MATH 405: Assignment 4

Micah Sherry

March 2, 2025

1. Find the smallest positive solution to the system of congruences.

 $x \equiv 4 \bmod 7$

 $x \equiv 5 \bmod 11$

 $x \equiv 2 \bmod 16$

 $x\equiv 1\bmod 19$

- 2. Consider the set $\mathbb{Z}_3[i] = \{a + bi | a, b \in \mathbb{Z}_3\}$ where $i = \sqrt{-1}$.
 - (a) find all the elements of $\mathbb{Z}_3[i]$. How many are there?
 - (b) $1 + 2i \in \mathbb{Z}_3[i]$ has a multiplicative inverse in find it.
 - (c) Classify each nonzero element of $\mathbb{Z}_3[i]$ as a unit, a zero divisor or neither.
- 3. let R be a ring and let S and T be subrings or R. Let $M = S \cap T$. Show that M is a subring of R
- 4. Let R be a ring (not necessarily commutative).

Let
$$a, b \in R, (a \cdot b)^{-1} = b^{-1} \cdot a^{-1}$$

Extra Credit: let R be a ring (not necessarily commutative). If for any $a,b\in R$, $(a\cdot b)^{-1}=a^{-1}\cdot b^{-1}$ then show that R is commutative