Lecture 3: Countability and Uncountability

How do we measure the 'sizes' of infinite sets? How can we compare their relative sizes?

- The number of elements in a set A is called its car-dinality, denoted |A|.
- If A is a finite set, then |A| is a natural number. Otherwise, |A| is infinity ∞ .
- The **Pigeonhole Principle:** If A and B are finite sets and |A| > |B|, then there is no one-to-one function from A to B.
- The Pigeonhole Principle doesn't work on infinite sets!
- Two sets (finite or infinite) A and B are equinumerous if there is a bijection from A to B.

 (i.e. the elements of A can be paired with the elements of B.)

- A set is *countably infinite* if it is equinumerous with \mathcal{N} , the set of natural numbers $\{0, 1, 2, ...\}$. Otherwise, it is *uncountably infinite*.
- A set is *countable* if it is finite or countably infinite.
- Mathematical induction works only for countable sets.
- The 'size' of an uncountable set is much larger than the 'size' of a countably infinite set.

• Examples:

 \mathcal{N} is countably infinite (directly by definition). \mathcal{R} (the set of real numbers) is uncountably infinite (to be proved later).

Fact: A set A is countably infinite iff its elements can be enumerated as $a_0, a_1, a_2, ...$

• Union

A union of two countable sets A and B is countable:

$$A = \{a_0, a_1, \dots\}$$

$$B = \{b_0, b_1, \dots\}$$

$$A \cup B = \{a_0, b_0, a_1, b_1, a_2, b_2, \dots\}$$

Let $A_1, A_2, ...$ be a countably infinite set of sets. Then $A_1 \cup A_2 \cup ...$ is countably infinite (how to prove?) That is, countable union of countable sets is countable.

• Cartesian product

The Cartesian product of two countable sets A and B is countable:

$$A \times B = \{(a_0, b_0), (a_1, b_0), (a_0, b_1), (a_1, b_1), \ldots\}$$

How about the Cartesian product of countable infinitely many countable sets?

$$A_1 \times A_2 \times \cdots$$
 is uncountable (prove later)

• Power set

 $2^{\mathcal{N}}$ is uncountable (prove later).

The diagonalization principle

• The technique was discovered by mathematician Georg Cantor in 1873. He used it to show that \mathcal{R} is uncountable.

Diagonalization principle

Let $R \subseteq A \times A$, where A is a countable set (possibly infinite).

• Let D denote the diagonal set, defined as

$$D = \{a{\in}A: (a,a){\notin}R\}$$

- For each $a \in A$, define $R_a = \{b \in A : (a, b) \in R\}$.
- Then $D \neq R_a$, for any $a \in A$ (i.e., D is distinct from every R_a).

The diagonalization principle, cont'd

Example:

Let's see an example where A is a finite set.

- $A = \{1, 2, 3, 4\},\$
- $R = \{(1,2), (2,2), (2,3), (3,4), (4,1), (4,4)\}.$

	1	2	3	4
1		X		
2		X	X	
3				X
4	X			X

$$D = \{1, 3\}$$

 $R_1 = \{2\}, R_2 = \{2, 3\}, R_3 = \{4\}, R_4 = \{1, 4\}$
Observe that $D \neq R_i$ for all i .

Diagonalization principle

Diagonalization principle:

The diagonal set is different from each row, i.e.

for any a, $D \neq R_a$.

Proof:

Suppose $D = R_k$ for some $k \ge 0$.

- If $k \in R_k$, $\Rightarrow (k, k) \in R$ by definition of R_k . $\Rightarrow k \notin D$ by definition of D. Hence, $D \neq R_k$. Contradiction!
- If $k \notin R_k$, $\Rightarrow (k, k) \notin R$ by definition of R_k . $\Rightarrow k \in D$ by definition of D. Hence, $D \neq R_k$. Contradiction!

Hence, $\forall a, D \neq R_a$.

Theorem. $2^{\mathcal{N}}$ is uncountable.

Proof:

• Suppose on the contrary that $2^{\mathcal{N}}$ is countably infinite. Then there is a way to enumerate the elements of $2^{\mathcal{N}}$

$$2^{\mathcal{N}} = A_0, A_1, A_2, \dots$$

• Define a relation $R: (i, j) \in R$ iff $j \in A_i$, then the diagonal set is:

$$D = \{i \in \mathcal{N} : i \notin A_i\}$$

- Then, by diagonalization principle, $D \neq A_i$ for all i. That is, the set D does not appear in the enumeration $A_0, A_1, A_2, ...$
- But D is a subset of \mathcal{N} , so $D \in 2^{\mathcal{N}}$. This is a contradiction. Therefore $2^{\mathcal{N}}$ is uncountable. \square

Theorem. The set of real numbers in the interval [0, 1] is uncountable.

Proof:

- Suppose that the set is countable. Then the elements can be listed as x_0, x_1, x_2, \ldots
- Write each x_i in its decimal expansion:

$$x_i = 0.d_{i0}d_{i1}d_{i2}\dots$$

• Define a number x such that its ith digit is 0 if $d_{ii} \neq 0$

1 if
$$d_{ii} = 0$$
.

Then $x \neq x_i$ for all i.

• But x is a real number in [0, 1), so it must equal some x_i . This is a contradiction. Therefore, the set is uncountable.

Finite representation of languages

Facts:

- 1. The set of all finite strings over a finite alphabet Σ (i.e., Σ^*) is countably infinite.
- 2. The set of all possible languages over a finite alphabet Σ (i.e., 2^{Σ^*}) is uncountably infinite.

Note: The set of all *finite* languages over a finite alphabet Σ would be countably infinite.

Finite representation of languages

Theorem:

In any representation system, there are always some languages that do not have finite representations.

Proof:

- Any finite representation of a language must itself be a finite string over some alphabet Σ_1 .
- Since Σ_1^* is countably infinite, the number of possible representations is countably infinite.
- But, the set of all possible languages over an alphabet Σ is 2^{Σ^*} , which is uncountable.
- Hence, there must be some languages over Σ that cannot be represented finitely.

The first major result in the theory of computation:

It is impossible to finitely represent all languages over any non-empty finite alphabet Σ .

Corollary:

There are languages that are not regular languages. For any computation model, there are languages that cannot be computed by the model.