PHARMACIA

Pharmacia Groningen BV Van Swietenlaan 5 9728 NX GRONINGEN The Netherlands

Phone Nr.: + 31 50 5296600

Fax Nr.: + 31 50 5267860

SIGNATURE: DATE:

DATE:

TITLE:

Bifocal foldable lens design based on corneal wavefront aberration

DATE:

REPORT#: Rp2691r

AUTHOR: FUNCTION:

Henk Weeber Research Scientist Biophysics

APPROVED: FUNCTION:

Marrie v.d. Mooren Sr. Development Engineer

APPROVED: FUNCTION:

DISTRIBUTION:

Thom Terwee Manager Biophysics Department

DOCUMENTATION CONTROL (CENTRAL FILE)

Project file 513 John Kappelhof

Sverker Norrby

REPORT #: Rp2691r Bifocal foldable lens design based on comeal wavefront aberration

TABLE OF CONTENTS

			Page
1.	EXECU	UTIVE SUMMARY	3
2.	INTRO	DUCTION	4
3.	METH	ODS	4
3.	1. De	esign methods	5
	3.1.1.	Design cornea	6
	3.1.2.	Light distribution Power add for near vision	6
	3.1.3.	Power add for near vision	6 6 7
		Base power	6
	3.1.5.	Optical quality	7
	3.1.6.		7 8
3.		easurement methods	8
	3.2.1.	Z9000 eye model	8
	3.2.2.	Light distribution Power	8
			8
	3.2.4.	Optical quality	9
4.	RESUL	TS	9
4.	i. Pro	ototype designs	9
4.3		eoretical performance of the prototype designs	10
4.3		easurement of prototype lenses	13
	4.3.1.		13
	4.3.2.	Modulation Transfer Function	15
	4.3.3.	Light distribution	16
	4.3.4.	Lens power	17
	4.3.5.	Lens power fine-tuning	17
5.	DISCU	SSION	18
6.	REFER	ENCES:	19
	ndix 1	Design cornea	20
	ndix 2	OSLO Zernike operands	22
	ndix 3	PMMA Z9000 comea in ISO fixture	24
	ndix 4	Measurement procedure of the lens power in the waterbath	30
	ndix 5	Test of the light distribution with different step heights	33
	ndix 6	Refractive indices	34
	ndix 7	Raw data	35
Appe	ndix 8	CD rom: data files	56

1. EXECUTIVE SUMMARY

With Tecnis model Z9000, a lens is designed which corrects the corneal spherical aberration. The lens has an aspherical anterior surface, which induces a negative spherical aberration, equal but opposite to the average corneal spherical aberration of a cataract population. The resulting design has improved optical performance, especially for larger apertures 1.2.

The design principle of Tecnis model Z9000 is applied on a bifocal silicone HRI lens. The principle bifocal specifications were copied from CecOn model 811E: The design has a +4D reading add and a 50:50% light distribution between near and far vision. These specifications are met using a diffractive profile on the posterior lens surface.

For the posterior surface, the diameters of the rings are identical to CecOn model 811E. The stepheight of the rings is 2.32 micrometer (model 811E: 1.85 micrometer). Similar to Tecnis model 29000, the anterior surface is used for the correction of spherical aberration. Two alternatives were evaluated:

- an optimized anterior surface, which minimized the spherical aberration for near and for vision
- 2. an anterior surface identical to Tecnis model Z9000

The theoretical performance as well as measurements on prototype lenses revealed that there is no significant difference in performance between these two alternatives.

Conclusions:

- A bifocal foldable diffractive design with a regular Tecnis Z9000 anterior surface corrects for spherical aberration.
- Compared to CeeOn model 811E, the resulting design shows approximately a factor 3 improvement of optical quality (MTF) for a 5mm pupil. For a 3mm pupil, the improvement is insignificant.

2. INTRODUCTION

With model Z9000, a lens is designed which corrects the corneal spherical aberration. The lens has an aspherical anterior surface, which induces a negative spherical aberration, equal but opposite to the average corneal spherical aberration of a cataract population. The resulting design has improved optical performance, especially for larger apertures^{1,2}. The design principle of model 20000 can also be applied for blifocal lenses. Pharmacia has a PMMA bifocal lens, model 811E, which is a diffractive lens with a +4D power add for reading. This design can be transferred to HRI material? Bifocal lenses have 2 foci. This means that one object will generate two images. In the ideal situation, one of the two images will be focused on the retina. While the other image is out of focus; it will still cause some blurr on the retina, which decreases the optical quality. Therefore, by their nature, the optical quality of bifocal lenses is lower than monoficeal lenses of the same design. This report above how the design methods of model 20000 are applied on a bifocal foldable lens. All files that were used to compile this report, including measurement data, calculation results and OSLO CCL programs, are stored on a CD-ROM as appendix 8 of this report.

3. METHODS

The design is based on the diffractive bifocal design of model 811E. This means that the same equations for the surface profile are used for the posterior surface, however with different parameters '(figure 1). Similar to model 25000, the anterior surface is made aspherical'.
Using these principles, the optical design of bifocal lenses comprises the determination of 3 items.'

- 1. secure the light distribution between the 2 foci
- 2. secure the correct power add for near vision
- secure the correct base power

With the new design, an additional item is added:

secure a specific spherical aberration

As for model 811E, the target light distribution between near and far focus is 50%:50% and the target power add for near vision is 4 diopters.

Figure 1. Equations describing the diffractive profile.

3.1. Design methods

The calculation methods which are used for determining the theoretical performance are described in detail in the report Rp2681r⁵.

3.1.1. Design cornea

The design comes is desribed in report 2278. This design comes is a 1-surface model. The refractive index of the comes is the keratometry index of 1.3375. However, for diffractive lenses it is essential to use the real in vivo refractive index on the posterior (diffractive) lens surface. Therefore, a 2-surface model is used which has the same characteristics of the 1-surface model.

Figure 2. 1-surface (left) and 2-surface (right) design comea.

The 2-surface cornea was constructed from the 1-surface cornea by adding a flat transition (surface) between the cornea and an aqueous/virteous at 3.6mm from the cornea apex. The spherical aberration of the eye is remained within 0.03% of the original 1-surface cornea (see appendix 1).

3.1.2. Light distribution

The light distribution of the diffractive bifocal lens is determined by the stepheight of the diffractive zones.

The theoretical stepheight for a 50:50% light distribution is 2.25 µm². This theoretical value is challenged and fine-tuned by means of prototype testing. It has to be noted that the light distribution is now defined in the Z9000 eye model (design cornea), while for model 811E, the light distribution was defined in the Gullstrand eve model.

3.1.3. Power add for near vision.

The power add is determined by the diameters of the diffractive zones. Theoretically, this is independent of the refractive indices of the lens and the surrounding medium. Therefore, the same zone diameters are used as for model \$11.E.

3.1.4. Base power

The lens power of a normal monofocal lens is defined by the paraxial focus in situ^{6,7}. Diffractive bifocal lenses do not have a theoretical paraxial focus. Therefore, an alternative approach was used for model 811E⁸. This approach basically means that, comparing a bifocal

REPORT #: Rp2691r Bifocal foldable lens design based on comeal wavefront aberration

and monofocal lens of the same lens power, the best focus should be located at the same position when the lens is measured in situ. This makes the practical behavior of monofocal and bifocal lens powers comparable.

In the design phase of the lens, an estimate can be generated by giving the diffractive lens a base radius comparable to the radius of a monofocal design. Fine-tuning is done in a later stage, when prototype lenses are measured.

3.1.5. Optical quality

The optical quality of diffractive bifocal lenses can be estimated using the optical design program OSLO⁹.

The methods are described in detail in report Rp2681r5.

3.1.6. Optimization of optical quality

The anterior surface of the bifocal lens can be optimized in order to reduce the overall spherical aberration, equivalent to what was done for model Z9000¹. Alternatively, the exact Z9000 anterior surface can be applied onto the bifocal lens.

Optimization of the anterior surface is performed on the symmetrical Zernike terms:
OSLO Zernike term weight factor

Z8 1 Z15 0.1 Z24 0.01

The optimization is performed for far and near vision simultaneously. For the calculations in OSLO, it means that for each optimization step, the vector sum of the Zernike term for near vision and far vision is taken as the operand (appendix 2). A real near vision configuration was generated by putting the light source in a position close to the eye.

As a starting point, the model Z9000 conic constant is used and ad=ae=0. The polynomial terms ad and ae are used for optimization.

3.2. Measurement methods

3.2.1. Z9000 eve model

For the measurement of the optical modulation transfer function (MTF), a new comes was used, which fits in front of a wet cell. The wet cell is identical to the ISO wet cell. The new PMMA cornea generates a wearfornt that is identical to the wavefront active identical to the wavefront of the design cornea. The focal point is in air, which facilitates automated focussing on the Eros Ealing optical bench. The design of the cornea is described in appendix 3. The refractive index of PMMA is measured from the actual PMMA rod. The refractive index of water is adjusted to match with the silicone HRI material: For diffractive lenses the differential properties.

Figure 3. Z9000 comea in front of the ISO wet cell,

silicone HRI material: For diffractive lenses, the difference between the refractive index of the lens and the medium (aqueous or water) is important for the light distribution of the lens. Therefore, water with a refractive index of 1.3406 has to be used (Appendix 6). The refractive index of the water is changed by adding poly-ethyleenglycol (PEG200). The advantages of the eye model over the previous one (report 2230) are:

- the PMMA cornea is not in direct contact to the medium (water), which makes it easier to maintain.
- The focus position is in air, so that the automated focusing of the Ealing optical bench can be used.

3.2.2. Light distribution

The light distribution is measured in the Z9000 eye model. At each focal point, the linespread-function is measured. The central four pixel intensities are used as a measure of the amount of light in each focus.

3.2.3. Power

The power of the bifocal lens is determined by measuring the back focal length (BFL) in the waterbath. The conversion of BFL to lens power is based on the following definition of bifocal lens power?:

The bifocal power of the lens is calculated from the back focal length in best focus condition, in the same way as is done for the paraxial lens power of a monofocal lens with equal geometry (radii and central thickness).

- Calculation to be performed under the conditions:
- The spherical aberration is presumed not to be influenced by diffractive pattern.
 The location of the second principle plane is presumed not to be influenced by the
- diffractive pattern and is the same for both focal points.

Measurement of best focus to be determined under the conditions:

REPORT #: Rp2691r Bifocal foldable lens design based on corneal wavefront aberration

- 1. Collimated light (wavelength 550 nm) reaches the lens.
- 2. There is a 3mm aperture in front of the lens.
- Best focus is defined as the position with the highest MTF-value at a spatial frequency of 50c/mm.

There is one difference with the original definition which was used for model 811E. For the new model, the spherical aberration depends on the lens power, and therefore on the focal point that is measured. In practice it means that for the far- and near focus different values for the spherical aberration have to be used. The background is that the spherical aberration of the current lens is much higher (when measured in a waterbally than a spherical lens, while the amount of spherical aberration is also highly power-dependent. For model 811E, this diopter dependency was necliable.

The add power is defined as the difference between the powers of the near focus and far focus.

The measurement procedure is described in appendix 4.

3.2.4. Optical quality

The MTF is measured in the Z9000 eye model. Focussing is performed at 25c/mm, which is according to the current draft standards for multifocal lenses. The lenses are measured with apertures of 3 and 5 mm diameter. At 5mm aperture, the lens is measured at 3 positions, 45 degree apart, in order to account for any astigmatism.

4. RESULTS

4.1. Prototype designs

The prototype designs consist of an anterior and posterior optical surface. The posterior surface is the diffractive surface, according the equation also used for model 811E. The parameters k and R₁ (equations 1 and 7 in figure 1), defining stepheight and the ring-diameters, have to be adapted for the silicone HRI design. Theoretically, the ring diameters for a given power add are independent of the material used, so the value used for model 811E is taken (R₁-0.513mm).

The k-value determines the light distribution. In order to verify the k-value, a separate test series was made and tested (appendix 5). This test indicated that a k-value of 0.6536 results in a 50.50 light distribution. The corresponding stepheight of the rings is 2.22 micrometers.

The anterior surface was optimized for the symmetrical Zernike terms in far and near vision. The optimization has been performed for lens powers 15.0, 20.0 and 26.0D. On average, the resulting spherical aberration (OSLO Zernike Z8) is reduced with a factor 100. The resulting Zernike coefficients are listed in figure 4, the lens geometry in figure 5.

REPORT #: Rp2691r Bifocal foldable lens design based on corneal wavefront aberration

	Anterior	FAF	₹		NEAR		
Power	surface	Z8	Z15	Z24	Z8	Z15	Z24
15D	Optimized	-0.04	-0.11	-0.02	0.02	-0.10	-0.02
	Z9000	-0.07	0.01	-0.02	-0.01	0.01	-0.02
	Spherical	1.41	0.03	-0.02	1.46	0.03	-0.02
20D	Optimized	-0.03	-0.12	-0.02	0.02	-0.11	-0.02
	Z9000	-0.08	0.00	-0.02	-0.04	0.01	-0.02
	Spherical	1.66	0.04	-0.02	1.70	0.04	-0.02
26D	Optimized	-0.02	-0.12	-0.03	0.01	-0.12	-0.02
	Z9000	-0.09	0.00	-0.02	-0.06	0.01	-0.02
	Spherical	2.12	0.06	-0.02	2.16	0.06	-0.02

Figure 4. Theoretical performance of the prototype design, in terms of the symmetric Zernike coefficients. The Zernike coefficients are expressed in wavelengths. They are calculated in OSLO, in the design eye model, with a rectangular spot diagram in irrage space with using over 200,000 rays. For near vision, the reading distance is 40cm. For far vision, the aperture at the cornea is form in diameter, which corresponds with an aperture diameter of 5.1mm at the lens position. For near vision, the entrance beam radius is adapted: The pupil size at the IOL location is the same for far and near vision.

	15D	20D	26D	
Anterior surface				
Radius	18,225	12.154	9.333	mm
Conic constant	-0.98856	-1.01855	-1.05018	н
AD	-4.3209E-04	-4.9285E-04	-8.0581E-04	mm ⁻³
AE	-4.2491E-05	-4.8990E-05	-5.9954E-05	mm ⁴
Posterior surface				_
Gaometric radius	(-16.225)	(-12.154)	(-9.333)	mm
Base radius R _b	-17.082	-12.586	-9.547	mm
Ring radius R ₁	0.513	0.513	0.513	mm
k-value	0.6536	0.6536	0.6536	mm
atepheight	2.32	2.32	2.32	pre
Central thickness	1.03	1.13	1.24	mm

Figure 5. Lens geometry of the prototype lenses*. The geometric radius is added to indicate the overall geometry of the lens as if the posterior radius is a normal spherical surface, in this case equi-biconvex.

4.2. Theoretical performance of the prototype designs

In the previous paragraph, the theoretical performance of the prototype designs was described in terms of the symmetrical Zernike coefficients. Figure 4 shows that the optimised design results in the smallest spherical aberration (Z8). Also the design with the original Z9000 shows very small values for the spherical aberration, though a little higher than the optimised design.

The modulation transfer function can be evaluated of the prototype designs, compared with a spherical diffractive design and with a spherical monofocal lens design. (figure 6, 7).

Figure 6. modulation transfer function of the prototype designs, compared with a spherical diffractive design and with a spherical monofocal lens design at 3mm.

The figures 6 and 7 show that the gain of the aspherical surface is there for the 5mm aperture, where the bifocal lens shows a contrast even higher than a spherical monofocal lens. Furthermore, the optimised anterior surface shows comparable MTF to the Z9000 anterior surface. For the very high frequencies at near vision the Z9000 surface is even slightly better.

Figure 7. modulation transfer function of the prototype designs, compared with a spherical diffractive design and with a spherical monofocal lens design at 5mm. The heavy fluctuations of the MTF for the spherical top bifocal and 811E do not represent phase reversals of the phase transfer function. There is one phase reversal: model 811E, 20.0D, near vision, at 95c/mm (modulation = 0). Apart from this, the phase is always close to zero (<19).

Figure 8. Through focus MTF at 50c/mm for 20.0D lenses and a 3mm aperture.

REPORT #: Rp2691r Bifocal foldable lens design based on corneal wavefront aberration

Figure 9. Through focus MTF at 50c/mm for 20.0D lenses and a 5mm aperture.

4.3. Measurement of prototype lenses

The lenses are measured on their optical performance, in an eye model and in a waterbath. Shape measurements on diffractive and aspherical surfaces are extremely difficult, especially on a flexible and sicky silicone surface. Feasibility measurements were carried out with optical and mechanical measuring techniques with varying success. The results were not reliable enough for extensive reporting here. Nevertheless all results showed that the lenses were close to the design in the sub-mirror range (average deviation of stephciptin 0.04 micrometer). Also mechanical tests on the molds (Talysurf) indicated a good result. Furthermore, the shape of the lenses was secured by using production procedures standard for regular Z9000 lenses. The test lenses were not angle set and not sterilized.

4.3.1. Eye model

The lenses were measured in the new Z9000 eye model as described in appendix 3. The water/PEG200 solution with a refractive index of 1.3406 was made and measured in the AR chemical lab (appendix 6).

The Z9000 PMMA comes in frost of the ISO wet cell is qualified by through focus and through frequency MTF measurements at 3mm and 5mm pupil. The measurement results are displayed in figure 10, together with the theoretical curves. Focussing was performed at 50c/mm. The measured graphs compare well with the calculated graphs. As a check, a Z9000 lens was measured as well (figure 11).

Figure 10. Measured through frequency and through focus MTF curves for the new Z9000 cornea for the wet cell, both for a 3mm and 5mm aperture.

Figure 11. Measured through frequency MTF curves for a Z9000 lens, 20.0D, in the eye model. As a reference, the measured data from the lens verification report 2236 is added.

4.3.2. Modulation Transfer Function

Lenses were measured in the eye model on the optical bench. The measuring conditions were:

- Refractive index of the water (+PEG200) 1.3406
- Automatic focussing on MTF at 25c/mm
- Maximum analysis window of the linear photodiode array, leaving ¹/₁₆ unused at the edges.
- For 3mm apertures, 1 measurement per focal point was made, for 5mm apertures, 3 measurements per focal point were made (lens at -45°, 0° and +45°)
- 8 lenses per prototype, per lens power

The results are given in figures 12. The results show that the optimized top and the Z9000 top have comparable performance in terms of MTF. At a 5mm aperture they are much better than model 811E.

Figure 12. Modulation transfer values for 25, 50 and 100c/mm and aperture 3mm. The data of the optimized top and the Z900 top is the average of 8 lenses. The data of model 811E is based on the measurement of one lens per diopter.

The results show that the optimized top and the 29000 top have comparable performance in terms of MTF. At a 5mm aperture they are much better than model 811E. The standard deviation of every series of 8 lenses was small, with a standard deviation less than 0.02 MTF units (3mm and 5mm aperture). For the 5mm aperture, 3 measurements were performed per focal point, while the lens was rotated 45 degrees in between the measurements. The variation between these 3 measurements on the same lens depends on the spatial frequency and was 0.01, 0.02 and 0.09 MTF units (e.d) for 25, 50 and 100c/mm respectively. Figure 13 shows the ratio between the measurement services of the same lens depends of the same lens under MO-lab conditions. The average ratio of the 3 spatial frequencies for the 3mm pupil is 88%, with a minimum of 71%. This is just within the ISO standard for monofical lenses, which states that the lens optical quality should be greater or equal than 70% of the theoretical performance.

Figure 13. Ratio of measured/calculated MTF for prototype with Z9000 top.

4.3.3. Light distribution

The light distribution was calculated from the signal on the diode array, obtained during the MTF measurements for a 3mm aperture. The light distribution is defined as the ratio between the far and near focus. Figure 14 shows only the amount going to the far focus. The data shows no relationship between light distribution and lens power.

Figure 14. Light distribution: Amount of light that reaches the far focus. The error bars correspond with plus and minus one standard deviation.

Page 16 of 56

4.3.4. Lens power

The lens power was determined by measuring 8 lenses per diopter. Only the prototype with the 29000 top has been measured. The add power is very well on the target of 4 diopter. The base power (far) is a little off and needs fine-tuning.

Nominal	Measured	lens power		Deviation	
power	FAR	NEAR	ADD	FAR	ADD
15.0	14.55	18.53	3.98	-0.45	-0.02
20.0	19.66	23.71	4.05	-0.34	0.05
26.0	25.78	29.75	3.97	-0.22	-0.03
Nominal	Ctondood d	origina ID	,	7	
Nominal		eviations [D		7	
power	Standard d	leviations (D NEAR	ADD		
]	
power	FAR	NEAR .	ADD		

Figure 15. Measured lens power and standard deviations.

4.3.5. Lens power fine-tuning

Based on the measurement results, the lens power needs fine-tuning. The method used here, is to compare the measured result with a calculated paraxial lens power, based on the design anterior radius, the design central thickness and the design base posterior radius R₈ (equation 1, figure 1). This leads to the following deviation of lens powers:

Figure 16. Lens power correction of the prototype with Z9000 top.

* TLE = thick-lens-equation, using the design geometry as input data.

The lens power correction is applied on the base radius Rb. The resulting lens data are:

	Anterior su	ırface			Posterior s	urface
	identical to				k=0.6536	unace
		20000			R1=0.513	
Lens		As	oherical ten	me.	Base	Central
Power	Radius	l cc	AD	AE .		Thickness
15.0	16.225	-0.988562	-8.03E-04	-7.23E-06		1.03
15.5	15.699	-0.985816	-8.12E-04	-7.57E-06	-15.583	1.04
16.0	15.207	-0.99036	-8.21E-04	-7.93E-06	-15.110	1.05
16.5	14.745	-0.99753	-8.29E-04	-8.30E-06	-14.665	1.06
17.0	14.309	-0.99846	-8.39E-04	-8.69E-06	-14.245	1.07
17.5	13.899	-1.00088	-8.48E-04	-9.09E-06	-13.848	1.08
18.0	13.511	-1.00077	-8.58E-04	-9.52E-06	-13,473	1.09
18.5	13.144	-1.00030	-8.68E-04	-9.96E-06	-13.117	1.10
19.0	12.797	-1.00744	-8.78E-04	-1.04E-05	-12.780	1.11
19.5	12.467	-1.00314	-8.89E-04	-1.09E-05	-12.459	1.12
20.0	12.154	-1.018548	-8.99E-04	-1.14E-05	-12.154	1.13
20.5	11,858	-1.023293	-9.10E-04	-1.19E-05	-11.864	1.13
21.0	11.572	-1.027614	-9.21E-04	-1.25E-05	-11.587	1.14
21.5	11.301	-1.030542	-9.33E-04	-1.31E-05	-11.322	1.15
22.0	11.043	-1.036125	-9.44E-04	-1.37E-05	-11.069	1.16
22.5	10.796	-1.034876	-9.57E-04	-1.43E-05	-10.828	1.17
23.0	10.560	-1.037706	-9.69E-04	-1.50E-05	-10.596	1.18
23.5	10.334	-1.039948	-9.81E-04	-1.56E-05	-10.374	1.19
24.0	10.117	-1.041622	-9.94E-04	-1.63E-05	-10.161	1.20
24.5	9.909	-1.043677			-9.957	1.21
25.0	9.709	-1.046434	-1.02E-03	-1.79E-05	-9.760	1.22
25.5	9.517	-1.048667	-1.04E-03	-1.87E-05	-9.572	1.23
26.0	9.333	-1.050179	-1.05E-03	-1.95E-05	-9.390	1.24

Figure 17. Lens optical design of the bifocal foldable lens with an anterior surface profile which is identical to Tecnis model 29000.

5. DISCUSSION

This report has shown that the Tecnis Z9000 design principles can be successfully applied on bifocal lenses. Two approaches were used: one using the proven Z9000 anterior lens shape combined with a diffractive posterior surface. Alternatively a new anterior lens shape was generated by optimizing the wavefront aberrations for the far as well as the near focus. The performance of these two types of lenses, in terms of MTF, showed to be identical, in theory as well as according the measurement of prototype lensery as the contractive of the co

The improvement of the ZM001, compared to model 811E, is significant. However this is only true for the larger pupils (larger than 3 mm). For a 5 mm aperture, the MTF of the new bifocal design is even better than a spherical monofocal lens. Caution has to be taken to

REPORT #: Rp2691r Bifocal foldable lens design based on corneal wavefront aberration

translate this to clinical behavior, since the clinical behavior is also influenced by:

- perception of the out-of-focus image
- scatter

The theoretical through focus behavior (figures 8 and 9) indicates that the depth of focus is somewhat reduced for the larger pupil sizes. However, compared to the monofocal 29000 model there doesn't seem to much difference. Through focus measurements of prototype lenses can give more insight in the through focus behavior. It should also be noted that the theoretical calculations of MTF of diffractive multifocal lenses have to be interpreted with caution. The calculation routines of out-of-focus MTF have not been verified. For similar reasons, no calculations have been performed with tills and decentrations.

Currently, there are no approved standards for the optical performance of multifocal standards. For model 811E, Pharmacia has generated its own specification, based on measurement in the Gullstrand eye model. A similar approach could be performed with the new model, based on the Z9000 eye model. For the 3mm aperture, the measured MTF is more than 70% of its predicted behavior. In this respect it fulfils the ISO standard for monofocal lenses. Whether this is an appropriate specification would need to be further verification, since there is currently not much room left (71% at 26D). Deviation from this standard can be justified by:

- 1. The standard is for monofocal lenses, not bifocal lenses
- 2. Prediction of diffractive bifocal lenses is difficult, with limited accuracy
- The Z9000 eye model has an aspherical surface, creating an additional measurement error

6. REFERENCES:

- 1. P. Piers, 'Z11 design based on comeal wavefront aberration', PG report R2278.
- 2. M. van der Mooren, 'CeeOn 911Z verification report', PG report Rp2236r.
- 3. H. Weeber, 'Feasibility report bifocal silicone IOL', PG report 1727.
- H. Weeber, 'Influence of the position of the aspheric surface on optical quality', PG report Rp2524r
- 5. H. Weeber, 'Design tools for diffractive bifocal lenses', PG report Rp2681r.
- 6. ISO standard: ISO11979-1
- 7. ANSI standard: ANSI Z80.7-1994
- J. Hermans, 'Bifocal lens power: Definition and practical implementation', PG report 1031.
- 9. OSLO Premium Edition Revision 6.1, Lambda Research Corporation, Littleton, MA

Bifocal foldable lens design based on corneal wavefront aberration

Appendix 1: Design cornea

Apper	idix 1: Desi	ди согием				
*LENS [1272					
		A - 1 SURF	ACE			
SRF	RADIUS	THICKNESS	APERTURE RAI	ntile.	GLASS SPE	NOTE
OBJ		1.0000e+20	1.0000e+14	5103	AIR	
1	7.575000	3.600000	3.000003	s K	ERATON N *	
AST			2.640233		ERATOM P	
3		0.900000	2.640233	8 K	ERATOM P	
4		25.519444			ERATON P	
IMS			2.2444e-05	s		
*CONTC	AND DOLVNONT	AL ASPHERIC D	AT2			
SRF	CC	AD AD	AE	AF	AG	
1	-0.141350					
•	-0.141330					
	TIVE INDICES					
SRF	GLASS	RN1	RN2	RN3	VNBR	TCE
0	AIR	1,000000	1.000000	1.000000		
1	KERATOM	1.337500	1.676807	1.207932	0.719807	236.000000
2	KERATON	1.337500	1.676807	1.207932	0.719807	236.000000
3	KERATON	1.337500	1.676807	1.207932	0.719807	236.000000
4	KERATOM	1.337500	1.676807	1.207932	0.719807	236.000000
5	IMAGE SURF	ACE				
*WAVELE	NGTHS					
CURRENT	WV1/WW1	WV2/WW2	WV3/WW3			
1	0.587560	0.486130	0.656270			
	1.000000	1.000000	1.000000			
*LENS I	ATA					
		A - 2 SURF	ACES			
SRF	RADIUS	THICKNESS	APERTURE RA	200	GLASS SPE	NOTE
OBJ	KADIOS	1.0000e+20	1.0000e+14	0105	AIR	HOLE
1	7.575000	3.600000	3.000003		ERATOM M *	
AST	7.575000	3.600000	2.640233		ERATOM P	
3		0.900000	2.640233		M OA	
4		25.489815			VITM	
IMS		23.409013	2.2444e-05		V11 M	
TMO			2.24446-05	•		
		AL ASPHERIC D	ATA			
SRF	cc	AD	AE	AP	AG	
1	-0.141350					
*******	TIVE INDICES					
SRF	GLASS	RN1	RN2	RN3	VNBR	TCE
0	AIR	1.000000	1.000000	1.000000		
i	KERATOM	1.337500	1.676807	1.207932		-236.000000
2	KERATOM	1.337500	1.676807	1.207932	0.719807	236.000000
3	AO	1.33/300	1.675279	1.206444	0.716671	236.000000
4	VIT	1.336000	1.675279	1.206444	0.716671	236.000000
5	IMAGE SORF		2.0.52/5		0.710071	255.500000
,	ALERON SOME	100				

*WAVELENGTES CURRENT WV1/WW1 1 0.587560 1.000000 WV2/WW2 WV3/WW3 0.486130 0.656270 The Z11 comea is a 1-surface eye model. For the lens design, a 2-surface model is used in order to have the lens in aquaous. It was verified that the 2 eye models have the same wavefront aberrations:

(OSLO notation)

coefficient	1 surface	2 surface	Difference
20	0.001173714	0 001174047	0 03%
Z1	0	0	
22	0	0	
23	0.001759161	0.001769673	0.03%
Z4	0	0	
25	0	0	
28	0	٥	
27	0	0	
28	0.000801207	0.000601396	0.03%
Z9	0	0	
Z10	0	0	
211	0	0	
Z12	0	0	
213	0	0	
Z14	0	0	
Z15	5.78493E-08	5.79E-05	0.16%
Z16	0	0	
Z17	0	0	
Z16	0	0	
Z19	0	0	
220	0	0	
Z21	0	0	
222	0	0	
Z23	0	0	
224	2.40715E-06	2.43E-08	0.75%
Z25	0	0	
226	0	۰	
227	0	0	
228	0	0	
Z29	0	0	
230	0	0	
Z31	۰	۰	
Z32	0	0	
Z33	•	0	
234	0	۰	
Z35	-5.50344E-10	6.48E-10	0.41%

Appendix 2: OSLO Zernike operands

The operands, used for optimizing the lens are calculated in a procedure 'oprds_Zernike2'. The procedure is stored in the file 'optimize Z haw.ccl':

```
cmd oprds_Zernike2()
// Define Zernike terms as operands for opimization in 2 configurations
          set_preference(output_text, off);
                                       // Configuration 1
          sop 0; tra all 1;
                                         // om te voorkomen dat OSLO vastloopt bij diffractielenzen
          spd mon none +SDAD 1; // SDAD=APDIV in lensfile (setup) bepalend voor de
rekensmelheid!!
          ssbuf_reset();zer bf 1 36;

Ocm(0] = a1**2; // OSLO Zernike Piston term Z0

Ocm(1) = a2**2; // Z1 TILT
          Ocm[2] - a3**2; // Z2 TILT
          Ocm[2] = a3**2; // 22 T1L1
Ocm[3] = a4**2; // 23 DEFOCUS
Ocm[4] = a5**2; // 24 ASTIGMATISH
Ocm[5] = a6**2; // 25 ASTIGMATISH
Ocm[6] = a7**2; // 26 COMA
          Ocm[7] = a8**2; // Z7 COMA
          Ocm[8] = a9**2; // Z8 3rd ORDER SPHERICAL ABERRATION
Ocm[9] = a11**2; // Z9 TREFOIL
Ocm[10] = a11**2; // Z10 TREFOIL
          Ocm[11] = a12**2;
                                         // Z11
          Ocm[12] - a13**2;
                                         // 212
          Ocm[13] - a14**2;
                                         // Z13
          Ocm(14) = a15**2;
                                         // 214
          Ocm(15) = a16**2;
                                         // Z15
          Ocm[16] - a17**2;
                                         // Z16
          Ocm[17] = a18**2;
                                         // 217
          Ocm(18) - a19**2;
                                         // Z18
          Ocm[19] = a20**2;
                                         // 219
          Ocm[20] = a21**2;
                                         // 220
          Ocm(21) - 422**2;
                                         // Z21
          Ocm(22) = a23**2;
                                         // 222
          Ocm[23] = a24**2:
                                         // 223
          Ocm[24] = a25**2;
                                         // 224
          Ccm(25) = a26**2;
          Ocm(26) = a27**2;
                                         // 226
          Ocm(27) = a28**2;
                                         // 227
          Ocm[28] = a29**2;
                                         // Z28
          Ocm(29) = a30**2;
                                         // Z29
          Ocm(30) = a31**2;
                                         // Z30
         Ocm[30] = a32**2;
Ocm[31] = a32**2;
Ocm[32] = a33**2;
Ocm[33] = a34**2;
Ocm[34] = a35**2;
                                         // Z31
                                         // 232
                                         // 233
// 234
          Ocm[35] = a36**2;
Ocm[36] = a37**2;
                                         // Z35
                                         // Z36
         set_preference(output_text, on);
set_preference(output_text, off);
cfg 2; // Configu
                                       // Configuration 2
// om te voorkomen dat OSLO vastloopt bij diffractielenzen
          son Ortra all 1:
          spd mon none +SDAD 1; // SDAD-APDIV in lensfile (setup) bepalend voor de
rekensnelheid! |
         ssbuf reset();zer bf 1 36;

Ocm(0] += a1**2;  // OSLO Zernike Piston term ZO

Ocm(1] += a2**2;  // Z1 TILT
                                       // Z2 TILT
// Z3 DEFOCUS
// Z4 ASTIGMATISM
          Ocm(2) += a3**2;
          Ocm(3) += a4**2;
          Ocm[4] += a5**2;
          Ocm[5] += a6**2;
                                        // Z5 ASTIGMATISM
          Ocm[6] += a7**2;
                                        // Z6 COMA
                                         // 27 COMA
         Ocm171 += a8**2;
          Ocm[8] += a9**2;
                                        // 28 3rd ORDER SPHERICAL ABERRATION
// 29 TREFOIL
// 210 TREFOIL
          Ocm[9] += a11**2;
         Ocm[10] += a11**2;
         Ocm[11] += a12**2;
                                        // 211
         Ocm[12] += a13**2;
                                        // Z12
         Ocm[13] += a14**2;
```

REPORT #: Rp2691r Bifocal foldable lens design based on corneal wavefront aberration

Ocm[14] += a15**2; Ocm[15] += a16**2; Ocm[16] += a17**2; // Z15 // Z16 Ocm[17] += a18**2; Ocm[17] += a18**2; Ocm[18] += a19**2; Ocm[18] += a20**2; Ocm[20] += a21**2; Ocm[21] += a22**2; Ocm[22] += a23**2; Ocm[23] += a24**2; Ocm[24] += a25**2; Ocm[25] += a26**2; Ocm[26] += a27**2; Ocm[26] += a27**2; // z17 // z18 // Z19 // Z20 // 221 // 222 // 223 // 224 // 225 // 226 Ocn[27] += a28**2; Ocn[28] += a29**2; // 227 // 228 Ocn[29] += a30**2; Ocn[30] += a31**2; // 229 // z30 Ocm[31] += a32**2; Ocm[32] += a33**2; Ocm[33] += a34**2; // z31 // Z32 // 233 Ocm[34] += a35**2; Ocm[35] += a36**2; Ocm[36] += a37**2; // 234 // 235 // 236

Ocm(36) += a37**2; // Z36 set_preference(output_text, on);

Page 23 of 56

Appendix 3: PMMA Z9000 cornea in ISO fixture

The Z9000 model eye is caracterized by:

ISO uses a comea in front of a wet cell. The ISO comea can be replaced by a PMMA comea. The PMMA comea has to generate a wavefront equivalent to the wavefront in the 25000 model eye. This is caracterised by the working Funumber and the wavefront aberrations (Zernike terms).

Aperture diameter of the cornea = 6.0 mm Corresponding aperture radius at the IOL position: 2.640233 mm Working f-mmber = 3.740741

Wavefront aberration (OSLO notation): Z8 = 0.000601 mm

 $Z15 = 5.7840*10^{-6} \text{ mm}$ ($Z24 = 2.4*10^{-8} \text{ mm}$)

The ISO eyemodel is described in ISO/DIS 11979-2. Only the wot cell with the aperture is used, with pure water as medium. The PMMA course has a control thickness of 10 nmm and is placed 3 nmm in front of the cell. The refractive index of the rod PMMA was measured as 1.4872 (22°C, 346.1mm). For the calculation of the working f-number and the wavefront abernations, the right window is taken away, so that the system focusses in water. The working f-number determines the radius of the conver-plane PMMA corner: Re-18.5633 mm.

The working r-number determines the names of the convex-panol r-wint counter. R-16,3053 limit. The aspherical components of the PMMA surface are optimized to produce the Z9000 wavefront abertations, which resulted in:

cc = -0.177999 ad = +5.1185*10⁻⁶ ac = +3.3540*10⁻⁹

When the measurement is taken with the focus in air (the real situation), the resulting wavefront aberration is slighly higher (4% for 23). When a 20.0 diopter 2900 IDL is placed in the cell, 94% of the wavefront aberration (23) is corrected. In the 29000 design eyemotel, a 20.0D IOL corrects 99% of the wavefront aberration (23).

MTF for a 5.1mm aperture (at the IOL position):

Bifocal foldable lens design based on corneal wavefront aberration

```
Verification: PMMA cornea for ISO-fixture, with focus in water.
Apdiv 97.10
Zernike in mu
Spot diagram in image space
Pupil 2.640233
PMMA 29000 cornes in ISO fixture
 SRF
          RADIUS
                       THICKNESS APERTURE RADIUS
                                                             CLASS SPE NOTE
 OBJ
                       1.0000e+20 1.0000e+14
                                                               ATR
        18.568300
                     10.000000
                                        8.000000
                                                          PMMA_ROD *
  2
                         3,000000
                                        8.000000
                                                               AIR
  3
                         6.000000
                                       16.000000
                                                               вк7 с
                         6.250000
                                      16.000000
                                                             WATER C
                        26.355802 S
 AST
                                       2.640233 AS
                                                             WATER C
 IMS
                                      3.8112e-05 S
*CONIC AND POLYNOMIAL ASPHERIC DATA
 SRF
             cc
                         AD
                                                                 AG
          -0.177999 5.1185e-06 3.3540e-09
*ZERNIKE ANALYSIS
 WAVELENCTH 1
 Positive angle A is a rotation from the +y axis toward the +x axis.
    0.001173: [0] 1
            : [1]
                   RCOSA
             : [2] RSINA
    0.001769: [3]
                   2R^2 - 1
      --
            : [4] R^2COS2A
      --
             : [5] R^2SINZA
             : [6] (3R^2 - 2)RCOSA
      ---
             : [7] (3R^2 - 2)RSINA
    0.000601: [8]
                   6R^4 - 6R^2 + 1
            : [9] R^3COS3A
             : [10] R^3SINGA
            : [11] (4R^2 - 3)R^2COS2A
: [12] (4R^2 - 3)R^2SIN2A
            : [13] (10R^4 - 12R^2 + 3)RCOSA
             : [14] [10R^4 - 12R^2 + 3)RSINA
  5.7840e-06: [15] 20R^6 - 30R^4 + 12R^2 - 1
      --
            : [16] R^4COS4A
             : [17] R^4SIN4A
            : [18] (5R^2 - 4)R^3COS3A
: [19] (5R^2 - 4)R^3SIN3A
      --
           : [20] (15R^4 - 20R^2 + 6)R^2COS2A
: [21] (15R^4 - 20R^2 + 6)R^2SINZA
             : [22] (35R^6 - 60R^4 + 30R^2 - 4)RCOSA
: [23] [35R^6 - 60R^4 + 30R^2 - 4)RSINA
  2.3253e-08: [24] 70R^8 - 140R^6 + 90R^4 - 20R^2 + 1
            : (25) R^5COS5A
             : [26] R^5SINSA
      --
            : [27] (6R^2 - 5)R^4COS4A
            : [28] (6R^2 - 5)R^4SIN4A
            : [29] (21R^4 - 30R^2 + 10)R^3COS3A
: [30] (21R^4 - 30R^2 + 10)R^3SIN3A
            : [31] (56R^6 - 105R^4 + 50R^2 - 10)R^2COS2A
: [32] (56R^6 - 105R^4 + 60R^2 - 10)R^2SINZA
            : [33] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RCOSA
             : [34] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RSINA
  6.0838e-10: [35] 252R^10 - 630R^8 + 560R^6 - 210R^4 + 30R^2 - 1
            : [36] 924R^12 - 2772R^10 + 3150R^8 - 1680R^6 + 420R^4 - 42R^2 + 1
RMS OPD 0.001056 ERROR 7.0480e-11
```

Verification: PMMA cornea for ISO-fixture, with focus in air.

```
*LEWS DATA
PMON 29000 cornea in ISO fixture
SRF RADIUS THICKNESS APERTURE RADIUS GLASS SPE NOTE
```

```
овл
                     1 0000-20
                                  1.0000e+14
                                                          AIR
        18.568300
                      10.000000
                                     8.000000
                                                     PMHA_ROD .
  2
                       3.000000
                                    8.000000
                                                         AIR
  3
                       6.000000
                                    16.000000
                                                         вк7 с
                       6.250000
                                    16,000000
                                                       WATER C
 AST
                                     2.640233 AS
                                                       WATER C
  6
                      10.000000
                                     2.640233 S
                                                       WATER C
                       6.000000
                                    16.000000
                                                         вк7 с
                       8.306948 S 16.000000
                                                         AIR
                                  3.8112e-05 S
*CONIC AND POLYNOMIAL ASPHERIC DATA
 SRF
           cc
                      AD
                                               λF
                                                           M
         -0.177999 5.1185e-06 3.3540e-09
*ZERNIKE ANALYSIS
 WAVELENGTH 1
 Positive angle A is a rotation from the +v axis toward the +x axis.
    0.001212: [0] 1
      -- ; [1] RCOSA
            : [2]
                   RSINA
    0.001828: [3]
                  2R^2 - 1
           : [4] R^2COS2A
           : (5) R^2SIN2A
      --
      ---
            : (6) (3R^2 - 2)RCOSA
            : (7)
                  (3R^2 - 2)RSINA
    0.000623: [8]
                 6R^4 - 6R^2 + 1
           : [9]
                 R^3COS3A
           : [10] R^3SIN3A
           : [11] (4R^2 - 3)R^2COS2A
           : [12] (4R^2 - 3)R^2SIN2A
           : [13] (10R^4 - 12R^2 + 3)RCOSA
           : [14] (10R^4 - 12R^2 + 3)RSTNA
 6.7871e-06: [15] 20R^6 - 30R^4 + 12R^2 - 1
           : [16] R^4COS4A
            : [17] R^4SIN4A
           : [18] (5R^2 - 4)R^3COS3A
           : [19] (5R^2 - 4)R^3SIN3A
           : [20] (15R^4 - 20R^2 + 6)R^2COS2A
           : (21) (15R^4 - 20R^2 + 6)R^2SINZA
           : [22] (35R^6 - 60R^4 + 30R^2 - 41RCOSA
           : [23] (35R^6 - 60R^4 + 30R^2 - 4)RSINA
 2.0654e-08: [24] 70R^8 - 140R^6 + 90R^4 - 20R^2 + 1
           : [25] R^SCOS5A
           : [26] R^5STN5A
           : [27] (6R^2 - 5)R^4COS4A
           : [28] (6R^2 - 5)R^4SIN4A
      --
           : [29] (21R^4 - 30R^2 + 10)R^3COS3A
           : [30] (21R^4 - 30R^2 + 10)R^3SIN3A
           : [31] (56R^6 - 105R^4 + 60R^2 - 10)R^2COS2A
           : [32] [56R^6 - 105R^4 + 60R^2 - 10]R^2SIN2A
           : [33] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RCOSA
           : (34) (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RSINA
-1.2840e-09: [35] 252R^10 - 630R^8 + 560R^6 - 210R^4 + 30R^2 - 1
           : [36] 924R^12 - 2772R^10 + 3150R^8 - 1680R^6 + 420R^4 - 42R^2 + 1
RMS OPD 0.001092 ERROR
```

Verification: PMMA cornea for ISO-fixture, with focus in air, with Z9000 IOL, 20.0D

```
*T.DMC DATE
PMMA Z9000 cornea in ISO fixture
SDE
         RADIUS
                     THICKNESS APERTURE RADIUS
                                                      GLASS SPE NOTE
OBJ
                    1.0000e+20
                                 1.0000e+14
                                                        AIR
       18.568300
                     10.000000
                                    8.000000
                                                   PMMA_ROD
 2
                      3.000000
                                    8.000000
                                                        ATR
```

Bifocal foldable lens design based on corneal wavefront aberration

```
6.000000
                                     16.000000
                                                            BK7 C
                        6.250000
                                     16.000000
                                                          WATER C
 AST
                                      2.640233 AS
                                                          WATER C
        12,154000
                        1,125000
                                     2.640233 S
                                                            HRI
       -12.154000
                        8.875000
                                      2.516362 S
                                                          WATER C
                        6 000000
                                     16,000000
                                                            BK7 C
                        2.914830 S 16.000000
                                                            AIR
 THE
                                    2.7366g-05 S
*CONIC AND POLYNOMIAL ASPHERIC DATA
                        AD
          -0.177999 5.1185e-06 3.3540e-09
         -1.018550 -0.000899 -1.1400e-05
*ZERNIKE ANALYSIS
 WAVELENGTH 1
 Positive angle A is a rotation from the +y axis toward the +x axis.
 -5.7675e-05: [0] 1
      -- : [1] RCOSA
             : [2] RSINA
 -9.0472e-05: [3] 2R^2 - 1
         : [4] R^2COS2A
            : (5) R^2SIN2A
           : [6] (3R^2 - 2)RCOSA
            : [7] (3R^2 - 2)RSINA
 -3.5900e-05: [8] 6R^4 - 6R^2 + 1
           : [9] R^3COS3A
      --
            : [10] R^3SIN3A
      --
           : (11) (4R^2 - 3)R^2COS2A
: [12] (4R^2 - 3)R^2SIN2A
      __
           : [13] (10R^4 - 12R^2 + 3)RCOSA
            : [14] (10R^4 - 12R^2 + 3)RSINA
 -3.4880e-06: [15] 20R^6 - 30R^4 + 12R^2 - 1
           : (16) R^4COS4A
           : [17] R^4SIN4A
           : [18] (5R^2 - 4)R^3COS3A
           : [19] (5R^2 - 4)R^3SIN3A
           : [20] (15R^4 - 20R^2 + 6)R^2CO62A
           : [21] (15R^4 - 20R^2 + 6)R^2STN2A
           : [22] (35R^6 - 60R^4 + 30R^2 - 4)RCOSA
            : [23] (35R^6 - 60R^4 + 30R^2 - 4)RSINA
      --
 -4.1784e-07; [24] 70R^8 - 140R^6 + 90R^4 - 20R^2 + 1
           : [25] R^5COSSA
            : [26] R^5SIN5A
           : [27] (6R^2 - 5)R^4COS4A
           : [28] (6R^2 - 5)R^4SIN4A
           : [29] (21R^4 - 30R^2 + 10)R^3C083A
           : [30] (21R^4 - 30R^2 + 10)R^3SIN3A
           : (31) (56R^6 - 105R^4 + 60R^2 - 10)R^2COS2A
: (32) (56R^6 - 105R^4 + 60R^2 - 10)R^2SINZA
           : [33] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RCOSA
 -- : (34) (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RSINA
-3.3549e-08: (35) 252R^10 - 630R^8 + 560R^6 - 210R^4 + 30R^2 - 1
 -1.3002e-09: [36] 924R^12 - 2772R^10 + 3150R^8 - 1680R^6 + 420R^4 - 42R^2 + 1
RMS OPD 5.4662e-05 ERROR 1.8430e-11
PMMA/Z9000 cornea for PPG-fixture.
Apdiv 97.10
Zernike in mm
Spot diagram in image space
Pupil 2.640233
*LENS DATA
PHMA Z9000 CORNEA PPG_fixture n=100
         RADIUS
CHP
                      THICKNESS AFERTURE RADIUS
                                                         CLASS SPE NOTE
OBJ
                     1.0000e+20
                                  1.0000e+14
                                                          AIR
       11.047000
                     4.000000
 1
                                   3.000000
                                                          PMMA
 2
      1.0000e+26
                       0.100000
                                     2.650289 S
                                                         WATER
```

PUPIL

2.640233 AS

AST

Bifocal foldable lens design based on corneal wavefront aberration

```
2.640233 S
                         1.700000
                                                            WATER
                        24.556458 8
                                      2.469290 S
                                                            MATER
 TMS
                        -0.140000
                                       0.014100 $
*CONIC AND POLYNOMIAL ASPHERIC DATA
                                                                λG
           0.512084 -9.0182e-06 -4.1412e-08
*ZERNIKE ANALYSIS
 WAVELENGTH 1
 Positive angle A is a rotation from the +y axis toward the +x axis.
    0.000685: [0] 1
      -- : [1] RCOSA
             : [2] RSINA
    0.001280: [3] 2R^2 - 1
            : [4] R^2COS2A
             : [5] R^2SIN2A
            : [6] (3R^2 - 2)RCOSA
             : [7] (3R^2 - 2)RSINA
    0.000603: [8] 6R^4 - 6R^2 + 1
           : [9] R^3COS3A
      --
            : [10] R^3SIN3A
            : [11] (4R^2 - 3)R^2COS2A
            : [12] (4R^2 - 3)R^2SINZA
            : [13] (10R^4 - 12R^2 + 3)RCOSA
             : [14] (10R^4 - 12R^2 + 3)RSINA
  9.0025e-06: [15] 20R^6 - 30R^4 + 12R^2 - 1
            : [16] R^4COS4A
            : [17] R^4SIN4A
            : [18] (5R^2 - 4)R^3COS3A
            : [19] (5R^2 - 4)R^3SIN3A
            : [20] (15R^4 - 20R^2 + 6)R^2COS2A
            : [21] (15R^4 - 20R^2 + 6)R^2SIN2A
            : [22] (35R^6 - 60R^4 + 30R^2 - 4)RCOSA
: [23] (35R^6 - 60R^4 + 30R^2 - 4)RSINA
  1.4315e-07: [24] 70R^8 - 140R^6 + 90R^4 - 20R^2 + 1
            : [25] R^5COSSA
             : [26] R^5SIN5A
            : [27] (6R^2 - 5)R^4COS4A
            : [28] (6R^2 - 5)R^4SIN4A
            : [29] (21R^4 - 30R^2 + 10)R^3COS3A
: [30] (21R^4 - 30R^2 + 10)R^3SIN3A
            : [31] (56R^6 - 105R^4 + 60R^2 - 10)R^2COS2A
: [32] (56R^6 - 105R^4 + 60R^2 - 10)R^2SIN2A
            : [33] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RCOSA
: [34] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RSINA
  1.9291e-09: [35] 252R^10 - 630R^8 + 560R^6 - 210R^4 + 30R^2 - 1
             : [36] 924R^12 - 2772R^10 + 3150R^8 - 1680R^6 + 420R^4 - 42R^2 + 1
RMS OPD 0.000787 ERROR 8.8271e-11
PMMA/Z9000 cornea for PPG-fixture with 20.0D Z9000 lens.
Apdiv 97.10
Zernike in mm
Spot diagram in image space
IOL pupil 2.640233
*LENS DATA
PHMA Z9000 CORNEA PPG_fixture n=100
SRF
         RADIUS
                     THICKNESS APERTURE RADIUS
1.0000e+20 1.0000e+14
                                                            GLASS SPE NOTE
OBJ
                                                             AIR
        11.047000
                        4.000000
                                       3.000000
                                                             PMMA
                       0.100000
 2
       1.0000e+26
                                       2.650289 S
                                                            WATER
AST
                                       2 640233 AS
                                                            PITPIT.
                        1.700000
                                       2.640233 S
                                                            WATER
       12.154000
                        1.103000
                                       2.469290 S
                                                             HRI
       -12.154000
                      17.052946 S
                                      3.000000
                                                           WATER
          ---
                       -0.140000
                                      0.019298 S
```

*CONIC AND POLYNOHIAL ASPHERIC DATA

Bifocal foldable lens design based on comeal wavefront aberration

```
SRF
           0.512084 -9.0182e-06 -4.1412e-08
  1
          -1.018548 -0.000899 -1.1412e-05
*ZERNIKE ANALYSIS
 WAVELENGTH 1
 Positive angle A is a rotation from the +y axis toward the +x axis.
   -0.000720: [0] 1
           : [1]
                    RCOSA
             : [2] RSINA
   -0.000632: [3] 2R^2 - 1
      -- : [4] R^2COS2A
            ; [5] R^2SIN2A
      --
      --
             : [6] (3R^2 - 2)RCOSA
: [7] (3R^2 - 2)RSINA
      --
  9.2891e-05: [8] 6R^4 - 6R^2 + 1
           : [9] R^3COS3A
      --
             : [10] R^3SIN3A
           : [11] (4R^2 - 3)R^2COS2A
            : [12] (4R^2 - 3)R^2SIN2A
            : [13] (10R^4 - 12R^2 + 3)RCOSA
             : [14] (10R^4 - 12R^2 + 3)RSINA
  4.8164e-06: [15] 20R^6 - 30R^4 + 12R^2 - 1
           : [16] R^4COS4A
     --
            : [17] R^45IN4A
           : [18] (5R^2 - 4)R^3COS3A
            : [19] (5R^2 - 4)R^3SIN3A
           : [20] (15R^4 - 20R^2 + 6)R^2COS2A
: [21] [15R^4 - 20R^2 + 6)R^2SINZA
           : [22] (35R^6 - 60R^4 + 30R^2 - 4)RCOSA
: [23] (35R^6 - 60R^4 + 30R^2 - 4)RSINA
 -9.1973e-09: [24] 70R^8 - 140R^6 + 90R^4 - 20R^2 + 1
            : [25] R^5COSSA
      --
             : [26] R^5SIN5A
           : [27] (6R^2 - 5)R^4COS4A
: [28] (6R^2 - 5)R^4SIN4A
      --
            : [29] (21R^4 - 30R^2 + 10)R^3COS3A
            : [30] (21R^4 - 30R^2 + 10)R^3SIN3A
            : [31] (56R^6 - 105R^4 + 60R^2 - 10)R^2COS2A
: [32] (56R^6 - 105R^4 + 60R^2 - 10)R^2SIN2A
            : [33] (126R^8 - 280R^6 + 210R^4 - 60R^2 + 5)RCOSA
             : [34] [126R^8 - 280R^6 + 210R^4 - 60R^2 + 5]RSINA
-1.1709e-08: [35] 252R^10 - 630R^8 + 560R^6 - 210R^4 + 30R^2 - 1
 -4.6305e-10: [36] 924R^12 - 2772R^10 + 3150R^8 - 1680R^6 + 420R^4 - 42R^2 + 1
RMS OPD 0.000367 ERROR
```

Appendix 4: Measurement procedure of the lens power in the waterbath

The lenses were measured for optical power in a water bath. The actual back focal length (BFI.) was used as the measure of lens power in water. The lens is focused at maximum MTF at 50/mm. The measurement is time consuming, due to the fluctuations of the MTF values. A manual through focus measurement was performed, so that the interpolated best focus could be determined off-line. For each value, an extensive settling time of 5 minutes or more was exercised.

Determination of the lens power in vivo consists of the followin steps:

- 1. Through focus measurement in a waterbath
- 2. Determination of the actual BFL by interpolation
- From the actual BFL, determine the effective focal length (EFL) by adding the longitudinal spherical aberration and the position of the 2nd principle plane.
- 4. Determine the lens power in water, from the equation 1.3406/EFL
- Determine the lens power in vivo, from the theoretical relationship between lens power in water and lens power in vivo.

1. Through focus measurement in a waterbath

A manual through focus MTF at 50c/mm was measured in a waterbath. Characteristics of the measurement set-up:

- Aperture 3mm
- Water with PEG200, refractive index 1.3406
- Slit width 10 micrometer
- 10X objective lens
- 1 through focus measurement per lens
- 5 to 8 focus positions for each focal point

2. Determination of the actual BFL by interpolation

In order to be able to make an interpolation, a curve was fit through the through-focus response. For this purpose, a square double log function was used:

 $log(MTF) = b_0 + b_1 * (log(BFL)) + b_2 * (log(BFL))^2$

This function is bell-shaped by nature, similar to a normal through-focus response. The maximum of the curve is detrmined by $log(BFL) = -\frac{1}{2}(b_1/b_2)$

3. From the actual BFL, determine the effective focal length.

In order to find the EFL, the spherical aberration has to be added to the BFL, as well as the distance between the 2nd principle plane and the posterior lens surface.

The longitudinal spherical aberration (LSA) of a bifocal lens in a waterbath is assumed identical to its monofocal equivalent. This means that the LSA can be calculated with OSLO, using the same lens geometry without the diffraction pattern, and using the appropriate refractive indices as applicable under the measuring conditions. It means that the monofocal Z9000 lens design can be used in the calculations (only this prototype lens was measured in the waterbath). Figure 4.1. shows the OSLO results for a 20.0D lens and the results for the 3 measured lens powers are sumarised in figure 4.2.

Bifocal foldable lens design based on corneal wavefront aberration

LENS D							
	ZMO_200						
SRF	RADIUS	THICKNESS			GLASS	SPE	NOTE
OBJ		1.0000e+20			WATERMO		
	12.154000	1.125070	1.500000		HRISILMO	•	
	-12.154000	65.748017			WATERMO		
IMS			V 6.6265e-05	S			
CONIC	AND POLYNOMI	AL ASPHERIC I	ATA				
SRF	cc	AD	AE	AF	AG		
1	-1.018550	-0.000899 -	1.1418e-05				
WAVELE	NGTHS						
CURRENT	WV1/WW1	WV2/WW2	WV3/WW3				
1	0.550000	0.550000	0.550000				
	1.000000	1.000000	1.000000				
REFRAC	TIVE INDICES						
SRF	GLASS	RN1	RN2	RN	3 V	NBR	TCE
0	WATERHO	1.340563	1.340563	1.340	563 -	-	
1	HRISILMO	1.463984	1.463984	1.463	984 -	-	236.000000
2	WATERMO	1.340563	1.340563	1.340	563 -	-	236.000000
3	IMAGE SURF	ACE					
ninimum	focus posit	ion:					
muminum	focus posit	ion: 5.000	1000				
	number of st						
- max	MTF(f=50):	0.3557					
	at defocus:						

Figure 4-1, OSLO output for a 20,0D lens of model Z9000, in the waterbath.

Nominal Power	Anterior radius	Posterior radius	Central Thickness	Total Power	Anterior Power	Spherical aberration
15	16.225	-16.225	1.027	15.17	7.61	2.75
19	12.797	-12.797	1.106	19.22	9.64	1.54
20	12.154	-12.154	1.125	20.23	10.16	1.40
24	10.117	-10.117	1.203	24.28	12.20	0.99
26	9.333	-9.333	1.242	26.30	13.22	0.86
30	8.075	-8.075	1.319	30.36	15.28	0.67

Figure 4.2. Spherical aberration for different lens powers. Note that the spherical aberration is positive for all lens powers. This is opposite to the normal spherical lenses.

The position of the 2nd principle plane is calculated using the paraxial equations:

$$H'' = \frac{\eta_{mod}}{\eta_{IOL}} * \frac{P_1}{P} * CT$$

H" = distance between 2nd principle plane and the posterior lens surface

η_{med} = refractive index of the surrounding medium

 η_{IOL} = refractive index of the lens

 P_1 = power of the front surface of the lens

P = total power of the lens

CT = central thickness of the lens

Application for the monofocal Z9000 lens model results in values of 0.471, 0.517 and 0.572mm for 15.001, 20.0D and 26D lenses respectively. According the definition of bifocal lens power, H" is could for far and near vision.

4. Determine the lens power in water

The lens power in water is defined by η_{mad} /EFL, with η_{mad} =1.3406 and EFL expressed in meter units. The result is not exactly identical as the lens power in vivo.

5. Determine the lens power in vivo

The lens power in vivo is defined by the lens geometry and the nominal refractive indices $\eta_{\rm mod} = 1.336$ and $\eta_{\rm DL} = 1.458$. The lens power under MO-lab conditions is defined by the lens geometry and the nominal refractive indices $\eta_{\rm mod} = 1.3406$ and $\eta_{\rm DL} = 1.4598$. Using the thick-lens-equation for both situations, the relationship between the two can be determined (figure 4-3).

Figure 4-3. Relationship between the lens power under MO-lab conditions (waterbath) and in vivo lens power. T.L.E = thick-lens-equation.

Appendix 5: Test of the light distribution with different step heights.

In order to determine the optimal stepheight of the diffractive profile, 3 different stepheights were tested of a 20.0D bifocal diffractive design. The target is a 50:50 light distribution.

Lens power	20.0 D	20.0 D	20.0 D
Anterior radius	12.154	12.154	12,154
Posterior radius	-12.586	-12.586	-12.586
Central thickness	1.125	1.125	1.125
R ₁	0.513	0.513	0.513
k	0.7065	0.6754	0.6443
cc	-1.01855	-1.01855	-1.01855
ad	0.0010482	0.0010482	0.0010482
ae	-5.7596E-06	-5.7596E-06	-5.7596E-06
stepheight (µm)	2.50	2.39	2.28

Figure 5-1. Prototype lens designs with different stepheights. These lenses have an aspherical posterior surface to correct for spherical aberration.

The lenses were tested in the Z9000 eye model, using an aperture of 3 mm and water with a refractive index of 1 3405. 5 Lenses per type were tested (MO-lab service request F030). The image was focused at a maximum MTF at 500fmm. The 4 central pixels with maximum intensity were used as a measure of the amount of light in each focus. The ratio of near and far focus determines the light distribution.

k	0.7065	0.6754	0.6443
stepheight	2.50	2.39	2.28
Lens 1	44.7%	49.9%	50.9%
Lens 2	44.8%	48.6%	50.2%
Lens 3	45.1%	48.9%	51.1%
Lens 4	46.1%	47.9%	50.2%
Lens 5	47.8%	48.2%	50.2%
Average	45.7%	48.7%	50.5%
Stdev	1.3%	0.8%	0.5%

Figure 5-2. Measured percent of light in the FAR-focus versus stepheight.

The measurements show a good linearity between stepheight and light distribution. According this data, the optimal stepheight for a 50:50% light distribution is 2.32 micrometer, which corresponds to a k-value of 0.6536.

The MTF distribution showed to be closely related to the light distribution, though the two are not identical. See figure 5-3.

Figure 5-3. MTF(50c/mm) distribution versus light distribution.

Appendix 6: Refractive indices

The performance of diffractive lenses is highly dependent on the refractive indices of the lens material and the surrounding medium and especially the difference between these two. Therefore, special care is taken to use the most accurate values for the HRI material. Furthermore, the refractive index of the water, used for measurements in the MO-lab is adjusted to the most appropriate value.

For the calculation of the image quality in vivo, the generally accepted refractive index of aqueous of 1.336 is applied. For the silicone HRI material, the measured values of the AR lab were taken as the reference ('Dispersion of HRI material', H. Weeber, PG report 2390). This is based on measurements of several batches of HRI material and it includes the dispersion of the material. The result is a refractive index of 1.45942 at 550mm and 35°C.

For the MO-lab conditions, the refractive index at 22°C and 550nm was determined using measurement data of FRI at different temperatures. This data is available in the QA-lab for a wavelength of 589nm (see figure 6-1). It is assumed that this difference of refractive index is also valid for a wavelength of 550nm.

Applying this to the in vivo index, the refractive index of HRI material under MO-lab conditions is 1 46398

The refractive index of pure water, 22°C and \$50nm, is 1,3342 (Handbook of Chemistry and Physics, Ed. D.R.Lide, CRC Press, Boca Raton (FL)). Under MO-lab conditions, the difference between the lens refractive index and the medium refractive index should be the same as in vivo (0.12342). Therefore, a medium refractive index of 1.34056 has to be used. For practical purposes, a tolerance of ±0.0002 has to be added as a specification.

	Wavelength	Temperature	nlens	nmedium
in vivo	550	35	1.45942	1.336
MO lab	550	22	1.46398	1.34056

Figure 6-2. Refractive indices of the lens (HRI silicone) and the medium (aqueous and water) under invivo and MO-lab conditions, for 550nm.

In order to obtain the correct refractive index of the medium, water is mixed with 5.11% PEG200 (w/w). The mixtures used for the measurements were always measured at the AR lab on the calibrated Abbe refractometer, using a He light bulb with \$50±10mm filter.

REPORT #: Rp2691r Bifocal foldable lens design based on corneal wavefront aberration

Appendix 7. Raw data

MO-lab measurement data of MTF and BFL measurements of two lens series from pilot plant service request SA020560:

K1 = bifocal foldable with optimized anterior surface Z9000 K1 = bifocal foldable with Z9000 anterior surface

MECHANICAL OPTICAL LABORATORY

8	Upjohn SERVI	CE AANVRAAG	MECHANISCH/OPTISCH L.	ABORATORIUM
			AANVRAAGNR.:	F050
ANVRAGER:	H.Weeber		AANVRAAGDATUM:	
FDELING:	AR		AFD.CODE:	570
ROJECT/OMSCH	RIJVING: Bifocal Foldable			
YPE LENS:	Prototype Bifocal Foldable			
		LDIOPTRIE	AANTAL	
	M-/BATCHNUMMER	15.0D	BANIAL B	
	SA 020560 K1	20.0D	-	
	SA 020560 K1	26.0D	1	
	SA 020560 K1 SA 020560 Z9000 k1	15.0D		
	SA 020560 Z9000 k1	20.0D	1 8	
	SA 020560 Z9000 K1	26.00		
	SA 020360 Z9000 K1	120.00		
		GEWENSTE	METINGEN	
MASSA			MTF/EFL	IX.
VERALL DIAMET	FR	_	BACK FOCAL LENGTH	
OPTIEK DIAMETER			DIOPTRIE	
PEEDTEJOLAME	TER VAN DE LUSSEN		RESOLUTIE	
DIKTE VAN DE LU	SSEN		BURSTTEST	
TAND VAN DE L	JSSEN/STEP HEIGHT		TREKSTERKTE	
FOGE THICKNESS				
COMPRESSION F	ORCE			
AXIAL DISPLACE	MENT IN COMPRESSION			
TILT				
AXIAL RIGIDITY				
AMOUNT OF TOU	СН			
DECENTRATION				
		لحصا		
AFWIJKENDE ME	TINGEN			
OPMERKINGEN	Z9000 Comea			
	brekingsindex v/n water = 1.3	406		
	apertuur 3 en 5 mm			
	focuseren bij 25 c/mm			
	waarden bil 25, 50 en 100 c/r			PH-517-06

Ì	Services ed.	1030	Applicant		H.Weeber	į		Dept:	AR			١	Code: 6	670	ľ					l
Project:		5.13	Descr:		Bifocal Foldable	dable							1				I			
tem:		-	Descr:		SA Numm	er pilot pit	SA Nummer pilot plant SA020560 (van biz A Vm H)	60 (van bi	AWH											
Series:	_	ž		No.of samples:	Selo:	75	Avne dontar?	darin	REINE OCO OCOR OC	000000	ľ	1	1							
Descr.	_	enstype	Lenstype K1 // gemelen met 3mm aperture	elen met 3	mm apert	9				200	-	Ventarks:	-	reasured I	Measured by: MO-Laboratory	oralory				
101																				
1									OPTICAL BENCH	BENCH								ľ		ı
-			į				ľ	SO-EYE M	ODEL WIT	ISO-EYE MODEL WITH 7'SONG CORNEA	CRNFA							T		
			15.0 D	٥			L		2000	١		ľ						I		
_		FAR			MEAD			1				1			26.0 D					
-	×	9	8	,	1	1		į			ž			FAR			NEAR			
1	1	3	3	3	8	3	Q	8	9	82	8	9	52	8	50	22	8	8		
									[c/mm]	Ē										
9								•	×	1								1		1
country	-	2	•		s	9			-	e.	11	2	=	,			1	1		1
-	0.33	0.25	0.17	92.0	0.33	200	3	1	1			I			7				82	8
,	420	9.		3	1 8			3	5	9	0.27	0.21	0.37	8	0.22	0.38	0.29	0.20		
		3		8	9	3	_	0.26	0.22	0.33	0.26	0.20	0.36	0.28	0.21	0.40	030	0 33		
,	98	0.29	0.19	0.36	0.29	0.23	0,33	55	0.17	8	0.25	0.20	0.37	9		92.0		3 6		
•	0.37	0.30	62	0.35	0.28	0.22	93	0.28	0.19	6	0.00	9	95	3 6	3 8	9 6	5 6	7		
'n	0.37	0.29	0.21	0.35	0.30	0.23	0.35	0.28	9		80	2	3	3 3	3 ;	5	37	0.25		
•	0.35	0.29	0.17	0.35	0.28	0.21		8		3 2	9 6	9 6	9 6	9	0.23	9	0.32	0.24		
~	0.35	0.29	91.0	0.35	0.27	0.19		3 8	5	3 6	9 6	3 6	8 6	0.30	0.22	0.37	0.30	0.22		
	0.37	0.34	0.30	0 32	8	0			1		97.0	3	6.3	0.31	0.23	0.38	0.31	0.24		
				5	975	770		0.27	070	6.3	0.26	0.21	0.35	0.29	0.21	0.39	0.31	0.24		
0,4	0.36	0.29	0.20	0.35	0.28	0.29	72.0	0.281	00.00		100					-				
2	0.015	810	1000	9000	ľ	ľ	1	1		5	77.0	170	03/	9	0.22	0.39	0.31	0.23		
SIM.	0.33	200	ı	1	1		1	1	100	0.000	0.01	0.012	0.010	0.00	0.00	0.000	0.010	0.016		
	1	7	200	5	120	1	1	0.25	0.17	0.33	0.25	0.19	0.35	0.28	0.21	0,37	0.29	0.20		
	200	0.31	22.0	80	0.30	0.23	0.35	0.30	0.22	0.35	0.28	0.23	0.38	0.31	22	0 0	000	100		

1 July 1. 4 mf 1

Project:		-			N.VIODOG		4	Dept: A	¥			ರ	Code: 570		۵	Date:				
. well	ľ	5.13	Desor:	1	Bifocal Foldable	Jabia											l			Ī
Kolli.			Descr:	"	SA Numme	or pilot plac	SA Nummer pilot plant SA020560 (van biz.A Vm H)	(van biz.	A tim H)											
Series:	_	Z-2	ĺ	No.of samples:	Į.	75	Rype/ diopter??	1	BF#15.0/20.0/26.00	0/26.00	۳	Remarks:	2	Massured by: MO-Laboratory	- MO-Lab	votero				
Descr.	_	enstype	(1 29000)	Lenstype K1 29000 // gemelen met 3mm aperture	met 3mm	aperture														
total								ľ	OPTICAL BENCH	SENCH								ľ		
•							2	O-EYE MI	DDEL WIT	ISO-EYE MODEL WITH 29000 CORNEA	ORNEA							T		
			15.0 D	٥		Γ			20.00	0		r			26.0 D	١		T		
_		FAR			NEAR			FAR	r	ľ	NEAR	-		FAR	Ī		NEAR			
	52	8	001	×	S	8	52	8	8	53	8	9	55	8	90	52	8	8		
unit									[c/mm]									T		
dete												-				1		T	-	
column		2	3	,	s	, ,	-			9	;	12	2	7	2	2	4	18	2	2
-	0.38	0.34	0.23	0.35	0:30	0.24	0.35	0.26	0.14	0.34	0.24	0.15	0.40	0.31	0.22	838	0.28	0.20		
~	0.37	0.30	0.20	0.34	0.26	070	0.38	0.29	0.20	0.36	0.30	0.22	0.37	0.28	0.18	0.37	0.30	0.22		
-	0.37	0.30	0.18	0.35	0.26	0.18	0.38	0.32	0.23	0.37	0.30	0.25	0.39	0.32	0.23	0.37	0.30	0.22		
•	0.36	0.31	0.21	0.38	0.30	0.24	0.40	0.31	0.22	0.36	0.30	0.21	0.39	0.33	0.25	0.36	0.31	0.25		
•	0.37	0.29	0.19	•	0.28	0.22	0.40	0.32	0.20	0.36	0.28	0.21	0.36	0.28	0.17	0.36	0.27	0.17		
9	0.37	0.30	0.17	0.35	0.28	0.22	0.40	0.32	0.24	0.37	0.32	0.25	0.38	0.29	0.19	0.37	0.30	0.21		
~	0.38	0.31	0,22	0.35	0.29	0.22	0.39	0.32	0.21	0.36	0.28	0.21	0.38	0.31	0.21	0.35	0.28	0.19		
	0.37	0.30	0.21	0.34	0.28	0.22	0.38	0.29	0.18	0.36	0.30	0.24	0.38	0.31	0.21	0.38	0.30	0.22		
		ł	ı									_						Ī		
BAR	0.37	0.31	0.20	0.35	0.28	0.22	0.38	0.30	020	0.36	0.29	0.22	0.38	9.30	0.21	0.36	0.29	0.21		
pig	0.008	-	0.020	0.007	0.016	0.020	0.017	0.022	0.032	0.009	0.024	0.032	0.012	0.018	0.027	0.011	0.014	0.024		
min	0.36	0.29		80	0.26	0.18	0.35	0.26	0.14	0.34	0.24	0.15	90.0	0.28	0.17	0.35	0.27	0,17		
max	0.38	0.34	0.23	0.36	0.30	0.24	0.40	0.32	0.24	0.37	0.32	0.25	0.40	0.33	52.0	0.38	0.31	0.05		

page B_:1 of 1

=
0
ā
~
2
Ļ
O
€.
*
0
_
73
z
2
-
u

⋩

Servicered.		F050 /	Applicant		H.Weeber	٠		Dept:	Æ			ľ	Code:	570	ľ	Date:		1		
Project:	,	5.13	Descr:		Bifocal Foldable	aldable							ì							l
lem:			Descr:		SA Numa	ner pilot pi	SA Nummer pilot plant SA020560 (van biz.A Vm H)	60 (van bl	ZA VIM H)											
Series:	•	Nr. 1, 15D		No.of samples:		24	Rypal diopter??	ptern	BF#15.00		ľ	Remarks:	ľ	deasured !	Measured by: MO-Laboratory	horatory				
Descr:	_	Anstype K	1 gemet	Lenstype K1 gemeten met 5mm apenture	m apertu															
total									OPTICAL BENCH	BENCH										
8							ľ	SO-EYE A	ODEL WIT	ISO-EYE MODEL WITH 29000 CORNEA	SORNEA							Ī		
ľ					FAR					L				NEAR				Ī		
	IJ	0 degrees		7	45 degrees		ľ	+45 degrees			0 degrees	Γ	Ť	45 degrees		1	45 degrees			
	×	8	8	52	S	8	22	98	100	×	8	2	22	8	901	52	95	100		
unit									Ich	chmil										
date																				
column	-	~	-	•	80		_			10	=	22	5	77	15	2	-	**	10	8
-	0.40	0.35	0.27	0,40	0.33	0.23	0.42	5	023	ē	720	0.18	18	Š	0.14	5	82.0	0.33		
7	0.40	0.32	0.21	0.42	0.30	-	_	-	620	_	0.23	0.12	0.29	0.21	0.10	0.33	0.28	200		
e	0.41	0.33	0.23	0.41	0.31	0.19	0.43	63	0.23	0.32	0.27	0.18	0.29	0.22	0.10	0.32	0.28	0.21		
•	0.42	2.3	0.23	0.42	0.33	_	0.42	0.33	0.24	0.32	0.26	0.16	0.33	0.25	0.13	20	0.28	0.20		
40	0.41	0.32	0.20	_	0.27	0.15	0.39	0.30	0.21	0.30	0.24	0.13	0.28	0.20	0.09	0.30	0.25	0.18		
•	0.40	0.35	0.22	0.40	9	0.18	0.43	9.3	0.25	0.30	0.25	0.15	0.31	0.23	0.12	0.32	0.27	0.20		
_	0.40	0.31	0.19	0.40	0.34	0.26	0.42	0.33	023	0.29	0.23	0.12	0.32	0.24	0.14	0.31	0.27	0.19		
	0.40	0.32	0.23	0.43	0.34	0.26	0.40	0.32	0.23	0.32	0.26	0.18	0.30	0.26	0.18	0.33	0.28	0.22		
B _A	0.41	0.33	0.22	0.41	0.32	0.21	0.42	0.33	0.23	0.31	0.25	0.15	0.31	0.23	0.13	0.32	0.27	0.20		ı
gra	0.008	0.013	0.024	0.016	0.024	0.042	0.015	0.014	0.011	0.011	9100	0.027	0.019	0.021	0.029	۲	ľ	Γ		
ulu	0.40	0.31	0.19	0.38	0.27	0.15	0.39	0.30	0.21	L		0.12	0.28	0.20	ı	1	1	ı		
max	0.42	0.35	0.27	0.43	0.34	0.26	0.43	0.34	0.25	0.32	0.27	0.18	0.33	0.28	1	0.34		1		
gva.10			0	0.41	Î	0.32	0	0.22				ŝ		0.25	1	0	l.			ı
gr.std			0.0	0.014	o.	0.018	0	67070				0.016	9	0.023	23	0	0.040			
Jr.min			ö	0.36	9	027	0	0.15				0.28		0	0.20	0	0.00			
gr.max			o	0.43	٥	0.35	°	27				0.34	4	9	0.28	0	0.22			
10000																				

Servicereq.		F050	Applicant		H.Weeber	_		Dept	₹			o	Code: 5	570	٥	Date:				
Project:	ėń	5.13	Descr:		Bifocal Foldable	dable														
ltem:			Desor:		SA Numa	ner pilot pla	SA Nummer pilot plant SA020560 (van biz. A Vm H)	60 (van bit	(A Wm H)											
Series:	N.	1,200		No.of semples:	ples:		Ayper diopter?	pteri?	BF1/20.0 D		ľ	Remarks:		Measured by: MO-Laboratory	V. MO-Lab	oratory				۱
Descr:	3	Lenstype K1 //	K1 11 96	gemelen mel 5mm apertura	Smm ape	dure														
le to									OPTICAL BENCH	BENCH								ľ		
-							ľ	SO-EYE N	ODEL WIT	ISO-EYE MODEL WITH 29000 CORNEA	ORNEA							T		
					FAR									HEAR				T		
	ě	0 degrees		7	45 degrees		-	+45 degrees		ľ	0 degraes	l	Ŷ	45 degrees	l	7	*45 degrees			
	23	8	100	25	8	100	52	S	100	×	8	90	×	8	8	52	8	8		
unit									(c/mm)	E										
date																				
column	-	7	3	,	9	9	,		۰	92	F	12	5	2	15	16	44	22	19	20
-	0.37	97,0	0.15	0.38	0.24	0.12	0.39	979	0.17	030	220	6.13	8	120	0.11	150	0.26	95		
5	0.37	0.28	0.15	0.40	0.29	0.18	0.38	0.27	0.16	0.3	0.27	0.19	0.30	0.26	0.16	93	0.26	0.18		
,	0.39	0.32	0.19	0.41	0.33	0.20	0.39	0.30	0.19	0.31	0.28	0.21	0.32	0.27	0.18	0.30	0.25	0.19		
•	0.42	0.36	0.25	0.42	0.35	0.24	0.43	0.35	0.25	0.33	0.29	0.21	0.33	0.29	8	0.32	0.30	0.23		
s	0.41	0.33	0.24	0.42	0.33	0.20	0.41	0.32	0.21	0.32	0.28	0.20	0.31	0.28	0.18	0.33	0,30	0.23		
•	0.41	0.33	0.23		0.33	0.23	0.43	0.35	0.25	0.33	0.28	0.22	0.31	0.29	0.21	0.32	0.28	0.23		
-	0.42	0.35	0.25	_	0.35	0.24	0.42	0.33	0.21	0.33	0.29	0.20	0.33	0.27	0.18	0.30	0.27	0.17		
-	0.41	0.33	0.23	0.42	0.35	0.24	0.42	0.31	0.17	0.32	0.29	0.22	0.33	0.29	0.21	0.31	0.28	0.19		
		-	1	1		-		1						-						
2	0.40	0.32	- !	- 1		١	1	1	1	0.32	0.28	0.20	0.32	0.27	0.18	0.31	0.28	0.20		
2	0.021	0.029	٦	-1	٦		-	٦	ា	-	0.023	0.029	0.012	0.027	0.033	110.0	0.019	0.025		
S.	0.37	0.28	Į	1		ĺ	1	1		0.30	0.22	0.13	0.30	0.21	0.11	0.30	0.25	0.17		
X E	0.42	0.36	9	0.42	93	0.24	0.43	0.35	0.25	0.33	0.29	0.22	0.33	0.29	0.21	0.33	0.30	0.23		
BAT-16			0	0.41	°	0.32	0	0.21				0.32	٦	0.27		0.19				
Dr.std			0	0.018	o	160.0	9	90.038				1100	-	0.022	22	0.030				
gr.min			0	0.37	۰	0.24	ď	0.12				0.3		0.21	-	0.11				
gr.max			۰	0.43	٥	0.36	0	0.25				0.33		0.30	0	0.23		-		
or cols.			į	1441	3		Š											İ		-

Servicered.		1050	Applicant:		H.Weeber			Dept:	AR				Code:	029	-	Date				
Project:	•	5.13	Descr.		Bifocal Foldable	dable							1							
Item:			Descr.		SA Numr	er pllot pl	SA Nummer pilot plant SA020560 (van biz A l/m H)	60 (van bt.	A Um H)											
Series:	_	N. 1.26D		No.of samples:	ples:	24	Avpel diopter?	Just	0F# 26.00			Remarks:	ľ	Acad ward	deasured by MO-I about	ove bon.				l
Descr.	-	enstype	Lenstype K1 // gemeten met 5mm aperture	tem met	amm aper	en										5				
total									OPTICAL BENCH	BENCH			l					Ī		l
•							-	SO-EYE	TODEL WI	SO-EYE MODEL WITH 79000 CORNEA	CORNEA				ĺ			T		
ľ					FAR				Γ					NEAD				T		
	۰	0 degrees		,	45 degrees	L	Ŧ	+45 degrees	Ī.	0	0 degrees			45 degrees	ľ	1	AS decrease	T		
	25	95	100	52	8	9	25	8	901	25	8	8	25	8	9	36	ş	ş		
init		i							[c/mm]	E								T		
date										Ì								T		
column		2	3	,	*0	•	-	•	٠	92	=	12	2	7	15	95	12	5	9	8
-	0.42	0.34	0.23	0.41	0.38	0.21	0.41	820	0.22	89	62	9,18	0.31	828	0.18	6	3	0.0		
7	0.39	0.28	0.18	0.37	0.27	0.16	0.38	0.29	0.20	0.30	0.23	0.13	0.30	0.20	8	020	0.26	9		
-	0.40	0.29	0.17	0.43	0.33	0.22	0.38	0.29	0.18	_	0.25	0.15	031	0.25	0.17	8	0 24	9 6		
•	170	0.32	•	0.39	0.29	0.16	0.40	Ş	0.24	0.31	0.24	0.15	0.28	0.22	0.10	031	0.00	0.21		
'n	0.42	0.33	-	0.41	0.30	0.18	0.42	034	0.23	0.30	0.24	0.15	978	0.18	0.10	030	0.28	0.00		
•	65	0.35	-	0.41	0.34	0.24	0.40	0.31	0.19	0.30	0.26	0.18	0.31	0.25	0.16	0.30	0.26	0.18		
~	9	0.31	0.20	_	0.32	0.22	0.40	0.30	0.18	0.31	0.26	0.16	0.31	0.26	0.17	0.30	0.24	91.0		
	5	0.3	0.19	0.42	0.36	0.24	0.40	0.31	0.19	0.31	0.28	0.20	0,30	0.26	0.18	0.31	0.25	0.19		
572	0.44	0 33	Š	107.0	200			ı							0000					
	0.012	1	1	1	ľ	1	ľ	1000	0.23		0.25	0.18	0.30	0.24	0.14	030	0.26	0.18		
ulu	0.39	1	1	1	1	1		1	1	0.00	200	0 43	0.00	0.028	0.037	900	0.018	0.021		
wax	0.43	0.35	024	0.42		L	L	L		L	0.28	8	0	96.0	ı	100	00.0	2 5		
BAT'S			ò	0.40	0	0.32	0	0.20	L		Ī	0.30	8	0.25	Į,	0.16		9.51		
gr.std			0.0	0.014	õ	0.026	0.0	0.026			Γ	6000	2	0.024	ž	0.032	2			l
gr.min			0	0.37	o	0.27	Ö	0.16				0.28		0.19	6	000		-		
gr.mex			ò	0.43	8	0.36	0	0.24		L		0.31	_	0.29		0.21				
gr.cols.			Ě	147)	2	(258)	38	(369)				(10 13 18)	18	144 44 47	6	40 46 40	1			

age E_:1 of 1

2
ď
0
m
7
_
_
3
63
F
Q,
0
Τ.
=
-5
$^{\circ}$
7
-
3
Æ
O
ш

κ

Servicered		F050	Applicant	l.	H.Waeber	,		Dept:	AR			٥	Code: 5	570	٥	Date: 4	I			-
Project:	e,	5.13	Descr:		Bifocal Foldable	oldsbie														
Item:			Descr:		SA Num	ner pilot pi	SA Nummer pilot plant SA020560 (van biz.A t/m H)	560 (van b	Z.A.Um H)						-	-	-			
Sarias:	Ž	N. 2, 150		No.of samples:	nples:	24	Aypel diopter?	pterf?	BF// 15.00		_	Remarks:	1	Measured by: MO-Laboratory	y: MO-Lab	xalory				
Descr:	۲	anstype .	Lenstype 28000 // gemeten met 5mm aperture	gemeten	met Smm	apedure										-	-			
iciot									OPTICAL	OPTICAL BENCH										
								ISO-EYE	AODEL W	ISO-EYE MODEL WITH 28000 CORNEA	CORNEA									
T					FAR									NEAR						
_	ő	0 degrees		Ľ	45 degrees		Ĺ	+45 degrees		ľ	0 degrees		7	45 degrees	r	+45	+45 degrees			
-	52	8	9	×	8	8	ĸ	8	100	ĸ	8	ş	52	S	100	52	8	901		
ř									10	(clmm)										i
a g																				1
column	-	~	-		8		-	•		10	÷	12	13	2.4	15	16	- 44	18	18	20
-	0.39	8	0.18	0.39	0.31	0.20	0.41	0.32	020	0.32	0.27	0.18	0.31	0.27	0.19	0.31	0.28	0.22		
2	0.39	0.31	_	_	-		_	-	Ī	_	0.27	0.17	0.33	0.29	0.23	0.32	0.27	0.18		
,	0.40	0.33	0.21	0,40	0.32	2 0.22	20	0.31	0.16	0.32	0.27	0.21	0.32	0.29	0.22	0.32	0.27	0.20		
•	0.40	0.32	Ī	_		6 0.25	0.43	3 0.35	0.25	0,32	-	0.24	0.33	0.28	0.18	0.33	0.28	0.21		
v	0.40	0.32	22	0.42	0.35	5 0.23	9.41	0.31	0.19	0.31	0.27	0.18	0.33	0.28	0.20	0.32	0.27	0.20		
4	0.41	0.33	0.20	8	0.35	5 0.25	0.40	-	0.13	_		0.18	0.33	0.27	0.20	0.32	0.25	0.15		
_	0.41	0.31	0.17	0.42	0.33	3 023	3 0.42	2 0.32	0.19	_	0.27	0.19	0.31	0.25	0.16	0.32	0.27	0.19		
	0.41	0.33	0.18	0.43	0.34	4 0.22	2 0.42	6.34	0.22	0.32	0.26	0.16	0.33	0.27	0.17	0.3 M	0.29	0.21		
DA	0.40	0,32	0.19	0.43	0.34	4 0.23	3 0.42	2 0.32	0.19	0.32	0.27	0.19	0.32	0.28	0.20	0.32	0.27	0.19	l	ı
2	0.008	0.011	0.017	0.013	0.017	710.0 7	600'0	9 0.019	90.038	900.0	0.008	0.025	0.009	0.013	0.023	0.009	0.012	0.025		
min	0.39	0.30	0.17	1	L	0.20	0.40	L	0.13	0.31	0.26	0.16	0.31	0.25	91.0	0.31	0.25	0.15		
wax	0.41	0.33		0.43	90'0	6 0.25	5 0.43	3 0.35	5 0.25	5 0.32	0.29	0.24	0.33	0.29	0.23	0.34	0.29	0.22		
Bre-pg	-		ľ	15.0	L	0.32	Ĺ	0.20	L	L		0,32	2	0.27	_	0.19				
gr.std			0	0.012	Ĺ	0.017	Ľ	0.031	L	L		9000	8	110.0	=	0.024	Ţ			
gr.min			ٔ	0.39	L	0.29	Ĺ	0.13	L			0.31	-	0.25	9	0.15				
xeurs				0.43	L	0.36	L	97.0	L	L		0.34	3	0.29	g.	0.24	_			
ŀ			ľ																	

Æ
-5
- 12
-4
- 2
Æ
0
ci
\sim
- 5
-
Ū.
- 2

Servicered.		1050	Applicant		H.Weeber			ii D	ž			,	Code:	570		Date:				
roject:	ď	5.13	Descr:		Bifocal Foldable	oldable							1		-		l			
tam:			Descr:		SA Numn	ner pilot pla	SA Nummer pilot plant SA020580 (van biz A Vm H)	560 (van bi	ZA VM H)											
Saries:	•	rr_2_20D		No.of samples:	:seld	24	Rypel diopter?	plen?	BF# 20.00		1	Remarks:	-	Passured	Measured by: MO-Laboratory	postory				l
Descr.		enstype	# 0006Z	Lenstype 29000 // gematen met 5mm aperture	met Smm	aperture										Ì				
totat									OPTICAL BENCH	BENCH								r		1
-								ISO-EYE	AODEL WI	ISO-EYE MODEL WITH 29000 CORNEA	CORNEA							T		
۲					FAR									NEAR				I		
_	1	d degrass			45 degrees	,	•	+45 degrees		٥	0 degrees		Ť	45 degraes		Ť	+45 degrees	Ī		
	55	S	6	52	8	8	22	æ	100	92	8	8	×	S	8	55	8	8		
nuit									(c/mm)	iw.				1				I		
date									-					-				t		
column	-	~		•	v	9	,			2	=	12	t	2	2	16	11	18	18	8
-	0.40	0.30	0.19	0.42	0.33	0.23	0.41	0:30	0.18	0.30	0.27	0.20	67.0	0.26	623	88	88	0.18	1	ı
~	0.40	0.31	0.18	_	0.32	Ĭ	0.40	0.28	0.15	0.30	0.27	0.18	0.31	0.27	0.17	0.31	0.25	0.15		
•	0.39	0.24	0.11	5.3	0.17	.000	0.42	0.31	0.17	0.28	0.21	0.12	0.24	0.13	0.07	0.29	0.25	0.18		
•	0.40	030	0.16	_	0.31	-	Ĭ	_	0.14	0.31	0.26	0.17	0.30	0.25	0.15	0.30	0.25	0.16		
vo	0.41	0.30	0.18	9	0.33	021	9.4	0.31	0.18	0.30	0.25	0.15	0.32	0.29	0.22	0.29	0.26	0.17		
•	0.38	0.28	0.17	_	0.28	-	0.42	0.32	021	0.30	0.27	0.18	0.29	0.24	0.14	0.32	0.28	0.23		
_	0.40	0.30	0.17	9.49	0.28	0.15	9	0.30	-	0.31	0.25	0.18	0.30	0.25	0.14	0.32	0.28	0.21		
	0.40	0.31	0.19	0.41	0.32	0.21	0.40	0.30	0.18	0.31	0.28	0.19	0.30	0.26	0.18	0.30	0.26	0.18		
	97.0	00.00		3	000	23.0								ı	-1	-				
9	6000	0.023	10	1	1	1	1	19	Т	3 6	8	110	0.00	0.24	0.16	0.30	0.28	0.18		
ula	0.38	0.24	1	1	L	1	1	1	1		0.21	012	0.54	22	-	2000	200	0.027		
max	0.41	0.31	0.19	ı	١.	0.23	0.42	1			0.28	0	0.30	000	ı	200	90.0	000		
gva.ng			ľ	0.40	ľ	0.30	0	0.17				0.30	F.	0.25	Į,	9	1		Ì	l
pr.std			0	0.016	9	0.033	ő	0.034			Ī	0.016	9	0.031	34	000				١
gr.min			0	0.34	°	0.17		0.07				0.24		6	6.13	200		İ		
gr.max			0	0.42	٥	0.33	٥	0.23				0.32	_	0.29	G.	0.23				
of cole																				l

Servicered		2050	Applicant		H.Weeber		_		ž			3	2	0/6	5	Cate:		1		
Project:	ď	5.13	Descr:		Bifocal Foldable	dable										1				
Item:		_	Descr	-	SA Numm	er pilot pla	SA Nummer pilot plant SA020580 (van biz.A Vm H)	50 (van biz	A Wm H)											
Series:	Z	¥ 2,260		No.of samples:		24	Aypel diopter??		BF# 26.0D		~	Remarks:	ž	Measured by: MO-Laboratory	WOLAS	oratory				
Descri	۲	Lenstype 29000	// 0006	If gemelan mat 5mm aparture	met Smm a															
101 LE 101									OPTICAL BENCH	BENCH										
•							ľ	SO-EYE M	ISO-EYE MODEL WITH 29000 CORNEA	H 29000 C	ORNEA							Γ		
					FAR				Ī					NEAR				Γ		
اسا	o	0 degrees			45 degrees		-	*45 degrees		•	0 degrees	-	4	45 degrees	r	7	+45 degrees			
_	52	8	100	52	8	9	52	8	8	82	8	8	100	S	8	ĸ	8	90.		
unit									[c/mm]	F								Ī		
date										۱										
column	-	2	-	•	s	9	7		٠	10	11	12	13	7	15	91	17	16	18	20
-	0.40	0.31	0.18	0.40	0.33	0.21	0.38	0.26	0.12	0.31	0.27	0.19	25.0	0.27	0.20	0.29	0.23	0.14		
~	0.40	0.30	0.18	0.41	0.32	0.22	0.39	0.28	0.18	0.30	0.25	0.17	0.31	0.25	0.19	0.29	0.25	0.17		
•	0.40	0.31	0.18	0.41	-	0.24	_	0.29	0.13	0.31	0.27	0.19	0.31	0.27	0.21	0.30	0.24	0.14		
•	0.39	0.26	0.12	0,39	0.30	0.18	0.40	0.31	0.19	0:30	0.24	0.12	0.30	0.23	0.12	0.31	0.28	0.21		
•	9	0.28	0.13	0.40	-	0.18	_	0.24	0.08	0.30	0.24	0.15	0.32	0.26	0.17	0.30	0.20	80.0		
	0.40	0.30	0.16		-	0.23	0.40	0.30	0.16	0.30	0.27	0.20	0.31	0.28	0.20	0.30	0.28	0.18		
7	0.39	0.28	0.11	0.42	0.33	0.22	6.36	0.29	0.14	0.31	0.26	0.17	0.30	0.26	0.18	0.30	0.27	0.19		
0	0.40	8.3	0.17	0.38	0.27	0.14		0.32	0.20	0.30	0.24	0,13	0.29	0.21	0.10	0.29	0.28	0.21		
OAR	0.40	0.29	0.15	0.40	0.32	0.20	0.38	0.20	0.15	030	0.26	617	0.31	0.25	6.17	030	0.25	12.0	March Company	
std	0.005	910.0	0.029	0.010	0.025	0.033	110.0	0.026	0.038	9000	0.014	0.029	0.010	120.0	0.040	0.007	0.027	0.044		
ulm	0.39	0.26	0.11	0.39	0.27		0.38	0.24	0.09	0.30	0.24	0.12	0.29	0.21	01.0	0.29	0.20	0.08		
max	0.40	0.31	91:0	0.42	0.35	0.24	0.41	0.32		0.31	0.27	0.20	0.32	0.27	0.21	0.31	0.28	0.21		
DAR-10			ò	0.40	Ů	0.30	Ö	0.17				0.30		0.25		0.1				l
pr.std			0,0	0.010	8	0.027	2.0	0.040				0.003		0.021	-	0.037				
gr.min			0,	0.38	٥	0.24	0	90'0				0.29		0.20		90.08				
gr.max			0	0.42	٥	0.35	0	0.24				0.32		0.28	_	0.21				
or cols.																				١

Sign. M. Check: 19

1 of 1:

Page 44 of 56

MECHANICAL OPTICAL LABORATORY

	Servicereq.	5050	Applicant:		H.Weeber		٥	Dept: AR	æ			,	Cods: 570	570		Date:				
Project:		5.13	Descr:		Bifocal Foldable	eldebi														
Ë			Descr:		SA Numm	er plot ple	SA Nummer pilot plant SA020550 (van biz.A Vm H)	O (van biz	(A MM H)											
Series:		e Ž		No.of san	No.of eamples: 3		Nypar diopter? 811E//15.0/20.0/25.0	200	811E//15.0r	20.075.0		Remarks:		Measured by: MO-Laboratory	by: MO-La	borntony				
Descr:		Lenstype	Lenstype 811E // gemeten met 3mm aperture	m neterner	de umus la	ecture														
total	L		g	OPTICAL BENCH	E		r													
		180	ISO-EYE MODEL WITH 29000 CORNEA	L WITH Z	9000 COR	NEA	Γ													
Γ	POWER		FAR			NEAR														
		52	95	8	100 25	8	90											٠		
init				ğ	(cyaru)															
date				١	1															
olumn	-	7	•	•	*			•		10	Ξ	11 12 13	5	2		15 16	11	18	19	2
۱.	15.0 D	L	0.37 0.30	0.30 0.24		0.35 0.28	0.22													
~	20.0 D	0.33	3 0.25	0.16	0.38	0.30	0.24													
,	25.0D	0.36	3 0.31	0.22	0.39	0.27	0.17													

11 of 1

Page 45 of 56

MECHANICAL OPTICAL LABORATORY

Ī	_	1				_						20			
				ĺ					100			2	0.00	0.02	0.02
								+45 dagrees	8			16	90.0	90.0	0.03
I								45	52			-43	0.23	0.22	0.15
Date: 8			ratory					_	100			16	10.0	0.02	0.03
ā			: MO-Labo				HEAR	45 degraes	88			15	90:0	0.09	0.02
٥			Measured by: MO-Laboratory				-	÷	25			7.	0.22	0.23	91.0
Code: 570			2						100			13	10.0	0.04	0.03
٥			Remarks:			¥		0 degrees	3			12	0.07	0.07	0.03
					I	ISO-EYE MODEL WITH 29000 CORNEA		•	52	To the		÷	0.23	0.22	0.16
			20.075.0		OPTICAL BENCH	WITH 29			8	[c/mm]		10	0.02	0.02	0.02
æ		A UM H)	311E#15.0		OPT	TE MODE		+45 degrees	S	-7	÷		0.10	0.09	0.07
Dapt: AR		30 (van biz	ster/?			130-E)		7	52				61.0	0.19	91.0
		11 SA0205	Aypa/ diopter/7 811El/15.0/20.0/25.0						901			,	0.02	0.02	0.03
	dable	SA Nummer pilot plant SA020560 (van biz A t/m H)		Prince			FAR	45 degrees	8			5 6	0.10	900	0.07
H.Weeber	Briocal Foldable	SA Numm.	No.of samples: 3	t Smm apr				ľ	52				0.20	0.19	0.18
			No.of san	Lenstype 811E // gemeten met 5mm aperture					100			,	0.01	0.02	0.04
Applicant:	Descr:	Descr:		311E # 94				0 degrees	3			•	0.09	0.10	90.0
F050	5.13		Z 3	Lenstype &					52			2	80	0.20	91.0
							POWER					,	15.0 D	26.0 D	25.0 D
Servicereq.	Project:	Item:	Saries:	Descr:	total	ERR				unit	date	column	-	~	

Sign. A. A.

308.1 12 of 1

Page 46 of 56

Servicereq.	F050	Applicant:	H.Weeber	Dept:	AR	Code:	570	Date:	
Project:	5.13	Descr:	Bifocal Fold						
item:		Descr:	SA Numme	r pilot plant	SA020560 (va	n blz.A t/m H)			

	METINGEN	Spec.Doc.	WVS
LENZEN	MTF:	geen	geen

VERBRUIKTE LENZEN

	CAL FOL		
SERVICE NR	MODEL	DIOPTER	Gemeten Nummers
SA 020560 K1	513BF	15.0D	2/5 en 7/10
SA 020560 K1	513BF	20.0D	1/8
SA 020560 K1	513BF	26.0D 15.0D	1/8 1/8
SA 020560 K1Z900 SA 020560 K1Z900	513BF	20.0D	1/8
SA 020560 K1Z900		26.0D	1/8

	811E	
Batch nr.	Lens nr.	Power
4224 06	019	15.0 D
4225 21	017	20.0D
4207 22	112	25.0 D

ALGEMEEN:

De MTF metingen zijn gedaan met:

ISO houder en Z9000 cornea Objectief 20.8X

lenshouder 3-en 5mm

Gullstrand houder met Z9000 corned Objectief 39.3X lensinserts 3- en 5mm

millipure met PEG (Brekingsindex: 1.3406 ± 0,0002)

Vloeistof is speciaal aangemaakt:

MEETPROGRAMM Hetzelfde als bij MTF metingen

De window was handmatig ingesteld Hij is bli het array signal op het midden van de laatste 2 blokjes afgesteld

DE METINGEN

Er is alleen bij 25 c/mm gefocuseerd De getalien bij 50 en 100c/mm komen van het focuspuni 25c/mm

page Comments Sign

				AANVRAAGN	R.: F054	
AANVRAGER:		H.Weeber		AANVRAAGDATUM:	-1	ويتنا
AFDELING:		AR		AFD.CODE:		
PROJECT/OMSCH	IRIJVING:	5.13 Bifocal Folda	able			
TYPE LENS:	Prototyp	e bifocal foldable				
		BATCHNUMMER	DIOPTRIE	AANTAL		
	SA 0205	60 Z9000 K1	15.0D	8		
	SA 0205	60 Z9000 K1	20.0D	8		
	SA 0205	60 Z9000 K1	26.0D	8		
			GEWENSTE			
MASSA				MTF/EFL		
OVERALL DIAME	TER			BACK FOCAL LENGTH		X
OPTIEK DIAMETE	R			DIOPTRIE		
BREEDTE-/DIAME	TER VAN	E LUSSEN		RESOLUTIE		
DIKTE VAN DE LU	ISSEN			BURSTTEST		
STAND VAN DE L	USSEN/STE	P HEIGHT		TREKSTERKTE		
EDGE THICKNESS	3					
COMPRESSION F	ORCE					
AXIAL DISPLACE	MENT IN CO	MPRESSION				_
TILT						_
AXIAL RIGIDITY						
AMOUNT OF TOU	СН					
DECENTRATION						
						_
AFWIJKENDE ME	TINGEN					
PMERKINGEN	Mada I	de watebak				
UPMERKINGEN	apertuur	and watersak				
		ndex van het water =	1 3406 +0 000	12		
	brekingsi	HUGY ANI URL MAIGL -	1.0400 10,000			

Remarket Mastered back Schoolses	K1-29000/15.00 EROS OPTICAL BENCH		15	sidable lens // Per	Multifocal foldable lens // Proteinne K1-29000		Applicant: H.Woeber Descr. Multifocal foldable lens II Pre	2
Remarks.	EROS OPTICA	S	The second second	The state of the s		Ser. Nadional designation of the series of t		Descr.
	EROS OPTICA	2	J dlopter/7 K1	Aypel dlopter? K1	4 Ayped diopter/?	No.of samples: 4 AypeJ diopter? K1	No.of samples: 4 Ayper diopter??	4 Ayped diopter/?
AL BENCH	WANTE BAY	1						
WATERBATH // WITH FIXTURE APERTURE #12mm		15	WATERBATH	WATERBATE	WATERBATI	WATERBATI	WATERBATI	WATERBATI
lene.3	-	ı	Lens-2	Lens-2	Lens-2	Lens-2	-	Lens-1
NEAR FAR	Γ	18	FAR	1		NEAR		FAR
BFL MTF BFL MTF	MIF	Ľ	BFL.	⊢	MTF BFL	MTF BFL	BFL MTF BFL	MIF BFL MTF BFL
Sociem		l	50c/mm	50c/mm	50c/mm	Sociem		50c/mm 50c/mm
11 12 13 14	9 10		9	6 7 8	,	,	,	,
76.109 98.695	H	١.	96.837	75.125 96.837		75.125	75.125	95.767 75.125
10.0	0.19		0.16 95.706		74.221 0.16	0.06	94.616 0.06 74.221 0.16	94.616 0.06 74.221 0.16
0.16	0.26		0.24 94.635	0.24	73.333 0.24	0.18 73.333 0.24	93.505 0.18 73.333 0.24	93.505 0.18 73.333 0.24
0.35	0.27		0.41 93.525	0.41	72.441 0.41	0.17 72.441 0.41	92.404 0.17 72.441 0.41	92.404 0.17 72.441 0.41
0.21	0.19		0.27 82.400	_	71.553 0.27	0.00	91.302 0.06 71.553 0.27	0.00
0.15	0.14		0.16 91.306		70.661 0.16	0.07 70.661 0.16	90.201 0.07 70.661 0.16	90.201 0.07 70.681 0.16
00	90.0		90.09		68.774 0.09	0.03 69.774 0.09	89.104 0.03 69.774 0.09	0.03 69.774 0.09
			89.934	69.199 89.934		69.138		69.138

MECHANICAL OPTICAL LABORATORY

	69.413	_	_	
8 5 8 5 8 8 9 8 8	70.408 71.416 71.916 72.411 72.200 73.404 73.404	0.00 0.00 0.00 0.13 0.14 0.00	00.0 0.00 0.00 0.14 0.04	20.00 20.00 20.00 20.00 20.00 20.00 20.00 20.00

Project 2.1 Description Project Proj	oject: m: ries:	ž	The second		H.Weeber			Dept:	AR			٦	Code:		_	Date:		1		
SEME_A Note simplet: 4 Note discount. N. Note Note N. Note N. N. N. N. N. N. N. N	m: ries:	5.13	Descr.		Multifoca	I foldable le	ens // Proto	lype K1-Z9	000											
SEME_N No.of samples: 4 Appel degrant No.2000000000000000000000000000000000000	ries:		Descr																	
NATIONAL REPORT Column C		SERIE	12	No.of san	nples:	4	Aypel dlo	l	K1-Z9000A	20.00	-	temarks:	M	easured b	y:MO lab	ratory				
NATIONAL NATIONAL																				
No. Column Colu	lekol								EROS O	PTICAL B	ENCH								Ī	
	RR						>	VATERBA	TH // WITH	FIXTURE	APERTUR	E = 3mm								
	-	,	ens-1			L	Len	7				lens	7	r	Ī		Lens	Ļ		
10 MT 10 MT	L	NEAR	Ľ	'AR		¥	1	l	æ		HEA	~	FAR	Γ	_	NEA	_	FA		
		┡	1	⊢		BFL	┕	95	MTF		P.	MTF	-	MTF	_	⊢	MTF	BFL	MTF	
1, 2, 3, 4, 6, 6, 7, 6, 6, 7, 6, 6, 10, 11, 12, 13, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	-	æ	0c/mm				500	mm		1		50c/n	es.	Γ	_		Socie	w		
1 2 2 4 4 5 6 7 7 6 7 7 7 7 7 7	2																			
150 150	Humn	1 2	-	,	S	۰	,		•	9	11	12	5	1,4	15	9,	17	18	40	30
4.55 COI (8.50) 0.05 6.446 0.00 (8.50) 0.00 0.00 0.00 0.00 0.00 0.00 0.00	1 5	3.598	64.70	8		53.362		70.839			60.876		66.163			53.510		70.910	Γ	
5597 0.21 (26.94 0.11) (26.95 0.10) (5.25 0.11) (26.95 0.14) (5.25 0.10) (5.25 0.11) (5.25	2	-		Ī		54.456	Ī	_	0.02		59.622	0.03	67.112	0.03		54.510	0.02	65.304	90.0	
Section Column	2	-		-		55.561	-		0.14		58.360	0.06	68.112	0.07		55.509	0.11	66.405	90.0	
54586 0.424 80.02	•	-				55.824	_		0.17		57.154	0.16	68.612	0.12		\$6.008	0.24	67.56	0.13	
5000 C 412	9	_	_			56.106					56.553	0.29	69.110	0.18		56.323	0.32	68.107	0.20	
1352 0.05 miss 0.09 (2.07) 0.35 6.770 (3.55.90 0.05 70.09 0.12 (3.50.00 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.05 0.15 0.1	9	Ī		_		56.401	-	_	•		55.952	0.20	69.613	0.15		56.609	0.30	68.657	0.20	
55.566 0.01 68.703 0.05 55.704 0.17 553.266 70.667 0.057 553.266 70.667 553.266 70.667 553.266 70.667 553.266 70.667 553.266 70.767 553.266 7	-	-	_	Ī		56.70	-				55.349	0.08	70.109	0.12		57.110	0.15	69.204	0.14	
56.864 71.246 57.310 0.11 72.137 55.629	60	-	_	-		57.004	-				53,326		70.607	90.0		58.108	0.03	69.753	8	
	60	59.864	71.24		_	57.310	-					, .	72.137		_	59,629		64.207		
	2					59.87														

Je C_:1 of 1

MECHANICAL OPTIGAL LABORATORY

						Т	Т	Т	Τ	Т		20	L	100	90.0	14	17	91.	90'0	_	
								FAR	MRF			18		_	-	_	_	-	-		
1							9	l	FF	eu eu		18	65.312	66.313	67.314	67.813	68.314	68.813	69.315	71.228	
							Lens-8	1	MTF	50c/mm		17	Γ	60:0	0.19	0.31	0.20	0.07			
Date:			digos					NEAR	BFL			16	53.916	55.415	55.916	56.416	56.914	57.415	59.867		
٩			Measured by:MO laboratory					ا				15	Г					_	_		
			easured b				r		MIE	Γ		2	Γ	900	0.10	0.20	0.21	0.20	0.050		
Code:			2				,	FAR	E	g		5	65.451	66.358	67.255	68.154	68.603	69.053	69.503	70.801	
٥			Remarks:			E =3mm	lens-7	_	MT.	Socimm	L	2		0.1	0.25	0.32	0.22	0.11			
			~		NCH	APERTUR		NEAR	댎		I	=	54.049	55.502	56.006	56.506	57.005	57.507	59.321		
					EROS OPTICAL BENCH	FIXTURE	r	_				10	r	_	_		_		_		
æ	000		K1-29000		EROS OF	WATERBATH // WITH FIXTURE APERTURE = 3mm	l		MTF	Γ		۰	Г	90	0.11	0.15	0.19	0.14	90.0		
Dept: /	Multifocal foldable lens // Prototype K1-29000		1			ATERBAT	9	FAR	BFL	uu		8	68.151	66.655	67.654	68.153	68.651	69.154	69.652	71.147	
_	s // Prototy		Aype/ diopter?			×	Lens-6	~	MTF	SOcimm		,	Γ	0.05	0.10	0.18	0.24	0.23	0.12	90.0	
	dable len		ľ.					NEAR	BFL			°	54.129	55.078	55.578	28.027	56.476	57.026	57.475	58.027	59.820
H.Weeber	Autifocal R		Dies:				Ī	_	سنا			5	Г								
٠	•		No. of samples:				-		MTF	Γ		,	Г	0.03	0.08	0.16	0.17	0.14	0.08		
Applicant:	Descr	Descr:					47	FAR	BFL.	m.		3	65.021	66.053	67.503	68.00	68.504	69.004	69.504	71.004	
F054 A	5.13	3	SERIE 28				Lens-5	~	MTF	Socimm		2		0.0	0.12	0.28	0.17	90.08			
	50	į	8					NEAR	BFL.			-	53.639	54.625	55.633	56.335	57.130	57.626	59.866		
Servicereq.	Project:	Kem:	Series:	Dasor:	total	ERR	r		_	nult	date	column	-	~	•	•	40		-		

	100	Milliocal (2000			Date:		ı		
ş E	of samp		ACABle ror	Mullifocal foldable lons // Prototype K1-29000	pe K1-290	8											
	of samp	iles:															
F	5			Aypa/ dioptar?		K1-29000//26.00	00.8	-	Remarks:	1	Measured by:MO laboratory	y:MO lab	orationy				
4	1			ì													
F FA	l light					EROS OP	EROS OPTICAL BENCH	NCH								ſ	
AZ d	ı.			3	TERBAT	WATERBATH # WITH FIXTURE APERTURE *3mm	FIXTURE	NPERTUR	E =3mm							I	
Ĭ.,	Ė	Г		Lens-2	7		Γ		lens-3	5		Γ		Lens-6	9		
ᇍ .	ij		NEAR		FAR	_	_	NEAR	_	FAR			Æ	NEAR	FAR	_	
	Γ	_	F.	#F	띪	MTF	_	BFL	MTF	BR.	NATE:		BFL	MTF	BFL.	MTF	
	-	_		50c/mm	E				Sochm	E	Ī			Socimon	eu.		
								ſ									
	,	\$	9	`		۰	e	=	12	5	11	15	16	11	18	63	
48.617			45.665		49.015		l	47.179	Г	49.469		Г	48.038		48.286		
50.615	90.0		45.415	0.13	50.764	0.07		45.674	0.01	50,309	0.0		47.057	90.0	50.789	0.07	
51.117	0.12		45.165	0.18	51,265	0.13		45.424	0.05	50.752	0.07		46.041	8	51.287	0.17	
51.818	0.19	_	44.818	0.29	51.766	22		45.173	0.14	51.218	0.14		45.278	0.18	51.787	0.27	
52.112	0.21		4.862	0.32	52.285	0.19		44.924	0.25	51.653	0.23		45.022	0.26	52,288	0.20	
52.617	0.10		44.416	0.28	52.766	90.0		44.673	0.33	52.106	0.21		44.772	0.37	52,788	0.12	
53.118	0.03		44.163	0.19	54.547			44.425	0.31	52,335	0.15		44.522	0.33	53,286	90.0	
54,485			43.912	0.11				44.175	022	52,556	0.09		44.270	0.27	54.330		
			41.644	_				43.922	5.	54.934			44.023	0.140			
	_			_				41.164					43.772	0.050			
		_											42.229				
	52.617			0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.01 44.185 0.28 0.03 44.185 0.28 0.03 43.912 0.11 1.564	0.03 44.45 0.25 82.78 0.03 44.45 0.25 82.78 0.03 44.45 0.24 82.78 0.03 44.45 0.03 82.78 0.03 62.87	0.03 44.45 0.25 82.78 0.03 44.45 0.25 82.78 0.03 44.45 0.24 82.78 0.03 44.45 0.03 82.78 0.03 62.87	0.00 44150 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	0.00 44.15 0.24 0.250 0.00 44.05 0.00 0.00 0.00 0.00 0.00 0	0.01 44.475 0.02 5.030 0.00 44.95 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 44705 0.00 57705 0.00 44505 0.00 57805	0.00 44705 0.00 57705 0.00 44505 0.00 57805	0.00 4445 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.09 4457 0.20 2.20 0.20 0.20 0.20 0.20 0.20 0.2	0.00 44119 0.00 5270 0.00 5420 0.00 5180 0.20 60022 0.00 5002 0.00	0.01 44190 000 87290 000 44529 000 8022 00072 023 0.00 44190 000 87290 000 44470 033 87390 031 44270 033 0.00 44190 001 85497 044450 033 87290 031 44270 033 0.00 44190 001 85497 04470 031 87290 031 44270 033 0.00 44190 031 84290 031 84290 031 84270 0329 0.00 44770 0329	0.01 44440 0.02 52.08 0.01 44470 0.02 51.00 0.02 0.03 52.08

1,10 1,10	Date:			poratory			0.000	MEAD	TE BE	SOciem	16 17 18 19	48.262	50.0	0.15 51.254	0.27	44.964 0.37 52.003 0.28			0.18	
State Detect Management	Se:			weated by wo is	-			FAR	Н		7.	9361	-	-	Ī	Ī		-	-	52 863 0.06
1,000 1,00	S			- Calledon	700	PERTURE atom	lane &	ı	MITTE	50cmm	12		0.10	0.18	0.34	0.39	0.32	0.22	0.13	200
1.10 1.00			000	3	DEAL DEA	FIXTURE	-	L	I	L	61	ř	_	_	_	_	•	_	_	_
1 0 0 0 0 0 0 0 0 0	AR	0006	STOODOOL NA		EBAG A	ATH // WITH	ľ	AR	MTF				-	-	•	•	•	•	Ĭ	_
1,10 1,00	Dept:	plotype K1-2	-			WATERB	7-500	Ľ	┝	Ochmm	*	49.287			-					
\$13 Assignment 15.13 Assignmen		ble lens // Pro	Bread					NEAR	┝	9	1	988	-	-	-	-	-	-	-	-
\$13 Assignment 1.00 Assignme	Weeber	utificcal foldar	1				L	L	æ	L	2	47	\$	4	4	4	\$	4	1	4
704 Applicant Post Ap		2	No of each				r	<u>«</u>	MTF		,		90.0	0.12	0.23	023	0.11	_	_	_
SERRE SERRE SERVE	Applicant:	Descr	1				38-6	4	P.F.	www	2	48.696					_	_		
BF N N N N N N N N N N N N N N N N N N N	7054	5,13	SFRIFTS				يّ	NEAR	Н	200	2	48.081	-	-	•	-	_	_	23	

1 tof 1

Servicereq.	F054	Applicant:	H.Weeber	Dept:	AR	Code:	Date:	30-05-2002
Project:	5.13	Descr:	Multifocal foldable	lens // Prototyp	n K1-Z9000			

Verbruikte Lenzen:

Position	SA numb	Power	Lens nr.
1	SA02056	15.0D	1
2	SA02056	15.0D	2
3	SA02056	15.0D	3
4	SA02056	15.0D	4
5	SA02056	15.0D	5
6	SA02056	15.0D	6
7	SA02056	15.00	7
8	SA02056	15.0D	8

WATERBAK

SA numb	Power	Lens nr.
SA02056	20.0D	1
SA02056	20.00	2
SA02056	20.0D	3
SA02056	20.0D	4
SA02056	20.0D	5
SA02056	20.0D	6
SA02056	20.0D	7
SA02056	20.00	8

SA numb	Power	Lens nr.
SA02056	26.0D	1
SA02056	26.0D	2
SA02056	26.0D	3
SA02056	26.0D	5
SA02056	26.0D	6
SA02056	26.0D	7
SA02056	26.0D	8
SA02056	26.00	9

Algemeen:

De Back Focal Length is als volgt gemeten.

BENODIGDHEDEN: Waterbak voor BFL

10X objection Lenshouder (dezelfde als voor de ISO metingen 3mm)

MEETPROGRAMM Hetzelfde als blj MTF metingen

De window was handmatig ingesteld

Hij is bij het array signal op het midden van de laatste 2 blokjes afgesteld

BrekingsIndex: 1.3406 ± 0,0002 De vloeistof is apart voor deze lenzen aangemaakt.

Millipure + PEG

Verdere afstellingen van de opstelling als normaal

BFL meting:

De meting is niet op een plaats uitgevoerd maar op meerdere plaatsen

dit is als volgt gedaan: Op het opp. van de lens is de lengteunit genuld.

Daarna de waterbak zover verplaatst dat er net een MTF waarde zichtbaar werd Deze verplaatsing is genoteerd

Daarna in verschillende stappen door het best focus heen totdat er geen MTF meer te zien was.

Genoteerd wordt: de stapgrootte en de MTF waarde

Door H. Weeber is hier een best BFL uit berekend.

REPORT #: Rp2691r Bifocal foldable lens design based on corneal wavefront aberration

Appendix 8. CD rom: data files (on file in at Documentation Control)