Affine Deodhar Diagrams and Rational Dyck Paths

Thomas C. Martinez

University of California, Los Angeles

(k, n)-Deodhar Diagrams

A (k, n)-Deodhar diagram (shortened to **Deogram**) is a filling of boxes of a $k \times (n - k)$ rectangle with crossings, \mathbb{H} , and elbows, \mathbb{N} , with

- 1. Strand permutation equal to identity,
- 2. Exactly n-1 elbows,
- 3. No elbows after an odd number of crossings.

Figure 1. The left is an example of a (3,8)-Deogram. The filling on the right has too many elbows and violates condition 3 at the highlighted square.

Let $Deo_{k,n}$ denote the set of (k, n)-Deograms.

Motivating Question

Theorem ([GL24]) $\# \operatorname{Deo}_{k,n} = \# \operatorname{Dyck}_{k,n}$ for 0 < k < n with $\gcd(k,n)=1$.

Question: Can we find a bijection?

Main Result

Theorem (M., in preparation) For 0 < k < n with gcd(k, n) = 1, we find a bijection

$$\mathrm{Deo}_{k,n} \to \mathrm{Dyck}_{k,n}$$
.

Bounded Affine Permutations

Let $\mathbf{B}_{k,n}$ denote the set of (k,n)-bounded affine permutations.

An f-affine Deogram is a filling of the space between a path P with k up-steps and n-k right steps and its translate by k up-steps with:

- 1. Strand permutation equal to f,
- 2. Exactly n (# cycles of f) elbows (inside a red region),
- 3. No elbows after an odd number of crossings.

We let $\mathrm{AffDeo}_{f,P}$ denote the set of f-affine Deograms under P.

Our Moves on Affine Deograms

Box Addition/Removal. We change our path and move the box up/down.

Zipper. We cross wires below and locally apply Yang-Baxter moves until the crossing moves to the top of the path.

Decoupling and its Visualization

Let $f = f_1 f_2 \dots f_r$ be a decomposition of $f \in \mathbf{B}_{k,n}$ into cycles. Then,

$$\# \operatorname{AffDeo}_{f,P} = \prod_{i=1}^{r} \# \operatorname{AffDeo}_{f_i,P_i}.$$

Full Recurrence Example

References

[GL24] Pavel Galashin and Thomas Lam. Positroid catalan numbers. Communications of the American Mathematical Society, 4(08):357–386, 2024.