

Objectives and Goals

Objective: Build a regression model to predict the win shares contributed by a player based on past performance data

Goal: Learn what aspects of performance are most impactful towards obtaining win shares (and by extrapolation, winning basketball games)

Background: Dean Oliver Hypothesis

1. In 2002, Dean Oliver identified what he considered the most important factors in predicting a basketball team's success:

Shooting (40%) → positive

Turnovers (25%) \rightarrow negative

Rebounding (20%) \rightarrow positive

Free Throws (15%) → positive

2. His model would predict the number of wins a team might get

Background: Win Shares

- My model: Player-to-player basis instead of team-basis
- Win share (definition): an estimate of the number of wins contributed by a player
- Total Win Shares = (Offensive Win Shares) + (Defensive win Shares)

Offensive Win Shares equation:

(marginal offense) / (marginal points per win)

Defensive Win Shares equation:

(marginal **defense**) / (marginal points per **win**)

Tools and Data

Data:

- 1. NBA data: Obtained data through selenium on the height and weight for each player
- 2. <u>Basketball Reference</u>: Obtained data for various player stats through pandas scraping methods

Tools:

- 1. Selenium for primary webscraping
- 2. Pandas for data manipulation and web-scraping
- 3. Matplotlib and Seaborn for plotting data
- 4. Sklearn and Statsmodels.api for regression operations
- 5. Unidecode to deal with odd characters in strings

First Regression attempt: OLS

```
: features = ["TOV", "ORB", "DRB", "AST", "STL", "BLK", "FT_perc", "eFG", "Height", "Weight", "MP_pergame"]
X = nba_data[features]
X = sm.add_constant(X)

y = nba_data["WS"]

lm = sm.OLS(y, X)

lm=lm.fit()

lm.summary()
```

	coef	std err	t	P> t	
const	-17.4714	2.977	-5.868	0.000	-2
TOV	-0.1090	0.026	-4.186	0.000	
ORB	0.2090	0.036	5.834	0.000	
DRB	0.0356	0.020	1.787	0.075	
AST	0.1032	0.012	8.331	0.000	
STL	0.2611	0.152	1.713	0.088	
BLK	-0.0676	0.060	-1.118	0.264	
FT_perc	5.1075	0.964	5.296	0.000	
eFG	19.2556	1.474	13.063	0.000	•
Height	-0.0065	0.040	-0.161	0.872	
Weight	0.0079	0.005	1.720	0.086	
MP_pergame	0.1191	0.013	8.952	0.000	

```
split_and_validate(X,y)

Validation R^2 score was: 0.6219039706625178
Feature coefficient results:

const : 0.00
TOV : -0.11
ORB : 0.23
DRB : 0.06
AST : 0.10
STL : 0.27
BLK : -0.14
FT_perc : 5.64
eFG : 17.85
Height : -0.02
Weight : 0.01
MP_pergame : 0.12
```

R-squared: 0.731

Adj. R-squared: 0.722

Second Regression attempt: OLS part 2

```
features = ["TOV", "ORB", "DRB", "AST", "FT_perc", "eFG", "MP_pergame"]
X = nba_data[features]
X = sm.add_constant(X)

y = nba_data["WS"]

lm = sm.OLS(y, X)

lm=lm.fit()

lm.summary()
```

coef	std err	t	P> t	
-16.2722	1.073	-15.159	0.000	-
-0.1020	0.026	-3.949	0.000	
0.2170	0.033	6.567	0.000	
0.0404	0.017	2.387	0.018	
0.1056	0.011	9.348	0.000	
5.3483	0.959	5.576	0.000	
18.9049	1.454	13.001	0.000	1
0.1207	0.013	9.194	0.000	
	-16.2722 -0.1020 0.2170 0.0404 0.1056 5.3483 18.9049	-16.2722 1.073 -0.1020 0.026 0.2170 0.033 0.0404 0.017 0.1056 0.011 5.3483 0.959 18.9049 1.454	-16.2722 1.073 -15.159 -0.1020 0.026 -3.949 0.2170 0.033 6.567 0.0404 0.017 2.387 0.1056 0.011 9.348 5.3483 0.959 5.576 18.9049 1.454 13.001	-16.2722 1.073 -15.159 0.000 -0.1020 0.026 -3.949 0.000 0.2170 0.033 6.567 0.000 0.0404 0.017 2.387 0.018 0.1056 0.011 9.348 0.000 5.3483 0.959 5.576 0.000 18.9049 1.454 13.001 0.000

Validation R^2 score was: 0.6624951493184974
Feature coefficient results:

const : 0.00 TOV : -0.11 ORB : 0.22 DRB : 0.06 AST : 0.10 FT_perc : 6.02 eFG : 17.23 MP pergame : 0.12 R-squared: 0.725
Adj. R-squared: 0.719

Regression attempt 2.5: Feature Engineering

```
pd.get_dummies(nba_data['Pos']).head()

C PF PG SF SG

0 0 1 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

4 1 0 0 0 0

6 0 0 0 1
```

```
X2 = X.copy()
X2['Pos'] = nba_data['Pos']
split and validate(pd.get dummies(X2, drop first=True), y)
Validation R^2 score was: 0.6249014975812022
Feature coefficient results:
TOV : -0.11
ORB : 0.25
DRB : 0.04
AST : 0.12
FT perc : 6.57
eFG: 17.64
MP pergame : 0.11
Pos PF : 0.43
Pos PG : -0.34
Pos SF : 0.75
Pos SG : -0.11
```

Third Regression attempt: LassoCV


```
: list(zip(selected_columns, lasso_model.coef_))

: [('TOV', -0.0),
    ('ORB', 0.0),
    ('DRB', 0.0),
    ('AST', 0.0),
    ('FT_perc', 0.0),
    ('eFG', 0.13342401856902697),
    ('MP_pergame', 0.11592546602047331)]
```

```
: 1-r2_score((m*x) + b,x)
: 0.8774069303427643
```


Fourth Regression attempt: Polynomial

1-r2_score(poly(t),t)

0.9266067974093367

Conclusions + Future Work:

```
: list(zip(selected_columns, lasso_model.coef_))

: [('TOV', -0.0),
    ('ORB', 0.0),
    ('DRB', 0.0),
    ('AST', 0.0),
    ('FT_perc', 0.0),
    ('eFG', 0.13342401856902697),
    ('MP_pergame', 0.11592546602047331)]
```

Conclusions:

- According to the LassoCV model, Effective Field Goal % has the highest regression coefficient (Thus it is the the best predictor of win shares)
- 2. The next highest coefficient is minutes
- 3. Rest of features were zeroed out by LassoCV

Interpretation: "Offense is more important than defense"

Future work:

1. Mirroring the weights given by Dean Oliver in my feature engineering and applying it to the appropriate data

Afterthought:

Did a 5-fold cross validation between regression attempts 2.5 and 3 to make sure my model generalized well

