

Time Pressure and Cognition in Mobile Interface

CAMERON GARCIA, COOPER PELLATON, HALEY DABBS

Background

Mobile device usage in education is prevalent 4

76% of undergrads used apps to access educational information (Bomhold, 2013)

Why conduct further research?

 Cognitive Load and the negative effects of cross process stimulation (Meyer, 2013)

Battery Icon

■ Battery Level Low

F Research Question Do different battery presentations induce the effects of cognitive load and time constraints while completing a memory task on a mobile device?

Results

Our Hypotheses

Hypotheses of which conditions would result in greater task times.

Main Effect 1

Present w/ Percent > Present F(3, 16) = 1.78, p = .20

Main Effect 2

$$F(3, 16) = .10, p = .75$$

Interaction Effect

Present w/ Percent & Low > Present & High F(3, 16) = .02, p = .88

Method

Variables

DV Time to complete a memory task

Participants played a matching game on Quizlet based on a deck of SAT terms we constructed for the study.

Method

Discussion

What are possible reasons for no significant results? 47

- Make conditions more extreme

 Fincrease personal concern
- More extreme ->> Bigger effect Lab equipt. ->> no personal stake
- § Increase impact of task
 § Increase length of task Impact motivated to finish Longer task morry over battery
- Manipulation check Stress didn't differ by battery - no effect?

Future research

- 1 Run with longer tasks
- 2 Align with participant demographics (ex; iPhone vs. Android)
- Incentivize completion with deceit (ex; credit only with study completion)