Dạng 1. Tìm m để hàm số đạt cực trị tại x = x0

Burớc 1. Tính $y'(x_0), y''(x_0)$

Buốc 2. Giải phương trình $y'(x_0) = 0 \Rightarrow m$?

Bước 3. Thế m vào $y"(x_0)$ nếu giá trị $\begin{bmatrix} y">0 \rightarrow x_0 = CT \\ y"<0 \rightarrow x_0 = CD \end{bmatrix}$

Dạng 1.1 Hàm số bậc 3

Câu 1. (**Mã 110 - 2017**) Tìm giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại x = 3.

A.
$$m = -1$$

B. m = -7

C.
$$m = 5$$

D. m = 1

Lời giải

Chon C

Ta có $y' = x^2 - 2mx + (m^2 - 4)$; y'' = 2x - 2m.

Hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại x = 3 khi và chỉ khi: $\begin{cases} y'(3) = 0 \\ y''(3) < 0 \end{cases}$

$$\Leftrightarrow \begin{cases} 9 - 6m + m^2 - 4 = 0 \\ 6 - 2m < 0 \end{cases} \Leftrightarrow \begin{cases} m^2 - 6m + 5 = 0 \\ m > 3 \end{cases} \Leftrightarrow \begin{cases} m = 1(L) \\ m = 5(TM) \\ m > 3 \end{cases}$$

Vây m = 5 là giá tri cần tìm.

Câu 2. (Chuyên Hạ Long 2019) Tìm m để hàm số $y = x^3 - 2mx^2 + mx + 1$ đạt cực tiểu tại x = 1

A. không tồn tại m.

B.
$$m = \pm 1$$
.

C.
$$m = 1$$
.

D. $m \in \{1; 2\}$.

Lời giả

Để x = 1 là điểm cực tiểu của hàm số \Leftrightarrow $\begin{cases} y'(1) = 0 \\ y''(1) > 0 \end{cases} \Leftrightarrow \begin{cases} 3 - 4m + m = 0 \\ 6 - 4m > 0 \end{cases} \Leftrightarrow \begin{cases} m = 1 \\ m < \frac{3}{2} \Leftrightarrow m = 1. \end{cases}$

Thử lại với m = 1, ta có $y = x^3 - 2x^2 + x + 1$; $y' = 3x^2 - 4x + 1$.

$$y' = 0 \Leftrightarrow 3x^2 - 4x + 1 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = \frac{1}{3} \end{bmatrix}$$

Bảng biến thiên:

Quan sát bảng biến thiên ta thấy m = 1 thỏa yêu cầu bài toán.

Câu 3. Tìm tất cả các giá trị của tham số m để hàm số $y = x^3 - 3x^2 + mx + 1$ đạt cực tiểu tại x = 2.

A.
$$m = 0$$
.

B.
$$m > 4$$
.

C.
$$0 \le m < 4$$
.

D. $0 < m \le 4$.

Lời giải

Chọn A

$$y' = 3x^2 - 6x + m$$
; $y'' = 6x - 6$.

Hàm số đạt cực tiểu tại $x = 2 \Leftrightarrow \begin{cases} y'(2) = 0 \\ y''(2) > 0 \end{cases} \Leftrightarrow \begin{cases} m = 0 \\ 6 > 0 \end{cases} \Leftrightarrow m = 0.$

Câu 4. (THPT Đoàn Thượng - Hải Dương 2019) Tìm các giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại x = 3.

A.
$$m = 1, m = 5$$
.

B.
$$m = 5$$
.

C.
$$m = 1$$
.

D.
$$m = -1$$
.

Lời giải

Tập xác định \mathbb{R} .

Ta có
$$y' = x^2 - 2mx + m^2 - 4$$
, $y'' = 2x - 2m$.

Để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại x = 3 thì

$$\begin{cases} y'(3) = 0 \\ y''(3) < 0 \end{cases} \Leftrightarrow \begin{cases} m^2 - 6m + 5 = 0 \\ 6 - 2m < 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m = 5 \\ m = 1 \Leftrightarrow m = 5 ... \end{cases} \end{cases}$$

Câu 5. (THPT An Lão Hải Phòng 2019) Có bao nhiều số thực m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - m + 1)x + 1$ đạt cực đại tại x = 1.

Chon C

chọn C

$$y' = x^2 - 2mx + m^2 - m + 1$$

 $y'' = 2x - 2m$

Hàm số đạt cực đại tại x = 1 nên ta có $\begin{cases} y'(1) = 0 \\ y''(1) < 0 \end{cases} \Leftrightarrow \begin{cases} m^2 - 3m + 2 = 0 \\ 2 - 2m < 0 \end{cases} \Leftrightarrow \begin{cases} m = 1 \lor m = 2 \\ m > 1 \end{cases} \Leftrightarrow m = 2$

Thử lại với m = 2 ta có $y'' = 2x - 4 \Rightarrow y''(1) = -2 < 0$

Do đó Hàm số đạt cực đại tại x = 1

Câu 6. (THPT Đoàn Thượng – Hải Dương) Tìm các giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại x = 3.

A.
$$m = 1, m = 5$$
.

B.
$$m = 5$$
.

C.
$$m = 1$$
.

D.
$$m = -1$$
.

Lời giải

Chon B

Tập xác định $\mathbb R$.

Ta có
$$y' = x^2 - 2mx + m^2 - 4$$
, $y'' = 2x - 2m$.

Để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 4)x + 3$ đạt cực đại tại x = 3 thì

$$\begin{cases} y'(3) = 0 \\ y''(3) < 0 \end{cases} \Leftrightarrow \begin{cases} m^2 - 6m + 5 = 0 \\ 6 - 2m < 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m = 5 \\ m = 1 \Leftrightarrow m = 5. \end{cases} \end{cases}$$

Câu 7. (THPT Thăng Long - Hà Nội - Lần 2 - 2019) Tìm tập hợp tất cả các giá trị của m để hàm số $y = x^3 + (3m-1)x^2 + m^2x - 3$ đạt cực tiểu tại x = -1.

A.
$$\{5;1\}$$
.

B.
$$\{5\}$$
.

$$\mathbf{C}.\varnothing$$
.

Chọn B

Ta có
$$y' = 3x^2 + 2(3m-1)x + m^2 \Rightarrow y'' = 6x + 6m - 2$$
.

Hàm số đạt cực tiểu tại
$$x = -1 \Leftrightarrow \begin{cases} f'(-1) = 0 \\ f''(-1) > 0 \end{cases} \Leftrightarrow \begin{cases} m^2 - 6m + 5 = 0 \\ 6m - 8 > 0 \end{cases} \Leftrightarrow \begin{cases} m = 1 \\ m = 5 \\ m > \frac{4}{3} \end{cases} \Leftrightarrow m = 5.$$

Câu 8. (THPT Kinh Môn - 2019) Tìm tất cả các giá trị thực của tham số m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m+1)x - 1$ đạt cực đại tại x = -2?

A.
$$m = 2$$
.

B.
$$m = 3$$
.

C. Không tồn tại
$$m$$
. $\underline{\mathbf{D}}$. $m = -1$.

Lời giải

Chọn D

Ta có
$$y' = x^2 - 2mx + m + 1$$
.

Giả sử x = -2 là điểm cực đại của hàm số đã cho, khi đó

$$y'(-2) = 0 \Leftrightarrow (-2)^2 - 2m(-2) + m + 1 = 0 \Leftrightarrow 5m + 5 = 0 \Leftrightarrow m = -1$$
.

Với
$$m = -1$$
, ta có $y = \frac{1}{3}x^3 + x^2 - 1$.

$$y' = x^2 + 2x$$
; $y' = 0 \Leftrightarrow x^2 + 2x = 0 \Leftrightarrow \begin{bmatrix} x = -2 \\ x = 0 \end{bmatrix}$.

Ta có bảng biến thiên:

Dựa vào bảng biến thiên, ta kết luận m = -1 là giá trị cần tìm.

Câu 9. (Chuyên ĐHSPHN - Lần 3 - 2019) Tập hợp các số thực m để hàm số $y = x^3 - 3mx^2 + (m+2)x - m$ đạt cực tiểu tại x = 1 là.

B.
$$\{-1\}$$
.

$$\underline{\mathbf{C}}$$
. \emptyset .

Lời giải

Chọn C.

$$y' = 3x^2 - 6mx + m + 2$$

$$y'' = 6x - 6m$$

Hàm số đạt cực tiểu tại
$$x = 1$$
 khi
$$\begin{cases} y'(1) = 0 \\ y''(1) > 0 \end{cases} \Leftrightarrow \begin{cases} -5m + 5 = 0 \\ 6 - 6m > 0 \end{cases} \Leftrightarrow \begin{cases} m = 1 \\ m < 1 \end{cases}$$
 không có giá trị của m .

Dạng 1.2 Hàm số đa thức bậc cao, hàm căn thức ...

Câu 10. (Chuyên QH Huế - Lần 2 - 2019) Xác định tham số m sao cho hàm số $y = x + m\sqrt{x}$ đạt cực trị tại x = 1.

$$\underline{\mathbf{A}}$$
. $m = -2$.

B.
$$m = 2$$
.

C.
$$m = -6$$
.

D.
$$m = 6$$
.

Lời giải

Chọn A

$$y' = f'(x) = 1 + \frac{m}{2\sqrt{x}}, (x > 0)$$

Để hàm số đạt cực trị tại x = 1 thì $f'(1) = 0 \Leftrightarrow 1 + \frac{m}{2} = 0 \Leftrightarrow m = -2$.

Thử lại với m=-2, hàm số $y=x-2\sqrt{x}$ có cực tiểu tại x=1, do đó m=-2 thỏa mãn yêu cầu đề bài.

Câu 11. (Trường THPT Hoàng Hoa Thám - Hưng Yên 2019) Tìm tất cả tham số thực m để hàm số $y = (m-1)x^4 - (m^2-2)x^2 + 2019$ đạt cực tiểu tại x = -1.

A.
$$m = 0$$
.

B.
$$m = -2$$
.

C.
$$m = 1$$
.

$$\underline{\mathbf{D}}$$
. $m=2$.

Lời giải

Chọn D

Tập xác định: $D = \mathbb{R}$.

Đạo hàm: $y' = 4(m-1)x^3 - 2(m^2-2)x$.

Hàm số đạt cực tiểu tại $x = -1 \Rightarrow y'(-1) = 0 \Leftrightarrow -4(m-1) + 2(m^2 - 2) = 0 \Leftrightarrow \begin{bmatrix} m = 0 \\ m = 2 \end{bmatrix}$

Với m = 0, hàm số trở thành $y = -x^4 + 2x^2 + 2019$. Dễ thấy hàm số đạt cực đại tại x = -1.

Với m=2, hàm số trở thành $y=x^4-2x^2+2019$. Dễ thấy hàm số đạt cực tiểu tại x=-1.

Vậy m = 2 thì hàm số $y = (m-1)x^4 - (m^2 - 2)x^2 + 2019$ đạt cực tiểu tại x = -1.

Câu 12. (Chuyên Trần Phú Hải Phòng 2019) Cho hàm số y = f(x) xác định trên tập số thực \mathbb{R} và có đạo hàm $f'(x) = (x - \sin x)(x - m - 3)(x - \sqrt{9 - m^2})^3 \ \forall x \in \mathbb{R}$ (m là tham số). Có bao nhiều giá trị nguyên của m để hàm số y = f(x) đạt cực tiểu tại x = 0?

A. 6

B. 7

C. 5

D. 4

Lời giải

Điều kiện $9 - m^2 \ge 0 \Leftrightarrow -3 \le m \le 3$

TH 1: $0 \le m < 3$ ta có BTT

×	$-\infty$	0	$\sqrt{9-m^2}$		m+3		+∞	
<i>y'</i>	_	0	+	0	_	0	+	
y				∕ \				
	`	\ /				\ /	•	

TH 2: $-3 \le m < 0$ ta có BTT

х	$-\infty$	0		m+1	3	$\sqrt{9-n}$	$\overline{n^2}$	$+\infty$
<i>y'</i>	-	0	+	0	-	0	+	
у				∕ \	\			_
)	` /				\ /		

TH 2: m = 3 ta có BTT

Từ đó suy ra $-3 \le m < 3 \implies$ có 6 giá trị nguyên của *m* thỏa mãn.

Câu 13. (**Mã 101 - 2018**) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = x^8 + (m-2)x^5 - (m^2-4)x^4 + 1$ đạt cực tiểu tại x = 0?

Chon D

Ta có
$$y = x^8 + (m-2)x^5 - (m^2 - 4)x^4 + 1 \Rightarrow y' = 8x^7 + 5(m-2)x^4 - 4(m^2 - 4)x^3$$
.
 $y' = 0 \Leftrightarrow x^3(8x^4 + 5(m-2)x - 4(m^2 - 4)) = 0$

$$\Leftrightarrow \begin{bmatrix} x=0\\ g(x)=8x^4+5(m-2)x-4(m^2-4)=0 \end{bmatrix}$$

Xét hàm số
$$g(x) = 8x^4 + 5(m-2)x - 4(m^2-4)$$
 có $g'(x) = 32x^3 + 5(m-2)$.

Ta thấy g'(x) = 0 có một nghiệm nên g(x) = 0 có tối đa hai nghiệm

+ TH1: Nếu
$$g(x) = 0$$
 có nghiệm $x = 0 \implies m = 2$ hoặc $m = -2$

Với m=2 thì x=0 là nghiệm bội 4 của g(x). Khi đó x=0 là nghiệm bội 7 của y' và y' đổi dấu từ âm sang dương khi đi qua điểm x=0 nên x=0 là điểm cực tiểu của hàm số. Vậy m=2 thỏa yebt.

Với
$$m = -2$$
 thì $g(x) = 8x^4 - 20x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \sqrt[3]{\frac{5}{2}} \end{bmatrix}$.

Bảng biến thiên

Dựa vào BBT x = 0 không là điểm cực tiểu của hàm số. Vậy m = -2 không thỏa yebt.

+ TH2:
$$g(0) \neq 0 \iff m \neq \pm 2$$
. Để hàm số đạt cực tiểu tại $x = 0 \iff g(0) > 0$
 $\iff m^2 - 4 < 0 \iff -2 < m < 2$.

Do
$$m \in \mathbb{Z}$$
 nên $m \in \{-1; 0; 1\}$.

Vậy cả hai trường hợp ta được 4 giá trị nguyên của m thỏa yebt.

Câu 14. (Chuyên Quang Trung- Bình Phước 2019) Tất cả các giá trị thực của tham số m để hàm số $y = \frac{x^5}{5} - \frac{mx^4}{4} + 2$ đạt cực đại tại x = 0 là:

A.
$$m \in \mathbb{R}$$
.

B.
$$m < 0$$
.

C. Không tồn tại
$$m$$
. $\underline{\mathbf{D}}$. $m > 0$.

Lời giải

Chọn D

$$\text{Dăt } f(x) = \frac{x^5}{5} - \frac{mx^4}{4} + 2.$$

Ta có:
$$f'(x) = x^4 - mx^3$$
.

Khi m=0 thì $f'(x)=x^4\geq 0$, $\forall x\in\mathbb{R}$ nên hàm số không có cực trị.

Khi
$$m \neq 0$$
, xét $f'(x) = 0 \Leftrightarrow x^4 - mx^3 = 0 \Leftrightarrow x^3(x - m) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = m \end{bmatrix}$.

NGUYĒN BẢO VƯƠNG - 0946798489

+ Trường hợp m > 0 ta có bảng biến thiên:

٠.			<u> </u>					
	X	$-\infty$		0		m		$+\infty$
	f'(x)		+	0	-	0	+	
	f(x)	-∞ <u>-</u>		²		$\rightarrow f(m)$, +∞

Dưa vào bảng biến thiên ta thấy hàm số đạt cực đại tại x = 0.

+ Trường họp m < 0 ta có bảng biến thiên:

•	X	$-\infty$		m		0		$+\infty$
	f'(x)		+	0	-	0	+	
	f(x)	-8		f(m)		→ 2 <i>/</i>		+∞

Dưa vào bảng biến thiên ta thấy hàm số đạt cực tiểu tại x = 0.

Như vậy, để hàm số đạt cực đại tại x = 0 thì m > 0.

Câu 15. Có bao nhiều giá trị nguyên của m thuộc khoảng (-2019;2019) để hàm số $y = \frac{m-1}{5}x^5 + \frac{m+2}{4}x^4 + m+5$ đạt cực đại tại x = 0? **A.** 101. **B.** 2016. **C.** 100.

D. 10.

Chon B

Ta xét:
$$m = 1 \Rightarrow y = \frac{3}{4}x^4 + 6 \Rightarrow y' = 3x^3 \Rightarrow y' = 0 \Rightarrow x = 0$$
.

Ta có, bảng xét dấu $y' = 2x^3$

Dựa, vào bảng xét dấu ta thấy x = 0 là điểm cực tiểu. Suy ra m = 1 (loại).

Ta xét:
$$m \neq 1 \Rightarrow y' = (m-1)x^4 + (m+2)x^3 \Rightarrow y' = 0 \Rightarrow \begin{bmatrix} x_1 = 0 \\ x_2 = -\frac{m+2}{m-1} \end{bmatrix}$$

Trường hợp 1: xét m > 1, suy ra $x_2 < x_1$.

Ta có, bảng xét dấu $y' = (m-1)x^4 + (m+2)x^3$

Dựa, vào bảng xét dấu ta thấy x = 0 là điểm cực tiểu. Suy ra m > 1 (loại).

Trường hợp 2: -2 < m < 1, suy ra $x_2 > x_1$.

Ta có, bảng xét dấu $y' = (m-1)x^4 + (m+2)x^3$

Dựa, vào bảng xét dấu ta thấy x = 0 là điểm cực tiểu. Suy ra -2 < m < 1 (loại).

Trường hợp 3: m < -2, suy ra $x_2 < x_1$.

Ta có, bảng xét dấu $y' = (m-1)x^4 + (m+2)x^3$

Dựa, vào bảng xét dấu ta thấy x = 0 là điểm cực đại. Suy ra m < -2 (nhận).

Vậy, tập hợp tất cả các giá trị của tham số m thỏa mãn đề bài là m < -2 mà m thuộc khoảng (-2019; 2019).

Suy ra, số giá trị nguyên của m là 2016.

Câu 16. (**Mã 104 - 2018**) Có bao nhiêu giá trị nguyên của tham số m để hàm số $y = x^8 + (m-3)x^5 - (m^2-9)x^4 + 1$ đạt cực tiểu tại x = 0?

Chọn A

Ta có
$$y = x^8 + (m-3)x^5 - (m^2 - 9)x^4 + 1 \Rightarrow y' = 8x^7 + 5(m-3)x^4 - 4(m^2 - 9)x^3$$
.

$$y' = 0 \Leftrightarrow x^3 (8x^4 + 5(m-3)x - 4(m^2 - 9)) = 0$$

$$\Leftrightarrow \begin{bmatrix} x = 0 \\ g(x) = 8x^4 + 5(m-3)x - 4(m^2 - 9) = 0 \end{bmatrix}$$

Xét hàm số $g(x) = 8x^4 + 5(m-3)x - 4(m^2-9)$ có $g'(x) = 32x^3 + 5(m-3)$.

Ta thấy g'(x) = 0 có một nghiệm nên g(x) = 0 có tối đa hai nghiệm

+) TH1: Nếu g(x) = 0 có nghiệm $x = 0 \implies m = 3$ hoặc m = -3

Với m=3 thì x=0 là nghiệm bội 4 của g(x). Khi đó x=0 là nghiệm bội 7 của y' và y' đổi dấu từ âm sang dương khi đi qua điểm x=0 nên x=0 là điểm cực tiểu của hàm số. Vậy m=3 thỏa yebt.

Với
$$m = -3$$
 thì $g(x) = 8x^4 - 30x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \sqrt[3]{\frac{15}{4}} \end{bmatrix}$

Bảng biến thiên

Dựa vào BBT x = 0 không là điểm cực tiểu của hàm số. Vậy m = -3 không thỏa yebt.

+) TH2: $g(0) \neq 0 \iff m \neq \pm 3$. Để hàm số đạt cực tiểu tại $x = 0 \iff g(0) > 0$ $\iff m^2 - 9 < 0 \iff -3 < m < 3$.

NGUYĒN BĀO VƯƠNG - 0946798489

Do $m \in \mathbb{Z}$ nên $m \in \{-2; -1; 0; 1; 2\}$.

Vậy cả hai trường hợp ta được 6 giá trị nguyên của m thỏa yebt.

Câu 17. (**Mã** 103 - 2018) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = x^8 + (m-4)x^5 - (m^2-16)x^4 + 1$ đạt cực tiểu tại x = 0.

Chon A

Ta có
$$y' = 8x^7 + 5(m-5)x^4 - 4(m^2-16)x^3 = x^3[8x^4 + 5(m-4)x - 4(m^2-16)] = x^3 \cdot g(x)$$

Với
$$g(x) = 8x^4 + 5(m-5)x - 4(m^2-16)$$
.

• Trường hợp 1: $g(0) = 0 \Leftrightarrow m = \pm 4$.

Với $m = 4 \Rightarrow y' = 8x^7$. Suy ra x = 0 là điểm cực tiểu của hàm số.

Với $m = -4 \Rightarrow y' = 8x^4(x^3 - 5)$. Suy ra x = 0 không là điểm cực trị của hàm số.

• Trường hợp 2: $g(0) \neq 0 \Leftrightarrow m \neq \pm 4$.

Để hàm số đạt cực tiểu tại x = 0 thì qua giá trị x = 0 dấu của y' phải chuyển từ âm sang dương do đó $g(0) > 0 \Leftrightarrow -4 < m < 4$.

Kết hợp hai trường hợp ta được $-4 < m \le 4$.

Do $m \in \mathbb{Z} \Rightarrow m \in \{-3, -2, -1, 0, 1, 2, 3, 4\}$.

Vậy có 8 giá trị nguyên của tham số m thỏa mãn.

Câu 18. Có bao nhiều giá trị nguyên của tham số m để hàm số $y = x^{12} + (m-5)x^7 + (m^2 - 25)x^6 + 1$ đạt cực đai tai x = 0?

Lời giải

Chon B

Ta có $y' = 12x^{11} + 7(m-5)x^6 + 6(m^2 - 25)x^5$

TH1: $m = 5 \Rightarrow y' = 12x^{11}$. Khi đó $y' = 0 \Leftrightarrow x = 0$ là nghiệm bội lẻ, đồng thời dấu của y' đổi từ âm sang dương, nên x = 0 là điểm cực tiểu của hàm số, do đó không thỏa mãn, m = 5 loại.

TH2: $m = -5 \Rightarrow y' = x^6 (12x^5 - 70) = 0 \Rightarrow x = 0$ là nghiệm bội chẵn, do đó y' không đổi dấu khi đi qua x = 0, m = -5 loại.

TH3:
$$m \neq \pm 5 \Rightarrow y' = x^5 \left[12x^6 + 7(m-5)x + 6(m^2 - 25) \right] = x^5 \cdot g(x)$$

Với $g(x) = 12x^6 + 7(m-5)x + 6(m^2-25)$, ta thấy x = 0 không là nghiệm của g(x).

Để hàm số đạt cực đại tại x=0 thì y' phải đổi dấu từ dương sang âm khi đi qua x=0, xảy ra khi

và chỉ khi
$$\begin{cases} \lim_{x \to 0^{-}} g(x) < 0 \\ \lim_{x \to 0^{+}} g(x) < 0 \\ \Leftrightarrow 6(m^{2} - 25) < 0 \\ \Leftrightarrow -5 < m < 5 \end{cases}$$

Vì m nguyên nên $m = \{-4; -3; ...; 3; 4\}$, vậy có 9 giá trị của m thỏa mãn bài toán.

Câu49. Cho hàm số $y = x^6 + (4+m)x^5 + (16-m^2)x^4 + 2$. Gọi S là tập hợp các gia trị m nguyên dương để hàm số đã cho đạt cực tiểu tại x = 0. Tổng các phần tử của S bằng

Chọn C

Ta có
$$y' = 6x^5 + 5(4+m)x^4 + 4(16-m^2)x^3 = x^3(6x^2 + 5(4+m)x + 16-m^2)$$
.

$$y' = 0 \Leftrightarrow \begin{cases} x^3 = 0 \\ 6x^2 + 5(4+m)x + 16 - m^2 = 0(*) \end{cases}$$

(*) có
$$\Delta = (4+m)(49m+4)$$

Với mọi m nguyên dương thì $\begin{cases} \Delta > 0 \\ \frac{-5(4+m)}{6} < 0 \end{cases}$ do đó ta xét các trường hợp sau:

Trường hợp 1: $16 - m^2 > 0 \Leftrightarrow 0 < m < 4$: (*) có hai nghiệm âm phân biệt $x_1, x_2 (x_1 < x_2)$, ta có bảng xét dấu y' như sau:

Lúc này x = 0 là điểm cực tiểu.

Trường hợp 2: $16 - m^2 < 0 \Leftrightarrow m > 4$: (*) có hai nghiệm trái dấu $x_1, x_2 (x_1 < 0 < x_2)$, ta có bảng xét dấu y' như sau:

Từ đây suy ra x = 0 là điểm cực đại (không thỏa mãn).

Trường hợp 3: (*) có một nghiệm bằng 0 và một nghiệm âm, lúc này x = 0 là nghiệm bội 4 của đạo hàm nên không phải là điểm cực trị.

Vậy có ba giá trị nguyên dương của m thỏa mãn yêu cầu bài toán là 1, 2, 3. Tổng các phần tử của S bằng 6.

Câu 19. (**Mã 102 - 2018**) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = x^8 + (m-1)x^5 - (m^2-1)x^4 + 1$ đạt cực tiểu tại x = 0?

Lời giải

Chọn B

Ta có: $y' = 8x^7 + 5(m-1)x^4 - 4(m^2-1)x^3 + 1 = x^3(8x^4 + 5(m-1)x - 4(m^2-1))$

$$y' = 0 \Leftrightarrow \begin{cases} x = 0 \\ 8x^4 + 5(m-1)x - 4(m^2 - 1) = 0 \end{cases}$$
 (1)

*Nếu m=1 thì $y'=8x^7$, suy ra hàm số đạt cực tiểu tại x=0.

*Nếu
$$m = -1$$
 thì $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ 8x^4 - 10x = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = \sqrt[3]{\frac{5}{4}} \end{bmatrix}$, nhưng $x = 0$ là nghiệm bội chẵn nên

không phải cực trị.

*Nếu $m \neq \pm 1$: khi đó x = 0 là nghiệm bội lẻ. Xét $g(x) = 8x^4 + 5(m-1)x - 4(m^2-1)$. Để x = 0 là điểm cực tiểu thì $\lim_{x \to 0^-} g(x) = -4(m^2-1) > 0 \Leftrightarrow m^2 - 1 < 0 \Leftrightarrow -1 < m < 1$. Vì m nguyên nên chỉ có giá trị m = 0.

Vậy chỉ có hai tham số m nguyên để hàm số đạt cực tiểu tại x = 0 là m = 0 và m = 1.

Dạng 2. Tìm m để hàm số có n cực trị

- Hàm số có n cực trị $\Leftrightarrow y' = 0$ có n nghiệm phân biệt.
- Xét hàm số bậc ba $y = ax^3 + bx^2 + cx + d$:
- $+ \ H \grave{a} \ s \acute{o} \ c \acute{o} \ hai \ \mathring{d} \dot{i} \mathring{e} \ m \ c \psi c \ tr \dot{i} \ khi \ \begin{cases} a \neq 0 \\ b^2 3ac > 0 \end{cases}.$
- + Hàm số không có cực trị khi y'=0 vô nghiệm hoặc có nghiệm kép.
- Xét hàm số bậc bốn trùng phương $y = ax^4 + bx^2 + c$.

+ Hàm số có ba cực trị khi ab < 0. + Hàm số có 1 cực trị khi $ab \ge 0$.

Biết rằng hàm số $y = (x+a)^3 + (x+b)^3 - x^3$ có hai điểm cực trị. Mệnh đề nào sau đây là đúng?

A. $ab \leq 0$.

B. ab < 0.

 $\underline{\mathbf{C}}$. ab > 0.

D. $ab \ge 0$.

Lời giải

Chon C

Ta có $y = x^3 + 3(a+b)x^2 + 3(a^2+b^2)x + a^3 + b^3$.

$$y' = 3x^2 + 6(a+b)x + 3(a^2 + b^2).$$

Hàm số có hai điểm cực trị khi và chỉ khi y' có hai nghiệm phân biệt $\Leftrightarrow \Delta' = 18ab > 0 \Leftrightarrow ab > 0$.

(THPT Hai Bà Trưng - Huế - 2019) Tìm tất cả các giá trị của tham số thực m để hàm số Câu 2. $y = mx^3 - 2mx^2 + (m-2)x + 1$ không có cực tri

A. $m \in (-\infty; 6) \cup (0; +\infty)$.

B. $m \in (-6,0)$. **C.** $m \in [-6,0)$.

D.

 $m \in [-6; 0].$

Lời giải

Chọn D

Ta có $y' = 3mx^2 - 4mx + (m-2)$.

+ Nếu m = 0.

 $\Rightarrow y' = -2 < 0 \ (\forall x \in \mathbb{R})$. Nên hàm số không có cực trị.

Do đó m = 0 (chọn) (1).

+ Nếu $m \neq 0$.

Hàm số không có cực trị ⇔ y'không đổi dấu

 $\Leftrightarrow \Delta' \le 0 \Leftrightarrow 4m^2 - 3m(m-2) \le 0 \Leftrightarrow m^2 + 6m \le 0 \Rightarrow -6 \le m < 0 \text{ (do } m \ne 0 \text{) (2)}.$

Kết hợp (1) và (2) ta được $-6 \le m \le 0$.

Câu 3. (Đề Tham Khảo 2017) Tìm tất cả các giá trị thực của tham số m để hàm số $y = (m-1)x^4 - 2(m-3)x^2 + 1$ không có cực đại?

A. $1 < m \le 3$

B. $m \le 1$

C. $m \ge 1$

D. $1 \le m \le 3$

Lời giải

Chon D

TH1: Nếu $m = 1 \Rightarrow y = 4x^2 + 1$. Suy ra hàm số không có cực đại.

TH2: Nếu m > 1.

Để hàm số không có cực đại thì $-2(m-3) \ge 0 \Leftrightarrow m \le 3$. Suy ra $1 < m \le 3$.

Vậy $1 \le m \le 3$.

(Chuyên Sơn La - Lần 2 - 2019) Để đồ thị hàm số $y = -x^4 - (m-3)x^2 + m+1$ có điểm cực đại Câu 4. mà không có điểm cực tiểu thì tất cả các giá trị thực của tham số m là

 $\underline{\mathbf{A}}$. $m \ge 3$.

- **B.** m > 3.
- **C.** m < 3.
- **D.** $m \le 3$.

Lời giải

 $y' = -4x^3 - 2(m-3)x = -2x(2x^2 + m - 3).$

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = \frac{3 - m}{2} \end{bmatrix}$$

Vì hàm số đã cho là hàm trùng phương với a = -1 < 0 nên hàm số có điểm cực đại mà không có điểm cực tiểu $\Leftrightarrow y'=0$ có đúng 1 nghiệm bằng $0 \Leftrightarrow \frac{3-m}{2} \le 0 \Leftrightarrow m \ge 3$.

(Quang Trung - Bình Phước - Lần 5 - 2019) Cho hàm số $y = x^4 - 2mx^2 + m$. Tìm tất cả các giá Câu 5. trị thực của m để hàm số có 3 cực trị

 $\underline{\mathbf{A}}$. m > 0.

B. $m \ge 0$.

C. m < 0.

D. $m \le 0$.

Lời giải

Chọn A

Tập xác đinh $D = \mathbb{R}$.

$$y' = 4x^3 - 4mx = 4x(x^2 - m).$$

$$y' = 0 \Leftrightarrow 4x(x^2 - m) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = m \end{cases}$$

Hàm số có 3 cực trị $\Leftrightarrow y' = 0$ có 3 nghiệm phân biệt

 \Leftrightarrow phương trình (*) có 2 nghiệm phân biệt $x \neq 0 \Leftrightarrow m > 0$.

Câu 6. (Chuyên Hà Tĩnh - Lần 1 - 2019) Có bao nhiều giá trị nguyên của tham số m để hàm số $y = m^2 x^4 - (m^2 - 2019m)x^2 - 1$ có đúng một cực trị?

A. 2019.

B. 2020.

C. 2018.

D. 2017.

Lời giải

Chọn A

Trường hợp 1: $m = 0 \implies y = -1$ nên hàm số không có cực trị.

$$\Rightarrow m = 0$$
 (loại).

Trường hợp 2: $m \neq 0 \Rightarrow m^2 > 0$.

Hàm số $y = m^2 x^4 - (m^2 - 2019m)x^2 - 1$ có đúng một cực trị

$$\Leftrightarrow -m^2.(m^2-2019m) \ge 0 \Leftrightarrow m^2-2019m \le 0 \Leftrightarrow 0 \le m \le 2019.$$

Vì $m \neq 0 \Rightarrow 0 < m \leq 2019$.

Do $m \in \mathbb{Z}$ nên có 2019 giá trị nguyên của tham số m thỏa đề.

(THPT Yên Khánh A - Ninh Bình - 2019) Cho hàm số $y = x^3 - 3(m+1)x^2 + 3(7m-3)x$. Gọi Câu 7. S là tập các giá trị nguyên của tham số m để hàm số không có cực trị. Số phần tử của S là

A. 2.

<u>B</u>. 4.

C. 0. Lời giải

D. Vô số.

Chon B

Ta có: $y' = 3x^2 - 6(m+1)x + 3(7m-3)$.

$$y' = 0 \iff x^2 - 2(m+1)x + 7m - 3 = 0$$
.

Để hàm số không có cực trị thì

$$\Delta' \le 0 \Leftrightarrow (m+1)^2 - (7m-3) \le 0$$

 $\Leftrightarrow m^2 - 5m + 4 \le 0$

 $\Leftrightarrow 1 \le m \le 4$.

Do $m \in \mathbb{Z} \Rightarrow S = \{1, 2, 3, 4\}$. Vậy S có 4 phần tử.

(HSG - TP θ à Nẵng - 2019) Tìm tất cả các giá trị của tham số m để hàm số Câu 8. $y = x^4 + 4mx^3 + 3(m+1)x^2 + 1$ có cực tiểu mà không có cực đại.

A.
$$m \in \left(-\infty; \frac{1-\sqrt{7}}{3}\right]$$
. **B.** $m \in \left[\frac{1-\sqrt{7}}{3}; 1\right] \cup \{-1\}$.

C. $m \in \left[\frac{1+\sqrt{7}}{3}; +\infty\right]$. $\underline{\mathbf{D}}$. $m \in \left[\frac{1-\sqrt{7}}{3}; \frac{1+\sqrt{7}}{3}\right] \cup \{-1\}$.

Lời giải

Chon D

Ta có: $y' = 4x^3 + 12mx^2 + 6(m+1)x$.

+ TH1: m = -1, ta có: $y' = 4x^3 - 12x^2 = 4x^2(x-3)$.

Bảng xét dấu

Hàm số có 1 cực tiểu duy nhất.

Ta có:
$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ 2x^2 + 6mx + 3m + 3 = 0 (*) \end{bmatrix}$$

+ TH2:
$$m \neq -1$$

Để hàm số đã cho chỉ có một cực tiểu thì phương trình (*) không có hai nghiệm phân biệt

$$\Leftrightarrow (3m)^2 - 2(3m+3) \le 0 \Leftrightarrow \frac{1-\sqrt{7}}{2} \le m \le \frac{1+\sqrt{7}}{2}.$$

Vậy
$$m \in \left[\frac{1-\sqrt{7}}{3}; \frac{1+\sqrt{7}}{3}\right] \cup \{-1\}.$$

Câu 9. (HSG 12 - Bắc Ninh - 2019) Cho hàm số f(x) có đạo hàm $f'(x) = x^2(x+1)(x^2+2mx+5)$. Có tất cả bao nhiều giá trị nguyên của m để hàm số có đúng một điểm cực trị?

- **B.** 5.
- <u>C</u>. 6

D. 7

Chon C

Hàm số f(x) có đúng một điểm cực trị khi và chỉ khi tam thức $g(x) = x^2 + 2mx + 5$ vô nghiệm hoặc có hai nghiệm phân biệt trong đó một nghiệm là x = -1, hoặc g(x) có nghiệm kép x = -1

Tức là
$$\begin{cases} \Delta_g' < 0 \\ \beta(-1) = 0 \\ \Delta_g' > 0 \end{cases} \Leftrightarrow \begin{cases} m^2 - 5 < 0 \\ -2m + 6 = 0 \\ m^2 - 5 > 0 \end{cases} \Leftrightarrow \begin{cases} -\sqrt{5} < m < \sqrt{5} \\ m = 3 \end{cases}$$
. Do đó tập các giá trị nguyên thỏa mãn
$$\begin{cases} -\frac{b'}{a} = -1 \\ \Delta_g' = 0 \end{cases}$$

yêu cầu bài toán là $S = \{-2, -1, 0, 1, 2, 3\}$.

- **Câu 10.** (THPT Hùng Vương Bình Phước 2019) Tìm tất cả các giá trị của tham số m để hàm số $y = -\frac{x^3}{3} + mx^2 2mx + 1$ có hai điểm cực trị.
 - **A.** 0 < m < 2.
- **B.** m > 2.
- **C.** m > 0.
- $\underline{\mathbf{D}} \cdot \begin{bmatrix} m > 2 \\ m < 0 \end{bmatrix}.$

Lời giải

Ta có:
$$y' = -x^2 + 2mx - 2m$$

Hàm số $y = -\frac{x^3}{3} + mx^2 - 2mx + 1$ có hai điểm cực trị $\Leftrightarrow y' = 0$ có hai nghiệm phân biệt

$$\Leftrightarrow \Delta' = m^2 - 2m > 0 \Leftrightarrow \begin{bmatrix} m > 2 \\ m < 0 \end{bmatrix}.$$

Câu 11. (THPT Ba Đình 2019) Tìm tất cả các giá trị của tham số m để hàm số $y = x^3 - 3x^2 + 2mx + m$ có cực đại và cực tiểu?

$$\underline{\mathbf{A}}$$
. $m < \frac{3}{2}$.

A.
$$m < \frac{3}{2}$$
. **B.** $m < -\frac{3}{2}$.

C.
$$m \le \frac{3}{2}$$
.

Lời giải

D.
$$m > \frac{3}{2}$$
.

+ TXĐ:
$$D = \mathbb{R}$$

$$+ y' = 3x^2 - 6x + 2m$$

+ Hàm số có cực đại và cực tiểu $\Leftrightarrow y' = 0$ có 2 nghiệm phân biệt.

$$\Leftrightarrow \Delta = 36 - 24m > 0 \Leftrightarrow m < \frac{3}{2}.$$

(Chuyên Bắc Giang 2019) Tập hợp các giá trị của m để hàm số $y = \frac{1}{3}x^3 - mx^2 + (m+2)x + 1$ có Câu 12. hai cực tri là:

A.
$$\left(-\infty;-1\right]\cup\left[2;+\infty\right)$$

A.
$$(-\infty;-1] \cup [2;+\infty)$$
 B. $(-\infty;-1) \cup (2;+\infty)$ C. $(-1;2)$ Lời giải

D.
$$[-1;2]$$

Chon B

Ta có $y' = x^2 - 2mx + m + 2$. Để hàm số có hai cực trị thì y' = 0 có hai nghiệm phân biệt nên

$$y' > 0 \Leftrightarrow \Delta' > 0 \Leftrightarrow m^2 - m - 2 > 0 \Leftrightarrow \begin{bmatrix} m < -1 \\ m > 2 \end{bmatrix}$$

(THPT Quỳnh Lưu 3 Nghệ An 2019) Cho hàm số $y = mx^4 - x^2 + 1$. Tập hợp các số thực m để Câu 13. C. $\left[0;+\infty\right)$. D. $\left(-\infty;0\right)$. hàm số đã cho có đúng một điểm cực tri là

A.
$$(0;+\infty)$$
.

$$\mathbf{\underline{B}}.\ (-\infty;0].$$

C.
$$[0;+\infty)$$

D.
$$(-\infty;0)$$
.

Tập xác định $D = \mathbb{R}$.

TH1: m = 0 hàm số đã cho trở thành $y = -x^2 + 1$ là một hàm bậc hai nên luôn có một cực trị.

TH2: $m \neq 0$, ta có $y' = 4mx^3 - 2x$.

$$y' = 0 \Leftrightarrow 4mx^3 - 2x = 0 \Leftrightarrow 2x(2mx^2 - 1) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ 2mx^2 - 1 = 0(*) \end{bmatrix}.$$

Để hàm số có đúng một cực trị thì phương trình y' = 0 có đúng 1 nghiệm.

Ycbt \Leftrightarrow Phương trình (*) có một nghiệm x = 0 hoặc vô nghiệm suy ra m < 0.

Vậy m ≤ 0.

(THPT Yên Định Thanh Hóa 2019) Cho hàm số $y = mx^4 + (2m+1)x^2 + 1$. Tìm tất cả các giá trị Câu 14. thực của tham số m để hàm số có đúng một điểm cực tiểu.

A. Không tồn tại m.

$$\underline{\mathbf{B}}$$
. $m \ge 0$.

C.
$$m \ge -\frac{1}{2}$$
.

C.
$$m \ge -\frac{1}{2}$$
. **D.** $-\frac{1}{2} \le m \le 0$.

Lời giải

Với m=0, ta có $y=x^2+1 \Rightarrow y'=2x$. Khi đó hàm số có 1 cực trị và cực trị đó là cực tiểu. Suy ra m = 0 thỏa mãn yêu cầu bài toán. (1)

Với $m \neq 0$, ta có $y' = 4mx^3 + 2(2m+1)x = 2x(2mx^2 + 2m+1)$

Hàm số có một cực trị là cực tiểu \Leftrightarrow $\begin{cases} m > 0 \\ 2mx^2 + 2m + 1 = 0 \text{ vô nghiêm} \end{cases}$

$$\Leftrightarrow \left\{ \frac{m > 0}{\frac{-2m - 1}{2m}} < 0 \right. \Leftrightarrow \left\{ \begin{aligned} m > 0 \\ m < \frac{-1}{2} \Leftrightarrow m > 0 \end{aligned} \right. (2)$$

Từ (1) và (2) suy ra hàm số có một cực trị là cực tiểu khi $m \ge 0$.

NGUYĒN BẢO VƯƠNG - 0946798489

(Cụm Liên Trường Hải Phòng 2019) Tìm số các giá trị nguyên của tham số m để hàm số Câu 15. $y = x^4 + 2(m^2 - m - 6)x^2 + m - 1$ có ba điểm cực trị.

A. 6.

D. 3.

Ta có $y' = 4x^3 + 4(m^2 - m - 6)x = 4x[x^2 + (m^2 - m - 6)].$

$$y' = 0 \Leftrightarrow \begin{cases} x = 0 \\ x^2 + (m^2 - m - 6) = 0 \end{cases}$$

Hàm số có ba điểm cực trị ⇔ (1) có hai nghiệm phân biệt khác 0

$$\Leftrightarrow m^2 - m - 6 < 0 \Leftrightarrow -2 < m < 3$$
.

Ta có: $m \in \mathbb{Z}, -2 < m < 3 \Leftrightarrow m \in \{-1, 0, 1, 2\}$.

Vậy có 4 giá trị nguyên của tham số mđể hàm số có ba điểm cực trị.

(THCS - THPT Nguyễn Khuyến 2019) Hàm số $y = mx^4 + (m-1)x^2 + 1 - 2m$ có một điểm cực Câu 16.

A. $0 \le m \le 1$.

B. $m \le 0 \lor m \ge 1$. C. m = 0. Lời giải

D. $m < 0 \lor m > 1$.

Trường hợp 1: m = 0 thì hàm số đã cho trở thành $y = -x^2 + 1$. Hàm số này có 1 cực trị là cực đại $\Rightarrow m = 0$ thỏa mãn.

Trường hợp 2: $m \neq 0$ thì hàm số đã cho trở thành $y = mx^4 + (m-1)x^2 + 1 - 2m$

Ta có
$$y' = 4mx^3 + 2(m-1)x = 2x(2mx^2 + m - 1); y' = 0 \Leftrightarrow \begin{bmatrix} 2x = 0 \\ 2mx^2 + m - 1 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = \frac{1-m}{2m} \end{cases}$$
 (*)

YCBT $\Leftrightarrow y'$ đổi dấu một lần \Leftrightarrow Phương trình (*) vô nghiệm hoặc có nghiệm x=0.

$$\Leftrightarrow \frac{1-m}{2m} \le 0 \Leftrightarrow \begin{bmatrix} m \ge 1 \\ m < 0 \end{bmatrix}$$

Kết hợp hai trường hợp ta được $0 \le m \lor m \ge 1$.

Giải nhanh: Với a khác 0 thì hàm số đã cho có 1 cực trị $\Leftrightarrow ab \ge 0 \Rightarrow m(m-1) \ge 0 \Leftrightarrow \begin{vmatrix} m \ge 1 \\ m < 0 \end{vmatrix}$.

(Chuyên Lam Sơn Thanh Hóa 2019) Có tất cả bao nhiều giá trị nguyên của m trên miền Câu 17. [-10;10] để hàm số $y = x^4 - 2(2m+1)x^2 + 7$ có ba điểm cực trị?

A. 20

B. 10

C. Vô số

Lời giải

D. 11

Chon D

Ta có $y' = 4x \lceil x^2 - (2m+1) \rceil \quad \forall x$.

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = 2m + 1 \end{cases}$$
 (*)

Hàm số đã cho có ba cực trị khi và chỉ khi y' = 0 có ba nghiệm phân biệt, hay (*) có hai nghiệm phân biệt khác $0 \Leftrightarrow 2m+1>0 \Leftrightarrow m>-\frac{1}{2}$.

Do $m \in [-10;10]$ nên có 11 giá trị thỏa mãn.

(THPT An Lão Hải Phòng 2019) Cho hàm số $y = mx^4 + (m^2 - 6)x^2 + 4$. Có bao nhiều số nguyên m để hàm số có ba điểm cực trị trong đó có đúng hai điểm cực tiểu và một điểm cực đại?

Chon C

Tập xác định $D = \mathbb{R}$.

Ta có
$$y' = 4mx^3 + 2(m^2 - 6)x$$
.

Hàm số đã cho có ba điểm cực trị trong đó có đúng hai điểm cực tiểu và một điểm cực đại khi và 4m > 0

chỉ khi
$$\begin{cases} 4m > 0 \\ m(m^2 - 6) < 0 \end{cases} \Leftrightarrow 0 < m < \sqrt{6}.$$

Do đó có hai giá trị nguyên của tham số m.

Câu 19. (THPT Nguyễn Khuyến 2019) Tìm tất cả các giá trị thực của tham số m để hàm số $y = mx^4 + (m-1)x^2 + 1 - 2m$ có một cực trị.

A.
$$m \ge 1$$

B.
$$m \le 0$$

C.
$$0 \le m \le 1$$

D.
$$m \le 0 \cup m \ge 1$$

Lời giải

Chon D

Ta có: $y' = 4mx^3 + 2(m-1)x$

- Trường hợp 1: Xét $m = 0 \Rightarrow y' = -2x$. Ta thấy phương trình y' = 0 đổi dấu một lần nên hàm số có một điểm cực tri. Suy ra m = 0 (thoả YCBT) (1)
- Trường hợp 2: Xét $m = 1 \Rightarrow y' = 4x^3$. Ta thấy phương trình y' = 0 đổi dấu một lần nên hàm số có một điểm cực trị. Suy ra m = 1 (thoả YCBT) (2)

• Trường họp 3: Xét
$$m \neq 0$$
, $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = \frac{1 - m}{2m} \end{bmatrix}$

Để hàm số có một điểm cực trị thì $\frac{1-m}{2m} \le 0 \Leftrightarrow \begin{bmatrix} m < 0 \\ m \ge 1 \end{bmatrix}$ (3)

Từ (1), (2) và (3) suy ra
$$\begin{bmatrix} m \le 0 \\ m \ge 1 \end{bmatrix}$$

Shi chú: Dùng công thức tính nhanh

Hàm số có một điểm cực trị khi và chỉ khi $m(m-1) \ge 0 \Leftrightarrow \begin{bmatrix} m \le 0 \\ m \ge 1 \end{bmatrix}$.

Câu 20. (**Chuyên Lào Cai - 2020**) Cho hàm số f(x) có đạo hàm $f'(x) = x^2(x+2)^4(x+4)^3[x^2+2(m+3)x+6m+18]$. Có tất cả bao nhiều giá trị nguyên của m để hàm số f(x) có **đúng** một điểm cực trị?

D. 6.

Chọn C

Ta có
$$f'(x) = 0 \Leftrightarrow \begin{bmatrix} x^2 = 0 \\ (x+2)^4 = 0 \\ (x+4)^3 = 0 \\ x^2 + 2(m+3)x + 6m + 18 = 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 0 \\ x = -2 \\ x = -4 \\ x^2 + 2(m+3)x + 6m + 18 = 0 \end{cases}$$

Để hàm số f(x) có đúng một điểm cực trị \Leftrightarrow Phương trình (*) vô nghiệm, có nghiệm kép hoặc có hai nghiệm phân biệt trong đó có nghiệm là -4.

Trường hợp 1. Phương trình (*) vô nghiệm $\Leftrightarrow \Delta = 4m^2 + 24m + 36 - 24m - 72 = 4m^2 - 36 < 0$ $\Leftrightarrow -3 < m < 3 \Rightarrow m \in \{-2 \ ; \ -1 \ ; \ 0 \ ; \ 1 \ ; \ 2\}$

NGUYĒN BĀO VƯƠNG - 0946798489

Trường hợp 2. Phương trình (*) có nghiệm kép $\Leftrightarrow \Delta = 4m^2 - 36 = 0 \Leftrightarrow \begin{vmatrix} m = 3 \\ m = -3 \end{vmatrix}$.

Trường họp 3. Phương trình (*) có hai nghiệm phân biệt x_1 , x_2 . Trong đó $x_1 = -4$.

Phương trình có hai nghiệm phân biệt x_1 , $x_2 \Leftrightarrow \Delta = 4m^2 - 36 > 0 \Leftrightarrow \begin{vmatrix} m < -3 \\ m > 3 \end{vmatrix}$.

Theo định lí Viète ta có $\begin{cases} S = x_1 + x_2 = -4 + x_2 = -2m - 6 \\ P = x_1 . x_2 = -4 . x_2 = 6m + 18 \end{cases}$

$$\Leftrightarrow \begin{cases} x_2 = -2m - 2 \\ x_2 = -\frac{3}{2}m - \frac{9}{2} \Leftrightarrow -2m - 2 = -\frac{3}{2}m - \frac{9}{2} \Leftrightarrow m = 5. \end{cases}$$

Vậy $m \in \{-3; -2; -1; 0; 1; 2; 3; 5\}$ thỏa mãn yêu cầu đề bài.

Câu 21. (Chuyên Sơn La - 2020) Gọi S là tập hợp những giá trị của tham số m để hàm số sau không có cưc tri trên \mathbb{R} .

 $f(x) = \frac{1}{4}m^2 \cdot e^{4x} + \frac{1}{3}m \cdot e^{3x} - \frac{1}{2}e^{2x} - (m^2 + m - 1)e^x$. Tổng tất cả các phần tử của tập S bằng

$$\underline{\bf A} \cdot -\frac{2}{3}$$

B.
$$\frac{2}{3}$$

B.
$$\frac{2}{3}$$
. **C.** $\frac{1}{3}$.

Chọn A

$$f'(x) = m^2 \cdot e^{4x} + m \cdot e^{3x} - e^{2x} - (m^2 + m - 1)e^x = e^x (m^2 \cdot e^{3x} + m \cdot e^{2x} - e^x - m^2 - m + 1) = 0$$

$$\Leftrightarrow m^2 \cdot e^{3x} + m \cdot e^{2x} - e^x - m^2 - m + 1 = 0.$$

Đặt $t = e^x > 0$ ta có

Ta có: $m^2t^3 + mt^2 - t - m^2 - m + 1 = 0$

$$\Leftrightarrow m^2(t^3-1) + m(t^2-1) + 1 - t = 0 \Leftrightarrow (t-1)[m^2(t^2+t+1) + m(t+1) - 1) = 0$$

$$\Leftrightarrow (t-1)[m^2t^2 + (m^2 + m)t + m^2 + m - 1] = 0$$

Điều kiện cần để hàm số không có cực trị thì phương trình $m^2t^2 + (m^2 + m)t + m^2 + m - 1$ có

nghiệm
$$t = 1 \Leftrightarrow 3m^2 + 2m - 1 = 0 \Leftrightarrow m = -1, m = \frac{1}{3}$$
.

Thử lại ta thấy với hai giá trị m trên ta đều có nghiệm đơn t=1.

Vậy hai giá trị m = -1, $m = \frac{1}{3}$ thỏa mãn.

Dạng 3. Đường thẳng đi qua 2 điểm cực trị

Phương trình hai đường thẳng đi qua 2 điểm cực trị của hàm số bậc ba là phần dư của phép chia của y cho y'

- Phân tích (bằng cách chia đa thức y cho y'): $y = y' \cdot q(x) + h(x) \Rightarrow \begin{cases} y_1 = h(x_1) \\ y_2 = h(x_2) \end{cases}$
- Đường thẳng qua 2 điểm cực tri là y = h(x).

(Mã 123 - 2017) Đồ thị hàm số $y = x^3 - 3x^2 - 9x + 1$ có hai cực trị A và B. Điểm nào dưới đây Câu 1. thuộc đường thẳng AB?

A.
$$M(0;-1)$$

B.
$$N(1;-10)$$

C.
$$P(1;0)$$

D.
$$Q(-1;10)$$

Lời giải

Ta có: $y' = 3x^2 - 6x - 9$ thực hiện phép chia y cho y' ta được số dư là y = -8x - 2. Như thế điểm N(1;-10) thuộc đường thẳng AB.

(Mã 104 - 2017) Tìm giá trị thực của tham số m để đường thẳng d: y = (2m-1)x + 3 + m vuông Câu 2. góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $y = x^3 - 3x^2 + 1$.

A. $m = \frac{3}{2}$

B. $m = \frac{3}{4}$ **C.** $m = -\frac{1}{2}$ **D.** $m = \frac{1}{4}$

Chon B

Ta có $y' = 3x^2 - 6x$. Từ đó ta có tọa độ hai điểm cực trị A(0;1), B(2;-3). Đường thẳng qua hai điểm cực trị có phương trình y = -2x + 1. Đường thẳng này vuông góc với đường thẳng

y = (2m-1)x + 3 + m khi và chỉ khi $(2m-1)(-2) = -1 \Leftrightarrow m = \frac{3}{4}$.

Tìm giá trị thực của tham số m để đường thẳng y = (2m-1)x + m + 3 song song với đường thẳng Câu 3. đi qua các điểm cực trị của đồ thị hàm số $y = x^3 - 3x^2 + 1$

A. $m = \frac{3}{4}$.

B. $m = \frac{1}{2}$.

C. $m = -\frac{3}{4}$. **D.** $m = -\frac{1}{2}$.

Chon D

Hàm số $y = x^3 - 3x^2 + 1$ có TXĐ: \mathbb{R} ; $y' = 3x^2 - 6x$; $y' = 0 \Leftrightarrow \begin{vmatrix} x = 0 \\ x = 2 \end{vmatrix}$

Suy ra đồ thị hàm số có hai điểm cực trị là A(0;1), $B(2;-3) \Rightarrow \overline{AB} = (2;-4)$.

Đường thẳng d đi qua hai điểm A, B có phương trình: $\frac{x}{2} = \frac{y-1}{4} \Leftrightarrow y = -2x+1$.

Đường thẳng y = (2m-1)x + m + 3 song song với đường thẳng $d \Leftrightarrow \begin{cases} 2m-1 = -2 \\ m+3 \neq 1 \end{cases} \Leftrightarrow m = -\frac{1}{2}$.

Đồ thị của hàm số $y = x^3 - 3x^2 - 9x + 1$ có hai điểm cực trị A và B. Điểm nào dưới đây thuộc Câu 4. đường thẳng AB.

A. P(1;0).

B. M(0;-1).

C. N(1;-10). **D.** Q(-1;10).

Lời giải

TXĐ: $D = \mathbb{R}$.

 $y' = 3x^2 - 6x - 9$.

 $y' = 0 \Leftrightarrow 3x^2 - 6x - 9 = 0 \Leftrightarrow \begin{bmatrix} x = -1 \Rightarrow y = 6 \\ x = 3 \Rightarrow y = -26 \end{bmatrix}$

Ta có A(-1;6), $B(3;-26) \Rightarrow \overrightarrow{AB} = (4;-32)$ nên) Chọn $\overrightarrow{n}_{AB} = (8;1)$.

Phương trình đường thẳng AB là:

$$8(x+1)+1(y-6)=0 \Leftrightarrow 8x+y+2=0$$
.

Thay tọa độ các điểm P, M, N, Q vào phương trình đường thẳng AB ta có điểm N(1;-10) thuộc đường thẳng.

(Lương Văn Chánh - Phú Yên - 2018) Tìm giá trị thực của tham số m để đường thẳng Câu 5. d: y = (3m+1)x+3+m vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $v = x^3 - 3x^2 - 1$.

A. $\frac{1}{2}$.

B. $-\frac{1}{6}$.

C. $m = \frac{1}{6}$. D. $-\frac{1}{2}$.

Chọn B

Xét hàm số $v = x^3 - 3x^2 - 1$

Có:
$$y' = 3x^2 - 6x$$
, $y = \left(\frac{1}{3}x - \frac{1}{3}\right)y' - 2x - 1$.

Do đó, đường thẳng Δ qua hai điểm cực trị của đồ thị hàm số này có phương trình là y = -2x - 1.

Để
$$d$$
 vuông góc với Δ thì $(3m+1) \cdot (-2) = -1 \iff m = -\frac{1}{6}$.

Vậy giá trị cần tìm của m là $m = -\frac{1}{6}$.

(TT Tân Hồng Phong - 2018) Tìm tổng tất cả các giá trị thực của tham số m sao cho đường Câu 6. thẳng đi qua hai điểm cực trị của đồ thị hàm số $y = 2x^3 + 3(m-1)x^2 + 6m(1-2m)x$ song song đường thẳng y = -4x.

A.
$$m = -\frac{1}{3}$$

B.
$$m = \frac{2}{3}$$
.

A.
$$m = -\frac{1}{3}$$
. **B.** $m = \frac{2}{3}$. **C.** $m = -\frac{2}{3}$. **D.** $m = 1$.

D.
$$m = 1$$

Chon A

Ta có
$$y' = 6x^2 + 6(m-1)x + 6m(1-2m)$$
, $y' = 0 \Leftrightarrow \begin{bmatrix} x = m \\ x = 1-2m \end{bmatrix}$.

Để hàm số có hai cực trị thì $m \neq 1 - 2m \iff m \neq \frac{1}{2}$.

Hai điểm cực trị của đồ thị hàm số là $A(m; -7m^3 + 3m^2)$, $B(1-2m; 20m^3 - 24m^2 + 9m - 1)$. Do

đó
$$\overrightarrow{AB} = (1-3m;(3m-1)^3)$$
. Do đó AB có vecto pháp tuyến là $\overrightarrow{n} = ((3m-1)^2;1)$.

Do đó
$$AB: (3m-1)^2 x + y - 2m^3 + 3m^2 - m = 0 \Leftrightarrow y = -(3m-1)^2 x + 2m^3 - 3m^2 + m$$
.

Để đường thẳng AB song song với đường thẳng y = -4x thì:

$$\begin{cases} -(3m-1)^2 = -4 \\ 2m^3 - 3m^2 + m \neq 0 \end{cases} \Leftrightarrow \begin{cases} \begin{bmatrix} m=1 \\ m = -\frac{1}{3} \end{bmatrix} \\ m \neq 0 \Leftrightarrow m = -\frac{1}{3} \end{cases} \\ m \neq \frac{1}{2} \\ m \neq 1 \end{cases}$$

(THPT Xuân Hòa-Vĩnh Phúc- 2018) Biết đồ thị hàm số $y = x^3 - 3x + 1$ có hai điểm cực trị A, Câu 7. B. Khi đó phương trình đường thẳng AB là

A.
$$y = 2x - 1$$
.

B.
$$y = -2x + 1$$
.

C.
$$y = -x + 2$$
. **D.** $y = x - 2$. **Lời giải**

D.
$$y = x - 2$$

Chọn B

Thực hiện phép chia y cho y' ta được: $y = y' \cdot \left(\frac{1}{3}x\right) + \left(-2x + 1\right)$.

Giả sử hai điểm cực trị của đồ thị hàm số lần lượt là: $A(x_1; y_1)$ và $B(x_2; y_2)$.

Ta có:
$$\begin{cases} y_1 = y(x_1) = y'(x_1) \cdot \left(\frac{1}{3}x_1\right) + (-2x_1 + 1) = -2x_1 + 1 \\ y_2 = y(x_2) = y'(x_2) \cdot \left(\frac{1}{3}x_2\right) + (-2x_2 + 1) = -2x_2 + 1 \end{cases}.$$

Ta thấy, toạ độ hai điểm cực trị A và B thoả mãn phương trình y = -2x + 1. Vậy phương trình đường thẳng qua hai điểm cực trị là: y = -2x + 1.

(Chuyên Vĩnh Phúc - 2018) Tìm tất cả các giá trị của tham số m để đồ thị hàm số Câu 8. $y = x^3 + 2x^2 + (m-3)x + m$ có hai điểm cực trị và điểm M(9, -5) nằm trên đường thẳng đi qua hai điểm cực tri của đồ thi.

A. m = -1.

B. m = -5.

D. m = 2.

Chon C

Ta có $y' = 3x^2 + 4x + m - 3$, để hàm số có hai điểm cực trị thì phương trình y' = 0 có hai nghiệm phân biệt $\Leftrightarrow \Delta' > 0 \Leftrightarrow m < \frac{13}{2}(*)$

Ta có $y = y' \cdot \left(\frac{1}{3}x + \frac{2}{9}\right) + \left(\frac{2m}{3} - \frac{26}{9}\right)x + \frac{7m}{9} + \frac{2}{3}$ nên phương trình đường thẳng đi qua hai điểm cực trị là $y = \left(\frac{2m}{3} - \frac{26}{9}\right)x + \frac{7m}{9} + \frac{2}{3}$. Theo giả thiết, đường thẳng này đi qua M(9; -5) nên m = 3(thỏa mãn điều kiện (*)).

(Nguyễn Khuyến 2019) Đường thẳng nối hai điểm cực đại và cực tiểu của đồ thị hàm số Câu 9. $y = x^3 - 2x + m$ đi qua điểm M(-3,7) khi m bằng bao nhiều?

A. 1.

B. -1.

Lời giải

D. 0.

Chọn C

Tập xác định: $D = \mathbb{R}$.

$$y' = 3x^2 - 2$$

Tập xác định:
$$D = \mathbb{R}$$
.
 $y' = 3x^2 - 2$.
 $y = x^3 - 2x + m = \frac{1}{3}x \cdot y' + \left(-\frac{4}{3}x + m\right)$
Suy ra đường thẳng đi qua các điểm cực trị của đồ t

Suy ra đường thẳng đi qua các điểm cực trị của đồ thị hàm số có phương trình là $y = -\frac{4}{2}x + m$

đường thẳng này đi qua điểm M(-3;7) khi và chỉ khi $7 = -\frac{4}{3} \cdot (-3) + m \Leftrightarrow m = 3$.

(Chuyên Lương Văn Chánh - Phú Yên - 2018) Tìm giá trị thực của tham số m để đường thẳng Câu 10. d: y = (3m+1)x+3+m vuông góc với đường thẳng đi qua hai điểm cực trị của đồ thị hàm số $v = x^3 - 3x^2 - 1$.

A. $m = \frac{1}{6}$. **B.** $-\frac{1}{3}$.

 $C. \frac{1}{3}$.

 $\underline{\mathbf{D}} \cdot -\frac{1}{6}$.

Lời giải

Xét hàm số $y = x^3 - 3x^2 - 1$

Có:
$$y' = 3x^2 - 6x$$
, $y = \left(\frac{1}{3}x - \frac{1}{3}\right)y' - 2x - 1$.

Do đó, đường thẳng Δ qua hai điểm cực trị của đồ thị hàm số này có phương trình là y = -2x - 1.

Để d vuông góc với Δ thì $(3m+1) \cdot (-2) = -1 \iff m = -\frac{1}{6}$.

Vậy giá trị cần tìm của m là $m = -\frac{1}{6}$.

(TT Diệu Hiền - Cần Thơ - 2018) Giả sử A, B là hai điểm cực trị của đồ thị hàm số Câu 11. $f(x) = x^3 + ax^2 + bx + c$ và đường thẳng AB đi qua gốc tọa độ. Tìm giá trị nhỏ nhất của P = abc + ab + c.

A.
$$-\frac{16}{25}$$
.

C.
$$-\frac{25}{9}$$
.

D. 1.

Lời giải

TXĐ $D = \mathbb{R}$.

 $f'(x) = 3x^2 + 2ax + b$. Điều kiện để hàm số có hai điểm cực trị là f'(x) = 0 có hai nghiệm phân biệt $\Rightarrow a^2 - 3b > 0$.

Lấy f(x) chia cho f'(x).

Ta có
$$f(x) = f'(x) \cdot \left(\frac{1}{3}x + \frac{1}{9}a\right) + \left(\frac{2}{3}b - \frac{2}{9}\right)x + c - \frac{1}{9}ab$$
.

Suy ra đường thẳng đi qua A, B là: $y = \left(\frac{2}{3}b - \frac{2}{9}\right)x + c - \frac{1}{9}ab$ (d).

Theo đầu bài $\left(d\right)$ đi qua gốc tọa độ $\Rightarrow c-\frac{1}{9}ab=0 \Leftrightarrow ab=9c$.

Khi đó
$$P = abc + ab + c \iff P = 9c^2 + 10c \iff P = \left(3c + \frac{5}{3}\right)^2 - \frac{25}{9}$$
.

Suy ra min $P = -\frac{25}{9}$.

Câu 12. (Chuyên Hạ Long - 2018) Tìm tất cả giá trị thực của tham số m để đồ thị hàm số $y = x^3 - 3mx^2 + 2$ có hai điểm cực trị A và B sao cho các điểm A, B và M(1; -2) thẳng hàng.

A.
$$m = \sqrt{2}$$
.

B.
$$m = -\sqrt{2}$$
.

C.
$$m = 2$$
.

D.
$$m = -\sqrt{2}$$
; $m = \sqrt{2}$.

Lời giải

Ta có: $y' = 3x^2 - 6mx$; $y' = 0 \iff 3x^2 - 6mx = 0 \iff x = 0, x = 2m$.

Đồ thị hàm số có hai điểm cực trị khi và chỉ khi phương trình y'=0 có hai nghiệm phân biệt $\Leftrightarrow 2m \neq 0 \iff m \neq 0$.

Khi đó hai điểm cực trị là A(0;2), $B(2m;2-4m^3)$.

Ta có
$$\overrightarrow{MA} = (-1;4), \ \overrightarrow{MB} = (2m-1;4-4m^3).$$

Ba điểm A, B và M(1;-2) thẳng hàng $\iff \overrightarrow{MA}$, \overrightarrow{MB} cùng phương

$$\Leftrightarrow \frac{2m-1}{-1} = \frac{4-4m^3}{4} \Leftrightarrow \frac{2m-1}{-1} = \frac{1-m^3}{1} \Leftrightarrow 2m-1 = m^3-1 \Leftrightarrow m^3 = 2m$$

 $\iff m^2 = 2 \iff m = \pm \sqrt{2} \text{ (do } m \neq 0 \text{)}.$

Dạng 4. Tìm m để hàm số bậc 3 có cực trị thỏa mãn điều kiện cho trước

- ★ <u>Bài toán tổng quát</u>: Cho hàm số $y = f(x; m) = ax^3 + bx^2 + cx + d$. Tìm tham số m để đồ thị hàm số có 2 điểm cực trị x_1 , x_2 thỏa mãn điều kiện K cho trước?
- > Phương pháp:
- **Bước 1**. Tập xác định $D = \mathbb{R}$. Tính đạo hàm: $y' = 3ax^2 + 2bx + c$.
- **Bước 2**. Để hàm số có 2 cực trị $\Leftrightarrow y' = 0$ có 2 nghiệm phân biệt $\Leftrightarrow \begin{cases} a_{y'} = 3a \neq 0 \\ \Delta_{y'} = (2b)^2 4.3ac > 0 \end{cases}$

và giải hệ này sẽ tìm được $m \in D_1$.

— **Bước 3**. Gọi
$$x_1$$
, x_2 là 2 nghiệm của phương trình $y' = 0$. Theo Viét, ta có:
$$\begin{cases} S = x_1 + x_2 = -\frac{b}{a} \\ P = x_1 x_2 = \frac{c}{a} \end{cases}$$

- **Bước 4**. Biến đổi điều kiện K về dạng tổng S và tích P. Từ đó giải ra tìm được $m \in D_2$.
- **Bước 5**. Kết luận các giá trị m thỏa mãn: $m = D_1 \cap D_2$.

ULuu ý:

- Hàm số bậc 3 không có cực trị $\Leftrightarrow y' = 0$ không có 2 nghiệm phân biệt $\Leftrightarrow \Delta_{y'} \le 0$.
- Trong trường hợp điều kiện K liên quan đến hình học phẳng, tức là cần xác định tọa độ 2 điểm cực trị $A(x_1; y_1)$, $B(x_2; y_2)$ với x_1 , x_2 là 2 nghiệm của y' = 0. Khi đó có 2 tình huống thường gặp sau:
- Nếu giải được nghiệm của phương trình y' = 0, tức tìm được x_1 , x_2 cụ thể, khi đó ta sẽ thế vào hàm số đầu đề y = f(x; m) để tìm tung độ y_1 , y_2 tương ứng của A và B.
- Nếu tìm không được nghiệm y' = 0, khi đó gọi 2 nghiệm là x_1 , x_2 và tìm tung độ y_1 , y_2 bằng cách thế vào phương trình đường thẳng nối 2 điểm cực trị.

Để viết phương trình đường thẳng nối hai điểm cực trị, ta thường dùng phương pháp tách đạo hàm (phần dư bậc nhất trong phép chia y cho y'), nghĩa là:

- Phân tích (bằng cách chia đa thức y cho y'): $y = y' \cdot q(x) + h(x) \Rightarrow \begin{cases} y_1 = h(x_1) \\ y_2 = h(x_2) \end{cases}$
- Đường thẳng qua 2 điểm cực trị là y = h(x).

Dạng toán: Tìm tham số m để các hàm số sau có cực trị thỏa điều kiện cho trước (cùng phía, khác phía d):

Vị trí tương đối giữa 2 điểm với đường thẳng:

Cho 2 điểm $A(x_A; y_A)$, $B(x_B; y_B)$ và đường thẳng d: ax + by + c = 0. Khi đó:

- $N\acute{e}u (ax_A + by_A + c) \cdot (ax_B + by_B + c) < 0$ thì A, B nằm về 2 phía so với đường thẳng d.
- $N\hat{e}u$ $(ax_A + by_A + c) \cdot (ax_B + by_B + c) > 0$ thì A, B nằm cùng phía so với đường d.

Trường hợp đặc biệt:

- Để hàm số bậc ba y = f(x) có 2 điểm cực trị nằm cùng phía so với trục tung $Oy \Leftrightarrow phương trình \ y' = 0$ có 2 nghiệm trái dấu và ngược lại.
- Để hàm số bậc ba y = f(x) có 2 điểm cực trị nằm cùng phía so với trục hoành $Ox \Leftrightarrow d\mathring{o}$ thị hàm số y = f(x) cắt trục Ox tại 3 điểm phân biệt \Leftrightarrow phương trình hoành độ giao điểm f(x) = 0 có 3 nghiệm phân biệt (áp dụng khi nhẩm được nghiêm).

Dạng toán: Tìm m để các hàm số sau có cực trị thỏa điều kiện cho trước (đối xứng và cách đều):

- **\bigstar** <u>Bài toán 1</u>. Tìm m để đồ thị hàm số có 2 điểm cực trị A, B đối xứng nhau qua đường d:
- **Bước 1**. Tìm điều kiện để hàm số có cực đại, cực tiểu $\Rightarrow m \in D_1$.
- **Bước 2**. Tìm tọa độ 2 điểm cực trị A, B. Có 2 tình huống thường gặp:
- + Một là y' = 0 có nghiệm đẹp x_1 , x_2 , tức có $A(x_1; y_1)$, $B(x_2; y_2)$.
- + Hai là y' = 0 không giải ra tìm được nghiệm. Khi đó ta cần viết phương trình đường thẳng nối 2 điểm cực trị là Δ và lấy $A(x_1; y_1)$, $B(x_2; y_2) \in \Delta$.
- **Bước 3**. Gọi $I\left(\frac{x_1+x_2}{2}; \frac{y_1+y_2}{2}\right)$ là trung điểm của đoạn thẳng AB.

Do A, B đối xứng qua d nên thỏa hệ $\begin{cases} \Delta \perp d \\ I \in d \end{cases} \Leftrightarrow \begin{cases} \overrightarrow{AB} \cdot \overrightarrow{u_d} = 0 \\ I \in d \end{cases} \Rightarrow m \in D_2.$

- **Bước 4**. Kết luận $m = D_1 \cap D_2$.
- \bigstar <u>Bài toán 2</u>. Tìm m để đồ thị hàm số có 2 điểm cực trị A, B cách đều đường thẳng

d:
 — Bước 1. Tìm điều kiện để hàm số có cực đại, cực tiểu ⇒ m ∈ D₁.
— Bước 2. Tìm tọa độ 2 điểm cực trị A, B. Có 2 tình huống thường gặp:
+ Một là y' = 0 có nghiệm đẹp x₁, x₂, tức có A(x₁; y₁), B(x₂; y₂).
+ Hai là y' = 0 không giải ra tìm được nghiệm. Khi đó ta cần viết phương trình đường thẳng nối 2 điểm cực trị là ∆ và lấy A(x₁; y₁), B(x₂; y₂) ∈ ∆.
— Bước 3. Do A, B cách đều đường thẳng d nên d(A; d) = d(B; d) ⇒ m ∈ D₂.
— Bước 4. Kết luận m = D₁ ∩ D₂.
☼ Lưu Ý: Để 2 điểm A B đối vứng nhay qua điểm L⇔ L là trung điểm AB.

Luu ý: Để 2 điểm A, B đối xứng nhau qua điểm $I \Leftrightarrow I$ là trung điểm AB.

Với giá trị nào của tham số m để đồ thị hàm số $y = x^3 - 3x^2 + m$ có hai điểm cực trị A, B thỏa Câu 1. mãn OA = OB (O là gốc tọa độ)?

A.
$$m = \frac{3}{2}$$
.

B.
$$m = 3$$

B.
$$m = 3$$
. **C.** $m = \frac{1}{2}$. $\underline{\mathbf{D}} \cdot m = \frac{5}{2}$.

$$\underline{\mathbf{D}}. \ m = \frac{5}{2}.$$

Lời giải

Chọn D

Tập xác định: $D = \mathbb{R}$.

$$y' = 3x^2 - 6x$$
, $y' = 0 \Leftrightarrow 3x^2 - 6x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2 \end{bmatrix}$.

Do đó đồ thị hàm số đã cho luôn có hai điểm cực trị lần lượt có tọa độ là A(0;m) và B(2:-4+m).

Ta có
$$OA = OB \Leftrightarrow \sqrt{0^2 + m^2} = \sqrt{2^2 + (4 - m)^2} \Leftrightarrow m^2 = 4 + (4 - m)^2 \Leftrightarrow 20 - 8m = 0 \Leftrightarrow m = \frac{5}{2}$$
.

(Đề Tham Khảo 2017) Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ thị của hàm Câu 2. số $y = \frac{1}{3}x^3 - mx^2 + (m^2 - 1)x$ có hai điểm cực trị A và B sao cho A, B nằm khác phía và cách đều đường thẳng d: y = 5x - 9. Tính tổng tất cả các phần tử của S.

D. 0

Chon D

Cách 1: Ta có $y' = x^2 - 2mx + (m^2 - 1)$

$$\Rightarrow y' = 0 \Leftrightarrow \begin{bmatrix} x = m - 1 \\ x = m + 1 \end{bmatrix} \Rightarrow A \left(m - 1; \frac{m^3 - 3m + 2}{3} \right) \text{ và } B \left(m + 1; \frac{m^3 - 3m - 2}{3} \right)$$

Dễ thấy phương trình đường thẳng $AB: y = -\frac{2}{3}x + \frac{m(m^2 - 1)}{3}$ nên AB không thể song song hoặc trùng với $d \Rightarrow A, B$ cách đều đường thẳng d: y = 5x - 9 nếu trung điểm I của AB nằm trên d

$$I\left(m; \frac{m^3 - 3m}{3}\right) \in d \Rightarrow \frac{m^3 - 3m}{3} = 5m - 9 \Leftrightarrow m^3 - 18m + 27 = 0 \Leftrightarrow \begin{bmatrix} m = 3 \\ m = \frac{-3 \pm 3\sqrt{5}}{2} \end{bmatrix}$$

Với $m = 3 \Rightarrow A, B$ thỏa điều kiện nằm khác phía so với d.

Với $m = \frac{-3 \pm 3\sqrt{5}}{2} \Rightarrow A, B$ thỏa điều kiện nằm khác phía so với d.

Tổng các phần tử của S bằng 0.

(Chuyên Biên Hòa - Hà Nam - 2020) Có tất cả bao nhiều giá trị thực của tham số m để đồ thị Câu 3. hàm số $y = \frac{2}{3}x^3 - mx^2 - 2(3m^2 - 1)x + \frac{2}{3}$ có hai điểm cực trị có hoành độ x_1 , x_2 sao cho $x_1x_2 + 2(x_1 + x_2) = 1$.

<u>A</u>. 1.

B. 0.

C. 3.

Lời giải

D. 2.

Chọn A

Ta có: $y' = 2x^2 - 2mx - 2(3m^2 - 1) = 2(x^2 - mx - 3m^2 + 1)$,

$$g(x) = x^2 - mx - 3m^2 + 1$$
; $\Delta = 13m^2 - 4$.

Đồ thị hàm số có hai điểm cực trị khi và chỉ khi y' có hai nghiệm phân biệt

 $\Leftrightarrow g(x)$ có hai nghiệm phân biệt

$$\Leftrightarrow \Delta > 0 \Leftrightarrow \begin{bmatrix} m > \frac{2\sqrt{13}}{13} \\ m < -\frac{2\sqrt{13}}{13} \end{bmatrix} \cdot (*)$$

 x_1 , x_2 là các nghiệm của g(x) nên theo định lý Vi-ét, ta có $\begin{cases} x_1 + x_2 = m \\ x_1 x_2 = -3m^2 + 1 \end{cases}$.

Do đó
$$x_1 x_2 + 2(x_1 + x_2) = 1 \iff -3m^2 + 2m + 1 = 1 \iff -3m^2 + 2m = 0 \iff \begin{bmatrix} m = 0 \\ m = \frac{2}{3} \end{bmatrix}$$

Đối chiếu với điều kiện (*), ta thấy chỉ $m = \frac{2}{3}$ thỏa mãn yêu cầu bài toán.

Câu 4. (Chuyên KHTN - 2020) Có bao nhiệu giá trị nguyên của tham số m để đồ thị hàm số $y = mx^3 - (2m-1)x^2 + 2mx - m - 1$ có hai điểm cực trị nằm về hai phía của trục hoành?

A. 4.

- **B.** 2.

D. 3.

Chon C

Đồ thị hàm số có hai điểm cực trị nằm về hai phía đối với trục hoành khi và chỉ khi phương trình $mx^3 - (2m-1)x^2 + 2mx - m - 1 = 0$ (1) có 3 nghiệm phân biệt.

Ta có (1)
$$\Leftrightarrow$$
 $(x-1)\lceil mx^2 - (m-1)x + m + 1 \rceil = 0$

Phương trình (1) có 3 nghiệm phân biệt khi và chỉ khi pt $mx^2 - (m-1)x + m + 1 = 0$ có 2 nghiệm phân biệt khác 1

$$\Leftrightarrow \begin{cases} m \neq 0 \\ m - (m-1) + m + 1 \neq 0 \\ (m-1)^2 - 4m(m+1) > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} m \neq 0 \\ m+2 \neq 0 \\ -3m^2 - 6m + 1 > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} m+2 \neq 0 \\ -3m^2 - 6m + 1 > 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} m \neq 0 \\ m \neq -2 \\ \frac{-3 - 2\sqrt{3}}{3} < m < \frac{-3 + 2\sqrt{3}}{3} \end{cases}$$

Do $m \in \mathbb{Z} \Rightarrow m = -1$.

(Chuyên Hạ Long - Quảng Ninh - 2020) Cho hàm số $y = x^3 - (m+6)x^2 + (2m+9)x - 2$. Tìm Câu 5. m để đồ thi hàm số có hai điểm cực tri nằm về hai phía của trực hoành.

$$\mathbf{A.} \begin{bmatrix} m \ge -2 \\ m \le -6 \end{bmatrix}.$$

B. $m \ge -2$.

C. $m \le -6$.

 $\underline{\mathbf{D}}. \begin{cases} m > -2 \\ m < -6 \\ m \neq \frac{-3}{2} \end{cases}.$

Lời giải

Chọn D
$$y' = 3x^2 - 2(m+6)x + 2m + 9.$$

$$y' = 3x^2 - 2(m+6)x + 2m + 9 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = \frac{2m+9}{3} \end{bmatrix}$$

Hàm số có 2 cực trị $\Leftrightarrow \frac{2m+9}{2} \neq 1 \Leftrightarrow m \neq -3$. (1)

$$y(1) = m + 2$$

$$y\left(\frac{2m+9}{3}\right) = -m\frac{\left(2m+9\right)^2}{27} - 2.$$

Ycbt
$$\Leftrightarrow y(1).y\left(\frac{2m+9}{3}\right) < 0$$

$$\Leftrightarrow (m+2) \cdot \left[-m \frac{(2m+9)^2}{27} - 2 \right] < 0 \Leftrightarrow (m+2) \cdot (4m^3 + 36m^2 + 81m + 54) > 0 \Leftrightarrow \begin{cases} m < -6 \\ m > -2 \end{cases} . (2)$$

Từ (1), (2) ta có ycbt
$$\Leftrightarrow$$

$$\begin{cases}
 m > -2 \\
 m < -6
\end{cases}$$

$$m \neq \frac{-3}{2}$$

(THPT Lê Quy Đôn Điện Biên 2019) Cho hàm số $y = \frac{1}{3}mx^3 - (m-1)x^2 + 3(m-2)x + 2018$ Câu 6. với m là tham số. Tổng bình phương tất cả các giá trị của m để hàm số có hai điểm cực trị $x_1; x_2$ thỏa mãn $x_1 + 2x_2 = 1$ bằng

A.
$$\frac{40}{9}$$

B. $\frac{22}{9}$

C. $\frac{25}{4}$ Lời giải

D. $\frac{8}{3}$

Ta có
$$y' = mx^2 - 2(m-1)x + 3(m-2)$$

Để hàm số có hai điểm cực trị thì phương trình $mx^2 - 2(m-1)x + 3(m-2) = 0$ phải có hai nghiệm phân biệt.

$$\Rightarrow \begin{cases} m \neq 0 \\ \Delta' = (m-1)^2 - 3m(m-2) > 0 \end{cases} \Leftrightarrow \begin{cases} m \neq 0 \\ -2m^2 + 4m + 1 > 0 \end{cases}$$

Theo định lý Vi-ét ta có $\begin{cases} x_1 + x_2 = \frac{2(m-1)}{m} \\ x_1 \cdot x_2 = \frac{3(m-2)}{m} \end{cases}$

Theo bài ta có hệ phương trình
$$\begin{cases} x_1 + x_2 = \frac{2(m-1)}{m} \Rightarrow \begin{cases} x_1 = \frac{3m-4}{m} \\ x_2 = 1 - \frac{2(m-1)}{m} = \frac{2-m}{m} \end{cases}$$

$$\Rightarrow \frac{3m-4}{m} \cdot \frac{2-m}{m} = \frac{3(m-2)}{m} \Rightarrow 3(2-m)m + (3m-4)(2-m) = 0 \Leftrightarrow \begin{bmatrix} m = 2(t/m) \\ m = \frac{2}{3}(t/m) \end{cases}$$
Vậy $m_1^2 + m_2^2 = \frac{40}{9}$.

(Chuyên Lê Quý Đôn Điện Biên 2019) Cho hàm số $y = -x^3 + 3mx^2 - 3m - 1$ với m là một tham Câu 7. số thực. Giá tri của m thuộc tập hợp nào sau đây để đồ thi hàm số đã cho có hai điểm cực tri đối xứng nhau qua đường thẳng d: x+8y-74=0.

A.
$$m \in (-1;1]$$
.

B.
$$m \in (-3; -1]$$
. **C.** $m \in (3; 5]$. $\underline{\mathbf{D}}$. $m \in (1; 3]$.

C.
$$m \in (3;5]$$

D.
$$m ∈ (1;3]$$
.

Lời giải

$$y' = -3x^2 + 6mx$$

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2m \end{bmatrix}$$

Đồ thị có hai cực trị khi: $m \neq 0$

Khi đó hai điểm cực trị là: $A(0;-3m-1), B(2m;4m^3-3m-1)$

Tọa độ trung điểm AB là: $I(m; 2m^3 - 3m - 1)$

A và B đối xứng qua d khi và chỉ khi: $\begin{cases} I \in d \\ \overrightarrow{AB}.\overrightarrow{u}_d = 0 \end{cases}$

$$\overrightarrow{AB} = (2m; 4m^3), \overrightarrow{u}_d = (8; -1)$$

$$\overrightarrow{AB} = (2m; 4m^3), \overrightarrow{u}_d = (8; -1)$$

$$+ \overrightarrow{AB}.\overrightarrow{u}_d = 0 \Leftrightarrow 16m - 4m^3 = 0 \Leftrightarrow \begin{bmatrix} m = 0 \\ m = 2 \\ m = -2 \end{bmatrix}$$

Với m = 0 loai

Với m=2, ta có $I(2;9) \Rightarrow I \in d$

Với m = -2, ta có $I(-2;-11) \Rightarrow I \notin d$

Do đó m = 2 thỏa mãn yêu cầu.

Có bao nhiều giá trị nguyên của tham số m để đồ thị hàm số $y = x^3 - 8x^2 + (m^2 + 11)x - 2m^2 + 2$ Câu 8. có hai điểm cực trị nằm về hai phía của trục Ox.

Chon D

Yêu cầu bài toán ⇔ đồ thị hàm số cắt trục hoành tại ba điểm phân biệt

$$\Leftrightarrow x^3 - 8x^2 + (m^2 + 11)x - 2m^2 + 2 = 0$$
 có ba nghiệm phân biệt $x^3 - 8x^2 + (m^2 + 11)x - 2m^2 + 2 = 0 \Leftrightarrow (x - 2)(x^2 - 6x + m^2 - 1) = 0$

$$\Rightarrow \begin{bmatrix} x=2 \\ x^2-6x+m^2-1-0(*) \end{bmatrix}$$

Suy ra phương trình (*) có hai nghiệm phân biệt khác 2

NGUYĒN BẢO VƯƠNG - 0946798489

$$\Leftrightarrow \begin{cases} \Delta' = 10 - m^2 > 0 \\ m^2 - 8 \neq 0 \end{cases} \Rightarrow \begin{cases} m \neq \pm 2\sqrt{2} \\ -\sqrt{10} < m < \sqrt{10} \end{cases}$$

Vậy có 7 giá trị nguyên của tham số thỏa mãn đề bài.

Câu 9. (Chuyên Hạ Long 2019) Cho hàm số $y = x^3 - (2m+1)x^2 + (m+1)x + m - 1$. Có bao nhiều giá trị của số tự nhiên m < 20 để đồ thị hàm số có hai điểm cực trị nằm về hai phía trục hoành?

A. 18.

B. 19.

C. 21.

D. 20.

+ Ta có:
$$y = (x-1)(x^2-2mx+1-m)$$
.

- + Hàm số có hai điểm cực trị nằm về hai phía trục hoành khi và chỉ khi đồ thị y cắt trục hoành tại ba điểm phân biệt. $\Leftrightarrow y = (x-1)(x^2-2mx+1-m)=0$ có ba nghiệm phân biệt.
- $\Leftrightarrow x^2 2mx + 1 m = 0$ có hai nghiệm phân biệt khác 1.

$$\Leftrightarrow \begin{cases} m^2 + m - 1 > 0 \\ 2 - 3m \neq 0 \end{cases} \Leftrightarrow \begin{cases} m < \frac{-1 - \sqrt{5}}{2} \\ m > \frac{-1 + \sqrt{5}}{2} \\ m \neq \frac{2}{3} \end{cases}.$$

+ Do $m \in N, m < 20$ nên $1 \le m < 20$. Vậy có 19 số tự nhiên thỏa mãn bài toán.

Câu 10. (Chuyên KHTN 2019) Có bao nhiều giá trị nguyên của tham số m để đồ thị của hàm số $y = x^3 - (m+1)x^2 + (m^2-2)x - m^2 + 3$ có hai điểm cực trị và hai điểm cực trị đó nằm về hai phía khác nhau đối với truc hoành?

A. 2.

. 1.

C. 3.

D. 4

Lời giải

Ta có
$$y' = 0 \Leftrightarrow 3x^2 - 2(m+1)x + m^2 - 2 = 0$$
.

Để hàm số có hai điểm cực trị $\Leftrightarrow \Delta' > 0 \Leftrightarrow -2m^2 + 2m + 7 > 0 \Leftrightarrow \frac{1 - \sqrt{15}}{2} < m < \frac{1 + \sqrt{15}}{2} (*)$.

Ta lần lượt thử bốn giá trị nguyên của m thỏa mãn (*) là -1;0;1;2.

Ta được bốn hàm số

$$y = x^3 - x + 2$$
; $y = x^3 - x^2 - 2x + 3$; $y = x^3 - 2x^2 - x + 2$; $y = x^3 - 3x^2 + x - 1$.

Khi đó ta nhận thấy chỉ có m = 1 thỏa mãn yêu cầu bài toán.

Câu 11. (THPT Lương Thế Vinh Hà Nội 2019) Tìm tất cả cá các giá trị của tham số m đề $y = x^3 - 3x^2 + mx - 1$ đạt cực trị tại x_1, x_2 thỏa mãn $x_1^2 + x_2^2 = 6$

A. m = -3

B. m = 3

C. m = -1

D. m = 1

Chọn A

 $y' = 3x^2 - 6x + m$. Hàm số đạt cực trị tại x_1, x_2 . Vậy x_1, x_2 là nghiệm của phương trình y' = 0

Theo viet ta có
$$\begin{cases} x_1 + x_2 = 2 \\ x_1 \cdot x_2 = \frac{m}{3} \end{cases}$$

$$x_1^2 + x_2^2 = (x_1 + x_2)^2 - 2x_1x_2$$

$$=4-\frac{2m}{3} \Rightarrow 4-\frac{2m}{3}=6 \Rightarrow m=-3$$

Câu 12. Có bao nhiều giá trị nguyên của m để hàm số $f(x) = 2x^3 - 6x^2 - m + 1$ có các giá trị cực trị trái dấu?

<u>A</u>. 7.

B. 9.

C. 2.

D. 3.

Lời giải

Chon A

Có $f'(x) = 6x^2 - 12x$.

$$f'(x) = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2 \end{bmatrix}$$

$$x = 0 \Rightarrow f(0) = -m + 1$$

$$x = 2 \Rightarrow f(2) = -m - 7$$

Hàm số có các giá trị cực trị trái dấu

$$\Leftrightarrow (-m+1)(-m-7) < 0 \Leftrightarrow (m-1)(m+7) < 0 \Leftrightarrow -7 < m < 1.$$

Vậy có 7 giá trị nguyên của m thỏa mãn.

(Thi thử SGD Hưng Yên) Cho hàm số $y = 2x^3 + 3(m-1)x^2 + 6(m-2)x - 1$ với m là tham số Câu 13. thực. Tìm tất cả các giá trị của m để hàm số có điểm cực đại và điểm cực tiểu nằm trong khoảng (-2;3).

<u>A.</u> $m \in (-1;4) \setminus \{3\}$. **B.** $m \in (3;4)$.

C. $m \in (1;3)$. D. $m \in (-1;4)$.

Lời giải

Chon A

Ta có $y' = 6x^2 + 6(m-1)x + 6(m-2)$.

$$y' = 0 \Leftrightarrow x^2 + (m-1)x + (m-2) = 0 \Leftrightarrow \begin{bmatrix} x = -1 \\ x = -m + 2 \end{bmatrix}.$$

Để hàm số có điểm cực đại cực tiểu nằm trong khoảng (-2;3) thì y'=0 có hai nghiệm phân biệt nằm trong khoảng $(-2;3) \Leftrightarrow \begin{cases} -m+2 \neq -1 \\ -2 < -m+2 < 3 \end{cases} \Leftrightarrow \begin{cases} m \neq 3 \\ -1 < m < 4 \end{cases}$

(THPT Cẩm Bình Hà Tỉnh 2019) Cho hàm số $y = x^3 - 3mx^2 + 4m^2 - 2$ có đồ thị (C) và điểm Câu 14. C(1;4). Tính tổng các giá trị nguyên dương của m để (C) có hai điểm cực trị A, B sao cho tam giác ABC có diên tích bằng 4.

A. 6.

B. 5.

D. 4

Chọn C

Ta có
$$y' = 3x^2 - 6mx = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2m \end{bmatrix}$$

Đồ thi (C) có hai điểm cực tri $\Leftrightarrow 2m \neq 0 \Leftrightarrow m \neq 0$.

Khi đó
$$A(0;4m^2-2), B(2m;-4m^3+4m^2-2) \Rightarrow AB = \sqrt{4m^2+16m^6} = 2|m|\sqrt{4m^4+16m^6} = 2|$$

Phương trình đường thẳng AB là: $\frac{x-0}{2m-0} = \frac{y-\left(4m^2-2\right)}{-4m^3} \Leftrightarrow 2m^2x + y - 4m^2 + 2 = 0$

$$d(C, AB) = \frac{\left|2m^2 + 4 - 4m^2 + 2\right|}{\sqrt{4m^4 + 1}} = \frac{2\left|m^2 - 3\right|}{\sqrt{4m^4 + 1}}$$

Diện tích tam giác ABC là

NGUYĒN BẢO VƯƠNG - 0946798489

$$S = \frac{1}{2}.AB.d(C, AB) = 4 \Leftrightarrow \frac{1}{2}.2|m|.\sqrt{4m^4 + 1}.\frac{2|m^2 - 3|}{\sqrt{4m^4 + 1}} = 4$$

$$\Leftrightarrow \left| m \left(m^2 - 3 \right) \right| = 2 \Leftrightarrow m^6 - 6m^4 + 9m^2 - 4 = 0 \Leftrightarrow \left(m^2 - 1 \right)^2 \left(m^2 - 4 \right) = 0 \Leftrightarrow \left| m = \pm 1 \right| m = \pm 2$$

Do m nguyên dương nên ta được m = 1, m = 2, tổng thu được là 3.

(THPT Lê Quy Đôn Điện Biên 2019) Cho hàm số $y = 2x^3 + 3(m-1)x^2 + 6(m-2)x - 1$ với Câu 15. m là tham số thực. Tìm tất cả các giá tri của m để hàm số có điểm cực đại và điểm cực tiểu nằm trong khoảng (-2;3).

A.
$$m \in (-1;3) \cup (3;4)$$
. **B.** $m \in (1;3)$.

B.
$$m \in (1;3)$$

C.
$$m \in (3;4)$$

C.
$$m \in (3;4)$$
. **D.** $m \in (-1;4)$.

Lời giải

Chon A

Ta có:
$$y' = 6x^2 + 6(m-1)x + 6(m-2)$$

Để hàm số có điểm cực đại và điểm cực tiểu nằm trong khoảng $(-2;3) \Leftrightarrow \text{pt } y' = 0$ có 2 nghiệm thuộc khoảng (-2;3)

$$\Leftrightarrow x^2 + (m-1)x + (m-2) = 0$$
 có 2 nghiệm thuộc khoảng $(-2;3)$

$$\Leftrightarrow (x+1)(x+m-2)=0$$

$$\Leftrightarrow \begin{bmatrix} x = -1 \in (-2; 3) \\ x = 2 - m \end{bmatrix}$$

$$YCBT \Leftrightarrow \begin{cases} 2 - m \neq -1 \\ -2 < 2 - m < 3 \end{cases} \Leftrightarrow \begin{cases} m \neq 3 \\ -1 < m < 4 \end{cases}$$

(Chuyên Lam Sơn Thanh Hóa 2019) Tổng tất cả các giá trị thực của tham số m để hàm số: Câu 16. $y = 3x^3 + 2(m+1)x^2 - 3mx + m - 5$ có hai điểm cực trị $x_1; x_2$ đồng thời $y(x_1).y(x_2) = 0$ là:

D.
$$3\sqrt{11}-13$$

Lời giải

Chon A

+) Để hàm số có hai cực trị thì phương trình y' = 0 phải có hai nghiệm phân biệt:

$$y' = 9x^2 + 4(m+1)x - 3m$$
 có hai nghiệm phân biệt $\Leftrightarrow \Delta' = 4(m+1)^2 + 27m > 0$

+) Xét $y(x_1).y(x_2) = 0$ nên ta có $y = 3x^3 + 2(m+1)x^2 - 3mx + m - 5$ phải tiếp xúc với trục hoành

$$\Rightarrow 3x^3 + 2(m+1)x^2 - 3mx + m - 5 = 0 \text{ phải có nghiệm kép}$$

$$\Leftrightarrow$$
 $(x-1)[3x^2+(2m+5)x-m+5]=0(1)$ phải có nghiệm kép

+) TH1: Phương trình $3x^2 + (2m+5)x - m + 5 = 0$ có một nghiệm $x = 1 \Rightarrow m_1 = -13$

+) TH2: Phương trình $3x^2 + (2m+5)x - m + 5 = 0$ có nghiệm kép khác 1

$$\Rightarrow \Delta = (2m+5)^2 - 12(5-m) = 0 \Leftrightarrow 4m^2 + 32m - 35 = 0 \Rightarrow m_2 + m_3 = -8$$

$$\Rightarrow m_1 + m_2 + m_3 = -21$$

Câu 17. (Chuyên Bắc Ninh 2019) Gọi S là tập các giá trị dương của tham số m sao cho hàm $\text{số } y = x^3 - 3mx^2 + 27x + 3m - 2 \quad \text{đạt cực trị tại } x_1, x_2 \quad \text{thỏa mãn } \left| x_1 - x_2 \right| \leq 5 \,. \text{ Biết } S = \left(a; b\right]. \quad \text{Tính}$ T = 2b - a.

A.
$$T = \sqrt{51} + 6$$

B.
$$T = \sqrt{61} + 3$$

C.
$$T = \sqrt{61} - 3$$
 D. $T = \sqrt{51} - 6$

D.
$$T = \sqrt{51} - 6$$

Chon C

+) Ta có
$$y' = 3x^2 - 6mx + 27$$
, $y' = 0 \Leftrightarrow x^2 - 2mx + 9 = 0$ (1)

+) Theo giả thiết hàm số đạt cực trị tại $x_1, x_2 \Leftrightarrow$ phương trình (1) có 2 nghiệm phân biệt

$$\Leftrightarrow \Delta' > 0 \Leftrightarrow m^2 - 9 > 0 \Leftrightarrow \begin{bmatrix} m > 3 \\ m < -3 \end{bmatrix} (*)$$

+) Với điều kiện (*) thì phương trình (1) có 2 nghiệm x_1, x_2 , theo Vi-ét ta có: $\begin{cases} x_1 + x_2 = 2m \\ x_1 x_2 = 9 \end{cases}$

+) Ta lại có
$$|x_1 - x_2| \le 5 \Leftrightarrow (x_1 - x_2)^2 \le 25 \Leftrightarrow (x_1 + x_2)^2 - 4x_1x_2 - 25 \le 0$$

$$\Leftrightarrow 4m^2 - 61 \le 0 \Leftrightarrow -\frac{\sqrt{61}}{2} \le m \le \frac{\sqrt{61}}{2}$$
 (**)

+) Kết hợp (*), (**) và điều kiện m dương ta được: $3 < m \le \frac{\sqrt{61}}{2}$

$$\Rightarrow \begin{cases} a = 3 \\ b = \frac{\sqrt{61}}{2} \Rightarrow T = 2b - a = \sqrt{61} - 3. \end{cases}$$

(Sở Bắc Giang 2019) Gọi S là tập hợp các giá trị nguyên của tham số m để hàm số Câu 18. $y = \frac{x^3}{3} - 2x^2 + mx + 3$ có hai điểm cực trị $x_1, x_2 \le 4$. Số phần tử của S bằng

D. 4.

Lời giải

Ta có:
$$y = \frac{x^3}{3} - 2x^2 + mx + 3 \Rightarrow y' = x^2 - 4x + m$$
.

Hàm số có hai điểm cực trị x_1, x_2 thì phương trình y' = 0 có hai nghiệm phân biệt

$$\Leftrightarrow \Delta' > 0 \Leftrightarrow 4 - m > 0 \Leftrightarrow m < 4$$
.

Khi đó giả sử
$$x_1 < x_2$$
, $y' = 0 \Leftrightarrow \begin{bmatrix} x_1 = 2 - \sqrt{4 - m} \\ x_2 = 2 + \sqrt{4 - m} \end{bmatrix}$

Yêu cầu bài toán trở thành $x_2 \le 4 \Leftrightarrow 2 + \sqrt{4 - m} \le 4 \Leftrightarrow 0 \le m \le 4$.

Kết hợp với m < 4 ta được $0 \le m < 4$. Do m nguyên nên $m \in \{0;1;2;3\}$. Vậy có 4 giá trị của mthỏa mãn yêu cầu bài toán.

(Toán Học Tuổi Trẻ 2019) Tìm giá trị thực của tham số m để hàm số Câu 19. $y = x^3 + 4(m-2)x^2 - 7x + 1$ có hai điểm cực tri $x_1; x_2(x_1 < x_2)$ thỏa mãn $|x_1| - |x_2| = -4$

A. m = 5.

B. $m = \frac{1}{2}$. **C.** m = 3. **D.** $m = \frac{7}{2}$.

Lời giải

Ta có
$$y = x^3 + 4(m-2)x^2 - 7x + 1$$
 (1)

$$\Rightarrow y' = 3x^2 + 8(m-2)x - 7$$
. Xét phương trình $3x^2 + 8(m-2)x - 7 = 0$ (2)

 $\Delta \, ' = \left[4 \big(m - 2 \big) \right]^2 + 21 > 0 \, , \, \text{với mọi m} \, \Rightarrow \text{hàm số (1) luôn có hai điểm cực trị} \, \, x_1; x_2 \, \text{với mọi } m \, .$

*Ta thấy $ac = -21 < 0 \Rightarrow$ phương trình (2) có 2 nghiệm trái dấu

$$\Rightarrow x_1 < 0; x_2 > 0 \Rightarrow |x_1| = -x_1; |x_2| = x_2$$

*Ta có
$$|x_1| - |x_2| = -4 \Rightarrow -x_1 - x_2 = -4 \Leftrightarrow -(x_1 + x_2) = -4 \Leftrightarrow \frac{8(m-2)}{3} = -4 \Leftrightarrow m = \frac{1}{2}$$

Câu 20. Có bao nhiêu giá trị nguyên của tham số m để điểm $M(2m^3; m)$ tạo với hai điểm cực đại, cực tiểu của đồ thị hàm số $y = 2x^3 - 3(2m+1)x^2 + 6m(m+1)x + 1$ (C) một tam giác có diện tích nhỏ nhất?

B. 1

C. 2 Lời giải **D.** không tồn tại

Chon B

Ta có $y' = 6x^2 - 6(2m+1)x + 6m(m+1)$

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = m \\ x = m + 1 \Rightarrow \forall m \in R, \text{ hàm số luôn có CĐ, CT} \end{bmatrix}$$

Tọa độ các điểm CĐ, CT của đồ thị là $A(m; 2m^3 + 3m^2 + 1), B(m+1; 2m^3 + 3m^2)$

Suy ra $AB = \sqrt{2}$ và phương trình đường thẳng $AB: x + y - 2m^3 - 3m^2 - m - 1 = 0$

Do đó, tam giác MAB có diện tích nhỏ nhất khi và chỉ khi khoảng cách từ M tới AB nhỏ nhất

Ta có
$$d(M, AB) = \frac{3m^2 + 1}{\sqrt{2}} \ge \frac{1}{\sqrt{2}}$$
, dấu "=" khi $m = 0$

(HSG Bắc Ninh 2019) Tìm tất cả các giá trị thực của tham số thực m để đường thẳng đi qua hai Câu 21. điểm cực đại, cực tiểu của đồ thị hàm số $y = x^3 - 3mx + 2$ cắt đường tròn (C) có tâm I(1;1), bán kính bằng 1 tại hai điểm phân biệt A,B sao cho diện tích tam giác IAB đạt giá trị lớn nhất.

A.
$$m = \frac{2 \pm \sqrt{3}}{3}$$

B.
$$m = \frac{2 \pm \sqrt{3}}{2}$$

D.
$$m = \frac{2 \pm \sqrt{5}}{2}$$

Lời giải

Ta có: $y' = 3x^2 - 3m$ suy ra đồ thị hàm số có điểm cực đại và cực tiểu khi m > 0. Các điểm cực đại, cực tiểu của đồ thị hàm số là $C(-\sqrt{m};2+2m\sqrt{m});D(\sqrt{m};2-2m\sqrt{m})$

Đường thẳng Δ đi qua các điểm CĐ, CT của đồ thị hàm số có phương trình là: y = -2mx + 2. Do

$$d(I, \Delta) = \frac{|2m-1|}{\sqrt{4m^2+1}} < R = 1 \text{ (vì m} > 0) \Rightarrow \Delta \text{ luôn cắt đường tròn tâm } I(1;1), bán kính $R = 1 \text{ tại } 2$$$

điểm A, B phân biệt. Dễ thấy $m = \frac{1}{2}$ không thõa mãn do A, I, B thẳng hàng.

Với
$$m \neq \frac{1}{2}$$
: Δ không đi qua I, ta có: $S_{\Delta ABI} = \frac{1}{2}IA.IB.\sin AIB \leq \frac{1}{2}R^2 = \frac{1}{2}$.

Do đó $S_{\Delta IAB}$ lớn nhất bằng $\frac{1}{2}$ khi sin $\widehat{AIB} = 1$ hay ΔAIB vuông cân tại $I \Leftrightarrow IH = \frac{R}{\sqrt{2}} = \frac{1}{\sqrt{2}}$

$$\Leftrightarrow \frac{|2m-1|}{\sqrt{4m^2+1}} = \frac{1}{\sqrt{2}} \Leftrightarrow m = \frac{2\pm\sqrt{3}}{2}$$
 (*H* là trung điểm của *AB*)

(VTED 2019) Biết đồ thị hàm số $y = x^3 + ax^2 + bx + c$ có hai điểm cực trị $M(x_1; y_1), N(x_2; y_2)$ Câu 22. thỏa mãn $x_1(y_1-y_2)=y_1(x_1-x_2)$. Giá trị nhỏ nhất của biểu thức P=abc+2ab+3c bằng

A.
$$-\frac{49}{4}$$

B.
$$-\frac{25}{4}$$

B.
$$-\frac{25}{4}$$
 C. $-\frac{841}{36}$ **D.** $-\frac{7}{6}$

D.
$$-\frac{7}{6}$$

Lời giải

Chon A

Ta có
$$y' = 3x^2 + 2ax + b$$

Chia y cho y' ta được
$$y = y' \left(\frac{1}{3} x + \frac{1}{9} a \right) + \left(-\frac{a^2}{9} - \frac{2b}{3} \right) x + c - \frac{ab}{9}$$
.

Do
$$M(x_1; y_1), N(x_2; y_2)$$
 là hai điểm cực trị nên $y'(x_1) = 0, y'(x_2) = 0$

Do đó
$$y_1 = \left(-\frac{a^2}{9} - \frac{2b}{3}\right)x_1 + c - \frac{ab}{9}; y_2 = \left(-\frac{a^2}{9} - \frac{2b}{3}\right)x_2 + c - \frac{ab}{9}$$

Theo giả thiết
$$x_1(y_1 - y_2) = y_1(x_1 - x_2) \iff x_1 y_2 = x_2 y_1$$

$$\Leftrightarrow x_1 \left[\left(-\frac{a^2}{9} - \frac{2b}{3} \right) x_2 + c - \frac{ab}{9} \right] = x_2 \left[\left(-\frac{a^2}{9} - \frac{2b}{3} \right) x_1 + c - \frac{ab}{9} \right]$$

$$\Leftrightarrow x_1 \left(c - \frac{ab}{9} \right) = x_2 \left(c - \frac{ab}{9} \right) \Leftrightarrow c - \frac{ab}{9} = 0 (x_1 \neq x_2) \Leftrightarrow ab = 9c$$

Ta có:
$$P = abc + 2ab + 3c = 9c^2 + 21c = \left(3c + \frac{7}{2}\right)^2 - \frac{49}{4} \ge -\frac{49}{4}$$

Vậy giá trị nhỏ nhất của biểu thức P = abc + 2ab + 3c bằng $-\frac{49}{4}$

Câu 23. Cho hàm số $y = x^3 - 3mx^2 + 3(m^2 - 1)x - m^3 - m$ (m là tham số). Gọi A, B là hai điểm cực trị của đồ thị hàm số và I(2;-2). Tổng tất cả các giá trị của m để ba điểm I, A, B tạo thành tam giác nội tiếp đường tròn có bán kính bằng $\sqrt{5}$ là

A.
$$\frac{4}{17}$$
.

B.
$$\frac{14}{17}$$

$$C. -\frac{2}{17}$$

D.
$$\frac{20}{17}$$

Lời giải

Chon D

Tập xác định $D = \mathbb{R}$.

$$y' = 3x^2 - 6mx + 3(m^2 - 1).$$

Cho
$$y' = 0 \iff x^2 - 2mx + m^2 - 1 = 0$$
.

Vì $\Delta' = 1 > 0 \ \forall m$ nên phương trình y' = 0 luôn có hai nghiệm phân biệt $x = m \pm 1$.

Gọi
$$A(m+1;-4m-2)$$
, $B(m-1;-4m+2)$.

Suy ra
$$\overrightarrow{AB} = (-2;4) = -2(1;-2)$$
, $\overrightarrow{IA} = (m-1;-4m)$, $\overrightarrow{IB} = (m-3;-4m+4)$.

Phương trình đường thẳng AB qua A(m+1;-4m-2) và có vecto pháp tuyến $\vec{n}=(2;1)$ là AB:2x+y+2m=0.

Suy ra
$$d(I, AB) = \frac{|2+2m|}{\sqrt{5}}$$
.

Khi đó
$$S_{\Delta IAB} = \frac{1}{2} AB.d(I, AB) = \frac{1}{2} 2\sqrt{5} \frac{|2+2m|}{\sqrt{5}} = |2+2m|.$$

Mặt khác
$$S_{\Delta IAB} = \frac{AB.IA.IB}{4R} \iff AB.IA.IB = 4\sqrt{5} |2 + 2m|$$
.

$$\Leftrightarrow \sqrt{20}\sqrt{17m^2 - 2m + 1}\sqrt{17m^2 - 38m + 25} = 4\sqrt{5}|2 + 2m|$$

$$\Leftrightarrow$$
 $(17m^2 - 2m + 1)(17m^2 - 38m + 25) = 4(4m^2 + 8m + 4)$

$$\Leftrightarrow 289m^4 - 680m^3 + 502m^2 - 120m + 9 = 0$$

$$\Leftrightarrow \begin{bmatrix} m=1\\ m=\frac{3}{17} \end{bmatrix}.$$

Vậy
$$m_1 + m_2 = \frac{20}{17}$$
.

Câu 24. Cho hàm số $y = x^3 - 6mx + 4$ có đồ thị (C_m) . Gọi m_0 là giá trị của m để đường thẳng đi qua điểm cực đại, điểm cực tiểu của (C_m) cắt đường tròn tâm I(1;0), bán kính $\sqrt{2}$ tại hai điểm phân biệt A, B sao cho tam giác IAB có diện tích lớn nhất. Chọn khẳng định đúng

A.
$$m_0 \in (3;4)$$
.

B.
$$m_0 \in (1;2)$$
.

$$\underline{\mathbf{C}}$$
. $m_0 \in (0;1)$.

D.
$$m_0 \in (2;3)$$
.

Lời giải

Ta có:
$$y' = 3x^2 - 6m$$

$$y' = 0 \Leftrightarrow x^2 = 2m$$

Hàm số có cực đại, cực tiểu $\Leftrightarrow y' = 0$ có hai nghiệm phân biệt

$$\Leftrightarrow m > 0$$

Gọi
$$A\left(\sqrt{2m};4-4m\sqrt{2m}\right)$$
 và $B\left(-\sqrt{2m};4+4m\sqrt{2m}\right)$

Phương trình đường thẳng AB:4mx+y-4=0

Đặt
$$a = d(I, AB) (0 < a < \sqrt{2}) \implies HB = \sqrt{2 - a^2}$$

Suy ra
$$S_{\Delta IAB} = a\sqrt{2-a^2} \le \frac{1}{2}(a^2+2-a^2) = 1$$

Dấu "=" xảy ra
$$\Leftrightarrow a = \sqrt{2 - a^2} \Leftrightarrow a = 1$$

Khi đó
$$d(I; AB) = \frac{|4m+0-4|}{\sqrt{16m^2+1}} = 1 \Leftrightarrow \sqrt{16m^2+1} = 4|m-1|$$

$$\Leftrightarrow 16m^2 + 1 = 16m^2 - 32m + 16 \Leftrightarrow m = \frac{15}{32}$$

Câu 25. (**Chuyên Lương Văn Chánh - Phú Yên - 2018**) Cho hàm số $y = \frac{1}{3}x^3 - \frac{1}{2}mx^2 - 4x - 10$, với m là tham số; gọi x_1 , x_2 là các điểm cực trị của hàm số đã cho. Giá trị lớn nhất của biểu thức $P = (x_1^2 - 1)(x_2^2 - 1)$ bằng

A. 4.

B. 1.

C. 0. Lời giải **D.** 9.

Tập xác đinh $D = \mathbb{R}$.

Đạo hàm $y' = x^2 - mx - 4$.

Khi đó
$$y' = 0 \Leftrightarrow x^2 - mx - 4 = 0$$
.

Ta có $\Delta = m^2 + 16 > 0$, $\forall m \in \mathbb{R} \implies y' = 0$ luôn có hai nghiệm phân biệt $\forall m \in \mathbb{R}$ hay hàm số luôn có hai điểm cực trị x_1 , x_2 $\forall m \in \mathbb{R}$.

Do x_1 , x_2 là hai nghiệm phân biệt của y' = 0 nên theo định lý Viet ta có $\begin{cases} x_1 + x_2 = m \\ x_1 \cdot x_2 = -4 \end{cases}$.

$$P = (x_1^2 - 1)(x_2^2 - 1) = (x_1x_2)^2 - (x_1^2 + x_2^2) + 1 = (x_1x_2)^2 - (x_1 + x_2)^2 + 2x_1x_2 + 1$$

$$=16-m^2-8+1=-m^2+9\leq 9, \forall m\in\mathbb{R}.$$

Do đó giá trị lớn nhất của biểu thức P bằng $9 \Leftrightarrow m = 0$.

Câu 26. (Chuyên Lương Văn Chánh - Phú Yên - 2018) Cho hàm số $y = x^3 - 3mx^2 + 3(m^2 - 1)x - m^3$, với m là tham số; gọi (C) là đồ thị của hàm số đã cho. Biết rằng khi m thay đổi, điểm cực đại của đồ thị (C) luôn nằm trên một đường thẳng d cố định. Xác định hệ số góc k của đường thẳng d.

A.
$$k = -\frac{1}{3}$$
. **B.** $k = \frac{1}{3}$.

B.
$$k = \frac{1}{3}$$
.

C.
$$k = -3$$
.

D.
$$k = 3$$
.

Lời giải

Tập xác đinh $D = \mathbb{R}$.

Ta có $y' = 3x^2 - 6mx + 3(m^2 - 1)$ và y'' = 6x - 6m.

Khi đó $y' = 0 \Leftrightarrow 3x^2 - 6mx + 3(m^2 - 1) = 0$.

 $\Delta' = 9m^2 - 9(m^2 - 1) = 9 \quad \text{nên hàm số luôn có hai điểm cực trị} \quad x = \frac{3m + 3}{2} = m + 1 \quad \text{và}$

$$x = \frac{3m-3}{3} = m-1$$
.

 $y''(m-1) = 6(m-1) - 6m = -6 < 0 \Rightarrow x = m-1$ là điểm cực đại của hàm số

 $\Rightarrow A(m-1;-3m+2)$ là điểm cực đại của đồ thị (C).

Ta có
$$\begin{cases} x_A = m - 1 \\ y_A = -3m + 2 \end{cases} \Rightarrow y_A = -3x_A - 1$$

 \Rightarrow A luôn thuộc đường thẳng d có phương trình y = -3x - 1.

Do đó hệ số góc k của đường thẳng d là -3.

Câu 27. (Chuyên Hùng Vương - Phú Thọ - 2018) Biết m_0 là giá trị của tham số m để hàm số $y = x^3 - 3x^2 + mx - 1$ có hai điểm cực trị x_1, x_2 sao cho $x_1^2 + x_2^2 - x_1x_2 = 13$. Mệnh đề nào dưới đây đúng?

A.
$$m_0 \in (-1;7)$$
.

B.
$$m_0 \in (7;10)$$
.

$$\underline{\mathbf{C}}$$
. $m_0 \in (-15, -7)$. \mathbf{D} . $m_0 \in (-7, -1)$.

D.
$$m_0 \in (-7;-1)$$
.

Lời giải

TXĐ:
$$D = \mathbb{R}$$

$$y' = 3x^2 - 6x + m$$
.

Xét
$$y' = 0 \iff 3x^2 - 6x + m = 0$$
; $\Delta' = 9 - 3m$.

Hàm số có hai điểm cực trị $\Leftrightarrow \Delta' > 0 \Leftrightarrow m < 3$.

Hai điểm cực trị x_1 ; x_2 là nghiệm của y' = 0 nên: $x_1 + x_2 = 2$; $x_1 \cdot x_2 = \frac{m}{2}$.

$$D\hat{e} \ x_1^2 + x_2^2 - x_1 x_2 = 13 \Leftrightarrow (x_1 + x_2)^2 - 3x_1 \cdot x_1 = 13$$

$$\Leftrightarrow 4-m=13 \Leftrightarrow m=-9$$
. Vậy $m_0=-9 \in (-15;-7)$.

(THPT Thanh Miện I - Hải Dương 2018) Biết rằng đồ thị hàm số $f(x) = \frac{1}{2}x^3 - \frac{1}{2}mx^2 + x - 2$ Câu 28. có giá trị tuyệt đối của hoành độ hai điểm cực trị là độ dài hai cạnh của tam giác vuông có cạnh huyền là $\sqrt{7}$. Hỏi có mấy giá trị của m?

Lời giải

Có
$$y'(x) = x^2 - mx + 1$$
, $y' = 0 \Leftrightarrow x^2 - mx + 1 = 0$ (1).

• Để hàm số có cực trị thì (1) phải có hai nghiệm phân biệt.

Điều này tương đương với $\Delta > 0 \iff m^2 - 4 > 0 \iff \begin{vmatrix} m > 2 \\ m < -2 \end{vmatrix}$.

• Gọi hai nghiệm của (1) là x_1 , x_2 . Khi đó, ta có $\begin{cases} x_1 + x_2 = m \\ x_1 \cdot x_2 = 1 \end{cases}$

Độ dài hai cạnh của tam giác vuông đó là $|x_1|$, $|x_2|$. Theo bài ra ta có phương trình:

$$x_1^2 + x_2^2 = 7 \iff (x_1 + x_2)^2 - 2x_1x_2 = 7 \iff m^2 - 2 = 7 \iff m^2 = 9 \iff m = \pm 3 \text{ (thoa man)}.$$

Vậy có hai giá trị của m thỏa mãn yêu cầu bài toán.

NGUYĒN BẢO VƯƠNG - 0946798489

(Phan Đăng Lưu - Huế - 2018) Gọi A, B là hai điểm cực trị của đồ thị hàm số Câu 29. $f(x) = -x^3 + 3x - 4$ và $M(x_0; 0)$ là điểm trên trục hoành sao cho tam giác MAB có chu vi nhỏ nhất, đặt $T=4x_0+2015$. Trong các khẳng định dưới đây, khẳng định nào đúng?

A.
$$T = 2017$$
.

B.
$$T = 2019$$
.

C.
$$T = 2016$$
.

D.
$$T = 2018$$
.

Lời giải

Tập xác định: $D = \mathbb{R}$. Đạo hàm: $f'(x) = -3x^2 + 3$.

Xét
$$f'(x) = 0 \Leftrightarrow -3x^2 + 3 = 0 \Leftrightarrow \begin{bmatrix} x = 1 \Rightarrow y = -2 \\ x = -1 \Rightarrow y = -6 \end{bmatrix}$$
. Đặt $A(1; -2)$ và $B(-1; -6)$.

Ta thấy hai điểm A và B nằm cùng phía với trục hoành.

Gọi A'(1;2) là điểm đối xứng với điểm A qua trục hoành. Chu vi tam giác MAB đạt giá trị nhỏ nhất khi và chỉ khi ba điểm B, M và A' thẳng hàng.

Ta có:
$$\overrightarrow{A'M} = (x_0 - 1; -2)$$
 và $\overrightarrow{A'B} = (-2; -8) \Rightarrow \frac{x_0 - 1}{-2} = \frac{-2}{-8} \Leftrightarrow x_0 = \frac{1}{2} \Rightarrow M(\frac{1}{2}; 0)$.

Vậy
$$T = 4.\frac{1}{2} + 2015 = 2017$$
.

(Chuyên Hà Tĩnh - 2018) Tổng tất cả các giá tri của tham số thực m sao cho đồ thi hàm số Câu 30. $y = x^3 - 3mx^2 + 4m^3$ có điểm cực đại và cực tiểu đối xứng với nhau qua đường phân giác của góc phần tư thứ nhất là

A.
$$\frac{\sqrt{2}}{2}$$
.

B.
$$\frac{1}{2}$$
.

D.
$$\frac{1}{4}$$
.

Lời giải

Ta có:
$$y' = 3x^2 - 6mx$$
, $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2m \end{bmatrix}$.

Để hàm số có cực đại cực tiểu thì $m \neq 0$.

Khi đó các điểm cực trị của đồ thị hàm số là: $A(0;4m^3)$, B(2m;0).

Ta có $I(m;2m^3)$ là trung điểm của đoạn thẳng AB.

Đường phân giác của góc phần tư thứ nhất là d: x - y = 0.

Do đó để điểm cực đại và cực tiểu đối xứng với nhau qua d thì:

$$\begin{cases} 2m - 4m^3 = 0 \\ m - 2m^3 = 0 \end{cases} \Leftrightarrow 1 - 2m^2 = 0 \Leftrightarrow m = \pm \frac{\sqrt{2}}{2}.$$

Vậy tổng tất cả các giá trị của tham số thực m là 0.

(THPT Triệu Thị Trinh - 2018) Tìm tất cả các giá tri của tham số thực m sao cho đồ thi hàm số $y = x^3 - 5x^2 + (m+4)x - m$ có hai điểm cực trị nằm về hai phía đối với trục hoành.

$$A. \varnothing$$

B.
$$(-\infty;3) \cup (3;4]$$
. **C.** $(-\infty;3) \cup (3;4)$. **D.** $(-\infty;4)$.

$$\underline{\mathbf{C}}$$
. $(-\infty;3)\cup(3;4)$.

D.
$$(-\infty;4)$$

Ta có
$$y = x^3 - 5x^2 + (m+4)x - m = (x-1)(x^2 - 4x + m)$$

Đồ thị hàm số đã cho có hai điểm cực trị nằm về hai phía trục hoành khi và chỉ khi phương trình y = 0 có ba nghiệm phân biệt $\Leftrightarrow x^2 - 4x + m = 0$ có hai nghiệm phân biệt khác 1

$$\Leftrightarrow \begin{cases} 4-m>0\\ 1-4+m\neq 0 \end{cases} \Leftrightarrow \begin{cases} m<4\\ m\neq 3 \end{cases}.$$

Câu 32. (CTN - LÀN 1 - 2018) Biết $\frac{a}{b}$ (trong đó $\frac{a}{b}$ là phân số tối giản và a, $b \in \mathbb{N}^*$) là giá trị của tham số m để hàm số $y = \frac{2}{3}x^3 - mx^2 - 2(3m^2 - 1)x + \frac{2}{3}$ có 2 điểm cực trị x_1 , x_2 sao cho $x_1x_2 + 2(x_1 + x_2) = 1$. Tính giá trị biểu thức $S = a^2 + b^2$. **A.** S = 13. **B.** S = 25. **C.** S = 10.

A.
$$S = 13$$
.

B.
$$S = 25$$

C.
$$S = 10$$

D.
$$S = 34$$
.

Lời giải

Tập xác định: $D = \mathbb{R}$.

Đạo hàm $y' = 2x^2 - 2mx - 6m^2 + 2$.

Hàm số có hai điểm cực tri

$$\Leftrightarrow \Delta' > 0 \Leftrightarrow m^2 - 2(-6m^2 + 2) > 0 \Leftrightarrow 13m^2 - 4 > 0 \Leftrightarrow \left[m > \frac{2\sqrt{13}}{13} \right]$$

$$m < -\frac{2\sqrt{13}}{13}$$

Theo định lý Viet thì $\begin{cases} x_1 + x_2 = m \\ x_1 x_2 = -3m^2 + 1 \end{cases}$

Ta có
$$x_1 x_2 + 2(x_1 + x_2) = 1 \Leftrightarrow -3m^2 + 1 + 2m = 1 \Leftrightarrow 3m^2 - 2m = 0 \Leftrightarrow \begin{bmatrix} m = 0 \\ m = \frac{2}{3} \end{bmatrix}$$

Chỉ có giá trị $m = \frac{2}{3}$ thỏa điều kiện, khi đó $S = a^2 + b^2 = 2^2 + 3^2 = 13$.

Gọi S là tập hợp tất cả các giá trị nguyên của tham số m để điểm cực tiểu của đồ thị hàm số $y = x^3 + x^2 + mx - 1$ nằm bên phải trực tung. Tìm số phần tử của tập hợp $(-5,6) \cap S$.

Lời giải

Tập xác định: $D = \mathbb{R}$; $y' = 3x^2 + 2x + m$.

Hàm bậc ba có cực trị khi y' = 0 có 2 nghiệm phân biệt $\Leftrightarrow \Delta' = 1 - 3m > 0 \Leftrightarrow m < \frac{1}{3}$ (1).

Khi đó
$$y' = 0 \Leftrightarrow \begin{bmatrix} x = -1 - \sqrt{1 - 3m} \\ x = -1 + \sqrt{1 - 3m} \end{bmatrix}$$

Bảng biến thiên:

x	-∞	$-1-\sqrt{1-3}$	m	$-1 + \sqrt{1-3n}$	n	+∞
y'	+	0	_	0	+	
у		y _{CĐ} .		y _{CT} /		, +∞

Điểm cực tiểu của đồ thị hàm số nằm về phía bên phải trục tung khi

$$-1 + \sqrt{1 - 3m} > 0 \Leftrightarrow \sqrt{1 - 3m} > 1 \Leftrightarrow m < 0$$
.

Kết hợp với (1) ta có m < 0 thì điểm cực tiểu của đồ thị hàm số đã cho nằm bên phải trục tung.

NGUYĒN BẢO VƯƠNG - 0946798489

Khi đó S là tập hợp tất cả các giá trị nguyên âm.

Vậy $(-5,6) \cap S = \{-4,-3,-2,-1\} \Rightarrow (-5,6) \cap S$ có 4 phần tử.

Vậy giá trị m cần tìm là $m \le -1$ hoặc $m \ge 3$.

Câu 34. (THPT Nghen - Hà Tĩnh - 2018) Cho hàm số $y = -x^3 + 3x^2 + 3(m^2 - 1)x - 3m^2 - 1$. Có bao nhiêu giá trị nguyên của m để đồ thị hàm số có điểm cực đại, cực tiểu nằm bên trái đường thẳng x = 2?

Lời giải

$$y = -x^3 + 3x^2 + 3(m^2 - 1)x - 3m^2 - 1 \implies y' = -3x^2 + 6x + 3(m^2 - 1).$$

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 1 - m \\ x = 1 + m \end{bmatrix}$$

Để đồ thị hàm số có điểm cực đại, cực tiểu nằm bên trái đường thẳng x = 2 thì

$$\begin{cases} m \neq 0 \\ 1+m < 2 \Leftrightarrow \begin{cases} m \neq 0 \\ m < 1 \\ 1-m < 2 \end{cases} \end{cases}$$

Vây không có giá trị nguyên nào của m thỏa yêu cầu bài toán.

(Chuyên Hạ Long - 2018) Tìm tất cả giá trị thực của tham số m để đồ thị hàm số Câu 35. $y = x^3 - 3mx^2 + 2$ có hai điểm cực trị A và B sao cho các điểm A, B và M(1; -2) thẳng hàng.

A.
$$m = \sqrt{2}$$
.

B.
$$m = -\sqrt{2}$$
.

C.
$$m = 2$$
.

D.
$$m = -\sqrt{2}$$
; $m = \sqrt{2}$.

Lời giải

Ta có: $y' = 3x^2 - 6mx$; $y' = 0 \iff 3x^2 - 6mx = 0 \iff x = 0, x = 2m$.

Đồ thị hàm số có hai điểm cực trị khi và chỉ khi phương trình y'=0 có hai nghiệm phân biệt \Leftrightarrow $2m \neq 0 \iff m \neq 0$.

Khi đó hai điểm cực trị là A(0;2), $B(2m;2-4m^3)$.

Ta có
$$\overrightarrow{MA} = (-1, 4), \ \overrightarrow{MB} = (2m - 1, 4 - 4m^3).$$

Ba điểm A, B và M(1,-2) thẳng hàng $\Leftrightarrow \overrightarrow{MA}$, \overrightarrow{MB} cùng phương

$$\Leftrightarrow \frac{2m-1}{-1} = \frac{4-4m^3}{4} \Leftrightarrow \frac{2m-1}{-1} = \frac{1-m^3}{1} \Leftrightarrow 2m-1 = m^3 - 1 \Leftrightarrow m^3 = 2m$$

$$\Leftrightarrow m^2 = 2 \Leftrightarrow m = \pm\sqrt{2} \text{ (do } m \neq 0 \text{)}.$$

(THPT Nam Trực - Nam Định - 2018) Cho hàm số $y = \frac{m}{3}x^3 - (m-1)x^2 + 3(m-2)x + 2$. Hàm

số đạt cực trị tại x_1, x_2 thỏa mãn $x_1 + 2x_2 = 1$ khi m = a và m = b. Hãy tính tổng a + b.

A.
$$-\frac{8}{3}$$
.

B.
$$\frac{8}{3}$$

C.
$$-\frac{5}{2}$$
. D. $\frac{5}{2}$.

D.
$$\frac{5}{2}$$
.

Lời giải

Có
$$y' = mx^2 - 2(m-1)x + 3(m-2)$$
.

Hàm số đạt cực trị tại x_1, x_2 thỏa mãn $x_1 + 2x_2 = 1$ suy ra $x_2 = \frac{2-m}{m}$.

Do $x_2 = \frac{2-m}{m}$ là nghiệm của phương trình $mx^2 - 2(m-1)x + 3(m-2) = 0$

$$m\left(\frac{2-m}{m}\right)^2 - 2(m-1)\left(\frac{2-m}{m}\right) + 3(m-2) = 0 \Leftrightarrow \begin{bmatrix} m=2\\ m=\frac{2}{3} \end{bmatrix}.$$

Thử lại thấy
$$m = 2$$

$$m = \frac{2}{3}$$
 đều thỏa mãn yêu cầu bài toán.
$$Vậy \ a + b = \frac{8}{3}.$$

(THPT Cao Bá Quát - 2018) Cho hàm số $y = 2x^3 - 3(m+1)x^2 + 6mx + m^3$. Tìm m để đồ thị Câu 37. hàm số có hai điểm cực trị A, B sao cho độ dài $AB = \sqrt{2}$.

A.
$$m = 0$$
.

B.
$$m = 0$$
 hoặc $m = 2$. **C.** $m = 1$.

D.
$$m = 2$$
.

Ta có
$$y' = 6x^2 - 6(m+1)x + 6m$$
. $y' = 0 \Leftrightarrow x^2 - (m+1)x + m = 0 \Leftrightarrow \begin{bmatrix} x = 1 \\ x = m \end{bmatrix}$.

Để đồ thị hàm số có hai điểm cực trị thì $m \neq 1$.

Khi đó ta có $A(1; m^3 + 3m - 1), B(m; 3m^2)$

Có
$$AB = \sqrt{2} \iff (m-1)^2 + (m^3 - 3m^2 + 3m - 1)^2 = 2 \iff (m-1)^2 + (m-1)^6 = 2$$
.

$$\Leftrightarrow (m-1)^2 = 1 \Leftrightarrow \begin{bmatrix} m=0 \\ m=2 \end{bmatrix}$$
 (thỏa mãn yêu cầu bài toán).

(THPT Phú Lương - Thái Nguyên - 2018) Tìm tất cả các giá trị của tham số m để đồ thị hàm Câu 38. số $y = mx^3 - 3mx^2 + 3m - 3$ có hai điểm cực trị A, B sao cho $2AB^2 - (OA^2 + OB^2) = 20$ (trong đó O là gốc toa đô)

A.
$$m = -1$$
.

B.
$$m = 1$$

A.
$$m = -1$$
.

B. $m = 1$.

C. $\begin{bmatrix} m = -1 \\ m = -\frac{17}{11} \end{bmatrix}$.

D. $\begin{bmatrix} m = 1 \\ m = -\frac{17}{11} \end{bmatrix}$

$$\underline{\mathbf{D}} \cdot \begin{bmatrix} m = 1 \\ m = -\frac{17}{11} \end{bmatrix}$$

Tập xác định
$$D = R$$

Ta có:
$$y' = 3mx^2 - 6mx$$

Hàm số có hai điểm cực trị $\Leftrightarrow m \neq 0$

Khi đó
$$\Rightarrow y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = 2 \end{bmatrix}$$

Tọa độ điểm cực trị: A(0;3m-3), B(2;-m-3)

Theo giả thiết
$$2AB^2 - (OA^2 + OB^2) = 20 \Leftrightarrow 22m^2 + 12m - 34 = 0 \Leftrightarrow \begin{bmatrix} m = 1 \\ m = -\frac{17}{11} \end{bmatrix}$$

Dạng 5. Tìm m để hàm số trùng phương có cực trị thỏa mãn điều kiện cho trước

Một số công thức tính nhanh "thường gặp" liên quan cực trị hàm số $y = ax^4 + bx^2 + c$

1 cực trị: $ab \ge 0$			3 <i>cực trị: ab</i> < 0			
a > 0: tiểu	1 cực	<i>a</i> < 0 : 1 cực đại	<i>a</i> > 0 : đại,	1 cực	<i>a</i> < 0 : 2 đại,	cực
			2 cực tiểu		1 cực tiểu	

$$A(0;c), B\left(-\sqrt{-\frac{b}{2a}}; -\frac{\Delta}{4a}\right), C\left(\sqrt{-\frac{b}{2a}}; -\frac{\Delta}{4a}\right) \Rightarrow AB = AC = \sqrt{\frac{b^4}{16a^2} - \frac{b}{2a}}, BC = 2\sqrt{-\frac{b}{2a}}$$
với $\Delta = b^2 - 4ac$

Phương trình qua điểm cực trị:
$$BC: y = -\frac{\Delta}{4a}$$
 và $AB, AC: y = \pm \left(\sqrt{\frac{-b}{2a}}\right)^3 x + c$

Gọi
$$\widehat{BAC} = \alpha$$
, luôn có: $8a(1+\cos\alpha) + b^3(1-\cos\alpha) = 0 \Rightarrow \cos\alpha = \frac{b^3 + 8a}{b^3 - 8a}$ và $S^2 = -\frac{b^5}{32a^3}$

Phương trình đường tròn đi qua $A, B, C: x^2 + y^2 - (c+n)x + c.n = 0$, với $n = \frac{2}{h} - \frac{\Delta}{4a}$ và bán

kính đường tròn ngoại tiếp tam giác là $R = \left| \frac{b^3 - 8a}{8ah} \right|$

(THPT Lurong Thế Vinh - 2018) Cho hàm số $y = x^4 - 2x^2 + 2$. Diện tích S của tam giác có ba Câu 1. đỉnh là ba điểm cực trị của đồ thị hàm số đã cho có giá trị là

A.
$$S = 3$$
.

B.
$$S = \frac{1}{2}$$
.

$$\underline{\mathbf{C}}$$
. $S=1$.

D.
$$S = 2$$
.

Lời giải

Tập xác định $D = \mathbb{R}$.

Ta có
$$y' = 4x^3 - 4x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \to y = 2\\ x = \pm 1 \to y = 1 \end{bmatrix}$$

Bảng biến thiên

Đồ thị hàm số có ba điểm cực trị A(0;2), B(-1;1), C(1;1).

Nhận xét $\triangle ABC$ cân tại A. Vì vậy $S = \frac{1}{2} |y_A - y_B| \cdot |x_C - x_B| = \frac{1}{2} \cdot 1.2 = 1$.

(Chuyên Lê Hồng Phong - 2018) Tìm m đề đồ thị hàm số $y = x^4 - 2mx^2 + 1$ có ba điểm cực trị Câu 2. A(0; 1), B, C thỏa mãn BC = 4?

A.
$$m = \sqrt{2}$$
.

$$\mathbf{\underline{B}}$$
. $m=4$.

C.
$$m = \pm 4$$
.

D.
$$m = \pm \sqrt{2}$$
.

Lời giải

Tập xác đinh: $D = \mathbb{R}$.

$$y' = 4x^3 - 4mx = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = m \end{bmatrix}.$$

Hàm số đã cho có ba điểm cực trị $\Leftrightarrow m > 0$.

Tọa độ điểm cực trị của đồ thị hàm số: A(0;1), $B(\sqrt{m}; -m^2+1)$, $C(-\sqrt{m}; -m^2+1)$

 $BC = 4 \Leftrightarrow 4m = 16 \Leftrightarrow m = 4.$

(Đề Minh Họa 2017) Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số Câu 3. $y = x^4 + 2mx^2 + 1$ có ba điểm cực trị tạo thành một tam giác vuông cân

A.
$$m = \frac{1}{\sqrt[3]{9}}$$
.

B.
$$m = 1$$
.

C.
$$m = -\frac{1}{\sqrt[3]{9}}$$
. **D.** $m = -1$.

D.
$$m = -1$$

Chon D

Hàm số $y = x^4 + 2mx^2 + 1$ có tập xác định: $D = \mathbb{R}$

Ta có: $y' = 4x^3 + 4mx$; $y' = 0 \Leftrightarrow 4x^3 + 4mx = 0 \Leftrightarrow 4x(x^2 + m) = 0 \Leftrightarrow \begin{vmatrix} x = 0 \\ x^2 = -m \end{cases}$

Hàm số có 3 cực trị khi và chỉ khi phương trình (*) có 2 nghiệm phân biệt khác 0 $\Leftrightarrow -m > 0 \Leftrightarrow m < 0$.

Vậy tọa độ 3 điểm lần lượt là: A(0;1); $B(-\sqrt{-m};1-m^2)$; $C(\sqrt{-m};1-m^2)$

Ta có
$$\overrightarrow{AB} = \left(-\sqrt{-m}; -m^2\right); \overrightarrow{AC} = \left(\sqrt{-m}; -m^2\right)$$

Vì $\triangle ABC$ vuông cân tại $A \Rightarrow \overrightarrow{AB}.\overrightarrow{AC} = 0 \Leftrightarrow -\sqrt{m^2 + m^2}.m^2 = 0 \Leftrightarrow -|m| + m^4 = 0 \Leftrightarrow m + m^4 = 0$ $\Leftrightarrow m = -1 \text{ (vi } m < 0)$

Vậy với m = -1 thì hàm số có 3 cực trị tạo thành một tam giác vuông cân.

(Mã 105 -2017) Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số $y = x^4 - 2mx^2$ có Câu 4. ba điểm cực tri tạo thành một tam giác có diện tích nhỏ hơn 1.

A.
$$0 < m < 1$$

B.
$$m > 0$$

C.
$$0 < m < \sqrt[3]{4}$$

D.
$$m < 1$$

Lời giải

Chon A

Tập xác định $D = \mathbb{R}$

Ta có
$$y' = 4x^3 - 4mx$$
. $y' = 0 \Leftrightarrow 4x^3 - 4mx = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = m \end{bmatrix}$

Hàm số có ba điểm cực tri khi và chỉ khi m > 0. Khi đó đồ thi hàm số có ba điểm cực tri là $O(0;0), A(\sqrt{m};-m^2), B(-\sqrt{m};-m^2).$

Do đó
$$S_{\Delta OAB} = \frac{1}{2}OH.AB = \frac{1}{2}m^2.2\sqrt{m} = m^2\sqrt{m} < 1 \Leftrightarrow 0 < m < 1.$$

(Chuyên Nguyễn Trãi - Hải Dương - Lần 2 - 2020) Cho hàm số $y = x^4 - 2mx^2 - 2m^2 + m^4$ có Câu 5. đồ thị (C). Biết đồ thị (C) có ba điểm cực trị A, B, C thỏa mãn ABCD là hình thoi với D(0,-3). Số *m* thuộc khoảng nào sau đây?

$$\underline{\mathbf{A}} \cdot m \in \left(\frac{1}{2}; \frac{9}{5}\right)$$

B.
$$m \in \left(\frac{9}{5}; 2\right)$$

A.
$$m \in \left(\frac{1}{2}; \frac{9}{5}\right)$$
. **B.** $m \in \left(\frac{9}{5}; 2\right)$. **C.** $m \in \left(-1; \frac{1}{2}\right)$. **D.** $m \in \left(2; 3\right)$.

D.
$$m \in (2;3)$$

Lời giải

Tập xác định: $D = \mathbb{R}$.

Ta có
$$y' = 4x^3 - 4mx \Rightarrow y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = m \end{bmatrix}$$
.

Hàm số đã cho có ba điểm cực trị $\Leftrightarrow m > 0$.

Khi đó ba điểm cực trị của đồ thị hàm số là: $A(0; -2m^2 + m^4)$; $B(\sqrt{m}; m^4 - 3m^2)$; $C\left(-\sqrt{m};m^4-3m^2\right)$.

Gọi I trung điểm của $BC \Rightarrow I(0; m^4 - 3m^2)$

Vì $A, D \in Oy$, B và C đối xứng nhau qua Oy nên tứ giác ABCD là hình thoi $\Leftrightarrow I$ là trung điểm của AD

$$\Leftrightarrow 2(m^4 - 3m^2) = -2m^2 + m^4 - 3 \Leftrightarrow m^4 - 4m^2 + 3 = 0$$

$$\Leftrightarrow \begin{bmatrix} m^2 = 1 \\ m^2 = 3 \end{bmatrix} \Leftrightarrow \begin{bmatrix} m = \pm 1 \\ m = \pm \sqrt{3} \end{bmatrix} \xrightarrow{m>0} \begin{bmatrix} m = 1 \\ m = \sqrt{3} \end{bmatrix}$$

- (THPT Lê Quý Đôn Đà Nẵng 2019) Gọi S là tập hợp tất cả các giá trị của tham số m để đồ thị Câu 6. hàm số $y = x^4 - 2(m+1)x^2 + m^2$ có ba điểm cực trị tạo thành ba đỉnh của một tam giác vuông. Số phần tử của tập hợp S là
 - **A.** 2.

B. 0.

D. 1.

•
$$y = x^4 - 2(m+1)x^2 + m^2 \Rightarrow y' = 4x^3 - 4(m+1)x = 4x(x^2 - m - 1)$$
.

• Hàm số có 3 điểm cực trị $\Leftrightarrow y' = 0$ có 3 nghiệm phân biệt.

$$\Leftrightarrow x^2 - m - 1 = 0$$
 có 2 nghiêm phân biết khác 0.

$$\Leftrightarrow -m-1>0$$
.

$$\Leftrightarrow m < -1$$
.

Khi đó:
$$y' = 0 \Leftrightarrow \begin{bmatrix} x = -\sqrt{m+1} \\ x = 0 \\ x = \sqrt{m+1} \end{bmatrix}$$
.

• Giả sử A, B, C là ba điểm cực tri của đồ thi hàm số.

$$\Rightarrow A\left(-\sqrt{m+1};-2m-1\right), B\left(0;m^2\right), C\left(\sqrt{m+1};-2m-1\right)$$

$$\Rightarrow \overrightarrow{AB} = \left(\sqrt{m+1}; (m+1)^2\right), \overrightarrow{CB} = \left(-\sqrt{m+1}; (m+1)^2\right)$$

$$\triangle ABC$$
 vuông tại $B \Leftrightarrow \overline{AB}.\overline{CB} = 0 \Leftrightarrow -(m+1)+(m+1)^4 = 0 \Leftrightarrow \begin{bmatrix} m=-1 \\ m=0 \end{bmatrix} \Rightarrow m=0$.

- (THPT Đoàn Thượng Hải Phòng 2019) Cho hàm số $y = x^4 2mx^2 + 1$ (1). Tổng lập phương Câu 7. các giá tri của tham số m để đồ thi hàm số (1) có ba điểm cực tri và đường tròn đi qua 3 điểm này có bán kính R = 1 bằng
 - A. $\frac{5-\sqrt{5}}{2}$.
- **B.** $\frac{1+\sqrt{5}}{2}$. **C.** $2+\sqrt{5}$. **D.** $-1+\sqrt{5}$.

Lời giải

$$ightharpoonup$$
 TXĐ: $D = \mathbb{R}$.

$$V' = 4x^3 - 4mx = 4x(x^2 - m).$$

$$ightharpoonup$$
 Để đồ thị hs (1) có 3 điểm cực trị $\Leftrightarrow m > 0$.

ightharpoonup Gọi $A(0;1), B(\sqrt{m}; -m^2+1), C(-\sqrt{m}; -m^2+1)$ là các điểm cực trị của đồ thị hs (1), $I(0; -m^2+1)$ là trung điểm BC.

Ta có
$$AI = m^2$$
, $AB = AC = \sqrt{m + m^4}$. Suy ra $\frac{1}{2}AI.BC = \frac{AB.AC.BC}{4R} \Leftrightarrow R = \frac{2AI}{AB.AC}$

$$\Leftrightarrow \frac{2m^2}{m+m^4} = 1 \Leftrightarrow m^4 - 2m^2 + m = 0 \Leftrightarrow \begin{bmatrix} m = 0 & (l) \\ m = 1 & (n) \\ m = \frac{-1 - \sqrt{5}}{2} & (l) \\ m = \frac{-1 + \sqrt{5}}{2} & (n) \end{bmatrix}$$

(THPT Minh Châu Hưng Yên 2019) Tìm tất cả các giá tri thực của tham số m để đồ thi hàm Câu 8. $s \circ y = x^4 - 2m^2x^2 + m + 4$ có ba điểm cực trị tạo thành ba đỉnh của một tam giác đều?

A.
$$m \in \{0; \sqrt{3}; -\sqrt{3}\}$$

A.
$$m \in \{0; \sqrt{3}; -\sqrt{3}\}$$
 B. $m \in \{0; \sqrt[6]{3}; -\sqrt[6]{3}\}$ **C.** $m \in \{\sqrt[6]{3}; -\sqrt[6]{3}\}$ **D.** $m \in \{-\sqrt{3}; \sqrt{3}\}$

C.
$$m \in \{\sqrt[6]{3}; -\sqrt[6]{3}\}$$

D.
$$m \in \{-\sqrt{3}; \sqrt{3}\}$$

Chon C

Đồ thị hàm số có 3 điểm cực trị $\Leftrightarrow m \neq 0$.

Khi đó, 3 điểm cực trị của đồ thị hàm số là A(0; m+4), $B(|m|; -m^4 + m + 4)$,

$$C\left(-\left|m\right|;-m^4+m+4\right).$$

Tam giác ABC có AB = AC nên tam giác ABC cân tại A, suy ra tam giác ABC đều

$$\Leftrightarrow AB = BC \Leftrightarrow \sqrt{m^2 + m^8} = 2|m| \Leftrightarrow m^8 + m^2 = 4m^2 \Leftrightarrow \begin{bmatrix} m = 0 \\ m = \pm \sqrt[6]{3} \end{bmatrix}.$$

Kết hợp điều kiện ta được $m \in \{-\sqrt[6]{3}; \sqrt[6]{3}\}$.

(THPT Quang Trung Đống Đa Hà Nội 2019) Tìm m để đồ thị hàm số $y = x^4 - 2m^2x^2 + 1$ có 3 Câu 9. điểm cực trị lập thành một tam giác vuông cân.

A.
$$m = 1$$
.

B.
$$m \in \{-1;1\}$$
.

C.
$$m \in \{-1; 0; 1\}$$
. **D.** $m \in \emptyset$.

$$\mathbf{D}$$
, $m \in \emptyset$

Lời giải

$$y = x^4 - 2m^2x^2 + 1.$$

+ Cách 1:

Hàm số có 3 cực tri $\Leftrightarrow ab < 0 \Leftrightarrow -2m^2 < 0 \Leftrightarrow m \neq 0$.

$$y' = 4x^3 - 4m^2x$$

$$y' = 0 \Leftrightarrow 4x^3 - 4m^2x = 0$$

$$\Leftrightarrow 4x(x^2 - m^2) = 0$$

$$\Leftrightarrow \begin{bmatrix} x_1 = 0 \\ x_2 = m \\ x_3 = -m \end{bmatrix} \begin{cases} y_1 = 1 \\ y_2 = -m^4 + 1 \\ y_3 = -m^4 + 1 \end{cases}$$

Giả sử A(0;1), $B(m;-m^4+1)$, $C(-m;-m^4+1)$ là 3 điểm cực trị của đồ thị hàm số.

$$\overrightarrow{AB} = (m; -m^4) \Longrightarrow AB = \sqrt{m^2 + m^8}$$
.

$$\overrightarrow{AC} = (-m; -m^4) \Rightarrow AC = \sqrt{m^2 + m^8}$$

Yêu cầu bài toán $\Leftrightarrow \Delta ABC$ vuông cân tai A

$$\Leftrightarrow \begin{cases} AB = AC \\ \overrightarrow{AB}.\overrightarrow{AC} = 0 \end{cases} \Leftrightarrow \begin{cases} m \in \mathbb{R} \\ -m^2 + m^8 = 0 \end{cases} \Leftrightarrow -m^2 \left(1 - m^6\right) = 0$$

$$\iff \begin{bmatrix} m = 0 & (l) \\ m = 1 & (n) \\ m = -1(n) \end{bmatrix}$$

Vậy $m \in \{-1;1\}$.

+ Cách 2: (Áp dụng công thức tính nhanh cực trị hàm trùng phương)

Yêu cầu bài toán
$$\Leftrightarrow \begin{cases} ab < 0 \\ \frac{-8a}{b^3} = 1 \end{cases} \Leftrightarrow \begin{cases} -2m^2 < 0 \\ \frac{-8}{\left(-2m^2\right)^3} = 1 \end{cases} \Leftrightarrow \begin{cases} m \neq 0 \\ m^6 = 1 \end{cases} \Leftrightarrow \begin{cases} m = 1 \quad (n) \\ m = -1(n) \end{cases}$$

Vậy $m \in \{-1;1\}$.

(**Toán Học Tuổi Trẻ Số 5**) Tìm tất cả các giá trị m sao cho đồ thị hàm số Câu 10. $y = x^4 + (m+1)x^2 - 2m - 1$ có ba điểm cực trị là ba đinh của một tam giác có một góc bằng 120°.

NGUYĒN BẢO VƯƠNG - 0946798489

$$\underline{\mathbf{A}} \cdot m = -1 - \frac{2}{\sqrt[3]{3}}$$
.

A.
$$m = -1 - \frac{2}{\sqrt[3]{3}}$$
. **B.** $m = -1 - \frac{2}{\sqrt[3]{3}}$, $m = -1$.

C.
$$m = -\frac{1}{\sqrt[3]{3}}$$
. **D.** $m < -1$.

Lời giải

Ta có $y' = 4x^3 + 2(m+1)x = 2x(2x^2 + m + 1)$.

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ 2x^2 = -m - 1 \end{bmatrix}$$

Hàm số có ba điểm cực trị khi và chỉ khi y' = 0 có ba nghiệm phân biệt

 $\Leftrightarrow m+1<0 \Leftrightarrow m<-1$.

Khi đó

$$A(0;-2m-1), \ B\left(-\sqrt{\frac{-m-1}{2}};-\frac{\left(m+1\right)^2}{4}-2m-1\right), \ C\left(\sqrt{\frac{-m-1}{2}};-\frac{\left(m+1\right)^2}{4}-2m-1\right), \ \text{là các điểm}$$

cực trị của đồ thị.

Ta thấy $AB = AC = \sqrt{-\frac{m+1}{2} + \frac{\left(m+1\right)^4}{16}}$ nên tam giác ABC cân tại A.

Từ giả thiết suy ra $A = 120^{\circ}$.

Gọi H là trung điểm BC, ta có $H\left[0; -\frac{(m+1)^2}{4} - 2m - 1\right]$

$$BH = AH \tan 60^{\circ} \Leftrightarrow \frac{\left(m+1\right)^{2}}{4}.\sqrt{3} = \sqrt{-\frac{m+1}{2}}$$

$$\Leftrightarrow \frac{3(m+1)^4}{16} = -\frac{m+1}{2} \Leftrightarrow 3(m+1)^3 = -8 \Leftrightarrow m = -1 - \frac{2}{\sqrt[3]{3}}.$$

(Chuyên Lương Văn Chánh - Phủ Yên - 2018) Gọi S là tập hợp tất cả các giá trị thực của Câu 11. tham số m để đồ thị (C) của hàm số $y = x^4 - 2m^2x^2 + m^4 + 5$ có ba điểm cực trị, đồng thời ba điểm cực trị đó cùng với gốc tọa độ O tạo thành một tứ giác nội tiếp. Tìm số phần tử của S.

A. 1.

B. 0.

Ta có $v' = 4x^3 - 4m^2x$.

Hàm số có cực đại cực tiểu \Leftrightarrow phương trình y' = 0 có ba nghiệm phân biệt $\Leftrightarrow m \neq 0$.

Gọi $A(0; m^4 + 5)$, B(m; 5), C(-m; 5) lần lượt là ba điểm cực trị của đồ thị hàm số.

Gọi I là tâm đường tròn ngoại tiếp tứ giác ABOC khi đó ta có ba điểm A, I, O thẳng hàng. Mặt khác do hai điểm B và C đối xứng nhau qua AO nên AO là đường kính của đường tròn ngoại tiếp tứ giác $ABOC \Rightarrow AB \perp OB \Leftrightarrow AB.OB = 0$.

Trong đó $\overrightarrow{AB} = (m; -m^4)$, $\overrightarrow{OB} = (m; 5)$. Ta có phương trình $m^2 - 5m^4 = 0 \Leftrightarrow m = \pm \frac{\sqrt{5}}{5}$

(Chuyên Quang Trung - 2018) Cho hàm số $y = x^4 - 2mx^2 - 2m^2 + m^4$ có đồ thị (C). Biết đồ thị Câu 12. (C) có ba điểm cực trị A, B, C và ABDC là hình thoi trong đó D(0;-3), A thuộc trục tung. Khi đó *m* thuôc khoảng nào?

A. $m \in \left(\frac{9}{5}; 2\right)$. **B.** $m \in \left(-1; \frac{1}{2}\right)$. **C.** $m \in \left(2; 3\right)$. $\underline{\mathbf{D}}$. $m \in \left(\frac{1}{2}; \frac{9}{5}\right)$.

Lời giải

Ta có
$$y' = 4x(x^2 - m) \Rightarrow y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = m \end{bmatrix}$$
;

Với điều kiện m > 0 đồ thị hàm số có ba điểm cực trị là $A(0; m^4 - 2m^2)$; $B(-\sqrt{m}; m^4 - 3m^2)$;

 $C\left(\sqrt{m}; m^4 - 3m^2\right)$. Để ABDC là hình thoi điều kiện là $BC \perp AD$ và trung điểm I của BC trùng với trung điểm J của AD. Do tính đối xứng ta luôn có $BC \perp AD$ nên chỉ cần $I \equiv J$ với

$$I(0; m^4-3m^2), J(0; \frac{m^4-2m^2-3}{2}).$$

$$\text{DK: } m^4 - 2m^2 - 3 = 2m^4 - 6m^2 \Leftrightarrow m^4 - 4m^2 + 3 = 0 \Leftrightarrow \begin{bmatrix} m = 1 \\ m = \sqrt{3} \end{cases} \Leftrightarrow m \in \left(\frac{1}{2}; \frac{9}{5}\right).$$

Câu 13. (THPT Nguyễn Huệ - Ninh Bình - 2018) Cho hàm số $y = -x^4 + 2mx^2 + 2$ có đồ thị (C_m) . Tìm m để đồ thị hàm số có ba điểm cực trị tạo thành một tam giác vuông.

A.
$$m = \sqrt[3]{3}$$
.

B.
$$-m = \sqrt[3]{3}$$
.

C.
$$m = -1$$
.

D.
$$m = 1$$

Lời giải

Cách 1:

Ta có
$$y' = -4x^3 + 4mx = -4x(x^2 - m)$$
.

Để hàm số có ba cực trị thì phương trình y' = 0 có ba nghiệm phân biệt $\Leftrightarrow -4x(x^2 - m) = 0$ có ba nghiệm phân biệt $\Rightarrow m > 0$.

Gọi A(0;2), $B(-\sqrt{m},m^2+2)$, $C(\sqrt{m},m^2+2)$ là ba điểm cực trị của đồ thị hàm số.

Vì $\triangle ABC$ cân tại A nên $\triangle ABC$ chỉ có thể vuông tại $A \Leftrightarrow \overrightarrow{ABAC} = 0$.

Với
$$\overrightarrow{AB} = \left(-\sqrt{m}; m^2\right), \ \overrightarrow{AC} = \left(\sqrt{m}; m^2\right) \Rightarrow -m + m^4 = 0 \Leftrightarrow m\left(m^3 - 1\right) = 0 \Rightarrow m = 1.$$

Cách 2: Áp dụng công thức tính nhanh: Ba điểm cực trị của đồ thị hàm số $y = ax^4 + bx^2 + c$ tạo thành một tam giác vuông khi $8a + b^3 = 0 \Leftrightarrow 8m^3 - 8 = 0 \Leftrightarrow m = 1$.

Câu 14. (CHUYÊN ĐHSPHN - 2018) Gọi A, B, C là các điểm cực trị của đồ thị hàm số $y = x^4 - 2x^2 + 4$. Bán kính đường tròn nội tiếp tam giác ABC bằng

A. 1.

- **B.** $\sqrt{2} + 1$.
- <u>C</u>. $\sqrt{2} 1$.
- **D.** $\sqrt{2}$.

$$y' = 4x^3 - 4x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \Rightarrow A(0;4) \\ x = -1 \Rightarrow B(-1;3) \\ x = 1 \Rightarrow C(1;3) \end{bmatrix}$$

$$\overrightarrow{AB} = (-1; -1) \Rightarrow AB = \sqrt{2} \; ; \; \overrightarrow{AC} = (1; -1) \Rightarrow AC = \sqrt{2} \; ; \; \overrightarrow{BC} = (2; 0) \Rightarrow BC = 2 \; .$$

Ta có $\triangle ABC$ vuông cân tại A có $S = \frac{1}{2} \left(\sqrt{2} \right)^2 = 1$, $p = \frac{AB + AC + BC}{2} = \sqrt{2} + 1$.

Vậy
$$r = \frac{S}{p} = \frac{1}{\sqrt{2} + 1} = \sqrt{2} - 1$$
.

Câu 15. (**Hồng Bàng - Hải Phòng - 2018**) Cho hàm số $y = x^4 + 2(m-4)x^2 + m + 5$ có đồ thị (C_m) . Tìm m để (C_m) có ba điểm cực trị tạo thành một tam giác nhận gốc tọa độ O làm trọng tâm.

A. m = 1 hoặc $m = \frac{17}{2}$. **B.** m = 1.

C. m = 4.

D. $m = \frac{17}{2}$.

Lời giải

Ta có
$$y' = 4x^3 + 4(m-4)x$$
; $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = 4 - m \end{bmatrix}$.

Để hàm số có ba điểm cực trị $\Leftrightarrow m < 4$. Khi đó các điểm cực trị của (C_m) là

$$A(0; m+5)$$
, $B(\sqrt{4-m}; m+5-(m-4)^2)$, $C(-\sqrt{4-m}; m+5-(m-4)^2)$.

Do
$$O$$
 là trọng tâm tam giác ABC nên $3(m+5) = 2(m-4)^2 \Leftrightarrow \begin{bmatrix} m=1 \\ m=\frac{17}{2} \end{bmatrix}$.

Do m < 4 nên m = 1.

(Chuyên Vĩnh Phúc 2018) Tìm tất cả các giá trị thực của tham số m để đồ thị của hàm số Câu 16. $y = x^4 - 2mx^2$ có ba điểm cực trị tạo thành một tam giác có diện tích nhỏ hơn 1.

A.
$$m < 1$$
.

B.
$$0 < m < 1$$
.

C.
$$0 < m < \sqrt[3]{4}$$
.

D.
$$m > 0$$
.

Hàm số
$$y = x^4 - 2mx^2$$
 có TXĐ: $D = \mathbb{R}$. Ta có $y' = 4x^3 - 4mx$; $y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = m \end{bmatrix}$.

Để đồ thị hàm số có ba điểm cực trị thì m > 0. Khi đó ba điểm cực trị là O(0;0), $B(-\sqrt{m};-m^2)$,

$$C\left(\sqrt{m};-m^2\right)$$
. Ta giác OBC cân tại O , với $I\left(0;-m^2\right)$ trung điểm của BC

Theo yêu cầu bài toán, ta có: $S_{ABC} = \frac{1}{2}OI.BC = \frac{1}{2}\left|-m^2\right|.2\sqrt{m} < 1 \Leftrightarrow 0 < m < 1$.

(Liên Trường - Nghệ An -2018) Gọi m_0 là giá trị của tham số m để đồ thị hàm số Câu 17. $y = x^4 + 2mx^2 - 1$ có ba điểm cực trị tạo thành một tam giác có diện tích bằng $4\sqrt{2}$. Mệnh đề nào sau đây đúng

A.
$$m_0 \in (-1, 0]$$
.

B.
$$m_0 \in (-2; -1]$$
. **C.** $m_0 \in (-\infty; -2]$. **D.** $m_0 \in (-1; 0)$.

$$\underline{\mathbf{C}}$$
. $m_0 \in (-\infty; -2]$

D.
$$m_0 \in (-1;0)$$

Lời giải

Ta có: $y = x^4 + 2mx^2 - 1 \Rightarrow y' = 4x^3 + 4mx$.

$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = -m \end{bmatrix}$$
 (1).

Để đồ thị hàm số $y = x^4 + 2mx^2 - 1$ có ba điểm cực trị thì y' = 0 phải có ba nghiệm phân biệt tức là m < 0.

Khi đó (1)
$$\Leftrightarrow \begin{bmatrix} x=0 \\ x=\pm\sqrt{-m} \end{bmatrix}$$
 nên ta gọi $A(0;-1)$, $B(-\sqrt{-m};-m^2-1)$, $C(\sqrt{-m};-m^2-1)$

Tam giác ABC cân tại A nên $S_{\Delta ABC} = \frac{1}{2}AH.BC$ với H là trung điểm của BC nên

$$H(0;-m^2-1)$$
. Nên: $AH = \sqrt{(-m^2)^2} = m^2$ và $BC = \sqrt{(2\sqrt{-m})^2} = 2\sqrt{-m}$.

Ta có: $S_{\triangle ABC} = \frac{1}{2}.m^2.2\sqrt{-m}$ theo giả thiết $S_{\triangle ABC} = 4\sqrt{2}$ nên $m^2\sqrt{-m} = 4\sqrt{2} \Leftrightarrow m = -2$.

(Chuyên Bắc Ninh - 2018) Tìm tất cả các giá trị thực của tham số m sao cho đồ thị của hàm số Câu 18. $y = x^4 - 2(m+1)x^2 + m^2$ có ba điểm cực trị tạo thành một tam giác vuông cân.

$$\underline{\mathbf{A}}$$
. $m = 0$.

B.
$$m = -1; m = 0$$
.

C.
$$m = 1$$
.

D.
$$m = 1; m = 0$$
.

Lời giải

Cách 1: Điều kiện để đồ thị hàm trùng phương $y = ax^4 + bx^2 + c$ có ba điểm cực tri là

$$ab < 0 \Leftrightarrow m > -1 \Rightarrow \text{loại } \mathbf{B}$$

Khi đó ba điểm cực trị lập thành tam giác vuông cân khi

$$b^3 + 8a = 0 \Leftrightarrow -8(m+1)^3 + 8 = 0 \Leftrightarrow m = 0.$$

Cách 2: Ta có $y' = 4x(x^2 - m - 1)$

Xét
$$y' = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x^2 = m + 1 \end{bmatrix}$$
. Để đồ thị số có ba điểm cực trị thì $m > -1$ (*)

Tọa độ ba điểm cực trị là
$$A(0;m^2)$$
, $B(\sqrt{m+1};-2m-1)$, $C(-\sqrt{m+1};-2m-1)$

Gọi H là trung điểm của đoạn thẳng BC thì H(0; -2m-1)

Khi đó ba điểm cực trị lập thành tam giác vuông cân khi

$$AH = BH \Leftrightarrow \sqrt{(m+1)^4} = \sqrt{m+1} \Leftrightarrow m = 0: T / m(*).$$

(THPT Triệu Thị Trinh - 2018) Cho hàm số: $y = x^4 + 2mx^2 + m^2 + m$. Tìm m để đồ thị hàm số Câu 19. có 3 điểm cực trị lập thành tam giác có một góc bằng 120°.

A.
$$m = \frac{-1}{\sqrt{3}}$$
.

B.
$$m = \frac{1}{\sqrt[3]{3}}$$
.

C.
$$m = \frac{-1}{\sqrt[3]{3}}$$
. **D.** $m = \frac{1}{\sqrt{3}}$.

D.
$$m = \frac{1}{\sqrt{3}}$$

$$y' = 4x^3 + 4mx = 4x(x^2 + m).$$

Hàm số có ba điểm cực trị $\Leftrightarrow y' = 0$ có ba nghiệm phân biệt $\Leftrightarrow m < 0$.

Khi đó
$$y' = 0 \iff \begin{bmatrix} x = 0 \\ x = \pm \sqrt{-m} \end{bmatrix}$$
.

Ba điểm cực trị của đồ thị hàm số là $A(0; m^2 + m)$, $B(\sqrt{-m}; m)$, $C(-\sqrt{-m}; m)$.

Do $\triangle ABC$ cân tại A nên gọi H(0;m) là trung điểm của BC thì $\triangle AHC$ vuông tại H.

 $\triangle ABC$ có một góc bằng 120° khi và chỉ khi $\widehat{HAB} = \widehat{HAC} = 60^{\circ} \Leftrightarrow HB = AH$. tan \widehat{HAB} $\Leftrightarrow \sqrt{-m} = m^2 \sqrt{3} \Leftrightarrow m = -\frac{1}{\sqrt[3]{2}}$. Bỏ cặp ngoặc.

(THPT Thái Phiên - Hải Phòng - 2018) Đồ thị hàm số $y = x^4 - 2mx^2 - m$ có ba điểm cực trị và Câu 20. đường tròn đi qua ba điểm cực trị này có bán kính bằng 1 thì giá trị của m là:

A.
$$m = 1; m = \frac{1 + \sqrt{5}}{2}$$
. **B.** $m = 1; m = \frac{-1 + \sqrt{5}}{2}$.

C.
$$m = -1; m = \frac{-1 + \sqrt{5}}{2}$$
. D. $m = -1; m = \frac{-1 - \sqrt{5}}{2}$.

Lời giải

$$y = x^4 - 2mx^2 - m \Rightarrow y' = 4x^3 - 4mx.$$

Với m > 0 ta có ba cực trị $A(0; -m); B(-\sqrt{m}; -m^2 - m); C(\sqrt{m}; -m^2 - m)$.

NGUYĒN BAO VƯƠNG - 0946798489

$$\begin{split} S_{ABC} &= \frac{abc}{4\mathbf{R}} \Leftrightarrow \frac{1}{2} 2\sqrt{m} \left| m^2 \right| = 2 \frac{\sqrt{m} A B^2}{4} \Leftrightarrow 2m^2 = m^4 + m \Leftrightarrow m^4 - 2m^2 + m = 0 \,. \\ & \left| \begin{array}{c} m = 0(l) \\ m = 1(n) \end{array} \right| \\ \Leftrightarrow \left| \begin{array}{c} m = \frac{-1 + \sqrt{5}}{2} (n) \\ m = \frac{-1 - \sqrt{5}}{2} (l) \end{array} \right| \end{split}$$

Dạng 6. Tìm m để hàm số bậc 2 trên bậc 1 có cực trị thỏa mãn yêu cầu bài toán

- (Toán Học Tuổi Trẻ Số 5) Viết phương trình đường thẳng đi qua hai điểm cực trị của đồ thị hàm Câu 1. $s\acute{o} y = \frac{x^2 + 2x + 3}{2x + 1}$.
 - **A.** y = 2x + 2.
- **C.** y = 2x + 1. **D.** y = 1 x.

Lời giải

$$\label{eq:definition} \square \text{ Tập xác định } D = \mathbb{R} \setminus \left\{-\frac{1}{2}\right\}.$$

$$\Box y' = \frac{2x^2 + 2x - 4}{\left(2x + 1\right)^2}, \ y' = 0 \Leftrightarrow 2x^2 + 2x - 4 = 0 \Leftrightarrow \begin{bmatrix} x = 1 (\Rightarrow y = 2) \\ x = -2 (\Rightarrow y = -1) \end{bmatrix}.$$

- \square Đồ thị hàm số có hai điểm cực trị là M(1;2) và N(-2;-1).
- \square Vậy phương trình đường thẳng qua hai điểm cực trị M,N của đồ thị hàm số đã cho là: y = x + 1.

Cách khác:

 \Box Áp dụng tính chất: Nếu x_0 là điểm cực trị của hàm số hữu tỷ $y = \frac{u(x)}{v(x)}$ thì giá trị cực trị tương

ứng của hàm số là $y_0 = \frac{u(x_0)}{v(x_0)} = \frac{u'(x_0)}{v'(x_0)}$. Suy ra với bài toán trên ta có phương trình đường thẳng

qua hai điểm cực trị của đồ thị hàm số là $y = \frac{(x^2 + 2x + 3)}{(2x + 1)'} = x + 1$.

(ĐHQG Hà Nội - 2020) Điều kiện của tham số m để hàm số $y = \frac{x^2 - mx}{1 - x}$ có cực đại và cực tiểu Câu 2.

A. m < 0.

- **B.** m > -1.
- **C.** m < 2. Lời giải
- **D.** m > -2.

Chon A

Điều kiện $x \neq 1$.

Ta có
$$y = \frac{x^2 - mx}{1 - x} \Rightarrow y' = \frac{-x^2 + 2x - m}{(1 - x)^2}$$
.

Hàm số $y = \frac{x^2 - mx}{1 - x}$ có cực đại và cực tiểu $\Leftrightarrow y' = 0$ có hai nghiệm phân biệt và đổi dấu khi đi

qua hai điểm đó $\Leftrightarrow -x^2 + 2x - m = 0$ có hai nghiệm phân biệt khác 1

$$\Leftrightarrow \begin{cases} \Delta' > 0 \\ -1 + 2 - m \neq 0 \end{cases} \Leftrightarrow \begin{cases} 1 - m > 0 \\ m \neq 1 \end{cases} \Leftrightarrow m < 1.$$

Vây m < 1 thì hàm số đã cho có cực đại và cực tiểu.

Không có đáp án hoặc chọn

(Chuyên KHTN - Hà Nội - Lần 3) Gọi S là tập hợp tất cả các giá trị thực của tham số m để đồ Câu 3. thị hàm số $y = \frac{x^2 + mx + 2m}{x + 1}$ có

hai điểm cực trị A, B và tam giác OAB vuông tại O. Tổng tất cả các phần tử của S bằng **C.** 4. **D.** 5. <u>A</u>. 9.

Lời giải

$$y' = \frac{x^2 + 2x - m}{(x+1)^2}, \forall x \neq -1. \text{ Dặt } f(x) = x^2 + 2x - m, \ h(x) = x^2 + mx + 2m, \ g(x) = x + 1.$$

Đồ thị hàm số đã cho có hai điểm cực trị A, B khi f(x) có hai nghiệm phân biệt x_1 , x_2

khác
$$-1 \Leftrightarrow \begin{cases} \Delta' = m+1 > 0 \\ f(-1) = -m-1 \neq 0 \end{cases} \Leftrightarrow m > -1 (1). \text{ Khi đó} \begin{cases} y(x_1) = \frac{h'(x_1)}{g'(x_1)} = 2x_1 + m \\ y(x_2) = \frac{h'(x_2)}{g'(x_2)} = 2x_2 + m \end{cases}.$$

Suy ra $A(x_1; 2x_1 + m)$, $B(x_2; 2x_2 + m)$. Suy ra $\overrightarrow{OA} = (x_1; 2x_1 + m)$, $\overrightarrow{OB}(x_2; 2x_2 + m)$

$$\triangle OAB$$
 vuông tại O khi
$$\begin{cases} \overrightarrow{OA}, \overrightarrow{OB} \neq \overrightarrow{0} \ (2) \\ \overrightarrow{OA}. \overrightarrow{OB} = x_1.x_2 + (2x_1 + m)(2x_2 + m) = 0 \ (3) \end{cases}$$

 $(3) \Leftrightarrow m^2 + 5x_1.x_2 + 2m(x_1 + x_2) = 0$. Kết hợp với định lí Vi-et cho phương trình f(x) = 0 ta

được
$$m^2 - 5m - 4m = 0 \iff \begin{bmatrix} m = 0 \left(không thỏa mãn(2) \right) \\ m = 9 \left(thỏa mãn(1), (2) \right) \end{bmatrix} \Rightarrow S = \{9\}.$$

Vây tổng tất cả các phần tử của S bằng 9.

(Chuyên Lê Hồng Phong - Nam Định - 2020) Biết rằng đồ thị (H): $y = \frac{x^2 + 2x + m}{x - 2}$ (với m là Câu 4. tham số thực) có hai điểm cực trị là A,B. Hãy tính khoảng cách từ gốc tọa độ O(0;0) đến đường thẳng AB.

$$\underline{\mathbf{A}} \cdot \frac{2}{\sqrt{5}}$$
.

B.
$$\frac{\sqrt{5}}{5}$$
.

C.
$$\frac{3}{\sqrt{5}}$$
. D. $\frac{1}{\sqrt{5}}$.

D.
$$\frac{1}{\sqrt{5}}$$
.

Lời giải

Chọn A

+ Phương trình của đường thẳng AB là $y = \frac{\left(x^2 + 2x + m\right)'}{\left(x - 2\right)'} \Leftrightarrow y = 2x + 2 \Leftrightarrow 2x - y + 2 = 0$.

+ Khoảng cách
$$d(O; AB) = \frac{|2.0 - 0 + 2|}{\sqrt{2^2 + (-1)^2}} = \frac{2}{\sqrt{5}}$$

NGUYỄN BẢO VƯƠNG - 0946798489

Câu 5. (Chuyên Hùng Vương - Phú Thọ - 2018) Gọi S là tập hợp các giá trị thực của tham số m để đồ thị hàm số $y = \frac{x^2 + mx + m^2}{x - 1}$ có hai điểm cực trị A, B. Khi $\angle AOB = 90^\circ$ thì tổng bình phương tất cả các phần tử của S bằng:

$$\underline{\mathbf{A}} \cdot \frac{1}{16}$$
.

$$C. \frac{1}{8}$$
.

Lời giải

$$y' = \frac{(2x+m)(x-1)-x^2-mx-m^2}{(x-1)^2} = \frac{x^2-2x-(m+m^2)}{(x-1)^2}$$

Để đồ thị hàm số có hai điểm cực trị A,B thì y'=0 phải có hai nghiệm phân biệt khác $1 \Leftrightarrow \begin{cases} \Delta' = 1 + m + m^2 > 0 \\ -1 - m - m^2 \neq 0 \end{cases} \Leftrightarrow \forall m \in \mathbb{R} \ .$

Phương trình đường thẳng đi qua 2 điểm cực đại, cực tiểu là $y_{\scriptscriptstyle A} = 2x + m$.

Gọi x_A ; x_B là hoành độ của A, B khi đó x_A ; x_B là nghiệm của $x^2 - 2x - (m + m^2)$.

Theo định lí Viet ta có $x_A + x_B = 2$; $x_A \cdot x_B = -m^2 - m$.

$$y_A = 2x_A + m$$
; $y_B = 2x_B + m$.

$$\angle AOB = 90^{\circ} \Rightarrow x_A.x_B + y_A.y_B = 0 \Leftrightarrow x_Ax_B + 4x_Ax_B + 2m(x_A + x_B) + m^2 = 0$$

$$\Leftrightarrow 5(-m^2 - m) + 4m + m^2 = 0 \Leftrightarrow -4m^2 - m = 0 \Leftrightarrow m = 0; m = -\frac{1}{4}.$$

Tổng bình phương tất cả các phần tử của S bằng: $0^2 + \left(-\frac{1}{4}\right)^2 = \frac{1}{16}$.

Câu 6. (Chuyên KHTN - 2018) Với tham số m, đồ thị của hàm số $y = \frac{x^2 - mx}{x+1}$ có hai điểm cực trị A,

B và AB = 5. Mệnh đề nào dưới đây đúng?

A.
$$m > 2$$
.

B.
$$0 < m < 1$$
.

C.
$$1 < m < 2$$
.

D.
$$m < 0$$
.

Lời giải

Ta có
$$D = \mathbb{R} \setminus \{-1\}$$
 và có đạo hàm là $y' = \frac{x^2 + 2x - m}{(x+1)^2}$.

Để hàm số có hai điểm cực trị ta phải có $\begin{cases} 1+m>0\\ 1-2-m\neq 0 \end{cases} \iff m>-1.$

Gọi hai hoành độ cực trị là x_1 và x_2 ta có $\begin{cases} x_1 + x_2 = -2 \\ x_1 x_2 = -m \end{cases}.$

Khi đó điểm $A(x_1, 2x_1 - m)$ và $B(x_2, 2x_2 - m)$.

$$AB = \sqrt{4 + 4m}.\sqrt{5} = 5 \Leftrightarrow 4 + 4m = 5 \Leftrightarrow m = \frac{1}{4}.$$

Câu 7. (**Cụm 5 Trường Chuyên - ĐBSH - 2018**) Cho hàm số $y = \frac{x^2 - |m|x + 4}{x - |m|}$. Biết rằng đồ thị hàm số

có hai điểm cực trị phân biệt là A, B. Tìm số giá trị m sao cho ba điểm A, B, C(4;2) phân biệt và thẳng hàng.

 $\mathbf{p} \times \mathbf{p} = \mathbf{p} \setminus \{\mathbf{p} \in \mathbb{R}^{n}\}$

Tập xác định $D = \mathbb{R} \setminus \{|m|\}$.

Ta có
$$y = \frac{x^2 - |m|x + 4}{x - |m|} = x + \frac{4}{x - |m|}$$
.

$$y'=1-\frac{4}{\left(x-\left|m\right|\right)^{2}},\ \forall x\in D,\ y'=0\Leftrightarrow \begin{bmatrix} x=2+\left|m\right|\\ x=-2+\left|m\right| \end{bmatrix}.$$

Tọa độ hai điểm cực trị là B(2+|m|;4+|m|), A(-2+|m|;-4+|m|).

$$\overrightarrow{AB} = (4;8), \ \overrightarrow{AC} = (6-|m|;6-|m|).$$

Ba điểm
$$A$$
, B , $C(4;2)$ phân biệt và thẳng hàng $\Leftrightarrow \begin{cases} \overrightarrow{AC} = k \overrightarrow{AB} \\ 6 - |m| \neq 0 \end{cases} \Leftrightarrow \begin{cases} 6 - |m| = 4k \\ 6 - |m| = 8k \end{cases}$ (vô nghiệm). $6 - |m| \neq 0$

Vây không có giá tri *m* nào thỏa mãn.

(THCS - THPT Nguyễn Khuyến - 2018) Giá trị của tham số m để hàm số $y = \frac{x^2 + mx + 1}{x + m}$ đạt Câu 8. cực đại tại điểm $x_0 = 2$ là:

A.
$$m = -1$$
.

B.
$$m = -3$$

C.
$$m=1$$
.
Lời giải

D.
$$m = 3$$
.

$$y' = 1 - \frac{1}{(x+m)^2}; y'' = \frac{2}{(x+m)^3}.$$

Hàm số
$$y = \frac{x^2 + mx + 1}{x + m}$$
 đạt cực đại tại điểm $x_0 = 2$ khi
$$\begin{cases} y'(2) = 0 \\ y''(2) < 0 \end{cases} \Leftrightarrow \begin{cases} 1 - \frac{1}{(2 + m)^2} = 0 \\ \frac{2}{(2 + m)^3} < 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} \begin{bmatrix} m=-1\\ m=-3 \Leftrightarrow m=-3 \end{cases}. \text{ Thử lại thấy thỏa mãn.} \\ m<-2 \end{cases}$$

(THPT Nam Trực - Nam Định - 2018) Cho hàm số $y = \frac{x^2 - 2mx + m + 2}{2x - 2m}$. Để hàm số có cực Câu 9. đại và cực tiểu, điều kiện của tham số m là:

B. −1 <
$$m$$
 < 2

C.
$$-2 < m < 1$$

B.
$$-1 < m < 2$$
. **C.** $-2 < m < 1$. **D.** $\begin{bmatrix} m < -2 \\ m > 1 \end{bmatrix}$.

Lời giải

Điều kiện: $x \neq m$.

Đạo hàm
$$y' = \frac{x^2 - 2mx + 2m^2 - m - 2}{2(x - m)^2}$$
.

Để hàm số có cực đại và cực tiểu, thì $y' = 0 \Leftrightarrow x^2 - 2mx + 2m^2 - m - 2 = 0$ có hai nghiệm phân

Ta có:
$$\begin{cases} \Delta' = -m^2 + m + 2 > 0 \\ m^2 - 2m \cdot m + 2m^2 - m - 2 \neq 0 \end{cases} \Leftrightarrow \begin{cases} -1 < m < 2 \\ m^2 - m - 2 \neq 0 \end{cases} \Leftrightarrow -1 < m < 2.$$

Câu 10. (Chuyên Nguyễn Dình Triểu - Dồng Tháp - 2018) Để hàm số $y = \frac{x^2 + mx + 1}{x + m}$ đạt cực đại tại

x = 2 thì m thuộc khoảng nảo?

A.
$$(0;2)$$
.

B.
$$(-4;-2)$$
.

$$\mathbf{C.} (-2;0).$$

D.
$$(2;4)$$
.

TXĐ:
$$D = \mathbb{R} \setminus \{-m\}$$

 $y' = \frac{x^2 + 2mx + m^2 - 1}{(x+m)^2}, y'' = \frac{2}{(x+m)^3}$

Hàm số đạt cực đại tại
$$x = 2$$
 nên
$$\begin{cases} y'(2) = 0 \\ y''(2) < 0 \end{cases} \Leftrightarrow \begin{cases} \frac{m^2 + 4m + 3}{(m+2)^2} = 0 \\ \frac{2}{(m+2)^3} < 0 \end{cases} \Leftrightarrow m = -3 \text{ thuộc } (-4; -2).$$

- (Chuyên Quốc Học Huế 2019) Cho hàm số $y = x + p + \frac{q}{r+1}$ đạt cực đại tại điểm A(-2;-2). Tính pq.
 - **A.** pq = 2.
- **B.** $pq = \frac{1}{2}$. **C.** $pq = \sqrt{3}$. **D.** pq = 1.

Lời giải

Chọn D

Tập xác định
$$D = \mathbb{R} \setminus \{-1\}$$
. Ta có $y' = 1 - \frac{q}{(x+1)^2}$.

Hàm số đạt cực đại tại x = -2, suy ra $y'(-2) = 0 \Rightarrow 0 = 1 - q \Leftrightarrow q = 1$.

Lại có đồ thị hàm số đi qua điểm $A\left(-2;-2\right)$ nên $-2=-2+p-q \Leftrightarrow p-q=0$.

Do đó p = q = 1.

Thử lại: với p = q = 1 ta được $y = x + 1 + \frac{1}{x + 1}$.

Ta có
$$y' = 1 - \frac{1}{(x+1)^2} = \frac{x^2 + 2x}{(x+1)^2} = 0 \Rightarrow x^2 + 2x = 0 \Leftrightarrow \begin{bmatrix} x = 0 \\ x = -2 \end{bmatrix}.$$

Từ đó có bảng biến thiên của hàm số:

Rõ ràng đồ thị hàm số đạt cực đại tại điểm A(-2;-2). Vậy $p=q=1 \Rightarrow pq=1$.

- Cho hàm số $y = \frac{x^2 + mx + 1}{x + m}$ (với m là tham số). Tìm tất cả các giá trị của tham số m để hàm số có giá trị cực đại là 7. <u>C</u>. m = -9. **D**. m = -5. Lời giải
 - **A.** m = 7.
- **B.** m = 5.

Chọn C

Tập xác định của hàm số là: $D = \mathbb{R} \setminus \{-m\}$

$$y = \frac{x^2 + mx + 1}{x + m} \Rightarrow y' = \frac{x^2 + 2mx + m^2 - 1}{(x + m)^2}$$

$$y' = 0 \Leftrightarrow \begin{cases} x \neq -m \\ x^2 + 2mx + m^2 - 1 = 0 \end{cases} \Leftrightarrow \begin{cases} x \neq -m \\ x = -m + 1 \Leftrightarrow \begin{bmatrix} x = -m + 1 \\ x = -m - 1 \end{bmatrix} \end{cases}$$

Bảng biến thiên

Từ bảng biến thiên ta thấy hàm số đạt cực đại tại x = -m - 1. Vậy $y(-m-1) = 7 \Leftrightarrow -m-2 = 7 \Leftrightarrow m = -9$.

BẠN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

*https://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-7QpKlG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương 🍲 https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) Thttps://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

Agyligh Bigo Vitaring