Answers and Solutions

Exam #5 ~ Multiple Choice

	A A	11. C 12. E 13. D 14. A	21. C 22. A 23. C 24. E	31. 32. 33. 34.	A E
5. 6. 7.	B D	15. E 16. D	25. B 26. D	35. 36.	B E
8. 9. 10.	A A	17. B 18. B 19. A 20. C	27. C 28. E 29. C 30. E	37. 38. 39. 40.	C B

Notes:

- 1. 5*4/2 = (5*4)/2 evaluates to 10. 5/2*4 = (5/2)*4 evaluates to 8. The result is converted into a double at the end.
- 2. Strings are immutable; a method cannot change a String object.
- 3. Use a De Morgan's Law.
- 4. You might notice that guess implements Euclid's Algorithm for finding the greatest common divisor.
- 5. When words is created, its size is 0. Trying to access the first element in words raises an IndexOutOfBoundsException.
- 6. d is set to the smallest of a and b, here 12. Then, due to short-circuit evaluation, % is applied twice for d = 12, 6, 4, 3 and once for d = 11, 10, 9, 8, 7, 5.
- 7. Every third element from 3 to 48 is set to 0 16 elements. Every fifth element from 5 to 50 is set to 0 10 elements. The total is 10 + 16 = 26. But we counted the 15th, the 30th, and the 45th elements twice. 26 3 = 23.
- 8. The fun implementations in Options I and II are equivalent: both return true when a >= b >= c. This leaves us with Choices A and D. Options II and III are different, because II has && and III has ||.
- 9. % 100 leaves the last 2 digits.
- 10. Array indices start from 0; need for arr[i] to be both positive and odd.
- 11. n remains greater than or equal to 2, until it is eventually reduced to either 0 or 1.