

Geometría Euclidiana

Taller 1: Axiomas de incidencia y orden

Docente: Wilson Mutis

Mayo de 2020

Elementos básicos de Geometría Euclidiana

Figuras convexas

Teorema 1. La intersección no vacía de dos figuras convexas es una figura convexa.

Este teorema se escribe en la siguiente forma equivalente

Si F y G son figuras convexas $y F \cap G \neq \emptyset$, entonces $F \cap G$ es convexa.

La prueba se hará por método directo

No	Afirmaciones	Justificación
(1)	F y G son figuras convexas	Hipótesis
	y $F \cap G \neq \emptyset$	
(2)	Sean $A, B \in F \cap G$	Elección
(3)	$A,B\in F \neq A,B\in G$	Definición de intersección
(4)	$\overline{AB} \subset F$ y $\overline{AB} \subset G$	Definición de figura convexa
(5)	$\overline{AB}\subset F\cap G$	Afirmación (4)
(6)	$F \cap G$ es una figura convexa	Afirmación (2) y (5)

Observación 1. La unión de dos figuras convexas no necesariamente es convexa, por ejemplo, considere dos puntos distintos A y B. Los segmentos nulos $\{A\}$ y $\{B\}$ son convexos y su unión es la figura $\{A,B\}$ que no es convexa porque $\overline{AB} \not\subset \{A,B\}$.

Definición 1 (Posición con respecto a un punto). Sean A, B y O tres puntos colineales. Diremos que los puntos A y B están en lados contrarios con respecto al punto O cuando A - O - B, en caso contrario diremos que los puntos A y B están del mismo lado con respecto al punto O.

Axioma de separación de la recta

Axioma (Axioma 11). Un punto cualesquiera O de una recta l divide a ésta en dos subconjuntos no vacíos, de modo que dos puntos cualesquiera de l pertenecen al mismo subconjunto cuando están del mismo lado con respecto al punto O, mientras que dos puntos de l pertenecen a subconjuntos distintos cuando se encuentran en lados contrarios con respecto al punto O.

A y B están del mismo lado con respecto al punto O

A y B están en lados contrarios con respecto al punto O

Nota 1. Cada uno de los subconjuntos en los que el punto O divide a la recta \(\mathbf{t}\) se denomina semirrecta o rayo.

Definición 2 (Semirrecta o rayo). Sea \mathfrak{l} una recta y sean O y A dos puntos de \mathfrak{l} . La semirrecta (o rayo) de origen O que pasa por A es el subconjunto de \mathfrak{l} cuyos elementos son el punto A junto con todos los puntos de \mathfrak{l} que estan del mismo lado de A con respecto al origen O. La simirecta de origen O que pasa por A se denota con \overrightarrow{OA} , es decir

$$\overrightarrow{OA} = \{A\} \cup \{X \in \mathfrak{l} : O - X - A\} \cup \{X \in \mathfrak{l} : O - A - X\}$$

Observación 2. Sean A, B y O tres puntos colineales. Si A y B están en el mismo lado con respecto al punto O, por el axioma de separación de la recta, se tiene $\overrightarrow{OA} = \overrightarrow{OB}$.

Teorema 2. Sean A, B y O tres puntos de la recta \mathfrak{l} . Si A y B están en lados contrarios con respecto al punto O, entonce

$$\mathfrak{l} = \{O\} \cup \overrightarrow{OA} \cup \overrightarrow{OB}$$

Prueba: Para mostrar esta igualdad de conjuntos se deben justificar las dos contenencias siguientes:

- 1. $\{O\} \cup \overrightarrow{OA} \cup \overrightarrow{OB} \subset \mathfrak{l}$. Esta contenencia es inmediata por la definición de semirrecta.
- 2. $\mathfrak{l} \subset \{O\} \cup \overrightarrow{OA} \cup \overrightarrow{OB}$. Esta contenencia se justifica con el axioma de separación de la recta y se deja como ejercicio.

Ejercicios 1

1. Sean A, B, C y D cuatro puntos tales que A - B - C - D. Responda y justifique las siguientes preguntas

a) Son
$$\overrightarrow{CA}$$
 y \overrightarrow{CD} rayos opuestos? d) Qué es $\overrightarrow{BA} \cap \overrightarrow{BD}$?

$$d$$
) Qué es $\overrightarrow{BA} \cap \overrightarrow{BD}$?

b)
$$C \in \overrightarrow{BA}$$
?

e) Es
$$\overrightarrow{BA} \cup \overrightarrow{BC}$$
 un conjunto convexo?

c) Qué es
$$\overrightarrow{CA} \cap \overrightarrow{BD}$$
?

$$f$$
) Es $\overline{BA} \cup \overline{BC}$ un conjunto convexo?

2. Sean R y S dos puntos distintos, determine el valos de verdad de las siguientes proposiciones

$$a) \ \exists X, \overline{RS} - \overrightarrow{RS} = \{X\}.$$

$$b) \ \forall X, (R-X-S) \longrightarrow \Big(\overrightarrow{XR} \cap \overrightarrow{XS} = \emptyset\Big).$$

$$c) \ \forall X, \left(X \in \overleftrightarrow{RS}\right) \longrightarrow \left(\{X\} \cap \overrightarrow{XS} = \emptyset\right).$$

$$d) \ \forall X, \left(X \in \overrightarrow{RS}\right) \longrightarrow \left(\overrightarrow{RS} = \{X\} \cup \overrightarrow{XR} \cup \overrightarrow{XS}\right).$$

$$e) \ \exists X, \left(X \in \overleftrightarrow{RS}\right) \land \left(\overleftarrow{RS} = \{X\} \cup \overrightarrow{XR} \cup \overrightarrow{XS}\right).$$

- 3. Demuestre los siguientes teoremas
 - a) Toda semirrecta es una figura convexa.
 - b) Si \overrightarrow{AB} y \overrightarrow{AC} son dos rayos no opuestos, entonces existe un único plano que los contiene.
 - c) Sean A, B y C tres puntos distintos. Si $\overline{AC} \cup \overline{CB}$ es convexo, entonces los tres puntos son colineales.
 - d) Sean A, B y C tres puntos distintos. Si $\overline{AC} \cup \overrightarrow{CB}$ no es convexo, entonces los tres puntos son no colineales.

¹Si los puntos A y B están en lados contrarios con respecto al punto O, las semirrectas \overrightarrow{OA} y \overrightarrow{OB} se denominan rayos opuestos.