

Michael Musty Algebra and Number Theory Seminar May 8, 2018

Outline

- 1. What is a 2-solvable Belyĭ map?
- 2. Motivation
- 3. Algorithm to compute explicitly
 - 3.1 Find permutation triples
 - 3.2 Compute equations
- 4. Explicit examples

Theorem (G.V. Belyĭ 1979)

A smooth projective curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Theorem (G.V. Belyĭ 1979)

A smooth projective curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Such a map is called a **Belyī map**.

Theorem (G.V. Belyĭ 1979)

A smooth projective curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Such a map is called a Belyĭ map.

In the 1980s, Grothendieck described a bijection between Belyĭ maps and dessins d'enfants.

Theorem (G.V. Belyĭ 1979)

A smooth projective curve X over $\mathbb C$ can be defined over $\overline{\mathbb Q}$ if and only if there exists a branched covering of compact connected Riemann surfaces $\varphi:X\to\mathbb P^1$ unramified (unbranched) above $\mathbb P^1\setminus\{0,1,\infty\}$.

Such a map is called a Belyī map.

In the 1980s, Grothendieck described a bijection between Belyĭ maps and dessins d'enfants. $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ acts on these sets.

A Zoo of Bijections

A Zoo of Bijections

A Zoo of Bijections

All up to the appropriate version of equivalence in each category.

Example 🖐

Example 🖐

2-solvable (Galois) Belyĭ maps

2-solvable (Galois) Belyĭ maps

Theorem (Beckmann-Kazez 1989)

Let $\varphi:X \to \mathbb{P}^1$ be a Belyĭ map with monodromy group G.

Theorem (Beckmann-Kazez 1989)

Let $\varphi:X\to\mathbb{P}^1$ be a Belyĭ map with monodromy group G. Suppose p does not divide #G.

Theorem (Beckmann-Kazez 1989)

Let $\varphi:X\to \mathbb{P}^1$ be a Belyĭ map with monodromy group G. Suppose p does not divide #G. Then there exists a number field M such that p is unramified in M and

Theorem (Beckmann-Kazez 1989)

Let $\varphi: X \to \mathbb{P}^1$ be a Belyĭ map with monodromy group G. Suppose p does not divide #G. Then there exists a number field M such that p is unramified in M and φ is defined over M with good reduction at all primes $\mathfrak p$ of M above p.

Theorem (Beckmann-Kazez 1989)

Let $\varphi: X \to \mathbb{P}^1$ be a Belyĭ map with monodromy group G. Suppose p does not divide #G. Then there exists a number field M such that p is unramified in M and φ is defined over M with good reduction at all primes $\mathfrak p$ of M above p.

Upshot:

Theorem (Beckmann-Kazez 1989)

Let $\varphi: X \to \mathbb{P}^1$ be a Belyĭ map with monodromy group G. Suppose p does not divide #G. Then there exists a number field M such that p is unramified in M and φ is defined over M with good reduction at all primes $\mathfrak p$ of M above p.

Upshot: Every 2-solvable Belyĭ curve we write down has good reduction away from p = 2.

$$G = \operatorname{\mathsf{Gal}}(K(X)/K(\mathbb{P}^1)) \qquad G \cong \left\langle \left((12), (1)(2), (12) \right) \right\rangle \leq S_2$$
 $\widetilde{G} = \operatorname{\mathsf{Gal}}(K(\widetilde{X})/K(\mathbb{P}^1)) \qquad \widetilde{G} \cong \langle \widetilde{\sigma} \rangle \leq S_4$ $H = \operatorname{\mathsf{Gal}}(K(\widetilde{X})/K(X)) \qquad H \cong \langle (13)(24) \rangle \leq S_4$

$$G = \operatorname{\mathsf{Gal}}(K(X)/K(\mathbb{P}^1)) \qquad G \cong \left\langle \left((12), (1)(2), (12) \right) \right\rangle \leq S_2$$
 $\widetilde{G} = \operatorname{\mathsf{Gal}}(K(\widetilde{X})/K(\mathbb{P}^1)) \qquad \widetilde{G} \cong \langle \widetilde{\sigma} \rangle \leq S_4$ $H = \operatorname{\mathsf{Gal}}(K(\widetilde{X})/K(X)) \qquad H \cong \langle (13)(24) \rangle \leq S_4$

$$1 \longrightarrow H \stackrel{\iota}{\longrightarrow} \widetilde{G} \stackrel{f}{\longrightarrow} G \longrightarrow 1$$
$$\widetilde{\sigma} \stackrel{?}{\longrightarrow} \sigma$$

$$\sigma = (\sigma_0, \sigma_1, \sigma_\infty) = ((12), (1)(2), (12)) \in S_2^3$$

$$\tau = (13)(24) \in S_4$$

$$\widetilde{G} = \langle \widetilde{\sigma} \rangle \leq S_4$$

$$\sigma = (\sigma_0, \sigma_1, \sigma_\infty) = ((12), (1)(2), (12)) \in S_2^3$$
 $\tau = (13)(24) \in S_4$
 $\widetilde{G} = \langle \widetilde{\sigma} \rangle \leq S_4$

$$1 \longrightarrow \langle \tau \rangle \stackrel{\iota}{\longrightarrow} \widetilde{G} \stackrel{f}{\longrightarrow} \langle \sigma \rangle \longrightarrow 1$$
$$\widetilde{\sigma} \stackrel{?}{\longrightarrow} \sigma$$

$$\sigma = (\sigma_0, \sigma_1, \sigma_\infty) = ((12), (1)(2), (12)) \in S_2^3$$
 $\tau = (13)(24) \in S_4$
 $\widetilde{G} = \langle \widetilde{\sigma} \rangle < S_4$

$$1 \longrightarrow \langle \tau \rangle \stackrel{\iota}{\longrightarrow} \widetilde{G} \stackrel{f}{\longrightarrow} \langle \sigma \rangle \longrightarrow 1$$
$$\widetilde{\sigma} \stackrel{?}{\longrightarrow} \sigma$$

$f^{-1}(\sigma_0)$	$f^{-1}(\sigma_1)$	$f^{-1}(\sigma_\infty)$
(12)(34)	(1)(2)(3)(4)	(12)(34)
(14)(23)	(13)(24)	(14)(23)
(1432)		(1432)
(1234)		(1234)

There are 32 possible σ from these lists.

There are 32 possible σ from these lists.

Only 6 such triples correspond to Belyĭ maps.

There are 32 possible σ from these lists.

Only 6 such triples correspond to Belyĭ maps.

 ${\bf 3}$ of these triples corresponding to distinct Belyı̆ maps (up to isomorphism).

There are 32 possible σ from these lists.

Only 6 such triples correspond to Belyĭ maps.

3 of these triples corresponding to distinct Belyı maps (up to isomorphism).

$\widetilde{G}\cong \mathbb{Z}/4\mathbb{Z}$	
((1432), (1)(2)(3)(4), (1234))	
((1432), (13)(24), (1432))	
$\widetilde{G}\cong \mathbb{Z}/2\mathbb{Z} imes \mathbb{Z}/2\mathbb{Z}$	
((12)(34), (14)(23), (13)(24))	

4T1-[4,2,4]-4-22-4-g1

4T1-[4,2,4]-4-22-4-g1

$$(\sigma_0,\sigma_1,\sigma_\infty) = \big((1\,4\,3\,2),(1\,3)(2\,4),(1\,4\,3\,2)\big)$$

4T1-[4,2,4]-4-22-4-g1

$$(\sigma_0, \sigma_1, \sigma_\infty) = ((1432), (13)(24), (1432))$$

We now exhibit a genus 5 Belyĭ map $\varphi: X \to \mathbb{P}^1$ defined by $x_0 \in K(X)$ with monodromy group $C_8: C_2$.

We now exhibit a genus 5 Belyĭ map $\varphi: X \to \mathbb{P}^1$ defined by $x_0 \in K(X)$ with monodromy group $C_8: C_2$.

X is cut out by the following equations in \mathbb{A}^5 :

We now exhibit a genus 5 Belyĭ map $\varphi: X \to \mathbb{P}^1$ defined by $x_0 \in K(X)$ with monodromy group $C_8: C_2$.

X is cut out by the following equations in \mathbb{A}^5 :

$$x_1^2 = x_0$$

$$x_3x_4^2 = x_1x_2 + x_1 + x_3^2$$

$$x_3x_4^2 = x_1 + x_1x_3^2$$

$$x_3x_4^4 = x_3^3 + 2x_1x_4^2$$

$$2x_3^2x_4^4 = x_2^2 + 2x_3^3x_4^2 + 2x_3^2 - 2x_3x_4^2 + 2x_4^4 + 1$$

$$x_3^3 = x_2x_3 + x_3^2x_4^2 - x_4^2$$

$$x_3^2x_4^2 = x_2x_4^2 + x_3^3 + x_3$$

$$x_3^2x_4^4 = x_3^4 + x_3^2 + x_4^4$$

Acknowledgements

Thanks to the following for helpful discussions:

- Sam Schiavone
- Jeroen Sijsling
- John Voight

Thanks for listening!

https://math.dartmouth.edu/~mjmusty/32.html