Galois Transformers and Modular Abstract Interpreters

Reusable Metatheory for Program Analysis

David DaraisUniversity of Maryland

Matthew Might University of Utah

David Van Horn
University of Maryland

Lots of choices when designing a program analysis

- Lots of choices when designing a program analysis
- Choices make tradeoffs between precision and performance

- Lots of choices when designing a program analysis
- Choices make tradeoffs between precision and performance
- Implementations are brittle and difficult to change

- Lots of choices when designing a program analysis
- Choices make tradeoffs between precision and performance
- Implementations are brittle and difficult to change

Galois Transformers:

Reusable components for building program analyzers

- Lots of choices when designing a program analysis
- Choices make tradeoffs between precision and performance
- Implementations are brittle and difficult to change

Galois Transformers:

Reusable components for building program analyzers

Bonus:

Variations in path/flow sensitivity of your analyzer for free

(in the paradigm of abstract interpretation)

Program

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Program

```
int x y; // global stat Analysis Property void safe_fun(int N) {
                          X/0
```

```
int x y; // global state Abstract Values void safe_fun(int N) {
          \mathbb{Z} \subseteq \{-,0,+\}
```

```
Program
```

Analysis Property

Abstract Values

```
Implement
analyze : exp → results
analyze(x := x) :=
     .. x .. æ ..
analyze(IF(x){e_1}{e_2}) :=
     .. æ .. e<sub>1</sub> .. e<sub>2</sub> ..
```

Get Results $N \in \{-,0,+\}$ $x \in \{0, +\}$ $\vee \in \{-,0,+\}$ **UNSAFE**: {100/N} **UNSAFE**: {100/x}

```
Prove Correct
[e] E [analyze(e)]
```

Program

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Analysis Property

Abstract Values

$$\mathbb{Z} \sqsubseteq \{-,0,+\}$$

Implement

```
analyze : exp → results
analyze(x := æ) :=
    .. x .. æ ..
analyze(IF(æ){e₁}{e₂}) :=
    .. æ .. e₁ .. e₂ ..
```

Get Results

```
N ∈ {-,0,+}

x ∈ {0,+}

y ∈ {-,0,+}

UNSAFE: {100/N}

UNSAFE: {100/x}
```

```
[e] ∈ [analyze(e)]
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Flow-insensitive

```
N ∈ {-,0,+}
x ∈ {0,+}
y ∈ {-,0,+}

UNSAFE: {100/N}
UNSAFE: {100/x}
```

```
results:
var \mapsto \mathcal{P}(\{-,0,+\})
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Flow-sensitive

```
results:
loc \mapsto (var \mapsto \mathcal{P}(\{-,0,+\}))
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Flow-sensitive

```
4: x \in \{0, +\}
4.T: N \in \{-, +\}
5.F: x \in \{0, +\}

N, y \in \{-, 0, +\}

UNSAFE: \{100/x\}
```

```
results:
loc \mapsto (var \mapsto \mathcal{P}(\{-,0,+\}))
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Path-sensitive

```
results:
loc \mapsto \mathcal{P}(\text{var} \mapsto \mathcal{P}(\{-,0,+\}))
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Path-sensitive

```
4: NE{-,+}, xE{0}
4: NE{0}, xE{+}

NE{-,+}, yE{-,0,+}
NE{0}, yE{0,+}

SAFE
```

```
results:
loc \mapsto \mathcal{P}(\text{var} \mapsto \mathcal{P}(\{-,0,+\}))
```

Program

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Analysis Property

Abstract Values

$$\mathbb{Z} \sqsubseteq \{-,0,+\}$$

Implement

```
analyze : exp \rightarrow results

analyze(x := exp \rightarrow results) :=

... x ... exp \rightarrow results

analyze(x := exp \rightarrow results) :=

... x ... exp \rightarrow results

analyze(x := exp \rightarrow results

... exp \rightarrow results

... x ... exp \rightarrow results

analyze(x := exp \rightarrow results

... x ... exp \rightarrow results

analyze(x := exp \rightarrow results

... exp \rightarrow results

... exp \rightarrow results

... exp \rightarrow results

analyze(x := exp \rightarrow results) :=

... exp \rightarrow results
```

Get Results

```
4: NE{-,+} xE{0}
4: NE{0}, xE{+}

NE{-,+}, yE{-0,+}
NE{0}, yE{0,+}
```

```
[e] E [analyze(e)]
```

Program

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Analysis Property

```
x/0
```

Abstract Values

Implement

Get Results

```
4: NE{-,+} xE{0}

4: NE{0}, xE{+}

NE{-,+}, yE{-0,+}

NE{0}, yE{0,+}

SAFE
```


Program

safe_fun.js

Analysis Property

Abstract Values

$$\mathbb{Z} \subseteq \{-,0,+\}$$

Implement

```
analyze : exp \rightarrow results

analyze(x := exp) :=

... X ... exp ...

analyze(exp) :=

... exp ... exp ... exp ...
```

Get Results

Program

Analysis Property

Abstract Values

Implement

Get Results

```
4: NE{-,+},xE{0}
4: NE{0},xE{+}

NE{-,+},yE{-,0,+}
NE{0},yE{0,+}

SAFE
```


Problems Worth Solving

- How to change path/flow sensitivity without redesigning from scratch?
- How to reuse machinery between analyzers for different languages?
- How to translate proofs between different analysis designs?

Solution

Compositional interpreters

Compositional abstractions

Compositional abstract interpreters

Galois Transformers

- What's a Monad?
- What are Transformers?
- What are Galois Connections?

Galois Transformers

- What's a Monad?
- What are Transformers?
- What are Galois Connections?

A Monad

```
\underline{\mathsf{type}}\ M(\mathsf{t})
op x \leftarrow e_1 ; e_2
op return(e)
    get
op put(e)
    fail
```

- A module with:
 - a type operator *M*
 - a semicolon operator (bind)
 - effect operation
- *M*(t):
 - "A computation that performs some effects, then returns t"

Program

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Analysis Property

```
x/0
```

Abstract Domain

```
\mathbb{Z} \sqsubseteq \{-,0,+\}
```

Implement

Get Results

```
N ∈ {-,0,+}

x ∈ {0,+}

y ∈ {-,0,+}

UNSAFE: {100/N}

UNSAFE: {100/x}
```

```
[e] E [analyze(e)]
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
value := ℤ∪ ℍ
ρ ∈ env := var → value
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
value := ℤ∪ ℍ
ρ ∈ env := var → value
```

```
type M(t)

Op X ← e1 ; e2
Op return(e)

Op getEnv
Op putEnv(e)

Op fail
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
value := ℤ∪ ℍ
ρ ∈ env := var → value
```

```
step : exp \rightarrow M(exp)
```

```
type M(t)

Op X ← e1 ; e2
Op return(e)

Op getEnv
Op putEnv(e)

Op fail
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
step : exp → M(exp)
step(x := æ) := do

v ← [æ]
ρ ← getEnv
putEnv(ρ[x↦v])
return(SKIP)
```

```
value := \mathbb{Z} \cup \mathbb{B}

\rho \in \text{env} := \text{var} \mapsto \text{value}

\llbracket \_ \rrbracket : \text{atom} \to M \text{(value)}
```

```
type M(t)

Op X ← e1 ; e2
Op return(e)

Op getEnv
Op putEnv(e)

Op fail
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
step : exp \rightarrow M(exp)
step(x := x) := do
  v ← [æ]
  ρ ← getEnv
  putEnv(ρ[x↔v])
  return(SKIP)
step(IF(x){e_1}{e_2}) := do
  ∨ ← [a]
  case v of
    True → return(e<sub>1</sub>)
     False → return(e<sub>2</sub>)
       → fail
```

```
value := \mathbb{Z} \cup \mathbb{B}

\rho \in \text{env} := \text{var} \mapsto \text{value}

\llbracket \_ \rrbracket : \text{atom} \to M \text{(value)}
```

```
type M(t)

Op X ← e1 ; e2
Op return(e)

Op getEnv
Op putEnv(e)

Op fail
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
step : exp \rightarrow M(exp)
step(x := x) := do
  ∨ ← [a]
  ρ ← getEnv
  putEnv(ρ[x→v])
  return(SKIP)
step(IF(x){e_1}{e_2}) := do
  ∨ ← [a]
  case v of
    True → return(e<sub>1</sub>)
     False → return(e<sub>2</sub>)
       → fail
```

```
value := \mathbb{Z} \cup \mathbb{B}

\rho \in \text{env} := \text{var} \mapsto \text{value}

\llbracket \_ \rrbracket : \text{atom} \to M \text{(value)}
```

```
type M(t)

Op X ← e1 ; e2
Op return(e)

Op getEnv
Op putEnv(e)

Op fail
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
step : exp \rightarrow M^{\sharp}(exp)
step(x := x) := do
  ∨ ← [æ] <sup>‡</sup>
  ρ ← getEnv
  putEnv(ρ[x→v])
  return(SKIP)
step(IF(x){e_1}{e_2}) := do
  ∨ ← [æ]#
  case v of
     True → return(e<sub>1</sub>)
     False → return(e<sub>2</sub>)
        → fail
```

```
value \# := \mathcal{P}(\{-,0,+\}) \cup \mathcal{P}(\mathbb{B})
\rho \in \text{env}^{\sharp} := \text{var} \mapsto \text{value}^{\sharp}
[\_]^{\sharp} : \text{atom} \rightarrow M^{\sharp}(\text{value}^{\sharp})
```

```
type M*(t)

Op X ← e1; e2
Op return(e)

Op getEnv
Op putEnv(e)

Op fail
```

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
step : exp \rightarrow M^{\sharp}(exp)
step(x := x) := do
  v ← [æ] #
  ρ ← getEnv
  putEnv(\rho \sqcup [x \mapsto v])
   return(SKIP)
step(IF(x){e_1}{e_2}) := do
  ∨ ← [æ]#
  case v of
     True → return(e<sub>1</sub>)
     False → return(e<sub>2</sub>)
        → fail
```

```
value \# := \mathcal{P}(\{-,0,+\}) \cup \mathcal{P}(\mathbb{B})
p \in \text{env} \# := \text{var} \mapsto \text{value} \#
[\![ \_ ]\!] \# : \text{atom} \to M \# (\text{value} \#)
```


op fail

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

```
step : exp \rightarrow M^{\sharp}(exp)
step(x := x) := do
   v ← [æ]<sup>♯</sup>
   ρ ← getEnv
   putEnv(\rho \sqcup [x \mapsto v])
   return(SKIP)
step(IF(x){e_1}{e_2}) := do
   ∨ ← [æ]<sup>♯</sup>
   b ← chooseBool(v)
   case b of
     True → return(e<sub>1</sub>)
      False → return(e<sub>2</sub>)
```

```
value^{\sharp} := \mathcal{P}(\{-,0,+\}) \cup \mathcal{P}(\mathbb{B})
ρ ∈ env<sup>‡</sup> := var → value<sup>‡</sup>
[ ]  \sharp : atom \rightarrow M^{\sharp} (value^{\sharp})
chooseBool : value^{\sharp} \rightarrow M^{\sharp}(\mathbb{B})
           <u>type</u> M^{\sharp}(t)
           op X \leftarrow e_1 ; e_2
           op return(e)
           op getEnv
           op putEnv(e)
           op fail
```

```
0: int x y; // global state
1: void safe fun(int N) {
2: \underline{if} (N \neq 0) \{x := 0;\}
3: else \{x := 1;\}
4: \underline{if} (N\neq 0) {y := 100/N;}
5: else \{y := 100/x;\}\}
```

```
step : exp \rightarrow M^{\sharp}(exp)
step(x := x) := do
  v ← [æ] #
  ρ ← getEnv
  putEnv(\rho \sqcup [x \mapsto v])
   return(SKIP)
step(IF(x){e_1}{e_2}) := do
  ∨ ← [æ]<sup>♯</sup>
   b ← chooseBool(v)
  case b of
     True → return(e<sub>1</sub>)
     False → return(e<sub>2</sub>)
```

```
value^{\sharp} := \mathcal{P}(\{-,0,+\}) \cup \mathcal{P}(\mathbb{B})
ρ ∈ env<sup>‡</sup> := var → value<sup>‡</sup>
[ ]  \sharp : atom \rightarrow M^{\sharp} (value^{\sharp})
chooseBool : value^{\sharp} \rightarrow M^{\sharp}(\mathbb{B})
          type M^{\sharp}(t)
          op X \leftarrow e_1 ; e_2
          op return(e)
          op getEnv
          op putEnv(e)
          op fail/e₁⊞e₂
```


Monadic Abs. Interpreters

- Start with a concrete monadic interpreter
- Abstract value space (value#, [_]#)
- Join results when updating env[♯] (_□_)
- Branch nondeterministically (chooseBool)

Why Monads

- A monadic interpreter can be simpler than a state machine or constraint system
- Two effects, State[s] and Nondet
 - Encode arbitrary small-step state machine relations
- Don't commit to a single implementation of M#
 - Different choices for M[#] yield different analyses

- What's a Monad?
- What are Transformers?
- What are Galois Connections?

- What's a Monad?
- What are Transformers?
- What are Galois Connections?

```
type M(t)

op x ← e1 ; e2
op return(e)
```

- What's a Monad?
- What are Transformers?
- What are Galois Connections?

```
type M(t)

op x ← e1 ; e2
op return(e)
```

Why Monads

- A monadic interpreter can be simpler than a state machine or constraint system
- Two effects, State[s] and Nondet
 - Encode arbitrary small-step state machine relations
- Don't commit to a single implementation of M[#]
 - Different choices for M[#] yield different analyses

```
State[s]
```

Nondet

```
get: M(s)
```

 $fail: \forall A. M(A)$

put :
$$s \rightarrow M(1)$$

 \blacksquare : $\forall A$. $M(A) \times M(A) \rightarrow M(A)$


```
type M(t)

Op X ← e1 ; e2
Op return(e)

Op getEnv
Op putEnv(e)

Op fail/e1⊞e2
```


Path-sensitive

Flow-insensitive

Flow-insensitive

Path-sensitive

Flow-insensitive Flow-sensitive

Path-sensitive

Flow-insensitive

Flow-sensitive

Path-sensitive

$$\mathcal{P}(\exp) \times \exp^{\sharp}$$

$$exp \mapsto \mathcal{P}(env^{\sharp})$$

Flow-insensitive

Flow-sensitive

Path-sensitive

```
\mathcal{P}(\exp) \times env^{\sharp}
```

$$exp \mapsto \mathcal{P}(env^{\sharp})$$

```
N \in \{-,0,+\}

x \in \{0,+\}

y \in \{-,0,+\}
```

UNSAFE: {100/N}
UNSAFE: {100/x}

```
4: x \in \{0, +\}

4.T: N \in \{-, +\}

5.F: x \in \{0, +\}
```

$$N, y \in \{-, 0, +\}$$

UNSAFE: {100/x}

```
4: NE{-,+},xE{0}
4: NE{0},xE{+}
NE{-,+},yE{-,0,+}
NE{0},yE{0,+}
```

SAFE

Building Monads

- Construct a monad using StateT[s], FlowT[s] and NondetT
- Order matters, yielding different analyses
- Rapidly prototype precision performance tradeoffs

Why Transformers

- Semantics independent building blocks for writing interpreters—also apply to abstract interpreters!
- Reuse of analysis machinery
 - Different abs. interpreters use the same transformers
- Variations in analysis
 - Different transformer stacks fit into the same interpreter

- What's a Monad?
- What are Transformers?
- What are Galois Connections?

```
type M(t)

op x ← e1 ; e2
op return(e)
```

- What's a Monad?
- What are Transformers?
- What are Galois Connections?

```
type M(t)

op x ← e1; e2
op return(e)
```


- What's a Monad?
- What are Transformers?
- What are Galois Connections?

```
type M(t)

op x ← e1 ; e2
op return(e)
```


Galois Connections

- Compositional framework for proving correctness
- We build two sets of GCs alongside transformers
- Code: Enables execution of monadic analyzers
- Proofs: Large number of proofs built automatically
- (See the paper)

- GTs = Monad Transformers + Galois connections
- Galois connections are necessary for execution and proof of correctness for abstract interpreter

Putting it All Together

- You design a monadic abstract interpreter
- Instantiate with monad transformers
- Change underlying monad to change results
- Galois connections synthesized for free:
 - Code: Execution engine for running the analysis
 - **Proofs**: Large part of correctness argument

Implementation

- Haskell package: cabal install maam
- Galois Transformers are implemented as a semantics independent library
- Haskell's support for monadic programming was helpful, but not necessary

Let's Design an Analysis

Program

```
0: int x y; // global state
1: void safe_fun(int N) {
2: if (N≠0) {x := 0;}
3: else {x := 1;}
4: if (N≠0) {y := 100/N;}
5: else {y := 100/x;}}
```

Analysis Property

```
x/0
```

Abstract Values

Implement

```
analyze : exp → sults
analyze(x := x :=
    ... x
analyze(1 {e1}{e2}) :=
    ... æ . e1 ... e2 ...
```

Get Results

```
4: NE{-,+} xE{0}
4: NE{0}, xE{+}

NE{-,+}, yE{-0,+}
NE{0}, yE{0,+}
```

Prove Correct

Let's Design an Analysis

Program

Analysis Property

Abstract Values

Implement

```
analyze : exp → sults
analyze(x := * :=
    ... X
analyze(1 {e1}{e2}) :=
    ... æ . e1 ... e2 ...
```

Get Results

```
4: NE{-,+}, xE{0}
4: NE{0}, xE{+}

NE{-,+}, yE{-,0,+}
NE{0}, yE{0,+}

SAFE
```

Prove Correct

Future Work

- Benchmark interaction between flow sensitivity and other design choices, like context or object sensitivity
- Explore uses of NondetT and FlowT[s] outside analysis
- Other methods for executing monadic abstract interpreters; might relate to pushdown analysis
- Steps toward modular verified abstract interpreters in Coq or Agda using Galois Transformer proof framework
 - First step, mechanizing Galois connections
 - Draft: Mechanically Verified Calculational Abstract Interpretation (w/Van Horn)