강 의 계 획 서

학년도/학기	2025학년도/1학기	학수번호-분반	AAI2015-02	이수구분	학부
교과목명	자료구조및알고리즘개론				정하림
수강대상학과	소프트웨어융합대학 인공지능융합전공				
선이수과목 (권장)	프로그램밍언어: 파이	썬(Python)			

관련 도서 및 참고자료						
구분	제목	저자	발행년도	출판사		
교재	Problem Solving with Algorithms and Data Structures	Bradley N. Miller and David L. Ranum	2016	Beedle & Associates		
강좌관련자료	1. 파이썬과 함께하는 자료구조의 이해, 양성봉, 2018, 생릉출판사. 2. Introduction to Algorithms 3rd Edition, homas H. Cormen, 2009, The MIT Press. 3. Foundations of Algorithms, 5th Edition, Richard Neapolitan, 2014, Jones & Bartlett Publishers.					
강좌진행방법	자료구조 및 알고리즘의 필요성을 소개하고, 아이디어를 살펴본다. 특히, 파이썬을 활용한	자료구조 및 일 자료구조 및 역	라고리즘의 ㅇ 알고리즘 구현	해를 위한 핵심 현에 초점을 맞춘다.		

교과목 독	자료구조 및 알고리즘 학습의 필요성 이해 리스트, 스택, 큐, 트리, 그래프 등의 자료구조 이해 및 구현 알고리즘의 설계 · 표현 · 분석 방법 학습					
	문제 해결을 위한 대표적인 알고리즘 설계 방법 학습을 통한 문제 해결 능력 배양					
	수 업 내 용	수업 핵심질문				
		(핵심 개념)				
1주차	자료구조 및 알고리즘 개요	자료구조 및 알고리즘 학습의				
_ ' ' '	7-1-2	필요성 이해				
0.7.		계산 복잡도와 자료구조 및				
2주차	시간복잡도 분석	알고리즘의 (시간·공간) 효율				
	리스트(List) - 배열(Python List)과 (단순·이중·환형) 연결 리스트	성에 대한 이해				
3주차						
	(Linked List)	리적) 구현 적용 가능한 연산이 제한된 리스				
4주차	스택(Stack)과 큐(Queue)	트인 스택과 큐의 이해 및 구현				
		논리적 비선형구조 트리와 트				
5주차	트리(Tree)의 개념 및 이진 트리(Binary Tree)	리의 일종인 이진 트리의 이				
		해 및 구현				
o 조 뒤	이 되소이 크(까 : ; ㅇ)이 참(ㅠ)	(완전) 이진 트리인 힙의 구				
6주차	우선순위 큐(Priority Queue)와 힙(Heap)	현을 통한 우선순위 큐 구현				
		탐색(검색)의 (시간) 효율성을				
7주차	이진 탐색 트리(Binary Search Tree)	높이기 위한 이진 트리인 이진				
		탐색 트리 및 관련 연산 구현				
8주차	중간시험					
		논리적 비선형구조 그래프와				
9주차	그래프(Graph)의 개념 및 그래프 탐색(깊이우선 탐색, 너비우선 탐	그래프 탐색 알고리즘의 이해				
	색)	및 구현				
	아그리조 살레지카 다 아디아 비비(이 나 10.4 10.4	1. 탐욕적인 방법 개요				
10주차	알고리즘설계전략: 탐욕적인 방법(Greedy Method)-1	2. Kruskal 알고리즘과 Prim				
	그래프(Graph)에서 최소신장트리(Minimum Spanning Tree) 찾기 문제	알고리즘의 이해 및 구현				
11주차	알고리즘설계전략: 탐욕적인 방법(Greedy Method)-2	Dijkstra 알고리즘의 이해 및				
	그래프(Graph)에서 최단 경로(Shortest Path) 찾기 문제	구현				

12주차	직업 스케울팅((Job Scheduling) 문제&강의실 배성(Classroom Assignment) 문제	/
13주차	알고리즘설계선탁: 문알성복(Divide and Conquer)-1 기본적인 정렬	 분할정복의 개요 기본적인 정렬 방법의 이해 및 구현
14주차	알고리즘설계전략: 분할정복(Divide and Conquer)-2 합병정렬, 퀵정렬, 선택 문제	2. 분할정복의 개요 2. 분할정복 전략을 이용하는 정렬 방법의 이해 및 구현
15주차	알고리즘설계전략: 동적 프로그래밍(Dynamic programming) 거스름돈 계산하기 문제(Coin Change Problem), 행렬에서 최소 이동 비용 찾 기(Finding Minimum Cost in 2D Matrix) 문제	1. 동적 프로그래밍의 개요. 2. 행탈에서 최소 이동 비용 찾기 문제 와 거스름돈 계산하기 문제의 이해 및
16주차	기말고사	

과제물 자료구조 및 알고리즘 구현								
평가	출석	과제/토론	중간시험	기말시험	평소학습	발표	기타	합계
요소	10	20	35	35				100%
평가 방법	하루 결석 시 출석 점수 2점 감점							