An Intro to Probabilistic Programming using JAGS

John Myles White

December 5, 2012

What is Probabilistic Programming?

Probabilistic programming uses programming languages custom-designed for expressing probabilistic models

A Simple Example

```
model
  for (i in 1:N)
   x[i] ~ dbern(p)
  p ~ dbeta(alpha, beta)
  alpha <- 1
  beta <- 1
```

Model Specification vs. Model Use

- ► Code in a probabilistic programming languages specifies a model, not a use case
- ▶ A single model specification can be reused in many contexts:
 - ► Monte Carlo simulations
 - Maximum likelihood estimation
 - Sampling from posterior distributions

Imperative versus Declarative Programming

- Describe a process for generating results:
 - ► C.
 - Lisp
- Describe the structure of the results:
 - Prolog
 - SQL
 - Regular expressions

Existing Probabilistic Programming Systems

- ► The BUGS Family
 - ▶ WinBUGS
 - OpenBUGS
 - JAGS
 - Stan
- ► Infer.NET
- Church
- Factorie

JAGS Syntax: Model Blocks

```
model { .... }
```

JAGS Syntax: Stochastic Assignment

```
p ~ dbeta(1, 1)
```

JAGS Syntax: Deterministic Assignment

alpha <- 1

JAGS Syntax: For Loops

```
for (i in 1:N)
{
   x[i] ~ dbern(p)
}
```

Putting It All Together

```
model
  for (i in 1:N)
   x[i] ~ dbern(p)
  p ~ dbeta(alpha, beta)
  alpha <- 1
  beta <- 1
```

An Equivalent Translation If N == 3

```
model
{
    x[1] ~ dbern(p)
    x[2] ~ dbern(p)
    x[3] ~ dbern(p)

    p ~ dbeta(1, 1)
}
```

For Loops are not Sequential

```
model
{
    x[2] ~ dbern(p)
    x[3] ~ dbern(p)
    x[1] ~ dbern(p)

    p ~ dbeta(1, 1)
}
```

For Loops do Not Introduce a New Scope

```
model
  for (i in 1:N)
    x[i] ~ dnorm(mu, 1)
    epsilon ~ dnorm(0, 1)
    x.pair[i] \leftarrow x[i] + epsilon
  }
  mu ~ dunif(-1000, 1000)
```

Stochastic vs. Deterministic Nodes

- Observed data must correspond to stochastic nodes
- ▶ All constants like N must be known at compile-time
- Deterministic nodes are nothing more than shorthand
 - ▶ A deterministic node can always be optimized out!

Observed Data Must Use Stochastic Nodes

TWO VALID MATHEMATICAL FORMULATIONS:

$$y_i \sim \mathcal{N}(ax_i + b, 1)$$

$$y_i = ax_i + b + \epsilon_i$$
 where $\epsilon_i \sim \mathcal{N}(0, 1)$

VALID JAGS CODE:

$$y[i]$$
 ~ dnorm(a * $x[i]$ + b, 1)

INVALID JAGS CODE:

What's Badly Missing from JAGS Syntax?

- ▶ if / else
- Can only express mixture models using summation
 - ▶ Some cases are handled by a dsum() function
 - But others would require a non-existent dprod() function

This is NOT Valid JAGS Code

```
model
  for (i in 1:N)
    alpha[i] ~ dbern(p)
    exp[i] ~ dexp(1)
    norm[i] ~ dnorm(5, 1)
    x[i] ~ dsum(alpha[i] * exp[i],
                (1 - alpha[i]) * norm[i])
  }
 p ~ dbeta(1, 1)
```

But Valid Code Does Exist for Many Important Models!

- ► Linear regression
- Logistic regression
- ► Hierarchical linear regression
- Mixtures of Gaussians

Linear Regression

```
model
  for (i in 1:N)
  {
    y[i] ~ dnorm(mu[i], tau)
    mu[i] <- a * x[i] + b
  }
  tau <- pow(sigma, -2)
  sigma ~ dunif(0, 100)
  a ~ dnorm(0, 0.0001)
  b ~ dnorm(0, 0.0001)
}
```

Logistic Regression

```
model
  for (i in 1:N)
    y[i] ~ dbern(p[i])
    logit(p[i]) \leftarrow a * x[i] + b
  }
  a ~ dnorm(0, 0.0001)
  b ~ dnorm(0, 0.0001)
```

Hierarchical Linear Regression

```
model
  for (i in 1:N)
    y[i] ~ dnorm(mu[i], tau)
    mu[i] \leftarrow a[g[i]] * x[i] + b[g[i]]
  for (j in 1:K)
    a[j] ~ dnorm(mu.a, tau.a)
    b[j] ~ dnorm(mu.b, tau.b)
  mu.a ~ dnorm(0, 0.0001)
  mu.b ~ dnorm(0, 0.0001)
```

Clustering via Mixtures of Normals

```
model
  for (i in 1:N)
    z[i] ~ dbern(p)
    mu[i] \leftarrow z[i] * mu1 + (1 - z[i]) * mu2
    x[i] ~ dnorm(mu[i], tau)
  p ~ dbeta(1, 1)
  mu1 ~ dnorm(0, 0.0001)
  mu2 ~ dnorm(1, 0.0001)
  tau <- pow(sigma, -2)
  sigma ~ dunif(0, 100)
```

MCMC in 30 Seconds

- ▶ If we can write down a distribution, we can sample from it
- ▶ Every piece of JAGS code defines a probability distribution
- But we have to use Markov chains to draw samples
- ▶ May require hundreds of steps to produce one sample
- ► MCMC == Markov Chain Monte Carlo

Using JAGS from R

```
library("rjags")
jags <- jags.model("bernoulli.bugs",</pre>
                    data = list("x" = x,
                                 "N" = N
                    n.chains = 4,
                    n.adapt = 1000)
mcmc.samples <- coda.samples(jags, c("p"))</pre>
plot(mcmc.samples)
summary(mcmc.samples)
```

Plotting the Samples

GRAPHIC GOES HERE PRE- AND POST- BURN-IN

Burn-In

- Markov chains do not start in the right position
- ▶ Need time to reach and then settle down near MAP values
- ▶ The initial sampling period is called burn-in
- We discard all of these samples

Mixing

- ▶ How do we know that burn-in is complete?
- Run multiple chains
- ► Test that they all produce similar results
- All test for mixing are heuristic methods

Adaptive Phase

- ▶ JAGS has tunable parameters that need to adapt to the data
- Can typically do this during the burn-in period
- ► For simple models, adaptation may not be necessary

Summarizing the Results

TABLE GOES HERE

Other Practical Issues

- Autocorrelation between samples
- ► Thinning
- ► Initializing parameters
- Numeric stability

Additional References

- The BUGS Book
- The JAGS Manual
- My GitHub Repo of JAGS Examples
- NIPS Workshop Proceedings

Appendix 1: Basic Sampler Design

- Slice sampler
- Metropolis-Hastings sampler
- Adaptive rejection sampling
- CDF inversion

Appendix 2: Conjugacy

Gibbs sampling