<u>Página Principal</u> / Mis cursos / <u>GRADUADO-A EN INGENIERÍA INFORMÁTICA Y MATEMÁTICAS (2011) (297)</u> / <u>TOPOLOGÍA I (2122)-297 11 26 2122</u> / <u>Tema 3. Conexión y compacidad</u> / <u>Prueba tema 3</u>

Comenzado el	miércoles, 22 de diciembre de 2021, 09:02
Estado	Finalizado
Finalizado en	miércoles, 22 de diciembre de 2021, 09:47
Tiempo empleado	45 minutos
Calificación	10.00 de 10.00 (100 %)

Pregunta **1**

Finalizado

Se puntúa 2,50 sobre 2,50

Se consideran en $\mathbb R$ las topologías de Sorgenfrey T_S y la topología usual T_u . Sea $p=(x,y)\in\mathbb R^2$. La componente conexa de $(\mathbb R\times\mathbb R,T_S\times T_u)$ que contiene a p es

- \bigcirc a. $\mathbb{R} \times \mathbb{R}$
- \bigcirc b. $\{(x,y)\}$
- igcup c. $\mathbb{R} imes\{y\}$
- lacksquare d. $\{x\} imes\mathbb{R}$

Respuesta correcta

El mayor subconjunto conexo que contiene a p=(x,y) es $\{x\} imes \mathbb{R}$, que es homeomorfo a (\mathbb{R},T_u)

Pregunta **2**

Finalizado

Se puntúa 2,50 sobre 2,50

Sea X un conjunto y $A\subset X$ un subconjunto no vacío. Se considera la topología

$$T = \{U \subset X : A \subset U\} \cup \{\emptyset\}$$

La familia de todos los subconjuntos conexos de (X,T) es

- $igcup a. \ \{\{x\}: x \in X\}$
- $\ \, 0 \ \, \mathrm{b.} \ \, \{C\subset X:A\subset C\}\cup\{\{x\}:x\in X\}$
- $@ \ \mathsf{c.} \quad \{C \subset X : C \cap A \neq \emptyset\} \cup \{\{x\} : x \in X\}$
- $\quad \ \, 0 \ \, \mathrm{d.} \quad \{C\subset X:C\subset A\}$

Respuesta correcta

Si $C\cap A\neq\emptyset$ entonces dos abiertos de C no vacíos siempre se cortan, por lo que C es conexo. Si $C\cap A=\emptyset$ entonces $C\subset X\setminus A$. Como la topología inducida en $X\setminus A$ es la topología discreta, C tiene que ser un punto

Pregunta **3**

Finalizado

Se puntúa 2,50 sobre 2,50

Sea (X,T) un espacio topológico y $\{A_i\}_{i\in I}$ una partición de X por conjuntos abiertos y conexos. El enunciado 'las componentes conexas de (X,T) son los conjuntos $\{A_i\}_{i\in I}$ ' es:

Seleccione una:

- Verdadero
- Falso

Si $p \in A_{i_0}$, entonces A_{i_0} es el mayor subconjunto conexo de (X,T) que contiene a p. Esto es fácil de ver porque si C es un subconjunto conexo que contiene estrictamente a A_{i_0} , entonces $C \cap A_{i_0}$, $C \cap \left(\bigcup_{i \neq i_0} A_i \right)$ es una partición de C por conjuntos abiertos de C disjuntos y no vacíos.

Pregunta 4

Finalizado

Se puntúa 2,50 sobre 2,50

Sea (X,T) un espacio topológico, $A\subset X$ un subconjunto conexo, y $\{a_i\}_{i\in\mathbb{N}}$ una sucesión de puntos de A que converge a un punto $p\in X$. El enunciado ' $A\cup\{p\}$ es conexo' es:

Seleccione una:

- Verdadero
- Falso

El punto $p\in \overline{A}$. Por tanto $A\subset A\cup \{p\}\subset \overline{A}$, lo que implica que $A\cup \{x\}$ es conexo

→ Problemas resueltos: 12-15 tema 3

Ir a...