MATH 603 Notes

David Zhu

March 17, 2024

1 More on Commutative Rings

Let $a, b \in R$. Then $a|b \iff \exists a' \in R, b = aa'$; A semi ring on (R, \leq) defined by $a \leq b \iff a|b$. Note that \leq is usally not a partial order: let $b \in R^{\times}$, then $a \leq ab \leq a$, but $a \neq ab$.

Proposition 1.1. $a \sim b$ iff $a \leq b$ and $b \leq a$ iff (a) = (b) is an equivalence relation.

For R a domain, the induced relation gives a well-defined definition of greatest common divisor.

Definition 1.1. The $\underline{\mathbf{gcd}}$ of a, b, denoted by gcd(a, b), if exists, is any $d \in R$ such that d|a, b and for any other d' satisfying the condition, d'|d.

Definition 1.2. The <u>lcm</u> of a, b, denoted by lcm(a, b), if exists, is any $d \in R$ such that a, b|d and for any other d' satisfying the condition, d|d'.

Proposition 1.2. If gcd(a,b) exists, then $gcd(a,b) = sup\{d : d \le a,b\}$. If lcm(a,b) exists, then $gcd(a,b) = inf\{d : a,b \le d\}$.

Note that maximal/minimal elements always exists by Zorn's lemma. However, the unique supremum/infimum may not exist. We have our following example:

Example 1.1. Take $R = [\sqrt{-3}]$. Let $a = 4 = (1 + \sqrt{-3})(1 - \sqrt{-3})$ and $b = 2(1 + \sqrt{-3})$. Then, $(1 + \sqrt{-3})$ and 2 are both maximal divisors, but they are not comparable since the only divisors of 2 are $\{\pm 1, \pm 2\}$ by norm reasons, and none divides $1 + \sqrt{-3}$.

Proposition 1.3. Let $a, b \in R$ be given. Then the following hold: gcd(a, b) = d exists iff (d) is the unique maximal prinipal ideal such that $(a) + (b) \subset (d)$. Dually, lcm(a, b) = c exists iff $(c) = (a) \cap (b)$. If both holds, then $a \cdot b = lcm(a, b) \cdot gcd(a, b)$

Proof. Easy exercise for gcd. Note that the inclusion can be proper, for example, take R = k[x, y] and ideals (x), (y). Then (1) is the gcd, but the containment is proper.

Recall that Id(R) is partially ordered by inclusion.

Definition 1.3. $Id(R), +, \cap, \cdot, \leq$ is the lattice of ideals of R.

Note that $+,,\cap$ are simply the sums and intersection, but \cdot is the ideal generated by the products.

Theorem 1.1. TFAE for non-finitely generated ideals of R, which we denote $Id^{\infty}(R)$: 1. $Id^{\infty}(R)$ is non-empty; 2. there exists infinite non-stationary chains (σ_i) , where $\sigma_i \in Id(R)$;

Proof. Easy exercise. \Box

Theorem 1.2. Cohen's lemma: Let $Id^{\infty}(R) \neq \emptyset$. Then, it has a maximal element and any such maximal element is prime.

Proof. Zorn's lemma implies $Id^{\infty}(R)$ has maximal elements. Let a be maximal, and $xy \in a$. Suppose by contradiction that $x, y \notin a$, then $I_1 = a \subset (x) + a$ and $I_2 = a \subset (y) + a$, which contradicts maximality by proving one of them must be infinitely generated. Consider $(a:x) = \{\gamma \in R : \gamma \cdot x \in a\}$. Note $a, y \in (a:x)$, and $x \cdot (a;x) \subseteq a$. Hence $(a:x) \notin Id^{\infty}(R)$ and (a:x) is finitely generated. Thus, $a = I_0 + (a:x)$ must be finitely generated.

2 Euclidean Rings

Definition 2.1. A Principal Ideal Ring is any ring R such that $Id(R) = Id^p(R)$. If R is a domain, then R is called a PID.

Definition 2.2. A Factorial Ring is any ring R in which all units can be written as a finite product of irreducible elements. If R is domain, then it is called a UFD. (Note that if it is not a domain, weird things can happen)

Definition 2.3. A Noetherian Ring is any ring R such that any ideal is finitely generated.

Definition 2.4. Let R be a domain. A Euclidean norm on R is any map $\phi: R \to \mathbb{N}$ satisfying $\phi(x) = 0$ iff x = 0 and for every $a, b \in R$ with $b \neq 0$, then there exists $q, r \in R$ such that a = bq + r with $\phi(r) < \phi(b)$. A Euclidean domain is any domain equipped with a Euclidean norm.

Example of Euclidean domains include $\mathbb{Z}, \mathbb{Z}[i]$. A non-trivial example R = F[t], with $\phi(p(t)) = 2^{deg(p(t))}$. A non-example is $\mathbb{Z}[\sqrt{6}]$ for it is not a PID.

Theorem 2.1. Euclidean Domains are PIDs; The Euclidean Algorithm: $a, b \in R$, $b \neq 0$ and set $r_0 = a, r_1 = b$, and continue inductively $r_{i-1} = r_i \cdot q_i + r_{i+1}$. Then, $r_i = 0$ for $i > \phi(b)$ and if $r_{i_0} \geq 1$ maximal with $r_{i_0} \neq 0$, then $r_{i_0} = \gcd(a, b)$.

Proof. Easy exercise. \Box

3 Principal Ideal Domains

Theorem 3.1. (Charaterization) For A domain R TFAE: 1. R is a PID; 2. every $a \in R^{\times}$, $a \neq 0$ is a product of finitely many prime elements up unique up to permutation. 3. every $p \in Spec(R)$ is principal.

Proof. Let $a \in R$ such that a is non-zero and not a unit. Then, there exists $p \in Spec(R)$ such that $(a) \subseteq p$. Hence R being a PID implies $\exists \pi \in R$ such that $p = (\pi)$. Hence, π must be prime and $\pi|a$. Set $a_1 = a$, $\pi_1 = \pi$, and let a_2 be the element such that $\pi_1 a_2 = a_1$. Continue inductively such that if a_n is a unit, stop; otherwise repeat. Suppose by contradiction that the process does not stablize.

Assuming that every prime is principal, Cohen's Lemma implies $Id^{\infty}(R) \neq \emptyset$; therefore, every ideal is finitely generated. We therefore can choose a minimal prime over a given finitely genearted ideal and build a chain of ideals whose union is prime and contradiction.

Corollary 3.1.1. Let R be a PID; let $P \subset R$ be a set of representatives for the prime elements up to association. For every $a \in R$, $\exists \epsilon \in R^{\times}$ and $e_{\pi} \in \mathbb{N}$ such that almost all $e_{\pi} = 0$. Then, every $a \in R$ can be written as $a = \epsilon \prod_{\pi \in P} \pi^{e_{\pi}}$. We proceed to recover gcd and lcm, up to associates.

Note that the above corollary generalizes to the quotient field by replacing $\mathbb N$ with $\mathbb Z$.

4 Unique Factorization Domains

Definition 4.1. A Unique Factorization Domain is a domain in which every non-zero, non-units is a product of prime elements.

Proposition 4.1. TFAE: (1.) R is a UFD; (2). every minimal prime ideal is principal and every non-zero, non-invertible elements in contained in finitely many primes.

Proof. Exercise. \Box

Remark: we recover the qcd and lcm definition using the same factorization as Corollary 3.1.1.

Theorem 4.1. (Gauss Lemma)Let R be a UFD; then R[t] is a UFD.

Proof. Let $f(t) = a_0 + ... + a_n t^n$ be given. Then, the content of f, denoted C(f), is the GCD of all coefficients. In particular, $C(f)|a_i$ for all i, and $f_0 := f/(C(f))$ has content 1.

Lemma 4.2. Let R be a UFD, then the following hold: (1). $C(f): R[t] \to R$ given by $f \mapsto C(f)$ is multiplicative; in particular, if C(f) = C(g) = 1, then C(fg) = 1.

proof of the lemma: given $f(t) = a_0 + ... + a_n t^n$ and $g(t) = b_0 + b_m t^m$. If one of f, g is constant, then it is easy exercise; suppose neither is constant, then set $f = f_0 \cdot C(f)$ and $g = g_0 \cdot C(g)$. Clearly we have $C(f) \cdot C(g) | C(fg)$. Hence it suffices to prove that $C(f_0g_0) = 1$. Equivalently, let $\pi \in R$ be a prime element, then there exists a coefficient $c_k \in f_0g_0$ such that π does not divide c_k . Suppose $\pi | C_k = \sum_{i+j=k} a_i b_j$ for all k. Then, $\pi | a_0b_0$ and WLOG, $\pi | a_0$. Because $C(f_0) = C(g_0) = 1$, then there exists minimal a_i, b_j such that π does not divide a_{i_0}, b_{j_0} . Then, π does not divide $C_{i_0+j_0}$.

The proof goes similarly for quotient fields.

Theorem 4.3. For $f(t) \in R[t]$, TFAE 1. f(t) is prime 2. is irreducible 3. If $f = a_0 \in R$ and a_0 is prime or C(f) = 1 and f is irreducible.