Assignment -2

Assignment Date	27 September 2022
Team ID	PNT2022TMID31171
Project Name	AI Based Discourse for Banking Industry
Student Name	KALAIYARASI A
Maximum Marks	2 Marks

Question-1. Download dataset

Solution:

RowNumb	Customer	Surname	CreditScoi Geograph	Gender	Age	Tenure	Balance	NumOfPrc Ha	sCrCard IsAct	iveM	Estimated Exit	ed
1	15634602	Hargrave	619 France	Female	42	. 2	0	1	1	1	101348.9	1
2	15647311	Hill	608 Spain	Female	41	. 1	83807.86	1	0	1	112542.6	0
3	15619304	Onio	502 France	Female	42	. 8	159660.8	3	1	0	113931.6	1
4	15701354	Boni	699 France	Female	39	1	0	2	0	0	93826.63	0
5	15737888	Mitchell	850 Spain	Female	43	2	125510.8	1	1	1	79084.1	0
6	15574012	Chu	645 Spain	Male	44	8	113755.8	2	1	0	149756.7	1
7	15592531	Bartlett	822 France	Male	50	7	0	2	1	1	10062.8	0
8	15656148	Obinna	376 Germany	Female	29	4	115046.7	4	1	0	119346.9	1
9	15792365	He	501 France	Male	44	4	142051.1	2	0	1	74940.5	0
10	15592389	H?	684 France	Male	27	2	134603.9	1	1	1	71725.73	0
11	15767821	Bearce	528 France	Male	31	. 6	102016.7	2	0	0	80181.12	0
12	15737173	Andrews	497 Spain	Male	24	3	0	2	1	0	76390.01	0
13	15632264	Kay	476 France	Female	34	10	0	2	1	0	26260.98	0
14	15691483	Chin	549 France	Female	25	5	0	2	0	0	190857.8	0
15	15600882	Scott	635 Spain	Female	35	7	0	2	1	1	65951.65	0
16	15643966	Goforth	616 Germany	Male	45	3	143129.4	2	0	1	64327.26	0
17	15737452	Romeo	653 Germany	Male	58	1	132602.9	1	1	0	5097.67	1
18	15788218	Henderso	549 Spain	Female	24	9	0	2	1	1	14406.41	0
19	15661507	Muldrow	587 Spain	Male	45	6	0	1	0	0	158684.8	0
20	15568982	Нао	726 France	Female	24	6	0	2	1	1	54724.03	0
21	15577657	McDonald	732 France	Male	41	. 8	0	2	1	1	170886.2	0
22	15597945	Dellucci	636 Spain	Female	32	. 8	0	2	1	0	138555.5	0
23	15699309	Gerasimo	510 Spain	Female	38	4	0	1	1	0	118913.5	1
24	15725737	Mosman	669 France	Male	46	3	0	2	0	1	8487.75	0
25	15625047	Yen	846 France	Female	38	5	0	1	1	1	187616.2	0
26	15738191	Maclean	577 France	Male	25	3	0	2	0	1	124508.3	0
27	15736816	Young	756 Germany	Male	36	. 2	136815.6	1	1	1	170042	0
28	15700772	Nebechi	571 France	Male	44	9	0	2	0	0	38433.35	0
29	15728693	McWillian	574 Germany	Female	43	3	141349.4	1	1	1	100187.4	0
30	15656300	Lucciano	411 France	Male	29	0	59697.17	2	1	1	53483.21	0
31	15589475	Azikiwe	591 Spain	Female	39	3	0	3	1	0	140469.4	1
32	15706552	Odinakac	533 France	Male	36	7	85311.7	1	0	1	156731.9	0
33	15750181	Sanderso	r 553 Germany	Male	41	. 9	110112.5	2	0	0	81898.81	0
34	15659428	Maggard	520 Spain	Female	42	. 6	0	2	1	1	34410.55	0
35	15732963	Clements	722 Spain	Female	29	9	0	2	1	1	142033.1	0
36	15794171	Lombardo	475 France	Female	45	0	134264	1	1	0	27822.99	1
37	15788448	Watson	490 Spain	Male	31	. 3	145260.2	1	0	1	114066.8	0
38	15729599	Lorenzo	804 Spain	Male	33	7	76548.6	1	0	1	98453.45	0
39	15717426	Armstron	§ 850 France	Male	36	7	0	1	1	1	40812.9	0
40	15585768	Cameron	582 Germany	Male	41	. 6	70349.48	2	0	1	178074	0

Question-2. Load the dataset

Solution:

import numpy as np import pandas as pd
import seaborn as sns import
matplotlib.pyplot as plt import sklearn data
= pd.read_csv(r'Churn_Modelling.csv')
df.head

<	bound	method	NDFrai	me.head	d of	Rov	Number	Cust					core	Geography	Gender	Ag
0			1 :	1563466	32 H	argrave		619			Female					
1			2	1564731	11	Hill		608	8 5	pain	Female	41				
2			3 :	1561936	34	Onio		502	2 Fr	ance	Female	42				
3			4	1570139	54	Boni		699	9 Fr	ance	Female	39				
4			5 :	1573788	38 M:	itchell		856	9 S	pain	Female	43				
100			• •			***		(1)	•	0.00		***				
99	995					bijiaku		771			Male					
99	996	99	97	1556989	2 Jol	hnstone		516	5 Fr	ance	Male	35				
99	997	99	98	1558453	32	Liu		709			Female					
99	998	99	99	1568239	55 Sal	bbatini		772	2 Geri	many	Male	42				
99	999	100	99	1562831	19	Walker		792	2 Fr	ance	Female	28				
	3	Tenure	Bala	ance 1	NumOfPi	roducts	HasCrC	Card	IsActi	veMem	ber \					
0		2	(0.00		1		1			1					
1		1	8380	7.86		1		0			1					
2		8	159666	0.80		3		1			0					
3		1	(0.00		2		0			0					
4		2	12551	0.82		1		1			1					
		***						***								
99	995	5	(0.00		2		1			0					
99	996	10	57369	9.61		1		1			1					
99	997	7	(00.6		1		0			1					
99	998	3	7507	5.31		2		1			0					
99	999	4	13014	2.79		1		1			0					
		Estimat	edSala	ry Exi	ited											
0		1	01348.8	88	1											
1		1	12542.	58	0											
2		1	13931.	57	1											
3			93826.	63	0											
4			79084.	10	0											
			*													
99	995		96270.	64	0											
99	996	1	01699.	77	0											
99	997		42085.	58	1											
99	998		92888.	52	1											
a	999		38190.	78	0											

Question-3. Perform Below Visualizations.

Univariate Analysis

Solution:

sns.displot(data['CreditScore'])

sns.histplot(data['CreditScore'])

sns.boxplot(x = data['CreditScore'])

sns.distplot(data['Age'])

sns.histplot(data['Age'])

sns.boxplot(data['Age'])

Bivariate Analysis

Solution:

plt.figure(figsize=(7,7))
sns.lineplot(data = data, x = 'Tenure', y = 'CreditScore')

plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'EstimatedSalary')

plt.figure(figsize=(10,10))
sns.barplot(data = data, x = 'CreditScore', y = 'Tenure')

plt.figure(figsize=(10,10))
sns.lineplot(data['Age'], data['EstimatedSalary'])

plt.figure(figsize=(17,17))
sns.barplot(data['Age'], data['EstimatedSalary'])

sns.scatterplot(data = data, x = 'CreditScore', y = 'Age')

Multivariate Analysis

Solution: sns.scatterplot(data = data, x = 'CreditScore', y = 'Balance', hue = 'Gender')

sns.scatterplot(data['Tenure'], data['CreditScore'], hue = data['Gender'])

Question-4. Perform descriptive statistics on the dataset.

Solution:

data.mean(numeric_only = True)

 RowNumber
 5.000500e+03

 CustomerId
 1.569094e+07

 CreditScore
 6.505288e+02

 Age
 3.892180e+01

 Tenure
 5.012800e+00

 Balance
 7.648589e+04

 NumOfProducts
 1.530200e+00

 HasCrCard
 7.055000e-01

 IsActiveMember
 5.151000e-01

 EstimatedSalary
 1.000902e+05

 Exited
 2.037000e-01

data.median(numeric_only = True)

 RowNumber
 5.000500e+03

 CustomerId
 1.569074e+07

 CreditScore
 6.520000e+02

 Age
 3.700000e+01

 Tenure
 5.00000e+00

 Balance
 9.719854e+04

 NumOfProducts
 1.000000e+00

 HasCrCard
 1.000000e+00

 IsActiveMember
 1.000000e+00

 EstimatedSalary
 1.001939e+05

 Exited
 0.000000e+00

dtype: float64

dtype: float64

data['CreditScore'].mode()

0 850 dtype: int64

data['EstimatedSalary'].mode()

0 24924.92
dtype: float64

data['HasCrCard'].unique()

array([1, 0])

data['Tenure'].unique()

array([2, 1, 8, 7, 4, 6, 3, 10, 5, 9, 0])

data.std(numeric_only=True)

RowNumber	2886.895680
CustomerId	71936.186123
CreditScore	96.653299
Age	10.487806
Tenure	2.892174
Balance	62397.405202
NumOfProducts	0.581654
HasCrCard	0.455840
IsActiveMember	0.499797
EstimatedSalary	57510.492818
Exited	0.402769
dtype: float64	

data.describe()

	RowNumber	CustomerId	CreditScore	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	${\tt EstimatedSalary}$	Exited
count	10000.00000	1.000000e+04	10000.000000	10000.000000	10000.000000	10000.000000	10000.000000	10000.00000	10000.000000	10000.000000	10000.000000
mean	5000.50000	1.569094e+07	650,528800	38.921800	5.012800	76485.889288	1.530200	0.70550	0.515100	100090.239881	0.203700
std	2886.89568	7.193619e+04	96.653299	10.487806	2.892174	62397.405202	0.581654	0.45584	0.499797	57510.492818	0.402769
min	1.00000	1.556570e+07	350.000000	18.000000	0.000000	0.000000	1.000000	0.00000	0.000000	11.580000	0.000000
25%	2500.75000	1.562853e+07	584.000000	32.000000	3.000000	0.000000	1.000000	0.00000	0.000000	51002.110000	0.000000
50%	5000.50000	1.569074e+07	652.000000	37.000000	5.000000	97198.540000	1.000000	1.00000	1.000000	100193.915000	0.000000
75%	7500.25000	1.575323e+07	718.000000	44.000000	7.000000	127644.240000	2.000000	1.00000	1.000000	149388.247500	0.000000
max	10000.00000	1.581569e+07	850.000000	92.000000	10.000000	250898.090000	4.000000	1.00000	1.000000	199992.480000	1.000000

data['Tenure'].value_counts()

2	1048	
1	1035	
7	1028	
8	1025	
5	1012	
3	1009	
4	989	
9	984	
6	967	
10	490	
0	413	

Name: Tenure, dtype: int64

Question-5. Handle the Missing values.

Solution: data.isnull().any()

RowNumber	False
CustomerId	False
Surname	False
CreditScore	False
Geography	False
Gender	False
Age	False
Tenure	False
Balance	False
NumOfProducts	False
HasCrCard	False
IsActiveMember	False
EstimatedSalary	False
Exited	False
dtype: bool	

data.isnull().sum()

RowNumber	0
CustomerId	0
Surname	0
CreditScore	0
Geography	0
Gender	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
dtype: int64	

Question-6. Find the outliers and replace the outliers

Solution:

fig, ax = plt.subplots(figsize = (5,3)) #Outlier detection - Scatter plot ax.scatter(data['Balance'], data['Exited'])

```
# x-axis label
ax.set_xlabel('Balance')
```

y-axis label ax.set_ylabel('Exited')
plt.show()

sns.boxplot(x=data['Balance'])

from scipy import stats #Outlier detection - zscore
zscore = np.abs(stats.zscore(data['CreditScore']))
print(zscore)
print('No. of Outliers : ', np.shape(np.where(zscore>3)))

```
0.332952
1
        0.447540
2
        1.551761
       0.500422
3
        2.073415
4
9995
       1.250458
9996
        1.405920
9997
       0.604594
9998
       1.260876
9999
       1.469219
Name: CreditScore, Length: 10000, dtype: float64
No. of Outliers : (1, 0)
```

q = data.quantile([0.75,0.25]) q

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0.75	7500.25	15753233.75	2238.25	718.0	1.0	1.0	44.0	7.0	127644.24	2.0	1.0	1.0	149388.2475	0.0
0.25	2500.75	15628528.25	773.75	584.0	0.0	0.0	32.0	3.0	0.00	1.0	0.0	0.0	51002.1100	0.0

iqr = q.iloc[0] - q.iloc[1] iqr

RowNumber	4999.5000
CustomerId	124705.5000
Surname	1464.5000
CreditScore	134.0000
Geography	1.0000
Gender	1.0000
Age	12.0000
Tenure	4.0000
Balance	127644.2400
NumOfProducts	1.0000
HasCrCard	1.0000
IsActiveMember	1.0000
EstimatedSalary	98386.1375
Exited	0.0000
dtype: float64	

u = q.iloc[0] + (1.5*iqr) u

 RowNumber
 1.499950e+04

 CustomerId
 1.594029e+07

 Surname
 4.435000e+03

 CreditScore
 9.190000e+02

 Geography
 2.500000e+00

 Gender
 2.500000e+01

 Age
 6.200000e+01

 Balance
 3.191106e+05

 NumOfProducts
 3.500000e+00

 HasCrCard
 2.500000e+00

 IsActiveMember
 2.500000e+00

 EstimatedSalary
 2.969675e+05

 Exited
 0.000000e+00

 dtype: float64

I = q.iloc[1] - (1.5*iqr)

 RowNumber
 -4.998500e+03

 CustomerId
 1.544147e+07

 Surname
 -1.423000e+03

 CreditScore
 3.83000e+02

 Geography
 -1.500000e+00

 Gender
 -1.500000e+00

 Age
 1.400000e+01

 Tenure
 -3.000000e+00

 Balance
 -1.914664e+05

 NumOfProducts
 -5.000000e-01

 HasCrCard
 -1.500000e+00

 IsActiveMember
 -1.500000e+00

 EstimatedSalary
 -9.657710e+04

 Exited
 0.000000e+00

```
Q3 = data['EstimatedSalary'].quantile(0.75)
iqr = Q3 - Q1
print(iqr) upper=Q3
+ 1.5 * iqr lower=Q1
- 1.5 * iqr count =
np.size(np.where(d
ata['EstimatedSalar
y'] >upper)) count =
count +
np.size(np.where(d
ata['EstimatedSalar
y'] <lower))
print('No. of
outliers:', count)
98386.1375
No. of outliers: 0
```

data['CreditScore'] = np.where(np.logical_or(data['CreditScore']>900, data['CreditScore']<383), 65
0, data['CreditScore']) sns.boxplot(data['CreditScore'])</pre>


```
upper = data.Age.mean() + (3 * data.Age.std()) #Outlier detection - 3 sigma lower
= data.Age.mean() - (3 * data.Age.std())
columns = data[ ( data['Age'] > upper ) | ( data['Age'] < lower )
] print('Upper range : ', upper) print('Lower range : ', lower)
print('No. of Outliers : ', len(columns))

Upper range : 70.38521935511383
Lower range : 7.458380644886169
No. of Outliers : 133</pre>
```

columns = ['EstimatedSalary', 'Age', 'Balance', 'NumOfProducts', 'Tenure', 'CreditScore'] #After outlier removal

```
for i in columns:

Q1 = data[i].quantile(0.25)

Q3 = data[i].quantile(0.75)

iqr = Q3 - Q1 upper=Q3 +

1.5 * iqr lower=Q1 - 1.5 *

iqr

count = np.size(np.where(data[i] > upper))

count = count + np.size(np.where(data[i] < lower)) print('No. of outliers in ', i, ':', count)

No. of outliers in EstimatedSalary : 0

No. of outliers in Age : 0

No. of outliers in Balance : 0

No. of outliers in NumOfProducts : 0

No. of outliers in Tenure : 0

No. of outliers in Tenure : 0

No. of outliers in CreditScore : 0
```

Question-7. Check for Categorical columns and perform encoding

Solution:

```
from sklearn.preprocessing import LabelEncoder, OneHotEncoder le = LabelEncoder() oneh = OneHotEncoder() data['Surname'] = le.fit_transform(data['Surname']) data['Gender'] = le.fit_transform(data['Gender']) data['Geography'] = le.fit_transform(data['Geography']) data.head()
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary	Exited
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88	1
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58	0
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57	1
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63	0
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10	0

Question-8. Split the data into dependent and independent variables split the data in X and Y

Solution:

x # independent values (inputs)

x = data.iloc[:, 0:13]

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	Tenure	Balance	NumOfProducts	HasCrCard	IsActiveMember	EstimatedSalary
0	1	15634602	1115	619	0	0	42	2	0.00	1	1	1	101348.88
1	2	15647311	1177	608	2	0	41	1	83807.86	1	0	1	112542.58
2	3	15619304	2040	502	0	0	42	8	159660.80	3	1	0	113931.57
3	4	15701354	289	699	0	0	39	1	0.00	2	0	0	93826.63
4	5	15737888	1822	850	2	0	43	2	125510.82	1	1	1	79084.10
	5750	1077	750	40%	988	m	570	330	600	277	***	100	300
9995	9996	15606229	1999	771	0	1	39	5	0.00	2	1	0	96270.64
9996	9997	15569892	1336	516	0	-1	35	10	57369.61	-1	1	1	101699.77
9997	9998	15584532	1570	709	0	0	36	7	0.00	1	0	1	42085.58
9998	9999	15682355	2345	772	1	1	42	3	75075.31	2	1	0	92888.52
9999	10000	15628319	2751	792	0	0	28	4	130142.79	1	1	0	38190.78

10000 rows x 13 columns

y # dependent values (output) y

= data['Exited']

Name: Exited, Length: 10000, dtype: int64

Question-9. Scale the independent variables

Solution:

from sklearn.preprocessing import StandardScaler, MinMaxScaler sc = StandardScaler() x_scaled = sc.fit_transform(x) x_scaled

```
array([[-1.73187761, -0.78321342, -0.46418322, ..., 0.64609167, 0.97024255, 0.02188649],
[-1.7315312, -0.60653412, -0.3909112, ..., -1.54776799, 0.97024255, 0.21653375],
[-1.73118479, -0.99588476, 0.62898807, ..., 0.64609167, -1.03067011, 0.2406869],
...,
[1.73118479, -1.47928179, 0.07353887, ..., -1.54776799, 0.97024255, -1.00864308],
[1.7315312, -0.11935577, 0.98943914, ..., 0.64609167, -1.03067011, -0.12523071],
[1.73187761, -0.87055909, 1.4692527, ..., 0.64609167, -1.03067011, -1.07636976]])
```

Question-10. Split x and y into Training and Testing

Solution:

from sklearn.model_selection import train_test_split x_train, x_test, y_train, y_test = train_test_split(x_scaled, y, test_size = 0.3, random_state = 0)

x_train

```
array([[ 0.92889885, -0.79703192, -1.47580983, ..., 0.64609167, 0.97024255, -0.77021814],
        [ 1.39655257, 0.71431365, -1.58808148, ..., 0.64609167, -1.03067011, -1.39576675],
        [ -0.4532777, 0.96344969, -0.24082173, ..., -1.54776799, 0.97024255, -1.49965629],
        ...,
        [ -0.60119484, -1.62052514, -0.36136603, ..., 0.64609167, -1.03067011, 1.41441489],
        [ 1.67853045, -0.37403866, 0.72589622, ..., 0.64609167, 0.97024255, 0.84614739],
        [ -0.78548505, -1.36411841, 1.3829808, ..., 0.64609167, -1.03067011, 0.32630495]])
```

x_train.shape

```
(7000, 13)
```

x_test

```
array([[ 1.52229946, -1.04525042, 1.39834429, ..., 0.64609167, 0.97024255, 1.61304597],
[-1.42080128, -0.50381294, -0.78208925, ..., 0.64609167, -1.03067011, 0.49753166],
[-0.90118604, -0.7932923, 0.41271742, ..., 0.64609167, 0.97024255, -0.4235611 ],
...,
[ 1.49216178, -0.14646448, 0.6868966, ..., 0.64609167, 0.97024255, 1.17045451],
[ 1.1758893, -1.29228727, -1.38481071, ..., 0.64609167, 0.97024255, -0.50846777],
[ 0.08088677, -1.38538833, 1.11707427, ..., 0.64609167, 0.97024255, -1.15342685]])
```

x_test.shape

```
(3000, 13)
```

```
y_train
  7681
        1
  9031
       0
  3691
       0
  202
        1
  5625 0
  9225
  4859
       0
       0
  3264
  9845
       0
  2732
        1
  Name: Exited, Length: 7000, dtype: int64
y_test
  9394
         0
  898
         1
  2398
         0
  5906
        0
  2343
         0
  4004
         0
  7375
        0
  9307
         0
  8394
         0
  5233
         1
  Name: Exited, Length: 3000, dtype: int64
```