Nome & Cognome:

Algebra Lineare, Esame Finale Gennaio 24, 2024

- Tutto il lavoro deve essere unicamente vostro.
- L'utilizzo di calcolatrici è vietato.
- L'esame dura 2 ore.
- Scrivete il vostro nome su tutte le pagine, nel caso qualche foglio si staccasse.
- Controllate di avere tutte le 8 pagine dell'esame.
- Ogni domanda a risposta multipla vale 1 punto.
- Le risposte alle domande aperte valgono 11 punti l'una.
- Le domande aperte verranno corrette solo a chi totalizzi almeno 6 punti su 10 nella parte a crocette.

Buon Lavoro!

P	'ER F	AVORE	MARC	ATE LE	E RISF	POSTE CO	ON U	NA X, non un cerchio!
1.	(a)	(b)	(c)	(d)	(e)			
2.	(a)	(b)	(c)	(d)	(e)			
3.	(a)	(b)	(c)	(d)	(e)			
4.	(a)	(b)	(c)	(d)	(e)			
5.	(a)	(b)	(c)	(d)	(e)			
6.	(a)	(b)	(c)	(d)	(e)			
7.	(a)	(b)	(c)	(d)	(e)			
8.	(a)	(b)	(c)	(d)	(e)			
9.	(a)	(b)	(c)	(d)	(e)			
10.	(a)	(b)	(c)	(d)	(e)			
						Non scri	vere	qua sotto!
						Risp. Mul	ltiple	
						Risp. A _l	perte	
						Т	otale	

Nome & Cognome:

Risposta multipla

1.(1 pt.) Siano $a, b, c, d, e, f \in \mathbb{R}_3[x]$ definiti da

$$a(x) = x - 1,$$

$$b(x) = x + 2,$$

$$c(x) = 2x^2 - 2,$$

$$d(x) = x^2 - x$$

$$d(x) = x^2 - x,$$
 $e(x) = 2x^3 + 1,$

$$f(x) = x^3 - x^2,$$

e sia U il sottospazio $\{p(x) \in \mathbb{R}_3[x] ; p(1) = 0\}$. Allora vale

(a)
$$U = \operatorname{Span}(a, c)$$
.

(b)
$$U = \operatorname{Span}(a, c, f)$$
.

(b)
$$U = \operatorname{Span}(a, c, f)$$
. (c) $U = \operatorname{Span}(c, d, e, f)$.

(d)
$$U = \operatorname{Span}(b, e, f)$$
. (e) $U = \operatorname{Span}(a, c, d)$.

(e)
$$U = \operatorname{Span}(a, c, d)$$

2.(1 pt.) Dato $z = -\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$, allora z^{12} è uguale a:

(a)
$$-1$$
.

(b)
$$-2i$$
.

(c)
$$\frac{1}{2^6}(1-i)$$
.

(d)
$$\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i$$
.

(e)
$$2^{12}i$$
.

3.(1 pt.) La matrice associata all'applicazione lineare $T: \mathbb{R}^2 \to \mathbb{R}^2$, $T\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2x + y \\ x + 2y \end{pmatrix}$ rispetto alla base $\mathcal{B} = \left\{ \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix} \right\}$ è:

(a)
$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 0 & 1 \\ -3 & 4 \end{pmatrix}$$
. (b) $[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 1 & -3 \\ 4 & 0 \end{pmatrix}$. (c) $[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 1 & 4 \\ 0 & -3 \end{pmatrix}$.

(b)
$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 1 & -3 \\ 4 & 0 \end{pmatrix}$$
.

(c)
$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 1 & 4 \\ 0 & -3 \end{pmatrix}$$

(d)
$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 0 & -3 \\ 1 & 4 \end{pmatrix}$$
. (e) $[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 0 & 4 \\ 1 & -3 \end{pmatrix}$.

(e)
$$[T]_{\mathcal{B}}^{\mathcal{B}} = \begin{pmatrix} 0 & 4 \\ 1 & -3 \end{pmatrix}$$

4.(1 pt.) Scriviamo $x=(x_1,x_2),\,y=(y_1,y_2)\in\mathbb{C}^2$. Quale delle seguenti è un prodotto hermitiano?

(a)
$$g(x,y) = 2ix_1\overline{y}_1 + 2x_1\overline{y}_2 + 2x_2\overline{y}_1 + x_2\overline{y}_2$$
.

(b)
$$g(x,y) = x_1y_1 + 2ix_1y_2 - 2ix_2y_1 + 2x_2y_2$$

(c)
$$q(x,y) = 2x_1\overline{y}_1 + ix_1\overline{y}_2 - ix_2\overline{y}_1 - x_2\overline{y}_2$$
.

(d)
$$g(x,y) = x_1 \overline{y}_1 + 2x_1 \overline{y}_2 - 2x_2 \overline{y}_1 + 2x_2 \overline{y}_2$$
.

(e)
$$g(x,y) = x_1\overline{y}_1 + 2ix_1\overline{y}_2 + 2ix_2\overline{y}_1 + x_2\overline{y}_2$$
.

5.(1 pt.) La dimensione dello spazio $T^s(3)$ delle matrici 3×3 triangolari superiori, è:

Nove. (a)

Tre. (b)

(c) Zero.

- Sei. (d)
- (e) $T^{s}(3)$ non ha una dimensione perché non è uno spazio vettoriale.

6.(1 pt.) Siano

$$A = \begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 0 \\ 0 & -1 & 2 \end{pmatrix}, \quad B = \begin{pmatrix} 0 & 0 & -1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}.$$

Quale identità vale?

- BA = A. (a)
- (b) AB = BA.
- (c) BA = B.

- AB = B. (d)
- (e) AB = A.

7.(1 pt.) Dato il prodotto scalare g(p(x), q(x)) = g(1)p(1) - g(0)p(0) su $\mathbb{R}_1[x]$, e la base $\mathcal{B} = \{x + 1, 2\}, \text{ allora:}$

- (a) $[g]_{\mathcal{B}} = \begin{pmatrix} 3 & 2 \\ 2 & 0 \end{pmatrix}$. (b) $[g]_{\mathcal{B}} = \begin{pmatrix} 1 & 2 \\ 2 & 0 \end{pmatrix}$. (c) $[g]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 3 \end{pmatrix}$. (d) $[g]_{\mathcal{B}} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. (e) $[g]_{\mathcal{B}} = \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix}$.

8.(1 pt.) Il nucleo della mappa lineare $T: \mathbb{R}_2[x] \to \mathbb{R}_2[x], T(ax^2 + bx + c) = bx^2 + cx$ è:

(a) {}. (b) $\mathbb{R}_1[x]$.

Span(x + 1, x - 1).(c)

(d) $\operatorname{Span}(x^2)$.

(e) $\mathbb{R}_2[x] \setminus \mathbb{R}_1[x]$.

9.(1 pt.) La matrice

$$A = \left(\begin{array}{ccc} 3 & -4 & 4 \\ 2 & -3 & 2 \\ 0 & 0 & -1 \end{array}\right).$$

ha autovalore $\lambda = -1$. Qual è l'autospazio che corrisponde a questo autovalore?

- (a) Span $\left(\begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right)$.
- (b) Span $\left(\begin{pmatrix} 2\\1\\-1 \end{pmatrix}, \begin{pmatrix} 2\\1\\0 \end{pmatrix} \right)$.
- (c) Span $\left(\begin{pmatrix} 2\\1\\-1 \end{pmatrix} \right)$.
- (d) Span $\left(\begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix} \right)$.
- (e) Span $\left(\begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix} \right)$.

10.(1 pt.) Il sistema lineare con matrice completa

$$A = \left(\begin{array}{cc|c} 1 & 2 & 3 & 10 \\ 4 & 5 & 6 & 11 \\ 7 & 8 & 9 & 12 \end{array}\right)$$

ha un numero di soluzioni pari a:

- (a) Una.
- (b) Infinite, che dipendono da 1 parametro.
- (c) Zero.
- (d) Infinite, che dipendono da 2 parametri.
- (e) Un numero finito, maggiore di 1.

Nome & Cognome:	

Risposta aperta

Per ricevere punteggio parziale, dovete mostrare il vostro lavoro!

11.(11 pts.) Si consideri la seguente matrice

$$A = \begin{pmatrix} -1 & k & k^2 - k \\ k & -k & k - 1 \\ 2 & -2 & -2 \end{pmatrix}$$

in $M(3,\mathbb{R})$ dove k è un parametro reale.

- (1) Determinare per quali valori di k la matrice A è invertibile.
- (2) Posto k = 1, calcolare gli autovalori di A, specificando la loro molteplicità algebrica e geometrica, e stabilire se la matrice A è diagonalizzabile.
- (3) Posto k = -1, calcolare ${}^{t}A A$, e stabilire se la matrice A è diagonalizzabile.

Nome & Cognome:	
-----------------	--

Nome & Cognome:	
-----------------	--

- **12.**(11 pts.) Siano $\pi_1 = \{2x + y z = 1\}$ e $\pi_2 = \{x + 2y + z = 2\}$ due piani in \mathbb{R}^3 .
 - (1) Calcolare la retta $r = \pi_1 \cap \pi_2$ in forma $r = P + \operatorname{Span}(v)$.
 - (2) Dimostrare che r e il piano $\pi_3 = \{se_1 + t(e_2 + e_3) ; s, t \in \mathbb{R}\}$ sono incidenti.
 - (3) Calcolare la proiezione ortogonale del vettore v dal punto (1) sul piano π_3 .
 - (4) Calcolare l'angolo fra r e il piano π_3 .

Nome & Cognome:	
-----------------	--