Department of Mathematics

Indian Institute of Technology Guwahati

MA 101: Mathematics I

Model solutions of mid-semester examination

July-December 2019

1. Let a > 0. Let $x_1 = 1$ and $x_{n+1} = \frac{1}{2}(x_n + \frac{a}{x_n})$ for all $n \in \mathbb{N}$. Prove that (x_n) is convergent and find $\lim_{n \to \infty} x_n$.

Solution: Since a > 0, so $x_n > 0$ for all $n \in \mathbb{N}$. By AM-GM inequality, we have

$$x_{n+1} = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) \ge \sqrt{a} \quad \Rightarrow x_{n+1}^2 \ge a \text{ for all } n \in \mathbb{N}.$$
 [1]

Now,

$$x_{n+1} - x_n = \frac{1}{2} \left(x_n + \frac{a}{x_n} \right) - x_n$$

$$= \frac{1}{2} \left(\frac{a}{x_n} - x_n \right)$$

$$= \frac{a - x_n^2}{2x_n}$$

$$< 0 \text{ for all } n > 2.$$

Hence, $(x_n)_{n=2}^{\infty}$ is decreasing.

[1]

Since (x_n) is bounded below, so (x_n) is convergent. Let $x_n \to \ell$. Then, $\ell = \pm \sqrt{a}$. Since $x_n > 0$ for all n, so $\ell \ge 0$. Hence $\ell = \sqrt{a}$.

2. Determine all the values of $x \in \mathbb{R}$ for which the series $\sum_{n=1}^{\infty} \left(\sin \frac{1}{n} \right) x^n$ converges. 4

Solution: Let $a_n = \sin \frac{1}{n}$. We have

$$\lim_{n\to\infty}\left|\frac{a_{n+1}}{a_n}\right|=\lim_{n\to\infty}\left|\frac{\sin\frac{1}{n+1}}{\sin\frac{1}{n}}\right|=\lim_{n\to\infty}\left|\frac{(\sin\frac{1}{n+1})/(1/(n+1))}{(\sin\frac{1}{n})/(1/n)}\right|\times\lim_{n\to\infty}\frac{n}{n+1}=1.$$

Hence, the series converges absolutely for all $x \in (-1,1)$; and diverges if x < -1 or x > 1.

When x = -1, the series $\sum_{n=1}^{\infty} (-1)^n \left(\sin \frac{1}{n} \right)$ is an alternating series. Since $(\sin \frac{1}{n})$ is decreasing and $\sin \frac{1}{n} \to 0$, so by Leibniz test, the series converges. [1]

When x = 1, the series becomes $\sum_{n=1}^{\infty} \sin \frac{1}{n}$. The equation of the line passing through the points (0,0) and $(\pi/2,1)$ is given by $y = \frac{2}{\pi}x$. Hence

$$\sin x \ge \frac{2}{\pi}x$$
 for all $x \in [0, \pi/2]$.

This implies that $\sum_{n=1}^{\infty} \sin \frac{1}{n} \ge \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n}$, and hence the series diverges when x = 1.

Another proof: We have $\lim_{x\to 0}\frac{\sin x}{x}=1$, and hence $\lim_{n\to\infty}\frac{\sin\frac{1}{n}}{\frac{1}{n}}=1$. Since $\sum_{n=1}^{\infty}\frac{1}{n}$

diverges, by limit comparison test, the series $\sum_{n=1}^{\infty} \sin \frac{1}{n}$ also diverges.

Thus, the given series converges if and only if $x \in [-1, 1)$. $[1\frac{1}{2}]$

3. Let $f: \mathbb{R} \to \mathbb{R}$ be differentiable and $|f'(x)| < \frac{1}{2}$ for all $x \in \mathbb{R}$. Let $a_1 \in \mathbb{R}$ and $a_{n+1} = f(a_n)$ for all $n \in \mathbb{N}$. Show that (a_n) is a Cauchy sequence. Also, prove that the equation f(x) = x has at least one real root.

Solution: We have $|a_{n+2} - a_{n+1}| = |f(a_{n+1}) - f(a_n)|$. By Mean Value Theorem, there exists c_n between a_n and a_{n+1} such that

$$|f(a_{n+1}) - f(a_n)| = |f'(c_n)||a_{n+1} - a_n|.$$

This implies that $|a_{n+2} - a_{n+1}| < \frac{1}{2}|a_{n+1} - a_n|$ for all $n \in \mathbb{N}$. Hence, (a_n) is a Cauchy sequence. [1]

Since every Cauchy sequence in \mathbb{R} is convergence, so let $a_n \to \ell$. Since f is continuous so

$$\ell = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} f(a_n) = f(\lim_{n \to \infty} a_n) = f(\ell).$$

[1]

Hence, the equation f(x) = x has at least one real root.

4. Determine the radius of convergence of the Taylor series of \sqrt{x} about x = 1; and prove that the series converges to \sqrt{x} for each $x \in (1,2)$.

Solution: The Taylor series of $f(x) = \sqrt{x}$ about x = 1 is given by $\sum_{n=0}^{\infty} a_n (x-1)^n$,

where $a_n = \frac{f^{(n)}(1)}{n!}$. We have f(1) = 1, $f'(x) = \frac{1}{2}x^{-1/2}$, $f''(x) = -\frac{1}{4}x^{-3/2}$, $f'''(x) = \frac{3}{8}x^{-5/2}$, and by induction

$$f^{(n)}(x) = (-1)^{n-1} \frac{1 \cdot 3 \cdots (2n-3)}{2^n} \times x^{-(2n-1)/2}.$$

Hence,
$$a_n = (-1)^{n-1} \times \frac{1 \cdot 3 \cdots (2n-3)}{2^n \cdot n!}$$
. $[1\frac{1}{2}]$

Now,

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \frac{1 \cdot 3 \cdots (2n-3)(2n-1) \cdot 2^n \cdot n!}{1 \cdot 3 \cdots (2n-3) \cdot 2^{n+1} \cdot (n+1)!} = \lim_{n \to \infty} \frac{2n-1}{2n+2} = 1.$$

Hence, the radius of convergence of the Taylor series of \sqrt{x} is 1. [1]

The remainder term is

$$R_{n-1}(x) = \frac{f^{(n)}(c)}{n!}(x-1)^n,$$

where |x-1| < 1 (that is, $x \in (0,2)$) and c is a point between x and 1. Now,

$$|R_{n-1}(x)| \le \frac{|f^{(n)}(c)|}{n!} = \frac{1 \cdot 3 \cdots (2n-3)}{2^n \cdot n!} \times \left| \frac{1}{c} \right|^{(2n-1)/2}.$$

Note that

$$\frac{1 \cdot 3 \cdots (2n-3)}{2^n \cdot n!} = \frac{1 \cdot 3 \cdots (2n-3)}{2 \cdot 4 \cdot 6 \cdots (2n-2) \cdot 2n} < \frac{1}{2n}.$$

Now, if $x \in (1,2)$, then c > 1 and so $\frac{1}{c} < 1$. Hence, $|R_{n-1}(x)| < \frac{1}{2n}(1/c)^{\frac{2n-1}{2}} \to 0$ as $n \to \infty$. Hence, the Taylor series of \sqrt{x} about x = 1 converges to \sqrt{x} for each $x \in (1,2)$.

5. Let $f:(-1,2)\to\mathbb{R}$ be twice differentiable. Suppose that $f(1-\frac{1}{n})=1$ for all $n\in\mathbb{N}$.

(a) Find
$$f'(1)$$
.

(b) Find
$$f''(1)$$
.

Solution: (a) f is continuous at 1 and $1 - \frac{1}{n} \to 1$. Hence, $f(1 - 1/n) \to f(1)$. Since f(1 - 1/n) = 1 for all n, so f(1) = 1.

We have $f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$ exists. Hence,

$$f'(1) = \lim_{n \to \infty} \frac{f(1 - 1/n) - f(1)}{1/n} = 0.$$
 [1]

(b) We have f(1-1/n) = 1 = f(1) for all $n \in \mathbb{N}$. By Rolle's theorem, there exists $c_n \in (1-1/n, 1)$ such that $f'(c_n) = 0$ for all n.

Again, $f''(1) = \lim_{h \to 0} \frac{f'(1+h) - f'(1)}{h}$ exists and $c_n \to 1$. Hence,

$$f''(1) = \lim_{n \to \infty} \frac{f'(c_n) - f'(1)}{1 - c_n} = 0.$$
 [1]

6. Let $f:[0,1] \to \mathbb{R}$ be defined by $f(x) = \begin{cases} 1, & \text{if } x \neq \frac{1}{2}; \\ 0, & \text{if } x = \frac{1}{2}. \end{cases}$

sum of a suitable function.

Using Riemann's criterion, prove that f is Riemann integrable over [0,1].

Solution: Let $\varepsilon > 0$. We consider the partition $P_{\varepsilon} = \{0, \frac{1}{2} - \frac{\varepsilon}{3}, \frac{1}{2} + \frac{\varepsilon}{3}, 1\}$.

Then
$$U(f, P_{\varepsilon}) = 1$$
. [1]

$$L(f, P_{\varepsilon}) = (1/2 - \varepsilon/3) + 0 + (1 - 1/2 - \varepsilon/3) = 1 - 2\varepsilon/3.$$
 [1]

Hence, $U(f, P_{\varepsilon}) - L(f, \varepsilon) = 2\varepsilon/3 < \varepsilon$. By Riemann's criterion, f is Riemann integrable over [0, 1].

7. For $n \in \mathbb{N}$, let $a_n = \frac{1}{n^{\frac{5}{2}}} \sum_{k=1}^n k^{\frac{3}{2}}$. Determine $\lim_{n \to \infty} a_n$ by expressing a_n as a Riemann

Solution: We have
$$a_n = \frac{1}{n^{5/2}} \sum_{k=1}^n k^{3/2} = \frac{1}{n} \sum_{k=1}^n (k/n)^{3/2}$$
.
Let $P_n = \{0, 1/n, 2/n, \dots, (n-1)/n, 1\}$. [1]

Consider the function
$$f(x) = x^{3/2}$$
. Then $a_n = U(f, P_n)$. [1]

Since f is continuous on [0,1], so it is Riemann integrable on [0,1]. Using 1st fundamental thm of calculus, we have

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} U(f, P_n) = \int_0^1 f(x) dx = \int_0^1 x^{3/2} dx = 2/5.$$
 [1]

8. Using Gamma function, evaluate the integral $\int_0^1 x(\log x)^4 dx$.

Solution: Taking $y = -\log x$, that is, $x = e^{-y}$, we have $dx = -e^{-y}dy$. Hence,

$$\int_0^1 x(\log x)^4 dx = \int_\infty^0 e^{-y} y^4 (-e^{-y}) dy = \int_0^\infty e^{-2y} y^4 dy.$$
 [1\frac{1}{2}]

Let u = 2y. Then $dy = \frac{1}{2}du$. Now,

$$\int_0^1 x(\log x)^4 dx = \frac{1}{2^5} \int_0^\infty e^{-u} u^4 du = \frac{1}{2^5} \Gamma(5) = \frac{4!}{2^5} = \frac{3}{4}.$$
 [1\frac{1}{2}]

9. Find all the values of $p \in \mathbb{R}$ for which the following improper integral converges: $\boxed{\mathbf{3}}$

$$\int_0^1 \frac{x^p e^{-x}}{\log(1+x)} dx.$$

Solution: Let $f(x) = \frac{x^p e^{-x}}{\log(1+x)}$. Since $\log(1+x) \to 0$ as $x \to 0+$, the improper integral is of Type-II.

Let $g(x) = x^{p-1} = \frac{1}{x^{1-p}}$. Then,

$$\lim_{x \to 0+} \frac{f(x)}{g(x)} = \lim_{x \to 0+} \frac{xe^{-x}}{\log(1+x)} = \lim_{x \to 0+} \frac{e^{-x} - x^2e^{-x}}{1/(1+x)} = 1.$$
 [1\frac{1}{2}]

By limit comparison test, $\int_0^1 f(x)dx$ converges if and only if $\int_0^1 g(x)dx$ converges.

We know that $\int_0^1 g(x)dx = \int_0^1 \frac{dx}{x^{1-p}}$ converges if and only if 1-p < 1, that is, if and only if p > 0.

Hence, the given improper integral converges if and only if p > 0. $[1\frac{1}{2}]$