MAT1375, Classwork14, Fall2025

Ch13. Exponential and Logarithmic Functions II

1. Rewrite the equation in its equivalent exponential form.

$$x = \log_{13}(1).$$

$$x = \log_{13}(1).$$

$$\Rightarrow x = 0$$

2. Evaluate the expression by rewriting it as an exponential expression.

D: (-w/w) -3 x -1 mmodic with

	$D(0, \infty)$								
•	x	SF	40	-IN		3	9		
	g(x)	-3	-2	-1	0	1	2		
J	0930	x) <u>k</u>	?: [-	-00 _l	(W)				

$-3 = \log_3 x \Rightarrow x = \frac{3}{3} = \frac{1}{20},$	-13
$-2 = \log_3 x \Rightarrow x = \frac{3}{3} = \frac{1}{9},$	٠ : ح
$-1 = \log_3 x \Rightarrow x = 3 = \frac{3}{3},$ $3 = 2$	
$0 = \log_3 x \Rightarrow x = 3 = 1$ $3 = 2$ $1 = \log_3 x \Rightarrow x = 3 = 3$	
$3 = x$ $2 = \log_3 x \Rightarrow x = 3 = 9.$	
$\frac{1}{3}=x$	

- (a) The domain of g: (D, \mathcal{W}); The range of g: (\mathcal{W})
- (b) There is y-intercept. In fact, y approaches, but never touches y- y- y- which is a

- (d) For b > 1, $g(x) \to \underline{\hspace{1cm}}$ as $x \to \infty$, $g(x) \to \underline{\hspace{1cm}}$ as $x \to \underline{0^+}$.
- (e) For 0 < b < 1, $g(x) \rightarrow \underline{\hspace{1cm}}$ as $x \rightarrow \infty$, $g(x) \rightarrow \underline{\hspace{1cm}}$ as $x \rightarrow 0^+$.

5. Basic logarithmic evaluations: Let $f(x) = b^x$ and $g(x) = \log_b x$, b > 0, $b \ne 1$. We have

(1) Elementary logarithms: $b = b^1 \Leftrightarrow \underline{\hspace{1cm}} = \log_b(b)$.

$$1 = b^0 \Leftrightarrow \underline{\hspace{1cm}} = \log_b(1).$$

(2) Inverse properties: = x. (f(g(x)) = x)

$$= x. \left(g(f(x)) = x \right)$$

(3) Change-of-Base property: **10-base**: $\log_b(x) = \frac{\log_{10}(x)}{\log_{10}(b)} = \frac{\log(x)}{\log(b)}.$

natural base:
$$\log_b(x) = \frac{\log_e(x)}{\log_e(b)} = \frac{\ln(x)}{\ln(b)}$$
.

6. Given $f_1(x) = \log_e(x)$, $f_2(x) = \log_{0.5}(x)$, $f_3(x) = \log_{10}(x)$, $f_4(x) = \log_2(x)$, and $f_5(x) = \log_{0.1}(x)$. Using the following numbers to find the order of these five functions from small to larger for a fixed x > 1: $\ln(2) = 0.6931$, $\ln(10) = 2.3026$, $\ln(0.1) = -2.3026$, $\ln(0.5) = -0.6931$.