COMS 6500 Homework 1

For each question show how you arrived at the answer.

- 1. Find $\max_{a \le x \le b} |f(x)|$ for the following functions and intervals.
 - a. $f(x) = \frac{2x}{x^2 + 1}$,
- [0,2]

5 points

- b. $f(x) = x^3 4x + 2$,
- [1,2] **5 points**
- 2. Answer the following questions and up to seven (7) decimal places
 - a. Find the third Taylor polynomial $P_3(x)$ for the function $f(x) = \sqrt{x + 1}$ about $x_0 = 0$. **5 points**
 - b. Approximate 0.5, 0.75, 1.25, 1.5 using P₃(x) **10 points**
 - c. Find the absolute errors and relative errors 5 points
 - d. Find the truncation error **5 points**

Please use the table below to summarize your results

	0.5	0.75	1.25	1.5
f(x)				
P ₃ (x)				
Absolute error				
Relative error				
Truncation error				

Absolute error =
$$|p - p^*|$$

Relative error = $\left|\frac{p - p^*}{p}\right|$
Truncation Error = $\frac{1}{(n+1)!} f^{(n+1)}(\eta)(x - x_0)^{(n+1)}$

- 3. Compute the absolute errors and relative error in the approximation of p by p^* put the answer in the form **a.o** x 10ⁿ (<u>Use three significant figures</u>.)
 - a. $p = e^{10}$, $p^* = 22000$

5 points

b. $p = 10^{\circ}, p^* = 1400$

5 points

c. p = 8, $p^* = 39900$

5 points

	Absolute Error	Relative Error
$p = e^{10}, p^* = 22000$		
p = 10 ⁻¹ , p* = 1400		

Absolute error =
$$|p - p^*|$$

Relative error = $\left| \frac{p - p^*}{p} \right|$

COMS 6500 Homework 1 Walkthrough

1a .
$$f(x) = \frac{2x}{x^2 + 1}$$
 , [0,2]

Self note: The video posted stated we could also just use WolframAlpha:

https://www.wolframalpha.com/input/?i=find+the+derivative+1%2F%282+sqrt%281+%2 B+x%29%29

This is solved by using the quotient rule.

The Quotient Rule

$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x)f'(x) - f(x)g'(x)}{[g(x)]^2}$$
The following parts were used:

•
$$f(x) = \frac{2x}{x^2 + 1}$$
, $f'(x) = 2$, $g(x) = x^2 + 1$, $g'(x) = 2x$

$$\bullet = \frac{(x^2+1)(2)-(2x)(2x)}{(x^2+1)^2}$$

$$\bullet = \frac{2x+2-4x^2}{(x^2+1)^2}$$

$$\bullet = \frac{2(-x^2+1)}{(x^2+1)^2}$$

• The derivative can equal zero when x = 1. Because it has a zero derivative, that point might be a maximum or minimum. We add this to the chart and pug it into the function.

х	f(x)
0	$\frac{2(0)}{(0)^2+1} = 0$
1	$\frac{2(1)}{(1)^2 + 1} = 1$

2	$\frac{2(2)}{(2)^2+1} = \frac{4}{5}$
	$(2)^2 + 1$ 3

• The max given the parameters is "1".

1b. $f(x) = x^3 - 4x + 2$, [1,2]

- First step is to find the derivative of f(x).
- $f'(x) = 3x^2 4$
- Factoring $(3x^2 4) = \mp \sqrt{1.3333} = \mp 1.155$
- That is in [1,2] so we include it on the chart.

•

х	f(x)
1	$(1)^3 - 4(1) + 2 = -1$
1.155	$(1.155)^3 - 4(1.155) + 2 = -1.079$
2	$(2)^3 - 4(2) + 2 = 2$

• The max given the parameters is "2". The min is "1.155"

2a. Find the third Taylor polynomial $P_3(x)$ for the function $f(x) = \sqrt{x+1}$ about $x_0 = 0$

• This is the Taylor polynomial formula:

$$T_n(x) = \sum_{j=0}^n \frac{f^{(j)}(a)}{j!} (x-a)^j = f(a) + \frac{f'(a)}{1!} (x-a) + \frac{f''(a)}{2!} (x-a)^2 + \dots + \frac{f^{(n)}(a)}{n!} (x-a)^n.$$

- Self note: Here is a video explaining it:
 - https://www.youtube.com/watch?v=8SsC5st4LnI
- Self note: Here is a video with a really close example problem:
 - https://www.youtube.com/watch?v=39s-mgfuuno
- Make a chart for what each part will be:

C

Part	Formula
Equation	$\sqrt{x+1}$
First Degree Taylor Polynomial Component	$(\frac{1}{2\sqrt{x+1}})/1!*(x-0)^1$
Second Degree Taylor Polynomial Component	$(-\frac{1}{4\sqrt{(x+1)^3}})/2!*(x-0)^2$

Third Degree Taylor Polynomial Component $\left(\frac{3}{8\sqrt{(x+1)^5}}\right)/3! * (x-0)^3$

- Note that for some parts above, the answers were simplified from dividing a fraction
- \circ First part to the first degree taylor polynomial is $\frac{\frac{1}{2\sqrt{x+1}}}{1!}$ without simplification.
- Use the formula from above to calculate the third degree taylor polynomial.

•
$$\sqrt{x+1} + (\frac{1}{2\sqrt{x+1}}) * 1! * (x-0)^1 + (-\frac{1}{4\sqrt{(x+1)^3}}) * 2! * (x-0)^2 + (\frac{3}{8\sqrt{(x+1)^5}}) * 3! * (x-0)^3$$

Part Formula Х Answer Equation 0.5 (See below) 1.4146936 First Degree Taylor 0.75 (See below) 1.5824851 Polynomial Component Second Degree 1.25 (See below) 1.8748714 **Taylor Polynomial** Component Third Degree 1.5 (See below) 2.0056739 **Taylor Polynomial** Component

For 0.5.

•
$$\sqrt{0.5 + 1} + (\frac{1}{2\sqrt{0.5 + 1}}) / 1! * (0.5 - 0)^1 + (-\frac{1}{4\sqrt{(0.5 + 1)^3}}) / 2! * (0.5 - 0)^2 + (\frac{3}{8\sqrt{(0.5 + 1)^5}}) / 3! * (0.5 - 0)^3$$

•
$$\sqrt{1.5}$$
 + $(\frac{1}{2\sqrt{1.5}})$ / 1 * 0.5 + $(-\frac{1}{4\sqrt{(1.5)^3}})$ / 2 * 0.5² + $(\frac{3}{8\sqrt{(1.5)^5}})$ / 6 * (0.5)³

•
$$1.2247448 + (\frac{1}{24494897}) * 0.5 + (-\frac{1}{73484692}) / 2 * 0.25 + (\frac{3}{220454076}) / 6 * 0.125$$

- 1.2247448 + 0.2041241 0.0170103 + 0.0028350
 - 0 1.4146936
- For 0.75:

•
$$\sqrt{0.75 + 1} + (\frac{1}{2\sqrt{0.75 + 1}}) / 1! * (0.75 - 0)^{1} + (-\frac{1}{4\sqrt{(0.75 + 1)^{3}}}) / 2! * (0.75 - 0)^{2} + (\frac{3}{8\sqrt{(0.75 + 1)^{3}}}) / 3! * (0.75 - 0)^{3}$$

•
$$\sqrt{1.75} + (\frac{1}{2\sqrt{1.75}}) / 1 * 0.75 + (-\frac{1}{4\sqrt{(0.75+1)^3}}) / 2 * (0.75-0)^2 + (\frac{3}{8\sqrt{(0.75+1)^5}}) / 6 * (0.75-0)^3$$

- 1.3228756 + 0.2834733 0.0303721 + 0.0065083
 - 0 1.5824851
- For 1.25:

•
$$\sqrt{x+1} + (\frac{1}{2\sqrt{x+1}}) / 1! * (x-0)^1 + (-\frac{1}{4\sqrt{(x+1)^3}}) / 2! * (x-0)^2 + (\frac{3}{8\sqrt{(x+1)^5}}) / 3! * (x-0)^3$$

•
$$\sqrt{1.25 + 1} + (\frac{1}{2\sqrt{1.25 + 1}}) / 1! * (x - 0)^1 + (-\frac{1}{4\sqrt{(1.25 + 1)^3}}) / 2! * (1.25 - 0)^2 + (\frac{3}{8\sqrt{(1.25 + 1)^5}}) / 3! * (1.25 - 0)^3$$

• 1.5 +
$$(\frac{1}{3})$$
 / 1 * 1.25 + $(-\frac{1}{4\sqrt{(1.25+1)^3}})$ / 2 * $(1.25-0)^2$ + $(\frac{3}{8\sqrt{(1.25+1)^5}})$ / 6 * 1.953125

•
$$\sqrt{x+1} + (\frac{1}{2\sqrt{x+1}}) / 1! * (x-0)^1 + (-\frac{1}{4\sqrt{(x+1)^3}}) / 2! * (x-0)^2 + (\frac{3}{8\sqrt{(x+1)^5}}) / 3! * (x-0)^3$$

•
$$\sqrt{1.5 + 1}$$
 + $(\frac{1}{2\sqrt{1.5 + 1}})$ / 1! * $(1.5 - 0)^1$ + $(-\frac{1}{4\sqrt{(1.5 + 1)^3}})$ / 2! * $(1.5 - 0)^2$ + $(\frac{3}{8\sqrt{(1.5 + 1)^5}})$ / 3! * $(1.5 - 0)^3$

•
$$\sqrt{2.5}$$
 + $(\frac{1}{2\sqrt{2.5}})$ / 1 * 1.5 + $(-\frac{1}{4\sqrt{(2.5)^3}})$ / 2 * $(1.5)^2$ + $(\frac{3}{8\sqrt{(2.5)^5}})$ / 6 * $(1.5)^3$

Currently, the table from earlier would be:

	0.5	0.75	1.25	1.5
f(x)	1.2247448	1.3228756	1.5	1.5811388
P ₃ (x)	1.4146936	1.5824851	1.8748714	2.0056739
Absolute error				
Relative error				
Truncation error				

• To find the absolute error, we use: Absolute error = |p - p*|

	0.5	0.75	1.25	1.5
f(x)	1.2247448	1.3228756	1.5	1.5811388
P ₃ (x)	1.4146936	1.5824851	1.8748714	2.0056739
Absolute error	0.1899488	0.2596095	0.3748714	0.4245351
Relative error				
Truncation error				

• To find the relative error, we use: Relative error =
$$\left| \begin{array}{c} p-p* \\ p \end{array} \right|$$

o 2.0056739

	0.5	0.75	1.25	1.5
f(x)	1.2247448	1.3228756	1.5	1.5811388
P ₃ (x)	1.4146936	1.5824851	1.8748714	2.0056739
Absolute error	0.1899488	0.2596095	0.3748714	0.4245351
Relative error	0.1550925	0.1962463	0.2499142	0.2684995
Truncation error				

- To find the truncation error, we use: Truncation Error = $\frac{1}{(n+1)!}$ f⁽ⁿ⁺¹⁾(n)(x x₀)⁽ⁿ⁺¹⁾
 - This is also known as Lagrange's formula
- We don't know what "η" is. We only know there is a variable.

- We can then find $f^{(n+1)}(\eta)$ by finding the max
- f(0.5)

$$\frac{1}{(n+1)!} f^{(n+1)}(\eta)(x - x_0)^{(n+1)}$$

$$\frac{1}{(3+1)!} f^{(3+1)}(\eta)(x - x_0)^{(3+1)}$$

$$\frac{1}{24} f^4(\eta)(x - x_0)^4$$

$$\frac{1}{24} \left(-\frac{15}{16\sqrt{(x+1)^7}} \right)(x - x_0)^4$$

$$\frac{1}{24} \left(-\frac{15}{16\sqrt{(0.5+1)^7}} \right)(0.5 - 1.2247448)^4$$

o -0.0026072 • f(0.75)

$$\begin{array}{ll}
\circ & \frac{1}{(n+1)!} f^{(n+1)}(\mathfrak{n})(x-x_0)^{(n+1)} \\
\circ & \frac{1}{(3+1)!} f^{(3+1)}(\mathfrak{n})(x-x_0)^{(3+1)} \\
\circ & \frac{1}{24} f^4(\mathfrak{n})(x-x_0)^4 \\
\circ & \frac{1}{24} \left(-\frac{15}{16\sqrt{(x+1)^7}} \right)(x-x_0)^4 \\
\circ & \frac{1}{24} \left(-\frac{15}{16\sqrt{(0.75+1)^7}} \right)(0.75-1.3228756)^4
\end{array}$$

$$\circ \quad -0.0005934$$
• $f(1.25)$

$$\circ \quad \frac{1}{(n+1)!} f^{(n+1)}(n)(x - x_0)^{(n+1)}$$

$$\circ \quad \frac{1}{(3+1)!} f^{(3+1)}(n)(x - x_0)^{(3+1)}$$

$$\circ \quad \frac{1}{24} f^4(n)(x - x_0)^4$$

$$\circ \quad \frac{1}{24} \left(-\frac{15}{16\sqrt{(x+1)^7}} \right)(x - x_0)^4$$

$$\circ \quad \frac{1}{24} \left(-\frac{15}{16\sqrt{(1.25+1)^7}} \right)(1.25 - 1.5)^4$$

$$\circ \quad -0.000008$$
• $f(1.5)$

•
$$f(1.5)$$

• $\frac{1}{(n+1)!} f^{(n+1)}(n)(x-x_0)^{(n+1)}$
• $\frac{1}{(3+1)!} f^{(3+1)}(n)(x-x_0)^{(3+1)}$
• $\frac{1}{24} f^4(n)(x-x_0)^4$
• $\frac{1}{24} (-\frac{15}{16\sqrt{(x+1)^7}})(x-x_0)^4$
• $\frac{1}{24} (-\frac{15}{16\sqrt{(1.5+1)^7}})(1.5-1.5811388)^4$

-0.0000001
 ■ Actual is -6.86 * 10⁻⁸

• Finally, fill in the last item needed in the chart:

	0.5	0.75	1.25	1.5
f(x)	1.2247448	1.3228756	1.5000000	1.5811388
P ₃ (x)	1.4146936	1.5824851	1.8748714	2.0056739
Absolute error	0.1899488	0.2596095	0.3748714	0.4245351
Relative error	0.1550925	0.1962463	0.2499142	0.2684995
Truncation error	-0.0026072	-0.0005934	-0.0000080	-0.0000001

- **3**. Compute the absolute errors and relative error in the approximation of p by p^* put the answer in the form **a.o** x **10**ⁿ. (**Use three significant figures**.)
 - Still using the same formulas we used before:

- Absolute error = |p p*|
- Relative error = $\left| \frac{p-p*}{p} \right|$

3a.
$$p = e^{10}$$
, $p^* = 22000$

- Start with the absolute error:
 - |p p*|
 |e¹⁰ 22000|
 26.4657948
- Then do the relative error:

- Start with the absolute error:
 - |p p*|
 |10⁻ 1400|
 14.5442686
- Then do the relative error:

- Start with the absolute error:
 - |p p*||8! 39900|420
- Then do the relative error:

3. Finally, reformat the answers and fill in the chart:

$p = e^{10}, p^* = 22000$	2.65 * 10 ¹	1.20 * 10 ⁻³
p = 10 ⁻ , p* = 1400	1.45 &* 10¹	1.05 * 10-2
p = 8, p* = 39900	4.20 * 10 ²	1.04 * 10 ⁻²