TEXT MINING, SENTIMENT ANALYSIS AND NLP

Prof. Dr. Jeronymo Marcondes

O'REILLY®

Practical Natural Language Processing

A Comprehensive Guide to Building Real-World NLP Systems

Plan of attack

- uin Cabral de Melo 339.652.318-04 1. Basic concepts of text mining:
- Text extraction techniques;
- Tidytext use;
- Bag of words
- Important concepts: stop words, stemming, etc.
- N grams
- Topic modelling
- 2. TF-IDF and Sentiments analysis

- What are we talking about?
- What is NLP?
- Why NLP? Difference regarding the Computer Programming Language
- What is the idea of functioning?

Sources for NLP

Source: https://medium.com/swlh/nlp-text-preprocessing-techniques-ea34d3f84de4

• Difficulties with NLP:

- 1. Sarcasm
- 2. Common domain knowledge
- 3. Ambiguity

• Approaches :

Heuristic

ring and 2. Machine Learning and Deep Learning

Origin

- Alan Turing
- quin Cabral de Melo 339.652.318-04 • How to identify a machine?
- Until the 80s several rules
- Begining of Machine Learning

Uses

- Internet search engines
- Chatbots
- Virtual assistants
- oreguin Cabral de Melo 339.652.318-04 • Text analysis - article example

NLP Pipeline

Text Mining

What is text mining?

Source: https://www.javatpoint.com/text-data-mining

uin Cabral de Melo 339.652.318-04 Tidytext and Tidydata

- Hadley Wickham:
- Each variable is a column
- Each observation is a line
- Each observational unit is a chart
- A token by line!

Token

TOKEN = For organized text mining, the stored token on each line is a single word, but it can also be a n-gram, sentence, or paragraph.

Text's lowest unit that matters!

Tokening

Source: https://aiplusinfo.com/

Token

• "I will be a data scientist"

1	
2	will
3	be
4	a
5	data
6	scientist

• R has very good functions for this process in the tidytext package

Unnest Token

```
text <-c("Because I could not stop for Death -",
"He kindly stopped for me -".
"The Carriage held but just Ourselves -",
"and Immortality")
```

```
text_df <-tibble(line = 1:4, text = text)</pre>
```

```
text_df %>% unnest_tokens(word, text)
```

```
vielo 339.652.318-04
  unnest tokens(word, text)
     A tibble: 20 \times 2
       line word
      <int> <chr>>
         1 because
         1 i
         1 could
         1 not
         1 stop
         1 for
         1 death
         2 he
         2 kindly
         2 stopped
#> # ... with 10 more rows
```

Unnest Token

Notice how useful the function is:

- 1. Transforms all letters into lower case;
- 2. Removes punctuation;

• Other packages - must be done manually.

Unnest Token

Bag of words

- Very interesting for understanding the text
- Verifies and counts the terms frequency, or binary variable that indicates presence or not
- It is not the approach in question we can get into something similar to dplyr

Bag-of-words (BoW) is a statistical language model used to analyze text and documents based on counting of words. The model does not consider the order of words in a document.

Bag of Words

Bag of Words							elo 339.652.318-04
	the	red	dog	cat	eats	food	ele
 the red dog -> 	1	1	1	0	O	0	
cat eats dog ->	0	0	1	Ga	1	0	
dog eats food	0	000	1	0	1	1	
4. red cat eats	10	1	0	1	1	0	

https://www.medium.com/

Bag of words

- This is very useful counting for several problems:
- 1. Verifying more common terms;
- 2. Verifying less common terms;
- 3. Verifying similarity between terms and their amount in the text.
- Bag ignores any order
- We will show the TF-IDF on next class

Data Cleaning

- Many words must be removed from the text, depending on what is being extracted (data cleaning):
- 1. Numbers;
- 2. Emoji;
- 3. Special characters
- 4. Blank space
- 5. etc

Stop Words

- Do every word have meaning? Some have little or any: stop words
- https://gistgithubub.com/alopes/5358189
- from, to, what, etc

Stop Words

Melo 339.652.318-04 Large amount of available lists: using premade lists

```
library(stopwords)
length(stopwords(source = "smart"))
length(stopwords(source = "snowball"))
length(stopwords(source = "stopwords-iso"))
```


Stop Words

- Acceptable: done list with adjustments
- Does every stop word have to be removed?
- Anti join

Data_frame %>% anti_join(get_stopwords(source = "snowball"))

Stemming

• Stemming is the process of reducing flexed words (or sometimes derived words) to their stem, base, or roots, usually a written word's form.

amigos	amig
amigas	amig
amizade	amizad
carreira AV	carr
carreiras	carr

Here are some examples in English:

information	inform
informative	inform
connect	connect
connected	connect
connection	connect

Source: https://www.alura.com.br

Stemming

• Difference from lemmatization

Here is an example in English:

https://www.computersciencemaster.com.br/como-reduzir-uma-palavra-ao-seu-radical-em-python-stemming/

Different approaches

Should we make stemming?

Token n-gram

What is bigram and n-gram?

https://devopedia.org/n-gram-model

Token n-gram

• What is the importance?

Correlation

- Is there a way of measuring if two words tend to simultaneously occur in a document?
- Tidytext is very useful for this
- Pairwise correlation
- Phi value Pearson correlation

Token n-gram - Correlation

	Has word Y	No word Y	Total	
Has word X	n_{11}	n_{10}	n_1 .	
No word X	n_{01}	n_{00}	n_0 .	
Total	$n_{\cdot 1}$	$n_{\cdot 0}$	n	

$$\phi = \frac{n_{11}n_{00} - n_{10}n_{01}}{\sqrt{n_{1.}n_{0.}n_{.0}n_{.1}}}$$

https://www.spss-tutorials.com/pearson-correlation-coefficient/

Topic Modelling

• Unsupervised model that allows to bring documents parts closer by similar topics.

• Practical use

• LDA method

Eduardo Aparecido Sereguin Cabral de Melo 339.652.318.04

