# Design and Analysis of Algorithms

L09: Divide and Conquer

Dr. Ram P Rustagi
Sem IV (2020-Even)
Dept of CSE, KSIT/KSSEM
rprustagi@ksit.edu.in

### Resources

- Text book 2: Horowitz
- Text book I: Levitin
- https://visualgo.net/en

# Divide and Conquer Algo

- Divide (break) the problem (size n) into similar sub problems
  - Size of sub problems should be some factor of original e.g. n/c
    - When small enough, solve by brute force
- Conquer (Solve) the sub-problem
  - Use recursion to solve small problem
- Combine (Merge) the solution of sub-parts
- The cost is
  - Cost of breaking
  - Cost of solving subproblem
  - Cost of combining

# Divide and Conquer Approach



# Divide and Conquer Examples

- Sorting and Searching
- Binary Tree traversals
- Binary search
- Multiplication of large numbers (Karatsuba Algo)
- Matrix multiplicatin Strassen's algorithm
- Closest pair problem
- Convex Hull problem

- Given 16 balls with one defective (say lighter)
  - Identify the defective ball.



- Solution 1:
  - Compare 1 with 2
  - Compare 1 with 3
  - :
  - Compare 1 with 16
- Time taken:
  - 15 comparisons (worst case)









- Given 16 balls with one defective (say lighter)
  - Identify the defective ball.



- Solution 2:
  - Compare 1 with 2
  - Compare 3 with 4
  - :
  - Compare 15 with 16
- Time taken:
  - 8 comparisons (worst case)









- Given 16 balls with one defective (say lighter)
  - Identify the defective ball.



- Soltion3: Divide and Conquer
  - Divide into 2 sets, each of 8 balls
  - Compare 1-8 with 9-16, and divide the lighter set into two parts each of 4.

Continue the process till lighter ball is found

• Time taken: 4 comparisons (log<sub>2</sub>16)



- Given 16 balls with one defective (say lighter)
  - Identify the defective ball.



Soltion3:Time complexity

```
T(n) = T(n/2) + 1 #1 comparison reduces it by half
= T(n/4) + 1 + 1 = T(n/2^2) + 2
= T(n/2^3) + 3
:
= T(n/2^i) + i
= log_2 n
```

## Divide & Conquer: Control Abstraction

```
Algo D And C(P) {
  if Small(P)
    return S(P)
  else {
    Divide P into smaller sets P_1, ..., P_k
    Apply D And C to each subproblem
    return Combine (D And C(P_1),
                       D And C(P_k) )
```

## Divide and Conquer: Recurrence Relation

$$T(n) = \begin{cases} g(n) & n \text{ small} \\ T(n_1) + T(n_2) + \dots + T(n_k) + f(n) \text{ otherwise} \end{cases}$$

- T(n): time complexity for a problem of input size n
- g(n):time complexity for solving directly for small inputs
- f(n): Time complexity for dividing the problem into k subproblems and combining again from the solutions of k sub problems.
- k would vary depending upon the problem
  - Generally,  $n_1=n_2=...=n_k$
  - Assuming a instances, each of size n/b

$$T(n) = \begin{cases} T(1) & n = 1\\ aT(n/b) + f(n) & n > 1 \end{cases}$$

### Fun Exercise of Game of 128 numbers

 A practical fun example of Data structures and Algorithm

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   |
|-----|-----|-----|-----|-----|-----|-----|-----|
| 9   | 10  | 11  | 12  | 13  | 14  | 15  | 16  |
| 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  |
| 25  | 26  | 27  | 28  | 29  | 30  | 31  | 32  |
| 33  | 34  | 35  | 36  | 37  | 38  | 39  | 40  |
| 41  | 42  | 43  | 44  | 45  | 46  | 47  | 48  |
| 49  | 50  | 51  | 52  | 53  | 54  | 55  | 56  |
| 57  | 58  | 59  | 60  | 61  | 62  | 63  | 64  |
| 65  | 66  | 67  | 68  | 69  | 70  | 71  | 72  |
| 73  | 74  | 75  | 76  | 77  | 78  | 79  | 80  |
| 81  | 82  | 83  | 84  | 85  | 86  | 87  | 88  |
| 89  | 90  | 91  | 92  | 93  | 94  | 95  | 96  |
| 97  | 98  | 99  | 100 | 101 | 102 | 103 | 104 |
| 105 | 106 | 107 | 108 | 109 | 110 | 111 | 112 |
| 113 | 114 | 115 | 116 | 117 | 118 | 119 | 120 |
| 121 | 122 | 123 | 124 | 125 | 126 | 127 | 128 |

 $\mathbf{D}\mathbf{A}\mathbf{A}$ 

#### Game:

- . Go thru a set of cards
- . Say Y/N if present or not
- You will get your number graphically displayed to you

#### **Q**?:

Which algorithm we are discussing?

Aim: Can we find more such examples

RPR/

## Game of 128 numbers - b

| 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  |
|----|----|----|----|----|----|----|----|
| 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
| 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| 25 | 26 | 27 | 28 | 29 | 30 | 31 | 32 |
| 33 | 34 | 35 | 36 | 37 | 38 | 39 | 40 |
| 41 | 42 | 43 | 44 | 45 | 46 | 47 | 48 |
| 49 | 50 | 51 | 52 | 53 | 54 | 55 | 56 |
| 57 | 58 | 59 | 60 | 61 | 62 | 63 | 64 |
|    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |
|    |    |    |    |    |    |    |    |

## Game of 128 numbers - c

|   |   | 12  | 11  | 10  | 9   | 4   | 3   | 2   | 1   |
|---|---|-----|-----|-----|-----|-----|-----|-----|-----|
|   |   | 28  | 27  | 26  | 25  | 20  | 19  | 18  | 17  |
|   |   | 44  | 43  | 42  | 41  | 36  | 35  | 34  | 33  |
|   |   | 60  | 59  | 58  | 57  | 52  | 51  | 50  | 49  |
| X |   | 80  | 79  | 78  | 77  | 72  | 71  | 70  | 69  |
|   | ] | 96  | 95  | 94  | 93  | 88  | 87  | 86  | 85  |
|   | ] | 112 | 111 | 110 | 109 | 104 | 103 | 102 | 101 |
|   |   | 128 | 127 | 126 | 125 | 120 | 119 | 118 | 117 |
|   |   |     |     |     |     |     |     |     |     |
|   |   |     |     |     |     |     |     |     |     |
|   |   |     |     |     |     |     |     |     |     |
|   |   |     |     |     |     |     |     |     |     |
| X |   |     |     |     |     |     |     |     |     |
|   |   |     |     |     |     |     |     |     |     |
|   |   |     |     |     |     |     |     |     |     |
|   |   |     |     |     |     |     |     |     |     |

## Game of 128 numbers - d

|          | 8  | 7  | 6  | 5  | 4  | 3  | 2  | 1  |
|----------|----|----|----|----|----|----|----|----|
|          | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9  |
| X        | 24 | 23 | 22 | 21 | 20 | 19 | 18 | 17 |
|          | 32 | 31 | 30 | 29 | 28 | 27 | 26 | 25 |
|          | 72 | 71 | 70 | 69 | 68 | 67 | 66 | 65 |
|          | 80 | 79 | 78 | 77 | 76 | 75 | 74 | 73 |
|          | 88 | 87 | 86 | 85 | 84 | 83 | 82 | 81 |
|          | 96 | 95 | 94 | 93 | 92 | 91 | 90 | 89 |
|          |    |    |    |    |    |    |    |    |
| x        |    |    |    |    |    |    |    |    |
| <b>^</b> |    |    |    |    |    |    |    |    |
|          |    |    |    |    |    |    |    |    |
|          |    |    |    |    |    |    |    |    |
|          |    |    |    |    |    |    |    |    |
|          |    |    |    |    |    |    |    |    |
|          |    |    |    |    |    |    |    |    |

## Game of 128 numbers - d

|          |    |     |     |     |     |     |     |     | _ |   |   |   |  |  |
|----------|----|-----|-----|-----|-----|-----|-----|-----|---|---|---|---|--|--|
|          | 1  | 2   | 5   | 6   | 9   | 10  | 13  | 14  |   |   |   |   |  |  |
| <u>_</u> | 17 | 18  | 21  | 22  | 25  | 26  | 29  | 30  |   |   | 0 |   |  |  |
|          | 33 | 34  | 37  | 38  | 41  | 42  | 45  | 46  |   |   |   |   |  |  |
|          | 49 | 50  | 53  | 54  | 57  | 58  | 61  | 62  | x |   | x |   |  |  |
|          | 67 | 68  | 71  | 72  | 75  | 76  | 79  | 80  |   |   |   |   |  |  |
|          | 83 | 84  | 87  | 88  | 91  | 92  | 95  | 96  |   |   |   |   |  |  |
| _ 9      | 99 | 100 | 103 | 104 | 107 | 108 | 111 | 112 |   |   |   |   |  |  |
| 1        | 15 | 116 | 119 | 120 | 123 | 124 | 127 | 128 |   |   |   |   |  |  |
|          |    |     |     |     |     |     |     |     |   |   |   |   |  |  |
|          |    |     |     |     |     |     |     |     |   |   |   |   |  |  |
|          |    |     |     |     |     |     |     |     |   |   |   |   |  |  |
|          |    |     |     |     |     |     |     |     |   | x |   | x |  |  |
|          |    |     |     |     |     |     |     |     |   |   |   |   |  |  |
|          |    |     |     |     |     |     |     |     |   |   |   |   |  |  |
|          |    |     |     |     |     |     |     |     |   |   |   |   |  |  |
|          |    |     |     |     |     |     |     |     |   |   |   |   |  |  |
|          |    |     |     |     |     |     |     |     |   |   |   |   |  |  |

DAA/Divide and Conquer

KPK/

## Exercise G

- Exercise G
  - Work out the remaining 3 cards

# Solving Recurrence Relation

$$T(n) = aT(n/b) + f(n)$$

• Let n=bk, then

$$T(b^{k}) = aT(b^{k-1}) + f(b^{k})$$

$$= a[aT(b^{k-2}) + f(b^{k-1})] + f(b^{k})$$

$$= a^{2}T(b^{k-2}) + af(b^{k-1}) + f(b^{k})$$

$$= a^{3}T(b^{k-3}) + a^{2}f(b^{k-2}) + af(b^{k-1}) + a^{0}f(b^{k})$$

$$\vdots$$

$$= a^{k}T(b^{k-k}) + a^{k-1}f(b^{k-(k-1)} + a^{2}f(b^{k-2}) + af(b^{k-1}) + a^{0}f(b^{k})$$

$$= a^{k}T(1) + a^{k-1}f(b^{1}) + a^{k-2}f(b^{2}) + \dots + a^{0}f(b^{k})$$

$$= a^{k}[T(1) + f(b^{1})/a^{1} + f(b^{2})/a^{2} + \dots + f(b^{k})/a^{k}]$$

# Solving Recurrence Relation

$$T(n) = aT(n/b) + f(n)$$

$$T(b^k) = aT(b^{k-1}) + f(b^k)$$

$$= a^k [T(1) + f(b^1)/a^1 + f(b^2)/a^2 + \dots + f(b^k)/a^k]$$

$$= a^k [T(1) + \sum_{j=1}^k \frac{f(b^j)}{a^j}]$$

• Thus, T(n) depends upon a, b, and f()

As  $n=b^k$ , then  $k=log_b n$ , thus

 $a^k=a^{\log_b n}=n^{\log_b a}$ , the recursion equation becomes

$$T(n) = n^{\log_b a} [T(1) + \sum_{j=1}^{\log_b n} \frac{f(b^j)}{a^j}]$$
 (1)

# Recurrence Relation: Examples

```
• Example 01: a=2, b=2, T(1)=1, f(n)=n
 T(n) = 2T(n/2) + n
      = 2[2T(n/2^2)+n/2]=2^2T(n/2^2)+n+n
      = 2^{3}T(n/2^{3})+n+n+n
      = 2kT(1) + n + ... + n (log_2 n times)
      = 2k+n.log_2n
      = n + n. (log_2n)
      = n + nloq_2n = \Theta(nloq_2n)
 Using the eqn (1)
   log_ba=log_22=1, b/a=1\rightarrow f(bj)/aj=bj/aj=1
     T(n) = n^{\log_b a} [T(1) + \sum_{a^j}^{\log_b n} \frac{f(b^j)}{a^j}]
    = n[1+(1+1+...(\overset{i-1}{T}og_2n times)+1)]=nlog_2n
     =\Theta (nloq<sub>2</sub>n)
```

# Recurrence Relation: Examples

• Example 02: a=9, b=3, T(1)=4,  $f(n)=4n^6$  Given

```
log_ba=log_39=2,
f(bj)/aj=4b6j/aj=4*36j/32j=4*34j
```

$$T(n) = n^{\log_b a} [T(1) + \sum_{j=1}^{\log_b n} \frac{f(b^j)}{a^j}]$$

$$= n^2 \left[ 4 + (4 * 34 + 4 * 34 * 2 + ... + 4 * 34 * \log_3 n) \right]$$

$$= n^2 * 4 (34 * (\log_3 n + 1) - 1) / (34 - 1)$$

$$= c * n^2 * 34 * (\log_3 n) + d = c * n^2 * n^4 + d$$

$$= \Theta (n^6)$$

# Summary: Divide and Conquer

- Break the problem into smaller subsets
  - By a factor c i.e.  $n \rightarrow n/c$
- Conquer (Solve) the sub-problem
- Combine (Merge) the solution of sub-parts
- Example cases
  - Sorting and Searching
  - Binary Tree traversals
  - Binary search
  - Multiplication of large numbers (Karatsuba Algo)
  - Matrix multiplicatin Strassen's algorithm
  - Closest pair problem
  - Convex Hull problem

# Summary

- Divide and Conquer approach
- Cost efficiency:
  - Define recurrence relation
  - Solve the recurrance equation
- Example of binary search (visual)