MICROPROCESSOR LAB EXPERIMENT 4

GROUP - 18 Deenabandhan N ee23b021

Sai Harshith Gajendra ee23b069 Krutarth Patel ee23b137

04 September 2024

Introduction:

- In this experiment, we are going to learn how to program the micro controller ATmega8.
- This experiment involves,
 - Introduction to assembly language.
 - Write a program in assembly language to display the maximum and minimum of 10 numbers stored in FLASH memory.
 - Write a program in assembly language to add 10 numbers stored in flash memory and store it in the register.
 - Sort 5 numbers stored in flash memory in arbitrary order and write the final results to data memory
- In this report, we have included the code of the tasks and our experience with the assembly language.

ATmega-8 and Microchip studio:

- Atmega-8 is an 8-bit RISC single-chip microcontroller developed by Atmel.
- The number 8 in its name represents that it can operate 8 bits at a time while processing the information i.e in a way it represents the capacity of the microcontroller.
- Some features of AVR microcontroller are
 - I/O ports.
 - Internal instructions flash memory
 - SRAM upto 16KB
 - Timers
- Flash memory is used to store the programs whatever we have written in the microchip studio.
- Each instruction will occupy the size of 2 bytes/16 bits in flash memory except for the instructions like **STS**, **JMP** which will occupy 4 bytes in the memory.
- $\bullet\,$ For example the following code ,

LDI R16,0x01

will occupy 2 bytes in the memory.

- \bullet Flash memory also has 32 registers (from R0 to R31) with three pointers ,
 - Z pointer: R30 and R31Y pointer: R28 and R27X pointer: R25 and R26
- These registers are used to hold memory in addition to having SRAM whose address starts from 0x60.
- We will see the instructions to implement the logic in the following sections.

Finding the sum of numbers

Introduction:

- This task involves iterating through the registers and finding the sum
- \bullet It will always take n computations where n is the total number of values.

Code for Sum

```
LDI ZL, LOW(NUM<<1); Load the Z pointer with the array NUM
LDI ZH, HIGH(NUM<<1); Load the Z pointer with the array NUM
; R16 will always store the sum of the array
LPM R16, Z+; Load the first value of array

LDI R18, 0x09; Counter

LOOP:

LPM R17,Z+; Load the next value to R17
ADD R16,R17; Adding
DEC R18; dereasing the counter

BRNE LOOP

NOP

NUM: .db 0x01,0x09,0x08,0x00,0x16,0x12,0x13,0x14,0x15,0x19
```

Usage of registers in flash memory in this code:

Registers	Usage
R18	Counter variable
R16 and R17	To store sum and temporary variable to store the loaded value
Z pointer	Store the array address to flash memory where the values are given.

Process

- Getting the values from the array and storing in a temporary variable.
- Adding the current sum to the loaded value
- updating the sum