

P1	Unset ith bit of a number if it is set
	otherwise no change
ex	N245 1011,01
	i = 2 101001
	j ₂ 4 \ 0 \ 1 \ 0 \
1.1 heck	if (check Bit (N,i)) $N = N^{*}(1 \ll i)$
th bit	else NeAl -> not needed
	ret N
	bool check Bit (N,1) { ret N& (1\ll i)! =0 == (1\ll i)
	ret N/(1«i)==N
	ret N^(1«i) < N -> why does this work?
	fif ith bit is set result will be smaller
	if ith bit is unset result
	will be larger
true	most significant but Shit least significant but
•	1 1 (1 (1) (xxxxx
	bool func1 (N) return n&1==1, return N&1 not boolean
	get Least Significant
	ga Com Symplan

```
P2 Count the number of set bits in N is positive
     N= 101101 and 24
                                        long long 128 bit
long double 128 bit
                        Louble 4-bit
      int -32 bit
                         lang 64 bit
        int countBit1 (int n)
           for (unt i=0; i< BIB; i+)
TC:
O(BITs)
            if (check Bit (n, i)) and +=1
          ret ans;
        int count Bit 2 (int n)
          uns=0
while(n>0){
                                       000000000
                                       00000101
            if(n&1 == 1) and +=1
                                       0000010
                                       000000
                                   2
Quiz
            n = n>>1
                                       0000000
Tc:0(69"
                                       0000000
SC: 0(1)
                                       0000000
           ret and
                                       0000000
                       N>1
                                       0000000
                       lagn
```


101000 larg f (int a, unt b) { long cun S = 0

ans = (long) (axb) x ret ans larg f (int a, unt b) { long ans = 0
ans = ((long)(a))*b

ret ans