UNITED STATES DEPARTMENT OF COMMERCE United States Patent and Trademark Office Address: COMMISSIONER FOR PATENTS P.O. Box 1450 Alexandria, Virginia 22313-1450 www.uspto.gov

APPLICATION NO.	FILING DATE	FIRST NAMED INVENTOR	ATTORNEY DOCKET NO.	CONFIRMATION NO.
10/748,684	12/31/2003	George Fitzmaurice	1500.1088	1977
21171 STAAS & HAI	7590 05/13/200 SEY LLP	EXAMINER		
SUITE 700		SHERMAN, STEPHEN G		
1201 NEW YORK AVENUE, N.W. WASHINGTON, DC 20005			ART UNIT	PAPER NUMBER
			2629	
			MAIL DATE	DELIVERY MODE
			05/13/2008	PAPER

Please find below and/or attached an Office communication concerning this application or proceeding.

The time period for reply, if any, is set in the attached communication.

	Application No.	Applicant(s)	
	10/748,684	FITZMAURICE ET AL.	
Office Action Summary	Examiner	Art Unit	
	STEPHEN G. SHERMAN	2629	
The MAILING DATE of this communication a Period for Reply	ppears on the cover sheet with the	correspondence address	
A SHORTENED STATUTORY PERIOD FOR REP WHICHEVER IS LONGER, FROM THE MAILING - Extensions of time may be available under the provisions of 37 CFR after SIX (6) MONTHS from the mailing date of this communication. - If NO period for reply is specified above, the maximum statutory perions Failure to reply within the set or extended period for reply will, by state Any reply received by the Office later than three months after the mail earned patent term adjustment. See 37 CFR 1.704(b).	DATE OF THIS COMMUNICATIO 1.136(a). In no event, however, may a reply be tind will apply and will expire SIX (6) MONTHS from the cause the application to become ABANDONE	N. mely filed the mailing date of this communication. ED (35 U.S.C. § 133).	
Status			
1) ☐ Responsive to communication(s) filed on 15 2a) ☐ This action is FINAL . 2b) ☐ Th 3) ☐ Since this application is in condition for allow closed in accordance with the practice under	nis action is non-final. vance except for formal matters, pr		
Disposition of Claims			
4) ☐ Claim(s) 1-38 is/are pending in the application 4a) Of the above claim(s) is/are withdred is/are allowed. 5) ☐ Claim(s) is/are allowed. 6) ☐ Claim(s) 1-38 is/are rejected. 7) ☐ Claim(s) is/are objected to. 8) ☐ Claim(s) are subject to restriction and compared in the application Papers	rawn from consideration.		
9) ☐ The specification is objected to by the Examin 10) ☑ The drawing(s) filed on 24 June 2004 is/are: Applicant may not request that any objection to the Replacement drawing sheet(s) including the correct 11) ☐ The oath or declaration is objected to by the I	a) accepted or b) objected to ne drawing(s) be held in abeyance. Se ection is required if the drawing(s) is ob	ne 37 CFR 1.85(a). Djected to. See 37 CFR 1.121(d).	
Priority under 35 U.S.C. § 119			
12) Acknowledgment is made of a claim for foreign a) All b) Some * c) None of: 1. Certified copies of the priority docume 2. Certified copies of the priority docume 3. Copies of the certified copies of the priority docume application from the International Bure * See the attached detailed Office action for a list	nts have been received. nts have been received in Applicat iority documents have been receiv au (PCT Rule 17.2(a)).	ion No ed in this National Stage	
Attachment(s) 1) Notice of References Cited (PTO-892) 2) Notice of Draftsperson's Patent Drawing Review (PTO-948) 3) Information Disclosure Statement(s) (PTO/SB/08) Paper No(s)/Mail Date	4) Interview Summary Paper No(s)/Mail D 5) Notice of Informal I 6) Other:	ate	

Art Unit: 2629

DETAILED ACTION

Continued Examination Under 37 CFR 1.114

1. A request for continued examination under 37 CFR 1.114, including the fee set forth in 37 CFR 1.17(e), was filed in this application after final rejection. Since this application is eligible for continued examination under 37 CFR 1.114, and the fee set forth in 37 CFR 1.17(e) has been timely paid, the finality of the previous Office action has been withdrawn pursuant to 37 CFR 1.114. Applicant's submission filed on 15 April 2008 has been entered.

Response to Arguments

- 2. Applicant's arguments with respect to art rejection of claims 32-33 and 37-38 have been considered but are moot in view of the new ground(s) of rejection.
- 3. Applicant's arguments filed with respect to the 112, first paragraph of claim 32, the objection to the drawings with respect to the limitations of claim 32, and the prior art rejections of claims 1-31 and 34-38 have been fully considered but they are not persuasive.

On page 8, second and third paragraph of the response the applicant argues against the objection to the drawings and the 112, first paragraph rejection with respect

Application/Control Number: 10/748,684

Art Unit: 2629

to the features of independent claim 32. The applicant states that Figure 11B shows finger arcs and that Figure 11 shows a finger arc specifically with respect to claim 32, however, the examiner finds no such support in the specification to support this assertion. Paragraph [0045] of the specification describes Figure 11 and makes no mention of a finger arc or of "independent finger motion". Therefore, the objection to the drawings and the 112, first paragraph rejections are maintained relative to claim 32.

Page 3

On page 9 of the response the applicant argues against the combination of Anderson et al. and Miettinen used to reject claims 1-14, 17-21, 23, 25, 29-31 and 34-36. First the applicant argues that Figure 5a and 5b of Anderson do not show an arc shaped control zone, however, in the rejection found below the examiner now uses Figure 3, which definitely shows and arc shaped control zone as explained below. The applicant the argues that since the display of Anderson is "vertical" and the hand/mouse movement is "horizontal" that the vertically oriented menu 30 is not aligned with the natural tabletop horizontal motion, but rather perpendicular, however, the claims only state that the interface is "aligned" to the natural motion of a user, and since the user's natural motion of the arm is using it on the tabletop, even though it is displayed on the screen, it is still "aligned" to the user's natural motion. The applicant argues further by stating that the references do not teach "a compound motion of a rotation of the user elbow and rotation of a user wrist", however, based on the newly made combination of these references found below, the examiner believes the references still teach the claimed limitations.

Drawings

4. The drawings are objected to under 37 CFR 1.83(a). The drawings must show every feature of the invention specified in the claims. Therefore, the claimed interface element graphic only aligned to a natural user motion of independent finger motion of claim 32 must be shown or the feature(s) canceled from the claim(s). No new matter should be entered.

Corrected drawing sheets in compliance with 37 CFR 1.121(d) are required in reply to the Office action to avoid abandonment of the application. Any amended replacement drawing sheet should include all of the figures appearing on the immediate prior version of the sheet, even if only one figure is being amended. The figure or figure number of an amended drawing should not be labeled as "amended." If a drawing figure is to be canceled, the appropriate figure must be removed from the replacement sheet, and where necessary, the remaining figures must be renumbered and appropriate changes made to the brief description of the several views of the drawings for consistency. Additional replacement sheets may be necessary to show the renumbering of the remaining figures. Each drawing sheet submitted after the filling date of an application must be labeled in the top margin as either "Replacement Sheet" or "New Sheet" pursuant to 37 CFR 1.121(d). If the changes are not accepted by the examiner, the applicant will be notified and informed of any required corrective action in the next Office action. The objection to the drawings will not be held in abeyance.

Art Unit: 2629

Claim Objections

5. Claim 34 is objected to because of the following informalities: The claim does not have a period at the end. Appropriate correction is required.

6. Claim 25 is objected to because the specification fails to provide antecedent basis for the claim terminology "computer readable storage".

Claim Rejections - 35 USC § 112

7. Claims 32-33 are rejected under 35 U.S.C. 112, first paragraph, as failing to comply with the written description requirement. The claim(s) contains subject matter which was not described in the specification in such a way as to reasonably convey to one skilled in the relevant art that the inventor(s), at the time the application was filed, had possession of the claimed invention.

Claim 32 states: "an interface element graphic aligned with the control zone and indicating the function with the interface graphic and control zone only aligned to a natural motion of independent finger motion". This limitation was not described in the specification. The specification instead describes that the invention provides for used of a combination of a number of arcs, and using this combination to make a single arc, however, nowhere in the specification does not describe of using ONLY independent

finger. Therefore, the limitations are not described in the specification in such a way to reasonably convey to one skilled in the art at the time the applicant was filed that the inventors has possession of the claimed invention.

Further, claim 33, which depends from claim 32, states that <u>the</u> user natural motion further comprises a zone access motion comprising one of an elbow motion curve, a wrist motion curve and a shoulder motion curve in combination with the finger motion, which means that the user natural motion is not aligned only to independent finger motion.

- 8. The following is a quotation of the second paragraph of 35 U.S.C. 112:

 The specification shall conclude with one or more claims particularly pointing out and distinctly claiming the subject matter which the applicant regards as his invention.
- 9. Claims 1-10, 30-35 and 37-38 are rejected under 35 U.S.C. 112, second paragraph, as being indefinite for failing to particularly point out and distinctly claim the subject matter which applicant regards as the invention.

Regarding independent claims 1, 30, 32, 34, 37 and 38, all of these claims recite the limitation "an arc shaped interface element graphic located on the signal side, aligned with the arc shaped control zone and indicating the function with the arc shaped interface graphic and the arc shaped control zone aligned to a natural..." or the like. This limitation is indefinite because it is unclear as to the meaning intended by the applicant. The claims could mean "an arc shaped interface element graphic located on the signal side, (aligned with the arc shaped control zone and indicating the function [with the arc shaped interface graphic and the arc shaped control zone]) aligned to a

natural..." or "an arc shaped interface element graphic located on the signal side, (aligned with the arc shaped control zone) and (indicating the function with the arc shaped interface graphic) and (the arc shaped control zone aligned to a natural...)", etc. Thus, the examiner cannot possibly know what is intended by to be claimed by the applicant. For the purpose of examination the examiner will assume the claims have a similar mean as to claim 11, for example.

Claim Rejections - 35 USC § 102

10. The following is a quotation of the appropriate paragraphs of 35 U.S.C. 102 that form the basis for the rejections under this section made in this Office action:

A person shall be entitled to a patent unless -

- (b) the invention was patented or described in a printed publication in this or a foreign country or in public use or on sale in this country, more than one year prior to the date of application for patent in the United States.
- 11. Claims 32-33 and 38 are rejected under 35 U.S.C. 102(b) as being anticipated by Anderson et al. (US 5,828,360).

Regarding claim 32, Anderson et al. disclose a display, comprising:

a control zone for a function of an interface (Figure 3 shows the disc menu 30, with section 32 which is a control zone.); and

an interface element graphic aligned with the control zone and indicating the function (Figure 3 shows that every interface element shown on control zone 32, such as square, circle, line, etc. indicates the function of the element.)

with the interface graphic and control zone only aligned to a natural user motion of independent finger motion (Figure 3 shows the controls 32 require only independent finger motion relative to the movement of the wrist, meaning that that controls 32 are positionally aligned to allow for a natural motion of independent finger motion to be used. This is supported by the explanation found in column 5, lines 6-8 which explain that the menu can be accessed without lifting a wrist. This means that when the control zone 32 is present, the only way for a user to reach these options without using the wrist is to use only finger motion, since a wrist motion will not allow the user to select the elements such as those close to the center.).

Regarding claim 33, Anderson et al. disclose a display as recited in claim 32, wherein the user natural motion further comprises a zone access motion comprising one of an elbow motion curve, a wrist motion curve and a shoulder motion curve in combination with the finger motion (Figures 2a, 2b and 3 show that the wrist moves, therefore there is a zone access motion that is based on a wrist motion, meaning that the entire motion is based on a combination of these two motions.).

Regarding claim 38, Anderson et al. disclose a display, comprising:

an arc shaped control zone for a function of an interface (Figure 3 shows the disc menu 30, with section 31 which is a control zone that is arc shaped.); and

an arc shaped interface element graphic aligned with the control zone and indicating the function (Figure 3 shows that interface element 31a-31h is arc shaped

Art Unit: 2629

and is aligned with the control zone and indicates the function of the element, such as icon, scan, send, call, etc.)

with the arc shaped interface graphic and the arc shaped control zone aligned to a natural user motion produced only by rotation of a user wrist (Figure 3 shows the controls 31 require only wrist motion, meaning that that controls 31 are positionally aligned to allow for a natural motion of only the wrist to be used. This is supported by the explanation found in column 5, lines 6-8 which explain that the menu can be accessed without lifting a wrist. This means that if the wrist is not lifted that the only way to access the element only the arc 31 is to move the wrist.).

Claim Rejections - 35 USC § 103

- 12. The following is a quotation of 35 U.S.C. 103(a) which forms the basis for all obviousness rejections set forth in this Office action:
 - (a) A patent may not be obtained though the invention is not identically disclosed or described as set forth in section 102 of this title, if the differences between the subject matter sought to be patented and the prior art are such that the subject matter as a whole would have been obvious at the time the invention was made to a person having ordinary skill in the art to which said subject matter pertains. Patentability shall not be negatived by the manner in which the invention was made.
- 13. The factual inquiries set forth in *Graham* v. *John Deere Co.*, 383 U.S. 1, 148 USPQ 459 (1966), that are applied for establishing a background for determining obviousness under 35 U.S.C. 103(a) are summarized as follows:
 - 1. Determining the scope and contents of the prior art.
 - 2. Ascertaining the differences between the prior art and the claims at issue.
 - 3. Resolving the level of ordinary skill in the pertinent art.
 - 4. Considering objective evidence present in the application indicating obviousness or nonobviousness.

Art Unit: 2629

14. Claims 1-23, 25, 29-31 and 34-37 are rejected under 35 U.S.C. 103(a) as being unpatentable over Anderson et al. (US 5,828360) in view of Miettinen et al. (US 2002/0054175).

Regarding claim 1, Anderson et al. disclose a display located on a single side of a user (Figures 1-3 show that the display is located only on a single side of the user.), comprising:

an arc shaped control zone for a function of an interface located on the single side (Figure 3 shows the disc menu 30 which in its entirety is an arc shaped control zone.); and

an arc shaped interface element graphic located on the single side, aligned with the arc shaped control zone (Figure 3 shows that the disc menu 30 has an arc, and that the menu comprises interface elements 31a through 31h as well as the interface elements located within area 32 which are arranged in an arc shape around the control zone.) and indicating the function (Figure 3 shows that every interface element 31a-31h indicated the function of the element, i.e. scan, send call, etc. while the elements in area 32 represent square, circle, line, etc.)

with the arc shaped interface graphic and the arc shaped control zone aligned to a natural user motion produced by a compound motion of a rotation of the user wrist and the user fingers (Figure 3 shows the controls 31 require wrist motion while controls 32 require finger motion, meaning that that controls 31 and 32 are positionally aligned to

allow for a natural motion produced by the combination of a wrist and fingers. This is supported by the explanation found in column 5, lines 6-8 which explain that the menu can be accessed without lifting a wrist. This means that if the wrist is not lifted that the only way to access the element only the arc 31 is to move the wrist, while the only way for a user to reach the options of menu 32 without using the wrist is to use only finger motion, and therefore, the entire menu 30 is based upon a compound motion of a users wrist and fingers.).

Anderson et al. fail to explicitly teach that the arc is aligned to a natural user motion produced by a compound motion of rotation of the user elbow and rotation of a user wrist.

Miettinen et al. disclose of an arc shaped control zone that is aligned to a natural user motion produced by rotation of a user elbow and rotation of a user shoulder (Figure 1 and paragraph [0066] explains that there are two areas in the interface, one for access of moving the arm with the elbow bent, i.e. rotation of the elbow, and one for a straight arm rotation, i.e. shoulder.).

Therefore, since Anderson et al. and Miettinen et al. both teach of arc shaped interfaces aligned to a user natural motion, it would have been obvious to "one of ordinary skill" in the art at the time the invention was made to substitute one natural motion for another natural motion in order to achieve the predictable result of aligning the interface to a natural motion.

Although the combination of Anderson et al. and Miettinen et al. fails to explicitly teach the combination of the rotation of the elbow and the rotation of the wrist, since it is

not described as being essential to the invention and in fact the applicant states that any

combination of curves could be used, it would have been an obvious design choice to

"one of ordinary skill" in the art at the time the invention was made to align the interface

to any combination of natural motion for the arm for operating a stylus/mouse in order to

facilitate the use of the interface depending upon the platform or facility it is used.

Regarding claim 2, Anderson et al. and Miettinen et al. disclose a display as

recited in claim 1.

Anderson et al. also disclose wherein the alignment orients the graphic and zone

with the motion (Figures 2a and 2b show the menu is aligned with a motion of a user, as

explained above.).

Regarding claim 3, Anderson et al. and Miettinen et al. disclose a display as

recited in claim 1.

Anderson et al. also disclose wherein the alignment follows the natural user

motion (Figures 2a and 2b show the menu is aligned with a motion of a user, as

explained above.).

Regarding claim 4, Anderson et al. and Miettinen et al. disclose a display as

recited in claim 1.

Anderson et al. also disclose wherein the alignment positions the graphic and zone at a location accessible via the natural user motion (Figures 2a and 2b show the menu is aligned with a motion of a user, as explained above.).

Regarding claim 5, Anderson et al. and Miettinen et al. disclose a display as recited in claim 1.

Anderson et al. also disclose wherein the natural user motion comprises a curve determined by one or more strokes of the user on the display (Figures 2a and 2b show the menu is aligned with a motion of a user, as explained above.).

Regarding claim 6, Anderson et al. and Miettinen et al. disclose a display as recited in claim 5.

Anderson et al. also disclose wherein the curve includes natural motion variations (Figures 2a and 2b show the menu is aligned with a motion of a user, as explained above, where variations between a left handed and right handed person may be taken into account as explained in Figures 4a and 4b.).

Regarding claim 7, Anderson et al. and Miettinen et al. disclose a display as recited in claim 5.

Anderson et al. also disclose wherein the natural motion stroke additionally comprises a finger motion curve, a shoulder motion curve and a combination of two or

more curves (As explained with reference to claim 1, the control area 32 is based upon finger motion.).

Regarding claim 8, Anderson et al. and Miettinen et al. disclose a display as recited in claim 7.

Anderson et al. also disclose wherein the curve is a curve determined by a single user (Figure 2a and 2b show that there is only a single user using the menu and therefore the curve is only based upon one user.).

Regarding claim 9, Anderson et al. and Miettinen et al. disclose a display as recited in claim 1.

Anderson et al. also disclose a display further comprising an interface location at which the zone and graphic are positioned (Figures 5a and 5b shows that an interface location is where the zone and graphic are positioned.).

Regarding claim 10, Anderson et al. and Miettinen et al. disclose a display as recited in claim 9.

Anderson et al. also disclose wherein the interface location is specified by a cursor positioned by the user (Figures 5a and 5b show that the menu is located based upon where the cursor 54 is positioned.).

Regarding claim 11, Anderson et al. disclose a graphical user interface, comprising:

a cursor positioned on a display by a user at a location the display located on a single side of a user (Figures 5a and 5b show a cursor 54 at a location specified by a user. Figures 1-3 show that the display is located only on a single side of the user.); and

a function control positioned on the display responsive to the location of the cursor (Figures 5a and 5b show that the menu 53 is positioned on the display 50 based on the position of the cursor 54.), and

having an arc shaped interface graphic indicating a function of the control (Figure 3 shows the disc menu 30 which in its entirety is an arc shaped control zone and Figure 3 shows that every interface element 31a-31h indicated the function of the element, i.e. scan, send call, etc. while the elements in area 32 represent square, circle, line, etc.), and

having an arc shape conforming to a motion arc of a hand caused by a compound motion of an hand about a wrist of the user and the fingers of the user (Figure 3 shows the controls 31 require wrist motion while controls 32 require finger motion, meaning that that controls 31 and 32 are positionally aligned to allow for a natural motion produced by the combination of a wrist and fingers. This is supported by the explanation found in column 5, lines 6-8 which explain that the menu can be accessed without lifting a wrist. This means that if the wrist is not lifted that the only way to access the element only the arc 31 is to move the wrist, while the only way for a

user to reach the options of menu 32 without using the wrist is to use only finger motion, and therefore, the entire menu 30 is based upon a compound motion of a users wrist and fingers.).

Anderson et al. fail to explicitly teach that the function control has an arc shape conforming to a motion arc of a hand caused by a compound motion of an arm about an elbow of the user and the hand about a wrist of the user.

Miettinen et al. disclose of an arc shaped control zone that is aligned to a natural user motion produced by rotation of a user elbow and rotation of a user shoulder (Figure 1 and paragraph [0066] explains that there are two areas in the interface, one for access of moving the arm with the elbow bent, i.e. rotation of the elbow, and one for a straight arm rotation, i.e. shoulder.).

Therefore, since Anderson et al. and Miettinen et al. both teach of arc shaped interfaces aligned to a user natural motion, it would have been obvious to "one of ordinary skill" in the art at the time the invention was made to substitute one natural motion for another natural motion in order to achieve the predictable result of aligning the interface to a natural motion.

Although the combination of Anderson et al. and Miettinen et al. fails to explicitly teach the combination of the rotation of the elbow and the rotation of the wrist, since it is not described as being essential to the invention and in fact the applicant states that any combination of curves could be used, it would have been an obvious design choice to "one of ordinary skill" in the art at the time the invention was made to align the interface

to any combination of natural motion for the arm for operating a stylus/mouse in order to facilitate the use of the interface depending upon the platform or facility it is used.

Regarding claim 12, Anderson et al. and Miettinen et al. disclose an interface as recited in claim 11.

Anderson et al. also disclose wherein the control comprises plural controls and the controls are aligned along the arc (Figures 3, 5a and 5b show that there are plural controls 31a-31h that are aligned around the arc.).

Regarding claim 13, Anderson et al. and Miettinen et al. disclose an interface as recited in claim 12.

Anderson et al. also disclose wherein a default control is positioned under the cursor at a particular instance (Figure 3 shows that the controls 31a-31h, which are default controls to the menu, can be positioned under the cursor at a particular instance in which a user moves the cursor over the control.).

Regarding claim 14, Anderson et al. and Miettinen et al. disclose an interface as recited in claim 12.

Anderson et al. also disclose wherein the controls can be one of re-oriented and moved (Figures 5a and 5b show that the menu can be moved.).

Regarding claim 15, Anderson et al. and Miettinen et al. disclose an interface as recited in claim 12.

Anderson et al. also disclose wherein controls are oriented and shaped to conform to a wrist arc caused by a hand moving about a wrist of the user (As expaliend above, Figure 3 shows the controls 31 require wrist motion while controls 32 require finger motion, meaning that that controls 31 and 32 are positionally aligned to allow for a natural motion produced by the combination of a wrist and fingers. This is supported by the explanation found in column 5, lines 6-8 which explain that the menu can be accessed without lifting a wrist. This means that if the wrist is not lifted that the only way to access the element only the arc 31 is to move the wrist.).

Regarding claim 16, please refer to the rejection of claim 11, where Anderson also discloses that a portion of the controls are aligned along an arc intersecting the motion arc at 90 degrees (Figures 7a and 7b show that there are arcs 73 of the suboptions that are 90 degrees from the outer-circle arc.).

Regarding claim 17, Anderson et al. and Miettinen et al. disclose an interface as recited in claim 11.

Anderson et al. also disclose wherein the control comprises plural controls (Figure 3, controls 31a-31h.) and the shape of the sides of each of the controls is one of rectilinear, arc shaped, wedge shaped and triangular shaped (Figures 3 and 8 show that

each of the controls can be characterized as being rectilinear, arc shaped, wedge shaped and triangular shaped.).

Regarding claim 18, Anderson et al. and Miettinen et al. disclose an interface as recited in claim 11.

Anderson et al. also disclose the interface further comprising an overflow interface positioned responsive to the motion arc (Figure 3 shows overflow interface 32 which is positioned responsive to the motion arc.).

Regarding claim 19, Anderson et al. and Miettinen et al. disclose an interface as recited in claim 11.

Anderson et al. also disclose wherein text of the control is rectilinear aligned with a display (Figures 3, 5a and 5b show that the text of the control such as Send, Call and ABC are rectilinear with a display.).

Regarding claim 20, Anderson et al. and Miettinen et al. disclose an interface as recited in claim 19.

Anderson et al. also disclose wherein the overflow interface is natural motion arc shaped (Figure 3.).

Regarding claim 21, Anderson et al. and Miettinen et al. disclose an interface as recited in claim 12.

Anderson et al. also disclose wherein the control is oriented to an extended arc (Figure 3 shows that the arc is "extended" into a circular shape.).

Regarding claim 22, please refer to the rejection of claims 6, 16 and 18, and further more Anderson et al. also disclose wherein a default control is positioned under the cursor (Figures 5a and 5b show that the default center control for controlling the position of the interface is located underneath the cursor.).

Regarding claims 23 and 25, Anderson et al. disclose a method and a computer readable storage for controlling a computer, comprising:

determining a position of a cursor as designated by a user (Figures 5a and 5b show that the position of the cursor 54 is determined on the screen.), and

positioning an arc shaped graphical user interface on a single side of a user responsive to the position where the arc of the shape is defined by a natural user motion produced by a compound motion of a rotation of the user wrist and the user fingers (Figure 3 shows the controls 31 require wrist motion while controls 32 require finger motion, meaning that that controls 31 and 32 are positionally aligned to allow for a natural motion produced by the combination of a wrist and fingers. This is supported by the explanation found in column 5, lines 6-8 which explain that the menu can be accessed without lifting a wrist. This means that if the wrist is not lifted that the only way to access the element only the arc 31 is to move the wrist, while the only way for a user to reach the options of menu 32 without using the wrist is to use only finger motion,

and therefore, the entire menu 30 is based upon a compound motion of a users wrist and fingers.).

Anderson et al. fail to explicitly teach that the arc is aligned to a natural user motion produced by a compound motion of an arm about an elbow and a hand about a wrist of the user.

Miettinen et al. disclose of an arc shaped control zone that is aligned to a natural user motion produced by rotation of a user elbow and rotation of a user shoulder (Figure 1 and paragraph [0066] explains that there are two areas in the interface, one for access of moving the arm with the elbow bent, i.e. rotation of the elbow, and one for a straight arm rotation, i.e. shoulder.).

Therefore, since Anderson et al. and Miettinen et al. both teach of arc shaped interfaces aligned to a user natural motion, it would have been obvious to "one of ordinary skill" in the art at the time the invention was made to substitute one natural motion for another natural motion in order to achieve the predictable result of aligning the interface to a natural motion.

Although the combination of Anderson et al. and Miettinen et al. fails to explicitly teach the combination of the rotation of the elbow and the rotation of the wrist, since it is not described as being essential to the invention and in fact the applicant states that any combination of curves could be used, it would have been an obvious design choice to "one of ordinary skill" in the art at the time the invention was made to align the interface to any combination of natural motion for the arm for operating a stylus/mouse in order to facilitate the use of the interface depending upon the platform or facility it is used.

Art Unit: 2629

Regarding claim 29, Anderson et al. disclose an apparatus, comprising:

a display on a single side of a user (Figure 1, item 11. Figures 1-3 show that the display is located only on a single side of the user.); and

a computer producing an arc shaped graphical user interface on the display where the arc of the shape is defined by a natural user motion produced by a compound motion of a rotation of the user wrist and the user fingers (Figure 3 shows the controls 31 require wrist motion while controls 32 require finger motion, meaning that that controls 31 and 32 are positionally aligned to allow for a natural motion produced by the combination of a wrist and fingers. This is supported by the explanation found in column 5, lines 6-8 which explain that the menu can be accessed without lifting a wrist. This means that if the wrist is not lifted that the only way to access the element only the arc 31 is to move the wrist, while the only way for a user to reach the options of menu 32 without using the wrist is to use only finger motion, and therefore, the entire menu 30 is based upon a compound motion of a users wrist and fingers.).

Anderson et al. fail to explicitly teach that the arc is aligned to a natural user motion produced by a compound motion of an arm about an elbow and a hand about a wrist of the user.

Miettinen et al. disclose of an arc shaped control zone that is aligned to a natural user motion produced by rotation of a user elbow and rotation of a user shoulder (Figure 1 and paragraph [0066] explains that there are two areas in the interface, one for

access of moving the arm with the elbow bent, i.e. rotation of the elbow, and one for a straight arm rotation, i.e. shoulder.).

Therefore, since Anderson et al. and Miettinen et al. both teach of arc shaped interfaces aligned to a user natural motion, it would have been obvious to "one of ordinary skill" in the art at the time the invention was made to substitute one natural motion for another natural motion in order to achieve the predictable result of aligning the interface to a natural motion.

Although the combination of Anderson et al. and Miettinen et al. fails to explicitly teach the combination of the rotation of the elbow and the rotation of the wrist, since it is not described as being essential to the invention and in fact the applicant states that any combination of curves could be used, it would have been an obvious design choice to "one of ordinary skill" in the art at the time the invention was made to align the interface to any combination of natural motion for the arm for operating a stylus/mouse in order to facilitate the use of the interface depending upon the platform or facility it is used.

Regarding claim 30, Anderson et al. disclose a display, comprising:

a control zone for a function of an interface on a single side of a user (Figure 3 shows the disc menu 30 which is an arc shaped control zone. Figures 1-3 show that the display is located only on a single side of the user.); and

an interface element graphic aligned with the control zone and indicating the function (Figure 3 shows that the menu comprises interface elements 31a through 31h and 32 which are arranged in an arc shape around the control zone. Figure 3 shows

that every interface element 31a-31h and 32 indicated the function of the element, i.e. scan, send call, square, circle, etc.)

with the interface graphic and control zone aligned to a natural user motion produced by a compound motion of a rotation of the user wrist and the user fingers (Figure 3 shows the controls 31 require wrist motion while controls 32 require finger motion, meaning that that controls 31 and 32 are positionally aligned to allow for a natural motion produced by the combination of a wrist and fingers. This is supported by the explanation found in column 5, lines 6-8 which explain that the menu can be accessed without lifting a wrist. This means that if the wrist is not lifted that the only way to access the element only the arc 31 is to move the wrist, while the only way for a user to reach the options of menu 32 without using the wrist is to use only finger motion, and therefore, the entire menu 30 is based upon a compound motion of a users wrist and fingers.).

Anderson et al. fail to explicitly teach that the arc is aligned to a natural user motion produced by a compound motion of an elbow motion and a wrist motion.

Miettinen et al. disclose of an arc shaped control zone that is aligned to a natural user motion produced by rotation of a user elbow and rotation of a user shoulder (Figure 1 and paragraph [0066] explains that there are two areas in the interface, one for access of moving the arm with the elbow bent, i.e. rotation of the elbow, and one for a straight arm rotation, i.e. shoulder.).

Therefore, since Anderson et al. and Miettinen et al. both teach of arc shaped interfaces aligned to a user natural motion, it would have been obvious to "one of

ordinary skill" in the art at the time the invention was made to substitute one natural motion for another natural motion in order to achieve the predictable result of aligning the interface to a natural motion.

Although the combination of Anderson et al. and Miettinen et al. fails to explicitly teach the combination of the rotation of the elbow and the rotation of the wrist, since it is not described as being essential to the invention and in fact the applicant states that any combination of curves could be used, it would have been an obvious design choice to "one of ordinary skill" in the art at the time the invention was made to align the interface to any combination of natural motion for the arm for operating a stylus/mouse in order to facilitate the use of the interface depending upon the platform or facility it is used.

Regarding claim 31, Anderson et al. and Miettinen et al. disclose a display as recited in claim 30.

Anderson et al. also disclose wherein the user natural motion stroke comprises one of an a wrist motion curve, a finger motion curve and a shoulder motion in combination with the elbow motion (As explained with reference to claim 1, the control area 32 is based upon finger motion.).

Regarding claim 34, Anderson et al. disclose a display, comprising:

a control zone for a function of an interface (Figure 3 shows the disc menu 30, with section 32 which is a control zone.); and

Art Unit: 2629

an interface element graphic aligned with the control zone and indicating the function (Figure 3 shows that every interface element shown on control zone 32, such as square, circle, line, etc. indicates the function of the element.)

with the interface graphic and control zone aligned to a natural user motion of a finger motion or a wrist motion (Figure 3 shows the controls 31 require wrist motion while controls 32 require finger motion. This is supported by the explanation found in column 5, lines 6-8 which explain that the menu can be accessed without lifting a wrist. This means that if the wrist is not lifted that the only way to access the element only the arc 31 is to move the wrist, while the only way for a user to reach the options of menu 32 without using the wrist is to use only finger motion.).

Anderson et al. fail to teach the control zone aligned to a natural user motion of a shoulder motion.

Miettinen et al. disclose of an arc shaped control zone that is aligned to a natural user motion of a shoulder motion (Figure 1 and paragraph [0066] explains that there is an interface for a straight arm rotation, i.e. shoulder.).

Therefore, it would have been obvious to "one of ordinary skill" in the art at the time the invention was made to substitute the motion taught by Anderson et al. with the motion taught by Miettinen et al. in order to align the interface to any natural motion for the arm for operating a stylus/mouse in order to facilitate the use of the interface depending upon the platform or facility it is used.

Art Unit: 2629

Regarding claim 35, Anderson et al. and Miettinen et al. disclose a display as recited in claim 34.

Anderson et al. also disclose wherein the user natural motion stroke comprises one of an elbow motion curve, a wrist motion curve and a finger motion curve in combination with the shoulder motion (As explained with reference to claim 1, the control area 32 is based upon finger motion.).

Regarding claim 36, this claim is rejected under the same rationale as claims 1 and 11.

Regarding claim 37, Anderson et al. disclose a display, comprising:

an arc shaped control zone for a function of an interface (Figure 3 shows the disc menu 30, with section 31 which is a control zone that is arc shaped.); and

an arc shaped interface element graphic aligned with the control zone and indicating the function (Figure 3 shows that interface element 31a-31h is arc shaped and is aligned with the control zone and indicates the function of the element, such as icon, scan, send, call, etc.)

with the arc shaped interface graphic and the arc shaped control zone aligned to a natural user motion produced only by rotation of a user wrist (Figure 3 shows the controls 31 require only wrist motion, meaning that that controls 31 are positionally aligned to allow for a natural motion of only the wrist to be used. This is supported by the explanation found in column 5, lines 6-8 which explain that the menu can be

accessed without lifting a wrist. This means that if the wrist is not lifted that the only way to access the element only the arc 31 is to move the wrist.).

Anderson et al. fail to teach the control zone aligned to a natural user motion produced by only rotation of a user elbow.

Miettinen et al. disclose of an arc shaped control zone that is aligned to a natural user motion of a shoulder motion (Figure 1 and paragraph [0066] explains that there is an interface for an arm rotation bent at the user elbow, i.e. elbow motion.).

Therefore, it would have been obvious to "one of ordinary skill" in the art at the time the invention was made to substitute the motion taught by Anderson et al. with the motion taught by Miettinen et al. in order to align the interface to any natural motion for the arm for operating a stylus/mouse in order to facilitate the use of the interface depending upon the platform or facility it is used.

15. Claims 26-28 are rejected under 35 U.S.C. 103(a) as being unpatentable over Anderson et al. (US 5,828,360)in view of Miettinen et al. (US 2002/0054175) and further in view of Ono (US 5,559,944).

Regarding claim 26, please refer to the rejection of claim 1, and furthermore Anderson et al. and Miettinen et al. fail to teach:

allowing a user to make strokes with an input device;

determining an arc from the strokes; and

laying out a graphical user interface, including controls, to conform to the arc.

Ono discloses of a method comprising:

allowing a user to make strokes with an input device with the input device located on a single side of a user (Fig. 7. Figures 6 and 11 shows that the display is located on a single side of the user.);

determining an arc from the strokes (Fig. 7); and

laying out a graphical user interface, including controls, to conform to the arc (see col. 3, lines 16-24).

Therefore, it would have been obvious to "one of ordinary skill" in the art at the time the invention was made to allow the user to make the arc shaped graphic taught by the combination of Anderson et al. and Miettinen et al. be determined by an individual user as taught by Ono in order to allow for calibration of the system such that each user can have a more comfortable interface aligned to their own personal natural motion.

Regarding claim 27, Anderson et al., Miettinen et al. and Ono disclose a method as recited in claim 26.

Anderson et al. also disclose a method comprising:

determining a position of a cursor specified by the user (Figures 5a and 5b show that the position of the cursor 54 is determined on the screen.); and

positioning the interface responsive to the position (Figures 5a and 5b show that the position of the arc shaped menu interface 53 is responsive to the position of the cursor 54.); and

allowing the user to activate a function of the interface (Figures 3, 5a and 5b show that the user can use the cursor to activate one of the items 31 on the interface.).

Regarding claim 28, Anderson et al., Miettinen et al. and Ono disclose a method as recited in claim 26.

Ono also discloses wherein plural users are allowed to make strokes individually at different times and the arc is determined from the strokes of the plural users (Column 3, lines 16-24 explain that each individual, i.e. plural users, make arcs and then the arc the menu is obtained by using these strokes.).

16. Claim 24 is rejected under 35 U.S.C. 103(a) as being unpatentable over Anderson et al. (US 5,828360) in view of Miettinen et al. (US 2002/0054175) and further in view of Ono et al. (US 5,559,944).

Regarding claim 24, Anderson et al. and Miettinen et al. disclose a method as recited in claim 23.

Anderson et al. and Miettinen et al. fail to teach the method further comprising determining whether the user has specified a custom arc and positioning one of a custom and standard arc shaped interface responsive to the determination.

Ono et al. disclose a method further comprising determining whether the user has specified a custom arc (Column 3, lines 16-24) and positioning one of a custom and

Art Unit: 2629

standard arc shaped interface responsive to the determination (Column 3, lines 16-24, where the custom arc shaped interface is positioned.).

Therefore, it would have been obvious to "one of ordinary skill" in the art at the time the invention was made to make the arc shaped interface taught by the combination of Anderson et al. and Miettinen et al. have a user customized arc shaped as taught by Ono et al. in order to allow for a user to use the interface without causing an unnatural force.

Conclusion

17. Any inquiry concerning this communication or earlier communications from the examiner should be directed to STEPHEN G. SHERMAN whose telephone number is (571)272-2941. The examiner can normally be reached on M-F, 8:00 a.m. - 4:30 p.m..

If attempts to reach the examiner by telephone are unsuccessful, the examiner's supervisor, Amr Awad can be reached on (571) 272-7764. The fax phone number for the organization where this application or proceeding is assigned is 571-273-8300.

Art Unit: 2629

Information regarding the status of an application may be obtained from the Patent Application Information Retrieval (PAIR) system. Status information for published applications may be obtained from either Private PAIR or Public PAIR. Status information for unpublished applications is available through Private PAIR only. For more information about the PAIR system, see http://pair-direct.uspto.gov. Should you have questions on access to the Private PAIR system, contact the Electronic Business Center (EBC) at 866-217-9197 (toll-free). If you would like assistance from a USPTO Customer Service Representative or access to the automated information system, call 800-786-9199 (IN USA OR CANADA) or 571-272-1000.

/Stephen G Sherman/ Examiner, Art Unit 2629

/Amr Awad/ Supervisory Patent Examiner, Art Unit 2629

9 May 2008