Finansal Veri Analizi: Hareketli Ortalamalarla Ticaret Stratejisi

Projenin Amacı

Hareketli ortalama gibi teknik göstergeler üzerinde hesaplamalar yaparak alım-satım sinyalleri üretmek. Bu sinyaller, yatırımcıların piyasalardaki trendleri belirleme ve karar alma süreçlerini optimize etme konusunda yardımcı olmak.

Projenin Temel Fikri

Hareketli ortalama kullanmamın Temel fikri : teknik analizde sıkça kullanılan bir gösterge olan hareketli ortalamanın fiyat hareketlerindeki trendleri belirleme yeteneğini kullanarak alımsatım sinyalleri Üretilebilinmektedir.

Hareketli ortalama, belirli bir dönemdeki fiyatların ortalamasını alarak piyasadaki fiyat hareketlerinin yumuşatılmasını sağlar ve trendleri belirlemeye yardımcı olur.

Bu projede, hareketli ortalama üzerinde yapılan hesaplamaları kullanarak alım-satım sinyalleri üretir. Örneğin, kısa vadeli bir hareketli ortalama ile uzun vadeli bir hareketli ortalamanın kesiştiği noktalar, potansiyel alım veya satım sinyalleri olarak yorumlanabilir. Bu tür sinyaller, yatırımcılara belirli bir hisse senedi veya finansal varlık üzerinde alım veya satım yapma zamanlaması konusunda yardımcı olabilir.

Bu hesaplamaların temel fikri, fiyat verilerindeki belirli bir trendi belirlemek ve bu trendi takip ederek alım veya satım yapma kararlarını desteklemektir. Böylece, yatırımcılar piyasada olası fiyat değişimlerini öngörebilir ve kararlarını bu doğrultuda şekillendirebilirler.

Geliştiren: Hüseyin Erol

Kişisel websitem : https://huseyineroll.com/)

Github: https://github.com/HuseyinErol24 (https://github.com/HuseyinErol24)

```
In [29]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import yfinance as yf
   import plotly.graph_objects as go
   import mplcyberpunk #matplotlib cyberpunk temas: için eklendi
```

Veri Seti

Out[31]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2015-07-22	12.30	12.60	12.3	12.55	10.090219	2437000
2015-07-23	12.50	12.55	12.1	12.20	9.808819	4558027
2015-07-24	12.05	12.25	12.0	12.20	9.808819	2365561
2015-07-27	12.05	12.10	11.9	11.95	9.607820	2582821

In [32]: veri.tail(4) # veri setini son 4 elemanı

Out[32]:

	Open	High	Low	Close	Adj Close	Volume
Date						
2024-04-19	212.399994	221.500000	211.600006	219.899994	211.755554	15256653
2024-04-22	223.199997	224.000000	214.800003	216.000000	208.000000	15078321
2024-04-24	211.500000	214.699997	209.300003	212.000000	212.000000	12661938
2024-04-25	212.399994	217.500000	212.000000	213.399994	213.399994	13180996

```
In [33]: #KCHOL kapanış verileri
    plt.figure(figsize=(18,9))
    plt.style.use("cyberpunk") # matplotlib cyberpunk temasını kullandım
    plt.plot(veri["Close"],label="Kapanış Fiyatı",color="lime")
    plt.xlabel("Tarihler")
    plt.ylabel("Fiyatlar")
    plt.title("Koç Holding Günlere Göre Kapanış verisi")
    plt.grid(True)
    plt.legend()
```

Out[33]: <matplotlib.legend.Legend at 0x29ac542e9d0>

In [34]: veri.describe() # veri setini temel istatistik verileri

Out[34]:

	Open	High	Low	Close	Adj Close	Volume
count	2239.000000	2239.000000	2239.000000	2239.000000	2239.000000	2.239000e+03
mean	35.800911	36.387660	35.240317	35.807687	33.094652	1.020358e+07
std	41.693716	42.475521	40.979525	41.698889	40.684869	1.005137e+07
min	10.730000	10.900000	10.400000	10.710000	8.610855	0.000000e+00
25%	14.820000	14.950000	14.620000	14.780000	12.641602	3.165681e+06
50%	17.680000	17.860001	17.410000	17.629999	15.293209	6.002866e+06
75%	32.480001	33.030001	31.590000	32.570002	29.979198	1.459874e+07
max	226.000000	226.000000	216.100006	222.600006	214.355560	1.188416e+08

Hareketli Ortalamaların Hesaplanması

```
In [35]: #HARAKETLİ ORTALAMADA BELİRLENEN PERİYOR KADARR TOPLANIP ORTALAMASI ALINIR
    veri["14gün"] = veri["Close"].rolling(window = 14).mean()
    veri["50gün"] = veri["Close"].rolling(window = 50).mean()
    veri["150 gün"] = veri["Close"].rolling(window = 150).mean()
    #Bu işlem sonrasından eksik veriler oluşacaktır bu verileri temizliyoruz sonr
```

```
In [36]: veri.head() # eksik verileri göstermek için
```

Out[36]:

	Open	High	Low	Close	Adj Close	Volume	14gün	50gün	150 gün
Date									
2015-07-22	12.30	12.60	12.3	12.55	10.090219	2437000	NaN	NaN	NaN
2015-07-23	12.50	12.55	12.1	12.20	9.808819	4558027	NaN	NaN	NaN
2015-07-24	12.05	12.25	12.0	12.20	9.808819	2365561	NaN	NaN	NaN
2015-07-27	12.05	12.10	11.9	11.95	9.607820	2582821	NaN	NaN	NaN
2015-07-28	12.10	12.20	12.0	12.00	9.648019	1987512	NaN	NaN	NaN

In [37]: veri.dropna(inplace=True)

#eksik veriyi Temizledim 14-50-150 günlük haraketli ortalamyı hesaplayınca ek # o satırları dropna kullanarak temizledim

Hareketli Ortalamalar İle Kapanış Değerleri Arasındaki İlişki

```
In [38]: plt.figure(figsize=(18,9))
    plt.style.use("cyberpunk")
    plt.plot(veri["Close"], label="Kapanış Fiyatı", color="limegreen")
    plt.plot(veri["14gün"], label="14 günlük Haraketli Ortalama", color="red")
    plt.plot(veri["150 gün"], label="150 günlük Haraketli Ortalama", color="yelloplot(veri["50gün"], label="50 günlük Haraketli Ortalama", color="white")
    plt.xlabel("Tarihler")
    plt.ylabel("Fiyatlar")
    plt.title("Koç Holding Günlere Göre Kapanış verisi")
    plt.grid(True)
    plt.legend()
```

Out[38]: <matplotlib.legend.Legend at 0x29ac54da3d0>

Aralarındaki ilişkiyi daha net göre bilmek için son 2 yıla bakalım

```
In [39]: son_2yıl = veri.loc[veri.index > pd.to_datetime('2021-12-31')]
#son 2 yıla bakalım grafiği daha net görmek adına

In [40]: plt.figure(figsize=(18,9))
    plt.style.use("cyberpunk")
    plt.plot(son_2yıl["Close"], label="Kapanış Fiyatı", color="limegreen")
    plt.plot(son_2yıl["14gün"], label="14 günlük Haraketli Ortalama", color="red'
    plt.plot(son_2yıl["50gün"], label="50 günlük Haraketli Ortalama", color="whit
    plt.plot(son_2yıl["150 gün"], label="150 günlük Haraketli Ortalama", color="y

    plt.xlabel("Tarihler")
    plt.ylabel("Fiyatlar")
    plt.title("Koc Holding 2022-2024 Arası Kapanış Fiyatarı")
    plt.grid(True)
    plt.legend()
```

Out[40]: <matplotlib.legend.Legend at 0x29ac554d9d0>

Bu grafik, alım ve satım sinyalleri oluşturmak için incelendiğinde kullanışlı bilgiler sağlayabilir.

Alım sinyali: 14 günlük (kısa vadeli) hareketli ortalama, 50 günlük (uzun vadeli) hareketli ortalamayı yukarı yönlü geçerse, bu bir alım sinyali olabilir. Yani, kısa vadeli ortalama, uzun vadeli ortalamanın üzerine çıkarsa alım sinyali üretebiliriz.

Satış Sinyali: 14 günlük hareketli ortalama, 50 günlük hareketli ortalamayı aşağı yönlü geçerse, bu bir satış sinyali olabilir. Yani, kısa vadeli ortalama, uzun vadeli ortalamanın altına düşerse satış sinyali üretebiliriz.

Sinyal Oluşturma Adımları

```
In [41]: veri["Sinyal"] = 0 # başlangıç olarak bütün sinyallere 0 verdim
In [42]: veri["Sinyal"] = np.where(veri["14gün"]>veri["50gün"],1,0)
# 14 günlük ortalama 50 günlük ortalamdan fazalysa al sinyali (1) değilse (0)
# 14 günlük ortalama 50 günlük ortalamnın üstündeyse trend yukarı yönlüdür
In [43]: veri.groupby("Sinyal").count()
```

Out[43]:

	Open	High	Low	Close	Adj Close	Volume	14gün	50gün	150 gün
Sinyal									
0	713	713	713	713	713	713	713	713	713
1	1377	1377	1377	1377	1377	1377	1377	1377	1377

- 713 tane 0, 1377 günde ise 1 değerini atadık.
- Fakat 1377 günde de al sinyalini olması saçma olur, bu nedenle sonraki sat sinyaline kadar olan kısımları alıcaz. Bu şekilde tam olarak al ve sat noktalarını görebileceğiz.
- In [44]: veri["Al Sinyali"] = np.where((veri["Sinyal"] == 1) & (veri["Sinyal"].shift(:
 #1 siyallerinden sonra 0 sinyali geliyorsa orası alım noktası olur bu sayede
 #örnek 11111111110 şeklinde olursa biz burdaki 10 daki 1 e sinyali yerleştir
- In [45]: veri.loc[veri["Al Sinyali"] == 1][::4]
 #hepsini yazdırmadım cok yer kaplıyor :)" 30 adet al sinyali var
 #tam bu noktaralarda artık alım sinyalimiz bulunuyor

Out[45]:

	Open	High	Low	Close	Adj Close	Volume	14gün	5
Date								
2016- 07-07	13.270000	13.270000	13.270000	13.270000	10.893123	0	13.147143	13.
2016- 10-19	13.150000	13.310000	13.130000	13.250000	10.876705	6660191	13.129286	13.
2017- 11-07	17.770000	17.850000	17.290001	17.290001	14.488744	4394489	16.954286	16.
2019- 01-18	15.560000	16.270000	15.430000	16.190001	13.859111	3790781	14.646429	14.
2020- 05-13	15.260000	15.280000	15.150000	15.220000	13.566557	5365112	14.945714	14.
2022- 03-21	37.099998	37.160000	36.419998	36.580002	33.670219	13707366	32.841428	32.
2023- 04-10	78.099998	80.150002	78.050003	80.000000	77.037041	14430607	78.264285	78.
2024- 01-02	142.300003	143.300003	140.500000	142.899994	137.607407	13934022	141.557143	141.
4								•

#hepsini yazdırmadım cok yer kaplıyor :)" 30 adet sat sinyali var burda

#tam bu noktaralarda artık satış sinyalimiz bulunuyor

Out[48]:

	Open	High	Low	Close	Adj Close	Volume	14gün	50gün
Date								
2016- 05-11	13.160000	13.220000	12.790000	13.19	10.827451	5537746	13.954286	13.9998
2016- 10-13	13.220000	13.260000	13.080000	13.20	10.835659	2580329	13.095000	13.1200
2017- 09-26	16.420000	16.570000	16.219999	16.52	13.843497	5132222	17.127143	17.1898
2018- 10-31	15.340000	15.790000	15.170000	15.36	13.148607	6869826	15.944286	15.9730
2020- 02-10	20.059999	20.180000	19.180000	19.35	16.983749	6734735	20.106429	20.2234
2022 - 03-09	30.360001	31.320000	30.200001	31.08	28.607719	26682492	31.924286	32.1432
2023- 04-03	76.150002	78.250000	73.949997	78.00	75.111115	20601446	78.185714	78.3500
2023- 12-27	137.500000	138.300003	135.300003	136.00	130.962967	9411433	141.100001	141.3580
4								•

In [56]: print("Satım Noktası Adedi : ",len(veri.loc[veri["Satış_Sinyali"] ==-1]))

Satım Noktası Adedi : 30

Alım Satım Sinyalleri Grafiği

```
In [50]:
         plt.style.use('cyberpunk')
         plt.figure(figsize=(14,9))
         plt.plot(veri['Close'], label='Kapanış Fiyatı',color="gold",)
         plt.plot(veri['14gün'], label='14 Günlük SMA',color = "red",)
         plt.plot(veri['50gün'], label='50 Günlük SMA',color ="white" ,)
         plt.plot(veri.loc[veri['Al Sinyali'] == 1].index,veri['14gün'][veri['Al Sinya
                  '^', markersize=15, color='g', lw=0, label='Alım Sinyali')
         plt.plot(veri.loc[veri['Satis_Sinyali'] == -1].index,
                  veri['14gün'][veri['Satış_Sinyali'] == -1],
                  'v', markersize=8, color='r', lw=0, label='Satış Sinyali')
         plt.title('Koç Holding Alım Satım Sinyalleri')
         plt.xlabel('Tarih')
         plt.ylabel('Fiyat')
         plt.grid(True)
         plt.legend()
         plt.show()
```


Bu sinyalleri daha net görebilmek için son 2 yıla bakalım

```
son_2y1l = veri.loc[veri.index > pd.to_datetime('2021-12-31')]
In [51]:
         plt.figure(figsize=(12,6))
         plt.plot(son 2y11['Close'], label='Kapanış Fiyatı',color="gold",alpha=0.8)
         plt.plot(son_2y11['14gün'], label='14 Günlük SMA',color = "red",alpha=0.7)
         plt.plot(son_2y11['50gün'], label='50 Günlük SMA',color ="white" ,alpha=0.7)
         plt.plot(son_2y11.loc[veri['Al Sinyali'] == 1].index,son_2y11['14gün'][son_2y
                   '^', markersize=15, color='g', lw=0, label='Alım Sinyali')
         plt.plot(son_2y11.loc[son_2y11['Sat1$_Sinyali'] == -1].index,
                  son_2yıl['14gün'][son_2yıl['Satış_Sinyali'] == -1],
                  'v', markersize=8, color='r', lw=0, label='Satış Sinyali')
         plt.title('Koc Holding Alim Satim Sinyalleri')
         plt.xlabel('Tarih')
         plt.ylabel('Fiyat')
         plt.grid(True)
         plt.legend()
         plt.show()
```


Al Sinyali Olan Tarihlerin İndeksleri

```
In [52]: veri.loc[veri["Al Sinyali"] == 1].index
Out[52]: DatetimeIndex(['2016-07-07', '2016-08-16', '2016-09-26', '2016-10-06',
                                 '2016-10-19', '2016-12-19', '2017-06-19', '2017-07-20', '2017-11-07', '2018-06-13', '2018-06-20', '2018-08-15', '2019-01-18', '2019-06-14', '2019-09-19', '2019-11-04',
                                 '2020-05-13', '2020-10-20', '2021-06-10', '2021-11-04',
                                 '2022-03-21', '2022-06-06', '2022-08-11', '2023-03-07', '2023-04-10', '2023-05-11', '2023-06-07', '2023-12-20', '2024-01-02', '2024-01-11'],
                                dtype='datetime64[ns]', name='Date', freq=None)
            veri.loc[veri["Satis Sinyali"] == -1].index
In [53]:
Out[53]: DatetimeIndex(['2016-05-11', '2016-07-28', '2016-09-06',
                                                                                           '2016-10-03',
                                  2016-10-13', '2016-11-04', '2017-06-09', '2017-06-30',
                                 '2017-09-26', '2018-02-12', '2018-06-18', '2018-07-12', '2018-10-31', '2019-04-01', '2019-08-21', '2019-10-28',
                                 '2020-02-10', '2020-08-05', '2021-03-29', '2021-10-07',
                                 '2022-03-09', '2022-05-27', '2022-06-20', '2023-02-16'
                                 '2023-04-03', '2023-05-02', '2023-06-01', '2023-10-31', '2023-12-27', '2024-01-05'],
                                dtype='datetime64[ns]', name='Date', freq=None)
```

Alım ve Satış Sinyalleri Arasındaki Sürelerin Hesaplanması

```
In [54]: | for i in range(0,len(veri.loc[veri["Al Sinyali"] == 1].index)):
             süre = veri.loc[veri["Al Sinyali"] == 1].index[i]-veri.loc[veri["Satış_S
             süre = süre.days
             print("{:3}. Alım sinyali ile satım sinyali arasında geçen süre: {:}".for
           1. Alım sinyali ile satım sinyali arasında geçen süre: 57
           2. Alım sinyali ile satım sinyali arasında geçen süre: 19
           3. Alım sinyali ile satım sinyali arasında geçen süre: 20
           4. Alım sinyali ile satım sinyali arasında geçen süre: 3
           5. Alım sinyali ile satım sinyali arasında geçen süre: 6
           6. Alım sinyali ile satım sinyali arasında geçen süre: 45
           7. Alım sinyali ile satım sinyali arasında geçen süre: 10
           8. Alım sinyali ile satım sinyali arasında geçen süre: 20
           9. Alım sinyali ile satım sinyali arasında geçen süre: 42
          10. Alım sinyali ile satım sinyali arasında geçen süre: 121
          11. Alım sinyali ile satım sinyali arasında geçen süre: 2
          12. Alım sinyali ile satım sinyali arasında geçen süre: 34
          13. Alım sinyali ile satım sinyali arasında geçen süre: 79
          14. Alım sinyali ile satım sinyali arasında geçen süre: 74
          15. Alım sinyali ile satım sinyali arasında geçen süre: 29
          16. Alım sinyali ile satım sinyali arasında geçen süre: 7
          17. Alım sinyali ile satım sinyali arasında geçen süre: 93
          18. Alım sinyali ile satım sinyali arasında geçen süre: 76
          19. Alım sinyali ile satım sinyali arasında geçen süre: 73
          20. Alım sinyali ile satım sinyali arasında geçen süre: 28
          21. Alım sinyali ile satım sinyali arasında geçen süre: 12
          22. Alım sinyali ile satım sinyali arasında geçen süre: 10
          23. Alım sinyali ile satım sinyali arasında geçen süre: 52
          24. Alım sinyali ile satım sinyali arasında geçen süre: 19
          25. Alım sinyali ile satım sinyali arasında geçen süre: 7
          26. Alım sinyali ile satım sinyali arasında geçen süre: 9
          27. Alım sinyali ile satım sinyali arasında geçen süre: 6
          28. Alım sinyali ile satım sinyali arasında geçen süre: 50
          29. Alım sinyali ile satım sinyali arasında geçen süre: 6
```

30. Alım sinyali ile satım sinyali arasında geçen süre: 6

Hisse Senedi Alım-Satım Stratejisi ile Elde Edilen Toplam Kazanç Hesaplama

```
In [55]: elimizdeki_para = 2500 #tl
hisse_adeti = 0
toplam_kazanc = 0

for i in range(len(veri)):
    if veri["Al Sinyali"][i] == 1:  # Alım sinyali çalışırsa
        adet = int(elimizdeki_para / veri.iloc[i]["Close"])# Elimizdeki paray
        hisse_adeti += adet  #hisse adediş topladık
        elimizdeki_para -= adet * veri.iloc[i]["Close"]  # alabildiğimiz kade
    elif veri["Satış_Sinyali"][i] == -1:  # Satış sinyali varsa
        kar = hisse_adeti * veri.iloc[i]["Close"]  #Satış verilen fiyattan el
        toplam_kazanc += kar  # Toplam kazanca ekle
        elimizdeki_para += kar  # Satış yapıldığı için elimizdeki paraya satı
        hisse_adeti = 0  # Elimizdeki hisse senedi miktarını sıfırladık çünki
print("Toplam Kazanç:", toplam_kazanc,"₺")
```

Toplam Kazanç: 115447.81083774567 ₺

Her alım sinyalinde tüm mevcut parayla alım yapılıp, her satış sinyalinde elde edilen parayla sonraki alım sinyalinde alım yapılırken eldeki paranın durumu hesaplanıyor burda 6-7 yıl kadar bir süre geçtiğini göz önnde buludurmak gerek

sinyallere göre alım satım yapılmış olsaydı

2500 tl -----> 115447 tl olacaktı.

In []: