Homework 10

Thomas Kim tsk389 51835

David Munoz dam2989 51840

 $\ensuremath{\mathrm{CS331}}$ Algorithms and Complexity

Problem Q1(a). Given a collection of intervals on a time-line, and a bound k, does the collection contain a subset of nonoverlapping intervals of size at least k?

Claim: Interval Scheduling \leq_p Vertex Cover

True

Proof. Vertex Cover is NP-Complete

Interval Scheduling is NP-Complete by the problem statement.

Therefore, Interval Scheduling is in NP.

All problems in NP are reducible to any NP-Complete problem.

Therefore, Interval Scheduling \leq_p Vertex Cover.

Problem Q1(b). Claim: Independent Set \leq_p Interval Scheduling

Proof. Independent Set is NP-Complete.

Therefore, Independent Set is in NP

By the problem statement, Interval Scheduling is NP-Complete

Therefore, all problems in NP can be reduced to Interval Scheduling in polynomial time.

Therefore, Independent Set \leq_p Interval Scheduling

Problem Q2. Is the set of rational numbers countably infinite or uncountably infinite? Countably Infinite

Proof. Let $r \in \mathbb{Q}$ be a rational number.

Consider rational numbers of the form $\frac{a}{b}$ where $a \in \mathbb{Z} \land b \in \mathbb{Z}_{\geq 0} \land gcd(a,b) = 1$

Claim: All rational numbers $\frac{q}{r}, q, r \in \mathbb{Z}$ can be expressed in this form.

First, factor out -1 from all negative q, r, such that the number is expressed $s \frac{|q|}{|r|}$ where $s = (-1)^1 \lor s = (-1)^2$

Next, divide q, r by gcd(q, r) such that the number is expressed $s\frac{|q'|}{|r'|}$ where q', r' are the result after dividing q, r by gcd(q, r)

By the definition of gcd, q', r' share no common prime factors

Now, define a mapping $f: \mathbb{Q} \to \mathbb{Z} \times \mathbb{N}$ as follows:

 $f(\frac{a,b}{)} = (a,b)$

This mapping is clearly onto, as every Cartesian pair can be mapped to a corresponding real number by taking $(a,b) \to \frac{a}{b}$

The cartesian product of $\mathbb{Z} \times \mathbb{N}$ is countably infinite

Therefore, the rational numbers are countably infinite.

Problem Q3. Show that the following problem is undecidable.

 $\mathbf{A} = \{ \langle M \rangle | \forall w \in \mathbf{S} \ Macceptsw \}$ where \mathbf{S} is the set of all strings

Proof. Define a mapping reduction $R(\langle M \rangle)$ as follows:

- 1. Erase the tape
- 2. Run M
- 3. Accept

Return < M# >

If $\langle M, \epsilon \rangle \in H : M$ halts, so M# accepts everything. Oracle $\langle M\# \rangle$ accepts.

If $\langle M, \epsilon \rangle \notin H : M$ does not halt, so M# accepts nothing and doesn't halt. Oracle $\langle M\# \rangle$ rejects.

However, no machine to decide H can exist, so Oracle doesn't exist.

Problem Q4(a). Given n containers of weight w_1, \ldots, w_n , trucks of capacity K, minimize the number of trucks to carry all the weight. This problem is NP-Complete.

Greedy Algorithm: Start with an empty truck, then begin piling containers 1, 2, 3, ... until you get to a container which would overflow the weight limit.

Now declare this truck "loaded" and send it off; then continue the process with a fresh truck.

Given an example of a set of weights, a value of K, where this algorithm does not use the minimum possible number of trucks.

Proof. Let $K=3, w_1, \ldots, w_{\frac{n}{2}}=2, w_{\frac{n+2}{2}}, \ldots, w_n=1, n \geq 4, n$ is even

Trivially, the ideal arrangement would be to have each truck carry one container of weight 2 and one of weight 1 to fully utilize every truck.

However, the first truck will be loaded with weight $w_1 = 2$, then $w_2 = 2$ would overload it, so it will leave with only weight 2.

Problem Q4(b). Show, however, that the number of trucks used by this algorithm is within a factor of 2 of the minimum possible number, for any set of weights and any value K

Proof. Claim: The average utilization of each truck will not be below $\frac{1}{2}$

Suppose some truck currently carrying weight a cannot accept w_i , because $w_i + a > K$

This means $a > K - w_i$ by definition.

The minimum usage of this truck would therefore be $\frac{K-w_i+1}{K}$. The next truck is guaranteed to use at least $b=w_i$ weight, since it is initially empty and w_i is the first container to be loaded.

Therefore, the average utilization of these two trucks is $\frac{1}{2} \left(\frac{K - w_i + 1}{K} + \frac{w_i}{K} \right)$

 $=\frac{K+1}{2K} > \frac{K}{2K} = \frac{1}{2}$

Extending this, the average usage of any arbitrary adjacent pair of trucks is guaranteed to be at least $\frac{1}{2}$ Now, given a container assignment, choose adjacent pairs such that each pair is disjoint from all other

Given N trucks used, this situation is equivalent to having N trucks each using precisely $\frac{1}{2}$ of their max capacity.

The lower bound for the minimum number of trucks N_m trivially occurs when all trucks use precisely 100% of their max capacity.

So given that each truck, in the worst situation with the greedy algorithm, use at least 50% of their

max capacity, the number of trucks used by the greedy algorithm must be within a factor of 2 of the minimum possible number. $\hfill\Box$