

CE305 Numerical Methods for Civil Engineers

Solutions of Exercise v6.0

RULES

1. This is the **version 6.0**. In case there are any corrections for the solutions of Exercise 6, we will post an updated version on our website. You can follow the changes in the exercises by the **Version History** section below.

Version History

V6.0 Solutions of Exercise 6 are released.

CE305 Numerical Methods for Civil Engineers

Solutions of Exercise v6.0

1.

a) First of all the integral should be transformed into the form such that Gaussian Quadrature is applicable:

$$t = \frac{b+a}{2} + \frac{b-a}{2}x = \frac{1.5+0.5}{2} + \frac{1.5-0.5}{2}x$$

$$t = 1+0.5x$$

$$dt = \frac{b-a}{2}dx = \frac{1.5-0.5}{2}dx = 0.5dx$$

Thus,

$$I = \int_{0.5}^{1.5} e^{x} \cos(x) dx = \int_{-1}^{1} e^{1+0.5x} \cos(1+0.5x) 0.5 dx$$

Now, we can put the 2 point GQ numbers into the function:

$$I = w_1 f_1 + w_2 f_2 = 1 * f(\frac{\sqrt{3}}{3}) + 1 * f(-\frac{\sqrt{3}}{3})$$

$$I = e^{\frac{1+0.5 * \sqrt{3}}{3}} * \cos(1+0.5 * \frac{\sqrt{3}}{3}) * 0.5 + e^{\frac{1+0.5 * \sqrt{3}}{3}} * \cos(1+0.5 * \frac{-\sqrt{3}}{3}) * 0.5$$

$$I = 1.276395857886311$$

b) and c)

```
clear all
clc
format long
x2=[sqrt(3)/3;-sqrt(3)/3]; % Points of 2-point GQ
w2=[1;1]; % The weights of 2-point GQ
x3=[0.7745966692;-0.7745966692;0]; % Points of 3-point GQ
w3=[0.555555555;0.5555555555;0.8888888888]; % The weights of 3-point
GQ
integral2=0; %Initializing the 2-point GQ integral
integral3=0; %Initializing the 3-point GQ integral
%2-point GQ
for i=1:2
   t=1+0.5*x2(i,1);
    integral2=integral2+w2(i,1)*exp(t)*cos(t)*0.5;
integral2 %visualizing the resultant integral of 2-point GQ
%3-point GQ
for i=1:3
    t=1+0.5*x3(i,1);
    integral3=integral3+w3(i,1)*exp(t)*cos(t)*0.5;
                                                                  2
integral 3 %visualizing the resultant integral of 3-point GQ
```

Solutions of Exercise v6.0

The output of the code given above is:

Command Window

1.276395857886311

1.275069035909317

d) The true error can be calculated as:

$$\epsilon_{abs.true,2-point} = \! \left| 1.27640 \! - \! 1.27508 \right| \! = \! 0.00132$$

$$\varepsilon_{abs.true, 3-point} = |1.27507 - 1.27508| = 0.00001$$

2.

The general formulation for central difference formula is given as:

$$f'(x_i) = \frac{f(x_{i+1}) - f(x_{i-1})}{2\Delta x}$$
 where $\Delta x = 0.1$

According to this formulation, the value of f'(x) at x=0.2, 0.4 and 0.5 can be found as:

$$f'(0.2) = \frac{f(0.3) - f(0.1)}{2*0.1} = \frac{0.400 - 0.425}{0.2} = -0.1250$$

$$f'(0.4) = \frac{f(0.5) - f(0.3)}{2*0.1} = \frac{0.525 - 0.400}{0.2} = 0.6250$$

$$f'(0.5) = \frac{f(0.6) - f(0.4)}{2*0.1} = \frac{0.675 - 0.450}{0.2} = 1.1250$$

HHRING DER ARTIMIEN

Solutions of Exercise v6.0

3.

a)
$$m\ddot{u} + ku = P(t)$$

$$\frac{du}{dt} = v \tag{1}$$

$$m\frac{dv}{dt} + ku = P_0 \left(1 - \frac{t}{T}\right)$$

$$\frac{dv}{dt} = \frac{P_0}{m} \left(1 - \frac{t}{T} \right) - \frac{k}{m} u \tag{2}$$

b)

$$h=0.125$$

at
$$t=0$$

$$u(0)=0$$

$$v(0)=0$$

$$u(0.125) = u(0) + v(0) \cdot \Delta t = 0 + 0 \cdot 0.125 = 0$$

$$v(0.125) = v(0) + \left\lceil \frac{P_0}{m} \left(1 - \frac{t}{T} \right) - \frac{k}{m} u(0) \right\rceil \cdot \Delta t$$

$$v(0.125) = 0 + \left[\frac{500000}{10000} \left(1 - \frac{0}{0.5} \right) - \frac{10000000}{10000} 0 \right] \cdot 0.125 = 6.250000 \text{ m/s}$$

at t=0.250

$$u(0.250) = u(0.125) + v(0.125) \cdot 0.125 = 0.781250 \text{ m}$$

$$v(0.250) = v(0.125) + \left[\frac{P_0}{m} \left(1 - \frac{t}{T}\right) - \frac{k}{m}u(0.125)\right] \cdot \Delta t$$

$$v(0.250) = 6.250000 + \left[\frac{500000}{10000} \left(1 - \frac{0.125}{0.5}\right) - \frac{10000000}{10000}0\right] \cdot 0.125 = 10.937500 \text{ m/s}$$

at t=0.375

$$u(0.375) = u(0.250) + v(0.250) \cdot 0.125 = 2.1484375 \text{ m}$$

$$v(0.375) = v(0.250) + \left\lceil \frac{P_0}{m} \left(1 - \frac{t}{T} \right) - \frac{k}{m} u(0.250) \right\rceil \cdot \Delta t$$

$$v\left(0.375\right) = 10.937500 + \left[\frac{500000}{10000}\left(1 - \frac{0.25}{0.5}\right) - \frac{10000000}{10000}0.585938\right] \cdot 0.125 = -83.593750 \text{ m/s}$$

Solutions of Exercise v6.0

at t=0.5

$$u(0.5) = u(0.375) + v(0.375) \cdot 0.125 = -8.300781 \text{ m}$$

$$v(0.5) = v(0.375) + \left\lceil \frac{P_0}{m} \left(1 - \frac{t}{T} \right) - \frac{k}{m} u(0.375) \right\rceil \cdot \Delta t$$

$$v(0.5) = -83.59375 + \left[\frac{500000}{10000} \left(1 - \frac{0.375}{0.5}\right) - \frac{10000000}{10000} \left(2.1484375\right)\right] \cdot 0.125 = -350.585938 \text{ m/s}$$

$$F = k \cdot u(0.5) = 10000 \cdot (-8.300781) = -83007.81 \text{ kN}$$

c) The code is added as a zip file. Please download from the link given in the website.