PDE and Martingale Methods in Option Pricing

WANG SIBO September 1, 2022

Contents

Chapter 1.	1
Chapter 2.	3
Chapter 3.	5
Chapter 4.	7
Chapter 5.	9
Chapter 6.	11
Chapter 7.	13
Chapter 8.	15
Chapter 9.	17
Chapter 10.	19
Chapter 11.	21
Chapter 12.	23
Chapter 13.	25
Chapter 14.	27
Chapter 15.	29
Chapter 16. Elements of Malliavin calculus	31
1. Stochastic derivative	31

Elements of Malliavin calculus

1. Stochastic derivative

proposition 16.1. $\forall n \in \mathbb{N}, \ W_T \in \mathcal{S}_n.$ **Proof.** Given n, if $\varphi(\Delta_n) = \varphi(x_1, \dots, x_{2^n}) \coloneqq x_1 + \dots + x_{2^n}$, then $\varphi(\Delta_n) \in \mathcal{S}_n.$ Therefore $W_T \in \mathcal{S}_n.$ \square **proposition 16.2.** $\forall n \in \mathbb{N}, \ \mathcal{S}_n \subseteq \mathcal{S}_{n+1}.$ **Proof.** The partition length is $\frac{1}{2^n}$ for each $n \in \mathbb{N}.$ \square **proposition 16.3.** \mathcal{S} is dense in $L^p(\Omega, \mathcal{F}_T^W).$

Note 16.4. Given a filtered measure space $(\Omega, \mathcal{A}, \mathcal{A}_n, \mu)$, for each $X \in \mathcal{S}_n$, X and $D_t X$ are both measurable functions: $\Omega \to \mathbb{R}$.