ANALYSIS I EXTENSION LECTURE 9. COMPACTNESS

ASILATA BAPAT

Compactness is a property (like connectedness) that some topological spaces have but others don't.

Definition (Open Cover). An open cover of a space X is a collection of open sets whose union is X.

Definition (Connectness). A topological space X is called compact if <u>every</u> open cover of X has a finite subcover.

Example. \mathbb{R} is not compact. Consider the open covers (n, n+2) for $n \in \mathbb{Z}$.

Remark. If $Y \subseteq X$, sometimes we specify an open cover of Y by giving a set $\{u_{\alpha}\}_{{\alpha}\in I}$ of open sets of X, whose union contains Y.

This suggests that a noncompact space is one that can "escape out to infinity". But seemingly finite spaces can also be noncompact.

Example. (0,1) is not compact; consider the open cover $(\frac{1}{n},\frac{1}{n+2})$ for $n \in \mathbb{N}$ and $n \ge 1$. This has no finite subcover.

Theorem. In the metric topology on \mathbb{R} , any closed interval [a,b] is compact.

Proof. If a = b, then [a, b] = a; this is compact because any finite set is compact.

If $a \neq b$, consider an open cover $\{u_{\alpha}\}_{{\alpha}\in I}$ of [a,b]. Let $a \in u_{\alpha}$ for some α . Since u_{α} is open, \exists some $c \leq b$ s. t. $[a,c] \subseteq u_{\alpha}$. If c=b, then we are done; Otherwise, let

$$C = \{ x \in (a, b] \mid [a, x] \text{ is contained in a finite union of the sets } u_{\beta} \}$$

Notice that $c \in C$ so $C \neq \emptyset$. Clearly C is bounded above by b. Let $L = \sup(C)$.

Pf: $L \in C$.

Let $L \in u_{\beta}$, and suppose $L \notin C$. Then [a, L] cannot be covered by finitely many sets $u_{\beta} \in \{u_{\alpha}\}_{\alpha \in I}$. But if $L \in u_{\beta}$ and u_{β} is open, there is some ε s. t. $[L - \varepsilon, L] \subseteq u_{\beta}$. Since $L = \sup(C)$, $L - \varepsilon$ is not an upper bound of C, so $[a, L - \varepsilon]$ is contained in a finite union of sets u_{β} . So [a, L] is contained in the above union of u_{β} , still finite. Contradiction. $\therefore L \in C$

Pf:
$$L = b$$
.

Similar argument: If $L \in u_{\beta}$ and $L \neq b$, then $\exists \varepsilon > 0$ s. t. $[L, L + \varepsilon] \subseteq u_{\beta}$. Then $L + \varepsilon \in C$, contradiction.

$$\therefore L = b$$
.

Therefore, [a, b] is compact in \mathbb{R} .

Proposition. A closed subset of a compact space is compact in the subspace topology.

Proof. Let $Y \subseteq X$, where X is compact and Y is closed. Consider any open cover of Y, written as $\{u_{\alpha} \cap Y\}_{\alpha \in I}$ where u_{α} is open in X. Consider the cover $\{u_{\alpha}\}_{\alpha \in I} \cup (X - Y)$ which is an open cover in X as Y is closed. Since X is compact, it has a finite subcover, say v_1 , $v_2, \ldots v_n$. Then

$$\{v_1 \cap Y, v_2 \cap Y, \dots v_n \cap Y\}$$

is a finite subcover of the original open cover of Y.

 $\therefore Y$ is also a compact set.

Proposition. If $f: X \mapsto Y$ is continuous and surjective, and X is compact, then Y also is compact.

Proof. Let $Y = \bigcup_{\alpha \in I} u_{\alpha}$. Then

$$X = f^{-1}\left(\bigcup_{\alpha \in I} u_{\alpha}\right) = \bigcup_{\alpha \in I} f^{-1}(u_{\alpha})$$

Since f is continuous and surjective. This has a finite subcover, say $f^{-1}(v_1), f^{-1}(v_2), \ldots, f^{-1}(v_n)$. Then

$$\{v_1, v_2, \dots v_n\}$$

is a finite open cover of Y. $\therefore Y$ is compact.

Example. A circle is compact since it is the continuous image of [0, 1].

Proposition. If X and Y are compact, then $X \times Y$ is compact.

Proof. Let $\bigcup_{\alpha \in I} u_{\alpha}$ be open cover of $X \times Y$. If $(x, y) \in X \times Y$, then $(x, y) \in u_{\alpha}$ for some $\alpha \in I$. Therefore \exists some $A_{xy} \times B_{xy}$, containing (x, y), lying in u_{α} . Fix $x \in X$, and consider $\{B_{xy} \mid y \in Y\}$, which is a open cover of Y.

Take a finite subcover, say $\{B_{xy_1}, B_{xy_2}, \dots, B_{xy_n}\}$. Set $A_x := \bigcap_{i=1}^n B_{xy_i}$. Then

$$A_x \times B_{xy_1}, A_x \times B_{xy_2}, \dots, A_x \times B_{xy_n}$$

cover $A_x \times Y$, and each $A_x \times B_{xy_i}$ is contained in some u_α .

Now consider $\{A_x \mid x \in X\}$, which has a finite cover, say $A_{x_1}, A_{x_2}, \dots, A_{x_m}$. Then $\{A_{x_i}\}$ cover $X \times Y$, so the corresponding $u'_{\alpha}s$ cover $X \times Y$.

Theorem (Heine-Borel). A subset of \mathbb{R}^n is compact iff it is closed and bounded.

Proof. Let $X \subseteq \mathbb{R}^n$ be closed and bounded. Then $\exists r \in \mathbb{R} \text{ s. t. } X \subseteq [-r, r] \times [-r, r] \cdots \times [-r, r]$, which is compact.

As X is closed in an compact subset, it therefore is compact.

Now suppose X is compact.

X is bounded: Consider the open ball of radius $n \in \mathbb{N}$ around 0 B(n,0). Then

$$\bigcup_{n\in\mathbb{N}}B(n,0)=\mathbb{R}$$

Since X is compact, there exists a finite sequence

$$(n_i)_{i=1}^k$$
 s. t. $X \subseteq \bigcup_{(n_i)} B(n_i, 0)$

 $\therefore \max(n_i)$ is an upper bound of X, implying X is bounded.

X is closed: Assume, for sake of contradiction, X is compact but not closed.

Let x be a limit point of X s. t. $x \notin X$. Accordingly $\forall r > 0, \overline{B}(r, x) \cap X \neq \emptyset$. Then $\{\mathbb{R}^n - \overline{B}(r, x)\}$ is an open cover of X. That is,

$$\bigcup_{r \in \mathbb{R}} \left(\mathbb{R}^n - \overline{B}(r, x) \right) = \mathbb{R} - \{x\} \supseteq X$$

By compactness of X, there exists finite $\{r_i\}_{1\leqslant i\leqslant n}$ s. t. $X\subseteq \bigcup_{i=1}^n \left(\mathbb{R}^n-\overline{B}(r_i,x)\right)=Y$.

However, it is easy to verify that $Y \cap B(\min(r_i), x) = \emptyset$, contradicting with assumption that x is a limit point of X.

Therefore, X is closed.