Definitions

Trapezoidal rule. Let f be an integrable function on [a, b], let n be a positive integer, and let

$$a = x_0 < x_1 < x_2 < \dots < x_n = b$$

be partition of [a,b] into n subintervals of equal length $\Delta x = \frac{b-a}{n}$.

The *n*-th trapezoidal estimate of $\int f(x) dx$, denoted T_n , is defined as

$$T_n = \frac{1}{2}\Delta x (f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)) \approx \int_a^b f(x) \, dx.$$

The trapezoidal estimate is the result of approximating the graph of f with the polygon passing through the points $P_0 = (x_0, f(x_0)), P_1 = (x_1, f(x_1)), \dots, P_n = (x_n, f(x_n)).$

Simpson's rule. Let f be an integrable function on [a, b], let n = 2r be an even positive integer, and let

$$a = x_0 < x_1 < x_2 < \dots < x_n = b$$

be partition of [a, b] into n subintervals of equal length $\Delta x = \frac{b-a}{n}$.

The *n*-th Simpson's rule estimate of $\int f(x) dx$, denoted S_n , is defined as

$$S_n = \frac{1}{3}\Delta x(f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)) \approx \int_a^b f(x) \, dx.$$

The Simpson's rule estimate is the result of approximating the graph of f over each of the r subintervals $[x_{2(k-1)}, x_{2k}]$ with the unique "parabolic arc" passing through $P_{2(k-1)} = (x_{2(k-1)}, f(x_{2(k-1)}))$, $P_{2k-1} = (x_{2k-1}, f(x_{2k-1}))$, $P_{2k} = (x_{2k}, f(x_{2k}))$.

Theory

Error estimates. Let f be an integrable function on [a,b], let n be a positive integer, and let

$$a = x_0 < x_1 < x_2 < \dots < x_n = b.$$

be partition of [a, b] into n subintervals of equal length $\Delta x = \frac{b-a}{n}$.

1. Let RS_n be either the right or left Riemann sum for this partition. Suppose $|f'(x)| \leq M$ for all x in [a, b]. Then

$$\left| \int_{a}^{b} f(x) \, dx - RS_{n} \right| \leq \frac{M(b-a)^{2}}{2n}.$$

2. Let T_n be the *n*-th trapezoidal estimate of $\int_a^b f(x) dx$. Suppose $|f''(x)| \leq N$ for all x in [a, b]. Then

$$\left| \int_a^b f(x) \, dx - T_n \right| \le \frac{N(b-a)^3}{12n^2}.$$

3. Suppose n is even, and let S_n be the n-th Simpson's rule estimate of $\int_a^b f(x) dx$. Suppose $|f^{(4)}(x)| \leq K$ for all x in [a, b]. Then

$$\left| \int_{a}^{b} f(x) \, dx - S_{n} \right| \le \frac{K(b-a)^{5}}{180n^{4}}.$$

¹If the three points happen to be colinear, then the "parabolic arc" will actually be a line.

Examples

- 1. Let $f(x) = \frac{1}{x}$. Recall that we have by definition $\ln 4 = \int_1^4 f(x) dx$. Compute (a) the n = 6 trapezoidal estimate of I, and (b) the n = 6 Simpson's rule estimate of I.
- 2. Let $f(x) = \frac{4}{x^2+1}$, and let $I = \int_0^1 f(x) dx$. Observe that $I = 4(\arctan(1) \arctan(0)) = \pi$. Compute (a) the n = 6 trapezoidal estimate of I, and (b) the n = 6 Simpson's rule estimate of I.
- 3. Compute bounds for the errors in (a) the n=10 trapezoidal estimate of $\ln 4$ and (b) the n=10 Simpson's rule estimate of $\ln 4$.
- 4. Compute bounds for the errors in (a) the n=10 trapezoidal estimate of $\pi=\int_0^1 4/(x^2+1) \, dx$ and (b) the n=10 Simpson's rule estimate of $\pi=\int_0^1 4/(x^2+1) \, dx$.

Hint. Letting $f(x) = 4/(x^2 + 1)$, we have

$$f''(x) = \frac{8(3x^2 - 1)}{(x^2 + 1)^3}$$
$$f^{(4)}(x) = \frac{96(5x^4 - 10x^2 + 1)}{(x^2 + 1)^5}.$$

5. Find (a) an n such that the n-th trapezoidal estimate of $\pi = \int_0^1 4/(x^2+1) \, dx$ is within 10^{-9} of the actual value, and (b) an n such that the n-th Simpson's rule estimate of $\pi = \int_0^1 4/(x^2+1) \, dx$ is within 10^{-9} of the actual value.