3. Funciones elementales

Mathematica es lo que en inglés se denomina *case-sensitive*, esto es, que diferencia entre mayúsculas y minúsculas. Por ello no podemos escribir la misma palabra, pero cambiando mayúsculas por minúsculas. Además en Mathematica se siguen ciertas convenciones para escribir funciones:

- Las funciones empiezan por mayúscula. Si el nombre de la funcion se construye uniendo dos o mas palabras, la inicial de cada palabra tambien va en mayúscula.
- Después de la función se colocan unos corchetes y no unos paréntesis, como es lo habitual en la notación matemática.
- Los distintos argumentos se separan por comas.

3.1. Funciones para «redondear»

Existen distintas funciones de redondeo. Unas redondean al entero más cercano (**Round**[x]), otras por defecto (**Floor**[x]) y otras por exceso (**Ceiling**[x]).

Un número decimal tiene una parte entera (**IntegerPart**[x]) y de una parte decimal (**FractionalPart**[x])

Ejercicios

Haz distintos redondeos de números positivos y negativos. Calcula su parte entera y decimal.

Nuevas funciones

Round, Floor, Ceiling, IntegerPart, FractionalPart.

3.2. Funciones trigonométricas

Las funciones trigonométricas se calculan por defecto en **radianes**. Para realizar el cálculo en **grados**, debemos multiplicar los grados por la constante predefinida **Degree**.

Mathematica siempre nos da el resultado exacto. Como para muchos valores, las funciones trigonométricas producen números con infinitos decimales, el único resultado correcto es dejar la salida igual a la entrada. Ello no quiere decir que Mathematica no sea capaz de realizar el cálculo. Si queremos el resultado con decimales empleamos la función **N**[x].

Las funciones trigonométricas son: **Sin[x]**, **Cos[x]** y **Tan[x]**, aunque también existen funciones para la secante, la cosecante y la cotangente.

Ejercicios

Realiza los siguientes cálculos trigonométricos:

•
$$a)\cos\left(\frac{\pi}{3}\right)$$
 $b)\sin\left(\frac{\pi}{2}\right)$ $c)\tan\left(\frac{2\pi}{3}\right)$ $d)\cos(2)$

■
$$a)\cos(60^{\circ})$$
 $b)\sin(90^{\circ})$ $c)\tan(120^{\circ})$ $d)\cos(7^{\circ})$

$$3\cos\left(\frac{\pi}{3}\right) + 7\sin\left(\frac{3\pi}{4}\right)$$

Nuevas funciones

Degree, Sin, Cos, Tan.

3.3. Trigonométricas inversas e hiperbólicas

Si añadimos el prefijo **Arc** al nombre de la función calculamos las funciones inversas y con el sufijo **h** calculamos funciones hiperbólicas. El resultado de las funciones trigonométricas inversas viene dado en radianes. Algunas de estas funciones son: **ArcSin[x]**, **Cosh[x]**, **ArcTanh[x]**,...

Ejercicios

Realiza los siguientes cálculos:

- $a)\arccos\left(\frac{1}{2}\right)$ $b)\arctan(1)$ $c)\arcsin(-1)$
- a) $\arcsin(0,3)$ b) $\arcsin\left(\frac{3}{5}\right)$ c) $\arcsin(2)$
- a a $\sinh(4)$ b $\cosh(4)$ c $\tanh(4)$

Nuevas funciones

ArcSin, ArcCos, ArcTan, Sinh, Cosh, Tanh, ArcSinh, ArcCosh, ArcTanh.

3.4. Exponenciales y logaritmos

La exponencial se calcula con la función $\mathbf{Exp[x]}$ o también elevando el número \mathbf{E} a la potencia indicada.

El logaritmo **neperiano o natural** se calcula con **Log[x]**. El logaritmo en base 2 con **Log2[x]** y en base 10 con **Log10[x]**. En general para calcular el logaritmo en cualquier base se emplea la función **Log[b,x]**, donde el primer argumento es la base.

Ejercicios

Realiza los siguientes cálculos:

•
$$a) \exp(1)$$
 $b) \exp(5,2)$ $c) \exp\left(\frac{5}{3}\right)$

•
$$a) \ln(e)$$
 $b) \ln(e^5)$ $c) \ln(\frac{77}{3})$

$$a \log_2(8)$$
 $b) \log_2(\sqrt{8})$ $c) \log_5(125^4)$

Nuevas funciones

Exp, Log, Log2, Log10.

3.5. Definición de nuevas funciones

Además de las funciones que Mathematica trae predefinidas, nosotros podemos crear nuestras propias funciones. Estas pueden tener varios argumentos. La notación para construirlas se asemeja mucho a la tradicional de las matemáticas, pero con ligeras variaciones:

- A continuación del nombre de la variable debemos colocar un guión bajo.
- En vez de un signo igual debemos poner := (aunque en funciones sencillas también nos sirve un único signo igual).

Ejercicios

- Construye la función $f(x) = 1 + x^2$ y calcula algunos valores.
- Construye la función g(x, y) = 2x + 3y y calcula algunos valores.

3.6. Funciones aplicadas a varios valores

Si queremos aplicar una función a varios valores a la vez, debemos colocar los valores en lo que Mathematica denomina una **lista**. Para ello colocamos los valores **entre llaves** y **separados por comas**. Después le pasamos la lista como argumento a la función. La lista puede contener números, expresiones, variables,...

Este procedimiento se denomina **vectorización** en términos informáticos y permite realizar programas mucho más eficientes.

Ejercicios

Crea una lista con varios valores y aplica alguna de las funciones a la lista.