D 8.1 Using two matched MOS transistors with W/L = 10, $k'_n = 400 \, \mu\text{A/V}^2$, and $V_m = 0.5 \, \text{V}$, design the circuit in Fig. 8.1 to provide $I_o = 80 \, \mu\text{A}$. Assume $V_{DD} = 1.8 \, \text{V}$ and neglect the effect of channel-length modulation. Specify the value required for R and the minimum value that V_o can have while Q_2 still operates in saturation.

8.2 For $V_{DD} = 1.2 \text{ V}$ and using $I_{REF} = 10 \,\mu\text{A}$, it is required to design the circuit of Fig. 8.1 to obtain an VE 8.1 output current whose nominal value is $60 \mu A$. Find R and W_2 if Q_1 and Q_2 have equal channel lengths of 0.4 μ m, $W_1 = 1 \,\mu\text{m}, V_r = 0.4 \,\text{V}, \text{ and } k_n' = 400 \,\mu\text{A/V}^2$. What is the lowest possible value of V_o ? Assuming that for this process technology, the Early voltage $V_A = 6 \text{ V/}\mu\text{m}$, find the output resistance of the current source. Also, find the change in output current resulting from a +0.2-V change in V_o .

$$\frac{\delta I}{\delta V} = \frac{1}{f_0} \quad \text{as} \quad \frac{\delta I}{o_1 2} = \frac{1}{40} \quad \text{as} \quad \Delta I = 5 \mu A$$

D 8.3 Using $V_{DD} = 1.8$ V and a pair of matched MOSFETs, design the current-source circuit of Fig. 8.1 to provide an output current of 150- μ A nominal value. To simplify matters, assume that the nominal value of the output current is obtained at $V_O \simeq V_{GS}$. The circuit must operate for V_O in the range of 0.3 V to V_{DD} and the change in I_O over this range must be limited to 10% of the nominal value of I_O . Find the required value of R and the device dimensions. For the fabrication-process technology used, $\mu_n C_{ox} = 400 \ \mu\text{A/V}^2$, $V_A' = 10 \ \text{V/}\mu\text{m}$, and $V_i = 0.5 \ \text{V}$.

0 0 = i 0 = 15 m

of more Practicly - including chancel lenth effect:

$$\lambda = \frac{1}{V_A} = \frac{1}{V_{A-1}^2} = \frac{1}{10(1,5)} = \frac{1}{15}$$

$$AI = Slope = \frac{1}{6}$$

$$O = 15 \text{ M}$$

$$Vos = V_0 = 0.3$$

$$MA = V_0 = 1.8$$

$$A V_0 = 4 V_0 = 1.5 \text{ V}$$

8.6 For the current-steering circuit of Fig. P8.6, find I_o in terms of I_{REF} and device W/L ratios.

Figure P8.6

$$\frac{I_{0z}}{I_{\text{ref}}} = \frac{(\omega/l)_z}{(\omega/l)_l} \longrightarrow 0$$

$$\frac{I_{O_2} = I_{O_3}}{I_{O_3}} = \frac{(\omega/l)u}{(\omega/l)_2} = \frac{I_0}{I_{O_2}}$$

D 8.7 The current-steering circuit of Fig. P8.7 is fabricated in a CMOS technology for which $\mu_n C_{ox} = 400 \,\mu\text{A/V}^2$, $\mu_p C_{ox} = 100 \,\mu\text{A/V}^2$, $V_{tn} = 0.5 \,\text{V}$, $V_{tp} = -0.5 \,\text{V}$, $V_{An} = -0.5 \,\text{V}$ 6 V/ μ m, and $|V_{Ap}| = 6$ V/ μ m. If all devices have $L = 0.5 \mu$ m, design the circuit so that $I_{REF} = 20 \mu A$, $I_2 = 80 \mu A$, $I_3 = I_4 =$ 50 μ A, and $I_5 = 100 \,\mu$ A. Use the minimum possible device widths needed to operate the current source Q_2 with voltages at its drain as high as +0.8 V and to operate the current sink Q_5 with voltages at its drain as low as -0.8 V. Specify the widths of all devices and the value of R. Find the output resistance of the current source Q_2 and the output resistance of the current sink Q_s .

I = 80 HA = 0108 MA

$$(Q_S) NMoS$$
 $V_{OS} = V_{OV}$
 $V_{OS} = V_{O} - V_{S}$
 $V_{OS} = -0.8 - (-1) = 0.2$
 $V_{OV} = 0.2 V_{OV} = V_{OV}$ (Same V_{GS})

$$\begin{array}{l}
\therefore Q_{1}; \\
\pm D_{1} = \frac{1}{2} K_{p} \left(\frac{\omega}{L}\right)_{1} (V_{0} v_{1})^{2} \\
\therefore 2_{0} = \frac{1}{2} (I_{0} O_{M}) \left(\frac{\omega_{1}}{I_{0} S_{M}}\right) (O_{1} 2)^{2} \\
\vdots \qquad \omega_{1} = 5_{M} M
\end{array}$$

$$\frac{I_{\ell}}{I_{ref}} = \frac{(W/L)_{2}}{(W/L)_{1}} \qquad \frac{80}{20} = \frac{W_{1}}{5}$$

$$W_{2} = 20 \text{ M/M}$$

$$\frac{1}{2}D_{3} = \frac{1}{2}K_{p}^{3}(\frac{W}{L})_{3}(V_{0}V_{3})^{2}$$

$$\frac{1}{2}S_{0}M = \frac{1}{2}(100 M)(\frac{W_{3}}{0.5M})(0.2)^{2}$$

$$\frac{1}{2}U_{3} = 12.5 MM$$

$$S_{0}Me = \frac{1}{2}(Q_{4}, Q_{5})$$

$$12:3$$
 $-31-V_{SE}-I_{EF}$ $12:0$
 $V_{SE}=V_{0V}+V_{E}$
 $V_{SE}=0,2+(0.5)$
 $V_{SE}=0.7$
 $V_{SE}=0.7$

$$lo_2$$
? los ?

 lo_2 ?

 lo_3 ?

 $lo_2 = \frac{V_A}{I_2} = \frac{V_A L}{I_2} = \frac{6(0,5)}{80H}$
 $lo_2 = 37,5$ F.A.

Same for los

I3 = I4 = 50 MA = 0,05 MA

Is = loom A = o, 1 m A