

Invariance, Causality and Robustness

2018 Neyman Lecture *

Peter Bühlmann †
Seminar for Statistics, ETH Zürich

December 21, 2018

Agenda

- 1. Introduction Causality
- 2. Problem Setting
- 3. Invariant Causal Prediction
- 4. Instrumental Variable Regression
- 5. Anchor Regression
- 6. Conclusion
- 7. Q&A and Discussion

Causality: "What if I do (in a heterogenous setting)?"

Gold standard: Randomized Control Trials

Associations Between Covariates X and a Response Y

Structured Equation Models (SEMs)

$$Y \leftarrow f_Y(X_{\text{pa}(Y)}, \varepsilon_Y), \ \varepsilon_Y \text{ independent of } X_{\text{pa}(Y)}, X \sim F_X,$$

special case:

$$Y \leftarrow f_Y(X_{\text{pa}(Y)}, \varepsilon_Y),$$

 $X_j \leftarrow f_j(X_{\text{pa}(X_j)}, \varepsilon_j),$

direct causal variables for Y:

$$S_{causal} = pa(Y) = \{X1, X5\}$$

Exploit heterogeneities in the data and inspect a certain stability

- Observe data from different environments $(X^e, Y^e) \in \mathcal{E}$
- Non-observed environments: F ⊃ E

• ad-hoc conditions $B(\mathcal{E})$

Structural equation model remains the same, that is for all $e \in \mathcal{E}$

$$Y^e \leftarrow f_Y(X^e_{pa(Y)}, \varepsilon^e_Y)$$

where ε_Y^e is independent of $X_{pa(Y)}^e$ and ε_Y^e has the same distribution as ε_Y .

• ad-hoc aim: ideally, e should change the distribution of

TT = Tobacco Taxes, S = Smoking, H = Health

Worst case risk optimization and predictive robustness

Predict Y^e given X^e such that the prediction "works well" or is "robust" for all $e \in \mathcal{F}$ based on data from much fewer environments $e \in \mathcal{E}$.

Linear model setting: $\underset{e \in \mathcal{F}}{\operatorname{argmin}} \max_{b \in \mathcal{F}} \mathbb{E}[|Y^e - X^e b|^2].$

• Assuming that $B(\mathcal{F})$ holds, then

$$\operatorname{argmin}_b \max_{e \in \mathcal{F}} \mathbb{E}[|Y^e - X^e b|^2] = \text{causal parameter}$$

Causal parameters optimize worst case loss w.r.t. unseen future scenarios/ environments.

Invariance Assumption

- $A_S(\mathcal{E})$: The subset S of covariates fulfills invariance saying that
 - $\mathcal{L}(Y^e | X_S^e)$ is the same (= invariant) across all $e \in \mathcal{E}$
- $A_S(\mathcal{F})$: analogous
- Linear model setting:

Subset S* and regression coefficients β^* with $supp(\beta^*) = \{j; \beta_j^* \neq 0\} = S^*$ such that

For all $e \in \mathcal{E}$: $Y^e = X^e \beta^* + \varepsilon^e$, and ε^e independent of $X^e_{S^*}$, $\varepsilon^e \sim F_{\varepsilon}$

Invariance Assumption

- $A_S(\mathcal{E})$: The subset S of covariates fulfills invariance saying that
 - $\mathcal{L}(Y^e | X_S^e)$ is the same (= invariant) across all $e \in \mathcal{E}$

- $A_S(\mathcal{F})$: analogous
- Linear model setting:

Subset S* and regression coefficients β^* with $supp(\beta^*) = \{j; \beta_j^* \neq 0\} = S^*$ such that

For all $e \in \mathcal{E}$: $Y^e = X^e \beta^* + \varepsilon^e$, and ε^e independent of $X^e_{S^*}$, $\varepsilon^e \sim F_{\varepsilon}$

• **Proposition 1:** Assume a partial structural equation model. Consider the set of environments \mathcal{F} such that $B(\mathcal{F})$ holds. Then, the set of causal variables $S_{causal} = pa(Y)$ satisfies the invariance assumption with respect to \mathcal{F} , that is $A_{S^*}(\mathcal{F})$ holds:

causal variables \implies Invariance.

causal structures $\stackrel{?}{\longleftarrow}$ Invariance

Procedure

for all subsets $S_k \in S$

test if S_k fulfills invariance

 $H_{0,s_k}(\mathcal{E})$: assumption $A_{s_k}(\mathcal{E})$ holds

$$\hat{S}(\mathcal{E}) = \bigcap_{S_k} \{S_k; H_0 \text{ not rejected at } \alpha\}$$

Theorem 1: Assume a structural equation model for response Y and that the environments/ perturbations in *E satisfy (B)*. Furthermore, assume that the tests are valid, controlling the type 1 error. Then, for alpha in 0,1 we have that

$$\mathbb{P}[\hat{\mathcal{S}}(\mathcal{E}) \subseteq \mathrm{pa}(Y)] \ge 1 - \alpha.$$

- No information about the power/ completeness of estimates:
 - Roughly: power increases as ε becomes larger

Application: Single gene knock-out experiments in yeast

• mRNA expression levels for 6,170 genes

Goal: predict the expression levels of all (except the deleted) genes of a new and unseen single gene deletion intervention

deletion")

Application: Single gene knock-out experiments in yeast

• mRNA expression levels for 6,170 genes

<u>Goal:</u> predict the expression levels of all (except the deleted) genes of a new and unseen single gene deletion intervention

Application: Single gene knock-out experiments in yeast

• mRNA expression levels for 6,170 genes

Goal: predict the expression levels of all (except the deleted) genes of a new and unseen single gene deletion intervention

Application: Single gene knock-out experiments in yeast

k most often selected edges (x-axis), how many of them correspond to a true SIE based on test data (y-axis)?

More realistic setting – Relaxing conditions

ICP Model

- Approximate instead of exact invariance holds
- Residuals not invariant for all environments
- Different regression parameters for varying environments
- Hidden confounding factors
- ...

Instrumental Variable Regression

ICP Model

IV Regression Model

$$Y \leftarrow f_Y(X_{\text{pa}_X(Y)}, H, \varepsilon_Y),$$

 $X_j \leftarrow f_j(X_{\text{pa}_X(X_j)}, H, E, \varepsilon_j),$

(Assume a linear setting)

- Two Stage Least Squares (2SLS) estimation:
- 1. Regress each column of X on instruments (E) to obtain \hat{X} by OLS
- 2. Regress Y on the predicted values from stage 1 \hat{X}
- > Can identify causal mechanism between X and Y.

Model ("invalid instruments")

ICP Model

IV Regression Model

Anchor Regression Model

$$\begin{pmatrix} X \\ Y \\ H \end{pmatrix} = B \begin{pmatrix} X \\ Y \\ H \end{pmatrix} + \varepsilon + MA$$

with (I - B) being invertible and allowing for feedback loops

$$Y = X^T \beta + H^T \alpha + A^T \xi + \varepsilon_Y,$$

Fundamental identifiability problem (cannot identify causal mechanism between X and Y)

... but with causal regularization we can still infer interesting properties

Motivation: invariance for residuals

Proposition 2: We can show that in the Anchor model

A uncorrelated with
$$(Y - X^T b)$$
 \iff $(Y - X^T b)$ is "shift-invariant"

! Remember: causal parameters would lead to general invariance!

... but with causal regularization we can still infer interesting properties

Motivation: invariance for residuals

Proposition 2: We can show that in the Anchor model

A uncorrelated with
$$(Y - X^T b)$$
 \iff $(Y - X^T b)$ is "shift-invariant"

! Remember: causal parameters would lead to general invariance!

$$\hat{\beta}(\gamma) = \operatorname{argmin}_b \left(\|(I - \Pi_{\mathbf{A}})(\mathbf{Y} - \mathbf{X}b)\|_2^2 / n + \gamma \|\Pi_{\mathbf{A}}(\mathbf{Y} - \mathbf{X}b)\|_2^2 / n \right)$$

where $\Pi_A = A(A^TA)^{-1}A^T$ (projection onto column space of A)

- For $\gamma = 1$: OLS
- For $\gamma = 0$: Adjusting for heterogenity due to A
- For γ = ∞: Two-stage least square in IV model
- For 0 ≤ γ < ∞: causal regularization

... but with causal regularization we can still infer interesting properties

Motivation: invariance for residuals

Proposition 2: We can show that in the Anchor model

A uncorrelated with
$$(Y - X^T b)$$
 \iff $(Y - X^T b)$ is "shift-invariant"

! Remember: causal parameters would lead to general invariance!

$\hat{\beta}(\gamma) = \operatorname{argmin}_b \left(\|(I - \Pi_{\mathbf{A}})(\mathbf{Y} - \mathbf{X}b)\|_2^2 / n + \gamma \|\Pi_{\mathbf{A}}(\mathbf{Y} - \mathbf{X}b)\|_2^2 / n \right)$

where $\Pi_A = A(A^TA)^{-1}A^T$ (projection onto column space of A)

- For $\gamma = 1$: OLS
- For $\gamma = 0$: Adjusting for heterogenity due to A
- For γ = ∞: Two-stage least square in IV model
- For 0 ≤ γ < ∞: causal regularization
- Trivial computation by *linear transformation* of the data + OLS estimation

$$ilde{Y} = W_{\gamma}Y, \; ilde{X} = W_{\gamma}X, \ W_{\gamma} = I - (1 - \sqrt{\gamma})\Pi_{\mathbf{A}}.$$

... but with causal regularization we can still infer interesting properties

With causal regularization we can minimize the worst case risk over a certain class of shift perturbations, meaning

$$\arg\min_{b}\max_{e\in\mathcal{F}}\mathbb{E}|Y^{e}-(X^{e})^{T}b|^{2}$$

for a certain class of shift perturbations \mathcal{F} .

! Remember: causal parameters minimize worst case risk for "essentially all" perturbations!

Class of Shift Perturbations (Environments) \mathcal{F}

$$\begin{pmatrix} X^v \\ Y^v \\ H^v \end{pmatrix} = B \begin{pmatrix} X^v \\ Y^v \\ H^v \end{pmatrix} + \varepsilon + v = (I - B)^{-1}(\varepsilon + v).$$

$$C_{\gamma} = \{v; \quad v = M\delta \text{ for random or deterministic } \delta, \text{ uncorrelated with } \varepsilon \text{ and } \mathbb{E}[\delta\delta^T] \leq \gamma \mathbb{E}[AA^T]\}.$$

- Shift vector $v \in span(M)$ with "strength" $||v||^2 = O(\gamma)$
 - $-\gamma = 1$: v is up to the order MA = heterogeneity in the (observed) data
 - $-\gamma \gg 1$: v can be a stronger perturbation being an amplification of the observed heterogeneity MA

Worst case risk minimization

With causal regularization we can minimize the worst case risk over a certain class of shift perturbations, meaning

$$\arg\min_{b}\max_{e\in\mathcal{F}}\mathbb{E}|Y^{e}-(X^{e})^{T}b|^{2}$$

for a certain class of shift perturbations \mathcal{F} .

Theorem 2: For any $b \in \mathbb{R}^p$

$$\mathbb{E}_{\text{train}}[((\text{Id}-P_A)(Y-X^{\mathsf{T}}b))^2] + \gamma \mathbb{E}_{\text{train}}[(P_A(Y-X^{\mathsf{T}}b))^2] = \sup_{v \in C^{\mathsf{T}}} \mathbb{E}_v[(Y-X^{\mathsf{T}}b)^2],$$
causal regularized risk
worst case risk
(shift perturbations)

Worst case risk minimization & diluted form of causality

Therefore

$$\hat{\beta}(\gamma) = \operatorname{argmin}_b \left(\| (I - \Pi_{\mathbf{A}})(\mathbf{Y} - \mathbf{X}b) \|_2^2 / n + \gamma \| \Pi_{\mathbf{A}}(\mathbf{Y} - \mathbf{X}b) \|_2^2 / n \right)$$

protects against worst case shift perturbations scenarios and leads to prediction robustness.

- Variables corresponding to large entries in $\hat{\beta}(\gamma)$ are "key drivers" for explaining Y (in a stable way).
- For $\gamma \to \infty$, define supp($\beta(\gamma \to \infty)$) as the variables which are diluted causal for Y.

• Note, if IV assumptions hold, we can identify "normal" causal variables using Anchor Regression too.

Application – simulation study

- Training data: n = 200
- Test data: n = 2,000 and perturbation by multiplying A1 & A1 with factor $\sqrt{10}$

Application – simulation study

in-sample quant. and test err.

- Anchor regression exhibits better prediction performance under (out-sample) perturbation than OLS.
- If out-sample data similar to train data (**no new perturbations**), then there would be **no gain** (even a slight loss) compared to OLS.

Application – Bike sharing data set (real dataset) with strong heterogeneities

- Predict bike rental count based on d = 4 covariates (weather data) and a sample with n = 17,379
- Discrete anchor variable = "time" (one level per day)

 $\approx 15 - 20\%$ performance gain compared to OLS

Conclusion

causal
invariance
regression
marginal correlation

Causality, as predictive robustness in heterogeneous setting
 by exploiting invariance from heterogeneous data (important to infer invariance)

- Invariant Causal Prediction
- Invariance corresponds to causality (= worst case risk optimization)

- IV model assumptions: identify causal relationship (2SLS, Anchor regression)
- Relaxing assumptions: limiting to shift perturbations we can infer invariance of residuals and "diluted causality" (= worst case risk optimization)

Even when inferring causal effects are non-identifiable, identifying variables that fulfill invariance can provide more meaningful insights than methods like regression.

Backup

Referenced Papers

Invariance, Causality and Robustness

2018 Neyman Lecture *

Peter Bühlmann †
Seminar for Statistics, ETH Zürich

December 21, 2018

Methods for causal inference from gene perturbation experiments and validation

Nicolai Meinshausen^a, Alain Hauser^b, Joris M. Mooij^c, Jonas Peters^d, Philip Versteeg^c, and Peter Bühlmann^{a,1}

^aSeminar for Statistics, Eidgenössische Technische Hochschule (ETH) Zurich, CH-8092 Zurich, Switzerland; ^bDepartment of Engineering and Information Technology, Bern University of Applied Sciences, CH-3400 Burgdorf, Switzerland; ^cInformatics Institute, University of Amsterdam, 1090 GH Amsterdam, The Netherlands; and ^dMax Planck Institute for Intelligent Systems, D-72076 Tuebingen, Germany

Edited by Richard M. Shiffrin, Indiana University, Bloomington, IN, and approved April 5, 2016 (received for review June 5, 2015)

Received: 1 June 2018 | Accepted: 11 September 2020

DOI: 10.1111/rssb.12398

ORIGINAL ARTICLE

30

Anchor regression: Heterogeneous data meet causality

Dominik Rothenhäusler¹ | Nicolai Meinshausen² | Peter Bühlmann² Jonas Peters³

Organisationseinheit verbal 02.05.22

Remarks

- Computation of ICP can be expensive
 - Existence of algorithm which computes ICP without necessarily going through all subsets (in worst case this cannot be avoided)
 - In high dimensional setting: variable screening
- Presence of hidden confounding factors, ICP leads to

$$\mathbb{P}[\hat{S}(\mathcal{E}) \subseteq \text{an}(Y)] \geq 1 - \alpha,$$
 with an(Y) = ancestors of Y

- Direct effects of environments on Y (Violation of B(ε)):
 - Infer that no set S_k fulfills invariance condition
 - As sample size gets sufficiently large, rejecting $H_{0,S_k}(\mathcal{E})$ for all S_k
 - $-\hat{S}(\mathcal{E}) = \emptyset$

Concrete test for invariance

$$Y = \sum_{j \in pa(Y)} \beta_j X_j + \varepsilon_Y, \ \varepsilon_Y \sim \mathcal{N}(0, \sigma_Y^2)$$

and ε_Y is independent of $X_{\mathrm{pa}(Y)}$. The invariance hypotheses in $H_{0,S}(\mathcal{E})$ then becomes:

 $H_{0,S}(\mathcal{E})^{\text{lin-Gauss}}$: for all $e \in \mathcal{E}$ its holds that,

$$Y^e = X_S^e \beta_S + \varepsilon_S^e$$
, ε_S^e independent of X_S^e (the same β_S for all $e \in \mathcal{E}$), $\varepsilon_S^e \sim F_{\varepsilon_S}$ (the same for all $e \in \mathcal{E}$).

- Exact tests exist, e.g. Chow test (tests if true coefficients in two linear regressions on different data sets are equal)
- Variable screening using e.g. LASSO

Unknown environments

- Estimate from data
- Type 1 error control holds as long as estimated partition does not involve descendant variables of the response Y
- Use clustering algorithm based on non-descendants of Y

Choosing amount of regularization

- γ relates to the class of shift perturbations over which we achieve protection (in worst case)
 - Decide via cross validation
 - Decide a-priori based on expected perturbation in data (domain knowledge)
- If anchor variables are continuous: Interpretation as a quantile
 - Assume joint Gaussian distribution over A, X, Y

$$\alpha - \text{quantile of } \mathbb{E}[(Y - X^T b)^2 | A]$$

$$= \mathbb{E}[((I - P_A)(Y - X^T \beta))^2] + \gamma \mathbb{E}[(P_A(Y - X^T \beta))^2],$$
for $\gamma = \alpha$ – quantile of χ_1^2 .

– Thus, choose α and then calculate the γ which optimizes this quantile