

Licenciatura Engenharia Informática

Ciência de Dados

Grupo G9 Segundo Semestre

Executado por

2341 Jorge Ramos Jorge.ramos@my.istec.pt 2343 João Nunes joao.nunes@my.istec.pt

Orientado por

Professor Ricardo Ferreira

Entregue em 17/04/2022

1. Índice		
1.	Índice	2
2.	Objetivos	3
3.	Desenvolvimento	4
1	Modelo entidade e associação	4
	Entidades e atributos principais	4
	Entidades derivadas de Disjoints	5
١	Modelo entidade e associação – Gráfico	6
١	Modelo Relacional	8
4.	Conclusões	11

2. Objetivos

O objetivo deste projeto é a aplicação dos conhecimentos na conceção de uma base de dados relacional.

Para demostrar foi usado um exemplo de uma base de dados relacional para uma entidade bancária obedecendo a uma serie de requisitos previamente requeridos.

Para essa base de dados vai ser apresentado um modelo entidade associação com a indicação das entidades, atributos e associações, também terá o modelo relacional com a indicação das chaves primárias, chaves estrangeiras e associações.

3. Desenvolvimento

Modelo entidade e associação

O modelo entidade e associação é composto por 14 entidades e 6 associações, também tem 2 Disjoints, um para a entidade de conta e outro para a entidade de "Acao".

Entidades e atributos principais:

- 1. Conta
 - a. N Conta
 - b. Tipo de Conta
 - c. Saldo
- 2. Cliente
 - a. <u>NIF</u>
 - b. Nome
 - c. Telemóvel
 - d. Tipo Titular
 - e. Situação Laboral
 - f. Rendimento anual
- 3. Colaborador
 - a. N_Emp
 - b. Nome
 - c. Telemóvel
 - d. NIF
- 4. Movimento
 - a. <u>ID_Mov</u>
 - b. Tipo de conta
 - c. Conta_dest
 - d. Conta_origem
 - e. Valor

O "_" por baixo do texto é referente à Primary Key

- 5. Cartao
 - a. N Cartao
 - b. Pin
 - c. Tipo
- 6. Acao
 - a. ID Acao
 - b. Tipo de Acao

Entidades derivadas de Disjoints:

- 1. C_Prazo
 - a. ID CPrazo
 - b. Taxa de Juro
- 2. C Acoes
 - a. ID_Acoes
- 3. I_Acoes
 - a. ID_IAcoes
 - b. Quantidade
- 4. Acoes
 - a. ID_Stock
 - b. Nome
 - c. Empresa
- 5. A_PagamentoEstado
 - a. ID_PagamentoEst
 - b. Referência
- 6. A_PagamentoServicos
 - a. ID PagamentoServ
 - b. Referencia
 - c. Entidade
- 7. A_DebDireto
 - a. ID_Debdireto
 - b. Entidade
 - c. Bool(Debdireto)

Modelo entidade e associação - Gráfico

Neste bloco vai ter a indicação em gráfico das entidades e suas associações:

Com associação "têm" para a entidade "cliente":

A Associação "têm" também se associa com a entidade "Cartão":

A entidade "Colaborador" têm associação "gere" com a entidade "Colaborador":

A Entidade conta têm associação "faz" com a Entidade "Acao":

A entidade "Acao" têm por sua vez 3 Disjoints que especifica cada tipo de ação:

A entidade "conta" também têm 3 Disjoints para especificar o tipo de conta:

A entidade Conta Ações "C_Acoes" têm uma associação "faz" com a entidade "I_Acoes", que por sua vez tem associação "investe" para a entidade "Acoes", assim será possível associar as ações compradas e as suas quantidades entre diferentes ações que estejam disponíveis.

Modelo Relacional

O modelo relacional conta com 16 tabelas e estas são as chaves primárias, estrangeiras e suas associações:

Começando pela tabela "Conta" esta têm a PK(N Conta) e esta tabela associa-se com 6 tabelas:

- 1. Conta_Cliente (1:1)
- 2. Movimento (1:N)
- 3. Cartão (1:N)
- 4. C_Prazo (N:1)
- 5. C_Acoes (N:1)
- 6. C_Obrigacoes (N:1)

A tabela "C_Acoes" tem como PK(ID_CAcoes) por sua vez uma associação com a tabela "IAcoes_CAcoes" que liga a outra tabela "I_Acoes" esta liga também a tabela "Acoes":

A tabela "Cliente" tem como PK(NIF) tem associações com 3 outra tabelas:

- 1. Cartão (1:N)
- 2. Colaborador(N:1)
- 3. Conta_Cliente(1:1)

A "Conta_Cliente", pode ter uma "Ação" e esta ação pode ser "A_PagamentosEstado","A_PagamentosServico" ou A_DebDireto, as associações estão feitas da seguinte forma:

Conta_Cliente → Acao (1:N)

Conta_Cliente → A_PagamentoEstado (1:N)

Conta_Cliente → → A_PagamentoServicos (1:N)

Conta_Cliente → A_DebDireto (1:N)

Accao → A_PagamentoEstado(1:1)

Accao → A_PagamentoServicos(1:1)

Accao → A_DebDireto(1:1)

4. Conclusões

Este trabalho, apesar de parecer relativamente simples, torna-se algo complexo devido à quantidade de requisitos pedidos, portanto a compilação de todos os requisitos num modelo relacional revelou-se um desafio.

Também na passagem para uma base de dados, pois nesse processo deu para notar algumas inconsistências que tiveram que posteriormente ser resolvidas.