

Драйвер шагового двигателя (Troyka-модуль)

Для управления шаговым двигателем при помощи микроконтроллера нужно не только управлять большой нагрузкой, но и обеспечить необходимую последовательность управляющих импульсов. Драйвер шагового двигателя из линейки Troyka-модулей [https://amperka.ru/product/troyka-stepper-motor-driver] позволяет микроконтроллеру управлять биполярным и униполярным шаговым двигателем.

Элементы платы

Контакты Индикатор включения вращения двигателя (enable) двигателя Контакты для подключения двигателя

Контакты управления направлением вращения (direction)

Контакты для подачи шагового импульса (step)

Подключение двигателя

На контакты 1, 2 подключается первая обмотка биполярного шагового двигателя. На контакты 3, 4— вторая обмотка. Униполярный двигатель подключается точно также, просто не используются выводы из середин обмоток.

Питание двигателя

На колодки Vin подаётся напряжение 4,5–25 В постоянного тока. Для питания двигателя рекомендуется использовать отдельный контур питания, не связанный с цепью питания управляющего контроллера.

К примеру, если вы используете Arduino, не рекомендуется использовать питание с пина 5V Arduino. Это может привести к перезагрузке управляющего контроллера, или к перегрузке регулятора напряжения Arduino. В некоторых случаях допускается использовать для питания шагового двигателя пин Vin Arduino. Например, если Arduino запитана от мощного внешнего источника питания 7–12 В, напряжение которого при включении двигателя не падает ниже 7 В.

Контакты подключения 3-проводного шлейфа

Troyka-Stepper подключается к управляющей электронике по трём 3-проводным шлейфам. Назначение контактов 3-проводных шлейфов:

Питание (V) — красный провод. На него должно подаваться напряжение 3,3–5 В, которое используется для питания логической части драйвера шагового двигателя.

Земля (G) — чёрный провод. Должен быть соединён с землёй микроконтроллера.

Сигнальный— жёлтый провод. Через него происходит управление соответствующим пином модуля.

Для управления модулем используется от одного до трёх сигнальных контакта:

Step. Каждый раз, когда напряжение на этом контакте переходит из низкого уровня напряжения в высокий, шаговый двигатель делает следующий шаг.

Direction. Направление вращения шагового двигателя зависит от схемы подключения его обмоток и от напряжения на этом пине. Если на пине direction установлен высокий уровень напряжения, двигатель вращается в одну сторону. Если низкий — в другую. Если изменять направление вращения двигателя не нужно, вы можете не подключать этот контакт к микроконтроллеру.

Enable. Высокий уровень на этом пине включает подачу напряжения на двигатель. При остановке шагового двигателя в определённом положении, питание продолжает поступать на его управляющую обмотку. Это приводит к нагреву шагового двигателя и излишнему расходу электроэнергии. Чтобы отключить подачу питания на двигатель, достаточно выставить низкий уровень напряжения на этом контакте. При остановке двигателя бывает полезно подать на этот контакт ШИМ-сигнал. Это позволит оставить на двигателе небольшое усилие, необходимое для удержания вала в текущем положении. Электроэнергии в таком случае будет тратится значительно меньше. Если нет необходимости управлять включением двигателя, вы можете не подключать этот контакт к микроконтроллеру. Тогда ток через обмотки двигателя будет течь всегда, если есть напряжение питания.

Индикатор вращения двигателя

Светодиодный индикатор. Горит зелёным при шаге в одну сторону, красным - при шаге в другую сторону.

Пример использования

troykaStepper.ino

```
// Troyka-Stepper подключён к следующим пинам:
const byte stepPin = 7;
const byte directionPin = 8;
const byte enablePin = 11;

// Выдержка для регулировки скорости вращения
int delayTime = 20;

void setup() {
   // Настраиваем нужные контакты на выход
   pinMode(stepPin, OUTPUT);
   pinMode(directionPin, OUTPUT);
```

```
pinMode(enablePin, OUTPUT);
void loop() {
  // Подаём питание на двигатель
 digitalWrite(enablePin, HIGH);
  // Задаём направление вращения по часовой стрелке
 digitalWrite(directionPin, HIGH);
  // Делаем 50 шагов
 for (int i = 0; i < 50; ++i) {
   // Делаем шаг
   digitalWrite(stepPin, HIGH);
   delay(delayTime);
   digitalWrite(stepPin, LOW);
   delay(delayTime);
  // Переходим в режим экономичного удержания двигателя...
  analogWrite(enablePin, 100);
  //... на три секунды
 delay(3000);
  // Меняем направление вращения
 digitalWrite(directionPin, LOW);
  // Включаем двигатель на полную мощность
 digitalWrite(enablePin, HIGH);
  // Делаем 50 шагов
 for (int i = 0; i < 50; ++i) {
   digitalWrite(stepPin, HIGH);
   delay(delayTime);
   digitalWrite(stepPin, LOW);
   delay(delayTime);
  // Ничего не делаем без отключения двигателя
 delay(3000);
  // Отключаем двигатель
 digitalWrite(enablePin, LOW);
  // Ничего не делаем до перезагрузки
 while (true) {
```

Характеристики модуля

Номинальное напряжение питания двигателя	4,5-25 B
Пиковое напряжение на контактах Vin	35 B
Напряжение питания логической части	3,3-5 B
Длительно допустимый ток	до 600 мА
Пиковый ток	1200 мА