(1) Use induction to prove that for all integers $n \ge 0$, $F_{n+2}F_n - F_{n+1}^2 = (-1)^n$. Basis of Induction

For $n \in \mathbb{N}$, let P(n) be the predicate $F_{n+2}F_n - F_{n+1}^2 = (-1)^n$.

$$F_2F_0 - F_1^2$$
= 1 \cdot 2 - 1^2
= (-1)^0

So P(0) is true.

Inductive Hypothesis

Let $F_{n+2}F_n - F_{n+1}^2 = (-1)^n$ be true for some $n \in \mathbb{W}$.

Inductive Step

$$\begin{split} F_{n+3}F_{n+1} - F_{n+2}^2 \\ &= F_{n+3} = F_{n+1} + F_{n+2} \\ &= (F_{n+1} + F_{n+2})F_{n+1} - F_{n+2}^2 \\ &= F_{n+1}^2 + F_{n+1}F_{n+2} - F_{n+2}^2 \\ &= F_{n+2}^2 = F_{n+2}F_n - (-1)^n \\ &= F_{n+2}F_n - (-1)^n + F_{n+1}F_{n+2} - F_{n+2}^2 \\ &= F_{n+2}(F_n + F_{n+1}) - (-1)^n - F_{n+2}^2 \\ &= F_n + F_{n+1} = F_{n+2} \\ &= F_{n+2}^2 - (-1)^n - F_{n+2}^2 \\ &= -(-1)^n \\ &= (-1)^{n+1}. \end{split}$$

We finally have $F_{n+3}F_{n+1} - F_{n+2}^2 = (-1)^{n+1}$. $\therefore F_{n+2}F_n - F_{n+1}^2 = (-1)^n$