2023 NYCU EE VLSI Lab Report

Lab01 A CMOS Full Adder: Hspice Simulation

Student ID: 110511254 Name: 徐煜絨 Date: 2023/10/11

I. Summary of your Structure

1. Picture

2. Design concept

原先設計是使用兩個 xor gate 和三個 nand gate (如下圖),但在執行時發現有肉眼可見且大小約 0.1V 的 glitch,猜測是因為輸入和輸出間有太多層 gate,導致後面訊號需要等待前面訊號而造成過多 delay。

之後到網路上尋找和 full adder 有關的設計,有人將 SUM 視為 A, B, CIN, COUT 的組合(如最上圖),而這個設計相較原本可以讓輸出訊號較為平整,同時 propagation delay 也從 $1.669*10^{-10}$ 秒降到 $1.648*10^{-10}$ 秒(當 Cload=10fF、pmos 和 cmos 的 width=1.8um,計算時間從輸入 A 第四次 rise 到輸出 SUM 第三次 rise。若計算是由 A 第三次 rise 到 SUM 第二次 rise,則能夠下降更多,從 $2.839*10^{-10}$ 秒減少到 $1.136*10^{-10}$ 秒)。

II. Output waveform (Unit: wp and wn -> μ m; output load -> fF)

Input waveform:

1. wp: 1.8 wn: 1.8 Output load: 10

2. wp: 1.8 wn: 2.4 Output load: 10

9. wp: 2.4 wn: 1.8 Output load: 20

10. wp: 3.6 wn: 1.8 Output load: 20

11. Observations

首先觀察第一到第三張輸出波形,這三張改變的是 wn,比較前兩個可以發現當 wn 是 1.8um 時,波形上升和下降都比較垂直,第二個 (wn=2.4um)要上升前有些微的delay,且上升斜率比較小。當觀察到第三個輸出波形時,可以發現上升和下降的線都不如前兩張輸出波形垂直,也有可能因為 delay 更大,導致訊號要變化時的 glitch 變得較不尖銳,不像前兩張有太突然的凸起(凸起時間拉長)。

接著是第一、四、五張比較。其中令我 比較訝異的是第四張的 COUT 波形在偶數次 輸出為 1.8V 時 (右側較寬的為第偶數次升到 1.8V 的波),會出現兩次 glitch,此時 wp 是

2.4 um,但當 wp 是 $1.8\,\pi$ 3.6 um 都不會有這樣的結果。至於 SUM 要下降的瞬間,隨著 wp 增加,glitch 變小,左側的量尺也因此每 0.2 V 的高度放大。

再來是第一和第六張比較,這次改變的是 Cload 的電容值,從 10fF 增加到 20fF。結果和預期相似, 隨著 Cload 上升,輸出波形會變得更加平滑,當 SUM和 COUT 即將貼近 1.8V,若 Cload=10fF,線是

直接碰到 1.8V 再轉向變平,但若 Cload=20fF,在達到 1.8V 前會明顯出 現曲線,這是加上電容會有的結果;而當 SUM 和 COUT 要從 1.8V 回到 0V,Cload=10fF 時的(右上左圖)glitch 比 Cload=20fF 時的嚴重(右上右圖)。

對 Cload=20fF 的最後五張,除了輸出在即將抵達 1.8V 和要從 1.8V 下降時相較於 Cload=10fF 的前五張會有較圓滑曲線外,不同 wp、wn 間的比較結果大致和前兩段描述相同,即隨著 wn 增加,輸出的上升和下降的斜率絕對值都會減少且 glitch 變嚴重,但特別的是 wp=1.8um、輸入訊號同時從 1.8V 回到 0V 時,COUT 在 wn=2.4um 的 glitch 比 wn=3.6um 明顯。

Implementat

III. Measurements S111CO11

1. Table

				VII OIT	Jup.	
Cload	Wnmos	Wpmos	AVG_PW	TPD	TRISE	TFALL
(fF)	(μm)	(μm)	T(W)COM	(s) C	$(\bigcirc^{(s)}$	(s)
10	1.8	1.8	5.931e-05	1.648e-10	1,022e-10	8.870e-11
10	2.4	1.8	6.815e-05	1.557e-10	1.078e-10	9.629e-11
10	3.6	1,8et	8.620e-05	1.467e-10	1.064e-10	1.090e-10
10	1.8	2.4	6.647e-05	1.714e-10	9.263e-11	7.883e-11
10	1.8	3.6	8.062e-05	1.913e-10	8.826e-11	7.059e-11
20	1.8	1.8	6.902e-05	1.927e-10	1.517e-10	1.133e-10
20	2.4	1.8	7.782e-05	1.810e-10	1.462e-10	1.199e-10
20	3.6	1.8	9.544e-05	1.721e-10	1.475e-10	1.273e-10
20	1.8	2.4	7.598e-05	1.931e-10	1.309e-10	1.053e-10
20	1.8	3.6	9.012e-05	2.089e-10	1.148e-10	9.055e-11

2. Code (please describe)

Code	.meas TRAN AVG_PW AVG power
Description	我的 simulation 設定在 0.02ns~50ns,上面的 code 可以得到
	系統在這段時間消耗的平均功率。

Code	.meas TRAN TPD TRIG V(A) VAL='supply*0.5' rise=4					
	+ TARG V(SUM) VAL='supply*0.5' rise=3					
Description	TPD 是這個量測的名字,量的是輸出和輸入間的					
	propagation delay,上面的方法是參考助教提供的 INV.sp					
	所決定,A 變化到 0.9V (supply=1.8V) 後,SUM 要過多					
	久才會到 0.9V,如下圖,但下圖和上面的 code 並不相					
	符,是為了能夠清楚表達 TPD 的概念,才將 A 和 SUM 的					
	上升、下降方向畫相反。					
<u>S</u>	V(SUM) ation					
Code	.meas TRAN TRISE TRIG V(SUM) VAL='supply*0.1' rise=3					
	+ TARG V(SUM) VAL='supply*0.9' rise=3					
Description	因為相較於 COUT, SUM 較穩定(討論區有提及,我的					
K	波形確實如此),所以 TRISE 和 TFALL 都選擇測量 SUM					
	的波。量測時間是抓第三次的 rise,因為此時 A 和 B 兩個					
	輸入波都已經穩定, CIN 雖然還在第一個週期,但 SUM					
	第三次上升時 CIN 並沒有變化 (如下圖)。另外, 0.1、0.9					
	倍 supply 一樣是參考助教提供的 INV.sp 而決定。					
	0 10n v(a) FA.tr 1.8 (lin)					
	1 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
	v(b) FA.tr(1.8 (lin) 1.6					
	1.4 4 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1 1 1 2 1					
	v(cin) FA. 1.8 (lin)					
	1.4 1.2 1.2 1.1 0.89 0.69					
	0.6 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4					
	1.4 1 1.2 1					
	0.4 0 0 0 10n					
Code	.meas TRAN TFALL TRIG V(SUM) VAL='supply*0.9' fall=2					
	+ TARG V(SUM) VAL='supply*0.1' fall=2					

Description

會取第二次 fall 和前面計算 rise 時間的原因類似,是為了能取到較穩定狀態的數據,在 SUM 第二次 fall 的時候,A 已經要進入第三個週期,B 走完半個週期回到 0V,CIN 則 待在 1.8V 處沒有變化(如上圖),又推測此時 SUM 的改變只會和 A 的變化有關,所以選擇在 fall=2 時測量,如此也不會像 fall=3 時,A、B、CIN 都改變,使影響 TFALL的原因變得複雜。

IV. Questions Cyctem

System Integration I ∽

1. Explain why there are glitches in FA combinational circuit sometimes, and how to fix it. Is it harmful for your overall design?

FA combinational circuit 中會有 glitch 有以下幾個原因:

Race conditions

若輸入訊號會受時間影響,race conditions 就有可能發生。當輸入同時改變或是按特定順序改變,因為各路徑有不同 delay,會使輸出端產生 glitch。如右邊示意圖,其表示因為 \overline{A} 訊號進入 and gate 前會先經過 inverter 造成 delay,使得實際輸出和期待輸出會有所出入,出現長達 Δt_1 的凸起。

Signal skew

輸入訊號的上升和下降邊緣不對齊, 或是 trise, tfall, delay 時間不同,這些因素都 可能造成訊號偏移,進而影響電路的運算 過程和結果,使輸出出現 glitch。

Delay discrepancies

以我的設計為例,就算輸入端的 A, B, CIN 同時改變,他們在電路中會經過不同路徑長,並可能經過不同數量的電晶體,這些訊號就不容易同時匯入 COUT,造成輸出訊號和預想的不同,並在某些特定條件下出現glitch(例如 CIN不變、A 訊號從 1 降到 0、B 訊號從 0 升到 1,但因為 A、B 兩訊號影響到 COUT 的時間不同,造成輸出訊號有些微的 glitch)。

Others

其他因素還有如輸入訊號帶有雜訊、訊號傳遞途中有干擾,這兩項因為目前是用軟體模擬,猜測不會對輸出結果有太大影響;另外還有這次作業沒有出現的 feedback loop,在這種電路中,元件的狀態變化可能會導致短暫的不正常輸出。

對於解決方法,若 race conditions 是造成 glitch 的 主要原因,可以在輸入的地方使用 flip-flop 決定何時要 把輸入訊號往後傳送到電路裡,例如在 and-gate 前增加

一個 flip-flop,讓 A 和Ā能同時進到 and-gate 裡。Signal skew 和 delay discrepancies 則能夠透過電路的佈局改善,像是對於比較早到的訊號給予較長的路徑,或在電路上設置能夠使傳播延遲的元件。

2. Explain how you decide MOSFETs' width with fixed channel length in your circuit (Hint: explain with mobility of PMOS NMOS, prove it with HSPICE)?

已知 nmos 在 saturation region 中 $I_{ds} = \frac{1}{2}\mu C_{OX}\frac{W}{L}(V_{gs}-V_{t})^{2}$,且根據 VLSI 導論的課堂講義,相較於被電子所決定的 μ_{n} ,被電洞所決定的 μ_{p} 通常會是 μ_{n} 的 $\frac{1}{3}$ 到 $\frac{1}{2}$ 倍,再參考上面的方程式,假設今天有一組 inverter,如果上方的 pmos 和下方的 nmos,他們的 width 相同,就會造成兩者在導通時產生的電流不同,pmos 的電流將會比 nmos 的小,所以 output 會比較難從 GND 拉升到 VDD,卻容易從 VDD 轉到 GND。

在 length 固定時, I_{ds} 會正比於 μW ,若這時將 pmos 的 width 變成原先的兩倍,則會變成:

此時,不論A是從0變1或是1變0,耗時並不會有太大的落差。

Cload (fF)	W _{nmos} (µm)	W _{pmos} (µm)	AVG_PW (W)	FALL 比 RISE 快幾倍	TRISE (s)	TFALL (s)
10	1.8	1.8	5.931e-05	1.15	1.022e-10	8.870e-11
10	1.8	2.4	6.647e-05	1.18	9.263e-11	7.883e-11
10	1.8	3.6	8.062e-05	1.25	8.826e-11	7.059e-11
20	1.8	1.8	6.902e-05	1.34	1.517e-10	1.133e-10
20	1.8	2.4	7.598e-05	1.24	1.309e-10	1.053e-10
20	1.8	3.6	9.012e-05	1.27	1.148e-10	9.055e-11

這是擷取自第三部分的表格,從中可以發現當 Wpmos 增加,TRISE和TFALL 的表現會變好,變得更短。在這裡我另外計算 RISE和 FALL 耗時的倍數關係,可以發現隨著 Wp 增加,TFALL 減少的速度會比 TRISE 更

快(但當 Cload=20fF、wn=wp-1.8ume時,出版 現了意外高的 1.34,推測是模擬的誤差或物理。 特性造成)。

前述隨著 wp 增加,RISE 所需時間可能也會增加(例如 inverter 就從 4RC 的 delay 變成 6RC),但表格中發現 TRISE 有改善,可能是因為 SUM 會用到 \overline{COUT} 訊號,且右圖電路中還有許多 pmos,使整體在時間上的表現變好。

V. Bonus

上圖是 bonus 的波形圖,由上到下分別是 A, B, CIN, CLK, SUM, and COUT。題目規定輸入訊號只能在 CLK 的 negative edge 改變,且 DFF 要是 positive edge triggered,所以其他輸入訊號的週期要是 CLK 週期的偶數倍,才能確保符合題目限制(週期:A: 4ns、B: 8ns、CIN: 16ns、CLK: 2ns)。

Bonus 的 full adder 我使用 2 個 xor 和 3 個 nand 組成,並在輸出端加上 DFF,這裡使用這些邏輯閘是因為如果輸出要 positive edge 才觸發,就不需要像 combinational circuit 一樣,擔心輸出訊號會一直隨著輸入訊號變化並產生 glitch,加上 DFF後,輸出只會在要從 1 降回 0 時有些微的 glitch。

下表是各種組合所測量的結果,因為上面討論到 pmos 的 width 會影響 glitch,所以這次我只改變 wp,想看在 DFF 加入後會不會改善 wp 小時的情況。 另外,TPD 原本是取 V(A) VAL='supply*0.5' rise=4 到 V(SUM) VAL='supply*0.5' rise=3 ,改成取 V(CLK) VAL='supply*0.5' rise=3 到 V(SUM) VAL='supply*0.5' rise=1 的耗時,因為 CLK 改變,輸出才會改變。表格中的紅字是比較後的最佳數據。

Wnmos	Wpmos	AVG_PW	TPD	TRISE	TFALL
(μm)	(μm) e	t △ (W)	(s)	(s)	(s)
	C C C C C C C C C C		egration		
1.8	0.54	_1.590e-04	1.574e-10	5.379e-11	3.524e-11
1.8	0.72	1.747e-04	1.484e-10	4.563e-11	3.050e-11
			Lementa	10n	
1.8	1.2	2.136e-04	1.415e-10	4.244e-11	2.655e-11
				ノふ	
1.8	1.8	2.600e-04	_1.439e-10	3.550e-11	2.660e-11
	\langle	Tele	, / / i		
1.8	3.6	3.793e-04	1.568e-10	3.451e-11	2.720e-11
) (T)	
1.8	7.2	6.127e-04	1.885e-10	4.257e-11	3.514e-11
		, , ,	MODIL		
1.8	12	9.332e-04	2.311e-10	4.917e-11	4.238e-11

可以發現 pmos 在 width 最小時,會有最低的功耗,但 delay, rising, falling time 並非和 pmos 大小呈相關。最終要選用哪種 pmos 應該和客戶的需求有最大的關係。

在 waveform 中可以發現 wp≥1.8um,在輸出波形最一開始會有從 1 掉到 0 的波,應該可以視為還沒到 CLK posedge 前的暫態行為,之後我有試過 CLK 加上 2n 的 delay,但發現會讓輸出長時間待在 1.8V 的位置,所以 CLK 必須在系統一啟動就開始執行,並在最短時間內讓輸出穩定下來。另外比較特別的是隨著 wp 增加,SUM 要從 1 降到 0 時會有較小的 glitch,下面是各種組合的波形圖。

Input:

Wp=1.2um

Wp=7.2um

