Fonctions vectorielles : dérivation et intégration

Dans tout le chapitre, I et J sont des intervalles de \mathbb{R} ; E, F, G,...sont des espaces vectoriels **de dimension finie** sur \mathbb{K} .

I. Dérivation

I.1. Généralités

Définition. Soient $f: I \longrightarrow E$ et $t_0 \in I$. On dit que f est **dérivable** en t_0 si f admet un développement limité à l'ordre 1 en a:

$$f(t) = f(t_0) + (t - t_0)u + (t - t_0)\varepsilon(t)$$

où ε est une fonction vectorielle de limite 0_E en t_0 ; ou, de manière équivalente, $f(t_0 + h) = f(t_0) + hu + h\varepsilon_1(h)$ où ε_1 a pour limite 0_E en 0.

Le vecteur u est alors défini de manière unique par ces relations; il est appelé le **vecteur dérivé** de f en t_0 , et noté $f'(t_0)$.

Proposition I.1. Avec les notations précédentes, f est dérivable en t_0 si et seulement si $\frac{1}{t-t_0} (f(t)-f(t_0))$ admet une limite en t_0 , ou, de manière équivalente, $\frac{1}{h} (f(t_0+h)-f(t_0))$ admet une limite en θ . Dans les deux cas, la limite est alors le vecteur dérivé de f en t_0 .

Proposition I.2. Avec les notations précédentes, si f est dérivable en t_0 , alors elle est continue en t_0 .

Définition. Avec les mêmes notations, on dit que f est dérivable à gauche en t_0 , si $\frac{1}{t-t_0}(f(t)-f(t_0))$ admet une limite à gauche en t_0 . Le vecteur limite est alors appelé vecteur dérivé à gauche de f en t_0 , et noté $f'_a(t_0)$.

Proposition I.3. Soient $f: I \longrightarrow E$ et $t_0 \in I$. On suppose E muni d'une base $\mathcal{B} = (e_1, \ldots, e_n)$, et on note f_1, \ldots, f_n les fonctions coordonnées de f dans \mathcal{B} ; on a donc, pour tout $t \in I$, $f(t) = \sum_{k=1}^{n} f_k(t) e_k$.

Alors, f est dérivable en t_0 si et seulement si toutes ses fonctions coordonnées le sont; et, dans ce cas, $f'(t_0) = \sum_{k=1}^{n} f'_k(t_0)e_k$.

Définition. Soit $f: I \longrightarrow E$. Si f est dérivable en chaque point de I, on dit que f est dérivable sur I; et l'application $f': I \longrightarrow E$, $t \longmapsto f'(t)$ est appelée application dérivée de f.

Si de plus cette application dérivée est continue sur I, on dit que f est de classe C^1 sur I.

I.2. Dérivation et opérations

Proposition I.4. Soient f et g deux fonctions de I dans E, $t_0 \in I$, et $(\lambda, \mu) \in \mathbb{K}^2$. Si f et g sont dérivables en t_0 (respectivement sur I), alors $\lambda f + \mu g$ l'est aussi, et $[\lambda f + \mu g]'(t_0) = \lambda f'(t_0) + \mu g'(t_0)$ (respectivement $[\lambda f + \mu g]' = \lambda f' + \mu g'$).

Corollaire I.5. L'ensemble $C^1(I, E)$ des fonctions de classe C^1 de I dans E, muni des opérations usuelles, est un espace vectoriel sur \mathbb{K} .

Proposition I.6. Soit $\varphi: I \longrightarrow \mathbb{R}$ prenant ses valeurs dans l'intervalle J; soient $t_0 \in I$ et $f: J \longrightarrow E$.

Si φ est dérivable en t_0 (respectivement sur I) et si f est dérivable en $\varphi(t_0)$ (respectivement sur J), alors $f \circ \varphi$ est dérivable en t_0 (respectivement sur I) et $[f \circ \varphi]'(t_0) = \varphi'(t_0)f'(\varphi(t_0))$ (respectivement $[f \circ \varphi]' = \varphi'.(f' \circ \varphi)$).

Proposition I.7. Soient $f: I \longrightarrow E$, $t_0 \in I$ et L une application linéaire de E dans F.

Si f est dérivable en t_0 (respectivement sur I), alors $L \circ f$ est dérivable en t_0 (respectivement sur I) et $[L \circ f]'(t_0) = L(f'(t_0))$ (respectivement $[L \circ f]' = L \circ f'$).

Proposition I.8. Soient $f: I \longrightarrow E$, $g: I \longrightarrow F$, $t_0 \in I$ et B une application bilinéaire de $E \times F$ dans G. Soit $h: I \longrightarrow G$, $t \longmapsto B(f(t), g(t))$.

Si f et g sont dérivables en t_0 (respectivement sur I), alors h est dérivable en t_0 (respectivement sur I) et $h'(t_0) = B(f'(t_0), g(t_0)) + B(f(t_0), g'(t_0))$.

Plus généralement, si f_1, \ldots, f_p sont dérivables, et si M est p-linéaire, alors $g = M(f_1, \ldots, f_p)$ est dérivable, et g' est la somme des p termes de la forme $M(f_1, \ldots, f_{k-1}, f'_k, f_{k+1}, \ldots, f_p)$.

I.3. Fonctions de classe C^k

Définition. Soit $f: I \to E$. Pour $k \ge 1$, on définit les fonctions dérivées successives $f^{(k)}$ de f par récurrence : si f est k fois dérivable sur I, de dérivée k-ième $f^{(k)}$, on dit que f est (k+1) fois dérivable sur I si $f^{(k)}$ est dérivable sur I; on pose alors $f^{(k+1)} = [f^{(k)}]'$. Par convention, $f^{(0)} = f$.

On dit que f est de classe C^k sur I si elle est k fois dérivable sur I, et si $f^{(k)}$ est continue sur I.

On notera que, dans ce dernier cas, les dérivées $f^{(j)}$, pour $j \leq k-1$, sont toutes dérivables, donc sont continues.

Proposition I.9. Avec les notations précédentes, f est de classe C^k sur I si et seulement si elle est dérivable sur I et f' est de classe C^{k-1} sur I.

Proposition I.10. On suppose E muni d'une base \mathcal{B} . Avec les notations précédentes, f est de classe C^k sur I si et seulement si toutes ses fonctions coordonnées dans \mathcal{B} sont de classe C^k sur I.

I.4. Opérations sur les fonctions C^k

Proposition I.11. Soient f et g deux fonctions de I dans E, $(\lambda, \mu) \in \mathbb{K}^2$ et $k \in \mathbb{N}$. Si f et g sont de classe C^k sur I, alors $\lambda f + \mu g$ l'est aussi, et $[\lambda f + \mu g]^{(k)} = \lambda f^{(k)} + \mu g^{(k)}$.

Corollaire I.12. L'ensemble $C^k(I, E)$ des fonctions de classe C^k de I dans E est un espace vectoriel sur \mathbb{K} .

Proposition I.13. Soit $\varphi: I \longrightarrow \mathbb{R}$ prenant ses valeurs dans l'intervalle J; soient $f: J \longrightarrow E$ et $k \in \mathbb{N}$. Si φ est de classe C^k sur I et si f est de classe C^k sur J, alors $f \circ \varphi$ est de classe C^k sur I.

Proposition I.14. Soient $f: I \longrightarrow E$, L une application linéaire de E dans F et $k \in \mathbb{N}$. Si f est de classe C^k sur I, alors $L \circ f$ est de classe C^k sur I et $[L \circ f]^{(k)} = L \circ f^{(k)}$.

Proposition I.15. Soient $f: I \longrightarrow E$, $g: I \longrightarrow F$, B une application bilinéaire de $E \times F$ dans G et $k \in \mathbb{N}$. Soit $h: I \longrightarrow G$, $t \longmapsto B(f(t), g(t))$.

Si f et q sont de classe C^k sur I, alors h de classe C^k sur I et

$$\forall t \in I \quad h^{(k)}(t) = \sum_{j=0}^{k} {k \choose j} B(f^{(j)}(t), g^{(k-j)}(t))$$

II. Intégration

II.1. Définition

Définition. Soit $f: I \longrightarrow E$. On dit que f est continue par morceaux sur un segment $[a,b] \subset I$ si elle n'y a qu'un nombre fini de discontinuités, et admet une limite à gauche (sauf éventuellement en a) et une limite à droite (sauf éventuellement en b) en chacun de ces points de discontinuité.

Cela équivaut à dire que les fonctions coordonnées de f dans une base quelconque sont continues par morceaux sur [a,b].

Définition. Soit $f: I \longrightarrow E$ continue par morceaux sur $[a,b] \subset I$. Soient $\mathcal{B} = (e_1, \ldots, e_n)$ une base de E, et f_1, \ldots, f_n les fonctions coordonnées de f dans \mathcal{B} .

Le vecteur $\sum_{k=1}^{n} \left(\int_{a}^{b} f_{k}(t) dt \right) e_{k}$ ne dépend pas de la base \mathcal{B} choisie; on l'appelle intégrale de f sur [a,b], et on le note $\int_{a}^{b} f(t) dt$.

II.2. Propriétés

Proposition II.1. Si f et $g: I \longrightarrow E$ sont continues par morceaux sur [a, b], et $si(\lambda, \mu) \in \mathbb{K}^2$, alors $\lambda f + \mu g$ est continue par morceaux sur [a, b], et

$$\int_{a}^{b} [\lambda f + \mu g](t) dt = \lambda \int_{a}^{b} f(t) dt + \mu \int_{a}^{b} g(t) dt$$

Proposition II.2. Soient $f: I \longrightarrow E$ continue par morceaux sur [a,b], et $L \in \mathcal{L}(F,G)$. Alors, $L \circ f$ est continue par morceaux sur [a,b], et

$$\int_{a}^{b} [L \circ f](t) dt = L \left(\int_{a}^{b} f(t) dt \right)$$

Proposition II.3. Si $f: I \longrightarrow E$ est continue par morceaux sur [a,b], et si $c \in]a,b[$, alors $\int_a^b f(t) dt = \int_a^c f(t) dt + \int_c^b f(t) dt.$

Comme pour les fonctions numériques, on pose $\int_b^a f(t) dt = -\int_a^b f(t) dt$ si a < b, et $\int_a^a f(t) dt = 0$.

Proposition II.4. Soit $f: I \longrightarrow E$ continue par morceaux sur [a, b], et $n \in \mathbb{N}^*$.

Pour
$$k \in [0, n]$$
, posons $a_k = a + k \frac{b-a}{n}$. Posons enfin $S_n(f) = \frac{b-a}{n} \sum_{k=0}^{n-1} f(a_k)$.

Alors, la suite $(S_n(f))$ a pour limite $\int_a^b f(t) dt$ quand n tend vers $+\infty$.

Théorème II.5. Soit $f: I \longrightarrow E$ continue par morceaux sur [a,b]. Alors, la fonction $||f||: t \longmapsto ||f(t)||$ l'est aussi, et $\left\| \int_a^b f(t) \, dt \right\| \leqslant \int_a^b ||f(t)|| \, dt$.

II.3. Intégrale fonction de sa borne supérieure

Théorème II.6. Soit $f: I \longrightarrow E$ continue $sur\ I$; soient $a \in I$, et $F: I \longrightarrow E$, $x \longmapsto \int_a^x f(t) \, dt$. Alors, F est de classe C^1 $sur\ I$, et F' = f.

Corollaire II.7. Soit $f: I \longrightarrow E$, continue sur I. Soit G une primitive de f sur I. Alors, pour tout $(a,b) \in I^2$, $\int_a^b f(t) dt = G(b) - G(a)$.

Théorème II.8. Soit f une fonction de classe C^1 de I dans E. On suppose de plus trouvé $M \in \mathbb{R}$ tel que $||f'(t)|| \leq M$ pour tout $t \in I$. Alors, pour tout $(a,b) \in I^2$, $||f(b) - f(a)|| \leq M|b - a|$.

III. Formules de Taylor

Soit $n \in \mathbb{N}$. Dans tout ce qui suit, f est une fonction de classe C^n de I dans E, et a un point fixé de I. Pour tout $x \in I$, on pose

$$T_n(x) = \sum_{k=0}^n \frac{(x-a)^k}{k!} f^{(k)}(a)$$
$$= f(a) + (x-a)f'(a) + \frac{(x-a)^2}{2} f''(a) + \dots + \frac{(x-a)^n}{n!} f^{(n)}(a)$$

et

$$R_n(x) = f(x) - T_n(x)$$

$$= f(x) - \left(f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2}f''(a) + \dots + \frac{(x - a)^n}{n!}f^{(n)}(a)\right)$$

III.1. Formule de Taylor avec reste intégral

Théorème III.1. Si f est de classe C^{n+1} sur I, alors, pour tout $x \in I$,

$$R_n(x) = \int_a^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$$

III.2. Inégalité de Taylor-Lagrange

Théorème III.2. Si f est de classe C^{n+1} sur I, et si on connaît $M \in \mathbb{R}$ tel que $\forall t \in I \quad ||f^{(n+1)}(t)|| \leq M \quad alors \quad \forall x \in I \quad ||R_n(x)|| \leq \frac{M|x-a|^{n+1}}{(n+1)!}.$

III.3. Formule de Taylor-Young

Théorème III.3. Si f est de classe C^n sur I, alors $||R_n(x)|| = o((x-a)^n)$ au voisinage de a.