JOURNAL OF AGRICULTURAL RESEARCH

Voi. XIV

WASHINGTON, D. C., JULY 15, 1918

No. 3

MINERAL CONTENT OF SOUTHERN POULTRY FEEDS AND MINERAL REQUIREMENTS OF GROWING FOWLS

By B. F. KAUPP

Poultry Investigator and Pathologist, North Carolina Agricutural Experiment Station

INTRODUCTION

The mineral subtances which enter into the composition of fowls constitute the ash. These ash constituents stand in a peculiar and interesting relation to the living structures and life processes of animals. Through experimentation the physiologist has determined the effects of many of the minerals upon function and secretion. Minerals are also essential to the construction of the body tissues of the fowl. In this field the soil chemist, the agronomist, the poultryman, the physiologist, and the farmer all find a common interest, for the mineral substances required by fowls come from the soil through the plant to the bird. The force feeding of our fowls, both for growth into broilers and for egg production by mature hens, calls for a higher percentage of mineral nutrients in feedstuffs than was necessary under the old system of less intense production. Since it is so essential that fowls be supplied with sufficient amounts of each mineral element, studies should be conducted to determine whether any of our poultry feeds are deficient and, if so, how the deficiency may be remedied. It may not be possible to exercise a selective choice of feeds which provide an abundance of the various minerals required for rapidity or efficiency in the production of growth or eggs. The present paper deals only with experiments on minerals required in broiler production.

THE PROBLEM

Profitable broiler production begins with the baby chick and extends over a period of about eight weeks, at the end of which time the birds should weigh, as a flock, approximately 1½ pounds each.

Our problem consisted, therefore, in ascertaining (1) the amount of mineral per unit in the bodies of the baby chick and of the 1½-pound broiler; (2) the mineral content of the southern poultry feeds; (3) a proper feed mixture from the standpoint of protein, carbohydrate, and fat; (4) the mineral content of this mixture; and (5) by feeding, whether the

minerals of the feed mixtures were in sufficient quantities for the greatest rate of growth possible.

EXPERIMENTAL METHODS

The baby chicks were produced from a single flock of pure-bred Single-Comb White Leghorns bred at the Station and College poultry plant, and were hatched in one electric incubator, and each lot was housed under similar oil-burning hovers of 100-chick capacity. A room with a concrete floor and ample light and ventilation was used in which to rear the flocks. In this room the birds were confined to runs 6 feet square, having a smooth galvanized-iron floor, laid over the concrete. A hover was set in the center of each run. The experiment was carried on in periods of seven days each, and extended over at least eight periods, or weeks. At the end of each period, after all material which adhered to the feet was carefully removed, the chicks were taken out and weighed, while the run was cleaned. The floor was swept and then scraped, care being taken not to scrape off any of the metal. It was then washed with distilled water, by the aid of a brush. This water was then drained into a pan, the material placed in an evaporating oven, and the moisture driven off. Though every care was taken to be accurate, there is a possibility that some errors may have crept in during these processes.

When fed in ordinary troughs, young chicks have a habit of throwing out their feed with their beaks, especially if they are not particularly hungry, and simply looking for something that might be very palatable to them. In order to avoid this wastage, we constructed the double boxes shown in Plate 18, a. Clabbered skim milk, the only liquid allowed, was given in 50-cc beakers, set in the ends of the boxes so that they could not be turned over. Chick-size limestone grit and chick-size oyster shell were given in petri dishes which were placed in another container (Pl. 18, c). Dry mash, a grain mixture, and cut green feed were placed in double boxes (Pl. 18, b, d, e). The feed thrown out of these double boxes was caught in the outside chamber, and was easily recovered. Rape was the green feed used (Pl. 18, f). The droppings which were deposited in the boxes were easily removed, after drying, by aid of a pair of forceps.

Table I.—Mineral content of the bodies of the fowls a [Results expressed as parts per hundred]

Age.	Potas- sium.	Sodium.	Calcium.	Magne- sium,	Sulphur.	Chlorin.	Phos- phorus.	Iron.
Baby chick t. 22-pound broiler (Single-	0. 2922	0. 2774	0. 1978	0.0028	0.0107	0.1510	0.355	0.0054
Comb White Leghorn).	- 2380	- 1580	1.0340	- 0440	. 3030	- 0790	1. 288	.0050
Wyandotte)	- 2750	. 1640	1.2970	.0510	. 3820	- 2080	1.510	. 0066

a All chemical analyses in this work were made by Mr. Dan M. McCarty, Physiological Chemist, Animal Industry Division, North Carolina Experiment Station.
b The baby chicks were taken from the incubator, killed with chloroform, and their abdominal yolk sacs removed.

TABLE II.—Mineral content of southern poultry feeds

[Results expressed as parts per hundred]

SEPARATE ANALYSES

Feed.	Num- ber of analy- ses.	Potas- sium.	Sodi- um.	Cal- cium.	Magne- sium.	Sal- phur,	Chlo- rin.	Phos- phorus.	Iron.
Cornmeal, bolted	4	0-349	0.072	0.0002	o. 1336	0. 160	0.0244	0.341	0.004
Pinhead oats	7	-441	-100	-0126	-0704	+ 236	0000	-429	0.004
Rolled oats	2	-370	-136	. 0430	1500	- 256	.0238	• 473	00012
Whole wheat	13	·435	.039	0271	1127	183	.0030	-436	.007
Whole corn	13	-332	.041	.0127	- 1051	-148	.0521	- 293	.0044
Wheat middlings	č	-949	1.210	.0080	-3628	. 232	. c/xo3	- 783	-0052
Bone meal ⊄	3	- 229	.735	21. 1770	5800	170		10.349	.018
Iulied oats	6	-387	-053	2100	.1465	- 204	0870	+454	0100
feat and bone meal a	4	. 185	- 745	12.806	-460	359	.850	6. (10	0550
Telvet-bean meal	Í.	1 186	-140	.360	- 208	- 151	-222	704	-0116
oy bean meal (fat extract)	r	1.189	• 415	- 238	.298	438	-032	-664	+0300
Peanut meal (fat extract).	I	1.177	- 326	.138	+326	- 323	-043	- 735	- 0300
kim milk	2	-151	- 144	. 153	.0018	-0424	-065	- 136	-0036
including shell	3	.0103	- 200	- no8	• o 985	- 3950	. 150	- 302	0103
Rape, green	3	-2510	+008	-0084	0206	.0354	. D93	- 1026	000000
imestone grit	2	• 0000	-000	30.9700	6.6700	- 000	.000	.000	3-330000
Oyster shell	2	.0000	- 000	37-951	-4200	- 147	.000	1000	-375000

ANALYSES OF FRED IN EACH SACK b

			1	1					
(1a) Corn meal, bolted		0. 265	0.076	0.0102	0.1318	0. 163	0.0232	0.3310	6,0018
(1b) Pinhead oats			-115	.0100	.0557	. 264	1050	5190	-0020
(1c) Rolled oats			• 149	-0430	-1557	- 276	-0249	4620	+0072
(4d) Cracked wheat (1e) Cracked corn			-034	- 0240	.1027	+182	-0650	-4840	10022
(ii) Wheat middlings		- 344	-038	• 0170 • 0840	.0657	195	.0550	.3012	-002H -0048
(1g) Bone meal	1	145	886	22.0550	-5700	- 180	.0700	10.3600	10019
(1h) Meat and hone meal		- 179	-304	13-333	2700	• 350	.8200	6. 5700	.0500
(ri) Hulled oats		•374	.084	-056	1542	• 235	. 0000	4000	.0030
(1j) Limestone grit (1k) Oyster shell			.000	30.970	6.6700	+000	.0000	.0000	3.3300
(rm) Skim milk		.000	1000	37-951	4200	-147	-0900	.0000	-3750
(110) Danie Mila		•151	-144	• 153	.001S	.0424	-0650	-1360	·0036

a It is probable that in both bone meal and in meat and bone meal considerable tricalcium phosphate (Cas(ROO)) is lost in burnine.

In making up the feed mixtures for these experiments each kind of feed was taken from a single sack.

FEED MIXTURES

The following mixtures were used in these experiments, the proportions being given by weight:

MIXTURE 1	MIXTURE 3
1c Rolled oats. 8 parts. 1f Wheat middlings. 8 parts. 1h Meat and bone meal. 2 parts. 1g Bone meal. 1 part.	ıf Wheat middlings 6 parts. 1a Corn meal 3 parts. 1h Meat and bone meal 3 parts. 1g Bone meal 1 part.
MIXTURE 2	MIXTURE 4
4d Cracked wheat 3 parts 1e Cracked corn 2 parts 1b Pinhead oats 1 part	4d Whole wheat

Table III gives the mineral content of the four feed mixtures.

TABLE III .- Mineral content of feed mixtures

[Results expressed as parts per hundred]

Mixture.	Potas- sium.	Sodium.	Calcium.	Magne- sium.	Sulphur.	Chlorin.	Phos- phorus.	Iron.
1	. 409 · 433	. 048	01920	. 0020	. 200	.0050	2. 8248	0. 0110 . 0023 . 0153 . 0020

TAI	BLE IV	.—Fee	d and m	ineral	intake (of lot 3			
Period and feed.	Quan- tity of feed con- sumed.	Potas- sium.	So- dium.	Cal- cium.	Magne- sium.	Sul- phur.	Chlorin.	Phos- phorus.	Iron.
PIRST PERIOD:	Gm.	Gm.	Gm.	Gm.	Gm.	Gm.	Gm.	Gm.	Gm.
Milk	1,510	2. 280	2.174	2.310	0.0271	0.6402	0-9815	2.0536	0.0543
Mixture 1	299	1.417	1.235	7.826	-8398	. 7842	-4326	5-4660	.0328
Mixture 2	45	184	.027	. 008	.0369	. 0000	-0292	. 1930	.0010
Grit	76	.000	.000	23.537	5.0692	.0000	.0000	.0000	2.5308
Total	1,930	3-88t	3-436	33.678	5-9730	1.5144	1-4433	7. 7126	2.6189
								I	
SECOND PERIOD:	2,492	3.762	3.588	3.812	0.0448	1.0566	1.6198	3.3891	0-0897
Mixture 1	391	1.854	1.616	10. 234	1.0083	1.0255	-5657	7.1478	+0430
Mixture 2	275	1.124	.132	.052	.2255	- 5500	1787	1.1794	• 0063
Rape	156	391	.012	.013	.0321	.0552	-1450	- 1600	Trace.
Total	3,314	7-131	5-348	14-111	1.4007	2.6873	2.5092	rr. 8763	. 1390
THIRD PERIOD:	ŀ							1	
Milk	2,356	3 557	3.392	3.604	0.0424	0.9989	1-5314	3-2041	0.0848
Mixture r	499	2.366	2.062	13.062	1-4016	1.3088	- 7220	9-1222	.0099
Mixture 2	368	1.505	-176	. 070	-3017	7360	- 2392 - 3580	1-5783	Trace.
Rape	385	.966	.030	6.813	-0793	.1362	.0000	- 3930	7326
Grit Ovster shell	22	.000	.000	4-174	1.4674	10101	.0099	.0000	.0413
Total	3,645	8-394	5.660	27.755	3-3386	3. 1960	2,8605	14. 2996	8760
10041	3,042	0.394	5.000	27.733	3.3300	3.1900			
FOURTH PERIOD:									0.0016
Milk	2,545	3.842	3.664	3.893	0.0458	1.0790	1.6542	3-4612	0.0910
Mixture 2	547	2. 237	262	105	4485	1.0940	3555	14-7737	.0800
Mixture 3	523	2 - 264	2.369	25.179	1.6108	1.2056	3180	-5308	Trace.
Rape	342	.000	.027	2.477	.5336	.0000	.0000	10000	- 2664
Grit Oyster shell	17	.000	.000	6.451	.0714	.0249	-0153	00000	0637
•	<u>-</u>								
Total	3.982	9- 201	6. 322	38.133	2.7805	3.5845	3.6410	21.1117	- 5142
FIFTH PERIOD:	1				1	1	į	Ì	1
Milk	3.248	4-904	4.677	4.969	0.0584	1.3771	2.1112	4-4172	0.1196
Mixture 2	1,247	5-100	-598	- 239	1.0225	2.4940	. 8105	5.3483	.0286
Mixture 3	334	1.446	1.513	16 080	1.0287	8082	-8289	9-4348	.0511
Rape	321	- 805	.025	- 026	.066r	. 1136	- 2985	- 3293	Trace
Crit	18	-000	.000	5- 574	1.2006	.0000	•0000	,000	- 5994
Total	5.168	12. 255	6. 8r3	26.888	3.3763	4. 7929	4-0491	19. 5296	. 7960
SIXTH PERIOD:		1		1		1			
Milk	3,400	5-134	4-896	5.202	0.0612	1.4416	2.2100	2.6240	0. 1224
Mixture 2	1,353	5- 533	640	-250	1.1004	2-7060	.8794	5.8030	.0311
Mixture 3	381	1.649	1.725	18.343	1.1734	.9220	9456	10-7624	- 058:
Rape	912	2. 289	- 072	.076	1878	-3228	8481	9357	Trace
Grit	33	.000	.000	10. 220	2.2011	.0000	.0000	.0000	1.0989
Total	6,070	14.605	7-342	34-100	4-7329	5-3924	4.8831	22. 1251	1.310

 $^{{\}mathfrak a}$ These estimates are made on the basis of the green plant as stated in an early part of this paper, and hence the intake is small.

TABLE IV-Feed and mineral intake of lot 3-Continued

Period and feed.	Quan- tity of feed con- sumed.	Potas- sium.	So- dium	Cal- cium.	Magne- sium.	Sul- phur.	Chlorin.	Phos- phorus.	Iron.
SEVENTH PERIOD: Milk		Gm. 6.023 1.437	Gm. 5-744 1-503	Gm. 6. 103 15. 984	Gm. 0.0718 1.0225	Gm. 1.6913 .8034	Gm. 2. 5928 . 8240	Gm. 5-4250 9-3783	Gm. 0. 1436 .0507
Mixture 4 Rape Grit		4.869 2.208 .000	- 53 t - 070 - 000	· 333 · 973 12· 078	1. 2261 . 18t2 2. 6013	2.4102 .3115 .0000	- 7514 - 8184 - 0000	5-0676 -9028 -0000	.0247 Trace. 1.2987
Total	6,476	14-537	7,848	34- 571	5. 1029	5.2164	4-9865	20. 7737	1-5177
erghth PERIOD: Milk Mixture 3 Mixture 4 Rape	382 1,484	6.346 1.654 5.846 1.834	6.052 1.730 .638 .058	6.430 18.391 .400	0.0756 1.1765 1.4721 .1505	1. 7820 -9244 2. 8938 -2587	2-7319 -9481 -9022 -6798	5.7160 10.7907 6.0844 .7500	o. 1513 • 0584 • 0296 Trace.
Total	6,800	15.680	8.478	25. 282	2.8747	5.8589	5. 2620	23.3411	. 2393

Table V.—Weights of the chicks at hatching and at the end of each of the eight periods

	Weight at—								
Chick No.	Hatch- ing.	7 days.	14 days.	21 days.	28 days.	35 days.	42 days.	49 days.	56 days
	Gm.	Gm.	Gm.	Gm.	Gin.	Gm.	Gm.	Gm.	Gm.
902	41	57	91	128	135	205	280	350	460
904	45	57	83	123	165	215	253	265	316
906	41	59	88	132	169	245	311	365	430
910	40	60	98	145	197	245	308	355	410
912	42	58	85	, 110	168	219	287	335	47.0
914	40	52	65	113	149	205	278	320	400
918	42	59	75	110	151	203	252	275	329
921	42	70	77	801	154	200	271	335	438
922	36	57	90	137	187	250	300	345	410
924	43	59	90	130	150	r85	215	240	282
926	44	57	a 79						
928	42	45	a 65			.1			
Total	498	690	986	1,236	1,625	2,172	2,755	3, 185	3,896

4 Died.

TABLE VI.-Percentage increase in weight at the end of each 7-day period

				Period	No.			
Chick No.	1	2	3	4	5	6	7	8
902	28	37	28	5	34	26	20	2,
904	21	31	32	25	23	15	4	1
906	30	31	33	21	31	21	14	1
910	50	38	32	26	15	20	13	1
912	27	31	22	28	23	24	14	
914	23	20	42	24	27	26	13	I
810	28	20	31	26	25	19		
921	40	10	28	29	23	26	19	2
922	36	36	34	26	25	16	13	1
924	27	34	30	13	18	13	10	1
926	6	a 27						
Flock average	27	30	31	23	25	21	13	1
Total gain gms	192	296	394	389	547	583	430	71

Table VII.—Amount of gain in each period and the amount of mineral elements required to build up this amount of tissue, based on the analyses of the bodies of the baby chick and the 1½-pound broiler

BABY CHICKS

Period.	Gain.	Potas- sium.	So- dium.	Cal- cium.	Magne- sium.	Sul- phur.	Chlo- rin.	Phos- phorus.	Iron.
	Gm.	Gm.	Gm.	Gm.	Gm.	Gm.	Gm.	Gm.	Gm.
st	192	0. (610	0. 5326	0-3797	a. 2053.	0.0205	0.2899	0.6816	0.010
ond	296	8640	.8211	- 5854	.0082	.0316	4469	1.0508	.0159
ird	394	1.1512	1.0929	• 7793	-0110	-0421	-5949	1.3987	.031
urth	339	1.1365	1.0790	. 7694	8010	-0416	- 5873	1.3809	.021
ith	547	1. 5983	1.5173	1.0579	.0153	-0585	.8259	1.9413	.029
eth	533	1. 7035	1.6172	1.1531	-0163	-0623	-8803	2.0696	.031
venth	410	1, 2504	1. 1923	8505	-0120	. 04fio	. 6493	1.5265	. 023
ighth		3.0775	1-9723	1.4063	-0199	-0760	1.0736	2. 52.40	. 038

						1		1	
First	11/2	0.4569	0+3033	1.0852	0-0844	0-5817	0.1516	2-4729	0.0107
Second	250	7044	. 4676	3.0606	- 1302	.8968	- 2338	3.8124	.0165
Third	3-24	9377	. 6225	4.0739	1733	1.1938	.3112	5-9747	.0220
Pourth.	38)	-9358	.6146	4-0222	- 1711	1. 1786	.3073	5.0103	.0217
Fifth	547	1. 3013	3012	5.6559	2406	1.0574	4321	7-0453	 o3of
sixth	583	1-3875	.9211	6.0282	-2565	1.7664	-4605	7.5090	.0326
Seventh	430	1.0234	6794	4-4462	1892	1.3029	- 3397	5-5384	-0240
Eighth	711	1.0921	1.1233	7-3517	3128	2.1543	- 5616	9-1576	.0398

Table IX.—Mineral intake supplied by the feed, the outgo by way of the bowel, the amount of each element required to build up the tissue gain, based on the analyses of the bodies of 1½-pound broilers, and the mineral balance

Period and factor.	Potas- sium,	Sodium.	Calcium.	Magne- sium.	Sul- phur.	Chlorin.	Phos- phorus.	Iron.
First period; Intake Outgo Required	Gm. 3.8810 1.9847 -4562	Gm. 3.4360 1.0445	Gm. 33.6780 16.7895 1.9852	Gm. 5.9730 2.3497 .0844	Gm. 1. 5144 .6728 .5817	Gm. 1.4433 .7905 .1516	Gm. 7.7126 3.8349 2.4729	Gm. 2.6189 .0020
Balance	F 1-4394	+ 2.0882	+14.9233	+3.5389	+ .2599	+ .5012	+ 1.4048	+2.6062
Second period: IntakeOutso Required	7-1310 5-7272 -7044	5- 3480 2- 2206 - 4676	14-1110 15-9993 3-0000	7-4007 5-1619 -1302	2.6873 2.3389 .8968	2.5092 2.0876 .2338	11-8763 8-3507 3-8124	0.1390 .0203 .0165
Balance	+ -6294	+ 2.6598	- 4.9489	-3.8914	5484	+ .1878	2868	+ . 1022
Third period: Intake. Outgo Required.	8. 3940 6. 4260 • 9377	5.6600 3.0704 .6225	27-7550 17-0000 4-0739	3-3386 2-4208 -1733	3. 1960 1. 3804 1. 1938	2.8605 3.1790 .3112	14. 2996 9. 1120 5.0747	0.876g -9340 -0220
Balance	+ 1.0303	+ 1-9671	+ 6.68rr	+ -7445	+ .6218	6297	+ .1129	+ .8200
Fourth period: Intake Outgo Required	9- 2010 7- 7360 - 9258	6. 3220 4. 5841 - 6146	38. 1330 30. 4734 4. 0222	2. 7805 2. 6014 . 1711	3·5845 1·8724 1·1786	3.6410 2.8585 .3073	21.1110 16.9410 5.0105	0- 5142 -0314 -0217
Balance	+ .5392	+ 1.1233	+ 3.6374	+ .0080	+ -5335	+ -4752	→ .8405	+ .4611
Fifth period: Intake Outgo Required	12- 2550 9- 5486 1- 3018	6.8130 3.7437 .8642	26. 88% 32. 1895 5. 6559	3-3763 3-6274 -2406	4.7929 2.6134 1.6574	4. 0491 3. 4894 • 4321	19-5296 14-9857 7-0453	0. 7960 • 0322 • 0300
Balance	+ 1.4046		+10.9574	4917	I			ļ

TABLE IX.—Mineral intake supplied by the feed, the outgo by way of the bowels, the amount of each element required to build up the tissue gain, based on the analyses of the bodies of 13/2-pound broilers, and the mineral balance—Continued

Period and factor.	Potas- sium.	Sodium.	Calcium.	Magne- sium.	Sul- phur.	Chlorin.	Phos- phorous,	Iron.
Sixth period:	Gm.	Gm.	Gm.	Gm.	Gm.	Gm.	Gm.	Gm.
Intake	14.6050	7-3420	34-1000	4. 7329	5-3924	4.8831	22.1251	1.3106
Outgo Required	13.1084	5-9358	31.8477 6.0282	5.0382	3.0062 1.7664	3.4293 .4005	18-0121 7-5090	.0448 .0326
Balance	+ .1001	+ ·4851	- 3.7759	5618	+ .6198	+ .9933	- 3. 3960	+1.2332
Seventh period: Intake	14-5370	7.8480	34-5710	5. 1029	5.2164	4.9866	20.7737	1.5177
Outgo Required	13.3769 1.0234	4-4705 6794	21.7299 4.4462	3-3716	3.3460 1.3029	3.8460 3397	16-6019 5-5384	.0233 .0240
Balance	+ .1367	+ 2.6981	+ 8. 3949	+1.5421	+ .5675	+ .8009	- 1.3666	+1.4704
Eighth period:								(
Intake	15.6800	8.4780	25-2820	2.8747	5.8589	5. 2620	23-3411	0.2393
Optgo Required	16.5110 1.6921	5.9803 1.1233	33·2590 7·3517	5.908a .3128	4-0527 2-1543	4.5030	19-2760 9-1576	,0395
Balance	- 2.5231	+ 1.3744	-15.3287	-3.4263	3481	+ . 1974	- 5.1576	+ . 1600
Total balance	+ 2.8356	+14.6011	+20.5406	-2-5371	+2.2231	+2.6542	-12.03t2	+7.5870

TABLE VIII .- Total weight of mineral in the droppings for each period

Period.	Potas- sium.	So- dium.	Calcium.	Magne- sium.	Iron.	Phos- phorus.	Sul- phur.	Chlo- rin.	Total drop- pings.
Pirst Second Third Fourth Fifth Sixth Seventh Eighth	Gm. 1.9847 5.7272 6.4260 7.7363 9.5486 13.1084 13.3769 16.5110	Gm. 1.0445 2.2206 3.0704 4.5841 3.7437 5.9358 4.4705 5.9803	Gm. 16.7695 15.9993 17.0000 30.4734 32.1895 31.8477 21.7299 33.4590	Gm. 2. 3497 5. 1619 2. 4208 2. 5014 3. 6274 5. 0382 3. 3716 5. 9882	Gm, 0.0020 .0203 .0340 .0314 .0324 .0448 .0233 .0395	Gm, 3.8349 8.3507 9.1120 16.9410 14.9857 18.0121 16.6019	Gm. 0. 6728 2. 3389 1. 3804 1. 8724 2. 6184 3. 0062 3. 3460 4. 0527	Gm. 0.7905 2.0876 3.1790 2.8585 3.4894 3.4293 3.8460 4.5030	Gm. 168. 2 369. 5 340 524. 5 541 641 790

DISCUSSION OF RESULTS

In studying the mineral content of poultry feeds we found that the different samples of products grown in different sections of the country, or even different sections of a State, or on different plots of ground, vary in their inorganic content. Therefore we have given the averages of a large number of analysis from different lots of the same kind of feeds in order to show the average of these specific analyses (Table II) and later a tabulation of the analyses of just the feeds used in these experiments (Table III). The latter table will enable us to determine definitely just the amount of mineral taken in in these feeding experiments. Not only the poverty of the soil, but also seasonal variations from year to year, such as drouth, may affect the mineral content of the feed.

In the baby chick the bones are very thin walled and bend easily, indicating that thorough calcification has not taken place in all parts. It is to be expected that later in the life of the chick there would be a greater amount of mineral in the bones and consequently a greater percentage in the total weight of the bird. If the results of the analyses

which were carried on with the bodies of baby chicks and of 1½-pound broilers be studied, it will be noted that there is a material increase of the greater essential inorganic constituents of the bone—namely, calcium, magnesium, and phosphorus. The baby chick is provided with down. This is gradually replaced with a coat of feathers as the chick develops, which calls for an increase of sulphur. It will also be noted that in this element there has been a material increase. To carry our comparative study a step farther, it will be noted that, as the bird develops to maturity, there is a still greater increase in calcium, magnesium, phosphorus, and sulphur, though the iron content is only slightly increased.

The bird has no sweat glands and only one oil gland, the latter a double lobulated tubular gland located dorsally at the base of the tail. This gland furnishes oil for the bird to distribute to each feather by the aid of its beak. The excretions of the body of the fowl are cast off by way of the lungs, kidneys, and intestinal tract. The ureters, large intestine, oviduct, and vasa deferentia all empty into a reservoir, an expansion of the terminal end of the gut, called the "cloaca," which in turn empties through the anus to the external world. This arrangement makes the isolation of elements eliminated by the kidneys a difficult task; in fact, it is impossible except through surgical interference, and this has many difficulties. In these particular experiments we have not attempted this. In an average of two lots in this series of experiments the following

In an average of two lots in this series of experiments the following quantities of feeds were required to produce 1 gm. of gain in weight: Milk, 7.49 gm.; mash and grain mixtures, 2.91 gm.; green feed, 1 gm.; total 11.44 gm. In these cases the feed was kept constantly before the flocks, so that the consumption was a maximum amount and by selection, so far as the milk, mash, and grain mixtures were concerned. The rape, finely chopped, and the milk were likewise kept in separate containers. Thus, where the chicks in their first eight weeks are given all the sour skim milk and green feed they will consume, there will be required approximately 3 gm. of grain and mash per gram of gain in body weight. In these two lots it was found that 75.2 per cent of the carbohydrates were digested and 80.2 per cent of the fat. These are the averages for the eight periods, the digestibility varying from period to period.

The methods used to separate the ammonia and uric acid of the feces from the undigested protein of the feed were not considered to be sufficiently accurate to give here. The problem of separating the mineral elements from those passed out with the feces unused is a quite different matter. If it were possible to separate the urine from the feces by surgical interference, there would yet remain that eliminated by way of the bowel, which could not be separated from that taken with the food and not utilized. At this time there seems to be only one practical way to measure mineral requirements—that is, by comparing the intake with the outgo and the amount required to construct the tissue gain, and to study the mineral balances left over unaccounted for.

From Table I, which gives the mineral content of the bodies of fowls, may be seen the requirement in utilizable mineral needed to construct a given gain. From the above estimate of the quantity of feeds to produce a pound of gain can be estimated the amount of mineral elements contained in the feed.

The mineral intake will fluctuate with the kinds of materials given in addition to the dry mash and the grain mixtures. By a study of the table of average analyses (Table II) it will be seen that milk contains quite a large quantity of phosphorus, calcium, sodium, and potassium, and hence the intake of sour skim milk, if the chicks are given all they will consume, supplies much in the way of mineral elements. Thus, in the first period 58 per cent of the potassium, 63 per cent of the sodium, 6 per cent of the calcium¹ 0.0045 per cent of magnesium,¹ 42 per cent of sulphur, 68 per cent of chlorin, 26 per cent phosphorus, and 2 per cent of iron¹ were furnished by the sour skim milk.

In the second period 52 per cent of the potassium, 67 per cent of the sodium, 27 per cent of the calcium, 3 per cent of the magnesium, 39 per cent of the sulphur, 64 per cent of the chlorin, 28 per cent of the phosphorus, and 64 per cent of the iron were furnished by the sour skim milk.

In the third period 42 per cent of the potassium, 60 per cent of the sodium, 13 per cent of the calcium, 1 per cent of the magnesium, 31 per cent of the sulphur, 53 per cent of the chlorin, 22 per cent of the phosphorus, and 9 per cent of the iron were furnished by the milk.

In the fourth period 41 per cent of the potassium, 57 per cent of the sodium, 10 per cent of the calcium, 1 per cent of the magnesium, 30 per cent of the sulphur, 45 per cent of the chlorin, 16 per cent of the phosphorus, and 17 per cent of the iron were furnished by the sour skim milk.

In the fifth period 40 per cent of the potassium, 68 per cent of the sodium, 18 per cent of the calcium, 1 per cent of the magnesium, 28 per cent of the sulphur, 52 per cent of the chlorin, 22 per cent of the phosphorus, and 14 per cent of the iron were furnished by the sour skim milk.

In the sixth period 35 per cent of the potassium, 66 per cent of the sodium, 15 per cent of the calcium, 1 per cent of the magnesium, 26 per cent of the sulphur, 45 per cent of the chlorin, 20 per cent of the phosphorus, and 9 per cent of the iron were furnished by the sour skim milk.

In the seventh period 41 per cent of the potassium, 73 per cent of the sodium, 17 per cent of the calcium, 1 per cent of the magnesium, 32 per cent of the sulphur, 52 per cent of the chlorin, 26 per cent of the phosphorus, and 9 per cent of the iron were supplied by the sour skim milk.

¹ It must be remembered that all the mineral elements in the grit are not liberated for use in the same period in which it is consumed, since all the grit will not be ground for about two weeks.

In the eighth period 40 per cent of the potassium, 70 per cent of the sodium, 25 per cent of the calcium, 2 per cent of the magnesium, 32 per cent of the sulphur, 51 per cent of the chlorin, 24 per cent of the phosphorus, and 63 per cent of the iron were supplied by the sour skim milk.

If we consider the total mineral nutrients that would have been supplied by the feed ingested, leaving out the milk, there would have been ample furnished in any of the eight periods.

If the birds had received neither milk nor mash, there would have been a deficiency in the first period in all mineral elements except potassium and magnesium provided that the same quantity of feed was consumed as a grain mixture and that the consumption of shell or limestone as grit was not considered. In the second period there would have been a deficiency in sodium, calcium, potassium, and iron. In the third period there would have been a deficiency in sodium, calcium, phosphorus, and iron. In the fourth period there would have been the same deficiency as in the third period. In the fifth, sixth, and seventh periods there would have been a deficiency in calcium alone, and a deficiency in calcium, sodium, and phosphorus in the eighth period.

In Table IX there is an apparent balance of calcium of 20 gm. unaccounted for, and in this connection it must be remembered there would be at least 1 or 2 gm. of limestone grit per bird still remaining in the gizzards at the end of these tests. This would likewise affect the magnesium, leaving a small balance, and the same holds good for the iron, since the limestone used in these experiments contained 3 per cent of iron. The summary of the eight periods indicates an apparent shortage of phosphorus and a slight shortage of magnesium.

To supply the proper amount of phosphorus, magnesium, and calcium to growing chicks, in mashes consisting of such mill feeds as middlings and ground oats there should be added meat and bone meal, or bone meal, or meat meal. Sour skim milk and buttermilk, if given in sufficient quantities, aid in making good the mineral shortages as well as providing food hormones, which have a stimulating effect upon the growth of the young, as shown by work in this and other laboratories.

SUMMARY

The mineral content of southern poultry feeds varies in different kinds of feed and in different lots of the same kind. This difference is influenced by weather conditions, such as drouth, and by the different mineral contents of the soil.

In the development of the broiler from the baby chick there is a gradual increase in the requirements of calcium, magnesium, phosphorus, and sulphur. To supply this increase and to attain the best growth there must be added to a ration consisting of mill products and ground grain, such products as meat meal, bone meal, meat and bone meal, and sour skim milk or buttermilk.

Journal of Agricultural Research

PLATE 18

Feeding utensils used in the feeding experiments with chicks: a, Beakers for the sour skim milk; b, container for the dry mash; c, container for grit or shell; d, container for the grain mixture; e, container for the green feed; f, rape used as green feed.

FEMALE LEPIDOPTERA AT LIGHT TRAPS

By W. B. TURNER 1

Scientific Assistant, Cereal and Forage Insect Investigations, Bureau of Entomology, United States Department of Agriculture

INTRODUCTION

It appears to be the generally accepted theory that in the Lepidoptera practically all individuals taken at a light trap are males, and that of the few females so captured all have oviposited previously. During the summer of 1916 extended observations were made at the Hagerstown, Maryland, field station of the Bureau of Entomology in an effort to secure some definite information as to the relative proportions of the sexes of moths attracted to the light and the percentage of gravid females among those so taken. The purpose of this paper is to give a brief account of the methods employed to obtain material and a summary of the facts brought out by a detailed examination of such material.

The attracting light used was an arc lamp of 300 candlepower hung in an inverted truncated cone of heavy tin. One-half of the cone which would otherwise encircle the lamp was cut away; the narrow (lower) end of the cone was fitted in the circular opening in the top of the trap. Immediately below this opening are arranged several plates of glass at angles to direct the moths downward into the body of the trap. The trap is 12 by 14 inches and 20 inches high. Two sides are of wire mesh, the other sides and the top and bottom being of wood. To kill the captured insects, the trap was placed in a tightly constructed box with a small vessel of carbon disulphid placed at the top of the trap.

The individuals of some twenty-odd species were preserved in alcohol, with the date of each collection. Later these were determined as to sex and the number of males and females tabulated for each date. The females were carefully dissected and tabulated as to the stage of ova development.

ođ

¹ The writer wishes to express his appreciation of the assistance given by Mr. Harry L. Parker, of the Hagerstown station, who separated the individuals of Caenurgia into the two species represented; and to acknowledge the help received from other men of the station.

No attempt was made to determine specifically the individuals of the genus Feltia, of which it is probable that the following four species were taken: Feltia subgothica Haworth, F. annexa Treitschke, F. gladiaria Morrison, and F. jaculijera Guenée.

The material collected and examined embraces a little over 11,000 individuals, representing 3 families and about 20 species. Table I gives the results of an examination of this large number of moths to determine the sex. No extended résumé is attempted in the text beyond a brief statement of some of the more salient facts.

Of the 11,222 moths examined, 8,025, or 71.5 per cent, were males; 3,197, or 28.5 per cent, were females. In only one species, *Noctua c-nigrum*, did the females taken equal or exceed the males.

TABLE I.—Number and percentage of males and females of various species of Lepidoptera taken at a light trap, Hagerstown, Md., 1916

Species.	Number of males.	Number of females.	Total.	Percent- age of males.	Percent- age of females.
Apantesis vittata Fabricius	1, 158	25	1, 183	97-9	2.
A pantesis arge Drury	14]	17	82. 3	17.
Estigmene acraea Drury	404	69	473	85.4	14. (
Diacrisia virginica Fabricius	66	81	74	88.0	12.0
Isia isabella Smith and Abbot	256	42	298	86. o	14.
Halisidota tessellaris Smith and Abbot.	2Š2	123	405	60.6	30.
Datana ministra Drury	47	19	66	71.2	28. 8
Arsilonche albovenosa Goeze	III	ΙÍ	122	90.0	10.0
Autographa biloba Stephens	38	2	40	95.0	5. 0
Autographa simplex Guenée	223	71	204	75.8	24. 2
Meliana diffusa Walker	159	10	178	89.4	10. 6
Polia renigera Stephens	192	77	260	71.4	28. 6
Caenurgia erechtea Cramer	1,437	833	2,270	64. 1	35.9
Caenurgia crassiuscula Haworth	973	566	1,539	64.5	35.
Cirphis unipuncta Haworth	552	424	976	56.5	43.
Noctua c-nigrum Linnaeus	95	107	202	47. 0	53. 0
Feltia spp	2,018	798	2,816	71.7	28.
Total	8, 025	3, 197	11,222	71. 5	28.

Table II gives the percentage of gravid females and shows that of 3,197 individuals dissected, 1,857, or 58 per cent, were gravid. These gravid females make up 16.6 per cent of the 11,222 moths examined.

It will be noted that all the females of four of the six species of Arctiidae under observation were gravid, and in the two other species the gravid females represent 85.5 per cent and 96 per cent of females collected. These facts, together with data as to the number and development of the eggs, are to be found in Table III.

Table II.—Number and percentage of gravid female Lepidoptera taken at a light trap, Hagerstown, Md., 1916

Species.	Number of		Gravid.		
Species.	females taken,	Spent.	Number.	Per cent.	
pantesis vittata Fabricius	25	0	25	100. 0	
bantesis arge Drury	3	0	3	100. 0	
tigmene acraea Drury	69	.10	60	85. 5	
acrisia virginica Fabricius	8	٥	8	100. 6	
ia isabella Smith and Abbot	42	o	42	100.0	
lisidota tessellaris Smith and Abbot	123	5	118	96. c	
dographa biloba Stephens	2	2	0	0.0	
tographa simplex Guenée	71	10	52	73. 0	
liana diffusa Walker	19	12	7	37.0	
lia renigera Stephens	77	10	67	87. 0	
enurgia erechtea Cramer	833	380	444	53-3	
aenurgia crassiuscula Haworth	566	290	276	48.	
rphis unipuncta Haworth	424	85	339	8¢. c	
octua c-nigrum Linnaeus	107	58	49	54. 8	
rsilonche albovenosa Goeze	11	ō	11	100.0	
eltia spp	793	394	404	50. (
atana ministra Drury	19	o	19	100.0	
Total	3, 197	1, 340	1,857	58. 6	

Table III.—Condition of the ovaries of Lepidoptera taken at a light trap, Hagerstown, Md., 1916

APANTESIS VITTATA

Date.	e.	Num- her		tion of ries.	Number and development of eggs,
	take		Spent. Gravid		
uly	26	, 2	o	2	11D; 93D.
	30	3	٥	3	116D; 96D; 123D.
٠	31	2	0	6	67D; 76D.
lug.	3	6	0		129D; 146D; 122D; 131D; 96D; 224D. 78D; 89D; 108D; 95D; 113D. 77D; 53D; 47D.
	4	5	0	5	78D; 89D; 108D; 95D; 113D.
	6	3	0	3	77D; 53D; 47D.
	8	1	0	1	103D.
	9	Ţ	0	I	139D.
	15	1	0	1	166D.
	22	1	٥	I	113D.

APANTESIS ARGE

July Aug.

TABLE III.—Condition of the ovaries of Lepidoptera taken at a light trap, Hagerstown, Md., 1916—Continued

					Md., 1910—Continued		
					ESTIGMENE ACRAEA		
Da	Date.		Condi	ition of `ries.	Number and development of eggs.		
		taken.	Spent.	Gravid.			
June	23	1	r	0			
-	29	1	0	1	187D.		
July	1 2	1	0	I	98D. 117D.		
	14	1	1	0	1170.		
	27	r	0	1	203D.		
	30	I	0	I	128D.		
Aug.	31 1	7 T	0	7	All fully developed but not counted. 153D		
mug.	3	5	0	5	All fully developed but not counted.		
	4	I	ī	ő	•		
	5 6	5	٥	5	Do.		
	8	3	I 1	0 2	147D; 138D.		
	9	1	1	ō	14/2, 1302.		
	10	2	1	1	186D.		
	II	I	0	I	227D. 236D.		
	13	Ĺ 2	. 0	I 2	All fully developed but not counted.		
	18	3	I	2	Do.		
	19	3	1	2	Do.		
	51	3 4	1	2 4	Do. Do.		
	22	3	0	3	Do.		
	23	5	0	5	Do.		
	24	5	٥	5	Do. Do.		
	25 28	4 2	0	4 2	Do.		
	!	!			DIACRISIA VIRGINICA		
June	28	2	اه	2	238D; 609D.		
July	2	1 [٥	Ţ	514D.		
	24 28	I	0	- 1	488D.		
	20	1	0	1 1	378D. 471D.		
	31	τ	o l	ī	538D.		
Aug.	6	1	٥	1	493D.		
					ISIA ISABELLA		
July	30	3		3	217D; 165D; 126D; 155D.		
Δ.,,,,,	31	5 {	0	5	287D; 175D; 214D; 301D; 303D.		
Aug.	1 2	2		2 1	257D; 218D. 212D.		
	3	1	°	ı	212D. 223D.		
15		7	0	7	Averaged 252D.		
	Ş	7	0	7	Averaged 217D.		
	8	2	0	2	158D. 164D; 192D.		
.24	4 56 8 9		0		387D; 320D; 392D.		
	2.94						

TABLE III.—Condition of the ovaries of Lepidoptera taken at a light trap, Hagerstown, Md., 1916—Continued

ISIA ISABELLA-continued

Date.	Num- ber		tion of ries.	Number and development of eggs.c
Date	taken.	Spent.	Gravid.	·
Aug. 10 19 21 22 23 24 25 Sept. 1	1 1 3 1 1	0000000	1 1 3 1 1	129D. 229D. 274D. 287D; 278D; 239D. 285D. 377D. 248D. 116D.

HALISIDOTA TESSELLARIS

		1	i	1	
July	1 2 3 4 6 7 8 10 14 18	4 3 13 9 4 6 21 4 2	0 0 0 0	3 3 13 9 4 6 21 4 2	137D; 218D; 186D. 298B; 150D(e); 200D(c). 293B; 150D(e); 200D(c). 293B; 68B; 98B; 128D; 9 averaged 167D. 5 averaged 257D; 4 averaged 137D. 168D; 157D; 128D; 92D. 128B; 153D; 4 averaged 26D. 6 averaged 260D; 15 averaged 180D. 178B; 58D; 100D(e); 75D(e). 280B; 124D. 278B; 238B; 217D; 3 averaged 250D(e).
	19 20 23 24 26 28 29	4 10 10 1 3 10 2	0 1 2 0 0	4 9 8 1 3 10 1	283D; 3 averaged 225D(e). 213D; 119D; 183D; 198D; 5 averaged 180D(e). 128D; 58D; 67D; 5 averaged 110D(e). 139D. 296D; 200D (e); 225D (e). 134D; 129D; 96D; 125D; 164D; 5 averaged 105D. 108D. 143D.
Aug.	31 4 6 7 18	3 1 1 1 4	0 0 0	3 1 1 1 4	143D. 195D; 97D; 128D. 238D. 173D. 143D. 160D; 88D; 118D; 138D.

DATANA MINISTRA

July Aug.	23 24 26 29 30 1	7 4 1 3 1 1	0 0 0 0 0 0	7 4 1 1 3 1 1	Averaged 248D. 81D; 172D; 93D; 125D. 81D. 76D. 91D; 141D; 224D. 6D. 263D. 332D.
--------------	---------------------------------	----------------------------	-------------	---------------------------------	--

o (e)=Estimated.

TABLE III.—Condition of the ovaries of Lepidoptera taken at a light trap, Hagerstown, Md., 1916—Continued

					Ma., 1910—Continued
				A	RSILONCHE, ALBOVENOSA
Date,		Num- ber		tion of ries.	Number and development of eggs.
		taken.	Spent.	Gravid.	
July	4	3	0	3	157S; 173S; 186S.
J /	10	2	0	2	377D; 272D.
	13	I	0	I	182S.
Aug.	17	I	0	I	357—198D and 159S.
-	19	2	0	2	315-153D and 162S; 52D; 162S.
	23	2	0	2	213D; 263D.
					AUTOGRAPHA BILOBA
July	4	ı	1	٥	
Aug.		1	1	٥	
		·			AUTOGRAPHA SIMPLEX
June	23	15	5	10	Immature; not counted.
June	28	3	0	3	78D; 113D; 67D.
	29	1	0	1	151D.
July	Ι.	9	3	6	Averaged 123D.
J,	2	7	2	5	Averaged 146D.
	4	1	1	0	
	6	6	0	6	Averaged 92D.
	7 8	6	0	6	Averaged 79D.
	8	12	4	8	Averaged 88D.
	27	I	I	0	
	30	I	0	1	128D.
Aug.	1	1	0	I	145D.
	.3	I	1	0	
	4	2	2		-0DDD
Oct.	8	3	0	3	78D; 75D; 75D. 156D; 168D.
Oct.	4	2	٥	2	150D, 100D.
					MELIANA DIFFUSA
June	23	ı	ı		
,	29	3	2		75D.
July	19	1	ة ا		78D.
Aug.	9	1	6		54D.
	7.	1 2			50D: 64D

	64D.	75D. 78D. 54D. 59D; 79D.	0 1 1 2 1 0 0	1 2 0 0 0 1 2 2 0 1 1	1 3 1 1 2 1 2 2 2 1 1 1	29 19 9 10 16 20 21 24 25 28 31	June July Aug. Sept.
--	------	--------------------------------------	---------------------------------	---	--	---	----------------------

TABLE III.—Condition of the overies of Lepidoptera taken at a light trap, Hagerstown, Md., 1916—Continued

		•			POLIA RENIGERA				
			<u>,</u>		_				
Date, b		Num- ber	Condition of ovaries.		Number and development of eggs, a				
		taken.	Spent.	Gravid.					
une	23	11	1	, 10	Averaged 6oD.				
	28	6	2	4	63D; 42D; 53D; 68D.				
uly	29 1	22 8	3	19	Averaged 52D, Averaged 73D.				
uly	3	12	2	. 10	Averaged 39D.				
	6	3	1	2	23D; 75D.				
	8	4 2	0	4	5îD; 28D; 43D; 73D.				
	10 24	1	°	2 1	32D, 43D, 38D.				
lug.	22	1	٥	1	43D.				
•	23	7	1	6	Averaged 57D.				
					CAENUKGIA ERECHTEA				
une		8	2	6	4 averaged 42D; 125S(e); 150S(e).				
.1.,	29 1	39	13	26	Averaged 51D. 16 averaged 53D; 10 averaged 125S(e).				
[uly	2	18	7	11	6 averaged 29D; 5 averaged 125S(e).				
	3	63	21	42	30 averaged 62D; 12 averaged 130S.				
	4	20	8	12	9 averaged 44D; 3 averaged 110S.				
	6	38	10	28 32	25 averaged 47D: 3 averaged 150S(e). 30 averaged 45D; 2, 125S each (e).				
	7 8	44 97	49	48	40 averaged 57D; 8 averaged 150S(e).				
	10	7	2	5	Averaged 43D.				
	14	2	0	2	26D; 21D.				
	18 19	5	3 6	2	23D; 26D. Averaged 28D.				
	20	12	4	5 8	Averaged 31D.				
	23	17	7	10	Averaged 51D.				
	24	6	3	3	27D, 54D, 100D.				
	20 28	1	. 2	4	Averaged 104D.				
	29	1	1	0					
	30	4	4	0					
ug.	2	I	0	1	21D.				
	3	10	5	5	Averaged 50D.				
	4	3	2	I	19D.				
	7 8	I	0	I	34D.				
	o y	12	5 5	7	Averaged 55D. 33D.				
	10	44	23	21	18 averaged 32D; 3 averaged 130S(e).				
	12	2	1	1	6D.				
	13	I	1	0					
	14	3	3 7	6	75D; 5 averaged 22D.				
	16	5	2	3	16D; 31D; 23D.				
	17	18	7	11	8 averaged 53D, 3 averaged 13oS(e).				
		12	7	5	4 averaged 43D; 175S(e). Averaged 25D.				
	18	1 70			I ARTHAGELLA JAPA				
	18 19 20	10	6	4	Averaged 44D.				
	19	10 0 23	5	12	Averaged 44D.				
	19 20	ģ	5	4					

a (e)= Estimated.

3.

Table III.—Condition of the overies of Lepidoptera taken at a light trap, Hagerstown, Md., 1916—Continued CAENURGIA ERECHTEA-continued

				CABI	ORGIA BRECHIEA COMMINEU		
Date.		Num- ber		tion of ries.	Number and development of eggs.c		
		taken.	Spent.	Gravid.			
A			22	18	15 averaged 36D; 3 averaged 75S(e).		
Aug.	25 28	40 3	1 2	2	24D; 32D.		
	30	24	13	11	9 averaged 34D, 75S(e); 100S/e).		
	31	24	14	10			
Sept.	Ţ	13	3	10	Averaged 31D.		
	2	5	4	I	23D.		
	14		1	5	Averaged 51D.		
Oct.	18 6	1 2	1	0	22D.		
		<u> </u>	1		ATTIVIDATE ON LOCATION A		
					AENURGIA CRASSIUSCULA		
иле		4	1	3	96D; 108D; 57D.		
T1-	29	4	' 2	2	53D; 28D.		
uly	1 2	19	7 3	6	8 averaged 53D; 4 averaged 125S(e). 3 averaged 29D; 3 averaged 125S(e).		
	3	20	10	10	11 averaged 62D; 8 averaged 136S(e).		
	4	10	4	6	3 averaged 44D; 3 averaged 110S.		
	6	21	6	15	13 averaged 47D; 2, 150S(e).		
	7	22	6	ΙÓ	13 averaged 45D; 3 averaged 125S(e).		
	8	51	29	22	17_averaged_51D; 5_averaged_150S(e).		
	10	4	I	3	29D; 43D; 21D.		
	18	2	1	I	47D.		
	10	4 6	3	4	Averaged 25D. Averaged 67D.		
	20	9	7	3	19D; 16D,		
	23	3	í	2	81D; 56D.		
	24	1	1	0	, y		
	26	3	2	1	128\$,		
lug.	I	I	I	0			
	2	2	2	0			
	3 6	5 2	· 3	2	100D; 25D.		
	8	6	3	3	21D; 100S(e); 100S(e).		
	9	5	4	3	75D.		
,	10	13	8	5	3 averaged 32D; 100S(e); 100S(e).		
	12	3	3	ă	, ,		
	13	2	0	2	41D; 31D.		
	14	5	5	0	9 omenomed a TD.		
	15 16	24 8	13	4	8 averaged 22D; 3 averaged 75S. Averaged 31D.		
	17	20	9	11	7 averaged 53D; 4 averaged 13oS(e).		
	18	23	12	11	8 averaged 43D; 3 averaged 100S(e).		
	19	19	11	8	Averaged 38D.		
	20	17	9	8	Averaged 44D.		
	31	25	13	12	10 averaged 40D; 125S(e); 175S(e).		
	22	68	40	28	22 averaged 42D; 6 averaged 125S(e).		
	23	63	37 6	26	20 averaged 40D; 6 averaged 125S(e).		
	25	13	9	7	6 averaged 43D; 125S(e).		
	28	2	9 I	I	5 averaged 36D; 100S(e), 64D.		
	30	12	6	6	5 averaged 34D; 75S.		
	31	ͺ8	4	4	Averaged 30D.		
Sept.	2	3	1	2	42D; 28D.		
	14	7'	_		arD		

Aug.

2I 22

Table III.—Condition of the ovaries of Lepidoptera taken at a light trap, Hagerstown, Md., 1916—Continued

				<u> </u>	CIRPHIS UNIPUNCTA				
Date,		Num- ber	Condition of ovaries.		Number and development of eggs.				
		taken.	Spent.	Cravid.	,				
June	28	4	0	4	578D; 539D; 559D; 575D.				
	29	. 3	0	3	638D; 619D; 543D.				
July	1	19	6	13	118D; 483D; 648D; 10 averaged 475D(e).				
	2	7	1	6	397D; 378D; 586D; 3 averaged 400D(c).				
	3	42	10	32	4 averaged 362D; 28 averaged 375D(e).				
4		13	' '		[23D; 618D; 703D; 600D(e); 550D(e); 525D(e); 575D(e); 500D(e); 525D(e); 325D(e).				
	6	13	I	12	638D; 679D; 587D; 9 averaged 535D(e).				
	7 8	90	11	79	128D; 383D; 744D; 773D; 75 averaged 525D(e).				
		57	21	36	625D; 587D; 634D; 718D; 32 averaged 365D(e).				
	10	22	5	17	625D; 473D; 587D; 713D; 13 averaged 505D(e).				
	18	10	2	8	713D; 628D; 478D; 5 averaged 475D(e).				
	19	14	3	11	554D; 623D; 478D; 8 averaged 512D(e). 657D; 713D; 538D; 9 averaged 530D(e).				
	20	12	8	12	1057D; 78D; 536D; 8 averaged 565D(e).				
	23 24	19	2	0	10/D, 10D, 5/0D, 6 averaged 303D(e).				
	27	6	2	4	663D; 587D; 713D; 629D.				
	28	8	1	7	684D; 503D; 567D; 4 averaged 550D(e).				
	29	3		3	567D; 627D; 493D.				
	30	5	o	5	602D; 563D; 478D; 450D(e); 525D(e).				
	31	1 4	1.	3	613D; 576D; 550D(e).				
Aug.	ĭ	4	0	4	273D; 438D; 557D; 425D.				
	2	. 2	a	2	397D; 453D.				
	3	15	2	13	625D; 583D; 518D; 10 averaged 477D(e).				
	4	11	٥	11	576D; 487D; 682D; 8 averaged 528D(e).				
	6	5	0	5	718D; 700D; 475D; 525D; 375D.				
	7 8	I	0	I	378D.				
		6	0	6	486D; 726D; 4 averaged 550D(e).				
	9	7	0	7	623D; 6 averaged 495D(e). 387D; 658D; 5 averaged 480D(e).				
	11	10	3	7	487D; 633D; 550D(e); 425D(e).				
	16	5	1	1 6	4012, 0002, 0000(0), 4000(0).				
	10	I	6	I	563D.				
	22	2	0	2	432D; 328D.				
Sept.		ī	1	0	10 . 0				

Fully developed; not counted. Do. Do. 3 2 0 1 3 10 5 2 0 Do. 0 2 1 7 8 6 3 3 2 1 5 1 4 7 7 4 4 3 0

NOCTUA C-NIGRUM

Oct.

Aug.

Sept.

Oct. 6 45 42

TABLE III.—Condition of the ovaries of Lepidoptera taken at a light trap, Hagerstown, Md., 1916—Continued

		NO	CTUA C-NIGRUM—continued
Date.	Num- ber	Condition of ovaries.	Number and development of eggs, a
Date.	taken.	Spent. Gravid	

		1	1	
ot. 2	2	0	2	Fully developed; not counted.
: 14	2	2	. 0	_
18	3	I	2	Do.
t. 6		2	1	Do.
	J	-		FELTIA SPP.
	1	1		
g. 8	4		4	200D(e); 200D(e); 300S(e); 300S(e).
9	3	1	2	60D; 108D.
ΙÓ	3	1	2	154D; 300S(e).
12	I	0	I	43D.
14	I	0	Ī	233D.
1.5	3	ı	2	73D; 250S(e).
17	Ī	0	ī	432S.
18	1	0	ī	254D.
19	1	0	1	238D.
20	3	0	3	101D; 154D; 298D.
21	14	1	13	78D; 158D; 149D; 98D; 228S; 4 averaged 288S; 4
		1 1	-3	averaged 213D.
22	43	10	33	7 averaged 163D; 22 averaged 112D; 4 averaged
	٠.٠	1 -	55	250S(e).
23	38	5	33	7 averaged 117D; 20 averaged 130D(e); 6 averaged
	"	1 1	"	258S(c).
24	38	10	28	112D; 183D; 74D; 81D; 218D; 228S; 258S; 16 aver-
•	"		-	aged 113D(e); 5 averaged 23oS(e).
25	65	20	45	10 averaged 120D; 5 averaged 277S; 21 averaged
-3	'3	1	73	125D(e); 9 averaged 293S(e).
28	8	2	6	258D; 128D; 178D; 151D; 200S(e); 200S(e).
30	75	16	59	128D; 78D; 64D; 159D; 235S; 346S; 271S; 43 aver-
0.		-	79	aged 115D(e); 9 averaged 225S(e).
31	57	32	25	128D; 174D; 64D; 152D; 137D; 154D; 176D; 8
	3"	3	-3	averaged 120D(e); 10 averaged 219S(e).
t. 1	33	6	27	221D: 152D: 786D: 727D: #4D: 69D: #9 022
	33		-/	221D; 153D; 186D; 131D; 74D; 68D; 18 averaged 154D(e); 200S(e); 200S(e); 468S.
. 2	26	6	20	78D: 762D: 47D: 72D: 7 07070704 70D:
	-	ا ۱	•0	78D; 153D; 47D; 53D; 5 averaged 100D; 11 averaged 136D(e).
4	11	10	1	130D(e). 141D.
5	10	9	1	141D. 128D.
7	11	7		
14	127	91	4 36	18D; 209D; 74D; 199D.
	/	9.	30	236D; 158D; 95D; 101D; 128D; 86D; 30 averaged 94D(e).
18	54	47		94D(E).
	37	20	7 8	196D; 156D; 116D; 76D; 226S; 125D(e); 50D(e).
· 27	85	48		86D; 180D; 76D; 226D; 4 averaged 88S(e).
	٧,	40	37	96D; 126D; 233D; 76D; 56D; 74D; 101D; 30 aver-
6	45	42	3	aged 120D(e).
_	**3	4.4	- 3 1	* AULZ. 4017; \$417.

a (e)=Estimated.

219D; 48D; 54D,

The one species (Datana ministra) of the Notodontidae is represented by 19 females, all of which were gravid.

Among the Noctuidae all the females of one species (Arsilonche albovenosa) were found to be gravid. One species, Autographa biloba, is represented by only 2 females, both spent. Of the remaining species of this family the percentage of gravid females varies from 37 per cent in *Meliana diffusa* to 87 per cent in *Polia renigera*. Of the 424 females of *Cirphis unipuncta* dissected, 80 per cent were gravid, the eggs ranging in number from 107 to 773, all fully developed.

Some explanation is required as to the method of arriving at the number of eggs accredited to a female moth where a footnote to a table reads "Estimated." The ovarian structure was dissected and spread for counting the eggs, adopting a unit of 25 eggs. The remaining ovarian material was divided into masses of the bulk of that containing 25 eggs. This method was frequently verified by actual counts and it is believed that the figures are dependable. Where no such reference appears, the actual count was made. In every case the stage of development was determined under the hand lens or binocular and indicated in Table III by "D" for "developed" and by "S" for "immature."

Any data as to the relative proportions of male and female Lepidoptera taken at a light trap have an added value when considered in connection with information bearing on these relations of the sexes in nature. For this reason the writer has endeavored to get together all facts to be had from available sources, and brief notes on the subject are cited here under the name of the species concerned.

EUPROCTIS CHRYSORRHOEA LINNAEUS (3, p. 47-48)1

Concerning the brown-tail moth Fernald and Kirkland write as follows: In July, 1897, a quantity of cocoons and pupæ was gathered and placed in a large glass-covered box, the moths being removed as they emerged. The following . . .

ELASMOPALPUS LIGNOSELLUS ZELLER (10, p. 20)

shows the relative proportion of the sexes: Males, 399; females, 451.

Records obtained at Columbia, S. C., in 1915. From 56 pupæ there emerged 23 males and 33 females.

PHTHORIMAEA OPERCULELLA ZELLER (4, p. 24)

Graf records the following data with regard to the proportion of sexes of the potato-tuber moth:

The proportion of the sexes during the year remains very nearly constant and almost equal. Pupæ selected at random at various times of the year gave the results shown in Table 3. (327 males, 284 females.)

CRAMBUS HORTUELLUS HUEBNER (15, p. 8)

With regard to the cranberry girdler, Scammell records the following data:

In the early summer the males and females appear to be about equal in number; for example, on June 11, 24 moths were collected, of which 12 were males and 12 females. In late summer, however, the males are far in excess of the females, 22 shown by the following collections: Thirteen moths taken July 27 consisted of 12 males and 2 females, while of 23 moths collected August 10 only 5 were females.

¹ Reference is made by number (italic) to "Literature cited," p. 148-149.

PLUTELLA MACULIPENNIS CURTIS (11, p. 5)

Information as to the proportional relations of the two sexes in this species is not particularly definite in the paper by Mr. Marsh, his statement being: "Fifty-two adults, about equally divided as to sex, developed on November 2 and 3." In the summing up of such data as the writer has been able to assemble, this species appears in Table XX as 26 males and 26 females.

CARPOCAPSA POMONELLA LINNAEUS (16)

A general deduction from all data given of rearings puts the proportional relations of the sexes as nearly equal, with a very slight preponderance of females. The same species (5, p. 52) is reported by Mr. A. G. Hammar as including 456 males and 563 females in a total of 1,019 individuals. Further information as to the codling moth is to be found in the paper by Messrs. Jones and Davidson (9, p. 120-121), where, in Table VI, the moths issuing from 151 pupæ are shown to comprise 67 males and 84 females. In Table XXIX (9, p. 146), of 65 adults 32 are reported as males, 33 as females, while in Table XI. (9, p. 153) the males make up only 21 of a total of 54. Summing up the data for C. pomonella it is found that of 1,289 individuals the males include 576; the females 713; a percentage of 44.7 and 55.3, respectively.

SANNINOIDEA OPALESCENS HENRY EDWARDS (12, p. 79)

Mr. Dudley Moulton in his records for 1908 and 1909 on this species accounts for 232 adults and lists them as 118 males, 114 females.

Synanthedon pictipes grote and robinson (8, p. 411)

Mr. J. L. King, in his paper on the lesser peach-tree borer, places 12 adults as to sex; 4 are determined as males and 8 as females. On the same page of the bulletin five adults are divided as to sex into 2 males and 3 females.

ARCHIPS ARGYROSPILA WALKER (6, p. 257)

Messrs. Herrick and Leiby had under observation 227 pupæ from larvæ kept in jars "in an open air insectary under normal conditions of temperature." Sex determinations of 155 individuals proved 85 to be males and 70 to be females.

The same species was under observation by Mr. W. M.. Davidson (2) in 1911, who states that of 76 adults 29 were males and 47 were females.

ARCHIPS ROSACEANA HARRIS (14, p. 396)

In an article by E. D. Sanderson and Mrs. A. D. Jackson, published in the Journal of Economic Entomology, December, 1909, the authors state that from 62 pupæ there issued 35 males and 27 females.

halisidota caryae harris (7, p. 8)

Mr. Dwight Isely had this species under observation at North East, Pa., during the summers of 1915 and 1916. He records that of 25 adults reared 17 were males and 8 were females.

CHLORIDEA OBSOLETA FABRICIUS (13, p. 92)

Of this species it is stated that—

... data concerning over 300 moths were collected which bear evidence on the proportions of the sexes. These include records of moths collected in the field and of those bred out in the laboratory. In practically all cases there is a slight preponderance of females in the ratio of 168 females to 120 males.

HEMILEUCA OLIVIAE COCKERELL (1, p. 84, 88)

In his paper on this species Mr. C. N. Ainslie says:

During the first week of emergence the males outnumbered the females at least three to one, and on page 88 a table shows that from 5,000 pupæ gathered in widely separated parts of the infested area there emerged 2,822 males as against 2,178 females.

Further information concerning this species is had from manuscript records on the relative proportions of the sexes, compiled from pupal parasite cages at Koehler, N. Mex., by Messrs. V. L. Wildermuth, D. J. Caffrey, and H. E. Smith, during September, October, and November, 1913. These records concern a total of 19,321 moths, of which 10,844 were males and 8,477 were females.

PORTHETRIA DISPAR LINNAEUS

Under date of December 15, 1917, Mr. F. H. Mosher, Entomological Assistant, states that of the large number of gipsy moths reared in investigations extending over a period of six years the ratio of males to females averaged as 5 to 4, a percentage of 55.6 and 44.4, respectively.

A summing up of the foregoing notes on the proportional relations of the sexes in the Lepidoptera is presented in Table IV, by which it is seen that of 28,094 individuals, the males make up 55 per cent and the females 45 per cent. Although 14 species are concerned, the bulk of moths are of one species, *Hemileuca oliviae*. It is to be regretted that the matter of the proportion of sexes among Lepidoptera has received so little attention.

If it be assumed that the sexes exist in nature in approximately equal numbers, the investigations on which this paper is based show the females taken at the light trap to constitute 57 per cent of the assumed total of females, while the gravid females so taken make up 33 per cent. It is believed that further investigations to be conducted will adduce additional evidence to disprove the theory that practically only male

Lepidoptera are attracted to light traps and that of the females so captured all have previously oviposited.

TABLE IV.—Summary of foregoing records, compiled mainly from the literature, as to the relative proportions of male and female Lepidoptera							
Species.	Number of males,	Number of le- males.	Total.	Per- cent- age of males.	Per- cent- age of females.		
Euproctis chrysorrhoea Linnaeus	399	451	850	47	53		
Elasmopalpus lignosellus Zeller	23	33	56	41	. 59		
Phthorimaea operculella Zeller	327	284	611	53.5	46. 5		
rambus hortuellus Hübner		19	60	68, 3	31.7		
Plutella maculipennis Curtis		26	53	50	50		
arpocapsa pomonella Linnaeus		713	1,289	44-7	55-3		
Hemileuca oliviae Cockerell	13,666	10, 655	24, 321	56	44		
Sanninoidea opalescens Henry Edwards	118	114	232	50.9	49. I		
ynanthedon pictipes Grote and Robinson	6	11	17	35-3	64. 7		
rchips argyrospila Walker		117	231	49.4	50. 6		
rchips rosaceana Harris		27 8	62	56. 5	43. 5		
lalisidota caryae Harris.	17	8	25	68	32		

LITERATURE CITED

- (t) AINSLIE, C. N. 1910. THE NEW MEXICO RANGE CATERPILLAR. U. S. Dept. Agr. Bur. Ent.
- Bul. 85, pt. V, p. 59-96, fig. 32-53, pl. 3-4. (2) DAVIDSON, W. M.
- 1913. ON THE PUPAL INSTAR OF THE FRUIT-TREE LEAF-ROLLER (ARCHIPS ARGY-ROSPILA WALKER). In Jour. Econ. Ent., v. 6, no. 5, p. 396-403, pl. 9-10. (3) FERNALD, C. H., and KIRKLAND, A. H.
 - 1903. THE BROWN-TAIL MOTH EUPROCTIS CHRYSORRHOEA (L.). A REPORT ON THE LIFE HISTORY AND HABITS OF THE IMPORTED BROWN-TAIL MOTH.
 - 73 p., 14 pl. Boston.
- (4) GRAF, J. E. 1917. THE POTATO TUBER MOTH. U. S. Dept. Agr. Bul. 427, 56 p., 45 fig.,
- map.

Chloridea obsoleta Fabricius.....

Porthetria dispar Linnaeus.

- (5) HAMMAR, A. G.

(7) ISELY, Dwight.

(8) King, J. L.

- 1912. LIFE-HISTORY STUDIES ON THE CODLING MOTH IN MICHIGAN. U. S. Dept.

- (6) HERRICK, G. W., and LEIBY, R. W.
- 1915. THE FRUIT-TREE LEAF ROLLER. N. Y. Cornell Agr. Exp. Sta. Bul. 367,
- - Agr. Bur. Ent. Bul. 115, pt. 1, p. 1-86, 22 fig., 3 pl.

598, 16 p., 3 pl.

448, 21 fig. (9) Jones, P. R., and Davidson, W. M.

fig. 27-39.

p. 245-280, fig. 44-61.

1918. ORCHARD INJURY BY THE HICKORY TIGER-MOTH. U. S. Dept. Agr., Bul.

1917. THE LESSER PEACH TREE BORER. Ohio Agr. Exp. Sta. Bul. 307, p. 395-

1913. LIFE HISTORY OF THE CODLING MOTH IN THE SANTA CLARA VALLEY OF CALIFORNIA. U. S. Dept. Agr. But. Ent. Bul. 115, pt. III, p. 113-181,

- (10) LUGINBUL, Philip, and AINSLIE, G. G.
 1917. THE LESSER CORN STALK-BORER. U. S. Dept. Agr. Bul. 539, 27 p.,
 6 fig., 2 pl.
- (11) MARSH, H. O.
 1917. LIFE HISTORY OF PLUTELLA MACULIPENNIS, THE DIAMOND-BACK MOTH.

In Jour. Agr. Research, v. 10, no. 1, p. 1-9, 2 pl.

(12) MOULTON, DUDLEY.

1911. THE CALIFORNIA PEACH BORER. U. S. Dept. Agr. Bur. Ent. Bul. 97, pt. IV, p. 65-89, fig. 22, pl. 8-10.

- (13) QUAINTANCE, A. L., and BRUES, C. F.

 1905. THE COTTON BOLLWORM. U. S. Dept. Agr. Bur. Ent. Bul. 50, 155 p.,
 27 fig., 25 pl.
- (14) SANDERSON, E. D., and JACKSON, A. D. 1909. THE OBLIQUE-BANDED LEAF-ROLLER. In Jour. Econ. Ent., v. 2, no. 6, p. 391-403, pl. 15-18.
- (15) SCAMMELL, H. B. 1917. THE CRANBERRY GIRDLER. U. S. Dept. Agr. Bul. 554, 20 p., 7 pl.
- (16) Siegler, E. H., and Simanton, F. L. 1915. The life history of the cooling moth in maine. U. S. Dept. Agr. Bul. 252, 50 p., 9 fig.

ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C.
AT
10 CENTS PER COPY

SUBSCRIPTION PER YEAR, 12 NUMBERS, \$3.00