Lecture 2.4

Calibrating the Molecular Clock

David Duchêne

Calibration: Fossil record

Calibrating the molecular clock

- Information about substitution rate
 - Use to fix rate or to specific prior distribution of rate
- Information about node times
 - Fossil record
 - Biogeography
 - Sampling times
 - Documented pedigree

Calibration: Fossil record

- 1. Use fossil data to inform priors on node times
 - Minimum age of a node based on oldest fossil assignable to any of its descendent lineages
 - Prior distribution of node age specified by user
- 2. Use fossil directly in the analysis
 - Model diversification process use fossil occurrence data
 - Include fossil taxa in the data matrix (total-evidence dating)

Choosing fossil calibrations

- 1. Museum numbers of specimen that demonstrate all the relevant characters and provenance data
- 2. Apomorphy-based diagnosis or phylogenetic analysis of the specimen
- 3. Explicit statements on the reconciliation of morphological and molecular data sets
- 4. Locality and stratigraphic level from which the calibrating fossil was collected
- 5. Reference to a published radioisotopic age and/or numeric timescale and details of numeric age selection

Parham et al. (2012) Syst Biol 5

Calibration Priors

Point calibration • Ignores uncertainty due to preservational biases, isotopic dating errors, etc.

Calibrations Uniform prior Combination of hard minimum and maximum bounds Does not effectively use information at hand Difficult to choose useful maximum bounds

Calibrations

Exponential prior

- Need 2 values: minimum and mean
- Strong assumption about relationship of fossil taxon to internal node

• Misof et al. (2014)

- Lognormal priors for ages of 20 nodes
- Arbitrary values: Mean = 2St. dev. = 0.5

Calibrations Soft max. 10 Ma (2.5% tail) Human Min. 6.5 Ma (age of fossil) Lognormal prior Need 3 values: minimum, mean, and stdev Perhaps the most appropriate for fossils

Multiple calibrations

• Use multiple calibrations if possible

11

Multiple calibrations

- Priors on node ages are the joint product of the tree prior and the userspecified calibration priors
- These priors can interact
- Marginal priors can differ from user-specified priors

Calibration: Biogeography

Ho, Tong, et al. (2015) Biol Lett 14

Biogeographic calibrations

Biogeographic calibrations Divergence event Geological → Shift in diversification rate event Change in population size

Choosing calibrations

- Use multiple calibrations if possible
- The age estimates for poorly supported clades should be interpreted carefully
- Careful selection of clock models can improve the estimates

Useful references

- Calibration uncertainty in molecular dating analyses: there is no substitution for the prior evaluation of time priors
 Warnock et al. (2014) Proceedings of the Royal Society B, 282: 20141013.
- Time-dependent rates of molecular evolution Ho et al. (2011) Molecular Ecology, 20: 3087–3101.
- Accounting for uncertainty in phylogenetic estimation of evolutonary divergence times
 Ho & Phillips (2009) Systematic Biology, 58: 367–380.
- Best practices for justifying fossil calibrations
 Parham et al. (2012) Systematic Biology, 61: 346–359.
- Biogeographic calibrations for the molecular clock Ho *et al.* (2015) *Biology Letters*, 11: 20150194.

21

22