Лабораторная работа №11. Маятник Максвелла.

Цели: Экспериментально исследовать зависимость периода колебаний Маятника Максвелла от амплитуды и сравнить полученные результаты с известными теоретическими расчетами. Исследовать затухание колебаний маятника.

Оборудование: маятник Максвелла, линейка ученическая, секундомер.

Содержание и метод выполнения работы.

 h_0 — начальная высота. r = 3мм — радиус стержня. m = 173гр — масса системы. Основная формула :

$$\sqrt{\frac{2gh_O}{1 + \frac{I}{mr^2}}} = \frac{4h_O}{T}$$

Порядок выполнения работы

Так как периоды колебаний маятника значительны и легко измеряемы, можно применить рациональный способ измерений, позволяющий сократить время на проведение эксперимента.

- 1 Сделайте необходимые измерения для определения момента инерции маятника.
- 2.Осторожно, без рывков, раскрутите ось маятника так, чтобы он начал подниматься, наматывая нить на стержень. В поднятом положении диск не должен касаться горизонтальной штанги штатива (см. рисунок).
- $3. Измерьте начальную высоту <math>h_0$, отпустите маятник и включите секундомер.
- 4.Измеряйте периоды T_n колебаний маятника и одновременно последующие «начальные высоты» h_n , до которых он будет подниматься с каждым следующим колебанием.
- 5. Эксперимент прекратите, когда амплитуда уменьшится до $0.02-0.04~\mathrm{M}$.
 - 6.Опыт повторите еще два раза.

- 7. Большого количества полученных экспериментальных данных вполне достаточно для выполнения поставленной задачи.
- 8.Измерьте τ время, за которое амплитуда колебаний уменьшается примерно в два раза Построить график зависимости T_n (h_n), отразите на этом графике теоретическую зависимость T(h) и τ .
- 9.Постройте график зависимости $h_n(t)$, где h_n амплитуда n-го колебания маятника.

Номер колебания	T _n , c	T _{ncp} , c	h _n , м	h _{ncp} , м
колебания				
0				
1				
2				
•••				

Контрольные вопросы.

- 1. Объяснить разницу между Т и Т_п.
- 2. Объяснить, почему происходят раскачивания системы в плоскости перпендикулярной плоскости колебаний.
- 3. Сформулировать допущения, при которых получена основная формула.
 - 4. Можно ли считать колебания маятника Максвелла гармоническими?

Попробуйте провести аналогичные рассуждения, учитывая эффект раскачивания, и сравните результаты графически.