Algebraic Groups

D. Zack Garza

Saturday 29th August, 2020

Contents

1	Frid	ay, August 21	<u>)</u>
	1.1	Intro and Definitions	2
	1.2	Jordan-Chevalley Decomposition	
2	Mor	nday, August 24	5
	2.1	Review and General Setup	5
	2.2	The Associated Lie Algebra	3
	2.3	Representations	
	2.4	Classification	
3	Wed	dnesday, August 26)
	3.1	Review)
	3.2	Root Systems and Weights	Ĺ
	3.3	Complex Semisimple Lie Algebras	
4	Frid	ay, August 28	1
	4.1	Representation Theory	1
		4.1.1 Induction	
		4.1.2 Properties of Induction	
	4.2	Classification of Simple G -modules	

-		
-100	\sim	lict.
lod		Ist

	α_1 ? Note that you can recover the Cartan something here?
Equality	y as a composition of functors?
List o	f Definitions
1.0.1	Definition – Affine Variety
1.0.2	Definition – Affine Algebraic Group
1.0.3	
1.4.1	Definition – Unipotent
1.5.1	
2.0.1	Definition – The Lie Algebra of an Algebraic Group
3.0.1	
4.1.1	
List o	f Theorems
1.1	Proposition – ?
1.2	Proposition –?
1.3	Proposition – ?
1.4	Proposition – Existence and Uniqueness of Radical
1.5	Proposition – JC Decomposition
3.1	Theorem = ?

These are notes live-tex'd from a graduate course in Algebraic Geometry taught by Dan Nakano at the University of Georgia in Fall 2020. As such, any errors or inaccuracies are almost certainly my own.

D. Zack Garza, Saturday 29th August, 2020 04:47

1 Friday, August 21

Reference: Carter's "Finite Groups of Lie Type".
Reference: Humphrey's "Linear Algebraic Groups" (Springer)

1.1 Intro and Definitions

Definition 1.0.1 (Affine Variety). Let $k = \overline{k}$ be algebraically closed (e.g. $k = \mathbb{C}, \overline{\mathbb{F}_p}$). A variety $V \subseteq k^n$ is an affine k-variety iff V is the zero set of a collection of polynomials in $k[x_1, \cdots, x_n]$.

Here $\mathbb{A}^n := k^n$ with the Zariski topology, so the closed sets are varieties.

Definition 1.0.2 (Affine Algebraic Group).

An affine algebraic k-group is an affine variety with the structure of a group, where the multiplication and inversion maps

$$\mu: G \times G \longrightarrow G$$
$$\iota: G \longrightarrow G$$

are continuous.

Example 1.1.

 $G = \mathbb{G}_a \subseteq k$ the additive group of k is defined as $\mathbb{G}_a := (k, +)$. We then have a coordinate ring $k[\mathbb{G}_a] = k[x]/I = k[x]$.

Example 1.2.

G = GL(n, k), which has coordinate ring $k[x_{ij}, T] / \langle \det(x_{ij}) \cdot T = 1 \rangle$.

Example 1.3.

Setting n=1 above, we have $\mathbb{G}_m := \mathrm{GL}(1,k) = (k^{\times},\cdot)$. Here the coordinate ring is $k[x,T]/\langle xT=1\rangle$.

Example 1.4.

 $G = \operatorname{SL}(n, k) \leq \operatorname{GL}(n, k)$, which has coordinate ring $k[G] = k[x_{ij}] / \langle \det(x_{ij}) = 1 \rangle$.

Definition 1.0.3 (Irreducible).

A variety V is *irreducible* iff V can not be written as $V = \bigcup_{i=1}^{n} V_i$ with each $V_i \subseteq V$ a proper subvariety.

Figure 1: Reducible vs Irreducible

Proposition 1.1(?).

There exists a unique irreducible component of G containing the identity e. Notation: G^0 .

Proposition 1.2(?).

G is the union of translates of G^0 , i.e. there is a decomposition

$$G = \coprod_{g \in \Gamma} g \cdot G^0,$$

where we let G act on itself by left-translation and define Γ to be a set of representatives of distinct orbits.

Proposition 1.3(?).

One can define solvable and nilpotent algebraic groups in the same way as they are defined for finite groups, i.e. as having a terminating derived or lower central series respectively.

1.2 Jordan-Chevalley Decomposition

Proposition 1.4(Existence and Uniqueness of Radical).

There is a maximal connected normal solvable subgroup R(G), denoted the radical of G.

- $\{e\} \subseteq R(G)$, so the radical exists.
- If $A, B \leq G$ are solvable then AB is again a solvable subgroup.

Definition 1.4.1 (Unipotent).

An element u is unipotent $\iff u = 1 + n$ where n is nilpotent \iff its the only eigenvalue is $\lambda = 1$.

Proposition 1.5 (JC Decomposition).

For any G, there exists a closed embedding $G \hookrightarrow \operatorname{GL}(V) = \operatorname{GL}(n,k)$ and for each $x \in G$ a unique decomposition x = su where s is semisimple (diagonalizable) and u is unipotent.

Define $R_u(G)$ to be the subgroup of unipotent elements in R(G). :::{.definition title="Semisimple and Reductive"} Suppose G is connected, so $G = G^0$, and nontrivial, so $G \neq \{e\}$. Then

- G is semisimple iff $R(G) = \{e\}$.
- G is reductive iff $R_u(G) = \{e\}$. :::

Example 1.5.

G = GL(n, k), then R(G) = Z(G) = kI the scalar matrices, and $R_u(G) = \{e\}$. So G is reductive and semisimple.

Example 1.6.

$$G = SL(n, k)$$
, then $R(G) = \{I\}$.

Exercise 1.1.

Is this semisimple? Reductive? What is $R_u(G)$?

Definition 1.5.1 (Torus).

A torus $T \subseteq G$ in G an algebraic group is a commutative algebraic subgroup consisting of semisimple elements.

Example 1.7.

Let

$$T \coloneqq \left\langle \begin{bmatrix} a_1 & & \mathbf{0} \\ & \ddots & \\ \mathbf{0} & & a_n \end{bmatrix} \subseteq \operatorname{GL}(n,k) \right\rangle.$$

Remark 1.

Why are torii useful? For g = Lie(G), we obtain a root space decomposition

$$g = \left(\bigoplus_{\alpha \in \Phi_{-}} g_{\alpha}\right) \oplus t \oplus \left(\bigoplus_{\alpha \in \Phi_{+}} g_{\alpha}\right).$$

When G is a simple algebraic group, there is a classification/correspondence:

$$(G,T) \iff (\Phi,W).$$

where Φ is an irreducible root system and W is a Weyl group.

2 Monday, August 24

2.1 Review and General Setup

- $k = \bar{k}$ is algebraically closed
- G is a reductive algebraic group
- $T \subseteq G$ is a maximal split torus

Split:
$$T \cong \bigoplus \mathbb{G}_m$$
.

We'll associate to this a root system, not necessarily irreducible, yielding a correspondence

$$(G,T) \iff (\Phi,W)$$

with W a Weyl group.

This will be accomplished by looking at $\mathfrak{g} = \text{Lie}(G)$. If G is simple, then \mathfrak{g} is "simple", and Φ irreducible will correspond to a Dynkin diagram.

There is this a 1-to-1 correspondence

$$G \text{ simple}/\sim \iff A_n, B_n, C_n, D_n, E_6, E_7, E_8, F_4, G_2$$

where \sim denotes isogeny.

Taking the Zariski tangent space at the identity "linearizes" an algebraic group, yielding a Lie algebra.

Figure 2: Image

We have the coordinate ring $k[G] = k[x_1, \dots, x_n]/\mathcal{I}(G)$ where $\mathcal{I}(G)$ is the zero set. This is equal to $\{f: G \longrightarrow k\}$,

2.2 The Associated Lie Algebra

Definition 2.0.1 (The Lie Algebra of an Algebraic Group). Define $left\ translation$ is

$$\lambda_x : k[G] \longrightarrow k[G]$$

 $y \mapsto f(x^{-1}y).$

Define derivations as

$$\mathrm{Der}\ k[G] = \left\{ D: k[G] \longrightarrow k[G] \ \middle| \ D(fg) = D(f)g + fD(g) \right\}.$$

We can then realize the Lie algebra as

$$\mathfrak{g} = \operatorname{Lie}(G) = \{ D \in \operatorname{Der} k[G] \mid \lambda_x \circ D = D \circ \lambda_x \},$$

the left-invariant derivations.

Example 2.1.

- $\begin{array}{ccc} \bullet & G = \operatorname{GL}(n,k) \implies \mathfrak{g} = \mathfrak{gl}(n,k) \\ \bullet & G = \operatorname{SL}(n,k) \implies \mathfrak{g} = \mathfrak{sl}(n,k) \\ \end{array}$

Let G be reductive and T be a split torus. Then T acts on \mathfrak{g} via an adjoint action. (For GL_n , SL_n , this is conjugation.)

There is a decomposition into eigenspaces for the action of T,

$$\mathfrak{g} = \left(\bigoplus_{\alpha \in \Phi} g_{\alpha}\right) \oplus t$$

where t = Lie(T) and $g_{\alpha} \coloneqq \left\{ x \in \mathfrak{g} \mid t.x = \alpha(t)x \ \forall t \in T \right\}$ with $\alpha : T \longrightarrow K^{\times}$ a rational function (a root).

In general, take $\alpha \in \text{hom}_{AlgGrp}(T, \mathbb{G}_m)$.

Example 2.2.

Let G = GL(n, k) and

$$T = \left\{ \begin{bmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_n \end{bmatrix} \mid a_j \in k^{\times} \right\}.$$

Then check the following action:

Figure 3: Action

which indeed acts by a rational function.

Then

$$g_{\alpha} = \operatorname{span} \left\{ \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \right\} = g_{(1,-1,0)}.$$

For $\mathfrak{g} = \mathfrak{gl}(3, k)$, we have

$$\mathfrak{g} = t \oplus g_{(1,-1,0)} \oplus g_{(-1,1,0)}$$
$$\oplus g_{(0,1,-1)} \oplus g_{(0,-1,1)}$$
$$\oplus g_{(1,0,-1)} \oplus g_{(-1,0,1)}.$$

2.3 Representations

Let $\rho: G \longrightarrow \operatorname{GL}(V)$ be a group homomorphisms, then equivalently V is a (rational) G-module.

For $T \subseteq G$, $T \curvearrowright G$ semisimply, so we can simultaneously diagonalize these operators to obtain a weight space decomposition $V = \bigoplus_{\lambda \in G} V_{\lambda}$, where

$$V_{\lambda} := \left\{ v \in V \mid t.v = \lambda(t)v \ \forall t \in T \right\}$$
$$X(T) := \hom(T, \mathbb{G}_m).$$

Example 2.3.

Let G = GL(n, k) and V the n-dimensional natural representation as column vectors,

$$V = \left\{ [v_1, \cdots, v_n] \mid v_j \in k \right\}.$$

Then

$$T = \left\{ \begin{bmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_n \end{bmatrix} \middle| a_j \in k^{\times} \right\}.$$

Consider the basis vectors \mathbf{e}_j , then

$$\begin{bmatrix} a_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & a_n \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = a_j \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = a_1^0 a_2^0 \cdots a_j^0 \cdots a_n^0 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}.$$

Here the weights are of the form $\varepsilon_j := [0, 0, \cdots, 1, \cdots, 0]$ with a 1 in the jth spot, so we have

$$V = V_{\varepsilon_1} \oplus V_{\varepsilon_2} \oplus \cdots \oplus V_{\varepsilon_n}$$

Example 2.4.

For $V = \mathbb{C}$, we have $t.v = (a_1^0 \cdots a_n^0)v$ and $V = V_{(0,0,\cdots,0)}$.

2.4 Classification

Let G be a simple algebraic group (ano closed, connected, normal subgroups other than $\{e\}$, G) that is nonabelian that is nonabelian.

Example 2.5.

Let G = SL(3, k). Then

$$T = \left\{ t = \begin{bmatrix} a_1 & 0 & 0 \\ 0 & a_1 a_2^{-1} & 0 \\ 0 & 0 & a_2^{-1} \end{bmatrix} \mid a_1, a_2 \in k^{\times} \right\}$$

and

$$t. \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} = a_1^2 a_2^{-1} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

and $\alpha_1 = (2, -1)$.

What is α_1 ? Note that you can recover the Cartan something here?

Then

$$\mathfrak{g}=\mathfrak{g}_{(2,-1)}\oplus\mathfrak{g}_{(-2,1)}\oplus\mathfrak{g}_{(-1,2)}\oplus\mathfrak{g}_{(1,-2)}\oplus\mathfrak{g}_{(1,1)}\oplus\mathfrak{g}_{(-1,-1)}.$$

Then $\alpha_2 = (-1, 2)$ and $\alpha_1 + \alpha_2 = (1, 1)$.

This gives the root space decomposition for \mathfrak{sl}_3 :

Figure 4: Image

Then the Weyl group will be generated by reflections through these hyperplanes.

3 Wednesday, August 26

3.1 Review

- G a reductive algebraic group over k
- $T = \prod_{i=1}^{n} \mathbb{G}_m$ a maximal split torus
- $\mathfrak{g} = \operatorname{Lie}(G)$
- There's an induced root space decomposition $\mathfrak{g}=t\oplus\bigoplus\mathfrak{g}_{\alpha}$
- When G is simple, Φ is an irreducible root system
 - There is a classification of these by Dynkin diagrams

Example 3.1.

 A_n corresponds to $\mathfrak{sl}(n+1,k)$ (mnemonic: A_1 corresponds to $\mathfrak{sl}(2)$)

- We have representations $\rho: G \longrightarrow \operatorname{GL}(V)$, i.e. V is a G-module
- For $T \subseteq G$, we have a weight space decomposition: $V = \bigoplus_{\lambda \in X(T)} V_{\lambda}$ where $X(T) = \text{hom}(T, \mathbb{G}_m)$.

Note that $X(T) \cong \mathbb{Z}^n$, the number of copies of \mathbb{G}_m in T.

3.2 Root Systems and Weights

Example 3.2.

Let $\Phi = A_2$, then we have the following root system:

Figure 5: Image

In general, we'll have $\Delta = \{\alpha_1, \dots, \alpha_n\}$ a basis of *simple roots*.

Remark 2.

Every root $\alpha \in I$ can be expressed as either positive integer linear combination (or negative) of simple roots.

For any $\alpha \in \Phi$, let s_{α} be the reflection across H_{α} , the hyperplane orthogonal to α . Then define the Weyl group $W = \{s_{\alpha} \mid \alpha \in \Phi\}$.

Example 3.3.

Here the Weyl group is S_3 :

Figure 6: Image

Remark 3.

W acts transitively on bases.

Remark 4.

 $X(T) \subseteq \mathbb{Z}\Phi$, recalling that $X(T) = \text{hom}(T, \mathbb{G}_m) = \mathbb{Z}^n$ for some n. Denote $\mathbb{Z}\Phi$ the root lattice and X(T) the weight lattice.

Example 3.4.

Let $G = \mathfrak{sl}(2,\mathbb{C})$ then $X(T) = \mathbb{Z}\omega$ where $\omega = 1$, $\mathbb{Z}\Phi = \mathbb{Z}\{\alpha\}$ Then there is one weight α , and the root lattice $\mathbb{Z}\Phi$ is just $2\mathbb{Z}$. However, the weight lattice is $\mathbb{Z}\omega = \mathbb{Z}$, and these are not equal in general.

Remark 5.

There is partial ordering on X(T) given by $\lambda \geq \mu \iff \lambda - \mu = \sum_{\alpha \in \Delta} n_{\alpha} \alpha$ where $n_{\alpha} \geq 0$. (We say λ dominates μ .)

Definition 3.0.1 (Fundamental Dominant Weights).

We extend scalars for the weight lattice to obtain $E := X(T) \otimes_{\mathbb{Z}} \mathbb{R} \cong \mathbb{R}^n$, a Euclidean space with an inner product $\langle \cdot, \cdot \rangle$.

For $\alpha \in \Phi$, define its coroot $\alpha^{\vee} := \frac{2\alpha}{\langle \alpha, \alpha \rangle}$. Define the simple coroots as $\Delta^{\vee} := \{\alpha_i^{\vee}\}_{i=1}^n$, which

has a dual basis $\Omega := \{\omega_i\}_{i=1}^n$ the fundamental weights. These satisfy $\langle \omega_i, \alpha_j^{\vee} \rangle = \delta_{ij}$.

What is the notation for fundamental weights? Definitely not Ω usually

Important because we can index irreducible representations by fundamental weights.

A weight $\lambda \in X(T)$ is dominant iff $\lambda \in \mathbb{Z}^{\geq 0}\Omega$, i.e. $\lambda = \sum n_i \omega_i$ with $n_i \in \mathbb{Z}^{\geq 0}$.

If G is simply connected, then $X(T) = \bigoplus \mathbb{Z}\omega_i$.

See Jantzen for definition of simply-connected, SL(n+1) is simply connected but its adjoint PGL(n+1) is not simply connected.

3.3 Complex Semisimple Lie Algebras

When doing representation theory, we look at the Verma modules $Z(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b}^+)} \lambda \twoheadrightarrow L(\lambda)$.

Theorem 3.1(?). $L(\lambda)$ as a finite-dimensional $U(\mathfrak{g})$ -module $\iff \lambda$ is dominant, i.e. $\lambda \in X(T)_+$.

Thus the representations are indexed by lattice points in a particular region:

Figure 7: Image

Question 1:

Suppose G is a simple (simply connected) algebraic group. How do you parameterize irreducible representations?

For $\rho:G$

toGL(V), V is a simple module (an irreducible representation) iff the only proper G-submodules of V are trivial.

Answer 1: They are also parameterized by $X(T)_+$. We'll show this using the induction functor $\operatorname{Ind}_B^G \lambda = H^0(G/B, \mathcal{L}(\lambda))$ (sheaf cohomology of the flag variety with coefficients in some line bundle).

We'll define what B is later, essentially upper-triangular matrices.

Question 2: What are the dimensions of the irreducible representations for *G*?

Answer 2: Over $k = \mathbb{C}$ using Weyl's dimension formula.

For $k = \overline{\mathbb{F}_p}$: conjectured to be known for $p \ge h$ (the *Coxeter number*), but by Williamson (2013) there are counterexamples. Current work being done!

4 Friday, August 28

4.1 Representation Theory

Review: let \mathfrak{g} be a semisimple lie algebra / \mathbb{C} . There is a decomposition $\mathfrak{g} = \mathfrak{b}^+ \oplus \mathfrak{n}^- = \mathfrak{n}^+ \oplus t \oplus \mathfrak{n}^-$, where t is a torus. We associate $U(\mathfrak{g})$ the universal enveloping algebra, and representations of \mathfrak{g} correspond with representations of $U(\mathfrak{g})$.

Let $\lambda \in X(T)$ be a weight, then λ is a $U(\mathfrak{b}^+)$ -module. We can write $Z(\lambda) = U(\mathfrak{g}) \otimes_{U(\mathfrak{b}^+)} \lambda$.

Remark 6.

There exists a unique maximal submodule of $Z(\lambda)$, say $RZ(\lambda)$ where $Z(\lambda)/RZ(\lambda) \cong L(\lambda)$ is an irreducible representation of \mathfrak{g} .

Theorem 4.1(?).

Let $L = L(\lambda)$ be a finite-dimensional irreducible representation for \mathfrak{g} . Then

- 1. $L \cong Z(\lambda)/RZ(\lambda)$ for some λ .
- 2. $\lambda \in X(T)_+$ is a dominant integral weight.

4.1.1 Induction

Let \mathfrak{g} be an algebraic group /k with $k = \bar{k}$, and let $H \leq G$. Let M be an H-module, we'll eventually want to produce a G-modules.

Step 1: Make M into a $G \times H$ where the first component (q, 1) acts trivially on M.

Taking the coordinate algebra k[G], this is a (G-G)-bimodule, and thus becomes a $G \times H$ -module. Let $f \in k[G]$, so $f: G \longrightarrow K$, and let $y \in G$. The explicit action is

$$[(g,h)f](y) := f(g^{-1}yh).$$

Note that we can identify $H \cong 1 \times H \leq G \times H$. We can form $(M \otimes_k k[G])^H$, the H-fixed points.

Exercise 4.1.

Let N be an A-module and $B \leq A$, then N^B is an A/B-module.

Hint: the action of B is trivial on N^B . Here $N^B := \{ n \in N \mid b.n = n \, \forall b \in B \}$

Definition 4.1.1 (Induction).

The induced module is defined as

$$\operatorname{Ind}_H^G(M) := (M \otimes k[G])^H.$$

4.1.2 Properties of Induction

1. $(\cdot \otimes_k k[G]) = \text{hom}_H(k, \cdot \otimes_k k[G])$ is only left-exact, i.e.

$$(0 \longrightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0) \mapsto (0 \longrightarrow FA \longrightarrow FB \longrightarrow FC \longrightarrow \cdots).$$

2. By taking right-derived functors $R^{j}F$, you can take cohomology.

Note that in this category, we won't have enough projectives, but we will have enough injectives.

- 3. This functor commutes with direct sums and direct limits.
- 4. (Important) Frobenius Reciprocity: there is an adjoint, restriction, satisfying

$$\hom_G(N, \operatorname{Ind}_H^G M) = \hom_H(N \downarrow_H, M).$$

5. (Tensor Identity) If $M \in \text{Mod}(H)$ and additionally $M \in \text{Mod}(G)$, then $\text{Ind}_H^G = M \otimes_k \text{Ind}_H^G k$.

If $V_1, V_2 \in \text{Mod}(G)$ then $V_1 \otimes_k V_2 \in \text{Mod}(G)$ with the action given by $g(v_1 \otimes v_2) = gv_1 \otimes gv_2$.

6. Another interpretation: we can write

$$\operatorname{Ind}_{H}^{G}(M) = \left\{ f \in \operatorname{Hom}(G, M_{a}) \mid f(gh) = h^{-1} \cdot f(g) \, \forall g \in G, h \in H \right\} \qquad M_{a} = M := \mathbb{A}^{\dim M}.$$

I.e., equivariant wrt the H-action.

Then G acts on $\operatorname{Ind}_H^G M$ by left-translation: $(gf)(y) = f(g^{-1}y)$.

7. There is an evaluation map:

$$\varepsilon: \operatorname{Ind}_H^G(M) \longrightarrow M$$

 $f \mapsto f(1).$

This is an H-module morphism. Why? We can check

$$\varepsilon(h.f) := (h.f)(a)$$

$$= f(h^{-1})$$

$$= hf(1)$$

$$= h(\varepsilon(f)).$$

We can write the isomorphism in Frobenius reciprocity explicitly:

$$\hom_G(N,\operatorname{Ind}_H^GM) \xrightarrow{\cong} \hom_H(N,M)$$
$$\varphi \mapsto \varepsilon \circ \varphi.$$

8. Transitivity of induction: for $H \leq H' \leq G$, there is a natural transformation (?) of functors:

$$\operatorname{Ind}_{H}^{G}(\,\cdot\,) = \operatorname{Ind}_{H'}^{G}\left(\operatorname{Ind}_{H}^{H'}(\,\cdot\,)\right).$$

Equality as a composition of functors?

4.2 Classification of Simple *G***-modules**

Suppose G is a connected reductive algebraic group /k with $k = \bar{k}$.

Example 4.1.

Let G = GL(n, k). There is a decomposition:

Figure 8: Image

Step 1: Getting modules for U.

Then there's a general fact: $U^+TU \hookrightarrow G$ is dense in the Zariski topology for any reductive algebraic group. We can form

- $B^+ := T \rtimes U^+$, the positive borel,
- $B^- := T \rtimes U$, the negative borel,

Suppose we have a U-module, i.e. a representation $\rho: U \longrightarrow \mathrm{GL}(V)$. We can find a basis such that $\rho(u)$ is upper triangular with ones on the diagonal. In this case, there is a composition series with 1-dimensional quotients, and the composition factors are all isomorphic to k.

Moral: for unipotent groups, there are only trivial representations, i.e. the only simple U-modules are isomorphic to k.

Step 2: Getting modules for B.

Modules for B are solvable, in which case we can find a flag. In this case, $\rho(b)$ embeds into upper triangular matrices, where the diagonal action may now not be trivial (i.e. diagonal is now arbitrary).

Thus simple B-modules arise by taking $\lambda \in X(T) = \text{hom}(T, \mathbb{G}_m) = \text{hom}(T, \text{GL}(1, k))$, then letting u act trivially on λ , i.e. u.v = v. Here we have $B \longrightarrow B/U = T$, so any T-module can be pulled back to a B-module.

Step 3: Getting modules for G.

Let
$$\lambda \in X(T)$$
, then $H^0(\lambda) = \operatorname{Ind}_B^G \lambda = \nabla(\lambda)$.