

Formularium

 $Academieja ar\ 2024-2025$

Timo Vandevenne

Dit document is nog niet klaar, als we nieuwe formules zien zal ik deze toevoegen.

Formule	Variabelen en uitleg
Verdunningsregel: $M_i V_i = M_f V_f$	M Molariteit [mol/l]
	m Molaliteit [mol/kg]
PV = nRT	P Druk
	V Volume
	R Gasconstante
	T Temperatuur [K]
$\Delta \mathbf{U} = q + \mathbf{w}$	ΔU Verandering van interne energie
	q warmteuitwisseling met omgeving
	(q>0: warmte van omgeving in systeem)
	w Arbeid verricht op/door het systeem
DAIZ	(w>0: arbeid op systeem)
$\mathbf{w} = -P\Delta V$	ΔV Volumeverandering
Wet van Hess:	ΔH_{rxn}^0 Reactieenthalpie
$\Delta H_{rxn}^0 = \sum i\Delta H_f^0(prod.) - \sum j\Delta H_f^0(reag.)$	$(\Delta H_{rxn}^0 > 0)$: endotherme reactie)
	H ⁰ Standaardvormingsenthalpie
A /T	i, j coefficiënten in reactievergelijking
$q = ms\Delta T$	m massa [g]
~	s Specifieke warmte $\left[\frac{J}{g^{\circ}C}\right]$
$q = C\Delta T$	∆T Temperatuurverandering
	C Warmtecapaciteit
$q_{sys} = 0 \Leftrightarrow q_{rxn} + q_{cal} + q_{opl} = 0$	
$q_{rxn} = n\Delta H_{rxn}^{\circ}$	
$\frac{q_{rxn} = n\Delta H_{rxn}^0}{E = h\nu = h\frac{c}{\lambda}}$	E Energie [J]
λ	\mathbf{h} constante van Planck = $6.62 \cdot 10^{-34} \text{Js}$
	$oldsymbol{ u}$ frequentie [Hz]
	c Lichtsnelheid = $3 \cdot 10^8 \frac{m}{s}$
	λ Golflengte [m]
$E_{kin,e^-} = h\nu - W$	W Werkfunctie: maat voor hoe sterk e^- in metaal worden
1010,0	vastgehouden
De Broglie: $\lambda = \frac{h}{p} = \frac{h}{mu}$	\mathbf{p} Impuls $\left[\frac{kg \cdot m}{s}\right]$
p mu	m Massa bewegend deeltje [kg]
	u Snelheid
Wet van Dalton: $P_i = y_i P_{tot}$	P _i Partieeldruk
. 00	y _i Molfractie gas [%]
Wet van Raoult: $P_i = x_i P_i^0$	x _i Molfractie vloeistof [%]
Wet van Henry: $P_i = x_i H_i = \frac{C_i}{k}$	C. Concentration
Wet van Henry. $F_i = x_i H_i = \frac{1}{k}$	C _i Concentratie
	H _i Henry constante
[Gle[Pld	k gegeven constante bij bep. temp
$K = \frac{[C]^c [D]^a}{[A]^a [B]^b}$	$aA+bB \rightleftharpoons cC+dD$
	K Evenwichtsconstante (K>1: Evenwicht naar rechts)
	[X] Concentratie van stof X
Principe van Le Châtelier	Systeem compenseert uitwendige stress gedeeltelijk
	Concentratieverandering
	• Druk & volumeverandering
	• Temperatuursverandering

Timo Vandevenne 2/2