

Data Transmission through Ultrasonic Sound

By:

Shreyas R Karthik K Bhat Praphul Gowda Guide:

Dr. Anuradha M

Problem Statement

Design a prototype that is able to transfer digital data using ultrasonic sound

#	Details	Value	Unit	Remark
1	Transmission Length	30	centimetre	Maximum length
2	Transmitter Power	TBD	Watt	
3	Power Supply	5	Volts	
4	Transmission Speed	40	kHz	
5	Communication Protocol	UART		
6				
7				

Introduction

- Short-range connectivity among electronic devices is essential to build a connected world.
- With billions of connected devices, the need for devices to identify and communicate with each other is increasing.
- Radio Frequency based wireless communication rely on high power radio transmitters

Why Ultrasonic Data Transmission?

- Data can be transmitted with standard speakers and microphones.
- Ultrasonic bypasses the physical limitation of short-range RF.
- Similar to other communication protocols, data can be encrypted and transmitted.
- Properties of sound enable quick localised data transfers which is key factor in sharing resources based on proximity.

Progress Timeline

• Literature Survey

Week 1

Week 2

 Understand working of Transducer and HC-SR04 Design and simulation of Transmitter circuit #1

Week 3

Week 4

 Design and simulation of Transmitter circuit #2 Exploring suitable receiver circuits

Week 5

Literature Survey

- The 18.5 to-20 kHz is inaudible to most humans and yet realizable with commodity speakers and microphones in mobile devices.
- Modulation is made in such a way that makes it robust to noise and reverberation in the environment.
- Speakers of common phone produces 74 dB SPL at 18 kHz whereas the threshold is 86 dB SPL to be audible.
- The range is reliable for a maximum distance ranging from 2 m to 10 m.

Applications

- Ultrasonic data transmission can be used under-water.
- Short-range, secure resource sharing between devices.
- Data transmission in places where electromagnetic radiations are harmful e.g. Petrol bunks, Healthcare

HC-SR04

- HC-SR04 is an ultrasonic distance sensor.
- It has two transducers one acting as a transmitter and the other as receiver.
- It has four pins:
 - VCC Positive terminal of the power source.
 - Trig Trigger pin to send burst of ultrasonic.
 - Echo Echo pin to receive the reflected ultrasonic sound.
 - GND Negative terminal of power source

HC-SR04 Circuit

HC-SR04 Ultrasonic sensor circuit

Working of HC-SR04

- Trigger pin is given a pulse.
- A burst of 8 pulses of 40 kHz is sent via transducer.
- The echo pin is set high.
- Once reflected wave is detected, the echo pin is set low.

Scope shot of signal timing (Source: pcserviceselectronics.co.uk)

Scope shot at Tx (Taken at lab)

Approach

Transducers

- The transducer is a device that converts electrical signal to physical quantity or vice versa.
- The main criteria to choose a ultrasonic transducer are the resonant frequency, radiation pattern and sensitivity.

- Sensitivity affects the efficiency of the transducer and also attributes to the SNR.
- For the receiver and transmitter, we would be using 40 kHz ultrasonic transducer.

Transmitter Circuits

- Transmitter Circuit #1
 - The circuit uses a JFET to modulate the amplitude of carrier signal with respect to the message signal.
 - Generating high-frequency carrier signals is not easy and required output was not obtained in this circuit.
- Transmitter Circuit #2
 - Uses PNP and NPN transistors to bring the current levels to an optimum range which
 is suitable for the ultrasonic transducers to operate.
 - The current levels varies with respect to the message signal.

Transmitter Circuit #1 Simulation

Simulation of Amplitude Modulation Circuit using JFET on LTSpice software

Transmitter Circuit #2 Simulation

Simulation of Ultrasonic Transducer Driver Circuit on LTSpice software

Planned Timeline

References

PES UNIVERSITY

- https://lisnr.com/resources/blog/ultrasonic-data-transmission-compares-rf/
- https://ieeexplore.ieee.org/document/8080245
- http://www.kerrywong.com/2011/01/22/a-sensitive-diy-ultrasonic-range-sensor/
- http://www.pcserviceselectronics.co.uk/arduino/Ultrasonic/electronics.php

kHz	Kilo Hertz
UART	Universal Asynchronous Receiver Transmitter
RF	Radio Frequency
dB	Decibels
dB SPL	Sound Pressure Level (1 Pascal is equal to SPL of 94 dB)
m	meter
SNR	Signal to Noise Ratio
GND	Ground
JFET	Junction Field effect transistor

