Advanced Chiral Metasurface Engineering in the Mid-Infrared Region with Different Neural Network Approaches

Supervisor

Dr. Luo Tony | Dr. Han Daoru

Presenter

Jiang Chen | Nithin Shyam Soundararajan | Xiangkai Zeng

• 1. The Introduction of Chiral Metamaterial

• 2. DL models for Chiral Metamaterial Design

• 3. Models Performance Comparison

Introduction

DL-GPU Team 3

• What is metamaterial?

A metamaterial is any material engineered to have a property that is rarely observed in naturally occurring materials.

Metamaterial Technologies Market Size (2022-2028)

Picture @

Philip, E., Zeki Güngördü, M., Pal, S. et al. Review on Polarization Selective Terahertz Metamaterials: from Chiral Metamaterials to Stereometamaterials. J Infrared Milli Terahz Waves 38, 1047–1056 (2017). https://doi.org/10.1007/s10762-017-0405-y

https://www.grandviewresearch.com/industryanalysis/metamaterials-market

Introduction

DL-GPU Team 3

Chiral metamaterials (CMMs), which are artificial materials that lack any planes of mirror symmetry, possess strong ability to rotate the plane of polarization of electromagnetic waves.

Picture @

Philip, E., Zeki Güngördü, M., Pal, S. et al. Review on Polarization Selective Terahertz Metamaterials: from Chiral Metamaterials to Stereometamaterials. Infrared Milli Terahz Waves 38, 1047–106 (2017). https://doi.org/10.1007/s10762

PL

Chiral Molecules

DNA

For Nature chiral molecular like Protein, DNA, etc. The inherent CPL is weak to be detected.

Chiral Metamaterial can increase the signal via surface enhanced plasma principle to increase the detection limit.

Domain model with LCP and RCP incident

Absorption Spectrum for LCP and RCP

Conventional FIT Principle

CST Studio Suite 2022

The conventional method Finite Integration Technique (FIT) is based on the solution of discretized set of Maxwell's Equations.

This numerical method provides a universal spatial discretization scheme applicable to various electromagnetic problems ranging from static field calculations to high frequency applications in time or frequency domain.

$$\oint_{\partial A} \vec{E} \cdot d\vec{s} = -\int_{A} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

$$\oint_{\partial A} \vec{H} \cdot d\vec{s} = \int_{A} \left(\frac{\partial \vec{D}}{\partial t} + \vec{J} \right) \cdot d\vec{A}$$

$$\oint_{\partial V} \vec{D} \cdot d\vec{A} = \int_{V} \rho \ dV$$

$$\oint_{\partial V} \vec{B} \cdot d\vec{A} = 0$$

Conventional FIT Principle

DL-GPU Team 3

CST Studio Suite 2022

Faraday's Law

Discrete Operator

$$\oint_{\partial A} \vec{E} \cdot d\vec{s} = -\int_{A} \frac{\partial \vec{B}}{\partial t} \cdot d\vec{A}$$

$$\oint_{\partial A} \vec{H} \cdot d\vec{s} = \int_{A} \left(\frac{\partial \vec{D}}{\partial t} + \vec{J} \right) \cdot d\vec{A}$$

$$\oint_{\partial V} \vec{D} \cdot d\vec{A} = \int_{V} \rho \ dV$$

$$\oint_{\partial V} \vec{B} \cdot d\vec{A} = 0$$

Integral form of Maxwell's Equation

Tetrahedral Mesh

$$Ce = -\frac{d}{dt}b$$

$$\tilde{\mathcal{C}}h = \frac{d}{dt}d + j$$

$$\tilde{\mathcal{S}}d = q$$

$$Sb = 0$$

Discretized form of Maxwell's Equation

Deep Learning Model Sketch

Deep Learning Model Sketch

Performance Matrix and Dataset

1920 data in total.

1536 data are used for training. 384 data are used for testing.

Performance Matrix:

- 1. R² Score
- 2. Time
- 3.GPU usage

FCNN Forward Result

LCP Forward

Model Parameters

```
class MLP(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(MLP, self).__init__()
        self.hidden1 = nn.Linear(input_dim, 300)
       self.hidden2 = nn.Linear(300, 600)
        self.hidden3 = nn.Linear(600, 300)
        self.output = nn.Linear(300, output dim)
        self.tanh = nn.Tanh()
    def forward(self, x):
        x = self.tanh(self.hidden1(x))
        x = self.tanh(self.hidden2(x))
        x = self.tanh(self.hidden3(x))
        x = self.output(x)
        return x
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```

Performance Matrix:

- 1. R² Score
- 2. Time
- 3. GPU usage

RCP Forward

Sample Test Data

Sample Test Data

FCNN Inverse Result

LCP Inverse

Model Parameters

```
class MLP(nn.Module):
    def __init__(self, input_dim, output_dim):
        super(MLP, self).__init__()
        self.hidden1 = nn.Linear(input_dim, 1000)
        self.hidden2 = nn.Linear(1000, 500)
        self.hidden3 = nn.Linear(500, 250)
        self.output = nn.Linear(250, output_dim)
        self.elu = nn.ELU()

    def forward(self, x):
        x = self.elu(self.hidden1(x))
        x = self.elu(self.hidden2(x))
        x = self.output(x)
        return x

    criterion = nn.MSELoss()
    optimizer = optim.Adam(model.parameters(), lr=0.001)
```

Performance Matrix:

- 1. R² Score
- 2. Time
- 3. GPU usage

Sample Test Data

Sample Test Data

CNN Forward Result

LCP Forward

Sample Test Data

Model Parameters

```
class CNN(nn.Module):
   def __init__(self, input_dim, output_dim):
       super(CNN, self).__init__()
       self.conv1 = nn.Conv1d(in channels=1, out channels=16, kernel size=3, padding=1)
       self.conv2 = nn.Conv1d(in channels=16, out channels=32, kernel size=3, padding=1)
       self.conv3 = nn.Conv1d(in channels=32, out channels=64, kernel size=3, padding=1)
       self.fc1 = nn.Linear(64 * input_dim, 512)
       self.fc2 = nn.Linear(512, output_dim)
       self.elu = nn.ELU()
   def forward(self, x):
       x = x.unsqueeze(1) # Add channel dimension
       x = self.elu(self.conv1(x))
       x = self.elu(self.conv2(x))
       x = self.elu(self.conv3(x))
       x = x.view(x.size(0), -1) # Flatten
       x = self.elu(self.fc1(x))
       x = self.fc2(x)
  criterion = nn.MSELoss()
  optimizer = optim.Adam(model.parameters(), lr=0.001)
```

Performance Matrix:

- 1. R² Score
- 2. Time
- 3. GPU usage

Sample Test Data

150

200

250

100

0.1

CNN Inverse Result

LCP Inverse

Sample Test Data


```
class CNN(nn.Module):
   def __init__(self, input_dim, output_dim):
       super(CNN, self). init_()
       self.conv1 = nn.Conv1d(in_channels=1, out_channels=16, kernel_size=3, padding=1)
       self.conv2 = nn.Conv1d(in_channels=16, out_channels=32, kernel_size=3, padding=1)
       self.conv3 = nn.Conv1d(in_channels=32, out_channels=64, kernel_size=3, padding=1)
       self.fc1 = nn.Linear(64 * input_dim, 512)
       self.fc2 = nn.Linear(512, output_dim)
       self.elu = nn.ELU()
    def forward(self, x):
       x = x.unsqueeze(1) # Add channel dimension
       x = self.elu(self.conv1(x))
       x = self.elu(self.conv2(x))
       x = self.elu(self.conv3(x))
       x = x.view(x.size(0), -1) # Flatten
       x = self.elu(self.fc1(x))
       x = self.fc2(x)
       return x
criterion = nn.MSELoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```


Model Parameters

Performance Matrix:

- 1. R² Score
- 2. Time
- 3. GPU usage

RCP Inverse

Sample Test Data

RNN Forward Result

LCP Forward

Model Parameters

```
class RNN(nn.Module):
   def __init__(self, input_dim, output_dim):
       super(RNN, self).__init__()
       self.rnn = nn.LSTM(input_dim, 128, num_layers=2, batch_first=True)
       self.fc1 = nn.Linear(128, 500)
       self.fc2 = nn.Linear(500, output_dim)
       self.elu = nn.ELU()
   def forward(self, x):
       x, _ = self.rnn(x.unsqueeze(1)) # Add channel dimension and pass through RNN
       x = x[:, -1, :] # Get the Last output from RNN
       x = self.elu(self.fc1(x))
       x = self.fc2(x)
       return x
criterion = nn.MSELoss()
```

optimizer = optim.Adam(model.parameters(), lr=0.001)

Sample Test Data

Performance Matrix:

- 1. R² Score
- 2. Time
- 3. GPU usage

Sample Test Data

RNN Inverse Result

LCP Inverse

Sample Test Data

Model Parameters

Performance Matrix:

- 1. R² Score
- 2. Time
- 3. GPU usage

RCP Inverse

Sample Test Data

The accuracy performance for different models

			Avg_R^2
Model	Forward	Inverse	Score
FCNN	0.9873	0.9324	0.95985
CNN	0.9886	0.94945	0.969025
RNN	0.98725	0.91815	0.9527
GAN	0.91644	NAN	NAN
TNN	0.91663	NAN	NAN
GRU	0.93409	NAN	NAN

The time performance for different models

Model	Forward Time (S)	Inverse Time (S)	Avg Time (S)
FCNN	5.035	12.39	8.71
CNN	24.15	86.3	55.22
RNN	19.39	28.59	23.99

The GPU usage performance for different models

	Forward GPU	Inverse GPU Usage (MB)	Avg GPU Usage (MB)
FCNN	39.99	48.64	44.315
CNN	41.35	780	410.695
RNN	41.56	91129	45585.3

Future Plan

• 1. Collect more data for training.

• 2. Use FCNN as the main model and combine Forward Model and Inverse Model to train the data.

• 3. Improve the accuracy by tuning the hyperparameters.

Thank you for your attention!

Question?

Presenter

Jiang Chen | Nithin Shyam Soundararajan | Xiangkai Zeng