Question Number	Answer		Mark
17(a)(i)	of $W = m g$	(1)	
	Use of Newton first law	(1)	
	$6.9 \times 10^{-8} (\text{N})$	(1)	3
	Example of calculation		
	$W = 1.15 \times 10^{-8} \text{ kg} \times 9.81 \text{ N kg}^{-1} = 1.13 \times 10^{-7} \text{ N}$		
	$D = W - U = 1.13 \times 10^{-7} \text{ N} - 4.37 \times 10^{-8} \text{ N} = 6.91 \times 10^{-8} \text{ N}$		
17(a)(ii)	Use of $F = 6 \pi \eta r v$ [allow diameter for radius]	(1)	
	Terminal velocity = $5.7 \times 10^{-3} \text{ m s}^{-1} (\text{ecf from (a)(i)})$	(1)	2
	["show that" value gives $5.73 \times 10^{-3} \text{ m s}^{-1}$]		
	Example of calculation		
	$D = 6\pi \times 1.41 \times 10^{-3} \text{ Pa s} \times 4.6 \times 10^{-4} \text{ m} \times v = 6.91 \times 10^{-8} \text{ N}$		
	$v = 6.91 \times 10^{-8} \text{ N} \div (6\pi \times 1.41 \times 10^{-3} \text{ Pa s} \times 4.6 \times 10^{-4} \text{ m})$		
	$= 5.65 \times 10^{-3} \text{ m s}^{-1}$		
17(b)	Viscosity increases (with lower temperature) so <u>drag</u> force increases (for given	(1)	
	velocity)		
	OR		
	Viscosity increases (with lower temperature) so (terminal) velocity slower for		4
	given drag force [allow reference to $F = 6\pi \eta \rho v$]		
	Density increases (with increasing depth) so <u>upthrust</u> increases [ignore "upthrust	(1)	
	is constant"]		
	Weight remains constant [do not accept "mass"]	(1)	
	Terminal velocity reduces (with increasing depth) (dependent on MP1 or MP2) [accept "constant" velocity]	(1)	

9

Total for question 17