SEQUENCE LISTING

```
<110> CropDesign N.V.
<120> Plants having increased yield and method for making the same
<130> CD-109-PCT
<150> EP 04100841.5
<151> 2004-03-01
<150> US 60/550.918
<151> 2004-03-05
<160> 5
<170> PatentIn version 3.3
<210> 1
<211> 1256
<212> DNA
<213> Arabidopsis thaliana
<400>
atggaacagc cgaagaaagt tgctgatagg tatctaaagc gagacgttct tggtcaaggt
                                                                      60
acttatggag tcgtcttcaa agctactgat acaaagaatg gagamactgt agcgatcaag
                                                                     120
aaaataagac ttggtaaaga gaaagaaggt gtgaatgtaa cagctcttag agaaatcaaa
                                                                     180
ttacttaaag agcttaagca tccacatata attgagttga ttgatgcgtt tcctcacaag
                                                                     240
gagaatttgc acatcgtgtt tgagttcatg gagactgatc tcgaagcagt tatccgagat
                                                                     300
cgtaatctct atctttcgcc tggtgatgtc aaatcttacc tccamatgat attgaaaggt
                                                                     360
cttgaatatt gccatggcaa atgggttctg cacagagata tgaacccaaa caacttgttg
                                                                     420
ataggaccca atggacaget gaaacttgca gattttgggt tagcacgtat atttggtagc
                                                                     480
ccaggtcgta agtttaccca ccaggtgttt gctagatggt atagagcacc tgaacttttg
                                                                     540
tttggtgcaa aacaatatga tggtgcagtt gatgtttggg ctgctggctg catttttgct
                                                                     600
gaacttctat tacgcagacc atttcttcag ggaaacagtg atattgatca attaagcaaa
                                                                     660
atetttgetg cetttgggae tecaaaagea gateagtgge etgacatgat etgeetteet
                                                                     720
gattatgtag agtatcaatt tgtccctqct ccttctttac qttctttact cccaacqqtt
                                                                     780
agtgaggatg ctttagattt gttgtcaaag atgttcacct atgaccccaa gtctagaata
                                                                     840
tegatteage aggetetaaa acacaggtae tteacatetg cacetteace tactgaceet
                                                                     900
ttaaagetee caagaceagt ttecaageaa gatgetaagt catetgatag taaaettgaa
                                                                     960
gccattaaag tgctgtcacc agcacataag tttagaagag tgatcctga ccgaggaaag
                                                                    1020
tctggtaatg gtttcaagga ccagagtgtt gatgtcatga gacaagctag ccatgatgga
                                                                    1080
caagcaccaa tgtctttaga tttcaccatc ttagctgagc ggccaccaaa ccgaccaacc
                                                                    1140
atcaccagtg cagatagatc tcatctgaag aggaaacttg atctcgagtt cctataggat
                                                                    1200
atcgcgtaac aggettette ttgacgtcgt tetteaggtt cetatagect atagga
                                                                    1256
<210>
<211>
      398
<212> PRT
<213> Arabidopsis thaliana
Met Glu Gln Pro Lys Lys Val Ala Asp Arg Tyr Leu Lys Arg Glu Val
Leu Gly Gln Gly Thr Tyr Gly Val Val Phe Lys Ala Thr Asp Thr Lys
Asn Gly Glu Thr Val Ala Ile Lys Lys Ile Arg Leu Gly Lys Glu Lys
                                  Page 1
```

		35					40					45			
Glu	Gly 50	Val	Asn	Val	Thr	Ala 55	Leu	Arg	Glu	Ile	Lys 60	Leu	Leu	Lys	Glu
Leu 65	Lys	His	Pro	His	Ile 70	Ile	Glu	Leu	Ile	Asp 75	Ala	Phe	Pro	His	Lys 80
Glu	Asn	Leu	His	Ile 85	Val	Phe	Glu	Phe	Met 90	Glu	Thr	Asp	Leu	Glu 95	Ala
Val	Ile	Arg	Asp 100	Arg	Asn	Leu	Tyr	Leu 105	Ser	Pro	Gly	Asp	Val 110	Lys	Ser
Tyr	Leu	Gln 115	Met	Ile	Leu	Lys	Gly 120	Leu	Glu	Tyr	Cys	His 125	Gly	Lys	Trp
Val	Leu 130	His	Arg	Asp	Met	Lys 135	Pro	Asn	Asn	Leu	Leu 140	Ile	Gly	Pro	Asn
Gly 145	Gln	Leu	Lys	Leu	Ala 150	Asp	Phe	Gly	Leu	Ala 155	Arg	Ile	Phe	Gly	Ser 160
Pro	Gly	Arg	Lys	Phe 165	Thr	His	Gln	Val	Phe 170	Ala	Arg	Trp	Tyr	Arg 175	Ala
Pro	Glu	Leu	Leu 180	Phe	Gly	Ala	Lys	Gln 185	Tyr	Asp	Gly	Ala	Val 190	Asp	Val
Trp	Ala	Ala 195	Gly	Cys	Ile	Phe	Ala 200	Glu	Leu	Leu	Leu	Arg 205	Arg	Pro	Phe
Leu	Gln 210	Gly	Asn	Ser	Asp	Ile 215	Asp	Gln	Leu	Ser	Lys 220	Ile	Phe	Āla	Ala
Phe 225	Gly	Thr	Pro	Lys	Ala 230	Asp	Gln	Trp	Pro	Asp 235	Met	Ile	Cys	Leu	Pro 240
Asp	Tyr	Val	Glu	Tyr 245	Gln	Phe	Val	Pro	Ala 250	Pro	Ser	Leu	Arg	Ser 255	Leu
Leu	Pro	Thr	Val 260	Ser	Glu	Asp	Ala	Leu 265	Asp	Leu	Leu	Ser	Lys 270	Met	Phe
Thr	Tyr	Asp 275	Pro	Lys	Ser	Arg	Ile 280	Ser	Ile	Gln	Gln	Ala 285	Leu	Lys	His
Arg	Tyr 290	Phe	Thr	Ser	Ala	Pro 295	Ser	Pro	Thr	Asp	Pro 300	Leu	Lys	Leu	Pro
Arg 305	Pro	Val	Ser	Lys	Gln 310	Asp	Ala	Lys	Ser	Ser 315	Asp	Ser	Lys	Leu	Glu 320
Ala	Ile	Lys	Val	Leu 325	Ser	Pro	Ala	His	Lys 330	Phe	Arg	Arg	Val	Met 335	Pro
Asp	Arg	Gly	Lys 340	Ser	Gly	Asn	Gly	Phe 345	Lys	Asp	Gln	Ser	Val 350	Asp	Val

```
Met Arg Gln Ala Ser His Asp Gly Gln Ala Pro Met Ser Leu Asp Phe
Thr Ile Leu Ala Glu Arg Pro Pro Asn Arg Pro Thr Ile Thr Ser Ala
                        375
                                             380
Asp Arg Ser His Leu Lys Arg Lys Leu Asp Leu Glu Phe Leu
385
                    390
<210>
      3
<211>
      2193
<212>
       DNA
<213> Oryza sativa
<400> 3
aatccgaaaa gtttctgcac cgttttcacc ccctaactaa caatataggg aacgtgtgct
aaatataaaa tgagacctta tatatgtagc gctgataact agaactatgc aagaaaaact
                                                                      120
catccaccta ctttagtggc aatcgggcta aataaaaaag agtcgctaca ctagtttcgt
                                                                      180
tttccttagt aattaagtgg gaaaatgaaa tcattattgc ttagaatata cgttcacatc
                                                                      240
tctgtcatga agttaaatta ttcgaggtag ccataattgt catcaaactc ttcttgaata
                                                                      300
aaaaaatctt tctagctgaa ctcaatgggt aaagagagag attttttta aaaaaataga
                                                                      360
atgaagatat totgaacgta ttggcaaaga tttaaacata taattatata attttatagt
                                                                      420
ttgtgcattc gtcatatcgc acatcattaa ggacatgtct tactccatcc caattttat
                                                                      480
ttagtaatta aagacaattg acttatttt attatttatc ttttttcgat tagatgcaag
                                                                      540
gtacttacgc acacactttg tgctcatgtg catgtgtgag tgcacctcct caatacacgt
                                                                      600
teaactagea acacatetet aatateacte geetatttaa tacatttagg tageaatate
                                                                      660
tgaattcaag cactccacca tcaccagacc acttttaata atatctaaaa tacaaaaaaat
                                                                      720
aattttacag aatagcatga aaagtatgaa acgaactatt taggtttttc acatacaaaa
                                                                      780
aaaaaaagaa ttttgctcgt gcgcgagcgc caatctccca tattgggcac acaggcaaca
                                                                      840
acagagtggc tgcccacaga acaacccaca aaaaacgatg atctaacgga ggacagcaag
                                                                      900
teegcaacaa eettttaaca geaggetttg eggeeaggag agaggaggag aggeaaagaa
                                                                      960
aaccaagcat cotoctocto coatotataa attoctocco...cottttccco tototatata
                                                                     1020
ggaggcatcc aagccaagaa gagggagagc accaaggaca cgcgactagc agaagccgag
                                                                     1080
cgaccgcctt cttcgatcca tatcttccgg tcgagttctt ggtcgatctc ttccctcctc
                                                                     1140
cacctcctcc tcacagggta tgtgcccttc ggttgttctt ggatttattg ttctaggttg
                                                                     1200
tgtagtacgg gcgttgatgt taggaaaggg gatctgtatc tgtgatgatt cctgttcttg
                                                                     1260
gatttgggat agaggggttc ttgatgttgc atgttatcgg ttcggtttga ttagtagtat
                                                                     1320
ggttttcaat cgtctggaga gctctatgga aatgaaatgg tttagggtac ggaatcttgc
                                                                     1380
gattttgtga gtaccttttg tttgaggtaa aatcagagca ccggtgattt tgcttggtgt
                                                                     1440
aataaaagta cggttgtttg gtcctcgatt ctggtagtga tgcttctcga tttgacgaag
                                                                     1500
ctatcctttg tttattccct attgaacaaa aataatccaa ctttgaagac ggtcccgttg
                                                                    1560
atgagattga atgattgatt cttaagcctg tccaaaattt cgcagctggc ttgtttagat
                                                                    1620
acagtagtcc ccatcacgaa attcatggaa acagttataa tcctcaggaa caggggattc
                                                                    1680
cctgttcttc cgatttgctt tagtcccaga attttttttc ccaaatatct taaaaagtca
                                                                     1740
ctttctggtt cagttcaatg aattgattgc tacaaataat gcttttatag cgttatccta
                                                                    1800
gctgtagttc agttaatagg taatacccct atagtttagt caggagaaga acttatccga
                                                                    1860
tttctgatct ccatttttaa ttatatgaaa tgaactgtag cataagcagt attcatttgg
                                                                     1920
attattttt ttattagctc tcaccccttc attattctga gctgaaagtc tggcatgaac
                                                                    1980
tgtcctcaat tttgttttca aattcacatc gattatctat gcattatcct cttgtatcta
                                                                     2040
cctgtagaag tttctttttg gttattcctt gactgcttga ttacagaaag aaatttatga
                                                                     2100
agctgtaatc gggatagtta tactgcttgt tcttatgatt catttccttt gtgcagttct
                                                                     2160
tggtgtagct tgccactttc accagcaaag ttc
                                                                    2193
<210>
<211>
      53
<212>
      DNA
<213> Artificial sequence
<220>
```

<223>	primer prm26/6	
<400>	4	
ggggac	aagt ttgtacaaaa aagcaggett cacaatggaa cagccgaaga aag	53
<210>	5	
<211>	53	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	primer prm2677	
<400>	5	
ggggaco	cact ttgtacaaga aagctgggtc ctataggaac tcgagatca a gtt	53