

Abhrajyoti Kundu

Computer Science & IT (CS)

☆ HOME

MY TEST

BOOKMARKS

AMY PROFILE

REPORTS

BUY PACKAGE

■ NEWS

TEST SCHEDULE

COMPUTER ORGANIZATION AND ARCHITECTURE-1 (GATE 2023) - REPORTS

OVERALL ANALYSIS COMPARISON REPORT ALL(17) CORRECT(14) INCORRECT(2) SKIPPED(1) Q. 1 Consider a system with some machine instructions of following format: OP $R_{i'}$ $R_{i'}$ R_k where OP is operation to be performed on contents of register R_j and R_k and result stored in R_{i^*} Consider following sequence of instructions: $I_1: DIV R_1, R_2, R_3$ I_2 : ADD R_2 , R_4 , R_6 I3: SUB R3, R2, R1 I_4 : ADD R_2 , R_4 , R_1 Consider the following statements: \mathcal{S}_1 : True-dependency exists in above instructions. \mathcal{S}_2 : Anti-dependency exists in above instructions. S_3 : Output-dependency does not exist in above instructions. Which of the statements are true? A S_2 $B S_1, S_2, S_3$ C S_1, S_3 Your answer is Correct \bigcirc S_1, S_2 Solution: Anti-dependencies: R₂ of I₁ and I₂
R₂ of I₁ and I₄ 3. R_3 of I_1 and I_3 4. R_2 of I_3 and I_4 So, S_2 is true. True-dependency: 1. R_1 of I_1 and I_3 Non adjacent dependencies are 2. R_1 of I_1 and I_4 $\}$ eliminated through adjacent dependency 3. R_2 of I_2 and I_3 So, S_1 is true. Output-dependency 1. R_2 of I_2 and I_4 So, S_3 is false. OUESTION ANALYTICS Q. 2 Match List-I with List-II and select the correct answer using the codes given below the lists: List-I List-II A. ADD R₁, R₂, R₃ 1. Three address instruction B. PUSH X 2. Two address instruction C. ADD 3. One address instruction D. SUB R₁, R₂ 4. Zero address instruction Where R_1 , R_2 , R_3 are registers and X is memory address. Codes: \mathbf{A} В C D 1 3 4 2 (b) 4 3 4 3 (c) 2 3 1 (d) 1 4 4 Correct Option (d) 1. ADD R_1 , R_2 , R_3 is equivalent to $R_1 \Leftarrow R_2 + R_3$ and it is three address instruction. 2. PUSH X it is one-address instruction, operand in address X pushed into stack. 3. ADD zero-address instruction, pop two elements from stack, add them and push the result

