시계열 예측을 위한 LSTM 기반 딥러닝: 기업 신용평점 예측 사례

〈이현상 오세환〉정보시스템연구 제29권 제1호 한국정보시스템학회 2020년 3월

야망밭의 파수꾼

박혜연 김태용 신다혜 안지훈 윤새림

목차

- ┃ 연구 목적
- Ⅱ. 연구 방법론
- Ⅲ. 연구 결과
- IV. 한계점
- **V.** 적용할 점

1. 연구목적

1. 연구목적

1997년 외환위기 & 2007 금융위기 기업부실 예측 & 신용위험관리 중요성 증대

기존 연구의 한계

- 1. 시계열 특성 활용 X
- 2. 예측 시점 한정적
- 3. 회사채 신용등급은 비교적 규모가 큰 기업

당해 논문

- 1.시계열 특성 활용
- 2.예측 시점 조절 가능한 예측 모델 구현
- 3. KIS 신용평점 활용
 - KIS 신용평점: 한국신용평가에서 개발한 지표로써 중공업, 경공업, 건설업, 도소매업, 기타서비스업 등 5개 산업구분하여 부실예측모형과 재무 평점 모형을 결합하여 산출

기존 연구의 시점적 범위적 한계점 극복!

머신러닝을 활용한 선행연구

1999년

유전자 알고리즘 기반 GA_CBR 모형을 시작으로 다양한 머신러닝 분류 기법 등장

2000년대

선형 판별 분석 〈 인공신경망 〈 서포트 벡터 머신 순으로 우수한 성능

2010년대

하이브리드 방식이 적용된 예측 모델 구현 연구 시작 SVM에서 OPP전략으로 발전시킨 OMSVM기법 데이터 리샘플링을 적용한 Bagging-DT 방식이 가장 우수한 성능 (정확도 82.96%) 랜덤 포레스트 기술 도입으로 예측 모델의 성능 향상

<표 1> 회사채 신용등급 예측 연구

논문	활용 지표	분석 기법	모델 성능
Shin and Han. (1999)	규모 지표, 수익성 지표, 주가 지표	MDA, ANN, CBR, GA-CBR	GA-CBR(acc) 75.5%
Huang et al. (2004)	규모 지표, 수익성 지표, 안정성 지표, 주가 지표	LR, SVM, ANN	SVM, ANN(acc) 약 80%
Kumar and Bhattacharya. (2006)	규모 지표, 수익성 지표, 안정성 지표, 주가 지표	ANN, LDA	ANN(acc) 약 78%
Ye et al. (2008)	규모 지표, 수익성 지표 등	LR, Probit, BDT, SVM, PSVM	SVM, PSVM(acc) 약 84%(2notch)
Huang. (2009)	규모 지표, 수익성 지표 등	NN, LR, BN, SVM, MSVM, PCA, ICA, KGE	1vs1 KGE SVM(error rate) 약 10%
Guo et al. (2012)	규모 지표, 수익성 지표, 안정성 지표, 주가지표	ANN, SVM, SVDD, SVM with FCA	SVM with FCA(acc) 72.12%
Kim and Ahn. (2012)	규모 지표, 수익성 지표, 안정성 지표, 주가지표	MDA, MLOGIT, CBR, ANN, SVM, WW, CS, OMSVM	OMSVM(acc) 67.98%
Wu et al. (2014)	규모 지표, 수익성 지표, 안정성 지표, 주가 지표, 지배구조 지표, 시장 지표	DT, BN, ANN, SVM	Bagging DT(acc) 82.96%
Kim and Ahn. (2016)	규모 지표, 수익성 지표, 안정성 지표, 현금흐름 지표, 생산성 지표	LDA, ANN, MSVM, RF	RF(acc) 72.79%

11. 연구 방법론

2.1 수집된 특성

2.2 분석 기법

2.1 수집된 특성

수집범위

18년간 KOSPI,KOSDAQ,KONEX에 등록된 비금융업 2,191개 기업 데이터 사용

전처리

2017년 KIS 신용평점 출력 안된 기업은 전부 제외 결측치는 전부 0처리

재조정

수치 : 예측 모델 편향없이 0-1 로 변환

명목 : 더미형태

텍스트: KISVALUE 투자 지표 현황 및 전망

-> 텍스트 감성분석을 통해 점수화

수치 + 명목 + 텍스트 -> 시계열적 예측 형태인 기업의 1년 데이터를 프레임 행으로 지정

슬라이딩 윈도우기업 데이터를 순차적으로 윈도우 사이즈에 맞춰 이동 3개년도에 해당하는 입력데이터를 다음해 신용 평점 라벨 값으로 할당하는 data set <표 2> 특성 선정

특성 목록	특성 그룹 구분	데이터 형태
총자산		
무형자산		
유형자산감가상각비		
무형자산상각비		4-71-71-1-1
유형고정자산증가율		수치 데이터
유동자산증가율	규모 지표	
재고자산증가율	(Scale Index)	
종업원 수		
시장구분		plD shalel
기업 형태		명목 데이터
업력		
총자산순이익률(ROA)		
총자본회전율		
부채대매출액비율		수치 데이터
순영업자본대매출	수익성 지표	
매출채권회전율	(Profitability Index)	
판매비와 관리비		
법인세비용차감전계속사업이익		
영업활동으로인한 현금흐름		
수출비중	무역 지표	
외화자산	(Trade Index)	
외화부채	(Trade fildex)	
관계회사상호거래비용		
관계회사상호거래수익	관계회사 지표	
관계회사상호거래매출	(Affiliated Company Index)	
관계회사상호거래매입		
단기차입금	안정성 지표	
사채	(Stability Index)	
장기차입금	, , , , , , , , , , , , , , , , , , , ,	
회사채유효등급		
이전 KIS 신용평점	신용 지표	명목 데이터
CP유효등급 가사이건	(Credit Index)	
감사의견	테스트 가서 키고	
현황 평가 전망 평가	텍스트 감성 지표 (Text Sentiment Index)	텍스트 데이터

2.2 분석 기법

- 일반 예측 모형 Softmax, SVM, RF, DNN
- 시계열 예측 모형 CNN, LSTM, stateful LSTM Timedistributed Model, ConvLSTM
- Python의 Tensorflow, Keras, Scikit-Learn 패키지 사용
- 기본적인 튜닝 설정 사용9개의 머신러닝 분류 모델 중 정확도가 우수한 예측모델 선정
- 7년 후까지 예측시점
 (5년 후 예측 모델부터는 시계열적 요인이 대부분 감소)
- 1년후 시점 예측모델과 7년 후 시점의 예측모델
- → 단기, 장기적 관점에서의 모델 영향 파악 가능

모델 분류	분석 기법	개요		
	Softmax	목표 라벨 값에 대해서 각 클래스에 대한 확률을 제공		
일반 예측	Support Vector Machine (SVM)	분류기점에서 서포트 벡터(support vector)와 가장 먼 거리를 가지는 초평면(hyperplane)을 찾는 기법		
모델	Random Forest (RF)	다수의 의사결정 트리(decision tree)를 생성하여 분류 또는 평균 예 측치를 출력하는 방식		
	Deep Feed-forward Neural Network (DNN)	신경망 분석에서 은닉층을 2개 이상 사용하는 전방향(feed-forward) 네트워크 분석 기법		
	Convolutional Neural Network (CNN)	1차원적 입력 배열의 한계를 극복하기 위해 이미지의 공간정보를 유지한 채로 학습이 가능한 합성곱 계층(convolutional layer) 기반 신경망 학습		
시계열 예측	Long Short Term Memory(LSTM)	장기적 연속성을 가지는 데이터에 대한 경사소실(vanishing gradient) 문제와 연산 지연문제를 곱셈게이트 유닛(multiplicative gate unit) 기술을 통해 다 수해결		
모델	stateful Long Short Term Memory (stateful LSTM)	각 배치의 학습이 진행될 때 은닉상태 벡터(hidden state vector)와 셀 상태 벡터(cell state vector)를 초기화 하는 기법		
	Timedistributed Model	CNN 모델을 통해 입력데이터의 1차원 서브시퀀스(subsequence)를 해석하여 LSTM의 시퀀스로써 활용		
	ConvLSTM	서브시퀀스를 2차원의 이미지로 간주하고 해석		

III. 연구결과

- 3.1 예측 모델 평가 및 선정
- 3.2 5등급 분류 예측 및 신용 불량 기업예측
- 3.3 예측 시점 확장
- 3.4 특성 그룹 평가

3.1 예측 모델 평가 및 선정

<표 4> 모델 평가 및 선정

학습 모델	accuracy	precision	recall	f1 score
softmax	0.2168	0.25	0.22	0.14
SVM	0.2104	0.08	0.21	0.11
RF	0.2281	0.09	0.23	0.12
DNN	0.2228	0.13	0.13	0.06
CNN	0.2036	0.21	0.14	0.08
LSTM	0.3271	0.31	0.31	0.3
stateful LSTM	0.3902	0.39	0.39	0.38
Timedistributed Model	0.2038	0.21	0.13	0.10
ConvLSTM	0.2021	0.22	0.15	0.11

stateful LSTM의 성능이 상대적으로 가장 우수했으나 전반적으로 accuracy, precision, recall, f1 score 모두 낮음

3.2 5등급 분류 예측 및 신용 불량 기업예측

<표 5> 5등급 분류 모델 평가

accuracy	precision	recall	f1 score
0.68	0.66	0.68	0.67

stateful LSTM 활용

Label 재분류

3.2 5등급 분류 예측 및 신용 불량 기업예측2

KIS신용평점 등급 체계 축소

7등급 이상 정상

8등급 이하 부도

<표 6> 신용불량 기업 예측 모델 평가

accuracy	precision	recall	f1 score
0.9	0.89	0.9	0.89

신용등급 7등급 이상 정상, 8등급 이하 부도로 가정할 시 성능 개선

3.3 예측 시점 확장

예측 연도 n	accuracy	precision	recall	f1 score
n = 1	0.3902	0.39	0.39	0.38
n = 2	0.3028	0.31	0.3	0.29
n = 3	0.2598	0.26	0.26	0.23
n = 4	0.2453	0.26	0.25	0.23
n = 5	0.2274	0.25	0.23	0.18
n = 6	0.2263	0.22	0.23	0.2
n = 7	0.2306	0.23	0.23	0.18

예측 연도 ▮

예측 성능 ▮

3년 후 예측 시점부터

성능 지표들의 하락 폭 ▼

5년 후 예측 시점부터

예측 성능의 변화 X

(시계열적 요인)

3.4 특성 그룹 평가

단기(1년 후 시점)

규모지표, 수익성지표, 텍스트감성지표 무역지표, 관계회사지표, 안정성지표 신용지표

장기(7년 후 시점)

신용지표 무역지표

텍스트감성지표

규모지표, 수익성지표

<표 8> 단기 시점 특성 그룹 평가

Feature Group	accuracy	precision	recall	f1 score
Credit Rating(target label)	0.3605	0.30	0.35	0.32
Scale Index	0.3921	0.38	0.39	0.37
Profitability Index	0.3904	0.38	0.39	0.38
Trade Index	0.3844	0.37	0.38	0.36
Affiliated Company Index	0.3885	0.38	0.39	0.35
Stability Index	0.3850	0.36	0.39	0.36
Credit Index	0.3749	0.37	0.37	0.35
Text Sentiment Index	0.3912	0.37	0.39	0.36

<표 9> 장기 시점 특성 그룹 평가

Feature Group	accuracy	precision	recall	f1 score
Credit Rating(target label)	0.2110	0.13	0.21	0.13
Scale Index	0.2336	0.21	0.23	0.21
Profitability Index	0.2391	0.18	0.24	0.19
Trade Index	0.2331	0.21	0.23	0.20
Affiliated Company Index	0.2346	0.18	0.23	0.16
Stability Index	0.2347	0.19	0.23	0.19
Credit Index	0.2365	0.23	0.24	0.21
Text Sentiment Index	0.2327	0.18	0.23	0.19

4.1 모델 설계 오류

4.2 KISVALUE 데이터 한정

4.3 데이터 전처리 방식

4.4 텍스트 분석 방법

한계점

모델 설계 오류

CNN이 모델 패턴을 학습하지 못하는 모습을 보였다는 설명이 납득하기 어렵 모델의 설계에서 약간의 오류가 있었으리라 짐작

KISVALUE 데이터 한정

데이터 선정이 KOSPI, KOSDAQ, KONEX 으로 서로 상이한 데이터를 하나의 집합 으로 간주하여 분석 KISVALUE 제공 신용지표가 **2002년 기준** - 시차 발생 그럼에도 기타 데이터의 수집을 KISVALUE **하나의 수집 방법**에만 의존

전처리 방식

다소 **평면적인 방식** 사용

적지 않은 결측치 모두 0으로 대체 / 명목형 변수 포함된 데이터로 위험한 접근 2017년 KIS 신용평점 출력 안 된 기업 단순히 제외 - 다른 데이터 수집 절차를 고려하는 것이 좋음

텍스트 분석 방법

영화 리뷰 감정분석 모형을

신용분석모형에 그대로 적용한 것은 오류라고 생각

V. 적용할 점

참고 할 부분

다양한 모형 적용 후 비교

- 일반 예측 모델 Logistic, SVM, RF, DNN
- 시계열 예측 모델 CNN, LSTM, stateful LSTM Timdistributed Model, ConvLSTM

특성 그룹 평가

단기 예측 모형 vs 중장기 예측 모형 **주요 feature 구분점 제시** 데이터 분석 수행에 있어 **참고할 만한 기준**을 제시

feature 선정에 참고 할 만한 지표 제공

규모 지표, 수익성 지표, 무역 지표, 관계회사 지표, 안정성 지표 신용지표, 텍스트 감성 지표 ----> **장단기 영향 비교**

시계열 연구 수행

기업 신용평가모형에 시계열 연구가 부족한 점 지적 장기 예측과 특정 시점 예측 시도

Q&A