97 38058 A (INST NEUE MAT GEMEIN GMBH ;LESNIAK CHRISTOPH (DE); NASS RUEDIGER () 16. Oktober 1997 (1997-10-16) Seite 5, Zeile 21 -Seite 6, Zeile 17 Anspruch 1 ---	1,3-6, 9-12

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

* Besondere Kategorien von angegebenen Veröffentlichungen :

A Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besonders bedeutsam anzusehen ist

E Älteres Dokument, das jedoch erst am oder nach dem internationalen Anmelddatum veröffentlicht worden ist

I Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchenbericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)

O Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht

P Veröffentlichung, die vor dem internationalen Anmelddatum aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist

T Spätere Veröffentlichung, die nach dem internationalen Anmelddatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist

X Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden

Y Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann naheliegend ist

*& Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche

Absendedatum des internationalen Recherchenberichts

14. Januar 2004

20/01/2004

Name und Postanschrift der Internationalen Recherchenbehörde
 Europäisches Patentamt, P.B. 5818 Patentlaan 2
 NL - 2280 HV Rijswijk
 Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
 Fax: (+31-70) 340-3016

Bevollmächtigter Bediensteter

Heidenhain, R

Formblatt PCT/SA/210 (Blatt 2) (Juli 1992)

INTERNATIONALER RECHERCHENBERICHT

Internationales Aktenzeichen

PCT/EP 03/10922

C.(Fortsetzung) ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie ^a	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Fälle	Betr. Anspruch Nr
X	WO 02 062881 A (3M INNOVATIVE PROPERTIES CO) 15. August 2002 (2002-08-15) Seite 6, Zeile 12 -Seite 6, Zeile 16 Seite 8, Zeile 3 -Seite 8, Zeile 7 Seite 8, Zeile 25 -Seite 8, Zeile 32 Seite 22, Zeile 8 -Seite 22, Zeile 17 Ansprüche 5,6 ----	1, 3-7, 9-13
P,A	BAUER F ET AL: "Surface modification of nanoparticles for radiation curable acrylate clear coatings" NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH, SECTION - B: BEAM INTERACTIONS WITH MATERIALS AND ATOMS, NORTH-HOLLAND PUBLISHING COMPANY, AMSTERDAM, NL, Bd. 208, August 2003 (2003-08), Seiten 267-270, XP004438734 ISSN: 0168-583X Abbildung 1 ----	1-30

INTERNATIONALES RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationales Aktenzeichen

PCT/EP 03/10922

Im Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung		Mitglied(er) der Patentfamilie	Datum der Veröffentlichung
EP 0872500	A	21-10-1998	DE AT BR CA CZ EP US	19715426 A1 256156 T 9801050 A 2234280 A1 9801110 A3 0872500 A1 5998504 A	15-10-1998 15-12-2003 05-10-1999 14-10-1998 11-11-1998 21-10-1998 07-12-1999
WO 9738058	A	16-10-1997	DE AT AU CA CN DE WO EP ES JP US	19614136 A1 194374 T 2637597 A 2249609 A1 1214716 A ,B 59701970 D1 9738058 A1 0892834 A1 2148964 T3 2000509005 T 6183658 B1	16-10-1997 15-07-2000 29-10-1997 16-10-1997 21-04-1999 10-08-2000 16-10-1997 27-01-1999 16-10-2000 18-07-2000 06-02-2001
WO 02062881	A	15-08-2002	US EP WO	2002128336 A1 1358254 A2 02062881 A2	12-09-2002 05-11-2003 15-08-2002