"Capítol 1: Introducció"

Fitxers i bases de dades

Sistema de tractament de bases de dades (DBMS)

- DBMS conté informació sobre una empresa particular
 - Col·lecció de dades relacionades
 - Conjunt de programes per accedir a les dades
 - Un entorn convenient i eficient d'utilitzar
- Aplicacions de bases de dades
 - Finances: Transaccions bancàries
 - Aerolínees: Reserves, horaris
 - Universitats: Matrícules, horaris
 - · Ventes: Clients, productes, compres
 - Minorista online: Seguiment de comandes, recomenacions personalitzades
 - Manufactures: Producció, inventari, comandes
 - Recursos humans: Registres d'empleats, salaris, impostos
- Les bases de dades poden ser molt grans
- Les bases de dades toquen tots els aspectes de les nostres vides

Exemple base de dades universitària

- Exemples de programes
 - Afegir nous estudiants, professors i cursos
 - Registrar estudiants als cursos i generar llistes de classes
 - Assignar notes als estudiants, calcular les seves mitjanes i generar informes
- Al començament, les aplicacions de les bases de dades es van construir directament sobre els sistemes d'arxius

Inconvenients d'utilitzar sistemes d'arxius per emmagatzemar dades

- Dades redundants i inconsistents
 - Multiples formats, duplicació de la informació en fitxers diferents
- Dificultat per accedir a les dades
 - Necessitat d'escriure un nou programa per dur a terme cada tasca nova
- Aïllament de les dades fitxers i formats múltiples
- Problemes d'integritat
 - Integritat a les restriccions
 - Exemple: Nota ha de ser ¿ 0
 - Difícils d'afegir i canviar les existents

Inconvenients d'utilitzar sistemes d'arxius per emmagatzemar dades (Cont.)

- Atomicitat d'actualitzacions
 - Les errades poden deixar la base de dades en un estat inconsistent amb actualitzacions parcials
 - Exemple: La transferència de fons des d'un compte ha de ser completa o que no es realitzi
- Accés simultani per diversos usuaris
 - Simultaneïtat d'accés necessari per construcció
 - Si no està controlada pot portar a inconsistències
 - Exemple: Dues persones llegint un compte amb un saldo (posem 100) i actualitzant-lo retirant diners (posem 50) al mateix temps
- Problemes de seguretat
 - Dificultat de proporcionar accés a tothom però no a totes les dades

Els sistemes de bases de dades donen solucions a tots els problemes anteriors

Nivells d'abstracció

- Nivell físic: Descriu com un registre (exemple: client) és emmagatzemat.
- Nivell lògic: Descriu les dades emmagatzemades a la base de dades, i les relacions amb aquestes.

```
type instructor = record
ID: string;
    name: string;
    dept_name: string;
    salary: integer;
end:
```

 Nivell vista: Els programes amaguen detalls del tipus de dades. Les vistes també poden amagar informació (tals com els salaris dels empleats) per motius de seguretat.

Vista de les dades. View of Data

Figure: Exemple d'una arquitectura per a un sistema de base de dades.

Casos i esquemes

- Similar als tipus i variables en llenguatges de programació
- Esquema L'estructura lògica d'una base de dades
 - Exemple: Una base de dades d'informació sobre un conjunt de clients i els comptes i relacions entre ells
 - Anàleg al tipus d'informació d'una variable en un programa
 - Esquema físic: Diseny de la base de dades a nivell físic
 - Esquema lògic: Diseny de la base de dades a nivell lògic
- Cas El contingut concret de la base de dades en un moment particular del temps
 - Anàleg al valor de la variable
- Independènica Física de la dada L'habilitat de modificar l'esquema físic sense canviar l'esquema lògic
 - Les aplicacions depenen de l'esquema lògic
 - En general, les interfícies entre els nivells i components haurien d'estar ben definits de manera que els canvis a algunes parts no influeixin seriament en les altres.

Models de dades

- Una col·lecció d'eines per descriure
 - Dades
 - Relacions de dades
 - Semàntica de dades
 - Restriccions de dades
- Model relacional
- Model de dada entitat-relació (principalment pel disseny de bases de dades)
- Models de dades basats en objectes (Object-oriented i Object-relational)
- Models semiestructurats de dades (XML)
- Altres models antics
 - Model de xarxa
 - Model jeràrquic

Model relacional

- Model Rrlacional (Capítol 2)
- Exemple de dades tabulades en un model relacional

Fitxer Pla

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Una mostra d'una base de dades relacional

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Table: Taula instructor

dept_name	building	budget	
Comp. Sci.	Taylor	100000	
Biology	Watson	90000	
Elec. Eng.	Taylor	85000	
Music	Packard	80000	
Finance	Painter	120000	
History	Painter	50000	
Physics	Watson	70000	

Table: Taula department

Llenguatge de manipulació de dades (DML)

- Llenguatge per accedir i manipular les dades organitzades pel model apropiat
 - DML també conegut com llenguatge de consulta (query language)
 - SQL és el més utilitzat com a llenguatge de consulta
- Dues classes de llenguatges
 - de Procediment Els usuaris especifiquen quines dades són necessàries i com aconseguir-les
 - Declaratius (nonprocedural) Els usuaris especifiquen quines dades són necessàries sense especificar com aconseguir-les

Llenguatge de Definició de Dades (DDL)

Notació específica per definir l'esquema de la base de dades.
 Exemple:

```
create table instructor (
ID char(5),
name varchar(20),
dept_name varchar(20),
salary numeric(8,2))
```

- El compilador del DDL (Data Definition Language) genera un conjunt de formularis de taules guardades en un diccionari de dades
- El diccionari de dades conté metadades (és a dir, dades sobre dades)
 - Esquema de la base de dades
 - Restriccions d'integritat
 - Clau primària (ID únicament identifica cada casella de la taula instructors)
 - Integritat referencial (references constraint en SQL). Cada valor de dept_name ha de sortir a la seva taula.
 - Autorització

SQL

- SQL: Llenguatge no procedimental més utilitzat
 - Exemple: Trobar el nom de l'instructor amb ID 22222

select name from instructor where instructor.ID='22222'

 Exemple: Trobar l'ID i els instructors de construcció del departament de Física

select instructor.ID, department.building
from instructor, department
where instructor.dept_name=department.dept_name and
 department.dept_name='Physics'

- Normalment l'accés a les bases de dades mitjançant aplicatius són a través de
 - Extensions de llenguatge que permeten assignar SQL
 - Aplicatius d'interfície (i.e. ODBC/JDBC) els quals permeten cerques SQL per ser enviades a la base de dades
- Capítols 3,4 i 5.

Disseny de la base de dades

El procés de dissenyar l'estructura general de la base de dades és:

- Disseny Lògic Decidint l'esquema de la base de dades. El disseny de la base de dades requereix trobar una "bona" col·lecció de la relació d'esquemes.
 - Decisió empresarial Quins atributs s'haurien de desar a la base de dades?
 - Decisió computacional Quines relacions d'esquemes s'haurien de tenir i com els atributs s'haurien de distribuir a través de les relacions d'esquemes?
- Disseny físic Decidint el disseny gràfic de la base de dades

Disseny de la base de dades?

• Hi ha algun problema amb aquest disseny?

ID	name	salary	dept_name	building	budget
22222	Einstein	95000	Physics	Watson	70000
12121	Wu	90000	Finance	Painter	120000
32343	El Said	60000	History	Painter	50000
45565	Katz	75000	Comp. Sci.	Taylor	100000
98345	Kim	80000	Elec. Eng.	Taylor	85000
76766	Crick	72000	Biology	Watson	90000
10101	Srinivasan	65000	Comp. Sci.	Taylor	100000
58583	Califieri	62000	History	Painter	50000
83821	Brandt	92000	Comp. Sci.	Taylor	100000
15151	Mozart	40000	Music	Packard	80000
33456	Gold	87000	Physics	Watson	70000
76543	Singh	80000	Finance	Painter	120000

Aproximació al disseny

- Teoria normalitzadora (Capítol 8)
 - Formalitzar quins dissenys són dolents, i provar-los
- Model Entitat-Relació (Capítol 7)
 - Models i empreses com a col·lecció d'entitats i relacions
 - Entitat: una "cosa" o "objecte" a l'empresa que es distingeix d'altres objectes
 - Descrits per un conjunt d'atributs
 - Relació: una associació a través de diverses entitats
 - Representar un gràfic mitjançant un diagrama entitat-relació

El Model Entitat-Relació

- Models i empreses com a col·lecció d'entitats i relacions
 - Entitat: una "cosa" o "objecte" a l'empresa que es distingeix d'altres objectes
 - Descrits per un conjunt d'atributs
 - Relació: una associació a través de diverses entitats
- Representar un gràfic mitjançant un diagrama entitat-relació

Figure: Diagrama entitat-relació.

Models de Dades Objecte-Relacionals

- Models relacional: plans, valors "atòmics"
- Models de dades Objecte Relacional
 - Extendre el model de dades relacional a partir d'incloure orientació d'objectes i construccions per tractar amb tipus de dades agregades
 - Permetre atributs de "tuples" per tenir tipus complexs, incloent valors no atòmics tal com relacions aniuades
 - Preservar les bases relacionals, en particular la declaració d'accés a les dades, mentre s'extendeix el poder de modelització
 - Proveir compatibilitat ascendent amb l'existència relacional de llenguatges

XML: Extensible Markup Language

- Definit pel WWWConsortium (W3C)
- Originàriament previst com un llenguatge d'anotació de documents, no com un llenguatge de base de dades
- L'habilitat d'especificar noves etiquetes, i crear estructura d'etiquetes aniuades, feia de l'XML una bona manera d'intercanviar dades, no només documents
- L'XML s'ha convertit en la base per a les noves generacions d'intercanvi de formats de dades
- Una àmplia varietat d'eines són disponibles per analitzar, navegar i buscar documents/dades XLM

Tractament d'emmagatzematge

- El gestor de magatzem és un programa que proveeix una interfície entre el baix nivell de dades emmagatzemades a la base de dades i els programes i consultes enviades al sistema
- El gestor de magatzem és el responsable de seguir les tasques següents:
 - Interactuar amb el gestor de fitxers
 - Emmagatzematge eficient, recuperant dades i actualitzant-les
- Problemes:
 - Accés a
 - Organització de fitxers
 - Indexant i "hashing"

Processament de consultes

- Anàlisi i traducció
- Optimització
- Evaluació

Figure: Exemple de processament de consultes.

Processament de consultes (Cont.)

- Diferentes maneres d'evaluar una consulta feta
 - Expressions equivalents
 - Diferents algorismes per a cada operació
- El cost entre una bona manera i una manera dolenta d'evaluar una consulta pot ser enorme
- La necessitat d'estimar el cost operacional
 - Depèn d'una manera crítica de la informació estadística sobre relacions les quals la base de dades ha de mantenir
 - La necessitat d'estimar estadístiques per intermediar resultats a l'hora de calcular el cost d'expressions complexes

Tractament transaccional

- Què passa si el sistema falla?
- Què passa si més d'un usuari està actualitzant alhora una mateixa dada?
- Una transacció és una col·lecció d'operacions que representa una única funció lògica en una aplicació de base de dades.
- El component de tractament transaccional assegura que la base de dades roman en un estat consistent (correcte) tot i les fallades del sistema (i.e. caigudes d'energia i caigudes del sistema operatiu) i les fallades transaccionals.
- El gestor Concurrency-control controla la interacció entre les transaccions concurrents, per assegurar la consistència de la base de dades.

Usuaris i Administradors de la base de dades

Figure: Exemple d'usuaris i administradors de bases de dades.

Sistema intern de la base de dades

Figure: Exemple de sistemes interns de la base de dades.

Arquitectura de la base de dades

L'arquitectura del sistema d'una base de dades és altament influenciat pel subjacent sistema computacional el qual la base de dades està funcionant:

- Centralitzat
- Servidor-Client
- Paral·lel (multiprocessador)
- Distribuït

Història del sistema de les bases de dades

- La dècada del 1950 i principis del 1960:
 - Ús de cintes magnètiques per emmagatzemar dades
 - Les cintes només usen accés següencial
 - Targetes perforades per introduir les dades
- Finals del 1960 i dècada del 1970:
 - Els discs durs permeten l'accés directe a les dades
 - Xarxa i models de dades jeràrquics en usos extesos
 - Ted Codd defineix el model de dades relacional
 - Guanyaria el premi ACM Turing per aquesta feina
 - Inverstigadors d'IBM comencen amb el prototip System R
 - UC Berkeley comença el prototip Ingres
 - Alt compliment (per l'època) dels processos transaccionals

Història del sistema de les bases de dades (Cont.)

- La dècada del 1980:
 - Prototips de cerca relacional desenvolupa en sistemes comercials
 - SQL es converteix en l'estàndard industrial
 - Sistemes de bases de dades paral·les i distribuïts
 - Sistemes de bases de dades d'objectes-orientats
- Dècada del 1990:
 - Suport de grans decisions i aplicacions data-mining
 - Grans magatzems multi-terabites de dades
 - Emergència de webs comercials
- Principis del 2000:
 - Estàndards XML i XQuery
 - Administració autònoma de la base de dades
- Finals del 2000:
 - Sistemes d'emmagatzematge de dades gegants
 - Google BigTable, Yahoo PNuts, Amazon, ...

FINAL CAPÍTOL 1

Figures

Figure: 1.01