$12n_{0630} \ (K12n_{0630})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle -397668u^{11} - 278148u^{10} + \dots + 7297577b + 2368848, \\ &- 1957869u^{11} + 467354u^{10} + \dots + 36487885a - 28305373, \\ u^{12} - u^{11} - 6u^{10} + 13u^9 + 18u^8 - 60u^7 + 13u^6 + 62u^5 - 29u^4 - 23u^3 + 7u^2 + 2u + 5 \rangle \\ I_2^u &= \langle -3.02231 \times 10^{15}u^{19} + 1.19819 \times 10^{15}u^{18} + \dots + 5.91941 \times 10^{15}b + 5.59657 \times 10^{14}, \\ &- 9227751817881066u^{19} + 3660231888309292u^{18} + \dots + 5919405752257771a + 5607818622219472, \\ u^{20} + 4u^{18} + \dots + 3u + 1 \rangle \\ I_3^u &= \langle -2.64152 \times 10^{16}u^{15} - 7.92608 \times 10^{15}u^{14} + \dots + 8.40192 \times 10^{18}b + 2.48982 \times 10^{18}, \\ &- 2.01301 \times 10^{18}u^{15} + 1.13113 \times 10^{19}u^{14} + \dots + 5.96536 \times 10^{20}a + 4.26142 \times 10^{21}, \\ u^{16} - u^{15} + \dots + 163u + 71 \rangle \\ I_4^u &= \langle u^2 + b - 1, \ u^2 + a + u, \ u^3 - u + 1 \rangle \\ I_5^u &= \langle b - u - 1, \ a - u, \ u^2 + u + 1 \rangle \end{split}$$

* 5 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 53 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

 $I. \\ I_1^u = \langle -3.98 \times 10^5 u^{11} - 2.78 \times 10^5 u^{10} + \dots + 7.30 \times 10^6 b + 2.37 \times 10^6, \ -1.96 \times 10^6 u^{11} + 4.67 \times 10^5 u^{10} + \dots + 3.65 \times 10^7 a - 2.83 \times 10^7, \ u^{12} - u^{11} + \dots + 2u + 5 \rangle$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.0536581u^{11} - 0.0128085u^{10} + \dots + 0.801672u + 0.775747 \\ 0.0544932u^{11} + 0.0381151u^{10} + \dots + 0.115543u - 0.324607 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.109535u^{11} - 0.0184761u^{10} + \dots + 0.336139u + 0.896107 \\ 0.268311u^{11} + 0.00905821u^{10} + \dots - 0.264263u - 0.575656 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 0.9908787u^{11} + 0.0231775u^{10} + \dots + 0.150881u + 0.429910 \\ 0.255543u^{11} - 0.178786u^{10} + \dots - 0.0241484u + 0.207817 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0776514u^{11} - 0.0522672u^{10} + \dots + 1.20161u + 1.87973 \\ 0.114056u^{11} + 0.0999037u^{10} + \dots + 0.248152u - 0.454394 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0776514u^{11} - 0.0522672u^{10} + \dots + 1.20161u + 1.87973 \\ 0.131309u^{11} + 0.0394587u^{10} + \dots + 0.399942u - 1.10399 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.313406u^{11} + 0.172062u^{10} + \dots + 1.20161u + 1.87973 \\ 0.0700486u^{11} + 0.0126635u^{10} + \dots + 0.664609u + 0.230518 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0649215u^{11} + 0.0104283u^{10} + \dots + 1.13264u - 0.245386 \\ 0.155876u^{11} - 0.0790595u^{10} + \dots - 0.751512u - 0.203733 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.220797u^{11} + 0.0894879u^{10} + \dots + 1.88416u - 0.0416525 \\ 0.155876u^{11} - 0.0790595u^{10} + \dots - 0.751512u - 0.203733 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 0.131232u^{11} - 0.216101u^{10} + \dots + 0.285872u + 0.275328 \\ 0.0893665u^{11} + 0.00788878u^{10} + \dots - 0.746247u - 0.586750 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{5487178}{7297577}u^{11} + \frac{4986967}{7297577}u^{10} + \dots - \frac{3943475}{384083}u - \frac{53169632}{7297577}u^{10} + \dots$$

Crossings	u-Polynomials at each crossing
c_1	$u^{12} + 22u^{11} + \dots + 2624u + 256$
c_2, c_7	$u^{12} - 4u^{11} + \dots - 24u + 16$
c_3, c_6	$u^{12} - u^{11} + \dots + 2u + 5$
c_4,c_{11}	$u^{12} - 15u^{10} + \dots + 425u + 152$
c_5,c_{12}	$u^{12} + 2u^{11} + \dots - 9u + 7$
c_8,c_{10}	$u^{12} - u^{11} + \dots + 1494u + 607$
c_9	$u^{12} - 5u^{11} + \dots + 31u + 14$

Crossings	Riley Polynomials at each crossing
c_1	$y^{12} + 6y^{11} + \dots - 471040y + 65536$
c_2, c_7	$y^{12} + 22y^{11} + \dots + 2624y + 256$
c_3, c_6	$y^{12} - 13y^{11} + \dots + 66y + 25$
c_4, c_{11}	$y^{12} - 30y^{11} + \dots + 13631y + 23104$
c_5,c_{12}	$y^{12} + 14y^{11} + \dots + 591y + 49$
c_8, c_{10}	$y^{12} - 21y^{11} + \dots + 947430y + 368449$
<i>c</i> ₉	$y^{12} - 7y^{11} + \dots + 3519y + 196$

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.073080 + 0.247830I		
a = -0.205686 + 0.226684I	-5.72012 + 1.08206I	-7.15082 - 4.03183I
b = -0.644126 - 0.709985I		
u = 1.073080 - 0.247830I		
a = -0.205686 - 0.226684I	-5.72012 - 1.08206I	-7.15082 + 4.03183I
b = -0.644126 + 0.709985I		
u = 1.009660 + 0.511160I		
a = -0.494615 - 1.267450I	0.57034 - 4.05390I	-4.38416 + 4.91735I
b = 1.039140 - 0.687591I		
u = 1.009660 - 0.511160I		
a = -0.494615 + 1.267450I	0.57034 + 4.05390I	-4.38416 - 4.91735I
b = 1.039140 + 0.687591I		
u = -0.830480 + 0.173166I		
a = -0.551557 + 0.852128I	-14.8564 + 1.0416I	-8.90880 - 6.97569I
b = -0.062030 - 1.028400I		
u = -0.830480 - 0.173166I		
a = -0.551557 - 0.852128I	-14.8564 - 1.0416I	-8.90880 + 6.97569I
b = -0.062030 + 1.028400I		
u = -0.137010 + 0.433413I		
a = 0.896797 + 0.679594I	-0.227997 + 0.989058I	-3.44966 - 7.41497I
b = 0.142411 + 0.345315I		
u = -0.137010 - 0.433413I		
a = 0.896797 - 0.679594I	-0.227997 - 0.989058I	-3.44966 + 7.41497I
b = 0.142411 - 0.345315I		
u = 1.50435 + 1.39749I		
a = 0.844739 + 0.586786I	19.5110 - 12.6758I	-3.44721 + 4.54307I
b = -1.60755 + 1.62037I		
u = 1.50435 - 1.39749I		
a = 0.844739 - 0.586786I	19.5110 + 12.6758I	-3.44721 - 4.54307I
b = -1.60755 - 1.62037I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -2.11959 + 0.80100I		
a = 0.410323 - 0.816861I	-8.32399 + 2.80123I	-4.65935 - 1.22361I
b = 0.13215 - 2.51818I		
u = -2.11959 - 0.80100I		
a = 0.410323 + 0.816861I	-8.32399 - 2.80123I	-4.65935 + 1.22361I
b = 0.13215 + 2.51818I		

TT.

$$I_2^u = \langle -3.02 \times 10^{15} u^{19} + 1.20 \times 10^{15} u^{18} + \dots + 5.92 \times 10^{15} b + 5.60 \times 10^{14}, \ 9.23 \times 10^{15} u^{19} + 3.66 \times 10^{15} u^{18} + \dots + 5.92 \times 10^{15} a + 5.61 \times 10^{15}, \ u^{20} + 4u^{18} + \dots + 3u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -1.55890u^{19} - 0.618344u^{18} + \dots - 13.8199u - 0.947362 \\ 0.510577u^{19} - 0.202418u^{18} + \dots + 2.63545u - 0.0945461 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -1.70332u^{19} - 0.312792u^{18} + \dots - 13.0414u - 0.234471 \\ 0.440100u^{19} - 0.230469u^{18} + \dots + 1.86321u - 0.400099 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -1.07358u^{19} - 0.813886u^{18} + \dots - 33.9072u - 8.78031 \\ -0.504783u^{19} + 0.295424u^{18} + \dots - 2.61547u - 0.255554 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} 0.879796u^{19} - 0.232552u^{18} + \dots + 4.44267u - 1.81413 \\ -0.380687u^{19} - 0.0331509u^{18} + \dots - 0.811015u - 1.69737 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} 0.879796u^{19} - 0.232552u^{18} + \dots + 4.44267u - 1.81413 \\ -0.330693u^{19} + 0.000465385u^{18} + \dots - 0.628875u - 1.92992 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.719586u^{19} + 0.369219u^{18} + \dots + 13.5809u + 3.96598 \\ 0.431366u^{19} - 0.236260u^{18} + \dots + 3.50101u + 0.447132 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1.18109u^{19} + 0.216905u^{18} + \dots + 18.9092u + 4.78233 \\ 0.518834u^{19} - 0.220231u^{18} + \dots + 3.49645u + 0.599447 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 0.662252u^{19} + 0.437136u^{18} + \dots + 15.4127u + 4.18288 \\ 0.518834u^{19} - 0.220231u^{18} + \dots + 3.49645u + 0.599447 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.743184u^{19} + 1.10142u^{18} + \dots + 1.62432u + 2.08223 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes $= -\frac{39814249508127817}{5919405752257771}u^{19} - \frac{6706137336893893}{5919405752257771}u^{18} + \dots - \frac{334591284011249395}{5919405752257771}u - \frac{66498336645743408}{5919405752257771}u^{18} + \dots - \frac{334591284011249395}{5919405752257771}u^{18} + \dots - \frac{334591284011249995}{5919405752257771}u^{18} + \dots -$

Crossings	u-Polynomials at each crossing		
c_1	$(u^{10} - 13u^9 + \dots - 343u + 67)^2$		
c_{2}, c_{7}	$u^{20} + 13u^{18} + \dots + 343u^2 + 67$		
c_{3}, c_{6}	$u^{20} + 4u^{18} + \dots + 3u + 1$		
C4	$(u^{10} - u^9 - 2u^8 + u^7 - 4u^6 + 5u^5 + 7u^4 - 4u^3 + 2u^2 - 5u - 1)^2$		
c_5,c_{12}	$u^{20} - 5u^{19} + \dots - 4u + 1$		
c_8,c_{10}	$u^{20} - 3u^{19} + \dots - 313u + 391$		
<i>C</i> 9	$ (u^{10} + u^9 + 2u^8 - 8u^7 - 15u^6 - 41u^5 - 44u^4 - 57u^3 - 3u^2 + 6u + 1)^2 $		
c_{11}	$(u^{10} + u^9 - 2u^8 - u^7 - 4u^6 - 5u^5 + 7u^4 + 4u^3 + 2u^2 + 5u - 1)^2$		

Crossings	Riley Polynomials at each crossing
c_1	$(y^{10} - 19y^9 + \dots - 5223y + 4489)^2$
c_2, c_7	$(y^{10} + 13y^9 + \dots + 343y + 67)^2$
c_3, c_6	$y^{20} + 8y^{19} + \dots + 13y + 1$
c_4, c_{11}	$(y^{10} - 5y^9 + \dots - 29y + 1)^2$
c_5, c_{12}	$y^{20} - 9y^{19} + \dots - 6y + 1$
c_8, c_{10}	$y^{20} - y^{19} + \dots + 705145y + 152881$
<i>c</i> ₉	$(y^{10} + 3y^9 + \dots - 42y + 1)^2$

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.169912 + 1.033690I		1 1
a = -1.027740 + 0.367867I	1.81830	-61.381650 + 0.10I
b = 0.939266 + 0.170399I		
u = 0.169912 - 1.033690I		
a = -1.027740 - 0.367867I	1.81830	-61.381650 + 0.10I
b = 0.939266 - 0.170399I		
u = -1.058270 + 0.332331I		
a = 0.776808 - 0.003579I	-2.63705 + 1.91138I	-5.85314 - 2.19256I
b = 0.266712 + 0.446040I		
u = -1.058270 - 0.332331I		
a = 0.776808 + 0.003579I	-2.63705 - 1.91138I	-5.85314 + 2.19256I
b = 0.266712 - 0.446040I		
u = 0.749999 + 0.461306I		
a = 0.626786 + 0.928745I	-14.3530	-2.56768 + 0.I
b = -0.423468 - 1.053800I		
u = 0.749999 - 0.461306I		
a = 0.626786 - 0.928745I	-14.3530	-2.56768 + 0.I
b = -0.423468 + 1.053800I		
u = 0.021655 + 1.184100I		
a = 1.077240 - 0.017516I	-2.63705 - 1.91138I	-5.85314 + 2.19256I
b = -0.99403 + 1.07585I		
u = 0.021655 - 1.184100I		
a = 1.077240 + 0.017516I	-2.63705 + 1.91138I	-5.85314 - 2.19256I
b = -0.99403 - 1.07585I		
u = -0.674532 + 1.047120I		
a = 1.368660 - 0.287017I	-2.51892 + 5.10495I	-2.50119 - 5.27179I
b = -0.948711 - 0.785310I		
u = -0.674532 - 1.047120I		
a = 1.368660 + 0.287017I	-2.51892 - 5.10495I	-2.50119 + 5.27179I
b = -0.948711 + 0.785310I		

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.966161 + 1.030760I		
a = -0.970102 + 0.568270I	-4.58274 + 3.70357I	-6.31936 - 0.16987I
b = 1.231870 + 0.292979I		
u = -0.966161 - 1.030760I		
a = -0.970102 - 0.568270I	-4.58274 - 3.70357I	-6.31936 + 0.16987I
b = 1.231870 - 0.292979I		
u = 1.36430 + 0.42550I		
a = -0.055504 - 0.690748I	-2.51892 - 5.10495I	-2.50119 + 5.27179I
b = 0.374039 - 0.261089I		
u = 1.36430 - 0.42550I		
a = -0.055504 + 0.690748I	-2.51892 + 5.10495I	-2.50119 - 5.27179I
b = 0.374039 + 0.261089I		
u = 0.028356 + 0.409589I		
a = 7.65404 - 3.49906I	6.13648 - 2.74090I	17.7667 - 11.6717I
b = -0.456837 - 0.233907I		
u = 0.028356 - 0.409589I		
a = 7.65404 + 3.49906I	6.13648 + 2.74090I	17.7667 + 11.6717I
b = -0.456837 + 0.233907I		
u = -0.263839 + 0.272160I		
a = 0.75729 + 1.74372I	-4.58274 + 3.70357I	-6.31936 - 0.16987I
b = 0.27219 + 1.44939I		
u = -0.263839 - 0.272160I		
a = 0.75729 - 1.74372I	-4.58274 - 3.70357I	-6.31936 + 0.16987I
b = 0.27219 - 1.44939I		
u = 0.62858 + 2.01281I		
a = -0.707467 - 0.154937I	6.13648 - 2.74090I	17.7667 - 11.6717I
b = 2.23897 - 0.22781I		
u = 0.62858 - 2.01281I		
a = -0.707467 + 0.154937I	6.13648 + 2.74090I	17.7667 + 11.6717I
b = 2.23897 + 0.22781I		

III.
$$I_3^u = \langle -2.64 \times 10^{16} u^{15} - 7.93 \times 10^{15} u^{14} + \dots + 8.40 \times 10^{18} b + 2.49 \times 10^{18}, \ -2.01 \times 10^{18} u^{15} + 1.13 \times 10^{19} u^{14} + \dots + 5.97 \times 10^{20} a + 4.26 \times 10^{21}, \ u^{16} - u^{15} + \dots + 163 u + 71 \rangle$$

(i) Arc colorings

$$a_{12} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.00337450u^{15} - 0.0189617u^{14} + \dots + 1.89959u - 7.14361 \\ 0.00314395u^{15} + 0.000943365u^{14} + \dots + 0.0449932u - 0.296340 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.0107975u^{15} - 0.0252968u^{14} + \dots + 4.15572u - 5.74058 \\ 0.00250302u^{15} + 0.00276345u^{14} + \dots - 0.659364u - 0.373579 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.0655553u^{15} + 0.0741115u^{14} + \dots - 27.0806u - 10.9764 \\ 0.00312829u^{15} + 0.00290945u^{14} + \dots - 1.59008u - 0.820416 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.0104767u^{15} + 0.0209012u^{14} + \dots - 5.81764u + 1.25426 \\ 0.00216927u^{15} + 0.00594923u^{14} + \dots - 1.37136u - 0.417612 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -0.0104767u^{15} + 0.0209012u^{14} + \dots - 5.81764u + 1.25426 \\ 0.00117374u^{15} + 0.00594923u^{14} + \dots - 0.416019u + 0.322528 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0.0252415u^{15} - 0.0178660u^{14} + \dots + 7.88004u + 4.68578 \\ 0.00657981u^{15} - 0.0018658u^{14} + \dots + 7.88004u + 4.68578 \\ 0.00820697u^{15} - 0.00306569u^{14} + \dots + 10.8046u + 5.03170 \\ 0.00820697u^{15} - 0.00225643u^{14} + \dots + 10.8046u + 5.03170 \\ 0.00820697u^{15} - 0.00225643u^{14} + \dots + 10.7729u + 4.90310 \\ 0.00820697u^{15} - 0.00225643u^{14} + \dots + 10.7729u + 4.90310 \\ 0.00820697u^{15} - 0.00225643u^{14} + \dots + 10.7729u + 4.90310 \\ 0.00820697u^{15} - 0.00225643u^{14} + \dots + 10.3024u + 8.52027 \\ 0.00517636u^{15} - 0.00187196u^{14} + \dots + 13.0924u + 8.52027 \\ 0.00517636u^{15} - 0.00187196u^{14} + \dots + 0.247599u + 0.297704 \end{pmatrix}$$

(ii) Obstruction class = -1

(iii) Cusp Shapes =
$$-\frac{942004923634454628}{8401916491839065525} u^{15} + \frac{81627954125616557}{763810590167187775} u^{14} + \cdots - \frac{310716039596242128796}{8401916491839065525} u - \frac{169186114798085193871}{8401916491839065525}$$

Crossings	u-Polynomials at each crossing	
c_1	$ (u^8 + 15u^7 + 78u^6 + 153u^5 + 154u^4 + 76u^3 - 159u^2 - 174u + 121)^2 $	
c_2, c_7	$(u^8 + u^7 + 8u^6 + u^5 + 8u^4 - 12u^3 + u^2 - 14u + 11)^2$	
c_3, c_6	$u^{16} - u^{15} + \dots + 163u + 71$	
c_4, c_{11}	(u8 - 7u7 + 14u6 - 10u5 + 16u4 + 2u3 + 5u2 - 18u + 28)2	
c_5, c_{12}	$u^{16} + 2u^{15} + \dots + 516u + 113$	
c_8, c_{10}	$u^{16} - 30u^{14} + \dots - 305u + 25$	
<i>c</i> ₉	$(u^8 + u^7 + 4u^6 + u^5 + 10u^4 + 9u^2 - 2u + 1)^2$	

Crossings	Riley Polynomials at each crossing		
c_1	$(y^8 - 69y^7 + \dots - 68754y + 14641)^2$		
c_2, c_7	$(y^8 + 15y^7 + 78y^6 + 153y^5 + 154y^4 + 76y^3 - 159y^2 - 174y + 121)^2$		
c_{3}, c_{6}	$y^{16} + y^{15} + \dots + 18445y + 5041$		
c_4, c_{11}	$(y^8 - 21y^7 + 88y^6 + 386y^5 + 240y^4 + 580y^3 + 993y^2 - 44y + 784)^2$		
c_5, c_{12}	$y^{16} - 2y^{15} + \dots + 42912y + 12769$		
c_{8}, c_{10}	$y^{16} - 60y^{15} + \dots - 30675y + 625$		
<i>c</i> ₉	$(y^8 + 7y^7 + 34y^6 + 97y^5 + 178y^4 + 192y^3 + 101y^2 + 14y + 1)^2$		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.930105 + 0.642390I		
a = -0.0256301 + 0.0507802I	-4.46347 + 4.82161I	-6.01453 - 6.61722I
b = -0.046860 + 1.356980I		
u = -0.930105 - 0.642390I		
a = -0.0256301 - 0.0507802I	-4.46347 - 4.82161I	-6.01453 + 6.61722I
b = -0.046860 - 1.356980I		
u = 0.837926 + 0.838459I		
a = 1.37082 + 0.68579I	-4.46347 - 4.82161I	-6.01453 + 6.61722I
b = -1.060800 + 0.622192I		
u = 0.837926 - 0.838459I		
a = 1.37082 - 0.68579I	-4.46347 + 4.82161I	-6.01453 - 6.61722I
b = -1.060800 - 0.622192I		
u = 1.200940 + 0.035935I		
a = 0.089945 + 0.500990I	-0.47591 + 2.83833I	-2.49972 - 2.93638I
b = 0.875246 + 0.803241I		
u = 1.200940 - 0.035935I		
a = 0.089945 - 0.500990I	-0.47591 - 2.83833I	-2.49972 + 2.93638I
b = 0.875246 - 0.803241I		
u = -0.668009 + 1.003610I		
a = 1.019600 - 0.478974I	-0.47591 + 2.83833I	-2.49972 - 2.93638I
b = -0.425332 - 1.024850I		
u = -0.668009 - 1.003610I		
a = 1.019600 + 0.478974I	-0.47591 - 2.83833I	-2.49972 + 2.93638I
b = -0.425332 + 1.024850I		
u = -0.219451 + 0.356043I		
a = -7.73951 - 0.17352I	5.99986 + 2.87814I	-11.5340 - 17.1252I
b = -0.222770 + 0.248407I		
u = -0.219451 - 0.356043I		
a = -7.73951 + 0.17352I	5.99986 - 2.87814I	-11.5340 + 17.1252I
b = -0.222770 - 0.248407I		

Solutions to I_3^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.90749 + 0.26315I		
a = -0.237198 + 1.251610I	-19.1547 + 0.7815I	-4.45172 - 0.30321I
b = 0.02100 + 2.20047I		
u = -1.90749 - 0.26315I		
a = -0.237198 - 1.251610I	-19.1547 - 0.7815I	-4.45172 + 0.30321I
b = 0.02100 - 2.20047I		
u = 0.62790 + 2.02093I		
a = -0.709426 - 0.166954I	5.99986 - 2.87814I	-11.5340 + 17.1252I
b = 2.23737 - 0.20974I		
u = 0.62790 - 2.02093I		
a = -0.709426 + 0.166954I	5.99986 + 2.87814I	-11.5340 - 17.1252I
b = 2.23737 + 0.20974I		
u = 1.55829 + 2.01508I		
a = 0.196181 + 0.265717I	-19.1547 + 0.7815I	-4.45172 - 0.30321I
b = -2.37786 - 1.70668I		
u = 1.55829 - 2.01508I		
a = 0.196181 - 0.265717I	-19.1547 - 0.7815I	-4.45172 + 0.30321I
b = -2.37786 + 1.70668I		

IV.
$$I_4^u = \langle u^2 + b - 1, \ u^2 + a + u, \ u^3 - u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} -u^{2} - u \\ -u^{2} + 1 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{2} - u \\ -u^{2} + 1 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -u^{2} - u \\ -u^{2} + 1 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -u \\ -u^{2} - u + 1 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} u - 1 \\ u - 1 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{2} + u - 1 \\ u^{2} - 1 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} u \\ u^{2} - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = 7u

Crossings	u-Polynomials at each crossing
c_1, c_2, c_7	u^3
c_3, c_6	$u^3 - u + 1$
c_4, c_8, c_{10}	$u^3 + 2u^2 + u + 1$
c_5, c_9, c_{12}	$u^3 - u^2 + 1$
c_{11}	$u^3 - 2u^2 + u - 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_7	y^3
c_3, c_6	$y^3 - 2y^2 + y - 1$
c_4, c_8, c_{10} c_{11}	$y^3 - 2y^2 - 3y - 1$
c_5, c_9, c_{12}	$y^3 - y^2 + 2y - 1$

Solutions to I_4^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.662359 + 0.562280I		
a = -0.78492 - 1.30714I	1.45094 - 3.77083I	4.63651 + 3.93596I
b = 0.877439 - 0.744862I		
u = 0.662359 - 0.562280I		
a = -0.78492 + 1.30714I	1.45094 + 3.77083I	4.63651 - 3.93596I
b = 0.877439 + 0.744862I		
u = -1.32472		
a = -0.430160	-6.19175	-9.27300
b = -0.754878		

V.
$$I_5^u = \langle b - u - 1, \ a - u, \ u^2 + u + 1 \rangle$$

(i) Arc colorings

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u \\ u+1 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ -u - 1 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_4 = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u \\ u+1 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} -1 \\ u+1 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = -4u 2

Crossings	u-Polynomials at each crossing
c_1, c_2, c_3 c_6, c_7, c_8 c_{10}	$u^2 + u + 1$
c_4,c_{11}	u^2
c_5, c_9, c_{12}	$u^2 - u + 1$

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_3 c_5, c_6, c_7 c_8, c_9, c_{10} c_{12}	$y^2 + y + 1$
c_4, c_{11}	y^2

Solutions to I_5^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.500000 + 0.866025I	_	
a = -0.500000 + 0.866025I	2.02988I	0 3.46410I
b = 0.500000 + 0.866025I $u = -0.500000 - 0.866025I$		
a = -0.500000 - 0.866025I	-2.02988I	0. + 3.46410I
b = 0.500000 - 0.866025I		

VI. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$u^{3}(u^{2} + u + 1)$ $\cdot (u^{8} + 15u^{7} + 78u^{6} + 153u^{5} + 154u^{4} + 76u^{3} - 159u^{2} - 174u + 121)^{2}$ $\cdot ((u^{10} - 13u^{9} + \dots - 343u + 67)^{2})(u^{12} + 22u^{11} + \dots + 2624u + 256)$
c_2, c_7	$u^{3}(u^{2} + u + 1)(u^{8} + u^{7} + 8u^{6} + u^{5} + 8u^{4} - 12u^{3} + u^{2} - 14u + 11)^{2}$ $\cdot (u^{12} - 4u^{11} + \dots - 24u + 16)(u^{20} + 13u^{18} + \dots + 343u^{2} + 67)$
c_3, c_6	$(u^{2} + u + 1)(u^{3} - u + 1)(u^{12} - u^{11} + \dots + 2u + 5)$ $\cdot (u^{16} - u^{15} + \dots + 163u + 71)(u^{20} + 4u^{18} + \dots + 3u + 1)$
c_4	$u^{2}(u^{3} + 2u^{2} + u + 1)$ $\cdot (u^{8} - 7u^{7} + 14u^{6} - 10u^{5} + 16u^{4} + 2u^{3} + 5u^{2} - 18u + 28)^{2}$ $\cdot (u^{10} - u^{9} - 2u^{8} + u^{7} - 4u^{6} + 5u^{5} + 7u^{4} - 4u^{3} + 2u^{2} - 5u - 1)^{2}$ $\cdot (u^{12} - 15u^{10} + \dots + 425u + 152)$
c_5, c_{12}	$(u^{2} - u + 1)(u^{3} - u^{2} + 1)(u^{12} + 2u^{11} + \dots - 9u + 7)$ $\cdot (u^{16} + 2u^{15} + \dots + 516u + 113)(u^{20} - 5u^{19} + \dots - 4u + 1)$
c_8, c_{10}	$(u^{2} + u + 1)(u^{3} + 2u^{2} + u + 1)(u^{12} - u^{11} + \dots + 1494u + 607)$ $\cdot (u^{16} - 30u^{14} + \dots - 305u + 25)(u^{20} - 3u^{19} + \dots - 313u + 391)$
<i>c</i> ₉	$(u^{2} - u + 1)(u^{3} - u^{2} + 1)(u^{8} + u^{7} + \dots - 2u + 1)^{2}$ $\cdot (u^{10} + u^{9} + 2u^{8} - 8u^{7} - 15u^{6} - 41u^{5} - 44u^{4} - 57u^{3} - 3u^{2} + 6u + 1)^{2}$ $\cdot (u^{12} - 5u^{11} + \dots + 31u + 14)$
c_{11}	$u^{2}(u^{3} - 2u^{2} + u - 1)$ $\cdot (u^{8} - 7u^{7} + 14u^{6} - 10u^{5} + 16u^{4} + 2u^{3} + 5u^{2} - 18u + 28)^{2}$ $\cdot (u^{10} + u^{9} - 2u^{8} - u^{7} - 4u^{6} - 5u^{5} + 7u^{4} + 4u^{3} + 2u^{2} + 5u - 1)^{2}$ $\cdot (u^{12} - 15u^{10} + \dots + 425u + 152)$

VII. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$y^{3}(y^{2} + y + 1)(y^{8} - 69y^{7} + \dots - 68754y + 14641)^{2}$ $\cdot (y^{10} - 19y^{9} + \dots - 5223y + 4489)^{2}$ $\cdot (y^{12} + 6y^{11} + \dots - 471040y + 65536)$
c_2, c_7	$y^{3}(y^{2} + y + 1)$ $\cdot (y^{8} + 15y^{7} + 78y^{6} + 153y^{5} + 154y^{4} + 76y^{3} - 159y^{2} - 174y + 121)^{2}$ $\cdot ((y^{10} + 13y^{9} + \dots + 343y + 67)^{2})(y^{12} + 22y^{11} + \dots + 2624y + 256)$
c_3, c_6	$(y^{2} + y + 1)(y^{3} - 2y^{2} + y - 1)(y^{12} - 13y^{11} + \dots + 66y + 25)$ $\cdot (y^{16} + y^{15} + \dots + 18445y + 5041)(y^{20} + 8y^{19} + \dots + 13y + 1)$
c_4, c_{11}	$y^{2}(y^{3} - 2y^{2} - 3y - 1)$ $\cdot (y^{8} - 21y^{7} + 88y^{6} + 386y^{5} + 240y^{4} + 580y^{3} + 993y^{2} - 44y + 784)^{2}$ $\cdot ((y^{10} - 5y^{9} + \dots - 29y + 1)^{2})(y^{12} - 30y^{11} + \dots + 13631y + 23104)$
c_5, c_{12}	$(y^{2} + y + 1)(y^{3} - y^{2} + 2y - 1)(y^{12} + 14y^{11} + \dots + 591y + 49)$ $\cdot (y^{16} - 2y^{15} + \dots + 42912y + 12769)(y^{20} - 9y^{19} + \dots - 6y + 1)$
c_8, c_{10}	$(y^{2} + y + 1)(y^{3} - 2y^{2} - 3y - 1)(y^{12} - 21y^{11} + \dots + 947430y + 368449)$ $\cdot (y^{16} - 60y^{15} + \dots - 30675y + 625)$ $\cdot (y^{20} - y^{19} + \dots + 705145y + 152881)$
<i>c</i> ₉	$(y^{2} + y + 1)(y^{3} - y^{2} + 2y - 1)$ $\cdot (y^{8} + 7y^{7} + 34y^{6} + 97y^{5} + 178y^{4} + 192y^{3} + 101y^{2} + 14y + 1)^{2}$ $\cdot ((y^{10} + 3y^{9} + \dots - 42y + 1)^{2})(y^{12} - 7y^{11} + \dots + 3519y + 196)$