CLASSIFICADOR DE IMAGENS UTILIZANDO KNN PONDERADO

Grupo:

Ranniery Dias de Brito Thiago Alves Bastos

Sumário

- 1. Introdução
- 2. Objetivos
- 3. Problema
- 4. Algoritmo KNN
- 5. Resultado
- 6. Conclusão

Introdução

• Inteligência Artificial

Objetivos

Geral

• Classificar imagens em 10 diferentes classes por meio do algoritmo de inteligência artificial KNN.

Específicos

- Utilizar a base de dados The CIFAR-10 dataset;
- Processar imagens em tons de cinza.
- Implementar o algoritmo KNN.
- Analisar os resultados obtidos.

Problema

- Classificação de Imagens
 - Dado uma imagem conseguir classificar em uma das 10 classes
- Classes do Problema
 - Airplane (Avião);
 - Automobile (Automóvel);
 - Bird (Pássaro);
 - Cat (Gato);
 - Deer (Veado);

- Dog (Cachorro);
- Frog (Sapo);
- Horse (Cavalo);
- Ship (Navio);
- Truck (Caminhão)
- Histograma como vetor de características

Algoritmo KNN

- Criação dos vetores de treino e teste
- Distancia Euclidiana Ponderada (PDE)

$$DEP(a, b) = \sqrt[2]{\sum_{i=0}^{255} w * (ai - bi)^2}$$

Calculo de Peso:

$$w(a,b) = \frac{1}{\sqrt[2]{\sum_{i=0}^{255} (ai - bi)^2}}$$

Resultado

• K = 5, leitura aleatória

Distância Euclidiana	Distância Manhattan	Distância Manhattan Ponderada	Distância Euclidiana Ponderada
100% em 4288 ms	11% em 5047 ms	11% em 9117 ms	0% em 12771 ms
100% em 2648 ms	11% em 5021 ms	11% em 9203 ms	0% em 11960 ms
100% em 4312 ms	11% em 5028 ms	11% em 9213 ms	0% em 11532 ms

K = 5, leitura ordenada

Distância Euclidiana	Distância Manhattan	Distância Manhattan Ponderada	Distância Euclidiana Ponderada
20% em 6259 ms	11% em 6847 ms	11% em 10678 ms	20% em 12571 ms
20% em 6286 ms	11% em 6765 ms	11% em 12210 ms	20% em 12585 ms
20% em 6195 ms	11% em 7220 ms	11% em 11597 ms	20% em 12276 ms

• K = 57, leitura aleatória

Distância Euclidiana	Distância Manhattan	Distância Manhattan Ponderada	Distância Euclidiana Ponderada
100% em 4328 ms	11% em 6990 ms	11% em 7005 ms	0% em 10200 ms
100% em 4284 ms	11% em 7125 ms	11% em 6717 ms	0% em 12036 ms
100% em 4310 ms	11% em 6872 ms	11% em 6820 ms	0% em 11219 ms

K=57, leitura ordenada

Distância Euclidiana	Distância Manhattan	Distância Manhattan Ponderada	Distância Euclidiana Ponderada
20% em 6248 ms	11% em 6986 ms	11% em 11410 ms	20% em 12351 ms
20% em 6201 ms	11% em 7080 ms	11% em 11365 ms	20% em 12301 ms
20% em 6111 ms	11% em 7205 ms	11% em 11373 ms	20% em 12534 ms

Conclusão

Histograma não é um bom classificador para o KNN

- Soluções
 - Utilizar imagens RGB, para ter mais informações para o KNN
 - Diminuir a quantidade de classes
- KNN com Distancia Euclidiana Ponderada e com leitura ordenada obteve os melhores resultados.

OBRIGADO!

