Universidad del Valle de Guatemala

Departamento de Matemática Licenciatura en Matemática Aplicada

Estudiante: Rudik Roberto Rompich

Correo: rom19857@uvg.edu.gt

Carné: 19857

MM2033 - Teoría de Conjuntos - Catedrático: Nancy Zurita 1 de septiembre de 2021

HT 6

1. Problema

1.1. Sección 2.2

Problema 1.1 (Ejercicio 5). Sean $f: A \to B$ y $g: C \to D$ funciones. El producto de f y g es la función definida como:

$$[f \cdot g](x,y) = (f(x),g(y))$$
 para cada $(x,y) \in A \times C$

1. Probar que $f \cdot g$ es una función de $A \times C$ a $B \times D$.

 $\boldsymbol{Demostraci\'on}.$ A probar: $f\cdot g$ es función tal que usando la definición

- a) Sea $\forall (x,y) \in A \times C, \exists z \in B \times D \ni ((x,y),z) \in f \cdot g \implies z = [f \cdot g](x,y) = (f(x),g(y)).$
- b) Sean $z_1 = [f \cdot g](x, y)$ y $z_2 = [f \cdot g](x, y)$ tales que

$$(f(x), g(y)) = (f(x), g(y))$$
$$[f \cdot g](x, y) = [f \cdot g](x, y)$$
$$z_1 = z_2$$

2. Probar que si f y g son inyectivas, entonces $f \cdot g$ es inyectiva, y si f y g son sobreyectivas, entonces $f \cdot g$ es sobreyectiva.

Demostración. Probaremos inyectividad y sobreyectividad.

a) Inyectividad. Sea $[f \cdot g](a, b) = [f \cdot g](c, d) \implies (f(a), g(b)) = (f(c), g(d)) \implies [f(a) = f(c)] \land [g(b) = g(d)] \implies f y g \text{ son inyectivas } \implies [a = c] \land [b = d] \implies (a, b) = (c, d)$. Por lo tanto, $f \cdot g$ es inyectiva.

- b) Sobreyectividad. Sea $\forall z \in B \times D, \exists (x,y) \in A \times C \ni ((x,y),z) \in f \cdot g \implies z = [f \cdot g](x,y) = (f(x),g(y)).$
- 3. Probar que $\operatorname{ran}[f \cdot g] = (\operatorname{ran} f) \times (\operatorname{ran} g)$.

Demostración. A probar: $ran[f \cdot g] = (ran f) \times (ran g)$ tal que

- (\subseteq) $(x,y) \in \operatorname{ran}[f \cdot g] \implies (x,y) \in C \times D \implies (x \in C) \vee (y \in D) \implies$ Por la biyectividad de f y $g \implies x \in (\operatorname{ran} f) \vee y \in (\operatorname{ran} g) \implies (x,y) \in (\operatorname{ran} f) \times (\operatorname{ran} g)$. $\therefore \operatorname{ran}[f \cdot g] \subseteq (\operatorname{ran} f) \times (\operatorname{ran} g)$.
- $(\supseteq) \ (x,y) \in [(\operatorname{ran} f) \times (\operatorname{ran} g)] \implies (x \in \operatorname{ran} f) \wedge (y \in \operatorname{ran} g) \implies (\exists w \ni (w,x) \in f) \wedge (\exists z \ni (z,y) \in g) \implies ((w,x) \in A \times C) \wedge ((z,y) \in B \times D) \implies (x \in C) \wedge (y \in D) \implies (x,y) \in C \times D \implies \operatorname{Por la biyectividad} (x,y) \in \operatorname{ran}[f \cdot g].$ $\therefore (\operatorname{ran} f) \times (\operatorname{ran} g) \subseteq \operatorname{ran}[f \cdot g].$

Por lo tanto, $ran[f \cdot g] = (ran f) \times (ran g)$.

1.2. Sección 2.3

Problema 1.2 (Ejercicio 2). Supóngase que $f: A \to B$ y $g: B \to C$ son funciones.

1. Probar que si $g \circ f$ es inyectiva, entonces f es inyectiva.

Demostración. Sea f(a) = f(b), para algunos $a, b \in A \implies$ Por hipótesis, $g(f(a)) = g(f(b)) \implies a = b$. Por lo tanto, f debe ser inyectiva.

2. Probar que si $q \circ f$ es sobreyectiva, entonces q es sobreyectiva.

Demostración. Por hipótesis, $\forall z \in C, \exists x \in A \ni z = g(f(x))$. Ahora bien, dígase que $\forall z \in C, \exists y = f(x) \in B \ni z = g(y)$.

3. Concluir que si $g \circ f$ es biyectiva, entonces f es inyectiva g es sobreyectiva.

Demostración. Por la definición de biyectividad, entonces $g \circ f$ es inyectiva y sobreyectiva y por los dos incisos anteriores entonces f es inyectiva y g es sobreyectiva.

Problema 1.3 (Ejercicio 5). Sean $g: B \to C$ y $h: B \to C$ son funciones. Suponga que $g \circ f = h \circ f$ para cada función $f: A \to B$. Probar que g = h.

Demostración. Por hipótesis, $g(f(y)) = h(f(y)), \forall y \in B$. Por la definición de función, $\forall y \in B, \exists x \in A \ni y = f(x)$. Por lo tanto, $(z,y) \in g \iff z = g(y) \iff z = g(f(x)) \iff z = h(f(x)) \iff z = h(y) \iff (z,y) \in h$. Por lo tanto, g = h.

Sean $f: A \to B, g: B \to C$ y $g \circ f: A \to C$ functiones.

2. Problema

Problema 2.1. Si f g son injectivas, entonces $(g \circ f)$ es injectiva.

Demostración. Sea $g(f(a)) = g(f(b)) \implies f(a) = f(b) \implies a = b$. Por lo tanto, $g \circ f$ es inyectiva.

3. Problema

Problema 3.1. Si f y g son sobreyectivas, entonces ($g \circ f$) es sobreyectiva.

Demostración. Por hipótesis, sean $\forall h \in B, \exists x \in A \ni h = f(x) \text{ y } \forall z \in C, \exists i \in B \ni z = g(i). \implies \forall z \in C, \exists x \in A \ni z = g(f(x)).$ Por lo tanto, $(g \circ f)$ es sobreyectiva.

4. Problema

Problema 4.1. Si f y g son biyectivas, entonces $(g \circ f)$ es biyectiva.

Demostración. Por hipótesis, f y g son inyectivas y sobreyectivas. \Longrightarrow Por lo dos incisos anteriores $g \circ f$ es inyectiva y sobreyectiva. Por lo tanto, $(g \circ f)$ es biyectiva.

5. Problema

Lea la sección 4 del capítulo 2 del libro Set Theory de Charles Pinter y resuelva

5.1. Sección 2.4

Problema 5.1 (Problema 2). Suponga que $f: A \to B$ es una función, $C \subseteq A$ y $D \subseteq B$ 1. Si f es inyectiva, probar que $C = \check{f}[\bar{f}(C)]$.

Demostración. Sean $f: A \to B$ tal que,

- \subseteq Sea $x \in C$, como f es función $\exists y \in B \ni f(x) = y \implies f(x) \in \bar{f}(C) \implies x \in \check{f}[\bar{f}(C)]. \therefore C \subseteq \check{f}[\bar{f}(C)].$
- \supseteq Sea $x \in \check{f}[\bar{f}(C)] \implies f(x) \in \bar{f}(C) \implies \exists w \in C \ni f(x) = f(w) \implies$ Por la inyectividad $x = w \implies x \in C$. $\therefore \check{f}[\bar{f}(C)] \subseteq C$.

2. Si f es sobreyectiva, probar que $D = \bar{f}[\check{f}(D)]$

Demostración. Sean $f: A \to B$ tal que,

 \subseteq Sea $y \in D$. Por la sobreyectividad $\exists w \in \check{f}(D) \ni y = f(w) \implies y \in \bar{f}[\check{f}(D)]$. $\therefore D \subseteq \bar{f}[\check{f}(D)]$.

 $\supseteq \operatorname{Sea} x \in \bar{f}[\check{f}(\mathbf{D})] \implies \exists w \in \check{f}(\mathbf{D}) \ni x = f(w) \implies f(w) \in D \ni x = f(w) \implies x \in D. : \bar{f}[\check{f}(\mathbf{D})] \subseteq D.$

Por lo tanto, $D = \bar{f}[\check{f}(D)].$

Problema 5.2 (Problema 4). Sea $f: A \to B$ sea un función. Probar lo siguiente:

1. Si f es inyectiva, entonces $\check{f} \circ \bar{f}$ es biyectiva. [Hint: Usar el resultado del ejercicio 2(1).]

Demostración. Debemos probar que $\check{f} \circ \bar{f}$ es inyectiva y sobreyectiva tal que:

- a) Inyectividad. Sea $\forall x, y \in \check{f} \circ \bar{f}(x) = \check{f} \circ \bar{f}(y) \Longrightarrow \check{f}(\bar{f}(x)) = \check{f}(\bar{f}(y))$. Conocemos del **Problema 5.1 (Problema 2.1)** que dado $C = \check{f}[\bar{f}(C)]$, donde $C \subseteq A$ y f es inyectiva. $\Longrightarrow x = y$. $\therefore \check{f} \circ \bar{f}$ es inyectiva.
- b) Sobreyectividad. Conocemos del **Problema 5.1 (Problema 2.1)** que $\check{f} \circ \bar{f}(x) = x$. Sea $x \in C$, entonces por la definición de función $\exists y \in A \ni y = \bar{f}(x)$. Por lo tanto, $\check{f}(\bar{f}(x)) = \check{f}(y) = x$.
- 2. Si f es sobreyectiva, entonces $\bar{f} \circ \check{f}$ es biyectiva. [Hint: Usar el resultado del ejercicio 2(2).]

Demostración. Debemos probar que $\bar{f} \circ \check{f}$ es invectiva y sobrevectiva tal que:

- a) Inyectividad. Sea $\forall x, y \in A \ni \bar{f} \circ \check{f}(x) = \bar{f} \circ \check{f}(y) \implies \bar{f}(\check{f}(x)) = \bar{f}(\check{f}(y))$. Conocemos del **Problema 5.1 (Problema 2.2)** que dado $D = \bar{f}[\check{f}(D)]$, donde $D \subseteq B$ y f es sobrevectiva. $\implies x = y$. $\therefore \bar{f} \circ \check{f}$ es inyectiva.
- b) Sobreyectividad. Conocemos del **Problema 5.1 (Problema 2.2)** que $\bar{f} \circ \check{f}(x) = x$. Sea $y \in D$, entonces por la definición de función $\exists x \in A \ni \check{f}(y) = x$. Por lo tanto, $\bar{f}(\check{f}(y)) = \bar{f}(x) = x$.

Problema 5.3 (Problema 8). Sea $f: A \to B$ una función. Probar que

$$\bar{f}(C\cap D)=\bar{f}(C)\cap\bar{f}(D)$$

para cada par de subclases $C \subseteq A$ y $D \subseteq A$ si y solo si f es inyectiva.

Demostración. Sea f una función, tales que

- - (2) Sea $y \in \bar{f}(C \cap D) \implies \exists x \in C \cap D \ni y = f(x) \implies x \in C \land x \in D \ni y = f(x) \implies (x \in C \ni y = f(x)) \land (x \in D \ni y = f(x)) \implies x \in \bar{f}(C) \cap \bar{f}(D).$ $\therefore \bar{f}(C \cap D) \subseteq \bar{f}(C) \cap \bar{f}(D)$
 - (\subseteq) Sea $y \in \bar{f}(C) \cap \bar{f}(D) \implies y \in \bar{f}(C) \land y \in \bar{f}(D) \implies (\exists z \in C \ni y = f(z)) \land (\exists w \in C \ni y = f(w)) \implies (\exists z \in C) \land (\exists w \in C) \ni y = f(z) = f(w) \implies \text{Por la inyectividad, } w = z. : \bar{f}(C) \cap \bar{f}(D) \subseteq \bar{f}(C \cap D).$

Por lo tanto, $\bar{f}(C\cap D)=\bar{f}(C)\cap\bar{f}(D)$.

(\Longrightarrow) A probar: $\bar{f}(C\cap D) = \bar{f}(C)\cap \bar{f}(D)$ entonces f es inyectiva. Por reducción al absurdo, supóngase que f no es inyectiva, tal que

$$\exists x, y \in A \ni z = f(x) = f(y) \implies x \neq y.$$

Sin embargo, nótese que si f no es inyectiva entonces no se cumpliría la contención del inciso anterior, tal que $\bar{f}(C) \cap \bar{f}(D) \not\subseteq \bar{f}(C \cap D)(\to \leftarrow)$ ya que $\bar{f}(C \cap D) = \bar{f}(C) \cap \bar{f}(D)$ por hipótesis. Por lo tanto, f es inyectiva.

5