

Domingo 5 de Mayo de 2019

Nuestro punto de partida: Raspberry Pi 3 Model B+

- Broadcom BCM2837B0, Cortex-A53 (ARMv8) 64-bit SoC @ 1.4GHz
- 1GB LPDDR2 SDRAM
- 2.4GHz and 5GHz IEEE 802.11.b/g/n/ac wireless LAN, Bluetooth 4.2, BLE
- Gigabit Ethernet over USB 2.0 (maximum throughput 300 Mbps)
- Extended 40-pin GPIO header
- Full-size HDMI
- 4 USB 2.0 ports
- CSI camera port for connecting a Raspberry Pi camera
- DSI display port for connecting a Raspberry Pi touchscreen display
- 4-pole stereo output and composite video port
- Micro SD port for loading your operating system and storing data
- 5V/2.5A DC power input
- Power-over-Ethernet (PoE) support (requires separate PoE HAT)

E3000H Barcode Scan Engine

- Al mirar nuestro lector de QR, nos damos cuenta de que va a ser difícil soldar los extremos de los pins del cable flex en nuestra Raspberri PI.
- Tras indagar en la red, vemos que la mejor forma es comprar un adaptador para facilitar este paso
- Nos damos cuenta que nos faltan también los disipadores para la Raspberri Pi

Descarga del sistema operativo para la Raspberry Pi.

Raspbian es el Sistema operative official de la Fundación Raspberry Pi. Se puede seleccionar descargarlo directamente o utilizer NOOBS que es un instalador que permite elegir entre una serie de sistemas operativos alternativos.

Descargo el Raspbian con escritorio, se recomienda utilizar una tarjeta de al menos 8 GB. En nuestro caso utilizamos una de 16 GB.

Descargamos el zip

Una vez descargado el zip y se descomprime.

Con el programa Win32 Disk Imager se copia la imagen de Raspbian en nuestra tarjeta.

En la tarjeta de memoria donde hemos quemado la imagen del Sistema, aparecerán varias unidades. En la unidad boot de la tarjeta hay que crear un fichero ssh sin extension

Se introduce la tarjeta en la Raspberry Pi.

Después se prueba, para ello se conecta a un monitor gracias a la salida HDMI y se configura el idioma y se le añade la contraseña.

Después configuramos la wifi y nos instala actualizaciones.

Tras reiniciar, conectamos los altavoces por el Puerto USB y por el Jack y probamos que funcionen poniendo un video de youtube.

Domingo 12 de Mayo de 2019

Añadimos los disipadores a la Raspberri Pi

Configuramos la Raspberry Pi desde la línea de comandos

Actualizamos los paquetes del Raspbian:

\$ sudo apt full-upgrade -y

Actualizamos los paquetes que haya instalados en la Raspberri Pi:

\$ sudo apt-get update

Instalamos VNC por si alguna vez necesitamos conectarlo a nuestro ordenador:

\$ sudo apt-get install realvnc-vnc-server realvnc-vnc-viewer

Eliminar versiones viejas de Node que pueda tener por defecto:

\$ sudo apt-get remove nodered -y

\$ sudo apt-get remove nodejs nodejs-legacy -y

Se bajan los paquetes del node y del npm

\$ curl -sL http://deb.nodesource.com/setup_11.x | sudo bash -

Instalamos node, versión 8.11.1 y npm:

\$ sudo apt-get install -y nodejs

Comprobamos versiones de node y de npm

 $$ node -v \rightarrow 11.15$

 $$ npm -v \rightarrow 6.7.0$

Entrar con el usuario root y dar permisos a cualquiera en el directorio de node_modules.

Instalamos Johnny Five:

\$ npm install johnny-five –g \$ npm install johnny-five raspi-io -g

Creamos un hola mundo con un led (http://johnny-five.io/examples/raspi-io/)

Se codifica el siguiente archivo js:

```
var Raspi = require("raspi-io").RaspilO;
var five = require("johnny-five");
var board = new five.Board({ io: new Raspi() });
board.on("ready", function() { var led = new five.Led('P1-7'); led.blink(); });
```


Copiamos en un usb el Hola Mundo Led y se lo pasamos a la Raspberri Pi.

Se ejecuta por la consola con:

\$ sudo node nombreArchivo

Domingo 26 de Mayo de 2019

Festival Speech Synthesis System

Framework para crear sistemas de síntesis de voz.

Ofrece text to speech para un número grande de APIs

Es multi-lenguaje, aunque el que tienen mas Avanzado es el inglés.

Es software libre.

Se distribuye bajo la licencia X11-type.

➤Instalamos Festival: sudo apt-get —y install festival

➤ Luego en la consola se ejecuta el idioma por defecto:

echo "My message" | festival - -tts

¡Y ya suena por los altavoces!

Modificaciones para ejecutar Festival en castellano desde línea de comandos

Se instalan las voces de castellano:

sudo apt-get install festvox-ellpc11k

Modificación archivo language_castillian_spanish.scm si no funciona:

```
(define (language_castillian_spanish)
"(language_spanish)
Set up language parameters for Castillian Spanish."
(voice_el_diphone)
(set! male1 (lambda () (voice_el_diphone)))
(Parameter.set 'Language 'spanish)
)
(language.names.add 'castillian_spanish (list 'spanish 'castellano))
```

Ejecución de texto desde línea de comandos

•echo "Mi mensaje" | festival –tts - - language spanish

Ejecución de texto desde línea de comandos leyendo de archivo

 festival - - language Spanish - - tts /home/pi/Desktop/Spanish.txt

Ejecutar Festival en Castellano desde Javascript

Creamos un archivo Javascript con el siguiente contenido:

```
var sys = require('sys');
var exec = require('child process').exec;
function puts(error, stdout, stderr) {
     sys.puts(stdout)
exec("echo 'Hola Mundo' | festival --tts --language
spanish", puts);
```


Cuando la Raspberry Pi no suena

Hemos estado peleando tres días hasta conseguir que funcionase Festival en castellano. Los primeros errores venían del archive: language_castillian_spanish.scm.

Mientras modificabamos y probabamos, nos dimos cuenta que si Festival daba un error, se quedaba colgado y era necesario reiniciar la Raspberry Pi para que volviese a funcionar.

Además, a veces, no sonaban los altavoces. Esto ocurre porque se desconfigura la tarjeta de sonido cuando la tenemos conectada a una pantalla por conexión HDMI, tiende a enviarle el sonido a la pantalla. Para que esto no ocurra se ejecuta el siguiente comando:

amixer cset numid=3 1

El valor detrás del numid si es 0 significa automático, si es 1 fuerza que la salida sea por el Jack y, siendo 2 la salida es por HDMI

Domingo 2 de Junio de 2019

Soldamos los cables dupont al circuito impreso para conectar el lector QR a la Raspberri Pi.

Domingo 9 de Junio de 2019

Comenzamos el finde con varios pasos importantes:

- Con el programa Win32 Disk Imager se copia la imagen de Raspbian con lo instalado actualmente a modo de copia de seguridad.
- ❖ Por otro lado buscamos los datos que va a necesitar el inmunogame: las preguntas fáciles, las difíciles y la información de saber mas.
- ❖ Buscamos un generador y lector de QRs para generar un primer QR que nos sirva para probar nuestro lector:

http://www.codigos-qr.com/generador-de-codigos-qr/

http://www.codigos-qr.com/lector-qr-online/

Instalamos
Johnny five a
nivel de proyecto
y creamos la
arquitectura del
mismo.

▲ INMUNOGAME

- data
- {} data.json
- node_modules
- JS textToSpeech.js
- Js textToSpeech2.js
- JS inmunoGame.js
- {} package-lock.json
- {} package.json

Y comprobamos que siga funcionando el text to speech dentro de nuestro archivo JavaScript