(4) Novas Estratégias de Treinamento e Transferência de Aprendizado Redes Neurais e Arquiteturas Profundas

Moacir Ponti CeMEAI/ICMC, Universidade de São Paulo MBA em Ciência de Dados

www.icmc.usp.br/~moacir — moacir@icmc.usp.br

São Carlos-SP/Brasil - 2020

Agenda

Treinando redes profundas em cenários reais Suposições para convergência e aprendizado Estratégias para melhorar generalização Normalização de dados

Transferência de aprendizado

Anteriormente...

Batch size = 4, Erros de Validação MSE = 24.0059, MAE = 3.2671
Batch size = 4, Erros de Validação MSE = 24.0659, MAE = 3.2671
Batch size = 8, Erros de Validação MSE = 24.2604, MAE = 3.2732
Batch size = 16, Erros de Validação MSE = 15.8703, MAE = 2.9850
Batch size = 32, Erros de Validação MSE = 19.7997, MAE = 3.5542
Batch size = 64, Erros de Validação MSE = 26.4097, MAE = 4.1476
Batch size = 128, Erros de Validação MSE = 46.3122, MAE = 5.4005
Batch size = 256. Erros de Validação MSE = 477.0085, MAE = 8.6275

Algumas suposições que fizemos

Dados de treinamento

- ► Limpos
- ► Representativos e bem definidos com relação à tarefa: classes, valores da regressão, etc.
- ► Baixa taxa de erros de rótulo
- Quantidade de dados é suficiente
- ► E se não for possível?
 - Riscos: overfitting, baixa generalização, maior dificuldade no treinamento.

Complexidade de modelos: "viés" segundo a Teoria do Aprendizado Estatístico

- ▶ Lembrando: Aprendizado de Máquina pode ser formulado como sendo aprender os parâmetros de $f: X \rightarrow Y$
- ▶ Um algoritmo ajusta f a partir de um espaço de funções admissíveis F:
 - "muitas" funções: mais graus de liberdade, menor garantia de convergência, possível overfitting;
 - "poucas" funções: menos graus de liberdade, maior garantia de convergência, possível underfitting.

Erros quando definindo o espaço de funções admissíveis

Viés forte: espaço de funções restrito approximation error estimation error

Erros quando definindo o espaço de funções admissíveis

Viés fraco: espaço de funções amplo

Controvérsias...

Marcus (2018) em "Deep Learning: a critical appraisal":
"... sistemas que se baseiam em Deep Learning frequentemente
devem generalizar para além de dados específicos... mas a garantia
de performance em alta qualidade nesses cenários é mais limitada."

Ataques adversariais

Artigo "Deep Neural Networks are easily fooled"

Ataques adversariais

Zhang et al (2017)

"... nossos experimentos estabeleceram que redes convolucionais profundas do estado da arte (...) facilmente ajustam rótulos aleatórios nos dados de treinamento."

UNDERSTANDING DEEP LEARNING REQUIRES RETHINKING GENERALIZATION

Chiyuan Zhang*

Massachusetts Institute of Technology

chiyuan@mit.edu

Benjamin Recht† University of California, Berkeley brecht@berkelev.edu Samy Bengio Google Brain bengio@google.com

> Oriol Vinyals Google DeepMind vinyals@google.com

Moritz Hardt Google Brain mrtz@google.com

ABSTRACT

Despite their massive size, successful deep artificial neural networks can exhibit a

Agenda

Treinando redes profundas em cenários reais

Suposições para convergência e aprendizado

Estratégias para melhorar generalização

Normalização de dados

Transferência de aprendizado

(I) Regularização

Relembrando a regularização L2 (ou de Tikhonov)

$$\ell(\Theta) = \frac{1}{N} \sum_{i=1}^{N} \ell_i(x_i, y_i, \Theta) + \lambda \frac{1}{2} ||\Theta||^2$$

- Objetivo: limitar a capacidade do modelo de se especializar demais nos dados
- ► Formas:
 - lacktriangle Global: na função de perda ponderada por λ
 - ▶ Definindo λ_I por camada (ou grupos de camadas)
- Interpretação: vê cada entrada como sendo de maior variância

(II) Dropout

- Objetivo: limitar a capacidade de certos parâmetros do modelo a memorizarem os dados
- ► Implementado na forma de "camada"
- ► Em cada iteração, desliga ativações de neurônios aleatoriamente com probabilidade *p*
- ► Interpretação: treinamento com técnica "Bagging"

Srivastava et al. Dropout: A Simple Way to Prevent Neural Networks from Overfitting

(III) Parada precoce

- Objetivo: evitar que o modelo memorize os dados de treinamento ao treinar por muitas épocas
- Acompanhar um conjunto de validação e interromper de acordo com a relação do custo no treinamento e validação

(IV) Aprendizado multi-tarefa

- Objetivo: evitar confiar apenas em uma tarefa como classificação ou regressão
- ► Implementado: combinando mais tarefas (e suas perdas) como forma de regularização
- ► Tarefas possíveis: reconstrução, pseudo-rótulos, outros

(V) Coletar mais dados

- Objetivo: impedir que o treinamento considere apenas um conjunto limitado de exemplos
- ▶ Baseado na lei dos grandes números, quanto maior a amostra, teremos um melhor estimador

(VI) Aumentação de dados/Data augmentation

- ► Objetivo: gerar exemplos artificiais na esperança de que melhore as propriedades de convergência
- ► Implementado por meio da manipulação de exemplos existentes, ou sua combinação
- ► Exemplos:
 - Dados estruturados: SMOTE
 - Não estruturados: rotação, corte, injeção de ruído, e outros que não descaracterizem os dados
 - Dropout na camada de entrada: eliminando features aleatoriamente a cada iteração.

(VI) Aumentação de dados/Data augmentation (cont.)

Dica para melhoria de performance final

- ► Para cada exemplo de teste:
 - 1. Gerar m exemplos com aumentação de dados
 - 2. Predizer o resultado para os *m* exemplos
 - 3. Combinar as predições: por média, maioria ou outro método

Agenda

Treinando redes profundas em cenários reais

Suposições para convergência e aprendizado Estratégias para melhorar generalização Normalização de dados

Transferência de aprendizado

Normalização de dados

- Exemplos de técnicas:
 - Normalização (ou padronização) z-score: valores com média zero e desvio padrão 1;
 - Normalização min-max: valores no intervalo 0-1.
- Objetivo: facilitar otimização ao normalizar/padronizar a magnitude dos valores utilizados no treinamento:
 - suaviza as ativações dos neurônios, reduzindo a variância do gradiente;
 - ataca o problema de "desaparecimento" do gradiente (vanishing gradient) em particular para redes profundas.

Normalização de dados

- Já utilizamos como pré-processamento, considerando todos os dados de treinamento!
- Há ainda técnicas que normalizam os dados ao longo das camadas.

Tipos de normalização baseada em camadas!

Batch Camada Instância Grupo

Normalização de Dados

- ► C = canais, ou mapas de ativação
- ▶ N = instâncias no batch
- H,W = dimensões dos mapas de ativação (ex. altura x largura)

A operação aprende ainda os valores γ,β para transformação linear dos dados após normalizados:

$$\gamma x_i + \beta$$

Normalização de Dados: Batch

- ▶ Batch normalization (BN): para cada batch
 - ► média e desvio calculados por canal (total *C*)
 - normalização com relação ao canal ao longo de N instâncias no batch
- ► Funciona melhor com batchsize ≥ 32

Normalização de Dados: Layer

- ► Layer normalization (LN):
 - ▶ média e desvio calculados por instância (total N)
 - normalização com relação à cada instância ao longo de todas as ativações de todos os canais
- ► Independe do tamanho do batch, mais comum em redes recorrentes e adversariais

Normalização de Dados: Instance

- ► Instance normalization (IN):
 - lacktriangle média e desvio calculados por instância e canal (total $N \times C$)
 - normalização com relação à cada instância ao longo de cada canal individualmente
- ► Independe do tamanho do batch, mais comum em redes recorrentes e adversariais

Normalização de Dados: Group

- ► Group normalization (GN):
 - ▶ média e desvio calculados por instância e em um subconjunto de canais (total $N \times C/G$)
 - normalização com relação à cada instância ao longo de um grupo de canais
- ▶ Pode ser usado com diferentes tamanhos de batch, solução intermediária entre IN e LN.

Agenda

Treinando redes profundas em cenários reais Suposições para convergência e aprendizado Estratégias para melhorar generalização Normalização de dados

Transferência de aprendizado

Quando o assunto é volume de dados

Nem sempre...

- ► é possível coletar mais
- ► aumentação é efetiva

Transferência de aprendizado

Utilizar modelo treinado em uma determinada tarefa ou domínio, aproveitando o aprendizado para uma outra tarefa ou domínio alvo.

Transferência de aprendizado

Modos mais comuns

- Ajuste-fino / adaptação dos parâmetros
- ► Extração de características

Ajuste-fino / adaptação dos parâmetros

Exemplo: classificação de imagens

Modelo fonte: CNN treinada na ImageNet

- ► Transferência de aprendizado
 - Redefinir a última camada (inicialização aleatória) com o número de classes desejado
 - ► Realizar treinamento a partir dos pesos pré-treinados
 - Permitir adaptação apenas da últimas camadas, congelando as demais

Ajuste-fino / adaptação dos parâmetros

Exemplo: classificação de imagens

Modelo fonte: CNN treinada na ImageNet

- ► Ajuste-fino:
 - Comumente feito após o anterior, em que já temos o classificador treinado
 - (Opcionalmente) Re-inicializar ou inserir novas camadas densas ocultas
 - ► Permitir adaptação de camadas do meio da rede (sem reinicializar seus pesos), congelando algumas iniciais

Ajuste-fino / adaptação dos parâmetros

Exemplo: classificação de imagens

Modelo fonte: CNN treinada na ImageNet

- ► Ajuste-fino opção alternativa
 - Depende de maior quantidade de dados
 - (Opcionalmente) Re-inicializar ou inserir novas camadas densas ocultas
 - Permitir adaptação de toda a rede (sem reinicializar seus pesos)

Transferência de aprendizado

Dicas

- ► CNNs com menos parâmetros costumam generalizar melhor para dados muito diferentes do treinamento
- Exemplos: MobileNet, SqueezeNet, etc. funcionam melhor em imagens médicas do que ResNet e Inception.
- ► Ajuste-fino pode não convergir se tivermos poucos dados, ex. menos de 100 instâncias por classe.

Extração de características

Características para dados não estruturados

- ► Carregar rede neural treinada em grande base de dados
- ▶ Passar exemplos de sua base de dados pela rede para predição (não treinamento!).
- Obter os mapas de ativação de alguma camada

Extração de características

Dicas

- Aplicar redução de dimensionalidade baseada em PCA,
 Product Quantization ou outra
- Treinar modelo de aprendizado raso com maiores garantias de aprendizado com poucos dados: SVM, árvore de decisão, MLP, etc.
- Essas características também são efetivas para recuperação baseada em conteúdo

Mensagem da aula

- Deep Learning não pode ser tratado como panacéia;
- ► Há ainda preocupações sobre sua capacidade de generalização e fragilidade a ataques;
- ► Sua grande utilidade está no aprendizado de representações, em particular para dados não estruturados...
 - representações que parecem ter excelente capacidade de transferência

Bibliography I

Moacir A. Ponti, Gabriel Paranhos da Costa. Como funciona
 o Deep Learning

SBC, 2017. Book chapter.

https://arxiv.org/abs/1806.07908

Moacir A. Ponti, Leo Ribeiro, Tiago Nazaré, Tu Bui, John Collomosse. Everything You Wanted to Know About Deep Learning for Computer Vision but were Afraid to Ask. SIBGRAPI-T, 2017. Tutorial.

Moacir A. Ponti, Introduction to Deep Learning (Code). Github Repository:

https://github.com/maponti/deeplearning_intro_datascience CNN notebook: https://colab.research.google.com/drive/ 1EnNjtzdw8ftIO7I9xCUhb-ovq1iNy4pf