Amendments to the Claims:

This listing of claims will replace all prior versions and listings of claims in the application:

Listing of Claims:

We Claim:

1. (currently amended) A compound of the formula:

wherein:

X is = O or = S;

A is $=CR^1$ - or =N-;

The group -Y-Z- has the formula -O-CH₂- or -N=CH-;

R¹ is:

- (a) (C₁-C₈)alkyl;
- (b) $-C(=O)-R^5$;
- (c) $-C(=O)-NR^6R^7$; or
- (d) R^{35} , or R^{36} , (C_2 - C_8)alkenyl, or (C_2 - C_8)alkynyl {wherein each of said (C_2 - C_8)alkenyl or (C_2 - C_8)alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of F, Cl, OH, -NH₂, R^{40} , and R^{42} };

R² is

- (a) H, OH, or (C₁-C₈)alkyl;
- (b) $-C(=O)-R^8$;
- (c) -(C=S)- R^9 or -(C=S)- $NR^{10}R^{11}$; or
- (d) R³⁸ or R³⁹;

R³ is

- (a) (C₁-C₈)alkyl; R³⁸;
- (b) $-C(=O)-R^{12}$;
- (c) -C(=O)-NR¹³R¹⁴;
- (d) $-NR^{15}-C(=O)-R^{16}$;
- (e) -NR¹⁷-SO₂R¹⁸;
- (f) $-NR^{19}-SO_n-NR^{20}R^{21}$ {wherein n is 1 or 2};

Serial No. 10/754,171 Conf. No. 8481

- (g) $-NR^{22}$ -(C=S)- R^{23} or $-NR^{22}$ -(C=S)- $NR^{23}R^{24}$;
- (h) R^{36} , (C_2-C_8) alkenyl, or (C_2-C_8) alkynyl {wherein each of said R^3 (C_2-C_8) alkenyl or (C_2-C_8) alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of -(C=O)-O-(C₁-C₈)alkyl, -O-(C=O)-(C₁-C₈)alkyl, -(C=O)-(C₁-C₈)alkyl, R^{40} , R^{41} , and R^{42} ; or
- (i) R^{37} , -NH₂, -NH((C₂-C₈)alkenyl), -NH((C₂-C₈)alkynyl), -N((C₁-C₈)alkyl)((C₂-C₈)alkenyl), or -N((C₁-C₈)alkyl)((C₂-C₈)alkynyl) {wherein each of said R^{26} (C₂-C₈)alkenyl or (C₂-C₈)alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{40} , R^{41} , and R^{42} }; or

(j) R³⁸;

R⁴ is selected from the group consisting of H, F, Br, Cl, and (C₁-C₈)alkyl;

R⁵ is selected from the group consisting of H, (C₁-C₈)alkyl, (C₁-C₈)alkyl-O-, and R³⁶;

Each R^6 and R^7 are independently selected from the group consisting of H, (C_1-C_8) alkyl, and R^{36} ;

 R^8 is selected from the group consisting of (C_1-C_8) alkyl, (C_2-C_8) alkenyl, (C_2-C_8) alkynyl, -NH₂, R^{36} , and R^{37} ;

Each of R^9 , R^{10} and R^{11} are independently selected from the group consisting of H, (C_1-C_8) alkyl, and R^{36} ;

 R^{12} is selected from the group consisting of H, OH, (C_1-C_8) alkyl, (C_1-C_8) alkyl-O-, and R^{36} ; R^{13} is H or (C_1-C_8) alkyl;

 R^{14} is selected from the group consisting of H, (C_1-C_8) alkyl, $-CH_2-(C=O)-O-(C_1-C_8)$ alkyl, and R^{36} :

R¹⁵ is H or (C₁-C₈)alkyl;

 R^{16} is selected from the group consisting of H, (C_1-C_8) alkyl, (C_2-C_8) alkynyl, (C_2-C_8) alkynyl, (C_2-C_8) alkynyl, (C_3-C_8) alk

wherein said R^{16} (C_2 - C_8)alkenyl or (C_2 - C_8)alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{40} ;

 R^{17} is selected from the group consisting of H, (C₁-C₈)alkyl, and R^{36} ;

R¹⁸ is (C₁-C₈)alkyl or R³⁶;

 R^{19} , R^{20} , and R^{21} are independently selected from the group consisting of H, (C₁-C₈)alkyl, and R^{36} ;

 R^{22} , R^{23} and R^{24} are independently selected from the group consisting of H, (C₁-C₈)alkyl, and R^{36} ;

 R^{25} is H or (C_1-C_8) alkyl;

 R^{26} is selected from the group consisting of -C(=O)-O-C(CH₃)₃, (C₁-C₈)alkyl, -(CR¹³R¹⁵)_t(C₃-C₁₀)cycloalkyl, -(CR¹³R¹⁵)_t(C₂-C₁₀)heterocyclyl, -(CR¹³R¹⁵)_t(C₆-C₁₀)aryl, and -(CR¹³R¹⁵)_t(C₁-C₁₀)heteroaryl; wherein t is an integer from 0 to 2;

or R²⁵ and R²⁶ may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 R^{27} is selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

 R^{28} is selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

 R^{29} is H or (C_1-C_8) alkyl;

 R^{30} is (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl;

or R²⁹ and R³⁰ may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

R³¹ is H or (C₁-C₈)alkyl;

 R^{32} is independently selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

or R³¹ and R³² may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

R³³ is (C_1-C_8) alkyl, $-(CR^{13}R^{15})_q(C_3-C_{10})$ cycloalkyl, $-(CR^{13}R^{15})_q(C_2-C_{10})$ heterocyclyl, $-(CR^{13}R^{15})_q(C_6-C_{10})$ aryl, or $-(CR^{13}R^{15})_q(C_1-C_{10})$ heteroaryl; wherein q is an integer from 0 to 2;

 R^{34} is $(C_1-C_8)alkyl$, $-(CR^{13}R^{15})_p(C_3-C_{10})$ cycloalkyl, $-(CR^{13}R^{15})_p(C_2-C_{10})$ heterocyclyl, $-(CR^{13}R^{15})_p(C_6-C_{10})$ aryl, or $-(CR^{13}R^{15})_p(C_1-C_{10})$ heteroaryl; wherein p is an integer from 0 to 2;

Each R³⁵ is independently selected from the group consisting of H, F, Cl, Br, I, CN, OH, NO₂, -NH₂, -NH-C(=O)-O-C(CH₃)₃, and CF₃;

Each R^{36} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

Each R³⁷ is independently selected from the group consisting of -NR²⁵R²⁶ and R²⁷-O-;

 R^{38} is R^{28} -SO_n-; wherein n is 0,1, or 2 when -SO_n- is bonded to R^{28} via an R^{28} carbon atom, or wherein n is 1 or 2 when -SO_n- is bonded to R^{28} via an R^{28} ring nitrogen atom;

 R^{39} is $R^{29}R^{30}N$ -SO_n-; wherein n is 1 or 2;

wherein each of said (C_1 - C_8)alkyl, wherever it occurs in any of said R¹(a)-(d), R²(a)-(d), R³(a)-(<u>i</u>), R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹², R¹³, R¹⁴, R¹⁵, R¹⁶, R¹⁷, R¹⁸, R¹⁹, R²⁰, R²¹, R²², R²³, R²⁴, R²⁵, R²⁶, R²⁷, R²⁸, R²⁹, R³⁰, R³¹, R³², R³³, R³⁴, R³⁷, R³⁸, and R³⁹ is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_2 - C_8)alkenyl and R⁴⁰;

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in said $R^1(b)$ -(d), $R^2(b)$ -(d), $R^3(a)$ - $\frac{(i)}{(i)}$, R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{30} .

-4-

R³², R³³, R³⁴, R³⁶, R³⁷, R³⁸, and R³⁹ is independently unsubstituted or substituted with one to four substituents independently selected from R⁴⁰;

R⁴⁰ is selected from the group consisting of (C₁-C₈)alkyl, R⁴¹, R⁴², and R⁴³;

Each R^{41} is independently selected from the group consisting of F, CI, Br, I, CN, OH, NO₂, -NH₂, -NH-C(=O)-O-C(CH₃)₃, COOH, -C(=O)(C₁-C₈)alkyI, -C(=O)-O-(C₁-C₈)alkyI, -NH-SO₂-(C₁-C₈)alkyI, -NH-SO₂-(C₆-C₁₀)aryI, and CF₃;

Each R^{42} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

Each R⁴³ is independently selected from the group consisting of:

 $-NR^{31}R^{32}$; R^{33} -O-; and R^{34} -SO_n-; wherein n is 0,1, or 2 when -SO_n- is bonded to R^{34} via an R^{34} carbon atom, or wherein n is 1 or 2 when -SO_n- is bonded to R^{34} via an R^{34} ring nitrogen atom:

wherein each of said (C_1-C_8) alkyl, wherever it occurs in any of R^{40} and R^{41} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{44} and R^{45} ;

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in any of said R^{42} or R^{43} , is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{47} selected from the group consisting of (C_1-C_8) alkyl, R^{44} , and R^{45} ;

Each R^{44} is independently selected from the group consisting of F, CI, Br, I, CN, OH, NO_2 , $-NH_2$, $-CF_3$, $-C(=NH)-NH_2$, -C(=NH)-NH-OH, $-C(=NH)-NH-O-(C_1-C_8)$ alkyl, $-(C=O)-O-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-NH(C_1-C_8)$ alkyl, $-(C=O)-N-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$

Each R^{45} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) and (C_1-C_{10}) heteroaryl;

wherein each of said (C_1-C_8) alkyl wherever it occurs in any of said R^{44} or R^{45} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{46} and R^{47} ;

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in any of said R^{43} or R^{44} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1-C_8) alkyl, R^{46} and R^{47} :

 -(C=O)-NH₂, -(C=O)-NH(C₁-C₈)alkyl, -(C=O)-N>[(C₁-C₈)alkyl]₂, -NH-(C=O)-(C₁-C₈)alkyl, R^{37} , and R^{38} ; and

Each R^{47} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl; (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

or a pharmaceutically acceptable salt thereof.

- 2. (canceled)
- 3. (original) The compound according to claim 1 wherein R^3 is selected from the group consisting of (C_2-C_8) alkenyl, (C_2-C_8) alkynyl, (C_3-C_6) cycloalkyl, (C_2-C_{10}) heterocyclyl, phenyl, and (C_1-C_{10}) heteroaryl; wherein each of said (C_2-C_8) alkenyl or (C_2-C_8) alkynyl is unsubstituted or substituted with one to three substituents independently selected from the group consisting of F, OH, $-NH_2$, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl] $_2$ >N-, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl; and wherein each of said (C_3-C_6) cycloalkyl, (C_2-C_{10}) heterocyclyl, phenyl, or (C_1-C_{10}) heteroaryl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1-C_8) alkyl, F, OH, $-NH_2$, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl] $_2$ >N-, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl] $_2$ >N-, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl.
- 4. (original) The compound according to claim 1 wherein R^3 is $-C(=O)-NR^{13}R^{14}$ {wherein R^{13} is H or (C_1-C_8) alkyl}, wherein said R^{13} (C_1-C_4)alkyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of F, OH, $-NH_2$, R^{41} , and R^{42} ; wherein each of said R^{36} is unsubstituted or substituted with one or two substituents independently selected from the group consisting of (C_6-C_{10}) aryl, (C_1-C_{10}) heteroaryl, (C_2-C_{10}) heterocyclyl, (C_1-C_8) alkyl-NH-, and $[(C_1-C_8)$ alkyl] $_2>N$ -; and wherein each of said (C_6-C_{10}) aryl substituent is unsubstituted or substituted with one to three substituents independently selected from the group consisting of (C_1-C_8) alkyl, F, Cl, $-CF_3$, and OH.
- 5. (original) The compound according to claim 1 wherein R^3 is $-NR^{15}$ -C(=O)- R^{16} ; wherein R^{16} is (C_1-C_8) alkyl unsubstituted or substituted with one to four substituents independently selected from the group consisting of OH, R^{33} -O-, CN, -NH₂, (C_1-C_8) alkyl-NH-, -NH- $(CR^{13}R^{15})_t(C_3-C_{10})$ cycloalkyl, -NH- $(CR^{13}R^{15})_t(C_2-C_{10})$ heterocyclyl, -NH- $(CR^{13}R^{15})_t(C_6-C_{10})$ aryl, or -NH- $(CR^{13}R^{15})_t(C_1-C_{10})$ heteroaryl-NH- {wherein t is an integer from 0 to 2}, $[(C_1-C_8)$ alkyl] $[(C_3-C_{10})$ cycloalkyl]>N-, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_1) heteroaryl; wherein said R^{33} is (C_1-C_8) alkyl, $-(CR^{13}R^{15})_q(C_3-C_{10})$ cycloalkyl, $-(CR^{13}R^{15})_q(C_2-C_{10})$ heteroaryl; and wherein q is an integer from 0 to 2.
- 6. (original) The compound according to claim 5 wherein said (C_3-C_{10}) cycloalkyl substituent wherever it occurs is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl.

- 7. (original) The compound according to claim 5 wherein said (C_6 - C_{10})aryl substituent wherever it occurs is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1 - C_8)alkyl, F, Cl, Br, CN, OH, and CF₃.
- 8. (original) The compound according to claim 5 wherein said (C_2-C_{10}) heterocyclyl substituent wherever it occurs is unsubstituted or substituted with one or two substituents independently selected from the group consisting of (C_1-C_8) alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$
- - 11. (original) The compound according to claim 10 wherein said R¹⁶ is pyridinyl.
- 12. (original) The compound according to claim 1 wherein R^3 is $-NR^{15}$ -C(=O)- R^{16} ; wherein R^{16} is $(C_3$ - $C_{10})$ cycloalkyl unsubstituted or substituted with one or two substituents independently selected from the group consisting of $(C_1$ - $C_8)$ alkyl, F, Cl, CN, OH, NH₂, CF₃, $(C_2$ - $C_{10})$ heterocyclyl, $(C_6$ - $C_{10})$ aryl, and $(C_1$ - $C_{10})$ heteroaryl; wherein said $(C_6$ - $C_{10})$ aryl substituent is unsubstituted or substituted with one to four substituents independently selected from the group consisting of $(C_1$ - $C_8)$ alkyl, F, Cl, Br, CN, OH, and CF₃; and wherein said $(C_2$ - $C_{10})$ heterocyclyl substituent is unsubstituted or substituted with one or two substituents independently selected from the group consisting of $(C_1$ - $C_8)$ alkyl, -(C=O)- $(C_1$ - $(C_1$ - $(C_1$)alkyl, -(C=O)- $(C_1$ - $(C_1$)alky
- 13. (original) The compound according to claim 12 wherein said R¹⁶ (C₃-C₁₀)cycloalkyl is selected from the group consisting of cyclopropyl and cyclohexyl.
- 14. (original) The compound according to claim 12 wherein said (C_6-C_{10}) aryl substituent is unsubstituted.
- 15. (original) The compound according to claim 1 wherein R^3 is $-NR^{15}$ -C(=O)- R^{16} ; wherein R^{16} is (C_2-C_{10}) heterocyclyl unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1-C_8) alkyl, -(C=O)- (C_1-C_8) alkyl, F, Cl, CN, OH, and CF₃.

- 16. (original) The compound according to claim 15 wherein said R^{16} (C_2 - C_{10})heterocyclyl is selected from the group consisting of piperazinyl, piperidinyl, pyrrolidinyl, thiadiazolyl, tetrahydroisoguinolinyl, tetrahydronaphthalenyl, and indanyl.
- 17. (original) The compound according to claim 1 wherein R^3 is $-NR^{15}$ -C(=O)- R^{16} ; wherein R^{16} is phenyl unsubstituted or substituted with one to three substituents independently selected from the group consisting of (C_1-C_8) alkyl, (C_1-C_8) alkyl-O-, F, Cl, Br, CN, OH, and CF₃.
- 18. (original) The compound according to claim 1 wherein R^1 is (C_1-C_8) alkyl substituted with one to two substituents independently selected from the group consisting of F, Cl, -OH, -NH₂, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, and (C_1-C_8) alkyl-O-; wherein each of said (C_1-C_8) alkyl substituent, wherever it occurs, is independently unsubstituted or substituted with one to three substituents independently selected from the group consisting of -NH₂, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, -O-(C=O)- (C_1-C_8) alkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl.
- 19. (original) The compound according to claim 1 wherein R^1 is (C_2-C_8) alkenyl or (C_2-C_8) alkynyl; wherein each of said (C_2-C_8) alkenyl or (C_2-C_8) alkynyl is unsubstituted or substituted with one to two substituents independently selected from the group consisting of -NH₂, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, (C_2-C_{10}) heterocyclyl, and (C_1-C_{10}) heteroaryl; wherein each of said (C_1-C_8) alkyl substituent, wherever it occurs, is independently unsubstituted or substituted with one to three substituents independently selected from the group consisting of -NH₂, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, -O-(C=O)- (C_1-C_8) alkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl.
- 20. (original) The compound according to claim 1 wherein R^1 is R^{36} selected from the group consisting of H, CI, and Br.
- 21. (original) The compound according to claim 1 wherein R^1 is selected from the group consisting of (C_3-C_6) cycloalkyl, (C_2-C_{10}) heterocyclyl, phenyl, and (C_1-C_{10}) heteroaryl; wherein each of said (C_2-C_{10}) heterocyclyl, phenyl, or (C_1-C_{10}) heteroaryl is unsubstituted or substituted with one to three substituents independently selected from the group consisting of (C_1-C_8) alkyl, F, Cl, $-NH_2$, -OH, (C_1-C_8) alkyl-NH-, and $[(C_1-C_8)$ alkyl] $_2>N-$; wherein each of said (C_1-C_8) alkyl substituent, wherever it occurs, is unsubstituted or substituted with one to three substituents selected from $-NH_2$, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl] $_2>N-$, $-O-(C=O)-(C_1-C_8)$ alkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl.
- 22. (original) The compound according to claim 1 wherein R^1 is $-C(=O)-R^5$, wherein R^5 is (C_1-C_8) alkyl-O- or (C_2-C_{10}) heterocyclyl.
- 23. (original) The compound according to claim 1 wherein R^1 is $-C(=O)-NR^6R^7$; wherein each of said R^6 and R^7 are independently H or (C_1-C_8) alkyl; and wherein each of said R^6 and R^7 (C_1-C_8)alkyl are unsubstituted or substituted with one to three substituents independently selected

from the group consisting of OH, -NH₂, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, (C_2-C_{10}) heterocyclyl, and (C_1-C_{10}) heteroaryl.

24. (original) The compound according to claim 1 wherein R^2 is H or (C_1-C_8) alkyl unsubstituted or substituted with one to four substituents independently selected from the group consisting of OH, -NH₂, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, (C_2-C_{10}) heterocyclyl, and (C_1-C_{10}) heteroaryl.

25. (original) The compound according to claim 1 wherein R^2 is $-C(=O)-R^8$, wherein R^8 is selected from the group consisting of (C_1-C_8) alkyl, (C_2-C_8) alkenyl, (C_2-C_8) alkynyl, $-NH_2$, and R^{37} selected from the group consisting of (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl] $_2$ >N-, and (C_1-C_8) alkyl-O-; wherein each of said R^8 and R^{37} (C_1-C_8)alkyl, wherever it occurs, is independently unsubstituted or substituted with one to four substituents independently selected from R^{40} selected from the group consisting of F, OH, $-NH_2$, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, (C_1-C_8) alkyl-NH- and $[(C_1-C_8)$ alkyl] $_2$ >N-;

wherein each of said R^{40} (C₁-C₈)alkyl, wherever it occurs, is independently unsubstituted or substituted with one to four substituents independently selected from R^{44} independently selected from the group consisting of OH, -NH₂, (C₁-C₈)alkyl-NH-, [(C₁-C₈)alkyl]₂>N-, and (C₃-C₁₀)cycloalkyl-NH-;

wherein each of said each of said R^{40} (C_3 - C_{10})cycloalkyl, (C_2 - C_{10})heterocyclyl, (C_6 - C_{10})aryl, or (C_1 - C_{10})heteroaryl, wherever it occurs, is independently unsubstituted or substituted with one to four substituents independently selected from R^{47} selected from the group consisting of (C_1 - C_8)alkyl, OH, -NH₂, (C_1 - C_8)alkyl-NH-, [(C_1 - C_8)alkyl]₂>N-, and (C_3 - C_{10})cycloalkyl-NH-; and

wherein each of said R^{47} (C₁-C₈)alkyl, wherever it occurs, is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of OH, -NH₂, (C₁-C₈)alkyl-NH-, [(C₁-C₈)alkyl]₂>N-, and (C₃-C₁₀)cycloalkyl-NH.

26. (original) The compound according to claim 1 wherein R^2 is $-C(=O)-R^8$, wherein R^8 is selected from the group consisting of (C_3-C_6) cycloalkyl, (C_2-C_{10}) heterocyclyl, phenyl, or (C_1-C_{10}) heteroaryl; wherein each of said R^8 (C_3-C_6) cycloalkyl, (C_2-C_{10}) heterocyclyl, phenyl, or (C_1-C_{10}) heteroaryl is unsubstituted or substituted with one to four substituents independently selected from R^{40} selected from the group consisting of (C_1-C_8) alkyl, F, OH, $-NH_2$, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl] $_2$ >N-, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_1) heteroaryl; wherein each of said R^{40} (C_1-C_8) alkyl, wherever it occurs, is independently unsubstituted or substituted with one to four substituents independently selected from R^{44} independently selected from the group consisting OH, $-NH_2$, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl] $_2$ >N-, and (C_3-C_{10}) cycloalkyl-NH-; wherein each of said R^{40} (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl is unsubstituted or substituted with one to four substituents independently selected from R^{47} selected from the group consisting of (C_1-C_8) alkyl, OH, OH,

 (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, and (C_3-C_{10}) cycloalkyl-NH-; wherein each of said R⁴⁷ (C_1-C_8) alkyl, wherever it occurs, is unsubstituted or substituted with one to four substituents independently selected from the group consisting of OH, -NH₂, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, and (C_3-C_{10}) cycloalkyl-NH.

- 27. (original) The compound according to claim 1 wherein said R³ is on position 8 of said compound of the formula I.
- 28. (original) The compound according to claim 1 wherein said R^4 is on position 7 of said compound of the formula I.
- 29. (original) The compound according to claim 1 wherein said R^4 is H on position 7 of said compound of the formula I.
 - 30. (original) The compound according to claim 1 wherein X is =O.
- 31. (original) The compound according to claim 1 wherein the group -Y-Z- has the formula -N=CH-.
 - 32. (original) The compound according to claim 1 selected from the group consisting of:

$$\begin{array}{c|c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

a pharmaceutically acceptable salt or solvate thereof.

Claims 33-45. (Canceled)

46. (new) A compound of the formula I:

wherein:

X is = O or = S;

A is $=CR^{1}$ - or =N-;

The group -Y-Z- has the formula -O-CH₂- or -N=CH-;

R¹ is:

- (a) (C₁-C₈)alkyl;
- (b) $-C(=O)-R^5$;
- (c) $-C(=O)-NR^6R^7$; or
- (d) R^{35} , or R^{36} , (C_2 - C_8)alkenyl, or (C_2 - C_8)alkynyl {wherein each of said (C_2 - C_8)alkenyl or (C_2 - C_8)alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of F, Cl, OH, -NH₂, R^{40} , and R^{42} };

R2 is

- (a) H, OH, or (C₁-C₈)alkyl;
- (b) $-C(=O)-R^8$;
- (c) -(C=S)- R^9 or -(C=S)- $NR^{10}R^{11}$; or
- (d) R³⁸ or R³⁹;

 R^3 is $-NR^{15}-C(=O)-R^{16}$;

R⁴ is selected from the group consisting of H, F, Br, Cl, and (C₁-C₃)alkyl;

R⁵ is selected from the group consisting of H, (C₁-C₈)alkyl, (C₁-C₈)alkyl-O-, and R³⁶;

Each R^6 and R^7 are independently selected from the group consisting of H, (C_1-C_8) alkyl, and R^{36} ;

 R^8 is selected from the group consisting of (C_1-C_8) alkyl, (C_2-C_8) alkenyl, (C_2-C_8) alkynyl, -NH₂, R^{36} , and R^{37} :

Each of R^9 , R^{10} and R^{11} are independently selected from the group consisting of H, (C_1-C_8) alkyl, and R^{36} ;

R¹³ is H or (C₁-C₈)alkyl;

R¹⁵ is H or (C₁-C₈)alkyl;

 R^{16} is (C_1-C_8) alkyl unsubstituted or substituted with one to four substituents independently selected from the group consisting of OH, R^{33} -O-, CN, -NH₂, (C_1-C_8) alkyl-NH-,

 $-NH-(CR^{13}R^{15})_t(C_3-C_{10}) cycloalkyl, \ -NH-(CR^{13}R^{15})_t(C_2-C_{10}) heterocyclyl, \ -NH-(CR^{13}R^{15})_t(C_6-C_{10}) aryl, or \ -NH-(CR^{13}R^{15})_t(C_1-C_{10}) heteroaryl-NH- \\ \{wherein t is an integer from 0 to 2\}, \ [(C_1-C_8)alkyl]_2>N-, \ [(C_1-C_8)alkyl][(C_3-C_{10}) cycloalkyl]>N-, \ (C_3-C_{10}) cycloalkyl, \ (C_2-C_{10}) heterocyclyl, \ (C_6-C_{10}) aryl, and \ (C_1-C_{10}) heteroaryl; \ wherein said R^{33} is $(C_1-C_8)alkyl, \ -(CR^{13}R^{15})_q(C_3-C_{10}) cycloalkyl, \ -(CR^{13}R^{15})_q(C_2-C_{10}) heterocyclyl, \ -(CR^{13}R^{15})_q(C_6-C_{10}) aryl, or \ -(CR^{13}R^{15})_q(C_1-C_{10}) heteroaryl; and wherein q is an integer from 0 to 2;$

 R^{25} is H or (C_1-C_8) alkyl;

 R^{26} is selected from the group consisting of $-C(=O)-O-C(CH_3)_3$, (C_1-C_8) alkyl, $-(CR^{13}R^{15})_t(C_3-C_{10})$ cycloalkyl, $-(CR^{13}R^{15})_t(C_2-C_{10})$ heterocyclyl, $-(CR^{13}R^{15})_t(C_6-C_{10})$ aryl, and $-(CR^{13}R^{15})_t(C_1-C_{10})$ heteroaryl; wherein t is an integer from 0 to 2;

or R²⁵ and R²⁶ may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 R^{27} is selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

 R^{28} is selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

R²⁹ is H or (C₁-C₈)alkyl;

 R^{30} is (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl;

or R²⁹ and R³⁰ may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 R^{31} is H or (C_1-C_8) alkyl;

 R^{32} is independently selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

or R³¹ and R³² may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 $R^{33} \quad \text{is} \quad (C_1 - C_8) \text{alkyl}, \quad -(CR^{13}R^{15})_q (C_3 - C_{10}) \text{cycloalkyl}, \quad -(CR^{13}R^{15})_q (C_2 - C_{10}) \text{heterocyclyl}, \\ -(CR^{13}R^{15})_q (C_6 - C_{10}) \text{aryl}, \text{ or } -(CR^{13}R^{15})_q (C_1 - C_{10}) \text{heteroaryl}; \text{ wherein q is an integer from 0 to 2;}$

 R^{34} is $(C_1-C_8)alkyl$, $-(CR^{13}R^{15})_p(C_3-C_{10})$ cycloalkyl, $-(CR^{13}R^{15})_p(C_2-C_{10})$ heterocyclyl, $-(CR^{13}R^{15})_p(C_6-C_{10})$ aryl, or $-(CR^{13}R^{15})_p(C_1-C_{10})$ heteroaryl; wherein p is an integer from 0 to 2;

Each R^{35} is independently selected from the group consisting of H, F, Cl, Br, I, CN, OH, NO_2 , $-NH_2$, $-NH-C(=O)-O-C(CH_3)_3$, and CF_3 ;

Each R^{36} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

Each R³⁷ is independently selected from the group consisting of -NR²⁵R²⁶ and R²⁷-O-;

 R^{38} is R^{28} -SO_n-; wherein n is 0,1, or 2 when -SO_n- is bonded to R^{28} via an R^{28} carbon atom, or wherein n is 1 or 2 when -SO_n- is bonded to R^{28} via an R^{28} ring nitrogen atom;

R³⁹ is R²⁹R³⁰N-SO_n-: wherein n is 1 or 2:

wherein each of said (C_1 - C_8)alkyl, wherever it occurs in any of said R¹(a)-(d), R²(a)-(d), R³, R⁴, R⁵, R⁶, R⁷, R⁸, R⁹, R¹⁰, R¹¹, R¹³, R¹⁵, R²⁵, R²⁶, R²⁷, R²⁸, R²⁹, R³⁰, R³¹, R³², R³³, R³⁴, R³⁷, R³⁸, and R³⁹ is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_2 - C_8)alkenyl and R⁴⁰;

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in said $R^1(b)$ -(d), $R^2(b)$ -(d), R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{13} , R^{15} , R^{25} , R^{26} , R^{27} , R^{28} , R^{30} , R^{32} , R^{33} , R^{34} , R^{36} , R^{37} , R^{38} , and R^{39} is independently unsubstituted or substituted with one to four substituents independently selected from R^{40} ;

R⁴⁰ is selected from the group consisting of (C₁-C₈)alkyl, R⁴¹, R⁴², and R⁴³;

Each R^{41} is independently selected from the group consisting of F, Cl, Br, I, CN, OH, NO₂, -NH₂, -NH-C(=O)-O-C(CH₃)₃, COOH, -C(=O)(C₁-C₈)alkyl, -C(=O)-O-(C₁-C₈)alkyl, -NH-SO₂-(C₁-C₈)alkyl, -NH-SO₂-(C₆-C₁₀)aryl, and CF₃;

Each R^{42} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

Each R⁴³ is independently selected from the group consisting of:

 $-NR^{31}R^{32}$; R^{33} -O-; and R^{34} -SO_n-; wherein n is 0,1, or 2 when -SO_n- is bonded to R^{34} via an R^{34} carbon atom, or wherein n is 1 or 2 when -SO_n- is bonded to R^{34} via an R^{34} ring nitrogen atom:

wherein each of said (C_1-C_8) alkyl, wherever it occurs in any of R^{40} and R^{41} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{44} and R^{45} ;

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in any of said R^{42} or R^{43} , is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{47} selected from the group consisting of (C_1-C_8) alkyl, R^{44} , and R^{45} ;

Each R^{44} is independently selected from the group consisting of F, CI, Br, I, CN, OH, NO_2 , $-NH_2$, $-CF_3$, $-C(=NH)-NH_2$, -C(=NH)-NH-OH, $-C(=NH)-NH-O-(C_1-C_8)$ alkyl, $-(C=O)-O-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-NH(C_1-C_8)$ alkyl, $-(C=O)-N-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$

Each R^{45} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) and (C_1-C_{10}) heteroaryl;

wherein each of said (C_1-C_8) alkyl wherever it occurs in any of said R^{44} or R^{45} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{46} and R^{47} ;

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in any of said R^{43} or R^{44} is independently unsubstituted or

substituted with one to four substituents independently selected from the group consisting of (C_1-C_8) alkyl, R^{46} and R^{47} ;

Each R⁴⁶ is independently selected from the group consisting of F, Cl, Br, I, CN, OH, NO₂, -C(=NH)-NH-OH, -C(=NH)-NH₂. -C(=NH)-NH-O-(C₁-C₈)alkyl -(C=O)-O-(C₁-C₈)alkyl, -O-(C=O)-(C₁-C₈)alkyl, $-(C=O)-(C_1-C_8)$ alkyl, -(C=O)-NH₂, -(C=O)-NH(C₁-C₈)alkyl, $-(C=O)-N<[(C_1-C_8)alkyl]_2$ -NH-(C=O)-(C_1 - C_8)alkyl, -C(=NH)-NH₂, -C(=NH)-NH-OH, $-C(=NH)-NH-O-(C_1-C_8)$ alkyl, $-(C=O)-O-(C_1-C_8)$ alkyl, $-O-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C_1-C_8)$ alkyl, -(C=O)alkyl, $-(C_1-C_8)$ alkyl, -(C=O)alkyl, -(C=O)alkyl, -(C=O)alkyl, -(C=O)alkyl, -(C=O)alkyl, -(C=O)alkyl, -(C=O)alkyl, -(C=O)alkyl, -(C=O)alkyl, -(C=O) $-(C=O)-NH_2$, $-(C=O)-NH(C_1-C_8)$ alkyl, $-(C=O)-N>[(C_1-C_8)$ alkyl]₂, $-NH-(C=O)-(C_1-C_8)$ alkyl, R^{37} , and R³⁸; and

Each R^{47} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl; (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

or a pharmaceutically acceptable salt thereof.

- 47. (new) The compound according to claim 46 wherein said (C_3-C_{10}) cycloalkyl substituent wherever it occurs is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl.
- 48. (new) The compound according to claim 46 wherein said (C_6 - C_{10})aryl substituent wherever it occurs is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1 - C_8)alkyl, F, Cl, Br, CN, OH, and CF₃.
- 49. (new) The compound according to claim 46 wherein said (C_2-C_{10}) heterocyclyl substituent wherever it occurs is unsubstituted or substituted with one or two substituents independently selected from the group consisting of (C_1-C_8) alkyl, $-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-(C_1-C_8)$
 - 50. (new) A compound of formula I,

wherein:

X is = O or = S:

A is $=CR^1$ - or =N-;

The group -Y-Z- has the formula -O-CH₂- or -N=CH-;

 R^1 is selected from the group consisting of (C_3-C_6) cycloalkyl, (C_2-C_{10}) heterocyclyl, phenyl, and (C_1-C_{10}) heteroaryl; wherein each of said (C_2-C_{10}) heterocyclyl, phenyl, or (C_1-C_{10}) heteroaryl is unsubstituted or substituted with one to three substituents independently selected from the group consisting of (C_1-C_8) alkyl, F, Cl, -NH₂, -OH, (C_1-C_8) alkyl-NH-, and $[(C_1-C_8)$ alkyl]₂>N-; wherein each of said (C_1-C_8) alkyl substituent, wherever it occurs, is unsubstituted or substituted with one to three substituents selected from -NH₂, (C_1-C_8) alkyl-NH-, $[(C_1-C_8)$ alkyl]₂>N-, -O-(C=O)- (C_1-C_8) alkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

R² is

- (a) H, OH, or (C₁-C₈)alkyl;
- (b) $-C(=O)-R^8$;
- (c) -(C=S)-R⁹ or -(C=S)-NR¹⁰R¹¹; or
- (d) R³⁸ or R³⁹:
- R³ is
- (a) R^{38} ;
- (b) $-C(=O)-R^{12}$;
- (c) $-C(=O)-NR^{13}R^{14}$;
- (d) $-NR^{15}-C(=O)-R^{16}$;
- (e) -NR¹⁷-SO₂R¹⁸:
- (f) $-NR^{19}-SO_n-NR^{20}R^{21}$ {wherein n is 1 or 2};
- (g) $-NR^{22}$ -(C=S)- R^{23} or $-NR^{22}$ -(C=S)- $NR^{23}R^{24}$:
- (h) R^{36} , (C_2-C_8) alkenyl, or (C_2-C_8) alkynyl {wherein each of said R^3 (C_2-C_8) alkenyl or (C_2-C_8) alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of -(C=O)-O-(C₁-C₈)alkyl, -O-(C=O)-(C₁-C₈)alkyl, -(C=O)-(C₁-C₈)alkyl, R^{40} , R^{41} , and R^{42} ; or
- (i) R^{37} , -NH₂, -NH((C₂-C₈)alkenyl), -NH((C₂-C₈)alkynyl), -N((C₁-C₈)alkyl)((C₂-C₈)alkenyl), or -N((C₁-C₈)alkyl)((C₂-C₈)alkynyl) {wherein each of said R^{26} (C₂-C₈)alkenyl or (C₂-C₈)alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{40} , R^{41} , and R^{42} };

R⁴ is selected from the group consisting of H, F, Br, Cl, and (C₁-C₈)alkyl;

 R^8 is selected from the group consisting of (C_1-C_8) alkyl, (C_2-C_8) alkenyl, (C_2-C_8) alkynyl, -NH₂, R^{36} , and R^{37} ;

Each of R^9 , R^{10} and R^{11} are independently selected from the group consisting of H, $(C_1\text{-}C_8)$ alkyl, and R^{36} ;

 R^{12} is selected from the group consisting of H, OH, (C₁-C₈)alkyl, (C₁-C₈)alkyl-O-, and R^{36} ; R^{13} is H or (C₁-C₈)alkyl;

 R^{14} is selected from the group consisting of H, (C_1-C_8) alkyl, $-CH_2-(C=O)-O-(C_1-C_8)$ alkyl, and R^{36} ;

R¹⁵ is H or (C₁-C₈)alkyl;

 R^{16} is selected from the group consisting of H, (C_1-C_8) alkyl, (C_2-C_8) alkynyl, $-NH_2$, R^{36} , and R^{37} ;

wherein said R^{16} (C_2 - C_8)alkenyl or (C_2 - C_8)alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{40} ;

R¹⁷ is selected from the group consisting of H, (C₁-C₈)alkyl, and R³⁶;

 R^{18} is (C_1-C_8) alkyl or R^{36} ;

 R^{19} , R^{20} , and R^{21} are independently selected from the group consisting of H, (C₁-C₈)alkyl, and R^{36} ;

 R^{22} , R^{23} and R^{24} are independently selected from the group consisting of H, (C_1-C_8) alkyl, and R^{36} :

R²⁵ is H or (C₁-C₈)alkyl;

 R^{26} is selected from the group consisting of $-C(=O)-O-C(CH_3)_3$, (C_1-C_8) alkyl, $-(CR^{13}R^{15})_t(C_3-C_{10})$ cycloalkyl, $-(CR^{13}R^{15})_t(C_2-C_{10})$ heterocyclyl, $-(CR^{13}R^{15})_t(C_6-C_{10})$ aryl, and $-(CR^{13}R^{15})_t(C_1-C_{10})$ heteroaryl; wherein t is an integer from 0 to 2;

or R²⁵ and R²⁶ may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 R^{27} is selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

 R^{28} is selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

 R^{29} is H or (C_1-C_8) alkyl;

 R^{30} is (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl;

or R²⁹ and R³⁰ may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 R^{31} is H or (C_1-C_8) alkyl;

 R^{32} is independently selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

or R³¹ and R³² may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 $R^{33} \quad \text{is} \quad (C_1 - C_8) \\ \text{alkyl}, \quad -(CR^{13}R^{15})_q (C_3 - C_{10}) \\ \text{cycloalkyl}, \quad -(CR^{13}R^{15})_q (C_2 - C_{10}) \\ \text{heterocyclyl}, \\ \text{cycloalkyl}, \quad -(CR^{13}R^{15})_q (C_6 - C_{10}) \\ \text{aryl}, \\ \text{or} \quad -(CR^{13}R^{15})_q (C_1 - C_{10}) \\ \text{heteroaryl}; \\ \text{wherein q is an integer from 0 to 2}; \\ \text{cycloalkyl}, \quad -(CR^{13}R^{15})_q (C_1 - C_{10}) \\ \text{heteroaryl}; \\ \text{wherein q is an integer from 0 to 2}; \\ \text{cycloalkyl}, \quad -(CR^{13}R^{15})_q (C_1 - C_{10}) \\ \text{cycloalkyl}, \quad -(CR^{13}R^{15})_q (C_2 - C_{10}) \\ \text{cycloalkyl}, \quad -(CR^{13}R^{15})_q (C_1 - C_{10}) \\ \text{cycloalkyl}, \quad -(CR^{1$

 R^{34} is $(C_1-C_8)alkyl$, $-(CR^{13}R^{15})_p(C_3-C_{10})$ cycloalkyl, $-(CR^{13}R^{15})_p(C_2-C_{10})$ heterocyclyl, $-(CR^{13}R^{15})_p(C_6-C_{10})$ aryl, or $-(CR^{13}R^{15})_p(C_1-C_{10})$ heteroaryl; wherein p is an integer from 0 to 2;

Each R³⁵ is independently selected from the group consisting of H, F, Cl, Br, I, CN, OH, NO₂, -NH₂, -NH-C(=O)-O-C(CH₃)₃, and CF₃;

Each R^{36} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

Each R³⁷ is independently selected from the group consisting of -NR²⁵R²⁶ and R²⁷-O-;

 R^{38} is R^{28} -SO_n-; wherein n is 0,1, or 2 when -SO_n- is bonded to R^{28} via an R^{28} carbon atom, or wherein n is 1 or 2 when -SO_n- is bonded to R^{28} via an R^{28} ring nitrogen atom;

 R^{39} is $R^{29}R^{30}N-SO_{n}$; wherein n is 1 or 2;

wherein each of said (C_1 - C_8)alkyl, wherever it occurs in any of said R^1 (a)-(d), R^2 (a)-(d), R^3 (a)-(i), R^4 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , R^{31} , R^{32} , R^{33} , R^{34} , R^{37} , R^{38} , and R^{39} is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_2 - C_8)alkenyl and R^{40} ;

wherein each of said $(C_3\text{-}C_{10})$ cycloalkyl, $(C_2\text{-}C_{10})$ heterocyclyl, $(C_6\text{-}C_{10})$ aryl, or $(C_1\text{-}C_{10})$ heteroaryl, wherever it occurs in said $R^1(b)\text{-}(d)$, $R^2(b)\text{-}(d)$, $R^3(a)\text{-}(i)$, R^4 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{30} , R^{32} , R^{33} , R^{34} , R^{36} , R^{37} , R^{38} , and R^{39} is independently unsubstituted or substituted with one to four substituents independently selected from R^{40} ;

 R^{40} is selected from the group consisting of (C₁-C₈)alkyl, R^{41} , R^{42} , and R^{43} ;

Each R^{41} is independently selected from the group consisting of F, Cl, Br, I, CN, OH, NO₂, -NH₂, -NH-C(=O)-O-C(CH₃)₃, COOH, -C(=O)(C₁-C₈)alkyl, -C(=O)-O-(C₁-C₈)alkyl, -NH-SO₂-(C₁-C₈)alkyl, -NH-SO₂-(C₆-C₁₀)aryl, and CF₃;

Each R^{42} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

Each R⁴³ is independently selected from the group consisting of:

 $-NR^{31}R^{32}$; R^{33} -O-; and R^{34} -SO_n-; wherein n is 0,1, or 2 when -SO_n- is bonded to R^{34} via an R^{34} carbon atom, or wherein n is 1 or 2 when -SO_n- is bonded to R^{34} via an R^{34} ring nitrogen atom;

wherein each of said (C_1-C_8) alkyl, wherever it occurs in any of R^{40} and R^{41} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{44} and R^{45} ;

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in any of said R^{42} or R^{43} , is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{47} selected from the group consisting of (C_1-C_8) alkyl, R^{44} , and R^{45} ;

Each R^{45} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

wherein each of said (C_1-C_8) alkyl wherever it occurs in any of said R^{44} or R^{45} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{46} and R^{47} :

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in any of said R^{43} or R^{44} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1-C_8) alkyl, R^{46} and R^{47} ;

Each R⁴⁶ is independently selected from the group consisting of F, Cl, Br, I, CN, OH, NO₂, -C(=NH)-NH-O-(C₁-C₈)alkyl, -C(=NH)-NH-OH, $-(C=O)-O-(C_1-C_8)$ alkyl, -C(=NH)-NH₂, -(C=O)-NH(C₁-C₈)alkyl, -(C=O)-(C₁-C₈)alkyl, -(C=O)-NH₂, $-O-(C=O)-(C_1-C_8)$ alkyl, -C(=NH)-NH-OH, -NH-(C=O)-(C₁-C₈)alkyl, -C(=NH)-NH₂, $-(C=O)-N<[(C_1-C_8)alkyl]_2$ $-C(=NH)-NH-O-(C_1-C_8)alkyl, \quad -(C=O)-O-(C_1-C_8)alkyl, \quad -O-(C=O)-(C_1-C_8)alkyl, \quad -(C=O)-(C_1-C_8)alkyl, \quad -(C=O)-(C$ $-(C=O)-NH_2, -(C=O)-NH(C_1-C_8)alkyl, -(C=O)-N>[(C_1-C_8)alkyl]_2, -NH-(C=O)-(C_1-C_8)alkyl, \ R^{37}, \ and \ R^{37}, \ A^{37}, \ A^{$ R³⁸; and

Each R^{47} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl; (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl; or a pharmaceutically acceptable salt thereof.

51. (new) A compound of formula I,

wherein:

X is = 0 or = S;

A is $=CR^1$ - or =N-:

The group -Y-Z- has the formula -N=CH-;

R¹ is:

(a) (C₁-C₈)alkyl;

(b) -C(=O)-R⁵;

(c) $-C(=O)-NR^6R^7$; or

(d) R^{35} , or R^{36} , (C_2-C_8) alkenyl, or (C_2-C_8) alkynyl {wherein each of said (C_2-C_8) alkenyl or (C_2-C_8) alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of F, Cl, OH, -NH₂, R^{40} , and R^{42} };

R² is

- (a) H, OH, or (C_1-C_8) alkyl;
- (b) $-C(=O)-R^8$;
- (c) -(C=S)- R^9 or -(C=S)- $NR^{10}R^{11}$; or
- (d) R^{38} or R^{39} ;

R³ is

- (a) R³⁸:
- (b) $-C(=O)-R^{12}$;
- (c) $-C(=O)-NR^{13}R^{14}$;
- (d) $-NR^{15}-C(=O)-R^{16}$;
- (e) $-NR^{17}-SO_2R^{18}$;
- (f) -NR¹⁹-SO_n-NR²⁰R²¹ {wherein n is 1 or 2};
- (g) $-NR^{22}$ -(C=S)- R^{23} or $-NR^{22}$ -(C=S)- $NR^{23}R^{24}$;
- (h) R^{36} , (C_2-C_8) alkenyl, or (C_2-C_8) alkynyl {wherein each of said R^3 (C_2-C_8) alkenyl or (C_2-C_8) alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of -(C=O)-O-(C₁-C₈)alkyl, -O-(C=O)-(C₁-C₈)alkyl, -(C=O)-(C₁-C₈)alkyl, R^{40} , R^{41} , and R^{42} }; or
- (i) R^{37} , -NH₂, -NH((C₂-C₈)alkenyl), -NH((C₂-C₈)alkynyl), -N((C₁-C₈)alkyl)((C₂-C₈)alkenyl), or -N((C₁-C₈)alkyl)((C₂-C₈)alkynyl) {wherein each of said R^{26} (C₂-C₈)alkenyl or (C₂-C₈)alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{40} , R^{41} , and R^{42} };

 R^4 is selected from the group consisting of H, F, Br, Cl, and (C₁-C₈)alkyl;

R⁵ is selected from the group consisting of H, (C₁-C₈)alkyl, (C₁-C₈)alkyl-O-, and R³⁶;

Each R^6 and R^7 are independently selected from the group consisting of H, (C_1-C_8) alkyl, and R^{36} ,

 R^8 is selected from the group consisting of (C_1-C_8) alkyl, (C_2-C_8) alkenyl, (C_2-C_8) alkynyl, $-NH_2$, R^{36} , and R^{37} .

Each of R^9 , R^{10} and R^{11} are independently selected from the group consisting of H, $(C_1\text{-}C_8)$ alkyl, and R^{36} ;

 R^{12} is selected from the group consisting of H, OH, (C_1-C_8) alkyl, (C_1-C_8) alkyl-O-, and R^{36} ; R^{13} is H or (C_1-C_8) alkyl;

 R^{14} is selected from the group consisting of H, (C_1-C_8) alkyl, $-CH_2-(C=O)-O-(C_1-C_8)$ alkyl, and R^{36} ;

R¹⁵ is H or (C₁-C₈)alkyl;

 R^{16} is selected from the group consisting of H, (C_1-C_8) alkyl, (C_2-C_8) alkynyl, $-NH_2$, R^{36} , and R^{37} ;

wherein said R^{16} (C_2 - C_8)alkenyl or (C_2 - C_8)alkynyl is unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{40} ;

R¹⁷ is selected from the group consisting of H, (C₁-C₈)alkyl, and R³⁶;

R¹⁸ is (C₁-C₈)alkyl or R³⁶;

 R^{19} , R^{20} , and R^{21} are independently selected from the group consisting of H, (C₁-C₈)alkyl, and R^{36} ;

 R^{22} , R^{23} and R^{24} are independently selected from the group consisting of H, (C_1-C_8) alkyl, and R^{36} :

 R^{25} is H or (C_1-C_8) alkyl;

 R^{26} is selected from the group consisting of $-C(=O)-O-C(CH_3)_3$, $(C_1-C_8)alkyl$, $-(CR^{13}R^{15})_t(C_3-C_{10})cycloalkyl$, $-(CR^{13}R^{15})_t(C_2-C_{10})heterocyclyl$, $-(CR^{13}R^{15})_t(C_6-C_{10})aryl$, and $-(CR^{13}R^{15})_t(C_1-C_{10})heteroaryl$; wherein t is an integer from 0 to 2;

or R²⁵ and R²⁶ may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 R^{27} is selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

 R^{28} is selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

R²⁹ is H or (C₁-C₈)alkyl;

 R^{30} is (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl;

or R²⁹ and R³⁰ may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 R^{31} is H or (C_1-C_8) alkyl;

 R^{32} is independently selected from the group consisting of (C_1-C_8) alkyl, (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

or R³¹ and R³² may optionally be taken together with the nitrogen to which they are attached to form a 5 to 8-membered heteroaryl or heterocyclyl ring;

 $R^{33} \quad \text{is} \quad (C_1 - C_8) \text{alkyl}, \quad -(CR^{13}R^{15})_q (C_3 - C_{10}) \text{cycloalkyl}, \quad -(CR^{13}R^{15})_q (C_2 - C_{10}) \text{heterocyclyl}, \\ -(CR^{13}R^{15})_q (C_6 - C_{10}) \text{aryl}, \text{ or } -(CR^{13}R^{15})_q (C_1 - C_{10}) \text{heteroaryl}; \text{ wherein q is an integer from 0 to 2};$

 $R^{34} \quad \text{is} \quad (C_1 - C_8) \text{alkyl}, \quad \text{-}(CR^{13}R^{15})_p (C_3 - C_{10}) \text{cycloalkyl}, \quad \text{-}(CR^{13}R^{15})_p (C_2 - C_{10}) \text{heterocyclyl}, \\ \text{-}(CR^{13}R^{15})_p (C_6 - C_{10}) \text{aryl}, \text{ or -}(CR^{13}R^{15})_p (C_1 - C_{10}) \text{heteroaryl}; \text{ wherein p is an integer from 0 to 2};$

Each R^{35} is independently selected from the group consisting of H, F, Cl, Br, I, CN, OH, NO_{21} , $-NH_{21}$, $-NH-C(=O)-O-C(CH_3)_{31}$, and CF_{31} ;

Each R^{36} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

Each R³⁷ is independently selected from the group consisting of -NR²⁵R²⁶ and R²⁷-O-;

 R^{38} is R^{28} -SO_n-; wherein n is 0,1, or 2 when -SO_n- is bonded to R^{28} via an R^{28} carbon atom, or wherein n is 1 or 2 when -SO_n- is bonded to R^{28} via an R^{28} ring nitrogen atom;

 R^{39} is $R^{29}R^{30}N$ -SO_n-; wherein n is 1 or 2;

wherein each of said (C_1-C_8) alkyl, wherever it occurs in any of said $R^1(a)$ -(d), $R^2(a)$ -(d), $R^3(a)$ -(i), R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{29} , R^{30} , R^{31} , R^{32} , R^{33} , R^{34} , R^{37} , R^{38} , and R^{39} is unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_2-C_8) alkenyl and R^{40} ;

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in said $R^1(b)$ -(d), $R^2(b)$ -(d), $R^3(a)$ -(i), R^4 , R^5 , R^6 , R^7 , R^8 , R^9 , R^{10} , R^{11} , R^{12} , R^{13} , R^{14} , R^{15} , R^{16} , R^{17} , R^{18} , R^{19} , R^{20} , R^{21} , R^{22} , R^{23} , R^{24} , R^{25} , R^{26} , R^{27} , R^{28} , R^{30} , R^{32} , R^{33} , R^{34} , R^{36} , R^{37} , R^{38} , and R^{39} is independently unsubstituted or substituted with one to four substituents independently selected from R^{40} ;

 R^{40} is selected from the group consisting of (C₁-C₈)alkyl, R^{41} , R^{42} , and R^{43} ;

Each R^{41} is independently selected from the group consisting of F, Cl, Br, I, CN, OH, NO₂, -NH₂, -NH-C(=O)-O-C(CH₃)₃, COOH, -C(=O)(C₁-C₈)alkyl, -C(=O)-O-(C₁-C₈)alkyl, -NH-SO₂-(C₁-C₈)alkyl, -NH-SO₂-(C₆-C₁₀)aryl, and CF₃;

Each R^{42} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

Each R⁴³ is independently selected from the group consisting of:

 $-NR^{31}R^{32}$; R^{33} -O-; and R^{34} -SO_n-; wherein n is 0,1, or 2 when -SO_n- is bonded to R^{34} via an R^{34} carbon atom, or wherein n is 1 or 2 when -SO_n- is bonded to R^{34} via an R^{34} ring nitrogen atom;

wherein each of said (C_1-C_8) alkyl, wherever it occurs in any of R^{40} and R^{41} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{44} and R^{45} ;

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in any of said R^{42} or R^{43} , is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{47} selected from the group consisting of (C_1-C_8) alkyl, R^{44} , and R^{45} ;

Each R^{45} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

wherein each of said (C_1-C_8) alkyl wherever it occurs in any of said R^{44} or R^{45} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of R^{46} and R^{47} :

wherein each of said (C_3-C_{10}) cycloalkyl, (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, or (C_1-C_{10}) heteroaryl, wherever it occurs in any of said R^{43} or R^{44} is independently unsubstituted or substituted with one to four substituents independently selected from the group consisting of (C_1-C_8) alkyl, R^{46} and R^{47} ;

Each R⁴⁶ is independently selected from the group consisting of F, Cl, Br, I, CN, OH, NO₂, -C(=NH)-NH-OH, -C(=NH)-NH-O-(C₁-C₈)alkyl, -C(=NH)-NH₂, -(C=O)-O-(C₁-C₈)alkyl, -O-(C=O)-(C₁-C₈)alkyl, -(C=O)-(C₁-C₈)alkyl, -(C=O)-NH₂, -(C=O)-NH(C₁-C₈)alkyl, -NH-(C=O)-(C₁-C₈)alkyl, -C(=NH)-NH-OH, $-(C=O)-N<[(C_1-C_8)alkyl]_2$ -C(=NH)-NH₂ $-C(=NH)-NH-O-(C_1-C_8)alkyl, -(C=O)-O-(C_1-C_8)alkyl, -O-(C=O)-(C_1-C_8)alkyl, -(C=O)-(C_1-C_8)alkyl, -(C_1-C_8)alkyl, -(C_1 -(C=O)-NH_2$, $-(C=O)-NH(C_1-C_8)$ alkyl, $-(C=O)-N>[(C_1-C_8)$ alkyl]₂, $-NH-(C=O)-(C_1-C_8)$ alkyl, $-(C=O)-N+(C_1-C_8)$ and R³⁸: and

Each R^{47} is independently selected from the group consisting of (C_3-C_{10}) cycloalkyl; (C_2-C_{10}) heterocyclyl, (C_6-C_{10}) aryl, and (C_1-C_{10}) heteroaryl;

or a pharmaceutically acceptable salt thereof.