Задачи к семинарам 10.02.2025

- 1 Пусть $\xi \sim \mathcal{N}(a, \Sigma)$ гауссовский вектор. Вычислите распределение его линейного преобразования $\eta = C\xi + b$. Отдельно рассмотрите случай, когда $\Sigma = \sigma^2 \cdot I_n \ (I_n$ единичная матрица размера $n \times n$), а C ортогональная матрица.
- **2** Пусть $(\xi, \eta) \sim \mathcal{N}(a, \Sigma)$ двумерный гауссовский вектор. Докажите, что существует такое разложение $\xi = \xi_1 + \xi_2$, что ξ_1 независима с η , а ξ_2 является функцией от η .

$$\Sigma = \begin{pmatrix} 3 & 1 & -1 \\ 1 & 4 & 1 \\ -1 & 1 & 2 \end{pmatrix}.$$

Найдите $\mathsf{E}(X^2YZ)$ и $\mathsf{E}e^{X+Y+Z}$.

4 Случайные величины X и Y — независимые нормальные с параметрами (0,1). Докажите, что распределение случайной величины $Z=(X+a)^2+(Y+b)^2$ зависит только лишь от величины $r=\sqrt{a^2+b^2}$ (т.е. при фиксированном r>0 оно будет одним и тем же для любых a,b с условием $a^2+b^2=r^2$).