

COMP3430 / COMP8430 Data wrangling

In person lecture week 6

(Lecturer: Thilina Ranbaduge)

Some administrative things

• Assignment 1 is due Sunday 2 Sept at 23:55! Assignment submission link is now available. See week 6.

Assignment 1 submission (due 23:55 AEDT on Sunday 2 September 2018)

Assignment 2 Specification 119.2KB PDF document Uploaded 17/08/18, 11:00

• Assignment 2 specification is available in Wattle now. Relevant data sets will be available by end of this week or the first week of September.

The record linkage process

Comparing record pairs (2)

- Exact comparison of attribute values will not provide good linkage results
 - Even true matching record pairs often contain different attribute values
 - For example:['peter', 'paul', 'meier', '2/21 main st', 'acton', 'act', '2601']['peter', 'p', 'meyer', '21 main street', 'acton', 'act', '2602']
- Approximate comparison functions are required
 - To calculate similarities between attribute values, not only 'is the same or is different'
 - They need to be appropriate for the content of a certain attribute
 (text: names, addresses, dates, phone numbers; numerical: ages, salaries)

Numerical comparison functions (1)

- For numerical values, we also want to have a comparison that calculates a similarity between 0 and 1
- We set a maximum absolute difference allowed, or a maximum percentage difference allowed
 - If two values differ more their similarity will be 0
- For absolute maximum difference of d_{max} and two values n_1 and n_2 :
 - $\text{ If } abs(n_1 n_2) \ge d_{max} : sim_{num_abs} = 0$
 - If $abs(n_1 n_2) < d_{max}$: $sim_{num_abs} = 1 (abs(n_1 n_2) / d_{max})$

Numerical comparison functions (2)

- Similar for maximum percentage difference
 - Similarity for income (salary) differences of maximum 5% is more suitable compared to a maximum difference of \$10,000
 - Similarity of age difference by 10% is better than maximum age difference

of 5 years (young compared to old people)

• Question: Calculate similarities for absolute maximum difference of

$$d_{max} = 5$$
, $n_1 = 42$ and $n_2 = \{37, 38, 40, 41, 49\}$

wis 0 0 |n 1- n2| d_{max}

Then calculate percentage differences assuming these are ages

Q-gram based string comparison (1)

- Convert a string into its set of q-grams
 - Often with q = 2 (bigrams) or q = 3 (trigrams)
 - For example, with bigrams: "peter" → ['pe', 'et', 'te', 'er']
- Calculate the similarity between two strings based on counting the number of q-grams that occur in both strings
 - Jaccard similarity: $sim_{Jacc}(s_1, s_2) = |intersection(Q_1, Q_2)| / |union(Q_1, Q_2)|$
 - Dice coefficient: $sim_{Dice}(s_1, s_2) = 2* |intersection(Q_1, Q_2)| / (|Q_1| + |Q_2|)$ where:
 - $-Q_x$ is the set of q-grams extracted from string s_x
 - $-intersection(Q_1,Q_2)$ is the set of q-grams that occur in both strings
 - |..| denotes the number of elements in a set

Q-gram based string comparison (2)

- For example, with s_1 = "peter" and s_2 = "pete" and q = 2:
 - $-Q_1 = [\text{'pe', 'et', 'te', 'er'}], Q_2 = [\text{'pe', 'et', 'te'}], |Q_1| = 4, |Q_2| = 3$
 - intersection (Q_1, Q_2) = ['pe', 'et', 'te'] and $union(Q_1, Q_2)$ = ['pe', 'et', 'te', 'er']
 - $-sim_{lacc}(s_1, s_2) = | ['pe', 'et', 'te'] | / | ['pe', 'et', 'te', 'er'] | = 3 / 4 = 0.75$
 - $-sim_{Dice}(s_1, s_2) = 2*3/(3+4) = 6/7 = 0.857$
- Questions: Which one is correct? Which one is better? What are the Jaccard and Dice similarities between s_1 = 'peter' and s_2 = 'pedro' for q = 1, 2, and 3?

Edit distance (1)

- Idea: Count how many basic *edit operations* are needed to convert one string into another (known as *Levenshtein* edit distance)
 - Insertion of a character: "pete" → "peter"
 - Deletion of a character: "miller" → "miler"
 - Substitution of a character: "smith" → "smyth"
 - Transpositions of two adjacent characters: "sydney" → "sydeny"
 (known as Damerau-Levenshtein edit distance)
- Questions: What is the Levenshtein edit distance between "peter" and "petra", and between "gayle" and "gail"?

Edit distance (2)

- Convert an edit distance into a similarity $0 \le sim_{edit_dist} \le 1$ by calculating $sim_{edit_dist}(s_1, s_2) = 1 edit_dist(s_1, s_2) / max(len(s_1), len(s_2))$
- For example, with s_1 = "peter" and s_2 = "petra": $sim_{edit\ dist}(s_1, s_2) = 1 2 / max(5, 5) = 1 2 / 5 = 3 / 5 = 0.6$
- Edit distance can be calculated using a dynamic programming algorithm based on the edit matrix
 - Which has a quadratic complexity in the lengths of the two strings (i.e. requires $len(s_1) * len(s_2)$ computational steps)

Edit distance (3)

 Matrix shows the number of edits between sub-strings (for example, between 'ga' and 'gayle' → 3 inserts)

"gail" → substitute 'i' with 'y', then insert 'e' → "gayle" (final edit distance is 2)

• Question: Calculate edit distance between s_1 = "peter" and s_2 = "petra"

		හ	a	y	1	e
	0	1	2	3	4	5
g	1	0	1	2	3	4
a	2	1	0	1	2	3
i	3	2	1	1	2	2
1	4	3	2	2	1	2