Graduate Programme in Health Data Science

Assessed Coursework Submission

Student candidate number: CHFX2

Module: CHME0013: Data Methods for Health Research

Date due: Monday, 21st January 2019, 12:00 midday

Word count: (excluding references, diagrams and appendices) 2484

Disability or other medical condition for which UCL has granted special examination arrangements:

My learning development:

On this assignment, I have been particularly focusing on data analysis and virtualization for health research

GitHubURL:

https://github.com/OliverKahn21/CHFX2 CHME0013.git (https://github.com/OliverKahn21/CHFX2 CHME0013.git)

Assignment_A_1

The packages used in this assignment are NumPy, Pandas, Matplotlib and SciPy. NumPy is used for scientific computing including the mean and standard error. Pandas is used most frequently in this assignment. Dataframe is used for calculation, organize data and display data through the research. It could not only help us read data from CSV files but also help us to solve the problems in multidimensional structured data sets. The pie chart is also base on the function which is used to support Dataframe. The pyplot in Matplotlib is used for data virtualization. The histogram, scatterplot and trend line are based on this function. SciPy is used to show the Gaussian curve based on the histogram and used for normal distribution test.

```
In [1]:
```

```
#preliminaries
import numpy as np
import pandas as pd
from matplotlib import pyplot as plt
from scipy import stats
```

The data sources used in Assignment A are NHS Digital GP Practice Prescribing and NHS Digital GP Practice Demographics in April 2018. In NHS Digital GP Practice Prescribing, they provide information in practice level prescribing data. The variables including the practice code, the BNF code, the BNF name, the total actual cost, practice's address, practice's city, practice's postcode. In NHS Digital GP Practice Demographics, they provide information about patients registered at GP. The variables including the practice code and the number of patients. The practice code is existing in both data sources, and it could be identified as a potential identifier for data linkage.

In [2]:

```
#use codes_names_address.CSV as data1
data1 = pd.read_csv('/Users/Liujianyu/Desktop/DMHR/Final_assignment/T201804ADD
R BNFT.CSV', header= None, names = ['Month','practice_codes','Practice1','Practice2','Address1','Address2','City','Postcode'])
data1.head()
```

Out[2]:

	Month	practice_codes	Practice1	Practice2	Address1	Ad
0	201804	A81001	THE DENSHAM SURGERY	THE HEALTH CENTRE	LAWSON STREET	STOCKTON TEES
1	201804	A81002	QUEENS PARK MEDICAL CENTRE	QUEENS PARK MEDICAL CTR	FARRER STREET	STOCKTON TEES
2	201804	A81004	BLUEBELL MEDICAL CENTRE	TRIMDON AVENUE	ACKLAM	MIDDLESBF
3	201804	A81005	SPRINGWOOD SURGERY	SPRINGWOOD SURGERY	RECTORY LANE	GUISBORO
4	201804	A81006	TENNANT STREET MEDICAL PRACTICE	TENNANT ST MEDICAL PRACT	TENNANT STREET	STOCKTON TEES

To identify all GP practices located in London, we need to formulate the rule to support us. In the file 'codes_names_address.CSV', we could find practice address, city and postcode. When we check the information, we could find some noisy data result in the variable 'city' is empty and the information about the city is provided in the address. We could also find some round outside London is named as 'London'. After considering all the potential noisy data, the rule could be explained as identify the row which the variable 'Address2' or 'City' equal 'LONDON'. Based on this rule, we could identify all GP practices located in London, and the total number of it is 929.

In [3]:

```
# create a dataframe including all the practices in London
data1_1 = data1[['practice_codes','Address2','City']]
new_city = data1_1['City'].str.strip()
new_address = data1_1['Address2'].str.strip()
data1_2 = data1_1.copy()
data1_2['City'] = new_city
data1_2['Address2'] = new_address
London_Code = data1_2.loc[(data1_2['City'] == 'LONDON') | (data1_2['Address2'] == 'LONDON')]
London_Code.head()
```

Out[3]:

	practice_codes	Address2	City
1873	E83003	WHETSTONE	LONDON
1874	E83005	FINCHLEY	LONDON
1875	E83006	CRICKLEWOOD	LONDON
1876	E83007	FINCHLEY	LONDON
1877	E83008	BARNET	LONDON

In [4]:

```
# count the number of practices in London
London_Code.practice_codes.count()
```

Out[4]:

929

In [5]:

```
#use gp-reg-pat-prac-all.CSV as data2
data2 = pd.read_csv('/Users/Liujianyu/Desktop/DMHR/Final_assignment/gp-reg-pat
-prac-all.CSV' , index_col=False)
data2.head()
```

Out[5]:

	PUBLICATION	EXTRACT_DATE	TYPE	CCG_CODE	ONS_CCG_CODE	CC
0	GP_PRAC_PAT_LIST	01APR2018	GP	00C	E38000042	A83
1	GP_PRAC_PAT_LIST	01APR2018	GP	00C	E38000042	A83
2	GP_PRAC_PAT_LIST	01APR2018	GP	00C	E38000042	A83
3	GP_PRAC_PAT_LIST	01APR2018	GP	00C	E38000042	A83
4	GP_PRAC_PAT_LIST	01APR2018	GP	00C	E38000042	A83

The next step is calculating the total number of patients registered. We need to use the file 'gp-reg-pat-prac-all.CSV' which including the number of patients in each practice. The list of practices in London can help us identify the targets. We need to summarize the number of patients and the result is 5,841,956.

In [6]:

```
#summarize the total number of patients registered in London
list1 = London_Code['practice_codes'].tolist()
list2 = data2.CODE.isin(list1) #identify the practice code which is in London
data2_1 = data2.copy()
data2_1['JUDGE'] = list2 #add the result of judgment in to the list
data2_1.loc[data2_1['JUDGE'] == 1].NUMBER_OF_PATIENTS.sum()
```

Out[6]:

5841956

In [7]:

Out[7]:

	SHA	PCT	PRACTICE	BNF_CODE	BNF_NAME	ITEMS	NIC	ACT_C
0	Q44	RTV	Y04937	0401010Z0AAAAAA	Zopiclone_Tab 7.5mg	6	1.56	2.12
1	Q44	RTV	Y04937	0401020K0AAAHAH	Diazepam_Tab 2mg	4	0.87	1.15
2	Q44	RTV	Y04937	0401020K0AAAIAI	Diazepam_Tab 5mg	2	0.46	0.56
3	Q44	RTV	Y04937	0402010ABAAABAB	Quetiapine_Tab 25mg	1	2.60	2.52
4	Q44	RTV	Y04937	0402010ADAAAAA	Aripiprazole_Tab 10mg	1	1.53	1.53

In order to identify the total number of prescriptions, the file 'Practice_prescribing.CSV' can be used and we also need to identify the practice in London by the list. The variable 'QUANTITY' is mean the total quantity of each prescription in each practice code during April. So we can summarize the variable 'QUANTITY', and the result '510136987' is mean the total number of prescriptions.

In [8]:

```
#summarize the total number of prescriptions in London
list3 = data3.PRACTICE.isin(list1) #identify the practice code which is in Lon
don
data3_1 = data3.copy()
data3_1['JUDGE'] = list3 #add the result of judgment in to the list
London = data3_1.loc[data3_1['JUDGE'] == 1]
London.QUANTITY.sum()
```

Out[8]:

510136987

Similarly, the total actual cost of these prescriptions can be calculated by summarizing the variable 'ACT_COST'. The total actual cost is 43322000.54.

```
In [9]:
```

#summarize the total actual cost of prescriptions in London London.ACT_COST.sum()

Out[9]:

43322000.54

The top 10 most frequent drugs prescribed is descending sorted by the summarized result of 'QUANTITY'. In the table we could find the most common drugs is 'Ensure Plus_Milkshake Style' and the frequency of it is much higher than the second one (It was used for 17023232 times in April). It is a ready-to-drink, milkshake style oral nutritional supplement for people with, or at risk of developing disease-related malnutrition. The third highest frequency drug is 'Fortisip Compact_Liq' which is similar to 'Ensure Plus_Milkshake Style'. We can infer that people with disease-related malnutrition account for a large proportion of the population. The second one is 'Metformin HCl_Tab 500mg' which the first-line medication for the treatment of type 2 diabetes, particularly in people who are overweight. Diabetes is also a high-frequency disease in London.

In [10]:

```
#the top 10 most frequent drugs prescribed in London
London_Count = London.groupby(['BNF_CODE']).sum()
London_Count_1 = London_Count.merge(London[['BNF_CODE','BNF_NAME']], on = 'BNF
_CODE', how = 'left') #add BNF_NAME
London_Count_2 = London_Count_1.sort_values(by='QUANTITY', ascending=False)
London_Count_2.drop_duplicates(subset=['BNF_CODE'], keep='first').head(10)
```

	BNF_CODE	ITEMS	NIC	ACT_COST	QUANTITY	PERIOD
525734	090402000BBRRA0	4477	96281.92	91808.65	17023232	93838860
412315	0601022B0AAABAB	121063	376329.40	353102.30	11706703	158819748
521330	090402000BBAJA0	3655	58826.88	55067.39	10217184	62155632
35953	0106040G0AAAAAA	17330	43081.00	40654.65	9283922	157205316
284742	0407010H0AAAMAM	74463	75152.42	72891.70	7690436	158819748
640067	130201000BBICBW	11641	81147.40	75401.83	6717500	155389080
528406	090402000BBVTA0	1247	71311.05	66923.85	6565947	74062068
525315	090402000BBRMA0	830	69577.20	65085.19	6556352	34912092
526143	090402000BBSIA0	1166	63283.80	59344.98	5455500	55092492
17641	0103050P0AAAAAA	123310	100130.28	98762.26	4665483	163663044

The bottom 10 less common drugs are variety because there are many drugs which are only used for one time in April. The number of medications used one time in April is 297, and there also have a drug exist in the list but 'QUANTITY' is 0, and it is a noisy data.

In [11]:

#the bottom 10 less frequent drugs prescribed in London
London_Count_3 = London_Count_1.sort_values(by='QUANTITY', ascending=True)
London_Count_3.drop_duplicates(subset=['BNF_CODE'], keep='first').head(10)

Out[11]:

	BNF_CODE	ITEMS	NIC	ACT_COST	QUANTITY	PERIOD	JUDG
498183	0801030P0AAFIFI	1	13.37	12.41	0	201804	1.0
706303	1404000AGBBACAC	1	34.76	32.24	1	201804	1.0
725113	20031400045	1	17.70	16.43	1	201804	1.0
725148	20031400062	1	59.43	55.13	1	201804	1.0
185381	0302000K0BIAAAU	1	26.99	25.04	1	201804	1.0
775722	21270000194	1	20.28	18.82	1	201804	1.0
775720	21270000191	1	19.21	17.83	1	201804	1.0
707062	1404000H0AAAFAF	1	6.59	6.12	1	201804	1.0
719902	20030100505	1	8.95	8.31	1	201804	1.0
776713	21270001426	1	6.11	5.67	1	201804	1.0

Assignment_A_2

In Cambridge, the total number of patients registered is 311579, and there have 36 GP practices. The total number of prescriptions is 25232152, and the total actual cost is 2434403.94. In the top 10 most frequent drugs, nutrition is the most significant proportion of them, and this kind of drugs ranked 1, 2 and 4 in the list. The demand for is 'Metformin HCl_Tab 500mg' only ranked 9 and 'Paracet_Tab 500mg' for fever and 'Dermol 500_Lot' for skin condition ranked 3 and 5.

```
In [12]:
#count the number of practices in Cambridge
Cambridge Code = data1 2.loc[(data1 2['City'] == 'CAMBRIDGE') | (data1 2['Addr
ess2'| == 'CAMBRIDGE')|
Cambridge Code.practice codes.count()
Out[12]:
36
In [13]:
#summarize the total number of patients registered in Cambridge
list4 = Cambridge Code['practice codes'].tolist()
list5 = data2.CODE.isin(list4) #identify the practice code which is in Cambrid
qе
data2 2 = data2.copy()
data2 2['JUDGE'] = list5 #add the result of judgment in to the list
data2 2.loc[data2 2['JUDGE'] == 1].NUMBER OF PATIENTS.sum()
Out[13]:
311579
In [14]:
#summarize the total number of prescriptions in Cambridge
list6 = data3.PRACTICE.isin(list4) #identify the practice code which is in Cam
bridge
data3 2 = data3.copy()
data3 2['JUDGE'] = list6 #add the result of judgment in to the list
Cambridge = data3 2.loc[data3 2['JUDGE'] == 1]
Cambridge.QUANTITY.sum()
Out[14]:
25232152
In [15]:
#summarize the total actual cost of prescriptions in Cambridge
Cambridge.ACT COST.sum()
Out[15]:
```

2434403.94

In [16]:

```
#the top 10 most frequent drugs prescribed in Cambridge
Cambridge_Count = Cambridge.groupby(['BNF_CODE']).sum()
Cambridge_Count_1 = Cambridge_Count.merge(Cambridge[['BNF_CODE','BNF_NAME']],
on = 'BNF_CODE', how = 'left') #add BNF_NAME
Cambridge_Count_2 = Cambridge_Count_1.sort_values(by='QUANTITY', ascending=False)
Cambridge_Count_2.drop_duplicates(subset=['BNF_CODE'], keep='first').head(10)
```

Out[16]:

	BNF_CODE	ITEMS	NIC	ACT_COST	QUANTITY	PERIOD	JUI
27292	090402000BBSIA0	302	10725.65	10019.74	924625	5650512	28.0
27106	090402000BBGYA0	27	9370.26	8690.25	651324	2421648	12.0
14494	0407010H0AAAMAM	4565	6334.40	6012.26	573923	6457728	32.0
27058	090402000BBAJA0	152	2859.36	2722.00	508936	4439688	22.0
32386	130201000BBICBW	775	5405.80	5021.06	447500	6659532	33.
877	0103050P0AAAAAA	11688	9533.34	9128.05	443650	6457728	32.0
27160	090402000BBLMA0	23	7372.09	6837.07	437716	2623452	13.0
1944	0106040G0AAAAA	704	1953.93	1847.82	420220	6054120	30.0
21436	0601022B0AAABAB	3620	10553.50	9866.12	328345	6255924	31.0
27091	090402000BBGXA0	15	5790.90	5370.58	298500	1816236	9.0

In [17]:

```
#the bottom 10 less frequent drugs prescribed in Cambridge
Cambridge_Count_3 = Cambridge_Count_1.sort_values(by='QUANTITY', ascending=Tru
e)
Cambridge_Count_3.drop_duplicates(subset=['BNF_CODE'], keep='first').head(10)
```

	BNF_CODE	ITEMS	NIC	ACT_COST	QUANTITY	PERIOD	JUDGE
34842	1308010Z0BBABAB	1	65.00	60.28	0	201804	1.0
35495	1404000G0BEACAG	1	27.60	25.60	1	201804	1.0
37823	21200000044	1	17.31	16.07	1	201804	1.0
37829	21200000047	1	16.97	15.75	1	201804	1.0
37830	21200000048	1	16.97	15.75	1	201804	1.0
37833	21200000111	1	11.56	10.73	1	201804	1.0
37841	21200000152	1	31.81	29.51	1	201804	1.0
37844	21210000003	1	6.86	6.37	1	201804	1.0
37867	21210000006	1	9.85	9.15	1	201804	1.0
37882	21210000013	1	2.96	2.76	1	201804	1.0

Comparing London and Cambridge, we could find the standard error between these two cities is different, which mean that the dispersion of patients in Cambridge is more uneven than London. We could also see the average patients per practices in Cambridge is 10051 and in London is 7821. Each practice in Cambridge needs to service more patients than in London. The active GP is mean the GP with at least one patient record. We could find that a large number of practices in London do not have any record in April.

```
In [18]:
```

```
PAT_Num_London = data2_1.loc[data2_1['JUDGE'] == 1].NUMBER_OF_PATIENTS

PAT_Num_Cambridge = data2_2.loc[data2_2['JUDGE'] == 1].NUMBER_OF_PATIENTS

round(np.std(PAT_Num_London),2),round(np.std(PAT_Num_Cambridge),2),round(np.me
an(PAT_Num_London),2),round(np.mean(PAT_Num_Cambridge),2),PAT_Num_London.count
(),PAT_Num_Cambridge.count()
```

```
Out[18]:
```

```
(5061.76, 6173.94, 7820.56, 10050.94, 747, 31)
```

In [19]:

```
Lon_Cam_1 = {'all GP':[929,36],'Patients':[5841956,311579],'Prescriptions':[51
0136987,25232152],'Actual Cost':[43322000.54,2434403.94],'Patients.std':[5061.
76,6173.95],'Patients.mean':[7821,10051],'active GP':[747,31]}
Lon_Cam = pd.DataFrame(Lon_Cam_1,index=['London','Cambridge']) #descriptive st
atistics
Lon_Cam
```

Out[19]:

	all GP	Patients	Prescriptions	Actual Cost	Patients.std	Patients.mea
London	929	5841956	510136987	43322000.54	5061.76	7821
Cambridge	36	311579	25232152	2434403.94	6173.95	10051

Assignment_A_3

To identify the prescriptions related to cardiovascular disease and antidepressants, we need to check the British National Formulary. We find the code of these two diseases are begin with '02' and '0403', so we need to extract all the samples which BNF code start with this two number. The total number of prescriptions across all practices for drugs related to cardiovascular disease and antidepressants are 933262147 and 214223401. The total actual cost across all practices for medications related to cardiovascular disease and antidepressants are 90193834.02 and 16853470.86.

In [20]:

```
#list all the drugs related to cardiovascular disease
Cardiovascular_Disease = data3.loc[(data3['BNF_CODE'] > '02000000000000') & (
data3['BNF_CODE'] < '03000000000000')]
CD_Count = Cardiovascular_Disease.groupby(['BNF_CODE']).sum() # summarize the
BNF_CODE begin with 02
CD_Count.head()</pre>
```

Out[20]:

	ITEMS	NIC	ACT_COST	QUANTITY	PERIOD
BNF_CODE					
0201010F0AAAAA	1235	7768.20	7216.87	87120	183036228
0201010F0AAADAD	79367	106602.17	102511.62	1904145	1355315664
0201010F0AAAEAE	141057	193988.10	185641.31	3608018	1416058668
0201010F0AAAFAF	25483	42923.53	40590.33	773394	1133331264
0201010F0BBAAAE	403	179.41	209.46	11139	10493808

In [21]:

#total number of prescriptions related to cardiovascular disease
CD_Count.QUANTITY.sum()

Out[21]:

933262147

In [22]:

#total actual cost of prescriptions related to cardiovascular disease
round(CD Count.ACT COST.sum(),2)

Out[22]:

90193834.02

```
In [23]:
```

```
#list all the drugs related to antidepressants
Antidepressants = data3.loc[(data3['BNF_CODE'] > '040300000000000') & (data3['BNF_CODE'] < '040400000000000')]
An_Count = Antidepressants.groupby(['BNF_CODE']).sum() # summarize the BNF_CODE begin with 0403
An_Count.head()</pre>
```

Out[23]:

	ITEMS	NIC	ACT_COST	QUANTITY	PERIOD
BNF_CODE					
0403010B0AAA6A6	21	2567.08	2380.93	3440	2825256
0403010B0AAAFAF	663	17542.36	16290.38	136969	105745296
0403010B0AAAGAG	701543	1261322.48	1187746.02	36385621	1546020444
0403010B0AAAHAH	247551	297480.32	283395.27	11237854	1471958376
0403010B0AAAIAI	154237	641513.88	600310.01	6221348	1437046284

In [24]:

```
#total number of prescriptions related to antidepressants
An_Count.QUANTITY.sum()
```

Out[24]:

214223401

In [25]:

```
#total actual cost of prescriptions related to antidepressants
round(An_Count.ACT_COST.sum(),2)
```

Out[25]:

16853470.86

Assignment_A_4

Actual cost and number of patients of each practice can be extracted from data source so we can calculate the relative costs per patient through 'actual cost' divided by 'number of patients'. The average cost per patients in April is around 11.61, and the average actual cost per practices is 87842.77. We can show a scatterplot of total spending across all practices in April and the number of patients in each practice in April to visualize the total monthly expenditure per registered patients. But the first step is data cleaning because some noisy data may influent the fit of the trend line. The method we used in the data cleaning process deletes the largest 0.1% data for both actual cost and number of patients. With the help of this process, we can show a reasonable scatterplot and a trend line. From the diagram, we can find that as the number of patients grows, total spending across all practices has a growing trend.

In [26]:

```
#combine ACT_COST and Number_OF_PATIENTS
PRACTICE_COST = data3[['PRACTICE','ACT_COST']]
PRACTICE_Total = PRACTICE_COST.groupby(['PRACTICE']).sum()
PRACTICE_MERGE = pd.merge(PRACTICE_Total,data2[['CODE','NUMBER_OF_PATIENTS']],
left_on = 'PRACTICE', right_on = 'CODE')
list_per_patient = PRACTICE_MERGE['ACT_COST'] / PRACTICE_MERGE['NUMBER_OF_PATIENTS'] #calculate the costs per patients
PRACTICE_Table = PRACTICE_MERGE.copy()
PRACTICE_Table['Relative_Costs_Per_Patient'] = list_per_patient #add the costs
per patients
PRACTICE_Table.head()
```

Out[26]:

	ACT_COST	CODE	NUMBER_OF_PATIENTS	Relative_Costs_Per_Patient
0	52194.63	A81001	4086	12.774016
1	268607.26	A81002	19906	13.493784
2	139115.40	A81004	10165	13.685726
3	102914.06	A81005	8016	12.838580
4	183226.79	A81006	14497	12.638945

In [27]:

round(np.mean(PRACTICE_Table.Relative_Costs_Per_Patient),2),round(np.mean(PRACTICE_Table.ACT_COST),2) #average cost

Out[27]:

(11.61, 87842.77)

```
#visualize the monthly total spending per registered patients, trend line
max ACT = PRACTICE Table['ACT COST'].quantile(.999) #identify the potential no
ise data(the largest 0.1%)
max_PAT = PRACTICE_Table['NUMBER_OF_PATIENTS'].quantile(.999) #identify the po
tential noise data(the largest 0.1%)
PRACTICE_Table_1 = PRACTICE_Table.loc[(PRACTICE_Table['NUMBER_OF_PATIENTS'] <
max PAT) & (PRACTICE Table['ACT COST'] < max ACT)]</pre>
fig = plt.figure(figsize = (8, 6)) #the size of background
PRACTICE scatterplot = fig.add subplot(111)
y = PRACTICE Table 1['ACT COST'] # the value of x axis
x = PRACTICE_Table_1['NUMBER_OF_PATIENTS'] # the value of y axis
PRACTICE scatterplot.scatter(x, y, color='royalblue')
fit = np.polyfit(x, y, deg = 1) # the scatterplot
PRACTICE scatterplot.plot(x, fit[0] * x + fit[1], color='red') # the trend lin
PRACTICE scatterplot.set title ('monthly total spending per registered patient
s')
PRACTICE scatterplot.set ylabel('total spending across all practices in April
2018', fontsize=12)
PRACTICE scatterplot.set xlabel('total number of patient in each practices in
April 2018', fontsize=12)
```

Out[28]:

Text(0.5,0, total number of patient in each practices in April 201 8')

But we could also find in the histogram of the number of patients per practices, the distribution of the histogram is not normally distributed which is mean that the distribution of patients is uneven. This situation could result in some practices are very busy, and at the same time, another one is free.

In [29]:

```
n, bins, patches = plt.hist(PRACTICE_Table.NUMBER_OF_PATIENTS, 30, density = 1
, facecolor = 'green', alpha = 0.5)
plt.title('Frequency of patients number')
plt.xlabel("Number of Patients")
plt.ylabel("Frequency")
plt.show() #histogram of patients number
```


The histogram for relative spending for all practices also needs data cleaning. For this histogram, we use the variable 'Relative_Costs_Per_Patient' and delete the bottom 1% and the top 1% of the value to avoid the influence of outliers. We also fit a Gaussian curve to support us to judge the distribution. From the diagram, we can conclude that the distribution of relative costs per patient is approximating a normal distribution.

```
In [30]:
```

```
#histogram about relative spending for all practices, Gaussian curve
x = PRACTICE Table.Relative Costs Per Patient.values
min x = PRACTICE Table['Relative Costs Per Patient'].quantile(.01) #identify t
he potential noise data(the bottom 1%)
max_x = PRACTICE_Table['Relative_Costs_Per_Patient'].quantile(.99) #identify t
he potential noise data(the top 1%)
x 1 = [i \text{ for } i \text{ in } x \text{ if } (i < max x) & (i > min x)] # exclude the noise data
num bins = 30 #identify the number of bins
n, bins, patches = plt.hist(x 1, num bins, density = 1, facecolor = 'blue', al
pha = 0.5) #histogram for relative spending for all practices
mean = np.mean(x 1)
std = np.std(x 1)
y = stats.norm.pdf(bins, mean, std) #fit the Gaussian curve
plt.plot(bins, y, 'r-*')
plt.title('Frequency of monthly relative spending per patients')
plt.xlabel("Monthly relative spending per patients")
plt.ylabel("Frequency")
plt.show()
```


Further test, we use the function 'scipy.stats.normaltest' to test whether a sample differs from a normal distribution. The null hypothesis of this test is the sample comes from a normal distribution. We receive the return P-value is less than 0.01, so we can reject the null hypothesis, and this is mean that the distribution of spending per practices is not a normal distribution. The diagram seems like negative skewness which means the average is less than the median, and the median is less than the mode.

```
In [31]:
```

```
stats.normaltest (x, axis=0) #normal distribution test
```

Out[31]:

NormaltestResult(statistic=24361.584421525054, pvalue=0.0)

Assignment_B_1

The data sources used in Assignment B is the WHO Mortality (ICD-10 version) and Population datasets. It is a database of registered deaths compiled by WHO from data given by national authorities around the world. The cause of each death is classified by the circumstances that led to death. We will use the Mortality data, country codes and Population and live births datasets. The 'Mortality data' including the variables country code, year, sex, death cause code (ICD-10) and death age. Another file which called 'Documentation_1 Dec2018' including the explanation of ICD-10 code so we could identify the target cause based on the variable 'Cause'.

In [32]:

```
#use Morticd10.CSV as data4
data4_1 = pd.read_csv('/Users/Liujianyu/Desktop/DMHR/Final_assignment/Morticd1
0_part1.csv', index_col=False,low_memory=False)
data4_2 = pd.read_csv('/Users/Liujianyu/Desktop/DMHR/Final_assignment/Morticd1
0_part2.csv', index_col=False,low_memory=False)
data4_3 = pd.concat([data4_1,data4_2])
data4 = data4_3.loc[data4_3['Year'] == 2010]
data4.head()
```

Out[32]:

	Country	Admin1	SubDiv	Year	List	Cause	Sex	Frmat	IM_Frmat	Deaths1
995	1400	NaN	NaN	2010	101	1000	1	7	1	363
996	1400	NaN	NaN	2010	101	1000	2	7	1	301
997	1400	NaN	NaN	2010	101	1001	1	7	1	23
998	1400	NaN	NaN	2010	101	1001	2	7	1	29
999	1400	NaN	NaN	2010	101	1002	1	7	1	0

5 rawe v 30 columne

Through the file of country code, we could identify the country code of Iceland, Italy and New Zealand are 4160, 4180 and 5150, We need to focus on mortality data at the year of 2010, and we could get the total number of deaths of these three countries. The deaths number in Iceland in 2010 is 4038, in Italy is 1169230 and in New Zealand is 57298.

In [33]:

```
#summarize the total number of deaths in Iceland, Italy and New Zealand in 201
0
iceland_death = data4.loc[data4['Country'] == 4160].Deaths1.sum()
Italy_death = data4.loc[data4['Country'] == 4180].Deaths1.sum()
New_Zealand_death = data4.loc[data4['Country'] == 5150].Deaths1.sum()
iceland_death,Italy_death,New_Zealand_death
```

```
Out[33]:
(4038, 1169230, 57298)
```

Similarly, we could extract the data of population from 'Population_and_live_births.CSV'. Based on country code and year, we could identify the population of those three countries. The population in Iceland, Italy and New Zealand in 2010 is 318041, 60483386 and 4367360.

In [34]:

```
#use Population_and_live_births.CSV as data5
data5= pd.read_csv('/Users/Liujianyu/Desktop/DMHR/Final_assignment/pop.csv',
index_col=False,low_memory=False)
data6 = data5.loc[data5['Year'] == 2010]
data6.head()
```

Out[34]:

	Country	Admin1	SubDiv	Year	Sex	Frmat	Pop1	Pop2	Por
86	1125	NaN	NaN	2010	1	4	40250440.0	1219070.0	3063246
87	1125	NaN	NaN	2010	2	4	38477889.0	1163338.0	2908480
212	1300	NaN	NaN	2010	1	1	612981.0	7265.0	7453.0
213	1300	NaN	NaN	2010	2	1	630103.0	7137.0	7460.0
240	1365	NaN	NaN	2010	1	1	18711.0	372.0	404.0

5 raws v 33 columns

In [35]:

```
#summarize the population in Iceland, Italy and New Zealand in 2010
iceland_pop = data6.loc[data6['Country'] == 4160].Pop1.sum()
Italy_pop = data6.loc[data6['Country'] == 4180].Pop1.sum()
New_Zealand_pop = data6.loc[data6['Country'] == 5150].Pop1.sum()
iceland_pop,Italy_pop,New_Zealand_pop
```

```
Out[35]:
```

```
(318041.0, 60483386.0, 4367360.0)
```

The population and mortality in these three countries differ significantly. We could calculate the mortality rate by using death number in 2010 divided by the population in 2010. The mortality rate in Italy is considerably higher than the other two countries, and the rate is 19.3 in a population of 1000. This rate is much higher than the result provided by The World Factbook (10.4 in a population of 1000) which is supported by the Central Intelligence Agency. This problem may be due to the noisy data and different data collection rules, but we could not identify the reason based on the available data.

```
In [36]:
```

```
round(iceland_death/iceland_pop,4), round(Italy_death/Italy_pop,4), round(New_
Zealand_death/New_Zealand_pop,4)
```

```
Out[36]:
```

```
(0.0127, 0.0193, 0.0131)
```

Assignment_B_2

In [37]:

plt.show()

By summarize the death number of the different age group in Italy, we could visualize the distribution of deaths. From the diagram, we could find the most proportion of the people deaths at age 80 to 84 and 85 to 90. The average life expectancy in Italy provided by World Bank is 82.54 in 2016, and the peak of deaths frequency is just over this expectancy. We could also find the deaths frequency at 0 is significantly higher than several groups after it. This result is mean that children age under one year old is also an essential stage of people's healthy and people ought to pay more attention to the health of new-born.

```
#list of the distribution of deaths by age group in Italy
Italy_death_all = data4_3.loc[data4_3['Country'] == 4180].sum()
Italy_death_all_list = Italy_death_all.tolist()
histogram_Italy = Italy_death_all_list[10:34]
histogram_Italy[0:5]

Out[37]:
[48752.0, 3262.0, 2168.0, 1826.0, 1628.0]

In [38]:

#histogram of the distribution of deaths by age group in Italy
label1 = ['0','1','2','3','4','5','10','15','20','25','30','35','40','45','50','55','60','65','70','75','80','85','90','95+']
plt.bar(label1, histogram_Italy)
plt.title('Death in Italy by age group')
plt.xlabel("age group")
plt.ylabel("Frequency")
```


Assignment_B_3

For the variable 'Cause', we could find that there are three different kinds of data type. Some of them are recorded in one letter followed by three numbers, some of them are recorded in one letter followed by two numbers, and the rest is recorded by four digits number. Through 'Documentation 1 Dec2018', we could find the type of 4 digits number is a potential noisy data because it could be ICD-9 code or code in ICD 10 Mortality Tabulation List 1. For example, 1026 could mean 102.6, and it is an ICD-9 code which means 'Bone and joint lesions due to yaws'. But it could also be a code in ICD 10 Mortality Tabulation List 1 which replace C00-D48. This data type makes people feel confusing so we could not judge this type of data. For another two types of data, they are all ICD-10 code in different levels of detail.

```
In [39]:
```

```
#calculate the position of C00 to D48 in the ICD-10 list
data4_4 = data4_3.loc[data4_3['Country'] == 4180]
list_B1 = data4_4['Cause'].tolist() #identify all the cause
list_B2 = list(set(list_B1))
list_B2.sort()
list_B2.index('C000'),list_B2.index('D489')
```

```
Out[39]: (320, 939)
```

In our data source, we could find 620 kind of codes between C00 and D48 which is relative with a neoplasm (from C00.0 to D48.9). Based on this code, we could extract all the samples relative with neoplasm, and we could calculate the proportion of each deaths cause. The top5 cause is shown in the table, and we could check in the WHO website to identify the meaning of each code. The majority type of neoplasm result in death in Italy is C34.9 which means 'Malignant neoplasm of unspecified part of bronchus or lung', and the proportion of this type is 19.0% which is much higher than the second highest reason (only 6.9%). This phenomenon indicates that neoplasm of bronchus or lung is a majority reason for people's health problems. Furthermore, the danger of smoking should further attract people's attention.

In [40]:

```
#identify the top 5 causes of death in Italy across all years for the Neoplasm
list_Neoplasm = list_B2[320:940]
list_B3 = data4_4.Cause.isin(list_Neoplasm)
data4_5 = data4_4.copy()
data4_5['JUDGE'] = list_B3 #identify the cause belong to Neoplasm ICD10-catego
ry
data4_6 = data4_5.loc[data4_5['JUDGE'] == 1]
Neoplasm_Cause = data4_6.groupby(['Cause']).sum()
Neoplasm_Cause_1 = Neoplasm_Cause.sort_values(by='Deaths1', ascending=False)
Italy_Neoplasm = pd.DataFrame(Neoplasm_Cause_1['Deaths1'])
Italy_Neoplasm['Proportion (%)'] = round(Neoplasm_Cause_1['Deaths1'] *100/ Neo
plasm_Cause_1['Deaths1'].sum(),1) #calculate the proportion of overall deaths
Italy_Neoplasm.head(5)
```

Out[40]:

	Deaths1	Proportion (%)
Cause		
C349	426451	19.0
C509	155895	6.9
C189	143188	6.4
C169	125679	5.6
C259	120070	5.3

In the pie chart, we combined the reasons other than the top five to highlight these five reasons. The top 5 causes of death relative with neoplasm are malignant neoplasm of unspecified part of bronchus or lung, malignant neoplasm of breast of unspecified site, malignant neoplasm of colon unspecified, Malignant neoplasm of stomach unspecified and malignant neoplasm of pancreas unspecified. We could also find all of these five reasons are unspecified and we need to pay attention to the difficulty of diagnosis neoplasm type.

```
In [41]:
```

```
#a pie chart of the deaths proportion
Italy_Neoplasm_1 = Italy_Neoplasm[0:5]
Others_list = {'Deaths1':[1277378],'Proportion':[0.568061]} #summarize other r
eason of deaths other than top 5 reason
Others = pd.DataFrame(Others_list,index=['Others'])
Italy_Neoplasm_Pie = pd.concat([Italy_Neoplasm_1,Others],sort = True) #Cobine
other reason of deaths other than top 5 reason
plot = Italy_Neoplasm_Pie.plot.pie(y='Deaths1', figsize=(8, 8),autopct='%1.1f%
%',title = 'deaths proportion in Italy')
```


Assignment_B_4

The top 5 age group in Australia dying with neoplasms cause of death could be identified by summarizing the death number in Australia of each age group. We could find except age group from 85 to 89, the number of deaths with neoplasms increases with age growth.

In [42]:

```
#the top five age groups in Australia dying with a Neoplasms cause of death in
2010
Australia death 2010 = data4.loc[data4['Country'] == 5020]
list B4 = Australia death 2010. Cause. isin(list Neoplasm) #identify the people
death because of Neoplasm
Australia death 2010 1 = Australia death 2010.copy()
Australia death 2010 1['JUDGE'] = list B4
Australia death 2010 2 = Australia death 2010 1.loc[Australia death 2010 1['JU
DGE'] == 1].sum()[10:35]#only keep the summarization result about number of de
Australia death 2010 3 = pd.DataFrame(Australia death 2010 2,columns = ['Death
Neoplasms'])
Australia death 2010 3['Death All Cause'] = Australia death 2010 1.sum()[10:35
Australia death 2010 3['Proportion (%)'] = Australia death 2010 3.Death Neopla
sms*100 /Australia death 2010 3.Death All Cause
Australia death 2010 sort1 = Australia death 2010 3.sort values(by='Death Neop
lasms', ascending=False).head(5)
Australia death 2010 sort1
```

Out[42]:

	Death_Neoplasms	Death_All_Cause	Proportion (%)
Deaths22	7167	48548	14.7627
Deaths21	6291	32744	19.2127
Deaths20	5713	24754	23.0791
Deaths23	5520	53574	10.3035
Deaths19	4768	18718	25.4728

But when we focus on the proportion of dying with neoplasms cause of death in all the deaths people in each age group, we have a different finding. The top5 percentage is people from 60 to 64, and the proportion is 26%. This result is mean that 26% of people die in there 60 to 64 is because of neoplasms. And the top5 group is from 50 to 75, and this group could be identified as a high incidence of neoplasms in Australia. So it is clear that there have differences by age group for deaths from Neoplasms in Australia for 2010.

In [43]:

#the proportion of dying with neoplasms cause of death in all the deaths peopl
e
Australia_death_2010_sort2 = Australia_death_2010_3.sort_values(by='Proportion
(%)', ascending=False).head(5)
Australia_death_2010_sort2

Out[43]:

	Death_Neoplasms	Death_All_Cause	Proportion (%)
Deaths18	3938	15160	25.9763
Deaths19	4768	18718	25.4728
Deaths17	2695	10920	24.6795
Deaths20	5713	24754	23.0791
Deaths16	1756	8156	21.5302

Assignment_B_5

To compare and contrast the frequency of deaths by Neoplasms in Italy and Australia in 2010, we could summarize the deaths and population information in 2 different logic. First, we can combine information from different type of Neoplasms. Based on this logic, we could compare the majority type of Neoplasms in these two countries. From 'Neo/Death%', we could calculate the proportion of deaths from each type of Neoplasms to the total deaths of Neoplasms. We could find the most frequency Neoplasms in both countries is C349, which means 'Malignant neoplasm of unspecified part of bronchus or lung'. But the frequency of C61, Malignant neoplasm of prostate, in Australia is much higher than Italy. From 'Neo/pop%', we could calculate the proportion of deaths from Neoplasms to the total population. The order of this variable is similar to 'Neo/Death%'.

```
#The frequency of deaths by Neoplasms in Italy and Australia by different neop
data4_Aus = data4_3.loc[data4_3['Country'] == 5020]
list Aus 1 = data4 Aus['Cause'].tolist() #identify all the cause
list Aus 2 = data4 Aus.Cause.isin(list Neoplasm)
data4 Aus 1 = data4 Aus.copy()
data4 Aus 1['JUDGE'] = list Aus 2 #identify the cause belong to Neoplasm ICD10
-category
data4 Aus 2 = data4 Aus 1.loc[data4 Aus 1['JUDGE'] == 1]
Neoplasm Cause Aus = data4 Aus 2.groupby(['Cause']).sum()
Neoplasm Cause Aus 1 = Neoplasm Cause Aus.sort values(by='Deaths1', ascending=
False)
Aus Neoplasm = pd.DataFrame(Neoplasm Cause Aus 1['Deaths1'])
Aus Neoplasm['Proportion (%)'] = round(Neoplasm Cause Aus 1['Deaths1'] *100/ N
eoplasm Cause Aus 1['Deaths1'].sum(),1) #calculate the proportion of overall d
eaths
Aus Neoplasm 1 = Aus Neoplasm.reset index()
Aus Neoplasm 1['Population%'] = round (Aus Neoplasm 1.Deaths1*100/data6.loc[da
ta6['Country'] == 5020].Pop1.sum(),2)
Italy Neoplasm 1 = Italy Neoplasm.reset index()
Italy Neoplasm 1['Population%'] = round (Italy Neoplasm 1.Deaths1*100/data6.lo
c[data6['Country'] == 4180].Pop1.sum(),2)
merge Neoplasm = Aus Neoplasm 1.merge(Italy Neoplasm 1, on = 'Cause', how = 'ou
ter')
merge Neoplasm.columns = ['Cause', 'Deaths Aus', 'Neo/Death Aus%', 'Neo/pop Aus%'
,'Deahts Ita','Neo/Death Ita%','Neo/pop Ita%']
merge Neoplasm.sort values(by='Neo/Death Aus%', ascending=False).head(10)
#Pro Aus deaths% = number of people death from each type of Neoplasms / total
number of people death from Neoplasms
#Pro Aus pop%= number of people death from each type of Neoplasms / total popu
lation
```

Out[44]:

	Cause	Deaths_Aus	Neo/Death_Aus%	Neo/pop_Aus%	Deahts_Ita	Neo/Death
0	C349	122554.0	17.8	0.55	426451	19.0
1	C61	49963.0	7.3	0.22	95906	4.3
2	C509	46064.0	6.7	0.21	155895	6.9
3	C259	34643.0	5.0	0.16	120070	5.3
4	C189	33282.0	4.8	0.15	143188	6.4
5	C80	23427.0	3.4	0.11	33186	1.5
6	C439	19987.0	2.9	0.09	17279	0.8
7	C159	18809.0	2.7	0.08	22888	1.0
8	C169	17640.0	2.6	0.08	125679	5.6
10	C719	15514.0	2.3	0.07	18906	0.8

Second, we can combine information from different age group. Based on this logic, we could compare the mortality from Neoplasms in each age group.

In [45]:

```
#The frequency of deaths by Neoplasms in Italy and Australia by age group
Italy_death_2010 = data4.loc[data4['Country'] == 4180]
list B5 = Italy death 2010. Cause. isin(list Neoplasm) #identify the people deat
h because of Neoplasm
Italy_death_2010_1 = Italy_death_2010.copy()
Italy death 2010 1['JUDGE'] = list B5
Italy death 2010 2 = Italy death 2010 1.loc[Italy death 2010 1['JUDGE'] == 1].
sum()[10:35]#only keep the summarization result about number of death
Italy_death_2010_3 = pd.DataFrame(Italy_death_2010_2,columns = ['Death_Neoplas
ms'])
Italy death 2010 3['Death All Cause'] = Italy death 2010 1.sum()[10:35]
Italy_death_2010_3['Proportion (%)'] = Italy_death_2010_3.Death_Neoplasms*100
/Italy death 2010 3.Death All Cause
list_age_group = ['0','1','2','3','4','5-9','10-14','15-19','20-24','25-29','3
0-34','35-39','40-44','45-49','50-54','55-59','60-64','65-69','70-74','75-79',
'80-84','85-89','90-94','95+','unspecified']
Italy_death_2010_3.index = list_age_group
Italy_death_2010_4 = Italy_death_2010_3.reset_index()
Australia_death_2010_3.index = list_age_group
Australia death 2010 4 = Australia death 2010 3.reset index()
Pop_Agegroup_Italy = pd.DataFrame(data6.loc[data6['Country'] == 4180].sum()[7:
32],columns = ['Pop_Italy'])
Pop Agegroup Italy.index = list age group
Pop_Agegroup_Italy_1 = Pop_Agegroup_Italy.reset_index()
Pop_Agegroup_Aus = pd.DataFrame(data6.loc[data6['Country'] == 5020].sum()[7:32
],columns = ['Pop Aus'])
Pop_Agegroup_Aus.index = list_age_group
Pop_Agegroup_Aus_1 = Pop_Agegroup_Aus.reset_index()
merge_Italy = pd.merge(Italy_death_2010_4,Pop_Agegroup_Italy_1, on = 'index')[
0:24]
merge_Italy['Popo_Pro_Italy%'] = merge_Italy.Death_Neoplasms*100 / merge_Italy
.Pop Italy
merge_Italy['Popo_Pro_Italy%'] = merge_Italy['Popo_Pro_Italy%'].astype(float)
merge_Italy['Popo_Pro_Italy%'] = round (merge_Italy['Popo_Pro_Italy%'],4)
merge Aus = pd.merge(Australia death 2010 4, Pop Agegroup Aus 1, on = 'index')[
0:24]
merge_Aus['Popo_Pro_Aus%'] = merge_Aus.Death_Neoplasms*100 / merge_Aus.Pop_Aus
merge_Aus['Popo_Pro_Aus%'] = merge_Aus['Popo_Pro_Aus%'].astype(float)
merge_Aus['Popo_Pro_Aus%'] = round (merge_Aus['Popo_Pro_Aus%'],4)
merge_Age_group = pd.merge(merge_Italy,merge_Aus, on = 'index')
merge_Age_group.columns = ['age_group','Neoplasms_Ita','death_Ita','Neo/Death_
Ita%','Pop_Ita','Neo/pop_Ita%','Neoplasms_Aus','death_Aus','Neo/Death_Aus%','P
op_Aus','Neo/pop_Aus%']
merge_Age_group_sort1 = merge_Age_group.sort_values(by='Neo/Death_Ita%', ascen
ding=False).head(10)
merge_Age_group_sort1
#Pro Death Ita% = number of people death from Neoplasms in this age group / to
tal number of people death in this age group
#Pro_pop_Ita% = number of people death from Neoplasms in this age group / tota
1 number of population in this age group
```

Out[45]:

	age_group	Neoplasms_Ita	death_Ita	Neo/Death_Ita%	Pop_Ita	Neo/pop_Ita
16	60-64	14049	51232	27.4223	3757507.0	0.3739
15	55-59	8553	31796	26.8996	3716030.0	0.2302
17	65-69	17890	67594	26.4668	3107714.0	0.5757
14	50-54	5685	22282	25.5139	4095185.0	0.1388
18	70-74	25258	107624	23.4687	3068744.0	0.8231
13	45-49	3437	15886	21.6354	4717717.0	0.0729
5	5-9	90	456	19.7368	2838221.0	0.0032
12	40-44	1925	10182	18.9059	4949158.0	0.0389
19	75-79	29884	158356	18.8714	2531923.0	1.1803
6	10-14	97	584	16.6096	2811810.0	0.0034

From the variable 'Neo/Death%', we could find Neoplasms is a majority cause of death at 5 to 9 and 60 to 64 years old in these two countries. Compare with Italy, Australia has better control of Neoplasms before 75 years old.

```
#histogram about Death Proportion from neoplasms to all the death people by ag
e group in Italy and Australia based on the above table
age group list = merge Age group.age group
Pro Death Ita list = merge Age group['Neo/Death Ita%']
Pro Death Aus list = merge Age group['Neo/Death Aus%']
x = list(range(len(age group list)))
total width, n = 1, 4
width = total width / n
fig = plt.figure(figsize = (15, 10))
plt.bar(x, Pro Death Ita list, width=width, label='Italy Death Proportion from
neoplasms to all the death people', fc = 'b')
for i in range(len(x)):
    x[i] = x[i] + width #identify the position of second bar
plt.bar(x, Pro Death Aus list, width=width, label='Australia Death Proportion
from neoplasms to all the death people', tick label = age group list, fc = 'r')
plt.title('Death Proportion from neoplasms to all the death people by age grou
p in Italy and Australia')
plt.xlabel("age group")
plt.ylabel("Death Proportion from neoplasms to all the death people (%)")
plt.legend()
plt.show()
```


From the variable 'Neo/pop%', we could find the proportion of people deaths from Neoplasms to each age group's population continuous increase. The older the person, the more risk of Neoplasms should be prevented.

```
#histogram about proportion of dying from neoplasms to the population by age g
roup in Italy and Australia based on the above table
age group list = merge Age group.age group
Pro_pop_Ita_list = merge_Age_group['Neo/pop_Ita%']
Pro pop Aus list = merge Age group['Neo/pop Aus%'] #value of each bars
x = list(range(len(age_group list)))
total width, n = 1, 4
width = total width / n
fig = plt.figure(figsize = (15, 10))
plt.bar(x, Pro_pop_Ita_list, width=width, label='Italy proportion of dying fro
m neoplasms to the population', fc = 'b')
for i in range(len(x)):
    x[i] = x[i] + width #identify the position of second bar
plt.bar(x, Pro pop Aus list, width=width, label='Australia proportion of dying
from neoplasms to the population', tick label = age group list, fc = 'r')
plt.title('proportion of dying from neoplasms to the population by age group i
n Italy and Australia')
plt.xlabel("age group")
plt.ylabel("Death Proportion from neoplasms to the population(%)")
plt.legend()
plt.show()
```


REFERENCES

Is Metformin the World's Next Wonder Drug? Can It Block Cancer Cell Growth? (2017, June 8). Retrieved January 20, 2019. Available at: http://trendintech.com/2017/06/07/is-metformin-the-worlds-next-wonder-drug/) [Accessed 21, January 2019].

Wingo, P.A. et al., 2003. Long-term trends in cancer mortality in the United States, 1930–1998. Cancer, 97(S12), pp.3133–3275.