Introduction to Computer for Engineers

Lecture 7 Numerical Integration

Dr. Vo Tan Phuoc School of Electrical Engineer — International University

Review Matlab

While loop

- Syntax
 while (conditional statement)
 instructions (when the statement is true)
 end
- Note: you can combine **if** and **break** to exit the loop
- **Example** sum of 10 natural number using while loop

Review Matlab

Algorithm for calculating the sum

- Declare a variable used for storing the sum, eg.sum_var = 0
- Iterate until we reach the biggest number k, that we want to compute the sum
 sum_var = sum_var + k
 End of iterate
- Show the value of the sum, eg. sum_var

Implement using for loop and while loop

Review Matlab

Implementation code

```
sum_var = 0;
k = 0;
while ( k <= 10 ) // biggest number is 10
    sum_var = sum_var + k;
    k = k + 1;
end
sum_var</pre>
```

Review Matlab

Implementation code 2

```
sum_var = 0;
k = 0;
while (1) // while loop will run forever
    sum_var = sum_var + k;
    k = k + 1;
    if (k == 11) break; // exit the loop
end
sum_var
```

Review Math

Area computation

- Area of a triangle with the bottom a and the height h

$$S_{triangle} = \frac{ha}{2}$$

- Area of a rectangle with length a and b:

$$S_rec = a \times b$$

 Area of a trapezoid with top, bottom and the height are respectively a,b and h

$$S_{trap} = \frac{h}{2}(a+b)$$

Numerical Integration

Based on

The computation of sum

The area

Numerical Integration = Sum of Area

Demonstration: compute the value of

$$I = \int_0^5 (2x - 4) dx$$

$$I = \int_0^5 (x^2 - 2x + 3) dx$$

Numerical Integration

Demonstration: compute the value of

$$I = \int_0^5 (2x - 4) dx = \left[x^2 - 4x \right]_0^5 = 25 - 20 = 5$$

$$I = \int_0^5 (x^2 - 2x + 3) dx = \left[\frac{x^3}{3} - x^2 + 3x \right]_0^5 = \frac{95}{3} = 31.6$$

Numerical Integration

Implementation

Declare a variable for storing the value of the integral

Plot the function inside the integral on the interval 0-5

Numerical calculation using

- Sum of rectangles
- Sum of trapezoids

Identifying the source of error, Compare with exact solution

Increase the quality of solution by splitting more equidistance

End of Lecture 7