#### PROGRAMMIEREN I

WS 2022

Prof. Dr. Kolja Eger Hochschule für Angewandte Wissenschaften Hamburg



#### Check.In

• Intro: <a href="https://www.youtube.com/watch?v=WrSi3sCVGck">https://www.youtube.com/watch?v=WrSi3sCVGck</a>

• Intro 2: <a href="https://www.youtube.com/watch?v=IY7EsTnUSxY">https://www.youtube.com/watch?v=IY7EsTnUSxY</a>

# Vorstellung

#open-mind

#open-heart

#open-door

- Seit WS21 an der HAW
- Seit WS22 Studiengangsleiter des REE
- Mentor im REE für 1.Semester
- Professor für "IT für verteilte Energiesysteme"
- Über 13 Jahre IT-Erfahrung im Energiebereich (E.ON & Siemens)
- Promotion an der TU Hamburg-Harburg
- Studium der Informations- und Kommunikationstechnik

Prof. Dr. Kolja Eger



Kontakt:

E-Mail kolja.eger@haw-hamburg.de Büro 12.80

Anruf über MS Teams



# Programmiersprachen

- Welche Programmiersprache?
  - Hauptsache programmieren!
  - Konzepte verstehen
  - Strukturiert & lösungs-orientiert Denken
  - Wir lernen C
  - Wer noch was anderes ausprobieren möchte, hier mal reingucken: <a href="https://sumo.blogs.uni-hamburg.de/wp-content/uploads/lernmodule/lernen/programmieren/which-programming-language-should-i-learn-first-infographic.pdf">https://sumo.blogs.uni-hamburg.de/wp-content/uploads/lernmodule/lernen/programmieren/which-programming-language-should-i-learn-first-infographic.pdf</a>
- Popularität von Programmiersprachen
  - Tiobe Index <a href="https://www.tiobe.com/tiobe-index/">https://www.tiobe.com/tiobe-index/</a>
  - Statista/PYPL https://de.statista.com/infografik/16544/anteile-der-populaersten-programmiersprachen-weltweit/ & https://pypl.github.io/PYPL.html

Was kann ich am Ende des Semesters?



# Learning Outcome für PR1 – Programmieren 1, 1.Semester, Informations- und Elektrotechnik (Kolja Eger)

| Wer   | Die <b>Studierenden</b>                                                                                                                                                                                                                                                                                                                      |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Was   | können Programme in C implementieren und testen und Problemstellungen mithilfe der C-Programme lösen/berechnen                                                                                                                                                                                                                               |
| Womit | Indem sie unterschiedlichen <b>Datentypen</b> sowie <b>Arrays &amp; Zeiger</b> nutzen, <b>Ein- und Ausgabe</b> auf der Kommandozeile erstellen und <b>Dateien</b> ein-/auslesen, <b>Schleifen</b> und <b>Anweisungen</b> programmieren, und mit <b>Funktionen</b> , Headerdateien, Makros Programme und <b>dynamischen Speicher</b> aufbauen |
|       | und die Entwicklungsumgebung Visual Studio (inkl. Debugger) unter Windows bedienen                                                                                                                                                                                                                                                           |
| Wozu  | Um ingenieurhafte Probleme/Aufgaben mit Software-Programmen lösen zu können                                                                                                                                                                                                                                                                  |



#### Unser Weg durch das Semester

# Wie wird in PR1 gearbeitet?

# Vorlesung → seminaristischer Unterricht

- Live Coding
- Programmier-Übungsaufgaben
- Umfragen/Quiz
- Diskussion
- Präsentation/"Frontalbeschallung"
- •
- → Bringen Sie Ihren Laptop mit und programmieren Sie parallel mit!

#### **Praktikum** → **Prüfungsvorleistung** (PVL)

- 7 Termine & 7 Aufgaben
- 3 Gruppen mit kleinerer Gruppengröße
- Anwesenheit & Abnahme sind Pflicht
- Vorbereitung notwendig!
- .
- → Später mehr..

# Unterlagen & Tools

- Vorlesung baut auf den Skripten
   Programmieren-1 und Programmieren-2 von
   Prof. Heß auf → <a href="http://www.rrhess.de/">http://www.rrhess.de/</a>
- Geht nicht auf alle Inhalte der Skripte ein
- Slides der Vorlesung & Praktikumsaufgaben in EMIL
- EMIL
  - Einschreibeschlüssel: #HAW-PR1
- Sli.do → Umfragen
- Fragen jederzeit willkommen!





#### Weitere Quellen

- Online Hilfe von Visual Studio
  - <a href="https://docs.microsoft.com/de-de/visualstudio/get-started/visual-studio-ide?view=vs-2022&viewFallbackFrom=msvc-170">https://docs.microsoft.com/de-de/visualstudio/get-started/visualstudio/get-started/visualstudio/get-started/visualstudio-ide?view=vs-2022&viewFallbackFrom=msvc-170</a>
- C-Sprachreferenz, z.B. <a href="https://cplusplus.com/reference/clibrary/">https://cplusplus.com/reference/clibrary/</a>
- Bücher →
- Google & YouTube
  - Aber Vorsicht C hat viele Möglichkeiten, die wir nicht alle in der Veranstaltung kennenlernen werden. Fokussieren Sie sich auf die Wege, die wir hier durchnehmen!









#### Tutorium

- Tutorium Offener Lernraum für Programmieren 1&2/OOP Veranstaltungen im ersten Studienjahr ALLER Studiengänge
- Teams-Raum: <a href="https://teams.microsoft.com/l/team/19%3AYmiysQFSUWVRIHkU0aTdH0gGszPu6Kg7XZuJtPQ-4001%40thread.tacv2/conversations?groupId=1a7fa425-74e0-4dd4-a1e7-8457364c75c0&tenantId=38d63075-6a27-4ec4-95f9-473f5ef2f1b5">https://teams.microsoft.com/l/team/19%3AYmiysQFSUWVRIHkU0aTdH0gGszPu6Kg7XZuJtPQ-4001%40thread.tacv2/conversations?groupId=1a7fa425-74e0-4dd4-a1e7-8457364c75c0&tenantId=38d63075-6a27-4ec4-95f9-473f5ef2f1b5</a>

# Entwicklungsumgebung (IDE - Integrated Development Environment)

- Software zum Schreiben, Übersetzen und Managen von Quellcode
- Verschiedene Tools für C verfügbar
  - sowohl Open Source als auch kommerziell
  - Windows / Linux
- Wir verwenden zurzeit Visual Studio 2019 von Microsoft (unter Windows)





• • •

**NetBeans** 

# Wo bekomme ich für meinen Laptop Visual Studio 2019 Enterprise her?

# Schritt 1: Über HAW Online Services Zugang zu Microsoft Azure Education erhalten



https://www.haw-hamburg.de/online-services/kostenlose-software/microsoft-azure-dev-tools-for-teaching/

#### Schritt 2: Product Key für Visual Studio Enterprise 2019 herunterladen



#### **UND JETZT GEHT ES LOS..**



# → Beispiel in Visual Studio

Weist den Präprozessor an, den Inhalt einer angegebenen Datei an dem Punkt

Funktionen für die Standard Ein-/Ausgabe sind in dieser Bibliothek zu finden

Hauptprogramm mit Angabe des Typs für den Rückgabewert und in Klammern übergebene Parameter

```
int main() {
    printf("Hello world\n");
    return 0;
}
```

#include <stdio.h>

Befehl zur Ausgabe von Text und Sonderzeichen, z.B. \n für Zeilenumbruch (newline)

Rückgabewert wird mit diesem Schlüsselwort und einem Wert angegeben. Das Programm wird danach sofort beendet!

#### Variablen

- In einem Computerprogramm werden Daten gelesen, verarbeitet und ausgegeben
- Daten werden hierfür in Variablen gespeichert
- Zuweisung in C mit

Wurzel2 = 1.4142;

Name der Variablen Zugewiesener Wert

 Zugewiesener Wert ist entweder eine Konstante oder eine Variable oder ein Ausdruck

Beispiel für Ausdruck:

Celsius = Kelvin-273;

Variable Konstant

# Variablen (II)

Beispiel für verschachtelten Ausdruck:

Celsius = 
$$5 * (Fahr - 32) / 9;$$

und allgemein

• Zuweisung: *Variable = Ausdruck/Variable/Konstante* 

• Ausdruck: Ausdruck/Variable/Konstante **Operator** Ausdruck/Variable/Konstante

- In C haben Variablen einen Typ (z.B. Ganzzahl, Gleitkommazahl, Buchstabe)
- Bevor eine Variable verwendet wird, muss sie definiert werden, z.B.

# Eine Variable hat 4 Eigenschaften

- Typ
  - definierter Datentyp, z.B. int, char, ...
- Name
  - um Variablen von anderen zu unterscheiden
- Adresse/Speicher
  - eine Variable wird an einer Stelle im Speicher abgelegt, die durch eine eindeutige Adresse definiert ist.
- Wert
  - eine Variable hat einen Wert

double zahl = 1.2345;

Typ:

double

Name:

zahl

Speicher:

Wert:

1,234

# → Beispiel in Visual Studio

Kommentare helfen den Code besser zu verstehen!

/\* Kommentar

.. 2.Zeile des Kommentars

// Einzeiliger Kommentar

```
Zwei Formen:
                           #include <stdio.h>
Definition der Variable
                                                                            Oder auch (ab C-Version C99)
                            /* Verwendung von Variablen */
mit Namen ,a' und Typ int
                           int main()
(Ganzzahl)
                                                 /* Definition einer Variable
                                int a;
C kennt viele Operatoren,
u.a. Grundrechenarten
                                               /* Zuweisung eines Werts */
(+, -, *, /) oder
                                                   /* Verwendung eines
Restdivision (%)
                           Operators */
                                printf("Ergebnis: %d\n", a);
                                return 0;
                                               Platzhalter für die Ausgabe
                                               von Variablen, %d für int
```

#### Definition von Variablen

Allgemein

Datentyp Variablenname [, Variablenname [...]];

- Optionale Angaben in eckigen Klammern []
- Es können mehrere Variablen gleichzeitig definiert werden
- Variablenname darf nur einmal innerhalb eines Blocks definiert werden (Datentypen dürfen mehrfach genutzt werden)
- Einer Variablen kann bei der Vereinbarung ein Startwert zugewiesen werden.
- Die vorgestellte Bezeichnung const gibt an, dass die Variable nicht verändert werden kann
  - → meistens Compiler-Fehler (auch in Visual Studio)
  - → (allgemein: undefinierte Folgen)

Beispiele:

int a, b;

int counter = 0;

const float pi = 3.141;

#### Variablennamen

- Ein Variablenname besteht aus großen und kleinen Buchstaben, Ziffern und dem Tiefstrich "
- Die deutschen Umlaute sind nicht erlaubt
- Erste Zeichen ist ein Buchstabe oder ein Tiefstrich (keine Ziffer)
- Große und kleine Buchstaben werden unterschieden
- Name darf beliebig lang sein
- Variablennamen werden nur anhand der ersten 31 Zeichen unterschieden
- Reservierte Wörter wie if, while oder break dürfen nicht verwendet werden

# Elementare Datentypen

| Тур    | Beschreibung                                                               |
|--------|----------------------------------------------------------------------------|
| char   | ganzzahliger Wert (ein Byte), bzw. ein Zeichen/Buchstabe (engl. character) |
| int    | ganzzahliger Wert in der auf dem Rechner 'natürlichen' Größe               |
| float  | Gleitkommazahl mit einfacher Genauigkeit                                   |
| double | Gleitkommazahl mit doppelter Genauigkeit                                   |

# Wertebereiche von Datentypen

- Wertebereiche der Variablen hängen von der Umgebung und dem entsprechenden Compiler ab
- Variablen benötigen Speicher und abhängig wie viel Speicher sie belegen, ist der Wertebereich ausgelegt
- Größe eines Datentyps kann mit der Funktion sizeof() ermittelt werden, z.B. Ausgabe mit

```
printf("%d", sizeof(int));
```

- Sizeof() liefert die Größe in Bytes (und 1 Byte = 8 Bits)
- Wertebereich für Ganzzahlen ohne Vorzeichen (mit N = Anzahl der Bits)
  - Mit Vorzeichen: -2^(N-1) bis +2^(N-1)-1
  - Ohne Vorzeichen: Von 0 bis 2^N -1
- Wertebereiche für Compiler in Visual Studio:
  - Stehen in der Include-Datei "limits.h"
  - Oder https://docs.microsoft.com/de-de/cpp/cpp/data-type-ranges?view=msvc-170

# Übung: Wertebereich für int

Arduino ist ein kleiner Computer für unterschiedlichste Projekte. Ideal zum Lernen von C und Steuerung von I/Os ©



Wertebereich:  $-2^{(N-1)} bis + 2^{(N-1)} - 1$ 

- Int in Visual Studio → 4 Byte
- Int auf Arduino Uno → 2 Byte
- Wie groß sind die Wertebereiche für beide Umgebungen?
- Diskutieren Sie mit Ihrem Nachbarn!

#### Praktikum

- Praktikum ist eine Prüfungsvorleistung nur wenn Sie das Praktikum erfolgreich durchlaufen, werden Sie zur Klausur zugelassen
- 7 Praktikumsaufgaben pro Gruppe → ab übernächster Woche geht es los!
- 3 Gruppen → 2 Gruppen am Donnerstag und 1 Gruppe am Freitag
- Nutzen Sie auch die Rechner im Labor, um die **Umgebung kennenzulernen**, auf der Sie auch die **Klausur** schreiben werden → <u>Visual Studio in Englisch!!!</u>

Sie müssen sich für eine Praktikumsgruppe anmelden → stisys

# Praktikum (7 Termine pro Gruppe)

- Zusammen mit Herrn Nieder betreue ich das Praktikum
- Generell arbeiten Sie in 2er-Teams (in Ausnahme 3er-Teams) → Teamfindung im ersten Praktikumstermin
- Ein Testat für ein Praktikum erhalten Sie nach Demonstration Ihrer Lösung während des Praktikumstermins inkl. Erläuterungen & Beantwortung von Fragen
- Bei Krankheit (mit Vorlage eines Attest) muss der Termin nachgeholt werden
- Nach erfolgreicher Demonstration können Sie die Zeit im Praktikumstermin nutzen um den nächsten Termin vorzubereiten.
- Ihre **Anwesenheitspflicht** ist **nach der erfolgreichen Abnahme aufgehoben** → gute Vorbereitung zahlt sich aus!

# Praktikum - Spielregeln

- Grundsätzlich müssen Sie die Praktikumsaufgabe vorbereiten, im Termin fertigstellen, vorstellen und sich abnehmen lassen.
- Jeder muss alle Lösungen präsentieren können
- Falls Sie dies zeitlich nicht schaffen, kann eine Abnahme noch bis zu 7 Tage später erfolgen (Terminabsprache muss von Ihnen initiiert werden!)
- Falls Sie verspätet bzw. keine Lösung einreichen oder ihre Lösung qualitativ mangelhaft ist, ist diese Praktikumsaufgabe nicht bestanden
  - → Sie erhalten dann eine **Verwarnung** ("gelbe Karte")
  - → Bei der zweiten Verwarnung, erhalten Sie **kein Testat** ("gelb-rote Karte").
- Als Prüfungsvorleistung müssen Sie alle Praktika durchführen (und höchstens eine Verwarnung erhalten)



# Praktikumsaufgabe 1 in EMIL

# Ganzzahlige Datentypen

- Elementare ganzzahlige Datentypen sind int und char
- char kann ein Zeichen/Buchstaben speichern bzw. stellvertretend eine kleine Zahl
- Neben int können auch kleinere/größere Ganzzahl definiert werden:
  - Kleinere (min. 2 Bytes): short int (oder in kurz) short
  - Größere (min. 4 Bytes): long int bzw. long
- Den Datentypen char, short, int und long kann das Wort signed oder unsigned vorgestellt werden
- Dies legt fest, ob sich der Wertebereich auf positive & negative oder nur auf positive Zahlen beschränkt
- short, int und long sind ohne Angabe vorzeichenbehaftet (char nicht)
- Ist nur signed oder unsigned angegeben, handelt es sich um den Datentyp int

# Ganzzahlige Datentypen - Beispiele

# Wie werden Ganzzahlen interpretiert?

- Standardmäßig werden alle Zahlen als int interpretiert
- Aber die Angabe in anderen Datentypen ist auch möglich, z.B.
  - Typ long wird durch "I" oder "L" erzeugt
  - Vorzeichenlose Zahl: "u" oder "U"
  - Kombination möglich "ul"



1234

1234L

1234u

1234ul

- Auch die Eingabe in anderen Zahlensystemen möglich → Dazu in einer anderen Vorlesung mehr!
  - Hexadezimalzahl mit "0x" oder "0X"
  - Oktalzahl beginnt mit einer Null
- Kombination möglich

0x3f
(ergibt dezimal: 63)

0xFUL
(dezimal 15 vom Typ
 unsigned long)

**045** (ergibt dezimal: 37)

## Datentyp char

- Steht sowohl für eine kleine Zahl als auch für ein Zeichen
- D.h. einer Variablen vom Typ char können Sie ein Zeichen zuweisen (einfache Anführungszeichen!)
- Der numerische Wert ist im ASCII-Code festgelegt
  - ASCII = American Standard Code for Information Interchange
  - Definition von 128 Zeichen (Code 0 bis 127) (siehe nä. Slide)
- C unterscheidet nicht zwischen Zeichen und Ganzzahlen, da Zeichen intern als Ganzzahlen dargestellt werden
- Sie können mit Zeichen rechnen!
- Sonderzeichen wird ein \ vorangestellt, z.B. "\n" für Zeilenvorschub

```
char a = 'B';
```

ASCII-Code von 'B' ist 66

char a = 'A' +1;

# ASCII-Tabelle

Sonderzeichen, z.B. ESC = Escape, —

|   | Dez/Hex/Okt | Zeichen | Dez/Hex/Okt | Zeichen | Dez/Hex/Okt | Zeichen | $\mathrm{Dez}/\mathrm{Hex}/\mathrm{Okt}$ | Zeichen |
|---|-------------|---------|-------------|---------|-------------|---------|------------------------------------------|---------|
| ſ | 0/00/000    | NUL     | 32/20/040   | SP      | 64/40/100   | @       | 96/60/140                                | 4       |
|   | 1/01/001    | SOH     | 33/21/041   | !       | 65/41/101   | A       | 97/61/141                                | a       |
|   | 2/02/002    | STX     | 34/22/042   | "       | 66/42/102   | В       | 98/62/142                                | b       |
|   | 3/03/003    | ETX     | 35/23/043   | #       | 67/43/103   | C       | 99/63/143                                | c       |
|   | 4/04/004    | EOT     | 36/24/044   | \$      | 68/44/104   | D       | 100/64/144                               | d       |
|   | 5/05/005    | ENQ     | 37/25/045   | %       | 69/45/105   | E       | 101/65/145                               | e       |
|   | 6/06/006    | ACK     | 38/26/046   | &       | 70/46/106   | F       | 102/66/146                               | f       |
|   | 7/07/007    | BEL     | 39/27/047   | ,       | 71/47/107   | G       | 103/67/147                               | g       |
|   | 8/08/010    | BS      | 40/28/050   | (       | 72/48/110   | H       | 104/68/150                               | h       |
|   | 9/09/011    | TAB     | 41/29/051   | )       | 73/49/111   | I       | 105/69/151                               | i       |
|   | 10/0A/012   | LF      | 42/2A/052   | *       | 74/4A/112   | J       | 106/6A/152                               | j       |
|   | 11/0B/013   | VT      | 43/2B/053   | +       | 75/4B/113   | K       | 107/6B/153                               | k       |
|   | 12/0C/014   | FF      | 44/2C/054   | ,       | 76/4C/114   | L       | 108/6C/154                               | 1       |
|   | 13/0D/015   | CR      | 45/2D/055   | -       | 77/4D/115   | M       | 109/6D/155                               | m       |
|   | 14/0E/016   | SO      | 46/2E/056   |         | 78/4E/116   | N       | 110/6E/156                               | n       |
|   | 15/0F/017   | SI      | 47/2F/057   | /       | 79/4F/117   | 0       | 111/6F/157                               | o       |
|   | 16/10/020   | DLE     | 48/30/060   | 0       | 80/50/120   | P       | 112/70/160                               | p       |
|   | 17/11/021   | DC1     | 49/31/061   | 1       | 81/51/121   | Q       | 113/71/161                               | q       |
|   | 18/12/022   | DC2     | 50/32/062   | 2       | 82/52/122   | R       | 114/72/162                               | r       |
|   | 19/13/023   | DC3     | 51/33/063   | 3       | 83/53/123   | S       | 115/73/163                               | s       |
|   | 20/14/024   | DC4     | 52/34/064   | 4       | 84/54/124   | T       | 116/74/164                               | t       |
|   | 21/15/025   | NAK     | 53/35/065   | 5       | 85/55/125   | U       | 117/75/165                               | u       |
| Y | 22/16/026   | SYN     | 54/36/066   | 6       | 86/56/126   | V       | 118/76/166                               | v       |
|   | 23/17/027   | ETB     | 55/37/067   | 7       | 87/57/127   | W       | 119/77/167                               | w       |
|   | 24/18/030   | CAN     | 56/38/070   | 8       | 88/58/130   | X       | 120/78/170                               | x       |
|   | 25/19/031   | EM      | 57/39/071   | 9       | 89/59/131   | Y       | 121/79/171                               | y       |
|   | 26/1A/032   | SUB     | 58/3A/072   | :       | 90/5A/132   | Z       | 122/7A/172                               | z       |
|   | 27/1B/033   | ESC     | 59/3B/073   | ;       | 91/5B/133   | [ ]     | 123/7B/173                               | {       |
|   | 28/1C/034   | FS      | 60/3C/074   | <       | 92/5C/134   | \       | 124/7C/174                               |         |
|   | 29/1D/035   | GS      | 61/3D/075   | =       | 93/5D/135   | ] ]     | 125/7D/175                               | }       |
|   | 30/1E/036   | RS      | 62/3E/076   | >       | 94/5E/136   | ^       | 126/7E/176                               | ~       |
|   | 31/1F/037   | US      | 63/3F/077   | ?       | 95/5F/137   | _       | 127/7F/177                               | DEL     |

Groß- & Kleinbuchstaben (keine Umlaute)

#### Sonderzeichen im Überblick

```
\n Zeilenvorschub
\t Tabulator
\t Doppelanführungszeichen
\a Klingelzeichen
\ooo ASCII-Code (oktal)
\t Gegenstrich
\r Wagenrücklauf
\v Vertikaltabulator
\f Seitenvorschub
\" Doppelanführungszeichen
\? Fragezeichen
\xhh ASCII-Code (hexadezimal)
```

# Zeichenkette (Strings)

- Eine Zeichenkette wird durch doppelte Anführungszeichen angedeutet und kann beliebige Anzahl von Zeichen enthalten
- Es gelten die gleichen Sonderzeichen
- Zeichenketten können auch leer sein
- Aufeinanderfolgende Zeichenketten werden als eine interpretiert und können so auf mehrere Zeilen aufgeteilt werden
- Eine Zeichenkette ist ein Vektor von Zeichen → Vektoren werden wir noch in einer anderen Vorlesung behandeln
- Intern wird eine Zeichenkette durch null (\@) begrenzt. Deshalb benötigt eine Zeichenkette im Speicher ein Byte mehr als die Anzahl der Zeichen
- Beachte den Unterschied:
  - 'x' → ein Zeichen
  - "x" → eine Zeichenkette mit null-Terminierung

```
Zeichenkette
Sonderzeichen
printf("Hello world\n");
```

```
printf("");

printf("Hello "
    "World" "\n");
```

## → Beispiel in Visual Studio

```
#include <stdio.h>
int main()
    char ch1 = 'x';
    char ch2 = 66;
    char ch3 = 'A' + 2;;
    // Ausgabe als Zeichen
    printf("%c %c %c\n", ch1, ch2, ch3);
    // Ausgabe als Zahlen
    printf("%d %d %d\n", ch1, ch2, ch3);
    // Sonderzeichen
    printf("\"\t\\\t\?\n");
    // Klingelzeichen
    printf("\a");
    // Zeichenkette über mehrere Zeilen
    printf("Hello "
        "World" "\n");
    return 0;
```

# Und was mach' ich bis zum nä. Mal?



Visual Studio runterladen & installieren



Beispiele aus Vorlesung nachimplementieren



Falls Sie noch nie programmiert haben, probieren Sie einfach mal Hour of Code aus: <a href="https://hourofcode.com/de">https://hourofcode.com/de</a>

#### VIELEN DANK FÜR IHRE AUFMERKSAMKEIT!

