	<pre>import pandas as pd from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn import linear_model</pre> Creating custom dataset
	<pre># please don't change random_state X, y = make_classification(n_samples=50000, n_features=15, n_informative=10, n_redundant=5,</pre>
	X.shape, y.shape ((50000, 15), (50000,)) Splitting data into train and test
	<pre>#please don't change random state # you need not standardize the data as it is already standardized X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=15)</pre> X_train.shape, y_train.shape, X_test.shape, y_test.shape
	((37500, 15), (37500,), (12500, 15), (12500,)) SGD classifier
	<pre># alpha : float # Constant that multiplies the regularization term. # eta0 : double # The initial learning rate for the 'constant', 'invscaling' or 'adaptive' schedules.</pre>
	<pre>clf = linear_model.SGDClassifier(eta0=0.0001, alpha=0.0001, loss='log', random_state=15, penalty='l2', tol=1e-3, verbose=2, learning_rate='constant') clf # Please check this documentation (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html) SGDClassifier(eta0=0.0001, learning_rate='constant', loss='log',</pre>
	clf.fit(X=X_train, y=y_train) # fitting our model Epoch 1 Norm: 0.77, NNZs: 15, Bias: -0.316653, T: 37500, Avg. loss: 0.455552 Total training time: 0.02 seconds Epoch 2 Norm: 0.91, NNZs: 15, Bias: -0.472747, T: 75000, Avg. loss: 0.394686
 -	Total training time: 0.03 seconds. Epoch 3 Norm: 0.98, NNZs: 15, Bias: -0.580082, T: 112500, Avg. loss: 0.385711 Total training time: 0.04 seconds. Epoch 4 Norm: 1.02, NNZs: 15, Bias: -0.658292, T: 150000, Avg. loss: 0.382083 Total training time: 0.06 seconds. Epoch 5
	Norm: 1.04, NNZs: 15, Bias: -0.719528, T: 187500, Avg. loss: 0.380486 Total training time: 0.07 seconds. Epoch 6 Norm: 1.05, NNZs: 15, Bias: -0.763409, T: 225000, Avg. loss: 0.379578 Total training time: 0.08 seconds. Epoch 7 Norm: 1.06, NNZs: 15, Bias: -0.795106, T: 262500, Avg. loss: 0.379150 Total training time: 0.09 seconds.
	Epoch 8 Norm: 1.06, NNZs: 15, Bias: -0.819925, T: 300000, Avg. loss: 0.378856 Total training time: 0.10 seconds Epoch 9 Norm: 1.07, NNZs: 15, Bias: -0.837805, T: 337500, Avg. loss: 0.378585 Total training time: 0.11 seconds Epoch 10 Norm: 1.08, NNZs: 15, Bias: -0.853138, T: 375000, Avg. loss: 0.378630
	Total training time: 0.12 seconds. Convergence after 10 epochs took 0.12 seconds SGDClassifier(eta0=0.0001, learning_rate='constant', loss='log', random_state=15, verbose=2) clf.coef_, clf.coefshape, clf.intercept_ #clf.coef_ will return the weights
	#clf.coefshape will return the shape of weights #clf.intercept_ will return the intercept term (array([[-0.42336692, 0.18547565, -0.14859036, 0.34144407, -0.2081867 ,
	mplement Logistic Regression with L2 regularization Using SGD: without using sklearn 1. We will be giving you some functions, please write code in that functions only.
	 2. After every function, we will be giving you expected output, please make sure that you get that output. Initialize the weight_vector and intercept term to zeros (Write your code in def initialize_weights()) Create a loss function (Write your code in def logloss())
	$logloss = -1 * \frac{1}{n} \Sigma_{foreachYt,Y_{pred}}(Ytlog10(Y_{pred}) + (1 - Yt)log10(1 - Y_{pred}))$ • for each epoch: • for each batch of data points in train: (keep batch size=1)
	o calculate the gradient of loss function w.r.t each weight in weight vector (write your code in def gradient_dw()) $dw^{(t)} = x_n(y_n - \sigma((w^{(t)})^T x_n + b^t)) - \frac{\lambda}{N} w^{(t)})$ o Calculate the gradient of the intercept (write your code in def gradient_db()) check this
	$db^{(t)}=y_n-\sigma((w^{(t)})^Tx_n+b^t))$ • Update weights and intercept (check the equation number 32 in the above mentioned pdf): $w^{(t+1)}\leftarrow w^{(t)}+\alpha(dw^{(t)})$ $b^{(t+1)}\leftarrow b^{(t)}+\alpha(db^{(t)})$
Ir	 b(x) + α(ab(x)) calculate the log loss for train and test with the updated weights (you can check the python assignment 10th question) And if you wish, you can compare the previous loss and the current loss, if it is not updating, then you can stop the training append this loss in the list (this will be used to see how loss is changing for each epoch after the training is over)
	<pre>def initialize_weights(row_vector): ''' In this function, we will initialize our weights and bias''' #initialize the weights as 1d array consisting of all zeros similar to the dimensions of row_vector #you use zeros_like function to initialize zero, check this link https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros_like.html #initialize bias to zero w=np.zeros_like(row_vector) b=0</pre>
	<pre>b=0 return w,b row_vector=X_train[10] w,b = initialize_weights(row_vector) print('w =',(w)) print('b =',str(b))</pre>
1	w = [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0
	<pre>w, b = initialize_weights(dim) def grader_weights(w,b): assert((len(w)==len(dim)) and b==0 and np.sum(w)==0.0) return True grader_weights(w,b)</pre>
s	Compute sigmoid $iigmoid(z) = 1/(1 + exp(-z))$
	<pre>import numpy as np def sigmoid(z): ''' In this function, we will return sigmoid of z''' # compute sigmoid(z) and return return (1/(1+m.exp(-z)))</pre>
	def grader_sigmoid(z): val=sigmoid(z) assert(val==0.8807970779778823) return True grader_sigmoid(2)
C	True $Compute loss \ ogloss = -1*rac{1}{n}\Sigma_{foreachYt,Y_{pred}}(Ytlog10(Y_{pred})+(1-Yt)log10(1-Y_{pred}))$
	<pre>def logloss(y_true,y_pred): # you have been given two arrays y_true and y_pred and you have to calculate the logloss #while dealing with numpy arrays you can use vectorized operations for quicker calculations as compared to using loops #https://www.pythonlikeyoumeanit.com/Module3_IntroducingNumpy/VectorizedOperations.html #https://www.geeksforgeeks.org/vectorized-operations-in-numpy/ #write your code here losses=0</pre>
(<pre>for i in range(len(y_pred)): losses=(y_true[i]*np.log10(y_pred[i])) +((1-y_true[i])*np.log10(1-y_pred[i])) +losses return ((-1*losses)/len(y_pred))</pre> Grader function - 3
	<pre>#round off the value to 8 values def grader_logloss(true, pred): loss=logloss(true, pred) assert(np.round(loss, 6)==0.076449) return True true=np.array([1,1,0,1,0]) pred=np.array([1,1,0,1,0])</pre>
C	$\begin{array}{l} {\rm pred=np.array}([0.9,0.8,0.1,0.8,0.2]) \\ {\rm grader_logloss(true,pred)} \end{array}$ True $\begin{array}{l} {\rm Compute\ gradient\ w.r.to\ 'w'} \\ {\rm d}w^{(t)} = x_n(y_n - \sigma((w^{(t)})^Tx_n + b^t)) - \frac{\lambda}{N}w^{(t)}} \end{array}$
	<pre>def multiplication_fun(X,Y): sum1=0 for i in range(len(X)): sum1=sum1+X[i]*Y[i] return sum1</pre>
	<pre>#make sure that the sigmoid function returns a scalar value, you can use dot function operation def gradient_dw(x,y,w,b,alpha,N): '''In this function, we will compute the gardient w.r.to w ''' dw=x*(y-sigmoid(multiplication_fun(w,x)+b)-(alpha/N)*w)</pre>
	return dw Grader function - 4 def grader_dw(x,y,w,b,alpha,N): grad_dw=gradient_dw(x,y,w,b,alpha,N)
	<pre>assert(np.round(np.sum(grad_dw),5)==4.75684) return True grad_x=np.array([-2.07864835, 3.31604252, -0.79104357, -3.87045546, -1.14783286,</pre>
	-0.05708987, -0.064768 , 0.18012332, -0.16880843, -0.27079877]) grad_b=0.5 alpha=0.0001 N=len(X_train) grader_dw(grad_x, grad_y, grad_w, grad_b, alpha, N) True
d	Compute gradient w.r.to 'b' $lb^{(t)}=y_n-\sigma((w^{(t)})^Tx_n+b^t)$ #sb should be a scalar value def gradient_db(x,y,w,b):
	'''In this function, we will compute gradient w.r.to b ''' db=y-sigmoid(multiplication_fun(w,x)+b) return db Grader function - 5
	<pre>def grader_db(x,y,w,b): grad_db=gradient_db(x,y,w,b) assert(np.round(grad_db,4)==-0.3714) return True grad_x=np.array([-2.07864835, 3.31604252, -0.79104357, -3.87045546, -1.14783286,</pre>
	grad_y=0.5 grad_b=0.1 grad_w=np.array([0.03364887, 0.03612727, 0.02786927, 0.08547455, -0.12870234,
	grader_db(grad_x,grad_y,grad_w,grad_b,) True # prediction function used to compute predicted_y given the dataset X def pred(w,b, X):
	<pre>N = len(X) predict = [] for i in range(N): z=np.dot(w,X[i])+b predict.append(sigmoid(z)) return np.array(predict)</pre>
	<pre>import math def train(X_train, y_train, X_test, y_test, epochs, alpha, eta, N): # Initialize the weights #write your code to perform SGD</pre>
	<pre>#write your code to perform SGD # iterating over each epochs #for each instance of the table w,b=initialize_weights(X_train[0]) #weight initalization train_loss_list,test_loss_list=[],[] # creating the list which store the train & test score for i in range(0,epochs): #for each epoch for i in range(0,len(X_train)): #for each data point w1=gradient_dw(X_train[i],y_train[i],w,b,alpha,N) h1=gradient_dw(X_train[i],y_train[i],w,b)</pre>
	<pre>b1=gradient_db(X_train[i],y_train[i],w,b) w=w+(eta*w1) #updating the weight b=b+(eta*b1) #updating the intercept y_pred_training=pred(w,b,X_train) training_loss=logloss(y_train,y_pred_training) train_loss_list.append(training_loss) y_pred_test=pred(w,b,X_test) testing_loss=logloss(y_test,y_pred_test)</pre>
	test_loss_list.append(testing_loss) return w,b,train_loss_list,test_loss_list alpha=0.0001 eta0=0.0001
	N=len(X_train) epochs=20 w,b,train_loss,test_loss=train(X_train,y_train,X_test,y_test,epochs,alpha,eta0,N) import numpy as np
	#print thr value of weights w and bias b print(w) print(b) [-4.29394719e-01 1.92911530e-01 -1.48319219e-01 3.38095823e-01 -2.20731204e-01 5.69669877e-01 -4.45186059e-01 -9.00099047e-02
	-2.20731204e-01 5.69669877e-01 -4.45186059e-01 -9.00099047e-02 2.21598216e-01 1.73588009e-01 1.98538397e-01 -4.13161582e-04 -8.11249978e-02 3.39070557e-01 2.29369038e-02] -0.8897519366656894 # these are the results we got after we implemented sgd and found the optimal weights and intercept w-clf.coef_, b-clf.intercept_
	(array([[-0.0060278
C	Compare your implementation and SGDClassifier's the weights and intercept, make sure they are as close as possible i.e difference should be in order of 10^-2 Grader function - 6 #this grader function should return True #the difference between custom weights and clf. coef. should be less than or equal to 0.05
	<pre>#the difference between custom weights and clf.coef_ should be less than or equal to 0.05 def differece_check_grader(w,b,coef,intercept): val_array=np.abs(np.array(w-coef)) assert(np.all(val_array<=0.05)) print('The custom weights are correct') return True differece_check_grader(w,b,clf.coef_,clf.intercept_)</pre>
P	The custom weights are correct True Plot your train and test loss vs epochs Flot epoch number on X-axis and loss on Y-axis and make sure that the curve is converging
	<pre>import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline import warnings warnings.simplefilter(action='ignore', category=FutureWarning)</pre>
	<pre>plt.plot(train_loss, 'g', label='Training_loss') plt.plot(test_loss, 'r', label='Testing_Loss') plt.title('loss changes on increasing epochs') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show()</pre>
	loss changes on increasing epochs 0.176 0.174 Training_loss Testing_Loss
	0.172 - 10.170 - 10.168 - 10.166 - 10.1
	0.164 0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 Epochs
	<pre>print(len(train_loss),len(test_loss)) 20 20</pre>