

AUTOMATED CARDIOTHORACIC RATIO CALCULATION AND CARDIOMEGALY DETECTION

[DEEP LEARNING]

Rabia Zafar [PHDCSF21M503]

College of Information Technology, University of the Punjab, Lahore

What is Cardiomegaly?

Cardiomegaly is a medical condition in which the heart is enlarged..

Motivation

- Chest X-ray, or CXR, is widely used in diagnosing abnormal conditions in the chest and nearby structure.
- Radiologists routinely perform cardiothoracic ratio (CTR) measurement
- Picture Archiving and Communication Systems (PACS) include drawing tools to aid the assessment of CTR,
- labor intensive
- time consuming.

CTR

- CTR as one of the most important indicators of cardiomegaly due to the simplicity of the calculation.
- CTR of a chest X-ray image is calculated as cardiac diameter (the diameter of the heart) divided by the thoracic diameter (the diameter of the chest).
- CTR = (TD)/CD
- TD=MRD+MLD,
- Midline-to-right heart diameter : MRD
- Midline-to-left heart diameter: MLD

Methodology

- Two Approaches are used
- Using Traditional Method
 - Lung Segmentation
 - CTR Calculation
- Using Convolutional Network

Dataset

Dataset	Total		Train/Val/Test	
Kaggle	342		243/59/40	
NIH from Kaggle	5547		4438/493/616	
NIH CHEST X-ray14	ALL	5550	4006/772/772	
	Cardio	1526	1006/260/260	

Lung Segmentation

• Lung Segmentation is done by using pre trained model that uses ResNet34 as Neural Network

Result of Segmentation

CTR Calculation

• It is done by using traditional image Processing.

Algorithm: CTR calculation

Input-Segmented Image

Output-CTR

Step1: load segmented image

Step 2: Draw a rectangle bounding box around lungs automatically

Step 3: save width of bounding box as CR.

Step 4: Calculate mid in y-direction

Step 5: Calculate $\frac{3}{4}$ in x-direction

Step 6: Calculate MRD and MLD

Step 7: Calculate CTR=TR/CR

Methodology

Methodology

- Convolutional Network
 - 3 convolution layer
 - 3 Max-pooling layer (2,2)
 - 5 layer MLP
 - RELU activation function
 - Sigmoid

Results

- Accuracy Attained 70%
- Reason:

Results

Dataset	Method	Accuracy		
		Train	Val	Test
Kaggle	CNN without regularization	0.10	0.91	0.80
	CNN with regularization	0.98	0.89	0.82
NIH from kaggle	CNN without regularization	0.99	0.73	0.74
	CNN with regularization	0.98	0.71	0.70
NIH	CNN without regularization	0.97	0.81	0.82
	CNN with regularization	0.86	0.81	0.78

Git-Hub Link

• PROJECTCV21/Deep-Learning-Project: AUTOMATED CARDIOTHORACIC RATIO CALCULATION AND CARDIOMEGALY DETECTION USING IMAGE PROCESSING AND DEEP LEARNING (github.com)

Thank You!