Instructions

- 1. Do not start writing until you are instructed to do so.
- 2. Do not continue to write when you are told to stop.
- 3. You are not allowed to communicate with one another during the quiz.
- 4. This is an open-book quiz. Except for a calculator, you are NOT allowed to use other electronic devices.
- 5. Answer in the answer-sheet and submit both question- and answer-sheet before the end of the quiz.
- 6. Write your name and student number clearly in the answer sheet.
- 7. There are two questions (20 points each) with sub-questions

Question 1

- a) From what you learned in this course, describe a robot using an example as illustration.

 (4 Points)
- b) The figure shows two mobile robots, one with a manipulator arm mounted on it. Frame A, B, E are attached rigidly to Robot 1 and Frame C is attached rigidly to Robot 2.

Robot 1 and Robot 2 went through some transformations in the following order

- 1. Robot 2 moves around Robot 1 such that {C} rotates 90° about axis X_A to become {C1}.
- 2. Robot 2 rotates about itself such that {C1} rotates 90° about axis X_{c1} to become {C2}.
- 3. Robot 1 moves forward such that {A}, {B} and {E} translate along the vector ^A(0, 0, 2)' to become {A3}, {B3} and {E3}
- 4. The arm on Robot 1 moves such that $\{E3\}$ rotates 90° about axis Z_B to become $\{E4\}$

Obtain the expression for

i.	$^{A}T_{C1}$	(3 Points)
ii.	$^{A}T_{C2}$	(3 Points)
iii.	$^{A3}T_{C2}$	(3 Points)
iv.	$^{E3}T_{C2}$	(3 Points)
V.	$^{C2}T_{E4}$	(4 Points)

Question 2

The following figure shows a 6-joint robot with frames assigned to the links. Joint q_1 , q_4 , q_5 and q_6 are revolute joints while q_2 and q_3 are translational joints.

The D-H parameters are tabulated as follows.

	Link Twist α_{i-1}	Link Length a_{i-1}	Joint Angle $ heta_i$	Link offset d_i
0 1	0	0	q1=0	0
¹ 1T	0	0	90°	$q_2=d_2$
² ₃ T	90°	0	(v)?	(vi)?
³ ₄ T	(vii)?	(viii) <u>?</u>	(ix)?	0
⁴ T	(x)?	(xi)?	q ₅ =180°	(xii) <u>?</u>
5 T	90°_	0	$q_6=0$	0

a)	Fill in the missing details from (i)-(xii)	(12 Points)

b) For
$${}^0_3P=(\frac{1}{\sqrt{2}},1,\frac{1}{\sqrt{2}})^{\mathsf{T}},$$
 determine a possible set of $(\mathsf{q}_1,\mathsf{q}_2,\mathsf{q}_3).$ (3 Points)

c) Describe the reachable workspace for Frame 6 (2 Points)

d) Explain what happens when q₅=180° (i.e. current configuration) (3 Points)

Solution

Question 1

a) Robots are <u>machines/agents</u> designed by human to carry out <u>tasks</u> while interacting with the <u>environment</u>. An example is a <u>robotic manipulator arm for sorting objects</u>. It is designed to recognize and classify objects in the scene while manipulating the objects as specified.

Solution

Question 2

a)

(i)
$$Z_1$$
 (ii) X_1 (iii) Z_2 (iv) X_2 (v) 90° (vi) $q_3 = d_3$ (vii) 0 (viii) 0 (ix) $q_4 = 90^\circ$ (x) 90° (xi) 0 (xii) 0

b)

Forward kinematics:

$${}_{3}^{0}P = \begin{pmatrix} q_3 \cos q_1 \\ q_3 \sin q_1 \\ q_2 \end{pmatrix}$$

Inverse kinematics:

$$q_{2} = \frac{1}{\sqrt{2}}$$

$$q_{3} = \sqrt{\left(\frac{1}{\sqrt{2}}\right)^{2} + 1^{2}} = \sqrt{\frac{3}{2}}$$

$$q_{1} = \operatorname{atan2}(1, \frac{1}{\sqrt{2}})$$

c)

It is a partial cylinder with height $q_{2_max}-q_{2_min}$, angle of sweep $q_{1_max}-q_{1_min}$, and radius of sweep $q_{3_max}-q_{3_min}$ as shown in the following figure.

d)

This configuration is associated with singularity as the axes of q_4 and q_6 align losing a degree of freedom. Mathematically, the Jacobian matrix $J(\dot{q}_1 \quad ... \quad \dot{q}_6)$ mapping $(\dot{q}_1 \quad ... \quad \dot{q}_6)^T$ to $(\dot{x} \quad \dot{\theta})$ is not full rank.