

Define, Evaluate, and Improve Task-Oriented Cognitive **Capabilities for Instruction Generation Models**

Lingjun Zhao*, Khanh Nguyen*, Hal Daumé III

lzhao123@umd.edu

* The first two authors contributed equally.

Problem

- ➡ Build speaker models that generate language instructions to guide humans in 3D environments
- → Instructions generated by vanilla speaker models fail to communicate well with humans
- → How to generate better instructions by **reasoning pragmatically**?
- → How to evaluate cognitive capabilities of instruction generation (*speaker*) models?

Vanilla Speaker: Exit the bathroom and turn left. Walk past the bed and wait by the two chairs. [Correct destination is next to the chairs in the outdoor area]

Pragmatic Speaker: Walk out of the bathroom and make a left. Walk through the bedroom and continue straight towards the red chair. Stop at the chair before getting to the front of

Contributions

- A new scheme for evaluating taskoriented cognitive capabilities in instruction generation models
- An 11% success rate improvement in guiding real humans in photorealistic environment, by equipping vanilla speakers with theory-of-mind capabilities
- A call to construct better theory-of-mind models for improving the instruction generation models

Takeaway: Pragmatic capability (theory-of-mind evaluation) is more deficient than Search capability (candidate generation).

Cognitive Evaluation Bounded pragmatic speaker (i) Generate candidate (search capability) $u_i \sim S_{base}(\cdot \mid e^*)$ (ii) Evaluate candidate (**pragmatic** capability) $score(u_i) = L_{ToM}(e^* \mid u_i)$ Return $\operatorname{argmax}_{u \in D} \operatorname{score}(u)$, $D = \{ u_1, ..., u_N \}$ Human-level capability Search capability (b) Human-level - pragmatic capability Pragmatic capability Recommendation: ullet Large $\Delta_{ ext{search}}$, small $\Delta_{ ext{pragmatic}} \Rightarrow$ improve inference algorithm \bullet Large $\Delta_{\rm pragmatic}$, small $\Delta_{\rm search}$ \Rightarrow enhance model of listener

Improving Pragmatic Capability with Ensemble Theory-of-Mind Listener

ToM listener L_{ToM}	Base speaker $S_{ m base}$		
	Fine-tuned GPT-2	EncDec-LSTM	EncDec-Transformer
None	37.7 (▲ 0.0)	45.3 (a 0.0)	49.4 (A 0.0)
Single VLN-BERT (Majumdar et al., 2020)	38.9 (▲ 1.2)	39.8 (▼ 5.5)	46.2 (▼ 3.2)
Ensemble of 10 EnvDrop-CLIP (Shen et al., 2022)	37.8 (▲ 0.1)	53.1 [†] (▲ 7.8)	57.3 [†] (▲ 7.9)
Ensemble of 10 VLN © BERT (Hong et al., 2021)	43.4 (▲ 5.7)	56.4 [‡] (▲ 11.1)	54.2 (▲ 4.8)
Humans (skyline)	72.9 [‡] (▲ 35.2)	76.2 [‡] (▲ 30.9)	75.2 [‡] (▲ 25.8)

Takeaways:

- Using ensemble followers as theory-ofmind model can improve vanilla speakers significantly to communicate with humans
- Better task-oriented theory-of-mind is needed to bridge the communication gap between AI and humans

Experimental Settings

✓ Training data:

➤ Matterport Room-to-Room (reverse task)

√Models:

Fine-tuned GPT-2

- ▶ EncDec-LSTM
- ▶ EncDec-Transformer
- ▶ Pragmatic Speakers

✓ Evaluation:

- ▶ Give instructions to real
- humans
 Measure similarity between human-generated and intended paths: normalized Dynamic Time Warping (NDTW)

Key References

- Anderson, P., Wu, Q., Teney, D., Bruce, J., Johnson, M., Su'nderhauf, N., Reid, I., Gould, S., and Van Den Hengel, A. Vision-andlanguage navigation: Interpreting visually-grounded navigation instructions in real environments. CVPR 2018.
- Shen, S., Li, L. H., Tan, H., Bansal, M., Rohrbach, A., Chang, K.-W., Yao, Z., and Keutzer, K. How much can clip benefit visionand-language tasks? 2022.
- Majumdar, A., Shrivastava, A., Lee, S., Anderson, P., Parikh, D., and Batra, D. Improving vision-and-language navigation with
- Hong, Y., Wu, Q., Qi, Y., Rodriguez-Opazo, C., and Gould, S. Vln bert: A recurrent vision-and-language bert for navigation. CVPR 2021.