Kodavimo teorija

Užduotis A5

Ataskaita

Darbą atliko:

Nerius Žarnauskas, 4 grupė

Užduoties realizacija

Programoje buvo pilnai realizuotas pirmas scenarijus ir antras scenarijai, kuriuose užkoduojamas pateiktas informacijos vektorius, siunčiamas kanalu ir dekoduojamas.

Bibliotekos

Trečių šalių bibliotekos nebuvo naudojamos.

Programos paleidimas

Programa yra github.com serveryje. Parsisiuntimo ir paleidimo eiga.

Atsidarome command line ir vedame tokias komandas:

- 1. git clone https://github.com/NeriusZar/KodavimoTeorija.git
- 2. cd KodavimoTeorija/src
- 3. java -jar A5_uzd.jar

Tekstų failai

Main.java – pagrindinė programos klasė

Channel - klasė skirta persiųsti vektorių kanalu ir suskaičiuoti klaidų skaičių ir pozicijas kur jos įvyko.

Converter - helper klasė skirta konvertavimui. Ji turi funkcijas kurios konvertuoja string'ą į int masyvą, int masyvą į boolean masyvą, boolean masyvą į binary int masyvą.

Decoder - klasė kurioje implementuotas decodavimo algoritmas naudojantis greitąją Hadamardo transformaciją.

Encoder - klasė kuri užkoduoja pateiktą vektorių pagal Rydo-Miulerio kodavimą.

Matrix - tai duomenų struktūra representuojanti matrica, joje yra matricos daugybos funkcionalumas, bei matricos ilgio transformavimo į aukštį funkcionalumas.

MatrixConstructor - Tai klasė kuri generuoja tam tikras matricas. Pvz generator matricą, kuri naudojama užkoduoti vektorių, H matricą kuri naudojama dekodavimui. Taip pat čia yra matricų daugybos funkcionalumas.

Vartotojo sąsaja

Paleidus programą command line vartotojo sąsajoje matome ką programa daro ir kokius parametrus reikia įvesti. Programos parametrai yra skaičius m, inforamcijos vektorius ir klaidos tikimybė.

Įvedus m < 1 parodomas pranešmas apie klaidingai įvestą parametrą.

Įvedus klaidos tikimybė daugiau nei 1 arba mažiau nei 0 parodomas pranešmas apie klaidingai įvestą parametrą.

Įvedus informacijos vektorių didesnį arba mažesnį negu m + 1 parodomas pranešmas apie klaidingai įvestą parametrą.

Suvedus parametrus teisingai rodome koks buvo įvestas vekotrius, kaip jis pakito kai praėjo per kanalą.

Tada siūloma pakeisti iš kanalo išėjus į vektorių

Pakeitus arba nepakeitus vektoriaus, parodomas dekoduotas vektorius

Programos pabaigoje siūloma kartot į visą procesą arba užbaigti darbą.

Programiniai sprendimai

Vektorių siuntimas kanalu – kiekvienas kūno elementas yra iškraipos su klaidos tikimybe nepriklausomai nuo kitų elementų iškraipymo. Kiekvienam siunčiamam elementui generuojamas atsitiktinis skaičius iš intervalo [0,1]. Jei mažesnis už klaidos tikimybę p, siunčiamą elementą kanalas turi iškraipyti, jei ne - neturi.

Vektorių nuskaitymas – vektorius yra nuskaitomas ir saugomas kaip String tipo kintamasis, tada yra konvertuojamas į Char(simboliu) masyvą, tada konvertuojamas į Bool masyvą, o tada konvertuojamas į Int(sveikų skaičių) masyvą, kuris yra siunčiamas kanalu.

Eksperimentai

Teisingai dekoduoto vektoriaus priklausomybė nuo klaidos tikimybės p.

Pasirinktas vektoriaus ilgis- 10. Kiekvienam parametrui p bandymų skaičius – 100.

р	correct Decoding percentage
0.1	99%
0.2	95%
0.3	90%
0.4	85%
0.5	27%
0.6	89%
0.7	92%
0.8	95%
0.9	96%

Artėjant klaidos šansui link 50% stipriai mažėja pasisekimo procentas.

Esant labai dideliai arba mažai klaidos tikimybei dekodavimas vyksta sekmingiausiai Išvada: Dekodavimo algoritmą prasmingiausia naudoti esant dideliai arba mažai klaidos tikimybei.

Naudotos literatūros sąrašas

http://klevas.mif.vu.lt/~skersys/20r/ktkt/uzduotys/uzduotisA.htm http://klevas.mif.vu.lt/~skersys/doc/ktkt/literatura13.pdf