DERWENT-ACC-NO: 2002-150847

DERWENT-WEEK:

200220

COPYRIGHT 2006 DERWENT INFORMATION LTD

TITLE:

Optical information recording medium comprises

a

recording layer containing a methine pigment

PATENT-ASSIGNEE: FUJI PHOTO FILM CO LTD[FUJF]

PRIORITY-DATA: 2000JP-0074795 (March 16, 2000)

PATENT-FAMILY:

PUB-DATE PUB-NO LANGUAGE

MAIN-IPC PAGES

JP 2001260536 A September 25, 2001 N/A

027 B41M 005/26

APPLICATION-DATA:

PUB-NO APPL-DESCRIPTOR APPL-NO

APPL-DATE

JP2001260536A N/A2000JP-0074795

March 16, 2000

INT-CL (IPC): B41M005/26, G11B007/24

ABSTRACTED-PUB-NO: JP2001260536A

BASIC-ABSTRACT:

NOVELTY - An optical recording medium has a recording layer containing a specified oxanol type methine pigment (I).

DETAILED DESCRIPTION - In an optical recording medium provided with a recording

layer capable of recording information by irradiating laser beams on

substrate, the layer contains a pigment compound of formula (I).

A = atomic groups completing a ring;

m = 1 or 2;

L11, L12, L13 = optionally substituted methine, where two methine substituents

2/21/06, EAST Version: 2.0.3.0

M521 M530 M531 M540 M710 M903 M904 Q341 W001 W003 W030 W031 W032 W033 W034 W336 Markush Compounds 199806-B5003-N

### SECONDARY-ACC-NO:

CPI Secondary Accession Numbers: C1998-019387 Non-CPI Secondary Accession Numbers: N1998-044751 properties and

colour-disappearing properties even on rapid development treatment, when used

as photosensitive materials.

CHOSEN-DRAWING: Dwg.0/0

TITLE-TERMS: NEW OXONOL DYE CONTAIN METHINE GROUP USEFUL PHOTOGRAPH

DYE

PHOTOGRAPH IRRADIATE PREVENT DYE ANTIHALATION DYE

DERWENT-CLASS: E23 G06 P83

CPI-CODES: E25-B03; G06-A02;

#### CHEMICAL-CODES:

Chemical Indexing M4 \*01\*

Fragmentation Code

D013 D019 D021 D022 D023 D024 D025 D029 D100 D199

F010 F019 F021 F029 G010 G020 G021 G040 G100 G221

H7 H720 H721 H724 H725 J5 J521 J522 L9 L942

L999 M1 M113 M115 M116 M126 M132 M134 M210 M211

M212 M213 M214 M215 M216 M220 M221 M222 M223 M224

M225 M226 M231 M232 M233 M240 M280 M281 M311 M313

M315 M321 M332 M343 M412 M511 M512 M520 M521 M522

M530 M531 M540 M710 M903 M904 O341 W001 W003 W030

W336

Markush Compounds

199806-B5001-N

#### Chemical Indexing M4 \*02\*

Fragmentation Code

D013 D019 D021 D022 D023 D024 D025 D029 D100 D199

G010 G100 H602 H608 H609 H641 H642 H643 H7 H720

H724 H725 J011 J012 J013 J014 J131 J132 J133 J5

J522 K431 K499 L9 L942 L999 M1 M123 M126 M129

M133 M134 M135 M139 M210 M214 M233 M240 M280 M281

M282 M283 M313 M315 M321 M332 M333 M343 M344 M412

M512 M520 M530 M531 M540 M710 M903 M904 Q341 W001

W003 W030 W031 W032 W033 W034 W336

Markush Compounds

199806-B5002-N

### Chemical Indexing M4 \*03\*

Fragmentation Code

D011 D013 D019 D021 D022 D023 D029 D100 D199 D601

F012 F111 F431 G013 G100 H103 H141 H7 H720 J011

J012 J013 J014 J131 J132 J133 J5 J521 J522 K431

K499 L9 L942 L999 M1 M123 M126 M132 M210 M211

M273 M280 M282 M311 M321 M343 M412 M511 M512 M520

2/21/06, EAST Version: 2.0.3.0

(19)日本国特許庁(JP)

# (12) 公開特許公報(A)

(11)特許出顧公開番号 特開2001-260536 (P2001-260536A)

(43)公開日 平成13年9月25日(2001.9.25)

| (51) Int.Cl.7 |      | 識別記号  | ΡI        | デーマコート*(参考) |
|---------------|------|-------|-----------|-------------|
| B41M          | 5/26 |       | G11B 7/24 | 516 2H111   |
| G11B          | 7/24 | 5 1 6 | B41M 5/26 | Y 5D029     |

#### 審査請求 未請求 請求項の数14 OL (全 27 頁)

| (21)出顧番号 特顧2000-74795(P2000-74795) (71)出顧人 000005201 |                 |
|------------------------------------------------------|-----------------|
| 富士写真フイルム                                             | 、株式会社           |
| (22)出顧日 平成12年3月16日(2000.3.16) 神奈川県南足柄市               | <b>5中沼210番地</b> |
| (72)発明者 斎藤 直樹                                        |                 |
| 神奈川県南足柄市                                             | 沖沼210番地 富士写真    |
| フイルム株式会社                                             | 比内              |
| (74)代理人 100079049                                    | •               |
| 弁理士 中島 斉                                             | E (41.3 45.)    |
| Fターム(参考) 2月111 EA03 I                                |                 |
|                                                      | FA23 FB42       |
|                                                      |                 |
| 50029 JA04 .                                         | ושטן אשון       |
|                                                      |                 |
|                                                      |                 |
|                                                      |                 |

### (54) 【発明の名称】 光情報記録媒体、情報記録方法、及び色素化合物

#### (57)【要約】

【課題】優れた記録特性を有すると共に、その記録特性 を長期間に渡り維持することができる高い安定性を有す る光情報記録媒体を提供する。記録光の波長に応じた設 計が容易な記録層を有するヒートモード型の光情報記録 媒体を提供する。

【解決手段】基板上にレーザ照射により情報の記録が可能な記録層を有する光情報記録媒体であって、該記録層が下記一般式(I)で表される色素化合物を含有する。 一般式(I):

式中、Aは硫黄原子と酸素原子とを連結して環を形成するのに必要な原子群を表し、mは1または2の整数を表し、L<sup>11</sup>、L<sup>12</sup>及びL<sup>13</sup>は各々独立に置換基を有していてもよいメチン基を表し、nは0乃至3の整数を表し、

Xk+は有機又は無機のk価のカチオンを表し、kは1乃至5の整数を表す。

【特許請求の範囲】

【請求項1】基板上にレーザ照射により情報の記録が可能な記録層を有する光情報記録媒体であって、該記録層が下記一般式(I)で表される色素化合物を含有することを特徴とする光情報記録媒体。

1

#### 一般式(I):

[化1] 
$$S(O)_m$$
  $L^{1}(L^{12}=L^{13})_n$   $S(O)_m$  A (1/h)  $X^{\Theta}$ 

[式中、Aは硫黄原子と酸素原子とを連結して環を形成するのに必要な原子群を表し、mは1または2の整数を表し、L<sup>11</sup>、L<sup>12</sup>及びL<sup>13</sup>は各々独立に置機基を有していてもよいメチン基を表し、nは0乃至3の整数を表し、L<sup>11</sup>、L<sup>12</sup>及びL<sup>13</sup>のうちの任意の2つが連結して環を形成していてもよく、nが2以上の整数のとき、複数個の-L<sup>12</sup>=L<sup>13</sup>ーは同一であっても異なっていてもよく、X<sup>k+</sup>は有機又は無機のk価のカチオンを表し、k 20は1乃至5の整数を表す。]

【請求項2】前記一般式(I)で表される色素化合物が下記一般式(II)で表される色素化合物である請求項1 に記載の光情報記録媒体。

#### 一般式(II):

「式中、R<sup>21</sup>、R<sup>22</sup>、R<sup>23</sup>及びR<sup>24</sup>は、それぞれ独立に水索原子、アルキル基、アリール基、アラルキル基、又はヘテロ環基を表し、R<sup>21</sup>とR<sup>22</sup>、R<sup>23</sup>とR<sup>24</sup>は互いに連結して環を形成していてもよく、mは1または2の整数を表し、L<sup>21</sup>、L<sup>22</sup>及びL<sup>23</sup>は各々独立に置換基を有していてもよいメチン基を表し、L<sup>21</sup>、L<sup>22</sup>及びL<sup>23</sup>のうちの任意の2つが連結して環を形成していてもよく、nは0乃至3の整数を表し、nが2以上の整数のとき、複数個の-L<sup>22</sup>=L<sup>23</sup>ーは同一であっても異なっていてもよく、X<sup>k+</sup>は有機又は無機のk価のカチオンを表し、kは1乃至5の整数を表す。]

【請求項3】前記一般式(I)で表される色素化合物が下記一般式(III)で表される色素化合物である請求項1に記載の光情報記録媒体。

一般式(III):

【化3】

$$(\mathbb{R}^{31})_{p} \underbrace{\begin{array}{c} 2\\ 0_{m} \\ 0 \end{array}}_{\mathbb{Q}} (\mathbb{R}^{32})_{q} \underbrace{\begin{array}{c} (\mathbb{R}^{32})_{q} \\ 0 \end{array}}_{(1/N)} \times^{\mathbb{Q}}$$

【式中、R<sup>31</sup>及びR<sup>32</sup>は、それぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基、又はヘテロ環基を表し、p及びqはそれぞれ独立に 0乃至4の整数を表し、p及びqの少なくとも一方が2 以上の整数のとき、複数個のR<sup>31</sup>同士またはR<sup>32</sup>同士は 互いに連結して環を形成していてもよく、mは1または 2の整数を表し、L<sup>31</sup>、L<sup>32</sup>及びL<sup>33</sup>は各々独立に置換 基を有していてもよいメチン基を表し、L<sup>31</sup>、L<sup>32</sup>及び L<sup>33</sup>のうちの任意の2つが互いに連結して環を形成していてもよく、nは0乃至3の整数を表し、nが2以上の整数のとき、複数個の-L<sup>32</sup>=L<sup>33</sup>-は同一であっても 異なっていてもよく、X<sup>k+</sup>は有機又は無機のk価のカチオンを表し、kは1乃至5の整数を表す。]

【請求項4】前記X\*\*が4級アンモニウムイオンである 請求項1乃至3のいずれか1項に記載の光情報記録媒 体

【請求項5】前記X<sup>k+</sup>が下記一般式(IV)で表される オニウムイオンである請求項1乃至3のいずれか1項に 記載の光情報記録媒体。

#### 一般式(IV):

【化4】

30

[式中R<sup>41</sup>及びR<sup>42</sup>は各々独立にアルキル基、アラルキル基、アルケニル基、アルキニル基、アリール基、またはヘテロ環基を表し、R<sup>43</sup>は置換基を表し、hは0乃至8の整数を表し、hが2以上の整数のとき、複数個のR<sup>43</sup>は各々同一でも異なっていてもよく、また互いに連結して環を形成していてもよい。]

【請求項6】前記X\*\*が下記一般式(V)で表されるオ 40 ニウムイオンである請求項1乃至3のいずれか1項に記 載の光情報記録媒体。

#### 一般式 (V):

【化5】

$$\mathsf{R}^{\mathsf{SI}} \overset{\bigoplus}{\longrightarrow} \mathsf{N} \overset{\bigoplus}{\longrightarrow} \mathsf{R}^{\mathsf{SS}}$$

[式中、R<sup>51</sup>およびR<sup>52</sup>は各々独立にアルキル基、アラルキル基、アルケニル基、アルキニル基、アリール基、またはヘテロ環基を表す。]

50 【請求項7】前記X\*\*が下記一般式(VI)で表される

オニウムイオンである請求項1乃至3のいずれか1項に 記載の光情報記録媒体。

#### 一般式 (VI):

[式中、R61及びR62はそれぞれ独立にベンゼン環上の 置換基を表し、s及びもはそれぞれ独立にO乃至5の整 数を表し、s及びもの少なくとも一方が2以上の整数の 10 とき、複数個のR61又はR62は互いに同一でも異なって いてもよく、また複数個のR61同士または複数個のR62 同士は互いに連結して環を形成していてもよい。]

【請求項8】前記記録層上に金属からなる光反射層が設けられている請求項1乃至7のいずれか1項に記載の光情報記録媒体。

【請求項9】前記記録層上方に保護層が設けられている 請求項1乃至8のいずれか1項に記載の光情報記録媒 体。

【請求項10】請求項1乃至9のいずれか1項に記載の 光情報記録媒体に、波長が750~850nmのレーザ 光を照射して情報を記録する情報記録方法。

【請求項11】請求項1乃至9のいずれか1項に記載の 光情報記録媒体に、波長が600~700nmのレーザ 光を照射して情報を記録する情報記録方法。

【請求項12】請求項1乃至9のいずれか1項に記載の 光情報記録媒体に、波長が550nm以下のレーザ光を 照射して情報を記録する情報記録方法。

【請求項13】下記一般式 (II) で表される色素化合物。

#### 一般式 (II):

【化7】

[式中、R<sup>21</sup>、R<sup>22</sup>、R<sup>23</sup>及びR<sup>24</sup>は、それぞれ独立に水素原子、アルキル基、アリール基、アラルキル基、又 40 はヘテロ環基を表し、R<sup>21</sup>とR<sup>22</sup>、R<sup>23</sup>とR<sup>24</sup>は互いに連結して環を形成していてもよく、mは1または2の整数を表し、L<sup>21</sup>、L<sup>22</sup>及びL<sup>23</sup>は各々独立に置換基を有していてもよいメチン基を表し、L<sup>21</sup>、L<sup>22</sup>及びL<sup>23</sup>のうちの任意の2つが連結して環を形成していてもよく、nは0乃至3の整数を表し、nが2以上の整数のとき、複数個の-L<sup>22</sup>=L<sup>23</sup>-は同一であっても異なっていてもよく、X<sup>k+</sup>は有機又は無機のk価のカチオンを表し、kは1乃至5の整数を表す。]

【請求項14】下記一般式(III)で表される色素化合

物。

一般式(III):

$$(1/8)$$

$$(R^{31})_{p}$$

$$O \bigoplus O$$

$$(R^{49})_{q}$$

$$(1/k) X^{\bigoplus}$$

[式中、R<sup>31</sup>及びR<sup>32</sup>は、それぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基、又はヘテロ環基を表し、p及びqはそれぞれ独立に 0乃至4の整数を表し、p及びqの少なくとも一方が2以上の整数のとき、複数個のR<sup>31</sup>同士またはR<sup>32</sup>同士は 互いに連結して環を形成していてもよく、mは1または 2の整数を表し、L<sup>31</sup>、L<sup>32</sup>及びL<sup>33</sup>は各々独立に置換 基を有していてもよいメチン基を表し、L<sup>31</sup>、L<sup>32</sup>及び L<sup>33</sup>のうちの任意の2つが互いに連結して環を形成していてもよく、nは0乃至3の整数を表し、nが2以上の整数のとき、複数個のーL<sup>32</sup>=L<sup>33</sup>ーは同一であっても 異なっていてもよく、X<sup>k\*</sup>は有機又は無機のk価のカチオンを表し、kは1乃至5の整数を表す。]

#### 【発明の詳細な説明】

#### [0001]

【発明の属する技術分野】本発明は、レーザ照射により情報の記録及び再生を行うことができる光情報記録媒体、この光情報記録媒体を用いた情報記録方法、及びこの光情報記録媒体に使用する色素化合物に関し、特に、近赤外レーザや可視レーザを用いて情報を記録するのに適した、例えば追記型の光ディスク(CD-R)や追記30型のデジタル・ビデオ・ディスク(DVD-R)のような光情報記録媒体とこの光情報記録媒体を用いた情報記録方法、及びこの光情報記録媒体に使用する色素化合物に関する。

#### [0002]

【従来の技術及び発明が解決しようとする課題】従来から、レーザ光により一回限りの情報の記録が可能な追記型光情報記録媒体(光ディスク)は、CD-Rと称され、広く知られている。これらCD-Rは、射出成形等により基板上にピットを形成して情報を記録していた従来のCDに比べて、少量のCDを手頃な価格でしかも迅速に作製することができる、という利点を有しており、最近のパーソナルコンピュータの普及に伴ってその需要も増大している。

【0003】このCD-R型の光情報記録媒体の代表的な構造は、透明な円盤状基板上に有機色素からなる記録層、金などの金属からなる光反射層、さらに樹脂製の保護層をこの順に積層したものである。そしてこの光ディスクへの情報の記録は、近赤外域のレーザ光(通常は780nm付近の波長のレーザ光)を光ディスクに照射することにより行われ、色素記録層の照射部分がその光を

Him

吸収して局所的に発熱変形(例えば、ピットなどの生 成) することにより情報が記録される。一方、情報の再 生は、通常、記録用のレーザ光と同じ波長のレーザ光を 光ディスクに照射して、色素記録層が発熱変形した部位 (記録部分)と変形していない部位(未記録部分)との 反射率の違いを検出することにより行われている。

【0004】CD-Rに記録した情報を市販のCDプレ ーヤを用いて再生するためには、再生光である波長78 0 nmの光に対する反射率が充分に高いことが必要であ る。色素記録層上に設けられた金属製の光反射層で反射 10 される光量を多くするためには、色素記録層での光吸収 率が低い方が良く、色素の吸収極大波長は780 nmよ り短波長側に在る方が良い。しかしながら、吸収極大波 長が短波長側にある色素を用いると、780 nmにおけ る記録部分と未記録部分との反射率の差が少なくなり、 その違いを検出することが困難になる、という問題が生 じる。従って、CD-Rにおいては、780nmの光に 対する反射率が高く(即ち、780 nmの光に対する光 吸収率が低く)、かつ記録感度が高い色素化合物が用い られている。このような色素としては、例えば特開昭6 20 4-40382号公報、特開平4-175188号公 報、あるいは「機能性色素の最新応用技術」(シー・エ ム・シー、1996年4月発行、第3章の6)に記載の 色素が挙げられるが、反射率と記録感度の両方の特性を 満足する色素の選択は難しく、必ずしも充分な性能が得 られているわけではない。

【0005】また、最近では、CD-Rより高密度の記 録が可能な媒体として、追記型デジタル・ビデオ・ディ スク (DVD-R) と称される光ディスクが提案され (例えば、「日経ニューメデイア」別冊「DVD」、1 30 995年発行)、実用化されている。このDVD-R は、通常、透明な円盤状基板上に有機色素からなる記録 層、光反射層、及び保護層をこの順に積層したディスク 2枚を記録層を内側にして貼り合わせた構造、あるいは このディスクと同じ形状の円盤状保護基板とを記録層を 内側にして貼り合わせた構造を有しており、透明な円盤 状基板には、記録時に照射されるレーザ光をトラッキン グするための案内溝(プレグルーブ)が、CD-Rの半 分以下 (0.74~0.8 µm) という狭い溝幅で形成 されている。

【0006】このDVD-Rでは、情報の記録及び再生 は、可視域のレーザ光 (通常は630~680 nmの範 囲の波長のレーザ光)を光ディスクに照射することによ り行われており、このようにCD-Rより短い波長の光 で記録を行うことにより、より高密度での記録を可能に している。このように記録光の波長がCD-Rより短い ので、DVD-Rの設計に当っては、色素記録層に用い る色素の吸収極大波長もこれに合わせて短波長化させる 必要がある。一般に、色素の吸収極大波長は、その光吸 収の原因であるπ電子系の広がりが大きいほど長波長に 50 た、本発明の更に他の目的は、優れた記録特性を有し、

なることが知られており、特に従来多くの光ディスクに 使用されているシアニン色素の場合には、共役メチン鎖 の長さが長いほど長波長になる。即ち、色素の吸収極大 波長を短波長化させるためには、共役メチン鎖を短くす ることが有効である。

【0007】しかしながら、共役メチン鎖を短くする と、今度は吸光係数が小さくなるので、必然的に記録感 度 (変調度) が低下する。このためDVD-R用の色素 として、単に従来のCD-R用色素より共役メチン鎖が 短く短波長側に吸収極大波長を有する色素を用いただけ では、満足すべき性能を得ることは困難である。従っ て、DVD-Rの記録波長の光に対し優れた記録特性を 有する色素化合物の開発が必要である。

【0008】また、最近では、DVD-Rは大容量記録 媒体としての地位を築きつつあるが、昨今のインターネ ット等の情報ネットワークやハイビジョンTVの急速な 普及に伴い、高画質な画像情報が簡単に取り出せるよう になってきており、これらの画像情報を安価且つ簡便に 記録するために、更に大容量の記録媒体が必要とされて いる。このため従来の記録波長(780 nmまたは63 0 nm) より更に短波長の光で高密度の記録を行うこと ができる大容量記録媒体の開発が進められている。例え ば、特開平11-53758号公報には、有機色素を含 む記録層を備えた光情報記録媒体に波長530nm以下 のレーザ光を照射することにより、情報の記録及び再生 を行う記録再生方法が開示されている。ここでは、金属 アゾ系色素、キノフタロン系色素、又はトリメチンシア ニン色素を含む記録層を備えた光情報記録媒体に、青色 (波長410nm) 又は青緑色 (波長515nm) の半 導体レーザを用いてレーザ光が照射されている。上述の 記録媒体の大容量化を実現する上でも、より優れた記録 特性を有する色素化合物の開発が鍵となる。

95号公報に、オキソノール色素を含む記録層を基板上 に設けた光情報記録媒体を提案しており、この光情報記 録媒体は優れた記録再生特性を有すると共に、その記録 再生特性を比較的長期間に渡り維持することができる高 い安定性を有している。しかしながら、近年のCD及び DVDの用途拡大に伴って記録特性及び安定性に対する 要求は益々高まる一方であり、更に優れた記録再生特性 及び安定性を有する記録媒体の開発が望まれている。 【0010】本発明は上記事情に鑑みなされたものであ り、本発明の目的は、優れた記録特性を有すると共に、 その記録特性を長期間に渡り維持することができる高い 安定性を有する光情報記録媒体、及びこの光情報記録媒 体を用いた情報記録方法を提供することにある。また、 本発明の他の目的は、記録光の波長に応じた設計が容易 な記録層を有する光情報記録媒体、及びこの光情報記録 媒体を用いた情報記録方法を提供することにある。ま

【0009】また、本出願人は、特開昭63-2099

光情報記録媒体の記録層色素として使用可能な新規な色 素化合物を提供することにある。

#### [0011]

【課題を解決するための手段】上記目的を達成するため に、請求項1に記載の光情報記録媒体は、基板上にレー ザ照射により情報の記録が可能な記録層を有する光情報 記録媒体であって、該記録層が下記一般式(I)で表さ れる色素化合物を含有することを特徴とする。

#### 一般式 (I):

[0012]

[式中、Aは硫黄原子と酸素原子とを連結して環を形成 するのに必要な原子群を表し、mは1または2の整数を 表し、L11、L12及びL13は各々独立に置換基を有して いてもよいメチン基を表し、nはO乃至3の整数を表 し、L11、L12及びL13のうちの任意の2つが連結して 環を形成していてもよく、nが2以上の整数のとき、複 数個の-L12=L13-は同一であっても異なっていても よく、X<sup>k+</sup>は有機又は無機のk価のカチオンを表し、k は1乃至5の整数を表す。]

【0013】請求項2に記載の光情報記録媒体は、請求 項1に記載の発明において、前記一般式 (I)で表され る色素化合物が下記一般式(II)で表される色素化合物 であることを特徴とする。

#### 一般式(II):

[0014]

[式中、R<sup>21</sup>、R<sup>22</sup>、R<sup>23</sup>及びR<sup>24</sup>は、それぞれ独立に 水素原子、アルキル基、アリール基、アラルキル基、又 40 はヘテロ環基を表し、R21とR22、R23とR24は互いに 連結して環を形成していてもよく、mは1または2の整 数を表し、L21、L22及びL23は各々独立に置換基を有 していてもよいメチン基を表し、L<sup>21</sup>、L<sup>22</sup>及びL<sup>23</sup>の うちの任意の2つが連結して環を形成していてもよく、 nはO乃至3の整数を表し、nが2以上の整数のとき、 複数個の-L<sup>22</sup>=L<sup>23</sup>-は同一であっても異なっていて もよく、X<sup>k+</sup>は有機又は無機のk価のカチオンを表し、 kは1乃至5の整数を表す。]

【0015】請求項3に記載の光情報記録媒体は、請求 50 ことを特徴とする。

項1に記載の発明において、前記一般式(I)で表され

る色素化合物が下記一般式(III)で表される色素化合 物であることを特徴とする。

一般式(III):

[0016]

$$(R^{31})_{p} \xrightarrow{O_{m}S - O_{m}S - O_{m$$

「式中、R31及びR32は、それぞれ独立にアルキル基、 アルケニル基、アルキニル基、アリール基、アラルキル 基、又はヘテロ環基を表し、p及びgはそれぞれ独立に 0乃至4の整数を表し、p及びqの少なくとも一方が2 以上の整数のとき、複数個のR31同士またはR32同士は 互いに連結して環を形成していてもよく、mは1または 2の整数を表し、L31、L32及びL33は各々独立に置換 基を有していてもよいメチン基を表し、L31、L32及び 20 L33のうちの任意の2つが互いに連結して環を形成して いてもよく、nはO乃至3の整数を表し、nが2以上の 整数のとき、複数個の-L32=L33-は同一であっても 異なっていてもよく、Xk+は有機又は無機のk価のカチ オンを表し、kは1乃至5の整数を表す。]

【0017】請求項4に記載の光情報記録媒体は、請求 項1~3のいずれか1項に記載の発明において、前記X k+が4級アンモニウムイオンであることを特徴とする。

【0018】請求項5に記載の光情報記録媒体は、請求 項1~3のいずれか1項に記載の発明において、前記X 30 k+が下記一般式 (IV) で表されるオニウムイオンである ことを特徴とする。

一般式(IV):

[0019]

【化12】

「式中R41及びR42は各々独立にアルキル基、アラルキ ル基、アルケニル基、アルキニル基、アリール基、また はヘテロ環基を表し、R43は置換基を表し、hはO乃至 8の整数を表し、hが2以上の整数のとき、複数個のR 43は各々同一でも異なっていてもよく、また互いに連結 して環を形成していてもよい。〕

【0020】請求項6に記載の光情報記録媒体は、請求 項1~3のいずれか1項に記載の発明において、前記X k+が下記一般式 (V) で表されるオニウムイオンである

一般式(V):

[0021]

【化13】

9

[式中、R51およびR52は各々独立にアルキル基、アラルキル基、アルケニル基、アルキニル基、アリール基、またはヘテロ環基を表す。]

【0022】請求項7に記載の光情報記録媒体は、請求項1~3のいずれか1項に記載の発明において、前記X \*\*が下記一般式(VI)で表されるオニウムイオンであることを特徴とする。

一般式(VI):

[0023]

【化14】

[式中、R61及びR62はそれぞれ独立にベンゼン環上の 20 置換基を表し、s及びもはそれぞれ独立にO乃至5の整数を表し、s及びもの少なくとも一方が2以上の整数のとき、複数個のR61又はR62は互いに同一でも異なっていてもよく、また複数個のR61同士または複数個のR62同士は互いに連結して環を形成していてもよい。]

【0024】請求項8に記載の光情報記録媒体は、請求項1~7のいずれか1項に記載の発明において、前記記録層上に金属からなる光反射層が設けられていることを特徴とする。請求項9に記載の光情報記録媒体は、請求項1~8のいずれか1項に記載の発明において、前記記 30録層上方に保護層が設けられていることを特徴とする。

【0025】請求項10に記載の情報記録方法は、請求項1~9のいずれか1項に記載の光情報記録媒体に、波長が750~850nmのレーザ光を照射して情報を記録することを特徴とする。請求項11に記載の情報記録方法は、請求項1~9のいずれか1項に記載の光情報記録媒体に、波長が600~700nmのレーザ光を照射して情報を記録することを特徴とする。請求項12に記載の情報記録方法は、請求項1~9のいずれか1項に記載の光情報記録媒体に、波長が550nm以下のレーザ 40光を照射して情報を記録することを特徴とする。

【0026】請求項13に記載の色素化合物は、下記一般式(II)で表される色素化合物であることを特徴とする。

一般式(II):

[0027]

【化15】

$$\begin{array}{c} 10 \\ \text{R}^{22} \\ \text{O}_{\text{m}} \\ \text{O}_{$$

[式中、R<sup>21</sup>、R<sup>22</sup>、R<sup>23</sup>及びR<sup>24</sup>は、それぞれ独立に水素原子、アルキル基、アリール基、アラルキル基、又はヘテロ環基を表し、R<sup>21</sup>とR<sup>22</sup>、R<sup>23</sup>とR<sup>24</sup>は互いに 連結して環を形成していてもよく、mは1または2の整数を表し、L<sup>21</sup>、L<sup>22</sup>及びL<sup>23</sup>は各々独立に置換基を有していてもよいメチン基を表し、L<sup>21</sup>、L<sup>22</sup>及びL<sup>23</sup>のうちの任意の2つが連結して環を形成していてもよく、nは0乃至3の整数を表し、nが2以上の整数のとき、複数個の-L<sup>22</sup>=L<sup>23</sup>-は同一であっても異なっていてもよく、X<sup>k+</sup>は有機又は無機のk価のカチオンを表し、kは1乃至5の整数を表す。]

【0028】請求項14に記載の色素化合物は、下記一般式 (III) で表される色素化合物であることを特徴とする。

一般式(III):

[0029]

$$(1/16)$$

$$(R^{31})_{p}$$

$$O_{m}S$$

$$O_{m}(R^{32})_{q}$$

$$O_{m}S$$

$$O_{m}(R^{32})_{q}$$

$$O_{m}(1/k) \times N^{\oplus}$$

[式中、R<sup>31</sup>及びR<sup>32</sup>は、それぞれ独立にアルキル基、アルケニル基、アルキニル基、アリール基、アラルキル基、又はヘテロ環基を表し、p及びqはそれぞれ独立に 0乃至4の整数を表し、p及びqの少なくとも一方が2以上の整数のとき、複数個のR<sup>31</sup>同士またはR<sup>32</sup>同士は 互いに連結して環を形成していてもよく、mは1または 2の整数を表し、L<sup>31</sup>、L<sup>32</sup>及びL<sup>33</sup>は各々独立に置換 基を有していてもよいメチン基を表し、L<sup>31</sup>、L<sup>32</sup>及び L<sup>33</sup>のうちの任意の2つが互いに連結して環を形成していてもよく、nは0乃至3の整数を表し、nが2以上の整数のとき、複数個の-L<sup>32</sup>=L<sup>33</sup>ーは同一であっても異なっていてもよく、X<sup>k+</sup>は有機又は無機のk価のカチオンを表し、kは1乃至5の整数を表す。]

【0030】本発明の光情報記録媒体は、基板上に設けられたレーザ照射により情報の記録が可能な記録層に、前記一般式(I)で表される色素化合物を含有することを特徴とするものであり、この一般式(I)で表される色素化合物を記録光の波長に応じて適宜代えることにより、CD-Rに用いられる波長領域のレーザ光だけでなく、より短い波長領域のレーザ光に対しても、高い記録感度、高い反射率、及び高い変調度を与える等の優れた50 記録特性を有すると共に、その記録特性を長期間に渡り

維持することができる高い安定性を有する光情報記録媒 体を提供することができる。

#### [0031]

【発明の実施の形態】以下、本発明の光情報記録媒体、 情報記録方法、及び色素化合物について詳細に説明す る。まず、下記一般式(Ⅰ)で表される本発明の色素化 合物について説明する。

#### 一般式 (I):

[0032]

【化17】

【0033】式中、Aは硫黄原子と酸素原子とを連結し て環を形成するのに必要な原子群を表し、mは1または 2の整数を表し、L11、L12及びL13は各々独立に置換 基を有していてもよいメチン基を表し、nはO乃至3の 整数を表し、L11、L12及びL13のうちの任意の2つが 20 連結して環を形成していてもよく、nが2以上の整数の とき、複数個の-L12=L13-は同一であっても異なっ ていてもよく、X<sup>k+</sup>は有機又は無機のk価のカチオンを 表し、kは1乃至5の整数を表す。

【0034】一般式(I)においてAで表される原子群 は、炭素原子、酸素原子、窒素原子及び硫黄原子を含む ことが好ましく、炭素原子、酸素原子及び窒素原子を含 むことがより好ましく、炭素原子を含むことが特に好ま しい。また、一般式(I)において、mは硫黄原子に結 合する酸素原子数を表し、mが2であることが好まし 11.

【0035】一般式(I)においてL11、L12及びL13 で表されるメチン基は、無置換でも置換基を有していて も良く、置換基の例としては、例えば以下に記載のもの を挙げることができる。炭素原子数1~20の鎖状また は環状のアルキル基 (例えば、メチル、エチル、ロープ ロピル、イソプロピル、n-ブチル)、炭素原子数6~ 18の置換または無置換のアリール基(例えば、フェニ ル、クロロフェニル、アニシル、トルイル、2,4-ジ -t-アミル、1-ナフチル)、アルケニル基 (例え ば、ビニル、2-メチルビニル)、アルキニル基(例え ば、エチニル、2ーメチルエチニル、2ーフェニルエチ ニル)、ハロゲン原子(例えば、F、C1、Br、 I)、シアノ基、ヒドロキシル基、カルボキシル基、ア シル基 (例えば、アセチル、ベンゾイル、サリチロイ ル、ピバロイル)、アルコキシ基(例えば、メトキシ、 ブトキシ、シクロヘキシルオキシ)、アリールオキシ基 (例えば、フェノキシ、1ーナフトキシ)、アルキルチ 才基(例えば、メチルチオ、ブチルチオ、ベンジルチ オ、3-メトキシプロピルチオ)、アリールチオ基(例 50 ムイオン)、アルカリ土類金属イオン(カルシウムイオ

えば、フェニルチオ、4-クロロフェニルチオ)、アル キルスルホニル基(例えば、メタンスルホニル、ブタン スルホニル)、アリールスルホニル基 (例えば、ベンゼ ンスルホニル、パラトルエンスルホニル)、炭素原子数 1~10のカルバモイル基、炭素原子数1~10のアミ ド基、炭素原子数2~12のイミド基、炭素原子数2~ 10のアシルオキシ基、炭素原子数2~10のアルコキ シカルボニル基、ヘテロ環基(例えば、ピリジル、チエ ニル、フリル、チアゾリル、イミダゾリル、ピラゾリル 10 などの芳香族ヘテロ環、ピロリジン環、ピペリジン環、 モルホリン環、ピラン環、チオピラン環、ジオキサン 環、ジチオラン環などの脂肪族へテロ環)。

【0036】L11、L12及びL13で表されるメチン基 は、無置換のメチン基あるいは置換基として炭素原子数 1~4のアルキル基 (例、メチル、エチル)、フェニ ル、塩素原子、炭素原子数1~8のカルバモイル、炭素 原子数1~8のアミド、炭素原子数2~8のイミドを有 するメチン基であることが好ましく、特に無置換のメチ ン基、置換基としてメチル、フェニル又は塩素原子を有 するメチン基が好ましい。置換位置は、メチン鎖の中央 のメチン基 (メソ位) 上が特に好ましい。

【0037】一般式(I)において、nは $-L^{12}=L^{13}$ -の数を表し、nによりメチン鎖の長さが決定される。 記録再生に用いられるレーザ光の波長に応じて好適なn の値を選択することができ、波長700mm以上の場合 はnは3が好ましく、波長600~700nmの場合は nは1または2が好ましく、波長600 nm以下の場合 はnは0又は1が好ましい。特に、nが3の色素化合物 は波長750~850 nmの半導体レーザでの記録に適 30 しており、nが1又は2の色素化合物は波長630~6 60 n mの半導体レーザでの記録に適しており(但し、 一般式(I)のAが色素化合物の最大吸収波長を長波長 化するような基または共役構造等を有する場合には、n =2よりn=1の方が好ましい)、nが0の色素化合物 は波長550nm以下の半導体レーザでの記録に適して いる。なお、nが2以上の整数のとき、複数個の-L12 =L13-は同一でも異なっていてもよい。

【0038】L<sup>11</sup>、L<sup>12</sup>及びL<sup>13</sup>のうちの任意の2つが 連結して環を形成していても良く、環が形成される場 合、環員数は5~7が好ましく、5又は6がより好まし く、特に6が好ましい。この環の構成原子としては炭素 原子、酸素原子又は窒素原子が好ましく、炭素原子又は 酸素原子がより好ましく、炭素原子が特に好ましい。 【0039】一般式(I)においてXk+は、有機又は無 機のk価のカチオンを表す。kは1~5の整数であり、k は1~4の整数が好ましく、1または2がより好まし く、特に2が好ましい。一般式(I)においてX<sup>k+</sup>で表 される無機のカチオンとしては、プロトン、アルカリ金 属イオン(リチウムイオン、カリウムイオン、ナトリウ

ン、マグネシウムイオン、亜鉛イオン、アルミニウムイオン)、及び遷移金属イオン(ニッケルイオン、銅イオン、鉄イオン、クロムイオン、マンガンイオン、パラジウムイオン)等の金属イオンが挙げられる。中でもアルカリ金属イオンまたはアルカリ土類金属イオンが好ましく、特にアルカリ金属イオンが好ましい。

【0040】一般式(I)においてX<sup>k+</sup>で表される有機のカチオンとしては、オニウムイオンが好ましく、例えばアンモニウムイオン、オキソニウムイオン、スルホニウムイオン、ホスホニウムイオン、セレノニウムイオン、ヨードニウムイオンが挙げられるが、中でも第4級アンモニウムイオンが好ましい。

【0041】第4級アンモニウムイオンは、一般に第3級アミン(例えば、トリメチルアミン、トリエチルアミン、トリエチルアミン、トリブチルアミン、トリエタノールアミン、Nーメチルピロリジン、Nーメチルピペリジン、N, Nージメチルピペラジン、トリエチレンジアミン、N, N, N', N'-テトラメチルエチレンジアミン)または含窒素ヘテロ環(例えば、ピリジン、ピコリン、2, 2'ージピリジル、4, 4'ージピリジル、1,10ーフェ 20ナントロリン、キノリン、オキサゾール、チアゾール、Nーメチルイミダゾール、ピラジン、テトラゾール)を、アルキル化(メンシュトキン反応)、アラルキル化、アルケニル化、アルキニル化、アリール化、またはヘテロ環化することにより得ることができる。

【0042】X<sup>k+</sup>で表される第4級アンモニウムイオン としては、含窒素ヘテロ環からなる第4級アンモニウム イオンが好ましく、特に第4級ピリジニウムイオンが好 ましい。

【0043】X\*\*で表されるオニウムイオンは、前記一般式 (IV)で表されるものが特に好ましい。これらの化合物は、例えば、特開昭61-148162号公報に記載されている、対応するジピリジルと目的の置換基を持つハロゲン化物とのメンシュトキン反応や、特開昭51-16675号公報や特開平1-96171号公報に記載の方法に準ずるアリール化反応により、容易に合成することができる。

【0044】一般式 (IV) においてR<sup>41</sup>もしくはR<sup>42</sup>で表されるアルキル基は、炭素原子数1~18のアルキル基が好ましく、炭素原子数1~8のアルキル基がより好 40ましく、直鎖、分岐または環状であってもよく、例えばメチル、エチル、nープロピル、イソプロピル、nーブチル、イソブチル、sーブチル、イソアミル、nーヘキシル、シクロヘキシル、2ーエチルヘキシル、nーオクチルを挙げることができる。

【0045】一般式 (IV) において R<sup>41</sup>もしくは R<sup>42</sup>で ル基、炭素原子数 6~15の アリール基、炭素原子数 4 ~7の 飽和または不飽和の へテロ環基、炭素原子数 1~20の アシルアミドより 好ましく、 例えばビニル、 2 ープロペニル、 2 ーメ 基、炭素原子数 2~20の アルガニル基、炭素原子数 2~20の アルガニル基、炭チルプロペニル、 1,3 ーブタジエニルを挙げることが 50 素原子数 0~20 カルバモイル基、炭素原子数 1~10

できる。一般式 (IV) において R<sup>41</sup>もしくは R<sup>42</sup>で表されるアルキニル基は、炭素原子数 2~18のアルキニル基が好ましく、炭素原子数 2~8のアルキニル基がより好ましく、例えばエチニル、プロピニル、3,3ージメチルブチニルを挙げることができる。

【0046】一般式 (IV) においてR<sup>41</sup>もしくはR<sup>42</sup>で表されるアリール基は、炭素原子数6~18のアリール基が好ましく、炭素原子数6~10のアリール基がより好ましく、例えばフェニル、1-ナフチル、2-ナフチルを挙げることができる。一般式 (IV) においてR<sup>41</sup>もしくはR<sup>42</sup>で表されるヘテロ環基は、炭素原子数4~7の飽和または不飽和のヘテロ環基が好ましく、含有されるヘテロ原子としては窒素原子、酸素原子、硫黄原子が好ましく、例えば4-ビリジル、2-ビリジル、2ービリジル、2ービラジル、2ービリミジル、4ービリミジル、2ーイミダゾリル、2-フリル、2ーチオフェニル、2ーベンゾオキサゾリル、2ーベンゾチオキサゾリルを挙げることができる。

【0.047】また、一般式 (IV) の $R^{41}$ および $R^{42}$ は更に置換基を有していてもよく、置換基としては一般式 (I) の $L^{11}$ 、 $L^{12}$ 及び $L^{13}$ の置換基として挙げた基を挙げることができる。

【0048】一般式(IV)においてR<sup>43</sup>で表される置換基は、ピリジン環上の置換基を表し、一般式(IV)においてR<sup>43</sup>で表される置換基としては、一般式(I)のL<sup>11</sup>、L<sup>12</sup>及びL<sup>13</sup>の置換基として挙げた基を挙げることができ、好ましくは炭素原子数1~18のアルキル基であり、より好ましくは炭素原子数1~8の無置換アルキル基である。一般式(IV)において、hはR<sup>43</sup>で表される置換基の数を表し、hは0~8の整数である。hは0~4の整数が好ましく、0~2の整数がより好ましく、特に0が好ましい。

【0049】一般式(IV)において、2つのビリジン環は何れの位置で連結していてもよいが、ビリジン環の2位もしくは4位で連結するのが好ましく、特に両ビリジン環の4位同士で連結した前記一般式(V)で表される構造が好ましい。一般式(V)におけるR<sup>51</sup>およびR<sup>52</sup>は、それぞれ一般式(IV)におけるR<sup>41</sup>およびR<sup>42</sup>と同義であり、好ましい範囲も同様である。

【0050】X<sup>k+</sup>で表されるオニウムイオンは、前記一般式 (VI) で表されるものがより好ましい。一般式 (VI) において、R<sup>61</sup>及びR<sup>62</sup>で表されるベンゼン環上の置換基としては、一般式 (I)のL<sup>11</sup>、L<sup>12</sup>及びL<sup>13</sup>の置換基として挙げた基を挙げることができ、好ましくはハロゲン原子、シアノ基、炭素原子数 1~18のアルキル基、炭素原子数 6~15のアリール基、炭素原子数 4~7の飽和または不飽和のヘテロ環基、炭素原子数 1~20のアシルアミド基、炭素原子数 2~20のアルコキシカルボニル基、炭素原子数 0~20カルバモイル基、炭素原子数 1~10

のスルホニル基、炭素原子数1~10のスルホンアミド 基、炭素原子数0~20のスルファモイル基、炭素原子 数1~10のアルコキシ基又は炭素原子数6~15のア リールオキシ基であり、より好ましくは塩素原子、臭素 原子、炭素原子数1~8の無置換アルキル基、炭素原子 数6~10のアリール基、炭素原子数4~6の飽和また は不飽和のヘテロ環基、炭素原子数2~10のアシル 基、炭素原子数2~10のアシルアミド基、炭素原子数 2~10のアルコキシカルボニル基、炭素原子数0~1 0カルバモイル基、炭素原子数1~6のスルホニル基、 炭素原子数1~6のスルホンアミド基、炭素原子数0~ 10のスルファモイル基、炭素原子数1~8のアルコキ シ基又は炭素原子数6~10のアリールオキシ基であ る。これらR61及びR62で表される置換基は、更に置換 基を有していてもよく、その置換基の例としては、一般 式 ( I ) のL<sup>11</sup>、L<sup>12</sup>及びL<sup>13</sup>の置換基として挙げた基 を挙げることができる。

【0051】一般式 (VI) において、sはR61で表され る置換基の数を表し、tはR62で表される置換基の数を 表す。s及びtはそれぞれ独立に0~5の整数を表し、 s及びtの少なくとも一方が2以上の整数のとき、複数 個のR61又はR62は互いに同一でも異なっていてもよ く、また複数個のR61同士または複数個のR62同士は互 いに連結して環を形成していてもよい。

【0052】一般式(I)で表される色素化合物の中で

も、一般式(II)又は一般式(III)で表される色素化 合物が特に好ましい。一般式(II)においてR21、 R<sup>22</sup>、R<sup>23</sup>及びR<sup>24</sup>で表されるアルキル基は、炭素原子 数1~18のアルキル基が好ましく、炭素原子数1~8 のアルキル基がより好ましく、直鎖、分岐または環状で 30 あってもよく、例えばメチル、エチル、ロープロピル、 イソプロピル、nーブチル、イソブチル、sーブチル、 イソアミル、n-ヘキシル、シクロヘキシル、2-エチ ルヘキシル、n-オクチルを挙げることができる。

【0053】一般式 (II) においてR<sup>21</sup>、R<sup>22</sup>、R<sup>23</sup>及 びR24で表されるアリール基は、炭素原子数6~18の アリール基が好ましく、炭素原子数6~10のアリール 基が好ましく、例えばフェニル、1ーナフチル、2ーナ フチルを挙げることができる。

【0054】一般式 (II) においてR<sup>21</sup>、R<sup>22</sup>、R<sup>23</sup>及 40 びR24で表されるアラルキル基は、炭素原子数7~18 のアラルキル基(例えば、ベンジル、フェネチル、アニ シル)が好ましく、特にベンジルが好ましい。

【0055】一般式 (II) においてR<sup>21</sup>、R<sup>22</sup>、R<sup>23</sup>及 びR24で表されるヘテロ環基は、炭素原子数4~7の飽 和または不飽和のヘテロ環基が好ましく、含有されるヘ テロ原子としては特に窒素原子、酸素原子及び硫黄原子 が好ましく、例えば4ーピリジル、2ーピリジル、2ー ピラジル、2-イミダゾリル、2-フリル、2-チオフ ェニル、2-ベンゾオキサゾリル、2-ベンゾチオキサ 50 れる置換基の数を表し、qはR32で表される置換基の数

ゾリルを挙げることができる。

【0056】一般式(II)においてR<sup>21</sup>とR<sup>22</sup>、R<sup>23</sup>と R24は互いに連結して環を形成している場合が好まし い。この環の構成原子としては、炭素原子、酸素原子、 窒素原子、及び硫黄原子が好ましく、炭素原子、酸素原 子及び窒素原子がより好ましく、炭素原子が特に好まし い。環員数は5~8が好ましく、5または6がより好ま しく、特に6が好ましい。

【0057】一般式 (II) において、m、n、L<sup>21</sup>、L 10 22、L23及びXk+の好ましい範囲は、それぞれ一般式 (I)におけるm、n、L<sup>11</sup>、L<sup>12</sup>、L<sup>13</sup>及びX<sup>k+</sup>の好 ましい範囲と同様である。

【0058】 一般式 (III) において R<sup>31</sup> 及び R<sup>32</sup>で表 されるアルキル基は、炭素原子数1~18のアルキル基 が好ましく、炭素原子数1~8のアルキル基が好まし く、直鎖、分岐または環状であってもよく、例えばメチ ル、エチル、nープロピル、イソプロピル、nーブチ ル、イソブチル、sーブチル、イソアミル、nーヘキシ ル、シクロヘキシル、2-エチルヘキシル、n-オクチ 20 ルを挙げることができる。

【0059】一般式 (III) において R<sup>31</sup> 及び R<sup>32</sup>で表 されるアルケニル基は、炭素原子数2~18のアルケニ ル基が好ましく、炭素原子数2~8のアルケニル基がよ り好ましく、例えばビニル、2-プロペニル、2-メチ ルプロペニル、1,3-ブタジエニルを挙げることがで きる。

【0060】一般式 (III) において R31 及び R32 で表 されるアルキニル基は、炭素原子数2~18のアルキニ ル基が好ましく、炭素原子数2~8のアルキニル基がよ り好ましく、例えばエチニル、プロピニル、3,3-ジ メチルブチニルを挙げることができる。

【0061】一般式 (III) においてR31及びR32で表 されるアリール基は、炭素原子数6~18のアリール基 が好ましく、炭素原子数6~10のアリール基がより好 ましく、例えばフェニル、1ーナフチル、2ーナフチル を挙げることができる。

【0062】一般式 (III) において R<sup>31</sup> 及び R<sup>32</sup>で表 されるアラルキル基は、炭素原子数7~18のアラルキ ル基 (例えば、ベンジル、フェネチル、アニシル) が好 ましく、特にベンジルが好ましい。

【0063】一般式 (III) において R<sup>31</sup> 及び R<sup>32</sup>で表 されるヘテロ環基は、炭素原子数4~7の飽和または不 飽和のヘテロ環基が好ましく、含有されるヘテロ原子と しては特に窒素原子、酸素原子及び硫黄原子が好まし く、例えば4ーピリジル、2ーピリジル、2ーピラジ ル、2-イミダゾリル、2-フリル、2-チオフェニ ル、2-ベンゾオキサゾリル、2-ベンゾチオキサゾリ ルを挙げることができる。

【0064】一般式 (III) において、pはR<sup>31</sup>で表さ

を表す。p及びqはそれぞれ独立に0~4の整数を表し、p及びqは0~2の整数が好ましく、1又は2がより好ましく、特に2が好ましい。p及びqの少なくとも一方が2以上の整数のとき、複数個のR<sup>31</sup>又はR<sup>32</sup>は互いに同一でも異なっていてもよく、また複数個のR<sup>31</sup>同士または複数個のR<sup>32</sup>同士は互いに連結して環を形成していてもよい。この環の構成原子としては、炭素原子、酸素原子、及び硫黄原子が好ましく、炭素原子、酸素原子及び窒素原子がより好ましく、炭素原子が特に好ましい。環員数は5~8が好ましく、5または6がより好ましく、特に6が好ましい。

【0065】一般式 (III) において、m、n、 $L^{31}$ 、 $L^{32}$ 、 $L^{33}$ 及び $X^{k+}$ の好ましい範囲は、それぞれ一般式 (I) におけるm、n、 $L^{11}$ 、 $L^{12}$ 、 $L^{13}$ 及び $X^{k+}$ の好

ましい範囲と同様である。

【0066】一般式(I)で表される色素化合物は、任意の位置で結合して多量体を形成していてもよく、この場合の各単位は互いに同一でも異なっていてもよく、またボリスチレン、ボリメタクリレート、ボリビニルアルコール、セルロース等のボリマー鎖に結合していてもよい。

素原子、及び硫黄原子が好ましく、炭素原 子、酸素原子及び窒素原子がより好ましく、炭素原子が 特に好ましい。環員数は5~8が好ましく、5または6 10 体例を挙げるが、本発明の色素化合物はこれらに限定さ がより好ましく 特に6が好ましい。

> 【0068】 【化18】

一般式(II)で表される色素の具体例

(II-1)

$$\begin{array}{c|cccc}
 & O_2 & O_2 \\
 & S & S & O_2 \\
 & S & O_2 & O_2 \\
 & S & O_2 & O_2 & O_2 \\
 & S & S & O_2 & O_2 & O_2 \\
 & S & S & O_2 & O_2 & O_2 & O_2 \\
 & S & S & O_2 & O_2 & O_2 & O_2 \\
 & S & S & O_2 & O_2 & O_2 & O_2 \\
 & S & S & O_2 & O_2 & O_2 & O_2 \\
 & S & S & O_2 & O_2 & O_2 & O_2 \\
 & S & S & O_2 & O_2 & O_2 & O_2 \\
 & S & S & O_2 & O_2 & O_2 & O_2 \\
 & S & S & S & O_2 & O_2 & O_2 \\
 & S & S & S & O_2 & O_2 & O_2 \\
 & S & S & S & O_2 & O_2 & O_2 \\
 & S & S & S & O_2 & O_2 & O_2 \\
 & S & S & S & O_2 & O_2 & O_2 \\
 & S & S & S & O_2 & O_2 & O_2 \\
 & S & S & S & O_2 & O_2 & O_2 \\
 & S & S & S & O_2 & O_2 & O_2 \\
 & S & S & S & O_2 & O_2 & O_2 \\
 & S & S & S & S & O_2 & O_2 \\
 & S & S & S & S & O_2 & O_2 \\
 & S & S & S & S & O_2 & O_2 \\
 & S & S & S & S & O_2 & O_2 \\
 & S & S & S & S & S & O_2 \\
 & S & S & S & S & S & O_2 \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S & S \\
 & S & S & S & S \\
 & S & S & S & S \\
 & S & S & S & S \\
 & S & S & S & S \\
 & S &$$

(II-2)

(II-3)

(II-4)

(II-5)

[0069]

\* \*【化19】

$$(II - 6)^{21}$$

$$\begin{array}{c|c} C_3H_{7}I & & & & \\ & O_2 & & & \\ & S & & CI & \\ & S & & CH_3 & \\ & & & O_{CH_3} & \\ \end{array}$$

(II-7)

$$\begin{array}{c|c} O_2 & O_2 \\ & & \\ O & \bigcirc O \end{array} \qquad \qquad \\ 1/2 \left( i + C_5 H_{11} - N_1 \right) - \left( \begin{array}{c} H_1 \\ N \end{array} + C_5 H_{11} - i \right) \end{array}$$

(8-11)

(II-9)

(II-10)

[0070]

\* \*【化20】

# (II-12)

# (II-13)

# (II-14)

# (II-15)

[0071]

一般式 (III) で表される色素の具体例

(III-1)

(III-2)

(III-3)

(III-4)

$$\begin{array}{c|c} & O_2 & O_2 \\ \hline & S^2 & \hline \\ & O & O \\ \hline \end{array} \qquad 1/2 \left( C_2 H_5 - N \right) - \left( \begin{array}{c} O_2 \\ N - C_2 H_5 \end{array} \right)$$

(III-5)

[0072]

\*40\*【化22】

27 (III-6)

(III-7)

(IIII)

(III-9)

$$\bigcirc 2 \\ \bigcirc 2 \\ \bigcirc 3 \\ \bigcirc 4 \\ \bigcirc 5 \\ \bigcirc 6 \\ \bigcirc 6$$

(III-10)

[0073]

# (III-12)

# (III-13)

## (III-14)

# (III-15)

$$\begin{pmatrix} \circ_2 & & & & & \\ \circ_2 & & & & & \\ \circ_3 & & & & & \\ \circ_4 & & & & & \\ \circ_5 & & & & & \\ \circ_7 & & & & & \\ \circ_2 & & & & & \\ \circ_7 & & & \\ \circ_7 & & & & & \\ \circ_7 & & &$$

[0074]

\* \*【化24】

31 一般式 (II) 及び (III) 以外の一般式 (I) で表される色素の具体例 (I-1)

(I-2)

(I-3)

(I-4)

(I-5)

【0075】次に、一般式(I)で表される色素化合物の合成例を示す。以下には、特定の化合物についての合成例を示すが、一般式(I)で表される他の色素化合物についても同様に合成することができる。 \*\*

\* [色素化合物 (II-1) の合成] 色素化合物 (II-1) の合成スキームを下記に示す。

[0076]

\*40 【化25】

【0077】以下、上記合成スキームに従い、色素化合物 (II-1) の合成方法について説明する。

(化合物2の合成)シクロペンタノン15.0g、チオグリコール酸16.4g及びパラトルエンスルホン酸2gをベンゼン0.5Lに分散し、水分分離装置(ディーンシュターク)を用いて3時間加熱還流を行った。放冷後、反応溶液を水、重曹水で洗浄し、硫酸マグネシウム上で乾燥した。乾燥剤を沪去し、溶媒を留去することによって目的の化合物2:17.6gを淡黄色油状物として得た。1H-NMRによる同定データを以下に示す。1H-NMR(CDC13) &1.60~2.40(m:8H)、3.78(s:2H)

【0078】(化合物3の合成)化合物2:8.00gをジクロロメタン100mLに溶解し、室温で攪拌しながらメタクロロ過安息香酸17.5gのジクロロメタン100mL溶液を1時間かけて滴下した。3時間加熱還流、放冷後、反応溶液を重曹水、塩水で洗浄し、硫酸マグネシウム上で乾燥した。乾燥剤を沪去し、溶媒を留去することによって得られた黄色固体をイソプロピルアル30コールから再結晶することによって、目的の化合物3:2.1gを淡黄色結晶として得た。1H-NMRによる同定データを以下に示す。1H-NMR(CDC13) & 1.62~2.41(m:8H)、3.90(s:2H)

【0079】(化合物5の合成)化合物3:1.90 g、化合物4:1.16gをN,N-ジメチルホルムアミ\*

\*ド50mLに分散し、室温で撹拌しながらトリエチルアミン1.1 MLを添加した。3時間撹拌後、反応溶液を水中に注ぎ、酢酸エチルで抽出した。有機層を塩水で洗浄し、硫酸マグネシウム上で乾燥した。乾燥剤を沪去し、溶媒を留去することによって黄色固体が得られた。これをシリカゲルカラムクロマトグラフィー(CH2C12/CH3OH=5/1)によって精製し、目的の化合物5:1.2gを淡黄色粉末として得た。1H-NMRに20よる同定データを以下に示す。1H-NMR(DMSO-d6) δ1.61~2.43(m:16H)、8.15(s:1H)

【0081】 [色素化合物 (II-9) の合成] 色素化合物 (II-9) の合成スキームを下記に示す。

[0082]

【化26】

【0083】以下、上記合成スキームに従い、色素化合 物(II-9)の合成方法について説明する。

(化合物8の合成) シクロヘキサノン10.7g、チオ グリコール酸10.0g及びパラトルエンスルホン酸2g をベンゼン0.5Lに分散し、水分分離装置(ディーン シュターク)を用いて3時間加熱還流を行った。放冷 後、反応溶液を水、重曹水で洗浄し、硫酸マグネシウム 上で乾燥した。乾燥剤を沪去し、溶媒を留去することに よって目的の化合物8:14.8gを淡黄色油状物とし て得た。1H-NMRによる同定データを以下に示す。1 H-NMR (CDC13)  $\delta$ 1. 30~2. 12 (m: 10H), 3.72(s:2H)

【0084】(化合物9の合成)化合物8:6.00g をジクロロメタン60mLに溶解し、室温で攪拌しなが らメタクロロ過安息香酸17.2gのジクロロメタン1 00m L溶液を1時間かけて滴下した。室温で6時間攪 30 拌した後、2.5時間加熱還流した。放冷後、反応溶液 を重曹水、塩水で洗浄し、硫酸マグネシウム上で乾燥し た。乾燥剤を沪去し、溶媒を留去することによって得ら れた無色油状物にイソプロピルアルコールを加え、晶析 することによって、目的の化合物9:3.35gを無色 結晶として得た。1H-NMRによる同定データを以下 に示す。1H-NMR (CDC 13) δ1.32~2.1 5 (m:10H), 3.91 (s:2H)

【0085】(化合物11の合成)化合物9:3.00 g、化合物10:2.52gをN, N-ジメチルホルムア 40 化合物(III-13)の合成スキームを下記に示す。 ミド30mLに分散し、室温で撹拌しながらトリエチル アミン3.1mLを添加した。3時間攪拌後、反応溶液\*

\*を水中に注ぎ、酢酸エチルで抽出した。有機層を塩水で 洗浄し、硫酸マグネシウム上で乾燥した。乾燥剤を沪去 し、溶媒を留去することによって赤褐色固体が得られ た。これをシリカゲルカラムクロマトグラフィー (CH 2C12/CH3OH=5/1)によって精製し、目的の 化合物11:1.2gを赤褐色粉末として得た。1H-N MRによる同定データを以下に示す。1H-NMR(D  $MSO-d_6$ )  $\delta 1.21\sim 2.05 (m:20H)$ 2. 13 (s:3H), 6. 30 (d:2H), 7. 5 2 (d:2H) 【0086】(色素化合物 (II-9) の合成) 化合物1

1:500mgをメタノール15mLに溶解し、室温で 撮拌しながら化合物12:248mgのメタノール5m L溶液を添加した。2時間撹拌の後、析出した結晶を沪 取、メタノールで洗浄し、乾燥することによって、目的 の色素化合物 (II-9) 419mgを深緑色結晶として 得た。1H-NMRによる同定データを以下に示す。1H  $-NMR (DMSO-d_6) \delta 1. 25\sim 2.00$ (m:20H), 2.16(s:3H), 6.31(d:2H), 7. 55 (d:2H), 7. 54 (d:1H), 7.78 (m:2H), 7.90 (bs:1 H) 8. 11 (bs:1H), 7. 28 (d:1 H) \ 8. 41 (bs:1H) \ 9. 17 (bs:2 H) \ 9. 79 (bs: 2H) 【0087】 「色素化合物 (III-13) の合成] 色素

[0088]

【化27】

37

$$O = \frac{\text{HSCH}_2\text{CO}_2\text{CH}_3}{\text{CH}_3\text{ONa}} \longrightarrow O = \frac{\text{CH}_3}{\text{OH}} \longrightarrow$$

【0089】(化合物14の合成)チオグリコール酸メ チル27.0gをメタノール100mLに溶解し、室温 で攪拌しながら、ナトリウムメトキシド14.5gを添 加した。これにシクロヘキセンオキシド13:25.0 20 gを20分間かけて滴下した。室温で1時間撹拌の後、 2時間加熱還流した。放冷後、氷水冷却しつつ濃塩酸3 OmLを滴下した。酢酸エチルで抽出し、有機層を水で 洗浄し、硫酸マグネシウム上で乾燥した。乾燥剤を沪去 し、溶媒を留去することによって目的の化合物14:4 3.4gを淡黄色油状物として得た。1H-NMRによる 同定データを以下に示す。1H-NMR (CDC I3) δ 1.  $15\sim3.50 (m:8H)$ , 2. 04 (s:2)H)  $3.60\sim3.80 (m:1H)$  3.75(s:3H), 4. 00~4. 26 (s:1H)【0090】(化合物15の合成)化合物14:20. 4g及びパラトルエンスルホン酸5gをトルエン2L中 に分散し、水分分離装置(ディーンシュターク)を用い て7時間加熱還流を行った。放冷後、反応溶液を水、重 曹水で洗浄し、硫酸マグネシウム上で乾燥した。乾燥剤 を沪去し、溶媒を留去することによって粗結晶を得た。 これをイソプロピルアルコールから、再結晶することに よって、目的の化合物15:18.5gを無色結晶とし て得た。1H-NMRによる同定データを以下に示す。1 H-NMR (CDC 13)  $\delta$  1. 15~2. 35 (m: 8H), 3.00 (dt:1H), 3.22 (d:1 H) 3. 70 (d:1H) 4. 16 (dt:1H) 【0091】(化合物16の合成)化合物15:8.7 4gをジクロロメタン100mLに溶解し、室温で攪拌 しながらメタクロロ過安息香酸18.4gのジクロロメ タン100mL溶液を1時間かけて滴下した。室温で4 時間攪拌した後、2時間加熱還流した。放冷後、反応溶 液を重曹水、塩水で洗浄し、硫酸マグネシウム上で乾燥 した。乾燥剤を沪去し、溶媒を留去することによって得

18

\*析することによって、目的の化合物16:8.29gを 無色結晶として得た。1H-NMRによる同定データを 以下に示す。1H-NMR (CDC 13) δ1.39 (m:2H), 1.65 (m:2H), 1.97 (m:2H)2H) \ 2. 35 (m: 2H) \ 3. 16 (dt: 1 H) \ 4. 15 (d: 1H) \ 4. 26 (d: 1H) \ 4.45 (dt:1H) 【0092】(化合物18の合成)化合物16:3.0 Og、化合物17:2.28gをN, N-ジメチルホルム アミド30mLに分散し、室温で撹拌しながらトリエチ ルアミン3.1mLを添加した。3.5時間攪拌後、反 応溶液を水中に注ぎ、酢酸エチルで抽出した。有機層を 塩水で洗浄し、硫酸マグネシウム上で乾燥した。乾燥剤 30 を沪去し、溶媒を留去することによって濃青色固体が得 られた。これをシリカゲルカラムクロマトグラフィー (CH<sub>2</sub>C 1<sub>2</sub>/CH<sub>3</sub>OH=10/1)によって精製 し、目的の化合物18:2.31gを濃青色粉末として 得た。1H-NMRによる同定データを以下に示す。1H  $-NMR (DMSO-d_6) \delta 1.40 (m:4H)$ 1. 67 (m:4H), 2. 00 (m:4H), 2. 3  $7 (m:4H) \ 3.17 (dt:2H) \ 4.50$ (dt:2H), 6. 30 (t:1H), 7. 16 (t:2H), 7. 29(t:2H), 7. 53(d:

H), 4. 49 (dt: 2H), 6. 31 (t: 2 H), 7. 15 (t:2H), 7. 30 (t:2H), 7.53 (m:4H), 7.70 (t:1H), 9.1 1 (d:2H) \ 9.65 (d:2H)

【0094】次に、本発明の光情報記録媒体について説 明する。本発明の光情報記録媒体は、基板上にレーザ照 射により情報の記録が可能な記録層を有し、この記録層 が前記一般式(I)で表される色素化合物を含有するこ とを特徴とする。

【0095】本発明の光情報記録媒体においては、記録 10 再生に用いる光の波長に応じて、前記一般式(I)で表 される色素化合物の中から、適当な色素化合物を選択し て用いることができる。例えば、CD-Rで用いられる 中心波長780 n mの半導体レーザで記録する場合に は、一般式(I)においてn=3の色素化合物、DVD -Rで用いられる波長630~660nmの半導体レー ザで記録する場合には、n=1又は2の色素化合物、波 長550 nm以下の半導体レーザで記録する場合には、 n=0の色素化合物を有効に用いることができる。

【0096】また、前記一般式(I)で表される色素化 20 合物は、単独で用いてもよく、あるいは二種以上を併用 してもよい。また、前記一般式(I)で表される色素化 合物とこれ以外の色素化合物とを併用することもでき

【0097】次に、本発明の光情報記録媒体の構造につ いて説明する。本発明の光情報記録媒体は、上記の通 り、基板上に前記一般式(I)で表される色素化合物を 含む記録層を有するものであれば、特に制限はないが、 本発明の光情報記録媒体をCD-Rに適用する場合に は、トラックピッチ1、 $4 \sim 1$ 、 $8 \mu m の プレグループ 30$ が形成された厚さ1.2±0.2mmの透明な円盤状基 板上に、前記一般式(I)で表される色素化合物を含む 記録層、光反射層、及び保護層をこの順に設けた構成で あることが好ましい。また、本発明の光情報記録媒体を DVD-Rに適用する場合には、下記の態様であること が好ましい。

【0098】(1)トラックピッチ0.6~0.9μm のプレグルーブが形成された、厚さが0.6±0.1m mの透明な円盤状基板の該プレグルーブが設けられた側 の表面に、本発明に係る前記一般式(1)で示される色 40 素化合物を含む記録層が設けられてなる二枚の積層体 を、それぞれの記録層が内側となるように接合してな る、厚さ1.2±0.2mmの光情報記録媒体。

[0099](2) h = -7 h = -7のプレグルーブが形成された、厚さが0.6±0.1m mの透明な円盤状基板の該プレグルーブが設けられた側 の表面に、本発明に係る前記一般式(1)で表される色 素化合物を含む記録層が設けられてなる積層体と、該円 盤状基板と略同じ寸法の円盤状保護板とを、記録層が内 関となるように接合してなる、厚さ1.2±0.2mm 50 ル酸・メタクリル酸共重合体、スチレン・無水マレイン

の光情報記録媒体。なお、上記の態様においても記録層 の上には光反射層が設けられていることが好ましい。ま た光反射層の上には更に保護層が設けられていてもよ

40

【0100】基板(又は下塗層)上に形成されるプレグ ルーブは、トラッキング用溝又はアドレス信号等の情報 を表す凹凸 (プレグルーブ) であり、ポリカーボネート などの樹脂材料を射出成形あるいは押出成形する際に直 接基板上に前記のトラックピッチで形成されることが好 ましい。また、プレグルーブの形成を、プレグルーブ層 を設けることにより行ってもよい。プレグルーブ層の材 料としては、アクリル酸のモノエステル、ジエステル、 トリエステルおよびテトラエステルのうち少なくとも一 種のモノマー(またはオリゴマー)と光重合開始剤との 混合物を用いることができる。プレグルーブ層の形成 は、例えば、まず精密に作られた母型(スタンパー)上 に上記のアクリル酸エステルおよび重合開始剤からなる 混合液を塗布し、さらにこの塗布液層上に基板を載せた のち、基板または母型を介して紫外線を照射することに より塗布層を硬化させて基板と塗布層とを固着させる。 次いで、基板を母型から剥離することにより得ることが できる。プレグルーブ層の層厚は、一般に0.05~1 00µmの範囲にあり、好ましくは0.1~50µmの 範囲である。

【0101】本発明の光情報記録媒体を波長550nm 以下の短波長レーザ対応光ディスクに適用する場合、C D-RやDVD-Rよりも高い記録密度を達成するため に、より狭いトラックピッチのプレグルーブが形成され た基板を用いることが可能である。この場合、トラック ピッチはO.3~O.8µmの範囲にあることが好まし く、更にO. 4~O. 6μmの範囲にあることが好まし

【0102】次に、本発明の光情報記録媒体を、その製 造工程に従い詳細に説明する。基板(保護基板も含む) は、従来の光情報記録媒体の基板として用いられている 各種の材料から任意に選択することができる。基板材料 としては、例えば、ガラス;ポリカーボネート;ポリメ チルメタクリレート等のアクリル樹脂;ポリ塩化ビニ ル、塩化ビニル共重合体等の塩化ビニル系樹脂;エポキ シ樹脂; アモルファスポリオレフィンおよびポリエステ ル等を挙げることができ、所望によりそれらを併用して もよい。なお、これらの材料はフィルム状としてまたは **剛性のある基板として使うことができる。上記材料の中** では、耐湿性、寸法安定性および価格などの点からポリ カーボネートが好ましい。

【0103】記録層が設けられる側の基板表面には、平 面性の改善および接着力の向上および記録層の変質防止 などの目的で、下途層が設けられてもよい。下途層の材 料としては例えば、ポリメチルメタクリレート、アクリ

酸共重合体、ポリビニルアルコール、N-メチロールア クリルアミド、スチレン・ビニルトルエン共重合体、ク ロルスルホン化ポリエチレン、ニトロセルロース、ポリ 塩化ビニル、塩素化ポリオレフィン、ポリエステル、ポ リイミド、酢酸ビニル・塩化ビニル共重合体、エチレン ・酢酸ビニル共重合体、ポリエチレン、ポリプロピレ ン、ポリカーボネート等の高分子物質;およびシランカ ップリング剤などの表面改質剤をあげることができる。 下途層は、上記物質を適当な溶剤に溶解または分散して 塗布液を調製したのち、この塗布液をスピンコート、デ 10 ィップコート、エクストルージョンコートなどの塗布法 により基板表面に塗布することにより形成することがで きる。下途層の層厚は一般にO.005~20µmの範 囲にあり、好ましくはO. 01~10µmの範囲であ る。

【0104】プレグルーブの深さは30~200 nmの 範囲にあることが好ましく、またその半値幅は、0.2 ~0.9 µ mの範囲にあることが好ましい。またプレグ ルーブ層の深さを150~200 nmの範囲にすること により反射率をほとんど低下させることなく感度を向上 20 させることができ、特にCD-Rに好ましい。

【0105】基板上(又は下塗層)のプレグルーブが形 成されているその表面上には、本発明に係る前記式で示 される色素化合物からなる記録層が設けられる。記録層 には、更に耐光性を向上させるために一重項酸素クエン チャーとして従来から知られている種々の化合物を含有 することができる。クエンチャーの代表例としては、特 開平3-224793号公報に記載の一般式(III)、

(IV) もしくは (V) で表される金属錯体、ジインモニ ウム塩、アミニウム塩や特開平2-300287号公報 や特開平2-300288号公報に示されているニトロ ソ化合物などを挙げることができる。

【0106】記録層の形成は、本発明に係る色素、更に 所望によりクエンチャー、結合剤などを溶剤に溶解して 塗布液を調製し、次いでこの塗布液を基板表面に塗布し て塗膜を形成したのち乾燥することにより行うことがで きる。色素記録層形成用の塗布液の溶剤としては、酢酸 ブチル、乳酸エチル、セロソルブアセテートなどのエス テル;メチルエチルケトン、シクロヘキサノン、メチル イソブチルケトンなどのケトン;ジクロルメタン、1, 2-ジクロルエタン、クロロホルムなどの塩素化炭化水 素:ジメチルホルムアミドなどのアミド;シクロヘキサ ンなどの炭化水素;テトラヒドロフラン、エチルエーテ ル、ジオキサンなどのエーテル;エタノール、nープロ パノール、イソプロパノール、nーブタノール、ジアセ トンアルコールなどのアルコール; 2, 2, 3, 3-テ トラフロロプロパノールなどのフッ素系溶剤;エチレン グリコールモノメチルエーテル、エチレンングリコール モノエチルエーテル、プロピレンングリコールモノメチ ルエーテルなどのグリコールエーテル類などを挙げるこ 50 よい。この保護層は、基盤の記録層が設けられていない

とができる。上記溶剤は使用する化合物の溶解性を考慮 して単独または二種以上組み合わせて用いることができ る。塗布液中にはさらに酸化防止剤、UV吸収剤、可塑 剤、潤滑財などの各種の添加剤を目的に応じて添加して もよい。

【0107】結合剤の例としては、例えばゼラチン、セ ルロース誘導体、デキストラン、ロジン、ゴムなどの天 然有機高分子物質:およびポリエチレン、ポリプロピレ ン、ポリスチレン、ポリイソブチレン等の炭化水素系樹 脂:ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ塩化ビ ニル・ポリ酢酸ビニル共重合体等のビニル系樹脂;ポリ アクリル酸メチル、ポリメタクリル酸メチルなどのアク リル樹脂; ポリピニルアルコール、塩素化ポリエチレ ン、エポキシ樹脂、ブチラール樹脂、ゴム誘導体、フェ ノール・ホルムアルデヒド樹脂等の熱硬化性樹脂の初期 縮合物などの合成有機高分子を挙げることができる。記 録層の材料として結合剤を併用する場合に、結合剤の使 用量は、色素に対して一般に0.01~50倍量(質量 比)の範囲にあり、好ましくは0.1~5倍量(質量 比)の範囲にある。このようにして調製される塗布液の 色素の濃度は一般に0.01~10質量%の範囲にあ り、好ましくは0.1~5質量%の範囲にある。

【0108】塗布方法としては、スプレー法、スピンコ ート法、ディップ法、ロールコート法、ブレードコート 法、ドクターロール法、スクリーン印刷法などを挙げる ことができる。記録層は単層でも重層でもよい。記録層 の層厚は一般に20~500nmの範囲とすることがで き、好ましくは50~300nmの範囲である。

【0109】上記記録層の上に、情報再生時における反 射率の向上の目的で、光反射層が設けられる。光反射層 の材料である光反射性物質はレーザ光に対する反射率が 高い物質であり、その例としては、Mg、Se、Y、T i、Zr、Hf、V、Nb、Ta、Cr、Mo、W、M n、Re、Fe、Co、Ni、Ru、Rh、Pd、I r, Pt, Cu, Ag, Au, Zn, Cd, Al, G a、In、Si、Ge、Te、Pb、Po、Sn、Bi などの金属及び半金属あるいはステンレス鋼を挙げるこ とができる。これらのうちで好ましいものは、Cr、N i、Pt、Cu、Ag、Au、Alおよびステンレス鋼 であり、特に好ましいものはAgである。これらの物質 は単独で用いてもよいし、あるいは二種以上の組み合わ せで、または合金として用いてもよい。光反射層は、例 えば上記反射性物質を蒸着、スパッタリングまたはイオ ンプレーティングすることにより記録層の上に形成する ことができる。光反射層の層厚は、一般に10~300 n mの範囲とすることができ、好ましくは50~200 nmの範囲である。

【0110】光反射層の上には、記録層などを物理的お よび化学的に保護する目的で保護層が設けられていても

側にも耐傷性、耐湿性を高める目的で設けられてもよ い。保護層に用いられる材料としては、例えば、Si O、SiO2、MgF2、SnO2、Si3N4などの無機 物質、熱可塑性樹脂、熱硬化性樹脂、UV硬化性樹脂等 の有機物質を挙げることができる。保護層は、たとえば プラスチックの押出加工で得られたフィルムを光反射層 上及び/または基板上にラミネートすることにより形成 することができる。あるいは真空蒸着、スパッタリン グ、塗布等の方法により設けられてもよい。また、熱可 塑性樹脂、熱硬化性樹脂の場合には、これらの適当な溶 剤に溶解して塗布液を調製したのち、この塗布液を塗布 し、乾燥することによっても形成することができる。U V硬化性樹脂の場合には、そのままもしくは適当な溶剤 に溶解して塗布液を調製したのちこの塗布液を塗布し、 UV光を照射して硬化させることによっても形成するこ とができる。これらの塗布液中には、更に帯電防止剤、 酸化防止剤、UV吸収剤等の各種添加剤を目的に応じて 添加してもよい。保護層の層厚は一般には0.1~10 Oμmの範囲とすることができる。

【0111】以上の工程により、基板上に記録層、及び 光反射層、そして所望により保護層を設けた記録媒体を 作製することができる。

【0112】更に、上記のようにして二枚の記録媒体を作製し、これらを、各々の記録層が内側となるように接着剤で貼り合わせることにより、2つの記録層を持つDVD-R型の光情報記録媒体を製造することができる。また、得られた積層体と該積層体の基板と略同じ寸法の円盤状保護基板とを、その記録層が内側となるように接着剤で貼り合わせることにより、片側のみに記録層を持つDVD-R型の光情報記録媒体を製造することができ 30 る。

【0113】次に、本発明の情報記録方法について説明する。本発明の情報記録方法は、上記の光情報記録媒体を用いて、例えば、次のように行われる。まず、光情報記録媒体を定線速度(CDフォーマットの場合は1.2~14m/秒)または定角速度にて回転させながら、基板側から半導体レーザ光などの記録用のレーザ光を照射する。この光の照射により、記録層と光反射層との界面に空洞を形成(空洞の形成は、記録層または光反射層の変形、あるいは両層の変形を伴って形成される)するか、基板が肉盛り変形する、あるいは記録層に変色、会合状態の変化等により屈折率が変化することにより情報が記録されると考えられる。

【0114】記録光源としては、CD-Rの場合、中心 波長780nmの発振波長を有する半導体レーザが用い 44

られ、DVD-Rの場合、可視域、通常600nm~700nm (好ましくは620~680nm、更に好ましくは630~660nm) の範囲の発振波長を有する半導体レーザが用いられる。

【0115】より短波長の光源としては、例えば、390~410nmの範囲の発振波長を有する青紫色半導体レーザ、中心発振波長が515nmの青緑色半導体レーザ、及び中心発振波長が850nmの赤外半導体レーザから発振されたレーザ光を光導波路型の第2高調波発生(SHG)素子を用いて半分の波長の光に変換して中心発振波長が425nmのレーザ光を出力する青紫色SHGレーザ等が好適に使用される。

【0116】上記のように記録された情報の再生は、光情報記録媒体を上記と同一の定線速度で回転させながら記録時と同じ波長を持つ半導体レーザ光を基板側から照射して、その反射光を検出することにより行うことができる。

【実施例】次に、本発明を実施例により、更に詳細に説明するが、本発明は以下の実施例に限定されるものでは ない。

【0117】[実施例1]前記色素化合物(II-1)を2,2,3,3-テトラフルオロプロパノールに溶解し、記録層形成用塗布液(濃度:1質量%)を得た。この塗布液を表面にスパイラル状のプレグルーブ(トラックピッチ:0.6μm、グルーブ幅:0.3μm、グルーブの深さ:0.15μm)が射出成形により形成されたポリカーボネート基板(直径:120mm、厚さ:0.6mm)のそのプレグルーブ側の表面にスピンコート法により塗布し、記録層(厚さ(プレグルーブ内):約120nm)を形成した。次に、記録層上に銀をスパッタして厚さ約100nmの光反射層を形成した。更に、光反射層上にUV硬化性樹脂(SD318、大日本インキ化学工業(株)製)を塗布し、紫外線を照射して硬化させ、層厚7μmの保護層を形成した。以上の工程により、実施例1に係る光ディスクを製造した。

【0118】 [実施例2~5] 色素化合物 (II-1) を表1に示す色素化合物に代えた (使用量は変更なし) こと以外は実施例1と同様にして、実施例2~5に係る光ディスクを製造した。

10 【0119】[比較例1~4]色素化合物(II-1)を下記に示す比較用色素化合物A~D(使用量は変更なし)に代えたこと以外は実施例1と同様にして、比較例1~4に係る光ディスクを製造した。

[0120]

【化28】

45 比較化合物A (特関平11-53758号記載の具体例 (a))

比較化合物B(特開平11-53758号記載の具体例(b))

比較化合物C (特開平11-53758号記載の具体例 (c))

比較化合物 D (特開平11-53758号記載の具体例 (f))

【0121】 [光ディスクとしての評価] 作製した光デ ィスクに、線速度3.5m/秒で14T-EFM信号を 発振波長408 n mの青紫色半導体レーザを用いて記録 した後、記録した信号を再生した。最適パワーでの変調 度、グループ反射率及び感度を測定した。記録及び記録\* \*特性の評価は、パルステック社製「DDU1000」を 用いて行った。評価結果を表1に示す。

[0122]

【表1】

表 1

|      | 記録層に          | 未記錄部   | 変調度 (記録      | 感度   |
|------|---------------|--------|--------------|------|
|      | 用いた化合物        | 反射率(%) | パワ−:7mW) (%) | (mW) |
| 実施例1 | 11-1          | 8 5    | 5 9          | 1 2  |
| 2    | II <b>–</b> 2 | 8 2    | 58           | 13   |
| 3    | III-1         | 8 4    | 60           | 12   |
| 4    | 111-4         | 8 5    | 61           | 11   |
| 5    | I - 1         | 79     | 6.2          | 15   |
| 比較例1 | Α             | 44     | 3 7          | 2 0  |
| 2    | В             | 5 4    | 45           | 19   |
| 3    | С             | 3 5    | 3 4          | 20   |
| 4    | D             | 47     | 4 5          | .1 7 |

【0123】上記表1に示す結果から、本発明の色素化 合物を含有する記録層を有する光ディスク (実施例1~ 5)は、比較化合物A~Dを含む記録層を有する光ディ スク (比較例1~4) に比べて、上記青紫色半導体レー ザによる短波長レーザに対して高い反射率を示し、かつ 高い変調度を与え、しかも高感度であることがわかる。 従って、本発明の色素化合物を用いることで、短波長レ ーザに対して高い記録特性を備えた光ディスクが得られ ることがわかる。

※2,3,3-テトラフルオロプロパノールに溶解し、記 録層形成用塗布液を得た。この塗布液を、表面にスパイ ラルプレグルーブ (トラックピッチ: 0.8μm、グル ーブ幅:0.4μm、グルーブの深さ:0.15μm) が射出成形により形成されたポリカーボネート基板(直 径:120mm、厚さ:0.6mm) のそのプレグルー ブ側の表面に、スピンコートにより塗布し、記録層(厚 さ (グループ内):約200nm)を形成した。

【0125】記録層上に銀を蒸着して、厚さ約100n 【0124】[実施例6]色素化合物 (II-9)を2, ※50 mの光反射層を形成し、基板上に記録層及び光反射層が

47

この順で設けられた積層体を作製した。別に透明なポリ カーボネート基板 (円盤状保護基板、直径:120m m、厚さ: 0.6 mm) を用意した。そして上記で得ら れた積層体と円盤状保護基板とを記録層が内側となるよ うに接着剤 (スリーボンド社製) を用いて接合させた (厚さ1.2mm)。以上の工程により、実施例6に係 るDVD-R型光ディスクを製造した。

【0126】[実施例7~10]色素化合物(II-9) を表2に示す色素化合物に代えた(使用量は変更なし)\* 比較用色素化合物(E)

\*こと以外は実施例6と同様にして、実施例7~10に係 るDVD-R型光ディスクを製造した。

【0127】[比較例5~7] 色素化合物 (II-9) を 下記に示す比較用色素化合物E、F、G(使用量は変更 なし)に代えたこと以外は実施例6と同様にして、比較 例5~7に係るDVD-R型光ディスクを製造した。

[0128]

【化29】

## 比較用色素化合物(F)

#### 比較用色素化合物(G)

【0129】 [光ディスクとしての評価] 作製したDV D-R型光ディスクに、波長635nmの半導体レーザ (記録パワー7mW) からのレーザ光をNAO. 6のレ ンズで集光し、線速度3.68m/s、変調周波数4M 30 【0130】 Hzで信号を記録した。更にこれらをキセノンランプ

※に置いた。照射前後における記録特性をパルステック社 製「OMT2000」を用いて測定した。得られた評価 結果を表2に示す。

【表2】

(14万ルクス)で48時間照射するという強制条件下※

| 記録層に   | 変調度                                                    | ジッタ/ n s                                                                                                | プロックエラー                                                                                                                                  |
|--------|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| 用いた化合物 | (%)                                                    | 照射前/照射後                                                                                                 | 照射前/照射後                                                                                                                                  |
| 11-9   | 6 6                                                    | 8.0/9.0                                                                                                 | 0/0                                                                                                                                      |
| [[-11  | 63                                                     | 8. 2/9. 2                                                                                               | 0/0                                                                                                                                      |
| 111-8  | 64                                                     | 81/9.1                                                                                                  | 0/0                                                                                                                                      |
| HI-10  | 6 5                                                    | 8.0/9.1                                                                                                 | 0 / 0                                                                                                                                    |
| I - 3  | 61                                                     | 7. 9/9. 5                                                                                               | 0/0                                                                                                                                      |
| Ē      | 60                                                     | 9. 9/21. 3                                                                                              | 0/55                                                                                                                                     |
| F      | 51                                                     | 9.8/12.0                                                                                                | 0/10                                                                                                                                     |
| G      | 4.6                                                    | 9.6/17.8                                                                                                | 0/33                                                                                                                                     |
|        | 用いた化合物<br>II-9<br>II-11<br>III-8<br>III-10<br>I-3<br>E | 用いた化合物 (%)   II-9   66     II-11   63     III-8   64     III-10   65     I-3   61     E   60     F   51 | 用いた化合物 (%) 照射前/照射後  II-9 66 8.0/9.0  II-11 63 8.2/9.2  III-8 64 8.1/9.1  III-10 65 8.0/9.1  I-3 61 7.9/9.5  E 60 9.9/21.3  F 51 9.8/12.0 |

【0131】上記表2に示す結果から、本発明の色素化 合物を含有する記録層からなるDVD-R型光ディスク (実施例6~10)は、本発明の色素化合物を含有しな い従来の記録層を有するDVD-R型光ディスク(比較 例5~7)に比べて、高い変調度を示しており、従っ て、高い信号強度を高感度で得られることがわかる。ま た、実施例のDVD-R型光ディスクは、光照射前後に おいて低いジッタ値および低いブロックエラー値を示 し、読み取りエラーが起りにくいという特長を強制条件★50

★下でも保持し得る高い安定性を備えていることがわか

【0132】[実施例11] 色素化合物 (II-13) を 2, 2, 3, 3-テトラフルオロプロパノールに溶解 し、記録層形成用塗布液を得た。この塗布液を表面にス パイラルプレグルーブ (トラックピッチ: 1.6μm、 グルーブ幅:  $0.4\mu m$ 、グルーブの深さ:  $0.17\mu$ m)が射出成形により形成されたポリカーボネート基板 (直径:120mm、厚さ:1.2mm) のそのプレグ

ルーブ側の表面にスピンコートし、記録層(厚さ(プレ グループ内):約200nm)を形成した。次に、記録 層上に銀をスパッタして厚さ約100nmの光反射層を 形成した。更に、光反射層上にUV硬化性樹脂(UV硬 化剤3070、スリーボンド社製)を塗布し、紫外線を 照射して層厚3μmの保護層を形成した。以上の工程に より、実施例11に係るCD-R型光ディスクを製造し た。

49

【0133】[実施例12~15]色素化合物(II-1 3)を表3に示す色素化合物に代えた(使用量は変更な\*10 比較用色素化合物(H)

\*し)こと以外は実施例11と同様にして、実施例12~ 15に係るCD-R型光ディスクを製造した。

50

【0134】[比較例8~10]色素化合物(II-1 3)を下記に示す比較用色素化合物H、I、J(使用量 は変更なし) に代えたこと以外は実施例11と同様にし て、比較例8~10に係るCD-R型光ディスクを製造 した。

[0135] 【化30】

### 比較用色素化合物(I)

$$\bigcap_{S} \bigcap_{O_2} \bigcap_{O_$$

## 比較用色素化合物(J)

【0136】 [光ディスクとしての評価] 作製したCD -R型光ディスクに、4倍速で3T-EFM信号を波長 780 nmのレーザ (記録パワー7mW) で記録した 後、更にこれらをキセノンランプ (14万ルクス)で4 8時間照射するという強制条件下に置いた。照射前後に※ ※おける記録特性をパルステック社製「OMT2000」 を用いて測定した。得られた評価結果を表3に示す。 [0137]

【表3】

|       | 記録層に      | 変調度 | ジッタ/ns     | プロックエラー |
|-------|-----------|-----|------------|---------|
| 3     | 用いた化合物    | (%) | 照射前/照射後    | 照射前/照射後 |
| 実施何11 | II-13     | 58  | 6. 2/7. 0  | 0/0     |
| 1 2   | II – 1 5  | 5 5 | 6.4/7.3    | 0/0     |
| 13    | III – 1 3 | 57  | 6. 2/7. 1  | 0/0     |
| 14    | 111-15    | 56  | 6. 2/7. 1  | 0/0     |
| 15    | I – 5     | 5 4 | 6.6/7.5    | 0/0     |
| 比較例 8 | H         | 4.8 | 7. 5/22. 1 | 0/51    |
| 9     | 1         | 50  | 7.1/8.5    | 0/10    |
| 10    | J         | 5 1 | 7.0/8.0    | 0/3     |

【0138】上記表3に示す結果から、本発明に係る色 素化合物を含有する記録層からなるCD-R型光ディス ク (実施例11~15)は、本発明の色素化合物を含有 しない従来の記録層を有するCD-R型光ディスク(比★50 おいて低いジッタ値および低いブロックエラー値を示

★較例8~10)に比べて、高い変調度を示しており、従 って、高い信号強度を高感度で得られることがわかる。 また、実施例のCD-R型光ディスクは、光照射前後に

し、読み取りエラーが起りにくいという特長を強制条件 下でも保持し得る高い安定性を備えていることがわか る。

51

### [0139]

【発明の効果】本発明によれば、優れた記録特性を有すると共に、その記録特性を長期間に渡り維持することができる高い安定性を有する光情報記録媒体、及びこの光

情報記録媒体を用いた情報記録方法が提供される。また、本発明によれば、記録光の波長に応じた設計が容易な色素記録層を有する光情報記録媒体、及びこの光情報記録媒体を用いた情報記録方法が提供される。また、本発明によれば、優れた記録特性を有し、光情報記録媒体の記録層色素として使用可能な新規な色素化合物が提供される。