## DC Biasing – BJTs

Topic 4 (Chapter 4) (Some materials are from Malvino's book)

## **Biasing**

Biasing: Applying DC voltages to a transistor in order to turn it on so that it can amplify AC signals.

## **The Three Operating Regions**

#### **Active or Linear Region Operation**

- Base–Emitter junction is forward biased
- Base–Collector junction is reverse biased

#### **Cutoff Region Operation**

Base–Emitter junction is reverse biased

#### **Saturation Region Operation**

- Base–Emitter junction is forward biased
- Base–Collector junction is forward biased or near forward bias

## Regions of operation



- 1. Active - used for <u>linear</u> amplification
- 2. Cutoff - used in <u>switching</u> applications
- 3. Saturation - used in switching applications
- Breakdown - can <u>destroy</u> the transistor and should be avoided

## **Current gain is not fixed**

Depends on:

- **✓** Transistor
- **✓ Collector current**
- **✓** Temperature



## **DC Biasing Circuits**

**Fixed-bias or Base-Bias** 

**Emitter Bias** 

Voltage divider bias circuit

DC bias with voltage feedback

#### **Base-Bias or Fixed-Bias**

- Setting up a <u>fixed</u> value of base current
- Usually  $V_{BB}$  and  $V_{CC}$  are the same supply



## Typical Base-Bias or Fixed-Bias Amplifier Circuit



- A single supply is used
- Coupling capacitors are used to shield the circuit from input and output DC voltages

#### **Load line**

- A <u>visual</u> summary of all the possible transistor operating points
- Connects <u>saturation</u> current (I<sub>Csat</sub>) to <u>cutoff</u>
   voltage (V<sub>CEcutoff</sub>)

#### **Load line**

$$I_{C} = \frac{V_{CC} - V_{CE}}{R_{C}} \blacktriangleleft$$

A graph of this equation produces a load line.



## **Saturation**

When the transistor is operating in **saturation**, current through the transistor is at its *maximum* possible value.



## **Understanding Saturation**



## **Understanding Saturation**

$$I_C = \frac{12 \text{ V}}{1 \text{ k}\Omega} = 12 \text{ mA}$$
 This is the Saturation (maximum) current.



## **Understanding Cutoff**



## **Understanding Cutoff**

$$V_{CE(cutoff)} = V_{CC}$$



#### Example 7-1

What are the saturation current and the cutoff voltage in Fig. 7-4a?

Calculate the saturation and cutoff values for Fig. 7-4b.





## The Effect of $V_{cc}$ on the Q-Point



#### Example 7-3

What are the saturation current and the cutoff voltage in Fig. 7-5a?

Calculate the saturation and cutoff values for Fig. 7-5b.





## The Effect of $R_c$ on the Q-Point



## The Effect of $I_B$ on the Q-Point



## **Operating point**

Determined by:

- ✓ Finding saturation current and cutoff voltage points
- ✓ Connecting points to produce a load line
- √ The <u>operating</u> (Q) point is established by the value of base current

## **Operating point**

A circuit can operate at any point on the load line.



## **Operating point**

The operating point is determined by the <u>base</u> current.



#### The operating point is called the Q or quiescent point.



This Q point is in the linear region.

#### Saturation and cutoff are non-linear operating points.



These Q points are used in switching applications.

#### **Transistor circuits**

- Amplifying and switching
- Amplifying Q point is in the active region
- Switching Q point switches between saturation and cutoff

## **Transistor Switching Networks**

Transistors with only the DC source applied can be used as electronic switches.



## **Transistor Switch Using Base Bias**

- Base bias is used
- The Q point <u>switches</u> between saturation and cutoff
- Switching circuits, also called two-state circuits, are used in <u>digital</u> applications

## Hard Saturation Used In Transistor Switches

Figure 7-8 (a) Hard saturation; (b) load line.



## Problems with Base bias

- The least predictable
- •Q point moves with replacement
- •Q point moves with temperature
- Not practical





$$V_C = 15 \text{ V} - (1.95 \text{ mA})(1 \text{ k}\Omega) = 13.1 \text{ V}$$
 $V_{CE} = 13.1 \text{ V} - 4.3 \text{ V} = 8.8 \text{ V}$ 

## **Comparing Base Bias and Emitter Bias**

- Base bias is subject to variations in transistor current gain.
- Base bias is subject to temperature effects.
- Emitter bias almost eliminates these effects.
- The transistor current gain is not required when solving circuits with emitter bias.

# Base-Biased and Emitter-Biased LED Drivers



- The base-biased LED driver is designed to operate between cutoff and hard saturation
  - LED voltage drop changes LED current and brightness
- The emitter-biased LED driver is designed to operate between cutoff and active region
  - LED voltage drop has no effect on LED current

## Voltage divider bias

- Base circuit contains a voltage divider
- Most widely used
- Known as VDB

- Very stable
- Eliminates the need for two supplies of emitter bias.
  - Requires just 1 supply
- The most popular



# Voltage divider bias circuit $+V_{CC}$ $R_1$ and $R_2$ form a voltage divider

## Divider analysis:

$$\mathbf{V}_{\mathrm{BB}} = \frac{\mathbf{R}_2}{\mathbf{R}_1 + \mathbf{R}_2} \, \mathbf{V}_{\mathrm{CC}}$$

ASSUMPTION: The <u>base</u> current is normally <u>much</u> <u>smaller</u> than the divider current.



### Now the circuit can be viewed this way:

### To complete the analysis:

$$I_{E} = \frac{V_{BB} - V_{BE}}{R_{E}}$$

$$I_{C} \cong I_{E}$$

$$V_{C} = V_{CC} - I_{C}R_{C}$$

$$V_{CE} = V_{C} - V_{E}$$



#### Example 8-1

Figure 8-2 Example.

What is the collector-emitter voltage in Fig. 8-2?



SOLUTION The voltage divider produces an unloaded output voltage of:

$$V_{BB} = \frac{2.2 \text{ k}\Omega}{10 \text{ k}\Omega + 2.2 \text{ k}\Omega} 10 \text{ V} = 1.8 \text{ V}$$

Subtract 0.7 V from this to get:

$$V_E = 1.8 \text{ V} - 0.7 \text{ V} = 1.1 \text{ V}$$

The emitter current is:

$$I_E = \frac{1.1 \text{ V}}{1 \text{ k}\Omega} = 1.1 \text{ mA}$$

Since the collector current almost equals the emitter current, we can calculate the collector-to-ground voltage like this:

$$V_C = 10 \text{ V} - (1.1 \text{ mA})(3.6 \text{ k}\Omega) = 6.04 \text{ V}$$

The collector-emitter voltage is:

$$V_{CE} = 6.04 - 1.1 \text{ V} = 4.94 \text{ V}$$

Here is an important point: The calculations in this preliminary analysis do not depend on changes in the transistor, the collector current, or the temperature. This is why the Q point of this circuit is stable, almost rock-solid.

## **VDB** analysis

- The base current must be <u>much smaller</u> than current through the divider
- With the <u>base voltage constant</u>, the circuit <u>produces</u> a <u>stable</u> Q point under varying operational conditions



#### A Thevenin model of the bias circuit:



### The 100:1 rule applied to the bias circuit:



## Sometimes a <u>firm divider</u> is chosen. +V<sub>CC</sub>

$$R_1 || R_2 < 0.1 \beta_{dc} R_E$$

### A closer approximation:

$$I_{E} = \frac{V_{BB} - V_{BE}}{R_{E} + \frac{R_{1}||R_{2}}{\beta_{dc}}}$$



## **VDB** load line and Q point

- VDB is <u>derived</u> from emitter bias
- The Q point is <u>immune</u> to changes in current gain
- The Q point is <u>moved</u> by varying the emitter resistor





## **Other Biasing Techniques**

## **Emitter-feedback bias or Emitter- Stabilized Bias Circuit**



- Adding an emitter resistor to base-bias stabilizes the circuit.
- Uses Feedback Compensation
- Q point still moves
- Not popular



Figure: DC Equivalent Circuit

## Collector-feedback bias



- •Better than emitter-feedback bias
- Q point still moves
- •Some applications because of circuit simplicity

### Collector- and emitter-feedback bias:

### Our text calls it DC Bias With Voltage Feedback





- Better than emitter-feedback bias
- Not as good as voltage-divider bias
- Limited application

# EMITTER-FOLLOWER CONFIGURATION



- · The output is taken off the emitter terminal
  - In fact, any of the bias configurations can be used so long as there is a resistor in the emitter leg.

### **EMITTER-FOLLOWER DC ANALYSIS**



$$-I_B R_B - V_{BE} - I_E R_E + V_{EE} = 0$$
$$I_E = (\beta + 1)I_B$$

$$I_B = \frac{V_{EE} - V_{BE}}{R_B + (\beta + 1)R_E}$$

$$-V_{CE}-I_{E}R_{E}+V_{EE}=0$$

$$V_{CE} = V_{EE} - I_E R_E$$

**EXAMPLE 4.16** Determine  $V_{CE_Q}$  and  $I_{E_Q}$  for the network of Fig. 4.48.



$$I_B = \frac{V_{EE} - V_{BE}}{R_B + (\beta + 1)R_E}$$

$$= \frac{20 \text{ V} - 0.7 \text{ V}}{240 \text{ k}\Omega + (90 + 1)2 \text{ k}\Omega} = \frac{19.3 \text{ V}}{240 \text{ k}\Omega + 182 \text{ k}\Omega}$$

$$= \frac{19.3 \text{ V}}{422 \text{ k}\Omega} = 45.73 \,\mu\text{A}$$

$$V_{CE_Q} = V_{EE} - I_E R_E$$

$$= V_{EE} - (\beta + 1)I_B R_E$$

$$= 20 \text{ V} - (90 + 1)(45.73 \,\mu\text{A})(2 \,\text{k}\Omega)$$

$$= 20 \text{ V} - 8.32 \text{ V}$$

$$= 11.68 \text{ V}$$

$$I_{E_Q} = (\beta + 1)I_B = (91)(45.73 \,\mu\text{A})$$

$$= 4.16 \,\text{mA}$$

#### **COMMON-BASE CONFIGURATION**



- The input signal is applied at the emitter terminal
- The base is at ground potential.
- It is a fairly popular configuration because in the ac domain it has a very low input impedance, high output impedance, and good gain.

**EXAMPLE 4.17** Determine the currents  $I_E$  and  $I_B$  and the voltages  $V_{CE}$  and  $V_{CB}$  for the common-base configuration of Fig. 4.52.



## Multiple BJT Networks: R-C Coupled BJT Amplifiers



- The R–C coupling is probably the most common.
- The collector output of one stage is fed directly into the base of the next stage using a coupling capacitor C<sub>C</sub>
- The capacitor is chosen to ensure that it will block dc between the stages and act like a short circuit to any ac signal.

## Multiple BJT Networks: R-C Coupled BJT Amplifiers



DC equivalent of Fig. 4.64.

• Substituting an open-circuit equivalent for  $C_{\rm C}$  and the other capacitors of the network results in the two bias circuits

## Multiple BJT Networks: The Darlington Configuration

 The output of one stage is directly fed into the input of the succeeding stage.



- If the output is taken directly off the emitter terminal, the ac gain is very close to 1 but the input impedance is very high
  - Attractive for use in amplifiers operating off sources that have a relatively high internal resistance.
  - If the output taken off the collector terminal, the configuration would provide a very high gain

## The Darlington Configuration



$$I_{B_2} = I_{E_1} = (\beta_1 + 1)I_{B_1}$$
 
$$I_{E_2} = (\beta_2 + 1)I_{B_2} = (\beta_2 + 1)(\beta_1 + 1)I_{B_1}$$

Assuming  $\beta \gg 1$  for each transistor,

$$I_{B_1} = \frac{V_{CC} - V_{BE_1} - V_{BE_2}}{R_B + (\beta_D + 1)R_E}$$

$$V_{BE_D} = V_{BE_1} + V_{BE_2}$$

$$I_{B_1} = \frac{V_{CC} - V_{BE_D}}{R_B + (\beta_D + 1)R_E}$$

$$I_{C_2} \cong I_{E_2} = \beta_D I_{B_1}$$

FIG. 4.67

DC equivalent of Fig. 4.66.

$$V_{CE_2} = V_{CC} - V_{E_2}$$
 where  $V_{E_2} = I_{E_2}R_E$ 

$$V_{E_2} = I_{E_2} R_E$$

## Multiple BJT Networks: The Cascode Configuration



- It ties the collector of one transistor to the emitter of the other.
- A network with a high gain and a reduced Miller capacitance (to be discussed later)

# The Cascode Configuration: DC Analysis



### **CURRENT MIRRORS**

 A dc network in which the current through a load is controlled by a current at another point in the network



FIG. 4.74

Current mirror using back-to-back BJTs.

### **CURRENT MIRRORS**



FIG. 4.74

Current mirror using back-to-back BJTs.



Base characteristics

Assume identical transistors will result in  $V_{BE_1} = V_{BE_2}$  and  $I_{B_1} = I_{B_2}$ 

$$I_B = I_{B_1} + I_{B_2}$$
 $I_{B_1} = I_{B_2}$ 
 $I_B = I_{B_1} + I_{B_1} = 2I_{B_1}$ 

$$I_{\text{control}} = I_{C_1} + I_B = I_{C_1} + 2I_{B_1}$$
 $I_{C_1} = \beta_1 I_{B_1}$ 
 $I_{\text{control}} = \beta_1 I_{B_1} + 2I_{B_1} = (\beta_1 + 2)I_{B_1}$ 
 $I_{\text{control}} \cong \beta_1 I_{B_1}$ 

$$I_{B_1} = \frac{I_{\text{control}}}{\beta_1}$$

$$I_{\text{control}} = \frac{V_{CC} - V_{BE}}{R}$$

The resistor R can be used to set the control current

$$I_{L} \uparrow I_{C_{2}} \uparrow I_{B_{2}} \uparrow V_{BE_{2}} \uparrow V_{CE_{1}} \uparrow, I_{R} \downarrow, I_{B} \downarrow, I_{B_{2}} \downarrow I_{C_{2}} \downarrow I_{L} \downarrow$$

$$Note$$

#### **EXAMPLE 4.27** Calculate the mirrored current *I* in the circuit of Fig. 4.76.



Current mirror circuit for Example 4.27.

**Solution:** Eq. (4.75):

$$I = I_{\text{control}} = \frac{V_{CC} - V_{BE}}{R} = \frac{12 \text{ V} - 0.7 \text{ V}}{1.1 \text{ k}\Omega} = 10.27 \text{ mA}$$

### **CURRENT SOURCE CIRCUITS**



- An ideal current source provides a constant current regardless of the load connected to it.
- Constant-current circuits can be built using bipolar devices, FET devices, and a combination of these components.

## Bipolar Transistor Constant-Current Source

 Bipolar transistors can be connected in a number of ways to form constant-current sources



FIG. 4.81

$$V_B = \frac{R_1}{R_1 + R_2} (-V_{EE})$$

$$V_E = V_B - 0.7 \text{ V}$$

$$I_E = \frac{V_E - (-V_{EE})}{R_E} \approx I_C$$

• *I<sub>C</sub>* is the constant current provided by the circuit.

#### **EXAMPLE 4.29** Calculate the constant current *I* in the circuit of Fig. 4.82.



FIG. 4.82

Constant-current source for Example 4.29.

$$V_B = \frac{R_1}{R_1 + R_2} (-V_{EE}) = \frac{5.1 \text{ k}\Omega}{5.1 \text{ k}\Omega + 5.1 \text{ k}\Omega} (-20 \text{ V}) = -10 \text{ V}$$

$$V_E = V_B - 0.7 \text{ V} = 10 \text{ V} - 0.7 \text{ V} = -10.7 \text{ V}$$

$$I = I_E = \frac{V_E - (-V_{EE})}{R_E} = \frac{-10.7 \text{ V} - (-20 \text{ V})}{2 \text{ k}\Omega}$$

$$= \frac{9.3 \text{ V}}{2 \text{ k}\Omega} = 4.65 \text{ mA}$$

# Transistor/Zener Constant-Current Source



$$I \approx I_E = \frac{V_Z - V_{BE}}{R_E}$$

- Provides an improved constant-current source
- The constant current depends on the Zener diode voltage and the emitter resistor R<sub>F</sub>
- The voltage supply  $V_{EE}$  has no effect on the value of I.

#### **EXAMPLE 4.30** Calculate the constant current *I* in the circuit of Fig. 4.84.



FIG. 4.84

Constant-current circuit for Example 4.30.

#### **Solution:**

Eq. (4.83): 
$$I = \frac{V_Z - V_{BE}}{R_E} = \frac{6.2 \text{ V} - 0.7 \text{ V}}{1.8 \text{ k}\Omega} = 3.06 \text{ mA} \approx 3 \text{ mA}$$

## **Biasing PNP Transistors**



- The analysis for pnp transistor biasing circuits is the same as that for npn transistor circuits.
  - The only difference is that the currents are flowing in the opposite direction.

# PNP Biasing with a negative supply



# PNP Biasing with a positive supply



## Troubleshooting a transistor

- Ohmmeter <u>resistance</u> tests
- DMM <u>resistance</u> or h<sub>FE</sub> <u>function</u> tests
- In-circuit voltage measurements

## **Troubleshooting: Out-of- Circuit Tests**



| + | - | Reading |
|---|---|---------|
| В | Ε | 0.7     |
| E | В | 0L      |
| В | С | 0.7     |
| C | В | 0L      |
| С | E | 0L      |
| E | C | OL      |

(a)



|                | <i>c</i> |      | C |
|----------------|----------|------|---|
| c<br>I         | Р        |      | ¥ |
| B - B -        | N        | = B- | - |
| Y <sub>E</sub> | Р        |      | * |
|                | F        |      | Ē |

| + | - | Readings |
|---|---|----------|
| В | Ε | OL       |
| Ε | В | 0.7      |
| В | С | OL       |
| С | В | 0.7      |
| С | Ε | OL       |
| E | С | OL       |



### In- Circuit Test: Transistor curve tracer



## **More Optoelectronic devices**

- A phototransistor has current gain and is more sensitive than a photodiode
- <u>Combined</u> with an LED, a phototransistor provides a more sensitive optocoupler



# Optocoupler with LED and phototransistor

Figure 7-23 (a) Optocoupler with LED and phototransistor; (b) optocoupler IC.





Brian Moeskau/Brian Moeskau Photography

## **Logic Gates**



| A | В | C |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

$$1 = high$$
$$0 = low$$



