

Nanjing University

ACM-ICPC Codebook 2

Number Theory Linear Algebra Combinatorics

2 CONTENTS

Contents

1	Number Theory		4
	1.1	Modulo operations	4
		1.1.1 Modular exponentiation (fast power-mod)	4
		1.1.2 Mathematical modulo operation	4
		1.1.3 Modular multiplication on long long	4
	1.2	Extended Euclidian algorithm	5
		1.2.1 Modular multiplicative inverse	5
	1.3	Primality test (Miller-Rabin)	6
	1.4	Sieve of Eratosthenes	6
	1.5	Sieve of Euler	7
	1.6	Number theoretic transform	8
	1.7	Fast Walsh-Hadamard transform	10
	1.8	Pell's equation	10
2	Linear Algebra 1		
	2.1	Modular exponentiation of matrices	11
3	Combinatorics		12
	3.1	Möbius inversion	12
	3.2	Permutations	12
	3.3	Pólya enumeration theorem	13

CONTENTS

3

1 Number Theory

1.1 Modulo operations

1.1.1 Modular exponentiation (fast power-mod)

Calculate $b^e \mod m$.

Time complexity: $O(\log e)$

```
LL powmod(LL b, LL e, LL m){
1
2
       LL r = 1;
3
       while (e){
            if (e \& 1) r = r * b % m;
4
            b = b * b % m;
5
            e >>= 1;
6
7
8
       return r;
9
   }
```

1.1.2 Mathematical modulo operation

The result has the same sign as divisor.

```
inline LL mathmod(LL a, LL b){
   return (a % b + b) % b;
}
```

1.1.3 Modular multiplication on long long

Calculate $ab \mod m$, where a, b, m are long long integers.

 \triangle a, b, m must be non-negative.

Time complexity: $O(\log b)$

```
1  LL mulmod(LL a, LL b, LL m){
2   LL r = 0;
3   a %= m; b %= m;
4  while(b) {
5    if(b & 1) r += a, r %= m;
6   b >>= 1;
7   if(a < m - a)</pre>
```

1.2 Extended Euclidian algorithm

```
Solve ax + by = g = \gcd(a, b) w.r.t. x, y.
```

If (x_0, y_0) is an integer solution of $ax + by = g = \gcd(x, y)$, then every integer solution of it can be written as $(x_0 + kb', y_0 - ka')$, where a' = a/g, b' = b/g, and k is arbitrary integer.

 \triangle x and y must be positive.

Usage:

```
exgcd(a, b, g, x, y) Find a special solution to ax+by=g=\gcd(a,b).
```

Time complexity: $O(\log \min\{a, b\})$

```
void exgcd(int a, int b, int &g, int &x, int &y){
   if (!b) g = a, x = 1, y = 0;
   else {
      exgcd(b, a % b, g, y, x),
      y -= x * (a / b);
   }
}
```

1.2.1 Modular multiplicative inverse

An integer a has modular multiplicative inverse w.r.t. the modulus m, iff gcd(a, m) = 1. Assume the inverse is x, then

```
ax \equiv 1 \mod m.
```

Call exgcd(a, m, g, x, y), if g = 1, x + km is the modular multiplicative inverse of a w.r.t. the modulus m.

```
inline LL minv(LL a, LL m){
    LL g, x, y;
    exgcd(a, m, g, x, y);
    return (x % m + m) % m;
}
```

Or, by Fermat's little theorem $(a^{p-1} \equiv 1 \mod p)$, when m = p is a prime, the multiplicative inverse can also be written as $a^{-1} = (a^{p-2} \mod p)$.

1.3 Primality test (Miller-Rabin)

Test whether n is a prime.

 \triangle When n exceeds the range of int, the mul-mod and pow-mod operations should be rewritten.

Requirement:

1.1.1 Modular exponentiation (fast power-mod)

Time complexity: $O(\log n)$

```
bool test(LL n){
1
 2
        if (n < 3) return n==2;
        //! The array a[] should be modified if the range of x changes.
 3
        const LL a[] = {2LL, 7LL, 61LL, LLONG MAX};
 4
        LL r = 0, d = n-1, x;
 5
        while (~d & 1) d >>= 1, r++;
 6
 7
        for (int i=0; a[i] < n; i++){</pre>
8
            x = powmod(a[i], d, n);
9
            if (x == 1 | | x == n-1) goto next;
10
            rep (i, r) {
11
                 x = (x * x) % n;
                 if (x == n-1) goto next;
12
13
14
            return false;
15
    next:;
16
        }
        return true;
17
18
```

1.4 Sieve of Eratosthenes

Usage:

```
sieve() Generate the table.

p[i] True if i is not a prime; otherwise false.
```

Time complexity: Approximately linear.

```
const int MAXX = 1e7+5;
bool p[MAXX];

void sieve(){
    p[0] = p[1] = 1;
    for (int i = 2; i*i < MAXX; i++) if (!p[i])
        for (int j = i*i; j < MAXX; j+=i) p[j] = true;
}</pre>
```

1.5 Sieve of Euler

Usage:

```
sieve() Generate the table.

p[i] True if i is not a prime; otherwise false.

prime[i] The ith prime number.
```

Time complexity: Linear.

```
const int MAXX = 1e7+5;
1
    bool p[MAXX];
 2
    int prime[MAXX], sz;
 3
4
    void sieve(){
5
        p[0] = p[1] = 1;
6
7
        for (int i = 2; i < MAXX; i++){</pre>
8
             if (!p[i]) prime[sz++] = i;
             for (int j = 0; j < sz && i*prime[j] < MAXX; j++){</pre>
9
                 p[i*prime[j]] = 1;
10
                 if (i % prime[j] == 0) break;
11
12
             }
         }
13
14
    }
```

This technique can also be used to compute multiplicative functions. For example, the following program computes the Euler's totient function.

```
const int MAXX = 1e7+5;
int phi[MAXX];
int prime[MAXX], sz;

void sieve(){
```

```
6
        phi[1] = 1;
7
        for (int i = 2; i < MAXX; i++){
             if (!phi[i]) phi[i] = i-1, prime[sz++] = i;
8
             for (int j = 0; j < sz && i*prime[j] < MAXX; j++){</pre>
 9
                 if (i % prime[j] == 0) {
10
                     phi[i*prime[j]] = phi[i]*prime[j];
11
                     break;
12
13
14
                 phi[i*prime[j]] = phi[i]*(prime[j] - 1);
15
             }
        }
16
17
    }
```

1.6 Number theoretic transform

 \triangle The size of the sequence must be some power of 2.

 \triangle When performing convolution, the size of the sequence should be doubled. To compute k, one may call 32-_builtin_clz(a+b-1), where a and b are the lengths of two sequences.

Usage:

```
NTT(k) Initialize the structure with maximum sequence length 2^k.

ntt(a) Perform number theoretic transform on sequence a.

intt(a) Perform inverse number theoretic transform on sequence a.

conv(a, b) Convolve sequence a with b.
```

Time complexity: $O(n \log n)$.

```
const int NMAX = 1<<21;</pre>
1
    // 998244353 = 7*17*2^23+1, G = 3
 2
 3
    const int P = 1004535809, G = 3; // = 479*2^21+1
 4
5
    struct NTT{
        int rev[NMAX];
 6
7
        LL omega[NMAX], oinv[NMAX];
        int g, g_inv; // g: g_n = G^{((P-1)/n)}
8
9
        int K, N;
10
        LL powmod(LL b, LL e){
11
12
             LL r = 1;
             while (e){
13
                 if (e\&1) r = r * b % P;
14
                 b = b * b % P;
15
                 e >>= 1;
16
17
18
             return r;
```

```
}
19
20
        NTT(int k){
21
            K = k; N = 1 << k;
22
23
            g = powmod(G, (P-1)/N);
24
            g inv = powmod(g, N-1);
25
            omega[0] = oinv[0] = 1;
26
            rep (i, N){
                 rev[i] = (rev[i>>1]>>1) | ((i&1)<<(K-1));
27
28
                 if (i){
29
                     omega[i] = omega[i-1] * g % P;
                     oinv[i] = oinv[i-1] * g inv % P;
30
                }
31
            }
32
        }
33
34
35
        void ntt(LL* a, LL* w){
36
            rep (i, N) if (i < rev[i]) swap(a[i], a[rev[i]]);
37
            for (int 1 = 2; 1 <= N; 1 *= 2)
                 int m = 1/2;
38
39
                for (LL* p = a; p != a + N; p += 1)
40
                     rep (k, m){
                         LL t = w[N/1*k] * p[k+m] % P;
41
                         p[k+m] = (p[k] - t + P) \% P;
42
43
                         p[k] = (p[k] + t) \% P;
                     }
44
45
            }
        }
46
47
        void ntt(LL* a){_ntt(a, omega);}
48
49
        void intt(LL* a){
            LL inv = powmod(N, P-2);
50
            _ntt(a, oinv);
51
52
            rep (i, N) a[i] = a[i] * inv % P;
53
        }
54
        void conv(LL* a, LL* b){
55
            ntt(a); ntt(b);
56
57
            rep (i, N) a[i] = a[i] * b[i] % P;
58
            intt(a);
59
        }
60
    };
```

1.7 Fast Walsh-Hadamard transform

This is to compute $C_i = \sum_{i \in k} A_i \cdot B_k$, where \oplus is a binary bitwise operation.

```
void FWT(int a[],int n){
1
 2
        for(int d=1;d<n;d<<=1)</pre>
             for(int m=d<<1,i=0;i<n;i+=m)</pre>
 3
                 for(int j=0; j<d; j++)
 4
 5
 6
                      int x=a[i+j],y=a[i+j+d];
                      a[i+j]=(x+y)\mod, a[i+j+d]=(x-y+mod)\mod;
 7
                      //xor:a[i+j]=x+y,a[i+j+d]=(x-y+mod)\%mod;
8
                      //and:a[i+j]=x+y;
9
                      //or:a[i+j+d]=x+y;
10
                  }
11
12
    }
13
14
    void UFWT(int a[],int n){
15
        for(int d=1;d<n;d<<=1)</pre>
             for(int m=d<<1,i=0;i<n;i+=m)</pre>
16
                 for(int j=0;j<d;j++)</pre>
17
18
19
                      int x=a[i+j],y=a[i+j+d];
                      a[i+j]=1LL*(x+y)*revmod, a[i+j+d]=(1LL*(x-y)*revmod+mod)mod;
20
                      //xor:a[i+j]=(x+y)/2,a[i+j+d]=(x-y)/2;
21
                      //and:a[i+j]=x-y;
22
                      //or:a[i+j+d]=y-x;
23
                  }
24
25
    void solve(int a[],int b[],int n){
26
27
         FWT(a,n);
         FWT(b,n);
28
29
        for(int i=0;i<n;i++) a[i]=1LL*a[i]*b[i]%mod;</pre>
30
        UFWT(a,n);
31
    }
```

1.8 Pell's equation

 $x^2 - ny^2 = 1$, where n is a positive nonsquare integer.

Let (x_0, y_0) be the smallest positive solution of the equation, then the k-th solution is:

$$\begin{pmatrix} x_k \\ y_k \end{pmatrix} = \begin{pmatrix} x_1 & ny_1 \\ y_1 & x_1 \end{pmatrix}^k \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}$$

2 Linear Algebra

2.1 Modular exponentiation of matrices

Calculate $b^e \mod modular$, where b is a matrix. The modulus is element-wise.

Usage:

```
n Order of matrices.

modular The divisor in modulo operations.

m powmod(b, e) Calculate b^e \mod modular. The result is stored in r.
```

Time complexity: $O(n^3 \log e)$

```
const int MAXN = 105;
1
 2
    const LL modular = 1000000007;
 3
    int n; // order of matrices
4
5
    struct matrix{
        LL m[MAXN][MAXN];
6
7
        void operator *=(matrix& a){
8
            static LL t[MAXN][MAXN];
            Rep (i, n){
10
                 Rep (j, n){
11
                     t[i][j] = 0;
12
13
                     Rep (k, n){
                         t[i][j] += (m[i][k] * a.m[k][j]) % modular;
14
15
                         t[i][j] %= modular;
16
                     }
17
                 }
18
            memcpy(m, t, sizeof(t));
19
20
        }
21
    };
22
23
    matrix r;
24
    void m powmod(matrix& b, LL e){
        memset(r.m, sizeof(r.m), 0);
25
        Rep(i, n)
26
            r.m[i][i] = 1;
27
28
        while (e){
            if (e & 1) r *= b;
29
30
            b *= b;
            e >>= 1;
31
32
        }
33
    }
```

3 Combinatorics

3.1 Möbius inversion

Möbius function:

$$\mu(n) = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } p_i{}^{a_i} \mid n \text{ where } a_i > 0 \\ (-1)^r & \text{if } n \text{ is the product of } r \text{ distinct primes} \end{cases}$$

If
$$S_f(n) = \sum_{d|n} f(d)$$
, then $f(n) = \sum_{d|n} \mu(d) S_f(n/d)$.

3.2 Permutations

This provides operations of permutations of 0 to n-1.

Usage:

```
a*b Compute the composition of permutations a and b.

Compute the inverse permutation of a.

Factorize the permutation to disjoint cycles.
```

Time complexity: O(n)

```
typedef vector<int> perm;
 1
 2
    perm operator * (const perm lhs, const perm rhs){
 3
 4
        int sz;
 5
         assert((sz = lhs.size()) == rhs.size());
         perm res; res.resize(sz);
 6
 7
        for (int i=0; i<sz; i++){</pre>
 8
             res[i] = rhs[lhs[i]];
 9
10
        return res;
    }
11
12
13
    perm operator ~ (const perm lhs){
         int sz = lhs.size();
14
        perm res; res.resize(sz);
15
        for (int i=0; i<sz; i++){</pre>
16
             res[lhs[i]] = i;
17
18
19
         return res;
20
21
    struct permutation{
22
```

```
23
        int size;
24
        vector<vector<int>> orbits;
25
        permutation(perm p){
26
             size = p.size();
27
             vector<bool> visited(size);
28
             for (int i=0; i<size; i++){</pre>
29
                 if (visited[i]) continue;
30
31
                 int cur = i;
                 vector<int> orbit;
32
                 while (!visited[cur]){
33
                     visited[cur] = true;
34
                     orbit.push back(cur);
35
                     cur = p[cur];
36
37
38
                 orbits.push back(move(orbit));
             }
39
        }
40
    };
41
```

3.3 Pólya enumeration theorem

The Burnside's lemma says that

$$|X/G| = \frac{1}{|G|} \sum_{g \in G} |X^g|$$

where G is a group acting on X, X^g is the set of elements in X that are fixed by g, i.e. $X^g = \{x \in X : gx = x\}.$

The unweighted version of Pólya enumeration theorem says that

$$|Y^X/G| = \frac{1}{|G|} \sum_{g \in G} m^{c_g}$$

where m = |X| is the number of colors, c(g) is the number of the cycles of permutation g.