土卫六高层大气重力波耗散效应

2020.6.19 组会

主讲:王星

大纲

➤研究背景简介

▶线性重力波模型

>在高层大气的波动耗散

土星系统与土卫六

土星最大的卫星,有着浓厚的大气, 大气主要成分为N₂, CH₄, H₂ 以及碳 氮化合物.

卡西尼-惠更斯号探测器

2005年1月,惠更斯号降落在土 卫六表面上.

卡西尼: >1000km

惠更斯: 0-1000km

土卫六高层大气温度变化范围高达约60K.

▶为了解释该现象,理论分析表明其驱动机制可能有:

太阳辐射加热(de La Haye 2007), 土星磁层带电粒子体沉降(~7K)、焦耳加热(Snowden and Yelle 2014), HCN旋转线导致的辐射热(Cui, 2016), **重力波耗散效应**;

波动现象

Fulchignoni et al. 2005

INMS探测N₂,CH₄ 成分的数据显示土卫六高 层大气有10%的波扰

- ➤ Muller-Wodarg et al.2006 粗略估计波的最大能流为1.2×10⁹ eV cm⁻² s⁻¹;
- ➤ Cui et al. 2013 分析发现其为垂直向上传播的重力波;
- ➤ Snowden & Yelle et al. 2014 粗略估计了波的最大加热率为30 eV cm⁻³ s⁻¹,最大的制冷率为9 eV cm⁻³ s⁻¹;
- ▶ 上述结果表明重力波对土卫六高层大气的影响不可忽略.

线性重力波模型

模型假设条件:

- ▶ 背景大气为平面的(局部)以及是流体静力学平衡的,忽略科里奥利效应;
- ➤ 忽略大气背景风;
- ➤ 采用非弹性近似(排除声波).

 $\frac{D\rho}{Dt} = -\rho \nabla \cdot \overrightarrow{V}$

模型方程组:

 $p = \rho RT$ \longrightarrow $\frac{p'}{p_0} = \frac{\rho'}{\rho_0} + \frac{T'}{T_0}$

扰动方法: $X=X_0+X'$ $X'=\delta X(z)e^{i(k_xx+k_yy-\omega_0t)}$

 $\vec{V} = (u, v, w), \ \nu = \frac{\mu}{\rho}, \ \theta$ 为位温, Pr 为普朗特数

 $\theta = T \left(\frac{p_s}{p} \right)^{R/c_p}$

⇒ 将波动形式代入,整理,得到关于垂直风速扰动
$$w'$$
的方程:
故忽略
此项
 $c_s = \sqrt{\gamma R T_0} \to +\infty$, $\frac{1}{T_0} \frac{dT_0}{dz} \to 0$

$$\frac{d^{2}w^{'}}{dz^{2}} - \frac{1}{H_{\rho}} \frac{dw^{'}}{dz} + \left[\frac{1}{H_{\rho}^{2}} \frac{dH_{\rho}}{dz} - k_{h}^{2} + \frac{k_{h}^{2}N^{2}}{\hat{\omega}\left(\hat{\omega} + i\beta\right)} \right]w^{'} + \left[\frac{1}{T_{0}} \frac{dT_{0}}{dz} + \frac{(\gamma - I)g\tilde{\omega}_{0}}{c_{s}^{2}(\hat{\omega} + i\beta)} \right] \left(\frac{w^{'}}{H_{\rho}} - \frac{dw^{'}}{dz} \right) = 0$$

➤ 做变换:
$$w' = exp\left[i(k_x x + k_y y - \omega_0 t) + \int_{z_0}^z \frac{1}{2H_\rho} dz\right]\widetilde{w}$$
 得到: $\frac{d^2\widetilde{w}}{dz^2} + k_z^2\widetilde{w} = 0$ 其WKB解为:

$$\widetilde{w}(z) = \Delta W(z_0) \sqrt{\frac{k_z(z_0)}{k_z(z)}} e^{i \int_{z_0}^z k_z dz}$$

其中:
$$k_z^2 = \frac{k_h^2 N^2}{\hat{\omega} \left(\hat{\omega} + i\beta \right)} - \frac{1}{4H_o^2} \left(1 - 2 \frac{dH_o}{dz} \right) - k_h^2$$
 为色散关系.
$$\hat{\omega} = \tilde{\omega}_o - i\nu\alpha, \ \beta = \left(1 - \frac{1}{Pr} \right) \nu\alpha, \quad \alpha = -k_h^2 - \left(k_z + \frac{1}{2H_o} \right)^2$$

这是一个关于 k_z 的六阶多形式方程,有三对解,分别对应于浮力波、由分子黏度导致的重力波 和由热传导导致的波.

➤ 极化关系:

$$u' = -\frac{ik_x}{k_h^2} \left(-ik_z + \frac{1}{2H_\rho} \right) w', \qquad p' = -\frac{i\rho_0 \hat{\omega}}{k_h^2} \left(-ik_z + \frac{1}{2H_\rho} \right) w'$$

$$T' = -\frac{i}{\hat{\omega} + i\beta} \left[\Gamma + \frac{\tilde{\omega}_0 \hat{\omega}}{c_p k_h^2} \left(-ik_z + \frac{1}{2H_\rho} \right) \right] w', \qquad \frac{\rho'}{\rho_0} = i \left\{ \frac{\Gamma}{T_0(\hat{\omega} + i\beta)} - \frac{\hat{\omega}}{k_h^2} \left[\frac{1}{RT_0} - \frac{\tilde{\omega}_0}{T_0 c_p(\hat{\omega} + i\beta)} \right] \left(-ik_z + \frac{1}{2H_\rho} \right) \right\} w'$$

Period τ [h]	$\lambda_h \ [ext{km}]$	$\begin{bmatrix} c_h \\ ms^{-1} \end{bmatrix}$	ΔT_{max} [K]	z_{max} [km]	$\lambda_z \left(z_{max} \right) \\ [\text{km}]$	$\lambda_{zm} \ [ext{km}]$	
3	600	55.6	10.0	1176	323.5	450.9	
3	750	69.4	10.0	1241	468.9	522.2	
3	900	83.3	10.0	1290	628.3	590.3	
6	600	27.8	10.0	979	124.4	314.6	
6	750	34.7	10.0	1025	161.1	345.7	
6	900	41.7	10.0	1067	202.0	373.9	
9	600	18.5	10.0	876	77.5	286.1	
9	750	23.1	10.0	917	99.1	308.9	
9	900	27.8	10.0	952	121.5	328.6	

Muller-Wodarg et al.2006 分析波的 垂直波长范围在1000-1600km 高度 为170km-360km;

为了与Muller-Wodarg et al.2006估计的结果做对比,选取这三个代表的重力波分析其能流和加热率;

➤加热率:
$$H_{tot} = -\frac{\partial F_{tot}}{\partial z} = -\frac{\partial}{\partial z} (F_h + F_v + F_p + F_d)$$

 $F_h = \rho_0 c_p \langle w'T \rangle$ 为感热通量; $F_v = -\int_z^\infty \langle \sigma' : \nabla \overrightarrow{V} \rangle_{dz}$ 为粘滞耗散导致的能流;

$$F_p = -\int_z^{\infty} \langle \overrightarrow{V} \cdot \nabla p' \rangle dz$$
 为波导压力梯度做的功;

$$F_d = -\int_z^\infty \langle w' \rho' \rangle dz$$
 为波导欧拉转移做的功.

- ➤ Muller-Wodarg et al.2006 粗略估计波的最大能流为1.2×10° eV cm⁻² s⁻¹;
- ➤ Snowden & Yelle et al. 2014 粗略估计了波的最大加热率为30 eV cm⁻³ s⁻¹ ,最大的制冷率为 9 eV cm⁻³ s⁻¹ ;且太阳EUV辐射在1100km高度的加热率为 65 eV cm⁻³ s⁻¹ .

- ➤ 探讨波的加热率导致的温度变化:
- ➤ 能量平衡方程: $F_w^i + F_{rad} = k_m \frac{\partial T_m^i}{\partial z}$ 其中 $k_m = 27.21 \times 10^{-5} T_0^{0.8} \ J(mKs)^{-1}$
- ➤ 重力波导致的温度变化为20K;

- ➤ 重力波导致的温度变化大于之前研究的驱制;但仍小于实际观测到的60K的温度变化;
- ➤ 未来展望在于需要考虑其他重要的波的过程现象:波破与复合波.

谢 谢!