assignment1

October 10, 2023

```
[1]: import pandas as pd
  import numpy as np
  import seaborn as sns
  import matplotlib.pyplot as plt
  from scipy import stats
  from sklearn.preprocessing import MinMaxScaler

data = pd.read_csv('Melbourne_housing.csv')
```

C:\Users\alexm\AppData\Local\Temp\ipykernel_24224\631711095.py:8: DtypeWarning: Columns (13) have mixed types. Specify dtype option on import or set low_memory=False.

data = pd.read_csv('Melbourne_housing.csv')

Adding imports for graphing and data exploration. Loading in the data using pandas

1 Data Loading and Initial Exploration (20 points):

1.1 • Provide information on the dataset, including the number of rows and columns.

```
[2]: data.shape data.describe
```

[2]:	<pre><bound method="" ndframe.describe="" of<="" pre=""></bound></pre>					Suburb			Address
	Rooms Type Method		SellerG \						
	0	Abbotsford	68 Studley	St		2	h	SS	Jellis
	1	Airport West	154 Halsey	Rd	;	3	t	ΡI	Nelson
	2	Albert Park	105 Kerferd	Rd		2	h	S	hockingstuart
	3	Albert Park	85 Richardson	St		2	h	S	Thomson
	4	Alphington	30 Austin	St		3	h	\mathtt{SN}	${ t McGrath}$
	•••	***	•••	•••	•••	•••		•••	
	34852	Reservoir	18 Elinda	Pl		3	u	SP	RW
	34853	Roxburgh Park	14 Stainsby	$\operatorname{\mathtt{Cr}}$		4	h	S	Raine
	34854	Springvale South	8 Bellbird	Ct	•	4	h	ΡI	Barry
	34855	Springvale South	30 Waddington	$\operatorname{\mathtt{Cr}}$;	3	h	S	Harcourts
	34856	Westmeadows	42 Pascoe	St	•	4	h	S	Barry

	Date	Distance	Postcode	Bedroom	Landsize	Build	ingArea	\
0	3/9/2016	2.5	3067.0	2.0	126.0		inf	
1	3/9/2016	13.5	3042.0	3.0	303.0		225	
2	3/9/2016	3.3	3206.0	2.0	120.0		82	
3	3/9/2016	3.3	3206.0	2.0	159.0		inf	
4	3/9/2016	6.4	3078.0	3.0	174.0		122	
•••	•••	•••			•••			
34852	30/09/2017	12.0	3073.0	3.0	NaN		105.0	
34853	30/09/2017	20.6	3064.0	4.0	NaN		225.0	
34854	30/09/2017	22.2	3172.0	4.0	534.0		152.0	
34855	30/09/2017	22.2	3172.0	3.0	544.0		NaN	
34856	30/09/2017	16.5	3049.0	4.0	813.0		140.0	
	YearBuilt			CouncilArea	Latitude	Longtit	ude \	
0	NaN		Yarra C	ity Council	-37.80140	144.99	580	
1	2016.0	Moone		ity Council		144.87	800	
2	1900.0	Port	Phillip C	ity Council	-37.84590	144.95	550	
3	NaN	Port	Phillip C	ity Council	-37.84500	144.95	380	
4	2003.0		Darebin C	ity Council	-37.78180	145.01	980	
•••				•••				
34852	1990.0		Darebin C	ity Council	-37.69769	145.02	332	
34853	1995.0		Hume C	ity Council	-37.63665	144.92	976	
34854	1970.0	Greater Da	andenong C	ity Council	-37.97037	145.15	449	
34855	NaN	Greater Da	andenong C	ity Council	-37.97751	145.14	813	
34856	1960.0		Hume C	ity Council	-37.67631	144.89	409	
		Regio	onname Pr	opertycount	Parki	ngArea	Pri	ice
0	Northe	ern Metropo	olitan	4019.0	C	arport	N	VaN
1	Weste	ern Metropo	olitan	3464.0	Detached	Garage	840000	0.0
2	Southe	ern Metropo	olitan	3280.0	Attached	Garage	1275000	0.0
3	Southe	ern Metropo	olitan	3280.0		Indoor	1455000	0.0
4	Northe	ern Metropo	olitan	2211.0	P	arkade	N	VaN
			•••	•••	•••	•••		
34852	Northe	ern Metropo	olitan	21650.0	P	arkade	475000	0.0
34853	Northe	ern Metropo	olitan	5833.0	Under	ground	591000	0.0
34854	South-Easte	ern Metropo	olitan	4054.0	C	arport	N	VaN
34855	South-Easte	ern Metropo	olitan	4054.0	Detached	Garage	780500	0.0
34856	Northe	ern Metropo	olitan	2474.0	Attached	Garage	791000	0.0

[34857 rows x 22 columns]>

Answer: 22 Columns, 34,857 rows

1.2 • Briefly describe the target variable (e.g., 'Price') and its distribution.

```
[3]: data.Price.describe()
  data.Price.hist(bins=50, figsize=(30,20))
  plt.show()
```


Finding information about the Price variable. Here we can see the count, the mean and all the percentiles and the standard deviation. As we can see on the graph, it is left skewed.

1.3 • Display summary statistics and data types of the features.

[4]: data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 34857 entries, 0 to 34856
Data columns (total 22 columns):

#	Column	Non-Null Count	Dtype
0	Suburb	34857 non-null	object
1	Address	34857 non-null	object
2	Rooms	34857 non-null	int64
3	Туре	34857 non-null	object
4	Method	34857 non-null	object
5	SellerG	34857 non-null	object

```
6
     Date
                    34857 non-null
                                    object
 7
                    34856 non-null
                                    float64
    Distance
 8
    Postcode
                    34856 non-null
                                    float64
 9
    {\tt Bedroom}
                    26640 non-null
                                    float64
 10
                    26631 non-null
                                    float64
    Bathroom
 11
    Car
                    26129 non-null
                                    float64
 12
    Landsize
                    23047 non-null
                                    float64
    BuildingArea
 13
                    13760 non-null
                                    object
 14 YearBuilt
                    15551 non-null
                                    float64
    CouncilArea
                    34854 non-null
 15
                                    object
 16 Latitude
                    26881 non-null
                                    float64
    Longtitude
                    26881 non-null
                                    float64
 17
 18
    Regionname
                    34857 non-null
                                    object
    Propertycount
                    34854 non-null
                                    float64
 20
    ParkingArea
                    34857 non-null
                                    object
21 Price
                    27247 non-null float64
dtypes: float64(11), int64(1), object(10)
```

memory usage: 5.9+ MB

1.4 • Identify any missing values and outline a plan to handle them.

[5]: #Show sums of NA/NaN data.isna().sum()

[5]: Suburb 0 Address 0 0 Rooms 0 Type 0 Method SellerG 0 Date 0 Distance 1 Postcode 1 Bedroom 8217 Bathroom 8226 Car 8728 Landsize 11810 BuildingArea 21097 YearBuilt 19306 CouncilArea 3 Latitude 7976 7976 Longtitude Regionname 0 3 Propertycount ParkingArea 0 7610 Price

dtype: int64

1.4.1 One way to handle missing data would be Listwise and pairwise deletion techniques. These techniques discardcases during an analysis if they containmissing data. - Taken from "Out of Sight not out of Mind"

2 Exploratory Data Analysis (EDA) (30 points):

2.1 • Visualize the distribution of numeric variables using histograms and box plots.

```
[6]: data.hist(bins=50, figsize=(30,20))
data.plot(kind='box', figsize=(30,20))
plt.show()
```


• Explore relationships between features and the target variable using scatter plots and correlation matrices.

[8]: Text(0.5, 1.0, 'Correlation')

In Conclusion, the Variable that has the highest effect on price is the amount of Rooms, followed by the Bedroom and Bathroom Count.

2.3 • Examine categorical variables with bar plots and frequency tables.

```
[9]: categorical_variables = ['Suburb', 'Type', 'Method', 'CouncilArea', □

→'Regionname']

# Loop through each categorical variable
```

```
for var in categorical_variables:
    # Frequency table
    frequency_table = data[var].value_counts()

# Bar plot
    plt.figure(figsize=(10, 6))
    plt.bar(frequency_table.index, frequency_table.values, color='skyblue')
    plt.xlabel(var)
    plt.ylabel('Frequency')
    plt.title(f'Frequency of {var}')
    plt.xticks(rotation=45)
    plt.show()

# Display frequency table
    print(frequency_table)
```


Suburb	
Reservoir	844
Bentleigh East	583
Richmond	552
Glen Iris	491

Preston	485
	•••
Kalkallo	1
Menzies Creek	1
Monbulk	1
Olinda	1
viewbank	1

Name: count, Length: 351, dtype: int64

Туре

h 23980 u 7297 t 3580

Name: count, dtype: int64

Method

S 19744 SP 5095 4850 ΡI VB 3108 \mathtt{SN} 1317 PN308 SA226 W 173 SS 36

Name: count, dtype: int64

CouncilArea	
Boroondara City Council	3675
Darebin City Council	2851
Moreland City Council	2122
Glen Eira City Council	2006
Melbourne City Council	1952
Banyule City Council	1861
Moonee Valley City Council	1791
Bayside City Council	1764
Brimbank City Council	1593
Monash City Council	1466
Stonnington City Council	1460
Maribyrnong City Council	1451
Port Phillip City Council	1280
Hume City Council	1214
Yarra City Council	1186
Manningham City Council	1046
Hobsons Bay City Council	942
Kingston City Council	871
Whittlesea City Council	828

Wyndham City Council	624
Whitehorse City Council	618
Maroondah City Council	506
Knox City Council	371
Greater Dandenong City Council	314
Melton City Council	292
Frankston City Council	290
Casey City Council	176
Yarra Ranges Shire Council	102
Nillumbik Shire Council	88
Macedon Ranges Shire Council	46
Cardinia Shire Council	41
Mitchell Shire Council	20
Moorabool Shire Council	7
Nome :	

Regionname	
Southern Metropolitan	11836
Northern Metropolitan	9560
Western Metropolitan	6799

```
Eastern Metropolitan 4377
South-Eastern Metropolitan 1739
Eastern Victoria 228
Northern Victoria 203
Western Victoria 115
Name: count, dtype: int64
```

Here we can see the most frequent categorical Variables

2.4 • Identify potential outliers and discuss their impact on the dataset.

Some features that have outliers are: Price and Landsize, these can be seen in the BoxPlots above as the largest plots and are clearly affected by outliers.

Outliers can significantly affect measures like mean and standard deviation. The mean is particularly sensitive to outliers. Outliers can also lead to skewed distributions, which may not accurately represent the underlying data. Outliers may also indicate data quality issues, such as errors in data entry.

3 Feature Engineering (40 points):

3.1 • Apply at least five feature engineering techniques to improve the dataset for modeling purposes. Some ideas include:

```
[10]: num_cols = data.select_dtypes(include=["number"]).columns
      cat_cols = data.select_dtypes(include=["category"]).columns
      #To handle missing numerical data, we can use Mean/Median Imputation:
      for num in num cols:
          data[num].fillna(data[num].mean(), inplace=True)
      # Encoding categorical variables with one-hot encoding
      def encode_and_bind(data: pd.DataFrame, feature: str) -> None:
          dummies = pd.get dummies(data[[feature]])
          res = pd.concat([data, dummies], axis=1)
          res = res.drop([feature], axis=1)
          return res
      for cat in cat_cols:
          data = encode_and_bind(data, cat)
      # Removing extreme values
      for col in num cols:
          z scores = np.abs(stats.zscore(data[col]) )
          outliers = data[(z_scores > 3)]
          data = data.drop(outliers.index)
      # Scaling numeric features using normalization
```

```
scaler = MinMaxScaler()

mask = (data == np.inf) | (data == -np.inf)
data = data[~mask.any(axis=1)]

data[num_cols] = scaler.fit_transform(data[num_cols])

# Creating an interaction feature
data["PriceLandsize"] = data["Landsize"] * data["Price"]
```

4 Conclusion and Recommendations (10 points):

• Summarize the key findings from the EDA and feature engineering processes.

4.1.1

EDA: The dataset contains information about properties in Melbourne, including features like location, type of property, number of rooms, land size, building area, etc. The data originally contains a lot of missing or NA values that can often change the outcome of graphs etc. The main feature that has a big effect on Price is the no. of rooms.

FE: It is rather easy to remove numerical values that are missing and fill them in with the medians of the columns. Creating interaction features can be great for visualising effects of one feature on another.

Overall I believe that the Melbourne Housing Dataset is a great dataset to learn on and try out new things on as it features a lot of missing values and outliers that can be great for perfecting EDA and FE processes.