2D Geometrical Transformations

2D Translation

2D Translation Equation

$$\mathbf{P'} = \mathbf{P} + \mathbf{t} = (\mathbf{x} + \mathbf{t}_{\mathbf{x}}, \mathbf{y} + \mathbf{t}_{\mathbf{y}})$$

2D Translation using Matrices

$$\mathbf{P'} \rightarrow \begin{bmatrix} x + t_x \\ y + t_y \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

Homogeneous Coordinates

 Multiply the coordinates by a non-zero scalar and add an extra coordinate equal to that scalar. For example,

$$(x, y) \rightarrow (x \cdot z, y \cdot z, z) \quad z \neq 0$$

 $(x, y, z) \rightarrow (x \cdot w, y \cdot w, z \cdot w, w) \quad w \neq 0$

Back to Cartesian Coordinates:

Divide by the last coordinate and eliminate it. For example,

$$(x, y, z) \quad z \neq 0 \rightarrow (x/z, y/z)$$
$$(x, y, z, w) \quad w \neq 0 \rightarrow (x/w, y/w, z/w)$$

NOTE: in our example the scalar was 1

2D Translation using Homogeneous Coordinates

$$\mathbf{P} = (x, y) \rightarrow (x, y, 1)$$

$$\mathbf{t} = (t_x, t_y) \rightarrow (t_x, t_y, 1)$$

$$\mathbf{P}' \rightarrow \begin{bmatrix} x + t_x \\ y + t_y \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$= \begin{bmatrix} \mathbf{I} & \mathbf{t} \\ 0 & 1 \end{bmatrix} \cdot \mathbf{P} = \mathbf{T} \cdot \mathbf{P}$$

Scaling Equation

$$\mathbf{P} = (\mathbf{x}, \mathbf{y}) \rightarrow \mathbf{P'} = (\mathbf{s}_{\mathbf{x}} \mathbf{x}, \mathbf{s}_{\mathbf{y}} \mathbf{y})$$

$$\mathbf{P} = (x, y) \rightarrow (x, y, 1)$$

$$\mathbf{P'} = (s_x x, s_y y) \rightarrow (s_x x, s_y y, 1)$$

$$\mathbf{P'} \rightarrow \begin{bmatrix} S_x X \\ S_y Y \\ 1 \end{bmatrix} = \begin{bmatrix} S_x & 0 & 0 \\ 0 & S_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} X \\ Y \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{S'} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} \end{bmatrix} \cdot \mathbf{P} = \mathbf{S} \cdot \mathbf{P}$$

Scaling & Translating

$$P''=T \cdot P'=T \cdot (S \cdot P)=(T \cdot S) \cdot P=A \cdot P$$

Scaling & Translating

$$\mathbf{P''} = \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x} & 0 & t_{x} \\ 0 & s_{y} & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x}x + t_{x} \\ s_{y}y + t_{y} \\ 1 \end{bmatrix}$$

Translating & Scaling = Scaling & Translating ?

$$\mathbf{P'''} = \mathbf{T} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x} & 0 & t_{x} \\ 0 & s_{y} & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} s_{x}x + t_{x} \\ s_{y}y + t_{y} \\ 1 \end{bmatrix}$$

$$\mathbf{P'''} = \mathbf{S} \cdot \mathbf{T} \cdot \mathbf{P} = \begin{bmatrix} \mathbf{s}_{\mathbf{x}} & 0 & 0 \\ 0 & \mathbf{s}_{\mathbf{y}} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & \mathbf{t}_{\mathbf{x}} \\ 0 & 1 & \mathbf{t}_{\mathbf{y}} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} \mathbf{s}_{\mathbf{x}} & \mathbf{0} & \mathbf{s}_{\mathbf{x}} \mathbf{t}_{\mathbf{x}} \\ \mathbf{0} & \mathbf{s}_{\mathbf{y}} & \mathbf{s}_{\mathbf{y}} \mathbf{t}_{\mathbf{y}} \\ \mathbf{0} & \mathbf{0} & \mathbf{1} \end{bmatrix} \begin{bmatrix} \mathbf{x} \\ \mathbf{y} \\ \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{s}_{\mathbf{x}} \mathbf{x} + \mathbf{s}_{\mathbf{x}} \mathbf{t}_{\mathbf{x}} \\ \mathbf{s}_{\mathbf{y}} \mathbf{y} + \mathbf{s}_{\mathbf{y}} \mathbf{t}_{\mathbf{y}} \\ \mathbf{1} \end{bmatrix}$$

Rotation Equations

Counter-clockwise rotation by an angle θ

$$x' = \cos \theta x - \sin \theta y$$
$$y' = \cos \theta y + \sin \theta x$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$P' = R P$$

Degrees of Freedom

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

R is
$$2x2 \longrightarrow 4$$
 elements

Note: R belongs to the category of normal matrices and satisfies many interesting properties:

$$\mathbf{R} \cdot \mathbf{R}^{\mathrm{T}} = \mathbf{R}^{\mathrm{T}} \cdot \mathbf{R} = \mathbf{I}$$
$$\det(\mathbf{R}) = 1$$

Rotation+ Scaling +Translation

P' = (T R S) P

$$\mathbf{P'} = \mathbf{T} \cdot \mathbf{R} \cdot \mathbf{S} \cdot \mathbf{P} = \begin{bmatrix} 1 & 0 & t_x \\ 0 & 1 & t_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_x & 0 & 0 \\ 0 & s_y & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} \cos \theta & -\sin \theta & t_{x} \\ \sin \theta & \cos \theta & t_{y} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} s_{x} & 0 & 0 \\ 0 & s_{y} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} =$$

$$= \begin{bmatrix} R' & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} S & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix} = \begin{bmatrix} R'S & t \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

If $s_x = s_y$, this is a similarity transformation!