Các quy tắc tính đạo hàm

1. Lý thuyết

a) Đạo hàm của một hàm số lượng giác

Đạo hàm các hàm số sơ cấp cơ bản	Đạo hàm các hàm hợp $u = u(x)$					
(c)' = 0 (c là hằng số)						
(x)' = 1						
$(x^{\alpha})' = \alpha x^{\alpha-1}$	$(u^{\alpha})' = \alpha.u'.u^{\alpha-1}$					
$\left(\frac{1}{x}\right)' = -\frac{1}{x^2}; \ x \neq 0$	$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$					
$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}; \ x > 0$	$\left(\sqrt{u}\right)' = \frac{u'}{2\sqrt{u}}$					

b) Các quy tắc tính đạo hàm

Cho các hàm số u=u(x), v=v(x) có đạo hàm tại điểm x thuộc khoảng xác định. Ta có:

1.
$$(u + v)' = u' + v'$$

2.
$$(u - v)' = u' - v'$$

$$3. (u.v)' = u'.v + v'.u$$

4.
$$\left(\frac{\mathbf{u}}{\mathbf{v}}\right)' = \frac{\mathbf{u}'\mathbf{v} - \mathbf{v}'\mathbf{u}}{\mathbf{v}^2} \left(\mathbf{v} = \mathbf{v}(\mathbf{x}) \neq 0\right)$$

Chú ý:

a)
$$(k.v)' = k.v'$$
 (k: hằng số)

b)
$$\left(\frac{1}{v}\right)' = -\frac{v'}{v^2} \quad \left(v = v(x) \neq 0\right)$$

Mở rộng:

$$(u_1 \pm u_2 \pm ... \pm u_n)' = u_1' \pm u_2' \pm ... \pm u_n'$$

$$(u.v.w)' = u'.v.w + u.v'.w + u.v.w'$$

c) Đạo hàm của hàm số hợp

Cho hàm số y = f(u(x)) = f(u) với u = u(x). Khi đó: $y_x' = y_u'.u_x'$

2. Phương pháp giải

- Sử dụng các quy tắc, công thức tính đạo hàm trong phần lý thuyết.
- Nhận biết và tính đạo hàm của hàm số hợp, hàm số có nhiều biểu thức.

3. Ví dụ minh họa

Ví dụ 1: Tính đạo hàm của các hàm số tại các điểm x_0 sau:

a)
$$y = 7 + x - x^2$$
, với $x_0 = 1$

b)
$$y = 3x^2 - 4x + 9$$
, với $x_0 = 1$

Lời giải

a)
$$y = 7 + x - x^2$$

Ta có:
$$y' = 1 - 2x$$

Vậy
$$y'(1) = 1 - 2$$
. $1 = -1$.

b)
$$y = 3x^2 - 4x + 9$$

Ta có:
$$y' = 6x - 4$$

$$V_{4}^2y y'(1) = 6.1 - 4 = 2.$$

Ví dụ 2: Tính các đạo hàm của các hàm số sau:

a)
$$y = -x^3 + 3x + 1$$

b)
$$y = (2x - 3)(x^5 - 2x)$$

c)
$$y = x^2 \sqrt{x}$$

d)
$$y = \frac{2x+1}{1-3x}$$

e)
$$y = \frac{2x^2 - 4x + 1}{x - 3}$$

Lời giải

a)
$$y' = (-x^3 + 3x + 1)' = -3x^2 + 3$$

b)
$$y = (2x - 3)(x^5 - 2x)$$
.

$$y' = [(2x-3)(x^5-2x)]'$$

$$=(2x-3)^{2}.(x^{5}-2x)+(x^{5}-2x)^{2}.(2x-3)$$

$$=2(x^5-2x)+(5x^4-2)(2x-3)$$

$$= 12x^5 - 15x^4 - 8x + 6.$$

c)
$$y = x^2 \sqrt{x}$$

$$y' = (x^2 \sqrt{x})' = (x^2)' . \sqrt{x} + (\sqrt{x})' . x^2$$

$$= 2x.\sqrt{x} + \frac{1}{2\sqrt{x}}.x^{2} = 2x\sqrt{x} + \frac{1}{2}x\sqrt{x} = \frac{5x\sqrt{x}}{2}.$$

$$d) y = \frac{2x+1}{1-3x}$$

$$\Rightarrow y' = \left(\frac{2x+1}{1-3x}\right)' = \frac{(2x+1)'(1-3x)-(1-3x)'(2x+1)}{(1-3x)^{2}}$$

$$= \frac{2(1-3x)+3(2x+1)}{(1-3x)^{2}} = \frac{5}{(1-3x)^{2}}.$$

$$e) y = \frac{2x^{2}-4x+1}{x-3}$$

$$\Rightarrow y' = \frac{(2x^{2}-4x+1)'(x-3)-(x-3)'(2x^{2}-4x+1)}{(x-3)^{2}}$$

$$= \frac{(4x-4)(x-3)-(2x^{2}-4x+1)}{(x-3)^{2}} = \frac{2x^{2}-12x+11}{(x-3)^{2}}$$

Ví dụ 3: Tính đạo hàm của các hàm số sau:

a)
$$y = (x^7 + x)^2$$

b)
$$y = (1 - 2x^2)^3$$

$$c) y = \left(\frac{2x+1}{x-1}\right)^3$$

d)
$$y = (1 + 2x)(2 + 3x^2)(3 - 4x^3)$$

e)
$$y = \sqrt{1 + 2x - x^2}$$

$$f) y = \frac{1+x}{\sqrt{1-x}}$$

Lời giải

a)
$$y = (x^7 + x)^2$$
. Sử dụng công thức $(u^{\alpha})' = \alpha . u^{\alpha - 1} . u'$ (với $u = x^7 + x$) $y' = 2(x^7 + x).(x^7 + x)' = 2(x^7 + x)(7x^6 + 1)$.

b)
$$y = (1 - 2x^2)^3$$
. Sử dụng công thức $(u^{\alpha})'$ với $u = 1 - 2x^2$
 $y' = 3(1 - 2x^2)^2 \cdot (1 - 2x^2)^2 = 3(1 - 2x^2)^2 (-4x) = -12x(1 - 2x^2)^2$.

c)
$$y = \left(\frac{2x+1}{x-1}\right)^3$$

Bước đầu tiên sử dụng $\left(u^{\alpha}\right)'$, với $u = \frac{2x+1}{x-1}$

$$y' = 3 \cdot \left(\frac{2x+1}{x-1}\right)^2 \cdot \left(\frac{2x+1}{x-1}\right)' = 3 \cdot \left(\frac{2x+1}{x-1}\right)^2 \cdot \frac{-3}{(x-1)^2} = -\frac{9(2x+1)^2}{(x-1)^4}.$$

d)
$$y = (1 + 2x)(2 + 3x^2)(3 - 4x^3)$$

$$y' = (1 + 2x)'(2 + 3x^2)(3 - 4x^3) + (1 + 2x)(2 + 3x^2)'(3 - 4x^3) + (1 + 2x)(2 + 3x^2)(3 - 4x^3)'$$

$$y' = 2(2 + 3x^2)(3 - 4x^3) + (1 + 2x)(6x)(3 - 4x^3) + (1 + 2x)(2 + 3x^2)(-12x^2)$$

$$y' = 12 - 16x^3 + 18x^2 - 24x^5 + 18x - 24x^4 + 36x^2 - 48x^5 - 72x^5 - 36x^4 - 48x^3 - 12x^2$$

$$y' = -144x^5 - 60x^4 - 64x^3 + 42x^2 + 18x + 12.$$

e)
$$y = \sqrt{1 + 2x - x^2}$$
. Sử dụng công thức $\left(\sqrt{u}\right)'$ với $u = 1 + 2x - x^2$

$$y' = \frac{(1+2x-x^2)'}{2\sqrt{1+2x-x^2}} = \frac{2-2x}{2\sqrt{1+2x-x^2}} = \frac{1-x}{\sqrt{1+2x-x^2}}.$$

f)
$$y = \frac{1+x}{\sqrt{1-x}}$$
. Sử dụng $\left(\frac{u}{v}\right)'$ được:

$$y' = \frac{(1+x)'\sqrt{1-x} - (\sqrt{1-x})'(1+x)}{(\sqrt{1-x})^2}$$

$$= \frac{\sqrt{1-x} - \frac{(1-x)'}{2\sqrt{1-x}}.(1+x)}{(1-x)}$$

$$= \frac{2(1-x)+(1+x)}{2\sqrt{1-x}.(1-x)} = \frac{3-x}{2\sqrt{1-x}(1-x)}.$$

4. Bài tập tự luyện

Câu 1. Cho hàm số f(x) xác định trên R bởi $f(x) = 2x^2 + 1$. Giá trị f'(-1) bằng:

$$C_{\rm r} - 4$$

D. 3

Câu 2. Cho hàm số $f(x) = -2x^2 + 3x$ xác định trên R. Khi đó f'(x) bằng:

$$A. - 4x - 3$$

B.
$$-4x + 3$$

C.
$$4x + 3$$

D.
$$4x - 3$$

Câu 3. Đạo hàm của hàm số $y = (1 - x^3)^5$ là:

A.
$$y' = 5(1 - x^3)^4$$

B.
$$y' = -15x^2(1-x^3)^4$$

C.
$$y' = -3(1 - x^3)^4$$

D.
$$y' = -5x^2(1-x^3)^4$$

Câu 4. Đạo hàm của hàm số $y = (x^2 - x + 1)^5$ là:

A.
$$4(x^2 - x + 1)^4(2x - 1)$$

B.
$$5(x^2 - x + 1)^4$$

C.
$$5(x^2-x+1)^4(2x-1)$$

D.
$$(x^2 - x + 1)^4 (2x - 1)$$

Câu 5. Đạo hàm của hàm số $y = -2x^5 + 4\sqrt{x}$ bằng biểu thức nào dưới đây?

A.
$$-10x^4 + \frac{1}{\sqrt{x}}$$

B.
$$-10x^4 + \frac{4}{\sqrt{x}}$$

A.
$$-10x^4 + \frac{1}{\sqrt{x}}$$
 B. $-10x^4 + \frac{4}{\sqrt{x}}$ **C.** $-10x^4 + \frac{2}{\sqrt{x}}$ **D.** $-10x^4 - \frac{1}{\sqrt{x}}$

D.
$$-10x^4 - \frac{1}{\sqrt{x}}$$

Câu 6. Hàm số $y = \frac{2x+1}{x-1}$ có đạo hàm là:

A.
$$y' = 2$$

B.
$$y' = -\frac{1}{(x-1)^2}$$

B.
$$y' = -\frac{1}{(x-1)^2}$$
 C. $y' = -\frac{3}{(x-1)^2}$ **D.** $y' = \frac{1}{(x-1)^2}$

D.
$$y' = \frac{1}{(x-1)^2}$$

Câu 7. Đạo hàm của hàm số $y = \sqrt{x^2 + x + 1}$ bằng biểu thức có dạng

$$\frac{ax+b}{2\sqrt{x^2+x+1}}$$
. Khi đó $a-b$ bằng:

A.
$$a - b = 2$$

B.
$$a - b = -1$$
 C. $a - b = 1$ **D.** $a - b = -2$

C.
$$a - b = 1$$

D.
$$a - b = -2$$

Câu 8. Cho hàm số $y = \frac{x^2 + x}{x - 2}$ đạo hàm của hàm số tại x = 1 là:

A.
$$y'(1) = -4$$

B.
$$y'(1) = -5$$

C.
$$y'(1) = -3$$

D.
$$y'(1) = -2$$

Câu 9. Cho hàm số $y = \frac{x}{\sqrt{4-x^2}}$. Tính y'(0) bằng:

A.
$$y'(0) = \frac{1}{2}$$
 B. $y'(0) = \frac{1}{3}$ **C.** $y'(0) = 1$

B.
$$y'(0) = \frac{1}{3}$$

C.
$$y'(0) = 1$$

D.
$$y'(0) = 2$$

Câu 10. Hàm số $y = \frac{(x-2)^2}{1-x}$ có đạo hàm là:

A.
$$y' = \frac{-x^2 + 2x}{(1-x)^2}$$
. **B.** $y' = \frac{x^2 - 2x}{(1-x)^2}$. **C.** $y' = -2(x-2)$ **D.** $y' = \frac{x^2 + 2x}{(1-x)^2}$

Câu 11. Cho hàm số f(x) xác định trên $D = [0; +\infty)$ cho bởi $f(x) = x\sqrt{x}$ có đạo hàm là:

A.
$$f'(x) = \frac{1}{2}\sqrt{x}$$
 B. $f'(x) = \frac{3}{2}\sqrt{x}$ **C.** $f'(x) = \frac{1}{2}\frac{\sqrt{x}}{x}$ **D.** $f'(x) = x + \frac{\sqrt{x}}{2}$

Câu 12. Hàm số $f(x) = \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$ xác định trên $D = (0; +\infty)$. Đạo hàm của f(x)là:

A.
$$f'(x) = x + \frac{1}{x} - 2$$

 $f'(x) = x - \frac{1}{x^2}$

C.
$$f'(x) = \sqrt{x} - \frac{1}{\sqrt{x}}$$

$$f'(x) = 1 - \frac{1}{x^2}.$$

Câu 13. Đạo hàm của hàm số $y = \frac{x^2 + x + 3}{x^2 + x - 1}$ bằng biểu thức có dạng ax + b

$$\frac{ax+b}{\left(x^2+x-1\right)^2}.$$
 Khi đó a + b bằng:

A.
$$a + b = -10$$
 B. $a + b = 5$ **C.** $a + b = -10$ **D.** $a + b = -12$

Câu 14. Đạo hàm của hàm số $y = (x^2 + 1)(5 - 3x^2)$ bằng biểu thức có dạng $ax^3 + bx$. Khi đó $T = \frac{a}{b}$ bằng:

A.
$$-1$$
 B. -2 **C.** 3 **D.** -3

Câu 15. Đạo hàm của hàm số $y = x^2(2x + 1)(5x - 3)$ bằng biểu thức có dạng $ax^3 + bx^2 + cx$. Khi đó a + b + c bằng:

A. 31

B. 24

C. 51

D. 34

Bảng đáp án

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
C	В	В	C	C	C	C	В	A	A	В	D	D	D	A