Quantum Dissipative Dynamics

User manual

F.M.G.J. CoppensP.-G. ReinhardM. VincendonM. Seve DinhE. Suraud

February 4, 2019

Contents

			Page
1	Prer	requisites	3
2	Insta	allation	3
	2.1	Obtaining the code	3
	2.2	Compilation	3
3	Basi	ic I/O structure of a ground state calculation	4
	3.1	Input files & input parameters	4
	3.2	Output files	5
4	An i	illustrative ground state calculation: H_2O	5
	4.1	Results and observables	
		4.1.1 Total binding energy	
		4.1.3 Eigen energies of the single electron orbitals	7
		4.1.4 Monopole-, dipole- and quadrupole moments	
		4.1.6 Potentials and electron density	
	4.2	Relaxation of the ion-cores positions using pseudo-dynamics	
5	Basi	ic I/O structure of dynamic calculations	7
	5.1	Input parameters in the DYNAMIC namelist	7
	5.2	Output files	7
	5.3	Results and observables	7
6	Exa	mple dynamic calculations	7
	6.1	Exciting plasmon modes by applying a LASER boost	7
	6.2	Excite electrons with a laser pulse	7
7	Elec	ctronic relaxation with RTA	7
	7.1	Additional DYNAMIC input parameters concerning RTA	7
	72	Output files	7

1 Prerequisites

To successfully obtain and install the code the following minimum list of requirements has to be obtained

- Internet connection
- Git
- Fortran compiler
- C compiler (optional).

2 Installation

This section will concern itself with how and where to get the code and how to compile it. For the examples treated here the most basic settings are choses so as to minimise the risk of complications. For the full list of compilation parameters and supported libraries, please consult the *QDD Reference Manual*.

2.1 Obtaining the code

To obtain the code, only one command in a terminal window is required. Change to the directory where you want the top level directory of the code to reside and execute

```
$ git clone https://github.com/erltls2018/QDD.git
```

This will create a directory 'QDD' that contains the software package. The directory

```
/path/you/chose/QDD/
```

will be referred to in this guide as the '\$QDD_ROOT'. After the download is complete navigate to the Fortran source directory:

\$ cd \$QDD_ROOT/src/qdd

2.2 Compilation

To get everything up and running as easy and fast as possible we will compile the QDD package with the default 'Makefile'. This means QDD will be using:

- Fast Fourier transforms from the Netlib FFTPACK
- The GNU Fortran compiler gfortran, that can be downloaded here: https://gcc.gnu.org/wiki/GFortran
- No OpenMP parallelisation
- No MPI parallelisation

Different compilers, Fast Fourier libraries and parallelisation options can be chosen as well. This information can be found in the *QDD Reference Manual*.

If all prerequisites are met, simply execute

\$ make

After the build process is finished the executable 'qdd' will be in the "bin"-directory

\$ \$QDD ROOT/bin/qdd

Table 1: Minimum set of input files.

for005	top level file containing the calculation identifier ' <name>'. This can</name>
	be any string of characters, e.g. 'h2o' or 'na8'.
for005. <name></name>	top level file containing the main parameters of the calculation using
	Fortran's namelist-mechanism. For description of all these input
	parameters see Tables 2, 3, 4, 6, 7, 8, and 10.
for005ion. <name></name>	top level file containing the locations and types of the ions.

3 Basic I/O structure of a ground state calculation

3.1 Input files & input parameters

Each calculation will have its own directory and in it its own set of input files where all the details and the initial conditions of the system to be calculated are set. While the calculation is running, screen output and output files are generated that give information about the current state of the system while it is running and also about the final state when the calculation is finished. There are a minimum of 3 files required to start a calculation. They are listed in Table 1.

For the input file 'for005.<name>' there is a minimum set of input parameters. The ones related to a static calculation are listed and explained in Tables 2, 3 and 4. A complete list of all the input parameters can be found in the *QDD Reference Manual*.

The input file 'for005ion.<name>' contains information about the ion cores. Each line in the file represents one ion core and each line is composed of several fields like so

- (1) are the (x, y, z)-coordinates of ion core n
- \bigcirc is the chemical element number in the periodic table of ion-core n
- 3 is the node ordering in repeat initialisation, where $(i, j, k) \in \{x, y, x\}$
- (4) is radius of the initial Gaussian around ion-core n
- (5) is start spin for initialisation at ion-core n

For example, an ion input file for H₂O (say for005ion.H2O) could look like

```
0.22835 0.00000 0.00000 8 xyz 1.0 1
-0.91350 1.47420 0.00000 1 xyz 1.0 -1
-0.91350 -1.47420 0.00000 1 xyz 1.0 -1
```

Examples of these input files can be found in '\$QDD_ROOT/examples/'. In the following sections, example calculations of the covalent molecule water will be treated in ever increasing complexity.

3.2 Output files

During a calculation output files are generated and stored in the same directory as where the **qdd** binary is executed. For a ground state calculation the output files are listed in Table 5.

4 An illustrative ground state calculation: H₂O

The input files for the water molecule can be found in

```
$QDD_ROOT/samples/H2O/
```

As discussed in the previous section the 3 files that you will find here are 'for005', 'for005.h2o' and 'for005ion.h2o' respectively. You can either copy these files to a location of your choosing, or simply run the 'qdd' executable in each directory by executing

```
$ cd /path/to/the/for005*/files
$ $QDD_ROOT/bin/qdd > terminal.out 2> error.out
```

This will save the terminal output on the screen to the file 'terminal.out' and any errors that might be generated during the calculation to 'error.out'. Depending on the speed of your machine, after a few minutes you should have a file listing similar to this

```
-rw----- 1 coppens
                     25 Feb
                             1 11:55 dx
-rw----- 1 coppens
                     34 Feb
                             1 11:57 error.out
-rw----- 1 coppens
                      4 Feb
                             1 11:52 for005
-rw----- 1 coppens 1.2K Feb 1 11:53 for005.H20
-rw----- 1 coppens 160 Nov 28 11:12 for005ion.H20
-rw----- 1 coppens 46K Feb
                            1 11:57 for006.0H20
-rw----- 1 coppens 2.0K Feb
                             1 11:57 infosp.H20
-rw----- 1 coppens
                     13 Feb
                            1 11:55 nx
-rw----- 1 coppens 1.3K Feb 1 11:55 poptions.H20
-rw----- 1 coppens 2.3K Feb 1 11:57 pstat.H20
-rw----- 1 coppens 41M Feb 1 11:57 rsave.H20
-rw----- 1 coppens 138K Feb
                             1 11:57 terminal.out
```

In the file 'pstat.H2O' you will find

```
final protocol of static for IFSICP= 2

level: 1 spin,occup,ekin,esp,variance = 1 1.00000 1.31912 -2.33723 5.8472E-10

level: 2 spin,occup,ekin,esp,variance = 1 1.00000 2.51534 -1.59199 5.3699E-10

level: 3 spin,occup,ekin,esp,variance = 1 1.00000 2.46317 -1.25959 5.3194E-10

level: 4 spin,occup,ekin,esp,variance = 1 1.00000 2.74713 -1.11479 5.7191E-10
```

```
0.00000
level:
        5
           spin,occup,ekin,esp,variance =
                                                        0.71328 -0.42203
                                                                           7.7313E-07
level:
           spin,occup,ekin,esp,variance =
                                               0.00000
                                                        0.73195 -0.26481
                                                                           2.9550E-03
level:
        7
           spin,occup,ekin,esp,variance =
                                               0.00000
                                                        0.30830 -0.21468
                                                                           5.6298E-03
           spin,occup,ekin,esp,variance =
                                                        0.31976 -0.21151
level:
                                               0.00000
                                                                           6.3903E-03
           spin,occup,ekin,esp,variance =
                                                        0.35431 -0.15832
level:
        9
                                               0.00000
                                                                           7.9917E-03
           spin,occup,ekin,esp,variance =
                                                        0.20732 -0.12894
level: 10
                                               0.00000
                                                                           1.4731E-03
level: 11
           spin,occup,ekin,esp,variance = -1
                                               1.00000
                                                        1.31912 -2.33723
                                                                           5.8472E-10
level: 12
           spin,occup,ekin,esp,variance = -1
                                               1.00000
                                                        2.51534 -1.59199
                                                                           5.3699E-10
level: 13
           spin,occup,ekin,esp,variance = -1
                                               1.00000
                                                        2.46317 -1.25959
                                                                           5.3194E-10
           spin,occup,ekin,esp,variance = -1
                                                        2.74713 -1.11479
level: 14
                                               1.00000
                                                                           5.7191E-10
           spin,occup,ekin,esp,variance = -1
                                               0.00000
                                                        0.71328 -0.42203
level: 15
                                                                           7.7313E-07
level: 16
           spin,occup,ekin,esp,variance = -1
                                               0.00000
                                                        0.73195 -0.26481
                                                                           2.9550E-03
                                                        0.30830 -0.21468
level: 17
           spin,occup,ekin,esp,variance = -1
                                               0.00000
                                                                           5.6298E-03
level: 18
           spin,occup,ekin,esp,variance = -1
                                               0.00000
                                                        0.31976 -0.21151
                                                                           6.3903E-03
level: 19
           spin,occup,ekin,esp,variance = -1
                                               0.00000
                                                        0.35431 -0.15832
                                                                           7.9917E-03
level: 20
           spin,occup,ekin,esp,variance = -1
                                               0.00000
                                                        0.20732 -0.12894
                                                                           1.4731E-03
binding energy = -32.6355092
total variance = 5.5684E-10
                                                          -1.06211
                                                                       0.00000
sp pot, sp kin, rearr, nonlocal=
                                   -30.69673
                                               18.08954
e coul: i-i , e-i , e-e , total=
                                    13.54907
                                              -97.56193
                                                          39.39447
                                                                     -44.61839
mon.:
        8.00
dip.in :
                        0.00000
                                    0.00000
             0.00000
dip.out :
            -0.06362
                        0.00000
                                    0.00000
quadrupole moments:
                         0.9913
xx,yy,zz:
              0.9037
                                     0.7949
              0.0000
                         0.0000
                                     0.0000
xy,zx,zy:
spindip.:
             -0.0000
                         0.0000
                                    -0.0000
                                                                 0.0000
                                                     0.0000
omegam, rhops, N_el, rhomix:
                               0.0000
                                          0.0000
```

4.1 Results and observables

Other than the terminal output there are also a number of other files created during and when the calculation is finished.

- 4.1.1 Total binding energy
- 4.1.2 Ionisation potential
- 4.1.3 Eigen energies of the single electron orbitals
- 4.1.4 Monopole-, dipole- and quadrupole moments
- 4.1.5 H.O.M.O-L.U.M.O. gap
- 4.1.6 Potentials and electron density
- 4.1.7 Structure information
- 4.2 Relaxation of the ion-cores positions using pseudo-dynamics

5 Basic I/O structure of dynamic calculations

- 5.1 Input parameters in the DYNAMIC namelist
- 5.2 Output files
- 5.3 Results and observables

6 Example dynamic calculations

- 6.1 Exciting plasmon modes by applying a LASER boost
- 6.2 Excite electrons with a laser pulse

7 Electronic relaxation with RTA

- 7.1 Additional DYNAMIC input parameters concerning RTA
- 7.2 Output files

Table 2: System choice definitions in the 'GLOBAL' namelist in for005.<name>

The GLOBAL namelist		
concerning system choices		
kxbox,	number of grid points in the $\{x, y, z\}$ -direction.	
kybox,	A typical value is 64 points in each direction.	
kzbox	The box sizes must fulfil the condition: $kxbox \ge kybox \ge kzbox$.	
kstate	maximum number of possible single-particle (s.p.) states (can be larger than nclust)	
numspin	number of spin components	
	$1 \rightarrow \text{spin averaged (possible problem for ADSIC)}$	
	$2 \rightarrow \text{full spin treatment})$	
nclust	number of QM electrons; if set to 0 or a negative value (charge)	
	this will be automatically calculated:	
	$\mathbf{nclust} = \sum_{i=1}^{n_{ion}} Z_{ion} = \text{charge}, \text{ where } Z_{ion} \text{ is the charge of each ion}$	
nion	number of cluster ions	
nspdw	number of spin down electrons	
nion2	selects type of ionic background	
	$0 \rightarrow \text{jellium background}$	
	$1 \rightarrow \text{background from ionic pseudo-potentials}$	
	$2 \rightarrow \text{background read in from potion.dat}$	
radjel	Wigner-Seitz radius of jellium background	
surjel	surface thickness of jellium background	
bbeta	quadrupole deformation of jellium background	
gamma	triaxiality of jellium background	
dx,dy,dz	grid spacing (in Bohr) for the 3D numerical grid. If negative, this	
	will be set to an optimal value, a value for kxbox will be suggested	
	in the file 'nx', the code stops and has to be restarted. The grid size	
	is defined before compilation in params. F90 and it has to correlate	
	with the pseudo-potentials corresponds to ecut in solid state	
imob	global switch to allow ionic motion (if set to 1)	
isurf	switch for Ar or MgO surface (isurf=1 activates surface)	
iDielec	switch to dielectic support	
xDielec	x below which dielectric zone is activated	
epsDi	dielectric constant in the dielectric zone	
rotclustx,y,z	vector fo angle of initial rotation of ions	

Table 3: Wave function initialisation in the GLOBAL namelist in for005.<name>

The GLOBAL namelist		
concerning the initialisation of wave functions		
b2occ	deformation for initial harmonic oscillator wf's	
gamocc	triaxiality for initial harmonic oscillator wf's	
deocc	shift of initial Fermi energy (determines nr. of states)	
shiftWFx	shift of initial wave functions in x-direction	
ishiftCMtoOrigin	switch to shift centre of mass of cluster to origin	
ispinsep	initialise wave functions with some spin asymmetry	
init_lcao	choice of basis for wave function initialisation	
	$0 \rightarrow \text{harmonic oscillator functions (centre can be moved by}$	
	shiftWFx)	
	$1 \rightarrow$ atomic orbitals: wave functions are centred at ionic sites	

Table 4: Convergence parameters in the GLOBAL namelist in for005.<name>

The GLOBAL namelist		
concerning convergence issues		
e0dmp	damping parameter for static solution of Kohn-Sham equations	
	(typically about the energy of the lowest bound state)	
epswf	step size for static solution of Kohn-Shahm equations (of order of	
	$ 0.5 \rangle$	
epsoro	required variance to terminate static iteration (of order 10^{-5})	

Table 5: Output files generated during a *static* calculation

dx	grid spacing in units of Bohr. NOT SURE ABOUT THIS. THE
	VALUE IN THIS FILE SEEMS TO CONFLICT WITH THE
	VALUE SET IN THE INPUT FILE
nx	this file contains a suggested value for kxbox when dx is set to a
	negative value
for006.0 <name></name>	protocol file.
infosp. <name></name>	energy and variances at given iteration numbers determined by the
	variable jinfo in the DYNAMIC namelist.
poptions. <name></name>	this file contains an overview of the chosen options on solvers, com-
	piler options, etc.
pstat. <name></name>	contains the final information about the single particle energies,
	spins, variances, occupation numbers, monopole-, dipole- and
	quadrupole moments, etc.

Table 6: Dynamical parameters in the DYNAMIC namelist in for005.<name>

The DYNAMIC namelist			
num	numerical and physical parameters for statics and dynamics		
dt1	time step for propagating electronic wave functions, $\frac{\Delta t}{\Delta x^2} \leq 1$		
ismax	maximum number of static iterations		
idyniter	switch to s.p. energy as E0DMP for 'iter>idyniter'		
ifhamdiag	diagonalization of m.f. Hamiltonian in static step (presently limited		
	to fully occupied configurations)		
isitmax	nr. of imaginary-time steps to improve static solution		
itmax	number of time steps for electronic propagation		
ifexpevol	exponential evolution 4. order instead of TV splitting		
iffastpropag	accelerated time step in TV splitting (for pure electron dynamics,		
	interplay with absorbing b.c. ??)		
irest	switch to restart dynamics from file 'save'		
istat	switch to read wavefunctions from file 'rsave'		
	• it continues static iteration for 'ismax>0'		
	• it starts dynamics from these wf's for 'ismax=0'		
idenfunc	choice of density functional for LDA		
	$1 \to \text{Perdew \& Wang 1992 (default setting)}$		
	$2 \to Gunnarson \& Lundquist$		
	$3 \rightarrow \text{only exchange in LDA}$		
isave	saves results after every 'isave' steps		
	on file 'rsave' in and after static iteration		
	on file 'save' in dynamic propagation		
ipseudo	switch for using pseudo-densities to represent substrate		
	atoms		
ipsptype	type of pseudopotentials: $0 = \text{soft local (errf)};$		
	1 = full Goedecker; 2 = local Goedecker;		
	3 = read from file goed.asci (no need to specify);		
	4 = semicore read from file goed.asci		
directenergy	.true. = direct computation of energy		
	(only for LDA, Slater, KLI)		
ifsicp	selects type of self-interaction correction		
	0 = pure LDA, 1 = SIC-GAM, 2 = ADSIC; 3 = SIC-Slater;		
	4 = SIC-KLI; 5 = exact exchange; 6 = inactive;		
	7 = localized SIC; 8 = full SIC (double set).		
	IFSICP=7 or 8 requires switch twostsic=1 in define.h.		
icaltur	Option IFSICP=7 needs yet testing.		
icooltyp	type of cooling (0=none, 1=pseudo-dynamics,		
ifredmas	2=steepest descent, 3=Monte Carlo)		
	switch to use reduced mass for ions in dynamics ionic propagation (0=none, 1=leap-frog, 2=velocity Verlet)		
ionmdtyp	<u> </u>		
ntref nabsorb	nr. time step after which absorbing bounds are deactivated		
	number of absorbing points on boundary (0 switches off)		
powabso	power of absorbing boundary conditions		
ispherabso	switch to spherical mask in absorbing bounds		

Table 7: Dynamical parameters in the DYNAMIC namelist in for005.<name>

The DYNAMIC namelist		
way of excitation		
centfx	initial boost of electronic wavefunctions in x-direction	
centfy	initial boost of electronic wavefunctions in y-direction	
centfz	initial boost of electronic wavefunctions in z-direction	
tempion	initial temperature of cluster ions	
ekmat	initial kinetic energy of substrate atom (boost in x , in eV)	
itft	choice of shape of laser pulse	
	1 = ramp laser pulse, sine switching on/off	
	2 = gaussian laser pulse	
	$3 = \cos^2 \text{ pulse}$	
tnode	time (in fs) at which pulse computation starts	
deltat	length of ramp pulse (itft = 1), in fs	
tpeak	time (in fs, relative to tnode) at which peak is reached	
	(for itft = 1 and 2, pulse length becomes $2*tpeak$)	
omega	laser frequency (in Ry)	
e0	laser field strength in Ry/Bohr	
e1x,e1y,e1z	orientation of pulse	
e0_2	field strength of second laser pulse (only itft=3)	
phase2	phase of second pulse	
omega2	frequency of second pulse	
tstart2	initial ime of second pulse	
tpeak2	peak time of 2. pulse (pulse length is 2*tpeak2)	
iexcit	modus of excitation (0=shifts, 1=rotation)	
iangmo	switch to compute angular momentum	
irotat	axis of rotation for excitation $(x=1,y=2,z=2,xyz=4)$	
phirot	angle of rotation for excitation (in units of degree)	
phangle	angle of "rotation" into a 1ph state	
phphase	phase of "rotation" into a 1ph state	
nhstate, npstate	nr. of hole and particle state for $1ph$ excitation	
	this $1ph$ option can only be run from istat=1	
eproj	energy of incoming projectile (= last ion in the list)	
vpx,vpy,vpz	direction of the incoming projectile	
taccel	time span over which the projectile is accelerated to eproj	
	for taccel=0 one has to use init_lcao=1	

Table 8: Parameters that control observables and output in the DYNAMIC namelist in for005.<name>

The DYNAMIC namelist		
	flags for observables	
iemomsRel	calculates multipole momentas of electron density relative to origin	
	(0) or c.m. of cluster (1)	
istinf	modulus for printing information in static iteration	
ifspemoms	switch to compute and print spatial s.p. moments	
iftransme	switch to compute and print transition m.elements	
ifrhoint_time	switch to slices of integrated densities for all times	
jstinf	modulus for printing information in dynamic	
jinfo	modulus for printing dynamical information on infosp. <name></name>	
jdip	modulus for printing dipole moments on pdip. <name></name>	
jquad	modulus for printing quadrupole moments on pquad. <name></name>	
jesc	modulus for printing ionization pescel. <name></name>	
jenergy	modulus for printing energy information on penergies. <name></name>	
iflocaliz	activates computation of Becke's localisation	
jelf	modulus for analysing and printing electron localisation in dynam-	
	ics various files are written of the form pelf*. <name></name>	
iflocaliz	modulus for analysing and printing electron localisation in statics	
jstinf	modulus for printing s.p. energies and variances	
jpos	modulus for printing ionic positions on pposion. <name></name>	
jvel	modulus for printing ionic velocities on pvelion. <name></name>	
jstateoverlap	switch to compute overlap of static state with the state directly	
	after dynamical initialisation	

Table 9: Output files generated during a dynamic calculation

energies. <name></name>	historical, contains only the binding energy
forces. <name></name>	forces on ions, generated when ion molecular dynamics is ac-
	tive
<name>.bs</name>	output suited for further processing by freeware which can
	make 3D structure plots of molecular configurations in the
	typical chemical style
pdip. <name></name>	dipole moment in x, y, z direction, versus time
penerclu. <name></name>	kinetic energy of the cluster in the x,y,z directions and total,
	versus time, at intervals commanded by the input parameter
	jener
pescel. <name></name>	proportion of electrons remaining, total number of electrons,
	number of electrons lost, versus time, at intervals commanded
	by the input parameter jesc
plaser. <name></name>	laser parameters Ex, Ey, Ez, power, laser energy, etc as a
nowln (nome)	fonction of time unused in this version
povlp. <name></name>	Various energies, versus time. The 26 detailed entries (single
penergies. <name></name>	particle energy, rearrangement energy, etc) are described in
	the output file itself. The total energy is at location 18.
pescOrb. <name></name>	Number of electrons lost per orbital, versus time, at intervals
F35025. Mamor	commanded by the input parameter jnorms
pkinenion. <name></name>	kinetic energy of the cluster in the x,y,z directions and total,
Parameter and the second	versus time, at intervals commanded by the input parameter
	jpos
pPES. <name></name>	unused in this version
pposion. <name></name>	positions of the individual ions in x,y,z, and distance to center,
	versus time, at intervals commanded by the input parameter
	jpos
pproba. <name></name>	probabilities of charge states versus time, at time intervals
	commanded by input parameter jnorms
pprojdip. <name></name>	x, y, z pos of projectile versus time, at time intervals com-
	manded by input parameter jdip
prhov. <name></name>	unused in this version
progstatus	Only a flag when dynamics are finished
pspenergies. <name></name>	single particle energies versus time, at time intervals com-
nanwania	manded by input parameter jinfo
pspvariances. <name></name>	single particle energy variances versus time, at time intervals
pspvariancesp. <name></name>	commanded by input parameter jinfo single particle energy variances versus time (with correction
hahaar ranceah. / mame	by projection), at time intervals commanded by input param-
	eter jinfo
ptempion. <name></name>	ion temperatures during ionic-core relaxation
pvelion. <name></name>	ion velocities during ionic-core relaxation, or dynamic calcu-
•	lation with molecular dynamics
rsave. <name></name>	This file contains all parameters of a static convergence to
	allow for a dynamic start without recomputing the statics:
	to use it set ismax=0 and istat=1
save. <name></name>	This file contains all parameters to allow for a dynamic start
	at time: to use it set irest>=0
Time	Number of points in the calculation box and used wall time
	to complete the given number of iterations
	' Ið

TABLE 10: Parameters that control RTA in the DYNAMIC namelist in for005. <name>

The DYNAMIC namelist			
	flags for RTA		
jrtaint	Modulus for calling the RTA subroutine, i.e., nr. of TDLDA steps		
	per one RTA step. Course time step Δt for RTA and fine time step		
	for TDLDA dt1 are related as $\Delta t = jrtaint*dt1$.		
rtamu	Parameter μ in front of the quadratic density constraint in the		
	DCMF Hamiltonian (??)		
rtamuj	Parameter μ_j in front of the quadratic current constraint in the		
	DCMF Hamiltonian (??)		
rtasumvar2max	Termination criterion ϵ_0 in the RTA step as used in figure ??		
rtaeps	Step size δ in the damping operator (cross ref to be defined) \mathcal{D} for		
	the RTA step.		
rtae0dmp	Energy offset E_{00} in the damping operator (cross ref to be defined)		
	\mathcal{D} for the RTA step		
rtasigee	In medium $e^ e^-$ cross section used for the relaxation time (??)		
rtars	Effective Wigner-Seitz radius r_s used for the relaxation time (??)		
rtatempinit	The value rtatempinit/10 is used as lower value for the search of		
	temperature in SUBROUTINE ferm1		

TABLE 11: Output files that are specific to a RTA-enabled calculation

convergenceRTA	this file contains a log of the RTA iterations that contains
	information on the convergence details
peqstate	parameters for convergence of the dtmf process: current it-
	eration number, cycles to convergence, variance, residual err.
	on density, residual err. on current, parameters mu, muj,
	energy achieved
prta	prints at each RTA step: time, entropy, laser energy and
	the mu and temperature of a fermi distribution fitted to the
	occupation numbers
pspeed. <name></name>	prints at each RTA step, along x axis, the reference density
	(spin up and down), achieved density (spin up and down),
	target x current, achieved x current