What we claim is:

1. A compound of the Formula:

$$\mathbb{R}^{A} \longrightarrow \mathbb{R}^{2}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{2}$$

$$\mathbb{R}^{0}$$

or a pharmaceutically acceptable salt thereof, wherein;

B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a nitrogen with a removable hydrogen or a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R³², a nitrogen with a removable hydrogen or a carbon at the other position adjacent to the point of attachment is optionally substituted by R³⁶, a nitrogen with a removable hydrogen or a carbon adjacent to R³² and two atoms from the point of attachment is optionally substituted by R³³, a nitrogen with a removable hydrogen or a carbon adjacent to R³⁶ and two atoms from the point of attachment is optionally substituted by R³⁵, and a nitrogen with a removable hydrogen or a carbon adjacent to both R³⁵ is optionally substituted by R³⁵.

$$R^{9}, R^{10}, R^{11}, R^{12}, R^{13}, R^{32}, R^{33}, R^{34}, R^{35}, \text{ and } R^{36}$$
 are

independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkylenedioxy, haloalkylthio, alkanoyloxy, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy,heterocyclyloxy, heterocyclylalkoxy, alkoxyalkyl, haloalkoxylalkyl, hydroxy, amino, alkoxyamino, nitro, alkylamino, N-alkyl-N-arylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclylamino, heterocyclylalkylamino, alkylthio, alkylthioalkyl, alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl,

10

15

20

25

heteroarylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, alkylsulfonylalkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkylsulfonamido, amidosulfonyl, alkanoyl, haloalkanoyl, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyhaloalkyl, hydroxyalkyl, aminoalkyl, haloalkoxyalkyl, carboxyalkyl, carboxyalkyl, carboxy, carboxy, carboxamido, carboxamidoalkyl, and cyano;

 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently optionally Q^b ;

B is optionally selected from the group consisting of hydrido, trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B may be optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

B is optionally a C3-C12 cycloalkyl or a C4-C9 heterocyclyl, wherein each ring carbon may be optionally substituted with R^{33} , a ring carbon other than the ring carbon at the point of attachment of B to A may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and nitrogens adjacent to the carbon at the point of attachment may be optionally substituted with R^9 or R^{13} , a ring carbon or nitrogen adjacent to the R^9 position and two atoms from the point of attachment may be substituted with R^{10} , a ring carbon or nitrogen adjacent to the R^{13} position and two atoms from the point of attachment may be substituted with R^{12} , a ring carbon three atoms from the point of attachment and adjacent to the R^{10} position may be substituted with R^{11} , a ring carbon three atoms from the point of attachment and adjacent to the R^{10} position may be substituted with R^{11} , a ring carbon three atoms from the point of attachment and adjacent to the R^{12} position may be substituted with R^{13} , and a ring carbon four atoms from the point of

attachment and adjacent to the R^{11} and R^{33} positions may be substituted with R^{34} ;

A is selected from the group consisting of a bond, $(W^7)_{TT}$ $(CH(R^{15}))_{pa}$, and $(CH(R^{15}))_{pa}$ - $(W^7)_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 6, and W^7 is selected from the group consisting of O, S, C(O), $(R^7)NC(O)$, $(R^7)NC(S)$, and $N(R^7)$, with the proviso that no more 5 than one of the group consisting of rr and pa is 0 at the same time;

 R^{7} is selected from the group consisting of hydrido, hydroxy, and

 R^{15} is selected from the group consisting of hydrido, hydroxy, halo, alkyl; 10 alkyl, and haloalkyl;

Ψ is NH or NOH;

M is N or R^1 -C;

R¹ is selected from the group consisting of hydrido, alkyl, alkenyl, cyano, halo, haloalkyl, haloalkoxy, haloalkylthio, amino, aminoalkyl, alkylamino, anidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, 15 and alkylthio;

 R^2 is Z^0 -O:

 Z^0 is selected from the group consisting of a bond,

 W^0 -(CH(R⁴²))_p wherein p is an integer selected from 0 through 3 and W^0 is selected from the group consisting of O, S, C(O), S(O), $N(R^{41})$, and $ON(R^{41})$, 20 $(CH(R^{41}))_g$ -O wherein g is an integer selected from 1 through 3, and $(CH(R^{41}))_g$ -S wherein g is an integer selected from 1 through 3, with the proviso that Z⁰ is directly bonded to the pyrimidinone ring;

20

25

 Z^0 is optionally W^{22} -(CH(R⁴²))_h wherein h is 0 or 1 and W^{22} is selected from the group consisting of CR⁴¹=CR⁴², 1,2-cyclopropyl,

- 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl,
- 2,3-morpholinyl, 2,4-morpholinyl, 2,6-morpholinyl, 3,4-morpholinyl,
- 5 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 2,3-piperazinyl,
 - 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl,
 - 2,6-piperidinyl, 3,4-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl,
 - 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl,
 - 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5-tetrahydrofuranyl, and
- 3,4-tetrahydrofuranyl, wherein Z^0 is directly bonded to the pyrimidinone ring and W^{22} is optionally substituted with one or more substituents selected from the group consisting of R^9 , R^{10} , R^{11} , R^{12} , and R^{13} ;

R⁴¹ and R⁴² are independently selected from the group consisting of amidino, hydroxyamino, hydrido, hydroxy, amino, and alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a nitrogen with a removable hydrogen or a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to z^0 is optionally substituted by R^9 , a nitrogen with a removable hydrogen or a carbon at the other position adjacent to the point of attachment is optionally substituted by R^{13} , a nitrogen with a removable hydrogen or a carbon adjacent to R^9 and two atoms from the point of attachment is optionally substituted by R^{10} , a nitrogen with a removable hydrogen or a carbon adjacent to R^{13} and two atoms from the point of attachment is optionally substituted by R^{12} , and a nitrogen with a removable hydrogen or a carbon adjacent to both R^{12} and a nitrogen with a removable hydrogen or a carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} , with the proviso that Q is other than phenyl when Z^0 is a bond;

Q is optionally hydrido with the proviso that Z^0 is other than a bond;

10

20

K is $(CR^{4a}R^{4b})_n$ wherein n is 1 or 2;

R^{4a} and R^{4b} are independently selected from the group consisting of halo, hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl;

 E^0 is E^1 , when K is $(CR^{4a}R^{4b})_n$, wherein E^1 is selected from the group consisting of a bond, C(O), C(S), $C(O)N(R^7)$, $(R^7)NC(O)$, $S(O)_2$, $(R^7)NS(O)_2$, and $S(O)_2N(R^7)$;

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three contiguous atoms from the point of attachment of Q^S to the phenyl or heteroaryl ring is substituted by Q^D , a carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a carbon adjacent to Q^D is optionally substituted by R^{16} , and another carbon adjacent to Q^D is optionally substituted by R^{16} , and another carbon adjacent to Q^D is optionally substituted by R^{19} ;

15 R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, nitro, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, alkenyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, haloalkoxyalkyl, carboalkoxy, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of NR 20 R 21 , N(R 26)C(NR 25)N(R 23)(R 24), and C(NR 25)NR 23 R 24 , with the proviso that R 16 , R 19 , and Q b are not simultaneously hydrido;

10

20

 Q^b is selected from the group consisting of $NR^{20}R^{21}$, aminoalkyl, hydrido, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R^{20} and R^{21} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time and with the further proviso that no more than one of R^{23} and R^{24} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;

R²⁰, R²¹, R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, hydroxy, aminoalkyl, amino, dialkylamino, alkylamino, and hydroxyalkyl;

 Q^{s} is selected from the group consisting of a bond, $(CR^{37}R^{38})_{b}$ wherein b is an integer selected from 1 through 4, and $(CH(R^{14}))_{c}$ - W^{1} - $(CH(R^{15}))_{d}$ wherein c and d are integers independently selected from 1 through 3 and W^{1} is selected from the group consisting of $C(O)N(R^{14})$, $(R^{14})NC(O)$, S(O), S(O)

R 14 is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

R³⁷ and R³⁸ are independently selected from the group consisting of hydrido, alkyl, and haloalkyl;

 R^{38} is optionally aroyl or heteroaroyl, wherein R^{38} is optionally substituted with one or more substituents selected from the group consisting of R^{16} , R^{17} , R^{18} , and R^{19} ;

 Y^{0} is optionally Y^{AT} wherein Y^{AT} is $Q^{b}-Q^{s}$; Y^0 is optionally $Q^b - Q^{ss}$ wherein Q^{ss} is $(CH(R^{14}))_e - W^2 - (CH(R^{15}))_h$. wherein e and h are independently 1 or 2 and W^2 is $CR^{4a} = CR^{4b}$ with the proviso that $(CH(R^{14}))_e$ is bonded to E^0 ; Y⁰ is optionally Q^b-Q^{ssss} or Q^b-Q^{ssssr} wherein Q^{ssss} is 5 $(CH(R^{38}))_r$ -W⁵ and Q^{ssssr} is $(CH(R^{38}))_r$ -W⁶, r is an integer selected from 1 through 2, W⁵ and W⁶ are independently selected from the group consisting of 1,4-indenyl, 1,5-indenyl, 1,6-indenyl, 1,7-indenyl, 2,7-indenyl, 2,6indenyl, 2,5-indenyl, 2,4-indenyl, 3,4-indenyl, 3,5-indenyl, 3,6-indenyl, 3,7indenyl, 2,4-benzofuranyl, 2,5-benzofuranyl, 2,6-benzofuranyl, 2,7-10 benzofuranyl, 3,4-benzofuranyl, 3,5-benzofuranyl, 3,6-benzofuranyl, 3,7benzofuranyl, 2,4-benzothiophenyl, 2,5-benzothiophenyl, 2,6-benzothiophenyl, 2,7-benzothiophenyl, 3,4-benzothiophenyl, 3,5-benzothiophenyl, 3,6benzothiophenyl, 3,7-benzothiophenyl, 2,7-imidazo(1,2-a)pyridinyl, 3,4-15 imidazo(1,2-a)pyridinyl, 3,5-imidazo(1,2-a)pyridinyl, 3,6-imidazo(1,2a)pyridinyl, 3,7-imidazo(1,2-a)pyridinyl, 2,4-indolyl, 2,5-indolyl, 2,6-indolyl, 2,7-indolyl, 3,4-indolyl, 3,5-indolyl, 3,6-indolyl, 3,7-indolyl, 1,4-isoindolyl, 1,5isoindolyl, 1,6-isoindolyl, 2,4-isoindolyl, 2,5-isoindolyl, 2,6-isoindolyl, 2,7isoindolyl, 1,3-isoindolyl, 3,4-indazolyl, 3,5-indazolyl, 3,6-indazolyl, 3,7-. 20 indazolyl, 2,4-benzoxazolyl, 2,5-benzoxazolyl, 2,6-benzoxazolyl, 2,7benzoxazolyl, 3,4-benzisoxazolyl, 3,5-benzisoxazolyl, 3,6-benzisoxazolyl, 3,7benzisoxazolyl, 1,4-naphthyl, 1,5-naphthyl, 1,6-naphthyl, 1,7-naphthyl, 1,8naphthyl, 2,4-naphthyl, 2,5-naphthyl, 2,6-naphthyl, 2,7-naphthyl, 2,8-naphthyl, 2,4-quinolinyl, 2,5-quinolinyl, 2,6-quinolinyl, 2,7-quinolinyl, 2,8-quinolinyl, 3,4-25 quinolinyl, 3,5-quinolinyl, 3,6-quinolinyl, 3,7-quinolinyl, 3,8-quinolinyl, 4,5quinolinyl, 4,6-quinolinyl, 4,7-quinolinyl, 4,8-quinolinyl, 1,4-isoquinolinyl, 1,5isoquinolinyl, 1,6-isoquinolinyl, 1,7-isoquinolinyl, 1,8-isoquinolinyl, 3,4isoquinolinyl, 3,5-isoquinolinyl, 3,6-isoquinolinyl, 3,7-isoquinolinyl, 3,8isoquinolinyl, 4,5-isoquinolinyl, 4,6-isoquinolinyl, 4,7-isoquinolinyl, 4,8-30 isoquinolinyl, 3,4-cinnolinyl, 3,5-cinnolinyl, 3,6-cinnolinyl, 3,7-cinnolinyl, 3,8cinnolinyl, 4,5-cinnolinyl, 4,6-cinnolinyl, 4,7-cinnolinyl, and 4,8-cinnolinyl, and

each carbon and hyrido containing nitrogen member of the ring of the W^5 and of the ring of the W^6 , other than the points of attachment of W^5 and W^6 , is optionally substituted with one or more of the group consisting of R^9 , R^{10} , R^{11} , and R^{12} , with the proviso that Q^b is bonded to lowest number substituent position of each W^5 , with further proviso that Q^b is bonded to highest number substituent position of each W^6 , and with the additional proviso that $(CH(R^{38}))_r$ is bonded to E^0 .

2. Compound of Claim 1 of the Formula:

10

15

or a pharmaceutically acceptable salt thereof, wherein;

B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R^{32} , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{36} , a carbon adjacent to R^{32} and two atoms from the carbon at the point of attachment is optionally substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the carbon at the point of attachment is optionally substituted by R^{35} , and any carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ; R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the

20

group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino,

10

15

20

25

alkylenedioxy, haloalkylthio, alkanoyloxy, alkoxy, hydroxy, amino, alkoxyamino, haloalkanoyl, nitro, alkylamino, alkylthio, aryl, aralkyl, cycloalkyl, cycloalkyl, heteroaryl, heterocyclyl, alkylsulfonamido, amidosulfonyl, monoalkyl amidosulfonyl, dialkyl amidosulfonyl, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

B is optionally selected from the group consisting of hydrido, trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R 32, R 33, R 34, R 35, and R 36;

B is optionally a C3-C12 cycloalkyl or C4-C9 heterocyclyl, wherein each ring carbon may be optionally substituted with R³³, a ring carbon other than the ring carbon at the point of attachment of B to A may be optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and nitrogens adjacent to the carbon at the point of attachment may be optionally substituted with R⁹ or R¹³, a ring carbon or nitrogen adjacent to the R⁹ position and two atoms from the point of attachment may be substituted with R¹⁰, a ring carbon or nitrogen adjacent to the R¹³ position and two atoms from the point of attachment may be substituted with R¹², a ring carbon three atoms from the point of attachment and adjacent to the R¹⁰ position may be substituted with R¹¹, a ring carbon three atoms from the point of attachment and adjacent to the R¹² position may be substituted with R³³, and a ring carbon four atoms from the point of attachment and adjacent to the R¹¹ and R³³ positions may be substituted with R³⁴;

25

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, alkoxyamino, alkanoyl, haloalkanoyl, amidino, guanidino, alkylenedioxy, haloalkylthio, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy,

5 heteroaralkoxy,heterocyclyloxy, heterocyclylalkoxy, hydroxy, amino, alkylamino, N-alkyl-N-arylamino, arylamino, aralkylamino, heteroarylamino, heteroarylamino, heteroarylamino, alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, alkylsulfamido, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, alkyl, aryl, aralkyl, cycloalkyl, cycloalkyl, cycloalkyl, heteroaryl, heterocyclyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, and cyano;

A is abond or $(CH(R^{15}))_{pa}^{-1}(W^{7})_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^{7} is selected from the group consisting of O, S, C(O), $(R^{7})NC(O)$, $(R^{7})NC(S)$, and $N(R^{7})$;

R⁷ is selected from the group consisting of hydrido, hydroxy and alkyl;
R¹⁵ is selected from the group consisting of hydrido, hydroxy, halo, alkyl, and haloalkyl;

 $M ext{ is N or R}^1$ -C;

R¹ is selected from the group consisting of hydrido, alkyl, cyano, halo, haloalkyl, haloalkoxy, amino, aminoalkyl, alkylamino, amidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

 R^{2} is Z^{0} -Q;

 Z^0 is selected from the group consisting of a bond, W^0 - $(CH(R^{42}))_p$ wherein p is an integer selected from 0 through 3 and W^0 is selected from the group consisting of O, S, and $N(R^{41})$, and $(CH(R^{41}))_g$ -O wherein g is an

20

25

integer selected from 1 through 3, with the proviso that Z^0 is directly bonded to the pyrimidinone ring;

z⁰ is optionally W²²-(CH(R⁴²))_h wherein h is 0 or 1 and W²² is selected from the group consisting of 1,2-cyclopropyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,2-cyclopentyl, 1,3-cyclopentyl, 2,3-morpholinyl, 2,4-morpholinyl, 2,6-morpholinyl, 3,4-morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 2,3-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5-tetrahydrofuranyl, and 3,4-tetrahydrofuranyl, wherein Z⁰ is directly bonded to the pyrimidinone ring and W²² is optionally substituted with one or more substituents selected from the group consisting of R⁹, R¹⁰, R¹¹, R¹², and R¹³;

R⁴¹ is selected from the group consisting of hydrido, hydroxy, amino, and alkyl;

R⁴² is selected from the group consisting of amidino, hydroxyamino, hydrido, hydroxy, amino, and alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to z^0 is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , and any carbon adjacent to both R^{10} and R^{12} is

10

15

20

optionally substituted by R^{11} , with the proviso that Q is other than a phenyl when Z^0 is a bond;

Q is optionally hydrido with the proviso that Z^0 is selected from other than a bond;

K is CHR^{4a} wherein R^{4a} is selected from the group consisting of hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl;

 E^0 is selected from the group consisting of a bond, C(O)N(H), (H)NC(O), $(R^7)NS(O)_2$, and $S(O)_2N(R^7)$;

 y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three contiguous atoms from the point of attachment of Q^S to the phenyl or heteroaryl ring is substituted by Q^b , a carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by Q^b , and another carbon adjacent to Q^b is optionally substituted by Q^b , and another carbon adjacent to Q^b is optionally substituted by Q^b , and another carbon adjacent to

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R^{20} and R^{21} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time and with the further proviso that no more than one of R^{23} and R^{24} is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;

 R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group consisting of hydrido, alkyl, hydroxy, amino, alkylamino and dialkylamino;

Q^s is selected from the group consisting of a bond, $(CR^{37}R^{38})_b$ wherein b is an integer selected from 1 through 4, and $(CH(R^{14}))_c$ -W¹
(CH(R¹⁵))_d wherein c and d are integers independently selected from 1

through 3 and W¹ is selected from the group consisting of C(O)N(R¹⁴),

(R¹⁴)NC(O), S(O), S(O)₂, S(O)₂N(R¹⁴), N(R¹⁴)S(O)₂, and N(R¹⁴), with the proviso that R¹⁴ is selected from other than halo when directly bonded to N

and with the further proviso that $(CR^{37}R^{38})_b$, and $(CH(R^{14}))_c$ are bonded to

R 14 is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

R³⁷ and R³⁸ are independently selected from the group consisting of hydrido, alkyl, and haloalkyl;

 R^{38} is optionally aroyl or heteroaroyl, wherein R^{38} is optionally substituted with one or more substituents selected from the group consisting of R^{16} , R^{17} , R^{18} , and R^{19} ;

 Y^{0} is optionally Y^{AT} wherein Y^{AT} is Q^{b} - Q^{s} ;

20

25

 Y^0 is optionally Q^b - Q^{ss} wherein Q^{ss} is $(CH(R^{14}))_e$ - W^2 - $(CH(R^{15}))_h$, wherein e and h are independently 1 or 2 and W^2 is CR^{4a} =CH with the proviso that $(CH(R^{14}))_e$ is bonded to E^0 .

3. Compound of Claim 2 or a pharmaceutically acceptable salt thereof, wherein;
 B is selected from the group consisting of hydrido, trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

A is $(CH(R^{15}))_{pa}$ -W⁷ wherein pa is an integer selected from 0 through 3 and W⁷ is selected from the group consisting of O, S, and N(R⁷) wherein R⁷ is hydrido or alkyl;

 R^{15} is selected from the group consisting of hydrido, hydroxy, halo, alkyl, and haloalkyl with the proviso that R^{15} is other than hydroxy and halo when R^{15} is on the carbon bonded directly to W^7 ;

M is N or R^1 -C;

R¹ is selected from the group consisting of hydrido, alkyl, cyano, halo, haloalkyl, haloalkoxy, amino, aminoalkyl, alkylamino, amidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

 R^2 is Z^0 -O:

10.7

10

15

20

25

 Z^0 is a bond or W^0 - $(CH(R^{42}))_p$ wherein p is an integer selected from 0 through 3 and W^0 is selected from the group consisting of O, S, and $N(R^{41})$, with the proviso that Z^0 is directly bonded to the pyrimidinone ring;

R⁴¹ is selected from the group consisting of hydrido, hydroxy, and alkyl;

R 42 is selected from the group consisting of amidino, hydrido, hydroxy, amino, and alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} , with the proviso that Q is other than a phenyl when Z^0 is a bond;

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, alkoxyamino, alkanoyl, haloalkanoyl, amidino, guanidino, alkylenedioxy, haloalkylthio, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy,heterocyclyloxy, heterocyclylalkoxy, hydroxy, amino, alkylamino, N-alkyl-N-arylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclylamino, heterocyclylalkylamino, alkylthio, alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, cycloalkylsulfonyl, evcloalkylsulfonyl, amidosulfonyl, alkyl, aryl, aralkyl, cycloalkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, halo, haloalkyl, haloalkoxy,

10

20

hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, and cyano;

K is CHR^{4a} wherein R^{4a} is selected from the group consisting of hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl;

 E^0 is selected from the group consisting of a bond, C(O)N(H), (H)NC(O), (R⁷)NS(O)₂, and S(O)₂N(R⁷);

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three contiguous atoms from the point of attachment of Q^S to the phenyl or heteroaryl ring is substituted by Q^D , a carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a carbon adjacent to Q^D is optionally substituted by R^{16} , and another carbon adjacent to Q^D is optionally substituted by R^{16} , and another carbon adjacent to Q^D is optionally substituted by R^{19} ;

15 R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of NR²⁰R²¹, hydrido, $N(R^{26})C(NR^{25})N(R^{23})(R^{24}), \text{ and } C(NR^{25})NR^{23}R^{24}, \text{ with the proviso that no}$

10

15

more than one of R²⁰ and R²¹ is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time and with the further proviso that no more than one of R²³ and R²⁴ is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;

R²⁰, R²¹, R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, hydroxy, amino, alkylamino and dialkylamino;

 Q^{S} is selected from the group consisting of a bond, $(CR^{37}R^{38})_{b}$ wherein b is an integer selected from 1 through 3, and $(CH(R^{14}))_{c}$ - W^{1} - $(CH(R^{15}))_{d}$ wherein c and d are independently 1 or 2 and W^{1} is selected from the group consisting of $C(O)N(R^{14})$, $(R^{14})NC(O)$, S(O), $S(O)_{2}$, $S(O)_{2}N(R^{14})$, $N(R^{14})S(O)_{2}$, and $N(R^{14})$, with the proviso that R^{14} is selected from other than halo when directly bonded to N and with the further proviso that $(CR^{37}R^{38})_{b}$, and $(CH(R^{14}))_{c}$ are bonded to E^{0} ; R^{14} is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

R 14 is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

R³⁷ and R³⁸ are independently selected from the group consisting of hydrido, alkyl, and haloalkyl;

R³⁸ is optionally aroyl and heteroaroyl;

Y⁰ is optionally Q^b-Q^{ss} wherein Q^{ss} is $(CH(R^{14}))_e$ -W²- $(CH(R^{15}))_h$, wherein e and h are integers independently selected from 1 through 2 and W² is CR^{4a} =CH with the proviso that $(CH(R^{14}))_e$ is bonded to E⁰.

25

4. Compound of Claim 3 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, trialkylsilyl, C2-C4 alkyl, C3-C5 alkylenyl, C3-C4 alkenyl, C3-C4 alkynyl, and C2-C4 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 3 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, and R³⁴;

R 32, R 33, and R 34 are independently selected from the group

consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy, carboxamido, and cyano;

A is $(CH(R^{15}))_{pa}$ - $N(R^7)$ wherein pa is an integer selected from 0

through 2 and R⁷ is selected from the group consisting of hydrido and alkyl;

R 15 is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

M is N or R¹-C:

R¹ is selected from the group consisting of hydrido, alkyl, cyano, halo, haloalkyl, haloalkoxy, amino, aminoalkyl, alkylamino, amidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

$$R^{2}$$
 is Z^{0} -O:

 Z^0 is a bond or W^0 -CH(R^{42}) wherein W^0 is selected from the group consisting of O, S, and N(R^{41}):

10

15

20

25

R and R are independently hydrido or alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^0 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^0 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} , with the proviso that Q is other than a phenyl when Z^0 is a bond;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

R 10 and R 12 are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclyloxy, heterocyclylalkoxy, hydroxy, amino,

alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylamino, heteroarylamino, heteroarylamino, heterocyclylamino, heterocyclylalkylamino, alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

20

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three contiguous atoms from the point of attachment of Q^S to the phenyl or heteroaryl ring is substituted by Q^D , a carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , another carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of NR 20 R 21 , N(R 26)C(NR 25)N(R 23)(R 24), and C(NR 25)NR 23 R 24 , with the proviso that R 16 , R 19 , and Q b are not simultaneously hydrido;

 Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that no more than one of R^{20} and R^{21} is hydroxy at the same time and with the further proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;

R²⁰, R²¹, R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

 Q^s is selected from the group consisting of abond, CH_2 , and CH_2CH_2 .

5. Compound of Claim 4 or a pharmaceutically acceptable salt thereof, wherein; B is selected from the group consisting of ethyl, 2-propenyl,

2-propynyl, propyl, isopropyl, -CH₂CH₂CH₂-, -CH₂CH₂CH₂-, butyl,

2-butenyl, 3-butenyl, 2-butynyl, sec-butyl, tert-butyl, isobutyl,
2-methylpropenyl, 2,2,2-trifluoroethyl, 3,3,3-trifluoropropyl, and
2,2-difluoropropyl, wherein each member of group B is optionally substituted at any carbon up to and including 3 atoms from the point of attachment of B to
A with one or more of the group consisting of R³², R³³, and R³⁴;

10 R³², R³³, and R³⁴ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

A is selected from the group consisting of a bond, NH, and $N(CH_3)$;

M is N or R^1 -C;

R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

$$R^2$$
 is Z^0 -Q;

25

Z⁰ is selected from the group consisting of a bond, O, S, NH, N(CH₃), OCH₂, SCH₂, N(H)CH₂, and N(CH₃)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R 13, a carbon adjacent to R and two atoms from the carbon at the point of attachment is optionally substituted by R 10, a carbon adjacent to R 13 and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹, with the proviso that O is other than a phenyl when Z^0 is a bond:

 R^9 , R^{11} , and R^{13} are independently selected from the group consisting 15 of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro. 20 chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

 R^{10} and R^{12} are independently selected from the group consisting of 25 hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,

- N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,
- N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
- N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
 N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy,
 cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethycyclohexylmethoxy,
 cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy,
 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino,
- 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylphenylamino,
 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy,
 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl,
 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy,
- 2.4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy, 3,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylphenoxy, 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylphenoxy, 3-ethylphenoxy, 3-ethylphen
- 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy, 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy, 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy, 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
- 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,
 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,
 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,
 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,
 phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
- 35 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,

3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,

2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,

3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,

3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,

5 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,

3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and

3-trifluoromethylthiophenoxy;

Y⁰ is selected from the group consisting of:

$$1-Q^{b}-4-Q^{s}-2-R^{16}-3-R^{17}-5-R^{18}-6-R^{19}$$
 benzene,

10 2-Q^b-5-Q^s-6-R¹⁷-4-R¹⁸-3-R¹⁹pyridine,

3-Q^b-6-Q^s-2-R¹⁶-5-R¹⁸-4-R¹⁹pyridine, 2-Q^b-5-Q^s-3-R¹⁶-6-R¹⁸pyrazine,

3-Q^b-6-Q^s-2-R¹⁸-5-R¹⁸-4-R¹⁹pyridazine,

2-Q^b-5-Q^s-4-R¹⁷-6-R¹⁸ pyrimidine, 5-Q^b-2-Q^s-4-R¹⁶-6-R¹⁹ pyrimidine,

3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹thiophene, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷thiophene,

 15 3 2 3 2 3 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2 2 3 2

3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹pyrrole, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷pyrrole,

4-Q^b-2-Q^s-5-R¹⁹ imidazole, 2-Q^b-4-Q^s-5-R¹⁷ imidazole,

3-Q^b-5-Q^s-4-R¹⁶isoxazole, 5-Q^b-3-Q^s-4-R¹⁶isoxazole,

 $2-Q^{b}-5-Q^{s}-4-R^{16}$ pyrazole, $4-Q^{b}-2-Q^{s}-5-R^{19}$ thiazole, and

20 2-Q^b-5-Q^s-4-R¹⁷thiazole;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino,

guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino,

25 N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl,

15

pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that no more than one of R^{20} , R^{21} , R^{23} , and R^{24} can be hydroxy, when any two of the group consisting of R^{20} , R^{21} , R^{23} , and R^{24} are bonded to the same atom and with the further proviso that said Q^b group is bonded directly to a carbon atom;

 R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, and hydroxy; Q^s is selected from the group consisting of a bond, CH_2 , and CH_2CH_2 .

6. Compound of Claim 4 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

A is selected from the group consisting of $CH_2N(CH_3)$, $CH_2N(CH_2CH_3)$, $CH_2CH_2N(CH_3)$, and $CH_2CH_2N(CH_2CH_3)$; M is N or R¹-C;

10

15

20

25

R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy,

1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

$$R^2$$
 is Z^0 -Q;

 Z^0 is selected from the group consisting of a bond, O, S, NH, N(CH₃), OCH₂, SCH₂, N(H)CH₂, and N(CH₃)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to z^0 is optionally substituted by z^0 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by z^0 , a carbon adjacent to z^0 and two atoms from the carbon at the point of attachment is optionally substituted by z^0 , and any carbon adjacent to both z^0 and z^0 is optionally substituted by z^0 , and any carbon adjacent to both z^0 and z^0 is optionally substituted by z^0 , with the proviso that Q is other than a phenyl when z^0 is a bond;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,

N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

R 10 and R 12 are independently selected from the group consisting of

- hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, l-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,
- N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,
- N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
- N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy, cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethycyclohexylmethoxy, cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino, 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
- 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino, 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl, 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy,
- 3,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylphenoxy, 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy, 4-fluorobenzyloxy, 4-ethylphenoxy, 4-fluorobenzyloxy,
- 35 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,

T. Carre

- 4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,
- 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
- 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
- 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,
- 5 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,
 - 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,
 - $l\hbox{--}phenylethoxy, 2\hbox{--}phenylethoxy, 2\hbox{--}phenylethyl, 2\hbox{--}phenylethylamino,}\\$
 - phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,
- 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 - 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,
 - 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,
 - 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,
 - 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
- 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and 3-trifluoromethylthiophenoxy;

Y⁰ is selected from the group consisting of:

$$3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$$
 furan, $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ furan,

$$2-Q^{b}-5-Q^{s}-4-R^{16}$$
 pyrazole, $4-Q^{b}-2-Q^{s}-5-R^{19}$ thiazole, and

10

15

20

2-Q^b-5-Q^s-4-R¹⁷thiazole;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy. amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, hydroxymethyl,1-hydroxyethyl, 2-hydroxyethyl, and cyano;

 Q^b is selected from the group consisting of $NR^{20}R^{21}$, $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that no more than one of R^{20} , R^{21} , R^{23} , and R^{24} can be hydroxy, when any two of the group consisting of R^{20} , R^{21} , R^{23} , and R^{24} are bonded to the same atom and with the further proviso that said Q^b group is bonded directly to a carbon atom;

R²⁰, R²¹, R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH₂, and CH₂CH₂.

7. Compound of Claim 6 or a pharmaceutically acceptable salt thereof, wherein;

A is selected from the group consisting of CH₂N(CH₃),

 $\mathsf{CH}_2\mathsf{N}(\mathsf{CH}_2\mathsf{CH}_3), \mathsf{CH}_2\mathsf{CH}_2\mathsf{N}(\mathsf{CH}_3), \mathsf{and} \; \mathsf{CH}_2\mathsf{CH}_2\mathsf{N}(\mathsf{CH}_2\mathsf{CH}_3);$

25 $M ext{ is } N ext{ or } R^1 - C;$

R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl,

trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

$$R^2$$
 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, O, S, NH, and

5 $N(CH_3)$;

Q is selected from the group consisting of

- 3-amidocarbonyl-5-aminophenyl,
- 3-amino-5-(N-benzylamidocarbonyl)phenyl,
- 3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,
- 3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,
 - 3-amino-5-benzyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,
 - 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-benzylamidosulfonyl)phenyl,
 - 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
 - 3-amino-5-(N-ethylamidocarbonyl)phenyl,
- 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
 - 3-amino-5-(N-propylamidocarbonyl)phenyl,
 - 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
- 25 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
 - 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
 - 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
 - -aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,
- 30 3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,
 - 3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,
 - 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
 - 2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,
 - 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,

3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,

- 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
- 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
- 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the proviso that Q is other than a phenyl or a substituted phenyl when Z^0 is a bond;

Y⁰ is selected from the group consisting of:

$$3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$$
 thiophene, and $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ thiophene;

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R 17 and R 18 are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$$Q^{b}$$
 is $C(NR^{25})NR^{23}R^{24}$;

 R^{23} , R^{24} , and R^{25} are independently hydrido or methyl;

20

15

8. Compound of Claim 7 or a pharmaceutically acceptable salt thereof, where said compound is selected from the group consisting of:

2-[3-[2-[3-aminophenoxy]-6-chloro-N-[[4-

- aminoiminomethylphenyl]methyl]-5-[N,N-dimethylhydrazino]-4-oxo-1(4H)-pyrimidinyl]]acetamide;
 - 2-[3-[2-[3-aminophenoxy]-6-chloro-5-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;

20

2-[3-[2-[3-aminophenoxy]-6-chloro-5-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;

2-[4-[3-[3-aminophenoxy]-N-[[4-aminoiminomethylphenyl]methyl]- 6-[N,N-dimethylhydrazino]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;

2-[4-[3-[3-aminophenoxy]-6-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;

2-[4-[3-[3-aminophenoxy]-6-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;

2-[3-[2-[3-amino-5-carboxyphenoxy]-6-chloro-N-[[4aminoiminomethylphenyl]methyl]-5-[N,N-dimethylhydrazino]-4-oxo-1(4H)pyrimidinyl]]acetamide;

2-[3-[2-[3-amino-5-carboxyphenoxy]-6-chloro-5-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;

2-[3-[2-[3-amino-5-carboxyphenoxy]-6-chloro-5-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;

2-[4-[3-[3-amino-5-carboxyphenoxy]-N-[[4-aminoiminomethylphenyl]methyl]- 6-[N,N-dimethylhydrazino]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;

2-[4-[3-[3-amino-5-carboxyphenoxy]-6-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;

2-[4-[3-[3-amino-5-carboxyphenoxy]-6-[N,N-diethylhydrazino]-N-[[4-25 aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide.

9. Compound of Claim 2 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

10

15

25

B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R³², the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R³⁶, a carbon adjacent to R³² and two atoms from the carbon at the point of attachment is optionally substituted by R³³, a carbon adjacent to R³⁶ and two atoms from the carbon at the point of attachment is optionally substituted by R³⁵, and any carbon adjacent to both R³³ and R³⁵ is optionally substituted by R³⁴;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

A is a or $(CH(R^{15}))_{pa}$ - $(W^7)_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^7 is $(R^7)NC(O)$ or $N(R^7)$;

R⁷ is selected from the group consisting of hydrido, hydroxy and alkyl;

R 15 is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

M is N or R^1 -C:

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

$$R^2$$
 is Z^0 -Q;

 Z^0 is a bond or W^0 - $(CH(R^{42}))_p$ wherein p is 0 or 1 and W^0 is selected from the group consisting of O, S, and $N(R^{41})$;

10

15

20

25

R and R are independently hydrido or alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to \mathbf{Z}^0 is optionally substituted by \mathbf{R}^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by \mathbf{R}^{13} , a carbon adjacent to \mathbf{R}^9 and two atoms from the carbon at the point of attachment is optionally substituted by \mathbf{R}^{10} , a carbon adjacent to \mathbf{R}^{13} and two atoms from the carbon at the point of attachment is optionally substituted by \mathbf{R}^{12} , and any carbon adjacent to both \mathbf{R}^{10} and \mathbf{R}^{12} is optionally substituted by \mathbf{R}^{11} , with the proviso that Q is other than a phenyl when \mathbf{Z}^0 is a bond;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclyloxy, heterocyclylalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclylalkylamino, alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three

10

15

contiguous atoms from the point of attachment of Q^S to the phenyl or heteroaryl ring is substituted by Q^b , a carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^S is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by Q^b , and another carbon adjacent to Q^b is optionally substituted by Q^b ;

R 16, R 17, R 18, and R 19 are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is selected from the group consisting of $NR^{20}R^{21}$, hydrido, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R^{20} and R^{21} is hydroxy at the same time and with the further proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;

 R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH_2 , and CH_2CH_2 .

25

10. Compound of Claim 9 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of phenyl. 2-thienyl, 3-thienyl. 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 5-pyrrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R³², the other carbon adjacent

to the carbon at the point of attachment is optionally substituted by R³⁶, a carbon adjacent to R³² and two atoms from the carbon at the point of attachment is optionally substituted by R³³, a carbon adjacent to R³⁶ and two atoms from the carbon at the point of attachment is optionally substituted by R³⁵, and any carbon adjacent to both R³³ and R³⁵ is optionally substituted by R³⁴;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, cyano, and Q^b;

A is selected from the group consisting of a bond, NH, N(CH₃), N(OH), CH₂, CH₃CH, CF₃CH. NHC(O), N(CH₃)C(O), C(O)NH, C(O)N(CH₃), CH₂CH₂. CH₂CH₂CH₂, CH₃CHCH₂, and CF₃CHCH₂; M is N or \mathbb{R}^1 -C;

- R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy,
- 10 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

$$R^2$$
 is Z^0 -Q;

 Z^0 is selected from the group consisting of a bond, O, S, NH, N(CH₃), OCH₂, SCH₂, N(H)CH₂, and N(CH₃)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl,
2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl,
3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl,
3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl,
5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or
heteroaryl ring to Z⁰ is optionally substituted by R⁹, the other carbon adjacent

to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^{9} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any

carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} , with the proviso that Q is other than a phenyl when Z^{0} is a bond;

 R^9 , R^{11} , and R^{13} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, 5 trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

10

 R^{10} and R^{12} are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl,

- 15 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl,
- 20 N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl,
- 25 N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy, cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethycyclohexylmethoxy. cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy,
- 30 3-bromobenzyloxy, 4-bromobenzylamino, 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl, 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-ch 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chlorobenzylsulfonyl, 4-chlorophenylsulfonyl,

```
5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy,
```

- 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy,
- 3,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy.
- 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,
- 5 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyloxy,
 - 3,5-dimethylbenzyloxy, 4-ethylphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy,
 - 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy,
 - 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,
 - 4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,
- 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
 - 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy.
 - 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,
 - 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,
 - 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,
- 15 l-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino, phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,
 - 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 - 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,
- 20 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,
 - 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,
 - 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 - 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and
 - 3-trifluoromethylthiophenoxy;

Y is selected from the group consisting of:

25

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo,

15 hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

 R^{16} or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is $C(NR^{25})NR^{23}R^{24}$ or hydrido, with the proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;

20 R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrido, methyl, ethyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH₂ and CH₂CH₂.

11. Compound of Claim 10 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of 2-aminophenyl, 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl,

3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl,

3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl,

3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl,

3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, phenyl,

5 3-trifluoromethylphenyl, 2-imidazoyl, 2-pyridyl, 3-pyridyl,

5-chloro-3-trifluoromethyl-2-pyridyl, 4-pyridyl, 2-thienyl, 3-thienyl, and

3-trifluoromethyl-2-pyridyl;

A is selected from the group consisting of CH₂, CH₃CH, CF₃CH,

NHC(O), CH2CH2, and CH2CH2CH2;

10 M is N or R^1 -C:

R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

15 $R^2 \text{ is } Z^0 - Q;$

Z⁰ is selected from the group consisting of a bond, O, S, NH, N(CH₃),

OCH₂, and SCH₂;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,

3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,

3-amino-5-benzyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

30 3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

```
3-amino-5-(N-isobutylamidocarbonyl)phenyl,
```

3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the proviso that
$$Q$$
 is other than a phenyl or substituted phenyl when Z^0 is a bond;

Y is selected from the group consisting of:

hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

$$R^{16}$$
 or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} ,

R¹⁹, and Q^b are not simultaneously hydrido;

10

15

20

 R^{17} and R^{18} are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano; Q^b is $C(NR^{25})NR^{23}R^{24}$ or hydrido; R^{23} , R^{24} , and R^{25} are independently hydrido or methyl; Q^s is CH_2 .

12. Compound of Claim 9 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R^{32} , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{36} , a carbon adjacent to R^{32} and two atoms from the carbon at the point of attachment is optionally substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the carbon at the point of attachment is optionally substituted by R^{35} , and any carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ; R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the

group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

20

25

A is a or $(CH(R^{15}))_{pa}^{-1}(W^{7})_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^{7} is $N(R^{7})$;

R⁷ is hydrido or alkyl;

R 15 is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

M is N or R^1 -C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

10 $R^2 \text{ is } Z^0 - Q;$

 Z^{0} is a bond or W^{0} - $(CH_{2})_{p}$ wherein p is 0 or 1 and W^{0} is selected from the group consisting of O, S, and N(H);

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} , with the proviso that Q is other than a phenyl when Z^0 is a bond;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

10

15

20

R ¹⁰ and R ¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy. alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido, carboxyalkyl, and cyano;

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three contiguous atoms from the point of attachment of Q^S to the phenyl or heteroaryl ring is substituted by Q^b , a carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^B , another carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^B , a carbon adjacent to Q^B is optionally substituted by Q^B , and another carbon adjacent to Q^B is optionally substituted by Q^B , and another carbon adjacent to Q^B is optionally substituted by Q^B , and another carbon adjacent to Q^B is optionally substituted by Q^B , and another carbon adjacent to

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q b is selected from the group consisting of NR 20 R R , hydrido, and C(NR 25)NR 23 R R 24 ;

 $R^{20}, R^{21}, R^{23}, R^{24}$, and R^{25} are independently hydrido or alkyl; Q^s is CH_2 .

25

10

15

13. Compound of Claim 12 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, and 5-isoxazolyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R^{32} , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{36} , a carbon adjacent to R^{32} and two atoms from the carbon at the point of attachment is optionally substituted by R^{33} , a carbon adjacent to R^{36} and two atoms from the carbon at the point of attachment is optionally substituted by R^{35} , and any carbon adjacent to both R^{33} and R^{35} is optionally substituted by R^{34} ;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, carboxy, cyano, and Q^b;

A is selected from the group consisting of a bond, NH, N(CH₃), CH₂,

20 CH₃CH, and CH₂CH₂;

M is N or R¹-C:

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

25 $R^2 \text{ is } Z^0 - Q;$

 Z^0 is selected from the group consisting of a bond, O, S, NH, OCH₂, SCH₂, and N(H)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z⁰ is optionally substituted by R⁹, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹, with the proviso that Q is other than a phenyl when Z⁰ is a bond;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl,

- N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, l-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano;
 - R¹⁰ and R¹² are independently selected from the group consisting of hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,
- N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
- N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy, carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino,
- dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl,

N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

Y⁰ is selected from the group consisting of:

10 R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group

consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethyl, pentafluoroethyl, asabawa a description of the phydroxymethyl, asabawa a description of the phydroxymethyl as

trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

$$Q^{b}$$
 is $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$;

 R^{20} , R^{21} , R^{23} , R^{24} , and R^{25} are independently selected from the group consisting of hydrido, methyl, and ethyl;

20

25

15

14. Compound of Claim 13 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of 2-aminophenyl,

3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl,

- 3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl,
- 3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl,
- 3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl,
- 3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, phenyl,
- 3-trifluoromethylphenyl, 2-imidazoyl, 2-pyridyl, 3-pyridyl,

5-chloro-3-trifluoromethyl-2-pyridyl, 4-pyridyl, 2-thienyl, 3-thienyl, and 3-trifluoromethyl-2-pyridyl;

A is selected from the group consisting of CH₂ and CH₂CH₂;

M is N or R^1 -C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro:

 R^2 is Z^0 -O:

Z⁰ is selected from the group consisting of a bond, O, S, NH, and

10 OCH₂;

25

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,

3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl, 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,

3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,

30 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,

- and morning, and a memyrphony, a minio 2 memyrtinop

3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,

3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,

- 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,
- 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
- 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,
- 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,
- 5 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,
 - 2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,
 - 4-methylphenyl, 9-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
 - 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
 - 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the
- proviso that Q is other than a phenyl or a substituted phenyl when Z^0 is a bond;

Y⁰ is selected from the group consisting of:

$$1 - Q^{b} - 4 - Q^{s} - 2 - R^{16} - 3 - R^{17} - 5 - R^{18} - 6 - R^{19}$$
 benzene,

15 3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹thiophene, and 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷thiophene;

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R 17 and R 18 are independently selected from the group consisting of

20 hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$$Q^{b}$$
 is $C(NR^{25})NR^{23}R^{24}$;

 R^{23} , R^{24} , and R^{25} are independently hydrido or methyl; Q^s is CH_2 .

25 15. Compound of Claim 14 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-fluorophenyl, 4-methylphenyl, phenyl, 2-imidazoyl,

3-pyridyl, 4-pyridyl, and 3-trifluoromethyl-2-pyridyl;

A is selected from the group consisting of CH₂ and CH₂CH₂;

M is N or R^1 -C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and

fluoro;

5

 R^2 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, O, S, and NH;

Q is selected from the group consisting of

- 3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
- 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-benzylamidosulfonyl)phenyl,
 - 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
 - 3-amino-5-(N-ethylamidocarbonyl)phenyl,
 - 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
- 20 3-amino-5-(N-propylamidocarbonyl)phenyl,
 - 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,
 - 3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,
 - 3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,
 - 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,
 - 3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl, with
- 30 the proviso that Q is other than a phenyl or a substituted phenyl when Z^0 is a bond;

Y⁰ is selected from the group consisting of 5-amidino-2-thienylmethyl, 4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.

16. Compound of Claim 9 where said compound is selected from the group of the Formula:

5 or a pharmaceutically acceptable salt thereof, wherein:

 R^2 is 3-aminophenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenoxy, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

10 R² is phenylthio, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-4-carboxy-2-thienyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3,4-diamino-2-thienyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is phenoxy, B is 3-aminophenyl, A is C(O)NH, Y⁰ is 4-amidinobenzyl, and M is CH:

 R^2 is phenoxy, B is 3-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-(N-methylamino)-2-thienyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-methylsulfonamido-2-thienyl, B is phenyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is phenylthio, B is 4-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-methylaminophenoxy, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH:

 R^2 is 3-aminophenylthio, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenylamino, B is phenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-2-thienyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and 10 M is CH;

R² is phenylthio, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-2-thienyl, B is phenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amidocarbonyl-5-aminophenoxy, B is 3-chlorophenyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 3-chlorophenyl, A

20 is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

10

 $\rm R^2$ is 3.5-diaminophenoxy, B is 3-chlorophenyl, A is $\rm CH_2CH_2, \rm Y^0$ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxy-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amidocarbonyl-5-aminophenylthio, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl and M is CH;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, and M is CH;

15 R² is 3,5-diaminophenylamino, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenylamino, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-20 amidinobenzyl, and M is CCl;

 R^2 is 3-aminophenoxy, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CCI;

 R^2 is phenylthio, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-4-carboxy-2-thienyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

20

 R^2 is 3,4-diamino-2-thienyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is phenoxy, B is 3-aminophenyl, A is C(O)NH, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is phenoxy, B is 3-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-(N-methylamino)-2-thienyl, B is phenyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-methylsulfonamido-2-thienyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is phenylthio, B is 4-amidinophenyl, A is CH_2, Y^0 is 4-amidinobenzyl, and M is CCl:

R² is 3-methylaminophenoxy, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

15 R² is 3-aminophenylthio, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-aminophenylamino, B is phenyl, A is CH_2, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-aminophenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-2-thienyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is phenylthio, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

25 R² is 3-aminophenoxy, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-2-thienyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amidocarbonyl-5-aminophenoxy, B is 3-chlorophenyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 3-chlorophenyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is

3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3,5-diaminophenoxy, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-carboxy-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amidocarbonyl-5-aminophenylthio, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 3-20 chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl and M is CCl;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

25 R² is 3,5-diaminophenylamino, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

25

 R^2 is 3-amino-5-carboxyphenylamino, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-aminophenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is phenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is phenylthio, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-4-carboxy-2-thienyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4amidinobenzyl, and M is N;

R² is 3,4-diamino-2-thienyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is phenoxy, B is 3-aminophenyl, A is C(O)NH, Y^0 is 4-amidinobenzyl, and M is N;

R² is phenoxy, B is 3-amidinophenyl, A is CH_2 , Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-(N-methylamino)-2-thienyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-methylsulfonamido-2-thienyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

R² is phenylthio, B is 4-amidinophenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-methylaminophenoxy, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-aminophenylthio, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-aminophenylamino, B is phenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-2-thienyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R² is phenylthio, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 \mbox{R}^2 is 3-aminophenoxy, B is 3-chlorophenyl, A is $\mbox{CH}_2\mbox{CH}_2, \mbox{Y}^0$ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-2-thienyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and 10 M is N;

 R^2 is 3-amidocarbonyl-5-aminophenoxy, B is 3-chlorophenyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3,5-diaminophenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-carboxy-2-thienyl, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amidocarbonyl-5-aminophenylthio, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

10

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl and M is N;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R² is 3,5-diaminophenylamino, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-carboxyphenylamino, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N.

17. Compound of Claim 2 of the Formula:

15

20

or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, C2-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

10

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

A is a or $(CH(R^{15}))_{pa}$ - $(W^7)_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^7 is $(R^7)NC(O)$ or $N(R^7)$;

R⁷ is selected from the group consisting of hydrido, hydroxy and alkyl;

R 15 is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

M is N or R^1 -C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

15 R^2 is Z^0 -Q;

 Z^0 is a bond or W^0 -(CH(R⁴²))_p wherein p is 0 or 1 and W^0 is selected from the group consisting of O, S, and N(R⁴¹);

R and R are independently hydrido or alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to z^0 is optionally substituted by z^0 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by z^0 , a carbon adjacent to z^0 and two atoms from the carbon at the point of attachment is optionally substituted by z^0 , a carbon adjacent to z^0 and two atoms from the carbon at the point of attachment is optionally substituted by z^0 , and any

10

15

carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} , with the proviso that Q is other than a phenyl when Z^0 is a bond;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy, heterocyclyloxy, heterocyclylalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclylalkylamino, alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

of said phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S, a carbon two or three contiguous atoms from the point of attachment of Q^S to the phenyl or heteroaryl ring is substituted by Q^D, a carbon adjacent to the point of attachment of Q^S is optionally substituted by R¹⁷, another carbon adjacent to the point of attachment of Q^S is optionally substituted by R¹⁸, a carbon adjacent to Q^D is optionally substituted by R¹⁶, and another carbon adjacent to Q^D is optionally substituted by R¹⁹;

20

25

R ¹⁶, R ¹⁷, R ¹⁸, and R ¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$,, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is selected from the group consisting of NR 20 R 21 , hydrido, $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that no more than one of R 20 and R 21 is hydroxy at the same time and with the further proviso that no more than one of R 23 and R 24 is hydroxy at the same time;

R²⁰, R²¹, R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

 $\mbox{Q}^{\mbox{s}}$ is selected from the group consisting of a bond, $\mbox{CH}_2,$ and $\mbox{CH}_2\mbox{CH}_2.$

18. Compound of Claim 17 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, ethyl, 2-propynyl, 2-propenyl, propyl, isopropyl, butyl, 2-butenyl, 3-butenyl, 2-butynyl, sec-butyl, tert-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 4-pentenyl, 2-pentynyl, 3-pentynyl, 2-pentyl, 1-methyl-2-butenyl, 1-methyl-3-butenyl, 1-methyl-2-butynyl, 3-pentyl, 1-ethyl-2-propenyl, 2-methylbutyl, 2-methyl-2-butenyl, 2-methyl-3-butenyl, 2-methyl-3-butynyl, 3-methylbutyl, 3-methyl-2-butenyl, 3-methyl-3-butenyl, 1-hexyl, 2-hexenyl,

3-hexenyl, 4-hexenyl, 5-hexenyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl,

1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-4-pentenyl,
1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 3-hexyl, 1-ethyl-2-butenyl,
1-ethyl-3-butenyl, 1-propyl-2-propenyl, 1-ethyl-2-butynyl, 1-heptyl, 2-heptenyl,
3-heptenyl, 4-heptenyl, 5-heptenyl, 6-heptenyl, 2-heptynyl, 3-heptynyl,
4-heptynyl, 5-heptynyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl,
1-methyl-4-hexenyl, 1-methyl-5-hexenyl, 1-methyl-2-hexynyl,
1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl,
1-ethyl-3-pentenyl, 1-ethyl-4-pentenyl, 1-butyl-2-propenyl, 1-ethyl-2-pentynyl,
1-ethyl-3-pentynyl, 2,2,2-trifluoroethyl, 2,2-difluoropropyl,
4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl,

4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl, 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl, wherein each member of group B is optionally substituted at any carbon up to and including 5 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the

group consisting of hydrido, amidino, guanidino, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,

2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, cyano, and O^b:

A is selected from the group consisting of a bond, NH, N(CH₃), N(OH), CH₂, CH₃CH, CF₃CH, NHC(O), N(CH₃)C(O), C(O)NH, C(O)N(CH₃), CH₂CH₂, CH₂CH₂CH₂, CH₃CHCH₂, and CF₃CHCH₂; M is N or R¹-C:

10

15

20

25

R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo:

 R^2 is Z^0 -O:

Z⁰ is selected from the group consisting of a bond, O, S, NH, N(CH₃), OCH₂, SCH₂, N(H)CH₂, and N(CH₃)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to \mathbf{Z}^0 is optionally substituted by \mathbf{R}^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by \mathbf{R}^{13} , a carbon adjacent to \mathbf{R}^9 and two atoms from the carbon at the point of attachment is optionally substituted by \mathbf{R}^{10} , a carbon adjacent to \mathbf{R}^{10} and two atoms from the carbon at the point of attachment is optionally substituted by \mathbf{R}^{12} , and any carbon adjacent to both \mathbf{R}^{10} and \mathbf{R}^{12} is optionally substituted by \mathbf{R}^{11} , with the proviso that Q is other than a phenyl when \mathbf{Z}^0 is a bond;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,

N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

R 10 and R 12 are independently selected from the group consisting of

- hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, l-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl,
- N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,
- N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl,
- N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy, cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethycyclohexylmethoxy, cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy, 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino, 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
- 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino, 4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy, 4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl, 5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy, 2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 2,5-difluorobenzyloxy,
- 3,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy, 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy, 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylphenoxy, 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy, 4-ethylphenoxy, 4-fluorobenzyloxy,
- 35 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,

- 4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,
- 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
- 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
- 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,
- 5 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,
 - 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,
 - $\ l\hbox{--phenylethoxy},\ 2\hbox{--phenylethoxy},\ 2\hbox{--phenylethyl},\ 2\hbox{--phenylethylamino},$

phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,

- 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,
- 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
 - 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,
 - 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,
 - 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,
 - 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
- 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and
 - 3-trifluoromethylthiophenoxy;

Y⁰ is selected from the group consisting of:

10

20

2-Q^b-5-Q^s-4-R¹⁷thiazole;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino, guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoròethoxy, fluoro, chloro, bromo, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^{b} is selected from the group consisting of $NR^{20}R^{21}$, hydrido,

15 $C(NR^{25})NR^{23}R^{24}$, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, with the proviso that no more than one of R^{20} and R^{21} is hydroxy at the same time and with the further proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;

 R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group consisting of hydrido, methyl, ethyl, propyl, butyl, isopropyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH₂, and CH₂CH₂.

19. Compound of Claim 18 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl,
2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, tert-butyl,
isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl,
6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl,
1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl,

2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl,

2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl,

3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl,

3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and

5 4-aminobutyl;

A is selected from the group consisting of a bond, CH₂, NHC(O),

CH2CH2, CH2CH2CH2, and CH3CHCH2;

M is N or R^1 -C;

R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

$$R^2$$
 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, O, S, NH, N(CH₃),

15 OCH_2 , and SCH_2 ;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,

3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,

3-amino-5-benzyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl.

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

30 3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

```
3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
```

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,

3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,

- 5 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
 - 3-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,
 - 3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,
 - 3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,
 - 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
- 2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,
 - 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,
 - 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,
 - 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
- 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl, 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the proviso that Q is other than a phenyl or substituted phenyl when Z⁰ is a bond;

Y is selected from the group consisting of:

$$3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$$
 thiophene, and $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ thiophene;

R 16 and R 19 are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy,

25 hydroxymethyl, fluoro, chloro, and cyano;

$$R^{16}$$
 or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} ,

R¹⁹, and Q^b are not simultaneously hydrido;

R 17 and R 18 are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

- 15

$$Q^b$$
 is hydrido or $C(NR^{25})NR^{23}R^{24}$; R^{23} , R^{24} , and R^{25} are independently hydrido or methyl; Q^s is CH_2 .

5 20. Compound of Claim 17 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, C2-C8 alkyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶:

 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, cyano, and Q^b ;

A is a or $(CH(R^{15}))_{pa}$ - $(W^7)_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^7 is $N(R^7)$;

20 R⁷ is hydrido or alkyl;

R 15 is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

10

15

20

25

M is N or R^1 -C:

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

 R^2 is Z^0 -Q;

 Z^0 is a bond or W^0 -(CH₂)_p wherein p is 0 or 1 and W^0 is selected from the group consisting of O, S, and N(H);

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} , with the proviso that Q is other than a phenyl when Z^0 is a bond;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido, carboxyalkyl, and cyano;

Y⁰ is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S, a carbon two or three

contiguous atoms from the point of attachment of Q^s to the phenyl or heteroaryl ring is substituted by Q^b , a carbon adjacent to the point of attachment of Q^s is optionally substituted by R^{17} , another carbon adjacent to the point of attachment of Q^s is optionally substituted by R^{18} , a carbon adjacent to Q^b is optionally substituted by R^{16} , and another carbon adjacent to Q^b is optionally substituted by R^{19} ;

R 16, R 17, R 18, and R 19 are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of NR²⁰R²¹, hydrido, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$;

 R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group consisting of hydrido and alkyl;

 Q^s is CH_2 .

20

25

10

21. Compound of Claim 20 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butenyl, 2-butynyl, sec-butyl, *tert*-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 2-pentynyl, 3-pentyl, 2-methylbutyl, 2-methyl-2-butenyl,

3-methylbutyl, 3-methyl-2-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl, 1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-3-pentynyl, 3-hexyl,

1-methyl-3-pentenyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 3-nexyl,

1-ethyl-2-butenyl, 1-heptyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl,

- 2-heptynyl, 3-heptynyl, 4-heptynyl, 5-heptynyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl, 1-methyl-4-hexenyl, 1-methyl-2-hexynyl, 1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl, 1-ethyl-3-pentenyl, 1-ethyl-3-pentynyl, 2,2,2-trifluoroethyl, 2,2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl,
- 4-trifluoromethylpentyl, 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl, wherein each member of group B is optionally substituted at any carbon up to and including 5 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

 R^{32} , R^{33} , R^{34} , R^{35} , and R^{36} are independently selected from the

- group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, carboxy, cyano, and Q^b;
- A is selected from the group consisting of a bond, NH, N(CH₃), CH₂, CH₃CH, and CH₂CH₂;

A is optionally selected from the group consisting of $CH_2N(CH_3)$, $CH_2N(CH_2CH_3)$, $CH_2CH_2N(CH_3)$, and $CH_2CH_2N(CH_2CH_3)$ with the proviso that B is hydrido;

25 M is selected from the group consisting of N and R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

$$R^2$$
 is Z^0 -Q;

10

15

 Z^0 is selected from the group consisting of a bond, O, S, NH, OCH₂, SCH₂, and N(H)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z^0 is optionally substituted by R^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R^{13} , a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} , with the proviso that Q is other than a phenyl when Z^0 is a bond;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano; R¹⁰ and R¹² are independently selected from the group consisting of

20 hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl, N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,

N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy,

30 carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl,

15

25

2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

Y⁰ is selected from the group consisting of:

$$2-Q^{b}-5-Q^{s}-6-R^{17}-4-R^{18}-4-R^{19}$$
 pyridine, $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ thiophene, $3-Q^{b}-6-Q^{s}-2-R^{16}-5-R^{18}-4-R^{19}$ pyridine, $3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$ thiophene,

$$3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$$
 furan, $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ furan,

$$R^{16}$$
, R^{17} , R^{18} , and R^{19} are independently selected from the group

consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

Q^b is selected from the group consisting of NR²⁰R²¹,

$$C(NR^{25})NR^{23}R^{24}$$
, and $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$;

20 R²⁰, R²¹, R²³, R²⁴, R²⁵, and R²⁶ are independently selected from the group consisting of hydrido, methyl, and ethyl;

22. Compound of Claim 21 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, *tert*-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-

amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 3-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

A is selected from the group consisting of a bond, CH₂, CH₃CH, and

 CH_2CH_2 ;

10

M is selected from the group consisting of N and R^1 -C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

 R^2 is Z^0 -Q;

2 is selected from the group consisting of a bond, O, S, NH, and

OCH₂;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,

3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

30 3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

- 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
- 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
- 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
- 5 3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,
 - 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,
 - 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,
 - 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
 - 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,
- 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,
 - 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,
 - 2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,
 - 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
 - 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
- 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the proviso that Q is other than a phenyl or a substituted phenyl when Z^0 is a bond;

Y⁰ is selected from the group consisting of:

$$3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$$
 thiophene, and $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ thiophene;

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

25 R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$$Q^{b}$$
 is $C(NR^{25})NR^{23}R^{24}$;

R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrido and methyl;

20

Q^s is CH₂.

23. Compound of Claim 22 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl, (S)-2-butyl, tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl,

1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl,

2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl, 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl,

3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl, 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

A is selected from the group consisting of a bond, CH₂, CH₃CH, and CH₂CH₂;

M is selected from the group consisting of N and R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro:

 R^2 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, O, and S, NH;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

30 3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

- 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
- 3-amino-5-(N-propylamidocarbonyl)phenyl,
- 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
- 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
- 5 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,
 - 3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,
 - 3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,
- 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,
 - 3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl, with the proviso that Q is other than a phenyl or a substituted phenyl when Z^0 is a bond;
 - Y^0 is selected from the group consisting of 5-amidino-2-thienylmethyl,
- 4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amidinobenzyl.
 - 24. Compound of Claim 17 where said compound is selected from the group of the Formula:

- or a pharmaceutically acceptable salt thereof, wherein:
 - R² is 3-aminophenoxy, B is 2,2,2-trifluoroethyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R^2 is 3-aminophenoxy, B is (S)-2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;
- 25 R² is 5-amino-2-fluorophenoxy, B is isopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

20

25

R² is 2-methyl-3-aminophenoxy, B is isopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is ethyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is ethyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenoxy, B is 2-propenyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenoxy, B is isopropyl, A is single bond, Y^0 is 4-amidino-2-10 fluorobenzyl, and M is CH;

R² is 3-aminophenoxy, B is isopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenoxy, B is 2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

15 R² is 3-aminophenoxy, B is (R)-2-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is 2-propynyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is 3-pentyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is hydrido, A is CH₂, Y⁰ is 4-amidinobenzyl and M is CH;

R² is 3-aminophenoxy, B is ethyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is 2-methypropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenoxy, B is 2-propyl, A is CH_3CH , Y^0 is 4-amidinobenzyl, and M is CH;

10

20

25

 R^2 is 3-aminophenoxy, B is propyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

 R^2 is 3-aminophenoxy, B is 6-amidocarbonylhexyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is tert-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is tert-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is 3-hydroxypropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is 2-methylpropyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenoxy, B is butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

15 R² is 3-aminophenoxy, B is 1-methoxy-2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenoxy, B is 2-methoxyethyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is 2-propyl, A is single bond, Y⁰ is 5-amidino-2-thienylmethyl, and M is CH;

R² is 3-aminophenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;

R² is 3-carboxyphenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;

R² is 3-amino-5-carboxy-2-thienyl, B is 2,2,2-trifluoroethyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

- R² is 3-amino-5-carboxy-2-thienyl, B is (S)-2-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
- R^2 is 5-amino-4-fluoro-3-carboxy-2-thienyl, B is isopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;
- R² is 4-methyl-3-amino-5-carboxy-2-thienyl, B is isopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R² is 3-amino-5-carboxy-2-thienyl, B is ethyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
- R² is 3-amino-5-carboxy-2-thienyl, B is ethyl, A is single bond, Y⁰ is 4amidino-2-fluorobenzyl, and M is CH;
 - R^2 is 3-amino-5-carboxy-2-thienyl, B is 2-propenyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;
 - R^2 is 3-amino-5-carboxy-2-thienyl, B is isopropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;
- 15 R² is 3-amino-5-carboxy-2-thienyl, B is isopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R² is 3-amino-5-carboxy-2-thienyl, B is 2-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
- R² is 3-amino-5-carboxy-2-thienyl, B is (R)-2-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R² is 3-amino-5-carboxy-2-thienyl, B is 2-propynyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R² is 3-amino-5-carboxy-2-thienyl, B is 3-pentyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
- 25 R² is 3-amino-5-carboxy-2-thienyl, B is hydrido, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R^2 is 3-amino-5-carboxy-2-thienyl, B is ethyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxy-2-thienyl, B is 2-methypropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is CH₃CH, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxy-2-thienyl, B is propyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-amino-5-carboxy-2-thienyl, B is 6-amidocarbonylhexyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxy-2-thienyl, B is tert-butyl, A is single bond, Y⁰ is
4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxy-2-thienyl, B is tert-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxy-2-thienyl, B is 3-hydroxypropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxy-2-thienyl, B is 2-methylpropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-amino-5-carboxy-2-thienyl, B is butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxy-2-thienyl, B is 1-methoxy-2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxy-2-thienyl, B is 2-methoxyethyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 5-amidino-2-thienylmethyl, and M is CH;

25 R² is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;

 R^2 is 3-carboxy-5-carboxy-2-thienyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

- R² is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;
- R² is 3-amino-5-carboxyphenylthio, B is 2,2,2-trifluoroethyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
- R² is 3-amino-5-carboxyphenylthio, B is (S)-2-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R^2 is 5-amino-2-fluoro-5-carboxyphenylthio, B is isopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;
- R² is 2-methyl-3-amino-5-carboxyphenylthio, B is isopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R² is 3-amino-5-carboxyphenylthio, B is ethyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R² is 3-amino-5-carboxyphenylthio, B is ethyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CH;
- 15 R² is 3-amino-5-carboxyphenylthio, B is 2-propenyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R² is 3-amino-5-carboxyphenylthio, B is isopropyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CH;
- R² is 3-amino-5-carboxyphenylthio, B is isopropyl, A is single bond, Y⁰ is
 4-amidinobenzyl, and M is CH;
 - R² is 3-amino-5-carboxyphenylthio, B is 2-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R^2 is 3-amino-5-carboxyphenylthio, B is (R)-2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;
- 25 R² is 3-amino-5-carboxyphenylthio, B is 2-propynyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
 - R² is 3-amino-5-carboxyphenylthio, B is 3-pentyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenylthio, B is hydrido, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenylthio, B is ethyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenylthio, B is 2-methypropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is CH_3CH , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxyphenylthio, B is propyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenylthio, B is 6-amidocarbonylhexyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxyphenylthio, B is tert-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

15 R² is 3-amino-5-carboxyphenylthio, B is tert-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenylthio, B is 3-hydroxypropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenylthio, B is 2-methylpropyl, A is single bond, Y is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-amino-5-carboxyphenylthio, B is butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxyphenylthio, B is 1-methoxy-2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxyphenylthio, B is 2-methoxyethyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond, Y^0 is 5-amidino-2-thienylmethyl, and M is CH;

R² is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;

 R^2 is 3-carboxy-5-carboxyphenylthio, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;

 R^2 is 3-amidocarbonyl-5-aminophenoxy, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)- phenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3,5-diaminophenoxy, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxyphenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amidocarbonyl-5-aminophenoxy, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

25 R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

20

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3,5-diaminophenoxy, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-carboxyphenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amidocarbonyl-5-amino-2-thienyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3,5-diamino-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amidocarbonyl-5-amino-2-thienyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

25 R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

20

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3,5-diamino-2-thienyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amidocarbonyl-5-aminophenylthio, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

15 R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH:

 R^2 is 3,5-diaminophenylthio, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amidocarbonyl-5-aminophenylthio, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenylthio, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3,5-diaminophenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amidocarbonyl-5-aminophenylthio, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3,5-diaminophenylthio, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-carboxyphenylthio, B is 2-propyl, A is single bond, Y⁰ is
4-amidinobenzyl, and M is N;

 R^2 is 3-amidocarbonyl-5-amino-2-thienyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

25 R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

10

15

20

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3,5-diamino-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-carboxy-2-thienyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amidocarbonyl-5-aminophenoxy, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3,5-diaminophenoxy, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-carboxyphenoxy, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N.

25. Compound of Claim 2 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

10

15

20

B is selected from the group consisting of C3-C7 cycloalkyl and C4 saturated heterocyclyl, wherein each ring carbon is optionally substituted with R³³, a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbon sand a nitrogen adjacent to the carbon atom at the point of attachment is optionally substituted with R⁹ or R¹³, a ring carbon or nitrogen adjacent to the R⁹ position and two atoms from the point of attachment is optionally substituted with R¹⁰, a ring carbon or nitrogen adjacent to the R¹³ position and two atoms from the point of attachment is optionally substituted with R¹², a ring carbon three atoms from the point of attachment and adjacent to the R¹⁰ position is optionally substituted with R¹¹, a ring carbon three atoms from the point of attachment and adjacent to the R¹⁰ position is optionally substituted with R³³, and a ring carbon atoms from the point of attachment and adjacent to the R¹¹ and R³³ positions is optionally substituted with R³⁴;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkylsulfonamido, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, alkoxy, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heteroaryl, heterocyclyl, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy,

heteroaralkoxy, heterocyclyloxy, heterocyclylalkoxy, hydroxy, amino, alkoxyamino, alkylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclylamino, heterocyclylalkylamino,

alkylsulfonamido, amidosulfonyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, halo, haloalkyl, and cyano;

R³³ and R³⁴ independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, carboalkoxy, carboxy,

10 carboxamido, cyano, and Q^b;

A is a bond or $(CH(R^{15}))_{pa}$ - $(W^7)_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^7 is $(R^7)NC(O)$ or $N(R^7)$;

R⁷ is selected from the group consisting of hydrido, hydroxy and alkyl;

R 15 is selected from the group consisting of hydrido, halo, alkyl, and

15 haloalkyl;

M is N or R^1 -C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

20 $R^2 \text{ is } Z^0 - Q;$

 Z^0 is a bond or W^0 -(CH(R⁴²))_p wherein p is 0 or 1 and W^0 is selected from the group consisting of O, S, and N(R⁴¹);

 R^{41} and R^{42} are independently hydrido or alkyl;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to z^0 is optionally substituted by z^0 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by z^0 , a carbon

10

15

20

adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R^{10} , a carbon adjacent to R^{13} and two atoms from the carbon at the point of attachment is optionally substituted by R^{12} , and any carbon adjacent to both R^{10} and R^{12} is optionally substituted by R^{11} , with the proviso that Q is other than a phenyl when Z^0 is a bond;

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three contiguous atoms from the point of attachment of Q^S to the phenyl or heteroaryl ring is substituted by Q^D , a carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , another carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

 Q^b is selected from the group consisting of NR 20 R 21 , hydrido, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that no more than one of R 20 and R 21 is

hydroxy at the same time and with the further proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;

R²⁰, R²¹, R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrido, alkyl, and hydroxy;

 Q^{s} is selected from the group consisting of a bond, CH_{2} , and $CH_{2}CH_{2}$.

26. Compound of Claim 25 or a pharmaceutically acceptable salt thereof, wherein;

10 B is selected from the group consisting of cyclopropyl, cyclobutyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, thiaetan-3-yl, cyclopentyl, cyclohexyl, norbornyl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, cycloheptyl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 15 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon is optionally substituted with R³³, ring carbons and a nitrogen adjacent to the 20 carbon atom at the point of attachment are optionally substituted with R or R¹³, a ring carbon or nitrogen adjacent to the R⁹ position and two atoms from the point of attachment is optionally substituted with R 10, and a ring carbon or nitrogen adjacent to the $\ensuremath{\text{R}}^{13}$ position and two atoms from the point of attachment is optionally substituted with R 12; 25

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, N-methylamino,

N,N-dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, and cyano;

R 10 and R 12 are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, carboxymethyl, methyl, ethyl, propyl, isopropyl, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methanesulfonamido, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl, amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,

N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,
 N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl,
 N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,
 N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl,
 N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,

N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, fluoro, chloro, bromo, cyano, cyclobutoxy,

cyclohexoxy, cyclohexylmethoxy, 4-trifluoromethycyclohexylmethoxy,
 cyclopentoxy, benzyl, benzyloxy, 4-bromo-3-fluorophenoxy,
 3-bromobenzyloxy, 4-bromobenzyloxy, 4-bromobenzylamino,
 5-bromopyrid-2-ylmethylamino, 4-butoxyphenamino, 3-chlorobenzyl,
 4-chlorophenoxy, 4-chloro-3-ethylphenoxy, 4-chloro-3-ethylbenzylamino,

4-chloro-3-ethylphenylamino, 3-chlorobenzyloxy, 4-chlorobenzyloxy,
4-chlorobenzylsulfonyl, 4-chlorophenylamino, 4-chlorophenylsulfonyl,
5-chloropyrid-3-yloxy, 2-cyanopyrid-3-yloxy, 2,3-difluorobenzyloxy,
2,4-difluorobenzyloxy, 3,4-difluorobenzyloxy, 4-difluorobenzyloxy,
,5-difluorophenoxy, 3,5-difluorobenzyloxy, 4-difluoromethoxybenzyloxy,

35 2,3-difluorophenoxy, 2,4-difluorophenoxy, 2,5-difluorophenoxy,

- 3,5-dimethylphenoxy, 3,4-dimethylphenoxy, 3,4-dimethylbenzyloxy,
- 3,5-dimethylbenzyloxy, 4-ethoxyphenoxy, 4-ethylbenzyloxy, 3-ethylphenoxy,
- 4-ethylaminophenoxy, 3-ethyl-5-methylphenoxy, 4-fluorobenzyloxy,
- 2-fluoro-3-trifluoromethylbenzyloxy, 3-fluoro-5-trifluoromethylbenzyloxy,
- 5 4-fluoro-2-trifluoromethylbenzyloxy, 4-fluoro-3-trifluoromethylbenzyloxy,
 - 2-fluorophenoxy, 4-fluorophenoxy, 2-fluoro-3-trifluoromethylphenoxy,
 - 2-fluorobenzyloxy, 4-fluorophenylamino, 2-fluoro-4-trifluoromethylphenoxy,
 - 4-isopropylbenzyloxy, 3-isopropylphenoxy, 4-isopropylphenoxy,
 - 4-isopropyl-3-methylphenoxy, 4-isopropylbenzyloxy, 3-isopropylphenoxy,
- 4-isopropylphenoxy, 4-isopropyl-3-methylphenoxy, phenylamino,
 - 1-phenylethoxy, 2-phenylethoxy, 2-phenylethyl, 2-phenylethylamino,
 - phenylsulfonyl, 3-trifluoromethoxybenzyloxy, 4-trifluoromethoxybenzyloxy,
 - 3-trifluoromethoxyphenoxy, 4-trifluoromethoxyphenoxy,
 - 3-trifluoromethylbenzyloxy, 4-trifluoromethylbenzyloxy,
- 2,4-bis-trifluoromethylbenzyloxy, 3-trifluoromethylbenzyl,
 - 3,5-bis-trifluoromethylbenzyloxy, 4-trifluoromethylphenoxy,
 - 3-trifluoromethylphenoxy, 3-trifluoromethylthiobenzyloxy,
 - 4-trifluoromethylthiobenzyloxy, 2,3,4-trifluorophenoxy, 2,3,5-trifluorophenoxy,
 - 3-pentafluoroethylphenoxy, 3-(1,1,2,2-tetrafluoroethoxy)phenoxy, and
- 20 3-trifluoromethylthiophenoxy;
 - R³³ and R³⁴ are independently selected from the group consisting of

hydrido, amidino, guanidino, carboxy, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino, methoxyamino, ethoxyamino, acetamido, trifluoroacetamido, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio,

- isopropylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,
 - 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl,
 - N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, 2,2,2-trifluoro-1-hydroxyethyl, methoxycarbonyl, ethoxycarbonyl,
- amidocarbonyl, N-methylamidocarbonyl, N,N-dimethylamidocarbonyl, cyano, and Q^b;

A is selected from the group consisting of a bond, NH, N(CH₃), N(OH), CH₂, CH₃CH, CF₃CH, NHC(O), N(CH₃)C(O), C(O)NH, C(O)N(CH₃), CH₂CH₂, CH₂CH₂CH₂, CH₃CHCH₂, and CF₃CHCH₂; M is N or \mathbb{R}^1 -C;

- R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, 1-aminoethyl, methylamino, dimethylamino, cyano, methyl, ethyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, methoxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, methoxyamino, methylthio, ethylthio, trifluoromethoxy,
- 10 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, and bromo;

$$R^2$$
 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, O, S, NH, N(CH₃), OCH₂, SCH₂, N(H)CH₂, and N(CH₃)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 15 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, 5-isoxazolyl, 2-pyridyl, 3-pyridyl, 4-pyridyl, 2-pyrazinyl, 2-pyrimidinyl, 4-pyrimidinyl, 5-pyrimidinyl, 3-pyridazinyl, 4-pyridazinyl, and 1,3,5-triazin-2-yl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to z^0 is optionally substituted by R^0 , the other carbon adjacent 20 to the carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R^9 and two atoms from the carbon at the point of attachment is optionally substituted by R 10, a carbon adjacent to R 23 and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R 10 and R 12 is optionally substituted by R 11, with the 25 proviso that Q is other than a phenyl when Z^0 is a bond;

Y is selected from the group consisting of: 1-0 -4-0 -2-R -3-R -5-R -6-R benzene 2-0 -5-0 -6-R -4-R -3-R pyridine. 3-O -6-O -2-R 16 -5-R 18 -4-R pyridine, 2-Q -5-Q -3-R 6-6-R pyrazine, 3-O -6-O -2-R -5-R 18 19 pyridazine, 2-0 -5-0 -4-R 17 -6-R pyrimidine, 5-0 -2-0 -4-R -6-R pyrimidine, 3-0 -5-0 -4-R 16 -2-R thiophene, 2-0 -5-0 -3-R 16 -4-R thiophene, b s 16 19 furan, 2-O -5-O -3-R 16 17 furan, 2-O -5-O -3-R -4-R furan, 3-Q^b-5-Q^s-4-R¹⁶-2-R¹⁹pyrrole, 2-Q^b-5-Q^s-3-R¹⁶-4-R¹⁷pyrrole, 4-0 -2-0 -5-R imidazole, 2-0 -4-0 -5-R imidazole, b s 16 s 16 s 16. 3-O -5-O -4-R isoxazole, 5-O -3-O -4-R isoxazole, 2-Q -5-Q s-4-R pyrazole, 4-Q -2-Q s-5-R thiazole, and $2-0^{b}-5-0^{s}-4-R^{17}$ thiazole: R 16, R 7, R 18, and R 19 are independently selected from the group consisting of hydrido, methyl, ethyl, isopropyl, propyl, carboxy, amidino, . 15 guanidino, methoxy, ethoxy, isopropoxy, propoxy, hydroxy, amino,

aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, N-ethylamino, methylthio, ethylthio, isopropylthio, trifluoromethylthio, methylsulfinyl, ethylsulfinyl, methylsulfonyl, ethylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, 2,2,3,3,3-pentafluoropropyl, trifluoromethoxy, 1,1,2,2-tetrafluoroethoxy, fluoro, chloro, bromo, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, and cyano;

R¹⁶ or R¹⁹ is optionally C(NR²⁵)NR²³R²⁴ with the proviso that R¹⁶,

R¹⁹, and Q^b are not simultaneously hydrido;

25

 Q^b is $C(NR^{25})NR^{23}R^{24}$ or hydrido, with the proviso that no more than one of R^{23} and R^{24} is hydroxy at the same time;

R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrido, methyl, ethyl, and hydroxy;

Q^s is selected from the group consisting of a bond, CH₂ and CH₂CH₂.

27. Compound of Claim 26 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, 1-pyrrolidinyl, 1-piperidinyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, 7-oxabicyclo[2.2.1]heptan-2-yl, bicyclo[3.1.0]hexan-6-yl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl,

2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 4H-2-pyranyl, 4H-3-pyranyl, 4H-4-pyranyl, 4H-pyran-4-one-2-yl, 4H-pyran-4-one-3-yl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl;

A is selected from the group consisting of a bond, CH₂, NHC(O),

 ${\tt 20} \quad \mathsf{CH}_2\mathsf{CH}_2, \, \mathsf{and} \, \mathsf{CH}_2\mathsf{CH}_2\mathsf{CH}_2; \\$

M is selected from the group consisting of N and R¹-C;

R¹ is selected from the group consisting of hydrido, hydroxy, amino, amidino, hydroxyamino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, hydroxymethyl, methoxyamino, methylthio, trifluoromethoxy, fluoro, and chloro;

$$R^2$$
 is Z^0 -O:

 Z^0 is selected from the group consisting of a bond, O, S, NH, N(CH₃), OCH₂, and SCH₂;

Q is selected from the group consisting of

```
3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl, 3-amino-5-benzylphenyl, 3-amino-5-(2-phenylethyl)phenyl,
```

- 3-amino-5-benzylaminophenyl, 3-amino-5-(2-phenylethylamino)phenyl,
- 3-amino-5-benzyloxyphenyl, 3-amino-5-(2-phenylethoxy)phenyl,
- 5 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
- 10 3-amino-5-(N-benzylamidosulfonyl)phenyl,
 - 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
 - 3-amino-5-(N-ethylamidocarbonyl)phenyl,
 - 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
 - 3-amino-5-(N-propylamidocarbonyl)phenyl,
- 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
- 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
 - 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
 - 3-aminophenyl, 3-amino-5-(4-trifluoromethylbenzylamino)phenyl,
 - 3-amino-5-(4-trifluoromethylbenzyloxy)phenyl, 3-carboxyphenyl,
 - 3-carboxy-5-hydroxyphenyl, 3-amino-5-carboxyphenyl, 3-chlorophenyl,
- 25 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
 - 2-fluorophenyl, 3-fluorophenyl, 2-hydroxyphenyl, 3-hydroxyphenyl,
 - 3-methanesulfonylaminophenyl, 2-methoxyphenyl, 3-methoxyphenyl,
 - 3-methoxyaminophenyl, 3-methoxycarbonylphenyl, 2-methylaminophenyl,
 - 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl,
- 30 phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
 - 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
 - 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the
 - proviso that Q is other than a phenyl or substituted phenyl when Z^0 is a bond;

Y⁰ is selected from the group consisting of:

$$3 - Q^{b} - 5 - Q^{s} - 4 - R^{16} - 2 - R^{19}$$
 thiophene, and $2 - Q^{b} - 5 - Q^{s} - 3 - R^{16} - 4 - R^{17}$ thiophene;

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

$$R^{16}$$
 or R^{19} is optionally $C(NR^{25})NR^{23}R^{24}$ with the proviso that R^{16} ,

10 R¹⁹, and Q^b are not simultaneously hydrido;

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$$Q^b$$
 is $C(NR^{25})NR^{23}R^{24}$ or hydrido;

 R^{23} , R^{24} , and R^{25} are independently hydrido or methyl;

15
$$Q^{s}$$
 is CH_{2} .

28. Compound of Claim 25 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

10

15

20

25

B is a C3-C7 cycloalkyl or a C4-C6 saturated heterocyclyl, wherein each ring carbon is optionally substituted with R³³, a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R⁹ or R¹³, a ring carbon or nitrogen adjacent to the R⁹ position and two atoms from the point of attachment is optionally substituted with R¹⁰, a ring carbon or nitrogen adjacent to the R¹³ position and two atoms from the point of attachment is optionally substituted with R¹², a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R¹⁰ position is optionally substituted with R¹¹, a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R¹² position is optionally substituted with R³³, and a ring carbon or nitrogen four atoms from the point of attachment and adjacent to the R¹¹ and R³³ positions is optionally substituted with R³⁴;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, hydroxy, amino, amidino, guanidino, alkylamino, alkylthio, alkoxy, alkylsulfinyl, alkylsulfonyl, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboxy, carboxamido, and cyano;

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkyl, alkoxy, alkoxyamino, hydroxy, amino, alkylamino, alkylsulfonamido, amidosulfonyl, hydroxyalkyl, aminoalkyl, halo, haloalkyl, carboalkoxy, carboxy, carboxamido, carboxyalkyl, and cyano;

R³³ and R³⁴ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkoxy, hydroxy, amino,

alkoxyamino, alkylamino, alkylthio, amidosulfonyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, carboalkoxy, carboxy, carboxamido, and cyano;

R³³ is optionally Q^b;

A is a bond or $(CH(R^{15}))_{pa}^{-1}(W^{7})_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^{7} is $N(R^{7})$;

R is hydrido or alkyl;

R 15 is selected from the group consisting of hydrido, halo, alkyl, and haloalkyl;

M is N or R^1 -C:

10 R¹ is selected from the group consisting of hydrido, hydroxy, hydroxyamino, amidino, amino, cyano, hydroxyalkyl, alkoxy, alkyl, alkylamino, aminoalkyl, alkylthio, alkoxyamino, haloalkyl, haloalkoxy, and halo;

$$R^2$$
 is Z^0 -Q;

from the group consisting of O, S, and N(H);

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z⁰ is optionally substituted by R⁹, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment is optionally substituted by R¹³ and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹, with the proviso that O is other than a phenyl when Z⁰ is a bond:

10

15

 Y^0 is phenyl or a heteroaryl of 5 or 6 ring members, wherein one carbon of said phenyl or said heteroaryl is substituted by Q^S , a carbon two or three contiguous atoms from the point of attachment of Q^S to the phenyl or heteroaryl ring is substituted by Q^D , a carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , another carbon adjacent to the point of attachment of Q^S is optionally substituted by Q^D , a carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to Q^D is optionally substituted by Q^D , and another carbon adjacent to

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q b is selected from the group consisting of NR 20 R R , hydrido, and C(NR 25)NR 23 R R R ;

$$R^{20}$$
, R^{21} , R^{23} , R^{24} , and R^{25} are independently hydrido or alkyl; Q^s is CH_2 .

20

25

29. Compound of Claim 28 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, bicyclo[3.1.0]hexan-6-yl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl,

1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl,

2-pyrrolidinyl, 3-pyrrolidinyl, 2-dioxanyl, 2-tetrahydrofuranyl,

3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl,

4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each

ring carbon is optionally substituted with R³³, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R or R 3, a ring carbon or nitrogen adjacent to the R position and two atoms from the point of attachment are optionally substituted with R 10, and a ring carbon or nitrogen atom adjacent to the R 13 position and two atoms from

the point of attachment is optionally substituted with R 12: 10

 R^9 , R^{11} , and R^{13} are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl,

N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 15 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano:

R¹⁰ and R¹² are independently selected from the group consisting of hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl, N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,

- 20 N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl, N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl, N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl, N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl,
- 25 N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy, carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino,
- 30 dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl,

10

15

20

25

N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;

R³³ is selected from the group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, carboxy, cyano, and Q^b;

A is selected from the group consisting of a bond, NH, N(CH₃), CH₂, CH₃CH, CH₂CH₂, and CH₂CH₂CH₂;

M is selected from the group consisting of N and R^1 -C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

 R^2 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, O, S, NH, OCH₂, SCH₂, and N(H)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to Z⁰ is optionally substituted by R⁹, the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R¹³, a carbon adjacent to R⁹ and two atoms from the carbon at the point of attachment is optionally substituted by R¹⁰, a carbon adjacent to R¹³ and two atoms from the carbon at the point of attachment is optionally substituted by R¹², and any carbon adjacent to both R¹⁰ and R¹² is optionally substituted by R¹¹, with the proviso that Q is other than a phenyl when Z⁰ is a bond;

15

20

Y⁰ is selected from the group consisting of:

$$3-Q^{b}-5-Q^{s}-4-R^{16}-2-R^{19}$$
pyrrole, $2-Q^{b}-5-Q^{s}-3-R^{16}-4-R^{17}$ pyrrole,

$$4-Q^{b}-2-Q^{s}-5-R^{19}$$
 thiazole, and $2-Q^{b}-5-Q^{s}-4-R^{17}$ thiazole;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl,

trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

$$Q^{b}$$
 is $NR^{20}R^{21}$ or $C(NR^{25})NR^{23}R^{24}$;

R²⁰, R²¹, R²³, R²⁴, and R²⁵ are independently selected from the group consisting of hydrido, methyl, and ethyl;

30. Compound of Claim 29 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, 1-pyrrolidinyl and 1-piperidinyl;

A is selected from the group consisting of a bond, CH2, CH2CH2 and

25 CH₂CH₂CH₂;

M is N or R¹-C:

R¹ is selected from the group consisting hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

$$R^2$$
 is Z^0 -Q;

5 Z⁰ is selected from the group consisting of a bond, O, S, NH, and OCH₂:

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,

3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,

3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,

3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,

3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,

3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,

3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,

30 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,

2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,

3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,

3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,

2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,

4-methylphenyl, 9-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,

2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,

3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the

5 proviso that Q is other than a phenyl or a substituted phenyl when Z^0 is a bond;

Y⁰ is selected from the group consisting of:

$$2-Q^{b}-5-Q^{s}-6-R^{17}-4-R^{18}-3-R^{19}$$
 pyridine,

R 16 and R 19 are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

 R^{17} and R^{18} are independently selected from the group consisting of

hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$$Q^{b}$$
 is $C(NR^{25})NR^{23}R^{24}$;

R²³, R²⁴, and R²⁵ are independently hydrido or methyl;

Q^s is CH₂.

31. Compound of Claim 30 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, and 1-piperidinyl;

A is selected from the group consisting of a bond, CH_2 , CH_2CH_2 and $CH_2CH_2CH_2$;

M is N or R^1 -C:

R¹ is selected from the group consisting of hydrido, hydroxy. hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

$$R^2$$
 is Z^0 -Q;

5 Z^0 is selected from the group consisting of a bond, O, and S, NH;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

20 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,

3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,

3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,

3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,

3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl, with the proviso that Q is other than a phenyl or a substituted phenyl when Z^0 is a bond:

Y⁰ is selected from the group consisting of 5-amidino-2-thienylmethyl,

4-amidinobenzyl, 2-fluoro-4-amidinobenzyl, and 3-fluoro-4-amdinobenzyl.

10

15

20

32. Compound of Claim 25 where said compound is selected from the group of the Formula:

or a pharmaceutically acceptable salt thereof, wherein:

R² is 3-aminophenoxy, B is cyclopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenoxy, B is cyclopropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;

R² is 3-aminophenoxy, B is cyclopentyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenoxy, B is cyclopropyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenoxy, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is cyclopentyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CH;

10

20

 R^2 is 3-aminophenoxy, B is cyclohexyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 2-hydroxyphenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is phenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 2,6-dichlorophenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenoxy, B is cyclopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3-aminophenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CCl;

R² is 3-aminophenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

15 R² is 3-aminophenoxy, B is cyclopropyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CCl;

R² is 3-aminophenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3-aminophenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CCl:

R² is 3-aminophenoxy, B is cyclopentyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-aminophenoxy, B is cyclopropyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-aminophenoxy, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-aminophenoxy, B is cyclopentyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CCl;

20

 R^2 is 3-aminophenoxy, B is cyclohexyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 2-hydroxyphenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is phenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 2,6-dichlorophenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amidocarbonyl-5-aminophenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-phenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3,5-diaminophenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-carboxyphenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amidocarbonyl-5-aminophenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

15

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3,5-diaminophenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amidocarbonyl-5-aminophenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3,5-diaminophenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-20 amidinobenzyl, and M is CCl;

R² is 3-amino-5-carboxyphenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3-amidocarbonyl-5-aminophenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

25 R² is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3,5-diaminophenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenylthio, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amidocarbonyl-5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3,5-diamino-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-20 amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-carboxy-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amidocarbonyl-5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

10

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3,5-diamino-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxy-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amidocarbonyl-5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3,5-diamino-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-carboxy-2-thienyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amidocarbonyl-5-aminophenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

10

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N:

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenylthio, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3,5-diaminophenylthio, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-carboxyphenylthio, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amidocarbonyl-5-aminophenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenoxy, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3,5-diaminophenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-carboxyphenoxy, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N.

10

15

20

33. Compound of Claim 2 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

B is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R³², the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R³⁶, a carbon adjacent to R³² and two atoms from the carbon at the point of attachment is optionally substituted by R³³, a carbon adjacent to R³⁶ and two atoms from the carbon at the point of attachment is optionally substituted by R³⁵, and any carbon adjacent to both R³³ and R³⁵ is optionally substituted by R³⁴;

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, amidino, guanidino, alkylenedioxy, haloalkylthio, alkanoyloxy, alkoxy, hydroxy, amino, alkoxyamino, haloalkanoyl, nitro, alkylamino, alkylthio, aryl, aralkyl, cycloalkyl, cycloalkylalkyl, heterocyclyl, alkylsulfonamido, amidosulfonyl, alkyl, alkenyl, halo, haloalkyl, haloalkenyl, haloalkoxy, hydroxyalkyl, alkylamino, carboalkoxy, carboxy, carboxamido, cyano, and Q^b;

B is optionally selected from the group consisting of hydrido, trialkylsilyl, C2-C8 alkyl, C3-C8 alkylenyl, C3-C8 alkenyl, C3-C8 alkynyl, and C2-C8 haloalkyl, wherein each member of group B is optionally substituted at any carbon up to and including 6 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

B is optionally a C3-C12 cycloalkyl or a C4-C9 saturated heterocyclyl, wherein each ring carbon is optionally substituted with R 33 , a ring carbon other than the ring carbon at the point of attachment of B to A is optionally substituted with oxo provided that no more than one ring carbon is substituted by oxo at the same time, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R 9 or R 13 , a ring carbon or nitrogen adjacent to the R 9 position and two atoms from the point of attachment is optionally substituted with R 10 , a ring carbon or nitrogen adjacent to the R 13 position and two atoms from the point of attachment is optionally substituted with R 12 , a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R 10 position is optionally substituted with R 11 , a ring carbon or nitrogen three atoms from the point of attachment and adjacent to the R 12 position is optionally substituted with R 33 , and a ring carbon or nitrogen four atoms from the point of attachment and adjacent to the R 12 position is optionally substituted with R 33 , and a ring carbon or nitrogen four atoms from the point of attachment and adjacent to the R 11 and R 33 positions is optionally substituted with R 34 ;

R⁹, R¹⁰, R¹¹, R¹², and R¹³ are independently selected from the group consisting of hydrido, acetamido, haloacetamido, alkoxyamino, alkanoyl, haloalkanoyl, amidino, guanidino, alkylenedioxy, haloalkylthio, alkoxy, cycloalkoxy, cycloalkylalkoxy, aralkoxy, aryloxy, heteroaryloxy, heteroaralkoxy,heterocyclyloxy, heterocyclylalkoxy, hydroxy, amino, alkylamino, N-alkyl-N-arylamino, arylamino, aralkylamino, heteroarylamino, heteroaralkylamino, heterocyclylamino, heterocyclylalkylamino, alkylthio, alkylsulfinyl, arylsulfinyl, aralkylsulfinyl, cycloalkylsulfinyl, heteroarylsulfinyl, alkylsulfamido, alkylsulfonyl, arylsulfonyl, aralkylsulfonyl, cycloalkylsulfonyl, heteroarylsulfonyl, amidosulfonyl, alkyl, aryl, aralkyl, cycloalkyl, cycloalkyl, cycloalkyl, heteroaryl, heterocyclyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, hydroxyhaloalkyl, aminoalkyl, carboalkoxy, carboxy, carboxyalkyl, carboxamido, and cyano;

15

A is a bond or $(CH(R^{15}))_{pa}^{-1}(W^{7})_{rr}$ wherein rr is 0 or 1, pa is an integer selected from 0 through 3, and W^{7} is selected from the group consisting of O, S. C(O), $(R^{7})NC(O)$, $(R^{7})NC(S)$, and $N(R^{7})$;

R⁷ is selected from the group consisting of hydrido, hydroxy and alkyl;

R is selected from the group consisting of hydrido, hydroxy, halo, alkyl, and haloalkyl;

M is N or R^1 -C;

R¹ is selected from the group consisting of hydrido, alkyl, cyano, halo, haloalkyl, haloalkoxy, amino, aminoalkyl, alkylamino, amidino, hydroxy, hydroxyamino, alkoxy, hydroxyalkyl, alkoxyamino, thiol, and alkylthio;

 R^2 is Z^0 -O:

 Z^0 is selected from the group consisting of a bond, W^0 -(CH(R⁴²))_p wherein p is an integer selected from 0 through 3 and W^0 is selected from the group consisting of O, S, and N(R⁴¹), and (CH(R⁴¹))_g-O wherein g is an integer selected from 1 through 3, with the proviso that Z^0 is directly bonded to the pyrimidinone ring;

 Z^0 is optionally W^{22} -(CH(R⁴²))_h wherein h is 0 or 1 and W^{22} is selected from the group consisting of 1,2-cyclopropyl, 1,2-cyclobutyl, 1,2-cyclohexyl, 1,3-cyclohexyl, 1,3-cyclopentyl, 1,3-cyclopentyl,

- 2.3-morpholinyl, 2,4-morpholinyl, 2,6-morpholinyl, 3,4-morpholinyl, 3,5-morpholinyl, 1,2-piperazinyl, 1,3-piperazinyl, 2,3-piperazinyl, 2,6-piperazinyl, 1,2-piperidinyl, 1,3-piperidinyl, 2,3-piperidinyl, 2,4-piperidinyl, 2,6-piperidinyl, 3,4-piperidinyl, 1,2-pyrrolidinyl, 1,3-pyrrolidinyl, 2,3-pyrrolidinyl, 2,4-pyrrolidinyl, 2,5-pyrrolidinyl, 3,4-pyrrolidinyl,
- 25 2,3-tetrahydrofuranyl, 2,4-tetrahydrofuranyl, 2,5-tetrahydrofuranyl, and

10

15

20

3,4-tetrahydrofuranyl, wherein Z^0 is directly bonded to the pyrimidinone ring and W^{22} is optionally substituted with one or more substituents selected from the group consisting of R^9 , R^{10} , R^{11} , R^{12} , and R^{13} ;

R⁴¹ and R⁴² are independently selected from the group consisting of hydrido, hydroxy, and amino;

Q is phenyl or a heteroaryl of 5 or 6 ring members, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to \mathbf{Z}^0 is optionally substituted by \mathbf{R}^9 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by \mathbf{R}^{13} , a carbon adjacent to \mathbf{R}^9 and two atoms from the carbon at the point of attachment is optionally substituted by \mathbf{R}^{10} , a carbon adjacent to \mathbf{R}^{13} and two atoms from the carbon at the point of attachment is optionally substituted by \mathbf{R}^{10} , and any carbon adjacent to both \mathbf{R}^{10} and \mathbf{R}^{12} is optionally substituted by \mathbf{R}^{11} , with the proviso that Q is other than a phenyl when \mathbf{Z}^0 is a bond;

Q is optionally hydrido with the proviso that Z^0 is selected from other than a bond;

K is CHR ^{4a} wherein R ^{4a} is selected from the group consisting of hydrido, hydroxyalkyl, alkyl, alkoxyalkyl, alkylthioalkyl, and haloalkyl;

 E^{0} is selected from the group consisting of a bond, C(O)N(H),

(H)NC(O), $(R^7)NS(O)_2$, and $S(O)_2N(R^7)$;

 Y^{AT} is $Q^b - Q^s$;

 Q^{s} is $(CR^{37}R^{38})_{b}$ wherein b is an integer selected from 1 through 4, R^{37} is selected from the group consisting of hydrido, alkyl, and haloalkyl, and R^{38} is selected from the group consisting of hydrido, alkyl, haloalkyl, aroyl,

10

15

20

25

and heteroaroyl with the proviso that there is at least one aroyl or heteroaroyl substituent, with the further proviso that no more than one aroyl or heteroaroyl is bonded to $(CR^{37}R^{38})_b$ at the same time, with the still further proviso that said aroyl and said heteroaroyl are optionally substituted with one or more substituents selected from the group consisting of R^{16} , R^{17} , R^{18} , and R^{19} , with another further proviso that said aroyl and said heteroaroyl are bonded to the $CR^{37}R^{38}$ that is directly bonded to E^0 , with still another further proviso that no more than one alkyl or one haloalkyl is bonded to a $CR^{37}R^{38}$ at the same time, and with the additional proviso that said alkyl and haloalkyl are bonded to a carbon other than the one bonding said aroyl or said heteroaroyl;

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, amidino, guanidino, carboxy, haloalkylthio, alkoxy, hydroxy, amino, alkoxyamino, alkylamino, alkylthio, alkylsulfinyl, alkylsulfonyl, alkanoyl, haloalkanoyl, alkyl, halo, haloalkyl, haloalkoxy, hydroxyalkyl, aminoalkyl, and cyano;

 R^{16} or R^{19} is optionally selected from the group consisting of $NR^{20}R^{21}$, $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$, and $C(NR^{25})NR^{23}R^{24}$, with the proviso that R^{16} , R^{19} , and Q^b are not simultaneously hydrido;

Q^b is selected from the group consisting of NR ²⁰R ²¹, hydrido,

N(R²⁶)C(NR²⁵)N(R²³)(R²⁴), and C(NR²⁵)NR²³R²⁴, with the proviso that no more than one of R²⁰ and R²¹ is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time and with the further proviso that no more than one of R²³ and R²⁴ is selected from the group consisting of hydroxy, amino, alkylamino, and dialkylamino at the same time;

 R^{20} , R^{21} , R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group consisting of hydrido, alkyl, hydroxy, amino, alkylamino and dialkylamino.

5 34. Compound of Claim 33 of the Formula:

or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of phenyl, 2-thienyl, 3-thienyl, 2-furyl, 3-furyl, 2-pyrrolyl, 3-pyrrolyl, 2-imidazolyl, 4-imidazolyl, 3-pyrazolyl, 4-pyrazolyl, 2-thiazolyl, 3-isoxazolyl, and 5-isoxazolyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to A is optionally substituted by R³², the other carbon adjacent to the carbon at the point of attachment is optionally substituted by R³⁶, a carbon adjacent to R³² and two atoms from the carbon at the point of attachment is optionally substituted by R³⁶ and two atoms from the carbon at the point of attachment is optionally substituted by R³⁵, and any carbon adjacent to both R³³ and R³⁵ is optionally substituted by and any carbon adjacent to both R³³ and R³⁵ is optionally substituted by

R³², R³³, R³⁴, R³⁵, and R³⁶ are independently selected from the

group consisting of hydrido, amidino, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, dimethylamino, methoxyamino, methylthio, ethylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, hydroxymethyl, amidocarbonyl, carboxy, cyano, and Q^b;

B is optionally selected from the group consisting of hydrido, ethyl. 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butenyl, 2-butynyl, sec-butyl, tert-butyl, isobutyl, 2-methylpropenyl, 1-pentyl, 2-pentenyl, 3-pentenyl, 2-pentynyl, 3-pentyl, 2-pentyl, 2-methylbutyl, 5 2-methyl-2-butenyl, 3-methylbutyl, 3-methyl-2-butenyl, 1-hexyl, 2-hexenyl, 3-hexenyl, 4-hexenyl, 2-hexynyl, 3-hexynyl, 4-hexynyl, 2-hexyl, 1-methyl-2-pentenyl, 1-methyl-3-pentenyl, 1-methyl-2-pentynyl, 1-methyl-3-pentynyl, 3-hexyl, 1-ethyl-2-butenyl, 1-heptyl, 2-heptenyl, 3-heptenyl, 4-heptenyl, 5-heptenyl, 2-heptynyl, 3-heptynyl, 4-heptynyl, 10 5-heptynyl, 2-heptyl, 1-methyl-2-hexenyl, 1-methyl-3-hexenyl, 1-methyl-4-hexenyl, 1-methyl-2-hexynyl, 1-methyl-3-hexynyl, 1-methyl-4-hexynyl, 3-heptyl, 1-ethyl-2-pentenyl, 1-ethyl-3-pentenyl, 1-ethyl-2-pentynyl, 1-ethyl-3-pentynyl, 2,2,2-trifluoroethyl, 2,2-difluoropropyl, 4-trifluoromethyl-5,5,5-trifluoropentyl, 4-trifluoromethylpentyl. 15 5,5,6,6,6-pentafluorohexyl, and 3,3,3-trifluoropropyl, wherein each member of group B is optionally substituted at any carbon up to and including 5 atoms from the point of attachment of B to A with one or more of the group consisting of R³², R³³, R³⁴, R³⁵, and R³⁶;

B is optionally selected from the group consisting of cyclopropyl, 20 cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, bicyclo[3.1.0]hexan-6-yl, 2-morpholinyl, 3-morpholinyl, 4-morpholinyl, 1-piperazinyl, 2-piperazinyl, 1-piperidinyl, 2-piperidinyl, 3-piperidinyl, 4-piperidinyl, 1-pyrrolidinyl, 2-pyrrolidinyl, 3-pyrrolidinyl, 25 2-dioxanyl, 2-tetrahydrofuranyl, 3-tetrahydrofuranyl, 2-tetrahydropyranyl, 3-tetrahydropyranyl, 4-tetrahydropyranyl, 2-tetrahydrothienyl, and 3-tetrahydrothienyl, wherein each ring carbon is optionally substituted with R³³, ring carbons and a nitrogen adjacent to the carbon atom at the point of attachment are optionally substituted with R or R 13, a ring carbon or nitrogen adjacent to the R position and two atoms from the point of attachment is 30 optionally substituted with R 10, and a ring carbon or nitrogen adjacent to the

 R^{13} position and two atoms from the point of attachment is optionally substituted with R^{12} ;

R⁹, R¹¹, and R¹³ are independently selected from the group consisting of hydrido, methyl, ethyl, methoxy, ethoxy, hydroxy, amino, N-methylamino, N,N-dimethylamino, methylthio, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, fluoro, chloro, bromo, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, hydroxymethyl, 1-hydroxyethyl, amidocarbonyl, N-methylamidocarbonyl, carboxy, and cyano; R¹⁰ and R¹² are independently selected from the group consisting of

- hydrido, amidino, amidocarbonyl, N-methylamidocarbonyl,
 N-benzylamidocarbonyl, N-(2-chlorobenzyl)amidocarbonyl,
 N-(3-fluorobenzyl)amidocarbonyl, N-(2-trifluoromethylbenzyl)amidocarbonyl,
 N-(1-phenylethyl)amidocarbonyl, N-(1-methyl-1-phenylethyl)amidocarbonyl,
 N-benzylamidosulfonyl, N-(2-chlorobenzyl)amidosulfonyl,
- N-ethylamidocarbonyl, N-isopropylamidocarbonyl, N-propylamidocarbonyl, N-isobutylamidocarbonyl, N-(2-butyl)amidocarbonyl, N-cyclobutylamidocarbonyl, N-cyclopentylamidocarbonyl, N-cyclohexylamidocarbonyl, guanidino, methyl, ethyl, methoxy, ethoxy, hydroxy, hydroxymethyl, 1-hydroxyethyl, 2-hydroxyethyl, carboxy,
- carboxymethyl, amino, acetamido, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoroacetamido, aminomethyl, N-methylamino, dimethylamino, methoxyamino, amidosulfonyl, N-methylamidosulfonyl, N,N-dimethylamidosulfonyl, methanesulfonamido, methoxycarbonyl, fluoro, chloro, bromo, and cyano;
- A is selected from the group consisting of a bond, NH, N(CH₃), CH₂, CH₃CH, CH₂CH₂, and CH₂CH₂CH₂;

M is N or R^1 -C:

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, methylamino, cyano, methyl, trifluoromethyl, methoxy, methylthio, trifluoromethoxy, fluoro, and chloro;

10

 R^2 is Z^0 -O:

Z⁰ is selected from the group consisting of a bond, O, S, NH, OCH₂, SCH₂, and N(H)CH₂;

Q is selected from the group consisting of phenyl, 2-thienyl, 2-furyl, 2-pyrrolyl, 2-imidazolyl, 2-thiazolyl, 3-isoxazolyl, 2-pyridyl, and 3-pyridyl, wherein a carbon adjacent to the carbon at the point of attachment of said phenyl or heteroaryl ring to z^0 is optionally substituted by z^0 , the other carbon adjacent to the carbon at the point of attachment is optionally substituted by z^0 , a carbon adjacent to z^0 and two atoms from the carbon at the point of attachment is optionally substituted by z^0 , a carbon adjacent to z^0 and two atoms from the carbon at the point of attachment is optionally substituted by z^0 , and any carbon adjacent to both z^0 and z^0 is optionally substituted by z^0 , with the proviso that Q is other than a phenyl when z^0 is a bond;

$$Y^{AT}$$
 is $Q^b - Q^s$;

15 Q^s is selected from the group consisting of:

$$C[R^{37}(benzoyl)(CR^{37}R^{38})_b],$$

$$C[R^{37}(2-pyridylcarbonyl)(CR^{37}R^{38})_b],$$

$$C[R^{37}(3-pyridylcarbonyl)(CR^{37}R^{38})_b],$$

$$C[R^{37}(4-pyridylcarbonyl)(CR^{37}R^{38})_b],$$

20
$$C[R^{37}(2\text{-thienylcarbonyl})(CR^{37}R^{38})_b],$$
 $C[R^{37}(3\text{-thienylcarbonyl})(CR^{37}R^{38})_b],$ $C[R^{37}(2\text{-thiazolylcarbonyl})(CR^{37}R^{38})_b],$

$$C[R^{37}(4-thiazolylcarbonyl)(CR^{37}R^{38})_b]$$
, and

10

15

C[R³⁷(5-thiazolylcarbonyl)((CR³⁷R³⁸)_b], wherein b is an integer selected from 1 through 3, R³⁷ and R³⁸ are independently selected from the group consisting of hydrido, alkyl, and haloalkyl, with the proviso that said benzoyl and the heteroaroyls are optionally substituted with one or more substituents selected from the group consisting of R¹⁶, R¹⁷, R¹⁸, and R¹⁹ with the proviso that R¹⁷ and R¹⁸ are optionally substituted at a carbon selected from other than the meta and para carbons relative to the carbonyl of the benzoyl or heteroaroyl, with the further proviso that said benzoyl or said heteroaroyl are bonded to the carbon directly bonded to amide nitrogen of the 1-(amidocarbonymethylene) group, and with the still further proviso that is no more than one alkyl or one haloalkyl is bonded to a CR³⁷R³⁸ at the same time:

R¹⁶, R¹⁷, R¹⁸, and R¹⁹ are independently selected from the group consisting of hydrido, methyl, ethyl, amidino, guanidino, methoxy, hydroxy, amino, aminomethyl, 1-aminoethyl, 2-aminoethyl, N-methylamino, dimethylamino, methylthio, ethylthio, trifluoromethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoroethyl, 2,2,2-trifluoroethyl, trifluoromethoxy, fluoro, chloro, hydroxymethyl, carboxy, and cyano;

$${ Q}^b \text{ is } C(NR^{25})NR^{23}R^{24} \text{ or } N(R^{26})C(NR^{25})N(R^{23})(R^{24}); \\$$

 R^{23} , R^{24} , R^{25} , and R^{26} are independently selected from the group

- 20 consisting of hydrido, methyl, and ethyl.
 - 35. Compound of Claim 34 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of 2-aminophenyl,

- 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-carboxyphenyl,
 - 3-carboxy-5-hydroxyphenyl, 3-chlorophenyl, 4-chlorophenyl,
 - 3,4-dichlorophenyl, 2-fluorophenyl, 3-fluorophenyl, 3,4-difluorophenyl,
 - 3-hydroxyphenyl, 4-hydroxyphenyl, 3-methoxyaminophenyl,
 - 3-methoxyphenyl, 4-methoxyphenyl, 3-methylphenyl, 4-methylphenyl, phenyl,
- 30 3-trifluoromethylphenyl, 2-imidazoyl, 2-pyridyl, 3-pyridyl,

5-chloro-3-trifluoromethyl-2-pyridyl, 4-pyridyl, 2-thienyl, 3-thienyl, and 3-trifluoromethyl-2-pyridyl;

B is optionally selected from the group consisting of hydrido, ethyl.

- 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl,
- 5 (S)-2-butyl, tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl,
 - 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl,
 - 3-hydroxypropyl, 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl,
 - 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl,
 - 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl,
- 4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl,
 - 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl,
 - 3-aminopropyl, 2-hexyl, and 4-aminobutyl;

B is optionally selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl,

oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, 1-pyrrolidinyl and 1-piperidinyl;

A is selected from the group consisting of a bond, CH₂, CH₃CH,

CH₂CH₂, and CH₂CH₂CH₂;

M is N or R^1 -C:

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, fluoro, and chloro;

$$R^2$$
 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, O, S, NH, and

25 OCH₂;

Q is selected from the group consisting of

- 3-amidocarbonyl-5-aminophenyl, 3-amidocarbonyl-5-aminophenyl,
- 3-amino-5-(N-benzylamidocarbonyl)phenyl,
- 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,
- 30 3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,
 - 3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

```
3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,
```

- 3-amino-5-(N-benzylamidosulfonyl)phenyl,
- 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,
- 3-amino-5-(N-ethylamidocarbonyl)phenyl,
- 5 3-amino-5-(N-isopropylamidocarbonyl)phenyl,
 - 3-amino-5-(N-propylamidocarbonyl)phenyl,
 - 3-amino-5-(N-isobutylamidocarbonyl)phenyl,
 - 3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl.
 - 3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,
- 3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,
 - 3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 5-amino-2-fluorophenyl,
 - 3-amino-5-hydroxymethylphenyl, 5-amino-3-methoxycarbonylphenyl,
 - 3-amidinophenyl, 3-amino-2-methylphenyl, 5-amino-2-methylthiophenyl,
 - 3-aminophenyl, 3-carboxyphenyl, 3-carboxy-5-aminophenyl,
- 3-carboxy-5-hydroxyphenyl, 3-carboxymethyl-5-aminophenyl,
 - 3-carboxymethyl-5-hydroxyphenyl, 3-carboxymethylphenyl, 3-chlorophenyl,
 - 2-chlorophenyl, 3-cyanophenyl, 3,5-diaminophenyl, 3-dimethylaminophenyl,
 - 2-fluorophenyl, 3-fluorophenyl, 2,5-difluorophenyl, 2-hydroxyphenyl,
 - 3-hydroxyphenyl, 3-methanesulfonylaminophenyl, 2-methoxyphenyl,
- 3-methoxyphenyl, 3-methoxyaminophenyl, 3-methoxycarbonylphenyl,
 - 2-methylaminophenyl, 3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl,
 - 4-methylphenyl, phenyl, 3-trifluoroacetamidophenyl, 3-trifluoromethylphenyl,
 - 2-trifluoromethylphenyl, 5-amino-2-thienyl, 5-amino-3-thienyl,
 - 3-bromo-2-thienyl, 3-pyridyl, 4-pyridyl, 2-thienyl, and 3-thienyl, with the
- 25 proviso that Q is other than a phenyl or a substituted phenyl when Z^0 is a bond;

$$Y^{AT}$$
 is $Q^b - Q^s$;

Q^s is selected from the group consisting of:

 $[CH(benzoyl)](CH_2)_b, [CH(2-pyridylcarbonyl)](CH_2)_b,\\$

 $[CH(3-pyridylcarbonyl)](CH_2)_b, [CH(4-pyridylcarbonyl)](CH_2)_b,\\$

30 [CH(2-thienylcarbonyl)](CH₂)_b,[CH(3-thienylcarbonyl)](CH₂)_b,

 $[{\rm CH(2-thiazolyl carbonyl})]({\rm CH_2})_b, [{\rm CH(4-thiazolyl carbonyl})]({\rm CH_2})_b,$

20

and $[CH(5-thiazolylcarbonyl)](CH_2)_b$, wherein b is an integer selected from 1 through 3, with the proviso that said benzoyl and said heteroaroyls are optionally substituted with one or more substituents selected from the group consisting of R^{16} , R^{17} , R^{18} , and R^{19} with the proviso that R^{17} and R^{18} are optionally substituted at a carbon selected from other than the meta and para carbons relative to the carbonyl of the benzoyl or the heteroaroyl, and that said benzoyl or said heteroaroyl are bonded to the carbon directly bonded to amide nitrogen of the 1-(amidocarbonymethylene) group;

R¹⁶ and R¹⁹ are independently selected from the group consisting of hydrido, amidino, amino, aminomethyl, methoxy, methylamino, hydroxy, hydroxymethyl, fluoro, chloro, and cyano;

R¹⁷ and R¹⁸ are independently selected from the group consisting of hydrido, fluoro, chloro, hydroxy, hydroxymethyl, amino, carboxy, and cyano;

$$Q^b$$
 is $N(R^{26})C(NR^{25})N(R^{23})(R^{24})$;

15 R^{23} , R^{24} , R^{25} , and R^{26} are independently hydrido or methyl.

36. Compound of Claim 35 or a pharmaceutically acceptable salt thereof, wherein;

B is selected from the group consisting of 3-aminophenyl, 3-amidinophenyl, 4-amidinophenyl, 3-chlorophenyl, 4-chlorophenyl, 3,4-dichlorophenyl, 2-fluorophenyl, 4-methylphenyl, phenyl, 2-imidazoyl, 3-pyridyl, 4-pyridyl, and 3-trifluoromethyl-2-pyridyl;

B is optionally selected from the group consisting of hydrido, ethyl, 2-propenyl, 2-propynyl, propyl, isopropyl, butyl, 2-butyl, (R)-2-butyl,

25 (S)-2-butyl, tert-butyl, isobutyl, 1-pentyl, 3-pentyl, 2-methylbutyl, 2,2,2-trifluoroethyl, 6-amidocarbonylhexyl, 4-methyl-2-pentyl, 3-hydroxypropyl, 1-methoxy-2-propyl, 2-methoxyethyl, 2-methyl-2-butyl, 3-methyl-2-butyl, 2-dimethylaminopropyl, 2-cyanoethyl, 6-hydroxyhexyl, 2-hydroxyethyl, 2-amidinoethyl, 2-guanidinoethyl, 3-guanidinopropyl,

4-guanidinobutyl, 3-hydroxypropyl, 4-hydroxybutyl, 6-cyanohexyl, 2-dimethylaminoethyl, 3-methylbutyl, 2-methylbutyl, (S)-2-methylbutyl,

10

3-aminopropyl, 2-hexyl, and 4-aminobutyl;

B is optionally selected from the group consisting of cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, oxalan-2-yl, 2-(2R)-bicyclo[2.2.1]-heptyl, oxetan-3-yl, azetidin-1-yl, azetidin-2-yl, azetidin-3-yl, and 1-piperidinyl;

A is selected from the group consisting of a bond, CH₂, CH₂CH₂ and

CH2CH2CH2;

M is N or R^1 -C;

R¹ is selected from the group consisting of hydrido, hydroxy, hydroxymethyl, amino, aminomethyl, cyano, methyl, trifluoromethyl, and fluoro;

 R^2 is Z^0 -Q;

Z⁰ is selected from the group consisting of a bond, O, S, and NH;

Q is selected from the group consisting of

3-amidocarbonyl-5-aminophenyl, 3-amino-5-(N-benzylamidocarbonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(3-fluorobenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-(1-methyl-1-phenylethyl)amidocarbonyl)phenyl,

3-amino-5-(N-benzylamidosulfonyl)phenyl,

3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl,

3-amino-5-(N-ethylamidocarbonyl)phenyl,

3-amino-5-(N-isopropylamidocarbonyl)phenyl,

3-amino-5-(N-propylamidocarbonyl)phenyl,

25 3-amino-5-(N-isobutylamidocarbonyl)phenyl,

3-amino-5-(N-(2-butyl)amidocarbonyl)phenyl,

3-amino-5-(N-cyclobutylamidocarbonyl)phenyl,

3-amino-5-(N-cyclopentylamidocarbonyl)phenyl,

3-amino-5-(N-cyclohexylamidocarbonyl)phenyl, 3-aminophenyl,

30 3-carboxy-5-aminophenyl, 3-chlorophenyl, 3,5-diaminophenyl,

3-dimethylaminophenyl, 3-hydroxyphenyl, 3-methanesulfonylaminophenyl,

3-methylaminophenyl, 2-methylphenyl, 3-methylphenyl, phenyl,

3-trifluoroacetamidophenyl, 3-bromo-2-thienyl, 2-thienyl, and 3-thienyl, with the proviso that Q is other than a phenyl or a substituted phenyl when Z^0 is a bond;

Y^{AT} is selected from the group consisting of 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, 5-guanidino-1-oxo-1-(4-thiazolyl)-2-pentyl, 5-guanidino-1-oxo-1-(4-amino-2-thiazolyl)-2-pentyl, and 5-guanidino-1-oxo-1-phenyl-2-pentyl.

37. Compound of Claim 33 where said compound is selected from the group of the Formula:

or a pharmaceutically acceptable salt thereof, wherein:

R² is 3-aminophenoxy, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3,5-diaminophenoxy, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-carboxy-5-aminophenoxy, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3,5-diaminophenoxy, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-carboxy-5-aminophenoxy, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

10

15

20

25

R ² is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is isopropyl, A is
single bond, YAT is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
R ² is 3,5-diaminophenoxy, B is cyclobutyl, A is single bond, Y ^{AT} is 5-
guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
R ² is 3-carboxy-5-aminophenoxy, B is cyclobutyl, A is single bond, Y ^{AT} is
5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
R ² is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is cyclobutyl, A is
single bond, Y ^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH.
R ² is 3-aminophenylthio, B is phenyl, A is CH ₂ CH ₂ , Y ^{AT} is 5-guanidino-
oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
R ² is 3,5-diaminophenylthio, B is phenyl, A is CH ₂ CH ₂ , Y ^{AT} is 5-
guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;
R ² is 3-carboxy-5-aminophenylthio, B is phenyl, A is CH ₂ CH ₂ , Y ^{AT} is 5-
guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

 R^2 is 3,5-diaminophenylthio, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-carboxy-5-aminophenylthio, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

 R^2 is 3,5-diaminophenylthio, B is cyclobutyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-carboxy-5-aminophenylthio, B is cyclobutyl, A is single bond, Y. is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is cyclobutyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

10

15

R² is 3-amino-2-thienyl, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3,5-diamino-2-thienyl, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-carboxy-5-amino-2-thienyl, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3,5-diamino-2-thienyl, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-carboxy-5-amino-2-thienyl, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3,5-diamino-2-thienyl, B is cyclobutyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-carboxy-5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is cyclobutyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

 R^2 is 3-aminophenoxy, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3,5-diaminophenoxy, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3-carboxy-5-aminophenoxy, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is phenyl, A is CH_2CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

20

 R^2 is 3,5-diaminophenoxy, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3-carboxy-5-aminophenoxy, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenoxy. B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

 R^2 is 3,5-diaminophenoxy, B is cyclobutyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3-carboxy-5-aminophenoxy, B is cyclobutyl, A is single bond, Y^{AT} is
5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenoxy, B is cyclobutyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N.

R² is 3-aminophenylthio, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3,5-diaminophenylthio, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3-carboxy-5-aminophenylthio, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is phenyl, A is CH₂CH₂, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3,5-diaminophenylthio, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3-carboxy-5-aminophenylthio, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

25 R² is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is isopropyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

R² is 3,5-diaminophenylthio, B is cyclobutyl, A is single bond, Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;

	is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
	R ² is 3-amino-5-(N-benzylamidocarbonyl)phenylthio, B is cyclobutyl, A is
	single bond, Y ^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
5	R ² is 3-amino-2-thienyl, B is phenyl, A is CH ₂ CH ₂ , Y ^{AT} is 5-guanidino-1-
	oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
	R ² is 3,5-diamino-2-thienyl, B is phenyl, A is CH ₂ CH ₂ , Y ^{AT} is 5-
	guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
	R ² is 3-carboxy-5-amino-2-thienyl, B is phenyl, A is CH ₂ CH ₂ , Y ^{AT} is 5-
10	guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
	R ² is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is phenyl, A is
	CH ₂ CH ₂ , Y ^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
	R ² is 3,5-diamino-2-thienyl, B is isopropyl, A is single bond, Y ^{AT} is 5-
	guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
15	R ² is 3-carboxy-5-amino-2-thienyl, B is isopropyl, A is single bond, Y ^{AT} is
	5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
	R ² is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is isopropyl, A is
	single bond, YAT is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
	R ² is 3,5-diamino-2-thienyl, B is cyclobutyl, A is single bond, Y ^{AT} is 5-
20	guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
	R ² is 3-carboxy-5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y ^{AT} is
	5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N;
	R ² is 3-amino-5-(N-benzylamidocarbonyl)-2-thienyl, B is cyclobutyl, A is
	single bond, Y ^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N.
25	·
	38. A composition for inhibiting thrombotic conditions in blood comprising a
	compound of any one of Claims 8, 16, 24, 32, and 37 and a pharmaceutically acceptable carrier.
	1

 R^2 is 3-carboxy-5-aminophenylthio, B is cyclobutyl, A is single bond, Y^{AT}

39. A composition for inhibiting thrombotic conditions in blood comprising a compound of any one of Claims 1 through 7, Claims 9 through 15, Claims 17 through 23, Claims 25 through 31, and Claims 33 through 36 and a pharmaceutically acceptable carrier.

5

- 40. A method for inhibiting thrombotic conditions in blood comprising adding to blood a therapeutically effective amount of a composition of any one of Claims 38 and 39.
- 41. A method for inhibiting formation of blood platelet aggregates in blood comprising adding to blood a therapeutically effective amount of a composition of any one of Claims 38 and 39.
- 42. A method for inhibiting thrombus formation in blood comprising adding to blood a therapeutically effective amount of a composition of any one of Claims 38 and 39.
 - 43. A method for treating or preventing venuous thromboembolism and pulmonary embolism in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.
 - 44. A method for treating or preventing deep vein thrombosis in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of of any one of Claims 38 and 39.
 - 45. A method for treating or preventing cardiogenic thromboembolism in a mammal comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

30

25

20

46. A method for treating or preventing thromboembolic stroke in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

47. A method for treating or preventing thrombosis associated with cancer and cancer chemotherapy in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.

5

30

- 48. A method for treating or preventing unstable angina in humans and other mammals comprising administering to the mammal a therapeutically effective amount of a composition of any one of Claims 38 and 39.
- 49. A method for inhibiting thrombus formation in blood comprising adding to blood a therapeutically effective amount of a compound of any one of Claims 1 through 37 with a therapeutically effective amount of fibrinogen receptor antagonist.
- 50. The use of a compound of any one of Claims 1 through 37, or a pharmaceutically acceptable salt thereof, in the manufacture of medicament for inhibiting thrombus formation, treating thrombus formation, or preventing thrombus formation in a mammal.
- 51. A method of treating or preventing a TF VIIA-mediated disorder in a subject by administering a therapeutically effective amount of a compound or a pharmaceutically acceptable salt thereof, said compound selected from the group consisting of:
 - 2-[3-[2-[3-aminophenyl]-6-chloro-N-[[4-
- aminoiminomethylphenyl]methyl]-5-[N,N-dimethylhydrazino]-4-oxo-1(4H)-pyrimidinyl]]acetamide;
 - 2-[3-[2-[3-aminophenyl]-6-chloro-5-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;
 - 2-[3-[2-[3-aminophenyl]-6-chloro-5-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;
 - 2-[3-[2-[3-aminophenyl]-5-[N-(azetidin-1-yl)amino]-6-chloro-N-[[4-aminoiminomethylphenyl]methyl]-4-oxo-1(4H)-pyrimidinyl]]acetamide;
 - 2-[4-[3-[3-aminophenyl]-N-[[4-aminoiminomethylphenyl]methyl]- 6-[N,N-dimethylhydrazino]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide;

10

20

2-[4-[3-[3-aminophenyl]-6-[N-ethyl-N-methylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-l(5H)-1,2,4-triazinyl]]acetamide;

2-[4-[3-[3-aminophenyl]-6-[N,N-diethylhydrazino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-l(5H)-1,2,4-triazinyl]]acetamide;

- 2-[4-[3-[3-aminophenyl]-6-[N-(azetidin-1-yl)amino]-N-[[4-aminoiminomethylphenyl]methyl]-5-oxo-1(5H)-1,2,4-triazinyl]]acetamide.
- 52. A method of treating or preventing a TF VIIA-mediated disorder in a subject by administering a therapeutically effective amount of a compound or a pharmaceutically acceptable salt thereof, said compound of the formula:

wherein:

 R^2 is 3-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

15 R² is 3-aminophenyl, B is phenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is phenyl, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-dimethylaminophenyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 2-methylphenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is phenyl, B is 3-aminophenyl, A is C(O)NH, Υ^0 is 4-amidinobenzyl, and M is CH;

R² is phenyl, B is 3-amidinophenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-(N-methylamino)phenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-methylsulfonamidophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is phenyl, B is 4-amidinophenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-methylaminophenyl, B is phenyl, A is CH_2CH_2 . Y^0 is 4-amidinobenzyl, and M is CH:

R² is phenyl, B is phenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

10 R² is 3-methylphenyl, B is 4-phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-dimethylaminophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 2-methylphenyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is phenyl, B is 3-aminophenyl, A is $C(O)NH,\,Y^0$ is 4-amidinobenzyl, and M is CCI;

 R^2 is phenyl, B is 3-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and 25 M is CCl;

 R^2 is 3-(N-methylamino)phenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

25

 R^2 is 3-methylsulfonamidophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is phenyl, B is 4-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-methylaminophenyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is phenyl, B is phenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-methylphenyl, B is 4-phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CCl:

10 R² is 3-aminophenyl, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CF;

R² is 3-aminophenyl, B is phenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CF;

 R^2 is phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF:

R² is 3-dimethylaminophenyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CF;

R² is 2-methylphenyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CF:

R² is phenyl, B is 3-aminophenyl, A is C(O)NH, Y⁰ is 4-amidinobenzyl, and M is CF;

 R^2 is phenyl, B is 3-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R² is 3-(N-methylamino)phenyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CF;

 R^2 is 3-methylsulfonamidophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

 R^2 is phenyl, B is 4-amidinophenyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CF:

 R^2 is 3-methylaminophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

R² is phenyl, B is phenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CF;

 R^2 is 3-methylphenyl, B is 4-phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

 R^2 is 3-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

10 R² is 3-aminophenyl, B is phenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-dimethylaminophenyl, B is phenyl, A is CH₂CH₂, Y⁰ is 4amidinobenzyl, and M is N;

 R^2 is 2-methylphenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is phenyl, B is 3-aminophenyl, A is C(O)NH, Y^0 is 4-amidinobenzyl, and M is N;

R² is phenyl, B is 3-amidinophenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-(N-methylamino)phenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-methylsulfonamidophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4amidinobenzyl, and M is N;

 R^2 is phenyl, B is 4-amidinophenyl, A is CH_2, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-methylaminophenyl, B is phenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R² is phenyl, B is phenyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-methylphenyl, B is 4-phenyl, A is CH_2CH_2 , Y^0 is 4-

5 amidinobenzyl, and M is N;

 R^2 is 3-amidocarbonyl-5-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amidocarbonyl-5-aminophenyl, B is 3-chlorophenyl, A is CH_2CH_2 . Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y⁰ is 4-amidinobenzyl, and M is N;

 $R^2 \ is \ 3\text{-amino-}5\text{-}(N\text{-}(2\text{-chlorobenzyl})\text{amidosulfonyl})\text{phenyl}, \ B \ is \ 3\text{-chlorophenyl}, \ A \ is \ CH_2CH_2, \ Y^0 \ is \ 4\text{-amidinobenzyl}, \ and \ M \ is \ N;$

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is 3-chlorophenyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3,5-diaminophenoxy, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-carboxy-2-thienyl, B is 3-chlorophenyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is 2,2,2-trifluoroethyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is (S)-2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 5-amino-2-fluorophenyl, B is isopropyl, A is single bond, Y⁰ is 4amidinobenzyl, and M is CH;

R² is 2-methyl-3-aminophenyl, B is isopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is ethyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is ethyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenyl, B is 2-propenyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is isopropyl, A is single bond, Y⁰ is 4-amidino-2fluorobenzyl, and M is CH;

R² is 3-aminophenyl, B is isopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is 2-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

25 R² is 3-aminophenyl, B is (R)-2-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is 2-propynyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is 3-pentyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is hydrido, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is ethyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is 2-methypropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is 2-propyl, A is CH₃CH, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is propyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenyl, B is 6-amidocarbonylhexyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

15 R² is 3-aminophenyl, B is tert-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is tert-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is 3-hydroxypropyl, A is single bond, Y⁰ is 4-20 amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is 2-methylpropyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

25 R² is 3-aminophenyl, B is 3-methoxy-2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is 3-methoxy-2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

- R^2 is 3-aminophenyl, B is 2-methoxy-2-ethyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;
- R² is 3-aminophenyl, B is 2-propyl, A is single bond, Y⁰ is 5-amidino-2-thienylmethyl, and M is CH;
- R² is 3-aminophenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;
 - R² is 3-carboxyphenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;
- R² is 3-aminophenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3fluorobenzyl, and M is CH;
 - R² is 3-aminophenyl, B is 2,2,2-trifluoroethyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;
 - R² is 3-aminophenyl, B is (S)-2-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;
- R² is 5-amino-2-fluorophenyl, B is isopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;
 - R² is 2-methyl-3-aminophenyl, B is isopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;
- R^2 is 3-aminophenyl, B is ethyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;
 - R² is 3-aminophenyl, B is ethyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is N;
 - R² is 3-aminophenyl, B is 2-propenyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;
- R² is 3-aminophenyl, B is isopropyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is N;
 - R² is 3-aminophenyl, B is isopropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

15

25

 R^2 is 3-aminophenyl, B is 2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is (R)-2-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N:

R² is 3-aminophenyl, B is 2-propynyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is 3-pentyl, A is single bond. Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is hydrido, A is CH_2, Y^0 is 4-amidinobenzyl, and 10 M is N;

 R^2 is 3-aminophenyl, B is ethyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is 2-methypropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is 2-propyl, A is CH₃CH, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is propyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is N;

R² is 3-aminophenyl, B is 6-amidocarbonylhexyl, A is single bond, Y⁰ is 4-20 amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is tert-butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is tert-butyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is 3-hydroxypropyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is 2-methylpropyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is N:

10

 R^2 is 3-aminophenyl, B is butyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 3-methoxy-2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is 3-methoxy-2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is 2-methoxy-2-ethyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is 2-propyl, A is single bond, Y⁰ is 5-amidino-2-thienylmethyl, and M is N;

 R^2 is 3-aminophenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is N;

 R^2 is 3-carboxyphenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

15 R² is 3-aminophenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;

 R^2 is 3-amidocarbonyl-5-aminophenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

25 R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3,5-diaminophenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-carboxyphenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amidocarbonyl-5-aminophenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 2-propyl,

A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3,5-diaminophenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-carboxyphenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carbomethoxyphenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amidocarbonyl-5-aminophenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is 2-propyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3,5-diaminophenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-carboxyphenyl, B is 2-propyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-aminophenyl, B is cycylopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4amidinobenzyl, and M is CH:

R² is 3-aminophenyl, B is cyclopropyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidino-3-fluorobenzyl, and M is CH;

R² is 3-aminophenyl, B is cyclopentyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

R² is 5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-20 amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is cyclopropyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

25 R² is 3-aminophenyl, B is cyclopentyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CH;

R² is 3-aminophenyl, B is cyclohexyl, A is CH₂CH₂, Y⁰ is 4-amidinobenzyl, and M is CH;

2.0

 R^2 is 2-hydroxyphenyl, B is cyclobutyl, A is single bond, Υ^0 is 4-amidinobenzyl, and M is CH;

 R^2 is phenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 2,6-dichlorophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-aminophenyl, B is cycylopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is cyclopropyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is N;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is N:

R² is 3-aminophenyl, B is cyclopentyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3-aminophenyl, B is cyclopropyl, A is CH₂, Y⁰ is 4-amidinobenzyl, and M is N:

 R^2 is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

10

15

20

25

 R^2 is 3-aminophenyl, B is cyclopentyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is cyclohexyl, A is CH_2CH_2 , Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 2-hydroxyphenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is phenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N:

R² is 3-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-

amidinobenzyl, and M is N;

R² is 2,6-dichlorophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-aminophenyl, B is cycylopropyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CF;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CF;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CF;

 R^2 is 3-aminophenyl, B is cyclopropyl, A is single bond, Y^0 is 4-amidino-2-fluorobenzyl, and M is CF;

R² is 3-aminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

 R^2 is 3-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidino-3-fluorobenzyl, and M is CF;

R² is 3-aminophenyl, B is cyclopentyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

R² is 5-amino-2-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

 R^2 is 3-aminophenyl, B is cyclopropyl, A is CH_2 , Y^0 is 4-amidinobenzyl, and M is CF;

 R^2 is 3-aminophenyl, B is 2-(2R)-bicyclo[2.2.1]-heptyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CF;

R² is 3-aminophenyl, B is cyclopentyl, A is single bond, Y⁰ is 4-amidino-2-fluorobenzyl, and M is CF;

 R^2 is 3-aminophenyl, B is cyclohexyl, A is CH_2CH_2, Y^0 is 4-amidinobenzyl, and M is CF;

R² is 2-hydroxyphenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

R² is phenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

R² is 3-thienyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

15 R² is 2,6-dichlorophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CF;

 R^2 is 3-amidocarbonyl-5-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is N;

25 R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

R² is 3,5-diaminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is N;

10

15

25

R ² is 3-amino-5-carb	oxyphenyl, B is cyclobutyl, A is single bond, \overline{Y}^0 is 4
amidinobenzyl, and M is N;	

 R^2 is 3-amidocarbonyl-5-aminophenyl, B is cyclobutyl, A is single bond. Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is single bond, Υ^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

R² is 3-amino-5-(N-(2-chlorobenzyl)amidosulfonyl)phenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH:

R² is 3,5-diaminophenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amino-5-carboxyphenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CH;

 R^2 is 3-amidocarbonyl-5-aminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

R² is 3-amino-5-(N-benzylamidocarbonyl)phenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3-amino-5-(N-(2-chlorobenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

 $R^2\ is\ 3\text{-amino-5-}(N\text{-}(2\text{-chlorobenzyl})\text{amidosulfonyl})\text{phenyl},\ B\ is\ cyclobutyl},\ A\ is\ single\ bond,\ Y^0\ is\ 4\text{-amidinobenzyl},\ and\ M\ is\ CCl;$

R² is 3-amino-5-(N-(2-trifluoromethylbenzyl)amidocarbonyl)phenyl, B is cyclobutyl, A is single bond, Y⁰ is 4-amidinobenzyl, and M is CCl;

 R^2 is 3,5-diaminophenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl;

10

 R^2 is 3-amino-5-carboxyphenyl, B is cyclobutyl, A is single bond, Y^0 is 4-amidinobenzyl, and M is CCl.

53. A method of treating or preventing a TF VIIA-mediated disorder in a subject by administering a therapeutically effective amount of a compound or a pharmaceutically acceptable salt thereof, said compound of the formula:

wherein;

 R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CH;

 R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CF;

 R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is CCl;

15 R^2 is 3-aminophenyl, B is phenyl, A is CH_2 , Y^{AT} is 5-guanidino-1-oxo-1-(2-thiazolyl)-2-pentyl, and M is N.