

Eksamen MA2301 10. desember 2010

Løsningsforslag

Norges teknisk—naturvitenskapelige universitet Institutt for matematiske fag

- a) Både $(aaa^* + bbb^*)^*$ og $(aa + aaa + bb + bbb)^*$ er regulære uttrykk som har L som språk.
 - b) i) Alle ord i det deriverte språket L_a begynner med minst en a, altså $\{a\}\{a\}^*L$. $L_a = \{a\}L \cup \{aa\}L$. Vi har $L_{aa} = L \cup \{a\}L$ og $L_{ab} = \emptyset$.
 - ii) Dersom aaax har en isolert bokstav må denne forekomme inne i x, og derfor vil aax ha en isolert bokstav. Det omvendte holder også, derfor er $L_{aaa} = L_{aa}$.
 - c) Bruker vi de deriverte språkene som tilstander får vi den minimale automaten.

- a) i) Derivasjonene $S \mapsto \Lambda$, $S \mapsto a$, og $S \mapsto b$ viser at $\{\Lambda, a, b\} \subseteq L(G)$. Dersom $S \Rightarrow_G^* x$, har vi en derivasjon $S \to aSa \Rightarrow_G^* axa$ som viser at også $axa \in L(G)$. På samme måte vises at $x \in L(G) \Rightarrow bxb \in L(G)$. Altså er $L \subseteq L(G)$ i følge det strukturelle induksjonsprinsippet.
 - ii) La $L_n(G)$ være mengden av ord i språket L(G) med derivasjon av lengde n, og la P(n) være utsagnet $L_n(G) \subseteq L$. Vi antar at P(k) er sann for alle k < n. Dersom vi under denne antagelsen kan vise at P(n) holder følger det fra induksjonsprinsippet at P(n) holder for alle n og følgelig $L(G) \subseteq L$, fordi $L(G) = \bigcup_{n \in \mathbb{N}} L_n(G)$. La $S \Rightarrow_G^* x$ være en derivasjon av lengde n. Siden $\{\Lambda, a, b\} \subseteq L$ kan vi anta
 - La $S \Rightarrow_G x$ være en derivasjon av lengde n. Siden $\{\Lambda, a, b\} \subseteq L$ kan vi anta at derivasjonen starter med $S \to aSa$ eller $S \to bSb$. Induksjonshypotesen viser da at x = aya eller x = byb for en $y \in L$. Invarians viser at $x \in L$.
 - b) i) Det er kun en 0-variabel, nemlig S. Vi finner gramatikken G_1 ved å sløyfe produksjonen $S\mapsto \Lambda$ og føye til produksjonene $S\mapsto aa$ og $S\mapsto bb$. Gramatikken G_1 er altså gitt ved

$$S \rightarrow a \mid b \mid aa \mid bb \mid aSa \mid bSb.$$

ii) En gramatikk på Chomskys normalform ${\cal G}_2$ er gitt ved produksjonene

$$\begin{split} S &\rightarrow \ a \mid b \mid AA \mid BB \mid AX \mid AY, \\ X &\rightarrow \ SA, \\ Y &\rightarrow \ SB, \\ A &\rightarrow \ a, \\ B &\rightarrow \ b. \end{split}$$

3 a) Her er grafen til N_1 .

b) Her er N_2 og den samensatte maskinen I_c .

Alle piler som mangler er av typen (x/x, S) og fører til tilstanden h_r .

4 a) Tabell.

n	0	1	2	3	4	5	 n
f_0	0	0	0	0	0	0	 0
f_1	1	2	3	4	5	6	 n+1
f_2	2	3	4	15	6	7	 n+2
f_3	3	5	7	9	11	13	 2n + 3
f_4	5	13	29	61	125	253	

b) Vi gjetter på $f_4(n) = 2^{n+3} - 3$. Dette blir vår induksjonshypotese.

Vi ser at det stemmer for n=0. Funksjonen f_4 er definert ved rekursjon og vi har $f_4(n+1)=h(n,f_4(n))=f_3(f_4(n))$. Induksjonshypotesen gir oss da $f_4(n+1)=2(f_4(n))+3=2(2^{n+3}-3)+3=2^{(n+1)+3}-3$.

- [5] (i) Det vil si at det finnes en Turingberegnbar (rekursiv) totalfunksjon $f: \Sigma^* \to \Sigma^*$, med egenskapen at en streng x er med i språket L hvis og bare hvis f(x) er med i M. Med andre ord $L = f^{-1}(M)$
 - (ii) Da kan vi si at språket L er Turingavgjørbart. En Turingmaskin som avgjør L kan vi få ved å sette sammen den som beregner funksjonen f med en som avgjør M.
- 6 (i) Vi sier at $\operatorname{Step}_T(x) = n$ dersom $q_0, \underline{\Delta}x \vdash_T^{(n)} h_\tau, v\underline{\sigma}w$. Tidskompleksitetsfunksjonen til T er da

$$\tau_T(n) = \max\{\operatorname{Step}_T(x) \mid l(x) \le n\}$$

Vi sier at T er en polynom tid Turingmaskin dersom det finnes et polynom P slik at $\tau_T(n) \leq P(n)$ for alle $n \in \mathbb{N}$.

- (ii) Det betyr at L kan reduseres til M ved hjelp av en funksjon f, og at funksjonen f kan beregnes av en polynom tid Turingmaskin.
- (iii) Dersom $L \leq_P M$ ved hjelp av funksjonen f som beregnes av maskinen T_1 , $M \leq_P N$ ved hjelp av funksjonen g beregnet av T_2 , og tidskompleksitetsfunksjonene τ_{T_1} og τ_{T_2} er dominerte av henholdsvis polynomene P_1 og P_2 , så vil på en innstreng x av lengde $l(x) \leq n$, T_1 produsere en utstreng som er begrenset av $P_1(n)$. Følgelig vil T_2 med denne innstrengen ikke bruke mer enn $P_2(P_1(n))$ skritt. Dette betyr at den sammensatte maskinen $T_1 \circ T_2$ har en tidskompleksitetsfunksjon som er dominert av $P_1 + P_2 \circ P_1$ og dette er et polynom av grad $\deg(P_1) \deg(P_2)$. Funksjonen $g \circ f$ kan beregnes av den sammensatte maskinen $T_1 \circ T_2$, og siden $(g \circ f)^{-1}(N) = f^{-1} \circ g^{-1}(N) = f^{-1}(g^{-1}(N)) = f^{-1}(M) = L$, er reduserbarhet i polynom tid er en transitiv relasjon.