Raisonnement par récurrence Ensemble défini inductivement Principe des tiroirs

TELECOM Nancy

1

Démonstration par récurrence

Problème: soit E un ensemble et P une propriété définie sur E, on considère la formule:

$$(\forall x \in E) (P(x))$$
 (A)

Signification: la propriété P est vraie pour tous les éléments de E.

Pour établir des principes (de récurrence ou d'induction) permettant de démontrer de telles assertions (A), il est nécessaire que les ensembles E sur lesquels portent P vérifient certaines propriétés, (ensembles définis inductivement, ensembles bien fondés,...).

Récurrences classiques sur N

Définition (Principe de récurrence sur N à un cran)

Soit P une propriété définie sur l'ensemble des entiers naturels \mathbb{N} , le principe de récurrence à un cran s'exprime par la formule logique suivante :

$$[P(0) \text{ et } (\forall n \in \mathbb{N})(P(n) \Rightarrow P(n+1))] \Rightarrow (\forall n \in \mathbb{N})(P(n))$$

Exemple de mise en œuvre

Démonstration de $(\forall n \in \mathbb{N})$ $(7^n - 1$ est divisible par 6).

On pose $P(n) \equiv 7^n - 1$ est divisible par 6

- 1. On démontre P(0) le cas de base: $7^{0} 1 = 1 1 = 0$, 0 est divisible par 6.
- 2. On démontre le pas de récurrence $(\forall n \in \mathbb{N})(P(n) \Rightarrow P(n+1))$.

On suppose P(n) (c'est l'hypothèse de récurrence H.R.), et à partir de H.R. on démontre P(n+1).

H.R. : 7^n-1 est divisible par 6 c.-à-d. $(\exists k\in\mathbb{N})(7^n-1=6k)$ calculons: $7^{n+1}-1=7^{n+1}-7+7-1$

$$7^{n+1} - 1 = 7^{n+1} - 7 + 7 - 1$$

= $7(7^n - 1) + 6$
= $7 \times 6k + 6$ (par application de H.R.)
= $6(7k + 1)$

d'où $7^{n+1} - 1$ est multiple de 6, c.-à-d. P(n+1)

Conclusion : $(\forall n \in \mathbb{N})(P(n))$, c'est-à-dire que pour tout entier naturel n, 7^n-1 est divisible par 6.

Récurrences sur N (suite)

Remarque

On peut commencer la récurrence à un entier quelconque $a \in \mathbb{N}$, le principe s'énonce ainsi :

$$[P(a) \text{ et } (\forall n \in \mathbb{N} \setminus [0, a[) \ (P(n) \Rightarrow P(n+1))] \Rightarrow (\forall n \in \mathbb{N} \setminus [0, a[) \ (P(n)))$$

Définition (Récurrence à k crans sur \mathbb{N})

Soit P une propriété définie sur \mathbb{N} , le principe de récurrence à k crans s'exprime par la formule logique suivante :

```
[(P(0) \text{ et } P(1) \dots \text{ et } P(k-1)) \text{ et } (\forall n \in \mathbb{N}) (P(n) \text{ et } P(n+1) \text{ et } \dots \text{ et } P(n+k-1) \Rightarrow P(n+k))] \Rightarrow (\forall n \in \mathbb{N})(P(n))
```

Remarques

- 1. Le cas de base est constitué des k propositions P(0), P(1), ... et P(k-1) à vérifier.
- 2. $(\forall n \in \mathbb{N})$ (P(n) et P(n+1) et ... et $P(n+k-1) \Rightarrow P(n+k)$ est le pas de récurrence. L'hypothèse de récurrence est constituée des k propositions P(n), ..., P(n+k-1).
- 3. On peut définir des variantes de ce principe qui commencent pour des entiers strictement supérieurs à 0.
- 4. Pour k = 1, on retrouve le principe précédent (à 1 cran).

Ensemble défini inductivement (définition)

Définition (Ensemble défini inductivement)

Un ensemble E défini inductivement est la donnée d'un ensemble B et d'un ensemble Cp d'opérations tels que :

- B ⊆ E.
- pour toute opération ϕ de $\mathcal{O}p$, pour tout $x_1, \ldots x_n \in E : \phi(x_1, \ldots, x_n) \in E$.
- E est le plus petit ensemble (au sens de l'inclusion des ensembles) vérifiant les deux propriétés précédentes.

Remarques

- L'ensemble B s'appelle la base.
- Une opération de $\mathcal{O}p$ d'arité n est une application de $\underbrace{E \times \ldots \times E}_{n \text{ fois}} \to E$, mais
 - peut aussi faire intervenir d'autres ensembles (on peut donc considérer d'autres applications que des opérations).
- La troisième condition de la définition signifie que les éléments de l'ensemble E sont soit des éléments de la base B, soit des éléments obtenus en appliquant un nombre fini de fois les opérations de Op aux éléments de la base B.

Ensembles définis inductivement (exemples)

Arbres binaires

AB l'ensemble des arbres binaires étiquetés par des éléments de $\mathbb N$ est défini inductivement par:

- la base $B = \{avide\}$ (avide est l'arbre vide).
- L'ensemble des opérations comporte un seul élément défini par : (∀e ∈ N)(∀g ∈ AB)(∀d ∈ AB) < g, e, d > ∈ AB

Exemples d'arbres binaires étiquetés par \mathbb{N} :

```
a_1= avide, a_2=< avide, 4, avide >, a_3=<< avide, 4, avide >, 5, avide >, a_4=<< avide, 4, avide >>, 5, < avide, 1, avide >>, a_5=<< avide, 3, < avide, 2, avide >>, 5, < avide, 1, avide >>, sont des éléments de AB (dessiner ces arbres).
```

Listes

 Liste , l'ensemble des listes d'éléments de $\mathbb N$ est définie inductivement par :

- la base $B = \{nil\}$ (nil est appelé la liste vide).
- L'ensemble des opérations comporte la seule opération :: définie comme suit : (∀e ∈ N)(∀I ∈ Liste) e :: I ∈ Liste

nil, 4 :: nil, 6 :: (2 :: nil), 0 :: (5 :: (1 :: nil)) sont des listes d'entiers.

Ensembles définis inductivement (exemples)

Entiers naturels N

Tout entier naturel n peut être obtenu à partir de 0 par un nombre fini (n) d'additions successives de 1, ainsi :

```
\begin{array}{l} 2=0+1+1\\ 6=0+1+1+1+1+1+1\\ 12=0+1+1+1+1+1+1+1+1+1+1+1+1+1+1\\ L'ensemble\ \mathbb{N}\ est\ défini\ inductivement\ par\ : \end{array}
```

- 0 est l'élément formant la base.
- L'opération suc : $x \mapsto x + 1$ est la seule opération de \mathcal{O}_p .

Exemples:

Entiers naturels impairs

Les entiers naturels impairs I peuvent être définis inductivement par :

- l'ensemble de base est {1}
- l'opération

plus2:
$$\mathbb{I} \rightarrow \mathbb{I}$$

 $x \mapsto x+2$

Principe d'induction (structurelle) sur les ensembles définis inductivement (définition)

Définition (Principe d'induction)

Soit E un ensemble défini inductivement par

- une base B.
- un ensemble d'opération Op.

soit P une propriété définie sur E, le principe d'induction sur E s'exprime de la façon suivante:

```
 [ (\forall x \in B) P(x) \text{ et} 
 (\forall \phi \in \mathcal{O}_P) [(\forall x_1 \in E) \dots (\forall x_n \in E) (P(x_1) \text{ et} \dots \text{ et} P(x_n) \Rightarrow P(\phi(x_1, \dots, x_n)))] ] 
 \Rightarrow (\forall x \in E) (P(x))
```

Remarques

- Cas de base : la propriété doit être prouvée pour tous les éléments de la base B.
- Pas d'induction: la propriété doit être prouvée pour tout élément construit à partir d'une opération sous l'hypothèse que la propriété est vraie pour tous les éléments utilisés dans la construction. Ce pas d'induction est à démontrer pour toute opération de l'ensemble d'opérations Op.
- La conclusion signifie que la propriété est vraie pour tout élément de l'ensemble.

Principe d'induction structurelle (exemple)

Définition (Principe d'induction sur les arbres binaires)

Soit l'ensemble AB des arbres binaires défini inductivement par :

- la base { avide },
- l'opération

$$< _>: AB \times \mathbb{N} \times AB \rightarrow AB$$

 $(g, e, d) \mapsto < g, e, d>$

Soit *P* une propriété définie sur *AB*, le principe d'induction structurelle sur l'ensemble *AB* s'exprime de la façon suivante :

```
[ P(avide) et (\forall g \in AB)(\forall d \in AB)(\forall e \in \mathbb{N})(P(g) \text{ et } P(d) \Rightarrow P(\langle g, e, d \rangle)) ] \Rightarrow (\forall a \in AB)(P(a))
```

Principe d'induction structurelle (exemple)

Définition (Principe d'induction sur les listes)

L'ensemble Liste des listes d'entiers est défini inductivement par :

- la base { *nil* },
- l'opération

$$\begin{array}{ccc} :: & \mathbb{N} \times \textit{Liste} & \rightarrow & \textit{Liste} \\ & (e, \ \textit{I}) & \mapsto & e :: \ \textit{I} \end{array}$$

Soit *P* une propriété définie sur *AB*, le principe d'induction structurelle sur l'ensemble *AB* s'exprime de la façon suivante :

$$[P(nil) \ et \ (\forall e \in \mathbb{N})(\forall l' \in Liste)(P(l') \Rightarrow P(e :: l'))] \Rightarrow (\forall l \in Liste) \ (P(l))$$

Fonction (récursive) sur un ensemble défini inductivement

Définition (Fonction récursive)

Soient E un ensemble défini inductivement à partir de B, $\mathcal{O}p$ et F un ensemble quelconque, la définition d'une fonction $f:E\to F$ récursive consiste à donner :

- pour tout x de B des valeurs $f(x) \in F$
- pour toute règle ϕ de $\mathcal{O}p$ des valeurs de $f(\phi(x_1,\ldots,x_n))$ pouvant dépendre de $f(x_1),\ldots,f(x_n)$ et x_1,\ldots,x_n .

Remarques

Il est possible d'étendre cette définition à des fonctions récursives à plusieurs arguments, c'est-à-dire à des profils

$$E \times \ldots \times E \to F$$
, ou $E \times \ldots \times E \times A_1 \times \ldots \times A_n \to F$,

où les A_i sont des ensembles quelconques. Dans ce cas les schémas des fonctions récursives peuvent être plus compliqués ..., peuvent alors se poser des problèmes de terminaison.

Fonction récursive (exemple)

Fonctions récursives sur les arbres binaires

Soit la fonction $n:AB \to \mathbb{N}$ définissant le nombre d'éléments (entiers) d'un arbre binaire :

$$\begin{cases} & \textit{n(avide)} = 0 \\ & \textit{n(< g, e, d >)} = 1 + \textit{n(g)} + \textit{n(d)} \end{cases}$$

Soit la fonction $h:AB \to \mathbb{N}$ définissant la hauteur d'un arbre binaire :

$$\begin{cases} h(\textit{avide}) = 0 \\ h(< g, e, d >) = 1 + max(h(g), h(d)) \end{cases}$$

Mise en œuvre du principe d'induction pour les arbres binaires

Propriété à démontrer : $(\forall a \in AB) \ n(a) \le 2^{h(a)} - 1$ (on note $P(a) \equiv n(a) \le 2^{h(a)} - 1$).

 Cas de base: on vérifie la propriété pour les éléments de la base, c'est-à-dire l'arbre vide avide.

```
n(avide) = 0 d'après la définition de n
2^{h(avide)} - 1 = 2^0 - 1 d'aprés la définition de h
= 1 - 1
= 0
d'où n(avide) \le 2^{h(avide)} - 1 et P est vérifiée pour avide.
```

Pas d'induction.

```
 (\forall g \in AB)(\forall d \in AB)(\forall e \in \mathbb{N})(P(g) \text{ et } P(d) \Rightarrow P(< g, e, d >))  L'hypothèse d'induction : P(g) et P(d) Conclusion : P(< g, e, d >) Hypothèse d'induction : n(g) \leq 2^{h(g)} - 1 et n(d) \leq 2^{h(d)} - 1  n(< g, e, d >) = 1 + n(g) + n(d) \quad (définition \ de \ n)   \leq 1 + 2^{h(g)} - 1 + 2^{h(d)} - 1 \quad (hypothèse \ d' \ induction)   \leq 2^{max(h(g),h(d))} + 2^{max(h(g),h(d))} - 1 \quad (car \ n \mapsto 2^n \ est \ croissante)   = 2^{1+max(h(g),h(d))} - 1   = 2^{h(< g, e, d >)} - 1 \quad (définition \ de \ h)  d'où la conclusion : n(< g, e, d >) \leq 2^{h(< g, e, d >)} - 1, \ càd \ P(< g, e, d >).
```

• Conclusion générale : $(\forall a \in AB) \ n(a) < 2^{h(a)} - 1$

Principe des tiroirs

Définition

Le principe des tiroirs (de Dirichlet) affirme que si m chaussettes occupent n tiroirs, et si m > n, alors au moins un tiroir doit contenir strictement plus d'une chaussette.

Remarque

Mathématiquement, le principe des tiroirs peut s'énoncer ainsi : Si E et F sont deux ensembles finis, tels que card(E) > card(F) et si $f: E \to F$ est une application de E dans F, alors il existe un élément de F qui admet au moins deux antécédents par f, c-à-d qu'il n'existe pas d'application injective de E dans F.