EE2021 Devices and Circuits

Revision

Summary on Materials Covered

Logic Synthesis

$$Y = \overline{(A+B+C)\cdot(D+E)\cdot(F+G)}$$

= Hint: Demorgan Theorem

=

Pull Down Network

Pull Up Network (Duality)

Rev-3

Logic Function

DC Analysis: Identifying

• Identify AC source, load and non-ideal current source

DC Analysis: DC Biasing

NMOS:

 $\begin{array}{l} K_{n}{=}2mA/V^{2},\ V_{THN0}{=}1V,\ \lambda_{n}{=}0.01V^{\text{-}1},\ \gamma_{n}{=}0.5,\ 2\phi_{f}{=}0.6,\ C_{gd}{=}1pF, \\ \underline{C_{gs}}{=}1pF,\ C_{db}{=}0.1pF,\ C_{sb}{=}0.1pF \end{array}$

BJT:

 $I_S=10^{-15}A$, $\beta=100$, $V_A=100V$, $C_{\pi}=1p$, $C_{\mu}=1p$

Find the DC biasing current for Q₁ and M₁

Determine DC Biasing

 $I_{D.M2A} =$

 $I_{D,M2A} =$

 $\Rightarrow I_{c,Q1} \approx$

 $\Rightarrow I_{D,M1} =$

AC Analysis: Simplify the Circuit and Find Out AC Small Signal Parameter

Replace current mirror with non-ideal current source

Simplify the circuit for AC analysis

Determine AC small signal parameter

$$g_{m,M1} =$$

$$g_{mb,M1} =$$

$$r_{o,M1} = r_{o,M3} = r_{o,M2} =$$

$$g_{m,O1} =$$

$$r_{\pi,O1} =$$

$$r_{o,Q1} =$$

Hint:

- 1) DC voltage source→AC ground
- 2) DC current source→Open circuit
- 3) DC block/bypass capacitor→AC short circuit
- Simplify the circuit for AC analysis by replacing current mirror with non-ideal current source
- Find out the AC small signal parameters (g_m, r_π, r_o) for transistors Q_1, M_1, M_2, M_3

AC Analysis: Identify Amplifier

1st stage amplifier configuration:

2nd stage amplifier configuration:

1st stage amplifier G_{m1}:

 2^{nd} stage amplifier G_{m2} :

- Identify the 1st and 2nd stage amplifiers by drawing rectangular box surrounding them
- Write down the corresponding two ports-network parameters

AC Analysis: Identify Two-ports Network Parameters (R_{in2}, R_{out1})

Estimate R_{in2} and R_{out1} (Throw away half the circuit)

AC Analysis: Identify Two-ports Network Parameters (R_{in1}, R_{out2})

Estimate R_{in1} and R_{out2}

AC Analysis: Identify A_{V1}=V₂/V₁

- Estimate A_{V1}=v₂/v₁ Draw out two-ports network equivalent

AC Analysis: Overall Gain A_V=V_{out}/V_s

$$V_1 =$$

$$V_{\gamma} =$$

$$V_{out} =$$

$$A_{V} = \frac{V_{out}}{V_{s}} =$$

Estimate overall gain A_V=v_{out}/v_s

Opamp Circuit Analysis

$$\Rightarrow v_{out} =$$

 $= v_1 \times$

Superposition:

$$v_{out} =$$

- Virtual short (v₊≈v₋) Infinite input resistance (i₊=i₋ =0)
- Superposition

$$v_{+} =$$

$$\Rightarrow v_{out} =$$

$$= v_2 \times$$

BJT Equivalent Resistance Summary (Table 1)

Blue: look into collector terminal

Red: look into base terminal

Green: look into emitter terminal

Conf	r _x	Conf	r _x	Conf	r _x
R_{C} r_{x} R_{E}	$r_{\pi} + (1 + \beta)R_{E}$ $\approx r_{\pi}(1 + g_{m}R_{E})$	R _S R _E	$r_o \left\{ 1 + g_m \left[(r_\pi + R_S) / / R_E \left[\frac{r_\pi}{r_\pi + R_S} \right] \right] \right\}$ $If R_S = 0 and r_\pi << R_E$ $\Rightarrow r_{x,\text{max}} = r_o (\beta + 1)$	r _x E	$\frac{1}{g_m}$
R _s V	$\frac{R_{S} + r_{\pi}}{1 + \beta} / / r_{o}$ $\approx \frac{R_{S}}{1 + \beta} + \frac{1}{g_{m}}$	R _C	$\frac{1}{g_m} \times \frac{r_o + R_C}{r_o + \frac{R_C}{\beta}}$		

MOS Equivalent Resistance Summary (Table 2)

Blue: look into drain terminal

Red: look into gate terminal

Green: look into source terminal

Conf	r _x	Conf	r _x	Conf	r _x
r _x R _E	8	r _x R _s R _E	$r_o \left[1 + \left(g_m - g_{mb} \right) R_E \right]$	r _x	$\frac{1}{g_m}$
R _s V r _x C	$\frac{1}{g_m - g_{mb}}$	R _C	$\frac{1}{g_m - g_{mb}} \times \frac{r_o + R_C}{r_o}$		

BJT Summary (Table 3)

ВЈТ	G_m	A_V
CE	· · ·	Derive Based on 2-ports Network
A	$g_{\it m}$	
СВ		Derive Based on 2-ports Network
В	$-g_m$	
СС	Not Applicable	αR
$\begin{array}{c c} & & & & \\ & & & \\ \hline & & & \\ & & \\ \hline & & \\ & & \\ \end{array} V_{out}$		$\frac{g_m R_L}{1 + g_m R_L}$
CE with Emitter Degeneration	$g_{_m}$	Derive Based on 2-ports Network
D	$\frac{g_m}{1+g_m R_E}$	

MOS Summary (Table 4)

MOS	G_m	A_V
CS		Derive Based on 2-ports Network
A	$g_{\it m}$	
CG	$-(g_m-g_{mb})$	Derive Based on 2-ports Network
В	Drop g_{mb} if no body effect	
CD	Not Applicable	$g_m R_L$ g_m
$V_i \rightarrow V_{out}$		$\frac{g_m R_L}{1 + (g_m - g_{mb}) R_L} \approx \frac{g_m}{g_m - g_{mb}}$
R _L §		Drop g_{mb} if no body effect
CS with R _E	g_{m}	Derive Based on 2-ports Network
D	$\frac{g_m}{1+(g_m-g_{mb})R_E}$	
	Drop g_{mb} if no body effect	