Support Vector Machines

Shan-Hung Wu shwu@cs.nthu.edu.tw

Department of Computer Science, National Tsing Hua University, Taiwan

NetDB-ML, Spring 2014

- Sparse Kernel Machines
- 2 Support Vector Regression
 - Primal Objective
- Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- Structural Risk Minimization

- Sparse Kernel Machines
- 2 Support Vector Regression
 - Primal Objective
- 3 Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- Structural Risk Minimization

Why Sparse Models?

- We have seen dense kernel machines 一般的Kernel Machine是dense
 - $h = \sum_{t=1}^{N} c_t k(\mathbf{x}^{(t)}, \cdot) = \sum_{t=1}^{N} c_t \Phi(\mathbf{x}^{(t)})$ where $c_t \neq 0$ for most t
- To make a prediction $h(x') = \sum_{t=1}^{N} c_t k(x^{(t)}, x')$, we need to store **all** examples
- May be infeasible in practice due to
 - Big dataset (large N)
 - Time limit
 - Space limit
- Solution: make the kernel machines sparse;
 - I.e., make $c_t \neq 0$ for only a small fraction of the examples called **support vectors**
- How?

Creating Sparsity

如果 r^1 恆等於(任何g) $g(x^1)$,並且constriants也都滿足,那麼 $c^1=0$,因為 x^1 並不影響h

• Recall that a kernel machine $h = \sum_{t=1}^{N} c_t k(\boldsymbol{x}^{(t)}, \cdot)$ is the solution to

$$\begin{split} \arg\min_{g \in \mathcal{H}} L((\boldsymbol{x}^{(1)}, r^{(1)}, g(\boldsymbol{x}^{(1)})), \cdots, (\boldsymbol{x}^{(N)}, r^{(N)}, g(\boldsymbol{x}^{(N)}))) + \Omega(\|g\|_{\mathcal{RKHS}}) \\ \text{subject to } C_k((\boldsymbol{x}^{(1)}, r^{(1)}, g(\boldsymbol{x}^{(1)})), \cdots, (\boldsymbol{x}^{(N)}, r^{(N)}, g(\boldsymbol{x}^{(N)}))) \leqslant 0, \ \forall k \end{split}$$

- In what situation, will we have $c_1=0$? If for different g, $g(\mathbf{x}^{(1)})$ neither changes the value of L nor violates the constrains $C_k(\cdots) \leq 0$, then minimizing the regularization term makes $c_1=0$
- Idea:
 - Suppose $L((\boldsymbol{x}^{(1)}, r^{(1)}, g(\boldsymbol{x}^{(1)})), \cdots, (\boldsymbol{x}^{(N)}, r^{(N)}, g(\boldsymbol{x}^{(N)}))) = \sum_{t=1}^{N} l(\boldsymbol{x}^{(t)}, r^{(t)}, g(\boldsymbol{x}^{(t)}))$, refine l such that $l(\boldsymbol{x}^{(t)}, r^{(t)}, g(\boldsymbol{x}^{(t)})) = 0$ for most t's no matter what the g is
 - ullet Similarly, refine constrains (if any) such that they hold for most t's no matter what the g is

- Sparse Kernel Machines
- Support Vector RegressionPrimal Objective
- Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- 4 Structural Risk Minimization

Support Vector Regression

ε: Hyper-parameter,誤差容忍

error<
$$\epsilon \rightarrow error=0$$

• Idea: to create an €-insensitive loss: 太小的error就當作沒error

$$\arg\min_{\boldsymbol{w},b,\boldsymbol{\xi}^+,\boldsymbol{\xi}^-} \sum_{t=1}^N (\boldsymbol{\xi}_t^+ + \boldsymbol{\xi}_t^-) + \lambda \|\boldsymbol{w}\|^2$$
 subject to
$$(\boldsymbol{w}^\top \boldsymbol{\Phi}(\boldsymbol{x}^{(t)}) + b) - r^{(t)} \leqslant \boldsymbol{\epsilon} + \boldsymbol{\xi}_t^+$$
 $\boldsymbol{\xi}_{t^+},\boldsymbol{\xi}_{t^+} :$ 離預測最遠的距離
$$(\boldsymbol{w}^\top \boldsymbol{\Phi}(\boldsymbol{x}^{(t)}) + b) - r^{(t)} \geqslant -\boldsymbol{\epsilon} - \boldsymbol{\xi}_t^ \boldsymbol{\xi}_t^+ \geqslant 0, \ \boldsymbol{\xi}_t^- \geqslant 0, \ \forall t = 1,\cdots,N$$

- \bullet λ and ϵ are hyperparameters
- No matter what the w and b are, most examples (those falling inside the " ϵ -tube") will have $\xi_t^+ = 0$, $\xi_t^- = 0$, and the constrains always hold § So, if the representation theorem applies, the solution will be sparse
- - Examples falling outside the ϵ -tube are support vectors
- $\xi_{+}^{+},\xi_{+}^{+}:$ 離預測<mark>太遠</mark>的資料 • Is the representation theorem applicable? 會影響w的走向

Applying Representer Theorem

- Note that $\xi_t^+ \geqslant 0$ and $(\mathbf{w}^\top \Phi(\mathbf{x}^{(t)}) + b) r^{(t)} \leqslant \epsilon + \xi_t^+$ implies $\xi_t^+ = \max(0, (\mathbf{w}^\top \Phi(\mathbf{x}^{(t)}) + b) (r^{(t)} + \epsilon))$ 預測值偏差太大→正數、否則0
 - Similarly, $\xi_t^- = \max(0, (r^{(t)} \epsilon) (\mathbf{w}^\top \Phi(\mathbf{x}^{(t)}) + b))$ 預測值偏差太小→正數、否則0
- We can eliminate ξ^+ and ξ^- by rewriting the objective as

$$\begin{array}{ll} \arg\min_{\mathbf{w},b} & \sum_{t=1}^{N} (\max(0,(\mathbf{w}^{\top}\Phi(\mathbf{x}^{(t)})+b)-(r^{(t)}+\varepsilon)) + \\ & \max(0,(r^{(t)}-\epsilon)-(\mathbf{w}^{\top}\Phi(\mathbf{x}^{(t)})+b)) + \lambda \|\mathbf{w}\|^2 \end{array}$$

- Convex! $(\max(a, b) \text{ is convex if } a \text{ and } b \text{ are convex})$
- Shape of the loss function *[?]* 線性:既Convex也Concave Maximize a convex:convex
- The semiparametric representation theorem applies here: $h = \sum_{t=1}^{N} c_t k(\mathbf{x}^{(t)}, \cdot) + b$
- Feature-dimension-independent problem:

$$\underset{c \in \mathbb{R}^N, b}{\arg\min_{c \in \mathbb{R}^N, b}} \quad \underset{t=1}{\overset{N}{\sum_{t=1}^N (\max(0, (\textbf{\textit{K}}_{t, \cdot} c + b) - (r^{(t)} + \epsilon)) + }} \\ \quad \max(0, (r^{(t)} - \epsilon) - (\textbf{\textit{K}}_{t, \cdot} c + b)) + \lambda c^\top \textbf{\textit{K}} c$$

• $K_{t,\cdot}$ is the t-th row of K

$||\mathbf{w}||^2$: convex

Ragularized · 並且使用ε-tube · 讓越少的x參與決策 (成為Support Vextor) 就可以讓越多K_t是0 從而產生稀疏性

- Sparse Kernel Machines
- Support Vector RegressionPrimal Objective
- 3 Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- Structural Risk Minimization

- Sparse Kernel Machines
- Support Vector RegressionPrimal Objective
- 3 Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- 4 Structural Risk Minimization

Support Vector Classification (1)

- The idea of ϵ -insensitive loss still results in dense solution when applied to the classification problem. Why?
 - Model is linear in feature space, where
 - examples close to or far away from the decision boundary (i.e., $\{x:h(x)=0\}$, a hyperplane) will all be support vectors 與黑求相反
- Holds even if we adopt a non-linear kernel
 - Non-linear kernel "re-positions" instances (by creating feature space)
 - Makes instances more separable
 - But does not change the label values +1's and -1's 會這樣做
- Any new idea?

Support Vector Classification (2)

 We can borrow the idea of the perceptron to remove support vectors far from the decision boundary:

$$\underset{\mathsf{subject to}}{\arg\min_{\boldsymbol{w},b,\boldsymbol{\xi}}} \sum_{t=1}^{N} \xi_t + \lambda \|\boldsymbol{w}\|^2$$
 subject to $r^{(t)}(\boldsymbol{w}^{\top}\Phi(\boldsymbol{x}^{(t)}) + b) \geqslant -\xi_t$ and $\xi_t \geqslant 0, \ \forall t = 1, \cdots, N$

- Examples not on the decision boundary nor misclassified will have $\xi_l = 0$ and the constrains hold 被分得「太對」的,不會是Support Vector
- Only examples on the decision boundary and outliers will be support vectors
 差點被分錯,或是已經被分錯的,才會是Support Vector

Support Vector Classification (3)

$$\underset{t=1}{\arg\min_{\boldsymbol{w},b,\boldsymbol{\xi}} \sum_{t=1}^{N} \xi_{t} + \lambda \|\boldsymbol{w}\|^{2} }$$
 subject to $r^{(t)}(\boldsymbol{w}^{\top} \Phi(\boldsymbol{x}^{(t)}) + b) \geqslant -\xi_{t}$ and $\xi_{t} \geqslant 0$, $\forall t = 1, \cdots, N$

- With a lifting/kernel function, instances are more separable
- The above objective has problems in dealing with a perfectly separable dataset:
 - Multiple hyperplanes can be equally good. Which one is the best?
 - 2 The hyperplane could be arbitrary flat, causing numerical problems

因為要盡可能讓||w||小一點,所以 這條線會比較平,但其實不應該這麼平

3條線都不會產生emp error,但左右2條只要有東西落在靠中間,很容易就分錯了

Solution?

Support Vector Classification (4)

Refined objective:

 $\underset{\mathsf{w},b,\xi}{\operatorname{arg\,min}_{w,b,\xi}} \sum_{t=1}^{N} \xi_t + \lambda \|w\|^2$ 找盡可能smooth的w subject to $r^{(t)}((w^\top \Phi(x^{(t)}) + b) - r^{(t)}) \geqslant -\xi_t$ and $\xi_t \geqslant 0$, $\forall t = 1, \cdots, N$ 並且 讓正examples和負examples離預測零點有一定的,相同的距離 即,把線放在最負的正examples和最正的負examples的正中間

- Always find the hyperplane that sits "in the middle" between positive and negative examples
- Not arbitrarily flat anymore: the flatter the hyperplane, the more the slacks Slack variables, 鬆弛參數, ξ^(t)是用來衡量標記錯誤的樣本,其錯誤的程度

Large Margin Perspective

Form geometric point of view, minimizing the term ||w||² in the problem:
 C是Regularize用的

$$\underset{\text{subject to } r^{(t)}(\mathbf{w}^{\top}\Phi(\mathbf{x}^{(t)})+b) \geqslant 1-\xi_{t} \text{ and } \xi_{t} \geqslant 0, \ \forall t=1,\cdots,N}{\text{arg min}_{\mathbf{w},b,\xi_{t}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{t=1}^{N} \xi_{t}} \quad \text{Hyper-Parameter}$$

amounts to finding a hyperplane that *maximizes the margin* 意味著

- The distance between $\{x: w^{\top}x + b = 1\}$ and $\{x: w^{\top}x + b = -1\}$ is $\frac{2}{\|w\|}$ [Homework]
- Examples touching or falling inside the margin are support vectors
- The distance between $\{x: w^{\top}x + b = a\}$ and $\{x: w^{\top}x + b = -a\}$ is $\frac{2a}{\|w\|}$. Why pick a = 1? Changing a does **not** change the hyperplane we find 不管a怎麼選,重點是要minimize $\|w\|$

Applying Representer Theorem

- Again, $r^{(t)}((w^{\top}\Phi(x^{(t)})+b)-r^{(t)}) \ge -\xi_t$ and $\xi_t \ge 0$ implies $\xi_t = \max(0, -r^{(t)}((w^{\top}\Phi(x^{(t)})+b)-r^{(t)}))$ 跑對邊, $\xi_t = 0$ 跑錯邊, $\xi_t = 3$ 部譜
- Also, $r^{(t)}((\mathbf{w}^{\top}\Phi(\mathbf{x}^{(t)})+b)-r^{(t)})$ can be written as $r^{(t)}(\mathbf{w}^{\top}\Phi(\mathbf{x}^{(t)})+b)-1$ rtrt=1
- Objective with ξ_t eliminated:

$$\arg\min_{\boldsymbol{w},b} \sum_{t=1}^{N} \max(0,1-r^{(t)} [\boldsymbol{w}^{\top} \Phi(\boldsymbol{x}^{(t)})] + b)) + \lambda \|\boldsymbol{w}\|^{2}$$

- Semiparametric representation theorem applies: $h = \sum_{t=1}^{N} c_t k(\mathbf{x}^{(t)}, \cdot) + b$
- Feature-dimension-independent objective:

$$\arg\min_{\boldsymbol{c} \in \mathbb{R}^N, b} \sum_{t=1}^N \max(0, 1 - r^{(t)} (\boldsymbol{K}_{t, \cdot} \boldsymbol{c} + b)) + \lambda \boldsymbol{c}^\top \boldsymbol{K} \boldsymbol{c}$$

Still convex

- Sparse Kernel Machines
- Support Vector RegressionPrimal Objective
- 3 Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- Structural Risk Minimization

Dual Problem

Primal problem:

最平滑(Margin最大),分錯的錯誤(slack)總和最低 $\underset{\mathsf{subject to}}{\operatorname{arg\,min}_{w,b,\xi}} \frac{1}{2} \| \boldsymbol{w} \|^2 + C \sum_{t=1}^N \xi_t$ subject to $\frac{r^{(t)}(\boldsymbol{w}^\top \Phi(\boldsymbol{x}^{(t)}) + b) \geqslant 1 - \xi_t}{r^{(t)}(\boldsymbol{w}^\top \Phi(\boldsymbol{x}^{(t)}) + b) \geqslant 1 - \xi_t}$ and $\xi_t \geqslant 0$, $\forall t = 1, \cdots, N$ 對於錯誤的容忍

Dual problem:

先找一條線分開 再把margin掰大

$$\begin{split} \arg\max_{\pmb{\alpha},\pmb{\beta}}\inf_{\pmb{w},b,\pmb{\xi}}\mathcal{L}(\pmb{w},b,\pmb{\xi},\pmb{\alpha},\pmb{\beta}) \\ \text{subject to } \pmb{\alpha} \geqslant \pmb{0},\pmb{\beta} \geqslant \pmb{0} \end{split}$$

where $\mathcal{L}(\mathbf{w}, b, \xi, \alpha, \beta) = \text{Constraints with Lagrange Multipliers}$ $\frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{t=1}^N \xi_t + \sum_{t=1}^N \alpha_t (1 - r^{(t)} (\mathbf{w}^\top \Phi(\mathbf{x}^{(t)}) + b) - \xi_t) + \sum_{t=1}^N \beta_t (-\xi_t)$

- Why dual? We can distinguish SVs on the margin $\{x^{(t)}: r^{(t)}(\mathbf{w}^{\top}\Phi(x^{(t)})+b)=1\}$ from those inside the margin $\{x^{(t)}: r^{(t)}(\mathbf{w}^{\top}\Phi(x^{(t)})+b)<1\}$
- How to solve it?

Solving the Dual Problem

偏微分,導出最優化條件

• $dual(\alpha, \beta) = \inf_{w \in \mathbb{R}^n} \mathcal{L}(w, b, \xi, \alpha, \beta)$ is convex in terms of w, b, and ξ_t

•
$$\frac{\partial \mathcal{L}}{\partial w} = w - \sum_{t=1}^{N} \alpha_t r^{(t)} x^{(t)} = 0 \Rightarrow w = \sum_{t=1}^{N} \alpha_t r^{(t)} \Phi(x^{(t)})$$

- $\frac{\partial \mathcal{L}}{\partial h} = \left| \sum_{t=1}^{N} \alpha_t r^{(t)} = 0 \right|$ $\approx \pi$ (zero-sum)
- $\frac{\partial \mathcal{L}}{\partial \xi_t} = C \alpha_t \beta_t = 0$ $\beta_t = C \alpha_t$ 對每一個Example而言, Slack的大小決定 α_t 和C的大小關係
 - Additionally, since $\beta_t \geqslant 0$, we have $\alpha_t \leqslant C$
- $dual(\alpha, \beta; x) =$ $\begin{cases} \sum_{t=1}^{N} \alpha_t - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j r^{(i)} r^{(j)} \Phi(\boldsymbol{x}^{(i)})^\top \Phi(\boldsymbol{x}^{(j)}), & \text{if } \sum_{t=1}^{N} \alpha_t r^{(t)} = 0 \text{ and } \\ -\infty, & \text{就不會被外面的maximize選到} & \text{otherwise } \alpha_i \leq C \end{cases}$
- Dual problem:

$$\arg\max_{\pmb{\alpha}} \pmb{\alpha} \pmb{1} - \tfrac{1}{2} \pmb{\alpha}^\top \widetilde{\pmb{K}} \pmb{\alpha}$$
 subject to $\pmb{0} \leqslant \pmb{\alpha} \leqslant C \pmb{1}, \pmb{r}^\top \pmb{\alpha} = 0$

•
$$\widetilde{K}_{i,j} = r^{(i)} r^{(j)} k(x^{(i)}, x^{(j)})$$

最優化條件

Primal vs. Dual

Primal problem:

$$\begin{aligned} \arg\min_{\pmb{w},b,\pmb{\xi}} primal(\pmb{w},b,\pmb{\xi}) := \tfrac{1}{2} \|\pmb{w}\|^2 + C \sum_t \xi_t \\ \text{subject to } r^{(t)} (\pmb{w}^\top \Phi(\pmb{x}^{(t)}) + b) \geqslant 1 - \xi_t \text{ and } \xi_t \geqslant 0, \ \forall t = 1, \cdots, N \end{aligned}$$

Dual problem:

$$\arg\max_{\pmb{lpha}} dual(\pmb{lpha}) := \pmb{lpha} \mathbf{1} - \frac{1}{2} \pmb{lpha}^{ op} \widetilde{\pmb{K}} \pmb{lpha} = \sum_{t} \alpha_{t} - \frac{1}{2} \sum_{i,j} r^{(i)} \alpha_{i} r^{(j)} \alpha_{j} \pmb{K}_{i,j}$$
 subject to $\mathbf{0} \leqslant \pmb{lpha} \leqslant C\mathbf{1}, r^{ op} \pmb{lpha} = 0$ C是Hyper-Parameter

• Why solving dual problem?

Constrains become much simpler: only box constraint and zero-sum constraint

Better understanding of the data

Types of SVs

C是Hyper-Parameter

- By $\mathbf{w} = \sum_{t=1}^{N} \alpha_t r^{(t)} \Phi(\mathbf{x}^{(t)})$, examples whose $\alpha_t > 0$ will be support vectors (SVs)
 - Non-SVs are those examples whose $\alpha_t = 0$ $r^{(t)}\Phi(x^{(t)}) > 1$: $\alpha_t = 0$
 - Free SVs $0 < \alpha_t < C$ margin $\perp r^{(t)} \Phi(\mathbf{x}^{(t)}) = 1 : \alpha_t = [0,C]$
 - **Bounded SVs**: $\alpha_t = C$ margin $\alpha_t = C$ $\alpha_t = C$
- Where do the corresponding examples $x^{(t)}$ appear in the graph of $f(\cdot) = \mathbf{w}^{\top} \Phi(\cdot) + b$?

KKT Conditions

By KKT conditions, we have:

定義 Primal feasibility:
$$r^{(t)}(\mathbf{w}^{\top}\Phi(\mathbf{x}^{(t)})+b)\geqslant 1-\xi_t$$
 and $\xi_t\geqslant 0,\ \forall t=1,\cdots,N$ Dual Complementary slackness: $\alpha_t(1-r^{(t)}(\mathbf{w}^{\top}\Phi(\mathbf{x}^{(t)})+b)-\xi_t)=0$ and 正確運作 $\beta_t(-\xi_t)=0$ 無Slack:非SV, $\alpha_t=0$ 有Slack:是SV, $\alpha_t=C$

- Non SVs whose $\alpha_t = 0$: $r^{(t)}(\mathbf{w}^{\top}\Phi(\mathbf{x}^{(t)}) + b) \geqslant 1$ C是Hyper-Parameter
 - $1 r^{(t)}(\mathbf{w}^{\top} \Phi(\mathbf{x}^{(t)}) + b) \xi_t \leq 0$

• Since $\beta_t = C - \alpha_t \neq 0$, we have $\xi_t = 0$

margin外(非Support Vector)
$$\mathbf{r}^{(t)}\mathbf{\Phi}(\mathbf{x}^{(t)}) > 1 : \alpha_t = 0$$

- Free SVs whose $0 < \alpha_t < C$: $r^{(t)}(\mathbf{w}^{\top}\Phi(\mathbf{x}^{(t)}) + b) = 1$
 - $1 r^{(t)}(\mathbf{w}^{\top} \Phi(\mathbf{x}^{(t)}) + b) \xi_t = 0$

• Since $\beta_t = C - \alpha_t \neq 0$, we have $\xi_t = 0$

margin
$$\perp$$

 $r^{(t)}\Phi(x^{(t)}) = 1 : \alpha_t = [0,C]$

- Bounded SVs whose $\alpha_t = C$: $r^{(t)}(\mathbf{w}^{\top}\Phi(\mathbf{x}^{(t)}) + b) \leqslant 1$ (usually strick)
 - $1 r^{(t)}(\mathbf{w}^{\top} \Phi(\mathbf{x}^{(t)}) + b) \xi_t = 0$

• Since $\beta_t = C - \alpha_t = 0$, hence $\xi_t \geqslant 0$

$$r^{(t)}\Phi(x^{(t)}) < 1 : \alpha_t = C$$

margin内

差點被分錯邊(只要不夠對),就有slack了(真的分錯也有)

Solving b

- How to obtain b?
- By complementary slackness in KKT conditions, we have $\alpha_t (1 r^{(t)} (\mathbf{w}^{\top} \Phi(\mathbf{x}^{(t)}) + b) \xi_t) = 0$ for any t
- For a free SV $\boldsymbol{x}^{(t)}$ (whose $0 < \alpha_t < C$, thus $\xi_t = 0$), we have $1 = r^{(t)}(\boldsymbol{w}^{\top}\Phi(\boldsymbol{x}^{(t)}) + b) \Rightarrow b = r^{(t)} \boldsymbol{w}^{\top}\Phi(\boldsymbol{x}^{(t)})$
 - Can be computed based on any free SV
- In practice, we usually take the average over all free SVs to avoid numeric error

- Sparse Kernel Machines
- Support Vector RegressionPrimal Objective
- Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- Structural Risk Minimization

SVM Solvers

- SVM primal/dual objectives can be solved by standard convex or quadratic programming software
- In practice, dedicated solvers are developed, since
- Quadratic optimization packages were often designed to take advantage of sparsity in the quadratic part of the objective function
 - Unfortunately, the SVM kernel matrix is rarely sparse; sparsity occurs in the solution of the SVM problem
- The specification of a SVM problem rarely fits in memory. Kernel matrix coefficient must be cached or computed on the fly
 - Vast speedups are achieved by accessing the kernel matrix coefficients carefully
- Generic optimization packages sometimes make extra work to locate the optimum with high accuracy
 - The accuracy requirements of a learning problem are unusually low

Dual Problem Revisited

• Primal problem:

$$\underset{\mathbf{w},b,\boldsymbol{\xi}}{\arg\min_{\mathbf{w},b,\boldsymbol{\xi}}} primal(\mathbf{w},b,\boldsymbol{\xi}) := \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_t \xi_t$$
 subject to $r^{(t)}(\mathbf{w}^\top \Phi(\mathbf{x}^{(t)}) + b) \geqslant 1 - \xi_t$ and $\xi_t \geqslant 0, \ \forall t = 1, \cdots, N$

• Dual problem:

$$\operatorname*{arg\,max}_{\pmb{\alpha}} \operatorname{dual}(\pmb{\alpha}) := \pmb{\alpha} \mathbf{1} - \tfrac{1}{2} \pmb{\alpha}^{\top} \widetilde{\pmb{K}} \pmb{\alpha} = \sum_{t} \alpha_{t} - \tfrac{1}{2} \sum_{i,j} r^{(i)} \alpha_{i} r^{(j)} \alpha_{j} \pmb{K}_{i,j}$$
 subject to $\pmb{0} \leqslant \pmb{\alpha} \leqslant \pmb{C} \mathbf{1}, \, \pmb{r}^{\top} \pmb{\alpha} = \pmb{0}$

Box constraint and zero-sum constraint

Sequential Minimal Optimization

- A special case of coordinate descent (or decomposition methods)
 which picks only few coordinates to update during each iteration
- What's the minimal #coordinates for SVM dual? 2, due to the zero-sum constraint ${m r}^{\rm T}{m \alpha}=0$

Repeat until convergence {

- 1. Select some coordinate pair α_i and α_j to update next using some heuristic (e.g., to pick the two that allow us to make the biggest progress towards the global maximum); 選讓最佳化問題可以最有進展的兩個點
- 2. Re-optimize $dual(\alpha)$ with respect to α_i and α_j , while holding all the other coordinates α_k 's, $k \neq i, j$, fixed; }
 - As compared to the batch descent: more iterations, but each iteration can run very fast!

- Sparse Kernel Machines
- Support Vector RegressionPrimal Objective
- 3 Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- 4 Structural Risk Minimization

Optimality Conditions Revisited (1)

• It is sometimes convenient to rewrite the box constraint $0 \le \alpha_t \le C$ as:

先不要管Free Support Vectors
$$r^{(t)} \alpha_t \in [A^{(t)}, B^{(t)}] = \begin{cases} [0, C], & r^{(t)} = 1 \\ [-C, 0], & r^{(t)} = -1 \end{cases}$$
 總之乘起來 就是在 $0 \sim \pm C$ 之間

- Let α^* be the solution to the dual problem
- ullet Consider a pair of subscripts (i,j) such that $r^{(i)}lpha_i^* < B^{(i)}$ and $A^{(j)} < r^{(j)} \alpha_i^*$
- $\bullet \ \, \text{Define} \,\, \pmb{\alpha}^{\varepsilon} \,\, \text{such that} \,\, \pmb{\alpha}^{\varepsilon}_t = \pmb{\alpha}^*_t + \left\{ \begin{array}{ll} \varepsilon r^{(t)}, & \text{if} \,\, t = i \\ -\varepsilon r^{(t)}, & \text{if} \,\, t = j \\ 0, & \text{otherwise} \end{array} \right. \,, \,\, \text{clearly} \,\, \pmb{\alpha}^{\varepsilon} \,\, \text{is} \,\,$

also a feasible solution when ϵ is positive and sufficiently small

Lup:在負Margin上方

正Instance : $r^{(i)}\alpha_i$ < C · α_i < C · $r^{(i)}$ 在線上或線外 負Instance : $r^{(i)}\alpha_i$ < O · α_i > O · $r^{(i)}$ 在線上或線內

$\mathbf{I}_{\mathsf{down}}$:在正Margin下方

正Instance : $r^{(i)}\alpha_i > 0 \cdot \alpha_i > 0 \cdot r^{(i)}$ 在線上或線內 **負Instance** : $r^{(i)}\alpha_i > -C \cdot \alpha_i < C \cdot r^{(i)}$ 在線上或線外

```
\begin{array}{ll} \text{By definition} \\ I_{up} & := \{\,i \mid r^{(i)}\alpha^{\star}_{i} \!< B^{(i)}\,\} \\ I_{down} := \{\,j \mid A^{(j)} \!< r^{(j)}\alpha^{\star}_{j}\,\} \end{array}
```


Optimality Conditions Revisited (2)

- Also, define the gradient g_t of dual at α as 泰勒展開式的前2項 $g_t := \frac{\partial dual(\alpha)}{\partial \alpha_t} = 1 r^{(t)} \sum_i r^{(i)} \alpha_i K_{t,i}$ [Proof]
- Since this holds for all pairs (i,j) such that $r^{(i)}\alpha_i^* < B^{(i)}$ and $I_{\text{down}}A^{(j)} < r^{(j)}\alpha_i^*$, we have another necessary optimality condition:

$$\exists \rho \in \mathbb{R} \text{ such that } \max_{i \in I_{up}} r^{(i)} g_i^* \leqslant \rho \leqslant \min_{j \in I_{down}} r^{(j)} g_j^*$$

where
$$I_{up} := \{i | r^{(i)} \alpha_i^* < B^{(i)}\}$$
 and $I_{down} := \{j | A^{(j)} < r^{(j)} \alpha_i^*\}$

• ho is unique, due to the existence of free SVs that exist in both I_{up} and I_{down} Iun □□□□□□ I_{down} □□□□□□ 這兩個之間的差距

End Before start $I_{down} = \{ j | A^{(j)} < r^{(j)} \alpha_i \}$ $I_{uv} = \{ j | B^{(i)} > r^{(i)} \alpha_i \}$ $I_{down} = \{j \mid A^{(j)} < r^{(j)}\alpha_i\}$ $I_{up} = \{i \mid B^{(i)} > r^{(i)}\alpha_i\}$ Iup都向右靠了 R'

$$\exists \rho \in \mathbb{R} \text{ such that } \forall t, \left\{ \begin{array}{l} r^{(t)}\alpha_t^* = B^{(t)}, \\ r^{(t)}\alpha_t^* = A^{(t)}, \end{array} \right. \begin{array}{l} \text{if } r^{(t)}g_t^* > \rho \\ \text{if } r^{(t)}g_t^* < \rho \end{array} \\ \\ \exists \rho \in \mathbb{R} \text{ such that } \forall t, \left\{ \begin{array}{l} \alpha_t^* = C, & \text{if } g_t^* > r^{(t)}\rho \\ \alpha_t^* = 0, & \text{if } g_t^* < r^{(t)}\rho \end{array} \right. \\ \text{If } r^{(t)}g_t^* > \rho \text{ and } r^{(t)}\alpha_t^* < B^{(t)}, \text{ then the instance } t \text{ must be in } I_{up}(\text{consider}) \end{array}$$

instance x_1), meaning $\max_{i \in I_{uv}} r^{(i)} g_i > \rho$ in Condition 1, a contradiction. Similarly, if $r^{(t)}g_t^* < \rho$ and $r^{(t)}\alpha_t^* > A^{(t)}$, then the instance t

 $\rho > \min_{i \in I_{down}} r^{(i)} g_i$ to Condition 1.

must be in I_{down} (consider instance x_2), leading to another contradiction

Optimality Conditions Revisited (3)

- Actually the above condition is also sufficient
- By letting $\mathbf{w}^* := \sum_{t=1}^N \alpha_t^* r^{(t)} \Phi(\mathbf{x}^{(t)})$, $b^* := \rho$, and $\xi_t^* := \max\{0, g_t^* r^{(t)}\rho\}$, we can see that [Proof]
 - All primal constrains are satisfied, and
 - $primal(\mathbf{w}^*, b^*, \boldsymbol{\xi}^*) dual(\boldsymbol{\alpha}^*) = 0$, so no duality gap

Sequential Minimal Optimization

Algorithm 6.2 SMO with Maximum Violating Pair working set selection

1: $\forall k \in \{1 \dots n\}$ $\alpha_k \leftarrow 0$ 2: $\forall k \in \{1 \dots n\}$ $q_k \leftarrow 1$ ▶ Initial coefficients▶ Initial gradient

- 3: **loop**
- 4: $i \leftarrow \arg \max_i y_i g_i$ subject to $y_i \alpha_i < B_i$
- 5: $j \leftarrow \arg\min_{j} y_{j}g_{j}$ subject to $A_{j} < y_{j}\alpha_{j}$
- 6: if $y_i g_i \leq y_j g_j$ stop.

7:
$$\lambda \leftarrow \min \left\{ B_i - y_i \alpha_i, \ y_j \alpha_j - A_j, \ \frac{y_i g_i - y_j g_j}{K_{ii} + K_{jj} - 2K_{ij}} \right\}$$

- 8: $\forall k \in \{1 \dots n\}$ $g_k \leftarrow g_k \lambda y_k K_{ik} + \lambda y_k K_{jk}$
- 9: $\alpha_i \leftarrow \alpha_i + y_i \lambda$ $\alpha_j \leftarrow \alpha_j y_j \lambda$ 10: **end loop**

- ➤ Maximal violating pair
- ▷ Optimality criterion (11)
 - ▷ Direction search
 - ▶ Update gradient
 - ▶ Update coefficients

• $I_{up} := \{i | r^{(i)} \alpha_i < B^{(i)}\}$ and $I_{down} := \{j | A^{(j)} < r^{(j)} \alpha_j\}$ are indexes of α_t 's who's values can still be moved up and down along the directions $r^{(t)}$ and $-r^{(t)}$ respectively

- Sparse Kernel Machines
- Support Vector RegressionPrimal Objective
- 3 Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- Structural Risk Minimization

Directional Search

- Suppose there is no constraint in the dual problem
- Let $\alpha^{new} := \alpha + \lambda d$, where d is a search direction
- Linear search: $\lambda^* := \arg\max_{\lambda \geqslant 0} dual(\alpha + \lambda d)$ can be easily solved, yielding $\lambda^* = \max(0, \frac{g^\top d}{d^\top K d})$ [Proof]
- When $m{d}$ points to an ascending direction (or, equivalently, $m{g}^{ op}m{d}\geqslant 0$), $\lambda^*=rac{m{g}^{ op}m{d}}{m{d}^{ op}m{k}m{d}}$
 - This is true in SMO (to be explained in working set selection)

Directional Search in SMO (1)

- Assume that the indexes of working set (i,j) is known (explained in working set selection), SMO picks the search direction $\boldsymbol{d}^{(i,j)}$ that moves $\boldsymbol{\alpha}$ along the ith and jth coordinates only (i.e., $d_t^{(i,j)} = 0$ for all $t \neq i,j$)
- In the presence of box constraint $\mathbf{0} \leqslant \boldsymbol{\alpha} \leqslant C$ and zero-sum constraint $\mathbf{r}^{\top} \boldsymbol{\alpha} = 0$, we need to ensure that $\boldsymbol{\alpha}^{new} = \boldsymbol{\alpha} + \lambda \boldsymbol{d}$ is still feasible

Directional Search in SMO (2)

• SMO deals with the zero-sum constraint by letting

$$d_t^{(ij)} = \left\{ \begin{array}{ll} r^{(t)}, & \text{if } t = i \\ -r^{(t)}, & \text{if } t = j \\ 0, & \text{otherwise} \end{array} \right.$$

- So, $r^{\top} \alpha^{new} = r^{(1)} \alpha_1 + \dots + r^{(i)} (\alpha_i + \lambda r^{(i)}) + \dots + r^{(j)} (\alpha_j \lambda r^{(j)}) + \dots + r^{(N)} \alpha_N = r^{\top} \alpha + \lambda \lambda = 0$
- Line search can be simplified: $\lambda^* = \frac{g^\top d^{(i,j)}}{d^{(i,j)} \top \tilde{K} d^{(i,j)}} = \frac{r^{(i)} g_i r^{(j)} g_j}{K_{i,i} + K_{j,j} 2K_{i,j}}$

Directional Search in SMO (3)

- SMO respects the box constraint by letting $\lambda^* = \min(B^{(i)} r^{(i)}\alpha_i, r^{(j)}\alpha_j A^{(j)}, \frac{r^{(i)}g_i r^{(j)}g_j}{K_{i,i} + K_{j,j} 2K_{i,j}})$
- $\begin{array}{l} \bullet \ \, \text{So, } r^{(i)}(\alpha_i+\lambda r^{(i)})=r^{(i)}\alpha_i+\lambda\leqslant B^{(i)} \ \, \text{and} \\ r^{(j)}(\alpha_j-\lambda r^{(j)})=r^{(j)}\alpha_j-\lambda\geqslant A^{(j)} \end{array}$

Sequential Minimal Optimization

Algorithm 6.2 SMO with Maximum Violating Pair working set selection

1:
$$\forall k \in \{1 \dots n\}$$
 $\alpha_k \leftarrow 0$ \triangleright Initial coefficients 2: $\forall k \in \{1 \dots n\}$ $g_k \leftarrow 1$ \triangleright Initial gradient

- 3: loop
- 4: $i \leftarrow \arg \max_i y_i q_i$ subject to $y_i \alpha_i < B_i$
- 5: $j \leftarrow \arg\min_{i} y_i g_i$ subject to $A_i < y_i \alpha_i$
- 6: if $y_i q_i \leq y_j q_i$ stop.

7:
$$\lambda \leftarrow \min \left\{ B_i - y_i \alpha_i, \ y_j \alpha_j - A_j, \ \frac{y_i g_i - y_j g_j}{K_{ii} + K_{jj} - 2K_{ij}} \right\}$$

- 8: $\forall k \in \{1...n\}$ $g_k \leftarrow g_k \lambda y_k K_{ik} + \lambda y_k K_{jk}$
- 9: $\alpha_i \leftarrow \alpha_i + y_i \lambda$ $\alpha_j \leftarrow \alpha_j y_j \lambda$
- 10: end loop

- ⊳ mitiai gradient
- ▶ Maximal violating pair
 ▶ Optimality criterion (11)
 - $\rhd \ {\rm Direction \ search}$
 - ▷ Update gradient
 - ▶ Update coefficients

Outline

- Sparse Kernel Machines
- Support Vector RegressionPrimal Objective
- 3 Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- Structural Risk Minimization

Maximizing the Gain

• How to select the indexes (i,j) for the working set?

Maximizing the Gain

- How to select the indexes (i,j) for the working set?
- Idea: pick the one that maximizes the gain: $\begin{aligned} & \boldsymbol{d}^{(i,j)*} := \arg\max_{\boldsymbol{d}^{(i,j)}} \max_{\lambda \geqslant 0} dual(\boldsymbol{\alpha} + \lambda \boldsymbol{d}^{(i,j)}) dual(\boldsymbol{\alpha}) \text{ subject to} \\ & r^{(i)} \alpha_i + \lambda \leqslant B^{(i)} \text{ and } A^{(j)} \leqslant r^{(j)} \alpha_i \lambda \end{aligned}$
- Unfortunately the search of the best direction $\boldsymbol{d}^{(ij)*}$ requires iterating over the N(N-1) possible pairs of indexes
 - ullet The maximization of λ then amounts to performing a direction search
 - These repeated direction searches would virtually access all the kernel matrix during each SMO iteration
 - Not acceptable for a fast algorithm

Maximal Violating Pair

- By the first order approximation, we have $dual(\alpha + \lambda d^{(i,j)}) dual(\alpha) \approx \lambda g^{\top} d^{(i,j)}$ if λ is sufficiently small
- $d^{(i,j)*} = \arg\max_{d^{(i,j)}} \max_{0 \le \lambda \le \epsilon} \lambda g^{\top} d^{(i,j)}$
- We can assume that there is a direction $\boldsymbol{d}^{(ij)}$ such that $\boldsymbol{g}^{\top}\boldsymbol{d}^{(ij)}>0$ because we would otherwise have reached the optimum
- $\bullet \ \, \boldsymbol{d}^{(i,j)*} = \arg\max_{\boldsymbol{d}^{(i,j)}} \boldsymbol{g}^{\top} \boldsymbol{d}^{(i,j)} = \arg\max_{i \in I_{up}, j \in I_{down}} (r^{(i)} g_i r^{(j)} g_j)$
- ullet Therefore, $i := \max_{k \in I_{up}} r^{(k)} g_k$ and $j := \min_{k \in I_{down}} r^{(k)} g_k$

Sequential Minimal Optimization

Algorithm 6.2 SMO with Maximum Violating Pair working set selection 1: $\forall k \in \{1 \dots n\} \quad \alpha_k \leftarrow 0$ ▶ Initial coefficients 2: $\forall k \in \{1 \dots n\} \quad q_k \leftarrow 1$ ▶ Initial gradient 3: **loop** 4: $i \leftarrow \arg\max_{i} y_i q_i$ subject to $y_i \alpha_i < B_i$ 5: $j \leftarrow \arg\min_{i} y_i g_i$ subject to $A_i < y_i \alpha_i$ Maximal violating pair 6: if $y_i q_i \leq y_i q_i$ stop. ▷ Optimality criterion (11) $\lambda \leftarrow \min \left\{ B_i - y_i \alpha_i, \ y_j \alpha_j - A_j, \ \frac{y_i g_i - y_j g_j}{K_{ii} + K_{ij} - 2K_{ii}} \right\}$ ▷ Direction search 8: $\forall k \in \{1 \dots n\}$ $g_k \leftarrow g_k - \lambda y_k K_{ik} + \lambda y_k K_{jk}$ ▶ Update gradient $\alpha_i \leftarrow \alpha_i + y_i \lambda$ $\alpha_i \leftarrow \alpha_i - y_i \lambda$ ▶ Update coefficients 10: end loop

- The selected i and j are useful for **both** termination check and working set selection
- Compare the running time of SMO with that of CVX [Homework]

Outline

- Sparse Kernel Machines
- Support Vector RegressionPrimal Objective
- 3 Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- Structural Risk Minimization

The Cost of SMO

Algorithm 6.2 SMO with Maximum Violating Pair working set selection

• Which line costs the most time?

10: end loop

The Cost of SMO

Algorithm 6.2 SMO with Maximum Violating Pair working set selection 1: $\forall k \in \{1 \dots n\} \quad \alpha_k \leftarrow 0$ ▶ Initial coefficients 2: $\forall k \in \{1 \dots n\} \quad q_k \leftarrow 1$ ▶ Initial gradient 3: **loop** 4: $i \leftarrow \arg \max_i y_i g_i$ subject to $y_i \alpha_i < B_i$ 5: $j \leftarrow \arg\min_i y_i q_i$ subject to $A_i < y_i \alpha_i$ Maximal violating pair 6: if $y_i q_i \leq y_i q_i$ stop. ▷ Optimality criterion (11) $\lambda \leftarrow \min \left\{ B_i - y_i \alpha_i, \ y_j \alpha_j - A_j, \ \frac{y_i g_i - y_j g_j}{K_{ii} + K_{ij} - 2K_{ii}} \right\}$ ▷ Direction search 8: $\forall k \in \{1 \dots n\} \quad q_k \leftarrow q_k - \lambda y_k K_{ik} + \lambda y_k K_{ik}$ ▶ Update gradient $\alpha_i \leftarrow \alpha_i + y_i \lambda$ $\alpha_j \leftarrow \alpha_j - y_j \lambda$ ▶ Update coefficients 10: end loop

• Which line costs the most time? Line 8: updating of the gradient, which requires the computation of two full rows of the kernel matrix

Computation of Kernel Values

- Computing the kernel values $K_{i,j} = K(x_i, x_j)$ only appear as "constant factors" in the asymptotic complexity of solving the SVM problem
- But in practice it accounts for *more than half* the total running time!

Observations

• Computing kernels is expensive: data can be high-dimensional, e.g., images have thousands of pixels, documents have thousands of words

Observations

- Computing kernels is expensive: data can be high-dimensional, e.g., images have thousands of pixels, documents have thousands of words
- Computing the full kernel matrix is wasteful: the expression of the gradient $g^{(i)} = 1 r^{(i)} \sum_{j=1}^N r^{(j)} \alpha_j \mathbf{K}_{i,j}$ only depend on kernel values $\mathbf{K}_{i,j}$ that involve at least one support vector (the other kernel values are multiplied by zero)

Observations

- Computing kernels is expensive: data can be high-dimensional, e.g., images have thousands of pixels, documents have thousands of words
- Computing the full kernel matrix is wasteful: the expression of the gradient $g^{(i)} = 1 r^{(i)} \sum_{j=1}^N r^{(j)} \alpha_j \pmb{K}_{i,j}$ only depend on kernel values $\pmb{K}_{i,j}$ that involve at least one support vector (the other kernel values are multiplied by zero)
- The kernel matrix may not fit in memory: large-scale problems are common today

Kernel Caching

- In practice, SMO solvers implement a cache that keeps the most recently used kernel values
- A kernel value is computed on the fly when it is missed from cache
- Kernel cache hit rate becomes a major factor of the training time
- How much is the speedup? [Homework bonus]

Outline

- Sparse Kernel Machines
- 2 Support Vector Regression
 - Primal Objective
- 3 Support Vector Classification
 - Primal Objective
 - Dual Problem
 - Sequential Minimal Optimization
 - Termination Criteria
 - Directional Search
 - Working Set Selection
 - Kernel Caching
- Structural Risk Minimization

Structural Risk Minimization

TBA